diff --git a/segment/README.md b/segment/README.md index a3f095a..f6943e1 100644 --- a/segment/README.md +++ b/segment/README.md @@ -6,27 +6,27 @@ -### ⭐ [`MMSegmentation(CCNet, DeepLabV3, PSPNet)`](https://github.com/the0807/Autonomous-Driving-Model/tree/master/segment/mmseg) +### ⭐ [`MMSegmentation(DeepLabV3+, CCNet, PSPNet)`](https://github.com/the0807/Autonomous-Driving-Model/tree/master/segment/mmseg) # ⚡️ Result -### ⭐ CCNet +### ⭐ DeepLabV3+
-CCNet +DeepLabV3+
-### ⭐ DeepLabV3+ +### ⭐ CCNet
-DeepLabV3+ +CCNet
### ⭐ PSPNet
- +PSPNet
diff --git a/segment/mmseg/README.md b/segment/mmseg/README.md index 28c75c0..dcac06c 100644 --- a/segment/mmseg/README.md +++ b/segment/mmseg/README.md @@ -99,7 +99,7 @@ configs │ # dataset setting (e.g. batch size) ├── datasets/ │ -│ # model setting (e.g. CCNet, DeepLabv3+, PSPNet) +│ # model setting (e.g. DeepLabv3+, CCNet, PSPNet) ├── models/ │ │ # train schedule setting (e.g. iteration, val interval) @@ -109,7 +109,7 @@ configs ├── default_runtime.py │ │ # main config setting -└── ccnet_160k.py +└── deeplabv3plus_160k.py ``` > [!Important] @@ -129,10 +129,10 @@ configs ### 4. Train ```shell # Single GPU -python train.py 'configs/ccnet_160k.py' +python train.py 'configs/deeplabv3plus_160k.py' # Multiple GPU -bash dist_train.sh 'configs/ccnet_160k.py' 2 +bash dist_train.sh 'configs/deeplabv3plus_160k.py' 2 ``` ### 5. Draw graph @@ -149,26 +149,26 @@ run code `inference.ipynb` ### 7. Evaluation ```shell -python validation.py 'configs/ccnet_160k.py' 'path/to/trained_model.pth' +python validation.py 'configs/deeplabv3plus_160k.py' 'path/to/trained_model.pth' ``` # ⚡️ Result -### ⭐ CCNet +### ⭐ DeepLabV3+
-CCNet +DeepLabV3+ -스크린샷 2024-08-09 오후 3 38 51 | ![loss_plots](https://github.com/user-attachments/assets/0f8fab92-bc3a-4d52-8138-345d931e3461) +스크린샷 2024-08-09 오후 3 47 21 | ![loss_plots](https://github.com/user-attachments/assets/b9b52037-dfb3-4aec-b18c-04b7d133063f) |:--:|:--:|
-### ⭐ DeepLabV3+ +### ⭐ CCNet
-DeepLabV3+ +CCNet -스크린샷 2024-08-09 오후 3 47 21 | ![loss_plots](https://github.com/user-attachments/assets/b9b52037-dfb3-4aec-b18c-04b7d133063f) +스크린샷 2024-08-09 오후 3 38 51 | ![loss_plots](https://github.com/user-attachments/assets/0f8fab92-bc3a-4d52-8138-345d931e3461) |:--:|:--:|
@@ -176,6 +176,9 @@ python validation.py 'configs/ccnet_160k.py' 'path/to/trained_model.pth' ### ⭐ PSPNet
+PSPNet +스크린샷 2024-08-11 오후 7 03 32 | ![loss_plots](https://github.com/user-attachments/assets/80971f82-40db-4a5b-8385-f37558b7cf61) +|:--:|:--:|
\ No newline at end of file diff --git a/segment/mmseg/inference.ipynb b/segment/mmseg/inference.ipynb index 2fbc016..41d5de6 100644 --- a/segment/mmseg/inference.ipynb +++ b/segment/mmseg/inference.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 59, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -16,20 +16,28 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 2, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/students/cs/the0807/Autonomous-Driving-Model/segment/mmseg/mmseg/models/losses/cross_entropy_loss.py:250: UserWarning: Default ``avg_non_ignore`` is False, if you would like to ignore the certain label and average loss over non-ignore labels, which is the same with PyTorch official cross_entropy, set ``avg_non_ignore=True``.\n", + " warnings.warn(\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Loads checkpoint by local backend from path: work_dirs/ccnet_160k/iter_160000.pth\n" + "Loads checkpoint by local backend from path: work_dirs/pspnet_160k/iter_160000.pth\n" ] } ], "source": [ - "config_file = 'configs/ccnet_160k.py'\n", - "checkpoint_file = 'work_dirs/ccnet_160k/iter_160000.pth'\n", + "config_file = 'configs/pspnet_160k.py'\n", + "checkpoint_file = 'work_dirs/pspnet_160k/iter_160000.pth'\n", "\n", "test_img_path = 'dataset/Preprocessed_2DSS/images/test'\n", "all_files = os.listdir(test_img_path)\n", @@ -39,12 +47,12 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAAH/CAYAAACxPcr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebwuWVXfj7/3rnqe50x3HnqmB0aZBJqoTCKIdAScEjUSJTQa0hpF+L6C+RG+KiD8RE1I8IeIhCioEAcIRgyigmkUlEmGbqam5+n2Hc8983mGqr3X74+9d9Wu55zbfbvp4UKvN9w+59RTw66q/VTttdZnr2VERFAURVEURVEURVEURVEURVEURVEURVEURVEURbmPsA90AxRFURRFURRFURRFURRFURRFURRFURRFURRF+eZGRUqKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKotynqEhJURRFURRFURRFURRFURRFURRFURRFURRFUZT7FBUpKYqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIpyn6IiJUVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVR7lNUpKQoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoyn2KipQURVEURVEURVEURVEURVEURVEURVEURVEURblPUZGSoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoij3KSpSUhRFURRFURRFURRFURRFURRFURRFURRFURTlPkVFSoqiKPchr33tazHG3KNt3/Wud2GM4eabb753G5Vx8803Y4zhXe961312DEVRFEVRFEVR7l0uuugiLr/88ubvj370oxhj+OhHP/qAtWma6TYqiqIoiqIoivLAo7aEoiiK8kCjIiVFUZRt+PKXv8xP/MRPcN555zEYDDj33HP58R//cb785S8/0E17QEiGyvve974HuimKoiiKoiiK8oCSJhOkfzMzMzziEY/g537u5zh69OgD3by7xV/+5V/y2te+9gFtgzGGn/u5n3tA26AoiqIoiqIo9wdqS9y7qC2hKIryjYmKlBRFUaZ4//vfz5Oe9CT+9m//lpe85CX89m//Nj/1Uz/FlVdeyZOe9CT+7M/+7LT39Yu/+IsMh8N71I4XvehFDIdDLrzwwnu0vaIoiqIoiqIo9x2/8iu/wh/+4R/yW7/1Wzz1qU/lbW97G095ylPY3Ny839vynd/5nQyHQ77zO7/zbm33l3/5l7zuda+7j1qlKIqiKIqiKMp2qC2hKIqiPJgpH+gGKIqinEnccMMNvOhFL+KSSy7h7//+7zlw4EDz2ctf/nKe8Yxn8KIXvYirr76aSy655JT72djYYH5+nrIsKct79qgtioKiKO7RtoqiKIqiKIqi3Ld87/d+L09+8pMB+Lf/9t+yb98+/ut//a/8+Z//OS984Qu33SbZCfc21lpmZmbu9f0qiqIoiqIoinLvo7aEoiiK8mBGMykpiqJk/Of//J/Z3Nzkv//3/94RKAHs37+ft7/97WxsbPAbv/EbzfLXvva1GGP4yle+wr/+1/+aPXv28PSnP73zWc5wOOTnf/7n2b9/Pzt27OD7v//7OXToEMaYTnrUlPr15ptvbpZddNFFvOAFL+DjH/843/Zt38bMzAyXXHIJf/AHf9A5xsmTJ3nlK1/J4x73OBYWFti5cyff+73fy1VXXXUvXan23K699lp+4id+gl27dnHgwAF+6Zd+CRHhtttu4wd+4AfYuXMnZ599Nm9605s6208mE375l3+ZSy+9lF27djE/P88znvEMrrzyyi3HWlxc5EUvehE7d+5k9+7dvPjFL+aqq67CGMO73vWuzrrXXHMNP/zDP8zevXuZmZnhyU9+Mh/4wAfutfNWFEVRFEVRlO149rOfDcBNN90EwOWXX87CwgI33HADz3ve89ixYwc//uM/DoD3nje/+c085jGPYWZmhrPOOosrrriCpaWlzj5FhDe84Q2cf/75zM3N8axnPWvbEtSpPPNHP/rRzvJPfepTPO95z2PPnj3Mz8/z+Mc/nt/8zd9s2vfWt74VoFNyInFvt/F0Sefyp3/6p7zuda/jvPPOY8eOHfzwD/8wKysrjMdjXvGKV3Dw4EEWFhZ4yUtewng87uzjne98J89+9rM5ePAgg8GARz/60bztbW/bcizvPa997Ws599xzm7Z/5Stf4aKLLuLyyy/vrLu8vMwrXvEKLrjgAgaDAQ972MP49V//dbz39/hcFUVRFEVRFAXUllBbQlEU5cGFZlJSFEXJ+Iu/+AsuuuginvGMZ2z7+Xd+53dy0UUX8cEPfnDLZz/yIz/Cwx/+cH71V38VETnlMS6//HL+9E//lBe96EV8x3d8B3/3d3/H85///NNu4/XXX88P//AP81M/9VO8+MUv5vd+7/e4/PLLufTSS3nMYx4DwI033sj//t//mx/5kR/h4osv5ujRo7z97W/nmc98Jl/5ylc499xzT/t4d8W/+lf/im/5lm/h137t1/jgBz/IG97wBvbu3cvb3/52nv3sZ/Prv/7rvOc97+GVr3wl/+yf/bMmbezq6ir/43/8D174whfy0pe+lLW1NX73d3+Xyy67jE9/+tM84QlPAMJg//u+7/v49Kc/zc/8zM/wqEc9ij//8z/nxS9+8Za2fPnLX+ZpT3sa5513Hq961auYn5/nT//0T/nBH/xB/tf/+l/80A/90L123oqiKIqiKIqSc8MNNwCwb9++Zlld11x22WU8/elP57/8l//C3NwcAFdccQXvete7eMlLXsLP//zPc9NNN/Fbv/VbfP7zn+cf/uEf6PV6APzyL/8yb3jDG3je857H8573PD73uc/x3Oc+l8lkcpft+fCHP8wLXvACzjnnHF7+8pdz9tln89WvfpX/83/+Dy9/+cu54ooruOOOO/jwhz/MH/7hH27Z/v5o453xxje+kdnZWV71qldx/fXX85a3vIVer4e1lqWlJV772tfyyU9+kne9611cfPHF/PIv/3Kz7dve9jYe85jH8P3f//2UZclf/MVf8O///b/He8/P/uzPNuv9p//0n/iN3/gNvu/7vo/LLruMq666issuu4zRaNRpy+bmJs985jM5dOgQV1xxBQ95yEP4x3/8R/7Tf/pPHD58mDe/+c1f17kqiqIoiqIoD27UllBbQlEU5UGFKIqiKCIisry8LID8wA/8wJ2u9/3f//0CyOrqqoiIvOY1rxFAXvjCF25ZN32W+OxnPyuAvOIVr+isd/nllwsgr3nNa5pl73znOwWQm266qVl24YUXCiB///d/3yw7duyYDAYD+Q//4T80y0ajkTjnOse46aabZDAYyK/8yq90lgHyzne+807P+corrxRA3vve9245t3/37/5ds6yuazn//PPFGCO/9mu/1ixfWlqS2dlZefGLX9xZdzwed46ztLQkZ511lvzkT/5ks+x//a//JYC8+c1vbpY55+TZz372lrZ/93d/tzzucY+T0WjULPPey1Of+lR5+MMffqfnqCiKoiiKoiinQxqnf+QjH5Hjx4/LbbfdJn/8x38s+/btk9nZWbn99ttFROTFL36xAPKqV72qs/3HPvYxAeQ973lPZ/lf/dVfdZYfO3ZM+v2+PP/5zxfvfbPeq1/9agE6Y+s0Xr/yyitFJIy1L774YrnwwgtlaWmpc5x8Xz/7sz8r27mG7os2ngpAfvZnf3bLuTz2sY+VyWTSLH/hC18oxhj53u/93s72T3nKU+TCCy/sLNvc3NxynMsuu0wuueSS5u8jR45IWZbygz/4g531Xvva125p++tf/3qZn5+Xa6+9trPuq171KimKQm699da7PE9FURRFURRFUVtCbYmE2hKKojyY0XJviqIokbW1NQB27Nhxp+ulz1dXVzvLf/qnf/ouj/FXf/VXAPz7f//vO8tf9rKXnXY7H/3oR3cyPR04cIBHPvKR3Hjjjc2ywWCAteER75xjcXGRhYUFHvnIR/K5z33utI91Ovzbf/tvm9+LouDJT34yIsJP/dRPNct37969pY1FUdDv94GQLenkyZPUdc2Tn/zkThv/6q/+il6vx0tf+tJmmbW2M2sBQom7//t//y8/+qM/ytraGidOnODEiRMsLi5y2WWXcd1113Ho0KF79dwVRVEURVGUBy/Pec5zOHDgABdccAE/9mM/xsLCAn/2Z3/Geeed11nvZ37mZzp/v/e972XXrl18z/d8TzNmPXHiBJdeeikLCwtN+eOPfOQjTCYTXvayl3VKJ7ziFa+4y7Z9/vOf56abbuIVr3gFu3fv7nw2XY56O+6PNt4V/+bf/JtmhjXAt3/7tyMi/ORP/mRnvW//9m/ntttuo67rZtns7Gzz+8rKCidOnOCZz3wmN954IysrKwD87d/+LXVdn5Zt9t73vpdnPOMZ7Nmzp3M9nvOc5+Cc4+///u+/7vNVFEVRFEVRHjyoLaG2hNoSiqI8mNFyb4qiKJEkPkpipVNxKjHTxRdffJfHuOWWW7DWbln3YQ972Gm38yEPeciWZXv27OnUc/be85u/+Zv89m//NjfddBPOueazPGXsvcF0e3bt2sXMzAz79+/fsnxxcbGz7Pd///d505vexDXXXENVVc3y/PrccsstnHPOOU0628T0Nbv++usREX7pl36JX/qlX9q2rceOHdti6CmKoiiKoijKPeGtb30rj3jEIyjLkrPOOotHPvKRzUSBRFmWnH/++Z1l1113HSsrKxw8eHDb/R47dgwI42CAhz/84Z3PDxw4wJ49e+60balcxGMf+9jTP6H7uY13xXZ2BsAFF1ywZbn3npWVlcbW+Yd/+Ade85rX8IlPfILNzc3O+isrK+zatatp+7RdsXfv3i1tv+6667j66qs5cODAtm1N10NRFEVRFEVRTge1JdSWSKgtoSjKgxEVKSmKokR27drFOeecw9VXX32n61199dWcd9557Ny5s7M8V9jflxRFse1yEWl+/9Vf/VV+6Zd+iZ/8yZ/k9a9/PXv37sVayyte8Qq89/d5e06nje9+97u5/PLL+cEf/EF+4Rd+gYMHD1IUBW984xsbQ+jukM7rla98JZdddtm269wdMZiiKIqiKIqi3Bnf9m3fxpOf/OQ7XSfPcJrw3nPw4EHe8573bLvNqZzX9ydnQhtPZVPcla1xww038N3f/d086lGP4r/+1//KBRdcQL/f5y//8i/5b//tv90je8h7z/d8z/fwH//jf9z280c84hF3e5+KoiiKoijKgxe1Je5b1JZQFEU5s1GRkqIoSsYLXvAC3vGOd/Dxj3+cpz/96Vs+/9jHPsbNN9/MFVdccY/2f+GFF+K956abburMELj++uvvcZu3433vex/Petaz+N3f/d3O8uXl5S0Zjh4o3ve+93HJJZfw/ve/v5PO9TWveU1nvQsvvJArr7ySzc3NTjal6Wt2ySWXANDr9XjOc55zH7ZcURRFURRFUe45D33oQ/nIRz7C0572tDud6HDhhRcCYeZtGusCHD9+vJNF9VTHAPjSl750p2PjU5VruD/aeF/xF3/xF4zHYz7wgQ90ZlCnshKJ1Pbrr7++k8l1cXFxS9sf+tCHsr6+rnaGoiiKoiiK8oCitsR9i9oSiqIo9w/2rldRFEV58PALv/ALzM7OcsUVV2wpTXby5El++qd/mrm5OX7hF37hHu0/Zfj57d/+7c7yt7zlLfeswaegKIpO1iIItY8PHTp0rx7n6yHNWsjb+alPfYpPfOITnfUuu+wyqqriHe94R7PMe89b3/rWznoHDx7ku77ru3j729/O4cOHtxzv+PHj92bzFUVRFEVRFOUe8aM/+qM453j961+/5bO6rlleXgbgOc95Dr1ej7e85S2dMfOb3/zmuzzGk570JC6++GLe/OY3N/tL5Puan58H2LLO/dHG+4rt7IyVlRXe+c53dtb77u/+bsqy5G1ve1tn+W/91m9t2eeP/uiP8olPfIK//uu/3vLZ8vIydV3fG01XFEVRFEVRlDtFbYn7FrUlFEVR7h80k5KiKErGwx/+cH7/93+fH//xH+dxj3scP/VTP8XFF1/MzTffzO/+7u9y4sQJ/uiP/qiZTXB3ufTSS/mX//Jf8uY3v5nFxUW+4zu+g7/7u7/j2muvBU49++Du8oIXvIBf+ZVf4SUveQlPfepT+eIXv8h73vOezoyEB5oXvOAFvP/97+eHfuiHeP7zn89NN93E7/zO7/DoRz+a9fX1Zr0f/MEf5Nu+7dv4D//hP3D99dfzqEc9ig984AOcPHkS6F6zt771rTz96U/ncY97HC996Uu55JJLOHr0KJ/4xCe4/fbbueqqq+7381QURVEURVGUnGc+85lcccUVvPGNb+QLX/gCz33uc+n1elx33XW8973v5Td/8zf54R/+YQ4cOMArX/lK3vjGN/KCF7yA5z3veXz+85/nQx/60F1mR7XW8ra3vY3v+77v4wlPeAIveclLOOecc7jmmmv48pe/3DjIL730UgB+/ud/nssuu4yiKPixH/ux+6WN9xXPfe5z6ff7fN/3fR9XXHEF6+vrvOMd7+DgwYOdyQxnnXUWL3/5y3nTm97E93//9/PP//k/56qrrmrantsZv/ALv8AHPvABXvCCF3D55Zdz6aWXsrGxwRe/+EXe9773cfPNN58xGWsVRVEURVGUb17UlrhvUVtCURTl/kFFSoqiKFP8yI/8CI961KN44xvf2AiT9u3bx7Oe9Sxe/epX89jHPvbr2v8f/MEfcPbZZ/NHf/RH/Nmf/RnPec5z+JM/+RMe+chHMjMzc6+cw6tf/Wo2Njb4n//zf/Inf/InPOlJT+KDH/wgr3rVq+6V/d8bXH755Rw5coS3v/3t/PVf/zWPfvSjefe738173/tePvrRjzbrFUXBBz/4QV7+8pfz+7//+1hr+aEf+iFe85rX8LSnPa1zzR796EfzT//0T7zuda/jXe96F4uLixw8eJAnPvGJ/PIv//IDcJaKoiiKoiiKspXf+Z3f4dJLL+Xtb387r371qynLkosuuoif+Imf4GlPe1qz3hve8AZmZmb4nd/5Ha688kq+/du/nb/5m7/h+c9//l0e47LLLuPKK6/kda97HW9605vw3vPQhz6Ul770pc06/+Jf/Ate9rKX8cd//Me8+93vRkT4sR/7sfutjfcFj3zkI3nf+97HL/7iL/LKV76Ss88+m5/5mZ/hwIED/ORP/mRn3V//9V9nbm6Od7zjHXzkIx/hKU95Cn/zN3/D05/+9I6dMTc3x9/93d/xq7/6q7z3ve/lD/7gD9i5cyePeMQjeN3rXseuXbvu79NUFEVRFEVRHqSoLXHfobaEoijK/YOR6XpAiqIoyv3OF77wBZ74xCfy7ne/mx//8R9/oJvzDcH//t//mx/6oR/i4x//eMewURRFURRFURRFuacsLy+zZ88e3vCGN/D//r//7wPdHEVRFEVRFEVRvkFQW0JRFOX0sA90AxRFUR5sDIfDLcve/OY3Y63lO7/zOx+AFp35TF8z5xxvectb2LlzJ0960pMeoFYpiqIoiqIoivKNzKlsM4Dv+q7vun8boyiKoiiKoijKNwxqSyiKotxztNyboijK/cxv/MZv8NnPfpZnPetZlGXJhz70IT70oQ/x7/7dv+OCCy54oJt3RvKyl72M4XDIU57yFMbjMe9///v5x3/8R371V3+V2dnZB7p5iqIoiqIoiqJ8A/Inf/InvOtd7+J5z3seCwsLfPzjH+eP/uiPeO5zn6vZWhVFURRFURRFOSVqSyiKotxzVKSkKIpyP/PUpz6VD3/4w7z+9a9nfX2dhzzkIbz2ta/V9J93wrOf/Wze9KY38X/+z/9hNBrxsIc9jLe85S383M/93APdNEVRFEVRFEVRvkF5/OMfT1mW/MZv/Aarq6ucddZZvPzlL+cNb3jDA900RVEURVEURVHOYNSWUBRFuecYEZEHuhGKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKonzzYh/oBiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK8s2NipQURVEURVEURVEURVEURVEURVEURVEURVEURblPUZGSoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoij3KeXprriJUEjYwALGmPuuVQoAXgQXfzeAxWCMxzRL7voeCIKEX9JvYAw223a7vaRtHIJvl8SjtseW9EnaiQgGadqbjmDiOtprFEVR7jmCIAKO8Oz1tL9P47LPpH0DRNKTun2OG8DHZ76LD20jgkeo4zbhR/jpJaxrDPEdk7cz/sse+kbCHhyCYDBxJQ9YG7b2ACLMGsscYczhgVKgb8K/Mu5HYjsrgRroAQMDRjwWg8cwBNYRJhg2PaxPPN4Z6lpADM6HRhYGnAhYoSwM1hhMbGdVQ12F7YwxiJPmXeZF8BLeqd6Bd4JzYKzBGKGeCDd+dY2vffkoS8vH2Fi7hbo6zKQ6ytyuWS5+6CMZLa5xy603s7axwsbKCSajTXqmRLAUvQUOnHUBVbXO7Ixnc7TKpBox2dykHo3xTjCmYHawgDGwtHqU4WgDxAGefr+kmkyYjGvqyiNiEBEwjv6gwNVCPalxtUO8xH4hIGGsIbJdz+ouFxGstWDjXTEm9AcfRg9FmXpEuEap/6UfxhrECOKEXtlDvMd7h/eCcy7s0sY+5+LNJ9w/LBgjFGVJWRrKnsFYz8zMgJmZGTbWh4xG43BvakEk9DtbWrCCcx7vQyf0XsLvWQ82pkBE8M437U3nnsbBImCtwdr0meC9wWJBPCKe9tuR5gb4zvipGVM3l1WaayvZ+K1I39ns+lsbduLjlzGtW402t713DzRXHnZxjHi6I1nl60GI/Sj+bUj9TbJrfzr2RPtb+7vpbHlKeyJvg8nXNVvWzduZ2mi22bP2G0VRlHvGduN1EHwzljed8bvk68mUPZGGL9J5uANh/J6/fZItkr9Dtt3n1P7zkdnUIfCS/d0ODRETx2cE+6CgHXMUQGEMhTQtwBuDJ4zOwjoGmxk3DpgYqAAnMHZhTOldes+2x0t2F8ZgTTMsDusK+DSkzE46vavTCYtv/XHJ6BluOK4c/iE3+H9iMl6nrlaZTFbwMmF+xxzzszOsLa8yHI+oxkPqaozxBmP7GNujNxhgjWBNhZca5xzOeVxVhzZ6odfrU5Ylm5trTKox4oM3sCgs4gVXO1zsKBIbWJThLe3qMHbv2A4de6E9IZONp7fe89yeyMe7plmUxsfdzdoxcvo92TJhfN/6QkWkc23TYY01GGsoCjA2HHMwGFBXjsmkxnsf7o1k46k4/pfmuky3LR3oTuyqqdM3neXBdgn2xPY02+dfw8ymyM2LtjXdPZho+zdNjCu5X6xOedwHil/7/JnXJkVRFEVRlDOdP77w33DV3j9+oJuhPIi4E0u/w2mLlDoBSPUM3+dMBwCLGDBtDMvTvgdxOwNGghvGbG+Zbm1DIzZqAwSG1m8AKQAeA9XNZ9PhBMmMYe08iqIo94T0Ys+d+3mgWWJQwUsr+Mn9ryb+1gk2C/gtgYjo5TeNVCP34XYC3iAYMbjOktC25ItODv+8LV58EHGEHWI8QRhkQqDAARWCESgRbBTXmhgAMCKIaSWzZfxpBQwWfHC22uhw9YBzDuMJx4oRBYnOWCNgvOC84LCtuCuKjry30fksWMAW4fyC8EWow0lBdG4H57WhKA37988yvmQvBzfmOHyb4cihMevrq6wtn6Ta/BwzhWE0XKMerWP8kH5h6Rc72bf/Qmo86+uLuGqVatNTVQ4vBcbvYNDbiQyEXt+ye88OTp44inPBee69B/GMfYV4g3M2fBYd3GWvBDH4ugoCpUY9kAWTJAll4hJzF0GFFOhxDmstRWExxtAblHjv8c7jJfwUkXbMgI0BBE8lFUURQ0PiSIGMJthgfRvEieMaa2yzr17PMDM7y8zMgCYc5W08Zmy7MeE7EkVJPgsqNOcZJXuI4EUakVSLif0nBELCdTUURRg1hQCDRdzWIEo8SHat09dAGiFfupomRb7Sd3FLRCbsK9zWcB7WTO/5zCLd+zSQPc0hqfJ1sLW30Q1U3a0bsJ1k6DR2kYJusv26YmgC2JnFEZvabX20bLTfKIqi3GOSYKh9F6fndCbn2PIzrrZl2XZ/pyXTdst25PvcukajhNp260b7kn6aMH5KizzBdkj/0ssof4/Y+G5Kn5uO0KYrHPFpbJbGx9nbKGrVw0c2CJrSeknI1Ap84n6T8Ib0i8lfgc3xZ2YKztq9k6rYx8b6PIvHDFI7hsMl1k+uMOotM5lUQeDvawprKctZ5ub2UPRKVtdOUrkheIehAFNgbZ+iZzDBuKLfL5hMNnHexUkDEgU4Lp6nRaIyS6KwRTw475FGoJTfr66t2p7UndkUaWwdPrNBjY8tbNxn9DyKbLt9Z7sk9hfp2BOYbGxh2jalzmSMYdDvUZZB3ua9C+Ik397DZN/i4ncpTXSY+rIYifb3tl0/t+LbXhkmu5jmeoqPn8v0tkL3g0yote1R2p/dMdTWEZWOsRRFURRFURRFuT84bZGSi8axJwZNaGeoKPcNyVHis4BTZ1bM3RAqBSRzC9wV0jh4bLao/SkdR5aXEMYuokMlrJKbv6JBBUVRlHtAIxYhOERTbglon88ufuYkZiOawibREG2mlfhn+xynFSW1z/C0Xuu4hfY5njK7pLxDpwoe5M74VvzSvpNqstCFD6IQG98pg9ielDUKhF7y30sILMg2L5YkXuoBE4IIqrCCJcxsdmHKNF7SrOYgLvKONqOODxlqgkPaNCJfFx3e4bN4TazBi8fYIG4SE5zMe87usXP/PiYjYf+BOfbuXuCWG3scuv1q1o6tsOQ32dzcwBqhZ0v2n/MQ+oOD7N59gFtv+yob68dw1Yi5wU527jwXTNkEQKQQ6nqdxZPHWV1dZDIe4upJcye9MxS2xBobTjZ62N3EUY8F7+tmNnAbEckd6WaLKDr/O81WDgKbtm9Za7E2iIe8IwqkktwtaXTC9TPiwBistfTKEmsKxtUE76QRFRnSdc5CXca3AZPYL4qyZGamj7WGtbUho+EY70wMKgRxkniP8UF8lIIXeQdKxzHNT8K9bLIdxcABgonpwCTe/6IMsm7rwdVt8CQPtjSCI6ArBIuRnm16chu42Erqqo2Q69QxwDMCyf5B+73XseF9SJMZLnBvXu/T3c/20qaM9F3IVmt+vdt2j6IoirIdzYSHJKRpNBvhbeyj+CQMjVJO0XxF09nbtkdIWg2Tr9HNwtfZ2nRkPk37mj+NbBkzTNMIfQxNJvL0rksT7orm0EHmkid/SiJxQ5posNVWspggdDKCLSzi2+P6aKiIkKVyojmXRkci2THj8Z1kApfsJE1+LQVMYRjMG2b7Bb2Zefr9c1la7HPi+ITRZkU1dtR1jYjDGsPCjt3MzO7C2j7rq8tMJpuIn9DrDdi5cx+F7TEej/FeKMqCcTVkY3OdejLEuQneu0zYEyYFiIRMsRIzrhIneLRiofZeJu9fZzrN6fiPUx+cyoiUJjl0b3x7bZNdaY3BFgXGGFzdTtBobFtjtvSvJELL2ycQJq/UNVXlm7G6QULfkXxCRytQalrYfMm6oy6TK9OaK5RZYib7h40TT7b2+nAf6F4T6R6rc1mzL5HZurvs+6jDLUVRFEVRFEVR7j9OW6Qkpg1gNstEhUr3FSZzChkxTaYiGwOGdy/AIB2j+rTbkP4zvUmK03U+SrN2WmcQmCZYnguUNBilKIpy92gD+7FMW/MeMI3QQrJnM3SfszL1c3q/SfwkU+skcRCSBQCyfUcfbTfSMbWPAtOMIdKOkhzGxHPxU8fJ21ZPnY8hfydud66Cse1VKAmDnbK01Eao6+j4tSBRSCJR6GJjUMHEgEGeJQfCdtaGzFEuZudpxSEG6y3Gp3bEd2ApUIA1loPn7aKaDDl8bI5yMMfmxjLeGxBD0bfMzu/kwAUXsmvvOZw4dJyNtRVGm5v0+pZzLjiXCy9+BMeOLrKxMaTXG7C5uc7a+ibD9VVcNcZYhy2gLMsotLLM9OcQP6aaVO37uyltZjpVFcJnme88XcUoskkCntwhbowJ5Q9cOyb0tceU4fzFVVuCCrYwUQAWLpY1htnZWXplj+FoHINjaX9tGTaRcK0wgi2EmZkCa0u8WEIhQcO4qnGVZ7gZskhZa8AU4XxcLCGHwYjHdzp87AsxMGSyMW5RlPT7feq67pSga3RH1mCLmD0KS+UdPpbcA9OOwUwK/k0LmGgaksbWYXn6cnXzmeWiJ6G9dymocYrp2mcE+XNGx4L3Pe24OwWFt74h7s59SF21sRG+DqbfNe0uzZ32YbUnFEVR7jmS/bsr0jO5lZmw5bdTHkO6f7eCqO5zvF2pWxZ0y5FMK6ZqhD95W7exg9pRlDTipWQ/pLKzaZvctmlrWUf7yISxoY0tCJM3pbGTmmsa01kaw7YXOr9+zXs5jTfz9UzwAaaGCaHBYsIxjBWMranqIcYWuGZCgMGWlrLXR2xBb6YPGOpqjNQOL55yrqA/U2AM1GLo2x5VVeFchXchg5I1BopWlO+9YKwFH/16uUNyKmvP9Nk21zUXAMnWHpjbGib7H5mN224bsM1NT33HUBQFvV6P2rn28pskrqLtmHGn1gj9mZKiKEKGVSfBRsRQO09dOZCQbcrGMX3IMOWziR55fz/1d8NaQ9nrxeOETLY2nXe8BmEsb7Ex82tzDvkXIfl385RhU1+AqMdqRGbNJIx2F9tt1hxCx1eKoiiKoiiKotwfnLZIKYXoQuCIxkGtQqX7humAnm9+BndGeTcuees8iWVqTsvkNN1fRZoJYblYTbb5XcSH6G/uTEANXUVRlHtE8pPHP30z/TF3amZZ72ifx/my9B5o10nRgpQFJ9s2S32Uh7aTY78NekeBFPk80HY/TfMNQfSR2p0CDHED6wVrTczKF9ZIM6drwnurh6EH9LM2NAeIbU2OcgfUCDWGmjbTlJeYbUoEF0u5iRgEH0RGGLzzWEyTlSqJSEQEb0xTAsIYQ6+wIDEbUxwgeZ8FGwx4CdmY6knNkTvu4NprP8/axjHK/iwis0GoY2r6M7NMJoY7Dh9ls6oYrq0gvqLwhvFwxG2HbmR5/SSDwQKFHbC+fJKTi8fxbhzabHv0ejW2CPehdjWudiDjEJQoyzDDGrBWEHGNFsBGh7iIj9mB2vFdK05qgwrTJRjy/mgLSxEzKYkRxFucc81+QvmFUPIvF+QAVHWF93UQIdm03ONdN+RkLezZu8Ce/TsZjycMN2qqusbYAhHLaDwJgZrCUpYWEUtVOap6gve+7afxvgYhWmhbunfGGIoihLD6M32MsdR1vLdNTMS33xEBicIr76YiKulwEvq1QZpSDk3gwLcz5ouiwNqCunbNdzz1uXStwrU3eAPGhKxOTfvPZDpxuOxZho4T7ws69oRJmbfC1bZZEGqrdOkU+2u27r5fTsWWd4KZitt2Y4VxvW5gs/m+tRImRVEU5R5hOj+m38d55ppc4JPG+Kb5O0O6+5xWD3W0G9sIlabXa0Ql8VjbPfNP9R4Qad9NYf+xZLRpzyn5w4pT7Dtvv2Bwps3mWkexU7B9TGMzNZqb3LghvYNbGyu61cC04x5j2kytaTJITPbZvY6eRkSztrrKkdtvZ319ibLsMZidZzIyeG+wRcggNB6NWaqPYwuLlwllUTCejFlfW2FzuMHMzDy93oBqUjEcbiLiQ9liUwQRVLz73qWJGQ5rLEVZgCOOp8M4vXlzd08/uwZ3g6wkWxwmZ/s0nf1tySREaNdkMmknQti8t6WxdrRkDfQHPeYXZhCRUFbbSix3J0HoJNG1GcfgIdNrzOqUi4hSg0i2Qnsh0pg9THCQUD4unmO0sOLm0er2gjMSMmx56HSEaXGXTT07HT8TTBkT7but98A0aqV0nVsrvbVRFEVRFEVRlG8GBI8Yd9crKsoDwGmLlAJxJo0Q0iUrp03XcD01ndnxmZPDRYeFMUFoVLR2dmfbU9FkqSAEI5s2pWAr0+Zus9O4rqFG2v1MpVlIxrUQDOG0MF8jfJab4SnIrSiKomz/dmgfpAKNYzzfYtrJnwQ8bSa77jEy13nrCCcLPifnuaSwRNiLSaKdzh7amcTdVnclS0lXlQuebBL/pHb44BDvYRgYwxyGPmG8YQkDluDiFTyCnQ6RN2n1Dd4YJsAYYYRhCEycEJLbmBBQ8UJhLM755hp772OpC8Is4RTi8J4k8fVx2mxzLqlUnA8CqLoO52LjtZtMglDnxLETfO7T/8ANX7uKou8568BB6vE8m+sTjN1JVU2oJ2MGG8vcsXKMXs8yN2upRyXV5ionTxxmtLnB2WdfxOrmKovHjlLXY2bnZ7HFgMp5jK0xIkyqCVXtQUIr+jN9er2S0XCMc3V0QDuMMdS1w0grWjKxA4XXfLf8WHr1W2ujk91nn4XrYk3IZCVSBye3tSAWF9f13jdlLZLD34ljc7jZLi/CXHWT+pGEwIw1HqxlMNNjMNunqic4cfT6Bc47nBMm1YhqUoUAVGlDB6o9dV2FUm+05RHamdwhoBCCCOECFIVtznMymcQMTKkXpwxbbbk4Jx7vfPieOGhLt7Xio6BvMpjCNAIv79tSeUkMLgac9yHuZ+NF32a4lGZIW2uwRRCI2RBJ2bryGUI+fD1dYYzScqdWRFbLYyopQ2fjtNznAdpGLHTXI3Mx3XuWi40azPRC06ybwpmdQHSbki+u3n3TdK2H7v7avxRFURS4E5ui+S0rApo9SCUbs5DEM/GzUx+rlZZO6Wq2FSEF22ZK2JQ3JX+pbDmudD6SqZ9pS2NCItPShAkORfxnME05X0x6D06997Ljp3dWLWHSRDPxwUuwJ9hqFyFT4pls0DNlwoVxd9yosSekLUVd1x5nR1TFKofLr3DYX8dobcyJo4dZXjzCpBoyNz+HtYItBePD2HJSVRSFoR6PwQTxuy/CeLH2FcaBEcHXjuH6Ot47irKgsAWVS2dtca5uhFZIsBGKXhHOqUr2UCim56Owp52AkO6L2UYk016b9HmwKZK/sJ0kE9YLY28j0mYeku74Ol7Fxt4I+2oHLEbSzYj7tVAUlqK0jCfjsFRilleB2jmcc42QLInIvO8KlNovTPcckwjIxAkEIiF7ks+uxbZ57iXamrHDnGrc1wiLslRIzbppDCiCTx6B2J5uAT6J3TOcXLLLWnGYjq4URVEURVG+EUkW2qhYZrV3B1/a/Wdct+PDD3CrFGV77qZIqc2oZFCh0r1Ka/s3NLPlCZmT6phuOs3iKsRsyZwBW3056V7ZbT5LG3Zs9mxPIoInlrZhi+lNNGnjvzhLLQV7aYNQ3RltW4PqiqIoyjSpjED7TLa0otP0bDWGzOFpmv+mZ2wurSgxIaNQFlBojxRdwmnDZhbzdKtaYVK2VfNZWtJKXHPBVDtLs5G3CFgbtBgDLDPAgJAxqRf/pfdXcLWa7vnHF4onZJmqMUwQRsA4/qtFGoe/jYERH6+bMTYIk6T923hiu/MgSZJoGcSDOILjVwxewDmHd5aTx4ecXNlgfs4xIzAcF1Tjmltv/CrH77gBNzpJPfQcHg4RLIOZGcaTIaPNIb1eQTXexNdjxhPDoOgz8RWCUFhLr9djtLnJcGOEOM/C3G527NjJqJpQVR7vJtQTg/iCAoNznsqPkV4QrxjrMT6Ih8peia/qKDwKfaKwljSyEAc438mmFGZeEGZRC9RV3elDRsB5QYyn1wtiGe9pnPmIRMGXaXzqvjNdPHQGkwQOIngXRGWp9Ft/UDC/s0/lKsYbQjXxeC/UY0dhS5zUmFSiQjw4Q1X5GBAL4jSDpJQyqauH74wIWB8zEoFzNd77IGRrSAVt03ekDRC4JrAjTeCpOZcYLDGxMzdBn6SKwyAmBO587WK7spxh6YcJfTlKpYLAyRhEbOiXhVAkNfoZSP6syMeCZ26LvzHZLqhlMNj47BXiMw86GZXybbe7J+lZfHfuVx6+S8fMD7Dd8bYLOsevlXYWRVGUu4V0nsOw3bt4ShSyZQ/5JybKuaczKiXRSk5akAkjso2k07rTfxflu077azKDEnxfpQnOzoLuWKNrs5jGD5ZXzkq2liNMFmyzsqbzbMsld69Ndk2TSkda4RQSxnEmZcxphsemuRIOx2p5hCP+Wq4bXs2kXIbBChjLeKVifWWJtZVFkAlWPPV4jPOGfm8G52rG480me6rB4Z3D9gc4V+N8Kl1WUFcVIg4xlv5ghrm5+djydSZjFwX30S6QOoqQXHvRTTi5rp0g2UW2ZFK47P5LvE4SbBMTJnq0KRXjtYjXLWVCEt9OMmgmWpqp6y9dYU1bDU4Qacs0E7OlDmZKip7F+1DWzXvwLtoMhlDOOU0WkFagZJLYpzmXtlPmfSzZAGk7meoorQ82kyulSatp4JPta1qU1XQi8m2mrreXZpJEblOkY0uzj2xLSWXnUBRFURRFUb6BcFTcMfd5rtvxEW7YcSXr5TEWBzfgTNUG7RXlDOO0RUrJgdAxAtVouftMZyCKtmI++yf3nJi4SRENbh8DzKf7SEnhYHsn0+DyEgtt+DgPhMcMSk0723I3nT2mgCNbnTX55wKnNStPURTlwcW0s58t79xGFBoXtnlfTOM8T/+SoGlaQETaR3RopjJnKZNL4+jM1m3bEbz4IdAcMyJlIqXpg6VP8vJsKRjio2PbGkMRAwn9+C9lTfJARQg6lNKGRUzzGzgTAgcVIYhQ4WOZN0NFCC44F5zT1hqcA++SaCkKjlIAIZUva97NpnnviU/XLJxFyMlT4I1QOUNdFfiJY+Xwcb72la/AYJN9+3dTSo+jt9/O8cO3U1Wb2LLEiNAr+8zN7WR2bgdLS8corWV1dZHFtVUsNf1+D/ozODehrmp6vRIrsL68Qs2A3WddwvkPuYj52R4ri7dxx+2brIwNxpaUxjCuhngXREgT5/HeBYGBDaIqXwsSRTjGGMqiiIECH4IYQFmWTfChqqpY8iBkARKfAhNT/VUEY0OZO1fXsSxC7rA33YCGCEVRxNJqEjJYSZilngISIVjg6Q0su/fNMbcwAANrK5tILVHoBJNxRdkvKMsi9Oh43knQg8RRVApiNJGtdoCSght1XTcBhbQslWFoBEqdAE0mq8iCInmJtjxgEARcHhPFUiKtiMlICqj47nZpfzFZkoltMFFQaGyYEd6pwneGkQ//UjGRaUGKcmqmr1Eb6mNLcDi3KZrvnxgKQpfvJOjKMhfdlY2xXRA5BLra4FcSFqZyhWKydmZ7SEE5SdP2t9m3YGLwWI0HRVGUxOn6g6bXa+UQ8bf4SLUAMbOjj+IFD1uevI1NIFuXN0IfQ9fJlIQnTC2CqfeXmf44ikJoHGZbMwWmDK1hG5v93ogxJIqMTLBbbC7+iCvkZd2STZXsg464t0l7SWtDpL8znUh7HeK1Se9j2fquC7s01N5xzeBKbp/5DBsbyyxVJ1g6cQLbh5leH1fVVOMJeI+xJV5CUeyF+Xl6/QHVZIK1MNxcYzTaBFyTGdXVNeJdsNsExAUf38KOvezYvYeiMFSjVeoaXAUUoYRyVY3jica2pjJqJvQjF2YjtDZlLG0mPkwiEKCwbdmxlJk0Hx839zXeC4kXL30abIksc1K2kYl9pBGPNZ0pjd3btjfWrBX6swW9foG1lsnER9+roSgKXOXac0n3MAmjiJNUmm+C2dJ3JffvemnGQp2bnvWJtHn7Ldn6rZPp9WnNmLyji0R1kYl92yRbpm1/xyeQ7kO0J8A09rmKlBRFURRFUb5xqM2YD5/zWj65/+1MivUHujmKctrcTZFS9s+0QVDlrunYdyYGgwVcY+zG3AXSZneAkPWiyVAE2Czw27FpzTapgskN0GT1p2BAu9hHx38qzpMM19z07jhWumGDZj/dQHbrJErB8OQoUhRFeTAj2/y2XdA1uiOxSSBBG1TOHuGh/Gf8vWZrQKER85AyWEgjxkgOZkk77gSCA21pnqwd8Z/NI+DSvqPSNp2Sb7ENaQxhMOAEY1vXro/nEH6X2H5DGfebSjUIIaOgwzA2MJZQ2s1hqOPevAcX/9ViQlktD96ZmM5fcHWazdy6rpMoRqDJtuN9uBc+rWQMYoKL2jk4eWLCyRNrGBmzsb5Kvb7M9V/+EmJGzPdnWdh1gP37zmMyt5Ob10eMx0P27d/Dzl27MUWfyWSNjbVjDDdXEZngfUXlR2xsroDzlAjWgxHL3M7dnPuQR3Lg7IdwcvkEt91xHetLd+D9iJ075xkON9lYW8W7GqSOJdQEa6AoSrxIKH2WshoZ6PV69Hs9qsmEqnYIwmBmQFkUVFVNXdWxv1jKXom1lspV4d5FMVFwgocghDEmZpYKIwUkyweWe7xjcKEpnZDKQ3hpggHiQ+8rC8PMfIktoXY1LgrNrCkwBQgeX09CSVsJQiTxofSa8z4GRaIQrzObOQUxCI59H4IPvsm0lER7ragvVLUN4q6isIgYqqru7NMYaZI3JVJwR5DmOhlDc6wQ2EnRrpxuSCEd11obBEsE1VJRxG/kVADsTCRc0e7v0yEZ5fTojNUJ4/Q8J4ZIm3UvZXIwnT4WbITwaDvNq7/tdP48QNve4ebv9Fn22sha0P6evvvGdPpJN3tsaz91jn+KfSqKoijtE7N9/5r43/wNbDpZhfL101Z+ephCGp+f2tnT+InM1N/NommBUjtWC1qL7mghaYWmn/UCTcbJZltaX5o05x0+TbaJoy3rlmypNO5PY8q0zKS/U/viB2b63LLL4ZPqKTvb9pTCQa4pr+Tz6x/GrQ3j+Ngx2digWt1kXYT+7A727DmIRVg6eZzK1hRFP5RXLgy2MMGGqEYY4ylMKKk8qYYYSe/RcBH6c7Ps2LWfhYVdrK2vcez4ESbjdYx4ZmcGjCdjJuNxc5Iivr2O1gbBlp8qX2ZCebN2HC+UZRmEP85tKfdsrW0mS5C1Le8ITQal/N6nj3PxT1Q5+enxSWxHuh/GQK8X3ODOOeraN3YeEDOepqxNvhGVeR/aEmwWujd7C6bZvrPKtuuGzmqjQCiVm0urb/Ejd7I3hTUaTVY8yVx2nn+HUtvSbKc0LgyHNjGDK8G+SxmuFEVRFEVRlDMej+PD57yOjx18M2LcXW+gKGcQd0uklDIyWNoqGdO+bHUInz7SMS1bE9RK6yrySCirJ3lgOhqjmZG67f4l339yliQDvXWOWKDG4IQ2i8Y2biOyv8IMtq2BiXx1Ex1cdntrvBMIkSnnhqIoyjc7+SNzO6d+m32lcdVnZdNSJiPTLMsD1elv2+whll2T6Ag26X1gOoHp6VbI1FLJAhNNBqXgE27eUW0bzNQ5ttmX0jtNjOC9YAsbytJFEUhqeyrTQLN9O8u5iv9GIow9VPE9VidRSS0hbb8nOl6jKCo6jq01uBiFSUKwOjm7s/dYI1ZJfvMYmLCFRZyHynLy9k1uuOYWJn6JPXtn2Riv0BcHdYXzBec+9uHsnNvFjdd/icHMPDt27GY8mXBi+TDz83MMR4uMRouIH4aMQmJwUoUDeY8YYeQr+hYuuOghzO/cybHDt3LT9V9ideUOJpMRu3ftplc6RsN1vK+xJparMyHNv7UWQUJ5B+/DZ7FkQV1XuLpuBneFtRRFQV3XIRtSnDWdnNfOOWzM2lNVNU5SiMfEz1PvzHNo0cmeRN7vsmXtcMDFv0PpNWMt3luGw5qyCsImVwt1XYdOIiGwULuasigxAnUtVJXgaod3HmsNtijCN6nJYNS2RSRkX5J8PJSligqO/NBWa4nZn1LWpSDdb7NE0d1vPiaLAiVIovR47XwsqZcuQTcy0fxtIdxDESxlzKxkMKbAxexRZyrS+T0KzaARrKV1dCR495nSxLF9wc523enn86no2ivt+H8qjtgEqIU73x95cO8UH6d9Nvs37ZLpLbWvKIqinJppMSfkoon4fDdpWNQ+7wVzp8/quPNWnGrS0baXKuV7yp/zefumM+ZJ87t0xgbT9o5J55JP7CBM/oOgySiz7dsJGG3mJCexPHS0E5LN0RggnfQ43ZFKkwyw1X+E1Rp7gubd1yT96ZypYbNY5FD/s1QnK9ZWVyj64OoNjPX0JIwbd+3ew8KOHZw4fhQP7Ny5B+8dG5tr2PEq4mvG4w2S1EqwUdzVioY8Bu8dO2b6iPWcPHmM1eWTVJN1nKsAw3gsVNUE5+rQcElj4HT6EjMo0fQhQxib1t6Ty+HabKxCNjgmZRQFKIsillfu9p1OibSUJSnrJXmGomkfYrdkWrdf1XW4++Ib2VbMkuWxvhVPpSyp3iWbUpoO15Zkzic+5Dd/2opu12iHNKEjWGtBiAKltm91xmpT59eskVJQydR6UzbttiM/id+DaH9j2slDQZh3p6M5RVEURVEU5QzhxOBaPrPvf6hASfmG5LRFSkmgFAKiQneWbjJM1U18d0hmto3OjOR6MUDRGJHZNZXcGI37yFMkb3OMFOpqRU9tQBvaIDBE5xStXGrL7OTcL3Mn52WzYHVat3FTNM4rRVGUBzfdLEPT4V6YftImUWkabtr4PM8zHfmpPSSiNKfJnJQfdevz3GSfti310Qdqs3WgFS0lR2ieij+TX3S2yt8J1tqmbF1qX5R7tEGG7F8d/40JWZPGDiZOQuk2otBIYqvjrFcbhSKu9vHMQgglZRdJGQVtyuwj4b2croRPghWfync5vAQJTq8Qzto7x8n5eW6+8XZWjt3K5vpxBjMlm+Me5194Abv3zHD8yCFGdc3ZFzycQVFw+63XcOLYbdzh1qnGG0g9xhaCNRJEP+Kp6xor4dqbXklvtsfCjj7rK4c4duQow40TWCb0bM366nG8d9RVhatjlqTMaV7XLmRvNFHQ4lL2InB1EK+lzFhehM3NYSgRZ+JurKXXK6NoS5iZmQnCpsYJHwMHKbKT3WRj244h0077KZFQEgOFMUfbk2tXMxwaBq6PiwMXayy2sHh8yCzU71O7KgiUJp7JxMeZ6wZrU0m5IGbDuzgTvNuu5Og3YvBT9bpNTEMT+m2BiMG5uiO0Fmnbb63dGlTIREt5kCrdp/RfY9syGE1Ay8SATJqhbkKmsLIsKI3B13UIqJzBmZS2E6AoXx+5GKkVCmWj+VPUne+KgO7cnsiDwV0hUmu7WGiyH00H1fLQWLZZ55jN51Nt2cYiav7SfqQoinL32WInyJTwx2xdL7cfrGnfA02ZrukMNtmPpBUx0JT1Ndk6ZOvkx09ur444VtqCdZ1dxDF8mIvRillSG5O+BLPVtnCEz510y0AnvYgB8pK/Plun8wJrtSLhMviwgsnfmK0rj1baa1ga3EQxO2H3rjn8ZMzSyjFqt4a1hsoXDOYGzMyVrG8s4RHmd+yhX/ZYW12kHo2p6iHeTwjZRAUby6uJhAkh6Zi2tBRlKHVm/IS62iRkcXWEysueyWQURDop02lz3rlsObv+uS0I5Km4XLQ3mrFIk4U0jIN7vR5NdtfO9ZRm7AsmZDQy0tz/fK5maMP0CFOaDEHpRkm097z3oV64hPRXYVxvINqS1hbhJwYvKauStG2xyV5qO0n6rDuHtG1Tp3UmK7oY7YIggNpmtJOOGb9oWyaqSlfAl0ZMHc+CtXE9k9+6sGb23bexAxvPdDMURVEURVGUM5gbdnyUYbH8QDdDUe4Rpy1SSvZMG1xqHQVbnRytwaUEpoNxQBQjxcWZ4yQ5+rdcva5NOf3RVqcObbDCI41AKeU3SH4TIZUBChvm5XSa4zZGeTralHUbSYHmVL4uZc3YGoTbGrRTFEV5MLD9026qZGfHw5m9N0wunmmdii4TKJW0z/VQCiGWTZPgbK3jM7jJcRMfydI5knR+B9OUSMjPI5V9bcq4SftZ3r4mXG5Mp/1koqS0fnovQrf8WzqnWqA2UAlxVqvBe4PzKRV/PJ84W5lU6g2DpwglyIx0yjW04fbo9PZJHBIEIYW1YMAb07wPjQ8lIpw39Bf6nHfh+Qw3h9x62woFCxhf4FyF6wlLS7cyrg3nnXsRVgwbq0cZD5cYr6/j/TreTXC1Q6wNZRJcKFcnREe0FXqlxU/GnDx2mOH6JkiFc2O888z0eyAV40louosS5SSqcb4t5ZSCDqGUbBIUxPOPFzrMJo53zgTxWFGWhDJudVNWzPn0lpeYBjIEHZKQ3ZBlFYr7lRgoCE2bGktIcPwP+gUiYUZ1CARJyILkPb6um9m+Zb+gKErGk3Fzj4uijEEUg7VBoGGic9/7WOouBgKkCQa02Sm7jn/TjIGC4Chd01gu0LlsfdsEYYJAyXTGNt3Ml1kQo1nsOwGvUNKtyI5hprYNf1sbvokpqIJ3sbTdGY7QjEXFNDndpleBLUsf3JzaDuiGp9KzPYl8WkMh9um7dVXjfYqBsKSDy98Z6RndWIlC/N51Q3TSrH2K82pjmE3bTXeNeBanepMqinI6TH930+/KNw53dr+2vCumF5jtF3ffH+2kxI5PxzQjvI7/qtnflFgkG7I0K3X6XdpHXCcvkNXV/2QvCHLp0tb2G2SqXSl7qsTxRxQoSfszLc8FSmmo2kwCaZIHtRmRtujCYzPbcZ60+9ty3cMLVQROFncwrgSxlpn5BeaqIeOxgXqMG68xmdSsr68gUrB37wF8JYxGq+BHODcG7zGSBFQGW4YxocTawx4JWZXEI65m9eTJkBXVWryL2VsN2OSIbM4tjo9J6qpkOLYCqySin/IShu1y4XFWUsx7QeKEjHb8He+7Dedgsnss6QY1P9seMjXCbq61LSzWGrwL2UcNwc4wFmwce4oIxsb1Yk0/iZmH22xCJpSTjpfAS1b2jbQf0wiemnkPnXZlfT4Jj1I/yfpf3pHakb/J7Jap9bJjtaL17F50vntdeyIds9EVGoKYLN1nyae3KoqiKIqiKGcqt899Rg165RuW0xYpNRNfsmXTRpdyT0kmZDv72EXD0iIU0g10bce0QRuMTRPTO0+799vsG0W23MZjltG8dUiT2XqL8yntSbr3PoiUTFPvPkuCjBGT4n2KotxDpksTpd+VbxK60y+z5XSCvTD9TN7uWd9mCEqiJEvI1Ofy9aKQSRovpXT2nUSrvrMsfdKu33FKb2m+0C3nFPcSvfbemiYo4eKZpHdREkJ5DzVC7YLo1qWM+GJos9G3jmIRwUtw6hqfZBwGJx4RG95HxiPZeSAh4GKaSAUxu1LKGBUc0F6KMOPawckTjuOHhwzXx8zv28t+dzG2Po+l229hOHEs3nGCpRNLPOZx38Y5+y/gq1/+PCtrt1BPlihMTVH2cR4Gg4KiKMCCK3qMNqF2E7w4xDncZMzayRNsrK0w6PXp9QpcvYF3jqH39HtFO1vaWIRW3GKKIji340UzMbuR+BDNsKRgSwgYNH1JYojKhJnEvnaI91TOUU2q9tljQlajcFyJZcuI98A3s38FaQIZybHf9lUfSwim7Eat/M1aQ79nmZktscbiXCgnId6GQIMtYqov8C5kjRIvUShko+CpDmUkmiBAFKql8hHJ8Z9m+FuLTQGzWPohL3MBYLGx1F3qe2GFJGSSGOhI5SxSQKANunS/0e2jPAQi6rqe+iZ1pRnGhECOLSzGGrxzsdTbKZ4jZwDmFL9Pc+aewZlP/vxOPc9OfXa6TIWzUviQNitEa7vkxzDZ3zL1b7usrO13wjTtzWVX29kgiqJ8/eh36pucLdllTiFMi8Og6Wet0O0jku2zlQrRity3aUK7jmm1D3GbafshX7/9TDrLp0+vWR43MtIkMGp+74iW4jInNOPkRihi2nMx6br49lhd24lWfG+kWdhsl10nSOPNNAmgOyEQgclIWBvXVJVDjMH2+8wP9lKtb1BVHudHrK2MmN+5i0G/x+LaCZaXj+KG6xg8ZWmpfcnMoB98eb7G9PrUk4rxZAQxH77xgvMVwyj67/d7eDfBS42vQ7kvQ8qAFMfs2dvfQJPR0xhCWnhJ5bQlu8f5CKK9EiEja1J7gatdc32I/sskJupoZLbYyNv0NskES2Lakm3pZhnB2oJ+vwhCKB/P03t8c3aQUm/5lAXKxvZEcZJPHSy2Q7IxfDIX8wkFqdQ6vuu3SeLvpo90UpiZxnZO37vM3N2GU3gJoi3SivvaNTqTWy0hQ1Rjp+nbQVEURVEURVGU+57TFimlzAzQOp6TAWoyz0BwPmvAfJrWAbT12iRjviAGYulWSsn3sa3pmc2o6QSxM8eIzbZrMl6k1aLNbCS1QRqnU57FIh21625p1+0IlEwbLjeAbJlipijK10OnvFD8qd+ybx4ah2U+HRNIweHcgW+b5W1f8PFdY0WaMp5egijDxs98FGmkMEPyn+bOUt/8vTVE3DrXDTZznBqCyDW1KuzTNJM3JQowTP6WEEIGGmhESp1jeMEJuHg+3sVibS6sFQRHhsKAt+GoVR0LnkaBLMTMS4CvoXYeW/i4ncE20RJpRL7etNdL4oxZJ6EsnDUGUwujtQnD1TGFNUxGntr1mB/0cf0dzO86H2ST3uwMfuz58hc+xXXXfIHN9eP4ahPfdxTWcNbZ53Jg10EOHzqE6RWUUnD4jkNI5Zv3qdSC8xNkMoaZAeNhcOx77/HiqSqHIWZN8kLI7N/eTUkZlIyh7Jeh9FvlMsVAvGcmjQI8xthQLsIHkU9HaQCNeCnsX7BFuOfepBIJQRTVPK/i/ae91DHI0bZBnGcc25lkFtZa+r0ZiiIGN8RgxFKN69CDDCGDkrF4X+FdKCVRlBYvHlcHcVszZsW2KbtSm6ARKGFsnFUdjlfE6dNesnIUgPESBV4hgCExAFAURQxiTM1ATsEracVaqRHG2DB7uZnl3zQ2fUNjUC/s01qDLSxlr8AYQuk9wGCbMhRnIk0Gtzwwcop1z9yzeOC4s2vSfs3yufQ037cmCAbtszVbvt2oonO8VEqHNLrv7jP9TBmUtuzfnLr9KcBsaMupnKp9WjRaUb5+tn7v1Z74pma7G54v6ggqttvcZOtK5/2SH8PEMf2dyhtM58fUPszUeyWzL6Zq0DW+rGzbfP3t1kmiomTfNBlvpB2XNmPU+LI02XppZwK4WnDG4ScFxgpF0doMRmJ7M9uKtM94jcjETRY4b/wYbpYvY3tDvC/ZlD5laajKipmde8PEBmuhEE4cPcrS4hHGo80gMLIea4WZ+Vl27NjFZHPMcDxibnaO1eVVjClpCtuJR+I/Yw2TccgMGs7L4CuPybIpdfpDlvEolEgraCa60C1FZo2Ngpe4r2ZHvns9CfZEypTUeQ7FPrVVMNO1O1O/3LKGz9ZsBkZhMkMYh5vmftQxC2lRlgSPaMwfZmzTvqYiW9PupqVbabprVva6MXeynSQbuhkItf3cxu3Et0KxPBvS1K1pL1q8Ah2jfup6JQ9ymriSSlQ77xpbWN8GiqIoiqIo9w2CUJsRpQwwncj9PeNbl/4V1+z6EJvl4r3QOkW5fzltkVITVCCzqe+LFj1YifaooXutU+D4dGgyWyT7ldy4h0JSuC8vy0bjfLGZE8VAs5+4i7g8GdGtEyiGgbEdF4zpbpfscvV+KsrXRQrmp5l34futT+RvBrY+Qaecj9A4MoNzPczczAO3uQNTMoEDcRtj8rKfMZiQHTgFn0OZ0G57Mm1K3qLGWZsPqe1Ur8yDA+TtpP0glDUL4XXvs+M1zllwMWuS+Jh5R/IQRutoFglZbtKsZy+COGFtpaKaWJzAaDhmx86S2TlByrBfI4ai+WIFcZOL72exNrwvBTAO4y1lz3DgrD7z84ZBv8eJwzPsXFjAVSMGc7vZe3COGSOcPLHEHYev4citt1KtbeA2HXUtTMqKmXmDY8LaeJkxQ3bO7sKNHKZXsnt2H24yYjhcRXwdZvXiGI3GsVRdOFmpPVjCLFgDpgj3VXwQh/lYqqAoQrYmLx7nHEWcteyjKMgWthkEJHFxECKZMMtYPLl3Xpop5DFgEx38Bts657NBjJfQq6y1nVm66XeJ0QxJ+47b17VjbW2N3qQIIhxCmTcXbhqzs7P0egPqyuMqj7VB2OSdp3Ye7/JgUejNfvrbZWJcwE8H6XzMzGWycm8EAZIIYqQzoCqKIpZ88+01iv3YTAm22+d52NbHeiMi3ahQqG6XMlGFYEJRGIpeibUW5xze0wQYzuT3QduyfPb4mdveb2SSXZFf3+2u9HTob8sHJl9Hmv1kT91MOJTLl/J186XSlPeZNnK2G83k7dOeoij3DU0GFJ1s9k1Bcxe3myB3ir+3vgu2Om7M1Hrd7EKtuKIVjtCM6bY+36esBLPdu8ps8UmR2cCd1qbMPlPN9zK1TrRRQtsN+cSJtF36PN9dawsJk3HNTf5q7li4il31xVxYP5Ed7MKU7T6A5l03PV+v2/5gs51tHs4zi3/NLTs/xgl7C/3+HuqJo1f2GSwMmBlYhqsjVlYXGW4u42qwpkS8Q+J4d8SIunZ4FyY5jCdjBGFuYQ7EMxpuNuWRBR8yCRnXEfC0Y+V4Aimbj6RrnIT14W+frru0Y14by2RHjU+zvybLLZKbE5lop2sXnIotPXNq8tYpn2Ii1M5hJdg8YVJH0Yy7+70eZa+Hqz3iw7kmsZV3LtpdW/txawlJM1EgiKtiK+MYvtPuJstsvHbJFomO4SYL7bYZlNp+3LRim+/6lizM7Vc0tNBYsNEP3MnSbXW8pSiKoiiKch/hcVy150/45P7f4RFrz+XJiy9hZ3UuX8+EvIevPZd/fdMf8bfnvJ6b5j+mzjPlG4q7LVLKzT/zdX11lA7mVH9uE77JAoLpgxQG2E5YlDtYUmBaIIb5wic2BgxMs124v0nMlMrwtPe8dSQ0s5tM11HQhCY6xrCiKPcmTTkn/YJ9U3DKTITBm9k8wyE8fZuZwHGJEJMLxb+bGclZtpo8O1JyjHYO0zlGW2anfRe0gYe76ncy9Xty7lsTi4JKCqQn4UcsKxbT4YdZq55CDFgbxEaxHcaapkFNkCSWJmgdwzTOZEGox56lRYfYirn5PuItzoEUErIpZa110pYDE8lKDgiIMbiQLojZXZYde2ewQG92hoVdlsnmHBvjXfhega0EGDNTnEXtDjG33zJbr3Hy0G2YsbAxHlIPl1gsVsJ9kU3qSc3cjhlmBj1WTo4wRXCSW1umk8daEzJWebBFvKc2zOZGPMYKprBhtrAYbGFi2TzfKcGWhEW2sAwG/fi3UJZB5OWcp5IaI4KN4jGfRXzCI6gt55pmWKdsQamTiI+ZF41txw3pzsc+YPKMXMZEMVMoz2eMoSz6iAiuFryvEREGMwMG/QHGWCZuAnhmZgYUhWU4HDKlqyJ2LsBGcZZQ9kpsEUdAqfSDCCIuiI1M0TjwweBcKKU3Nak/BGWg/byJPEgcn7Vfmjaol7pVGxgKYsJQtq8siyDS80JpCzDhXhqTAjkOQyy3F/v9mfw+mA74TS9Tvg7u4kLe1XWeDgea/INGVdQuSoHX/D6e6p6Gb1ybKTZft/lqpHW39OGuLXTqsKWiKF8PdxrcV7456GpxmgkNyWfU+YytoqSwj0xcke126ztEGrvhzvrVnfe7dlKFZC+Bzhhqq8YprNaIZtpzNNnBkk2SyrBluvu4bpwMMmUnOVNzeMfnuNZ+hFE1ZnnXLSzaqzh/8kQunDyZgcy37Yo7TmPlreedef0sHDQXs394NreXV3OivAMMLM3fzmJ1ktHYUXlhYW43440xtYeyJ2ysLOI2NxFX4caAC+3u9UqqSQVWEGqqKoyRDcFewIf7b6M4RUzMg5sENVHgYk24Rt5Lk10qiYy8tHZiEhalSQ/GhAkORRkEL875MLkgna+RjvApXZOcPE+wye6bSY7QTsdL65ktTtBUSi5N77G2wBqDNxLER4QsWN55vKnDT+8oCou1lrquWvuy01nakrcAhbVB/BQ7qXiJGWejLTDlG222PYUv2GfH6ZwjW5n+PuZXEAO2KMO99T50NoItHa5rmp7UTjRSFEVRFEVR7n0mZpN/2vd7fOi8V1PbEbfOf4rP7HsnT168nO84cQUL9cF7tF+D4aHr38XZNz6Wz+/9nxye/QIC3Dr/CZb7t+Ps+N49EUW5F7lHmZRSWa9Aa2WpU+sechfRpOmATifWJnnAOVBCDKKmkjuxtrvpBgZSoDereJLdVdN8nmhKuUWSYyUEHcNnecmWts2qUlKUe51myuID3RDlPsfkYqJulqPp53QeOA5BX+m8NzwSMuSY4ILMhUcp413uNs/nUbbvjpizybT7bX+PcqCUFYetXbSVurbO45SpphV2JGd3Cm2H7Erp/NMMXozgXWivj87fIN6IjuP4LkyzpBcWBqyvrrKxucq4sDg/T9nbHdrYC+taBGvDezNlY0rakuBIF0pjMKVpMhTZIsxCLfqG3pyw/+As4wnccUfFCMcFDz+XAwd2s1kNOblyCFevMB7WsLaOuAlzgwFSCLWM8dWIyq3ja8/K0iauqsIb2YD3FswM/f4MhYGqmlBXY4QK76sgJjKhPEBZhutWVQ7vXSi/RhDQpHe1c23vERG891gbMi7Nzc8yHo2o6wmpLERypCchcz7L2WQBmCDsMU3gB+JtlFg+Lt1naccvtrBRZCadgIUxrbShdo7CBHFROvRoOMLVdZNRyBiL947JZEhdh+2C2Cn2KdOdlWxtQZEyO/mQkcj7tuSUtQXGpJFSG4rIZxznf4e2pXXa/tN8iySVY8xm/EcBVBKLi4QASlH2QnDEVTGQFIIl1hrEeERqggrLckqB4xnGFiFL6gOmu45y35JibAnfxPTSk9y0CcLYGozORUe5yEjy73ykeS9l4dhU3rPdX/q+b3//p20hRVHuXfR79eBCsp8dwU8H01kv/zgbDTXZWrqfS/tun3rP52+JXKiTH6vTnMze6LZuuzdU+06CNDbLN2qzKHX30d3epAN3hFHCerHI9QsfYbF3A35tnfFonc1hxWa5zPrCSSZs8siN54bMpdmAxyabhEy/lGyO2MYkqCrdLA8Zfzv7R46eNTAYc4v/Mp/vf5DZfQsUQOVGjE+M8X7CYGYnIn0QGPQKBM+4GuHqId6PEOOZjD3e1U1GUOc9xhSUZZ+yKHB1TS0TjPjYzlAO2kYRS2HD2FqkzYTYERc1497wt/e+KX1no8DfSx1LZ+dZtcLgIU14zO9Js990G6Kh2o41pu9/a6WmmZudnpEEVTGDbKYdiu3zTKqqFSQZgxOhrqp4DBvbEo+b7ICsLwngXZhSlGwdgwFrmuvQ2Mqp1c0u4h6S3b9NyeiWU6iaOuuncZXJ2pquvVAUZbz2PtrJ3W+eupgURVEURVHuPQTP8cG1/NV5r+baHX+Ds5PwgRFW+rfxt2e/nmGxxPMP/WdsE62/+8y7/Tz9+M/HYwrDYomrd7+PD1zwslAJQFHOQE5bpIQJYhYLzWxwiQZgY1N+gwRIzjg607O2XsOOXyWb3iUGakLWDBcDsNa0pdzStkk81IZ6A2HbxuRuysAl07kNggfnhI2GvTcxXNj6ErDRXG+dSdoXFOW+Jg/snfHpM5S75NRDRYn/bzMnQapKZTrP+8YBK2yZvdwEFEzHjRvf3ymgkIrIha0K4rsgOdklZeRr95qc/ZIrDsic8NPnmDconYtIU47BmvDOSaWvGrGKAL49svMx+5E1uCQkom1sOt9YlQtf1ayvHOfQLddz+I6j9GZmWNh9NuecewHVpGLX/p3sPbCLmTjjt7QFzodSX015PCMU1jAowYincg7vC0RCCbmqqukNBkhpmOkJZ59Vsrrp2bkwyx2TVXxRg5QszJ7D7Hl78F7YtWcPVkYcPnITR4/fwnB9HXoF4gqkLhFf0+uVjMdjev0Z9uzaz+6du1ldXWZlaRGRcShVgMPjKIoCkQqIGX98uG9EkZE1hrLXQ0SovQv3Nzn9o8jG+Rq37qmqClf7eH+SCKyddZsIs5ZNW4Iu9bMYCGjXaY+RluUl39IyGwVO3bIRQlU5Kl9DbEfIhiR4P+msm4ROKbNREhwB2LIM4qzYzCBo8o3j3qfyDtZSljaKpNI+fWx721aTBR3EZ5m84rejawMKYfZyDBHEjFa5wKhpty3w3lPXNcaEZWWvoN/vM56M8K6mKNL3J5WkS9f+zDY8u2Ea5f5iuivmf8THa/PemLYlEq3ArM1vkP452q5ngZDJT5rvwnYP/yaMmAX+8uMoinI/kb+H0O/gNzqn827dXpizdZ2t+8rGf/mfpxATQZud5e6889P6JlvQlaNs17I0weHOdxzGvPHPzKeVJmw0YqIoYtm0S9wy/0mODL7MWNYZr6+zvLTIyskNMAWm7DEZe74w/lsGaxdzwZ6HMxgUFJZGhJSfV7gmYVKBNUHUE+y4WJbbCL2eDb49meUieTwrxS2c6F/L5nCD4WhIWfYoillmd+wHCCWADSwvH8GvnsRtTijsXCi3Vo+pgMJA7WtsUTK/sIP5uQXGoyFrqysxy6pQFISSbFFhJiLUdY133TGtMSaWOA5lmTHtHW7e9uIZV7Fsd5x80tzDxuko23a+Trm3vBRZc2+2KwkXRx1xLN7JvhT3Y4hZoHwrDWruigiOJMDKzsQAtFlo8/3lJWzF++zc41jfSGciR2pP3v7Wl55dCGn+k/3MJUTZKC36gabH1UmURmwbhHJ0hbUUhYmTVSRmjAoTWXwmvNIXgaIoiqIoytfPYv8GPnbwv3H1nvcxLE5uP8Yy8IW9f8R3nLiCA+NH3ivHNRjm3F6euPRCbln4B760+8+o7ehe2bei3Jucvkgp2o4FbXCzYzcp9w53ITRorrnpBgVcZpSG8jThp48rx8I6GInrZU4kTzcokcRMnRBC7liR9tgQ+kQe1N7a3jaYpyjKvUOUbXQctPmMRuUbkexuTjn8kzM+DwgHh2jrKM1L6XQDDwbprBmPlR0j+YebzDcinSxKXsJ7Y2vZhtgHp7pdkxUjbd89zWadZqYphAw4UQyTtw0RvJjoXI278BKy37goovJJ9BFeOc5DNXbUHqq6Yry+yebKCY7efiNLx1fpyRyFn+P44eOcOLpMPRIuftTFDPpzuBnDwlxBUcQrXZgQvBdC2bR4TT1BvFTH45pCmNtpMU5CqS6xzO8w9OdnGa3ULN6xzL4d+zjvrPM555yzWZibQYywtLbGdV/+NLUd0ev1mdn5EBb27GC0ucKiO8TmcJnaTfBiWdixh7POOZter+DIsdsYTdbBVCFrkgvHNATB12g0xjlBXBD92MJiEcqyZDCYZWNzCNYFgZP4ZrY0BGFXNa5xHkQsIiFDUXJih3V8dMhL02d8I5IJY0TngxjI2higMe0M4/ZRZSBmN7LGYGwcozQBhiDm8c4399iYtlfnkSQRwdvUhOB8b88pCYLarEphvXD+7Vgl9jHx1FXICGVNEcZXTZYk0xzDTAUdiPuWpv9m3wpjQplCDN47DKYRVaXvZCsCkVAWw4AtDLOzfYyxVPWIsjQMZuYoC8tkMmY8ngSBSPzflpjNGUU38mHTvdao+L3OFoHoKWj6bWeZ4KP9IKYbQ2yf61FcmtIfSVseOtzOKcugTV3ROU7b3u07wXZt166iKPcO2+jGlW8SJPtvSyuyyH1ORtoSx3Gtzvat3RntkOhQSuvkPqp0nGSlJmF7t69lYpVtbZ5mUWPvdJ78+UtgyvBphEbTfrVWh9L4rtLYEyFMeMjW8yJslCc5YW7iht4nWDPHGJ5cBzdhtLmGq2HHjl3Yos/mcIOV5WVKM+CW8tOcWz2Mzbpibq6kLMHacEV8tFOaNkf7QrAd/5otDYWVaHtAaft86+gHODT6Cl8afpQdg0327S2Zmx/Q7/fAwPrGiKOHb2NjuI5g2LGwj6IsMNazvraMDKF2E0RCrkRXO8bVmI3hOlU9AXFhDE7Kwhsa6510hCtJWGWMoSwLqiqUiQ5JR7PxMVP6o3Rj4rbWphJy7USBrsBn6j5noqPpMXsuTiKzRXKNUeqR3m+xiJvbno/ow3WKPUUIM88lH7XQGW/nWaXCodtRzXSW2DxzVvcMQ7slidamyL+dQdNkGhu4HXH5xp4Igr12X8baIH6zRcg+W0C/LJtJJRIH5M32XkdbiqIoiqIo9wSP48Tgem7c8VH+8cBbOT645i4dWZvlIp/c/995waH/sm2c/Z4y8Dv4l7e+nUesXsYnD7yNO2avwplJGIcryhnAaYuUkjjJYygIJWJO4UtWvk7uMqgw5Z/JZzonf4cjCZZME7S2BIdCTfiXlkG3dFDKnDG9f5P9na9vCEGmaXKnVXJ03JsPWEVRug4x5Rufbvg+Oa7Tc1dI2ZQS6Vk8XYozkZc5SOLi3JefC1ZjDCHOdg5PeIuhIGTdq/PZr7TvChud/B3nOu07IrV3OgAO0ZFLcnaHlZs8NSaIgpIIRmJgxRqDNz6WJLA4oBAfrk3MUiOVcPLIJour6yweu5m143cwO+swMuChj3w01hQsLh5j89AGO+YvZtd5Bziwby/D1RE4w64d85S9WN5AwDnBO4N3wbFc1SF4IbQlGoyHnrWIFYwzWG+oS6Fa99x28yJFf55HP/4C9p01R3/G4IDVpSE3f+lL3HjLbcAs3/LYR8FozMnVOzBmzNzOeSq/iXMGa0qWTy6xur6MGE81HGLEhbvqXZPFp3Y+BBS8DZl64g0xJRTG0h/0QiYe78BCb9BrRD8IVBOhLKNwpg6CJWMslNArS+raI7GYLBIFaU08wDT9Ks2wTjGikEHJYbP6F6HEWpZVqeldQTSFBGFQKw7KHPy0oqE8C6RNM5e9D/27ER3RHjMTT4cyCCEDkzEGX0sTYLBRWEQM3jX9Nx4jnSOxLfl3KgXW2paFYwbBVszWBJiY1MmLYKU9r3DhwdiCwcyAwWyfuqooLRSFQXBMqgoRT9nvUUi4764WcPkT4czCTP0j+6l8fdzZddzyWfpexD9M/B61AkFCoCoLJMeKmzGTams75JlV232mD9v3TvsNb0ODzTcj7uPOdNaSPSFSuFv7jqLcO+h36ZufKW1MZ9yeY06xvP2smWbQ8e3kvqFpqVNTztZk4/w7ObbZsoQtnbSRQcn00jjujG8dMUmw0doXSBK8RC9V+wEAznhu3vExbp/5DKsb66ysDtncXGZz5QS9fvCI7dyzn7K0DDfWEBmxML+X+YW9jMs7GK+eZN7voSygLFtxjfEgcYgXxn6ZuFeC3ZOLtpNtBmB9ye6lR/GE4UOwO0aMyyMcHXye5f7tTMaO5aVlVpY36PUX2HdgJwNrOXbkEFU1xFoBK5SmAAnlkTc21tgYrsbsP1GA48O7NpUq82m821zTcCPFBBuprmucCyKYMJEhZgkV4kQBE+02yEU6RWE74/H2lON/s7F++LudJAFx4kHaKi+7Zto+MI1Px0v2gGlWb8RNW9zbppE/kXe17ftv7OuxtJuECxj3keyJZD+mC9qeQ8oi20z4mKI76kl/Saf9dNYJ38jm0lgbJqzYMMXU2nABald37LjU9pT9SlEURVEURbl7ODPh/571Rj5x4G2nzpx0Cq7ak7IpPeJebVMpMzxh6YU8bvlfsti/kdvmP8Vn9v0ety588l49jqLcE05bpNSW88oMlWQ8a+aOr4s7u35bgwopsBfuRSseSxk0YuBLglAJTPzZDQiFv9tIRArCmRhMtITt88xKJjpz8kI/TTmIaLnL1LlE0zgEsiVGNlSqpCj3Ovoc/ubAZL/k2dZjgvYtTtGis2VbvtPRiiTygEKeOc+Y7Z2sNmuJbZYFsRKSSn5Kk7klP35aPyuI1Xyc0uvH3YS2xjJh6WRT9iYfHa7iQYzB+Tgr1dpwDB+yGIX6cwbnLZUHUwglHuMNri44fvsJFg9dz3i0yIr1DOb3UveuY7J2guHmhHPOfywPfeij6c8NKEuYnTfMzELZMzGzkFBgMLWhjmIlxFB5wRMVS96CD0IXZwRnPL4SqAtMUVAUcPDs3dgylG0oZiwU4CbCkTsWWVsace65j2LX3gE7dlhuuOrznDhyGDFjRqNNRBwWj7c1tpjgXY34msKAd3VIzW+SICwIqWxhg0DI13jnKEoLJvjKh8MJk0mFd55+v2CmX+Cig3pS1YiX9vqn1FRxRnRdO1ztOk7rUDagaARD+WxhY4IoB2LmoFB3IAiDvG+EPTkpgOCb7EIyFXzI+lUSLSVhUtMuwdo4NkrBHcKM7WbME3uhj1mkQkajtvyatYaCUDIvzbr2WRArlMSwIfjiHL4O/cGk74UIbW6zOIIWcLEkhjVZcM+bUHM8zSZPIipb0O/1ABiPJrHtlvGoCoIvU1CU4Z+IQVz4hpvizH0fpO/4di08c1v9zU0I0mWlQ2Nai2QD+Fh+phXgtU93k71I8uBvs99tgsd5TC0emmlZ3anCYtMhOEVRFGV7WhlD+0TdUiJNmv90n8NTmbDzZ25BGnOm/WVjMqEVjWTb509vm/xGhPG+NEqR6bbHkVqbGom8JFYucEnbpHdMc5ZTdsd0gp7mqHF2xdiPOVR+ieNzX2Nt9mYQT1EWeCdMNjeo6xHOeeraM3FjDBW+hh27z+LAwQP0+30wFRv96zlr/NRQ4Zdk8xAyFUmrT2kz6gT7Ik368KbGmyDur+uajcFxpOeY272fPTtnOFJex4m5a1krj4JANXGIN+zbewAnFV7GLK8uMRxtAj5kzZFYzsvXhMkA8S4amjF5uk7pHlpjKcoCV9eID5mWisLincRJEWE7aw2DXhnKTBuL96651iHrojTloAUJwiZpxVDRUAyTIrJxcKua3iIfavyizXrZz8Yn2ZgZ0vnRQdpzbsctbcbXlBUpiYts5kNNn+e7TeWqJX4XmqxK24p+ov2c2UbpOpnsc+n08nSqyTbK/bk0Y7B0cqG/BfERQF3XTTt9nCySbOzCms53yJ65cx4URVEURVHOKARhWCzzxd3v48u7/4wbdnwUb+q7vZ+N8gRf2fUBnnnslfe4HbUZNeNHbypum/8nnJlwcPQtzLid3LLwj3xp9/s5PHf1PTqGotzb3O1MSg25d1m530lGcyEp60UuBupmsUhZlUz2L5V/w0QHUzK6c1uflCUjD7NJc6wUtN4qS+r4u5p2pH3lgepwMumHhhwURXkQI93naXL8t0/VNjTc5i0y+eadpaazRcACFV2Hfvp9Wi5ippYV2e+OIFe16WjRAWvyhz+ZWzV75qeZ1158kDVF53TrrKcRyCRhSHCAJ8d1dBB7cNRMRgVHbl9jfXOD/Qf3sGvnDIUx2B644SZr60uMhicZr65jZo+xdLKkbwp2nvVIzrnkkczt7lGUoQQYhSDWUtfx2tlwXOdCG601QajkPXiLq2lS42MM3hsm1SYrK8dxdZ9du86i7BXsONiDyjMeOeraU1eO2gnz8z0e/8SHc+zwEa75ytUMhydhvIkzRRA/OUNhCkaTIVU1RKgoiiCQwQvO1U35tBDpN9jCMD8/j3eOzfXwedmPkmJvgtCoclhr2L1zB7Y0jCcwmdTUtce70BtEJAYzQCQeI55qUzwwio48mZgolkNoy6bFUUMKHIiEQEiTHYmOsKkzPpDUby3GgDftLGyfZWCyxkYnewgGFGVBr1dQ1Z5J5WJAAVJuybReyuSVAgqudqSCfs5BnTqgxIIPKbhlobBFEATW4Ro3AiXTBpnSKXTjb3G0YwRjQ/k9cSZkqPLdYGJoh2tKYaStfcyaRekpY+kG7w3ioLBmmyDImcO24iQd/j1gpHdAG/alnXWfrQNZVjwTMi8JKXMZNBkrsg1S7CyzDJo9TofcUhAvR6Z/MVv/lNRg6HQk7VKKoihbaZ7RApzGWKEzhjftD4NpBK1k6zRjn/YB3TzbPWDiuGs642pe7nPLm0C6b5DukbIlsv3fZpvPurswiDhWzBE+7v+EQ0vXMxj32S27GfSL6AxzjIcjRuMhMpmAsTg/YdArMcUMg/kdeCNMfAWUDCd1mDSQbBsj+CbjT/a+jJMEawcbZpETs1+jLkYc71/PqF5lOFxm5MbYmZL+YIbZHTsoKdn0yzgR/KQOgiCEnbv7TEaeo0eW2VxfY3YwoNefZTweRjsmeOK8lzhxINoTkpczjn4+GyZWhJ+GZPpYQxD8SxrPh21mBoOwXryezoXP8tJ7TdZdaY/b3ogkPPPdTjf1Ms/Ht7kNceedIY5wRBqhTmeskiZMdAajSTRl6JVlCPbUvpns0Owg7trkxxOJ5xH7fT7rqDOQSRM6Ym57H2yuU9E9y7aYnIGQJau0GGOpJy7el6497kUw3rdtbc43/LQWijKUjatrH7IZb/M9UxRFURRFUboIwqG5z/K+h7yUozNfAfN1jKFMEBbdnWMLjpODm/jqzg+yWS7ytZ1/xbhYi597lvu3ITgW6oOUMsNy77avr42Kci9z2iKlZiZJbimqB/gBJTiHom2c2fF5Kb486JC8BBKnb/kY08xLt0EoBZeXdPNRkGRNHhY33X1n2+d2eO5qujNfWB4kURRFUdrnLLQB4PRX+rz5y7TP3vY53TJdFjQ9dPNndZoRLQYK8jJxrSg1CVk9Jhb8Mp0dT+tLpv9uJVfxHNJkVGnFSanMQT7eMIUNZd8MGGuCcMQarFhWDq3z2b//HEdO3swFD3sYT3jSE9m3Y55BafBVxcrKBptry8zRoz+/g5IZZooSP5lw4w1f4dDcDL25Xcz19nPe2XvZX1ossXycs9TE1PxOEDHU3uPFU1WG1aUNxuNVZmctIoa1lVVOHLmOE8uHmN91Hued93jm5vYxmJmjZy0bw3UO3XQti8cPYSz4iWdzdYnNlRWG60fZvfts9p/3cL52ww2sLR+l13NUVYW1Y7zfDKKhOpgg4sMMZmPDTNh+v2R2rs94VFFVFXXMlmRtD8Tg6lgOzAWh1+zsHHXt2VjdAGOpakddhZsQAgo+zqxuJElbXvBJ6CMSc31Zg43inea+R7FTysrUERVM4aPQCImZjWIQI4l/bOqjnc0lZtUKwRSsoTfoMRj0kfGY2rWzkoNAycYxbeqDQSjnnQs/pY0QJBET1mBiNkiRtmRbVU1iv52a2Ryvj6SAVJwhnfq+wVIU0J+17N27m/XVIWsrQ2rXjU74UGswZHCSGDSK/4wx9PoFg1nD/Hyf0eaEekxzjDMVHeedeUyP5afH92mdFFSepnnnTImIfFom3ZxiIaC3/b7aNqTgYzr+dq1SFEVR7opUFi35ZeJIr/08e7Q2n2WCpPbDTNyQZUrK9tQ5blNOK32Ujx9z31V6H9zJIz5s3l2hyWCTay6S7TJlDFnTvoe677lwZdYHR7i6fB9HbrmBEycO4wtP7S9i/5499IsgBq9qx2RcU5qCHQu7ccYwOzNDPRlx7NCtHCsMttdjfn4/59sJ0ssa502bFdfHt5yAE2HJ3sY19kpu91/A+DEFhvHyhM21ZcbjdcrBHPPlQVy1A9cXer2SyXjCiRNHWVo6Tu0mWFNQjyfga+q6otebY8+eg6yurQNrDHqzDIfLiHchA2j0CabSYumaiIGiKBgMetR1jfdCVYXsnaE8t40TDYIISUQorMU5z3hcRRFPlkmI7iSFpm+0XSy837e59yl7bhpfpEkOwX5NtnDWtfL9Z/vOS1GnLFYmb0+WXTV9aGJWpaII2UprV4MJWVpThqR0/OlOGc59ytCeWmfaKnY+2TutbZ9/Zdptsx/xe2SsoegZ5uZm8D7YXFtmHsXzTSXUDTGbccp6ayxFCb1eKNPt6rbMtqIoiqIoinJqBOH2uc/wRxf9BEv9m+9Xt5Ug3Db3aT5+8M18bedfM7Ebdyo+Wu8du/8apyh3g9MWKSlnJrnjp8kukf6On6eb7CVmWopGt3ScNeG/fmq/yQj3pi2Zsh3NdhJETUnIlP7bOoMyj1SGCpQURXnQk4Skzd+xmlkKKGSCDegGjAVpSuYkx28eKHbN763AKT13kyg1NME0Myxz57HQClct3axKTUCjcdqG89hOxJr2K4R3kfjtx8+p9CgE0YgBjA3iEAuY0uCMYTK0MPEMTMHGySWu+8qX8cbyhMc9gV1zfSombA4rvJnnoY95PLv27WVUeYrJmEO3X8sXPvspXFFzznkX84RLvwfO20NlYqafqggiExPfnw5EDN5bRqMxd9x+K7fc+BVctcyOhT7iHEuLS2wsLzGYW2DXgmXpyDEm8559B85hY32Dr179Wb549SdYXLwNZ4SCkno0QaSmP7eLRz7uOzhr1wWMmWXX3BO44fqruOnGdYwZMx6Dq8Fls529gDjH7GDAzp0LTOoRQijJVldVyCpkDHUVBE3OuRAcEWE0GrE5DMtTFqb8jklTvi183rjwg2IoZOyJM3VN6r+xDwURTSzvEMtB5M7ukBUr7k/aEUD6ry1s48NP/csWoQ3O0SkfUpYWW9g4MzsIeMpej0k9wfmawUyB9wZXhYBJKiNnTCjv1p3pHY4vuVAJwZo2ICIIdVayIQVXTiXCtrFWQigpZ5pLPb9zjoVdA2YGfTaHo/Dda6IfUSAV+57xErKDGRO+B8ZgbPi97JWxpF683njK8swdUWUxSuUMJLcJEundY9P3A2L5HbL1JAj58h1N7dekqFpjb6TAZOdNRlrSiTGfYtehSacIFiqKoiiRKRVp89zcahd0tsgERNOTIfL1kiYj/Ihjvex4xrTP+1wglWfs3vLcb/feOROhazt0NCZ0fVad84niFksswRXFKB7hpoWPMayWmZufo7c8w/rGCkdvvx1XO84+eJCqnjCZTBBKdu3dz759exmOR4jzTIYbLJ88zmgyZnZ2lv65BXZXTeXimaaazI1dEwRKtdTcPPgHvlR9iKNL11NNNuj1C8qioK5qRsMh1lhmZwe4Cio3obAl9XjE0vFjHDt6iOHmCpUbY22JuDh+NJY9+89j5559mHKGg2edzdryCW67fRVb2sYoTCKi9IePmYZ6ZQ8Xy7glIVIqg+xTWbhGhBQmGIzHE1JW1+aOmfakcxsgZU1NZmPKQNodU8QGRnsi/Z0y8XZusDFbhM9myy+pIwrGxuysbW3yMMaxwf5IGX9Tv6/qChGh7BUYDK5Okzmksb/T3+1kjPzg0wZCPubJ7Ick+MuEY60qKSuwbgxFYZPSil6/YGa2FyatTFLG2Ha/xqQzai+JjeIk4vdA8IhYgojONferOIPLRyuKoiiKopwJCI6/Pfv/y9Lg5ntxn9AdwU1/Hkq6ffzgm/n4wf8fm+XivXZsRXkgUJHSNxHRTm3+SK7+MiqWxICb8vMIbbA5ZOpIoYlgmmf+JKA7KceTAt6mWT4duN7WXZD5yNTsVRRFyTDZs7zRdEY35TZO95SxpsmIJ+0aPgkrJM+YlxygWw4b/kkIVOSOzDzbnscR5LCmEcX6LSHtQOb3bf4FEVUQiKRARePYTRluMsFIEl6ZmInGWqEs4izVOoiXdh3cwcELLuTIsWVOnLiFr332M8zP7eSScx/C4h2LuLGw/6yzWdizh5PLR6gnVXDuH7kFt1kxmNnBnPRgfJLl40co7LnM9IpwfkbACE4M3kNdCeNhxaEbb+baaz7B0tL1zA56uOEeZgZzjEabbI43mN+1h8FgAWtmGA9H3HzTV1k+dpgjt92EqTaZLws2xiMKW7Bz5z6c9xy44GIe9qhH48cFD9+5g56b8NWv/hOTesx4vIaTMcZ4EA/RN+29hLJvVc3ayiqUoYxD7Ry2gEF/QF3VTMZBoAS+ifd454OoOGY/8uIR42MJv1gUVqS59sQMRzT3I0oNpO1jANZKdIhLU9YCaUU3aXtI5Wql6adNxiHTBjSshbLs0euV8RxSTe/QX4qioOzZRiA3mVSsb6xTloa5uVnKXo/hxpheWSAYqqoOfc876tqFwAzpeNPfsLDMe9d80pxTVE60X7lp+U0cTUVh0fz8DP1+DxFHWcLufTvAVAyHGzjnMabEmLq5pumaF0UI0JTWUhSWoiwwRcrQJFSVweCoq3Bv+/0eg5k8l5Wi3D22e563ParNqhr+Mp2/mHKjtGP9Ox/xbw16p+9Pe9RTloNTFEVRtkVO8cdWEVD7NG+f6qa7aV4qq/mZBCTd53OyK5o1JY0b220lOaimGnjqd0ZsnUy9pzKBShCOtCIkoj2RGmRiO9LpGMB4OHfjWzk2fyOzO2bZu/cgroLh2hJLxXH27NzDaG2MOOj1+xSF5Y7Dt4E4xqMx4/Em3nt2ze9lbmGOnoWbNz/JQ+SpLMzuoEgXI2bY8XiO967juuLj3Da8msVjtzIcLWItGJnB9Pp456mqCb3BoHHGjccT1tfX8X5CPRpSloZBv4dMPNYUDGbm6Pf6eGvZd+AgtlcwuzBLv9fj5GKF9zWTyRjnJ8GeIOmATFPCDS9MxuNgZ5i0XIIoRkzMsNpev3CnTHtDskkEW34mYUwmounefeneWxOt1laj1B2rZ67FMCzPypPFe96K5oIAyxZFk0kqiZ9SybXUUYrCYrA4V1PXNdYaev0eRRGyaWGhtEUUcIXyyx6X2eD5t67r8ZS8s06t2nw/zNR2MQWUxD5d9gr6g148J+gPetgCJuMxzkUb22TWe+zztojfC4LgrLA2ZCduxHPgqjipxEDZsxRF7t1VFEVRFEVRpjEUPHnxcq7f8RGcPf0ybXfG13b+FU8//vP0/fyWzzyOa3Z9kI8d/E1umf8HxNxJvWBF+QZBRUrfbGSWfi/zBIWsSULRBJXbzBqZ34bcUZXcVU3wGtlS6sGZIFAy0aGQ6tCn8HMzC6nZK02GjNy5dCplqKIoyoOLFACQZmZx/knu+u34OEWajEtpDbeNElSyp24QHYX9FNlSG5/OPgoxmr8BwTZl3rrvjjyA3BQHawMDhCC3xYTyadCUGAjlR5M8FhCDc8lxHIMm3mCMYG0sueag9gJSMDMjfMtjz2a2LPjkP0w4sngto9VlinMuYOfcHgZz85hewRe/8GmWTt5BUZSMhkPqesQFD7mEs86+hH0H9zJZ2+T6L1+LFDs4e/9ObC9cFeNDxidfeU4cXuLG66/hxO3XcvTINXjZxM8MGG8OmZkdsLG2wrgWhuOKw4duoz9wDFfGFCXMzJbs2beb5ZU7oJph52CB+dk5Dh68gM3NMY943D9jNJlgfMVgfsDy0SNMqpNU4zUm4yHBT2xwVQlW6JWWwoKrQ+afyaTG+JCmv6481oIbjWOJt1SOzYasQFZiWbasF/lYnkDA48P9sYTABDRl2HwsFZBmPYtPfTE6xU3oWRKUzLgo8DGmFe00ZdQyMZKxSQDVLisKQz8GBiaTitoLpgjCJGsLnBPq2iEGZgaD4MT3NdYQAjfAcDxhXFeU1lOWPUpC6bva+TYOQFZQUaLszsaRT8omFXt7099TJMFEoZUJ+7OmjAGcNHIS+n1LOVNQ9i1lUdAfFJSlZTz2uMpjsZhCmtn2RkLfLkvLYNZgSuiXfXqx7IQtDGW/ZDyuwj5qjy0tc4MSi22yN52J6GjvGwCT9/T4DmhuXDfbX7IV0vPcTN1giVkF8pJAZst67WSHJpYb/+qExDObJpcCKoqiKF2azDKmfWqnJ2qrI+k+z1svEFue82H1dv1cWyTpb8lGSqfIqJpnqJnWa0zLW/LlrXjq1Jlam5OTKOLHNOVygz0T3mhBmJMmSRicN+wePYxdg/PwO2+l39+L1MLhI2u4ekxdj1nYuYuF9TXWhossLS0yGq7GE7B475ibm2XXnl0MZubp9wYc2biJm7iabymfCr0gVkfC2R+a+Ryfkz/n8JFbmYxWGW8uU1VjbGGoqwlFUSDicJWjKAdsrA2ZnZ8DX1BgmZndwcQYNtZX8Fjm5neFce9ggPeWfXsPIs6wtH6MwUyP4WjEcHQS54Z4X2ONBRvG755QSthYEzKfpixJPpQmTuWS6ypYf+lvY9rSx2Fsb9uyatH4S/0l/W1s7IFJqJSLjjql2kxnjNDYG9k4ozEvTe5rjIq0JktQ2w9NFPpDsEu8J5aoTuXgTCip7cJ4P2UQChMlCsR7xk3pahobOZW9a/t7awN3xktTfXXbKhxpgkLTlVNpxuhdNSGrrC1CRitjQxawuq6xPnVzg7XgbbSd03ffGMoylHQrypLCtHZC0QvnV1UOQYKAqVdixNxpJn1FURRFURQljL8esfZczt/8Z9wy/4/3ipPq9vlPc83OD/G45X/ZiZkLnk/tfwcfOu//Q2WHX/+BFOUM4bRFSuoE/gbAbCP1yYIKReZlSkHpmFeBlHg7hZk7jqlsm+mwVx5wyAPWhpRrgyYQbjKnUr6udJYoiqI8OEll1qYd9tPPTab+9rSlPn32WaIRBMWNHUw9m5M8SMif5sak/aXgRhh852vm7cy3tul30wpiQ1slZO/xBish3byHpqxV7YSqNoxGk1DGS2rm52aiUMThXCi7VteGyhU4D2bWMN/vc+5DDnDga3s5tuw4fvRGhg9/OI++9Eksrt7BoSPX4cYnkGoTO5hjpj+DL0vmdswzchPWxsLZBy5guOEpXMHYG3rWU2KReAYrSxt89tOf5Mjt1zBj15hsruH9hGq8QdHrsbomeDdhYWE/s/197Nl3CQcPno8bjqkNHLnjZg7dfhtS97j44sewWW1QVWMW145y0SWPZ+fcLj7/qX+kmJmwtnaUerjM8sr1wCim5S/wpg5aoMIgFsQavAkO5VQCwdXSznSOgRoRH7IOWRvugHi81FhbUJZlWwouBibSzS1s0WY9MhYfe0RTMs1Gh3gssxYCC0FkJt43peWMjYGCqSBGKwAKWBv3I+GcyrLAOcd4PAniqCK0N/Vya8EZwbmaqg7rF4Wl3w/rjIZDvIRr45zDe8HHtnWCB3nELC2aipvY5o/ut8sgWFMg9AllJARrPMYUGFMAQmFL3NgzHIcSdEUP5ub6lD1DUZaUfUdvUOO8IB4KE0JpRd8yu9Bnx+4ZBoM+rvJMxg5TBHFUOWMp+iGAYotBEPCNa6qJQ1HuDaZH5o0cVdrPw+z+NpiWi2G3G9mfasQ//U5pfpeta9+VxaBWhaIoyvbPVemM60+1fu4M7yKnWD69syBQnfo7W1VM9kG7tPObmfq72ackUUqyYlpJqzc1J3s3s2oWGY9r5vwedlVns6O3k9KGcl5eQolS8SGDjJUe5w4v5eSuWylKQ1GCsZ7JaJ21tSX27zmHnTsWWF8/wdgNQVwUvhR4ZyjLAaPRhOG4Zve+fczunOW2/kc4UJ/FAR5KKcGLNiyXuHbmoxy77TBLi0cozARfj8B7nNSAocYgRhgMZllY2MXs7AFm5ndhxTMaT9hYX+XY0cNYDPv3nc24HjGqRgyrMbt27WNhxw7uuP1W1jeXqf0Iqce4aoQxFXE4jhgJpVwBLy7aBUG4Y0wQ0eTlpfP3fhIlNeXOIAhoTBCApTJx+X0xps3Ta6AtlxazrNrCxvLLppm0kErKJWFUnhLLIG3nakqs5UKnmL03+ketMSGDrPdRx2QawVywkUKK2iajb1TcBTuIaCO1O3d13Wyf+rJMHX/arsh7+bakzFEUJKvZ4OMEk1Aizwi4WvDGB1vGgu8VlGXIimsLoYgiLBEJ2ZLitkVpmZ3r0euHLFCuEmrvqZ0LGZr6sVx3LMntnUCl9oSiKIqiKA8uKjPkpoWPcWJwHQD7Jg/lnM1vZb7eT0Fv2236fp7vOPHTQaR0L+Bx/MX5/w9z9V4euv6sZhx9sn8z//fsN6hASfmmQzMpPWjoqo2MCeavJczASWIl34iVkjMiBc1bQz7tREw7CygEycNym2Y/SfdYyU7fzrGVnFCZG0SDC4qiPPiID98k8gEaZ3HzfJ1aHbZmNWqcpumZ2+Tkz57Akpd1a5/9SU7qaZ/TJv4nZc2D7dyuaRZn7l5thbCpZSY2J8zgDS5Y50GcYTwcc+LYSRYXl5mZnePssw8y0zP0+uDE4r1BvME7h/VB7OSNAbGsrK5w4uQd1JN1jt1xCydOHOHg3Fn0xdMzhmE9oWcMk/Emhj5nn30hfbuf5aMbHDn2JdbGi+xdOMDJkyVjOciBAwfozQwQY/BOOHrHMY7ffjMrJ25n2BsyN9tnPNpguLkO0sOWJf25nZx13iXs23cOznhW1o+xsbzGiRMnuPWGr4Dt8+hvvZT15RPceugWyoVZLjjvEVxw8cXc+rWruPm6f2RluMR4Y5mFWUtZOPqlR3oWWxTUkyo4/wXqSR1mOjdCIoHagZeYsTCIltqyaWUMHoSU//1+ENF473GuDvt1HoNtUv0Hh3jsDxJmC3vvKQpLr99DRKgnQexkrcE5cDEI0JA6IlMO/CY4YRphkkjYfwhIhOxJbbDDUNoQUMJ4vA/t6vUKiiKIk7x32NKGYIdzjajOuRrvwJqiKV8XyjwE0RymHXmcWjzRhteSIMNAECVZj6FogjPGGsoilKNzHqpJRV3XscyIwRQF3luQMHvdFkLZs5SVwdqS+flZ6trhxTEz16M/KBDrwBpq8QzXR5S9kpnZkrIfZkeLgKuiRCQTfinKfU0+6SD9awSzZjthq+m8P5K9kbSCmVT2TgLod03n/aUoivIgpXmSmu7zMM/a0toO7YgHsnFbJ8PLlA0w9UA3QjMBYdrv0+pcupPXpunsMhohnbw08UXRfOaDUGTDLnHD3N9zuPgiK2tLbIzWMVKyc/4AjzHP4qH10yhN2WzjhVa4LjXGh6xBq2vLTMZDKj9mfXWdnfMTXDWmtAXjScg2ap3DV56FXfvYvesA1URYXD7G5vhm5ubmWR0sMhz8Hs8wP83B/oXYAm6f/QIrwxNsrq1QjzaZyJh+31KUoVyxeCiKEmsH9HoLGNNnbW2V9c1N8J7RcEw1WsdYw/6D51CPhqwuHae2NXv2nsWefXtZPHkHqyt3sL6xSlVNKG3I6FlYjy/AFiWuFpx4HBJsBR9ERs0972QHMvH6SNZvTFOWuyiDdZpshOaeiWmFPblYbUqgVJRlsHWdb/bZrJNNnGg+yHbU6TtpfE+7/1Sh2bvWD5rW7ZabS+XgbLRRs3KzAsZYLMHGabKrNh1ctu/ETZunevV265o45rGCTSWzfW75h4kh4Zqk3PUGIwYnghWbZU8LQq/SFvR7wd3vvKfsBcFSVdfgDbUTJlWFMYZevwyZsQj33TtBXOgbiqIoiqIoDwYE4WT/Rv72nDdw9e734ewYgMIP6Pt5nnHsFTzj2CsoZWbLth5HbUb3XmMMrPeO8hfn/z+88Ob3cNboMQB8Zt/vsl4eu/eOoyhnCCpSejBi8l+lKfPDlN2fO462cyKZbe3sbUIBcQepTvz2c4o0mKAoitIN0HYWbxuwDUw5kae2Sz99dKLGImZx9iiNKKorUspFS90seoa2NM/WI7VtT/9ssyx7CxjwxlLXwsR51ocVk/URq8dOcPyOmzl58hgUc6ycuJCzzzvAeRecjekV4IPjuK6DHqcwFuOhGgtH7zjB0aOHWFtaZlRbfDXD0aNH2X1gDydX+yyNHWWvxEjB3MJ+Hvm4ZzA3s5tbr7+ez179dxw9dgszgxlm53bzuCc8kx1P2s1MMUCsYTz0HLvjVkbri5QIk0lNXY0xMg5iFGuYmd3LYHA2y4sFq4vHGW8epuwPKK2hLGrOOnA2uw6eRVHW3HrTF1k6ditnLZzLuecvcOstn+HqL36C8fA44+VVqskmte1RDCzGTFhYGASRVu2w1HhfI0l04w3eO7yvgzNZbCPEEYlBB2OaYJS1hsGgjzFQVY66diCGsuzhTRAqpdIM0AaoggAn9IiiX1D0CyRmacIbnHe4FKCIm7dBgraEQUfARCjdltoaBEkhSCGprAImCOqsaYMKcf0gTipi9qa6SXQ0mdSUZUlRGNy4xtWx/JxtAyYinrZsRR58i+c9XeNA8l4dvyMWbGmZmSuYm+kxGtaMhqEcofOeohB6/SITYYVzr2rPxqYHBlhrY/Yrw2BmQL9vsQX0ioKy12Mw6DMZ1xgKRsOKjY1REDb1LcbE8n61wdXCZDRBat8dzCnK/UEK9pk0sSFlWLj7Ew+ap88puvGp7AhFURSl5VTPymn7QrYsjZIgmV4nkGeYnN6/mf4tE6BmMvXTaX53VZNPxkj2helkkF2UQ3yq98csbx6hHg1xo0021pYZVRVLS8dY2nmYo3uu4+H+meyqz8PbkKVzsbyNxdkbWZy5lroS1ldHrK2tMh4NEWMoyhk2h0N8AXMLMwyHACW9oo8pe8zvPMj8rgNsrq9QH68Yra+xsbyCLXoM99V85sLf51vKZzIju7it9zkmq0Oq8Tq9XoFzBVU1wuDCeL209PpzzM7ux5g+o6HBuJD9qd/vs2Ouh8zNxbKnFasrR6nGmxQzlsGgZnnpFo4fORLaXk8wzoVr78HVVSh5ZtKYPDr/PE0WJOJYtZ1U0NoCJpVRI2ZbMmCLkGkoZCkK26SSw96laSpdeyLvQ8bGUngQfvpMnEQ2Jo/imS3+wrx/ZLZOEiplBknWqWJnNK0wL9822DZhfScea4LlnIuwQlva3je9+3iVUstpl9yJx9NCb1AwPzfAOc9os6auw2QKY6SZkBGOGI6d7C5XgxQhA5JIKottEDzWhlLTZWFj+0PG28m4hiTMwiBxIoV3Ql2HTE3blqVTFEVRFEX5JuSO2c/zPy9+ISf7N3WGas6OGdoxHzn79dyw46M8/djPc8HGtzEu1gG4fe4zXLPrL/nKrr+414Pax2a+yu897Hl8+4mXsmtyPp/Z/3saOFe+KVGR0oORLcY7IfUz4LJQsm2M6lM//fJAugeK6CwymVcrC+dNOahOtc884K4oivIgIRdKZIsFyT5qhUp5Cn4DFPHpmj9jfXSI+ma9rpjIma4IVaL4Q+JUVqHNqGSkG3C+s2e5dN4O4bih8JXFmzbLxmTkuPmmYxy64wTLi8cpJiu4zZPccehmNiZjDu3+Go943KWUto8Z9Ni1cwEETi4uM5Kamdl5zLBiZdlx5NBRRpur1JMJF5x7PpPxKjfd+EVctcF4ss7u+d3s3r2PhZ1nQW83MwvncvTY7dx0+KtMJmvI2oS6P2burP3MD/ZQ9vt4J2xubLJ07CRrK4eZm7HMDhZYWV1l0K8RsQyHBdhdXPiIp/Cwhz6OsRNmynlMDabXZ24wYGV1maWVJY4fu45bb/oamxuLDPoFAzviq1/+MItHj7N0conJeoX1UFrDeOwYDTexxuP8JkVpGAx6VJNQYqBnS1zlqeq6CRogIQdXEPy4mKXINM5qa8HEEm/j8RjnHKneRlkWOGMQ70NZgdSfUn+IQQmMpShsyERkQlal2geHtjGGogjl37z3OG+ywIbJREfSBBQSqdRbEip1eliasOw9IdeTiUGQkFUrrSDi4zmBOKhrFxzt8Rzr2jXfAiMh41QcDIGRJrCSC5SsoemwzexxE0vdWcP8jgEXXHSAhbkeRw8vc/L4iEklCBULO2aZn5/DiY/fQo8A47HHuzq0t/ZgbJzFbME6ev0Sg6GqKiaTirIoqCphNKywpqDsFYgIrhZ6vV4UKFXUlWDEN0EMRbnX2Sa+Fmbvp/eR2fJ+MFEgmwSqWwLe0MnAmtROkn+WHVZjZoqiKHdOKqU27U1pn9T53y3T5dXIhUAxk820yCntSZr18j2x5afp/mdLC+6MVpzSnoEIrNqjfFLezaFjt7K5OaQer9MzNevry0yqEWWvh/iKW+eu4lb/ZfbNnY8ZjNgcDlnfXMGWJXYc7BI3KSgIYp3Z+R30CuH44RtZ21gB77DGsLCwmx279lP25ugNFlhdW+fYsduZuE0KsVixzA52sXvXQcyc48bB3+Mqz/LSSTbWTlJYGMzNsr4xotcL47/RyFHVPXbuOZsLL3lYWG4KgnbHYE3BeDRhbW2dEycOMR6epK5GFD1DWQjLJ++gmkwYDce4iTRj8jAWrglDQ4+xIQtpyJQDprQhq5SLGXqabERJ29NONAhj9ZCN1MRSYs75WAY6iZGmxf/t/evYE5hmH1EpBSI4l/yTUcAk4CTKnreUVJsi2q/GhkLoYeKEbO1vRuLi0NO9l3aVKbGSJ5yf+Oky0V07vDPuaTV6W/tu2kHyyZog0Or1S3bunmVmpsdoOKGuBWwQIfX6ltnZGWrnmmlExhi8D6XomjaYWNo7CrSKsgjZv8YTJuLo9UokZguzNgiUMODFUxI/qz3eyam/ooqiKIqiKN9kHJ69mv958b/eIlDK8bbihh3/l5vnP87uyUNY6x0GoLZjvKnvm4YZWOsd4SNnvx5Led8dR1EeYE5bpNSYZNtZX/ki4kybU3yuPECkmj9NMM6Qz2ZKJXxyl9UWp9NUbu88K1IblNiaxSMEz+9kYv8pvGRi0p4VRVG++dlmEmb8vS0t1VnP5M/uQEESnHbjvbnwM2W3SHkufPxNsM2DOpWzSuXabGf7bTDdQHUe1DC05evaQEVIY++HHtYEv1Qhq8LmUBhtjLDGMLA1Ml5m8dgNfGrpNkx/gUc87PFU4zFHDt3E5uYK0i8w45oDF3wrF114ATd+ZQebox57ds1y0+f+gUNHbmBtNKJwE3bu2kO5MM/Flz6RA3suZv34iJuvvZHFxaPsmFug6PfYd+65POZbn8FDv+XR9Hslk8mEm2+8kZtv+CKDouacsw+ytHaU9VFBb7YEZxnXcO75j+NxT3wqFz/0AmZmCnBtKdXN5ZrJIcsNN3+FO45cT2Eq+rMFvTnLxsZRhsc3WT25zngIhSmZX+ixOYTN4QZl4TFlCWKieKcOznLqIAQyHjEEJ7MHEY8RizEeawuK0lJYG8u7WYoSyl6Bq2EyGQe5jw3jgbp2zbigmU3cCJTaZUVZBJ2Rie9pS1v6ACiswRrBiMR1pvYVBhRtSbnUT1LZN8AiGBNLLsR9hwxLIWuTl5A5qOnlJgRNgEa0JOJJWqd8FnMr7gs90kgQHBVluBZ1na0dxz1NOT3jEWOxFnr9gpm5PvvP2cVgvsfaxhDnPYO5kr5Ar9dn1+4FJrWjGleYIpRyQ6CPB2dCkChcHJz3/3/2/uzZli0778N+Y87MXM1uTn/O7W+1KAIooEAAhGmRAKmw6JBtUWGH/KBw2A4/ySGHw7L8FzjCCvmBdDjCMsNhv4u2adMiixApSiQogESBBaD6qlt16/b3nv6c3a4uM2cz/DBn5sq1z7mFW1Q1t8mv6ty991rZ51wrx5jjG99H6zyKUhSWtvHUdQMSkdmUpm0QGynLElsUBA35QxVxbUvb5nVFuCgC9WHCBz20LlyFMZ34MKH/Hh88lJ52T3fpsIPfVba15X7ZJ9URtP9j14IovaSD9582OHaL6GPrw4gRI0Yk/KjvQenjowQdWGLp4P0OQ1LSICLrLar77faxnrL7TspDhnlJt/+hkE96BuwEc3T88bTPyLvzPwTdcKndZ2oLXDWlqZfMZi3WJoss5xbcv/tDnI+cXXrEtJywWp/Tbpa0wWNFmO1f5daNz3Kwd8DZ4hFFIWxOj2nOT4nBEYNHgMV6TXHQ8szV56hkzvJ0QWg9pa0obclsf58bz7zI5Rs3MYXBtS2LxRn3773D3rRgNq2IOIIGgg8URUk1mXN5/yrPvfAy+4d7VEVWJIq5kdArZ+cti+Upq/UJRiKmNJQA4mg3LfW6SYR1LLZIpHqj9LGvYog+4p1LKqNkYn9+pnfxruaHbO4HSOSkrKQkhqRMK0mBqa7brTITHbkpPjHYttaB/XRkfj3271+0hd7ONeb3dwZfNzIGY0MykWkw12lMPmjN+a6SLP4y6U77zW2Dzm5eMyHuJt9P+RwMc3EjknKjbrVhrJIt7rbjGmwhFKVlOqswVlitNngX8nVOuUNVFUmxNngwuRmkU6qF3DzS3btICEqImjynNVnxdetEjSRxKMHYLZkwaiInxRiIuTHp4md+xIgRI0aMGDHi44ZI4Pdv/g2OJ29+oOWDaTmavv5TPqoLEIiMBKURH1/81JSUhgXVET9/dJ01O38P3u+S86yyvPPa7mTAMBEfUpq2+kcwLGoP97U7KnrDlzwrcnH5cfyMGDFiRMKP/D7U7fyn5IJC6JRq2BKEOlsGR5rsjpn8lCZy00RkzEVhGdBWDYrJywa2xKXu2WDyMt3r6bVOBSNvK9WmiQoecBqYinB4UPK5X3qWT3/mOhojq9OGt974Pm+8+XUeHd0FG3j88IcURljXBctHjwhhxeL0EavFGaYqKbTi+gu/xPTSlGo2oSgty5MHtGvP5cNDysLgm4r1suH1N99hUx7yW79xhfn8Mof7lzmyU2aTKdevP88Xf+Mv8vLnvkAT1ty/e4+7t9/krTe/TVs/4qCa0qwdjx4/4Pz8mGVRsH/5Bi9+7hf44q/8Ba7duIIXT+09zcaxWrdM9vY4u/uQP/7jP+K9N75FlBV78wmFAU/ENRs25xvW52uIJT462s0aUxhmc8EYS1t7oheauiaGTppfIHqIiqgQfSLwCIIxkWpiMVaZz6cEn+7a3uEMTHq6ujZQThPRJQZJxJaYO2dNvre5o1mSp0Se1Nfks4diXS4ARCWGkBwjQkTNNjYIMXced/HDMKAQhWy5pnkH2hGRSEWFrsCQji3mYsLWODBtM4JJY7ODySpHvYJLTMW19LHIJS0jfYFEjMkxTCJ4iQwo0oZM5kpWemgq2kxmBdO9AiPC4wdnNJsmFQgKAzFSTCzr9Zp104IIpRQgQvSJEGbTppJdicae1ufbwMJtiBGEkqKscN6DSQQzI4AoGhTXBJx6fIgE7wle8TxJAhkx4qeFi/kEdC9I/v9uBvB+5S4DTx23F8lLw9d2l9Mnlhvud8SIESNG/Kvh4vdwp4LTaUQO+OdPft/2k0VbZZZueR0QUWOOwrrnRL/P/EuU7ea65SMp9luW9ziZv8YUy2S2j7AHAZaLFffuOnxweFpi9NC2RBc5un+byaSkrhf41lNUJbULFJMDnDooPEaU6Bs2CqYs2ZsYhH2c8zQucvzoFOERz9x6HoxgjSWGkv3L17j5zHNcunKF1tecnZ2yPD9lvT7BtQuCE1ztiT5SbzZJjagUZgcHzPb2QSKbek1jwbUtrvZQVsxNxf077/D46D6CYzqbUJgiqZkGT3CJ8KRRCSHQtoq1yUK4KJKNV/R5GU0xtbGJvBMzoyaF4Pl5KkpZ2p5EAxC8p6pKMAYfAiFGxApWk4W36eg9OrjnJhPRlJ6xpjkmjz4QZRCvd2SqPEZ60n1HUNoJAC4SkAf5RowdZSqrqW7tp/uG2i7/eEpUkcZgyhO6fKQ7p36Bbj1hOw8qJIKPmpxLdIt1zQ7Sf066/EpMzusE6nWbbbgVxPRj3XlP8IGoYDBg0/Xszi3tU/Mu8r4Ugo+ZmCTYIm2PbN2NobfYBohBci7XWfU97QM9YsSIESNGjBjx8cKd+df5/qX//Od9GCNGfKLxwZWULnQu7bx4ocV5zGU+hJAnFYlk0GHUv0aybBv0JdF1uMWciHdkIkOyhINtSbvrWurSffPE1tlpQNIL2xwxYsSITyo+6LNzOJ06LAp0c6fda9m4amcKV0kPfj9Yv/u+RxSrJhEpMuWoUIOK4lBCfjYk0tN2e1vSUnrN7BQfpP9dAY8SVDBYVKFulU1wOBrKysBeg04DWkywk32cW8PagdQsjxcsT46JWuPqDYWdY7xj6RtOTh9Sm3OEBVOxrI6PaBqPWsezL77M5asvsVo1nJ6scEtLcw7n9V3uP7iNkQM+9Zlf5td+8ze5+fwznJ8/5Ic/+Dp33nuVs7MH2LKm9ec8uLMAV+AbD77EyIyz4w12csIPXvk2Dx++y+Rgxnp1xsnRIzSUfOFLv8Xy7ft87xv/nLJQbj1znf39Ge7klJOzNZvNGr/xWLH46NmsG4w1TGYlxiqFLXEScN4R1WEKgxHFUNB6iL5NZBZJd8VYmEwtV67uU04Ne/szFucLjJpUgGlb1usNwUWMpG3FmAoESakpEELAFgVWzFZlS9OEf1dA8G3Aa0c0ykRlzUS20FOQe+WkVJdInb+dBYGYbcc1JDsDY0zuwE7Hte2q1s6RrSt/DEoK2/7lTu1Jcre3tZJIWjsqTnEQh6TlQwgYLIWRft2OraXEXCUzGGMTSckqRVFQFiVN3dJsAiEISLJuS58hhZDIRKbM24q6vQ5EmrZFg2KNzeceEDEEr8QQMUVSdtKouDYQiZjcLW1t0Z+XegguXxUjiP3wRuLDqPOJuPTi3x/e0/jk4ik1KxkW6AZkIek/mzpIAS4WBQUZLDmshmu/jS202+GPPEQZ/D5ixIgRnzz8uN99T/tu3eYTeU6oV5jp9iEY1W3j2eDd/ttfIYr2z4SgKZ+ALQGpX1YGTRCSSBzbmCGT1vNfcfDK7b0/Zh0aNmtHXa8whaDBs16c46LDq6IihFox4vG+pW6XNBtDjB6NSWnGh0DbNpydPqRt10zLCeoDrl3hQks1m3Dl2k2m832ig6aNTCeHNKuak+NHxGi4cetFnn3+eWZ7M9p2w/Hj2yxOHrLenGNsJKpjs2qIXjAYrLFMqzlN61gvFgQXOD1+hNgU69abJaLC/uXrHO5d4vjRbZxvuHr1CtYa6tWC1rU0bUP0ycLZiCGoyzF0epiaHJeqejTHksYkFVYfIIRE+u/smREoCkM5sRSVoSxsItSbpACqMeK9Jwbtk7xOUXdIBkrKRunepzh8SyQij48+Rh/c6YtzlNuF88gbKD51x9tvv7ery8ch9GynbnTubn8bv6T4fzdzTvtI7Tcx7h7/4OAGP9I598TrjpjV/ZnJWum4E5HMWpst90Bjl+nQ23YbIwQi1iYru2SlbbqNpbxJU77Q5VLdte+vSzQERyKraUzNHFnFNtl052aRqP3xdSq1I0aMGDFixIgRH0cEWv7wxn9Ca5Y/70MZMeITjQ9MUnKkRM3kfzKYoXiyY2pMZj5q6O5twjaJz6VBGLwfB8t3hYBORQNycVCHEwGpIC59JX24vW1hQrbzA/1i0nUcjRgxYsQIYPsNraTO4tiRQHbe3yooJR2draVC997FbUYMRraTpyHPOMcoOIE28R+oukncNOVMJNtvodj8PR/zg6J7hqTng+Cj5hhC2UTh/v1zXvved6n9EUYCp8cPaOoVDx8+xIea65euc36/xpua0G5o1oskYe8DPmwQCvau3OLs4UOOWsuzz34OdRVni/fYNKe0cUX9bs2np/u88NJn+fX/1ucxYU5wlq//yXcoSviVL/02v/IXfpVLV66w2ix4+51Xuf/eDzi5/zqtLgHP8uyc0BqMWIpiztVr16ms5dHZMcuTd/jBo7dZ1xsowGiLasOk3Ofho/dojpacPniLWy88z+LsiDvvPKJZn9A0G1bLluAcRbZrM1mFKIZIaSa4NtDUDu88Yg3zvTmiymbZ4NpIiCBGMVYxRpjtF+ztT6hmhqieTbMBI6w3DdI6QlDaxkM0BBezAlM3sZ6IQpAs00JWTNL8XldssEWBaurSJtBXlpKF37ZUtR1buSSQJ7v7yX7pOnjTto0xmSi1u42dwoXsqjZ22+2LKnn5EAIWg5itUeFOUUG3sWxv/xaV6DyaJ+xjzPTsvus6fTjEJLUpYyRfz0DbeFQjxgpioSwLJlWJ15bZdIIpbCIYGUMImotDqQO6U0KSAJDUsNQoGj2FLQltpGlcJnGl6Mtai5ESBFzT0DYORDCFxViYzqsn7sOHBaEvEUn/HfV+GPBVRnyE0Kn29fH8gEgLJFUzOvLi+2+nf6Z1Cgqya306XG7HDm7EiBEjRvzYSMSf3Sev7Py1q6Q6XDKRTAfzP8O5wpyneHFstOaouMPl9mWmTCk6wnp/FEPbt8H2dHe/HaH93f0/5E71CqvzlqO791mvj0ECdb0hhpa2bXG+5fDwEtYW1OsNMXispHjTt4EQAzSOspqCD6wWK/b2r1Iw4ej4Li7WqDg2mxr/SJnvX+K551/m1v5VfBM5OjpiOrU8+9zLXL15nWpa0bqG49NHLM6PWS3PCLHGKLi6IXiwpkLFMJ3NqAoLtKj1NJtjlmceHyPWgkjAimG9PuexqagXK2xZcnZyTFPXoC1CRL0SfI6fsyqSIMQQUizpwbUhLSMgJlkcJ2uvnKWZpLokIhSlMJmUFJmc1HoPCj5EYghp3ZCtu0PM5J2L7KP0Mz7t9bw/yU0SO2Pgz7QYyySanHP2Q+2CbGsfOzxt/9uV8t9P317/eegIT085mu0nZTtCY5JD7W2sY+r22J6nppzGSCJ8hRDwLt0fVfp8Ih1a2kNR2HS9GBCRICkxdc0mbD8b/dFJpCzStXYuW7mJZCWnJOvaqZqFkPIeY03KdX5qvgsjRowYMWLEiBE/HlqzojZn3Jl/nU8vf5tpvPTfaHtK5Pdv/U2+c/nvjhNJI0b8nPGB046WVKCxpMnnQslyvk8WEcaiwkcHfVGPQdH6YifThd+7iadIkhk2g2XyW+hApUl33hh2OKdi9XagDJP7ESNGjBjxvtCOWJR4IsPv6e4rtbPv7Jbp1PCG3+tC18mcnu8epU1tpChCEwybWjleLDlaLJiUJc/fusJ0avKEZsRg83NAt2SogeVXVAiaba6cYG3q2L33YMFr3/sej97+LsvNA87PzlBt8aEhRM90XnLpIHJQVjx8uGA2MxxUM46PG9arhtY1TOyEvVlFrFc8+/wX8LVj8do3OFk+YDJViiLSro545Y//ax7eeZ3Zv26Y2gn37z9m/5LyO1/6bV586QsEo9x/+C5vv/kdXn/l65w8vM3Z8QOm+1AIxBouH15FiinrtuFk8ZBSPLO5JQjUzhHqDUEdhY1Us5Jm9Yg3v/sI10BlJrSbBacPN6wWxxSlhxgJTSTEZLkQgssEpYBrAmsMbeNommSlJkE5jxuM5gKBhclkQlEYjI0UJcz2KuZ7UxDFO0Nbp0nveuOSClAE3yrRZ1uIsJ3IJ3flak8c6opVw9IRWGv7daLGbs4diH1M0Q/TPBH+xPDtbB4GRY0hWarjJ8cntrONLbbkpC3RoesAVon4XKxRVYyaC+qR3ba63yEERUQxpc1kqq7o0hV9IBASkU8sbd3ka9vivWILSzWxSPQgStNEqrLAYvDeJcsMW7D2LSF6xAplmaLqaCBmxSREMALltKIqS9YrT3C5CGEsopLVqlw6bh/z34JYgxhNliYfUgTtiOmaY8+t3e+YP3x0MdAh6It82wJ1Jvhx8dukW2d3O+87Dp6i4HuxgP5nLT9ixIgRIxKenON5koQxfEWzatIgdEIT23tLVMo/o3b20hFvl5wU7/FG+Scchfs8Xj5k1tzgt8y/w4vV51PMRbIKE9Wcvwxsqdk+GyIRHz2nep/zyW3em/wxq/Oa44fH1MszXLuirjeE0IJ4rDUUlWC0pqyEECBimZUVdePwLsV6oh5jFGuVg70JIXpOzh+w3pxhbMRag6hSL05pVwusURbTh9RNjbFTnnnxOfYPr+Bd4OjRQxbnjzg7fkC9XrLZrAGfYr6oTCdz5vv7LFdL1ptz1hooi6TWaYxiTc7cYsAUlhA96lvqsMJQMJ2UyV65U1k1EFwghpgtvbRnhqkqzvmcXyRyvKrStp5uLk4M2MKmBgKjSbG1yOqouXlANVt2+xRnSzREn5SFYtRsnTZ4hg9s3S6OuG65TsUHSLF77nC5aN/ajwGRnfE5nGvc2c8wRhgMoPedZXxCQUx3kmXVuG3GHA7+/jgkNz3IzlaGeUenItlvuztySWSj6BNBqM/LSCplYgzBKKYw2MKimhqCjDWJcBRDIhPZIjeAJOJYyJMDkglpGMF7n3I2YZtTxZjsr0O+B13+F7eKtyNGjBgxYsSIET8PpBpDYFHe4929f8lXbvwtHk1fpTELbtW/zP/gzt/gM8vf+TG353Gm5uH0e7y9/xW+cuP/SjTup3gWI0aM+CD4MZSUkmJCyIVMBSyK5WKf1YiPIi7eveFkgOxMAKSFg26XCwy7prtE/GKyTz+BBTy1e/5JA4gRI0aMGPE0aJ64176kIFtCR/65JSh1RYWL3cppItJIImsYYOU8j2tPYQzzyrBcOJYrw5vv3OaNt97k+tXnKMyMy1cte/sTICssKqhAQGhaJaBUJqnl+Ki0bWBxsmS5DNy8dQkbYXH3hPXJGbPpAYFA4wKr1W329oXClKg61ud3CcFTO8/hlcs09RrRSFUV+KYhUHO+OuF6XHD/wSu8/errPH7wLsYorhZ8cDSbBovh5I7jn/3u/xMlML90mS9+6a9S7E94597rvP7t73D6+B1Oj96hWZ+wXJ6zXK0xx4GyKjm8fImrz1xjU69YPDhhXTcUIhTOgrGYCLMZxCCoCpt1jYkB4z2iBZO9Ay4f7OHXK9Y0aHR4HwjegwiTSUUrAach2VuESHCeqiiQqLTepfTMe3xUqspSWtlO2BswhaWpI02zRCSmSWkxySbMCyGGZCPmI96HXoKrJwANJuRjHFAJBpPU1tqepBRDRLNlQFow/8iT8qqKyQyibpK+U06C3YLCDoFItiR4QxpXF+1ph8pJfdGjVzwCohCzZk9nP7FdfkCO0O32ulJc30VsTFZLyu9pV3Do/hmCh+BBoxB8xFsojU1kIyNUsxJjCkQnaAxsNqmrX4HCVkwmBdYYXBNoQ0jbjZGyLABlsVoTg8HYXMTRSPSpWJEKQzF1sndd0YARi+3arz+E6As9MCAnbQucT5oTj/go4f3unl7IFoVO4a8raj7Z6jIsZA5zjCdpTcP9bPOQMZ8YMWLEiB8Pu9/HAyKT7v59ETr456Xh3eJbHDWn3K9+CNMVodiwqZXzxYLj40d4/5hPze5zqXmRg4NJUpcctrJJZBnPuW9/iCnBiuCouVu8wnqz4Lh9wKyaMzclVsCoUk3nFJMSWy3YbI4RCWhW/vFtJDhhs3EYWyQlzNolEgcCGtjUG/TkiPVmlax8lytKKyAFbd0m4hMgtuD0wR1OrTCZTji8cpPV+pTTxTHr0zOW56dEv0GjIwRH9I4YIq72VJMSnQlNuyGGBo0eBZyL4GMfCxmjEIXgPCFGJJNTusBJNKKajLhjDCAp0zPWkFR/Onu1ROA3xmL7jsRElomZcGMkPZGjKgRFCkMMknOUTHTp7MCyHVlqUsiKQflh3SlmQSK5PHV05VMQk1RBu9g8xJDHmW45Q5kA143L4Txh11wxHJMyfG+wy25gdlZuu2vtrtv93inHC2R19x9BcmIQngy20jV7GDFb5rZ20Yn263VNG4lEpkjOgoxJ9tEiQlEVGNkqT7nWE7xHFayYrLQqoBGvMd//pPBqjMU7n8h4/fjY2myj9E0nO80cyqARZcSIESNGjBgx4meDjT3l25f/DpvihFcufZmz8g7n5b0B+xzuzr/Bo8mr70tSCtJyWt7mtcP/Ci8NAI1Z8P3L/4DWrHg8eS1VSsbJohEjPhT4wCSloKTubrbdU6ppgtmqYLMFx/jZ/mjiaWl6fy87ewVNne/dGnHw3k5TEE8WFcxOR9RTRkk38TUOoBEjRox4X2j/n/RLZ2bVTaaqbJfZ2jZsCR/d6t2/KMmOMwJHZxtefet1Hh2fUzLn0y8/x3z/MnfvP+TR3XusHx2z1Gu89+4pxeSQ+V6VZOrzdoIKrhGOHqxZ+Iab1y5DdDx8/JBHDx+xeHzO5cvPMJtXTCYle3sVz7zwDJt2DkeBOt5D7YRmteL47BS3cVSVpW4iLibVn9PHSzYrB4XgggMv3H/vAWcnp1RVhdaegwPDtNrn6PEZq8WSqI5yMgEc4k+YH+5xMBN++MpX+OM/+j3atqY+PUajQ/AYUapCOZha1itPvW4wxZofvvYaQsBkdZ2I4tqADykOgkjQiMEQ65YmeiQKVqD1DavVms1qDVJAjJQzmzpYgyAmIiZtN4RI8IHgAkVRpOKDpi5uDclfzbWRVgPGCmVVgAjBS1b9iRhrsGpoW5+syHwqGMSgxJCsHYrCYsT0pBwfQl9U6Ak9ksg6IkJZlhRlmS3LwhMkoYtEotQRnye+uyWHSo0DlaWeYCRpMt+IecL2rVv2SWWmwXHs1CUuUB8GJCgdvL97XJILGba/Fz11JheAVIXgIQafbA2z+lFVVkxnBWIsmEg1KSmnRSoy+YBzLZtNjXoFY3t7DBS8izR1MlYWA1Ikc2VVn+6TNXjncS6pAhgMMSjeBzRsr52GiDqh8R9eJaWdgmc3zNh+P/V3ZXAvsxDPdv3BEBjDxg8XdvKJwf2VC68rW7W/p29nl9a0q5+ws/kn9/vEAl1JcmyrGTHiZ4GeVCjj3NCHDbuET5ISUv6ONF0YJbuqLwMO+87Xap4e7LcbgdY0fK36e3xn9S84Oz9GQsH+fJ+rN66yaVsW5+fEtsXohLYJhOmQfqI0puHB9PvcL37AA/c2x+sTqmrCtLKcnhyzWJ7TrGsqOyFylbopsFgm0xI7mbI4X+HcEtWAd0pwnmbT5tg3ZUWzvQpXe5o6YAtLCC5dkqDU8Ry3WQCGsoSySstG74gxYIsCUxRMppaiNNiiYHHyiAd3buN9QEhkGxHFmqQeW9iCtnE4F/DOsTg7QySTUFAw6ZkXY1JDMmKyRVpS09EYCCoYFTABHzzR+WT7JWCLElNETBt6lUol9ipHokoUzTbLumN1HEjxvzGGopSkqJoJLtKThATvU26iuZajMcX3aGdhnMguqpoUYrvxMlQTkkROMpmgNByK2zh8S13uv0Oe0txwEdtYP22js5k1YvoIYHccy5PBgAxj0G0G3V2GJ6l7wx1f2FSXa2SCkobO+Fzy92L+jEUIOU+STKSyhaEoLWKkb5pABJVkZ60hEmNS2UWT9bSYkHMnTU0kcTdv0rzfpBQrybI7v4cmm3bd8Y9PhKrofxQ1a8SIESNGjBgx4ieL2pzxn734v8oWbD9eHBIJ1Pac717+u7xy6cu8s/8VarP4sbczYsSInz0+MEnJkz7TUXLnq0o/wdwVE8yF7Ez7xHaALln6b3TYI36qeMrNkfwfJU1gSVfe021mbnaW135cpOJTl4pLvy3YdintvNdvsfvlQtF0xIgRP3FcVCkZ8eFBN+HazRx2hQBhO5fYaU6oav992k2H0i/TFYQ7SnH6bwDO154fvP6Qr3/zByyWj7l++CKhdly6dc4PXnmVs+MzpuUen3npOQ6uHrI330s2Tao4Ao1XNq2wPmo4unOfO2en+M/8AsvH9/nmt/45m9WK5aMlL7z4Eq+9+V1MWXL98BrRLzg+fZd777zOenFCUQjz6QydCLcfHNG0K3zruHxtn6MHR5ydNBTFDIJDY6SwE6aFxcQGfCDiUVtSe4exASvKbFJh5nOuP3+TS/vCpvacPDriwcPHhCatM5kK0/kERLEiGC1pTKB1oC7Qbs5p1oqxFmMLyqlNakXAZlWjHoiCC5HCGiwhxUvBEn1LGVecIdRuhZqW6VRQazGzCuditlkTvA94F1OnMpEYXZ6nj7jGp6KFpL/LSclsNsEUScUn+EhRCaKW6COrpsa5RDwSFTRqLjAk+wBVMNZQViVt4/BZ1Um6yXPdmnwYaygqm4hScduBqwztALbPaiMdoWpQgOjZyOk/BhmEiNoXIejGaY4htxZo0seQOwWPTrkpdkUM8pjPcYpkvTFN495056iDYgapWGSszZP4huBDb2PY2cp1H6YYQirgkCwXqknBZFpRVgWtd0zKElXDetWmax5Sp7m1Rb52SlO3uQM9d0kXNhcHE9GtqVOHtIpPaky5UmJssY2vNJG5NIIp0hnH+DTDlg8PEs0uYdtlvi0AqaR84qmKnCM+ZtjqHfWFwZ7UcME6Ji/0NIrinzU2Bny4ESNG/CzwI8gEIz48GN6loQpOek93vzu7mOzC+rITcShvzP6Qd8J3WJxsOD09ZzqdIyq46FgsFtTrhul0n2dv3WJerdlbV1gjtHbBG7N/wR37fc70FN9E3HrN2ekxdnaJ2aTi/u3bNO2KzaJmPptxvjymaRvmsz2qssTVCxbLM4JrMFaYzQpMWeDqiMsNAMYK7cbT1A4xZSJzqFJYizGGqEkjXNXTesUHl+I0I0yLAjVCNZ8w369wrWOz3tDUro8ZTaEUZYrnrMkkFJ/ssMUABGKOj2OOO0U1W6kFgu8UitIVzaKooAavAXxAWRJcRAkUVb412Us35RPJ2i3ZsKWsr4tZIVu09UzxpKZTlhYx2YY5KtbmGbqoOB96cpNIyifiQL00hmQHZ3vVT+1jZ7QjyXRzg+m3SMxxeFZjytsWHViidaqp2m3z6dTk4at91psJTr0y7AXF1i0jaftaH0/8GepBPdGpyw0yw2jY79DH6gAxPkHUhkzOly4GSrmZLU1qRjAmXSOTIqWmdjnPSaQlVcHYNL40BlwLxiSCW1KoysQnkd6iD0m23t3JdgSqNI8vhEGu1E/8jsHTiBEjRowYMeJnBCXy+7f+5gcmKN2bfRvN1ZHz8g6/f+tv8IPDf8RJ9c5ITBox4iOGH4ukZACJShDNijeSE5qUy9n8b9sNPX4hfFTwwfNPGSSzg846kVRU6mqQg+7priA+JD4Miwop/x2U27t1x+EzYsSIEQy/LbupzGE3Z6dGoaSOWENE1GT5/t3v2qiKSqCjcAi5c7MQLl26RNHM2JwE4nzD47tv8+Yb3+VsseDWc5/nN3/9L/ALn7tGtIKtkvVr0wZu373Hnft3OVu3mBbWR/c5Oj5leX7O8v573HvrFRbLc4qi4uioYfXOKRoC70yuoE1DuzrhbHlKxHH1xj7z6QznIrYokFDgg2e18FgzoarmeN8QguNgVrG3P2O9rlltHGUluOBZLzdEH0AK9g4nzCew8Mkabr0Rzk9qfBuZVRYzrQjRU00itui6jAO+gfWmoWk8aKQQk7qVjaCSSEQeCD7Q1o62DrlgIBghyeuLTcUFEXy74axe0zYtB5dKxBqaTU3bOMpqSmmnrNuG4NMxFKUhBJ8IReTu5BgHk+epx925FnVK9CTbMJcm+4OLxJg6ZovCoiHS+tCPH42Kbz0hBqSFEFIhQvvu6sTgUVVCLn7EJmKNQMzjiNQ93VkPxKyuJJKPl64gIDvkgm4CfEuTy+gJSKk7W6QjMQ0nymVATOqUjXIxR7fkhrzB7aYBTCYnmWx1EONgWSirgrKqaFuHaOxjkO1WTDp/EylKC9leYTqfMJlOUAUXQhpDIbA4aXDeI0BVlVvlqEzCCB4a7xMBzJbpNGNIBKWNo2kc1hoKaygKm8ls0l9Xjcm6T2MAlOAjUqRlL6pQfZgQoe8W7+/UsHm7K4zKrroSg9/H8PDDix+3njX81MqF1+Wprz+5l/cbE6OGy4gRPyeMzQ4fUmQy9zD0YldhBjoCMYnU0H3rdmo2HTE8by8O7LhOqne4vfcnFI1lOp1gQonbNLgY2CwdtXPM9g957vnnuX51xtJ+n+PFc6hE3p3+CXdXb/Lo3kMW6yXEZPHWLJdMmoazpmZ9dkTdbAgIrgq0y0AhyqpZchYMNvr0fnQUlaGwU4JLAYeaRJKOAYpywnQ6p20bfGiYTiqm0wrnPOtNQLIKTQiRxqWcqaws1bTAeU/brFlLyFa/gUllYWKTlTIBkYjJBJgYFed83yRgTIrNxXTEe802W2SFzdR00CnuxAAa0n0yVhIZJnhC8NhCMCYdk3eBoigpi5LGt1lJB4rSJoWm3ZA3PzcVMinIZ2u3TpI3+C3hXTU/kaUbH9tstF8mDtR98lDbNicMaWzk5YYHJNmujNwIwZagxFOe7x3JaNhg1f1Xttvsx/HTt5IXy9tR7dKrnSvU/Z5i1gFNSoYxyjDTTjPkxph0nv2mZDfuJSmn2tL2516WFltYVJP1NCFdi7ZxhGyXbc1Wg1LMNpvSoIQQifk4U0OKELz2qrDWGMQYYm6c0Dz2unGK6s59IFvDjRgxYsSIESNG/LShKG/u/wFfufG3PnBB+NtX/g7Pb36NII5/ef3/zoPp90aC9YgRH1F8cLu35PeWkmq2xdDI1gIusEtUSoo7jKocHyNcLBhcSN+3BKNuWkKeViSQfplde4+85LY9abD0iBEjflYY2jCN+BBAQDUQk4FWrzKSjL2E2JUXVLAS8lK7pd9IekarSKYxpQ5cxdA64fRow90H96gmERMr7r53jykBFzdUewd85jOf5pnnLlNNlSiCI9K0geOHJ7z6re/y6ivf4PH5EUUxYVZNqWQG/nXO7r6NW57T1g3VoeXRw9uUNjK3luXJA2w5IUbF154gNe1mwr1zh5ECCmjXnlhYqr0Dnrn5AkePHrNY1BxMp9y8eYgIONdi1uAbn4oKLhKaiLGe8soEMxFM23B09wHXrt2gLKZEv+Lq1Tnr9Zr1usG1StumSdy2dbhNoNk4QLHW9GQRJU3gxih4l7qhS1PgJYAxGLGUVUUIAdd6KCJKpDQGomJtZDIpqTcty8WGg8M5+3sHNKvUIVsUlklVoNFT14JKktpXYuqYTT67yVJMU3esyapIbRMI6vOktUFUIEDQVDQwYlGTttV1JQeXJr17VkjsGMjaFyGMMXlSPHdGG7C5UzdZ06UO3a11W44McyFrax2XCxtdg/NFSsKAIJXIPNqP4b7QoNtO5WGBQwcVt6dFHNtCh2T1ouH+036C81kdaruiyaSrSOpANiXsHcw4uDRHNWKspSwtqOLaSFh7Ygi0zvfXBhF80xJjSKpLVZnt2ujVq4z1hJi2VxhJrysEn8h6zsfUqR4gREc0qevZWktVFUTVniQWQrJ6+LCiK5zB9l5t7Sq3Kq1dfNnlGLLlyO+sO+KjieH9e1qz/pMEpff/jL/fcu+3vxEjRvzsMIpxfNjQ0Ytkq4KdH6ydTbRk+kmn0moubCGKDAgdQpTIg8mrvLH3zzlfr3j8+Jz1ckFVFmzqhrNmhajH2pIr+5fY36uwBThZ88rh71K3js1qxcmjx5w+esDZ+QlBoaqmWFMSdQWhRTQSFay1ROeT7XNhUB9QYzFVgdbJzgo1rJYtRO1tsjCCMZbJrCKGiA+JdD6ZFlgrxJhife8DMavGS45FjShYwarFuUAslKIo8HiMFULwhOAQBNd6opJtlmMfC9vSZGWgyEAcFB8iGmKK0yWp1osI1hYprvOeqDE1MhjpCS9VVRJCpK0DZVUwmVTEHC9aazHWojH0MXqvfiTkXCYRuKwx22KQmF7xE+jVjUCzymu65z1pR7cj6gm22wWkRoGOSJTyqRSfp2OJPvbqTMDu708M491X9MJrO3GmbJdSSGpNO9JhfZLRL9wRkrqXuxi039yQhHUhYlFVvHM7X3xdg0W3U1NIVmEt+/xHjEFjRGKaZ+9ynhiTUpXGPFa6e2hTfqYxW+wJWNvlWtIfV5evxagQ4lZ5NiYbwKS+ZPprluz6ZHtJRowYMWLEiBEjfopQIt+79GV+75n/iNYuP/B6m+KE/99L//5P8chGjBjxs8IHJikRpW9pFklF0dy30U9hDHtILNtUzebXu1RpxEcbffPS8O/B79veqqesN8DOpKUMl7/YFTVixIgRn2B0pIz+ezVmcpJJk8OSX8kqKyZPHhd09Iuk+rN9RhscwjpaaheJQXj4qOH49pJ24bh2+XnW61OWy7sUWvGrL/wyX/rsCxxctrQSab1ycueI73z/ezx+8CbnRw95dPstFpsNSsVkto9KxeVLLc8/+wzLdoVuag6mM5ZrxwZBW5+IRDNLK4qp5hTFnNXC02yWWAvL1YoYItNJifdLjk7eoQ01ewfKweEUpw3NOiQlx0pxbUOMFkGYzQ3WgrGgxnC4t4cPgoaA8zVFKaxXNcfHp1hb4JqGuvHEaPDeUxioKsv8YMZ0MmG5WBA1UFYltixo65oYHMEbiBZigZA6g62BsijQGGhdm1VvCsTAfG8KKizPG2IoKGxF02xYLRtEhNl0jnN1sgILEVWTVYWUsrIUJGu3ZMsgBEIuNpgUowWbFII0JjKapgnpVFDoCDr5KW3AqukLKcYYlLhj8wbpORxjAFVKa6lmJcZYgo/ElUM0RYHaNTWrJgJc13WfiUdDS8mOsCR0h7MlH/WkprhdXwCJKRTt7N3o190iarKR4wLRst93t888eT/cVgiKUSVK7O3gxAhKwBpDMSnYvzRj72CCLYUQoHUeV3vUR1wbcU0gBCXkbvIYOmu4dI3EBowIVgwhJPuMalJSlAVRY1I30MhsNsV7ZbOpadqWsigQzUXDXFCy1qYiVJGISSEEBItzDhHLhxY6iP8kFUV3Cetbrlz3/p9NYBnxUcaQfHbx9Q+6/tNwMU+5uI9x/IwYMeKThwHVQpMN2cDgKTdApCaIMhPADU//HlXAobxVfoevl19Gg6dxEdQiWlJWFVUJ680xwTc8e+MZXn7uFmZu8TGyCYpfN9x++x3Wm1OCa2g2G1zTggqbNiZbq2LNrVu3sBY2bUNhFCsGB/hMvBCSmqrYkrKogIhr14gkwkgMkaIwQGC9OktE9AImkxIxULctTe2z+pAQg+CDUhaWqhIQQ4yKLWwiuWjEuTqRmwKsV20iz2tStlQkx6TJOq2oLGVZ4r2nbT2FKRKJSAMmBjwkglFMlsmJyBOwtgCE6BLJxCgEAVsk1dK28QQvFIXQNm2KzTMpKfiQ1Zm6ODzdNcm2xh1RSkwfctNFXSarmWqMT7n729h5O7+7ZfEMmxaGsX9qtNgqsRqbyPYK4DxqQMPuni7mJPnFC0ez82ZeRC6+NFh20JzRvzokKD2xue35yuBvGS7y5Ceku96DlQAwRbLXK4pkAR06FaTo02cydOpaSalMcsCsWfGp20PMNnLSq05199Zu8yyTWpdi1JTLSW5kYUuc6seDTWqzkhsd0jgeWUojRowYMWLEiJ8eIpFvXv1P+fsv/Ac/FkFpxIgRHy98cLu3ELOnW6YmSS6UDJK5LoVNCg/bdE01Keb0RYhRoeNjgaeRjn6cDvf3tWG4MD62/vH9FMiIESN+whi/lz/s2H5jOhU2QCFKRcSrsFHLpnHMq4LLFgwec+ERn6a704T+6aLltXsr3nzvHoWN1MsNlIHnPvcFrFzi7O67vNac8+d/9Qv89l/5LVZGeeed29xfbbjz6JzNe2/x/e9+Fd8uKWzB+aJOlmGhZnW8xPmG9rlnee75X6W0MBWPc2s0ONQHag+VOaSKh0Tjqa5VtM2C9eIhUT3txhGdpyoEq57QeM7rhrIyVNMKrx63CRw/WhJ8ZL5XMassm1XAVgW3np1jjbJYRrwXxDuaJqAmYqwSYpkIUbWgsSF6nyZiJWBNzHL3EVMoXh1tcGgEW5VYhKI0OCfUm4CoUJaWsrLYQplOS7wLOCcEb/HZ1iDZQiiLsxXBJQLL+ekSJKDOECM0G4f3Dg1dJ3MgqCbbCJO6mW2e2E92CdngL8vTJLu6PBGtNo8cBcmWaJBtAPNz1STVS1uU2KKgbZtMsNl2UCebAAWj2GgRAZtjQVsm0pRq7LffdTPv2EEMGCVDdaUd4hLb93eIKSaxojttII2K/ohoo+9+7mzr8qR9vyfZLpPOcXscXYFJTV5TwSLECN4r62WLdwFE8SHiXLJUIHR2CukIxCpVVWKt4Nvt2RhrEJM6qIuqom0crm1RUYqqSNaNAULwqVM/xGSxYlOhwXTFimy3pwLldEqh4J3DtX7HxuXDiJhzgl4nS55OONrp4JZtx7phjAU/jhjezx83n/gg2xwxYsTPDuNn7yMATTnBJkTECBOjRBXWQQk5zrpUlhT5CT3ME7tGRYBH9nW+6v8e7917SOsa2mZJWQh7e/tcPryBaRz3763Zu3qZZ1+6yWm7oT5tODs/5bz10NYsTu4TXJtsrrwSg2BECaElOI8pDKv1DAkOiT5ZqKkheI+KRag4mF3BtS2Twwne1WzWJ0AkhKRCU9hsThYV5zNJprQ4H4gx0NYe7xKRydg0l2mMsHcwpaqEzdrjQ7ZkcwHRZL+W7MmKFOMH7eNfMUm3NpFQBAkp/vHeJ7VLiZTS0b8MMSR2TlEYbFFgLdjCpv01ST0q+76hpJi+bdoUnktSb/ImYiSpNYUYkiKOJkVQ1Uw4yflEinFzfBy3M7nd8zdlCjne1twR0/GQZJeW0w+oTHYpiwIfQlbiHz7Nt8qona3brupPPkYdUH0GhKStnv9TYoRhkD84pt0j3RKpOou3H4Wex6S7rz158hcJTMP5y/SCDhoyQ4iEWnEuNS7EnCT1jR4DAhiGpHJk0hjJgklJ6dUmG2oRSepLPtsAWtt/XpMd9zZH0ZhIaZ2ldhqraWfGpAYY1aQAFjWO3+UjRowYMWLEiPdFihTfX8U9qbNe1GTdxQ8P/zFffuF/OxKURoz4hOODKylJ11EuRM1Fp2GXev7ZWzaQxZdylaEYdGiN3c8ff/yr3uPhVME4RkaMGDFii440cdJE3j5e8tKNQy6VysOF59GZo/bnvHjrMnuTGQZDZbbkYMt2+jlKRBxwFjh69Yy333mbJtyjmilf/OJv8Ou/9TJyC156+SrTfcM//sq/5Pik5vTOuxwtH7Nqa6w/Z3F+QmUNdQuhLplNpxRlS2k3aBRmoeHumz9kcfaYutngTw2bjWM+3+fK4U3s9Cqfeulljo8eUcwqXv/Bn9K2q0TGKC0lFhOTwk12v0KM0GyU5WLNelXjnUcUQpuII7YoePbZaxxen7JermmbhiAlBMFQUNeOGEOWtbd4HwjOJRsHiakTOTiaJhJCRTgH17pUPBChLDwaUtGjbSLGwGSSuqyrSZLub1uHRdk7nGCsp6mbRFSKQtM4rIH5bEa9bmjWDbYSSluSNHsCRlNbs8aU9Nksw5+UeQIguExe6aa8+2JCnnBO3c/pSWxEEKP9Nog6mJcPFEXBfD7FmoIQHYREhNGdXLObzBaCz/uISgip+zp2VhADxaKu+DHsLVbNik2ZZNN1AA+JSx3hqi9A9D5fmgg7T6spZKLLdts5hhgSoroL1R2PZMLWoCAwVGgaWsQRFdcGnAvUa5OJWgVkRSRBIAgimiwcZhOqSUkMHojEkMZuURTYQjBF6nQuVFFHLmIlq8YYlLZpcW0aM2LBSaAsTW/PYQvDdDbFFgVGhKZt8a3Dtw6GlnUfQojZHRPDgPHJju2nkdB2+9XHWPHjjTGfGDFixIj3x5OEzt1XnhYPdAovdybf44/9P8MWlpv7E1ofeXzucG5DMY18qvoFvrD877Jnpv2koeTYzQCeyPHsh8w1cmN/jzu3a1ZnG5wuiVc8tpzwqWevMZ+9xMnZCa+8+gabukXbltX6lHJS4JoNzjuKwiJiECmYTqaUFtS0eN9SWoM2G5qmxjmXlZEM1WTKtevP4ALsHRzg2w1iDMdH53jfpLKINSCR6LVXlOlUaZyL4MA5j8aAoHgH2iimMMznE8qqwKvPNs5grAUM0ceUmygUNtltdaqj6TpJvx8A75QY3YCAEvA5XlUFWyQykbUGiIhJyq7GCLP5BN9G6jrFiklRx6KSGhc0RoLP+7aSFXIUk8knGnNjgTGZtK+9ElDWWkU1E9F69dMcE+fYvw+iRZPFWM41hiQiaxKxyhiDxJBtqk1PSOq2IZ2Ek0pPZEoNFt0I2+YSHS6O5ovE5k4Z6Km8I9ld58+KkZ+IGT7QBPaP2vr26CX/oprIgCHnIil/SYpgMtifsYIpbKKPaZ5N37LIEplOJDVAdLmiKhLJdoOZLJZJZkE1WxhKr8RbVCViDEkFLNlVa0x55qikNGLEiBEjRox4P3z78t/hD2/+J+/7/nPrX+PfvPsfM42HT31fifzg8D+nsYuf1iGOGDHiI4IPTFISawhRsV07vEmd5Smxyst0y5K6pEU7G4ddO7iLSd6wk35U8xjxfuh96ccxMmLEiA8JthOp6UfX5flEqX1gKzV4cTuZ3c3/DjY3nO4M/aStcFZ7Xnn7ATFEfumFK/g2cvRowdt3vs2771hefO6zXL10lT938zIV27lVk49QMVy5UvEbX7rGM5cn/P7vTfnqt89YnJ/zdnWHX/6VX2Y2Kbn3+AFf/Yd/wNn5gqkV6vqUg6sFU205OVlQllMOLu1za++Q/emL3LjyLE17j7PFbZb1OUUUjh8fc3J8RuM87WLFfO8Gv/Ir/xq/9IVf5Y+//jWOz+9RNyesTpbU9RGGSAhKxOPVJ4UhjfgQMEbw65bNyhCDpE5ok54LrQdjSiZViYue45M1be3YbGrEgoihbZrUoxsVxGcbtIBIwIeQiSkV1sygSH+3m4B3ikgqctTrBmuBQpjulVnVRfE+4Jaw2TiqiXD52iGujvh2Qb2JxBAQEcqyRDXQ1jXBO1Q9xBJMKl5AwBaKEYNGQykVtqiIIdK6BmuKVB4SQIWoIfUex2wPELK1Qi4oqEI0UBlLURicC7kzeEt2qSYlUSPNZpVIUYUFL0SNhEyKkqzSVNoK30ZCbJNdmU8qm5LjvE6VKI23fAxdh3Hfkrx9nvcxXy6aDJlE0nc859cHH58nSgEDMtS2+ztN/KsMP5EDDUdJk/s7RCbt7vW2UJMUrEhkpqj4GDCSCkzGmtT1bgtiAGNSoQCS5RukzmSyZYNzDh8NBUJhU/dyUVh8iPigECLRe5zz6QqabfFJRDBiqaqCybQCI3jncetcsMu2Dwws/T6MyG4fdNwzkWwzIt0Y2X7/me7+Z3Rlnu334248OBJTRowYMWLERxW7OcVQNwZ2g6An2RgXyUrdtronZt9ECEDkvLrLq7P/mtvHr9OuPHp4A6mERdVw5/gO7mjBG9Nv84bc47+//7/gwEyeIAh703A6e5s9WzDf22dvOuGHrysPH7ecn7VcvQFnpxvu3LnPgwfvUdcbCpNUkkwZKGygicnStigts+mM+f41rl15nuBXnJ3dY12vklJk46g3DS6ERHI3JVeu3eD5F1/i6PExjx7fI7gNIXgUh7XgXSD4tLzGRMD33iNkQogIaLZG7vKwCElD09K6QFzXCELrkiINCN77pLyZ70PwPsWFVvAuZLUggzU2kctVkz13JuF0jQBR0n7FCoWxxJi60YPXTFwyVNMyK+EkdU3NsqXWpt0754iBvrOgj8Pz+EgkF8lKPikT9D6kbtJ+3Og2Ee2Os28K2Jm0vcAOSmt3lmSdYlPrQm6UgK285zB2I+c5ktVbY95nN4ZzJH9xnH8Q1nJHeh9+XLT7D7sfI554Kb+RPy1dYq5PW/rigWzPrzvs3qYNUpNFL7U0XGP7X2MSqS5G+rwLkqqR5HPqmylies+KoNny3dqkfhvzchqzXdxQwEA15QsieXxmRTJN47Sz6Ev7+/DmEiNGjBgxYsSInx+UyLt7X+X3nvk/8nD2yvsud3v+Jziz5t++/X9hEvefeH9tT3j98J/+NA91xIgRHxH8GHZvisRUrLHkHDYxkPrcs+976eRjyYla3kZXY5IPlGGOGLGLccSMGDHiQwdNAXqaUpXtpOjuPOSFYsJgojRPnG7fTjObUWJS1AG8CF6FiKcOwlt33+XO22/QLo4oqs/DBh7ce5d77x7x7uqYb5av8aVf+RIv/dX/NsakIwsiRBIZIKiyaCNaCM98fp9/o/pF1s0p3/jODzi4dIt5LPmD//JrfOuVr3J2/g5IZHK4z7VL+0z3W05OV8zmM6wE1G+Yz67wm7/9mzx/49O88fof8tr3H7JYW1aNY7lc07YOjDCpSvYPZzRxxZ0Hb3Dv7g84PblLVUUiDYeHU86PI6vlCucD1gqiHt84YhS8an8+RgqMZDWfmCbey6JCKTg+XiXLtTbgPYTNJnWOEhNhyQqlTVZo06pivU6kkBihbT1FaYkxpE5gBTERW1jKcpJl9aHxnqIUxEoqGqhSVhXTWcl8r8DHwNnZhrOTDd551ARmswmTClarlraJ/f2XqFijBLqiRJHsJgqTh44SPJRaoF6JCJEARjEY1CuE9G9LUEpVBgFEBR+UEHw/0R7zJDVBaFuPSMzy/vQT1LFTJOpIPgptm8gwIYRUKMlqTh2hKHZFEbNVguqKGkNVJWNMUnTKf/faP7kuYLTrJI59t3bah/Rz/FE6UtGFfurOnkAVFdtRpPoO8Y4IE7uJeJHeQox8vtIpQZHeiyjSFXRUoYBiWlKWBSaT+DV0dhwR7yO+7Trmc/Erd4mbCIU1GEsqPmlktWpS8SskspmISVYkuVjRFUmiRlrvaBYNiQZmU3HCCGIkFePeT23qQ4Ko6fraPGaGNSCVNF67YlL3FdkRLIcltREfX/wk4v0PWMccMWLEiA8P9Gl/PklTkh/xHHzynS3VKSI4cdydfJfv7P8jjpbHnJ8+pt443ikC+7N92lVDaCM4y+PFI06r/4Jnrl7hL/t/B4shRdPQmA3fvvRlHusj1ivPdFpweLPis3qT4FrWIXL1ymUWj5esTjeE1iF4xFoO9vdRGnysMSJYgegdbQOH12B+OKOpHXqutE0AFZrWJ/K3KIUxiBHOTx/zdvSsVws2mwWTqcXYQFEa2lrxTST4CJJsk4PLBCUinZhPpyqT3dYy2cNSliVRPaFJdnEaOqu4Jim+SrLuFTFoiAg5FuxmRKMS1O90iohJMWdR2D5udj70cWYikCTF0aJMVtIxKq71tK1P9sooRZnIT8EHgkvNBEhnPZeoaB1BRqQ73454IxjTNQZ0qkr0MfJQHWk7qHTnV+/DLo8nvx5CRKL0VmL0SlEDxdK8UsgXfPjehWi+vx/9IcjTx30+1e2x9MN+0JiwTcjZ6vtv/9aOBbRDjHra/i5ED10e/5R30+a2k+I9VVDzvHle2JYFRWHpP9m6vV8xJsu2PpfqzjXvMDVIGKy1yR1byapaea4+K2SJ6e5L1lXW3GDjfVKVldxWLGCz5ZvusiRHjBgxYsSIESNozYpvXf47/O4L/ztas/qRy6ooX7/6nyJY/kfv/S2sVv17a3vE333p3+OoeuOnfcgjRoz4COADk5Q0psKBaE46Qy66aErqOznhQS0FSIWFnB/t5JVDmtJTFSZGfOTw0yoqjOpaI0aM+DAjFdVzwT1PVEo/GZu+vyKK6Yrs3URrN4uqMpwrpTNSUFE2KJsITR05Xm547+E9XnvtdZrFOW8en7NuGv7iL32RmVFeeO457t1tODt6zO13H3C+adnbK1EiisUprFQ5aVveevsxJ6en/MIvfopnXp7y1/+t3wBTML11HfamfP4XP0/wJ3zruw9pZIGdR+YHFat6ATFiYosC65Xj5OQxb73zKtbMOTo75faDI9pNi69bNo0nGqFK7CIWJw/4+h/9HtPpBOdX7B9W7B9U6TL4AHgKY3AxEDV1QEdNhJ2qgMm0JLiAqmCc0DQeEGxhuHzlAIzS1hG38oQYqYoCr455UeJjoJyVlJXFNR5XO1zrcC4QQ7IoEIHgXZK6N0pRwKQssIWhrEo0KM55vBOsVYL4ZLEF2CJFNps60jQtTeOxpqDxLcXUUk0KXONp1w4CiBQEtbgg2KiYUihtgargWgUfMdYgYpKFRJbztyJELz25bXeCPxUchnGVqqKhG4mpfTvmiXhRQ/AK4tM4zd3TMeZJdN0Sc1SVNrT0ZbOOILQd1Ol/kv5F4k482K2z/eD0m9o+53M3dl8ooTu3/ui3q+f95NXyxHtHmtp+9rr1JDNeunPRvqu6oxnuHmP3M8ZMlOoO1ghFWVBVVd/93cXIbZOsAWMgKVuRi0UmFRGMsWiM+CCUCKGzYYgQfUQDyZZDATFYU1BYAWJWBEi2c8ZkaxATsTYpYllj8UZSESsOr/qHC6k0NCg6dTUhyPKr20ET8/AaWkl35aWuoX/49TlGiyN+FMbxMWLEiI8EBja1XYjV0ya65sD38bZ6GlkCBIeyYMW3J7/Le/IKpw9OOD07JXqlsBMePjhj+uIca2E2s6wRjKvwrfBD9zU+O/1lbrWfZ1E8YlWc8Obsj3k3vMl62XD8+ITZ3pznn7vG1VszfoEXuP1wRTAF00v7PKc3ad86YV07Io42bPCuQcQnRSCyjXLrODk+Zj4/pdksWaw2rNYbSjF4H8EUGI05TnXUm5Zmc44xYIot6UjzMkoiJ8WYGjSURG4qrKEoC5IKUrLWjSRVUjGKsUmVRn0iJ0WSyo21iRyOCDFGTJGUg0JICk3JJivdG2Nz/hc7ZRrTK+WkDohMKoopR+xtfyXlFzFC3YS0fkxKmpAIU8ZIHysP413NJBdjDNYku+wYhwSgAREJUh4RU2T1Y0/F9jls3r5J0V1qcoh0DRMdEV3Yne9Naj4XxqsMjrMj82RruScSih+BrlFh8NfgoC9GAsMgUp7YR6cU+9QAos9Tdg55u253Uv31jduj6AhKxmLEEELnsZ2uW1JEStdxS/jKUbBJ9nDdthLhyOfPBT1BqbsEqprm8U2ymk7NNV0c3Y2ZrOTUk5lS/hI/xPnEiBEjRowYMeJnB0XZ2GP+3ov/a1659GWCcR9sRVG+ffn/wy+c/zV+8eyvc3/2HY4mb/BHN/5vvDv/6jhJM2LECODHsXvLHfAxbn2vh6oRQZOtBnRFhPQv9YRk9YYLr6W8TvvtjxgxYsSIER8l7E4Okydicy9k14Io0k8cd+skEtKg6EBnfxWI+SkZEBbO8/i05vHRkgf3z3nrrTfAer74pS+xOPM8OjrmwckJR6tH3Lt/hHeWT730a7SN4d3jhnI2waqyah1iDK+9d4dXXnuL+mzJ2eOGw8NrXDqYcenTB/wb//av89p7NY8XgUVcs/ELAh7vHCfHC86P72NN4MrlCdWeYbMJrM8bjh6ecP/OHQ7nN3jv3dsszle4ekNlZ+wdXKNoa3y9QEyDNQHXrNmslogVTo/XnJ9CUVlmVUX0kRA8IkLwQow2UayMsHcwT8WHqNRrR/SpuAABay3L1TkYRdQTNBJF2dvfw3qYlCX1ukFDoN60uNbTrAOuTROwaUI7Uk0y8UQduRE6qeoAzjsEQ4wCBJyDZlNTWOHg0gxj4GyxSCpQpkC0JARH1ICqwRbCweEBJirnZy1eFSlAbCK5GVOiGvHOJ5KbSTFWDD5ZQIRI9IEYFR9jisUGLcK9rcCQtCQXxqbITuzVEYtCSEUZJBNcdECAipmMlCfJOwKSiKTCkNnaksVuWbaT3E+L754kOGViXz/Tn8sUYnLBafvJGWxk+/npJtHzNuXCcjuMqKdhsK1+4j9fx77AlElRxgplVeFaj/MtHdEwhmyhkEmGMXb3glT0KtP9SqpHBtcGmpjUrWIQCKAxFw5QYvSEqEwmZV9EMkYwFIhRrIGyNFSTIpHr8nF2liAfWmy5Yf34lae8/rS7Ncwvui/bHQU7YEwnRowYMWLERxODB5jqTiwzCPdS2DF87Qm+UkdokJ7Ye1Le5mvzL/O4vcdy3XJ6VFO3gZvP3mBvb59HD0/Z1AHfLDk9OcM55dnnXsQ1ytK1/OHVv8/h3iGP1w+RCpYnC+7cv0/bbBAtsMWU1kMoYH5txqXWcX62JHrPwwd3aX2TlInalvO2Bo3M5xXTaZHUPl0gek84X7A4P6bZrNgsN8nyVoT9g0s0dUPbbjDiECN4n+yUVQ1tHWg2LSJCNSkgZpusLtZUUtNGVIoixdsxRJwLiSie5D+TBW30NG3oye8KSGGJGpO9VoxJVbQNOebqlEgB7bRBLdbmeDKTkVLeFzMRJPZKmUnJNBFTiqrAWptITzk/EQw+BKL61KxQGKazCbEoWMea1sWk1CTpPERtr6opXX6QSU2xI+qHTjV1d4xpbhYYElxgmE9oz7IZkvqlf41sm6w9+Xxr57y7zR2SuuS55B1LtKdEgoOmhqcv0ZGydmP/LjfZEqUGn6B+0YuKSF0usrPLpxTTnkZ+6uJZ3fl791RSPhBjtojO+crFfo7UYLENmLtmjC4v0W78dqz+fv3hLEMadwhIns/vSP5iEvGpLFNpIObxHaN+qJseRowYMWLEiBE/GyjKO3t/xH/24r/Pw+n3f2xikbNr/r8v/S85dP97zqs7ONmkN8a5uxEjRmR8YJJSyF31tvNVj2A637ecyIZtFWxnXbnwLzVK6/hdNGLEiBEjPtIYcie6qdBEtjA77xm2yzxRRVfNk8iRrVFAmqQsjOHq4ZzCFsQ44fuv3qFROFvClevX2b96jePjO9x7+yHLNfxrf+Uv8alPvcjXvvZ9vvn9V7l7dhmzEV5/5z7P37zB1/70q9y9/TpqHM88/zkeHN3j/GuPmZQTzh8f88q33uHw8Dq3332D00d3OLw0o3n8mPp8jQ+OqjDsTSt8aFmuI95DXS95/QffY3F2zPr4nHrRogEObh1yde+A9955A4rAbFYSYkjqSk4ptMA5hwaopoIvakLjKArBloZ644ltQBC8iyzOl4iAbyPNxmNMmrSdTCbs7c1xvklWA8k4jQicny8J3mPFIFkyv3EtoY1oMHlyFsTGPNmbLMvKsiCGiHe5cBA9trCpqOEjRhQrkUlV0tQt62XLZFYSY7JW8N7j1g0utNhKuXT1gEuX95iWFURo2iMkKNhkwxA0osGi0VCWBWVBUiIS8C6RsXwIELLsf4xJXaYjAuXB1Vk9DEk1qtpbq3Wkm368asR7zevKliQz7LSG3W3m/XYdt8Ykwh2DAsCQKPVBP0kdUS+pjGUbNlPkbuvcGd9/krbdw9sPVnrViGTSvPSKULt7uQjZ+RnjlgbTnftwn4LQ1o6ovu/uVu28jxOJKV33jqSVbEH6qmKE2Aa8xv440+UziFHQNOaNhWpi2TuY0DZtIk+pIYSQO/1hOq0AwTmH9wHvA4ljZn+Ma/+zRdR0F0VIVhSS77xsi1U9YawjmOUqTWesuctZ60qwI0aMGDFixEcY7/MoGz4XBeltay8SOp5GsFBRjsvbfOPw77KSU+aTinJW0Tjl5L0V790+ZjJdcvPmNdxmycnDE+o28NJnPsO165e4f+8Rj+7f5dHpPS7vXebo0RmzvX2a1ZKjxw9o/ZLJfIZXx9n5Q1DBiuH08QmTck7tGtp6w2w+RZdrvIuE4BCEzarFe09UQwhJWahZrrn93lsUWIKLgMWjzMuCsFwQQtuTvqNGfAiYjkiRL5RrA4JijKbYvfX4EPrrkmKqFK8Hr0ifpCUSeoyht9jqYmUXhvFzijp8SMuJGjoieVHZzDWRXi3I2JQXiJhk/Qu5GUD73EMKA6q0bUQ12UlL3oZ6D0RsKZRVyXRWpf0VBeWkIBqHGLsTu2tWzimKNPsaM2kpxu15qKZArDuOIX3naXH8Tjx84f1ESOoIWlsFpV2C0tPzgu4aDBXE+tW6bW5P7Mn1n77VPnzcXeVi08L2WJ/YloCRbeNCivd396LDtXY2LU9ZfvsJ1bzTzvauO+GOXNhdDmNMaljJ+ZnkXCI1hWgmgXVfBzmnyFZxKabeqoBNJmXap0ljLMSclGSLQxRCDBdywDG+HjFixIgRIz7JiHje2fuX/L8/9T/nrLr9r7wdZ1cc2dd/gkc2YsSIjxM+MEkpxmRVo11SZCHE1EUPKTnq8nvVrlMolVpDfi8OskQz6FwZu55HjBgxYsRHEjvtpulHFCEIOAXnPdOioJTBM5ItYTdNO0tW7DFUJj0dV0F5vGx44959pBAODy5xcHXCtetXeO2HZ3z1D75PsJ4//2uf4dFrr/LgziM+8xd+DQ6m/NHXvs43/+TrnJ095PDWFV6+9QXefPMh8kuW5f0Vx++e4uyCR/fu8b2v/xGVKRAzQaIw1SnBFKzac65d3sPV58TNhnZdg1G8Nxw/OkcsuDjFSIFvlfOjJVYWzGWPSWHQYsPx0UOOHt9jcXxENRHWapjNqjThHME7jyERnl3boLHAGpjPKlyIbDYRNGDEEiM0a0dRWLwLiAi2tKgLKFDXG1QiIUZKUxCcJ4aYOpyj0mrAGMG5Fp8LClYUsYGbt64ym03YNI7TsyUxKtNJhXcNhRU0BynB+RTrGKEoKsREBI8zhuAMrURMIQgGDUpRGKpLc2xh2T+cEaLn+LQhBGVyUDE1lhAkFWiiErwSojKbVRgb0LCd2e4mp60xvbJPZx8Wgt9OYA9IShdVjPpuaCOD1xNjpOv2FrUgcccKbejVqygxT5pL7pgOYUv92RKcdGef6aOyq64kkgpt2lXbcjGhsMmKYFhI6dbvSVDdJL5su5y77ZZlSWmLRBRzPisTdccv2/0NixQ70j1PFkCG5xF8JJpEjOkm8juLPRGlKAqKsqKtHT53kKsq3mVCmJLGiCSFMGNNIiB1KlA5sC5Ky3w+ZT6fUJWW6KGuHTGCWHLndcT7VFAQYygKi8ZA0A+vktKAjvZkv/uQk8RTbol0ZhkXiJ9P+X3EiBEjRoz4yGEQgnSiKAGovacUobIWC3RqrTpYJgJOHUs5oiwsTfmYe+WrvO6/w/17j1jVa6aTCZPJFGMsB/M9qqLkweMT1osV81JZrzYU+1PO63Me/uARJ0dH+KZFJaA3ldCAM575ZI/HXsAZVqfnnD06xuQYxpiKyk6oTc3G15SF4s89vt0QnCOqYi2gmhRUVQm5ccBgKc0ee9N92rYmasNqec7jh/cJzmGIeDVMZhWltajXTNjYxoIxpPjKWpvVMbUnRndknGSLFfJ7JsUlCnVdp/lNSfF8VE1WvBr7WDspBm2tsIwkdcv5XsVsNsH5wHrT4l2gLCxGOstfkyzYchxrBrZdMW6PJcaOrJ8JUcZQ2AIxKfeJGlOM6QPGGKpJCSS73xBDVteJ2J64pD1pqs8P6JRKdRDTa7/vnSH5Pk0HYqSPpjuikZGOXKUpZotbNaqeCCTbeG+7j7yfi8SnC5+JJ46h/5k/D7mZAkn5GpDVRTWrEemFNfPvXezZH1y6LqlJKG7JRMNjlp0tDDYl/Tk9Hfnk8+l25Lkd0le+lrYwyT66V92iv5/b/WZVJGGg3KRbklUmym3zP8H7gEg6R0Vzk08+MiN53j88tbVjxIgRI0aMGPHxQ/fM91JzPHkLRXk0/T7fP/yHfP/SP6Auzn7ORzhixIiPMz643Rvkrg36Ys7W/UP7BKnvZs6Fpy6tCWzrXBf7u4epz1hgGDFixIgRHxkMpOHJBF0HrEPk3ukpZ2dnvHzzBjf393dISi1KrcrKBxqvnJ4vEWO4dfWAuRhee+8x33v1Lm+9eZvVZok1yvUbz3Pz1gv8j/+Hv40Jwpd/9w/5k9//Cnt7wmm74Dvf+CNe+fafUJ96rE6xbo/zuxtmn77CftlweHiDZ5/7NEePHtOGkuNH91kuTyjKgCkmPPvSF7hycI07D9+jaU547733MBIJbU3USFkI8wkcHlaowMOjJZ6C6zduUJQ3+PXf/GvMLbzxzte5e+dNzh+e4LxDXY02HnN5hpWSvcmUZVvT1C22MJRVgcZIXddYDN4bmrZFxGKsQhSqsqKuGzRGRGImSBuiQtO0tG3Ik/QWp2myNXiXyVABnyfrY4hZGTJQTAw3b17m2vV9VqsldV3TNC2CJRSecmI42C9RFeo60DqDkaSmJGJoGkcMqQs1xJZQC0qkKC2oYo2lKCyTeUVE2aw2rFY1MSqz6ZT5fE69adisHJg0gawacb5FXcDkSf62DQQfcmEjAhFrO8JOLpLEC6QgBTHsFECGVg0hBIxNk99pGdtPUEe5sG3t1u2KB7IlD/VcJn0ygNMBgU8GJKlMYEfBdIT2XEyw1vZd66JbEhB9GW476S7W9ufUEeZjDD1RZ0hw0rze8MP6Z6nvdCQsGJC9dHsNtkGw9Ocnkjry0yXMXc4ae5uPVBQSDDa9ly9RiFnJy0Bpy1QoUqVxLbJJthztxuO8xxihNCXOp4KWsWnshBBANCmMfXiFlBAdEpS6F9l5rb8zOiy4pDyiU0lDxnxixIgRI0Z8PJDCjS3pKL2mLFnzTvghi9MNLxe/yM1Ll7MKY5p/c+J5WL3DMQ+5V/2QjV9wFG4zmU04mFiaxnG0WLE+r6k3jrN6QQSu33qWT336Fpf3S67en/ODH7zOyWpDiC3u8Tmnxw8xFOxPL2H2DthsNqiWHBzs0brAdH7AdLpHVRUsF2e0zuPVY60w29/n5jPPszg5Yt06Nut1Ot5M/rBWmE4tk9JiC8vZ2ZoY4eDwEmW1x8Hhs1y7co2Tk3ucnj5IpHPvEY0E9agKtpCsnAneh6wGY8BADIHowSHE6FM8lttDjBiC90AXJ6dYTWNW0pRONTQRlIQUWyZiU0eI2saEqhAlMptPmM0rQvDUdY3PikjeRWwhTGcFZWEIAdrWJ/XSfKdTrJ1izkQ0T78nshQ5vwyJqCTJxg7RbB9MUn+N0DaeENL+jIGogT78jSk3SoSX1EYqmeyvaFLkyTHuVv0oHddWPdVk4k8KXqMmsrzkeyqyjY07q+YnbaYTurnlPj/YeftizC5ceOEp8Z72RKPOWhkkX6unEYa2jClrEoFHO7JbbggRIETfW57t7H1wiE+kP0/8taVSPQF9Gg2o21/XlLHNf9Ib25n3LsfrSot94wS5oSTnc96HfCSJxKfZltBma0Bla0ndWQJ2JK8RI0aMGDFixEcTkcDGnvDW/h8wDZf4zPKvYi7MojnZ8Nb+v+Dx5Id87/Lfp7EL7k+/AyhRIirh6RsfMWLEiJ8gPjBJiShkV4aU9EWIHqSgz9AkbhMjYyUVZHPRNqI4BZX0upCKC6OK0ogRI0aM+CgjorRBOPeRgzI9B++dr/jT77xFs1myf3iJS/PYTyQ6hePG8WB5ymkdcdEgbcvde0fcevYSX3rpOabllF/7pZf53DPXeHyy4e69x6xbuPXcDT772T2iV770m5/j3pdf5d79Y5bLEyYLRQvL5z7zy/zrf/GvsFnDK6+/xcGVK9y87mhaz7Ubt3ju+U+xXBxRnyxYyxqNhkk15zOf+0VeuHKDR4/ucrxeE/wKg2KJTCrDzVuHHBxWFIVw9/YJhVFmexNuPXcdzyU2/py6bVk25zw+PqatG4gBBJqg+LMa75WysPgQkiISBq2yRVrT0nhPjA0hBKqqIEaPMYa2qWk2LWKE6Z6lKAWJEbxDjMEWuQM7y9eLBlBPVCEETd3UhU0kpxgJGnAqlLMS5x1N42nqFoIQMylpbg3F1DKfTjHnNeGsJoaADxHFI2KzxVYiQKFKURaIpoKJSuoUD6FlMp1QHc4RU6AhsjefYEVYh4B6RaxNU8pGQCLWJAuKtvW41qVlADSAmERW0piKCrnVXonb7l+xFKXh4PKEvb09DEJwSl076rqhcQ2SyS3ZVCDZkhnNxKu03Y6ELhfmyLvu/l1WyfaPnrIuQuzKMCr9hHtH4lEREKUsDNZaVIW2dYSgfeFESYpLgsl2X2ALYTIpExktW3iYXOhom3ZQUFDUaF+gkQGpPnXJd93OT+sUltxQnc44xavZ9oGYqTImF7MiWDA2E9UKaE3MlRKbSWSpPGBMKqz13e1dkUYUm1XDQIkh0KzB1REl5HMSnFfatk1EuKIgqoB40EhZFOnz5T7cEwlKuiT59tM7+cm2oaEnwHXd7WxLPV0+ol3xa7DMiBEjRowY8VFFVDhtHXf2/pQ4f8S96g3ePb7LiVniy3+Xg/iXElkFOKre5buT3+Ot5hXOmiW+Tsqt62WDonzupVsU1nLr5iWev3FI6yLr2nO+qimmM+bzKsVipTCdV2yOz6ibOimNFoZyPufzv/wLHO7vcXa64XS1Yj6Z8eD+MdV8ws2bt1hv1oS2JfgG58Eay97eIdev32CzOMNoxMeIasBmtZ39/RmzeUkIns2moSgts7LM9mzKenNCiCvWqzOWy/NEKgohx0oGH5S4dlSTghC1tzIzNsVRIUa884kE3ykS5Tg1ek/ICpS2NNjS5DgkEXo6srzN8V8kYHMYpzEpmhormbCUYr6oqTPAB8W1PqveyIB4lAlOuYGgi/9ip34KiUAUY1a+EazJBPhMuLeFBZISUlWViBjQRMxPMW5ANWLF7sTmhkQ62RKUYnqNC3ZtOxZf/atpG8Yw2yuZzSdJDcpHXBNwLiA+JDIUyS5bclAmkhovhhyb4WYv7qY73oucHtlG7ah2xK7MOupiv9zwkJSBtiqrIcTdc8zrbulOiaBm7LaJI0btc5548YIMg9Gdl/J/ezLU09YbNnt0zR/d+WjX3ZCtHBWTm0isEYJq19WBqOa4WPox3e+taxgZNE90VCeiEH3sX4M0Nl1WiEqKrvmcVXvi1rBRYMSIESNGjBjx0YCXlq9e/39wd/ZNXj/4pyzK+5Rxxl+//X/mN47/Z2keHuWdva/wT579P/D23h8STPPzPuwRI0Z8gvHBSUq5oz8SMSq5GCRYn6xatlC6pouApkIM9J3zSQOArrSDXEziRvxUoDsJ8YgRI0aM+ElBgFUd+NPXH/H8M5e4dXWCSMkkTDlrDHdPHS9flaTqI4G3j894+8493nzjDR4sPDEKk0I4Pd0wC19k+nLBzZsFZSmY5y+x8cpx/TInJxvqxnNyuuLuowXv3HvM9ZuXWb17QmUOmRJYrDfMbzzHjS8+x9zCs194gboN7MXAD+8e8zu/8yX29uZ855t/SHzpGWanFUePjzi4coNf/uVf4+TebWLcUMZACIFyz1LZElSYzmc0zvPo8ZqA8OnP3WBx3vLo4R32Djzf+eY/wZjIanGMiSsqE4gKAUEp0GhoaoglqFrAEzUSo0dI5Iy2dUiiMOPamKwNrCGqR0lEL81EpOgCIXhKU2GwhNZTlmAKOLxxmbbesDxv8KVBjAIRZyxNDImYNZnjnGGzWdPUDTEmaf0QlRigrgNHjzYsKodrHTFAWU3AO7xT1us1zkUKW+bu4UgMgRADSmS6P2U6q4ja4p1D1dDWDg0G8Q7Y4NqWoiwx1uA1IKqYTHiKIaJBkZjjKNVk9WUge+pmtSDJnBtBJaIxoiLMDyc88+IBB4dzNhvP4rymiQHjBRsTwSr4VPRJpJktYecJy7anxBDSMUryS71SU1YaMtbkYwx5+0DslIa6lbqJccGHiHdb+4ztMXQd1B0XKhVZvGsTGSyCzyZgMtAre6K4MIg3d0OhYfVESGwZRSXuLiOQRrMBMShbkpeqoawMs71JKkCFSFEYYshFnNypnWz1ug7m7Xl2xQpQQvB5vNLbMHRd9pDIViEXmYzE3m7PAFImlS3zIVZSAvqiXFdkEVKjQ9+gn5d7Sj2of727awN+0846I346uHhvRowYMWLETwLp2zVK4Lvmn/CtzT/j+v6U0EZKSU+5r5l/yDOzS+y3X+K0vMs/n/xtbi/eo16sODlfE7FIVkiZlFMKCiaVwQs5Nk2oxOBdw+mZI4bA+TJQVRX7+/uEYCkE6s0Zpgic1iu8NJTzOYflZaal8OBBxMXA4bVD1nfOmO6VTGZXOT87xwXP8y++iKqy2izR4CFEqpllNivZrFp8CKzXgRjBOeXw0oQQlKauEbHU9YJzQibtRKpSiKbAh5DVeUxqbnBKIoubPmYMmWwEnTKOQEykeGtTTIXp4o+stNOTmRKxKMaIqKcoLPsHc1ClXjeEoiOupGDciYI3Od411JtkwdaHjCTij/eRuI60NhGJQCiLElukeKipW6KPW9u5GPEdaUiUokzEKARiUDbeJevh5IpNm/MOI8kaLmbLX0mXB4IOQt1OJbQj/jCIuwaxvnTWYmALw2RaUk2TTZgn/Qt5rKVLnve5ZQD1zQxbssyWiN6LUbEl93S9AJIt22Je10gX5XWtCtvjFxnmFNvcKKkBvX+k0r8TIXjf9XgAydZ6S4/qU6B+pSGPqnvlaVOsQ0XWfk3Zjo1uLyrS2+Sl8a0Uhc1Wb+m6GgPBD+z5jAw3OaAqba9F1zwMu6pIT02PVPvrDYkcZ6z0SrUjRowYMWLEiI8GvLT802f+I/7g1t8kiu9fb+2SL7/wHwDw68f/U+7Mv8bf/tT/hEV5b5zcGTFixM8dH5ikpNp1v0vfAd3JxBYYbAEhdyrl+hJRlSJ3esRMWIJk/Za3imVr1zB+J/7s8bTCz4gRI0b8uPhkEyEj+xVUreOPv/Ya+9eF/WqPl5+7xdn371M2FQXgjefx0vO9Nx/h24bVok42ClJRMsXOz9i7vIcxYGLk3ZNjXnv3Pe6++5CjswXzYsJkdolvOs/Na5/i+Wee56Xre+zPbvL40YZH975PWD/mB9/8CovlXaIP3Hz2szz74svs7xecH9/nm9+Gt77/DR7de51JYSgrgbDm2s2r3Lx+wJ985XucLY4ITY2xkRc/9Qy+3nDyeMnJ8RlioGmU+X5F3dYsFjXWTMA/Znm+xEdPVVkuX56he3ssl47FYk2MHmsLgvNEn+yrVBMxxjWOEGoEQ1mUBB9yASKNpRjSZKktwFqTbMmiQMwEphjxPk3oHl7d4/K1PcpJxaMHkcKU+Jgs1KbTGVGVxematomYwrA4XxJjIHilLEu0cCiR4JWmTsUTaxxoZDKbAsJsb8b6fE30EYPFu2SbgARiAIPBTi0YS+siGgybZUPrAtYYCgPrladtWiiESVkRVYk+ZmuJmOzKvKK+k+XXvoCiuaCCkdxpmwo0IYREJhfBGstsvkcIlqPjBau1xzWRxiVSS/AQXEyFDNn9/ObG3C1kSxDaTqB3lm1pwbK0lJUlhqT+pLnqEDV1hefSW2+FVpYWY5J1XoxJVSt1lF+c0JcLx5W35AOND32BRfvJ920BIxUnLhCQkl9Y31nPoJNcpFNOMrnYslV9EpWelJXiYYO1BdNpJtQ5j5hEEFJVmsbjfdclvz2fvoiTO6I71SrpOu5jLihoxJjttYj58yIiWTlLtoyeoJmoBTH6RG78kJOUhiQ1uFgkY9tUzvYODlxP+lV3y1UdvWyMZX8eGPOJESNG/CTwSSdCnk3e4vTSn+Du1Lzx9hFihZeffZbr1w/ZNMprB/+Y/bXlverbPDh/DHFK0y6pqorp/j6FmYITTBWQQqhbz8lqwd3HDzg7Oade1xS24NLly9StZzbZ49LhdW58+kV8fYuHD1YsFqe0zYJmdcQb39+gUTBFxaWr1znY3yfGlvvvvstmc8pqeYRBCT7i6wYpSqwRTo7vU7dLQnCoBoqixBihKAGNibgTU1zvfaBpEum8qddoSDa4CBSVZTqpiF5Yr2ta55IKUQh9HNrFcTEo0TmgsyVLMZ8YkwlMEQ3JnkyM9KT4juiimuyQbWGZzEv2MvF8vWow1mCLFNdaU2BLS9s4mtolRRrfIpDVWw1iwIomIrlC8GTCiWILIcSkmhpDJPoUucQIqqET1Um5kEnNCyEmm7YYFO9db78WsjItIhSFzdvRRLQSMDGRrpIA66D5QLZkFSHZxokxGDF5/e2MrVhDCMJ6ldRkY1BiSKT+ruFU42Cbuo3EttMCuTl1h+gzUDWSjkzTEfqBEOndpTO5S/LxZx5Rb0GnuSkidvZp79un0B3bdoEYdCfm3KURDbcxfPepbw3OWYZ/DK5Bfk+0X08QitKmHNcnS0PQ3qKvIyd1u4iqSCbg9ced1VYlX/vufnSH0B1fanq4eP9zXJ7zI81KTJFEnBsxYsSIESNGfHTw5v7v889v/p92CEodnF3zD174Dyl0wjeu/G0W1b2fwxGOGDFixJP4wCQl0S6R3BaKRASxyQauc6wopFNZgi7D7lNBTcWzfps5Wc1qxmNh4ecCvfCXjPdgxIgR/8r4JBYXRC22CLz44nVee/c9vvHV1/jcF36Fl//Cc/xS9RKruuU0RC6Jwa8cV6pL3D2Hs0WJaU648vwzPHPrs1AHbjx3wOv3TvnqH3+DH97+Ibffe4PNyRlGCq7euMLNF2+xOHecnS/5y7/zO3z6mRf49T//RV79/l3+6T95SK23OXv0FmeP79OsW2z1J+xfv8kLL32OiZ/zyle+wju3X6HdnLJZrwguUITI2eNTfvDtr3Hn9qu0fkk0jhAj775+j/nMcHg4pXWO4POEvxacnGzwqpRFYL06YlJOwQtFaSimFYc3rjM5a2jDffzijLZpMdbgnMtsZkPbpOKFmK0dnrV5Qj2TOJqQtJiqSYl3AdcEjLEURaIttM4zq6bYaUkoBKctJ/fPWZ43VFPL1Wv7NG1FWVVpgt9Hom4I0dE6EkEmgE28IkxUvEY0Suo8NzEVUVwkhJqmgfV5Q2jTcfoQkQKKUpiUlq6jNoZA9EL0Sr32iFVsZVitVoQ6EV1KM0FMQWhbmtonO7nCIJosI1Lhops0zpL9ksIray1FZSgnJULBZlkn9Sk8tlDqusacJYJQ0yhEQ4GhnAjRb3C50LMdx+SJ6xS77U6yb4saHekoaqLclIVlMqkQSQpHiTiWChw9oSnGnhiUSFWpmBCCz/c6FTsSOkqK5vXjoOAgO4WAbc1BEDN8b1BIGJyXDgoD3XeU5O7loRJUaqbPFoIiJPWk7T1IXc7K/sEEVWWziQQiIXqCh7YF72IeC+m4QoiEqJRFgbGSbShS0aUb751akjHpWF2bJhZS4SpfQ5KNhljJp5ZISpoVABShLMsf4xvsZ4wBAWkY+PdNDjkn6P9dSA6Gq2432fWKbwten6Rn0IcRn8RYYMSIET85fPK+Q9LTS2KJKQqshfpkScDweL7g2tVDztZn3F2eIIf/CKXm0qRi4+EkTqhXZ6zrBxxcvUVl58ymUx4cnXPv7gNOTo9o3Zp2vUJVKYoCIzViC87rmvnejGAsh9f2mMwmvPnGCeWsRF1Lu1oTciyyPj1iceUqVy7dYorhdLWkrRt82+C9xyKUAidHjzg7fkDwbSJnW8NysabdWPYPJlkFdEs8aZuIDyHF9ep7YrqxJlnhVhVFVeCC4oPHe59tvRJpvSNl+GyzJpJjqnxNQ7e/THgpbIGiyUaOFP8ZkwgcRWkxZUHtHNIk66+m9mCEg4MpqBKyLW+KEcHHrWWbKoiBIjdV9LFsDn5STKy44HFtIrMnG7asACqJMGTyeUDKJ0QNqBB8suKyhcV7j28DotumBR9CJhGl2NlIR1LaRk1Dq+Eu1LeZJGOMxTU+kZCU3CACzjmMNUmBVXNDRmGSkmlXAxvGdD0NiRR/PyHf0w37NHHcEWWMSXlUItNkalNP0Om2sUsl6m3zVNGnfWM8yTZ6cpFhbLrDoB+sM/zzwm52qEh9PjF4t4ttu/e690UxFoqiI9YJxK31WgyDBoYuMtb0t7Al4DG4QpLH3PB+dESsLp/SOBgDA8Jef6xistLpJ+cbeMSIESNGjPg4oIxTkjuBe+r7rV3y91/431Db05/pcY0YMWLEj8IHJikZ3XZY5NyolwAOObE0NqkJR022E9ZK8l7vk/KU/HSdz6FL7hUMXQfLmAj9NPC+6iaa7se2bndhSlAGC263Nt6lESNG7GLQPdkp7n1SviciysoLD47OOTtZILXwg299j6OTRzx37Rm+9u1XONn8Bp++cZnPX7/Cr39hxqXLFUX8ZV595Zv88Fuv8PbBIw5nh7zySsN6veTxgztEU6PrlughmpZ6ecTJ/TWbuoS64B//7gmXb9zgxWee5d7bb/H45F1MOeVgf4JfNai2mNjiT98jXL/Mn/v1/w5vvLrk7t2YFA2dxztHWcHhwYa33vgGm/MjJAQwJlkKLBe8+MJLhNhiQ0lVpUKCc462MXitQQMaIk3rsUVJ8MpiFYks2Gw8tjBJMUcD80kJE6FtXVLzCWDEgpImvqP2XZtpct8kMo41lKXF+9h32IboEU1kndl8yqpZ0T5es9mUiIOYLeqmsxKVZEvQNi4VUozBh0jb+jQJboVqUgER1OFchAi2SISPGJTl+TpZTxghOk1KRygqIFEIXkAiZWGwYjCZiOVcoCgLqokgYnHqsVWyTyimBW1b0zqPQVJneaqypPO/UFSIRGwuYNhK2L80pSgMzcqj0aMxdXBfvXFAUdpErImBSRUxYgltJAbDNhIzeWY+7ae3G8j720FvHRB7naGu+7xtXbJXiFt7iK7Tedd2ret2HlrKmZ7YpF0FKS+7Le7ka9DFIk+JaTQXjbrJ+t5yYqe9Of+n34zsqlR13cUyIC+ZSGHT9nwAglBNTCIoobStwxSCUGBMgcsFonSuW8KXCNk6wfTXyBibCUlsSWgDmk2MirU2F7UCZOs/RPEuIDZSmAIxibhkCwMaaZvhdfxwoSeOXSAq9WMmCmq65oa0SBae2lq7dfWjrhyTY1npCWiflKfPzx4/6so+rX73lFLgzhLjnRoxYsST2FqCflLISlmfkgP3AtPTl2g272K0xPuGd998h9OjS6yXNfcfCkdXjvn0sze4cnnGflQmk2e4f6/kwaN7HN17hGBRH4gENLSYQgkuENUQgcJAvVzhVbA28s5rb/KGRKbTOZPCcHb0iBAi0+kl8IGGBlMYmnZNqJf4+SUoLFEbppXFU1LHiBI5OCxw7SOcW1JKxJuOcBKZzCqK0rLZBIwRqsriPXif1Fvaxvdxr7EFMSSlVNdGogqErJYTY7JKTi5rxJgs1WTL1SBq3JLR88s9Ud4kmzdjk2prjDGRnHP+4do25S0+Yk1qq7SZFKVosl5T6bdnVHEu9Ao0RWEpixTfRfU9Bd/aFMy0rSeEgWJmp4pjhs/F9AkorcVaC5Ks1oxJapkxKoJlUqUYWgV88MQYsNYmpamYrMt6ks8gHu5JLlYwRigrS1UVeBdQTfZxiFBVRbauVqyxaJljLh+z5ZzPx7yrsDq0MR6SaIaSRemY4k6cELzfUpG6VfIcZbr+A2b7kHSTj8Ls5DADJpZuI+zu6m7fl8Frw+s0OLL34VhdxMVmif5aiGCMJrVkI8SYmhWstVSTAkFSTtrnHyaRkzT059ix/DtyknT3Vrc5y86BdCq0A7KRka0dYM/FiqBGsypV2q7JFoqd4uuIESNGjBgx4qOBl1Z/kc+f/zW+f/kfvO8ydXH6szugESNGjPgA+MAkpW6ySDspWFKxRTMhqSMwiUAy8lbE6KBbpOty3k0OI4msBILtazMDV+1PpHXQzxZDbtK2NPakVHKazBjIMg9xkdM0YsSITxyGk3vb75KMj/F3uRCxqlybTfjsc8/yaLLHvcf3uP/6Q1Z3PFNf8g/+X/+QL/7SZ/nsv/tvUhSWZ65f4uR0zTvvHXLVFVyaHrI83nD/6ITqoOTKwXUeHN1ncRqJFEznBb5ueO+1BzC7wo0v7HP7jXf5+lf/lOl0n6kJ1IsFN1/8PFevHnD/3Td4/jOf5vzslPduv8Gr3/o2Rw9POTt/wNQ2fOHPPcd7b7UcnxsuX55y5XLDpr3NSy+X1KcFdx5v0FawRUGrLa4N1HVgvi+ILWg3SVUpBliuPCKBalJgTaRebWjbwPHjBYWd0q7rROQoE5mibVqsNRRFQQh1HjgGUUmT4jlYKEyBjwGRrFLTOorCUM4mNHWTCAtaAsL56QkhelSF5rylnBqqUvCuZN1aJvMCI5bZpAD1rFeO+myd9yUk3lOyfGvb3KFtLEpSVGobR7txCIZogKgYa6gmBSqdSpDBWuVgb8bBwZyqqmiahvWkoW4dTZMszS5d3ufSpSlNW1M7JQRHVZmk3qQRySpCnaVa13GejlAxhbB/MAcD+4czqtJyf/k4KVIVSjmpUqxmDVVVURSJ8ORah/OeZtPiXJNiNpKcP3mC21rb210kVRt9ahymg6KCcy6/lu4jnWKSJtKISiasi/ST3yFoJpR0r6UjeYLAcCHgyLcLGE7Gx60KFLotaeqWaNURr3a2NSAnAVnNKAey+VirieHgcM7+foXzgeXC0TaBvb2SybTk5HiN8xFjkx1Hsi2p0WzV0JG4OjsKY9O1i1EgKzUlCzrN7xuM3ZqWJQWlLvZKak5GTO58hrIqKYpUwLImkfi8D3kMfUghuz+HJDQjwk6QOeBsdW8xeCttZntTI1sL6Tx8B/nET/AcRrw/dOfHroXKzsdbdwgIFzHerhEjPqEYfE/sPMO7Z8XH/MuhwPCr8bdZPvsOj1cnLDcbTk4XNOeevdk+Dx/dY3O+4IUbV2mjUjeB1XrNsl6zN7vE85cOsUY4PVkSTGoLXG9WnB2vQQsKC6H1tN7RBuXZF57BSsGjB/dwy5qNTc0G5eSAGzdvcH78gOn+FIPhwYMN1J402wABAABJREFU52cLNqu3wCpWAlevHuAag+IQO6GaGCIrLl0tEA9n52tWG6UsKhTB+ZAsvCRClGyNG7Pyj6BRKAqwJhGNggu0wSG2SGpJef0QlOB8iouMzWqMmcgyUOfs4zwFJRJjJMSAESjLIhOUEonDGIOGQNSQiTiKN0npZlaUtM5TTSxWkhW1sZLmQ0OAfivZMs4aQqcGlEnwMYJ259pZHJPiurK0kC2RVRNhpCyFyWSSFabAeU/bOloXiQplYdjfmxA1EIJifMSpZkWnLr7t6DtsyTuDJL2sCkRSjFqWBa51ef9grAUxOB+wxuYWhUSWiiFfyxB2twl9HC2Q7dqe8qSXbYyWfmqvzN9vYxAfSn91tecdwUVbs0w4ioN8QrezERdzih/vy2RnVmMnPk1/5vufiWw7pCIRbGGYTAvm8wrNpLa2CVkZV2ibpOqLSRu0pOadPgfMRCMxQ+LRhdPpiFiSGmFMr7KUc56omQOYrmSnloQk1bKiSGQ4a0y2mYuI+RDnEyNGjBgxYsSIJ2Ap+Z2H/yHv7P8R6+Lxz/twRowYMeID4YOTlGxODaVLnnMOlbuKuiQydbrElPpEiJY+Se06drT/ra9F9ujTvwt54IifEiSJAHYy1BfrQjH/g20HzvB+dT1S6Y0uMR5v3IgRnzhomg6OgEOxgzL5x/0bQUTYq+ALn7rEp5/7Iuvac+fhgu985z3u3Dnj5GxNfbxm4zwNcHpSc//+KffuPOSF55/hz/3ll3jh1iFN7Xj3wYp1MLT1mv/qv/wDmvOCg/2S09P7nK9bNhso4xJvAuV0wrXDQz713OepV0uWh/DpL/wKtA9ZXZ4x3RMe3j4lti2u2fD4wZsYHFeeu8KkcuwfWAITrl6/xGJxzvxgQrU34fCwYCMtIVQQDdZUaNlg2kBTR7zzuDaiMSnGSLRE0qQmEpnOK1yzwjcbgrjcBe3ABfymxdiILUDE5w7NZBMGJk3Yd+QSAcGkrlqNiI2YyiJiESNYCjRmgkqMEARUiALNpqUsJyDCYrlCzJRms+HseEm9aQlBsmKRZFIONI0jxJC7k5N1bUQIWTlKVQnqKU2BKQ3T6ZRqYpnNC2whhKhUleVwf44pDVVlmXihWArxJBICiBWmlwrsHpRFQRFLgvMsz9d5stqmZ29qrc4WX91IS8UXW1qqWSJT1Y2n3mxoakcxLZmXhrKaokEJrdL4hg2e1aLBtR5RIfhA0IAYm8hWKsQ8kR7p7CboSUQ7NmhGEAWTCytbi7KOpa7bCXQdBnKdWmZWcMrkp65rvbM702x3JnmbMogy+q7v7eXoPoHkOfceWzWl3qQ4b69bcBvJ9Ic/2Jq1lsm8ZLpXcvn6PlWV3ts7UNom0Gwc67Uj+rx9FYhCvaxxbRqviEFMmvQ32Qe5uwaGOOh6Tl39tjDMZql44V3E+4gSCDHF1F0RqSiLvjBWzSaUZUFhDNELjasTwerD/KU7OLaOeNQXz2A7lAbvq6ZLvC07XiAsSS64MKYPP0/I8JdhsfECcQkGBLLheBi8P97HESM+yRBEtacuG92SGj/u3wsG4aa+zG+Zf4tXnv8yPh5yvrjC46MVx4/PmJoJjfF4ks1YDJHKWl585joH+zP2pgWIUD93hfMmIhHu3HlIvY5cujxncXbKYnlOwGJ0zcnRI6Z7h0wmE27cfI6prVhtNswvXcVoy9KCLZTV2SmFVbwoMTqMUcqyQKPDSKAohGpSAobgIhSCGMNkPqGYJJsy7eYJRQk+4lWIIWQiBxDJxBcBCZRVIiYF7wmuJeUJioaIqx2g2CJvQztlzBzb06ljSiYEdWQNQBTNpHEQjNhMvu9aJzsWjCSVIysYUyQV2JCUg5qNI/jQ5y3dg08RYlCcywpDfSNnGrkhxp5og6R4syOoF4UwmZaEkMghiShkwApGNFnA+XStikKwJUQTUtzeEaBiIpdc/KTs5BM52OqUc0AIQVlvGtrGISaRpkwOJtWDw6MkYpj32+aJGJPiUhe3a77IKT3YsssvKlx2l6y39O2CcQaxgmxJTH2sv7uFnK+kT07adTefOcwjdlcZbL5/eTtbfWGJoQoU23nwJyH98XbLofTxvS0NtrK44LDWMJkVFJXFtyEphQ1umZBytRjiNq6VYVPHkKilGCERjvLFSCSlRNmPISY7way4lPIvk/6ZtE2yupPJTQ/EpByrwoe55WHEiBEjRowY8T54efWX+O/d+Y/5uy/9ex//5GnEiBEfC3xgktJQEQnAmlSADqp9h3zqYAIrJnUqqSBZPlYGidQwWewKRl361xNl8iK6s9yInzT6opxcyNufUlDo0Bcwn7L8ToFBhwn9eAdHjPg4Y1gcFoTw/2fvT4JkWdP0POz5/sE9IjLznHPHGruru9EFkAQJUeAAgqQEmJEyGWRaSlpooz211VJGrWiiyYwyk2nHnTak0ShREAlQAkg2iKlBEGw0uru6q6prujXc6dwz5MnMiHD3f/i0+H73iDz3VvdtAFV16ra/VfdkZmREpA+/e3zD+71vKwz/cSAqCc6IGwJhI+w2njeuHvGrX3zEh48PfPebH/Dw9SueHW55970n/OKX3+ZPP/g8/8KvvEWMQgxmv/DMF8Y4sH3tDbbHns99+av8a3/hzxP7wm/8+m+zv7njww++zwcffYN/9Bt/n6/+6ld5/a3P86/9hf8JeRio1bPbbvjv/vZvo/7ANF7z6FFB/JaPHt9S6kCIcHe4oes7Yu+pNwPOBUp2PH864JySc6LfXOIkcvPiwO3NkTQNpClRi/GBqiYuL7eUVDimxDAlchm5uNwSQ0TVUdKIUhE1soaWQi6Kj4LzwSZ9q03kUk2NxhR2bNXk9nqwRkcMzRauKk6iFfrVWljOuTa1bJOoznV4CZSk3O337F8MRk5K8xSwqS7VWvE+oBWGcSIURwwR763g78TIRyDEPiAidF2Ha02b2CkhwmbbU6twt9+T0gv6bcflwy01m3pRKRnvhdA5oFCKcBxGDjd3HA+ZaTSrNLOdsKnkkuvSWLHpYMV78M72y6HklMljQiv0Fx27XUTnxwcYhsSUCmkasEFvoxJqFbx3OKl2rcIyreuaf4YwN1fs6q6NslxVzWaA1hCZyUgLT+ncVqIRoGgsE+Y40i4YQRYFo8XW4YwYdb8TcIoe5/d0M8VlebE1pUSXrsUJZ02i09NlsaOb6Uw2Xe9wXgnRcTgcSBNcXF1RdKJqIVczLHbBUXOxe17JpMnUtry3Ne9nglJrpHln6mTOy2L7oVWM2i+NxFTbZLPa+QdrNoQQ8T7YNnqPilmoxBgJzjHVQoyRPOVXXjVobvKoNovBmfB2xnI5n8yfezI6x6rnMeeys6cG9r2eV8OaT/xkcU5QWpqPy28/1vZrj+o9UtqpUfhJr/qEv7VixYrPHE73h0U3pVl9vmT39NLzPxNYPsAqz/t3wEF0yhsPOx496Bk+94DnL97k69/7Ie/94EPcL7zFw0eXXF10hBb2FIXjlHnnvcdo6HntwUO2Fw/4yq9esb0Quo92PDi+RZ6OfPDB99kfbvDBc3W5ZfuwY7e9YFe29KHjw/c/IJU9BWWzraasg2cYbchgSpVxUpzY5/WUElUDUIBqcXpVQghNAUmbnZeiRZvKTmWzjYg4xjFTayWXSqjelIdKUwaqlSYk2cK+mSjjljBQq7ZY+iwudZj1WVMAFWn5RIuh5ljkREYRfPAWEysgznKBpk6UxmKDmFUR8WcxbLH8RcXstLLZLztnhBM7v3aSQgiLcuQc34cIIkrOGXGBcZgo1RSZ+o3lHbXYMQWLVaWRi0rOTGMhJ205Gk29qS4KOvN+zso5s+pQKXb+xAu1WE6LWHzrnb0HCjVDmuzv11KXoYLZ9u7lz+tT7iLM/2POEVogZ2HebDOtZyH/fFLu159fjv0WBSZkUaB6SY7p7IZyr0p5j6A0/w3hvr6jnr3PJ8XVJ1rV+Tvfj4dcq5E7AS3Vch/vGcdCyZna1I3ExFItu1GlViPvuaZk5NzJjttIah7vLT+eN8TWRyN6LSq8M3lvziONiDST0+YNnhWBhfl5MyHwx0ViK1asWLFixYpXFZXMd67+25/1ZqxYsWLFp8anJim5Zt3W8lRcS7aozY6EUyKXVQm+zaOotgkZoVDxzNPOJ9uwJTmc8yS5X6Re8VPC3A9qxQsUZtORk4KBTeifyAgfewvO0/WXG0YrVqz47GImnQajplBbUzkwN5Y/m8RFpSx1UGVWFSpc7Dxf+aULvvgLv8rFF3b8w3/4Hf7qX/5v+RP/6lf56q/8Ir/6+TcJTripyrsfPedv/a3/jt/+2nf4l//Nv8DWb3j0uYfcTC/40Q/f542v/AnePDwjdhNPnr1D2l9zeP5DHlx9kd/+2t+iOvjiG2/w7jsf8ezJd7g+vODLX7giTxN6k/EODscjZYLYw+2hUouQcuXdH32AcwEfFbRy2O9xzuzYnDMJ+pQSTiBPprRzedXx4GrHs6e3QEWLMuZKLSPOZfIwMU0FmRVjqGaf4AQfIs6FNi2dqcnUd+ZJUdW6yN/XolSUTd8Tu0jOieEwUqtDRKltIjVGI20EL4RNaFPaicNeKJPFJTkJMXZmhyVWAC6lGPGpgPOKNGUhEZhyQrHmhBPo+w3ihFILuWQ2u54HDzccjwN3d5BS4TiMCEo3JVItlJzwuNYlUaYho1XZ305MY2YcCiUL6jw+gBPHNObF4qtSm4KOw3mzlihFOR6O9L0nTRMUiCHipCk9dZ5N39P5rp0fs8UbSqEUWmNBKTW3Nasf/4AWMfsy522KvWTrGWBFbNds4aq2RpE2m7UzIlCZeUJzE2Iuhrv5fmCNHD1rWJwsOWjX1Fk0WE8Wc/NbLbHIPXLLfCd6Ocqcd60V+l+atp6/lWbNFrzHAdF1RBd4/mTPYRiXor2JJUmzZ8PWkoNNH5e/ZfYdRmDqt4HttiNEAbHwO42J48HWQoxhbo+ZzUJVEE8XHbuLHSGYilhVU05Ajaw0TYnqBLA1gii5WfC9inBtXSykoUbOcq2fcmoY2UeGP+sk3T/X8+P3LU04reo1l3hVMPcJ9WMP/4E/r1ix4o8hzsioguA5KSqdkxo/KzhZ2rHEWe9c/F0eb38XaPrk7XOzvwo82lzwVfcLPPngI377936f1z//Fl/58ue4iIFalOv9gXe++w5PP3zKwzfe5Pb5c6bJwo67H92w2T3Ea2EYX2CG0o463lH7yvPHP+L9VNhueqJTxsMdOR3pfECccjgM5GTEo9JIQlMyZdWUFMjklBfiTcmFnDPOJ1NbxWzSZuXMOY4KITCN6TTgVoWcK6WoqSs1okTNpcVwFg/OZItalVILOiuhtkCjFiMH+eDPBhNONlhmbdxUGOehBz9bLkPsPU5ssCFNs7WxLIQOoP392t5fQctyXlWV2HKpnKttVyORzHlPKaXZ9/bUUhqZqywDAKVWU2VKp1oczS7MFI0shp6HSGZrMSdCSZUyE5bmWl5T5ZSm0lRLadsiTa2nEV+0Uir4pqpUnOVxQU3JNedq568RxOaRBDir/+lJNXW2k66l6bTPYfdsJ9aeu1wP59fIxyhF9vwlD2jkp2VI4uyZSyw4ByFzgqF6n7f0CbB9u78ln/Sctjmn+9OZuvxS217IWp7DfrQBnbMq6XKsaCQ3zLLNeyPCuZafqBrRKXSmtGX7ZTmm2SCWxRYaZCHiiQjeBXwM7VqUEzlJAedMvUkyTtwZoW0lKa1YsWLFihU/T1Aqf+tz/wG/8+g/XQssK1as+LnBpyYpRd+S22VYw9JF54VST/mR5WdnMyi14rxbEsSXbd7OJ03mIsGcSM9PnKdlVvx0cDons9HKyZ5vaRLNT9Sz77l/Xv+wxH/FihWfISyFRbtbzI3lubEgn6yN/nMLvbc/jqSKk4pTSDgGVVBH1spdTlz8wkP+wlv/Y/7Kf/YR/8X/56/zF/+X/zZPDy+Qw4Hvfv89fu8bv8/7v/9tdnHLr//af86YBGTH/vCCKo6rRw+5fu/bUBJ93/GFN7/Io9c9MT/nnd95h+eHyjsXG7Z9JU8Hpv01z58lPnj3mhfPFM0FUUWr4+52YtyPDIeEqrC9cIgmSoZSMiUrYxrxPhM6U4ny4kiT2ZF5qaQp8fSjFwxDMoKPeFRhGjLeV7SAbxPGpZSFYBNjR4iRnAtpSuRUEHU2IY2gYhXv2EWEQCm+FVaFks1aoWQjU7ngGnHDSDTihIurHVdXPSknnjx5wTAmRDxOrCgu4um6jnFMaLXPuJLVGgxVqbngnefqwSWqdzY1XAoCpGm0Qr4oKVdyssbBfn+k1oTS1IkchOAoyUhBORdSKozDBPOkeJknuBVxld0m4DSYzVdyjbSTjKzlhNB5nBeuHl7gvHK429txoHKx7aH3xM2Gw/HI7eHAdtPDRvC9crntyXtPmu7Iy+Q53CMU66ziZKQh5wOb7QV913F3d2frR5wV3ltj59RYkyXGO3/nmTgyN1TmuE6LMaBzzi+RFeXea2eLtLmhcyIoyYn0sPziRFSRs6DkXsPjjJx0T6mpPX9+Xq2mQKWi+ODovOP5zR13hyNaBVSMUOYctdpxERHEC9EFuk1cptdDNKWmKkroPKF3aC0oCTD7h9h5U/aionXWnvPEGEzxrAutMQFVq60v5wjec9gfSSWx3XSIOHLORthz/g+8f/0s4T1NQenU3ALj8S231fOmyL0TLbNh4L1f6ctP/QScItk1OP3pY74eP/bQihUrVvwhOBkxLfnEZ7AuNH/+vbv5Xb67++/JWqgKCSiNmHy3PzLUQu3h8rULfvT4Pa6f3wCVfNxzPAw8v7klHY74Cs+ffMBUlRh3TMNIThMSn5GnA04zm82WN994DR8LPip5uuXues8ez6b3iKtM44AS2E+Z46Am1aTVVHaqctxPlFwppbLZRMDi+IXEDmiuFKcL+dyIKkaWUZTDfqAsllRNnb2yKCIZaaI2ojzQ4m0RT2n2ZjrbBtemtiksxA4LG41g784VS0tTa/VGTAcbxCilEKPFYSJKLjBNGSeWc6ia0oz3/vQe2pRn5n0uiilrBkTKWcxvRKVaalPENLWdaczknLAPx0aUcqbqJGIkJFMxsu2TJolkxBT7m+JMYccJ1FxtWOCM9CLOVDydh37b03WBcRjIkx272AU8inhPzoVpSmQKxVux13cBp7IQtk6E8BOJ8LwmKI2s472n63pSmpqq1En5aM47gCU2X2zLlvc9xYRL3HcWL8423Z8cV5w9vrzNS9t9Luf48qvlPMI8zzP+ILR8Rk2Bq+pMhnOkOpFyXpS/RGwYeCYSze4EPsxWfFZ/N+KdtgEFswcUaOfWVJe8dwTvzg6XwzuH99jgSbOAU8WugaY65rzlDzmXpgTLYjX9CqcTK1asWLFixYpPwG+99p/wd9/6v1Pcqzu4uGLFihUv49OTlKIlWqLgnEkcqwhOrfFYbdCpSR9bsj1DK9QmA+2XPFGWYtOc1DaB2ZcmZ+5/fRmfvRLVzw4/TtnkvkHfJ5+JWZB97T+sWPHHFJ9AQpoH/KpWnLhTY/kz1FxQ4PaY+Wg/kkvGKzw7jGgX+eiDJ9w8u+Zrv/v7DCHz+mtbbu4+oi+Z73/9O/z23/4Rzx9/xPPrPd55OucpXcft/o5u+zqMA9zdsb9L3H74jHy8ZnvZ8yf/1Bdx3JKpHEtG4sjzDz9g99YbeAJPn76g6zqGY+JwKORa8ZKJodBvthyHgWkqjIdE1wccmWkacF3XiskgagXqNDZ7hQrTVInRbKmqOo7HQk4wTVMjfwgxRrw35UQpVoCOMZqQUJtgHoeJnEzFyKwZrHg/FaXrAyE4K+jWSvQB5z1eYBrHZSq76yOhc3RdRy2ZYZgoU8UdBhCbRM5JAI8oZE2InKwXci5Glqkn5aZ5CatCSsnq2k4ILqDOmSx/K6g78aRJeX59wLnI5eWOcTQrsBCMqJRTZjikhQQVOk8XO1KqHPNEqYmu82y2kS5GjndHpmm0gnaxxkpwjq4PdL3j4mHPG29dUUrGSWEawG8Cj16/ZH97S86JMpky082LidvrCReFzTYyDJNZV8zTxtI+sWeCyPmnvGojjdlxKCkDEEIkpWlpKpxjbpaI83jnKDXfmwQ/byro0hXgVJR/KWIQrHh/UnHk1ESQs3vImSXYvO2G1iSabd9aU3P+/fK8hfAkOJmth8XW5jAhzsh5VSubvqMkGsENqmac8zgXQKCTiPdt7Wqmi5HYeVxwxM6UkBAhVSFNGdWMDe57gu9MLSsEYuwJoafUSuwiITpqFQ53R4ZxQKQSvDAOhWlMVOxWUdUM+aqDPr66XQXXTui9npHMnxXcywsWnPWI5jW0tItETiTYE8v+YzHox3pUP+b3K/7J8eOO5aehKp9dzitWrPjjCD2/X8/kBRA91Y4+To3+OcZZPDPlygePb3n3ZuSgzziWkf5ix/52zzQOPPvoKXfDAR8VV2GaRjbTjmfvPebu9obhOIIKITrUe1yIhArReWIXOaRCdFsmqaRyoOs84kdSLhQCKSdSGtl1PX0XOE4F76PF0VlBipG0FXwMSyxfc22xtOmr16KI81b7c42oUWbikDTCRiUXzFYKQbUYcccOSiOrG/HHODsOpxXnHMbJEUrOlEb+WZR4RKlFTREoGMljtlMWMZUgh6k8oYrzRop33jXVpEIuhWnMppDJTJjyGCmoLgqiRvaoTWnetnzZ5halTNOEzMI14vBNmWkmVc0K8mkqOO+JMS6qUKb8YzlBSvYVjKTiG3m95DZc4GCz6RAnpHFa7PXmONs514gvQuiEzdabglMJUAsSPJtNR8mJcUpNvcpyu3G0YyXeQS32u4Ur2IzSPoFbPofotRbLb5rt3aw+BXpv6Oc8Np9VZGfrs/mYKvf/0P065WzY9pIppJ6dn2Wwot1D5A+KOe4HovfedSFknYhLM+FpnrFY3qGpb00pIU7oumBrYzR7ZnE0++qmzuX9Qo5SbOA3NPtoF+bjAiUVcsu10WZ1jW8Wc4L3Ae+D5WICIVi+ksZETtlIT6LNJrAZaedKVuabbtvWFStWrFixYsXPC5wGLvJbTP6O5I4/681ZsWLFik+FT2/31iY3vLPkzFRiW4pX22SUCuJb82juNLQpGVpBYp6Aui9waxBasrtI8LyUYPJyeviZKE292pglsD/hVy9PLH1GSoUrVqz4x8Tp9l1bwdIhKHWRmf8M3iNU+eEPn/Brf/+b3B0Hsxu73PLFz7/Niw8f8/iD9/nhd77Pi7trhvEFw+HI62+/wf7pY+q+kgePn5xZpPWFYyrs4iN2siHnAecf8qVf/TJvfv5tvvG1v8+x3nA4XtPHPT7uuH028O77H3Fx1fHFLz1gYmR/6DkeJp4/P5Jq4eq1QCgduEApjlzBY6pH6irqPTUJ0zFb0bvQFIsKiDMihgjOVcZpAhE2vsMK/5XYzYXyZomQC945Qgwgs6WClYfTlCiTkotZrnUbj6hjOE4WSxSs+yGgtZLUiF/ircAuCJtNhw9mZxC7QJoq3gXSlDjsJ+5ujzjnjODhTaWpJE9KiX0eCcEs3mwqu9BvOgSabQJmn6UF8VbCjjGSJiODlGr2da3Oi5OOTR8ZpyO5VFAhabGp8qxMY0XU4UMwNaoxMY2VMlZyzVxdbdjtttzdHhjHhEjA+QKNUNV1ERc9uILieX69b8Vnx/bSs73agjMC2XHKqAixj+QxU1NluE3sX4xQMrWafcNcVG9cpWbLcU7SsqbNcX/bGjD2uDUUZCEI3VMkEiHEnhCCNRQmxUxKHAsXaiYotWDPvghOToQas9GoCEqpbWreOfuvtqbQ+fV3pox0moY2BSQBclHquayjnNlKzPGk2JS+a/ukAsEHQvS44JHOse0CXbS1pnslRiOiqTpysuaA2Y4ADrquZ7vdEDubYA7RI3jGY+Z4N5GL2Ztorqg6YthaQ00cIcRFKSDEQOwD42HkeLijaEa8kqZ2fbYg+jBNdhw9dBcdF1fdP+YN7SeP8+ayCPdUN8/zAb33De1cn55kK4xlUn+B3p+o//EZxYqfKu7zCV/KH+7j056p8/O+nt0VKz5r0B97YZ+TDH7ucT7koXD10a/w1cNb3PXv8eHb/4jD9oe8tt1wBG6dpyNyuHnBMB5xToj7GxyBy4tHaL6lpAE0k9JA8Je88ehzlKEwTI4HFxe89Qtf5PrpY8bpDtyRWie8A02J4+2Ad8LFgw195xiSknPhcJioFbre0XlPSs2mV5QQWpBXjKCkCjkDUkz4RbWReMzSGDW7NrOuVRRHaGSXWemlFEWrkkpqRCffhiRZlHdmDk8rRzaLM09KGckWB2idCU4WJxjZpS6xnw9hscwSJ2enwtZVmizuDcERgsk91iJUdc2WN1tuIqdBDBH73azuWWrFIU3tp1KYLbgsdnXeSC2uWdflnBb7ODsWBcEUk7QawUfUrNxq0WbzVnHR8q08FUoxRVSvSpVmHeYtllagFuHudjJlJXGIhxAFpZJzNdu6ZhunrRZYM+TRhha02r7N0dx5TVc4U9RfJghMfXY+vnYezg71PLDQYnrnPCFEaq3UmZm14D7lfD6Xc04x2/DNhDIjQtWz587bKPfeQ8/f+mzzpdnf1Vrb/MMpuFx2Qe89TNskI+U5Ixf54FouawO+ohDUtlWMS2fnuMwLm6Z8FQjB2+tlJtvZbaMURQs4H9p+mj2fc7Lsj9lq23YgduzTNFFrtqmBatfazJir7WIV53De1v6KFStWrFix4ucH/8L1/4o/efM/593db/B33v6/8ftX/xV1VVVasWLFK45PTVISVdQJFZN39i0FqyhRbJK5qnGT5snmObFbJpzOcsraiEotJzuhJeTzvy+1HuaXL7/9TBSnXnX8Uz7M5xNTnyVFlRUrVsy4T0eaf/os3rFFhK988U3+rX+1Y8qFq9d3hF1g6wWfv8LXf/cHxNwx6cBv/KNf56gHxsOBF0+e86//uX+drr/gb/5Xf4cpPeHm+ISb2xv+zJ/5c/xP/+y/zofff8x3v/OYerXh6o2eP/vn/xXeeLvy/e/8Q26eJPpQ8NvM895z+fqb+E2A48jhcGQ8FqbDxGYXeO21nuNt5eZFYkqJaRrY9JGLhx197614nj3jkHCuIFqIIRA8lAox9mZBIELVghZhHEabpvbQxZ5pSpSmiFRrpjggKOIKwQe0KlMqVgwXJQZP7D3etQld2mRtURIFX6woDGYrkFCbAo5+keiaBrN/01rJpRrpo1pxPcaOvvOIVEoxUlSMkTElpjETgrfpVMeybVorXd+1oi5oUvKUSUNZ7Li63nP1YEfRTIydvecw4bxjExzHu0QaM6rJqs41gBNiDFAqeSzkQSkJxAWGY2acbqil4rsO7wVVR8lKaAXtUivBddxeZ0pObHcbU7siwQhUmHJpU9KervNMrjCpkgaFcmp23Lc7aw2G1hzRNkWLzg0GXcjlKKRcWiHe4jmH4L1vaknQ9x1VlTROlJJZ7B/FSGzLFPPMiGoKSj54Qgh4F5mmkTRNp4aCSPu+TdQ3otJCeLInLds7/+y8kaWoZWke2GaeFKCMNH+6O4l3Zt8R7Xw55+k2EXwFVyiawUG/C60hZbYkuErNZgmIc3SbSNd7QieEKHhv759LoqoSQ0fXRVvDZIIEQow4MSuIEDq893g1C49yPLK/3ZPSZI0doSkHSbNcrk3d1OJzFA53h39Kd7h/+niZLOSWx5vKUvv+nmVwe1L9hEZQa+dwbhX9j/NZsxJefrpYj/GKFSv+qJDln88ihBgdv/yVt/lKeQvxfwL8v8l3r/4GP7z8daapkIdCfdPxw3e/xzRNRm5W4Su/+At87ouf47vf+hEfvv8eqexJw5HtVvjKr3yF1/qO58+PPHl+yzAe6HeRX/yVX+Tu9n2unxScU6Qv5OIZc8DHjikNlDSrhzrEFfouolXJuVJKJk2mDBOjZ7MJeO/NLncm4TAT+xt5qJHiKbSgzJQ7c7af3VwYnC2gW9xWqw1Idp1HqzCOqakxWajtLdAil2Kf/34m4yhSzTbNxhxqs0o2ogjGmaI0C+eT7ay2mHNWX5JFjbQ2OzvnpOU8elK9UailWtzuT3Z2tULNRpaxELbig7C76BrhxKy6ci5oFbbbnjRlUiqNpCOAkYxC9Igqpc4KOoKIR8SRkpGwXGhksGYxZufP/q6Is+1ualMutpwnF0q1fGm2pfPeYspShTLb2L2kYMrZt9qINdKOoYh7iZjc4vczxvlCHJLT29q8azFFKb1vBzfnJJzF7/NArOUK0vIOOzdzznBydLPtkkbqeRl6TrNq76nzeyz7evp53omF5CSWzzpvMbqpJLVhi3YOtFYb4/AyXwZnpK05d5JF+UqcNnKTawrE2gZKfFOGUoraUAfOGcHMmR2hbzl4yqaeVEpp+TqW5M/HvsmcGq+rKepWx3icPn6QVqxYsWLFihWvLARhUx/wK3d/kV/a/xv89S/8n/hbb/8Hn+EcasWKFZ8FfGqSUipt6kOkTd6rJftnE+xOMMWMOcvyYlPOsCSSjvMk0dpFevYfZ7+Hl1vdp9fN35yTmFbCy08AixXKihUrVvwBkPsE09OXNmH5SZXAn2Ocq8nsLiN/6qtv2MSwN/0Yj1JQvviVz/Poe4/58PpDkgreb9hdvsH/4i/9Jf78n/sXuR4Lz57e8ut/728y3AA18oP3n/Olr36Rf+nPfoUffLTn7/293+I3f+fv84UvPkAFdpeVWi7ouoLrEvGpZ7PtOKaRm+sjaSyIUx482JKrkkdlvz9Si2MaBobDREmVBw+2PLi6ZH93REvF05R2WgG6aKFUs2PItaIFvDjwijj7dE9TZhwmvBP6TbRiukS6zjEOmddff0Dne65f7Hlxc0vO2WwGNh3TqNy+MIKPOJsELTmb5YEzpRkjLVRyVpxXK85XpZTCdDSyEe6kvgMWF+RaqINZxokKOakpFKkCNuWsVJvOFpviTrXimadOhZKVMpqtQ9WK7xzbi57dVUfRQHAR1YKibLoN243Dc+Tm1ibOY+xAHF3f0fcd4+GIcxHvlZAUCZF+522LtdD1keE44kKgZtdI3hNSKypCFwN4R3Bi6krioDrSlEwtKqudPy90oSNJpWKWa/cuP7FjpK3CXsEsNNqUda1qRe9mgze/ZiH70MSuZj+D1hwYhiOKoKW06fbWOAHUcSIenTc6nE315qQUKWazp9WshTHCu1hVH7My4DSYjZ65pOhCwFJVUjKS1Pw+y37fOw5W2Pfe1u72omO7i0gA3ybdK5ByRaqQayPKebMDqUWNtIcuU+i7XW8WyE1NYLPr0VIYhkwpFRc8fd+RpkJKBRFPUdCc2W037HYXbLdbQLi7u+Pu7mj7kxO12tT03ITxfm5+VbQqRTOlCmgluFc3aiv1ZPk2Dy0sc++y3H7OXfrOiEin95nfAs6aRuf/qnzs+ee4PyBx3pBa8RPBS+SyFStWrPhEnHX+5WOPn4YePitY8gls72IQTFrIotpfOv4rPLn4GkeekwRu7m7ZDyPORZwPvP2FX+Arv/xlDqnw+ude58OPPmC4y/Rux7CvXN+NfOlzDyg93Omex997DxcK/slzVAc0KEUrXuyr856qiZSMJKNU+j5Qq9nfpmkiJ1NcKaUa4QhTcKk1U4spsTiZiTVQillL2VcWRof3AlR8cJQMORcEpe+7pnBkiqLTlHEiBB+a0k81W16UfhMpWTnuM6dgdQ5PG1lKHVUKTuZ42MgYTqCo2jYbnQfFtr9ki/2dazlDs06bbdhktk1uq1GcWbCJc5CShSFVbXuUhVgyn3PnPKXYvlssfCL2O+eJsVK1QHF4H5bBjRA9NVdcEKKeLInFC8E7ai2E4Kla7WuVxTJtPjDOeYL3zBZ9XozCpcVUryhGqJKmDJUpLWuoy7GFl7lKtoK1Kc66ptokp5PRyPwsLHSFZlHGMnwg0ghhM5lJZ9KTnFSE5qhwPp7z67HBFJFmS32+oe0cCadzeMKJPi/3HsWGI8484ZY6h9zfczuvplgVe9+sFIXgLQ9KOVsMr7LsvxMjfzW6nr2PoynpBkRsEKEUyzGkORMYMQ6C92bzvORtRpJz3oY/TJlVyJqZrbpLKcs6nIdFZsJWVcuTZ1JWyaXZJ6xYsWLFihUrft4gCF47/vxH/w6/9dp/wovuRz/rTVqxYsWKH4tPT1LKINUmbqqzxpEXziR1DdZYOGe1aJvMmJNI+0XV2bvbiEwJyyOD/GGWQPdmWNZi988I/yRqSCuZbMWKP374LF/3c9G1Ccwwf+SVonz7R4/5wfsf8e4PfoikS/q4Jfsd9eohv/m9H/DDH37Ie0++x/72mq675Ku/8qt8eA3vPjswpYn/51/7r/ntf/A/sI0j2+0lL67vmEriZn9kGx15GMglgwxMU2W/H01JqFceXm25uUl89PiGw91Ezb4pDylpLNxcHzgexlZId22iUwixMwKPt8J5ygmH4IIjxkgpyRoDXcddMgWZrve88dYlSOLRa5d0MfL4g2uccxz3e3aXkUevv8X1i1v6TaDrOn7wvWdodVQt1JrJ6TS963CUVChUvDdyCCglJyva5toec237rZCLgos0WwahJCVNGa1QpKJisYcLjtAFYvBsug6NldvbzDRMhOiMYqaKBIcWm0QWcRz2A0ohdI6SRryzFVCrWrMhVnaXPSDELpJLxjkY0oAEx+XVJVqFm5u9Eahw1FwIsacLHeFqC+qZxkLKI05rmxAXHIFaKjUbyQwRSipGCiqV4IWHj3YE1/H0o2sO+4E6M8XPmjVG1jkrrutZ42RZv2oKTM12zpoG81RyI3/MakjOtdaFg2KKVE4F8HjfGWG92jk2UpcsTYtajEjmnAedSWVtG1uTw3tPzTZNPTstKJx86Fjq/ffuM9KaCgu5ZVFvojWhmnWduEY0qhQGri4uef3RQ4bjkRe3B5BALULJ2aTD1JpIPiges5OLMXD1YEOMgeNhII/CMWViPxKcKWPRGmxht6N0MI4JRWxqvZbmSFI5HI5GwpsmVJVpmszuQ5S+79uEeKG0Y4eokfzqbMV330LvVUMpRkxCbK35M7bRvU+JM4LZHPm/xLW732LS0+CD3RlO8/Cf3U+fn3+8fE7/KFjP64oVfzzxWb/2ZwqHAJv6gK/e/Nv8Ov8vI1ePhVA3ZAIpTzy7veHr7/yAw+0dh9tbhv0NWpXPfeXLoJ7D4cjTmz2/93tf50fvvkvnClcPel5cV3JJjCmboo5WpiERN2KqlsmsiyUIzptqy+FglsW1EaLnOKukyrFMTXhmVkI1GynBgRO8zJZl2ojWZgeck9mZiWgjLRkR2wXwwbPddYviTCkFF+CNB1dM08Q4JkII3AwHiw2rkfXrTGxv2yIYeUNdI9hj8Za2gHKpZ2qzvppjh2bl5r03MskZ8WVWERURJFhcLN61/TRVJHdWAw3RG6G8xa6lFCRp+94s6Jw3tVmzeFNC8G0bTMnWiWOajIgTgyfGQFVw6qm1klLFiUcIeAfiAzlly0W82QmfFIYELZBzI1IV22sBXHT0fSD4wP5uZBpSU8t/Sbn03qK9f1XOeYW2c6HoYo2n0khZy9ssNJ+TKpKxZtpbO5wLC2GmltwIU3V5/aywZK+374WZ0MSZcur8itNv5aXdUTkjws8kwjmX4hR/fjwOFSNJpYJS6PpAf9E3IlYjTxVTIlNValM/dS35mlW7YvR47yg5m3JSgTRliJ6Sm31b8HhvZLOUM3IuNapKyTYcATTbvNpsBG2tee/wztt2aIVajejk5sPa1vRnuH6zYsWKFStW/HHAw/Ql/tK7/2f+37/47zD625/15qxYsWLFJ+JTk5SOIxjhSAlOiB6iE8RVvJcl4XdyKqxAm0Z/aVJFtc1sqFIFckvORJrSUsuxflxKtKZKK1asWLHiVUKryxvUip4B+Gf/xBd54+IB3/idL/APfvO7fOudd3j24Yf8Z//pf0yQjGQYbyeiBrjc8i/+z/5Nfv+3v8Fv/Mbf4/n73+Pv//o/oJQb4uc2fPT4llSGRZWlj8J4GPDB8/zpc7QWXjwfEelAYcpWlM4ZSnJGhPDKNm5JqTQ1l4RzQoyR4AMpZY5DIgaPBEcXO3JSpnFit/PsLiL7u8Q4wFASpUzE2FGq8PTJHZXC/lC5vNwwZbh6YMo0Dx/s2O4i4cPKzYuJD957zjiMIB4ttdnFtgndojhxRlhxZsPlxKZFRcC7QC0FxMg1Jc9EF4fzHpnJLgg+CiEGU7ypnjw2a6yqjegEuWa8NxJWKcUsDUTZbDeE0HE8HCjzVLF4vHRMx2QT75tolhEUmywvjpwy01TgmPEBonfc3Y3UKqRJuNjuuLx4wO3NnsN+ZLfb8eDhQ0pO7Pqe42Fif/MECbU1ZxyH/ZE0jW0C14Ik702Bqe8Dm03HZhvousCLZ3v2t0dqhRBsUjvXwlnFvqkOwUL6bhO2Ojdo5gaPb7YJaCOT2dTzMvE7N3mcILXiWvPFRU/fXeK7LcGbXeB+/4JSBoR0UmlSsw0uxSbgG+eLOhNM2vmdCfDC3Pgygtfcy1gMJfQ05ayqy+GS+SKFpZHhRFEceWrNouB40PWEGJhSJiUlhg3eidn+pcw0TtYccA7nla7zxE0gRLPgsAlllknlnCpFK8OQCSEgVLyvpFIY84iTQNf1pJTZHxPDlIE2AQ6NGFYQMZuTGCOIrbOUhJQLHkcVNbUq2iT1K6xclwvM6845MSUlwa51kWVo++VYfxm+1/sNohn60vf60nNOLbBPgPzB4xErVqxYsWLFTxIL4eEl5oMgvD38af7VTtl99a9y+6Vb3v/gmvfff8rjp495+t573Dx+nz4GQtix6S8p9cAklatdz5PH3+fFs3e4efocV0ZCFIbhgGLxcMlGcrcYEHTMjGMljZlahCCe7MxOtuSCqhj5yCmdD2YRlstCiJhtwgRZ4kpx9kHvnBGza602TIANGaRSqdVUlrwzy7iZJTKOplwZoyN2zoguXhdrttubgWmsp4M2x7g0En6tp8/3mXQxK8iIqQedE4+0DVI6N2+fKVWKCLHzaCNR5akaYYTZOs3IIOJbTOzkFHc4U9QptSJ13kwjvOds8a73pqDqxIj92qzXcjaLNnFGgtJs50xzAS0EHxnHiZQyIUYury5b3GgEmMOdDUW4YPFWSpZDGjGrkWTcibDTdQHnLX8Yh4lpSkBTaZrVs5Tl+Qvmw9+GAs5SjGUdY79itr37OOOnDROIM4KSCOI8MXQ4HwmxRxAOhztybn7XLdqb7QFPlsgfx0lA6ETqt22p58/6hHjQ3AN0ecb5V217d4q/VY0Q1nWBaSqUVNruOHygKaRWSkrt3Fre66MzO29pqr7zRSA2cVIry3rQXFAnaC1t2IFGQmukN3Wg05IPIyzXo3PSCHFGrNLCUq9vukp2dmuzN1yxYsWKFStW/NxCcPyZ6/81AH/5F//3DP7mZ7xFK1asWPFx/BGUlByl+Xp7D8FD9BCC4AqEYAPmQYxk5NsEjIgRleZpFMUmqOcmErSeG5ZmFtr0s8oyGX965v3XrR2Fnx3WqZoVK1as4OPNbRs1pQKTE157c8vn3tzxJ776Jv/yv/HP8Vu/8S3+8//ff8OPvv0tHr7W8S/9ub9AdFu+8+2v8/vv/D5/69f+a64ff5/69YEYCw8uE1UCqgNPnyZwBbJHp0yNNo3JVDgeIefMOGRCI5ZMYeLF9UieCiEY0STGC4ILTNMNtZpaUs5lcXkzBRYlTYWgwjBN1KrkPHE4WGE7jZU0mb1aSkqZbAq7akG8Mg6J58/3rbB/Qd9Hnl1PyPXIzfMD18+PDPtCLYJzFR8dUq2wa/YNZg2hakXbXGor3tvUdcq5xSOtUK4F35oiLghaPDXZxOr2okelEHqbZL19fmCamoVbqUZcKpWCIsFUcqpUfAjkUkn5gDjoQyTnRK2Fu9s94jq2G880THR9JG4F1JMnEHVst0ZcAUFTpBNHlsRwGNHJisT7/QEfOi6utjgvHI8TXRe5ffGM6binUEmTFZHHMRN8RwjByuHeZPlrUQ7HiSqBXdeTS2G/H3Au0Pd2TA6HwfoQ96aaTxPC2iac50K2tgaPc6bGY7ZmdXZrWBo484StE0/X7xD15GFCusDFw0ds+0s2lw/54ttf4p3vfIvj8UDJwz3lprlhoMwkd7MyUJTgQ7PDKIgTNl1PaYHhOA7UnM6mfE9NKNUWcc7b2v6AzKwou3DPGiimBrDpI5eXO4ZD4vmHe8Yh4WJks+1wrhKiWQDmXKgieEAkEKMg3mxBqgrOBWJQUzhTR04FiifVSk4DI4VUCyUrXXDkXMlJibFHtXDc3ywWI0bSsiZMF61xhFZSnch5sj1RMUvDdu3UqpBfXXsGEyKY1xkUZ8PxXluuYA6O1kR5qVkknCzcZJ5ofykcPRGUTh2wT2pXrVHsq4H1PKxYsWLFDDmRqs/ipKzw8PDP8s8LfOfB3+DiQc8v/MLrfO33Or73ve+SxyNvvP05vvT5L/GjH/yAu/Ga648+5FoT4jIhKN0GfHGIM0JRbXU9zWq2bq12N6uatnTGrGqdMI0jOVs87oOa3RyOMk6AmuplrWhRiha89zgX0Nr+1kyCaoSQcUygrhF8BFWH1lmtyMg/zjuO+9EGGaoH6dBamEaYxsQ0TKRUG2lK8MG3Y6YL6Wr+2UhTbeBgVvSptYlynohKp/i2EV8aRyMEz2x3FmIAsg1XNFK/6klxdFHgkZkQ45iSkdB9s1WutVJLQcQRQiDlghSh6z3BB7Nr80LfC10XKLWQJ6CCOqXUwnA4NDu6Air4vmeaRsZxxDtvaqWNFFYVaplt5RzON5aXA7QswkVjSmxjB84Uap1zS0134QSdEcKWldvyiZPa0IkmbvnETFzSZXhgidLapI8g+BAJvjOlWJS43bLpt4h4Xnv9Te5eXHM87Jdr44SZLHR+JTUFJzHLvHkAIMZgW6iWb5bZju58ooE5bzofv71/peqyj6f8Qhr5zIut0Zyq5QEILjqCt3XhRNCzYyZyIotBG+qVRl5jthq0RmMtQK0UTRb3qxJcZFa6cuLN5i3PSqxtH9pFPQ8Xg1lu23Pm2FyX/OnVHXdYsWLFihUrVvxRcE5U+mtf/D/yvPv+WohZsWLFK4VPTVKaJrO0qCqQFe+U4JQYBOeF4I2oFIORl9QZUenlSWeZ/+iclHFOTjp9Fdb75YoVK1aseMVxbpt11i0vCu8/2zNOmV94+yHbjeOXfvEBh/ELfP533+b65kccqeTtBt0/50fvfQvNB56///sQB15/rcdL5ugLBVNREReYxpFURo7DRB0KPgQoZh9QKjhvBfxxKOQMw9GKk9urwGa3ISXHcDeCVLo+EGPgcHewAqqatYIxhx1pqs2mqzTZeeFQkpEiBLxzBO1amdYILjVhZJWcUeB4lzjeZbRO1Fw47gcOh8kmcUXYbi+I0ZtKENLUlYxgYkV3qLlSSyYEh3OgRRupKuOx7RARnDd1Htc7gvP0fWekov1ALR39JrK5CFQmSoKqQkqVlMZmN2b2CSwNBSOkOIHi1EhKxZobXW/qUjlVSlVc6IhO2O06us2OR2/uAOX62YEXT0ZigOkwMY2ZJEdCcNSS8T5wuD3w/rsfkFMm+EDnA13cUEh4L5Sa6LpAF7tlArY0W40QAyrQ7yKby45xPxCiZ5pgPI7WdCiCVF3sDOZV6rztc5kVrGZrOATnIpvNhpQTtWQr3quRRqpYM2i20Yih5+Lyiq7bMdzu0c2GL//Kr+AT9LtLch05DjfUOrUGz32C0nLVtIBR0KaueWpuhOjY7LYch5HcGj2uFdntaU1h6R4BSu/TU/TlaBSM3GR2JGmcePLBU6oKeaxGdgqFKSdiFFMp8IJoMCs6r3RdZ+9SCiIWwToPXR9x2Sg2XiKpFqY8oRRqSqjApt+x6zeIC6RxMivBmik52b6Is+aSKt5HppQJ1YOoKaD5gCBMU24NC2vHiBf6Tf9p72A/deR8nzgk1ZqBrqkouQriIDg1uxKRpnpFW8OtySLg5vPYminzPXhufFVOOcWKFStWrFjx84ATndq+z6Vyeztwmf4Uf6a8zW++/v/gwEh1iatHO27vJp6/eIEX5fmzDxgPB+gToYOuD3TByEc+CN57cvHkUclppNZKbkpATgRt+cRMstGaSeqps32aV7ou2GDBVFAt9lovC/lGWlVv4VrJSUFntrTSasMERo6oZnkls8WUDRBQG3lZQaswDcnstBRyNpWhmXjincd5ZypCs7qOmHqN1rpQWLQRlfwcQ3Ii3zuxWNI5Uy5y3lQynQiiMDRVp5IqMfpFMdPcpoWcy0KT8V4aEcpIWzPpK9fzmLsdC62UbLmUUkiS2G57+tgTOyOd56Mp5qBmdzYrGhmHSNu2ZIZhaKQTRxcjIXSUmnHe1Hm8KNKGEIxYdCLuVAXfCd3Gm0VZY2zVWmxYocoy5LColHKmOqUzLYiFiA7Nqg1TBlVm02ddbNVmMpf3kdj19P2GWgpTKlw+ekjnIiVlXrx4yv72hlItnl7Y6udR3nLxzKQhOz6llPaHWoxYC6U2gttMfj9JIi+5xDn56IR7Y7MnQk/bmVpgfze27Zutpc1yMOOI3oHYmlfM4s85f1qfYtcGSIuHI3WxVxRqKbZWGjkuhkj0prRa0kRK6X4OJHo2ZCLkZqPnz4hoNhRUGknwNA0Qw6duF6xYsWLFihUrXmEYUel/w9vDP8t/+NV/iyG8+Flv0ooVK1Ys+NRZxzhZQ1FpXuAOilizwZLwSgjQdUIfhRDAB2jDIq1JoCdVpbmhwFmCB4u7+CJwezZpA5wy2U/A2oRYsWLFihU/CdwrTbZG+ccmDM8rtgKv7Xreux14ejvyxYc9xzHzD7/2u3T9gX/un/8yX//mt/iHf/evEcrIzdOPGMYRqXdcvXHBNFY6Mauyy4cR0cxwGCiDTTxmhVw8vThECzkVShWiOKomvHek5PFBEFdQqaRcOB4H0pQRUVQzpdgncc2F6gRNs8IQiJfFEsAk6gUlE2Mgj4Vpmgi9JwZH1/Wowv5uAJS+t6K0IGYrNyXSNDFNuRW4Becc0zgwjkpppKZaKl3X2VS1OFwjPpWaqXjbFsCjxN6z224QMeutvusoVXn4+oU1ULLZJTx75jgeMw8eXOKC8uTDF+zvJmOSATnNRBWLcEQqpWRygdh1bdq54vD44PHR45xJ6edJSfnINA289uiCN954HQWeP7vjyUc3HPaZ4DxOIKeMquBjR9VCKUo9jmZ3Zx0hLq8uudxdcHN7i8NiqVKEWqrZTQAiAVHYbHp8CFRX2WwctWbu7hJTNhuM2DmmMdmU+Pm4sVgzp+s6UsrLr2oriHsfiXGLSLSmRm2F9La+Z40eFehix5tvvY0Pke3lBeIK/sK+jsOBd9/9Prd310zDnqoJyGcWC+3KWhoZynlPIKUEYgS0opDSc1ub3LcF8w47ls3G4P589nz1Lh2I0wS36rKeaoG7GyM/iVNi9MToEW9KUcFFnChVU2s0WTRbtSDZU9Xsj8VZw8O5jhg7a6KNmeNxampUGdTTxZ7ORYbjyPHwnGEYyDUjao2+uXFk2+ooyQheI43AEwKbzYacCpOaFYeIA62EEOi3m091X/tZoPETX0JT0FKhzKoKwVSXnFNcU1divkbPhvjnJswyzz6fX5nzCmuISVPVOnHVfnzWsOYTK1asWLHiJwU9+0buPTYTIuQUxYjSB+HqIvJO+ib7i98iychHT58xDDc8eBgQ3fDsxTM+ODwnDSNaCuOQQCI4QYvDCRa/etA0kafcyDWz+o9Zx5ZiJG3nLN4wUofFas7b9qUpU2sj1qipbUrJjdeki1qOKRrpiZSEvERMsZgnp4yPFmObDZzgUjZbZu8/puCdixFM4DyOq4vV7umICt5jVnMiUIwI5FowYCo+FvNtNhHnPCqmcjlNFR8DsTOFKO8c/S5yOIx4F+g2AXEDtab2PmbHpaWZZVXw3i2MHiNiu0XBynmHD0aKElr9s1ZqBt8FuhhQKof9xOEwkaYC4gjG3l5s62qdCWBCTskIQ+IJfWS33TBNE1qa2iyWT9Ri8aX3Fkg7742UhZ2/kgppqqSpoAjdJpBTaSpbZ8QzWtzlZqu1mQpmEPF0cYM4T62ZOrOX5t+fnSdxQuyiKf+KVYNDFGqZOBwPDIeBcRrRWoxYdaZ89XF3N12upDlKVK3Llk3TdDYpMV9t8zrXU37yUjT4sT8z5xtL2mHflHwiRDnHYuHmcI0IZzGv5RO2rbOl9szos2M5k5zMUjDX0nJJ2oqR5l4A4ziSc24EJl3Uw8Td395Z6Uux3Mk7h/e+7eD5XcjOpPhXV5l1xYoVK1asWPHpoChFJr53+bf522//X1fLtxUrVrxy+NQkpYK0KSJLWxyufd/sZmSeRzfiknNKiBAjxGDtnNAmllra1pqCzTKDeQ4ecntOUHvMHreprFOqubYQVqxYsWLFTwlnxczzH2mN86VCqbo0wS82gW2/4Yc/eMrb/9wXOE4jJT/h0Wtmw0aeeHH9ETUntGaCV2pN3L044MKGQylcPhQOdxPD4cD+9kielIKQ8oiIN7WjXCg6T0IqPgacdwxjwQVPEJjGzLDP5Ck3O4Vik5oZwOGd3p9udUZOcthEZcnWCKi14qWiVC6vtlw82hFCmwIuFfVQcmV32VMrDIeReTK6qL1uLq47Nas4a8IYGUUU8lRw3iHmp4UK7C46NpsNh0PCObh4EPnclx5xtespquyuevZPbnlxm3HB8+LujsurC2InfPHBGxz2iZQLtSbiBmIKuGJ2FJM4alZSToxTJnYBXCG0iMQ5obZ9iNHRbzo0F6YxIb7gnafvAs577vZHcqoMx8z+eiRlJbtm1eUc6sSs7ErBicd3Gy4utqjCVDM+OsbxDlym3wRCcOTJkYZCHpKtvZoJMVJEyWXE4RiPyt3NLXe3E6LC7mqDZ8v+5sjdzUDVedK3/U8LNY1N+t8Uf0QrIURef+MLvPnGl7i7u+XZi8etKZFQddAUsxTFu4iiPHv2GIBw3SMKXRkZ724Ybg4cDkdKzagWtJaXL6rl3+VyklnOqU0py2wD0qagq11fKkLFmhQln1+m5xPRM1HlfguQRria56CtoWXTw6quEbLM4rgOiVgrUitTm0QWcahWcoFhnOi7aLYZbQK6qqC1kKaRaVLSVCnVFLmCi21aunJ7+4JxSBZDt6OgAI2k45zDu0DOtSkV2PWHCk4qw2FY1L3q3FRp5/g4Dp/uvvYzgLj7FpltwNzW1aywqqBZqe2JzqkpQLjW4BRZyHJnvNAlr7C7mFCZc5bzVfXxrytWrFixYsVPDfryt/rSr7VFWkqm8rj/Ft959Hf4xpNv8hYX9EXwPvPggWMYRobxSE7JYgVsaLBUyKkgHoZS6Tshj4mcEmnKzB+wpVQjLmmhZrMDM7L0TAg3FSUQXFN4LOkUc5gSouVFtWLMppYbGZHGVE7FNbXLmTRST2o1PgS2F30jVNjjHnsf39SMptFIS/aHzbb5Ph1JcQg6q/o0Ik7VAg7Eme21846Liy3TlKhF6frA9jJysetQlNAFaqrU2wHnHIf9wVRmu4DzwsXlhnFIjKMNZcToMdvgpkQF5FpaPAhotRqqk0aytxh2JoD5ZtemUnHeNftsZX+0vy/qWg3UiGK1NJaQiKlW1Tb4ETzbzRYfPCknSikcDgdQbeQ0U8myoVMjc5VcWvwKabYFE8d4TKRUEOfwYiQWsxkz9dWT1ZltSi5lialn2o13js1mx6PX3qKmwu3djcXx4tu5m8+ltP8Lw/Fg8XlT9vHBlHa1mLLtPCxx7/q5d+mcFI3uEaDab2ebM12sAOd9ODHf7ysmnX8v97587CmNLPTxi9sIXDUXMhmXzWrPhk5sTWqxuLZwWgMLfakdX1MNs7d1Ijaw0hhapVguYQMvp6pEpUJhySm0sqyB2V6vViVNqeWG9/dLm3LrihUrVqxYseLnF0kGvvngv+RvfP7f58PN71FkWgthK1aseOXwqUlK0btl2uhU6RdLpGsTJ66gSXFzop6U2Al9H2x6S2ySJPrTW/iWRjng3AJuzj8dNBJTS+YacUmavO+SEK832BUrVqxY8ZNEKz6qzMOSM72iLkV3kUpWx0eHyu1hYJTKXTnybNjz/gfvULhG2PPs2VMO48DxcGS363n77dc4HA5cPz8yjAnXHwiS6bY9N7fX7G8HyEr0gaxmMxW8MB2zWTh0Hh8dOJPxVyreF5wE0lgoU8Vrj4ugtVCjkHMlTdbIAEFzXl7rXDWLJadNzSQs06XTmKmlEjsYp5FUjMBTazXik6e93pGmRJ4qJVVrGFSzUShaqdhUd9dFcqrWNCnaCveFGAOlFqpkut0loQv0WGE+dAGikl1mdxmRAPuc0QBpSty+2CN4JNjfPB4z4ziy2XicD8RYrWgrIF1grLlNBSvTNOE9XF5coCKMU0KzFY5TLugwQSuwh87jvVkk3NwcGaZMv9mgLtBtt7gx4xBKLqRcScWK8l3wxE3H7uqKtz/3JqVmXlxfM+1Npl8CuGREGUckOIdEz5QmSi42iT2ZwkwIZok3TSPbbaRkI4rtjxPTMJ0brJ3CN1UjSiFUsUZYiJ7XX3+TL//Sr/Jw9xrj4TvUglnPuUBKE1UzaG6NkkythbFNrovsiV0kp4k0mUpXcJG42ZBzIqepqXQV7hf+T8Qi5u2TmaRkhfXFumBW4WzX3rwvy2sXEmFrjp1x2s8n8a1voDaI3P6qaKO3aKHmAmrWHeOQ8N6uL9dUxVSVbhMoXsiu0jlBsMe1VHLOjGM2ch+Obb+xY14rORdqqaSUm5KVnCxQhKa4ZNubS6JUawiJeLq+I5di18pyHNo+tWZISZWhjn+UO9tPFU5e6jDBoqywqEe0W2sRU1AqVdCsaLNPEew+MYsUWA7BMpV+Otf2dXGuURZ3EFmsQOQsn2DNJ1asWLFixU8HctJ8sR9PSuOqcPDX/F73t/mt499FS2YKibuk3A0Tz64fs9/fGmEmTZSS8V7YXWxxDm5vj0xDpuiA95XgexSLtbUaiUe8swEHJ0tsOcci7Z9GcjcCecmmWOScN9KDCrU6Sq3UvBh9WSxUZ6LTab/mfZxJydrI3VoKh8Ng6k2LzZzlHM6pfV8rOZVG0qERtu+/sw+mCFOSkbdnekrwHlCyWA4y5aZ+5IVcMoejkcm73qMO7m4HSlaiF6Yx4XJtip0nskiIjeShRgKZ1W9mnorlRaWpRRnhJpfSFGpNNbIUyIsXs9VVEaEWZdKKj2azLN4TYgtbayVls5oGxXtPjGb11W16xAvilJIcOWWyFqSUxRYsOKE6JZdMyUb8Sqp4b7ZtcwwaYzACUqqMY6LmyknASO/HTcsMgOXIToTd5SWvv/42Xbfj+slTcsn40IGafbZqwcZS7b3M4nteO9Xse3UmmikhdHjnqWoxdluYL0WT3MsnPuFyO1Ndnbf9k0hJ8gmPnR5e8pRGFlveT2xdmqBUoxnWasMLbdnWUpHcrNtaEjLbVyPe1rtK21ZTUDIbxWa77awyXqspK8/XyWyRrstmnEhTprZVlm0U5/HeFMLm4zGfV53/lVahf/kAr1ixYsWKFSt+LqAoz7t3+Buf+/f5R6//R2T36tYIV6xYseJTk5SCb7lgKyrU5l9tQ/htalltxh7xpn6kpqo0N6DEgfdK8OaB3XmbiJ7VkvxsxcBMUhLMcfvUhDBiE4v6kj35rAu1YsWKFStW/FPGx9rqcxddBRW/fAKNKnz4Ys9/9xu/x7e++10u37og+AOF13n3e9/nG9/+DuWu8OL6hmE6EEOl6yAxgRRyPpCzcHc9EUNF5ILtpufqrR3Xz++YjhkXnJEgpkoemyXSrCAjQqmmalSLoiUxDRPBC5cPHLvdJbe3R25vR2oVxGc8RqagQMo2YRklWEGzWamFAClnUEdVK6zf3RwZJ0/VQvCOXEwn0TuH5koMES1KmgplUkoWXIhmOdBUYcQ58ILHUbJQ2we9c47gA5VEkMAwTNbAkACi7Pe3PH56zXYX+MWvvMmLF0dunh/YbLYwZW5v9oxjZbPrTCFpKHR9x/FY0dqaIxWGlCjZjlUIbrGmUDWyEs5RcibnSk7tcbGpUu8dzpslW7XxcVJSVJI1eTz0u4gXx93NXVOxAh8cjx49oqLUUri+viVuHW+89hpDmHh2e0PWI1Uz0Xe89eZb1AyHuyPjOHB7c8P+eECc0m8CWsG5yMX2AqUy3B057tPSiLo32atzA6rFcuLMxg7Y7Hb8iX/+n+ErX/4qX//aN3h6+5zNxQMutpdcP3uG6gtUnBHOtBX5a0VaowAK06TUlKlF8ZsNDx8+oBZlGIWSkzWMzi3XUJsob9s3WymadYQ1J1JKtlaWyV+WafST3cP9GHBuci3RZNtnOW8mYAwYqQDzNSxooTXcLA4V59EKJdkE+Twxn0sml4JzG3xw1jDItU3nN8ZMs9pLYzIrh1LJ7fjNTQdr/s37YAxIawwVs99wjhAiXeztOFAIIZBSNrJaawiKgHOe2IU/sEnzs4a05sdCRoL5VvpSW6gRjNSISlqFMv/G2Vop1X7nndxTS1ruh2cT7qrLWMMy63+uxvRJrakVK1asWLHiJwdd7EvbTwBUmfhg+01+Q/4a33nyTR5/+NgIK1G53QhlSjx7fk2eFKdQaiEEGwYcpsHIOzWbXSoVtLK/3dNtIlcXF4xTYjiMjQBRyQm00KzZjBRjHAwjCNXaiELFYpa48Vxe9kxjYn8YjbwiipNqcZLOMZxr9mP1RMRgJkE0UjmNcJ2U0h7XMyJJdkLs9DQooooWozr54BAvixVw44YgTnAzcVxZFGlcI5mn0Wxy7S2VcqwcvHBx2QEDw9F+H10gp0ql0qtZ02kjxuRsr0WxGLGUJTV0vhG8miVdLpWqyZ7e6qj3uC9ixCLcWYyqavsl9lzxEHwgpwwpt3UjdDESYiCXwnAYkOC4vNhAgLt6QKQ0+zQhdJ4YOsZhsuBJoIwjUJkDK3GCU2dx6JRJkxHD7hF7lu22bZjXrinwWjzngqfbduxvbzhMe3zXcXX1kMPdkXq4wQGlqg0uzPG8nn9rCqqiRrhZBkucN4vwmfXDKYY738I51ju3+C11YVktBLYTzenjZCR7uL37HxQczoMV8wJcKtmNvLbw0ExBS0Q4P5y1VjTbsa/eQyMflaYGJgtpqZqaWLtpaLHBhnnzP+EM3duZefDDudm/wBSvSq12zc35Utsn79wfvN8rVqxYsWLFilcSg7vh6w//Cr/2+X+PJ/231s/zFStWvPL41CSlnKpJ5J4VGKoqXmwCCidLU8R6Mia5LGqFg7lfpG0i2olSg+AdBGdvG2mNCGZSki7v1/L2paEARlQ6v9Gu99wVK1asWPGTgHLWQde5qWCfUlmtKV5UeOfZC/7rv/P3ePzDH+JL4nr8iFKf8973Mu+99yE3+5Gdv2CclAcPL+h8xzRlbl7cUifw4tld9LgeSh558WwPV1tC50nTRFUlD4XjcUILrZBfcTEAwQg31aZMtSpBgFpwIfDg0Ya+jzx7/oJSjDDhvJhVqwJqk7beBx483BBDAe/Z3w3UKgQJaBWmKQFqiigVtAhTMmUYayBAKR3bLXR9QGvlWAqueBDl4nLHNI2kqSyqNIhCAO8CpVRSLbg2+YsKabQifdFsk5+lgnOMmvjBtz/geCjknNm7ic5FajUrvO2FsN1GoDIOI7XYhLJzQp4KORWcE0IMyzSsNiuJNOXThGwrIM9rQZsUv/euHce2NmqFXFAPuEqIPSFE5OjNzg8ltOnVi8sLurjhOBYeXFzx8OKCj4YnqCvUWqhUUik8v/6IkoS722bh5ZTtNiJBCJ3QBYdWZTxODMdEHhUdwdVT8V3ac7TUhQzjvKfbXOI0kFPiOCS+9a1v8sMfvMvxMBAvA1/96p+GHDnuv0ZKt2bz0F5vjQRtNiCnRtP8vymNPH3+hD72NhleyzLZPpOSTgPZ0sgmDqVSajabCzHFr4VkpPN073nRvU0MvzT4fNIjmC9bO6/La7RFlK3JYsX5k7WwKngvhOhxwZSMUNsPcTaBH9qkeUpmpWgkJCPAeedRhXGYUNQUAtSm5+fpb9dsSWpTl1JsStp535oxDu8dMXqcE6SAuEDJpTUAmyKY92i1WLvkZqPxiqJWa0IuecH8ixb8L8PfZw+jnBxkztSyaCoGqDnXOHdKUxZxgrO/cT4IYeaF7fvz2ztrPrFixYoVK36COP/AOfu2ULmJH/Kty1/jXfk2v/+973Pz4prOW/wz7vdMh8x+PzCMI4JHqsWVm6bYOAyJNBW0OoI7U+fBk8fK7XQwdR1VVBw5G2lmVqoUmkJRVSMvtBgvOA8OSoaui1RVppQXcr/tgbPP3vmD2ykXVx1dFELw3O2HRtQWEKVmY/jIGVl9jvGXeFIdrlRCcHRdIEshiyk1+egRma3nmu2uFov/nLSQ776NldazIENPNUuP43A3WG7VhjJ1YT6LDYT4FqPkagqPtcWkIuRsFDPv3RKneO8REWopRvCC5fic+PK2507Mjkvml6siVRFvcfEcNFVMMde3HVAgxMDl1ZWR60XpYiRpgqZCNbOnjoc9Bz0Y8apaLhSCB+ctfvIWoaepkKdialjVIXqyaxYnbZ9OMbY4R99tcC4asakmbm9vOR6PgKlIPXz4kG2/ZTyO7ZxY3CtnjPKZaHYaMjjlFsNo5LvgA7XaORZnqkUzcez8mprj69kW0LUis8pZBrGQimaClCwk+jNu00IevHe1nphHS7ypZ29sqp72ni1ctbymkZSW/HfeD2fXXZ0JQ5WFHEi7Jmd75/l969nmGBlQWj7RtqHlUfNAsYizQSGxgSPnWkxeLQ+XdpzukelWrFixYsWKFT83KCTe3/42f/2L/y7fufo1qpQ//EUrVqxY8QrgU5OUiskoGVmoVfOlJUvOyWK1UNqUviL2PYJTwTtpRQRtJCYhZ6hOqU2JADmpJc3zHTOqGClpfqxtDl5OE9FKa2DNeJVHyVesWLFixSfi5WnNl1VSfiaYWQvMX4UiRlCaauVuHDhW4UfvXfP4+8/ZHzK/+OW3ee9H75BL4nA8Uo8dYcrcDE8Zx0z0NrXqJZAPAzk5uu4haAKVVuiGuxcjU8pIKMTozXKgCJQRpeB9xDlPSSahX0vGB0/0gU0XEJTtdktOyocfPGEcm8WCZkoBUSV6Z8VQKbz2VsdXvnLFtg88ez4xToU0KU6VrMWs3Kj4FgsEL6RU0JqXqeE02UT1Ztux2XWEqByPZveFJHywBkOtQi0Z1YJIo1Y4cOqXiW1txdjZCsuJEaZnm7PbvVlPqEZKFpLL1qtIMOwLqoWUlDRVwAq2zju8wJSz2eRppSqUUgkhoOrsbzd7ui4GMvlEagqe0LXmQy2tQF5smRSPiw4VUwEajiPTlOg2G6hmcbd9cMFbn/8827jj5uaWw2FPnkaGfMSLcpwy6iFPhePtSM6gxdbDZhMJXcQHT7cRvIc0VqZxomaPzFO1M0nHOUL0RmCbGzLe8cabb/Hm27/IcV948uQp6XjNR+8/ReQpMUa2l5e89+73qNkxpltKSRSdJ55ZCF3amgnO+VaMr/acUkllIKfJ4sJqlnJOXFNHKm0L5/FfWWhFp+J4a4AsSki09XCincy9jPO7hriXHmjHY7aBsyVk9oRzc0t8JXaO6AK1KDlXnPcnVScpeO8IwaxRfHCoE0o14qCoUrJScyXnSnGKiGu2c3ZOtE1Ra7GGQ+yCkQqLLtvtfSCEsKhH9X1HFwPTlBAHoZHEut6TE+AE7z0ln9k1vMJ9BV3+WXpu7XEFnRspL+UA7TViy3lRjbO1ckZEao2gucG0/NeedN54qm3tzGvJtd/ce6/5+a/AR9CKFStWrPij4WNhAD/b2/m97TnLdSpwG57xrd3f5Ifu93h694y+21EnmIaCv+iJQTgORlbfdQ+QcmAY7hhzMqXBUnAilgtMlc3uwtRqNKHqEGd2ZWnKqCgxGMl+3jBTTxVEAjnXsxhYljysltJIDMLNzbHFla3GRyWGQPWCFqVUCL3j4jIQnJILLSY65XniwIs09Z1GxsCIODpLgarZONfi8N7jvKPzNCVLG6IMKpRyIrvMRIsyk9p1/pszIcQtxO6q0uqIFa1uIarMB2a2rsupmuosjpLtd4s1XiM6zbnibJkGLYed1XTEYkcUU0TCYhofPNKUW7WRf+b8wmldYtpUTCXV+YDzdiz77YZusyF2HYnE4XDgcNwbASVnNBdTqJrX3BzztlquxTsCYmtETXgLnZWo7GzYsWivsSCaxUs3dh0PXnuNGHfcvbhDD3tSGUgltzWZeJYe49yzZk9WlgEH2yydT3VbFx4v3vIEMatnacc1VVPtdc7hfaCUjJZTvjCfPCPOLenFGeHm7A5wfqrPag0v3yM+fs+YK88s59Di1mbVJhA6bzaDKmbt3I7VfExncp4TWWrrFV0c8BpTqB0vRdsfsfB3jltt/c6BsymqNrVaZ3WEmQxVqxK8a8M1ZhXn2pBxCM6GeFRPSsez+mz9pLvoihUrVqxYseJVgqI86b/Fr33+3+PrD/8Ko7/9WW/SihUrVvyR8KlJSohRhGYbFB9akuSsIGCNH2cp20xEklbyr5jXOYqPC50IxdSYHEIqldImSMz+TfECliLPEy+nBtZsEbcMOOmcLrbN/aR9eFmm+FVofK9YsWLFio/h/F6+FHrhpW9+An/3/I994geKPVhFORTlrihPbzK/93vf4+bmwFd+8Zd5+OA1Hj/5kIPCo7c+x5Au+OU3vsB4nPjt3/x73B2eU2pmOibEVcgdh9uJiwev85Vf+ZOUfM1Hzz5iHI5MeaKkgZwrXYhMUyElI0uoRmpVihYkFWoxgtLFxY6UEqXC3XQgjYUQPE+ejLy4OaJFEQn0m47PffGSTRQOhwkpws3hyMM3rqhVGYbM8ZgQCSgTuRgJJwRHdB5FydWUdGY7WHGOGAPihMN+Yhgq3gs+CtuLjr6PxOioJXO4y+QkhBDwQcgpM4yZNJmlRM0VpBI2rinFKF5t2jhna4qUGohRcKHiEZssVmVKhZQy5TYTnCAEU0ISs4oajwebMg8BkcqUcptAhZxGm3YFcA7xDh+CSernjGrFd56Lyw2Hw5FxNDuyEKDvO3QmWChMY6ZMFSfB1K4UXnvjEXHX8+L2lhu94/r5Uw77IxKMsFWPI6UoCUFLMZ6RBCNHda5ZilVcrKh4YhCGQyK1afhcMlWssK+iuGDkJh88aCvcO0foe17//OfZ+od4vscHTxyH8TmBAmPh9viMm6dP6foOp45Si1lvtWN8j6DkA5e7B9SUGaeBUjMBpaiimmnMdmLc4JwnF5sUbqtmKdyX2fYB2rTwHPHBbGl2ev55U+JjV/LHyI3zte29o+siMUDoT9uyvdhwedXjxDEcEs+f35FTW9tq56IUU3jq+ggOqhYo7kxta9bmYRmptilmt1idaFO4qrUwpdIaLUZ463cdIQZqVcaxWIzttVkWDmYhIooTR99HvHOIt0aO95G+6ymlMo3pU97xfvqYbS7myXcn0tSPTjH+7OI8P2duGpo9SIv7nT3xZCFjz5yVms7Vkc5t3V7GTFw65SZz4+kP+KB5edmt6cSKFStWvJJ4mRi7fMbATzaf+LHxyXleY+Tcm/ARf7f/j7kJz3ny0S2H2z3dRtleXdHtX/Di5obXXn/A5mKLC5GHD17jB+98l3K8bTtj6qhFTRkJ59lePKTvHXf7Zxz3o6lZVlNZFS/kMpPBjfBBDRTNlKa4qVrpuggoOVssV3LFO8dhf2TKhZoLIp4QPY8ebdlto5GHcORcGFMBFWojaswuZzOBxAjjNpo4E9/n54gTnAt4b8T2nMz+Cio+CP2mM9tlUSbJmGJlIAQjBeVcSalQm+os2H774NvABDjvTAGVRuwQyy1MudHqj6XFiFlr296T9ZkJdDYST6uDlqauBEbw0LPF5507yzNPxBy/2E3XFsMoMXiLDb3FQiUXU1pqSYaK0vc9IsLhcOB4ODBNE8XYYHZMm22YqixEIBHXFHaACqZJZAQg1FFyMULWYvGmy3XivDvlR2q5MGDv5z1XDx/iNAKe/RG0ToiaRVnKI86nNghSG/lFT0MH0ojqIsQQceJJSRuZB/Qe+15brHZOPeel78/Vldrz5vCcUw1ZF1b8yzeFk33g/Uu5PaAg3hG7QPAQom9ruxqRrgvIvNaPyjSWRQHUloCtSXX+FO/O1nKordlGQJJWUz8Ru5r929n+VT1TnXVCDA7ftqmU2oTFKlqq2eghTd1WF4Ul3w6Fc5b3CkLOmRUrVqxYsWLFqwtF+aj/Jv/RL/9v+XDztbU2tWLFip9LfGqSUghQ6uwnXwnizOoNs4qpWI7vnFsmLiqQAW1KS7VYQ8t7CKEVAcQs3yx5lpY822tsTsamm89JSXNbygO+JffljMz0B96PfwpFqRUrVqxY8U8GI7GehjV/LGfoJ4LKSbNdlka5tROKETZUefzslq99/zFXn/sCfXdJPR744Nktb3/+iuvnwte/+bt8+XMXfPTsCTV23D55zPPrp9SU2UaFGBgOmUMqhH7D1ZuvU/sNkyb2x+eMdxXnrJArQJ4ypY2EOie44KijUKdKyhkRZbON7K423NxOpGkiTxmH4/rpgVwzpRS0FmJ/wcM3L3jzc5dE73kzOB5ebLl+fuQ4GAHg2fNn3N0e0eopKVOSWVh57yjFVJNUZ3UewEG/6dhudozjgWmsUKAWYRoSOZnikTiTmC+SKSjbzY7tzoNG5PpISRO5tiKqU9DAOEyteK2ECOJNhckaB4orbZLbmZ1WKaeCrxXRJyvyN/vZ2UpMKdTWVDArANuZkgqoIsFstFJKZrvQgoxSCilNNomtDmor8oZAvwmIs4ZCmTKaq02xd3B5taOkiePTIzlnxnEgj8WsqoLFVd53zRqi4rTDi0dCoNt2RAelFiYyJSfSUBhzZjpm0lSpRZe4qYpZYXSbaOSOXGy6G0FcwHdbpIs8evNNPjdksss8fv+OkhPFKajDAbtuRymZaRiQWrjnVSHteeLxLtrrxBO8oLVQ1cg51rgpjNOAF7dMECMeZpuRMyL5Ysag8xebJD+3XLj/XVNZws6vdw7NbRofRdTsh/EQ+8CD13fsLgJd19n5rKY+ZpYdGdeJqZbljBaW5pM4U4PyoRkSq60ZUaxBWCuIt3WukPOEql2vJZdGEnPt/jI35RyKqXs5EUQq4ozcl6fCcUp23qrSh97WZ1Pv8j60yXe1ZlZTJfCv8OCzc00RzbVjymlmYBnyX3p8c0eZ1pRrj6tN+zvHYo0iiBGXdFYGaH9weYtTjiCt8TZTyvTs78+QsyW4pgwrVqxY8fMLnf+d60x/OBX1J7YhevoWgCqZb1z+NX7w7NsMeHZ9j687bu5G+r7y8NJxd5i4uXlCmgamJDz+8H3S8QBaiA5cDJRUGUeLlWLXUTRzexgZh8OiAuoE1MuirDKzTWaVSqo0InXFhRa7VAWMaCJiP5fUCBeqIEbKcB6mVAgx4L0Su56NOmqF4/HIMCQEi6mNJNHi8Nl5txFRFl6Md8QuWozViOzShiIs3p0I0RFC25+mtCotT6la0akullmq1WyuphOZXLWcEfgrqsVIKyb73p4z27RZbFHaBtru16ZG45Zzasdlpj5rsyNrP7Vj7s4WnqoyTWlRrDpZ/VqsKc7I3MWp2fgBPgQ2mw60UkpCizKlRC02OCLO4kMfo+UixQYAnDPiU4hh+dtFqw1I1MI0mpKTEbvmzLdtbIutnZMl/5vjstqOn4/ecpUU8JOSS0EbGUzVEbxvpLR8RgU6uxhsNVoMLQ5xpkRkBHVT8DXiT7HcrKZl29xsnzYvoHs4zynmXO5Uez5/lp493QjxDupMEJqJVUswaoSyTbQBHTmNzM7koFrNqk+cMLvm2RCFEYOkqSbPil8zua3JVjErjFrcD4JjttW257u2rY0ANZPrVDH5Mlt3M1lv3j7nvOWKyzBJq+M31S8l39ufFStWrFixYsWriSwjf/XL/wc+3H7tZ70pK1asWPGPjU9NUtp0kLLalIUPrcgPtMQ0V12aC82y3nzb25SLlyZnjOJtXMSKJY6WjIs1X9uEibQikn+JoDSrNPnWPThvac1Jpcxvox+fpL/X6V6xYsWKFa8exD5fnMwWonO98KfZTjgvcjojOAAQyEBC2fYbfvSdH5LeeZc//Sd/lS99+Q1+72u/zduvFYbhOZs48uTxNY8/eMH3v/UuQUZiEHZdwEUrMksdmaaJ2imHw1Oef+tDNN9QpsSm78AVino0mXXYUlitGdcKv7UKJSviIaXKs2cvrCBdbBo4RrFJ4NFRkqnThDDRxUve/8FzahUevn7BO9//gNcevs5ue8nTj55zvFM2ocf1gdubW8Yx04VIiIF+F+m6HcMwcnczoTVDFfKolFgQArGzyU0R0OSYjpXHx2v6jXBx2RNDRy0TlUQuyuHuyM3NwDhUpJrtAaKoa82URhjr+0jX90xTpuSBEG2yN6fCNLVJ43a6aj0prVgx2poT1hxhIaXU0mwtxLUJ+0YESdaUCd41+wlbF+NQqeVA13lcsAbNpt/QdQGwZtDm4gJhovYQfOTNN94gV1O7inni9npEqgNKa54EdtsLpICXhDib+r56+IC33niD42Hg9u6AeBingXE8ktJAzoUQOmotINmaBlUR9WiFms2yN0/FyOIYYebpkye8+cVb9ptr3nvvOzx99i457UGEqwePmq2HqWimYcL7AD6QS7Y3bd0JFWF7ccVrr7/O8+sX5Kx4aTZ+FCMsaaZMxY61gveBGAMhdkzDkVrKPQuQuhDP25WvDi+Bil8aSXZlwkxQkmZB4n3Aiac6syB0QelDpFaYpsxxGPF7ZXv5kFlux/vYFKrSon5Vq7T9b9P2mBpV7AI4jBykatPmGahGqVe1Bo6okcZMhalZFzI3GOpyX9NqpDtUGY4JGZRKsaZItSeUWhE805Ragy+3tW1rH0Ak41K26ehX2J4hBiMumiKUnOLyE0dwUSMT5hzBXmsT3015qX3V2n7f3kfa2PtCSGp/12kj8J3lD+dEtx93xH66BNkVK1asWPFPE+dkiJkQ8bMR0z4NPMz/3vrnfHv3d/kgfJc8Trz/wVPefPN1vvD5N3n+/DG5Kjc3t0bI8VBafDLlsZFXZi7NbH+lZuWUR+5uRmpJCKbKoxhhxOLr5imlshT07tl/NaLEMEyo1ha32KCh8w6XIY3FbFOl0nWew91EToV+26FUcs5c7C5J04RWIfpA1/W8eJFazKfE6NjuOrPBVTjuEyUXszrLyqQTPni887hoRI9ajKyTp2rxbxQ2fYf3Rq6qFcYxM425ETPsIGmLjWclTlUlNLUirUopplLrvcWZZnnHElcsSkTnkYNYnHpSVtJGRNHldzNZaeaUiEIVe9TstIzsJI0Upk5sICRYPqFVwQeLVdv2Xl7sqKrklC3303S2zs3a2oYxjOgUQgRXCTHy4MEDtFTu7u7AeVwtFGexaikZnKDeSDG1qSmZ6JOpzdZSjbAzK15h+do4jtzd3HL95CmH4y0lTwhCv9nhnVuIYFOalqGOUgvU0rbZ1p0PgYvLC8Zxaio+3ghRcv9Ktmu5xcHi8MFTSrHc8V7kdp9sJQhOPOICZSZbUZa/PxPndcn7zZrdBhXELJ/FMU2F0oZYumK22rNKKAg5l2bPPg+QSCPWzxaBdj6VptwlRr4vS75LO2aNVKXSzsOJLHXSCT3d1Ja4t71XnZlRp9sQdvpqIyjpss2zjZwNkbTj/ArbR69YsWLFihV/3PGk+zZ/8/P/F7519d/8rDdlxYoVK/6J8KlJStsOuuBaQq1tikaXYob7BPlmH2iWbbTprdY0cHKS+W1TLNKmikJTXTo1F4zUFOYkf/bi5qTUNP+sYqma6illa9rNlqzNye3aZVixYsWKVxd6VmSbi8niluLZT/omXhbqA0AlUZlwmINA5XmGJ8+O7J+84On773N9zPzKV77A5cOJR29OhO0j9oMy3F3TSeEqVi58z+MnLzi6gldac2GiTGYhRVXGwx1owSmEsEOkkkqmagQ1YokRgd1pElwUpNB1ERWlajZbsyqgDucrm8sNWpS7ekSHjIijlMqT969xAhdXW25eHLm9m3j+5EdstxtA2G13XF7sePF8D1mpuVA9PHx0xcPXN1QtxDvH3e1ohGLvyaWQ0gjq2O56NjuT7L+53pPGAa2O8VARJnYXZlNVCry4PnK4ncgZBCs0i7QJU4BqNggq2iwjrIHgnPLwwQW5VPblSEpn079t7dRqZ9LsZM1GoNZCHjOIqSJpsUVXZS5Ya4tLrFCcU6GK4oO3JkJWSqpocPRdxHvP7nKHD8I0mQXcNKoRu2Lgc1/8PNsu8vjJ7TKBbC66pzW93e7YbndEiQxxInZKdZXd1QXqHDf7FxQKDsH7ym4XbVq+WCMmT5W7/ZE8Fkoxik8pNv2ec0ULiHp88GwvLrh6cMndi2f8ox/8gOePHzNOdzhVNrsHXFxdIlUJMfL8+TNrcsSt2XwMR8qoS7AVYqTf9YzTHaWOhD7Yuq6VSmEq1gxTbUV67+j63gbV6yfM6OpMGdF23Tt86Hj99bdICW5v78hlMCJ6U24y9SEoxe4cppalhD5wcdVxebHlxbMj1rswq5AQHT6YNWDJSkqVaSykqZImm/iPXbDGVRCE1sxqG2nNLbsuk1RqqtSsKG0aXxVnbCazYZgtMtrrRYwE5cWDCDF4rLGR2nExpo4WaxJUbdPwM1lOhVLtUvceQhcIIZKznfNXFcFhSgWwKCPNhKF5VsG+ztPq2hSmWOJ5OVNYmnlOp6bzSU1Mzn62x+7PnGt7ndJsM8RaVPP2CCx9rjnPkPmHFStWrFjxamO+f8+fNT9N/u78WdZ+FIQqlRfccvDXPN9+k3f9N3iqT9DBSBjBV0pNTPmG3QPFuQ0XvMbTF9dGuqZwueu5vZs4jkNTqgQmU6RMqRHVscKad7MeOY043jat1jYEIidCgnmXIWIEF21xsKpbmMNmXetPNl8Yyebu5kjwwuXVztRJM5RU2d/tm22bkWVSTU0lxggr0gdT9REbIPAhk5PixVFdJcRgA4oCzrdtVW0qPooWIWtl1IR4I4FMNVNzI2CdkVWcc1aDrHWx+1NV0pSWAYQYYxtemG3SXjqZnMhFstQYxezj4KQExYl0P8cgyEmZV1Wb5VrbvqrUos3+2tP1seUfNkgxTqaSJCLsLrY45xiPB8S7Rn7xIBVBceLp+p5Nb/bFtVjO4bwg3nM4DozjYOe6mgKR92JEJmkKS9Xyl5yyEcEb6QYaiaYFTCJC15tNsVD56PG7pONgeW2Tu8wlUYtZgeeaEYEYg+WyWcjJ9h/ABY/zjsNxT8kFHy3/zSkjaqqnsuQTdnqlEfVzLk216OyiO7v+Gw0HnGN3eUWMPXd3B3KaFtsz3HmMZzGod3M52REaqS5NhZRMRStGs3zz3lSJSq4Y90ob+c3Umc1msDCbGJu6lBHYvJituXjFFSXrPFTSyPnzMrzHrpwj3DnnPQ0tzKpcta11beQ61VlVzK6Dszdua7YNEDsheFsLqb5EclqxYsWKFStW/MxQKdzFD3nafZevP/wv+MbD/y8f9d9Y61MrVqz4ucenJin1kdbok0V9lrlBSrN8m5sqlq7jPYvthhPwzYbFagYmXyyONsVxmm6e762C4tpGhuURpdDISLBYwoFtisNs4ObGws9mUm7FihUrVvwToXWJzb3H/WHP/qf8t81+y6sHHHcp81s/eMxrrz/icP0Bz26OfPWrv4R3G/7k/+jz/OD99/nOO7/B5a7yLCXk8pKryx3vfZB4uPVGiAiXlPyE/XRLiB0BI7tMw4TmQsoVzQ6cWlNBhOGYzPLOFahtgrVNadZamoqKVWNLzcQYUJp8vQg525Tk7c1ICA5V6PtAUSWliZoTn//8a1w+iFzfDjiMPKKqTGPh9sUzHrvnOHWEGHBjoWThxfXAfj+w2UbiJtBvBY2RGAKx9yjCixd3jEPhcDgCDs2KVEVzojoYDplalO2uZxoVR0fwYhPXWhFv5CArfCs+BmqujWFgH+xBwIXAOE0Mx5FxSGiZZfA5KSlWO6ZghKSp1ja9PJM9WKZfZ4WeE0FJGwG7Ls0IVcU1+fw0FpxELi63+AClTNbAKZnhOACOy8sN05h58uFTHry24+Jix93dQJk8OQ4gjsuLLY9ee43gHNEFfHTETeTy4pLnz6/53offB1e4vOgILqCho+pE7IVOPE7E9t9VUjSLsmGYAMG5QMnT0q+J0dN1nmG45e69G/JxouaMYI2M2/0zbg7XRBdwzqOq7HZbLi625FxI2aFFqEWMqNMH7u5ueDEmun7D229/if3NkWkY2R9vSOnQjqu26FBtehlTBzO5oPtwxhaxefDg2Ty44su//MscbiZKfY/jXs3KQLJZfIkRgJzLhKhst4EQOkrN7C4i/dahTDhf6TY9Vw92+OjwUQlqKlMlWdNrJryE6NBihKOUlK4LuODIJROj5/KqR6jkLHhXyGPClYp6I8I5YBpNgaAuagUWJ9di9iB9v2nHxezdnGvkmSTWOBJHqkKuRvoym+S2v219++DoYmhfO7ROTLMFxiuIueEDnAf8n9BXOv2y7fJybpy0ZTM3nuSM4KRNXeLsHVje6dSAOv97nH1/r/n1CdWeT3rfFStWrFjxqmOmoP40/+ISkTK6O755+Tf4zRe/xXW9pS+FDz54ny//wheIoaJhIGxGbu/e5+YmoeJwcYcOI6Uoobsgpz1aPSFs4TBQ1BRAvXPkmvHONYupglazO3ZiaqS1qasKZ5ZmzDZn2ixYHbmc7NDmGt0smzONinMWy/hgY4WlZJxzhBhNGT0lcgHnjYhScmU8TpQyxzlGyKhVmabM9fM7i4c2Huch9p4YIj5YbXE4TtRSGBoJRcTUbasqM9uolGqxcTWyBmo2W7XF+zTSlogNVJwUaowAHXyw4YWcjexSZpITiy2s2XHpYhedSzn9flZaWqKD+xbG5wHHorq0kPRtP7Sp4jpn9syFYjldNeKLKoTgKaXy4nBL7DzbvmNKpqwbo5DJxBDoN/1Sg43Bk3Ihxs5i/Ltbcs30fSQ4h3OBXFIjYVeQphgUHSLBtiW3x61wu+ymccYKOVdSGU11pw16KFBLYTrucQjD0GJW7wl91+JZ+0/F8gMBSknkZH/iYrNrdtKBaRrMgnm23zs7tiKOWmZ1MLgfRZ5FbE7wMRA3PX23pRTloIoUqJpOSkLupOofO9fy62bf54RaM1Dx3hGCb2exLpaKVdVIQEizEm8ENprlnzfHAVXFedhsox2zanlureDbALDzgRA8OZUzNTBdYtTZztD5uVpuQxvBO6u7q5wszuehh5eOz0z+EwchNGJgbUTAlaS0YsWKFStW/MyhKLfxff76F/5dvn31a7yI7wJ6L8xZsWLFip9nfGqSEmJJ1EL8cS2B9XMRgyXRtyaBNUlnqxffms2ztcY8tVxb0j6nm01cqeXysigiKbPD9klp6eU2xskWTs6aFvNkGB9jLK338hUrVqx4RSEvfXte4OUTrDz/iPjkNkWb5GzF5VIdFeHmUPjGN97nmL7PD771Wzy/ueYv/sV/hicf/pAnHz5mHK/Z7weG/R42r8P0O5T9HbuHb9D1PT/49nf44peveO3R6+izkSkXum0kpULXb6iMjOlIyXmxTggykqZiNqlST8TeAnnKi9JQjJGcm81UqaScTNFQQaTiQqCUTAlGFg69QC50MbLpN7jY8fTZLVOqpOSIvSN6IU8w7gES/TagTul3ptozjEfSXSLcei6uNnSbiBfPxYUVxZ8/uwO1hkiaFXcUFIcLgnixRoU4xqGYZV1ODMPYmiX2SR9iaPshiBo1eSYJlVyJIVBS4bDfk1LBdJLMIhDMYnZuLDjnSSlZ0RVZwoFTeGDvu6yrZQK+LkVhEShTMrsvmV8jpKlw/fwF/cb2z7tgzYdijZ/hMPDRlNp0duXu5sDhkBEXuHi4Q9Tx4PUHZnuglYvLDUhlTJXhMFJywvkCzraj3/Y47xjHSqkjKR3x3oF4YvAUn9kfj+RSzTqgVJCCCzZxraKkPCFOcV6IXhml2iBzafRvKeSS24SycDgUchpwzpNzomoxq4BcmXKymEtBnHIcbnj9jTd59uQZd4fCKVazKC52HRcXFxyHgZwS1dow9xs6atuporhoDZfbwx0x9jx69BCtmZSgcES8mnVccDgJbDYdMXpiF8ntmA7HqSkiOUJwTGNmf6e4B32z5HBMw4jgcCJ0Mdh11Ka0dW7uBWW79Tx8dEUIYipcY6ETz5X2TFMh1cLl5QXeOaaxME0ZpNJ1pgmac+Vwe6QUR84F5yvbXcem78wyYzIFqy5Ga0pgU9gzwWZWYJoXaoyeECPH45H93dDIdq+uklJ9yYpZWp7Qllq7/u0Xs7XF0pCacwlMkWnOFWp7zmwTN8+dz+aO56+b3+vlz4AzvtS9/5D7r5u//6TXrlixYsWKVwgfu2mf3a0b2WFR3P4UeJlfe++t/4ANeCI/4nce/mX28Zrx7o5nHzzhcPuUJ0+fsj9c49yI5krOIyKV4ThSK5QakVIR73E+MKaCr5ltH5m6yJQmQvCY4kug5mSWV7WRbBxUNXveZnTMrJA0W+ya0g6mMNRsc7Wpty7HqJEzpFpcPFtWqVZiZ6SjEALjmG3ooik9lsa00NoiwLZZPjpcNYJKLRZv1qMnRlNc8rGRdYrZJ4dgMVlRaSlF255m5yzStrd9utdSFpIJGLGINpwARgKZw5BSqu07NkxZlhzK4pX5PM6jmEbg0HkJta/6CSvhbPGpbZdipJG5jmn5iTvFv6JM04SrzVbMu2ZnZtZhJReOh6OpUxXhcLB1olUJMdD1kRg7EEhpgmYJbEM3UGsxxR/asRVh0wckKSmPlJqXAKlWsXOTSxtE1YUIZBbIctr32s6HqCnSMitKKY6Z/N/yt5I5Hu1vKywDI4pCtrxpLgaP456HD17DO2Ec63LA22lt9mvhRKiZSebnp0DPzoyY+mtOpujlg7M8mgpaEWeKUyF4nKMpnGo7/xbzT2OilHYNOVuP45BQPMF7tAp5ygsJbrY1tsvRUdSuiaoVHxx9H+xaaqQ154S+j9DBOCWcN5KUbwS12abQiVnvTWMiVVsb4qDrQ8thKinNRCmHaqUsttOnA3JeTpnPUylmK/2x47lixYoVK1as+KlDUX64++/5T37pf8ez7nsLSX/FihUrPkv41CSloiZFO3tmz4QkhxURjBTUCESCKSthCZdz4FuW6AVi+10GsjYpaRyF5giuC5eJ1i6zpI1F0HYhKnlZhkkWktLc0KhwRmjirNDS3nuWap6xyi6tWLFixauFH9NRngu6fxhZ6R7x4ce8/TkqUPA8fb7nm+/8iNor26uOwA3vfOM3eef3v8n17cDw4rtsLhwuV0LIOA9lyFx/8C4iPY9ef5PhsGf/7ANERqbhI1QOqDi66NltHnCoI3eHWw7Xe7JW8lSbxLpnqBM+eFD7ZMslgSjem2pObVYEmWxF9Gb/NDcgqunz40WAShObwXlH7ztC78E5juNIyhBCpEyZ4cXAFEzqxMWKiEd8IAZlFwI5TQjK7XWipMrt9cjmIvDW5zd0G8fd9YG+C/iHgYvNjrubPcfjxHGYSAW0tEKsE1LKqFa8mO2bF+j7jilnwOwHUKjJLPFqtcK4qexUa6xUoSSgOvvc12yf/a3oPy+daZoWAtRM4LhHSprbMGcNh+VYFptUF4TgHduuZ8zW9HFOqXVCk1BiZ1ZmXbDj3UezEBtGwiYQuo7b24Eo3iwafOWNN95k00X2xz1jGkhjYrfZ8sYbbxB8YEqJYzqgt0IaR/KU2F1cELxjnEbG6UjJEyKOkhVNZu1WC4h4qjQyWx8R/GIdMRwHWw8OKIVc5+MmRPFNMdPkMHPKpHEijeOieDmTQubJcmkT5CmPDNOelC7N9m9uJKlD1IrrOWdu7+7IJbdJ45evRqE59OFEuNhu6H3g5tlTXAh0fku/2VDqhLhI6KHfeLabwIMHW0JwZrc3FXKxifjpmKl42oA9x30ml2oWC+K4u0mMh4LWjHhwzhN8aLaMikphnJRKwYfIfn9silqmNBWi58HDS47HgSkXxFsDIvQOvCPGjr636eTj/sim77i9nahUtn1gu+1AlGGfKMWmmodxIudEbgQ5N6/r1nQ0xSBHrZVxtMnzUiz69Z9+BOGnj1k1VU4/WsPpNElvj+ky1HAeu5+Tieb2kcPu3fNzC3r/3q6zaITlLkvsL6dp+XMSGJxqPzPx6Z4Cx9z0WnIVuV8rWtOJFStWrPiZ46UIb3n0XlqhajWhP+S99IztoC/lJZ+UaVg+Adf+Xf7Lu/+QD68/IPQwDgOH22fcPHtGHkYe/+hAtxGcU7wTUxDKynjMKMqDR68jAncvnqN1QhwM45GsivMRJwEnnpRHxiGTS5md28xSC4v/z7e51NKITR4a6Wb+HNZaqSi+KZrWUk91Pnd6E3GCwyzUEBjTZKpEwYj6U0rU2qp3ovba9mEb/PzpraRqipOaYayZ3WVPv+2ZxgQIPji20ezPxnFimjJTqlBNDck1WyvVinduIYeERtSYa4ez1VWpp9zQqbR4zfa96kwoohG+Pz4UcyIpvWQHd4bzFXYusDSTsOdjGbynzEqtjfRl586hVVAHItVIKk4XCzHnTbW2Vlsz6sx2bdP3HI970mS5oRNH6Db0vcWqh6Ea2SkpRRKocjwK0zSiKCVn236x93aY5bJQlzhoHl6woQVTn7LXtOMwKx2dE+rbMShnhKQ5hpqP6axWK+3iUVFyydzd3WHufrWR0sTyifa6cRyX95D7F/ZCQmwnhegD0QdqyaZAHDpiF8h5WghjITqcg00f8c2SrZTKlGxwo+aK4kBsICAlbZaGSvWVkio5a7MRn8+tLFZsRtaCnNoaq/9/9v7kyZYtO/PDfmvv7X5ORNzmdZn5HhIJZBWQRaAaoshiIxYbEylRZlLJNJIZzTTRX6CBaBpIc9FMAw1kGslMM3LAiWgykmLJJFmR1bA6oohCoSskkEC2L19322jOOe67WRqsvbf7iXsf8BKVyHyV6d+z+yLihB9vtu8TvvZa3/q+WAlwpnbkA3ixNW0IHhXpY2zrTkGcdkVg771Zfmft866UTMqFUkl9MWWbW90O3eaoSvssGJmpKLWhB2s4fs3c3rBhw4YNGzb86UFf89z97uV/x3/6Z/5XvBi+u+WZNmzY8BOLz1zGMLsKWwibdds68SNLAaV1LLX3udb9rWbHJkuafwBC/TkBJ6ocdVUnaASlQRaykWv7qt97tUVWE9qFpZ69/tNeUwldsrnqCSy/3P7Qb9iwYcPnAi0hrF1S408GbU+Cqsoi/VUl41EtJE0cI7hSkGHg6e3ExW5gGAe++Y3v8u3nHzOXGz5+/9u8fPYU0gFOR97/xjUXlxB2yuPHD7i7u+N0O+PwfPWX/gK/9Mt/gV//7/8WT18+Jc8zTz5+n+LA7TwUOE2J3fiA58+ecTxlSjbSkXeCDI5xd4FKIZeMy1CSddeKWLeyeCGIo2QjIKUc8X5gNw7kNJOSQiXqOGddkTQbhFJwzpN1JkpiGAYEoeRkSfqo5JxBFPFmI5ZzZBw9YbBOzjCO6JTIKTNPwjQru4tAVsfd3YkwBJImLh/v8CMUzegxMdc4gFIt64K3J7ETLi53DMFzKXvSnJmnwjTNdWyoz2qLE8LgSHkpnjjnFhWmSkJw1QKsydaXsiRo6y96EraXp9QsaV3tztYitTvYunWddxynGSVzcbmjqDIdI1I8ekzEmIlzZL8befD4AdMpEucMePbjJRcXI8EpsZgtXC6JZ8+vub6+rt2ze46nI9fXtwyDR8RzOByY50RJmSSJ73/vA7SYKlBRJUWz+nMexJtd3DxlckyAmJpSUbw3mwxVI3iJmFWvXbbgRQjjwDjszHavWl/U6kDdrllnVIqSM9syrfOX7Lh9ecfp+jtmK4DifYBaeNFcKMmupRV/ViWv5W8AgooQwmAWHrWoMYzC5X7geFcoxUhuwe+sSKXC3W0lXwXPnCIxJ3bjHs2FlDzTKTLNGT96huKYT4WYM6dTIhf7LOVolhnJl1qsEERs3pcEp7vE4dZITk4GxtEzjolJZoo1lDMfJitIaKl2KbmPe5xszg7jQCmQpszxbmYcA6pWMLTOdftXXZWNoIR1tmul3JTWwa1WzGuxd0mfXyWlNcHHydKUsLCVXsWqxgStyEd3qzECYSUTlVo4LPWPQVsPFCDUtUjbVyc81eKW8Gqhum33unXFepsNGzZs2PDPIT5Tk9p5wUArqVZREhBl4ln4Q27zge/Jb+IG5Tgrc0w8+MKBIBPz+5GXNwcOt9ccb68pJRKcMk0JLyNJE2H0zJMyzxEpytXjh7zzpa9w/fxDi7GKcDwccMEenk6ElBNBvMWIuVRmbakKPCDOFHnMbsqivqae5KqFcrc3rqRoi89czfm5JohaCUAWYxRnI+C9rWtcI07UGIZKoml2ck19yRRNFR+85Q+9B4opwaiQU2GO9v55TlVRSus5WgzqRUhojyEaIUcrc9gFV9WaLHzNsVTLtKbW2lSYGs15UU1q06GUhUBNI3VU4lJvgNH6P5E+RWyvy3xZVKvqGgwqsUs6eSQMDu89cyxGEMFiR0ngvDCOo9mDVds9h2ccBpwXcp7RIszTidPxaApKWMwYEZ4+e9qbPFBI2azKVAspRuZprvfBWYODq5Z8rir+FK3qvTa+2glazV6tXf8SLQn1Pvmm/lPXX2fKPHr2sWoE9TWVUDPMZeprOentqLKQBquKldR8tJ7tAVq7inPOlFHbHJCq/KQJVWuakOARPCUVjsXs31yV5c3FVL1cELwKqCNVNSpfFZVSUrNYQ811AOnxqFIsj+7qGNY5VVKpxEL7zPoE3tv3RbUrhNk6x5qZNNpntfYj4bwjiCllaba1IFUR7GzOnpHu5N6auH4GtHQC/+v+9m3YsGHDhg0bfrgoFCZ/zbev/j4n/5LfeuP/SZJj//0HF7/B9fj9H+MZbtiwYcOfPn6AXuvmG07PxpuqUs0OoNV/2wqQTWWpYVk4GiHJ99ftXwBGxFSTapEwF+vWCf0MFj5RWX31Z0dZnd/9RZVaMmW9OLMv2+Jrw4YNGz5v+Ge1dLNHQEbFkzA7MK+Ou6J89OKG7BMfPvkeH358y8ubl1w+fIev/+Z3+Kv/+q/wr/3FP8Mv/+U/x8vfjHzw/g3H55HT9QHnYXcl7Mcv8M7jKz55+iEvnkZy2RNLYT8OZBF+8+u/wdNnn5CSJcZPpwl14IcBzXA8viDOT4nzibGq3AiO/cUlKc2oJJxTdt5UhkgZ1WwdrCJ4P6DJOmKLZlSKqQgJjBcjF27PPGemOXE6pZokV2JMVb7eurUfPXxEzInjISI4VHNVHVJyyfha+Y9zIu8GxCVCcFxdXXFX7ig5Mo5DtRoYcM5xOiWYEofDTJwjrhJ8xp1DJeF9QFQpJRDCyGmeQRwxZXLKxJTQpGh2lKy9K3q3G8hq5BwfAogldZuKVI8QqmJPqx2kak+w7orW0jpO21RpJBzt9hGN4CXieuzTLOPCAClGclGqgxySTb8xJ8gpczjcVW6PI/iqJiSOKZ44nSZSOjGdnhohDOteH8IB9DlzTMQ5meWdCGEQ/KhcXV5SChwOJ0LwpFgQglG1cyFOkRiV+RSt0OCrTV6xgkspsdtaiLhqpwWoWOetCiXXbuo2jis1MvuummhV8paIJeuFRY1gGDxFCiXbfcm5rBS/bE9NzebVCKwWmUQYx0AumWk6kosS44nj7YG7uztyjuwvRva7S+Y5cvvyFmm2al7AmV2cd5FhF3Au4NzMHCNhDEbeK1hCXxziCt5b8aEUpVCsMOY93jmcxwhXAiUWypzJOlOSw8nAxeWIw+5NzsW2rQpfUy4cD0coysVujxsLzqlZOTjHw4dXxDkynSZiKpXEZ8Wq4BzOm1JAyrqao3aeTRlMWhXsc472Z92tmrRV1mQgKz71ItL9GVID/UVNj0o4bPsR/CrW7zUseU1PQl1vlNXr/fcrzlSl5C1vk9dvv2HDhg0bPn+QdYKov/aD/9FWqe0PVW0zA7+rv8pvyv+HZ/P3ub5+yekUkeCJByV4x6986c9x8fiSq7tL7j6+hoIRZhCzq90PPHr0mNPhmsNpBgn4sKcki8W/+e2vQ5rJKdbYuZDnJXYqWTmVCbQYuR0FPOICIkLMM6nMDNUWzggnRiwRZ/TmRvg3cm8lKknpajglKyVla3igvq/HG5YjHIcRcZjFbX1+W3zbwr5KWOocajvOfj+SJZFTJVY5h6/EEFMscqRYFqsr7xj3A8QZwePEVesy11WkcjLSU2nx7tI+iRGkXFV+p9olAyl10oaq9Dmj2lRx2jpiOf+e3FzJJb0uClvHKy1ubg0UjbSSSjv+kmw12z3h1GyVqdZd3ohgmopZhWc1i+dKBmrHmZmNPFPvg3OmMOWD4ENgHAZOp2UyFXHLuSQj85hC5xKkibhKfin9fM8aPVCMg1OYYzwjEr32M3Xv59YI0ehMYQhmnzxb40UpVSkMvbeH9djpK/sUjMQzTad2IcTZrKBLLoQQCGHoa95SUlVTFXC1ecVnfPAMIeBEkShVebbZGVZru7pGcitSVFFTNnJiBDqpc6eoEby0lNoQ7E3hTLCmBLW1pdb5kJL2BoYwDEakqp8l5x27ccDsxScjTNW1l8J5805T7RKQ2hy8XkMsd2DDhg0bNmzY8KcFpfBrb/3H/I13/yNejt9DJf+4T2nDhg0bfiz4zCSl3SBLwc5RFztVJUlrT7dKLww6MbWitkisS/O+fFy+au23qSpJrnp+150UlFyXSL4uSBVAhNzPwPa+pB/WnTMLRBTfz6Ezmdr/NmzYsGHDTxxCfc4UeybVTuGb6yP/6Hd+k9/9g3/CdBeJ6nn7rS8R7o7cvviAY/kKH758wh/+we/w8YfvI5oYxx3XN8+IzIRy5HQqxGni5SHy6I132O8LPsM3v/FbZA74WPBBTEUlK9MpoWq2Y5aQNJuoYQTnCvOkxBLJZOI8oWqkJ+98TzqDWqECoUimSAYRhiGwvxjMBuI0W2dmLMSYraLuhBAcToWkSkqmjBQjnE6R6TTjZQCs+3YYfLWMM/WX7Iy84kW4uNgz7jylDFXxpTDPM3fXB26uD3jvGXeBw2EixsIQAheXOy4ur3jx4hYnAzkWpqORmEosFFFSMuKPIIxhXBFkjFAVRrMMc94RBo/4areVzQIhao0D1JNztm5hXYoDUDu5WTpbG8GhyfGvCUotNmjJ/lZQsKZqT4qW5O0S/d4o06Uo85RpBrQhCH7nOBwO3NzckHMkx0TOZn1WSkbECiVJshHEUq6y+zOXDy64uNgzjML+YuB0nNllbzYEBXLOHO8OlBTRqORikv2ikDUxDDsojhhnK7zUaMm6cBuhy+ZkUbP5aOpJ9+0Se6GvFR10NT6hal6qY7e/YJ5m9oMVM465WLK9quU0qwZhKdiUZv1W285tLk9Mp6mSiFy38dNS8CEQhoG7m5Mpes0Z700xq2hh2NtnwnsreGkuDKPDh5GCkeq8CKoRyRnvhIsHl3gppJiZJlPGSprY7UcuLvaknIlzJtduadS6rEsSTodETJGcTYEg1wJOyrWomBLBOYQZIeN94PJqzxDMFvD25kSK9nkzpSvw3texyVZIKdIVf4ygRP/M1om7mr+fTwTfP3I9/G6ieVbGqn3vsmzn7rGLXlc8uV+uqvQ827ZO2VKP4l7zXiu9ttXKsrpYnWbfVtY/tCOulGK3VcWGDRs2/ORg4aU04qw9IT66+HW+e/U3ePnBh3zre99hno6U4hh2F3zpjcecDnekUnj65Dnf++63uXn5HKoy+ek0E3PE+cDd7XWNWxUk4YLZSR1uXqC+4DHVF61xl2qpMUB9ZlX+t4gDsdgjZ7MlbrHVNCWCsyaFpiJackFYWyEL3jmGMeC8MM+ROMVqr9zGQqvtslQikikjzXMyUlRV8WzxIQihSSaKo6RcbdpMJQgpjDsPanbFKSYOd9pJRuNgZPWcTdlHHOwvRnBKmi3e06LMZSEZiRcjaBTw9diNYNSUjcRbbCFOaiwnpkBbtB+r3fw1OamPuVvyjXqPhCOvUYZcqwS3/dm6opGbXqFRW5MKtakAI8uYimrheIidKKSlkU7OyVBoU4iSNn0RMRsxH4Q5zlXBp64znaJV6dTmzrIOK6UQwoDg6vjIQijS9WCtqELr1z8FPZNbiW2KNQeUmlfO2a4xBI/3A9PphGIkv9Zo2mJIMDJR64lY1m9UVa/YstdtAWJku3od02mq7zUin3e2FnYYucvVBt1czPQ6DN7umxghqWTrCHEiuMEzBFfj/2LqR6qoU7PBE7s2i+21X3/Oti5fZkRVIKNQxaisOUYLqrORqGozUPDe1i0xY+LI2sdmbdfNaj6v53SbPJ3A+TleS2zYsGHDhg3/vKOQ+bW3/hP+i5/93xL93Y/7dDZs2LDhx4rPTFIaA6i6pWnIiSkIqOJ00Uxy3qxFSissdCrSUlRwNM9xW3qtk/p9KVuLE4iQ2uu1MOOoxYf2u9Xiu5be1j09K9hi1+q82henW1Fhw4YNG34ykSl4FQYGigiFyOALb10N3Dy95tmTO+bpQE6eXbjgsU989OEz/vbf/3X+1n/zX/P8gw84HA+UEjkejhxubhE/8Pgd4Xh7JOdLduOJ25efgJvwCdzo2F94/OCIeWZOEykmPI5UCppz7zAWBpRMKTNoQEs0OzMGUo5Mh8jlpcM5jxco2TorwYi3JdauzmFkGAZLTEY4HU26vj9ZcyUEiyXvQTnlmZxvUDVbqViSdUwX69wUD8MQ8PuA9woqjLuBeT6yu4A3336ICJxOicP1zOF6MvUfb8WNi4uBnCIpTxTdMc0wz4X5dAdVwaZZQYTBgxPSnHAu1NfTWQepeMFhdg8lZ+aYyDHjpdkJZEvGZ+kEmjVpoyn/2NjRCwRtm2ZFQS8kUBPkuZOU2mtxzlgzcUHEktR2Dsk6t2XAiccHh/OWGJ+naCpFcyLX7lgtlawjWHc9pXaO16SyE+I8cTgoex2J1ZoBddZhXRLBK5dvXiEKcYq8fHFXi0AQ3MCD/SWH4wlUcDSv3mrZQbW/quSXZqu2Hpc1urpNnVa+Jv/9MBDGS7QYsejZsxeMu8B7777L7csDp+OhX1OvENWkvPfNasNIYiEMPXFvhJKFRJXECklOIKXCyxepWxF7X7i42BFGR9HMgwdXSDCrwZgSKUeGccB7T8G6nzVlvHM8vLokA4jivZBzLWKoFdxCKMQ0o0CKiXmOUGC3G3F+4HhIKBHvPap2fi7IUk3I1qmccyYlcOJJKaESSClyvDsxT6UWHqzY0e5HKqVSbeivWWd7H9HaRGAqa53s9TmFa0PLUpCC+nMrAnJOYmq4v05oVtAt4tfVhquPP9r/LUYgjkb40k5Scut9vHr4s9e20s2GDRs2/PSgE0Awwuv3Ln6drz/66xwON6SYCW7PsZzQlJjygU9yJMfM13//W3z8wfdJ0wlfIBXlNE/kkikRHlxe4EUpGR5c7jkebpgOE77GWj44gjNiRMzRGgjUSAe5xvlGoBegqq6K1K+NdGtkoDBItZQSUs7kVPflnBGkKgWpxbml2k2vXaGMfFKJUV2NXJlni9ksPqy030ruN2VPIXhv9mxFu8pMztnWMGNAXCZGZWqqRmLkeR+82eXmSM5wd3cixtX5r5VBoSvntJjfxqcsV7Cynis5W04zlx5P9Fi4LPHFGm3/LRhuY3K2DY3UXG1nX0v4sDjRwramgGT51q6UqQ6lVLs2JcVIszpTbdZ9zRO7npMux2xnL2JvmOeZXBsdkGYbluu7C/v9WIlbcDxOpJi7+mwQR141OLSxcK7Fnm08VtHaZyC6rJZeOOcIw47gB6ZpsmYOp1ztr3AIc13D9Gul/rwiJrW8sQvBrq/f+9V9WK39wJRyW0rZOVubDIOtF4L3NXgtqNg6NFRVYhEh9yaWwn43gjhSSeSc6nrWzrXkAhRSSkbQq/fZ1kLe7PEqSa7Zjhdttoz1nJsNoTRbPiONpUr+KzmTqgoWSB+isvr7tcbyd+1VYpJ+xvu3YcOGDRs2bPjBYApK/wn/5c/+hxtBacOGDRv4gezebIFki6KazHeLX7VWRQLR1VK+Ji9cXZ63ZfK67qCrf6X+a5QjJ5C1WDEJ+kK0v18rmYlFiWnDhg0bNmxokPp0yeK5ToUkyrNn1/zh733EV3/+l3l+O/ON3/8NQpr4+Nvf5ROB3/7DD4lpJt4942p8wJtvf5lPPvqY4DO7MOJlz9tvPOT29iVfeOtNLsTx/ne+RZZLxp0nlhN4Z8edE847UwnMhd1uJOVEmhIlKSnOqJheoPMFkYIURbxweeG5erjji+++SVFTRvrgux8zHxUnI8dpYhjMCiqnmeNdYjpF8qxGimiqNa3DsxSceHJMgEnbWxdyZtwZocYIMkoqmTF4pEqYhGE01Z4EpQiH28h0itZxHQKHQyJFI/EEL8xTJqdEipYsffrxLaWSNLQoQSwZax3cRoopMdXne7O6WuwJwBK1MVkRIZaZORojWrx2hZ2cI9bda3SDlip3zpk9hTGcrbBSk/Pr2MKIEutk90JygtqJal63QKm2FB7EmaVaVlDrclZRyJ40RQ41khHnjcidM2i10vC+K+GUUi3HajGiaKGkzPHuxPE4sdvt8M7VDvmE98LFxcgwmjxNVOXi8Z5hyuSYkeI4Hu6YpplUO5+9DwzDQIyRXDJ6lrhebPA+LS3dCFudaOc9427PO196jzglPv7wQ1JO7Hcj0+lIKjOIkd4ayal1jgOkFGtg5xjGEakEHjuWq2S7VqxRVBxhvyenRMwJVcgr/y1VCGHgcDoi3izy8I6d97VwZtYdqSjxNBHEs78YEc0cpgOHuVqIuAERm5/zbGoHzvtqP+iqXYjYnBMrWDjxRhQspnqkLVAtmIVDGBhHjxPhNM+UHG3Ga6JbKtdraOS4Xmxb3YNGzm+fjfaanP3+84tWOK0/Leyk5ZWzhoJOYJLzcWjoBKTGTcSGvTU3iOpqvWEKra1H/XWqSp+lfWEpwb2uhLlhw4YNG36S0IgXSRL/dPi7fH33tznc3nB7Hbl48AZfJHB7fUOOM1oyM4EUI3/4+39ASRNOhbC7rOSgRh2yB1zMExICVw93BCKxjKbImCaiZlLJlJxN8cYboX8IHh98VzQtuZExmt2pkeCdd4QgDGPg6sHeLOGc43B75O7miGYhpmql7L0R6NVIO7mqsbqWyROQqjbUSO5dab2qcXar4WojLGJxvK8NEu3Jq82GOBdu4wnv7XURa8jQRsRqqqOpoEWIkxLn1Mn0AhSpT/eajyypEmtqvNqCg0aMNlJHqeemnYTTSPiuOLLmduPPSEi94aHHI6+PAFocpkuwwP3Nm7pNe02cW8agKIKv+wKtlny5qzZV2zgWgpK9v8XwihNBvKs2gVU9pyixJFISW7/UeeKdM4tpR7XNK7jgGJpCkFbLstX6TMTV5pamyrq60L68eoUWsxqL1fpLrWDn8IRxYBx2ZhnuBB8cOUViqU0LjpVdteWfW4RXitn4tnXVQuBaxZx9HoKrKrjNmtCIQzb+MWVrFlGzfgshVP5dVXWt5Kdmq2ZKSglxNn9yzqAQ/IC4RY23BaSl2ic2haaUEorifWtUMBs420+zCWxzRTopy/lGrLNrdb6Sn6og2HoN2+7R64h13Ltf96fuhg0bNmzYsOGfHbMc+Ltf/L/y33zp/0T0hx/36WzYsGHD5wKfmaTUVItrYw1OWBZPWDe9k7ZgtI6rDITe7bL01DRLBanfZ3QhIrEUJwTwdRGYUZKqda8gBMBTlZpEa2OJ2bl9WnnhnOi0Lbk2bNiw4ScdDk9BeXIz8Tf+4T8haeTDjz7hyz/zZ3n4+ILD3UvmQ2E+Jh6/+SZ/6S/+ef7hP/i73N48hylyPb3k7rsfw6Rc7AteCnOZ+d73P0HcxDuP9rz5ziOG3Xuou2D0gW9/65vcTDc4TdaF6wIpR9IpEsaRcbcjTomSparpZEp2JDHZ/d1+4PLK8/CNPY8eXzLliYdvXLAbRnwQnn9yw9NPXqKSefDoAX5wldDgmaaEloxrJJ1SCPsB5xynUyTFXJPitWifSyVSKCqWCA3BEZxZtjlfBW+SZYNLVFJSYjSVI+csOeqdQBBKsWf2aZrQDF525DyTkqKiZvngjNzSlHIAUjTbOlef+RY6NFu2jKpwe3OkaGa3GxnHARcUj6tkKCtYOPHg6Woy1lGrZhVmTa+1q1ZXTAjphKDeRovUpHerQrSiD4vCi7ieWA4+2PvdiJFOCkWVUvLKLkERyd3CC/GVPFULClUNZxgDKko6zZbAdjX5nArHdCJ46z43wsuIiuP65giqOLH76oeA9wEnjpwUl4Bkqk/DMAL0gkUvpMAi8c859WJNetFGUFeqmiYcTkdujy/Ip2TXGIQ5TqT5RKpEMi/OuvLL0q1etCxdzygpZVSrUoAouiK+1+ZwxBuZrmiNJVUp6tDiOB0nQvaE0eNHzxAGDsc6752RzkSFlOifFU0zNzcTPnhcEIp6HGYRMgSHuAHxjpyFFBMll2o74fo8ds5VYlvBO888Z0pJiNR7XbusU4rkFBj3HhGIKRG8Y7c3BYF5KpRUesHHLAQVtHR7v1KsMCQrqaH1/Vnfw88j2pm6VZFo/fp6DaCykI5826hf3iqSrwuMtsawl5Y9N+W0+pM1RdTPtUJVaP0Uwtf65O8P7aeQpjZs2LBhw08OWrudInzkv8XfePb/4MkfPiXGIyqeB48fcnd9TUoRYaRo4b133+PZx59wOB6MGDJn7u6ekkth9AM+GNHn9ngkeOXhY89wUfB+RAnsxgtuXrzk5c01mdxJGTkbESPnbJbH2hQ4qyJmMZswxWLKEBwXl0Zmn1NiSpHdLjCMI5dXjpvrO3LJDMOAHwTUW+7tFW6Jxc0heGI0ZdAWQhdVjNOjXZIw17VIGNyiwCk1RnGQY6YrlAIpKiJG1JdV/tBIUzXugU6i8l66iozWmF+1kXM8ztXIch2/VlKJEbpAqmJOGGpMWqwxoKgaWcjRFU8bq6ORmSo1upPGF/JHI6gbg8QaH+Q82OljW1kmK0K6a3Zbjr52WF/HWbyHkXEUuv0ctDFwVS2JukZaxYetGYPWBCCo2LjMMYJSY06tMacscVQVJRKE3W5ndmZ5Oad+buecoH4dZ99pI5K1V40QdTodyCmSS0QppGz2hW1sm6UbpTbBnsloLeOUU9Pjr9s14pQu55dXc6fvRG0uSFFELN533pFSqeNhxDizn8bs3GqcH6uSmavvUdX6WagNKJVIVSrpzK1Ufu1SXCWo1ThWhSaQ6laE/pxKX19IVbJyzuGCh6quVWoeQGnr4WXM15NxTbbTZsfd17xblLthw4YNGzb8MPGHD/8mf+Pd/yPZzT/uU9mwYcOGzw1+ACWlVtBbVQywRIi29S7mL2+FhUUquXUE3WuUZr3EbipKsvQMdRsHJ0JGiBihKdZtB2DUtohrBS/w9xfBr1tcbQuuDRs2bPiJh6lmKM+enviD3/6IJ88/4MX1x/zqf/+PCaMn3x746s9/jXQq3N4+49kHH5OPmYvdyMuXB+LxhMYju/1j9vsLTsfIKd6xz4733n2TB48cTw+fkChcjiOleKZpJk7H+jD0lrwtUruiM9M0M50mI9wOnpI9uSY6EUcuxbphJfDi5R1zitydTozDSMgjKQtzVBBvqkwF4pxIcyTPVrRAhFwg5oRXI6uUUmX9xSGipHkGBOchR8jeEp7Dbk/O1pndUu7eQaEwpQnBOklTMpsE78AHIxCXUhiGC7x3zCkS50hOyUgGo+fiwc4UcOZqYVConaqOi/2OlJJZERRLmoN17gbx1abOGclKFadKyrMl36u6TRh87fxekrF0UjU14Z57J2upBQeLa7TPmXW4Q2kdq5bVbipC3tVkM+BDwKtymk5V5Wjp6F7xnLrdrfMDfqgkJQrzHPHBc3E5EoJjniZK8Fw82OOdWQTMc7YYxznSHInJCDN6k0mlsBtGQiXOUI9jpJhMSmZP98UvfoGHD9/g+9//wAoQ2dWENd0uTNWUhrr2zIrEBKYC1Sx1m9JRnhMvnnwC2YhvmUJKisOhYl3B3gtarLiAOtuPd6ClE+BLSjVJ3+aeGimqpdDVOo+nPHX1LFc7qhHr+t5dBMbdgA+OeY7MMVdSj6fkTDxF4pxrsaF2PosjpILzgnjrXE4xE7yRj9IU7fitIlcLIlrAyYAWmOaI9wG0dMUxI9JXMp7YzMqqTJqWbnzvyVUFwaas9n+pjodx+6yy0opOrfO/bXsWVcvnV1u018g4/9o/s9A/M+saV/sqq+LS2X5WTKQCSCsm1jf29UldzmRY6Q80ytO6yHd+7A0bNmzY8NOJdQrr5F4wOocvnttD5Di95NmzJ0gpXF0+5uHDx9w8f8r3vvNd4pTYDTvupkhKGYfifGB/dUGcTygJR+HRo4d4r1y/uCHlhHeB4+HE4fZY1SaN6KJq6kXeOVSN4J+TkX3ssV8fdJXUUNTiS3FwOtV4uCq6kB0llmotZTZTOpuFWrOushyeUCqxggIulypKuZBy7PFpcU6p9tKmnuQWlZ3crIJrLC2mgy6VWaVZK6liGW9z2TJifkq5x0niBD8EU0GqFlyCkKsyjfcC4noDg8UXFrMLRkJfSF1Ggmrn2Ugf4qQqRt2bACzkoU5+PiNCrTbucY2eEWM6IcTe0GMTrfdHxI5tCjo1aGEherW43d7ujOjiTJGnzQcfHD7YQWTwiPeE4IwwF1NV/7G5UooRvWK7UBE0t/O1ZtK2JChV3XQYBx6/8Yibm7tOlMu5qca6Pn5aKpmLZnzXrlyWdRqyxK2q5DmS57RQv1ZEc9p6pa/vpLkL9pGVdh8aIaw2PPScdctLS22cuE/IEfDe1Md8MIvCRoZrax+pZLecCrkpJBU6iSqnTM7189Fj+Brj05R5Wc1POzFF0NzmS1muA6rtYr0Rdc5rWa5B1e5/ya+uC1pTSueM1fvkRBYi3tk8vzfpN2zYsGHDhg0/FLwYv7sRlDZs2LDhHj4zSaktbLQuVk3dwAosTVZX6kJPsaKOE6GJDnu1Luj1cmdt7+YUstQ+pNUiXrD3LQuqZt5j/2JdOLcLKXUNHaAvTNcJAFvjn5cctgLEhg0bNvxkoiVFv/LOFf/BX/u3+Ie//rv87X/wDzm+/IQwwlguefr0DhkKH77/Pb7z3U9492e/wovvfxtNewjCgzEQLnaIFMad5823rvi5r/wMX/jiO3z44VOefviCxJFn7o55ypzyyayhxJvCUcl4EfCB43Emp4KTERdMvSeEgHeFGJUpRmIsxDnx7Mk1iOKDcPlo5PJCmA8HTocTw+AoCqfjzDwlcioELwTvUXHkbMUJRYhzZp5SlaFXslgC3LkmMQ8gjOPI/mLPPMUq5e8hU5PeiZQzu4sR5wKiME8zp0O2LtKo5GrzcDgcQSHHRIpWbbDk+EAYB7ImI2zU7lstStbENJncflmRhUBwziOieCedmBIns5IzlaVqNVHlfUrvzG4kG0gp9feuiwoW0qyT5fRjrxUXe6GmEkKMIJUtfgmBaZ5MKSdGI9+0hHeVmOzJYvWUaIn1VBIuCEGs671gCejgRy4ePSBqZtwFghemQ+T65ZF5Nlu9FK2IlBOdtTFrpNTEfUHBO5x4hICQUcncTbcUgWF0jMOeu7tCikpwnrALdl6zWYtAMTs82sBIT/AjEMJoncM54RTiwRbaYlwyANtPvdfeOSgFcd4S7a7ZGVjRTVb3XFe6NkWrhYEuRB27bZaUN9tA8IMw7ALjxUgIRkiiKEO9B06sI7ykUjv4WWLDeh4pZiRbbJtTIkK3ShRnx0J0OVcx0lSuRTuzb2N1jplWnnEiDM4RfCDmTEoJESHGbAWCUotznXREP8ciUslennEcyTkTY+wFoDaPe5zc5IQ+h+jn1gtstXgl/aNoNdbVD+0e1SHvxaW2m9WPHWfEpvqe5TXBtfqV2L3MrNSdagHLoSzmKe0CVvu/d9BtPbFhw4YNP6kwa627i2/zC4/f4Y3HV/zW70biKXER4PLhJS+vD7x/+wF5PpJi4Y133kPyjA6O23LAu0IuEzmeCA4evfWA/X7g8eO3AMeTT56T4g2RxKnMFLJZRmMW0iUXciXg5lwq0d7iRNVM0cLgA7GY0pHZwAk5TXYFAi4IORlpPidTTy1Fbe1RLKZ3zhGGweLz1Gyt7BkXY7J4ozYjNhsq41xIVZ0RwhAoeVFL6iTvGpOLiFkVA1qEuRhBvsoXAdYMgRpRp1RitqkOWa6xKSKZ3fPCborRLINbU8Fi+NqIIRbTKQKlKtuUsvy+tJhxIYj0VYWagmcj9XfoOhJZrWP6YZdmh77VPXUkI4TV/xppqu9uvU8FbRFLoXLtKxnboiJxniH4asdmiVgnZqVHXGLNpi5rp9+Uouw4Wkk3UtcZotWODlNcevrsKd57htGToq2/RKWq+dKDN6XYmN2L2Fpe1lWbunOyzFrBaqVUpaC52hrWlZrd43YP7E2r6bYKztoasF5P72BZ3kdX/WpEtqqiplVdqq7nGinLGh1MEalobdjtak6Y9XeBTOlELFWlSL1nTroyVM5232mEolUuWyrzsMWoXmx9rFqtwSuJcLX0ZcVvWqYpdZUlrlviNRG0tYoouqhPbdiwYcOGDRt+OFAKf/Dgb/64T2PDhg0bPnf4zCSlmKxrqy0mS/X3NuUETOFAQHF9QdO6nZfl+rIgtQKA9TR5wMvqZOob/OoEhcXCIff9tU5oJdf0jUMJjRglZ7t7fRVjw4YNGzb8xMKpJfYuLwbeffcBosroHvFn3nnMv/Rv/DK3z675m//tP+C7n3wIc2b/4A3efPdr/OLPfY0Pv/1tfucPvg5ygPkF+92OL3zlC/zsV9/hOMGXf/6XeOfdzPBPf4OPPv4Od4cjSmIcgOLR4iBkStROgHBuIJXMG4/eYp4PTPGuS6vnmNBoXZpaQIt1opak3JZEiQd2Izx8PJKT4/rlkeM0k3LBec/uYocTOJ0mI9AUU7LJyUgzXjxFsnV8Ing10skQAmHn8CFwOk41SYrZVoiw3++IMTPNkauHnnFfFQ7VUe5AsxKGgBSzqsolW4JWIfjQyT05ZV48u7GsaTFyR8m1g1Uc85woJddu0IVM1B7cRQvDEGqnqFa7MgsyUsoIxX6uXdALwaYmhNcJfzj7fs08WIoFSzL5fmGh2ck1K4cUIznnleVE3V9Z79+60VVTvyrFIU4JgyeMgUePHjEOnuk4W51GC6dT5u72xBwzqFnlKWaf58TV7mnHOA5kCiUmS3x7RXOmlEqzULi7M1uPy8s9DmWHx53MFrFZl3k8rqbDpRJ02vkKgBOGwSwEjfgm5GJZ8UZ+U9eKQ1YI06IUzXg/IOJsPlCMZFa0FylaGamURrcRXLX6cE4YRrNRiTH2buSYM+JhHEZc8FaYc4ricN4iwnmeOR2PxDmTo82T3cWekhI5J7xvJDRHyalb9IkEtAhahFysW3oYnFntDcE+F5WYJM4KDK7WPMSpdfmrka6Cc6YIQLaCn9o8suG1Y7QJc26vUIt/9aVpmlbzudPrbB+9c/rzW1UotZi2EALtwlqdqDcpiLxyFVLlzdbhvM3LWkCqa4HWUNHWKcKistqJdo3UtSoCFV3vsxWDbINt+bBhw4YNP51oxGSRwim8pAA31zfkAm89eocvvvuYN958wDd+79t894MP0CSMfs9+uOTtn/0KnO74vd//BggMBJxGLh8MPHy8J2VlzoXd/oIHbz6Em8Th7ohowYugztSJGvkbqIqZRtQZxh1DCEyT2cqlnHrc2h6F0ohEiKm9FBj2sL8YyAmOh1hjbrM4a6os1uygXcynETx8I0eUUq2SjchhCkY1NptjjaNcVTAt1e7KLOuMH1Fw3pHr+BZVXIvt10QoAe/MPjdX1Z95qpZ2SCd4Q4ufpBOr1sTvRnYuWi1epa631GL+Zt8FRirpwUZ7P6sIa+l4WM2URqVZpRx7LrSSoM+2bzuj3581cegslpNmi9ainvb+GmuLNXQ4Y8lUtVdHjIlSCh5PqiqhKRoh6/64iUgn5FtMm23auRZ7NWK/2DxxEAZrEglOcN738Uwpd4aQ9PNv8dQSjzln59rtn1eB2TIXV1FfPQ/vPU58tX8ufby0nq5t2kg2jWS13BRf1Z5yI9L1e2lrsmEXbCzr2saacW3tmvKi6mX78t1uz+J195p1p/TGA13OjiXGr/ejJc9Xa9hmSwg1hq6nWnQ1xitSna5m6iuxaxsbNbVWPfvVao18j1C2YcOGDRs2bPhnh6K8GL/94z6NDRs2bPjc4bOTlGKh+ConLLZwUbECcMvuq9Y1bO1aur+k6QvbujhtykpmCKcMdbuurgSMtndy/ZpYCEvrNEA107D1nCi+ZgT8n2BQNmzYsGHDTwbMBgCyKC/vJmIs/Mpf/hV+/s1L/pV/8xf5+MkN3/7+S0T3XO1GvvbLv0R48y3CqHz967+OlsyX3vsKkh7w+AuF/UXhML1gjsI//LW/xZSFUmZmEsfDzOVuJEvpXcwpZ0q1gprniHMJVcfuYsecDwTxTKfIHCPG1WiEGGhmRT44/BB4+wtXvP32jtvrme988wWno6kdDcEIJsfDCdWCU7MyiI0ApEYqGoaBFI1UVFrnpSp5tI7s48sTqCOEgaLUzuJESjMlQYpwOsyMoyMVZZoi4i1hO08zJZduxZYrUSgMrpJfCpILWlWcRGvHbC0eWOq1t4vWIsOSLC2qSIEUF1uGpqJTqj1eSwZ3azBpao9lleRe0CT4l4T4OTlkXdgopfT60GIhIDiMqNM7ke3lHgf17Vd07WYF4L2wGwecF1KOpJy4ub0ztauYcYMnDAPznJiPRlBqnbZaE+5hCHjvGIYBHzy4jOw8WjurUykgmXF04Pf4nefywY5x5/De8fCtgTQp87FwuJs4HTOatHfEL9dRCz61oKCarYu4Wx/YiDovOG/yXAuRCzQX/DBwdfUAL4HbuwN5OvVOYaUWu7qXRSuoWcFIEFwlyKuaKlEpy1ju9p6rBzvC6AjBd2LS4e5EnI3UVIoS/IBzQyWg2TFCCF1lC8113thxc0m1eCX4IOwuBivCqTJPkZxKJWbZfW5kJ1VlfzGyv/DMc2Y+5aoYlo2s5AUvQ7fjWxq5y8Lwr0XFPm+0EONS8DALu0/pcv4c1xRSLkhphdD64qqh4Y+qiTSlrfulE1l9rytv6eYA0poiGvFJMPXW1njOihy1Po22rnDy6il9ltLNKySrP2b7DRs2bNjw+YWqEbiTwOWDK957z/Pm1Z6337pAvOOtL77LcVIuRs9bb7/JnDNPr59y8+wpuUSGELh8cEUYIi5k7k4HAG4Pt2bdnIxBNJ0i3jmz+y1VITRpV25M2dr0nIjFKSlTMFvfUhWWoPEX6gNOqiWcE0JwXD3Yk2IyEvycq1KRxTIFpSTbh3NCppxxcXp83GPuqrojBdQT5wjqajxV3ytUMn+Lr5TkQYo1cTQFGyNg0ffd1IiK00pIXmzoLP50UG2xOh+lXfyK9Lycu33NuZy9vqit2nWVFUmkNSm8qpy0xhKv3X9l/Wojw8j9oKONa7m/37MNVnuuhBy32Oi1ayhakLr2ao0qpeZsSzEFHjBF17ZHV/O8rhLqcRBctQfPtqZAC84rwQebR4MjDK6vaQQhTpk4J5BCThbj52WxdYamjlpqrH22yVl8uLp/Ve0pjAO7cc/pNJHn2d5c31/6Orq9V9bsMiMcaTGL6vXNESMDOVcJTYrF7sVsE0tvkFGcM8vuGlyu1p8Lwcz5ZsfWiGelE7zMSs5ZE0c2ZeEe37b50e6rd4yjUe1TLN1CzzmLaT1tzdU+p9rz5DbEq7lWf1/uD7a0NfH911+5bRs2bNiwYcOGDRs2bNjwQ8VnJilNUXG168m6pCzZ4VrXk0rttKEu/KBJBsOSJ7B1nPYEwuLPTd+uEY4aqgBwV11ayEoruWR6WauSmMwGruogvLLdH4VXCpmvSSJs2LBhw4bPP7RAlsBHt0eeT5F//a/+CnPK/OJ7jxgH4UPn+Npf+GX+nf/Br/BzP/cFPvjoGf/xf/Zfcf38ljfGPe+98yUevnHF47euuLn5Hh998gLvHaWcyEmZT/Dy+oAWYZqU/cWOlCJJZyNxJJinzDRNlFwIYUSc8sFH30FJ7HYDOMhqzyzFVyKGPWslOCQ4Yjxx81LIMfPsyQ2H20hKSknZ2ipr22gpxWTz3TnJJqVEStZNa7ZHzghNIkgRSlTSbIlbzRkfPJqVcRyBwmmeQSHPysvnR0pRnAw4EaLm3nlcapa5dYuOYyCl9qx3pBLtmCJVQaZljaXbVi2P3HVStRZqcqry9NKT4hZ0iKky3StKrMcAlsRv6wpv47AQo5av97uLOwF7pfCiKJorcURacno59vqYqCXXncdUj7LZ8IXBU1B2uwHBEVMmJ8VJwQfY7y4YfMAJHI9HI6oUGIaBcdxZ53QwQtMQdlzshLvbIy/vJlQdwwjjfsCFgBs8uwvPuHMMgyMMoEk53ETGveP2WohHZZqsS9ipkZNKKVawGDw4u59GyDEFMLsFilZbBGFF0hLA2zzeX12S5lQJcos1hxVVFJzDe2+1htKsTGyO5EwtTlmxQ3o3MpQEh9sTwxgQoXaKJyPYp/oRcR5x5nfhvKvkeqlqRhkXhP3FHsEKhLPmas1o3dZ+EHZ7239OhdNhphRv+yFXgpr0zv9SCikpqJG3UrHPlQveVMdK67Kun582/yxS7sUCbWNQP1N1UtbNlzn2zwtKVUigUDv+7fVG7mvrAlfrSmX5aPV1hJ7VTZbOfrgX4+v6s0onIzVSZKsB9eJWO1At5gnaazufZf2wYcOGDRt+8tCfIyrcHGa+c/2ER5cXvPvFh1xeDjgHp1Pk6sGOv/QX/yxvPLrg7jDxq7/2O9ydJt558AbvvfUlnrx8ztXjPcfbZ9y+fIGqEgYhxYSTAHNGs+IlIM4jXig52RlUskPOTXHRSBAxnipJWnp820kHjXCjaso6zpFz4nhIxDnVdUqzm60Wv7KKYVcxWh8LhZzTamDsuWnPUjGFmVIjt3pcLaWqwQSyZlQzDkecLQYS8dboWJY1AY2gVDGOA8F75hhBqUSt9d2p6ESLZg/3Wn7M2TW1WKTnC9f8JOjXshBa7ismydn29QatD7b8rsXG997QmjnPr2cVedw/KQQnRo6nxqWIWbMNQ8B5T8k2T2wJopWUX8lgyWJcC30aocwh1epvHMyKPOdMvD2BwrDzBG/zSNWsA30won6zORt2gg8DwxiYTmZRrdnaTRtRRzFSVCPi+BqT52QKu1pvhqkL6UJUaoQbkx5imidSiq/EwJW+ZWpJ4irxrbOU6sdCe8jX5q+q9EaQlEpXjO3qvp1IJb1hxq0+d+2fOCUEj/eOlBKksih19oZfreq77bOyvuftlttnsBSzhG/KUE1dTHvMqqvP6/L+M3LXeg6dT97O6tP7vwdW8lMbNmzYsGHDhg0bNmzY8KeCz0xSKnhbHFWp5qogjKsLF99kkYItmHK2bq3gzHat1RFVba3TnB5ajaWtEauqbiUqLQpJbQ0V6veBZampWCe0g55geI247VZd2LBhw4afMqgTbm4n/v7f/U0Ot0f+/X/rX4LHOz6c77hMI4/2I//Tf+9rXI4jT14c+Ef/79/BF8df+x//Vf7df+VX+NXf+n3+wW//Lh+//z5BH3D9yYdcPBrNeis73nz8FkzKuA8cZkX8wN1dIeeEJpinmZSUcdzZa5opybqGRYRIJMaEKAzBmXWpsydks0nIuXA8zRwPkRAGQvCmgJQTmjGVEGeWW1rE7K+k2ky1ZHpPyFYbr5a01sJ0mvHeoerIpbAbPXlOxBTNIsA5SqwsJA3Mx4QieF/Ic1WT0Vr2bwUSgRA8b779JtPpxPEwMU8Rp0bA6BZistCNldbV3DpEfe9YZU1IKcXO3w01Ea2d3FDqNbWuVntv2/+a0NESyk27sRIk3GLxtiYtyb2igrhGWgLxS/e1DXcBzJaCojVxL5RaTBgGzzAEcrULKK6wf7Bjtx9Jye6V85b0z9nsyJwz8vU8zaYsVK9vijNXDy558PABX3r3HQafEBLff39inx27y5HHjy4oWTkcIzgPzrqCdVZyMauMYe+5evSAcb/nxZMD4hMiO7TA8XjCaTb1nxrUhWDJ/5JgOk7EOXWiSLM4EPG1I1tAMxTl+dOnzHNEs91Tt7oviKl47cYd8xxJej5Helew1sR+7WzPyUhUcXacnBXOtDSFpvY+h2aYdWbYOcaLPVIAdWYdKAmKMO49FCGmRNBg766ViVKU02kmBFOuEufQpH0+2Qwu1bJCmKdY42aq2pIRtZKaVYmoIOpMjYtmA9L+cC1FEVMRWJg8TTzJCnsshL96nFak+ryiqCx/j0qt1/WaUy3WtKBeF8cLdS3OX6ml9b2eB/hLibP93Khu9L82VUurK6SV/lVW793WEhs2bNiwQWu+qXC8i8TTzMPHb/CufI3T8x3iHY+mwi882nE7fsz3p+/xzW9/SI6FP/tz7/FLf/bLpKz85teV773/fRyZnB1FIylZBLAbPOMAMmbEeXJWDsfJ1gtUhaRSarxucXTOi4KoFsiV/O2r5XFZJccWAj6UDKVkvPeVDLyQxrtVlZqaTKqkKF3FYUtMUn/TFXEKGrXG4AvJo6jFPCXHngu0ZoraYCC5K7guRAvp597WBdIaMlbE4oXcsTy7Vc73I82u7N56opHAVR2UGonV/Tbi9Fk0dXYsXZKbdZ1l47ds3mMQkW7zJq/uqudCu2JTu1E08tKyU9caJaSqH3nXiWuaFT+6OkfsfrRB0aLM8wRUtd2YKWUZ41yKEWicY9yN7PceJ8rxeCKMDuc9+72ljuc5d7KONZBoVwhCFR+C5YljwRfthKQUE6XYdk0FqJF2KHZ/pRHZWY1/JxItv5tP0xl5qI9bvTt2Pm6ZStoutSWL+yw4u8Gq1vggDrRawbUBV1lumJaCeAhhqCSxmpOuTRTWGNFiW4fzbX7byTalrhA8TiGTVyShxRIOMFttbepItuZ33lp3S+6aobTPwDp3TlmP4aegnpOTFnP3wVrvacOGDRs2bNjwQ0DQnX0te/7M7b/Nw/ju2e8/vPhNPrz4TYrk1719w4YNG34i8dnt3pLVmMAZAUmo3egQgqu/K2gCHKQMUsxiJ3hh8HR7t3bgAme+7Bnr2m8Lf1XrYG5Wb8F2jQMG7PVSv9YqUOs/7+iLtG2RtWHDhg0/dRBJXF14/qW/9Is8vAp88cEl3/vkyNPjxMv5wC+99zb7B4HvPj3wX/+t3+bZs8S/8PNf5X/y7/7LvPfFxxzd1/hv/94/4v3vfo+sB4oU/MlxPCb2F3ueXz/l8hF86d0HpLnw8vmB5x8fmCfT+8uloE5wCOSaMEYYvCng5JxweEQrsYhsqfiaZfROSMlUi8JgCjhaKn23OHuGioA4cjGihUOovbGmgoMltRs52B6U7RhCLtVCrFiSedYIKLvdnqyROCXExOQRFZx6YorkGBF1iLquitRJSg5iTHzwwQc450hzrlYQtVCiYhupIl7Y7QameUILVQlKQB2qybpo1x3dUur+515M8eJx3lE098Su9qKBDaZrCWuq5USbI5wTkeQ18UL7XSsO5FJo3emyLpJoy3sXEFdvjbNrqudUgJjMBlBLtWLQgZwScS5GHBIoSZnnmZITYQhoLqRkhQIfFgWgaTpRtJDyxKNHeytOuIH9A8f+cgfBUcrMuB+Yo3VOU4RTjNa9jBGVptOB29sjKed+nxQlDIGiMA4BdTb2RQvzKaLJWCbDbqykq9KLR0qmlFzVrYQ5z0YKK9g8kjVxREyxCCP25ZL7eEtNnreO6qZatb5DXmA3GvkrpUyMiUZE68o9HvzguHpwwTB6Drcn5jmRE+AKu4tAGIR5Xo7XrBhMsSCgUnA+MIQR7xJZshXuSlksSoRaSDMKTNGMloz3phKVUkJLtasrWHEMrfGwLtfI8oFtRapG6GmftUWVLPf59nmHCSXUomorStaCoPNLE0NeajX2vgy+MopcK9WIqa1a8WqpQ9Ups+qSryXm+tn2fdv616IVBrUZytmbRSvZ7d58+6z45+B2bNiwYcOGPwaN3BpE+Df9/5K/+M77PE5v8uDwczx5PuNGz1u7kfHa8yLd8nuH/wspCm+9+Sa/8HPvcXE5cowFKYrGmZnIaTpxeXVByQnVyBxPjKPw4PEFFCNgp3giRyMKNUKGNFIRZrcbfKApWJK1EoHr9qXFqIo6qQRxi7NDsJihZDUL5nqtC/HjHkHHhqA+r3WJdyuZp42UWpAM0Eky3pvCa2lkkvbsx0gppSw2w43A0eOZuu/pNDNP89kdsX2tnv6ijLthsTlzrseLeS11057OUkMEk9s8I3esSSLL5UlPLjpp51qvX5ZteizCQh/RM/bSiiC9anKQ1bmtuSKrwTjLaVojR17FOYVSIKdGUmpKrpV8U2xMzMJsWZ/YesnWFDnB7U3kcHCMY6ixcAAxO0LVgvPexrgkAr6qWi33JBKrUpP2+9zHppKSWjyrarZwba6amqqu1hMtTqM2lsgyNzvx6x4RvcbGXR2sEekWjtDqJi/3pQ31UJsRVJWUcrWXpq5t6rz1QhhMLSnOyayb6zrXSVVspUanlVzvfV1LOme2da4qYRVr/C0t/7367EmbKDUmVWUh8rPE0vTPLWfQs5+XedSdAlpTQx0fUxCVPl5/NLtpw4YNGzZs2PCDQHD8te/9n3n/8r/n7ekX+erdXyXo/mybg3/O//1r/yM+vPitH9NZbtiwYcOPHp+ZpCSiiK++9LkmFooVf7IqbrCCYsa6eLQmHJK2ZIky1vc33YJaQqTpKKzXVes1o2IEp6WoYOSkdvIJWwy2Lmip27Jac/0g2OzdNmzYsOEnAAJOhV0I/OKX30Ilopp5dDWSPXzxzSsuRfj4JvLtbz/ljYsr/sW/9HP8lX/xq3z5C485OuX3vvt9dM58+b13yOmG73xwICUQGZjmO/YXwpe+/CXmeSYXxY/Kg0c7uIab2wOlWFLeiRqxF0vQDoMwjA7HwItP7kgJiqZaWLDnUC7KPCUKi2KKPS2dKZDUakVRs7eymkGpiXgr5Bv5wwoWjegjzsgxLXHpGvkDjOykGXEwpxkXhHE/Mk+RHAs5x6pS43DiKFJwwZjJPVEP1rkpMJ2MLGKS+5b8zMVOQgCcsrsMXFzuSC9msireBcSZRH7ruG6FGSPMlNo5ajL+jaJQinVrd3JSLaZY43UtyDghpUSzGLBpItXqQVDNvVPW9cywodu3lcIiXeMoOS8UiV7AcbU4YnFOJhvpqiglx2q3YCQYkcLpbsa50DtlnTcCWiO+lFocEO/wwVkslQrewTg4nBSuX1xzfX3N5dXI5dUOp3B3c8d1zgzjwDAMpBitgFCT7hNaM/8Qp5pgz1Yc0NqA7IKDYjI2Ptj8SJMVH3xVS8olQ67xXy8IWOxoRHLp86KNZUH6nLM7BF5c7bjXailnpJ6crdDl6vYLZ03xDh483PH2m4/YjQM3NwdevLwjq9ktUKQSr6xAkGNmPs3V0q5UBS3rhs7RPrDOeSSAiAfAO4cPA9nNXF6OBB3wEkAKJae+H8Tmkjj7LKq24pBQkpLFbFu8F7LaGJdUFhkfmk3gumhSZ7hb2Q1qLcoU7cpNrls+6r2ixOcLrlWBhNqtsFxrK7w0kmZ/falToQJerJN8PVS9jrP+qme7qa/r6vs6x9ufrdVrfQ3B+m5sxKMNGzZs+KmEgKjwdvkZ3pp+BiioF955I+CDIwBzgbuXwnuXP4//uWv2F4FHD/cUgee3R47TzIOrPWG358mTiePxWOPBDE4ZLy+JqVqxZUVFCYMjpWyxZ32meQmU2q43jBab7cYd18/vKNVaaq0e2uJie/wusYJzbV2x7LsziezNK+LOopjU1WXqA9MUidrP7eG5KJPmUglVwVeLsdJtogWLsYqW2qDQnu92gBb/L89z6c/xonU9UckvzoF4MaVMads267p6wpUg453F6k0pymJMaZdNH8FVECHml92bHsqaANOnifSwZm0K59axTmty6Putucyu5iSrva15SbUJpZJSbNmxIq1XBa04N6J+VSdq82B1XQK2fc3AOu8Ygq+53kKMiVIyw+jx3hsRp5gFsveVMKQwNyvxHptiDa3tfql2S3K7j7Yua2SlXAlObQxzydV+sJ5ru/8s578M5PJF2wHa9NX+4zLHqt2cNZiwKGy18xQYhsDDh3vGYSDOidvbE7mpydZ9lPqZatbSTQGsnZ+vSsCw/owt99M5Xz/bQvADJc6VVJbP4vd27/oFreZPV5St8kcqRoZq69+mBLba2zJorwxQI3DVT1gj2t2LxTds2LBhw4YN/2wQhJ89/hV+9vhXPnWbfX7Eu8e/tJGUNmzY8FOFz0xSGoPUZAaAWnc5VlDoXTsOXJGz5IcqpFT6YnoYfMsPVLUH62huCYea+jAiU+tcVu3Epoa1YtIAeFZWILQF6XpJuGHDhg0bfqqg0HQ57LkUQJRHjwoPH13gVCgi+OD5F77yHg//3JfRoAyjZxb47sfX/He//tucOHE8PseHyOgzz55/jHhl8Am32/Pk2XOC8zz55Ibrl3cIyikZKWVwhawFjycMO7RMPHw08jNffpsweD743ktePLmrZBZfn1WFXDLixdRXnDBNc+9wLVmXRGtZ1Hz6Ndfnra5yj0BXaLGO6cb8oT95XSUHganCFAqDC8xpMjsGR5Xj74Nr3aLiGULoncuNWCNV4akp8uS6j2EcqwR/QQhGZppmnHjcYLFGjrGqHQnOB0JQhlG5vLrk7vZkajeu9M5rJ0JOjpJTJXI0IzHrLvdVcr8pWYlr5KbF3EkQxIVVQacm/rv6UqpxkMP7hRQyz7kTcxrDwshVukp+Y93OFUWNqBKGgHNCjImUYk8Ql0piKrWK0xSlxCk5zsRSGHcjl1d7htGIPH6oijsCOSXmOXM6mNpUTpmTNus4V1WYTO3JiSenDAW88ySNFDWbP2onvh+MHOWDwxWHeiArKSVKMVvAswlXk+VllfS2mbaybjvn4qCqxBjPkuT9vZXY4rx1dRuBrc7B4HjnnTf5yle+gBbleEqkdCTmGRHFi0MpxKjMc7sZZSG3aWHwA6owxURwjsvLscavVjzx4hBvto2PHj7geD0zz9Gs69r5etfJZ6a81JSNpFvStQ70eoFVNczVYlUtdvVCzNkfsmXulLL8po2BWwh1Z+P2OYRfFdVKPe1Wb+tFKF0KWr22qLVBohIKG0Rbia29IH2f/etSPV3qr3U7WRW9XPt7uOyMV7/bsGHDhg0/fZD+IDAChpHMx8HiSsUIym8/uuCXH/0S7o1vUcQUv69vZ77+e3/Ik+dPiKcb3LGYKqgm5pgRLfjsuL05cHkxMM+Z65eHzvkpWuMFjBziQ8CJWX09fvyAYRy4uT6siLuCoxLltRI+VHHBdYs4qGo4ebGW7fHMynKrP5fXhIUe2Eobmfr6EnssJAlbszjMYoxKaBFXiTlq6xmzxqoNAiq2DillUd3pBCPp5+tD6EpB7aApWVwffKBotaBb/T4Ehw+w243EmNCpNWlo5204nJ1TJ4A3C+lmS11jMaUTpjtRCyOmG5nJ1ZjNxrapL7Uxk6a0K+29shDMGgGnM0Wkr9sWJaF2W4yk0porSqmktvr+Nn6djFMDI82ZUklhIQz1njX1KzErMueI1dpb1Wy1c0qVIF/vR1kaT9shXCW+FIEVE7/Hxm0cvTizSq6qR51CJfcJXzV27HPtbObRFlx2jbU5ZzUX+zxo60ZnjS655L5mFoFxHHj06AHOOa7zXbch1NoxYw0x7b4sZ9aoc7bmFVIu+NqM4gZXj79ck4owjjtKKlWtqaymcc2ni/bzd5VQlbMu86k2ADX122573rLiZySj16wLOvv/XEXUXtJPe9eGDRs2bNiw4U8RDs9X7v41fv2t//THfSobNmzY8CPDZyYp+dpx0Yp9WiVpgd6Zk7MVT32Vt3XiyJhqgi3CHWRwXvuaMmNkJYd24pGwWsrqUnMVTCHJSet6bqSkRnTqL/UGJDl/+ey1DRs2bNjwk45GUio0aRglI2RUdmRxaJmsE/lizySOqMrxMPNf/Od/h9/97d/m44++hZYJFxIlJVKMMCVSjhxvjzzcv4XsLnjx9I7D4UQIjpw9fgwEyUjJ7EblzbcvGMMVwzhyeXnF3eHEs6fXCB6RghdFcHgfOE0TJjMfEWfdxwLMU14RbajkGJau5lrRb1YPiEPL8iQU0V74b2QGe7zXDt7a7QygWUlTPmvgDME6aqfpBFALBDD4gVImlGLdplWun6qG470lgp04JFjiVbN15BbErJx8JTrltLLOEsIoPH7jkoeP9oAS40QYTHUo52L7cQ6C4mRk3Nvx5jmRYjFCizGsEG+2ZTkrOWVKqZZ4hUoKs2jCig+tM3hJ2IoYEcWKEkYSG+r+UkqdWK1F6zFZ7s/ZVxBRYswMYwDnyCna+EsrLlnm2e7XQpYqpRYCijLNM7lIrV0YqW0MI/Np4nQ3k1LBe29KWNkUuXyLwVTQbEpdRa3LGGwcQvCAkc72Fzt88GYpZmW5OjeTEdSzjUsYQu+mzrXwsSbLiLrz+KtV3/rsrMUR1sSwXDvBHSEExmHHPM9VqQpUE+Nu5AtffAcfBj756Ak3NwdUTZGrFCXlRC5KLostn9Abuy0CVWGeC+IUBiEEYXcxcOU9gqNkiNV2L06Z5y+uayHMioCuk9aMZm+FCmeqAZopUnrBpHUoO+fAKcU7Ssm167qRp16NVc+6q1dEpG7lsppjn2eS0hnxqFUEdc07WpTd1opnLa5v760cu9rEoLS/XILZJVKLQbrsohf7lpLyq+P8x60RtvXEhg0bNvy0Yan2yxkdY91iZ8+jm/yCD/K3OcbMaY547/n2dz62mKxMxBLJJyM4l1yqBVshzYlx2KOjcLid7PWqwuK9w4lZewUvXD0cGMeAIuSkpFPi5vZYYwdByCArFaFKXLA40GKsnI0Y4mpca+QH6c/ojjNC0tnDmvMnYiWn1FfbWoVGTTdXWlSlWnthFnT1od6aCwRH1rKQYCphnkrccN7Vtcu64aLuA0frGejjuyJgiDNC+bgbesw2jN7GsdpeUxsVzBLP7JVTtS5r6wFxgpdmt6s2dqv4HvQsTmtrrUXp9Tz2WeI2iyVNUaldVlXJafs4uzfdfGyJIaVS3lcxYsuniki3YG7rAC829jZW/ZbZ+BZIs9lEp1QbYqR0snwj5XdLuWLNJa1JRalqu2ifayF4iuZOlirF1oM9XlO7533M+tisCEo/QKRmZKiVLXcl83jvl/WUWPbZOWG/3zHPicPdkdNpJpdiNtpSrdFpJLn2uWgznP5nomTt6kaqig/KOA54HyjZLOREYD5FpmnuDRE2nstHbKEJNUWxNj/W17oiNMnyt4je/PD6Mbu/zljIX+frsvMJt2HDhg0bNmz408adf8L7l7/24z6NDRs2bPiR4jOTlEya14PWwk6Tx/W2MLPVmi2FUlqSAVotGXIRpNqVi5pUcWTxmzeikelIdLJSTUA0FaVcvzqUwGIR1wpN69XW/UXXtrzasGHDhp8uLIl2WSWNQRhrMSEjFHbjjm99/2M++c3v8/1PPmK4vODmbuIPvvkRb731NsfpYw7XB25vbgjjngf7Rzz/+AmZzDAK8QBPP3zK6W7m8mKHamEX7Em23+0ZL5QvfPEBD9+6QFWZ5sKTj17wyUc3FJQQhJyMoFEU5jnROp5VC1qEcRxAlSmdEHH4YahdskZCsURvIzqssLABKsmGnsxv5ZZSTF0J0Z63tu2FXOwZ2xLSOSlItOSnF8gZwVPSzDzPgDLuR6wL2s7NEualWm9h0vhS8EAmo+JxVR0npUROeZVULuQCN7dHIxblZOdAJqWqdFOUqNadHcIAQEyReYqUbCTpcQzsLwa8d8Q5c3d36qSR1gFNgSLrzK+NRKkKVDZ+pZOVetK8k74CFhhZd/WZotRr0ApEWUu15FupN9WCiXV9h9rZXAs0zpvqlHdQTN0pF7XXgLvbIzkmUoScPZqVrJlmA1AohMFUxRQhxYSIYxgGYowUSiebD6MHlJLNpixnZT4l5qnOURFTvRQh57Rqyl3GzCHLHFyNh9TxW0Z6uf5ms9aIbiEEK6KUSkgjUDSjalYH3/nO+xzujsTZinDO2z7mORoRrZUTxWwPpX8sFsuGduw0FQ53J3Z7z+PHjxAJ3N0cSLUzPU2RmAqoJwyBZv/RrqXWuEjRCIWDD+x2O1SVYRgQZ8pKVpA7t3aweod+6pxp59hn6OdcNel1aJ3ksJCQbCYsneisYnxddS04Z79vf+Z8rZu28l9XOKAKLq0LVaufWunUsZCflu14ZeHw6SXZDRs2bNjw04D+TKLGy+1V9fWZUrjef5PfePzX+daTb/Hxt55zjDPj7oKPnnxMmk6VZASaE1mFx48ecv38hpgTCsynTJoPZqfrHGHw1Z45M+x2jLsd+51ntx+IOSLiOJ0SNy9vEWcKQVoyHotRc7Uyc9VGrSiE4DpJSSrBQTs5ojJUtJwRXc4eimvyuSwcpv7z6gVZpGEsJsztd9UGtywKo1LjXJWmKqP4quTTrsOIR7mes1le9ZyjKshiO1aKkeXt7Jfnf46FY4lGMMqlr73aWqCFcyJCQknVxrhy6HHeEwazRdOi5Kladbdz6Cd0Pnf6qDSCS23yXISS6jf1xaau2cb8j4o9GtEra1O0X4jeS3iqC+FrdQOdmKKQsZdqg0tVxs+UutaszQNVoUhY4k/nqkq+NKVKI3gVLZSSacpBps5qKkyNbZVSsXurbV414lI+m2pt3JZY7D75RrkXyq22cefEr8oCUmXVmJLr8q3w4uV1tVasGelKwmqKY8ueKwmokr36fVLqOtbaDlICmRNxzqZWm3Ofz8vnw1VVpE5l62NhpD5QKVXJN+BcVVFq13VvHSD3f7o/OO06XvOr+6O7YcOGDRs2bPjRQFF+/+H/j//yZ/9Dnu6+8eM+nQ0bNmz4keIzk5RazqIlMIo2yxeDFrNua2vMtuBs0s1gXewkJVSrBqldK3XXWAnMigZghS2PYvkM60bxgNPahd4KiNqaflYZgVYEa+fPkjPYsGHDhg0/LdDXfO+o9B5EleCFL7z3Nh89Szy/Djz/5g3f/ei7nOYbvvvN3yLFZ1ztMrqDy0cjJcFw4ZiPikbH977zjN1+x36/IwwQ/MA83TFeDXzlq++Q8okSEx+9/5ycMn43cDjd4UfHo7ce8fKTl4wELi4e8Pz5DQ7Y7XZkMtMUGcYR7wfiPPfnaSnZyErem2phyqtcdutILmfEl5a0phI7eremApRKcBJLmorDiyNmIwm1Z2ezLRARSirkjNnAVntX503xpmQjzqSUALMNUGdxQcpGislabevECBtack14GxGnFwzUkybhZo5VZSmhJddnf70AMWWamBPpbsb7ANWKw3lBglJEyXPkeJiYp2jJ9sqCbtL67fp6Z+r92dTqBz3ZTR83S3C31LX2rtd2T+B1pBIhx2K2V6o9SV1Wnd+l5Hq/BNS6f1sneUmlk6icM7JaJhPCgHcB5wIpZ+KMqXKJ2Vg4hUzBORjHleJQTZznkvuYzvNM68aP0RLtzTqksUXa+TZaSCOvt1m3kJDs87fM0/PxPUvSa1UEE0G0MA6BNx69wXQ6cXNzQ0kZRbm9vuXu5gYh4H1AHHgP8zR3gpLWz4Kg+EaM0aWgpMksTyy4dITBcTpkjodnNsb14+VE2Q2ei4uBsBtxhEo2yxTNZgmYqIUc6+JPFLxrhRD7X8oJ0WoDUs9LOtnmrJy1dMFXAtMSzK6sJXqn+ecfsgrMe2zu6gv9OpeaVeeyyaoTfvV7qftcWzwXXYhI9N9XC8zVmmFdfu21pnaOcn6s9XriT4KzY23YsGHDhn+Ocf48Aji6A7918f/luX4Me8fVW485Pb3lyZOXiCjTdMvxcM1+J1xeDeSsFGaGC0c+KCXDNCW8F1P3qQRos0IrPHxjR86Zu8ORFy9ugRozVSVHGRxJFcnKfr/ndJzJVeFcnJByrmIrzqy7Wvy2UsVpscuZCmaPyV4dBa0PR6nin0ZwV0qpqp9dLch1e+plWaav7oslAGhW0Y1oVHRFDKOSmkszdW6EjtIe+AiCd3J2OItlpVqX6WIvttpIq1pNi8W9c1W1UStZyMjwKRkZpeTl/RaaSSdvndmTrc6d1ZWsmS/tN+vxv0+kPt+dLO/viknaSURtX40C3tROXcuTNlXSarUmTpd9eEyp1jssbncgUHJtSG1qWC1QE5tr2oM36tpO+zmV2sTR7mcpdbsWj7e4tw3palyX8fwUxs2rg1PjzWb5V8ey2i5fXFyAwvFw6Negak0LNjbaLQk7kYq+km5HWJ3B6jza5s36GSHFwlxaM4fdj+AdYfT4IVTS3DInSzHr9b7bml9vn1uzUG/EtmVtunyA+GMmT38rfT7KosJUX/ij379hw4YNGzZs+KHhNnzEX//y/54n+9/7cZ/Khg0bNvzI8dmVlJx1ezQZ2lbkEQEtkGuhTpGaTHB98e+Kvd/sTyClwhCsSOpE8HVhlDAf9qwFcQ4rsRpk9b1itm+vXza1RX9bLi5JgPOyz3rrT8f9Za/w2d//aoJnw4YNGzb8+NBMCDIOYS7w/tOX/MG3P+L3vvE9Pnj/E06nzMubG77//jdBJ+LdE8Z94ud/8V3CzvHs6TW3h8iDeIE+iab4Ihk3JvzoUPXMMTFPkS+8+xbzceLDD59y8/wllw8vGYbAPjtEB4TM8TiBh4cPL4mRbrmWc4ZghJScM7e3t9Y97IQhBFOISZngB3LKS1GhVexZCDOwFPHbNq4SMR4+2vPW24+I88TdYTKFmALzZFZpJbYEtFRilO2n2XHRmnLF9WTw6XhCq+oNQHAe6wquHduZav1myXUVUzAahmD2WCl12wFxQqUqW6yR0kLKaQloh43r5c6UlbwyuIH5FIkFShamU+F4PJmyUgHnAmglWGHxhRVPSi9uvC7v3Z/llvlfagvdXq++vnrPmeUCLGPXfqfWoS1V6ahZPiwEb/Au4MVDl/pPpJTxHgYfjAxWlEIB1wooCZyn21GkWgmo54sD8RC877Gc9544xz5XkmZyvY+ldpILvgY/uSfrzTbBlKFa1NVjrhXDQ2rBrY2HVku9+2OlmnuCvxUuLi72jEPg7iYutoRqk1DEFDqdyzgXmOdcg8ayEJTEmZJnZao0mxC718360GJT1KwvUrNisRvHMAxcXY3sHgz4cSBOCT1pVTbzTKdiagBqUadqIcVE0qoW4KLNexFKjr0gYSW2OlBrRswqlq2z4pz4pmpqAmf1BPlc1xWqo0u9v+dEova5Kf1zVb+2H2rbt6x/v/pINhsTh3X0Z7T+nbG//utx6cXAZRdnr/XzXf1u/TOfst3roK/5/gdaT3zG7TZs2LBhw48Sy1/0r5df5bc//m2ePr3m2dMXlJQ4piPxdCKlSIkT+53w+M0r9peB42HieJrxgzCMA5oKfnD4QcApqLO4t2R2w0g8Je5uT8Q4M+4Du6pampKtG+YpmXrjbrB8W7XLTSl3S9qS1VRP62mHIZBTJufcydStsaEpWXZLtdU1r8kZRi6H3cXAo8eXpjqTEnPMaFGmUyRGi9lcfZOFlY1M4zqJ2I7fSD5qBCDJnbDSlYHo4TZNxWix7VrWKVoPpj1YaDG+q2ukFgfWGF0czsHuYmdrsWJEkBJLjRttDZNS6SQcV5sMWjzT4vieB+xJyIVQdPYcb2uhOqJ/HN98HbN067b1bKzrqiVwWCzZetwlLUZVqHPM7k+zUl7Ia20cOumMdn0FR7WZq8pi2ohRbbuUOwmm1BjOmjgaGalu14M6m09na9rVML4aAb0uolqiNm3+ce266/gIpv6aYurX+Up01xSUyn2C0mr+d5LPeZTW1hMtsF0UeZdDNUWuMDh8EHLRujYzy+++j77SsnnSiH7WJNPo+NqbLs7H436keQ9t7mg9ytn72yZb1Llhw4YNGzb8KPDrb/2nfLT/7R/3aWzYsGHDjwWfmaTkWjeXlXtMxrcoTmqZqrVQ1RpfrosdV4s1ZlFi5KHmcV602EK4+rU5IGkhquLq4sujDKw6fmg9+PQF27Lea69I3+b1y6rVIuyPWHgpdRHOOr/wg9Ka6qtdMWBb6G3YsGHDjwrnBAiwv8GmoJTmxJNnd2je8eLjI598/yWH41O+99G3IM6UeOKdd6947yuPkCETo9k8xfkEJPYP91zsBh6+c0FRI/VoUo45EZ3neDPzyQcvmHPhrS++zc/83Ns8f/aS023mxfNbjreJGDP7S08YAy9fXqPV8HSKkeA8fnDkORv5BjX1lWznHnwgjAHxQpnMtoFiCeVCqcl8QTUjTtmPAyUXLh7te3H/3a+8ybDzDP6St1WY58TLZ7d88tE1RQU/eoRCmRXFE1whjJ7Lccc0nygq1lHrBHEOTQnNIE47KUCaEUZxlhDOFkeogHetuzebPVkqq4SxEXcgE9wIuRJMADxc7B3DsKeg7C49l5cX3NwcSLGQUmJOEZPJV0o0EkhoKkSl0G0hSjEp/bImRtXjr+bR62y2GjnJQiT7/dow7mzy6apOIffISjSCErWYoHg/WNLZKSEY2SjNkRjt7IpmSgJRrZ3OhZhKV42JKZPzZMdxZtvgxGg7qoImKxRZTtyKTDlHUop4H3rnsIn91O7ceq3VQAStBHYvQhZBq50DUC17bRLUWhc1slp/Qs/GtAiUWqA6S7GXwu3trZH1Uq5FKaWIFVUU6+D2LhjBL/dyTz22O79nq6qHoN1ywRSrPCVnSkr2eVKzNgzBsbsccDtBvJBLJuYCXszWQotFuM6jmqFaNbbuZrPxc+SS6zxeCjU2KsbeObNfWJPibMiX91glyFRFhVVn/Oc7zlwXaZZi6OozsCr+QCMsaaeYts9Qu8yivZ57foC6YSvhFGy7vj5ojRdtv0ut5qwI2PBHEZnWr3/qdbNeT3yWe/T6z8mizPD5vs8bNmzY8JOFe3+5O6kGIyfvj3zx4VsMbsd0tJjg9PQIJRNcYf/GngePRmKO3B0m0pSJcybHhHhhHEf2VwOIEmeLP7JmBEecC3E+UFTZX17w4OGeeZ45HWfmOTOdLLYOg8MNgRRNscW5gGquBJN63itCgsXkpce44o2Q0wk2a3WbanMsDi4uR7QUhjEwjoHb2yP7i5FUElqU4AO7fSDOkaLRCEG10dHVXYoThsFxeblnOs2klGt+UME5Sq52uCpn8WMjHKVclXhWrCWBajPWVE6X56ipxNQGB5ZfiRP2e88wBIramskHIbVYO6uRdNbEIzgjTLWdldp0sMYZiVzkNS/SiUqNjXXP7O3eUdbTrxJf2v2rUcbZ+0TXWxuxSE2RpxFnOklcsyn/yEKsKT2ONYJMU3Ltdr1aaqOFrbdcVepVNTvrRtzq8249MKuAcIn9dD0Udm1/HHOrj0ibq9LXHq+Mniz24kt+uSpt1r1IVfQtTWFqNfZnd71f3Plxltu6rDv6RbXPgRdTq6KqCtfPiKra/WmqYI5KtKtjuJ47uuSqXzceepZ7Xql63Wu4qZOT9dY9b/05X1Ns2LBhw4YNPym4CR/wR5KLN2zYsOEnGJ+ZpKRqC1pb8y3LM1u097TBqghsC7TgaveO5RsIYksk28wWt7VPx0rHzvU1nKpSRMir81gXCdZFBVg6r1vioS3HRdpyf/lzvy4y/PG0o3XHjH6Gxdrr9vpZjrRhw4YNG354OP+buyToFSVxtcv85V98jzk73ri64u/86jeZ4onwa8IpveTyIbzxNhznGz788IY0zczHzN21dV8yBnZv7vCDMN9l7m6PaCrMp8g8CZ98csc4eHZ7j7jA+995xs3LAyXB6RCZD8mUbGTg7uZEPCrgCMFTojJNieA9mgqaoVBVlpRambciSMymqtPIEC2TaeSLgDjHF3/2Lb703mNOxxu+/JUv8d1vf8DdbeY0Ra5vD5QI+/0OgNvrI2mqBQ7g6nKHvxDuTifeeesNvvzVd/A4fveffhvU4b1teJoT80lIp0JSUGN4kGnEiUKuBQVXE+ra7kdR6+RdJ+xrEcW7ASeeVEzVRzw8euOCL//cQ7R4jqfEaZ65vr1jnkET5GxFma7IJEZ2tvEzgnWpXatLJ2qLb6ql7Yr0sSj8aFcm6sWTXlSodhArrFWUpAcglawgQggBVVM+UjWijXNm8dZeQ4Xj8VQDn6W7vQr+EGNmQMxuLJVVHAYlF0pWXHDVrEGqRZxFVt47KEY812Id90WhxKZmVWrBwYFWG7o6Xr0bWpWo2a6rnlsnY9nQrApM6/FcCk8hBFNxKvm8sKTL9vM0EYLnYtwZCS3GWmgreO8Jw0BaqXC1I7bimyXyF9uJeivOtsMJqqkS1tr5LuefUuZ0KqRUTIEgmtWHxawF50FwzKVUlaSqjqY2xi3Abde4hJPSu8fPWDzo0ilfbR1kzdQXQFaEQKl2gCsC3OcSPV5fiiLtr9bq1/a7OkZOZPX9YiOzdBEsuxbuNzQs64Zm+eZWr72OdNRrn/dC99dt+1kg975u6acNGzZs+OcdlQIrhZ/XX+bJ5T9hP3iub47czYV3HRwONxRJDGMi5xPHu0iMiZIzaS5GzldF9o6YMiVl5tl+T9EeqwbvcU45nWamKRq5SC1H1xRwnEBKmTjXJkGHkaUrGV904YZIlTVq5BK8knOpyjEtp1efyitlm3E/8vCNB5QSubjckeZImLzZBk+ZnBUh4Z1nmiazo8aONwyOy/0Fx+ORcRx59PiC3W7gyScvcc4xjh5xSsqFOAdyLExzNJJVHfF1Rk3c+QP6TE1mTR5pz31xiPhq2Wz/DYPn6sEO54WYlJytYSMn7Q0MPeanxop1EDvRGrp99GvCkvPc4ZpUcqZ+cx77nc+xV2fdfbgewwKNGO9dt8fWUrrCVk3EnsXC0nKyzcatkZhWY6stfq3klvOQ1XaSmzJpXauWfl+0x6mwEIjaPGtoxPRu+daSuq8NmuSV780y3FVl/3v2ZQ1qZKqL3WhqX3Mk1xvo5JygdH526118ehS3pMNLP7auf6u2Pot1TFyoa6zSCIM2t71g83B1zD7/z46vfQTs2DW2PttmFW/LakBXjcCyes2WHtqJXBs2bNiwYcOGP1380vVf4+9/4f9GktOP+1Q2bNiw4UeOz0xSKq0Y17o2sq1Fi1jnS8lmrWCFF6mEI/OC915AFCkFCc4WqwKlFRvqO6TSlbwIWe2YWdrvgUoWyixL0vXiSzG7D0H7exxUVaazpWEvnq3XvK9bglkDi5wlHVgVL18HXb/51Vc3bNiwYcOPEQoU8ahCcI6iMN28ZHrxMX/uL36NP/vOv883vvcRU37B8e59rj+5ZrpVDseZeJyIx0SMCZ8DL55MXJNJcyKWiNNCijOlWAk85sLt8xNPn94wDiOoqdk4PEMQECtQ5FQsQX8hlJRwCjsfEISYzW5g8J7dLhBPiTlbUSHHSI7JSL25JhkrMTerVEUexzRFvv/+x1xejHzy8S3Ho+LcwOkUiSkxHyO31wdSyuRYcF7Y7QLjxcBbbz/iweWe65sb3nnjET5kDi/u+MLbb/DwzT0PHw2c5pknT+4oMfD8kxc8fXag5EraEEsYmyWEkYJW/ZwLqeYs32pJac1KVkVdplSLsibBf3MzMUcrKJQMp0NGsyfnQskF1Ag/naBSaleqapXVbwl2I0zb2NUkd2WmNKWlnNd0aZBmR6Gtw3b9f85jBJXlvtxL+BtBqhiZW4w0ZCSospxbWZ+7WJFFqZ22UIqAZJxrUc+5bZwqlJSteJAWVUdXC1NZC7FUG71q2bbY8ykOxYlDVSph/ZwMXuqVOzEr3taN3LaT18Q/bU7YvS/9mqkKnYq8UgAYguPL773Jw8uHfP+DJ6RcKGoqnWMwy7uSMmjrHl5PJ+3/WhxbR6oTVxAj3otmULteg51XSXA8WFe4HxzjOPTm9xA8u91AyYmpksucDzZnV/NhTXzSlR/HmhC3PmezQalvWMex9XdW31oVdxoJ717h7vOEXujrL7TX7ZXSC33aX3Nu+QytOwzafdNaXFt+vaxF4NwuutfXqIoNVX2glWl0te260Ljepv3/fvnn09YTy1+HV/FH3alt5bBhw4YNn18s1ADPG/PP8dXbf5v/7vRfkY5Hvvj2Y974+bf54KOXHOeJ58++z3yMlOhIUckpU5IpLoKD7Dlczwha81kWF5VsP8WusKJ47y3+quT+9szLWXHFmgrDYIo4GpVhDIgIMUZ7njpHCNXWdjZ6fcmlW0m1Z2/Lv2klPgsQ58TTT17gRDgdUo2VA6XG1jlX8naJptTpPOJhGAPDLnDxYM/uwUBwDrRwe3OLF8fVmxfsdnbEl9cHnHMkn5ljNFXLVZzeSd1NYeZeXu4VtcJGwimKllQ3quuBXLi5mRCh2yubqlOL26CT7+sLZ3QiXYgw2mKTNnar82oxwn3lm7MzbfFQJ5HIvW2kb3g/PsjNBnkJWlbnVrOoLWZsL4qszsveVoqR4XvOd31saYQj+jUvSrPNPq5ZkrVGhiW+FdG+Vil9DaR9PdGWg61xYn2da+e2+2icdXRZW7V7cRarrWLtB1d7Hj644ub6jjkJUlzNX7tuvd60qdaj/wrpqTeh3LsnqssrLVhdkYBKLuS6bvcFQnC2LlP7XrG5qZVRKIBK+RRVqeVMz7LP98hxbU6ebdMHaqUi3G35TLV3w4YNGzZs2PCnj5+//av8ex/+H/gb7/5HZDf/uE9nw4YNG36k+MwkJake7mBdWq4uRnO1CtGa+W+LdYfgMQsNLVS2kBWDcWp2cGqEpFqO6otecc3qQzpRqaD4ewmHdfEAzpeGrZjRrB08C2lJ67+1+sHr1JHamdmi8GyV/qloy0M9+2kp031+y0YbNmzY8NODlozMLnOYCikK/9a/9pf4C//yVzjczvzMh7/I3/57f5NvfuOau2shnhzxDrwfSQ4ePHwTzZnj9Q0iM4pZQqlCipkUI1m9ET3IOC+o1ISfK5ScKOrIUTlOE2HwuMETgmPKig+Oi8s9h8MB54Rh9OwvA05gPkXAyCklKqVaW7mqtGJJWYdUIyxUefH0ljA47sLMs2ez7W9fE/TJ7CTEOwIeKAzBM+w8Dx5fcfX4kgcPd7z13hWuZOKUOcWXhIsBv3NMMfPB95/z4kXGuz0vb07WSV2LGqpa7epKLRIsSjdWhNHe8Qt0QtCigGN2dyIO742M8vzZHS+fGyXZChZCThnXWskbVeGeRcNaVadl5Ttxpc2Ne4SSpoSz/t2SVJeqnqSoWMTgqtSN8ZxcP1auNmPtHHI2taSuDuOsgLQcu15HsZFqKkpKS1pLj11SLrgivfPZjuFpNm3moFeLASKmoISrNh+W0C+1Y19Ku8JCCEY0H4eBGKGU2AlQ3jkQZx3+40gQmFfdyJ3EJa4eVs/HtXeQay2cGZGtk0fOxht2ux0PH1xye33NPJuNXcAzDp6SEjmVs2JIw5qgtNxjXonptHZd92KCgIh1nocwAkpKRgICYHDs9yMxziClkvAcLhpl3vzHytn+11FqG49lvp3Pv/6VtUJXnder8VF1Z6UJLUrKn196i5NWvFt+bt34ppZQo+91waR+7Z33rchS72OxGs7K6vmcbMTq+zX5aH2HpG/R1F6X19frDddXBuf4LDH+D7IGeN35tzXLtp7YsGHDhs8LWqZH+Ordv0HSgZ9543s8fnzJODge/czv8o0n3+CD70fmUyQXhxSHUw9OGPeXeOe5uX2BQ0lqSqZijO3aBFhjCjFie6nHc97ba9XeLOeMC9LVSou252ZVAC0Wa3pvX1Oq9rer5zC8mhbrz8G+nSDeM88ZRRlCjd/UiB3Be2QQUswWqwWHHzzjbqAUs1MbgqDqSTkgZSJpIh/h7u7E3V209dY8k/MqVqpErZILjWCsa4ZNuxOrOH4d40uNgXtsiqOkwpRSf3+SvMQJqziETvD5NHut8/HiXhxad/FKXHP+roXYInBGOF/M3Kj3ddnujNS/2ujMeU571vO1hKkeNyt1XbmOmdvv2vb3A2joPndt7O9lafs56L1rVzrxLBeLpX3w5JiW9Zu8esw2F+tprQhB69h6Fc/dm+CqcHNzy2mKlrt2pkSquSm6vj7O+6zoe1Bbq4nU9bk4XLWVXtRnTbG26k5RKLbGwi+KXo341Q+w3M2zM+2MrXvZ59X9PWvkWG3f/hBozcPbOL3WxHzDhg0bNmzY8EOGZ+Df+eh/x1X6Ah/tf6e//ruP/yue7b75YzyzDRs2bPjTx2cmKY1B+kLZLC2kKj/Ywik4ZwVaarFA6J0eBShq6khtTSTQiyiKWjdVXSOVVbeUg744XS+R7i+XXpesF7ULtH3YNn618Vmh4o/J+AuyrPH+yJGyzpNmgddeadeyVRU2bNiw4XMAV4k9OB5fev7Vf/WrvHh54MHOcTXuUef4O1NG8467KfPo8ZfwqXBz95LLq0f88p//K3z967/FlG+RHLg7HknFEvVoAEqV/ldyiegkTJrZXQYuHwxMkxFUYrQCQbgYQO3nFKHETJqPpJSMnMLM6WgS/eLBD4IWUzFcLNKWyzMFnMQYPDIMqHdcPBjZ7QI3L47Mx4h3HhWj7nrvCMNgSjskxp1HHJxOE/njzJPvPeXRWxdcXHpSdpxK5mo38vGT57x4cs2LZydSHnBy6spODoeokkupz9uFVKNl6TzuSkevIZKoFuv2rlYLlsp1lGzKSuKVgljhBcFJS/HSCS9GBJJu2SCt0lLHrBVz7hc1rMN3VQhYbdOqNdoe9mIkiRA8wQ+r90tNvpvtxXqf3SaiEnVybqo7pgXZVJqkErlFhCIrAg/1QhFIipWKyuo6ymvH1X62QhcoIfgVMQacr4WgSnYpBWI8Ar5bHyAQdgNgHcBDGGpSv9lIlE42X8dPr5yHCB6pRSwLSZuVhJHDlvGap8h3vvuEOM92XsD+YsRRmKf42uLPfYLap2Kdx69p/TA6dntPLhknViiQoji1LueihePpCE65GEfc4PDiifMMmqvl4PkcUhbbsqW4on2eaCd4tdKDWcQt47aei/R71l5zTirZ7PPb+ez9QlJqXDuK/c3y0kuMjUNIE5Fq64t2n9eKSAq4YgqtTYmLGotD5S1yn9zTjlHvTd2ZsLLh03OFJlfXIrXW9Lr+hk8N83uvw2deB0i/tvW8Vq3rGvkBdrVhw4YNG37oaLQS0zpyBOBr8lf4+fEv448epsz1Gx/gS8aVQM6OYbhgP+y4u3sJBR49foPT8WiNCgJEZYqpK0s6cSCmTqPZFAYt/hVGX8lJKS8cEcxK2IjwlqeLU7JGiaJAoUQlJbOhHUaL83JWZJ2sa9coDpFKRPK+BorWPBGnRJwySQtSllja1A8dqpmSC1NO6KQc7hxkJQyO3X4AgZgy4hRJM8e7E3HKlCIkzOpiUcBcGhobsUL7HYD+P2HZrt2k9tr6ubnepsUijTxOjbFkiTNExJRNWZ7n7VSWsVpeWBOBGrmkrXvWTQZU4vMiaGPHbsR9qOqqdTvvHFJt+e6rMnX01+9HCZ+i6VjJWGdKS7JYUxu5SNe76ReoldTSYldZjW2bD6XkzhGS2rDRdqJ1/SReCD7gpK756uDL6rzXpP5X7NZEqvWxu6dKu2rwaCevcDjOfU4p5gAgouSqHLTee58D7fUVaauN9Xpcl5/tApyH3X4ESv9MNrtw56yJKabYm5J8sNbcXO2rm6rUp+HsXHU5eh3hZU6qNT2otgizXsv6c3E271/9e7Bhw4YNGzZs+NODZ+CvPP1fo2LxSJKJ71/+442ktGHDhp94fGaS0mC1qJoTqBYqmExzcVWpSCxpXor5V4s6UtEqT13t27IgvdldSAq+Wpco9f1SEIVBHE5NSQlqUaKeTytutUWZ9UIt2Qhd/T/0V+s/XZaabRnXFJZaV8ory8DV6vT1PdT9xGilv14oZWVZt1o4Sq029ATA2XFr0erTjrNhw4YNG/5kEEALGbNd8xQu9rDbP8IBU1FO1y/JNxNv7t/Bv+nwHoZ39oSrjzkdjnzrW9/gdHrJ1eORd9645Nmzl7y4PlFiZjdckFLmcDgynWakGLlDpRDnxO2NEqdEnqIl8wePqOD9jpgmtBS0KIVkBJv62EgJvPc8fHQJZKYJjjcTXqWL7Yh4nBeGXSCMwhffeUwpmeMcLQuspnCYo3L3cqLIQBhgHK0QcjqduLk+oKUWNBDIDi/KJx87gnfsrkYEePrJgTTNzMdCjgKaKCRLkAp2HTWBK+JbGv5eM+tCzsgl040HpOd+jcjVSR6lE0VUqg2UE0rtVFUtnQBSSu6kGs1lSZhz/1lr8YkJPrpqeXFOhW7neaak1MbcCcMwEAZLjHvvSSmRc42HnJ1Xs6copZzvb11LaVWRnr9flxnWhJumGUO9WO1BjnUEu1fISaz31PdDVVFqBC6HCwHNGUqzTmu2YrnvQlGKFPb7Cx5dPSaeZl7eHHB+h/hMzhG02P6c7/tfIjH74r03kjtmX2JqRFKJUdFIeijOe7TAzWGq7zYLxFKUOEeLMemlKlxZHanPsWU8zgpYLOZgIg6pJJqHb+x5850rTqeJw23idJescCAFFzDyIcLV1Z7d5YiIcjrMHI+VjNYUqeoxnat2Da1YpUvRYSlyLYWb9rloylnNHs65ZQyX5gGLkCsnqiplfT7h1lOg1ukK4GuR7tPi3vb3oClDtL8BvcYo631r7xTvJK51FUlgTRxr+4e19Rv9932d0PfRFwQLlmm9rpW+hph034zuNde6+npemmp/v6pS7dlB21x6ncHi2Slu2LBhw4YfFoQa2wrJHfinj/86L8MnOGDWxCeH73N3fcO773yBaX7E4XjgNM08fnvPzctnvHjxlJQmvC+88fgK2PHy+kBK9rBzCKdptrhM2zPA4oI4W2xTkj38Lc6Qarem0InP1TZY1WzMxJrqnBPC4C2GmnInTqiqKTkhFvd44eJyNLXXeSYntX+51Lg5Yy5qivP2D4U4xRrzgjhHKQkBYoTjYcIHYdyN1V7NrO+ceHCLOrv2OAcWVtASi6/D3P4ofIWbU6PDYmNX39l20d/cbIjXFm6NnFQ6ab696dWn+GKl1sg9qwVPOz9Z3ier/9eAFXGmdurqmDWF+ha29vWJvko46s//Ngafzms5v/CW3ZSVJRxt7fOauGbV2HAWSWk9v57ftAxrG4p1fLJkYuv3zjOOI8EFpmmmqOAFcsloJd5775f1XbPqVkzJVurxdJmX4hze+WqttqxHO4EJrSQeO4cYzeavWZ21cdHlptb87dltbbfDvrYYUaRah1PX5R7vA/OUiVP7TLR1pfbra/c8pcw8L6pOPRasn00jtp1HiAsBrp3Q+YdhrYq0hLPLe9pM6J8XET7P9tEbNmzYsGHDTxru/BP+86/8b/jw4rcAyBJ5Pn7zx3xWGzZs2PCnj89MUnJiC6K2tGkFUSeO5q6iNQlhShKguRFxrGsqF+vecAildtnjTIUpF/CtClBVlVJWgluKeCLNZsG2zVautAUxUFoHTT0/t1rQtZJAUixRA33Jae8RfC9e8UpyozdusaY23d/G9pdZyFTrrXJ/TU1V6f7idvXd+vw2qtKGDRs2/PDQ0oEt0Z8LvJwL6mYoyje++wG/8xu/zS//5V/kP/jaL/D0+Qv+3t/5DZ7N1/zhNzNz/B53x0/AndhdBN750iWESHGFeU6MfuBwW628gOAdRRK5FEoRdC5oUsAj3uO9p0QlHk/EFE0CngIZpFh/tiZjTuSSON4plw8uEBcZdh6KI+dkll/VWqsUAeeZixUmjqcJzY4UCyUV/DDacaJymhIHTjgOpDmTVXFeuLzcU0omzskILFk4xYh44fJiT6awv7xkvxdOx5Mlj0shpgjOE6dCmnNVKjTiidzL7MqaSNOL/y23usj8N+WlljiWVTY4uIFpniktYe/qU7o0QlS1T2h1DXE1Yd6OpZXg1NSPdDmdVjS4R1AymyitXc71GMWIO6XaboADzWhVu3IIuWi1uW2lCUGC2bK1Qo4W+vkuyXxZxQIKFFzwjOOAd9bNbkn5en6Ofu1WZBJUqzWISlX5ybQCTyNo0KIYp/jBI1pteut+Mmbl4XCQjDh3iInLywdcZNerGDe316QyEXaeBxcPON4emONsSjdFKZpxzmI5LYVclJgmxMG429m4Okv2iwrDsCPnTMoRxZSxnAjTFM32wyojfYxUjaWkrWhR58NS0LKRLZV+IhS8KMPo2Y0DpzkynSKHwwkndr1Ci4WrxWDt1i5ZOd7N5FQ4HWfiXCo5zua81s+T9zaMJdvnYKlftQ7x5X1270ud77oUUtqpSyWUVXnQUtYFpfVc/fyhN6C3f+X8d70ABFQBCbSqJMFSe2mN5cqifFRWRKfWOAGQtS8t2vD1PwdrG2g7L2FF/1n+bKz+2XbrrZb99utY7fN1eP1K4nyDfl5yvu16jbE+pz/RcTZs2LBhw58cPX6CD4ff5ffjP+Z4jITguDkc+Oijj/Fj4M//+a/iRXj25JpPnt3w7e99u5INMj4ArhDLTMnZnvGuxjTt0a8Wg5wdWkt9GArifCUWQU65E9AX9kQ9z2Zpi5JiQmSoVlcC4u31vCgzxZjxKhwOEyE4Uko1jhGLO71DXLDYrhRSLDCbmmzRgjhHGAMhOFN3SuWMQ5FzMZL6aCo6McZ7sZypt8doMZKTal1Xd7Be0/UL7da/Sw5vNQivEEwshjRVnxbPtx2eaRW1b2ugsm5cvL/L+ypHjdCzjubX72qmgaiiuVAsufoKuX5R2jy/8rZyWYhDvJas0sgny7WYwmcYhz62ZtGtyzs6GaiS49vaiKbeWVbbSSViNRVYEG92yCVrP58ltyo4FUoqnDSyvwj4MLITIy0dDnfMqqZWu9uhKRPj6v7UeN/JQidStTksKri6lmw6Smecm7r+c420tFLKWsb47K7S2PHnMV57QfoxQnAMwZMqQep0jIRgKsg9bmvHaZ/bqsBqa4VC//iu1spdqUwg5+XQjVjU1hTrv0u0dfDZOZ9fl3NN9Ur7+TRi2YYNGzZs2LDhTx+K8k8f/7/4zTf+sy2Bs2HDhp86fGaSErjauVL7j7Qm+b30JD++dom72uEM5GL/s+KOFWzqegon1jndKmRFqN1dWEcMiopDsm0zVAZSWyx5FgWnjP1rBCCPLUpDJS5ZEcIWol2NafXPjgV+qQ+dJzxkWbD+cdC6fr1fUGjH8u36WYoLXSi4LUDXO9weThs2bNjwQ4WY+SfTFPnmH3zIr/7W7zMNM1O65eOPPuQ43fA//Pf+Z1z+zJ73fuHn+YVf+Fn+m7/36/zOP/1HFD2xv1RyEVI68fXf+ybzlMlJSKk+y7Ql+IyQYQo+Uq0CEqoJFwaGcUA1E/Ns6jtpsQETMeVBEU8tv6OqzKeED6knIsMYkPq+lAo5FyQl5lk4XB9MQKmoPZyLoK4QqtyfCHjnoUCO2Z7ZmD3ZMIwMYyDFxHyKxBgJIVCScjhNXFzuuLgYmeeIhF1NnMJu94hcCi+f3XKqiWOzgKspYr/YpK27VZu1gRUI7OSaAo64OnbtUVmfsTFnUm7dsJjCYrNNoyaYG2lDtBY2Cl7cQo5iRTzo3b/ndlqLclEjn6zk/cWuJ8WMU49qqklmu46l2CKdQFVfMGJVs77VdQCi9T68qogkIoyj5+Lqkt1uV+0AJso043qcpJ2kEXwgDJ6UCiW3ruRmRVcJPGIRivdCGIJ1/yKIeuZptsR5LUj07mQxhaTx4oIHDx5RErz33nu8fP6cw/FA1pndft/z5CEEVISSMmjBOysMDONASoU5RYoqc4xdhUuKje88T/U+KU48w+DJpZBz/RyUle1hveesyCvSrCNUkG7gpfVDYMWTYXS8+dYVaCGmRIrK9csjQ4DgdgxBiAmyFjQ7vLcC3fFuQouS7bLsc1bvvSloecbRzjmlTFTrjJbGDmuFheZ13OehRY7rmNXVeaMKOLPqs5dMPSHlZIpk4u//yfvcYF0vXfMTO3dP22du9fu6rljVDVf1taUYabuon9EajNv8M3uNs217AdIOWk0W61/a5ZzE3t4LYOtjrxcG7ds2u1wtWPXC5GpB8ceF9a8Uv85+rucs917sCgj39nW2zR9z4A0bNmzY8CeA0SO+mX6Nj5485ZObFyRmDnc35DTz9he/yNPbax4/uOSLP/OY8WLHBx9/F4j4UHBATnB7czTitRoBoWRTmSw9Zm55MO32xY3U3kjqpar+dHuzSqouUlakg2ojVckheEdOpma6JtmWKl2YFFLMzP3ZLF2dMKs1ZGgxErcTb8dvT0NVSs5kqc2N3lUbZttBTgUCprTUVI7qg2sYR5wTpuNs4+JcVcDJnWjTBNLbk7I9b1sTQZOYbPbK7fl+3iBha42cm2Loqw/LulmP+1F6k0NHZ7isYv3V78/4Matz6mSVepDS49/F4q6TVNrmnWi0POSL6qc/83vQ04hC9nvvzW55HEdiVS89u14RW0c6e8E5UwcuxcZL2z7bmLCMkfO2riu1icDuebH4TKxFgKr+5b3DjwMPHjwgTZEhDCDC8XjoeWQtraFjURLqylSqhGEAxNbTdR1Rcl6NnXQbZrD56FxVTir31lqrLO1y48+xJoppTY4L1sgw7oyYpyclZ6VkJWNrAiPgNxs67bGicb1K/7xT111nSk6uKUqpNTfoavKsCW2rWLNd1Xpbqb9Y8t22JvR+1eDT1u0bNmzYsGHDhh8BdCMobdiw4acWPwBJyYovooK0Amr3SKMXEVWsSxwsQe+cEFSgNBs4KA60uF4A8N6IOwjEvBR37WdThnDYws07IddaqwDNQKbZvdlrMGCL2aVMIyuikJ4tyKiv51YoZTl++6aRmP4oNMUnVwuMzYai0KSCDYlaaKpw937esGHDhg1/mhBQI88OQfjCF9/gl/78L/L3fuNX+cYf/B63L59zOtzyN/W/5Xf+ye/xv/if//ukl3d88NHv8/itxO5yx91hYr4rHG4L82muhAPhdEioRpRCnDNkRb1UqflCSSDeoepwybqmkYIbHOPFSNGM5sxu2CE47m7vGIYB7y35PJ0SJSvxlEjJ/llXq1k4lOqtqqrk4qiuDjTbAXtWF+ZUjCyCFQaAnrgVIE2JF09e4rxZDzSyDDX56opwe33gcHdAa6LYeccwBJBMnmbiFPHiTQEn5WpRsCIHrZ6pIkIIZveVS+3MroWYnHIlZdCvAVZJ11XythG8euGgJhJRhVcAAQAASURBVGIXywLtBKKGZknXzmndNdqtWM+6WC0eEZFOltJGXErVdKzu83V0hHaOriaZezd4yxjTfn590OG9IwyB3W4k58zNza11tYtZIIhTQggMu2DkolqEyjEZUWmlutO6xZu9hA92D3NW4pxqrcUUe1TB4fA+kEfPxbDHDyNXFxc8evCQq/0V3ntubm8oJZmC1+0dDkdRZRgGNEMi4/0AmlEU7wcj7eVM1kLOGV/JKDb3pBfcgqvKYzmTc6rko5aU79OAbpsHaG4UNumEs5bAdySL0Zzn6uEFD97YkefE4ZQoU8FRO4vruS1FJ6BFi6Lkksip2Pg4h9nhmU0dSC/oLJZ3iyVf+9wtcWmffFbIeWUuSr1noc7Dug+1KtLnXX2z1VFk9XPDuli3Vj9ot7NyFTuRifYzS42sfdaLVvW2WljrVoBtn7UQ2Iqh3Zq5EZPOXpP6Prt3y6d0dV33vlkTk/5Ed0ToxcZzgtL591oJViCo6Oo8N2zYsGHDjwLWJKe8dfUOX370JdzTwLe+9U1izMRj5Dt/8D7f/+5TfvFrv8Bbjx7y7W99i6I3PHg0cjqaCus8qakQqVHCczZllzjnaiHbHpyNcE/PTakCJeM8OO8Yd+PSJIFZqMU5AhZDOj8wz4kcSyWbpGUN0PdpD+v+zG6kGK2EkRZ7lVJtWLUTgpZxse3TnElzWkgvUtcWGFk9J7PDxlVqRXuOl4goxJgslqsx0ytGZ51DIj12bOft1va3yhnbuT9P75M31izps+OsiB+yso9eb/uawKDvsx/O1gjNWgvuK2BKJycth15RYs7io2Wts6yPVoFRj2igkeL7ObVYCiWmyDxHy/dKzVsWU8Ly3jKquRRTP80rIo2c77utGaXmgRsBqPQGHIczmVQcDnVGRhv9gFRrNiMbwc3NNak2I+SUKSkBYkqyfmCK0faHrX9Sapbfy7qgXb010rh6PtWOWpzF9qVagtfxbc0zZ7fklekgZ9OkzwWBYTewuxhxAjkrrq21pJLsuuKuruaFmDNBv29L3C/Uz3pbFzcF2Tbr+6Q8V+9apqWu3r+OV5c1clPZXY7bxmvDhg0bNmzY8KOB8CB94cd9Ehs2bNjwY8FnJil5R0/266ozeOmItkVOk4iV1e/MYsGUkbwz74ZEVaGo+YzgIXjFB/f/Z+/Pgq3Jsvs+7Lf2zjzn3Hu/qeaunoAeMDRAUBQJSARFTRBIiJRM0Q4z7DAth+0IvzjCz36z3xyOsMJ+8BDhCFvhkEhrsiSKDlGySFGEMKMxEEBPhe6u7qqu+Rvvd4dzTubee/lh7b1z57n3q/4aRHcVuvNfUd+9N0/mzj3lyTX811qE0VLO4sB7QVToBPrsoIgJYlbCkmRCEuYuctjf07HWkVmUR6lOjaK4Tiq8VAdG4/ekdTV+O9O/y0ptTlRRr6zK66x5IWaH5qREc40ivGDBggUL/tgg9u3be7h564T+wQUyjjx69y5uteb84Y7f+aXPc3z7Nm++9Q5he8nZ6euoXBBjZByU3UVgf5lIUdBC+kmJlAK7fcgGT63lqLSQVkqUc1L6vuPG7Q1HN9YgMIRAysZ6jZF+7SAFVkcbRDz7/RmqyjBYZiK0GGEn17Q4M/7jJJd/00r6iTlbSxjHHIUtpDEAxdkxOSFiSsSg4Ox67zojYCTY70bAxtH3K8R7hn1gGAZ220AaIsNeEY3ZmJ3fyDJFNItIjQZ1rhheQ+7/RCUoUbh6jcOgGJ2vIxOVvy19/dxx0v7dvvdTc01bNuuwjULeskVWM3SHSBhTc53WvrXEoJIxyo7nHJCqda8krJRXIdNUEktjCQ8x8vDBIyvnEY1k48RlR5Ug4nGuqxl7Qi4hAFN0uRG5bO77lafrOxAlaTBSuO+qswgUr96ITM7jjtbcufMML9x5nu3ZnjfeeBvvhf1uy+PHp8QUQJU4BpKlc+Kll15iuBy49+ghzoNExzCOnJ+f5WhossBl9xMn9H1H13kr/yGToy20kdHZK2Drpvn3sgFofpG8z2CiNtkY15uOG7dPcN6h3uH7gR7FOYuA1uCIAUKw0m0tkcyJIzoj7td9ERXvXREg8zM7YtHSjlJ2uBKV6to2JDw1h0aRHgvBypWsXiqMIeKdZVootPwi535Y4coSzzA9v4fkxZat1PhysIojJjsntTWPuW3vyjNcnIPUtff1eS9ZKLLfkoagpDlLrFwXSHBQToXpuZw635bbaMfzBGLTE1CyKtgOmE/CNVxPoJC28n6ZPLcLFixYsOC7gSIKAs+Nn+KV+NuEfeDy8Rnnux2ESBgDF2fn/OOzx3Sdp5OE+D0pJWKwEmkplhK8SgylVFbJBOPmZaqqFalk/rNyWEfHG7psMAshIrLKMtNo8kUymcb5NotLHkZ537T3cYXcbVlX25JTKdeD0yhVH2mNXROFYpqoIncKJROOlZObCL1GQNGqJxX5FxCX/y7hhLnoaku0aFgjE+lK5i9fKWM/6GSR+8sMN8Sflsx0hZR02Mxshaa25zPRHHPZApiFhhJAkApxpugh8zplNlstQalIM2Lkr1K6rL1/7XsmIRkRTIlxnEhRMumTmtcoxXa/aZaPXC2hVvQEEbKeYPbeQnTy3jfzLVM/RRDv6Ncrbt28zUo63rv3gP2wx7miq+Yc/M06rNdrjtdHhLMzUopGmtM0lbEu65nH2xLjRLEIWYwImMrerWvTZC6aUbpm9K7pcyl3zDKmd/S9ZT+LqpkoZ/e258TZ2hS90MGU/kqmH3U7Z4JTOajkABOt+6bVW0uQzvSMTONqjd5S9k9GCaotZd8W4XHBggULFiz43kIQPn3+L/I7z/6t5TW8YMGCHzg8NUmpy2l+2+9Jc7tOxoDiKCiHFHApoTics/TDvVM6D9EL+6DEbFyJCbwoziurjkyGsqxG3kEnVPdLV+p2N71pDQOHalUxBMjEqOLaQhhNJNChHvqdvB8c1cc2/U4pw6D1nOqUoSiGOUUwpV768lZasGDBgj9+ZAO2mXHpFF66eYs7x7c5e7jl/v030HDOfjdy771v8c1Xv8itm2tu3OxR9oRRSSERhoCkgRQDu23Ai2e9csRxtCyCboWmgKoRRFwm+XZdh1cz8J/cOuHkxooQ9wz7PSorVB37XSCM0dzpSTl7fIHzPkdPYinkkxCFXArC3si+M9JDv/Ksj1cQYbcbjAhBQkXx4hvWLpUMQ/4/6WSAFu9QzADsxOWScGU8gjglucDK94U1ACj9pufoZMN+O7DfjriEZYnSifxTiDqSjcsxE2lEoOt7xFkGqkI8svJpeuXV2BJ5xFKoUM31bSaaachMNVmbjEV61alf+lOdAfkeiZztKbeaYiSliBYek2TDtWgdXzvXMZ8/EV0yu0Inp1NxVjVbFgRCiIQQrLSGyNQHZ5knU1J224H9bsT5nKHKOzZdzzDka0s2Jyf0fSYoYdG9qlTSS8yl9JxzrHxPEsV3PQ7HEAK379xhvLjH6aOHxDTgBMawR7U4FbI9XBMpBsZo5LYYYs1Qo5amc4rYleKcI++LqbRBISgljMhmpL82M9ZULrHsjckIXyK5QaVk67JSD8cnlsXswcNLJGf63BytEFGGfUR9RxpGUgokTXgmR1ZCMkHfZfk35pLFZX9Kzd7lnEx7uexXsBIp9gWRHZVQytA1Ox3vu0xsStmBkR1vjYBuWbE+vOXeyo49dOQV31Wekca5NsnUCuDyHpVp/kL++ipfD6r2dZSr4dk+UMv+UAIJilNZOCAote7G/OtVZ2v793Wy+jUOyfc5+0ko/cvuyOvdZQfOTz34fdEkFixYsOC7C0s6JNwZPs6d2zfZ3tzi/Zr95RnEPWMYLJvi5TndynO06UFSDhxQK3mWFFIihIDg8N5l+Uvw0lVdomQuzcxuitzjew8i7LaDETYUxHliKHK0ZcOMKZF2OVAByzRkn08Eds0vZMl6Rd93qCphDLnccSGrFNI0s5+HGU8LQUQz2QSKfF/OzcRatXs6Z9lxECNzr1YdKAx7y/RjZcZyaTO1kl/oJHfVjKkyBVlSzs0/rwgfUIkw9aOmzXrqNS/W2Z9ZLpua1NI0VeeQ6cpCsC/ZbDSlWhJb6iRm/SfLidaFKRNTKc1l9k6a+2V151CXyGugakSaaQy5PXKwBCa/xiGZ/JTJRyaTC9oGDBRdJhPYspiaFzGTazLBScTbNDmHxzHsBy78BUF6xmFPGAfLopoixeI8CUPKOOy5iEZKSjFa1uC6jFM2rHSwMae10Fw6Li+UE7xzTWm4mcZ4gJbRJKAJ5+16AN85nBfGMdZ19N4b6Spge3UmYiroFAhj5XzbzFgNBSrLuTXoqdWzSnsz4pqtvVZdkWnvSQ4Iyvcw/SQ3WfdAUzZxwYIFCxYsWPBdxw9d/HMcxWfYdg8/6K4sWLBgwfcUT01Smsg/h9W3tTHs0yg+dk5wjgj0ImiXHQROWYnQrax0W4zUaB8H9CtTkEsaXHOHzZ0aPUKX//ZMilkCYm4nV8C53kDfEpKaMbZOkT8SZMqI5KTqfbXl61wJLW1p/lH1IP8RO7NgwYIFC66D5jx3IHQ93LrTcXF5QRiETd9xNkg+Y0QHRZIjBWEYIkkHxl1k3EUkCWlUnIPNyQonSu82rHqPF89+b06I4/URMeQMSCllY6pjuxvZbrekccBLR5QLolrZVN91RsBISkqQQkIUVusV4iSXbnBoijlFu5Ufcx1sjleIKtvtnnGIiAi+7xDJKfNLqYhD4zbUkq6+9+As86AohGCl5so1USw7SQp74hiM9OGsHJhbCetNT+cFL57t5d6yTeXXWkopE4CMUBHHOEVlYynnRQvRpJxfjPb2cnc5Erg4EQpZSbLDoRpZmeKuJ8P19Ht5Tdco5UKMyp+VbEMl602M2XCcS22pltIbjZySnSBRI8ll5lLr/ChOB03gHDFlQ3KNcDbnixw4SNBJXhKcJaZyVo5MFHzf471FB6NKwhGSlR90rr+aTQkhJIhDqIZyEPrO4TqP87050URYrze41Zqjk9tsHz/i4d0H/MbD30B3I+N+IFEyhsUsfJVoZnCqvPfuu0ZMD5GoEVTxmVDjvDnTkpasQqlmSIoxWYapNM2POM9mc0SKkXG/Q+OUOScvaw4WL3vIZr5kN+p8x807x3hv2btWK08ICe+6TJyyuR6zQw6NOIn4zkhf5mDLjkXUGDPNuhcnj/l7fO6LaxxypZRJymSrCZLJWq5mUaqfTFHSWKapzvvq3AghIE5Z9atMEvuwImdRmAndk+wMVFk6/2HfAXk/JVeOThf0zKaepDkLUuOMKTrGzD+IfZ+4g/trrqVSOYfAVEhPZ1dfhzq0Zls8+ezrMVEVJ0ef5DHO5krnV8lhRP6CBQsWLPiuQxBWesLa3eTs4lUuzy/pvRDUgXj6DsZhyOSIaESfnC0oRa0yrsPheyOXpwCrvsvEASN29H1HiJEw5oCB/EJIKbHfj2hMdM5b9vEQM6HdCNkxxlmGnTb7Ssmko7m0bRa3EAcxWuCElVwD8b5mU2qzjBYiTksQL+SRlpSdchnneYZUsfZTRGTKSqodlSzhvWfM5b/qNajpSi2xoyHlFNJVIbCgqfazodFMA8iBja0prtg1q0gxTeDMmgfM+sbBnBbhQJpzFYzQUxQkTJ+YoLVrRX+ciDQN8aecQzP2poVJbigSStPzcr9qHlVUUs6e5bLckbN6oURJDTmmCFVielOa5t8y83i8dEg3ZYftVyvWqzV0K0iJ88ePOH10WnXeWqI8T1YZW7lPDJalt0x10mQENwe+ycYrzX4sxKQaTJJt2IjgfGe/58zHda+0955biqc2nLBa9azW3khTCWK0ABffd7WvhSyYmXWIswoDNduulixI0/apa6hZLi0r2ATXWB9l2ndF7yldlCkzUt13db/kbF2OWn7RdC2bpA9zwMOCBQsWLFjw/Ygb4wvcCC8tJKUFCxb8wOGpSUrVuN8qwvmDkvWn/Uww474TIw2lEs1cFGKBXpQOIQmoCkkdnZdMMBLUu0pCqo4FPTAmNH3JMVUkIABOrfSDBzxXqtfni6Uq0rNjf0S0amFbIq5C2/OyklisN1cU3wULFixY8N2A4GrJnyiO1998wJe/8HWG7TlKol8d4VSIMRDjyPbikqQj4jp8JxbMCoSY8L43QpEqwxhZ92s0JGKK9Oue426FOMf540tCCIBaGTctUakdJ8dHbNYrLrc7Lrd7xkziiDEQx0CuAgFoJfdYGTWLbhVxhJDfgiJsL/eM+5EUJsOnOUWUFKdMOjXamMl4XcnH+WW+Wa0Y94EQQyUFlTnUBMkJIQoEyxY16B72sOt2CMK4j4RgZeaqaTwTo2wcsRrtbYhKTFqdGmaYn4zNND8KsSfTYyaCENN7thj0CympfqY6tU/KJKPJ0NsSt8yAXKK+7R4pxWocnoy/Wt/rlQSW8r2qcbpxFUiOhs8eodLXUtJrLhWUCOxCJhNyika7r0IKgX61ovfeCDzjyFjCmYtjxvlK6OlWHd73xF1g1IjrPMdHt7ixPqHve7pVz8XFOX3v+MjHXmI/RvzqhLv7LXKWOH98TgqRle+4deOY7W5PTKBJCWqEpZJFcgwBFanltqLYOiPgxOOcz6wQRTWQNBJiyA6e4uhyOO/xXY/GSBjH6nwq61ajgfPspUb+S0lRUVZ9j6L4zjxw+/2A8x1HxytQz8V2x7APlNIHSASvrHpP3/e55GHIJSamsg2VaKftJkw1Y5Qdd7X0WCobqjhk1OhzrmRRqoyaiYCVUsR7oeuErnPEYI4j8YnN5oh+1du8fcgxfY9MkvLk7MprWc6V8mw0xKNy1vT4WIQ6mjO/HZB5oDkm1ct46LQp/quavSk/YiVS3x+0eYg/ugbx/u3pwd9P/nx+xqJZLFiwYMF3F+V716c1m/sf5523/iExKiEkxPf0CHG/B4zEMQwDznU47zEBONUSzF3fEWMkhoTPtrCUIipi5Wal/Va3UrniXCYUObrO0/c5E+ZgWUyLrK8py4E6lbQSMVLzRKC2DK4lY2MYjchgJb/sxaixBBVMTJhZ5tKiQBSZOJ9tJaOrNbASpKaMgFKJP1r+GaJlrmV615dsRbmZ0oFK+qliRJbFLZtMPW02f+XYREZRWhFu9u6dqyBIe0CmEStZPG/v1dgX2+M103oRaNrzDjuh7a86O2/KlTO3KbqGrH8oDzQi5mxOTHRVksacdZQapFIGUCSooor4zuO7Dg1KSBF1sD464WR1TCnjtx92aAxsjteoKiEFk+NJ0JSl7vvebhNMZjaSVw4KaAhkZZtJnnAjqee89JbebJKzafdoLjiY9Wc01cyx7TwcSlza/CKiOUuXMwKfRrx3WJW+SJ8zmyWF0VIo5fm2OfOdz7qA2P1Fmz2jOSlws/uyrlpKEtp6ytXMXmWsdf1dla3t0ZFpzbNe6ny2a+QAYQS6vJ4LFixYsGDBgu8d1ukWP/r4L3N3/ZU/fsPSggULFnyI8R1pHq0toBjp20COqgxlB5TLRx0yRTdRk/aSsmqvrlZnwcnUdolariQlbZyONUuCHYtiKvVkFEgEEVSlDrLL2uwV6lBjDPgnfwc0zsfrGjy89ZP+Wl5GCxYsWPBdglRjctLEGEbe/Na73Dh5nqMbL/Dg0X1u3PJsH8Pp5cDq9jFp2DKOjnW/Juxg3O0Z94E0RlabnmEMxG2g63qCBsZhZ8ZOJ3SrNTil23SsNVWyBkCIga7zBE2cb7eMoxKCMg4R0ljLnTlcTUsfo71Ba+Szd/ZizVyUFJQhRjS66pgQgTAW4kIxNNv/NWI0G4LByBOWzcizjwMppmoIlhz52ab4F2OaWNYdQAZhP5RoaCNlWEKaXJrtmndcIQVUA7tiEebZkDw5HiZiUnttGZErJB6yMbgx2Jbri4G3kGKK00ehsiDavJG0p1Unhs4/lvZUM3a3jhcRcnamKaq1MiBKNLVaGYWu6wgx5fWYG82LYT2VvTzdgRSV/XaH99nRU4SsZq0UW4Ou67j5zHOs/Iqze6ektOeZ51/kc5/5p9isbnC5Pef+6V2iAnHkW2+8w3a7texQ48A47CFGJCmjBs4vz3P0sMPlDJgmvWVnVrLPcNaPzvV1H3X9EcdHJ1xcXBKGwchLs7WzyOjOd2hKhGGo+1/yEM3phvU3G9nrErWEE4VxiDx+cMFq7Vht1sQQ8b0wDAHUMjehFiGdciox13krcUGO2haLNC+kvpS0ed5sfTVZljXvHarleWQq61DWpTzLztH1Pb3v0GhlOMTb81P2bPJGnPKdq+2s1h1d3+H7Duc8m37FhxZizrU24c9VYs386Su7aPqusrOmbzGm/T4TpWWmq7S5qa4n88h0r+ZoeTad0D7y7yuq//HoE9f89YSGn3S/RZ1YsGDBgu8eLEyvyBzKi/sf55k7z/Hg0Tm7MdJ5QZ0Qhojf9CYvhJHOr4kpMg4DKVg2JScQYiQmy2KTohJTqDqL7zw48L2zDEdhendZEEJEkzCOIRP8dco4ozmjUPsWbJk3SCVNqEnegJo8VN6IlTRx+PM6lIxKJh+JOtI1BOqa2bPJIlOCKCaLmo3PSOP2WWIiiMvsvT//pX6m9Z+6bjSEpJaA8iST3OFoZySkQiBqbKOTnVSYJJup3RmffdbIE27a6EkC1b46Dc+E3MLhuhp3eV0I5fVSgmL7J2mYZRi9clkm2vu+5/jGTfbnlySUzfExLz3/UY43t7ncXfL47GHNUPv48YXpwhpNz8kkfsH2yn4Y6m1K0MZUrmzqiN1a8L6zrLwx4Zzjxs0bDPuR3W6XpzQrBM2m6DorYViyi03jyvsiX1PI77MZa6ZMVS1YIIF2ExEoRiVF0+MFLFtvfia1ZAbNQSyFSKWFedXohTb2efaz2g/NknDb/brPTU/wvssZmXNQk3OUagi1tFxeXxHounxOzh7s3JJNacGCBQsWLPheQRD+1KP/Hr/6wv8V5cOcHX3BggUL/njxHZOUGh9cg6LMGYopwwEd0ihYk96V1DIsTc6FSdEu7bv8v5eJpFTaqQ690jc1MpNKuY+rpd9K3xOWXWnuOFywYMGCBT9wyC8Ph9D3wp/96c/x5v1zXn3zbW6McNIrl+Ml680tZJXYD4Hbz7xAJx3vvPcW+7PRUrdHCGFXX1z7/cCIkRKOb64JaSTGwLrzPPvchiH0XG5HJHWEGBjHgWEfuDxXi1LFyBH2w4i2qL0fLa3IZPR3mSzknSPEMDPExxQgSc3MAtRsM/PyCvkSVeobM79fxzEiJMRN5SBEXDUYG0FCERwxxYPoTqpxs+s8iGMcBkaNtf/Tfaml1hrbakYev2p9919dyExHkkyY0uvOmxt2y32t3Nb7UQ5KX3PqrBk1at6WrVPT7+scATIv7aUYQaXto6oyjmNpvOm7FO4NaDI6RXbqFCdZiQNOqelT/imVqdP02wspjviN8PytF/nnfvYv8ckXf4Lzy8jv/ONf5+7dU4RLnEbOLraM40CIW1Ia8SJ4cUSJpBTZ720/OJcoOXBcLv9nJRDynAPed9y4eQsnjouLC+7cfobbt+8wjG8xhhHRUnJA6vhXqxU3bhxz9vjMyD6NUGiR0DorO2LDniTQuucKeSkKwz6R4pDLFMJ+a4Q8TclKqeW9HcdIQAku4MRlg7/9LznVp0gpCVies/keaZ17LcHPHIcCahmUVjmCPMQAIjgReu+IKVQSVMKRIqz6NV3vckS2ZVOLQRnD5OD50KF1plw5KO3H+fmw45VsVOaunFP8OdW5M28DpoxMwvVPZtufhE4FmJtHpv1a0umjhQS0YMGCBT/AaMtrOYSX1z/Ej2x+ikfnZ8SUiMPIMCi9V8a4Y4wjm82G1WbD2eMzxjHlcshK0oTrLNwvBLOUOefoOw8uMY4B74STGxtwMAyxZlqNuQRcDMnID+XNpZOMeIWcm5knpbSaydsHZGsygWImjzay73Vz0sj5xdCXtMnSWggjYvNXMrgIUxnnUmK5Ld+mJRuNc9jAuf4lPCkZ03t61p/D93drrTwgJl0zzKb55trm82tIxnpwV51JEk+JGUlI5lcfdHTq4yQXX+UstS20Us1UrhlkavqK4JP/UCWEkcvzx5CU9dGaT/7Qp3j5xR8mBs/4ztvstvcY48DKgxchqJHqkjb6I0VXLS2bBVdzZwqxqBD+i2Dou86yLw2jBRfEZMEELlPVmxKHZRjOmXzfWKMb9lHuxBPtxWWfNGT5pIQxIs7hvNRgh7KXUXsGSjk1rc+cVr2hlq3OsmyZiLrPDmTg2dq32cWYnueUTKeZS9mWVS3Vx9BKKXa9EZKcK0EVQhg+/JlZFyxYsGDBgu8nfHT7T/Hxy5/mW8e/sRibFixY8AODpyYppQilKgm0ZgSqllS+O2uphKz4lKIlDnA6OSI7LE6Lg+taklLrULgmkOWqs0Gb8hDNAK2t5dt9wYIFCxY0pmIVOnHcPnH88z/7kzz//LP8w7//W+x2j/jEJ36Y3//tz/Pw0dt0HaTxgvuPztmeXxD3I2MIpKSsvKPrPcMwklJEvOD7jnGI7HYjMSgvf/xZbtxesxsGfN8R9on9kNDUEYYRUs46WIyRItYWZM5SpJSMKkSMruvMEBtidTSUUmEOR5rexog0xv7D2SjHpZybiT44s9MmQIyMJFDJEpAjoC1MGpczAA37PTGXlEtJGMcR783wWfg+VzIxNd6MpBbB7bz1WWJ2YpS+kfuk0cgpCDiZOTNq8bWDe8wz3Xz7fTJNV5y7Ew5lkcaqXsjSzM6ThsDUzHu6Wop26nP52USZ1x6Y4b4Ql2ojjcF71i+RA5u7lRK8//ZbdDiObt7k1p1n+FM/89N85hM/xTe/9gZf/PLvsurWHK08t07WvPvuuzw63RNiRJCcZag4AVwtOaBqJSIAnOtZr9eMYWAcg2XS1IQXb6UMnQmJD08fcP/hPUDoVx1pNxnFy1KN48jjx49rJq7Sh3be2nW2+2ey1Iz5UsiAOeuSJvqVEMZgpVS0lCSBYT8ScwmKyclgVLCYSVdevGVK8hBDIoaUl8iyEbRr0ZKX2rITFt1s+3y3207ZylLOpqXOMiTkZ6fvHatVZ3OVEuM4TP3L5MkPK2bOLq4n+7S/p+bv635eUQ2kSZCWlZO5/H/Qgfz7LBCi9K1puETT2z0XfWLBggULFhimd5iw0p6fdX8d/tQZX3v9TR4+fMSNWxu+8bWvcfroPZx4NI6cPdoSBsviYoSBhCPLqWmS11MuYxUHJQbwG5/lyUTXOZyDcRhpdRvvJmJJ0iJHTH2t/W5ISjU7Zc2sMsnPs9JilTA0l6Xba+p9mhd0EUfzX1NbrZzuCvneSN9GYtFKNkqxyJautsnBfQ4JSuWYiBFJ5kKHVOLHoZRgOiIHR1uZ83A2r4c2v5h+0BKnSnarqU2ZuvS+jqkrXZuG+j5XHEpM1/8+ZYC6Bte1LxDHkTQGnPe4rgfvOH7mmLBPyHsjxydrNAmrzrHf7ayUuVpWzcqvqXsvFZXUyG35NqnsPYEpg5CVMR/I5J+gnI1G1HdZ9zyUEQGGcchrIHNdaUZsy3+LtJfW9bHbT60nwKNYZihXddaULCNZq4NKHfQ06XN9mEafUw63Qy3fN2vD/mkJapqaEuIp5TnMpSU7Z8EknUfyd08IIZMJLeii6O8LFixYsGDBgu8N+nTMX3vj/8T/87N/hZ0//aC7s2DBggXfEzw1SUkBEkRRvBNSVt8dMssCAJP6G8WITMWgX1xqE/nIyipQFSmutFOOV9WsdTY02QsaPxWObDjJ57eK5uJWWLBgwYIFmt9ilo1GWEnk0x+7xUvP3OKHX3qO1HX8w1/8DR68+zovxQ3ffOMdHr7zAFFYpZ7Yg5NLhjCSiOyHYKQEFTSqZSGSDtSz6jwaI+O4I8aR1fqIFLfoLjIOwUo8eKHznhiUEEIu1WBkCUsBqDOSUXEGFCITxTkgVCNo6ywox8q1BS2hY/aZzssFOO/QlCwtvtp53pfyV4o6IzCFEKy0REqZaNXeF8s6kyN3nZPalhmi06wPFs1d3v+1g9l6npA0lU3TZk5K6ddi+a/nPGH8bdPteSVyd/qdLFNkx0yJcqUhFnHo1Jh2nMr8fGEiVbf9md+fev7UUvkwkyZKs4UlNHOitISMkm3KjjknaEwEJ2z3A6cPH/HlP/x9Hj68xxvfeA1ZnfIjn/sE995+h8v9HvGemOsKiohlz3IW2WyZkkopM4sUtgjekYtttD3SOMBiGrncnk1rlrTKeS4bxm1smvttY7VyclIj7A/npqznFRLazIFVzrW9kjSXVpGevl9XctJ+NxBiJpLljEaCPQsiAnF6bmJKaColTagORs39L8+Y/XR135exeO+avaqW2clZ6YowjgxjovOO4+Mjjo7WrNY9MUV2uz3byy0xJSsJJ471as3R5sNb7q112E2euOm7ZnZS3s6ta+3Qr9M6JsvlrW5xHT3p/Xx/pZWpZAbT3+33xROuX7BgwYIFP2iYv1WeTR/hT48/x/Gnf4kLPeebb9zl6GjDnTsf5a137nJ2eo7zjlXfEVVJcYA0QJqI+iaPJpw6QrQSs13v6HrHauUJ0UIRNJeFLmXdRMA50EQ+NsletasHzIZCoJ4yw0zMmScFOLwvsr3ukOBkeoA1nFKqsmyRsabMpErMgSAT05tKJCkklpY8rIV0VAIG0CuEpTmppH2LX32jmx1xkk8aC2Q7oidMwJOkjBLi2fxbOz/J/lXVeULL9cT3HcG3R9uX0oKgEwHnoG/zcU3lAi2YIu8cgRBG7r73DtvtJXEM7Hdbjm4cc3665fT8ElIkaKz7rGTZ8s5k4RJYYMSeiaiTYszd0ar32fUJQqSsf9niUVPT/4N1b/dIq0/Mla8r89WIrdQMZVJ3oQU1+JxFWCe9OMXp/uVZdFl3tgxLqepDlX9VGPc63b30+brVd2IBPpTnXaQ++1lzJiXFiWWfWq16vHckTTPbA5iOZIFI3+Gzv2DBggULFiz4J4IgfPTyz/Dzb/9v+Ucv/e85795bjE8LFiz4vsd3QFLKyqCaIuWy0y8ylWWDyT1WVMHye5vdKDbHZk46oUbNXIU0/x4ezb8XW4IWw8LVc97PMbFgwYIFC34wYFmBUkPsAE/i5sbxUz/6Au+d7hj2W370Jz/B5fkxr3z1G/j1mk999rPcf/sBowTOHr4DuwvCOCLJ4fEM+8Gy/ERh2G/peuXOi8/wzEs3uXGj5+z0gvPTPZdne7aXe0Q6us7egjEFksZsJLR+avt/S7JRSCGnS2nSDooYSer9yjIUg2UhTtTPxCE+z4wrpdwkOzwEFUdMU/5DMx7HK4QBVWZZoYRiJM0zf5D9JiW1GrCYLbkQNWq3DohUJfIbmRNyUEvrr9J+Phnac9L/q3NTHQMHJt8mmryWSkMqcabeNqUZOcbauZr/5Ur7tXdzqWQejV7IZ/O+lxJXtZ/FhZKKs0AqyUvKfBTnDk2kPAlxCXTk4cO7/Ff/2d9BFcsOtlnjEM4ePSaEAWJgYIfri01fWK17K0OCZfQZhpHddnJmuJLhiqlMYbcy471qsqj4xiegmjIRyuU9UPZNJqxd4yibkfdsQqrjq3gTWp/cFHk/TWLfd5zcOCZF2G537LZ7Yiz9yg4FB773eOfNUZKdDrM+5aVvsxO0/Zz+dvXz1bqnPOXee1JSYkpW7g0suxOOfr3Cd56E1j7Osrf5DvEQCYT04Zd0D1dyesKuHjt0odn1Ojt+vbvx4Nm65th1uPYMmfdi0ScWLFiw4Psb19FZrnxS7E71rSCICp+8/BmeGX6Y37v9/+Fb/j5+7Ylpz367RUR54aMfQUZ4fHHOsAfdRwIRp7mUbozEYEQjp0rXC6uNZ3NjDV7w9Iz7gf12JISYSc8WLBGTZU5KNSNT+5ZsKDaFKF5YKVcyuUC65vz6sers2KRPTCybQlQqHCKBmjGpVCZOKWe4lPm7NccaNDwSaWTZcot8nyaYYz7ahhwCU8CA6hU5ZJIbp7/LWXVWsuwoMi/rOz/pmkOulI2eRiizk6QShAoKYWkuMT1J8jiUiCZL7MEI5kM8aK9kfS2qw9R6k21KqdmM2mMAxEBEeXD3Pe6/9x7OWbaeh3IfolqAQ5bgXAdOjCTjnKvEHlUhxpQr+pV9pLMJMxKNVJK/lWo+yC40+6MdCdeSkfTaa2T2ay0/Xs46IOJ1nWe16lGFcQyEEGkq7uVnw2R750owT5raS1NfpHbtsBRcCZYp65UDX3IQhWKlqEugT/vMei847xERxhAYRyM41ixPzjI1l0TFKlfLnC9YsGDBggULvrtwdPyFu/9LPn32L/DvfepvcnfzygfdpQULFiz4ruKpSUrFEpAaZfRJKvJcVSNHblx1NijgmQwQB43Mfz1UNmWmp+YfUj+rx1tjyeJSWLBgwYLvO+iVX64/0JjJm9dBROkAs+apcxbR2TlObj/H73/ht3nvW1/FaeDWMzf51I98lLjf8ta9u6CJ3neoRkQFpw4ZhBgjw37H8Y2Oj37sRQKBx48vuTj37C72PLp/zn5npRn6zggu45iIIWbjZM3lUaNTNddv8t4TQ7RMRZhBcrXuERGGMEKyiFJRZwSixoEwyzhTZkgnB4YIFnmdo1udM2MmlVjkiMFKL0yR2RMJyBrM9yrv3+z30FRKuJVsPi4vQTJSFTkzY+5TNdhLnYmDdZMqPFTDbRnPgUOl3QmuODaaPpdI2PZ+03GatptPZHKyaOlz8/PQBTBz1hSSFe3HuUxZI7Ok4pwQo1elVliqpKX2dvmeDcNNyjjKQPJHxUDttEPHRAh76BNhuyMBnfPgPZKN50qid46j4xXeGbkoamK97nBIjngPDcEu7ydNaC24a1G5TgQnEEv5A5XJK1Kvyy4V0YOpOnAKaeMwqHOns3M1H3INYW9aB8G7jq5fsdsO7HYD4y7WTFBttiPnzdESopWAs0qHvmZQ0uqFsPUt14mz/WX3d9Z2HpT3LjsVUyXjxZjy2lt/7d4dSZXLy52NKykxlIhtYb1a0a861Cmd96T4IXYq5AewdZtOEnr+t5XxDy9viHpQHKClYVvr8j0/PefXOJyuaedqR+eXLFiwYMGC72/MOAqH8l8rkxzKJ4W0ofauV+AkvMinzv9FvtS/Sogd56eXCI5+5UhxjwAh7kgpWmZSzSWrdCpbDEbguHnzGJzj8nxn90rKuB8JY8lCWmQbqTLMFTJMGWORMXQanIjJJOLFCB8lW02R46/IuU1jT5hEzf+aLOsmeTqlg8u0eWHP5eipi9MFmrQGPJR/q95R16PS96f2Ds85nBNXL60EjxmqnFDkzWubmn/Qyhat/nJwapHVS7bTMmZV4Yp48r73nH5O4590i0kkOujD9dNSP2jz0deydUrN/Jm0EOMiVo67ZBC1IJciq5c59avOsmqpIsnNMmzFGIkxmQG5qDS1z838qekRtkdKScNJ77tu2qQImAcEvZm2qNOyzfZAFt+vL+utuU1hv7Oy6KlmRcpBP+3aKIQQawNWOtv0cNX83DX6YskaVe5TZd/C9HOlzyl/D0zPWSHzSdaZLRhibAKZpil1zttaSC6r+MR9sWDBggULFiz4bkJwvLz70/z82/8b/r0f/puLTWrBggXf13h6klIObC8KpFLiwO3/NjvSIVrdpuia0rgFY1bcWpOEaGmr0RKb9kpJ+evuN8fyLb5gwYIF39eYRfWS0/+37wejySoxEyam9OWKQ1F8smjhQEQQjlaeH//0J/jm119me/YW290tQhx45Yv/mO1+j/d7+k1PvBhZeYc4z3AZUI04bwGzzzx7k65Tzh5t2e0Tw24kDAPjfiQlMQJQjJAjRiGZMVdLoQeBNsJSIYwpl5/Kad1FQZJFTeeSU6Vsg11TDLAlitmMu1cz0hhDqSW92GX2bg7DSMutKWnkawr5NC/VFksks+gUjZvliKlcWmlfq7FVmzZApihwsexMoDTF6eyahtRiDqKpDIDQEIPUSq5ZV1oHkO2WNmtS+Z9mLuel4bQaxOczqZVwwsFxyd6PYqZuMz7WtZr5NSaSihcxcpqW8R62XySy4nya5ghAa/aqXFLBd3jvCSHYfERFhkgS8F1+PqJF/9p8JoIoK4Soka73uCiEMRCGQAw5EncEKaUZMjlc8hyKAFEJMRByd5JY+0UibPxleS1clvVsrqKW50GyI1BnlQgkk+kPfV9Ks45lknKWpxiVs0eZ/JM3efEFFKeCxsS4S4wSgUTXu+wgE5Nr1coPakqVTOay0yep4n2OFi88xEzwE4GUjNjlnCNFIx+pWlYlcYLzXSYljSSUrutsf7tMfJJETBGNiscDwrj78JKUKiGp+Efz8eJ/anUBd7jND9pJ9Xedt5M1DWVyPglcS366zpFVfaXzIwsWLFiw4PsdLSchvyAm69f8jVFPzS8NbY7m4lP0dHzk+Rs8uHubYXsf13eZbHSOc4KThPMwxoSg+K4zuSpFyMQj33liUvaXW5KaPBijBSyklLOyiBEKtJZRo8rtmv8ococRGJQSulHI/kpCY3NdmmQna+IqY+HqkXngQNEnBMucNJV0a644CBBoj1+fhbQ5nmXNQkovNy/EkHpRo/tcIdwoFDbWLNChtkkl+FS5pQ5j6se1pJiDv9s+thNRSWFXWmilouswv29p48q6FNK9SC4p1uzW2cmTvvB+KPMyyXGlFJmrG6hmxiWXMMzybxKFEEyOdaZ/pWgZRAvf31SsZuxNtwrpZjqnPbOxCbxP57VqHU8e+dUnfv5HGV2LMMb5+gq4VmdTrNR2SYbsBdeUFVCh6rH1aN6/doHgnUOTWtBQeYbLt5ROPU75+0BzcIi4nB6pkASl6MpZZlYrI08uCZeSfQcsWLBgwYIFCz449Onog+7CggULFnzX8dQkJamOGMvS4Euklkx6mAK+sQVk9xGWIWEiFcV89hQcU10W9X4uf14ISzV4JFs6iuHh0OFwxTG4+BUWLFiw4PsfLQGBw1TsCdRNBjxSNpiaQ9+hRIlcDokxCTfWHSdrx6c+fpsXbz/DN9Oaozt3SOGc09NzYgzEkBhDIKllPRku95l8ZAZXVeXRw0sePbpgP4w41xHGQBwCKLhOWB+t0KRGPKoZeRJoyVloRsQaXY3dD5p3XTU6O6T3hH3IDor5628yqs+8AtUDM707D7IkqRlBpVrpr3nPctWRIAcW8kpeCma8jZKJJmIG5UJYELSSoc2SW/pSjK9MRtXcP42pkncgywxlH2TLbyEplf/L0MXJteM5LAmX0px4VCOcr6U3TPS4w0xOU5mAucurvbq1yWtuwzmPOiXGOD+ndCYfLMbpWQat6gCZ5LVxtGxAh+MsbaSoeOeNyDQGojHk0K0509Sbk2wczKFQy+FV/l/rqrP7umYtNCkqxakkOE2zEnbzdRCiWkT1JDPm1vXq+Uoz0Pq9MF8nZVrjtpRgHcb0aEztxix5OkhuIrMVR4zKlFXLuckZIA7W6xWCsNsO2cGSS1Xk0gwpJUJIEBOajHSYUqLrOrrO9ine453kyGb7BjOHTp7PqAzjwJBG+PBylIqPaja/5OfX/E75O6leMD0z5Xko/hqhusWM8NXeqDgem/s2H2FZFq53vhz0YMGCBQsW/MChZGlsZb9MvjDGfX5LRFQtjYlTew/thsijx5fcuX3Co5vfou8czz57m4vHz7HfDahP7C7PCGG0rJJJq61t2A8WuKBTP/a7gRhSzbZZZBKwDKVd75FMuq5knfpPkfOp+kmlhVdGi70NnfhJXo9zS93Um6eYuZb5kn9P0wcHLU64jpQ0MW7akEbNKkKRcSd9or2s3qYYJlMR7loZVeo9poCH9lOpYygzRzu+OuhyH6nzaVN7IGe3ZKTr7JZFbhWuCUh4MvTK73MNpeqZB3Pfqmulv+931+vk9BhCI3dr8yOPVHP5Zyb5L8WEU2d7lmS6XJG8JOtnSibKTXtVZgtr99D689vPV5X7qu50FVeSXx1+/sTGdf4z37FcVfXWlkiUMyg7x/zxaPap7R2ze6/6HueEcR+yPlsy1Zp+YKWq83ylVHX/pKZfW4ZXZ0EAWflO2fZgt3aQsNLbmhZZeMGCBQsWLPiA8Y0bv/RBd2HBggULvut4apJSQq2kRVYMS0plcyrkrAB+UsMmUtIsBqbetD1WVCKZndcYhGgzLU3GkvZ465BeVKkFCxYs+MHCRHCwsmGTkbcY3gTUZ/uxlTOL2dwMymUU/u5//ZuIev76L/wziFfWz234l3/hL3Jx+i4Pwz3u3XuHd9/eMgwDKVlZhOQ9YYyMYyAlwbIiRUSUi/Mdm6NjBAjDQBgsM03XdayPe/res9/uSclISqk1/ar9VYgdlj6fXOZNINm7NUXLNrTqV+z3Q3ZgiGXDSRgRBaa08C3y+7stL1EIF3Y8VUNnSdJfCBW1DNthpsM2srkaYeeZm4oBXHwh09TuQI6oLaWyjMQV6xxVd4tM5CJNxZHUDK04HGKqDgEm8zeFx1LoRGbLLRmrJqPwRI46cDLMbpb/ac8p92+kk0PHy+yvttlsdE653yklQlJbeynS0nSvminrgOQzGcLbePISFa9XxmtrMa1fTAF19rtALssGGhy7/dhE2Jvx3HfQ9Z5xH9ES4S8lAxZXxl8dDo2/R7LRfLZfDhdWDxuZo9r2y7TOou1zPxqn1+H8WwmLaX87DxoaqVUhhrIWkx+hRsE3mbgU6PuOk5MTdtud3TsTnPrOc3R0lEtb7LFSidZg7Y4aMa1kvrKqlKmWw0Ch73pQGPdjfnY969Xmyrx8WHBITqrEouKDyv+U6oVTjrCrKJ/ZDpw/mxOxSetaXUXr9DzoJ0+6ZsGCBQsWfN+iETMK6XpuyyrSVPnpTJtQC8pLCO89esxrr73FT/6Zj3Jv/XUuww7ZKCe3em6NG4IOpOjZXu4b+SHbtVRqJ9o7p0wItzJSOdNlJjc415Roq/LTnCihajoBMD/PBBd7H6eEd372edEJLHDiSW9jzbLi9ZmPtDleznm/AIErC/JEKWA6Y34gS8rFTpkDGxKQYqykfRM3qvDJXH64OkSqFnL9vQvJpxBDtB3jjAD17UajMxFVDz67tmsHHZIrp2mWt2OVt540htlVhzJ3SxIq8hpyJfvP4U1iTFUON1F/ksl1JhhapmApezq3NRMd696c+nyYH/egJ1fHd002qydeeKj6XXfpkzcNpWRfDeigzKvpjhYcwuwzbfuYN2vZGalkkMqyrThH1/e2x1PzbIvU/V32ZtJUZeZapjqf73JJxqLn2/eLv35uFixYsGDBggXfdTzu3uart/7BYphasGDB9z2emqSkAE5wVQE1w3/KDgRTaLAIc5nUxHTQhhGX5t+vlbSkky6mapHsRemcoXF6FaTcgJPp/OU7fMGCBQt+QFCtl7mcl8Cgiqjg6MzoLwOJBGlFSMLji1NuHG846jeMmgh6yWd/6IcRJ3zz7jv84m/9Gt/42td59/wNtuGM07OHDOOWlAIpCudnl2hQUog4zfn/RPCuwznLcrLbbUkpmlE8ASqMY0D3kaRdJQIV4k6bASclzaWgJlJFNeqKpewXgRQi+zgAE2li7qgA8vmQCU/F7ukEhxGdzIDq7DxVEi5HeDJzKIg1UvtRb9EsRbknzXXFCF1JAUWAKO/sKy/tNCMK1SYPbljLtJX7t+cUAk/t2+R0aW3sV0lI5fJsuM3R53UeRKqkoc2/qRFkSsy1WZEFV1Lmi1QCRulvcY9IM0jRZGuSlCTXlaib4woJqnFASUtTktw7tTk2B1npMzlzVhlPceYInXNZ9hK8s7EmY67jvcM7K1tYXQk27Dqu1qlga5ano+0zV/duMaZPfa4DfOL4546La+ZH27XWUhGy+XhaVeccrlNC0CxrCqiVZoNkzyH5WRC1Wo+S21AYxpHT09PaEZcjmFebFc4LMSWcEyuR6MQyGTD1L6aEuIhzUp1tvvO1zIXm/vd9j4gDzaUkP6yQ2Y/io2m/wmefHz7v5aDUw/lJbHUIJgfd9Pnc6Tf9On1hlGejXPe+vqcFCxYsWPD9h5nMaBhRomqWlxNR9sDIuX9AcHsuH0ee4WVu3bhJkIGzk1fZf+4rfPHFX+Gd4Zt89dVXePToIZcXFwzDnv1+RxqNMCQihHEkjiUwwHQXRXFipWVTisQYJuL5pBaQVAkhFAmv9rw9p5DTtRG8ZvJu+VtN5qhyDYV0Y/1S5tcV/URyia9CCmohlA5kQsYh5eZJxKdWRisiu84FgaYn1llXJc5qW9QiDGgzPa2cMYuUaM7JN9V6bN7vg87Wc2c60MH5cyrO1fHKjETftNMKzDpvQ9tOz3SYRvOp12udqnLOdf2pvK3runnlvo3OU9ue9A2xRcjLX8oLurov5nMzEfxT1FpqrCX3tNMyn4ODP+raTQeeVpY73JJycGxearA95xqpsehceY945zLRsHR3ei5qgENl0WmVkcuuDmPI5aaLLqs4X+Y3Ic7IRqR5FuB2XUpGJU1a9ZVS/lEVvLNy06W8/IIFCxYsWLDgjw+KEmQHwLubL3HR3eMkPM9Lu58AYOcf8/bRP+brN3+Rr978+7yz+YMPsrsLFixY8D3BU5OUoia8mvOyloHJ6WUF8EyONk2KuinDkTb/W9YCUxILWamqttKodFecCHM0fgRU5pHYpU+LVrVgwYIFPxiQTJItRsmg8O7jUy6HkXGMnD1+xHq9JYwXnKye4/Rsy9e/9nV+4V/+efpbR5yfnvGpl1/i5Ref4Xf/8FV++bd/ld///K+j48B7D+4y7EZ22wvWXYcQGHYDcQjEIRpZwV6KJE0YlUObsk32BhSBrnP0qx7XC04gNCSlmp5dtRJDUs5WoykZucE5uq4jxmDGzs4inl0miACIaM08RJPVRUSIKeI6b+neyVHVotngOUU6V0MyVKeEFNIRk+OiGGUPMyuVz5ybCACTYyNHgqsZriejbLKoWbFSY+Sx12pcmcFQmknWKDl0fU56KD8bq/KM3CwyySYpzeaojGciix2U2GMisTQHru7JA+P1YRmLifJ9VVYpEbJlLqsZ/8BOPy+Fd2jAv+JxmeSm/K+okZcmWa1xhlCyS0n93+YjVpKR9x7nOmKIDDGSYonQdYiUzABT38QZSccIPtlf0s6JyuRUyM6uyf3REt+vlrGYjf3KjM4mxtouc6Flvxaniq2t3SshzrNar5B9YBhSfTatKXseNcXM1C8Olvz8OCv3VjKDoUJQcM6yl8UU6FeeftXhxLPbjux3+2n84litV/jOsVr3qGYHhXgcgWEcULHvBu88WjKOWUj2hxJJFSdSS+oJoG5ydV2N/jfU76bsPD38Hw7WffKWTYe+be8ax2ZxGPFtHIsLFixYsOBPAGbMj6e6onz/hxB5fHnBY73Pa/qPefvotwlcsB8vOLl1zLvbe3zy2c/w0vMvcbG74LXt1+k6z9H2mK9+81XeeetNGCMhDoSYSNFlQkBiHEZSiE1Zq4lUoJoyYanIKtYrEZOvvfeIz/SFXPqYTDRoM/qIuEa00/pS67opWGLK9NLIp9JkWynv3lbOd5PsnFK6kk3nkHBe3t9XP7/mLXsNU6Tl67TnTyW8MimGMv4SWEAlYDSzUNuYE4umT6otM+sfLeFlNjC+ze5qojC/nTxR5KL5gbn+QruW1ykgV24/jWs2Vp16M93GyhG32Y3aINJ6eWlr+qc5PlmBNa/JTJepQ9N6kYjD+85IgCnmDd/qMa1VuVxjc1H152aElkT5cKZ19lubq3/qE9divvfaD97/OpiGkVTpvMc7RwiRmOY6oHM+3yfmpZnK30HOdOTsPIQaISxZeO66Yto3m0AYgtkDsLny3luZaS81+5qVmUyEFGfPC3k/XJfxbMGCBQsWLFjwncGk0sTD1Wt88c5/ym8/++8SZeCsf5vBXbBKN7g5fgSA4Hac9m/YhctreMGCBT8geGqSkvMOQfBmnQCxqH6X/YPFF2BKkjOfoULEnBETUanNOmDXuuY+OTcDRWW77vv40IHRJAsgKPjcp6JtL9/pCxYsWPAnBwdm1ENeBnNySD7bkUtLgSRlhXBnfUTcj+x3W8Jeefe9LW+9+w7PPR94+eUXOb0IjLLm7Ytz/tGv/ypf+sKr/KWf/znOH7/L7/7mb/DWa/d49tZtjuQWz7x4zKPTRzy8+x6Xj3fstkOO8kw5o4nBHO+JEHKUZHKgia7vWK06cAnfWSmvMJpTwmVSgyYlJitP5sRlwkgZqzkYnHOs1yv2g9ZsKZZxKQKC81P2o2KcFSeQMnEpR03GGOssmvNjmuGYHQ1lpktUa4nwLldJQwKak2/KMmXnhrYEHXsvq5vKlMUQpzlQxUoHJFJ1jjQegCs+jGxQzYLExEtoLenZiYJMjoxsbb6u5MSTS7w1n5co4GYWa8arfHvJLIyrduup5BqFUXUwLpvzuUW8HUMr2VxPVGoN2400JczPa50LM+eU3buUDywkuHZOVqsNR8fHpAQX5xdoTJmcZM9AcY6VvWORu5NzTZNOTjnmvh9p+jZzeGXnXONju4InkbbKGCuhvrnptYQupGYo2Kw3nBxvcDIwhlyaAVit1qxXHcN+QOKY95q175yYQ6ET1qsVq9WKYT+g+Vjfe9brHu+FYRjZ7weUZM9w3kt91+H7DhGMAOmEru8Yh0xQIuH7nI9UYLVa0XnPerW+ZmY+HBDXOGTK1izOEDjcqsA1brhr/E71ULuPpT1+3YXXYObrKvuDg6duwYIFCxb8SUArEzYSW/7tUKi0H4UQbSVFA49ufJnXn/897str7NKWdLHn3fceMMSRZ9crzuPAI/eY3fmed+++zWvfeJMXXnyJH96sOX/0gO3ZBd7f4MbxCeKVqJFH9++z34Vcpi2/CNsyTmKSnMlJCVQq+bnrfBYfE5WTnAnAqZI2Jnl99ncjepb3Ynn/pir7Wwc0TQSlVuhqAytUDmXp1ig4nT+TpZ+CrNOeW8ko10rUze9JZ7d+ki1xdvUBEWZWUhmooRktaWSGuZYqhx819zqUR2r7pYkcAHplmE2AyBPH0fyYbtsIWQe9LPdu18FMp9fM8aTYzc6fU3wOQy+05UA1PZh03iKk9V3PZnNEDIn9sK8X2bIfkMtqm9MiV/1ODzKuzp77A10DrhqVn4BJZyutXf+98SRMREMrt9Z3HZ0IhEhR2X3X0XUdKUbLblz6LpOeIpmY6L0FJXjpcH4qZyj5mR1D/l4xZcRsI06mjEsxoWrl1VNIhBAA6HLgUyE0eees1PSCBQsWLFiw4I+MUXZ84c5/wu8++7d4/eQ3GdzZlOkzY/Dn3Pdf+4B6uGDBggUfPJ4+kxKlGj2IWtYFSSWiyv53jRJaDB+t8mrH50pyDlgnFYW1HC/t8m31PjT3q5RZSap4UbqczQLmMTKLk2HBggULPswo74nU2A/zt/l1EX3ZnmtlqqxskhO4uV5x/MLz8MLz7KPy2198ndfeeI9f/pXfJnYj+wvFn3yeb3ztD3jrW19lc/wx3rv7Jq/+4Zc5u/8uYZt4/nM/xYs3lXdP3+X+O/fZn+9IESRZZp4QHUkTSsTnrEEac8RoTufedXB01CG9IwS1cm/Y9SIeNKApB0RqNrVqNMN5+TvPSSKyD3srwxVzySxRRI0cEkOsmX9UJ0JHSnYDESA2joiSOajMrQgpxnq8EjlaB0d1UlANo7NoaAU0ZUJInhOrdVc5MSqT06IYoM3sK4g4IzIIoIJGe4+nwlxJHLzZzTFTNosgqJqh1mUDLZL3xxMISYeSxvx4e13JKGWfVeKVtx+S/7cSXNnhUUg4xe2lgmukIaGkkbE5r6XlyMfy/aWk3W/KXdgc6uTgsgFPC6SQxOGqod5cboeyVyF2F8fU9LxpzQKUkhnOfdfTdY6PfeJjkIR337lrjizR6vhSseHbSEuaKyFpdgCJRQLHFJo5v34dZtm9CqGF1qkyv2b+dytVTjJlkUet2mBxCM2dOaKahySEkIxYtPIogQhsVmuOTtakoMje04lauWMp41XUayYnwhD2+E3H0clRLvcQSQnGfSSMgRQSUSN4weUN1W86nFPCEBl3Stc7NCWGIYAm1useRIkx4XvPyc0T1us1mj68km6J1i/fBYeP4KHsX5/qwyHNl3Z2+Kre8JTzodP1h/rHdd8UH95ZXrBgwYIFBxSWmomI5sf7XXqeHvPNW7/G2zc/Dyg90Msa5zvOdjte/dof8sbrrzGGwL27ZzgSF5cP6LoTVBN/+IevcProFA17/OYON+/c4uLslNMHj9hf7ir5BNUc8FCI6Fl+q9yTLB8KdN4h3gIU6os0y84li2rNyFRTRqZpJqTI+7n8c0bKbYm4LMZPxPSW4DQRmbIkfuWlm9/XTfqdEuwwI94zvwbmMt9kNTQd4vpyzFLlzsJbmaR1AEcRaw+J/+1vk66p1++L2eEpW+Y0xvbUsh55Ltr71a03pxHZHDZSjxPrU9uvcu7BDeuxun6ZkqOzJZj0iUaJO8hrNWux8tKaoI75ZE9n5zsffCS4rN4Uko9ADeBISs6ALPR9T9/3DPsL0yfyplKR2bS0N5z2+ME8wFV58epszfr+R0aZEslzqQcfNCcKkrPHwhjMZuC96YjiPH1vcn8Kpju5sgHauc5rEcKI845+ZSQiVSVFy0ZsQUjTpDhxqCa6zrI0pZQIYwJM/yrz6/20zpLXZLXq/zhmacGCBQsWLPiBhKJcdHf5xRf/LX7lxf8zKh/ebOcLFixY8EHjqUlKxFLCLUfyFF9bVmycI9dRL4pxdmwx1ymrmlN0xOLQmh3EfurkVIJG3SuaZ84IUdr1RSWTyQm2KFYLFixY8CcRjYGvrQV6jXHU7PBWZu3+3cf8zlf/kB/7yU/x8ds36cQTEWIakX7g9PEj3nrlq+z35+xG5e1XXiWEM8Zuxyc+8xF+8/O/w9e+8kUe3ztl2O14/Y3f5L6H17/+LqenDxFJeGdlDcYxYlQjj3MeZSSmgOLoVh0+JbqQ2Bz1KEoMo2VOQkiilokphkwsKs4Tl9+LEVDEGSnYO28RlppQTXjvsQpTOSOSaI7GztPUGuLTVMqhZDacprMczxGVlUFw1c3fznrmsSDSvuWZyDXtMs5cAdPNZzJBe0k2PJdsQiWuOWkxmmep4dAaXUlUluWoODucalMmbEIpX1v6LHlQzhnJxwy9Nh+lvFkh0ohMmYVKZiARsWjZNPVtRt5yUp0RB9My6//Up0mOqWV2s6OmDjU7m2wdEompRFVKMc+lm5XYmOQjsgNhMqx3nUdFbT9Sxmo/CyErxZFRhffeexdNMI4jyjzLEpIN72Wc1qFcEe16ueywHN41J+T+fwcQmc2z1kVsiWepyo0tVb58GmNiGEbGMNL3HZvjFa7zbNYbVGE/7ulWDsQTc+avssZOHDEAPtGvOvre4zx0vmN7MbDfDoQ4GSusZJsQY+5fEsIYGfaBMI7sthFFcOJZra3sY1Ir+3h0vObGzSPW6w3ChzfyuTreDh5bmsOHP+vzXvbAoR/xwE84d0N9Z3umfHfY70U7WXSJBQsWLPiTifImufo9fuVIFn8F2I07/uOH/0dOxzf5oaOXOO56EGEXAu/efY9vvf4W56dnpDBCilyG+6QQCOzYd4l7dzsuzx5yebEl7gf24W22l/eI+8h+l0u1wkx2KqVnnTiCjiDQ9x2+c6QxmoyGZXissqAUOT+XiE4TjaVmBXImkzlLiT4RWVDEuVxeOeshNRNmnj1tSTfNVGUGypQlqRFMy5v7MAPQE/SLQiKalTqmOfeQoHSweFW+bYSAmv0mUSMpy3zMVMk62IN7aCsLNAfbAzrpCJMML4cCjN2iqZ58HcmptXO2nz0pK2iZS5316XAM82tL8Kjj8Nwi60/7owQKTet3wBI6+L1erpNuWfo4s/DW7Fzk7L6Jy8sL9rvd1EBZo7K3tBxpGipHDhSqJxOU2nFeLyO22+191eCDC1tSUPm77VZ5VlUtqMAynllGtFXn6bsOQRhDwHcOcVrLtKEy21NKKbXt6ljiGBnHMWdgavRZTK9PCcIY65ynmCZdGsE7Z8ezTtl1Hu+tRL1zT+8uWLBgwYIFCxZMGN0lf+tT/wNeO/nVRkhdsGDBggXX4enLvSlIMmdpUXDEFYdOVh6TGT8E0MbZ6ZhMQ61BIEH9LJsiaE0Ih5CDnyWZQGmjBIy16vLiVliwYMGCP1kQzZmDxDW2yMaAek0krBUIU959+5Tf/PUv87VvfYu/8vN/kY8+9yzvnl3yy5//dX7x7/9DvvXNh6xXyo07z3LT9Xjg/DRwenHG137vNznuhd3ukvPzQNyPbF95lZOTW4Qx4LzQdR1hDPi+5+T4FqePzhiHAe+cRR+rsj4WPv5Dz+MkEvcDfb/i0ek5l7sBpz37YSRFy4SUclm4yTCqiDMSgw07sV53hJRQNdKJ63wmIVgUpEVTm0ETncprFeOjzaXicur2MIaZRVbzfVKaIqTB3uNtBG1LIimGe3vP61TCSckEYmksxcXQfrDO1gCi4Px0byNBJ1whKquVfbN3fVMWrnW05L9LubgJRrhBBPGunmuEoizLZB7LVWM+lrVJlGQsm8YxUNZLaFPxmwFcm3kqxBjoVytSsijXyYhfbt70uEapM7O2u3ywOl7yWdqUBBTR6myyNZx2waHzwjlXSU2qRjKKGisJvfQxZhKNiBixK1mWsIuzM7x3eN9TSEwiUue2lhzJVvX3z3h0vSOmPXa9W+Tb4DpbQM7yVchcJjyWrGOZGCfOnAjRyjmGkPCrzkoKo9w8OWKz2jDsR9hAr8owDJVENw6JFG23xhBAHGEIIIrvPNvHZ1xeXpKiggo+700R614MEU2RMI6VEGdjmbJuhTEiXvHe4ZyQYkA10HXeiFEfVuStKAd/w+QYquRArnckzV1rDRmu+VTm/8zaOHS11b8bMt/MCyrfwZ5bsGDBggUfDmiWG4UDKUjz+16vZSQoyunqLd4eX+XBa4/Y7wZ+/Ec/zW4/8uobr/Pem9/i0f1zVqsN3e0jUjQZcb+9RIKyvTjn/uU5ksuxKZ64CzhZ47xD3GCEeFVIwsnJCbvdzkrCkvM8qhHJj47XrNeeGEecc8SQ2O0tg6ZlTrGRFV2gQFwOIhRvQQgxZhK+5oAHsp1OJtlfG3m4TcXDVKbYLivk/cnwVm+dJpKJztq4dnnaN/Z0y+ZdrE+8/GDdGq7ORKrJRK5U5Or2buV+V8uJTbEPc32i/Kzl8PI8zWWQ6Wx3ON7GTmkJUCdpZCL5lA60Gm4ZV9EtDgJLDrvIdYelkWV0au+KnGx7S3PARy1pXoJcdH7upItN/S7zX8rvlUUsz9sUyDrdPyUraVxVokIAKzaBZj6uG/CTuFzfDk8v211zpmqOo5rvqzIdKqXEtc9EQuunigXKWOZjl7PVWiZd520u7Lm1QIkYbHAxWpn4kBIE8MmyMYcQJpm1BtVkXTABmohx2l4z/ROpx0pJ7pqNDWopuAULFixYsGDBd4ZvHX+eb538+kJQWrBgwYKnwNOHRmQlJuYqFtVxKYKTnOGASUEslSaEKVpHqspq/2pVkye0/oRW4X9S5H29rhoz9KoDZMGCBQsW/AnCRFlNqJWqEgtBvS5DSDWYK6xvHvHodMeXvvwq3t3kZ37mT/Frv/N5Xv3a77E7u8/HP/YyP/pjP86rb7zL3YfvcXb+HrvLLfFS2e8fkFaRFCKdelQDypqTO8+xu3zdCAfRIhC7rufGjRMeP34MneJXRjhyIkh0PLp7xubEI52VZ1gdr4kijPuAE8FLx5iiZVMq7zkH643Hd0aSiMGIR6kdqdhbNcZomXxy1LS9L4vx2oyMKaVqkdRMYqpZDrNx3YhNELV9PzMzkFfj9IwAVdYpd8tNDgudkXRa2vDc4K/RSsDVMhC5vIFQCC7TWKr/JP/iXC7pVgz0mqPBszG7GuELiUmma1NK11KYZ06XZm/VKGkyQadSrKf+1b5lQ69KY3zPnxdDr9T2MiIzgaUSjA56WZuq5TsOrvEe5zskgGqo5fGcSpXb6vo7N+0Drq5VXuiaIdM5V0u+FWJUCCmTm7B5Kb9rzCUN0tQ3Dvra9Oc7wXVy3fUlQL59I2W9RMhEH3uucB3rnCVp2O1Abc/EkLLDwBwF292OFFL9/jk5OeL4ZIVqYrsdCYMy7PZstwPjPpAQZHBcng95Q2cyVI5gBsBlIqIAnXU0hoCqkcqsbIM5PEQU5xNdL6w3Pb7rGIbIg/unXJzvvqN5/V6iLE/EtnLLZSw6gDZeyYNvm8aRd7XNOa6Sk67/5LoD39HHCxYsWLDgww6d6BMF132357cz906+AivH5XuB1159F9WOMW55+Og9ht0lN24e88lPfJpHp+ecbS853z5kP+4I24EUEtIpkGs5q+kxKkqIwWSpZBlOoByzsrm+c2Y1S0YiuDzbMg6e9XGfmS8O33kjJ8VsYSvyp06jcE6srUJaoGvkvckyl1JqykQ3+kR+Oc8JKFkgL/pDnqtJ17B7ZxGymdFmxmfBBRO3opWX6yteppLJLeNktm5VlpzL3LX/zXnWzQMBgrme8QQ2dJ3HuosmxWRGAmr7OE2BTmOzyZ8RQQ77Wecl6xOVy9MEiJR5mc/FwdCuhTbtUZdUpk+NWOM7HI4UIhCnRFDXCkTlqWl1laybVTrUROaa2WwpJa4TaNn3tp5T2fH2PtfjGq7h++LaYbTr94T25ntlKqs+fS6zst2+63AlQChZvrCUlJTLxKvCGMa8BoVgJKxWnQUgJCMixpAAIyzZ+jvCkOozK26ixM2y+GZCVLULUOzmpZ82bnHgO0fnPSKOEBLn55eEcF0u4gULFixYsGDBt8MX7vwnJJYSbwsWLFjwNHhqktIYQaSUcFOcAy+COGr5juJT0Ia0JEzZjVWa8h/XqIYlsqT9dBbVfICZg6vVIq+5YHEwLFiwYMGfDFTbn4LLxuCoDhXosHJpVy8y+tKtZ4545iPP8eYb9/l7f+e/5rd+95fp1wMP3nubI3+bv/yXfo5jOeJjL/0wX3zzK3zhiw84v3vB9nKLdoKjR0nEEAjR/n/zW68ybs8hWZp2QRj2gd12R4gj67WnX3Vsx1x+IQW8BG4/cxN6ZdiOpJyFR8UTUyCGlIkJxXhrZeRcB653lIwpSacMNd55iGqOjZidCpmklFSNcJLfi04sfXspcVAdEDmSEzeVlaiG8DqXJZNVM7+tc0BkypyUsum5NbQ35zpX3tPT+7oYb/FZgACzjlKihUtpsxLp25ammPqjjaG4EJ00R4mrmlHWiDVWBo2GoFPKqZVxFGO/NvNt7BWyIVdQdaQUcnkCrWXhWq+ArVfLumiIUqpcR6g5lHLKOS2BqKwLuV9K46AQIQHrzYY7z77A5YPH7LYXRDXikCt7rBlj2Q+U7JjaOJtK33W6r6ZETEbSEeeqY817k/JSqifbnjjYD+29a/kMmfbm4bx8JwSm6m96wvmztoVcNlFr1gFB6Pu+nuu6jpOTI3a7PbpeQVTGMVjZtzji3Irt1rIdrNdrnPOEEPE4Ykx4D33viWHEOcu+NsaUyWKZ6KbZgeg7VJu5LWvqcuk9Tag6HOY8WK3WaBSGMOK9cHS8YbW2zEnnZ1sen15Y1oYnpx74wJGTLAB1+1G/Tg6+dsqp9VjjOKU5fjjaQ1/jk4617VzZPc2JM3emXn/OggULFiz4cKEtNFV+SwgxKd7lbNxPkB1id8kLLz3Le3dPeXT/Pl/+8hfYHHvGYYuj58d/7FN87MUXeO6ZO9w9fcTXXz9lmwIxjiYj5kw0MesFMSXC2WOTt6rMYvLcbrcjacJ3DucdcYyFj8TxSc/JzSOCBsYhWLBEKv9Tf5+NWsB5V8u7acwSdmajuCL7Z0KE5KwuRuKZk28KoaEEBVQCSj1XD8SvIuPlMTaEmMOsnoWwc8BRqnpJITVN9yyyJFkWrzybKhvrNRKBjTUZWVyMaG/XlHtMd532TXPMTqYmn2lHcSBjSmb9KM3eOrBvVmaQNk20AZeH/ZjfgvmFTEQpbalC09n1tPnMUlbkUAIS57hx8xZpDBbIk6462Cb9S/NQMlFJTUc6FKqkXlP0LOq8oqYvOifEVCzHdRIOWiltTFMgtbF0KCY+NWZP0FOoHyKmz+Jy1tUSfJCDOtQUUVar3rIkeSvnbqXEbf8mIAQLOvKdp/MTuSmEWHXoMURiSFNm4Lqtpvlodar6rDfzNs0TOJ/1nhJwQqLrOzpvmVtDGOckxAULFixYsGDBdwRFOe/uLvaiBQsWLHhKPDVJKWRjgMP8il3OeEC0Y86ZchihZn0oTiafle6iMpc8GFdMCMVI0RpBOHBQtOc/SYM8dGbaydM9/yia64IFCxYs+B4jZaKO8M69U6IqL794m07A52hD1WSEG8yQ9sztE/7iz/7TvPvaXb76tW/y2qvnjMOeMOz5sZ/4YT77Ez/GeH7B6etf541vvsK733yD/dkpvnf0K6F3jr6/hYw7xv3IuA/IxWMiKZOEIJEQJ4whstr0bNYrdtudlWQS4cYzJ7zw0WeIEnh49zEahTAo+11k3Ec0GtmpjTL2Tlitu0qgiDGaEd2JlWtIRoTIlarsvBgt1X8h8+gUdWoZqDASE9Uv0fzUSpKSYnxvQ2lRkkLSksFqjpZcU4zOc0qBlaDq+46UIinBOIZMktKaySeVchfQsE2K7d6ySDnnkUIsMoZV4/Bo3/VGAHHO5k2K0yZnDEK1+iPUamCUwVRD8ESoysQZmRwwqoLUmiFSx1EdYIdZlXKfWuPwYdm8J+KgrTpOLb6txoWiinjH+mjD5viIi0ePrZQHFpU/OQYO+wYpZmcWms/1iHfkZa/XVWO1A5xlrfJO2Bz3hCEQxwSSr5tTq7IHYVooc7wJ/WpFGMcrfZou+/bzlPK17ikcCqr2nPnOQ7SMRZKdIiJmsO/6nvXR2p4/FO8cY7ASK6LGqUsBxiGxOupxna/zMgwj4zCimhjHyDAEQi7TpvkhdM6yNhWO2NxlRJ4/K8syqpW+8M4h3nFy85jNasPFxQ4ciLcSl5eXe3bbUL8bVn3HavX0iVK/18hbxKK6zYczJyfl7VI4nGVp7cnPv6m0X1X1OrTZfeVRpfycvsWeYrs8EWW95t+JMm90UTMWLFiw4INHIUvUF4lwfrHj6w+/wp2POz7uPsdKezslmnNfvGfnH3G6foOXnrvN+SdeRuOeB4/OOL0/ojHRr2Gv8GjY8+57b/LuW2/x6N5D4rjHuUK4UER60IS6yBgFjQ0RPr+dJJNrXJZDwhgq6ch1Huk6hmAyRYqJFJQQk2ViLaTwkg6FfG9vJWst64oFVzhxiPcIEMYwI/nb3FxvcWtLurVkGLD3apaamcg+RXhs2SJtdiWdt90eqc1Uwam+bZ0TJMv/RqxviDD1RS/XvuBl6nCVrzVHR05xBQdjL6STA77SNOr2Bi39KI+7yq+ajZyNRHJwuULNXHrVDno4IJnabxg5U0areXflCa1MJ83nsSxhiCMhBJLGA5vqNYSeRkkpK2ZTbQFGZblKeeyJn2UaqzjB+0yWa4VBnfe7PCvtQBVw3iOqxDiV4L4yZ0+Q/Fp1zdbh2tMOzp/2e3k+SkZnEcF5T99bBqWkShiHTKFK1WZesvqKuEwo9CRK5mMlRrtZSlZ22oJgyhafygMad6/Rl/JWEzGJOeXIgBjL95LD956u6yxDrMOeq5QYk2WMRgURj896/IIFCxYsWLBgjnc3X+LB6lU+c/ZzrPT4yucPV9/gtRu/8gH0bMGCBQv+ZOLptY4IJXOBAEQlKHgvRFViJiOZ849qJEhJkZLMQaemHFQF1tTT6XdlcuQV5ytVKYV/Mut/sVTluxctORstFixYsGDBB4dKsalfzcI+JX7j83/AV7/6Nf7KX/s5fvyHPwEO9kPk1S+/wjOfeJnnn3uWTqF38Gd/4pPc+Z/9G/zt/2Dg1z//K+zPR+6c3EQi/Oor3+D1r3yRr/zer/Det94m7Eb6zuN8LrEWE8dHR7AOXF6SDYRiTnRJiMcyFAkQjBAwhkAYR7zzqAhjUs7O93gvdBiBaXc5MgQxkk7NgpQJFg5W6x4nsL80o7CK0PcrVusOcTDuRlJOuS5ezFjJRJKJmfxjRlZFcEbxUZnex4XQlKOixVnEp5CrUUQrR2bv28bA3jr+swFVK8miOFmckQ6MNQIaidGM7pIjQ50T0ox+bNmC0sywWozs1qYRSKxtSsWM4oMoEeEyERCkOClKpiUyC6IY/2my9tQo8eKkkRwRnCphyYhHpbSbReCrAJLnOxNDajYgldlctb6fKYK4UrknA35zzIaiNJNMCUxGmrISSI6Gtza35+eMuz3DbiARzVBO3nPMSRrlWZvkMKXzHue8RfEHJWBZfGy4mfCUnQ02j44wRmJUI+skITF3ZjjnJoeW5CxTFn5sjoWc6epJhKQ2C9Ws74V4XqbrGmjz2XS9I0X7ve8dipVQW21W3Lx1g8537PYj2+0+9zmxWnu86xlDIKbIat3Tb1bglP04IEkJIRBCsu8G1VzdxQz9TizrqGYnVSRaWQXnSTEi4uy7g5SzJ0GAXLpB8d7R5++HYdgBAZFE5xxeOgKezbrHOU/XCZvNhlXODPVhRA2wz89y+bvqAPmRnTnbWt+bPfakvH8d5GebvMfm9yttU12di6y/YMGCBT8QyPKrqsl3e3/BVze/xt/f/weEN8/5Cz/y83yOP8/N3Se5//Ypb8VXeeGzN7h3+3cZ3Bkr5/j0Z15CCTz+wkP2u5HN+oRPfvyjjCnw+tvv8vZrr7E9OwNNdN5j5ak9GhObow3SK2fjiGSZs8ivkslMCpBMHo4x1syKVgYLxjHW0s4pJMIQiZXDozk7Yx5soQwlIzJpsnJhzjnE23mlzHORoYvM22ZMKvQPk5GzXFsE5irL5jnOmZgmeW16V7cQDrKDtna9ItxXua0h/eQbpZCmLK61X7MbmDzRyoWVDCMz4o8FLTTydOmwa/QJTM6YZVWqtsKGbNTIqcYXmQgk0zAbKfyQSCUmU4NUbleZXJ1YKM2saNY1yu9T2xNtZz7Llct0Rc6WusZTHiclxcju/DzrLlnXaklDVzg/Wteu9Ma5aT1jneJM8JJCs8kZh7J+kFLWJ7Fgkatagba3owTzlJLJLTdsIuG1c3Kl4wezcT3KmGdNNffwOWMZ4ug7y67sxBEzubBsE985nHgjIpXvAG+yfoihlspOOeuxk1yuUeyZdTLte8uia+wv3/nmwTOi15SVF0R83iopl2eHFKOtqzN9o/ceVSG6RCFddZ23AK0FCxYsWLBgAZYd6T1+99m/xa8//3/ncf8mn7z4Wf7Ze/8LfvjiL3IU7/Dm0e9yf/01fu2F/xtn3TsfdJcXLFiw4E8MnpqkZBwemRxCOZojhkmREZeJSkBMmutfO4qKWYq5lFI9ieyIYcq+NNd3c+amorTXzlSLw+Rs/LYDaIwuM6WVxV+xYMGCBR8iRCwVvwKdJHof+ZFPf4Lf/I0v8rf/w3/A//x/8tf51Eee5dW37/Pv/Ve/zs0XnuF/+jf+Ks+vVsQOUgd3Lx7w4PEjVuq4/fJH+Ll/5V/h5Zfv8Ftf+R2+8eVXefRgj1/dZrXeMuzP0eggmtP/Yy9/km9+46vElHAkYn63iQi+s3ddjAknjv12T0oO6EgyAsr+QnmkEVyCJIwXI8MYzameox01muHXC6SY2G/31U7vnDfjY4zsLoPVsc4EJyuxmo2hWsqZxek9mrPDWFuNqX+yHFcngfce54yYZYSaq5l+nLh6vmXT0WzgLJmEJhKPQWsUqqoSQ4SUzBhbjOD5nVsimWvZtGLzb8pW1AjdHAk6c3FoNq9npkMp36ZSonG1+GBw3oOmTB6xi6tMIILWsnTF0F2Mu66OtabQLwSKPBCbP5BUyuSVMnJNSYPsBNFMLpPm+npNngRlipa18oEpz2l2BGGEM+fMkF/ITGHYE/dDdlOVxc4OlpbhYauJUgjjxVFgBuwwptpGKUtS5D4RjxNPkkjX+amF6mQpazvNWelzDcbPPpUwhqnMV0NUavffk2S8ei5PyLaUnWqHV6eUSNHKsXW9A3Vsjo84Pl7jO89uv2O73aEpZzHqVnS+A/V0qwQkkktEDUiirk0I0YhKwGa1oe8tStr7XCowQdf1JI1ETXQrx3rVZZ+YIyZzShiR0LFarxHxbLeXhBjprO4gzjlWfoU4x9F6Q9/1hADb3RZNic1mzfHJCWPOUPVhxLS3J1+dOWzIzs5mr5TvitaXWY6X7xmZSkzXk6S6amf3vtY9dagTfDvIgRNWmr4+2fe1YMGCBQs+ACSESODB6ut8/fb/j8c8xN0feO/tU361/284+7HX2Kxv8/uvv8ab56/z2fOP8snj5+mSI3nhzXfu8c1vvUYaA3du3ualT3yczgt3336Ti+0eJx3r42cQHdnvz0nBZMeUjMQdY2AMhcCd5WYAZ/pEkXlTSmgE1MgHSoDoGXZK6NUyn0QlpjbLaRGcS3Cf6RRAts9ZRiWAGCxDZJFF8ymUl5pIk9kUms+pZByRItu2GWsUS8ciVca9inynQ0J6efFmObGV+WYiaz4yK2sndfRTkiJpxlRaqe9rrSyWek5jC2wrlLWzM5WILrctMm0+lmZhHJWoVHSNmbmxEJoawWP6fD43xnPXvMqllN3BmtS5aAhKLZlGpvmZ5qXI126au9lH+W5tbd5mbqz9rHc1wSxFECrNpFwaezb/pUU12c1l/YFsM64ZbWuwCDPMAlXaeUKtPLxe2cLfFjOZk3nb7Tnz83M256rjuPp8eO8RgRgDIcU8BzkDrfdIJmY5EikTkqqapqV8o/2hzgIVVDHdu/YhB5Dk413vKlFQkJytWSvRCaaycvZnCZBRfNdZqTfnAan6jPeOvl81QTQLFixYsGDBDy6C7Hnl1n/J3/vY/5oHq1er4PCNG/8t37jx33IzvEyfNjzu3yLIfvEzL1iwYMF3iKcmKcWsZ3qXHQrFQVkcRc4caam6EIvRwf5RzIHqTI1DgUCJ4j+sUD8dUyzzEs3nwj/B930pJzNpeX/UlhYsWLBgwR87zPD39oNTzs4u+eRLL7A6cjz/3LPcOD7hD772Cv+vf/vf59/8H/0NTi92nO4ib/7Bl/gP3Yo73YYf+7M/wuuvvcF/8ff+G9579y4/9dk/w8s/9DJ/8KVX+P/+F6/SrR2f+ZEf4oXnb3JxHrn3zjfYbS/x9AjKxfk5f/CFf8w47ok5utNlg6QZJi2DSRgSKWRyRUokIlFGnIImR+xHnn/5DmFUHo3n6JDQVJwKPSJDNUiXaGhyiQbvfU3rXqIpizFclEyOiFMUdYmCVq1lC4rheCIiRXPmZ2N6KXEVY8z3mMq3pZx5Zyp/1i6PzNpv0aaar3ZtnZwKZpTNThQ0+zRylpl8nSSxsM4QKSSfSnQRy/zkpCUUlXf4RLIRMfKWEU1sPhWIY8Spy4SIVMdLSrbWuY8iWh0lKbdRBtaKDM4JlhJfJuO7XhUrSl+dGqmolLsqXgSRTOzKTqJUxSex/ZSt10Zec6QYrUQWNlWabCSd74wYFmNhfjTLlp0OzTipjoFMKIpaswwpilbnkfU3KZAU52y/jGNEckapFO2Eb0cuqnOSLP43ZeP3UxPOG5Rr3o/INPmBpn2rKRGC0nUrVJVhGPAdbPcxOxLsf0Q4Oj5mtdpYZqmwZz/siCGSSHjvrAxhtOfaiWWiKvfxnSMlIynFlBjHkaSRrofNasUqZ2Pqu54UII7msCgl38YxGHEpf2+EFKy8C3By4yaut9KQePC9s1IOnWcIY46u/nCi+brLGeqgPFuFlFidWMz8Zo1DsnEhalNm+uBnUyhxevaeeO7Vz56MJ5yxqBQLFixY8KFAkUfu7t/m1y/+cy6e/xrPyBGIcOfOLd569z1ee/U1SPC5z32WXfeQOF7ytT/8Bt945Q2eeeEOzzxzi6+/8nVOH51x++azvPzSC7z6xjd5dH7Oqvc8+8IzdJ2y3e0ZtqDbUAn4YwiMF6cANWtS4X0oCrGk4pyXbcvSZ36/Kb6D4+MN4jx7HdAUSIOV9BXpTI5z1Hem3dBkO+eLbNzK8025M6TJrJRrcuX7Hr7Parak/LKestc0pJ00fxuX0mXXl+6dZGfIWUpbkg7FgjjJBlUuyOdWjszEdSofZltiJiUV2eKAIDV//x/IjEVertlITacCqpxtd5oT4ifijta+CWS9w1W5pfREy/1KK63sfjhlrS4ocJWKX0hHdcDFFNuege0BN18v5yoxybuu6ohZ2WyXKrf/JDaQTuNrr2kIYmVdSnCDZQpL0+U6tSUN4avYCGb3qrcs+7FO1eHUcVgK7gkxDteNqA5jOrF8pllXtIyoMUXimINU6hig73tWqxWKEMZAjGPNqCwCOGffE3iTVmXKbCbO1bLWmoz4WDIx9763zKwkxJte2tFl8laqtoSkZlF3ORt01f2dBxFCtM9VsOzSzll2J3fNhCxYsGDBggU/IFCUB6tv8N++9G/x28/+O0Q3zE/Ir8mz/u3vfecWLFiw4PsIT01SSoBLCcURpGRJMiWzOBwEl6M/FOeFlCiBVUDJuGDtKdX8AkzEI4FavqRmV2q0efu8jf5vFfmnVKIaZ9UfxTG2YMGCBQv++FEMu+PlyC/+0hd59c33+Jd/9ie5cUd48YWP8Of/+X+ab919k6+98hq/97XX+Qs//Tme3xxx9njk937rS7z73n3+ud3In/vsx3mmv8Grp6+RPrrmlVe+xO995fdxRys+/swLPHj0DqcP3yaGwO70Ei+B/X7HfheJacR1ia7r2ByvCJ1nvx3QiEUWKoSUjFAQAU34DladMAZPjJE7zx/z0kfukEQ41y13nj0m7iOX5yPOJVwvOC8Qc0lUlUpu8F0mOSTNBAXFO0fX+2qUtLkC1Ppktt9C2GiMqZnUA2ZYrwbJQuLROalERIghTccOGDdTBHUmNMlkvG/tvDqLdKZagYsTo56HgKchBVVLfiUwI0LUxJz8Upwn2fGRzJHhRSCaUX0czbDadT2b1Zr9fk/MBC1zBGWDtphhvjhsSsbIaU+W7Eslcnz2YXX+SGZbmAMnD704hmywdl9nspLOmskWeQXVmB1ObpJwrL5cNdIXkch1ztbRKSvfs16tGMaR3W6HlUzUSkZKyaKMy8y3C5TSnNBS5sCJVAeIiiI6ObuQ7KQhR/Knawhth+t94Hwqe6Lc8zqZ7P3afCr5bS4mGrHMOyPIxIQ4b0QvM+Vb2YVgz91603Nyckzf9+x2AyFaRHOMoMFoQOtujescyadcpkIss1muOSLeZsjKwUWcA79Z0fuecRhQbyvq6el8zxgD0in73Z7dfodqZL1es9msSRqt7J6zMhgXF+cWhe5NIu46b2ViPPT901dz/l5DySXadL4TU+OELMumzXeQNOckyW3A1V0t1T1XM5CpFCKTzk52MpWxflpt4LpdXO63YMGCBQs+WLRyQyLym+N/zK8+/GVuDWvunTlW6xUvfuQlPnbxMt/8+mtcXOxwneOjLz7P/bfvc+fObe7eu8frb+746Msv8RM/+hl+/fO/x+nZOUMcOXv8yHSF1ZrHp/cZ9ntEohHhRRjDaIEBqih2zHmHiCdIIAUqGSSGLCdmMcx54eh4TYqR/X5gfbTm5s1jYowMIbJae1JMhCG34TOJIGdpNbE2lyiuRKES7GDHSnmpqUyxyUAlyLDhIVEzf+asovU9l0/S/LuJp/P3tRYZ/X1IN4e8F50dnb/Xy0+ZvfSnFopeMrvHNSSdorPUN3dps+gB+SSnYuXectaqidQkDZFGJwIVzOaoln2rFKi2lF5jt6wXTLrAlcmqgRnU9arlsQ9mdSpiV1eUOezvIvtPuoYFnXrX0flckiylAzlcm3W6irYUc3u/Kq8dBD+0QrrSrG09Mts+HN7Ztm9z/eFnBx29LpDkan+fjPYeRfeWxr7tnKt6oKukLyvr7LwDySUYc9lnp2IBT6r0Xizrr1M0mcZWA5WwbKMlSKdmO86EoxBGcjIny7LkfA2MSikSwohqous93nd1bxS5eBz2Nvc5EMiIhYlSem/BggULFiz4QUWUgf/sE/8rvnrr73/QXVmwYMGC72t8B16MrGan7JzKRKXiTYia8Fjq51T+9g6JxQeY64y7HMksc9+RiiA1umaKsolZ+S/HzElhym43IyhNuMalNen1zYnl/ovqtWDBggUfLFoj6HiecHrCW3ff47/4r9/ivXfe4p/983+ef+Uv/0v83MO/wFe/9A1Ojo549vYxP/WTP453J/z0z/44/87f/n9z7+27fO5f/xf45tde5zd/9wt85Zuv8cJHjGgQxwsevHXJdiSXJh0QHcyAlxTnOxAlhAhO7B3mI/1GGXcRghIjjGMEdXROWa9XfPYnP8md28fcffc+9x6ecuu529x9cMawG3n2hSOOjnoe3/P0XYcyknRExeXU7YVVpFbCS10lJ0ExOEom+Xa5XFWkTf3vOw+Z1KSSsyfl6OlKRkpNhqFs4JwcGuX9zkTiTVMU9xUySDbyFsNlPIi4Fpkym5TsSdWwemhgxpwrxZKcYoKotTyF0pJRikm1tEc14jo8x0dHRInsw56YIkQlpsDAHi+OsThimuhmMyRbGbMyJ4fG9WrIz06aMsZCkrpiVFfBShWkuZxDMqJP48wAnSLTkzkoqlOnOB8kp+tXsqMIIJFCgM7T9ytu3b5NiomYEr7rCONQ76F5zko2sJYsXu5VDOvFIC642XmI1L0oAqRmL5Vyd020/JPISdbenCjy7XBYHqTNoHR9dH4+75ChZMPAd56u8zhvzph+1eNEcdLhfc9elK4zQ/7F5TlIsixJXvFqe8+JY92t6H1nz5pXwhgZMxnJspElk3mTZVbw3uE6IWnkcv+Yrvds1kdoiiAOvLU7hoFIxPeOfnVE7zvCOKKFvOccIYyIGrGK5PCZ4KQJfOeMjPUhRe2Zts7CCdPW1+wooSRGmF2v0GQdozooOWivvdfhhyU/gn9CX99vi7afLfrEggULFnz4cN9/g4f96xxteh4+usu9u3sr7/xTnk988mVu3zzhch8RgWefvcnzH3mRH/rUx/AbODvb04ljl2WC09Nz1jc2rDYbhrOB/eVlLmXsc4aWRNCprBsoJIgoztnfzmfyyFiypRYaieI74cWXnuXouCeMIxcXO8aUOD09YxwiJzfXHN3YEMZI13VGoledymrBFdKRpIbgLlMpKtUpeGFGEmnJI6J456dMKkWOL4EI2XZXWDott0brKaU07/U4JJXM39XXsEzKeczfwfV+mU9U5dukzfnS/Dt1YCLpTG2dnBzj1LHb7whxrAT9MveH/WkkXigksbbv9aRCIJpPQA38aK8pQkVLUCrXKGhhVh3KPQephLToJVWGN4nJSROkkPeRc471Zg1YyXGfyxDX7Ku1T60uNNfsip5QMgUfLmOrA5WAV5dJYJprcts136FEdY0Q1upzRW+bTn56ctIhyrhLUIlzWTfwvi6ZlXVL9v3ghHEcCMF0gba0XbnO5XKLImJrq1M24UIgK6Qxl4lQSRMxKV3n6PseyFmTCPV5RcD3HR35m0aTBWnk74NCvlPUsjQ7I0KWspFLJqUFCxYsWPCDjK/f+Ee8euMXP+huLFiwYMH3PZ6apGS1zIsKY6qdlWqYSjQkkRyJZEpRND9v1as7Zwp6FCAqvcsKFlKju2Ayc7Qqr2uMH5B9gLS66JMVqPa6mC9yRadvI5r+qJrqggULFiz4Y4NbKc/eEX7i48/z+htf56S/za/8w9/A9x0/8bkf5ZOf+iR3zy65f/qAz/2pjzNuej79Y5/kv/8//GvExz2vvfYGO9nxzLPH3Htwl1Ed+8sdMYzszwf6tadbm7luPwyIF1y3Yrvbk8KA846UIGrACRYB3SkuBGKcyqJB4KMffYFnbq15fHqX1Vq4cbLi/lv3OHt8we1nb3J00tGv1qyP9zjpCSmw3QXiOACK0+KeMGPkOI6ZoGPv0aOjIzabNfthTxjHWrot1wdDRAgpWXbBHNHZ9R04qgE6jqX8Fy1jxgyo2RBaolGLQ8E5d61zoFipZxmYNNNgCrGoiSQWySXLmujalMcs6tCYCVHFoJ3sf2cDmuzhzf8+l3LTpHkcwub4iE986tPcf+8++vghu+0WMKN7DJEkqcoUlRSEOXZUG0GFQlTKY1GBTNgRmSbQCEtmgC6XGwlrcoLMYaX4VEq2JqntqTR0mmRXlzko2bC87zg+PiHGyPbyEklWsi6NAelXRKBfb+iGgHOjyVUyRYTXtaqG/0ojq/05JBjF2PhVWpYIts98jrQOuVRIK0O9H3ko39b2WyHAX+uImshIhUD1NBAp0f0gOjlLilQZQgBReuet3RgtA5EK0YRdnHfs9zvGAN4Lm/UGULtW7doY7Lp+1QFqbTT99r5DnBLiiDgrBweJbt1zcqNn5TtEPCFF9rs9OHMqiAibzRrVhMfn7wV7JjebDd26I2gwZ0IIgNh323ZPDLanvXfXT86HAYWEBNeK7s0uq4L+fHsILjtkc9xEJk1eJQ4d+KNKq7TMwtnOrgTG9+kY5buo6CzX9X3BggULFnzQODt6k5tHHR/T27wzXPI4JUKIfOn3v8JLH3mRW7ducLHd89VXX+XlO7dYH8Fut+VHfuQznD44Z7/dIyvPCx99lmHY8uj+e8RgZZqGmBCnrFb2PihV01zXmZPf0q3inK9EolKCTByV4O1y1pL1ugMip49Nfo2qhCESY+T4xpqutwxI4jzdyjKkaFQIwX7S6idUvaKVpQq5yTKrFLmVzHUpMvxk9xMnIJMcpZXIzpw30xBXSvaimX3tiTLhJOFfPUUri6Tlx9D0udgPXZETc9aoWSsl1dGVUl/NW1ybjEgiVvoMAe8gObJwbjJkzpJVe1R5Qo2CVY80+kCWSbWeU0g8rQDTzFwZX0NCmkSZA4LSbEHyeGZ7oZWJhL7v6bqO3W5nRHmohLNhGOltU9eAmYoZ6acddUv6KXpVM88yv7j8WbJl1my+TV8PuFaHMzDHt1E52s5PetBTXfQ+9y32bssqi/NoTJSScgkbdyEXUf7GMqaV5wQR4hiIIjlD7lQKXnJQBALicvarPDkK9KuO1bqz9U7ZHq9gWXlNd/XO1X0oWNAwztP3Hb7zxBSt9HaKaLJnKIVIzDr24XOzYMGCBQsW/CDh9ZPfuFribcGCBQsW/LHjOyIpuazUaXbiJKCrVoMcqeWkKkFFmS+npOwXS6rZwWDRy1dquR/c2+U2isul6OEHpoZJtz9oqD1UFX09+GDBggULFnwocPRMz1/42R/Hb0de/dIfcuOZG2gc+C//zn/JL/+Df4T0jtfvPeKTLx1ze3WDt+9vee3LP8O/9jf+Ml/51S9y+87L/NRP/yQPH93jV//hL/PwwUNefvnjnJ2d8uDh20gYUSKoIF2XIxh7nN+CGikBYBiwl5xaxKP3PTDmVO2wPl6zutXx5nvvsjk6YjvsGVKi23T80Msvs+o79tuRMEZc7/BJCftMIhBv2VGQnMXG3q8pRTRHOotILiMBMQaGYaglIiZja2PAV8XVTDtmiAyjOThqJh6lvlTNMWIkjZq5CTs+EXinwgFg7Zth1tZKC0GlSXff9is3UTkxpQt9v0LUokBTzAbSep/GqF2N+prHlIxsnA2yxVh7sb3kq1//qpXJiwG8s8xBGBE6hVCFB4tSzfJAUxajODJs7u24c84i1YtTokb45nmsRuap72RCdnFGWO+zkXlGUJr+LiSfJKWI7oFRPDeddCpZV8YfQuDi/IyuWzFstwzjOMlhRcIS6LxHxDGGgKpDSDOSUBlX+zNl+c6m2SGi+VnwrPre9mRmnbSZi56U/Wh2jCdBKVmr5uSl+ZzMPqu+mjLyxsmTpj5lrwsaBfrOShRnZ5OtccT3gojtxxACMQrehVqyeLXqGYaRMAZ8b84B19l9k4BXh3g7N4WIqj3jne9xvXDz1k1SHDl7vMWJZ7VaW/aj3jKmWcYke8ZiSGiEo5MTjk+OOT7asBt27Pc7QlCCOMb9yDhYCZkYzWGiaf/E2f2gMTmn7O+W2FP+r99y+Y8quwsgTTnosl+x5yyrJxOxbkrnMN2b+V69Vh1oPYNtJ8v17Xfd0w58wYIFCxZ899F8QR/H57hx64jLsx27ywFBePljH+Gdd97hW6+9TtfB6cWOpCOvdCtCBLTjx3/qJ3nxudvEMDAMI0dHa7oVuEF57iMfwXvP2298i5D27PcJcY6uE1Ax8r0mK+eUZUlSK1/ZW8eVzCgofuVZ3zhi0BHXGakpxRHXO26f3ABg3Af2pfyxy6R+jZNsU15b5aWY5cUqj2sijAPiHCk2ZbwOCCTQ0G3U3q2l7HHKGR21Ja4XWT2/cmvmptrWocWuWaYZAaXecBqTUCeulmSrAoRd43wuk61a3+2TeDjJ9dfxUkyfK4SfQiJTLs7Ppj4JONdVclbKpB77rJEgqpwxlcGbuER5goRK9Kr9a4ggNrda2ymy7Zx+Rmn04Ogk2Vg2VK0ktHqWWvsxk/PTgYxtcudo+zL/z+E5KN4LXjwxpjp/bTip3ftgT1xnfM3j887VfUMz3sNSc4eiWdvO9SjrX3SQb096amXS2b9yMBUZFlNjgSuF7KZqgSRFl6/EIzDyD5nsZ8b1XLrPsiuLOJyzZ80IReQEvVrLSnfeTPhd14EK4zCiqvR9bwEu3jI2kZ9ZcKSYs2V5T7/q6fsuZ+CNaEwktTLeKcRMeDI7gurTBYgsWLBgwYIF3494Yf+jiHpU4rc/ecGCBQsW/JHx9OXeUiI5q49dHGNW1k2zv1MQT1bIzDjinSmy4iQrZZNxJokQVAlqKWu9CHMVuHUmXO+8KJ+2MUnt9Vcggm/YTW1piAULFixY8MFhishUSI4H9075td/6PR6enfGnf/anePGFF/m7/8l/znZ4QBjOGS8f8pUv7Vmv7hD2A9/4w9fY3FnzsRdu8btf/B3+wT/4Je7fvcuQLvjkp17iX/qFX+C/+rt/n9N77zKGQOyUoxOLvr0825GCEYb6foWIIwQzyqVg0Y8alBgCGkG80K3h5M4xO1X61ZrdfiCMCUR59rnb7HcDb79zHyeefhW5vNgSoxL2AdGE60Gcp/c9qsowjlaGIRsRxQlerFRqGI2EYJGVxeiZy3OpGdgt4DGX3hptTmNOC0/+rBBqUlJUEriEdx0lQY1kA7FqOjAMm1G73H/K0VLYLJnYJFP0tBZZoLxnS7r4JJnwbJlngJwdSqt8IMXZcdWWjeByxHhurnGEDPttNsAnjtbHOLei63p2l+fZsCzmWGkdMiq5NNbVbEI2v+0k5KuSklzKqRk1O03MKN86IpI6K2OrU57IEpFe93wmeEuOWC1ZI9VNjhVEiClxsb2cnhEnNheqFoEbI74bc2au+RjECeqh71ZoTAQR1IEkyUSqVFqdDxamjDItuchZ22EMpBBLgHnxidVra0s6kYRKRP2cMnKwzg66zrIcxVAIdHl9mr7MiU9mhC99t3lLgKs7pGRu6rueft3bvGhx9JGddomQoPcOcQ7xDpwQUsRFM+CrU5wXOjGnVQiJVXYYaCazJTL5bkyoCJuTDUerNVGtJJ8mwTmP7zqjsHWOzVHHetURxsB+P5Ai+N4jTsElQhq43AXGIXB5eck4joAwDoE4jJAcMShRI/5DXJ6hZBwrvkewZz1R/XQ4Nzlyq6Oz+Lf0Gg5R/o6TQqij2Xd2Rv597tCb/i2HpDp2W/rS/ByuHPvwzvaCBQsW/GCh/T5+fv+j3Hj8KT7/rS/z8OyMj37iBT76sRc4f/SY3fYCcYmTY2W7jezHEd959hdnfP2VV9j8mR/n4uyMt994l9OzczQO9Cvh1p0jHj44pZDRLduJyXBxTNmxbxmUJkKOZsIAmchUsvE4fAf9yjMMI84J3mXJVgXvhGEf2W0HUox0XU8ogQVZ9HEe8L5mEwpjyIQJy7w6ydWSZbdxEoMzsad8VslJ+S2dcqnoqRzyjIlk5yZFRWu5Kpo3qFJ0kENkwklr8dP5e1pKAGT9rCWMlFKwU9+aIV0hxh+KpiZau9q/SmySlg5kIxAc3nub+3E0Haml/sjUaulbLfWW5dbZ/DG/rLSl0+CaeZp+b+XrMhOV0lPHnGWYOnFTUEQrNCVNE4FO5uNNMSKqdL4jln4zlXxOeW9Xbhdz2fzgV66QgVRz9bkpSCPEJuNvOWe6gOth7b6//GU6nvMeTeXZnK6d76pmbgvRr7nVdXqLBSB4xLel8/K+04kAl6JkPVgm/TdPksu6hqYcZFBun8lsSa18dCnZ53vPuu8h2+GTJpw3cpOqGdu9eMuIjJJSQFOyUnSZGDmOe1Ia0WTBGCHG2VSLSCbwpRq4tWDBggULFvwg4nOn/xo/9vhf5Su3/vPF6LNgwYIF30U8NUkpCTX7UalnLWpOhaQW+d8lhytRTEKNztFkEWYVrRKdFPVCROt5vjqr8+kHP9vfD/yHiE7ODpcV4MbCUe+/vFsWLFiw4MMIISbl9TfeYZcGPvenP8PP/0s/wxuvvMltv2FLj6bEy8/f4OzsiLNtYrV2nGw2/Pov/hJ3Xr7Nu6+/Q9wndsMFMcHpw3P+zn/0H/Ho3hnrmzd45kToJXCxPefyMhL2YgQkIhocdFa2qe9gHAJCb++WGOn6Htc5btzpWa3g0b1TVp2wOV5nA7Zy953HnJ/vCUNAGMANJFU639N1PX7t6Ne5NEFIhJjodYVzjt3Zlv041pIFkhJJMunHmdPCiZXaAnN0lHdyMWDGmCzrS53SJiONkHPB5x9pcnZo+a99bdaLJgIAWog2WolEpdSrI7/7s/Fb1SI9UzYOI5oz9MTqHEjZgbJarQghZqcKTaYke5f3fZ8NuDETSzQLA3NpQXD4vmfVrXKUr5FtxJnjYHIaTX1spYlSWizGOHN0uDy+SsgpBm2ZjPe1wxkp91HIiZeSknKZN+dc7X5SrQQNBSPI1GYSaLmz3dc5Z0brzKJKqmw6I71dXl4aacmbkdp5T9REt1qx3+0t25aqyV2kGVmk2TJMvZmcK77L5LiYGMchZ/2hzlH7s53P7wQiQt9bibtBhDDm/ZD7M5PgMuHJ+Q7xnjiG6pDbrFfEAEHVHG2A7zrWR0es1lZ6MYwhr48ikuh7T7dy2XCfiAFUIpISvhOkc/R9jyrsdwMhWASyZmJUDLbPowbEwWrT0606jo/X3Dw5Ybsf2Y8D+MjquLMScCp416EjbMfBIpmTZQfous4ISxoIMZGiZ7cd2O8GYo7m986xOtrYvWVk5XuOjvrvaM6/p2iJerRUoOn38mi3BKXiGy0kxopCWMrff0r5Tml2Srm+uah1ONX75v7VDK/lmZT2qZ57rhZ9YsGCBQs+nOjSih9/+K/z6Chx41O/zCd+5Dl68bz0zLNEjdx/+B4xJY6PjtjujWRw4+YJ677ni7//JYb9iAfu3Dnm0f0dmjq+9Y03TcZarbl56zZHPVycn3FxviNFK8lUsl2a/cuCC1KKCM6ypgDOK6v1CiSxOeozgVlRZ9kXx5DY7y0bq5HzhSGG/BJ0pgusHL639mKwslO9XxnhYYyZ3J0zRpb6qFCJECZrukoksvdvSyixf5yI0dlVZ+/tSg7KZIr6zmz/PeCo2AVytYpUk1ppZvvLsnVSxYtDnOQgh8m+V9/vDcnCZPlCGJm/x53VU0bjdVHxrU4hJjdu1uy2e8t2S1MS+rorM1nlsATyIZGndPra6SlzlBstIs4Vw2cdMI1OdAg5OJ51r3YOC+mLhhwk7RiyDVgcDqXre9NnxjGrCemJWY4KSar9twy/7M+SgchOuW5GpmuaGXoqiBjZL+WSy6WUWrFqH95KRBBv2cZKp/q+wyGMYco87Lyj67usj09Zq6x3Std5us6yfI1jIGq2iedMq1bazdIkpRAs6CjPpXdZx6+ZYB2+95Z11Qn9ytsYgtXlFj/pvyiICmEfqi1echZkJJcSz4EMMZe/LGXknDjLzgQEiTjpWPX+qed6wYIFCxYs+H7DOt3kb7z2/+AfvfR/4Hee/Xe56O9+0F1asGDBgu9LPDVJSQVzQBYnQVbqxFEdbUkTXnL6aiZHQluWYWrQUgWL91QV2Vk5lJidUKXMW/lcocngYMf9zNEwWUZk8lqUQ5QorO/QX7ZgwYIFC75nUDoPP/3nPsunP/MSfe955tYtNp9Z8d/57/4Cf++X/hu+9Hv30A5u3DqBTWAjx6z9Cb1zvPJbXyeFHZ/+9It8+oc+y6tffQ0nJ2yOV8Stcvz8M/z0P/NjvPm1r/ClL3yNYf84pz/P5QyigzQSNeQXj4Ibzbbn4OSO584zt9iOO9abnuOTI1a9ETcenV5y795jxp05J5x4M3LmcgIhDnTec3LrhG4tnD0+x7mOk6NjLi52XJxfoDHhvTNjZoy5PKrL70el68wgag6IlEu25UxKJSpTipEyO0tms0sTvaozI2xqzKuFEPAkQ3E5zzmxkm2a8OrNACpWRi9Gc8ycnJyw2+0Z9vMSVM5ZJiDJToQQ4syon+3W4MwhYOSN1H7cGMW19kecY71aMY4jF+eXTNmnpBr9W0JNabOQeopDA9UZ2cG1c3HQTs0ShBz4IOYEsZJZCYywhEDXr+icJ+SMSCV70iT52OrEkGowubipvEXxS+z2e0bJBDeUmCxa12ni+MYNbhzfQENip4kUEy4Jxd3kMpF8KrtXHB5Sx+a7ks1IQVJ2itjMzBwb1+2UpxW8qtPCyFirVY/3ll0oJq2+C7UNn9cUEFvHklnLOWG93hAkoDqAKEfHRxydHGfjvOKTQ9WcCwK43rHZrFltHMMucnE5kJLSOc963eM7h+/MMWBZ07Lzwzu6dcfK92zTPpdT8XSd48atY7remYOjd/R0+L5DRM3ZlRKSBNRBTMSYGGOs5R0kKV1vjocYIuMYuXhsWZTE2z1cJ/R9h+8UWTmON2vWqw+voKvZW9gSlSDrDOUcnZwo5bP23JZzWf1vzv5oHYh2v3Jd1k2yk7X93ii6RnPHhhTH7JMFCxYsWPAnB89sbvML67/Jz/q/xJdXf5dTeYfnPvocu27k/OIxu72jW3WsdIdzPUIHJMbdyPHmGHTHMzdvwZAQOk6OT3h4eo/z7SXP3rmF6J5HD08ZgxEgxBvpXJMgSVECisOLN3K5nwhDRyc9SRMhRrrO068dzjv2+8B+GBjHmPWJLKPlDCyas9E41+OkZ5/l6/VqwzgGhnFEY6rvUVGx0l0N6cQISkYWiofEJKW+S414Uw5qQ+Y11CJjxQxX5Ovybn6CcDi9m3M7Unj3RUaQ2VkiQtcbATvuh3ljNXtRDoRoMkC1N9R6H6UV1rX9JQsWRY5IKbHbbWtWqrbTRZcqdsbys+gbuYHp/kVkpSEEyWTFnJGTaLK7Hs6d2PWV6JV/eu9ZrVY5kGCs+8Ta16o0WdbilOcjB0xI6b+NwbJ1TvdWtXLa3WpF3/XEEEjem54Zp5ylZe6mLKfNVEvRl8gl0Jg2iVgJ8plJt+pY7ejl4Pf30T7EynvHEgibS5xZ2cIp41Rb7luxwFnrleWJSvnZMWKf6eLrzQaYyHmuDchVcmaz0g17zrx3RjQSKEZ1y7rmqj7rvBGFkiT2cUSzvOy8TOXcnEMQVs7XkmwTgc5lPchZIJJqJooVsqESQ7TMqyESo0m/zjkwbhROhK63zEt9t5CUFixYsGDBDzaO43P8q2/97/izD/7H/Ps//G/y7uaLi3lowYIFC/6Y8fTl3rAyF1LrvoOI4nHkqiQkESuLkZVzTYlSksYMBpqJToLzbbYjg2aFtvqc8vFKcmJyIhTCUvlZTSUWJGIqZWNHWJwMCxYsWPDhRyGDHK8cRy8+g6oRKdbPn/Ds+Byfeevj3NwccRmVt97+Q84u7rFlz2W8YNhecuf5j/JX/tV/g2984Qs8OL3gE5/+Mf7in/tZfvO3fo3XvvVVdm895Eu/fc67b9/l4cMLYlJ8l3A+QQBJic4ZWWa9PmEYBroN7IfI44cD+32i6x23jm/w6N4pN2+fkDSgUUATR0cdmvYMW8VesSVVPqgmRo1st1uGR3uGYeTk5Abbcc/2/II4Rnwn4BwdzjLf7PdIJs44b0ThFI1kQo6yjMmcGJMDf7pnzfNR7L6lLzXS197nhZAyWwuZ0XxnMKPqVB6inOczQSqFWK8KIRBCmBaY60kr9ZzyeZEFGkdBaaRkOsnm69x1oWRPfPjwYTX+WskzV39v56gdT/0/JkgpZ4ea+lfv3mQ5Ku1Vkk/K5fpEZp9n/pJlhyoOmCyr3L51m+eefY733n3XyniFMTtYtDpa2hIbqsKYxlw5IBcTKFHjaP1/Mr4LKSlDGDm5dYN1OOLi/Nz2VjPuiWhlfVQa4ptzFG+KeKHvPeMQjNhXxnSNjFXaLOSvwzW4FgIhJZLCat3hncmHnQiqFsUccsYkl/eJZYTKezIpMSQePz7LpfyUzdGKkxtH9OuOEG0/arIyBk58NfDv93vGCBqFGAPiPf26x3lzINiY7dnr+57OC93a0a89Hs9+N+SMBbZP+nXPnVu38n72rNae3XbPdrtnDJEYBvqu52SzBhQJgo4JFYzIL5BiZLcf2V+OjHub8xSNwJQEkldiHHGuo3OOREDkQ5xJiblDKB8oT+9MAagyf/atNrEHhoPzZPa9MOkI7T0nh1vtTf2eOdzBh+So6/5asGDBggUfXgjgxfNMepmfOP2r/PZzf5ubzygv6nN04tiNkQcP77K7PGcXAk6FMOxQOj7+Q5/muOt5cO8BdD2f/eyPcPboIW/f3zPst7zzxhuEqOwzacZ3gnOlrLKajNCvIU1lnvp1x9njS1IUtpcDN25uiGMkBMU7JcSACGw2Pc459ruAxrnMWku3xUi4CDmDqkPTPss3U4k3MBkuzUjz+f2b1AhKmb+i0y/TCzAfL+SkMqeVYTND08fa1+vXRQ/kxtK1Se+YZNIij47DMMkP1y72lH1GddIZyo96zQFBqcoN0pyfkZKV7y3nOlqCVmluIgC1f0s53si+dTytDNT0rRCVZmXsJqWj6ZkZOmekbYTVapVLJSfbC1pXz85oJrropmW5BWqGXOdczbbUil0pBHbsWa1X3Dw6Ytzvudxu55m0GoJS6VxZt8KESqV8ujf9IIxpunlWQCcy+dTQzK7czM0UWNNqh7mcs+biz86O+87Vs2KMFjxSnpdsQNasz6kKMSRinh/febq+M73DJrDOk5Vcs45HtXLcQN6TRpgqurXGKSjEAh68kZG6Uuqbur7OOXzXsdms6VxXn8VxDIw5A6uq2S426x4nzkhk2XpeljzmLMEppFzi2giQVXd1Zh9IuTRdSommmwsWLFiwYMEPLByOj+z+FH/9W/8X/u3P/lVG2X7QXVqwYMGC7ys8NUnJap27bPSYsiwU4pEAkh2WRbGTnHdANeFy9EhxRKhCFFOWvLgcTKLVYFKMBK2toKjlUdvPhSnWJZ8nU58zXWk+FqaUwt9pGZIFCxYsWPDdhAAOVTMgSjY63ug7PvOxjxH/9M/wef1dXnvndSRdcnw0kEiEix3q94z7N/nDr/wOf+FP/yy/8fuf56zzfPH1L/NoeEByELaRr77yBvtdIKbIet1xdNzhfGJ7uWO18nzqM58hjIn99owH95UxKMcnK85Otwy7yHtv3ufk1gqJigYYk0OJHJ1s6FZr4BLijnE/ViOq9z5nnYHLi202Bnr2+30lpPQrBy6nmU+JEINdl42upVRYiokY1ZwWxXWQ0xe2ZJNUaDVKE22rtfzqZACfsgXVEmZUF0FhCpnB/9BgXlZNSpYdJiN/bv/s7Kx+fnidZWJU4qzkQjFuy/RCZ05qKf1zORK85FwU5/KcF9aW5dYxQ3N7fkPAAZvXFI0NUYzNTihl6/Igm5+TAV6aea/WcMHWsiUpFY9AmXvMWfDo9BGXl5esuq6uh2qanBP5vFJarfKVsoHcCECNI+qg1ISosj2/YEyRl156iU/cfoZvvvoNhjBapK/afkqp7AVApnJXluUq4Rw4xTIDrW1fhtGy/jjnIAkpxitrXLJVlfF472fHD9dXk5VNU2cl1Up73lvphHEMdL2n63t850snUVW2l3uCxhr0H6PSd56uXxNiQEfNcwZEy5QVU8yRyo4xBtKYsnPECPXOWwalWkqlX+U1h2EYbC2SMOYsWKujFc7D8Y01N26ccOvGbVI0Av8YRvaXO/bbPbhE33WcnJywWR0xDgO73cC4hzE7KZMm9vu93TsT1jarFYow7EcLBsDl/R1RsfJ4g3sCAexDAJmRk4rDxuazzTJQ/H0tf7KI/wcB6/mzKQtr+U6b7tmcXchIOjneDmdr6t7cqXjo4Cz9s98XfWLBggULPlyYSC4C3B4/ygu7z/DO5its3IbLi5F3H7xN5wM3bnQEEmlIBO8RlDdff4U7N19CnDCGHV/5+ito2BPjiODY7Ucjats/eOdxHkQivnfcunNipYwzkeD+vQtcKISiRBwD56fn9L3Hi0OTYxj2+M5bRkYvpB6CBjSLyW3GFs2yofeW9URJOC8TOzfL4zGGhoVj2V4LGUhTKTOVs+40+kJ9N05snObe5d08vTHbY7My009aGtUrJ0gOaCzrVm5mJkKtgsDsqnxjL0LU2HaTmWYjXHnhS2HmFJLK4QlF8KjE/6KVlT62uslUBptWji8yzLVyCa0gYa0VOX4awvyC3E09+D2EwOnpYzrvp/lvJ6ORvZiNgkqukeaZaYUv0z9sXccwIt5xtF5PTTvBVX2rmZM6p1LJZmU4Lt/TFR2yrmubBasdeAmssDZNr3QNIW0+QZUrJbZ3CtlM0hT8YbK+m7KO5fuEMZZZmMuCSi4lXoJgLKjA9Kg0I02lQvhD83lNxl4kB1LYXS1Qx8ZjOlNitepQga5zrNYr+m6Vy1FHVC1bVhxNX/Cd//+z92+xtiRpfh/2+yIic629z6VOdV26p7unOSSHnKF4EaQRJFqybImAJV8Ey3qyAcOAAD3ID342bNgPtmH73TZgG7BhQ7YBmQJByZBpUZQtE/bQbA45mp4hhzOcmb5fqruqTp3LvqyVmRHx+eGLiIxc51SzhnPpUnd+hVN777VyZUZGZq74Lv/v/2cYBrwLxBjJYIy6ab0Pq7RbzY0PweOcL0zFKzutxWaugJY+vfHEbrvttttuu/1h25fu/hn+5Mv/Ir/+5N/9UQ9lt9122+3Hyj4xSMnXombtWnErgEhLHU9z0bnGdONr0Fy3deVza0+O7Sur4lpWRJp8XJV7e6V40HU7r93T65Z9A1jWNaxUrIvG6xqE9l1ce3lht9122+3TYSpKIuJFQR1C4P75xFf+5m/zt3/t73MXv8cXf+oRP/XgIS+ev+R8Hklx4u3HD/jOt36D/92v/za351twHheE+f6GNCWyy6Q0cX0IJPUkFk73C+KUq6vAZ95+SPIzMWYevXXFeYp899svOFx5BBh8ZvQDjx5cc30duDsnnj274fb+xHi4KowzyvEwoCkTNRGGgRAGlnnBO8+8zISguMHjvUM1kWMkxYQ4j4gQcybFpYCEbKHNOSOayVoASkpJkrIChKjSXaXUrxhYqYBNXJc8tZ8liSvthRVkVPa3dvDWz3Vrbdn+cDygWTdsSH0H8Mqgo9RcskgFb+WLY9XVuUjHlX1Jlyy3z7uy1lePwZLXuRUoVtBNBcPkrI1dp5dva8CuIqUhWNI89wWFiw7mnhmonWuh5a9j7kEQa+1jW11ZloUUI5OUc2jz10km1OJIuVR1X1kV50qncM59aQFH6b4dBrJCmheevf8Bz95/n2UuACVyJxVYPhc83osls9NaDFA1uQHn3FqEqXORWamm+ne0zv8KcO/fqz99KajUOfMulES+MRwZQ1YmJ8A5k5rIieUcQZTgTA4tp7S5hy3ZD/O0gARSTiaZEALOeZZ5QUQIIRBTMvCf2o0e00wgcLg6kHPGeW/3RAFcpSKlMowj4xi4vb3DDY43Hz8kjMLDR1c8uH7IPCeeffSSKRqoKM4Tgkkej4cB7z0vXr7kPE1478lSQFe5SDHMWiQpHeNhYBwHKt7NeY/3sMQFRPEhGNhq+vS2Pm/hkDTgXf0d1uKnrPWd8j1Xn+r197bf/oXyfSjrmwb0q/unu0deGWE/shqtbItXrcC22bI/x91222233X70VvwM018DhC/e/zP8YPgdbp7dk6MgGcLoGK+v0ZxYhoWUAw+uB+ZT4gdPv8d5NlCAD55lnpEsuGCgYC+OYQyIN2aSJUaG4Li6CmQit/eT+abRwAGpABDQjHeBx2884PrhyN3dmZubE9O8rD5Qznjn0CLdJM7hXJHYKuwszens1tHGWlOmoOXvXgGpdPMkbVlsJnWB7gFLdJiaBjxpRzacvvRbb01eWTHXmALMzww+mF9zCSiCJtu6QQl3x+73uV2dlZ6pp83TxlGv52Qrf4tzunFom9b+db3wY1YR5JXR9sLf6GKa9XJ0sVj9rNSjXeQry1jRTeRgYKW0xmIb63Kk2uVDbTIuPJwiB6eacVg8YgxCBqJJ88Kz+bndy+Va5BpTljNxzgBAWsAy/UDqe5S8cZ3nNdp5zeBf87s1dazTVjF8DchEBTJpx5CrLX6tz1OOdr6uxaprXGSXyjU/VCzJbN8rmEyd/eti3RJLgpCzgYOcyySpqgIW19R7TErDh/eeJUeSKuMYCMHbz2Egpcz5frLvkJwbmAmM7UlwLGqssM67dq/UmHEdvzPpudI04vGEwa5xKveO8/ahtFMp7bbbbrvttlszR+Cfe/+/w289/qssbmdT2m233Xb7/bJPDFLSVGNXS0b4GujUVENJTqiCNFkGCwYdRf+6Fkidve7FdYwAgFjhawUerZJuSpGH6/7VsdSQugVirCmJvEnG0LaGFQRVA9jddtttt90+DVZBFpZ8TepIWXn+0Zl3v/A5/stf/Of48i/9f3nv/e+QQyJPJ8bDwOM33uTx20+4epGY8j3ZKSnfc/PyjvmsHI6PiNOJvGT8FXzhp9/gyVtX3LxcuL+fefRo5NGTA87Dixd3fPvbHzC9SDx6fDTgbYDD8SGPP/OQd7/wmEzkw68/5ebmjOIQdcQpoTHiMC7BMDjGY2CaF5a0GDjEORTrukx5gZIAVsTo3xNoVDSX9dYX8EyqSflScCkLndpkXXRXZ+uULgAgrYUGWWW3bKal0MG3ikO7Bg0wpGXN1XLsDtCiaknanGL3urEu1c/XrtoGtmkKDMIyzfRSBNIS3bZJzoor3d2hMA3lmNoYyTYXdd+uiJ21LtDCeGPSdAXYpFUmYMvsZLswabhhGBpNfx1Xv23OsgF61c9bwrvrRN6iKBBvXC+5dLbWt3MBV0nZDtYOW1VWqd1cZRkExBfZhjUhnmJEMYZK7xxvvPEGx+M1S8zc3d1zOp1RTSZ5oLnJMzRwk4Mwertm9VEsjl0YHD4Yo9d8SixzAXRpvcGq3EHfAV0BIaXAoq6BfBoQ5WJ7V3xD6/wvEoLF0UxqTDlLNnmTem/loFSmLyEVVgGP954xOI7HAzknYjSwUlwUcQHnhZwj87IgGOOnE0dKmZRNAiLPCX801ibnFZdY5wfBeSXmpTweggQDH41hYDrPPHt2i5F0RebzmWXJJhF5n+AFBH/LEhNLXghhMB+3FPhcELw6gniGwRPCgA8Bh3B17RGE8/lE8pEwmlTEMiXi/OktKmwkOmS9zzbF0672WIsqsD5jff0VTDraNr7YR325PmsX7Azu4iOX1kcG+ppttAMc7lHEbrvtttun08xlNt87LI+4eTaTwsCXfvazyLdu+e53vs9pPpFTYhy8gY8Hj7qB4TAxjp6skfN5RlNE1SHON3/l4ZMDj58c0KSczwaGDqMQvPlMz1/eMd8nAwaEgSUmDocrDsGYUs7TTIoG+PbFd6kJslxYU5wTfHCknMma2oJkMUUHnC++7CrdtiKY6nq7+lxlPW7sLqu/W/3qBh5ZkUktB2gu4hoPVNPON7X1vQNMbVbT6r+u1yqnzJJnXl2dO7/bDlJ2KIhUdqgunri8CcrJrz50D3KqstzdvguoKHdgpMZQ2k1Em58OhNT8ZwTnvTHhFlBM9fPbthVg3QO7ekR/f8ze9xFBVLqmgd7vXme3NrGs4KZyfXNu2zagUmfW6KmtyXQYBq6vrgFhniPn6WwMtLa17a/eF1pZWe33xppaJsaJxTgmpQf1Vl1jp3ov2sC28tBd9nfzeo0ntn8bSKrEB51DWW+frMaSKuIMeNT2YzsKwZnMNw5fgVVqUou9FHY9TiqNFWvcqAX85Nb8dsfcVPqImtxanVN7rinzp8R5YZpiiVOxJoaYSVpBj8rEUmZIkSRtDqs0tohYLOMEJw7EGk/8aI1YS4zlNXumctIiL7/bbrvttttuu1V7Y/kiXkcWdpDSbrvtttvvl31ikNK05CKTQutuRsD7bSUg59yCXMH0uFVpUnCqiiQtRYY1eAIusv+WHLgELNVg27V8QSnkdNutgb9y2chVw3yHbuL/bdS/22677bbbj85q6lsQNWDKb3/1PX7573ydw9uK8gEfvniPD37wPs+f3YDC1YMHDFe3fPg2nM8DMS28/fY1cfGFpejE+XyLRuF4PXL1ZOStL77N1THjBuHdLzzBD8JpuuN4CCBHbm+PzKLcnTKC8NbnP8dxODIvJ7797Q8RMnlWrg4HpCQnJWecCMuSmtxXSgnRxDg4slN88K1mkDOkqCwpI5VRsACLqjRZ7ZJETCJVZO22rJ2aPnijd88FuJHzNlHbEvAlKd21nVa51bol2JrdEvqq5JZ03q6TFYi0LKklk7eggrUYUcFINdHeM+fUI2/kvyjggrLebyXhaJ+tEmMGMvGICjEv1MS2az7BmtS+PJeakK5ArxSTAXhkKw+3XpMV6FXnYN2fNFBNBe1sWIS6gs1lgr0VIy7G5r1/5fyrWXeuFZiyFLbIcs0ywuAD6sDPC36ZTSagAsfIOFZwGwrLHEuXPgX0U0BT4slJSVMZhwoiASlFoR580s+POXwrkmOd/9Jl7Vzp1JXGaiQBNNp8B1nlEZZknx2GwDiOzPNCjNEA7eqIZA7HI0/efExKJjucUirPRkLE4XDEGBGXGYaBZSnfNlLAYwarL93LA0kzLpl0i1YgVwgMBJJmvPfEJeEkgAjzNONE8U6YziYFM4aRaVpIMbPMC0mtKqM5c4oLCIQxoDGzpEQYTDJGcyYEh3NCGIxJwaT3As47UoxEjfhg/nlcbD7Sp1ieIdem++qj1++LWqdjLR61P6STsqw7Uto60b4i6z6kfaxuClBAfReFxlZ8XAub3dPXfqtNE0IvSXK5/W677bbbbp9OswXiW+FX+O7T7/P87hn+ZuL57TOSnsnLxDJn4uzJ9zM3t2dCuCLnxODBe0AVH5z5QjECih8cSeF0TmhO1pxwGJjmCVUhx4wTx/FqJC6ZrMLx+oj3AzkunM8JJIOKAaUL6KiCoSvAVjEWptroVzsGK/BC1fzk1fOq2bCtv1v/btJUZT2TArhocUf1vy/91Ab2WYFI23hjO+d1Xd6AhLY7W7cWA+1st+kBO5S1v3uhYY228UQ7225nDZJUmyYurXMcquycpiLhpttza2CmDSh/9Qm0XBu7ZhcjU23v9yyP6yl2R9L+l4sY4WJcr/P81qvUfaSO+wK43aPDKxCt3gcpZeZpNlCVSJFfNoBMY+paP267y0V4XPtx2v/XBhY7juA63027qV3jyM0cXs6YE7xzxspUJQzLU6AlbjZZOQMLpQIcc05aPL1Ea46QwmQrTnjw8Nqel6TElC1+EMp+hJwMNOi9MSGH0lRSYyKLawXvfGFCTqiApwKHLDPtg7Er55TRbCDEtBg7rHNCUovhBd/Or15HYxauzUn2HeWc7avmzhXFe5vJyiisaueUChNv1lwYnSprbGlm2W233XbbbbfdAPM2v/Lmv83ZvfxRD2W33Xbb7cfKPjFIyYp99TdaQKlZUcl4X4tcrnV7aV4D6D6WbgXKpKijddJ7KawJNdkCmwJjBSI5bWWCdZ9SmR7a/8qxtukE6X7K66L23XbbbbfdfoTWgVrwQMaJ8s7nn/DWuyNf/96vcXf+gKsrz+NHI3c3Hs2Zu9PE7QdP+cF3nnE4XCNu5iOXyfPC/XRiuBqBTE6KHx3TPPFbf/87XD86cnU9cJxv0JiY54UbP/Ds6S3iPMMx8+b1kbu7BF7QdM+Sz8RC8z5cDRzDkXleCGJAktN5QdVks2KMuKh4tTXSD4J6GAZLZp5PsyUE1aHJzr0tSa0LsyQfu+SxamZZDIiDGrX/2qkqFefbctBSQUFdondtINYNcAbWRHPf2foKQ84roCV57esrSMc6M1GMoSYX6bqSCK8J8Zos7SUh+rW8bl9fkvVAjRWqdrG25HcBxqQCaOrPoR9j/dtk32hFnB540zNWVd+o/2zfAbwCtrSAely7u+u/VeLuVatzmVJ6Ze77n/UcHM6ASi7wxoNHLOeF9+7eJ4wjbzx5AzRxd2eyA4YClwIc684xFedIa3LbkvEpZaOnrJIGdvZrIaDcbxVMtbk31roMzROUzHgwKcSUEsuSDByWM06FcRhQFEdJtmdjSZIC0BvHAedgmizpjwh+CFw9vObq+oo4z5zOM/MSERGGMJCzHSPGubFTWVGwFDnGYEXKRRmGEdTk+HAZYuQ4hBVUpZHj8YgnMN/fkaZk4KPiJHvnySkTl0haIssSbezBE4ZghYWspGiFx+uHV4gKp7t7nBg7kB8ceGNPEIyVLCUlxpllmUsxQgjDACjeqTHI8TFSH58Sa6W2/r7ogEY9oK+xoF2ULPti12X9qgcQXZq0A/avbOOGPjTo99N+lvt/PdYeQOy22267fTrNVhwFTuEpH37m13j38AbLd19yniNX40g8HJhOEVxEUZYpMd2fcXImBM9dijgxlhN/KMzfOTIMAwjc355Y5kAYB/wSub+bCyOKsMyJlDKH0RMGx7JYLkt0BmJj6hEH/uBZpmiQDS9Etc9KYZTMubJXgjjzu3wo4PpLIP8Pm5HqQ6KQC1vQa6yStvb722TWXgf02UCMtPP7Xv386z7ZgMmv2157WbUC8ihx0MrqU0ZQ/fILZJFcDqA5I925SCdBVnzkDVZoRTdvxlbH3c6++eprZNuc5QpUes3M1NH0cV/1x/tj1XxoDyORflzFV9nAoPpL1u2/94uaXyN2Yz68foDguD+dyGSurq4ZxoGUIimtPpPFE/2xeqhc2WUbm5TYYw04dXsJts0O3XPcT0PdVgTEOYKIMa2mtXHWO7cBPVWZa0Hbs+XEEYL57RX4471rMWmKiVSkl51zRQ5PS1+RFDnxCgCCcfQmId19Rst3QpWg895i3pwV72hgKM0VpGjHcM4RSkxh8nZ2/X3wOIyVqYaayxxx3hFCYM4Lmg246II0ye4KUszZbkzNqYaEm9jZiV9VCXbbbbfddtttN54efodfevt/zyuMGLvttttuu/2e7HcBUtKm8U2NY8W4GUQvgkR1aygpUjpJlODEJBnyWkHQ+pnSouwuu5tVWsDkdO0o60qMLRC/XCJWQFKf6LiQdtvXld122223T5lZR3FCcFlQUcIIh+vM6TwxL45rf0QXZU7KPJuMUlyUmG/J88wypxY4XD8ZePjGFR/+4CP84AkhMJ0myBNjGHh5SjydJ5wYg4qqMJ0S42HgODqm5cT5PiI+Mo4BzdGSecETSczLzOnuTPADwzCSEkzTYonGVLovCzPPMHrefPIESNzd35OSMa1orsCQIvxWgA45pZJIXEFKOcKa+O/QRPRgXQp5ja6sJK+UGioIZk0a9+CXSzBPL3nWv78ZR7PKHJTLzzURLU7w4iFS2IrKfio42eoN7Vwux9JAQqXTux7POkKTFX9afr6eTy5dy44tsGrdbsuw1CXNu/N9HdCpB2H1sgYr+6S062fJ6zpvPVfkel7rmAvbjgqVefLSLsFTIuBUOIxH3nn3s3z09CNOL56x5IS/9aQcoUjx2mUrkiCyApUq61EtALkibyA+4L3dn6nclw4hi5LSyuZ0CaZSWT0v6c8PWHKCbMCtjKLOHEJJFDm3xCKJKtPinIF/RJSUI84Lh+NAXgRVR8JARS9uXuAQYkqMx4HDaHJvwR1Z4oyLjlj2L2Wfx6sBgJRnjm7g0aNHiHPEvJi8g4MwSHtmfQE53Z9OzHNsxQMJRS4umT8Mdp+rE5wLDL7IuDnBE7i9uWOJiWk6I1mY59mYk0bHeBgZrwfGMZBzZp4izmWSlPkphYppmskp49SRswPtgXSfNusYkbSTXrG3On+9K17ZC+19J33JqocYrfdWjVV6+Q9Zb8JX9lsDkvZ1WcbXH6fKpuy222677fafFjPoxK17yq9d/zuc3EtiXJiXyM1dIrih+I/R/IIio6QALjHPGU2ZJIoLQhg8aTFJN1DmKZFThAxpyeQcERzOl7U/K+IccwEr5Ww+VwjOmv1yRrwBsXNciHMBKTmPF0emsBoVl7eypSJwdX1kCJ5pnogxdv4+zZery502hpluowp46j4GNHxK/3fdma2HXTzxug+3nfOa3y+3ozHnrJu/Dk1EYXmtC3r/Tlmlf0iKbwX+VF9AGqCn+eP9IC4AWOtwtgCl1/kFzRO5wDK1eKI7hvbxxOV4qx/T7aTfxyYf2v1W/ZX2tzaY0McAy15zolKuswox5pKrtfvndLpvcmSrA7U9fp3xerY1HhJXWYo8hvUpjQYF3JNTKjHDxjmr01Wul25BWxQmscoIlCvsroB+GoQKKpOSFAalynTbs+XWhhlFictijQVOCEUSGsB5S6P7YExEmrX5mMNgkmpIwvnAMIwMw4AxExX2WTUGJlX7fkCEZVnsO0hX+WwnFhSnnIvsHCUWtWYpm1ebIwNSJdISicvScgvGXGpAKR9KrJfsedFc77PCTpxzaUpZ53W33XbbbbfdftJNUZ4efod/+2f+m7wYvvOjHs5uu+2224+dfXKQkloQUwsGSTOCK4WjEiw7wXe1wxLbQJV6yxaIm8Z56TihSLqpFmkc1nyHdqFpZSYof1fa5Rp411KfDdX277rXVpOPT7zstttuu+32KTADZURVPnjvQ873E5/5I+/yhc9/nr/zla9wOwXeeOdN+O53mJcZjUCKaALnR1I2uvd4PqOSic9gOkdyDOAcL59NxDgBmRyf8uDhkZgSDx8/4v504nyaCQ7OpzMvnlmXs3eKHwPxPpp0g3cQE8scSXPkejiaTFZK5CkiCg5BUmaZUwGaZFwSzrcnUl44nSditLURrfTqtAJ+zsbCYgnEwuijLd2IrXYFVNM6c4EOvFuBABQASi/JupnxjgnodX+/bnvbtSVIqx9Q5btqEUBkC5aoIJYlRTRlKAnX1+27ApQAK8i4FQxUt2vFmk6yTKWdOc57WklFVq/AmHly2Y8drOXl1/x8k7lDbb89oGsj4cb62Zrs1tKJ27p3cwEwuXVu67bbfUqTB7jsJH6d5F4DbZXr4FSYThNf/cY3LBGvoClyd/OysFymxhClrzhENtdaCglDMKCMKmQVDoeDdf7GyDzPJq0XY/EB/Qak1UBduQOOoM2P9CHgxBmAr3T0VpmRmNSKRk5xLhggSITjMTAexnL9UivC+esrlkU5n87kFBEZGA4jB2dSHXGZ7Vo5Rxg9w9ETUyb4gIqBj8bRA8rh+sBhPHI8XuO8RwRSjtzenDmd7znPM94HwDGdZ6ZpRh24QfAaClOSybtZIVEJIeCTMk0T4mx+5iUTz/fM54UYM8s8oQrOmR5DzpmomZAjS7Tua+fXwos4ZwVQzQYcWxJzjKVD/FPu2Jrj34pNSmFL7Qpy2pB069da/bLIWuTXynNZyzDNpP9R7qtWouvAlrymvrp+vMUgDrZVxrbdp3yed9ttt91+Iqz7fu9+B1sPn8l7fOX6L/H19/8+V48f8uiNR7zx6AHff/8HPHg0kl1pqssZ7zxJMt4NJV+VyKrGsJKUuKTm70SSMaqIsiwzDw9XiB9I0fht4mSgCU0r8Ml5iw+W2fxX56rPr6RofgnFb0zFv3LOExzM81JAuPaZZZpZZhpIQrX3KW2Fc0KRwMpNGrXOzituvlyuid3C2+Xn2PimP+SqdFijDVi47Xu9TjWW2AxH6hW17RuoqDtAriiLLUbJ3q5OxeZcX5Wn28Q83UBV1/N/Re66DVo3c9b7D21Muv5sgney3Va6P7pZt7NXhRrDtASp8ey80njRNVV8Ig+lC35k89oaO56nqcSmZZ9Z0QKwqTeVHbPEFJfOVYspgvnUyQBBruSOU4171MDpDfiVa1a3n9nLSTbAkcVCnRS3qwCfdS68d4hbWVSHMazXvrtgOWdYhJgK8A9hGI0BNcVy3uV4Pjgc3kZpNyze2fkexoAvMYwgiAuAgZGmaSYuxr7qHOSYrQmmsCb11yKm8nyT8c5ZnFAYlsXZPZWWRKo5BdTAjXXumi+tFju1mLM40yX3oDXYzZaDUf04jrXddtttt912+8mxTOb7V3+Xv/Slf4P3rn5tryHvtttuu/0B2O8KpCRqVLilegCIFQpKl7Ko6Xu7mpBwa9IBCkW1lI4Z6eLtLnCyYoC0pEap61lAyyr51sBLrB36ug6VPrzvKY77QK2dWk0ctCRKLR7uK89uu+222x+Eac3Cvu49ddy+nPjmB9/jfH/L//s//DJf+lM/yz//z/5ZHoSFr/3g67x/vuW73/wIn4AhkNUzSubq8IjpPBP1llSKC+nOwQxznkCU0QuHAIcHB9794iPe+dw7fOdbH3D3cuI8LWh2nE4L0xJRdYzHEXIkno2pZJpmrh8d8d5zXhZSgvtkgI2cZpacGQ4HjsPI7fKS6DqAjGbubu/IKmQVI43KpXNULFNZ154UE2STu8pdYrpn/LHuyyJLRp9o13WhZFtM6Ke9FjJyQ9L01+FVNqX1M/XzFWiwAnikLai1MJA3YCWTpLAEru2j7nstBLRz7MZcwTNgwBzt3yzALC33Vktot7FI65LdMibZZ9ccfVeMEQP85G4sa2+vgb3qeaWU13lv590qOe3lrAVYc+Ff1LlN0diTpLAirZeknre03y+vhY3ZMV5fIepYJmPkiS5DKpJ3KaHJimLH4xVJlXlZrNjA9h4Q5wjjiA++FO+M7cghOB8Ql40RCwdE8NKubQWvtaJHuUau+Y82Vue8MTI54XAIOO/IyZLtIpnDccAPoZ3z1YMrDsex3cTBj8QYOZ3vjRHJezQlliUSDgPBe6bpRIwR7wfmOOOccnU8FnnGXCQVPIowHg4cjkeGMCIYy4FdWyGnzDwv5KhojixTMjliEQ5XI8E5HJBi5jxNzHMkJSUMcH19bUVOTTgU5wPzNBvj2lLkIpxDNZl8RrYu7eA9wzggzooFCXDl3O1eCEBGvUfUMWkkLenTXVRQMd+/VUpXsF/7GuhPoK/WtV+NYSx378urm7Z99vgiaUwQdTgXzxCt3rkery+KtqrY9s/XJat+yFu77bbbbrv9vpiuQFa098KY3T3fGX6Vv+f+Gk9f/oD33v8B7//Gb/Bn/+zPM3jBs/DswxueP70hzsZopOrwzphRlQEJkfP5zvacjZEkF3ZU74UQYDwcePTmkTCO3N2dON/NBhYQiEsiFRldY59Rlmxgg5Qy6o1lUbNJUqcYm2+X1fwF7zypgK2l5eJWgI7gQYx9pbqiFeih5X8t31Vfk+1i+wpYp/rPFSPTz3gfL1zm1V4T3624ny42aIfQ7Tretu1c+AY06hb0ticpqOVXboxNQ0X36nqvyBZq3AND9GKt76KU9b0uTlk/S/ElOieh+b51+3rOr2kQobBm1dik84u0A+FUT2YLySuf14w2X9wmsuG+N/7UK85V+8XhEO8Zx5E4LwbQaQy2FRBnQJhxHPHeM81LAcH091UTlS73a/W7SiNHASI5H0rTjq6fE4tdkI3gXhdHdFlewfx2lBCkxRealSDepJ39erWcd4QhWHOACD4YOPB8Prf9GbOSMSplzWhMxNI0YNtYbOS8NQ3kVK6N9ww+4Ms/azKyBo+UM7HsR0tCfInR4onSjOMKwMqJI6VEXJbS8KG40S5mJqNkRDwp5iYtV0FVjT1KS+yFx7uA8yWP0D/7LcFuz4YEuz4x5otnZ7fddtttt91+ckxR7v2H/Cdv/V/4jz/7P+fsX+yJnd122223PyD7xCAlVzpCkloOpLIFQIklXQETUZiRShCek+LUZC0QSBFyo8m1ZmqLiwRXYr5St6XVMErVQhVylSS5KDLAGsPb3oUsfbe1BfquFis3Af1uu+22225/qKagJPuuV+s4ziJoFk5Lxg2eL7z1Dv+Pr/wm/79f/Tv84n/yS9w++wt89PRDfvC9H/DsgxfcPDuRETILIgNvPHiDtz//JQ6PPoe/fZ/f/p1f5/Z0i+TMIoslODPIIByuR/7oz32Ow8OBr371PZ6+/wKNHi+eHCfO5xkIpGQyThBBa+LTkRLM5zPLtBRJU8EPI4vOuCCkZeH2PBFJ+NE1ivYclZyUEAaThCJCzq0LNGejll+r28YsI7kkk0VKUrK+vYJ9LOlYsvp5C/DZTL1qWycrMKUCfoTLZP6rRQt1fY3AlSS9dXo7JwZQroAq1gJJtSqTlbMiBYSlyCtjqIWmWjhpxafWvVuS1M4hTloHuap1525Pw1pFTUJtc3Zl21LAKf6JMVeBZOmATWlN/qqUU6+Fk2RStnYmZd4UJRq4is0lbX+JGOtjTrmxJxmQIqNuPYEmldcmvib4izcjjtGPDC7gjiOjG3HHh0znM3fTHYgx7tg/8D7w+I2HnM9ncpwt+S22H5xto0k5n2fmaHNwdXXk4cMHpJS5fXnbxrqkVY6wAdlsVhAt84grye9SKREwoJdYZ7OIgaEK4n289ozjFUpCgFDuGRFYkiX5Hz54wNXhwP1dKkW0jPNwHEZ8MMao0/3McjYg4TAkPOaXvnx5h3hHBdidp5kxBj5zdWAYgnVBZyuk3N7dcp4Xpnkmpoi4wLIsVvAIVlSJS0QHx3EceHz9AHlpz3EikjOkvOC9JwzOWA2mTDwnSKXwoaBpve+dPVbEJZKWgB/cej9LKSjUP9WDEw4uIG4g302kGPm0Wh37JatCD+hpNTldAUO1SNpAQ/18dJ+pD1urCXbv9T5/fs1r/TjsMNK9to075GJbeHVfu+222267/WGYbr6hZ3fH94+/wVfHL/Ph9B4PjgPcOL734Ye8fPGcr/zK3+NwEJ6/fMHpPBOnaIDlqIDn6viQz7z1hOSPfObhA77/ra/x8v6WFCNZzC/xTapWGMYBcHz04Q2nu8n8YvGguYDPjakpkwrwO6E+MRwGUJiXGmsU0K448/0dpDiTMWCShLWRQbMa+2pZjVYA/uq35w3oo+JkKsDmYgordqeBy3sw0WXWjde81+2w+/PjMA51LS+hTcENaVvT+/fb8bT7swKEGgPMhT9R2WI2Y11fMN9CC8N7ZSTtGVLLmW07Btp7r0CXKyCogoGQ9jflmojWeKMDlLUxy6t+tG4OQN15BRvJejB6IM8WRFY+I9urJJv/bc/POcdxPBJzJiscrx7gFe5O90SWstvVizIZMxDjn12PUE9CtUgUUxiGRsbDAYDzaSKnhIhr8ub1pNu8sj7hdfbXKwGIlufFGXsSkLI9py4IIYTCiJbxztLfmjPzPBewYSBgUth1DCLKMHhEPCoGHsypxoo17jYQoi7JAEYlrk7Z5CDHcaD0EtmYUipArsKCWp5T7501WXTz5J3DDx6PxbRZC1gqWVwVvAMcmux7a5Vy7C9neZ7Emk2WJeKzsxgDLJatDjM0QJuvcTURXT698cRuu+222267/UGYgZOe8qtv/kW+/M7/hg8Ov80l+/xuu+22226/v/aJQUqV8SGrgYsEWSmjXSNNWhMBXQFR2z/pmJOsC9pJSbIUYJIVXNcsg+1+ZUdYS1+0n5cB92WonbEOGeFSFq4Nf7fddttttz9kEwRXivJxjuQkLMPA3/xP/gHf/8b3ePzI84tf/lt89Pw5y3ni3/o//yXEL5ynE2lJLJKY54RPih+O/Lk/88/y/PQRx4cD51vHo4dvc3N3T84JCXAYHJpN/ut0H/nGb71HInH7YoEkhDET40KOmUMYTY5tSTgNOC9kTbz1Uw9448kbfPvbTzlPM84NjEFQEeuEDEKKCy47QhgQrKBQwUc5m/xVmqY1ES1SOqoTMVqXqnU+Svv9laRyK57XhOX6t62/WlgO+9VQ152UdbgVAbpteukx2ObmRRzOu/aRlFJL2FpyXdqanXMqh3Pd+3Wsq4xC8xGUklwu/IiFpaluj2hjXcrZpOUqSKs/fu0ctgT6OjbXWKrs8zavGc3SJOOc09LFaudYAUo5ZwPyNIC0JYyNOYg+x7vOpGY2mKhy8TR3BSMKlb6s3kzrNq6AcKQVP9brJZv7RxAePX7IYThycz8zZ/i5P/rHuH3+nG9877tM8y2ay7VyQsqJDz78oNQOimxgLYI5QVM2MLgqELi+vuLtt98ipczNzS0pR+KSrOiWsiX2Jbd7D8y/MxCV1DKGHUcE8XbuOZnkgqoyzzPOeXwQrq6PgEmbHA4HnHiWeWG6vSWp9Q/f3d3jceSYbQxOOF4dCE7IuqDOOrYt8V8kVZzNcAWFmYycySVkjSxxZokefzgShpG72xPzEpmnhRgjIQRjfRqPret6mhaWuBCTMWGlORFTJARHVk9WY2Dy3pgT4pKJp5k45+7Zyu35dA7Gw8DhMKAZbm8nQhCG0fMq84GUgot1XWcf8Y4NwO3TZjmvXzndV1H/tdbqWhenC932m8Il0KnDte/JjwMUbet+tSh68QRr97n+rQ1waX1v+y3aFVl322233Xb7gzUtTCUS+eb4t/nN9NeZhhPP7k5846vfIs0nbm5f8vLFDXmJPP3oaWFVSWiqPkBGVHBkrq8e4fHc3j7n/fsbZvVkCcQ04bxJUjnnyGIe7O3NPbe3BRSUhCEMJDUGpeBDYW00hqScjFHzeO14651HPHt2R5xjYZcsTYHFp7F1yBe/UJs/mHMuLJ/ma2/89ho3ZN0sfG29q7/LupA2HM4FGEe77VcA/rrZ6rVWcMwKONpstyKLur1XCWfbkTHq0AA11lBRvMfmN0t3NNrOzQe9aGDcxC7tkOs5NyjRuvGGKbbNRXUGuvykOdPt/XWPFSSi6wSUc+zxQFpB+30ms8YXH+O+bRiXPub91320NWaWiyLtmki3TR2fvead43h95HSaySqEYeTR1ZEpRmJOqMZ2jUGZY0RiuUu0xi66OWnBWHWD9xwOBxQ1dtKcWsy4lSRc79/KkGv3VpfJLaxDjXWqzP0KYl/jORHBe99kplNOaLQobFkSjtnwXCW+9IMveetseWRv8a21V9kYnUjzaWuTizUd2ffJNE8E7xmH0fIAydhyayxscawvcWq9xsakFXNsLMk4CHiWlEzaMbaJQZO2WLQ1Fcl6T/rgTZJOpDAuGQOcK+gp2UynrGPJGc25e3Z322233Xbb7cffFjnxt9/6P/A33/lf8/TwVVTyP/xDu+222267/Z7tk4OUitx7jQtrAJpVkWQBnRej2HUOtCuOqkLKkLAikXNdEiUXyQqlBZiaKcmfwp5EKbZKpa2ugeiaEtimG7oiBtvixPb3teMJ1uB/l3nbbbfddvtDMDW6kEmVv/XLv8lv/NY3uXr3Xb769W/xjd/4DV68/B6nu0Q8K2lZWORMGAVlIQQYEODA4/GKMD7ivfe+x9Nn30avvoNLnjgeyU4hC4fxCl3OpFwKEYNyd4r4kPE+gwyMhwMTCzkupJzJKeK9JQ9TTDx6dM1Pf/FdkEwIyoOHD/DDgObFkn5pYBgG4rywTJEUFc257Mskwey8acCkCoDJReahUtU718udKVRAjhiFfe22bVT+bb1dF75LgNKmqHBZiHhNob3/LFwk7wvwqlLVa1nDa2dtLut7k6Rrn6uc8mUfmklqbEpVmkIwPwGcSWQhmySpMU4ZE5P38sqaLSXpWsEvNeFaEDigimtsLgaccb6wI1GTtDUZXv4TK0isLIy65tAr2EqN2egVK/sSXcFUbWatDd6KPF1lRbGO3gbUKLNm8mLO5sxt9S0OhwPDeODhcI0ncHt/z+35ZN3Dhc3JOmNtzCu4rc67nZNzjuAcWa1w4L0j58SHHz4lxljAPY4hDEzTzBIrs9VaOmj3Y5e4r+dwOI6INxBZCIG42Di8VGkGYxAaxsD19QOGwVjHpvNc5BHUnqnZii4pGsBnvBqIKaJZGQZBvBUQvXjcEsFh96IqYQgMB/sGyZpwwQBqp9OJ+9s7hmHkwfUD5mkm5UgYFKiMT3ZNUpqJMdvx1aQIY0zcx4RzQhgC4DhNZ5Z5JoqxQTmEZcnEJRfAnxU/REzuwnlhPITC2KbEcyIFSEvCD55htPeqD10LG8uSOJ8mA2T51z/JnwbbPK5djU6p/v+6Tc8yUK1+10j/zJTtLv7sHo/umVvd/s12rkM51e+itk37/tB27G5ELQbpK7KvGfpuu+22226/z9Z4VgTeO/4GX47/N37tN3+T7AwkfPviOdP5hpzAiUfcQEpTWWgy4izPFBgYwsh4GMkoHz1/yjlODH4AN+C9krwUn2QxwEJW3FD8UFG8N1nWREK8x2VIOZPUGJS8M7YYFxxXV1dFzg2OD46EIRgDY4wggvdDY2psksINmFSTVxXosGXheS1apdgKDJK2BHeojvZhW/bWxbjPra1zv+b61td45TU2r63NELpxALp/xTJqgKCGfGmrrUmG1TnZjIm2RgsVuEEDzbc3OhjzJt7aTtaaXexBPRtQWH2N2ltRxkab47bnV4BEsv3tY+Z3K8u2Qv/bVv3lk+0nlDVOE7RNpW3lSgNneYa6eGZZFlzwHMMBFJ4+e84SZ2vA6IZ+6U9J97oBg0zSLRdgTs6Z29s7m3MH3gWOh4EYE/M0rw0Pm4mojL/d9VPwTnDBA9rYiHPu5LwL2CYLDMPQTVJu/nO9sbMY4Mfy0c6YzdQYixoISSrrcS5AOoxFeJDWGLTmszPTOXHOig8mvy1g/rmKsUpJuS9L803O3QMgbn1enFhTcDYZe1VXfOAq71c+IqwNPOV5qcfNquTaOJMz2Slh8Hb1y35SqmPXEltVaenddtttt912+/E3Rfn1J/8e/8EX/ntEN/2oh7Pbbrvt9hNln1zuzVdwUAnhazRUZF2k9DqBAZqqVts2WJWW4Oh5IWoHSgv4MZambDUhC5xyyVtIiyVxFzmNbV9V1830MWaycZsayW677bbbbn9IlkS5Tco3v/YD/saX/y7f+OAj9De+xrOnH5LjC053JzQe+Cf+3D/OP/gHX+WcbjgeFfEHXn70Eq9HMoHD4Qlf+rk/xcub55w/ODE9u0VT5M23n/DggSNOSkozh8HjChBgHAX1meMxkGPk9uWZOU2ID/ghMC8Tw9WRq+MV4oScF/zg+fZ3XnD1wPPozcccDg/wo3L/8obz/cw8WZJ7WRIpQUwmLzaEkSwFFOIMpGPJzEopbwlCA1RBSxSLgUocAecdWpK7DaBUmzrqIlYAQhWIkksiWXRN2SvaZFA3VpPs3Trf3toAeLWwJxWwTVuEtUiu1ffXz9R9GivRKmu2dmxaJ6urhYrCmFTZjsQ5RLQDu1gXe855BX618XVp+ZqkXTfYjKnOZZUbM39kTbfXZPFaEOo6THtAQ60KiLbub5N1oDt+BRWtc9oAVKI4qaxN63xr3nbt2JxnNNucuMK+VQsOH3zwIS6MPHrzTR4+eMLLmxtevHxBznOZj3VflnRe53MdW+Z4PBKCY54W5mUhJ+Xu7oyWgsA4Bp688QaHw5GnHz4jzQbSo907225ylfVaiGJANhXGcSyb1PtF2jVOMXO8CozjyOn+REwG9pNsxQHJBhhL2dgCfDDQzjxNPLg+cBhHkmbGYSCnzDAGk1hIJks4XA2E0caXorGkpWQyD/M5cpNOvHxxw9XVkQfX16CZNKcVKOiFZTHwlzgIXogZnDiTMHb2LwCD2jM/jgcEx3yemAtQqoIOpVSnnC/nlSI5O5NITmtXs7F9gS+sSkuaiTnixZMWcBIYR4fy6ZVn6GtplNqj6x7dj+0T2HxQtq/3oKayj/pyX7zrff3Lwpp28cB6nO1+gcbYtBmn7jHEbrvtttuPyhS44Y4vn/8K3/jmtzifz1w9fsTNhy+M1RFBsuOz734Gh+Pb3/0Oh8Hhwsg8TZzvJ3J2LJJ5/JlH4BxLzOQYOU0T4TjgxADIMS2gBm4PzpkP6Q107USY3EJK5h8099C5wsTo8WS8h/v7mfO8dPKtyuFqIE7mX8RlIcZcZJzMd/LeZKnjsrR1yOKB3NYu7z0xpeb1QwVTCEiXr1OTOmsTCF080b3Qcm/rQni53lW8UIfZ2bz3cVfN3EH9+PWzB/U08HsH2ekxR9UtL3HEZS6wgZ6luhGyvk7JTeqr499sX2ObHhXN1qenA1C/MvayLd20y3aTV47dD2ht0pR+OK9+rNzzfcNoBSgZCKk0b4glYaXFH7kBWu5PZ7tvvUezyadVmbr+ejkpc6ErOLuy2YbgTWotZZYYt0A67DK5InduTLZtltrMrOe8+l51/lWVFBPOV4CSJYxzvRYKORkQCIUlRmP5rZ23HRJeNzFnZeN1DMNgnymNKlIaHmJaY2677GXc9Xkt+0wpkVLCB4tppPi9lalLxKGamsydSbt1zLPlGKgWhlZKA5UzCTpoDVXrXbU6pcYQx3rNS+7diRibbaiMzyszshjtbGF2++H59N1222233Xb7cbG78D7/0U/9j3aA0m677bbbj8B+F3JvlgCxbpjSCdI6jSvjEaa17taCQ06l8NjYk0oNNlsgKr4W5IRsNT6LczNNw7vF8jUBwkqbnPqKhG1iBaIuLeHa56yDXVrQVrc1e61W+2677bbbbn8gdrqP/OD9iW//2vc5nIU/9qXPcnNzwkfh9gXELDx84wn/+X/xn+c8Rb793a8CMykmljlze5O4ejByc7rhe9//Jnm5YzrfcZ4iMc/MH9zjE2gCdQFFGI8Lb372DYLLDAfPtGTubiOPHlhC8v52Zs4zBpsRTtOJEISHj0bGg3B3O3Nzs3Cez+T0lMdvPuLBVSAtmfm8cHd3ArXuaqAAYGwd8sE3EExMsWWXr66uiCV5i6ckgw28FEJYgUk5kysASKv0V01Em0xFTdrSwXaLkNc2MSwXjD6sieX+/ZrQ7BPua6dqWY/tA9SVV1XxCJmatGcF37gVFGT7KR/VrkDQfcYOaglXvRh3lYajnFsDGNXOXa3no62jtDoSmjMkK+pkMUamNTlrJ+uclMKPZZQ3wKs6GVpBSjQ/pEzkpvhgUmrrSenlfmArA1edlnbmRUagFh3atXGg2ZiBxgPiR043L3FZmaeIKywB0kBJCRFHCAaMMQkSNdkzlHE88OZnnnB/e0/WaEnt+n5JYi/zwkcfPbNC2Bzb/dmbD750PRsoyHsTAZTSupwTnE4TkHEurHOgSloScdFV7qQAvLQUHlAIwZffI26o0hEJJXF1uCL4wHw+kWIip4jzMPjAopmsmbjMVugSWlFDnMOJx7vY5jZG5XS/oEtmSREfHCoOSbXAs/q7XpTgIDiPAjFGkMzxOOC8ZwjB/GdVvAyAgfaWuJBzRDEZiVaA0croVZ53cYAxWIUwME8LDk84BK4O15zuJm5e3hJGRygAsE+r9Qxnm+IiYs75+uD0P9bt23fK6331pqJSo4HXVR3rEetzplgcwlYauhZJa7Fo87XUFc82O6Nye6yxyW677bbbbn9AlpWvxV8iX9/wzpM3uX7jmlmzxRO3t8aAOAx88ae/yDRNfPTyI+Jy5nw/EZeZuMB4NTIOnmcfPcV7YZ5Pxt6YM/G0EKSyjniGcYB85s0nV4iA97DExOkUEWDwxgQ6q8k7ORFjpnGRMDjCEJinyHSyZoYUFR8GQgA0kzMsS9ysOa4wUGYF552xK7H17YdhQEQshij+U84GUqhMkhWY1AAj1Y+ty2L1+1mXzurnm8/aLajdOtiYRF+Dadi6iBcLfAdEqsfcHLsHXxSHoX+vvpukMJDKdg+VobG9pusKXd2D/mxXn2QdVWVJ2q7mrzJRbX3hHkwlZfg1BtjGcdvcYy9fJp0DtM5jwZCsY7w4PwrIZTOGC4eqlwZsTQaF8dU7Dz5Aztzf3eG8R9QaKnIFd7VrUiTXVFscA+C85/r6mpQSy5xqKGenVI6dU2bKE/M0AybFrN08S4mn+ljOeW9+d7l3jSFIQXIDGKFVhLAwFM2JZbkvcbXvYmWaHJwxnHmCD9bko4ngA4I1hGRN5QLkIhvnqQzCKfXu39qY4URIqojz5KQsUyx57lziBkcqDUXOuzqdJYw0iTYtMnEmW75K1ok4/Djinc1ZzpW9Oa2PYIvTS5NNBWKV+McHTwi+NPwIPhgoiyykeCKrxey77bbbbrvt9pNgX3nz/8pH4zd+1MPYbbfddvuJtE8MUjIZFF9oYjPBucZ2VOuEuXAcW9JDWjALkKMlS0zppeNdKrF0Vm1MShU4lBQk0eJz6ZVNLI62WLHKl7BNe2S1pFBf76gst3UbCzVL+W+tb+6222677fYHbD5lnlxF/oV/6U/z5/9zf5IbzTx7ccev/p2v8cF3vsNn33rAF/74z/DZP/pZfv13vsbXvvdbvHj6jHi6Z54TV48/zx//uT/Cy/ff571vfQeWe87pjOZojH4J1EspCFxxdTxyvLrn4cOBFx8+J2fh9hy5vU2ILrjkEIXBCYM/MM+JuESCE7wfWZbMy5tbk3hIlox99v4tz/NkXaAyMHpjPRLvcN6TU2Y+z3gJgNHd4wTB4Z3jcBgZx5F4G7m+vsZ5mKaJGPNmfazgpJW9qErD1UJDBTYU8EoBNrgq29VAATUjf7HQdeCZHvjzSnld+6T8RSEBqIxJvoA3jCnKNlZVS6y64gHkXGTXZAUx1Rx7VyQRbK5VlGwfw7uSvG1J/gpNFnJ9XWST7DagtbdCTcpkEZyalIRJaUgB66zmxBmwhhVwUGoLBdgsa02AFbi1nTetU9fVf8R8IREkW4JZC9inFl0UA3qtoCkDOmmyRPnxeGRZFpZpJjhP8B43HJhOiedPP+L64RXjwbPMAXWQiYWdak2oV7Im6+A1MNB0PjPPBgashYGcIyZ3ZnOV0mRzm0rncmH4QcCF0O4H58APnsM4cjweyCkxnxfO84JzEIaxdOxKu+4pmjTEPC1kjfaMDINJIpbsvYixOj148JDr6wdoygVQaGxF97cnTufZOohJhNEThpFQtNpUMvOUymUoZcCig5AjzFMCBylBMr0WxJsknXeD3cteUIn4UowYnXU7p/PCEiNzTHhv7AkpZ/K0mKzF1TV5yE26DqfMSy0cZLxpJiMqhOBYdLF7WyAMgvOQUkTJjMeBw3Hk4D05DZzPjuHguHpYZS0+fVafSe2+OFpnuWj9emuxRQUkNa6vApCkFFk2Ncm6jdbvI91+X9W4oS/sXRRU9dWXyrjroC4/put3QfmW6AutXPx+eaxqe+ix22677fa7NwFwwpvXD3nrrWvefOtAVmHOyvNnd7z33Y94+8kVjx5fo+PA177xLQMU3Z9IS0RTJowPePPtdyDNTE+fMZ/OxvyCAYUke2P89BklE5MjFCDS/c29AePLWl51pES9sRdlSl6srEuqxCUznWPxPxwehZRLg4Pi/cDxEGzNkgq4oADDi0+MMYyKN5ZYH3wBQ0WGYSB4z7zMAKuPDSsApwGUaK+3VUnXF3Xz9wqkWUE90o7xWvu411+zx37j6ttXpp7c70cr+N62qcyjFdjTGhxp+KDtWCtAqcRDDRDU+yVc+P31fKWTh5MaZ0Glt5UOANOjoKU7w56J6XJ6moReN95+V9upW2OyNovdWDcXRdbt+p9ggCLnHMuyICIcjwcUa6yZzidAGYZATg4nipJRze1YOet6jjXWzMr9/X2LS/sp1pzW5hG1tiByZp22wr5aADJ1vp13OC8MoYDxYrImH4wRqM6Co5dTt2cy5QyiqPrWmKKi7TyGITCOBwByiiA2J/O8kFMiljjJl+e+MqEixpycNK/SaDW4UiFnuz+rDBsVoOQC4kK5DkpMscXR9arGxSSsc73vwNiZsjVThBBazOiDMSTlmNt81/Fo1u6eK16u2nWI0Sbde0cojNP1bweM4ycuF+y222677bbbf6rtkB/jdSTJzqS022677faHbZ846khJG2uBuFI4q6FzaTnO2hUKSgEvY2Cl1hYCpaxa4mYtwaRAjpbodyI05RFVgsgKSMLGoaUAKtjvRYllWziQLXippSXqcMrGrtumjmub0NjaXlTYbbfddvu929XDA8dHAchcP7om3EZuX1hC88/8uV/gF/7c57mbJv7q/+eX+OVf/gq3T+9hcQR3hQ6Od995wuOrgZcx8+SNRzx7eiJHk0y6vn6A6sA0vUQ1Mi+RabrliRxYPniJU4+XwOk8WRJUHTk7hoNwniaWOTaWnzhnnn1wxzwbk9E4BILz+MGTVDk+ekQYA4fjAe+t4zLFSEyJeYqIBOY5kXMiDAEfPOJgHA8MPnB/dyrJd8f5dGaaZwSTtVIUL10XYyu+r2gebW91NPpKAV7kbnuzlY3ocjXT0gndWnQ3QABLLhfWmdq93Bc+nK3drlDh59q+XABEJuVq0hXO+xWQ46SAU1aQzlpccHgnxvhTsq4GhlHUgeDXwkoBVTlZ5dyoRZyyjaoSQuB4OHC6vyfFWKQGAjGmAq42Wb16PEtkuw41Yf+aT9HqJGuho+G7+vmr41sdHPu/OJqGlLJhVFoBS5BzokneiTDPM5oy2Smf+dzbfOmLX+L22Zn3P/iIF88/QlDCMOJcQEhoqntlBZOLsSTVLtzT6cT5fDbQnbd5NykCuzeaDABr16514wrjYUTE45xnmWdUTGYtBCtqxMWYmcR7xoPiB3uGcsqMYYQszOcFspIl4XGQHJqsABKCZ4kKkokx40MgDAdSTkDm4cNrwuCZp4mE4oIjLQkXBlwYyGIgNO89KSfyFEuXsFjBpUi3xQSaDUTonbd5IOOKFKQLjpQzac5W0BkDqJKidYXHJeKcK896MFDYEjndTzgXOByPtu/SoZ0XAyJ6EfwwWMErxQLKUUL5Lsg5MU9z6372wXO4GjiMA3nJxLQg5flwn2LvtPnYSmlc2DY8tMJdLVbVr7Tyfi1M9gU77bbrP6vS+fu8iklygIqscUnbl7YYoh2mfi91hcV+lqX799rz/iHv7bbbbrvt9nsx4UvpF7h+8YjffvQf81Kf8v73P+KDD18wjg8YDlcMYeS3v/4e3/z2d5juTxCV4DziRxKJ+f4laTHgMcFDmhH1+CHg3cg0n9BYwAdhYVGMOcl5/DBwns6AAT7SYv5ETrlIttnHkhqTZD4VSdYib+xdZf90hDEQBl/yWsUfTdnkfQGK9G8FPThf5bI8cUlNBjnOiwEzimkP7FHdrEkVKFG328zsKyAj2fxaAT8rCLj6/JeApnUFVmT1e7t9diHM6lPLK5u1JgTV3Pzkuv3qO3RAIa1g4nVHdgxLXtbjrTuoEKGV+6j68LXZo/r+oTQ35GRbOnGFraoCkyz2yJ2fIc2/0BbX1UaGOlVy4TG0MfZXosQc0sZX5+jCkSo7WH2heoVsvzHGdjQ3Bt753LsQ4e72TJwjzinXV1fc5xN5rvHVGhNZw8h6veqhY1xlku1UO2esnYRbY1lRvBPztYuDmGImkwyEVxiblnkGccYsFIzRqEqOe+cRhLRYvLleX2N0tfvbsr8ra7A1tyxxQYBh8AV8lk3e21uDbZXaVlZfttxCSGEpavGerM+SE2OnciKoL1IBDpyzJl2tktmloTfGVABO5T50ZfxiMWKMqTSdGJgIERx23+VsTcJSGKIAXCh3ogqaS3xO3TZbc1Hw9j2UlWWJhZHJft9tt9122223nwT7haf/LR4sb/MffOG/z4eH336dE7zbbrvtttsfkH1yJqX6TxWnFTSk+BKhZ1UqbVJlFmjdPbUQKWswXCNyY5cVLHtTEg7Ogq7gakBbmJboJeZosXFWWgH0smBweQ4tpO4yM3XU+jGf22233Xbb7Q/GCjSGCHz3/ef85X//F7m6fgvNH/I7v5X41nsf8bWv/4C8nHnrwQEJnuvxAd9/7yk/+NbXee/rX7XvdZ9RjYWJT4qk05llmcmLMh4OZJSXLyeOo0NJcOu5P888efMBd7cTy5QgLywpkdWRk6Ka0GVNYHsfrJsym4yDZmM1GY4Dc1wIwRNCgCxMp4XzecKLJwxCToU5RzHGHs2cTidOdyfiEplOZ1BtycPKnOQKuU9lGmprLGsCtEqktTltf7eUcFuLa0J702ArUgA/NaFra7o4QxBUtsFWyNBtAl0aw40BX6o8XZ23CpowFp6IS6mxFom40mXq1n1BkxFLKZOpSANtQAwVcM4X+vqeJ7Ecs7I0la5zCvhoWRZLsDuHC8HYlRSc5LZ9LUSsUgpbuvsmrdcVdWzU5Q4sPlKfyK7n2oPEdHsRSiI/b/dZEBgmSeCsgzYlpkKHJF6IMfLOu+/wxXevmOdf5+b2OZ/97Gfx4jjdnZnPpVu4KwTVWkxuRSwlZ2n3TVEGqQNoY3LelSFGcOBD4Or6QBgGNAtxXgA1GYEhkHMqkikR7wPHqyNBPUtcmE+zJfydcj6dOZ/ndu207MOk+0z+ZBwCWR0pJsBxf39CJPPo0TUuCJnMnBaSRgMrDlcgJn0Sl8Q8x/YMObX7O+dkUg454bx1xIt3DMOILwAtHwJh9IhL+NFDtOT+EMYm2zIvCzkJUlzrFDMpZQNoRWObsvmOiHg0ZSoY0ZUipRUfDcAVnEdEyInCalUf7rKNN4DedJ6ZTjP3txPzMhMznE53fFqt3VKw1VXri5x9MXFb22x/988VdECni49V2/j2HdCoFi9r0fGVz1wWBctngMYAu5Zgt8CmyzF8XJyxxx277bbbbr8XU0Qd70w/x6PlC/zG8a/zmy/+Q86LI6aJl5L47rdv+PDlDct54o2HDwjDNY8fPeH733mP29M9zz58Zj5dAQ7V7/kUZ5NkysbY4gpwXqOxnArK+ZxIMXP1wBNjYllS8cWz+RXQyTXT/D0DJxmQKReZ55gSMhUwsi+Ai5xJSyqgJDtjqT5DVlJOJDVWmSqZ1fv+7Wdel7QtluV3W4TRso/CWsoKhhIBJwbeVs3NTxZXQO6p+rj9wr5+Vi8WSmX14c1PqG/kFif1DKTrvmTdad3xJXCJAuqWuv1WIrb5I2UfAqu0dIkRlgLwqVJjAiUOWvfVcTq22KllTUW31+uHOAQrQ9M63no5Lv2L1X9Z471+xs2dLDFHLoz2AmmJvHz5kjcfv4kLQnXU6lxnTTQmrgv/6JX7qE5VzSRrHVMvacfqf4kBlGqcZM06BvhzVcqNIjFdwEbijGE2L5kaHmfNzDECJf4sMbErEuyqucmCqxqTbs7ms4+HweIGNWBgyglfGg9Qk2PPWmN0G7wrsZ1JqqXG+GlgPFeYcN0qle7E0uZOkTIPlbHImJ866TtRNHVNtoATj/g6BmsmqbkD59aM+HqJyv1bbpkgocSEtIaslBI5Gcgxl/hFRFnmbXy922677bbbbj+u5gj8qZf/Cl+8/wX+nz/1P+FX3/yLzP7Tm1fbbbfddvtxst8Ff6t1c1hHFy2YVqyTy2KoVf1ck7YiHlhRtumU1+4hEZLUZEbPFGGBp+aOqYGS3MC60hDsfSkd6M4KSSpr2bQWB4SVLal/vQGgKPiq8rdjDbC7HFUZ+mVf02677bbbbv9IJmDpYZNkeuftR/y5f+xP8d57L/j8O094//vv8bf/1pf5+nvfYbq95TPvfobPfv5d4iny7W9/jyVO5JTJsqAJJEWjoc+ZON2TonUTOiekuDBHo32/EyUMjqyBw5UnL5MxuCCMhwNhhDgr0ykSl0yOlqBTJ4Tg8X5gnibikgzgka2IEOeMHxTcjHfGfHMcRwTHPE9FaswTl8jp1ihkNeXSaQpoNgaiTAHe1MJCmS7pko70yeCuANGtUNqS+d2aJkIIA5TkqxVFHE+evMkYBj56+qGxzADiBp68+TbL+YzGmTnOZE3b/bECkOvLOVPkwUpSuSapi/NQk88xrtvY2FY/QMS6Q3PONNm6vBZxRNbOZSmgE/MzTHrWeZMJcCLlNUveWq46kbM5H2EwKbE4z4i3btzWee7s3qzzuM6lNgBVHXvuutXrGNdrUmbqohhkrs6rhaHX+RgG+lIgFT+lFA0QJMGHP/iAv/nlL3M1HHn+/IbzfM/Xv/E1nDjilMia1ut0Ya3gUksm5fpYN359bb3AVnQSnHfghDB6siqn+3OZEwijYxgHY2lyHhnsObQiQGysWYMPiHMss7GdUeQAbV4SPkhpss6IeFzweIRh8OQkTPPEMDhcEOZlYomJeVkI3nM8HljmyHSaSDmzpCqrZ0n94ILtL1jhzHtZCySFx2iaF7w3UFxKC3owbzKlxGE8gsI8LSxTtCJCKs+tmGxLzgknwtXVFUGU8zyxTAtyVIZhQNSYnLwbjEFKjWUhpUxyuUhJGJjOigjRQE2LkNKZ0+kMakykMRrbQvXNP83WvsNWdE97vZlst+XVtzblTYsHaN8Hl4W5uv2mQNfARrRO/1rkqjHNesxerKUf9jq6Kh+9OUY/5vpdKGt8sttuu+222++fHdMD/uztf4lHb/wR/hr/R568c2A+3XF7s7CcnpOmeyYyPnuS3LFoNoZwL0hO5OL3WWNc9XssDqgA9JwWskKKnfwogiYhR2OYDIUNJiVl0YioK/HEurLYvrQBiFQyfhgAIUeIcSEEwTtBBocmAywZIMZAMinldW3JtTGwHkabr9k3DHYIpnUsrJJkr0JeLs1er8AR8/vN7xiGkceP3+Dm5XPmpcRPKlxdPSCEgTRNLHExwH139Lb41j+1gFssDDCvrEcx6bYJo67bzd/eIGDKz40fvIE0lfxiARnRSbpRQUrduq3tf3UDwED7KGSNBi7ZODvrtqtvsI3bpJxX/ePSh1k/r5sxaPe5bWS4/rKZOqn+j/1rDLbFR3764Uc8f/YcFAPZx8w0n5Aio7YCoNZja0XA9NNSz/CVE+njW5sjV0E+mk0iTQ1wU2WTK1BKnMePrsVFqYD/QvDUZpTUMzhhTbC2L7/Ga6UhQsTYZGN5bk0RPJJiIpU4zw+BnDNxTk1Cbr0NlVzQf1IZhb2xEjnnCgBKidEaOJyzC5FRUpICngoo1nBSz6uXZzPFuoyKMPgAAvNSpKARgjPgUhYp+y8xJlpYvWocayxOUi99SXSbbF5q3xsWrlcAILvttttuu+32E2OC8Dh+nn/12/8r/sTNv8Rf/un/Nufw/Ec9rN122223H3v7xCClmLJ1iZSAUaQm2YVUu0Vad5YFXq7Utywolia3YhWHNYLNScG7LhFg22uyoDWXAKuQ9LbEhYTS2yNuDaxhEx/XfWbWYoRr0ZYF5InCVoEFcFW27nVFkVfLidvj7Lbbbrvt9glMSvJZBcERmHn7keM/+wtfIi6Jw6D8lf/732c4eH7qnYfc3T/lW9//Pt99/ylvPLoiHAeug0fUsUx35GGB7MiLssTFJJu00r8be07tfhQnLIsBAFweWc6Cx7HkhTBeF7mviOrS6PttndHSIR3x4vFOIEVC8BwOI9M8k5aZw1Xg6jigeE53M6eTSceFUMA7IjhvUg4xZ6Oqb/nm7SrjWpIzW5KygHjX3uRakF/ZcLZAJdvK+1pIyC1hrmXBbNJUbsBJIGFsM847jg+uefToIefbG+LLF5bo9Y4UY82AronMQjWvJvRaOlalS7ja9q50JFcwT87Zkrl1zLKCgMyJMKalmty1dVpLl2lJROdk19OZlF4FKQHW1Vo6RqXMqVTJNZHSPVwk18ilO93mWXHN5wG6ca3gKptfT718a/P2WhBaAUor8KfK0W0fi5WJZQN02tRVMioQnEezPUcpJj74/g+Kn2IwifOpALjEl/tjBYjVJH3r/C2J6PpebTyHHiynxaezuWrdul0nr3PK8Wrk6upICMYwlFQZRhtDTpEU1VgGnMONzoCGmhlHTwgD3oXCkOR48PCaEDzTNNmzEIzhSFCmaUHFMx4GVBPzMnM6L4g4DsdgrErLQkyZuGQDn5Xro1mZUsTlSFBHCJ7r62sePXyIquPly1vu7+5Zlhnxq/TDpMaWMAwDaGCZF6YpUqUmfLs/My5ngh8aUO7+9p6YE+PBk1JkHLwVGp0iufqz0u6xJsnnsAJIA+CY3JzklXGLXFmaijTe4Pm0Wi5FVOptXSpnTc6t/GzfZBdApt6qWsym7qq0GGN97tbPKLo+l/V5W8OCtt8Gkmq/rvIor7N6iPqES3/ci4/9sHjiNZvvtttuu+32saYt9yMFDBJE+OP+z/CvvvNv8JtP/n3+wUff59ntHVcPr4k68+L2jvv7pYGKgw+MhweoJs7zLd7DMkVjWiwFe6GwL8ZoPqmwMqIUmaocwVhQEguRw2EEbF3OqfpdBcpawPpOTKot51TiA0dOCefgMA5lLcnElFiiMbi66t9igAgwpiZXQBiXbJ3rmrdO2Stgltf89XFmoPOan1tNREgpcnN7U5oNHZUJZ1lmazj0AgnEOYYhEGMkpdStmcXnzDavQidhqx0D6eU5dWNwBdCCrDHKJaimgkAUjEmoxjRkk+fywT5bADRafEfV7by6bgAppcaqYzFopSS1eLcBlGV7Lr0v1OKT3nG5bJLsmkMuY8fXuR2XQBO52BZncbDdO0BKLClu91LmxqZtC45qQKSLa1IBTSrr3/SelMjmEH38BBZbDYNvstQxmuybgfaXTZySyEWSTVqThHeOeY5Mc+rYXVdpNT94HEJKFTzoG1DKcgYgooVlKDcfO5dLWnPK1rpR+bKE4BzH4xERxzTNxGW2mFWUnI0lrbI6max5ieeaI0yZZ/vFA8OhMgfDdF7Iyc4J7L7Mkta4ubsIonVU6w2z3nc1zrTts9p9ar64McZ5v2US3m233XbbbbefBPMM/Jnn/zUA/vKX/k3O/sWPdkC77bbbbj/m9snl3tT1jUuUWk9J7kuLMXPOVhyUVwMaU1exYL4Gtd45koKmjAuFTcFZQacG8kbxXONvabTMtXJQY3/XRbm5lOkonUFafq+lXBNk2RYVwALsdddrQsC11zazQmuQYg2od9ttt912+yTWfRvLAJL5zDtXSHa8/+FHfOfmBenBgTcfP+H6g+/x/OaG7ODlixscC8fhMf/YL/x5fud3foX7+/eZ7u+ZThPTPJOzR1C8uJbvC8HjBsfjx1c4g7+yzJnzWXE+sEwL97f3HA4D5/uZeZ6LDJklLI39JxkYw7u2gCR14B2PHh95+OiIqnLz8o5YEprOwTA6hmEgRiUlJQeIS7IOTjI5J1tb0xY80kALHTim5A9/aMl8lRRbE42Uz+QlEjqAjary4QcfENzYIDLD4Ikp8t53v8UQghVfRHn8xhNEhOfPn1lHeJ8YL5zxUrpJ6zrfADHU1w0k4L1vMrGjH4jzYgAGb2xSsIK0aqcsrB2mdZ1G7Voej9c4F5jjYjJ15dxqclkwliUAL5ZUj9GS3C44nFji2SOUqhRRe/DXx9sKRtrCDzYgJSlsT7om7kvdYruv7rpsrmc5YycOdeCHAYnKFBe7T1GyAOSSuHcFNKVUOQn7J+W93IBJrfMe+3wHs2jAql7Sr45PnBXUVC25fRgHhsNo/ptzVoyKCe8HYzOKCzbITMwRJ8LDxw/w4hnCwNXhwDxFlmXhPM1My0yWQBgHnDjCMXB1dSDFhUzCh7H4jmLgdrUi0e3NXZFYhJiteIETRj/gvTPJPzEwjysMaQ+vH+DEcZ4WzqczcV7s/kqZTOTw4MDV9QEnig8DTmBW65xPKZI1F2Yve7aur6/xIpzPZ9tfXKzQkjIpKufzVIocjipZkbXK7EkDwblSAKpFkRXBY89AqeMZMLAAGq2k8Wk1WX3n/rFa61v2Zyl49U9UA8Wtu2rFvvqdAGv8QD1GLfjUedN1p+2RlVoULeCl+uxcjL4vAG7wg7VY1m0ndczd35e/77bbbrvt9nu3DuKN4kGUz+c/zYv5W/zOg29zzguOZO/HjAPiMtua7hzXj9/ADUr+aCanmVz9R12/uSsw3HmPOOHqeiR4AzmYnHHGBU8Qx7LMLDKTU5F6awDZAnSpgAEHmsv7GCvReLT9ihOW2VibEANsmI8n5KRVOa2wu0AvgcalD1kaHMj9wtsmbwNcenWF2kJfakzRwDWd5ZyZpnMBCq1SzssysyxzY8wJQyg+i144A/2wOmARne9cQTudn1CH7MQZM2WT3DKIhigWc5S536zh2uXx1HKR3ntiykgDe4nFYjUGqdLWSvOlAVTMNxZ1baxOTSZM6a77a8+4m+W1W2CdH+m8iBpf9D4RF1euy92+bgNpTtTaVKHkbnB6sZ1aI09pTKmxifROVX/wOrndQT8OoNQ+pYBmYyMKvsB/1o+kAuCrbEaNEUogjAPBG5tVCCY5GGNuoLolmhS0cxbHh1DYUdXyBSXVXCStBbIScyxS2AYyq2lo7z2hgAJTuc+dtzkahgFBjKFoiWtzS4MxZbzzrYFIwPYhYt83WhiQyombzLaNP8VkDcLOxq65NDLQ5eSNgrbzo2Wd++7e0+67oG6h3e/27O7e6m677bbbbj+ZJjj+zPN/ja89/Ot8+Z3/7Y96OLvttttuP9b2yUFKuQB/pDAcFem1mrdJqRZWSrKlJhy8sSPEqCWghCQQgn1wSaXrBaPDlpplUCXXIFih7jyV7hULAqWhhyr4SMQ2dV3HUS3ilD3bR9SSCN0ZFu4HLeOxMK2WJ2p5120+sdoevu222267/S5MzemvZuUCZ9/Lolw9esAbTx7zlV/5De7uXnB/l5AM10fh6sET7tKJFy9veLF8yMPHR5YpwDBwl0/2Pe4VJxkfhGUy9iIfRq4fHnnjMw9Jy5l5nnCDcrga0WRF6bjcc07R5JuyMRAhBozR0mEqQMql69JbcSHOkcGPPH9+j3g4XB05Os/93ZnDwTqLp/NESqDZOovjYuCZRutek6J1TirTTklU9sCjHixSs889eKTvRl73KQxhwAXPYRi4u7srXbO5XAMDuyiKpgxJyZo5x9mAHH7gfH9inueVSanueTM2sa7SljxeJSHW7uXK3mNji6XAY75D3hQk6uuV7ceACgXeJqBibEhLjmgylpt5ntr8pcoE2YA+bgU/tCJU6ZZ2nsE5rh8ckAzPbl4ScyqAnh6I9KqtyVxtY2+3uwKiLXHcX5WtJ1JZqS6sy/ErQLbClZRkPrW8lQVklTJQKcyWasc+HI6WqF8Wk7yrcLduftcxr9euvl+leRv4Ilc/0BAgYRyKn5YRWYzVyjnu7+7tSNkRS4J9PI4cwmgMAgpLSugyk1IkDJ4HwyOyU5K1F+ODww8OF+D+dCaTcIMnpYUYM5oEp87kErwVCYbBIZJJUfAhcBhGUPt+wDuOxwMiVmwYxwPzNHG+vyen2M7TO2dsRnkBFevi1sT9aWZebP5yNCBhjBlV6z6Pyz2aE/M0oxlCGAllPIKDbKB9K9iVRoBswD8nVhzx3uGdKyC7lQVL2me0+cmigneBJjHyKbXKurpyilUWr/K+Vuyi1HBgfa2A7exZKkAit4KKqlWGpXbMcty+4aB+R9anTbqN+5Kf9M8dl8XADiqqbcj9BltwkrSX1yLp64p3u+222267fUKrvoz0Llh7/afP/xRvHn6Raz/w/oe3nKYTWeFq9PjgmBfPNN2SXvyAN548RpMxKwkLAL4AD0IIpJjIpXFPnEk4J42WRfLCgwdHAKb7iEgAlCXFjQxb88w7VVbFYh8FlnlGc+CUbZ/D6DkcR6bzbOyuKsSYylpV5LGKnG3ZGVJA26tc3Qpculx3PnZWZV0ne6usUj6Y7FTwnhhjY3CyXJyr7mWJKwqYRqosqxAXrDlBL0E7q3esryCO6UBJ64JaWZBcaeyoqG7V4vfX+Ki8Lv0s6HYNr/HJHBe8Cy0OqbMpHehjw3BUECC5Nmw4a6wcvOcwjtze3ZPj0oAwFXAt3cdVuv0WP5D+9f5aaP/p7uXNq5dxYLkm/aOitq9IkTTUj9tLgVgVQl4/eERKE0nO3cj04o4pY+0vZdm7XF5fWfPL1cdL2STWfChy0DkXiUQp7EYGSKqxyhIXi+dTNCCPKOPhACIWu2t3P2CyzDmn0hRkkt+izhpCjPLLJN+ckN0q6e2dL8+T4jFG1spwFkIwUNEyG0Na56C6cv/0LFDLnIipzGG55tnok+21BRZZ5bm9M5AkklvWWmS9Ny02qEDCwgInsjKClWezXrU1nVC/L8oYm/z2brvttttuu/1kmiD8+Q//TX71zb/IKTz7UQ9nt9122+3H1j4xSCkvxpCUnRVEPLSCo3O1m8m2tThUSiClqCvJiJRa0kKT0WKDlJAYvK77AGNTyqoMThq9bU0r5GTJDrQwM0ktQhjoyUlNPghSinQt21JkZbZhe2FcKgHx2oOu7T2gyc61wsNlQWK33XbbbbdPaGu6shP8RJ1yfQj8i//UP8HL777gb3zlV7id7vi5n/9jfP6dJ/yD3/km33v2lPvTc37n7/0Sj/w1KS3klAnB4cJIOB4QSQUIICxTIi6J82nh6YfP8GEhDI6rB0fGo+f+ZuZw9Dx54y1evLjnXm+MQQkDuITgWRZjpPFeGrhFUabzwjzPvHxmyb+rxwf8ECBn7u/uMTyTAXO89yQSaUqlEOLJZHIqBYeaIOQimSsdS8hrZnAFznTZx1acMDiAE6OfTzkVZqJVLkqcM9CDCKVVHCHjpCZNHYnE6XSCvrO4JtLLx+oAV9CSrJ22JXlamaFyzqWL1BFTqidS0tu6ApvEOqM1s3Z9dkUK5wScSWCBElORmEu5dJeaZJZ9zoFY0SmV7lpjslIDKIVAjiZ3FzWRcjYZCjtExwq1ysatTEQVKLEFOGjnfvQyEVo3uEjnt2vdam5r53W5MK3Q1BLM2oEe2v5TAbAYksN7V4A0sZ0H9J39XR59rZO0QthaBqy/r13kzgljKRIsy2LPYx44Ho6W3PcjKZkkW0qJYRw4HA4IyjydWRZL0PsQ8OIIo8cPgSUlIBOGwnSVI/OU7domZZ4mYkoMPhBCYETwwRHGgB/spnReyMFbAcHBPC3glDA4wiAMY8A5YyeYpjNZrUu7+nfmh3qOxyMhOFJcmM4L9/eRWBi+tDqyZT6yVeGKtKFjGDxhMHBiQdYVgJcB+nKey9xXyTjbnavPcWGEq3KHtcFeo+J6Kq5SrFuv76fPNGsprhQuvb7mxrbG3GSkdf1GewUjeFGn6+OR/jVVDJ+4Od6W1anGE7A+t3X7Urts33tld+sxudhveX0V5Vm3fH1pcbfddtttt3802/pS0v32ML7Nn3rwT3P+uTuUr/Hd989cXV/xxc//FB999BE33/8QzZnp7pZbEsEJS1wsnnADbvBU8L54B5rRpKQlcj5lhkEIo0kD55SI0SRswxDIUUFj80FNHs4Z2EkqSLk0QqCNPTzHGcWAIMMYmKaFuJjcbJUpc4VJJcfqhxkIPvfOeD9DFf1xOVtrIFH8xfLp/uMVUCM9oMHGEuPSmJXa5sUHUilsLKUBol/3quzWK5eRuv52DYfdElpBPiYhXZ2DNTZoIBnXNQUIbd6qQ641edgBdqQ/QSBrao0D2oF7ek3YytxaNWtXMJhx9p5TYl6WjhG2vzIVqNTfsfWcN4nRzfv1lGvE1L+z8S3qjdfmp/wo8UQv97yZ51esAsRpMV6OCSWS11umTs7mc5vXu8C2zsQ2h7z6zt6b/FxKEfUOl6V9NivkpIXB31hbnaMAmIq8M7LZFyWOC0NYAUI5k2OGLKSsKyNScOUSGxjIOXMGJdd8RXUOqxwgiKc0IthzFHMqTRAWe9XYTgWcD4WROZOi/asgv6rK3mawXTvXbl9xdhErQKk2jKgoVRLccuQrF5lSeqF0JVOTksO30H+F7GuJNT/uHtxtt9122223nyR75/zz/GMv/qv88lv/1o96KLvttttuP7b2iUFKjgIu0rVIVeXUstKof0GgMC2V9AEpKz5Iy2xU9oPaRW1U0LIGqLUoAYX9ACgdaDW4A/uwKzvJrbDgCiCpFNK6opuiTYKmBmm1o82V/dVwz22C/rIxa3Eut3noEha77bbbbrt9Ituy0WwTmprBi+dP/NzP8K/91/9lbuI9v/xrt9zdTXz9/CHvPX1GHjIuDkx39/zMz7/DeYbnTyNvhIeoZLIo09mOk3KVRMiQzjy8esTjz7xBJjNPiWcf3BJjhgQf3U2c72brOAzCOF7hRDif79uXfV9ubpTwycYuzoADNy9PJYtqSULnHT6ElkTUaS2659KWKoX+Y9u1KG2+KqjFlkutqcmSrLYVqQGHavclBowy4ETi7u7GZrlL3IMldmMuPEPOWSYXIK/7ytlkMlyX7BaxzlIAXFmzgVQkNWqSuIESUu341pYURQozTJF8rTJksjoCrQtdL5DBbWUuxR4UUo7lb2NvFF+HIqtPgRrlvxRQTYxkl9CUyMnAWKqYBGwpOGQqEGllHqoyfM65lmC+vH7rHNOAYeVuaUCYrYSa62Ru7aeXFaxtuy2FDdUGFlqZotqT1Dp2HQ5N2ViC7J11HtwKtWhyYbV2U4BiWooBkhXSQi6AO7u3SqFAHfM0kVLEOesyjjFah3BMDaRlxYJMTAveOeIc7flDmKdk94tXxjygZA6HgeNxwDmMkew0E89qpEOF+1KcdfRnzaVglEsHvs2PsUeVQowYkMkHwQU4HAdQmE73KInDGIjLggaH94GoCT8G1PnC2BkKqNCexUz1P8v9kXIBZrl27b03h9U8SE9OEc0FPCcZFQPJkbEO5gJUsq8Vm1/ztU0ewokV91xlEVofBqqc36fVesClvXAJ4VkBQrAWJLW80aQwu11o/8vFG1aPrAWly8HU/10UyrpxtAJmK6rJJn4wmGP7pt7umlfPbX1hCzzd44jddtttt38023z/9j5iQZY84rO88+5nePr8Bc9ePuP+7o6vffVbTGlGgyNcHVnme4aD8PDxFTcvMjPGkCIOljkZK0thLDIp4sz11cDhyuRs45KZp8X8PBXO00xcEkhp6BNv8sVx6YAvFfwh6xJVAf4oOWVO91NZ96X8dFRAvyBkKSw/vf/Zo3s3s7QurhcrcbcSdr5mfad91JkMWsecdGkVrN8AOQ00vY5pA1CpK2v1g3u/uHdu6tpffQPdHr/3gcUVYS2xeWzrsaznWc6UBsoo16P6GO3+ofoRncuAtO3qZ7w3Zp1lWcxv03WfqcPqtH2W+EhbvLZ68DW2ex1qaPVDtPlH7UMXnkg3O92cF2Bcm9bLrT/mmPW6UFi6NLUtKxt9OavuHtvGbJt5VbuGGQpTketGoK0JQEQI3tpHU4ylCXaNjalNQ7nEwJm2r5xM7rmy4VpsGIr8WybGVICENlonnsqoZDFXHWd/31lMGNN6TuKl+ereW+NNysny42U+XO1+wO7blDLeydrYUK6LK0npeuwqoe5qnlpc6VsomYD63Fc/Vyrrrd2DTuy7w/INdPt17cbO3fys3wNSGNle4zvvtttuu+2220+QOTzvnn9+XWt322233Xb7fbdPLvdWq6HQigPWXJGtoIYVA723ImItprZEflZ8ZVGy+IyCewIVcoYspaCmhamiHDIrBi5qiYLynlVmqewFmm0sUvbnxABSglqRU+24mYwXZwwDNVgu+/MtWUErsTbWJbVkR+qSCHthYbfddtvt99sKObmDm5c3vHzxnOX+zHsfPMd5yM7xhT/2J3n/W98kTh+gsvDo7YfcvLjh/n5iGEeW00yaLfGmKFcPDgwBHjwKPHp0xen+xIube6ZTwoln8J7T6czpfkJz5nAciTGzLNE6oxeTcKoMSjZMMWa+KreVLSF6f3tiiAOPHz0g62IQEec4ne7xw0ClYm9sQyXRncldLn675lnicE142y/d72wTiatEgnB1dU0qwJtKFV+HTzcWKBJtKVJPsRyGCnwy5qEqSSbgigwsalte6CxJAQY5CkApV0CWrZyuJJ4toVrHsoI7+v0o4LReU2ksQtY9XsZQkr0NmuPsXjL2FlrX6DzNhDDgx6EwLkXb95zs3mtFBK0z0JLzCCSkqEkoaC7HLICVruDSS9pd3uMViNXLyG1l1/qkeDcPomsBJm2LO5tr1l3oDYOT0MBSFahUCy6N/ap+tnTDU7qHVXOTOhiGAe99Y+3JquRojJnDMCB4lnlhWazQ4J2zxL9m0gKiyqLg1PHg+MBk4c5nltKVvwA4OAwDwQVSXowRbU6oSrl3MoP3xBxZ5gVNVtiQ2bqXnTc/NCfQ0l0tAuNhxHk4nxMxLgWslqzgV+5TRRnGQMCzxJn720g+BhwwzZGUTIoleFAPcaFIRHpCcPgAThRVhx8CMSeS5ib9UAtQzinDYTDGtyWSULwfEPGkmEiLSUuGwhYVkzE4reBHKzY4caAejboyk30KrfnNteB38Y626hybDWrRsvv6s6LNK/uhdfYrtQlhZUJo4KJWNLyUOSzvd+CkNpQy+ProC2vxcrNxG7MlsnT96GuKh9u/95hit9122+330UR4Z/oT/F35azx//sLYG+cF7z2DC7jhaOtsnElTYlnMTzU/wNmauiiqESQzHoyZscAPuLs9GSghZkS8AbSXWMDZGecN+JDilsUUYAsAuAC1Y/kzByYzW8ekSiyyYc47ctIV1EMPbpGLtc18x/LHdg1qrruua+Ar723th4EXpFvH+/OtubS2FgodE0+Jhyi5wt5J0G4Hdeu6UHcHbRCd6s/2C3X7EOvvBei/HTiW32T1iStdzgoyWn37nOx+aZJ+lOtSQS7Np9b1EJ3vv0YaBRCDvnp92F4D6Z2JesqvzAPrfmpNrUN/96Aw27RetFe9kM19RIWy9eNar93m+P34e+ftcv/958qc5Zxbo0VONkMpV7axVcJMNeN0BY2FcUBEClgsFyCUsSFJBfmpAQCtCda1eCwXYI+xfFlcoymTC1CoXn9rOqkx6Ar6yjmxFCdTsXi0SgW6so+cpXwPOLKjSEhaXOVaQw8FGGUMUSFIYfO12VJKzNXFdlLuSR88zgkp5y72teYXjRY5eyftHk3l+XQFbGXkxB7nvOU14qc3nthtt9122223Pyz7+Rf/Ff5fn/ufMvu7H/VQdtttt91+LO0Tg5QSJilRC3fqVgRpzlqCO/tdRVs065zgS5CfCwuA99L051uBTq0Lx+TUVkppH4QlZbxb6XMld8VdVn3ums+oDL9ZwOnaYa4l8dK6STCZiVoQdHSgJKHrjNY1kcKrhYZqqxzLaq8vTu6222677fZxVoETqoIfBj7zzhP87wxkhbc+8xmm8y1yGjgeHnD1QLh97okvbzmdMk4OpGVEGDmfnqGy8MaTIw8fHViWxOl+5qMP3y9JW/vu927gfB+Zz9GYUQqYJWclxXmzVuWSmOyT8ybxoKUAXirYUdAIguN8nlkQh6rzAAEAAElEQVSWaBvP2RKWqoRgdO8xlvfyepx+jQPQ3MNjscRzBzhKZW0LBTSSNLXOz7u7Gkit4JfWvX0JfOr+Xlcvq8JXeYCVrZDNmLZMPn1lwVhtesBO/7uUDtOUcpsL76UBYFJMKypA61gLWEcKEKUcqu7XIWih6NeczedI1rFr/kgiZyVOywoCcw5y7M5KSq3Duk2dN3k3VNG4SmpImZ/c0BLSChZUQJfIWhzq5ut1P+33Vj9pRY86ryJSgFo0JMargChtRZDapV3/1f0bEwCI+PX6leKLJdD769RJkBV/LOe8SvKxFqJydkzTzLIs5Fx8v5xJIozjgPcjOWeOhyPH46EA3oX7+3tSXoBUVPmUMQTGwbPME8s8k1U4Ho5YN7+xJ92fTib70FxPJS0Jja4k6zEphbQWl2YmVD1+8MQ5rgVBBV0MaGUgKC3FKgBHTs5AQjFVSA0ijuCDnaMq3sPx2nF9PSI5cTqlBpYxRUJtRSHnHePBMx6Gdp3s/ndWMFJj8gpDLTqYBKGqoqVTWkS5uj7y8MFDRB1pyczzzKfaLmtV9bnpHqFX6p/1Xu920URtlFXSscpelI+svjwNnNQkKLVsu9lveV47l75/bhogqXuvbVfuwTVGKAVfWf9uRdiLU+ujhdfU8Hbw0m677bbbP4IJynV6i7f8l/j8F77PRy+eM8/C4XhF8IoXzxIyk5wJw8D5PnF/Zw0GOQvXVw+5y7fM04nj9cDVVZGvnZXz/VzkggvrOBCXAmIWoALKC2CgDGjj9/Xyu1Bd3RXcohljXfHOpKHy6nvGIju9NhBesnl287CJKxq0ZLNWVT+vstfkIs3cS5mZn/76Y1Tr4wsufq2L+8eBcPr1cOsjaAcc+iFrZsMZ5VdydprNV29/14aR8rkqqVvjJGPqNL+/X7dFte1fLYlJZmUhrfGAdue7zq3bgJQ06+pYiG5Y4Pvz6RTmqivxSsT1ynx28UOdddnstI/ktlekjxdfu+/ys9572xhG2rlvmiT6Z6CAyWozaJVEox+RGkNqjVlbrjUrrsg4qxqAbxzHAvApMYxoaVSQxm4agifFpTWqDuNYnzKc88zLQo5Lu38F89c1Z1CTlWtnXp6JnDMkxRNaE0gPyBInBPHFf9RyLGlgqXXT8gziS666gJu8MBw8Hogx05QVe1m49n2yXocKOhLaTVlyHq742N04xeTDnSp+GDgcjrbLDDn5V67/brvttttuu/2k2dvTz/L50z/BNx7+4o96KLvttttuP5b2iUFKUhL4tZhXu5dcSXg4t76uCjhpUvBZtdHZIhVEtAZT1EKcK+FgFxTnVMisdR1DrSa4LhCzYlmX+NcKmLIxNrk4OwmTh1MhdQVALRF/LTgUsqeW3Ghhs9g4ffl7/f+rSYKaZOJj3t9tt9122+3SIuBAPD/zx36an/u5f5xvfuMlP/3TI3/sT/wRvvHrv8b14Ql/9+svQCJXDw98+P4Nty8XJDnG48ijNx/z8uYZwcMbT95ARHl584y4ZHI2uQLnLJF5mgzkYABa3+jeq5SXAC6YrFQYPHFZiKWzUDWTauK0rF2iQl4yp7uJmBZSAXPYAqhGn44l+iVT5E4NdLOCby+kwy4Xjw6gVJO91w8eoDlzLlJlNr6PK1a8BgRQoTl9IaNW9SlU87k5A2uhn+1avC0f2GcroKUWY6rEWD1OBcXUz6jaazlnUtK2/jd5WAcOAyF5v14vO07YJG6zCF5ckbSrUONSrLCdYolmLayLK1C6yp1Z8cI38IQ4YwCqzE9U2Qstarfbyko71x5MVOdiBcDl9rttJ+Rcuu7XaS+Ah26/XVGpFQk6gIU0v0bb3NdtnSueTV9LqsWA9s86kes8G7jJtetdfzovhGEo19PAeNbFa6CqwzAyjoFhGOw9MkkyhYgMNziujlfkZEA127YC1TKHwxHnAj745vPFFBHJiGbQhHPC1fVInBfSkkEz3gdEhDkX4J4X/CAcxhHnAjFlYo7ExhAV8M4j4ktBThmH0aTfYiRFA1BSAEqCJ85KjiZFgShhHDgcA3kShkFICazZ3gD/ufiRKSnTtKzgvHJtlri063g4eMJg7vocixREReQ4A35dX18zjKH5ujl/ir3NWouDtZjI5XPD5iukxQqs312v9ADo+pHXFux6R71+vUn3ufVLo6/cbobdH0fBGGH7r0rZfqx+F76uAHh5iNcc8vXH705jt9122223H2bm/Yg6fvb0L/Dt8Tu88egZTx6/y1vvfoYPv/8DlrszT29uWbLjMATEXIfGrnhyJ1KOOAfjMJCTMM+prU2u5JpyzuQiUeUEEI9iErexNipQQQLV99KNpFL7fwHl2K9isrjV13MVZrJKvlXwfQXYoBX0cLHulBxav1Y2+ad6fCl+onNoOZ+WBdOVefByLX41ptjCY/qXXXmv4i0aS2vdQNZx9Z/r/dp+zw3oUgdSBia1uaHsu81zBaHImttEKFK75UCqjfWpLu52WawRIuZEH6PVsTQgTftsG3Sb486DL7vuWJu6a18/3oeC9R7RzV7YXIB1nljvCapvvwUq9fHS6xsu+5Bm63k41mvRN6FUluCak+2yqHbO7VR7Rqky7YVx12INac0OPbjNYj/zg7232HJOC4LgxWI1VySXPVV+2ebAiWPwwaTPKI0YImRNaAGa+cJoFMIAqiYLl6xhYRgCMWZilUjzwhBCk1ZPsTQKYQyyrp2fQzVRJROb3Fxtti3xVYoGfNKs1k1b5Lmt8cghYk1K/X1Rr39KWkCM9r2wHrs241geQwRSqoJxxvCE1vjQFRYr239M63fXbrvttttuu/2kmuD5C9//H/Dv/JF/ndvwgz0Zs9tuu+32+2yfGKTku8IXpUhmXReFmahkBqpeNgqSrY6iSulS1xL8s+4rbxP7NSBai3mlQFYLoEoLpOpOBAuqLNFTA+BOEqIr6K0F0ao5b/FfTUBcdly35Amd7Ft595VczDo9LYtguaDXVVN222233XZ7vfmSfIe7l5GQ3+Bf+Zf/Zf7Un/kC3/voI37m82/xwbdf8q3nL7i5e593fupNTncnbp7fMsfE/emG29Nzcp559PDAdJ45zzMhHNA0ozoTl4w4k1+w9SHhJKCaOT44klPG+dmkSoPj+uGRZYnEJRXgigE3KmilLmKaLYmpWTmfE34wUEZdhwQKIKHQy5eFJUdbMNaO6gurhQUx6bIN80cB6J7PZ2rXqtQkN/1PXvP3qytZXyyp+xm843q8Yo4L5xRxzhOcY8kmg2fAiNoRuq6iLfnspPkNl4esLEqW07aNVjkyh/egyapGIhhdv/cNLCPeaOxT6/heCN5bQUBARHn44IppmknzvB5H3AaQVYstKzuQli7SZOyKkpsPYz7HyuSIE4yRSLcAsu7y9TJw9Wd/vWuHrQG//UURpRayTOquL3popXzRdf9b9iUQ8bYP6d7vQOdb+ZH+/HLzx2oCfVNQ6IB0WTM5xXaPtsJZNACTc8I0nUkpEoYBBabpTPADeVFO5xM+CMNhxHsDLanA1YNrBj8yz5HzvOBSZhg8S4xM84R44erqiDgIg3A4HNCYOJ8mzqeZ49WREAIvX9wzTRE3wPHKczweCH4gzpnTaSKlyRL442BFkTInqXTM5zwT58hSigrewRgGYsx2b6UiqyCOeU7c3Jxw6skKCbt3yOU5aexiBdAltTRnAH9xvpyPY7gKPHzwwNgZ7s84FXww9z0nJS7JpC6DfW/OU+J8Xl65Bz8t1hc0++JX1uJnK8jFe/Vz3W1ur13sWzHZjeqMt2+iLmawN7pC3EUdtQ93dKXn2rjxtRjaHer1xdT6PVL/X/9XAoWuJNv+vy1grkfUi+1222233Xb7h1l1POHJ/c/wJz74Vwiff4B79yPw8PZbj9Ep8dtf+y7ff+oJDpZ4yxACOc1khWWaUTWJ1RgjUlhZclZyWkhJG+BbxK0MJZqRUEDhziGSDDwRDLgQUwGgNz+0WyuaFXiNFrmpAlDWBm6hnZ84moxpkzp7zWzoxSJTV6l+65VB6TKeuNhft57/MOvzYw64Oh5JKTHFuBlQzcdVQE0/vj6E2LC4bsaz5vsEsI7JDGKMPfjaLNEt+E6KFNcqhZcrAyuZ3CBVtmYHcdtj1r+qr9AclQqAKRtWJt4KDZEORNQAPVpilzUGqXFAf74ZjF3+ouGj36b6MHpBwVSHtMrhyfbqbny07rOybiAX21arYLDLa1IbSeo81Xhi81nV7v3CoGRIohYb5g7AFONS9uOLf20jSKhJtWtmGENplFCC9wZWwhFjas1GNv/WtGQAJYcLNkneO4sLkidFe17DEBCJaI5Q/PQQDHikps6Majaftrs+dW7s3jKpue6xx1u3bnv2+oaVeSq5B0ySrjIkadrGf11SgkxhR6pxqzdG4DB4u4c0tmYfoIDBMvM0s8wWQ2g29qbddtttt912+0k3QfjZm7/Af+Mb/yf+6uf/h3zn+m/vaZnddtttt99H+8QgJdMCl5b0z1ULvAS7mq1rTGugWxL0jhpglRdzkbkoXd7qChipxj+tCJuLlIttl1INlEv3le0KVSsUpcZMYNrarROqWO3mt7FiXfACJFrh1ALilfa5frrEm+v4dPt3BTZt6hw1SdT21NFEtxh8LUh0u9ttt912+wk2wViUMoJyHIX/zJ//I7zx2HN9deCP/szbxH/y5/nGb33At5+/x1d+5ft89xtPmRfwTi09mYciT+q4vTmDF64fHliWzOm0EJdcgBgwjB4Rx3SfWVJCXWZZlpY09mPpWtRcaOIziBorUMqIaunGhLWYYL9TwDYxFYk0jFUwDKExyTjnyF0C8HJVaIlkt8p8UZPvWtavwvyTUuyO/fEVA+0XonockU1xpXZo1xL64WByUs9fvkRiIqdEUsV5t1YeNiAc+6xzrlvY1i5QO1ado/KuM3mJMso1KZ1MKkyT0d9L6Uz1zuGHUMBji7ExlbU+brrS4fbutvkZInUsq4QfqXb+2lzbdVSqTB2yykOJc0V+z87SObcWOTKo5AY+qu+bPBeFoccS7TH13sValFgT1Ma+5Zyda85qun7F4aiyCQ30tL2gF9djBYUALQFeC0GuSuNpkSGox0MB3xir6rnU660lI++cR0VJKaJq5+ncKhUSBk+MUyswpGx+2hACS5yJSyLFiHcBL46UEyOOMAxMU+TldE9crOs4Lks7lnNwOIyM48AYAqCkNNu+x4D3YQOkct4xjoFx9Pgh4MUTxcYUSjHCngHKP/semJeFUO8Zm8AmEzFPM6jifGUf8OTscP5o901K1tGNsmRFXUaTWNERK2oipUBguyYIHA4HxqPHD46UFpYlomr3heZESsk6thNMMqOqpGSKhZ9mJiW96Abovi6bLFotygJrzYUfXhC1x1rJpUHidV+BK+MbXYH31fpOfXxUa5wjbazS/Wvj356SnUP33QxbpodOFbv7zBay9Dqr29nv63ab+OPitd122223n1jrvuSDF/70W3+OP334k3yLL/Pt4y9xOEbO58R4Fbh9+YKcFOdjA7JosqKEqJBIzHNiPJi/arKv1Tcvkm++ykKXHJVm+zsrLqyMPdZoIKtscFk0tmAT3f4/GwRDnK0CWYylCYWUlSqc1UDnZQ3aTgTNj2lMS68eEl63gL7G9JXtiz/qyljyxaqmlitMWYlr8GQAFu9eWUfr/9o63NyCyry+NjWiq1+M0OUC/WaIBqBvF6Ed03W++QqoAYN6CLUJZKHIgNXkYV2Nm99Q5qXGFJfzVT62xkAKRcLZdSxbIBhR6wqqqvPqtPft2wHXQYg0Odu1q8UytxtZ6DpXnX+jDSG+vr+1Tthb14ZOqY0SrrbktNMoY6qx5vpv3UCNmTIXHvty/Hp/OTHQTcsTVyBgiYs10tiSrCkWAh7vHPVSVOailJLtSE2a0RiAbf5C8AbkCavEshT94HqfxSW1xhonBnpCTaI5o02O0ZVrXP3ZythfHUeL/40t1xiXHPOytPfElRtFBD+MhVUq4+rlLsAs3TzjJT/RgRRVbW6syaSwFKdMLOdQb3Vjb+rug6yl52b3JnfbbbfddtsNzJP647f/Iv/6V/89fvHd/wW/+O7/kujOP+ph7bbbbrv9WNgnBylphhL0+BIH1wZjcWJMS1WbvRT4XEPzCKkE8EIBHCn4GrQ6RcUV8JBJ7tSsgbRg1A7qS0BWwUZZQQMgFrBbj4mz7qKaUChFS7D3K+AqqeJLgVJKEO+KLF0qDBm+SppgYCVfg2VoQS+UcXbvVWtB+joVdD9222233XZ7rVmy+s3PHPkMR2pS9HwX+Xu//U1+5Stf41d//dd5773vchgcMJERBh+Yl4TqYmBXHMsM9/cTORsQIAwjIrCkGTcI8zRRRcqMNS8TF8F74frhERHhdIrE87JKNjQgD7SKg+b23Z7LNhpNfsEFhwueMHhbDHJGcGhjVrHOyAqoWOn5bXOnJXnbg2/awfSVNeUTlhfaXKMOCd4ABCkXMERh1MnK3f2J0xTxzhszFErW1FSnIOPcyrhTk9y9vJlmNYCSL9IYKqQ51iZnK+D4mi2XdZF1FIk8Z8xGWcnZAFmaMjEuLMk6Yi0Jq9Ax1ajCjDFmSQHPVLiAK/SNqcy71RQ6VqEKnCi+SAWR1CpUlYNbQcfauldFjPHG3CMDtKlmcqHyFyk+h1CAW1IAQ7XzdgV5x8r+GFwpcpkDptkKAxKcdQHXooSsl9f8J5ufV4m6KruSsYjlnAuQvNzZxcdzzndsWALq2zxbN3BNaxd5ARFwynAIhOwZR0cYnAGNqsydGjDqcAj4hyMpHkx+QEBwnKeZ+/NEitEYz1RIS2KeogGoJNs+3UzWhPNHgliHtLmMQsqZNBvb0DwtZFXi4sjjgdNdxHuYpplpnvFincwx2r1Tv4OcOA7jyOA893f3pGhMXU485/OCKgyHgfEYwFmh4ur6yHgcDcjoIvM8laJGuSdFirdq933hVmp+aBiCsbHdT0TvmGXhPC/EaNt5b95lTtWnto5zYzO7KBB9ykwLtF9hK/mxqbP0DQ9WEBSM3avKc1iBtQK9uhKpXNRldft6q9etAwJKk0KR+JBuG+236xoZYC04VhVr172+1sbtj9yhkuwRXp+xWvK8GPIGhrSORy/e6wq6u+222267dbaCNhxwGD2qD/jZu7+AxIf89du/yFe//i3ee+/7TNMZL5CWjPOew+hYdCHnZA1w4hEccUkFjJSpsrnGlggpJ7J20r1QfF/BBwM/LDERFwMKNH9f+/HSLWLbNaGaEymg8dykn4DC/kMBXHf7kbqfkhv7Ifv+OHstOFhe/7otSh1bZwFPUIBL53lmGAYOw0CKi+XdOhCHlHNYp6TGBHXM6/pZfYgGXKlztK7IxZkv/mXLK9rYUpHJqxLf2tZm6eZNy7Gr77HGBa/O4vp7nyfs4zYtL2q3uXTXvo4xV5ALVb6sNnasALMm4dcjn1nnpV2O8nLWTqa7gmb6PGZtrMiXZ3Nhqo3p3v6sQQesV6jtfm2o2ACU+juxMGGW0brSqFEnMARPBX4NwYBn8xIBA+t5V58xS2/HJdr8lV0uRZ4vF5AOuvrMFKZZ6vs17tGSAy/jSJrRZGB4RMs941mWhBZ5SGNoUoKvPqt051gk4JwjLkuRrjYmqCVGFPCDIwzBvmO0NOQEX5iaLRffJNK7G2y9prq54L7M1bJEy8OX65vymm+ot0FtAO7jut233G233XbbbbetPUjv8F9473/Mo/g5/soX/rtk2aVRd9ttt91+r/aJQUpRWIunKjix8o2zOhGxyKA4AFGyJLJkBgK1Scuaxe3zYK+lWtAqAWzVHpcaWLfkRw3Yy/vUsFZbIS9TE0E1pLIDOwSvVsxLQgE52Xu5FAlzSdhYjiS3gK0viNhH7dj+ImhzXQTfMyutZa5ugz5Bsf6522677bYbayJTAdclkjPCt7/3EX/zr/8yf+Nv/BJP3/sObzzypCmSF+GnPvsFbl8+5zTccne6R9yR4XDFvJw53cy4oDhJZDEAiCUJE3Gxb+0wWOdkXBLLYkxL02lCnGeZEnFeGkPOhqRe1QrOXbLWlTUlhLCyCWUlnq3ggTiGwRfpN4wmXrXIp2rL1eu60lEBJRtZCGWT7F0BTn3hoCt2iDAMIylFG0f7nDGyhBBIaowt9SiG9zCg1c/+7M/y4fvvc3P70hK3JTFeAb2pyoN1AqmN5TBZEUect3pBLpJ59fomxXu/rr25nnX5rxQxrNszFwk4pZcha8lW1oR5k45lTZRXfybGuF2ey/zW4kRd/+v+mgRDQUaI60BYqq3YIaUj3BkaGycG9tKMsUQ6S6gjBtKujENVwm5TJLk4l0Ln1JLqJiVS5OFaR/C2YNFLtvX7sy7aXGQO1m70XJL+tau7FotUU7uxVD3IwHhUxtGaek3j17EsiTCMeD8Q44LmiA8Dqok4z/ggHA+eYXAMozEqxSVzf3dmOi0sMeODx3lPXjLztJCWWPw/V0tYgAF1kMo+ZeCp2r3sHEQix+PIOB5Y5oVhHFmmmfP5vALCckaDA3Gr/1h+OBE0ZU7nczuvYRiYpjNZM1cPjzx4fORwNSJSWJScZzqfSYt1bS9RSbEWJHs/FTKJypAkQHABEccyJ1KKJG/FmqzlXJvk8Qrgj7EWXSqI7dPrWeYCNgJrVujVROx7vhT/yvbrd2B9zQp7rhYtuyJp/e64rH9dTsdrvhrXjco+WyMGYr+z/b3Vzjb7eLWg90rhkPV7tQ2zDwgu9mfHKLys/TPdff51f++22267/aRbv2ZQQAj2Q+B+5PnTl9y+eMFyvjMGw+NAXjJCRiTDYOvw4Eeurh4ync9M82RskMU3zVpgLIUxyaTZCgtrVmL1rxZlWRZQ1wBKUPwzepBH8Q66WEg6X9c+k0kFoIFIkQje+n7r/5WGqN0gij4WfvIJ3wcRj3MUdpo2WlQNfGEpvG3sUoH5V9dXoMp9XDaLqhPzYxpAp2NVrAArzdXHM9Zck9DN6zqo5teZ77rGVY096uL8KiCozV8/h5frcnmtXhf7/Iaqte3nUoatoUHW3az/q5/t/XSpwH/av8qG1IBE0gGk6+UuDkw9F9GLY9KNf+M49A4VvSv8yudxr2Q4aWzC0p2/OS8raK+LbVvQUdiThjFwvPJUUl0t8USKlZUWco4sMVKB6957vDeAkrnHud3yKSaTKxPbziQaKzipG3mh8WyP4AbcVy62E1wW8MI4DqSYTK48p9IcUQGHtQGleI39TVl+XZaFFAvI0XtSjKgqwxgYj6ExOiHWPGTbF5BVjSU7cFptmqpRs13zAvQqfnVO9k2ofbdK5+eWJ7fFx/XW0M39sdtuu+222267AQiOB8u7P+ph7Lbbbrv92NgnZ1KafYkfTesbV/kCauQiBLWsvgiWnFFnVd5CHDFnJTiHz7l1DpMLZTGQa4OM1KIf1NyE6Npp3sigyz4qaKmXaROFnHLr6E9LxgdHBmN9SkYFrJhUnCUw7MO+UEOs8aR0OYeSiMJ4CWrOIHfBXd1qLWKvoKpWttXu9Rq09wXVbu732HC33Xb7SbRamK128/yG3/zV3+L9j14SyVyPtoT96X/6n+Tv/9qv8b33P2Q+3eGGmceffczjNz/HW4/f5Ld/67c4nUGJIBFVISVbx9KS0QTem5RYzpm4WBKTDFPMqM7ktE02107UuuboZeL5AgwSY6xoCqOSH0ZSjOQGDinsOh34YMuq9AnKCRfJ1cvieF8AWVevNRFbx6CGzEB0ZRUUsSLEN7/1TZZ5giIzYYWa7prJq6JFxnxkBYzaLE0BHfXycqiQ04L3wZKqRXaLkp93BZyhaiCVftXdduZSpMpWSYGV6YfSgWrH9iUTXpmP7FyLlyEGGqvz5Eqxo0rV1Q56KQWGlLR1OrsCUmrgnlJQqUBnVTVuoyo5Qb1fttfy8jpWubS6D6lALs3krAUo3hUwusKW64o1q9SdgWOcW/9OqZ7r9vg1aW0ojQVkYRg8n/upJ3z28w8IAWIUbl5OfPT0jvvbSIwGPJuicvPyzsCBJcE/HAMhWCFvSZEUy7XNzsBW0Z6buES0vNd5eTYfSUliVFzLEvHBMTjPOA52H2UhL3eFGEp5cH1NRpnnqRVyqr9pYHcFWdmqvFjBLJbOZQOTOU7TmZQWxsPAeOXxo+ADHK+OOAmc7ib7bJAGrIIEGfODfUDLfFvBTUBdkTMWk3DIJjWzpAyaTGYQm39xdt96cagUX1w7r/MfXlv8kVleaA5ydgba6qpvjcWoPRZan0cas1n7Xui+hEVBUvHJ61RIty8oscd2/5vv8a6OW5vRlRqbrHGBc6wFHF3320o/sr5vx12rX/X7YlMgLR96teC33dJxMd6yUZufV/a8tT2e2G233X4ibU2+AHAvz/lbd/8uz+/u0OHIcDigOXJ1/YhpmXj5/CPSEhGX8QMcr0fGq5GUZ5KGEi+YD1/3WtkMzQ/ObQERpADUKyYjv7JGb/I+H/Ml3nx0NQRGXUtCCOYvF/+wjyHM194eYQUM/UMnrBy3H9s2FtKcN2w6vVV/tSIdLmODly9flvwdiHfdeIuUWhtGPwCoSGGhSkjbG7bOdmAh2TZtqNR8oaNKb7U4s6zRPT6nrasVaFNjim4V1i5OrbnIXBblut8awbVpko71pmYOtTKzlrFqH5OsjQLrvOvG96m+yspIWY5bQVTd9VsbDbT5DG0Hda4K2Gj1V7bWpPe0nEHLnfaShnWMq/NksZtQ70trNDW+eueFYXA8eDhwOASywnQ2ObYUE8tSY7YieVxkt51TfAj4sAIDc0G7O+dNErGeb67XuGenXM87ZzUGo5SJkgjBMwyBEAKqwpRnlnkhppngPYo2prTLZ641L5X5cDVObXlrm8eUIrkwseGMpThlEC8EZ3J2g/cM3hW5ukwsAD6Pa4y+WQuzE/39pauPWMaXye3ea2OtE9G93l76FMcTu+2222677fajsufDt/mPP/c/21mUdtttt91+n+wTg5SePj3hgmMIjuMAh1A0r71DnTErZQFc0QxPQgCiagleS3JdBXVCbQYXFZKCkI1NAMW7EuRXxqMS8LuaDKhJB+0C/rwmP5wTUuwqGN4SErlLEKmCZEHFqIpLA41112iRlcPOSwASiO8KiGLAJKH283fsTvUYrEmONsyL18GC2L5LpXZObaoqu+22224/YdZy0yWbdzgeePdzb/NPvfEWk1zx63/7A+bzS/7ur3+FFzdPWe4nJAtDGLi5PzHzlOcfPSXmheEwggTmeSYmKx5INhkoW7rEWHCQlvyt39e1Y1ELuKex/9RxXnSp1veUArKIcV0nBILzZb3IjKOxDcaYmiQY/3/2/jTYkiS778R+x90j7r1vycxau3qv7gbYAAEQAIHGDpJDjokCR0MNTcMPEk0zRm0jmknUSLKRzGSSPshsxqSZkUmmMdNIMhuJNpyFQ1LcxJ0gCRIAsXej9+qtqmvNPV/mW+69EeHuRx+Oe0Tcl5nd1Qu6q7rvAbry3Vg9PDzcz/I//8MUQJiDbOaApSqPCzbUoMQIvsh5PHeI/az1TNcUAw6JE8gOLZ7vmsGdyVxcnONE8I2bXaKwJBWArWph1WFy2FaGICt54fHBlexXR6rU+G1hnUJIKeNLqTnBjWCOMcPYzZzslb3pEjBsTmNvJd7susaGtQv+qtXldoP99tbmIJ/KNmRAHlec3zpl0Top5dFk1FNqYCklc2bXe9dAxOVoVGXr2gUHzcZFcTzLLBM4F7REVqwsW5ada4jU8VT7pahHxXmPGDitZr+Lk7H8IMURjggxZVQd3meahWd10NLHLdttYNG2nJ9vObl3QddZGTKKbhR8i6in7yOxT3TbgdVBS7s05qN+G8E5QuPJqoSmIWUlDgOK6Y1N0yJZ6fuBCgep+px3ARL03cCiXXDl+BqqcHr/gs06EYeBdtGCQowDuWRAW9+WoF9SfBPGgWBMUnVMZNrW0y4afPDEPKCFDS0EIfUDvSptaHA+0wZhcbQi58QiNpydr0E87arFi7FeqRNjY8qA83gJCDUIycg0VrOenavfnBYWBlDcqPvOx74Ffd6acrbu7NtxEASaovPjnOGsREhjQKecVHXxqueXj3T+3Sa170CmwywxYLYt132uBPbKNeYyD1wJU8xz3FnV81nbHhnDqYG+gmCqz2Kf8OwMlZH9YPdZp3bMwVQ1ADXN+9PR88vsZS972ctequjOX9ePfper14Qfeu57+NLLt/j8g3tkBk5ObjGkwUq1irOSYZrou55uew/BfDZOHMOgptfVOb0A7mtZM2M8mTG2FHVvXh4XJp0MqaW8yi7dbTMzXdAYT0zXrOxATRNQtJSsncAHD7uULsMzvvZ+rNepgKkqE/BGp7WsJC9MJbInP1d9mss+r2kt22VHNSCW4CpgqOjclV0IdaMu7ipwQ7WwuYuttzpLMqk2Vr33peeZumjSQCpraGV7rXpubeN4nQKaml6pTP8dgTtjQ0Y8i2oeFZAdm08ne2CyHy7pC6PhzEPgsUexOo7vYDRoZ02qP2f26ISgK+9zHE/lecXaPxYdlvoclPGtpVq1mz2nIA7atkGc0G2tDHhOynY7FFvCFbtSiu0SUE1oNpbSOERcCHjvyGL3cKXprpQP1kqD6cA7j0OIMe4yC2HsQ96Z09dAh94AStuefjuQUjKWV6lllvMjhsyujVm/Q7AEHB88IYSxxDBizK/OVR9E6Sey+aTLnNG0Hu0zQRwigeCCJVAokBPZgWD2tiv+CmMyTrOXPI2HuiXPx9QIyiut36OU9rKXvexlL3vZEUX5raf/E24tP/vtbspe9rKXvXzHyJsGKUnjS4Aq0UXL+CBnojRsUaIzo/3AeVaFdlcbkODIQREveBEzHAugyGxZIZXyL5YMb9lmTtQAQiNYqQKJamYQ1DIsFsxRu2exrSqgCfMPjCCnksBCLQ8nyJT6bBQEo+ldQU2uGI85MgUemUq/zcv+jJTAJRBYgwtUR9H8VqPDozpmJjvwcsB7L3vZy16+K0UUK7wAzbLlp3/yw3zuyzf423/lJc7Pz4Bzhu0WL5HmsCXIkqQ9Ij1x0xNJBiJIA5vzjm5TWFlKSSjvAt6B85AGIaYJ9AKTv3p0+IsU0GuaAYTqejI5jecz+DxbVVSJKeKdcrBa0rYNZ2fn5JzISRmTZUfgUHEiVhacsq2WTa3e5YeBSlP7RcSo452BfWLKo3PeyipMIN+6VjkR8uhRrYCQCSCcYsIFN5YE0+qkVS0OUkFcIFfw1QwIJU5RTcQ4EEJDCI05aL05pQ3wIyOoK6dcmJFKm90u01QFP82D9sYE5Mb3Y+c8PLxq2ypz0M4xMq3adRzU4733o3PZACOVzcbAJbGwSs4d2FqQCHXcXG7P/B3ulvXYBWBV9q2qL0wBL8siHstUybwM3rzc22x8l+BBKM79oR/QXNmpdATLJKbnd15IWWlwLBYLnAjrc8iLTLdJOBqWrYPcz+I0groCPHGeFDOnZ2dIWNG2gUy2b9IDXtFByZrJzra1i4Y2BIZtj0tYlrFMQLHGtzRNoIsdZ+cb+t4AiP12IMaEeA/i2HQdGvMICsQVMJIXVgcHhKZlu+msnzHys5wToWk4PDw0R7+D5cExbeNxEsnJytC1bcti2eK9Z7tOFmgRGOJA23qWq5bgGkQd5+cbuq4DpywWDW3TIGrgxb7v2Gy2iChN6xE8KRuoykrdGcguZSsvqKqjHisC4uwbe6vK0cGigHIUp9Oz5Jjps44BpgA0RTG2DHNnDEllHHmRHSCTlECXTJUmKx6p7J9tn9Tuh0TzNP3qpWN2A8jT32MwWBlBUXXunQcNaztypgRNiw1QjQWtQd3LrdplWJ23S5jdc+coeeTz7WUvb0YuzyD7sbSXt6uMvpjydydrXl99HI+H7ZbzezcYurXpk5LxTnGNEFxDwS8bu6oqLjggMww9KSbTw8YyY0XXLDZEniFgp3l+1q4ZkH5Xh9/92h7S7sdjCwNrhiZ4fPCmw1Xg9XzdKACTOcDWWGzYvf90wiPubOJ9KceW5yvOnHWcCZBU19oZ+GgCak3Po9kYPF1hKq06f4XhuAL+V6n6fwF7UI/PI0BsDjwagUSjTacj4IMCNgIr2V3BSxTdewLnOC493PTno9b48p9dkPJsLGgpYzey/RTw0g5wyy5pJei0ZCLwMKhILt25MlPW5xwTFabz5+2swG2ZX3M8/mEw1+VSeAJjmbyqmViZcynMo7oz5ijvrWortasrWMl7jwHJChgpWDLLUEonm71rJ0yJFgZUGvoBCMVmNLCOFr0wp1zNJDxuTJAxfLwBpizBxE3tBCvZnLfFrww4wbsw+pNzzqV8nD2TD1bKOzQNPgRjgs2ZrObfzppwYmyydRyE4K3cvJR3XeYF5y2ZJyfIUYlZraQ6EBo/+cQTpBRBoGkbgnclIUbIScg6FDtvspVHsHtxlI9JWSNAqYLMdpl197KXvexlL3vZC1yE23z0yb+4N5D3spe97OWbKG8apPTUlQYr6tLgRUd65KRCKFTPkjMuJ1Ia6LtI3kKXhT6DSqJ10AoELQEUcbjQElYtYekIwYIO3iltyYQxI1HHgJwZhbrDaAAGSkpxnrWSJwCTmiksTtCYzRilAJdUSqa1jsaZc1KZpM2AK1neNVNtpNGlGHTlb6kOCdgx9HM50s2OnVwvMt7XAsY8lLDyVUNNlyKdj8yUehvJjrOnRl8u9cLjXWeP2rvrOPvqDZi9R5ldbR6cmh073yaz39Of3/j7+Kq07I/pkLf7WNjLd6M8ArwBDFk5XW/4+Ge+xK/98m9wevoqyADqaHxAJTPEjoywWi25WG9H8KqIkoZIHiIBB95AFzGCamZICR0yKQuKx4kDYmFQKrN9+cbmpbKglnUo+5g+w3FdqL9Vx6xW5z1tG1guW9brNcMwVBxQcRTq6Dit55pUgO/0L1kvrQFTu8DmgKYxh2qMRpuvMwCL3VNnjm9bFxEppacAcVPZhnKv6pgVDDRjzmi7vzjB+YADQmMO4xijZZ+KeYmTUSgae5VaySenxRmbjPGInKxfhZJ1aw7pGpAYn3h8H9P7qcEY5z219EYFNE19mmf9xFhGQ8RPQQ6dmJBi0TEs+7UMi0tzbHXw5pzM0Tx1WfXBj+JEihM9PzTH74CSCjDqMnBpDHoV4Jw4hxuDChN7VQgeZAoUuPqsBUDVLhraRQMoKVmZXh3L/FnZhKwRwZiDfCtoDuX60LbCcuFYHXicW9A0MPQw9NGANFbHDRFYLgOo0A09eYDNOtNtO4Y+oepo2wVN2xBzj2rGBc+ybRCBfuhIObFcLkil1EPTGvPR+mKN6xzNsgX15Cws2hXLZkkmFzAP9FuIQyRnK5ngVPCtp2mDlaXbbklDQsURy3u0sePwLuGcMYHlAkpbLhcsF0tSSvQx4xsbH010dFvYbga6IeGCBS+yRshYyTsXODxasly1bDcbhm00ljdRQusJwU1zjDQWuMnG4lWZy8QJeUg7QbAQHD68ddd+77SUORZErB50ZTwKzMA3ZYzXgGTKFqhRFNFk5S5K6UbEoeKQ4HFBCN7hBYIT8LX8yMSaWuKG4991fp/jMqdvdR5hm0TKCeP3PVsDRnDeJZ2w3pcSFK7JE9N9pj/H+HZVR2drTWXzGNsyNz0uNVVmCuzEevAVZHb8212H1Nl/7c+ZsizTP48En0EZp5fsia+xAZVR5PLlp1H15i2ab4o98dWtykc3520+Fvby3SmPAgclSdw9P+G1kxu8/OIrnJ/eN3vC2VfpnCflSB87QljixBOHnlqaCey79M6VOdXWZM1Kmop+1gY8Qi5/S4+eAy5vGQEjs38n/VeIQyTGNE5oc71yBOLPF5f5GjLTOR/yudS1TCiljKUARhgXu7rG1m2TL2eWBACQL81AM5+LZrMJDDcxLny7SQQjyGK6Si37ZpdXK6dVF3ZlKutb21AmfaH69vLOtXacPuMjVT/dHPhVrzObo3XSC7TcY7zG/LnHxItyV8dob8x9S5Xd19iJxhY+tNaP9ubYP7v7Zt29s21eEmzaMYGRZLbZgDOlNHRtpxQdI2spg25+UmRi03KFCUihGCDWTu8czjPZMYB30C4cbetHgFNKAiTTge1lgFiZdkEYoiWC5Cj0BSyUs5Uk98X+mYBpVio5FrvEFxsxxgEf6t+RFBOhlHnzwePEXxov5ZtPihuZfWu6koGEuu12KvcspbyzmO7W99GARiIlMSezWDasli1oYojZ+tguZ3ZZTIXx3+7vKsDOQdsGQmOArhgjMUez0cXhgyVi1G+qljG3xJMKpizfQ3lP9VN2zu2X/r3sZS972cteLkkm0rnzb3cz9rKXvezlO0reNEhJJZeMZaOPreZtI4ofneyW5S2uLfbj5Ly3GuEZzYl+vWEYIuDZbiOxS6gXglOWklmIEpzimpbkHYOzbJJF42id0DpH8CUC4MAFIZagrmRrj2asnINjMrgzeCmsBzKxMWTBMlxUCXVbLiVPNOMoDFDF8BfRwqAgI+00YmXrzLcxVVy3EneTq2AMYAh4nW8x+zmVc8Zm17MuearMOXHJXf3oOMrbUC678KsjJO0458ComKdSHkIu/W8uiLFIIF9Pxyi5BMmKMU8pO1jHdnl3gpBVZkVXcmlzeZPfpHdSW/KwZMqoR7XWJZycim/3INNevhulInbMsZfIXL/zgL/1d/8pn/j0p3lw5zrBJY6OGrZDD3lBThD7La5p8H5FcBti7MBnhgJObVctgzPmkbTtISeSmhOuCQ0uJXPwj078mbNeBQO1FB684nAcg7mXZhr7/kpZufmjqdJ3A0OMdNtIGqIdUx31JQDtEFxxcs9BSK44rKVca14KrAJzR4CugAsO8Y6h6wwYVFvqJqc7xcEspa2hcTTtkqxK33VjBqqI4ApnlKqxOeVYgT+u9I+xQQUxUJSxTtns5UKgCaYnOAeaBJKVrsopE2vGpiY07aAEZt2no+N6Kls2lQ3wYqxWKWbb52qJAE8iGXjIrjT23RyQVPfZfsZs3goAqvcMjWV8d5seTcb+4oKzLPASEKlO/KmUxO5aNK4sCmnWlvqcjyrvBxXAJrbGaAkJlOxxY1MqeoRC0zjC0qEpMwz27prWo0lIg5UFSTGiWLDNtY62WaA5lTJ8MjJZeRdogifniFsIBwcrHMLh6oArVxcImYvznu02st0mUhmEIYQCdspoErabjjhkRAL9RSy6mJBJyALaRSA4JUcr0RdTYr3t8M2CIBknnvV2TWg87SIY+C6BF0fjHG0ILNoFSa0UiyA0wdOEhrjpES8cLQ7p+46+HxgGY6YahgtSGkACjW/H7HAnHh1gcAaK6s+3ZE3o1SVPPH3M8VHL9qIjbXq6PjKkTFaHumRrsjq2647tpqdpA6EJtMtgpVly4uL0jG7bE2Mmama1WrBqG4ZuIEYd2Z7Akfo0jn/rT9N7a8BHnIEyx2H+VhQpanP9XRD89XsYdXY35okjQMO4CyhfaSpgM2dlAnOdznKmoEwZspLFGTBVAScEL7QCjYiV9Kul5rw1zGGJEU4oAbfS9NpoLdtr3KvsU+y29Rmr/lqP3QVH7UYYR0a0GsOb95cyBuasn2aBSJmY+na7eQpU7u7TR/z6TmVdmub0h/qoBvIvD6pypM6OGUUe1dNf6e7zNWXq690Iso73ffhdqJVdndnd3zzRMeg7FmGSatVMra0t0tmevezl7SXz71bph8jLt27wpde+QNdtWHjHlcMDLraZlDOSHTkNiDhCE4i9LaiTlm+Lg3gHpdyUjqCTGWAmp2kO0NkcXzY82jyff3fTHzqev7sv50weMjGWlLidKWc2o+j8PNMhxipSl51Mj5K6yFWwhc7mpWJvVDaiCgip93Li8SFYQkYtf1bWMuerjWCNl8raMj58tXdyKb1VbLDKmFSfWWW0A+Zlle2yxW659DxK9dFZR1Tmo2r9uRFsVJmyzCaV2fu4nGAwXZPZPCqTfVfBP6XzK5OW947YG7AEgMIcZYq5g5pEsdM3j1jbZ2Zrbeij9QBTLKqGNZbpU60KB1WREWyTc4IvOhKGjTdWLQrYpQBoREBFcaWkGUAa4thXFbxVbTdxymq5mABbYmyrfR/p+jyVVHSWPKMFdJQzDEMB4zhnJRrzlMSqzuwMF2Q8N6VEN/T40OBbNybROO9xhZXJgHiFEZiabKLEHG0UiDGXabJ+Ck0wBt0YCwNY9Q0UtqdSwi0Xe9UVRTAW+19V0cbRLkJ5SdP80XW92dgl2UYAzUI/xJIQJARvzFVD37NNlYm4MDw7pfGOFGMBPc20C9XxW9asY8KSfeoTOOmrJkruZS972cte9rKXvexlL3vZyzcobxqk5GWiPs7FUaGquJzxrkQYZuxGxQYnjI56QcXKbTRLT7/tzSB1WE1vASUTVPAKcVC6DNuY6QclkWhcoo2RZSn+o97RCQwe1HtWTcOx86y84D2Id+QA6szJG8VMTe+EUD0QJRjgLmX/mJMjWyk6rJ65RwiuGOsZQxmJEAUDLlGvYRCZqeKEGXyhOGxyYXSYEnrNMeDHczKpnOMvO7Ox43ccxSLfgeXhzMhXIkLA0GYGxKnOMCt54kp5jUgWY6XwUKIODpEE5X28+TtXRxWjoV+dbV4zuQSE7ItwIyPXmDknDiF90135JX8LwWNPlcctRkpSM/yG4lDy1Iyxvezl7SWVKUhRMi4L9964y71Xb9OdbLl27Z08//TTfPlLn+alGy+DD+S14mlwYctm25Fjj6A03oAOfT/QdQM5JmJvtPGVlcY54+8Ynas1plCygWWsH1SyWQurT23rGKBWRgegOf0uTd/VQVup39NQvet2pTH7mFlQ3P6Ys+lcdhjulgVjDF5XgGVMk3O4ttPJlNmZk5WscKXf+yETFkucb3AxGr18aU/TNOaoj1bKypW1341O7squZMCjidHHg0BK2QI6OmWe11g+YmWfatyjJkLPn336uwYe3PieLKBbuzmXDNwB8GO/TAxMlwILO4Cg6T0YIMiZ87qUoaqnx2TsUJSSsoiYM1y0gEpm1y6v1NWsd1W0lN0bR9Kld1t/VxBYBT1YEKcEN8YVqzBFSeFSKnqYlV1QK5WFlSRbLlq6TUf0iosJ8RnnldC0LBYrRBxD19NjASUfDHjVhECMAxKUo+Mlh0dLtpuOu/fOOTtfk1Om6zN9b87utmksuF0CPE4d3dAzxEhWcFmRlGyNd+BwxsoVE4KwWC4RJ5zcv48LwrVrV0CV9XpDK21hPxLyRmmWgSaYgz/GgZyVPibTOYOnbayUXc4ZJU+ZyIExy9iHBlUrmZIHZbsd8I3n6PAQjZnziws26w2iStMENuuBmzfucbbyVqosKjENNI0n+NbKhmEAf81KNwz0vWVrt40F7IY+IurwPtA0nsWyIQTP0PUMfUTV1vUYEzklhi6OzGUpUQAx9t6dt3Gf8y7T2FtNRmAkXCK2mQJ2df6bz4d1noUp5CzBo2LMSVIjaQKKK2B/u1dWK9lTZnG7V7ZM9ZxqqblMtAYSxLEQsUQMUdQ51BUgvJOxnV6KPVEeSSsuXWuVzCnAl0u8cdbM6RltchjBSVJ2VIDUOCuU89xs5piz69WDZWevlrm6bn0oVPmI399sDfbbKOP4Ktkr5dcYQtY6JortN4K+ZKec9zTqvgaRh/7Y2ZXLiJwn/8yPnGBB38T3oQ//HO8y/95Kv+y2eC97eRvKuOYUH8KQOAgtTxxcIV95iqPDA7qzE167/gpRkpF4xkTWSIobS1zD9GZxBi4wXdZYi3IB11RIgzLXw7/anDquZux+jbOvzy74lR5wBwAybZ1foNoTMpZSm+6521V2venc+RHZqDV3rj7q5zMbRuqZqsSUEB8ITTMy3VTwixOHyoSq3mWrLd6gnEffTwX25Dmwgqm/R0BWtREqKKg8XGVNmrTn2XPUreUZ8qW+Uc2kPAOX7bygy33+sIir7WAEK9WzUpzKWmtRWrI4pDzDTgm7+Vio18gTu9RocTxiLNQxMI7JqruoJZnIfCjORvDk+Sqsrt6ep20aYwKKyb4PtfLpzouV8sYSHYydLBWAuoHqFQMaheDBWVJB1ye2266UYBNj0FTTo4P3M6CWWN9UcFldxUu/+gJ2SymO2yV40Iz33lhhvSfGCKV8mzixUuaKsQGLgM7ARyJ451GUYcikZLaExsHeiYNQSlDPWXpVIeaEOGNf9c6xvlhbEkVRGFOEi/MNXWe+CyNJVpzD2J7UMQeqq5rempKQ3MQehVaWUgitlfHOOZNiBXqVBIfyXjTrWBKx2tGTHq6jL2Mve9nLXvayl73sZS972ctefi/lzTMpjQ6QCkLS0blQDTsRcwFXB4NqAQCJGUVmqAk4z3K5LGV4IIgUTEkYWYR8oywFrqDGejQGJStlszlZmpQYSjDAF8dTtx2QnBmATYZNVnogNC2HDlYODhpHcEDwSHBoEMuitubROKEp9xsZeoqhKWOWiRgbRbZtofSFOnNrWF8wZu8MUEqxlBDDzJEjoyOAQhVtfZ3HvZWWugYoGB01wFhGqF7vrS6XA7GPPsiPTi6lR2iKY2IKG0RVur7HLxrOtz1X25a2gMcsSDUxGc3ZRr5i20qGlqh7aF8WbyAzjGECLDvfnAbTe0O/+eAgc3wmktqzKfb9OS1ONUkImSF7+gFW3hHe9Be+l728VWTy/o6Oa4UPvPs5/ux/51/jwcWWDQ3XX79DbpQHXCDOw01BNwPtsmGz6WnabAwtQNcNxH5AYyb2JcvQOZwvnGtZS7ChsOqNQBjjoa/rTnVnq+Yyf1fw0q4HbwTNPCamOc5BBVQ0BQwYgSkTo59703PXxPYnYzZzjLGsF1P2L1JLVk3r6eVLx5i4cvUqAMMwGFjHe5wL5Fk5iUSGpCMlvCpjiS/LSq0BkUTKGafFkToLqoCMJTPASmiMTmgB520drg7UumrWEhAyljIr+sksqKKqY/sN6DML2+jl8m+7fVzLpVUQkMVVLAvWOU+ONWpi7zJFY2qqQKR67ZR07OuEsfa4nednDDTMy/TZ6a68zylIAZByJKWeyuxY21ViOAWkkolJaGnxwREax2LV4kUYoiBZWbYB8RlcpmkMppZKWRPfBkjRSib4wn61NXCainL//gVDpwxDDy6zWK5wLjDERMo9YNnGiLFOCTBUcEdwNAvPYtHgxAIaIFZipdugWQltYrFccnz1aimfl4k50iwCzaJBRBn63jLqndCuFgTvGYaOvu+JMbFYrFCUzWaDQ4g5WSmEOBBaz+FySWi9BWgQRKzsW5SMc4Gjq8dcOT7mzo3bBB9YLRc2llOi3255kAfOTiujoumPbeNpfAINVroEYxdzCnEowYJsIEkfGnKCIUZUEqu8QJNj6BPDYP2XhmT7cwlkpQIsFDcbFxi7k2YrmTibU95qMmm79kfB3FFZEcaDitR5pXzio/5dA6AhVLa0KfRmfzMGBJ2DUGdwmbhO6zVRWMAEmtKyN+cCcDLWsSErKZvuFch41ErUCQUICMkIzhBniQ2Nl5KwYfdWgTgj2RTUvt2ylNQ2KWXQaHmIGrzlEtNSLYGCjM88D0Fb0FamVUp2/3CXNu+UkXv0K3xLyXykP769giUsKJlMhR/NubqyQp8iOM+m6zlaNLSuWmcyA3nt9u/X1MBLm23esJSLDOOabyxe5cTfgxdS17SYIPkery1B/MjiWwP5fYJtlzhYBJrKoLGXvbwdZaYnrpYt3/ue9/DeDz5Jl5Rbt085bT2L8zv4Ycv6ojNgQMbKLNGzOGjJKdMXgBJQwDIygTvKPG1ggTKHjyCKhz+eiY1Ip/8WIAJMfq/yADx2MrGLzUAv40PXneP95gD8h4+txz16Ty1FJkzrMkBdgOer79gfmC7ti71l4BJby7wvjNgFkFEXsJ2ZdvQllrVPtbBcl+MeAYyaP1q1JWrDvZNZbohMXVpppUR2n22cqat/Z7rfHEQ63nfHvpvP3TWRbHoXVaeviQtSQFQjgKqy2NZ+YzYeKggu66j/TO92lnQ59sGkH1VrdtRBlNFGsfML0IWZ3qBKzgmPK8w+aqXfnOnvqs7sEOfMXqKsI1qS/IJDst3biRRAUCytgaFPpGiJKqoZH8D7UJ7J+iOXdakyXI2AJC+44Fm05vSqYDAr6VbLpjnIWOk279GcGYaIomVsKjnHcRyKQGg8qs5KPNYSgmL2seGXJv+A80K7aAqDvyXqOPFmK6ZMCEJoGhbLJf22K0Ap60fUSlKTIQ6Vfa2+VECzVckrwDxjLDYAlyW92jMUwq2xPLvmZCUUo4HrnNj3ltPE9Dt+e+Mol/Hd6eyYvexlL29eJuAk41z6rbt3/pbfV1E2/oRlulrTxR/aD3xL+2Eve9nLXvayl728/eRNQxhi/UONJ8jLZOpWFahmmbhiHFYfQEn0NrCSZJymwkpQ3OeVnSiqZb4IBroRM7SrgyKr4lG8A3XGaHC8COZXqBnLrkHVytQ0IiwVrmYzegUQTRDNwTQMSr/JnHeRtSZSCSStvHDo4DDAwjlcCAyNMLQCQQjiaZ1j1QiNE2NhEogey7BWGemqLQxi/RCZnDs1aAXGoORViFiXOPFG0gSkS8GE2q+XAxG282tym7/FpYRh1KMCXRK8L9nvCh5HikL2mSF43ridOH2w5cPvDbTezs/FseHq5d7snbX0bunoymolxVJ32RG94zQJp+dbbrxxg9VyxWF7wHNPrVgt7a0+2iX59UsmctH3vPD511lwSLiy4H3vfIqVy/Y9ikOj49adDa/fvs/3Pf8s146bb2IL9rKXb4XYqmEuSYN1Og/Xnlpx9akDlnfXvHb9AXdPHjAEx7o7J513eOe4enXByXlH7AYODz1Xrx5y89YJfUzErFYKTpyBSzCnX4yJGDM6Jvfa3FEZe6A4QstaNzmBLahszkAtjlJHSnaeMZzMnf67pbyQyYH88PNPs0fOll1bATk7IKTH9WAF0sLMkVuBKxYkz6qQdVyfpoCBATBD25KyBWSglNJqWhaLlu5ig8bi0HaW3Wpgq0TOWKnUCqYprC+uAo8qspfiEK3gr3HNr9nCxnjjnMeJK2X4bJ6br4L1+ZyTMaM668w9U96DzlBj03udgKjzYMIukCnvtMs7Bwp9Z6C36vz34iYnf3HU1wCTK0ERK1lg/a6X7lfj0DtBCwpYLeUaqymBDhsn43iMCmKB96TCmJPuLSC/WCzwjSPlASSRxeEaxyo0rA5acJF+6EHt2hI8OSfaZcMwlKCCEwP3FMd1HwfSkOgHS6r34smaSpk9YbVa0ralBMIwkIz+EHXCcrUgNA2rwwUHqxYlE4Jnu93S98n6KwsqmfVmDeJJ0di+hli0UVGcs5JeXhwJJWsELzTiSwDFAG7dtiOnaGX1YialhA/C8mDBwdESJBGHBCoE39B1kW47EELD0EdOTu7jvOepp64QY1cY1xq6wd5TzJlYQUEKAxmSlXqL0QCNIThS8uQ+GwgSTwieOCgxpzKcLQjUd9nK4RXYfs6xsI+VL8i7UTeWqh9ntfLDivXdI0DWbxWpXVXnKHnEVDZOkeX3+LlMkckxUGrfSblieWxXzrdA3a5uXGeCmhRR5+Pxu6ofNYJ6P+rx7Y7SrRg/arFRcgGaJLXSjVkhZQMtqRLQUhBTiQKDgAoE8TTe0zoITsakjuTF5ohablJKCbrL/TTvx0vb7SlkAp5c2jmFo6wjdef8qQzM21ouBZoTQhcFbdbUxIL77Zfp04B66GTghfUnyc3Aj6x+nA/0fxBRP4Hk4Gvrkktju6Y3AER6Bu24u/wy56nj5fXnefX+CzyVPsD7+GG+59rv49rqcNb6b5KUwbDtEy9c/wwfW/x13hl+iB+/8sd4wl0jBEuQOc93+bT+CyQd8gf1jzDB2fayl7ebjIo7quClYckVTvM59083PDg94/6Du3Tdljz0BOdYHB9wenpGPyQK1ppcSo6N86v3ONFR557KoM2D/jXIX5lOp1ZNCQvldzmu6rVvuszSDKA0zf360CHTzSYgwsOrx6MvD7vz3wTUYQQNTTexFXZ6PANFpBgLqEYKQ6lHVIt+X+4x2gCV+aXYDjoBQipgxzZf8oapra0j6HkObioPUEGYxfgZH6g+y05/1Ll/HEJuDEDPe3MHkKS7QKl6D9MdZWTdquCkymgzfzeTl5Xp2HovCgxIL63tsx+jv3DHntEReALG7ljbXvvK2l4TcpjWPkcpL+bwwaOlvPcIHHJCaDwhCCmngrUzxHZMyRjunZDzNLYry6NSQDXF1hDnjSVVbVwEb6xHIpQkg2JnA00bcGV/KPewvk5WNt0ZA5GVhhsQSWMZaNU8tl/EAGxehCwOJRGTPZdzgmW2GjvvyOyVp/Hugy+srAVsLMaPn2Ni6BPeB4YhEuM5wXsODlbE1JMru1SuNqSN6frtJ+w7zdRS58acau8gWXnA2WeXc2EodnaNFO2YOp5y1vE+o71Z+gid9PM5oHEHKL2XvewFgExi4++homQiXzr+JQa3AWBwaz599W+SXMeP3Psz/OSd/+EjwTvfDOnlgq0/5cXjX6J3a149+E1urT7D+89/lg+f/nHetflRlunqIyzIb57cWXyev/z+P8uHT3+Bj9z9s1wZ3o2BXDN3F1/g15/+f/BU9z381J1/C/fmw4972ctbWho94NrwHm6E+9/upuxlL3vZy3eMvGktIeuMbaEYra4EALKClBIt1aiF8rfMgrPZDG3vggXeVC2xpdjkrpQ6oAYnamzBWdbI5EaRWcxBGHRAvOAkjPd1asc0vgZBtBjADU4aKOU+Dr1wRRcGLBIznlGQZIwPkhLdMHC2HdhslJQgaGDlHAsXWTjBiZI9xMbTiZJK5vQieA4axzJ4muIYcd4RS/YRqlYsTIxlyQzPGsYtARM1MNPlIMTo/iiOEAs6FyLmt7AtOc/S+opBdhRkQPGsB88btzq8z6wWDcuFsGqV7SYTHZwNmS+/tGHlPbzXWEecOpya8+Pr6pDiKExArzBEYy04Oeu4f+eMjoGb5xs+9ckv8uJnP0se4N3PfID/2r/0E/zYj7yTtiml6L6J70K0IQ2Zi3XkH//yr/Fgm/i5n/6D/OgPvYenn1rx4LTjtS+c8OAi88w7lxwd7I2AvbydxULDAiSxbMfzTeKVe1tuXFzwu5/4dW7f/CISheAXIJ6h35qDTmDb95xf35ZgvTGOWGajIxFLJuY0B9VgdwXVTCXFdHJoU7eVTGAsM7YGPuaOdkR318OdKPsUvMg7jvFyxCOASCOb0+XsXHjouIe2jc9YmZbM2ZpzGp2sqmpMR86Yj9abtT1T34Eq3pVSXNngQ9VBXK9rmeRC0wYQIfbDrG8nB3tOtsjWoA0UgI5QSsfW4/3IQlNBR65Q/Y/BkZJFauCfPIIMRpCWKt4HxDmGFAEZg0gjnf2sb4ECLrL2pmSAmNCGUrbA2pZTQlMulPnTM3qRCag0rtgZ5yhglXK0m5hPSvTERsRYRkp23jcla98c+oLz1s8uBNDMom1oGiEOic0m0Q2KeFitWparhQXSnCDe2IeM2cna5ZrM6mBJOwRyBC8LNput7XNKcmpBIhFSyiyWnnbp8c6xyZlGoV20tEtzvm03AyAEb30dR/YyRbyjWS44WC04WK1QTSCW4XuxXdN3W5rW2JDSENl2PYqHnImlPKNgf4tYMGPRNoBjSIl+6IipN5CcgvfCMHQWBEBJ0djJQrBnWC4XhBAsIOI8Q5fYbjZ0XSL4lqZpOb845+BgwdNPPklOHReb9aSHJistl5J9xxaYEHJ2JKx0ZIoWGAshsFot8N7Rdz2aIPUGYMrZyk+0TYOmRBwyOVtgZIg9KVogMbRNAfxBcKFkghsQamQny7vf/ltbbJxnGYkYGKs9PhpxM8colW2ziKmoBSxlAvjXYNsExtm9fg0A1gvnHcASE85UpwDtFCos/zpj0PICDZXNaDdEXIOsWRWvxfjKiqglOmgyVhvUQE4RGLSUfhZLiGido3WugNIBL6X8ts0/jhJILHevTILpUjsuh6RrIslow+12+VtWHjXKL4WXsRGgqEROmxu83H6Kuxdn3MifM2a5RaA5HIgx08fMdoicJ1g2nheOfpGwgfeuf9x6dNY/X0/7MrBly43hJe4efpHr/avcWH+Zi/MHrIeOB/fPOT25R06/zJXl0/zg6g/w80d/gg+kHy3FC79JotYvtJFbH/4Vbr/yCp9645N8vvsN/tA7f4H3Nt/LF+LH+MTpvyA3A8++4wrv5grv23zkOwW6tpfvSplgH0EXHF+8nxe6L6FNw73Tu5zcvWEB/Zjp+0S/LQwsKDEp3borwIMyg5Z9WnVKd5mBx8AF81LLZetOqyafWdWrHxdK/OozTx5vriO4Zrr3/PwZAGEOa9q5xWNmWJWdCUAExLnSD+NW5mwwOWdkGAqQ2pIPNOcdO6F2a11n0VLKWkpZKq0M7jJ2pubKGDFbseYL3Ax840pKRmWPRWTyQVaw0iWwleGEtaytMrbJQDhFV6/lsHe6t5xfbRpmdoanBKtH45C66tap2TYXvaSAeSagSGWRnPXb/GXU68xH0szGGd/jeIoQmsJ0JUoInuWyBU1st5FtZ+xCoQmE4Iy5mGqruOLPrck6idAuCPgC/HekaHZl9ekai77ZmSKO0FoiytBHUox47/Gh9HPKxd40XVuREYyfNeO8p2ka2iYU3dsYiawUdzTbRadkn6pE1iFkySXWZ1L0KCk+5lzKvNVto0GvllCruSYxCj5Y/1XGWGM5svGt1MQCA0U571iuWkQNaFZtQS0gpGpDjvNGNsD6xJAMWQz01LaBNBhLsRamJ2doK5omgFhJuArsy5pKiXVnZbzL3X1h9kwpG7hedUzcujxe9rKX71Yp/KO8fvBRPvbkf87G3+fF418iE1ExJiGVh2sjXl99AlB+8s7/6JsGVNq6U147+G0+fe2vc3P5GW6uPvPQ/V85/A1+7Zn/mCe75/nZ23+eH7/7b/6eAITW/i5/6fl/gzdWH+O1g9/hd578T/mJu/99PnD+h/jUtb/G7z7xX3IRbhN0CcBP3flz31ybZi97+TbJKl3jQ2d/lBvLT+0N473sZS97+SbJm9ZUvFbGglLGjJJnWwxo7yca4ikjp54tky3upGQSzZwFWVBRIhWQky0TXgG1cgy50BnX7ChjT8qFoclb1glQA4KZatRXg9GNGUsJyCLFoNSpE1QtykANUjgQT8gNR97tBEfG8gg5Q1ZiVoakSE50mtFBiV1knZWIsSVlTfSa2KiyzQnxnsZ5lo3nsPEsnWPZGMPB4IVcApbOgccCEGEWYHE1EMFuUOGy3+Kyafm4NfSrnbd7/uOv+lBg5lH3elRAfna2OQ0atASbZNHw2c++TuwyV6+ueOe7V6TkuP76fbbbgfVF4KkPvZP7a2haTyNKFqEbIodtwE1IgTpyH36iuQOnoOAiwss37/Brv/Yxrl65xoPzNV9+8XXW3Sn3z8+5OO04vXeDHOH0/inLw4aDayu+70NPsBj174fDJpf76lHxOC6FAwTleLXgx//g97FJjr//136bz3/mJt//4XcxoHzqldv8+q9/gR/5kQ9zcPXAsqv8DOgg82vtZS9vbZncqwlPZkiBz3zqJR5EoR/OGNgSSZxfbNicrtluOxYOmlXLECMXawOAenQEAWi0Uk95iKizNWAqH5qsJJNgtYEw4MsuqMU4KYzCXpECoFVcAffkqURbTo8EG9mzMTrD51nXdaq4nPlave4TaEp3ysDtHmtSHaI7c3MJpPjH1YGcgWwkZ+LQoyniVAnOs40D3YPTMYBvbDZ+5xmz5lKSKu0AfgzkksyxPPUClYWqZn1OzmtzIFdQkpSya+KkUOxnqqNcs4Iaq5FzjqZ1tG1DjtmYTZKVwaqlCOrvy+tYLc9mjFPUxFJyNgCaqlHqa2YHrIWYbiMqSCnFFTVa1rGzMVP/nUoHVke5jGNNs4zvdRx39e0Xp7oEx+qgpV02VsKtdbzn3c/w7LNX6DcbXv7ybe6fbnFNoG09mpWs7I5hVZxT2oVjedCwOlwim46BzHa9ZRgGYwWLStsuDHhGpl3ULGpHHDIbtaz4lKzkW+MCQTwpQeyNdSlnY4sZciT4wPG1KxwdLAmaiYNwfrFlG3u6YVveQmYTB7ImvAQMlqT4IIRGaEKDyAJxYoGIWMunmYIYkwJxctajrBYtmpUuJ3Iq1E9qZSBTqiUXM93WGNmuXDmE7On7gYPDBU8+eYW2UTabhA+OfsgMMRGTlf4yXdOAUDlBGjIUJi3TQDPihKZxHKxagrOyc03jCSFwpAtcaBAndJu+BDYySTOQcM7Ttgt848eMdC/GyOSDEGNiGJQ4WNmHGhB6q8rEnKSjeZB0NlPNAn4ji51MmtRMnZtAmzPUUbVVqq66y3Awmi3snFaOdwXAqdnKbclO26brSGmIlT6UkeVoN9y48yDgBKeCl51LlcP8Q+ChujLU0p0oFthSA3vGIdPnzFAY8oRSXk7MuAvOIcWWyHWeFQugeRGCc2Niw5xVaW5P5If05Xmj54/4FYJY8wCuyO6xjzztcsT3K8ukYc8DtGWfZO6GV/nC4T/mYnGLde7ZBnhw+5zubCAEYXFhtuLZ6RYUUhSW73iCB5uOTx3+Iht/xnvPf5LcLTiY2xPwlQkGdPfHhi3/aPP/4Tev/yJt25By5OJ8Q8qRrusNnJg6QDjVG3zmZqJbnvJHjxPfO/xEuUrVFR5tNXwtXXf34DPIlfs8G5/m9P5A32x4+Ylf5sbiV3npjXu8dnKP973vHfTa8/nlP+OJ4f0cDc9Ot5g1YV/CYS9vZZnmCKWW7bpy8j0k+YfIMrE6aDlrWrabC/p+YIgRyVpAGTYn2DRbmRBNjLXEgDI66gKMc6KTqRj05QSCCpSZFq1y/mirz30HuvPP7rMVa2kOUPoK/WAuLhl16Z0ZdNRHa1sfOnv3L2FkSX3YKzQD6ioFsDUFUEVMdzH8h0wXLIv9XFc2YIXszDmjbVDOm9iNZPJD6owTcO6YrH1tmZTj35XdtV5YRGiagPfOdOmUDRCiu302t+Pmfp16rZ03o2XcMI2DCnSroKodGxAKkqraPGW1d5M9MeuU8nC625pZ8oTU/4qOrEg+lOs6YbEKXHvykCYIZw82nF9sYVb6PJdxLmMXuMI2BKExUJlqRpwjx1ySPYSklozqgy+6m5WFqzafDX1nbEERvDN2U4cb2fJR8M6TUsJ5z+HREYeHK0iRNETWm2TlGEtJdo/QR0tycuJwxaa0ZzVdOTgrU6coKWVSZSaq7K9avzGKzWultVMFKWomZ0cc0sikDBSGJGG5XOAKG2xWaBeN+anTxGIWUwUoTd/G+OXnCp6vfWTvSbGygKHxuEKJFYIfbc2sxhxlzG9lrBabVBBcmECJVs7c5jsf7B2kMfmBkZ1qL3v5bpXEwMtH/4J/8K7/LdeXn2JwF2/amT64DX/33f9rTps3+Llbf57D9Mw31JaNP+GvvffP8elrf4PKQvc4iW7DrdVn+Vvv+bdJ0vPTd/7cN3Tvy6IoH3/iL3N99fHSDuX+4mX+4Tv/94x6TGlflC3/5Ll/jw+c/zzv3P6Bb2o79rKXb5f84P0/xa89838nT3WH9rKXvexlL9+AvHk4dSp+g+I/yIjRxwpWvaU4z10NpOkUiKgVVRQrhZClZG1oNbIpGUnVUe7IE3EFRDPYsitOCclWrqSyERQgEqWkm2ZzyItxEwPFtBegsD14jAnDUQK9YwCkGHLV+DQPDMBYhuGyG0IQWlFWToBm8sHPnfdqWTVLUValHEQ1hH1WXErELnK+scycdU5cxIEuRxAheMeBD1xtW1biCMHqu7vgUBGypwQgHMEJbXm5TkppH8bmPhQbmbxWjMb7PGRxyVVStqTaq3CptFnlfJgcVJYtXp1CGQvs5SxoUtpGcK4EXsoYOt8oF/c7Vk82vHJzzbZrOd8kTu+ccevGHV743BlNE3hwfwN4um3ENZn796/Rv++QdzztiZp4cK7IkeewsQZmMrvutN2gxshmIvYeTtYdf/Pv/RM+/lufwmsmpo6UEkPsWa97Yh9pWwtcb7a3+djHf4fteuCP/9Ef48d+5N0sgjlidrpwFtzauf9Y76e2LiFanAWqeO8QEgvv+MD3vIcf/omeK4dXaBaOz7/wGp/82BfpXebk/JwXPn3B1R99HhfNuXAUfCnhACJ1pO+dDnt5q4qbjU5B8HgRvvf5d3LRDbx8K/HcM89x5/prpCGBQvCFqW7oqGUhAcQXJpvBSgrkZOPfACwlU1ox56PYXOacOQxT0rE91Udo87kFJdJIqV6p55XdVGp5KMir822Th7AcvhsgoGZVi0z0+uX/dGfN0ilLdIqQFOe5XSozOd19yTidxzudmwF+sMzlPhlwJAExJ3PMoiBTBuYcOBWTQinL5SiMh6U8Rs0KrpmmSCl9QA3wF3BAneuqIlHOGYMVav3vbOlBc2m3QFg6nnrmKqvFks2mY7vpyEnZbgdjK8nW58FN2b91jarl9Co4aAI/YAxShc0oDtGWyxpEmTEj5lzHk0K28lxax4wrOkueHL9gWbOuTvrjfW0FtldWWKgkE9pAu2rxjTcgds7kIXK2PuVZOaCPHeodTz57hWFIDH0poaCZpIJk+1/bNiiOEIQ4KPdPzoue0aD0CAbgQYRWHGgc2aDEQaQyBzhw2RzsvTAw4MXTtAtSVmM3FEjdwJDh8Moh7/3Ae3ju6SeIFxuuv36LkwfndNtIVBvjMRVQuvfWngwao+mP2YJSzmXEeYIEYiylFzJWqRAbm4qaHuiUIDZmpTCyNU2DiGe7SVgBKEiayZp48sljjo4PyEnI52vLVI6J9RDp+0iqYKho4930OBvH3vtSitgCBClZmUkbz4V1CUdoGjzOSs6tGppFQ+qVk5NzNhedzX/icN7RLhZWGsWbRhWyo+97upQIwdGuGlpacoK+79EM3nua8BYu9TpNq9OmOn2V6bOW6a1BX1f27+CNlDGgye6f4/UEmQI/9USZNaNM/06mv6cblHNn7RwDR+WGdZqqO/XSkfMSLeWSIyBqB0g2a9MISJztlJ1foFiJuJXOlpvSVFFFKsucYswCMRML44NNnUIrgp/3uxRmP7HM/RrAa0QIBfRX7UDlEaWLygNMzzVbYMZNOz1cnmpas6YC2fMrzC2M+apna0JWIWompsh2eRPCwEDHjfYFkt9yg5fYbDc0znP7ZE2OgbPzC4auR1Mi3+1x3jFEm+djQaUdHhyTo/KFK7/CDf8iz538NO+O38uhb6gJD07rAJgPKuYvb9z8mv80v3HrF7l39y5pGEb2CSuJaSDYpjXWuzhk7ty5xXbdI+/567zrye/nyB89fOHLfaV66Rj7XUFzMWUGOh4cvsSXjv4ZqpkrV454//e+m9Qrpxdrbn3pJndOLlgcHnF6ekHuGo7e0/JP+Yv82Pm/ybPLJ2mCG6/8piM1e9nLt0l2QDDl17sXH+DnV/8qn5B/wh2/QMSV0s8GJsWbrq7Jvk1X5kSc6U25MgeJQK6MnxMbjlxCME5gkt35UMZ5bNKTi4JZwLSyO6/MptCihY/emNnGnbVsvE5t20jR/Yjv99IcDRXoOyUrKtM6Nj7RzH9Sdxg21lmZvJTG/XnmFxLm7o9pVqGsbeMbG599xjIjNUFyam19rPpqqt5gdlNd5Edv3wT68ZgeWfR23wirwwWLtiUOib4fLBmh6KFZJ92v2lqjbSfTHearW10jK1hrtGmonTBjU6q2ad1dkhYuv53xQpdeo9kQj/D0lPdXAUrOCzXRU7Ky2fYs1lu8KGcXHSJWXjjGepMKHhNIxrIrhk0iRbXkFqz8WS5MYtU2EnH4ygxbklFG27NcXtWSDozRGEJojIHJBUt0jYkY7bvJZJrGszhYEruBfsh0fW92rJQ1yjmcFH8vJckFe9fVAhTJtqZXO2yWw1LLCarUr62U2it1dL23ZIOkBmITdBwLbRtKIo+Vj8sKcbDy0jZ/pAIqyiWZpNq4s3HrzDrOWliW0FKCVgsoytk7kKIROfO/xs3A0EWmASk45w14KQJqgLtUWIFFil9ZBFfASpV52c9Ko+9lL9/Jkkkk6Xlj9bv0/oLOnfHpa3+Djb/PS0f/nN5ffF3XjW7LL73j/8SXjv8pP3fr3+b7Tn+BJh/wiBn6K4qifObq3+ZT1/76zPj86pJcx688+3/jD5z8698wSMrakendBS9c+Xv84+f+3YcZpOpid0kuwm3+q+f/Tf4HX/wHHMVnv+F27GUv3255z/oj/OGb/yv+2Tv+A7IMX/2EvexlL3vZy1eUr4nz0Qyn4lQoBmpNrtBSyg1XMm1KkMEVEFK1keycKXBnGUR2DfGMDpBc9xd6ZVHMeeCEXIxup4UpQiq4RdDiDDGjSkrQoQQgi7MEnWz5MXA7urwLlXRxDDiZXLA1SG3BBTGDcHTwm5NIi8PCHrc6P7BAWXA0HlZYcJvSPw4jcHLmpSKTuVqMXM0FZKVqpWtyRjQzJNjGxHbTsR4SUSGpvY9V8Bw6YQm0lWo6CJFMdMJQ3oN3jtYHGgcL72lESlk8QV1x5lTnV+2j0gmFdBvBFUBasndfws3m2rMSS0kySSHgQDNRYZscfYJ+m2hD5GCxYNsnTk4Sh0cNMSY2nfDgQc8LX3id9Wnm5N4bpG1HGga67YamCfSx5+z8nJTBi+eD7/k+XFRSWnL0REsfldN1ZnEVvDK2Ti8Fji5HuSqLi8NzcXHGtrtgfX5Bt9kgkkgx0XfmXGiaJSqZzek5p/e2nN47JXUXfOi9f4pnnz1gtyxSudvokFH6bAFkh9A4RTWCeDKOpHDvbAsiHC9b1EM3RDabgZ/42d/HKy/e46/+rX/Ox3/nN7lYR975vucZzu7zMz/2B+iBX/u1T7NZJ37+Ix/mvc8dY+CNbB/bXvbylpQ5C4iOID/nlKefOeIowkuv3cK3B2RpkNygORKzo1216JAZ4gbxIKI0jUc1kbfJpq9CyWdBWJDi5EOCgVHUSjtOTu8yV4iMIKXRSWk/gZpRXYPrs6DC6Fyfh1vrRDArCbcTsbb7qavXkclBOgYxZGRsMhBxDSCUdUfcyEhUAT6MbcvlpqVERWWOykrbtABst1tjLyqASnPAJgPGACoTmMic0DNYq+Zx7Rv972oA5JopbAGL2QyctICgjfkIoBBXFdhJYT/0ARElhDACZ3LMNG3LE09foV0G1udrUlZcCIhXWhVS6olqma0OKc7zGmCu/VayeDWXkhK1v4sCUhHZNWwirrwXV7uzAKqnsaJqwFxKoKvqEONYkBqCqQ7w0oszxUMBvCO0LeK96QbJmJtydty5vUbSbc5Pz9gMStM4A+Blj/Me5+26OcsUFFPb3206kmb7XtyWYduTewtIJFU26y3euTF7fLlYsGgd4j1xiKRUwjKlVNVi6XAMiPcsV0sD9XYDbdOwPjvjS5/7Ig/uPs3V4yMWx8ccHl2wHXpcMjBh03jcMtjYTsJ20xsYUKwUQRQhJcEVfXHoBgOqKWi2bO3qHHPe+jKL4kTxjWPhGhaLhb37nKCWjogZCYGswjBkhj6x2XScn5/ThEC37VAyBwcLY1aoTGlYgCdpJqYBY7MprFkZK62XjZlKVRmGDicDbRNIUeiHNaHxpF7ZnvcjEEzJpU6XsFwESLDZbi3TO+cxi9t5y55uG0+7XCIiBGfAqre6VH2/6uSXfZrzGbF8fVMc9HJc9fK5swDqGGwq+Je5X7cGBOfx4zqExjz3uQ0za/P4e/Y8NbC0E+cdGyfjvodiipefR6fNemn//NlqELbe28nE6GTw3kyLBzyiu4GmGkKtCQIGiC9ApTJX5KQMFKApMs5nMWcGTJ+nzKmN94RSki7UNjhBnXWSVl24TLtubMT49sc22X+nbbU7MxCzlW0VhY0755Z/hVuLL/GgeZXO37PQZVLOzhPLZaBpILvA2SZydnrBdt0z9GukzGl939t8g7Ldmr599iAQCNwbBro+cHH8Gq8f/BVeTu/hB+RneLb/EI0uyruScZl/lGh5USdHn+fgYMFtjQw5koYBtJZ8tLUgJftthG+J+0PkxeYL3L76Kof+98++Ed29fvm3i8ogA4M7o/F1fRN67bi1+CJ3zu/w4OjLDO0DSMYGcevmCQerA+6fb3jxpVc5ObmFqLA4P+e+Czz/3nex3R5y7+JV3P1/zs9c/RM8cbzcKRG4l728VWUeBNTZf4MEvmf7h7nhX+Nld53V6ogH3AOvU3lZUZRYvqM66U/AkpFFp/iBGHU8V0DwqYAc2D3+4UbutLMClOrftdmjzvhIsGedTh++h0xT7DTlMl23tt8OqUyy0zq7y9z6cPtHxpVyHYVRP3LOjeyks8dDNY36rbHDFltkZq/UtXZki3r40WcXnTpByzmjGl3vL4yJkwbusAXbeY8vpa5rXzatp20bNuuN6WWFiccHY9XSOLNhZmt89SBNvh8ZE+AeAvCWZxKllL2eSoiPipHqCFDaGSJjR9brylR2bv6uaxtEZwAYKeAjN+ktakkxKSpnD7YGnk0ZH8x3lwsyxxd2MRQD/JQSawbGYfweUhrQcX0zBiY0Eoc6BrT40DzOmX6vOZfq1/adVYZiA+tYWeYsymK5QAT69YZb3UDTNrRtg28CoQlotDZ4bwAe60criZ1HsJeSVQpLl9nCKVpJcwM0UZ7ZlMbJn1v6O0+gnlxsXktYYUxCVbU1Hc3EyuTsHXGI5AJKDpRnLy/Cjf7k+t5tu4G3ygwmBia3MoiZVPwBRJC+JF6kAiZTQBQdIMdEitYnOaexPKR96wqSwZv/3PkyRlytibiXvXxniqKchRu8fPSrvHDl7/HK4a9zv32FKN100DdD0RV49eA3+UvP/3d578VH+Lnbf57fd/pfZ5GPvqbWfvLaX901ZN+kPGhe5bXD3+bDp7/wpo6PsuW0eWNnxe/8KZ+78g9Yhzt89srf4d7iJZSvwd8gcGv5WT72xH/Bz93+n+3qPXvZy9tQgrb8sev/G24tP8Onr/6NvVG8l73sZS/foHzthWmL83p0gs/sbIcBh6qD4VKhmZmX2SxyLUaezPY7qeebgZkzuGwsFa5SG2MugJSKA6Q4YlVr5nwNWFl2dA0egtlZY7Bh9lje6ZhBkzGHe9JcnE3zklmltTor9QJThhoKWQ3kU45zKE0psSKl7xqRMWsmj0ERJQQQVRrRktlU+9qNYCZQ2tJfEyCKUvKmZnaXdhRjOcZIP2Qu+sgmZ1DLoG5wNAhLhUUBOWUPPZlBla1kogPnAwfOcyCeVdPgBbxY4FycWMOykHCFucnVRECyOs4uBoI3507MwslpZMjK0XHgvI986cW7HF+5yt3bA4tl5KknGy4S3Lm+5fz0jLO7d+nXZzBkVDLrixOcE5qmIXZrlssVqVtzvr7P6cun3L7ref573onzDadpwDdHHAY4bGv7qutoom03p4UbAylO4WDZ8mM//uN84uOfZ7PtIEfQiIinaRtSSlxcbMwJklpy7tiuz4mbjKibvT8b04kpmyuJshmUT3/hDbqUIQ888+QTHB2v0HTBzZsnhFXDxz76Aquw4plnnuHw6afxyxX/4G/+U4LA+Zny0stf4OatV2id0H3+HFhwfvs22/Mf5od//IfYdj2rgxadBYX2+tNe3h4yhSdr5p/3mXc9c8wf/chPcvrKLbp7p2TtCRySc29l22pJsJzJEUjgnZXSTKk4IWspRJWRFSdpIo/ggOqYr85DLc7/PLZnLIkAjN7hR4CNKvizPlHx0I/lxWAqMWaOWTc6uKU4WpFcHJLWZlfWpUrtXp2cWqLA82ZUgJViGa0DoCUY6sT6qq53fZ9HoFPOaeyHFCMju5DmiTZeqhN5WgONxaaUZa3Az6ICTBVVp2hD7V9bB8tsWdYwHxzS2ArovQWSXfD4JoAqq4OG5SIQhwGHcP5gy8m9M1KCpmlZLFqa1tF3ydbkkUDqEjtJKQnrnKs+aUoHjW2UytDIpFeEJuBdKYWQC3itAJIAxDk8NQCdxmCJ3a8Ed9Q4BkXq7UoGsKZSpsl0AGMD8ojXwmpiYyQlOLnXsbmItKtFYYi08gc5ZQ6OloTgDLiSHcOQ6buew6MjvAuQkzESMRCahiFHNBn4LaZEJI/jO/qM9wbqyZmSeV7zx41hM/s8jh/nHIdXjmhbh2ji4qLjxvXb3Lh9m+ViQesCy4OWpI4mBEIIhODJGbabfnLUl/FlFRKstG5KBiby4hHnidkCgiI6AtzaNhCClZ0QZ8wnfT+gKM3Cs2hahj4Tow2MoYts1IIGVjqhgKMGJbSBpl0yDBtiTKaDlk9bpEKghRhzKSlobbc2NOSsVpYtKjmWDGcB5yJSQN3GcGb6X06ZYTvQt6EEQup3YsGovk9UdtA6TzgPuIR3l7Ia32IyhjurTl4CeVr65LKOsoP7rNvKheaEFY+KAY4/63ctD19v3D+/8Uytn+EZp3N2jZz5cjUdU645BqrngdTLB16at22zXWCMlc2CkHP7awTAl6tWUFdlqAO10slc/l8JkiI0fv7Ys0jnvBNKm7Ia22gqu2qSBRgQXo3cjBSVIRuL06CZJLaeBIylrSnz41hNxAnqbN3I6MgYaA9l19+kNQ/a17hz9Fnuhpc5jef0qWcpAU3K/XtbVgcrYhLOLnqWC09U4XzTM/QDORnbYmXT64eufD8BESsp6Z0jaqTfDnS9PXtoGl6LL3J65Q3eJd/LDw5/lMP8DE5tzZhmwfqepwSFREffnPKud76HN167w3Z9bwQOOAxImmKyUpvOIwSzTwrz3YPDF9Hh+0d2Fi1944odmIHtkPnkG5/iMwd/n7vuixweHLI6WOIlc/feCbSZO7dPIAlXr15jcXTM4uCAl158hW6zRvFsN2u23QYnyhB7nLR88Ys93WbN9//ghzh4+haHD/xjv7O9vLXlUWGt+bT1Hf8a574cVTzCj6ZfoH/+Fi8tVwznHfdOb7P0VgI6Dj2VfVsrIyiKd4KKHxMBoHyTWtaxAmyf9/fjgD51jt9tZ2nmfJvIJZ65h99dLa08tyeqjjAeN/qx5jebfHePGgM5zxc7O1awJWHnXmNP1Buo6Vbsdj1MtgoUAEgBSalUXUDmjZx1w8QQO61fOt5jBFzUPtkBPckITDKWxWKYkMipsAeOoJlEt4GuSwWEpfhSImws5T0+hz2Y7LzLqtno2D/Vpps/Sz101CXrYliVlNrRMz243qvyMe1ed8a4VNZ2nekXWq8tBRQm1l/TOWJs57FaZB4pJf1iMgBMqMkSYj7hFBVpoAkNuYCWFGMZsmPSeP0x4RUBlVLmTMeSbgKF7WgX7JZSRsiExuG82Zcpmr693W7ZdluC84gzvd95AxDVZJvKVjjr/fGdKEBhV6ayqBUbeRyzauxTlTnX2CR1LKfmPFZKPavZPhgQKEZ7MZbUE+w8562Mum8w/3UabUGZho71hlaGX9vmnIHqnHNWYSCZvhVToX8q9kC1uynzUgWLaU7GQjwbk2MfJEvoyKJTWXbVfbm3vXzHSSay8Sd8+ehX+eS1/y8vHf0K581Nsvwel2wSUBKvHP06f+nwt/m+B/8K//L1/x3v2P5+3JsIy23dGSfty1/XrZPreeHK3+d7T/94iSo9WhTl1vKz/J13/zt8+fBXd/dJJsr2G1IWVTIfe/I/46fv/I8Juvz6L7SXvbxFxNPyC6//H3n14Lc4bV//djdnL3vZy17e1vKmQUo1uFfruI016KWw/FRjUqqDQAiuOjDMsvIzwwmxsidUx0QxVNUV9iWmrN0a+KmBTZFZ+TI1Y7aWIaiBY61GXWF6MNtvMk5drUtXthllLmNWUcJKzKCMgSHLhK9XqIAp256TTtlZUMA5udzLkbISnJU3qyXuoIKotDyTMqjgCGNpiwlMM/WxlaorfTR2qBoT1fi2rM+cwgIB8RxqyxNiV/KAH6MeycBlhea6VwOGuZjwxQmigMtK1Mym2+BTJpTu22ZlrcomJ7oYGVTJAUQb+vOBwxAICXSA5SLQRWUbG27ff8CT1w5pl0vun7dsBbaaOHswcHHRcfz0EffvPWD74Jxhm/DtiqQ9KfacbS4IwbGSA5p2heYGH5bkJnJxfsb2InLlsGFxcEjMSq8DLZkPfuAZlgfQJAvOb4dk2VcC1gE2Jl22IPEwROg9h80RZ3IDaQSwAKr35ggc+h4XDvCNUUoftcd88P3vZXEQyGKZdlKYW0ynTzi16/d95AtfeIUvv3qL62+8yvHxFZ566kkOF4nXXnuDTT7j3u0L4kXimWee5eoz7+aZ976HL37xM9y9cRPVzLDtSLpl8DD0PcdX38H90w2f/sxrfP+P/RBPPX3ME8cOkYS5ZP0YONvLW18emXV7SeS75GUKQhDlQx96hnc/59ie/QnWPXzhxd9lvb5t36J4lk1DHJKVPWocWzYGnsiZnKXMyakAbpviaBygzrAlU1IwAAgwAlNH8En9F4ofr7IiVSDtzOlOfY92zLhmqpWKHB3e44dp/1PNeC+jI3Tqh2ldSgV0OndSG7PR1G/G4KPj4pRSLu0v6259Dqb77I4pC1DUjGhzpLsxIPJwUKR4wt0EAxoD9ZcCD/WZi8/cShVR2O6kAFecEEtJnBiNDWkjHeKFg1WDc1by7/7JOV2XSdGRFfouMgyDOZSLAxwR4lDpeEfX7ATwUh2ZlihB7OqgtbIEbmfd9cF4tbTQRzrEHNGFpcM5V9Z8xakjjeNjygwXnAXpZRoXlPXdFeBs2y5YLJc4D1mSMeKV1VnV0fcDTjw5wqCZpmlp20yMcVzbvW8NOJC2JAVX+jZtIzlnmkUow68E2EYQmY0P5wzkt94mvDic87gmEGM09itvpXo1W9nEi/MLjq8csDiwOhqaoT3waBfpu8h51xOcY3HQcHxwBV+CCSll+thbtvEsOKZFT6zfSorGmBKC6WY5WbBDnFpJw5hJwYDsY6/Xb6OUEDSwUSQEQbxHJBamS0EkIy7j8bSLJS6UcjA1wFK/jdImKxGZSyBgGuY521ovJSgDxhbW96YfeD+VvBj1x2SBBVRJQ8a3AS/GbsWo40IUA9m70icuG5DzrVydoXxmu+DNkrgw9hm7Ooqbn1cDMCWwN0o9Xmd/z3aNSQpj4G/2L9M+YXaPesk8gcF2luR6jSnWOK0R5QFyfricnMzuu9v40s7SmIl1bzoyY+AUvXzmzjPpCLi35u3mq84PnQ+VaUa83IFSq5uUAK/ZIszOl/EK87YKDZf6jGm9lDKeXXnumJU+GsNoTAVYKmZ73Ovf4ObBxzhpP88mnRLOPDErQ3asu57grZRiF5Vt7khxsPI1F3B8dUnuN7iYIFrCQC4oy5RTKaliJSyHmAghk3JH33cEcZyf2vyQFdabc96IN7nxjhf5Xv1pPnj+E6zcETFpCYxOfWH9rLy2+jgn+QYP7j3ACwRvPZcVcor2hpxaJyggBqpcLRY88cQx15ef5kP5pzlMT1JTH2zsF9ArQtfe5XPv+Bt86dYL3Lt3D++E5aLFSbISkXHD0CV0UO6f3CO0S9rVirPTE7abLWgip2RgTgRy5ODKEavFEWfrgZt3z+kOr7NpbrKI7yLjDCz98GjZy9tIHjWdfbe8U1HHsTzF8+nHuXPlLu969/t5sD5ne7Elp8HAi64ZfTxt25BzIqUNo++l6u5qulwINRkC0KkUlpa5rq4hkzuprIHl57h+1N9ja6tv5/IsO60Tc3vRfF+56JQUXZPJSfUImbOuVs7sS0fs3lcpoKLLhzx87nw9r6CZcd+lo+0Sl59yOsNMjDL36CPWl3q/Op2KFCJ408E0GSNstXdyyRCo9pb3jjjkwpAr42OnlEeGmjFdsyayTC+wHJ7nKzg7gCawhMryQqq9KW6yp+b2oLPbFFup6LNzZWJnzMj4rud3n3YZyKVtW7NNSGU8lo5UIWkqgG5jH0KUtmlwpVx1isVuGxnDdCwhWEFK3k9jcvy/mdJij25lk+07M5vC7PSaLFM1FCENCS/QLlss4cZ2uWCAKk0wJGMtbRfNqBOnGEe9/CFGLyYdcgK4TTpXBac5TNmMqiCusOzXgWf+7ISAxvGVuODGUs+5JAJpYfoPwY/2zHwNt/+f3q0x+06/K0A8DpHKwlvHljFRaUkgEmT3g6uYQbMdJJcEX8brm90BqbLGFSY509Pf2kkPe9nLmxFFGWTDreVn+a2n/9+8cOXvctq8ccmQ/NZJlshnrv1NXjz+JX769p/jZ2/9eQ7SU8DDayJYKbqPPvWfcnv5wtd9z0888Vf42dv/E57qvueR9wC4vfgc/8Xz/21urT77dd/nq8mt5QtcX32S964/8nt2j73s5VspT/bP85G7f5Z//Ny/+22bU/ayl73s5TtB3jRIKSYzZLxUcMZUis2cyGZMhWxZsK4aVTIZzYoFVv3o7J5c46kYwzXTA2d0yqkEb6UYiSNjs5gv17ua3YZFAcbAkGVIpZRxToz1Z5YIpiUQaUcKNe1+YlmwNjgYs7Ye9um4yTcgzNrhJnCV1PII5Rmx4JORXxS2D7XsflcZG8Qc6FJ6yBiqwIk5PgYM8FVaySx3F4dlGlUmhlxqstuLsGCBlLehruzRYKXayutYAC1WbmwCiM0cHKNzyd5pq8oqQ48yDAZ4ygLrrXLn/IJhm8hO2a4jJ/cj3SDcPT3lbN3z+S/cRn1gE7csDw/pLs5oUkeTEu973xN0Z3c50sQQB+48OGHbb8A5XGitbFzM5BzptqcMNyMx36ffdly5csyLL32O8/ML1sMAkjg/7/ihH/0hPvD8c7zr+Ij3P/800Xm6CI0Tgnq8M7dXInN3PfDGjQe03vF9P/BeTk5fJnVC13UMvWVehybQLpbWF8MFqOPwGWGTH/Bbv/15vv8H38e1Jw4IHgIGDrO3ZCCpKwfCT/3Mh7n9D895/aO3Wd2+wfXXYHtxakwSeU2OgiRwsuXm9Vf55O9mhkGIvULuQLc0PuNVaJuWZ566yjPPvoezIfKf/ed/h4/84A/yJ//lD0OrJKl5Gt8N7ufvHrnsmP5Okinr1+Ydlw1U1A0b3vHcEywauHdywsX5OcullT3qhp6sgveB0Cxg243OzxosyDmDBNplw9HRIffu3ENjxIkntOY07rv+oYBz/dsVoO0YeCj7qitPq7PRfsHooJ2ONZCEORtdpV8vTlGkMhUxc1K62R1ma5JMDmB36dveYaIpJ7jg0FSvM3Nwi6OyGM3HlD2iIjKxNUkBC+0wSpUAjBO3C+ga+27SA6r9VoMHSi3nVNrrbUEa+khUHWnpRwe8F7w0CIEYhRQj/TaSsx+fSUswJudslIVMTFjlSjs6QVVa9PJvrYGoKTzUNMZ+0TQNqrDttiMQrrItTSAFy6xFHx5HtXxfXcsFNce7y5atDOQsrA4WrJYtmcSQMqoeTWnMpE7JQsZpiHTbyGJpLFIodJsBulzGkyOmRGgcTWMBiK7vwCs5CjENszIBBqKx8hOm84W2lhITQmjGvlksFgZKc4IrtXtzGjg6WOIXjvW2Zygsk6FxSGzGINDQDZxnJcVUSshF+0q0liyUEUA2etMRy/p1FlzSbOUIUwKRDMF0qu1FR4rBsucrAECFIRngrQmprOUNy4OWZmEAs66LNoai0rYNy0VLTJGh25CygQqcsyAnOVlgJRkIchpiaoGNEiTxLozfU0oGjgKH95fKr2ph5cr148sMMtCuAgF7Z5JtPOYI3TYyDJm29YTgiDG9pYMKY5xI5jw/9p9SOWua23QnBrcDUJribjIFdqZ44giuq5jJnSin7v5bzAa736VD613qELwMOOLyseOaNbVBp83jhh0GqLptfF4d8aoPPTuFkLaerNM1xz6czTN1JgNGm6JuT/KwL012/p3mxNGEqgFQnR+oBQS222tOyrxeKazGcyb7a962BnCa8S7RDZHzxWuk0PFy+Di38itkTTgvtP0B220CHxjSQNbA2bpDJdLHLU1YELst5B6vCnFFih2SM+RI328Z4lACwYGUIfXJSsemSB8HuqFFc2a5aBmGC9YXa4ZsgcY+whu3bvOFqy/y/PG/4PlnP8iT2w+zHJ7heHgGD6yXN+j9OWdyl4+mf8TtV044Pj7mPe9/J1/4wjlx29tcm80mdF6Q0FhfqDF74Htundxg85kLzp76T/jpxZ/mGfc+WnFlrXdj/90++hjXnkk8ka/w+huvsXBK7DP9trOAvCZEDFrW9Zntdk06yTi/wIsFJLPLI5ubdw0pRvIy0/Udn/joJ3nfO99DenecBoE+/KXs5a0pX9VlXvW42fHfsfbEbJtTx3s2P8pLh7/D6/oa280FfRfxTmjahmEY0AyhDcSUDcgnbtQl5/4h54V21dJtB1Ipu+ScwzkhxoRxdU8Agqoju9nvh4CwD8nuTpv67TsUDCQyZ22q1xQMMDUxrlZrpIKNah/N7jBfGOumcY2y7TVJsNpok/+L3QSGxzxHtYs0swuuLh1RgTz1jGrLTEt5YbWpa+1DQ3ZaqLIqGucMVwVqJJaA4Eq2X4wlASQ/DAqbg21qOTNgKtEso0byEIhaJjXFEhvK2inOIb76Aef6g6264yxb7KMKUhp1i3Le+PwFKKWlEWar+HEcijNGKfFWBlrFmT072n/T/XJpZw7Wipy0lOuuNqPZ1ZXptgKsclYDgxXQ/tSJtZ1qjEClL6rd5FzRiWV631486IAPgeACQ4wjc604IXhv7xYlp8x20039N4LGJlurAq3rPhnbMAf36MjeWEFYmjNDzgZGHseUfUfGaFRZTa2vfbBvP0UrY5fUrh+alpwsiSSnhBHllvvmMqKrvQLji77sD6GMxepLRqb5ZteG19F1oJgfWkRwweGy1se02ydFc0nQKIm++yV+L29HSQx0/pwskS8f/jKbcJ+PPvkXefXgt0jSv2XG9dY/4Jfe8e/ziWt/lSf7D/KD9/81ntl+H+/Y/gAAb6w+yllzk7uLL/LP3/F/Rr8B+37t7/CX3/9n+Vde/w9478VHHsne9NtP/QVuLX/vAEoASQbSvJzeXvbyNhfB8ZG7/z1++6m/wIP2tW93c/ayl73s5W0rbxqkZDaqY2bOzYIKgmSMLaYaOo7RiK7lU7QYctmBy5NBn52VDXAqxmDElLFbnTlZGUvwiLMghzgZQUyOanRVB0ah1q6NLzGgGmx1COqx8ms1ilEM4gpyqr8zFggb/QnUQKyM1xOZDMxUAsqOybmRZWYAl34TpWQxGbXyWPKggJFUIBZgSyE6MgdU6YoJxKRT0EHLr9GmzOMb8zV8XaIlSqGKlhrkYed/JVxdjplDoawv6nsbMpxfRNbbxO2bJzx1fMiVa4dIgieuHpNjxntPWEWu39jQHh3wzLWMu3OGO4e2WbDeJISE9z2xv0Bci8uBq8dPcS4dbcwstWeIifV6DQScODbrDX2/5WJ9yma14XR9F+k7HhysOD5acvvOPc77wcqy9Y4XX3mFJ46P+OHv//381M//GP7oiC6Dy8JKMleOA30auHv7Dh//zOf5+O++yA/94Pdx5alnWK6e4HR9xz4bSTStG4NIIoll2zJ0mdP1XX79o7/MJz75ad7xK8/x83/sp/mBH/wAVxvH1ba1UoDO3r/Pnnc+8SQ//IMf4Jf/8T+g33TkPnK+3pI10qdEaBakHLl+a0PrGlBHs7xC4weapceFI87PHpByZr0deOmLX+TWrfs0oaE/X+MfDPzcjzzP0+86RMbMvikwBNO4nv/isdu+Htm928P3frPnvln5+ts7PfHX1srfC3kzLEpzFp7vlIDCo4BBo7iMaOKJK0te617n4uQujXpWLDj0C0DBe555x3OsNxtOT+4SOy2ZzbkAYQF1LJct73rvU/R9wj1YIKnDOSWEYMfujH/LsK39PDqHxRy1c0d8XS8ozt5xTamzscwCAsXhn3MpD1UArM57vDjQUjqqzNmad4O9tWyY1mzW8V6TTCCoPLZZSz+7GbNfCKGAJy7Xl58HIaZ3lEsq606pt1rypzg352w8wOjAroERnIyArpq5a33oLEgwNsFNjyUGlg7eMfSJYShtUfDBQJ2jfpK1UPg7VK2PLZihxTFs2a4WXJkCOFkqG5VQAy8ppbHE3TAoQT0pDuScitO8jtk0jZP6bVJc89XhK1ayT8q9wFvZvZzxIfPEU0dce+KAfhi4OO+pK7+ogZd8cOTo6YdopfpKYCLnbGWLXCBjJYxSKRtm79iR0oCXwNB3DDGTNEO0byPGyDDY7SygXcFZgLdx5ILbmXOatkU1E3PC46wcA0KMBlwehjQG4nFWKjU7yIMxfKzXW1LuxnHlajng4oi3Z3Iz/WliLwohIA6883jnyCnjxBdwhAVkujjYMQX4lsuY1ZjZxoG2DfgGYs54Et47FouW9boDsVJtXdexXXfEfotvzLlfwxd1fI8BxzGDXCZwJJXlc2JbErFgzHK5tOzzZM+ZUgKdBTM1MwyKBGGx8PgARDUckg1WsipdTqRGjQ3gLVyeYQq4MU1l+pj9VeTSzhokFEp5nelaY6yQad6ZX1ur/l0Omp87XlqnWwI7AKGxGcJOcGc8fjaPVQ6veeB3fo967TmYaTcYZce48vdYNU7HaWS8p8gEYXWzZxzttrK/slTVhPmxv0t7a4PyNGvZ/vlLe0gmm0nm/VHorkamj0tXsCFs98yi3HXX+Rz/gjfyl7jYXtD6yGrVGrOec0hyFgj0xf5zwmLVFBCrI7hADJmUBlyTSAM4CQgNi1XLEDLZB7QJdJsNfd+hIniBlCJZIA0DopmL2EEaGLYNi2VD1w90/UDKmSHCen3OvVue21du8/LZKxxc/V2EBQuWtE4R3XB+fsbp/RMePHjA3TtnXLl6Bb/wiAYUA0Kk8tJtfsimZ4gFrbu+487dm5y4+9y8c5dX3vNl/tDTf5oPX/wUV5arSjKBkrmIa2KvHCwCwSe6PuIkG0sIqQQyjeVi6IcyZ3pyGlCNhOBow4JuuyGjbIehzM8XiAt4ddy5c497T9znyYPnC5tfLQpTB+eb1NcfNz097nR5+Kc+budX2LrLQPIV7i2P2iY7ux4nD+vts9YK47dw+baPsrwed7/xHo/R+eVR7Xgc+mW2fT4HvnVXkK9NHtWX9Rm1fDsrvcKzpz/A/Xu/xPHykEZNJzf2GM8z73yWIUbu37/PkBTNsXyrMk7M4oRrTxyxPGi5e/ucGAcrczXOmzo2aLZEPARYuqxvTyBbeWitHJ9mXBdmzE51EZPK0mht1ULVZ9eaWLpH9FFpq+y07fK3bSDtHSBN0avtSJuPd22f2sbdYTv/ewTHlMV7Z5xfApbUEy6P88vrK0znarmWXPomkWK35VzKZtnmWpFbSgLkZINNn5Ls3MbGwbj617ZqPf4yt5Kdb+ApK8mKMitDB5UqamLj3pU5iGv8qyg3lUF0sWw4PFrgHGYzRQXN5FKv1TlwobIYVfYeLaXRTU9VxMBUOrH2uPL9ZM0MXT/6Zacy1jqClAQp9qY9h5VsE2OtL+tYHYtaxqklPYAd4kgFgCQIPpRzKWArb4kOBv6ZJaOMyg4TuHBUEssds5b3XZIInQNvLIcirjAT2XvJWa3snTCBw6qtl7NdM9j3EFPCq/UbEcDYovq+MMUmK0/vZBoTXPrLkqJqkwvQLs9RX+Xbm9nOzsmYpGvfR5q+n6JrxASNA+cK0+1sIRrZapMlJ32n+Jb28t0hSua1g9/hV5/5j3jx+J+Zfhxuf0Pgnt9rUcncXX6Ru8sv8oUr/5AmHbDMVwHY+BOi235zbiTw6uFv8hc++Cf5w7f+HX7+5v8cTzPuziTW4e63RAG8CHd/72+yl718C+XK8G5+7O6/wT957t/7zjGi9rKXvezlWyxvGqQ0OdMLQEVnoBVXzG6djCgtbEgWfC0OD0P2oNmyd10x+EeDWka/BJqqE8cAPKhl4LtyPXOEF8eDliyQcrwBpkpLZkEEu3/1R1g2kBMh5SlQO/pTUHJN6S5l0UYDFKs9HkvgDDV2hlrKrYKHDGxUgtUytdn7qdyPZCzA6GxfLV03z2jLKNlZgLwGNbUY3DUfrLq/tBwzsWlYkQwFYu1rDPgkuILdmgKoY3IOULmmLDhi8JbqbEk5Is7RZ+HeGdy4mVhfDJzeidy/e84zzzX41hHaln4d0T6zOmxY0BLXA7QJJXHkW/zQsXCe080pqT+3AGkQbt69z+pwyTY5mtUh14LSbc5IjaBEhn7g6kELR0ek7pQmdQzDlrjdkIctMR0giwbpO4auJ3UJhjVn/Rm//TtbXnr9AT/6sz/P6ugQ+sxTTzbcOrnO5174LJ/95Mc5O7nD3TvnvPHy5yEIm7NzUjKmFcGz3RqbkiuDpJfewA2bDX3XEfwpZ+s1tA2ZlmOX+cj3Pk+z8OSQOe8HPvrJF3n5jbt84dXPcrE9YVgrzidCaHBeYZ1ZP7hAc8Y7j7bC8eE1tpsLNPa45gDvDiGvwUc2w5ZGMw/urcmy4urqKW7cuM1Lr97jqXceFqatYEGNHcfe4yIDkxNtOu6yC/uyi/1R7u2Hr/8QYwI80hFSHXuPu+7MrfuYZ3j0dXfvsdu+na9KLnPTzJ3H8tC5j7vfVwMcTaUqHwYbfScBkL5eqRT3CSWLkYh9+cWbvPud7+N7ft97SdsNKSbun2/x7YI//sf+CP/8l3+dV2++xEsvvsjp2X26eM76bGNztKUUc3z1mPOzLc2iZRg8gjL0g1HYV5BKGYN5BJ7URpnT0/50IwCmeFkvPUEBu9aMUakZsdN6ikxZmLb2WfkVG/nVGX8J+CIUUFG97uRQh2ncjcGLnI0qfuZYraW9hlIGbQ6umQKnMu7LOY/lUOf+8QrIco6Z0xVqVm112leqGWUWHCt9UcsdVFCv837UNXI5VwWcNwDXMERjKRII3hcgWS76iP1tQGlXgrTT+umcHzNdwd6NsTxpAehUZisQ0TEAUY/tewtUzYNLjO+p9r0b4z5JdZzzRMraDxZ8KA8pXjm8uuLa00esDjxLbWgXCzZrCzrHOOC84JvAatWyOmhQrBTedtvj25ajw2NiSgypN11CLGu6viBN0G16lAziCzMSpJgxfIyCWt+HEAjec3C4IquVr1stl9RSaTEmuqEnqQGiQjBGjqJ08eBsTXDCE9eOWayaEuQHbYXt+cbKRiRjhXK+sImIBU3aZkmMStd1VjILAZdLiSGlbUMJoniCa4lDIudI03i8Nyc9mmy7mr7mvAOnJdPZvt3FqmWxbOiHnvXZwKJpsAiFBdnu3z+j2/agCScQJJRxqxNApjxvaBwHqxXOGXC+20bWF1uyFvaq0OAI9Aoe0/fiEMew4Dg+XGFKUbUSDEnpNhHvHU0bCMGCNjXDG6w87dAnoqi977eoVMBNmUIeClo+Sqpuav0z6fc14Fv3ldfwWG1g51NlOn8s+TE/WKZ/5tttKpPRfpkDkHS8v+6ek6dn1EtttHdfGCnGeyhSgnnjEjQ2pK4IjDZOffbxOWX+XFXznz2XXnrW2UPbKfbvxLokTE+821ez5XCnry5riTL7nXf2K73b8tLit/mk/DKnF2tL4FhlNoMSzyLee3zjiFHJQ2K5CgRnQcuslkzRuAbJkaX3bHNkOwykwUB755sNbigAQDJOIKYeVVs7Yj+wbJe4NhD7LZKTBVtTRnNPyrmUbzE7yUvGl3Vusz7n1s07vO/oGk2TuNg+gOMF/facu7fvcPvWDbbrC7puYLs5M6BYaYeIAStV02g/2no7MRWmGBFnzBH3Htzkl8Nf5s7Fbf7I0Z80m0MS9/M9fuXWP+G1k1c4Pb/PenNhLCBCKW+upKzEvisMwRaYXCwPGIaBPGS0aVEaVDsglTaAFna9tj0iDwMvDp/kQ/lHcLMXP+np8zGhO3/tjDLdHR9zedz2+QE71svsYNk97PEXuHzipe91YkCZHfNVgEFf6W5jL6iMts8jW/U4ENHjrj2zRb7yvR+exx4lcunf7waxfheevvND/HD4BRa/Tzg6WrBen3PTf4m7mwe8531PEfuBm3fucOPmG9y8fptBt3SbLSCIM11zve6sJGz1eYmU77vM+7O5eOdV73T4ZGOPNkVp6bgeXHqRu/NuWR/L1rqv6vJ2kE7/XgK/jLo4zEqq7nxxO6fXe4oI3vuid10GD+36C+Y27eX1sB5fW7EzH4ygn7pqXh7VM/7aaq+V21aGwcrObr67CeAMOrHjFttfq39PGQFpxiI/Y1ytay3T9WePOur4Ve+pO+r4qFsURhadeqIUxUa5dB4yscvOrll9i4yXVpqFZ7lqRpYqH7zZ0knNFiwAIBHTqaVkkA5DIqZM27T2Ow7FBqu2EDY4ymKeUja/7gzEVbBKVGXFlQSLZdvivNkeoWlGUE1KmZisfLQU4N/4btRAP1kdB4UpNsZoDGWqZE0GUsr2fgxEVFnEii0pjjjYWqi5FCsVY/+tyQWiii/JtSPgTCY9Tefl6MorMLvF9Pam9TSt6SZpyAXppoVRFza9Mas6KUAt58d3ZeN7+sBdEFarhSVgZGXoI9vNUPzW2ewtSiJJUfpyyuZDH/XNmd8iTzq3pkwUpWkDvvFUbijKd5JiIuVMyiC8dcEde9nLXDb+hF9/+v/JL73j36d3529bZWbwawa//j27/jY84Bef+z8g6vhDt/6Xo4V32rzBF45/8ffsvpMon736t/mBB//Nb8G99rKXb40Iwk/e+bfo/DmDs+93kA1fOv6nbP0Den/xbW7hXvayl7289eVNg5RqMYpq3BRk0hhteNg/JtXeQpwZvCkbU5CqkqWwyRSHrJNZ2YdqpMlUnaNmkmSqo4CSmaP1omOkIOkUoKnBjKSTn89pMeTFjnUlIFoQJ9UNYEZgMfS1GH+uBIFzBhWjMg5uYmEQHJos4ymLIr5mJGEWo6ulLkomUb0m9qyutLXYzYgvTpqkSKkfnqUeizFtMGVHl54fHSY1EGCvqtxTRlIqBPBz81Oqa0vJpAJjSiQRhgwxCgFFXWC7UU5OO1768j2u33jAYtny7NVnGCJ8+ZV7XD085PDYM2Th3p0zjq8sCKGBmBm6TINHJeB9ZnG8RBfCeXfBsLkgHAgxC/cfrImxZxjWDHHLxcUpm21Pu2joui1HixVh4Sx7K20ZopLV0Q9K6ClUopHQQJsSTXCIS6R4Tjq9zSFr3GbDK1++STe8m4vNXe7fu6Dveu6fnrPpzsibM7I6YhyQnBEfiLFHXGaxXJJiYhgiqkqnHc45FsslLD05X/Dc01f4/Oe+xNXlih9493MsNLBOAy+9ccrnX7nOx373t3n5lRfZnl8gScjeEfuepInYK6kfCIgB+3Bce9c18pWek5t3af0hbXtAaBf064FGlEXTEKPis+e540N+4oc/yCIsuH97y9Eq4JuMNKBOkVp+huqIzKAeUAYgRsvECm5u502uQ539MnBAHUfVSVqHVXWWTg63Glirfi6RyeFe2zSOZ7Vv8HKQ7/G4Hx0b/KZYhrR8zzqBjpxSGK92r7Vz2g4Y4dHHXJbRufUmAh1zYMg3cszbTb7Ssxh7nCcDT1855k//qT/Be7/vaZur+8z1Oxfk4Hn+Xdf4/h/6Hu5vTvm//of/Mb/1W79JP0QrS+obkka6ruczn/gSPgSGfhgDhpUVSWYgT2tXoWG3H8UJaF58nY1/zVMod3qUugDJbmyMycdcr13HSC0VWp3qUi5Yg/P1XtP1i0NXbIFUncBGc6an+mWGEGjblvV6vTMmL5d7s20Ta0I9dnRqwgQUHp3KE2vSnJq+8EHZbDDSKRYHOyAZnGTwDvEe8WV+yEAq15OSySuK5mQ6SOnDftsTU8Y5K33lvQGja/nY+s4UJauVSIs5T1T4s+d24hApAScnYzYx1BIWU79WJ7CVvphYoCwD1xzMpN1gRy6lgyy40+BEaVcN1544AKdsuwGN5tg2dhwQB8tVi3eWERyCo20bYGH9Kp6skW7bse374gQ3Z78r54hzZRw5KzdQSvcBaNJRt/NNw/GVA46PV1y9eo00lMxa78k5lQBBJHRbtt2WFC3oLrhSMsmykA+uHtG0C/IQ6c83rLc9qehRQx9RFZrQoER7M2olWESV4AVZLuj7SBwiiNI23krZFXYp75y9y1qyKEcD0+ds7CglOxzVwlZU9BzvCG0wHcJn8jZBDFxsO2JhxkoKQ0wIjuUq0DQtTdOSc4/mgVyeVTXRLB3PPvcET1w9IEXl7P6GO93pWB55uWhpQ6DvEjEJ6gXJwtCn6bv2lUc0W8As17IZStKBoRfaZaBpPEGCBX1aT46J7bpj29WgzWU2tLeSTAkENaQ4ApVm/86BzLuApF2ew/E4xllw+sFMT5CdzbvHM6otO+2sQUh2p0NgmuNrKen56bmUrrmsx1zWYcb2yaUkAbXv3eyciUm1BoPrPDLqIPU+NaB5qc/qUjW21+32A0yAJOv7Mh/Mn/NyN4iMbZpfqNpvUy/WnWJzt8KQoB8S2+Y2Jwcv8Rqf50Z6kQcPzjk7t/Xo+OAYcYGTB2sOVyva5MgK5+ueTR9pmwYreZjxqTDmiZWbluBx3hM709VBGPrO5oMUSTmSYmSIkRBMDzZgcgWK2/cnYtdp2yVD7rGylyBS7qUJjT3D5pz+/D69U07uPaA9uwKi9NthBHTmHM3+K8AFC3hn0IxzBrJNKY0B5Mok0YSGEABJLBaeB2envLj6LX742h9gvbrJKfd4af0i6hJ6f0vfrXHJQNYqQixlSGv5GAtuZ4JfcLha4Y5XbM43iGsQ50hNw3ZTyvk4Z6Vz8Tx15ZAPfei9rNoFF+cdiyYQQka8vdcK2K5jurIWqSpR7X0H76zM0DgqZ1+I7H4v87E5B1KMOm8d73P9e9RuHmscwKjnT99O/T7He1f7otSQmt/7oWniUbcY+8H6ekYVYsDW+fNcPufS9q8kX+2YSf38KnbCd5D9cFm+0pMJJflL4Knl0/xLx3+GJ5+5Ak5wh5kub3jl6U/z5af/EVkTT73zSVwQXn/txsiq5sSZzyclNust283ECkn1L+20Zj6mZqN1hnadbOuHn+Fxdu8jl6nZSQ99SxUpPLXgoYtLsW+qP2/emt1DKyPrzOqfjan59zZrFFUXmBan+iBln5t937r7rU/PXNpT+1TH/4zvoIKLxJc1K5V9ow1fEiB1uqbAWMYXqYw+M+a4WbeNjFrUdWT3nY3zxmh/WOPFTe8c1THxsD6b4ZjEmHTnfoyZWjLjxyn/ml0jOHyA1arFeVdAMhUwZ2dbSTID9dvakG1+HpUxDJxU2IkUNbB/KTM62qSzEmOjzVf7pPaRF9pFQ9ua3RlCa6XFtNhiNfG02Dm5MFo5ceUYWxODd6QMm80WTcnYZLOOTFCqxoYsUhiKR+CX4rzSLBp8yvSDgW/FGTNqteWcCLnUpzPG/NpnUym7OrasIrb9rrZWLnaG+RLsOWp5PKQmKtV+d3gf0JzG+xgpcMYH4fBoyWrVIIjZDUO0cSNC0wRL1EgVAFV0rBHIR1HqpvdCnpKjwBiubMzbdy5YAowr5QCHITHEPKvRvJe9vLVEUTKRW8vP8vkr/5DPXfl7vHT0K8zQvXt5jCTX86vP/kc8s/0wbxz8Lvfbl3nl8Dc4a67/3t98Wqz3spfvKLkS38l/4/X/cPydSWz9fT517a/zN9/7PyXLW9k/t5e97GUv33550yClmpVbvdTOmaPTU53lxQ1XnAQp6Zi9KYVViVoCpzhIhBoUKJ78WMpUIGMN9Bq4KWzHxWmg4zWcmzE4FXt4LDtXlJ8aCLXA17jZnPBjFlRxWubpWq44kp2rzlNjc6qW+egY0GqHizHqItQqHJLq805BlVzaVo17B+jYX1Mfq0DOkwNHcykbV567Gv9anbQzp+f09GMvjEGO6owcHTQyEXTX9wJTUyJCl+HOHeXkzoYrVzyLgwXXb2y5ON9y9+YJp/dOyCnT3d3gDw45eXBGeC4QmgO6IXLWb1nfOOfa0RWyesQp6WLL+cUZbQOnXcfp+pSuizgvDP1A5x19WnN6dg9VYxRJWUg5E2PCe89Fv6a7WBPjwNHBkrztCItDVquWw8OrbPszFquAKty8cZNEwqnQb9fcSbf5wudfIKUzXn35FdyLT+C9Y3t2l/sPTug2W3Mmp4Qi5CHixeGdElqHkkGHAiiAGBMpKU3jiEOkbSNnp6f8yq/+KovlO/i5n/gZls8eQ5uhb+B+NOCWv08IqQDOMnEYyAliGixIgtJH+/f42lU++IH30w0bnji6yrZX+pQ5OL7K/dNzGgXFMQyO1h3zkZ/4Kf7V/9bP4JolEqCTzDI4vNh3Ilry41VKIDeNjqyTbeSVN+7zzqeOuLKy7Lp55qMrYAv7XnYBDsWzBmWsVjCdc9WJU8ZYcb6Zo3g+aueOSSklm4qjSXU6dwwoGTNODeqIn9glanmmrygCyQo74sggA+QWUTf6cOfXuEzP/7UAhCp7x+POuezY/U4CH33jojjNqDhCI/zYT30firBYBbIoYRl5/vBJkgp3bt3nXrfm1dfe4PqN65yfr+kLU10Igdxncu7ZbuJ4dTdzBGsBspozeWKhm8+y8++hZuReDpCNmbp2AuPuyxNtuZ5zFQibd8eXlhKmOoGY6r0pFPYj80JJo/xq46eCTFR1HJfzdj/yDcwctHXuq+tU04Qyj2RIpViQ2vwyxh7EAMrVS19bV4HD5p6lZLOWzOxhVoKuzC0xpZL9O3eOU1hzKAHhoj+IG9+RG+ntbV6wOS+DTsxS1s/mOFep7EmllFpoRnalGpSZA9G0BGcsW7nGW3QcT9P7sGezNk68IoumZdEucM7ul9QANhkrr7FYtrQLT9ZsoKEh2/OmRNd35OwgKUOfrFxoCLSNMQ7lUq7Oe18AEAaSUjKaZ+OkPHO7CKwOl4RFQ8yJg+MroI7ttqPfWIA/RgPYLBYLtK3BGQd9RBK4AOuLnvXZTdrC/rPdDESF1WpJSltcCDz51JPEFDl/cEaMkS5nwsJxeHiIODg/O+fBgy1xyOSYGLqBlCNt29I0Bk6qZRN8yVyOKU5saAg5gUoCMaatxgloZn2xpWkCw2ClnjTZOhiCJwSPD57FYkETQgGqlW/NN0SUFIXQwNPvOOKppxc0LtPZICa0nmbZkBWOrxxz5eiQ0/tn5Ptr+j6Rcg0zVZ2uBG2yonEGmBRFnEMTDF2i8YGkA0kjzcERy2VD03j0bEu+6NH41l03pm99VEFHmanulzZOujn136L/Sv23HKM6QgLmp++AkJQpv6FKvSYwBkcf2YuzC19uf32m8XUyBRsnVlfbOI9dz249Ss672ydgUv196Yzx4KLX67R5bNfsOR+3LOn8x3ieXnpP84e2s8ZTZNo6nWBrQEKICtf71/hE83dIx/fQEFmvI9ttpOs6UhwQhbP4gCzegJDOAqEWcExsL7bQLhAXUBIpRvqhxztFY2TTbYnRWGr7oSdjjHM2R9paksuakJLpADFFYt+jqrSLBRIjzrU2BzhjTzPgq+f09NTKf4on5kjuN9w9uUtKGy7OztH7d1DNpKEnpoGYjL3Qia0rOWWCryx+zlggUrQxU8vtlPUi5YgMSuwTL774Em1zzOr5JR9/5i8zaKTrIifpgpOTm5w9uEtMkVxA/VqAsTbYbC7Jya7dNC1PPPUU5+cXhCYzxIyo4+DoCv0Q8WrAo5gVoeGZ597Fu59/jiZuaE7EgMOVfWLG32tja8ZxIjBE5eR0y5NXVoSim4+27aVvaA5akNnO+v1/tZltrl49Vmbf8Lgi1waX++8Aqb5GPTyXALD5KfQhAOSjrlb1I3kcCuWRz1H7//H7qrypfvmuk6n81sFRy/LAWF1yYYPMbcf149/g5O4Jr924zcDAFz/3BbreGJNQEA+pgompiWlf4R1eGgfjkZOhMC0eX7HlVZ/U8fflN1zZeuZtkvk+dtcRnS2ydbzkrzocp48pxliufbml00Xm+vJs1Z51mf3hvJ8aVdegh0awjKWB599xXYPnAJ6xlXnWmpkdlarNUv2KVQ8r955KsO3coCQmTCXzRiYhJpsCgFJum5muIqqT/5E660z+wfka/RDoq+g+dX5yyOTXBFQzOQspKk1T7uvcSH4kWKKjN4eQseZExUWzkXKxPcgUgKvpoE6crSF18hxLjhctYGeO3p0/pQCaUk44zfgmWJnrPpE0FdYxW3d8KIaiCjkmKImucbCEBe8N2OvEM2SzN0wny7TLhsWiZbvZ0hdbwXvHYrkAIEpEhqEkAWTz86n5qAzgNClLgtmEVoa5PhOjDiVY4kz1b2lWUrQkIS0JElLtQu9RDyH48Rqmj1hZPU0GkBLxrA4algcNwQuayzrpHaHxxGTvYrlclZG2pesMrFUZnxnHl07jUmc8awXAlKIBLUNwoz0YQmNruwhZI2mPUdrLW1AU5fWD3+H/957/BTeWn3pbMyd9u+QsXOcvfvBfZ0cZ/hbJ3cWL9LKm1YNv7Y33spdvoTg8G/+AX372/0JmD1Day172spevJm8apDQFFSaDfgQJUGh+nWXWpFkAIimW8Z+1ZK8XG69ayGVDNaqmZI1Lrghhp5xase6NUaiAbHZ8QgqVuagGJrMqOYmVXHMUw5Exq3h05JTzzfcjJRuVqSRcdYaMFPrlFNUpX3IENjA5LwRymtW4L03M5AIW8SQ1sEqlqJ4CqzKWixCxNlewh5Rs2dq3Ndw5L9PAuM3qxU/3FyuTXpBeFShiBFnGVhIxFqW797fEDGcXynbbkftEjJnt0LG5uCCocm/Ycn4rol1kIQPruOa4OaBJPacnJ6SLLcdXniC7jvWwps8DqdsQ4zkP7p3iwwH4yPn5A5IeEnNv40IzQ+7JuSfHnm7oSi17oe96RIXjo6ssVxFY0DbBnrdp2J5f0LQNBwdLLs4vUFGGmMnpLi+88NtAx+ZsTdTrpLSl2/b0cTB2CYy1IWcrl9c0Hl8qvcQMw5DJKsTBmDva1hwZKQ1cnGYcW2LsOT5InN59gxt37vLCl77Ea69e5/obN/n8F1/g5vXX6HvBq7U3b9fkVErNpAEEUjJK6MVqwTvf/z4+/onP8crrt4kRnnjyOd713u+x0g5Dz7of2J5vGPoLTi62JN9wcKUhDR2hcRAgi+LVj84LUXBeER8Iao6u3CUWbeDpJ484aHedZZeDXdOAmn2CY6Bq+pZ19r/5xzoFFGdjtToPS+Y6QZjPP/Xau1Idh1/d0tplbVKGLLz2ygm5j3zgg9fGskPweNajx5V7+2ryZgFKe3mUGJcSTlld9aCuuK6FJIEO5RO/83H+0d/9NX7ts59mfX6bW9dfp48dMSacS6TBSkDN4aMGBLnc52UMjEC6Al6pgQhgHNE78az5uKisIROgbgQ/ze5THfAG+smjY76C7CpQd87cs8OOJLb+juVQmcbTPBhRneZzENTlYx5mUbI1vbZlzpAkYgE55x2qMyYFQHDVi74zB1QvttjFDWAiWPY6ta8mFpxSp6GcX95XUpLGwnZYnKtWixaVSq9fW1Md0G7sf+c8WqMVSlVqdsBaOZtXvDqYVQ34Is4XZ/80Buy6Vn7L9IU6P0mZYxXyBH4zcFUtT2dO6pQSpw8SOOXak0vCIuBDg/eKS6CYo11cRmOi6wc2Fz2Io20CUqhXBMEHx+GitYDAEOn7iHOUckUGLgsNY5DcguNlAKuxynV9X1h5LJs6poGmaXA+kXWYvVu7hjgLLA1dYhisHaRMP3QsloF20dD4hiE5+vMNvUYrNeeFZilcO3wCcuLs9BxEWR4s8cFxfrYm9hmioIMySCRimcs5QRJjJJl/ks45gg8FZKwIeRZQsbJsq1XAhUBMGdSC7Cn3eCesFgsbI05YLheIQLfuGOjIYiwuqLEgpZQ4vLriypUVbeN58uqT3L/bcV8HQtuwOvBW6mnb8cS1KzzzjifxNNy9d0oaYgmOGRDZCFZ0pywDCCE4nDfgyua8B4XVqoGcEKe0S0fwDUPKpF7p01vXEfIoUM9cr1AmHfpxIKCqDQhT6cudY2b6yA4AYjxgmrLrDi3HKozsSDAO8+kCtZ012Hhp2dgBO5R/d8q91Wte0pmQh6/F7u4aq32sM7nOL9Pfcunkum9mT+jsucd7WXBwgufqbDxOfbUTWH+MzM/JwIl/g99c/les/X1kA8ELQ1fKdmJlRnIacE4YsqJD4pxEn3oO2hUuZSsxGSPL5QEuKH3qDAw0DGTt6TY9oVkhTgvw3+Zu1JgYhsFYVtFSkkUAjJUANWY7Yxp1xba19a7rOij2YIpKTIOtuRK5d/cNszVjJrNF1RIXhiEWViaZWCjK+LLXolQgbR2I3tkaEmME5xn6hEimcYKmDecP7vLa6wtev36T0wendH3HZruh33YIjlVo8IuW9XpDHBJqxmZJLHA4Ak2wMp63753w4OwMzY6j42u0bcvx0RXImW6IkLfEfs31G7d41/ueQQ+vcz/d5mn33DgyStpG0TvKu5ZcWIOg2w6sFp7VIhhZ3FeQ3eH9iHH1iG9w9+xde+KhwSh6CZD0uFY8ug2POuWy+2EYMm+8fo+hG3j+A8+yaOuex9sT0w2+uv3y1dpzefvemniczAaj09E/4xAynpcPPsqt7lVefe11PvXZFznfnpKGLTkPZWJTYjYw9Nwe3tV6bYvMB92o/5b1vn774yxstodOFysiO/P7NMc/bFGMV6wApTrnT3uo4P4K9J83eTy3/padPTM/wO7v+fGPwmtNyRe7dkftp4r/Gdd1meyjy7rC/LnnAD8pE9GYcFJ9hGm2sM+voJQ5HirgaW7DleXQ+pCJTZqqfxR7YJdhSXdamMe2Fc2l2IXiZGQLsrvV8SG7V5CpLTvKgOzaeyM8VDM5KZt1h5JZLALiXbF/KAzydb62sZBSok8ZIeK86cROBHwFM02JHarVJ2t95cPEwGRgqfLeRh+tgdiaNgB2He9tbc3FBhJndPO1XLeIM2aiUtKt6nuhsD81TSCKIkMiRWMltPv0LFcN7SKQooF2re1K3/eljOvkN67Jr9RxMhsLuQB8zWZjYiyyp8IVFqkQHKEJxp5UGasw+zaUUnNZFR8Czjkrr66KivnPczLAUM6Z0Hra1uMdHBwcoMmzXZ8hREJjrLMpJbbdlsPDAw4PDshpTR6G8Tml2KKX9bY6fKZylEqXe1SNQcmpGpMuQlP8n5oG9rKXt5Ioyuurj/JfPv9nuLd46dvdnLevVEXk2yDXVx/n3uJLPLf9occeoyhROuZt9NqWSh/f2aKqkOJklxff417eXqIov/H0/4s7iy98JVfJXvayl73spcibBikB5uSEEkTVEuyqDvCZ44QatCpsRJkR0CRMYB9RrF54NQr9rARUDVCUQI3zFHNw7gQ1IzHNDXtsMfC1VEJxvtTM0XrdWn6jRiqqsV5FSn105y3wVsvOmYVXDsygTmasFhNQyAJMZg5OCoW1qbJMWamZgnUqRqX+/9n7s2Drkuy+D/vlsPc+547fXPPQ84SxATQIARwkEHJQImVFMCzRYUuWbFFhyyFLVjjCD35TOMLhsB3h8JP1IFmiQpRDomySAEFYEmaAmBrdjW50VXfX0F1dVd883Omcs4fMXH5YmXvvc7+vgQYJoqqAu6Lqu/ees4fM3Lkz1/Bf/yWGlJOHiuNAx77cnBwMnUa5AKMmdpqpPN+8DJy2YFsRLUGD7OcYAU65kE3ugeX4ZODoaCCGRI1lb7fm7Kzl4cMjTKiwpuJ0/QDnlVUj9oGH927S0+MuP0Xlamyz4KQ/I54ZDg+XRFo264esTh9hXGC13rC/a6icoakctbMgnk27Yu9giYSWwSaQSAwDIWd3eTxioesUOGTtAKJUyevNMWdnpzpTRAPhbbuhHwJNVXPy8A51ZZWdwSSEgLEw9D2hj3hvWDRLfS4LCKHHofWHKt9oG4JQWYOtDCkNDEOPQcuvWG+ItsLGB3z7rdf4T/7TO7zy9dc5ffgIW2sgMa0slw/2+Nz3fg/Pfvwj/M7v/h6vfO2r9F3CUuscrh3eNOw2e8Rh4N133+DRo3tI9OxdukzXnlF5sH6PzgjpZEMajvn8l77CD3z9+zk4rLh+6TIvPNNoIFoEbGLIxok1ls2gjp+KpOU4+sQzl/dZVHPH5jTHimwTcEzuz2muzZyclDzB+Zz8g36bOVu3gBblypMr+DuFFL4bJqKYDHfvrvnFX/wyd28+4F//N36SF549zE6oPx6N8o/KiHTBoPQkMWj0Wp2eyWjgzohuZSFZAomXPv5h9n/7Fe7evMXZ6R0wPYaAM4ygN2eV/t6Sf84cx1rarIhVAI0p+5lgM4imOPmRDHohl3B5zFmvm1FxUotM78c8LiAiyk6QMx6tMbgS8ZuBkuYgqOnrXNbt3P0LKGnOyvSkz+YMUo/fYwpoTECf7fdxYlYyM1BVLv/1hKDKmAlcnqvoOFmXndRTBAeDzfT7M8neVh3TuBWMGOcK8/doKnVQjo25tJ/kcm+lD6WtqoBY5BziwTkHAjGEnD3r8vULAGn7/ZWt51EY5ez4d3GMW+twTkt7DZ0BC1WVAXjDQLtpFTCTHdokg0RDCJGh1cziuvLU1QIbE8ZpCQOLkEJiSBHnlPnIWnC+ykGKbfZJay2Sy7Zp2SHAmRE0dvTomE3b0jQLBb6mwv5j6fuB1XpD33X4nOmMCJIZEG0pMSrC0PXYzITVthsMEedVP+p6Yb3qWMUVwxA08F8y1NN8zmfweNQs8CTKhmQz84rzCpQzUd8f6ww7OwuWezXLpcNYQ99H2jbkoImC2IVEP0QEzXru+4EUAt7r30ag75T5pFk6Dq80NEvLlauXuX75aR7df4eYBOMUELXZRDabwINHD7l6+TLNoqKqHV0Yxve2cro/amnkzMiZn03Zi0Q0KeDsZA2yYLHbaFmMJDhr2V0sGepEu+54v8oU3PwuDp4HRktJzUl1Z3wvhdk6w1Ys7w+693i5eWyxnDd7742dfSGza8+Xhq0bzXSSc8rJvA/jJZ7gIy6HlOumuT5SdPZZv5GZnpTLiiFTTsh5KQHk88+h7CkwB39N8/BcN7ce0fluTH9rK4Lp+b3l32e9PqHvEk4MVIYhCKvVhhS0HGuXeoYQMLkuXd9uMM4wOIfzFdViQRha2m7D0i7UtpOB9WYFRogSsbHFWYt3Du8rnK/ZbFZ5/VYWub7rdf3P4+GMxThdE0bGtLxedkNLCKUkpa5TMUZSihjrle3BTfbaxKI4/XS5nKMylsZxfKxxmYE3KdOdUVCVlnrUkpjGGmIXIHX0oeOVr73Go6MjXZdqLRXnsCyaho+8/CKXn77Bt996l3duvq2B2kHXS1d5nPXUzS4nJytOjx8RupaUoGtqmgYk9cQIIsreBonj1Zp7j1bcunOPS/4VLu88p+CMBMbDkbvD7epVDHCyWbO69G18pet2u5N4fv29XEl/gcJi+KR58rjVME6tJ8r4+XcyAJ5wwvgOzdaAP0y+aztAYFidcvOLv8Vb33yXk6MzDv/yT/DUp77vu7rKd6v1/5HtiT/S0X9G5JzhWHxKZT3e2DO+aT5PtWy4fOMqfO11Yt+ilNmTR6qQgacooy4116mn939206zTTzow4yYwHWrGxLFtUI7ZnsejD+wJ62/R67buP+nu+TYzgMz2mi6z64/nGygUhk+22jnX3sdbZx57cYvtVfafWcmw8cgCeJkuOdpPBag1NnxKLthCjz3ewKkdMn0nj22Kj/85HxuZJW5sM1M9YXURECNQmJ85b4/BmAwCYx9KN2R+odKeYqRKmcVgjMNXhqp2VL5Wn2ae3ykm+iHM5mseM1G7QpM6s33jq3yTnKxiLBEFQJGEwjpkkoJwM/pqy360GRllrdO5kxmyhz7Qth1d1+Gcw1d+TPBISRnK+yHMyqXpj5B1fdDkTxHJ75+WMXfW0rXtqBeKGAXrxswem/ffsk/n7mWTU98A1Xf0hilpmWxjlbFK7UT9zleeqvZYp/fK6sX4/m8l9gAQiSYiSUvrFVswZtZD5yyLpaOqLYtFw6JZcnK8IaY4079Ueev7AWs3OOs1sS5Mc9IUx93oMzNT38rSUUrAIvTdQLOoNfk4CMVViEzJURdyIe8Xae0x/81L/zYP62++1025kH9M6ewp3zj4b3mq/Z5ZdEC4vfgqrx7+NGIig+n42uE/yEAllc8+/Nf4i3f+dziq967xfwIyPLrFg1/4z5C8/+186Ps4/JG/dhEf+IDJmb/Dl6787QtD7EIu5EIu5LuU777cWzbcbM6ascY8zoaU0S7lmHJe+d6ayQmRv93yhkQBk+9RHCulzE3JQi5Gnh2VGTLJfMm4yo4bUYPTqB8FV65ZggK5bvjYH/TvEX+UnQca8M3f5cCRyYZnyvcoJXgobWfu4MhB7UyxTARGFid1PEg2GOcGcckgKw6uJNrmAu6y2T1W/E8hTRnT1mppmBIwmLuIGH+fXFBy7tviJhOTNEAgwt6O57nn9rl184z1cU9MltVGODo6JXQtlw73SWbN6cMjfNUQnfDo0X1M5djf38P6QN0oDcDm7JhFU2GNZdHAg4cbuvVAXXnWm2O8qaiqBYu9QyoiXRpIwGK5j68rTk7XDEPUwGa3YXdZ0zR6bhQtvyBJM8LafqV9kYCkiHU1VVVn50/O1kpRA7bWs2k1G6tpGpxJIAFnLcZaun7AOqPZZMkqw4XAcmEwUTOe120kBg0oYwySLCn1PPfiFS7fOOCtW+/y6OQW3gs7O/uwGmj297FVTbW3ZKgsrqq5fOMaoe/ZHJ9hpeapZ57n+jPP4vcu8+XX32F1vMJseoa04f6dW+wvnsdVhtu336FbO2LbYa1lEzq++upr3HrrdX70Rz7HwT/7WZYLowHsxnHz3hlvfftdDpdLfvtLX+Mzn/kYH/7wszy4d0J31hFWLTvLF9nfq0dmo/k8mfvfZDaNRMp7+fgcnDMrPTFC9phsZx5P2YKTo3ArUPbYHP8OV505BdvNwIM7Z4TQcnZ2rJTcEgH3hzbvwlj4E5QSWxIFdGIcCWVGe/f2Q7799lu89fa3OLx0ld9/7eukocWTGCSCRByGZGzOktayBNZalssFm007AmdAn2uZq8UBHU2aHN+5jJQRBeqVEqXOusmhmiUhYNWJe77sguQ9q8zFODt37vCeA3wmFiXJfnkzW8lz/q3J+8psLyj7zTicW0Aa+QM/N2abRWkco+xATzkgO/pFTblfabeuozaDuwrjE3mP1rGclzKa3mE5B1AqwDCTnasTQKm0vwQ5JkdxPjODPKJm5p5zvEoqtP12CiKN5+l1XHa4h6gMOlNm7eTI1azZ8pyynmIMQ1LYsIKR3PgM1bFesbe/4PBwl2bRsGl71mfKKJRCIIZECEK/2eBrT1U5iAYrFhMhSWQIESMWS2CIkdppaSJCdkwnzfo3uYzGMITMpCTZQS5UVcVisSQZqJoaay19HwghsTpr6duB0+Mz+qGnbioWi5plU2m51y6yaVsSWvbUoPtiSsIQOmKs6bpE1w6koMGCuqmpXcWw7unWLaW8kMMTup6qclTe0g4KIpJSMqMEkrIDXeeKy/qPIE6ZluqqRmKi6wIEqGqfy8wF2i7RLDzeGby1hBRzmV8hJgUgWe/ouhZjoFl4DIkYIm3f07ca5Li0s6BpDN5VxN7x1jdvcf/BA1IKSBQkDjS1xWBYb1qERzS+pmocda/lDOcllc1sDbJ20r/LMypLyNlpl5k8DdLqnF5tBjbrnqF9f2c+z8FCBrZjiLNg3FYwc1wnFGhq2Abhz9WJcTmbxSfPb9WPqR/jWjStIXNb5tyhW9cV0TWv2AiP6SRm6uK2PrQdvt0GHJ073kzr43iO2dZ/5sNIbtP5vj4RmDQ7d2QFgUJIS7EVztsTf5D+M7Zl2hA4rW8S9+5zUHlOjoX1WU8Uj+AIMRBDT9NUQMWq63GVJUgktBsSKTPJedUvUyCEgVBlZJDR9zamROU8Qxjok+B9w6JqSERccPm98iwWjq4P9G2bAUfKfOaNoY9tBt0qS58y9+l6HzUqirUe76vRTpsmrQL/U9DPnfPZYlMQs2RjtDDbWSzWehJQVU6ZpJLgXMV6vSHFgDFCSgZnhEuHuzhvOD5ZE2OXSX0VLFo3O4j3PDw+4d5qxenRiqrZUbCQ7/Gm5uDwKleuXaGLgYcnjyChZdlFaNcrKqvJOet2RegUxGusoetXfPutb9OvV9Qv/Qx7Vywvhh/kpHqbu4tX+Prpq7z7zjvsNp7bdx9x6coBV64ecnq8JvUD3zSvcenwRZ5zH/mO2vl3o03PbY0/Du17Pvf/OK7RPbxNODthc3Kf7qwlnh7lQPGFrfD+krLgy7g+gfp2bt894guPfp5fjb8A1rBZ97TtBpdLVanOoacpI8u0E+3sLOn7IZfCZVxwC8ADUdB2ktmsm+nZo176pE1k/vF4bWYTeDux5nGQzJMYj8w2uKagVMvePN5g/GDC757bcLf/PH8vPelxhtdy7LkddmujLMcWAI5h9Peptr+9R5d2zBMG55vrfMjyH9vDKPNebx0r5zZTKfbYzK6bXfZxpaQMozGjXSUlWSLrEucMoa1nWkBMCiJNow4x15usNTS1Z7mzwFpLiJGuj6Q+TXM1aZJHGAowtmyjE2u8ZNu2/O6cUx0ns+SWaxk7JX6Mvtps91VVNdqjoExGZJs3RdWnY2Y8tdbiMzNRLKXYUOCOze+GpFyKWwCJyvST0H3KqU0eegUSYowmhpriuwaM6vrIZEuWWTK+YyIUdlUpSmouFe5QxvQQlPnR+1xOWwRfqXdW/QfaP+bvl1EGqeJLFBFNsEhCDIIkoaotBk+MwuqsZ33yiLbtMuMrSFKWd5tLxnX9QFUJxkFdeyQORCl20nlFb+b9LTY42ZaO6gtzIRK6iDEKnIox9+NCLuR9JO/ufIHbi9//41ECL+S9EQO//NT/lY074ocf/Bt8a+/X+cql/4a3dn+D1h19x2f7S0/9n3l59c/wobO/8If6+j/IsvnWlxke3R7/bm++zuETIx4X8n6WN/d+mZW//14340Iu5EIu5AMj3z2TUrHJc3AEM/1dXARGDAkhxok9aKJiV6CNy1lQJpcXSyJbW+1oBs0+H+11Qy7vNtqUjznti0EvoqzOmsFD/kyQUn3G5Oy3fMGUg5OUrCJbPKDyuC4wRmFzm0u9cTJrlNWgmTJOZAM/TQ4ey2Swis1go3wNQUvUmBxQtDkQY6xgUxlJvZYkMotUZq5IjAGtlI1hsRCTaLYOc4fL5Mgqf5/PtjZ4RvudwHLHUtc197pTuhDZ3VniGzg+PWKxPOTGpQP6kzPcoiL1kdPujDu3ekLfUjc7OGuIYWCIhr19T+g72hAYZGDoezTsEDluO7zp2d/fZ7l0eJeorGcYLM7WLJa7nJ2c4r0jpkiTDCYZhqFlCD3OVoShJ0aD2IivHKtVizWGuq5w3lGbmph6xKbshBkwweFILBpH20UNeTpPGAaGEEE0QL2oaipXYa0nktjZbeg2PUl2uXbjWb755rc4609xTh1XNZH93Yo3X/8Gtx89ot301AaO2lMisHP1Oh/+1Mf51s23+Pqvfx4TK67ceArXBK68cAOXGp575tP8wPe/zO/+/m9z882vYdJA03is9axOH/DWG4Gd/QVd29KedcQ4UHlPt7rPb/zar0M38Od+9EcIIbLpe4YYufPN+/zu793kzdff5MpOTdUs+bVf+11+9be/wM037uLjwMsvfYynX3ya/d3mnBN/cueYxz+evc0T0GM6ZPb3Y5GyJynehd/ryfL4GY+16g+V2jv295Y8uHeXYQ1nRxFzYypCdyHvHykU6wanZVOAo0cn/Bf/5c/zlVd+j271AKLlbLXGeKFqajarNpfgsqSYCBJGZ3ftPIeHhwx9AJStoB86MMLB/iWuXD7gwf37rE7XBIYtR753jhgHBSIUkFEKOufzRiVm5ow3ZYebKPInWvsnZ17HGLec+mYE/qiz2VqnszTJeMw8GG7ytcrarwCrtAV4gsmpzOzc0k87IgnmX85YTShMihNzYmEeKYDf4rg2ObBSnPS5hVO5gyCkXJrLK4WiBgDcLBCUmMaNx9s1jnC+Z0oJayb2BkmSS6xOfRwvkMfEOENMCe9sznTNDnRfMQyBGEoWctpikCp1+cr4Wmtx1ui8i9kxLKIgyBysEgPOBJqFw1rL0dEJ/dAzhDgC3pz1pCHqqmpUGZKYcl/Iy63B2poklhQjm3WHdx6HHYGXxgDW4ryZns9s3XXOY4whxIFh07PZ5DYnDUyEELJTXVlIVsdrdZhbdZgbB752+LrCGcvQQ+Uy62WA0PekpOwcUSJ93yEIfU9mftL+Nk0pmZcI/aBBB8lFhWYgOZt1tTQ+e6MlLRwY79hZ7lIZy9nZhvWqxTufy2s4nKsY+kHbFG3OrtZ9a+iVNco4w87uAueh6/qsy0HfJS3z6oS69qRouHfriG+/fo84GGVsc/ruSI6iVPUCnGGIA8MwUFU19aKm6zSgmTC4WfkMYTvIqIGjAsiCGITVactm3XFkc4a7aMBmVuvw/SfzgL3M15rJrsh/jgvXeIyVrOPOjh0vJVNQxozT5Em3n+Krs2OM2fqzNE+/m7VzPG1+/hggnIJReakbvzNT05g3ddbNMfmhBAxL36Y4p0yA8WKKyHZ75i5MyW2f3+TcsI1/b3VFZqbO7BkIuaT1bI+aX2Ncd2djWECoAnRsGEJEUIa6mCKxi3inxlkXWozRUsNDVYGxmMoT+pb1+pSUIt5XGbAoYCxN40hJiCmzx4WBkASb1/DYtjSVo2o8SCQMkgN0ui+Udz6lSNdLtnPT+H2McQbsssSQ11GTxgAuqAEmgjIr5SSIylv6IUC510xXQAzeOgUuFEss244YZcDo2lbLlJsSVAys1mvW64526AkiVEZZ3ZIIzaLm+Rdf5OToDrfeuY0Vx3J3D+csB5cPCH2iqvbZWexw55uvcXT8EEkhA189m9WG05PEcrkkBWWJQhJOFCx6fHSEw+D3hFf4RV7zv85ZPObBtx5xdNTRdx2bpubpG09xuj7l9Tfe4uyopXaW/YNL/P7TP8tTw9+kkgWPidn6sfVuPOGw7U/+CVX1P05N3yIsFh7rLN42dG2cO0Mu5H0q45opwtmq5dbmFhsEYmC1alWntUaZxYzNwIykYOTRn2JyooHBO09dVXRDT0qBqm64dvUqmMid2/eROLcn9J/HmOrKojt/N8aN6vEF+PzaPh5elpw5UKbow+R9K59ZfEXbTVHd9jxYd97OYgPoPR8HQ5VLzu+73b5pByqXGvev0eFoRgt/6/Iy7T3jFco1R2CTfjONgTy+uMw+mMZRpjaI+jDG/fw8kpjZZ+X8WX9Hptn8vSY5KujmvEKi240+DUFZfxUxbDKDERl1UwYk5WuBiYkQDX0/TIyxZc8WMCM1pOCsAo+KvbitlFkKZ5gkIUjU/cqqBT6ua3auc5RUmWl/TaL3H8ozSeT3J9ujTAkkIdspakdmHV8ycyEKwHLWKmtqjEgyY9KLgp3ASLHHdM47W2xULR0XQikPbcZ5YAwj+F3GJ5bt5Fyj1DlL7SticCCDshuJKIuSdaQM6JHMjF981ClOAC5TexAIJSEpf1/MW1+pvRb7yLprCYO+dNYpK6RBmbAM4LzTcR0GxpRba7LbbHpZzdYbU/zN50X9z9JHIpPf4fz0vpALeT/I2j/gYmZ+8GXtH/DLT/1f+O1r/zFrd/+70pMHt+ann/8P+Ldf+3mW8dI/9Ta+V/JEJsYL+UCJINxdfI1kwnvdlAu5kAu5kA+M/BFASkkDwiUTRHJMzIK3qJEYoZR2UQMNVTZcLs2Dfj6CZeYoJ6agTMo/rSlmVGYtSpkRieIQMaOvZgLTZJYnmZXGyM0ojoEkWvZLywpYYpo5/iVfP2oQuJQyKawwJRBWwEVOQPI5I/mCTH1LOZFuZLoQtExLNsCTMDI6OVCglNUAnpEypiY7+bXEXjH/JWamBooTJ7M9Ob1+HB0N+XwDfQ7WOhgNczcLPkwBCEBDxWwGy9kKVqtI17Y4SQztmrsnDzg7OcOI5cGDe+wutDxM6hKVNSyahrOzM05OKhY7Lev1mhQ0E+jSwYJqsaBt1yyamtC2tO0JzaIixAFSYn3ykE2fODt9yGbd452j8gYjmkU0dC3D0NNuzvTZRQ0YJtvnZ6od6mNAgmC81ePbjjRoKTdXWfpBA7LOq7PDO4czgjjJJZwk12VPSLIaoJUBsWrqn52usa6i7TuOz44IYUVlrAKcSLRDx6uvvcXh7gGbYYVvapa1Zb2JpGQI7RobegYbYehp1yseDi03nnqeazdewIlw2rc87CJHp4n2rOdstaauKw6u7LO5eYd+WLPsFwzrgWTAVzWNX7A8uELbrnnx6ae5fO06v/Gbr3GyPuPR8QNOHz4k9ELXnZL2XuazP/wD3L5/my+/8iUWVcNHP/oJeudpFo4oERF9t93oQCyz5TsFFZ5cL/qP7qcvLsl/0us84cojMAT2Lldcffo6NkbWXUcQ8BdBhfedlAIIoz9ahIP9hn/1X/kpfuLWD/Paa6/z7jff4mvfeIWTs7v0A1jf4FytpQ7bM6wklFdJnYNHd4+p/JIPf+TDeAyvf/M1Uuq5cfkZfuzHvp+vfeNVvvilV2AIFIcxCH0u1SRljoq6kjHZQWsn16BkxhN1ejKCHYonf3LYP9m5T6bRTxkUo4nfjvMFCbdZjtKI8RuPMY8zIc3ZkYqMzQWkgI5L1q6Zsp6VeSg770fg01Qz3dqpHJxugDID5Za9MzNhlHYlFDxcxs5kdhJBGR/GuVAOODdgxYGvJzOHSoqRkQ1RRCntx9JrQi4TpsxQ3nmcKaVYFSyV0qAAIwrQwmyVwCt0+s75kRWyZKx6r0qCdapRxLxRpST0CR7cO+Ws6VAuIHXcG6PAKGc9xgS89zRNPT7PjW3ZSAuD6i8hBgSPMRm8JkZZkRYVlRhSDArMzY5x41zODtb1OiVYrTdEMltIfu6qW3gNzoHukWJG/UdM0nY5CyTSEEhiCSGxu/DUdcWmDayHnpTQTN8EoQuIsVhvVM8UMlOOxznPpu1YbzotO6eIvzwpE6bMPaNl75IkEpG6qajqKgP8wHpD01R0bU8/DNge6sYRhoEwBGIgv6Cq48ZhIPQaWFm4CgmRthvwVYUkQ992WuoCz2LXs7tfUznDkAx9G+iHCdy0t7tk4SpOTs8QEpXXEq790LPpW2LS9psciIki+Fxqz5qIWIMhIWJIYjIsswSSVEeUJCRrMCbqTJ8xkr1fZQTOlFgiTIE/plda18oSEGRicJVZEDH/YmZlnqegLONe8diYyHT/OUBJxn/OtafEs8xjl9A1zZRxnwBKxSYQUdDa1lo8qeiU/cPMrjvZE0WfncBd43XHAdUPtwhuzfjxY/FYM+vbVkxyphPlVyLbTbNxz+dFmRgK5teePdpZf7Rl71Zfo2uFtuuJIer6KpGu7wh9oLI1fd8roDGX3E4p4p2nj30Gh6Kl0IKyT7SLCl9VdN0GJFI5ZY6wRhMZKuORFNm0HV27yQxyFu8MhogxQgwDMUaGfgLMGpPHu4BpNYqq/RIzMUDkRJBE1D0tl5UsC63ND70k2DhrVYsRZXxNJuJcpeOcdNBDDLTtGmVzNTjviUnt0tOzNU3VEGXAeY/zln6IGOMIXcetd75Nko7KQowD3eoRe3uX8X6HnaVl3W5YtbvsXb7Begisz44YYsQ7tAS7ScSgbHfGWHxVY8TQDwkbWq5fvUyQxDffvkPXR4bQcri/YLm0uZy2x9qKvd1DVusVB3tLrl29Sp8M3d5Dvhr/AR959FPsmP1x/kzz8km6/vmZ+yct3909y3vQXL6OX7yGcZbFToXxugc/2SK6kPdKzOy3+ZplreFDL13l1oHHn/0AJycnPLh3l3fe6YghYRxUTkusxmFQgIdkllIDMiSscVy5fo2nb9zgW9/6Fuv1isZUeBxV7amcV1/HaBNksEqSJzS0HHOOiVVg5PspvqmyeY26aP77HEhhvjKPZaiMPbeWz3Rto/2bJxnI1j2ZAZWesNdS7mG2B1/Gbxg32HOv27TnmdmpOg6Kw5hYjwouQ5meJqB20RO2QGBlk53f63yz5/0q41RWqbwXmtHZOWO0nQOV8u+l7Fkp7zuWly5DYoqvsKgEkx63lWRR9ArDzNYqYPhxRjEMEZF+TLIobXNedX4RwRstj1ZGNjlHz4CEoOWkUyJhxrJ0pffGgnHKGjz6bnNXNCnF4DLiJ+RjGEdP9SH1Ydr8fwEOm9wvwfnMOCv5XQuRmITKWy0rF4WQtsuoa1vUX03Zv/N1feUZgjLOplRs2CdoLiZ7WUX1FmMNla+Q2TMzeZ4qS2ygsg6Tx3+uIKbM8JTSTGFNSUHU1qKg55CTMyyuctSLShl6S1m8DD4rgK3K11gMfQhogo8BqwyMIimXtDfjfDezCTb2WKb3toC3pvkuRR2dZvv73aC4kD9z8tXDv/deN+FC/phETGL9R2Saub34ff7u8/8uf+3d/xu74foTbYcPuiye+wQnX/rvlObuQj6Qkgh87fAfvNfNuJALuZAL+UDJdw1SStht5zrZMSCaVTb6GwSwTKXRyAFH0Cw0MSRXDszGVVIHTTE0jS3B0+wYSTPgTHGa5xtqoMiM9x2DBDIxGYzByOxINsJUMi2VrGSTGQUYAUvG2JwxBzYbiJK9H1ZAijOfbBiXwFDO2Ek5m70wX2AmB+yY5TXzHRVwlvZTcKPjrJSGK86J4pCR0SlWWKq2atiXiI8I0RhSBtUIQtyKbDwpqCBEIoJjvR5YnyXu3jlisxIa32AWDbYT9rolR+s1fTCshkRnYFF7VqsTsEoN3a3WeJuovaEdBjbrDcdH99m9dMjDR3cYVit2l7usIvQCuIrD/T3qpiJIj7WOJJGYgxJD2+KdYzO09ENHihrAEMAEDR4rq4PR0noiOGMJbU9IygCh/i3NxBqCMiYkjGZNh4CEgCnnxcBi0RCigHWkNJBS0tJRxVvUD5oJFQaWtScag68rorNEMbRdi1mdQSWYoWfAMgyBZbPHMKz54u98niGuYYhcuXFIGnqMdTTLa2xO7tLFR7z71l2uPfMy9x7dJQ0bTk+OkKGlcRBkzel6UMYMv8vVG1c5Ob3HzZtvsfSWy3uOX/q1X+LoJGK4xHPPXuFf/Rv/Imdnj/jZn/nvef21b+BIXL5+CSueRSNsVmcsrz3HOlreub3m9q27fPozz7G38BjxlAk8ByRsz6o/Lvmna3gYDFVlaZYe4z37lx2Xrx88xpJ9Ie+9TM42RoehMYadRc3Hn684WDQ899JTnN77JLv/rXDt6mXe/NZtzlYPGFaPeHhyguCpfcIlT4+wu7tkL1l2r17i3/nf/Nt865U3uPNfnhDCmn7T8vM//2sM3QZTIuXG0niP957VapWDittsX0IuE4OMzDAFbFrWV92mpj4w/j0LHufPACRGnC8QX5mVGX382DED1XggjVTtj7ElzY4v7Rg/Y3KET6xA2clZNhCz7YCHCbAzXX9iGxoDLOO+jO7VudRBYUoqTvWUlMFCHepl3d4OAjypNJ2MI8w4mIXhRP2xMxap+fWMHm+sAnltDiaL5GD06KA2Wn5gBG9lHSYlQtCSROI0c7aUwQO9bimhGmX6TvuQEBOxHupmgYgwhAFrLYvlkhSVTbGuK6zREkHGGJZmmedgTwpGgcAxlIgHIqIlGqwB7JhxLMYhMSm4t85l4UjaVykZPzmAlTJAKwaMddSVx/ua0AdCUIXKe0tVeWzlkSgMbQ+SFATlHMMQGIaBFCM2B+RDZhhKMYC1WLFEURBZXS1ICbp2IIY0lvwtpW4xylgQYtQgi7VYY3AI3lY4HCEEeukxi4oQA8p8EoEGaz3GCAvXEAeh7waGodeAysjCaRmGgZiUmTAMiTBEwqDvtK+FvYMFdeNJEfpOS08kiUiAfoiEJrLYrTH+gHXbAQZnKsQbutgDCd9YXDKEQedZQrYS5PMkY9LQtuesgilKgCZHzt7HMYUt/rNZULEwiD4xUAiYjLoxYyQSZKR9QOd7ymCQstaaMoaGwuCq15rOgdEkmSQPtYxfzvYfsp0wnjzp9I8HaWfrXZo9z3x9m9siRkqcma1YrZkuMzVoe4/YGiNmMyQxsceOgdZzfZ5dX+2b+fqf2QBmB8yWTA2iPqkVst0e/V1BhOthhTgF+Ax9UEazymUAV+Ts9CQDd0CcwTgIYUAyz27fthiUEVVMog896/Wa5c6SvmsJXatMS0A/gK8W7C0ajBVIjmaxANNhUfaBoQ94X9GlREyBYiUldB2SpIwCaoNN9luKcQQUlPmL0fVXEK0BC1reNIO+TGbZ895pqRg7zZ8SyNV9MYzjbu3E5Ocrh+AZ4kAfBpxX0OkQlD2j8g4IrNcxty+xf7CnbHy+xje7HD+6S5TI/XuC5LG1RpTtKQasEULqEQl457FuwXJnyaY9pm3PcMby6EjovtYTkqGyu7zwwtN84hPPENPAK18duPnOI4Zuw87ekhAilWu4f/+Inf3L3H+w4k73a3zp+Gv89Sv/PnvVkpLs8J3lj1MZ/6es2BuwVYOrPM5X4EJ+bn9C97+QP6JsLbDjJ945rDNcurLHpUsL+vUJL7/8ISKeu3fvsjl9xOnpqeqn6DsaBXxTcWW5g3XwfT/wKa5fvs79Ow+x1ZLaCfcePmIIPRKVcVVBoFoSq+97BWucAwSMPp9z+vu2NvCdZJ70MB0t45o0rUGzU5541fPl2abft+837rhbe6EZNyI9vfj49PeS+KF7c94zy5pb1t2t+xYNfwZ+ktm+LnObrCQ0Fh/b3O+1DX3afj8nO+f8+zveZrZfzseo7N1ljx3LhxuDaJ22+ciOz2L+TCfW1Yl5dnr+E3st5VjmICn1WTpvNHnAWGJS/dd5ZfIpLL0lcdMYo2w93mMMxJDG+0uctddqW4qepY/LZv0rs7u60vk86iNKOrcz236JmAHDDmM1cSNFURVWlGHKWjeVWMwsg8MQc9KI2tqF/T7F6ema/KAUyKM+7BgSudJbPmauaCtouFQCUN0xA/cye+yk9ymI2TqT92iPVtE2uYRdGkuKj2CfXFo7hIj3TtnwY9AydcZinaVuvH4njGW2i+2qtqU+s6qpsJUbS8BZo+XoQbJtqgCqLRZI2eoqBbS0NbvNfG4x+pwv5ELeTxJMz8YfXahTf5bFCF++/F9xXH+bf/ONn6FJ++91i/7YxS33mLPjX8gHUy720Au5kAu5kD+afNcgpcKEZGeGtS30uTIz+LLDwdgSSJo5DTRRJB+fWY5K8BOyAT+5K0fjl8mESpKwYtW3m0qJuewYyO3QEjoGSI8FIQujUYpqXELOBp5lCZW72dzOmKNjVvTazkzMRiXgZ53JwdTczhKMyGndJbC2ZRiPgZTiAclO6aRjKAJKMGFyzCmzTmSFJaU0c3Jnmt6ceVO6naE6IArEFjMHPqGO+HnEwpQyGgYRT+gNZ8cbjNTs7e1xfHRE13VIH0A6rA1YFxmGlraN4BxiA2J6xEQgsl6tWDSw2N+jD4YutNy+e5vLcaA9WyHthpN2wC4bNqcDB4fXuXb9Cm1/xrAZuHT5CsZaKpN48PAhXR9Y7O6y7lv6EKmso/I16349jrKJ6vjQ521zvXrJ5RcqnUc5MKyMDPpMh6FHnME6h6+sZi3VDd45QhyIIVLXlQZYQlBnRjLEFBQABQwpUTWNMjhhSabCWEMXerwzECOrTQLjibT4g4pmuUMMC7rNGcl4mr09rj73MkOEN958k0dH93jFvYJfONqzO0jcIAbW6wA24VyNtYHdg0vsXnqKIUasExgGhuR4+92bPDxd48SxV1/hxz7zk1QSefrGdZ555nle+9oX+cKXfpvLNw7wuw3XL7/MO7cesruGv/233uZgscu1q9f5+MdfgK0qDR98C1GMQkz6JDy8f4RvhUcPzrhxY6GZ5e91Ay/kO8ocqJIs7F5eMJye8Y9+9wvcf3DG//Tf+te482DFK1/5Or/0s3+f+0drqmRxeCq3g3MVn/nMD/LytX1+8J/5DD/1kz/Ob0TPT/7lv8ynv+9jfOm3fot/+Au/znq1IZGwmQknSWIYekCyM7CsmXPHfXHwzhzYMgUa5s7mqT/Tvjf/XDQSkoEm80BBDiXna5XSAXPgzgQIkhE4NTm9p8OK41pkcooqBqJkqpoR2GOsHdmFFDxkwNisE8wDurq2xkJrnyPlBdBUnL8pBxRGR31u/1jaFS2BEwuLxey5jxrJHOxVghGmjM/2WBamJMzEnDTFoDODBgbnDHFIhKDBa3X+utlznu45DFoGTUQdz9rnPG6CgmgqHeMCvtKSIYJxFu8ty92ay5cPaJY7SFKGvxAC3tcM/UDXaQk45yyLRUXlK1xQp3VTdbSbTp3WoGWOYiIZ1VPMAN5p1rKvHHWzJA2RrhtyZbBIkqCBdKOMHaOTX3IQJCUFNqWIoaaqK5L0hBCIwdJ1gomaxRyiZhtXtmLT9YQ+EFMuo2pTZpOymJDnTRLEaikzZy1939N1gTAog+EEBNSxKvjgmPd6Gd8/IfQdoYcwDKS6IpGovGPvYJnLQFnqpqbylqEL9G1HDJEUUwYZKCjK5Yxt55QZq9toX42FZtGw2K3YO1gCcHa64fh4o4AAq4GYrg2sfYdZwt7BkuX+gs2mJ3ZJx8cafGVw3iqbEwHrHM5Ybce59cOWQJwp81jLT2jZRwPoO5JmDALvV9Fg5BTI1BWhhCq3Q8cm67/5P/LyOtkfM//P+aDtFJDZZqibgoxZjT7nQzoXQhw/KMn3k96cLz9jcNoGEM0CrObcbc77rUoQqdgGxV6afT4OjszG6Vz7558XgNL8uqOtZKZnsLUdjfHEyY4b12t5fIzLeY+N+9ZxhgfVt3jo3yJFoaor+gE2m15Z12JPHHplK7NZFxcDTu2zEHWtjqXMibUEq2UVu75FSAy9go+UycgSw6CJBXhCPyAp4ZtKA4NRGZnKsbpPqF3gnCMM/VYQfwqJo2uVMDJGjIFLSZhiU2WAU8z7mcvlv0emDMMYMC4AXWcLT5oZy//IDPCbhgExyjqYJJJCAVRpUk0YeqyFplpgm5q+71ivNyzqJZcuX6HbrDg5PWazWZG4g3cWST2YhHUZOGUEi8dbR9MsaXZ3OTtdEYagQVWb2LQbYoLK1TgnmLDh7u172LoC68EKq80ZpoYhRTANw6aj7+9y9OAOzz59g4O9Stkutt/087PqAymCsoCtz1ZU4tisesVMXFApfWDEYHgufpr76R1effUb3Ln7kI9/5sM888zT3Ln3HF///a9ythpwZsCK4F3N0lfsHV7h2RtPcemKMrPaZPiBH/we9i9fInQbfu3Xf5e79+9p6Yeyn0mi6zvGcsazBXbU1SlQpamF+YiyWH/HnsB8jc8Ai/zZ1gbypEV9Jnqb2Ype9O9xgyo3KoAMvanujTL6+CaAEdvXEjBTxycQxZapZLbPn+9NJpeELuNRvsvtMmNbZctn+MTulrEan4VsH7P1p5l/NILHi02h91VvG2JyUgFjMiSjTViUGgWYjGy7ZNZVc+6+VsE5KW2XQMYYrIWqdjSLOtt2BosjRbUBdBzVd2VEsN7hvJZ6ds4RekMg5JJkJdFExz2WUsLZB6z6dIOhAO0nJlhkSqqcxjbbrPmjFCNBEt5X2YaNYx9TyskqKY3+vZjtkJRUF7BGfbDWQBjpI6ekT0NOaAiRGOXcfGLUnSXbmTIml+pTlaS+UslJoENUdsOqqfCjrSwY45Q1KabMMDUrB5s3fbUhtVUpRrWn8lhab6hrhzFqT3ZdUOa2MQHXMISEtQlXOxZ1TUyJ0Cs7VCnzZt3E/utz+W5E1EaV7Eke57GM762BDNBK41wa2d3+dGzNF/KnQAThzb1f5Ft7v/peN+VC3msxwsYdvdetuJAL+Y5i8Xzv0V/n3uLrBNu+1825kAu5kAv5QMh3D1KS0bbH5hTfeUmJ4gSYBwESs0xjUEM4IwKMUYabhGhtcTI4SXK5AiM57jkLOgpgLTG3x86yxUv7rCuuHIMxLrMjyRg4Ddn4BEY2oXnAQx0KdnTGq59C25dEnUlYq0Ci4jBhGhtl9C3OgjJepTz41A7ycSPbsBiwMpZtgwxMEjXSC6gJcvk6Iyj4RgOupni9YSy1Z0qpmSjbiap2CgKTXQmjr0rUfSVRqYatSVy6vGR9mqgXNZevX+HRozP6zYrjB2dsNi1uuc9hs8uDe7cZ+p7mwLO3PODR+oimWUJSIFjK49Msd/CVZ7U6pWtXuBS01Eu/oRHYnN7ljdV9Qgws6wX77gDvDY8ePCAOPd36lBAcRnqcSQrEygwJIlBXjow/w1hHF4KWkMnOh5J95Z3DSMISFQgWI85olpNxysxQsvtDVDaKlDqMWH0HrOQAIWA9MfQsqwV+t+ZstdK69BKJRgj9gLXCEPWnszXWQtv2DOERuzsDl/b3MU3i4e17PHX1BrXpuPvtr9D291ht7kNKuFNPoMMYYafeIZAwriYlj6sW7O0dcv3Ggq9+9TXWq1NCSMRkkLZmWV/iqRvPcf3yHn17xH//C7/KvdMT7t9/SLRrLl+9zGe+/wf42jfe4M3XvonfnBFWd/n4xz/Gv/Av/DDGNdgUMUzU4X9q/BYClTXsLSuWu0vaNhGHiPUjzO9C3udiiaSzM/7O3/pZfvsLb/LP/pUf4WMffYaPfrxhcxb48tVneXh0Qnt0C7+8xOd+6LN87KWXufHsR0gS+NEf/2GaxZK/+FM/xo/9cz9KvVzwyY98lFe/ecxbb3yZ1ZAQOqxACEHBCDkCXFgCIQc9KQ7m7IQGiqO37FWjA9XM486TE3/6KWOGKxTf/WxOjnvwFMzUdqCshlICErrKj773ccMrTv9pMxeUmc/ZDDBS7yWQneVj30wGBE8BW1AQl2Ge9VsubWeu6kLvn9uSwUIiQiRT4afs5LYlmDkxSRljClnF2O4RlDzzqY6sgtOBU+SgOLKFsWyYAVLQLN0Y3DjeIxtR1DEImULSe59L/pSm5bGMBQSQndhJuUBsBm2JyMiSYa2hbir293exHrpuQ4xmyoLNGpIxlqEPyowlkBqhyuXfrIjOyT6QJBGzUiIpqd6T7+Mrx+Vrlzk4OCD2A2dnHW3bE0KnjBwxYnNbdTjNCJYpzzNGycAtZUt0zlJVFldZxFi6LmCMwTtPCLlUsPV4q4Af7x3GCEkMIZDfJTBJ51gyhqHvM0OIGd8XnQvKlOicV9AgCs5LJA2wWx0v53W8rFeWTlvpfW3QsQ9DS+wN3WZg6DRjOcY0BlhKMMl7R4xC17VInMqcdEPPrq9wVui6wGrV0vdairapqqzvGPo+sbdjcwCioqk965MNfdD5ag2EIIRcgqpZLLACm9WmTGuccxgsQ267ze+edSVItQ1QtPbxd+/9JGPTZk0c31JTvjKzf7NePT/eTCfN9XWb5+zIKSCzi5t5sJYxBlliME+I22wdO4/F6qsu05oxH+7cEVMyNGZr/hgUzutEAZ6dH5/CKjXvb8lLGPu11RimTkhee0Y7ZWp/AVGVdU8Yl/MJECdTM0t7ShtG/NsT1KKxtee+E4GH1Vu8cvj3qBDMYOkGqBsLxhGHjtVZS5gxI6QQSVFwpqKpGkK/1jnuHN0QEecRgaqq8j6lIKQhBowVXLI4A7Hf8KhbYTDUvkKM6u3rrqdrO/qhw0YDEpVNAgUAQWHfteNkUKCsGovOu6mMTR44k5+5ZJvOWjsmuSSRzI6V54y1GNFgawnm6gNR+9MKeF/hbUXbtUgCbx2S9wC1idMYHM3aAW3bMXQDi0WjzBR9xNbC6cl9us0GY3pgwAsQXU4UAm8tYiPGVhhXkYwGOh09YVjnPUdLYkuqaNyCa9ef4uBgwcHBDvcePOTO/Qf0fUcIgf29A55+9jnu3rnP6viUSgKVq3j5Qy/x/AvXefbke6k2FbPiRn+qpLKGvd0FFk9MqjNUbtIFL+T9JVuMnGii24unP8qtNyOvv1PziZcDn7r+DF31kJ164NrhVeKNgaOHliEGXvroR/jss9/H/uI6lzYfZa++zOXNkvvLV7n+kZc4qe/Qx8BHPv1p0quvcvToDkPqRv1QdaDZRsWkuzNr2XzuzPeB7bV3Ypssi/eWOmAYGU8nJiAz+aMo+j2j7vcHDx7jPjhvsGQ9vfy05XrllGIjzDbZ8fRZssII3pHpyuVWE4Rr0k91n7dbOv7jg3CusefXocmAmMZjfnezfeDjV549J8kMrDPbQ8u3MbMJdR+wdqKK37LpzukXgtqaRiZW3q0mm8Jqm9l6RJkci21ZrquV1BRYMwxB7Zy8PzmvDHCFoX3ULXJp2yRC5RzNcsFyucAYQxgCQ2EETUFt5dL3PI6FNX/SYdROTpl1qNhFzqntlwTCgIKs8nSx1lF5r/tetsOLaqKMSzpfUrknJal023YWNMHTe5MZXs041VIZK1G7wjoLxiIYvLcjaJq8Fw+D6iwppAyumttNBiPTZ6X8W3kWxX+pel5i6IPaIqJzxVpDSiaz2mqbxCgro819jkb7KaKl8UATLq1R8FjxA9jMOluYfkd9z05jc75c4fvYnLiQP0OiAKVf5u+89DcZ7Oa9bs6FvA/kY6c/RZ123+tmXMiFPFEMhp+4++/zwvpH+PrBz/Hu8gsMdsOt5Vdg1Fq25Xr7KZbxEp88+SvsDU8x2DW/f+nv0rkT3t35giY5XMiFXMiF/CmWPxJIycyyQSSl7Ng2ZBZdFcNo1BXDJpJtH5OX4+xQV0PTjAZSAcsok3B24qfCVKAGrsTMgsBk3I221OhkNyRhpLu1M8MLSkAnG+xo47ac95IDdHpH7CxrP2GwmYa/ZEZDvo8xY5mQ3Bwt52JyezFbRimipUuM1YBCksLexPTZ7HrqlMhGbM4WkpzpbDKQqQQwkmgpPJuDu1LGIfsJUsp0ytZoQF0kO4wyqCpBPyRiL/SDwYilrgx1bTnY26N1iUf3B5IJnB4/gDjQbo5JyXF2NrB/sKCqHXHocY3l4cmGZQQkUjkYwobKVCCGYQBrPHt7O7iuY9Vv2IRE7RtMbVifrTAukRCOTs/oYsR0gRAiAnQhggvKvtAFkrXKZGAMLukYe+dolg3rtiWlRO09oIFRyc/P+wpnIQ09ADEMGgQXdY44Z3G2ZghoxrEkkmQGBK+ODecrfFOTnKFdd1w6OES84+47d0hxg6sU4CSStISgBEJ0rNYbdpZLLt14lj7dR5zwyje+TGxbEgNeIo2vafYOWQ0daejZaXZ40J5hEly6cZXNpuPdW7fph7vEvsUmR0Niubtkf+8qf+FzP8Jf/Mt/kRvPHrKzrPj5X/ltfu0ffZF2c4I3lrjcZ7m3wzNXrnMSj/jIp17m+o09fvzP/whXruwiGIyLmYo9Yf7QEg0fDDHonG+M4fBgl3XvME2FxJx1Zqr3uokX8gQ5X+Yr4DleOQ72nuMHf+gSP/bZ72d3seCV197h2esH/M1//V/mrZvv8HN//+dYPH2Vf+9//+/yyWeugfWcdT3LxQInYJc1XgzBGD76w5/kf/kf/Fv8f/7Wf8bvfOHX6TstO2nG+2swvDgGIZcqkxJAVCdhShNb0BSEZ9wMxr2IGVgIxmCCc073Xebl43KQgbRl52wBmCjgBc04LaDL0v6JYYnZPqvj6QuXf+7lCGYqTk0zBQWMyRuYEeKsvJ1eK19hPD+Nn5f9twBoNDCcGWSKN5pyjp3H9/Uztx1oATT4m7YNv/NjApzLZjYgStOvzE+SQUcpPwOjmboiRDLQVSY2Rh1LxhIFpYPzsIeIQIwkU8AHOTPXTPt6CBETLMY4nHPqCDeOvgt0XZ/BcYHQRTZnG7CCryuaumJZ1VSVz3xDgkuOMET6XjOQrTP42nLp8iGXLl+i8h5xHoxnubPEkGjbDUePHtH3A846sBDLc8g6oDUW6zxV5el6ZYjQchICBOqqASzDmEVs8I1nuajw1mJMLrMUBkqZX5PAOAVlxSQ5uCKkUSssT1+BfkMYcFVDXdf4HNDohoGIAriM1dJIi90GV9UYY2gaT4yJvtMSjTEGUoQUZAQnxczqpe+LJcVE14U8XwzeWIzTgLNJgnXKlrLZdMoIk1Jm2lKAVkoQ+sh61SEpUe/ULPJzqpwleU/X9vSbgZjZPUsZqVJW0HqPdwramJcXLpnekpKCmMyUoQ9mBPi/X8XMlrmZaTF9n/XbEpEbA2tM5dzK3zDt47rEypaNMK8IN1uCy/IyBXbNjGGCYk+wBejR0mzlGqpAZuLW7ZjnjLlpvMX4t4zlZIvdUQ6S8QQZv9s+d+pDwZnmGNgsEDhbX4XJRhvH0czmEbMLn+tj6f+sraXb85hxmn1eLiKznxtzyheWf5d1d0oIZKOw2HtGGVjzw+i7TdaRA4Kh61ui2JwQEMBYVpuOsNZ92DvLEIW6rsEYvKvBKdg8di2x77QEoLVjokKMypoWk9oJcRY8jJKorL5PkgOJZU+OsTCvamkWiwKPrMkMHmbE1U7MSaYw0k3fE8v76RAMYWR10mBlYfYTDPWywTYVfdexbJYkA6ePTkmxU2CwPniUwUmwrmaxWHK4v8/u4SVu375N23Wsj3uM6LqHgHWO5e4+IQWGrqPyFf2mhzjQVDVDiPRtp/bOACSDt57DK4c01Q4fe/klXvrIc/g6A/nfcRw9XJEksNhZMAQ4W51ROcOVy3u88MzT7OxVXLq0jzWW6/5ZqspNE2/r5flgS/EPOOtY9wlb+Wybz5iLL+R9LQL0wfOs+V7+xRufYNfUPHN8wO17N3n+tOUvX2voLnW89vU3OVuv+PjVT/DJSx+nkgqa7INaG17Y/BDJRF7b+wW+ufsbfPSjz7I6echm85C0GUgpjAwtBQlSfE+wrUcXvV3K949tHpO/bJutdQbNyDYJkteqjNAtdsGMiGbU3QtDuJjpmPLamtm/GLauUdiKxiQ7KW0pq9Vctu0F3VfTuL8VcOfUjRl14ZbNVNhcp2bNOrO1t8rs63EYn6A3nf9k1v35ljcBhUZbh9l9pyPLvo0pekXKz/QcM9Vjv891D9nu9tZBCmyBwsCk+6fNJaolCX3fKzAuA+QUwKQoaO+d+shyG61zVK5CREYAkrUmM41X1HWltmkG52gyRA1S0bUtbS5zXBInx/lqciJrBs5M5dscSFKdGJ1HzuX9OIHzWnLaObUKUkr0fa9jWCagTM+kgOTGiW2K/jkpV0K2tbM9EWOEbBMou6wmPDjv8M6PYy0J+jCozTCZSvnRzeddSUqVcToWoFoS3RmK3RMGBTxJUqVSL6EJHjElwhBoU8IOWprP5+u4nNjT92FiP4ppxjI7rSdJCgPUTLkbxwqKrTXi/p5gQ1/IhfxJy0l1k7/z4t/k1N9+r5tyIe8DMWJ5evO9f2riERfyp1MqWfDR05/kI6f/HADBdDxs3tz298/kcv8iddoDoKTcfe7B3ySanp979v/Ar1//f/xpMpkv5EIu5EIek+8apGRkTtUMYEnF0IatIEKSDDSiMAdlAI9MBTuAqWxaNqZSLmcjaHmZ8nu5P2QbswCCmDlD8o2tM6NjRB0PhX1ichQUZ3AB5MDkMJAc2ZCx7coqNBmSIDbHIzIAKafyjA4fa8Dl7HaTgUtiMtN7DhZIAUrl/huXHUtG25pkZlTncS5lGcxk86phjRq7SkmsGUTFGRBjdqI7QyxjWYJ95eGKyYwW6jgYIpytAnfudEgwdOsIIRLNQNsFjGgNrL39Q2IIxM3AcuE5uHSJ01XPEDvu3HtAZSusEbyHPp7QPjqidjU7i136PnDpueua8bvcJbodrj57g5M7t4n9mn4IeFOx6TsqMVSN1YBCSqQUNAidogb6jOCdpe+jPopCzWwg5bIOYjRLyTnP7qKGELQMjhHaPhATOOOUjQHBmcJgouMc+o7kfa7nZ4n5WUjSGoZWwBuonePw6lWumENWJysOrlwhGCGsAifHtwk2KP2y9xANVVXxwsuf4Hs/8/1cvbTD7uWr/PTP/Ax33rmFrxqSJFarDX3UCXS4t2ARLadHLRFwZofYrTm6c5chCaREfwec22G5bGjqhp/6H/6L2LjLT37uk3zvZ58nWksfEz/x45/l8t41Xn/tNZZXrvD62w/5/O+8iosrnrp+lR/+Sz/OlesLTrqB9s4Jzz57KTOaTC/elJf2wdWWioszBkGC49FxR0iJuqr5oFVo2AJrjGs1s8/Mdzy+eF7nDtjHz93Oqt0Goszdtk/wnj5ZF/+DD/sO5z7JYWZMJMTAX/hzH2f3ypL93QVOhMsHS567dpX1owVXP/QUz1x/mmdfusrLz9zA1RVWhEs7zbifDBhW3cBq1fLg9k2+9tu/zlvvfBObEaQpZBabWIIAZqv/xUldMpVBg8RWRMEgxtD3AyFo8FKZeDSLVUEGaYpyYTDOgjWEWfkn52b72mw/oOxbJgdBM5PSFNU3Y9C77K2lRFu5noguc1N5hgzSTTLtIGMEQMY9Nua2j/cfAVDTNVKKWipnnJtmljlscnvcCFQa+5ZKtioKaDGMIIx5ebjxvHNzZV6ezeY1rIA6JAkxsyKNQDOm0lpilLHGjg7mNO6VKUHfBw0AGINkBo5xzCmBnTJyCSMWl4PLmQ8R7y3eVUiCoY9YK9SNyyAchzOGMPQEiaQYlE0pQZJIiBFvDcFYxAhDCCx3Gg4ODokhcnp8pqBarwwiMUUePTqm7wbSkIgkFouaqpR6MA4jcSylMH/96rrCGtV1hmEYPzNGx8EMlr7vqGrHcuk0s1hgZ8ext7ek9hUxJE5OTun7jiHmyWYkZw1noEBMOu+dBqIcVtmYMj1Ms2zY3V1SVZWWS8j/S4IwBOrGM8RAisLh3g5NXbFebxj6SIyGdjOAqK4WYwYphTm4bgZ8G98Jh/MOjOQAtKGuaoY+sDptxxLCBsMwRKz1mmkdYLPu6LoeOT7jYHdfdV8rLBYVoYuk2JOiAJEhpRH1UUolppSBBcZkRsekbC+iekoBNKUc1Ji/T+9LkSf+OgZq5+vTPIA4j6ecP3c8lhyoMmMoLJcwZvqgBF7yP+P9vtP3ZSma39/MjilBp9IQs3WZ7YDm2Cgoi7HMD5y/dOV/O43D9vI2Z8KY9cFuX6rEq2QcT9kql3e+jSa3T5CJzVa2DypjIPn4rd1/9mUSeM19nncf3cM7SxgiJCGh+7W3HkFYLJaY1hDsgPeWql6w6TpSDPTdAAgmA0SRwDAkrHFYakKI7CwrohvwxpKMxXpHHAyRpKVQvKHre5yDqvJqI6VACoOOhwjOgs3FuVOMTKy3sxFKQhAFU7oM1pQUc+sEchudLcZa2afKb6KA5WSnD7MuLSkqACrfzhtlT/LW0liLbxbgLB7L2ckjBgkYY3P51YS3Fc8+9yLPPP0Mfb+hD0Htbyx1VWmAMwpRUDBnu8aSkBgIRpMwUujpVqvMxAeb1tI0S3YXCwTLhz7ycYgVzzx7jcVSWSW6EHjm6avs7+5z/95Dqt0dHp32vPv2OzgT2NlpSN7TRuHm3WMO4hUu1x9h7PzWDGT22QdT9FUxGBwpRULfZ/qLD1bCw/YTedydfh5w9dgRT7InzPav2/cobwjnFpTZB2b+xXdueFm75TtOq+nu5/tRWlFZw/Vru+zsXkZQEMAz1Qs8dRlWJ2sOd2sOPvEsO3XFYlljMwsaAs5My3fXCe3JJd403+LW2zf59tvvEDLQI0UztiBN2QrMV51iU5TOFJBLVVU0dU3fB4ZQkmps1huUHafwy5TrTHvoBGIqoJ6yxo973WxvGJl/8maXtf/t/bOMplFdJY1+JWaJFLPSveOWO18Dpt+LCTCyvk53GMd2+7nNJ9fc5tkGbel+PuvcY9fXz8ZECTM7dN7WUTnZlpJ8MG/VZHdt9zSNYKY8TLkMsJuX1B7n/qR0zIFfJUli/NpaBaJRkjHVznG5fv3IzBtjBsWniSExJWKEYDS5L+XG1VWNd466Vlu12HspJdbrjervmRXQV14BM4AkwVtlHUxFryXrS0bLn6VU2Jq0jdaonWKMMhG6XA6bnCBgbcJ5ZTMyWIZeS1YX5iEMI1uTMPNZZAeqNUZ9pnldcd5TV5XuozESsi0us+ceQoQYqKTG5rLKMUVNdIiyxXqZkmQm9fKsZs89/2Lzvm0M2JL0YiwpymjfKRuUJs9IKqWdhSh6Pxkizka89xgjOGcw4hmMgqmhrCl55uaEpZRmfgKKXji1X3JDx0+MYTahL+RC3hMRhM9f+U85qr/9QVcRL+SPSa52H+GTJ3/lvW7Gn5ikfoP0LabZea+bciH/GFL0x0oWPNV++o98npeGj5z+JQUpXciFXMiF/CmW7xqkRFQATMo1yBHBJkO0WnbNimbMJ6POrGIIq5/AEBMarLP6fQkAphx5KAZ2jBrAVFBQNqYlMwcx8+nKZISWDxMGCRrXguwTLIqs0Zhh8VuIpHHRt6mUUCsBA9kKSAC5nE/JmBX07MxiJNP/xaGRRB3WJo9XyqVf5l6VUkhK0rywBWPpO4NsUfGHmLS8ByiIhgLoKmxKmS66BAfQ5wJmLLU2jp96R/Q4NznqoiSGaLl9t+XOOy1Xrxwo9XBIiHG0fYevLNL3eHEcHlzD+yUpDQiJqjqiW5+yXgvr9owUe0IfaIxhEwJdEHZ3Dklp4PjRQ0K3pqs8pIF7b3fKpuEsKSTsrudsc8YuNWCIoSVKRxw2GuQVGTPk15sNQz/k+uuS55vgKoexntRH2k2Hrxu8T1hJua9DpmeOUAWMN/imziWb1IESiIhVBpMUIt5XCk7KE9GQcNZTuQZs4OTkCIfjcHdJt26pm12+7/s/xVd/74yT9gRxDkkQCTR+yfPPPcPh5V1eee1V7ty5x727D7hx7QrXnnqawXvefO0N2ltvsjnrefvNN3FWy0stk1c3uK9hCMQw4GxDEs+VG3t8+PnnSWaB9A21cTz/8tNEq6X3bt6+T2UaXv7wi3SrDTtPXWL3xvP8d3//v2O5e8Cd+yf88q/8Fkenp1RVzdOH+/yrf+MvsLvjQWyZ7NPL9UEWyWWYKkezU7PTK2AtDkJTf5AgSk+S8pzmwaDHj8mrBGAQsWzXiZFzv5fvctk/mV9J/1VHvYApoBGDGVe1OcuNwRBBFGCBchNQWAf0XDuWDf2DMtGdsbz0wiW8AeOmufmhZ65ytuqprl7m2YOGT7/4ElWdHYAY3Zfy2pgQYhR+/+vf5ne+9Pt88R/9Im+98S36oVUgibekqOwH1kpmVFOgAOiaM+9dyURsljW7uwtu3LhEDMKjhyvO1i0xBhSLUWGMYxgKLb9Ss9uc/TovJeS9Vyd7moIPUjaovM4Xunwhs69o7dTRYWqwRCmlTwvwIY5MLCFMDBE6J7ad7tO8mjk3hbHEnMmU+NOjKqwgRtn7Rsf+BBiyhpHJyBnNGE3o/mfLHpfBP6Zs5vk61tqR6bHoFFtzLJc5yGir8nByMFjyzJoAV2OH8hwMQwRfIVGIQSgoCBlrvAHGkKw6lEtJ1RJKMc7grBvL2Tlv2NlrqHyleoVXoI+CbIUQA10X2FQtddVo0EkiIQSGPpKSgZQUMxsT61VLrCNVXeOaBts0mMaxu79kd3+Xk+NTVpuOlAKbVUuIZ8QQiUHLohEjrSouOFexu+PZ9C0hDrm8ryHhMvOj6j4pafka67T8obEKJDIJrHG4xlMvlwxdT0qRaBKb2EEUfVYpEYfhcWBZ1qEkJsiOdz8yZinQuKkr4hDp256+12u4ShnHnHd07aAACOfpziLW6bOKMWGsx4olDgODakmEQb+zzuAQHd8SrMNSVS7P6cz6FPWZbtYD7VroOy2tgGhp2BgGuk3MYPqItZrxLCKEzQmLZUOzdFSVw9dey0ykmANpei1few0iDT0GwVjHtOaqvj0F2JR9K/8KKPPT+1YkxywNY8x5ZCraPuwxcNEEENIPLNsnlXVqLGXGueXgXGRzjHnn645gIHIgbfZ5afcYDCz2RGlN2UcKkNJs3+7crcdzzvfbzE8wsyWLqS2zIQGKzbD9YWGutXm7nkpOT9n7pZ1lvGZmjN4zb/c5nvdYn8emlu9mwBxBWJszXufzhCFS+4q6yowJVAypow8pg2IdTbOL8zUhdCRJLDHIMNALbIaN2kRDwBtLICmLWFUhwOnpMZICg1H2se5hi/c+lzZJ+LpiCD3OOIYwEIaeJBG15hjBlyJCNygzgu6hMvav2CckDRLGzMaa668QM0sTIqQUcMbiKz8CnmwuHZckB0GT2hiF6baUbFSGih2SSXR9i8Gxu6wVmBUdl65cYbM+JQ6D7lwpjUHFtl1x6867HJ8c53J2gWVds7O7wC+W3Ll1Gyu69nchUOiykmiA1hqDw5IkYV2VWRosy+UOVbNH3xp2F7DYrdXOTXD8aI3B0veGoY8MckIcwAk0y0sM/YZ3377J2XpD45f8uP8J3MtLtObcfBa/j9es71byc0hJMA68twyrE8J6Rd1ceq9b908uf9Cjmi9wRSf+Q5/pefviDzm67Bff4Qpqu8zvO20goy2iBspja9i2GGoP9eFiq221s6pj7i+pvGVh3Viydzxq1LP170274ebtu3z19DWOjx4iJimAWRKj8ZF9PWWdHTeH8c7ZP5TXpZ3dBTs7Fd47NhswrdojuhZoqWZEIYpF9zUmM6vCuImNrEN5US++qFKmbUJalA2Y0QbbBqdOm+L0uYx7TRmYsQTq7OlsS35WsyMet/lkbPt4/xF9Nb/uzD4twKq8SZpxQ8sHl/EofSjnT5ec7i0TqGtkI5Sty8wAKlNby+nKHppLYmcg0paSIoyAnjlAqbRJk1Ds+OyMNTTLirryI3t6Ei35VWyUlITQxbwf2gxiy8AhKcxT+Z5RGNKAVAoa8nVFVddaWsxYXKslomMufa1gJRnbnEIkmQlw570bmVLVljRjIoghs8nn52PYZuMtTEqCwVceX0HM5biHCHHosHm+h1B0462FSJ+BAJKyfpz9EHnMRYS+Hyhl+UQ0sdM5bVsBHSF6v84NCrWTUsbQ5ueqBnB5pqVU+xzLJlKSeBjbqhUDGBOVJIOWtJ2F1TcQhmmvLMk2gUishUVT5cSkqH7iCIXdsYChRFAC+dF0NmVClmmX57AmFhWldwQnXsiFvIdy6m/xO9f+k5nRdiF/lsWlmp+4+++xG66/1035E5Nwcp9w+oD6AqR0IRdyIRdyIX+K5bsHKY2SAwPWahATcuCgeK3N6DhIUkqITSxMpGKYZgeRZfJ4C/jMnmRywAyEmB0mky9Ttgx6mVmAKWlAVnLDSqZMARdNcKDJkZIy8446cNR6K8HlcozJQUkFHCkwxRibAVUTxTNM/R/bk8dNcjuKCy3J1JYxqFAcHdn4RbQcgiTJrFP6CCR/Z8r1BDSDTjI4S8b7O6sgqUjKpW1kChKLtqCUqksiDCEx9JGQWrp2ye5yweH+LiergYenLfduH3HpyiF715+D2GMf3uf07CGnmxXEwKV6F9tHOjYsd3boWbNOnuXSMwyRuvFY23By8pAwdGDAVZ4QDLv7e9SNxbkENrHY28V4xxA2xL4n9C0mO/NjjKQMMOn7HomRYJT5yvkMa4iRkBLOGWwUDJG23SAhImjZGS3fZAkhsLO7B9bQtmtSjHhrqauGEBNx0Oxpk9Qh4X2Fcw6RRONrrlx/kXZYs+nPCNGws3PA9f3rOLfH3tUDzDe+AesTJEYEdTCFoedrX/sKr7/xCpt2Q9f1tG3P22ePOFkfs3v5CscP71JZIcYeYxr6GDERUjwjpoC3hsYuqPwOB5euce1wn00/sO4arjz1Ms+++Gk++31X2Lm8oOuFzSpydpQIYcNbNzfcvnPCg1df5e7dY6rWcP25l1gd3eXs0Rn7hzt86Pnn+NTHnqeqyQEdiyEhxlJYuT6IMndkDV3i9q1jTlcti2aXd9+6yWde3EX79kGikZ2cxzOX0+ybJ4gU4KkrfzKW1hrPnDv+5sAtmf0/ugNzkNPoNUtbxuhxbpMIxhTmoHwPyrtBnmfT9bO77Mn9MLpmVn4CvTC2Y2Bnx7K7U2FiYr1uqardcXQiCWMi6g51xNDyzde/witf/B0eHj0k+ICNhjgE+r7XtSCWrM/sZC7sbVKckmVdj0BiuVzy7IvXuHRlR8Ede47ds5rTkw3r047QB4SE9QKplKWJ2YnNuNaP/TL5f023zPtbLt1pDNYq44s6P+005OUpmZIZnfe0DFCaGKryLiX5fDuxIpWnMO/r1qPIx5dATdEP1DGaAVf5/uqM1yzfQoU/lqwSGQExExtjARBPc1rZCnNpsTIT51mhksbZbGC8/ry83WNvh2F0LhcJQ1DdIusUY6kdvcvoWGf2nMbxyvqLMYa68Vy+usfVpw7Y29uhziXa+k3g7HjNarXCRkPfC6EfGLqARAjDoGyRIqo4eYd1JTNWyx0YZzi8cpmDSwfs7C7x1tOvO9arDc4GkEQMulcqIwnK3jQGM3S1qytPhVMgegpgE82yZqepiSGx6TRrPwmkISCo07yqXXnpAKhqh3c1fRtYn20IMSBDpHa1ljBkGIMCiJnNP9XBVD80hKD3cM4Rh8gwDBSgVIwaSKkWFuez9pgMVjwhJoZNi688VrRUhXMa1FGmGDPqriVAYp0bA47KTqQggCgZ8JfKfIgcH62pnFNAnSQNQORrKstiCVDZzAZjqGrHYmdBs1iQYsDXFl9Z+j6AaJk6Y7TPYQgKWKgqbYsIaYiYalbyxUJVygJKAiLGGfz7nLRj/sbp6zG9SzAF+cZP5svMtglwPoo4XqmUPzYw6c7lbzP9lHMNKnbC1r1zkGeGjdwOmOdTpqBo3rlm152vNo/1yZz7zMz+z/cS0SSECQc0heK3kiDOjcc0lGYWkyrB6fOHm8fOAkb2CZ3fee6VmnDFvpNpj5b89c3FlxjklGEd2LQDy6amri3dEIkh0K56FssFO3s7SArEVYeRRN9tCMNAYz3OOrytsFbwxrBpO7yvdT1JEe8tfa97R9JonwZhU6VrEom2W+PrRhNSUiIlDeiXQG8sZUalBOdzoNgVnRckxdGuNdn2i2EY94QCUCo2oPeVDnkOPKoelQOPqD4dZyXN1YQ2OOtplgcIiSG1DH3C+wVXr13BuwZb1zw6OaZ/1CNx0r8kRk6Ojzg5eYR1jhgHUgycrlraboNxnm7TTuXOjdp8ViyJODG5GHCmZnd5wN7uDhiD8w1BPAeXLvPiC/vY2jFEYbMachnsyMOTNck4Vo9OODtZ0RjHwc4+/cZRW+GTH/0wP+L+Gp9Mfx7vzs0xM387Pngyf4eGLrJe9bRdoK52aFcbZV7+zhrs+1q2LYjc06nu1JNl9v3cEtnCI48L5/ZxusDP15+5NXK+TNgT7jteb2vlKyvTpKMUyr0n9MOY7fWP2X2NCE0uVViS6maHUcp3GVEbZn16wrsPX8H6hPeOfhOQKISYNEmqgAFsLl81srBMi3/xXhkEa6FpPPWiwjrD0jdUC8/QBdbrnqGbyj2ZUa+abRBFhzXbY1/Gq9iPRWcvG8UcqDD6xkqny2ucL7YFril6e17/QLe37gABAABJREFUxrYU5MTYtPlzftIzMVsTyJSGzJ6xMAFVDDLu2eV+Zn6tcobZvttW+b1zDRkfy3wey9ajyk0aZ/L479a9ZT7e+fuRMXHaQ0cWKZnGU++T57E1NHXFzl7DcqmlhEvfQp9YnW3ouwFjBZPLCMeke9U0cgLWZptGRl0jxYivPU1TUzc11hhCLvc22oYUUL+MusSYQJrnUChzyeYkKISqcjR1BQm6PhBCGMdPx8Lg8ztmTGYmRolXk9HECAlkp6mdgcWKQpMf3kw5Kx9rm2Uc2xBCLo83Aa1MZkLVowWLmwGgckJLTFoqdrzNtj3x+HtW7G2ZmIlnfvIQJkarUceaTbKpPK/J4DBG21xyX6xzOCcMxMzOpFMmxsm29t5OgOnMFqa2jtosxmrSV4hCkqj+Av/B27cu5E+PCMLnr/5nHFfvvNdNuZD3gfjU8M/f+g/5kQf/8w+kTn0hF/KPKw+bb77XTbiQC7mQC/mnLn80kNLM0EpJpnJtogHHEqRNaCkMGb3uWYrxnq18gwZ3R+OVyV+hd5m8HilnmuglTXYMFcN95tiwZjSUyYafm5dqyWnQxmbGCUNxJ2FyvxKl7Fwp+ZJDFiJInDt8pr4IJaw7Zc2IqLOj8i5TAZvsOMpWoyE7bKYogfo2Stk3ZZESzHh+CRTEWMBeep9k1IVlRwdTbp7JAQmj/bPjM5kYsSQZoqDPwnpM0vIA5OyiytWE1FI1ht2lo60rYtvSu4FAx1l7RGhPSZszVpsOWewSa0e93KVyQrVvOdu0OGfph57T0yMWTc3lK4c8fPSQxWKJkFg9OGIIHYeX9hBruHnnJoeHB5oRmAbWmxbBaNk30fIsIcQxe1liJBmU9WjQkgnOWIw3SIx4Z4lxIOaMrySZAQLBmqTsFe0AVgO1UUpmcpup1CGkQMplJkLQrCdrDKZxGDw3nnqZdbjPrbfusLd/lc/+8PfiTY3fv8q905t86Xc3nD48hpxRho+cnR4RJHLt2jViPyAyMMSB+w/ucOfOLSQkqgoWix360INYmnqHS5f3OFutGUIiEdn3C27sP82HP/QSn/7eT7B3eMCv/86Xeffdb/Dicx/lxjP7JGv56lv3sQJ3b9/m27dO+MTHP8nirUOuH7bs7nie/+gLyPolDnYNH/n+Z9nfqdBqhEP2G0vOln+CB+8DKmHo2d1b0kfhqStX2fEG4gewh/N3f/ITUl77J/bFzI8TlFeuAJFywbsxGJnQAlXqAFYnf+EzKytgcaoWh2UikvcLGAN+2iinDsbRAa7XS9ll7hC03mYJFD6+ZU3lboqbfRtcYqnG0pyDA3fYkEykmkUXyhUM4LHs7e7zuc/9EF/98pIvffErnLYP6YfiYNe7uMqys2ho25a+iwqMcHZ0BKqT3OKsxfuK1WoDLuo+aQ2+NjRNxeZsUEamMo55rJ3LTlLnlFo+xq3+CuTyk9mZaaZAQ6H3L85mgxn3C72GZmoqfXx+0pn+Y/SvS3bwZxCZzfvWvERE+TmVSTN5T0lYn0t0MQe4KaV9uc/4XUy5HKmMbBLj1DRABlopSKjMvqxvJC0zoHqEAie3ywEaBRnnkjzbQQom8NU8YCNQip2Vcngp6rOzuTyZr5zuxSnhrPIiankGbXuMMW/1U3tCiBir2fM7ew0HV5YsmwpfVVgcj+6vePO1gb7r8TaBKKNFlIQ1gvUGScrW5Lyjqj3OOfquzw58g/OwaGqcsZydnnHv1j3Wp2si0NQVi8WCFBPtpqXreyQDchKZqdFZQooUFi6cZ3e/5vBwj51qwaP7p6y7M2IpbeuttqWpWOxoeTqRPG42c6PZlEvPKihgCAP90OcM+6ws5axj610GnZW5NM03ibksgrVTyUMiSSIp2rGCkveOZlEpc5KHvZ0d+vXA6fGaGJShyxl9XwsbmjUWI7lkRWYP0VILyq6mAbakOgVWWVgShAyyKvOlBDFESulDN84xay0JOF2tSSaxu9NQNzXOdfmdTJig2c8x5rJQEaoKfOUxDsyyonIeITIMPZCoXcUwWMIQECxNY3HV+3vnmu9HKZEZu5iYlUwuCiMZVH8uTle2q8di5bP97ok3Y4phjR/P9sAxoDk7+DwLKucOmbft/GcFU/jYBjy77lbstdg4JcC19b3Z2su345YTuOZczDXbIudinbMulOsZMwUYzey6hXWiAJTGz8cjty8m6P2CG3i3+T3644EKwZEUfJcEXzt293Z0nxNhc3aGmEQfBkLXIjGAMUTvSBIgWqq6AqIyAOUAXNe1eO/Y29tltVprSRuEs7Mz2nYAGrCWtuuoY8Bl1pMUJ8ablMcoxcIIEZXdyFliMpnfUdn+rLO5/LmCe8szVl0njz+CxEjb9XpOSZpBprI3Ukqx5L1VzGh7JhHC0LGzf4CNMLRn1M2Sy1e1hKetFly+coUQelanp6SoAFQxliH0JIS9ao9kEsEEMNAPPdK2+nycwbmalAaMcfiq4eBQy3D3fURiT20rdhe7PPPsszz97HUwlm+8/i3eeus1us0VPvyR5/GLmtuPThi6gdXpKTE5bly7QQyOy5eeZm/Pc3B5iUtC4yo+lX6Kl9afU/ty/kJ8NyW83u8yWwC8h+VuDcaws1xQO5v3kA9u/86D0Z9sUZxf4AAKa/WYmjY7JGVdTlcjnRXFfnjyWCUR+hiV1SXfc/vISacv00rTk2Zsc8gIKP6O/TTFppjW4qntmqQXjaEjQYwsTTUyhKvWUy5j2Ns74OnP7tINn+L3vvQqg0mE1GoyAShrJFo6N6VIkAkssXVnA4jBu4q+D4QURrD8EAKkslaXclaTnW5GMGkGHY1AnAmkcx4QI6itMNp04zMsncvnZT2c2fnl2rORPQfyndle86EdT8k7lGSrbtbGOQiGrO9v2UXj7zK2e6b4z5uU259/NcwAToyN3bYm8qlSEh3PvRdm+jHu03nTFmNmACYZQSQUEI4lJ4vMZqoUO24CkJZ9V/fZREwRayxVVeErN5ZasyaxXuf5K0wblUkK1jcGE7P/DwXeeK82dgxhKo2NbnJ9P3B2sqJve6IktW0rr2WXU8psRJqwkGSWDDLudcoIWlWexaKm9p6uHZA+TPMAME7Hw/mi56v9VdYPa6cJk0QTREJU8NUcYG6s7tdQElhlHFPKmjSjmDcYBUGJEENALVp9/i6zqWKExaLGiuPsdK0MVRm0ZXN56pEVquit+XeDzf7LMuEyeGtcabK+WAai/Bj1vO31qiTVxpjYbFrqupSty5M6v3Ml70ffk8woawzWmhGwpK+tzXqV2plqwxqsM/gLkNKFvIfS2VO+cPVvzXTFC/mzKi7V/PO3/kN+/O6/i/3H4Vq4kAv5gIogvLH3ix9kU/JCLuRCLuS7ku96d08pKbvDLAIwmolJM0mKB6gYfWPCVBpjqbnC2IzJx2TmJNHzi3vcZm/G5HyYgX+YwE3kzBJJGViUcr1usSOtrxrI2ZOcIwcpOxg0iaQYqDk4wJQRX8BRxcgvTm1gm967iEFBPqVfxqoDQHJWd3YUmJLJqn/iXBmsbFRGUUeyMUjMLE+GiS3CZAaNzDwVC3tSBmmVwEYBUKm9qqV2THbETAZwLhWQLJIMm3Xkwd0H7BkI7TF3To9p9msODvfZ2dlj7yOHIAMP79+j6wecr1hJYjMEFvsH1IsFphM27Yadg8vs7lZ0w8Dp6TF15Tg7PaFra1588QW6EHKpA23ken2MMQPGLiAljh88YNnUHOzvsagWWpZNhLbrFGyE0k3HqMHFqnLEEDVrzOoD9lQYZ0d3g3OGaHSeaJBPhyLGxNlqrUHe2msGWAgMISiDQYiIUYeEM+qICSHgvOe0WxMevk20kU17jBXHadfx4PSUo6Mj2vBN1o/OuHJwnWHd065P9FxrCe0KEcNq1YOpMcaBS0gUUlD2jD44nHUsq5rlzi713iVe+MizhA7u3Tnm0b1bHNY7fOojL/Av/E/+JcQ4Htw75qmnn+KLv/ubvP3Ga/yln/xhrj93gy9++VvcvXmH1aMjbjz7Im+8dpPT0zM++uGX+djHDvnYxw9YGq9z2AcgaQAXr06Mx72JH3jZ2fF0RjDGs9PU7O9UbNrArtQfSGVwcuHG0fn2nRihJme+IIRpPcZNIEoEMQMilj4aQozU3lJZDdzpupqdfkZBMqCZeG98+yYPTtd86pMfoj1dQxKevn6gACRyOQIUSGJIIInBlnUrZxZjSWJwlPudD5ps56hr8A0Yy44Z+hi5dXLK73zpSzx1eI3PfvoT7Cw9MRoePOxY7NbsLirCAJ/9vh9g79o+u/tXeevdU9p+jVt5FnZJ13Wjc1nIpWo0MrklBZxSLxoQx6N7Zxw9EBaLBV0f6IaAw2Gx7O00xJgp5/OarUxxk8PS2gkAVa7vnI5iyk7SkIFMpdzbCK6gOG+zozIHYmHG/GRmTEV5fIuj3tupTVKc7aUhaQogAJkxwo5PQzJoqezn5WcJBBeGCSDT1U/F/ZRRUEvTxZiZCAvr0hgPmQAglCDAuecw3sOMd2IKYwjMyr+W5zb/X9umDlznLL5yWKcZuL7SUn2SSjaqgmatdVtzdAyiRIMRjyRPGCwbEcxmQ9dGVicd1nq8T3RdpwAaI1RLg3de37EziG0gpoAJwmLRjEEA7z3r9QZrHtE0Sx7cfcij+0eEPhBJbJxhsWjY29lhZ7Gk9jXGGbDQdkFL6wYtA4FJNIsFy9099g53Odhb0p61xJQBWuI1+zkKyUQ8nmZRsWgWdOue1WZFiIamslQN1FhiD+uuI8RSWgmUeUvLtS0WNb7SUhRDJwyDBt9BMvOSgGQwoCjzibKOJbpuIIREVXnEgKsMzbJhsVPx1LUbPLh9RApCHwKbTUsICScZnJd1MltVWAvGOqxxDH0uTzEGCYreZ/DO4ZzT0sMpKRAyM22lBNYqI1MJFFZVZl40EINmuHtnqX2Vy0YINqtwoAqfiGa8d91AkkjVeLz3JCLWCLs7DZV3kAwnQ4c14OuKxcJR1e/fjauwn85iRfmLMifmccuyjpxfYqfM+PLXCDyEEeRUrjAH+5QhHsNZs2sXXb+wGkwBrSm+KfMLlzaPx/PYGjQPNm0BkmT2+/Ylt061s+ulYjTMRkPmAzT2b7qRMBJJjd9vA6TOXW+rE7PWzPtf1mA5f1S5p67VXejpu57aWkLoOTk7xTjY2dlBIiwWtQbQu0TXtlS+wiyW9OuYA6ZC3dRIttuqqqauK9p2A0AIg67DXvX8GDNzqjX0/UDXChinenTX452jriu8dbhmwRAHuq7Pa4nDknLAfWb7GRjZLnJ2i8HgjcFYBVWHGIkplngnCMQYss1VAq0yBtj1HrpfJqZSbwlLFzqGGLUcdRqQ5Dg6OUZuGdpOS7ilvkdC0j0zqA2ERFK2X9ebDmdyYJWEc54kYRxHjFD5ip2dJVW9ZLm3ZJng5GTN5nSg9p5nblzm5Y+8wNHJis1qxaXDQ27dPOGtt25ytjqlWS5ou8T69Iw4DBxcvsK779xUkGhTkUxi0RiaqqKWXZ5++PGpeK+xs0nz/l2r/shicpleq0FpK8oaUpgvPogyLVdFe5r+3RIj5+yJCZZkxhcpr5NGYelDD5uuwzvDzrLRhJhyVyn2hJ6bEty9+5BXX3mVG9cOufbsC5ydrHn2mavsLKuZD6ewxBmm0tXlwlq6trTLTnc712kz6ouF96wcJ2IYhsDJuuWb336bzablwy+/zDM3LmGAhw/PGELk0uVdvHV01RE7z264dHrI3pUr2MrSDWsMKYOZdc0NYRh/L+2bt8tgMF6ZVvt2IKZIVUAlswObWkvBDyFm1tfJB2bL5vjYs5sSEYpONAIuZr64LQDP1LDRtzXfAE0GSsl0i/y/3kvXLHnsWtO+PPMP5ic1+fLItt106pwJbhyxArTJe3khyBqZY8e5yggW0bbO58yThkvy3qCdL0Cv8dkVHadcpdgTMM6mMq7WlfFN2Y6xeW/WozXhZErekHwfbawCSvousLK97n1G/VmiWXv5OWS2WaMMwNbpHhaGwiKYSClk8FW2pbLNeXa2ovI9MSTaTZeZvrTcaRgGvPdU3tPUdWkSIcpo+xUdp6or6qahqmvq2hOGQAz6HHylf4tO1px4KVouNSSGmEhBWRN9Ac1Eoc97qrFWS0mbrMs7h3MKchISKRpNUMi24FRybbLtxmeXn2UMkku+mQxCEqrK470jBUb/qxU9tszn8nxKMoXJe0EMCZGY76VzaCzZN58Hj5XAnuZPQTI558ZytEkkJ1Mkok3EkEY9b0xmNYxgbBFNmLFiFNSdEsYIzpqscxlldkV0vCubfdQXciHvjYhJDGbzXjfjQt4HsogHfOror/0ZBSiJJvBcyD+xDF3L8e23Ob1/mxe+93P4unmvm/QHiiDcb77BuztfeK+bciEXciEX8k9dvusdXsSMJVm0XFg2xiU7/8klyWwxsnRBtdkZIZLLv1kDomw4KRvkasCpQTWCglAjv5R4MciUOZ8mz7jkDOzRb683wjghxZKVSjbYJgYlRKZiQqIlBHLlHKA4i5Ue2bgS5JxKGkzBJxi5fo22xwDWaTuLwa3GOtpXySAkSQqeMSARrM3OiBy4j1Eyy4HBocw+iOQSLxYRQ4hJ2ydCHAOw4JjASaWPzuY+zjIR1EhPY1kMSdB3A3Xd0FQL4mbg1s3XOX79Plf3r7BTL1geHpKswRrH5qyjaRouXbpB1/bEruP+wwca1Lx8yP07d7kXerqwpus7hm4gpUjXdty6eUczfUNguazQGGQiDBFjWtIwkATWMiCc4SVyuLfL8Upo207BTcaxqDxpiIjNWedMQR1jQELAVg3Wexpfs7e3Rx8GTtendEOLxImRAwQnylzijFEq55Ag6rNxzjLEQEDw3mffmmZMrzYb1qtjZb8ye7z2+qu88+5btF3HZrNh6Ss2YUMbNgyhJ4ZIl6BaNIQUuX//Actmh53lkrSOLBZLQtXT9z3dkDCNY2/vOs9fv8Le8pDDS9e5sz7h7O3b4Gr2Dnb5xKc+ROjhnZu3OXl0xI4PvPjCNb7xxtv8V//NT5NS4rnnX2L94AFJEuuDJe3Rmk995mX29oU337yJhDUvvHiD/UsVjSngEXXnTr7Ekgn9wZUtJhXrMDZhxZGGDusbojGQwTYfFBmhF+W9nwFF7HfwMSVE1wsTCECMFQ7RbEWj7v4oQh/g4cPA53/3K9x/dJdPffQlfugHP8Gi0jxlMRbEalkkhGEQfv+r3+Jnfu7XePvOff7aX/0pXv29r7CoPf/m/+xfZn/X4mxEqEB8LqkJyUaIDkJEjCFZSzBWGdWyy3cW4x0dtYWBThGhJUhqODobeOudd3nlla/z9a9/m69+4+vsHF7hf/TX/yrf/+kXeXD3Ef/gZ3+FZ168zg9+/ydZmIYXnr1KGgYerns++ec+R/jNY9btQ1bH65Hqvu8HUgpYU1incobvuOfljccm1usV3WYNAmvf4usaU3liHPCVY9E0hEGwzrDplN2tPMO68qSUGIJmNRYnsDXKYBPjRJGhGZFToL4EFcaMWJP935HtoINRh2cMcWSDALT0VQEAodm1U1a1jrVR5MYU7M6AZkRZhqbJqI5n6zL7UV5vbQbomtl9UkqkmBR3a+cl4PKPXMpC8gZXWBXFTGXs1OGcg2qKJNsGS5X3ZBb02GKFKrqJMcSgTFZV5TVT2dsRuK1AOC1Z6rLjP4ak4Nak/DrqRNagXIzCvbuP2PQd9dJTe8+iroFEXS/YbHrOTtZglAXIVQ5bqU4jheTMSC5VlFm2UhyBad26Z31yD2sc7bpn6HPpD4QhRuIQ6DYty+WCetFocGKIWadJiIF62bBcNuwf7rG3t8disaBve06O12zaFldbBKfPMXvDC7PV0PWsVys2bYuxQlxU7O7VWhatC6pXWY91gs3gpKpuNCO7dohJmJiyvuaIYQCjzEdJEpXT0mYxKPCqPP8CDhJRgMIwDDRNjcVw5/ZdTo839HFALDlApqVgKTqmaLnhZrmg8p7NuiOEoO97EgwJ3ASEcc5R1RUWQxgGhpDXpgzSt14zwa0VmmZBUzf0/UA/DJgERixDF9ictXSbXnVfy/QOB507zmn5t6FXgIFZGExlMxBAs9FXZxti6lnseJY79fs+qFAY6UrAZVzZx3Wl/DO9p+X4CXuj41zYlMaA4rQ0zf/cYkPaimPK9vdzIFLZTsZY5hOuO7/fHAA1j71O8abt/WvrOvPrn/uwmDZmNH0mgJeyG5Xdfgq82byH6E1m9sq5m07B/GJ/TcHZUn56fuxs6MelfbzOuTEkr687uzsghn7d0nZrNusVZ65muVyCdSSg8jUxmnE/sCIM7YYhDMo05yyb1Yr1mZZQTUnZDiTbjH3XEUVZitRW1DER0GQPEkmgD8osZEWBSKEPU8lJFBSrSSY5rUE0yaYE1w0omMk6Kud1bQw9/dATwjAB2JixJGR7MyEa4M3RQmudgopyazVIqWWgAklLPItBqOiGlpPTI2XOiBFnLZFESIOWlszgIyc+21gbvKuoGodIZsjwjmEYGEKirmqWi332Fg3LZofDq1e5vzqie3jCYu+ApmnYubTHyfFKg9lhoF0fsbtb8eBRx7u37hCHwMHBISZEjLNsNiuW9R4vv/QUzldsNj23bx2zt7fD4SXh3eWX+NjpTz5hHhombfWDKVsAydwTg7Ie9kPi9M677D91dVrj3gP5g9adJ8kE5T5nT/AHWEXjGqupCiEqOK/yyoAiIvRdx4M7Nzl9dMSdBwNHZydcuf4Un/7UR7lyeRdbyg0bBRwlEfrNmi/96q/w27/yS7z+6ivs7+/w7Ic+zt4zH+FH/8Jf4GMffxnnMsPrrCS1AH1MDO2gjMreM4iwaGoqb6ZePmFvmLOy6HGG1brnm6+/wVe/8Jt8+2tf42y1Ikji+jPP8UN//ie49Pwer777Gu/WX+XKapfdnT2aF05xqWO9ilx7+lluDx1VVdGGblx7koDEiHOe8j5My/fkqzLAMPSkzO4cQ6+MNk2lTIyS220KmFtG/1fZY41VO02TA814vzHJrfR6Blx6IkBp9OkxzvjC5lcSEad9p/jJ5sxUsw3mHKhW7QqTARQZaDHT1RHV/wu7OGPbUCMn2wIFKJNGgNJsXzw3bwsYzcxmvpY0U5mzDI6jdA5kNZ8x5TuZDdl02gT+0u8m3cCI7gW2lNpOOWllLFWdbbvMlttnv9p60ynQJJcsts4y9JHNelAfqjeYzJ6bkoy9NBZMzCW4MQq2Lb5cEcIQCH1UpsHMZjqNmZaijjHiKz/2vpxvbGZarWqqSnXmylfEkOjbga7v1c+Q9V6h2HFZTw+RvusJIY5zELHUjUco5buncm/GavKOsWoHiDGqb2adnFjAYOrXHY9L5+bXTHczogA4k3Qt26xbwpCI+XyTS9gVXcTAmEhjnc0ALC2nKgWXt+WrKSuNtsUah0RNIpIMKFaWXIt12j8dw8gwhPJaIVHYDC1x0KSegsw3xpQMYUr5d02AyPPJq/3vvcN7RxwUtFbVlqr2I6DtQi7kQi7kvZaVv8/nr/6/+B/c+j/+2VuXRFh/68s0T33ovW7Jey6SEu3ZCffe+gb33/oG1176GMuDy1x9/iOjPvHYOSKsHt3n937u/83Xf/3neOernyf0LR/90Z/kz/0r/yue//RnWR5c+UPttKIrFBD8P277H918i29+8Vf59u/95vh5s3fAZ/7Sv4R52RGe6/jqpb9HsBuExOv7v8BJdesf+54XciEXciEfFPnuQUolGc3p4lxKbszFMLEM6UlCrrmVS2fJxK+QjGaazwICJdg0ZZPrZ+U+xX4UkRGYU+BNxYHhjEVTxabAlfq7TA6k6e+jgz07U0aAk6gBW9gcBDIoqmR0FbaEiR1qy/Mn6lgLsfRH/zbWEFN2BFBoeu0YcEii5Yzm0Q11zuVxNaXdE+iqZI6rwatBWM0iziV8hFmyqhlt7/LTZtASqLMb1I5d7DQ898JT3L274s79d+g3a2yE4+NT5NDSPjrB2Zp6Zx/THNCGM1bH9zk7ukffbxgExBqcFUR6+tDjbMPurmHwPe1qrWVvTKLdrLHWMwyD0rdby2bdsndwiaqx9G1L122oKgsmcXr/IW3fAYaqajDGEHrNjk4mP3+E2lcIyqpAMvidJVW9w6JqWO7u0J88ollUORtOnZrWSgZwabm70bmVEnFIpBAAj7NOg+9AXXuEROj12FV7ho2QwhqxcOIMNlna0HKWSz4MQw9BRsatFDQYkRjoUiAlS+Mc+8uG5uol7j+8j5z27DR7NPaQprnBxz/5Q3z0ez/K7379d3n9lW/y0Y9/L75KbHYdN2+9yzPPXuP1b/8+D269TQqWy1eucvvmm3SrDd2q5dmrz3D1qadZbVY8dXDIj/zQ9zBgiCSO7jzgd37jDX7gh17kqaf3sMWhYgBCXgTsFtjtgyzjOoHgLRw/2nB0HOnbyLXrz+Hq965t88BiyaqcZNuBPg8llHID61Yz7JumYuGfHKQoZyZgNVh+78tvI2nNxz/8PFeuLDk5WfH1b9zia6+/SZCK3/yt32WzWnHz7Xs89dQ1PvzSlZwbrw7xB4/WdIOwWQd+5h/+Et98+13W3Ya////9aS3pkhLPPPM0f/Wv/jg7VUWIBl9phmfCctwmvvjlr/P13/8qjbMk41ku9/ipf/ZHuXZ5ibgpYhxTLsMyS8ovb3BMjgcPTvnpf/grfP73vsTtWzfpzgJtd8r9ew/5j/6j/5iXn78OQ+CNN96h3q/5pV/4ZZ5/9kV++HM/yvd/8tN85qOfgfgKv/XoCGdciejmZwMiVoER6Ho8gmxizHuSUWdmGJCozyQFIfnAwjkESx9g3W6oKo/xjkq0jIw1s2dqTC6fNQsoQA68xnFRn4OUCojGzQIMCkh1FOp5MDlIkllpJGdaYxDrEGOICGEYoDiIR+etjPOzMMvpH44CYNYrTYEtLZkaxiCEiDqVMeBdlQMwAyFq8NkbO3PMmxywLayEWacwWlKvYIXLGMSkWeSjzpE3xcIaUoIDpZxb6Vjpoxg1IotuMQFh0lY2ekwKtDJWS5+BgoeB7ADX4jbJWVJMhC4wtAPrsw0iC5IXhk3AeeH09Izjo452E2lqy8JXxCiEVsHYmumqZQJjsBn40mO9B5tZw6KCaqMEwjBkxqw8jTKDZEyJdugZ4qDMgJWyIO1f2qNZ1CyWC5rFgsWyziDgxMnDU05PzogScMYrQCyzVTrnWCwWClxetwz9AAIpGto2gh3Y2/HEqE7ymBIxBFxlFITllWFoGDK7iFjECq524+pkjFEWk1J2Ms9Zna45qCcRZXjS71ZpQ1c5whDpuohY2FkukGBJvSExqM5Ze1zlsZWj2VngjQZ3oM+AmjTqicOgwRIThSEFKucyEEH1KTEG52Bnp2a521DVjuViicFx/Og0s2OBxMTp0Rl9H0iDBmJ9XTKbhTChHcaVeugUqLSQmqaqcia19n//cIeDS7tUjdOxH97H+/NjUUIZn+EUvpn+nu9V+eitz7ciy5Qg0HRJM0aNZKqqKVPpGnPu3HIzvYbZbt70YxQzOx5yQIhpX5gcXhO4qDRZSve3OihTMFen39Q2NUf0FjnpYN7O0vd07vpSwHjn2p1m99hixJuNw1Zby2dpGjcpA5SvUcqYiVEWmRrPyUnLar3CWcvuzp4GV1Ni4WuaqsF4DykQ+g1te8Z6c0aKQUPG1mZ2t5wog2OxWBJDYOj7DNQMhBiVUQnwzhNtZOgHTC6pGYaeGLWsIsYQBmVJ9c5RQPghhJGFVfeJsq/nBJEExjpcVYOxDDEqAyIpj0dhPJjsCZP1MTWJ9V3XktNRmeCkMCfo76APpoAwJQ763PNaE2XQkt8iWuq0zDwprIop71eBOEQFwjY1OMdms8ZXypYRuh52djm49hS7B7us+zVOEjuLXXoJnHQt3ZBY7FTcefgu/boF8TR1Q+zXGEmcHB9xaf8yu/sH9GFDjD3WeUISmh0PwfLw3inWwNsHX+bZ1WfZTZfzpJolAci5YP4HVObamUFYrVrS2UBzfcMzj9Wm/OOX+XubP5l9ee7Xc20x8/O3PtC16GytLF47yyU7zcTscl4SqsNuNhu++cYtXv3i73Dl8i7PP3OD9fF9vvQbv8kb33iNRGK13hCT4drTL+L/lf8xP/TjP0ZdV5R94MHd+3zlN3+V+2++yhtfe5W3332XEAfurx/x4Pa7xPjzfO3X/iF/43/9v+XTn/0hhiHR7DicUXab9abj22/f4nd+6ec5OzlmWJ+we+VZPvcXf4qPf/wlFo0fQQMxqt46ljaSmVWV4P6tW/zC3/s7/M4v//84ObpP6KPq9gjf/orjy7/4d2k+XNH+9ZbYJ2zr8K7i6vENnn/+JXYXNbte6FZHxBhmgRTJ/+VkwPkOZ+Z2oCFFMCbl/UtPDSKYFDHGkUTZMAubtDJQorrXuIHlBECr91CQT9GhJkYZveVML2bujysspAUcqz6rstClfB/z2HXQNW6m3igOYxuUVcAVxjm1Pca9etqQpCBIZvtysTZsBhelEdhSmBdLooeZzfHsE8x79ZNKW6exv+XcMjMYN92iZtjv8JILCmQp+/02iDknKOZrpQS4hBWjpX/Hml1M420ls+bofuJF9WsRcmJFYBiUvUd3IZPL/BkkFjBvwnurRd6d0+TRzKRU2jupJeU5zJ5rNsjUjpMMYgJvHXVT0SxqnFfWUec8zoLEyGbd0m5aTTb0eU7ki1pjqeoa53wuu8YI1EsJhiAYm5lHrSOJIcWgAKHMDAulzNlMOTSMibIFBKfJFWmaJ7N+ybxkmgjSB1KQrCfonu2dMitJgJjZiW1m2zXG4iqHdx6LU1+fGVFKlHW1gMyjJGLI4LqZrlhsy2ZRZXYoHc+eXEJc1FbVxBhNiJXE6AvX+6SxY2M3hS3WpVhKfyehbioWOw3eF5/G+9ieuJALuZA/O2LgC1f/cz734H/Blf7D73Vr/sRF4vBeN+FPVELfsT5+wMndW3z7KxOY5963vs7rv/XzPHj7jTEevNg/5NlP/iD/zN/4d/joj/4k9XJ3PP7s4T2+9LN/m9/8r/+fPHj7ja17vPrLP8PXfuUfcO3lT/BX/r3/Ex/7c3/5MWal9fFDVkf3ef23fgGJkftvv84L3/M5Pvnn/wrL/UvfdX8kJR688ya/9V//R3zxH/5tVo/uP+YT+7X//P8OPw78HMjOpBtdyIVcyIX8WZHvnitRNNBlYmar0NQSjRYaZeMoWaej8Z0Df1HUH+GwmJSDf6h/MsFYJsEYzX+TlDN4i+8S1FDLa7jJ7EglyBhzCTRrjF7PmJybqudZITMulYsxfleYwBWHpOUJUgZKKXNOYR8q/ZlMXpMMyRQniSklwJGc9ZKy00edSsWRD4mJdao4FzSzP4OuZkERKcH3ktWdx5nsRLcGxE3OKpOd6AJgISR11Fkmg734eEoWlnGGFAuVto7cg0fHPDzqqKoFzz//IkO7oRsiJ6drriwbLl26Crs162HD6f2Wk9Ujjjcr+nalTrNOqYJDGoh5nlhnWHc9koSqspyendD3A/v7e/RtjwDeL2jXZ4QBdvcW1FXi5CQwDANu0WCbHSrrMURSjFiXSxp5SMGMzF0hBs1IspYhJhgCzge6AJuHK46PjzToayqqxpNiAKICzyQxxIizDmsqKmtIdAiSy/goffRAVLYDSRqo7gVxUQtmpYjDUTVNLgGh426HRApC0zTEMDCESOr1nfBVoq4stWt45toV9i7v886DM3xV8+GPv8BqteLo3Ztc3nN86+a3uLu+zerkNnZoOXl4n56eX/6Vf4TvodkR7p3cZX08cO3qi1gTOFw0sLPHum85PjvF1A3GC293t/j13/oq635NlJaXr1/H+33evn1K2weuHtZcOtiZAlElopVfzA96UKGIiNCFlvVKQBY8/8Iuxv3h5/1x3Pd8EHCLa0EXNXWmUUpjaZDJjE5Ds3WFKImjk8Dnv/Aab717k+/59Kf44R94nsrGfHVlKkgYNlHoZGBpLXfvrPnlX/si3/rm7/OJD7/AT/7FP88rX3+d3/z8lzk6OiIQCSESNomHDx+x6SIPT1sO95ZIMty5e8Tf/+lf4Fs37/DUc89w99EDjs8ekkJHuzrSwFsUfvbn/luu37hEjcEeHPA9n3mehXOsu8A333mXV/7/7P1ZsC1Zet+H/daQmXuf6c635upGT2BjJmaShtgmYFKcFOSDw7SDUjAcksJ22FaEwg7a4ReHh9CDLJkOP0gWFZRkUgiCIiGKAkmQAEFiajQa3Y0eq2sebg13PuMeclhrfX741srMc7saLNJAV6F5VkfXPWefzNwrM9fwDf/v/3/pDf7pr36e9ekJQmBRX6LtLX/6T/0Yy2WFoNXYt1494kMfvsmVyxVDEDoRuiGyOjzj7HDDL/3Kp/nM5z+bGQgCfegRArHrOLm/4muHd3AYun7AbA1Hd+9z/84DXr99jy996QXisOKVl7/EanUXY5LKeBijzz1ByvTuVnQfAq2ssMaNAfQiwSYmVzUnwYQS/PWEoQcMQz9gHTRNQwiWQMisCQFnHVjdn8prThl0VKj3Hx1TUAA4QA7EkkcJ3mKTBpSB88fk5IA1U/X2BAYpFcpT4kIZh+ysIjhLDaBgYptZU2JUSaxxHz833vW3IttpUt4b8/Mck/D5JAVZ6Zh3ThmESFnOICdGUkYKl5C6kVJRq+cXeZ05gECfmR33YGCsdHfO4L3DmAxUKbuxcSAqLSQpkqKMAWx9hsp4JDh9V0YrVJvG4Z2hqlQaZug7RAyVd0iT7ZmYoDAyev3+FAewCVdpX+q6xnpPkkhIISemNClVynoV/qfvyTpD1XiaZYVxQt8OaJWxYWd/yd7+LpX3VL7GWUe7Hnhw95CHD0/Zbjusn2Q6jAFnDXu7O+zu7BCzNGq1qHDJ6XOKEAZh6CPWe5a+ZrVqMwDbjIj0IpUmUmy1vK7l9+SMRutTSgSJeb4xJsVAmSdTSllKTuiiJvNTVCYsiSDBYJ3H1Yk4RFzl2D/YYe9gD4CmarQSG8922zEMfZaP0MRPfqB6X30kmqjzPVcoW6+SstXCs1hUeGepnFPgOmp3FXBFKvKJGeAZg6Fth1nCrIy/nFTJAPQhRNpOAWbWGIyDm49d4eBgR8dcrnj/oDaVuWGcwzO0y5h8NJicOGUM0JRXLYzq0mOqcFT1KSAkM8V1ShIQmCVHSwJyYgwah925I6ZujCbQI/ma0f5+5HgpCU2ZfJxz15ndW0mojtnO+fi2s37Ncm7z5zLvTC6+nw4dGSfIz/f8+ju/yDkXaX5sPuGctSHTgSUHpu/Ijr5ZiMJm25EEdnb2sUYYspRl3wdd7yvwlSEOgsSOoe+RIpWdItJuc9W/fnsi0YXI0PUYEbxTwFGIAWcMQwGwOg9DVCCrQ5P4rcqhuLrCVTUSAkjMrHdlgynPQV9UiFHrbazXHSUJcRiIFrqY6PsOBKzx2NoRY5Gp1LGsfoPXPSeByMCYki9gy5y8tGTZosyEMEmbmswaLKPUOEoGRVUpe1IBWegenrQ/xrO3s0u1qDg66xAM+5cu0bVbNscb2pXh9jvAXUAGUgz07RpXO1595RUYEtYLiUAcDNdvPE6IHc46di4fEGNg220JRwFfV/S25dXXbxNSIMSeg6Zhd/8S947OWK+3+OXP8iPxf0LNLnYmtvXtUhFdxo0AfRjUvxfBujTGNL5VvfjnHzY7zsx5k6YFLO+sHJ20PPfl5/jqb/wS3/n9P8wf/qk/Su3VDpsDI9ftwPHxfe5/7bd454XneO7FN3nj1RexNvL4jZt4X3Hn/n26vieEoPGgkHjnla/xq3/7v+TuS1/gD37qj/PYhz7Gmy+9yD/66b/GS19/DlM5jCS6oSMWWbQM+Lj39mv8zP/7P+AH/vBPcu07f4iPf98nubJT8fpXv8RXf+MXeePV13jzjbdYn60QCRjjeOXzv8Gf+ot/ie/+kR+j6wIiPceHa7yreObZG1hjOF1vGWLk1te/xq0vfY4Xv/g5bt16la7forEdZUdJSSAOpGAYXjCkdwSegpgCg3TcvTNwdHSExTAMGzabY5xToINzCsAsIJ2U4hRLkpT9iczUUtYm4ZxEFQJGDM4ahsyqVuI7zrnRZkZUZtkUEzdJjpVlGyxr8J7fF/I+Wf5jis86We8U21+YrT/T6ebRLV5MLrzLW/Z5tA6TzHIpDsgPJNv9MtoInPuS4ieU/TjltZpsa5TnN55X7Pw8L42Y/Gxm7FrleZRqlPLdoqtWYcEpsbsJCDZ9h5n9LjmYOfdpRmBa1qIzGawah0QyoHUG+R5LH0oBh9EiibpxWEcG1SpbvT4W3fvKyxF9eLP3kdk/rQELDj/KmyVF1SrrfDEeZntkYUuyLrOGOmWAGm0dIzifQTpWizK7bWC7adluuyx/JvgMAi7Prq48lfMj4MlYS+XUD9BzMrjGKqhfYtlr9R0qQHry4bTnMr0DKSs0Y7z0nN1XXn45zk5FnlMhrv6bgr436y1xUGalqvEslgtc3u+dtQSTsL3FDPmZZianEa80fSVRJjk6k+WnnVfQUxlLMQghxCwvntT3zGNUsp9OZuSPBL2eZWSM0t/N+K8A/RAxISEkljtNZoLVILR173FPuWgX7aJdtN/jdubv8Hef+d/wP37jr7EXbn7b+A//KjQR4d6rX+ezf+ev8qEf+CN8z0/+OfXVHz0uJY5uv8Gv/Ff/EV/6R3+LFAb67fqbXxdhe3rEK5/9JV7/7V/jme/9MX7iL/57fPRH/xi3vvwZfu4/+t9x/9XnZ4Ddb+zX/dee56f/8v+MH/lzf4mf+Df/ffavP067OuVLP/83+c2//Z9xev823fp0POcz9j/l8Y99D5/6n/9lvutTf/Zdr+uqWmP5oee1L/wav/1zf4OXf/OfsDq89zs8owS/CXwF+PFvethFu2gX7aJ927b3DFIyRgMxxnkNKogdfdUpIF8i2CafkxMsuQqpUBgnGKtzNGmp10pClvAy+VzAKIjHCNPnUb+z6IEX11YEBQgxqyLOjrpWr6qjOlJnp4TLVUeQwU75uiXYEiOU6qox+GCVGcpYQyzVP8ZAynTJ+ZlI1n83UiqW9DlkbJLKMeRrhtn9nUuExAwqKk6yzFimcuAgxpRFqczo+JYqsOKoJ1FJuzHIMuq7CSkw5oliL/StUFcVN657hMt0beTk6Ii0XnHtckMfA+vNmp0qsD66w9m9t5HNlsev3mS1PmGzWeO8Z73eMHQtEqMmCxnouwGTAhI7sJ4YI9v1GVVTE3L1jvOGurZYJ8o+ZSzbzQZvnVZDp4Fu2ykNeDDEQeUaQlQwU+U9LifZ68rgfI23ntgH2rBmGDRIklJkd2cP5x3tZiDGQEgJbx0q7VLlYEggpiwRQWYbQdkosLlCKvUaPEkRrKPySwRNjFpTYaiQFIhAMhXWLfXNh17HgTGkGGllICZPiMLJ2Yq+F0InrM82HB4dsdl2HJ88xD94k3fuDJyeHbE5O+VSU3H9+iVefv5ryBAIqQcC+zs3+ciPPEk7nPHCC2d86Ds+jpOO7ckZEjcYs0Tqhi+/8DoHlw548/Yr/NbRF3jqQ99B25/y3c8+y0c//ASXr++zf3DAk09eZtmUCvFvDz3oEoSXlGi3LYEGu13h0vabVkT+bjcj8kiWNVcNglYM5l6qJJrNx05VjeVOdEoLQ4p8+Wuv86uf/hJ3Ht7hwdHA/rVdnri5pDaOzdGGKwd7DN7w2S+8xgtv3OLpq5e4++CMN954mZOTI774lRNeeulVhpjY9h0h9Ax9JKTI0AVevfU6/8lf/Zt89/d8J5/61I9w5/YdPvPp3+KlV15l3XW88PqLMET6VuUNjTGEoAn949Mj/upf/f8S+4S/doM//pM/yvd+8rv4tU9/npdeeo7bdw/Zrs7o2jUxRrpt4Od/4R/x8OQ+1689zu133uT4+B3ODhPf/V0f44/8kR/ilVdf59W33+H4dMudV9+m32w5Xh+z2hyBBPo+y7GggUZfGVJmtNOgs4JCTkPP6ekJt158HucSMZ6BSYQ4YEykbjxxUOBQkYg0IiBKsW5SwnuvwAKbg7Z5HwpZAsxi8bYiBmVC0P44DJau60hR615jTLPK5ZwMQQFqkrS6dg64UUDDFOAsYyPGOAb7pQT0Td4vyn6TN54kojJvBcSDIYrueUVSTAG9+t3e+3G/0bxJDoBb843Sa6YEeQUxWYImj9l5hbHNEmojZf4su1eC6+O9WntOjlWBSop01uS6stalsi+Lyc93AkApOGaKFo8YAGOhUjBgeQcqB+TAqJydyWuHJJ13KURCTJlVySIxqcwACWMjdWXZ29/BV/rZmFxmkgssckUxg3NcfhfDkEhBx2zVVFTeK2NI0KR9STa4DJKzxmWbhywB5rWqubIaKHeGZqfGW6cJta4nLXcwztKuW9arltPjFcdHpwyDygxV4nBOSFFIQ8TVNRbHerXBOfT6vlKZwih024HNtmWz7vHWIoTMZJJtpMSYoBkTT2My4Xxlf4oqsZDGBJUaSpMMBEQ7MW+JCEMfMBbq2pEitNse7z22spiolc71smF3Z5fNas12vSFJZsDIzJTOGyCSYmajsToHC6hbsoxhVXmaptFxnWC90v194wbabmC72SojDGSgjto4CLk62maAdZZ5K6t8mZNOx0ZV65zrh0hMCVfB2XqNtULlK0zKduAHtI0JIkYRmnMJQJj+1ZaZDgrxyiMJv3nyaU4hVH6c51PLNC9m+7nklJn9K5OSM7NrFAahct6UXy2Ax5Lc4nxClNl3TXk+YGIzElMYW/M9P/Ld7/Igp+dZAJj5ejNM53jc+Czs9Pk5n2Pex3zc1HehgGWSTCCx8kzH+xFNlGrhhiZVdxYNi0ZIYum6SEwGKz07S0/MwJuh3dC3a4btGg/s7O7T9Vu6vgNjcSnRdx2h78dCGU0CRrquRYxKZ/d9q2xKrjw/ZSrVPTn7W3HAhAI61WQfkoiYUc61MAxa65SpDwUJ2yy/iOj6l/LepXu4pzAWFiZWZ1V6xtgMlkwxv6cRojfttSWBLLmYJQ/GyvsxsOqMsl0kyfI31gPKCmuMArJSfnlRVFZ123Zs+pYYLSlEzo5PaLsWSYZN3+KWLaGPymoTAsltMcbRrluMMcStFp3s713h2rXLVI3jrbfuU+/s4YjYAyH2LcmoNO9mu2X/4IDj+4fcv32HnZ09ovQ8fu06d/wDvlp9nY+nn+DHrvyP2Fsu8jD79kkyCEAGgRvnSF2Pk5iJo75F9znaM2bsU15mpo/l3Oqk/5zbgHVxCCHwlV//Zf7x3/obHB/d5c2vf4mHbz3P9/3Epzi4dI3N8ZqrVw/YbI75zD/9Vb78G7+CGdYYYzk8OSGkAZMSb95+B41bSAYT69yJeU988aWXefOtd3j5ua+zc+mAN199mZOjI0KMxE3KzJZCCjHHkTKjcVVz/+5dfv6/+eu43b/H1RvX+PDTT/L2W29x/PAB265HUsSYmIHGwjuvPcdP/5X/K09/xyc4O1kRcmygdjVPP/sMj3/0u3j15ec5vPM2x3duE7ueKEEBiGjxQByBwDLOcfmYQa7pXC42bb9NdJttBpFETH6mMbO/KOjQjgV3uiYXVsmyi6nNYe3E8KNyu+UNm8yiMvMLMntnyvax5M/LOyj+onlk8Z8XIRR/AZgAMjOA0LhPm9nYytcqu7yy1E2zPJk0spIXX6Q4ItZk5ry5zJuZyU1loM5YODHbwItvUuz1MsQNc+b1fI1y0mz/FtFNP5oCstF+zZlhy8Y53XZhZJT83Kb5Rgkklu/MPtfYSj9HPyTbk2MSTcG/KcuvZbIiyFFPHU+WqlZmnVRkP2f+kJDBkZnZ0BplH5JcXEd+Li4DjUpMNIQIaSzFyH6ZIeV7LAy0RRa73I7202QwfiL0AVNZjRsMgTAEurZnGMLoe5YwqoKxMvuwdNRFQtvYsRglRaFtM8DRFh8qzd5TiZVMj/ncuy7DudiT2TfV5XK0mMaWRLBl3kiWlzPgXPGD1f4ytjD06ySxxiqDa9tRpNV0vSjPTiYJYjPvZR4TJjMyea9sUTHShl590HxsiHFcP0xGNKUMVLYFfFSKk8ahX2IDJsvLTu+y9FOMytlbC5X3Gm+4YFK6aBfton1QmoGX9n+B/8/H/4f8oQf/C370wb9LJYv3u1cX7Z/TQt/xW3/3r/FP//P/gLMHd/itv/tf8NVf/Dv84f/p/5qDm0+Nxx2+9SrP/9o/4Es//zOsHt79F/6eOPS8/oVf5daXfoMrT32Y49tvEofuvfWx2/IbP/Of8JVf/FmWB1cY2g3Ht2+967GSIrdf/BJ/+//8b3P5iWe/4e9VveCTf/TPcPj2a7z1tc9x+PZrxKF/bzfxbwDf894OvWgX7aJdtG+39p5RBomYqy1SllwRZRjKQZCp8mkKepQAxEidlB3ukm8cHfocSxs10rPnZszkUI0JKVEH3jp7PhCR/z+59tN1pQTlc0JMg7n63YqDUi9RynmUOET+OTuezhQnVP8eEXUKZ1VRORyjzrYBI3ZkipqC/GSq/0wrbSdAQskJpJxgdeUGi2dtzJRAGe/djhUySunNGPBJhjFxTHFOcyKalOX3jNGEWQKLxUri6qVdQOiD5fC4x3CZUyKEgYXfA4Hjo3uEzRmVNezt7VE3S5wz7O/tsm07rly5zHp1yp2338Eby6WDy9R1zdC3PHhwm9V6y97eDt1mS4g9vqlzIrTl+OFtDi4djIOlXtYka1g0NdvtKdYY+mGgripSlvRxCCEqEMi4ksQL+MrQbtsMaktYEk3l6Xto220OAGngIQRNfBhrcc7QdR0h9oDkpKEGSa3RxLjJQUqP4KoKW+8iCPuLXYZ+S7LQ+IbaCqenJ0qpXVc4v4uvPYY1i+Ueq82WZllnWcDI3eP7yq6RPN16y+bshM12izE1d4/uEqpACMLDh2f4ynB69pD7J3fYdtAsF9hUYcXz7LMf5bu+/3t46vGrHOx/hbdu3ydsBnYOdrCyoVlUvH10h9ifcvngaR7ee5Wztw85uvMO15+8zAtD5PNffYOrV/a5tLvPn/ozP8wnPnqTurJMs2YcpL9vm6ByjNtNR123HOxW7C0W6Av7FtzbSPuQQGyuMg05AGqnMOG42E3RNpEMgABMhj72Qbj74JS3br/DanvE66+/yt/8mbs886GneOKxD7G5e8QP/tDHMUvhc1/8As999TV+PWwwNrHarDDW0A4Dq/YQEQMxKCBTIA6JMAyswxGvvTZw9/59vvLcc7TdKWenJ7TbntQnEgnrwFmhT4Y+aKLL1Y4h9pxtBvohMLx9zM/9d3f45V/+NEfHx8Supe0jlU0KhgiClZ6H997kF/7xA3yzS3t6SpQWK/DWrZf4zGe/wHp7ytn6VBMaQ49JmfM8J+qGVlkERAQyTX4fB6z1eO8VRDUMeF9hGTBOWVGGNLDZbOm6DUMYCN2AqzzGW4YwaKI0S2xpcD0njfPaKpndvSRUDAos3a47YkyEHKxNKVLXVU7gCCkpzb3VSDSCPtMxoM8UlJ9Lr8EUcC8JjVECLSdgcyR8ChLn4KsRVFLG2Fn/BZE4ApRg3IrOAZZKkt2ggevCCpKkAJOKdJv2xzmX5XOmZMW0g0/Z83P2BIzfV4LBJcFVZC3K/c+bsRrcTyNrbgY+j4kHGZ+HIFl+1WD9vIJ1eu6gIJ150sE4ixGVTbBWwVsmjz1EwUlup6FuPE1TE1MkFOkwa/DOE0LARgGjSQRbGfZ2d4lDou27zMpnFQhTO3aWDd56NuuWvus1kGxF14wCqLLK9lRA3eWdhiCIaGIiJiEOiZPDU4Y2qZTSEIlBiIPaMRJDrvAXYh8VwJ0cwyAcHp2wf7DD/t4uQxyo65qmqdXeEkfbBoZuIKLryBCCyjgYg4uFhajYUXmWGLXNvDGIOCRG4lyWYZZo0rGRgXoh4nJltohKMIhJLJcL6qYiRUPT1PSd0G4TQ9sT+8jx4THHRyf07aBAqFTmmL53rSovduXENmaMjpO69jSLBmsc3Wag3bYZSACYBFZoGs/u3gLrDEPfMwyJoctrnDUKcpaELYwtookKTdIYlZdVCjdSTiQpKM9q4mfR4GxF7BOr083vvOe8j62kL0cegkxlNE+alnXNmLkcDVP+XCb7YzZkxmPk/HQd2SPG42fHFqDO2GasQIyJwXe5j3Ofn+M/1B1AxpymHjHLBZefC+2RjIeNsK1z6/O495tHvrdkYmf3bd7lWGtm1yzXM5MfkfOaU5L83P1NHR4BSWbqmxQfZUoDgwgn7h062eB9llKLEIPFNDXboExi1jiwKvOp+4PFVhXJGqpqwWKxwzAMWOcYlj2nJyeEIdAsaxZNwzD0rFanbLZbqqYhxcgwdJiUJZsl0ncbJNVY58f1EyxVVTP0HaBAiQIMNEaZGGLSfbsw9MaUSMhsz9L79M4RJBKGIQObiq+YJZAo+0pEJObnV9Lb035s8l6dQsQZR73YQUzCiSGEAazBe0tlDdtti5ClNptdnN+l3ZxRNwu2bUddNySJDKFn022zLWCyFGcG2BpH1wvp9AGIYdsGrIOuj4Q2kPD4umZR7ZKGwMGlq1x77CYmDGwOBg6PTxnaFuMTdW1omiVte0qPJaY1m/URsR1Ydx2Xb1zibLWm69ec7XWc7P499lLND3R/nKayk3z6DHbx+7cpg3TXdjiX2F8uIEvYloT+7107bwdO5VWSvQM7rk3l6Gn6mun03M0UE1/79V/i0z/3M5wcPyClyNnRQz7983+PL3/6Vzi4fB0bE9ev79PHLS+/9BonRysSEWuFGOLItB3zvlVkWwWDSaJ2i0RCEtYx8OILz2MdpBQYhpilSxPWmczKrP63GAVwxxSIaFK+3x5z5/WHPHjrDZIBbzMDomRgR77ZFAfOjg/5+pd/C6KMAChnDUf33uG3P/sbxNArEFlyMUKeqwZdF6ZaL7VJAgPyQ0Lla/XFciDIGtGCBWsYMouiMjrZbP/rvBcTs22BAqIpTFXTnDgnSyWF0UcYBq02k5FNpbCuFXCQ2i/F1i6FA3OJTzNb1B/1KZAMqkizeNcMrIQUJsD5npdFxsreka9DAdAZxmdKtneELO057jm6pySZbNcJoDR2/JzU9ehOj4/pm2zgMN1v+Xm24ep0mEBhZauddjmZ3cr5jbrstfmovGeUmGCOuxll5S4MOGRgSYmNFn9EGVALi44WnBgL1qtdb11ZPM0I4LcZ3GNFJqlXY6hqjzOOkBkEEaOs4d7iM+uRZGBbUYrW8TLdzxgnzWPESGb5FTKDORqPHAZWQ6Kqg8bMRD+31uMcWcK1MBLrfonRAkCXbAbvqtNWgLwiGqOLWFLQuRlFRlZjMfr9c6PunLmU359k3yyN4286Mnt0+hbLPJmNJclau1VdUzmrTMfoOhOGgdAHNrJlGIICKpNMQ3Uc6jJ9IJMNO4LZnFUZWoG+G4hBZVzHlcAkfO1paq/MWZk9NTllmSrKAGVtKeOQPO6MUeY1mGycUkyFIa/J6jsiGgu9aBft/WrvLH+bjT98v7tx0T5IzcDDxcv8/af+Mr3d8Km7f3nugX7btrg5RWJUKdzfRy30Lb/wn/5f+LW//leyegkM7Yav/OLf4eu/8nPn2JRiGN47mOd3aCkGHt56+V/q3NXDu+8ZIDW0G+6/9vy7/u2dF774L/7le8D/Pv970S7aRbto/wq29w5SKsEWq6GuUikD552gRMpBFqsAmFkxtzziLJfknP6NMSChgZDiJjKTO5oFA0qpcP5H0/QCFlLWlx+TXZCZ980sETLGSKZgRw7sIFNQQhOQmkRIUxZhFrAXZZUqoegsF4cpQRzOVaBMMUD9WyrB6XxOJi2mVJAZwxTcMBBK8jkzTVhDTgTOq6dLQGhinlJgWX4PJSEyJi80yZViousHQgJHDcnQbSPDZmB9tmJ9tiIFrQpqdpf0SThbt5wdr0he2HOOqlpwde+GOrvWUjdLNl3P4cNDQozcuHSZzeaU+rQmHp8y9D11XbNtNwxxUJBRDCQiZ2drFotdnPVUdaVJ4fwO+m5gGIY8OFLOkmgVERKV7thrxXSIAymV4IlWODVNRd/3DJ0CkKra4b3F4XHOE2Ig9S1D35FSxHuvDn8OoCAaYBGrCZV+1eJlwZNPf5JqL7B6eIZnwVbWhNBR79Zc2TvAmhoxjg89/Qku3dzn5ee/QlVV7KxaLl+5yju336I9O6ZPvX4HsF13mEwL7X3CSM16s2a72hLaSBwMZ6EmpA7f7OCbBU88/gRH9x/SLPbpneHn//t/wNuv3qOLA/1m4J23NiwvN1TSEE3kdHjAW2+9CiZRNw1ihOXegmQSZ0cPOajg49/7nThb8fXnH/ChZ69w+aCaRVZ+/7c+JLabLTYCzT4PTtb0MbGcOAN+75qRnNBKShQhaHBXhGTLmpmIiAIOxAARxOYkRBoDakMyvPTyXX7ztz6P8YnKWU4e3qc9vsvdNx9w6fGHLL3nYXvEnXtv8vLLr7I97GCZMCnRd71WksZEGwYNKqaEqTVgxpCQISJAkjXrtCWEQwSh6wLdJpG2LaYBv6hwYlksLZVUWOMIQ2K93iIJfFNTMXB45x73H56w3KmpEEg9wyCZySQiMTEMATsMbNcnSEh4U2F9gjpwtLrDer0h5gQczpBsxKWIs4Ygkap2WO8IQUEIMfScnZ7gfc3lK5czcKPHknCNwzhhu+1ZrbZ07ZqqEppmh9itldFFAt4bFouK0Ef6Xt+Tc1OwFZTFaIzwxoTkoOx22+kaX2LxYhiGgaap8d6Me08IQZObORDvXJVl8zSCrFKhaQJBZaBQIoNdc9AzZVa6XFabg8ol+CzjeRNzk4wVqmUjnlhOLDGWSlilkneVGyV/xsrt/HMBFSkjjFE2CjuxJYkIEuOUgHhE5mmeSBmnTAamFNahcp8qeTNLIpcLSRptghKkPVdFrjfGvNI8DIEoUdmBjANE7zsL2JockF8sFsSoTEc2syYaazBiaSqvrErO4Bu1b7Ztn1kulMXDe0O92MngWkupBhYrGAe18yx2PUlCBsN5XOXZ3V3inaNyjqEdiKHHYHG2oh02GeiW37XSEuoYwikQLkYSBmcMEgzbTc/Qrtk2Ce/cyPq1t7fPYhHYbpXZbIgxSw9aFouKgyu71I2n7wJt12NtRYwdfTdQ2ZpLBwesTs7otlv6YWAIQQPgCMElapvBlgaV7SNOwIc8JmJmISviGnM7DXJSJicGz4NKZGQfOtg/wOBw1nGGZGBYz+GDIxAN7qfMTDmNocyKICWAb/M40TU6CaSoScIUEyEkYi8qU2XUXjZWWCwdl6/s0jRa8W5cRbM0pCEiydK3kfWmwzib5b1KFXuxQ2HowwhqEFFZwSLXMHRC3wkpDKzPWtZn7bvvNR+ANr03Hefn5FVmx5T/mYy8Gd+rmc5mfilz/u/zj8/lW7+hP5zDSBY7fRyC5Wdz/gLnjnu3C2cH4xvARuf6k9dUHWrnk1Zy/pIGxjX23e4TODf2x6V7fo/ofRrLKB57rsvFFyq/j0m96XsK+OoceKr4GHkvExHu1y8RzQDJkiL0Q6JrA13XatItRaTv8HVFSJG26+laBfc1da3ssG5Js2hU5hvB1zV9CGy3W5x1xMx4ZAT6vhsZDg1kxiEZpTN1r4gYFLHW9z2CFpXoXqmJwHFfLJRR+UGmFDL7grL7WTtJpgiZ6cWovMv0rwJpk4Qs7ygT8yHTQ01SGBmFIejadOXKE7gqsj5bs8Cwbk/puhZfVyzrBVW1wFrL3t4lFntLHty7QwyJ3b2Gqq44PjokDmkERgl5zdDsN8ZGfAaCnZ6cqp8BBFSe1Hu1L/cWu/R2oO8D79y9w+nde/TbAV97Kgvd0NHbitXJEc4buhQ5PTrGVx5fNyrJk+WE4tASNondG5c4vPZV7r3z/dzce4xFXXhLvz38icJ66awjSuL04V36YWDha36v71EASeacvJzJe2bK87VIB5qZ5F6ZwJLlvAXLree/ymf+4d/n7t27WKvjp+ta0mB4uLnH0dEJzjkeHjds1mtWqzNSn6ASdVFCIkrU+Vjkm4RMxZYXxVTmXELMoOD9qNLoKUIclL3IVBmwmyVtvVebc+iV1chYBbuZlOhCi6tdLgbTdWCUzcqgEQzYCEkCzjiVhWwMxgUYIoL22zmnHpakDPQCb9wIhCikheFHI+FGzAALn4EgAl5BIMMQSLm/EPGVx3llZo25KMF5n/uX98AiG0mOKRX2JDm/p5UiP92ncgwK9SMKiEJEMnuVrlPWWPUzyXY6871Mzo/SvEef30+LjT0xtswG3Di2hPEEJmYmvYE5G2IBlY6go3z2fKucMygVkJUpCNxZGxlVH9ngytCbELban7LfGsy7sp0VwNLkLqj/NJe5Zvx78S3K85oMhzQWq2gsKhUAXI6pGgFXVXnf0GPHQghjtBiuhCVz4UGRny52gzJxeqwDX+IXhuwjCkKiqj2N9ZALFDEKinHOIMbhncvgPnDWMUTdG22OU84ZL0ebNAmxOHVJ1yD1MxWwWOKi3jm898SgvkDZFzE6p3d2F/hK2YOGPqpPJcpC6IynaRY4O9C1nYIY4yQfnJJgIjOgUh4r2bApwLpRYm80WsoQlelZW10z85sfz7XeUTcVi8VC7zEmnet5oITMGAVMTLHTEJliw3MmOzP1PyHKsJs1omU01HQ0iRG8sywaT1XZPBYs4kvxricGod32jMVtsxlQGD/jI+xImYQfMMQI7XZQVqugfs1Fu2jvRxOE5w/+IcF+cH3ai/b+NTGRz17/z/nBw7/IpeHp97s7v+etv/saEjqM23m/u/Kem4jwlV/8WX7tr/8/RzbxeQt9B1wAYcf27wM/9H534qJdtIt20d6/9p5BSpISxvoxiDAieOcAJcnsGdZqEqbEIcjAo5y0PBdYyXJmmtDL8arsUzmytJuAsepYpRJEE3VClR0hB5vsxNRUWA7UIQNxZgTzjPcEo7zcGOygxC0mFgqDOS+fkKM0KaEOPbMk6ix4b8aEx0QIjVGteJPpfueyCeXaI/uGgaiRdj3OmSydl4+1Gth2s+SAOpkm/6ydFgErZtJepzzjwjaQQUpiNQCSEpttpN/CyWrDtu/YhC3BRLq+o7FC6ALtest209INke70jFoSnfEMvaFZHuArg7GO5bLB1Y4Hhw9pt1t8ZdluN1Tes1lvsvxdworT8EkSGuexSai9Z9u1OLtkZ3fJanVCCCBocsLlIF4YhCHE0cnWRLIhpCG/Q60Qc3VF0zQMIWa2C0dT1eztLhnioJJAGNp2yAG9HNhLkwREFINI1Ao1oB0G2iFx9eplvu/H/zCnZ7e4a+5w6eplXnztq5zd29JYYX/3EleuXKepFwiJttsQU013Jli35N7925ycPMBEQ0gKvpKUEKusHU4Eh+X6wVU+/n3fzec++1ni5gxrDN43LBc7mJSwMeGHwOOPP87bb7/J3/qvf5pLZsn+/mUev3bA6viUjlOanQPuvX6f5aUa7wz33r5NDJGm3qE6aIBI3/V8+MMfwnVb2rO7XL/6B/BNzc6OBre+XRIKBqiMUnP6/ccYzMBqvSXOF6vfoyZA1yYePDjh5pOXqW1ZxISAZdUnNidrblzaZUgBZwxV5dAoYMQYhxBJWGKyfOkrr/MPfv7XuXP7HaIMDN2AoaKpl6xOHnB0+hBjPHfvHLBtW04O15g+IU6r5+MQiCZic2BqDMzmQKIrUibisJJoKkfb97TrHochdrkCwjgGSVTO50SiYKwjDpGhbUlJGGJPTcIkBbl4cRgCtaolKSuNcSQTcd6zqBaIDFgHBKuSTY0hhoGmVu4p76oMBLJ4U+GdpR96lStzVvvtDN3GslmfEPqWzeoUEWG9WuOcwy9qnE8slg3WCP22I3TCzoFTMMa2zZWbjq7VYGJhKSrBe2MtJJXIMkx7j5XMe1WSu0arRK2zVHVFVVvqpqZrW6W01xpxnDUYV4FYjJuk48hyZybvHchE/z6N38KiNwGQ5q0Ac0qyYs5clMPp475WADR2JnenCYXCeFKCsGYEKJWRbhCs9ZkdJgfeJSevUpYrkxIktmNodwIN2xE84jLjk8rgpfFvINP1zQzIYvU+xgwPM/mH3JFRrjUn2VO+tvRCII7V2tY5JANiJJlxj7AenOiObp2lqipMZsdxRoHAfYgqF2sMlbO5ElYwRsGyNgfwrTV0Q5cfulYTN5Wjcpa+08Dx2dlKk+Xo2FFbyZCCPp+6URBb1/UqPWoz+BkFUMWgyXPjvBoUeEIQDIFoE75yOG+pKs9iUeO9ZbVa0XVqTO3sNdx84ho7Owu6vmV71pECbNYddV3jbEXTLMFEdvcWhKGHIYA4lSWRRGwHEEtdNzlAnu0SoiZVZhImWsU8Jb0MjPaj9y4zK8accDJ0Q0/VVOxd2ufKpQMMhvv3DmnbXpmiYiAlGQF3ahzJWIlvzMRClpI5l9Ao6a4UIykIYTBU3mYWNMn3ooZgVTsuXdphZ9dReYsxjmbpSCFikhAGeNie6uElUZZPt8biChBxnBs5GWNUIk5i4uykZXW2xVmDJEuKH+C9WZQdIP84S/JNtvQ8saM23MSeMK5qUuzv8bL6+bQalZST/j5RrU4FA2PWdbYky5TDnPyYfEw21t8N9FQuVb7j0QRpOejcx4ZRQu5dz5l/T/6C2dYxJZZm55Y5Xp5heUal0EIlMLM/Zh752mnLOAdMkkf+XPyQnKudno2UfcKwqu9jrKPvhTgIbT8QTQQv9G3L0A0smlqZUPqAZJlTQsTWOq/btsM6ZSIhJSrv8JWj3bScnB7jnDIaWqv7zRD76WHNHLYkCUkh+6w1zjmG0Of+mwkkhBDzHC7AsSJXXhYfgyXZhMHRVA0hJaqqIpiItzaDVgMhryvKD6IAiuJLqO/FCBwoKoYhRpIkbO3ZubTHevWQKJGdvV020SK9RaKlXi5ZLndA4PT0hJPVEdtNhzUejLBanTD0/STdRMrzTplrrFEQ1aJpuHr5Kn3b0qVOAbnW45cVqR/wVYWkSL2oaLdnvPr8A/aX+1y5dhNfO9ZnK7y1VG6J23XUO46u63l47wHdtiUZB85hkqdp9rj5kScwQ09TGdJihXnyLk37JOZdJ8vvz2YAZ8E4h1Q7hNTTtf23TOmtawMPHhzz2BPXqFyBugoJw+mm5+TBEdcu7dH2LU2zYLm7g3NgZlTXUeDBm6/xi3/rb/DCCy+z3W5QIJ7ue1LVEAf67QoRQ79VecHQZ8bFlKWDBo0L5Ymg/xhGkJARjYWU/jmne+gwqNwUhcnIZOCDyQDEkEZbM40g/czOJIJzBm+M3hPKkJQyU60xUFXK6EISrPPZxtBkfwwZnGQLaD8zb+Iyc1MEE8e/0VjMH4Dw45ZgBvquY+g7BWIi9IPDWHBeGTPJdmU0IQPd1b4QyfctM7agvNKP+5lM++B8sZ7vgWq7TOxC1iuLTQyBIkUJRSZ6trYX0M677EHjfjlrI7g4AyzkkT5N52uBYj7pG+Jw5folJlVAQ2XtNOOOPtl+wAjqHf0Vmd/DbPOa93UE1Uw2SPl7YW2UkXI1+yiF+YgCZpn6iBQ+yOkhjbZLwYeMfzKzeSBEk0ZAK3lOzGXDitTZaNeUOGkGEaaQctGhHuecpa40jmaMjEztZH8pSQa9xGkf8l6LL8IQ6ds+A/0UvFZVtcbTgvYT70dWegXg8chzAYlClJS/284KT7Q/ztpRKs3ZGgH6/Lyr2rO3t6vsrjEQQykI1P3fWY81dixQtLaw9oLELJUXEyIhg7SmcaP77QRQKlKJ8sh4L++ixAcLMNAYyxCU3bpuGpqmBqDdbumHMN7nNKZlfG+jsVb+f86HUCPj3NYgWqij8YoylmU8zTnDYllTNQ6XGdqqXCSUkhCHSBf60b7QeWKn+8wG2xQHmAp2SvHOMASGIc9LYzgvDXrRLtq3tt3e+fL73YWL9gFux9UtXtr/BX7o8C+dj+tdtN+zJinRbc7GfaRqFvj6GyX3RITXPv8r/MO/8n94V4DSRZu1fVTm7X/Fv0CG/qJdtIt20b792nteAk3WTpAciIjIKB8QQtBgjS3Jk8yiYHJwQaZkwRTslpxA1GM1qKXfJRoDy7m57DgJI3AH5gH3CYwEmW46ZU300f8yGeyUlGrZaBDB2UcyDWP8YEaRLYzJXxEhCDmgJJnBglnSIFfZFANpdnmDGVXvSgCiUA6X+y+BfqV3LlTPYHLlfkpoctOWQEqmhc4PVezEnFFiLwWsFdPUjwL4UqZngxFDDImYNH/Y9RAG2LZarRylJ4Y1Z6tDtqct16/exFYVnsBuvcTsCE1dk+iJsePs9AznD7HOEIc1XbeidobdxrPZnBFSz9BvMGJxlSH0PUZQ2nOjDvum73AmEk8fUNU1oQ+Q1hgC1mlCIaQEwwQiI1fqgj4rX1X5HSRSykxbYtnbu0wUw+VrwoMHD4j9QNUsMNGx3qzUOQ8DTd0oa4mAtZLlAk2uAE8Z0KSMUTFFTtcP+Ozn/gnb9RHr4w3Xnr7Kuj1lSAMLWVIvdml29zk9PuLWG2/Qp46uHajrBucMfXeKjYa6qbE4unaNNQImYlBmC1dX9CHw8O5dLh8s2VvuceXSFbytuP7xD3H/1beo93fY3b/Mtl1zEAOvvHgLe/MpvvsHfoST40M2bceqXXOdq/zZP//nufb0kldeeJ0Xvv4Sr73yCtuTlnoIVEH45Pd9N8vdSzx78xLPPnuNzVnLU1canBWyGGFu75Zg+P3jKAhCMkI0FuP3SbLh/t1jZIicv8/pjKm9+30+eoR8k1MMcHa84vOf/Ro/+af+EH4Bveg6st4O/JPPfIVbL97muz7yLG/eucXOouEPfPLjPP3MVa4d7ClLgbU8PN3y0ku3+I1Pf4GvfuXLbPsOZ8iB8g7rI5WHsGmRJNzfHtGbxNB1EMA5VJJpACESJEFSUKWYhBmSVn5m2nkxA2IdMXlCF3HGEkNHDAPGWZrFghQDKWoF/kQ97nFFvqipqazDGMFVDgahl0DdVFQNhGCxrqauNQnYb0vVpzAkZUQI60Db9mh1qKOqnIIPBCrfYEQlSpvKqRRWLiVvKo+3hkBkdXaiQcskDH3CDi3GCt22y/tcwljDdrvFSlmTVSZr6Idc3VzWXjs6bWkEdBVChpxwKIjXPDASMu5ZvlngKkfatqQEYdBArbIPwTDkxGoBQ8jEoFRaAS8V4C0owGfMZJjMQZcrKc9Jqo3JjgI+0jYCzUwJnOf7NTZLwRlCBlKYMWkyC+rL+UCsVo3GseIUGGVL59KxoPJ486TLo00rjQUz6wsU5kYmOYWcUCiB4mKvKLhavy+N2XZNKmhi0eZ3aPHOqhQJZPkdT0qJqnIcXN5HkmF9tlVZoLyJGwzbrkNI+KahqT117dld1jjLVIWbjCaSgKpyNIsG72o2Z1tWZ2vq2lM7R7sZ2Gx6BMFXFVVd46xjb3+PbrNh3XX6rGzCeY+xlq7t8nNXcJfT2yLFSJSYQbxK77+3u0NdVVhnqCqvrEqZoSqmiPWGxU7Djceu0SwqTk7OaDctoQtgoK5qvPf0Xc/R5giFW6q9Utc1STpiUJnWkIS+U4bGqnJTosiAM1al0WKv+298BKiSx6zzjrp2LBcVEh3WeoYQ6VPA1xVVVdENPacnp2y3AzHkdfEc0iTlBKoy9xR5sFL1XJKbygamA7UwtjjjsJapMn60DcAYYXe3YWe3oa4tde1wziN4hm1gs+o4PlrRZ4lMI+DEUSqgU0pMZGyTvTuXWhyGQW09Z3EOrFGmrw9uM2OSWldXmQAv5R5neZziN4w5nvzLmHOZpmz+/bxdPw2Y6SPJDK3AOR9lnoyVfFzGmxZD//xeXq75LmaAPPq3R/o5FhzM7yN3cPIdKHmsRy463bcw/X3q2sSYOuWnCiBgnvAtcyn7OhQ/aLrfkjue93O68dk9lD4koTVrTsJDtv2AMY6+H4hDIMSBvttCBsOKWIxzWBvZWdQM3jI0FW23Yeh7SCp/aKyCkUMcMHn/7oeBbdsiEtVHtZKBDWr369aobHXGJFKnyUt6S7SGKEOWb1OmFaWByElNJV0a78daNzJaxJhBwTicbzTx6g3r1Rl919MPujbHFAkhjs9y2v/VJhiLbEQmdgqr/s12c8bLL30l+x3CdljR952CMA2ElOhCoGs3rFYrZWtKE5DWEKl9hfOekLIEnhQ/OMvKGcu2bXn44AGVdxw89gT7e/t4Y9l//AbHdx4QiDTLXbp2gzs5ZbvaQJ3Y2VuwPjsjhp4u9NAsuP70dfYOag7vH7H88B4P7t9jc9qyv3/ATlOxd3CJ1WrNY9cvc+2xKxw+POX+1a/yTPv9SPaczwEdHplT70/y4fxgl3f9/NEz9H0mgcpVeOPYbgYFtjOtT+8GyDx/WfPoB3yjv/GN/UghcPbwITceu0KyhiEJ7XrNnTde55d/4R9x62tfZa9pWLcrDq49xrMf+06efvZxPvmDP0oMCbHwynNf5dd/7r/jzltvcpbtY2tsBgsnQOM+KjOme3M0hW3MYCUDAZIZ154RfJPfsbLWoMEPkzA2gwNTwltDMqJSbxnAYMh2aMxMSHnRslZZYIo0KihTkMRETHEEW4sY7ZszKkUXs4hyJN+fg5gI/QAYjFM7wBqHiWEGdAHvHGYB8gkh/nBEHhPsYLCtIUlU2zr3QSThcAydEM3ESAMKAMnVdxoTS2lkX9F4jR0X+nFfK3Eizu99Zf+aN5fXgK5tM5hLpnNKHKMUEsi0z54fZwqaMCVmNvMrij1SwK4lLjfurZhZ3G66sh42zQMDox1gZscWQCdGOZ90Xk3+xNjLce+Z+Sl5aH2joSB5zzx/L+VA9ZVm1x7n6blHMu2RzPZEw8h+Pu3js33FMPlPMj+R/HzVNrXOslguqaqKzWqbATKFKYcsHZqwTlm6rLVUlRul1pQhUAG3Qh7fuXAiijIaJlFJ55QLklJS29Y6hzERZx0mCX3Xk4lTsViMs3gqLaLJ3bfGgknj/FC7XI3opm6oq6pYJBQw2jBE6qrCOYv1luWywVeetu3oO5VKEwTva6xVacQYuvyOMnjI2uxbqz8h6P4Z44Bgxz27jEVrDGKU87+MIZmNekELO6zTGIW1FkT9kpCZhQVlMh6GniGqBLeQ18U5QO7clfXfEdg4GQWjz1POtaYcM99txlmDsZNkoHNFht0wxMjQB7ptIBRfyUw9KMB7LSKeYuTWlvlmKEU/E/NyucZFu2jvT1v5exzWr73f3bhoH+Rm4CtXfpYfOvxL73dPvu1aODvE7RxQChg2J4e88/xv89Vf+m956Td+gRgGAB7/2Pdy48OfYOfSNb7zJ/7kaMO9/Ju/xK/9jf8XZw/uvG/38IFvBZz0vwV+kAuA0kW7aBftX/n23pmU1LMZEwNFw9pk5E0BEqmEhx1BNkUfXSO6TqmmjTqLZubhRxFsCZBYoyxEOUFkDDOQTenPlEDKsZYZcEmrGFPKAd8ko3M4OtCYUQIulevlgLaxGoS2+R4KI4X+rmAeawsrVGFjkNHnjFHOOcZzaTqx010o0MmOMnWzzk2BmnMvQc8V0QTpKPVmZqfmhIKCcqYoS1EsGB3WUn1dnqsAybA+6Thb91hXcXqygmTpN4F21bFb77G8usN6vWLdR0K/YX+/xtYVh+sNd+8/YH10hiPhnMP5mq4fSBIx0mKJ1F5oNxuG0GHFYwz4yhOHmKugB80NBCGZSExb6tgQg6GqHZt2RYgpR2G0Ottah68rjPRIimMCQRLUC62Y3qw2gGHZ7LHcvYGpHcls2Q8dx0eH3Ll/dwxehGHAYOn7npTHQYgps2ZASU4iolWjzmER+vUZLz33RZWx8p7wzhldtyX1gTB0tGHg7uE9ttsV27NVTkwLKWnfKivs714F5yFtSaEm9QMmqVyGOEvXG+49PGQYBg4OLvFn/9yf57Gnn+TKcsHOk49xevsut955kzZaXn/pZc7eecBj127w0U98lN19z/r4jLruefbpj/Pg3hm/+rnP8vhbS1i3/NQf/0lu3f0E7zx3n+/74R+mqgdeeu1NfvlXfpNP/fiP8NFPPMX9d+7z1FN7GkzWkA9W5mGYGVUBU6DxW9veS1Ih93n2URSDWHj86i7EBUcP72gwFJnHimZtziQ1fwblE5mF48qHGlSfV7BBwkqLSYkBGHC88uZDXnvpDrdv3+NXfvNzbE+3fP5zv00bO4iGy7/yJb7rk0/yr//xP8ZLz7+BXTheu/U2n/+tr3J2esxmfYqIIVlLSkGlkkKrILe+x5ik8hrW6ROyjtAPmdEGEEuykgNWSpXuAONydaEEZV1zln7T4gy6gFoDlVOgnU8kY7B2mZMLYaoaRav4I5G+S1gnpD4gEZqFxxurAdEKouicDmEgBl30hj4o5XpVEbYtIj3NYoFzymZSuYaBFlcNpGDAacBUSJydrRmGXpMDOLyv8rULW1rEJcHbBd26RySyWDYkGQjJMYSIQagrRx9CrrrVzcs5p0HOwiaY9xokTUnh+UgRGZ9HSUY779lstprUDQmFqymYNAzDSG2fZApb6qnTel+YRwrAdZRwSwq20iC61cTtLEExAovKvpFZmsp6Z9AAru6JSatirMmgjZKQKDaBvusUS/CWsUq3AIcKMKxINpQ9W+OzGXTkNPhdUgnjPRvtrzMODJkRcQJeqayFzJ5HAWGZXEWcMoip2DWF2SI/B6MAJWutSsglIaSg+7szWO8QEYYQcN5y7doV9g/2OTlesW1bQkoUfqlRQwkhSYcZBkJvqZ1hEE2W6ZqqMifSR3pvaRY14hLdNtB3ia7dYpLVhGB+J9YIPYGUOrabln69pe16XFXR7FSISdjKUpmabrslRKFeeJx1hMGowKQkmqZid38X5z17y32qqqYPLcMw0HUqI9c0DfWiwVSwt7/Dcqeh3W4JfST0mpitKgUUtNuW9WpDipGdnQUxJoYxYa/B9WXTEFKk6zpi7LNEjc0JAk04jmxc2RabEmnTxKlqT72ocJUmUKqqIW46wDD0Kg079D1d12sS39kRXDgxfZUxICWDNq7eJfeg8ncygjhKbtFmdIexpWI9J28SYIWu69luPMvlHrWvkQTHJ2sOH5zRrgfCICPrWWFimtuQCrJQoRlvc3W4qJRkzFXhxioDCpKyjNQHt2KtWA8l2Xrunc7XofH5mpwcyscZfTdS/IlZwmUOCMpXmX4o5m/+PptPGtcTeNe9XtLsOrPrnQNHzU0KmX2dmctoMI6d+e9mbiQUu3z+d9CCgulBTXmu3MZTZv0p31NMtIlbaZZ3ymvf+D7M7Fno9kPBeJr5/c66/OjzMRh6u2bLGaSStE94V+nxdQKp8DGw3WzZdgEjibr2CJE+bBmGPrM1JGQYMJkxwTrP0G8hDViTsEbXFWNUhtxaR4yTxKi+0zx2RrknZfoLMRAz0NCCFrE4h688KQXCYJR1dXwRJsvJ6Uupq5rF8gDXeNp2RVXXRAm0bZsluXVDsSX5J4nCgjaNe11zUu6jSerzGsngzZiwztBuApJUZrONiX4YME4lcVSWJ7MSm/IG8lqUfRZrHSIRZ0AyMyIR+sw8tbd7iU9853fR7CzZqT2u9nzH049xcnrG8cmGu5stIQiPPf4Yl2/cUB/PRqoKrj/5DPfvH/LKa6+zs+PZrRxPPPUMV29cYv2g5fLVa7gFvPH6LW6/dYeDZUNV32D/YJfWnzLYLT7t5H7PbOkZQOFdZuAHtpV1xDi4tN8Qk7BuO9Ijx50DJ42Tb+5NyLlj86o3fTZ/VOcuHOjefJ7Xh3s8ePNl3nz7AW++9g4nD+9y//594jBQirXeeettXvryFzk4WPCFX/yH3L93jPGGzXbNyfEpYeiJMUsXUUD3idAlrLcjaE6cxWSAuTKhxBFsU4AaYyK+xDhMkWEHY5yO0bLK55iT9y6DRnSe1N5jnUqmUtYtsr2HaGGEKAsSCL5yGCAMpaJMSEHGcWaMIWRZJVcp8MEVSWIjmZVUixKMBeOF+LgQPxqxn7AMl3qG0OOiY4iioCCSxg9SAW1kuyJBEJWgdpVTma48vL1zhBjzfsZsH2QGjpJzG9QMs5TjRWUTysCHzELVd22W1GK8Z2MYAT3jPkzx2SdpK90WtCOKJ8tPvICmyhwlr1vIeEyZsY/+W6ThTN77TJkLonFFN5OcNuNmme3/0q/cBwVxZeDS+EzK7CkPsuwBmZPJlhXykZb9iOk5MIHq8vj6hnWo7MPjc9Abk2IMzJwVwzxeqEzdhXVTQT6Z7cfICDzq+p4+qJQwIc6+I/thIeZxJiA1UhhuDZmQWTI4L7MnRUYJLxGhmzEiWZfvThTcFIaIxMyaZME7r8B7BOPUM01ZZtF5q/KOqUA0hSrP3Xk4VAT60IMIVVUrY5GrVBrU2RF8pLaHxfssPRe1oCXGiHfK9BTTJF8I6pM5qxLpMYMdY16TiiRgSJmhfLZgPmo/WmfxdWHqLbFffZ/KvBpVQjbJONJGhjKR2XgYh8j42rSwITMTp7IOFZukjFl9f/rsNE4ixQdCQWVDH2iaCm8rJCU2257Nps9FlMXOnAqLHw3FnbOXpYzzGbC9PDMKHPKiXbT3p51Vdzit3n6/u3HRPuDtqH6drTtiJ159v7vybdMkJR5++md55fZDvvIrP09KkfXRfQ7ffh1J52NMp/fe4cVP/yMA/sl/9n8bP09FEueinW8N8EeAPwn8CeC7+GDXFl60i3bRLtq3sL1nkFIkogAkAINJWuVWeBaiRJxM4TObpuC6sRpsUgILgzjRgE/Wq7c5oic5OFuCAcZqkFcMOZkouOz4W0AsSFR3eIphZNBS0J+RLBOQExMpJXwGK5nSQbKznZOlZMamAowqN5JKZmMWqDAY8u1p0MZo30qFtBaeTQ6e0habyTFMgnFGE5/GMIIYTA5cMEncmdwH61B99ZwbDznoYazB5u8ayMEfIefPJSeBGZmurBnzwUQxDAGMdezv7xAlstfXYDw7ew2Xru0Sw5bToyM2m1M2x6d4EzkdOs62a/puw5WdffZ8Q9+1bLcbLJp0qJodDh+uCO2WyosGyZOCw2pbaRLSpKk62eQxI5ocDEOPMxtC0IBLCkGDetZR+yXNzi67B7sggdPTE+4/eIBLysLQtj3OOX1+Tt+780ue/ugzvP7yC1R2B2dX9LEDAxGtasx1sNo3KUweeTigcnn9MGSwibJEeO8RhBh6jIWuFZxxxGToQqLrVfpCkhCGYaK9tjp4fVWRpGfoOrqwQVJNVddgEl0YlApfLDihix2X9h7n+pUn2Wkus9xzfPT6Lpc+8UlOzz7Mi6/dQ5JjZ3mNZ568yd6Va7x561UO7z/kyaef4rGPfAjjX+bl595ifVzxzGN7PPel3+bpjzyLefwar7/4Ens3d3j5K19idXiPp5+5ycH1HRY7T3DWWRrrWDg0qGgChmqce5oue78trXnGb/p9TPid+6sGiZRePfHM0/tE8dx7cJuzdWT30hR8nY6fGGb0E/2fzYwrmm9QBiKRLM1mEgmVVSxyIohh03UcnnUY67l375TV6TH/9Fd/mxdeuktVeY4fHBHClrZIeAWh325Yn93jtVfe4vh0QExkCBuGtmPo+zzfEwkFYxgroIJw1L7E/w2h63Sd8cLQxlyNn4PDGq3EWVEJNO8yW55SxDdNQ1V7ZKkBv+1mQ7OsaS43AAzDgFt4vPdghb7tSClgjWMYAt0wUJjkKt+wWFZICgzdwHazzZKMDmMNda0BzMqBiCU6qL3ThP1iwd7erlaFpoD3hhigqmvqxmqS7fRYwYcGtusVdVNT1wtM5dnf32Fot5ycnDIMEWMdQ0rEoc+VnIkQHWIcYchSFtaMWd66qpAQCDnxOG4rSabEQA6SU8afUQlOk/covZYmUbbrswyU1IB5Et0jwKh0nA5GzMju4DLYYtrPSobA5qxlqSyOMWKSwXqtKDW4XEFuJrm4kj0aEaxmTPi6XGGcJGYHVSX8RkaiXFVKDu6qXFeucNWMFAAp6L3OEwql0+eT4JK/w05JhZLxFzUECkhBc7EzWTAprDPTPA8pjHusrgdpWhuS7tXjOfm6pjwLMwGRMVk+Nb87a6Drem6/fZf1tiVGgSjEIq9AScYZQh/BBiw17WbIaw9UtUWsoaydMQib1ZbQrmk3Hc4bnDfEqADBvUWj4ytp5XUYImEYGDoFAnmnySLJ4FtbQSUeh6WuPSFETdLHiEgkdD19u0UEHvpD6noBBuplja89i8ZTecdmu8X5itV6o/O813niK49f7HCwv0MMA+16S+hVxm+72WpyHxiGgMQMvrMWbxLR65iJMSlbSpjeQ5lA5fkV0EeRs61qx2I3MzflZ7AQmwEOBkmRdrOlqmq89cQY6LoWCVmGZhxrs3GXmU4kAwKtVUkMQ5bgAGIqKSchoVXnGIuxMtpVoIDAFBL7e3tcPrhCu2q5d+eQw+M1fd+P8jnKWGfHpKjeZ2FJs/q8ioZwUgaGKGS5GJUJnCc7zt/RB6uVZMj0jufwGbIkck58zhOms927SK6U+UM+err3KcmoroEpLsG45Ix2gMx+z39/NC3zyGXVz8gAFPMu5z7KkpQyULL8fYrZKXPX+S86n0TSgpDZ+i6z/Cez/s7OLV0dwUuzvs/vfbxAOWf2veW8kUTq/LYwJtr092ntTgJ3/AtEAlWtwIMhqERL5Sp8ZZWBpw1UlaVrIykG1kOn4BsDu4sdYhWJYZKqDFGTdwHJe6E+U2v9mFgrCdvyVtSfyL6gKUnCQEyzZ2w12V25mnqxoKorrDX0fcfx8REmCd55+hAJosUFJieQq67jyv6SvrVYaiS0IHYEJcnsvReAxzQGdc8TU/at6T1ZUyRWE9BgjcNWjr7XgG9KcZTglSyvUxh/BQVMxzRoUjUloGKxWNL1a4Y4AA5nHKayiE3UviFsEwsP4iNX93fxleFgr+HS5QFXL2mvP86l3R1CTDx8eI+To1OeeuZZmuWCbn/B3dWazWmP2al49dXXOLh0mc3pmnfu3KFaeFaHh5iUWOw1BAn0Q+C17hbX+CqfkB/Le2yZ9+X5zP/9oLTfeW3V96brzu5uhbWOk7M1m3Wg3mFkoTbzSX5OTuf8U8iLJQbJ8QTJ/oUmz4egDBqh2/LmK8/z+pd/mwevvMwgPevVGXfuPORs3eErR99tz4+XJETg9LjnubOvkwr4s4xzZNx3FWgzzSljtGihyLDGkaGjgARz0QOSE+5FntNk1qPJLnbe431hAZORudN7DVOV+VGA5pgs80YGkGe2TQM0laduKiDR9wNhiCPDofbZZ7C8MhpVXueaVaMbv1Dp2RDDWJxm9y3m+yB8JLC5utJ1QEA2gkikbtRX995hjUNI9N0wvsuQixaUjdKQQrYxMqBkSEEBEcaCFcbagbzPzUEEZV+Zg5LEmHMs3sYq2ILM8KIsOGZkTTJGY3gGpkCQTJLK828ZS32y6TzKWuU+lfExFgLIxAw7+RMFMjEV+JGvnooOa9nSx/etH5i8uRYGpTJnJtC6fKPLX3wEM86ibL/PPpvdS/lMZkGCOUDp/OxmWmtl/sUy++80b0sbiypl9jxNZkQ35f4VXIoYVmfrPA8mH2bsRWYRwuge7LxaIjHGPJazHTmeI6MU2NAr6LAapeGsgvmMUfniKBpbzf4UZpIQnz/qMqedtaSgrIFT0YvGucqNFj/RVZ7FssF7T1U5Qp4HXdsyGIv3KrdorcHmYwzKMKvgY2FI6reAmd4RzEBDmV03rxFJqzanvpBtAqbxnlLZNzMjlVGgZSxxCCYmszgESJlxyRiGoHJvjGOaXKyTJ1UZT2Rjzo5dGd9/kkfAQCJZZnYqEJr2CWHR1CyahhgSq9OOtutnQMQynWd+FOcg6oxGo5ns5uLPnmNVfsQ2v2gX7Vvdnj/4B0TTv9/duGgf8PageYmvXP7b/OjDf2eynS/av1DTWHJkdXiPN7/ymzz/yz/H+rUv8sqLL2SZ1ffWUgz//IP+VWwWuAb8BeBPAX8UWL6vPbpoF+2iXbQPZHvvICX1XXA5WYqYDDxKFM101e0msyjlYzKTw5g8GAP0CgRxxpGyQ1psipI0TZn1YQxCoD6fLQ5fKjS5uUtzNiWmc4yARMFlOqHCQoQpkhNZim0MWJTkZsK4DLaQknzWTqqMWglGTgELgFiSwmKIaCWYWDMGP6SwROVrxZAwroCk8s2g9ye5wtqM55lJdsIozCvmB2AkV/RLDgLF6fnY/Ls+F30okvvVBuh7dW6TjRhb068Dq80ponolCpzZbui3A/v7O4ThlJOHR2y7jrbvqZ1nudzFVwuMJPaXqtl+dHpK27fs7NRsgqdtN6RoqasdYtAAYgnme++IUWX4JD9j5zT4pUF1gxhLtVhQVZ6YNrhqwWNPPMli0SASWB7ss1qvSduOulmyXa8Zeq243vTKxFItb+PqgIuRdtuyPd0gKdDLQKm249xYYEyMGuNAEhLDCE5LAkEEg8r0OAy7zVUee+IqQzri7p0jJAjeWVI0Kq3j85hKgUjCGM8QIyGsCWFAjMPbJR/+jg/z9lsvst0+pLFLLu1dY3FjSb9ZUTtPFRY81uzz5LO7XL++BCtcurzLhz72NC+9ccLVK0/xzLWrPLh/F5+E1brniac+yo7dp33QETYd29jxtZN7hOEtbr54mztvvw5Vw86yIp2tMc7yua9+kcP1W3SnwsOTwB/5iR/gx3/oo1ib2VrKyBJlPXn/kwrngz35h1m4VTA5WjT+NQo2eXaWloNLO3xh6Hj9lYdcubFDUysQTediuT87ZvViDhLr3MyJlqgz/MHxhr5P7F+rOV6t6Tt4550HvP3mO1y/fo2vPf8Sb715l9XRMT//W1+g3Ww4vHtI2w80jSEO/cSqEQWbdDHerA1vbd/SanpdELEkjIk0jcugxIBEA/gMdCEDPlQSTci4kRxsDUFBG85ZmkWVGckyADLLGqq0gqepa6pa5YWQxM5iDzE2J9i1mrrvemLUoF4/9BPVekqafEjCznLJcq9BiHR9ZLONRMkJ+pTYWS5oqopNu8U6w3JZU9XZqpdA5a2CZ6xFjCdJIiStPD1bd5ydHXN6ckjoQgb0RPq2w1YrlrsNvnJ4W5Fkl/VqSx8GZQlKKcudWfouaFIo6JpQKpQB/bxULkatnE4iI/uLdXYGUMpBSwHjdW8UhLquWO42uMppssEJcSgVn7pxhpjwjct9MiqzUSSo8ho1DfsJoBNjVMajvC9Za0A0OK2070UmzRAyyMiU/ZGSGMlgX0s+LzMgQR43YQQFjYnifM+Sg9sWM2Nxmu3V1oysEwY7VjLHGPFFusbYUZJHMkjJGINJqERW3l/lEfKYEjB3ZgrWRuUYHK9Lvh8osnFlnhRGrCkR4ZzDOUU9i6gEYVV5MLBZb4khkYzgnFcAX7KjLZNHjs4v61gsFjjvCHHQ4DKVyoDl541NmAR9VPaMnaah2fGEEGiWFb5ypOBpt8o4YowG2JOz+KrCN07ZR7Kskk1QOU/llDVtu+kYhjgB0AWVZUQQOoxdYZ3h4Mo+l5oDbCXsHSw4uLLH8eEZh0cn9JttXkf0WRgTWJ0eMfRR5d/6ASGBRJJTIDJ5HMQY2Ww3mh8zRqujnUroqixJYRHT5EZJhOmiG4GEc5a6riAZum2vjExBiAOEGAlRk4Sb9QZne+qmYqx2zvbYKFcy7gsTaOQ8iE6rx33tVaYpiJLHASI2V6f32d7N9qEYBIur9L3dv3/I+njg+HCgDxGZfY81VhMbFDkTA5k1yZTdyjrqyitIKSrLm0FBnCavMzEmSFNl+AexzZN4piTnZh8Y8uJQAPvfzJ6Y7+0lAThjoRrzRDM7eH7aIznEbzQbxuQS85zOlCedpQ5LSnf85dxxU4KyAIimrzTnfp9fa+5jUGzQWZ/L9czsvFJskfNL099kAhuNfZ03MzGuvtvfz/d59ujLU8i2c4wK6r9qP0q9+2l6GejbmBnRFEygEs8KuPC+IriObTfoLBRNkHZpUB/HOhZVhfeOtusIMdAsKgYSfd8pIBR90UV6CrKESZ5fRc7P5LUnlUoUoywOatv0YC2LxVIlpWPAeGUnS3HIe7ogec+MAcRD2645ehgxBJWz7jtAgYt5gcky5DPWxMIaSPaFUxrJ9gT19cTquHfOUde7HFzeoR9OCUGlc7MgOUmyz1RADKL7WohRfRVJugZZw97ePnIWGPpIXS3Y2dmn2vW06w3LxYL93X0u7dXsX2twtcowijXqJ656mrqhqWqMbHEWrK8VeD94VkdbLaKwicPjUxDPycmWbXuK9xXV1uPEgLW88NIrvHnrVSQ4onjSxxpuXnqGg+GJnPidj7wPQtHDI2020cf/jn3W9cuKjr/Kw3Lp8V54+OCY/au7WF/WNI0zzFc4gcxDUuIT+ml7uiYMA8fHG4Yh0p+9w8PDQ7o2cufWLd588WtUVnh47w6r1YYUhsykGgndQEoRn/3pIiEmMZYuK3BG0giKtOMkn8VnpNhIkxyWxj9U5nRkPBqZB8tcNBo7MuXC5dyU5XlVrs1Zk+1RZdNJBorssHM+xwtEZaxyEsRm6aPK+rF/dV0RUyBJlnEck/tqM3intm5CMEYBvnPAiRFBnMEfVMjTifSxSHomEvaD2orbSOoy4B31kbq2xXhDVencLrZJCNnGykVuIygiTBN+/t2FB3EE2WewQvl7sY/nAJxxzTbTM/W1zyCl3M0YwU5srwUQNd83C1BjjBSNG2j+XTLouoCKypssfZcJWDTau5JZTnMHx+ub8/b2GLhjAlKNtkDur97LrJBg6gHzRcMwjddiMhYpOZsdpbkkrJR3zqyAMPs+ZeOT/MzLPjub7tM/ORYy7jdmdq6RkfWpAHuV+S+/I1RqzWXwXAhhkv3LMm1kv6tcWKWqZdYRk1kZs2+Xn6+yJWu8sMh4ee+oFx7Jc964saO5KE/3FcRgjJ9AhbOnZiCD43XPnzNzTc84P8e8lokRYlRZOmM9+/t7xBA5Pj6lDz1Dn/1NY4ghMfRbHZuhsPLKCDBSRtxp5YxRpSZ1bGns0vkZG2qa4MswFX6ORS2F1Stl0GBKGRiVn8uMOUKLnswI1EqzsYFRe6vYX+cGg5n6ayw47xRQlrKBlv2TlBjlQSebb4ILbduefghYLH0naNf0i+cQ38mzmZjRxrg5ZHZrq4VH2Td2zua4Rfah5dyLv2gX7VvaPn72U/zyY/8hvVu93125aB/gJibxy4/9P3hq80M8tf3Bbx43+H3eNNb53gFDj567PlI2VdA99OXP/CLdRufWwzdf4Y0vfpr18QNO778zd/Qv2r9sq4EbwI8DfxoFJn0HfJsOz4t20S7aRftdae9d7o0S44k5sDFR+Kob7JAYleUnxewIujGRWxzl8rtSG5sZha0Zo+xjBQePVlHnAEr2/OZSUkXmrThyKQejczhtRj9tx4BFcaSNFDYmTcraUZLITRXWMlUSFkev3JlqwKtUiyaQpyBJSoIzNgcG8l1EMiNJSVgYTMp/K880A5JizBWPs92sJJrTmEUBW/ppjCbSbU5q5aqxIlEHMga5BCFEYRgMKRh85VguHW0rgOfG9Rucnq55+OCI9dkpl/b32L9yg3Y4Y7M8o97dstjdpW+1gqcdIn2M7C93qJzB1hXNLpi6pQlg4kDf9/RdD0RIiZiiVgSbHCgxOVCWgxExmkz/nAMuRnDiVN4AdfCPj4+wVhDp2aTE0EdSH1htzogpEEOPSCDgsViOD+/Tdxuc3XJ4fB+SshSlkiA35AqwlB14MyaaY4zEGHKfM3BNtErSBs/eco+9SzuI2SFJZL1a44xR4BoO5wx9P2jyW8I4HpLJCdWoz0WMIdoTHty/TRJDXe/y2NWbXLr+BHYfjm8J3/t938NHv+sZnn1qwaUbNcEmQkg8OO35+kt3ePvr9/jQM4+x92HDdgjc/vzrNIsFL7/yJo89/hFitFza2+Fsc0IKgZ3FLm/feo2uP2ERPcbdYGf3Jmd9y9e+fItXnnsOguepj3w3fWt5594JIQo3r+6ytwuZB1zfLRnR8D60R6vRyqdT8LQkeEo6wGGTwYeITQOXDxzXH2u4csPzytuv8YnNDQXFBUAsxqMsckmTYsZaojGcnm24d+eIZCJXblzitRff4vj+Ca++cZ9uMDzx1BVeeeN1jg9XnJ2s2KxPWTQVJKHvWyS1dPc9QQZi12FsIgYFpSRjCX1EwqCVi5lGXbGiUWWWnM1gFA3MpyEHnKzFOjMyboRBk4XWWGxtgEjXqYyYMVDlimYkZoCD06r8GPHestxZ0NQVdeUUsCVBg23WMcSESMS5mqoydG3HMPT0Q66CshZnVOIRFDASJXB62tMPLZDBid7i6xpvhL0dlYRytcnJlMgQAnVdK9McEIMCkIwTQuoJcUvXbcHActdxEBbEQQGh7bYlhUSMAyl52nZLGnQ9aRYeL5aYnAKTAiBaxSmPjCUpAAVEg5fm/BoNjO8pBK3ILknTVABhucLZOJWg6sNACIk4RCRG6qqmXnj6vsc5y6JqtGq8D7oODoX5KofgS1LclOGdSMMEILIZGRRDyFIwus4mIiHqeuYzw5ugiZSUEjYHLcs+ndKsstZl8FMBDpnyKHKwuATu52gAM1Xhjsk+Ec1FJmHILHXKbuYy24/+XFgVR5CRKFLUGksy2rmU30HKyd+U710MWUZsSnQIukfP+xdSyMkvdD8VM90vuhc4pwnkECL90GfgslbB713ZZdks2JxtSClRGQXl9KHDGEtMifV6w87OgrqpRmYQzWNZrFVglXOO6EEWlt2DXeqFIaYBkQgmYrzKEvTdgLeGFNQWM9ZhsRjJYBVR+8R7g3WGoUuIBVcbTLLEYUq4Un7K0nuaQBdSTPR95MrlAzZug4TEarvB2IR10HUtw9AzDJGkKk2AZAakLNeQZZnKPEpJx75zDqzBGZTlrKqIXaLrekKamEimBGjKEjHK0NZ3ui4OSgdJGwdNpBkF9lhRBqcUdd0Yk1tj4qAk+k2WdDXZnjSZ7VBlppqdikXTkILg+5CTJ5GuVVmmEb5qS3V0Qgysz3pe39xXOUpXZ0lgBbMJGQzHxB5gjOSkkBvtv5DBZsZahiHk34WmqWh2agw2gzQ0+Sof4ODSVDOuCZCSWCtZsJIMU3O+GPeWwvAnMvIxoMkmMyUQzexb5F38BMqFx8PG7xKZsSKNPsKY/puuOR4/5W7mly63cv6mC4vIrC599t1jG/2C88mm2e2eS5yK5NxoWRfHnppzAUaZ35KZvgsmX2Seen40Rz1+df5smkNTxzXhZzBYDoYn+cTqp3hx959AA4tml7btCestBsNyuaCqHP3Q5/0LZVEbFHAZYiLESF0rsDBEIWExzuNNJGaG1FLwYkxhxFWY5Tn5n3xjMbOpwHmmoiLrYoCTk2NA51bMYEpJiSH0GSygTEZiHDEF2u2Goe8wJjCEDqNnk/Aj+5WCgRnfZ3lxpe8lYSlR35+CqDzLZoe9gx1W656zsxNC6DA4ZWG1DpFA7HsdW1KkYzJYgPx7AjEBSVseHt4HEbyv2Fku8U2l7DfB8eTTT3Lpxg77ex5f5ec/CEdnHXfuPmR1vGVxo6JaGNbdmgeHd0hROHx4zM6+wVYVtBv6rmXhdQ9abzY4DDVCbRuq5Z6CzWVBTIEhRm48/jjbasUvhf+KH3z4b/HE/k2Wi+I/mGkxmI/bb2F7d38C5vsls7k2zrMYIXZUFTRLS+U6Dt96nsc+dJMklqGPSBKsR8ELMbHdtGzPjhj6lpOTFW+++AInD25zcGWXl7/0Fc6Ojtm0AykZqkpYrdeEIZBCzCylpa8RI4kYrLI5moT1ZQar1Ro1C65rmXM5ViDZBsmgkgwWSHn/L+xJxcZTQHpmJxuT3zKCnZzNYIQCBM4VVi6z/okYqsrjvM32IyPIwVqLRcaCgVIMp7bgxDAoovttAZrHBNs2ZgBDtmmdpV6q1GSRnI6EHPsJhAyE8k94zNIQP5Yw14BnDFJFohmIIxAc6sar7LWxKss8BAVNiVG7PvdFSLjKakFTTCrpWtbxDLafGD9ltuaOgafxXzWpzQg811GX94ccN9Gf886YhEBQyWhhZN5xSkerhWGV3kMcwji3pphdsSHM9N0UAPX5/e2crVGAVePmpoPFmgx6zMUNxk42t6iJrWPAFkDTuUk4fv+jS8Bkw5Wf53ZstjLyWJhLuJHfeXkHY9+Zxr3uLxPlnoz/gbEIcnYfY7cf6WuabZhawDitK+fAUiIKnpsVp2Cg8iqhnmIiZnm2ss/ZDHxSZiHRYgFrQOzIBG6NxWYfTd9FwnmnAB5TgCiM9+O82qClDzL28/zTN1YZLyWBZIk6h8oTS5oDg6eno75ERJxju+mUQV90bYihsPPqJFFptcS4bcvE2hUzy2kB5WlxzVQoU6TKjDH6TFBpvBA0PqLbSvYbU/bDc3whtHEEco6AsFwFW+zxOL6jGbhxHEOS489qDcgM5KN9U3CX85nBShSQ5bL9plLU30Su2QiSDO02YkzMrHxGfZhcQFPW6ZRm/TMmx93zFE0To5cWMhXmOkdV+9n5jPGOi3bR3o/21OYH+dff+b/z80/+n+jt6n2xAy/a74921LzO3/zwv8m/8/Ivcml48v3uzu9JS9sz1q98gf3v+RSFICGGYQJ353b/9RdYH90H4K2vfZ47L30ZAd788mdoV6eA7oH9ejWz+y7av3RzTFn17wWuAH8G+E7gx4AdFLB00S7aRbtoF+2f2/4FQEoxM4lkpz0zEFjjIDt45ACEBowdWAUlGWwGFuVgrGgCVNE6JYhQIje5AgatWjFJE3aakhhdvlGaRgSMG4uugSlIowEVkJCBRJKvM0YwJid2Hs8fq5Xt9Jk6xbMKZXISISdMYlRHuVTxGO0oRnJ1otX7SDEnXtEqwXLxMdlRCnwBM68YykGVoqtenlcsAToDVgS9qDrEBpWKK0HCedzLOf3bMGgAQIMY6oxWHlgajFSwu0cahJvXr3H5YAdIHK/2cXXNcrHD4dF9TlcrTIxIDJgQ2Vteou1aTs9WtENP329Iw0ZZVVIAowCBylo8hkHIDr+CKpT5SBMQYUaN4b0npZ6hb7HekwZhMJ6h39IPLYlEMEKMHSF1DJugzzbpeDXOYGxkuz3l7PQQ4wQhsKwajG2IYgndGkxgGALe2ywhEygMBc45rK0wUfsz9AMpQegF7xY8fvMpvvP7P8xnPvslHjzYEgehqXeJ1rKz3KMPZ7R9R4iCSZMkRDIaxHKQ2RSEGLfcv/821nqMWCpnMbVlfXLCrr3M9//YH+TS0xX+kmfbR06OtqxWia+/do9f/We/SuwN1z+0xxdfepFXX/4iL7/+EjtuQQhwuh04Xh9z/96bNIuKJ25c56wNJBGuHTzFh5++iV9e4iOf/IO8/Opr3Lx2kys3heeee5EbH77B7QdH1DsNbatSFwpMqkg4DBVmFEF5/9u89jFJqTucKkxFoBdh1W5ZH93m8PAQv1ezOjvkwdmaL375MjH23L19iq8XXLqxQ7Ns2DzY8Oorr1HVNX7Z8Nprtzg+XBHiwJWbSx7ePqHb9AwEBMfXnvd0Q0/oe2U8IrFZayDIVglnBS8gJuIan6UT9A7yhM55m0QyDmMTYiIxqWxSRCv8q8rTBwXAlQCqAlSALG8whEGlFayuq9YY9vZ2chIgaCIOZSey1lI3FcMgLBYNVW0wNhBF5QtiBtMoGw+EkOjajhiTBttEQWG2yC5mp6ofenzl6YaOGJLSy8fIovZcvnaAr7VCM8XAsO0Q0zLEgbbXxIOrdnFVrcwCkrABUkiE2BMl4LwGS7uhxTcG58HZBWIj3SbQbhPb9aByFSnkZKWCOIxAsoZBUqZQTzmwn2PuymFHjg3mgVb2Bw3GG5uTQSFMfytB8DHQrwmDvsuMM0ZAXGZCsSRReb8YBOMtdVXRtX0G8dhzObMiI1P2T2PtWBJf/jeBAzgHANL3Mn2ue8hMNi3v/eQESgl6+qrCuBL0TKQoI3PPmPg1E8uDyQC7Ij9R9s951KlU0Za+FJYm752yB6WUAXVZLjaPcY0Xq1RBKvMFynaY8xxmAluNzYwVtOW/DgWHSNSEkxsTFpKfl+6dBTw1b9Ypg5H1jt2DXWJQubO2b1USzbkx2T0MQdcP7wkpsG1brHFUzpNsIiZD23YM2a6yziEGhgFSDykFwLLcXSAidNtegS3WEYaIRMakIh7EJiKBaASssGgqJApbUQYiTXrk9SJbW+1qzWGI+KrmgT3mbnMfZ4SQE3NGEqGAigdIweYcXcR7lYIYhpATCjpO6/oRT92YDAoTvLfUtQPnsM7QdsOYtFHbUpmimlqlYrfbrTIwOquMHXVNyPIO1jgqXxFDIEWVjolZ4m4ES1kFMunersmPFCYGBldBVXsWy5pqoeMiOUueunq/MYxBfoGJ+cAYrKhdGBOkIRLtNjNDGIzTtbeq68ywUNZ7Zvap4K2lD5F+iHRtT9+p9IWvDM2yoa5V7ooMbAtDzKx4H9Q2JT/UoM33mhPoI0OFHqRryRypMEfJyAz0k23n+Xpz/l+bv2e+3oyXAWSmulQSjfn6RqaDy/HZzv/GzOnkO4y5WivTeeWLx/5O5yElN/aNbFhGZsfaqfO69sl4DX08EyvGzNWYvq8k4GYJYWE6+Fy/xuvOuKNksq2MUV8rJpCY1J/A8PT6B9lrn+RLuz/Lxj+k8hV7u7oHVN5potE69p2n8p71dsW2a0lZ7hQRKrcgpDgCfbebLSkOxDAUsw4pMqjj8yiJQxn3isKKNx5jcvI5CsY5JAoR3R+SJPohsydJIEkgDmVPM5TNS/3KyHbbjuvsom7Aq/xx322QFDOoVfsQY2HV0+cwAga8z0UQkRQMznl2d3e5cu0Sq+3tzNKmgM4YwBiP9QYTwlQEk7O5c5Y4sZLBqiphqz6RJu6bRUPbbthd7nPlxjVMlaV0Oui7RNslDh+uuP3624gBvxXuvnSf0+O7tNsNy3rBZn1CN/S07Yp2vWK5u8Pu/j7dkKgDXL9ylWvXDhgSXLr6GIdHx5Cg2RVuv3Wbs9UJFnDXHa+EL/I4f4LRwzYGI4Uz6oPiT8x/nhLxZcaJwLptOd20rFen3L59j531PkcPjzm79U95/bVXCGFgsw0c33kTIy3OO4Zt4Ox0Rb9dkVJg2241XpAEVyWVsE86bmVMlCsYR8MCQsoSpM6jvUrZExM/Ffpk4I4qy2Y5qDKk0fPKP0aUxYXMpjqBU8qqotKmCZkBpHRP87WHsY9Fis2NYHYdn1aBEpKy31tWlwKM0GNSkU5OKTN2zxayvC6NIBRjFBSIXtc7y3JZY3yhihFiHLAO0rVA+EMReVzAedJVQXxh0Mn7eZxiPSmp32KMAh4tFuf1+0NC5W2zrGWZf1qcUNgVCwis7F+PLLBzAGv+cwF/kQFgEuPsPZTXMNnvABKFnkBVObxT20BMZnmNMjLCGDdjUcoU38VPGE2R+X5Quln6IxN4Sv/J4yvPiJFJhrwmz8AwCBNYpCTXnMvgjvJeZQK7mIn5/LwUcP7+HENBZn0dH60ZH3eJAZQiBMjXpdggM38k+2kymSSzvX52z4+24heac0eSjUOgSHEXGyj3N6bxeY4AtNG/kVwsUhOGIcsZg8tgW5Ol5kucEyTLkJHlyjKILyg7kPFQY8d7jHHGKGt0XCt4KdtfSQFUpviKWWq7jJviOxSwv7LIm3HuZHNWCxo3HX07YKxls9pSeZcft/qFJd6pBQOlqCEXy1gFG0kejCNAaFw/JBdhZaBjwbqCji1nMHFmH4jaDs55jDXq1yQFMBa/AKNzuDwLmwE8hcE3jhLk05iwtrBkuZF5WMedynZ777DejoAh6yZH1Xk7nlPGRgHoG6yO0tyfUbJxDDqDxeZ7N6OfM9rAVscMDoagcnYjW5RR/7UwsM0lZGP8IPsTF+3buVkcP/bg3+XpzQ/zt5/9t7m3+PpsY5kd+MEwES/a+9weNq/wlcv/Df+D+//e+92V/7+bDN03xAEA3viVv8v93/yN8feXf/OXOHtw59wxZ/dv023Ofq+7eNFAQUn/R+AP5t+fQUFJcLEuXbSLdtEu2r9Ee+8gpRgRo5TY1mji1BhR8hRjMLmqZ0w4WqPgpRyUMYKCQiRpFblzYwjd5KCpBrvNGNAqzmcMcQyKACMIqURqCo5FcVIlyFX6As7kwraSrCjXyM58UaZLOUntsqRNwVCVipLCYFQARaPETr6ThFHK3hwsL5JyBYSUstyaVvvOHOviQBuIiFJyU5KuZKefMbg4PQq9v5QSbtbPEjMxxhRVPu0PgqByTSFqQiFGo/IxlcrMDL0QouXkbEvjHYtFzY2bl1Wj3Rq2m0hVWa5frVhUDjGRd+68RdhsWNZ1BkBEnK9Zesflep83b52yPluDJHZ2d+hTz9AHul7BW5Lf2zBIDrQKYhKL5ZLU9eN4GPqeUnHoq4ooWj26bBqWu5e4d+8BhkRVObZtxISENRooNbbS4CZCVdW0bUuKQmUcV27cpN7ZI1k4fPAO69MTTbIYyzBEwOUAhuCzFB3G0zQNvopsNhu88+zt73Jwecm631ItPO1xIMRE6iJDb5BkuH7zkjJKDEJTVaQ40LYt27ZFJKrMhLVI0IBsSAPKOmVI1vHM00/z+itbrj/5BKebljdv3We143nyySvYqmabtrx96w36swecthu+9LVT7tw54uTBa1TeUi0dq4e3sQ+PGYYztqsNu5ef5cbTn8AdHfGR7/g4/8af+BQ3nrnGV165xTtvnnLz5hXu3LnFw03P26/d4vj2EU8+8RRhs2HTbfj4hy9zef9A5wYZTCicj9J9S9sssEMOeEuJDwptF+n6hHUaQD85OuWF197mjdfv8dbt2/zXP/2z7F+5zq2XX2N9fMhzz79MwtAN4JuaeqGBpaENmcHDZkBBwOaKuJOjoGPPeKwJwEDfkgOLMQcnEylaMJbaGQUcmkiFxcUKkQ7JsgROEs6Ba5ocILRZHiRS11aZ0jBgEs5bjKsQ8WMQOYQBxOK9wdcGY70G+6Ims6vKYdC1N4Sk493ILHE2YC0K3HMWl9d9padX8FEssgbovWlSkcwwo4FgBUf5nFgxkJTBxKryG4udHfb3dzDWMHQDmAFbCfUComjVdt9vsNaxPhvYOquVwsYQBgUrWOPHSswQItuuG5OJTS3sLCuMCF2faLc9ZFYW55UC3xlDCIXhDXBmZN8pIByNy+qKKpmtTkTy+p8DxwYgJ1UAMGO81WTGPaXHh9BHFk1FVTkwFSkDvGJIDBkMYoOhzdJXhU1Gk6bvFjw0Wb4hV3/akugrVedxBBLNozwqy+F07QmBgpsqgd9xr0tRK8ltDmRTJJamQLcRreL1lcd7j0H38hLcNbMAfZGRKJ20WT4kJk0WWacJXWNzQFbyHloSU2XOF/YcYycJuHkipazfM69fStJlyl5r0D4ktXtm8nQFhDKdbrNNkN+7szRNgxXo2zbT9Qt9aIkSMEFUziGqXTT0ka1pqRYVQwiEYcAZ6Lc9KahESEiCqQxDGKiT6JjodA/RR5Yyc48+69r7/O7JAeiYg+Ya708l8ZOTZSrZaahqn/8Wx/FCXs826y2GDuMcfVOzu9tAlmWxzo3VzvqYDdarjVdXhbktJzLy+4gxZlB3rpQWoWo8vrJQmZyYAQZ95nOQkiB454lJQS3WKujNWpelHgd8VWFxhD4zdeZAfQiBGIcx4STIKDslkvBeGeBikZMxQr3wLHZq6sbhKkPfphEQlEQrrn3lM2hLpuRJykF+KbZsQohZxkFUFisp01KX2RWLfIT3xTQXlouGpqowMhC6qJI3MSctnCY6bGHOxOZ7NWDCu6wLH5A2k92Y0rIFhDbCgrKEcxmLs+yjmOl47HTOI6iaOUBJL5GtgmJIn2vmkd9kzCvm16efm/I1E9hphg86dzdjQi/fy3i+HjDm2b+ZmTQmivMxMv/+95AzkvltjbddejklxebJ5PnTSLOfy0VGBaoxj6vXktEpIhd4CCka9sOTfG/7F3hr/9Pc2/8Ku+YyV8OHuL7+BK/Un2awbynYZmeXIfYjSLpynoRjSIJzNYuqxhohDi2bvsVaS2Ur+qBgohgK22oGcEhhYNP7VaB23rNFkFjADkXKtjBTGKz19MOANw63qFit1+foeg12lB613qk8awx441gu9/C1+ifWRNqt+gfGMMpdWpvnd3YyhWzDWZ8lrz3NoqZeOE5XZ1kiRxOqQwgY47DJsb+7xBlLCImmaYhhoGtbuswEW+5/AlmrPI4xaiPWdc3m7Ixqr+HO3fvsrHa4emmXK9d2sZUlhYHTk0N29irW6y0nJ4ccHp4QujO8cwxWWW3TtsVaZaWoqiWXLl9nvV7z7FNP8ImPPotbVrx19wGvvfQKEoRu6LGHke1piyxg4WpOT454dftZ/uDyj7KodrFFaX0cat98opQ597vhbbxLPmD2+QTgEBG6tuP46Ji7b76h8jgpcXp0whtf/RyNJDbtlhdefAnna7brLS+/+DwnZ/8M6xyJiaVPiq0m8+9I2Ayg0LownVgGwWTmTCMp801NvVbO3iIPWpiqFVRfWHAsMrIDluU1RUCSgm5Q25wsD8cMQGRQoIHKaqrN6DMTpcohKmC42BLkmNHIwkQGNshkM7os2VbsNMUIlfGq35qSyhEVe6uwmWjfwviSrIXaO/UxKk9VVTp/hkBKQX0DI6QmIH9eSFe0QCpKZBh6Up8ZDiVkgLwCDoqtqSDDAubWMY+D5IQUhiyVpfbW9EayrWYmQLyygJLBzb/DeCwhpXMH5blQBryZHZw3DZdZGNX+c/mZJobxOkKf1B/LZuS5NhZbiIIFdf+YNjG9h9EwZtrRpz3OzPbfkZGobNOZiVrN7VLEkddmIeNAC/tSEWvTfo1jhVy0aLI/Nd7/+cKIkVEJyUv4xIw62Qj6WCWv8ZL9C0H9NTvu2+eBZJKvSX5OY2xujH/k5yMF/Cbnz2NaW+Z+SznVWYsRIfTKDjrZTJL3Ml0BUmYu7WXQdcXpkTZLZYeQCypmTPTFd4shkWLxb5TJr7xaLSohz3c7rlXjU53bZDKNU+fcaFdPg8qMzyCqAazHOTvebwF9pdEfLP6XSkaWWLEyFJVhPzGtkbI8YvaBnTd4FHgjAGF2Xr6UIGNRLBic9wpqjokYA847LS6J2V8xxdcd4Xyz+Wmyz6L91uIHjcWoJKahqh3Om1H2Vf2bCZReWIaLrcJsDOuzLkxt0xhClJNRh5sCj8ahmBd5EcE7h63y70mytPZ8XJRXlW1qa1TWelrQLtpF+5Y3i+PpzQ/zb7363/LLj/2HfP7af8n+8ATfsfrX+OTJn+FXb/7HvLXzud8dI/Ci/f5uRnjh4Of58Qf/S7x88KlrUkoM7YZufcZbz31utBFSjNz77N/nI9d2ZkUA2j7/a7/ECy+88H5096I92q4CPw18Nxfrz0W7aBftov0utfcMUjLJUKrYixyFCCQJWmmHMkfEBN7UORgWFWBTKniiMn2ocxw10GMmh9xQqmmK01cq4mTGppSTktkJLXGAMRFQPDaT/TgjmjbPAQiLKDghFumMHFgzE4Ap5xXHvoopgQ2LJIipBNfQLz4X4J/ChQko1Bum9BtNEloYrzGSa88SJ2MQJCl4oXx/OW5MKpgsY5N9VQ1imClgUwBOiLItFUc+BxWcM1hXaUgzqSyUt3DlaqOAHNHguPd6SpSBFALOGoxTJiEJAetgSELCEW3NpUuXaBrHyeE99vb3GIYNKQxsug19N2iCbkj4SquVrJY9QWHpMtD1PcZa9nZ22KzXmix2elyaJVnFQNt1VN6zUzUcXL3KCy+/SIodmISrany1VGmp0JOC5fLl6xwdP2DZLLl8+TEWu0t8kyCsac9WNI0lpUBMyl7hqgabBEPEWUfbrqlqh68r/BBxdsHewRLxPS+89CLHxysYDDhPPwjLZo+d3X0O9q+yt9zj9GTF9ZuPc3x4j9tvv62SgCRlTcKCs8TY5uBQwrklZ23g1VdeZnV8ys3HHV/72gvsvnqJn/xjP0y0NXcfrrn11n1WZ4d8/Ac+yUsvvoJfWO7df4vu9BiHo7oMIj1JWqqm4alnn+WjH/1Onrj+GAu75JlnblLv1Jy0gXYI/MJ///cIbeSZDz3NTr3gscvXuHbjw/zRT/0IVw88b779Ng/vrbi82OXSdZ8DlREFcJwHQDyyopz/7XeI0v4O8dtvenycnZdEqwTX246vffVlvvSVl7n/8JSqqTBE7rx9h5OTM0JMDNLyzr23MHff5ux0xRB6+hOol0utDPaJoU/0nQa8JVksfgTMlapGcMq0YdKY3HLOYsQqaAfBeI84EGPwVuUWUgz0CYKBKJHYqiyXMyZTg6s0whAHYm8xOCqf8KJMANb5nAjTdc5al5MBVQYGbqkqnwFHlVYm5gB213d0faegI5GxEk8rTnPFn0SMWJzxGfiTK6ljJMRAN/SQAX4iRZYhYVH2mBI0F0l45wjdwN5eQ73UrahqlDUh9ZGubRlCR7VwhNjTtVvikOg3gRhbYowMMeF8xe7uLn03sNm0qDwdYCLOesIQWe40NM2SlPuYorLjRKvrYOX1uSrG1mKco/IeE5S1x1oFi8YA3bYf94R5Ytxl4FgJ/CZEq9jHpLYZE9LzgD0iNE3NctnQDS1d10PKjC45CWOMAoM3q20OnjKu62WkW2O1aj1OoF4ZAUGzNHMOOBfmusLwVKqcUywyGYLFjgklBMTkfTePiySa4LEFmGstxmilru5xZc/S6uUxgC8KINMkhiaUQgiUoLoFTJZ0st5nmTJLkgxy0hvOLCYaCC9MNta5LMWhANxJOiHbBClX5IuC8Iyzuv8zy/XENI7TnLPIsfjyLPUDl5PPRVpM5d8GtuuoLBkk6rpiZ2cBknKAP45JuAh07UAfeqrGUtcVJhmcqenioFItCItlja8MYchMURnrKJLlDrM943LyqO+HkfnPkKUhoh5X+woTkyYWdeRQVRXW1poAdw6RLD0nTkdyyvPYCMYqoCpmyVNrLBGrf3eZVdNqMi6mSMzg7JQiKTOxKBjO6lxPOfkXVFLJ2gWLRY2vKnwQrA3TeDX6TPt+wDBg8lqzu78EgX7osc5QeYcko/O97cdgf7FFRciJmGnsh5JAqCqVTTAKiquXNc3CIwTCIAx9Ig1WQRBWx4CvPNbZqdpYZKxGThJGW6V8d7F2U1L7sgC3it0m0ql9DPRtz+7OkqEf6DqVlZNkR7BBSaqR55fYlGUf3DffJN/vNksGmrKG5fVs5HqbIWEKyKv4AGUNMaaswWl26fNJncmsLsltmbKo47PLacJsS4/+RD7GMH0+mSomg6hmN2VmIEgzfX9JV+ajKHn/WS5ytFfGnJ9MP8/jk8V+PxezVFN/3A1MOW524fP9z+PF6h/M7MtHQgozO4fz31n6Z/P9lsdv7ezaTIn6q+Yal7s/yR15lsvdh9nhEiKGxeomX9j9GdbNbYZeE2u6zkMfAgLUzYK6qXHWcHZ2ivM1i50lfdcx9F1OYE8PqfTdzF6WiMqXWWtY1A191xFnEKyYGScks7ZISmoTGEfdNGy2HSkNAJmtbUECQteCwN7ODqv1mrpuWO7sY6xhZ9fz4H5PuzEjMDhJwrlKgQGiIBFrDJv1Fl9XGGsJKVG5Glc51u2KzbZlCAkrVpOdSairBc1iB+trdlxF6Ht29vbZbldsN5ssxa57tGARJyTJjHT5ntfbluHuncyWY4hD4uRwxbXLl9j2iQd3Vzw8OtZnX1s2Q6BZVoiJCJa+ixC2uEqLRlKyXL1+nb29fVIImOSI0XLrzgOGJHTbDQ/u3iVF4ZlnnubGjUusVlswO3zo6cfZW1oeu/8jbA97NrZm96Ca5qtazPPJN7X53Cgfybv8MR8h84/f5XKPfiQCIX9vtz6ja7fcf+MV7t9+m8/98j/j/r2HnJ0c50S6MPQDlw4u8ZGPfAdChCiE0BPiQCAoiNaCqxzGKCuOlEoifWsU0IeASsNbW6qwpjXDTMVMBkMhRRkBGOieS973IpBCHMEZJlNFK6tWAimyVVkOO9uQMdsrxmaQn6hPrHZURPJ1jFX5IpsyC0hm6MAwFiQYpwuM93ayPSWzjo7rlGS7UjJwUCd0mc/FXgByYQz5Z/3eYlsoU6ydQBEhaLFGZvA0B5B29d5CUJn1IUYEQ1PrOwkxg/owGFv2doOrtKDBCMq4FicfL+Z1xmU5bl2HM2MUjFL1Jek0FdBNa3sZonOA7XxPmaTIZiN2/Ed9t6pWAFqMaWQjPc98pEUXfRyYvjHvrjObV10cOTeVzs2qGfgmaeVMfq9l35hYa85NvBlSpIBQxj0671sF+CSz+zblmuN80bEVpbAA6ckpqe+tsbJpbzDOMgcoFeAe80AijM99Yl+dMWROdwFRxns01kzsZI+0cZ+S6TmUdzHf/6f3q62s2VVlsl+jY90HLaKTVJ75NH5i1MLF4subDF6PmXXPep0fyr6rzEcFZlZMsQI+dkbU54gqaW6dUigJCnBxee4WuUYt9FT5YhnBLVNhxDjOZoZMkjjaEHMwGlayFauDsTDRS14H5+9oLKiSDA4Xsq9lVHYyMxm6UhwxY8+S0r9sYzpnc2FSfh+ZpSplUE8av/eR91xAarlvulal8Zkaq8/eusyiHtJYsFCmR2Gcts7mPjI+p8n+lXH6lG1x+l5Gqc7ZIB0t68JIp/6xAj8nu7fEr3JnxOhLNHxDkvyiXbRvdTMYrvUf4c++9R/z4fUf5iNnn+LS8DQGw9ObH+anv+Mv8PbyC99o9l20f7WaGL5j9a/h5D2nOL9lrexZp/fepluf8cpv/TPuvfocL376HzN0LWcPbp87/qMf/Sgf+amfesThL3Hmi/aBaDdQ5qSLdeeiXbSLdtF+19p73sFjUOksYxM2yxYolS8qTQOjYzjmG4yQpESENCHqjCFJ0KMFJFejlUrBlOXKJodInTwNhGsVasrObakstNhMA639KslhpXlCA4VZszylElC3aJbP5kotDfIX1qIoBm9VHgo7EUAXVgWRuQMIo+a4ySAkb8a/maS0x9iSU83VQIJS9Zqs3JCTXlKOLfS7TM/UGhBjsPNrG00GxDRVvJnMBuVmmQYRATdJHriCIdHITXaQBW8MxniGQRPHxnmG1IPUpJBo2w115em2wu7eFa4+dpPjB7c5eXBEigMyDCwqg5UFZ+uexd4VFsOGu++8zXa9wllLdAaHSgIao1JPpePGaFWTRQMtpMiirmhH6TdD33aICG2bWRiqir2dJTEZjk/OqJyno8May9VLV7ly8zHWIXD/7dssvOXjf+BjvPjKksWi4sbTH+LkeMWzz17j5ZeeJwLGCiEIfeipjaFG2Nm7xO7+DilsCX3PcneXPgUQw+7ekgF45Y1btNuWISYsHofHJLh54zqPPfUMq/WKGAeuX7nE44/fZHnZ88Zbr2Gdoal3NEBtPVSW7gzatsNUWtF1dnLIpjthp1qysA0f+/BHuXfvIattx9lrD/n0P/4Sp9s1H/sDz/DKy19l223ZaQ7Y36nZq29yerTheLVhd99Qe0scEtc+9DhHp4ecnhyRQsXOzj7/8Ne/yluv36IKG3b39jB7nu/95Pfyp//kj7Gl5+VXN+z7PW5eWfL4M9fYHG0Iw4CIz+CNPFtMmn6eT5bxZ/ONRt27JA2UzmUKoCodjfJGkIPvuj4Y+jZwdLzmtTv3lbZahKOjE44enrBqez7zG59ntdpoQHNkNIqkGPAGYujRRLbgvDJsGBuQ2EKs6de5Oj3/1/vMfiSQcFjjSGYC+AgRV+XK+yj4yuFqBQ5EFLRQpH9SFNooIAGkBK9U8s04lU/pup6wjsSUNJluLTGUIGAgRBmTbNZZcBq89d5R1ZYUnSbHYwInOOsQJwpqSEBm6qlcDoelAd/4sTrZGl1HhxgwWa8yhICkqAF9LBJVTg5UKi1Fwdcea6D2Hkg4X+u7X1hcpaA8ESHEoEFOV9F1Z4TM9PT/Y+9Pg21Lz/s+7PcOa62995nuuff2PKLRGBsAQRIUBVKURImKHCaRbSW2FFe5KhXFchzFqfIHV5x8yFAqVz6lnNKHlGQn5cogp1SSSpKpySYtgCQEAiRIgJjRDfTcdx7OuPda653y4XnetfZpNClQJIimeF9U4967zz5rfIfnff7/5/9vu4bVouF4PAbnIAUhtoRA07QMm4GxT7RNQ6ERFSeXKcnQOI/BMPYjKSaGEGi6lpUpuA2MIdKtWnKOhBho3JLWtUrSGDGI3VK1z5IKzqJrmcrw67wr9gWaZM012avJ98zUt6jrgHZn42Ud8o2n34xivaXKfnVclKiy8rb2wUpKnQk2ZgtQkCFTMHkmZNTz1sR+JW1gJAFbE7gCUNj5/GjlvSafMWBVop8sgFetrjemAkQTTWB6Zra+55AoJU2kJgEU5DsZrVS1Vi3evMQSWZK6iofI+NJz1AS3c9W2a7aaq/cMkqCV7yvxys3jWRK8Ul0sgLKAZ3P96ByXGIMQDK08J4sSouIIzuAXCw6u7InyR05QDO3C05+NjGGc7LlSylK162G5cEKIM5CLwzhRE0sp03WibBZCEfINNRGt71HtOrIB44ySsBJ4x97eLiYLCTGOIyaDt2CcA1VBIEWGOOJaT9t6UohCGshpmlul8l1U1Qxi6YS1xGIxxtE6g28bnDgAs9mMDEOeqoeLSlZaZ+i6ltY7ztJGVFQQm8mcM+fnvRCUWs+iaYhtECumkiEJoVxmfiV8WVFTwkLnFsQxsj4doEgSPgQlvzmjVeoyUKw1YreQC1llMY1xpBAZQsK3YjtnjKqZ5UgKSSxdsoBc3ghxwHmx9zMxY1LWmK4qcBpRANP+NcPPamNTQTkFbswUs0E2EEPkfL1WwmGhawwxQIgCFqUQyc6SAsScMU7tOuy7l6SUUtBYbwYeZ1yl7ie0lUpLkmcmbSuuMHnLZnlGasr0vQq4KPxiZrB5KnQA6ualEpLeKV6ZPtf5cftbE91K7+EdhSTn6fwChrSNAb/9rBfAy+0/i5lsLes9FDPdxny8reuQrcB8RHVqmZuGWsXI32eQfeuYW6HblCZVkGz7eBU4qwSxHB2PxI+CcYQccdazTJf40N1/g1cufYob5ut03YrdnX3Oz44YNudi6zZGyJnFcoF1Htd4+nHDuu/JMShRysxh57QBlQuw6B6viGXWWEZRXdt6OFnJFDEGShElSe9EYeR8vcZs9aZl17HcXbEeRsJoaBrPI48/jr1zjLGFZrng7LxnZVtOztYUayTGVNJFLoFSoOt22N3bJaeBGBKL1Q6bfo0t0LSinLdZ90qy1TW8OCiwt7/Lzu4up2dn5BjZ21mxu7+LXzpu370jdlu+xWBxjQdr5XmOoxSE5IJJgXHINM6zWiy5fOUy5+fnjClzfPOUG6/dotvtKKZw7+YNQojEocFGseQdyeAMxRZCini7IJXC/aP7dN7hfcv63HHSr9mcrDnw+3zi4Z8lhcI+u3zw8AmaJxvu3u3J9wMH55f5gPmT7Dy8pOo+mgu9/p0G1NtHzPeSJZ5Q3K1P6gwjf0sx0K8Hbr3xJreuXeelb3yFzck91vfvcHp0XywHS+H45GSyRBIlZigl07SOUuJMPjJCYl8tlpydngFJAOpKuNG50Dk73XMlRNd4Tuyhakwj+wUpMtDYRpVF7DQHMqlNliIkHMqsdiPkc1kjKUWUKjFiQ85MFJqefhYSSoF53laCwkTiBLE3VLKuVZI0zMpDde6wxiiZVhWRNN6qZN1tQl2KCrLr77qqnujkWsXOCoo1qLArKWdRmrKOatOYUsFmJEZ7b0PsEiXHqRc5K8q21hjGlEUBzTpiVFJ7zZ9gGXoh92RVnvSNwznDGApt21FKEktr5xEV1qwxJTTeE8Y4qcVMaRjtg/XPSuSoquDTura1gEy03olNKr8bQpwK8oqq7FRSaSXVzPN1XSe31oYyn6euN9No0WSUYSu2vvhLF+JvmYprT5gXKKsLhKiUzyS5ev9VsWdbCZb5bFRSSCWvmO3rqNeiy4GQ7PRYhom0Nf18e0rYInPZSiKajrn1tCaCU5l/b8q31WPVAgp5ZlOBo550JtqgBSWWao1XY0PnLL71olCm+yTXeIxxxBAmAk6u6oAUmrbGfzpmo4wTUbJV5bNShPQO1IClgO4Nde5wVqwRNfxqGi9Kt2pNOt1OkcIc7yzFZIYxKVmuEVJQJS2qwi6FSVVM9tCSK67xkLVCynKqsjSOkaw2b9aIKnHWItBqM0clXJUyrZslSVGD85bGe7wXxdWs6r3TG90qPLJO5gzr5DthjNOYyLVgo6q9GkNJZXp/9Xv1ZyCFWXWvJSrTclYpHtHxZKo1pxYmWd2vJCVdMXXniRBWlX2p11H7JJX4thVkUoeM0blV9kRelbLCWKaCF6f5nxjS1GcfkJQetHdLa8qSH7n371747HB8hn/nlf8f//Tx/z3f3P8nBLf+AV3dg/b9bLZ4dsPDPHv+k7Ifeod2OD7NT97+D6c9+g+yhX5DHHtuvfwN7l97jVe++BnuvP4Sd159kfOjO+QYZjzxHdrh4eE7qtjt7+9/Py/7QfudtD8NPHgdD9qD9qA9aL+n7XsmKfXjCdZ4rBWVgqKJYUzBFPXIVoWhqpKEEclpAWkcFjtVsYF8VlIhm7m6vSbC01ZwkW1QwNORsxU7H9FIx5CY7CCYQQqRdZ6THiUJIcHYSqSSTXGMSCUgmUyiJKm+wzDL5eoGMskfVIXxepwLFV0ARpQO6sbQgCpByQYyKSEqamWhEb6AVBBf8CBnkto2+oCSJnuymR+YJLDlTFOoM+VnBMA0MAN0+ow1f0nRihoQO6f6+zEVjGsIQe6p8WC9JLxjKljEcuDS8iHi4pxjc5f15pRhEPWXhx99lCtXdim28NatxOl5TxxGIGMTCoKY6R1ZUwRgdpaYDOMQiElsqrrFAtsIuSJFsQFqGkdMkTH1GFuwpsV6x/2j+4xhI6BEMnQOPCOn92+Q0gbaXdr9Qy4/VjB2w63jN7lz65Tj9S2u371L4yEMgyZdDWEM5HBOCpbnn3sPrQv0p5Fn3vcRXvzOV1g2QOk5Ojolx1HVQSyUSI6iPOFay9nZHe7fv4s1lscff469wyVvfueUIQ50bhdjF6yW+zz13DOsDi7z4je/xvU3XpSkbLJc2d0nLToc0C4XFG85fGiHW0envPS114jDwE/81Mf54ld+jS989rMUU2iXVzi9dRdbNizaHbrdHTI990/W7HUNN269Sed2ePaRK7R7jte+9RXcwQEPLVf85E99kkeeepLXX7mFz5mDnY4nruxzdW/k+PYJ14/v0ISWD773URq9Z6djZE5WmjlBMg2mCm1tAY41UfpdiZDtJOBcnVmQ2rAhG/qYGPuBL//Gi3z5N17i/tEZN4/uCZidEiEFwjCSDMTYgylqMyTJ+Zii2COYApp0Szlisii9NN4BhTAOk3R+tUloVHFHFILmZHcuCYdTqfQ8JfC9B1vKdOvy+RbxsSCJtpTIKWBA7AqK2PxY6xiGQUB/XxOWDSlHqUZMcgyxJxBrTedVXSlpUtpZnBMSYiFRUhTrQ2dpfEdOAsi3XYNvGgpZE7Wi+BRTYhxHVY0R5Z4cU710SjHEEGkbi29bnHU6b1Y7FqsVxxGzVdHZDz3eebqm04SkIY4F3xhs68kxKqmrMCYgW1bLBYvOM/QR76FpOwqi8JZyxjeZXBz9JjEMG5nncyL6TNs6FnsNXW5ZLBecnBzTNp62NfRnA+MoFhD7Bysa67lz677anFqsleTudmq/1Im1zMn0XGql7naWEKwpTCS+Apv1wDD0eiQh2XgnG/CckybrmYhNQtrZWnd0HarqgEXPjZ7fGquJ15pE1f5PBcmM8HZhstesRJ9aIWxVAn9KokqnFSKPrWuI2MXVBzHZPBjke/ozIQKpAtKWKl6dLpx3OLW8mmw/JsuwrdmhFE18X9zkhxBUCanaSFRrA5mgpvemBB9TIJUKZEt1sjWGpm0w+qy3k9/6CoRcrGpA9XNnRbExjqMA00nmLmctxsOq61guFzReVDHGYSCbxP7+jo5Xw6Yfsa3h8mHDZp0wk/1XEpuzSs6a4pqiinuGdmVolg3jWG2MIrEXgGC1s2BvfyGEyE2PsbBaLsTCp8By0eGcZ8wWfMIQNEEvwGHXtnRdh2Gulu7HEWcNi0XLYtkK4TIXUpT/poIv47BFBRNLxhhP1zWUITKO4wS+xJA4O13TLVqWbScxQZMw2QgRW6vjpzUBIXMVU+i6jhgTQz9A0crnkvCNo120QoBOmWQK1jica4hjVRKoTUij3gvwOQxx6gM5pmkO8AoMQQYL3juim+0Bpa+goGRDtcCUCnGtilYQyrrZiionsd5Ax7trPMYVlquG/b2OxaLh/v019+8PjONIm5yOi0K/GfGdo+s8bfPuqyKsLaRBwEcjpEKM6CTJfqIC9ALOZNL0exOdqQI6psb88/OcAcc0Y4dTbA6QldQj+xZb7eK2AMsakwhUM4PlF9WZZsWHCZVSslQFmCelru2FwmzhyVttK8yZL1V/UkHq6ceGGVTTA6VcLhRUbHEVvus8U4hmZsC1ni9trV8zAlam35F9iYJlW2KZ9TpyYQJLrduK2YyBYhn6KIRpQSLZ4Qofuvevc9V8iC/u/U1av6QsR8LYc34+ENOG01NIccVqZ4HxQmqupB+jD8Ho/dcY0lJVHySuE4KQxDBGLXQKzAp81iIU2YwpiaI2siEOakEndICSE3EcGPszKImQHPePj8lEyCP3j3qGIXJyfJMx9BijKsJUJRqxEh3Khkv7OzTLjrFP7B9cIeRAGXtSCoRUrWils5ScKVmKRs7Xa/phQ4pRrNPNkmHccPv2TUpOGNsCjq5b8vBjj9Dt7HHtzTe4f1eqdG227O3tk51lHAZOz8+5c/ceTQM3bt7i/p0TLh3s8cSzj3D79i3un5wwDhu6xa6o2KUR7xu6dkmIcr/Zjdh+TdcsWfgWY0R56NLyKX7C/wV+/Nk/wV53mdOTHmvhMCxxp5A9hGViPUZSKdilEOm/V0j0wvaCd/rH29s8+KYxB4QwcOP6W7z6ta9w563XeOmrX+XWtduMQ09IQeZpI2tXyXkivomlfZnGQCWt1/2+QWKtkjMH+3vcvXd3UmTZVskpVvYGtloLK8FpIhXqFIOC71OuI2cFx2uRk8R7leAxTwRlUsCsexI5dVblpVIxdWZ1azTmnuNG+f3pkBOAIjFdVb6CquiErmkYNKbTwiqzNWdrUqWkJEpD9dnMHls4I+uy8XItWW3YStkiwxumfFCNJ7zTMRtE1bEY8PUe9BqzEoargkpViK1xTlJ10Ki2UjFkVa+sMWjEeY0bcDpBSlFK23pySIRRCBbOQdM4QohKcKtq2G+fqdma7GGyOH37QoFR4nZWkqoUREjcJp1GSCyi/JSrqilGi9m+eyxMpzcAqjC73V9NJUqY7auYjlvJQ4ZKmJ/vo/7dqMXf9KGum/X3q022UfKJXF6ZvltJcgZdh/LWd+o91bWgKuhoH67qQ3Vdn9Sban+sJCXNv5WcZ0XWrXueHtLWw8u6nygXFt+ZxDLN5/XHNWapb0EVVy/0hwIxBFKsK3GNRcQK2zeOtvE458gp0Q+DWGTrni+mBDazahtSSIRQ931lik2srflHmYvqfOEasZJ2jdP1LzMMYkVuLOzstBLDFdkLOe8IYyRoDJBTzUFaqS8CTJK+anVPOPUlawmq+tW2zZR7AfDWkW1Re+YykYimPKi+Z7NlIV1bSnLNYiNeptgk1b5gYLvvB90TCMEqT8q7tf8YK3vUOv7FblCKHHLKantf+7aSNbXP1j2r9DOEEFYkZ2OcPIOqgGytEQL+tL7oRSop62KfnPO/1Spx6s91j20MWIv1hqZxLDpH03jGMXKWR1JQEpj1GofL3G2dV8eEB+1Be3c2g+Hy+B7+wmv/L769+8/4r97zP2V05z/oy3rQfq9agcPxWf7M9f8T7zv9GXbiVd4NJKS3t1IKw/kJ1771m3z90/8117/1ZW6/+i3682PC5veOOPfMM8/wpS99SfO4D9oPtEmtxYP2oD1oD9qD9nvYvmcU49bdNyDCzmKPg4MDrPcKKtRSrCqhnKetf03AeN9SMHjryZpoqlXkBU1C2Ax5lApPTYwA1CqVUnSD70SJw+jOeqpWKVbBY6M2JBYBKWolo0gwW03oCcGoVkIbcq5AfStV+gqWOGvmajOj1UTM0rdFQdq60TWaAJW9viZIDMSQ1fpO9sIT7JE1makJ0LqpZEpC1u132bLOYZKwFhCnaAW0gmLGqFz31qopJ52BBv2oFAghk3KiaT1gBGQoBbxj2GReevFNnn3PI9CJHdliuaLfCNnj0v4+3jlWO4mxnHP2ysD6/IzX3/gOpyf3eOKJq+weXmJvd1dAcIMkGVQ5wzqPM55iEl3jpQ+VRAgDxlpav2Bn9wBjMkPolSRip2SwsYaYgtjOJekjMUdKmfWTTzY9/d07pNDTmJGzszv85pc+p7LHkjAfh8ibr67FXiVGUXQpFudaTBaliMWi5ejoFqTA/t4hJRv29vd469Y1mlTARLyDrvP0I4ShkMuA957X33qdVdNgSmKxc8Drb9zgpe+8zM3bN/CpYEl4a+jalquPPMRyb4/F6w2r3RaygxEef+4J1mHNjddu8e1vfIs7N09Y7VnOzk6JveWTf+KPYJeJP/Fn/ySv37zOl37lF9krlmgdC9vhrOHpp57l2rXvcDKecR7P2Lu0y+HBLk3XYWn5oR9+L4dPPs765JSf+PGPsNxpeP7Zy+AsnTPYkrlyuGD/sONwSBydj7x+/ZS2ZB579ADnUTDGAGIVhElTYk1SqZpYBFEEqwnQqaNejPcKdkq+jCFzdO+Ey4c7FGv5/G9+m3/+mW9xfHyPm9dfJwwJYyHkkbZxNE5ATtdIBV8hCeksFdqmBQxtcZKQTonN2IuiTgiSaEyiJua8B4OQdrJKZhewQcavs3aS1Be7AbG+y5PMvpJHJklxSypC7HHGYF1L7Hu1KxB1oZIiuYgViTGFtvHkDF3X0nijhE8jkujOYYslm0hJSYkiRQFDVaxxoh5QrdsMEMYRbyzOQCwJ7xqxXzROlEQWrVZgg0cqNSkF7x3WOtkgaVLQWkvjHSHIWO46r5LplpQDXgHpEAIGuZ+CpUSxYilR5p1NGFivBzbrQec9qfi0VqxX4makaRpM09E0lq5rieMpJVuW3YJE4fw8QoIYC7GIOoJUOjeMg4CASd9FDNLrvHd0C8/B/j63+0AYBBjJKbIZAjJllTnZ6CxU29Ct1PhUcGyEgDolMlGmak3ma8JxwqAiON9gnKHtWoHHq5KWkSp2qwnWClRsJ9QnApM1FS2bEr+10lZ+V0EpBbIqaOScSP3lNAM8NSlqncM2Kryv5N/pfKUI+cJIUlxOXYnHeo+ajC4GchDbV0mgF6osflESrbViPwYC7or6kYJYRa5NKui31sjpuZTJ4m3b5m1WVKrglCgppqhV/0okqFZHRhHJUoqo5Ii7yZRcNkYUNNpWKuKrzVclbsUhcppOMdbRtAuKKaQYFBRPNDmybFsW3YL1KayHnkLCt45hTGQyDz26orGGeOME42SyLMnh9CKdMyQrdns5FxyyRlnN6+90LdY2DH1i7CObzUg/RMa0YG9vxdWH97GmsDkf5R2kxOnxCSmDs15VDiphTZL6UAghKOjTir1CTuzt7XP5YI9xGOk3GwE7MnjnKM6RM/jG4b0XtRKkWpkQxGrpQqLFEGPm/r0z1s1Gx66omgwlCEkIVYIAYkiE4VwUqbCULAqMhUJRBSPrRJWrIMfyzpNCJgQNhnRCTFnsK5pW5khrpeq69qkaUkos6mhaj8WR4qi2PDMoPBHOi4DZMmeq+pl1iFteUqBGIacCVUsjK4nbecvu3oJL+wtWS0cYs9htmoi1kaYxNI1VcrQqM9mC9e8Aer5L2pc/849Y7l7moSee4/KVh7Be1yaFKVEAusoCTZXxWedIY3DGTfMYoDG+PP+sNqN1UhY4b45/K6nIOie/V0FUWwF9BUYreCy+aJNuo5niGQXXzDzX1cKAnAveeibLZTNN/zMepqer6/EWprkVBM3EzLpXyLVyv0KbVbZpFol6Wwy19e+tLn/hWt6hyfcufqnegzFMCnZmXnLE+kjJstTnjcyNw5i4ffuIqw8d0LWNEEGbBhstD8f38bT7Id7c+zLtAoawoR8CYew5OztRtc5As+hwxkzzcAXPTQU9raim1DuotpPGOryVQhsrVSKkmLDWUUlsBiPWtSFO91zqkNZDDjEyroUA68jE2HNydJvJwhUhuYcg1tBFLculH0l/s9az2tlhiIHz9Yh3DcP6DG8tZyHgHWBEVc85Q4yQsRQjdl2bfi1qeEBrV9y/f0pMYilmEVIGJZKTqLCd9+dsNid4J3uZYqBdtQxjT4mJsFnz1muvYxpDCgPedXRLw+2bN7n66CNcefRx3nz1JULoybmwWCwwGFa7B/RrCMMZOSWcMezvr7h8+ZCSLIeH+3xg+FkOb7zA4eIyvrG0V1dz/ypCMPCto5yfcf/ojOtvBByFZ97zBF3XqqoDWyBs/f/av+q706zBjOny9t5ttj4twKYPXH/1dc7e+Dr3rr3Ml37za7z68k3GsCGnAWOckr7FQndWcRaKY86VJA2+EnCQYh9nLSmMZJRMVwrL5RLnPCkM0g+cVQA5Q6421UJyqvGLWC5L7DWRKzROofZNdH7UcW+N09+X2MZZA16snVJOorSlsZprm3n+0mOJCqwSRSbAW5qQ2O00701qKFnyP1aVYKpKlMFgdW8v69wM3ldid7VGFQv6MhEHG+cmErtY08scL1bFM7l0UmKhKpbWOVys3FJMYi+MxqLWCtDvRIlG9nayp3FOYn6QAg/nLAQp1HDWSQyXI97L76ckKrJZ+4GIQqkSilpNiWK09GLrLKPuQUupvbrG02V6NtOkuvXPOgq256tKcSlb3b2+LauqorXwruQ85YbEyWlLbbRIvLGtGFQXLVl3tpSTtghK9Zt2Omae/l3XyLqGT/t7a6nLdqGS7ufRWdXJ6to+33Ht81okYZjG31SgMTHozPRbQpYzoPsCpuc5r9v1qdU9Ul3lq03bPKWUifw0vyzmeacUXY8vvosL63gl301KPnJe772qn6WtE0reII6iZu99o3NSmdbcEiOFTFsanTPctEccgyh2LXca2sZyHiOukXk3JY21qCSf7SIQNytCT3bWVt2/xEYuhMDJSaTtPDurBctVxziESfVIrCJHwEw5idqZrZmfdVKiHlnUl9u2ZbWzgpzZbCQvcpF4ZKZ8L0bWbPmszCq5U9AjfSWlwmbd657OzXvVqQ/UOGcuaIlBVf+tkOLzNK/VmFNyP8435JgIIV204SmSS7bGTPNotaXMJU8EpXoO53TdKIkyjZmp200HFcKU7qnrXlv7d1U8riQ5IwvCVjhcpnnOGLEGHwdZG+r11fHlnNW92TYF6t3VPv93/wuuPPlenvjQD7PYu3Qx7/2g/aFrrrQ8f/qn+MDJz/KVS3/74kboQfsD3AyfvPMf8PH7f5HfjpyUU2J9fHd7wmS5f4hr2u/r1ZWcufPGt/n83/4bvPQrv8Dt116Ufdj3qV25coW9vT2Ojo6+b+d40B60B+1Be9AetB9U+55JSr/6+U9jkuXKpau8973vZf/SJYYUiTFgkI1rt2ixrjCOA8MQWK83hDGyu3tAu1iwu9xltVjQdB0Uh3FewP8iwGWOwwRgpRgF+LSOMARCCCyWC/b3L+FdizOeplFAzqhdR7FakZbBOAyJXMQuxVmP9w3FCTBuMaQ8al4/E0IgDpncZnzTYLzDGSde4aYCtTNokVOZkjCVuFQTNsYYyAJoGMT7vJSCKOeKFHJGq29KwduqJqTpqql6cEqbyHlUslv/OROlNGSTHGNRnKVMlnB1s25AE35zNeQYhIzT+kZIVEkUJcCQSubs/Iw7t+/x2KNXWXQd1ho6rXAaG4ezmXZ1gN8Y2utvcWl/j3vjGefnR5jTjLudWa7XnJ6fQAo03hBixjQGWzzOteysdnG+JaRMzhFnE9EUch9omgWbfk3XOlpvGfsNBaeAKZCl6sloIiejFanWkBWF6UNPn3ockhRIpmezvgMYTHHEGOmHc2LItO2SkgqSbs4CoBbPwcEOlx66wlEYOT85ZlFOSNdOGYY1/TBSiiE7BSU032Ex4DqcbUg50A8bnLEsyyVOjs9xPrFYrBjO1/RxIJ4lTLJ87ctf52x9j/Pj+5AzrlmRrWGMhbAeefTR9/DQI5e4/trrpNsLbDljubPPp3/x03z9q1/jYz/+SW7evM+mX1NioN8UFge7xAyvv3GLhpaDxR7GOPbbXT70wef48T/+CcYzw9WHd+nHwtHJBhDFLGMy4WzgJGXMGFntrbCt5wu/9lX+u898geP7gYWz/MQnX+CxRx/h/e9/gsuHK3mGZYtibjRlWbYTjlZzQ2ZGDuCCG0Mlc4ym8LXvvMGXf/3b7C4MpYx88asv89K3bxPiGc4HnF2o5L8kOk83PcZaHFU+vgg4bGqyO4rCCUpYiaNkdZwkcFNIhHHEeY9vGlLJmhCTpHxMglpXi4VcMh6HOCkJWFSKKIpYZ7Fe5sqQEpth0Oppw+5OMw9tIxZYTWNJWSr9nYLsxloWpqOUKEpE+kwlie+gJhOtVvWVIpWJSqJsO6+5WiUbNQ6PJeVCDhGDkDjbxuNaoUDmnCBBKBGnoL1XhSjvwDSWlA2Nd7Rdg8EISONr0lXkRCZCjZmTYTGJ5ZwtdlIbCTFQyCx3RUWlHguTKYP0mWxGeSbdkmwKMY1Y15BS5my9phTDarUjm8Q8yHebRq0PGtImE8eMdw5bjCieGcghc3p0RowJ6xyu7TAGhmENiBVlBWdyNiQjfbdWQmYldFWwqBJiK4iaJws3Q8HNSUj9edc2+K6lUIgxTBX3NcleSWwzISdPliJ17al/Guek3xsBBWAmHzH1s6oAJMo2U21xBSvqembMBBzJsaslwQzI10rcmWTLdO1FpfWNNZOdR9O4aT31W8CiLl9CgFGSUgVAJpADo8CxUWLyhXBl6l8TceBtf2LKRBqsz38bH6rnkHFek9LbSVpBB2Zbge2fOcYx4bNhuSPk0KS2sSVLJe8wJGI8xZtzSi40bUe/ycQi6jhXHt5ntdNycr/HdS07Ox0hJI7PROHPt1ZVROQZVIs7MEQl3lhfsERcY9g96Og6w9H9zPHxQM6FrvV4Yzk+3rA+C6KGgYL9DWCEtFxJeW3r8a2oWJZc2Kw3hBjBeLz1xJjp+8DZ6UBKmRBGNTcUJNM5Ic84taWoRCaRdJQBY63BeYf3Dc46+s1Ahaic8zReVfC2FQgQa8yQAyjA27UtuWSGEDDF411LLHLuxrc46zk/PZHqagXnKEJu8UbAVOuk2tj6lnEQNb5ctELaGKySripAJvck47v2K4MQL8cYwKlVBkXiw5IwBbHlMKJAWjn/Vr14S8mEMTCs4Xa/EWApZGK0E7iXEsRRrIubphU7YOMZh8i7tX36b//neNdxeOVR3vPCx3nmhR8hFpnzjMYEzlnuvv4t1menxBgnYLdpW3zTcOWRJ3n4qffSLpfsXX4U4xxN0+r6lji9d5P1yRGFwrA558Z3vo5BgCfbdDz+vo+ys7PLcveQnYMrdN2CGglILP12SoO83xhFTbFtWqzzF5RO0TkvxUiKmeIyVgm9BjsRpQQRZFYZyrVIgcqfmokIeg1F44sKbMm6Kj9LqjLnjMM7IQRUVaW6MSlsCZOwlcOt55u/eqH9djn+bXy3IGpOQhzTY1VgrMg4CGEQslFCx4jBGYttDLDgmc0f487l18BDtzhndzdxcjIQ48AwFspZpB1bYop4i6i6RiEoCMwt6kG+acgZYgqUEskGsX00RhX2xHIp56xFLaqohCSbJyvWUt72XAo5R3k3pSirMFPyyFQ0ksUeshQtRimzQk0FMLuuwXrLOgyMw4DL57TRMwQhtacctajDqqqaAVOwpsEaD4hdKojSSylGrMTOktodZfI4QjacnpwwjmvC0GsnkO+PfcIUx2NPPIdv4da1WzizIkaR9n3zrWvcvH6TO/fPuX3nHiEGwjhQsmXIYvlz5+ZdWm/YXe5hrGGn28E7x2K3w2SH9fDi/V/gvceene9s8K0jxkB/vmFImRIjYX2Pzek9fu3Tv8hrb1wjRSHVvOdDH+GFT/5pXvjEx3nkkUP8BD7WXbGMy/ovs/Wzd+7JdZ8hvzOMA7/0D/42X/zFT3N6/xYlCWGs7xOZIOosqqBnrCEVtGBgW1FtJhlkVaasBKNc0hTvzYQIIQ4JecSppZrGhEVVZ5C960RKqfOLqvPM4LWSckqZ43w09mn9HCMxE3qNEZviuq5LXKlK0rXQarJ0m2SvZUzXdVufJJSJXJRlQMy2FEX2U+jz8QqKC9Fa1Z/KrMI0jy4h2lotZLNKlBZSTFWuK1M+oxJI5nmuiD0R1KyIKqc4nLd6T3pbpuj5ZL+FAadWVuM46PVn1uuBmAqNr7bDcSJMUdTmr57aeu1fBqN5ljCq6owRUqyxYrVe7+nCSvO2GLT2MVNveKtvG2rUz4W+P8ftciDZL4iiJtPPzLQg1H1KUSWs+svvpOw027fJolEJudO1aqxGLmRb768qS87XSCk6r02b3vn+pjVFi5Mq2VsPUt93pmCLzrmTGlg9lj6RrVuocXousypgvddp1tD7nj6p/V8va/satp+DvB4ljG3n3bZvZ+vR1WNMKY+ia7paAtZf0mVDCqNKoV00qkKcpnPKfl+UjMYQp/eRsxVF2ZxYLBu8twxjohTHYiFkpjAOpCh7gagW12xdrxR72OnfpRYteFh6j+kLYSzEWOiHUZSVYyGGqpQrx/ONna0d1RK5WiTW/i9EpIQoMSfW5xvZ44YoCmilqgbJG7FW3qVTwuT06OcqIXl3Svyxzmkfj2If6dT+0Kjt3dstQEvRokhVwaXu44UgVXNWuQAxE4MUtOnkOXUCo/2qkuimgqGUSCXNfcTU7839Z34d23REVWNS5VxbC9KSKLpWUmK1dNva0Eo/U+u9TQys9XFOdopGSOZhTDj1q7dGYtcU37bJfpe0v/+f/hV8t+DwsWd43x/9GV74U/+GPpO55Zz5xqd/js3J/Xc8xsPPfYinP/bjuKbj0fd9dCIF13bvrZc5v38bgP78lK9/6h+Qo+yvVodX+dAf/x9gjGHv6mMcPv4Mxs6q1X8QWslzXrO2ulb9QWyOlj926z/km/v/6IHt278qLRU+Nf5fWH79EleH973jV175jc9w46Wv8PKv/9I0PjHw3h/7aX7y3/nf8NRHPqFCB7+3bTg/5Rf+xl/li//ob07zxPe7TUTtB+1Be9AetAftQftXsH3Pq/WdW69jaVif3ef07CZ7B/uMKdCve5WGhaaxYDPrdU8/jqKYkQ1Nu8C3LTuLHfZ39zi4clUSFMbz6GOP0i5aNuszbt++wf2je+QciWHQjSOMm56YMru7e1y98gjeLdldHfLYY0+we7DCuMQYIhRPyRFrE2NcE8YN52c99+6e4d2KJ594hstXrsgmUZWVjDOkkug3ZwznI2m5R7da4mnBLUTqXBUEcpKAfapS0WQ2E2itUucGMpGYezabM8ZRNu/rzchqd8U4bLh3ckRKhc4uePjqw1w6OKRrW61U0irkXBMjTAkcUzfSttoy1F2mbFwnspKpikh5AnKrcpUAYnVj7DBO1JikUgkmW5uS2fSnpDhgkiFuRMq5sZ5IJBtPvzmnazv2dh7i6ac/TEqJe/dvEdPI6ck90rhm/9IeznseunzApl+z7sVCjSTVQDu7+zz0yOM07ZLbd29y7/4NrPcsFpaUMk3TkIsQzQ4vX2Hd95ycnEBJIklcioCFRkBPowCTyPFHbA6kUkStJQuBzUWVEidJ1WSSBGMpCYwQJ8AwhlmK+fTsiPPhlLOTU+wQWHQtoxFFiJwj1jsojjhqAtNnrGnxtmHZLsAkhs0aZwOLnQXdzorb37pJjoVsIVtLtgHLhsYHLD3jmNkMAbLhrZdf4erlK/zMn/1Z7p7e4e7tgaff8wJf+drnSWOi9BvWp8ccZTjbnAKW+ydH+GI4Owq0pWVpdnn0ve/l8MoOMQ0szD6f/9Uv87WXX8KXhv2DfcazAN0eX/71h9i/csDJ8R3uvHWd8xDwufDI88/hu44vfPZXuXbjNiV7vDO8+J1X2F0e8MM//Cz/9r/9Z3ny0QOx+kL6qVHQtcJJ0goVbqgZOc0zX0gExlS4d7Lmc5/7Ml/+8ne4desNSAHwjDFTUNUhF8hErQRGrJtKmsZ7VkJRoRCzWA8WZ6BkUS7KGecdJFE+MQa8a2i7VkkGheLBGSeg9mSNhZChjJOq5aq44DSZbyQREIKowIWY6DejJkwNbbtScFoINzlncgp4L8SAWtEomSsheThrp8ruiRCVBYj3jfyOWHDJGCcnsKI0I1YFVklHSSr0nRCSKiFKKvgFbEUB/mKVmKIETO/AO49zmty1Gd9sQ3oqW46dgGaMVp0bIwp6TlTmGrUn2rELrUjUdPQEnESsgcZ3lJTY398D6zk7OWEYR3Z2HOebY07PAhSDdwMxbGQusPLMYxTbB1mXOiERmSLWb4sFMUaGIeAaTzFij9VvBqxtMbYHVRmyVYq9mImYMxN0yqTMUZ+C3QIWKPq+5g6uk7sAZ7mI8kPOibZtcJ2oCsWYsNnQtJ6UM2EIAgKoMtYEuGYUGDVkK2QWhyTNhKRVlc1qk2sJIU2EQFkm5ir1FJICOmL7VkoWawH1DLUq31PHQ61oluei9mcp472frEhyLqIQpGM9K5hb1DpNlKsEhBJZ/pmgNQHC70B8mypVFRC+KIc8V7TL2roF8myBD7MsfyRnAbHk1c7VrTEl8lDBKTsTVJBrbdolq9WOAAUhSl9zlq7pWC47AWpioh97xnBKSh5sxnfgjeH47prTo8jO7i6Nazg9us96PXJ4+RLWwdHxyZxE90I4G3IUCy2r8YhPOAtd52hbxxgaxsEwjpHrN+7S+gVhiBQM3nkyiXbRsNpZSexQDP06EWPBNU6sxxBydcyFiAAUt2/e5agR0C4GmIqJNWnetC2QaJzF4BmjKFeOYyRlA0Yq662T/l3t8DYUhjGwXvdYhDxpjeFCulwJeaiilHUQU9S5cRuwMsQx0a/PIIsC0wQy1b6BmSxxrHNCfksyx9EUwmQ3JyQjrKqlITFVitLXqxWPHNFRELs95zJN4ye7IGNEwWHqW7P0GpOSirWMQ2IMctfLhcO3hmIhjbA+7UmbUW2YHa5dsjmLxLHn3driuCExcPvamqPbr/OVz/5jqVJPQrYR4ARVsUoT4GKwE+jqrKPxDYvVLou9yxhr2d3bwzeOcRi4d/sG56fHlJKo1eY5i50jQPOpv0fbdLTLfa4+/hzP/9CP8+QHP4L1hmEYdX1PGJOJcSDEkXEIbM5HnGs5vHSFK488gm876S9a2Z+NknGGSOmWeCOWqcXI+lb7BllnMbMNLpsJXK4QtABziRAH7t58k2svfY0UI8f37rC+e4MYR843a3IqPPzk87znhU/w+Hs+wN7BoVrpmSoEpXivqUHyBfvcCbh9W95zm1hVKBOoe4GglOd9RzEyl1cS0gQaGkgpAAlTLDnKO55idQyL9UNcXjzD9cWX2dk5IISRcnKk5PJRFVgjvmlYLjrGMAqhNVYCkFztzs4+7WLB6ekJp6f3Rb3Oe5mrnRAJUors7O4RU+Ls7HSyF6rvqIKCdrITj0pAsDCtAwWMndbcghJ5qfEaQpqoa6k+iJITQ78hxEFiolSkz7mZeOKM15h5tuiSl5VZdB2FwtD3hHGDbxtScYxjP70w3zZCsjRir5diIYZCCj0GODm+w85qh72djjFG9vcvcXB4ldffeIVhGGhcATL37t8mZ7FnjCnjTKZpOmx2XL58yNXHn8B5OD09Io1w7cZt3rp+C14H/+stvJb51c0XWbQdvmuJoWfcbJDIFLq9fcBwcv+e7uMFWP7SZ3+Rr3/hC3zx4z/Mn/uf/WWefe5pus7XrkQNHCaS4FY/xcwKFVOrndbA7bfe5Nd+/uf45z//33L/6IRx3Mi7tY6ke5WUwVoFepOOwzKNSu0fZbIqUvaBjllVcsySYxBShpCtd3d2OTk7vUBQmlRnCpPqBphZpajqz9bKI91PlCzrWrVBr4SH6MSm1iCxpPTXPNk/1RgIvVYhLNkpZpLPJQZ3W6R4Yw02F7H+UbJH1FhrmsuUZFTB81KKqGGZourFoh5bWZlFbT0NSpbRzV804glvalIDXaqtndRdk9rWVYWlSXkPiQNKMTRWigHq2jLlUmyhWEu2jlQiXSt28cMwEILsITNifZ3VatYg1y9chKjvGsiSg6iqnE3rkdvPUkjghPBlNb8jBQ95incrWYpKPNHnVjkZhXKBcFP7+bxWTG/twt9SyeQxSN+iqI2t7L1E+Wkm0ZVtgoQ+yhrf1wVia3cge+bJyu1trc53eWvYmek1TkQd6jsvZRJPny7e1DVxLsjL+sui8lW2iLpooQSVTTONBfmjTOfcJlptL3fVom2bnGW2xrZMK2UiKtX7rK9gLoB4h+eBzgylIPwis/2D6RrTpPJkph/V+cY6N1lpT/diJT60qkxlCoQkSuI5pbrAQoFxEyfFnOTEEnscI03b4duWsO5FOUjJMm4q8pA9BmolKYUGVfnHUNR+cRwC0SaqLpPVAh3rrNimIX1dLB+jjGsl/Eh+wUlcXorGfEn3tTKOZX6Q+/GuATLeWwyWMUUtEkhaFFqLWOQpusaJfXp2jEX2bjFF3PR+tzpdPU+p6oyaD62rt8Z5BpmDxYI61un/u17/lCO2s9WrdBNzYc6tBCxRui4yvuQP+Xcd7FsymUVl/k2dW3SOrvvci2NT5hshtBlSlhyxd1XhjknNOoUotrpGVPxiTJS3VwK9i1ocem6/+i1uv/otPvu3/u/v/KV3nKi2mjE433D16eeZlLK0Hd+6xub0vh5n+r+p/fL/5z8DYOfSVZ740I/w4Z/+c7z/k38G8zay02/XVvuHtKvd7/n7v5tWSuHuG9/hW5/5x+SUuPfmy7z6xX9+4TvPfeJP8IE/9q/xxId/lJ1LV39fruv3sj25/gQfPPlZvnL4d37Ql/Kg/W7aCPwK8Ndg87kj/u71f5/fepF95zH+lZ//O3zzl/8xH/mZP8+f/St/lf2HH/89IfiUUrj2rS/xz/7z/5Svf/rnePu88P1sxhgODw+5f//+79s5H7QH7UF70B60B+33q33PJKUUegqRPkfu5TWn57coFHKUTZczmvQhM4ZMKgJiWxzjKBL3p1ju+Ybm2oqUDc41XHtzH+cN6/U5634jVapZEtkFGMNIHGTjdXzUcvP6axgalt0erz/0CI88/hjd0vLGm28RxyKEmhLpN6f0/Sn9umfoC22zw5NPPs0z730vOMuiXbJarNjZ38U2juOjO2xOBx66+gQhr3BNw6LdxTmPyVoBh1WLo6Jgbpllq7MkEnOR/1LZcPf+W7z07W9w+/ZtwpgJY2TRNoTYc3R6Qs6GnWaHy4eP8MjjT/OeZ9/DlSsP0S0WAmAUSeaVWqk1yaoL2jBXLQqIayhEVMFHqyInnC4pgUk37hUQySUzhiCb7RiJIdO1K5WUhjj2LDshJplsKFFUUbImgvvhlKN7r3F8cofzTU/jLI1rSdFCLowxc3xyn52dHUloBgFRS47EMZHKwNHxKZeuFC4/dMgmDty+d4s4BBZth21brGspuXB8dMz+csVus2C9XjMMAdTayppCsQJedoslJUdSOoMkYLckUsQKzDiLyYYcI9YVvLWEIkpNuAJaDZliJOVC6xekMNKfJfrNhjRsiKNhjD22BcZCtJ62bSgl4X2L8Y7NMBLiwGLRcPnSAaebc05PEndv3xEbrcYybNbkJCSXw/1d9lYN6/UJ2VlCdoQsVdq2GDbpjHtnls9//p/x7DPv5YPvfx8HD+/w1o09UuoxsRDHwL0b3+Hk5AYl9fhi2d9p+eiP/gQmen76T/4kT37wBa7fucZnfukXePP6W9w5usNbtxIeJyoueST6hq9/zWFsQyojMYzS11PEv/IWlob+7Eiqd4shNYbRWsZx5LO/csbpeeRP/fQf4SMffZamga5xxADHRz1+p8NJZ+DK/kqsLRDaS1blIN/YKRewiZkvfuklPv3PPsdLL36Hs/UJ2CBWOI0ACc54TJaEmoBAYtFjNJObc8Ko9aNxXgkWknzzzkMRaXIoYhVkRSXJ4rDGEIaRZCRB550QkSxinWEU8Es5SwWbqjNJzbFIJIQoxBlbRDUohahy/zCGQIwZr6BQVWzzrqVRAHsCyqZ9lVTDlxSnOSFFIUJYI5WW4ziqwooorRhnSUVk08dxxBiP947FQmzQDFoNbkWJKaVEGgPet3Rdp0nviDeOkhLeC3CWUyWUaPW0EiKdTlhVAc6qalEpAg5ETXCHICCyU5syqwk6o6C0AKBSmb5sOobzgRzAO0vIgZAGcrbElFjuNAwhk2LBN4VSPMNaFXlMFJIaUuXc9wOFyN7BHpcu7zIM53ReQF3bQKsExhiTEGRMATdbpM22F5qIzLVqcquKkZqkl6z5BFYKslGnb+mzSJVpHDfyS4bpvZWi1mclYZLIsLdtQ4yqrmGgxDzZlaHJ11QSVflPxkGeSJwChLBF7ElbIEK5uIkvyPsEXVsMSZOeU9KcqvqkFbMpURWkiv59DMIirc/GbVk01WNXwheaxJXr2X5SgD7fTLmQl9gG/LcJRRVkm8COUubkMEIiu0AW2AI+jCaLK5jjKllQlQYmpQPEBsQYaFqpEh6GkRjUGtIZutYJKQUhStQ5p6qv+NZishVi0Fjoz0bG9QlnbcP5pqdddCx2l6QQMNmK+pkRkpjgg7LOUZyolRjBKUqBGKQfrXZaCk6AWV/orMcYieOM9bSLRpToYiZlg288xkofyxpnOAxt25KzRaxyM2OJWqmsJBJnxSqvkkmWS3Z3lhzfO2PsRZUjxDgBM07B+ZjEuqLxDrvaIcRzSiyMKVBihZDVIsTIeJMxptdqpBq99a1aOdWupWQVHQ/bFfPWgHHV0k6OJWBkZMijrBNqmyjWe+AbP1lYlGI0ZqtV/UxqlQUQVSqpFLfW0jiLW3iyKtWVqe/We0lYI3Z5zjgFbdBzq3KWNxgvoPPusmW5bAkxsxnFrurdXAT7zFNPAaJ8Kn1EnlNOiZs3bk4AP6CKNVFnSEOu6gkYUrQM44ajozui7OKcrMUpqnqIojwK9Ik6mzzrFEd6c445OeLo9jVe/+avs3NwCecNJ6enMmfmpGBsopBEWTMbnG1Y7ezw8NPP0ezsc/XJ97J/+WEWqyXn929y+42X2b38BI89/byoc7iGh558D02zwDWNWo0YtUaS+cROIDtU70khCmZSGXnla7/KL/3d/yf3bt8kRyEGOCvso6BVo9e//XW+8Sv/HZcefoLnXvgRXvjkn+bq409hdIwLQRt9rjBtFbbR2vJ2IIwt/G5Gqo1e5iQliyGXxBgGYozEMBJDZrlY0bYtxopyg7NgjZAapnkVtfcrie72ZW7Y1xjCQM6jvP9SSaUwhFEUCIoQd3PRAgslT282G5w/Zd97sYU1AmQaRI1NrBaTEESHMAF3MSclOdppXTOIDazEW3lWG1ELHFsfU2GyxhKluDTFhZiq+SPrlSj0RlF6iomSIhRDzGBKlH2WsSQj80jjva5XUHJksWhZLBrONxtRbRojo1pWVcspY8BbQ+MNwziSMcRkJX5AtYS9I+TCjds3eOjyVfYPdmnaxOXLu6SSyGHk9OQEciKMZxiTcNbQNQ0PPfo4Xbfi+eeeofiGO3fvcHxyzLAeGW70pH9acC/LMy1G5rd+LeoTdVwKOJw573uxJ0tRgNCt2GIcTvnmr/0Kd958lQ/+0A/znvc/z6PPvZfVsmUcM/fvndMsW5xzHFx9hEcfuqwqIRJdxZgZNwNtJ7Ztp3dv8vqL3+CX/+E/4OVvvUi/WZNzwFqlQFpRKKnFFTmJOXPRcQgaqih6bqYPmAaJ955LBwdYYyYyu8FO5Mjlcsn9k6NJ/cVX4hAy/0PRPELSfls0lpPBWAykKD+z4vlMMVUduRAr0QGmc0hfdhPgvq3MY8xMtKfmGkolfdQCrKyWy2YigdT8wRxnyXeFOCCPI5dKDNqO0wrOVRtMpWDkOkfL4VONset5lKCeVNm3kruMEUXXnAuZqlIqxyt2/nsdfQZZp3MplCT/dkYUQGXPUnBe1ByL7ucWy46hj6qO2zAOouyCHrUSvmKMFCNW2EIaF4VH6y0lyXFzVms4JY4ZmAK0cmFinadbyqTb9Vvi7KpfpM9v619ly/4MGRPJyHOq8bm1ZipKSZVVVOf2rRjJaPxXNPczW1VN1I7pwus6s600pq/yQtxlqg1b/byOpS32ldJTLuxP6ljcJimV2i+L5uWme9h6rMbMa52RfSD6mSj11CetLef5/ZTCNrFp2pLU87/tnditz+d5Qteyek2m/id/MVs5vXp+Y0VVsiooVR6hqI6qwrKRHEBVNKv7UdlXixqfKMFlcsxsYiFp8Va3aCdifiUMWV3YKkHL1Ie5tSVMCZKkA2VPk5FCLWvJ0Qo5b3rWTM+u5gKgzh2qRG0M1nlsSUKuy0W/wxZpRA5YSlG77YY4VoJSnr6/pTkke5+YlJDkpmdNQYmHcweZt7xmIqjJVzONb3BObKdTSrOKW13ja9/Q3zE1ONB7r0rEtTDNKeHKKoFxVkViGjvoWJM96jxeqiJgVTOuFm8YpudW+1eZBkG12KvPR+aKOn85J7nsUqS/tY08q5ASJtYd67uv/cRP/MQ7fh5j5Gtf+xohhOmzrHnBd2ylkMLIze98/Xd+ETqgz+/f5sXP/je89Cs/T7va4cKA0ea8qJ2+vV155v3sXn2U9/7YT3P4xHsAePNrX+DGS1/m6Y99koef+xAAvu144kM/IlakTfc7JluUUvjGL/1D/t5f/V9xdu/mb/m9G9/+Kp//u/8PDh97mud+7E/y4//jf4+Hn/sQrml/Twge32vLKYmd+lYzxv4Lr8Pi+eDxz/LVS3+PYt6tvfdB+y1bBl4G/rfAPwE22z/8LQKh36aFfs0X/9Hf5JVf/2WeeuETXHrsaZ7/oz/zXd/zTcsTH/5RfNvhfHPxklIkRZlPbr38DV76lV/gc3/7r3N8883f8fV8L81ay2OPPfZb/uyhhx7i5Zdf/r6c+0H7HbTvnYv6oD1oD9qD9qB9j+17Jim996mnpg28MQXXyIanxECOSUGfTEYSQIksVbNZNv4ZIdsYCykNGOPAZE5O7wBSQZRT0g2jAMKlZDwRY9WfPQTGoYh6znBMCPe4fe8VSikcHR9TYsIoySmEkVICKQQoDu9a3kgnHJ9eJxUBOrqmZe9gj2bhOTs6JUd4+JEncGoLdOXyQ+zuHrC7f4krVx/GOo+3Ld56SR06SykBAjg82WSyTaQyMvRH3Lz1Oq+98W1u37pFVisVZ6RqMmpVX/CnnJzf59rtN3nrjVf4yIc/xtPPPIPzXiqQfIP1jcAzCvZL8tBBjkCZkqE1ySnWTnOVW00eaD5TknYpkXJmM5zz5vVXuXf3HmdnazbrgWeffo7HHnsC4wMvfusbrE963jpY8vjjT9EuVpLQyo62cSy6jtPjgdffeIWbN64TNmekcWTZNaQCvmswNnO+XpNiYhwDIUTCGCQphOPevbuE8DXOTo/wrSPHgLWeMRRsLjQWzs/PwcCtW7elksuJIkciYZRQYqwkojM10SxEiBhHqdzOktiwpVBKwNiMQcEim2egrIhnvbEigT3EDePJMIHtMY1QBPRIPZAR1Zkh0C5afOfZbDaEELVPQ0qZ89NTGEfMYsXp+VrVcuRdkS3rs1NW3SH9ZkM/RkSooYhSCh5rGvZ3rlDalqOTa+xeeowxnvKB55/ibNjQLi2//rnPE8/PiJtTfBfFGsJ3XLv+Fu//0MfpDq/yy5/5DF/92m9y785bpM1I328YQ8SaBV1ZUkyghA0JC8URK0BoBMQtmyO88ZBHjCYJc7bYYok5cZ5GvvSVL/Pm9Rs88cQT7Kzg6WeucHQ08J1v38OvPNbAftfyMz/1o3zso88QyJwNgWuv3+Xlr73Ksx96isNH9rjx5lt88xuv8Wu//lXu3r0NZcA6kTAPKZOwNK5h0TkMjr4PiismxA1E+r13jqKKDNZAjGEaM5WolGPAtQ3OK3iMEIhsGNlZNeQU8c6y6IS4JBhmUpLRSEKqab2FWKxaEkl/iiFii6FtOrEb6hw7zZIY5JhdY4lR+knTNqD92zo5RylohZ0QN9fnG3KC1e6C1lty0j5rEoZMFY8pJRJCwkaP9QoKO8tysZD3iaEphhwyxRQhMcWMqAt5qS4W9Isqbx6S2GN6TZ6CJMZSgpy06jAmSIYUNYFeanLRMIwBF8CYLEm/UqbE+qyOk5VQVCaCjjGigtDtLuiPB/rQ47xlubNgsVwS+nNSMSx2FvTnA0RHjiOFUjFfTCmqBgOUpOQqGEMipkLQP623OCN9oiRRwpEKyGpfaBDLFU1ea7+a18htMhLTZ5W6ZAwCMFGtIoqCtmYGHIqAbMZIZWlMSQpjG4O3ns3YS0JRSTPFKDHOWl0rZG6yUxZd7BEkM8pEsBLCR8E5R6w2FPUe1K4QCjh7QUa9VnFKpbxjwgtSmawlrIJ5MINmFSAT0lUWe6JqjziBXTWRrwCbNXIzRRW9UhbJfiXCzapNWQkAme0q06KAUMlF7W6QGGQCS9lKVqtFXSVQpZr0LYi/rBAJvRPwWmwK5Odt2+I8dJ0np8hmTBTjaBrLYtmw2u3wrZBZhnUgmoxtLTZ5+kHseVrfqFWDqErklAiDJKxXqwWLRUtwluXuknJmJYHeGIzTflTqncyV8SFlxkHiM9daVrsdzq3k/RRDvx7p16OQ/XKWObTaoNg0qxGEKLYJxpERxbYQEyEUxLlALQisJPZzkucb0wDFcXp8zvq8F5VNW4FDGROpZCGahsLmrCcNgZiE4GmtVOWnYjC2Qh2aZLdG4iVraNuGEAOdd1w+vIw1jpOTM/phEBKhEZsIfFW8AuuFeGRV6aoYndf7gRgUyGwc2YJtxNLSN46mcfLuo4xP6Y86vJysORgr82pURQljsEWxL6OAVZLJqeJ1IspiKMVSLGAzi2XDwgoR0zrE2qxtcEWsjpN19BmsdxLUF8dWbv5d1/6Xf/l/Afrmc06i1mENJSVOTk7kWerceXZ+zptvvaUAnayFeUKHlORj54r8ggAUr7z6qliiAqLekydwScDCqhQhRJT3PCcKkTFl+uGSgD+qiHJwsM9DD13ReULArqbpuHd0xNHJCcNbX+alrx5xfHSfYeg5P98ARgoOjAVjObj8CMudfZ764A/x5Ps+zNWn3kfXrWicWKRmq5pCGQzSbzCZTOTmK1/ns3//v+TOzTfp+0FtAQuikaHzfzEUm4h5pH/jlHvXX+Otr/8ajz/7PI88/wIPP/sBuuUOO5euKlA3z5vbIKCoKFS7CqNrs4D6OYsimFFiq7WWkhObs2PC0HPr9Ze48dYr3L7xFrde/TYpFQ72L7G7u0u7WlAW++xdfYLz93yAx594lm65EgVFBVed8zyU34e3S87GU4bNmsZ5WIrKoVhQQIpi410tYsSqTdaONPTknBnHHmMM4ziQ9LrlHGJFWe18Zb8p/aeCGaI0KYheVBuvCvXnlLYUbetzU8UXKlld17Nq52ShFLHHTikSU1QAtZIlNT7KlfggJG/nxBIsqbIEGYZBFDjHoZeY1qnSoAKWgKh1jkFAxjAqGKtzjlESccgc7OxhfcutO9fY2T9kiF4AtGxZHHScrk8YNmtiDGAS1juKsdy8eZ1Lh1e5dusOt+/c5uj+PUxJ5C8mys8X8lGi4LDeUwEFoWhVS6SqUgHWJKwRe3Sr8UgByEL4Lzlx+8brHN+7yW/8coe1sLPTEEKiH/IE7h9cusoHX/gIH/mRjxHJbDYj9++d8vqLL1HCMXuXdrj1xuvcuX2Xk5NTYgpybicqj0mVIhrfyDiwblIrglnNRcBsu+UBJQRYKRCQMdW27dQ/atyXEXJsLmlSGanPoBJzUkyq/KjqOtZqfDdzAeU967rkHM5IrsDYotbQYu2UopDDnG5sL9rOSQGAKNXV/Th0C1nbKJVAXt9dvTe5RmudkvkM3llwTs8h4qjShytNgIn8J31LHlpJZSKRpJQ1XtQ9my6kedrHGI0ltlUKVVFnYgJXgsaW8pMxEhPXZ4fEDDxeMJ9Q3oU3NJ0npkjsJafSLVsM0Pe9xLwW4iixesoJoyqiRmNp5zyixiv5rhgTzhlCnO0CvZOI3xghvuYtotNE4FCCRY1Xtzg279imSGh+sdQVYfs70zMrSmahKKmzHsRM8bitMXXePkft66ZSJLbaTMao+nPFiAXnrBnDdDe5VCLlFilnunZ0bqhkDPl3LQwxF56IxvZMnBPpZ0qs2X4e3/0Qax+qNIKyRW6pP67zUJ4JLJXQBFqUUuY9X30q9eGUMv/TTAfQz3TiuLDuykfzmgBN2+haIseLMVLUBtE3jrbzYoUOpCD5DaMqP5KDrURDMxHrjDVU2zbnnditO0u3lJ9HzcNO6jr1CZX51oQwK3Oj15jY2mZ+js6ClbxwUgIgRmOJyd5SSLXGGEqdBI3E4SnP/VMI/2zt0yDliM0w9JkQZM6c5pz6HNFzYUgxMSTJYWSNnS7w4aY3Mj8vY6wSlIXcslot8c7T96Pku03tJhljhWQuudZZxWm2oStaCDorZWUjOQ2n6rAUQwqJVIzGNmW6wEpmnWNmtHCKiYRKKVrQVaZzGAO5EkS13xorirTOOaLGdKidpzNq445hiAVDnsf2xUH/rml//a//9Xf8POfMtWvXLigp37p1i1/91V/9HR1/HEd+6Zd+iXEc/8VfRgrLfuqnforVavWOP3/++ef54Ac/+F2ff/nLX+b111+Hu1/l25//e7z44oscHR1xenrKV37+707fs85z+PgzLHYP+MBP/fd58sOf4Pkf/1P4dvE9kYde/sKn+Tv/x3+Pzcm9f+F3Uxi48/pL3Hn9JX7zn/4tHnnvh/nwT//rfOinfpZmseLSo0/9CzvGO13TO1mJ1nZ+/w7D+Qmv/eavcP/aqxzfeotXvvBLF76zc3iV933yz/Dsx3+Sxz7wQyz3D9/xXO85++O0ecXgTv+F9/qgvYtaBv4r4D8B3vo9PG4pHF1/jaPrrwGzAtp2s85z6bFneOz9H+Ox93/0ws/uvP5t3vzqrwFwcuc64/rs9/DivrsZY9jb2/u+nuNB+100C/wo8O//oC/kQXvQHrQH7V+9ZspvFy1utf/gf/1/1uSFJLWaxtN4ScxI1V2tmBPAoAAhjIRxpFY/W99gXYO1nqZtZwl73QonZCPmbaHEAcJADD1OEyrkmlyTiljrZCN+6+SUF197gyFETBIJ/L7vabxh0bZiR4dnsVixWO3hlq1Uk+WCTZBDJuSCaeS6ZPMpKjKtbzjYP+SJJ5+h8UsOLz3Ew1cfput2cMsOZ4JaiIkFDmUgpnOu3XyNz/3qL3Pj+nVyzFNyB5iqhoqCSuKZ3tDaBY898hj7Bwf4rsX7Bbu7hzz8yOM4L4mAoe9Zb3qsFQu0lBJt03Kwv8/ezp7YqthCSgNn5yfcvXuHk5NTGt+yt7fPpf19zs9PuHXnBl3Xcuf2Ta7feoubN28Ro9gwHB4cslquSGbk7p07kAx7q33e9/wLPProkzzzzFNgLP04Yo1hHE64ffcar7/+He7eepNV5+nHNdduXNcNf6HvN2w2PSXDMAxTRYtUL3oW3ZJu2YGFMfQMmw3gwDQ0jSeEgZJEXj2mKBm0nEgpTiCL91qdiahSkDMxqGWX92BQG6y5Ci3GQgySNLZOrCqMkYrjnDIxZMZxrvgizVWcoIkbY7Cu4eDSIb5rODk9oqRE6INUUHaNVEuFoOPETskxUTaRKti2afFtQx8GqQpF7GmqUkcxC37ohU+Su5Zb177Js89/hPOzDSvfUXwhuTNuXXuDs3sbhhgoZsBZT9suCSGzt3uZK488xt3j+/TnZ1hEmcJ7IWMZOklWaFLPuZpgFiDcmkjXQOMM3jfEZMjZkxCQJMcCWeT6bWtZLJe0rsUgij0pB3znsOrxZFPDw4eX+cjHnicSuHXzLrfu3OPo9l38quXS4QGnR8ecnZ0yDOeEPGIY8TbTDwP9IMSfvT1RPOu6FSGIvL4onwnYl9T/wgrmB0rGcY1UJ2IKJmXSENgMI9ZBCAOb9YYQErv7++zu7xLiCAZ2Vkucs5ycb9ic91iDKudkfNPSqMJQmQgMaVK4sc7RdUvapoEsyXlnPbt7u/TDmpSC2gFJD3EOBWYNxjo2m5Gzs7UozlFYrVpWOy3eCZnIWUNJCOnMG3IOjMOIsTJfO29Vxt1MoIctNVnmBEiZrLgMi6aFnIVwhySPwxiJWQhEbpIwF/A45rnqTyzoKnOlVnobAfGMEnicJARzFrKX95aUA41tcNYrIIy8OJPpxzWJxPG9M85O16Q8Yj0cHOyRxkAsiYzh5N6a1EuS1ngZ2845CkLmct5hchYgz1sWC7FWCSFjXEPTWhZdw/rsjPOTNf06EqMsbznPSa9qSYaSqAQ0Lxf+EzuDrQQ4qoxVKvllWo41matJzKLqU7YqM8mjbBqpeh4GIfvWdTROwL7RBLomxCd5Jbk+MBStpi6qauBcVYtgUi+y1qjiQ1Yi51yJP899teLezspJOV9Y15neoSVr3yjUKnv03HI+ebYzcFGtRwtQhAUjP63J/CkpNVdhW1vVrZgABFFAUfhTgYEZtCtTwrdolbOpSfMKqKDvUVdx30hSOavlhHWWvb1ddvd2SUnI0efrc2LJ+M6zs7tkb3dF24oqUU6Rzekg81WR6uaz0x6wrFYtrXfEUFTBJWOtx7cth1cv49uWQiKnwHp9zvnZhpwLbdcgBZpF3xlUAKnkQhgT1lkOLu3SLeykXDEOkRTF/iwEtS8wRt5T1sR3FhXEXMSyzzceZ52u54F+M0gy2GTaViqcF4uOOIyS1LewXC0FLNgE4hhp1LonhDrfZKytIFMFaxwZsK6gfEhRnwFVdoCmaQBL0zQsFgv6vmdnZ4fLlw9Zn204PjkVIDaMxBSEbFXte6o6kalkDe1DCFAQQxLgzQj5yjctohIl4HtKWdVwkHkxZozN7OwscMYxjIFQldjINK1adhRVnanEWZ2fKEKUrGDG/v6Ky4d7+Maz2YwM4zgBc05jmhCVwJWDzrNGCgcy3HjtBu/G9tf+2n85rQsFATRt9StRNGWyJNIBL6BYjb2szo1CpvHeb+XKdcwnieucsMuFaJvTBAhBnSsEkGoaWR9O+56bd++JIkmGGIJYbaqqjVUrYOdamrajW7YUk0khEMfMvXvHHJ+eMowDr7/2GqUUTs/OODo+FgC9GJarXS498jSXH3mSZ1/4Ea48/gw7h1cRXpsoGsQYSOPAyd23+I1f+Dt8/Tc+y9BvtkiI0oerVZTcegV+Dc44urbDeXlOrulYLHZ5/LkP4BpRGQrjyDiGCezPOXPpkSd45OnnWC1XYolqIMaB9fqMV77665yfHGGsHHu1XDKOPbeuvUYeN5yfnbJenzGMo16bpfGtWDSWpEQjz+7BQzz02LM8+5Ef44Mf/wS7l64Qk5A71vY2n975z7h3doPN+hSjBS/HJ8d601nsWqJYrEwKBWo7Za1T4qu825QTKcg9GmMlzi+q1GXQ+UAtsXSvKTG9o9p3ZgW66p/TGjOpuYndSs6FFFW9xipwbYwoNxUBdfMEJBaq4u3UdPk2xtEuFlgrJCuKzDXkAq4q1czr8Azsl+kYzspcE3UNASRGR5c243joymNka+k3pxwePsLZ6Rlt4ygmE3PP2G8gOWLJlBL03p2QYWyDbztiyZhNofxCwnzZYINRq02nq2WNK2q8ULtqxlmJI411GOMpWFJGSBRpphCg86N3ol5KEeKP96JGZowQ5BvXsrO7oCBKmSGOsm80ZrL5yylsKa3JnJBSmtQ22k5yE843ojCUofpPK41w+nsdecVs2exYwwsf+jBd0wrgr/FtDEKsu3vvLjdv35pUYNrGY4yhH2SeqcC3xGV+JtxYMxU+GB37xshzaXwz0R+stfim0b1xnmK0SRVkIm9bxhAZR1Fj1BAN31i8a+TYmqeoxLtpHi7zGLBKYK6xGrqfsArwV2XMglg61X1B1vFGKfNeRPtzjdVK/TdZbYqU0FOqkqJR0mrNPwFGyFoxRRnrPmM7i3vay+88BPyxgllAiKPYuSVYn280hil4L4SqXDLGWbGyGvOkwGjV7sqoj2a9ForE6dZZnEGL0YRUIsu72DTHUfYmW8wUqjpK1nucx3Qd6ts7iC3SiKkEmbko4u2KosZWGuRM7Kmtzl8lz5aqoNfBdHnTNDWts1vrbZk+LxfWpJofmUmxmYk4VPMaXGzbGclSJ4u3pSm/6x7qDFc3JVRS4dYcUs9VSUal0tzmm9l+wtsKqbVrwdb+p+4n9KHM6mQyt9dnUMlo07tmfm/1kqtykYyhrIT7juVqMRGrx3EUgpwXkkm1zjbOUEqiJFl7ku4V4ygkIe/cpKZa9J5F4c2x3FnhnFNFV+2fWkiIMfhJ5VL7VqnPQK4956ykfSt9X9e/pEWYun2anqrReQLNGSeN5+yWklPJhRDiltKXkMi7ThTVx2EklTytzznJeLdObNhSzFPfdVp8UAm8dX+HQVVT9f2bam1XtpQTixa8yP52uVxQShEFd4quGVGfW5lIfdMEzfaN6z9T7TFyzLr3nWNWOUhVxavka+ctjfPENCsBGYoWhAips6DFvnofThfckvNEUGvbhtWyw1ojNuRq55lLJYRZtV2WvlDXj9pPz/6j7y8o/y/TvvrVr35fjy/vfPhtiTXbzRhRGZ6cDv4lmuxXA2+++SbXr1/n6OiIT33qU5RSuHbtGq/pvkJUQxuefOETXHn6eT70x/+HPPr8R9i7+ijWeZrFUo439qQQuPGdr/FP/m//Ca996bP/0tcG4LsFTbfkyRc+ofuhd26PfeDjPPHhH/6uz0vOfP1T/zWbk/vf9bPbr73I6e3rxDBStnJt79Rc03L5yee4+vT7+Mif/jd57hN/goOHn5jIr3fbl/lrH/wEo3v39dsH7bdox8D/Dvj/An/IuWXOOf7CX/gLHBwcvOPPf+M3foPPf/7zv89X9Ye0GWAHWAGfRDYrLwD/MbDHxX38g/agPWgP2oP2W7aL2Yzfun3PSkq/8YXfBKMS5AYMbiItbe3OZDNvDaVEAQWqvY6xeN9hrRdv9Sp1qxt3UwSEdtbitYKv2jM5q/4aRirWBCy1OAvZwIHQlrQAAQAASURBVL3NmnHYKFgsdjkpjJQohAprLQWxczLW8PjVSywXhRQDp2eJe6eRRGHhDD6OmBiJpTBay7m1rIdjbt25hsez6FbsH+xx6fIVrjz8KG3T0A9rukXL+abn/HQNecOd45vcuPkWaexFKKcmoTRJZBW4zsFismMoA73Z0L91hr1uAYe1LV3bsbu7T9d1LHcWrNfn9MMoFTCpkpQadnf3Odi/xP7BJZrWc3Jyj7t3b3F6eizJSiyta9ldLuhDz3m/xpnCsFmzGXpSFrKPd55798+5ezeTsoA8MRXO18fcP7rH3mqfD3/4gzz73HuBjp3VLotuh8NLVwmpJ6Vzbl1/g2FYMw49hkIMIyEKWCd4fppBhZSw3hJTIPcZ5y0hjkouStKPipXUcEkUTZyM40iOkSpVb0ySZ2asVuqVLXBbKrOcM7PFTxEwJyugXhALu0oeCEMQYCGjYLRUPxpEPaaoVPWkmEJmM2wwoRfbHpW9TjlMyQwTBWAoJSkxaU6S5BwJCUpEFMc0KZS1OtOYgmng5tF3KHhSSZzcP+bmzZvs7zWMcaQfTojjyKX9hxjyyHpzzNgPmnTIHN+Tz4p1NK7FOUuz0gp1VMUlZUpRCzMnCh0pBqSaK4MJ5JwYBkvb7EgyLNSKzGoZZSijY2SAdqBrO8ZRiIoYT9dkGi8VrreOb/Hpz96iZFGjKKYHAmenhePzEzrrsDZRTKZpWgyOOGwY+sRmvWGnbcUuwxkKCd9IdX/MYs2SM+CdJpMNzghRzVtLKpHNsBaLjJRwxQm5zdiZpGCkmmgchABnnSPEyDAkhmEgpUxIUu1dbR3CIH2j6zqGcZgqsGOMWCvWPWZnB28tXetpGo9zlsWiJWVLjGKD5H1DSprYVGkcY4tIq2tyPqTI2fnIolvhnWPRCiHOF4NtLNDQNV5sB1y1YBLLypQKY0yMw4BrLJ2fCX45Z0oylJjx1lIoqmhiBbBvBARNIZHjljWPEQ2qVAre+nmMgI4/qWCUXJyM1XFcM4w9UPBZKSxOFGFkrBVSCeQSOD0/UcLEiCHiyDg865OekoUcN4y9KJtVK6U+y3GsVPYOJdG0DV3XyPP0opgThsBmPWKbRAqGsOlV3jcRolhoSXLRTfYYOaeJaDgDcXMVdzFKQ9LXWG3FBDydlX5mgF2rkJ1V9RqmpHXVYq+WRaLiI+TJSpyS+bCCFtLyhAnMwIWsQdU+Q5UVUlWGmtWxqs2GkPkUZLAzQLdN7JBzV6Cj4gq6/hpkDtG1fVZoYkq6SnLYTMer1dP6WLYAAzMBM9UKUMAyu1VJpwqOggjLdycrizKtwVUBo1t1dG3Lej0yDtVWogAZZ9xMnsiIXWidI6yMj/39PQ4PD8kZ+l5sFdpuQesTix1H1zk2mw1D3+AaQ+MtTbNgHAdyElsZo1aQsc9Ek0hZyHWNb3CNZ3dvh6YRm7b1eiRFWRNNNuRQ2KSRbuHwjVFSQNH53OJ9S3YR54WAmXKBVAh9Yr0etQLd4ZsG5wXYr2ChuCgYSjailpaFLEwDBquWEzL3pyJKA91ixXLZcq5yPjEm1uuNWNtYS7vo6BYN4xgwCZwpdIuGnd0WQyGMgXGIxGRIIg6Ga+Qdyis02GJoWsfOzg5DP9IrOd1aS9M23Lt/h3FIkuBvW9wI44gQLrOqc7oyjw29XzAkI33FqnVN03Ts7Kx07MlaFGOSeUi6LdYhtsfGyfO1AnyHMWGtAOpt49WeqpCmNX6236mkOusERGoazziOrDdrseLtOkqBIURKSfimwSKk1JQKuUQBfMy/fIL896MdHd9Htil5C+qvlfZvBySZwGzZKyDfrfYkZpqN9Dfqd9USqB5bfk2Bejnw9txVwdaQE1HBIZnXE5REyaoSMc1vosLTWGi8xTQdoTO0yyWPmsfpnOGPfvwFKJl1P3DaD5wPgdfeeEPGZUy89s3Pce2bn2e1f4lUCu1qn92HHsc5w70bb3J0+xZpOGe9OaEfNqpMWxUgKrC6BTwXBXYLZBNJwwgDUET9ydm73L39Fs5ZrK+2Y0XVC+U/IbcIqdl7iSdCGBiGXkg6pmLBapWkalMCaqUJJKsk0hDi9E6ttYQQuH/7DY5vX+PVr/4a3/jMU/zQH/+zPPPxnyKmFbce/gZ+ZdkxYsF6/949UgxanFCU4KAkh8y05lT1CQHY80Q2yiXN7yyr+h6ybxWBByHH1UKbAmr1ZHTdUFixzNvqrED8vM4paF1BdZid+9QmjgryygnkmraIstO5i8R7YRyn9cqrGo5YiiuBICNr0Na6NikGKnGjgsSVzFFUjbBgMDaz7k/kyZTE8dFtXYsbVW4csRiWi45EZhgzYRinWC+nQIoFe91hftHhXm2wxpFsnMDoyrcQonQRxURbdOzphRpRxnAY3asUicGNmd4JCYkryTQN07g2iMKPNWA9xDJw/3QttsJYKFH3/mBKxhuDNYVksigAYcnJCCEwBSXcZNBCFec8xaIFNUrOcW4Cfy1gVZlz2ucZCOOAt26KnyaLISWspZhU/cgyqt1xVXWblEx0f1oVe5x3lCTxc1bij1HCgLVWixTsxIVw1pGLrtclY4yjZFUMU20nZ2U/LRarBlNk7c1ObXu9xRohOQjwJ6zeiQBf7eCKAZ1HUpI8i0uVFFVIMekz03Fj1CqOmR4in9WxoWNIr1TGd6LkGXyvcXYlhGQlYaQcSfsR895CeRTycxm7aCi7ooAEEHOUXFGOhDHqeypieTSRjpXgFePMbpEJlpKN5AVqHkDJ0qKmJfuWnNQytyR8saKYqHNAVUmphJ6qKDURg6hz6PbeoOoUzevihbh4nnm2/qrEGaP2UuVtJCK5CFU4RcgOZvsoogZXV+iZcKJ9b+uMRt9vXcunQo3aW/KcmKw2gtNaX+P5up+ofBh9RnWvceHerJnOrV+cf1aEtLRNNHonksG0/tdnVbYLa7b2TBR9dUWf+fwkth91fSFN29B4L6rhJV24tJlMqoQdnRdEWUrix65rWSwWUAyxJM1feXzrZO/thIwzxoTLborBS5FcnzFimWnVyrBo4OO8n6zjxOLPKoEyMo6a46oqgGgRXb22musq4K3EsUXXzTBGeedJiiEm5T4rZPIat5eiqsg6b9WxMO8jRRnPOTvlCIuuEUKgEbvknGSP5ZwQcasaVM6SIxQ1SFG0tWrNGmPS/UuZ9qbfFVsao8R3yTGmmERhyBc2/UaXKyEkeyPPMsZKVppJazX+nvpcff/WzEWJbSvzVcqy9zVGc555Opaxcx9Mmk/fzgls5xJqDFcn1Tq2Zf2V+80p0ff9FAM7VYSrNo6VkAVKLM3zs//D2owxMhZ/H5v3QkJ83/vex/ve9z4A/tyf+3MAnJ2dcXJywvn5OZ/97GdJKTGOI5/61Kf4/Dd+heXBZW7eucfi4CrP/vBPAnDtm1/izmsvsT6+y7g5/11fXxx64tDz0q/8/G/7vW/983/6uz7Xb9dSGLn9yje5/co3+cYv/hwHjzzJj/2b/3N+6t/9j/DLJV8+/FuM9nd/vw/a70MrwBeA/wPw3/D25fVBe9B+/5sB3gP8DPBR4F8DlsBjbNfSPmgP2oP2oD1o34f2PZOUTs/vIHBr1iSXwRQryUfduOu+TyvuzJSstvqhKT0YO1UNVcChZLFisEhyslBJApXIpEl5A2BV7cZQjFRdRlWxmDacDq2+EUlkIVIZShoJmxNuvjVglRCVrcfahsO25cqqY68VJZRN9tyLnrOo0sL9GTackfojbgwN1++8zuLbDkor1gA+ElIgxoy3hjH1hDgoyCdJdYcVi59aMVQSOUdMEdsl4ywhKBBQHODYuIbN+liAdM+UtIwVHDdS8Xd6eotbN4TwIJZ6YarANcYwhhHnHPfva+VRlMR9MVkl90WyvpTMMIwqRW8xrgETSHmkHwbieMpXv77m/tk9YvLsrHb52Mc+TDaBkAeOTu5z/eZ1wtBL4qFkSo5TsiHGONk0zMmyorYIRWwYEJUAk61YwCDXl+oG3cgmPpcsLDVkox9jwKQ4JZKmBAeS7HbOTckxEHWNHLM8f02yVnCWXKbKzWo7lUvSPik7/JpIkeSHYbNZY5B+13WdAM4KyhQC0YicMoD1DZDJWrEmJayqSpQkoSz3OEAxUCyuwOZ8TU6JWDacHN+m61YM4YChD1hjubS3T9e1OFpCGFmPaxpX6Lol3UKAVoNT6ybAOMZRiEU5QUyqCEamoEoEXdAkkGOMgG3IQfqgsU4AOlWH2pQARdiDOUaKJsVWO42QH4zFmqTvK5FMIo0bGtNgzYIUMkWVMkzJlBTJeY33Cd8sIFsa23K+yZQSGcZCG1vwhv78iL2dA2KKnK0HUVAwBu+gkAT0KYVVu8JgGIeBYT2QQsQCXdsqWMBEenCqEBNjpFsuiKlwenqsFYzys9AHAdG7lhwLMUhVXxijWIZlSSIkJZuV1hLaRLFSVp+iEOyMLaQUscayWHQYY8kZTfJFGfMlEuLI+eYc71vaVpLufR+wJmBMZtG2uAYlA6lKhH6vWCFVZQrFgnXCAEipMIxB5oGUGYeAbRrxbrBlsoKroGCKCafqF0bwM7HAy3IPzjlCFBW9tmnJpdpZxAkQzgjRMqfAzo6jmEQYB3J2eF+wNpAohBgZoygmGWdZbwasg6aDtlkSRthsEikO2GAIUUDmRBYrD5OxbSvAXUqIVk/GNpbW+Ukev9pflDTQLTrCENVR0+PdTK40RlRUKuFxqhLeSrbWpF4FUS4k32sicfq5rJdF0baqDFLVicBoghZSKpOk+7a09Xw+JUopqJI1Q1ll60XpRfp1zjN4XMkRVfYdUMBV+qDwo9IMulXgLUsyW6yYatUzUzIbNNHt3YXnYkDGJ/U7TOOulEok3c5SlPlZo8Cyvses93qBNFrvS5PlF1ACPZ4oFMHO3orloiOMoyTTrVEAGKxtxFY0Ba2CNVPsYazBG8vBwR4PPXyVGBPnx2esN7L2dV3Lcs+zs9cICXNck0ui8WIJSpPp8Oy3e2xOelKfRNkvFfxClOQuH+zRNU4l+S3rTU8cC/26F9tEY+g6R7eoKoJCom0ajymFcQi6ljg2/UhB728slGQYN5HNWlSmjE34kHCNF0DZOGLMor5RtI8UBHizSclr8pyathVbhyjEnLoepSLVyL4ASYibvms0MS4KFs6LDYooMDmcLTL+nSGEzDgKUSqnajRSlIAgQEW/GYRAokCOdZZ+7BmjASyuWByOdtHRNC3r9ZqUeoE/9blWi8Bch6Z6OVTVxbZtiDHSD6MAUK3DeoP1UIrENBaj67vY3aG2yCYKCG4x5NJAUQsmjSeqcmEIUSwyFXxOJXN6ekavJFvnLMMwUFlRIUp/8b6RuSvLOyp1LnkH+PLd0sYgpNQKDE2bh3doRkHWCo5O30t5JjvU7yLzR7VS2kIb6wfzWfQvckQzEX9rzFwhYbPVzyuxsRQhh6QwcHYa5Ht1k2KsEHu99hHn2N3dZbF3yBVjefbpp/A5YktmSD9On2DMhfu3b5OGxM2bN3jtjVe5efumqApEsbetc1hGwaTpuvU+FNwyZSZwlKRWKxgMkWwtOTmiNTDK3ReY5kyDIRtDDIZgrKoRAUpEqg8uJYlbA6jKbZle4dz15LOc4nQ9WF0PSeSSCCly89orfPrv/79Z3f5vWf7JHVYHmZJGzs5PODk9YRh6BTb1belzMDCTldTW5e12DzkLOWJSG1B1AJ3i9bmlCTCddQ5EPalsH29rDan7igr2TWoxOnZNXQO3EMNJdUX+waw2OJ+jkvRKLqQisZJz8nNrrZjDxoQxiaxgojFgVDm0pDQTB5zMGzlFIVVsgagUg8nomlfIJVDKmqbpCCpU2/pGiOWlAJaShXjROGjaDt96/G0H/wDKiQEr+1xjqw2Skiys9hGlK0ixgzwPUd5UxQeqMoTMb1mJXLVjmVKwRtRDxOJIyCSZpHGREQtRBepBlP4wTshE1Lk6KGlK3pOt0owYkpJsqqJo23bkVAhK1ketkmR/mYgl0zhZlZIWDlFkXaqxx6SahYL/Ze4/AnAHjaNVmTHNALQIBosNWghx+v2oyqUYg8MQYxaCbJ0bjJP1rYiymHN+q89JrBtjYoxRycBRlaqERJyS9H9nDcZXayR9n1CTLZPqz0S4s6L+SZH4sUwDZOrhOt9k2YMoiy7lrLb1VdluJhJIcZDOU2S1oZ2V3+QeLcWDeb/BfLzgnij4XUMqSeIXVzA2i2pSUQJfkfxA0nmtKrHkXHRPXHUzNe6GmZCsanWzOqfMw9aoIrPOSdbJOuG9HDcGIc9PhIzp0ch9zm2i1gB2SwlnevTTfCTEiTqP1znEbE8rcl3GTHPeBVLr9tQ2EWjmd1wJ1JVkglq51QKxUo+Xp9lljt2Nkok1bjPMhIgasyN3SCXqZCV7zl1m7rfTJer1TOS/UsTKUh/I9ry9vY/Yih6o89GFH06EKL2+2n+5+Mwvvh89p37cqEph0lzXfM0zqQR0f5W3npHeStN4VqsVxhg2m55xDOQiRFVrJBZ1zhKIQBZrcidrgfNGcp7ZEPuRWJ+xMXTLjtVqRdfMCmfjGCRuzEXzpPK+fWNVuU2K6bz3Uy4k6RxXlVU1TSt9Pom1sSgkqcpuLuowanWPPMcb01yYqyKvPl1VVqpkvhgyPcN03dZasW6f9pSzWpLV/HDNB1stjrJeNsYmIUU+VU26vnAZaoQQp/hv6pPCrpJ/a1xVvyNEHyEjzp0WXfMvTn+GgqSAa15JjumM5EKtt9MvmwRlq+hJCF+y/sQgBZ5JY9yaZ9bJWfPLkiuYQiZ9HynNluulCAlr3vOXyfIxG4Ox7rtGzYP2g227u7vs7u4CTASmUgp/6S/9JUDyLS+++CJ93/P1r3+dX/7lX+b2N78pZMJ+/QO77t+PdnzzTX7hb/xVvv7wz9H+xztcW36JqVrgQXt3ty8C/xbw2g/6Qh60P/RtiRCS/jLwR4AD4LcWjHvQHrQH7UF70L4P7XsmKfX9mqrmAaDSCEDG1HS5bgyNNZokqAnpImQSBVBqBdSUJKhVXNNmfRt4EPBnSgKgEtLWkJGki83QOI+xkpjztsEtJLEj1YkJcsYWGCMMZz05J3wx0ya3t45T62hcgzGO4jy27fCNY6+17LSW1f4hybec0nCewaVA068pQ8/pGBljJJVMBEqO+CxXX3LBpgJkxLOk2sSItLgtbgKXUlHf8pyFSNUk+jRo1aUobBSsJC8VVBjGHrKh9Q2llQRuKQWTBeAW1YFIDANjLOQgG+BsCjiDd5pILoVsjRbmWpzRhO2W5Q8kjk/vcvLNE4Yh0zUtN298m6a1nJwfcf/uLYa+Jwbx75b8b61KnxP1NXHkvSdrsqBI5gDnpB8UjKg9jCPeK4BkzWTFNlfySRI1hIDTyi2QxIhFSVlaxVcTk5LYgxQS3jWaUM2SFSi6r6lJR2uF0FTULMlsJQGKvpOcKTFilZQzjoMk9XGUlDAu43yDK1YqeJuGTCSmNCUxcoG2cYQYyNlM1VWuacjBEMfMyf07cm9ObHB8Ezk+vc+q26FtPGPsyXjabgeykOIODw7pliv8wmOBNEoyI+WoqhoRZwulCOGtWVip9MXQWIu3DTkPkCONVZCMQiyRRdfii8XgiDmSrSHFgskGbx2tlyrcGBUsL4glVwFLQ+sMCQfJk3MQoguOBRlHIpqRPvTkVBgHAZdEesRgcCQKwzCKqlHOav3hGPrAou3AGUIcFOwRW7qQAzmKbHgMiRKEoOdsmoCemBM5RuwE/grBY1R1JuvlQeQoqhgGAcHGIBaEvjgh+6HqAVEr2E1ClKLOaBvPwf6OVDRao/YEDu+FzCUzp1RBlwznpxvW5yPr814qldU6JiepfqYU2tZjXZQxpFl1sZwbZcxUsLUm20qtKJdxVHKBIsQiAdCVlGREgj2EUUh3pbDsFmKjiKg7zaTUAgQwQupIxsl1pMIYRkpJ+NbjmobGGEKSKkTvDeDJyZKJnKyPCWMS242SGdeDEpaSqNsUR0hwvtmQkqideQQU6BYN3crT2MxmI2SjFKuqTpFnlwvZ6stNhW7ZsdjpMF7WjKP+nGEUkKOQaDsrqmEVDDazyoIANGYi4hQFuyqgkVKV05fvV6uzSZ3BMIHcditBmxW8yUls7LZtDmrCO+e5Undag2HKLTpnp6p8iqiDVFJRPdd0H1hJTBYhx+WclFQqwIS3FRo3mGIm0ukFmwld+itJwHqnSWc3nUt+VhWbFGSqGdX6XLaPuXW/FAExci6TjSJlTpTX6t9SSaplqxKYSmYSopZxojrTDwPjEEhFiA++dWplmPGtZ6ddkKJUDBvvWO4tBRQsYrPW9wObTc/5+TljCFJhmwohQEotjWtYdJmYCxTpRzkGxHEgkeNIQUh5YLHe0HZOQYCWnd0dYgxCWEiJ/YNdQoykQUBh5wr9KIpIuzsde6s9nPecHJ/Q9wPrc7Fg8q3BWiHK5CQkoKrkhMmqvKT2fUXmNvT914rnUgp5qCQ5p8Cz3ZpTDOfnG7GRKmIPt1guhFybggKbQnBvvFcSiJ3IzJjMmCKmcTRKaB/6RE4VnSqKo8m/xyHIMzOOEIKsPa1WJlOoLkljiNovzURKIgvRst537btTH1UwO4TAOAaxODXQliAWRc7iXYfPBTsGihIvS874tqHZa6H0bNZi9TP0QecG7afe0jStxqqJmIAi9jfWGQxqkamgd8HQLTzGeVqsKjdYjIlY3+GsUzKlkIDfrU1sDGtTskZFTU0FRmdo02zNCzOya7aOwYTgGp34akW9MUJwmI4/HYeteXMGaw2iQkIlSxspIEABVJlvMll/SZSCVFVFAaJkDMNgJwANBc6sUVUwI0oGxrd0jac1hkvPPElbIh967jHOfvQjnPQDIUTefOM1Ugisz9e8+sabpJQ4undXwMI6J9pqraJPS/u8xJUKmDOr2FVrKlvj7GkdUgAOg3GOQtL92jwf1yefkigmKGtqKh6hqmTAljUWEwGgqujV9zqGQsiRk0eOsRtL+6rHWCExhiBxy0yQqgq79d2ZaZ2hlMnqrpQKvIrNr2LBCtRlip1uZAZKa38reVKiMxrfo/3AFrFCqXvbmVgrH4l9ryMzq3FMnWxrPUspUwmXlbRdaVMTOKvkIDBz/IAWCGFonFjiOo3JQwrz+9drEYxR7J68byAUnBWlpJyS2LkZKQopKJF87GlcS1S1zaYVy74YLNmJop/SkMifyeS7QkzJ2iekkKn2M1lnsVJQ4zBCoCmi5LPwMs6GMche3mpRCk6mXqdqj1lVOYT9RYwFsSib1c2sk/5tseQi1m7WQDYGVwqqewMo6SQGnUvy9JxzlkKaEuS9RGOlaKLkqa8bJbOIfbCdiC4pJQWv7WxXVkk8k5rWTLioRJmq2lqB5tp3cypyTn2rOWVSjTvrlFlk/Q4lU7yTvYR3U5+UvIHkFnLJMJHgMmOIsv8pRSznECZMrupk2m+c7hGMUdJbzkJwV1DcKpkxb8VkW5Py1KenAaGkplzEkq0qQjtrp/2Eq9ddkARP0XFikeIOHMUUSpOJewH3fof9kMU+bUUxGyms8M5Lf6TQD/2kjCJzeVVgyzrGCkbt3Ap1YMu81bRSzIDJunfUWKXObQj/su6XKAXfNDRtI+rjFPp+nPpEMdVKCo2f9Vkyqz3PcW+do6ry1NsJAzM5aJpm6h5A11Jjq6JO7Y+6PajxuJ7IVvKXvrr5TGb6YI6lmZ5drieuP69vfjp2PUpdaOXfovZVpuPlrXzI1q/pOlw/NPN+S8d/nbuFGDM/hO1zT2OxHqiygmQwTnsxs3XeOe+ox6xT+cXIQ/dtVW1WyD/bN7FNTjLan5wVomDOhaZrxG42CzlwvV5r39guDJGrG4eo40TuP4VEDJINtQaclQIxmUAlzvLO03hLCiPrEbqF5DadlzyD8x1t6YijWokZIUeLKrnBqLVcNkzkK1nDZP6x1lKymfsYXLDDE2W7PKmdoYSi2keKMcocmu13rb6eWpSTYp5ejncSF8vcmzCaqzDW4qh9UMm+df9SqoJX/b2yFetf3GNmVXzLWQIp42WvaLa7QS1KmuIQM7/zaf+6PVanTfEUB6Vc44ui+UfZg0ufkWLBOl5jSvjGST9JauFWROWvxn5gtBhTuzWqTMjFvXTWwMU6I3aAysK3Oq5y0rlf542U0wWVyAft3dWMMWp7Lu2jH/0oAD/2Yz/GX/yLf5GTkxNCCHzuc59jHEdu3brFZz/7WXLOvPzyywRVPK4t/wF+18bCjT/1m7DzDvP0g/bubAn4v/KAoPSg/WCaBfaB54E/gxCUfhzofpAX9aA9aA/ag/aHu33PJCVJlMgGRxK6mtwzW8lpozYomuyo35W94Ba4kOaEM0YoTlKOI8k1d0FaViXgqZtaSWKYYlRSvpCNJflaPS6/U5PVGaMWHHNScQwjKQbGnHBFq0WMeHEbrSR0yAatbpRlQ+fxTYfzYlm30xpam7HGsVi0WLfAGGhJLIoF41lbR7QOl7Ja2knyH2uEOJAjcRzZbDasN4OQKGKgpIy3jlIE2PVFpY69J6v9WX2GBrGE8V4UlPL0mPOUlM+5EIdRKvkwU+ViYzwZcCrhLgXbshl3DbJBTmLplAsMJWLCqNWWmRAcr7x8X4AyDzkN4gmfq3R5xhaRUq+JNhDbvpQipUgCJWVJVIiMtSgsWOswTpRdQkaThKgitMF52ZQJAUaSOyklrBO5aGdEbjsHSZxXO7LaLyvRq+Q42a9lpBK92gxUgkrWREROhVhE/WFKQii6VbKowsSx0ngsznfgPW13wOGVJ3nP+57n4UdWfPlLv8lbb7whCYViiCESSxBgJWVWOwv2D/a5d9fQdStOT8+IYxRAzGRWzQ7GWfowqEqHgCNt61jtJHLaUMKG3eWCS1f26YfM5vxc1CuyZbFYkEskpow1hZwF3DU240rLzm5H6wwlRLpmwWJ5QI6B/b0V1ntev3aL81BwLZic8NZhC6IcFC02e63ehZJQq5RETSuapmARC7zGemLjIGVcEfUbl+dkZuc7ks1ilzRuyGGcEo3jGClpjbfQdgtKSDSLFrvjSCGSQqaxrVZAC5ozbiQxL7Y/1Z5KTjYMQSoRqYB9JpZEmxpyLLimYadbMg4j4yYQg6iQZCOJayHQGGLJUxUlkzWg/D2nSDIFu2jAgm+92AoZg3EQTWEIvZICRO0mhkhIAszs7HQYawhDZFiPWGeIUeZIjjPuDBbLhtVqh651xBw4Pz8ljEKaanzDolsh1osZ5cJNVcxVUcLqHK81z9p3xEYvhkgKkbZtMK7Q4QVQIlOItE2Dt44+RKITK49x6BnHDSlHdhYr/MKSU6DtDL5ptNoyM+SBk7MNm/MB8RYbZF3wFudEGSv0gTgqodGIoknTtezutCyXLcVCSIkcIjn39CmQshAmUhKpACkeFYsa7xz7l/ZwjWWIG4bNIGo3GFLIhJBp2o6cRiVfFJqmIQRVCtoCHGW+vajiNpOAtlv9TECkWl1trSelouorTMCGaztSBY+UzFST8hcA5Lr2GpQYpEnZmJS4wwUAX8ASAeesk+Ro3gL1rYIBgFrdaSVtiqL6p4DZpOaEAtWKlBTyZBlS16daFUpB1NO0Gn4maOWL9+QuosrqHnPhSSYlJ82Rw1zdfcFWYgIUZA7v+xHvHW0rdrRZAceUo6gFdZblzgJvLcM4Yrxj/3CPxlj6856joxPu3jmaAJOm8XQLL8STCDevH7FoG1pvGEJA+ISFZWPYWS0gJazL7Ox25HWP9y1PPvYw+3srTk7XHB8fk0m4xrFYLvC+oRSENONH2rYVZRpXsDZjS+L+0V1M8YyjgCDGekwJxJBw1lGKEFFrpTJGgdECJRaSWuQIebhaopYJjDfFEoOQin3T4IwR1QWqUoMkvkWN0ZBKoBgBZE2j4FSMOOOEQx5l/ew3gXbhSFnA+FYri1MshDGLsqItajWMAg4yp1ZQx2kfdcjElosQwkqRtaiu9c4pKJTFokpUY2r/UlK4FQUwsvxnTWFn2dC2hWEYMMVDtsRRyKsGeTa5wBgTC29pO0sIHhKUYoV4oeCzjZlcVamsJ5tMNgLyy9wG1UIVIxYRvm1FwbDtWCw7rBFVpaRz8jCIFaB9N+tRGyrXjBkArehqhQmNApJM8yt1H1KJIcCEDM0o5kxOqn1kC+6shJSixBoqNFm2vjVzi7auSUEs/bqbFFFlLUmlqrqlC9dXq9StAmn1WmUe2kx7JmdUFcdYinWsug63XPDoR1+QIgzjCc5RrOf4/j0tQoBiHKlkvvOdl9isz0ghMA4jfQhcu3aN+/fvC7HYWInxjMUVsfHZJgvVXZoQ88XyNysxoxJB6ngrRVWKEtPatVotdVyqZYiZ1ToossW7fHiJS5cuzWQM/cKjjz3KpeYQc9tw5O9xu7lD9IHX/auclzPATN8VskRWgrYQANDzStxiJuC7Ao0z4ZVpPVBYG4PMJ3WdlHi/TPtLlPwk5KK67537Xv1+7UapiP2rdlxMmcnMBUN1+KnPJSdVt9saC4Z5/yQgo3zq1HK4W6w4fOgxnnjmSXb2Wl782je4df06tjgssocS1F/u1VloWj9Zq5a6d99iDFgtACm5UNJW7DAKkSSOA413Mp/HQroTKN/J5GRopvErMSolTaTVrmloGg8lkpPsJ9quI8XAzlJsVO6dnLKJqlSbC96hY0osaZzxW09G3lxW6zODkO8pCaMPVwB9uSRnir4Djc2KANCifBzISSyeQcHYUW3QmkaupXU0zk9KmhLTFVUeLjNpYwt0Fzs2URz1jVMVG4kPxDouyRzvHd5YwhiEVFrXY0TFpJLUUyU5TaNUnoIsV0Lacc6KSockPKbryWpJDWY+RlUPsug6mIkhqJqJjLUMDGPAjEXVgVu8F9LNOCrhB1EvdK6hFu7YqlKF5ml0P2E0YJtIQFPfmwkBUckVuZhJcTvbjNu12MYQn0lEJ/ap5gMQliPlUoam4BYNxiaaLIVc1lopXMmJmKKojxQhORoQ+zxEzSaEdGFYG6BpHW3XaBGXrLElW4YUsN5JXkELoUrJYn1VR6phykOICp1aPHWiqhnGIOtCnse6m0guE6tmmvcm5TZmMo0sh3MQvBUuT/MStY/kSt6v383TusQ0N9b+VCenudVP6no69aG3rcE1tjbM6li1j8q6q0rqZZ55prlu2nLM/ae+kIvELF2nUEJVEQJkVfStijo1PryoDLt9U3pXW7c6P8+ZyDU/m615vFw8hqlXVcBglSgyF5rUvZcQwfR52ULTWIoR0lLjHSkmxiT2a3V9rHu9ur8c+shQAk2ja1Keo6im9XJ8B92iwQRRWVt0HbvLJblkhkFU1nNpVCHJa16pTOSpgqiAYqRgMowDm9hTSUTWeSH0ZV2fiiqSTaqNW/OU8JymOGnai2132JqPM5LHquu0gQvk5/occplzKqYqDOUilqFZ7SWphQazhWMxRue8otcjc8EUck7Xkok13qhrc70gM/cxyUVv9zUzKypXteF5eEyFTAApgDGJtrE0TbVbNxjrVWF6Luap1yiEQ8mFTIQqLUqo/S+VSNHim7kDMzsYlPpvq8/a6Pwja9621V4YI6XaJtsHUhJ/EFvXdTz00EMA/Pk//+cB6b9/5a/8lXckKeWc+fSnP83JycmF43zhC1/grbfeou/77+v1eu85ODi4kMt5p/bUU0/x/ve//7s+/9gPfYznDp+Dl+Gl7iW+tvwaa7vmc7uf466/Szb5HY72oP1A26vAZ37QF/EHq9Wc7YP2O2gdcAg0iIXbAiEo/Y+AZ4D3UetVHrQH7UF70B60H3D7nklKxerGH3Sjo5WMRmTVzfQ/3ZiZikIoiopu5Y3BlKRCTJISSBhNjJtZQWcKUDXxiVGrAIVeNINgLBPgWpOiAkAYTf4zfc868S1vaYlGAHIUqCg5iVxvjDjniYWp4rMCB9YE7DBO13ZisoK8jSY5wVtYOMPoF/huhV3usLuzZLHTcmnZ4JuG2CzYxMj5yRHj+QlhHIBMNJnsHHFIxHGUSm1jNIFuVXGgbuJFccA5kX+GREojUVk1CUlCy2vIYhPgwERRDzBYmnZJt1qRSTR6/KDVni4Vskl4a8C3WJvJY9ZEq1RPubK9UZaEVIyFbDx4j81S3bVctMQ84g1SzZjkHE2zZIwjaZBEoV96XONIYwGTcK4IMBMycQwT0GRMpvUO7xpCjFgrfzogpahEpWoZCNbkqWrKGEMik9TCxqo3Usr6jLTaHDNbxBlb8AVi1D5bUIBWExP6W1lqgTXxUauxIm235NkPfYj/3v/k3+Ijf+TjUEa6n/uHnP6jf8zJnVu0GdanEd8uaBZLTk/usRl67FpUlfrNvdnuwtQ8flKAQ0ZJLhHjHMOYifmM3eWSsY9cOtwjpsgwiGVIMZExJLwvosBhLZaEQRRDdhcLHn/8CdrGcXZyRG5GDi9dpm07Qr/msUcfJqbM0CdunZ6zHgYKieXKQ8qkMdM2LY1tsa5A8ZQsibRqf2FNxiRN7KJAkyu4xmKLwRso1hATrM829JtzrBVyYQwjo26SSzHkmBhCgsazWjQCwqXCsm2wbcM4BoYhEHOZwB7xe7fYqlJjIUWp2i9FSEbOeHxrSSXRp4BBVNcckkwLfZAEjiZUnbdKShKbwBiDTpM1MW5pFw0ZUdvwXYvvHMYXbAOxiEpRDoUhJ/p+oKikt1X7SuMstrE4LP1mQ78ZpELRq71CyQx9VunwhDWFlAIpjvRrIbk567CtYcgjXdup6phu2kvBG5F6zzIBkrQ6kqzAm/bD/z97/xZr3ZredWK/5z2MMedca32nvctVe1e5ylVlYwO2227bBIxtYkFEErVC3JFykb6kRasTCfVdkCJFfRFQFJELrrjkohG5IFIuOlLHQrQwwg3BkMaysY2P5VMdd32nteacY4z3lIvneceY69vbdtmUqQ1eb2nX931rzTmO7+l5/v/n/9/t95SUoTXmaSJlVYZIaUHEkXzBucrxeAQGduMeyLiYVVmrnCm1EaOnFkcYAzklztPM+e5MStmIjGo5MQyBcTfy+vaONCtZL4TBkqOF/WHgybMb9oeRUlVGvTRINVMFfAy4VMmlj03w0SNegZHSKrfHO7MI1UTjfr/DHxzHuztiCaSkgJVWPqsaRjUwrFcyqrrdBXCFJsdXxR8swdl69aaCe2qLuYGqK0ZvCf3Vqqb2NUdBqVLKRRIbO48A1Sw0K7Wumf4VwFLwwKutnFelGOfNBq70xO2mwKT5ZEe3WdO+bhXaUrd7oZOMTV3OaFadlNGaAWOWrF1SWhPxSFN1GmdqCxgQjvQs91olvwF0vWK1k2Dt2bsNULkkM3TVCiW2NMIQePz0EYfDjrRkzqeJ89ls3yzpXFPm7vaW/WEkjhHnIw7HsiwsKbHf7/EuMC+JnBolwzwn9vuRUoTpmChTou4jPnh2sRHjYICz0CRz82RHy0JpMOXKcT4RB69qdznx3nsvePb0MU+ePGY6z9weT9zcHIhPrpjTTKgDu9qoZeF8Sty9nikLhOCJcVRCUtY+msxGqBlY6+ydNumqJJakLl39oe/B2NYgr32rmVVtKUVtArzuu2L0a4dfqzKrKnu0lkmlMATP6COnaWY5ZxxCmpXg7AwYzNURh4E9lVYnpOq61VUWFMAV0qKEU3GCKw0ZHDQFW3R9NuJBB0rpCmOQs46JYYxrwp4GLqh1q8NzvJuorbG79uyvg5EkCiLB9onZbHl0zxGDEIeoRJbB8/TZnuWsal2q1qhV4yWryl3JSo5XYYJmymP6Ppw4XFTlueZUATEGb7YeCoxGFyitcJpmVfILgTgOfJhbx2L1H6xjcwUkpU+D+pf7RCPWfXgPM7ZDbdY7F72WftA+b/S92wUSuZ2jsY6F9agdnO2hSN+fd3LvaknTyXxGBFgJCl391E5nZAZj+rAp6Xg6bUhozAIiXoFBp3aGN7uRMXp8iLQQqQ3eevIYqRmqqjmeU+I0L/z25z/P53711/jN3/hNnr94QWtZ97829tVatJOmWBU+OjFpgxsV2HMiXN2o5cRbT9/i6dO3GIYdn/jkp9jtDwbE6bMuJunkLG6Izhk5wOJJAw5X2yDgE/WbqWddv04c+a3wW/zK+Kuc5I4X4aswNHJNQEW8uwfklpJJczH7bMx6zJROnP6tFFVlqBfEJef62qvBotRqKiNGarkkHbmuhAAuiBXQiMXEvX/pu2tV17VLTFtoNgXYHRuh5LKf9V4rpqjpxJSyasMHx5O3P8Jn/vi3cfXkhrwk3vnUt5Bq5eV7X8EV2zeGQIiR87kowWKaFXgsycB0A4BRNUZpptIkOqi62kRtC6CKt7thUHWKV5n2D4BX6FwmTt+HdLUwj3eeMUaur68RYJ7OEBxjHJCqxSlDGKi1MQSNEc+zEtJ1D6YKol6CzYko2cj6TQf7g/fruOzP3tMVKvoP9Z3VVEmm8ltMtUULcyyeq1CpOAm259BCDRc8Y/DkpNbP0jYlY3GqRuGd43B9xc3NI3ZDxLWGCx4nsNsdGExZ5+lbT/nZn/3XPH/x3IjBRZXy2qY8Il7WeEVJJhrrK3hscUwMNGz/ZwQlxIoVqhLIa2sUGjmpclaraqnU8yHijVCSO9nD5jgjALSiBUYC5LxoDFkKJSWNj53XZ1SNVGvWhBue34hmk1erljt0dTUnesnF+mqThvNQv6mSXcM9dtTPVNpVI39cmAXaoMqezgUjAXWLNahVlWhrKeCdKbEltaw1ZRSxB+q97o1ybuS6qXl2ovkYIyFu+5hOYuqEkHVfZDydToJQhRclDKSc131GzUba80KRQhwDnSguXm3gHdDthleCzCW5stn69QaxZv3Ytmyuf7EVklUl0vbEXV20K6qsCrDV1JrshOs+++Kcq42fESYuGR690KATojZiz5sW2BuRWNfKtj1HX1cicF+HpRcR2vuBi32abOtNj1VWRdeLpX8DvW1lbf1a7Ln2pb+98XD7eLgkedhx1ufLll/ywbPbj0bySP3kiPdr0WPJGfCM42BXI6RFLem912KElNJaVNhMwU3Vg4Cqa5j3Du/6c3frfsIPjlGUKHVqM7llzmmhlUrKRWOfXLi5vsI5RxaIMTLEQEozS0mWO23Kz0fVzntsm5dkCofWH5y+qHW/huZqYcvProTf/vSkf9bmI+fu9YlmBCHPFt+usR6yFqkITS1lRYghkHu82jSOSYv2RW97heYCcfAImZwTTe4rKbW6FTD243vLPfd37+y+uorX5brdnFjxl6qqbwTmZtatjrSYRXQQ/OhtIux9Sta9rSrstzU/7kWJb6pMq/2rFtmIjfaMatPCue3aWJdCJ7qJEZWap4kSNkPQ4o5atnWgWsytRUUf4qKHh/b7alsOyfPt3/7t7/v9d3/3d9/7d2uN4/HIz//8z/NP/sk/4Sd/8if5lV/5FVbFcGve+4t59mtrH/vYx/joRz/Kd33Xd/Gt3/qtPHr0iO/5nu/5PY8zjiP7/f53/sAZvvP8nfzYyx+jUHjpX/JTVz/FP3j8D3gvvMcv7X6JsztTqQ/EpW9k+yLw14Df+EZfCKZQ+Hu3Xoj6h9H6GPrIRz7CJz7xCXY7LeTo+6dHjx6x3+85HA58/OMf53g88ou/+Iv/Xquffd1bQIlI32N/vgP8L4CPAj+A7uOesKV3HtpDe2gP7aF96NrXTFK6yHjov3pAakFj96jvlSJNLJ67QLa6HK4Tt/0eUFsF0UpfO09PoGjQ2i6uwpIhKLng0jNeT6QJ8C4vvoGnlgy2Sq7ROVpQpReVNMaUBaqCQf3iLSnfEx8b8KwVT7VWQuhJD61CnFoFJpw/4txzQOXLQwz4uCMMOxwQKVwPjptxoO53DKcTL84TVURN7kqjSaFS1qDVO8cQIj4GhuAIZvlUSmHKKieuVhVQUOBwDIHBO5qDM0Wl2pujtIHrx4959vZHCN5TRUhNA9/BBVxNLMczw/6gz7qqToqIo2YxpSaVftfq0ETOMxSoa5WlVndN00QrmfFayTzD4Cn5zO3tc+6mIzEMxEHILOC0uiiEwDIneuVgK2qPJ6I4X20FsQQKYpLTzRtJIRNF1bAkeoqBn8Gq/JBmlXWXlbCaJOzAvMgGsIolwJwB+12Gu1f99epxTRxrJa5kfV8xOqJz/MLP/Ct+/Td/heU0EWj88e/8Tv71//gvOX31q1pxKYCoTUxrlfN51gR2SZoMFSVXSBPmeSHEQS3kYlC1oqaEhJoyL5dZx1dwnKfZrKcqrWSiEw77SCqLVgq7QIiBw3hgPwxE3xBLRgcXKSmTxbEbd+RUmVPBEQgNzq/vcNFxRzXpcs+wH2h10fObhLdvRi50QvSsBCWAsiyaRNoNqFYaGPTN6D3FrLlaUbIPEmhmdTJGVS+LIartYxXcnJCsKiixVLNa7MkyPZakzM6Z0oY0EFVKKaHRfMEPA7snB4YxkEtlWhZSyaoTVIzkVrdkdauyVhTmlglBbXnSkpmmhPOFMEZCGIlDpEmjSCG3yuk84d1AKpklz1SEtCykSRW+QhR8ACfB5lkIw8DQoBq4kUomjppkHDyWgJuNuHSm5kzJC2HYGVHEgXOE0OFDVQ5wAjdXB6Y5MeeZSqZRaLXgXDE1lmUlynWbNapwPieW86wASxW1wgrCspxI86zXN3jGITDuPLnM1OyYphOD37FMC9kqzLHEdQiBYQggNjdLwDsldIqDnAs3j6946+3HLPOZ16+PtCZMpxlBmKaFvKjiVM30zCgueJZpxke1QXHO48QzjAOtZkpqOB84TWeIgSF6hMICxJ3aKOY04yPU1OjS82tlZusJz3ovMXsv8eI2pQ9nVYqCUJsBdJYA1WRSNIuorqLU7UneAJacrPnOzcZN+3//t/PeyBD6LEota8V+NdsrtaBya4WdN8u2bs0hNpZCcDpXbP4jazXpBbKyro+gQGslU7N+roPjfY2rlvhSgKRXQXOfMGznWpWALjYna5Vr37NcIMSCW4H3TjBotXJ3vCMZgWQcI94r8LXbdbsOYb/bIV6IMXA+nrh7revWfq/lOClXnK/sdyMhOlLJ5JTYjwMxilrZiFZP++A4nSbmLDx+es24C7RF2O8XonPE/cCclbSXcmOZE8E5YvBM08wwjjx79oSSzpxf3TGniVITASGOO549u+Z0O1Nr4Xh3xzyr5W2pWqXdLQBbQ4F09H69F1O8UjLQBpbJCmbF6NjtR2KM9vwFKNpHvDNrGKsgr52IsZF5+95xsKrdsQ0EF6ipMs8z0zITY2B/vQNx+DiwHyLeed1HyKY6kFNmWRZyLqtlYEoVHxxVHFhldvBCNbspWjMSu84xNSlpY7/fEYLuHzqQKSJMp8T5tFBbM9U7b8+sW8eq4lJrahNKM8A2NUpRUsZ+v1NLz9yAvIIWYuzFlRCGPn8xQmCMTu07rC/HOLDf74m7kZwLx9OM4BiC2tGIU1KVj2EF3j+U7d7c8Ma8SC9+0Ht+P2S4fd1Cize+L2/82T/f7v3s8pfWFd44xv3v3zt6/4FYaYYAWFxjg2a1TPLOrIAuYpE3jqv9yPad9OWvXawh2Rjpy/Y9UWtOZ6QaLxCDJTldUMVEHO++83E++pGP8R//x9/H7e1rjscjv/1bv60wogjf8ulv4bDfK2HdOdv3tlWJ1Ymz4hElKXnnuL6+ZhxGU6JUwLiJIw6Bx4+fKHkK3ZsXK2BwrZCXxDDuqGJw8yqn1cmkdbXBKiVzVR/xTe0dvrf+AE7g1t2Sa+bL7ct8Lv4anxt/g1lmnKuUPDOd7miohXMYArkkRKqpAarqaimdumiAZwffpW3qIgbeY2txpao1uGgc1a2XMNh8W2c6AN/707Y3uNfl29Z/vdssw8Tee+/Tq/qBvSsfFCw8393y8z/9r5DgaVnvLwTHOAycb+9src4srRCCX+epbVRcrMtV1Z9C9Ktddifc9/l/mmekQa6FkgrtcyC/oCo13kip2l2crdNm2SVQ8rLG806EEAJXV1fQGkOMlFK5weHns82jjfP5hDjHfndgiGpj+c3f/M0McTBSqF5XCIHPfuZb8DpZ0xUjRTBr9I108Pz5V/nSF7+kBAF7HrUpKHs5ri8LnlbgnAvyQ4PbuyPPnz/nk5/8ZkSET33yk+z2O3a7PfvdnhfPX3CeJp48fYKLwv5wxe5wUJWi2viPvvu7+Te/+Iv8q5/+ab76/DnzlEy2UP+rpXWOI7WqnbKqDFdTYQJQlabgvRV96X5omRMhRHKtWsyCEniK7e97EVmzsSs0Jey7bkPYwKkKkBMlQTQjPcm+Ub+twNBo50r9NVGl5Cna+iNb57ZuJl0dM3fFDx3j5VCpV4X6TqH6Sv22htsL7S2UzEM1NVklJrUKsXq1p5ZeEKREYxeUJJdT0uvs5BezvKq9SAntf2qHmleF5A4AqQ1zY9wdoFWms9mIW9xdilrUdWWinshyQUxtTPeVwWshmM7RVjRntvBOlJRQS4WgZHycFes4wdVeBMA9clBv71+nQKSTfCy+sXes/ZyLcSAX84rthtd31ejk/MsZYp0pbA5dc26yUips629jqm7792bqat6K4DoJyjkj7da6xgorycMKvXoMiK4UNjfW7bZtT9psvdDPbfNbzxVezn3rbzWJZ89OtkO2bb6VLXSyfNF2dJHtWJfkHJ3nGufTeV2/Y4x4rzRlVcBRslu35g1BlczO5wmaqhS1akq/ZscVo6rgzfOiOaXdYHlRLaQDtZ2trTGGAR+CbhdEVG3TbBT1ueifOReWJZFSBjFLQ5Q0WUshVyVjOuc4HEbSUpmnxchTfW/Zeg2q9tZ1jyVGPLokhYO5sa9rp+6zHTGGlSTTbO/Ui006Qaf3rdbPZe+h7xXXPu083rNZvRW1vFN1KwWAnfcMo45NJerpdauKbl4LDRHN8dS89ZNeTNt7jY7RtbfZMSoiRddAuFCB0phFLYIboPlbncB1j1Uv+qoW6TSqdCXAXniqFq1qT6qkwXXU2hx/2cdBSV3Ob4qRiCrahhDtWFX3fI11L6j/aUHURrV+aH/UmohwfX3ND/zAD/D93//9/JW/8lf4/Oc/zxe/+EX++T//5+tnfuiHfoinT5/+vo797Nkznj17th7jD6N5PG+Vt/iLr/8if/H1X6TR+K3ht5hl5pd2v8RP3PwE//jmH3Pn7/5Qzv/Qfpf2j4D/1x/sqzc3N1xfX/+Ov6+18pWvfIVxHHny5AmgfewHf/AH3/e9cRz50R/9UYbh9y7u+uVf/mV+7ud+7g920W+0L33pS/zyL/8yf+bP/Bm89/zwD/8wT56o4vBbb73Fr/7qr/Lee+/x6U9/eo2dxnHzIfsLf+Ev8N//9/89f+/v/T1+7dd+jdPp9HW5rj/09hbwv0aVjY7AjwNn4At/gGN9DPgk8CMoKekvsdm3eT4oJfTQHtpDe2gP7UPepH1Q2dAHtM9+x/dvgeWlRK4lWrtlGj05Ij0p3xnHQmuqquBau7BmA3qQKbJ9XWQN4jrYcnmpveq1Y5Qxxq2i2UCDy+SDQ9iNOySq+sZqKWeS97Wo/VOrFR/CGsQplqnXDVsSCNQTPC2Jcdyt5CUnDmlpBXK3RLaQUYWIUIGacVJV3cg5nI+ritTt3R3zsqw4Sedoaf7EEZyHVgnes9vpuZecWLICGF705y5GSs14S7guiyYjxOt5Uq5cXd3wmU9/G9dPn1BdpDZPQ5WkJN+RzzOPnj2jeiOZGJrTwePaEqUu1FqZzidoFd880UWt5HdN1WgmBdNwnpRnpuk5091XuP3qe7z80nOurq55+pHH3J1eM08zNH2+02lhWcpqvddlw3vyZ4g7fAy8ePlSk+hZZfMFTWBrcF2YZ30f+33QRHvBEoZyUaGqiU/te6bgoberdmxZEyedbZ9SWhN05kFHiANhcFqximN/c4VIpDUPMbCURF0y0Bj3IzUtHF++wjdYLMm0O+zN7k5U4SupvZaIElVKU0LU4eYa5x0hetJSAE/VEUdLGQHeevsJcYgKJpCZJyXEPHvrMa1lIDCdj7SWiWHgZnfg5vqaEALT+awWcjEyDHvm6cwYArXCcV64PR85nmZVQ3GmkoRjNw5qKVQ0yR18WJNLDcH7YuPI00pdiQZOa2yprVtgWHfLKn2uigRtVe3qAJ6YbHWvjAxeCSW55FWFzIRcLHkLYKCQzT1NHG4YGMbIuBfisCP4oKS7KkiMzClzezpyPM/c3k7kRecLVfAADGRE4Pp6wAdIS+V8TiCF8TCw2+84HAaaUwWMmgUSPH70lLvzHaXpeztPM6mo1PowaIKxVrU0DB6zpVI7Bk36OqKRLocgtLIARclEpVLTYrZacH3ziOubG5xXwp3auDVaKQwerq8OpFKY88x5mbQSuUGaC9Np5nR3p5WAtardW3TEcVS7opLIeeH21YkhBp482fP48Q2ZzHlOxDEw7h3BK6BQFtiNgeoBPM9fvuR8O6sUOppwHMaBZVH1rHnKRtbRBOCyJIbR89bbj8lL5niemM+JViC6gdd3R0pJOESrUqtavvmoa4SPjt04UuZE8cL+8QHXlUzEKonxSlQ7n1iWQporaVbQxjkde0pwLaZIYJMG7t6ataknaYpVvNi7BREF50rpwIypVnh9rxspKDLP82o9IqKko8uk/qUdnK67eg0dNF/JS0bSKVnnNi9KVwtRE5cgqhogpmpTipIDUbvOTpbq6nWdtNmtfvo51zXbBVO70Cpd7+NakbQRtcQkjI34QVvHmJIXDDi0x1o7WNyaKqr0ezUSkiaPLzcqPdGMzddBCYAORAI3N9emYJQIQfcj07RQi6l91MKTp4/JufD69qhV07vB1JeEGGG3G6gVXr28peTKzfWB66uB0uZ1PTlPmZwb4z7y6Mk1+/2O+ajWT36IqslXNQG+LIXzaVaCZoO7uzO7q5GPfvQxY4TjdOS8LLZ/acS442p/w5c//1Vev1IFtUa1tVAT02rbp4pjCowIMXqGYSPglp4A74C6aH89HPY6RyQFOBToSKuS0hAi3nslD5WiVjWtQS3EGHCDKt6pGqJXqzKzalXlg0IIgSfPHtO8x/uglp+pcp7OLPNkpOhKWhaWRdXbdsPIvCgxK47ByBoKvnjvVM3G1gExIltOmWVO1NY4HHZ6fU5BE0Q4nyZOx5mUlOS7uwpcXe/wzql9THUICjbNc6JWld/2XQXJO5pUrq4OXB8e8erFkZcvX9NKRYxoKRf2CrWqqqQ4zzAG9rto1kdCHEb2+wNhGFiyqmR4e28xDtAc85x0dqmVXBZ+4X/8+iTSvt7t//R//r9s/7hHnrAm2xzSN1nrzHlJNrqPPdrf5eLz22H6By+Jm2+2Pl13gObeNy8O5AzsxnmgrfbWfcPebV4u5/z3HcfG1Aq7GTlT95eyfXa1yrm87M2YRmyANjBQmHuqsjlnJd7dP0Cn06zzo7P1RZwYcTWvz6MDWc0ICB2k71ZvSnpQsvjNo0eMhwPiAq0JLowqqJsnKJXxsL8Adje1MwWc7VpXoirQBO+DkU4MCC+FJpX3wgt+3f8av8jP8pvlV5nnE9PxpGS+6x3LMlNypivDdVWVVSHkMqZ0jhgi4j3TdAaw9bise8dVedXWwRCcrdf93bKSke6t951wZp/rKj79XUG3PLqgBoiq3XT7FSeeMEZaU7KKKl1WLd4wMpxgBSJ9PmnN1DI1ZhObGzohqivAOOdNea0Tx3rwqX1D1RUb+8Ne9wanAn+nkH4rAY7DYaexdBVKViXCGAbGYeDdd95ht9vzqU9+cgULHj16SskZVebwuk7Y9eac+dKXv8i42/Hs6dPVPir4YVX8akYu0YfeiRXSFyrbCyjQ3CxOQOxZG3Gjx/KdfCCykSDECqa6upAYWN2JIDpWs44XA6r7ngpRIpkLQRWWfFtfabNxKFp1wDTPfP6LX+Jf/NT/j1/55V9lXuZ7fbKrFAyDV9XoKuRcaBhxKXiGGFTFV9QCjyrsdwe1jbe5IxclKdVSTe3HwPB6qYhthUd2j10V0DtVFWzfVeHPNnimN1NzpUyV0Y8MXxho/7rik6f9tln41kpwQvx4QK6Exeah8qwinxLax6H4SmqJZERj7z0uKLHX+aDrNGpR1WpjvwvsdgM+eKZl1ufsRe39TC032DFKacyLWl+WrOOvlr7/VcK7xhJdwU6MIFEYd8OqOLIsCzWrZWC2PUonm7XaVhIW6H59HAay7WPcGJXIL6wFBCK6z01p0b1WsX1WV5brdvNGotM5fu0SFySlN9YwsWIC+0ezeaertF2SH/u8NMSB2hppWS7mQZvPW1ekaet8vU5u/djbqfUz9mu1ArQ84KX9Z1fM6/PiRX9bz8EWq6xDyo6/2Wba2rVaxzXLAbR1Hu02qh+0Dt/bA1ycd32qFyQ7/eNigr947JfLPlguTwQftO+EoPFrLXkl8OWsymnK2Gm27x5IOZNLJpgqcy1q6+VUttHUdzR3OY4RESP8lab92EgoISopvhbtQ74T4ZrmWHNR0t4yqb1jyUriGfe634RKKkoM7KrBwzCS58z5NCsBh7aSEnsxSWtbfq7HaiH0n+uL7LFtf2BqMRYYrOBB7eTLuj6qWpqSZ3XPb+u/7UME3T87p7FRMDWpfg3VyF401LrRAGjvAjTIWYsc+h7hUhkmmA16LcVIRhfj2Pdcs/WRHo9aEU+rbb1255wWIaJzd05lnWedNxt719eb3pn0nbZ636q2F92KEw6HAzThdJqUeGt5rW4zuL6LHvM4IURPDL0AwOm+yvmVkK6qgA4fghXwsObnSkl8+a98iQ9b+9mf/dlv9CU8tH/PWybzS7tf4p9d/zP+0c0/4mf2P0Ny6ff+4kP7t29fBf6nwO8yjIdBiyb/xJ/4E9zc3PDn//yf5/r6mk996lO8++676+fkYo8Aun/+6Z/+aR4/fsy3fuu3rvuA/X7/vvj+G9X6GrTf7//AJL3WGtM08cu//Mv83b/7d/mJn/gJTqfTvWfxoWkR+N8B/0fgj6EkoooSle6Afwz8feAl8FPA5TD8LpTc1Nt3AD8E/GlUGWnPG4mkh/bQHtpDe2gftva1Fj18zUpKW+Kj24N0YKHS2QQ9r6m5icvNQk+F62VVef868ubifJmg6P++bLX/8o2f9xTGm2uzWCWXnez+341k4ququPSf94TOaofSmiWy9J5F6vpRZ8QfVV0aVHXEMAGtfnEEqbSmRBQJjiyR3KDlQiyLJU8rrmYG0YrGUjvggAXfqobQqNSqEvwheJpZvy0pqRWCg11QZZ9SEi1rtWxK2ZL0WnE/5SO/+bnP8db8DsNuz3xa+OjHP8nNk0e8eO+Ow2HHzaMDzTl8FZwEtVCqleg9OU+cTguuCY8fPQPnWUpj3B+0yrcUoHJ9lREqS144nzPpmCmnSe25DGRPKWuFVtWkk/rKC8MwKPjfq6wt6ZxzJvhCXUzy3wm5qQJQLZWWE40ARqBRlYWeuGPFrHtSor/fngLrvbQngTq4fylvuyVEelLF0ZqC8TEEqmvkNDMdFwUUmimRtMbptSZw6GoTRRVrjndKrgkxKNnOgfhmHvUKiI27Hfv9Tp/ndKeV40YuECecj2cc6jO/3+3xvpLzmfN0Ji0z02liiI60nNW2C60WTWSen14QY9SEYutJ3MHAj4p3gZQLOBjE23m0qr/kgk8AmVZEK2KXWfuc8wpItGL2Gkpw8D3hY5WpwZvVUy5KOHKBbJWZ3damNZRU4bGkmX6vlEpOiyaUXKDUaoQvnaO0ih6thvcePwzE3cg4BChNrSjTmTSfKU00QegjNXuGOPBNTx+x3FRe7068fn0iV63GFRFSUtUS0PMgWoUWY6U1h3ORLr6VUgJx5LnhmieK4yM3j5jzxHmZaNETXeA8naFBWpSU0kqhOb1OJ14VplqjCSzLQtxFmhdiGGhkSxI24tU157szp/MJF6C4iWlZiE3tNuZloZXCo6sdp1SYUiIXU1NwjeCE2gp75xmGa16/es2yZPbXnmE/4kO0PuzIWQPK/S7w6PGOEIQgnrhXqwPxjWlaCDiu9pHgHYnK69dHqAFqoTVN6s5z4nyeFaQKQYkBLas1mfd411jmwntffs0wjFxdPWaeXtBqIZW0Vs2XtiXtWrdAC43dEDjsRr7y6lZl8Fsljgr+qOKJYxiumM+JvCgpsRb903tHTskWPs0EOtftSPsadt9WYLUZEln7PWAEp8s1TxfUVptaB1qiM8YdKbmVxKhkzWDzZVXgT7p1qlwWUq5bgtaaJk+9u1CK02t2oc9x2QAbuyfRRGqpm02dklns/mpTcgWiime2H+hJg00R0QBn1xPb23PpVbQ9WdxaWZ/PJfBbSjGwx11g9rICHh1wXFmO9G1CJxNsSXKA/W7HuB+oCMNuwHtVo+sqQE287RmE/f4K5wI31wfiGKlt0Xd3ygQ3EEKlsVBqY3+IUJzZlimBLeVCTlCrgpjFqm5z0XlmHOIqQexl4Hh3UptGHNOsdmFLSjQSX/7SzLOnV1SptNIoqbEsmdPxlrvXJ+5uz6R5U/YJg1qT0U3XnRC94L1awDjXEKmUJSOi4Lj3fp2zBBjHSIye2chBOWdSUlK290po3Y3jSqRT1QDNQrSiSgRktXpptTGlmVJhGANNCoMfGEVBiRADcbfD+4jHM5WZXArn00LOCSeb4oD2x2xqcDpuqlQFFnMCFxDx9Er3DgDmVPT+aMzzRClB55mcSKmQlkrO2p/jEKHA3esz3jm8i9aNioHZWpFdciWnzS5Q1T3uCE4Vtg7XI7UoEa8D7slsDzvYUqqqSsUgjMO4EvDu7o6kfIc4Rxg8IQoxXqktnRsUAG3QamaePrzy3xtd5iIYuMf0gMtxKve+efGV3+X4X8PJf+ePfECycFUDWI9+caBOkrC/O2mrWsYa+azEHAO3fpeLdAaAKRDmlUgANLPhUpWOTUFCrWSczdl1I1zUQnAQndO5xuIJtUm8VCVolKZkZt07KRBXcrG5uSBVLhQ/df7OVZVFOhl0qY1XL19xjSaW52lWO7jDnuPtTIiB/W5k1bloQi46h4xDJGdYZl3vr/ZXao/dmpI6xN5BJ0q1wrsl8pHpEd9+90l+rfwi/zL+S35NfpVSC8uc1HLJ1oVOTOmKDUK9WH/0ueWSaTnr1TlR2zfpKonN+mhbgexS+hi2SdLJutZsfUT/XHHvvs7bp1ZyS/9WayjhR+fkHpeIYCBuNcL5di1Cg7IpiXTiGq2uBA3nFPQVI3upnVhbn4n3jlIztahtljdrQeccy7xoDN+aKko9CpQ/06j/T92npyXx9OkTWoWrq2/i3Xc/xrd86jPcHK44HA6EEO7lBGqxPmyAtcebGhK0EPjspz6NmLWN2FzQGmq71zoR20gIZSNDrEorBp6ve49LFZeVqNR7YbciwvqYjp2VPFbKmjPYVFlE1cKajWXncNEruOu9xqopk5dEway+mpFpxNNqQZxnP0Q++6lP8sl3P857X33OL/ybf8PP/OzP8vr1a7UlLLm/UVPv6zkIYbXercXILLrfc00ITjgcdjSpLDmTs6MWYVqUKK32Z0qg1f7SQfBuT2R259EjTwX5nwF/rOH3ur44EbJLWmQ1QH6y0L6jUPDwCko2IoN3yJNKjZrLALMsalltIFvjyo+U5FmSkdejEoyLkYBoEMIICCEoqN9ojGOg2EsrudFKJQanNtdZycI6DXtySytxJSf9XV9r+xigz81NmM5K9j0crgBHqZrjqGZ9dLlWrbkmJ4TBq6Vytn1xUoJDw+aXqvGHNKGYxXKrbVWsqa1aIYDFE/fWoS0+uJ/f2vbINCXoC11l9GJesb80NvunUpVkKBdFg10NvTa3FiV0klAfN4iqpXOpgtSLHzqxD1tHXSdzbAQlZ99vZuPcCUgan8lGrFiv2eZ+IyX1GEqvy3HvMfVbbb0wavv3ugYLdp62Xdf6ELe4ZXvCfU8iOjf3udy+ovezxWPjLq7PRe3vTKWWhveBEHSsKonF/vRCbG7NhXU7exf13HHwhCqbipdUU6Lq84G961pZFt1PBu/MHlHnw+msxQywWdZ09bBlVov4OPQ9JCtJ5Xw6r0rzqxqx63lUZ89IX1gMDh/6c1Zrs5wrgqqCvhkTC5ByXgtvuppvs+feLdDXvb7lZIW2zttNObtrcUUn2okTovOIqHqtxjRaYFOMLFSMvNy3nSsJtRccSX+2fYFY3/wbW8lt/emWjf2eStni+2Yijd0aUS34spGglAStt6l7yFZ6PNzPIlAqx+PJVKBBur126z35wubdrrETgGMY13tclmWdJ1zwpqQb8H1naO9DBFV8emgP7T/AFgj88emP8x3Td/CfffU/46eufor/5q3/hn9+9c8fyEp/2O0Z8H8A/vdA07Xw3XffRUT4+Mc/zvd+7/fygz/4gzx9+pSPfexjxBiBD47RP6j9yI/8yB/apX89Wgjha7aZ+51aJ15913d9F3/jb/wNPv/5z/PjP/7j/P2///f5/Oc//3W60q9D+xbg/wr8r1BCUW8OuLH//rf2X0EtAC8Fwd8FDm8c82FZemgP7aE9tP8g29dOUjJLtg0i6MhVT3D09PuGCnYARtDK48tqpB4kmWLzlnC4CI7WTcjGVHrjqnrC7vJHFqStX7UgtnWgTe+i2+V08KAnClbQ1iJWJwrQ1lovmNd6rV60EqgrFfX7UnKDJU6UhaLBZ22kopWtMURCiLQKqaineysJVxeudyO7sOd0nrmb0gb8lUzKRckdUpnmxJImcvGMYyAGh1RNcoRayacjxKDS460wBshBOE8JVbXSJMXp9iVXj/ZEV1he3+I/8oSQhZAXQhiUGOJU9r3WxOl0yxc//3k+8c473L56zpe/8NsEF/jWz347H/3Ex5mlsdCUWJILQfQ51zoh54XllLh78ZL5dsY1YYwj03lCnLAsswJ+jZX84ZwocWlNWml1VM2Fczmtn5OglYrBwHTLbOnPvJBSpmQljtCKAvEmw9zWLmZJdKtEqpW1T9/rG2v/VvCig9/eSAreO2otlGlimTN5qlYVVa3CSkx1oas49ftSMLdKI7fG/jAS48C8CPN5AamEGBkGVYhSKwsIQfCuIpIYhpE0QcuF5XxiCJ4SKrkWUm6UJfPy+SuuDzukOVrRim2RSF00CVbmZOPBwAFfLEFpz6GhtmneUlQG5EoRVOVeAQ16olS/aMQJBR+cxxRukoFfCtq3Wix5C1NOWh0qkAyEBiXMLEmJeYgC0WLKSa1ValJLrybOLNr03cTDTq2svFh1hiZ1W17Is9rreZfwElAho6qWdS4iosphQTwfeXzF00fX3J1O3B5PnOcZMWJhV2mrlmxW4TOH9xCiKvLkYqpd1RGD43rvePvJjmcf+SbOtXB7m7h9PvHF955znI54wkoOrTWv9ppOPNOyaCUl2FjXx51yxsVAjIGSF8Yr8OMeQmVOp7Wib9gHdoMSKpoUjtMtqVZERgMLFuZlAhr7qwPj42seP7liXmZwSlbzwXM6LvjguHkckHbNkgrNV7XPc55aKmlSSCovAUIhyYlaPLubA289veKrXz1zTBkopFlJMCkZyINWoYYo1JxpLiCojcRcMvOsIMCyLNQlKalOUAJVzngJltwVxHlunlwzjo6713dIDIw+cDWMhF1U9YnmmefEdHpNSYndqNWFNTTmkgg+UFKCPq67+oYpXm1LUtvmDcx2zQCHbERMJVDJ+nearEnBEJWM0Jq+N7Vei5RaTDGQNanalZLErLyWJSH2fvow7Kt0B2tEtMJSEIyPs16398FIg41W+ty4WUKoYkifa7e1utZGc/rz/lwUVHTr9W6qeF1J5gIUuAAL1jX3AjjoAOOmrKBzaKtt3Yl0sk8z0LcDNMMQ8WGzCBgPA4erUckwvlvjaII5emHYhZX84b0gVKAQxTPPwum4QNW+UjMMO2+KQo4OMZZWaeIYdzugmN2e6t4d707cvj7jvefo1Tpn8JHXr19wPqkVZq2FlLLtS7TKeTpXlqudWpsVBeqCjzQRTrenVX2v0hDvtU+IQFPFLHGFwyHy9OlIjAoe5NR4/t4tp2OiV0jTMDJPwblGDJ5kigIKCqiyQ6mqXrcsYgBro7YEIoToGMeRbNZqTZSojalsdhUNscrqGAJxF7i63jMOO5Zz4nR3opjiQC1qUeO9Wk0JqNIXzarPFfzzQdXinO8AjhKyvDiWOSNOCVKd1NGkkbKqpJWiwLAPsqoyiq01aclkgRADEjrhEMha2a4KYBiIraDnF5cvK/kqeGJUKxjdHjazZLL1xqkiYUMtN7w/IKVxOk2moCTEIeLjSIw7BFQls1Vev7xjmRe87TE+vE3u/V1sH37/V8IHJSJl/YaRIX+3s/xOj+D9SK/92PqJzS8X7i8XrdFNU7aoZ52I9XouMK3L44pckCfsc2IkVx2aanT75rWvawdCN2lSEium+repCZQOdFWQ1ojeE71ad85JyYShEyRr0TWURspltZkJmKWm7adca9SUoAjegGJvQGWqbd0/CxVqpuaZ5oCcIC/URZCiZMFWoYruy2vLLMvEq5evePL4MfN04u71a5w4dnFkf/OILJC64l7dyCPNbJholTwl3pne5X/pvomfGH+CXwg/zz0VDS5fty5W7wP8WzNFhe09rWvJBnXrXsSxqsz1163KNKwEAC7OuYKpF0D5JTmJfo10DFj/tao39LWvqxl220o21cSulLISk9t9gL7WivddXbYpUUY6cUnnP7F3qjHtpkAiApSq5FAnSG24b/Z84jOfIKTA1f7Aj/zwn8V7VRZSdYgB38+vrs+2x+lx3Pq3y6Giz8wIWLS2gv/r2DKgeKPYWTzGxf6p6gBqTa9bLsifzQhfl/uNroTkLHegsZrtLewCpR/TnqfD4aMCDCJixHYjEFQtzlEBGaETsrQbKGAv9g4alSEG3v3YR3nrrSd88pPfzP/wT/8HfvM3P8+yzIhsyiDbvCD2rrSYp1rH6Xu4GITDznN1c01ujXkuzKfE66PG2M6UohBnKlMbqSAXLWRCBHct8L9p8Andw0hVgnspCR9AvAeLe6rFd+FtrwReI+5VFIQXF9ZYuhk5Ini1fA1ht1qUth4zNS0aG0ZvBS1CbZnSVFlZcwBWCFCMNJkzElQJJMYALbFMaXv2bSPCi2x7ztqqxVRq09Zj//OkcU+rlVzVcq7bJYu9jGr/8CEy7kbyNGu+yKs1XbS5ttEoaBFVqWoJr3ZQQqrZ1gI22z8u97/3iTHbrNPufaZbRbV7n9smArFjhuBp6/hWa8aVhNmnpDcUiESEbAQS51nXx77v7+pPwGoNtyqPS19TtZCrH7+3NaYQWUlb729ttYbrtJh1Lu2EFTtnH7Mr0aiPmTcPeS+3aLP9xZr/fiWCi/W9H8KJERPtUXiNPVRBy9vcBdVpzBOCW+cjJTc16/dGWF+yEY+67bIWeFyKz9sUSIha+NSt5psVm83TAgjZaW4zhkhKC/O0rISbnC+LQMxisjVUyLBbi2nxV07ZSK3WSaU/u67oqDGW88LuEInRiG7K7ySXmY3g2eNGnWND8GsfaLam9bl9tf62c9Wqz0kcRLP47Dbo3fJx2xNuJLVetKN77wgVtS1t7XKg2Lva+km1fVl/Zq2x7fUv9ni96AJhVfTn4k5WAl61edtiiU5gUyKTkcm83p+7sHfb9ijbtaaUzeZa39F63+uavRGm+5rRx6ITUbWsXG2ptLJVH1YlJlplmTPLvABtHbcP7aH9h9oEYWgDf/buz/L9x+/nb37sb/LfPf7vSJI4udMHBYMP7d+2CYw/OvJ9//Pv4ypf8ezZM/7qX/2rDMOA934lJT20r615r9bYf/kv/2X+9J/+0/ztv/23+Rf/4l98423gvgn4fwD/E373cdR/F4DP/GFf1EN7aA/toT20D2v7mklK5TKfiiXmLamuv3BsRKMLQlL/d+uAwpaOXBMYFwlHuYj+elJJ7kWEW2K5tbpeTasWKVrSRpPAPUEt9xZFESVQiFMLkGolQ0r62ICRLVRt6733+9ELEDrLqleRWbGgJiBQi7LqepAKvjlcU9UZ6ZU0lrzAkhK3dyde5KJAec7MTphiAK92XhqUZ1PmMZngZIBta3gcLRcqFYlagSw1q0z0MBKckGuj1ESpM85lXnz+czyvWnV4evVVqgu4oGpL5ed/FjdEgjSgUAss55lXX/ht5vlEWRa8ixxfHYn/+udww0CVBrWyCx4vCko6Eq1kzuc7yvnEUCviPW0cKDlRloozFSKHquxUVygl9ReOAjMVb/ZIWEK6Aa6Br73Suq4gjN9FvCghW6uYBO/cmgjS5GpX2ikrGYnWZfEVTLbCVSUXGcCgykliFk+yymeXkhnijt0YoTVVw3Bm09DUuqBKw/nAfJ4s8bWhG5rQ0Io4zBIGIxPsdgHnC61pxTkVWq5M8wkfg8qHTjPBeU7TGZwmy2kRSY7QHEECroJrjui1+rfkSvKa6K6lUS/Afy9V71vANbWcU9tHR22KjHinCaRifbBSyQUjIWgyPIiC9aWq2pXzQkXIueKcAtCpZnzV+y1NyRTOa59tNd1PQFoluzNgQVBlJtcURPJDxI8jwzAwjiNxVMuINE9Mp1vISatvo2fYD5Y8KgieVh105bOuUpAzkJGUGYaRtx8deHR94O585vmLW8qy4KJjGB0hOKZpxotjGAaaq/jg0UM0hug4HDyPH+2Iw0yuFeqO62HgrXefcXs98ZFvesJXnn+Fl69e0Kqw2x0AtUpzziGlcTwKuUFGq5QdkGpBYiTuHVHADYFht2NJqhZQalGLICLXjw+01piOJ5Z51uP6oCS3NDPsArvxipcv7jilxOw1IejjQGsKiKclI7URx4EhNk7nCR935Fo5Hc/sdwNUx+nVmRgr46DV5Kdz4a1nN5QCx9sz8zzRWmbc7TktJ+rSlKAojVwTNRVSFdKyEIh48UhVi7JcK7cvXyM0XFOwJZeG9wZOFSVEjMMOnPDy+WscaoXRGuz3O+J+QHwlzUpUuz7sCQF2V48ZhoFXz1/jVpJGJhesn+jQrbVaVbqRcHm/cmAx0EAs6bsKE4oY8GoKNGtisrI77Nnv1UZsmSvn06zy/kHVhEouSoy6SGaKJcExMAQqparSUSqJRjOQTdXXugJHT3ZKrRuBs4mpK3hVAVvXaj1Zu/j3mmheAQ4xxQmdhzZ7twtwpWvy0xUSeiJ7I1Lpd6xauy/9/XzvW+cblErzEIZAcN6AI0cYAtXWh91hRxwcPkJaztQWETzjOHA47FnShHhU0aA1XNBzLHMiL43TMbEsWhk/DErEO90mnFeQwgdRRUGBcT8yhAFkoabCMCgJ8HRWZaCcKgvKrcpzYppVsdCp8xg1g0hYVSAFR0pqFTKfM4hjGEfKXKkZHIG41+flg1pMrtw5qYx7z+Nne8Ig5LyY5W2HgRV0rUWruktF1YOC2qt4/FqJfQk+lFwpolZ9zgXSPFNQBZeaVHGlNBiHyGG/ZxZhyYUQI1IMsKFSyBzPuvaNcdBq40VtHLsK2aryZziDD7pmdMA450KuhUC3VEQJeyKqWNWyAQvdutbUKOiV70qCH0ePC5sCkzcFstLVZbotTrCq8uZJrSv8mdKNaMW0gnyVEAZVhGjoWurECHKAFFXAMwKeV3b4agGCq4yj5/pqr+ojVfejr1/f8vLFLUta8N4sDT+k7QMxyLVt+6AtXLB9/krmuERt5P5X33es+9/fPvPmh3X+0a2du3dkJUVdkFIurql/SKfJLU6B9sYZDDSSN3/ef3cBmMn9e2ptU1R1dv8GqdL7F0YmcUZoaAacTfPMqasmVCUHOdtPNrqCRR/HovvJshFDVB3WwH2vwCPN1Nd8YBC1Kamt0lpBXGW6e825KdD25elMM3UmwdG+8mXwXtWmdCNHToX3pjMlJ7VRFceXvvAFvvKVr2iMgJ4zONvr6SilNVXOJCWiAER+9Pzn+J7yH5Fd4TeG32DyM78+/Dq1FSUfNLNWot1bOxqVV+GVrc8NUb4ggq7ZqoBkk4j1Q/1zm3f0R9u6t1omXfQwjTWbHaat9wYKplZTFxFkfV+lZiUYrYBuMRCzKzcYtc05VUZd8WTZxpoBvhjo2hCzovE2T9nHTO2l1IZ43ZOUpAoyNVeu6xWfXj7Fp8pnePvPf8SUe9RGRppb1+paNYbo5xZT0KA1xF2QClZbXBuj9qCkg+FoH+wKPysYa1ZbYIUG9twbGHFVj1lMsacPumL7j00Fd3s+K4ndjkrr+QIorai1UFDVJ+8DLpg6X8ks8xlszyROlSnUMqyijD1Z3/06iu396d4ksI+Rz37Lp/j4u+/wG7/xW/zTf/b/5XO//jldcx0kIxZ475Xo6wSpDhkr/okQvVMy/ZjJsZIPHvGBa78jzoExD5zOR6Z5ojW1cSQ36numqLSDZdTtVf20IH8K5Jk+zyAeH8Qs0gMhOHJp67h3LiDiGMaBRiMvlVq2663NFNmkMgyD2cQWSma1TGsiqxJiq221WCyl0PCI86ScKK7inTf1ULORdULKap/lnGc6zyypWuGJrrU52R7ZYoquktVtukP01lcbwSvpqY/xNRfQ54517HmcKJHj9mWiFy55i6Ocd6SiiqvBB1wAF4RhHEizPYNW9V6qUtjWHNg6x7wxh6yf2D7Xbabvqb70+UgTDCt5A2nsxkHvvTS1s+2EGMvfrWOy6byCrUHV5il6SgaMdNbW96hKgG290HW5vNiTiKjNcK3NyOqX97XtQ9/cLQhdiaeu16PH28Zxn2dgm4svdw39PPe+2C6+f/nvLUlJE733VU1LTJHL4ifvu2KPFlK1WvCi+8/dOBihzdYdVBVcnMY6pWgfyNkIk+LA6566q+k534mTbbV2K7mt83cMI7lUclblnlIbVSDNkxYa2DPpiuFtDU77uBNTDldCng8ehyM1tYVWgo7umft19OfkHIy7oEUTVeeEWjBrs75HUTJUbZ1cu6l4KTlmiyfWGNrmYOecqSzpmpr6um3njyFqTJSLqQVCJ942dP88zV3t2FNzWQtvepFhszxjHz09Ru3ryjq26T/XzwVTnK0XRKRt3bXuY4qt3iwqgfU5bAWPFd8peGuM7Lb92UXHlWZj0AqCBGeWoDZ2nKwFa5fuybSu+J7X+cV5xxCtEMOWypwy8zSb8lZb858P7aH9UWhjG/lrX/hr/Odf+c85+iM/ef2TvPKv+Ec3/4gqv7tKcaHwG+NvUO7JwGhrXMagf0RbA4/nU/On+HO3f44fjj/M9/zfvofIAyHp69VEhO/8zu/kb/2tv8XP/dzP8Xf+zt/hH/7Df3g/5rn3BfvzKfDxP+BJZ+CX0TXvGap8BPDnUaWsb+Wh7z+0h/bQHtpD+5ra78/u7V6EL2sSo1nisAft/fOXi+GaHGlb+qEn32WN4npiwz7d+p8X6YWebGnbZ3pSZbU5oK7JjU6MWo9rZaalgG9aldyDz1y0ktg7b8CVJcucJmGc8+sj6GmBy+83+3zXTq8YYN0qtWSqaDUVTokZiNekZzIbMCdkaSQaKScTf9D/pZKoJVFxpjKTkVqhmgqBuketCZsOROxkZAhB1VZaw52n9T0Wk0b2XmXqS9GkrHMBvFUVNpRgFAItZb0f19aEYk4ZL3ovTfT5BqeqHINZCNAaeIe3PqLV2yorrTnDirRGnhdagzgEDbZL1XOhilaaQFMFGi+eUvJqS1ZKxYneS86ZEq1SPGdNdMZIEAd4drsdTRrn80RKy5qQ62oeTtwaSGgxaF0BIJXXrivRqa45NO34aU7UoAoLIep9xNETk5jcv8M7TxhUCUVB1moglGYB9PzVzm/kiousR22FIKrCkktT64diIKuRiVIqSBSolVoGnAQogd0wAJXojARUoIkjZyhV+yrNkictr88lEFQBqWniRpNbQi+lbA1L3KisuetqWPSEvyZ5l1QQp2ARreGbArOlVmpJmsDrzxglENZisttuI5U1wDuPmE2ESLeoKvgKu7hnf33N4fraVAMKKWeW1yecaAJ63HlCjMQY8M7jZTDwDmpT8lUzxa1aK60YqF0ztRVqqrSq1ZKPdgM373yU6dlTbqcj1WUamavrwZJ72hdSqlx902OCr5R85nofefJ4R0oLd8cj03FhN+z47Lc94qPvvEUpjd2uIUwcjxNXh8i425PniUAjNLh1jbkJhMDNzTWlFO7mE7fTLbkkcit4JxyPZ8Zxp2owzjMEz+l4ouSgSerW1F4lF6J3ZBKn8xEYGB5dcXUdmc6ZOS0Mfk+aFsQVruKOIQaij/gYWJJWTXpfcSEgciAvC8E1Hj8aoRaWPJNLZRj3vL7Vv5/Ps5L48CznRa2t5oL3A7TKtJxJpTDsduzGA60KpSSiVbBLrUQjjDqvdkzznFYFs62KsxJcQIqY0Fcgek3IppKZjyfmc6biuHp0xfWTa1rLfOW99zjdTjgZEXGWrC4UtxGTOhCsi4IBL7VYIrUZiGCVl33dNDvQ6APZZVKupsKlY63UzNXhQBg8p9NEKotyIUTXLJqpdplqWavVgASnKkjSLuao7Tn4GFRVzhZZb/L9aoOl8vshBEJUgCL4sCoKdgWkbhXQ1/+2IhIbqaivmJtaUicG2/rakQ4DTxUb3/YBlg6+IBAbALACn/dVEFZQQbRydrfbKbHEKtj7NQevgHfKiZjFFIkK0/lsgLDQWjarT4hBFXemaWae1Y4hRM+OgbQs1LLQKuTSCM1TbK/RiWTzPFNyZr87EA6qUnc6TuS56FqL3oM0VQjoSkZq4YdZOOp6lHMzmzh9H+M4cn194HyaePX8jvNpwQdV3NE5U4kI0t9LcOz3EaEyTUVBjVzJSyPnxjDs8cExpwlfI2MIxNHrHFZV/UucrI56tVu0UiiucA/Ea41WGrn2vZyq6TknjLsBUqYJDLvRFIWKKuXlxPPnz7l9dUcgsiymsmDA1Po+TaXAS2S3H7Z9YVWrzzQtOBl031USLgZVUwoe8ZuyAva8nROqq6RmFrMI1A0MCaMCjzmZilQpVATvlETQmtraddxNaDSpVm2vZKWWFahs0mgGWIg3dSAc4nVvWVtlXhbGMNAFS71zDHFQNSdXGOLAfJx49fqWUjK7TsRNCx/6tmKpb4Ct/UcXIFifHy5ZH239vn3AYhB9jhfFEQ3W3bGpuXQoSi6PdXng+6d6Q1Wp3ftSs32p8SjohAfd111+2eKcDiZf3F67+K8rRq5xk1zea4NW+hJjn+vzo0NKXqf7KqZGYOTZftd9D6U1Fm7dj/U5uayxE+szElHbVpwjVwX4JG1Wya1pn9W9utvAMmMHrmo4Buy2rshp73WGNYbbqFhtVX3xTlbwW4msbdurSjO7JL2/63pFS/Cd83fivONPyfdTqs1LBkTqo2t2DUJphZfDCwp1jeO6iu6vx1/nTu70+rJQfeM3/G/ptUTH4uZ1zWwia3/rAOu2/nbQ9bKr2bx8QdrtfbaUYuotppQl4IPu2wWgmoqWdzbHtz7JrgPjMie8kbKwd9p0XIjTPW3VogSpMLTBSEeOj07P+Ez+NB9Jb/OO+xiDjNC8xWQd9Nb91ErxMYC8n1dWkl9Dqt9+bnshfR3al2HTbW6t4co6Eu7fm5FL+n7BSQendTXqcwH1Qvm2Vnv3ep7Oj+4EjV6ApQQwVTDxPhKHgTgMa9+trVLmtN6/Wm6qja6gKqfdvkfJgEZ0rBspkFbovkqtNKqRmXZD5I9962f55o+/y7/+hZ/nJ//pP2F2E/EqwDdbrLiH8m2NYRxx1432OBOD2iyXoutnphK85+lbb3E9HGi1EU4NbjPLktVCqgXq57PG2VcQ9uaw4B3DbtBimZxY8rIS/RC1lvc+GolR4+G0ZGr1qzVTzyvo84BcFnKrhOAJ0SFSSSnhJOgetlUkmvJm0HljjcudKS1KpJqiWAyO6KsWXOWGiCfnRq6ZZc59NjW1GS38ErO7zaZEIt4RfFCiftY5olshO+snWggTcCspq+eULEkgHqnbfO77XtUJ87KQFh1bPgT2hxEfhHmeOZ8mnIR1ntC+V9c1gdYJLazzlNxfqNYxvq5kNj680zWnVNnmPCOcOheJgyrG9n7ex1G18XK5L2+1abGUyLaeXayBzYaTc9si2deMPh47OdD57Xd6zZuizzr2pU9jl/faiS7bRHC5/vf0o04F9r0LZkZj+7kWNGzE0rr+7vIg62nXW9W5QO3A+zjun+/rWKuVUpRQ5EQVDKtdnO+kLIzEZuSmnMp6yhA8tRRq0b5aSyfPQ6WuKrC16tjxzivpHi3MKrmsxXg677qt2IMtV9oVfzT/pQUs07SsNm7jOABNyX6z5oJC6LaE9kTbtn0LUclZq7WZKY+VXK1owfb2VeckH3TNq1bstir29Tdmfa4ayakrFWH79U76aTZ3g+7pa2tgMaqLA31XVWohLQuvU8K7gNYatrVP9Vh0HW+YwnBfJ6qNj6LxmjPipdDAd7XgSlv3TazreoXVOrEffe1uXudOMfKWKhwKratlWyFrKZc7Rdb9iV5Tw7t10K3P0Dnb47lOKNOcQYxhJWZ1EikoidN7VZqfppmcipHjNpeBh/bQ/qg0j+ej+aOQ4TPzZ2g0/osv/xe/5/eKFH5x94tkyfd+3mj85PVP8uX45fVns8z81NVPUaSQJHH0x6/7fXwjm2+em3Kz/vtPnv8kP3z7w/zJ85/kj01/jH3bX0ThD+3r3UIIfPd3fzd//a//dX7oh36Iv/l//5vcuTv4KPCD9qFHwI8BHvgIf3AFozPws+iG6qOovRso0vxAcn1oD+2hPbSH9vtoXzNJySFbwnUNdR2r6YERjJpUBH8/ESs919FTo+3yqPrvVu14W+AoPQFvgWDtB4MtqdGaoRr6/X6WLbmhQKZYgIZVUNZmFXRNyRlNFPCTWrcEk0kH0zAGhybN+nH1XruVgAGSvXLVKkWbNCgFqWp5JM5rUpRGaxlqUMse76BAEEGGAWfV1nlRH3WtsNWEqvOe4gWyKoWURSWkh6iKFdmC2SFEhmFgN6qiSZ0XWivs9jtNjJyMCFVAgmMcPLmoUowqFdkzKoUlTTjRiiNXITVHLoWaCmOMhFGrBdO8kFA7ldQlQgTEaQ/ISZVwtBLVU2olLbMljDSpO581kSvBEQdPWTKCsNsFSsk4HEjB1UZLWqEYzXNeBPDCEIKSnIZIFQch4FxagcQ5JVU2EiUaNbRy0ztnsu9Y5edWudXBLZHNvqjVYriRASZAKw3nG/M0UZpazYzRU3LBD0EVi+bJ+oHarbULEKtX+/fkUStdQtoTw0Dwbk1wxOBpWRUqnDgoCmCEOOK9aOU5Azk5s3fqNkfVkizgLanXasNbUqTUhiYPtcsvuel3a0O6TYJJumMV5i1jMv2CVDFrElNgQmgUpJU1KdoT9qqq1FhKNquBvCb99Nl3e4RtPtHkTsD7geADIXizuNGcsQvC1dUO74GScKUwOMHtRrxT+z/vvYEKQathnVkBIisQrn2i6FioiVoUYG9V1XdU3iRTS6bh2Q+R6+vHTKnw4vYlJReuryOPnz7h8eM9x9cLV1ePmdJzSnLs4o7aJl68esF0ykh2HOJADJ4aPCFEnFeLvvm04Jk57K/Z7a9wNF6/fsmUF62+zI6j18Tl0jLz+aQJT6kczzNlqWRLzAXvmeYGLdJSISAMVzsQoWRHWRbCAOOzJ2rbRSWOHueEK3tOp9tF+8Zy5mp/RRwGlpIoxfp7mSgFchJiCFxdBcYh8PL5HWlKeA+HgyfnxJIqIQbOp7MqYIkz+XNNwmllKOx2e+JuoObK6XwmOBjHSKlZK/+lJyxNYc1UE0QCTfTv87SwyGxJYZXDrwHKkjgVs/monloyp9dHWik4r0SI/eFAmjLNwMNxGFlICib2dcuLjem2WhfIxRrZ59E+t6gVSLd6ghgHWkDPYQDmqxe3DGOklIpvSmKg6nPpieBaVWniEgSrRcFsV1fvMyWOuq52YJX/OE1uo+OzFAOz9Sc6P8hGcOqJW7X+sbV4BZdZgTsRTVpf2rI1W9uciKrbNV25L5PN9wjO9l5xGxDb579VSWJDLzXp6yONyjgOjONAV110XtdnZxX/S5rIi5AHuL4+kFMmBa3KPR7PCjSEhuCpRYGu493Z+iVqLbgCjnrvIRiZtjVaU7UBsWstrhFq5pwnllJxEhjGvSahc6LVQjUVROeUGNbwK3GrpGxgp9qaCo4wDjx+6zGH/Y7zUVX5dofIMHpC9FqpXwrKR1OQq9k7Xpai6kI+aN8pCSTTUEs5qluBJeeVsNNBFhFVLWhF1RBaU9JNrWoNl3LayA8XYBVUzlPhS196j6dPHzMMkdd3twyM+CGQS6XUvAIdUzpRMgQ3qvJD8UbYVtAnhLgB9CiIn1O1+V3tIM93M01Uce1wtTfrB1URyUtR1YYO2oj2N+8bcYyrHQUo8DTug6pmLY3T3ZlCM6XCNyqdjcSrs5E3m19PdMIYAqU0Ui001y1QxP7UtVGo1OpYcmHcgY+eKAqcLEsmFyUheZlIc6LVzNX1Ducc03kxe44PZ7OtzuW/DIS9/+8mtu/o+/c3j3EZZKz/vkAuO5B571sf/Fwu+U+rQoC8GU9cNuvXNh85p392ALtegLzb1fQbs5sV1mKEDqZdwqr3UrcXykNi33cX8UifFDv4q+NRldz6Y5KyWWR2Qo+IM8xZiXV93dW9lJE4UJuTbhXXbVhUFSzQWlM7SjAQXMdKn3f7s+0geckbaCpgSkyNVmzcBrF1qBj9S1TZc31X+mBrVZKuWuJocUEp5aJvOCQZMadfU9HnqooPxYg44Jrnm+aP2GvVfQG2Rn6ivLt2jobQnHBsJxBhCmd+23+en4+/wG+731rBfr0EMTUdfbubFeRWXNPJqJ2Uf9FR1phCGuSssY+I2voq2drpO7Pn2Va1oj4U9Dn1OQ3sYVsRjpfI0/qYXR35+PIJrusjSq6MdeTd9O46hw1tJIrX+EACnYi5ggt1i8k3XkDrXVxPuT6TfoP2UNYBKmv832++W9bUngtA+ynr59oae/eYugPNnZC8kmXp4/r+oFxnDHGmimME9N4HgCioQo8AtajtmbCOrT6mnDhwXVXaiHnrHAKtGWnJCEo9ruxKyv1euurnYTfwA9/3Pew/NvD/efvHKYfC8FiJ1+MYSHMhDjtKPVOLktJry0zTRE5KBI/O4185UzMztY1WV3vW4TAQPjsgaMyaZ1NcKUJaND4rrVv9KQks5UQrjRB1YDsn5DVGVHJPiIGGFj7UrAQkN0ScVyXdzXJXSR9qKYWSGxyMw6AqjKWvzWqlWo0wHAZPHDx5yeRpodbGsHNGhtI5LOe0xhO19v6qc3ZZ5xpVvFKVJVXbbDRq6RZkfW2w/qaVOr2L0xqkeVnnBhHtr04gLzbPNdH9+pKYBRZTNvFebbxzsgI5IwushAm5INHa+bYVbMuo9WWvtrb+vRP/OrmRpgQrESVoTefFxoasiqvFCoLU7akTBZVYaswUsxvt+5u2zm/YWJXW1oKibhnXiYAqPt4X2Wb2w9vaqlN2zzWuA3O9cbfGEFtR172YpH3Autmf18po2ogt28/7By+uxf6v0dTiz+KHELypsOva0V+IEtRVscd5tRwM3pNzXQs8alVFmtWes6oKscZIOi7Wwg0jPXflVLs5eh1kL86T4EjFlNWrFhmq8FWz9bGtfVcJlDouRVgLE3u/BSUoDWNkf9gxn2cjycqqpErDxsbFk2rN9g4bWcv5QMUYr7Dm0cTemy5Bljvqex8neLOxXfsMnURVtthjfaesY/J0OjMOUeO6rFbUq/LgBbGw1UbOM9KcEg+d0IppUYmRhdfzWsxo3aLnI1TBTQlqwxjX96m/70qNF2uidWONtdzal0FzVSE4pIkRnastTxtZqs9Bq6+uXavzqloWjCRcilpWI2YoekF8NoFGuhqU84Krbr3GZcl2D5lWdB/lgyOEYAW8H9544qE9tH8XTZCvSe0ntsh3n7/7A3/3fafvu/fvQuGlf0mj8ZX4FX5m/zP8t0/+W/7V1b/6elzyv5vW1DnkE8sneFQe8Wfu/gwfSx8D4Kbe8APHH1hjmpt6w9jGb+DF/tFsh8OBH/uxH0M+LfzXP/Bf0z7aVDXpzc3Sv00bgD/7dTzeQ3toD+2hPbQ/su1rJilp1vONH0nblGTkfoL93jd7cvceWtA02diJDq0nni+/I5efXq9hO4yes1YLeNtWLXmZuIENwCorKaLgSJZQdIjXBGUtVYkbVeHZhhIZagdS2RKiW/BvyXcuEp52jbVUHFu1DhhNpFWW8wwNrq+vefT4CdN05OWrZMfQ5H7N1cgTmkharFrXGfhQStIqzqjy604qwZyCvNdqZh88+/1IiEJJmSF6SoY6emhKSAlBiNHjqwIbrmlizQVPKZ45LYQY8aKVYtOyQK3E4BnGkbgf8dkBhSDeAFT1SscJpapFUIie0/FsSQyPeEE1eATxkZyyAg5my4MImUIMgd1uT60jwXmrwq5M03n9nXhhWmauDtfQ1HZNE1oOfGAuJ3CBOWXmrAlLHxwOVaPCbUSYYr44ekdqr6AJOG/y8yqp7YMjxkjOySwHrHdU87xH+7USzcxSLW+EBq1ktDwcmthuZiHonXrEQyD4gf1uJMaoxADUEsOJJ+w0QdFBiW5NJgZM1Ko2NN1OplkSUQMLlAyhnZhGJZctzddqwzWhWHJzk7kW1qxHjz4a5J456ueRbsFgJMaaabmRUmJezpSi1axawWmAVh9DF2CH6UtsY61VICMya78Kgd1uZ8pbFV8y11c7xDmC8wwxqk1DCKowY3ZE4qKR43rlYx+nsgHPPtBqQZkjA9RMzota91RVb6qtsaSJ2ApUT3Set68fk7KjSubxkyf4WJjyLXV6xd3pOV4CuSRKWjgeM8e7E20pzGHPefotTumMCIw7VUNxfiBII08nnAuUIMyuMdxcU17ekspCbp7SkibxQ2AYHEuC+ZSJYSClTKuQjCCWcqFU2O9Gisv46Li6OnAikxcFBobdQM6NWoRKYojgoxDjFfN5IXgFaubpRJWySvc78ZyXhbzAEAMigdevzoBnGCOPn1xxuB64u71lXsqWEHWeaVqUFNItZEQIg1b/ztO0SuBXHKmo2lUpjRAC0QXSkiipg1RiUvpWYeq2SnnBUZ0CH7UWnNfEYFmyqRcI83Fm3AWGcWCeZpYlG5lR2I0HvJ+Z50XHclFVuCaiigx9QjDvGB0unm5GgjeQzcgIzUEQTRx7p9o6rTXOJ1Xv8UamA6eATmlG0NA5o9AJtjr/iT7Qddx479W6pFoCG/1Zbnm1CNX+38lGpsxUK7n2JLOtbbVbseqxO4FZr6+tz7iTRVa1Opv7urQ/nXRkQNDlfkFpzEITViIYXO4MNmBUiSd+Bcivrm949uwZ3nvmZeF0PHI+T+SUGQ6RMAT8eMB5Td6nVJjmxDRNtEGtKIfdyH4XmeeF29ujrlQNvMDpPJnlqibeffCMuwMhBO5uX7HMCyFEq7ouDMGz2+1pBbXBdIFcC+Jhtx85nZZ1W4StOeKEcbcDGss8bwQ0oJnyU5pmXr96RWtw/fiGuA/My6zPrsLxTsmC0QVa3fYpyzlRi0c8ZofSqLkRw8AyV1Mp0r4UYiREUVK0VRT3/VbwkezUdq42ndsVsChrZ9kAcwC1VFnmynvvveTm0RVeAjUXlnnWNaFmqkmlq21KU7K384TgWJL2yxCCVf5CVzbwLiLR7N6yqjTpWC8cDnuGwdM1MFceSVdWck1BoQLDGBh2kVoL2SyoAHLJ7IPn6jBwuIrkpuDe3d2JnJUMFqJToKWIkdkdrQhx8Dx9vOdqH/nqV89Mp4U4RrzzSgi0+QoRvAjB63rUXGC82uNN6TFNCYewzAtz1urnYRwYx8iyGDnswsLpw9cu9/d9jnzjIxfxwAceoe813kdMWjVYvqbrWPfta6ywgUv3LucDrr/aPqeZ9R99/hUlntQVmFPCXSeHbBtF/b8NeL442RvhUr/aTtXZ7lL3YCUvlAbDMKraYk5Mk46ZTrpqpmQn1r9KJ8oaqaKaqoV3Dm9Ap1sf86YAFcxeqdWC9zrPtKDjozazgjMi5zoHNAUAWxMdT90WqJmKrYF8PmghQVkV0mRVyXPmW1Kb7c+rmBKLWWcjsCqfdmJCB01NwgM9dwiR1pSU0mO5nFWZIoQITuewOEYl2tSuBCTgHPtFz7FbDtzUJzwKj/l/P/4ySVKHXPX9XMSgKybfmoH9Yv3IiDROY6Za6vrO+ndrraB8fwOCDTCtm6VEJ7vowaQHFhpfoQUYh3rFJ8sneZyf8pnTp3ncHqlqkn3mMlDtQP39fnmxztu82/cc96Z5AdqmClNNfUXVkspFD+7xRFth2e1+7LsrQNrHeycb6D621k3xtBOXuyLGRoq6bHLx/9gYrZgpOM55JSPYd6VWhiFQJePEmQpK/0/jBhGvz8+KXDpYv56x32MDZdBr7KvkwLKqHa4Ec+v/DuGbP/EOT58+4thmGpVxt8P5Sj4vtDyxpDMOR23eioq6PWoju0DKr7UASZqpFaKELBo1qwyzOMgCfoy0adE8CVt5mBIXNV9QkqqjdJJDKXpftWr+JAZVRhKne/IqRmJqSg5UBUwtYxGnOQvvVMVVrO8qOSorAa5tfSynjA9qe5uWsiq1xBjYHUZKSZQ5galNKlmpGPGh0dBz6Fzjqa2Scu3ThqmZqLqvs+InvTe1z2ps+24u+vq6b10JBWjcaDkTJTx4clIC+jBESsuknNc5KoaAt+stxQgmNlIu98Y6BEwFEovFe45Otv3zWjhhl+mscKxasYaIs5h3IzfqHhPLB2xrqpJue7He/X2/FkTU7Wetj8OL68eiinah1nQxpLdY6WLC6WNI7pOFV7u1bXDR1+7+zPr4bn2AczEP9POtz/f+cfqH1L5OVkLZfr8nxqgqRjmRlmRrWV9flITY7fB6gYAqgWlcEmMA27v1PIkTMfUkU7VCLOfnicNASosV+Ane1nOH2jU6pwS/NU5qhTiEC0XfbR5qteJjtNissRIlrd+CvsdlUUKi857DzU730U3HwzKrJasS6mSdY2tplGSqWM7eeWk4U1mvtZO4sYIyUz58I4+0qiSyEYtKadu8bu/rHokHTTtMU1J1eEuCapGOfrda4QjIuu8Aswy8IMZp/LqNJ8GhPL+2xqzazTT/GUPfV/RxZ73HdXVL3Ymrepx+VhXULTdmRME4eGJUS/cKZgFebLshGruJYLRlumTTMHh2YySnyuk8g9kRrjH2xVjoe6QKuBAJYtanpa5rd5qT7gS8EpTWX9zL3z+0h/bQvh7N43mrvAXA2+VtvmP6Dj4zf4b/8lv+SyY3fYOv7ndu0oRn+Rl/6vin+Mz8GX749of5ePo4N+VGiyneF9A/tG90c87x/X/6+3n8mce8DC+/0Zfz0B7aQ3toD+2h/Y7tayYpNbotxgZGrmlW2T4FF8kGLoAE3iAP2eek20bREzCbBPOadLinodQuft7PV6BdyMevv7l/TcWq+lOaOd7dWmAm4Pzq3x19xB8OW4JGJRAs19uD6LY+C+CCwLSpPa1BdFNwQi6A2Gr2ZufpyHSeOE9nljQDda3eE/Mh70STXsGo57dkf1aylQLJWl3tpWklmmpzr0m4nghpF4EzTYN5jyPGERcCWBV0yRmKKiKFMSBWGQZW3TxVvIPdbkeMwdQGKkPwxGDqUOIQpxY50tVwUiYOgXHcEYeISCPNSkwolmPbGSnDx4FmRJ3DuGMYA6VmpAnLshDDwNWgikxxGJVoZsfOKTHsNZncEJYlc54WQhwgayK5tURKlWVZrGK7VzSvHZfWGtEHvDiWnO2+NHEyDIFxiDjvmWgUqbScVSXKqTxyWZJKK4etkg6rdr6M+wVR0kxwRBfwMRCHkTgMSkwQ0212vQ900ESQbtm0ghr6d3FYFZ5c/KcJX1rVvtArv0rFW97jUtXZiVr2+T4A7R05U5PS5I9JuTtZFVEaXUmlrUmiaZ44n4/UuWjFYMuslc0r+ME9Z5Q+vnTcWNWmqdNYOaFeJ2ElAzrxjLsdV9fXCkb5gHcB8QHn1Y5BK1hVg9S5gAITrMni1ky2uzWaE51jqioqtarksOgbpSacVTH62vDBcV4KuSW8b+z3e26ePebudOSrL5/z8uWRYQjkcqTmxm7c6Zw0N5wPDFc7Rn8g18bpvJBr5km4Zn8Y2O0i3sPdq1tqKxTfVBlk2NGuRkiVms7U1gh+z2G3I7hGTbALB+a0QKoMY2QcIwjsWmM/DlAqxxe3DLtAy0IpmXk54aNHkud4nEhzI81JFZZ2gZxUwce7pIBCTVzf7BiHHbe3d8xlRiRyuNrjvCot3B5ntVBRaIvTaeZ4WpjOC9O5cDrOIIFqZKVSM42KD5Ho40pOdAIu9uVLx1POKsN+Pk4G8gDiqTmvhIZSymo1pl1M14BiCge+NWpXg2lKbKqlcPS6FjivpNIs2ao3T5pU7ISbPud3cMBQvmYWmV4qSGOIHvGeR48PBBe4ezVxPC6kUlcws1hFuSA08Wr1KUrKomqfu5eQly6Zb2O91XVtuiQT0QHPDjT22eECVPa+Ex1VHaAnk98kEem12urXwHvW5GiuZQWC1rmiFFXFWMFEXf97KlUsab+qLlnyfwVkO1FJZAVXNCHLarnio+dw2PPo0SO8D6RSSLniXCCEQYEmaeSaGHcR8Y3SCmWZqLUyjJ5aE6rfMTCdtcJ0iGa9hrBMlfM5qWpT8Oz2AzFEfAgMceB4FE0W+7CCeWlWWxNpjpQq3pSO4uCpLWlSeipI3ebsagoGtLap/TRINZOWhAQYDwOlFo6nI0McGMZIHDzUxnRaCEaoybkydQWT1pinSsmtI0d45xjjaMn8so4R5xo+WJUzSkgoBqJLe2O/VjsEKPfGwVYB3FDesq6PS1p48Txzc3PFsIssU1Kiju0uOxAeJLDkzHG+xQ9xqwJ2wjDGdZ3vVepDHEk+qUpaU7B53HmuDrsV9EipbZXtXgFYbwBucoUweFyw/UBBlSmqIEWJnzE6xkNgELi7m8wetANajuptrCHQCkNwXO1HWs4sEyyzKhkEH4lDYEmZnCuZipPKYR/ZjSMNj4uR4bCn5kaaC5hLkKoyJhqN2Aysqqqs2ffEH8bW50oQVZmwBV+nnzeTm78TONLe//t2/yd9/r38QAejtv3SBne9/3ibmsW9uAYjSotQS2ZZlvvxi92DF4eLcSttuBcDte3S+l7Q9k7SbXTXWGK9nO0e7dq60kDKiZKy2h2XzBZTQVejuiRPXN5zB4l7tbzuy2TbD0nfo26KfDqst/iNZvOTc7rfsjik71U7WOrMalhjGgOrbW8dglopinN4dP73vXjAiEcIuKY/q2yqFd7rtRXX93B6qV0JTS2qHSKZwT6vVjOY0pxnCLqGel3IViuoUovZfXaiYkVcWZU3EeEjfISRkbnOBmSaTpRcbPSbKSh4f49cJGykCSdCBqhmyyO67reqMWwveOiE3zW2lu00Cq16RDyPuOERj/lYeYeP5Y/x8fQJDu2wqoCI6BqwChL1HrfaxNr7XlUZ9PeydStMSmldt2mmFCUXY9H2Ft2STY/UY+rtnTXYrH0s6Fifo/1blbyy2nWXTu7Z9l+9aOiDpo77Y32L1S+/sNEzbD4PgTgM635IZCMo9ZhD5y23nlv6tHZ55nUuEVR5UUmp4hxO+n10NRUlKefS+LL7Kqd6xEfHuN+xpIXz7cQ0LdqPa0IVUgM0JQ3hHME7gkRaa6Scde/rHDE6I3TDPM36TJ3GbNEHGAKUZEUYDeciUYJeY4Hgo5EvunVT37PocamNNM2qKlp1b1qKkmdzMRXKeYaqpN9xp+pcORcjTCtxywe1Ni21MC8LyCVBsioJJNfVkr6UQkpF7dVyU5XEHm/b3Nxq1VyBkcm6ZIvzG5m/96Paqq21zXJC1juqFoo1QQlIa09uaz6mCEaubNvc2grF+uky6zsbxqhjxynhUvd9nXrah5/+zRmZAul5ID2ns1g/BCUr50Xt7nJpFzFC37ezjsGuqNft3T5obGwEoYv/u1jjLq+vr32Nrnpkq/xFAZgg29K7Ej4uh8mm4NTPDaxETmfjjtbJnRbLddLTxUR4L0/IFt9jeZ56eeL1At2mcmPP1Qe1VA4xqPp60/XROY+zubc2JSt5U+LSHIf1q5WsHFRNr3UiU6Nk3ZMkK6rpx1CSpDPFP0dKXVFbj1erFcp1CzkRxG+kKiVuFjarYrFcjBJE6TGqvb9aNQ4aYsQ5SDnjXCN4pwTN1iwVmxgGXQt7gRkWt6WeZ7S5Lzhv77usey2hrVztTj6u9q7WKb//dxHfXuaSt7G4rR2gpKR5Xog1KFGrVBtL+r+NsKd/pmXR9+3cOu61KHRLtImwquqVkm3MCU507K52cGUj067kNiOwagGUWbcJq41sNbWyUlWsPwRHjEIulZQuSIJiY8j2FX3/FUPAi9pUqppyxbugyl2W52gWTwUvDDFgiUGc9/hm5Eu6UpLGb7VVI5LW9VzOv7kvf2gP7aF9vZsgfNv8bVyX6w8NSck1h29qfffO8g5/4vwn+M7zd/J9p+/jaX5K+P3oHTy0b2j79eHXufN33+jLeGgP7aE9tIf20H7X9vvaWQiXiYktEdiD/619UMK/0Su8etpx/UTbPqMVNP6N7/ck74UM9MXv3gRg+wd64ranQjXgqrSyQMm0nNdEjf7ptu86lXRec6O1GOGiX+9GNJFL4JatWqwnRKpd4xosi5l5iCbLamtWuWQJJLPjUSEBTSo4U9BotNUqqEf1mnRQqWmtXvRoxaTZxJWszJNqiYhSNSgu+rxVMjhoWtuZKkpJpPOCHDyDJQU1sFY1pKurRstaXSreW5664XEEu07Te7BETtCEgz2XEFTdprVCcY4QA5RK7lWp3uPjSAHi4FQi3iomp+nM69s7duOwVmz7KSFSSSlzcncsaSE4z9XVNc1p8jMvCy74tfJWE6FtTbR0haFm9aMdUPEGUgQ0YdOTgSEESzJpdS1+qzRvlkRyXp9ZSkpeqrV722tX8+JNgWPPuNszxIExRk24VlNFMvUEkbolLy0ZFJwjNyFZBWq/5uBVraLWqonxCwLD2k86UGTXulYWeujWZ066CkqmWbLViYIvXoQlK5mnVFXeAOx6IZr92uvXr3j16pZ5UbtBU6NmTcNKR0eMGLGO17Yli+gV4jbWV6l2vdZxNxDHAcxKathfszs8sgST2iLhPKvtFE4VwwSQsp5fulWD+BUEROuNdQy1AmZZV0shMFCzqpuJ87gonDmy5JkYPTmemavjK199xd3dzHQ8UVPAOa0IfvTWI+Z05PGTGx4dbrjejcTgKKny8vkzvvDel9U2wQnTkpnlxDwnkMJu8Ax+T55OjOOA+EEThUWoeA7jwDA6lukljsIQVQo+DpG3nz0jBM98PisB7zxz/fgZqRZevDdxnhZ2VwISeP3qNUjlsN9RcmWZK8tSybURBIJvLGmmCaS043Q8KhgVIuM4mFpXZl4K03SmEbi+ueI8TSzLwuluoWZhmQsiAarZwbRmNn6RGKNWyhtwo3ZVarnXQcgYI94HU2MpqpRQm1XYazLXuUYr1dTxuEhmq5WE84GnT57gaLx48UorQ/Hr+D0cDgzDjnEH03nmfDRLu2zy9x24oFf1Qgiwv96xvxoZdp7D1UgYAtN0VpKKV7l4HBxPM61qArOLIkhw7K8OlkguhKp905mCCwW1wulJ555gFwHxa58GA4trJ76KEU91zFYqDlntRTdC0rbG6rzQ121T36lbcrY/a2yOMJhWyV4XVaib2sGWYO7Nuc2eyHu1yWpNaKXc+1y1ld17U0Iz+4DD1Z7D/sA0LRxPE7madL2oct6jwzU+CLVltac0QEqtPkxRxKyy0pLwLrI/7JkmVTZL6Wz2gzqXSnAMu4HHj2/INbNMC/jGuBv0+8FzfX1DK0UBjm6/Vh3Xj6+gFeY5MQ47ynxWcKCvqejeoHZbhtZWrNYHz7gf8dGz6ySk05kZndOsGJknjw+Mu8Cr13dqE5Y6uN2YzN5kiJGwC6RFyYTVAB/nhDiqsonO02pl2hqq5GXrvHhhN+z0HovaRlUxq50VUFAS57jbKrldGFjmwu3rO3Zp1Gp018eQJvlrbSzLYhXcKPgaw2rXOe5GhiHa+7D7Rmhe9zeVhA/CbhyMeFjVHtNUohSAGhhipBa4fX1LytmIPtonvB+I0aywvILK4gM5N16/PjLPmVYUeG5NCbs+mIJTUyLAfueJwXE6zjx/fgInHK6vOVwfEFE1GedVwWY3Bm5u9oQQyUUoKIFhiBHawnye1bLCwIva1F4vZbXgDCEy7gc+3M322nRQkg/8d//p+9sKU/0Ox1di5fs4TzY3Gwa27ut/x/O0Tp5631EMfLS4YmV393gE8GoN0MzOS3o80fqh2xvHvDj2+hNZ/19jnLrukTYAtu+ldN4uZsfSmo7h7Vba+qcSP6vZPzUDo7YCkNbnG7uZrkDYzEKm/9fBYcO6TVWmEzZYY5SSC1HiqlDTz++8Iw5R44ce+9itOUz1gLbeY7fR6kJbgt6jEoaU9KHWORsoKSKIETh8UIXWWjc103leLq5LKFnXmloLSZyp19p1WvxVSzHiTjOLqo2grI9mlfjd8G8br+uevpNc3EYA2wjEW1/qa5Tce7/3ScP6vBxXXPGJ9s18dvlW3qnvcC1XHLjSz4lTQke/7rUfgwQDVBsrwLmRcGz/sDIkLtbt1lBVHDGF1rb2pw1IvohB6Oo8PR+w7VeKET5qt5YV1jHsTO1nmSemeVFloE6OuBw96wDreYBtfF0Sau//Kfc+o/tOv4HtcSDEcb3ODpSv92M/08Nb7M99wuIl5bAXMGl8bPuirjzTlMCL0/tNLPyb/b8h+0JwldIWTqeJZdGYtnlVAKylMu5VSWi3HxjjyGDKkrU0pvOeu9PJgHJVM8ulmr1QIzQxRcOM92ovrqQGBct9iKqklCfbd4Eq9DoO+z3dXk2ViQvD7kCjsaTKNM2IU3XCedI9YgiWbymNZS5mK9msSqbaejhovAMgDm99lNbIReOuJRVCVLLA+az78ZRsXurFCBbza67DrzFDLWWdo/pYcs70O4280Gz/2PtvNRtBL9v81tAx1ZXber6pNY1LxmFvFnxaVFabKs/EqIQCMRJ/qsn2TzYmkVXhpvdlEVWjGka1ko9D0FizFBqVGAK5EwqWbPsim5PsOD5eqJtuvlpWk9c2fuIFSWjN/9nYF5sP+vjSmMLm77qNfW9zyOVAXMlRPQbvY3C9zu3ftW2KnJfklW799b4xDm/YyOk8him/iql892KHe/OUjW+xPoAo4XwcdezP87KqJ65EkRhxwdFaMSKHzap2/q6CA5t6kaox9eKWuhZf6BpqhJJxwHlVAa5UtW5vqs4+DBEJ8YKIoucbx4j323rljWwk/RnY+621rPsfbHZCIHgl5vuguZCSMksWy8sqeTpGVQ8qtVtCX/YDPY6zHFmzGHUl74DZcbt1TrTlZNsT9T7qzQK123XKG/ulPha8M0s2Hbul6D13FV96XL6eSJ9h/w/X41pZ868xxot+1ccimhcGnS99sDhGx3nf/nVLN++1uDAtagfvvSnymzVtH3/aR3ru2TFPiZQK3Z6y55udw4iONq68WpDWUpkmU8+OSqb1wWmcZ+uTc8IwBGIIGn9bcYn3ZmOeGrku9ky3PYBaeKq6bH9nD+2hPbQ/Aq3B2/ltvvf0vfzI7Y/wXefv4kl+wrPyDNj27Q/t359Wqfz44x8naxnMQ3toD+2hPbSH9qFtX7uSUusJ8jd+jpJ0Lvcrl8nU/m9YRWDWb/aqVOhJTLak0kowqve+7wy8urwM/e4GpK7Xuqb2L0hEPcBzYlZvsiZcxIhJa2K+J5d7TtKk2TVwvB9Y98pksUTQmpQxUkfP4jtjaAjgfNCkm/OWMGcN8NfqZeky65o0dGKEnW4l5gRnYPE8q9RxbVmT3ksizjPDOFBzUqDASDm1Vk3y1YJzhZyVzOJjZL/fEUJgkbQacHVyh2XxNYFbe3WykmFKqZTSTJWkki0BMERHaY1WyipjXksmp+3ddGARDKT2EZxJVjsFKUvKPH2spKOdd9TULdY05V1r2QATUyU/nWaqbyo/6iI5q7e9Jgq3ykh9h723sPaLUhs5Lev7EadVRnE8UHJmmRe1qBOPJpzdSpxyTfA+Uluz6vaejNJzDnHgyaPHXB2uCHGk4YghEr1QmlZTNXqSD1WEETFbwswQI/shcnc6UqoneCVpNEucVbMGrDTEBVMkgVwSuIoPgSdvvcVX33tP5fFrQ5qzSkBUVryq/U+piZQWVXgyuXOP4OeFUispL0SvHbg2lUaPMfClL32ely+er7LVW/JO0bq2lW9v4/WCbLEm8i8TTE2T/UoA0wRKHFVdY5Pk9zRRRS8l3rkLoFD7cE+KRyP1aXJaq8+d91YteQGAOLUMUFRPVVRqAxcEnCfTcMExSMXLCCIUFl68umNZJmpNxFApaWIpmijb7wbeeuuK090dj692XD86MNcZSuDp/oqTJHLSJHnKE9E7/BCJYWBndiziAhQIeJaaCE6f1fH2juNroDr2+x2Hm0DJjemsJM133/0mclq4fXXmVEd2V3uO8xnxzwlhYT4VXr+6xUcFa6jLKkc/7CKHcSC4CjkREkxZq5hbc5SsSmbBC/PpTFoStUZKFvbXgeubgSVPzOczd7dnTYZVr6oJomoIYYicp4UCeN8T+grsVddYZlM2ayigJm5VHcslUyjrGALIOW9Ac20E53UsiKyAXMmF8+lM8H5VwEOUcHI47IjRcTiMDGPk7bef8cUvfIVXL257Pl3nr2B2Vote3zB6PvLRa3Y3nv3Vjt3umnmaGfb6ndtXJ3JJNKqqt4hnOs0qk09jFwNjFAWlclFwxOa4kgqtbMSVPr50rbSqTVtPStG5N1gCuQOsTpzZqVV8DHbvZVN+YwMinFWIXhIIc97W6Mt1GBTgyckIkVa9XU1hqSsnrKoQazLarits63ntld5vAB0iqjzgXABnqkYHtVxrLSEuEJyuV8MQca6xlJnz+UguM7sw0jcGuobZ8xTPPCVaO7E/DDgP85zUOjBXSjJFKJzZoyXe+8pXGcaB/WHPo6c3lKlx9/rI+TiRloX9fsfjR49J00xrhbgLDEFVw+ZWKGUhREfwAw1ISd9vzUqs2aDuZupwjtwKo4/44Njvdkx3My9evCaEutpKuNFx9SRy/egJr1/MfOlLtwoU2jwdQsCJV1UlinIx6Ql7UbuWBlIViAFw3pJUTaiuWFJecC5SxKxVSjHwFpBGjFGJ077vW4IqHdVGXhrnU8KFrMqNBiw4UPUg9cdDXF1BB0SBRu8dwzDQcFZRrGN4XmadgwYFJXMp1NL0v9oMWITdGNntR2qB092R6bioBeSoiXqpBtKIw4eGC579Yc9+v4NciH7B7z1tLExTVoC0NXxUkntJ1Yam4/XrE+dpwXnPk6ePuHp0hfeOZZqVDIXDiz7LXGzf0JQ0G5xnyTOvX9xxOt3hvK7Nwy6S8mZRq26RCdyHOxElF/9/r12AqR30/+ADyMWIeN+vgE1NZz10axef/iAC0yWRgTfiGD7w8zqHbmSEy6KJXgBxwTdZ/+zzn1wcZ4VnpZOw799Ar6Rfn889coVbSZbb7y+uo9WVhLP9dwEY24MTm++LWRz3K3Cu4krf+5tFbwc9m6qOSKnU6jaSo1cyv3Ne7U/RuWV9RravUxu3ut53VwnqVsig50JUSQgDc5XMqwSPamTzdS3q163yaogpONI2ktF+HGgCwSkJtrsmZe6vN/qehGT2kbqPdOu61OfCdvHKNhJPvxjtS9VigD6NNRo+6J5alRu359D7qJKsZAU2ay33+qY04Yk84Xvb9/Bd5bu55lr3sdGrRTcbkCzR1DNqB//1ON5rccOSFiN6WaEOarm5koyb9RPX1Ujqun/eHfacjid9lq0/J4vrrL97p+q+pWaLbTX+dSJIzrbWdIWUvkdQUPd4vGWazroPvUDZV6G+S9LCtilan9XFyKfH9+vPZIs9nLf9kfUB21HZu+gqGxeyttuZ6Wq8Pc7oFnBvzlJCt1pURSWcX+Mh59WSR5xwF17whZsv4r0W9ZynxQj6Zk9cs6mxNGLwHPaRtCTGqLbKpRUIjn24IlHXPltLtphHY8xgaYpOAHQIxfIwTlS9GNtrx+CJ40Atmk+gVW6urqklM8+Z3CohRgqVJZ9xvtBq4XRctgITGrRiBApUwUUwq7ACrhMJzbaxzxOtkhb1Pcy5Id4xjn4lW6Z5YVk2lbPghVQyMTorENL133tHiJ5cKkHcal3Xx6vY3FHNflkJW1uhlaqN2EzT2moHaxP3SjAouZBdXslA2p+FEKPZXnl8VALyNM2c7s5G1tt6VbeYb2gObLcL7K8HXIAhjnq2vCASyCmTi6pmiRO8U6ILRW/MOSGY2s9q0dZ7ZDWybesry+UYulwj7FbbVozX44lOVmxVf9fjhMuih+2o719va1902pYr42IubaWZIpnND31VWT+7qWG3y2O4Ld/Y15g3iVN6bapKjuVdQgz4ENb1oZOulCQvNJQgXmsGmzd7f2m9vzQx++ROUmElttSqhLXOrXTikSZM04RzSpgZxkgNjTRpHmmel5U81ZXHmmif9k7UZtgecoia9yi2TpZipBpbg7RPqWKhmSCD6Bj3OKbzQq1ZiUuiZBk/CqMbGIfA3Z1akfdZzffYroqqorbtmQs9brzcm5ltuFyMJdfXCrf2TVq5yNltxJleW6o5U7/mFNUiLpsy47rp0jP28XXRl3WXtikMq/ovSiLLhZSSqq4GWVXX+rNcLRJRRdquuphM0UznL1OH7POD7b8QLcaJMdq7M1v64JREmo0IL1pkU0050IlalOecqRUGi2Oc17i7K625ThZHFSC1Xzic7dnmOamqa9M4zgVHMwW2Hv8L2r8e2kN7aP9hN2nCO+kd/tMX/yl/6cVf4q38FpH4jb6sh/Z1aL8+/Dr/+OYff2Da5aE9tIf20B7aQ/swtd8HSWlb13rlZU/kXJIJeiJ/DcR6qqP1xMLlMXvSo/9A7v/84u9byuQiay498VHvVaVs37v4oAW91ZJK4vxqTaMJYQWCEK1WclQVDuiWWJY8WU+x/aVfyL2ESLMgWJ+NBYtNtiSXcwTnwTuCdJD28onrMb33lpxsIFvCMEtPOqvVVmuV0SqBMSBDnKO0yjzPCls0BTo7+CAxdKcXSlNZ9JI66CuMu4EwqCd5v5fgPQSh5rwlfs1+7e7ujjEGQqsKcmetOGyp0OXoewXXPE0sy6xp4lZWdSHvvBFtnAEgCsyktLCcZyXL5MQ0aUWbqjj1PmEgSLWbqqiNWRUoWe0ZsiZPg/MGjlv1oyVJ9N0YQEMHBDRJ6WNEXCAvC+fzTCsKwLeKJqgsSaQJGH3GFa1i02B/e8FePI9uHnN1dY3gVJ69FG7zHdGpRUhrMM0q9xrMdqJXiC/LgkhljApWOxGmfDKlB08ImvBttZGbqhz5oIA0QMmLErDmzDzNlFSUpOSFlNV6yDuV2g8hKkBTMuku3U9qZbVASzmpVLnpeJfaOC8zd69fUrsCSscVrO9S+2TR55I+Zt0KFnTQaBtvW2IyZ01kh3FgMCuGWhpzSdSmoFSIgegUYKBbhYgBAKLJJi8KDmiFvqfhKUUJCDqe6np+TTzXDVwj0IImGH1TEH2gEnZwTmdub0+cTwlEZcL9LlKmzN3tRIyB9168xL2CdE448dxNR14fF27vJmiN03nGO88wOLWW8w5cZO8DH33nbZ6+9Yx8Trx+8ZqXr1+QzzPVVcQXWtF72u9GHu2umZeZ4/GMtEieCsfXd4QAV1c73np2xd105sXpJT4KZSo0MiFWnIdpStQciMETgjAvE4Sm9pgh4OOAS5m8aMVxrpXD/oboA4lCXjKn80kVjcKeeTmzOwTeeuuaEDyvX0+cT5lxGNgPkSkGrm6u+fKXn3OaZlrziFN1GXHaR1UdxzEtk3WgLcnelQKCd6TcFBBwrDYhpTVKTjav9YShKpJM54mmnRSkMoyBq5u9Vq8izMuZJplpPpPSRE84KiGqqPx/T8y2yvk88YXPP2e8Gnj6lhBjZk4nnr51s9pOtaa2g+MgUCvnVgHPELzO67WS58RiZMJezd/yBp5rgr+u9hNd0eJyXRyGAedEbfSaAmXFgDIfnBVBF3JadJ7ynkuFMzGgplvYbNL423q4KUJsNnhhtbssG95gWfQ+/95X7XB0/QxZK7O3rHpXn7gkOivAp4nbYIQl34E/qdS2kFNlWk6IK1zvDgQfSMtiFhy9ytjIxjaHgD7XcRdYpsQw7qBmalsYBg+5cV4mfPCkpVBqJcZhBd5SLTY/wXvvvUdJC7UVhvGaZZ6ZzicjoGVyTuwPe1oT9odrJcyUM805s22tZllkFcqZFSy/ffma092klgRBGKOuobllMolIQ6SoVaJTW6EY1Y6h5kJaFlYIySlZRlUEFMxy3nAeA+mRzYIDhHlacEaCLqUZGNarh1VBqVHI1WzTRElPIpi6CEYgqux2A3GItNKYkoI1Ljiza1S1p75iiDgOhx0QmE4z0+k1x7sTlULcj4h4VUustiew/uuk0VRKj9NRyZLLOVOzqorNYdF5LfTKZ72n3TgyxBHBEUd46+2RVgvLXHAOjseiSk1NFTlc04r087moLZhrXB124GDJiShebaVCYFoSS0qUGghxYBxGAoHz8czd+Y7pvHA8LsTBEQe/Aq0+BVKabSw1fFRS8oe5ddCqbf8ANuAMLgkf22e22KJ/TtbvbgUS/XsXRA65PDIXf7+IbFYAya6uvfl5uffPrplySdpYjymmsLLuX+w6nM6n90KIfuR13bi8vnbvj3X8NVbihRhJ13WSaCdvcL919cz1dyvYyzr2lRigtkv3Xkbft5V8cZGyxiHitmN1G56uECFi6h1d2aBdgNPSlXVYA81SCsucCN7Ze2krEKj2XheEJDECsu0zG5saR1fFaNYn+nRVS6bkwtEIETmbfeWFFZm94K1/otZPvVhHRFUJnVci0KvwiiRqYXyPPtef20X/0ovTPWkt1cjdSqCksYGDNj/1t6MxYlfxtXi7Cd8+fwc/Wn6UZ+Epvd/mmmktKfHDgPNU8hqze1NvaM1sbECJpkauySnZ3qKDstqvqv13aYvTqlLQipFEW+0ykD3eLHbOYMQYMYvgjZiswHa1+9xsXcVChVwL8zxtkhVvDM1LYt42UVyMY1k/uH1Ztm/0fYjG3H5NZNRc1rHSFTd0J9RJjmuHZiVj902ZfU5P21W12nod0oeRHUbXVbMnbALS+ML4BeqYcVWJ0jmp0hCihPiSKktSlaDjeUImqFmf95IT81JYUtb3n7LZMZqVj50viuPq5sD+sKekwjzNzNOkcaE0cPYSUPKCCwOlFHJK0Dw1N5Z5xjkYhsBhP7DkRFqSfl+0cEmkWgxbyUlVS5xdSylZbeWdKYx5VTlzOFUyHrzauC4LNCHlSk6ZYa92cCF4djstTHE+qzKrU/BegDhEUioau1t/tNeqfdfUZ5Ts2+eQvM5VOp9gOstKJMbyLzTWAqS+dnRiRKmFeWZV2hMHcfAMY9gslkpiQa19G+9XSatrX9f5+XyeWUpm3A2UURWswuBMcVb3HoIWTIkoYby2XvCm5O+VAGHqT/S10hQmV/XVTsaSbc7WIWRzgGxKdz0+7s91JYW0vg4YObZt5CL6GmZj6XJd6GpGvTCw2ufXa6t1W/vXR3SffMjFtbeLQXc5ffRZdiNFbd+rta3EUbU1tDUGU0YthVozIQQjDLV7ykK19vICWe+v1qbqpFSaFyCSUyZYTjJn7YPO6ZoQBis4MHKZWHwzz7MSj2ohdpvFnElJ47vSVdG8EL2HFiyGrCtlGLD1sa37EidCWhJ5yWqj7hqY8p/aMet/fU4Vm+vWYsamdnfrc+59p683VefBbp2mj/7+fqu1avm1iwKWC6JZMAWlUqvx72Sd2/Vc/X6UQOiDrTu5rNfaZCNkc7ETUiU9tYtb5kJaNO8YB1Wc1/1IX2L6/tIKGUXJSykt5KVYzhcwa77tlnX98Lb31/2bEhDroGvokmBuzUhnzdYnoRZHLZBTprSi37d5tVmOy3kHVQubRIwYGVQZvuZCTqpotyw6Nn1UYq7DGSlSiaW9z7rw4Y4nHtpD+w+lfW74HEd3/Hd+XmnCf/LyP+G/+tJ/xUfyRy7imIf273trNP7p9T/lRXjxjb6Uh/bQHtpDe2gP7fdsXzNJSQyoRKpZcWhIJ00sadAT9qCJBwXIeyW95gUuE+eXpCK5l63bEhCqaNCD/p670IxJr866v4naFJjupyB6Al5ar+7y63kFzPrJb0mYitpeNRADSCtlPacG6VpZVVrFWzBM61VcRiIS0MrKRpNG1iy3VvyIw7lKrZmWG+KjKfVsCRvngionmQS6psfMlgGhiioCuQDVOwvIzfpNNPlUxdGljnuiXqufLxK7La82BDln9uOOYfQrAaYZwCMowNh6ZaMTcq2kZcGVws3NFR/92NvU1pjnhSVnSs6UFFabhZ5A0cAcq1hz7IZIDCMpJ87zgtAITijZ3llwpNYoQHPa/1Tm2Rs5qNJt8MSSSzlnxHlSLriS9cX4gB8Dzg8KRs4TzuJvTYYoWcUekKaWpanUvSVLSq7U3EER/f/WoDShNfXtqyXhcsWJVwjGVbxocqY24cXL17x8dbTEtCZMxLq3giUmUW/kmjUJs46jXgVpAAJsUubIqgKjlhqWeMesl6yC9b2vPFdSQ7PEu2vG5bkcm54uc19qWWXDe2dqJn/f0QSVjC8Kktx/QmvSck1c9WygJZlEnNl2OeuvlkQVtZdbx7gL5FLXvuqdVXo4fV+lNmqu+CHQRNNxwW0JVC/dlsTpU/RBFYnopCV9dmLXKNh80RyYolprSkYrNKRCKg5xhfn8GvEDdSl4ibQ2M08JCV2dSlimhbxkfuNzn1fiWIG72xPiGk08LgSaVT1770lFE80nFkQcsxs4XB34jk9/licfe4x8NvDVl895/vw5r+9e8sWvfJE27BCB03JmmjJSG28/fsx+v0NcZVlmprmwiwOH3UCQSl4y05SIfqCIQM044LCPhDhQSiVEx+gDq9WF9ywpmxKAKhQ8enxNzZUXr25B1LrBI1Y5LAQjleUihOi5eXSDY2Y/VIbo8X5Ha5XgPdfXIzePd9QGd7czJdu8ZrL1ORtJFSVUeKuCLyWvSfphDOz2QasObW3q1gutKQhTasY7wTsl+Ykv7PZqdTkOO/KSaE6Yp5mTKZ+sfbtasr1qwtP1ZHdVop0PwmF/xXSXeLW85urRwHxKnI+JPJmigVQcav/pnc6Vw96DV0W4ecqU0labjForRazau4O4tj5pQr0TjEzZxXtiNJsLvAGhCiQ7Z0nz1shLNivQPq+ZXYAl1xtmERoCAgQx47WLxLxDLSiLKT6klNZntSkebn/vAGCrFYolRp27UDYs+nxMKUTRgUrtVbSuEb2SCu9e3XEHqvo2RptQKyGIKboVbh6pDeH57owPgd1uT84L3oc1OX0+z1qp7HWu3e/2uCq4OPC6nigeDocBoSLjgTAO7IJALbTqOE2J6gTfHG3JnE6LWnKVzP7qgOBYUqIiBBFydZQi5JrZjZHDEEnzzDCanUdOLMsZcdHU5BxtgeOLiTtOzNNCrXB4FNkdRobdSE6F6Xzm5Xtnog+U4ri6uaa2k5L+WiXlbn3QVoUUnENsfS61YMKGarnTnO4/BJbcaN2us4nt0zw+wDjq2JmXTFdjRMwaNPf+rpaDuSSaU5UUL0ra1apztVVzthx5JzbGKuIbQxzZ70Zcg/l84vbFLa9fH5nmGR+FWnT+jv9/9v7sx7YtO+8Df7NZa+29I05zu7zZMJlMJplqqMaiKFIl2wValgsoVAmQDBkyDFTB8D9QgJ/KFvzkl3qtd8MPVbAAoQBLcNkQbKtEA2XLsmQRImn2VGYym5t5u9NExG7Wms2ohzHmXCvOuZRSLiaZTMVM3DznROy92tmNb3zj+wazZrX7zDkzp4RkT10WLpeFedH9g7Pq78tpxgcYdoE4BLN5HQnekZYLl1Pl0dVOV+KccN5zuFIy2vFuZkmaVDhcjRxvKpdZx1GplfNpxvnAAVVwaeRjqgMJOBeNUFm4HM/cvTyqIkOpBFOx8M6Zvd7Sye8+OsbdxG6363uC78/W9gHrDuGeKhD3d/CNELPmsEy5tH27Jz3bMd29mIP+9zVG2fyGNU1576yb36+X0dV+WPdJXcWhBRSs+7I1fWtXVTf7N2lxk6V5ne1v7N/bpyIWT7RjtgRq3xtaggyplpAOrz2zblmEJQlb4pgWXTTiH0rg09ykbvWc7e3wff/Wji241TZo+9wc+FpU5TOqtU9LBiPCus+0vaElKmsuOKmMceDq+oCg+1ZVo6hI0bVBn4E+x24N7Fali+ADtRZSLrpuOWfrpFOlFrHSgbbP68QF36+Rfo+WLDX7LGfJfbV+DNxNR2psymvrXrUlI1sCta+Rfk3KdhvW/gTb/zvWtVXXQdefv/72M+kz/Ku3/yqeyEt31/vMeoQW5G7j47Wf9uvq/fm+wvH9ecTmGb+xkN2Q+E/H86a/9dfRuh/ITCfvtHty67Gxn/XRac9f1XLrpnutaiwr7vBqSkX/1exgNXxqz7G973VMNxVWVf5q5GRZu0EVI2ttSRXbt7TODRpEmQWe2zxoI11hUdr6YuydSqfrUauukb8ZftPWZo0lEV0HnMXAdEulyssXt0o+E1iWRMM2WnK/itkEN6vanAFPMSvDt994k/1hx5vyNkteOKczH00f8iw9o4wa46WSVflUhMM0mdWa7vtzEaIXhhCUBNyJMKjaJaq6FIPHxfXZeB/phUL2LqromMhSCNEzDJHzae54ECKmlOvMxq3Z9Np6T0RKJkaHk9hJQzF6hklt1pclG9HfxmExDKH17dLmdw9GAGhjdxh1Ly1L7hbPtLllMw96NKYgOFW1cUb+t36thK2M92Wzzsm6n96Q7bZL1RAjTjzHuzM+QIgj8zlZoRlal2PxuMNtVGDM6i/VrkjW9tnrEul6WN7+bPHyZjnpqkIW/ui1W4GeN1XcWs3uS8TwLfu725zDtTGjuIVvz3Ozrmt81VimXfPnlVG/xhOuE5FWfKGpufVn6mzt7j+z0VzBRb2knAslX/R+TYFWzAYY0TUhDk7ji0VVcOIYCVRKdWZbpscJQYlO4lRxx+MILlBsXxyHYKRSIKg9MI3wK/pM2nPLcyJXU+nxDh9Gs4bTdU73hI6CEKhMw0DJdt0EApBzWvct9vJz0gKnYmM3DFrsFQcdo3WpXE5J7dwqDMNIrYkmfiemrNhj4obrelVRrSIEh5J6vM5f2uVMmbFvKtz975oibjHCHTanN6yvdZNOUHJtS7EqmjVbNee9ntfwuL6/8X4lm5XCclm4zAtpyVRTvhM80XmFgSzmr6JksmLzdC2KS/TiRIGaK8mhasmGHfheLFlZ5ozEQPDoeUSLHneTxlCqWKz29o7KshiBEi2QcksGB1HEinJ1/CBrIa4glJSYL4tiNc2Schy6Sp1Y0agujKaGOajC80N7aA/te9++Pn6dczj/np/3J08/yV/79l/jql79np/7oX3v2999/Hd/T8/ni+dL/+RLjMsIwHuffY/j1ZFlXL6/4amH9tAe2kN7aL/v7bsmKQFgyagO1MurlafY74Wm6oA0MNMC1v6pJuduMF1dwf7NkTZJhvtnuV/hvILl6+9kc43t+i2oFJNkdp5WtaaSuK3idoU/lJbjQArBOQpQXEDwFEyJQxSwju1CvNOA1vWaOzwBRyG4BvgI1VWK14oWKZW4i1ads1YfSW20JAXPclElIqqCXw66lU2VSsmZKsUw6ErAUymM04iIJou3qk3VVDQ8jiFGQgxIUUUcZxL37dnWWpWwI0UTsSJIDVZpVnA+cF4WvvPBR2qXVSqligGoBR+yAgT2MrJYlZlXWzR8oEjugKso/UOrebxWjeqlhA5WLPMMBOL+oESJdi7v1d6lVlxWYF+riIJVCAnVVwVE/LY/b6qUe19uVjaevCQF6zpupvfX/eWaYrwF/0XUWs2ZcgW4npAsNeOcSqtXI/+ERjIy8EtJXCshTwHaatXODbNcr90T1mScGEHJeWotlOL79SrRINAq1O3K9Jy0/IxZQSnEuVY9BwPYDdhr40Wk6v2LUHK25LVsxnQbV2uCw23QfgWtIA6BIUZaR5eqabEVjNTEdkqFiwjTpHZM1RzlgqmUOZXNsHmrgZeBpqjkQrRn2+wYVE2tEfr02ts3V+i5JR+dVJwLVmVodhUOlvlMymdN6oPa9BUFflJNHI+zWV2MpEXBYjGiiIgQx4koUCUzjAOlJHLCiB463tNYeO/5M77x3vuET3m+8JnP8e7Tt5g/mzjNd3z47EOePXvGy5cf88GLj/jGex/w+NET3n7jgBJNAy9vT3jvqBRevHjOy9sLdy9PlKUyBJu/nSogqFVWUJl5N4Jo1T1OZekRCERcCKrKlivzkkhzwnvIlwquMB0mfND3e/P8lpfPL+ScTbXLsz+MhCGylBMlaVLk6mrHOA4sqZiqXDYgtQH69MTC1n4A6CRFMDKPkb7A40pV8lHOLGkx+f5ASokYVfmlFK00VHC32fYI0zTgPdxdklYJtyRjS0C3pIerhOiZ9tfcvjhxuZvJJXF3E5nfBu91rZovSRNVzpFqRhWcduymQZUInFbutrleREgpbZRtFFRtVfwNuPW+VXe2OaXZDXhCwNTTAo0guFq8YSC3KmP5oP9RNgkH15Kr9PmqGlKtqbza7VzaM1ktY9YFW0H3apWta+LCNyJWaeo/pgJiyQ7NX+q63aw2liURgijBBlWVUUDYk+ZEFuHqas9ysWpjF/j0m28zDo6cFo7nC/PlogS2ViGfhPlyIZ0Lgx9Y5iPgmGKk1Mq4i6R5Js8Lh7eecriaKHPhWNTmzQVH8MJ0NRBTYKgV7wPHy4U4GKvSB2pNxABX1yOPHu0Zgif7HZ/94afshx1f/8q3ef7cQYTdXteJZVaL1SoVKfa8srDbTYQI58tMzpVTAUri6nDg6RtXTFPgfFbiFCRLVK1qYnGA3R5CFIadqio6J2Y1YIkngYgmRCkVt7Gqw4nZ5HnieTEiHDgXdDdja1NTylPbG0cw8mNKCV+Fq+sD3kOyBFX7vDNKRZXEi+fPeP5htXsVQK0TXNR+ppXEQRMHRpDOuVKN+JlTsoTdNh9oCZ4iBNuMBR+MSAeXy4U0F+bjQoh6Hc45pnEgxmDWMrqWDlGTpilr0hYcuWTmdGasEZLYs62WeNXxQBVVYDqd1WrHxlleKreL2ubEKXZ7Dx/U9vTqas84TOT0/W331vb093fy7pV/6yfWT7r1U9K/8tox2nfuJzDX7792hleZFf/Ua16P0b7mmp1T/5UReNveZ5Nj1g9VIxB0gZL719D2eBps9ZgGi728WZNYjq8fS5wpe1Tp5PY1CWwfcq4r06mipe3T2seM4Nrn635HppSBElrF9mZtv9yfh9NPaRGCWxPSFk+01gtP6kbNo+19RcDpHv7uaPuUzTqjRPVKe8MCeKnrW28qQbRk7br7VIJXU1tw+GqW1abmAo4helMkkW6dUi1xSFFys/euJ4N9ixf6+32l12z2ys0aSZU/bb+N6yohmsS3ezNSVM/b2p6sJdynOvLnjv8yQzUyvqzP0DmzWLP+d68oqF8T/bO9r2zXZr/23zWF7/oeARpRbo2dMHLBumHe7p3d+qc0sk/76Xr+eyQlmjLXlu6H/Xt91isRbL3N/p6C79+h7RH7PGExWRGwPRZGZnO4Ts5wtPfX7qARkuwavF9HUfuZu98XXL8uefWnXa3Grw+LczjxjI+Zlwtd2Mw8oqq9u2VR4n1wYSUady8njfN81IKKYDbGqgCjz9R7Tw2e2/OZlzd3vD2/xU/99p9i8AOlVI7+yIv8gm8evsnXn3yVD+JHvLy7YxonDnsjgeO5zEtXRrnMZ+ZZCx5y0hgXX9c9YWx2Si3+tD26XwlX3nm1HDQOf1604AlQtUMj7ILGRCVXzqeFnDVO9c4xjtHUZ5TkKKhKSrM7bspyyZSmtkSbZj22xaT6/najcOZs71TrakuYsqqQdWWdmhlGUzE2AkgIRvYWVZSKUQsnRCxutTnDXiPNbq2iCp21wny+qDKMh5KFOESQqiqmRfeZRSze987iaqGIlt3hlETjncX3DVOw9Wgbn6/j354RjXDS4nfXP7+179oua+35OVPLavPiekTDXuw71Z5Dux4dWr6vKzaxc2/gt2t3TQl5JTS2vWYfmj2+X++z/VDnuQpSTJXS9Y85mx9KKYQh6l78UigCu92O3TQiNZNLIaVMLbbG+aCCfLVyzrMWDpiVc+gkW9tSLxprT9OAE2HOepyK2hR77xjjoJig81qI551BGatSlSqMDQwxsCxwvTuw3+04H2duXh61b0RV9ClZunpq455qP1JL6VbkQ1VFIu9gvx8JURVsU6qmStQep6MpqcUIIWo/jmNc381mbXJV76uK4MT1mK+KFglqsYZaHzqzzWtrXF/fNgvBVqGvCrihxaN1VULSTYj1bVVtv8uJlLIWDpgVfHBG+q5Cte1et5uV1QqylGZDu9kftqNL69/t3nQVKrmQUyEvxeLVYnO3zifBO0R5kroO2M/buZXsmAnijYBKv57ev0WU9JlVtXe1qIM0q4quD02BSZ+LD5FoVpTf9Rb5oT20h/YHrj3Oj/n3v/Pvc6iH3+9LeWjfg/ZR/IhvjN/4PT3nl77yJf7tv/FvE6o6npwOJ45XR37jx3+DX/wTv8gHn/pAP/jJsMxDe2gP7aE9tH+B23dPUnJbgtHaNuH/6z9vqID9t4KCKEDCmrzUc7jNv9f/1uBorax5NWBaE5+fHEn131sVjTNww+M7yIYFoV3OX9b7tpp/BREteenEd+l7MIDKeaJzqCiwqmi4YaTGkaFmgsnnZlQFRp+edECqiiBJOpZfalXFiNoqhRvo3MBtk/COkZwSpUAuqopELVQnlAr7wxXOCZfL3H3UV2KOArW7cSKOkfPpTEpFQTWnCj+VYkC1VyucqkBaLolSFVSo3nGaZ14eb0wRwPWqUK30avYP1a7bUa3qOMZBpeZzZRwih92OXBM+Dj1B0VWCDDgsRWWYoTAMIzEM+EGl31sCvxGoxhgZoilVdb/1ymKkLQyQaiBCIzIhJmkeIipJbz/fyMD3Xi3SlRukg2cqBx6dxzuVZM5dhcqv58SqvLEkvik63e/z9t42aSOQTvDDN2uM2hM9DQgKVg4vpj7jg6epFLVWa9ZK22aL5g1ErQqqNosH6lpt345ppYgrWcGSyK8l/2y6UPCkAfl186s1YdJwyGavoEk7Hb8hBHKpjMPQJcZ9UACzBsHHQWEnp9cs4qlo8kHxe+177Rk7J0abzJbYUIl6ANdBzbXvaRW2zR323lwIOFcQL2TJDERVvMAzxpF5uahNHxUfBB9MdcR7whjY7XZr9Z0lq5f5bDnESEpaoedDZk/l7uUtv/abXyGfZ8Zh4PPv/jD7eIUXz/TOxDuP3+Xm7jnj17/K5RaevvUGJS0kyaQKt6eEC45r77l5ecuLZyfu7tR2cNp5nrz1iMt8oZQEeLwfqCXz4uUREZj2A7vDSKkw+EBJavEIjvNJQT6pThV3ZAbvuH58xaM3rrhcLtzdnHFUxjEoKSrPpNmrapQEljwzp0S+y+Q6Ms+Jkjw1VasqXBOIDYxt/RRLZNYqBCNXpJTZTTukJubzbGPbsdvtVCa9VrI0OzIhzaknoQrCk6dPeHR94PbuwjxfuL29JS0Fne0TzUum9ZE+rgS1GTstpEUVuNJcyUkYJ0cpldNxwYeBYecZd1rV6Cocb+5wPlBy63+VlBJNKcK5tRK6Bkt6ioNatZLY1jx8m2ejJmiKWvBlU3GRWsk2N9hk0hMoIXi16vGOEE0xQ5ptovT1pJOW7b340KyF1jVc/73aWXjfgH8lKGpO1lvy245jNgPBrEHGMTKNk5KJcu3WAaWBr4gS3q52XF3t1d4vF6SoAlpOhegHclaSx5ITQxw4nzM3NydySkQ/EP2OkoTLSdUh6ui5mU9mUyoM+8DTNx9xuArkQVWPSp65nCuXo9objlPgcL1XxcGUkZq4vrrieHci14oPUZVvrkf2u5GUZgYfEfGcl0oYR958+ymxOlUMcJFhcoyTAtQpmRVHFqYpUCVQc+HmxQ2Pn1yx2+0ILlNyZU4LS1pw4Yr9ldqxTLtoZB6zSJTMbj/w9qeeMA4Dl0vmPC+Moyq76TOuiAdfwA/RrHEzSQqpZiXp7CKP3lArx7fjSC3C6Xjicl606rrMq7WRrU8uBlMy8j0Rrom+qGRuqwwXS4iPY+Bw2FGWzJIy4hzTYWQcJiV051nHy1LUNrVKV8vUdVotf1vlcKlqq9CyRM1+zvWKbrFzezyRmgqn84L4qmuFr+ynxH438vjxgbKIJSMDy6Ug57kTDocxcrie2O8n0lz0uWTdz2hCZmA+L6Q5cTktlKyV98ESE7UKLnim3U7XtCLEOACV8+kCEzT75O/ntt0d3FN5+Wd8a7v/WFsjVKwJqtfbhrBMizU+iVQiff6jneve7ywRtrIOdD/T2OsbGkTbITppCbt2ibrJ97Rx4HrSbuU6aBzhm2oKQFAV1kBVUqzTNUYTmG1XuF6rrpHYsaWPq1XFDlPxsetthFVRImK3Q26Ed1H7VO9MdUHWexakK8Uo6debrYjOddBCHSM/Sb+rvnfcHI6lZOoy2wc21A7X4ofa95Qrt0OLUPIQqVUtX2NUa6WmviRGLOgbTQdSxKyJPdWrykFLcJZqysBmWxS8knZ7PGL3lK0AoMcArEnEbUzQLWMa8UnWffj6AKwv1P4v+75ZExP4U5c/zTv5UxrX9rx9j7p6XLI+UvcJ53m1reSh9l7uxeHOErduq4a0uV90PaftCXD3jgfNvsf2JuI6p6nFwe1BCfS9QBtb95GITWeRzc/WztD36+26W1+Bto9v/zULOxsHxgDUhPKqHtaYgV0HrF2/JXbbuR3b2GG9biXXrvFNm/Ma+andg3OeUzxxDMeu/hmMLOF90H1NKW1718kTapVGVzrZKtfkkq2rOSMcV6oXIsI8z3z87AV/+Ftf5pROPL5+QvQjV8WxZ887N5/iyy++zDfq1/lf9r/K7Q/f9ZixiLAkJcsIjnleuJwXUlJ1KueEcTcwxh0pLVo7ErSQZF4WpBRccGqB1uZXm9McrhOKNR4MhpkIcQjsDhPeOy6nixKXgj5Dj+ImkpT8X6rG4qWUrv5YipKG1mR/606u23feI9XL2udKUYu5GAbdd9p1+xAIIp1s1Y7XCP1tbvcxcNjvKKWSc2FJs9nYrjbjry1xrXdUve6cSh8zJYO6uetesxQI0fZ1UZVjshW6VHG9z0mtFMMx8E3VxnCMVSKp/yn997pXDyF09eR+v7Ihn9xbH2xN89ZPWefCXkhh82QbLQ0v0MvbThQWE7HOMe1nOn7aWqqqStvX52zQeLsWVZFVtaM2T4vUfj8uOGKIjDtbw2pToQqmzOepsqqvifW9ec6knHA4glPLtpSK2bBFyrKs6r7BMfmBYRxxQKLgDCekOpYlIRQrytLxkZfcbZFTzvpsXVDVowFyMss/PLnokxp3E7v9SLqsRU8+mEqpV6IVgtoS+kCVyjKrbaiPqnTdlFdV1UgVoEotBMNUtIhA34rzWnw0jgNSYV5Sf/+N5NO6mWKoqk6vZLtmLQrjbmQYIpPtT3LSQhOyqdE3IqttoHxbvzrJ2PY9ukOgU5atQ3uvam2O1g+MPBj0vdVaDJ+rLIvNqWAxbzuG9kcvSnym41zSr2Xdl68Du6kY6VxgRX9Ugq8Mg+5fhhhM4VjxCOewvqbrVhy8KcYqgaypwtVS8AS1rstFLcltXl3VzPReQgj4GDrB0TmdgxPpQUnpoT20H9DmxPHvfvzv8hPnn7gfIzy0H5j2YfyQD4YPfu9OKPDHf/GP46viHA7H1emKq9MV73z4Dj/1j36Kb332W/yjP/2P+NU/8quIl3/GAR/aQ3toD+2h/YvUvmuSUtmCqLSEafvX/aTs+lO65LLiCtI/26RnG2LfgLoVoOoQIJsj3APEXz9bvZcgfjVZXEpVWzQDyMOm+lkw+wARhGLS3qH7czsDNsShCiwOXHFIElIpDD4wTQPDMDDUTERBjJwLl8vMpa4VzoMfCMNIEo/4QAharSVWyVZF7Q4wr3sKNHKFgsOarKricFi1vAuI/b0F4lJRXytUISYOBrzV+5uBBuLGOHTVi2roqRiq07Cn0MApr1VVUopa14l0AFcKqEKV78lP7zzRZOhLEaWGiODweIHgHIMFx1StaK6iajUKfqkagrTAmrVSyKNgyv76yrqTfj7nokSCOWMmfNSi1hOqytDk4kNPzrdKv5ZAaOBXqZW6FKhrImO1hnANhbZ+q8eo7Zlgaljiudo/4uKSnadan61r0sua99H6o4GkfSRIJzh57w1zt0pfpxVm3kGlmhQ7KygHvSKs1xVbckMJOaagZWB3A+j03I1Yxb2EkCHx9ndNIJdS+rjqo3Mzbp2BSM6q11tibPs55xw05S5UwUxQKyDnA8pIKoSAkZDac1DQKAwTftiBHyF4HBHE936gyJ1tnr32Td/vVpVahgbi6oOydxw2Nh0ty9ASQYIPA9Wp/Ha6XPCzZ05FLQUd1FyMWKXWBOM4mC2JVstls0tTWzmdz0o2LbUMuVQkFe3jUTgNZ1wIfPziORB5fP2Uw6QKBrvdnumw4/HTt/jCD/0Yl8sdL+6OzCXx7Y++w3x6xoubW3xUyfbjaWGeM4XCYbri9vauqwfUMuNdYb5k7l6cKbUynAK780iIjjx4rg4H3CTc3Z6YL5kQBlzwCkoOjnEXGSdN8JXFsd8NDNGrCgiFR29ecT5mjnPmclm4u73gXMCLI89CWiDNWQFES7Rq8lPn7loUmFtJfY3MWPE5UzJarZjWMacAcaZb+IhYVb0lOATiEEk1czyeKTVRSuF4OqudYNTq0572emUddKJrxMtnN6oI5yp+9Dx96ym7vSaa7m7OLLOoco0TpEBZEmMcSXPW9cgHA2+bMoyB68Gs37Zlmw2otTFkkK1ZYKhlTk92mo2lc5GUlVjYkgLNIkWX46r2pC3Zh1oF1GJV676tM7pmOO/ucSTW4+k81fcBPQFkRNyWUOzzoCUwfFSyVHCM48iSEkUEF8GbGkUphWEKXF3v2F2pXSkugSt0RaWs1ly7J484HAJpPkNNnOaFUoXdfmIOQhDPNO3Y7fY8y1VJMNbfRIT99YE33nnM1dVEupyRKuyvrpEqnJeFInB4dIXUwvl4UmKUC0hUFa6UoiqNpYJbKkMA5yLz+Y7buxNXj69R+UDP1772HvmSuDueqJLIOVDPztTxVKUgDmqxBkLJkTQLp+PCo8cH9o9HSi6kcWKeZ25vjzQ7lTg4xMc+Zpr90cuXd7bGjOSlQskMo86/BN9JgHkp5CWRFq06lqoWjodhxIdAKplUhMNuz+OnbxDjmVpuSCzmpqrnHYZBbTWKzW2ozcDlMhO8rretHzUyi4iq5yGO4CNh9FqhDeR5IdfEQCSGSCBYYq/od2jWuPD4yRPOpwv5Rp+Lk6bkofNxydqvvClixeioMTAMkSqVXEFE9z21asJrN424nakqzIXblxdbOJXo9+jRFVeHHcucuLs5kReb950mBy6nC8F7UqqkRZM1JSiBO45qBbc77Lm6vqZIJc+JWlVdreSF+XT5vk4q9B3NK3v0NWn/O3/z3ofbj9y9v3zCwVZFCnktXnnle/3rsvk7r1znmgzrn3KfoK6C7oUbwcZoEbYns6tqRE3d/NuattqVeXQfRC2UKpqAFlR5pzbLEE9R5g3OSZ+zLbhZVYCkmujnSn5XAkfbEa7z+KvPZH0aOo97f/8467e16XVZkrlun1/bU60fdrQ1bN1/90R5e3FG0vW2KGlC1hkh3vak4jpPRNeOpviqBC5vhEMl1m/s4Vo8au/FO8cwDH0tjBYPzLNa4NDPZ2qjLRZxdGvstg6rAmqLy+73H30lm+dn99VT6tt4t3V3iwG9BH68/iFVr6vtga6E+vWttWfS9tjrc1/X5TWuwtb9NkdiCk39cbEeC+ea0Oumb7S+d7/dLyJqfe/18b7uG3SS/6cVH62Hsv7RLbA/YRKx+AzXuCLaj3xj+TSVyde+63De7KBdsIv2Gk+0EMCtqmmtX7rtfbp2VfZm7fdife3eXLP5/6/tvk4x2+eSNY4tpi7p0L4TgscNeh0hqGKvMwJGbvatq2Thig+IEhYpuh/GC9ll8I7TfEbw7MYdMWrUNAyRJzzlujzih09f5Bsf/za//PlfJZG5Pd9xzCdVU3K6di+pULIYqdHrWjkriVxqUVffiu4hkiqjFLPEcl7VB4dRCUBpyUpe9p5ixKswBEJU++icdd8+TdBUE6dxMCI3lpxvFrLBMAojWZqaU4u1sXdCH6PbN6Kvv5ratCozrqqJgtwjLK1/0otPMBu0lDJzmAFRa+Ssc1t17SzWZzZkWdDt9zInm7EEPIzTwLSPqBKMEhEamasRLZtNsirvhD7umgpti8OdX+fC3ifbWtGwCFkJn1VU8brHwjTrZlNCan6hTnqMvo6LDcmzWoGJjeV7K9Ark4TxiGgk3oZJtF+2WG6NSdb5Rtdb38dJCApqaHHfenCNO5TsN0yqkKnvoqnZ2a3VAiGw3+/JKeERi42EELU4Ss/oGMeJtGQuxZS6asMNPPvDjnEa8E73cXEYdF3MhSoOH62Ypxbdk9tjCb4Vv2mMUorgvBCNPHO+LMRS1cZaBDmdOd2ddCyaNWwtmALQZg0Mqh7nRYsHUiqMzjMOERm08CcnxQGbFau6oDmctILKCk77ZLF+1+yam4KXQh3WmwVVQG+KvSgOFWJTRKuUAjE4xmkkhKg216X06V0w0o+TrobYHlatVclc9gLvjezNcutwnbCj76l0nMCxql41DNL8HhFEVVwHx+U8dyWwtg430reX1YJUL9X1AoSVLGmxtPMa+3rPMGgvv5S0uXJHjIFpVEudZUkUI4+3+aeWZuGG2bzp3WuxXDDVKs84TYqleH3+SnLKlCQWtz+0h/bQftBalMjP3vysmYA+tB/E9nOPf47M7526diiB6l+PA0HX192840tf/RJf+PoX+Pnf/nn+m3/jvyEP3+/q3w/toT20h/bQfq/aP5/dm7VXwXq/QSlbAqkXFLefgVWWsKKkBlYogNpQXAU73EYuvoMaImt1TD/UffDy1SSx9ACRTrwQUaDfhWiWBGj1kAHLtTbgqnA97ni8GzgcJna7kUWEs8DZbIBwsJxPXE5HJJ/wVm2rNBGzgKpauVOq1quEccSLBvLO7qk6kJoRrxVXDkcRRwzBrH4E8HZtnmCJxQaAO9bKoc3D6P/5EAhD0OrFViplz0Q90Y3A5L1SZ0TVAVbyxyrPX3Dgg1bue3qlkvdO86oGPDjn1TrOQ3SOyUD/9i5VHlzJIcF74jhySaruEYsmxRthRq810CyJBAPXROWJQ7cHY3OOQkmz2qYYEKdS67MCkZY9EUvwV1NTqb2PbgHnVhm5whr3qgSdKl04aTZtlkSJkWGYiHFkfzjwqXff5Zvf+jZ1zqYOZV9fcRJDLVqyy/5PrNbJlEYaMWPF++z6Lbngndp0iVWqdSJTDFaZp4peymOw5ymqFOHZkgca6KNS8V51xrUyXfSZjOPA48ePubu74+bmhuySJk22yasO2NKzEFoB9gpA3zDK9mgbuL/py84HnFkrKMkn9qRKA8YUYPOIBFSxLfQkV+vTWFKJmhFZq9Nwgi+tIrwpwahNmIhAbVOTt/5hoGDQ76el8PL2Vm3qnGdZEvvdAVeF892F4/lCNMuukhJjjMRRlQlGB1zo4OU07vFkIOB95HwsLClTfCX5zKleONXEB8+e8fTxU+6Oz7k7CafjLUuqPHrjMeMwcv3owG4fGXYH3v/4Yx7tH/P2k4V0EqpkypIZ8Ay7A8flRF4S4uD6+hqplbRkTrdn0kUtky6XmcvJMR8XfBSun+xNqayyLBfu7i48evyY3QQhenAT148Has3cvTiRZmG/i0xj5OXLC3hIRbg7Xbi5OTOnoornVatVSxZKgpSU+FmNnOEN8G/riDei17ZPNfDPOU8MgbRcGGJEcCyLJk1aZjN4fachBOLgKTnh/WqLE6IjDpFaJnIILMvC5ZJw/pW+7Fr/dTjRqnWH4KPwzqef8vStNzgfz7z4+MjllIhhZBg8UoTT3VktAMTjglbqNlJIU6FzNh6D16SVYCp8DeREmmiHJcKEEB3jbjACqBAGtbRDnCry9ASpw3lhHEdC8Pq8a8EVyCKd6Ner9tt43hIONhXkLcmoz7Wtjzq41znUUjzizAZTVZ9wWPV/JuVKCCNVCktaGKeRJ28ckJpZLjMhDoy7SW3GvCYTz+ezzdv6ikstxGGg5IXpsFMZe2dzoS9MQ+DpG2+xn3bMZ3u3wSGlQHAcridyjjx+4ymPHj0hBHDi2bvA3e1Jk2nRW8JSq4trrcSg1n7DNOJ8ZX8Y2e8mUnIcTwv5NJOXmXmeKWT8uHQVqNubhZodc82EUSuZU85UHMM0dAWpkgq7nVYsO+eZppEhBK1rrjqvlSrM50WXR1MZEVGAPw6RwamtW1rUmiWEQk3C6XjGOYjRU0WtJ2uuSDHFEdvLOEsq5JQ4nU76/jKc7i6EEJXIQzXCmCbchxg60ZSKWoUKEMymwZW1Yt/GVS2J5ZJZLneUnLWKewjsdlOfB8ZxApTUN40D4ryqhyVNlpRacdETYmAYIz7AFAZqTqqIIu1aBqZJbTemMUAVzuczS0pq15fRKnVRy5VSHMfLwhADj66vGNxICMe+jo27gRA859sLt7cn5jkjxawWPHo9LnQCQ1s3ffDE3cAwjDjv+/iUXMnLoolLD+M4goiqLHyft3W/bpv915r8Dr9dSxfa1l1aHLEe3T66TUUZeWCzv9vkqOzjn1x08QlXT9vLrvZEOjuu0FxTlNAJaAyRKXqGGFR9QCABuarqFg5KSqa6lo2cLffud51v297MyPv2w6bI2RPDzvc9V2fwtPRcla4Odj+WupcitrhM1wbA1FqcJtxbQtfpeG7JrEYC0b1y7fED0o69eS9uteRqpI92Gf0dbW7BO03qFcRUW4VGNgI6gbfUavti/1qiuxGxxGziWmLQtWvRzareF2J76dL3poJTtakK0emFb9VY+vi1u3y1R3UVqE3re25niVbW8a9JcY39vPd8xn2Wz+4/yyldKOYz7TbZer0k10lw/VSuP+R1f+1Xgt32zbRep3Oq7+v1WvTg7T5kMxbb2l4/4a7XZ6/7hxbj2buvmrDf7SbbW82bh7P2gfVW3LrXWkfB5nlu7tv61WuzjNP4vFm9uSZLZPu3tnfRe2qfNVJSf1/2OTtpi7DXq+kjZ+31jajUx51RGG18ei8Up0UKl3kBU1MqpZpqnpCWRMpZrbtRomsYYlfBiBHbS+o1BR/7W3bOk5ak62CB4oSFxK/82K9x/uaJL9cfo56viedASgu5VqbdjuADu2Hiiy9+FKbAbz35J1SENBXKAkJFilIzQggUi7FzzprAtz1hWjIlVWoWs6kXSvJK0IyrCmcppozsPNMw6rMJWnQVghJ2atF9+zBE3f9Dt7S7XBKpFItJ7f10qzmssGEz729efRsq9+ZGe9eCEEOk9KKBVtxQep9smEzf+1ohGkifx3VPbMeulaXm9TSsQ9W6CO0C9RqFcYpcP7lCRLicLsyXBVW+1TGmNnlakODM2lzQOLbNTo5W+KT31vhUXVXIumz/sMMIPGbsrOEYMRhGU3Rd0fhnVXtpMXSbM2jzZYvvZR1r92684RH9QTQVG9ciBxrxblVv0wCoKbEFs5hrcZKu2XouLayCaTeiloOqlB2i2l35oOOl5GyKs7KJbdo4LoyjjsP2nLyD/W5kmiZqaQRXJfNUKmFwuBAJMTLt9vZ8MuMQqFVsT6cH0sfve/9yNFKirse7aQACy1JIl0qSQs46viuZnREY05LWfu80BmiK8G3M1aJEyBAcIUYCrUjE4u0WwgEpFxy6Dvi+1tSuLK+vVchJ1KLV4uFFslmbOSPDNGzG1gNZFXc1psjdIjAtWa9V3Kr02MeKjjUlJGqM0m0bpZHMGnazUTSswjynvp/DQayh49vBYspmme6DN7Kl7c/EFLVtb+K8KvUrJqhjtopZrgdPjEGfqfMsqZByUmUv20BW2z/UIhQvlFoYh8gQBlIofSzoezGlpEs25Up7jobDtvfSVDT7+uM1/nFWSNruVWqlJCVb+qC/6yppD+2hPbQfqPbj84/z+eXzv9+X8dC+h21xy2vx0/eylVj42//7v82LN17wY7/5Y7zz0TtMy/Ta52KJ/OTP/yQpJn7+T/88x8ORy/7ye3ehD+2hPbSH9tC+L9v/KpLSCt5tkwwG8rDC201id/1KA9IN8AMDTlC5aFaAtOHoKzZ0H1rsQH37t7tPdngtySCbz1VhmRfcoAoidkC0Skr/m80eRGpmLmemZSQ4x7IsWpVXCnE3cTnPDMEzDg4haYWz0P3IRYrKsteKK45x2OEGSyJ7cKURNyzqF1Po6RXBCjQVQ9gM8rekmAaZFOmAVAeQtvkFWqBqnuorCr2+G3z/YvAKyuAqquHiNQAXVV9QQFRlkMUJTprEuhJHVPFIQR8FNSxBHSO+aiZSK6wUZHA4QhwIwwDeK1hRq6lAaXKO1ECIlTzjgycnTULc3d0x5IXD4UBKM6fjHTVnai6o1ZcQhkgqyUANiEPAJWeWZ4KY7PsrD2aDk22rI/XJbhUofMPQ7HMuOMIYmHYT3gfefPMJKc/ghTB6fLEkgukFeeub1ZIlglhi1gB/Ay/0G5rE98FT8gI4chUjyRmI0uTUDbRzISrpYbkQ3NDvqVplbq3qS18tQeLxqmxhYF8jsfkY8aa45cwKb06LJRwUjFHZa9eBIb0jk49HXh+fVBBvY8YIVdu8kv2pqlzWKx3EQQkJrfKzJQeCc6rIlS0B5QykbRX0VRWncEbUMkaHM7aYVjfbz23UVaqSowwI8+1eTb3AiyYYz7cnbj6+wTmYph0xDiynBQ/4GimLkgqGMbC72uN9JCeArKDgENV6qKr6VggDy7wo8FtVoWwcdgSvMug3d7f4wyNyKPgQqVm4un7MkCvneeaDDz7gMO4ZpsCcTjy+dnzmnR/hJ774Jc7nhe989AHvffBNbl7c8OLZHaUGvc5QyMsMuF7FDar+VGshz4W6FByO+TRzmSKH/cTVYUdJlf0OnrwxUkU454Uqwuk2E8LCbhcpSbi5OSsZMU48e3ni5ubM6W5BamWcBuIQWdIC4ki5mMx+6WMxWHVlHKKCr6+sAd6S+WLEl1KrWjR4TylCbkkrh44nr+Nq2g04p3aCOReCCzicKZuoekzJhTTrXN+Ack2g6HzTMmTSkqeu8vjRNdMQudyduXl+ZjkLQxgIQZCSVakhia4jOeF9tL5thBBszgdqyQrSNnJSaTYqHmcqKjpNNVDUM+1GqkTSYqoVopWXVUz5zmllfoyjkoSwqldZraaKWcRVEavoXxMP3m+SDBjB00kHOGvNHbQuJevnbA0sIghqBzqOUdcgb4kPgXFStcKUM3EKSvYYYBonpl1gmvbkkvFDJbhATkIIIyxCjJ5xGIjjZDYBM1U8ftD1bjknzseZ3UEt3m5Od1RLDg5TJE4HJa2lzKPhwKOnTxiniWEXmcYn+CwsdzOXMmsiLzhyXohDoI47LqcZ57U/57wwTgMu6zXW5LicT9S6MO4GDvsD+/3EEDwxwBAt8ZAD0UedRyyhv9uPhBCUHOVhHBQ4995zdTUwDJGPP3rJ6XYhjIGUF02hiEeqqR56jw8wDIHdPtr86lhy4XJW5bJlrjoHmeXTEAMxRAZbB4qrpLIgRhaqJXM+ZVsnolZplwUlUQi42it7RVDiLJpscS6oclwtSA24QN/fNLVAJX2r9WG1vZOkSvKqmhWCx5slaK1Z+8849r5Zc7bElCZgnXeMkz77nBYup5mUK+KlK985p0p483nhfNEq6f14YIie81nJSbU67m4XJQROkd3+Cm8WeaoiplXiyzxzOWfmWdXIuk2iOHJOHPY7VWvAxuMY1SrzySMj1w94HGk+G0EtkdJCjAGPrc/yfVz53Mmc233AJyBom7zk/W2rzisYMaMbvjjuE7773uOVg756HZtP/E4EpVWZYftT3QOWXCBYIgv6tTSCUs2FIgJDpdRMyB43a4V7qZUimnjPuRjBRjOBjesttrFpZJmK4KoqiOHbc+hX1NeMRnzYkk1WUgf9YXXVpUaleCWGePUZalHEqj352mtstlobMkpT2bj32DsxoJE/NMbp++t+/S0W8v39ddtuZLPGrp9zXuOQe/dv36st3HKbRL1TVaYqwrIshKKE1lqLWlSVgpSVMuZDK5jQTuqbcqkRhhpZhVf2JH1PvA1p19x7JwRIT8Tr79vaHwZNNj8arnEXvWe16gQRj9vcD2LxhA0e5+8ri2xP35KUXVVW2hNr1+C6Ai7tXXivCiT9SBZDV9kU/rDOu83+bPMs2j5N92GaKM+l2N78fgCw7WZy/9He/41sPt3uo8UQ64/xPWTWnuaNZLFe+fY7em9NPbIf2zmaXV9XUGrjqs9dqyoxFjeIjQ/7Qo+dnH2+UPiOf488J5aTFtbEoKopJWeL7XStbRbewxSVJFKh2eq6Ri6rohZX3pFzoTFRdB8de7HFsZz4rS98hbuntzw6P+ZzX/8cn3r2NkMayCVzPN4xhAEfHJ/56tt8Kj6lXsHxcCKlwvP8gq/tvsqz8JwTZ07zmdoUP4sSGZpyEWifDDFAU0gFCkJOCUckhsA4KHYxjkp8SmZzl0wJKUYdA8uiCXofIikLl0vuKo/eKQFYLduLqaysdnhtfIituZ1Ms21Oz08jwlgHjE2Buq4kNI3Bdd+gsYWoVWdV8l5T0Eqp2v5IiVT3T2kkyU0c3SdcEWKMjOOo5JkkzBe1dlLH9kotjpLX+1Ql5DYAWp/1Nj+YjSwNZ6GTlAyM6nGOQ+/NmwVzNatc5/UdS0fz6P3WGz6gqthtntax0wsZN/NiL26wua2tZdtxhUj/e1d+tnEmQLOzdw4jH1ps77QgJQyqclQxG0EPcfSEGgk+bOYk1wtd9J2IrvUB22MqgVUaiUcceVGCkR8DaU6UXK2gBC0kaNuz6pl2e93TRUeMIx7HfLqwXBZwnuDVGhEK3kdTBNU1SAEJjWtrdiCOkjKlJLwpz8ZB1ZoxHEeqkASNa73DVd3z+6CK6q2YM0ZTl5cWQwWWJXM5zYqjsKpfdRKgM4TKOYYxmN2cXqYqhmk/y6nYemCqwKYQ33qZQ5XPG25ccrY9hRL4c8mKhznFd9r+2fumeNu2Im4lFjcsrO0XemdzVEyNud2IYHNEtf5jSvBVCDXj3bD2RzESM6rW6l0rnlS1KFWbUgv2YAqTztYUjUd1H+iHQPRB95NN7S2LxjBB+2gIYsSodS2vtXSl6F5IaeuJxuVB9ytF42/vNaaYdpMW+RmhTGqhpAwNZwFbE53hxw/toT20H7S2r3smeZ1A8tB+MNrsZn7h8Au/9+fdzfx3P/vf8T/8uf+Bdz58h5/5n36GP/Qbf4hpnvraCUpU+nP/45/jp/7RT3Hz+IbvfPo7AByvjvzGl3+DD9/+kNPhRAnlE2Gih/bQHtpDe2g/eO27Jimt0LABfoZBOGl43Aq2KXhoiaMNSUmETphoPxQDs0Wz/RpEikIcSo8xLK1bsTUgXQNjVX0x0MtvwNBeXaPBnAJRVvlqFmKt4qmJNmmrlFrIeYFSOUrmaNLjMUQ7l4INLjlqXkjVkwudxCPFQHOz5EopIcCAVTs6vccudeG02gwRqnfURuJyzipiFGgKQX9XRSg1d3UEg/URpwCbEyVjqMGBJqs6CalqckPv1IArA6RcqwR3BtaiiUxnmvb6LhsoAqWBuWKkK7f2ES3+ErOk8yAB/Ij4qhZIYFZujuKbjZuSloKRk9yW9CZiYBYgTeq+Imjyp84ncr4QaqLUQloWrVpryRLfQKiAq4WUZnJVmWh143BqIdZk20WVLyZTPViWbAkAhbQczUapjQhn/VEs8dHkvCvHuyMex28fT4zTNeN+R3aJLNXejSko2HN2TpWCcsHIAh4haUIrKcB1OOyYpgMheObzLZfLTMUTXESgX91hFxi8gJsoeC5pJt1kdUsTIzTVQogDzgWzNdKx2KqcvZjqlI86xlpCAUWfSq3k82yAoOuS6Y7Wr2209mRLS/Os80ObORzNecGqL3GWSFCilhIrzD4wRLPkqPZWtILTuYqPDhcD4RUiYk4z3qtKjsJSvt+nzkfF1BCaoozrSZmi9IDe5wECap9CVcLcUhYupzPLZSEMgcNV4DLPpKTWiBQPxVNTJo4jUFmWTErCMClIeDhMlKIEgcvlQi2Vu5dnQggMO8/jp490lpXMZVn41ne+zfGNE5ffujCEgUki/9If+SO88ehNliy89ca75OXE6XjDx8+eIeL51I9/jk+/8RbCxI998UeZ5yPH0x23t7d8/dvv8d6HH/Di9paXd885UxhCxE3VVGjg6duPQJQE6LwnjJFHj6+AjBTHo+uRqyd7bu/uuDvODPsRyQHnCkUKqQrn08xhd828ZM7HCyIRH0eKXDphr4iKfqWUQJwqs4naHIqDIkXVYKpQCz2x30lrti6EoJWpQ9R5fJ5ngndMQ9DKaydMU7SxX8k5MY6qdjFOEecip5Mqnzhn9hVmNeWdZ5EC3quwv0PfdZ+PbXl0EMeReU7M5zPHm4zgmEvGOWFIQkrZEsRt3nT9y7qm6PX54HA+mPUHHahUFTXf52NVq6tc7SfGaVCQNemzWpZkc5SSRGuFKbpu3QZa7S61qtpN8BQphKgkulyqkVdXVTZ6MsDhRas0hapWRSkbwSYqebAKlYISVwzJrhXnhTA48G2+BxcCw27k+vEVpSbtcyEyTYEqmeAj49XIIMEIl0rsrUWY4sjpeGTwnjEElsuC91VB2mnkdHvi5fNbBE8pM88/vqNkVc2adhNxCEzDTitKcex2O6SojdsQrnjx/I5nH99wOt+Rlsy8ZK6uD5ScjKAFl1MGlwlT4DCNII7LOXH74sTpPEPWquJmD5BzIcRACCOOyuGg1djLeeFyvoBADJ6SK+Nu5NETJcvk5aJA+OjJUrg7J7VxvCRCrgp0B8+SC4jDBahVFbuo+s6qZOIYiM7hLsU2eLZ/WgTxQrT+58dB7VlSIlWtDtakVVVisaizpq6LmeDVZnfOqqAgtpcB27tZcqHZKMy1kFJm2jXFR+mV8cWI2lK1z8YxEobANEbGOKhq4nIhL4UL2t9j9Oz2EamwJE0iVSM17Q+jrvcDhAjnUyJnIS+V+bRo0sdBSc4sHquRm0ZE4HJJ2oeysCyZ093CfKd7seN5Rig6Z6XKKc9q7+Kdkg687wnunAunkypPuRjYx4Hd9Z6r6yv2+73eV9YEQsqqMhE8DEH3RPOcCKEpUXz/t0ZCaX+/xw7ou4KNNpEl1pt2yyZfuTlWy1CxObp25ZbU3O482gG217Il1axN+nn0K02FR/dy28OtnzdV0qpEOoyUEZp6GE2ZAaSqtUtzCWnKj6D7c1xLxqoqhtDUM8U+s3kiIohr52jFCWviShNcRsZGWoDGqpjUdresFojtGPb7bfzXCT/rA6Q/qUbMkM3jkUYuajloZ+d+vWJfk9qNTqSxjHOqMmuRTDukxkGd+GS5VGnv0z5k7waLK/r+0t6X2u5mnBSNt3J+xZbN1lazCasla5w3tef3yX0nRI2vSukZ3fU6Nk+tRclr3xbtXlJJ84JzjpfHF9zdHglx0LiyqaPavtzbPjxgBBHZWPDREutaSKLx7aBxR5pVvRCH7+qkGmcO0VntSKCiqodlLl2RpMX8YhUbpawxtqoKb+Yk79uDbL1XiaAimijtHf/eH6/MD1uFoq1ukyVx+yyx6Uuv/AnSyTyaiO0DzmwBraDIa5ymKo36mVqK/dwKTdpGr590U5Dh1reLzV/titutehs/VdSq7QUvyUmV/bx3uEFVX4pu+vTBViXXRYubS6lmpwQhOoYxqhpqVjUjLdLKSqKJjmmY9OlJJZfCzfGWVHZkMt5/wD/59Ff54o99ns+++CHe/eZneHp5i1oSKc3cHc8IjneGd/gh/zlwgSyZn777Se7cLad45qv7r/FP9l/lY/eMeZmZy4I4Twy6bktxMEXbN5T+vMbduPZhPzDtR4TK6XTR/YooGb9IRpziLB4lY6Qlo+SOyEWW9U0bOSrXqnG/tP259d3temJKS2sfk84tVIswfWkxRrOp1X1RezXBCDxtb662TTowvVdC6uWUdD/flHKqqq9kSideOusgm9mi96dGVk+XxDxXs1jTdxksTpeq+5RXe750Mp7dn7H3mh30qoC6GbOGVYWgmFjDSmpV8gbFkAen80YIGxU4dN2pprwdjDwnpsZaa+n7/Y6NtdMaUampR1dqt+lTguOqENOGRf+6E5wVy9lH9D6C72ShQZSoEYOtsU7wUZWX2nkEp4qdPpBTotTMOAwUgSIV51WZXapwPp3JRckhabn0/Wy0vV4IzTa+WuGVI6dERGOr2ztV6kw54VJhnAYatofTGC5nnXumaVClm6x7v2XOakHX8DraPluI0Qh2wTGZCljJRddApyQcQZh2qtKJaGGQ9w5xQq6q5NyswXVetPhT2p6EjsO6DTbrg8cXi/msN4spDAlAtCI4GwtVTI2pqTtVO65f5/ZGIKvZyH1VyLLuhdrBRSfVbrcWgq2PWD+XVqDaBphiMavtrq7bORUkV4oHkYRzii3gTJmq7ZGcEiIbSdH50Nd9EY0B+togWAGaXqvuEUCkdEWzXCqShLxcuPhEStnUnvSa84bg6eNKxsbGf1eBd44QvarmjgPjMOreoKraXTU7SEF6HFeteLOpMT20h/bQHtpD+4PTssu8N7z3+3b+NCbe+9x7/K2/9Ld448Ub/OFf/cP81D/6Kd54/kbHUhyOaZl456N3eOejdwBdt3/mf/oZbh/dcvvoll/7w7/Gr/yRX+Hjtz5+Pbx+aA/toT20h/YD1f75lJSkgWu8hhgqWI8BwwY8yutgs0F79wB9O6wGzx0Hl7W6yj7Ykg/dkqaDzBaUbUEN9/oK1qte+2cNyHYKe6y+9ZYwQJUiAgEsca2kHd9/3yyvnFXQlarVti5YcG3ncS0gdZaAsERLSzw0tEcTE5o8sLwFwSlAoBZslSrB5JkNKGBVzdjAWptnsfm7XUs1oNS1Z6+wALV6JVqlrLYjg8eJJSotkJVG6rBqvqZuJM6qnuyWvGvJkKggtmv4kAFOznUQrz15b2A2zqqHXOsTSgYotVjAXQ0YrH2LE73Wn3onZmdGB/j0WlTOX8zz3vnQLRcqZudVtbodIEZV69jtJ8al8PLlHTXX/kC1sk6fq1rHOaoB7c66OWJEA9HrmoagwFiqCugZSelw2DFOA7tJFRLuzkdqdcS4Y7cfGYLaWJ1PmetHB0KEcdhRSmFZLhALgx94fPWY3TTiguPm7kRwwug9pTh8qBQjogUf8C4oMGiVkC6ozRlY9eIWYLeqSZwChmrzoGCkAjMKHoYYTW3D3UsyNAhYSRMKqvdxDyuBsSWWrOMKQql0xY57Ki1WqdYU0LBx6yy90mTnCWbXRSHNJwWZk2cIjugncGrP5J0mKFSZxoAlcZtrsVN01bJ28fqzOATOS+F8Wpgvhcl5csqUvLDMC9M4dMJSHLxV4gvDGKgsCjjhyVUra9NSuZxmO0Zi2o/sDiPDoIBuLcKSEi9vT9ydL7w4PmecJvbDjuv3drzx6A2eXL3Jj37uCwR5g/PlU7zx9F3my4Xr6RElC3GAq/01bz19E5wQo+OPnm55eXvDR88+4ld+7Vf45gcfcTqfuKQTL04XqjieXh+YJn32qRZqgOqsOjl70lx59vGROWdK9VyeLTjUUimOnsN+j5eBdBaOL0+adPGB8/GsVdrOsyyXrsRXDcDb8Dp1DvVGMqpaVan2NdpPpCrRUKXZNZFUqXgXbKwrKBfjYOacwmgEklwSNRdCnBiHkbu7I8u8kHNl2g9q84CwzGpH4oKCoOB6pb33Hk81gLqprFwYY+Tu7kzJZqHirKq6FXDa0hicVo8rd0MrMJ1xRL3J3rdqcDEAt6tbmM0jXu02Xt7eMS0Dh6sDWp2pAHpPeDsIQat4tRpa59gmA++Ct2SdVt27YpWrpoym92yJPmcJa2lrbrMeMsDVbCl70tzelxfR5JMHqiPPFReC2QUqeRivijjVKn9DcHiJnC8Lty9OzHMipcTV1TUOTy1GditwOS+klIjjwLQ7sFwct8/vON8dERxXj696xWgxNaJpN5GXxGLV3x7P8W5hN2kV9Te/9R0FcUtlGEZEHPO8cDydVa3NO4ZBLbrGadIq6CoEb9YHZIKv+DESotMdmS/kUglZ55xH11ccDntqyRxvTizzzFIu7KdRLRN3jjgJIVSGcSCI43i88PLmxN3twuWsCckilWjzpsuqNhVjpIhaYXgXNPkhmsyIIeB9QcwGZxgc0Yc+z6sloikE+MhVDAjZkqiWGHOCD9Y3qrcqYU2GVhQMl6Lzt/ee3TRSUmFecrdRKFRyPtIUN9oKoX234n0lRLUunKaBGDw5L5pQkGJV8JUwDOx2SljNWRiIZqOha/80TbrvdIKLHoIjnxPznDgdZ3x0hNiSj5qoXpbMfj+yvx7wHualMs9ZbXSyMJ+K7WXWvXAt0i07pmlknEYjzaqNRc7V1tbKNE3sDjuuHl+z2+2Z55nj3VHHfSk0ZU0/BHbDwax9dK9TSuL7tXU1F2lKCD01zLpbaOu9vPZdaElU+u8dbV9978f9eNvj3z/i+rGmlvTaLz7hG9IZN5ssrC1O7Vr61+09VREjfsialO0bRrtrWbdOVVoBgY6l1/f2rh3aDrP+Xjb/tb/ommkk1n5GPWGVNUH/O+J/8km/a8/GftOZYNKP3+x1gqn1uc15VwNRO0TdPNvNNmt9vy2K2b6VFgO2frV5HTialIKzNaepKTTCYzW7l0Yqds7UiVDVjJUg9fq1tDhQhH5uQBPqZY05vdmyxCFQijBfFiPB3LsRepRmfaNzXlrfFAdV+OHLDxG9WvAURGMJ64/jYPY8sSlALlSB4AcjkuqeIqXKNA22/kdEKqV4nNncTMOkiW0H85LMmlv3Ms41S26NY/uzb8/a/tr2F3pra8CvsW+LNVxPDrdxL05MvWI7zrZdbTtWhfs/cf1fr0IBVaTvk7YHVAIS98kM907oNkU9tjaVBYrGvME5cLF32D5POdfH8PocXhk1r9xfW+tqraqykdWaVEkexayYVOm27VWacrUqHa8Vx7WqhXktQl6KHUMt42IM+GCxLGJ2ZZoEvywXQlT1xm/t3uPZm8/5+ptf5099/C/x5vMnHI4HdtM1JWfGOOka7mAcRuJuzyMe44Pji+WL/PTtn+G3n/w2X52+wtfKN7irZ5IoYSlVYYiBaTeCaMGA0QXBWQJfPPMlU0SVkcus+2pVana6V3GemmGZF5YlqeJSyoodBFVJSabY2Lakn7wQaNK/2Viu3an1LOkEAOw6lcyCqSK6dY71juCCzS/VrNKHTg4ppizlTUEm19LnC9fm+04Wsr1yn2tUSQpxZvlrxFP9snWy2vtanwu3s+ZmcnVs7KDabRvZCGlEXP1gzoUqF2JUq7JajejpaBJs96ymeqxge/1+WJqtpc6j3rX175OuUb8gTu4Nnrr57EpcXjHBtl60LZjGKDqGK8Jg856ql+u11exIixI7StbxFeOAdLUofR8Xi/9iHLSPnluBXGEYR3zQGKvUhilFwwyrEnSs/4hkQoicz2eNmez4MSgB7ny69GfS+nyzulceZdtfVnBr3GbSd52AUqoqx+52aoVcc+V0Olk8KEr0D44Q1SpNcTclM81zZpkLy1L608beX+tfqyKezu8am+qex4Vgc6tiaCH4/p6w9dZ5jwtKhIuDwtNilqrtLXc3TgEzVCPVDEbY7oWxYs8qOCUW0WL0puibVzIV7Xi6aDmnJKNGKsNw3qaq1FqMoStTERpBS+8nRlNXa+tdcEgWG6u63jhTVGoFBY3EFIfQ/52zxte1CFkqC1l7jax7oy3mEK2gyDl99ikZCR615h6GSBwj46Rzdlpmcm4EbenvI8SAl9CfZyMcP7SH9tB+gJrAv3L7r/x+X8VD+xegiReevfmMv/fn/h6/+Cd+kT//c3+eH/naj/D45jGxvJ6ObnjG49vHPL59zGff+yx/9u//WX7pj/8SX/3iV/nWZ7/FPM3kmLUw5qE9tIf20B7aD0z7rklK9/GcV8HyhkZackHuLxafJC2/Wqs17EGBV2doyQbrNfBtBYX1N/VeQPXaFfXPvnIdDdD3oSvCdOD6XqJAVXpETF2gVgNmHNM09eC2Aaotai6lULMQcJq82wJNzkCbnlgwIFIMojEQs3YEjY5JN7WiZkuHVFN4MZsskxge4oBHA9VatTqMqiDMsmTzQB9VscEAreDAEbUq1hJ78zIThoFxnBpCjsNkj12zdVNQ1FlFbEt0D1EBQycQRJWBghtwaDIwDANevFouVQywiGr50gE5rdpyznWvepEV2e1WAf1/Tb1Jry94Z3YugNmWNTAzVWGYJuI0cDwWKmq1VjoQpwDbuBsZdiN+8AzBcygHTndHJDfp71XdwVEN4VbSQXAQnLDfHdhPVxz2A+PkWaqDccdUB8pO7WZqLVw/esQ4qMVRzgk5i6k/qTm9jwPTFCglKUEt556MTDmTLcGSqwIpStioiI/4OCGuUjBChRsI3qSqfUuG0MEtHZNWKeoa6NrIeWJjzbeR0see+LBaGPRxCY18t9KPDBhyazdvySxvxLVWqdzGix7T02wLNSmiv2+KAs5UvrS/FBxqJ2X4IFUWSplZciFWB+NACOOqHqYyUdrngrPx4axvh8180u64GaBpRVsxMl81ElxwA5ITHlWy8c7j9wG3d116PufCbh+QMeK8Vj3nBebLwmWemU9mzxSEceeZph1VVKFlGD0lF6uWVluyUu+oKfFLv/HriASmMPK/+ZN/ki9/4fPk7BmmgXffeEpwk6rR2H3XXLnMsyavSuXx7orrz0U+89YbvP/xc+5uX3Kc7/jmB8+4Oc/My4noRQkBNXM7H8mSkehIbiALLMuF/W7Hfogsc2bOsOSZdFl4uSzgBuZTZpkXrq4PXOYL06gKbrVCKpG6qB2SklIwYpGSJb1TkLOY3L63ObbajOA9Wl4pRS24fODu7ggUYowMcUTKolXnQ1QlmpwYxx1UVSnJd2e8mxGpXF1dIaEo0SoGTnezVsS6wG4/cDpdKEkIZpMmTc9MhFoVJD/dzaQolOwsIVgM3DTShcNAT+z3OiaC9wzjwLLotbSpslbR6us+L5ualMPGqiaBEU+VwGVeuLrasdvtWeZkhCdPzmrrlWvGu4APQZNuOnzNIiQbWJx7VauPzV5SgdpGWK1F721VH1DAXRWtIBdVw6NWs5Z04DLOV5wbKVkJZbvJ8eabj3AeLvkC3mzhioDLSgg6XkgXSEtlviwEH0iXWx1PcSLGgRBHilTGacd+b8TEClIL0xjxPmgFMpXdbuRw9ZhxnChVON+dub29Aypvv/0mPuhnPeBCJESY9p6bj2+Y5wtLWvBObQaHUUmu+8NArWJKdQbmi97vNEZK1rE/TJacRYH1OV/Y70ZgYL8fKYvOaQo2D9RUeXl6qbZ4Y1Tr2eBZLpWXHx9ZFiVM47VCNwyqJhgCBIJanKIJk9MxMQyRYYjMZyUnLYslCKw/CrUD6jkX8umM82rPp9scR6mOUnVPowSiiMOzLJVSHcusleHDoDaWrR+G4InDgJS2z1itT8QSRbWu5BVB8EEYhsi0G3FBEFR5Sa0fHbvDjlwSzsiKqtrUlCdNNSClbp2q+0ZPrkkTz4NQ50xJmrwvaWDaweHRgPOBNKulzKNHE8FFzudb0pzVSq+KVrTb/q2a5YxvCW/MisEpSawU7X/DELtlQzGbSgRuXt4wn5W0WmtVa0MHPuj870OkihJivXM9yfP92NaYwH3Sbze/uZ+MeTWW2H6n/aaTejSjue5DYD3QJ5zvXsa6kwZeP1/P/272Ls7fLw64d5mySYDpgqCJSsu86fho+6LN+cXGnHrRdIvr9XOOPlC2F2fnaqSI7d1tY6L7tBvp1mnQxoFa4kgjlHQLH/19LtlsS0LPgrd35fC2fjXVs6wkHWfJ8HZO3EoKaTe92SaqjZmnazvZ+PSYyqdzYHa/SoDXu2kED70sPU+x9VX6pLIq2awEgPX5aIKWHuusal6rbZl3niqFEKLZoxqdqSdL1zsLRrh1wRGcY5giaU5QV+WlRvRxTrWEW2yr84Yqqw5x4Mv1S/zL5c8y1AEJURULjSStVrlTT2bXWpDU+kOLr4JZWhVbs/V+qlS1GhZVgKuySVyKGCkp4rwlm+1YjWigqqZqZ1W3TILePS1h2/rutsOvXfe+Jbl7lZq37S+b79tP+9e2E0frV2jfXJ+z34yJ1vG2utGspDnr/yJKdFGVs6JWYoKqtbTYxPrPvfHpWk9svWvb17g3dls8pP1VjETkkKrE1DEGcKqENMTY56RaVeVT79f1NbO0/V0u7eGo1W2MNCKLszHjvCopV7OpFF94/+OPQRzRf4ebd1/wmc+/w+OP3+CLX/kx3iiPcGj8YhpnSFWlF+s47GXHH/74x/hD/Cgv6g1385EPn7zPi3TLB+E5L8ILFi7UUS2dlpLIVf9evac6R5GCw7Ob1P43ZbXJrAUup4vtmz3JCEr66IVxCDb/Kgm7W99ZH2l2yfoKGqFmo9zX5wj9vFSNzYc4sKRk9k5W+MCqHhZC0D5iZLuS1dYppdrngzhGuhpM0TM1GzW1cNI+19SCdAw2PMis3AznaGuMYMQRw9fYqCi1OdE7um2drkMaQXdMrvVfWdfc7XC1K9U9jdkzi0DJBRdXqzxVETQSowdv9Ymu3UMH+tbnv52HG5G5XXvDmXRoreSuTgLvBMhGY6261zd1QhdgGrVQbMmpDzmx/yslU1MhLUoUV9K34lZqJezNHsvIG2Z97EPoxwCzRBdRlcsYmKaRYRxB1A5sviykXJjGgWk3qdIyGsPhVbGuLJklGTGvGnYWdN4eDC/Iub7yfioxqMqv807t2ix551EbOKIAI8E7whhxJ32gPugeIy9J95BW2BMNE1ouiWUuOocFRysybPOdhgU2RwXt77WoFWJFSFKsoIjer5riuFpUClUKrogqBdvE2Ao2NXCi7wtK0etu1mfDOChpM5eu1uWtqKK4SuO2tZi8417bnZBTEm6ITXFQ9/Cn0Qv5AAEAAElEQVRqZ1i7NZrGQa1wbV3pRIQigqurkpnuHKwQIxgRsFaNkZyO9Rj0nBqOaMw0jgOXS6LkZd1Pitw7lwhdxbChcUoW1WtvalTr2lhtr6TzZLOhE6l9POqWSsnPqmqoL+xBSemhPbTfw9bnp+/tOX729mf5K8//Cq/ush/aQ/ueNQd3j+74L/7if8HhdOCLX/0if+H/8xd4+uLpP7UfOhxXpyt+5n/6ma6wlGPmt770W1x2F95/933ef/d9jldHzvtzP9dDe2gP7aE9tD947bvOYvRqpUYiAQPdXgX2+USC0BYab4e5l1RgPX6nPng2n23fk37AjgkY2eZ+ZbXr16EArBIsQEGg3X5v8vYriCktKSAbAlU7riU+vIGawfy5GzjeQOkG+La/N5DemeT+K0+1J5oNQqJKJdgzaCC3mGISDYRvlmT2cJwF2jlncskaeEpR5SCv8tNTzjgxufdiPvJO77d6B1IZ84iLzS7HrHxoFYMeXFgJVkgnjmlX0J+XqlYk1SqOqgF6OA+xUGum5qQAdtWQ2ftIKVmTdCLgpBOMHNIlwr2HYRwRV7tdRe8vDj1G1icZo6pN5Zx7Zwne9+T4OI64GA3AEk3MO4xko9WoPnji4BGnRIJhCox5ZD7POOeJLhqQo5XLfhjxw0gplSl43nz8iLfffodhGBhHz7yc+dYHLyghMu5G9X8vwvlcyFWVWyQrCJorlJwYxh0ueLII3hL/PirsMc+XDsRKyeQinM9nckpM+4kiBiINSvwI1YFkcIEQB312VmHlqoJ595lDbh3HBrb3JJSzatE2xgxAbSQilRvfbDelp6RoFeGfUJveK5l7n0L7VBt32+Sms6RIS2JUWZW8QoBSFlwIyAbwLNUxLxVxgRAcOWtioecnWrLIm2WIoPfhxNTwRSvJrWKxSJPcztSaGYeRp48PIBeur3dcP7oiBrUKO58XxikYMVEBpFwqy2VRcGyMvHx21GpNMXu4qFV1ISrAlJdCLQvDPrI/jHgvTNOOYdzx/gcfkC4LhymTrioVxxAi//0//p/5xV/9JUrx/PDnfpSf/ok/xltPHhHDyD56dlEoubIfR86XhYTn9njD82cvePz0MV/4/I8yjhEnwrIsnC8nLmclbaQqfPDsOd969j4fvPiIlzc3lFA4XU6I08rYEBxPHx+4m2FIEzeX51xOdxATd3eZaTzg/EBloeJIS9IkvZVMltKIg65XH3fFjCpdZam9Pdm8RxFNlkzjzggB9qJtbCjG7djv9VnOSyJnJQLhArmoWss4DuwOe86Xmfl8ZmZhXhZVYLkaGYeJalWOtQbE5l9QglKzlZAqLIvOHw1wDNbXa62m0GLKeUb60aGhalFOarenaGNRbO0ahqjPxq3V3I3sEELEPB7ZHfZcX+25eXnLfFG7iVp1rq5WgW9LmlXhF+IQiTTyhLPkuY69OAxWLbzadoXQqjnb2HH956VqYsQ5BWbXHKEqo4U4gvOkMjNdRcIEJWV208Q07RjHgdubW2oRIpEh7LjkE57AblTlh8dPHzPtdlwuifNlxnnPbrdnv4t4p1Zqp8uFVGYup4XoBzVHDXCuid1u5MWLM+fzzH534OkbT7h6dODqese8XMiSSKeFlArTfgQpSM5QqtqviENiIA4TVeDu7qIWac71Z6SYuxJ1cy7ILDhvikqoPVkBXj6/4fbmJbtxZLkUSoZpuGa+XTjdHHVNN4auWve4PpVdHfaaNPJYEt32ItEzn8w2bgp4IBchO01onj5+Sa5q7zjGoffDRnxp63OVwjB6W2eVIKh2tWZj6gJ5KSDFwG604t97pp3uoVTxSIHwnJPtqTYrgzT1FEsxmJ1SiF4r+YPTfYWpk/TEktd3PUwjgvbzlIsRn1YCahFVpBuHgZWQGwmhcjhMnERYLqJkwKDjLAS1Y11m4cWzk5GHCse7hZyq2bDo3qfWlrAzgp0ll72NWReU6ADCMAzsdpGcCkvOlFI5nxfmRfp6Pc/JVHh0j+UjuBgYI9oHhmYn8qpayPdPk+3fZN0av4rLbsOO3zmm+KTji6kgymsH7XED2y258Du1e3vc/m/pdiEOpyQ3m7tfvY6WGmtElBbv6FJk88EmAdQut12nrh2b4o81i7z5tx39lVhJYwffr+H1exVevXdnx9S5X2yvbceydStIVRJLXRWI2lVrfkwINRjpvfYYqtl76/znX4khLXG4uTmxhF7/jKBKGk6T42LxkSB4UeKft7W0qQcAPd5pSbxaNWGocVyL0Vqs2JLztZMkVQ2kJcP190pQMkJCDHy6fIad7Dhyx6poou9EybqmpmCsYm9KRyVnnPi+x3XOFCB80P1rFYJz7KeRJ/unfKF8gb9w+vNEF7g5XpQ4FD2IKubkpMleKY2UxT2bG1xT6V1tBpVcb+t3e6YipKxzTYiRRtZyweGKw2MEF2wPbf3GTNrNcm/bvbaT+r0u19dDh+ha1rqT7Rs0EbyS0LhH2HsFg3jlu6+G3Y3gsRKV3PrFZm3ajmnH8Z57tlnN2rCKYy4z3xm/zZvuDd6un74fM/VwZfP3HkPZvNJioY0NvKAEqOA9u2kAMuMYGKcR77wScXPBRY3JmypMrUJNWdeY4Eyty/p9rd22zlniWrEALXSIQ8Q50TXVR+5OR2oqlBgpg61bzvP177zH+/EDpDp+9XNf4X/34c/y7vxZvPcM3hO8rlMxBLMEFlJeOB1nnIOnV2/x1vU7fFG+SHWVlBPLswvn6cj5MPONR9/i/eFD3o8fcDPfUk1Fs6aqdmlSmaYR5yoFR5odl+VEiMKyJKo4xjiQcgKnMX+zz2z77GZfJIKpqdm7sTnvXr96xfZT50ElcjlTalrfI/Y7LRTTWKX2ea0VIzSFTUBVzpxiMzjXydo5KSGuKe5Q23y36fIitndoa9N2LV3XGINs7sXPyGZe3dxFX5OD/rQRgNoYNdoUWpClhIZpN1JLYb4319tYs2e9Llda0OWd76pLCDRvK+fVZq0Tjyy+b/FEu3nF4+yZ47V/u/VOALqFo1PCmAtCGNSCOgQlHI3jQE6ZnKwAIAwgi65hZv84TmNXcE1ZFRBVaTziqbqHq5VUMylnqgt6ax4kadFIThqLxBCJQ2R/2DFNAzioqB12ycWUyu1+GlDaSFam3JNS6TiMfsDWeHGmAFZN7cl24k5xlBZT3t7eqoUZjpQKwQ9Q4XxWFai+BDtH8IaH1GoW1NFwuzWeCeLIJffClBZ/1CoUhDyrZWWLAWlX7Vuhl/WZKuAVRxJTZKy9ixoGVLUgrBo5Sf9sSkzB7rv2vtZHr7GUtitH60tCUzRqducWf5vK62oKoAVO2L6mKTC29ajZ17aiyE66c6o6rRZ6GvMgjZSoc7XePyxzNmUyIaeqRMW+prS4/P7ephds2tzTMXTnGQZVtCpW4FVyZSa1ScKKvJo9IP3deyMxNuXwV/ffD+2hPbTvTfsT5z/Bk/KEl/Hl9+YEAod64GeOP8N//K3/mCflyffmPA/tn6ud3Zl/ePUP+fzyeX5k+ZF7e5kfyObgdHXil3/il/nG57/Bv/X/+rf4/Lc+/118TZ/L49vHAPz0//zTAFRXqb7y4ukLnr3xjF/9o7/KR299xPvvvs8yLv900OihPbSH9tAe2vdV+19Xai0CKGB9n6Ryv8rj/uc3/4QOZG8ylBqsWuBGU3lvxJ92jn7szfk6amPhrjSwvIGQdNBVA7lgkvdb4kNTnYBNhG6gUcAFb77kVs0vhei0cs7EgBSw8d4qSPVIMUaWsgEUmga+qd3UYKk3A2jEq5KRghMKmLXrVFA5I+JW+zRTE2lqRir/nsFFSySqkkyMA+M+cLy9o2yehVYceVzVKt04Ri6nIzEEhjCAecwr4LxRfUIRGH3Wa7jfPegtmaC5x4qESgyBpeSeVFCQF0Ar1KZxxzLPmog30CIbYSrnRAij2tKE9b01coz3gd1+QkpBajGFo9bFDOTyXiuchqgBuHOqWlBGRgOLLgh+UAnzw/WeEGHJGedgGALDoyvOLjCFiadPnuCccNhNHK73uBBxMWolWSnsYsSFQi6F5zczt6cjczYbPEUBlNxCJddMsKRHzppscFadiRdVOBEQKeQsCJngB4YYKXm1D1FFiIiIMwubUdWt/AAIl+Wk9xoMBMM6riVejKVlP98Amrg+Nt0rilYVZwCSsNvvuZpG0nwyufTVnk8BWoCq5K4Q7wGg1FbVLayGLAZmGjjbEq8diK2W+BWhUqmlWWAFRAZq9VQ/IlLJFVXzqU6VWHIhDg5PWK2JTK2JlhR3zhJIBiZZ0kPHvBAIWlUuFckQp4k/+uUf5TK/SykLh6sD50vihbvBV6/WCkXJaWGaWFKhlJlhP5Jz4nI8URdH9EJaMhJhN0Wm3U7fQVWi06MnVxyPZ1KadS4rKltffCVVKCdV3NoPlWfnCx8sCe93HE8LkcIXf/hLfP7dd9ldP2UYduynCC4wp8KcC36YmHaPSFK5PR6Js+PRdODJ4RGHacQ9eQPnPEU8n3m38vnb57z/0Yc8f3HDh8++zYcvPuDj2xeclpmMg5I53iyc58wyC8LE7Ys7LqeEv3YMzrPbjwp01so8qyJOcJ656EDOZWP/0aygylrFGIYBqARLNnrrKEMcSJfMMl+g6BgqIsxOK2ljCJSU8EPgsNsrKU4UaMxFx1QYB17enVjOSVXrAozDXhMNIpyOZ1P3gVqTERNaZaKqElVEsWRFb3XN60k469SmyNHImQ2jrsCSkiU+G/nAxo53VrWp//NmC1drseSsJjGvrg88fnxg2g2IFFUESidqdXgf1Z4g6nNNF02O5Jy7LaEYuJpLUdtLu+YqojZgGwKOkj0GVmJJU9QoRvwSQnQ90R+ChzBy9eiKq6uRXGZCvML7gbQkxmlUpQIcp7uLVaE6zpdE8ANPHj9lv98jIhyPd1Qq+/2Bp0/3vPft7/DixXNN/JURKZnpMKrtHI44TuSlEKNedy2Fu9s7jlad77wq64TRgW/qIQYQ54WaHX4cePez71Jy5cOPn7GkzDiN5JKIeFXwmxPLcmZInrSbcBJ0fZXCfj/hveNyvjCM0arwHZfzmfOpMg6BOS4gQUk9BdKykOZCqbVbBBbnyckz7gL7w0QMAbwSxnJuFlNKSmxqWaUUCk4VNBYlMZdUNTlRBPGarAle7eFySUjOpJTJpTBMO4ZpYp61L6mKge4N05yYG6na1q9mm5DzmnQWS2iomqImQ73TflK320Sbk73Z6YpUUqqQ1m2g2PBKsrAsC1cc8EPrias9E6K2P+KEJc84L4wxEqOqWnnn1ca3CilZBbRTQH++JGp15AzkwjLPaseQLAnnVqJVGw+qVUBPFA8hMFglfTAyQrNEqVQGH/AygPieZMw52b6uGhHJEaJjHEe1nnBCHI0kwB+gJut+fbvXv/+R9Y7c5mf/tOTJ65HH/R92Uswm+dmO3+OM3+FcLbZoaiyvk8K2Z9d91qo+0JI++p1Gwm/LQLetcX0G7eco0rQC7cj90pXg0ZQKsH7erWAsacy9hLH0ZFnrsNKfhyrrtKR6+7Ptw2L0LMuysdvZxGEC3uadlJKOZ2+E1La1bAlmWZWEXn1j6zvavhNd55q6U/+ZTTIVVYgMMVBKthunJ0EFUzDzqjLnxONoMQm27/NdZaappr7a2r04i8/2smfwI6GpFIESkCzJO4wDzps6Gqo6G6aR7NR+eTftcKjNzThEuv+YVEJ1/Mn5j/OHb/4Ij9MTpAh36USulohnG4ObFbhzncQtphTcrMqrlLbL6POyx67br3G2t5hXp11dx5x3ROeBQC5J127fX6rOsD1GsJj3NXTY9f/vvdFBJx/Z8x7iwBgDJSdTSF2tM9veyJaEe0UTfcHZRPStb2+vZN2z0PlJ0o8t3Zpd42BTZDEbo1t3x9eHb/DzV/+Yj3bv8yZv8Ffu/ipX8mTtG3b2LbmCprTUft/+zynRro0LLzAOkXfeeoNcrrUIYhxJuXBhVhKmo8dMMQSqE6pkYojUWshLohaLOUvtZOUYA4hDpBCCY9qNalFais1PRsJzuv4mI/7GEDinzLFUnA8s+Zv8gvwSP3W748nVNXGclBwcPeA1MS7gU8SFoSsAppKIPrAfR4YQ2IWRp/4pMsMXLl/iVC987D7i15/+Ft94/HVu0gvu3IklJ1NpUrJISkqqdkTSkpkvyeZIJaIL0i3xWjFSmwe7WJKNm/Ys7/V9396a9SPBFKM8S7NrrCCoAhlIt4eSWoleLZuLCASNV5ScH8ml6F7OSKDOBWIwEniz+ENV2xqW0ceYc4qNufXatO/aiNrMsS2Wb6ShVlRUZPPdDQ6GU6KnoWn3+m9H+LySdHa7kWEIvQu3vSW2VqkykFDzqlglss70TXW1VlnvjUYG3MwabrWyXucYm8v7fW3Gs2+EjchuPyIoqT740N9TDGpFV3LtxPlSFHsaxlH3vCEoicwIiofdgXlZuLu71UILGnmnGrFKlMRjzJpGmC25qCpSKf2d4gQf9V622KaUggTHtJvY7/dcLjPzkuyepFs9IkJOSfekYyA43XdXSleuTWVVy3XOLA+T/l6V9lS1GCmQoeaVdCyGgTTCYxx0fQAYfLDn3khpVjgQAqt1qq23svblNg06NGZttom1ZCU0mWJymFTZXed6z5ZQmMv9fZzYdbT9SZv6nYNmQ6g4js6xjYe8HmQlKLU5oGbpx+5/ilBK0rlh2No9ts+s+yhVJMwaF3unMcUQcASN2UpFyqp+pP3OsCsgmbps7ePllcKNDTzX1hpvWHUvEOrX5NQS1DlTAGt9DSU+GmnTbfCtEIKpaGJj8Q9UNPHQHtof6Pa0PGWU8Xty7CCBv/rsr/KXnv8lvjB/gYMcvifneWjfXROED+IH/MLhF/jP3vrP+MXDL/L55fP8J1/9T/hU/tTv9+X93jQHN09u+JU/+iv80Ld+6JUo7btvXjy+eN7++G3e/vhtvvxbX2YZFp69+Yx/8NP/gF/5I7/CZX/5Xb74h/bQHtpDe2jfi/bPTVJScK0lVmWNBjGA55MSBtuIig3Y/wrg32SvG1IoHYi4X/XoXKApHTWSSpe2fiWpsDa5/2/nut3b+qP1+isrxllr1YpCsx1TsHboQHQDwB3OpLobaupMDaTBO2vE6yxZvZ5fgfJOTjIJ7sZpAvu7fd/bcatY8O6a+osB9paYcBuLLO8D0pLlPeHi0CSYV3DRq3R/GEZTCQLxLXgWghFGUsqm+KD/iV1jCJ7sQYqqlqzX4zbJdf2Zc35TIW6VxSEQnCZLa60d1NNvKVlpBanFAGrtM+fLTEQVb8IwAYlmTdEjecxew6oVr66uOOwnvMktl6srHI4shTB4XBRcUbDFCQwx8OTdT3EYD1wfDjhUASFlh+SCy2rfMoZIdBHnK7fHO24vF2apZOehLNQl0qrCwJntjhILmlpKzsXsnZIlQgJVMsUqxUpWhZJUYEkFEbW124+qCiOlEJ1nP10xBceTJxMhXiiSSeJVKh7w4ih5O677iLkHsnunCZNeJW7vXqsZTZmmCm88vcbVq16FfbmctZK7GNhdNbE+TOMmWQc1J3JKG0DfrBHZJhO2CT7Rqrmwgi6t0rRUIdeKc4ElF6pNQWlR+6Y5FtIQ2YXHDNGgWI8ZVayWCKrIMer9Vs2hVLeOXOWACKAJgSkMXI07Rg/nS+V0+5JUKtdXe1x1BFcJJosex5FcHcflhuocS4L9MJFKYj969o+vuBTh+smgYzgMjFeRuPcs6cL5fOHuZgFxPHo8IbVoEuF0YjkXrncHpqcTj588Vgl5N/D00YEXd8/44NkVl5tnnN75YT71zrsMPnK92+G8KqlN0w4fHcfLQp4DdZl5fn7JshzYX+/1ZYogtbALAz/05G0+/egpL45nPn7+Nqd04ed/9Zf5ja99hfN8YS4LJQGSGQ+enJUE6XeBITpVCfLOrPK08nQ3DcznpFWoRcimlDWMA1KFmosqBmBS6TbMgxfGcQTR/kGF+TQruGjzoTMLMgUwtbK2ZFXsCj4SPRQcw14Ja5fzhSwCksAVduNOFYGKkj2ci8So9gDOA0U6mS+26leb55rlQkuZNVU4b0m2Wor1qyY5r5XHzjkFsG0da6ovLTFSSjKibNT7cw6hMEwDb336Ld548wlSK8syc3e8cHt3RPAMk84X3jv2e7UemI+zKkBVKFRyuSDZAE0jkVQjVVQKs6gtVbTqcE0YV1JKmK9anyOqga/DqJZouSZ2h5GrRwfefOspArx4nqkZKpkYA9N+YD5nLscFQYkicZzwErT6uCS4WMJ2UGuFDz/6GO8jIsIwTKpKs5w5n04Mp5Fpr0SlaadWalKEy/ms17RU8pIYpolpjOx2e0qqfPj8IwX2s65H4xiYxoFh2uGDI50y0zRxuL4mjJ7L5YTDsZwX8pLN3lRACsFByplhDIzRm+LXRKmFZNZfVE36nJdMioUhDKQlc85nnDhNIgYF36chMsSBMAWevPGEED3LnAjOk5eFmnXexUB7H4Imb7KQkpGHjFTsnGO32zGEoOpiVSi1cJlndvuJ3W4i5wu1VO6OJ3aHkWGcAOHq6or5cmGZF/Li8C5SzWpGrTF13qxFlRzWKuWGutt7rN1QCHGmhOnaHpBOdtLKbNtLVFOOqYVG2NPzuQ74bzkVYvO8N5Kt9zDGoIpRLjOfF03GHSadnySTc6WUTLMc1ZykR1zFR312VSoOS4ia6pR3ao84TpPa6kW7NtuTjHFSJYiaOYyDEuNjxLug7/x40iRY1Ic0TQNxCOx2O5xzpLyAq8ToLYH2B6P9Ttf53aZFPpGoJD39xD2tntcOusYW2y+L8Pox753rfhLrNZWnTcgjm/8QTdbSKvRtTWsWtv26G8nB+vo9dRa7I+lxV9uDtLP1XRsth602xuuuTQWNTLmlXb9s4pEen/Ur3z4x7ttktb1iU8Mx06euDOQ2Khjr5wXB273oGnj/MxonKammL+6bDGT752sUJ4sDmzKRd17nGXv2rj1GjLS5jc36E0IJuqy2MZJXxZJVfceI886xczt+hC/wm7tf7+t5tXFYRJWbVDzENYctgndMVweGODLGSKOkVVEivTM1Rnzgt6ev83x6xo+8/FE+N/8wXiLVeSWhFdkQDSxeocVI9rOihA4xRb9uyVfF9rpaTFMFs6xa1TO0e1TEO/JQic7zZLzCebOfFmfKkWt3aXTrLQGkvaO1e7UYtD3OVdFFr7GyG3e4aegKmjmn3u+L7UFUGSX2d6MEo0rtlt82G7jWfzdvu8eXeu9bqmGLJxrhXJwj1cpHw0f8t4/+Wz7I7zOnGWbhg/A+vzb8Gn/68tNGGnbrUfozqOvYtntuZCsnW8WvSi0VJ2rnFhykIizzhSqi9qr6Bvu9qEUbpDIjzlHMaqlIZQiOOA2UCuOkSibOB8Lo8VFtUFMuLHMBEtOk80XwSjIs2Qi8u8g0qQV8cIHdOPD88oy7yy35cubR1ROuDtcEr2pG3mJc5xzjOJBypswVJ5Ulz0gRhsliYWn91vHIH7iWz/HZZ5/hm6dv8puf/w2+fv0e3/zOt1nqwuk0oxBJxXnFHeqidu7BlKGbGk0jxsQQDKexKaUVyHi3sStuP/M2v5oajVljNyXRroTiFA9q/ci59b1LFarTPW8wEp8zv8taC7kTc4rZUhkeYGpdjYTdsS/RfYySCcI9HEQ299XWr9a6IpHdl4EmPdZvGFp7Fk7aGDKVGN9UwB3O5rPdfmJ/tVfSekrkUrlclh4PNRwvRCU7nPOlYxytWKGTsvv57Hpq7cpXrUBvey9iKjPSx3pfEghRlY8aKXS3n9Q263xRspoRXOKoCuMl1V5kRFOue8X+SnCEYSSlwuVyQ4yRZnGWkipg11kYp6Erhw8x6ryfS18ras66TjolH3ofON+d7b7abkUYBlUr8t71dW+cRrMDy3S7sEYocqqeRzDrPtQCWWolmBWqHj93zKxkjbODxUdNrViM+NZiteg9LqhNfLNTa+CoNNUxW3Q7SdvGcbMKbb8PISiRslYtrDBClveeIUa1oyyqLp1SYhh1Ph+GEee0aKs21SKxviD3V+5SXsF5bTi61lekrfW+D5i2H2gKi02VCNCYAme2kKyDbL0tGkrW730zJysEbIQwKxzC+mmIqwK52jq2z69ziNsUO7QeQscPjFwVlTzmve/Fq84pSU1E46Q46P02spqIkFMhLQVXjQ9tFm/NUrDZNTZbu/tP+qE9tIf2vWpX5YqfOv4Uf/vp3/5dP3ah8HOPfo5f3/06f/n5X+Zfv/nXua7Xv+vn+We12c3c+Ts8niflCf7ezvtfjFYo/Nru1/gPPv8f8Nvjb1NNAfBr49f4L5/+l/x7H/17v89X+Hvbnr31jOoroYbftWOOaeTT73+av/j//ov8xC//BD/3sz/HN3/om78z8PTQHtpDe2gP7fuifdckJSd1Axa8CuoruLaN4aBhy00VZfNd50wDYgVWXQMoWCuiFEBf/bR9j9Y2PuyiILXvYaVYksjO1sCYivqcb6otO4ToHGpN5cEICqoQo6FZynOXHgZTVNr6c7s1cm1Babte3z7bwBh7BtWAGQXpDbE0EFSfjwaIHXhvqhmbck8luSiQ6zcBd78k+67v1+ZeW5gbEcyLSQp7NDlmCcEqeVOZbY+gboFlvXbNJTSp5CaHrx9r1m89peA91Iw4oRPD+suQHmTjtArRBc/+6lFXcahLQqomec10hlIUQMxUYvBEt+iTdbKSzYCUMpILMjlqEMLgGYeJIURyFeI04REuy4U5zybYohV2MXimGLg6DDw6TOyGSMoK8ueUwVWCPZ4kAiVzNQxM0fFSTJFkrlRUPSn4SMmJNF8ozhOHQLYk9qKSDOSyUMx2LzrHkqvKvwe1iEhp5lI1+R29w0lhNos757TP397dckPmOFc8jt0YmMLA+ZiYi/Zp54qOgxCVjW7jsnbbNk0Et+yCM2+8ZibSR4AIy7wQvdpkOVdNySmoApRUkn26JXIaOYM4aPLOhT6ae19YBxu4DSElOrSo0IGoKgmhkNKZuzvPOO3AOfb7HTlnjudbzvMNuzBCjFQypc6QdBwqgcWsepyScHysSkWzSrM2kL0Pqm5VBE9lDAGkkOaZnBZKFoo43KAV+ePomMLAOI2ICNO4V1uEY+JcwOfMFz/zadJ8Zhgcb775FrurRzx78REv7+5wQyTXzHJzJuXM5byQzpnTkAhOAeT5XPAu8O7TJ/zQZ9/mjbefQPDkc+J6uuLdtz/Fdz7+DiUVxv0VwmAqHB6GyOmcOM2ZMAQYBnZEyiVxmtWi8fnNkTk7DoeJcYjkIkQJTJOSoNw4cbUfScuF25cv+da3v8V8d6HMQhwCfowUnxldxMuO020mXTLz+cRuv9Nn6TwujAQfcV6lx1r1coheK0RntSaJwZvKXaTkrGN4N/Kpz7zDy2fPmc9JoV+b85Wk1BJgG8KbU0WsWkSBeLP388pmYhgqvhYWHQ4Mu5FYTUK92JgU3+dF5zZ9pCUr21xkE3WIWvEoslYxlpypWRMsSn4Q+1zAGSC9tUFQSSGhoOQhBe0z4Bn3I9GLkn/eOPDmG0+4vTny7KPn3N7eUUthmkagMO4mdvsd5MrN7S1qQqeKZ07MxstVA6J1PqIWYnBMhx2X80wprWJaLTW9rz1R6H0jD+o6qyoWwrgPXJnaWxihknDiTVkk4BDGOFCWgvNCKQvjOBIYyEUrdO9uj5RcefrmUwbURuvu5sjpeKKUSsr6fKddpCwz83xBohBLYDfuePr0MVdXe5zA8xc3lFQ4HU9cX19z9eiaw2GHI/Cd997n9uUtxYDsuAtcX4/sr/aIEy4p4WLk8OialBPXhytqrjz78DmX82Kk38Kwm9QSzqmSm0jBjTt2hxGplXmZKamARIrZX9ai9g0ZtT5RO5GILw5XKnGIXD8+8OhqT8kJqjCfVHVxf5hwwCXNllQwcL+KJk6qJihUtVD6HLcsCzUEXeOKEnN2+5FpHIxMY4mNLBzvzuwOEzhhXmbLvDr9XKGThRo5OsaoiZIKVNs3hdAtULJksqzJXdAEWktklbJuSpzz7Hc7ljmTaurEp0aOCEbigjUBs1lclOgzBaZhBIH5kri9XWzvowTXR48POOe5nC/MVZNNwxAs8aU2eGpsYcl48XqeqgTMaoQL75QANe5GQCucEVhyUmUvqwafJiXOOe/JqVKTkeWBOAxqM2KVzhVVBQg4xAWGMZKSkpy/f9tKgO4/2cQU24IHd+9bryZK2q7//rHZxANtX9wSuU35dP3S68mXlSoh/f9hsxeRV/79Sc3iivs3oSRUXEusun629VDutcMA3TKzBQW9aAEw1tH6dYclMNfPN9K5Jtdk/WzLuLm2aRfWyv2tYtPmupQZtR7jNXWC9Vp0nwfNxqo9E7eNFi1EVB6vvE4mcZujupZotDfsVDmxj2tHL464Fw85W589xGHUdVmKko+kfVbs9gTNx0on+26fnYUUPWEsomT/g9t3FbYqoiqXoDbcNZv6hCk9eo0lxyEwjoHBr8ozNdv8plMUFXjhnnEaXvKNJ19nFx/xx+Y/wQ/dfYlBRpvvvBV2ZN2Xm/qE5jVXe85a1vi0NNVbr4SYUgrZlFvaOpBr4dnwnF+7+lXO+zPvhw/wAj8inyU8DrzhPsVn8ueYLjvUeUqT7b1TO1PQavO5gMb1jXjaXpuzrrGdE9D9gzMcocWaXdFYrADB+lQjnuM26k6WkG4/vze8LCbVs698jHY8J+ArtWbmxfFyuuGXDr/E169/m7OcmfNMyjNxCIj3PHMfUyThqu/30QsssEIf2wvV/rs2161jwaEWf1CVBFGN1NHuCwgeolfLQFU5GkDgslSygHOVp9fX1KLqj4f9njBOXC5HLnOCoMq9Zc6Uqqo+JVWS177uRFRhBsf1buLxoyt2+wm8o6bKGAeuDlc8+eZjyEKYVHk5BK+kHO8pAkvKOia9w8eBWGBZ1HZ8TokswhAj4xBsvPm+R3AVvpB+mHe/9g7/4If/AS/2L3h2uyDmSKXKXxVxQvCD9uFcSXNS8rINIz2m2SBtJttuWSU2xp3TujKTtStmabzf7/DecT6e+0TlnIMScB+8C7/5ZdyLp/09uiHDn/wF3Oe+1c+5xYbwgeiq7vet38YQ76kNbaJq7TudoO37fmbtw6IWkv13rKQMI4p0EolbVf9WNep+W32taJ9VVWtR5c0Y8cGzP4zsdxPeB+bLzHyZSbmYhZhOtXEYiV73TKpesxY5bS/9HrELVZLrikxixD0xrIi2TzBUTLQYpE/tAVOT1p85p7aJ0k9mFm6mpqTqlo4hqsKSiGJEOVdVDpoiTtRuuimHNjJdMOXKnLPZc6ua7DSNpmAdWOaFZApKIVhBgxUTnM8XzseL9jEBFxxx8Foc5yDXoiTFaSTnTIwREc/peGa+LDalCXHwWuJY27qpfSWMkQBqlVi0iM2LEv8xYps4IxMhRvZfLUDjODBNg0aCooSuWlVNzQdHqUn3t9Y/BEyZZ303rQivKUC199eUhr3XIh6BlfAkqtjrfdC5puYep6uKmqJO2+1Iw5DaWtxUsLtafnvffduzJbbbOtkJolo0AM2WbbWDXJUw6WNmszm0e4UYdR70tibnbIWn6PoeB1XLLaampvazunKpIpSSmlRl0q5N2pWz2b/5rqDUcAZQdeNk9q2gsfQQG/nI4qc2N3hH8IPNCba3MYzPiRazgBHZHtpDe2jf8xaJPC1P1znmd7M5+Pb4bb49fpt/fPjH/PW3/jr/zsf/Dv/Gzb/BoX5vVZUqld+afou/+cbf5KvTV/nl/S8zyMBPH3+aQQb+zPHP8JPHn+Qz6TMEfveIKt9vTRB+a/ot/vpbf53/+sl/zW24vf97J3xl+gqF8rvyHP6gEEw/963P/a4SlLbN4fjSV77Eu++/y3/+l/9zvvKjX/ndH1v/a5sAaYD/5Y/Bf/l/hK/9yPq73QX+T/9P+DP/EOL3M6b30B7aQ3tov7vtuycpObcJ8DqUuwIhrwLYBgau8L6B/WvuQUFzMbDawHEFoOnBak8SiGzWkw45bJrgui+70KwVZHPR/bybY62VOE6TvGJywa+cw+HNeq39UNZLkfXfDk2M3b/tVg1tQKwF703twhmRqdYGlcJa29sqrluV1Pb5taKmVpEm9MrU9Q7B1H4UGa2rxUpt4JQdyRQ9gndYsX4HsBrM2u7VN0sA1GbL2TOiKxasCTQFB+kAmzhvVmcg4q1qcb1cLWbU97l+T9+P1GKKCSp57UOrbmy378hVyLMlZHHg7SpNoapmC969o7iKD55hCOzihKuVx4eJ83zi7nTHuSTqUplzghC5enxAonAuJ47LHblqPXi9gCcjoeCHgRAqkguXqolXiY6M4NGqURc8o1ebh7sUSOL1XVb9vriE81Ur/nCczjNxGoljYJ7Vykqrsnv3Jo7gxsruauTRoydcTreM+8wYAtFHzpcTl7lwdQBCgOLJeVEFGe+JsZkhKEHBidpA6bto1bdrB1R+2iaR1Kv1W6JbFTC0OitqQrYlA0TwCIGWfICKp4ojpUIcAjGuhBLtpg6cXxPN0gB+ewba4ZBSuL15QU6Vaxw+Bs4X4XJOnC8XHPDy+QtePn9JuTg+++kfYjBbvZU4Z6OwwjA0u4ttolB/HzHQWCC7xGU58+L5CzwFFyriKykXhjARh4CLnuodOUFdEh5hGia8Fw4+8vTJY+Y0cllmbo8nXs4nlsvCfE6kuwtJKtVlhhiIBIaogN35uDB6z3438MZbj/nMm+9qYj16Pnr2HM7weHqT68MbvJEWnl494ce/+GM8efyE4IRx3HFZMmGMXI2qwFLOmbu7iyY4Dte8uP2Y4+XIy+ORt56+xZuPnyIE8pI5FaH6QKYyxsj5mFlS5guf+xw/Ut7h6+9/m7vlTDhEkksKmDJyvtwQnRLYcik2t2glakoLKc3gtNo6xqD9tRaKaGKxNms2mQ0odcyXwvNnL5XsgyXI2jqymbq3zW0AzPvIgPbPq6uJKoWjM0DUkkXzeaFmBYJ7NbgdSJXk9HfFbCj7TOp1/vGh2f2sxBFwBhi7TZV33SQwzIoCJfs2JYdmI+WDJm/2+8h+PzCMI+Mwkhclr9RSyLWajamSJvbTgZsXN5zv7qAGagF8UxVwlqTwPHp04HJeCHEkpWwy/YXdbkCopCUhqYJ4CDr28ML19R6AnCo5ZWoQnrz9mMP1SAyeVDLVCcfjkSmO7PeRZVHCXQie0+2RSy4MY0TmMyJwuWTynChJE8q3L281aTAXUs6ajPYRalWwuSaomWHUvjQMA9EFbl7ccT6duX50xe4wULInhD24SBg02fDswxecjmcF2h1Mux2HR3uurnbs93t2+z3znLicL5zOR07nC8F5jrdnLueFUpWkGgYPrqJF/ZUwABJxQQgDjOPItZ/Ic+J0TEYOcjgXO4GH7C1RtKOUwuVyodbCsiRuRbjcXcg5k4swjJGSDmo15AwEt+VerVk9OWWcq30qFSMhZyMn4ZVAO4yBq6sdtSZVyGJNDlxOMxVhmHR+jz4Sglacq0LHuhbHuOnz1SzXLEHoLHFflnyPTN444W1P0GxJFTzPLGmmVHSctESFLQ+qxmhbtVaJbWM1RMc0NgA/MJ8XliUxJ7V4bRXQKS32TAqlJOI46J4tCSWZhUZs+z5dE5V8qOSFZntRi2O5XNSmcxgYx4G2P/Mehmlgvx+YppHoAzlX5pQ5nc6kpMqAITjG3USMgcvlwjwnI0slfR5JSEsiLen1ie77pL2GDX0CGLta06zfWfftn3QwufeD+6Sc+59Y81Fybz1YCyraXuj+xW0tPbYxxOtkJdcTS65f8Gaz9s9oPTZqJKNXbs/J/U/XTSzl7t3/+vf14y0x/fpC2MU9evyFxXbbbJys92TJvf4s2yVujr0tCOk3cm+t1fWwnUG2N9o/7vrv75GbcGZLs/ntltmErceyFsK0Davg7ikOeeeoNlHI5hKqCLXkThzo6rAo6V6aaplz/PDyBX7N/TIheLV6EVW4y2VhXlACUCkkU7kYpgHxkGsiZbXOE+chtxdQcUHJjSKqJhlC4IPpI/7O9Hf5Eu/xr979bxndqHGbc6TqtLChzUEWf+F0DReUwOjNFqZkIw65lnC2Ww/wcnzOLz/5Vb75+D1O+YY4qqKMeMdvpF/X9eEt2POIp8enfO7283zh/AV2bq9z37191CvvZkNAXT9mfWUzcHss3tYAt1p96gdVWaUNFdd/CiKOIlqc0ayA7gXQbh3xvb9u+5nt5+b5zLfjb/P/ffTfc4kXfAmq/GGx5Hy5MJ8v/Pru1/iX/b/CFQdsAL82iwS/nlMvxfeo37v1Dt6PH3AjLzldLlok5rU/1Gr2q8EZcVfVuVIpeCCGiKuiFsq7iVwSuRTmlJCSKKZqWBctlhGnCqIeLfhwqFJQcI4Y1Tb20e6acafr+el8RjJMccc07NlPe3bjjreevsW00yKfEAayKV+NO1VQklpJc6aWwjCOLMtMlsR8nolhxF9da181FdxclbQXomdYIj/+v3yZb77zHXZvRY7nE8fLGaLuKYoIRE9KZi9XN3OJ02feCSViSjs+gGuW0U2BRW3gnNTev6TC5bLYvmXzPr/6Rdzf+QvwwbuQh45V9E70C38S+fJvwJ/9+7jPvYcEKzpzqvw0+MjiBJHQ9/A1l40aTJtft/OejYi6+QwbfMkUvNbp1dagxuLBiFIbouXa7906PbrNT52Subx3jFM0qzC1eKulKInHyFwNyxriaCqbdwYL3B/vapsojIPiIY3/0FVknWMYtS+UXPT7Disg0vPHGLpVXJVKnCLTYbTxpc8nFX3fwYrnlBjjkVKY06IKeYYL6V67muUZ5ATneu7n0AJKxR2aklHDLnSf6Ig+KtkvnxknJX4MY8TnpqirKklpSVrYYYrpvqkVxcAwjEpkQkn+pRTm2eJbQW3g7Xl7I+A3ZXb8SvJzXo87+lHvL1WWJVu8vLFbKwXnlOzovVp8l1KpJZOzM0t6VT9qSsbDsIGOpe2nHFW8EWLvE1oaiVSJSm2fLwwxqFJyLqwFCZ5ahGVJGi8JpjTZOnhdN0Ctb7qmomT9uO0JjKhUN4WtXZ2bvpPp+3a9VjGlVP3EqtK/Dqn2A3l9EHVcMviVENRUABspUvtPI2vVfh+NeJtT0UJAt15bI+l2DFlHjFpbL2pXGEKwWKkpQGoxS4iB6NWmtBaNwVXZ1ncluhgjpVZ9R7nNhbWT8sr3ddHDQ3toP1jtZ29+lr/x5t+gvjKX/m624gq/sv8V/qPP/Uf8/eu/z1977699z1SVvjZ+jf/0nf+Uv/P473Drb+9tuv+rp/8VAH/r6d/izfImf+z8x/jzN3+ef+3mX+PN8ub35Hp+v5og/L3rv8d/+EP/Ic/Cs98RD/gfr/9HXoaXvyv3/0v7X+LD4cP/v4/zg9Cujlf8m3/z3+Rv/uW/yT/50X/yXeEx39MmwN/98/B//b/BL/8EnPfcvyiB/8f/Gf4P/xX8X/7vSlYa8u9wsIf20B7aQ/vBaf8cdm8t8bKB7w0V3MZoLXhSSGALbjcrAIXUlQzkOuDe1ITWKmfp54PX15FG3FmBPgWMm21BsxHon3Umuf9KQqElljewDoLge7JpayZwr1yYjiBtwHuNi/2GHLUByjtsVpEmbSmmYiR2TtnKGOt3q6iNEGa1UysqUW3PvkoDVJ0pMTXSz1p5rbWi+ubMWE6r7nhF3hi6io6T9dpb9VMwixNnZI6yeUGtmtf7qLZlzqH1/avEsO/ntQSndzivKj21Wb94JTsFHxQAy0UVUUIkePAuEoIwjhpEz/PcrlyfmTRZcfVWb5v8VtFdaiF4x27aMedCzZXpMLK7uub5hx9ym9VqZxxG5pJVraQ6KDDYswpOCQbVFfCOdE4M40Aujssl411lCLA4D65w9WjH5eZIIPL2W4/xg+d0c+Qw7UhpRgr4qK4N1SqgSqlc5gshRkL0prSglZdBPDmrvRNZcFSKqE3dNDpiOXO5+ZDKgXPwfOqtR4x+ZBGYT0eWdGaeUZa+q+ACQQBWqfPexYGmzqJAmceJx4Vg48aAI9CqrKjWV85FS/AIcZjINVNIK+BHq+40IJQG4luvaUPGuxWsFQO8NmNYrHqsXbOCemeGEClp4HRKHB49YZh2XF9fc7x7QfCRmisBx3I+wug1yWwJnVIKVSrBeyQvRt7zvVKxKSCI2QLUWkz9KrNIIriCKzPOVQ7TDhFh2v//2PuzmGvX9L4L/F338DzPWusdvmGPVS5XXOUhdoJlQrcx4MQZ1AI1apoEopY4QX3UHECkSEECBAccIBEpBwgBAgkhYSk5SHcaQ3e6kxZmsEMUJ/GQxA6O56GmXXt/wzustZ7nHvvguu9nrffbu2xX4tpVhb67VPv7vvdd6xnv6fpf/+v/3zB6zzxHcipYN+CcUFLAhEw1QogHjmFmfwzc7GeOSyCEQM1qP2Wto1iVfxdn2WzAjdqXpVauH1+ynSyH5YZwP+MY8eJ5+ok3eOvRU4ZRePPJI77tE9/G5eaK3TTh/IC1G4TAEo/klAmhUmNkNBXjDffzng+ef5n74z3TeMHb01NiPDJMI8YksEZBwlK4j5HFOp6++wne+vQn2N98wHt3L3g53zH6kc1mYpkTyyHhR4NMnuNhZjkuVFD7rXHgsC8II8uccG5Q0lJIKBmyrMnhDuqLVKiGGis3H9wzjQPONZLdRwQiqzVKIxNQepKhriQHEbVpefLomlgjw7ihJPCD5f7+XsH2mpptTANrm/oS0Oa0qsk36VYLKtHuWrVmrzDtc5T3as+ptnBqrdlVEcSY1XKzJ1tsS3DUTqCjKTgYUVUjYwlL4YMvf5GUAuPk2ckFORUyldGOHO9nlvsFaxyIEGNoik6yVnr7yXIIM7WiFbklabLFWaaNvp8UF6bJYezAIQSMc3gz4jYDu92WZQ6kJSBOePvtN6k1sYQFQVQVq8J8XNqc7ZjnyPFwIOeK9QPjtGOZDyzHQEoJaWTHCqr8UyuDG5GaSSUiRRXrvPWkuFDIXD96xGa30SrXVJimke3FlhiO3O/v1HIw6RptnCeNG47HmZSUPGmdwViUeGQMz95/Qa0vuH50zXw4sL/fczwESsgcD0dK0apsN1j8KIwbu1pMbC4mDF4TYEYTCyIVMxh8tuzshLk31KLkM2NYlRNiCoj17K53jIMjzIX7myMxZE1WWO2/IS4Yq1XUUkC6EiIV6/qxlQxWqxBDpeRWbS+ZYfRqHRcW5rAw+IHdzmNdJCyZFKOC51Ww4hCxzTZW7QODDYiRRvAyzZpQB5jzTm0qYm5qUUruTTkrYbTN/X3vomPiZAFS0f3SMse2DanrWrQmFtr+crWOo9Idef2gBGWozMeZ4zGSYsINaq+aYmnjOLVEgiadhmlYE+pWhFRVec35QckOJakVSLOsw1S8EYZBPZ+kKSM6I+QUcX5gM3h91sYSQ2YplVIMh2MlRIMYjyFinapDdaJdyUp4jTGTU8LYrPu8+lW7OX+M7ZwocPrnh9rKNuvfqV/hM/r79TDtuP3wVR7ktb7CqU4d5kP2bWfH658qta4Jr4f3Vfs0f/bTs5t8lRXxoYuqD0lInWF3dqwPpZhrPVOOqWeHrGcJrdNvTkluPXZ99RGv9yoPnris/6nrpa3J7fP3Iz0FKOcff9A6gWZNFZ6pnp4ek5zu/5zsJP00/QzmROhqCflu79jtiPu5VI1BE7PSPm9MBduIQI2I2gs+HhB3zmPHdpul7UOcdRRR0pL1Sg4+Hg6Eto5ba5s6SHvgRcsBpN+H6c+EpgiriqEpnZQds9P9+jBYjiHyS9MvwGXinz7+Uzy6f8Tg/ZldrMa85xZwKaXVek+VK/L6nGvOTSlXX8Jz+5z/6ep/YLk44jDEcKDiSUbYbkastxQMKUZu8i3PzA2/fPmrPJqu+afufpB3Dm+1HtGTxycc4Bw3eJU8trJLW2dTxSmgrfS1Jo0xa26x9Nn74PwQcnq2Z33n4VA7n19oQ7df5+m57cs9P775nzhwJC0ZP4xq0Tmoamhp13Y0B74gv8ln07e1/tjWndYHRETlXpAzW5+TalltpKlaK7ObSTU3ZcoCNSOo6hCAdb71qabEYZyGziWv62DOkZQTIWWWoInpVPJKVjfGUqQTKFRV0LS1RahM04h3QsgzOTikqh389nLHbtqyKQNPeMyjq0cMfmSwbrU/htzUGYuuUblgqyrrlppZwsz+uAeEy0tPqUn3D0afR4/bU8rkKmzkkn/q7p/h73z7T/L5l5/n7rjHYPHDgC1FrYuM4AZDzkKOahlv2h615ALOQU3rvBJjWvcJJ8SFplp1mupSSJQo655dXjyG/+cfh/urB9P5SqytQHDws78P+YXvoP6z/z/43/0kfVYdBt1TWa97DNtssELoVoYn9ZZ1XWtYVFeq6dNtV6PuRKe139LHT4tJ2j2WNr57v1/jknXsNKwPeTCgVPVV9+VU4XCYCYvuLYfRk1JPphpqgTiH5lRtyKuSTF9rVDmm0PqhqHoSAlZoKkVCDAExMDhPbHtCVZYVhs1Ayfr9UjKbiy3D4BrJJq/3UbLGKohphLNZcQwE6zy1FlKMaj/cMcU2N8Sm6KNW5FHfRVX7LqqqmvphYJgGxQqKxmh+8BgDyzK3GLAp3CA6RydVmNXp4GSniThSTBwPR6ZpWvtEDEmvr2S1kDNKUNKxqrFBRe0ZjegYVZJLRUSV1ksFj9PvpnpGZHKtTxVKNVjvGSZdV5c5tT1wxzYV6yhZ2j5W8ZiOHhqButoV6jFyhsbDaUQ6af09qe0bBucdYgrZqIJWV5GXtm53gqt3Fjp5sKkynqxXG45kT/sbtSMvayzd59l1z3GGs54AZ9G5Yv33KzugjkWt+7DTKBUD1um+IrfimK76aq2qddH3Xk29XpVeezFSbnOTnqSTs4Rub13X9dOgZFVVVmu4pFGVxo6fuma3SIGY9VmnDClDxSLS7YbbtSNQLVQlb5ZOxhND8zB93V631+1jaItZHswvX8tWpfKXr/8yX3Zf5k+/96f5nuP3/K7Zr1VUFejPfOrP8EvjL33lABxA4Ll7zo9d/hg/fvHj/Pmnf55/84v/Jt+///7/zSgr3dgb/uy7f5bn7vlv+bn33fv8zPZn+KN3f/Qf+ZyzmUl8YxNbLu4uePzi8df8PIJwsb/gn/sr/xz/1f/1v+K4PX7Nz/lbtl/+rColffETX+EDAvsL+Iv/F/jL/zz8uT8D/7f/4rceR6/b6/a6vW7/G2hfRRbjRNCRFUGXM1jnYevEof6585+9Ct53C49VjakrpLRzreSm2uWuBdOIR6YDQq114F060N9AvzU/cEZS6ucWAUppGH9TFBCDSFmD78rJz3u1COq/6cdsJzqX2D6/z457n5RYWhD8yvWvpKAq6/2tz6BUqu3e5prs6rG0tQ7nPNLUa8R1yxxNQlYxjNOGOvashIJQq1xwS9ZV9F0Y6lqxpbYGFbH6Hq01qyIDrXpP2nE2m42SleRETtJXobYsgz+pOtDstYwdGg6iVUaUXh1GA3hYP2+8x9RCiZXNRhU6liVgxLDbbRGhEQi0+kufuWlgnFY3hWXBeK/2ByZxvL9nWQIlR8yoijfWGexmhxmEmO7IOTCHhavrS1VeMIYL69gfjkyPRpwZWEKBkBCb8b7grVHrrzBz5Rx5M/Lk0VarYpt0dS6VwVmwEJvySy2VWoTaLKRySlQyQ81sjGfYbpEcKFSO+8C+RnKAdMxM1jBdWvz9wJOLCw7xwO3xCMWS5sqyX8AahtHixy3H5cghLAxOSFXVjDog1cGYsvbhc8n5U1rKtPcvVZVZvFPgpZbKbCLWDlhvsC6Qc1Kym7HUM7O4Sl7t37pMN7WDmPbhuGt/2jaGOm7bAdrBDwrc5RlbK8v+hs22ICiBTGpmM41YKRijIIxUsybsNGnT77URB+DBNRhqq3DWPuycJSdBvFZ2UsCLw4phyRHnRkoOGJRYEZaZwzFSidRSVD3oGIk5c3ecmZdEmhcOxxmxHrJQc0KsUL0qcGx3jqfvPMZ70xTChMM+UFJiWhKu7Hl6cU24n9nbhe2Uefr4Kd/6qc+yGzaksGcOiXGKiIccwNiJXBOparXpaB0VSy6WZVFlgONh5upqQ4612Swmak34kki5YO3Ao+mCl/fPee/ZDXivdnJLYCyJ5XjE5MJu9BwOC6SCwWAGyzCpPZ5zllIMIkrUiaFQsmkAviYfjFhqTOt6UclQmmVDA2HPpv9X1omzpEKmVap3ss+ZGkuCL37xA5Y0MwwTRiwxOg77oJZwTidFMVZtH9s6oNWTSqayDaAGVYXy3q9VlD1BQa2nJEi74C7hrwB/n8NKI422ublWvDMrYc6KKPFCCnMohHzHi5s7vPNIBS+Wi41DjFGVL+fZ3y7UCtM4AaocU3KhGrcSoRxNHclacmwJs8EwDEbVZ5ZMjAJOGCxsNqMmkLxjnByb7YRzhmDBektOCW8NHv27c6pOsz/ekGvFOiGEwDQM7HYTISdSijg3wNDsrwpMm4EKhKzKc9467m8zNSWss1CVmEoj4dzvj4zTBDWz2WwYNgPTNLC/veHmxf1qOWgHx8U0NVBaE3e7iwmoHI9HjIwc9wu3L+8AUZWosBBmVR87tCpy7wbECsYJ49ZwcT2SckLEsd2MxABS1BY1p66Ypepz3ntqcRgMpSwYWzUhFJP+Thy7y4ntZuSDL77kNh8oktlMA9vdRIxBSZsxqRUKRd+hUYjdizBOG4bBYS3EWDjsE8usJBtjK7U6co6qPGXVHlJVRwwiEWfVtsw5h6mWOGeyFIZBrS39aPXesioOxUVt+hqWTi5pHYsxNrs2Kn70qiYUkqo9FSWw0i0Q2ojXf8vJ1raTWtGqeWsdlVOSrO9DnbOM3mGN9t+wqIqBdZ7tdmCZI3GJlKJ55Wk7MPhRx2vV6uhxuCTOkVQS42aCqioUPaFUsiqhbMaB7UZVuWoVStWK9cPd3JLQBiuJkmrbrzhytQi2zQGqtGTtwDg5VS6rNLuVmRhCU+d0jZxRvsFBjLb/7fvgV39zTkh59Tvr30+txwese5bTb3pSR6vQeRAvvHqMUxKrf66e7dd7zHB2RWcHW1WfVoVH/fPssk6f4TTHf7h9+Jnovryuf5f1WGcJ64/43pquPiMqydknVxXcWqgtGdhJOaYRCnuM0H+GaCIWUUK6qsLREoa0z5uTvRA0ZYOH6+6pjqOCUaXUh2+ukQK9p5MKuopAP5F3Tu17+p03YoiIXY+yxmLnMSCwFsmIUXVWspIm0YSgGFH1OlECbFdkOu0ohE42yikjNvMbm1+nlKx7/qaeKF7XUDEW4wSJQikLtWZSTk1JUzBiGUQIKeEmhxFLyrVZuhasbWpPOVNzYjSG4i3Pr77Mj17+FT41fIbvOvxeBgac0esu6033pKpec62ZXMBScWJIY2FhTwViyHzef4G/vfsp9vWOx3KBHww2WDbjQMiRkCK1CjkpgUOMUetlHDfmJf9f+//mn5Tv5zv334WvvoWa5kEPlvUNCatfk5z9rL1PY1SZor870D23qSBG7Xg6Iahbu/V+r/ZdclJAXY9xUtro4/LsrTYV3tMouh3uuPEvccViqKS44IFz6quzqsxTJa/965xoQj3XA1tv7+zPM5U2Ed7N77IrW47mRV/OVpWUXDLeuJWQJEBOiVgzNKKcsVaVeUohxNyUETMxJt1HFu0HIkJtlj7eG7YXG030Z436YtB9rEuqWrodR3KImOj4rl/7Ht4Nb3H95hO89ZQciLngXFHSXa46FputVO74ijUtYd5tzwuMOk5LhVwLuSpAVUqhijAYz/XhAj4QoikY70klQVT795JavN3umUrrlw2zqSBFlJjVEvAaY5d1HpWmWtrfRS8ukzUmbi/i5loTB5zm0Yf9i4YLQQ0e/sb3w3f/HGzVLm6ZAymnZrWka3wv0lKV6pPyUa5nKq2NPNUVTiu1KaiY9d+n9auulk1KAG1ro9Sza+5z9InMWmG1n+7FbtZqTFVKJddEiPcreYQKzljc6FbCZi2V3BW/vKXWXpx0IpWYRiJyVklPKWdVoHFaDJVz1fmvqoq57dbe1qmdnHPgVPGolmZRXwpOVM1HiTxWi1tSxlglLAng/dCssxVzcNaRaiJnxdGs07jKoHhGjomSGx3WnNS7RdQO2aaCNPUc571iATkT5tgIsXrfbnB0hXcRg7MG71U1uD/842FuSkba31KMiFRyis0KzCrmICqI7Ue3Ft95r8+yq5ErSadjjUpClEbKXQn9cmYVJ6quN00DMSTCUZWojEULo1DbNlVVapZubVwoNlSxWMR4uqB8ikUVzkqBXHCNYCpG2jNwur8QA01RVeFNLWisuaoKuVEbST94oKpqU7PBzqWsSvTnqkk6xrWvd1yJUlfCz6nYoe/Z+r5PVmXK7qS77kub/XzHJc/ncmfNWuS52lkjeO/au0xrHGKdqldZ4+jKX8Y4KE3p0On1KsnuYSGetRbv7TruQQs41DouN0UlnQOz6DuutSvY9r5bV6zYuabmX5UErNde1v3qSox83V631+1r3rrazsdFUgLdF/zN3d/kX/v0v8Y/f/PP8y89/5f4dPg0Qx3Oduu/xffbtd6aW27czfrzn938LP/Fm/8FvzJ+dfZaVSq/OP4i//qn/3X+9Ht/mn/xxb/4NVN5+jjbr46/yq8Nv/bbfq5KJcvvjnrd9x6+l7fSW3zZf/l35Xi/q63C1e0V//Jf+pf51G9+6mM77dNnT3n67Cmf237uYzvnR7bf+FZ47+3f2Wf3F/Af/yn4l/8f8Mazr+11vW6v2+v2un2d2++YpNSlr5V00kD3Wljh3jPE/cPWB6+C+R/+mUaB5wD+OVj+CvBe6xpgnvCgE+io26WynqgTZU7XtUL3a6JXCUrn5KK6VnadEgv9eA/BKDnLiujXa5Nh7+pOD/dmHQyyLfLtVg3n99ZtCPrD7kmJ9XqqNPu3BpwIXG53jMOAAkAdJK0K6liVTr+4vlKgvWoC2BglE3nvqFVl61cZ/bPgnHaNKuWs1Vm1tAC5or7x1QDd27wF8wIUrb6KIbU+05IdHTtBwKgaA6VQc8RJbco1ChK4wWGskor6404pEbs8cetX0zS197LX91ALUq0qIVXBWq8kg1SwITBOhsE6Sg6EEvHOkolYMQzTRJoj0zTw5Mklx8OM3Y3IduD2/o7BqErUvCx4q8CLcQ5LZkkBZ7yCkaUwmomL3SUvZ8M+RvZ3t4RUiUugiMo7m5SRnCkYclRZ7JIqWWjiEJWL7QWXuwvcxZZ0eMExCiUNhFohR0YrpHgkFMv28SNymZGycH97pISKVEsxkWlw7K4Nz967IUWLw7G9HNnvF+am3qPVjF354QTgnCzYWqLprBCzVK3MUzBMiRrWOIyxOFuYpgFnjPZ5lBBiREHISm59uRERTR+3aN/ANECsJexEKGs/P1Mgq031y1pCCnjrCcuRm+OeJUb2+zugMA0DqURCjlivFnd9zsk5qkqLWHpHzbUgRU79svffysMxm2FeUpN1r6RQwBle3NxTiyoBpayS6xjwkwFxHEIkxKCgWwPRjfN826fexFnL4XhkP+/x48i4c2yuR8bBNhDN4GRgWeJ6jT57nmwf84lHb+LGDZuLxzx+/DaffOctJUCOI2E+EFJFbKbkyGYaiRnGyVDryDEW7uNCiAveVjaT4er6QgHJVvUoRcdMqIksFWMr3jtK2CE7i//0yAc3z3j/+Qfc398zPrlErDBcjJhjZjkEdtuNqqfYyqMnV4TjzEFmYjxSKeSslbBKjtN3u5kmYiiqqCOFUnSgDJOSCYycVaufLTUP1p3zebx24I5WNKj9sFQ4LkcyhWXes9mO5PlIWKIqo1TT3r1auJRGcFotZM7WKzFW7TikJSPa8aWtfbn57QjlLGnbE7O5kUW70p4q4fjRcP3oglIq+/3CZrNl3BiWcE+OOp9a60hh4bCfsXLg6tEFV9dXHO7vuZ9vWvJBEwsiFTc6jLOUouPKGgVKxSpJykjhjTcfs73YcvP8Jfv9rVrEYYipkktknKAWYXADRmB/f4f3nsvHV1pBnjL3xyNS9L7D/cI0DUzThpS1It6aiqmqXOSMKDnHDGymDdvtFozHULm/v8ciXF1fadV8yNwcZkJaFCgWtVMwksk5cDjcs9tc8PzZDbFVXaclqGVKA/yNc4AjVb1vPw7kXEgpUHNlOQaOaaZEVaC4v73HOdOs1SregBVHTJU5BtzG8/jJBePGcjjMrRLaAEn3L2KacmBsySqv5Ftb2W49VjwhBOaglnXWCPOysL9L2KpJG+cFZz3b7UQnUJei9l80gN15ra4fh4HtOLEcI+M44AdNcFg5IPXAsmhfSDET08K02WCkcjxqJXoGfPtejIFpu0GqcH93T0aTTNvdgHGmO99QM4SaSEmTCz3p5/0ALRHhp1ETIVXHNqdtRtuvnO1KagPxWxJeRQGqVgG2uTnGqM+rKaVQVY3Ce0dOlRjmdj0teWZELXFC0oQuhmFU5YxOSHRiGMeBGDMpCZKV2KdKVFr1jgjWWyU4bSb85AhLYAlJ1d9acqXmQk4Lx2Naq6rFWPww4pxv+4qqSSarSkvLopYctWhSTcYTOT6moGPWfSNXPteP/HsvYXjVQu3V/fP5d8+6w4e+9+AUIh+a+88O+uCvfdnoSdh6dhEnYsFHxDydACHn8cH5LbZ9z9mpT/HE+bWeks2nCzodfz3ggwfzYMO+fr7WHktpspr68Gv9QK8+m2FQpZb1fs/jH6OfH8ZJz4E09YpzgpLappzg67Pb6HdxdtPnp3+V/MUr76STdFVNQWO8cv5spak/1NqIHKzKDlVYE70a6+j5z/ePvTnnVlJTjwepSpTUucJSRJO2qRx5f3ivKWpogYQ1onbYAt55QlLy9bQZldwzOMRbQliUgIKSF61YqjR7GKquR2LbvrDixOGHgTmpzdc+vOQ9/5P81O6neOye8Kn59/B75+/A1wFb/SnJWaC0wp9C5r3dF/nVq1/ldrvnJn+ZmIUQK8d0oNTEZDy1JDKC30wtzkuEBWpum/9mX+pHw2E/U4vu03/q6d/m8+MX+EMv/iBDHNcin3rWSc96+VnHlbOfKwmjE950fGdNXjeigtqFnh1Jeqa5nv79ao9/JSY/Ax7Wv54T6W7NraoBltwUGBNzDORSVAm3gp0mSsnkklvtTl3vci1+MqcT1rZAndScT5dZa8U1cjIVUlZLtpIrJlcwwrEsNOlhWk0EiCqJYA0pN0XCqkUTFbX1fnx9hRFVEYo5qoriYPBjS3oLzcbbqIpX1SIUWw0bv+FquODNm3f4js9/N+/Yt7m82FGrEkJSAhVMbIpiVlVBc8nUanWcZP2QUHBWSQd9ntHxrGTyXFWlGGnEBhyDGfm2/BmeXbzgbn/PHBKmkRzEqkpNvjuuRUSlVoZpUMvWJVJLAjJdqahjKSLgvPbPGOrZvKDdZ2hWu9JwKv7B76XLz50wqI9aW9ri8f5T5Ne+lfrdPw/Nmi81eZliVbE3xtywolYsw6kor+NKvYusvb3NtSdidsO/6ulzVUGmFjfr9Z/oSE2JrMcopj3HUe16Q1DVqWH0lBobuby08Via4iP4wbHZTJArx8OxxU0FI07jBqN7IWpTnmvPpVZWwsc4ODa7DanZ22qRh15mSkVtrAW1RraWFAOI9p9umx1TWu87p4wpSujo6pvWVkrMtBorciu+s9a2Pqi/yCmRUsIPA37whHkhh0TOSYl2sD73WgsxBqydiDFxPAbdezYyjL6B9mzF6rsUUeVmVN2uFMWqlnlRFZ8KMUSM1XFoTQVTW2BqmkJZZTuNTJPXIozMmTV4xwuVMFZKQXDkrGRB55UgVUpREpVRS0S1XSuEWddIYwVbtejFmq5ajBIY21zWVXiMCINXm79OwBJjiCZDDaSkikrUk52Zb3Hguv4bwQ+OlMBYg7OWGKIS+HJBvMM4HXeqtG2aklZp5BtdL88J0tba9R10Fe++F1xxVeCEJ/cNXx/wrPsOQRXh+h6nq/QL4JoFYoqqwt1tDjsprb+HnNXy2phu86jft43t3d9HrfpZJSmdCj0xqibmvKO2GKkUmnqUzkMla8GFWX2ypdm72jZv1FVhzTRbunpmtWidxdR2f7WspLTX7XV73b727WAO/Mz2Zz4qUPvaNoEbd8NfePIX+EuP/xLfc/we/tDdH+JfePkvcJWvGOu4xoHnbZaZv37x1/lvH/+3/Prw63x++Pz6uyjxH55sIxAk8Ofe+XP89Yu/zr//+X+fN9IbH3kN3yztC/4LZxHxx9OmOmHrN54SlcmG7/qF7+KP/I9/hDfff/Njfa9Shc/+ymf53Ke+ziSl//b/DOWrwOp+/vfCj/9B+OM/8jW7pNftdXvdXrdvhPZV2b3BWWVgD4LXRH0DUESQukJzPMRt6noc/WdXMmpQSgNoOkmme2uvtgRn7Ry0rKUhMv16EIrUFQCUHoyWqvhyJwLV0kCGVwBxWUPaBwSlEzHqlLXoQe3DxEgL7FJRYgMq638OftKTBv05rXBSJ0epMoBQMLWuwIiIINZgikpRQ6HmSlgWcs1Nqb8nSqQlKCKYBhqdXYPah1VM6dV4lpKOqgpj/SmxLqK2bqJBd6dGrfdTCjEESoYQYwveT3LlpoEbK1iLrCC/tdIqeDSBYsXi288QVNK/VfyIMdScaGrSWiG6LC2RpAmRly9fNiCgqatIex5VlXCcs6oG1cBPTSQq/CBSkUHAGSV7aJ0xUoTRC2ajMtDH/YHj4UBxnpoqISeOxjB4p+BSqqQUGYwwbCbuX9xynBVImK6eUmpmDjNiLONoMG5gXhKjd4Rj4fb+2BSsLDkZBROoOGPJ1TCXwhNT+Y7Pfopfef+eYzrwZGPYWdhuR66fXDR1G3hxf0/OleMxkVPk0dU117sNFHjzyZvE8JxwFEwWpq1nXp7BUhhGTwhRFUA6yL8mwQxV6grQnPrxKXFjrdN+UgVrHeMwKPGHon0aWsJCFUSg5xKkVQk2ax+hWRko5N8xF+qZsoC091lkTTSFZSFMWi0ZspBTYT7eqf1gUwSLKZCBjGFJaFV2qSCFGBZq0Up3rFX1EE7kqTYYcCpvAVXH0tXugo28w/3+jlASKURMFaoxzGmmVDCoBZdBq9xirUitxJTJRVawbhgs283I7//2z2KN5Ze/+Dku/SUXzZpq3I3EeeHm5QFTMh61WaJWNtuRt7ZP+c7PfC+f+uQnEFe4unrEo6dvYkvmsN/jh4lcDDkkouhYyvlArXA8auJlcBP7ENhMW55cP2LYOEQym3EkF4u4iXDYc5jviY3M4mrB+cjV7hG74pmq4ZPvvs3zw0vktjIfjsSU9N6XRDaZafRs/YB14EdN6DkrhBipMlCKYVkyW7PDjZZxsizzwvz+PQg4caRaEQcXj7ZINZRYdd5tU+150ulc0eF87m+4bu9WbZoqOGfYbTcsYQEKw6CArDWOuCTEqDJSbJWSHSyEbkfWxwiknHFiVgCxlhOA2teDnlQ0mLW/FZpqQJuLnbPYwbK92rK7njQvWypLWDCDwY2qdJFSxRtPVI13Sk0gwn5/ZL7fE5ZmeWH1mTovXFztqBgO+yM1JWrJ2I1n2k6UmCAL2MT2auC49w0k1jl03HgeXe/Y7DaIWIbNliUumuA0lnG7aVXkhcGPpCU0YNYQY9R12yhIvbvYsBxmcgpsL7aYrWc5xGaVIAyjZfCW7Xbk9ubIiw9uKCkSQ8B6i0UaWKsmpzlnvG8WIc5RSmA5NNWokqmmIE7HdoyRZVkYR8/uaoeI4e7mJWWpSm5JM95anIVYkhI03YQRGAeH3ai60nJ3jx0q293IOHhyUqvDYRyIRZMN4+CgVdRbp3ZfIURySTx5eslbbz1hmRO//qvvcXtzZPAWZ3W/Ew+F926fMYwT1qvC4d3NPbXklgA0OG81gemarL8xbPxIWgq3N3tgr7Z32x2CZRwHhkZc3h8OGOOYxg3zPK87uGJaZXgtYB3D5JjvFuIST5XADjwGMXVVY6y5apKj6jo/TtuW3NA1exg8YnV9X46Lqiz0am9r8fZEVDRimOdACKktBAXnDeM0Mgwjw2CIKaIKikr8HYYBEWGZW8V6Syj0Ym4xqiYyzwGpTTWy2cqmnPW4zpBzwntLzgYvE1RDzqUlbU5EFU0GJySq5ULMGWOtWvSFSCiFUrXSuTYChFr6Zqx1bKYdbnC4RrIKS2Ke9bn0JJjaMqg1kPOWy82O7XbiG7XVtmfQhMm6qMMZ0aQnkfoHf2t+0RnVoe9VH/z0t24f2r+vKamW5JWz39UWm5yRh74S8RXa2rMmhR+c9be5qrZeSU/oFtIrierV1vqUtX5wrv7frhrUP9EfZlcGqFX38bR1K+e8RiXrNmtNlvcLqGvyTokQ7bgtNlTyeUTannC9SDl/mZ1e8vD9lUauyKWriJyt05z+/fC5t/dyRjTRBO/p+N1CirPPnbaUnVTV/l0K8zyvhKj2ofX5CZySjEaYzZF7e38qzqBqVr2RHiNZ57xqcAbEt3UmRGJMzZZFiYtJciNV0iyTC1Z0PQ9xISUlF7hxy0riRqgOPrBf5kvjl/gH13+PzbLhO19+N5+Kn8bXkVqEZArP3XP+9sXf4svb9xAvbNzAo+stLw6ReR8Z/cAgSkCdNl7V5GplDoFSIaZMzWqVOra4Z7fdUfKRlHTf75zhc+k3+G8e/zf8obsf4t35E7r/X5k6XVeo/9n3SfXsncgag2rin6aOZ7VghXIWia5v7sHQOh/bPcru40fjvlM/XEd+Tyy3//+G+XW1AUTXh1ILKQY6idFIPcUrCLlocYnu1dp4KkXXoHb9p3PLSrTsBMA+hC/dJfPugiWGtscq7cKFVDq5WRcvkWaf1eaMUnvSusfaanv21pPHGDE8v79lNANDi83coNZxyxyRalq8Y6CqwtjOb/lW/1m+94Pfz9Obx2x2OzbbHVI6ScOqukkp5KQkkdoUn3MjTDnriSlhrWUcRpCmmGQ0vhTrVQkpRmJJJBFMLSSTGdzAdtrwNDzmarfj9rCliFraxZioYog5kimr0ogxbc8DGLSf5pJw3jUCskXsgHX6Do77BS0uMG0dUeVT5y05NsWu6OC9d8966Wn++HBrnynAz30P/N6fX3vhMJwUVJDKMDZJutrVneRkW7VOvB9eNXR+ag7T6yXUdQ1dr61N3F1lthOfGlS2km6ct/jJ4xohfFkiOSfEqtJWzjpGjDhV7uJUGBSWhZJSO7aqvpUMfrTNclkLsWhKj25UVe3SiBniNFaph8NKOlEVH8tmGnXO84POiVXXCGMt1llSjDpnlqqWZG2uzvmkhuicJaPrixsc3o9aFJRaMaFRJadhmEghMy+BZQ5aGCKcEd31s6o20/aiRkmkOTe1nNIwRKNxUa20ghq1s/ODJ8ZIXBbtl1mvwbYCx9Ls3zrmYNu8EEJs+1y3Wj+mqDFnkd4Xuj1fU37K+hy62tLFxYSzjru7oyprA9WeCq8O+xnnVAHPNHWysIRmFWpWy1D6nllUTUuqEIMWglhrWvGBaYqI2nM7EcpbD+2Z6B67rmq63XKSCjmVlciEgBXFxGrDOlcMuG8vmvpi3zOtz4K6KgSp0mnDWVsc3pWbciNunfY9+r6sVfu0jm32dUTJXIacciPWnTBrLXrS55piVry1zfk5ZwqqjOWtpZamEKhMvBVfz1LUFrYvC00ptdvIdQKTdTpnpcQ6/k4kqa7KXLFO1Yb1ftF+0UhNXfm5xxS1VDCVwbumYPW6vW6v29e63dgb3vPvff0uQGCRhZ/e/TQ/vf1p/vzTP8878R3+lWf/Cn/k7o+wKztAP/Mr46/wH7/9H/MTu58gma+NpViWzI9f/Dj/6rf9q/x7X/j3+IH9DzyIGb+Z2k/sfuJ3Dkz8LjVTDZflki/yxY/3xF+pVXj7y2/zQ//TD/Htv/ztDHH42C9BECVGFaGarwAufa3bYQM/8318VR2iGvi//0n4F3/kY+9Hr9vr9rq9bh9n+yqUlFogt6J7JzBRoEO/Dbs+EQi6bcN5cvgBRn32s5Xq0HBsWWHyD8/EXY0IehJA/bZPFgj9Qs/SDecl1w1Y6amScgaRthOcwM1efdzIGh00fQj8638rdSVwqBRxwrUg9tT0OKWRE2o9yXdDA75rVy3q0vOauO1qUXqPBUFIObLfRzgYrB/WCh8aNJeLyjWv1Zw9AEUJXJpYa/LRospL1vj+lBRo7ZWHrRpZCTx6XTlnVQKiKduIqhekBkbWUki54Fu1ZEqJimCdx/tJQSaBlCJQMHZoAXlLWLW+l1ulT6oF6mpkcEpStcRyWd/7qU/1961Vr0p8SiVjqhCbYkmqqtpRskroW2dYDouq13hHTomwL9R9O39WgMMaQ0KBD6pWoxWE2+OBnWTG0SAy4qyQ5ntyXvBEwpKIVbCuMrpMDJn9cSGlqGOqVqiWFCujt1xsRq6vH3P55JKtKex2E2/h8OMlkmfeeXLNr33hN3n/2Qc8vbigHI/UlIkpaaWpc3zLJ95h9Jn33n/B4LZ88ltGSskcXuxx3nN7PxFTxI8D8eVLbBtXPXUoVVqVVx93ffxXvFEAR1rfxqj6UKqVipIQ+uuQnnHogOmZvH0nBqpFH42kZdZkZq0VsaJEiT4XVJ0DCkoMDDFwe3ePGwYwmc04YexAXAIVYZpUIn1ZEqloMkGKXaX+Q0oN0A5Y5xn8ALbbbTXQ27hmWaf3akphO2158sa3ktKR/bJnmQNhyQoYSeV4PGCqVk/ezweWmkk1I7UyGodzmsSexpHLpxdcbSbiMlNHy9UbO+ZaqCFChqE65vs9y21gsJary0veefsxn/jEW7z7zu/h6XTJZrvj0ZOn2GqJc+T++QFDYRg3zMcjF9OAI6slAp7QVGEu7RUI+KEwx5FIpbqECwMmwdXlNVcXTzgGGFxlc+HICaQmsGD9iBcHMnJ/DFjvsN4wDKoOY4tKoCdJTLsNhcx+uWfIBu83WCO4ETYXju3lQAiJ/f0RIwPWafLz7u4eqFxe7ZAqHA4BTGRZZnKqbPzuVO0Ia6LxHLg/V05Y5/U1YdTSZ7ZyeX3JsBnYlg0pR6zLSC3kKKSIVi6WqpXrrZMrONy7vCYdSwNaxRid9HNPGOt5T1Lsra+1BGlPXklVEotW5lqGwbHZOpCiyZ9BIBV2Fxc8fjqRY+HFsz03zw/EJWt1J5nDfKRmIafabAUEbyymFsIcqa4ybTc8feuRkoRyYtxNXF5t8U7nyNu7l9zcvgQP41ZJGtYKl49Gpo3DWo+zIxhh6zeUWpQQlTPL/siyLFocnCvkjHeGlBIhJoaNbWSAAWOFECJmDlxfbZmuNjx79pwcMrnssRc73nzyBnmpvP+lDxRM98L2YkuOUa09pVWoiuHy6hEX2w3eOvLGE+a9rilSibkSg1bV+8HjvSZuxnHAGktaNsz3R02E1EKqhdpAdTHCMi9473DWkWsm59j6PVxfbUix8MGzlyxLZhwi1tFInWrTt25TpELNXFxsefvdx1zsRuZDJCWtXi+pMI4OgzT7wcQS7zG+27igyoYFMJq0GQa1pKwCecm8uLshLUqATrlwPAZePL9biVLOqhoBwGaY1HYhKmnAj66Ry3XOtc6xzIEYoyYsvGuguVrySRGWORKOSmBCmmKeNeSaVUGuqvJCyAnJIFZwXtWhLoeh2RmktfIcwHvfFIV6hqIyjp5xHNe9mhHL8bDofsRZvBuUADW3xEcnFJ3NCSXVRlzShGFO6rpUCjjrlSwiMEwjl6Pa/i3HQKVirLDZDfjBqhLWoioJIRXGzcDucqcEiONRkzWDWrflEikYxtGz3W6Zthu8H3T9GVQZLoaIMR5rHYfjUYlWKUE1GKnUnJrtpyq2fKO32v6zJuvbz9d9eAsW1njhfAv/4SM9+OdKFHkAZ350PAFn68L6iR4R9AKFh9d2IurXs/OfLvBc+eLUXv3XK4nu9RPnxI12rFqpqSkX9L3Q2efP7+HBg5J+D+XB1T1UiC1rUFZLJoZGfDAWYx7aVq2KQqcHx0qUQpNoK+EXtZzGnF1rJzP1azsniNWT4oC0JD1GY6HSjksjRHXFzVJ0f2XEYJuVtI7lrvpqXiGh9X6n11zWWLKeftk6Zin5Qax6/oGKkpr6G/oN95vs5YBvsUhp+2XTnruIWhrFGLHWrM95PXelzecaR/Ukfcn6mSVGBila2IFVW5m0qLpPs28rtZNQC3f5hmc85zcuPseT8Sm/9/j7eH98nxt/w8vxOc5bpnHDsBnxRu05d1iMG5CSuNiMvLy7ZX84sBlGSoo6FzbFULGGq8sLrKnsD0eMeC6v1FozHiPGGpYQua93/Nj0P/ODX/5BPhU+LOff+/mHfm5Ebb/XcaZPvrS9PmdjgAd/Ow3UD6mqicYSD8cMK7FMHoyjuv6PrJZ/YrXIwVnd+5ekxFe1FKvNrrXVOvQ4qHZFFR1bhqaa0ZP8a9xjTmNSKr56PlM+Q3x0Qy6JmDSmLvlEQ1xjxZIJKZGqrsdSwaJE+Fx0LRiHkdFbSk5Uaxg3AwlVKKGArYYYImnJWBGGYeLiYuJ6d8kn6qf45N27fOqL38q1eYTZauFHOGjhiXWeGBODs5imHCbOrMolYhzODYgpjOMFqRaCM+Cg5szoBqZpC+IRCeoOnYf2ZJSB46yjlsqb9++w3e8w1rRxpBiH90aVyrwDgVQiJBiNa5aB4LwwomqEHGe1i0bVp+Z5IWclZDlrSVFVsUDfvcEixiJ5oD5/Q3GYFie8imd9ZDtMuh+TgvWWYRrWeb1UVVHMSW2+aIo1ueTTdHQ2patCt1lxkrWQqBcPnQ+YdYo9rWqcY1ciTeFLVusna5syXiNtixEuLraIQFiy7ndSWPdLOSuhZ7XxpSvXad+MseCojNMA1StZx+q+2jkdjyEGQgxYcc12szS1HcM4dttpp+iTNViUVAdqiRZDK3BAlZmMsBb/GIPujatpe8xIThlrHOM4spSF2MlVtXCx2+Kt57A/EpYAVFXzFrXsWpldVa3jpnFq1yTNfq4pDZVWZCWidvctTjBGTso7S1BBtNqLVfTdGKt2Zlqk55rKrsYp1grTpPvz+ajq10YMOenL7vZdtWMtLZ5wVgs6truBGE4qPaUooNPtMQVhCUFxlr45RjipMZaVPKVKWJW4RJYUVtJMSpFlSSvO2u3Wai2KiYrV9bP1VzG9g9fVeqwkxWOU+N/VUZUoXrLam2kBZJvr25y6rtvtkDXntp/Rd+T9qRCuE4tAr8GKaWrFOj6MUcJUJ9eKEXLUogAEfdbCqn7dceK+tqht4Cm213WgmfBVQZxQVMofa0wjjSoe2G3WrJMz5aRCzkqEtVYYNyMC7TvpTEVKCaBWlLSlMZnayBprV9UtkY7/qrpebWr13SayZJ1/X3U0eN1et9ftd79VKj+x+wle2Bdf70vRJvCB/4AP/Af8u5t/l++av4s/8eJP8NPbn+bXh1/nF6ZfIEr8SmH17+p1/Ob4m/xbn/q3+A9/8z/8piUqDXX4rWCIr0mb6sQ/ffdP8wvTL3x8J/2IZrLhk5//JN/+y9/O9/3093F1d/V1fYff/kvfztvvvc2X3v3S1+cC5gl+4Tu/+u+9eKzqS7b89p993V631+11+yZtv2OSkqzBYQe3z+of6wkMXHGUNaDpgIkGbiL1QUB4ShibFviyHkftfT6sfrH+vYPRUqmmUqVVn51dT7uCs2s7Vz86O5cRlcSGpgTVA/JXn8MDuPQE+NSzM1XTguS6WgidYUJ6T1KpjYFhaBZ6Vc/dKyCLqJIGVLCayEwhtqRUUeqIgBhNotWacU6l02sDpWoFyaoEopV5DfDPWsmklVaNoNSCW2M0IK89IdFh9F5BVMwK0OmjU+UcoSLW4LxXy6+UMUaIIZBLIFe1WRmcBaQF9ep1D4U0L1iv5841IyU3G75OjFLQv5RKSlltfZJtIEvPfeiz1ZfdCGAC1SiFpTYVA9OSG+CIaJWyq5YSKzIZdldbYsrEWnDjqJXKzaaJKsSYMRS224mUAjEWIgvOOiBRUlVFpeWI3zi8WNJ+j/jIsgSkqP1OCoXqMn5yrVJXGIyniJAV6cEMI4NVS6nbm3suLrfkjeWXvvgezg08vb7i0dWbYBLTrWVcdhQjHNOBXDWJYpwSKb7w3ue52k3stiNQ2d/e8uiNJ5QdfP4Ln8fvPE/8I3LOGHNJuF84pJbgagDQOvZKH+cKbNkGLLWf6DtTSRStHDYeIwPVnM0X/QWdtT5aT+NU1UFsA6pWUKtdiyaSu4S/VoOlkkjHgm9AqzdVLQO8EHJkDjNbsQxuIMdCCkec3+lxSCzN5kekMBkFv002GKOAkwJ5ZQXPqmQkZQVQ3UAqicMxMs+ZXIVCpEomm8LlxQ4vlnf82zzb37APe7w1fMuTd5mGkSRNceMYcAbynCkm4uwl2Ww4Hm44hntGV/nHvvPbMWbD48s3eXz9Jt/+2U9xud2x7DODt9zf3/DBl75EjIZqLCFn3nr6hJBmNnWiREtNlZf39yzpAEaYNhswqiKws6JEBmu52F7y5PICExJLrLx4+RIyVBNUTCpkxAkXuy3zUrm5O2p1bZwp+wzRYFtyMeaEd5aaMkWEmCPOD9gm746o7dPlo8rNywPzMVKKYEzhuJ+pYrAyYnwmBlU7sN4RQyEcM9YNCrhbBfZK6ycPVY4e/nmuHIfodXYC2nZ7gdt47m5eEmMAI4yjV2UGZ3DGEPcLrJWZDdxrynPGaVICqdQG1q4VxyeRhrN1hlOytS1SPVnX7eQMIKYybirjYChRyJLYXI7kUnjvix8QQiYtEEPSRJmpuGGgpERYiipVOLWMUns1IS0ZYxy73UTNkZqUuDZ6S12OGOvBwdXVFYe7hVADV493K3HH+aGpdEEVg7eem9uXWlWPhZIJcyAuqS1tLRWV1C6PkgizArR5SeRSGTdbqLAsMxebS3KKHPYLFSU+jcOGmAPeCzFqlfXxcFwrZmPJ1CpcPb7i+sk119sdRmA+HLl6fMUSAnGOpIOq64jxbDZbnHXE48Lz271W+KdMilGB+KoGlTknHA6LkkjCEjgeF00Mjr71a0ghcvtiz2GJCvBjoVQO88yyBLyfUEsKVZ8LKSMhknPmcB94+WxPSRFrK957pkmrj7zz4DTJRrMIwg+kmFhChFBx3q3klrgkljkoiUlErztnUhGomZITYTFUEbxXMmGMQSvEcwFrudgNWCvUErXyuwhxSVopbLXSmgbc52OmZrWviEEr7ayzeO/xo2Pwg6r9LTNu8HjjmI/67qZmAyeoletcGkEsJ0qmVfnXZq+r5KjtTm0g5zmCbDRRljsNXe3QUihafW4qphFQ1DrNgJdGpIbaiBq1QpwDNqrtUhm92sMYQ02V+9t77Y8V/CBYX6k4vB/w3hBjJcbAZucZrOHm+R2H/UIOpSXQBHGG7XbDxcWOaZqw1kE92ULkWLi/O5JKxI+ezWZgdI75OLOfj2rJYNQucH933wi335jtYaHCeYb37APwYFLs+bEPt49C/PQED0gKLS74qBzyOUGpBQGsbpu/01Oen9tUFeo8O/YpSfzggj7iwPpHXX8n6162/WK1WnnwfGAtnjhZzZ197/QTaEp+Jas1CW3fRts7a5JOVB2hWaz2ZKWUU0Kxh0o5l2aNC9gW76yky648KS2kqqfv0v99rn7U1CrbImfbNRijxKVcVI2j36+1rl1z+4q1CJUUE7Yl33X91/W4K38+eNalrDZtfc3toc/Dt3f2j0ZAMUZIJvHz0/+qz4K2R0SVkTCCH5vaYK1qo1q79Im+25JVEcg6q5ZhTSWhW1tq0QvMOWGdJgxLI82knKE2e+hcMUYLLFIb/2KEF8ML/hf/1wB9Pr4932UJem3G8Pz+HiOW7TgyjVuQilsEmwc66aOc3XMthbv7O0bvGJySVsMyM2231AFub2+xg2VjJ2IN/C9v/zh/5IM/zNvzp7Q/v0qeWPsH9IjvFKM3wkMbM2qNB4LVDtlfyVcYmA+mGtEVZU1qrx/oxT96nJWoVOHT8+/h700/i+n28DS1HSPkpAp7XlQxrDZFTWN870mkUpAWyzvp6i5tv0kvpGqYRFNSkVLYlA1iPFRVbkyptueUqSiBYRwGjAxcGMsxzoSka/Ll5gLXFG1LVRURI1CTFo0YM1DFkeJCzAFr4O0nTxDjmIYdl/aa78qf5d27d7l675oBT8gzh8M9uQg01ZHddgNF90C1iFq6pkgqStq1bsAaVRA1okzfgsMYx3ba4KqqeSwhIFWT5OKqKl9XVeFBlOibYkYCfOLX3uWX3vwVKHV1G8+1aAxYVC+tQtv/V2JKOOfwozuR5YtQTSswyEARnNF4Icagir5VFVCMMVqIYgzy7B1K2MA6Nk8LxW+lqMfnPoncXFIf3WCt2jXGGAlxwRjt19ZbckmYFhud7/17v9TOrnZhpu17pJEcar9xPuJP6QWD9bRW1LNjtjnY2IpzkKsh5oTxgrWWuRVQ1WKaIo3up5R8IuQYlUgjapNujDT7WtP2Zh5jTooy1ltV4SwFrMF7JVCEGHFe7axKtwy0DkStsb3T/WjKGj+5aqkN06qlnsgUDX8zDWtCiiZTa1e/caSUtACprRe1qSxroV5T4jJKMMkptZoSHdNd+WfcTkzjiHeO4+HIMHp9jynrMXOhtnXKOU/JmRAScz7quMz5FKO2fiwiWEHjl5obyVHt0aSpEgrCfJxZQtRlxiruklImpYSzpWGoNOtD9DnVQk6V+RBIMSHN+kuJONrHqzPUmM6wWsXsSsnUZiNmXYtjcyWFRK9aU+X0RraTsio0JnR/apsKU+qEpgoyqM2bxogFI9LU53TCVts7XXJLbnhnrivBqKs7rf9H+y6oJWiOudmvmrUI1DpVs6PoM9d3Uc4Cbt3H+MGhNpBJbb+dbfuEvlbo8yxJsVsxdcV7a1UbuE426uMOaeTjrizf7tG2sZ6CxmgqqFwZcaoubHScdBKhsTB4q9bUIanqbAVpZDhVrFPLQtMYh6psqXNWSlrQZ9tzG8RTsiHEREGVbUW06PSbkA/wur1u33Rtlpkfefwj35DjrUjhf938r/wHm//g63YNz91z/u1v+bf5Dz+nRKVvtvbHbv8Yf/HJXzzbd33tmyA8zo+RqsXSH2urMM0T3/P3v4fv/MXv5DO/8pmvi3LSR7Vpmfj+v/X9/Hf/p//u6zPefvb3w+3VV/+9n/gn4XPfAp/+jd/9a3rdXrfX7XX7Bmlfhd3bqZ3bnnVgcE2griQFhRRXHHhNGJxAV23nK0MHteW3BntOP+zfUErEWcDXK59LqQ3k7sc+V844HarACl5XerxdG1HhlMQ+T3A3tFO1BFpyoKwqP2fy0dbQEdkH5Kn+rESUqJFXeBwaQaeTQkrJlFWCHAVjznzX9VgagDvnTkAUINaBVEoxVFObbLFHVX8KrkmdO+cIiwIH6npVKVIRCilGfasCMUUN/MsJoPLeUXJmnLZYp9ZH2SdSDOSilf1q2zXivW0VQbllAlQGP8VILRXnBq0kzglTSqv4SQxuUGAXoGS9BpuYcwvmH/SNnuxQRQg/eqipvRtNTI7jlkomxplxu8Fbj3OW3W7DZpq4vb1nMw24YWCOgSWEVr0VV1LEYZ5bMrABYTVjjTT1n4x1KjtdJLA/LtSj0yR4FkCfy2gmXBG8E+zW4tyGFAdu72+wHq4uLkHU4mjwQgoHlmpwLnN/85zD/iX3N4aYMvsQqckQl4XjMhNaYt0YR0mFYBe+vL/l6uqaKg7vhBQWbu9uGaeJu+OeFBJ+GJk2IyUUnCixwFhZbahEpBXfK1CpamEtEbUmnQwFc7KyQW0DV7imthG/zg0noLfbkEirflvPCZqgEFmJAkCTwGYFvWpJgGkKGJnBezbDhnHwONlwu18YXLPQEkNOBj8KtSbtJxIpWE0sWEtBiXdFa49xMijQZGwjEoIVYQ6R/SET0sLt4cDd/si02RLTkbvjnkolm8humricPCIWLxPewPXVIy4vrtjPiZACd/EZNzc35JzZXFoSmrxa6kH9I4ct4+6atx+/ySff+QwWx24Y2Y6XeKtqJ5fXl3wiCS9vZ/Jg8QaWENkMA9eXO7wb2RPxEQqOEDL5kAjlSAoLz4+ZcIzcLkd2F57BCVfTFj9u2M8z3ghinFbdVqhYjnsFgp1kkiQ248ibT97m0fP3MRIwJROp3B8P5FrZbneEm4VCYNxcUrKw2Y5rMuFwtzAfopLVXCFVBW/96DnMgXBIbC8G3vrkI559+ZbjIeP8iPcOb1wjz1SKZDKoelxFiZA0JYWPWF9UDV6TIMPomZcFMwxqdZcWJU6lwmaYmOdFwcusNgPnFe89YdtJfoaeGCnNysq0BGtT1juNhNM62/80aqGFqUzTxKNHE1cXW0qtBBfw3uDcyDJHjnMADEYcfhCm7aSJ7wphXnBu4Pr6gmmrik/GDOS4YLwwbEessewPM/uDqjVM3rK93nLz4p6b/QEjhs00IcByPLLMQUH4WhnGiaura+ZD4PblLff396usfmq2ZiU10mkVUqoc01EfljFsxk1LNLeErUSEysXukjlEUq24QZN3KWU+/4Uv4o3BOq0useiz1MpuJU9ZY7GmVfUOIzc3dyzA9dNLRISXH9w0W1W1Y1mOC+MwIliW44HQyElg1GoCTgD8kqmDzks5NVuBpAoaKWki4vb2jnHj8MOIcxbfKmNLBimG47IoeXiwgCGGzP39Eesqpg68+OCAcYbd1cA0DGw3EylWjsdICAk/DGy3O9ISuAsHSk5qC1QLMRaWkPBebYW883jrmt1EWOdS16wrOzjebVYRaUmhwugHhIKzvnHOKilGJfWJhZoIS1qT2aWWZrHQVJUw1CzIIAzeY43BWUsuGecsg3PERRNhsWZCWFDlRQdVcA62uy21wGF/JDWLRTcZrBdw4MTiasYOgrdek/a5UEUTFWp/kaixgtNK6UptlcQ0hQzaup5bMqGuthvOGkoq3N/sybGoQl9KZCqSDLc3R/zg2G5NI/hanDOkEJlDVLJR0ISPd55pM6miiXPNNiTr3swPDE6TdTEuhOXI/eEAaLJu9B4xFe80wZpSoRRDWCJhufnQnPaN0j5qO/+hz5z9Xb4iQen80x9BTniFqHR+3o+a83tiiZbAPZuJT2SfM27Dq99eyVdVv7MeYS3sYP1MbevLGve0o5SqLmGNKrFedFf2k2aN1NeVj7z/ByywerLEPrv3UnvcIOt+eU2utaOd7G1PhCRxJ6ttXaO6wqTuw7pipjVq81RashhAqpKASi5r8j0XVRCo9bROdgVE51SxxtRO1GlkdA28MLbb2tRG1lGLn65kqyIstsWmZSVx6SOy60uvtccyptnRnL/Xun5On7+uM033glorf3fzd/lg+oCeyHXOYY3OncPgcdYRgu4RxGpBQm5Jdi2W0OcWU1dmUnWKxgVRVQPUDqalyFXtMxl9vkWAZn8matNpDYi3WOMoxbKEWVUBBy0K0XuGkiO5CsZWQjgS40yYVQU1JiWrLU2RNbe11KBFE9lk9mFhnCYljhuh5MSyLDjvCDGSc1HS7RD4W9d/i/9DepuxjA/i/K5KrPGEbpKMEVUVaZ84oQ1tPPY3ox2HruZ1PiQexvqN9HQ2eKX9smMFtX+/bdx63H+Zdox5YJFArYVsDc54nBOseOYwqx1Tf3fVNMXZloiWkzIHbZ0UES2sqkq66nb3jXWCCHzL8VP8TPibxJpYYiTEpDa1ObHEAKKJo8E5BteocaKKL9M4MQ4jISkZfclHlmWm1IofjBbt1EqiJaCtxw0Tu82WT8fP8B2/+J28VR8z+A3F6Tgbx4HLnTAvkWpNswvKOOuYBo2RAjOmVKyowlFNhURu+/mAwXAMd6qUaEG81/i0KnG/Wz8p8Q5VaJWC1IIxOuZ+z/238cvTr/Nru18mxmb9nlVl0fsBmnqPbRZTzjmMFWJIpKiKI12ZrYqqJIqxIIkUdK2/uhxJObfYQwttrBG4eYzkUQvjSl1L1bqY47k6K20OpQLJaoFXVSJ3t3n249iIiUq+tsa1eEWLp2rVuas0CzjWvtznMR0DtdvpVh1PXaPtNI2dBof08dEJC82ybBgcm0lxkJIjYtRKu1YIIa22uMY6xBRMs6RUWz+1KB/GRhurSoiIcUGsXW1zY1RMolIZ7UhJhWMrDvDeAUoWjUExp+JUdexid0HOqqY5z3O/AbWK4wwDaAM4Zd0/VmQtfqu1UrNaZpcS8V4L9VLOK96ACIfDUd91hyylF7l0W+7TXCOoqm3KlZALxlumYSIskePhiFije96iykDWWrU5z3nFU9a5rb+yUleykq6Xes7U1vycK2GJOA+2rTXWNlXvpAUZqeg9GiOk1o9SUnJjDIn5kM/iDbWoBsUEU9v/DuOIQViWQG37927tl3IlRd3jqwWnPl+1He7E0aZ2SO+XD/uu2rHZlazZLeq0wOdUNJQ7KXntys3erqy9eV3DbduPuNp0wI3injmVhm2qTbLanzflwUbcTTERG3HbNMWrKqqOKo0UaKwwjL5ZDiqhqlaoUY8vbXz3a0oxn/aVbR/Z14WTWrjuS2JIZIrGIavdmiocpVLwzmOskhGlEY1DiIS5KdQ29Vdnndqdd8Wk2slvSqzTfUohp0gKkaXo/bq2BzICYg3qWqjzmSqKvW6v2+v2tWqVyg+/8cP89Panv96X8g3dnvln/Edv/0f8Z7/+n/EkP/l6X85X1T4RP8F1vuale/mxnvcP3/5h/vO3/nOOcvz4TlrhM7/6Gf7Zv/LP8tb7b62x9zdS+56f+x5+/rt+nl/4rq+DytSvfxoOu6/+e8sI+RtfKf11e91et9ftH6V9FXZvHwb0V0sxadZUPfCkx/YPrdfWY7RAu8IaqJ1XjP5W535VAWP9eamrZDsrEUKvp9SmorMe/5UKazhTs6gNDFIwTH92Dtufrp1GisiNwNErdHp6orQAvCGj1EZm6NfRAXORVoGjcIRG3pV2fq3aLDkTS1G5eGPJ5ZQ006BUiVDOulURqpak9kNVz2laNRXAOA7UqgCUKoaUlXBSatWOUTVIzjmRUsC7oV1jphSYjzPWOcZxOPOq16ojTMXQqnNGT1i0etS1QD+lnmCp/YmAMadqY2NUahq1aTKcrlGM4BpQ2+Wpi/RndnqZHQBAKoMziJqBUaUybUY2uw375Y5ShXmeCSyM48jgLaPzXO12OCc8u7lTspN3hLQgojLl3mkFd0xJZamrqD1Bk4suGuFTY2FJmcNtq4I2StZRwD9SjFCNZxg8m9EroScv7DYD4+XIG48u8aMQ7g5449m4TEkzF1cbliWyvz2y2InjMrOfI8Y5agmqKIImkKVkpDrchcOMINbx/vtf5mI38uzlM+5vI8Z7jvOB+X5BzAEjjjRnjksCJ4xN6YbaEz2V0sBG7ROFUvOaEKhawoupSleilFah34hOsAKq0uTTjRGMtKp39Fx9bNeW2RNjqEWTW2rhpK8810ZGacksYwwpqiR3mI8MzlNKpJaACByOB+zwjFgqOY1UU6hViWghRVUHKhVnKrGB+6UEqIXLyyv8MGCKNFBKK5+XsPD+l2+Z5wN3h9tGTEpKNHCRQwx8+XbhDXfF/e2e5ZiR4hhK4YP7D7iZb9gfCtjK8fCSF/M9xhlCtizLkRQEv1UlnJKDWoDsLpiXmevLJxznRK57rh69yXK/EI4L20l4eu2oViixcmTk8eM3sNZyyDO3xz3LsmDtwLBxIJk4V8SPvLz9AModH+xveL73vPHGI4bdhu1guHIj831kcAPWG8KwaAVzKljJbCZLyImcPZ94/Da37zzn7//CMwYs42jIMhFCphAwVri43OockIWQCikFcqxN/a2SYlC7OzEUBO8sFxdbZiM8enLF5eWO+1uV5t9uRzaDxRZDzTqHpNz6bZMz185X1/nxfF1Zk2YtwZtiZDONXHjP3c2e/X0gLEdNIgza39SSpo37lsjLqH1mKZmwBKxTRbwOTq8LSQ/f2nWZVsW9Kg0ou4NhHPGTYdoNXO4usZJ570svQARrCtNmQ4yFp08fkdKW4zJzuJupVRBrGPzEMiem0ZKT4AZ49GTDEjI3L2ecyzy52uDGAecc19fv8L59yYvnLznsj1hbCLGQsypDGVGLtloqwzBg3cDlxRW77QXeel7sX3K437ckqpJtF3RN8nYEaYnZqmRGnavtmmOPWef+Tp598eKOFBOH46KKEGLV5iAXUgyUmnVty5mwNOUfCtPkuL6+YpxGbl++JITA9uKSx0+vMUbnJDsIF1dbwhy5u9/jjMU7zzIf17knZyU/1maPZETXmZIzNUQlN5fWZ6mEEEhJiUuTsViZMOKoOXO4P4IYLGOb51LrB5pQGacBkzLPP7hX5YU6cLEbsYNBGhHu/n7mcIwM44ZHjx8xjSPvff49YsiqulDsCRzPhiKVKlmt60TtTNTpoZOXtUq71mab0vcqVkk2NUZiDNzfZpyLmmgvVa8ZBbfH0UNQkoC1qqQVQiSnCI2UViks84LzRtWzqq7jOSVCSwSlJRHSTKk6h6eoqkKgCS8pQo6JnDJu8GynET/ImozbbEYGq4Ro77z+TipWLJIDs0lqMdsthbKuI6kmrFho60ipPYHnG5lJ+1otwtKq77VqXPdqwzBgB02K5pKppZBzxHv1/4hL1uR7S06XUjgejxTJVD/qd0RwziPGMM9H5uNMiIFUAkghLJFlOXKQqlXQckqKaNKQnhX5Bm1rxv70kw//6Lc9xkOKTycZnBK5X+kZfEVLnn68s3jm4fWen/n85w8/+5AM1T+vBMj1PK/cZ6UnWivFmFcAvfOY4cGVfvjaH3yt7ZlofUOkWUw3ImKtiDmzGT2LceA8pgFaorzvs0+JRk3y1UqzTjwnk/RnXVtc1s+t9qd6Tv1ZSqklO+1KxJKWwGyr85pQpLImIOU05Hskof+VE8lEzJoeXZ9jjz0ETtYnLYFae0D4oQesUa01rSynVt4b3uPnrn4ON1hCUz9JOZGTkiOKVTmO0Q8YIxxmjSGMNeTY1DebtWaGU3KydQqpshJKpLEhUi7EpazWfxrj6nOsosqH1hoGY1GCnSrPusGx3YwYCzlEDBbf1r/BOXLSdTMZVRkJqbRkqNrZdlKVxqs674hTlZP9fs84WPJ8ICyqFBVzJIUMKMn8C3yJv+1/ih84/kCzyemxhKx9ldZf1IavnGem9Xm0PtM/W9vvTh87U0le3/MZ2Wkd2qc+X2tLHr+ipFVaX79IO3Z5w9EoQTSnhPWq4EKLeWKKSDzwPH3Au8snqYyArg+5qKIrVQtYco7tNhtZYxhVAUw4WWoXGMOEu7XsuSfERff7kxbrGFOIJbNfMtWMhCWQYoGqcf4hHJjTQowVDMQ0M6egdkVFmjIimFY0VEsmlcxlfMS3/+x3cMkVyWpMNE47clBLOW+F7aRKi7VAwjFNW4wRQlEyVc5pVdMR0fqrkoUshjkcSDVy3GsBg/GWwQijtYSqcfTgddyU2tXPCs6qsm2usKs7/sCL7+XF+B7Py4KzhiwGRNWraiO8WGvIzTotpdz+3og/uZJz7DOL4ijOrj1l2kzMxxnnGonBq1UUx2uqMa1/KlOiFzRwGranKZiHloW0MY5ooUGKmSWoDWQtGedO/fhUGFdOJN024ana8YnQ+eo5ab2+Kx+vfJtGqkB03nODxVgYxxFnDSEsHOcFaXNIReexafTEqGSIbvtrrVUVKiO4FscPg8U4YT4mck4Mk6q/YATnNjjn2d8fKTmrHa4VPYZYjLGr+qnO7QbnB8ZxxDYLvmWelY/Zcavuqd2KC1SFDn3PdBJNW6uaFZla+mrfyvlAWCIVGsFFn1NMWVE7I0qi68o+bc0cp4Fh8JRcuL+/Y5o2TJtB35UBMRU3WCiwLIEUdB3K6URMLb2wsvWljptqrNSBvDYlirR4BnKWZtFnNZ6gtKIXVVwy2LM1rOGMxuC9PsP7eKRkVS9SC2hdO3KuLIvGOOM4Mm02zIeZ0mwIa1Mi7BFrrTQsUt/96fmiyj8igM6Trq3VvaOKkaYir8UBJTcy9GqLpqifWrApcb/jfbXKSqSqTcGpUMgpIU4VmTqJpxcZKJZ5Kjjo1mymtndeFSeo7bk7a7G+X3NtyszNKlRUZbI28lrNlWwKpROlax+nrNa0+p5P6vudQNQVngVVQszoe+jSoda0Ao22vylFr1NqbmqYvfjj9F5STqryXCvVWlLJaodr9TnqOE6tj50KWZKclMjOScS1nua21+11e92+Nu3vbv4uP/z0hz9+tZtvwvZzm5/jh9/4Yf7Ue39qLRT+ZmifDJ/k7fj274ik9L57f90//qO2t9JbfEv4Fn5x+sV/5GP9TtvTZ0/54//NH+fy/vJjO+dX26Yw8UM/9kN88d0vcnd19/GduAJfeufjO9/r9rq9bq/bN1n7qpWUXq1M7nnWcxjwoz6nuMoJuD4pQ2jw9hC+fxgg8crPz86yAo4dVF+JU3oRK6BZ18xN/6x55Yz9yji7E1n/LsiaCDolCvSYUquCm+3jHav6UDUdDRJvILg1DteSf8s8K/GgFk2E1trEl4wmEnNCrG3HLCsAUWtpCfWOylYquSXNEykoqGSsYL0SiLz3GFEJ6lMVtKIHGjjrOUoprYI5YURlr2vJ1JzIKVFS1CfoHc6YM3uK05M8J5/VBhg4Z5v6ksd5T9VML270lFTI7dkItGS+JldWw5aqn8kpq20MnjwvK8izAoVVgQhvbZP9BrEwTSPTbqDmQAqBORyIXtgMHqlwVzJ5SVzuLpj8xMVm4hAiy3LQZwSIseSYSCVrdVosWHFrNaQxwuhHMELOkSVWht2FAtACuczUZDB1JIVAFLDGYUfLu0/fIuQjKTjc5Hn8aEMqkZcCyzExH+6IIXKfDhQy02ajss1B1ZYyUGLW6jsjlJQVUMmFmCLz/g47J7abDff7PdUI07ihCAyjYbAb5iVSUkKd+TJ+2KwAZyck9jElrcK7K3sZa6FZbnRfe7ECVquzU0qnKtC2/bZWIRZvVQmsNFsFMCtQp8QlnXBU2r+B5EVto1JpQG/z/Sil4IcB6wylpJYYM8QI1o0YqQyjo9QZJGr1W62EOZDSQi4BK46ahVJn7u9nBN9sRCxbQGpWq0Cvyjx3+4Ww/4BaK3NYiDFQSJqAKJVxNMwhsQ+BYfREyczLkXx/JJrEdrclRUMqCWMKc11UDWhJao+VYWQEKwwjGK8JMFMyeQkcoyfML9kNI74OVDNRnHCQgEQoAaZpQEqkxAy54OzE8HRDblaSfromlz0f3HyZm/mW3/yVf8B+WRisp9Z3cJIpO4PH4GtFiiNlGIeJWgvBKEHTWsMFW2oUHl895fLxhkkSv/6lX+IXv/QlsBackup2bz/GmIyYSk4Qw8IyJ45zVMny0WOMYX97wBgYN15JO5Nle3lJTIUvfOEZx72q+QyjMDiDy55qtaq2V5SuQHAH3kxGivTZ5cF6U3Xy5mK7w42ONEfi3QGT4WK7ww6WVCtWwObSrJ0SJckKfMJJRTDFjPodskrZr+vWWRKiVhQArWv6fVXJu76+wDglSog1al1RM1fXlwx+ZBi0etnbgZKPq03ZdrPl+tE1l5dX3L58wed+/cvs94XN0ZByZHfpuH5yweXlBjHC4T4S54Xt1rHManl5f1wUvJeBUg1zzCp1X00jKTl22wvikri7+YBlPmj1e9EKW2sNflQ7OiMG70fKsZBSYZgGxtHjR1W16VXbMWm/B2GZg1p9+oFaK4fjPflQGDcjgx8wtjI4RzoGSkmaCNoOvPnmIx5dX3O4X3j5/AYoTJtW2Z0r3g88fnLN8w9ecntzgKKKaS9fPENEmKaRgiEVqLUB0SvRulIxqxWONQbrnRI2WxJ5s52YJsPhflaLltHjrVomIK4lLQvjNKjqRMxKhKkGEYf3lWn0OAc1G0LK3C9H0lJwxrOZJgbvVOEn6x6iqyP1PZKz4JwC1dvtlnEcubm5VbKdc7i2P9gMA8YrwTiFQEoVYy273aTgdswc9keKK+u+rpTULDQy1g6MG0/OSkSw1pOSWi8YowkGEVVt6monOWa1ZzBNVSJp8s8Cu92WYfTkkghz0ArgkEitYluo1JRYDpX5UNt6Y9iME7ba9gzUQkUTs4GahWmYOORCTosqbjWQX4X79P1aY9WCoScTaMpqg2c5RGLQvValarJ1HNjsJjbbzbq9jEsiBCVPhiUj1eD9gJDIMZNqYrCOYbTUktgfjozjFiuG+XgkhBuWJSKmMoweP9i2JyyN3GDVBrhkRAzWNfW4/I1r93ZqOgf+dnyqWl+l5NSHf1u5CD1Rc/7dUyzy4bjk1Tjj1W8/bK/uL3977PD8M+3aepLuLL7gwd96VvKVE/6WZ9HkklbBG92fc0rIvlro0YnivWBiXffa7Xd1Jf1PacQiJZnWbnnVFNbUvqUl4ts6dyIOnRQEe3KQWtZEsB47q/VSafZGxmh6Unpy9uxGz8hFtKSiM0osMG0stCwixhloaobnFkCcPReNlxpxqhZNiKLqZw9ewdmzE9Otxiqfmz7HT179JHnUmK3krLZoRpOcqVlzl5SV5D84Bu+IObPEk02Z6QUa7f+16DV3FQNpSVNE91a5gB2G1peEUtVuR9DijdzuWaxwtd2RqyaBjTVsNp5cMjNCTplj1LghFF2D1GZJiVCdtFMacUpEmqUSUNr95oCkjPdKRq2tiER7jmBH19Q9Chj4B5u/z/em389VvV4JE2s37/ullvTuMccpvm2/F1UUK2uy+Tx672+sNlXbrkDck68P36u+524DrP2033OPPw9mz0EOjXTT+4f2l5JoxUhgneEntn+dMQ182n6aXdmqDVDJSFdGKXqxIWQEfe9GDL6NB9Vd0ff8i+bv85vhc1QKsSQlsNbSCngqVoRUMiFnXftFyfylJIooUacU01TEComEFUPMquZJERyWYsA6JQ6EMVJMpIZMLIYcF7x1upaKp1oIZLVjS4J1TX0xgRQwxmE3jpqVrF8wDHbg/v6OUAI3dy+Z51kLSzaTFoMMhWo3SHsWpVSMddiqpKRSDQUUM0ha/PVZ+Sz34QU/+eRv8uW7Z5Sq6j65VjbbnfYdo1bnqsyTiVEJ8t1yKixKFjO2291Xpq0nl8J+fyQsSqw2VosLbLXwK99FtUaVphtyJRQoSl7vWNZa+HD23z6pWGsVH6AS40JNGW8tZvBa61QKplS1o9POuPbZjp+BQlpdIe7s8A/hrBNa1Sfl9ZciHYeRNserqqoqUjmsda0oqEBV8nzOsdmwKXF7GFVN9eWLW2JMhNgcP01luxmYNg7T9npxSTgrDN4SE6Q2r5SiRKjU7KpUXU+JGd55jFgOh7kpeqsiTOnPsiktlVLb32mYl8FYUbL92fhXy2+ddErphQe6juWoezJjdQ6jSiPgKqmponZwm83IdrvBiHB/dyTXxDA4xf5qpWRhGAYE4bA/KClJhLAsOm6tU/JTlVWZ6TRrtT1R2wdIuzZ970qyM9YwDGoNOh8XjDVtrhOU4ciZVZ4SiNUa7TQB+sGuVts1w5JLUwPXZ9aJs7Q59lXFYWnW0iJGFVCHgZQyy9xsz9sYM2Kw4pp6WGnWy2r/14/d7cjXYrQ2F4pULKrSJN2mzbpGUGqELHNGPK6ntao0VUJpz4OmcuSsxXntMzlpnKTE30bagabCq0VHlUZmMlYV++nna4TWmtt6bbGGlSy2vlFRQvVKsDrDa/vc4KyBIqRSmopcUVKfsViv40wVbTUuTkm/2QlKSiZXMnOpBamCdYJYSCmAMYh1lCykOK/rsXEGsQazPnN9byUXJZ+1/Y7uT377fejr9rq9bl99q1T+xu5v8J++/Z9y626/3pfzzdEEfuTRj/Ann/9JPhk/+fW+mt9xe9+/z3P3/Hf02f/k7f+EJ+kJ33f4Pt5Mb2L5h1PPKRT++6v/nl8ef/kf6vv/sO3+4p4wfOMr8H3iC5/gB/7GD/Cjf+xHKfZjxM3+P//Hj+9cr9vr9rq9bt9k7asiKX0Y6D4LWjrpaP3nebDZQrH2S3OWID5Rd85qk3+bjMXp3A1wrmey8R3EPIMqpcoKHqjdzen/K22qnmwCqL0SuicRFCSu5WSNYIxW1VjTQYYmP1zLamnQbQ+gSe0WsyrJ1CqkGNnHiPeC0TKlFkurp7yx0qT6FVjr4EpOaQVoOpCdUlLAs2acCKVESk4KXlNX0o+3mnTLOWKNXxPgHQc+5W/686wYKrlmDIVUVH1AqgbyJUWWo6oHFLS6p9QzGzrqKpFdSmFZglZuVRohSr3ujbGt+qzpVOS4gjVFkbhmddAUVnIm5dSqrs3JLq9q/9KqVL0ZN45sdxdcXF5Q7gq7iy1GCjkHyJEwJ7wZkFJxoh11f9izzEfu9iPXjy+ZBktlx35/JFW1tulBvCYEq4LqraoqpYwfPeINtWbEWYwbKSFibCUfA7Z6jBkoteCsZTeMuGrBGqZpIo5qnXNzeIFUrYp2G4fsLnj+7IaYItM4cDweuDvcEwOMw0AoWYG21tdLAlwFEtfXF8QPjjx79pJwmbEmc/n4ipwSS1ioJkIBZ/Wdy2AZq6hVxWa7ghfGnKrOjC14K1SJjNNIEZWGVwA2EkNkmRdSaImuXE7zhbSx2eTMlbTYwP+OK4qstkoiFaSQUiWmpOCwZB0XRckafYiXUqgxMIha7C3LkWEYOcwJO1rcoFVlmJn5eMD5jLeGEiMlBXJw1HqkpiPebRm8J8fMfLzneFAQz1BxRigChkKRRHCRwTu91hypLhKtqpot86LVs3lhvj0qsS0VXrw8sKTK5XVgHCdELDnCfg6w3yMI42Zid7nDj55o4VAizw43PDm+5OJqYE6RC+9hqez3B8yg/S6FSg0K1hkDzhYCmVwzuSzkcE+MEakGIwPHFweokcvRcSeFy801bzzZkMueY9yzLJd8cf9l3nrzKSZnRDaUatiRyTESipBFcLmy2W4YB6FawfrH/OO/758ghD0vD5Vn9zf6jNyktoBUpsEiBJYZQu8vFPyg5AY/eAUlmxrP/jCj1a6DWkyhZLbD/sjlk6dMzlGygoApqX2C/l+Jl0lSs7XslgqtorUB+X06DCGwP+653x+5n49QC5vtFuccx1tV91H5fk1Y+UHJSsb0RU7WCshSMs7as/WOdS1Um4c+F0tLujeA0yr5aDlYrq43HOaFfUhM047HT7aMW8Pzl3eEmFSNKEdKyMRjxFlPiYVn77/PNI0KaNuqanDVMQyWi8uB7VYJrLkUcgm8vDtSq8ONjvlWrS3VvsZTiybacio4N4BYcq7c395z2O+bGkzF+bYGLlCrIQUFf0MO1LEqSTNGqje4URiMMI2TKmqF2FQKpVWLOo6HmUphGgcsI6kW3DCQkyb9lv2RFNXywI8jb7z1lCdPH3N/e8eLl7dMmy277YSpOm/v745Yp1Zmty/vKbkyDFOzpkg4L6ScV8UoI4Zc8wo8r9aUFIxzOGeaPYOSKJ2zKNHTYWQgZiXhppQ1pWX02NNk2V1eIGJxUVWYYmjkH6N7k+N+4f7u0EB+h3eezTgyDlrprnudEyl4TbS3JEWpEQgsS2CaNgqol6rzphdM1aSQG10DzisxBWLOzGFhGvy6Z0tRE1mGRkRFq3X73qyWVp1r9Fn4QefM0saJH4aVxKyJWQXDY9TjTBvP4DSZM21GjEykMRGT7ndqhWmjFosxBMIS1G5NTnYM+/2B3JLYNILiNE0Ya1hyavYV0vZW+qyK6Bh0zq3qkzklJWt5wQ8TRnT/4iwkVPloe7Hl6nqH2Gat0cjm1lkupwv2t/dUdRcFyaqqaAXrB3bXI9ZbSswYNzRrFLW6K7lQuzVk1Sp8KfrMclT1C2MM1nlNBpZMxazqAd+o7ZQ37EyUnshtfz8nE33U91892Pln68NPvBq7vKqkevr5KVlz3j7i0+t1n8cKtZ7/ro2/lYB6FpP084Em9ESaKhtnx4BTnNO+fUbG6KSKfh0lK1nBGlHr696fq5ItTsoF5fS9SotJ9N9ipIm5nhVBGLMSDqgag6iSUCPCoPszEU3h9X277odP19iJPXpg/Xy3geyPtJZCjhHjOhiryjDnj/2kLtLJx40c3wlRqMqEFGkVyfVEgJKWBK7o7ypNTU7jk068Orvw9dgrycVaygi/cflr/A/+RylTUWJTUSm2nArWqxJb34OHplzgomWcVLGk4omo2p/0F7p2H41raQnRihaQYECasihGFfmMgRqV/CiiCXVjDN46rTA2agWZrUAtzEFtVa0RjLOINxyPcysgccQYCDFQclNKqTr/rP1vrSjKqrBzSBwOC+NYMVIYNrp2ppTAaN/q8YIxwjIc+dnh7/HPLD+4xk/0daNZ0nSLQdvITl0dJRdNpKeUmipOXePp3rp50mkOaf1wnWekxdqnfd7JBuhMi6snaal8yb/HveyRLFjblP6MxWKJSZO91ug4mGXPX938v9iNl3wivcsj+5i357eojbrybnqbUTaItVCEmAIudjXpdnlS+aXxF/lru/9Zlf2MQRJQMthMbonv/s5KSSy5NgygMs+RXCrDpOq3qvEHIWUIEQGsdwyD07FWINbMMc7s6z3Pnj5j94UrhsaSiSEiVp9XzlXXsbbuG6PqHx27qDlQsiqEGWMoEWrUGDGVymA9ZlJloiXO5Jw4HA6UjcVJRYqnYtrfC6n1j9LmnWEY9DpK5fsO/zjFRv6X8W8AC0tatIhIrGIWxmCoJK3HaKQDnedts4pED6/XXit5ViylNhVfYw0pRXxXmjSWamzbJ6iKs+7ZC7kYVQxeh3F90C/7/K3jIzIvgRgiKScGo6o2oRWLlNKJODoOO4Yi0vsvbT9QG7G6a/CczqdLT+2rx6mQTFht3lIIeDciFSW8GMN2s2XaqF1jCKqq5MSqKm0q1KzPZZ4XQNhMI6owp3OQAOMoDKPu36iZUioxRVKqahmaMilroZl12v+VGNleiFGLtJQyYYltDWskckAUMmvYi+7RpNLwmASCWvhRmoK1W5WXTyRaS24KW8YIxlskV0zDqAQa6T83PEKYNhO7iy0A+73uxce2JxSBOShhNKVMaEWCtuFcOed1Deq4WH9nnZDb9wRttVkJSv2di5GmslubMhIrEafkipgTgcsPvpGUDJLyiiWuxYOlMi+hPVslODtvcda0YsLzvc+DHVfDJLsCk1rE9f1yV6Q3oraoatsqK5msKyc6p+dKos/GtH3rqni/nqu2vl6oJa34ql/V1ttYN7Z9T+f5bsVWasU2a87Vns5ZqrWqaF4quRQlItqujKyxEe1cxjS7vFyaNaes67I1tsVXdX02J3Wzjq9KI31BJ31LlabeJacx2TAAay3jRmMBaG4Fbas0DIOqzqa8XocYVQJDVB3NeSWP4kzbm2lMUnJZ3x1Nabh2om852dOJkbU4I5eTOuHr9rq9br87rVC4N/f86NWP8ufe+XOvCUpfZXvmnvGXHv8l/o0v/xtn0fU3dvs7m7/D++7939Fn7+wd/863/DtsyobvO3wf37l8J//E/p8AdP35fcffx1QmBGGow0c+g0Lhr17/Vf7su39WHUc+xraMC7/82V/m6fOnH+t5v9omCD/wEz/AMi78tR/8ax8fUal+c/TZ1+11e91et69H+6rt3s4Kkh5WJHMua3v6Tg/SOi9pDTzX6BMag0gLgM5w2len71fJS+c4codhTh/RyvgOWkOr4hezgvtnxSN6T93+AA3icz/Hq9fRgk51civQFRNMbQBVbWCDwqXraYRmY9CvtTTrgvPv6PErVUGRVrlcG+C0VjS1K+mVYKWqYpDeo4LBKihT12DbmZ6U0JtWdzIF79XmpVsdVIReuadJ2WIVbKAUSmpVT2h1jmnV1LW2Ks+m7rQCK6WsCfweHIsYUlS7gcE5TXJWwYla16mlgGb0cn+mxZCLqjipJYo+T2csLhpSru06mppFS3RcXF9Rqj6n7WZSC7aacE5Umnwv5FTwuw3OWpYQqRaOy5ElR2Jp9gxu0krhnBSUNE6Vgoo+s5gixig5peSCSMRWi8Pw7rc8YSmF97940Io/sWwmx2gnDvuEKYXlsEc2F9zcvOTiYofxgpB4eXuPt56cklaXNhBpPkbSUS0A5iBNajpqNW2aseK0kzawbdpMpJi0Xxl9nyln9ocDpphmJxMZrap5HOcjkg1GRiiZnBKYliRdkycK7AyDIxYlj4WwQFZgJJdMyjSyyZqra6CNQ2pZgbCUVb67FK3O0/7dpMTbuNQqfkMltySYgktdztsYJXOUrICzSnzXRlKaySU3woBl2giVhadPr9kPAUrgYndJdJm7u0KNSlyIYcEwMU4GsYltBWMjw6B9dZn3UGHJkeoM4gTnLWWv42EaR/ZxJhfhcEgs88y0McSoZByio0Rhf7cwThuW5Y6SDGEuSE3svNNnLF7VWWpmYyz7mHjx/AN+cZmJ73wrv+dbv5vN9TWubLl68ja77Y7nL94jzHsmOyHGKviftxTrCXkmz4bKhlIssRrEFuZ8wzTCciz40fEd3/1tuOr54IMv8N7L5xAzk1hyqGQzYGvFZqE6jxsrZY7YZLA2czjcMbxxwdXjJxzvDZ4N3/3Z78dd/BK/9sVf4n5+wbP7wPsv7jHWcTsvxCVwPMZWXeuVLIEC2hePtlQUbHPWcPdiT0mG6rQvVArebxj8xOA2jM1aLWeLs5lkDdEkTdA1wpLJWo1edHrrOOAJIhW4vblljgtLquSqFewxZ5Zjwo8jtUJOlViSJl/bnO4GTSD1gypRTBCx9B920Ha13FmTracktTFqmRBTZjNNPL5+TJyfcb8s5JQYBuG4ZIZRePx4wxtPHnN/u3B7u6eUTMqGu3gk5czh7lfVWnKz4erRwLSzxJw4HGbsYLDjSE2VEFJTAdDrdM6xvdgxjJbjYU8MlRQLYiyXl1dIe063L28ANHFVYdhNpFRWssg8B1KKWGMp6ahjN2ey0fu8v7/n+bOXbDaXOOdw3vL4ySWDn9jfHQnzzDzPeKvVwGStet5OW4xYblIhLAd9uiXz/MUt8xwJx8iyRIwJ5Jy4uJjavJBYbvcMfqCkitRmE9nuGYRl0TWvuzMYdJzXqp+RKixhadXAKFBsvdpCDBPGCtuNo46e+8PSlAKU7CRViW0VWEKgFINzI4+fPsUbw/MPnnN/OGKAZY54O2C8MGwGBj8QjjOH+8R82DP6kVoyRn2B6KolACVpUkotChIwI8Zivcc62OxUkS/mTI1qYbYsAURtUIbRs91O3L7cU7PR+bpknevOkmclqbWPFUeKiRi1X+0udoyDZ1kWDvuDWkx6YXC+7UGGZnWQsd4wbB0Xm4n5uHBoygspJFJTXUo1q92sdXivCV9rrJKfbKt89pa0LFRoClIT2+2GMCdsyLjilFBbdf+x7nOprfJcEwbGGPzg2V5u2F1MOCuUvDDiGKoj18y0HRmmgZwKS0ioeFTF2kItoupfRRMOthHZrLUMk2PaDjhvkCqq+BASx7AQ5gCtP8aYEIMmkKzVNVgvXde1Iro/y22j9erG9Ruorfv2NZ4424yvn3lob/aq2g+vfq0l7k6/PE/Z0hJ/PY758K7+1SRMffX3r1zf+u9+mle+32/rpJjUs5B13ZOdf1i6hRi6x9Gv1FcO+Eo7/1nb17Hu3XnlUej6eCIonQgw/Syr3XWtGOlE/xabnbmknseB5++gx3wPix4+HLeZtv/sKkbnqoLS1NT6dXSyyRobtZjm/JqVPFEQlCwCrEll04K7rrJb+tiQdq9dWaNdgTFmVXQw7Y30a7pxN/zSk1/h18ZfZZlmMrm9zqKEwyJIVNsW6/2qdIOoBUsuaoms9+namqJRYk8k0p9xU6zS5GEBWhIX4eJqQ66wv9OiAkHwzmCNIwZVwM0xgBtY5hk/DNqlpDCHgBGriUlj1qRtiomYFlJRa9xeGKCE/9wIbqcO1xVPu9JTRS2XY4hoQj6p9a+xzRY2oxaXjp8ff57fH/4xrsoVtUkm9n5oTVM1qbmpRuncJtLiiMr62YfkpD4iz8d4pVZz9tPeH3vBUV1JA+v4rKd4WwSSyfzdzd9jJbe1eC9njQ90f1ZVjYbMdjsR7MJSD3zx4jf5/OZX+aklkYue77JcMNgtG7PlW8OncIvlM+WzTMOO63rBkmf+3vbv8FPTT1Ek6n7DCjXqwLPWEouSdEPMmAzOSYuNBbJpBPKEbRZ+tYiSQ2rBW7VldZyIYQ5DLIXj8cCznPhl94u8az7Jdpow1TBOO7wfmOd7cko4cUoiAUzxYDQ2rxnAURFSS8DHOuOauioYdhcT47gjHA+krIScyW0gV0pTxTG1agzpwJKoWRWMc4ykZmvsjSMeHN/77H9Pfmr4qUc/xSHcEXLm7rC0/bzo/jdoYZeqvgjVojH/YNc5wRjR/UVqSm9NZc0YsGbAGo+br2D/mOIMpnSSkhZlqPpXUQJZOc21ZxzVdf7LKXE8FGLu+37tnyFEvX9rqTWv81bHZYwxYJRMIPVUwNDj5doJTO3EfVZ7QMptfb7PwQDbzZZlWaBmYohYU5nJiIVxsuw2I0YsL1/s6coxIShpP8yJg5tBYNoMDKMF0fERU8Y4j2lzSCeE9PXW+1FVMrMqGHVVpWHwDMPAsiyEZaHDc1JVhQiDkkVqs9rKWhSVqtqoKdGpQrMJm49HrPVY6xGjhPlxGCgZDvuDFgykgnMOW5sCkLVaTCCRlGddp6QSQuT+/gAVYlRiqq4jrqnQVELUQja1h+u2hRr/iTSLroZP1NZ3VvKVyGph3QtnhP5d3ceqApZpZGEld61zaJegRckluaptnR8GBu8IS1Als77GFHDWIVZVtUrOpBTJORIX34o/zkHTtleq0ooxoDZVIdPU9kxTADLGNBJYVr2x1BULVdXPD1YL1NqWVcmonaCs4yIntV+zYqG0uEN6kYajUgmBRiRTDLBjuDQMiqY+5ZuqVkqZHMpKku4kVQRdr/o+SkwjP5l1D5A7sdag8cfg2xwSMcWQq2lj92yP2PYXq4WfSIspHH70OKfWr7Y0QmLNGKekSGnPsOT+RPr8JDjrVpJi399Ya7CDaXaqWqRVsqoV55QaLqzPK8e+t2lzhILCFKl9A3XaY30DxxOv2+v2zdL6mvsbw2/wF5/8RX706kf5gv/Ca4u3f5gm8COPf4Q/8eJP8Mn4yY8k6XwjtYMc+AtP/8JHx/JfoUUTiSbyY1c/xo/VH+O/fOO/XH/3bnwXXz0X5YI/ePcHeZQf8YN3P4jB8E58hyiRH376w/zXb/zX7O3+a3BHv00T+IXv+AX+wE/9AVz+qo17PtZmi+WHfuyHAD4eotL7b8Jvfupre47X7XV73V63b+L2O141TmSfs+r8MxS8ts+U9c8GEjw4iP6nf6aD1CJmBe6BtdrrLF1xdr5z8FFR8A4CNai3ndesaQHTEwxVwblSVbdDuk89Qq9aRdS27NUcRunAfr+Gdh0doNUPFUxRIpR+pgPPyr4SWvjd8fheuSUGUr/uBpI2ef6KVoRlzUCQq16MtAOlklsAaXBuwIhtAamq6Qid7FFbRVduthBCKUlBo1wQGTWJJi1NUiuOQkmahMY4aqt87qSy0uxFjLWtElnvVbuKvv9aMuSEk0qxjmGYEOMa2Skjgz7bmgVjHL3iTt+lVbAzJQSIQClJ/eY1U4x1SvYSWzGTw2ZWAEHBqkI87nHWAYZxhJQmNtc7lnTLaEbS8z2mZnJWJapcFeyNMYMkrLMsx0CuCylltluvzy0GwJBDIYSMqRBJeGPYDgMxZiIwesNkhGnjud8acjBcbSachfl4BJOZjxXZwEYKlMThfs/F5cgcmyy+qSzLQq4LIScGP+L9yO2LF6o6FCMVYU6BcRywbiAuGSMJZwRrPcZMzDGzpMg4wOC1KqwsgWwsbhyoi4JmqZEhDscZIbX+krFOMDWRsyHnRlgyCnCVWPDeMnqHnTRBE6IhBthsBpIkjJz6h6YOtPK/VKfJJ1JLypg23npCr41pUes2UNUPS0FcJWfBVIOdDKFolbUfdUyVnLFiGD1stw6MQ3ylSmHcDoQa2F1PeJnYXTiOB8uSYWPAGyV22cGAyXgD43YDuTCMmXFwVAzGBqyPhJTI8UjJAeMMxg+8/1xVr2j2dIMfqMdCDJ5MZDMZxs2OUirHg6qBEDM2VzaXG66vdjzeTGAyB8BEIQZR8PNYuIsz75n3sbLh8uINPnX9iOutEk1Gu2O4MEgRUrFs7QYrMDc1MjdtuLrYcDi8JNzf88Uvfp4vfPA+3h65ud2Dy3z67Td46/odJXhUi/cjV7udArtO7z2nSjJgUlDgegkMw8Q4TJRsuHlxRykHjAhPHz/mRXoDIfP82Q7klsMhkhe4O+ypCNNgiaaQ5sTl9RUyVMbtkcNdpFbL/v6WcAzkBN47hkmo2bK/OxBiwtmMl8rgvQLfVolKyar1YTQGK4ZgIiaBtErr3BIkJ6KSEm93uw3hZiEvCykVijX6fFDQvLaqZzEqA29FdOWpKscuRlQ9qdYV61XxvEZQaup7HRBd150uPy+GZYmMm4Grx9fc3h0AS62JXBI3d7C7GnjyxsDFdiLGxCFEhtFzebllPpwSPWGeMaYybtSSbL8/alKEwuFuxhjbEqkOK5l51qSjHz3GWVKpFASxhuvHOy62F8z3B+Z5IYWAdZZhdNjBEWPhxYv9SjDMNawVpwZNaDpv8d5inFbL51gZ3NQssVRBbz4mbl++gGqY58iyJI7HW6w1jINjcAPzcWEYNmx3F8RUsDkqCRVDOIa1Qj0kTZ6ElBoZtjKOG4w0SnEuagbrDOI1cdXXb0TvWwU3NHE6jtrH5gBGPLvtDiOqLiBWmMYBZ3RONc4yjiMxBcQYBqd2lLY9n5palWyzrnTGUUJEcuGwRGrJ7C5G7KBr+N3tPTlmNsNIKYnj3cxxXlbL2HXv1KbTasB5wzCOakcUi9oyUEjzQsqV7cUF1sD93T2Vih89djAMk2EYHDVBTFFt/nLRyu2mpGKMB0nEFFlSaZXjGSeOkiL7kEixULFgE8YoeTwbVcKLWYmdKSSOe133cy6acDWOkDMhqm6DVf9ZjmHBWMu4nZg2GyyO/f2e47zgB481npwihUTfSI6bodknwv1dIYaoqlbllPwuzcIGY7HeMO0Gxo1lGBxWDG5IYCpiJ6ZmVRhjbokrVWootartlFQ2mxFrPCGpKgW1VXRbQ45QkyY2c2jEuUMgRlWny1kt9awVqE5VnZraiCYn294xgTQ7ofoNbM/wYSWjr3yt9ZW/P/jqee5Vzn/8WxzvK/xKf2zWv0k/qJySyP3nPUKRdsBuTXWmJbsmpldS0Kvnkof30glDK9BaaXa5598+acQKtW9z2/03RTcxjUzZAw0lIqw/Ojt/z+W2G2mWLvpLYzQ2UUJGV5Y5XWtuxMSuIKqJ2pbQEouIbbGVHluaVcmJvdQfTuvDpaLeij02PNfDPZ2XZjdWMWpH1NQazgtptJ90wtaZKhGa3EZOShangBaSjXRrrdpUDb5kv8hz/4Ivjl/gfftl8qBx1YhTsmJx+GkgFy0MKMeI0BLojWhV6sl+UbLazOjarXvmgs7/giZ+cy5t66uEaG+tEpxESTxeBO+FMAglq7W0MarOK1KIEfCCk6ZaEQJ+dKTckpRW7W1qoilIqMrdclSyQc1KpEpFlU40Uarv0NCIXOJI+UyBwmj2U1VMDMaq9RwoUVxVmhJQONp7/seL/4E/tv+jTEyYIq2IpRH0jECsartk1JJmTe5nVYAsNFUUtGNrnJ1XSx1V9G1J4XVyaGP7DMQ4J6gJLXYsQjXl/8/ev/XatmX3fdiv9dsYY8651l777H3OqRurilW8SnZC2bRlXUxbCiQISIz4JYD14i/g1wDJQwI/RA8JEBj+DjGgIDYQCXYAiqQpS4zEmGJRlHiTSFaxWKw6dW77si5zjjH6NQ+tj7nWPlWkiiVSPCR3L+xTe681L2OOOUbvvbX2a/8/i5/5/+7/Ee+59xR+k9YBPsH1tVR6YN9EVfNKy7r/EYcPusbmCl4U/Ev1RLGJk9zyfPceNPin9ecZxx2fqG+z5pUPwjepknsRPUNXkRFrOc2r7gv7rWPFQIZaLJWCd4Jzgdqa2psB9OvJB8c4BkbnQCoJXS90LyoKp5fC7XrL9c1LRnfg0TAyBAcFrASNhRrUZvDGqSJp3QABzxA8MS2UGFlOM8+vXwKZkldiqewmx+CC7r0qGDGEQbvAS9H9SK2Z1lVupHXAvYELA0bU4tgaBTBGF/ih936I3Aq//vhXuC0LKSvQrcV93fMXlX9Si/gQyCUT10wpCtSVrs6FSFfeUVAv54oJDVrBLgc4XukeWRqmqylpU5tQ+uVWpFKrockDVctPvAcXWija4IM1xjPoEZPeq7quS7dX3ObOe4hlg5rE9vnxPCdv8cR9IXRbY85X//la74o2aIyZS7eHbw2oxJzIzXJx4RkGVTmKKYMIIXgyGtcgclaFCsGDNHJO52POUVXANAWmSn65lHtrzd5U1pquX847QtCkUF5jnyf1vrJW9w1rzD0hp3uo7XOLaI5C1y7DpoqoakW250DkvOycTqvCk12lMjVtzDBGG4IajVQyzjm896q6a9QWsJZ2VpKupWhM07+vWivG2m6RVe5VDTtsWDcot29m5Ay49ccYhe1VqVtw1mOtbKskztnz3rc2ME5NYBpdMd2oKiP9vJoOsZWSwanyKF2VS62zbbcGM+Sc+3dm+3euOa9SK/ftO68OMWCcrh/b59Klt/amDbWCi6uqghprVHnOCc4ZBfXapqgoQFcHbD0etppnSrmd11RjFVvLOVPLBpTq/Kx7A+k5yW4zWoWcNJ4Q01XQ2RRP+95B9L4oVQEj6xzBWZz15JTJKdPMPTiv+yEFNa3ROcyYTFwb6vLagfDW2HaH+m9VenRB4wpdOw3NgukAs3e+N45CfnBt0bqKYofVjFiFf8399bSpN5beJKHq+6qQVEq9zzv0XK7BnCHLbZz3oV2l8EF6/vV4PV6Pf8VoNE7mdL8Oo4o2v7j7RX5z/E1+bv9z/Nr0azy3z1+JYV+P3//4wH3Af/np/5K/9Y2/xdP0FN+Nkz9OI5P50H3If/WJ/4pfmn7pu3+hj1wr3wzfPP/9V6dfRZrwX7/9XyMIPzz/MFkyvzz98h8ZACdVKK78sQHwNlBJEP7xX/jHpJD+8N7sgzfh65/57p77I78In3j3D/RwXo/X4/V4PT5u4ztXUuI+8XEuFAgKzGzdWw8e/4Bf+pbopklPlmwvtP31/IB2zt4/tDvY/n1WmejgwiZnvaEtr76YPm6z8dnettKw7b5/cgsj7+sD9wlvhZm0g1MVizWxYJ0/F5VrT6JtWaH7hLm+ujyAf84uHA8+Y+t+6bBZAvXOKOH8+M2mobWGF0WvSk5s3cutJ00aVZN8bIF4paSq1k9Zi5fGWnIt94mQLaHRQS3pBYyaMog+1xhNsriiKhKlaEKt9aJ+bf2c9s9RSlefaA3nHZrJTVvd4NwVSD+nzlnOeju9eF9qU7WnWrrPuunWAa3bvGkxwgWLLb1MZITSiyilFG5uZsIYyAbEZC73wmAHQvB843ZlGEecW5HJs9ZZLXOqFgect8SUub49QbOM3uBlIsUGLRFGS2wBQ2YMmtgM3mKbUFLFjxPGwAfPXmrXVDFQVXZ7XivzXSTmQhgC4Hj58kSuMI4T9SZxc7ymYXDBk+alA2UGwbEsMzUX7eRMWgSgqQWMswOndIs0sC6wOwwUEs/vZmqFMQRqUWjINAPNYHID68+S+MM4IM5xWgq+NHJJ5IRagyHa3dzUVinGSFoTO7/HiEIbWRqlaQFDjEdawgBODJikajZNeHS1Y4mOly/uFGKiIabgQ9AkcdUO+db03ljTirGBSqEa04tzFbGJaTdQTxABGwy7QyCuC7vguboYaBbGw4A4OJ0Sy7JSWmb/5mMGD4c3KtOlw437nuQCmwfWOdNa4vIQaFvHsp1ZUsCPEMusQBlq7QGNtK7kVrEILjjm6wXrwYRGmTOueZYYiV32fBonxGkX3G4yOCkc/IFpOMDaeHK44PLNN3n58poX1wuPw8T+zYk3Hh8Y/cCTyze5ChdQLWs6doughnU7vPfsp4EXL+6YnMUZy83xhulgVU3IGPJa+frX3+X9l+8xHuCDZx9ggyOmlfef3TGEA5/5xKcR8ZzWW8ZhIhcQa/A20Gqk5sKwc/gwMu4ec3d35PTBc4ZxZLcznJYjuUUeXzzmk298mvTZI//sK7+F8ztuXhxpObOuR6b9jioW0xoJlSx3JwMJjGvEubGupc9NlZh7N6EpVFOoFKy3eO97jVYl6V0pZKOJc9tVBJIRJBtSyZjeuS9nmEjn7pu7IzEp1KIJ6Yp1HWSo3bJFVF0ghKBS/ySdI4VzF2drev9oV7kqgOn6QFc06MoJvai2rXUpFax3QOHZs28SZGI+rvhg2R3UAnC6MLz34S1fvXuJD17nRXE452gtUVoFCxeXE+NuogGXV3vEDMzHQmuFi3Hi9vnM9e2R/f5AaQ3jBGMd+8OEc0KKmVoGxsOey4tLpFRunl0znxZSyYhv+DEwjgO3t7MmqnuyvGRN6rveKV4369NccVYYx5FgLXGJSGuUrPPA3csT1y9uKLn1bmw9b6VVshTubu5YY6Zxw+C1OFpyUrvK4JmXhRQV+BSpQKZVS150nYjrLc7COHguDhfMp4U1ZtJ6b0e0reHQzp3CKUdO86w2Cc7igmPajwqGrQvLGrHWEXxgWdWmLgxOiwIi2GBprbILHqoQY2Y5rtweT1h7RGisy6IF6qJ7nHlJ7P1EXBIxZqQI1UOrjXmJrEm/6w04MKLroYgq+Ez7iSdPnwDCy2cvNGEujvk4s8ZVVfFyZTlFMGC8I4jT/UmreNdtFlpjGIMqE2x7K1FAwQUt1FlveePJI6Zp4Hi3cHszs8akNivOKOBqHM4XpGVMMzRnSUtmXQo5rYiF1gpZCrlUbGgcpj0iaqmYc9Hdm1GINcWsf5L+CSHoelQydzd31Nrw1qs6UbcebDQwOods9rGbfYmxjmEasMZQckXEYq3jsFcoaY0JwZJLU/CNyrgPXWnT46yqWawn7WDfuu2tUVsUhSXKuSizxqyKjQ2oWpin6t5MUABl65jfAJFNFUTQjvHWGuXfsLT372fcRwv3UM9DNGX77Uet2XrN9iP7+4fg0Ks/2/4OHT/6llzZ/T7//g3k/LNvBzu1Dr3cx0Sbrou88snO7/yRWOTVPOP9v0xXnCndvvbbPUbvsVc/2ysMxvZZHjx9s5jWzfL5MM+feZsjoKudtK3421UZ9EX0k0mPhWo7xz1Ah5Q2BQ9o3aJNHvxH7ZO6JasxZ1bJiNCMdPvMB5/zATxyr7i0Kdf0wKEfn7QH76VeOHofn0G9LUbqCie1nYuFd/aGW3PLV8Yv8/Xx6xTJZztJqhYbSldZqLVhVlVprVGhncGrFZJ1lttVIV1jCjjTlT0UilF1DlWGXaLa61oDVrwqFlJVUaE5aks4q3sBa4xyM7WeLd+O86KKCV09rQEp6z6hlIp1Gm8tSyY0VaSs60qMK63PESX1BhcBMKS8zYUbINHVWUpTVbwaNW6zFm8ttVXmqOfJOdPnI93Tg6qfbpZN0BUHjSFljWO/Ll/jv330/+Lt9W3+7dOP8KQ+wdPt3bpar7PhPB+0VtVSvIN4ioX0Ir9U/QMMo6dkYV7SPXhE6xa7HUzrisYK25UO1DWaQDSJrwxf4WvDV/jg8D7X5a7HV6oYW3LBW8s4WJposRmDwki5kFIl7CashTBV/GCQrhbYGkiFkhqQCX39b6WQjfB1+R3EN2pN5KqNDaWqkknJmYoWlY01pDXpubBQU8U0BUCKaBHfOdebiBSmslSCDWrNm2EKgXG3Z1kW5jXzKO95uj7hM6dP8vaLt7kcHzHaQGtCKUlj8toQ4zDWEpxlnhPOK3yyxhWCqHWrqM349csbjqcjTTK5RIVf6kBcC94F9tOBwXtSzjhbETy0gjUeqApXGfDe4PxALjDPK2Itg1cgrJVMsJ7/5fMf4fvbF/mZT/wsxn/A0R05nU60qo0w3nskqJ1joVs0Fs52cCnWDgmJ5lCa9OJ/n99Fr32xllY1NmmmdbWmfh1WKEW0OCP1PCfW1pD9QgsK7eWi3/n2O829tD633sMNW15km7hrree533QrpnO+6OGkDme1lftJte9hN2iq6n4wxplWMzXrLOkHj/ce4yDXyu2zk8bl3S7UWkuW2mMYvbb8oGoyzjvCoPv8kiveqcLl3c0J12Mxup3jppKqx652bMMw4q1lPs6kpIrZnYrEe9fZpIe2dxuEtK0bfT3u8JKzBu8csUX9fWlghZoby2nRvWOfBzZQpYIqTle1TLS2I0AdbDFO91f6mO186+9qUeCvlEwW3T8Oo6dW9PN0dc4HXOz5uzL2Xt16e13rjO7ZpwGANemcZqylVYX5jDFIB1rOAItRFbNS1MJyTavC/nPsVoL3Kl8pa6OZEchpAwd1T5FL7VDZfe70fmiuzTjLNI34EFhntW+01lKzqn9a38gRtfluFStdibavM1vT5HYO7AYqn3OoCkw3UVhnCAPj6Km1sS5RVdU1Fax2b5vilNw3p9astn1rLd0GuW63BHTbPNMhq1K6SqNswHfrln/1nPM0/fhy0v2Ms3ptq2rdNmegoFyP7ekYkKpIqRr6piCpCm/mbAO+wXfbvW2d6aBab2JqekxpixPaNkP0HetmFdmBvNznGjZw+nzdbg262z/v91zbRaqHfr/Xej1ej9fj1bFFfd/w3+Bd/y4/dflT/MzFzxAl3j9GGh+6DylS/qgO80/mEPi5/c/xN7/wN/nR04/yN5/9TX5g+QH2df/gId/a8PKHPRqNozny05c/zT+4+Ad8afclnrlnf6hQWpPGKisA/3T/T//w3uhb3vjVf17cXvA9X/8efuDXf4Af/Jc/iM8fP3Dsdxu2Wn7sH/4Yn/vtz/F3/rd/h5vLm48fSPjkGUzzH/VRvB6vx+vxevyhju8YUqpsEer9bH2WId6W/4cKSD0CPtuHvRJ0bsVXedDF++poHVSSs6pRD57669TN9ulBEt1scgG8qoTUOuyz/ai0ij2XF3ohpPWN5sPE+LfWJ84JjVIK67p2q56e4OiJ3VeKKtLOx7/BPFqYqudE6cMKS+3nzRpD6V39pdw/V5tFW5dFBiMWemeQwlgqEW6kF9uATVRBRGi1kGm4DiZsnzHH+CCIpbtN3BdffLd1U6Up038vG5N1X0Ro9VwxaT2QNmJovWCQ1wXTqhZ5nVeVpt7qt32vxgi5JFLJ3YFPLRJML5wYq11EKu+s5yD4kdIShc1SYTsnRjsc40oulWn0LPaOD3rizVbD1UUguAFq42LakUxhjpEQLFeXlzx79oKaKtZ4tUlIFVMM47jj8ZMrqDfEWBVCQLA0vBEuLibWGPHDyLom5tPKOATCxUhaVtaXR4bBMk6e0jKPHk8YgTVqkqo0TRDFlKinEy03vLHsp0A6reSccM6zFtRqsCfsUyyILYgLpDWyxki5fsnFftBrIoMfLdieFi3m3J2eaiWXrB2La6R0VZyUC9IcNQtpzfQmc6wXcozMJWJa4+Iw4Z1REKMKUPBBizmPLhw5OszFjmWecX5guYvc3S3E0hBr2R8u8BZOx6MWIYxgqjnPBaXbaQmavBXX2O135FQ43a3Mp0ReGntn2U2BqycX2PBI4ZlgQeDp2zuMrbz3bqFkyzyfON7cEa72uAolqfJX7slsF4Rx9CynI9iKnyyOgnd3GBkwplKXzL6//mIceVlxg8I7wzjSSkMKVGmcbiM1V7xz7Kc9oVYOlxMX+wnnYZg8rTnGcMn3fvKzXB4uuZwecXF4TMFxe7qj5m4mGWAn8OajA+N0gbTG3fGGeRnYTZb97oICHJc7sDD4kdoiL18+5/nzDxlvXzKNlloSp9s7vviF7+H76xOevfyQR6Pnm9cfUlzjJt4y5YFPPnnE9Qcv2e883jbSzQmzT7ido9aINwVpnpwTcbnBsFLiiWE/EewFbrqgzS+YRofZX1Lins+/KTx9/IQ5LnztG2/z7vu/rXCec5jBsKyZtCbyosWksHWSdsssYw0XlwesM4xhIOukiRVhcK4vD5VqG6VairV4m4lWrQFNEsRkJGtSVoQz5EETVXeAM1wRxPYiZmUIAcGSSFqkMCr1H2O87xIP/kFxt953tvZk/dnWSEQl2EsG7hWVRARrBR+K2klVw906E9NCGDyPL6948nTPeJF5eeP5nd96xnx3UhUpqRzvViqwv9wTRsfFox3jOPDi5TXXNy95dLXn0Rt67Y3eEWOiJsvNiyOVjDEO5wLOB2iL3vgdqEk5cXp5w+l4JKWMCYZhCvhgiGklrktXvrOAwXnb4dFuKWSNWiMYR4uV65d3jMHj3YgRz93didMcyWvq3cu6CJtux1NyYclFO7LRjtslRiparH25rHjvtaBrbF9DBUylVFWayhmw2tWdS+U4z2dQpUaFk7VQAaZ26Ey6zUTUFd0Fj3MNpHE33xH2gYvDBSW+YDnNrD7i/Ka8oWv3MATCELSIJoZ5nsm5EZeVFCOxRsQagneQsl7DrVEqeDfgjSctanFxvJs7yNQVPKom97eOeWMgjJ79xY5pN+lalRveeYxttAJ+GHCjYRjhdJuAerYIGgbLOOg97hwcdjuWGAljwAVHiomUEk3U3mMcPDlrB3kqkTZXBYdbURUho989pnULM8tuCGAgLpFoGsvcyKVipDHsBGthqE4LGkYT9lbUambrzM85ace00T0McLbDrbUhsXC6UcvVFLdikD7X94556ww8AAQEo3uNXvB5nl7iXcA7j2CZT2pf16QxTAO7/diT/Xqd0ovQKSZSTtSokLh3Ch3oI1VJJKdeyDFGmW4LMnharmijuXkF4AEtZDmn1hcKg7duu3qfIP1Yjm1ff246uB+vhATnjfh9sPDR/fm55CKvPPP+sb/7ATyILx6oqoicO9cfvPj9Mz8CSb0SxmxVo48UIh8e0cO4gH6P5q4aoS/Rtk07cv4EclbW0P/KubD6CtT0CrD0MG6ChzHYVpDamjjOidweY2yqMbIV6NkUYh+8Tb+vVHWpbwqFbjmYaQ+OfUvlC3KOTbZ17yHMtB1/Q+2p1GvuvpB8VvVtUEumYxH3x3D+nu4bJmpXYwGIRBaz8M7wDb4yfYUPwnusJurc1JUImlEVWYUVWr8/9bUKaidcloZ3liyR46zgvjRhGhymQ53Bq/1jLkXnr2FgPi26H9zeqwNTwXnGaaS1FdeLofRzY1ALpFILxjpy0QKwsw47OEoq5DWqFaRT8GUcHQivFMY3wLcmbRaxIgowZQWtrbHk+vAy6jZ6SlFTs9ru1mVRdZ0OChhM/5o6Ztju7dTum1a02K1FeFWhuOOOa3vDly++wqN8xSRjV9eDq/yIv+T+EmN7C8q9TWFfihmCYakJI4WvydcormrsYxqXcsWFfcyF36k1b0wg9Qw1bR9wO7ZoIu+79/id3W/z7uFdnslzYpwxxVBzwxtDcIZxGhCrCjvW6jW8OwREKsc7jXlSSsS4Mo0B04Rc1H61dnsuYwQ/GlVXlYZ1huYrxkQEh5hKyxXfQb/NMsk4gxXBdnXQrRCeVi2MG2sIJmBaYxgcwXuNlZ02oTg78PjiEZObeOv4No/zG7zxtbe10F1hXEaGEggIu8uAdwpGpBTJpSic7EMH4iIiAWcttMJpXZjnE35dOrBWSGtif9hxuAjkuHBcF47LHUUqWTJpaUzjJTlVjbkOgzbdtIidjM4r0jMmzZJS1P1yWbFmwJoBw4CQcFmo1nA5X/KXf/3H+PLbv8XXnv42x3zk+fWHrPGk9+DkKLUhpbKmSKt0OKDv9fv14b3HeXe+3rfhtFNLY+cNQBI5qymZIoiUDiqp/eFm8dR+8Df6TaU5IoWrwVpzVnQToxBQLZrP2WwnS932Kg+smR6sE0bk3p2pv84287a63dB93tzmFCtYq4/NRVVpRMDbkcv9Djc0mqgN2jLrftA7T0q94cM5XFCrXd1HZ1KOCrANgTDo/FhyxYglLvkMe1mjjQ8ivTmvSYe11W54WZauwtn3N15zewoG3cMSRnS9Olvc9lu7VM0xxSVBABFV3Utr7LZyPFC6uX+t2iqtNNLWJNg0H3DOb2WFBe9js64CL3QAx+r8wJZ/a2rJ2Pes5L7ubwBZP4Dt+6ylnhUFrdXXzjWzZsNumvC13ccGXYWz9XXOGqMgmM7A9wpPpVFS1v13KarAc1YT0jgB0calIo0mul613DrUy/12pm3zpoI3IQS810YYg/TzYjWl1+3MnDfUonlJRHNB1ki3I2vQKsE53QoaBYC3HOu2v7FOlRk35Va10zPn5lOFkuWcSxUR3KbwXQrFVHKUs92g9Xob0xT8P+8bRHpuq++r6IqDbEpGPU+57ZlKI1Mo/Z5odcuZdkUsa/U76sckfT7fbFJpsC6RbDIiFmNUPa7USlvbublpi3c3S+Att6pW9q2fbzkr/G5CXWeF5349SutwpvTv9tvsFU3PDZ9t7qQ3upbXcMXr8Xo8HCdz4sbc8D8f/md+4tFP8EvTL3FjbyiUjx/Y8Cd5CDzzz/h7l3+Pn7r8KT6/fp5H5dH515+Ln+M/e/af8QPLD+C+Tdmz0bgzd2TJfGn/Je7M3fl3X1i/wOfi57goF+cY+Hcb2+v88vTL/MzFz/Czh5/lK8NXqB/jhrF/neGS47Nf+yxPP3zKD/+LH9ZaDXD18oqL2wttgP9jOGy1fO9vfS//+f/jP+fn/r2f4xd/5BeJw8con/a//v/8UR/B6/F6vB6vxx/6+I4hJUu3cANNgpwT5gqRSPfwfpD77r9rr/w/dLWec95681vvHSCtqd1buy9ePCwxvJJ059sXJR52X29Q0LmQIN/mOVuioP//pkzElmI/J1ofwDe1krIWMF+FmR4+X2EkMRkxhtYMW41B+nmStr2HPv4+Wa8F7FK0GG6QLpstZLTTVJNprgfCPWkq4IxFmiel1OWyVWLZGrocfSWViJWgAFApSDG907fjW00BK+y9t3utaMdgtwNSWeRKMEMvgKjaEVVhjJLTWa5blTQsYfIKFoilNk06YDR5fO7wo1FK0mQc4IaBYfDUkiitkJomvZw4WtFu2mA8c8sY5yilK/0oxqFQVO/CXmPBT4J0cMtJwvk9YRgxOTKawJIXhMZunNQmJmd23tOqwdmgHe9ek//vv/8+Ma+0amhUDuOIafWcyHQCc4xUBO9HpAnraaUVtSHzzmkXb/WcbhOHgxa7U1mxOEppxFU79rz3DONErV2xoUKphTlpUsmZLgFtPWtcqbngRSi0rlJlOJ1OmFZo2WkSb5PX7woZJtVzsi6lCqLXlzQhp0JwAdOCFnlToqSGs54SMxi4u33O5eUlzjlqNQoxSeFwCDy63LPbG25vbvBeE5R5zcxzpaAS6UtcOfXrVhNMes1t90czmgz0Vq/DMDYurxQCs/4R63xkmhqXlwO7RxPGQyqpXwtqOfTy2Z0W5nOhxASlsswrJ2/5xjESBq9WEiFgqHipXEyeq+kR4iph5zieTlCE1jIpJoWuAjgbNCnltNu8iSAtcXmx5803Lvng+S01LWAt4+iwpvH5t9/muB4V6DOVwVlKnqA8QsyBT7zxhEf7PcN0yfGu8PStC3ZDYF5m3MXIcjwRbCBWQWpl2l1QixDzyvz8Q1LNiPEsxxMpNhqRVCKjh2U+MkdRK7l8y/Pnz9l7QALD4Qp/e+Tt6U2eXD3m9ijk1tgfDlQjPF8SLkWYF6wTtXfbH5Bi2QdHLRFaRlpiTdeMEnB+xHHJZAdmKtEFHj95A38KLO++w2Qdn3zzbYxtHNcTMRe8G0mLWg1OB006Hg4TrTXGvWOcBsZpz3w8EfzAOp8I1inssikuGHuet6u1JGs0UW62pD89gZqhWKQX9BqNZnRePFwcmE9HEMG6gZzjuYN5m7e8seSk15uxpq9128V736FaaGfQ8ryendc20+GlLemonaHNgHWeHKHmwqOrkfFyZNwP1CzUZHj7rTe4eZEwBLwz3N4eKbVgnWOYHBeXO3KJnO4WvMnEWLm5OfJD/9Zjvvh9n2adV5BvElf44IPnpKyKDse4UCs8uhzY7zzUxLyszKcjtze3rDHC1h3t9HPNp5WcM0MYKLl1iLjSWqFU7XoVIzhjO1hjuLuZkT0UC+mYtCASM9aC9Ubn+wY+aGdOXPK96iANMZUaS38f9D5oavumygINNzjGKTB18GaNhdOSyGvmNGtif78fVREjF1q1OKfJ/xQjOedeuDVIU5n/YfR9YdcCx8sX19TLSrXCsBsJwWthDyFXtRUrpXI6nro9m8KgQxgwwbG3OwBya90aBIyplFaZ9iPjEGi5EkPBe2i1sK4LqWlRSZrBnCEHsMZqgbE07m7vSGskx8JyWjFBMGKYdjuG3YSY3C3/FmqDwQUohtvrEwaIiybRc63UdcFk0zuI4eLxjovLvSpFtIhIY10jt8upFyEsFxcTzei5CqPTAsoKS2340XC4mDD7iWcfHLk7LYTJsT94vHPkqLfTmjIprTjveXS5x3unlg65UEMlp8Qya6Erpkyjg2WtKgjUoaPWKw/OCuM0sD/sQTpMZSzBO2KKtKUyDrr2zvNMjiszUcHrrk7pgyEBd7kgVgiDxztV/FiXzLrqdRNTwliLtQErrhcCrO6haoOq9ibBebLN5JTUDbjIeU7ahnOO3TSdi2Y5ZVWefAAHfBzHK+DQK3t9OAcH98zLg2fdP+Vbf3r/Wh99Nf3VR8/Hw6P41pig8xe/67iPCH6vRzx8383K7V5JYfvoWohuZxcbeXBs7ZXXaXT5UB4eXS+vn+OLbzdEehNE3YpRGi/UrWArDWsNphexpKsbiAgWcy6KNdp5zZQO2So804G7VlWJUDhDLJv98/lgt1iqKrBbu1JTawW7tZC01kGpei62t17c24qK7kHzBMj5HtqK9dvdcuTIB8P7fHX4bZ4NzziGIwsnCmodKRhMs2eFASNW7R+NUTWX/hGqSLcP12aMXCq2GXKv3xkpGAm61tSCkz7fo0CofoaCN6qOYkQt9cSqIsjxqOv1VhH21qrCSrchF2mkor83xgFCjmov2WrrlmRqn5xixYdNebYgHazI/WCNMdiu8FM6BKTzelMFRbpVkFFIc1O9EBRKayiQo5CBUdBAq/M0tNmEoo+vveiMmK7KQleTM6pM0xov7DOeS8M5tTL65vB13hl+h++X7+d74xe4zI9o0ljawnuP3iWMwm/Vr3KTrrkrM43GsiRyrthmGdjx2fQZ3oiP+Yx8mqf1DWiGVnWvcGdvuXV3/Gb4Td6Z3uHO3dFCYZoCrhgwAyUnnGsMgyWMHiy9EUgh2dZ0DRXTC8L9u8mpEE0mR1WNrNLBEVGb28EbBj8gpmG9NnVov5WuSzkljOUM3uk+tYMRrTCEgJ0GjvOqluq96G8EHh32pK6wLFScMbTqoQ24suNHv/Hn+PTNJ/F2R4oNb3Xfln3CHBw5JrWb6pOD86FfG4U0nxQIFkNOiZpbVzjR+DPnRKp67aa2Mh8XnAVqw4URmyO2wBv7K9bYr0OrMfCcG6ZWpGRSnrFGFX10nyVoYiEj0qg1UprDuRHB4uxEMZVU4FF9zP/iGxdcffCYX3r7F4nTCWsa87p0MMN0SyRwQaEEa1UlC2k4r/ZUpdtCgs473tn7WKE3eLXWMJuaUunwUK9PZmlqLdmtudrFkWbutfl88EjWe8/arqjVtvlO/6dGvA9zWg+Q1Qfz4GZB+C1T/4N82Xm1egCFisrPklOH0EaLD6p4lmPi8Ggk7isly1nNrZYOczohDLqnTmlVWAq12RtGx1tvP8Z7x8sXt+TcuL2dSTEhxnZQMTEMui81AsuaKCV3dcysquP2vlkj50LeAKEHCb22WXr15iWd7/QDqlJSIjjPumhzUOkKlMYYbU7sULgxQsn3MKqeqq0B8R7o0abB0hWuGhhw3uOs4J0ea0xqn5dSo2TNzTlnqKZCkTMIUmrpKr8FqbovsMbirD1D9g21xZ77c+iNC6rw2tiWyto0L5iy5otKX7ecU+ttR28sNUZVsIt+VrFGLd+Mxbm+tklXQu9K2Zof7RdN37Oo3Zj0hjS1QFUYFDBgjSOMg+Za6qaYq+fdYMixkFGL2NLX9Vo2dd2+njnDtBs0bkqlWyhXUlfwA1T1y/Q1xykYVnPT92razDYEz2oy8xz79+XwXnQt6DDhFov7sFmt9f1Eh3xzSv28ljP4Q9+X1Navww3tFY3vw6D5oE11zNiuTpg0h2mM7df7pqycugpSPYNJuTVylq4ypVBara2rXuneqwEOtUREOCtNVrRB4n4N6ZapHUbT66ad94yq3ObOTTnb3m7Lcbwer8ef1qEarJWX9iW/Mv0K/+DiH/Ar06/wjfANXtqXr6Gkj8MQKBS+PH75lR//wv4X+MnLn+Qv3/5l/srtX+F74vcAcGtv+fsXf58ihZ/f/TzX7ppre/2K2tWu7LioF/wHd/8BP7j8IH/x7i/y+fXzD5p2Gu/6d3nHv8NPXf4U/+jiH/GOf4doPkZQyx/CGJaB/+R/+E/4oX/xQ7jyHZeS/9gMQXj67Cl/4+/9Db7vN7+P//F/9T/y3tvvfTzu80+8+/E4jtfj9Xg9Xo8/xPGd2711MOmVQGVrw+jFhLNKEHwLb9xeSZa07WmvJFXO//42YNP5MQ+KuVshYYN+Hr5Ke/D4bWw6S698pnOS59U6yUeP7cGzevevdryJRO3g2eoqHylsqDKQuX/RBx1w27H1n2iRVXoyCO1gdr0L0oh0mKR/D6VLCBvpQMgGjm22cvWVBNXWadNkC8YF1ZWoGCeaTNsSEo2tqVBTYiJnhRGaqgBY9PU0EaLdomldEaevYbzTxLm2rLGfdgzjjjCOzPORZVnx3R5HwSLtWHTB9gLeqLL6Q+CTn/kUpUTmuxtiTswx0qqCAylthn8N8VZTx7Ug5b7AZVrVwrlAbI2UKlMIZBrWe6zzjPuRq/2e+S6yP+zZ7XdY7zjNR5wVwsVAS8K4U7WHXHrCvlUu9gHbLG6acMYyDSOn9aRFyuHAvC5QBT+OxHml3SZub2dqVhu3UrRj3IrFW0POXU0izeRUkGYoKdJKY0Y06YywJgWV1iVqgWkIOD+Q1kiwMOwG7DhxvDlpl50RHg0DpWSWNSLFUJoq9yAKltWqncgGoDn9U/L5c7ZqOOaI2K7q0SrWNFLKDE7BlGW+w/uJEEZM6HSFM5wWtd378KsnaMLh4FnjNcuS8ZOlloX1VCipdXlqTQrFpJ3ctVaGKTAMAVpCxDKOA7WsWC9c7ibWeeViGhkvRvwwsiyRciqUWFjTQi6NWiy1RFLMlIR2TqbM9d2Rkhpvv/UWqUasSUDEOU8saoe1GxQUmaY9S5wxGNJicd4wDI5deEQZMyktpCWxrAkapKXgKgQzsD8AES6nHcNu4HB5STs6rm/VVuLKXvHo8Jj33r3h9OEtb//Qv03OM5TKYLVIobyih7Xx9OkTpI2spztVsapwur4m1oqxAyLCflLLurLe0ahM+4FcK3ExTI/eYI1HxjxzsewxzuCnCROPfOFzOy7GS95+/CY3N9eUEhkfX/DBzcqLF7c83u+YRkcIB0oqLMkgKdFKpCa1XBOZKGXg5csjRo48efKY6XBgfXbHgGH3eMRWuBmuOIwvGJvX7sVn7xNvb1nLzO3tEWgMI+Qs2LmxvwzsDwFxlrvbW+KyYI1hmjyjHXono+nFnc0yRBOm1hisqD2UnGdfnTCa0AsNlUKjGRDTEAuHywMpZWquWOs1yRgLuHs1pDPEi+mWZRmM2irKea0xr6wBG1Sga4o5w0+6hihoKtEodFMyTz+x4/NfeEROwotnJ5bV8onDBYLFesfuYsfoA8fbWeGLywNI5cXLZ4zjiPcG49XmTllTYT4lWnWEYSSl98gpavdqruSyMIyBdan4vWcIQlpXTrdH1lXl/af9jvFipLbM6XjidIo4awnDwHxcKbWoIs8ukKLCQNKF9GrWgnXwDlplTTNhmNjvLoglcnG543g8UYqqJ51OR4ZhYH+xYz5p8ck6BWRT1EJfbVqEH/eOT33qCloh18y4G5imicE7BLi5XZmXhbhEnYuNwQ8OY7RAtayqELhBv9JXHGNFu8gni3GqjOS9J9WGDyOPrx6dE84pRfJdYZ5nhdNyY4m6RrgwQq3sxxFn1aIwpw5DnRbiuhK8x3aliv1uIK4n1iURkwJfYXDs9hM5FHL2nE4LthfCS0lqRectYRp6oVmYj4uqKCQBo8dZCFgn5CWRs1q3pdhYjidimlE1CqtFGxGMc1xc7HQOjVkVoY4L8ylqQZhCXHJ/LbCuW3UYg/eei8Oe+W7m+ubIuiYqCpR565hPGaQxDIF1Say10LLajtjg8PuBcRo57HZ4b3n+4TV3N3dAU9vFwRMj+O2+Lno/aQLe9i5ktSMdp4HSCktc9bs1qhIoVtiHiTpOlAh0270YY7fhbUht2k1uXVdQKwzTSM2NVAuGSq2qQOkHj/VqFxcG249F1zbvPeN0wXJaWealF4O18F8B6z016Vqs+zqFSlJKWjjpdlAheIwzOPvx7d77lq39w7mQ++YA/fdHhdq3+ODV/f0rL/7tfv67jA0S0i38VmS6jwl+t9rMw3f4jt7u96CapBcgN7utj0YfH4WatpLzK4oaWywk3cykbVaAGg/MZlX4qEHA41AwTszDcylnK7aHH7IBRQqzmSnodWmt3oul2+A4sQyM5zXwHMedz6tCNvQ48mGMJkZVYmrt92pt1FzUbgnOqhRbA4X3Dus81lmWsnAqd9o8YC1iLK1WnrkPeOY+5KvTb3MrN9xwjXGGw+UFthmG6CjFkKraq0jTot45Pt3USNRfEZHuTt00pquicVqpaiVWO7wjxmKDY/SeHAs+eHZBC6kpR92XDGrb6HwvBtKLx60RgsU0wXiPEVWxjSXhrMG6QMpqMWOtp+RMXAsxKiSqIJLudtSuUshFC/ylZmpRIEuho0JGzt977soiORe1GbcWYxy1FIxAGCxiPSlqA4kRGDtglLOqnlboDREaa257KhGQZmgYBU0aDKHDyaXQpIHtqg+iAJM4YeHEr9lf5Tf2v4G1DrEKdQzjiJUCInx4ew0IQ7CUspJToXlDbDO/ZD6kBXDW8Ul5m88v30sr8PXh67xn3yMOEetMj50Ng7O0ljFGGHYK0AY/4AavNle50pIqFpba7Z66clDJlVb0vqu1skZVfzwc9j0+7yrH1lCUpsM5LR47r0o0YGiZbtdm8HakutLtayu5VG0WyhXTLFYcwWs+YPCqpDcMA4hRBd0qGDMQwkR6Bl/49e/le3ffSy26ttotpu82rZTGbjchOHKKGO+oTUjrogpE3aLUO0fOVRsR0Ou4Nl0b/TCRS8S1TLBOYUfvaNK42F1ijGU3XbAbK8u6ELwjVcPd3ZHgHME5nBugCimjhfeSFY5BQDxgyLER45FpGLGDw7ZKjpndOBLXyKduP415Dl/+/L/kd65+h1qr2nuXpJa4pWKtMkQ5N3ywIGrHm7MqEQoKMIlTNRPz/CmCo0tJn/NVm5qSlPsJ/jzD1Qo+Ua9u6UkVhfSoOO+xtvb9qoJotUOWW85GNmvKfp/WWraJE9km2IdrRp9/24N1RTmEdj6y2iqSAWdJpWKD4fKNgXHwHI+Z47IwBkdrgjUO6xJDGFiOqjIags69MS4KO1qrDRVIb96RrvDScC7Q2olaMhuvWosqIpeszSLWWqzJ1KxWt6DryzAOIBpDpZ7v8N7Sis45zjRV6jEKcIvUs9oMrWGlw0c100QYpoFcsr4Gm3W9J8ZIq03zMbn05rnWIajW85t9JTOwvxgI3pJL7kqWCrZYgZwV4FdbbD3rxgrWWxS6Lf2yqGeo8f66UHs34zS/p1bd0MQwDgPO2r7eNmJMpBT72iRdkdbefxe9wdBai9tgk1LISUEvY61+P8EhNGJcu522nkPXFXxo9HOvSnv6+/7azmKxuralpLBRX8Or0SY3U3VdUxBJ17245g77FDbbvm2/sTVelqxwjEKbpd8XXW04t/Olbsx97tR7jwBLXEmpUKvmSpzTmKvWqsrGNOJaoW57ng48O0PwAe8tKWbm09Jfw3bASGGr84603avn19bvu9Zwzus9XksHlO7VzTYIqJUeRiEdUto2edrMZI3me3POOOdUMSw3XVdb3xf3vJ7Qm6KsnPdXIoIPHlstOWrOYptYzo3FnW7r+kwddGwKufbv0W7XlHw0q/96/GkchcIL9+K8nuzq7hVrre9kRIlc2+vf9femGR6Xx/9K5Zo/6LHIwq29/Zaff2X4Cr8+/jo/ffnTfNN/k3f8O+e97evxx2Pc2Tt+/OrH+XuP/t55/n6Y9/3dxsmeONkTf/fx34UG+7rnh5Yf4q/e/FVcc/zs4Wf55emXeeae/em4Jprauf2NH/8b/Jlf+zPfkp35kzZMM3z/b34/T5895af/6k/zK3/mV7TJ8l93/Isf0m7c3++4uIHPfP1f//1fj9fj9Xg9Pubj9wcpyUO45kFU2QvADyGmJt9+rdbOs3up7DNU9LDg8G0y/t8WWIJ7mzZ6Xlw2UOcByASa6HnluWoS8LDL+QxS9QQHryR2zi+3PVr/1+hB67Y5uS+Gw+ZF/uoLvNLl3rSjRc+n/mwcBhg8x9MCaEKQngjeZINVFULOCX5vTVd3eFDwMILF4XzQYN5qx5AL2rnoxNCMKmSlql1sRrolQGl461WmukGTTQpcu3FiTtrV07uVa+9y86bbLjQ06SpweXHgrbeeMsfMKa1UafjBMjpLpfSkFBwOE4fDjrv5REmG3TAxzwvLfOJ4umFwhreevMHLmxvu7k7kkhCpmJ5wskZVgMbBY0rj5uZIM7YXnj1WipoOdTucIIIpBmMjRIe7fATMBAM1Ra5vbhAvvPGJJ2qrVyq2No5zpFRLJTMOlsGPeCcMhwlvtfDtdhescSX4wG6YcAae3d2wpEXlpo1o0l9gHNS+IThhOUVu5xMNSzOFcrY4AkolLRGG0Lv0KrUKtgnNqD1bipnLw46d97z99mNOFeJRv1fvoabEtL9kSZF1Wbqqx4mLywMlJ7am9No0cZLXlZIyQzBMk6GkRmsGPwRujyspaRK5WsvhcKF/r5ZWDbUWci6kAjfHBdJCqpHhoEmx5y9eknKhURnDwH4/8vzDa5bcutQ/GKcJIOctTWCcArtp4uXzl+zHHYOHkgqxQrCNi0cXmAq1Go63kZvrIyWrXWCMCW89MQZy0mun1Mq8FkKCQxOGSe+VVsAWYRpHaims64wbPQw7bpbIaZ6ZBksrEeMMw96r7UIo5JoI40Sthp0fWU8rMWaCKQzWs3ee6dGA8wIyYKJnNBPX6Za4FPLgcN7zhc98grcev01zO+Iq7HDUNBOGC1oRVQjJwjgKlIhtQm2ND5+/wOUMbodxI8E08gzrGqmu0QrkecHthGF/4GoYYTfg3r5guY68f3tDtZnAwO5wwe3tzLS7INVKyY3DdGC0J6aYuKmZu1UIXtjvDLSZZjzNDBhfSTHi3Y71mJn2QrCN5cUNxh7YTztabSyrwfkBP4584unnqemGvR8ZmHDmA0qdGerEs7sjdtLifBgScY2sayL4gFwY7NWgSWGxlCXTjCDWYXsh7lzQ7ZCSKknoWlGadknVVintgaUSlWYhl6TdodZSqnasF6NWBlvR2BgtIIgYWs00FNBsoIW4B3ASdAWLc4GB/jMFY+5VM3Td9d4TBo9xiU9/zxWXjyZiXjjeNXIRBls4XV/z4v3IzbMjxsFyp6qE3luMVWUMVljmhWn/CGuFFGdKqvzLf/47fPlX38V6T1oT65y75Zmh1YozEOcjcVlV3awkqIW0RAUonEUsrMtKa7XDf2qbl6xalTmvMI8RIQwDMSYuH+0Yx8CzD16Slsr+0YHLyz25JJ6+9QlGP7CkhZwyrSoIc5dmWrM4r12qwzT05L4WFK7Xa1XwA4xtXD2Z+LM/8nmmEVorZ7D5dJu4fr5CTZhmkWYYBsFPjt2lZ+jJ8sqqKhLFIM4hm+KGEdzo2F2O7C/UQi3FTLqbKXnl7nTk8dVjDeKb8OhC1euMCKfTzGmeyaUwThPTYcAa7Whf1pV1nnU9b7q2HpMWQYfgkBooJVFqJiY9/x4tdIoxTBd7wi508EXP0W63I6bIOCq0OM8LU6nUAuscaaWwtlntaxFa7mvppHYuMUUFarqtA/0790Ngd9iR5gVqZTlFYtyu26wAH2pXWHsRvJRKSYl1SVjjkWrJUUHS0hppVVUG4xqHy4Fxp8DS6XaFLPhxwDghrhEjhkUcLz9cuLm+JaZMqQpljePQCz8bTN3OViHOO4ag9q30DuzN2sI5TwiuWy9UxjEQpoEXH9xyPM7U3IuKVKyB4D3OOVLRjuYmjVwSDS2QWFEVQ+8d1jtVfeoVThEUyK31rJglTWjFKKhuDNaPNMlQ29k6UoFGYRgDyPb5tr0irGsirpk/TuNse8mmCPGw4Pu75f7uYwheec7vQQSdf/9w3L/r/bHc2yFvPwNeLao9eLmNzfm9wKZXnvIRlqptMcC3ee0z6iP3j9R4a4tXePC7e4s2mhbobuxL/t/7v0uShBXDVXnERboEge9ZP8dUJo2TjFBs4avjb3XFia7iVyqnduRd956uI/TPuR2LGHxzfDJ9kqEOfP70ed7KbxPacD4Xm3WIxlq1Fxj1c2w2z1vRXS2eVUF2S4LWTdlwKtw8esFvma/xnGvu5JYP7PtneL/0WM96kGFTeqhMdjyrccS44Iyw300s66oWp33NFbt9Pv3szgWoWhRWiz1V8TS9Lac7O+o+owpiCmTBhBHIWNH1f15XxAjTYaefqTZMa8RcKUWty60zOGO1cB+6yhow+HC26vHOYYBTjApz9+/eWtOhCtMLyqo+sSY9brrVjX5MvWZKLl3FpZ/fXjQVOFtcDsHjrOGwn0gNblPpRVRtbrF+IJdCLgrt5JYYhtChksamoFVrU1u5WnFWcE6htBa0kB5TppQuPGOEEIZuvdOtrLpCXGlAylBVNc4NWsia5+VcwHdWrYbm00KukFj5ZniHb4Z31CJcLzy81/O5zAve+b5OKSxljagSSE8HxLUQ18Rm8V5K1KJ9UZUxkdaLypVSHCHovScodGelW/HVRm5ZYxvrWPo16azo/sSqrVjJDWdVvcw6T2sZbxSgybViTMOJJXiLG20vUFukWJzAUiI1NQ6nK77w8gu8efOUJ/IU9oHSBI+BkpAw0apQaoSq3wu1YnoT2mk+YWoFExDjsKJQeSlFBbQqSM4YL1gfGK0D7zD7gXbROM2R2BJWGm439enMYp0ehzWeYTDYXDjFRLbCujamySJslk8GvNrsCaqAUlrBB0NZF4wMWO+YhkCu4KxHTORxe5N/72tXPEoXfPnJl3nONbEsDDZzd4oUUzBOVKWyKIgOCohZN2jD2JYOqgZ+4weRtqnc3K81pimktP1MZ6rNyrXR9gvm6XOq2ea//ggLFdFibL2/L2XLJbUHqnubzB48gGofLBmvLB33ebUN7NzgX1AVPYVMG8Mk7A4TxlbWGFWBRoRWE7cvE/Oc1Fa5Zm3OMgpDbJB0jJoLss7RcoECx5uZ5S6ebT1zSv1zdesro3vxuCrUYq2h1aJ2fx3SslZUJaY33PV+t7Mlmqq8CYhCoqZUjBWmaWBdI3EtGDHsDjtqyfhxVHXsrtazLgr4bCpyqkKtMKx1tgMahrWu5KKgqqrwCG88OXBxMSpw1OO/khvrksmp6ffZlXCdNfjBEIKlOkPtzVetw/rStmumw4leFce1QRFizLRaiDli7EQIgZwzwWsurnRrwJoSpSRqU0Df9M1FKXpez3Zdbdtz6nXhvIW2xb7dmlSsqv21ruATLDkXbFd288H3NVzOisAN/X5S1PVWFY8exLxNv1NrNoWrdlbs0b2HQs9+CH1PU8ndarB1QKnW8kpzD6jiUqWeYWnvg4Kc/TrJRdc5Ba8sPui+LkZVgjNGmwVr7XZ+UiipsC4KvKoNbNa5vF9zrVbOaeJNqd5KjyfYHGpVDUy0odKa7Tw0QgikNRPXqHBru8+xb2DZ9jNMh6c7Y2S2PcgGibltxb4/J1su2NiuFtXz1BsxbOymvrapIurM4azRZtgeC9m+B9oUpF6P1+PLw5f5Lz73X3AyJwA+Hz/PZ+NnkSb82O2P8aQ8OT/2aI781OVPvaJMA3Btr/ln0z/7Xd8jtMCPHn+Uy3LJX7/56/zZ+c+yq7s/UGipULi213x5+DI/e/hZvhm+yQfuA35t/LVveexqVlaz/oG99+vxRzfOzRPfzRA42iNf2n+JL+2/9Ad7YB/zIVX41Duf4s/90z/HF7/yRa5eXv2JB5S2IQhvvHiD//Tv/Kc8fv6YL/27X+K0P333L5gt/A//G/huFKiePIMf/Jff/Xu/Hq/H6/F6/DEZ3zmk1Iu5IhoIbgFPE018GHrSvT/+vHSJgjFbCCXQpZN7Rwf6xA2Agh6E6bvqf1v96Kvq4ii9AHzeb7R7aEleBZAw2tWvnTya7diEs1V1qCfDOnAkZH39LYGwBZG0c9ZqKyrUqglKfTlVoTmDXOf3kbO1mxaua9cxEmyrqs0gnBd96ZXvlDKjV6uTm7uVZgyIwVqnEvJiaKVinAWj3a3OGMZxoo0jKa7aTeONWlRVzRDtphFBZabXVMgGSs14cWC0GNyydrMaox9ZgNol60tRuzdrbbfbMQpDOdvt52yXKLa4ceR2XYnLgjEQvMU7z24/8fLuyBRGBm9JOfLhi5cMxrAbLLREq5E0n6BWmrE8v71hnVfOgugNUimE4AnO02rB4qgxc/X4grRWjqfINIxUKtN+j0glx5UwBh5fXBLTQk6V58+PjMaCKaxpVgn7NmDFsq6JwxRoOeOHgHGOm7ngmwb8VYTjcWUYM9ZBiY3Bj8zHSIqJcSzUWJmcZzpYXDOkVHrCwuNqJedMzgkngoSBlCJiIMUF17u1cirQEtoF26WiSwFnsVZ4NE1cPT102fzCThy70XJxsefqasc7X3+XklZKjGdoAiuUlsml2/OVSsbjbCDYjDUOHxz7R3su9gdO1wsv7m71vsyZKuB3gVwz1ngMWnBIaaW4xDgEAoXcILiKC5rkvbmp7C4u2e0Sjy72PLmY2JvAh9cLd8cT427AiGE9LfjRsb/cY2yjpIgfLKkUbu9m3n7rba7v7ojHjCSDNwqq3NzMzCe1UMoxsZxWoi1YW1Q6HHAWJu/YTyPSGod9IAxeCwWtIdkxjoEX189Ix4XbdaYYhYK87EgpEhehtIVh71jSzBj2rCnz4uUNF9MlwQaoUEzDOGH0DkslFcPFaLmaLkg5MzzdcfX4E9hmefMTF3zhC9/H48snHI+JYXIcJhhMoIohzZHL3cCwu8QNB9blFtcc1hqmIJRguNjvuLu+4fqYeXR1YLf3vJgTcV25vPSYMLA/PEHySpguSeszrBiGccS4wn43YWpG9gdiEy6fvAExIUlwgyN4w74NGAeugwD0pKMpBRnUjqEuCcuJ5dQI+z1zKZjjxD40tRs0gauLkefPQHYTF2HHJ998ytuf/Bzvffg+6e4ZXxu+Du9/wNwKp/UlxigAFZeCd4WLi5HaCnfHmaYSB1gRHFu3pfQiqAGj0vaCdCUEVXHLtZBtwbbWJeeFitqlgFCTKmN57/CDY160zXtdY7fqa9rhLujc2oEl+ooi6Nxdu+XLec36CJR7Tk72ZyGaSB52jsNBcCXx4p3Iui40LMZ5soUnb7zFG2++wXg4cn1z5OZ4ZL+fUP0CUfUn8ZTWuLs9MQyeRqUZeHmzIDl1u5bCODqm/dDnWYOURs0Qc+H69gX7vWf/aALfSC9nAp7jzUwqkf1hIDhLMVa7a1GFPBcM1oMfHMF5YMQGQwiBN9oVp9uFXBNLXBn62qXWJYavv/eMvGRaSWrnFwamKZBL5tEbB4Yw8uH7z7vCoAHjCNbgBj2np3lFrGAFhqCqN/5qz8XeUuuHHK8LayjsHwUwmkgfg2dxK8bqmteMWnZiDGtc1CYhBD0/xjBNI8EUyIB1+BC4PR5JMWIQDvsdV/6CnDJxiVrQRshpZb4raufaIHdrniE4KHoNpFy1C7pWYk34oDZEfjJ4N3J52PP48YGUFtaYQRLrmhl3ExePHhFCYD6eiGvm9uWJ052qKKWUwDR20w6kdisgLZg3EWrqdiXSGHc7xtGr6lS3m01L4tn8khQjJSZyV1sYxxFr1L7BBYv3g1rBxEhaVWGi1cKz+TnWqu0FtmGqIOIwVhh3hmk/4pzFGMEPrquaVZxr2GY4Xt9x8+yOktSCbutk0+7rjHeeXFWdbyv85awWTxghOEOlnu1xoHc25UbOK7lm1uPKNE3M80wpCaiYblvovcd5tTX1fuwWMdp1X5taflTT2NQX9N+qzBXX0m3ytHxoWiTmhBRhHMNZqdB5x8HvOyBuOB0jt8ej7v+cZdqN2kFvDNYYSqzUeiTnj28CSQus7fy3c3G3BxEPUSO43xc//Nn2D5Et5fiRefT804+eh/otj/3okb3691dTmpvFz/n3G1C6NWh0lZTtxwLI2c7sI5/sQfd9Dx/OccU25BwX9Cr0tl5sgNKDV9TZ+kEStvNUv7T7Ze7sHbUUgvN86D/kHfMOTeDXhl8/d9BvKmtbF7/a0mxWU41aVDVPjCo3tH483jkima+GL1Nq45eGX+IyX/KF8gWmvOMTyyd5XN4g4MHQGztUMUCEswrLdhygIBD9vWe78DvyNb4avsqziw85ha1JQc7HKMGzrhERvQ9yLaS54kTwTjhbjabuGSmGeV0VgD2fR7Xcs13RojVVjmsUhjFQC6SYcVbBQ20A0XgoOMs4DGeFnWWOCk5JpZReaO37ju3x1A4XGcOaFFoSEapAiQXnVG2wFVUDyl2B0LkKRa26vBEiXbmE1pU0OmzTVZDEOI3XjMaU5lx8vDdEN+g5a62C2+Aox7QLaulWG14MwRnC4BlHz+3NUdUiSr6/Nrfvs93b81UUCremQw7G4EfP4ANpLcxxZbNVagLWq/0Vopa5tVYtnHZQy1L1e5KGCd1iaWn4MICvjINnCo6A5bhmUko4ryqVOWa1Jx6D3h9FrYRrrcSY2O8PqkKUKhT0mMWwrokcC9apTXnOhSIVEatNFTRVP7FGbbxpCrs6gzNev9tqsc4yrydqbMScaEagFkzweu0koZJx3pBLwtmgzRTLyuAH3GYNKgrUOWswaDNLcIbRaRPLG/kJ3/f8B3n67E0up4mrt54wDRMpFmwTghOKqOpVzYXBOWwYMDZQ8oqhN4hYoVlVz4nLypIK46BqI0vSvfPQFZBDmKAWrB8o+UTNer5cawRnVdEkJUpz4Cy7vYGs85h3giuqNmOtQnXN9IL8lhvyThsDyGrFZwdyq5A8xrauXKLWbWGB6iyj9/zo83+Xz6bP82tv/zrvHb7Bab0BuWVOmVyjzpytW8DWwjCFrnymeRCaIPOEfOWL50awbT8hdFXUbUVrujeptWGMKnqKMivn/bzozdfj+YYPqkyltsetNz/IeV0wKPB/T7Vua2af7c9r0P2vpGl+7sFqw3aUYgTrDT4I3kKeI3PKHX5S4MLZwOVhhw+FeYnEGLEj+K7gpMucQmapW0i2pq+dUmHNaokJDWN7I8O2IKpvO6WqKqUPChXa4CmnCs1SUyXFBWsNPlisGFpTRRhjDWJF1YJ6vskgYBriDKMZMaJwVUpRlWg65eSd5fpWcwNWIMW1N4K4bqtsGYeReV5U0U3JEbVQ3pS3SiUVtR60omCHEUPwE9ZEcjqyGrVitl4hEGuMqvCJzpOtNxMaYzuMpXZgm4Wqs06vF53qsdZp08cyd/tBTxgCtRZSzGfYiVrJMZ0bczYgznRgUkSQbvlVW6PUrN9NVwz2g8M7z34aEFFV67TBY7YxjgPOq3VpSpm4JuKiap6bFZp1tsOyZQto9froeTxVojV9TdU5pKE86zKvUKsqWjXdG2tO8V4L33YYv5Ru990FqdZTJNm+l5emzrh9HjNWY88NqjJWtpsSkXpuEjmtJ4Xhan1w32hMYa3b0roPgPRu84lek8g9UE3rYk1N71/NFSvQVkvtcJeu26putClUaoOe7Q1T2z3eWuuNuOY8F7SqJ65WbWqkQ7TWCaVEagcLMXJ+DxN0j2BF9w3rqtb1zYg2UhhVme5MZVc+5vX4Uz4qlb/95G/zrr+3G/rn7p/zz3f/HBr891f//bd/4ncRiv741Y9Dg//ujf+Oz8TP8GO3P8ab+U3+/N2f5/Px879v9SbQ++iZe8Yv7H6Bf3jxD/kn+3/CO/6d7/oYX4/X40/6MNXwqXc+xZ////15fvDXfxCf/J8aOOmjwxXHX/37f5UvfvmL/Mx/+DN89fNfpbjvYmF88Rh+8q/9wR/g6/F6vB6vx5+g8R1DSmI4yx4/rKlu0E579Yecd3ztPp0iPbOx9XN9NH3SOrR0hnn6S5x5nwfH86CP7FsUngTtYDl3Zp+Vn9o5SN8KA63/u6KJYXU7U0ndSuOhEFJ7kABSeWfDikJUbSso92NzVmXjpXes3XevboHzPYhVa+3qBFtSoWoCvmfw53lBppHDxYG1FJZl1aRJT6w1MdSaGcYB7xwlZ4wVhmEkesuynKjisNad7d5KVlsVZ9XeZ5xGbo/HbrMFwTtKqYxDoEolrprwKVv3U4NCwzqnChamYawmebQIkRlHxzDutWuoZFzQoNeKAmZCxZXELgTEw7TfUV8eoRWGadJiiVMp6brqceVayd22x1rtNG7ScEatZ6zx1AQ2DCrrnmfcYEh5AQwlR7zV7z/GyPPbG1JJ7KedggreAokwWB4fDoB2ok1O4bNTUjuEMHlc0e6/cZpIpZDWRszaYR3nRFwXQKh5JScgB5zXJEQewQ3aaWxESL37bj8ecM5QRLhdGutSsUVUMl0MWE2GGGkUGrtpwJuRu7RwcdizG0bwFsRztyw8uvR8+tNX7PeXQGE3BZaUkSw4U6F3NO9Hi/d7nn94x1pUfebywuOdZ12bqnKFARscw+Txa2A3Zq6XWVVwvMNWTaZa71hSIpjGznt2g+N0fIk0wdrEnDUpNg07prDDSGJwDqxR67IxMd4dcV672EpWa52cEuSKQUE3Yw1jCORcuL25JThLSkI1sJ4SVOFyvGBeZkqsWDNgrSF4x2EXNOlb4WI44IPTgn8Q0npUrtE7TCj40RCfNa5fnrCrsLu6wInlZpm53A/MtwutQiGRTMQ2xzCMjN5ScyS4ATsEDocda124jneY4jmEK/a7ge/55FPefPJZTsfGdLln8APGWEJy1LkwmcrL05F3TxUXRh4/DYxXFwQLsUTm+ahJt0GTdKebgrOG9z98j0IkVoPcJiZp2GwZxbLmkbUEXLzFtMaOwItvvkeslWfrHbthQC4Ny3oLDDg/cjFdUM3Cy7uXFAotDLgFWr4m+APWOfx0RcmVuxfPkQzTYDnerhQb8G7l3Xff5/HTNzFNeHlzw/XNwtXFgZQXRtNYS0YYKUXY+cd88XNvcfPsG7y4S3yWka++8xVeLhkJsLs8YF1CqKzLiRwrDr3/1yVRiwKZ5+5E2ZQcNHFprcVVe+6gNcb2P6V3+m7GO9K7HQ0xqjVY8AHnfH+tXsjtXfilgjEKAG0dpdboUrt1Qzca9ETn9jzQpDXK1LIBTCEIw2QxrnBxuCLFlevnt6yxIsYyjI0o8PXfeY4PhVohJcM6N2zR+6Xl1BPKGXFWldLW2lUxRGX+14WK2hmM+5Fh8MQU1VbBWZrR7rMQtDNYXCWMgnOQ5lXh39JIS2I4OEJwumeolZLBBcvjx1dcPp6YJs88n7g93pFLZp4T19cnSq0sa8GGldNxJcfKzfUNL1/cUtaMtQqXiEEtIGLhYq+2OjkV1iUizjBYIQyOab+DBr/+a+/1QoTw5OmOaQp4u+Owv+TxkytiavgXjtISpRWsNazrys2LE8aOjNNAToWYC8PkeftTbxP8ANZivWUYHMGP5JzUtgJRmHYrOtP44MMPMQL73Q4fHNNuVLuidWZJagM3TRPOOhDOlkLBOHbWqmJcWXXu3Dv2F073OdXSqrDMkZwya1JoLpeiKgjWUqcd+2nHzbP3ePHBc1LsyXFpTAfPtPeqfBGNWrMh1FYoVLy3jNZjXVPlgubACGmOxFUhWen317T3hGno617BD55mDFWkK19Z7R6uWWHCItQCYRg4jGpp0OjWCE4LJGVJtKZWny30DmJrFNBNmRT7Xs+ouoexWogQYJlnYiqvdF4jCsLXUkhdBkUVOtSSp5ZGqUkVMWojx8TxONOKPoe+39yUpJy3WOcQoxYRtdF9oXo9rlaMKR1sMWqN1BopJnLS6xZQa1cjOGOJRbv3GzCZHcMYGIaBVqDVSE2VNS6sy8IyD3jvGcaBaZywxr6yV/44jvOW/NuNLUbY9v/6w/PfXnkNHupD3P+rPZByvd+b3yNPv8eRffRgvs2xfxRikm85vK1e2LaYp3dvbnZnGxiyBTobqAL5DGpt7yGNs/qsmE0p9lsP+xxJ1QexEfDCvOQ3wq/3orWQciY4hx8Ufsj5Psl2r5hb1ZbEmG4BzHm/nXLqa57p848WyJxVW1+LpfjKTbzhF9svQhPs3vFGeoNH5pJPpU+xiwfGPPBGenxvh916J3+f9278Ddf+Jb81/BbfDO9wkpOqtfTGCNPPhTmv6Q3bCs50pRPvaSiQ5LxDlS06FZU19qutdaCwF/L6lbK9togq3xgbdD6sGeO6ogPQajnbC+WisE2tCi/W1qjGAKXD4/4MMWzgWSpVYyonZ8Ue59W+O9dGaYJUVYIoJffvt1ALtKpWRmKa2obZCqJAcin6ObwL2G7DtuZGyU334X2O2KxwhaaKfN5hBGLJhBDwzvXGGEi5MAyGi8tR1z4a3lmd/42oZXWHwb0zWGOZTyulqh7WMCocntVdD2OdAgauYYsqGq156Xuwc0SMGKPKQdLwxuKcUbAAEFPIqSLW4JzDW68FZ6UNmHYTuEpMUSHypuqBIvTCcodfjOn2wHptrcuqRfGeEyBqo1RwqmLSasNgz2uRDapiSoNgA9apsqO1UHNXkbEGbFXIaW4sswKpYRwwGNacGbwlr7mDXQq5l9ZBH6sNSbZbGoYONa01ItUS7EjwlqfDFd///M/w9rufZnQT9qlartliaKmqylJO3GWN2afJ4qYBK63PB7EDCbompVUL+KfTHZWi16RUPA1pBoehFEusDikR0xoOy3J3p3bdrZJrRnZ74hzVFrAIgyhkcZrvVM0ZBWNyPuEGVcERFxAcOara2WQGWsrErPf0aT5hjcWHHTkl5tOCtQ7nDFIrVlpXDBGuXjzhLxx/jG+89dv8ku0XkwABAABJREFU3NU/5mJvabcvuU0ruRWsU6htg+5Kbmorj+692j/7s8jtowdzqzyIJ3ReMWIwpiLVIKYiTQH3s9JJb2Y7K1a2RsmJ0i2lNDd1nwsCOtggHV6hg5P3AMqW29pyTOc81Dkn9mDt67GQ96qi5J3DWcvpuBCj7jeMtbSitu45qSUXWFLSRjq6kkytVeMiFK6JtfR7UrqSTekwHXirzRTSFMwQUTUmnX01dtpiHuuMqhL3+6mWAlWbsFqzZyWzVhWYGXcDPuh8sawLtVZybsQ1k3LG5IJ1FRNz55Qap9NCihlQa9/tXNa8qZbp41Tlu52PzwdVK729WTneKdw2jo5hUOXN4ATrPfuLSePGlh/sUBprt5QOPvSmtAytMU6qxCpikG7bZYyCWRltYqylqgUq+h2uq641wXuFCZ16Z9dazkqyvv9Ov/dtnRWNXTvko6CXYQqGhlpw0owqEzVd12qHTXPOpBRpTdWADMJ8nEkpdw5JAUM/2K7ypNadcA9LIRuwdq+k2ETt3XJSCHfbu9geX23glmFTb1dFIysat6h9qX68knX9DiGcVR8BxAKyfR5dk02Pf7d9lSoG1fNn2fLHplvgnt9r23FsjbCiakUbhLSt83ofdkC9KxkClDJDV76WnoemKy4ZZ+7hta5mqBuGtm3SaLKpXMq9vV7p92MHejfrXCPmQS5CoWhVfrLYs/UrXWUyUVLukJnFOW3oOW/QXo8/1eO3w2/zE5c/8e1DqD8MbkEUjPra8DX+m+G/gQbjWyPft3wfb+W3+PN3f57PxM9wVa74/uX7f9eX+Ub4Br8dfpuffPST/Pz+53nmnpHlj5fS8OvxevybHvu7Pf/+P/n3+Qs/+xcIKfxRH87HYgjC57/2eT7z//wMv/Dv/AI/8dd+gux/H3NJFfjbfxPe+dR3dwBNvjubuNfj9Xg9Xo8/ZuM7V1KqRWOkLYkicK6yNi3kGmO1Q116YUa2TtT+Gp3yaXBfBN5+phnT8/ttQJN2PcPDHfCWlukv+uC1OYNHG3z0ymfYkvznIkFPTrAlXxrNtLP3vIJMdDUMDb5DGDQ4Nz2468UxoEsRA1Kpokn+MAzacZm73UjvSG08/Oyb0ob+L3iv/uaSKbkSrCMMQY8qJxzgnRbWnXOqsoN2F1kL67qyLEW7ALUKrhYIxuKNMIbAOIZuZ6Md0cF6xAvLvNJyPSs4WaeS/lrg9eQUYetcbyDW4gePp/ZuJQ3oS1YVA2sEWiG4RkWY9jvtEKuqXhV2HtCuNJcKV4PjzadvcYwrDWGchHleMVYT91SDsQ5yAhHcEJBciHFhIDDuJuZ1JQyBVTLTxcBBDMtxoaRGWk64acD17tu0rHou+/ecSsU7ozZrLTEETysqCV9LxXpPaXB9fcvxtHA5DXhrECescSWmyHpcyLGymwYMBWomR8+yJHxFwSI/YFru9mgZ1y0TBEMwnpxnvK00a/G7PQ2Iufbz1Tr0IIQhc3Vxwd0y4qzTrr5gteBqFWqK68ryPGFMZbf31FlIxVBJqDK/xxlLWiJrrCwVdoPCGnexYJzDIZxeHpms2txZL0yXI8P0FrY6jstCrlkhoqxd0Kk29jIwOEc0iRRVGStncH5kGA3DKHjrWI+FJQfEr7z9iUfkb8zQMjU3pt0BP2pHd1pnxmFg8ANVGguJD2+uyc1gatUOx6zwkXMWnwvruqrCUzbQEvjM5eNH1JqpsTKIkFuiMlCqx1ExLTGFA2EvXN/ecnenSaVgPXlJgMPkSjUrSzyxrAV/C4OtcGnIc2FyA7thr5La1p8TlU4Mkhr7ySK1sSQhm0fUeovPCYLHhoGULKY1nh4860koZuTi8opxN3F3cwepsiwvsXbHbndgmY88e3mrkFZcWEtk2I28fP99Tidh8hPN7dhfPOI0L7x4+R67veXpJ96m2CMvTy/48OYaO1ou/BvcXD/jlBIvr59zmO4Yd4Wrq0e0Z4nBe1bfON7cASfmNXMxPsG1psoERgEBqRBbooiqPa0lYdKC3F4jLbGukRe8oFLwAYIZiUk7BW/f/wZzySzzTK2W4ANjCOx3Bxi0m5bSyEtFoiHdRnJSlZY4R+bLyK1dMEgvnhktaDYV88sls6bEEhNLzKw5s+ZKKr04aBQGzK2xxqw2EsbijMH7kVoap+MRWuuJRQUkUs1dfcJinBY9BHMu5tLa2SIG2llV6VykEDSZDmrp4R2qclO5vTmy9vu0FC1gnk6rFlLyjHOamN/trjDime8Wck5467DOEnOmpswkAWN9t82oWLFaaANyVwFZZgWURCxibT+GxDANeG8VkG0FZxtLmvXzGoVO0qqAipkctVaWNXK8PpLmhRcvJi4f7RkGi3cDSyzMp5V11eLF6W4Fs1IPleW0si4zcVZ1iiYW41W1yBnLzd2J95YPqbUDwd7gQsCagXEaePsTT5nnmZvrG3Iq3N5EvB+oRViXWz60J4YhgBPGfeDuGHHWMjjHhx9cMx8TpSVO7kgIDmscwxTYX+y5OAzaYdwMzisEzADmaLi5vmFNmeADxlpOJ1Wc2O33pJwwtrG7mHqhhPsOWtE9SamFdY0Mww47WF2DEEY/EOMCN4VHjyZ2B02wx0V4/50XCrt6eqGi0WpmMQtxiSx25HSr9n61VJo0xikwjBPzstBaw7tAo2BA5ywxuK6S4IwACtu0qjZ0ar/CubDvnGGcBt33rJnlNLOkTC4ZayymKzcAXUFJlczWVDBh4PLyAh+02DKfFlpe8cYyOFXnq6LF3oYW+oyzuJ6AH4aA847NUiGuvchWtDC8weymgxAAJas90AaytAZGGtNu6h3GRdeJXHp3dS96WjDOYrzFTwFnLMuSzjvU7iqn+9FSMK4yjK4XZdTKRzDQSu+A1s8wjiOtVVWctHq/xrio0oJ1lFhZ5oXY1dtqKZSotirOWaZph/cDx+OR9WNs96a7Qbjf17/agqC/udda4gwf9b93yunVssmruNIWVygHdF/geeXRD0Amfc9vBZkeNkR82/ERGKo9/Lk8fP6rR6sNDFoMui848y1FrqoBVldp6WBi2ZSZ2kZr3cdC50PSAxjNwGAGVrRb3hl93ybdjgSF+0QEsQa7PdtIVzkqXX1GVQSkF+Q2qNZYcNbirMJBpVSsKBiRkxZhS0k8mz7khXnGl4ffVDtpAmMaeiyoH9p7h/cWaKxmJdoVtU/V41alJbVZVCtTr8XXHiva/tzaKlIbg7XsdxOp5H72HSmrlWntFXQxRjcEAtao9U0pGWuMxjylqKpSrfigNts55m5fljC+W201qClrQbNt83hVC7HW9LitoeTabViaAqRFoZiYM4PrFm+mA5qlkqOqm3rnQBpSKxVDLlXVITqwv9kLtVrxpscAdDi7ZqxpqhLoFZYqVeEoveY06elcYwyBmPvn6OoQDbrsVaOUzGkuiCi02hKUZpDN3tKYrtBQyLWpgqoFEVXO3CyO0qKqsQ2Fpd3gcG6PNKP7lKZzs7QOEPTjdMZQpHYFDS3Iqt2U6B8x5FQp1SKmcDiM3NxmaFpI90FhWectpSS8tb2BBzKF07oqrN20gah0Gy5jDNaqwoeIQdVgKthKGLv1U9EmnNoKDUdtFkNDWsXZgPOwxEiMGRCcMR08MJjaaKKKtjlXLIKVxjCoCqYzTuN0QSvufS40iKpcOeGNZ4/5wWf/Fp+u30/JK9ZUVSg0lloNGdh5Q0lCFUsYRqx3xBhppZHzgpGAD56cE/Oy0kTIOasSV7AsdydSAm8dzQRtQsqZZTnig2G339MksqaFNSZiyxymHXGZaQJLLNQMl1IYp0tVDenx2hxXSkmkZDDjDo9lW0xLVfXU0gqpCYJlSQkfBBNXvBNyqZQaSVXvt+ANtakxY40L6+mOR88PfP6NL/Crn/sXeKuqzqDKQmIKeW1QhZabqh1HR/1nP4z5qf+IOJR7eK7v1baZvdVGrt02rhRy0Xi01ka9uYR//JeQ/+gf0IxCH2qd1q0j+94opUgpG4DZF4N6n8/StUEbGXQ93PJjnNWmeAA9bIvJK+tLh/xbq6TcLdlT7adZ44EmCtQq2JAxxmGMp5RMWhXOcU7XolIqlq4IJ31+Q79UEaG0DcyoHQzc1poOafTnKrylSkOtZjZgFFThxgfNV1nbLYNz4Xh3Yl0jYfQE75BueZlz1L150XU05Yh3jmOdVbknFUq3EBOj0IbaPq6kdSHOq9qNdgsyYxwisD/sMEZYlkXB0dwVkIyn1sKpHfs6KLhgqUmVMp2z2kSxZnJulFx6vKgwivOOcRr62qWQvulqNtZZ4ryQUtacl3PEnCm92atYPWcuqD1bjKUDc30HIP17LRnp79V6gGlF47gYM0NwDKPGmqCKnXFRQJm+d6619T11U/XSHkvQG1iNVSu42po2S3ZrwNLtRxUIojcR6O5OVCZMX6PbddL3ZqbHRT4EBfpSV3XqueOzZft50yP3x1kagw9dIUvnhpoTpoETVaXq25gzoITQ7c5qn+83cLDfCx0AQvpa2993u1819Gj3n6HvyDb4KG/KqZvSZt0y3BsI163hNsu1Bznzh6qbjYZ1nMHqHvKgzSWcgTJrbReH1bmGpvGW6YqYtEpJ+aygDo1UEzkltZq2Fu9DVyT7+MYTr8e/mTHVibGN3HDzR3MAAoss/PLulwH46Yuf1uNqE0/Sk9/1aTfuhhtzc36N1+P1eD1+j9Hgi1/5Iv/x//Qf85mvf+a8E3s97ocrjh/9+R+FBj/x178DUKkBpx38t/87+D/9LY0fv5vxjU/D//1/D//n/wuE9K9+/Ovxerwer8cf0/GdQ0pktP9ck8A66jkB8lBeaSsktFYfPBa2pHmTDVC6f3VQifgt43OvYcGD7l7OtnMqSv3qEd4XNz5aDnjwqHORYrOs04BTeq5HmiZFqWdJIPVJ9/4MJ22y8LpuN2zvtEm0c4LaGOmJ7fKK8hTcJw3kwQ+2uFbl1S0I7HYHbuQOqdpBmmtmtA4XtKBN77SSph18m7S/FZVn14JxwztP6UF3yhGDpeZMopFTxXUAR1phP2l3VFwjMTdqTVhjGLwmTKYpMI6W07ywrlsnqiZVhuAYp6DKJcacE5/jMCA0mgHjPesSu9+9Kk5hDQHPNI4c7265m4+krJY3KRfWmMgpk6PKLR8Oe4YwqHJBTSzHmSqVXCtrTJTScNZjTMOQcM4wuQOtNAramSGmUZN23E7WQa3Ukrt/vKEmmE9R4QJRZaBaC7lGahZarthmWebE++895/LxJc44Go15bUg15DWrKkuFVFFrHWs0EZkrznlNWOQtwWBBeiJ5N7EfR9apcYqJNS3YWLBmIKfM/uDZ7QNxPWEG2A+BliotF3x1DBaKtxgUNqA1xlCpYskpE4KjVGhGVWmWnDidMrlVxsPEYeexVhiHiSYwOk/NhXk5UZtapT29umDwnrRWTl+/U2DBD9AMXiwpz6r8lRKD8wTjadZTU1QgZfSIFJwX0io8utrhbOX25pogBjsEiIXdMOBHy+XVBR98+CHDMHI4jAoWLZW8ZvKSaKKWSdNuz/7RwLvffJ+b28Jht1cbE1sARyuO998/YqXxaDcxXAyYrEowYdhBi0ipHI8nrB+hWS4uHjPfnRidRazh7uVC2A9UiUxOGIcDZTEsa2FYhXgqONd4vAu0Frm7O1GuVW7+E1dv8sbVBfvDFWZw7KZHeFN541NP8MayeOHqwhPcBdcvj6Q18uTNx7SwJ94tvHz3Q9alYHxAsLhx4ObulnT3jGoESJRywu13VLEYMaTWGEyjlDuq2WFMZHAJYwNtnXFOuDhc8vzFM7wJSBgoRC6HA1e7pwyTI5gI6y01L5xiJK1gncGZHeu6sL54wYUHH0as91yMDlsrS0mQbhjtyMXlyLAb8WIARwiw2wWMFWwrrLkxzysSDI/feoN9OTKfhOHiE7z34YfczU+xyTLXzO3dTFktp5eJOK+kXClFleJqrvzqr/8WdADgXNDtUO19sk9tN7vcEogmh123OdkdJkwrxFTILeNCwFlHWjNxjV29RQshMZazrZxzmjytpfZ15FV1v01Vw4igDnS2FwpbBySB2si5sSyJwVqsEV4+X7R4mRs0VenbbOtSXbHWQw2sMfL0zStS9moTEkaWJdJECEOglBlvDHFR+KnVBrVAh29TTBz2O8aga8F81PdFQJrh9nrWgqBRMGm/m6Aa1qRJ3GVZWeJKCEE/fzWk2FjmldubxMsPF5wTfDCMg9ohBmehqeWMMQYK1JJppYMepidui1o2tKyKgOuiEMcwaUJWRGFSLa4Wpp0jRsdditSaububWRadmxuF8tLi7IAxFaQwhIEYG6djRqzF0bDesNtPpJS4vn2B8RXvH7MuiZg1CQ9q0XCx36u9aDmdJf0FMGJ7wb70grVlfWD7RwcCtPDRSFGB4J3fYZ2qJuaoKn1Z0PNw0v1UrYbTcqRVsPhu9aNqU9kXRCrPn79HTr24KxCGgAuBXArjbkfwHioscdXv1ntArZNMt27LWZUodPHo91NPgBsrrGskvbxm2g1Mw8g4BZppLGtS6xrjCCFQivozWEcvGDstblS9/3MpWBGmMDFYw+l4xKK2c60VqAZnPd43WouEQZWGSimklLTw30GevsU7W3ls3eXb/cg5ud9hJWt6B7wgsnV/6+cD2+eMghjD7rDXz2AMrulvWipq7YNQOtiUc8LXDqLBGZZsbbM/slqEKQXrPMYIuaiCWSmVu9tb4rpixCkk7FBFsa4U12ojpUxKd1g7A5sa28d03FeVHv7wI/++B5HONs7np9/bZL5SDvpWZudbfv4th/JtDu1e8ej+OO5ppAcA1PkhPbY5P07Q8lP/9wNGymzArHlgy1XL+X025b+tGLYVGjc1JdCmii1+Oh/ddjAPPqiIcNEOXHIgDmo7Seuv39SCRt1MTS+4m/6acr639XrdnlPvVZ1EziofrRe/pN7HatJV2Ax0KxiN8UyHoSqVxc+qjJOyFrs32EnUxio432vtvs8ZDW/9+RwYY8lZ54oN5NL6pirzxBiJKVKaKg+UWs/qBKXqZwohUK1jU6HIa98vSFdVqFoM9caq4ooR/OgVJN4gNIFWmhZAezGwdVUFaXq+UldMa7I1uPQ9QVf3ME2L8ce7+Ww3pZCjQhOqqFDPtj6lKyworNg6qESfV7YIU1XsvPcE58he7bFLyZjSUKuyig+W4C25RMSq8kmrQFf5NQK1F2Jz1rnbWVU/rqXirO6BmjSwQqqVFCu1qZWV9wqwOafNNs4otJ1zRs3gYBgHfZ3cSDcasxijhXe9HzK5CrYUfX63Pm/dusc6na+NASnCMHqMNNZ1wSKIt1BU5cc6wzAOnE6qBhyCU7Coq5XUXBQIE8G7QBgtt7dHYtR42ohgpKHWqFrQF2kMzmMHi1Sdo6zz0O6V84xxgCGEkRQTrhfZ46IxWUsZZwQ3DtSsCp65gCQFV22Hw1OMXZWjcRj3HPzED3zjh/nUB5/m8fAmdlfZXUwYMWQLY7BYM7AskVoK034E4ympsB5P5NQQaxEMxlnWGKlx7v1oldIiJnhanycKDSdQa6SKQ6RgjVrftZJUTSUMxJgwrSJGQQFq5XK3BzF4Dy2vGKmc4ooxCrR7r/fWEldSgrFDdcPotd5eDLYmJDcO44FmG97pPKZWhwqsiVcQZ10bqRT8NGKbIefED919H+Fdz5eefolqG7EkUi20XCm3A/kklK9+D+0bn6D+xhdp77xNzHDHe3reNxCIdr+AtC0z9WBN6JO3MQb79/8ig7GY//Af0ewJskIn3vmuZJJ0frTS9w5d+bsv5MZsAMb2dh/BZ2X7u4Ig0pvXWuvWVX1uKFQkK1CyKRaV2oFNNhAKeqZErSJLwwdhGEdih6JpGneEYaA2zT3R57K6raMduqFUnEMb8Ko2suSs88MG8JD6HIYCawarsQmc93Nqq6ZqP7VCzQqjr7Mq44hFVbSaNqacLdD6mtb6vlVVcts9SNqVfVSFKff8ne1qTw/glaawqPdWYxN0DpvnCFREGip0rmt7Q23AjRjmGGkNtTIUVcwz3Tb1NBec1/UoJrXgrE3X1uA8wfvzmlF68+F5/9Oawvsi52vivO/ooBlo4wJVwVZrzXlvrLZqChqVovMeouBS6Q02oOe7dVU/Ewyno4Jamy2asdLBtb4fHnWfXXI5qwOJPLyWVZ2p1XbeC99/We1e1S5GStWYT2E23S/UpnGywkTm/Dm3RkljdW4tXWGIpk1G3lhKzmeQuHIfl1vraC1jewPott6p4lm5jyf63lrMprK07UW3+eDVzWZHbO+Bxj49qI0g53nDet9tSemAeEO2ZuD+sipwpVChNkNtV/e259zgpft3l74nkb6W56w2edZYVRQ390cnW2xStdFQG5VeF6lfD3gzv8mT/IT3/ft/1Ieio1+Ws8x8ffj6H+2xvB6vx5+A4aPnr/xPf4U/90//HNMy/VEfzsd6mGb40S/9KAj85F/7SZJ/AA014PYClhH+0V+CX/h34Mf/Bvzij0D23/2bZg//t/+DJh/+j/9XOBz/dT/G6/F6vB6vx8dyfMeQkrX+XJQ6J0DFnkOxc8K1//sVe4Um5yR6QwNdOQdDD7u+WlfDlvskeP/V/etuyXk5/+BhwL4Vn87Fjf5a+iNzTiRtwZhKbvfOrx5KGrGIaLeRiCF4zziMlKrJwU0a+FxQMCrpPViPc04LeKKJ1S241XPQetfn/XlVCeMHx1M1aDdGgamriz05Jpy1TH5gnufuE96flXunp22IU1jJOZU7B4UIrNE0g/OWVqR3dfqe7Ci0ZhDv2I0j0jRBNI6BeUk478gpUyo45xiC47AP3NzeEmOXCS4FUxz7acdu75nXlUbDGk0AtVrwwRPGkdu7I2mJ2MFjpWHFUK2QM/p+u5FqrQburVJK0uLsqgo8gxt5643H3NydeH5zTa2ZMIw8fkMVKrYEWkqJ1rRranCeYXJUoADzulBq7UBaowXBe0dMhSqNJq4XaQzzrF2Ea9RCwHI8MQTHxWHEmcgaMyJeYTGnhZr96HBmoJaVaqAkIWftlKqtEmPWpFw1iFiC33Wpbu0EP62LSnjHzHDhcdUTV8O6JFoz1Gp58vSCIRhKDhxPs4JlWRMyJsHkA3WEnFecHYlLoppKQYs/F1cTt7czbgpMB7V0W+KRgzTEOOpasTuHoXJ3GzFTIWjjlSYWjcFK43Y+Eo+RuixcTHveeOOKWCpNDOtc9H4QTYp574mlMXpLqVGhB2Aa9uwvRrxT6wZrB3Y74ViuwXr2ux27q4Fx2uNvjlg/gIVWE6VlynpinSPjNOCsJVjD092OerjkZDNuCGAauSTG/cB+t+f5s2sqltg8awYjjhAEZ+6YY2FZE209Yn1kiY55jtRc2LlLqkRWaaSceX69kHLDhUownn0QdqMjJxi8w9sBK3uKaxwej5BXvv9zX+TNq7d4dhPxI7zx5iMGW6kpcRocH37wIcJbPLoU6mnF7g+8WGZqCrhmCJNh8BBrJfgD+8cX3Ny8S8lHrp5+kpgSSxWa8ywRZBgQ7zAtcTF4LnbCKkJygUkcfq0s6wpMfPZ7vp+X8x3VBN774DkHl/jsp666xL/FysDucMXvvPc+NRv20wDNYo3hMA3YaWBZV053J0ZfKdXhsOwuLPmuIBHqvJA7ILG7dKx3t4whMBwm5nykLDfYahgPB7yMGAw13XAYPJ/+zFPGa8O//PI3ePHeyt3LlbREctYiQ6mVUlXNp1Y9Zs2BbhLyPQG3pQWbnCXhpW1WOpac4XSM5NIIg9UO+dq0M3Yz55SG8ypr31LrAErtkJIl5dSBiXuVpC3x2oAm3SrEbsVn7WwuJWtnKXpsYQjs9gNjCNxen85zTS090Vsa427g6ZuPSDnz8vmJ/W6ktAWksr8YdT0TwYXAGAaG6ZK8ZD6YnxOjFkeG0JXYxKitSVT5963AGmPi6vEjHh0e8fL2JXEuYLSou6kulNrXxz73l9LuO07bVkTNrPPMIkLwlvVuVUirW7x4Kz2JnvpaDuMU1CazqoVCrdr5aSyYBrv9xDAGUlVbu2WOxBhJaWG3G3TeKlBi48N3r3He8dkvPEFM4uZ6oZSGtR5v1Xbg+fMjpcDuMDF4j3EGqCypMY4j46Dz7um0YsT3fYgCQGIveOutN7m+viHXyrwuuKJd8suyUOrKOA0Y40GE3W6vxfGcWBbtYnXeE/yI84ZWMrk21jmRVrXzwzTWmGgSWFMiRYUAWil936HF4wbEmJmmEeMt1IIdhP24Y9wpgOq82rpa67h5cceyJMIQ+harUloGKs5YcqrElLXb1wdSWakt4b1lGB0x1Q7bZOI6d/uEgrWCOMcURqSplV7Omf1h5PLygtLUWiPnQq7dUsFZYu+eXorCQ9Y7nAjLnChZi0rOW4L3pJgUSMhF930q1qjWvbVgxHZbLQUDOO8L23lOMM6yO6gd4LJm3VclLdxZMarStkZS0mO8u71jnDzjOGGtw7qubpQLubQziyO9s9l02EmL6pbRjnjntRizxg5zKOhXepFq+1Nr6aC3EMTTaregaPUMKqRUSSnhve+KNB/PIfeTwrli87Bb79yRvhVeezjxIKrQ//8IYSTbz+ThL+9hpvPrPXgRefAY2AClh+PhOz5Ud+IMud2/5/1agsg5nqHHF4KCndapjZgCjPefXdcV/bvtKgtbgUp6rFPr/fX60SP96AlpvSA71AFpMAyBlhWwc0YVUrpejT5+UwrbFGeN9IaIfkxdzajSC2HdEkbVL2q3TQMxCglt4JCuh/Xc5LEVMq01hGD7ta+F9M1W3I8e7w2p5PN71B4XWKvnMMakzQW2F/a6pZ0W/XU/3USQ2oGffry1aJHPec9hGlliYl5XaFqwnsaJ0lStA6OqQKDAjrW63wEtCeaiqkpiennYCtaoSlwTOlCm13vKGjPqR6o611vDMDi1fswac5ozLNAIrhfma7f2Ll34qasRl1LY7GL1+trWKy1Opq5iJ10JxzRDyaosQRP+/+z9WawsW5rfh/3WGBGZufc+wx1qZDWbRFNyqwkQpCXKhinBMECCliCCJigQtuEX+0E24Ee/+clvfjRgv5ASbBBGCyRM6YUzCYsiBFIie+TU7C7W0F3jvfecs4fMjIg1fX74VuTe59al2JSbqiryrELds4fcmZEZEWut7/v+3+8vYpl2Ee8MrWkB2KAiOVHdLi54rJfeCON1fjYqL7JWBUFrylhvCdFSaidZGK9CoiLYoMe0pooJDteD+c2OyyKknNVaqxQGHxinUfMKxlCy9CK1uZAqq+QukFILNjFgXCRGizUNaWCtJ4RClgxGiZxhdPgQsKvadCodWIvRraq1Od7jrMFZmEKgDQM567WHUVqXi/p883lFxFCxGv5j8M5gTSJvtlg1YVyg1EeiRnCBRsX2NWpe9VxapzSy4CzBW6TqfKCEsoBUiKOHVvn89Dl++vs/zc3H7+O8YdoNOKvXePWW8+mMkQPDgApoY2TOGbEOK50+ZelW7pE4DtzdHZGWGHdXF0Ex1lIq0C3YoTF6yxAMxRhatgQstqB29eLZ759RJZHFUEpjWRZeXA3aJFMrBk/wBrGF85q6/ZjuGwdnsV7t5ksuSE1YF6hVGGNAijblWAw1V0wIhGhpTWk/u2miYijliFTBjRFnJ83vtIWvfO9LrPnEr/3k1/jurxjWv/uTzK889Ve+Qlsc7WHH9tblosneKHJ6b17WrE2bsKkPtvRUF/5IM9QEy1/7t/Bf+zL8kf8P9vAKWtP5qa9sm62UThztIjixXdxcu9XjZuO2CZee5tGcNZe/a5tAqW1tf1yaMGJ8nHOsaZfjl6b2ieM4EKLnfJo7SQlay/iwWVGp5ZfOh7o/n08LtWW9hq2udbRuUYghp3wR05SiNoLTuKPUTC5F58xNULWJsnqerXUB1KUB/ZIHFLXnqyokqrlbgPZ5QtBGQkO72G1t1FLYbM2aEm+NvpZzaqeoObva91eN2go56/wvoutMyoW0VPaHgWHnuzheBaC2bziWJZFSvVgR2k6OqlX3eEOMtNpIVff3G729Ac15dtPY6e1q41xbpTXTGyYT3lt8CLQqXeTrqbVo004pGn9atczb1j9t5tGmGNPFPMaaTsfKnVwOSMVYd9kb1Cb41j/rbvXpne0xg8FYpc577ylJyUfGGIzXvbier0cxTO1xinOe1opu2g2dTqgkLhHNczbqWzZmzjq8dawiF2rhOEZMt0oTUTKwCph63laa5iVFRUbOasxXW6dYdUEaaNzb2qMbgIqp0I2IfSQobfsu2faTm4DQKOF+GLqFYFcZqVhI37+eC/1sS1ZrayU22idC5faYx+6XvcabSgK72NJ1i7btfG6fwUbvv/z59trS+jEabOvIrCf7xlal0810r/ZuvBvX9fqHfQjvxrvxbvxWD4Grhyv+3b/x7/J7fuH3YP+7kn7+FRtW7IWo9Jf/nb9B/dWfgv/8j8DrF/CX/yCc9vD9D6H9FubjclSh0t/8n8D/638DX/nmp3XR78a78W68Gz/2459LpGQdmjjpqOrWEwrWaIFyS/hvoiLhSZL+8jMdpmdEjJGe+BFMR8H3R1yS5/aSQge6IGkrDlwIGTwGVk+TRJ/uOIKntgrm8jNQLPHgHVVWbnbX3D/cUdYFI9oJbJ1ht9NkwTIvGqf2QquzaFcMVpPkovZu5Wl3EFzCxEtnypNg1lhwPXi1vSjl/Yax1y7eiqKD99NIHCZSKhyPR6yFEH0PcMfL57IbByywzgvBW/w0UEvFG8vuMLGmxFISkjVhFDrRIwweF4N2I6+pi34a2ExaG07gsBtZU0Kyiohaq6yLJoxyq90aSTurlqQF50005DrjXdCC9LxkSstch4H7N2+oRfr70QA9pwTNER0couNeMt4ZjHMM+z3Prw8cT/cEbzhRqKYyRI8UwFiqCOMuUhGMjbQiMETtTvWa+I/O4p0WE1or1NJFbm3BiMUbeO/Zc3ZTJOwi9/4BcY7dMFJr0UJD0e5YZy05ATZSnHA+ZxoQvSWnhsH3PIeKlKxrNBZwBWSlFgvOgmkMwUMJhL3a9KWUuDkclCDivHZ3bdh4DNRGXRYqhnNZkWYYYuiWSA4xlbwqISvPKy1njPM4hNygrCdwntwyg4O0FKwb2R9GrDOUajE0pFakGvLaOOyvuNpNWFs5DI7TsmBMxXQyShVNruZlZRwH3OBowKs3d5zkxBCFh7yS5wJRf29SJHhDbgvrqdEkY0JmaUJaoZkKFr70hff56KM33HzwPiUnXMkcTzPGWZ69vNIkYc60rGWmJWUwwhisWinYxHFeeBb2fOH9F3z34wdOi1BM4fYhcX9+IIvw7PoKsYbbuxNXVzccj0fWalnmlfd3answiJJAIHBztaOWRoiWDz54n8N+op5mXlx9yFoS51LYrZ5yzNz8tme4OLGWzMsy4QncfvSGZZmx656PPn6Dd2eCtVhzxpvC8pDIeeDmzT37EZZpIhI5l8b33izs4oyzsPOV4/1C3nlceE49Zk4Pr/n2J6/4yhe/gt1fUU4V78Hvrvngi+9x9+o167Rjf33N9GzH6fWJpXru7u+5Ox6Zz0fm48wpRK5vJlgLuyGTWsNFgydT15W7c0KM5cCOXM9ILkzDATNoN28InmwCa220JVPSyssP9hhjkeKw0xVx2tFS4/XrV1Aj3/uNE9/+xmvujys5ZWrOXZzUBQ5bsnETIFwq3LItLT1hKG+h7DW5aC7FQINlPWfKWru1nKW0QrC+F1gdOZfOGKSTeXpytlQVjuQuNGArHHR7GZ2Y1F66FxA0obwlbJXIh4Vhcow7xxgM69mwNjhc7THiOZ/P5LLicNy+OmoBNBXODyfWuTDuRub1RKnC4XDFNIykeWY+N86nmXVeORyucEETom1NpGUlLdqpn1b91/QO9XWeeVXUJq9uQgrRPYA3qhjywSt1oVRqzWhHdgGjXeLOBlx0TIcdz6+vuH31hvOcaTTGKQCuFy6VtgCNaT8QrGE+F0KM7KaRVRIbpn9ZlGplLAQf+1pbejFBxWOt24K1DLkW5oeFq+uJq729CHjv7pKu7a0x7iZevvcCC8zziVIg2IB1lvvbI7kVQojspqh7Iyy7/Y6bmyuCddze3XXyiGHc7UjJs84LTSrLnJBeWLWmMgwD3gdOpxPWerwNtFp5uD31ApNVgVKtjLsBjNr9OGlaJJeGdx4fA947tZWgIWJIKRNj5IPPvWRNiZIT3oduIWvISQsoUgun03whZjlnelG69+g6LczUqnaSUnTv4mNguhoZgkOWjHFGxc2lsi4JsY7nz24Yh4GH+xPLfNb9lLXEOKiNVBOsVYENIkhpFEGLj7KRxSqSMrYJy6mQshIRw6DiKSPaKV2lqdVtF/rpeq5F3RgDIrUTTLa5oYuQgieOgd1h6gU6oYla93in+7XlOKuwm21vIngXOZ8WSpEuLAk0gxb+OqLTOaVBtNpw0aqQuovKnDc4vBZOemd1k05aaRUR7dZGQErVgkPV+c46tQPx3qlwqne6l5wo+QclLD8q47EYK5fiyyZMMr2YtGmYnqqUnpSF34on9BGPKqZL47l5Kmvq9NQfECFtQ5783RYv9G8+Qw70thhqi1T690YbBqw35FIZp4F1XWlVkeDSNkqLCuJLUSuqrUBmt9c1pjfH90L04xLGpZnj6SGJfg5a4zW9SCoXwYvdhEedCqFroCV6j/OeWrXoaYxRoYuI0gX6OwudOFFzp00EpwVpo+S1rYAqTddf1ydl6wzRKbmpXOgLAqZRizZquOD17+l2lE1/p8KsdomLRLQxQnpc6DabVKTvgw25VkxrDNaxrktvDnH9HKuIElFbsuAMa7eQo4t8tn22NZBR+6ON/rMJ1XxQO16MezxHZqNEqIWevTTitE4m6let6DneDSMheFywLCap/bH3SGudxKvXiTUqvBbjaEYL/CJayK21X3u9aG9dUCEmRRW8tSLN0IzuQry1SuHtYrlaK2OMag9jHUmyXl2bD5cIrahdXu6W5s65HuNaoGix2hhqLkjTYNZCt/3JYK0SWG0vylqN75Su0+MJaZ3UoeKHGPR9BGvJJWOMiqp0blSmc81KmzNez8k8ryRJeBdIqdusW4/xBqrG6U0KJes5wTaqKHVwo2fdHPYczwvjbqfi1lZJWcUV46Ti3VIbpmkRXZstVBzgvUFMJeXC6CJXu4mHcyIX3d8sqbLmRBNh7OvvsmaGQQk1tRlKruz2/fyg1BlwPYYTvLPs93ti9OzeDPzbv/I/ZjhFzrUTWHJjvJ6wzlNaY9cCFstyVutfWwKn04yzWdd2k7E0Sqq06hiGleCh+oDDklrjOBe17LMQbCOvhRYsNoy01EjpzP155tnVMyWTpabkQueYxgEplYfjkf1uhx8CWIvkxmkuLMtCypmSZ9YM0z4iVQi+9WsYvIWcCqkW1lyJEpWG3DK2qFVXqa1TowvFOpZSkVYYBw/WYpogNmDjgDUat334zZ/iH/ylf5uHX7CcHlTU0ara2Dbk0lCwieWNiAqIeFvMKuYy+X5GsUAu92bLhvyrX8T+7B/D/LE/S7t5pXu3bkmlwtVOmzOP8ziidnebfdmWU7sIL2iPr/FkqdqEJabvK6ALSILFBwPNUIvSxLzT+T/nhDOWnNTmtlUBCss5q1DBGlJeCD4QQoTWtMFLhHVJOOsYhsDWdFhSVipLeiqo3PJvjWWe9b1dhBSCaQK+ITSs69Tti/Ck9jyf5gCVSqjr1W43UXNR0WsD53Q91bVcmwnVJtgSvOu2a544+C4MtYAK0EuxKrg1rjcWar7yIuDc/tcFbDlpDii4AN2KK60aB5aipKdhnAhBST6lC5S989RSSSmB2SxMdUehAtZIHAZteCkNjOiez3i1N+8xb12zXoKiorYQIrlkHimJhpzUXhhjkKpzsRKQ3GUf1kTnYt0DKMG3dcGK9D1HLoVxHBjGqM2OiBLQ+rVXizbipaSCT9MJw3SR0LaOG9Njitb3taJruA9qM72Ri2wnBpdSlA4/DIxDpOSq1+n2OOuwnYpoRQXEegOr5KsiXSDcd2q5Uk1V67qikarrVqxbXGDROf6Js+IlPnVOLVg3YXXfBagIqe+zQvT4EECUHLs9ylqlTKUl6R5HVEzorDZD1KK0ftOv28uG2Io21W5zDvRGpwb1UWQl0q2C4XJuH0lPouLhetl4P+bFu8XeZjdnql4PpTz5AN6NfyVHNfWf/aB34914N368hsCHH33IH/uzf4z3Xr33JMvybvxmhhXLT/1//6f8l/+X/zPHX/g9kCL/wlVDJcB/+Qfgj/8Z+DN/HH7im/9iX+/deDfejXfjv+fxmxYp1ZI0+Qi9c8ZtpUftNOkdKFoIoIuSHssJj2KgzVBgC5oehU291MuWBL70fVySLo8BV2NbAnpirjXt+O0PM/1xmMfiMIDpkaYY7RzcLBnEKNY2RqUpXB0mjCm8+WSmSQXjeyFROwDbk6DOOafJVOdptZJ71sJaR3Da2XcJZFtFxEEvaDQRHLUX1NWiw3Wrtt04ME0D87qSa0O6sMQ6SxiiJs6D4zANGAdFBBElJwWviR3bE104TVT44KnSu35bxgbtztQifMMa7eapWRjGQCuZkpKen06PSS0xeU1OGWdw1mNMI5dMiCOpbOIsTai22hQZLNrtj/OUKozWguvnDk0a16IkgSUlrFchALapZVsccQ7u728ZgvD5D6+5vX8gRsv98UFFO0G7aNVaQP8tJUPwhCHQloTDE0dPk4w0FWw1q4kSJ1uHUoPm8NHjnGAqeOM4XO+Y9jvOy4Iz4JxgbcZi1XJMNGHtjDDtJ4pYkjTG6YphCJS28vrjexDw3oAUhsmyrCvSKrUlovcMcYd4S/MNZz3noxZKS24gjvN54f7+HmOFYRxpBqIfSMsJ1gwC61qpphFDwDnbMeTCOAZg67TS+yFawxCC3rNOO6HnOeOnyDgFhmkkNWGKnptpT8uZQqGezlATu9Ex7BypFJwx1DnRWmZZVpiFZhzBDQzSMLkwhoAfG7sxgKhlA9ZzOp0hJQ4vrnF+h9gETjiuCX86k8pC9BOtRqxXqoZ1wmG3oy0LwRqub3aIN8zVYYJR+k3R7nBvAuM4YESoLeMdWGlYNBn76iGxnDJWHIMfef7eNf60cDzds5wf8BWWeaFkw3w6kSTjRJCUieOEiyP5dMKVXszxgSIGFyeCP3Dzck9pQlsyv/MnPs/3P3pDXTLr3R15VxlqheXMuWRc8+ACD9Wzm54z2UatKriqpmKD5+r6Cmugro047rAe1nzm6r0rWGbO93eM3hHaSl4qH4eEk8zzw8D7cs04jqwNJEwsb24hF073mXY+cz0deHZzw/n+njUbnr+c8Evj40/OvP7kIz738vOMz16wzne8uDlQ5czxmHE+8P5711ga7fvfIye1lQwxYIKjZIOdM9Y2ag0cC3gDc9Nk3cPdmcN+IpjKw8OKM5bnzw+8+mTkV7/+Eb/yK9/mzZsTuSSKFCXkVKF18cFjklUT2aKeLFrUNReF0qUIsCX6nlqBQi9wGZBmsVXXJWciacn4QS1DSu2doKLJ79BpRKWoyBFs75ZVscr2/N66nvitl85d79WyE9utwWxj2kdsMFgPuWR89FSp1LZe7MmowvxwAmPwPpLWQquZ6+uR5Zw5HWd8jOR5IZ1XznOipIrxjaubHSE4pvHAvC4sqbDMSgVozVBFCwWDtcQYGMcR5y3zqpZcSgLUbnxrQZKw1KwEAmeptVwsxgS9Bm5ubnj5/nOevbzh4faeVx+/puSCcWBdVHGSoF3a3pGzCtFW0aL4/rBjGifW44p3lmSFXBO+OYLzhGAJwRGHQUlPHW2voiejwqlq+N633/DJx/eM+8h7791QSuZ8OhPDyHAVKVWoUrEuMMSJ3c6owLE1UnZIyqRUsGZlf9hxfX2ND4FS4OH0wJIWXFBKxTBOGAzn41kpUKLClcNh3+0gHNYI1k3UAlYcp+OJsqhVibHSLWl132Cs1WuhNkrRa2/YWQ6HCW8D9n6m5kpBCwOtVrw3GBdok0NqY10WrA8461VAWhPGW4I3XTC0MI0Tgx9Y10RKBcHivdIMcIVhckz7oFY1TRgmLVSkVCmpUsWwn3bcPLvB47n9+J5lWTFeLQKncUCqaAGmaWETaVpAg15I0aJw62gkKUIu2nGuBTyrVhXSupBnE/vJpTgDWvz33lHKtu/bhC+CCY791YHdblDbuaI/H8eI92PvoF8RV3HREq0WjWpDxX5rRjDsx7HXElSM6J3FOhWQaxE7EFxgnldq79JeSDotWENwvgtkXBdyQcmNvBRyL9C5Lkh2wavdZvBY0b1EK329azoH/qiO2krvJTC9CKM/vzQdXOIFnmiMzOXrCwXv8ozbXL59vwmLnjxCLg/99Bef+upTVm69+Cz9BR5t1R7/crOhfvpsrWmB1ZrGENWibJlLPy/dTqYLX+TJa9tu4Wd70bo9ER05YzqxqD9++6zMU8GSXA5NbOUXD7/M9+L3iN6pKLiU3mDS749e4BX0NWPwXRvVRWFG7bmeRnT0zn3F+XTSgCiJwWAv4hxjlNogVfDe6nXZ6uV5aqtUEbz1+vht7TPSbYWD0jX6R3v5TKo2gShVQQtqvlu9iXRulTSkbSJVFUUqNVELhN55rBXWdcVZ4bBXCqTrtpWlFKWEONOPq8+l6rOiJIlSsdj++ek9Z9ksODthio1hsNn8gdms5oaAD4FcilrqWTB0C71tDuuxtQoslQbrgwoTmxTm03qJHbe5U0VvrVu6WJwNiDVItx6S3LrwSYvuORfWdQUD3nmaoRMmMnTiaSl6LXrnMFbptwaNQcH0cyv9b5UmpdeUUqtKqVjvu6jSUwWCsYwxIk0th6RmaIXgbG8e6Z9nqb1QWqGo3M5ajxclZzpxWC+dILzdC0puwVWiU3KhGCVA5VooWwxgA9LUxtmDCsO9R/o5GcYuTOrxrrSmWBeU5uS967eiWl51PjPShHnVddCIxVvPtBuwuZDSSskJ21TYtVSjNuA0Fb518YDp9thms1SyVi24nCfIxM98+2cYTxOtZF48P3A8LbTcqOtCChEnDSmZ3LpNoHGszRLCRDAq3i19b2a6aNgY1LqwWy3Wmhn2A+RMTiveGqwUanGcnMb1U/TsZej5BcAF6jyrbXZJmJKxYhjHCWs0hhqHHc7BugjLcsKIcHX9nNIyMRqMbdS6kBPspsD++kBa5st17bc9UJFOTkt4Y0lFEGvIpeGMEid9jxVzWajZMTjDMIz8+t97j2//nON4f9epcpsF1aMwSS20hEc+0WNe6rHZjMexiZW2PJjQBTV9XcEgv/4FzJ/5X2D+8F+EL323i2WsXp88sYa2vXmgPhL06GKDpwJcs1GDtr8zKrgRo3Oz7f+x1uCje1xnjTZpqfBa7cmMgZozYgzVuC6gUAGjCKQ59xxcJUtS+mVW8YwPFu+VoidAXlMXePRmxD4vG2sIbrPWDtR17XHbJkPWPGEVOhlzEzZ3ouT2GViIUfNku8MORLi/vVdBjQh4pT61Lv6wrr+fWilZiYLOq+VnzeWSi2w03U9icbbTp5xBHZs1b3LZHnQqzzI3fU6nNLPgzYWkG0Psa1hDcFjjGKIel5IFK1QVw5RcIRjGcehUHKVob8Rb14XpiNFcXW19Gdb3YZ0K0qxVqz61GFZhVKtKTnqUe6vQUowKCi/ipaaCex/1XLZOgpP29l5D5yhdu1unQDmnx9z6vsY6zcO1puvpZudYSqGKngMrKoCw3uCDuawpW0a4NaFUbXSzzjMMkWEYqflMydqk4YIjRq/R+xMxHEawtkuat/unqRiLvodovbHpImTf9m/bPdVFTptwSfq+yV3E3k/ufeiEWm2K8L6vj6I5ahWE9XjGiMa9WGi6h1QbRBVqBx8uc4fuf7hYzG3iPGf9k9yyKHFKVFT8lH60EaEEqKXT/aTp3ND3c5uYTMnIoo2k/Rp93ED/aA1tE9PPsMv7341/ASOT+VPv/yl+bv9zP+xDeTfejXfjt3D44vlDf+kP8f6r93/Yh/JjOUpx/O3/6n/E8b/+t/gXLk56axj4O/9D+BM/C/+3/yP83p/TxqR34914N96NfwnGb1qk1Ho3pjEG00zHImuHZzXtifK2J+hFFKOOdnlpK0sPiHv25jHZ/xkFhSevvYGqZesk6cH11km7jae+2Z+Op94qIBhtaFXLOf1Ra5W8rpyOR6Q2lvORXErvIuaS/Mm5UDQ7e3nPpVYlIAWDNZ4mKniy1lGbFiDFbIWO9lgAuBQauv3PFkIaDURD9yYfxohy1jeUM4o/xzDFgaurAzi4n8+UqnY50xgJXgsSy5oYhoEhOOZlYdrtaHnthWNL6AWFGAMOQ0pKbCgWdiGymwYlOImldkx1W5ImdawGhnF0ah+RC7txp52nfbGsrRKdZxojS8qsVfBYJXZIxfmAt5bShNoMN9c32ONRr5Fud+SdYzfu1D7MQ7SeGAeur7RbqkoBp8mJIQTEaqLNCowxMO13muCqwhAHoCeQc8HGUTuIU+qCAItr+lgVYgnBOwYXOAxKorKtsR9HsJDyihHbExnCfj8wxJEYPctSuRonaiqUdabVxi5q95kRUbuj5UEFXt5hGiQp3J7uuLq+JvjAtDtwvD+TlzMtNbyzHPMMRu3plizsdiOHQ+RsEtm0SyJuCCPGaNLDONNt2lChjDSs99hgeDifadXggmdZV71mBSqW929uCIPjvGRKhuP6wH43MgwDu9q43u3VCs5YWm5qqxYD3nmKqaznhTE6fHR4GXDGck5CMBXnI6YJuSTWtlCMQWrj4eGOOO45n2bGXYRmWedCaZDnE9PegNVuZj9Epp2Q06qdgnbEGsEZqGlhOS44FxmCw/tGCBlypaBFCmc90xAxAsdTYS5Fk0vWMOcTVcA2R6lwdzyxpsa6PpBrwvmBlirH+0Re7tgdwITA4RA4XO2pp4yjMpoZWz2HFx/QRN/vm+99k9gm/O6G5CdKgjeffMzuAIebZ9STZRoMzVeyz3z80bc4nQs3N1fUvPBsfyDP94TrZwjXHB/uOd6eeJjPmGhJDzO1rEi4wsY9pywEhPeeXbEbR/ywMM9CDAuvj28o60JoEXGO4BwfPL+hFOF0TJzOjW9//DHPngVuT98j+IA1gTE4bsxEdFC8IT2ceD5+Dojcr4k5O1quXO0swzBwfHhDTQs3+4EwjhyPZ+bbI7vDwDHDfr/j+mbifD6xtsJ0uMaJcPvwmo8eVn7xH/4ar2/vtFNWCk2UHtKqJs23yd9cko3tsWuyLx/GPK4d5q11oxch+9ogIt12sifpjIpcTRPUmtESgseHbt/imibWS1XyQGsd3W/Y0OzWamETtBCklAtF1Te2ZK5hOFievb/j+XvX5CTM58x8WljnVYUTQ+gWMwasJqydN1r8tw3nPKUa5tOiNilWWGYVu9YieBe4en5gtx+oS+P+9S25Zi3ONqXSGKOEm2k/cX1zQKQRw0BaVxUI9P/Xkkm1aEdwrkqfcailp7OUCzJfLS+nvceaxvn+xOuP7ygZvA9qlzAEzqezdiYDpVjGYeB0TqRS8NHzyavXzKeZ9bRirOXZiyv2VyPDOHTBGr1Io/QktRnJzA8L66rULQXmqWDlfFq5DWcOhx3jNOL9wDjulciFME4jbhBKS4RpoKwrLGoRmVxhd5i4ur7SbudUuLu74/hwVFvMjuq6ffWa43FGjBbqvLVdLCOXS897h22GlAvUbQ+ln/EWeAbrsM52MVTSwkOnBWpH+MQQIpKElJTQpISszKvv32LHwOF6Ty2rFvJLZV4WljURxsjN8xu99qsKqWKIalVkLKZbIASvtEiMI45aGNB6lxZC1iVRMv36tJ06ZpAqSFOrIT8GdgcVyLUG3qnoz7qAMVqQGKcJUyz3dyckJbzRRHyzQmPFNhiGsSfnO0UhawHLdCuprVCus0PDIVinNqY1i964xqqYtFRub+8JzhHDgOkF79Mpq+WeqKAwDK4TQDcLFi12WGtorZBKxYrBBKN2u0GFRL7f++s5sy6FlFIvgHqGMTJMsdNeTHfRUpuS8/HMeirUXLGeCz0pDJE4eIyF5Zi0iNW7nUXo3eA/muPPPvuzGOCL+Uv8G/NPc9OeXebjH5QOPQqAzOXrz3pvT6MBeTse+IyvLgKj7W/fUjF9KtH0T/koH4/37WhEC5mVlhKIUDo95ekxgRaO1Irkyc+60MWgohotkum9pGvT1lnfD2zTbnUKwSbCFeCrw1f5+f3PI7Yp4QGdZ2q/NkQrVJcilPee2O2s1tJJb92uTS3M1G7GeYd3llwKIQadLy7CDT1LavGjIt4qSggJ3Y5kK5LqPMJFWIfplp/+0eIweiU0PcJnm9q8OEsxjdKUQFuLUpjUNnSLGWGII6YLAQ1cxGHBh17IVfGXc54hdvtElNK2WcthNAY2aPODj0GP/0Jo0sKf2n16jYurxmjGWrWVbrreQ7fAsyqq1X2GKFXLQGndrrKf3xA9rhebS21EH5DadI8hQugWskakr7dKtbXd9qm2xlJXhmFQ22UfSWvuVtqd6FCVdAgaG/ig1t7ZKL1XVVCCd/5xb2Q26i/dkkctOY2F1JuarLXUrHbqBaUj78cR51RE0iqksup79A7f41BvNB4uTe2WXCf8Nhq1lC7+NFgJWGMoVbAbdaWh9k8CrQf7a1pxXi1BQ3Qgtlv3GlLJhPB4yzvv8FFt2tUy1bNBQFot1FRUJGrV2sjahrdNsxzScNiL3fqaG6WpsMAaS2lKO7GdMLtWtRSmrkrGsw5pvcGkrIQIWEeMVklKuWFpBKn8zq9+hQ/mD2lW8xfzwx2OgIsD1QZqhfl8JkSIw4hkg/e6T22tcjrdk3NjGAYlDsVIKytuGBEGclpJLZFyBmeoKSOtgI0YFylVp5pdzzVYV1BoVmFJC7UWvFhqszjUajJ4z7ys1AqfvH7DMDnWdKa2wmBHrDFMIeClgjOUVlA76UCujdQsuQgh2m6dLNScGILHxUiTRl4WXHBknUgIw6Q5nZy6ZX0gryu/8tUv8/O/ZLl7+IRS1CpaOpFoy/dc1h1BxRmfWgh+oG7/dkLqcYWQt3NQ0gzm178A/8//Ffx7fx770/8IM+o9G4zTJgHTuo2mdMHlI5FJp4b2FnHwIqYyj8evL2fAGsad06YH50lroZTWRfYG78Njqg7AuE4RUkGoNlg4FZ6XdiGYlpK6BScMQyCOSgbMncS6WWEib9vNDdPQLRufEBMFtetE73mDvveui4He6FE7TYq+P/beKPUzF9Y1k3MDo416QxfyS7cUqyJdOGxZS8J5o6JdVXbQmnThqCVEnRQucaPVc9eaiuBLapSk8wwIjk6xqk3JrtOI8x5rlDKEsZ2sqhSn1irN60WUM53i1C1Qh0joFnClFCUSdZq7MUapYkktUlVIay/Xoun/UXtxq6S3TqnTXxnE6LXijO3CFAeoCLTVTRSj1qY+BJrp4qluU6xNDgkMhCHqeWzasFJypuSKGNQCrl+xWyOpMSropdPC9DoDmp5H5+3jdc0jPak9OX4ljen1quI3JVD5oIIp2ymAG2VxE8Z5G0hrUWLrtps0Gs8L+lluFPvtM93E3BjbX9dcBH7bns64nlTuRD7b9yApZXJK+I3u5JV0LFvThXm0ljO0bk3fbyi2e0Eu4j1jtenB9rhKLeJKb1apF2HVRlfd9iZg9Noz2gi1lNT3a3Txor3EFdYZam7derpejuVHVaT0J37HnwDg3zz9m/yHr/9Dvpy+/KQe8W78VgxB+Es3f4k/+f6fpJjywz6cd+PdeDd+i4atlj/4V/4gX/nmV37Yh/JjOUTgv/gv/h3+6//eBUrbMPC3fz/8z/4a/N//D/BH/xzs5h/Ccbwb78a78W781o7ftEhJO7XsJcm+BWqPnU9cEpfb77kEVoYt7tpAFpuH9ja2v5W3Im0ev387+6PfiYZ2j3YRPxhEPbVVw8iT4Pep6EmTQNtQBH6mlMo0BHa7nQqUUu/mrN2jnXbpttNun25QZ11PaKhFh3cqOHLWIkYLtVL7MbdKQwlGdMu42gvia8kUqop3qiahd9OIMYZ1WfV9tAreXIJTUxrOBUprUBVTL6WCa72QZ8CiKOiUOhXLU7vne8mJMQ4Mg0e8Y/SOw7MD1jteffyGtRpyzdheVFVbhco0jqgbYMO2xuQ9LjjOaUXY7AGEEDxFCsEp9WM+nfHBEWPESFLxVW24ywVQwVjCoPZj65qQWRjiyOl0Aodi4U3FeYHSO1GbxTlN8uAsa1qRtZGXjItqUePEUWpjPikxwntPA7UyFLW7oXc1uxgwJjCv/b07iwRN/vnqlK7RGrknJWqCtBsptbGeT1yNntGOsGba1LAmIK32zlgIIahNXsoQLEThYbnjYHbkdaHKmaWuRO+xttJK1oSdwFIq7Thjc8b6iPED87JqtxcQfCDlrDkUEWIcsCI0tOjRTKOizzVZx34YOC+JLI3785Gb3YC1HmcN+92Ou9dvMIsQbaBQ1FYAOJ3O1Aq7wbPfj5xz1o5yCz6q2KCshnVdSVshyBlMF0zNJZGtxYeI8WrNkdcCzeCtYRg8JkQe7u6ZaqYuDUugukrYB+wI7bwyL2d8jFy92LEuK6mA9Wov56LHWsPhMGG94+G0UMXx7OWEKcJhnEg1I2ixiAStVNaUOJ0K3moCEStIQjvy0I5RI4L3C7bAWgc+Wd9QauP5y2vuTyfmtnJ9uOG9l88xu4FXrz7iZtpho1p2jG4k++fYmPjkzStG94wye1q6w8aA83uGcYGwZ//sGslHBmvI86pCOZNIpTENB87d4ku847Scudk/42E5QWv4FnhzX3j+3gu+/eu/yvufu6Imw373gqvRkWwlhMDt8cTruxO2Nh5uX7NYxzC+4ObZe7w+fYea77g7NkY85X5msYnWLHk9cbs+cHtq1Fx5to+05cwpe0oNxDixrgunU6GYwvVk2e0ig68MFoiGYiy27SglMYx7fvHvf52/8d/8At/85GOWnCiiCbnarx2dh9un8mifXcze5n1dc2xfj+xlmfisx1/K1t2WoDXD5DwhOnJJBB8oRW0ppQli3GVN0frvY2JfRAUcVF0viLZbPGkCOwbLy/cP4ArLPKv4oiRqqQxhYBr3LDnxcDxhm8GHAZwj55lpFxjw5KWxnhstCyUrOS8YQyuV6ALOGOb7MyVlnAk0I4gTwhDx3pHWGWvBek8MgYYwTBPeDdRmiLHgi9oqOOdoJbOkBcGqOLmv9wphcJdid/QDD/dn3rw6akK3CSIFP3hCjFAb0QVyqaQ5UVsjnbVbO5dGSplSMvNxxWLY3Uy8/8ENz59P5JyYj4XTCnPKGN+wTqB61vNMzUqJ0JpzIwTH9c01a1o5P8ya/LZqxWW9xTvPOO24OuyY7+45vn5g2I1YNElfmtqinU6nLjLypJTIqVBKRUzldFyZzwvrUrDGM16NWhBqXaxcVdC85hnTLYxyaXgcOBj3I4M0aiu03PDWMcSo5KAkVAFjNBHdiuV8XFlMYj6tFAyj9+x2E8UtpCVTBebjgnee3XTg9atbTqcVrHCIUQt4KVGKyghuzydaKQzTwO6gJENrhMmoBYRzKs5dZ7V3yLlh8bhuT1CLrq/LsmCaGvfGoM+zzAvronupIUSkKpmoNME4zzSN1KXpuriu+OAYh6g2e9NeCwoYfV9ZqLl0OwvBR8d4GPT+7ves8yqIwvb9Jw0R3aOtp8TKinWQnWU1K810C6ucESmEwbPbjSrWQK1PYgiEGFjdqnsBY1Dpt8NFR/BqNVuzIEY7wZd5EwPWiwVVrYW0ooI467Ww4b2KRsKANfOlWNZaoywLtVVCPGCxKk7qhZNtby0/won6T/wnWGt4FV/z1enX+NeWf53fd/p9WPmsTuguaAGehAw80lnfHluMcWkC+KfqjS4sgYuo5+1HfdZz91jnM4rVZnui7Qd9MTHWqiVLbQTvtWCJ3hvQO9ztRpmQy3E92lJbjGmXn1trL1Zu0mMa+hq1rW3FFv7h9Pf4pd0vU6RgxXQh7CM1YNsbgtqzKGWwbUgeFZ/0128arOh+utsLi/SHGqUn1Fq6cEXrdWqp2FSASN8rO8swqt3TfFqUlNHnQmPVskRE8D5eaEhG1PLLdFGU0KlGoNYo3T7GWkdOSlhxzlHptnIiT66bHq95tR/brF+89yrGMCrotTSa+pVhkC4UdWx03loLtWpTxGXdQIluuRZCUDqtFhl1j2g7xclgOrVC4w8t1KpgyxhDbHottCbUVtVyyUAT3+eSxLDRNGpDQsMQLnsMQbrdS6MVLSzjhLUsRAKtFBqZ0pSOoqKjehHE5QaSCqY13Rc5r2QmeohqlQ6p7FstZLteUK5dKKGkCAidDpeLkpJSbozFd6GdUruWeYEiqOG0CtUaXGKW4NSOsNRKMVbtdXvc2spG5AC3Fb77vZBbpVmw1l8IWq0KZdV423ltuEllIYijlceGIhccxmnTTSkZ6z3DpJZ4tfVrlW7NaDSeNFYbfATDOA3QhOjDxdqwiSgFqos3cqdZKS1YQ136tdKKEsZszyWU5jlVtS2cpoH4ZuDmG9e0fWW3G8E75vnE4PU4mgjBBJodMa5yXmaCGbDZInXt9r0R7wu4QBgHpCUV++VKbQXoa6mP5Jr62mlJJTOGiVQ0ALJimdfGtJt4uHvF7jDQqiGGieBMv2gExHH3cNS9UdY42bg93g8EV6Bl1nTG+UDK2tRTRYh+JM1n1tLIuRKdw6KEqoYBqwTgdVnAeLzXpiLnwRsVESZX9XHdNvLb39nxN/8WfPf1LalkJYb2OEI2UdGng4EnccDTr95aH54sUuYzfr/NQMosArMM8J//+9Rf+0ncf/CXcIfayd2aMymbvSvmsrDJZX1hA6z0XFDfINi+5nQ7RmthnDxxUCrpYNVesZaqNs1drDmv68Va2AXfGx4gBq+inE6skgbNqCXbRtTxzmmcvKgQAmNpRuP7YIMS2QAr5iJeNRtFKTecV0FQq50qZIwSsMVcYjQV026zkFIznfG0Bg8PZxU4dRs2Y+mCFT0PaqGl8aIxSlVuTWidTlQ6Rck5yzSO7PcRayClQi2WNVc9uZ1EV0vt67dVK7gu9hxiwFhLyonUYyNF5JlOYwoMw4CRxvmYlavkHEZUGAPa1Lcsi4qBeu6vdVpvLY20aoyBgA0O6x6FOIhaV5amol+DdDvxbiPu1eJzo5EZ6URHOo14u9b6/2tprE0t24qoUNp7D073261pM1wVFQOXpHv12hohdtpfq51sBblUal67HZ3H+r4HM4ZNmm2Mvu6FHtY23qZcGkA3yuFljkQFO+u6IqjgV8WAep+JQPRR1/lVBV+CEIOnmW6PN2y2qgJ1IzYqnRmj15NzvemhtcsasN3rj4Q1fY5UVMRlrVESVb/moQuerRJWL9Qio/sZ7xzSBcnObTkD3fO5TrzcrgVjDKUqwav264e+X9P1W8XXFzs8b/u1WHTN74LG2m16je17E3mSkzdc1tQfxfEr06/ov+Ov8Odv/jx/5PaP8B999B8xyPBDPrIf/yEIq1n5T1/8p/zp9/70O4HSu/Fu/Es2Pv+9z/O7f/l3/1NyL+/Gf9sQgW984yf4uZ/7vZpL/KENA/c38L/9U/CX/6CKla4ffojH8268G+/Gu/H///hNi5Tg7Q6tLYFTe9fKI63iMWzbMPfmU8meLZn/+OPH595+r0n6t9NAjz97u4DwacHT5bnf6qTu3WhikR+ItrZAmUvRqBVNzg/jiA9exQ4p9W4mR4jddsVoEsX2bL12jykOWi1vPD6op3yMntIy5/NZC+utUQ2UVojG4HoLVEoJ7y2LEUywSE+KRGPx1lFKIpeENHA2kkWfQ0kiWvAqTchFO+udQLD+kuiQWhm8I+wix0Wx3mxJ1+gJo0NaUUIRQp5Xnj275sP3nvP67pb7c6FSCd4yBtex/wWDw1mnnbLecV5nTViUihu6R6tUBm/Z7UYMwlJ6txOG6H0vhFS81U62QqGZ1u0TKrX2LrZyZp61W/Pliyu8s0QbcYPhajdyPp9ozZK2Ykm3Trl4t7dKCBZjNInsB4PzkYZwd5qJcWIfPJrnaljnWYsWZ6bgsB5wsMwzkw3EMWJLwZjCIYxYO7EasCaxPxyYpoitgbtXr7BxJVgoSS3cahfZGTSfFXygBcP5PNNSwXlLNoVzXvHBq22DUTuGXCo1ZVZreV1Wpp1gvZ7PIURcVXuEWitiLUsrOPHYqrSU1rSbMvoRO3iiNby6v2ctVbuxgTUnSE1pEEEtkM6rIEGFIafzWRPH1tFqYxxHtrSNbQ7wvL5buN4PjNFRbdFCyqTnO+WKc4HBWvbXgSKN02nltKxUadhaWU8zLkwcbm7Y7V9QlkoqwlxWTBT2+z1VDNc3B9a8EmwgBMGbgJWROHhO80xOguTE1W7kp37qd/Ct736P13cPWO+ppfDm/o55Xon7K673B2o5s0jifDwhooVnjGEYAjVlpdh4wbfKYbcj25UlgTOBwcH1s5cMux12uCaYkfN8Ii0j85I4nz37aIl2ZpquOL7+iDFAOquF18sPr7h59pLlfMfSwE4TbvJkPMvdqhSs8QoEJh5Y1hk/PgM3AJn9GEjGIkvj6nqHDR6cweaZmlfuX80cDp77+wduv/MRz770Zeyi19j4/D3GK0Pyjv1geDh/zGHa8YVnE2217L/4IS8/eI+7c+N0l6jFUCXjhituTycoM8aNNBqvU1bbyDJTmzBNOw7GQzMcXuxxpzOf/PrHvPww4AfLb3z7NUkqX/7i+7y5fcNf+ev/FX/753+J3/jo+xyXE7VmLTB2ZHrr1kabjc7j2vBpkdLjamJMLxVcasrtB0SzjyJW/d5aizN93m9wfkiE0dEol2KkFhMsQr3Yjyp6XmmCWnC29LRkt3bTLsZSNcnsgtoEnO5XnM88e7670CyMOJYls+bMOOywzeC8J44Db24z+8Oeq8PI+W7l9tWR3O3BlGwXGYcRZ2A+LdodXwQf4ObZNcYIp+NKlpUPPnwP7zyvX98xn0+UllnmlVqEnFeGUYWj0Thq0fkmrWsXt6gFjFoLKLlpE2edzypKtcbSshbCcAaspzZhXeZuI9eL6g3mnHphr1soWrVtc6Pn+sWeaTeynGesCFYMaZ6Z14zYxjBELTA3S/ADQqO2Ri1qRenDTKtCLkIOhcPVQcU1OeGM53h3r+KZRSlMwzThrSenyprmXuxuwIS12oVda2HajdSqxQZrBEvvrjUwzzPOOlqtnM9KwxBjMVsxAl3r3Bjx3lKKihv8oCIuZwyCWrO4TiJKayLnRimLJqWbAefVFsYHbGzM55WUM9Y7xuuR3W6ndj/e06jYYNlf7YAdaS2czmds9BhRYbWNWvByFqyo5VrJ2smbc0OKAdHCRPSWWoWUEiVX7u/ODGEgDI5GQiRRMxhv1NrRaZF4TSvLkomD5XScmR8W0qqd2c46FTG7xtX1NeMYqbmxuJX1nJlbQ5wBWxl2Ay9e3lBL4XR/IlehlW5PaJ0WmbKKhjYxoXWGOA6Mw0AthSUXljlhRK13YhxwOM7nuRdRGudUGKURomfcjxymHafzwnpW6zxrDSXp/RpDVBFzrmwNylVq76i2eG/IqVGaCtuMMUzTqFa5fV4rWTvaG0KpKoqdpgkfAiMWGszzwlof7Wl+FMdj74BwMmd+efwl/vXTv8ZBrtjm70fhD4+FY97a1rP99nFuf9Lo8OTXxnxWufhRlPr2U5pP/eRROPT237aLuPWz36MWJh/jGp2rN5uw0kk4xhoVPl4+GHN5kypu6ORXUUGicxbn/MVqRK0Sdb06mjP/JP4a3xy/zkfhuyo+rX1dKp28hzY1ONOJBa12GtgmSKJbmOj6J7IVDE0vfNKtM7e1UcW11ntSrb0YpyI56+xlz62iJaFmyzh67G5kXtWeSu2musivgaECSp8JXgt5ueRuKdMwF0KA2ryFoEVJ3zbLOV0nED1+S7dmoZMTUJrtdkwtZSU2SGMah77WG6zXuCTnrGvSJl7o143dhF0YFb/2grp1apvSgDUpkTdYtQ7SC9KqnZCxhE6nNdZQc76IrEprUJRCawhUA0YqMUZ8cJhmWedZ36tRG58NpHUBovQ4oVnIvQHEWKW05FqV4tCbiIwxaq1XKsUoFc4HFb1g1OLd9CfXNUvtYK2YDmFSYV5tGi95r9TWc1Wx8TbPlqoFf+t0PWkiSGmqPUBIWW3NldrcCVP9tjRiAMu8FoamNK1m9JyaoOe7NM1JOG90HRIlIEvp5AsxlJwYnCeOIzFMFxukUgtmsyTCMIyR2oru0SxYHGZQm82clfCRamOInpfPX3B/PDIvaxcmNpZ1IZeKC5EheqQlCpWcMoJVAodRgogU08lmDSuti8MLperreotSGMPAl7/5O4jmQCqZWLyKuLMlOLAmq+3vfMI7qFkpMdNhYBgnal4pAsYHrLdULGXVhhm8UoaDWdWC0A9osFsJk6ManUfiEJSsaMDUgrTCOhditKzryvJwYry+IRhLThm33xGGiWoM0QjpXFkb7MdARFgYlchmPevadF3stoqlNmpJvWjuWGsjY8k5d3GGwXRrwDg4YoD1YQYnXF+NnI4Lp3Vhf5gwpvEP/uHMX/jLV3z3ozvmpAQr6fOd5ome7P3lU6vDZhH9maPz4eTxO57++ROR06W5zVjIHn7pd1PEIP/BX4QxdyGSfRQKtL4G9Rt8swE1onPJdn9IF+WoiLPnuvpysi5KXEHyhSBn0Tk9V23YULKlEIdIWsFYYbcbkAbzce3WgOg8XgTvVFRxsVRujmalW0iP5KR2ZDFGhjGyLkp8TGvDNad7u1KwVjqtz0BRwWelXnJW25zepNuV9c+v1EpLrVviKTFIFyglQZem5LUtH4nQ7UM3Wz/dHJg+/4ZBqZbShNIqFkOuVck7fWkO3uvLmE4I7ddO7U2B3nmkQkGJthu9xhkVcs1tJjq1BMdZQl8zNkI70vOQ0rRxrjUlcmL7XlDPFSKd2Ff7fK9zdtvek3CxotMcq+nxgpLvfQh6/vs1Zq0KnqzV1xFR22a72YcYe7EftJuYsaqIzvugYuRBbcyVHqeiqGB9f67cyU/dzrbP/8ZwaSbYrMVqJyc9fs7aTFD6+p/WchG6em/0Hu72cj56bYrsNnpqB2fxXpjzrN9XTbi1KjSjNuQxdsF2rpiswjUlPaol2zhFnNP5rCg2b8twowLYTquSjWim4rjgA4bHvHC/uZWOaDXvVEqFbd/VWreK851yJ6SUL2s0Xahle6JcCY6qWBSUAGi9nidpmq/bqICtqphu2xM3DUIum+1syoUW5Z1XOn1pZCl89g76R2gYeBVe8bMvfpY//vqP84X8hR/2Ef1Yj4/8R/zV67/KX7/+6/z8/ueppv6wD+ndeDfejd/CYZrh9//t309M8Yd9KD92QwS+/vWf4M/9uT/KPE8/7MPRsY7w//5f6tfvhErvxrvxbvyYj38OkVLryYHHDgt44mP9KaHS1u0hZrPK2TrAnhaKt9jokrrhkgmQx9yOJmAeAyR9nu0YHsVOTztmtaP06bE+jgsByjw+49bd2gBpBbXzaL3wumpgu+GGbQ8GmxaYSlFKQq61B/dG3bGNZxwnwjAgpnF3f0euiXVdsDZcklYWLVLWJtRSqBZas4hoIjoOE7WqIKPWQggOTUsIqSaQyCkt1FyZwqjdSyIXMod3vbNt66zxFudhCJFUqwqUehL65c0Nhsa8zpzOK5IreUm8/uQVL26ueHY1kkWLk1IbQxywk+V4PF2sSErL5LTSpDB4TWxfEn9Na9JpmTHWMgxBceLSemJXqKIFlFarJnGlY8H7BVNrI5eZcRhozZHXhg0qFDK24gNM0ZKzEgycdRhv8L1wYI1XYpWteG+x4hlGz9X1jnlNpFwZrGMKjuCsWgxU7c6Lg9dCSar4YIlYJh9ZUyWnQgyRMARyTkTvqecV0yZu746UVa3QYrCYpt26GOmdq4KzhqvDRC6wLIWSRZNOqVI9NNGEGVhaQylW1jF6OOfMLI00n9kPHmcHhhDxvchkfGQplZTkIpBooslyevLLB8NwtcMGh+TM4JQQlaVSU8Fnr0UF25RsVRs0i3exJ+kawUfmeUVQjHr0Dk9grivGzty8uOLV68qyZCTsSKcTqTam0bEPE8MucFyPiBm4v8uMu4i3AgVEKsfjmavDxNX1QK7aDdZMY6kqIjA14wAzVFpWYcBu8pzOZ+qaqGKxVslI/+gf/WNyFabdAbJTupk3tLVwuz4gy8p+UtvAm2fPqEWLGMF7Ws7sxxGpsFRhHCMvX37IaV2pNeGD4+r5ji++/zk+/+EXaGbi/NA4Hr/L7XTm2dWB8+3MnCqvX688nBYOu8DD8gkLA1/8ypcJbuC7r76LLEWFZyZDFQ57j9TEdHjOuTSWdMIKpGyxURPAV7srSr5nmiZOJXNcEkPYsT84tT+sN0xT4BPbWOaFL/7O385pnvHhwDyvcFq4frHnuBg+en1P3L3k+fPnfO7LH3B6fWZOA7kEPvc8cuvveDgOvBifE+KOh4cT8zEzBMgmcBawbiD6AyWfYD2p8ZKP7MdrWvH4vWOpATdXrnZ7zsvKd779G3zjN77D3/75X+Y7r15xno+UrMK11upbgtnHtWdLypq3yRbYJ0LYzxLN9kRje7RQeCQuqbBFO3MtSH+uqkh0F+ylI1R6kW6j6j1dbzarT2N6cWKrhRsudjtgyEl4uFcbhVobxwcVOAxj4Hh3QprFxcD1sxt24wgNtcuYXvDBh895+ewZv/7Vb5GWDB5sFna7Pblb6pzXBTGGZ1fPOJ7O5FQ4H88MMTCfztRaaIdRrUh68WE5Lxfyx/468OK9vQqfHHDuJAFjaHMCa3BBC9G+GC0Qiib0r6/2jNOAd5aaM9//3ivOc6WticVnpOUuyFKLH2n6GUgTkIazvq/YjXEX2O8CtTTOD1kFn5ULWcP7qGvcmjQha9Qqs66VojlfzqcVa5XI8PDmBM0wTAMxDBzv77m9vcNGz2AsDcs8LwwuIDTCYJn2I0OIHK6uGMcBcJyOZ0qpDEPg+uaaNGYeul3PtB+6HRK0VnphHMZxZH1YuD+eNaFdEvP9iTgF9tNI8J41qVWd6bQn7wP7/Q4fAg/3J47HYy80BazzOOfJOXH7+g3uSeLZebUvEqeEuzh6jFPrMIxhmiaubwauU6LUjBFDyonzcianlaXkvh96cs9Vc5EEitHPECx2tpznlflhpQyC98LNs4jDsya1UEMKKRW1mO12E+u8Kq1qKeSs3cwpJ8Q4DocD026nxQ4Ku72DdqJQiNOO4A3TfmC/GyiLI/tCq0kJR9YwDRPWONYlMc9n3deJCrwRtRrxIRKthaLWe9oNLdwdz6zLiumiB2i9iKTUIxc8026PEc+cVqxooc957XavtV06s6WZbmtiese8YK10KpKhlMaxzjov2E4UaF28gRa15+PaD71bdnUBgU5pP8qdcducuH3tLr8x5rPMGp6wK36wy+Ctx3366wvd9VO/ffrNE1YevPU1b339mfEEn2ZWSS8MP7Wm0/dbS70UEjeRj+VRTKOFU/2L0kU0W6HcGKUYWO+Y7cw35Rv82vCrLH65iKXehFc8uAc2gEnrJAEn3fKkC5xE1CZZmgpVxDzuz42DVLWQF5wKhLbivTFKjtnEYJsQa2sAqBvNp69x0zBiaJRaSFnF181U5vPMNEamqPbYrWlBzTvdq6eU0bBFj3sTdDlrejGuL5e92FZLViFNp0+AFnC3x6mtkHQhzJMz2tf5WkuPm2yPRxwueDAN6yCIkiY22z3t69AP2eh/NJZzSoPw3hIHJQK2qraNwaloR2NMvWpUwKVrm8HgUBu4WqQXdLXgWmtVGkhWdeOyJFrRGM91OznbC/m1U4ysgRhDp120XrBUmlAHyD3a/uk3GCzeaZxRmlByJnrbxXG+060ErMN06z+DAdOfv1S9NmiINbioFCOpchGNNWnk2rCt76OMNlY0EWjdekhU2Gx7IwYoccsZja2LVIwtjFPkvDRqaYgN1JSoIhhviNbjg2MtKxjPulR89Crb7vNkSpkheI3rNrsvhNK6oKM3auAFqXq9h6BEmlaU5OOMUmk++fgTqiilWD3YRBtKSmMpK5RKCHJp5GhNYzBr1eI6BA8NSlMyzbQ7KDmsqc3TMAau9ge+WL/ET6bfiURLTg+swTPESF4yuQrzUkm5EIMjlRMFz9XNDdY6jvMRKa1rIXUPHYNinHwcyZ3yZKTb5noVeQxhoLZVLeRbI5WKt4EQ9Z7zbSQEy9noNXP14hkpF7U1M56yZOIwIBjujyvBesbxwOGwxxuo91HF3UPE28zqPLVapnFHypWcZlpJhOhVgC4G70c9XyXR0gpG44zgLCVaikBKOg+Pw8h6nrk7Wv7yX32f7340s6RELfkiyLyIDz8VImziFhXJ8RnjyQ/N29/L02/lUbj0lJ6nvzOYX/oZpdX8+38BO6koxvBILL880bYkdKHgFjdc5jTz+Hudpw3rWi9C3ZSanjMXKK2o5b1zxBAYx/HymtZCHD3XVwfW80JLSp/ZSJTOeRXb1kKpTQmfGEqtZFRoWEsl50KM2sBUt0Y5EepSLoLOcRqwzlByU9FZzy0W0f2xEl66yLfUy7oagopLrDVY4DwvLEvWnElJmH4/qzXWFovxaEG3BWQ9HzgMKojMuXWbO/tI+jNKHXr6ORsDNNNjlH78TQU+KppKxBiUTFWrNtaJ2p4iYMX34r/uGdTa0xJjUCvxHgetSyd3xkALHmsztbRO4nnct4i4y7phBG0sQWmEJRdKq4TgNYfRc2nbem6s0vliDORclVretuYKi+3Cn3VZL+Im20XPxqoA2HmNhYOoLTVG86rBB+IwKK2nf/655m5XrSJBPSdorngLn3ssroImh62OlDO1CuuaNb8ZDYMNnZSlZELdYz1aJGozXlICbRe5CV3oH5Ru6bxXEXYwGCoiFZy7WK0OQ1Bal200s4kEVVDmrKM56YLxerEt1HOieTolYzVo/Ro3hpQKJRU2obc+3lzy0ZsVXxCl+m02c6bHA63KYzwhXK5x0x6/30SNIlBy6Y/tNnVi+nyi+6paGoncbUe3fL8SuT6jO+Dd+DEfgvDGveHn9j/HX7n+Kyx2ufzuV8df5bvhuxdR/7vxbrwb/xINgS9960v81K/+FJ+VcXk3/tvH69cv+M/+sz/K8Xj1wz6Ut4fYd0Kld+PdeDf+pRi/aZHS24n4HuCYjvXviYdtWKtJWyu2J3W2COpTzyibyOixmPsYcOvQgkC7BFIXS7itu+dT++fH45Bud/XPXny3P9HCsdqvCRo4p5wwpRcTrIMnx2D65r3WxtIR6k3AGYd1njCMjPsdGOHueOTueNex14JzVYkHRZMEFiUxFamUKhQBMR5vfe/crzigScGGUa0TvBIpareSMGgyYAiRVDJSGrYH0FiLlNI7xtSewVqH91GlYdYwxYDvHdJXhxuWdEteZ0wvPrx580BCk+XTXou/QwhY45FR1IM+elxQewpXtLM3ehUFBR+gCa3m7neun1+wjiEOPDwcyUmLiYMLl+64VBKsCTCktYIYhmG8WCoYBGcaIgnnA6clY6p2oU0TNOuoFC3cOL2maveoRyytCKZCy5VoI7swMMaA0wtQLWhqxTvHenpQmxZridmxmyJzWRDRIk1pldvTCWs8sXfi3d3eUooQPBgn5GK6JVBhGCJN9PmVcmI458S6ZEppeKcFG1MctjbW88JqIDhHcB5aplarpBAbFV9uHdeH2G3ptDMyt0rJK8s86/1kVUSkXbyBkhLzesYFsBimEBDjSWXVjvMKRQr57pY4DRQqrRjamtkNI3GKpHXleDzhnWGcdmrhds54P/D8sOfmMHJ3f2KeE8YG0qIJSEFwHqpkWgvcPHvGuhbODw9I0aJWjIHDbk8l4MSyG3f6OfXOuPPDrIWdvHJ9s6c5Q8lGiwyhkqSB9YxeiyvzkkhrBnFc7yMsK1TtALfBYNfMw+2KkUntFkU7SNOSaD5jsIxBC9P7YeALH37I8+tnDOcz9w8nWtvxwfs/yXR1zbw88HwMOB8I0xWugljHzcs9u6tnaHlq5eEu8zAvvHj5EjlnXp3e8PH9Ceejno86c7MfsQHM3rKkI3YtnD75iP3VFVYG9sMItwtucNzfreRXRyqW6+uBafLcvLzmcHVNWj0lP2DKjD3PrDETsGSE4gq33/8NvvFrbziVPS8/eMkQG64u3L66I5fKnO756JtnwHD1/nOa9dRU2IVKNomC4FHLgGlqrGeh+ci437E3e87He0wofOf7H3NzeEacJl5/fMezDz3WVZ5/8fMs9Tl//x9+gzd395yWM7mo7dJjslkudi7yJIemxd5HkZLSi3hrnXm6vujfqkB2EzmJPK4btdt1SBOylG6102W1BWotuCiE2K09ZCumt75mqTWmtaEXREW7861hGCI+BtKyXrKKuVVagzA49oeJnBu1ripudNoBO+x27A4T19dXfPK973OeTxxuRnLL3J+OjHvPsxcj7QF2eHbDxOtX9zycl14MbNy/uVd6gxVu7+5xXbhhneH+9qiJbusRU4gxUG1hmEbe/2CPi60Xj4qSEdD5X4vgjhCd0iRQ+pS1lpuriWkaCMFhrXB8EFyYsEthGgMxOlIKpLxqQdpZStMOToFehNXPFFOZdoHQSUPzWhFRC4RcNSFtbORweIa9umKYTqSc8MCbT+5YO/UqpUwIXTxSKqXdcy0HrHOczwspFWyriFH7l4djw17t2R0iuRliCEzjwHI88ebVHYL+3bIkQgg8f/6c589fcH19w93dG6X3YImDI0RPo7Gf9lwfJt40ofRrNgdLOZ4ppaiVqlULh3E3shsjDw9Hlrwi58z+cMXhek8RFWFNw4C1jtPDiYc397RWCDHgrNrdlVI4nheGac847clNLeukNM73J2r9hHGa2O33OGtJKXGeZ2or1JIoa6KJdk83NoshAIP1FjGNJS0XwcE4RYJVa9gqatxgxBCcUyciK5yXxJrUtqf1RH6ShmnaHW6t4KJjf7VjN+1Y5sT5fCZ4xxQHrBOG6IlBbUlLLbx6/YaWDSkpsXKcIs+eXbGfDtzdHsklq1XbvNBqYxgHSimkvGJdIE4jNzcHtcApVa1RS+6FV51vwhA4HPZY5zgdZ9JZLTfTnJRyER1xdDhvqbWSa9bPzNJtTqVbSBZK0QJ4WhPn40IVpQv4LnDy3tKsYyP4tC6aWNeVza04+HCB8fwoj08LjS46UaPzps7F/XfmCSl1iye2cu/lMZ8lMpK3nkcf9+QYfvCoePuDk0/99jf7oW4NHI9PsRWsWquXgMM8Fao+eZUmut96tCLVQpXzHhsd/2D6B/xd/3f5fv6ePp9XmyrTYyfTuHzdpMsuGvguMMotd1sfPTzvDBguZKW2NXGgJADfC7XtiShJnxyt2hs9VrUWcpfPOTinBVAxxDiS60KrGddfQwuoKiYKQe28fLduQZ16tOi5FUKlqlimU3Y2MYtI7fQIPX+2izHXNakFinD5G7qFWjeyU3ELuk92nZSopAp9XussqVRM07jWBxDTBV+m25lvq9ImoOoFcGlqPRec07lQPwqlRfSiZM1JbZmMUSGT9yoeowsjpTGnrHsOUYrVuqjtl7P6+bdeJG/dWk8t0CvWBaxRmkjJev6s6RZ1TYVNNRdlVlmLs4/7H20M6XZy1jJEpd3abgnXOkmu5oLpsbY2I+nf1VbJJes814VXGkvVi3CstUZdFlzw/RoVpOh144KHok0UpouWRUTFTUaF9kP0LEkpexjbz6UBaR0OVWliGUe13c6rXOgXzjmGEGhG31fwQYVZValkOeVu94OSVSy0qs9tbKOKgFFBl2nS/1bnrSE4FbdugjYLpmpxH0K3/9MZoeaK2G7l6HSfFLznar9nGkaSTaxrRiSw2z9ndDt+4u9/hbEYqrXYMCjFyug664exTyiFdW2kXJh2OyiVOc2c1qRFb6e05CF0K7xoKDVhqpDPR0IcMHii86RcMM6Tl0prCcGwGxwhWIbdpOKDYmgtQc2YXKju0YKxSKGkldfff+B+zoy7G6VMW2FdFqrzVDIPxwfOZ48Jev4Fy1L0/BepaiteWienFIxR0dO021HXRKOyrDPFRoZx5HT7wGAs0YP3Ebff8Y9/7Rm3tw+sJet9tqkhZPtHLkKixyn57bXmMse/VbztQqEtzWW2aV2eiIoe14JNFFv7Pa3bPgO/9DM6//57fx63r31+e/I6/WtrUKFgn+Pp87zrNpAi3U6OzSJL7/E4BAyGXCriBKGp3ZfzhCESBxWLnY5nfFDRRM4ZQRh3gWoEW9UCruSmYtZOsNnszQQlk9Yu0Gy9OUNaevz0Oj0QYNoNxMFSStY5oZN+TFcBGaO5FWv1QzVexRUhqKDGdcvFjUhpTVB76+gRkYtV5SV3uO1WDZdzqJ9DwHtVb+bSek5NY7FWldA0DIEQ48Ue1FpDXpQKqn0UcoklWxVq089uMIZKpyeabmlsTbfsUnFPNB7rdA1AhNPxBKi1ZspqsxRjZLebVHS3LNrkUFVIZJ02Imrea+iko4ZDOlVILrkr39cZjGOIgVYrSxdeYoQQIiKBUi0xqFC5lsayqt32ZnOpOVNDLllzjYMnxkHtjHOl1cpcard3i93+7VHM0zo5XZoKeS630nZHbbSg1oVp/VowXXHXpOHoIl3t/sFaXQ9LqRdSIg1qUStD6Q0JmyVg7JT3+bwg0ohe7XitNTijdC8xwrKs+ppF4UPOGeIwMI4DrQjzedHrv78n248zFyUGW6+EPmdVqdxEKLle1lv6mh+ixwel4y2dvFRK/5wM2ljZ93f6ubTL9fy0saq1elmvcy6X9dl1fJXuocwlX4E8rsut6hy1nd9341+uIQjFFP7M8z/Dz778Wb4Zv/kjHzO+G+/Gu/FbN4Z14A//xT/MkN7ZYv7zjtYMf+fv/D4eHg4/7EP57PFUqPT/+N/D1fGHezzvxrvxbrwb/x3Gb1qktCGCN9zsW7Qk2cREiucHRUhfkjvAhp6+JHdN95XfEjZiLl0zbxMv1DZKx2OS4dOdz2+TkbZHg1ZvNKn+Nsa7d8WaLSGvz2N6KUIJUZ1+cUmKX9jEl+eSpsXZBjjUoiy6gMESh4gxwvF84u7+jmVd8YZL16jt3WoYmFMieg3SpVdsUimUzf7MecZpQqQiGHzwSuOxrnfDZRyekhPFqVVBa9I7d4UhqLAjZbUbSXQxVBOaNUgppDUxhkgpleP9A2BxUyQMnjWtFDHQHI4KpeAQ0nzW68JasF7pNtZAK6S0YJphCBPG+0tHmu/2Rsd11a4qhFrnnpzvHbfWqNCK1ruVtJur+Z7QtVoQjUGtZQyK2m7VUqXijSaHvfdYF6gZxhjwxpBLIyXtXC2poDjpwDpXUloJzlOlkXpQj0DKCfAYo4nyYhx2cMy5YJxogRyL855lrdAaNWvH8nldqDmzmywxjKQsHJcFaxy+bQmXyrwk7SIzlhiCJvlKJvpACAFa7eIqtf273k04C3enpBQMDDkLwXqcVBwWyWo7GK1R9DpKQmoYChCniHcja8lIrczrjPdqjXR3PoE1HE9nfBgI3jJE39HUVq+lZUVo+P0zVoSlrOz8SCoJYxvGBaARvSOvsBRHXgx+MuR56Yh3FdullinLiSja0W6AsibC4BEx3N/eI9bB9Y55zswpMY0DmEhplVxXjDRKWrAh0oomjMp8YjlWDld7fGgMbs+SMyll1jlxPt+z847Tw8z6YPA7x9XOU9LKWlbmOSn5zBR2hz3pvOocYmHYB/bDga985Yu8d9jzye093uz4HT/xU/zkb/8Kw/P3+erX/j638wM3u5dUsyOvJ7wb+PJPfongJ7738S0ff/vrPNzdsXv52ygW1rTi9jteXr+HlUK6ewB/TZocD/dnioBPSioLhyuqswxXI8VPuFgJQbss11So3lGtdng+3D1w/8mJ85w4rittqaynwmGKtOXEw92C3e3xuwMffe3X+fCLN/yuL33AfDxz9+qeu/kjTGjsxsju8JxcCq9ffUygEQ87aBEnlpbUBM2akbScWVJB1iPXL/cEP+DHZyxyZpj2DHEiikFeVMKNx+QB5w/M55mv/fq3med7Sj5RRJQ+IvUiUHp7Xv/01/BYWXhMTl9+/2S+f7sOsHUQyuPaZ7XAVptgAd8LSq13qJKFWmK369jWEJWeNquFSyvQjNrrGDGdaPNY3DNW7ZqCM4Q44GMvIIvBOUcuiWkaqUU735flhPdNBVIi5Lqyph3/xv/gd/Dlz7/gH/zyP+IX/v5XGUNgPs6kXLTjs6iNZxUVSgBQzYXmlHNhXS1QaVIJ0TGNA+faSGnhODduxokYPDnAMESoKrysVSkEgtqQtaYFdO8dSyos56RzuTMcTzONwMsPnvPi2cR8nrm/1/kk51VFXCGQbaWWXgzvpXUXAkMImnyu3f5KupVLa7jguHl2wFgVkY1jxFgoy0pr/bxLt7ooK8Y4mjG4ZtXWbVe5ublmGEZyTUipVDIYx5oXgg9IhfPDmfNRLeOsC2C0+Pzs+TMOh4nD4cDNs2e0XCkpcXt/R1rP1OaxBua0EGLAuJFxH8Brkf7c7ZKyJKpkbq6e4WOgFEX3G2u5uTlgjZ6vECfee++Fzpk5c3w4cbw/qr1Pz0CXooWYcRyVcuEtxghDDCB7tTFYC2mtlHTi4fbYC7EOa0GMkixwRu9F0QT5VkgwXaQMeo/GMeBdF6PWRq6Z5VxYjwVvBecNL19eY6zh4X6lVLUA8k6L1oieW6Ex7Seev7wmeM/xYeF0PoOB/fPnnd4Bh2nEWc95WTivK6kUaLpvmPZDt3uB2jI5r5d9YxPBh4CPgdrUminGgWEauLo+qI3nWjg+zJSk17QPQggWrN4TpSjZ0NtOsaxq/zGfMtaOGNO0MIjRAmynN1jUlsiaRmuZea6sc9GilEHtMKzXfU50tOq6tYXaYonULlLX/W+t+VLIaZty6UdwbCKYTSlTaTzYBw7lcNEKPdJa6YWUreC7bfQfVUAaNzwWmE2f3R9DgqeVL37w7y8//kHp0g88+sliIY/t6v0g5K21ZJNT6XqgxdCtAKvwI9OP9slRPoY7OOdorvHGvea4P/G13df4mv0nHJcz9UnTwfZut473UqsW1/rzCFyERipWsUpu2YreVouzpq9HtapFWquV9kQkZvp79t5hg+1WpkLtwpvWAzglg2Wc1YJ5WpWuab0K9kot1I7zMb2IakW0iUMVOtpM0FqnhahAEFSAZIx7tEzCYqyQihYfLYbc8uX6N/ax0LkpBpREYJB+DjYisHMa5xm6RXJT4Y7qjzpVwjpa1eYKY3Q+qJ26oWtLF+pkJTTpPuFR5AVQasP366JKj3O9J7eq14VscY69WN/YfnXnmpHaIChZpDYhlcJmI7sJHjb7ICU2OVpWe1xvNzGZ6cdkscYwBI81hiUVtF6sc4zDYrf4uup17Pp+qAHtiX2eCx5rPGVVKlGpuVuEOpZumaTFfdft0G0voKsNUS0FIWCjpxgVbEfnaFJgyxsYJVPVAqXpvzYYai6XwvDWiNJKpm22V0ArVcnCwLIkfTNDUKvUWgnB9b2LCkdBaKVgrNNrAZCcKakRh6jiWR+wrV3W5lxWgumNKGvBRsNg9V6pTcmAmv8QQox6H/cJyEdLcJGbZ1fsQmReHJbA82fv8eLZDT/13Z9hPw+sdWXwO5oJ1Jqw1nP14hprAsfzwvn+DWld8dMNA6g9UAjshh2GRl0SxkdasJxSVvJWbXhrsHFAjMENnmo81gnWqQCm1qr72Z6jSeuqwtxcNfYvWniP3kFNpKUgzmPjwOlupjXhxfWEA9YlkU8LtWsT9vsrfIg8PNxDXVUwEPZqIyZqaxV8pJSEWEtaF4boleTrB5pkGgYfB5wx7MYBN3YKjB2Y5z3/+Kt75uVjJSv2ZgZob+336WKlyxzf5wz6OoTZ7rHHRzx55EW/JJ/6+8v3l9fRuVhFkd2iTaD94k8j4x3tD/11jN8a4vqSYJ7Q4fo8tuXjNgu37TU2IYc1YJxT0YXTe94Zp5bCVsWlgmhDWF60uSkAplKqJcSB3/blL7DOM1//5ncoxWExrMvMtj43abQuFrmsE5v+Sxq18PgZGxU5Sb9nUl7xQ1RrUAsmmG6Rpu9LbZ57tNZ0btvEFeuaYWtoKJVcGmGIjEPAWljm0htDdB+p4o4t9/i4O7DWqhi8z4nb3lD6/C5GGIZ4oeGYbjFau73ppYlT1KrZGKspTTHdRrIy9uYBFcdJF8t0mppobFNypeat6VP3CE20ASaGQIiBcRzwTknstTUVcpqKa7quKsFoUKJRzwvV7i9sq0VQy7UQBqWd9eswBI937iJ4HcaB2HOjOWXSutJKZRPVbZ9TCGpnZvu8uomOW22PQrVaKWnWpd1s16nmX50xaiP5Vh73UbRjrK4Rm+V5q1yoSa00llKw6BodB/2c5pou4jmziar7fdGadHrXSBxUbLecF2qtDOPQr1mlOjqn53ijUF0EvM4Sx9AJXdp09EhO0jnCec8m9LHO9eYdzzgMGNF83CL9OKXhvNE9bKvkRBfkmsvxbCROFXFvpKMuhEXzFJtVm+03YK2FVh4JZroXUpGT7s16nCCP9+fl/zor6HzWLeJ+HEYxhe+E77yze/uMMZuZbwzf4KvDV/kLz/4Cf+vwt97ZuL0b78a/akPgD/zNP8Dnvve5H/aR/FiO169f8Mu//Lv5kVZ2bkKlD78P/9f/0yPY4914N96Nd+PHZPzmSUqt05PgsbOi1xjsJWPTk/TdymBLvUv3DodHPPBj+r6h6U2L4dHywfYkmNkSBmZD4WrRzUrvkN4SR9sB9Vd8pB1tIidzaXzTNIUKeB7Tqz03ruE21noUAKQJ8S2J3WPUXpzoFhw9QA/BM43Do295WchVeDg+sMwrtIb1jjg4arOKj2crOCmK3zl7sWnIVXAdNy9GWPOqVgC5Mu0m1jTTrKhlilHaUaoFkzNDDIrHdlbFTgbCOCLN0HFPWmi02l2bWqf07JJ2bi0Jaw0xepZ1ZV4XvLEM1uHwau+SFUGMA2ujfo6iXu5Xu0npA02LrcFZaI15XrDG0IyhpoIx2jnknCVc7YEK3WqgZRiG4dJRbL1lbwZqU393Z2AaPPtpVNpQdZr8dYYqldJ695s3eCKSK7urPQ/1pNdRbQzOsa6ZNfWO5mbYDSO5Zs5rQkQYYsRZp8XkpgVzYx0ihpQq0jI4i7OCaZlWCqU1fIisa7nYetTmmGctKApCM43csoKNuq3B9nlYm5iixxi1U7Ner4styd9y1ixghbLOHG6uWFdNwO9i5Gp/IOWVdS1KqrIWhyH63l1dG/OsBftnzyYE7fw7n1cc2lku1dCw1NwLV6lQk1puhJ2lGRgPI60JSymstdCoGBGi9zTRhEhOmSVVjBSadTQaPgp+mMirQUyltsb1zQ0lL/r42bLMK8NoMCOUpXE8ZfbXnhYN5+OCNHj1+g5nIlhHjCO+J0xDmChUlrWQlsJgAzEaovdMcU/jzHFeCNMeMSokM14YncVFyAXEOtJyRkpBjGXcObANCVbJBc4zTRPD4YrbnInLmSqWL/7kb+e9Dz8gpZV2f+TLz59zOt6yDwUjhodWacsJuz7n49evef1mZXd9Q1vO1PlIXe/55L5xfz5zePaCh/mB96727HxkWQTjA6ELDk7pjqWuRCJ2PSHnM0jjo++/opnI7sVzBr9jfxDW+cj9d75Dk5H7h4U1N3bXFhk83/nuCdfueT5FcIbr95/zO7/0Jdpuz2leyNWxVqGkE2b1ZBvZj0KpM2H0uKbUtjRXjnPl6uUzWmvksyYpp2nAe0POMymdubs7dqEm5NsHpmnH4XrP/f0bwrBH8sLXvvYNfvVb32LZbGJ6gReeJPq3GV9Eq7WmCz237l15FKI+FrQFEdsTwFvReCuKX5YQXRl6cpxuIWO2xLX04tpmO9e0OOOC7Yk9o9Oscyq6KK0n3DM2eIL1+NDJAgLWOXJNxBCIk790utZUCcF2S0gQXwneIS1z+/qItD25JJoUgvFc7Q98/gsvee/Fc3JWsU4znk/eqDAt+oBU7Q42QddhayxiCqVlXDA4Exmmqc+pDcmV+9d3lNII+6idxEOgVhjGXvCtalEDmeAVvV/QpKlzlmk3Ms+J4/3Kuqy6jjrLhx9e87nPvcRU4fWre4ZxVIsTr0XfEAKuVtYl0brNj1pVCPe3Z113Y9TibLc6MMawO0wsKXN7eyKvBe8srXVBBw0/GpwJlNLILeGCMO480Uadw0whjlrwWmbLmldi8FxdXZGXTJp1LjzNCw3RLnTr2E8T1nmur69RgKFhOS883D2QUyIOgWmypDWRzipWK3nl7v5Bi6dSOB4XmmQONyPGHBCEMA5M48jHH33CnAo4R80F5xzpXLEuY5gZQmQYdrRqON2fMUaLD3Hw+BAI44QYXdetNB5uz7jg2e1G2jgwDAPhdCanREqJWosSzGhYKxyuRnyMTP0cz+ezdvdah5TKcnwgV5j2O6ZhpObCelxYs9rwlN7di7GU2jhvAqZsMASCd1hr1f6tVE28O4vzKuA73Z14uJ9JecU5y227BYQ4eGqqrKkTRGwgBou3gTh69ocdac588sktRozSKZrOKR2Tghhhd9gTx9irjH2fai0NpW5VqZgAYXSMo0WaJafCsqgdcLWli4UqpagFyPF+QX20LNb7vu+t+MFgjINupyCtkdZKzq3vWHWtrUWpizGonZwUyCX34oZcbPeatN4p7xjGLib+ER26d38UKlUKv7D7Bd4rL4kt0tUraGPCp+f7p0oj86mfPxUdPf5ua664VIvN23/3lpxJPvXrtx736dd8PAqzva9L2XI7CtML5f37iw2fvnd5/EM2Eabp8+a3d9/iFw+/wMfmY1rQx6xpVQFKL0x7b2ntCd31UvzuNsn9Pdf+e/1YtXBrTbfiik7tRIx5JF+IWofRlCJqerFKRUwaG/UqLrgeRRm9bqsoZaeG0G3AdC/unSWXSqkVa6pS9tB7+0Ks6PQd+mcpVYjBk6qSasFcLLJKKZfC/aWRpguIo7e98qb2Z1K1acFsJCRnkU7b2D4v75Rk02qD1ncGbhMZaVzqjenWN0IcAilpnKBW1iqs2grrBkOwrgsJlfTnnFPKjFMrbFu08UAELcyX2u0dDaZWnad0M9GfVy+dJhYp/b0B0Ckk/fpuPUZ1ztKM7hsMahW6CbEE/cw3gbKKFQpxHPo5U+JdDIHalBbkeyF0I22pUKt1q3MYx6B3S4PcSs8RbE1KKjTYROat6jXlQl/bowrnSuvxGw3EXYrBoHum0gRoyBZ/W7DeUyuI0b3WMA60WjpVQwUA3oPxat2XUyUOHnGoJS1wPqtgGWM6iUqLzq4LZ3Mv+jrjcE4JXcFF1pI75TiiQrIKVlT0Y6F22lHNWS90DD6omkWs7sGMsQQf8HFgrQ1nVXRz/fw5+/2O60+uee/rL4ljJaWF6DqDVQQpCcrEOc3MSyEMI1IyUhJSV85JWHMmjhNrTuyGQDCOUgBrsU2w1pPqQmkqZqckEBWBnE8ZwRGmSdfUCKWsnO/PSLdurVUIg0Gc4+GYsLISncG5SDg4nl1fcZyTXsPGU5pSRmwzanEXB3JaccEo6Mw6aLCmig8BG1QEI7lhjWUY1H58TbNa4dZGCIG5HMnOEoaB1jJZCi4OfOvbkW99556lU67oBBLNVG1fPwqVHqfovqd/sgRdRClP/6bP3W8tTz+4hDz+I0/FS3IhtImA/NLvpv2+n8d+8PpRHSt6rNZpbKG2Wa2LWT3dQYzNlnMTwfjgcd52MljrFCPIRbCh3ztAWhdaczinIlfdOw7s9xOHqx1p7oRT75nPK8uSH5sWq6iwsYsqVCSogksVYivBqXYrwbymTicyWBuwXvdBzlts0/NbusjUPpljrHkk0wqGvGbSmi+CojhEdvuRcYgcH05sFsdq463ijC3O032T6Z+fWrUtS2EYwuV8StvyCQFjDed5oeb2eLa7FbjSyZ2umZ3644M2k9HnZuNU2G5KUJszYIgBY3QPKQ1KbtRuwWqdI1qD97p3j9GrdWcT5nXuNtaGOHpoTak8DbDCui7a/GWFtBal/QZDGEZdF6xlGCLShGVdVQ2viyhShSINIWOaCilDjORcwRSd953t+UWvVmZ9bS8p6XzpvX7uXvfvteg83KoKW7f/+KCi5W3+KzlfmoKMCK1k9DJRqztnLWXNpKSioNbXLPr6kKvAWihZY3w9RrUBl6ZrqYpu9JqqubLOSdcuGmmB3AlDzlpyWnR32C1tDSq49VGb6+bzwtzUmrq2bf8pXRysNs8+eHr6+3Fa6PuETQBnna4HxmgeLndCVjOPe0IVGkFJ7UKANJ1+KTSM7TSpy6QiXaD0dIbS+3Xb+1lnsaLi06fNWds2dsu5OGtVLP5jMJJN/Cfv/yf8rt/4XVy1HzErnh/SEIS/cfU3+I/f+4/56vhVju4dWePdeDf+lRwCP/n1n+T3/tzvfSvv8W785oYIfP3rP8H5vP9hH8o/e4iFP/2/hv/dn4Tf9as/7KN5N96Nd+Pd+Oca/xx2bxXjNLAzvVi4JU1AOzWBS8L3aZKei0XL5ckuieWts6MpZbh3F8vlgcLWKaKJma16cJFAPekyexwbcWn7+pI70aS8bD/v0HUDF9ITVoNbowIRrHkrudGa+rvz5H16p37jIfhO/Gm9C21lTYoVN5aOvu7dvsbR0CKAdGsH0MRJafWC7jcdux/DRDPqhZ5Kghml/kwDzVlatZhmqUY7p6QVxDaK7YQHPE2sJlVjQIx2d5WqHvEpZZy3NCm9wJZxxqqwqSfTNPEKQVT4pRYFToUxhyvEGo7nEylBKY4Qr4mjY/QGbw3JVc7nRC4FY4SxJ11Mq5gCVkST1NYiKTMNiocepwHoHXVG1E4lrQTvNAnUwBkPphB9wEXHvMxYgcFFgg1Up4n48zKTa7kkoU0Bb7W44Lxa4eSy4kNQsVLvchVjWHLBtny51h2GKtrlPKfUbaBEO9iCp9SE5MIQI6135DURUlWLpGjVliG4gLMB2ahKrVJyAhzROnIqjG7Eovj8pWTWtWFNJniPtYFWtSjgXSSlyvc/fk0YAhilESkFyhBd0AJ0zmr50GA5nxAaawEfHS0XUsndYkGt6HIqiBOsc9oZuCTtCAyGw/WBVhLXY8SMzylrwUVHsI5WDUtZySUzBkdeV8abAePRrsko7K+vOD6c4XYBaYh1msyvCZGgdopLYn/YEUevxyIZ4yJujEQ/4J3ncDViSiadz9RaOT+cCWMgjgMmFda7M8k7ltAJIGjn3W6/Iy0nyrzipXB9dc2paMIKOxJsYXADxhVWCn60uOYZQ2QXB3ZjREzgds2sxyPSIm/WyofvfxEbAwMjr+9umfbC++99HvMArz/6BJOF7ALXh2um8Yrp+hm5ruwmw1IaV7tAO99yPSjlZJ5P3LgXmH1kzSceZljtjA0ZquDawHq+x407qm3Mx4VnwTJNA+Kf8er+NWmGlGa1iEkFZ66pgydIhmVlbYarYY8gfP6LL3l1+8AnH3+XcXej5//qPYJ12LwSXeJ8LhQS+/GGNVWafeC9qx3ZGu7vTwwGYlR62W6MtAIxjOymnZJ05sTCSWud1vHi+jnzaeZ4+13+1s/9Ih+9viW3TG1dZCoqhLwUgkWLDWr3sxWB3xYybfZB27qyFSlFtjIdl8dfhEqXh7cnr/O4fmn3/9NktSbRPQ5jrZIPrN6vDSGMgZILVpySU7wmt60NhDhol31JhMESBqPChSYYGrvxwCmfKalwkoWbK8d+f6AewZhKXld88AxuoiyJN6/e8PDqgW9962Ou9iP3d7PaIbSmxaSmn1HOtdtJeVrrRLimHZ05qZjIGkdp2onvnFFCnVhyamrpIIb7j+8weGrR13AXwlTDG6uJbGNx1msiv0Jtwn6aiGHk4++9gircP5zwMeO7jafQWNZVC6LOQU+sgpDWyvm0cHd/ZtoNTPtJO2ZFu8Pnc2JdW0/UWzD6uZqiBTxrPTlVbG74ajgcIjfPJnKBZU6IsSy1MlivhfXcMGJppSA0qlTWrNakzjt2u0kLGQbm01Hph9bifMT7Vbv/TaPkBbwgZFJdUFLRHsRSmwqRXRSmUS0lnAyUIjwcz9RcOM2JZUnYELm53qv4IFfSnKgtcbfecbg6MIYB7yznUkk54cIV1goP9w8MoxZxjBjSkji9vkMQglfrjJJTL6irhZrzTi0/pJJSJtVCiKjNGl7XSNsT4lkpQlRIqxYDa21Kj7DCMAYOV3uGOKit2flMSZVSDFhIScU43joYPNFHpak04XScWc9JCxQiFCm0OuO8FtZaNcynBbErwxQJo8NYdL/T4HRUS9B1yaQuHra24qPrIvOgHfy5EcZAGCKCsKakhQ0PLoIVh3VdsWChJt2XGacFRBr6XAgpacHE+U14r2RP54IW5qWp6FlUOm/YSKM6zyxLBqPidYzgje8Ek9Ztifv+tQuVpFnEggsOecuO5kdtNDYbzq2m8uvDN/m14Z/w08tPd3GNjqcWzm8FEX2Yt/67UT7ocQZstsyXwvIlXpC3nuHTY3vZi76JHxSyalyhwYVc1qCnzylwadLoItsnZCJBLtSN7X0qrcfwjekb/M1nf5NkF2qp2Ka2a3UTEfUPbrP/0226IB0AimjpXTrFx1m137Z9Lhajx1xbRbIK65x3iHsUhDRU3C7SVFBBL4yhRWK1IdT9cOmkJkDtTvo620Rt7gwG2+kCSCcxGKH7VV1EVdaqOBRUkF9bpTWL8wPOWLztNAajgqdWVXwVXCfm6GKssZO3IAapleB9tw5zWkRsWuirorZndhOLXN5j6zZDtgs1u5W37QV/KjmXbv2lf8tlWjCIU1JfrQXr3EX8ZNB4QgVF7UI/sf0aEKFbmLUu8OlktFagNbz1l9i30YudomstqODJmkfBrvTPn/75tto68dheRFW1NpJpXXTkupBIr8XSGsezzrMAuWhTjBYvTbdJ7aIuS49dlNRoOwWjtqp7IdGiv/RzZrxVC7as1j/OGuIYkNYYvMP4Ue24e5FYGpSkMaq3QclIo2dzpXFWhQppzchcLjdpqxWkAK7bX6mFtPP2QrIwxmGDU8pTL4ojlZpVEJqSxn4mGKiNsgjVGop7JLg5p39Xs9p1W2kMw0BqQi2A8djSdH2zSht1XvdU3qkNW/AOMY6lVGpKiDjWDF/62s8Q84AjUdeFFoTd7gpWmE9nTIVqHEOMeB/xw/tKwvRKlxy8RdLCsInIW2KwE8Y5ak2sxVApGFe1cUYcpVufNpQYOjqDDw6xI+f1rHu+WsCKXssM2rATXG82KvgYEGAcIw0hLSesi7rfjhHrIq6seKs2Qyklpt5QteaVwSmh+JwbplZ80PcTg9d71HpCCOSsJKuaZiQG2uoYR33MfJ75e/9Q+OTNHaWV3nOwLT4bcfDJOvOWfeinFoEtrvj0NP9kvb2sF59aWzbayrbmPf3tRoYF4LRH/pvfC//zv/Y412+0pS7S3F7IGrBWLuuec17XQdmsxDqhxer8En24UI5ybuBhmkYkq1alVd0b+RCwWJZ55nSc+f5Hr5XI1gWNALVusVUXRdb/H3v/FivLlqXnYd+8RkRmrrX27Vyqqm/sBlsyJZFti4IFWYQgWTBhgDYMWOKD4RcBNgzDbwL84CfpzQIMCXoxDMsG/GIYkgBBr7JASUYTJESbN3ebpES12NVdl1OnztmXtVZmRsS8DT+MGZlrn6ruLgI2zilyz8Kus/daeYnMiJhzjjH+8f3SBURqpyXdzg4RzRf0ZsdWG2JEqW5GG/Zan/tS0ljI4DqhrjcHtqul3fZdbI2TrWnj2BAG0popa2ZZ1JbY9RhH6PbgGyG7r9ebMKQ13d+evdrIKRlI+ncpLHNGpL8vmrs0fb41UWnPrTTVvDvDbgpgrYqHgCKCF6XQXSJSkb62KvF1IxF6r7GSs506WCutquC3hW5ZatA1oZP+mqj1XrARbcM0nU7e8NFeaOQ0zWOeZ20Iy1nzISEGrPWIaOOAIJSeKxri0MmMQu2EvsFFUspYq881KEFxWdYLNdA5914zj9LznIp+u1g156yNEz7qutUFv0gX7TYwrtNJ5SrMV2GOIcZIiEqWyimzpq0RUM+r3iMWsWqJ60Spj6WoaKmUjVylce5mrWzQGLlJJ7wG1/uglESYujCzbdZyre+YrNFYoAudpNt+Oq/vr5TLnvu2SpLqt7U2wvbmA0zPffeJxjvfKVe6j7VPc+Wmi6jM03mkX6dP9qRKCOz7AtfViRdhkjyJJ/prS8/bd2Hjz8v4i4e/yH909x/xL7/9l7/uQ/naR6PxF27/Av/ad/61D+KkD+PD+Id8uOr4Z/7yP8O4jl/3ofxcDhHD3/7bf+LrPoyfffz4Y/g//C/h3/pXP9CUPowP48P4uRo/s0hpHLW7+RIgts3yTP9ba/1KcdhcirfbUPyx9GQsYHoxx1vm09If1As05mLEcy0yyDXpsxWUN8HR+0OevO+GvX5S1JYr0rZdOui4/tcoqan1RDjm/fc0KGZ5E+845y62MjkDqP93Lo01aYLTOatCAq9JzJwrxuubqf1C6yKhhne2d+W0nuhVuzXjDDf7iPdaCNsfJvwUWEohZat0qZbV9qb1pIToe/rgqDTiEDC9u9Qg3cZAE0bGWZbaEfhGBVQpJaoUas6EEKEZ8IZhnFiXhWEMjNNIE5jnzJoLpWZyatze7TnsRx5evyEJuGnCdby9R9gfdoixlCWR14T3g373zsGaGULkcLNHrFraRO96cf2s3C1j8dZjxBKD74XxleWkZASLwQnYpon4dVkpzoBzOKtJGOPAVO1Ib9bQjHAuK6M3em201pP66ktfXe/AawXJmkRoGLAqWKq14nFA70wyjVyyFsrR4o8RS83CeU3cHgKEft0DdBR16IlmKRkvKOrbaYHrYCeMUbKUGMH7gO1JDO8cpXYxAqLd+60RhxGs5TSfqQ2sd+wnTcKv80LJYIzDS8YOllybJlqy0NKCN44YB4zr1K+sxVnrRsCTcmIfBlywlCbYwXC4u9EirQfmlXlZWOeVnRu53d8SY+T+/g1lWalLYXj5knVNpHVhf7PDG6iigobd4ZY/9qu/zA9/9ANSqqTagMQQB8bBU6pi421TyzqTVkwS3OhZpSOvzwU3BkZjqDWTU6LWe/L6yLO7W8b9jvl44nxcMNGzrjO7aaRahzGOYdxh8krwnnEcMQZuDjuiEV48/xgfGo98TpRMTg8s6Rkhv+Gzz7/POhee/cK3CcMNH5kD96sjDCOffPIMK57mHI+nxh7Y2YGbTyceTmescdzsJs41UcuMnW6oeLybKekd1pyQUvneFz/i5atPeLEfsViiGFJeOb1Tu7znzz/iZrzhh8eVaTDcfvSClhOuNHKr1BtPnl7gBPLpLfcpkIiMfuTV8x3Nww9+/4fsbp5x99Ed33vzGbIfsOzZR8fpdE9mIgyOfQx874sfk08zgwmE/QFjHfcPmZYyv/jpHWs58fGnL0hzRewzjufEs+fPCcFi/cSXDz/gd7/7PZZlpbZFLTuovTtY3vvznr3bEwrEpUAnVwITl1pDrxL0mb9dXqPP8f2573VMXwSx3RrtUmboz61KjAhDwLhuMSAV75UOYLNgTUB9SgoSPCGOGKyi9JswTpG7FxMxDByPZ1opainiDM6r8OfxceHxuLC/mRgHy7o6xjhgW+PNj7/g7/6d7/Jwf+Ld/QwmcXycqbl2cZDSMpyDnFZa89ciptGEqjeuU1gUY2+Mww8BY3qSv8B67pSyuZFXFb5JM4QYCNGCB289VlTgqwWKqmLQXrgsKfPmiy+pJeNMYLNlHcYRY9SuJqVC6dQY0G7/4ANFDOtasFjWpeJjYxg8znhSTcxLwofAy49uGAYVetacOZ8NYiw2WMbDjmkIDB4++egZ1lo+//wtzkXGw4E4Dlhp3C/vqKVRa+Uk4H3ABU+YYBcPjOOg87MPrOvKXIWHN297x+3IuNsx7Qbi4MBmUjpTSqZKoVWjRIfokZaoWWk9LqhN0ps3j8xLxnrHMERdG41gjIrJylpwXs/nfpp4KJW3X7y92CwJSo1Y10zJRTt0mzCEiDhhOS/Mx4U1rViDrueD2jeIdCtDgXEcwcCSlgs9qCxZ7RwMaomXKxZLLY3Hh0eW+QwYpOrdF4bAs+d33NzuEbGMw45p2HE8HZHzovtBby7H7kJASqWti0oYxCgJ8smGUkSLBNLoFCZYc8I4aPgnhcOVZdHOcx8srVlaURuK2irTMKqoO2dqFVIr3EW1DMlZ700XLXs7UkrWQs5GPQDGaSTEgHcWZwMOz3xeeHh41MKHNWotse0/4WINFUIkLVpY2z4TnTCqe0OlrlhnME66+M1fzm/JhZLq5fW0u91g/Te3S24TtsB1GhYRfnv8LX51/lWGNrwXT1yFSE8KxE/GFms4r6SYnMu1eeFJNVi2eIDevMB17bjSV/U9be/Ol6++2ZNxjRvk2rxhnhzfthZt//hKR8XWJX8plItSMD6Ln/GfHv5TSlPyihZY5UKruVgsdpJSrdIJRCo8UvKrHtlm1aHkAT2EUpVyEYPHdeBQjB7rLUWEWrdj1iKdkScWLV1EtZEC2Aq/mEtBfWsuKZ3msdFna629QKnELwTwBueVLnEpKIvaKtcucKm1288EzzrPGhf5oKL5ljEIMQTEqJC0FaXWAnq8Vd8vdkqGima8FnpzVoHUZlfe6UO6LhZKLV2UoyuUEaVN1VporVtP9/hgk57pqTY6N0rBy9UinE5zkK0GKHr+a+sEFEy3uKMXsDejN/26tNGlm/t1sYVUSKUyRns9T/331tDFump/bNn+recrGA+5U45NF8mhYja1sOt2MXTBnyhNBWOU6CZ6HcbgoItZtE5qsGgccYGWNEFqwfZCvMb50ilago8OsNRaCNZ3akzDeEMcohZpLZAruRRqqQTrCSHinGNdFloGKYKfBkqt1FKIQ+iiOb2fQxh49uIZj8cHfc1ueeO8U4psa5RWsCKUkqGULj6wpC6yklyxQYVeIrVf2yutJMYx4mNvCEkFnKXWrNe2UY93HwJUFVV77zGgwikD07jDOlg54qVx83ri8HpPG2bOpwdqbgy3tzgf2RFZqwoA93vdT4oxpCR4o7aE8bBjTRljLENQW8EmGeMHBIuxmVZXDAmy8HA6Mu0PTEEFLw4VMaZFKS/TuGdwA4+oCCruRmgV0xtx2mCobVJ74bSQ50w2gYZhFyf8ELi/f2BdCs+fT0ojrAlnImPcU8uCiCOLsN8HpcetK76C8wFvlZqVU2M/BmIwEITdbiKnSO3ipTjocZ0Wz/e+LyxLprVyIbBsBKX3Z3J5/0c/Medfi/5f1QFflhq5zoPXef76oubJO5k+QT6NNQD4rX8C+W//VezH7zDGdhGPXOabVppS6BCoDTHgfMSgVm6tNUKwDGNQ4VCDdV2vZGrbqW+5cmpnjHXsBk+rmnvz1pKXhYe3hrQW3r07Yh2kNSnJRbjsy1Vc0ajb93lR3ponlnSdWC5cGh4vlL+ilqG16J+SdY3QOehKMt+ErPQ8pKYKNxausC6Lzpmy5e66KDeouKr0/JSwCRO7MNXaC6mmVV1nQ2+ONEYpbE2EcRwYp9itQIWSlZJmnZJ5w27AGpjGwBgjy5o4nVasD7gQcNZQUtI4ikbOpZOirFLWvcd7bXrU9bGL/FOmpHyxFHXeE7wD4yk1U+tGFtK10nfBvNTWYzsFk6WlqEC/x2G+7xWl551aV69ZYwjeYiWwrom85ic0PP2OclbxlLEqFvJWaYylz82Ixq2+5+1Mz8tuYmjv1Uqt9oUwJaWb6udoalXdN1MlF87t3HO5fe9mDcMQGaZBhU9V8C6QcyYlJTJZq/EnwqXRdLPXVFHV+/ftttdsTfBORbg1q5147UKi1p0CcrfKM/YqGlQ7+kaw/kKdlKYWZIMdCD0XUIpegyG6TsG87veli6Kcc9drowv5lnVFilLO1Nbv6dZRP4W1ff3KVxu3a76kf9ZtK9r/6zanArgQ11oXKpknTgg/N8PAv/vy3+XP3v9Zbtvt1300X9sQhL+x+xv869/51z8IlD6MD+PD4Fe++yv8ynd/5es+jJ/b8e7dM37wg+983Yfx9zEM/N/+J/C/+t/DH/+dr/tgPowP48P4MH7m8bOTlDrBQhPMBiPaObQVdPUx3e+7J9C76gJEi4/mkqyHTUjUWtNikSgb6ZIq6qKirYujNXlSwPmJo7smgJ/87GnX8zVO64GYyKUwrQnjXnQ21/fVpK25JJy370GPRXq37pXkVGvBoIntrcvlIuqqmRAM+93ENEZCUL/2XLKKjlCUlLcW4yyjj+ScL8dcqyYARRxOLFjHNEX2tzvePp5ooeKD5WYXOS+LlrhSZTc4sN2KqzWaeCRlTWSKwVpLNUKVwrSbKKjVG95ixbGWhLOGw+FAybXnnoQ5L/joiMEzjAMujsSc2dXA23tN/N7fHxEa4gx5TUiyjGPAmhHXMs5CtbC73VHzoJYHW+CMxahfDrkk7eytjRgDowu4UW2USik0ox2WWDRRXoXjktTeDEMSJQTp6zq8DezGARM0YbHQWFLCxkDKFSNNu0BzZU0rQ4jdKkO7oCyCtVosLjlpcrCjvXMqOONoHf/swnDpYnbGUpaF2ho0i8UR/EBwmozaTSM5Z1xABTq5aFHf2W7vYfExEGNUUpTV5ME4OaQlondAYb8bKWXFWssYVVx4XlY9b8uKNO3oYtDCzboU1lzBeko11KWQcyXXBWMcea0Y37B2VPpXE2pulDVTh4FlXqmycHaZj5+9oBot/OaUlRjWBAq0VUjnrDZlp1WTM007/MdhQCjUvBCMw8dIvRFsqYRqicOOXGGc9rTTiSqW2tRHIaeVGAdyrsznM946dpOn2Yr1EI1hOXqsaQxTIAweSRVXPbUWlqXxYC0+Dkx3O4K3tNUQy8DgJvYv90ppqoH5tNLayqffecl5bdzs9hwf7/nBZz9gN1he7Aeejc8Yxht+5df/cX743e/y9n4GO/KjhyN/7OUn3L7YczjsGeNAGBtv7gunxfHiNrB8+X1aqUi0RO9w1XEzOPbTM2z8CJOLYtRTw4qhLl6pHkRy1ftZjGF2IzwPeKfCgXZ+Q5GZOAVGI8wpMAwDbx5/j7ZWfumXvk0rsKSVx/kNcX/D4G/ZD7CLUKLlcBfY7YTz8pZ3DzMPp4WPXxzYhxFrG6P33L898maciNOewQtlXcm1cJ6P2LgnlZXj8UtEGhmDDXse7jNFCvfH13zno29TS8ZIoaSVmvVPY9RsnJErNeTJ/L0tFdci8EZ/6H//ynqxPVS2NeHJ2nFZS8z7j9/WrOuycn2vC4BJlLAmdkvsVVrNtCxIbWSr68xoPYhlnhdq0TUDhGVOTKvrYgPDMicOhz0uWCY/MJ8S0gzjzjFMWriwOKKz7KfAF1888v/5rf+yF2OEVgrznKDSbVgbwxixVliLJoIz5fo5RXkfzitBZxgja04ISoeoJXM+r+zCXm2oktCKodXr95RzwTaLj73zFEtJpXet6nupWNczTgM5gdReEJXK6XQCDDmnLn5WQoS+dtbXN0oIu7k7UEqhlMq5rpim9ItpCmAbTTKt+V7QFEoRcp0JxnP7bEf0HmcqS1r46NVHfJSF8/xjLIb0eGLJC/N5VfsAA1Uqter3Y5wKBKbdQHCedU26HvVrqZas58c7mhSEwrqcyTlRcqZUpeosS8bIkRAhOE9ZM6f7RAhKENztJnCWIYzQhBIrLnilUhhd10rKzCVjxGEILMsC9A5gXKdZgLOeuhbu377D4Dg+nMhJu7FxAmIxRu0GlzWpFYQsDHnAR4+YTiAEhE7nsN2uySgh0nnpSXDtZK6t4b0WxUVat30QHu9PDDFwe3fDMEXAELxnnfV9nfd9/cksaaGWvnb1m/daAOx7JKlYb/CiVqVSjBLMSqeZBMc4BZCmop4snI4QRsu0Hwgx0LLaAOVSSGlhmg6sa+V0moFGq6VTpVQM6UNgtz8AlmEIjGMkJ+F8VIqm8YZhGBgGi3XgGyqYawURS/ARxNBKopReVNgskHuxwntHiA7rVSRgLBhvL3vvEgw1eC3w1arFKdmsH76ZQ9jEWl0EJFq4f+vf8vvD7/Pr669fGgreVxuBbN3dXGfgrfyidlKbdRXvkY6ePuMnCsL9p1eBK/z0WKM/cotP3hNOvR9/XN+xi1Z+ikhpKx5dC0lwcif+yv4/Z2HGNiXKGfPkiLWShHMQgu/3lhbOalOCm9oLbmImLUi2Vi+1KtlQOVwLscE7whBYUkKcNj3E4FTYCJgqeAcYpTmpFY6BehUBm35fCoINjtZt5bAqMixNCUsxqtXMVkQrVUlGzilxwHqPq40mjnnRtWtd0uXktFqgGqXNohQXawzNqvWmhM6qeLJWb99FrbW/r+49nbEYr8XM1ulKm7LMdZvqVMrVkFzolI1eNMf1tW4TL0NpFWO0YcCI6FrUVOjqnOts4S7A2eJo6LGCdAqjpRV0/ZMuMOskk+3eb9t6I11kZb3OxyIEr+Qt4652eHabl0XJR7ZTakopl8qlD2oV5Zyii0JwNOmECacpg1x0v5JLueQB8HIRqZauhmuNTpNqVCkYrNrCWsEEvWe2x7TSaE4pUo1CsY3dOCkvrgvbzJNCuVSlCBprSakSQhfOWafXKQ2pGkNZ57BRryMjKB2oqeC45KzWeQI0oVHU3q0JKSfUhs1q0dwpdbck0yk1Ssas1ei92hpFGuuq9nNhUIsiqeBat20aIiH6TqQsiFQONxOlajNKSgsPj48Eb5iCZ/Ijv/zZr/Hi1Sc8vnundD3rOa6J59OeYYxKT3IO64V5beRqmUZLOT/ovq9TPawYojOEccS4HfQGHaldZFlsn2tcFzTqNVFMgFHnGYNB8kxD6cseKNXhvGdZ75HauLu70fmhCWsXU2IjY/R4yQQPPqrdaWNhTYlchODg5uZGhb3O0NbKack47xkHbZhpRu2Oap/gUzqr1S8GYwO5WrU9dQtjCwTnlchSdf2Wqtfs07n76dRttkzU9mvzRHPz/gOvAtYn0/rTuXx77cvr/ZSxrR59Br2+x3kP/69/Cv77/0lf+zcLR517VdChnHLPNrc1tbXqMUwpQi0V08U627rrnMP5pvu2LF3Io0Kglg2urwe5NR4ejrx9d7y8Ts6lxxL6YXXeNl24dJ0D3/s+jMVZvUaETnPpzQopZWxwl+dKp0Jv372IdDs5e1nTthzc9jlNny+dd7qf6oJtQWOO2qoKLzbMYBd0iOhcZo3VdWmMSo+rtX+XuidwzqKzdkEkoiki/by1ZpoYhjEqbafnSsXAfrdjXbKKdEtlbVnnt82CqwniBGOv+xwfulBSNlFy38uIUow28VWtXURb8oWQoyKg1veoV1vOktU+TERJRsap8MVtVnh2u/YMGBXollT6cusuTRXGcDkPF3tV0fxeK02bF7oVm4qSbF/PlC682aDaUvFBmwiscZf92Cbb03nnage8rZH6lbWLaE2vL937pJShqWWo8yo6c92WNSe1JrTW0oyen5QSmnDsX30XLm2385YDsE7nilb13ACUovagLrh+7at4KqeCYPDRE4Lv65RQWqOUTIhKWr5YFErrpCm94I21Kl7tzT2+i0Q1JlEbQefV/noTGm0x1iasV/pxvzc2ItLlj4qQN7s+swnae8J+o0w3160O28b8+ilb12/4+J3hd/jNm9/kz93/ua/7UL628bn/nH/7k3+bR/f4dR/Kh/FhfBhf9xD4x/7WP4ar7o9+7IfxU4fuU3+euILAFx8pTel/978G1/7ox38YH8aH8WF8A8bPLFIqRUk/9CBGmqj+yGin7EY10uBOkwBirkHfls25JmsMoEIdeoLgksQ3SgDaHrU9RZMOvVAtG0VJE/z2sma8X2x+T6h0PcBLAkoLGIpt1m7op5YQW7DMpaNUf/p+gqSVAtZQWtEkgjXsxkAVwXuLtIz1wm6nnTSK3I64yfH4+IALAWtFbVy868UV/T5qqZ3MoYn81Cq2GUQSdhGEQl6KWrMF15NzvRtVhLVVWmrkWtQmQAQrwhStEj2MoQqE3gVbTcVFhxQhGMMYBqRqIsSHXlCTigOmcWC/GzHAeTmRUsZYQ23arRb9gSxqTTROhWpAzjO2GUz1pFrwQ6S2SpjU1iWtK844dvsdAG/v34KB3TAxxIHdOLIbJtaioq7z6ZFUV/wwgKDFmKz2UnSRkwmeuSQIHucGhjAyTRPiIadESXBaTqwPR1oV7nYjZVUEdUMoRosOTtylYx2jXWtNKrU0vPFK3jCtJ820EJRr64Imtfejd3PtxwHTtNhSjSLWW6vkpuKNWqpihIyh1MyctPN7byzBe0IYNZlWCj6OHE/awRtD1HM37sl15XFZOez2uNBoS2X0Hucia8ks60oIEyGOpHLiPC/YgNoBLJm0JBWyGYuxvltX6X0SBo80yHUhCgTfGPcepCA5Y2PATQ7vA362PDyuxENEgmCdJ7XM6XHBW5A1U5eGqdr1e7iZaN4gZqD5xnxKpLry7vE10tBCuIlgMtbAbgoYZ6lr4XAzMgaL9ZbVFZoRJj/wyS/cYY3hLAlsg8fMuiqlbZpG0lqwTMTdjuj1czmBOleGw8THNyMPD4mjwJIyeZkpcyUbx9vHB0oW7LjDHb6FuB0vD684f/aOT158ws3ujmAtcfDcDhNjHHnx6R1tXslt5ebW89HuDpePnMtLhZWFEWkr53LkvFSsVOTBcNhPJEnUCuIGPn/7Y56/cHz0bMePP/+Sx3czzQ2sYdfpbY4fPwjf/eJz7m4Ch+i5mQa+mL8kNM/dtz/BZ+FcK69efoRZYSmGx/Nbdnu4Px7JaWK3f0YII+9OK95ZXn36Kd//3vf44Y+/x6cff4swTkBiP1r2U8TF58w5seQz7bTi68pa3nG4DZzywm64YRf3pJbxRa35sguc3AOlCcOwV+qBCKU2xCgyX0TLgkrE6LY00v/NdfOtxVJ7KQDoZP8ky2aeEJi+stZdKH3v/fYPXle++txS1drG9OQmVbQgaBvPokNcYKmaOJamHbmg98X5tFJFBUbeOw43O3LvkvY+sL+xSIHnL3f4Qe0AbqbAtz99yXw+8/CYeDieKVktNTFKVmhFyRm2i7dKVoGM6UVqoWJMI4yeMFwLBi9fvSKMni++/LIXRga1GmgOKx4j5b2iRE6ZtGqhN46BYB2zLN0CM1JyF296D+aawJ6XpEULaVijWPtSilpZuM0WSo+1toqLcHi2YxwDuVhkzf0zCtPedyJFY13PpFTIuaiFiRXGoASNx3ePtAY1J5yzLGvAi8E0z/Gd0o7WogW0rVBgmwrDojGMu4hIpXQhb6mVZc26nntLsLCuiXk5Uo6NGB3OQslCStuWqHE+n6BVctGkvLcOepI4uEAzBmcD0avYapwGdvu9Jq/XVS0J6kJthRh2TFPA2ApsSfq+z0ILTE1EKXKlUbKotYUHYzpp0WmHvQuBYHUtyk1pPaEXWbWLWte6VrWg7UzULm+r5EZntdC7LivW63msvcPXGU/NleO64Badr1UYNzLuvNp6WKtdzG0ryAhQurXPtRCldMVELmC6nW1aK8u84PzI7rDTc5NWShWmacB7R1oKkx0ZxtCpOQ0bLEOIhOaxVpjPZ3IWXR82MJNYXYe8Zbc7kLMSM41VK5zSi/RiYdwNvdigXdG1auEmdMqYNLXFU6FiL4hZQ2sGnArWldYoSpUyBtcFFRsJAGtw0eAHQ6uOVhr0gtQ3dbTWyS1PKr0iQqWymuVJ9Ze+T+/DmJ9SLLk+drMV6w++/PxJvfnJ2BRJ1/n8D9ElPXkvc1kfzE/+qr9yLzY/fb2ny0+vil20Tujnb1T+6vT/5DP/mRYe0XMcQl/jxKggB7nYS+u+1+meJy2X/Wbt+/unby1NukimdVFTQ63bKqaCrCoAsBicvxI3QOej2ikyG6VARO1IgtPjwnQRiNUCWEMJrZsYIjyxf7HW9TVZi50heCUNGFTE2eqlaFZaxdmBhsY5SqQByVmtEkWpTc56RBrOX229rDGEEMAY5mUBIwQX8FYt2IIPaleGUtNqF/PQ41cRpWVoEGq0caJVcAZrvNpNea/Wj7XRKmqBVhLSdL1pVV+/dd2U0qkutXK9FrjGlNZs4rFOSjH9Ed0uicv+RA8pRq/3SWs0Q7eyk0uRsTUVJGD0vdUKzhIJKohyagctren+vO9NXLfTti7QpJJKIYaIcQ0pTZtqrOsW4bULFjxVsgp2LXjrkNJUfN/PtekWrDqham5BpNKk4MThrOBDF9u1qnOhV6qKLYa6apyKCxhjqdLI66Jk4FKRoveeNbrvxhoEh1goqSKtsqRzv981xmndAjoEpzqGIoSodq/WGqW7IATvONxq3Jt7cxFJbTsFJdtuVnu201OqdNvwLLjo2UdPWitJoHTxTM367cyrNkKYGrAxMq63/MLjL5Lyyn46EMPY7cktg1dKjos3uj5IYRgsuzBgWyLXCTFgnUfQazIXpSjLqqKohnTSleO4ZKbRsh8Dp+OZdSmIdRQb2Cgmp1V4dzoyDo7oHENwnPIZK5bxZo9pQm6N3bSn4Sg4SjohZcFay2NeuQkeh2NtjTpnhmlPOc8c5xPWW4Y4UqXgPXhriOOIyMQaR6RUyJm0zAyjWmCVJsRhUuGhgXXJGG8pPiOmYsykxf8uetmIctdehOsK8aRV7r3/dMUr7z38p8z9783/Xxk6h/9kzPH0ZbasmSDw1/5byK//Pdqv/72eh+pzRu+/8Fbn88JTgZK+kulk1Pmcej5C5wmNo1Qk5J2KNobBd0swhxs9+91I8I6H+yPzojZ6SEM6VaUzka7CkSaXtdOwhVq6djiv+b2Gii72hx3zMndaq1qDqlWW7cKWcvl+mggtd2GLU4FNFRVr+OD7vpDLnLidpyYNaeU6h1dzsanbxC0XEh0qfBm6eFCPnB6X6dzkNqGKCMu6aB6sx3m+22bVUjiXq0hsmhr7aVIhU+7kPanvNTKoharS5UO3IW2tItZ28W5FMJ2sZDr5s5CX3EWjfX2qmyBFBTSXfWo/R97abeeC9MXNWRX8b0JV57ySUbtFKVIB20nAKlTdiOAXkRjanAldXNrXFe/1vV3fw27H4bzrYiq1/zN2E77qZ7sIsrqwdBOqO2v7extArxtrbV/jlAhvZLOH1b24sQZM3yt0QpMuteZ6vW555kvTwzWvkEsnLFpttNOGGSEOUeOzoufTGUeIXpttg8Na3Zdtn9kGh2lK2qqlwHavSifZix6TYAg+YK27CAHttn6LXKzFVWzVP7+A0PCdMoagYrwusNPvUkVe2/7lPbFXNRer1OsMxeX70xhlcw345sYTP2000/6hFudkMv/Ox/8Of3P3N7/uQ/kwPowP4xswXrx5wa//V7/+JEfyYfzDMQz8n/7n8Gf/7/Df+4+/mgj7MD6MD+PD+EaOn1mkhNHko7MGaamLW7Tz+9pBarWQuGUpeqf0lhToL4TQ2FqlWg/8QHH52uikPt2alEV/Lig6vpOONHnv2FLcW7HhJ8eT4vJWrN6Swr2rylnXUcaV3H3vL0KlTWO1dbr0js62+axvAXfJ6jXunKLIe8LeR4dzgRC8dkmughEPWEUjt4JUi2mbQle/y7QuatWGwxm19TJiSbUhUhnHgSyCrJVWtTPGB6fiHAFDhWCYS8EarzZDxpByD2iDY4hQRZgf10vCIteCN57gHKPzeAt+mDinFRPUhs7jef7sGTmtOGvJOfH48MicCxIU0X4+LdzayK4mUrKkNGuyxwixd32WVmkBlnklL3O3IxCchWk3YaxheZjV7qFVbDBE53DOEyIsecU4Lfw2EfKSydKoGHKGSiHFyrmeqFK0e8g0TC7U41kTRcZyPifWJWtxQoSUM36IWphtjbrMPZfer4y42RdpEnyIUcVEuRBD0K4zmnYmGoe0a3G9ogIma7sVm4Bxpnd7Vn1uL1aPfmCMgSVnUlqY00KVwm6a6G3spLTih4iLgTWdsaKvgQ1arMDw8HjEOSGvGW89IRjtOjUDp/OKdSulZaQ2xEI2hmpRvLUIVlTPdjquDPvYu/wq0z4yDY5oK89f3hBvN8KPouXzUvjx68+xzRPEkefM7bNbpUI4IZVMWjJOenIlNzJVrzVgGAdw2vE2uomSbadDNIJ3SG6EMGGM2jxIbcRxYjeqNd1DzRznE7ud5/mrgYojPQhI1uR2hdIad89uWeaF0Y8EAdsi07Tn5e3A4IWbFx/xdv6SL+9fk0rlcTlRXzcmZ0mlIE1JUM9efJubj36FGAf8ZPi1X/g2bhjJq4W0cH96y5sf/IhPPvoY+/HIcHDUx8bkM3dD5rgU5lQI0asg7cVE+nFhTQFnC8t8QqTy/NXHpFKR9gVzmbGPgRoC4WbP528fKadHak9KvXr+gl/59Vd88f0jD4/v+OjTTxmnHa9G4fj2zOu3X/LR3Z79/hlfvnnDi5d37F5MfO+HX3J6fMePXr8mV8+3nz+wG28R1B5rt58Y7Qs+/9GXnB6+5Jm7JWXDMFjaeWY+F8L+AM3ihsjd8BInK2/ePJBKT/I93iPSmMYBCR8zm8J3P/8hh/2tWmo4vQ5bJ8HA1glcebrL3orB16JA7yCVTZj6tLKw1RoulWE2cex7NCX6c5ELuWlb1rRwuD29Vzva1X5UE7hKSMAKthPrxhj5jV/6Nmtq/Nf3j7x7PFNaViKGD8Rh4Hg6cTqueB+YxokYdjweZ5xzBG8xtuHCQKkqmLm93fPq7sA0DEphmnaMQ6Is3aIqGKZp4NxmyLqG5VQAq13sopQ/52G3HxgOA0o+apSl8nD/wEfjK6xVipuKKLQj2pB0zkAL0LUXYm1PYq/nRBJNDccpUnKiZKE1Rej7WGniKdKoUhmsw/vIMmdq0YKC871o0GoXh2jie3eY2N9MHPZ7cqrIuzOZxM3djmEQkIJxkWk/Me33vP7ikeVUkCqcTidaraznVefsMbI73HJaC7f7Hbtp4vMv35BaVtGpaVdBTtPy0TBE7cpHO2S169iy3x+U/CiFYIWwepa1cTrN2skvl2p373TWbuhUcidGCMEHpDW8Dyo2yJXgHGleWNKKGzzOGaZpp5YJJbPMFecN487jjDDsDtzc7Kml8u71A6d0JOXShT50AVun9LWEF7Wh9VH3Qq3CMAzs40GLmK1ijdrz5qwkkuiUGJir2u7ULqKx1jCOajuSc2G3n3BBO3dbVcGUcx5q43ScGfYDOz+Sc+HU5sv9s5wXltNKh4sQJ6UC1twtr6wm9YcYqTWTcr1096uAp5Hzwrw0fIiEaGlUamsEP+CiYRo83hlqy0zTgZvbGyUv5UJrmWVeyKvSCARDDJ4QHCllSm4cjzMlV6zrZCsB4xw+Qoh7pZJ0AkjJlXVZyCUzxkBJhXVZyaVd7h2MihW3wohe+w0pV5uyVlTAiO1zm9EdsekCHi2GKJHgmzq0E17X8yJF59ZL03bfm1824E8qwn0++YOESpciF5eH98eay++vIcG2NsjlgT8pPn1/7dCH9deQp7/fCtDmch4EaMb8AWKx/p79j5Jqhd8N3+XvjH/nYoumYh9d9wRwrhMjrFXRXxEQrTLV1i6kDW3iuH53OWsh0W5rI2opVnXBuoh6pIvbNupA3eYLUdFdEbX/sMYBhroVCJ0SVRpQUnlSvG4X27Bg1JzIhkCuBeM2EqBlGielnRndJ69pJVcBp00UJReidQRx1KbWWZuFjPN9zhLdv5ZSqKVdBD7mIlJCmw9kK9KryNcapZyVpnSmzdamVo0HGijth0Z1Qm6ZhpKbTLdTlpS74MiQc6UUpTUY+ut0K+/WRV66r+6FY7cRC7SIrE0mpgv5+ufa3g8tZhq6MEBvJiUTbZe00cKzNOn0XP25tx7vLaXqfFNqQaQp8aFfu7UWrHdY58hVi7RNdFLZBD3LmrBWrW2tsd0u0IDofG9s/zxNG5VqU5F1U3VWP3YVzLrgVXCJEIISi5wRxl3EDU4JP6gQr5XG6XxC2VUqnh2GQYV6VgV3tdQudegiPBrlvNEbVQRQa8VbtbXSHiS5nHPnAmA6waQRXNBj6hY6KSeit0qvxVDXLmRwjhC4WEKVTjx1AkYswU/sBo1Vh2nHUs6c11kbc0rm3bkRtjyKaDw47W4Yds/4pd/7NSYZeP78Bus9tRoomTUvzA9H9vs9fhdw0ZBWwbvG4Bt5aZR+7alddeB0apTqsLZRsiqlx/2+x7YrpWbW5JSkNkROy0qbE8KMoJayz17sOT2oLffu5oD3gZ2DtCTO85ndEIhx5DzPWO94dojcvzuSSuHxmDmeF86LsAse8FgjDMESb0YeSeR1JnQyj48OJ0KaF1wYMaLCNhcid4MnrQupWJpzmJKhVqxz7HY71iY8Lme8cUqiHFe9Dp+IU9SCvb030+s8r3faZfQl6LISvZdqMtf5/Mla8VNm/B6n8BOiJjb901caJyRF5C/8d5Fv/QhzOHGBCBqDNfDsMHEIA2+WlXPK5FYutLQQAqXnFFQg4vF+uKwtPuiMbbzrQkMV5Q2TZzcOpFTwIeB97vs7XS9VtFKo3Xp7I2Zd9ic9bvLeEgYlu23UvZz0tZQCrfcNndpac+lrYSca9rzetl61IkjReVZJdkokQjSPdWk8Mdd9QPAqvNE8nc6htucuzZY3RAk5YQgq2LcOs3Riq7MMg74XqG1cHLTZYjkr6byUQqkq4tqEwXGIYCy5NeIwcDqeVfRit3xmuwiUN6I5qJWnFcglK9zUe3xf/y2CiFpx51y7lVjPIaFNGdt12KTT7KQ3yXXxjXWdMGQdNBXiSCfCBa/UThFBlnwRxXhvsc4RwohzlnVOSo3toqL37oQuvq6daGu7FZp0SzzfRcgX8ZG7irGscSBO9zEbGaq/ru/2Z3qduYvFmqCinE35V0uhVoij0q5KLhT03CtBtcdAoiKfLSbRa07zdHqM3a69waYmNr0xsZQV6/2FWNqaWssaZ/CXtVetCsdpVBFtbZfro+SqQm/R5znnqCjVuOSK2tqjDSaiewBjVcStVCedPDar65JVHGwNnZjVrnuDft43S79tNJGL0NE0zdEbY646pL4vvmyd5bpH+TC++UMQfvPmN/kPn/+HHwrSH8aH8WGAwJ/+q3+a/Wn/dR/Jz/WYppm7u3tev371dR/K39843sD/5n8Lv/E34ZMff91H82F8GB/Gh/FHjp9ZpGS9xdjeJQsaVPVObumB9oasv7ZUmUswuo2tk2XL8m+1iC1AMr2zchMeSQ+m1P6i28aZLjbZEhlVraq2orS+1pMitnSUsIgW77fCgBG89YxBO4lT3j6TdrMP3tOAdc0gBUzD1qqdmkaoW/GudisF02g9UVKSfuYYLQRNzC9zo2btOB2nAeu1M6isuXfI9iRIiKzLjAaYsKxq3aXd92ANaqe19iC6wThEiJtlgRC9o0jDRo+PEUlCK4KxhRAdqahliUC3eCvYJnivx+ysdgafUsZhWErBiCZ7oo0stTIedmTgcVnILeOioaDWMUooWjkfH5mt2qLtppEglmHcK3LaNzKNdTkR4wDN4K3HWEupmYDaQsznlXWtBFNYSMTRsNZCKolqNNFfSmUtBde94A3aqXVKRYv7xms3nbNUYDknTchY4fG8sK6J3TRoATInKFrQCTbo1ShamMkl40SIQUUuCN3SSGgtk8iIg2XVjtUxRjye0rSgUytEryIeH6N2dPuIc6L2Vk3IFJwfaA3WmkgtU03FDlpcWdJ6LToZmE9H1k62aJJZ1hNNtLgRrOHFs2ec15ksluCs0kFyoSQwDS36iAej9JWSV6SpRUGtCRdHbNBkX1rVVtDHwBgHohVisAzjyM2LHfnsWNJMnDw2eowJpHOmrgkxjmm/p9WFwVqmXUT2B+pSSDYzr2qBVBZNDjIlrEBKiZSLkrRuJsK0Y4hwfkwcbgegUIooxr8Zxv3I+ZR6ESFTQ2CtmZzOhAqEkTwIeyyPjws3uwMfPX9FWcHWQvOOx3vwB+EmWJbjO475hHjBoR1mdT0jYVSxlo+4ZgmxYesjdln44RnicMPOTBg30Gjc7Z7jR+0KP68LY1g5rzORiR9+//uUpDYJa07M60IzGRk96xHK6wemnePx4ZHqDKe3X7DbBw6HW6w1ZCt4H3l5F3lXXpNLZbfb8fzmgJxnDoNliLf4OPDl/T3eWb68T6R8hEPkdP+ON6eFx4czL+4m4n7HR+OAE8N3v/cFS0sM3vHusy+ZXo2s1tOSMK+J5zfPmVj48t1C3A2UHeTlkfPrH3F7d8Nu2CNk0lp5eNT5Z6kFMbC8m4nTmXPu3bkNTstrhp3j5bNbvDOKg68V6Yk0FXNc16ZLF2RfV0yv1mkH4ZN+ZqMI+q3Y8GRFeu+1dM1om6SpV7nlK92E8mQ9uxY+bD8269xFDLW/GbDGk9PM790/YE3Ejx4zQ3QBi9FkcV3Z3Q24OF26ePOalJLnjYpWZeDZi+e8e/eWtRzZ7QMpN374/d/nOBfWOVGzkphKg5oSm3hY2lW1IHaruEiHQ1jWpfSCuMILWlWR0vHxhLGGYRqIYyDuw6UQggE/OHJqmKY2EdIL5ZrgVEFKzZUqWW24+u9rhpLUSmE/DmDBB4tLhtp0v2E9ODfgxGOqMJ+1WHZ7ODANEes9O2P4cj5zzpVf/LVXfPTxTkmBQIwj61o5vj2SnZBzJS2JjNrLWBFub27YTSPL6cRhGlhrJU4jhzBxXh5pVKiGUrakspKeTFYbs3XJUA3rsjJOE8Nux+3tLa0WzudFCQy1KfnKeZopNHGUrGvHdBiUnNEqrTQej2eWNeOj3k/BWN4+nMml4MfIYCqn0yPWWLwNWBHWuVKlktM7Tdp7gwmNu90epJJroYhahpp+jowRbFRrwf1hj/NOC9eoEO10PCPOMIwDu/2gQrjzwnpe2KiTSiqxnTSi5eEhRCyeeU4IjelmYBoH8rKS1oVjKsRhh9im11NwNMmUVFmbWkpMY8QYJVDU1oiDZzoMCI35rIWqGJV2FKMHBsxxYZ4XRCDsAtap0CrGQclOwSBGRdzBD+z2O91zSiNlFVzPp4VlLtCqdshXT8srNXfaUV2JMRCiZ10S5+MMGHxQimMyGe89wUEp0gVMvawuRous1bCeE61WFSh1S49NWAlKnzFPijlSpONCBRsirQiYpl3xm9CmCzKkcrGO+8aOrdj6ZG9+Lb5wEWLo+MkP8pXa2PWx/efyHnHpWrC5PvlplVi/Q7MVY+QrVnA/qYi6vN71kX09sEpWUEsbufzcGrXEkS6uUPyDUk03q4+TPfOXDn9Jxfu9yWETJ9XaC0rOohAaqxaUvVDpvLsUOmu9UnOcVxJAkXz5nkpREZHb8LP9OstF1xxpSnWQZi7XoHWbPEaLhVKki/S10Fg3iyGj31+pasdkLDjLxQI8VY2vSmvdFge1QW4NHwLVwFoKVZoWEHvhtfa4K6dE6QXE6HXttF73/Bal4ZTScM53wVgnf4iKV5xzlFypVShGcLniPCqUbbWfTyVx1NZoZhM8a1FRyahKc9SzrvxGLRSqXXXKKtoMwfWicIXeqOBwiBFUJKxxo8ClWHu1n9FCdus/KrVqg4hzWPSxmyjSGQNNi5rWuV7UVDqrE6URGaeWOrUp/bUZwTi9gvW12+X6IKUeSwgilVIzwmYhCdM4qn0qut6XpnP0JiZtzWisbloXJHW6S9MivOkxXmuCqQ3T7aKc8/16UkHFMEVqVjslG1RogrHUVGlFRQMhRkTU0i0Eh8SA5EY1Te1x2kaNMuCVfFKr2j8551VEEQLeqlVPGBz0e3cTEvjgyUn3TtKtStX2talDqvMXW+m0FoYQ2Y87WtW1RaxlXQQbYYiGsq6klruwTPeXUguIQ2wjWF0rrBXG2fDpD+54XE9YF4lGhcuCMISJ0WulWUnJSjB2JnC8f6BVYRiVfJlrRrAQLDVBPq+EYFnXlWYNeT4RoiXGEWNUkuEc7AbL0uYu7I1qH14y0Ru8G7DOcV5WrIXz0qgtYaIjrytzyjQB2Y3gA/vgGWMkL4V1Xdjtn7EeM9FWJcK0K5FnCoZ380JpgRK0Uevx/Jo4RKKPXQhXyUkoFZxplH4fkhPGedZUCMGx5kIcK3fPDgRnSMbqXbuJYZ5oYLcJ8SJE/coy8BMCoyeKpT+InrTtszXu6PHFVxvq/oC1WgD50afY3/pT8N/5zwEVnUUfyDkzl0Lp1EWs5uksfT6vGess4zhwESGWrDSyvj62ahjGEWmNNS04b4gxcHw8czwvqJ1Z7cIXo00Jm9BXnhx3/x77p8MaPZc1t26v1S3aaNy/e+iknG5LGdU+2PZ9qfW2k9DaZe29rrTC1iNSSlFNDgY63b1Vg3VGczutKXnKmk5b6jFFJ/jZ3ljWWsO5oNe2Ae8cSVbWNXG4nbh5tid4Luulc56H+xPJovNLqbo+CUhTItM4qBisFiXNiUGFuC0plu9ii9ct2uFC8NPtwCY+Kd0iUsWY67KobVt7IkY1F66VrqfBaiNZ03Wm5NrzRQYXtMGh5k7H6qSrWjLJWoIPOKMNJ/onkVe1FIytcHPYYfu91/r8uHG/MCg9WFRcFULowlwVgZbaaGXRRs7gCVFJyWnNvVlVSX5mu2X6GbeWS8xVq5KtQvQgQs0qEFP7QenUXX22NpOafs5UEL+tgdZ0uqlXGnmrXARV+sdhi9pxttbAGZxx2gzq/UXghO37I+N0jerzRK0qvG+1qeC1tUvzrrROjaKfY2d7g6bpIiW57Ftq1WvbGkMznSZr+povpsfZplsZylWg1DfIZovxrVGa4CaC7KLCjVirovYtb0/fe17z9WoV+E0OKD6Mp+O1e82/+em/STHl6z6UD+PD+DC+AePu/o4/+dt/8r3Myofx9z+maeblyzc/fyIlgL/5G/B//Z/Cv/pvfRCvfhgfxofxjR8/s0jJGEMulZ7bYfOBBy5BkbVol4vpAqMnBeNLsxn0rsWvBD1bF/ilSHwVOm3Fl6eJHD2Gioh5P19y6QbRBIB2PvfuU7sVLjRYVSLE1rnTEw09ebIlD01PQ4tUrdzKVujuaH6EWtWD3TntWNGkqCbIRFRIdDotpFmDaWcBYwnR0YomJ1qpeO/JywrOE43alsw5afdOLohTq4PWhJaL4nrRhIOzlpQs1Rq8NT1+7aQq17HOwSp+vWqXlrGWVIsKQ2rFNygFci8szzmzpMrkBqqo4EMETKg8Pt5zOgLWsKZVLU2cI6dM7gkQZyxDCNqhjGc0A6UW7uczrVV2Q9Rikhjm84K33Yd9Gskl04rhPC+ktTL4AOIYb24Rb4h5xRq1vTjOCW89DJ4QlLZwPC4glpwbUxixGMZx4uZ2z3k583A+M9iBzSZiSYkqG9rbMYjh5YsXiLO0WgguYILjzZs3VJMRJzgfWBe1dLDWUErSwm/vUgvWKQa8qVVbrU2LMVhyFVxuaqFQV4IXSs16rqqKmaQ1sqgYSywdbaT5yIu/YZPL/VR6Yqu2grG+d9wZ3HGmtQUrWpzJYinGIx6qKGo95UpaM4MNWOd7t6pj2O1oTVR4ZL1aG3oVVhUpSG7M80pqlfH2llJWdjceEz3neebFR895m0+s50xrhS9/+CXjznNywrdfPec0rzA6pFW8iUhxDJNnTjNLWrTbr1bScoabxmQ8wzhS80qrmZIMz17ecf94BhfY3Q64YEg0Hk8zqWSOKTEuGdccN3c7TuvKGEYtdE+GXBu344Ctq9rF2Mjdsz0+NPbPb6g20z5/zW4YWMyMbxY5GtpOv6uUMnvX+NbdjugCa3J4Gms6cXO74/7HD9x8/ALjB2JIIFDayrKcCKMjVcMxNd69+YL705EkgWma+HTvqUlYywmbE+ujgSHgPaTzii0nRqnMs+DHgTjtqJI5HHbQMvtpwND4/o/eEaLjsA+8ff1DKB5ubljme5bHex6nHXFo/MK3X/H63QOvH98yBjjPZ57vIy//kV/hXTM0Ip9+6xl3dwfyuZCqZ3/3EWbc8fbxHcfTQqyV43Li0xefYorh8csvabsTqcH6cGKyFm8raW3sxjuYHMUUJJ958fyO48MDVhqyrPzT/9RvcLq/53e++z1mKtYK9w8PtPJENLStFT2jZjBPEnRbkZWLmkjkD96bP6VobOLbJ799j8jxk899mrjv1UOja1NpBuOEXZyouXJ2iXgTuXMjNAfN8Xh8wIXG81d7YrQscybPjdYy3hsOtyPHo9LOHt69ZXk4gxMe7D0f3b3ChZF6fOxivS4+TJWyqVh7cldtS2qnKwhQiSEQBsXw7/YDxlge7o/knDrJwLG7mRhiIHhPSYXHh0cVSmDxzpMlXb6ZJgJWiwA+DlgblE5TC1h6QdGz7yKRXLWwJ63hekHYGDjcHRh3IzSrYsV5UepeKbx5fc/9u0fCEHh1d4vUQl4X3nz5jttdxO0DpRZqcTw+nHAuEIPuI27dgZQry2lhP0zshukyh87LiWYWDoeoNIzmKMVQ6katUCHV/mZkjIFaKsfTwvHhTFkLj8eVMJwQgZubPQaP94ZpGrttDBga1grGaPJ5HHZamejd3ksrSIG1ajczw0BpmSKFwQ2EEDjdzzzeJ6Zh0O70WmmtKOHDWcZdIA6VZhZwWsSwYrDeoExKsF64eRYYgqMmtTQrSY+tomSmNSce7hdifEULcDqvrGvGmN7tvNkY9WJFbY25FvKau0Ww43ycmc+ZmjJIo5nE2FRctN/t2B8moDIfV85HLeKURc+z9Oq268V5Fz0xRFKq5Jyx1uPDQMkN49SCr9bGMAYlODmvVLBUqAWGKZJTQUrGUBCrXdreqf3gJoguueG9zjNLTohpON+LX5e9p04srTVyXrGuEYKBTn6T1vDRM+0izgTO0ouAJtBKuRSp6IIRnavUDlFq6mIoPd5SlF4lrdFsVbFJq5cOaOw2WSlxE+S9zulv2jCd/GMuwgy5ioHkSlK6UH/eq+K+/7ku5jhPiiyXguaT1/zKEbz3N50On76GefIQee85sh1qJ0dsjzNd0KJ2QnLpZrebFcfl/7v4SNR2aXv9z/3nPNrHi4hqE4GqbUdT2zTUqqhkpQVJ6xZAxuDQuq6InnuNRSo0waEUhdJjGLVcUZLaZuO2LaLSGrUZbDXIRWDUO/E1cNCvp4uuWo/DtDgn1P7ZsQ3bVMBrrSE3JbsEu9mJdiKaM6zrQkr6GqWqiMpac7Eu2Ugdzroe94Azep+tOasg37ses2nxeSvEW6N2a2JMt6nU5hQjRm2iLfhWMFUwqNWZMd3myymFIqUCYq7PRYkLcQiUUkg5a+EQPfelVVoWbDX9uHUNkG7T6DoNYl5mFWL1uEHv815AbFroNLYXfo3tegelCEsnZ1mUiGX6dVKbUlqbqADIiNU4WeRCknu6FzK96Hm99DuhYruO+zmvTYVnNmVEqlKFlW9MwyIWpIvcalWhmg8qxsKIEmNtQESLuM5owdZaJbmINGoXvlYRwjAgrRIGqxZ7JbPbTcw1UdNCo3F+POOCvv7NbiKVAl43fRanJM9gVaRby+X81FwgCgG1OlKroUarlWk3sKYM3cbHWqgIa8rUVknV4EvAiGEYotqWBxUOOe+pIgzeYaTbH+EYxoi1EMaImMr51AjOU0zGCsgKEh3GqqgtWOFmDHzy+ce4dcCINoyYIbCeVuJ+UhKY0/mzSaGUpEX3ZlibsC5nfE5UVHwQ9g5JQqkJU/ve0FmcFW1Cag2PkAsqxraR5hoxqPXTZgn/cFywzhKDZT4fMc1AHChloawLqw84L9zc7Ekps+aEGBUGSGt88uKWtQqlWva7Ae97TihVjAnEKbLmSsoViiGVlXFQwuUynyFnxFnKWqA1JTpKpVWHi5pjaKUwhtCn6IKkld/4k2/48osbfue/spxLwlpLyolSCl9dHeTJcvRUjPMHCZH6CnR5wk97xFMy01Nd1E+LKC6/E93L89f+m5g//deQuKpwSNTmzWFItWC8J06+z9Gag8plZdh5YlTb3ZK2/F1RkjBqQ1ZypiQlSa/nlTEMahsvi65hPedH03tnE6iDij8u1l/SxURG8CHQmtoAh6Axcq217xdVLBqi7wRvFfiXUrUJ0qgFXWezv7eu61xhQCy1lb5O6hobosc6dxGhWKt5PNtjP+8dcVR7SJo2XLbS1CoyFY6PJxrCfhr7/q2yLitpCbhp6HbSlpSSUmq7bWocA170M1o8Q4w4Y6nonjxT8EHXgJI26zm5xKXGqsVkCGrZWWvPRyUVsNpV93+Hw16vI2NxfR+v4hVUENr3Hs6GfmxFr7pSoJl+7jKgDZ21W5U552hVOB9nnE39Pt0aRFU85L0lRINQ+gWpJ8SaqzW6IPjBEKNahNZSu7gFpDeVGqNNZ0rOC+RSlMzaxchPbeTosXxtkFrq14HOj8vS97fd1rR0YbWPjhAC1hlqKeS1dkppo172iIKx9kLyjDGqZWTZbOR0HpYuCDRiOslIreNag1ZFY4Tg9JxJ6+ehW7z1/XztpKNNsG6tpdTanQCuVuaXZl7DVcxblV7ZL+BLI4PzDt/JZ7XVLvbjcm9t98TTHEbt4nAfdI6orRP3RYXuKhpulw2Bptvfp5L+lEntw/iGjt/a/Rafxc++7sP4MD6MD+MbMEwz/Prf/XV2593XfSj/QIw/82f+Ivf3d3z++cf8XKl9xML/+X8G/4v/IxxOX/fRfBgfxofxYfyh42cWKUlPHkrTIsiWDL8GRV2wJNqtaJ4k75VkZK5CJdmSpL17c3voZl3xlCpreox2KTJcSgqX/7/8a3s/elK/43uvn+FJwgMN4kopHavLJeFOa4ixrEmDNuf0d7XSu6CE7v+lRbcG1umxtd7eqr7uglCxNrCuRQkgrSJY1pRo0tHKT7rTSi60XJSMJDDEgbkuQFMMMdK7kHuBQbTrpla1ItNOUe3eNKLCMu/qBRWceod960VCk7SbxnrXO6w1sT7sRkpPSqV1RaThrcPHiHMqSDKtclxnklQGEyjzyrwkUmkE74k+IFWFVN56cirUVlh6MOxs0WRGFVIuSO9oVbGQY82ZlDJivFroGKFIRgp45xGqEq9cY9odOK9JE4teiQQlZbxxGOcYwsBhd+Dli5esX/wIMWo3Nu0mfLAMo5IjfBx4+dEz9nHH7eGWHz++xbSMA1JZaC1TWsKKw4RKltzx2Vf89Nbx5b3raHMH0khpBYN2IdeKa4LpNlbLOSHB4IpaCjmnNoE2DCo46gXsXYwYKTRnMVjyol1oLnhEtJs7OLUTxArL2ng4rkTTsBhO64IER0PFcUUKKRVqNcRx4uWr56Q0c39/j3O9+69WjuuJlLKK+UrGeosblTQmzmJc4PPvvSUOahtyPq8YKvbZc46PC6kKxglSKvXdittF3nz2jpQy06c35LIw7vaMJoD1kIS3X57JqZBmJZnEOGCd5/hwj+SGE48U4eH+Eazj2fM79nee+/sj929nzktht5uotXF6nDnPhYfHzCffesZ5eY0fLGaGtc5IPLCcZmy1vLo7YL2wtsS8zlTTKGvDEbndveTx7TviOPDJR7/AP/rH/xjNCevjW2o2/OjdW37xF/84H+8mytpY5jM7Y3l1OODHA+Ot4O3Elz96x5vXr/n4k5fchAH7vBB9Yn14ZF4fyXLg8XXheL9y99EdyQ2sGcZByHPDxx3WPGBJ2F70fnv/hjkVJmPZTRO3hwHciNvvmMuZY0qsS+HT5zfMYceLj3+R0zCyf/YJN7uBX/rlj7k9BM7vznzxmCm7wK4m6jpzZzzDOBEmx3KqGG85essU9pxK7tfQzM5bdodnHO5e8vjlZzgXuV+O1GJwrfDsbmDaBx5nQXIhlgVTGrTEupxpzuKNLksv7xz/o//Bv8i7h0fezom3b0/8x//J/4Mv331B7VSg9hUx61dr0ZslzE8rCPzhnYFPywjX9eMiuv3Ke1zVT5r0U0q8wQdPyQUjkI3llDPESDtWpmlkXtQqU6QRrOXx7VEXvAZ5zRwOe5wLzCdFxHvX7TxC4N3DEQ+8/vFbHo4n0pLJa6E18CFgUkOqZj2NEbzzlJrBNIIPGJyKIfs67pwn50rwhpubA94n1nNmiBHrDOfzGc50ix/LOivhr/ZO1ksZxtjeCapofiUgFnaHwDhG7RRuUFumVKE0wRpNqAcA0/oK3rh9duBmd8u7L99yvH+4JLqPD+eesIV0OtNqY4ie+zcP/M668smnrzrl6IFaGyEMrKmw5sThds+rYUfNlegCKSVyVQvV+XTCeFiOD6RikGpphV6Ed309TFhzoFXD+bSScy8mWEcRoXbi0363w9pIa0fWdeHxIROHwDgNhGh653hTcSsgubHOibJZGogWuosr7G4nQvQY1DazrJXSCmWdu85FGGJgnBx+MEyHwH4fSGvBD54wBFq3bnBexbPGNe6e77DSmKWyrioGSKuKbYdxwIkl5V7A6dQLHz2tFwJr22zGtEsfUYF0qonWGsYEsEpWQHTPsduN3NzdcnPYgRFySaSlarGwFmouzOdEFRVoWONI60rOiThGhjHinEdERUNbN/x0GEBgmRfiEIjRM59Xzse12wtqd3nKiZwL4zQyThFj7aWoRr+VUymdxGDxQe20jNNCQm2FUhq56l7XWgix28CtmfmsRawQAsMYCT6ojRQwxEipldQaIUa1K+Hp3IEW0JyK2K3VKqW1VoUWTSg5d8sV6bZWul/YLB0EUQGH++ZWFTZBUNvmDdl+/mR2NRc5T48PNsUpTwRNl/9jiwnM09+zPeVabtkETH2yusLx/rDjvZTNnr5uL3gJvbDT6QibgLy/q3ati87FG7EJevigxyGm8XvDd2nUTgB6cuy9AKzCIro1T+vxTFP7zC6yoN8zW8wltVFoeKdd/iooVQKFc50G9EQQ1r/cbq/qnlim6m9qbdoc0Gk9dXOYQW0KDQ2qdKKr2nzRwAXfyTz0YqDGZ965TltSqkYqmYrgjRKPcinUpr93inDowiPb6QGtW/1oHMFm86VP6vQELoKtuhXyjNqLN2onQm2WOEqRCyGQuwCzu8Ypec9rI4qzKpbcTROPp2O3NbvGWa5Zcs4Y69jt90QXGIaB07ookdYoTUrt2CrGGazRvwuCaeZa/N0oEReBluViLQTdGkewrt9XGOiUDNOUuqR2MEr1MOZKTgqdZqJKmR47NqVF1X5dO7MRjFWsu6SKMw0rRom8biM7dQFQKzRRGtJuGilVyTnGGIJXwUQqKtZXMV8FO3Qrm36DGsvxXkWdAuS0YmiY0ehes8fgtTXaUrDBMR9nXesPA7UpgcQYp1Tl6lnOSoiqWTp5ymOMJS2rfr9YaLAsCTCM00gYLMuq++ZcuzWeyMXuc/WNw2Ekl7MWiw1qne0jJet9tgsR04W/uRbEKI3J4hjCjtUsuODZ72559eKZWhauM9PjgVd/6xPiNLEPgVaE4jIewy5GrI/4QUV45+PCfC7sDzuGoPbuzgzUNZHLSpVKmpWYPO5GqvWUBt4LNQvWRQwLhnoRwM3LTKmCN2odNkQPxmNjINdMqmpreBhHigtM+1uS84TpwBAcd88O5LySTmfOScgijIOlrSvBW0JzjPvAOuu1ka3BeI8NnuP53NfixCFMhHEHXVSRWkGaUjmDqxwOI/Oa9bopBV9rz7M0mnW9iO94dnfkf/jnjvzwB3f8F//1L3I83vLd3/8+X755TW31Otdt68n7/7nM/F/pl3uyOvwB47qgPfnhT8YXT393FTT1+/m4Q+4PmFdJY4lSiM6y1qpinqRCF8GwLKlbRTrdJ2YVmtTcRUMxqHUbm4BWBZ51aaxzJo0aR9Si88rFYstobgtRCrkSgPR/1qpoBnQ92WyqWhfEeu9xTumTzmojY6tN161V55ZWNtstndOMTkn6+Z8IgTfbbyVlBjY7VRVflG7NWdWi8bK30vyY945xmqCKxl19zq+lstRuS1lqJx+qcOPdm0fyvhCHSK3rxS5t2ycqCXZiHPvPm5L+nHe02i3sWlOhK5tgtF8DXcjSOkk959xt1K4XWhOhlNappR61ucsqjsV0sZcKWDWmqJdcZ62VsonhQXOTVcU10zjqldagZm1WqxTdR3Z7Ue8tLmjj5hC92ptasMHh4GK7Zvp6GgdtpKyp9p5Ofb8qm/2bveQ513XVa9CpNe1P0nraZdtW+++M0dhTKUmCs7rOhCEyDhHrlCBei9q6NcWzkbvwtW+29HysSclIQUWytu+RQG3jnLcqBsqKCPRe535tCpEtoaxreSlY6wjBddql7icamjRorXXxXO0Nnfaa7xahSbkI1zaBkfOa301rVrpnn4c3i9pG6ee927Rag7ins9H70knbm2SqKOlMpEvDegy33UN0K/Brw/C2JP8cFWP/IR6Vym/e/OYHitKH8WF8GCDw6stX/HO/+c9hxf7Rj/8w/tBhDPzCL3yff+Vf+b/wt/7Wn+Cv/JV/mh//+CN+bsRKX3wEP/gO/CN/9+s+kg/jw/gwPow/dPzMIqVSCt3We9MIsXW6AJdC1cW3uieS4VqQ2H5h+EoyqD9+KzJb6y6vY3sBrm2Fhh4bbjja65OfkDVoYLXMSS8u9lenH9DlWLfntO23vUpirOmYYk2Q59JQf696LaRsXWU0tlK4VIHW1MHeWIz1ikoPgZwTmdpTOY2ctXhsAG+1w0t6rqcYQUrB+QAYQtQkdymlFzpsLyRwES+12mhJxSyptW4HIBQRqOpVXmolr1kJNa2B1S5SRKlL1mkn8fF01C5YBEtDmlILgnUqNJoXpGaaBR+DduSl3PHIGuymdcUZPQ/eOVZRRLRpmgA/lqQF0iVRRfBxQLCkUqH17ugYSblRpLLmhePRMY07qjUEH5nGQAgD0/7ArjUej0f84Lm9u2N/s8cYy7mcOS8za0qIgXdvHliXTGszrWVazQRn2U0DPgyYXgB4eLjnvM6YmjnlI6kVrAjVaCeV1AalJ0SN2shZ78hbcq8UTfB3QZttvSt9u86olCI4p4X7VgyjHfCDZzft2e13nNcjp1lo53OngQSmYeI0H5XuYbRTPeV0sShoWRMeLjhKSTgsuRQcBsTTimCpxDGQO/obtFvs8f6dWhj2zvXzw9wFdPaSPLG9qDvtD5ScCWMlxkZdM/OxsK5JrdNs4fv3P+T0aBAyt3cTcXDkuVBS4fO3j+TceDV6jLeUkvEBbu/umN+ohRLVQMdg11KgNvbjwMN8BlvJ4ilzYfSW+zefIew5nyzzKWNwWtSSSllnTDPsDiPBwstnt6Sl8ubNTAiBtw9vySs4c8MXj4klf0mI8OLGcHcTODwbefflI/v4LX7tW9/h7m7P7eETbnd37A4DeRx5fPuW4/qGyViKaeSlMoZMsZFSIYqFbPny/sibJXHz6iUuDsznhDSHhANvHz7neH7k2995xoIhBYvf3bHkBWMy63LPzlum4Jnic1ycKLMwSOXGVmbflHomQrWQ1kL0lgFYMjQG3t3fU03mWx99TLsLjNZTcuK7v/P7YBshC6+ev8TsJtr8yPjijvrmLWKEVRy///0fMh4m/DjxarfnRz/4jPNS2L+4Y4wem+FmiLAL1Dawm3Za/Fi1i1tkYAqKT6+HHTXD3k3MrVBi4fb5Lcup4mbHGALf+vg73J9OnPPK3/0vfps3929o1xn7OmQjWbRrEhgtDD9VL12slcz7QcUfJlr6WX93WQ91waFJxnrPR7c3mGa4b0JeVh7ezRzfLZRUerK/kWZhZAQH65poVQhhUKFTaexu9oyDQyikZaY2Ia2VL378lrSs5NqI44gPkfk8Y1PG9jVa1whLLYUQI7vdREmVlBSRn5P6B6S0AmfiEGhVONwduDnsmNdZ7+uiotxaSy+OauFX7UnUtuApeaMUwVjBBcPzlxM+OM7HTM0qTipVqU6lFFzwFCpx8pgMg/dIUavV3X4kBE+IapdVmxKexv2ID1ocH3c7jqczp1PmeFqYdgMpZ7VjaMLd8xvOpwWKQbyep8flTAiWZ8/uoMEPf3jmdJyxTXAx9gKyUoiM1SS7CDzcz1rXBUIYYLQ0V5i8YxhHdvuJdV05Pj6Q8kxthTh4Xry6I0Sn1nHNcTqeSGlVK11rSa1QpaoVjDEXwpMLnt1ux3zqdg/SGIKKiVPR4vg4BoZBz8Hju5PaQaF2KD4aUkbJQYMhBgPGcrpXK02phlqEUpLSmMSxzKkLxg2lZNZVi1rOW0A7kamti5F0/VByhO0JcaNFfYza+HnDbppwIYBRYbQFjvdHLaxtVEmk2x/IxUaqFHryvFCqfvHOu4uISEUcKsoWUWKKMQ6MIw4RN3UrrFbUYm8Xub3bE6LrAo+8KUKw1rDfBUQ2WxjdH6a8avHNqUAjREdwAbmIKALrmsmdOJnOiZq75VAqLHOi9KK8EdQaw8nlewSlsyhBR4saFX2/TXgiotZe016v7XVVcZ/rBZaKvp/3Xik639BxiRO2vXT/+zYuYqBtT2/M+0Klp3PuV4oxT17kMte/p23amiW2Z4v5yec+ETU9JWRcXvgrj9RDvZ6jrXlie+OLxSJ6D2mR+BoDNRqfhc/6q8t7n38Tc1kMpl8LWgDutl39ce0JOcsaFbFvBScV0bSLJZxzVq0nm+79ngrAbLcV3IhMiNpkb6Gf2q2qGKmJ2t0gdHqS7cLhJx36IuScLiIUixYP7UaCkNbjSxXv2E7naLVeC5e94Gr7ObXWdstx6eusIbWCEdE5ALDOI2zWcr2Y7tSaskmjVBVkhhAQtMAcXMRZXSODCCmlbpk00ga9ZlMrUEq3h1NRy2bpogViLUQG7zDO93PYWNeFXHL3UlVyq+lFThHThUJXipjQ49CNXtw0ztw2F3pqN8WEfudKAvV0vRphs6gJkRBUpJzy2guTFmdVuJpLUvFwj2j1s0m/rpSOZJza1BjM9VoTq95gCN5bmtV723Zq8bouet1rbZu8lvf2ZoaNNGXxMSp9xXucE6Q0SlJRW6tgTGNdH8lJRQjDENSqqNupnuZEbY2dt9rU0irWwjBOlHmBZvRP/0ytf7HRe40HTS8qF8FbwzIfEQIlGXJW8aB+zRrbIYYY/MUCr5XGPGectSzLrC70DJxTpbQz1sI0wDg44qiiqb078PzmhnGIDHHPEEdCcAzphj/+d34NMxv8rlv91KZ7F2NpDZzo5zkviblUht0O65yKpsWCi8zrkVwSw82odmjOMMWR0gqGSi0LMRq8tQQ3YV2hZcEhDEbItlysjFsXVDhr8AbWBuBY14VG5bA/wODwVq+Td6/fIUZwTZhCpDiHt5ZiLdEZlocZ3MTxvIAx+BDY73YqAigNnGOKA1KFaNWGT4LD4HFekAy0TCoQfKSJxUVDLgZvI1UKSZRm6GwgLZkxFv4b/+jMd77zI37rb71gXV7w7t1bvcY3QUsXCmz+ZQpJ3VaL7dp9fw2CTVr01ZiEnzr+CFnT5anb3M55wnz+Cbx6jZjGEDy7EDiVihXIa+r31iZoNBrnG4ehU9Cq2mB6rwRQ61V4ApWaOyVJDPN5xaANfMY5QlQ6pQq5VCCp+z0Vihpj8DH051QM2sTYQKmYuV6ELNY5pt1Ea6Xf13KxV91sT6XfY2brSIDL+tTaZvcmDKNnGDqhOvd5tL+exj0aC/tu/2Y6FU9aJXiPd45idR6qfR1RK7KASFVSatW1aU0F632n+nX75hiZ7Ejun0MtzfQcxCHivWc+zZyXuQs/HZs1rzG6p7FGhY21NObzerEsC15JTKD7XB8CACmtpLzSv13GKRJi6HOsWsmmkrtoxj4h4el3tlH5ALVj2+zIRPOsIXg9HtvnZK8CpZQy51PSxruq1PzWBTHGGrzvsXeFebNIEz0HTao2UnbxlvQLu5ZyJYEaq3Sutu3Ztpuq52PNNf+0EZKNheA9zrvLteKsCqS2dUbaVShkuN6yG+VSP0HvmumirI2wBF04xba3gy3uiRfBjq7Xzlli9ITo+2PrtXkJUUK7XuWX7792q95rXg0lPHXRnTVXwdu2/9+EfM5apcM+2XNa2+cra67Com3D27cN9bLfu+awN1KWGCVQimzfs73k6b+aK/kwvrmjmMJf3/31r/swPowP48P4uofAq9ev+Jf+g3+Jw+nwdR/NPzDDGBjHlX/yn/wb/Oqv/i7/3r/35/nRj771dR/WzzZev4Lf/ic+iJQ+jA/jw/jGj5+dpNQEqXQLCbn8TK0mOhGoI5Ce2vB8tRisySAN1p76ZtsutqAXDLbOHDGti52uKNstgXshNOm7XY5rs2PbIjFhK4hs79wTIv24zBaICXirCGfpiUzQbim6oMkI12ORrfNWO66M7QjoS5CtSQjnHWItNevzpXHxQG9yLWDU3uFknCZNWlFbNtej63VZtIvXuUuyyHvPEAdKTpSkHTfBaRG0iPQOptKpTo3SoOTWkxnS8fKNGAIx7DmfF41hnYARLR5reIs1nnWdwSjmWejFbzGkKpo4tRYRfe9cCr66ngYw1Kafx+I7kKpxM44wOIo0TSxYA94htmoSH0+rjiZaoGnNEvyEkcIU1S5OZGQa94goeakh3NzcgW+8fftGC9VJyKsG6CJKCFqWR1LSYvPt7TOmccewm3j3cI8xQm6ZdZmRVqipd3ADqRMlptGrCKb1xLyzlFWL7s47LRSJRcTiXeDmdoezhlUyD6dH5pQQMVgH4xCJwSMFcq6c60yMI6dz0qSQeKwxlJyZpVIEsjQKlTVXSlOqAq3incMGR0oFj6ekM81W8BN5VduacTeQTFP0dmnU3Fgkk4yKDMbRE8PIqSbuHx4x1uK8di22JizzgvGe/e7A7e2O8+lL1vOZvBbAkJeCHTxYj7EZb4BSEG+x0akVxGHk/vU99/ePhF3g9Djz6be+DZ0Qtc6ZtKy01ig1MZ9nBmeJh4noHMNhZF5XYgggFZrhdJ9oMhBvRoINWFOoAtPdgTGDdYXT8ZH9beC43COmcH7MyLnhWuLZs6gF6tmQK/jdjtM5YRjYj/B8uuNm54m2Uue3tPIR8woPn7/F1sZ4+22G24/Z7w0mrgxDJNeRsNtzTEfS/RuW+zP7j16xPKycHhZmMh6Ld4bdeMDZwKuXr/BSiC6wd4bbF4F3x5lW9qxJGG4O5DXhvODMmdwy0QdMFpY1Y23gtGjHbStnws7y7O6Od/eZ4zyz44hZDMd15cdpIbrA5Ef8NHL/5Vuav+fm+cfMS6JIJpYzcSy04mjG07LhVE6c1jPReg7jnmEIEDRZ/aMf/C5+HwnDiKSZMFpKWWDNHG5fkkxDrKOeM7UZzDAyBEs0GdbCTYxsaPO1NHzY4Y3ho48/wv2Xv9utO7aVABQNc8XQP82pvSeehUuh9g8nKT2thz8piG/J822t6QXw9wvtTxKpRhiN5dNpx8Nx5s1poa0r3jkqjWIa06hUo1QSzTTGwWPtSOudwWk+cXtzgzGVkgAHuSb85LEhcH86E40hRq/WJRjG/UipmTpnhnEghoHz44pznmkacEELF5Ih54z3Dmd1XsYJYrvgkUJuC+NkGXc73r1+pBUtcLYNo4HFOp036kYF7MVkZwzGwv4wsd/vmJeVlKqS6HAYGs5psU8AqZVntwdyVqLe+XRiWVYlPzm4udsRJ8/pvCLV8vzlC2oRjFXLLUTpCm/fPZJSRUolp0ypZ/a3jf1hfylQjvuJyHTZQTweT4zjAWMiIhnnDOe6MMRA9VUtx6wjDoOe+6YEwFwyxqCEISpilBxxPp2pJRMHi3UTPgQVadYCoon/VtXmVYCS1XKjdtKgtbpHkAanx1mpebmLm1GxkKERncdEx7AzfPTJgZvbPZ/9/pc8PDySigrZaHKxFAO14qmlkRYVMdtu0+u8xXTKhDQtVIVgGUeP9Xqhb7Qe6xymWySoEK4LhjrJy3ndF5Xceul7s42IpFx5fDxCFZZzIufWBRPS6RkOj0GiioD0Xqi6dxS1ZB2HgFWHJ1ozKkgKHm89tSWlDQyRu7s7QvCcz2daK13g3jCuUju5ZJp2WDx5OZLWM3EM+jxvWRfdV4CllKIFIOeIMVJSIS9K4jJGO68vBZomHB+UQEjV82o68ciiQnNjjQqCve2Fum3vDKUq/dB7p+XPvlccdwPDLuCrw/mEtG7ltFlrCJ0a880VKQHXhgc2mpLu2f9Aizbp1eMnghqdat4X/GzmapsY4iKK6I0NG8HsisR4KkIyX3m7pxKo67x/ET313z1txFCRkv5uI/k81VXVS3OEXN7/8/A5j/ahF+SuxW4V8WxxjrmIAbWAVrvIZStK6dFswpUm7WI70mQTwFylV7WUPs9scZeKf7xzXSCk960zKhqqvViv12jrn5suKFKbMcxmOWNxPpJL0fPTv+rWKYOgqpVSslI+ts+r3nX9O+qnG6W91tqu9I5OFtXv+WofHr0Hr8VZLe5pcCk9XrlQgI0WPgWDNR6DXGhTghbyoXVCreicb4R5malF6UuttMv5Cz5QykqtSk0chxHvAz54lnXV77s1SlExZOv2K0pBUEKE8baTSvr3Y8zlnjYXOpeSKHQdilgDRRprXnuBXK8P73SOVGJhQ1LG9QYU1QJ0UWnTRonWr5fte96oSIiobZ7TONFiaS3r9Wl9t/lUwWZFqLldaB1NKrUXR32wOOtJqaoo19gLeVYa5FzAWmKIaqGXzroeFl0LW1G7OLqA00K3SK16bE0w0ZPnhWVNOG/Ja+Nwc6P3SlELz9pFBE0qpWTKanDRd2taT6nlQsFAIC8VweOi73Z7mk0IQ9Q0gG3ktBIGRyorQlPBd9bmpTA6ordQoIrBhqCCJzzRwxQGonc422hlQdqelz/4lG//1nOmJZKHgB/2hADGaWxXRfd9qSXq40xZM2G3o6yFlCxF2sXqMPoBaxzTbocVJexFA8NkWVJGWqQUcDFQa8VYMEYbhJy1mKqUGWMsufScSMvYYBiHkVlOpNLwZEw5sdbKqWaccXjrCcPAsi7UuuBiRMLIvCayFTCVdT5hjFrYl1yRqnTlwUe1o3IRHMznI9YDPuC6NZ21Rj+7H7Roj6WVoqIcARsGBiNIKzhgCh5EKSf7feWP/bHv8f0ffIL3XnM87w3DdX7eVofr/P/+I81P/fuV4vPkNeS9F7y+1VfG++/Sr/u/96uYf/xvY0TY+cBoLKeS1YYMME4tEa3TnFOpSu8OVsU3W4NRyosKzfygYiVnqS2BEXz05KoUI2dVoLKJaQKeKln/Hjy16J7DhdBpVfp5lY6oe0pMp5NbzfcYayhVLayj95RcWZeEsb5/3dsewF6/bbkKSjaRprWWcRjACmWt1/XPqF20c/aSV/NOxeS1Ca1UljaTnVMBnbcMMdKkkXMlxoEQYrcc3SzADCnl676kCblkfGn98YHWlEblgqe1hvO+25oZhjheSDe1Vpoz3eaOTiJyF8JQo132gNZdRSIilXnOlJJV/O8cBEOIKnzS9dB2Ia/uhS+2s9t+xF5FK6U25vOi60/ZrF91vwNWxfIWhp1nfxhYl8rp8axkpooS0rf9k9G1Q5rQ6kY0NL3BlL4HMRg2SzHBB9vp8/1K33pb+znb1n7n7SXPvJGOWm/A3LaCmnNF83y1UlK5iJs3UhamEwGf7Btbu96fxthOejKX60zQ++VCbhIVMg/jSAxeRXatXO51YwRRUzmscwQfyFJIq/5sGCIhuE4Qa5gudG7dek3psL0BqDaEfLkutj9qHbfovnDLYXcBVrt8mM0hrue/t69YBNOUXKWCW6Fhcc7ggrvkLK4C5Gv+o/3kpPRhfEPHb0+/zQ/jD7/uw/gwPowP42sef+r//af4F/6zf4Hbh9uv+1D+gR3Pnr3jn//n/zP+/X//z1Prz1xS/3rHX/gX4X/8H/zU2OPD+DA+jA/jmzJ+dpFS1UDWcLVQ27o8zUW4tHVsbMHRtZC7FYmvnZ/vi5c0GNKAy1vPOAVssMzLSTt1e5lrG09RtPrfa5Hi2iYCW8BptoRTf1zrT96Q+lvXiUhTRHPvImmiDa5bvkl6AjAET01Zv0SvHfu5EwU2TG+tQKmK+Q1evc5FO/3TWjTw9rZbI9T+nYLpNCbvPblmrNH30G9AaRjWoPYqrSG1KnFBq4vI9nr9u17PM947mjWUihITUsUFtTCJ3uGM0QbfptZ1ardWesHZdnsHtVappTKOgTAM1Jw1ud/USsI5i8mFVrQjtjbBOEcRtY4Yotq/yJq4293yrVcfsZbM/eOR02mGVtkPE2EXuT+e8CYSu1XBdz7+iBcv7hjGgVILOSXSsvDxswMxRIwdyefK63fvSGsCXylrIp8L0Y8MccAYw2G3Y00rKVnWlBnCgDTLMIx452mtkESYUyallRADGx/ZBU9NC1a0+81ai+3F2Bgn1tTFYr0rMLeGD0EpTKURo6eYRurdhc44qjTWspLzihSD95FEJr9umGCw3uNaw6tajVQrc1YxVmpF/z2vWGwXBVhKhZIa6bwQvAXjqGLANeLgsEMgzwu5Qi1QU1MhmXPav7cq3aNKZZoGStHruZVKdJq0C+uKGSJSvSbzxRLGkfN8xtg+Z5TGOChyP4w7bp/dcH48gRdazcTgaKXgxfPpp68YbgaO8yM0vQeN8QSnHZ6Dn9j5AwHHYzozYpjGoMox40hHg0vw/LknS2VZE7c3B339XiA+HU9EHImEWKvWSqIChNIEXKQ0pT4tc+E4v+N4LLSl8K2bO253zzi8vGE5L9wNgUNorHVlHG94ddjjn30HO068/fwd3/nkGXe3B9w0ECfDsEZ+cJ8pBuqycrff0cQSHo48PJxJAV482+PtS7I4qnXEncW2xGNaeLsWblzA7yKFQk6Ck8zdFGg2ss5ZBRYkJbOYidRWzucjchKeTSuvDje8DSMjhWrhcYbHx5UXzw+cBMrxATkvjC/veHv/hrZmDrd3SLjjxacvkTWTiud4vGcXDUOAZLQQdhPoCHJHbZ4kd8TBEF3WxO+N5xQKdbcjzSu1QPOBz15/zuNnmjj/9qvn3E47TDQc08qrFx9xcCPh/swdB148e0kIgTWtX12hLsXhrw7Tk40bkeGrItrr+nFNkl7XmSfv8OTFn65dW+L3q6InbZK1GIHH5cRDXmg0/OAgONpa8c6zzAVojLtAKYnjg35fPlhwKsacdhM//vwteW3sbyZaEw43EzEEcoaWE0JjTTPHeWWwluANz17sGUbHcl7ANqyFNS2Ii1jvGMZIHBz73cT9/SMiwvMXdzgv5FRp1VClEKNlCJZ1cUqXMJEQrsl904vp0tTKxHiL951eUyrzufHwYFmXwvmUsWSs1ULW7rDDOchLYhw8zkCqhVwr4j2GSqmNYTeCKVRZ2d8EpDnysrCmxuF2IjiLt1YTyLXw+HiCKqzzChbW0mgWbm8nfd79Qogj1jjePZ4oTZjGHYe9Y8kNakWoWAeH2xtCUPKI9x7vlUh3Os8cz+dLp+swDVgL83yitcbhZqBK1Q5zYxGjRYTTeeX0bmZZFoR66cBtWZ50q+t+Q7ptq2mCR23OahPWtZCz2om66NkNkfHG4ULlxasDxglv3p6o59pFtgbjIKcu1sUw7CPPdhO1qIg39/O7202EEJnPZ2wwxLGLj/M1cY250jP1FlChUml0G6WCtV7FxaWQ1sKjnBl3Sl9svUPYhkCwHqTgbCN0S6Vc1FZtS96XqkWHWpTQEqLrJCTt1i8lMU0jNzcHmhRKTbo2bxYVTkUJYjYBA0Tnsc5RixawrXG0Cg8PJ4yzPH92B1YYdwPjbs/x/pHTecYZR0nCfErUpEV7Fw3OdfsLLNUIUoScc6cYdnpHl9W45i+iE9e7n1srnYaiFhhaeBItxhvwwdFMI9es++xOFTBN56EQtNhcc/0Jjc83alzEGOYaT3SxzQ/9Z/wJ/kSPNfQxCBvY4lK8FJ7Mz3ItLr03aaNFMiUpGFJZeqPFdfTDeL8gLWDNV77ALVDgiTDqWs/5aQ/Tf7d2+YF89YEI9/4df/nuL1OMEk3fswqh2wj32KVVgW7ra40yXDchykVw1OMYI3qt0+MzY6zayRkVvWyW2K0KxjSkVSWv9jhGC2+mk36uh11SVosW0yk/vTBpe5Dk7GZlSRdyaGGsXASsG0GnC2VrxQd3afbYCnPW2OvzerGziTZWdKYQ3qnFUa2VKQ4cdjtqayxrImedrILzuOBZc8LisEYLqLf7PdM4MTIyngaGt5HD6wNDiDjnOB2OfOZ/zI/day3CuoaUSisNZ32P+wwxBEpVy+RSdE1HDN75vu9QJkbOKhxUwYAWTI3T/a+xvbhvlGAhTXDOU3oR03Q77yZVi7W1adxtrc5nbROm9IaXpnEnTYvghkabdR401mJls2jqts+dClWlUUTnU9MLzUrHUnpszQVntQraMGCqCludxqVq0QmyESg6XbGUCl6vah+8xppCDzgtpjZaqeArNKukMTG44PU8agUfQfBdgGBDII4DeU39+1M7K6ra8h1udrhNPNRFiQYV7YkBZwLBRiyG1jQe13MKGEtLSgaZJqvfS2kMY9R4u1/HOWWNm6idaiuYJljXaVM9votDoJZGLgtp1bjoMIzEMDFMUe1HnWNXHb/8+98m1sBuH7DjLcYFltPM7X5kGAa1WvKGVhyPi4r+pBSGGBAMaT2zzhlxME0BayaaKKXZBY+RyloLc2kM1mGjo9FpVVIZvUWMpZSmYgdT+5QaKFJJOUESxlDYxYHFBTx6j64Z1lVjRpFO0kpJbW8xHB/viXFAxDFME+PgEVmZlzMijSEqASghuAbBXEUWYvVzDEHt3I310AQJUXMbfS+05oXjWQle0xDYjwMqzCjYYNkf9nBOfPqqcrMfCSFglvUrscP77KSvLhBP/7UJsLdn/FSi0pPnXV7VPP3L+yvHZvh2yU0B5ld+r//aUFthFt1nGatkPCV/qwhzXQve64KZU74IYYyVThcbyKmyzPlCIvVBLWtbs0rXRvcrqWSQpnvr6NU2V9pF1NZqVeGgU6qNE8MwqgBqTekSY2yi0U0wGrzaQqd1EzBpblEbGdF1rAt6pQuPAGhCFWFds+4TU7uQ4YxRQpCKqJRabnserPY8mRFopajYaggIRb8T5zECaV2xTtejLZ+CFVLOmJ730cYpPY5pN2KMsK5Lf54SlEqpOOe1wcJ2smBXfsQY+jqgH8k5pyKU/p21Hk9YZzHOUavuhUNwl7XiyS6I1gm9ORVdI+y2N9d51MiTq1UVLdrAaPp3LiowKtKtWK3FD/rHOCFGi+wHzvNKqZVa+x7I6Fxfm16v1hqmIeraXpQ4VbJSndRmUMWrPnZaY9MGg63B9at7NwPgNhGy7nGuBFchJRXmWu9wxl2EO9Z7zdX2ZkjX6Yy10wi370bgQn60ts//iOZIqwohY4xYEyitdFFQ/9atUbyceSJSl2tuoHaBm8EorZYV53a63olhnAI5ZdY16ZkR0/OrHZ3YRe7v++sAAQAASURBVGXmvalHLuIzfc6TvLdcBUu2zxqtP970iUToOXu2PWFfyzsdbZtsNNd9FZi1be/2czb++u6v8+ff/HnUnPD/d0PlaFVpoHwzLJQE4bvxu/wb3/o3WM1X82Mfxv9fh4BtlmmeePn6JS/fvOSXf++XL7/+0Sc/4gff+QGff/I5OWTE/vzdSx/Gz9cY55F/9i/9s9w93H3dh/IP9DAGvv3tzwgh//yIlP7MX/y6j+DD+DA+jA/jjxw/84zqbLgkkKVt3bQW834Ehdk27Fuykt6d04Ot9wOdrdupF3gNGBc5TDt+9de+zX1+5Pd/96HbmmniDHoy/Al6fRMb/WQaaTsUPdbLgV0Qu7a/RO+RM0JtgvTCMj3obDQsgpWe4PUBFx2lNZx0SwTbBU5Nu4SSNobijNCqodVCWQs1FwzaNeNi6M/Rw3JW31eRyAKt0QyKIO6JT2MczlhqLZ22VHBFSRQ+eLWbc2pT16TRUsE7Q7CRtVXyclbLngqYhgNSq6w1qzALMNZ1y7ZOnRIwYpnP6yXxn3riZ/SR6CPLWgDBG4ufRj0DXgPiwQec90hutJp7165nnJ4xjrfYllhKI7jAGAeevXhBQ7i71a7f3bSDWrk7HBjGkSqVJkadBmRFTMD7EUPj+e0Nz57dcC6JN/fvQBzerkxhYH87cp6PSCq4Wpm8J9hrEqoaxWmflxWMJlNyrpdklcWxnyac8eRcLt2m1kBOC8lUalPxmDFWNyxGwBtKg2wHglhqSaQla6HbgbFCzg0nar/gQrdeKhmpKvJppXBMGawim9dcQIRSVlJuel3ZSGkQjEFaxpmqSdr9qJZ5zdJ8xjpPPq+Y1jCt05SkFyRaVZs/Yzk+LqS14IxTp0NfkRrJSbvHcsxUA+fTA9RETQWxHu9GhrExn2dO50KMnv8ve//2q0t23uehzzhW1XeYh3XqbnaTIkVLokxvx7ChbAT2RuB9kQ1sx4Fh5GLf579IDATIXYAAQRwkFwFykxgJkpsYQRBkJ5AcQ7KFLVtwZFORZJmiyG72YZ3mnN+pqsZxX7yjvjlXi5JoixbJaI2LXqvX/GZVfVWjxuF9f+/zWzuH6x3Vaawz5DmSI1xeXDGPI3FMYv13GNntj+x3AaoSkdNqRUpHUkg4Y1DKAgqVW+LHwWqzoeuAOZLGjHaacJqY1Mh63eO9YQoTw7ojnjKaAaULW5eoSrO98oyT4TQlQgyocaLMFTesGMdMiWKLcbF17OfMarjgK1/8Au8+ueQ73/6Y9OgDtpcbYs5MhxO7aeKrw5bTMXDxaMtxmrj59DVGOYKyrPoVqcwUDeNuz+vXR4ZHl7zWkcEYbIl0G0slYXUlJ0PA8GL/mvU8oIHxeCSFmavLFcZWcgkMa0esA6VK4s70Fk3ldDdRvGY8JcgQtCTnv/rFZxznE3UuvDx8xt3pRMfApoqdxuXTL7DbvcDYntNeMaUJp2ZWXYdSM4+vL5jnQu804ziTleL17ZGnF8/YrNZo53m0veA4TeS7RO9nolHYvqeGylgCj955RP3kJYfpyO72Fq8Vu8OepA361Ym11yinqCnw7uPHeCPo+3KugqwPRB33I/4S7pd/0zRfEpkF/pCA25s/bVaeqn6PgFQTOak3k9aLGFcBSRd2tsKqZ+PEGucwTihV8b0lzwnbDyirCYcRayzOKB5fr6hElLXsbnZMh4k5ZHLKGG/YbLZ0qwESvP70M6bFViFnQkyi3UuFNGrGSayqul6mfE3B255qHd1aYS04JySaq6sN43igYJjnhDaKEDJpFquaWiDWTN9bUoyUSEP5S3BVW7EZKkkC3rUqpkPhVcwYa8ixEKqI2darLRQY54g1FqUcxzExzTN+6JodQm2iO0POItjxvSeMiduXdyhliWE8JyiGYUB7zd3NntNxBMAYhdIFRaLkhLWOw+HEOAaZU7WIGMZZ6EeVjLeafuVErIskT8mwH08SwFZSuZxSxlpD33esVj2VAiqzXq2Yp8Bpl1DKMuZInCt93+OMo+uzJJmMx2hDDAlrK9WKLVnXi0VPrVXmmyI2rgqgylwTcwGl6bXicDPxO4eTCMdmmSNRQu5Ba0km6Cxzcrfi6vqK1cYT58ztq71ULGuxM7DOiQgiipWFMVbIGElRslhNSf8uOCdrM2MtzmlyHM+CE9FeiyDBWkO/Guj6nlIKcYycxqklcwx9Z/GdYbsZAMXuMJJqwDqLrgZrJKE9jRNpnjmZwkoN1KKFDBkCWoE3QnTSyjQaRyRoqR4Wi7SJWgvee0KzsaUGtNbMsyR5ck6cDiOqaMZxous83su8X3NljkHEUSGJQE1XrFEYryELyVKZitMaUK2yX5atMcnvGKuxSoTfhXqmjIq4ozYxldRm8yCRMp8KYUos9sDLmttZw2rw5FSZTlGIHj+iTSyYFyu2eq6WV0rxbf+7PLfPeTe9yxtyn3ovjrtP4z445iJQqrTxWpF05rP1R7inirGM/B+nX+ML4xf42fHrbPP2Xuj0MFm8nGI5J/c/uz+9OouM3hjz22doBKZynmfa5KREqNE+yW8Nv8k/uPhVDm5EJwVVxCv1vFcqTfAgx5QMq9AEcipiOYwI3bQy7ZLqfWK7NruX2uZJFoJrbWK6lrCr5SwaqUjSdLGaXOYxEEKOiHwsuRYZK0sjeBUZp2UNnGU/oRpNqtwLnWpL5KUoJAEqZKXACInMKENqc7VGCkJEWCW/r1vRRC26FWNoWefbHms7dC2kUsXKzBj6YaACXSq42dOZjkevL3m0u+bJ/ik6aezJUWohh0Dve5y18Lzy5fwVTquRXb/nk+4zbrjlVX9D8QXba2IUEqmq8q4b65Yb3+yxMvFcZCPJbf1ApOWtRaPbfaiSwFSQa6P3Fqg5U1XrGwC6tH2ZlWeZMyUWqtbIcFOELohqtn+y381NGWStCE5DzNCENTnLWFFyEuJIKS3puyT5M5qCsrJGyKVZsOsmNotC9VJVLMXPjOMH4oMQ0pnCSBszqUaIVIDJsv+MYYaSm4jVoJXFdJUUU9uPVbw3GGtAy9xeRRlL73tSinKeWklzYg5RaIKtjzrnGhl6EXYZqELwKblQjMJ5jzFVkuGxCN04JdIc8c5irKxDnDfkUFE4tKp0Lfnke0vKYhOfdYEUISEkpVSpRcSHvdfMqeBsx9Xlli+Gd7kKK9Qw4Huhv+QYmWPC2o4YM93gCSkxHka5lyicdZQqQqk0BaYxYIeeSWWsUuhaME6EiVpBLSIyO4URl+T9iiFSc6JrhMJa5fuV6kQIVUuzb62kKVONJqUARZGVxHKuLy6IeYAMp3Ag5CRCL6PRNXGxvaDWIu9N6TnNmVIj3lpCDPTeUx24mNu+tDCFhFWWlXEUbem7HoiEGWxnKVYE18Y2koy3rGrH8XQkxko0mpQyqRRs7TDH0OYRsfTqfceOw+8RKb0hKHowC5z/tmTyv88me5I3j/qGmnU55sPfWKYXpcE2y0EFQRWsdbhlj5FFNKStgiKFda7zxFn20cooOm+wTvYyOWbCFGXtkaV/d32H7TqUNoTjSIwyJqkq8b6YZc2RZhkvcpa5STWKrWljuDIG4yR+5Kyl6x3WKGqWcblSKUYsFGsbD2MSQYhZrKfhTPJTyxxynkBkNB1PUWidzYINVbDGoZUhJ1nnGmvIRSilSjcKoboX2ICQ7EwT/U6niRQr1hpiE/pYa7DOElNiGuc2zyFzvBL7OGOFrBPmCCrJuKJFVDoHIZNpJWSgLKs9QJ8FxvMcz70rt4JOsTMWu86UCqu17HvnObLonqcxNmq3EaKQFdu3RZSjqpBqhaooZGIRJTXbutpETCw0pLM+Bp0U+5sTB70Is2oT14pApzaxS2nruK7r6TqH0or51N4xRASjjMzZuWZKyhStUFr61UIClXdORHQL5VCeX6OcKSlWW1Z/YjNnz1Z4tYh1XUwisDVWY7TCGYuzjSLY5kWjzLKMbLTXRIwBpZ0It2ujARYwOqGsOVvTllyoRYjhYseW5N0zBi1hUBHMNfHXMrenmJqNu1AivW+WzKXd+/TA2q3NoErLemchQ2mj2jJBnfvvUhy0kNJKm+eWEDbnP+v9GnoZcVSlpNr2kXJDZIiR++ycbmu10iyKf7za3734u3xj+Ab/yviv/JGPddRHfnHzi3zqPiWpxP9+8b/zc4ef49+++bf5QvzCg7H9j78VCn/7+m/znz37z3hun/NDvJQ/Ga3C+rjGJstXv/lVnr54yk9+6yfp5o7LOxGFfJ6qWFXl9aPXvHz8ku/8xHe4ub7hu1/4LofNgWJ+dPfqb9uPZ3vvk/e4ur36YV/G2/aj2Prp7Rzxtr1tb9uPfPu+RUp58WI/W50B3KN07zG95T5Z8DCwj/zv4tP9+diOQgRAS/VUSpFpHokpY7VFGanCySmhG6lIYEFNuPTAwufzNAxpkug5V+VRgSxCiGYxd05uLIIplERa5EdS0VorpWShM1DpBwkUp5IlaF4LRisuNlJNVFNisx24vd0zzoLKXkgM1ntSkepaoeq0KjKlMNpKEBVFjblZ4Zkz9l8pjVGyCRfveCsEk5Qgy6Z1DokQI1iHt5DmQJ5ju2c0kYsET+RemkYM0oLgNgZjHCElsRDTGt95oT0UzWAHhs4TcxZLiCrBG22sVOqlCEVhk8Mry+OrR6y2Ay9u90ynzLpfEULkOJ3QVXO5veTdd97DdJ7XtzcMF2u87dmsVqQUKLnifY+y4BPEFCWhoNfgDd5b+u0lpSY2JXK5veJL70ZSzeiqOYYTz18+5/HmiqoSz19+RkiBmDJTSNzc7qgqU2rCe0OYgSoVYc5KUCOnInYYpRJjJuYZpcCgmcdwrhJcskS2BUrmkHDIM0kU+s6TYiIVCW5418m5ciHEFsgoViruWmAkpIj1ErSpKeFch7aK+XREJVC24n2HMqohzi1aD4JdzyJKqkEq5buVY+gGYggMLbGZa6GozONnW5xVHO9GWAsxJMZEUpNYFSHJn4v1Gq81u1cHOqNQxTBPmWHj5D5qERjUEpmnzGa7RteJbtDU6qk0kksvlYfD02fc7CvH6UgmgSqEODPoDmsk8IJ3zI101V9cY6fXnOKM14oyWIZHK/anE0PX8V7Xo1gR1UxlZM6FEgMmG3SGEEdSzczzjNkrri6vSLnSDRs+fXEgj4F3N5ecqiSRn+9fo58rLi++wE9cvs/V9iscy8jdLvLlLzylrjS3L/fEKfKFd95jf3ekHxzhcMSQWHUGbI/zGtsZ7PoZH3/4MbfTzOpiS0qGsRS0HvEby+4QGUMgrw3jXWW73TJ6SwgHet8zbAZudxOvjjuM0synwBQL69WazUqTw54cNRbNxXbD9skzpukFNcxMs8JbePHqQ4zrOR4zn93s6Yc1ql9zMxdUMjx6tuXaRaZxIswHei/9MxqN61Yoe83t69ekVEkl8fr1jovrd3A247oZ129ICoIuTKrw8uNX6Ia7t72n5IT3imePr7jmETprxmmP1opN1zOfDqAcV9sV4XZk6B8xdF6CwG3sfihOVctE86By9M3//94r80Vse6YsKVDt2A9PsIiflsOdp7mzQkoqhYtqAWJlxN4qJ4auo+8c8ykweEcpBuUspdc8ffaEwzRzVxuuX2tK9ex3E1MYSUUC9qtND0iCyxvD4faOPEnyT6pWS0sIxjMhILVAuHWLLatCV81p2qONYt43kYMy5BjZ3x3IOXLYz9SqWSmpNq9ETKlUJeeZJ6lUtla3OQrQMkeVkhGrJHW2dZqnjNYZZ73crlyZT7MEumtlnDMxZLQG5zwXF1tSCVRkfkxN9NT5Ho1FVRHoTCGQgdVqRVUa23d03hKHRJwLMQVoAqY4J26mHUO/kjUNiVoCWndYJXPdOE5AZTZCQPCd3POcC6fjSMhZEjkxyBw09Dx6dM1qNTCeThQMw8phLZxywLkesclMpFRF7BsyOVfWmw0oeXeMkzk8pkTKicePH1FLJcwz3ouYNIUgtnpFUzIYb0RMmxLpoMhppioROVtn0aqJGVoSoBboOsfjx1cMw0CKhfEwc9gdCE0o5qwlzYHDOLcq34LSw9myA1WFGITGW0mMxyx2CDFlTEsG5SxV9s51rNdrhtWKGIOMt8YwnUbCJHSxXBRGe/yml/6aM2glhCmkiv10GiWZZi3VasIcCPOMtR6tLUYrEReNIx2eUjIhxiauN3jvmMeJ8TSitMGZjlIUp8MoiQAWewzJ1JScOBx2hCkyn0Z8Z6lZkrm5WZdo3+ztrNgoooScVLJq4pJEyhlbNf3Q0Q19ozaJlUitnBNcStUH776QcJYktNK6VeLL2juMQlI01or4ToExMKwGOt+z3x3Z3R2+51j3o9DE4kKEREtbBEBJJ/7x+h/zZPcEW0WQfN+atdlDylG9/9n5nxR8t/uI/9/mV9l3N2yHgTFN7KcDn60/45+uv8lPH3+Gr51+hsu6bcd9kDhWnzv0G03G0PtppYmHWOYHSfy9MQM9nI/a77w2r/nlzS8zqpkU5f0UgTjn5GGttVlRiR1HLQXvLNMUxO6tJaaU0mhrhGR3Ltr4nIVeW5bWXGiGg81LmrNYabGJWiroJeMl82LKzZpEa4yuIiJpIql2V85is1oAtVjCtLFbCyEtFxHUKCXW1TKkKJy2zc5Krm+5YK3FvkhEsO3aqmbVD7jOcpoCKVa8dW2dHFBV0fmOzWaL0Rb/3PP+Zx/wePeElR5QEbHAtE7IFL4Jv7RFaw9GLNMcHX1dc3V6xPv7D8g1EXViv93zyfUnvOAF4amMucfTUchHjbozTVPbD0iiOGfpmLUsAjHOf69Vyx4yJRFkVSW2cg96FUhyUisRJRRdyFm1cUBsZEquZwshhYwjFLGDBi2FMO28uZSW9BQSidEGpS05BnHO1VJMgxKxE8YIGY+2YaxVXJZrxTiDs1b6hG1FLlXWCqu1w2glCXzfxLKlUFQ6k+W0EtslrRRhDEJrou29nIgg6vn1LqRYcd6hamrkYkVF6I3GaWKI2NWaKVRCihK3UJJQdt6idbMUslJsVADb9eg0tv0s4DR25ZlDwFnLxlgUjqwytcZGVwJVNaqKmKhQSLmggtihlQrGOQ7HmZoyG98Ta6RWOM4n1BG6bstVf8Hgr9l+/A5xhKvtCpxiOgVyymw3W+Y5YK0hh4Ci4K2CNu9po9G+Z3+3Z0oJ23XUqoixolSS/UGUJH71mjiJhWHSYvVltcV5yzRHxjijk5CJUg445+mcouRAzaoJEjx+tSblIzUJWcVoOI07tLaEWDmMM9panOsIBWqouM7TdRVtKimKMNhVIQJbb1G6I8Qs6wkgTBNV2UaQCfLMjSPmQnWKw/5ArY36Ze15DvXOYC8uUMqSm+jNOYeqlWma6dcDJAU4OtdJDKSNl+flfutvnwfqvTnv3I99D9vnpEi/5weq/v60pe/1e3V1hHc+ASpWG0SckBuhK2NEWYpq1BlnLa73HJqYXE5qSLGeRTPLeyu0Nym4KikTwtRiSPcC18WSiiq0vUV/ohrBsKKadZXEWmISgalSEOdAdYYQEzlVEd4o00Q+gMpSrJdlrnjDTnuZu0AEdrT7VoXsVkqjCuo296VCVkkEQrkS8r2wY+h8Ew4J2ae0YksRvZpmOabO61jrnIyXRmzcUIoUsghoVW0CUMU8BbIp52uUOKMWKnetpJTanFybEGsJuypiiqR8H2PMSSiaQ9+dxfw5Z6zzGAO52RlaLXS3iliAKSUxGmfF7ljIVGCdnCulhPdS9JCiXM8izhEbukItsm5XSuK4KSlKEJrs0ndNozidi4Ha0qfvOvpebLBTFLFWCBFFm681zNPc7MpEHGuMrLkl9isn0Fq3tYmInUtZ6JJtLdNis845IZy376Z1KxgJkYVBSRaLUdT9GL/EiUuR55JLwVrT+khlmmR/pbU5rzFTEuWRUksflznLGCGKxRAppeJkwhTr0kZ9Wqzrlv4cYxQBdxVBsByzWUGrexGdVgpjFxFyE4i1vl+aQNgajfVtLGjkrdr6c1HlfkHd4trUJV6hHsQw2vfKYp/LQsFciEza0XcdyRWm8cePzjOqkf/6yX/N1z76Gl3t/oWOUan88uaX+U+f/af8xvAbZHVf7PZrw6/xP17/j/y1m7/GX7/567wX3/tjJytVKt/svsl//M5/zK29/WM995+0prPmix9+kT//j/48X/7dL9NPPS46dP2Dn7lC4pVPXj3hyasnfO2ffo2sM9FFPvrgI37rZ36L50+f8+EXP3wrWHrb/uitwk/9s5/CJffDvpK37UetPXkBf/Yf/7Cv4m172962t+0Pbd+3SCmlxGJrc59XuK8uU0tFZb5PiEmQfPmwOm+SlorpN+x2AFUKpSaCUuyPJ7TzQk8oFWKkNsRw33u0tezuDr/HukE2Xw8rRR6IpQAhMrVKlWWTVkUcVRYq0oOgsGCB70VWUgNVMM7SWQmGoSokscLKM5JwQ0PR9N2a1XrF69sjSmmccy2hNaCtJCSneSInwRZjdLMlqY2s1CwemgVbDKlt2itGK2wL/OuWYMgoYkjNdgdK1kQq8yS2ZsVJ5XEqLbBNRrVqNm2kOloqTC20REAIAecs2kjVmkLhUPS2I5XKGCNKiZWd2AJkqcypi00F9Lbn8eUF66sN+ynz9NE171xuBP18soRp4p1HT+h9z2GaiPPMtl9LqiIlOt/hfI91jqIzcTdxub6k6krKFlUTw+CgSkLelAxlpOi5Cc48GcfVBWw3F+QaWJ1G0uFOgtelcpqOlJooZaZWwQNbW7HWUlnw91GCSWWp8pNkSohi46cUze5BgjDWtiC/NqRaoIjgBQXWyDujtGkV1xHVfke6ptgrVGfQxmNqwRktAgcn1n/Od9jiWtUpYBSVTK4VQ4YSmLJmzhFjWoVvzOSiybGc38OUY7tPhel0oNuscc7Sr1estp6b53vmWfH4vSsUitfP9+xv9+R04rA7Eftegmo2MaWZEiopVbzxlBKJyhCUFoR/1RgDKY/UOdL1A+Wk+fSjV1xefwVrbukuNbNKlFCJNWN7i3WGfu24fT1hKNzevmCaR0nK3k7kXBCnDcd0qrgVuK4SAsxHRYwdF4OlUjjNkfEUIYMxHadToZYdlsruFmIBozrqbLn0a16nEze7I9ppXFkRtoG//w/+CTHf0KkK9VuYlabrH/PBe1c8vn6M6jpM5+g6TdgdCVnoad0WtivDaXdgUz1htaHrLxjnjOodNZ8wa4+aM3XeEYcnmPWai6ePUa81xZ7YrD3bjdhyvX59i7EeZSp5CuxuT/h+y/XVFeOrA3fjie3a8NnLG95/9xnm8CmfvPyMfejZ3b3m8eUVk9JEZeiVoR8M/bBhno6Mh1f0nSZMid144BAC882Jy6sVj53l0w8/YzeeuLqw9Gbg8aMtN7cH9ncT+1op6pYyZ9597xmoiF+BVZnxCMNG4TrDIUZqqlysDX2/Zn+MjOOJmiKPtxvWlwMlzxxuXrAf73CmVVNW1ZLBiqpKC5h/r7bMWUvm+XsIWN/4+GI0VN/82TnIx5kUU9vfdW1ViEiwT1nDaliRSGjveHy54UvvP2O/G7nbj8QUWfUdU43EecI78LGy2gyUkqBoXr6+I8YowW0jldHDMAhQg8p8PLK/2VFSFbvCZs+ptUK1RIag4e+x8zlnTKNoiWUPZ6uxHDLkyt3rA6kUchFC0Hic2FysefLsKbcv73jx2QyIWLMWoeCEEFn0y/kBOn6xa1jOX0plngLOiVAtpcw0Tfiuo5TCNEa877i43ND5HpKQ38I0S6V/Cw6nmNHG8uTJpVBrlMEYsaLofKt6LRWMpvMDkHHWojGMc0ArSQBro9FWaB26ShLYOcc4T9Sc0MaI/UkLchcWibN8b985Lq8uGIaOznfMU2R3c9cSSBJw952X/oLYBIlAZ+J0nIRYZKDTjq7rqQVevnwl1IYY8cZzOo2kJNayw6pHUQlB1hNd70AZQkgoZbC+a1XUYiGYYyYFoV9hKt55rq+vUbXy8tMXxKyEgJcKtGp5q1sleq44Z0FncknoutiTNRFE1eSSpI8+SIxroyUBELPYs3Qyp5WcWkC/nEXYisp65amq0PcW5zuUFvsRrxUhzExjQBUR+2qrQBVSjsS0JAvAd5Z+uyGXIrSkKGugFJYEgFRsG+0YOsU4TezuDk1QV1i4PA80M+SSMapirVBqYqOYiZBcqqGF3LVmNQxCfZgmlDb3Yg8spso7EGOkKhE0Le+MCDUsq94TQyDWeK6m9l2H904SI7mSY71/p3MTo5BRbTycSubm9R2PHmk22/UfkF394bezvWa9X2s/HGu/1f8O34xf4mdOX3vw7/fJyzPR6MF+5KFBz4fuQ35h+/Oc9IwrhhAdypjzOn9fd/zD4R/wm92v82+d/i3eKe+IIK8N+Q/tPN88/+ea4n6PUxuhlUXw+mAv8lBJCySV+aXtL3HSIxURtGktfRzFmaJTcqXURXCksMaJDeMU27pSNzs7J4k6lalNTKRaAmq5QSJ+adNfs+5e6HdCq+DcbxW0/QRnq49aFKXIt1vE+lXX8z0Vazixu5JcmG7JsXsCw2JHKNetWvJNEtpGG0rl3m6uSvJ7IfcubJNaxRJ81XW4wRNSZT30rLtOEtlRrMfWwwqvHV/5P7/K9sMNa7dB0SwZjRYLbmOoFPKcxPbZ+7b2Fws6KuhW3EKN6KJxOFb7Ldevn7Bnz29f/jZ32xtsjCKIaInJGKMIgKoUw4DQdd9IlKqWsFw2Ssv7Xcp5P7EUpuiWxEXdU4kL97QRozkvUGoV4auI2Fr/LFK8QpU9h1ArFE4tz1HLuqAVS1Sk6GQ5i6ZSayYX1USaiO1YlqR2zvfviKw55P1OMWC89E/rHc4bpmMgJcVqKwLg8TgzTzOlhGZVZTDWylhfMjVXoVqoZjWltZitVFl7CR1IBKHGWCqK436k66/QasJ2kFURa8Jazusf6wzTmFBUpulEyhFjLGGStZRqVtIpQucq2kLOkCPkbOmd9PGYCjEKzUlrQ4wV6owC5qnRiLHUrOmsZwyBMUTUOGGqI/vMxx++5Nk/eoaeNHCLtmDciotNz2oYUNaijMFaRZ4DpchzNB14p0lzwGPI3gt1KVWwmloj2htUqpBnSl2hfUe3GlCToqRA560UuGgYx1EKlholZp4i1nr6vieeAiFFvNMcTyMXmzWaA/vTEbJlnk6s+oEEZKWhyvxsjRDGQjjS2eG+8CVVxt0J7y3DYJlOM+MccE4IxVdXF0xhJo4TRUGahHjVOYsberQFVQslS7/ovOyzQ6x4o3FeU13HNI2Ukll1YrPlrWacJ8bxCG09I7iozw3Ub/z1zXngPEXUNz52/qXPR6ZUmyM+P40stpq/99MPruX972KfHMEaqpE16sV2hTWG43GW97FUjDfMIWCbzaTz9ixgiElIZCzjhdVCqWOhiRXmMRCDvAPl4dp9oeqpJmpc7kITGmu1jE2ypl5uQEkimA/zfL5/OUFxls3FSt6PccdCiVliiWJr2sbDJc6omvVouY871kqLSTWiWpVYpWlWnCknTDXNyq6jlCBjfimUnM7PqDb7WSFmcqaKGm3QVihLuX1/bcRyTTfKTcqZVIt877qIcmR+q1n2ZqUJYmT/ImHXhVJ47gMIGch7i+98oztJwaDMmU2wuwhHESqS0qoJyWSeFVs8+VNrwzzPUmBaMlTXbNLEYkz2O5Y6i2B+oS2JQFYoeIugrJ7F+zLOCahV0XUdzjmmcWp2bu2ZtHlNIXHVRcBs7DL/cd4nii5NneN3cF94Kva3pYnKRIy/9DEp5ntAnqxCKNVa+pGxItyTcUjOlWJqgjSaWFjEeDnLPK+M0Ge9dSgldrO5ClFsiW8vz05rjTWOVBMxJKJuApaH69rzOCHjqRavSmrlvNaXHtBsrK3FeddIvRIvXERcEpkQzH2ppYna5Dmns6hZ9hhCecpiRVprWyfaNq7XMwFzKXyoRWLiRSP7JWCaZhGl+o6u9/zYNQX/28X/xl+8/Iv8tdu/tozC33erVP7e5u/x737w73Jjb77n8Z+75/wXT/8L/vb13+Zvfvtv8vXp6z+gi//+WlCB//C9/5Bbc/vHet4/ac0kw1/9n/4qX//1r2OT/efuS7/neMVgZsOf+uaf4qvf/CrH9ZH/9v/z3/LdD777A7rit+1PavPB81O//VM/7Mt4234U28/9A/jSd37YV/G2vW1v29v2h7bvW6R077cND4M0UqghO1bn/Dn5suBmF7EStf1ZeCMTtATx9RIZryKgGOcZVQ1Dv0KVyjTOZ6ww1Oa73oK7pVIXJfuZaHF//IfxH1WlRld/LjHysErnYeUWlXMARlXB0WMMrvcMnUMhFfXWA6eZOB6pqZAmSSClAjUZ1v265YykyjilRI1RLL3aPV0C+klKiCQQoZbvIDe7UMV6TCuskT8LRSgHSGAllUxKhVwlyaCRah0VK854ioI5ziit6Iee3jkJCinFaZpQpbbq5kIYJ1KO1JIw1rZgq8EPK5QzpDgTa6KWLNh+JYEBpyUoWZWi8wOPrp9w/egxxzgyhYBRJ8q2Q3cGVy27w0TIkV7Jd4mpMk6Rd58+wXsHRnM4TfgKU5jZ3d3hlEJ1lle7lwy2o/fbhiRWVF3JNTKOe24Pew5jwVjL0FuUzYTxSNd7rt1jioJXr2949epVC0wbQqxQE8a0SiUshUJs1CttwKnlXmemlFh1gzwvMnkODN5TC4QsiXejLDFEUrNNNE5saqT4rgitREOigKk4Y7BVk3JCW4PWDm8NQ2elYloZ5tiqEFsATOWCsiIOGIaeOUbmOdMNHVfbDfNhz+52JMQsVedTQCmF845UC6X2HE8BYxI1KwZtqVUw3akqpjBhnUK5zHwolEOQ6nhVcCuNqV2jRCh0l8mHfA6O1KSJe7HxKTVRyOQI0zFQSmZ/tyfM36FXEZUg14o1MGwGDDB4jzOwvnjMMb1C+GJagt21EGLCWOj7nt14ouJ47AfSIRNCxZjMo0eXHKeZrDrisRKmkW7dkU1hzokxBLaXT1l3PY/WFwwMJB2ZzXe5fX3iGDK3pxMnPXEcdzz/zqdsri6ZY+Dpk0uuV9dMp8Bnp8/44MsfoGcIIXG7F7rGxlTWTy/Jc2I+3ZBVYSqZwSdcyRxDQFtNzIlHV1vyuCclw/Wjx9QU6ZXBrTYoMxNOt1wPa8xF4e5wYJyOrNYD281jVo/W6BhhnFAholeFYbCkMqOt4erxlpQta71lFyaUX5OmHUUVqvEodeT0+iUfHo48ubwmlcywMRzuEt3TJ6yvB66vLrg9fBMVD8zHjs3lM+acmPTIlCvldmK9sUDlu9/6FqXrRYiRA8p0qAqdNZK4JDCpSlKeiY5xPjDWiX59zSZZdqcDd/PEcTqdLXTOwoLvMV+9SdO7D3JTmxWc+v0DDGr5r1KSYFz+XX/OYGhJSC/B5haQ7YeeD37yfSTQKsQ3pQCrWW03pKoJcSSHCRUDJQWOqmC6ATNNIkI1mlADzkoiTWtIpUqlaIG+95xOU0sqSDJiSVzmVjxtjMU6DXMkZ6HzqCURrispisXD+sJTUuL57S2qCGlNacVq0xHCxOkUefnpDWmKxCk069GKMqC1p4p3KNpIsNiaewpGoYovXwuCSuqzMvgOYwx5ihhvWG9WxJjIKVFKZb87cjju6XroVx3jLNQF76XiPyUJ3A7Wk0Imp5akyIn5lKHqVmEsgX+FWMLo3nJ9fQkopul0tgSrOUjVOI1403tySuSciCE02zkJLFvrWK3XrRpebBTmtl7x1kMVS1yFB9oza4mhYgrer+n6TiqsiwSZVYGaCmEOeOPQDo67I7NtpD5jcM6y3qyATL/yYsE6S7LBug5jG4UyJHIT1eZUW0K14teWy+sLVpue037icAyknNFF+rE1Qq3RzUZBDRplCr6XBMU0SrV7zWKjQ23zmOka6Uqs0nRW7dxQlFCQlDqhlCRdnHPUWhsdRf7/8mqF68S2NTZiZpwzGSWkhpDEzrZm5iB9PuWlmln+XK8HKprjOAq1Q1f6dc84zozTRAhC2HPWMXSakBLKaIwR0ksMqSU/KpAloeAN1jnmKYsIMLUqetuEKCWRUyQn24QXVqxOWkKj1CpJLQW1wDxF6OQcKeVWpS2WuGIRocX6rhfLXG00vrNMY8AoT5gjOcqaQZbLbezRQFUc9iNhTvjOYa35fce4H3artd6P399jKC4UfuXiV7Da8uXjl0Ug98boe79+/7wU60P/HX7+4heY9AioRrZJskexXtbYKUGFkznxa6v/g798+H/eZz2X6ztf2JuJ63uBFCxWKQ+FSQ++5f1v3v8HlOIj/yGf+k9FvKMU2hqcXSzwxK6HmChRCDClWW0ULQQR+R5tDqy0JKQIS1FLAvk+Xb58n2Vn8zAHrto+Q5/3c7WJr+4FSAs9oUKza66Q7wU3OZdGHxLLR/msOosrl/kxN9vKqgvV6Ha/FM5alBbRY6mLKEr2E0qLdeNyvdZYhmFFP6yIJZJSRhOp3qKsRlexbcwlo9Fc3V6RUyGpzGa9wWghxoaYMLWQSmKeJ4wSW5rTfMBpg9W+EaGa3SuFmGamMHMk8vLdF3z2E59SLxM5i32ziJ4qp3Eij6fzWiM3oYA+ryF0mxvrmaCg6/29TkXsr5d+VlKW8b0KbcMsNnFZyCZL8rzke4KDkSy6PE9d0crIXrAWFAaFwWohRslaSZPzA9Jwm7PR8tBdb0m5iG2WtfSdJwfFNEVJwC8EPBDBGbIvDzGjdSN1iAltkz0hexutUKaQZkUNbZ5EhDe62UblojC2UEKzsdNabMYCzGd6RoGiSEGsbedpJqU7bBOwSxK+yloJhbOyrnLdilBOMkdXdbaZylkIddZZ5hipGFamUmYRZGld6a0j5kzFUGJt38dSlTzDmjNdv8ZZy+A6HJaihPYyjZGQC1OMRJVwt4b43cCxk6KV1aqn95UUM4d05OLqAp2EojXNImLrdMWte0oqpDhSkfNaXdC6EnNGaRFmDUNHSYFSlFggloxFob1HqUyOE4N16K4yhUBKEect3q9wg0eVjEoJcka5inNi+6q0Zlh5ctH4oWPOCWUcJc5CrFEKrS1xnpiaDV/NBdMZUprQncdtVnReSJ51nMlB47perOZUIqpCDBWY6XrPeDoyzTNFKTrnSKlilQjvvNa4viOXTKgS7clFBPqozNVmIIXMGBMhxzPV736U/5xQ6TwLfJ5+9PA37n+27Em+51HeiE+9OYe9OQ1WFsGU0rD5Cx/jrvv7cbktAIxzOF9kHAszJUVUycSaMcZJX8yp0TcLWtWzIFbeWRFoWCOkuhRzo908KCBsRQ4oWWeRG/G7CfdVU7iKIEXmMeM0p/0khV2I9ZrzInbJKTGdZD6wuhW+KSHALeUhmXIuCFlEmefZ7MGNlWlVvpOxltTGH6HsKLGQbKLPw+EAFLrenek1QulrY1KpWKOFYteK8RSVkiKpyr2BJn4RVWQTkzeLuZzONK6aM6HdX2MsnfFNyNms6RCB09ITfIudllKkyCAXUk1n+7pUsois23UupB4QAqFeitvqfZEoba6gIHaQWUT0y3fQSgRKppGElFJNZNSIjqI5a2sLEBpsFYu6XFFG4b2jG2QtElvfAc7zmm4FqQs1URvZ2xoDKUkhJVXOWwvnPYLS92JdpdveUeooQBVUSuf3VhuJMQhBSJ5a3/tGSDLUKkTBku7fs5Ty+Ty5tOfSYqDNaK0VE1hUTufiBGc9tUisKUYhODlrsNadhb1aNxJUasVBCimMLXJ8o4U0KN95ERm3qENb99QicdCFlLkQmRZRN42ImHNBt/GklHIWlOdmXyjnb/u59h4tVEqhMpWz0Eu6TJW9aIuD51Q4HSfCHO/Fzj9mrajCf/LOf4LF8m/c/RvfN1HpDxUoPWwKntvn/FdP/iv+g+/+B//C1KZ/3lap/NLml/jV9a9+70DY2/YDay46vvKtr/xA6TSVyjiMfOPPfINf+blf4dXjVz+wY79tf3Lbs+fPePzq8Q/7Mt62H7WmCvy//2fowg/7St62t+1te9v+0PZ9i5QWu4ClaliC3s3L3YhFQUqpVfSqVnm6bAnbJirXttFpYdpWSXsfpGlhAVU5HE/UI+iiKDmhm4WOcQbfdUxhPm/2JQhfMMZJUP1cAfbm9Sua6IeHsaJWzavuw021lrMAS2tNzaVhrKV6pSrNNM6kENrGW5Gy0AouNiuqrZzGgFGglOPl6+dSiWokeVeLYg6RlIVQYJuVmLMesa+RatxiJBiy3PPcaDdVyWY1A8Z6tNUkpJJuDlECbkb87ksqFKXIRarhSi0tOJWpxZBCIi4Jo1aVrVvCK8wBmrXSw+yLMYrt5VZww72Do2KeZqYgCfZcspAxakVry9ANuL7jFITwYyvEaWQMA69evebucGA6TaQ58eTRjOs6KDCNE+N8ImaLdpr9cU9nDcdpZgoj+73CloGXrz+mNxtO04SuQjDqvCLOeyiBMEc+/uyG1apncHB385JxPpFjIlMJWSx+ck6kFLCdIcwJVQ1pzgQVGFaWQmIeE+tV32wugBbcKK0yDyQnr7XFe88YMpSl2rdZwyixi6tKgvjKGHQT0y3BdW0U1nicNVL5fzg0C7cOpTIxBOZJEuupBKoGqz3GaGKZqLngjMe5nnneUSlMcyCkQjUNZV3vq9t954k10fWe29vAcRrZbi8Yw8RcFcO2B5057iPOKbabDX1veP3ZDd5Zhq5j1XWUnNnPe7arHq0spyAJYENh2h84ZcXhMDGsDKtVx2rYEOaZ0+kOnWaMPtAPjtu7CRy8+6Vrrq+vmfYzJQSOux3vfOlPkVXk9uV3URm0s6SaBJNrKsfTnqrEKiH5iDMGv+657B4TgqaEhCkza6d454OnZK04pYnd7jV+2PD4nS/x5fe/gs+B/csXJGP4cvcOr8wFpwTP3v8iX/zSu3QpYeK7nErgySPP5drz2Xc/4/LZe7z3wWOUGwn7I/vjjPKay0cXaGUIh8q3P7qjxIQxkX67YT+OHOZKqYZnq2tMhnyMeLvmnfcusV3g7mbPFDJBJXIcKfOMrYYpj+QaudisWa97UInBFlzOPNp6+uQwvueiVxiTeZ00rtuwUh3qauCYM68+e4WZZobtI3YhYC8u8BcXVMAbTawWP3Q8A3IyXK569gX802ecgmJUFujwStHZjuozx2TJMeE4sLGGuUzsdy1JpwIletTqmlQCU5px2wuUcQybDUOnqfPIlEc+2xe0ynzw7Bnf+uQ16RxMbMF64GwPc54RuM8kL5YEi7jpgYDp/t9443fVUmr58N8ejIPqPLXdBxi1VhhnuLzeYJwGBCVflFTRfvzJC0oRG5ecA8Ng6f3AfBAKm84iaClkXGdYb3piiCgkaB3Giahzs+KBOUZSrkJNK5WuE5LcHBJKiR2A1kLbOZ2CCElzxXc9Whs0Ge8tqirClBqGvuJ7z2roJFBNJlsYVmtSguMpAAprDb7zpJAIMaAsaMySyyDnLKLeqloFrtwrrRW2c2wvt6SUyVVxsd3QDz1dBylGbu92zOHYAueeVCbQlSdPHnFxseZ4HDmNgVoVoShSlTl/joHVaoXr+kaVcIzPXzDHgHWaRCWVjPMe73tqGXDecne74ziPKAfeiw1l6xzM00wmS4JXCcq/73v6vj8Hf1NKzNOMKoGh67m+uJC5vcq98V5sJpa1kLcWcmWeZ6ZxBFUxSmO1EXsCrc6J65BmsfbrhUAyh4nVaoU3cDqKTZSxns2q53C4QykYup4QIiXS5nlJEKxWa5QWUWfOsh7wXkGppNDWYaUwh1nWJU7oiBhH33dYX4hzS2anwn43Mk+hVRMbEVydE+lQiiSvtNatSl7ITKpVsuuhI6aZkGKjNGamMKK0Zp4mxsNJLEJiEcoXYJzGaCfJj5ZInptFQ00V4xwxZJTSbNYbsZPLhc53oGujTAGIXZ6zmmEYqKVyKCNKNwG8WaqxdUu8i8VdRTI3zluhtylFDJFdSvTDAEoqt41q4vYKuSU5chHLK2Okan0RxpdcmJoFhDGW1dqjtOF0PJFy4PJyy3a7YTzOkkgMSXpSSzAqRECvJR9LLoVxDqjw4xG1XpaWSyJyEeQfOfILF3+Hr6uv8+eOf45VGXgjsdtEOstgrIDv+O/w8xc/z6inc5IRBSFGaqTtYYS8UJWI+n+3/12+Gb7JV+avPLwqFlvkz4tdH2YDFtHPuar2/KOHn71PjimlOHLgl9Z/TyrcSxVhesyUfD+2L/unrnNUVYmp2YAqzTgeWUSPSzW8COIaxU/LNzdGU5U+25UspKSKbHZKEQGUoiX/kLXpUgyhKi3pKwnkWjgnz4TiIw+vNLLAIj5YiBNLgmxpua2Zl3qUpWml8L0IHX3VEEXwKNQCoBah49RGDzUOY6yIQJqGJqdEzIlxHJnmcP79i/ESczLNmisRUyRrEVaEMGO0CMJjTsxhwjjHadxhtSc2IZtY9ChKnohm5sN3PuYbF/+MeBlwgLqDlEMrFJD3L7UkaqkJYzQp13PyO4NYmCH0HefcvQCv3hO4FgJTVTIOGaOJTZSozpvYluyu7V41EZBS97bnYiUpohpJoEKIzTZUS4I35yxWoVX20kLytWd7JBH4GLy25BwAOW4uVearpZdXzkUJuWass0zTSEgJ7ztiSeSgmqi6EuYsJDznsUYzHieMFsKms4ZaFCEFOmdRShNzaWTjKmKkoggh4ZzGOYN1npIyMU6oktFK5v5pSlQDm4uBYRiIc6LmTJwn1pePKGSm004olUaLy6GSzhWD2MXmmCjGnS2bejNQsqbmCVUzTivW2zVFI/1pHrHOM6wvuLq4xpTMPB4pSnNlNpxUR6yw3l5wcbmhf+nYbrbEmlkNht4bjrsj3XrD5mJA6UieA3MUel43dCg0OcDdTuY5rTO26wgpEXKlVsXarSTxHDJGOzbbHm0y0xTEmi4XSrMQ1yhSTdSa6bzDewsUrK6YWuk7gy0aZYQkrXQlJIVue1W0I9TCeBjRKdH1A6lUAqB9hzEibrbGUrWhdx2WTGc1VSmy85hhLcQkHGLnbOg8nKaKs54cJrwGRWLKMGXp/xInWpFB+mijztRa6dcryJGcK6c4U3NhsxoYul4EhGp5A+uDsfuN6ab975tS2d8rLvqD/50HZ3l47M9/VvQn8g67i4z72d8V+8VmBVsLTFNgnuU7ybhf8NaRG/GmDUYifLEa6wylCT6ost4qSYh8zTm50X4kvmQXglBZSGAi+LXWEGOR4riK2B0qfd4L6YXE2QQQxmq6TkjIJSeSFaGpVmIBV4qMYcaISDunJuo3etHhPNivvSkGXgQbromyS5D4j/devqe1zPMsY3kWa+oQElVVvHOsNytKzoSY2nCqpT+ghCiudaN7Krreko8jIUYw6n6eVmA7R8VgsOSSmaeAiNk1qpYWQ5P1eDqLlEybg2V9bqzFNlFLSomUCloVumY7BxBzZLFiXeJFC01xWbvL+kbiTXoJZCq5x4sA2FrTYkci5LXOUnJpYloRH5UiRSPWGLSuCGxVfq6U0Hqssec1CKhG8YWSWoy40OzzohCeBAOMthZvGp28aqiaGLNYpdFEYG1OEdvy+3jtQgdc5jhjdbPEM5QiVuPL+ijHDEqEVzEIkSovVoY0gjyKsqzkms1qk1ZLsR40qqzsO+Y0y721qhUu3ffJihRpaq2JpLMAr6JEWKTkO9XKmY5Ei1neKxuFdGWMPse0lVpGHokh1tqelczU7ZjLOyIxydzWS9bp9s7K/VXa4b0jxQIpn0lkbYve/qbP71dlKZz9ngPaj0V75V7xN97/G/xG/xv8Oy/+HR7lR/dr9u/RFoHSv/fBv/eHC5SWpuB/ufxf+Ev7v8S/efdv/oHH/0G1F/YF/9F7/xFJpX/p5/qT3j746AO2++0f+TiLmHkcRn7967/Or/zcr/Di6Yu3IrO37QfWVuPqD3AWeNv+xLaLHfy//r8/7Kt42962t+1t+77aPxdJaanavSf71IYQbqhjpZpQyYKRTZMEK+5FSVDPoiCljFQxNT2TUmD0sukshHmmt55HVxdoa3l1twMjlaDTcRRLBBZ/7XquvHmYjH54/bLhLXS9xzhLCFGCF8uGTPFgsybBqpwzugUCrLakGCRxpoCqscaTmx2Bt4p3nz5lqpn86oY4J05TRKmCsQ5tDYaWLE2ZmBLGqoZUBmqV5GaW5FcphVwFcU+ryh8GL8lDrUTYoisYTcgFrx3GigWP1Ubs0oxhHA/EmAglU2tuAQwDRRJcpQoiv/ONflTAIglm5z3OmSbOkiSGLgBiybcZBmzRFO3AK0rMIhIyHUVVtHZ0xrPf7SgFvK3YLCj9l69fc3e45fZwIKaKNyOPrhQGy5PrJwzDCmM0++MdaLi7vcMbxWEaySh2r19hhp7Xt69Z24lPP/2kkY+qVAySGZyhGMUYD4TdkZtwwlhLSFFS0Uo284slTOed2O0ZsRLAKOY5kUIgl8R4DGyGNc45sXPIGnLBojCteiyjKEZzmCdSkv45jwFrq/iVV6n4jVUCP6oInclUSVTGubBadVAqm/WaKc5olc7WHyHDHAtVSTXwxdUl01jQdCKQygrrPSgjz6LTzCHyajfjnWOqEVUr1lnWm4GcKjFN9GtPng/YKl70qILzrbpPeaxO0heTYj1sKKpyOnSUGjmcRsbTxNBZbG9AZVKohBpbMk6Ta6WqjB0kEG7shlohhYipBl8NxMJwvaVfP6L3BlUCr3czORo2wwo/bPnWhx+TcyAUMErTWYXOmVXn0Uaxux3p3IA3lhA0uQaeXl3whafvsr56wnd/9zdZDQ6UJs0ThzSzuyvk4LC+ZyiKPsHF9XscdiNPLwzTUWOebPjtb36H5x99wre7S1zR/Omf/CLRezZeiYVjOfD4yjPOkbvXCZsrtThMVuR05OZYWK/WUI6s14q423N3c2AKiVW/5StPN2wvLXM13LzcoQ34OLE7nZgPGVUMYzpBHJkOgaIM1Vte3d7RoRkPE+urLdMnJ8J+YvP4EpUmCjNj7InjyNVVRwmB/T5z2I8MW0clcv3oEeuLFU8eP2Y6Wfr1U7Qq5DgyGIuK0A+XmKLprWZ/PLIuhVsUF48vuRgcx8Ms1zgfUX7geNyhVeBVqdiq2F5d0q1W5BJJU8dpVtxMM7p2XNZKePUhdCsunzzj9NnHaO/IJWCVYkDjfUfRDjEfkQSqxNWWYOGbc9bn28NPiEObOhMjHn6g3kfsJOGgpTq3pEJuYsSH1dNKQddb1pue1coTw4hYvzmomTBnXr/eo7SI8zon1J00J5S2dF3Hpt+A0ez2O3JLDLrOsNkMjKcj8yxjlfeOVDIhBLFcaQFdZzylSGDbOC9JBCWCjdWqb1h4C8oQ44T3ls6JlVoKWaqaVWWzHVgPjpwSSg+EnFGDxncdNkdcUbgW+HTWst56TseJGAsxNtsA48RqLOVGe1kswiTBp7QR2x3EJu7u1R0lSxC+KsnC9kPfEiiV7cWaR48uqDlSU6aEgtKW9faCznoMcNwfGU8zn333BcPao1DEOdB17btYfaYf3t3eYI1hNVxgNSSt2G63OO+Ypkkqb3VFWYVTlpQK8xwkMDxNqJs7htXAem2xxlO9JAlijFhvpHoZSZCR5XrHcUZ7h1OWV69ec9qPGCuCr1JKA06JkAwtxKZ+1cm6RGt60zPNM8fjicurLb73xFhQqlCKEHbCHDkxUgqkKOujfvBtnZU47jPTKVBTRVGwVlOyknO3pGwFck2SXClwOkRSqvSDYXVhhESSNTlHplFekxRnKmLrqlt1fK1gnKFfdVxerNs6TxFSpqhK33mUXmOcwjjNfAqMh0ihyrGn2AQYiBgvZNado7MiItaSoRdbVWOIuRBToMSKs47b13dAoe97rLcYKxXOJVWmU0CFTIyReYbOdrhWkZ1VAeexViE2EwXfif1JjBljFMZZUmp2bYhlVGkJfm00q3WHRnG8O3E6SsKplIrxD4V7zeqqjT2l3lsslZJaBbUIL7zlTCgFpJpfGTLNRkO3dIVehIKq2WT8OLX6uf2FIpfMNzbf4DvDt/na+DXen97ncXyCXlioqiVnVOWj7iN+4fIXmNR0Fg9pdW8rlrOsi1d9D1ozThNoRabwq+5XeZ/3cdxbWsieQY7zva4VQKt6TkqlvOx1zgrWBzUa8vkTJ/7O9u+wt3tJji0Cd5rQthEEahE75816RaJSTiMlFWJqNm5GNxuwVmGfFzJES+ItV9n2Q6rtL0qVe9LK8hulr9n0LNepNaXURhqQ9apWGu9dEzku9jFCFzqLkRadDbXZRxvaFI1eUmzWYPRiHcR5TgDp3946dJW+jVGyR1Fiu7OQFozWzEHIukaDbonXcRyZwsQUgiTZlUVlg6mGVe/OBTQhzKBhmmeMgpASBQjjCeUsp2lE+4k0ZVKX2G93VFN4+eQ5eR04rk7sjiNqhqnEs5Dx7KoG5z2u1UbErAsNpLaxLAsBNcUsFI1FDFlENKoRgaP0b0VVmjklapGT5JSl0AAl4rAqdKJS5F2QpLgkH0sqIqos0HlPyolIE51VyKWSBFGBNvdkGoWlUslVSEegmx2QiNfGWcScqUqf1Macz7OIXGsK7XsI5UYsmSoag1ZCdqSAd52I8aLYdi2kCmc02oqgqzSrtoV4VIGqCtoJecUbIXrkLHtcg4JccX2H3a6wRkHNjLPcR+8cxnXc3u2leAcZi41SKArOiq3TPIn9lVGGnCVRv151bNdbXDewv3uFW2gsORFKYs6VmkXMY1HYAl2/IYTI2mtSVGjleHVzx3F34M7e8v6nP8vT60uKMXiD0MVqYNUbUi7MYxRqRjWS/M+ROYrYotaId4ocAtMYyLlgbcfVytP1Yo03Ho+yXsyJOUSxD62KWCLkRIpZxBlGSNYWiCHh+450iKQ50a16yJFKImZDSZG+E4JXCJVQZP1TyfSrlRTArAYKjpq1EDhrhlLQRaOsw+Pw1hJixCqFLgXbdfS9RQNjpJE/5D2fQ2A2mpoKvnN0ndjF5lCJ2RBrICQYOoOKIylG+u1Ve1eEhKh0RSeZL5W2CLakDVZNDPFwW3A/gr85FywimnvV0f3P6xvFXZ8XPtUmNhGx0ENV03JKpRRdZ3Ffekm9eimFUbUJPaiMp4lchPRljcSnFusmay1WWZzznMbTmbCCgm4QEkQ+ybrOGKHmLGPSQm5Z5s5c6nmOoBHLjNVY65uQt62rasF7I8LIKO+giEgMfS9ItKIsNWe00ygvIjLdrMGMkXnJrXpijDKn5SVeqNuUlc/UF7lHMics91JYTJowze13y3mPJgQfEcgbZ1itepzVTDGeC/p812G8zFG5jUHTaabUTNd7Ukzt8clcapzFGBG8llLoug6jZbazTgrVxK63SFFaE9hU5H4LEVsxTTPOFSloUHJfSi5N5KLOtKeqhNJEkVhhKgU9aMIUmEex1DON5ldp4rtaWJ7cUhApIubF+i3SdV7uj5W1u5BECykWsUerjaBYahPwy1yRYjyPt7XFsURsU994f5b+oVUlJyEUWycCGrFck5imFJ4upC7pm9qoNrZyFnSJHd4Sj6bR2hS+8xLPbMV9sYngKqUVCkjfOa/TqhBqSxGy9/2aUbe5pDQqriYFId9qY8TK+yzOFSqSyvLzFONZ0CRKpHIu5F2E5eLaem+ruhAYayli1d6EcqXFra01WGtIIRPm0KzvRFkocfnlnXggmG/3fRH5LefPKbVxp94X+qr7Mq+6BOThLEBexqMf51ZU4W89/lv8nYu/w1+/+ev8a4d/ja+NX8N+Lg1Sqfz9zd///ghK3+scT/4Wf3n/l9mUzQ/y8n9Pe21e8++//+/zkfvoX+p53jZpNln04tjxfbZKZeonqqoc10e++/53ySbzG1/7DW6ub3j96LVYLb9tb9sPqlX40//nn/5hX8Xb9qPY/m//BH7yd37YV/G2vW1v29v2fbXvW6SkAVoSRjZGtOByw/JmCY5abeic4IdLLcxTJASpS7lP/ErYIJeMVRbrHCB2XH3XE6OIWKxxVBQxVq63G5Q17E577l7vIbfzL5HftrEttXL+Z2RzeU9/kqStd7IxXQLdqrZA+/JdkA1ZzfmcEPDOY0qmpkTnFMb7FvCveGdIBlCFl7e3jGNsNCQJNFolgdjteoXvHK9udsQYsK4FmLQml8w0T5R2TxevdioUMjGDVZaaiyQujSZECYiqJBVBziqxFIttY0qm6zwlOwksoQjzUrGvMJ0TQVjJmFqhJLxWZCTwab0ENIyVRFxImVIy0ymxv71BKUdQgdJQzUZr1huPc5IQ6LqOaQzUnEg1M54OzJSzdcEYpraJ11AzpSQOxz1aKd5755rVds1+PrK72TMeD1gUpyg0jBAjh90Ojob96QSrQs5CpphCFIJDgcvVmqF3uBLo+p79KZJDJKlK0QqDVLulmlBoumGQCm0ViSFgKEJcKiKOSzlzPE10XUeMERoqvdZESln6TteCgFVRKjjfo1DMYcYiQaOgkgQGqiQkTPOfrwURfYWK6x2rYY3tOlS3Yp5n+s5LsGnjcLZyGkcyBuc9JPDGEIuiaphyxDupOD8dR7z39L1gqVUpWK3AarAFUwbuXt/hraWzK3bHE8NgKclwGicOcUShWHkHKnMYjxyPI0ornlxdc0qJlAurbatO1Iq7VztW2w3jGMjNCsE5wCpy6choTqcDKUeMUoRc0FMmHhKX12vm45Hj/pbXr/fEUOB6y9N+QKcDWlvW6y2VjCI25LakVd55csU4B7yy+MGC9uho+fZHH9O/vqPvKo8/eEScCr/7zVd0g0OR8NZwfL3jZfec9955l9N4R98PjKc9vdugPKSgePF8zze7T/gLP/M1vvqlLdE5ahyIqbC6KBz2E09/4j0unSIfbzBmg/YOxZ5h0+E3jou6pYYTpwk6PMUUKjOncMQXz6wc280lh/0Nn352y9itee/ZM+4++Yx+vebF8yNjymAM6XRivepZLeh8o6lokrGMU6XrBiiZ1faC6XTkYu1RmzX2YovdveQw7UjRsdl0vPfeI7ZXT0nRkU9HJqDrLiBGnNU4O7C/3ZNzYL/f0VnF6mKD69c8vbimjIlPD98mEBlSwDFSVyvi/kgIgeNJ47qO66un5D4TpomN7TiGiRcvX3E9rDDOoYzm+uk7lJSZx1tc53j+8k4qxuq9HKm25OeCTD8LVttPHgqVFqtQySfcJxTOlm1viI7O0dU2BmoeP74khcTt7V7oBMj4b7QWmljfsfIeqzXKyfw37g+cTlJRr7WInE67kew91nVM80xVMO4P5CnSbdasGTBa5kSvNE+eXVDrI/7pb33M7e2BVKKIfbRBO8ecZ2IonFSQZA0SkFytO6pKTPtJyEnWEKYZoxSd01QL+9OBzlqMtmhncJ1BO8s0J1KK5CLJlvE4omvhcjugVMViUFmsN51R+N42moQIApw3VKshFQqx2SNIEDbHILaXoTCdZubT1IgdkpD0nYhltQbrFDFGTocTH34nSlVqgWlMaO1ZrzLrdUdJmdenmZfPXzKOI/u9bjQ6hRJVLevNhs16xXyamOfCoQRirRglxIaUZH2QsggEnDWowTcbuCLWRa06PMVIyZ0IH4zGGiEqhVgapWAS6l2pxDiJKDUE4jwzHSbG6UQ10G9W6BZMd50/V2c7L/Nn34sAK8TINAdUs3FVSvP48TXrVeBwt+N0ODGNEzHci8JByJGlVEgSMK9RE2sRAaqTNU9MoSXIpd8bo1FmEctUaoLxJJaBw8ZjjVD6rq63zH1itzuAMfRDRz90WGXY32VCSHS9awkNzdB15FixTqwirKoYV2V9k4SyiEFEbUax2oqA9hgnSZDExOEwYs2SSCltfSd2h33fMx5nQprJKZNywliNXzmMV7KO0VaIIC0ZFdOMRuwfUhVrHGstJLl+oWoqVr3DGIXLVQRRMRCLYk5CSnGdox96vGuJwkbCcoPDlwLaEOZIiZWi5Hq1M0QCmYxq1em1CBnKeovrjYgvK+zujsSYsV7hBout7R7kSk5N8FR1S9GJeFfs+34027lOvnJOmsnCnfs8cRVbSWMUJ3vkV7t/yD+K/4j3x/fpy8CX5y/Tlx5F5Tvdh/yT1T9hVvO96KaRziQRJCQBEFFG7x1qpZijJPde6Zd82/8uf2r+6fu55SxSgoU49FDmeq5jb7SwlHNL8NwTnOS7SOLopI78wubn+aj7UAisVQSYVimhiyHSW/UgoXWaJmISMs9ic6VFO0fXOYzRjNPMnCXxZZptixB00oPrvb/6WlvCUDeyp9NNENZELs1SxGi5h6WcSzdEZFIMSZRHNLdCEUZZfT63JM2K6IwQu0ohbsi4DvcWaCnKOgClz3Qpant+zqGNOdPaUqP9lZRISiyBa7OeiTmxEJwWsdvwoiemyHazxXlPSEHmyymISKwlm3MRSt3NZsdH736X07MjuUZCCUxqZqEo9tVjZ41uidAQixSQtISwojZqnlBGjLVibJaLCJmo1JLJ9f45hJiwtVm1nUVk5Uw1Uca059aEXtrK80pJxve2Rzyfvy59QATDCkVJtQmLndgGGSHzWSvJf28MRok1bW0CM1VAaUNJCRSkmjGqJX+DWGE7q6lFBEhKIQI3XVHVMk0TRhuMdsxBCKy1KCmYyRGFwjW6RkiBEET0OfQ9se3lnZf1gJBRZ1znz3ZUpRS0odGe5HvEHMSCTEn/UqmQY7N4CpEYJsZxlnhF37GyFlUiRmkRSlFQFDRCBNFUNquemDJGaYwVka7Kitu7PdZNWFsZLgZKqty+PmGcQSG2TXGaGQ9HtusNMc1Y485/egMlK47HgH098N7+fR5deIrR1CwCAtdVwpxYXW3pNNQ4opZnSMB5g/GaDg8pERNYTEt8JVLRmGrIyuC7njCPHI4T0Xi2qzXT4UDvHMcYiVkS5DlGvDW4RmdZaCFVa2KqQveoFdf1pBjw3oiwouvQ84mQJkrRdN4yDJ6Lyy1zEHv0KQS069BVbN+c94QpUqvM1wu9RntP7zt0gWPZMacRhcbkivaaVBWxJGIsaGMYVmu0E+tei0JZy/F0YnAi1Cm10g8rSojkHDDesJsyWYnwpQ34bVznvO6/n7CELPf7phPPk8YDodL3KJK4/7ii8w7nHOM4ybjWDiOvUSsCMGLJqI2iKkVJSaxsVRsHEFpMiQmtepLKIjiPiVQiXT/gvGvCCN1s4D2+E3HN7m4US62mMTWmzZdNkK2NarRGEdMbK/e4DUQyhqUo1CUr1vSqFQ9lpdFOxDp5sZXinvxHCHTO0XVif2UQ6vIyLsWFsl45r6dUkfWiUvdFkxQRoKhGwUlt3VZl0pf1rJLdndaKXEWocTyOjCd1JlOlVDE20TmHNZY8J8bTKKKQRrehCUYq9RyvlPMXYi7kMgsttIlA8tkqrRU62iYoLbXZmTbhcBMTL2sOpRpRMVdQhVoSpaqzbR9V5uoUE6cyCiGorYOtEdKp0iJUL004b4wRCzMtlKiYRSxIlj2VHzq898xTIIVIDPHcFx4q6IRC1HqqUpALIGR93SzrpHi1RWaVjKUiqkVErG1+895QURgldFKtdBOoFqy3D8Q5iVBjI/fLOtFa6f8ly7PQWlFzJLfXrjR7tapawYQ1GKWFoofEsktMzUqutu+gWChMi+A2pHCmRYKsNdRCh1VCrLJWRHApxRYnl2NKoabQmkQE2NZRWp6F1uUsZErngt7cBGNSBLQIwBUiVjNF5n9SabQyWZeJ3StSZMF9XCM3UpLYFMpaIs6RnGQNJ32jnsXx7XGyxMRFbHi/fv5xblVVPvIf8Tff+Zv8l0/+S/7i4S9yna751/f/Olf5CoC/v/n7/DeP/5t/boHS0n6r/y3+7vbv8lfu/soP8MrfbDfmhr/xwd/glza/9HBL8rb9y2oVvvThl77vj2ed+daXv8U3/sw3+J2f/B2yyWSTmYbpX+JFvm1/4luFr//61/nab37tDbHq2/a2AaBLK3J42962t+1t+9Fv338Wo23eJAgvFfr3GNqlOlJJRd0sVfW1JQkckoSrjcCj1H0AP6WCUgnfW/qVo+REjPM5uJpQ7E+w2mx49PiCoiKHuxO1KEpJpCUQVKXS83y5LVB0riIGCQgA42lkZCLWSqZiluAvDZzbgjKmVZFIQN82DL0IhFzfcTgeySXijaHmxBwSlYSqUu1bySgjG3qjIKeI7lyrupSqZ2ohpmVDv1TXmXbtEhzIreLZ9V6SyC3ooq1G5RaY02A6h/WablhRqmIaJ9I+4KzQgUzbUIc5ynMZekoMdLbHO43TIqCJTXxFq+ByzlKAHAK5SIBpmgSnT85obbjYXp6pHkop7nY7tLNYb/HW45yWYLfWdNs1uSTC4cA4nVq9LkJyonJ3OHB5fYKxUlVhvV7z+vVrUkwM/QqF5npzwfV2y83tDTkF5nDieNgL5UTBZnPB4XbHeKrU0nMxrMi1YLQlFkl2SxWvBM61tuQQCUGsH8I4YjGSBlUajMKZDqctqootU22BJmM0TvUIKjpRKWKPUxVoxeB7YpKAOjUSCxQ0KQV67cT+LRdUgfV6hXFio7TqelItdH2P8ZnUa8iZ45wZpwmFkLqsgavtFXOeOEyBqispBVS1ZAoxQc0WbzvpA0bEZ8e7Pc57usFynAtTzMQE5ID2jlI1c6hSvV8LfeewFqzrSBXGMeKswtrMs3cGTqfC4D1oTQqRNI+UOELRWO1RxlDizPZiS8iV/e0OUwrGVtCZEHvqHKn5VoJKRlGTY+h6ul4xh8qHv/MhqCqVvt6DKawvRHg1zZGpJKGN5co715co3/P81Q1f+spTgh4YDyco8Nknz1kNA8cyoopBKUtMBw67QD8Evv073+HKVZLynObIn/naT1PjiZ9896v8xAdf4P0vPeMnv/wVcrzjk+98yNNnX2a9WaOsZtv3WD/jEEFOqYZpuqPML9lePsbMhutuxavxyKe7PTUrrjc9Oc+8ujtx9fRLPLpcc/PZS779ze/wzk+8CxZuX+94eZixrNgzsNn2eJXAVNbdGmcdw6bHmBWxws2Ll3T9BdFa0nxgd3PDtve8ejni1xuKgZWx3N29ZiiB680VYQq8+mzPk3fewa16rrcXkBLT3Z5pPnC1vcDWDZ8+/y7pdGK72fCFqyvWj55yunvF5nJN/2rDamN4dHnB7sUr7mJm++SCnEWQ1FEZ9wFnCzmfGNSGuSpGDKFqupw53t2gneW4D5ymTDrsURhefPQx8zRyFqAqqfo7B0AXQsMiVPrcPq3Fu1n0sktSYBHbqgWH0ISvZ8CSgmfPHrO52PLPvvltsccrMDjD0HU4JwF8r4UGVrzBGk9SmWHYConJOhFdjCP7cULtLWkO9IPFO0+IkXKcKVHTbS0XV475OHPzakeYEvOcsM7y5PEThtWK03Hk9uaWkgO5tnGs06zWg9hghQlnNN5aQdObRK2RTbcihEKksN4OeG3Z3RwZNj1954mziHHW6xW1wuEwUsbEfpwZnWa13qAKjOOJeZoIyUjguwXNKwrdhAHWGhFxZrEOQEmts8KQklBzjFGshh5tNPMUySnhe4M1mm7osc5yPBw5jRNDE8LklpgIY+C7u0847kYO+yPzPIsYh8qwGliteqoqzFGEq8YqjFNcdBdsr7Z4rwmnmRcpczpNWG8Zho7tZs1udyvHw6GUoesMbm3ou65VNosoxDSMv3aaU5zZ7Q/UUjnmgFaFWoMIm3KmKqiItYPpFMZAiS3hECIxNxKh70gh8Wp/FIpfLu3eSR//7JPIzWuHxnDanySxkEqzOihnQkkFclY436OVbtY/CmVkPbdUeS8VuLWIna1YBGhylOrjkipjTpSi8J0hGqipEmNmtem5enwlxIUYySmgzZbxNGNdRzd0jbQJysge2XsPWZJdMWSKkT9932OMYRxPrfK6vX9aoapUk+eUW45MDiaV6YUwT4R5PlNlQOgwMSVs0ZhqQdHsXWC1HsT+M2binM4kmpRzs8ST84iOWqzqqFIpHaJYrcp9hjAHrBVKwHScSAXW2xWr9YCzntNpQqOY57mJE+T6nXcQFWS5/6WKOCqXLKJBY0mhEKYoogWlsCvP0OyxYpYkdp4TpYJ1BtvopCX9eFgAnMfsB4mwhz/LSd4bAG0q31p9i1IKv97/ehOEybOuICQaJcIh40RQUUpu+WIx8QwBnPcMQ0dVmTBLMmdndzC1JGFLcN7/z8N2P0fUtrdRCI2nct7atLlFxLKfuU/5h+tf4SP/YZuXJJFprGkCHyMWjRSc0hQKMS37JNXoFqURs2SnU4oIJHUjKqkHpNrl+mhr/iXZWxWN9iWiVWPvCyIkmajPSXtl5djGyn4kxkyecyNvyL7PWbEw01qhrRUbRy1j4vndZUkACk1Xa0nylhwlYdsEVapqsCLS8V3XEoByhHmemm2kbsKXe8tW0zlqLVJ8kOKZCLAJa955/g5zCPQpQqONOecZx1FEIFYsUruu47Of/oR/+uy3GJsoMoa5CVTB+455mokxUKulc+6ceM5ZxI3Ls6KJSGuzlim1kJOIcqRfNBGdkaSsQigeS5Jaa9DKItqmZr1mzdmAxVlLzlWICwvBDXlupln8CKlN4Z1FG0vJGWeF7GetRZsq4rMqdK6YErH93WjofU+qQpDlLOTQjXIHVH2mRC20rTjNYlvkDDHXRjLJUJKI8KoiZ8lpL1QlpRGKRIsFiOCvsN5IsY0zVsQZOVNSopZIrRqt5NwlZ7quI1exT1WNUoGupGyoqUCd2qugqEXsAqsVotXuZicCrJTkOlTF9yJ4yrGQqhCVdK1sug6s4XiauLxak5UjxQBVKI7OWUJNdE0smksgTpnRZu5u7uhMpWBJOfPs8WMokev1I356/kn+wv7P8/T6CbXM7O/uWK+vpPBEK7y1GJMwKKqxVDQxzZCO+H6FyorBOMYYOUwzVEXvLaXK/rBfXTD0nvFw4u7mjs3lhqrETv0UMto7AhbfGQxi5+itQyuD8walHRnFdDxibEfRhpICYRzx1jCeIsYLCctpzTxPuJrpnaOUzOkwoe0K7TXr1Uruc4xM04iisOp7xulAmsR+cdX32H4Q8XCJeC/Pt+87dCnsjyO269DOoVF0xlCi0BkhobLCGcuIiJkMijRPeN0RYyClSiqBVAfmcRTL3Qcjtrxm32vMr8ss8/u3ZQz4/OfaPy1zXEWE6FfXl/ix4+b1HbT+74wQkMXGS4hqJVW0N2hVsXaxgALXLIhTFjt304RIvhO7xRACCkNVUkhAFTJOmANhFlHtYl8sNLoJ5nAexypCkBVanNxbjQYtAuJcMt7L/BRSxnQWby1pFoGTs0I0zSmf9wJzCORUSKmSQ8I5i7NWrK5LIqdyHhNKs3fUTSGmGklHtXl9WROLKHOxX6vNKkufKecy95gWBzOEEJimIPQd79p8VKhZ7kEMiTAFYmpxyxbr7Hohm+Y2Lyz7ResMw3rAegu1MiLEvhgS2mi6vqeWwjiFMxFQrsdgjQjGlqZbTFVpKYyb59AIUkv/EeJVOYu4ahOwmDOlqVKhQCpiO+p1BwXmaZaxNAsZXbW+Oo4jIc4YbcjNFqzkZW5ZSoFoe4oq9teNuLiIe4SsvxAWW2ti3EUwRa1Cg6pQUyFUEUkXjcSVszyrzXaN730T2TQb3GaZbZwV+7tlGdbE1EZrUlHUXMUSvr2FXdc1+9Um2j0XgKq25l5onA9k6G3Oy7EJgdoXEsJ9E3k3Ub1QVGnrIk/JmfqA/CZ6bTkOrYjWIEUgWum2X8nSd9sTrm1/q5WipCxzo7X4XshxyWSiiqS4fMt27cbIsrUs31+eSVqegdFQFTkV2VNW6YvOLX2nzduN/Hr+HfgDRZc/ju1ojvyvl/8rVPjvH/3357FZCNT/4sfNKvMd/50f0FW+2SqVXxt+jf/8nf+cX17/8luB0h9Te/T6EX/2H//Z7+uzWWd+8f/xi/ziX/pFsslvn9Hb9sfTmkDpr/5Pf5V+7n/YV/O2vW1v29v2tr1tf6T2/ZOUtDoHlGsT1CwBfLGW0OcNX8oSvJDqJ6kEslaRolTsSHKHlqxsdIWUmGbZolmniUEw+l3XYa0jlUgqGeO02KkojcKKICLGRmIore6jBTO0olTVNvdSAa+tJcYkAQKt0eV+g6cVdNagnGymvbXElJizVI16Z7HOEFJkCoGQEs4ZpikI7rlWrO+oBUlotUBqbZVqx9PI7d1RqD26QjUYZVqwB6xxjFMAkmD1m+DH6R7XWZQRS5hQNM40CzaKVNEoscqx2qMrjaAg1bVWtcqsKjQDq6VSzFrHcZLkSgwF1XD4fd8RQoJqcMahcruXIVMq9J3H2I48FygV1w3Uqlj1a6FuTBOnOWFswGmpoO5thzaGWApjnEHBdrXBa8scM9kletexWnWMU2R3vCXXWSp3p0AKmTEkqo6oXJimmRhGdvs74lKF26prS60cd3vIhVgTykRKrZzGiUgla1CqEcG0IeVK1YZSEtMUKCRSnOmGNVLx2KO0kb7lulaVKIkb0yhbKlf6foXtevrtGt/3aIygzSUzRMgzx2nPqxcvyKcTGSPH0ZKkNEocLowFkiJMMy/CCzrnudyuefR4wxgmbk4nUpzoTcXbglGaaRoJZGYyeQ6oIjYSWmusdxiXsFbT9R3ad6QYSHNmPayxgybFPYNyhJTRFvpB4bxjniK9duSaWK16Om/Q1RDnyOX1CqMr7777lPWzFd/+7ZccbgO+k+CxVp6UZ3KcWW0dV5sN42SIIVJjQGUJCGy6nqIKNUjC53Q60o9r+mFgLpXb/QEUrPsVvRukoj4mSZnkShoTIWe06bGm43hM1BBZqTv8asZQwVSy0iTj8d0a4sTN6YDRjm23YTaFYQOPVeWDn3qfLldsUdxOM+MhcNqNTPHI9fYCSyVHeH174NnlI959t0d5R1KKR0+ecrz9jDgWhvc/oBQ4vrjjNAbUZJnGV3TDTL9dU/PMl3/iHXJxhDnQ68gcIuV45PVhj+sHfupn/zSj3kOeOe1OYBV3uxs2PawMvP/+FxjDkTgqrp89Zs4nDrvA3XHmarPinffe49XrF8RcODiHXnfsbnYMxx1Xa4dbDXzpgy9xGA9sn15RMdy+StzcHlAOwv6G/WefosqA8RZSIJyOODPwwU9e0JnCoDWvXnzMaZrw6zV/9me/xu3LV6Sqefz0iwyxcEwB5wxrKi7ecjsdmZNUeO5PIzFOrD2892hgOp7IxTLmma63bC6fEsselRPp7rYFpyXI1/LT52Ag/P6FAouN0GIAsNARliZVlPd/B84C3FogxkTnDY+uNky7A4PxDM5iTcVqJRZm2pASTIeIXq/Q2qONWIx2viPOiTHOOOM4HY+QNXEeuboa6IwhjIF5jOyPO2DLajtQc+b21Z4SEtvNms2w4TRPxBK4eLrhum7YvTqQs6LqwrDqscZy2O/IMfKFLz5iWFnGMJFTxSnN6RC5PQgJTRKjCt85jFJMKaBQHPZ7SU6USs3Nqsd0xDmScsQPDqaRw+6EtQatLM65dt8aKj8XEdxUSMgcXXJhf7dvpBvYXq7oBy84/pzJqdB1PbXCeBybLULG2ZZ4iIk4i23Z4e54TqjkUptlWsWJfyrGWqZ5JsTMdHMLVSwVaknUHNG1o6KkKjyJ7elq1aFUYbvdoprNiwhnhKDXdQM5Z+IstpmUQi6Jqgp+0PhkOR0D0zRScmkJCCFvDEMvaJHQ6B1zklVQhZQlMJxT5FTHtiaaSM3uwqDQXqM1lFGSKGUR+aSMWpJgSkvVfxWhmLOybslJgvHGiFgoxohCqtgVCwVFqspzVs26QcRKMWRJXtSIRVNsEcKHlf7WeQ+5kGJgmoQMUI2IoYahxxhLKlVsNrxriZDKPBXGw3QO0lsXiDE3WwUwSqicyiiZR6mCYqn3QXitIM4TofWBe0GLJVc4HSc676hGEs9hnsVKTon4wDqx8xNlTwUKnbOozst4oCq1ZnJt/a9mVn4ApSlZ7EprleB+OE1MY6AUmOdAjInLzZbOWqJVeCyZSohBBG6twr3UZu+WCrkWFAYSnEaxYiwFas6UCGEEVQqrTc965egHR46VXGp7DyHOiWmM3+/y/o+93Y+1v/e/sn6XxEitYlNSy6Iorfe/3ygELeu3pHckEVTFTgUkkViLWFIZazG6VfvX0iri5VzBB6FONGFJyyq3890nQhe1z2ILUkqz2Hgwn8iuojK5I785/Cbf6L9BsBO2WnLJ52SrrrLmSU1YZ4wICVPOTahtGhlWnYsXlnPEmJjneN5PLQmn5fXQVshDQpCVZaZCo40QmGiCp1wr5kERimoJcCHVnHdUyJOARZypoBEMCou9YEyBqmSPt1yUtaZV8zdbnnadNTcrEyOWS7XZ/mhjoapG2FXElAiponRuNmYZ22hCst8UMZ53vhFJKzYb/vQ3f5ZVHUgqM8eJgliw1CQ2OzFnKhpVKy8uXvDrj36DaTqdBbCS7ZXvHOYAVfYXOQvNKaZMRuYchdjSiX229OKlD9Yq85p3Tu6ZMW19IWsGVdT9/yvF5XSBiUbs6ayQho21VFM5DHt5NhRyzcQ0czodmUMEmiBNlKxo5JlrXaFIAcUxZ4zW9N4zrDwxJ6Y4UnLGqorV8vxjihQlRTw1iaW7aaIkYwxFlzPtRRnTrIlE9KWtouSApT13rbBOxEg5ZawSwd1C/aAqYs70vUOpymazxq8dt69PhCm1ogrp/6Umak5Yr3GdvxeTNhIgCGFDEseytgkxYpPHWEuqMDXhlTMWZ9w5USwUqkqJRShM2qLVPS3LqRnT6MpoqEqRlRWbuSLjrVYabzxJV6yDsoaLR1ux0K6KKSVSkLVDKpGf2H3A177905jBMs6Bddez2VgwmqJgWK2J84GSKnZ7ARXCcSKmjEqGdBhlb+c9tWaurjaUasg50ytJbpcYGUNAW8ujJ09JaoaSiCE228NR7OU0bC+2Ih5P0K9XQhObC1NI9N6z2W4ZxxO5VIIxKG+Yp4QNE4PXaGe5vLgkxBm/ln3zNCZUzpQ54TtP2N1BhKoMzheMiqSQ2V5eUVVmsJoYZk6TXPPFdstm6IUk6TouL1dMMWLcClUKHc2WK4PziliEEGNVYdU5nFbEVGW9o2G16knFkLND53gv5l2EC+p+L3GvXWhC2oXK/TkR0u+VNN1TWRfVw+dzlYtoYeg9R2dQWshJQrBbxvxmI5gKVSs0FqXlnTBGxHop50YDLcQs8TStkoy7pZJzIiQpoBsGJ9a6u5k4i8Vz34lAKaaI8Rrfr4S0EoUQZ6yQmlPUxBAYesewEjvp1IQUFEU+TW2mEDqRtWLpnKKQjVISGmkbVlGAdiJejCE0IYtY05NKE6ZozHnulQJCrZpNXinnJ5FiptYEbVzxnUMpCHNqNmQSa0kpnwVJSnG2Hi1Jrm+/O7QH2mh8QFVNANxinUCjJGVqPdF1HZUW16wPxW6ynnbOib2XNud9jWnkRYl3uvN+adHB1RbbU1pEPGGWPUbOQnlri/12bC17pyrCE92s8VpJqcyRIZKVIqXUBPxtVteNcpSh5ExU6d4GrC5ritaJa23XtAhX7q3khLjVBNLnbn//DjTNrLxDy9quCAVUoxq5VYMGoxTOWTSKVDK5XfOyrremFb6wjPcOitD8c67EUEQo1NZ3IYjgSulmG4jEs++l7W1xRL3/vqUQY2kCteUFlzVeSrI3sc2WLTfbVilmlRhA0VBrI7QV2aNoa+/Xk9Tz5ylCebKqxdhLo1cpRQqZ1ApFUgrkksW+WhuyThgj3yPXAkm+773oHGoVUv6yss6xNOFfe07tviWqFDg4i7FQXRufmvirFPmO/5dsanlXfnAirFf2FYXSuLZ/9FYofOY+43+4/h/47x79d7y2r38gx33b/vC2Pqz5K//zX2F9XP+hn61UfvfLvysCJfvH/77orM9rFIBnz5/Rhe73fC66yKfvfCp7aP1HE+W9bT8C7a1A6W172962t+1t+79Y+75FSmJto88B1toq1fNSFa5ko2qMppQkP69Sfau1IMJ1s8xaEspL8MFoIQeEnNFKhB/WLiIQQ66Fu90O6zUZCTalKaGVwnvPatWjrWW/P7SqZqmks97KBrVKgJySqVVEIYVKyZnzZl0pNBXvLOvVSjbFpRBOCduqhpaqlJgSU0qEljyyVgNWAtUFUOWc/C1FEqwozRwztYp4SegKkqwYrKXvOqzxzOEV1NosZBSmKLqux3YWpSMpBRF1WUNRgq02LVgfZqGLFCWbUEOjayhB+S9JTSrMMbA/nkghgdIYDc5IYjIVqcbVSkmCVhuKqjjfkeZZnnsC5zouLtZYsyanQM1wihN3+1tCjMwxYZzGO0cpQIY5JXbThLeGd997ivOa5y9vqBQuVpd0ridHRW/XXF88kgSENjx6/IiQEuPxyN3hhuPhQAytulopahOeURHS0Sz0Cu0UMc7kkpjDTMoZt3b0G7FrK1ECG971FK3INTOHQKmagqa3jnU38N6Td7i4uKRYSUpprXHOS3Lfeba+Z71ek3KmKEk4hSBJ7EebRxiruQt7vv3Jx9y8fs2qc+g54630K20cqlGqdJbqu6FfsRpWbFYr+t6y3XR8+5M7ao743rJee4hBCF5GrsfmnjgeOe13qFpQVRGDfP9aCyVFvBuIY+TR9TUpTkzjSAiRmKDEiu8N28sVMSq6Yc3psCdFzf6QiD0MnSKXmYtHGy6u12y2Hav1hjF8SghJkhw1sxvFxmK17bh4sqFfd3Cs7F5OkA3eabaP1pAVxzGCjnR9R5ohp8rd/ob94UaSTrYjlUJWgcvLS9z6kru7HSFk4qkSc6TvtVSwVYu7uGL17Alrp5hevebT58+Zyo7L6yekNBEOd0SVGHxPjYmnTx/z9a/8q7z6+JZ9jGRVGDaP4cVzhqstn74cUVXxF/7cz/De++8yXF4T715Tg2Lz6BnWao7HA6rvuPqJLzHeRU77yO5wwneeKSuquuKYdpzGgE4RiuXyYsXlZsOLz17ghwuubE9nHdpXdlME1XN4/hE+Vay2rG1Hnk/oUIibLZ++2GNK4b0vfJHN5QV5X1FIhejN3S1x+g6lRH7iqx9QneN0OkEufPD0ipvne17fZYytDP0V06Gi1cQ7j685zYHD7YFX44793Stsd8k7777HpDuCGonzzOrqCaFMOODuuOPTV3u++MU1H37yGen2js3VwPrRFfM+ok8Hximxtx1ffe8J6eMXpKqohwM3uz3vvvcElTW3x8J+tqz7NVvv8GWmHzQpen77w894cZrPdIGH1aQsiYRlt13f3HUvwdQzLemM1X9TqLQcYqEsLf9Yq+L581fYQaFsZb3pWauOtbFoElVXMQkxMm9ZI0Fm6x3kxMXFJYPv2d3tWA9r5iDkG2cs85w5nRLWinDkNM6kWrh5ASSxPlhfOThBiBMff/IxvuvYXA64ThIIw3pFyYm7uyNGW64uL6Bkbne3+I0Cm1DFoVBop7Ax4YOjJNgfR1SFvrPUmsg1EaOiZCgklIbeio1nqTCfRrTXGN+hlaOWSOdX+K6T4HotItqdJUGbYniwihDxrMq6CXMq8xRQVqGLQitLLCLusE1MRJUq7NW6w1rFeIpSfRoloK6NkoSuLlRVcN6xXQ+EOXD7ekdMSRKlLbG52UiwyTvB86eUuLy6ZDoasJWcAykWOr/iYnvF7vaWGIKIg0rEmBUKQ6jz2cItpkil0A89uVZCDqAl6V6qJAOclyR5VuWc8CpZkiBFOmejMik5ZkjUDA8wHeSUsJ3FVLGnKyzJrCbEaFm1s5YC0Eoq6bUWyw6U4P/FKmARjNS2DlrEfAatLTEHsfD1lhwzZEVNsg4zGhESaEnQlJgIp8A4zaRS6Lo1RjtO+5FpmikK3nnnGSEGXn76klAKtUrCNqaI1op5ErqSNiKCyEqEEs6bRqOSxJk2GorYC4O8N2LzpZrlFZQqpBZnHTGJjWhtVkCpZFIpYDXW97jesdYrSezFmRwz0xxIOZ1JTbXAMPQ8vn6E1pppimjlsFr60fF4ZDdGSllIJnA6CCFioa70Qw9ayfU0QpZpVik1i5DNGdsSaS25U0GpKhQwo9FVkhfHw4xPIoDUltbRFvubHqPc97u8/2NvS19rPiBviHsWSwzdKC217Rmo0mcVQkUoNPLX0tkXAgGSQEplEc8sAjex0Sm1MM0z2i5W1WLX8jvmW/yr/N9ZuxVKK+YQ7q3HdBOoZamaP/MKlmT2+e+Voz6SVOKfDf+Ub25/i9AHEQdWQw6p0VLlfa5NLJVKs/eqkkBTZx6QHPP8+SqCLa0UKRcR2SglYpqCrNO1FkqPNuT/P3t/1ivblp7ngc9o55zRrG43p82TfVKkSEoqlRrQrhJglSwbcEGAJaD+gW/8Awz/BvvSP8IXggpSCSg1tgBZsixQUJUlsRWzPf3uVhcRsxltXXwjYu2TTJJJFslMWnsAPDx5dqy1Z8xujPG97/e8eZR7Tz1QOYyxGKNAF0rN1CTRx1VJRMpRVsmN7iXkg9r8YQ/nODcjIrXFlgV5Lx8pH0apFsV13F+BPpohEdNKSlkMHwWMtvjOY7RrBB7ERBPExJjzkTxh2jUXY+eSE0ZpNts12ijGw8LPfP+bvD2+g20kHqs9Q9c34U0zrAZ8LsQYedE9439/939nPBwezGilib3tXJSUHtYOSgTJlMVYqZ3GedsMSW3vZS2qqNPn5HAlbsVby2a1ofMdF/dXvP/h+/TL0GKJFOu4ZqDDedeoFI3YVRNzN2E3lo++8iGfnX/O7e6eaZokmjSJ2VjulyYil0YGVhL15q3DeYszBu8Nd/uZWgvGCnUpFKE/oYS46o0QgOOycBRxc0mtQUb2w0ZbSikMfS904yTGIUklqhin6TpPzmCdl7VBUYRQyBac0dSS6VaebvD4tqZJeU/KBavkPC5JGj5cJ5+z3oKFZUxQ5d3YDULHjUlRlawbSlaNVDixLLM8Y6qRWsh0vUW36N2cpQFBTBZiQgON6XrceoXXkKaJ/WFPqpZuWFNKooSZrKpEbJbCajXw9N33mHYzS5EIQ+dXqPGA6z37MfH0+VP+8v0vcfHkAtv1lGWCrPDDSsg0MaCsoe/PiXMmhsISAsYYUgHoCGVBxQx5RqHpul7i2w4jxnX0bf+ubGWJBdVZwuFeYtO0wSkjZu1cKd6zPwShRm3P8F3PEkZA6jLzMlPSHbUWLq62VG1a5DmcrTrmQ2CaK0pXrB1IoaJ0whuNcZbxcCAsC8u8J6XCenNB0ZZQodSMrVqahVDEPHM/LvS9xM8v+x2ds1inyMqgUyZNM0lp7HoAKqUmcq4s8wHXOTbDQAyFaAylGnorUbXHdcur64X7OZDqsW2hnt6xX3zvthnrdyGJnHwMX/hvzYjb6D5VqS80UCxLZD8e6DqH9xaVwBsrTTUINVGwPRZdrBh0jKZUhXWWzkvDVAgRg5jN5L6uYrBoJpKchP6opoqu9RQR6BES5jgeqEDXd7LGsI3w2GoYOYvR3VlpMFJOoVyFDErb9k5sZnxlCIusy73XGKuI8Ti3NaMRss61RpoNcxJTuh86qZ9Vmfe9707XopTcIvGkbqfbPuu4aDiaOioyJ+gjfaeZhUqLU1PyYaF+G4NzYqQUY8jRvNSaLhXN6KIa5RuWOci6uhZ0Iw0679qaRObslDLWGbTuySUClZxjez47whKlTqmbxaoWtLXkJHunFMOp2U7OaaubUl5bKqlGnWvrAnX0pr5mDGqnx2oxsOX2/UA1ipL8/aeGzlPs2esGo/qFG7u+vgJQnAiPqPpabJpuP1O/cLxKm9M+3GhZv2fZADUzUG2mKXWaW0oUk04qGa2txPDlQgwSEd6veow1TIdJ4pkV1JKFzKjg5FxtKyp5AI/nTY6tHOd1HuJaS1s7Ao3C1fZTbR1PFfP08XNCIJL9mDZi4nLevtb4UU5NOEcPmy4F7xRd56VRImdqkTVCrYWUE8u0nGq2KFlzzeN0Wg8ao09Gu+N9DLLfbN0nrWb/sB88NXPpB2qXUJALtSahe7brIFexGcn/kAw3/yGMf7795+yf7TkrZ3/g31EovLAvmPXM37/4+/ydy7/Dc/v8jaHkj3Goovhr/9Nf42vf/dqPsBl/cVQqH7//MX/v//73hKD0xzkqfPV7X+U/+hf/EWf3D/fcxe0FLv72OkA2mZvLGw6rA//s//LP+M43vvPHebRvxh/meGNQejN+3LF0EB104ff+7JvxZrwZb8ZPePzYJqWSGqnIWKy1dN5jjBhvUs6nDlNtwFjNkT5RSgIUxkhxpJQMp/XbcaPYivUxY5xt/00EiXleGh/Jstsd0J5T13pV0q2ec5KCJU3RQWgEhdyKvK043DpzOW5CWwFS0MhVhOZi2I8HiWgz6lR8zyFgKNScJJLFGrw1UiRvESrH6IRUomCR28ZROoWP2A/B0ZdU0bpK7nmFZZqZ6oyuSHc3rVlKA+SG7y2NkFCJubQuMw25SASddagqhRmNbDKNcTht2Y8HoRektuFXiiVlSsw411Grwntx3M9Lpus8q36g8z3GGeZW3JXO7EW6vzqYlogrB1ZrzzKPoAopzyxxws2Wx2fnrSvKsiwL3nacrS1Wa5Y5McXCYRLyz/lQuTzf8vjyir4/w1jHkg68urvj82efMR8OhGUi5UAIgbgEwU6rJtRoWhyB0ClyykSl8Z3DDZ7dfBATHBK/4L3k3d+FA7v7BauUxE0UGPyKwQ08ffSU9955nyePnzD4nqYaS5HN2pPRbD30aGs4TBMxBnJNhCSo+dvDjtV6kHsjTaQ0oVTl6mLL0ElxfEmZ2GJ/rLK8/d67XJ1d0SmD7zoO8wGjKk8258RSuUszauPwi6I4S8XjrGW+30tHFoUQIzEs3N3u0ThiVNRd5K23n3D+zjn3t7ekDMteYh2UKpxfDlw8OaNbG67vD9SiyEpQ+mHK5BQYp0rfWaYxok0hXD/nKyuP7SreeMbDHuUN65XDa8d61RNjwGfHdJhJJWCMwjoDxoE2+FYQvbzYQIFpCewPIyGo1tWYWK8HYoYXN3v6wUlx24iomxfBoVuj6Veey7cueXz1mM5qXt6OTHNgnHf0zvPkyWO23rLPO4zJuJBIprKPkfOnj7j58COeX18znK350lsX3E8T82HmF7/1i7z36IwnmzWrR1fcG83N8xvKesUmHXj1g2/z8tUZ5xcXONOzebxiChnvIczXeN/x+Ok56/MzPn/2OWnO3L/acbla4TrDFAp4y/7+nhpuyW7F+eNHvH3583z717/DTRh5a3vFFhGDQg50ShHswKcv71jtrrEmcPPJcw7F89aX3qfMgXk/s8RKGu/4/vc/xw/nLFWTvKI/35B14Dd+47eYxomf+coTHm03XL7zmLvBMY1rIc8pg62K733/czpveHx5zrjfE4H1ZsvjpxdcXl6y7EeKWWHWiW4YcGqFyZHt+ZY0HvjB81uehYVNr3jry1/i+SefY7Xm0fk5r24X5iVzMXguN4ZqAnHaE5KnjoH9zY5XN3fNXNRmEPVQlD0WleV/Hckw9VQYPY3fDVuufvhjUh2stcWE7iaMVfSdRccWw9J+JiuoSqMonJ9t2T4+Zz7MLEuk9x13t3eEaWY6TExLkFiUKsa8aYm4LEK49Z0IVqWy7T2BSLf1lFrpnGKeM9PhgO8dq82AHzzrbU+aI4fdjNFwf3fL/e09437m2ad3XF6tpV6bFft95P72wGEfQWv6rsN3mr4HXQ07rcWwmAClUabgBo3zhtDme181acksIZ3maWM0ylQqucXfaYLVhDlC0e3UqlNR2xrLsFrRDx1+cOgKy3iH970YPHVhtfJopeiHjkpinCZK1q0D2VCNdMYbq5mXmd55Lq4uGXzPzatr9vsRqojtXdfhjCHlSOc7nOsauj8Q5kXic5rB9xj7gJLuVedce38n7u7u5JvkyhwC0zijtCaVgp/FRGetxg0bSshY66hVhO0j/RBd0VmJsK1FvCqUU7xSaveeEGSqRBpYLSSiocdbI9GkqRBjJsktD6jWPf/QLZ1SxsaM0YpcEkoVFLZdi/a0tO5bXSHXRmGsBmPE2HaKukC8MCUX0hLQzbSb4w5VFSkUShLzWYoTs14wTSSyznH74o7D/YHDbiRTUBYUBWtE7KFKnIl0ZTd6ptH43gmVKioyD2ZDa/TJ9J5zFjOPsU0kMng/UFFMyyxigxVTs+89HnDeYpoAsd6s8d4xj4bbwx3zKPEjxmiMN0Jbakav/W7k9npHrYrt+YbOG6xRJwqN1uCsRECilJCm2nksVLknlZL1shERvwIpgOuMdFpnCHrhUEYRl+rD2pcMIQSJXPUL3crhnEXpSsgFoypL/OmNezsSu1QzmR+bH/IpLkQoSbrRBDQPIhFNQNNGU8rv8Pvbs6ONamKc/GxKqb3RDcsSUKbtP2rlXt3zvwz/C3/l8H+l093xQAHINfJMv2LUEx/6D5ntjLMW9Gt7mCb6fe6ekYgUHXHaQmhmwWZ2y1k6/XMTKHOL1TCNypRbVMkRilNaO780PdAIZ+q1SVCO8/g7ZJ0eEbJEMz0pOWsSzy2C8Um1Uk2oQzUqhvz9xhhAPZiTtOIYUxOWWfZ8TfyV905p8ceWWiVuD8TsZIzGWBEZVYtUpAmEJBGUsUKRKlScM6SURPysiZwTSesWcygkjRwTxli6dg/lJCQRRs35ZxfgYeg7VoPGWvm5VCLTPLPf70kxcLN6xa98/d9xsOMpXuUowKLk9ByNcRIblLHKoRtRVyE7yFKymA2rouRIWBb0kRxRwRmP047Vas3Zdsu2O+MbH3+ddz99G5ucmHS1ppaK8uCtFQpEjGLQKoUaNX1aYyZFeU8ufSmp7bGrxBwbeyJzHWN3NIbN2Zah67Gt0UiOvbJyPbnAUhM4jcmKKptQoULOy0nczSVTlipGUoQiF0tms1nTb3rmeaYUGq0hgyr0g6NfdRinmZZAbRzLioiiJSuhDllNjDIv5mnkwlmUhU5LDKIyStYUGLy35JIw1RCDxPjIu1SBMqA1xghFru87MbOlLHG6J7hFQTXT9TgFMTNBM/NqVJbn2WoxbQzrgVW/wmjFYY7EVEhpxBqDW63QdkUoC1pXdD4SjzPdemC6u+cwTdjOc7buWVJi/WLNL736JS7Xa9beY1cDi1bMh5nqHS4FpttrRt9JzJm2eO+JSaIsc5qE+rju8F3H/iC0pWVc6M+ElBZzBW8IYaFOM1U7utWKTf+UVy+vmXJiM/R4JQaYXLLE0ivHflxwy4TShfl+T6iWzfkZNWZSSKQMJczc3h4wriNXRTYK01mq0rx8dU0Mie3ac3m2oe8sVq8bLaZQ6oQzmnE/k0ph2w/UXMgFUnU43/HoyqJSYU4J73u0qRI3FwvGGDqjuTtM7O8OdDrz6OpcaJEp0/celKyjHDB4g3OVmAIFBbFyd73h7m5uJLzfcaZ67d8fRPvf9qnXjLbqRzmWfsSWI2c5l1qLwa42w4M6GgeUsMF59jb2/jH918RMFOaAs0IejSFQUm6kJEVRtUX5KmLMLVLRoLVEAXvbYTSgtbzzlRjlY8zEEHFO4naNFcKcUFey0JhmMW+P+4zWg9CeiiInMUotU6JUIThpI/UwbxXJaFkX5jaPUJuRQ1GbYby5ReSdUKtQOZOQYmozuzh3JDM19/bxejQSilYaaxy+8yit8M4xp1kMJkhzo/dWGvCMRRtFSrHNt6qZgyX2ynnXokMNvvP0XU+KkWmaT8YUhRJqW5H6m24RfSoL3e9EDDwarCmUJZDLkeJkTk2PMaXjZEMI8WQmUa8ZkaxzMhdXoR8djVcyVz04UE63Wj3G3Gm5j06Uo9aQoGX9Za3BWSNko7Z3KKo2+mSL0TtFyD7UNYUQ2/bX9WG/rfhizHqzUTWz7MMfPJi1Vbvmcny6asISHmiL8sogNcruMWK5UklLJhz2LLOcV7QY+kHOr5R7j9Sn/GCAb9er5CP9qp0XrU/H+/A8y716pEVqLfSymHIzMsvvs74ZwZtpyFpzuj/maZGmktyollqe0VLlZ3MpzFMgpYxzFu/dA02tnUStH87Zw7lr14SH866UkpqzM9KEohUtkbXtI2KjQb62nm73XkoFbWQtI1HEzain6u+41n4zfvv41H3Kf/fOf8d/+9l/y6qsvvBnicSvDb/Gjbnhn2//Oc/d8x/5OzKZf7v6t8xqZtYz9XdChL8Zf2Rjs9/wrX//rR/PoPTex/ztv/m3ubu4+2M6OhkuOP7KP/0r/Pn/z59nmIcf62dstjx5+YTHPOaXwy//ER/hm/FHOb700ZfeGJR+wuOjj75ECP4nfRi/9/g3fwa+/Q3407/2kz6SN+PNeDPejN9z/Phxb862LuJCjoGUH7pRlNKNoCRI2GP93FpFrvbUCe0cJFuppW1m27qvNhKQUYrOSfEgJ0FzF0QYKjkRQ8AAgtEtqCpdYykn8pJPGOH2W6Uw7rQQCVpzT2clPiHG0ooAUgiuRcwncwjSOeYdNb3WeaXAN1w9FYa+RznNuARKUcxhwVipSB/PxZG4o7UURjqrMVYEhN4ODKuBcVwooki2rrXC4HspzpSC8RbjIWchFaEVVtO6ygTdb5HuUdAtKkEEi9g66EJMxJDQSEb9FGb6biAVEfW0kqJFjJHee5wb8MbijSOFhZoNyzST54RKYDrPuu8xzvHy5o63Vme8+/RtrseFw7KnklBGxMS73V6IWSTGNGOLobMOqyRjfrvaUFPFKcvTqyucdhjr0UaxLBOvrl/w6ScfcnvzipKSFOxrIpVKq3mJWF1bgUFValY0xASZwhwC3XaNMpqYIioouQ8oXFxdtQ6iCata8b5qiV8rmlW/wfsVt/cT5mrgcnOBc5aaGva/tsKBsRSg9xqPwZYF5aXYMo0zh2ki18T+5oDWPW4YcA5iiIz7WaKiWkHLmYFH20uIkaQyvu8Z5wXrB7LRVKvZDCtub16QQqUfNlgvtC2TCnE6YJ08d4aGjq+K/f2es82GsJ8ItzO6U1y99ZTb8TOqCZxdWZ48fUJWcLg/QCrkEKkBUBqnEuvOM+eCs2vCIZGnHefWcvvshq3rWMJEjQVrPa5XeNOzhESsQTo1lWa76em7ToQcU3Fe0ynDIVhqipydrQUlf19BW7rOE6aZWjQlC4Es68rKDVSvGQ8TpcLUiBXTEhinSLjbYzsH1tF5h9GGOGeevbhh8JVsMo9XPeeD4zqALStu9jteXb8kRs0nnz2nb8/6k8cXPHrvitB7fvMHHzI8u2E9rEk5EkPgkGbe/foHLGbA24GVX6GLYnAScXjx7tsMtaJMx7ofGLoVr+7vSNPMFCIv7kdWzhHvXxFD5MWL55xdvsc7X+oYl8Bn9zOhJh6nwjQF9NDxZLPixd0rFn/Oo5XHVEuMlX57jtM9pVScLgRT2d8dODsbeOerHzCGSrUd/uySPkGNhT/9ja/y+bNrvHHkpNiPE8OmI4SCdZ77ux2DPvDk6RV3d6+4GRNqpbnZz9y8es477z3l0VtP2F0scD+SndAZUiysvON+zqz8BR9cGXRe2BrYlsjLVDjbXEJxbNcr8n7k9vNn3OVP2J4PlJowF1fsnr1gOuzYHw4i5DUTkggCDx26x8LdSX9tRdDXR9NcT0YB1LFY98Xx+k9JBEpB255+pSkxUWIz4Gor79FGjSBX4hy4vb7m7m5HCJn7/Y7xMEKqjNOC73s6Z4kxcH5+xn5/J2Km9Rhd8N7hOk2/cZisCfdJqC/O4qtinhZeff6Sw+0954+3XF70zIdZ7qc8UzVYK7SE3d3C0A14rTjcH7i5PRAWMbn2a4t1MofevJpx1gGWXGacd00YMBhnCDERlkS/XmFUIcwzOSeMVWiryFW65qWD2YjpxshZjLMYJjSNzIFQC52zTNNIjIah7+Q8GkMKiXFcSDHS9R7lUpv3fTMriNmmArkUvLE8fesxvutwXU/JsD2/wPVdI+MVcq3s9xN971nmzIuX9yhlJK4tR3JOFDLeG3rvuLg4oyLxmyEkpjGyzImcRCBxpnWYKiUY/lXHZrsBYNzPhDmj0TiriBHSksEWjBchpCQRVnLD5UjkkiIsEaMtKEtREa3BryyPnl5xtt0Q5pmuc+iq2N0fOBxmUm7dzFVofCklcpSivNGa0iKR5D4Vg5Ksl47xDSICO+faOkRiDIyReKyaC10vpKxcE8poUirkJVOyIrdkMdW6fmuqpBzIWjp9UZCnRNhPzDGTVW3vfkPXe1arNc5Y5nmWaMUQaXAcMXergnMa7zqhDjajeQiRHCOtkb51x0sH82q1xhjH7d2OFIXwp0umH3pWvUScWOOISyAtkd08Sgyu0agW1avVqYVavp9uMU5LIc2ZWDK20/hujfciZikkP+MYD6adwfmBmiuHw4FKpiqhSGlt0VrT9R5rJeKoFOj7Ho3Ca0dOlXE/UZA4oiPtKqckVKsk56HvO3xn0bo24uhPr0lJNUNGqUJGENopHCk8x+jokutpP6EV1GNTQa1NtEGIUzy8r48Cn1YK24gIpV2/Kn8gTRE5PwhS7Z+/2f0mQS38hfEv8Lg+BuCgD/yr7S/zvfV3SVqEMq00zloxofEgGCqlT2YdjazTRYgyso+QgziRhor4MsTwZFT7fDPctf2VVvoUs328J4/0A6G7ZZSVqM0YMzWLcHkk+5i2/6BWlNHIK681iyheE6CE0HS0k1ba/S+XpZHX2rvyaNxppCBrLIXy8JNKBDFrhH5ktJGIkhZ/nGOS4yygjMY7i9KGcV7YOM/2YsscxYhda2kNCEIf0Z0YrWJOqKqxzaSEUnTOcT6fc+bPWA9DI0gZlIaUE9N04H53xzSP3Jxd8+vf+jUmP50MPQUxDXISf5tTqS0PSkWiyToHWoxR5CK0Cir9MFBypdIaJY5Cb4sE9Nbj6Xn/V7/Mu7cfsPIe3emHBUuLW0MLT8UaMEpLRLhVjYqSuMk3TONMmAJKGaxzaNMie4KYiI6USK0tQ9ejmvhsrBWBtbNULQ+WM45lGsm54pxHaStGBe8oMZ7okw+yqCIsAe89OUQxvxoYNmvmuAed6QbNar2iAnGJEi1TSrvvFKYWvNXEClp7cizUtKC0ZtpPdNoISbdRf7SVBo6cM7lmrJWoIO+lcSpniVHXWmGVJmR5OYgBtFAC1EZwyfFoksvtvkciBJ0S41OtlJioFqHepUxeFnmOtVCOtVLkWNkfZpyFqiorZ+msYcoVXR1zCIzzSC6K+/0BW2GbN/zi5z/LdrUlW8PL21vsfsI7L+uUnCEntpfnJG2FMNZIu84oCoV+uxGbsTI46yQqfpmFPFIyhyBR62XO5JI5HA50/RmbM0PImf2cyRTWXRXTh7Ose8dhHklGsXKGYxSs9T1G2RZzLqSksAS6zrG5PJeIMWMxncYWeYieXF6yP4x4q8mpnmJYrTPtpaOZDjPr1QrrFON+xHeWWDL7/T2b9YrVeiOxd3MghwWFUL6sUiQlAvz5ai11oVrogTlnnHFY05EL9J1jOuwI+x3OW6gZt14xz4H7+zXTHJoBo4WFNlPAb98PqNMEc/SD/NCffmEO+uIfHgtdr39e3iu5SORsrPOJFHSMbDyZEKohZwjLItGXS0SH8BqdReaeru9IKeK9B6RRT6lGxfatJc9qXKfJi1wobWW+zaUQ5rbe7iTOTStIIZBjlfUTCus0KSbCnOmcoaTMNC2EIJOJ0IXkRCxLIEeheZfjnGe0vFuMpqJIMUpEllGyry+5GWuO8aMyxx/jVFWR/VxKGfLD+6i282ytPRF4ZPosaK3IhUbZEhKZVS3uq7b1QTlGgR8JVJW+77DeoY2sJy2KXinZJ7S1S4zNCGyMRAjXZsOqpRn9SzMPK/q+wxiJe00pidEl5Ea7k3nY6GZkL9Kw4DqHtYYU22cr7TMCysn1eA3bHdiadk60HHSLvW1USnU06ShpblkNzUQle5nUImRzLlRzjNytjbIktCnVTFPHSFx9vODHfypANxK70ac9SW0L+uN/O65jSsv+q229d2wYVRyNNPLVhAJFM0uL6WqZJol5q1UaP5qp1FrZy+SUT4Sn0yN9NLW1eQIlsYLU1+Ncj/WDRnVtpjLnPSGk02eykiYKqxt9SL4IJRViKixzlEjT0xtGneqGr79XapafKbEQSVgr85Tcz0ejULvXldxvWgnJruQk0b31weQo+zlHCEJvOhoPpYAucawPkbzt9xYhQdWixISWCtaZ0x7saJ5/M37vUVXl7178Xe7NPf/1s/+aby3folJ5bp/zP7z1P/APzv8Bs5rlw7+7/+XN+EmNCh989AH+9zAfZJ35wZd/wN/9G3+Xu7M/XoOSjZb/7B/+Z/y5/++fQ9ffP+msqsrt+e0f/oG9GX/0o8L5/Tn/6T/+T98YlH6Co1bY7baUYn7vD/+kRzZQ3hAR34w34834kzF+bJOSbH5pHR0tK94aMYU0eoXKUjSrRWg2YgIy0hHTCiLWGemGqa3ooI4yQaFfOXxvqDVjQoUqRd4YJGZEUbBFt5pxAbQQCBqa/ygCnDp/FS3+xbZiuELp1mVj9GnDrbQURTrnpWClpBA2WIPve25LwaDonETPeRzr1cCcF2pOLVpBhN7G0EWb47lp+F8lYl3XaWqWjmLfeZZxwVj591xHqpYO65rFgJRzEWONkoKW1oqqNapKB1bJBeOkS58mKqQicWGY2rqAFb53aDRzlL+vtOKJNZpKwmiPMxanNUZVqqrcz3t0lSJEqplQEgXoXId1Dt93PO3f4tF6zRRmKhXnHX0/UJVDVyeicd+RU2Rjelb9it53xJxZr1c426FWmqET48oyL0zhnikmbu/vuLl9yf3+thUFFBpNLQZyRhW5xsPQsYQo/WGt+4xjV5e1GO857EesNhQr38FUw1uXl3z5S+/w/tvvsNtP3Nxc8/Hnz6lVY51HWcOz5y8Yx4XVsKFmKTEMQ4+iCsUKRc0JW6Ub3BqNcgZnerqUOISJ+3nm1e01d3fPGQ8HrJeYuMMopgKqwqBFUOks6/WWznrcMHB32PHi9obrmztsjdzNe3bzgfHmQJwSvt+gsyKOe8a5orN0c51fbtDGsLsf6ZxmmQNzyNSaiHPk4uyML3/1HZQt3LzscabSrXrOHl/w2efP2e1Gho0lvdZBNQyey+2aZ7c75nFB10JMAbde8+zZHdvNQDdorvozYoL97kBNEte3WW8oOcp9vihy1swhM3jDbndgfhEwzqMOcH83060tSi30rmsFSktYIpsz2Kzk2ZqDIWsRCmrVGAe299RkqBie3d7y9tMrrLeM056V2lJyYl52+M7j/TlxtqTBMXQFXfcs4ZZh3bPb3TM8OedyvWW8jZz3l7zz1vucP77g0/LrDFWzPd/iNxtizKztBdfPP4UOWFWGfiBlzeNHl6S64N2aclgoMfLy2WdoNNuzDe7dd7mvE7d39xxq4YNHTwgJzPqMZTfy0a//gKXzoHseby6YDzPjPHJ7c4N7/AgTZnoMKs3cpsDSb/GrNZ0u3Hz2XTyJ+2J5sc/8mZ//Jo82hvj5M777q99ndX7F0/OBnA5crh3XJvDqxT3jNPPeV97HaYuaRlSuXDx9wt1u4umg2dhLlv3CZnAoMrvdK7brnlwSb7//NvOv/ICh37I5M8SkyLNl3Ws6A5ut5fb2llklXt2NuG5Ff37JvIzEec+07NgrONs+5tW84/bumq3dcnV5iX/5jDkmMa7K2w6h5/FQUfxRAoKC1zWHBwCFOokLp3FUGtrvOxXBq9AEXz1/xZOnZ1KIrJVExVmDlZIqiipd9HNgSYJnHwZ5B4YUUF7TG1Fc4xKIIXD94galY3uXiOHX9Y5aEy9uRw77kZxg2PSo2gqxSqOMCGrz/cj68YbV+cDudiblKhQMWxlsx3ozoLXh/m4hRaEkxZzxRtP3hiVMxEVJYTVPMnd5zWrTSwG1iKEpTBMhZLbnW1ROhBar4RHqQyGB9lLYV4qYFbpANwjNIKaMQtEPPcMwsCyJu9tbKoVHjy+lsI90c5ZGWomloGqmVKGvGe0Ic6LkZhahEnOmq9B1A8Z1gEWZiuksvVkRUsIbS9f31JqZ5xltDF0/iGiQEl3XC32xSPH9bLPB+74V/BVhPpCCxMDllJoJVAgaSis669msVxgNfT9QkmI+7LDGsMyRaZyZl4DrFIPrxRjQBJFShJBojW1dyhmFba4bhessV08ueOu9J6x8xzxL5KoqMM+JC9eTcmKcRpYQQYP3lmKEXNkNDusUyxIouYljKZ+6sJWG1bpnu16LSSJXSk6UnEW4BZTVlJrJOYhpTEGOi3TIx0zU+dTBTCnUksVQg6LULB3LBUwVI3HXO5SWKMNhvWLoeyjgnGceJxF4eDDkCCMRalWUuGCMbd3uidy6lyX6oIketTDPEznPLJOIy95aUkmoUplbPISIr2KuH8eZFDPWaIwVITq1a1xTRSfdCvatE1+ZJqiZZuayrNcaYxZCnEgxk2slL5G07MmxsIRFqKK9xBE76+m6jvV6TVwScU7c3Y5iMLRWOrWzGOpTM77LeZZnRMwgQhQa80wtHuuNmBXiHzNy/vcxTnqROu4DWlxKU4ArtOhkuV9Low88UCaqLLVNiwqBBx25iVDWaoxr68D2GTF3tTmD0mLgmsFV3t58x3+HpBN//e6vE3Xk71/8v7h1txIrjAi9qh6pWbVpg02kaxuQEx2j7UWMQig2TjO358KYFupmwDtLOoqaTaQuJTeHeVv3N8HuKETZFq8tQqtuImM+7c1qjeQGly21oFszCM1gJM+/Pk2IJQvlRhnzIKg1wVS1OLgqKFfZ+1XkOddHmmGj2SCkNqO1RL61K76k0OgSjXham+jaoumMNaztmsE7Uk5NSJSYMpTEjZhGJyulEQesk/1MKfSm5/HNE77+va8z+B5rbRODF2IpLMvCNB/Ycc+HX/6QT977lKxlH3E04CiEgHYUdk93qlJIHI1GG6H7GKWpRt5LGs26H7g423K22bKEyDxP3O8OHEm+aMV+f+Dy40ecfWfLNMxoRFhXPNxDtNjOo7hdURgn76mQIjdux2f5BfuXtxJzaYQYEWOmpCj7pCaYKmvwzmOVwXSOOS6EeWKaZzHRpMCSAnGOQqixXmLqSiQl2YMrBf3gUUqzLBFrmlkqSzxRSYW+85xfbFEa5s4QtETYdKue/f7AEiLW69dhx1hr6DtPmhe5b2sllox2jsNhofMWaxV67Vs8XCApiU73zjd6laFmMUKkXHG6yufGjNaGGGCZI8ZrIIuY3AwPORd8p/BOznvKukUeyjOrjAjetTUAHeaZ9XqFNhDjgkNMuymHRo/pyElTrMaZiiKS8oxzlrAsuFXHWd3yp/7Nz/KEp2wfndGve3b1JbYK3c84TykF53vmw45qQLlKtRKZvhoGChmjPTUmaimMh53s8bsOs+1YamSeF2KtnK/W5KLQriOHyN3LW7KRyPlV15FCJqbAPM2Y9YDOGUuAkphLJlmPdQ6jKtP+BkNhqZpDqLz99IqV1+z3B26e3+L6gXXnKDkweMM0ZsbDSPIdWcPZZk0OEVKm6zqhQKrCdtULTc4o1n5FXO7oOkctmWG7omRFiFkoOFo3UqBB9xpbE0ZXQoQ5JGKu9OuN0NqWmZwSc44M3YqlZMIyo+pC13WM49uk9PmJ7XU0EHxx//AjFGT1ENt2/Dm+8M8f2oG8/j9f++NK2ydM82lPUmqlaoU5NlfUSq0Gvv010lvPxJSiFc5ZYkoYQBnTIksTNReWaZE6lxIKjdamxedWlpiZYySFjLYGa/QXKXoVYkisestq1RGXKIYg1cjc2mC8aY1DgVogF3WKQLVGiOEpyvp9acWDqhoJyQo9SBoPxWRlvcM5T5hnmdesGMSPV0K3RoDa/g5tNPY4X7V3nVA4EbJULY2Y1CqLtcWk1vZsN3OGamSamvmCiaU0s4o2HdY4WRkoDbpinW3nq+CNnNecIjlmIQXaZuYzBmqLlCylmWZ8W+80Cl0OzUDT9rPqNbKpVkLTaXFe2htinOX9WaTWGGOmUnBaGjsLDwZtiXhVrYHiaOZ6ML/53rPZroU0VyRG2WpZR3rf3ocpElM+GXp0Iz9pLXXcUvIDma5IDfd4Ixuj6Dup3cSYToZ01cg9qi0EcsltrSTRrzWLwV6pFovW7oEqF+60LqlF1g66PlA1lWn3oDV43861kcbMU2Tw6XGup6eXmqm5yP5LXN+n+fhoyKpVSIJ1CQ/GtGaApxntc2j02nb+U0ykVAjqGOHbTPWNFNpccqc6uJgTS4s5Vs0I76BqcjlGqMpzHUJE1STnjCJryRY/aIyRe0drao6EORKWgNHmZFanPQ8P5qdjzGWr85cj4awlI6gjnffN+HFHVZV/sv0nBBX47z/675n0xH/1lf+K73Xfe0NF+mkeFVx0fOM73+C/+Pv/BTb/zjLZ/faef/mX/iW//Bd/mWTTH6/hrMLP/vrP/oENSgDXV9dcX13/IR/Ym/HHMTb7DX/rb/8t3v/4/Z/0ofwHPWpVfOc7X/tJH8aPN5KF/+n/Br/wKz/pI3kz3ow34834PcePH/eWc6MNSSQBupJb8VQZ6YwSbLCjpMIS5ib6FbQuKNNEFjh1G6nWVWOtdNT4wdFvuoawr8RQ0aVQMcSwUEIkY3HWUV2hxofOZMmk16dNcKmKnKugn5Uix0JuEUnOeQyaJSdyFAOQ1QpnxRSkrRaaRWcZBssSHCnId9Ja03nPqu/IU2Wz1iirURMsyywFe93Q3VpRc9tcKymmGG0Z+o6u8yhlmFYLWltSLvjekedCCAGrFaUVZKkO31sqCW0Nq/WaJczUuVKTlMhNK5jQCiohBWKJ7e+UTmaqwiIRFSll2Yxbg/OOnDW1Krxx+N4Rmgln6we8t4xpliL3mLBaMYaFouSc35C4HTMxZ6quhDliMDgt9KgcJB9+6Dy2dYJaZwghcL/bcziMdM7x7GUVA8MyMadKqRItl0tDYWcxAORaWuGpkEplKZWiDSUmFAWjpGBdkPiISS9Y7UBDNRVtLdUoYjE8//yW1eoCbXp036E7hylCgjJGsbaaMN2zLDN3t3d8+nHHxcU5+fVYC2O5uDhj6D0lBWpNHJaFm7t7rm9fsZ/uGadATIGaMy4G6n7XCln1tYKcxJvksDAdZspmxfX9PfM8kUrh1VioytBpS9AWs+pYlom7tGC6jlwKec48fbxltVlhtGF/vwiIoiZqRn5vp1lfbpmzBu3ZFxguzzhbdXz3N77DYT/hvWHaR1IASqakzH0udIMIoEVl5mmR4rzvKAlur2/pfIe2Tohd00jIiYvLS7xRKKO5mSJdP5CWGa0dm9XALk+cv/8EYzXL/T3vv/slfuHP/yz/6J/9v7nbJaY5iNhIQRvHPAUu394y7TPPPv4cghIxw2u8dyhjePXylvXZlpwUr14+o1qN2l5yvtriVyvONk4Eb2Wo6yucKXz2ySdYayAt2BrYdmdcPn7C+Znj/ffeonfQqcI3vvkNfvC9V7y8vWGYFFfvvsOyTISo2Vxt2e/vuXn5Hdyw5Wy9hXzAnp8xTZE87RnnPXeHmXXv0UmEtHeePiKOkf0YuXjymKvuCffPX3B9fcujr7zPO+9dsFld8Plnz9Eu8I0nG+72M/M0MRTFaByblad3yHUOhZu7PY9XlrOLS67HyotnL1Bn59zvCqvzxwx+xYefv2Szsaj5nt2043qsvHd5RZgXPrsZ+fzFp9xe31O05erqCQ4FcWI4c+x3O5zbkOLI/c1LihvoVwOdt1BGXn36ObtJsa+alOB807Fer1B+w2otYlgOI0r1PHpyTszfx+8qV9sBi3SEf+Ur7zFszzFp5vvf+5h5CVJ4LvXUAQq092Q9GYuOBe5S6wmbfuqObrXKY+EaHv78tbro6ffBQ730sNvTeei8J9dKyhIJoJTGVKiIWSOHSFFajAhOo1RBqcLjq0vmKbC/G5mmSEmZJSmqznTe4VeekBNxmum84/lnB1bbnqfvbul7w8tnt8zz1LrCK9bBZmOJOZNiZhgG5jixPxxYbQf6vqeznjgtxGUh5kTXOdISpAuTNb7vpdi+ZEyVqLZaK3GJUuBWEpVgjGU1dOxuD0LpQArM3nlyTZSqUMqC1qQsYqlzVsh/s8yztUislnOOaT+TU8E6S1oSY0zMIfJQ65b5cx4X1KKxzmCtmG5LrpSisBY2mzWoymEa8bVwfn4lYkhy3Ly4ZdmLcDG8s2LYrHFdx3roONtsuLm9JzaTTo6QEsSQWZaIcY5aK9PhwDSOxGUREduLgSjEeCry9kYzjQtxCfRDENMKhfGwsCyLxC9RqTNoC7Zz1Bb7evy+1kgkao6ZmpcWX6mwnRWjb8zMZSGGxBIWcoK7/UzNma4T00AOmVQKps3xrjOstj392rK7VRx2i5iPfItCMIrNZmAYxKx1uJ+Zp0SuErWkqkJ1HdZprHeAgZoJ40IKkZza86ErqMLRkiBCmlAnSpEI1ZSzdAl7wzBYeZcvC+P9yLybKbmchJBSq2gq+mgGUSJOWYNGtdiCgvcGY2lRG6YV3yWeQFeIUYr7KSXpOFaVpI0Yz0Ki1ECOqXVQF6FyZtCpYq2VLvyjAGctRllKrtjOsbncMo4SIavb+0L+rkxYMiEEdItxSTGexKVswDiDQcgEfe+pCeZ9pIRMXuT/FpoZDXnPaSU3SlW6ETqzOFyqGM1LligmpV+jzP2UjocYToWqitKaFZTWTaBRaCdr11rkupTSHA6qnowuR3/q0XKqtDqJR8YZMWzV0rr5m1hJFZNeLhQk1qpqTjFnAB+6D/nHZ/+YWgs35oZ2CcT8qYSMUyhQ6kn8SelIF+DU+FCbAKxUFeObM9JokaSR4xjN4aylJsQwoRUqSmTiifTHkRIo3/i4f1JKi0nWGFAal8SkVEpBW0NJIq4dCXZUhapaYhqb4dU6T86pPTtHEbGJ1kdDRymNOkOLlDs2RVSsanEwTQTUzdgh5hyNtoaMiKbeiHkp1oRqpiqjlOwdlPzdUyjMsZEblBgqFSLcG6VOkSnOtmieYHn/ky/x+PoRbucJcyDrBCPM8yzPXBNRa828eusVH73/URN0WwDZUcimxV1qMQceI/Jq4WQojeUYIVObIc00GrBif5jwbkAri7IWZQ065kaWgHeun/C13/wSc5pYpoXdztI3qpvsA0Sc7PuuRfCICBlTZppnpmXi881nvDy8kP1RKZiSqYET7ejhfmmm6Sz0paoc0yK0lFIrU6pUNEYZssooZ4SSVTPaGBHrU2W98ifRNyzpZPA7CrG1iOidqoKqCRVs39E7y83LG2KImNcjn6oQOZZasVGfosxTSvLsWkstiHHGNAN0zWLIqoW+70/EkSkUjHWURo3x3gnt8awXetaycLW65Ok7j/nOD77NElpMj2nGNCX34LDxpFA43B+ouUXrON0oGopxnPF9Ry1Cma0alB/onMc4h/fSRVuVAj+gVWV3f4/RCkpCk9nUDd+8/lO8qz7g7GwjlCwql1dX3N2OjPOEi4phuyHnRC5COwlhYZpu0NbTOY+qEd11YiCIsq+cY8JbgyrybtquV+SYCbHQr1YM6xXLYWSaJoaLczZnPZ3r2e0PKKO5WnXMMZFixFVISuhmVjfjSoZ5Caysph96pgCH/Yjqepal4voVVjvu9iPea1SaCSkQKuRUWWvDeFiY5onDuCcXee/4zYYSFoZOajxVG6zVTIcdruvRk0VXmSfjcmCZIwFLzELh8l1HVQ4/eDF05gTK4H2HMopwe0fvLN4q5pBYb3p8Jyam25vCNC2nGeQ4Lz2M3z6Byh9/kSj2xZ87big47TN+21AP/6+UzDROQvuqYrqX9Ys5/fZKpd5vJI7SCQH6SAny3qKNIc6RZYnyDmtxxdoorJcSX2pkv2UW08l6M9B1hhgTh1mIHtZaoODa2jDm0uYXxbgsQrzz5kTWFKpeORENc5LoUu8tFolyJAtphtbskIL8/UXLfOG8o+TKeJhbs2NrsFBioKCZeo4mE6U01kJqZCYxBAlteZ4WailHuyxLi2V8iGeTUbIcp5hjmvGlcjI7O2fFNJMTNYLveqyz7R2WyEHW86qTOMlkxIzbd55cKvPS6iJK6omlPZMpiakyxUiMQUxl7b2vtHwm5kai10pqoONC1FpIeVRSEfO5GJqF9J5iwtLWJW1Pq1pzIRWJTDutG2StbKyYNXOLmUspEWslhESKEnEst1g9xSHWtvayztINjpw08xyFCKsbqYmKsxbnxcCfQiKGLHN5W0Qp1Cluzdh2h+dMSakZZ9TJ7E0zeSvVCIfqaFJScmxHUpUVQ2nOqTVaLA/rS5r5T7XbST0YgmXfoE5zkNaq1aPhSOY/RanBiSaVy2vkokZUzFkomLV9pta2HqwPMb1K6dPa9Rgfx/G+6zz1+L1fex+d9iaN4q90M+g145fUlzWato+0xzjcQknyLiitAej1d52itqjELxruOdJKaQ0zilZbfjN+30PB/7r5X/lv3v9vKKq8MSj9NI8K68Oav/TLf4lv/ftvcXV9hY+/O0Xpu1/7Lv/il/7FH685CaDCz/z7n+E//wf/+R/YoFQRitLSLX/IB/dm/JGOCqtxxV/+l3+Z9z9+H/XHfvO9GT88druzn/Qh/Hijavj03Z/0UbwZb8ab8Wb8WOPHNik9CB5tQ9SMOOSMtU5MTJK6jnMO3w+kbFnmQMwB4ET1kVpqPRk0VCPS5IbHjY1ocIw8sKZiBi8iXJGiSO8NoUrxuZSCLppjN/SxgF+rYjossnHWBrR0tqeUcNajjETSFSSao+iI81Y22doyTTPhkLBdx7LssUaz6tZ03rKEmTlM+GEg5Ij3BtetCTGQSqU20VxrLYJqrRgnBZD1akBrWKJEjyxBouxKjFgqzsllyS1CIqSAilIckM7JA84oBu+JNVJrxlqPd16y7bXC2Y4wZaYQcVaKRQpFykmK6iXhjKP3UoDOteW/G0M3rFA5YyhY70gl460jxsRcM847rLJcXmzx1pFzYo4zkcSSFmIOjZSVefl8wlqP8R0KEbuVUZALukKIC7UiQnXKDdmvT7ELpW3wO++otjAvATHzVInwU4oYm2mJgmld7FaLYa3W1rGNxjuDdRJhVWOi3t2yu3Gcb8SAtlv2kCreavrVikebLV97+pjnt3dcj0k6rlTk1e1zQgiEIDEzznk+/lTQ5TlFjFWkLB2LsRSqmhC5Qzp1lYEUSisotq52DdVYUomkuxum/UR1hilN1Brpuo5DVDjXU4vCKSdRM62QvsTKkjJGJ6ZlZA7yXMUK548fc3P7AuUrugx413G2GbgcOna5Ms2J8W5EXQzkXDFeoRzkYlE2owrUrKV7L2S0ElGmAt5p0jLSD2dMQcRg4wrGWoZ+xXyYgYQ2jtI6w2MKqJjR2TAdgpDGmJjmys39nkF9zL/+355xfztzvZsppdKvO4wHTcd0sNx97yXjPEuhTRe6Yc3Zdmg0Bsfl5RXDVrNeG3Jas9quccrx5MkZbqXwNWOB/WHh+tk17777PtqPlLjw5OoRTy8f8f4H7/H03Q/Y6o4adrih8p2PP+dR37PuE9FELq6u6M/WfPtXPiOMgXOVcBYu3/+AQ0poCq+eveTz558zHibMEji/OicskUdXT7h79RnKOmrV6JrJ2jAvO9QMF4+2bDYDbrPhflI8e7nn/O33MPGCi8EQ9A7VnTO/+oyU94TUU8uB1XbDarvlK1/9GiVG1ldbzqNi3s0suaBX5yxxx81H30Z1W7bbgZc3t7z35W8yTJE0j3z/+59i7Irh0fskd9MiIhY++egHPNn2XN8fKJ3n6Znlyds/x+efPONs8ORxx7//1X/Fh599xDd+9uc4u3wbmxL51QtevthxPT+GeGA1jszjTDWa/Zyx15ZqDKY/o+81n3/6MW7wnK+3EAPPnj3j3374CTH/CDqIUmJOVVJMfOhtlvnqR/wAxw5G6SDk1Dn5ukhxMi69pvbnJIX27aajKEuJIgI7I7h3XY6mJo3GMIYg4l1IhJB59eKlENNqEXNEVZiuUpVle7ZFlSIGn5JQtSNPioXETt2woxKTCL/GGUqOfPDlR1gDH3/8nFJsEzoj1ExJAeVWhDnRdR2rbSEXhVKOGBaWkKFqttsz7q7vKUpMH8PQS7TEIu+3Y3+lMUmMEhVyTqcOWK2N6EM1C/mhxVaYVvyfpsAyRawWgt9hP1PL2CK4xLxyvx9PHcDHa/H6FcxJhNNjDJj4FVqncAbjLAWF7yzOVm5vdxx2E9N+TwyRmAKfffIZF48uWG+8xJ3GwLgfW6yZYhlnpimQcmYYPNaJKD2OE9M0UWqV98qwotTKeBgJMZBjYF4iOmYxaC97hq5DoYnLAqduYU1OiWkMrLRpkRaF0gw8u2VPyiI+aE0ThiFMgc8+esaLT1+y6jtWmxVawf3dnnEfyDljrWI1rLDWE+ZRonOaEeTm5R2r0NEPPTlLvEvXCuJShJYYjDAn5jkSozxLqMpSghxjNRjX45yjZgMkUBm0UJNqEzKKphlv3Ol5EVM7zWhaUUpENm8tlMo8B2IWQ7t1tnX9NwKAlvgQ5w2+Mwy9EB9rlT8vqJO4ba1FKVmXlhRJsaBYmMdETIk5LY22lKhVSBoptjWHOkaRGBFulCJX6a52yqJajOFhP3N/O1JzxXvHat3hO4m0SrkSUiTGSGoCVAyRmjMp1dP1qLVSsxOqVFKM9zPLfM88BUIMr5ks5WeUBust1kocbEq1PXdiREsx0/QYchbzcNd7Eft+SkeDNrz2v48d3gWNkfNURMwxxuCtkyiklIUwRD29q9VxP4G8d49Fu9KEwdzMTcdOet2MNMDpv4l5vp5iv6jwPff99jtpQqlqdCqJ5KmqUGojubZIMaU4RdtUVR5ICEoTUyKHijGWkAJaScyWtbK2krWTEJWM1RjrHuhZ7ZikAaOJZlqM9N659h6V5ydnifigCdMSx/Kw50ot6k23WLMYA0YpnDkShFq8ViOxoSTq5CjEVS1xNqqZdpTS1Nqip62IuUU3Y08jIala0NRmfinNGNOM+Uaj0Qxd9xAb3qitOSdyzW0/UZnGJDExxqJYMIvm537jA1bXa+Y6sy97qPKdj2bH472mmrHo6sUjHr/9mFeXr4QO0EyIbbqSfRenE34yiunjk1kl2M5YjcaSsois4zKzzIbeS7TckkIzsWm88Xxp/w5/+dmfI9jCWIUcVMlM80HIROUY52O430n8Ua1tb9qu22ICv/Zzv0qujbzYfGRHYwJUoQvLC1TEyXkihQRGEXMECsYaYlFobakg16NRWpSWJo9cxBiZciRNR7EX+tWKaT4gp1MLFdhbBmcJBVKqxGVGdWLy1UZJxGAVknHTVdseX+oJLVhdSHgpYG1PyrqRCuVed20PCmLiqOpI+spQKqpoYshtWRdJsTLNEccdn368Z1ki09IiUJ1F2YrCEqNiuR3ldzdilnUSES00Ds0wrHAenNfU4nDeo5VmteowTmHanjTEzLif2G7PUEZi5Dfdhvfnc/7MR/9n3qlfontiqDlgLLLfsRZnJR6qHwZs57l+vifHTKdavePsnNDm6ul+ZHfYk0JE5UI3dEKkGdbM0x60af65SlGKlBdUgn7lxdTiHUuE/Rjo12foEuidJo0LmI407cklkkqFGnCdx/mOi4tLabJZdXSdxNemWlC+I+WF6f4aZTy+c4zTzNnFFUULKXd/mEih4FcDw/kVyzKTM+zu7tiuHArFnAtrX3n05IJpnCCDyplpGvne977LxaMr+mGD6wbyYU+YJ+YM1EpnEKJNqdiUmKYZ4w1VO7rek+NMzIn1WmLybm803/t4YQrxZED9oRnq9Pxzehe0qKYfNZ+ddh6/y684Lmnrw/+uVdZIqpc1fU3lC/OaeBYU6vYCVS05F7KSKMKcCzVJbc0oLWv+IpGeAM5LU1jMmZITxliKTAvEKZCXQkWMLMZqSs4Mg2O96TjsZ25vF7TWEqVFhZKpVepZ2ih854gpYIys9WoRk5R3nkiipIgxqkX8VeKST9F6tRmHSlu4HNdFWsu8bLQin4w2R3NLM3blSgwS9amUvPfGcaakfDq1IUr+8MN1/eK1qcd4T9UaHJF322kZ0mwpukU75pSYRzEWieE9M42JXAtd7xrlC+Y5klpTnmqmn1yOdBw5jhgjMUrcm3OOvu9Rqq3lUqIUmb9DM7aTJGpLK03J8p4Qs5FMWDmJmUuMR0djC9SSThQpOBI/ZW01HWaJvtMK770YsFJqcdZZ1pxtb0cppzUUSORqLhnfyXs/kprZR6OLrO3FCFaIsZzm2KqO9KuEQYMyD7XOXJGuhONa7eGSKd3Ijc1MJIbo1025crWMUijT6oht/U1rbkDJM6qbuVVroT4eY9WkHCCGuNzuB91iZCtH45EQwnKsbY0lph9rrdQYy0MsHvW4PtNtvfqwj1ZaCwFNy/Ucx1lMhY3Ero1qEdliDs8tZlfeU2I8OpG/muleF1C1Gc9ilSj2tjfgtRjeE/GyNa/yGin9aKov+di8pdp+I2N4WEe+Gb+/UVXln57905/0YbwZv8dYH9b8l//P/5KvffdrP7bx42d+82f4+ne/zne+/p0/4qN7GCYZvvlb3+Rv/L2/wTAPf+DfMw0T//Cv/8M3prk/QcMkw5c//DL/yT/5T3jvk/feGJR+CsbLl4959erqJ30YP/743lchOPDxJ30kb8ab8Wa8Gb/r+LFNSsYoKVCUo9DSui9qRleDMrV1z1RyCbLBIgtmvdFCRKTRDXkrm0+ho1iccxhtiUtGGYu1kveeayWTpEsmVdm0hYRzin4wjFNsnShidJJCg6iYJdAagQtZF7TTYpgxmops3oy1rZO5bYJrIpPJKbLEBR0Mg6s4o7BaBARVFFVJHMCyzIInNrIF7IeBUmsTwKSgnmKm5IzWjpILyxLxzmGtp1OaKe7IFEpJtLoDIUl0nLNW4lLahruWArVFAhmL1YJJzjWzhCCFLiXI+5wyMUinq1VahEHvqVkoSc51GKVJKZCVFPX3AdSoWPUDgxcDVggLfecxytJ1PUprtpsV677HGUPB4oplrVdMYWLvR2qRSIyaCl57yVd3jkxPSJHd/Y4SEs4JfQuUbNR93wSBgtIGoZZ7unVHSjMqLSIyaQ8pt86kjPOGqi05BkCuZZ4WjNX0Q8eyZGLIuM5SUiTnjPaZlDP7cENvBi6359TOk6bE1fmW882GzZNHDI+e8kGVrqc5RV5dv+LTTz9lnHekJty0tEGMkq43DBSVqdaBtuRlwSAEL1KlRqimFQ+URBxRi4hUJMY8AopQM0oZwj5SY6JbRVxvADEImqJRTjMeJrbbFauVw2kwWIZ+oC6JqjQlnXP94p6aKt3gOIyBf/+bv8FhP7L/9Baw1GVkdeYZ7wPpIOKoHwx+s2EZE+PunhArsVRSCSJ0xIwyhg7F6myD05W4TEyHhRDAOM/ZdoMyHWMc6b3FtELUPCbGmwN66Ok2K1RcWK82jFR29wvjZCmhoFVGK8d67UX01x7nDW4OWNuRHVALKmWGtWcMgYvzjvPzNdv1ljJVTNJoFqxO6NLxW9/9Po8fnXH9/Bo1F0w58DNf/1lW6w13h5G0zAxOk+8n7tXMZe9gLvi4MB52bC56crVsHr/FR997xvLqnsdPBz7//oeEmHn5IvD2l99jtXG80h3X1xObruPy7bcwg+W9qxXPnr9gd3fHkyfvUyu8vP6E80ePUNbS6xW39we25xKL5Zzn6cWKMh2IKbM3PW8/fpfbV5/zsnfMu8RmuyEvI1ePz7l8/D4vb/coazh/uuXVD56xfXzO5Vtn+Dny8vlCtLDfvYKna1bdGbb2vHW24vPphvXZir5f01vHe1//CmPNvPj+J/RqJhx2DMMVrNbUFLi/HXl1c88nHz1nu+k4O9uyub/g4uoRg9MsY+DRow3KX7JPmmVK3L14xmef3fDW+18i7l9ArOB7tJXzfH+3Y3q+53B3YHV+xSff+QHPn78gFen6/QIFiQcJ4dgtehQMTkSeevzkcSgekD0t6qceO6QfPvfDRiVVFFY7KVjWSkyRVTJgShPIaeYcxf39nrkU+t5zfnWON45pGlEG+t5jQqTGzKNHW0KqGCuRa845vOmZDpO8E3DMYyGFyqNHG1K3ME4R46RgfAgFYwaMNWhXMJ1uxVFNDImQIxWL7Sznmy3r9YrHTy959WJPTJEwLxIf5xwhBW5v7oRUoBVWi8BQBSXBvMx43zVRRONsh3WtqxSJepW4GS/xOocD0xjJseKcRluIKQqlQwkpQzcKoMyVUqSvVZ1iEGq7fjGk0zVRbb7KQTEeRvy64/zRGZvNGXfXOz7/5AXTtIjB2YLvOrqhQ+sq8SBhIifDPAWUVUzjRJwiyxTIFLrec3+/Z5kXMdGkhO+6FhPpCDGy3WxYloXb6xldwWlDqFKUv58PjT5ZxCxS5XuVWihRUxJ0g4hSITXDWpZeV9Xm+bnMImQrRVEarRLLIXA4zGw2K2ITFEqphFKodWZYDQx9zzRO5FyJMROCrEdyyWw2GyRqyrQ4nMQyz6SQSCGTS1MHKicjjMTUeplyYmWZAvOU2u8Rc7iQU8RQYqw+EYQUDwKe0ooWcEVcYhNY6qnrWJ7aciru2xafYa2h6y2rtRArVBUiJUCImeJMi3OT2DWl5Hvd3eyYx72sG/Ox61g6ko0RM1IIsa1v5T40yqJ0M6HQot5qFSPWJOSrFESIWOa5Rat1GOMoRRGTiE9aK2pWLaIhS3N0M+HUXBkPEykE9toAzcjehBDT4mpFixHxQhuD7yQm+HCYxYDlTBMxqxA7tRLCaUos04Pg99M4jkJRbd/xeJ8f7QrH7m0RDRNHweRIWTqR9IQR9NpvbjFw+oFkcIxqoUVQV1VOdJxCFcO8EdNJjfm3CdZiWiqU3EQaVSmqRWw0AxKqNpG1EX+aGHYMdTzSoFRVWCNRNEaLCT83g31VnGLOaOKYrP+bOHU0Ah6bHmiEhlzECKWNrOez0Coeojxoz3U750exqpm7dPvvWglVIDdCAVnEx0ol5RYD2YhEmkaHMhJpo5WIXkfKmZjYKyHJtXZO7t3cBFhr5LPWWBSKzjucsyIKGo2uGqeEVGhalLOqQk8wSuJ/+tLzM9/7Wc7354SyCNXDyLMCNCMjYmY5zeEaXw1f/fwb3D26b3EzUJVtseGyHtBGBMuaW9SRkoizIyEuJaECHd9zRVVUqZQaCblydf+Yt1+8DcZSUuaCM94an7IaNgyucobcx7EUpmlkt9s10mphORqr6vE5EZpPMpHvfPN7jJtJjhU5h8cIoJOvV7V3XRFBtOhCLPKey22tk0ORiBsnMewnykURQ1GKCe8dzuv2Wmn7mtzsk75jOixQK8ZpYsq8evmSECLLbkahOaSI64yYE0L7LlZE8RQLKSyne7kgcdm5yHFbwHYeo8R8ImZSea5951HaEksUUVcdzXeFOKcW8e2gJLz3RCDMmRgl/kZIbLLOKjmhaGZYWgOGbSe/FKxzxJzpO0vfO9k/xyYKkzGqoqrm+vaWYeiYDxOkiq6BJ5dPeTw+5el33+bs5Yaz1ZpqEotK9FZDrpiciDEIKblq/LDh7nZPnhaGtWV/e0fOhfGQ2Vxs8c4wKcs8zThjJQLYas4Gx/5wICwLq9UWUIzzPd0woLTDKse8RHwnRhdjDOveUZuxJ2jDZrVlng5MxgipyDtqjgyrjn51xjgFVK/pVx3j3Z5u3UvzSJLjKxpCmGDjsbZDV0tnO2Z9wBkh1g1OyD/n52t2uxHmEXKiFMV6cyYk4iTrsWWO2P0eYzSb9RbreqHV5MRgNa7fknRPjAth2nPYH1C2o9eQw4KJHRkxQy9L5LDfU2LAdms++vAp1y93YtpTD4bg0/z0hfd/Pf0bX/hEfe0zr//Ujyn6tY/pB/sjqRZ0Bqdl3joac9Sn75MmRXBB3qe9xfiOFBO5ZIzTmGLIRaJ+JaYQMcZk8L6jNPPG0ayUQsU5w9AbYsqtJqeYp0gpCmMc2ghXRWlFigUKpCKNAsYYut7TdZb1ZmCeIssidadaZG4oNbMsoVl+VGsiejC5ikn+2FQohDptpIZnWuxpzaAaUTG0qLqcj1QgmWNr0Q9XQanXfufRNHKcxx+uTam1NVSoZpKWP04xUaj0rqNr9LT93Z55bg1ymmYiNmJsVzInhhDa/kXM1FQhNuZGLE9JzoW8y5r515hG5C5i8NVGaopF5l4hz4sp69TUplswbTNviem9yntc1UbzqQ/m7DYx1JpblDSNUFhIQIrSeKhqI+ZXqLkSq8Qxizk0CD2oyFqzFon69L2nG8SwqdqaJYV4ov/UUk/3ufhm5fobI/TJWsQUE2NrzlBKGvaO6+VGKhKi6nGf/7DLP+7LS5Fz3b7oD5nTHkhPsk4S45JzQrZU7RmkrSt1kfW3OVI50W3/GVnmuZl46snUJu9TMRKXfIxhlmqEMaqZcDnVGGhkz5pavaGoZt5Lp3WoauugXMtrcYCtOafdz+q4dkZMU8vcTH3NbX00qClo0YdfrGscSVY51dcaHdp77fizWu6/nDJVv4l7ezP+jznW+9+/QQlgmAf+43/+H/ODL/9A4t7+sEeFDz76gF/8N794Oq7tbstXv/dVXHJ/wF9ZCT7wj/7aP+Ll45f8Pr7um/ETGjprvvyDL/NL/9sv8ZXvf+UPfO3fjD/88e1vf50Qfnfi2k/V+Fd/Aeb+jUnpzXgz3oyf+vFjm5SsN1hn22ayFQLa6iY1eo9ppqNcEtpplJEYMmssSlUxYjTkrOTIm4ZWVuQcCEtmaV3x1Ix3llQrFMHXGiMiAjkJbt0qehzTFI8NOJxKSm2DS5GCQuctrhPxLBcp4qPBtAJnbQXzFEvb9hXcYFG5FfKNwRrVCuuaikOZSi6JUot0zAPDYND2AXtslIEsBVTp3lKElIW0VAp3ux0hRTlfSTp3jLXkIB29tjNY2506swCMEk6HbDI1dalUraRQXgslZYzSeO3IOuOtoPqNlu8YSyC0WJnVaqDqgrZIF5POhDgxdJaYYJwncpFYNasN3llQRcQ5KiHJ959zxLiKAZzRKGcBQ9/16KJYWc+wHkhUbvcjS6p0G8/V5blE/0wzMWVc10mxriSsdaTWWVhV5O7+FcPZFl1B4zBGzHFFBZSFUBVpCRgs035CFY12Cu0Vgx9Y5km6yLXB2I7t9glPH10xzjNedWzOLNVqlkNh5Twhwqe3iZUDT2ZOkeevXvHs+eeM0yhkoSjFI11Ni5UqxFIw2qGU4dFb7zKcFX7t3/07SApTwapMSYoOMQAYq7DOUYFcwKHIVUEqVAO+M8S0UI/PV1UcphGlKn3X0/cdTx87Li+3xDhjnccqzTtvPWW32/Pi5T23d/dCtUiBUnv20x2Q2d/tWa16hqFDlQlToescNWqs95S60A2KECrKGJYg3bNoxarreOvRI7q+Z04LXkOJkbpUTIVV3/P2e2/zzW9+he987/vUpWC1pdPgzj2h3OOypcRCShE3OKxRLCESiqVzFrX2zCGgsahsGQ97iaSYFTpqwhJQ3oDXzPPCej3Qe83mrKfvV2A9m6srwlwwLnJz9xnLVAmpEMfE26sNt2nHdrPm7adP+eCDr/Pr//a38Bc92iker5/y4u4Fn+1v+PWPXvD2o6fMU+Q8W95+fEGICdNrxrjwm9+75p33vsL2fIPrDcpovv3tz9lsLvnScMb3f/M3mKKS6K6UOLy65vzROduLgcP1PY+fXPHo8hFK99zf33P96ppX94bHZ495+92BXZz49PaaogxDTZi8QFy4ePQWr8oLVpuBqy89pRrPxy9umefEN772NoebG+JhwmlLPUxc/+C7lO6cPJyz3VjudjOvrnc89hv0WFmtL/jaN79MHAOf/cp3eHUduY8LF7bHrAdW247rT5+jx4HrZc/28pLV+Tn99hHz7Svee/tdLq6uWK0N4f6WDYZVf86z6ztyjZx5h7l8xMWjJ3z27AUx3fFovWUpgTRFxvGAyYrNqkfXwM3NSz6/fsG437Uq5WtWoi+YiF4zLv02KtLDXHacJ2j/7ziPHYusP2rUY1evkgiytCwsMUMuzNHQOyvzw7E4qRrxKBfm+wPUjOs8acn0vsN1Dr/x6DGgSkHVTFWKzeVGBO25sr/f41eWbmtRgLWROczkKrEcYanE+cDZxRkpV25vbhl8x7B2bNdrYhIxepoyvvNcPdpycdnjrScexPR4fZ+ZQwJt5XvFQGkRRs4aci4PXckFrHVobVhSIudEqYkz71mtO0qp7O8XdrsZVTUxRaHcHWvHGs6vtmIUVpplmllibHE7SAW2rQ9Kec0Ypjh1YH+BDlMFr59LxTnHsLLs7/e8+PyGlDNKC93Rdx394OmGrs1bhbvdgWUpxJJxWIxxLJS2JpDO2pwrIQiNwx2JgzmzLAt3t/cSUZATKQQxHMRETpGwSDSNCB+FmOup41eMEZllnqHKeirGLF3qgMQotXu0NMOGMWLEaEXpZW6xFrmcnodaZR0WwsL2bIU2inE/A0LjsMaTY+tCpjJNC856Nps1zloOu5F5mdFagZPLoJtIlmMWQRqhXaYokQpCH3otjk1pnJMflk53WtxFFR95M1sopQgtVk2hJPJOyfMlnd1iWLBORCBjNH3npOMZ0LpSEbHOWjE6lVyYQiAEMYPXqrnfzUxTIsZMqRnnJRakFFmvlSxmi1IT1EbtUHKgReUmKjQSFIgJIUpsas6VWCO5KOISmKaIsVYi5EpusSNHIot00Uv07/HWLW0elcghUKdrg0I6x1tHvNDCMilyEt1KKaRUIecWVSH3y9GLmWsh89MrKhijxLxdyhfe6SBkImkuUO3dIMIcTTQC0z7XzlcTUY+0Mn1sNsialEt7j5RmqKktllLe5UpUH/n7NBiM7DHgqGqejusoVh/3ALq9748xNfIdHmgbqkWGiY+koq0+JXmoJpZR2+/ANAqT3DM5N0Om1Y0Y0CLwlJL43SaqV1Tr6FegqsRF1oJqnSBHk0tNYpA01nyhI/54xHKPiomwkk8mqSP9SyN00ppLMwlxeuZzFvG7qCJkBNUaRVQFpUklYqsmF4lfLE1gFUFaU1UTWGttRFTZL2ktwraY9uQZsdaimiH057/7p3ka3mbpkhBAO4nS1lo3IoXs26oSYU/IUHLeXOzp4orSN8FPPZjNhBAnMY8lZxQS86OqNCOgFc47Uo5NkNTNPLNivRrorwf+7Hf/LBt6qtZi0NViINir0poIMkspHMaRw3ggxnB6ris0SojcdaVWsiv8ys//GvN7hW1/zotnz+UdXdu5LjT6gtyGR4OiTDvtjiztPWsNuaQm+hZq1YQUm+lMSMJqZRj6jlwiRoupbrNZE5aFw7iwzKERLSRCL0SZt8MScM7inEEVMbJaY0hFoYwQ+Ixt5AylWyy3vPOctWyGAeMkLtooxCQmej7OWtbbDY8eXXB9cwtJjAxGge4MuS6YIETgUgrGyZ4slUJpjT1KWWJOEtFbNUuQWKCagNJME0aDEVOaNBNpfGcx1oEydMNAThVlCtOyIyeJZiyxsHGeqQS2bPnFZ7/Az+1/gVd3N5jBorRi5dcc5gP7MPPibmS7WhNjpi+y3s1FTGMhJ8abie3ZBV3n5d2hNdfXe5zvOXOe25evSEWx3npsKhIRPHR0vSNMC6vVwNCvUNoyzwvTNDHOilW3YrN1hJLYHSapd9Qie/ac6FZrSh1x3jEMa9CW3WEmpcrVZU+YJ5kHlYaQmO5uqLajuB7vNcuSGKeFYjxhWlBYthcbjLHMN3sO+z1BZaGnOYvuLXmeWXa3lFpI0aCNZThbkeYZYxRPnz5FOwU5UmPBdz3LElnKXgxfxtI/ecThsDBOewZnUKpQU2GJkbQEvLUYDcsc+fCTnnG6kTWnPrn7TmahL7wgf9ib9KNG/W3/8qN//rW55ET8RtYDuQo1JSlOMctH84xaOvT9BfrRTEmFeRzxfXeijWut0d5gihC9VJtHtHUMzkBVzEnop9aLQUEZgExMQmAsGfb3ga7vUNqyLBMUsE4M0qqKeVNoZpVhEIqk9xZKs5/XQsiy8lDoUyyVUhL3LmvCo4lWTqYxss8ouRBKxCt53rTWxJhZGrFajDfNTFEBLcdmvZP5vJTT/FJrO/VtbfRApzrOzrKeVse5sK3VZY0qdg7nxRg17mZpxlLHtYiWumWLb61ATNLYmNJrjpyjiUQmS2rhZJZXWjfCj5DgYhD6Ju07Hk2SlNeoPV9YjzzUOWW9UE6NoDk/0KFeN2adfly1AzwamHOhhtiuX2vYaQbonBPGOLq+awa0IusKZI9Ucm2NJxIb572n6zpiiG0NU1ozqjxdR6OOUHQ1tSa591vc2jEO7Wgc0y3+txyJ4+36fPFxkzk9VtmznKJnm7HJtHN9XBsqpdq+wpxMgLXRhmTuPBpzaA0+Cq0kGjGGTHrNiCQRibS5+1hTqKdzK6budv5bnNpDJF+LmWvrfCHWSox5SrJeLaWth+uRsPb6fVxfvx3ELH1cS9cj2e1hLap4SDSuyH2msuYh6rb9vlqP25DXyiT1tI9/M96M/6ONv/pP/urv26B0HE+fP+Xs/ozrq+s/9ON679P3+Ft/+2+x3W3/QMf2o8bcz/yP/4//kR98+QdvDEp/AsZmt+GX/sUv8Rf/1V/EZPOHdh+8Gf//jxgt3/72N/kT9SDttvDhB/Dzv/qTPpI34814M96M33X82CalqqWD1bbqwNGotFl5jNXMy0KugdV6hTE9xlpiyixhQam24UcKhr4/knVM28RnBDsrXTrS1RVAeXKVuBPfdXSrDu88NUYySeIUnJbCZKXhgJtgcGzBAkCTSoKo8KbFEbRdWIpRROGgKb4DKllJ4dV3Dm21bM6CdGOfna2ZxkjKilQzVVW8k8iznAthDuQq3Wpaa1ItEo/mDeRCKhFlpEM0pUithfXQNSqEbPS1NvSdo9ZMPziscyKCpkJcIqoIScBo21DNVmJGiqCgbRNADJaSHKVkERWtE0G0wtB5tHFiPCsRo2lxIplUYAkjixJ6kFKVKczUUll1DmM0czqQU8IZITctKdIb247LkIsIIrVWYsksOCwe51Zst+d0wxXOaHpjKTlj3YA2BnXqvlvYbLakLOJCqgtFZVKYhDTiPM4YQlwoJWI7x2FZiNpjtCNnmGOgGrCrjjhntBOjnTWGznRSxF31fPLZCzZDxfc9850QKO6WiMITX91QwkSOB8YYWZaFUo9xI1K4kh6lBNVQsWjVYmdUYff8I+4+T7hgUUYKXLkVEGJKeGelSFdEmFFKU1QiF421hqu3rug2jnC/Y7wJ5JqJUWHMCmsyphp61XN53rG7veVuL6aF6hTf/q3vc32TOOyFtrE57/GDIYbMvA8Ybbg8f8R2syamQFwc1cJm7TFPemJ1vHp5g8ZBmRiGAaUMJS44ozgbBr71wfs8vnyHj58959nNh3TdhlojF08dfbfhT/3sn+U7H/4ar64/4+J80xDpHufh8tGGYCKHKTIfFtxmhXGGVefRc0Z5xTyvQBkGN7CMC0p70iIdmw4jnWcZwiGQnaHke/reYe3I4AZW5x15Gbm73nHxaMAMmtW5o9gIIfGtn/lTXL3/NVL27ObAZ89f8eWvvYfre3ZzocTCut/gr86w+x0vXt7w+K2nfPCV9wg393z73/wWn+8mpr1le/EuqXrubife+8YTzh6fcbg9kErEqcLl1TlT0exeXXM7HzgbnrJxa6yu3N9+Tjdc0LlOjGpd5YMvP8Gvz7n7/J7b53d8/OwFMcCj8y3TzQ0+bynFMc4BR+T+7iU1Rrbbt3n18UecP31CyZGYE5fvDpxfPeKzT17C+YbPP3slkRRRCGM/93/6MxwOCz/4N7/B4OBXD5HHjy45e+uM3e0tedGYYc2z/cLZlz/A7CrPP/yEVCJjuMYOKy6vHqOHFR9//CnKGOZPdtjOsGiDGe/RRWFd5XCYWYri5e0LYjZszq7wKlHSTCww10Bdr3Bek+JICQufvrpmShmKopqHwh+8bkg6lhzhtWqsPJ/q9UL1ax/htaJnK2AfmwmPf3Y0y1QkRsVZg0HMFDFl5pwJLfb0+PutUayGDjN4Qgx0K88SEssSMb0DpVhtPKozDP3AoCr9auAwjkzTSAkK7zv6Vc/QeSlkWsMSIvNc6Ice31eWJTJPI7vdnlwqY0h0Q8fji3NKSTx7eU9YCve7kUdPznj3nXd49vk1L28n9mPC6Y6qFg7TLPGVrRjqrMU5oQkpBDsfQ0KhWcjEGFAKOt1RgSUEid+qgocvsUXVFHXq3HW+o+8GrDPkmIWUmIS6kVNsReiHIuzRFFRrxdoHYf31oqrvDRePtmwv15Qc2O32LHHEdYZ+PTBNExiF8RbjxCwy7heWRcw2xsocdzgcCCFjnWsxWolaC13n6VRHTLEZpBQxZMbdSM4Ja3Uz2hTmJMSlWiXiQrqJX0Pzt/K/sZpaKsscSUloJ/2mk/XDkk64/WPHsKLivD3F5Io5WIzZD2uxdp9roXl0K4exhmWS7t+aCyUqwhSFurgkaplJqXC2WaG0wVhZDyjdIkiyIsVEWCJ5XE7dzSeTupbvpLUWs5JWTVjTYqR6rWYvq7LavkOR4z6ekfaMKYTCIpSl+mCCqIndfRBDqlIMqxavYSTSd5kjy5wIS2UJGW0tfT9Qa8V3BpAoQGtdK/yXZtjQaCCm1qVd5b8fhX45o617/Uj5UiLq51Ixtsq9HDLjTmJ2NIacE/UY8VBKEyTq6T2lWqczTTwRU76cy1qle7o2wsDxfqdWlqXAEqlVoY2s1yTuODXBr4hZvxlmJN7qp3PUZgrSx5PdXtfeGTnXOVFpz6OyrblAKFFijtNAoeR6Mt5oc6QpiIop9Lfa3mmlmYCkK9wYi3FyP9SS2z0pRFSd1Sk+74fFsJP4VAsU6c5XJ5G7xZk0sc2cPGKNkmmFAFQLkCWqa+idGDnLg1nDaN2oa62DvZm0JB6nxYw13ECthaKbwanF4DkrdKPTvafkZ0xVWGsaoUqJAJqE8qXbsyb0NIk8KVVEM9PuI6HyiKhVcpH4ylqagdY005Gs30/XFjkGiTCVPZqqEHOBmoRgq5QYfkptJCNEqFXStKGUxJbpFmOVW7xeUgqtB7yvGDtg2rkTioeDRiAS4VaoOrlUUp/48CsfwkZh6cRM3KIlS04UhLQWciIr+V61IHFsuqKdoWQh6Oi217LKirHSWuqtoo6K3BXSEqgF5pxRGPI0QY6yLmtUKbn3Xpv7jntiCesDZSg2kWxgORyY9wWTxVClGo2rAqqU07WVmOs2eyghH2utGDYrjDfkZSFO7R4rCq0dWhV01Rhl6TsxKSxLpOvFVHj96o5pqsQg7/KudxjXSAxBROe+G+i8b5FFRp7poUOvDRnDOM7yXqqpxXMqahaaVecsV+fnrIYN94cDh+kOYz1Q6DuNNZ7HT97m5u4F07Sj7z0xFo4Gv37wZF2IMZNCQnuHNhpvDSlVrFHNRCDNOjkmlDJN4C+YZiZVpRkpjKbURe5tHSX6s7fUHJinhX7lUFbhOok3JBeuHj3mon+Ln/nVX+Diesuhn7m4PEMby5KEQOKsxwwdKiwcxpnVesX5xRl5Xrj+/BX7kIjB0PU9pRrmObK9WuOHjjCFZhosDENHrIplnJhzpLMrvPZoVQnzHuN6rDGUCsbC+cUK43rm/cIyztzvD+SsWPWeOE+Y2gFC1dEqE5YRSqHr1oz39/Tr1WnuHDaWbjWwv5+g8+z3I77rUFneDU/feZsQM7tXt9QQuM4J1w+snMGuHIddZLteMS4L/dCzPl/z8pPPxRQ9B1zX4TqNd5a4LCxLbCJ+pBqDyokaM8ZblmVBKcf9/T2lVKzrcFZRS5II7QrZaIwZKCRyULx4YZhS4jXd//V/eW2iemhiqD/8B6+Nhz3D7xD79kM/9vqeQqkj6UTMcaXVAozRR1sHah4w12/h33kpEXsK0Iq0ZLQV86W1Bt0jcbhUrHeUUggxUFokmHMOa60YebWYInOUd63vJXIs50QJpRnRhfi1sZ7eQ4iJZa6UnAkxcXm1RSnF3e2BeRECqlPy7kwpNtoPLT7sgahOM15TFaEkIepUIewpLfuN4/uwlirmmPr6aRSTq3WuNUHKsQl15iE+7tSn0ppG4BjHqr/QxHLcUygNvnN0g5do+jgT4gJUfC/HDzKPaSNzf46JlBrJR0lMWsmt5taINcc5TSuFca4ZsdveqAjNKCxBojERr+wxqrYc96DH9f9rdKLjd1NK1uzH72GaufkUt/zafV55aC44rmtKo/t88ffKgVRVUMbgO0exEmGMqpQs9PNUkxh32nt06DtZF6kWQadMW0fTTFfSSPn6HltMSUhNt611jn+/VpqUaGuNh+aj4z9/J3nwaLIp+YFEJA0BVRo6FjEGW9vor83UlLM01Eq8rdwv1roWMysRceW4rjL6FPEmBqfXaxDH73ZcN7Zr2K5HLVWibFX7FlXM2qrS7inZb1NpDRTqtXu6nr7jkSp13Li8TiaTx69KlOsPdWqVDLFFzHI89kqLd+T07JwaZP4E6bBvxpvx+xnZ/P4deJXKYX3gf/6r/zP32/s/gqOCs7sz1of1H6oxJfjA3M9/aL/vzfijG5vdhr/5d/4mX/n+V96Yk34KRwieZ8/e+kkfxu9v3FzBr/0c/Olf/RPlrXoz3ow34z+88WOblJSW/HjjLbrKBrQU6f4qWZDCVRkqrcgSYiuUV2KJeG/pOkfJgZozISWUbvh0qZJTUxVjkNFixLCN+1skYqSiccZIpJdGouSUiDVojTWOVCIhBmqpzWCDVB2VJsSIsQrllHRk1XqiESgKFNPiDhK6xcS43pNLpihNdZriFbvdzDhGcgk4p4lZCkHedY32JPECMQSckyJrKRmqkGRyLSwpQslYo6g5Ugts12vGaaHWSu8c1nUUSkPSN3NVi18pWbqRnHX0nQircZykk8wobNssay1dXhyPx1iurq5AKZYYuN/tpHO0yEbYWiEWhJzoBgdVxNwxBiiV9WDpekshsl8Sq2FFjknMTimRMExzEDKO6yhO7oU0B8qcod5IV7lWFGNIrsf5Dq1FWMkpSoe6VsQQJbqhJOIyyb1gDId5ZokLKS0irmAZlCdMmXlc6D1QNdo6UlmYx4m0SIxKCSKWWAO76xtSmLmd7thNt9yPHfe7CWfAojDGs6QgRbvcZNb60G0lonCR+Bkl4tox6sYYKc6EvFDIWCedfrbVhZJRdF2Ht4YlzCLAtfQpqwq1JlKFu1sou8KZ3xBSZt1betfhfesItp6cC8+fPSeEyLgUbg/PsaaissbUnvOV4+6+ipEnGZy2bKwn1sqjR5c8Xm0oNfP0q1/m2fUz7vd7jFqYYmDJnlRh2GzZ9BsxUdxMXJxd8PT8gr/wF/8ypruiv/iU+JsL+3mPcwXnFNM08cknH3F7d8fQrzHVUOuM1hWL4363EJLFrs7Z9AoVZ0qFaTfilaFf9ay85Xy7Zj+NbIcVr+4n1mpFCffEECQ6L8lnxzmz3x2kczQVNqz57P4Z3drz9ltXPHn0Nt1gmKYDl+vM1eqCs3e+wZe++i12z16xv7vny19+H2UKORh6b/jou7+F6i7JYybf3PLW9jFf/cpX2a7OeLYfiemW98/XDO9+iclrrraO+faa22efM7+65voHHxNV5ht/9ufBGS5jwrnCi92Ox6tL1LInL5ZhtSUreHb9im5wZJW5evwUbTr6L/VENI+7NefOMe8OXB92hM++j19dsLo8Y325ZSqVeQlkNbG5uqTr4O7lK7rNBasN7F7dEcbEcH5GF2+p44HVuuP88Ts8/863KTGy2niqd4xKcZ8KK5OwQLwfeZkT0wK723ve+8pXyCFRSJxdXVJyYXd/y7Pnz7G95lvf/NPsX16zH2f6wVNqpi4W53pu756zjDM1Ks6vLjh/fIGZJh49Gnjx/EMSijlmOlXpLs/45JNn3N4eCLlIEfMobIuz4FRXfa3mjBQ9H4ptXyhIt3+8vuk7dR0ei4nHIuCJ5vNgYLq8uuTpozPuxonruzvG+wNztHgn5lttDK4Wtp2jNxprz4glospM9VLEvr+9x3kR5mKjvIQUCLO8C1Zry+bxWohsCK3idj8ScsJ1mn6QzmS04e56JEdF33UYpRjvZz5anmFcZQ5CfaAmXjy749HFHXfXe+5e7ri7m6CJArvDSAqB1aan6z3awjhNJ4KRmGc1tWqhDVYxHjvvKMWQQ0TrFk2lZA6VzliFriLqz+PMq+eVi0dbKcoHodxUJRFJVT2cc9cK+VJElrlPorMeCvESXSTxFNZGxn1gGieUhs3ZwGq9Yp7XhBil8NqiV1U1WAxVFYwqdM4yZSncG21JKaKNiLAlVcYpyDlE6ArLFMQcYQz90KOBeZrRRcxEUFBVDDPtTuRo5rFWSCViZBEay2Y7YKzQjbRp4lVuN6lW+Naxrqt0itcCtRmZUBIzKKatQq6Johy1JImmNZX1ppfzlyrTYRYTjDL03YocC/O0YK1ls3HNmJCorlKCCC+lQmnd9rpRaQot6qgqsDQaoHQmp5BOMT4yXzbzhVX0fUetlXmOZEozXWWhQzbhKIVIiolpDjhr6LxE1MxTpBbFPFVKnVp0iQGlRTApipAkwsi5TN97+s4RQmyd6E0YgyYuFFLOWGugdU8LJcW2GIQWidR5jDZNSJPIi65v8WsWoqrEQyCHjFJCHKjUJl6IUlDgRMI83uNKabz3uM6SUz4Z1AqnR+5k4JKoD0AJUcNadTLdvKZZvCZdfPGd99M2RJipTcA7SrFNkGschpNlo9IorE2kqyLgigk+N/qAGA6MMaf3dC1ynZXW5JxO4g0liwkGWWeWXEQMMxIdp7WS6DltxGzRDGfHDv+jFzbnIvSlJlRxFHPad1BVteNvpp1ShLKqhNaKVlQDYXmgfWlzJC7k1uigaN4jSslCBuL1+UoE2VyA1t1fm+DonTut/W2jCHA03TUR8XVBq+Qi7ygjxqEQW9SIEpOvQoSsJH+ZxJwoTT8MgIiw8xIa+eko+op5MTcBmvZcxCINGQ6hURQyKRWclXeQROGJueYo1hpTqbpFqqTC9y6/w8UPzjBRKDVVKXJrlJAocpphSg7+brjn1dNXPH/6nHt/S1kyqraIRpWpJXGMhANLjhKDYo1cdxG2szS25HaPZYnf1gbCNFNyZtwuvGWf8mh3SQhR4tJQKG1kL9kIGUdN+HhuUfW1u75dn3b++jDwc9/+Of71L/xrkk4o00RNxOBQmglAa03OkSNMQnxibW7IMM8TdYHOOHIpOCvX+3i+lRbDw2E+kHMm5sq8O6B1FVpKdXTOsCxybkqR97bXhgKshp6V81Qq64tz9vOBZQlolYk50/WaUhXWd3RWYlPTlOi7nnXf897776PNgL2/p7zKhBhkXWHEOLzb3TEtQgFUVUON7fxpUsiUotGux1tO8Y4pJLRSWGdxRtN5Mfl2zjPOEr1e0yJ79CLrBOssIRVCKFidUKXQVcdu2WOdYbMeWK02WKdJMdC7yuB63klf589++ufpJ0/UC+fnZyhVKUXe2Xc31yjTU2OlzgvrbsXl5SXedRxCpNSZs87jtudEA0NnSPPEctiTxonp7p5M4dE7T0Fr+lIwunIICys3oFKgZI11Yh7fTxPWCj1yWG1QymLPLRnFyng6o0lLZAoLeX+LsT1u6PB9R6xVzKIh4YceY2EZR4zvsR0s40KOBdt32DJDiDhv6FZbDjfXkAtOV/LQERsVaMpR4pZy5bDfUaqCw8T5+oqLR4+YxgOud1jjyCVxd3NHpbC9OMdbx7QfKVYo3YmId2uWcpCGryw1n2G7xZSMRf3/2PuzXlu27L4T+802Ilaz9z79ObfJTGbLTJGiaIiSAKqgglGSLRWqSjLAB6MASw9+tL+AYT/Z8BewH/1g+cF+qAIEtzCKLrjKklWqol0qiRKTTGbmzbzt6XezmoiYrR/GjLXPTSbFlJhUpugzgYNz7z5rr712xIw5xxzjN/5/uhw5jHsyClUTXed5+eKcw6FZxdLAyM/F/T/6d9uz2t9v7re88TV1et2PAZV+/C4IqmKd4/z8jJgLU5gZx5lYMrYYlGlADAr3O7+C+5XvUa2A1DEmnLEorUkpQpLnOdeMsZZSiyjcZQE/fG+x2jZoSDdbsdw+g8xPrS3TlEkxo7VpwE3h5vqAc7o1Ukm+Y54C+92ENZowBqZjIOVyygWFEDFG7DGN0eQijXy1Nk0ddavYs4A4xgqYKdCuQCmf209O90kUZsbjTNdXjBHVxNzUY+V42O5fracGg7LAGkq3hkZOEPjyPZJbK9QaZa2vBest/dBRSyeNCAsi0+ytVQWjDaUkUYlEVAm1XpRqGhSvlDQKspynRAE1n4Amg9UCupck90BVgftl72jzq022pYmwltLUt0TdxzkBvcUxT2IKsdSlKbCLypx8n0BRJ4C+zeblnCWgsWoqjwLmn4CWVKjkBkI6lJL91GqDa+rgCzCGglxzA3Q4qVzJTywnWq+UijFNbUrLua+2Ro/6pjpoi72Mbha3DfSW91riNZo1eyFlhdb5ZMWbkljYRgNaZ8ob1q7UFhM16F/rinGiMl6cNFbSct3L+YYq8cCyniz7+5sAfUmlgc36tIaUdpY1Rv6c1FJzm8uneP5WTekPhva3Z0wjAYucdfLtFX4T7aLN+1oXxSpuzxm8kUtpc0Z9/lvfjrfjT9X4rT//W/zSb/8Swzz8ka8tqvDs4TN+95u/y2//0m+LgtKfULH/e1/5Hp89+Yz3Pnnvp/aeZzdn/Pv/53+fv/s/+LuELvzU3vft+CmOCl/+4Mv82//Zv837H73/FlD6OR0/+MEXOR7/6DXj5278H/778Lf+Hrg/AYvKt+PteDvejp/S+IkhJadts06QBJFWClUqldy6MA01Z2I7pMeQMLoduEulJLBe47xGJSVQzJyZY5BDmhU5deslcaOKQVWF1Zlh0xGmQk2ZmMQaqipwxd7CIhSsUbjOo1yzdigiQ1yzeNiDyBMnJR2sOUqRq6CwCkpKVC02NcpUqsq43qO6QteLys9uHsm6klUmm4L3jjAFitKkUik1Ya3Y2OmiiGEmhop3HdpKQiHOI8VIsijHRFVVEsxGoZV05Chj6Lpe7H2iJKOLzmK7ZxzTHFHN/qMfOna7A4dxpnNi7ZZKQrduYm8qSUGcI1bDPEcwCnsCx0TuPheFMZBqxhtRaJoj7OeJaZ4ZXEdIUKdA5zS5GI5hIh1mnHHEMlPRHKeRUgrOJygHkeSvmp06AqX5rndo02PshNGWoV+x2qyIeSarKMn/vG+VkcwY9ozzkaIrucL11QGMdNh65Ym7yHiMhGPErKGU0JS6LDEUUbGKkoQ3WjOGiSll9vOBHAIhSSebJO1AWSOJD0SZoiioRTX4TWGUJlcpPlS9QBO6vb90/mujcVQylVlNVCXF3Zpz6zqHkALQLD8UgCZVJUVTY0m5su16xt2BMieCUvjOErXGuA0xRa6vrtEqkvJMwZKzIsyBL7/3Pvv9kafPX9IPHa73dN0KlTNhjJytOoauYz9FHj+8w0WnuMyZy6s93lSGM03fa3Y3Be/XUjBwlaHrePLoMStt+M/+H/+QL3/jW9zZwpOLBzzdG149/4z5aBnOtry8ecp4HOmNKAwpr1mdXfD65UvG3UTfrVlZhzOWmAqqJCk2G4Wpic5WBuvJyvP66oar6wmjPVollC5szrbcGbY8eXKHz65ueP1sx3Zw1AxPn75AaU1/tmHbj/isON+cob3h/O6G9x68y+X1kavX17gc8cNAnAp2pYnTzOtPXjJ0nsvphuwUn716xSO7RqvCdDyASjx48pi7RpPjgWfR8fv//If8wrsPWJnK8+efsYsT1nWMuxFy4tyvyS5zZ63RAartiWEijhNVZz56+pqL8zPeef8h19czRhfu3Nuwvz5yvZtY3R/Yri0mH6gqoQh0Gh6/+y7HKfHqcoe/2HC+2RKvntGdez59/pynnyS++/vf5r0vf4Xpsx0lFPZJU+Mk87pqut4zpwPT8cjDJ++w7T3eSnIyfvaSMM+kpHj+wQcM4znh8IqyWXFzc8W53eApnK17hrNzbNJcnK3Z+A2vxx1ndy/4znc/Ybx5zt07GzYP1hw/PpJLZRpn8n7CObj78B7DcUOpPcfpitVZx2EvUGutRfCIVoGrBYFjmxLB0pZ66gBUNIWR2+7GNwv/tP+W76snRkm1l9++jzq9vSqKGAV4PBs68uwoURT/Ypav09aHOEeiqYTsSFq6udcXA85VUvKkkplCpNcam+AwjSgtlpBKC5CVKazWPd1gyCZSr/dig5ALKinZI62i8wODl+7fEBJFa0Ku9BsBNQ77HdNN5Hf/2UekZosVUxK7GKMxTrHebtiedWzOBg77wOGwa3uSIaaCUWKHqo0oiLjOnoqHxmjSLMCLqMbUU3coWqGKat2bhcsXOwB851EqnMCbpSMVoCa5GV3XYa0XRT2tEPuyAqpIIaZkchL1wJjFdqbvB87unnO2WTMdJq6ud02dRjNPAW0c/VqhY5aiexGlH2UaXDxnqk4oCuM+MofI9uyMUiNzDsyjqAoOnYMciTmTYmjruhHFDUprPdVoJYl9Zy05Z8JimWsK3dCBLsxTJidkD1GVqkUFxniN8822JonVhSrqVFixLfqpKLRVDZ7IUDQpRry1eGvQ2pB1xSIWqLlWaq4YpcgFdIODxjkQYoAiEIYouWRQBa1qez6k4CSwr3SyiyJKU6qpmaqW379Z9xmxNBW1S7DayfNmK30nygfUQikSh6RUKHMlzZEwib1IbgoppRTmORHmhFKiUIOSOamVIoyBkhJz7/G9p+sdnTFMh0AF1kMPFFKMzGYipSi2tak0VRmxa6za4DrpsrZGo6pmGiOqJHwnVnMgXevOampKpBxOoEM9FX8KtyvIbfEsx8xUZmKMUrBqc9A0G1ilZV2uC2BVs8S5yuCMzKXPNdXfyjlAKwL+vA6tRAHmtvOb03xRSos9XoMbhSt6w7qsObRpA8I4KVHYy7XFbK2wq1uRV9UTMKRVwXkrNsINIltivgVAlycKUeZxBlXkM0F7tqpYcizbRs5SzFuKwQKe1NNnzkXmlVhtaZRpfyvFnBJFVVHoaso4OYu6XFmKXlqKl7VIcwVZCqKLnUnOCV2WjvumGqB1K1DWVrCT4qWsIYtyoIBZRhsBgZDZY50hzJEQk4BFWuYwWpRxjBZFp5wKRiNrhJbip20qcTVLoV5eK/ahWmlSgZADKWWctuQKxIQ1Aq/EnMQ2U4kiU1WIghkVowsQlvIvz3nOB6sPeOfZE1FZ0lbiQqVx1uG8I9dE8BPf//L3eX7/BclmlC7EKZBypCope8Ypgha1HaMM8yzQVI4Z7ZrlnVFkbu1kaisYKy2fO6aCyZFI5rvvfJfw6ftswpaummZZsygANju9NwrDqhV9pbjZntsGMi7z/uxwzsPXD3n68FNRklkKj7WeGIsTfIeoPtKQP1m4NaWIWlma5YyVFzUIpdBGGnKmaUKpItcfTSkC5945OyPExH5/xDqLN6K+p2ohx0LnDNZaQi5s1j29VYylME0Boyu2ExBinqs0FGWB96y1bNcbnNL84PsfcufeA3oPm27FQSmOh0iO4LznMO1JMWKVkXOsVtiuZzoeiHPCWo/TWs5nSqrhUmZXFGS+Oq2pyjBOM/OcUIg1GKrivad3HdvNwG6amA4B7ySXsN8fQSls5/E2YapC+Q6MYu1WfPXwFd799lfoNj2qRLS1lFTRTlFiYtwdcUYzppmqFfvjkfXGoaikGEAVVpsNg1KUEshF8/r5NRdnK5yCw3FPKAmtLXFOonJkPNUUeq/Emt5YAVOSzO39YaTvOrZna+ZJVDv6wRHmxBQibjXgnUKVKFdJZayCzdmWmArHMWB7T+c9eTpge8tuf+Cwq7x69YLzO3eI+wBZFLkoSdbxk+IbjPs927MzAeKUA1tRVjHNco3G/Z6jr+QYKRRCqqgkULMzCtMNOC1q0tv1imMQBcvRFS6vLnFasd6uySWRsuwVOWVSTWw2KyqZXjlSTGhbOB6+AISmiNzWts+ps/A5Pmkp73+uUPTG3voHgYF/QTX/R7ZksXxqeRwPVsNmvefmcnuyvpQfp1Df+Rrp//tLlP/WPwajyYDxFmtkzcil7TUqYTDEEFnsxpSuoAT8MdaKfZvtyPtRmEwQlbGqJP6xBm+d/JpN6Tk2sLbvvFibxcT15QGokldr1m65wSeuE8C860Vh9nAIsicYWfvEklQaHDVV8opGt/shl0ryd4XPhTItDl3WzzgnQhVQyVpzUl8t7bqCxKSwACPSTFmVgDuyNtaT9VsuBY/kdkr7fL7v6IcOVRXHcRKbPWUaxK8wToBpVQSaz7m06ypQu6gqVVKuxJAxTiL3UsR2OGc5wxig5Nhs8sppOuUF+G+zy6hbhaaSywng0kbOAbmUE9z8BteFUpxUg072YMuf9sPa3WgpLdm/VZHcqUKA5xPMq7gFp2tlcXktbX9MKUlM1j6/WJfJi1SzP0MtsVRBV3OCeMQGd9kzb+GkRYlLqwaBsex47VZag9acICzZw+R8mXMhqwb2nijeZpcX2z7fbN2XuLTmSpyjnDOdKFG6zglEFBPaWqyyAouH3GCyfFJMEmZJfpYyRhortcTAOVVqzhgj926Z27opqi32r6ccRl0C/jexyDbPqsRipSxnZXmJQt2+dGnsOr2HvLtWzUK5ltupcPvWfP4BfDvejj9d48WDF3z7W9/mV//xr/6hQEilclwd+U//2/8p//zP/HPmbv4Tg5OWEbrAf/5X/nP+0j/6S7z/0fu46P7YwIpC8eSzJ3zj977Bb//Z3/4pfdK346cyKnRzx7e+/S3+6m/+VVbj6mf9id6OP2TUCr/7u79IrT9viuUVaxPGZB48eMGnn75DKebzL/m//rvwv/078D/83/yJr2Fvx9vxdrwd/6rjJ4aUcoloY6lIYnFJyGupApBilMNZyHSdoBkxiXIQIAn0lHHGikx1lC4Wo9XJJsA5hzGVnANaSyJeKY01oGputgjSHXQqaC6K+ChqTTjrJXGHyBzXlFtnkyhYOKepCoyxZFXbITijjENr3brupbO/5CpFTWsIJeOsxXtHYQY745TCOohRDtEpi/2ZUoq+69FaMaqRnAvzHCiT2McYq1n1nuM4oYwoSC0JvfWwamfR2iR+IeUkdhdRkkC696fO1zlFyiSdQsYYYk6iTKE1NVfCnLBKS4JaVbT10p1dMnGa6JymWss0RTk8V4XXDoOGKGBYiQmVAJ2ZxokQFbPRGOepU8K0Qk9GZIXnmMQa6DjTe0fnXOvsk0RRyYVUZ3SFwRlRLnCamAOpROZ0lC4wlBTrUyLXRCwBcsF6h/Eaqw06F2JJzGFmngNWW+mg144aR0lU5USNCaMUtsF0KRf8Ij9eRPlClXKyo6lFkaJ0jBujyXMSEE9Eu6R4Bs3AvhWjGwClFmZJQcyJ42FsBaQl4anw1jbp/Pb+uaBMgy58g7aGNeN4oAQ47max0rCa6/nIvItYKrYqstG4oWceZ+aYUFqzHjaA4fVuRHUdw+DwxuBsR8gzlIDvPHiD7jXff/6C3/v0E+I8EQ4H7J01r59N5BKxODa95vmLIyWLpPtul7jc7agZblJmvYqcd3cpSVGt5+7DB+zCkWkcpTvbVFyvIWl2u4kcFevVBSvvGDrPHI444wkls1mvGYPc71yhTJXDlBiPGZJCdwrTOTQJRcWvO9zgeKA3fO3BQx7ePeN71weOKRGud/zyN36Zy4+foopDlcKDu0+4++h9xssD1y9f8Vm3odcyB28uD6yjAZW4eHSPNGeO86coA1/58pf4xq/8ebquMu6vOVzvefb8KYeN4Xy4Swqa+XjNJx8V7t/pOdrAN37pa3TVMMaReRrZ7w5kD3bleX0VWJ1vuHfvHkk7bOcZ7o/MYySPhc1dy1HJWmfCkS+98wDXKYa65Zu/+IscDjs+fX7DGAIffvBDbq6vGbPhCZ6rFInjjK+WOCa8Kjx+711imei3Gp00uhrSuCOtFNYNrM+3KF3Yf/iKfNXx8uUV9B2qHvj6u/e4rpXD8cDgKqVMeBeZVWJ/LFw8uMOd8xXf/+C7nJXK4DRUS5xhN87MWWCaabxiZw7cefQ1VhcP2N+MnJ0HtB6ZZ8Odhw/YDjMrt2GXBl7vLzleXzHv9gJeKj6nuPM52zd+XD7t8yk3gSxaQaIl6t60GLvtHuX0tR99gzxFeix2GIj7Eb12+K5j2k9QRZ4+G4ft1/yt/97f5IMffJfvfPwBOYzU+Qi2gD3j+vUNRnWkHAk1QpXiLxjp8i4T1Mj+cMT3GlUKzhimOUnysRWP/aAxFYaVQ2tDrBljHWebDdbA8ThSqmZKkcvnr1ive1xnKKklMAucn5/jBlEVGQ9SRJbuTiMFv2ajoKoWqKjtj6UgUCaKmIPYcmSAxU5BEqSqFSZiTqfEre9kz8+tuLHcK7E1KpxfnLNer9kfDq2wvqzHCqVEXUk52+AZSeIqpdiebdluz6ilEELEdx7rrHTcJlHPSSk1aFVjXcJ3AAZbnSgONfWdWkRNZ3+za2u+agpPlSnQoLBIKaIqkrPY2C3dqLWKulLnbINhpBtaOFQpeM/TTC63M1kZ3ZLuFe9dA3haYbzWZoUhSW5R2aokCt4bNqsVzlmmMQCG4xSINp/m+noz4J2VeZykYzzGhEYT5kCMUWwOQqbQrBdail03xZgKWO+lgG5tg69NK1ClVnjXJziitMI50LqXZX6AQBKrjW9d/JKAzwXCnDnuZ2KsrbManFXkEpnnBjE1RZdSCtoa7AIilsI8JmIU+8JhcDirGUtmd7MHbQU8UlKMyU0dCaRoSIEYknStK01tHd5LIWTpis6LbUNu9iGn9aalEZeO/Tc6oGXdaX8rqDVLjGoNShsBMLQ8IMZoAcKS2CJSFLoBUzHn9hnb3FelQU1SaFFKij0/r6M21Z/mAXYLayiJz0uRNSFRsEZLPF8FTlkKb6KcIUpMBVFFVVqd3kdrg9ZiIyO3UF4rp55baGSB65b/boy4qB+0RotKPa1RSwFIKY3Rqr3+FgoTBSGx6jnZeVUlAF5ebF7Eps1o3aCVLIo7hqbKxBvFJlG70dYSY5TrkrOAnMagWnE2xXSqY5mmJOStFSBm+fyqxa711jpEY057aS7yvtLd36wHi2pFTVFW043irUoJJaYUqhZKig3S1aQkVj4Ce2l0VQIXt/VUFUAVckyUDFnrViSWWLyopaNfrI9KLiREocEaqUAWVfjo3Y+4//I+NstTp62omSqjmO3EZw8+5cMnP2Tf7+WeVZkndSlc16a4awQEUk3FIGWBX+VcaWVPPxVbpelBiv8GisDTp32yVl7ffcnV3ddsd1u++PH7PHr9oK2DNKXBZb6rExgnQ7Xn+Vblqs0qlNJcvLrgw4sP5Ssizwa1FYpPiiDyPCzvV7Wce531xBghi2WpUnIP5xzJoaCRZpjaFGHnmFoxXokisNKMcwRrxCJHKbH2Tu1ZMVYUnqzm8nDk1c1ObNBDQA+e6SD2OhqDs4rDMZ0K8SEUxjBDgblUvC10dhBQzxiG1YpQIikkmc8NilMFwhwpReFdLw1CxpBylM+WK53zxFxkbqtKTJWQpGmlFrHO1M0CXikBP7TTrJXn3nrDeui4nAOhFPI08+j+I8abPVT5+Y/LE37lw1+jf+HZH0Z25XCyXJ+ngCsaRaFfD6LckXYoDXfuXHDv0Tuixhcm4hTYH/YEr+ltT8mKFCduriurwRJ15t7De9iqiEXstEKIVFPRzjJOGdc5VqsVRbdi+pAETEwVP2gijRHIkYvNGm0Vjo4HD+4TQmB3mEg5c315zTxPxKLYopkaDG4mTU4FqyqbszMyGesFQu9QlBjIDrRxuK6DWnCjIhz3EBNzU15cO8Nq6DmGGa80OQWchXkKwEDImTvna3a7yGEX5Z5GDVn263EOGCe2gfM0s952dMOKuG+wOFFi0gKrzRaHqACNKbC7ccTxuqlytrXwx4FFb4BKp33rx8ABpyNC/dxfP3aoH/leURIqrPyBX/u1D4hxT+bADz74Gj/88Am1LOCrplbPOx/8Hc7++pYPwz8hl0gOAaUFIE2xkFMEICeJs5ejTKmScxNcLzHPAkIYLRaIhdv9WJmKVfJcOGtFjU9VvO8kl1YLoVSq0hzHGaWh63zbH2WfsM5iXYv5YrmFL7Rq+Y6Kyg1UquUEZpZCyysuNp3l1sLtR+6NgC1V1uV2H6wzcoY6AUq35zpjLavV0OL/vLxBOxPeKgu+eQdrs0jtu14sQKcgeTLvBO5VAiCWZt0pb1oazyvAeaY2FdjlbFlJUVSalglTayVVsZtLTf1wGSf12PbaxUYN2vWpb+rtCFDaMpunC7X8VqLyLSBabpDK6b2XvadBRpiKNxbvRMl0iUUlB6upJTZVJSNn0QUEKhVVCzUv9682ILycPotCcl3L86JaLlm1ZoMFCl8sa2nQ1PL0nXSBlvN6Vafn0FqBpZd9tSJn1RiznPmqfHWZY6Up7i0KlKWphb0Z8+ecW1NAEaVhrahZzk5lFsV39cacrG88e1TVlKDafZJNlqWp4LYpavld/uC6cTvt1e19vaXqWdakJQYopYHPLb6Ql7U4rkoOVh7XKjFo+73lPMGtelL7eZVbUP/teDv+tI2qK//lX/wv+dbvfIt+7j//b1TGYeSf/vI/5bd+7bd4de/Vv9bC/u9/9ff53le+xzufvMOv/79/nV/8vV/8Y4NKumq++r2vvoWUfo6GKop3P32Xv/F/+xs8fvpYLN3fjp/bkZLl5cv7P+uP8QfGvXuv+I3f+I/puon1+shv/ua/w2/91l/4/Iuih//F/xT+8j+Ab/7uz+aDvh1vx9vxdvwR4yeGlGJMeG+otRBnke6vpVJbN4/3XiSKaz4VIHLNlCo2V6KIK7LjhYLzYvVWchUFhCSyk91y4I2JmAvWCnBUtXQAqSLgkm8J7dISAABzjMQSKLqKTVitdM6eDprSVSNJUd2UlowxVG0pWbVkgBxEvfFYa5nngMkWjaPkJLYSBpSuaBQhiFWKNXIQt94whQAHsKopTilFKpmSKpSZzdmKrvPt4KgJc8R7T4yJeZ7pug6tEZuapaJbFbVKd3jKmZwjxlpJMxiD9YqcAjFltBb7EGs0tSiKgr536JoZOod3lpBhnGa6vqNrCg+1aqyxGAzeOGqtWNuszSpi0xdH+X1Mx/asw/mOrrdyPZxnDhOqKuYa0Ap6L+pRpXmfK2VQ2mKdwzpLv/I4Z5nDSIkFYysxzRzGkTlODIPFmMo8B25uJpw2rM4taMP+sONiGKQ4niLjdMQbjzOezXYgq5lwzGjAtG4na+X38laSTFMIMjs0LAUSjRzkW74GbQzGlJa8qK04vHSQ6VbQWRIsSgoHtGIGYl2kgRQjJYuy0jI/1ZJB0ArnrBQXVMArjc0z552nlsL20QOU1tyEQLCFMUZSiGyHHpUr+92MMY7V2pEQCcdnr56zP46kEtFTYD10OL9mcz5QdCYbOMaJYWjdrUUTS+bhvQv0SvOD55dgQanAqERpqkRJYk6HS3q0dEvmA4+291EY3NkF24d32O+uGA8TnT9nszbsby6ZjxGVFHE3U6sW67VjwKDYrleo3pNKz3gIWKd4df2CXCPKalJNhHlGJUXXV9Ae3a1R2nC5H9lPR3RRvPfNR/y5X/0W/jsf8fRwxagHwiHxtS+8ix9W3L94zO6QGC+PRBV5/M6Ws17zwYdPmQi8fPmUr7z/Bc7u3OH66sDrl59y2B25e3HOvN9x9elHGKP54Q8/Qbke3fecvf8+H39wA6qyPe9Yn3WY7V2+/viLpMORwQ7Y0mH3jhefvmA6JN49e5cHX7jD6xcvePYyUm1H2R9xIRFKhjJz+exjVo8eoxyEeEDniU8/2rHe3uXy6jVfeu8xj9WWmG/Q+wMdme3Dh6gS6OyGbrPhcKy8/+AdjtefYLcrzHrNvbOB5x9+xIjl2euRepVQFoLqePHZM5688x7Oabpc+GS3Zz5ewzjSn91F5Ynu7D7ZrXj07jnf+cEHzPPMs1JZX6xI3QOCOeOj55f03YZ4PHJ+/xzrAuU4snn/S+x3r/nw299lZkUJM16vSQrSNDOHmc5bPvjwByjXYbqOXUxchqnJ/9OSyfWU+IY31JT+0PF5+OjNTOCSuPujRwUSd85XPLp7wXGeeXD/HlMoTAl2N82yxinZD6rlweMv41dnfPLxJ3z68jNCyWhfeHB/K/YMfc/Z9pzDYQ+qEJs9AxgO40zJAraC5fyiY3u+4dXLncA2SSxcjNL0nWMYOmoFFwyhRCpi+6INGOfwaNzQsTlf03mLu9lTglicxJqJoQjw0ooZfd9JQrSIUlMIEa2zdOIHKT5kIx3vc4ocx5mUbnOn6o0k9KJYVWpFq4pz0u06z2KnSW1dubb9rTR9L8ki+d6CsQqKORUElj04U7nZ7Um5EGLkeDxy9fpS1Fpagr+UgnOOBw8fcLPbcXV1RSmiyuJ8Yb3xGN1xuA5iiVMLMYh1hbOWOQRSEEsp+UyFmArFGFHU0xrnPSXMiDyIdInTCv9jkEK7gKrqlMGuuRXjW86plQkk6W006/WAtYqSMrXIXlhGKW4YYyBDrgltNV1nBQhWhqmKkqJAnH2znSkcdyPXrw8opVmtB3JJjFNk8EODbDNFi7KLZrHDWizHpGijjcKvpGiTUiJmsVTyzomFldKnTnClakvgi2JAae+hGuAjtl2grTyHSlV0lX1FadjvZlRRqKYwaZRAC7WUE+wm1zGLulgrSNRayRHCGJjHgEUscmPIhBRRKOkI1xljGuleCkXRFJpqK9k3FaMYsMadOshzAy1qrZS02F0YUd8xRmLdXEkhEaOh1h+RVVYCACpxbDyBT1qD9w5jDN57QAngngpYmqqWZj5GYshNLmUpYDUVTqXbtfxJ1rSfzchZLGnEclmUJWujjxQCP4gtWluYlboFGZdO8AZlSVHQoIxtxZYGoBQatMQJ+tdaICgUJ/Uahcac1qr2/oiiQg6i5qMamGSMvk0Qv6l0oQUKWlQ266lIKnPRaLFISSmL4heyNhVdWOxClFJtXdOnry02lyFwOkss62gttameLhZtsBQpTVPaWq6zollcn8p8ikVRsNQW25oG2jWVhlKlkUQZUU0SS2ZRbbPWoKg4Y052dynJeqn1Yn8nn1kr3WCsZv+2VEybAg9KbIa8N/IMaQNKYurUlFkSLY43TWmugV/79YFnD1/w5NUTsIndgx3aGV5tX3F1fsm0GYk5CnyZE9ZJ8TLnzDxHsSrrBHqKIdA5Jw0XJRNzwihDLqY1pyRylOu3xPumAWxLQ41APUswUbg5u+Z3v3mg+2ees8sLFthIqUVRYnkimt1luzRKaU5Vz9N0K4zDJCqtaDJypqoLOFfr7dyGk8oEKmNQ6JrorQCB2/UKtGLOmawqsYjdTWcxOK95AAEAAElEQVTF4jsEUQXUTppbqJX98UCIcsZXKeOdKCn53okNn4aYM9bVRvkpSqqsVwPKwdXlJA1FKpOCqN3QFEdimJrFtsKWwLpbA4p119OtBkKYiCFhTY/2ijCN5Ch2fTkIEGecWL5pp+i8Q1lDqZYYBLg+zgcicn9KbTHEYgmprMBvSjGFSIyi2HV2f8Pjx/cxr2/Yh4mkHDkU7p5vGeqar77+Oo++9y5edxSV2Ww9nVNcXu9JZI7HPXfPz/H9wDxFxuOOECJD35FDYN7dELTi+uoGjEVZS392xs1VEDCkl+dCdwP3NheUGLDKoTDoWXPcHUkxs+16Vuc90+HI/thUz0JE5zbPamI83ODWG5Rx5BLQNbG7mXF+YJpHLrYbNspTyowKYpHbrdeITb3GOk9IlfP1ljjtUJ1De8fKO/Y31yQ0x2NkUAW0ImM5Hm/wxjI0W9wxJA7jjI4T2nQCc1iNcmus1/gM++Meg+Nw0AQ8OM/1YaLreuI4M6x6nAOjIuveU3zHeLNnThJj4EXFJ42RHCN4y/E4cpwCud5ld9iyj582a6g3oKM3IIO2GZzGbVGwJQV+DEmwvNebxf0/8Jp6u8cta4Q18OC+4c7ZkZgrc/S8//6RDz9W5KgxqoE71aCu7/Hoo9/g1Re+z+vXTwkxUFVlWBk0ogo6DAM5J1ISaFWsbiHVIqp7WuOcQenKettzPAZyKq3xT55bYzTOWVEar4VcodaEUpZSWv5CVVzXnWyfbXSklER1h2ZZVQUMVVrWfqtEQcgscGezQRPus4g6X2tcyE0BvTYnsNtgr8XOJ/hG7NCMkSaL0tQUF0CDBuxaawSKegNqosUAtRbEw1juZIoChuckcds0TaRsTiqEyzzp+x5rM+M0vgGEFbwV69mSFfM0U6soGymlcNZSapUGuQY0L3BKXmycafF9rSd1vGXenWDikwVauwpLeET93NxTp2sh99TZ25+nqLDs/0pOHwKFVbEBNaJKJ6frLA0UWjH0fbPYS6Jcmm9t4FKOaGUxC/jVAGfFLZD7o4+YNqLCd7I6K6KQqpRBCXHWlI/q6XPKZ+X28FSakpQREOh071kUtBQQ5T4geTqtuFXceuNxlbi0UtVyXVtMmDI5ZnLLH9ci5+WacrN0vQWC2s042Qkv60yp8n2lrQOqyYaemhdabKeUKNsv1tACF1VKlly25IVv4+Mll6hUPcWralk7jDnFoKImVbBwgrNLLsRQqbW9Z4slFAvEd6KW3o6340/lePbwGf/0l/8pf/a3/yzJJD784odkk/ngSx/wwy/9kNd3XlP1T5Qo/OkOJRZzH7//MX/vb/09/sP//X/IFz/84h/rLSuVyzuXP6UP+Hb8ccfqsOLXfuvX+PV/+Os/FbWst+NPfrx+fZfnzx/+rD/GHxjn59c8evTsFC5/85u/yz/+x79KSu7zL/zwC/C//h/B/+p/DD+Lde3teDvejrfjjxg/MaREs7pi6big+avnCCpijfjXa2co7TArcvgCpuScKEGszaquOCtWCtpBjUDKoJIki3MEpcRyYEqYzoi/vXJoVckl4m2H0Z4xTGLlpsAZL3ZyVmSGaYmSeQ5QpcOmWlBW1A/cIvtcpds/hYSzFusstUqnetWitORdJ4meWCg1kWJTDZoD1niscWgLrjdEROEI66SwpRWOnvkwo4ymG/r2eTWd69lXBDqJif3xyHGamoUJpFykgCKNU2gLyrRuZqXaZ5VDr1YKpz0GjbZgvaMbNCkEco7EEJjNiEIKtpv1RpI0qhJzbPdLrNBKyuA1WSdJklTpFt9sNmhnOBwD1nrWqzW5Jg7HI0PRdNpw9+FDLi+vmqqTdIVZ5Ui5UjEM6zOGoUMbUV5IJVB05rDfUWomliD2KzWx28nnVWhKKESzdAGJYsWkA9pZMIWLO3eoqeKcZlh53LBijhNe98zHic710OZszovne5NZLhpyOuU7KupUOKxVOgNLynJob4UX1brcNboVJkE1FQOFJBK0EnuFksU+yFjdkjdFrneTtjbOkqsUgvwwoKrM55Xr6d0KqzSH+YZZB/phTb/xXF0fSGlGlUyZxWYmq4x24DvLzWEihYCuheI1evBc7m9YZ49xlpQVYR/JITKPs9gSGcU0w2blWJ+dU0ohhkCcQRfpyjZGU7uKXw1s/ZoHdy4o1THHiS+/8xDlV3xnHNGrDVZ7rg9X7Hc3kOFitRU1mGPGmQLGyf2unjBFcq7M45FSI6oWVt2GcNxz1/esHsKry0nUO3Ccr9ec3z1nGAZePXvKfhr5/kcvCep7HA4j2Yx85f0v4fyKh+fnvHy642W8ZPvwCZpEh6Lvt5Aq7z0+5ypMWNWj/YDttsTDkR7ot4YffvoJ/+Af/df84g++y93zNZ99tue/89f/Ol/9yrts7m2w6gGXz1+xWd2jHzrW/QobAx988hHX/i7re/e42o3sQ2X34hk3r59x7/1fBLtCxcA2XaPTnqG/z6bfkuKMNYWN75inSjWeCBymSKgHUrUcj3vOesfr68AUHeuz+xjv6VYbrHfYUmBrGENg/fAdrp895ebT5+jpgsOxcDVe0XeG3njO3n1MUIrztGWz8hx2r/HOcLi+ZHcM3N/2nG8dq80Tuu6Mru54+vFTPvzoJXbVcf/dLX3nefjgLu+9+w5eVW6ORz75/jVlnhjWa+6++y4fPt3z4NEddpcviLmyfvKAfn2O325RGrI2xEPAG80IXAxnhOPMcQ6ynqsFOZWD9h92lFu6Z5e/l6/BG0WIP+T1/8JRBazRzjFYR7Uzu+may1fXuN6D1qhOcbbZYOwZ/+jv/1e8vnlFweK7DR2KEPbMu4mcC+M4A2LZY4xhirkpqgCIRQ9ACJkxJIox9BtPiZVxP6OyoXcd1mjClNBGsVoN9KpQkI5hqTFmAW56g3GKnBJOKwJin4peFIJAO0nqUpQoXUSxcTNGN2BKlGZSLOziEdPS9jlnchFFP2uNdNI2aknytqIaNww9tVZCCGJL0DqIaUlsrTW2qYaEGKgUnJXidwqREBJKge8G6X5t+1MMiVoqx8MRrSvOGob1ilIK034kxMDDB4+4e3EHozTX13um+YjzDqUq4+HIzW5iDhN95ympMKeJmsqpwK+1Ptk7pZwkAaw1JUfmMKGtwmuLd11TSQqkkJtaT5tAMuFOhW6qanZULancEuiLJULXeWIDGJyzKG2YQ8AghX9dwFhY9R0KzfXlnjFE1hcbzu6sGVYd3jtyKnhXOdSZ435kPAaqKWLHGwU4WCod2iCFoyQqSwtoVivkIjHYsOpZbVbSYZzF8m9Re1wKDdqAcxZvPTEtKlDl1PGbYqFkgRMWQARVZJ6sDDEaShArklranrm0Hi+AyAKRvNG5rVrbdZzFkiRNRZSH8m1RJhXVOtelWERRp8J+N3TUohinQIyz2AkiikfSRS1z1iiJH2vNrNYdq1UvBTvtSamwuzpwfbUnngCR2/VG5nqDT5BYoO86+qGXvTwVpnFq6hIKv3L0fYe3jhqPjAQBkxrcs8zFBShbQJGfz9EKyrR5pWsDzESlRjclEpRi6Xo/1ZJVayjIQFND1RopoFVoVVKEUjKibqOaQkFutl25NGUlAV50syOLTfFAAD1RHVigoKWQlHKLh7XYdghc1N6v1bpKrc2qTeI7qljiCJ8oUBW0YlUtJ4WylHIrJi3QpiI3wAglqnZKKwxWVGW0xlhRRjNKYYwlVEhF1uIQIyqlpsikmn2ewDWy3spaszTJ69ZVv5TUtDLoqhpMZ5rFpijg5JxJWs5ZAtV1p0K/NKuAwpBykmYWowQ8O1UoFd57tFGEKPfAOS/2sjFhjcIqxbBeM46TWJEsykGL7R+aD7/5Mc95idKV2c2opioUwgyzrN25rTlhjvIZq6JmxGqv3irULRAZWgrQlLYfeYOpAjBpZcgxNZVg1ZpfKtJ+UE+FUdn3KtkkPn7vY751cyG2p9yC0arFHMuatuz7osTF50DMrDKv773CaA0lc6rb61tQcSlotqkoYKdzqApGiVW401ZsMdNMJuOcx3ojMKRUQKkpnwA21SyEwpgoWSwn0QplLVNoSkFai1BWFKubHFNb0+Ro753Bdx2L8knOkhctyznKVqxzeONYDQMVTc6Ji+05yjhepYRyHq0sUxyJYaZWRe88nVKkWDGqgtUCk6HJSTWrpUhFzqHeenIMeGNxaxjHBQrUDNbTDT3OWo6HPSEmLm+OZC5FlU9H7pzdwSnPF8cn3PudR9zZ3cWvVyhVMCis66BUzjcdY05oHBiLMZ4SAhawXnF1s+OjTz7j3tVrVp1ntwt89Wtf5e6dM9zKo1RmOhzxbsBaK9ZbJXN1c8NkBvxqYAqJUCrz4cB0PLA6vw/aokrGlwlVAt6u8VZTcsZQ6YwVWy9lyEBMhUygVE2Mgc4YxpRJReO6FcoYrPMCxtUqKmk549db5v2e480BNfTEUJnSJCom2tBt12Sl6Kqn0xZKkva0FBnHmd5ohs5hncJ3W3RNpPnA1fWe4xy5c28l+QvvGYYNzkih/WV4ATmBrpydb7nKRwpguko9zHT9Ctd3KAWrYU2iklNTStaKNA84ZZnmcAKGbnfJP3q/VLC4kn5u3GrR3L7wTYWmkwLKjxwvRG1PYB7rPFVnUq1Y+5y+e4eZM6qqWG/pbEcYI7/zH1mmv92hncNjyDlSo8SjJRcBbEoSOCTJXiUqi7LOLKCC5EKyWI9qJcBoKSdFaIrYRxpt6LpFbSWdoA3gpIJdGyAt0Ec+AcTLZVrinUVVRxSsBWxRCrEabXF2SeV0gU8Kl0o1+7VFWaee1j+JyfRJmfp0J9RyhUEJ7SHPcckN4m4xYozUWqRBz5imYN5+VlmA1pmUNM5alNZiQVorxho671FKMamZEEQFXmlFybnZhkYW1byUpSmkNujmdD6tzXK6lhPUk3ISpXmjW1wnEGxOAjwtcNJtHLxAQLKXLOv/MuVaO8QpFqi1CERsLDEKjKUb+COAjMDPMSTmkNDWiP22l/MdiDW51oU4zxJfaYnnFJHaYhxpxuMU+zSCDGkAaL9ByaAszkkhreR82iOXs8dyNlFa4hxoUBec/m0B7QR0vr0+S6xurSa3153eEm5f2wKfEw93Ur+Sz1xLFRvFemsHKDdP2l/fYJHeWCNE2V5rc1Ly1QtM1Pb+W3VooKlcaiPxkTGLKqoihcx4nDkpOp7u9/Jr3EJctLO0c+4U16UoKsKiTitW4t5ZclMWPGkwtmugWkOmzJef5/PE2/F2/DGHgv/kr/0n/P1/6+9TVeWwPvxsoKR/wQg+8F/8pf+C9z5+D/OjFk7/EiPZxHe+9p2f4id7O/5VhkmGr3zvK/z6P/x1vvDhF97CSf8GjeNxEKj353y8886nXFxc8fLlgx/5FwX/0W/A/+R/Ce9++jP5bG/H2/F2vB3/ovGTQ0otmWLagbmWSm12MKUUDE0qP1VyKzpqrQVsgFPColRJ5qeUqYRWqDGs1wOpBJSBEmuzalDS7erk8G2tRisI40QIM52X45mxBlWaLHPvKTUTJklGlFIlGd1k5VPOInufghSljBHp9Fm67qovDKsetGYOUbqIUgVd0FbjnQftyU4KJ6XsmeaI0kZAk5KpqmC8IQExB1RRVF0aYKQpShGSdHHaUokpcbPfA5qiDM531GZR4Z0hpUDJkmg3WoNFLBlKJk+iDtV5J6oHrevI+w7rLChNCmIno6xHOydd56WITkCBru/pfSf3t2W3pZNbkjjOG+ZDINUe23U4qxn6LSu/YuM7xjIxK8PhZodRhRoTOc1APSUJfd9jTUUZ3woeikrhOO4xyWOMZg4TKc1Yp9FKCuzTFMgp0flOElZGrF/C/kgOiX1UoBOFiu20JLj6gjKFOCY2qw1khXIwDJsmcRwwGinaU5jnSQrtWUsxSMtc0soSYpAOeSXWDmpJuCBS0Mvhf+k1o4pstVaQcqWkCDWJQpPWAjepKuCZ08QsRS/buuudtehSWa82rNc9VjuOx0jXVLN6azjuZpQprIthiopsFEkX4jiT0ayMxyiDN4Y7F1vOz1bEsKOajFEWqy2bYUVRcHW94xgrcZ7RWpJGRRXmy5nN+ZZeeT795DNCKRgMfS/g3QrPSq84Xz+gWscxzMwp8Pvf+yHr7pzzB/dZhRV2TpQpsOvOSPPImV/j14Y4XTJ4RyqZsQQmCnOYCWPGG4PVGRsMvdNcPHzMYTfy6P4ZRk1Mx4lpls7vle25P2zYPLjP1eaai/Nz3nnyC5w/uMv+6hlmHkXpJRTO7txjf9hjnGbVGx7fe0QYMx9++oz3f+E+X7/4Apie7faMjz96xraDu++8jzeOR+9l1udrxt0lXhv+0l/8Ohf3zwixsn9+RVcNd+9uuLq6pGiFVYXd1Y4vPHkXezEwTomPX37CYBXdO+9i6kzc73jwpTs4FN/+r38XpTq+8LV38fOely/29KszjofMZTlw53zDfj/zla98g8urG1GiG6BzHatS8X2hholUFN/+vQ/AG1YKzs7XKCqvri1KeS5WAze7Gz6+3BH3E/cfb0mrNblmUs58+c9+i3A5o2vFasvD1cSZNTgV4PqSe3fP2O12XE7XzLrH9Gc4bfD9Ge+8/4THjwuqZj76/g+5ikfO79/HWHjxcs+w3vDRs0tsPrK503H37jkvrw6UY+ai09y9f0bXO2zJPLn3hE+uR/rO8frlM3KMmCY5v2QQbwGk5Y8+fe1HLduWxLb8f1PWOz3LfC4ReUqgvrn7tRdqDFk5zh8+psyR8dNP6azl/t0Nc60Y27E9v8v24j7GdOyON1y+eEpOB+I40fWe7dmaaZ4FtJwTuQTOz1f0w0qk+osksEvO9OsBYzQhBMYxgbIN1ihUXeiHjs51zHMghnBKMPZrzxyDdH6mRK2a0tR1uq4XGDFnQqq4bqD3RuwVYyWlWfb7plgktlmVOGVimFisiwRGkWL4yVJBK1Hr6zqO+5G0JMaNJEutNU0NUJLeqooSk3PuVGQBAUeOx+MJ0oIqsGSMVJoNmrOyl1UaDCQAgtWamgs4ARS0ghQTznfkmJiPI/M0473Cd57OG8b9xM3VzOEoCoQlF8ZxIlWxwTHGnrpppcivW5ftouijUEaz2g5YJ0qGJUkRYCIQgyhIyovrG0lgsfJQBUlUm8pqM7BeDYR5EqUBrbHOEkIUuzwlNnO6VFKWBLnsUYbd9YHdfiSrSp8TORmOu8TlFEhR4LQQJnJNpKmgjUNbRSpRFG3srcR0rVCzqCoJZCHKgNZYetcxDMPJ5iDFKIXjXGQPbkl8qxVmKVxVUXaUdmMBzUqu7G9GfOfwg8caLYCU0gLNak1gsfu4veaiWAi5FqwyWG/IoVBTbOCKwjTlo3kS2F1XmuqmqHAJ3K2a/YWhtCKYFHYU1nkp4uam+KQ9FSlSqKb6lGtT+FIVZWC1Hej7DlU0pWhyrOwPc4Pcyqn5Wbqiy2k9EsgcplmgJLFSrE19S37nVKKol6wMKTSVG7WsY7I+5VxOMNnPtT3DUohpcKIs0OoNdSOkZlTrLfihRBFBCibIfS5StFriewCUwnkrc07Vdn2agk7KaG3ay1rhMCVyBsxt1z1V1NyMabYqzWat0mDDKkWpUkqzlSpNJaYVS7P8MUYA96VAqdu9pnW7GyuqW+ZUsBSrTWukSLgoBC4qR7E0mxolCkeNcWwWK6AbIDjNAraBblZgixKZFGFrU5jDGE6CYVWU9GjFVyl2yb5omrIbSs4MApaKMoVWoozWBAEw1jSl3TYHG0hX233TRmDTikVbi9Gwsh3OiCVxqokclRQ+WeDE23tZilj3YOQeFVMILgCFEIMojigljTFLQZpm45Zk7zTWnPZ/rRDbrFwIOck9pKKtFCGtFbWrlKrYnolDIc56ActyOcG1mkrO8QQpLYoHl/eu2F/s2b7eQIPubvGF07RliT/eNDdaXnF55zW71Y3cAG73jxPepBdHvaYsRlN4LRXnvRQrlSbG0pStwBpFnBNKV1zVpJKpSpFVJcdEReGUQRuBhPve0HeOkgNVF1SVM413sjZOcyBmAZF0U6GIVNKYcJ3HKcvNbneyqfRO4ECHxSlH79egxLY8lczr19c429GtB1y26CT238F0lJzotMN6zTFNWCuqL6kI6JGKANZy7qpoLYpA/XpDCIlN36FI5JikgaYWnLasnMevV0xxpu96tts7dKueMB9Y7yxf/PgX+MKLL6CKI6iANgpnFZthS06V692es4sVd/tz0I6u89xcH/AWhu0ZRhs2ZwXfO+I8YbXivfee0K06sX09jFg0w9CJqqNS0pw1B863Z+jOknLl5rjDajDbLapmSphZX5yjUbz47CUKy/m9M0wKHI8B6zqML0ylNIvtxJ2795jGGW0NxoI1BlcrxlbIiVLh5ctLqlU4FF3nUMBxFvXB3jvmMHMzzeSQWW08xfmmpJM5v3cXrQ3T6xs6o6llYhNE0atMB4ZuCyUzHY8oq1C2w2SNwjCszui7Nc459tfX3BwOuK4T2604c7WbOcbCcbdnWBnc0FNq5Wo34q2m94ZhsyaXwPZswIXEi1ePxNY2zKiTMssbPEHbe5Y9R/7/xxQiTgBE+983ixWf+0+1vO2PGcsLNabrWa037PZ7VIX1SvPk8Z5Pnt7BWU+3WmOtJ+fK7nkg/fN3SN/6IQpwThraSpQ1fZonnNP0Xc+sFDEkaShsa6G19gQqiGJaUxylxc9GFG1iKgLsLCo0SpFyEsvO2kBoxObRGEOqVfYPLRBLQdZa2ZvF0q3UerLZK0WULTnt6Q0WPYEstL1H47yTmHqBQhQN/NBo05SBTjFCOVndnuKCKmDUAnEv/7acpcQGTYuSH826OEc505xADU7qMvLL1wZ+ROIcUFS81xgrVmDzlAhBwClrJM5ILeZbVBGXlX6xmasLKNOmmLaGzlkqAjkLYJSb/e8S570xJZfJXNvnVBVtDX3XtWueT3HPEqss4NIJyGlnZa00KRbmKZJKxmmBVnOCOAVRrMxyTl3UGMkN9Ff1DRjnFpgtyxFoUShiOU+JYq1ZznvWiLXcAnUtyozNClAClmbf2z7vch2W2NhYI9bg+rRDCqD3uafxDcUzpVjIeYmZBJ46YW9KtZyvwM5qiU9rO9PJNDsBacv/t1bIBr3f5h1kjmqJx1pMUJBzwBIAG2vamqslt4gmBLFhlXNUvX1+QAKApga2qGKFEJqyZ/u8ZQG6JKay2ojybV6uy5sK1fWN3+HteDv+dI/kEju3+1l/jD98KPjuV7/LR+9/xJd++KV/5bf53le+x9PHT396n+vt+Jced17f4S//g7/Mn/snf+6PBZy9HT+b8fu//3VK+TnOsbXRdTNf+tIPfgykBLy+C7/5V+Hv/N1//R/s7Xg73o63448YPzmk1A5NktSVzjyRw+UW4lCKEOOtjC2te7lIkVJpJYJJzaM75yydyiB+98oQY2nqCtL5KE3ITWw4JbS3J2uDUqUd02oNGbSupCgFoRBmSTAb6dLXReM7SWgqDSjFFGa89wIYaVGAkuRMlMQHcqjWVbplV8NAqZE5BLTWTCFQVaJSSKXgGySkqRRySwhohq4jp4hfdeRUuLnZ0Q891hh2h0tSyuRcmMdZCk9VOn587+i8JiWahYkcNHOtVCMnWasMVLGYsJ2ldJKAdM6Rohzku805XeeZ4kxMkc5KsniOEaU0uiru37nLPM2oatiuVmhdudrv2M8Bp6WDKsyFVzfXXKzXaFUpU+FscGw3PXOYmcYDMRfK8YDWFe2cHIBLRBuLtUt3T2kdeUmUMqKoAI3ziEYSUYlExVCKJoSKMfXUAb+7PJCmiMW2RErEGMU8zixWUHOI5CiS0yGNgKEUxfE4g9Vs1hvW64GQ5Jrcu3OHEiM3NzuUFqubimLbrxj6jjkExsMoXfm8kWB602u+FQxzKtRiRQY6JkkfaFDKSHGiZKqqGCfS41rpZhWi2QwrUprxpuJcxejKXAPnF+eMwXD9yZHj/shxGomqglNoXxk6T5qSFJe8xQw99/s1xnRkKt0sFglgqSWTYqWqQJiPjEd5rs9WK3QtJKfY72bmSTN3mZoNOhfu3rtH58F6z+AG7m7WXO8uUarnoneoiwtuZsc8GuxUWLue4/gKS+V8fUE5v8uwHjiOI4c5E6eRzZlHK08ujsPuJfNx4v69M1KTZN/dHOkfbXj05F1ubi4Z9wdiDKQ6MAbHy8trNp1h6FeobsXQ9ZTDK1gZ1sZyNUUuztd87etf5fL1DqWgi1K4++CDF2wHyze+9hXmPLHuL9hcrHn26ppus0HpQNl0WLPlrF7zxScr9CMPeqBbPeazTz/DfvGLYGHeH9gdMt3Gc/HojN470ivHpy+u2aI47m94sDW8evGCXdry5J0HKBvYnK149eklDx4+QJWezdBRQ+DOowdcjTOf7vaMEc6GLaHAfHODq4Fy2HMwW66vjtQshVBreqY6s1o5nr94xTScs087tquOu+dbjHOMx4TvLF/5wkMyns8OO65e37Df7Xn84C67T17x4nLi/vkF83hDTjP3H97n937/d7i+OrB+8JA7dx+Q9obD9RW/8M6GO5s15xcbUg6oajDWs704p+Q1dYKhK7y+esUPv/0pRTsutufEEvln3/2Ad+4/pJbEYS7cfHwghon3Hr/D5f6G7eYB+93EZ89fEXKhaND1Vj3pTRjpTcWk9oU32yQ/9/ftq5YCtrqFmzil+35kLF8rXB2ueXXzinfPLrh/1rMZDK9vDkTdcdwduXl2zeF6JpeJwzQSwkzOBzKZrB22d+RpL2VbrZr1QiHEI9YsHbyZYfBszwbCPGOMZ7XpqFVxvRtFMl5KotQyc5xHSlashg0pZ66uJ2KKeOcosVJzxHcdnXWoDPtxQmvL+rxr0I/HZMeYR7q+hwoxBFZbT+oCORbmYxC1s7R0okphQ2noOi9d3DkRY8Ba3fY/gUG995QiHcnWWXzfEUPGeQ+ta1kVzZtHvpyzxA1VVBVjjBKDGIkrUk5YY5nGI/NxJmf5nro/4OyW7fauKDOOM3GOOJ+JMXA8HhiPE+szh+sEMAhTYTwElOoY1p5pv2eplUiHcxWwIt8mf3MRS6naWmitFnhLa0us0mltvaarjlpnYr21Eq1NKUlaz1scZTWb84GHj+7Sd5YSBo4HAc9SrKDkmmpj2Kw37K8OhJDJBVIJvH55Tc2V1GDeXAoazf7ywHE/kavENylJbCV2EvIaagPIEfCcIkowUvRpMEhTI6ilcNxPhCCKGuvtCu/sST1psWwQUN1grG5zRqr7WlWMs5hW55tDYJ4m3JToeofvDM6Byko6xqvcBeEdlq7k9jTmIgqZ9bbYhFo6nFnasNvv/iOFRZAilZIiWDWqFeUWhUXNZrMGVZsdgtgU1SoqA6kkakm4anCd2Bd33ouVb7WQDQc7Y6zFqw7vBWKf50COuUEM8lmctTjvSVkUPHMSO6tmagEUUijcvL4hjDNprm/EHqVBP2/Alm/+98/jWCgkpPFAACCBHuSf5fxQ2rOxfEsRr4wGiUnRjPZWMufk+4wWaFBUN0WhADjFaItlmFa6KSq1c4ZaVLhUm29SgMtZFCR0s9ITSxxzKt4K7JQxBlGZoXkkw8lKBTjZntRa8c4KGFQyCtViHlHlKQjIXluhscJJBckaewJtShErZOckFp7jJAWnKip2y+XRWqAnY9TJ3uSkUtDiU4oUwVBidKitpZqCbRZs8kwprOuxg4Cm0jghVkOLOodCsepXpJxQVWwgtYIpBOaURfHJGnKujPNE7wV8qKnS2R7vnazvSeDYOcRTUU8p3dQmljVAtXuZATlTpiz7TsoJmoJSWSApFKlUVFOLKLUSptjsWvTtGqtkzV1sTnLOlKIEUi6i9FurIqYESuG7ThQJSmYcM6uhl0J1mFFAHzymarwVuDYnUYItJy8jlgr4G3GL3BtRhtNcrS5lfWpFelE5UA1AqyfYcQGXQIuVd8liQ6ll3icyfd8Ts2Z3syfGSExRsGwDyoCzhpKabYzVKGdZW4fSzZI6K3KKshZWKaBXlckpksSNFOstqkKxEINYlGdTRbW2ZFarFVZLId5qy+A98zzhMfTWwNAzJ0OOCh3BGUuKIxrofU/VCucdMSZCLnLG7gxKWSqGGI7kmBiG7rROzHPAOM96s2WeJ1KQZqZcHTEZjtNEZxXWOgbj5FmLR4iKdfZ8459+nfvxAffuC9yjjmCKgmy4vDrSWc29u3fINeNdj+88h3HGeg8qU71Fa4+vM+cbj1oblHIYv2a/26PPz3EG8jwzx4L1ln7dYY2hjJrdYcYDaZ5Zd4rj4cBcOrbbNbkICDbuJtbrNapavDVQDMNmxRQzuzmQMnTOk1GM84wmU0MgKM88xQaParS20kDjDIfjkew6QpnpnGXoRF0pxoAxmrvnawqWfZzZHWfCPLNZDZTjzCFmajVNhTLTeQcaPnv+HKzj7p0V3WbNcZzovObudoN2nTzXDWR2XUeHuAM6pckkLl9dkip03qO14nK3p7ce06zq98eJm+OR3nlSdugKGs/1bkdMuaHPtwX4k9rR7Qa1vOD0LH6OQPoReKnevvD2kf7cqxdUU73xtUoqmev9RC6VlTeY6gk5MwyimhjnSIoHlN4TUyTlTPloTf1GphiDd56cZ4kDlOTixCZUcg9GN9UcrfCda2cdsZc3VjPPSRR+lpxdzdRciCljrUMpTUzy/J4swZpKoFGm5WAyuVSJo1r+zxnbYFRRtgkhiwKPlX05p3pSJOJ0lpM/2pgGhCwATG7njWUvE6WckiXPZp2Tu1O5VRc/gb/tXpTSPptY/+acT8CINFw0g99SiHNssYY0OEBlc7YRuLVUcgpU1ezlipwrtNE4r0EVUhAbsJKRM07NJ9DmNJNOSlttFpYWxyFnV7XYkCvdwDC5v8boFtOWW5hkIZM+Ny0VxhlW656u96haSCGRF3uzE0gjKnYlZsKcJD6gMk3hpBZ0ij8Qxa15jCewbYlDb5WcbmOcuuxTmnZ24hamqbfPXc6Z6TijdEBbsVc9QTX19rotsE9lsX+Td1yUsVS7JzGI9bqxWppbjcbQ1Ds/91A2yLcBwqVBy3JdGrDU7PhOl7Uiv/ePphe4/T6t7cnG700FNWtdA7FaA0KWcyVILFurzFGzQHNGbANFpVOaPJQ28nwYdYKxcy4LJ9V+LS1qxjTl+XKrYLXcA1GFSlBG+fllAceW+VnfWNN+DKj5drwdb8e/3lFhGAds+pfQF/gx4+P3Pqbo8ke/8O34ExnDceA3/uPf4MlnTz4XD74d/2aMWqGUE038czXmuSMli3Oijim5kyU+/JHPmy18+5tI4PNznC98O96Ot+P/L8dPHOko1MnOoDTveKWNyKxrTcoVgxygSq2ook6StgWRszZKi3qCEtuYnGOzPKnEFDAeas2SZJfGZOl8iQllDGmRkG9AiNKVEjIgiZlSAyqLso2zWoCSZuVgvDsVTquCYejIxhBjRmVRXzDe0w8OpSvTnFFVUXTGGCcQ0RxJaSbGhLYWpWG76TEqE1KhqqVr04rNglEYjSR8QsL0vtmdKKYYKdNMqaJCtchga6WxSrMeerQp1BIxVotqVakoK6foGgrUhB9EAr+kQj84rNPUnKlV7Fd6J/AXwGFOHOcZpzu26x7rO2ISEExrQ+cVvXUYpZljYNyPDaSR7rSzTQdWcZxnrCr4lSNrTSiQahG/eyUFodq6iBXy+3Sdx3cd43ygEMlFiR2Dyic4K+dI33tiTq2LT2w7jJaEecwJay3jFHCdx6KZp4lh8Ky6juvrPQXY7UZy1qyHDaoqjmlmvVlz9+IefrenpMR6NaAoxDiBKlzv9oRjkMK3M5AzKifwTuxWFBhnKXWmKkVtiSNvm4IYtTXXNYujlgJVWgrvtRaM4mQtYK0k2bwX+7fOGY4psRtnvIWrwwFlLedrh1eaUg2vXt0wzZHddBQJcW/wzrFdr9E20HvLVMUSi5opVdE5Q60anSJuXTiMBVcspVReX++ZY6IohdcdZ5sLxsOB3bSj6o5gOpzRKOvIk9jKnd95yPbuBWk3oW1ldWa5WK2oaWJ9vmVTV7i64lhmSrxme+cMM1ReP31BKj2f7p4yHgM3+4kyBrQ+w6033H/4iJAnakygCmGOpChdep99/DHGXuHswOFwwPrKxcWWbdeDjqhuoNeGr3zxq6hes3/2KR9///t845tf5lmaefn8Evs1w9Z5pu2a6fKaF68rF48e05+tePb6Borm4m7l+uPn5OC48+CMm/mSkiy6g0MOvPfeNxivn9Kd3WU4e5/HOXF+d0OcZ66fvsKExONf+Boff/Ax47jn3qN73L93TxTTVpoxOr768CHHQ6CYM67GmcurA1FZlFWUcebm6jnbzYbODYTjSN9buhjYXc9M8YaXT59zv19TVWWKmTzNGGUhRd59fI91p0ipZw4rkup5+PCcME8MmzM22y3HvWa8viaGzHc//A5XVpNL5Z2vf5mnH3/K4TDTnd+DqXJn2zPbgQ8/+YTvffAxw5373H3wgFoym4szuvWadLNjNQxM+z0pTPTKU7VhvVmzGhxXr14xv7zh8d07WCy/9+kzfueDT3Emsd2eczjsiMUSM7y+ecG97Tm7Y+TLX3jA1asD3//oKa+ur1E1A4WqzKng++aoJ7RIgSpvJAYbYNJeJXm6W4Bp+T61fP3NgsXnivytaE5lnBMlRe4MYO9tuDkcmeeRpB3xUHl9c4nda4pK5JAwXmF6B9Ggi+JwPXO8mSgUtmcblMqEGEW5wyrIiqG3bM4HnLXEzjJFqfzFKVKiIleNMhrbOZzVOKupzWq18w7nLakUur7j5uqKqsWCdZoz835GUVithpMV3Dwe6YcVZxdbbq52zIcZay3D4Km9ZjrOhCCy9NYZsQfIsj+vNh1Dv2I6TJTptkParxwKsZcZx5kYxC7LN+vMnFKzElGi8oNqlk0CKLresR465uPMlMXKzjhZuyiKcMwcdjfkFJohmeyjuYHO1jiMMeyON+RcSGnm6vKS/X6kqsSgtOwzqYrChlKs156aBEZRtSneVUWJosBSK20Pl7mUkMQ9Cnzv0QZinBoAIF2+2ihc51rncW5TURLOJYuFke0NF3e33L9/TucdaQrsryd2u4lh1YmSSLNlM0rAadkzU5vyinkKos6iFcZpTM2E48R0nJnnjFJSiCIvCencAB+BsY0y1CrKR6YzJA06CpiVasKtHOuzNUpr4pyYx0iYM2lOnJ+vT+AIVZ6qkgvzXACP0hZ0xShRHjJqSZIXyJqSMrHmEzSiWeAosQuqVbXim/wK1ii63pJiJcyJOCdqrnhv0do0AKCitcVqRYoC19EgMSVBoyhHFYlfrdGnwsJiIdyvOoHvm+WasbbZ22VUqk09AHplGboeYwVvNq3IM40zzhtULlQtSmy6KbWUBsWAFPTX2x4FHKdAnCMGKf5NoxSWQOwaDqkVFRq8JaPwOSU5DUr9fCcdFruVxW5LtULJopikW/XozY57aU5oBS6tTqCGsVrizdZdXpoS6QKi3lpP30JDpdwW+QROEkUi6c9f4rlbu7mlEKiUPjVdLICYtZaiS7OrExs/hW4qF6LCA7J+LnBMTmIdXbKcpVDQeSvoaYPPpCjcFA8Up+cr59yKsaJQkbK8l2x7tx3wcm5TDWJ6Q4Ws1SiXho3alGSMMw12EfhP1jz5LLoBUiclilyIKaGdxKHGVFF0asVCqy1WS7E5lUwMsVm4SLneewsaYhLVHWMNpdm4FerJblluYznNEYWS5hNjiTlQEWs5WQvLSY2w1luQa4FqhcdqTTINUos1o43FKFG7cNbgrGWaAqUWwpyoReFsszotCuc7+n7AzIFS5OwjkJQouU1zaM0KlYeXD/jK7/8Cw3GgmMKUxbpWip+tcN7mhOFWeQJoxWiZdw+ePuLlxUuOm73MO3ko5BlQonJlrGr20zIn5pQxGokftKjLWOQejONEypm5WSDJedXQOQ86YbUmLXeg7XfGKGptSrzOik1flTkyjmLfWpXCKEPnelKMhBSoypCVwWgFWlOTqMv2wxo/dJQgcKjrRJ2n5tzOjA5TPbEmapnxQ4dKMO4PlGrZ7feyRs4JUkapDuM8q9WaVBJkUfHKSYCBWir7m2uU7jBaLGW1hr7v6IwFlcE4nFLcPb+Lcop5v2N8vudbxz9HfzNwLCP6rqIzhuQ9aZqYC/TrNaZ37KeAKtANMN0cqEXTrzqxji1iRx9r5uzsHmneY7sB252xKYVu5Skps9uP6FzYrLfcXN0QY2C1GSRmK2CcIhbN3YdrYshU1TGlJMrDzUKvpMw8HeUaakeOSYr2Jcu+nSfG/YHVSRGsyn1pZ9vtZsAZRSmGXBwFy3rdk7OoUrrOY4ImzRMlFV5fv2LSsk5uzu6wv9kRXlxi+h7rehwdWVmmFNhfX3IMCdsPUkyvldVmQwkRqzVFwXg8CpyVIq5zDH1P1ZXxaodFce/OOS+ubrja31BLwDtHVrqp2lkOxyPOKWoRm/qa4YMfGK73R2qzS6wION52itu9iduTgIRx9fNwQ/uO0399nn+WM8UbX/tDSxltz7m87CnRsxkSylQ4Tjx+eMmzz95j3EdKCcKqZIEx9QdfQ+v/J6kK7DNPYmFvnZU8V80nKEQ367V+1cm1LhKTAm2NgpJarqLBEaVWrBX1QaUENE1N0TPFRK3xtGZNUyKXjHf2tGYt65rvPDFEsdmsDVxUcq6vNVPjG6pybZPWRtN1jpohxtqsRQWyckYsT8XWTjRxrBV77JJLs0a7BXEFQmn7tmn7IDA1ktJYfVrfSoYwRmk+aEDwAnPUBiw545jjLFCIUYQgcz+mhLdW4oW235Qq76+VQJqnuBN1akxgOWfWW8xomSune7FY7C3wUrtGEqc2iRzknLJAJmjw3gmg5B21FrEKGwNGW5SWc/EC8+t6q8K3TGM5m0gMIWqjUHNulmEC2cuDolpDh9hEy8f8fKxttKKgT2pKtSmWus6d9ugcMzFmiBlVqsTSJ9pPrk4uGXJtapgStxlNU5iqp9wxhabWV2mnHoqSKVbaeedNezylZW+jaomlmpKpnDnELaC0+SRKm6Vd+88/y8q082IFw22MWwsUXfGu5ciLnB6Vksar0mLUcrKXU81+ULOUQssCFVFP9thLfKiWOHeBrjRYJ7aNqeTWsCoNsLFZLcpNrsSYWswoc2fJjLQr0+ZlA5bfjrfj7fjZjAq/+Lu/yF/7zb/Gncs7f6y3+pV/8it89yvf5dmjZz93lnZ/2sdwHPgr/6+/wuOnj98CSv+Gjhgd3//+l3/WH+PHjmfPHnF9fc79+69OX/v613+P3/qtP8+Ptaf7v/934X/+PwMf/zV+yrfj7Xg73o4/evzEkFItRQqISsohxjrEtUDjrMNY3WxhWmeN0mhvcc6TVJLDlZbD1TCs0UZxOIgXfK2ZUsChWwJEDshKiW1DTEk6euB0WJfki6ESyangvG8WOVKo8J1YpoVwu/CmlEEVdKlNnlsSvDlmaIfwpchTSiEVkWmuqhBj4bCv1Jrouh6jnUAVWZScYkuOZ5RYsVUYnNiYhWmWRIpRaKeY54SKGaOtCCm0omc/eFbDgNFgrHTAad2JNRwV7w3oKvYvnXQip5qpSZPmxDgG1r109CeQgkNn6TpHmCJKGbH7MvbWRgRQxjEHSejqKoDTcZ4p2pJikANuVqgCq35FZx3r7ZrpMJJLZdzP5JQxTeab1nmutMH6jqoU/Wogk5mzqF/Nx4lawFlHtZqbw45xGiXhbrQUJbUUcRWVeZ6b1aDCeMtqveY4jVjfYazj+jgzhkLvLWlKZJMJJgKK9dC3YvcNtmQyhd3Va3bHI3OOxFKgBHSqDL289/5wYD4eiDHinJMiVrUn+WrV7DNENauIjLVq8tNFEmvGObLKpyKy0pIIlG4usXfTSNI+GbGwKLliOst6dc50mCEkjlNkHyMxJYaVJkYPXY/rFE4bgXpyZr0eeLhd8/z5DTbLw1JDIoWIq9LdPY0jOWVSjUzjzByyyLP7wuX+wNnj+5iXBR8juRzJoyWVgOkUnYE/85X32Gy2/H/+i98mr3pW5yteTTvmFHg8BsJhxzTuWV2c8fTpS+IcmcY90+FAbwd2+z274wHlOoJKJFXxsXD90aeoPNI7TZwLYRTJ8KwjJUVKmaiAXxlKSOQpEJRCZ3i4fcKTu1uG7V3wMG2OTMdLwpxZ2XMY7vH7339O5665/+A+bjjju8+vuHf/jPG445//s29z7/yM4bznzv0HpBQYVpbPPromvnjNvO44aodznlc3kXo88DgfeXR/zce/9x2OuXB5vOKdBw8oqWCdY2XuQICXLz7gfHvGsWbUcEY0hpvdx4w5Ckw5vmZYb8h37zPtjygP3dbz6Q8+4f0nj5nGCdtb7t29w81NIejnvPPkDiklXo+By+MVu0PmnbM7PHp4l89evMSaFWd3FOFYma9fE2Plo+On3H/nMeN4JIXCXOBlSHz26cecdysO9x+C74lj4MJa3t32XGw9uzAQmHnnC4+x3Zrf/e4H7K6uMbNifX5Of7amGst8feAYRrx33D27S7e+gHni+PoVznvOVw/54SdHvvjFLzFvBtI8M6eZ/eUL5mTxwxpTAuP1Neb9L/P8deH7H37Gd37wIa/2+5Y41rdKG+rzkuqn4uzJdrEt+m+2P9L4pFb4XBJ6b1YSFtuGH7WLW36OUYqUA+NhpmZLTorxmFhvztgdE2E+UvKM1l5UAHUhkTm/uCDGys0+sD+MzHNhvbGcrTTjGNnfFJyxGJMwTvY9Y0GriCIRQ4P2kiLHSlHQ9z21ionY+mLLHBMay3q1wfcdr16+4njYSYdvL93mpVbO+i3WaMbjgd1+1zou5ffdbs/onOeQjuQUyCqIEkG7Ur7rqKkKXJGb9U9WzPOM9xrnOnJJYnllLDWLSkiYA5EiCeAiCWbjxIboVARAFMF0lTXNek9u9kUCB5iTRL1SRvbbnMUCtWYpnDYLiBgT19c7OucoGbTxHPYzh3oEYNj41nVbCUGur7OWkiLTYRRoCRqEoFsRr3xOqcI6sa6TJV+6dr0XiCU36fxSBV42Rgo8ojbUQIUCpSRWm567jzfcv3sXUFy+uOH61ZHDzcycIv0w0fWGFCrHw4xSM0dzJMxRYjDUKYFstMZZ6b6tBcbjLHC3rtKBjRSoUrrtUBaZfyl4lKrwWFxncE6JApKquMFzfmfL5nwtcMCc2F8f2F0dmaeZmyuoSqBwa41YjcyzKKKYgvW1QTMtGY8ihMw0zqcKX4mtcxlFic1Soi5p89rgBIWyVn6G96RYuclHUipYq1BKLKic9+RUpXPZiPJnqqmBH5Wu9wyrFcZZyJp5mqUDGkVOArmN40ihsNlsGYYVQ6/bdZJ5F+aZMIs9V0mwuxlx3mPWjhgiL15cs9+PFFXQ3giwUpo9RhLIRhuFthJzppTRGqy1qKJE5SN/3m4ClkLGAinI8iW3UsBorTWNtPn5HQtw0nhR1WxzFepk4yLqCbdFm2q0QA7QOtBp9jUOpZUAK61VvlYBNkorJC1z3Rhza0/JG5YjyzOUJXa3xrQCZVMvspZKK0zB7b8hxUZtbjec+kYBciks1laIEptj+d4Y5fyzqFXk2hoVtKxLtVTy8rzUKlbADaTRQkGhjMAIuTZAC06AkrUG16zmdAOSjDJiKYWAfvKRFcrSbEYLFCVnixhwVrr5C1IYxUrhNKeMPKkC2XNS9QKltChz1IqikGsl5kxtKkUly89QuuKMx3gtZ5YgxbOYcysQynurAiYaksvg5Jpa5yhIswxwOjdqLYW5OcykFPEoaeqosChSKCVAk1h0ilKC807OmcY0lVyx5hFIolBUkVgeKXR7a8hxFmshKmEamWMklyL3ooqd9+OrB/zSD3+ZOksjTin6ZEWkTDntJYuNoVYLtNceE1QDtGBzXPPn/smv8OEXP+Tpo89IPp1+twXeWq5/URXVAFRlFN73pJCYcyGkwpyzgAhO0RVDNaYVopWAXlVUUVad43gInBoxc6WkgEHArNTO/GSabWJt87IyhYjfrlCHiisNyIsCUCgLVsGDu2d47/n0o+cUZ3CdZYyBVDKknhwCKV3iuo79/kjOhZwCKUixfQ6REANoQ1YSC5lSmW72qJKwWuZyjgKbFN0U96p0mWon5/WakhSzK6z9hu3K492as8MZqw+/iPt44LF/xKQj1a54fXXA6Jn1eoV2Ha8PE6tVT4ozL56/ZOg6bO/oVytKyDin2aWZchzJ3hKbDeM4F2qMbEpkvfbcvHxFrDCFie16Rc2iKuNUD1lxPF7R+Y5YC8p1FKWZw42cYSuYNOKcpwwrCAFMxXrL7mrH2WYta4fVDMNAmCtZHdhsBkopjCkxxYkYCptuYLMe2B2OaO3oeok70zxScuU67FidbUgxyPWtcMyF3f6G3jjisAZjKSZhlWLtHFsntk5zNgzbNdVqxnHks3FkHgO969DtbF9zIh4TqIo3jl5tQCnSeJSYabVht5tw3Yr7fU+aRlJO1ByZ54i2Hc7CfDhwtjpjCpXjMfHxsxuujkdSzW21bhvlYpu0QBe3/7M8iNz+x48QSby51X7+3079FH9YHbBJkaeUyAmohhhntHYMfaXkJM18LVegNGK95Qy695ACIQRCzBit6JxCaxiPBa0sqIIxsgYsFrW0OC02QKlm2bOMtbTlBuMsylaB142h6yWeC9NMrYuVloAyWhk67am1ME/j6TJok9F9h7OWMIUGrc/4zp3AB2MMqqqm9qYbWKLJSWyavbeUkjDaoIw5XeFUAfJpr6t1+f24jY2qxNkLVKJMi9Wbis+pV0XlFlu12LzdtyXuWGClEGNTrslyFsmZKc2yjhjJV4nyXTk1I2iliDE2G15uxfKaeumb50xRCpRYqBSBgnWzdF3OEydgpIFKt+o37VcuAnP1g2e17nHWEebIeAyEKZFSRumEc7IHpSB7bdb5lIeUeXvb9KNb3korLarvSUA5cV5XCy/+efVSOZCz2PMpK+BsPkFUiq7z9IPYN9aKwGyTAG1hjqik2nmLE8iYcxZl28UyeznDVIlfYmyKVe25y0lgxAykUk/x220+QO7vAoRpNMyJWGJrOFXt/krsLvNJzlY5l9PZRBuxLBf7a5m/pYGQcgnks8+h4jtRxrMNtJLYsJyaH3JTNYsxo+fUgKzKNAamaZb4tSlj6kZC1lIperGRo50v5TqpBbTKuSkqvTFn2kNQbg8RpxWsLhd2eYZ+ns8Tb8fb8UcMVRS6aFbjirEfSU1p5N+IUeEbv/cN/oP/03/AMA1/7Le7//I+f/t/97f5+//W3+e/+ZX/hnEY38JKf4LDJMN7H7/HN7/9Tb78wZe5//I+uv78W4W9HT9+lKKZpv5n/TF+4jEM4x/+j29VEt+Ot+Pt+DkdPzmkVAtKF/phIKZKmMWizLWOHWMlMV1jhlzIVQ6TRYsSjncdKCnEjuMoHUjtIO6dxTgDrXNcGsxVS2JoSm3Ji3Z6Er9wObxZ55jHKMoOtXWTIwcx7w3dIIWsnKT7x1uD8oYUMrkkSWgpDcpgnCOkRVZaDp6qFXZLqaiYRFkhQyWTYyUr6eq1OZ+sSWp7/TwHAGIMdM7SBI2oJYv6CQWjFNo5vBObEG2qqCYgBTYK5Bxw3mOdIZOx3klxNWamcaKEilWW9dCRMWQsmoJVlWkaGecRZxxKGc7X51xs16RZOlxDjtRmw6OVgq51/qDZrAdSNoyHGW80VoMqmUH31JAwaHQsXPRbdFZ0W98OsnLEDUm87GPKxFKIJTKXzHQcRaUowdCvGIaVWPkZUXUyWqOdY54D8zyRc8EYi3MG5x0pJY67I2gwtZIngaSoipKN2ArkPYfDEe89Z9stry9fk+eIqRpjLbb39H1PHivjcY93ndj1hcDu8opaKr1z0h2oJbMkMtvuc0VhqFilocmHL31N6Jb+NJal019bI/YBOZOyWOUobfB9j/UVa2AcJyqFaRo5xkgouiXGArtp4mzleHL/PtkrjuMNJVVCDgQSikzNIyok3LDm8maHvejEhijBbj+TS+X1zRVaOTovBfyqK9ZDKiNx3lNiJE4jaEsME94ZHtw/5737T/j4sxfsbz7msD/yxftbehKfHveMKF69eIH3nsvpwGcfHDlc7zhfOVSZ2awdKMV8TAxnA9r3mGA4pEDVHT4FijKYzpHizNBZYggYazm7uCDT44Y1X/jCht3ljocXd3nx4jnvPHjEL/zC+3z9l7+KdhtUTJyfrfHdZ2zWPcfXIy9fveI6z7z3/n2MP6O6iXuPLlj3A/Nh4smjR7z/5A4mGp5/tOPJk3u8ePGKqBI1ZWJdYeyaTz/+lHeePGB3CIy7pzzLa9yw4cFmC0YTwsTV68/wnUarLU47fvj6+4xxIinN3cHx/e9/QjwkXk2Fi4sznjzaYu2GUWlYGx6/+5Crmx2XN0eu9t/j00+ece/BHYq3kCv9sGU6ZsY50W8vuD8MvHp5Q1TwW7/1j9nvA+u7F3Rdx9XLpzx4MPCVL3+BaYLDODEFzeMH7zDtX/CXf/VX+e4PNrzz3mNWRqEZ0FWgOL1d8WL/ilgMWm3RdkUqmpcTzMnxZ776JaKq3OyuGA4HNpsNcTyyGQYuHj/m2fMDeZrYHcD2CsyeUif6NLHednSP34Uy8vTZJ3z09DXOGr7w6Jzz/oLeZmyO3O0S06sPGfc3rVAncuwGWWfftHh7s2v5xxUXTl2x3Mq2/4HQ/M0z+glMeuOLrZpY4szx5sDzq1FsKfDMMQg4S6GmmaI1qtn0pCxdulDxHi66jv7RCusTuc70eGIIzGMgpcLgHShNjlCV2MLkOXEcBYaIsdJvOkm+piwd5rVgtMYqw3oYOI5HvLOo4JgRG5D1ZiX74JwpMRKOMzWLCl6/GkgBXjx7SQ4CAq36jmHd41xHmQ5EV8gUQppQGs43G0oFbz3WKyhiL5FTYZ4DVhlWqxUpJikCZ1FzSiVjjMW0a1Sa4qEoWEgyNRfVrOUyJWWoAiZoDXfvnQOK68sDqhScd+SsBDZGured6xiPI7XPOGcpFUIQaxKlJD5IIQssMGdilO7ZHMRiqLYk+GIrYVpiOkVRK3HGYvxiOVVJuTT7IVEAsRWyKqAyFFHes8WQopVu+Cpd8cYqzs/OuLPZEqfEyxdXXL3aE6ZKbbDAMc3MxwpoahGrg5BaUaGAanYAlQYcachRwOraOqO1URjf9iVjGLQmzZkaSyu6NBikynPS9R0lJbHfpeBXPVXBYbenJJinwDzONIcR5nEW6IMsMVtTQkwl3z6DTaWoICoiomykT2ChMxZVFYfdJKBHAm0VtjMo3YqKSuIYUBJfVVFplPeXfdlZj9Ga8TgxzzMlm9sCiipyLYyROKd9/qXDX2xSioBdCgGyYiTNCTAn8MM5h1YaZztCs6u7vjpyHGfOzzaQYb+fGOdEVYVOO7rOMqwGjLbUcpTivhZVDOs9xnZoBeN+ZBwnsetaFGS0KJnWRcXrVJxpllQsa6H8m26Q98/vkM9qnEVlUa6qTb3AGCNxd/tdVQN8CnK/tJKCkigcaWJKlNy6w5UoiWmjoSpyU0A4rflK3So3tDVeKX362doYKcSVW4UCsXqUTntrTQMzpbAkQNVi+yIQk0KBEdgqN8BSGBmJI2srCOXcikxF1huxm9EnEL4udaP2JyV5BkrOGCOWZaf7reRzKiUFRWNErfO2aCvPnKqKUlJTnNCi/tqKzamdKWqW6+qcRTCjxfwYUoykBFoZFIred3TeU7OcB3Nta2tuqrdmKUiLGkepikSm6gZOUXDKSoMEClUqg/Wc3Wx4eP2Qfuo5vz7HZM3Te8/47i98l4jYpOWaW+ExNlpWmh6cdVTn0K1od7qvrQC4PDPG6GZjJ/Y+qKZq0JSYRJlCif14iYSYsEbjfcc4jmKH2QA77aT5o9ZIjAWrDeeHLV/79lfbet+sx81tsU8UkG6LpctzoVvh902lL9WK2750fPWDr/H+0y9wfe+aT9//lP2wu1V5UAptLcaIxHtsVkUpJWLO5NrsXmohxIh3hs0wUK0ixFnAuFIotZCoUBKkgnaOMczcWlYjClO1cpwnFA2MPZ2dIddESYFacrPFE5slozWrVc92teFmdyDM14QQuFhtsFR2MZCUYjwcBeSJkd0YidNM5wzUhPeGilgPuc6J0nLWhJJAG0zJgrVaR8lJlJVzRmtN1/eUatDOc37umaeZTb/icNizXW24uHPOvYd3efzyPb75ydfZH3fc2B2dsyQSx+ORqXjOz1co04FODJseZy05RDabNWebHp0Vh+vAdjtwOAjwWkuRe2A9+5sbNpsVIWRiOHCoAWM7saBXYuMzTXuMAWs7tNJcX16KzSKKlTO8vryhxMIYoR86NoNHa09CoZxifbZmmoP8CYHd7sBq1XPHCFhobSexQs7YrmdlHeNxpij45JOnhJjwfY+xlum4Y712XNy5IKVKiImUFevVlhQOfOHJY15febZnG5wGVR3WQAiVojWRypQSSnkgATNzEVWc9XrLer1iPx6ZplHmZBGQbrXdkHEc9kcsmmOodCuYwohVGa8L/WaL1poQ9rJ/54lNP3A+XOAtOFVxZBwT837f7LO4zVf8i+pz9cdhST9m/ATb7R/onFcAhRwCxzEyrBRUI0BfraImWEUxqNZFIU8ABF0rWlecUnTdCmuhkiilipJqWGI7fYLWRdW8CNgaC1lEg6SpUGtyjlhnT59SNxWlJk0kyq4xiYqrd6LU0qxrU0zNtlXiZqUM0xiozQbYWC0gv/OkmDGqglGUJPuTdbYBnKo1u+W2f+mm+FRwrlmD2orKCoMWS8BaW7xzq0y0gDxye5tFc4N/BaiVu+q9xXdidZhLaucSIzmatr5bK419IYTTOl5Sac10LRZrzRalQE4NMi7pBO+i6ikm00oUchaVP60lXkCduBHUslWoZjnWYoQlHtANSM/1TRC74pxn6HuMMoyHicN+IsVCLbKvCAwjkG5tliUSf7W4cgFnJVhZ2HdS29vrCdZBzhNKNRtoqHmxf+ONJ0Y+p7H6ZNdrtG6xViJFsTde5o9STcUpL+f1Wzu5BTATcKad0Qti0VxOP46TZaVSpNRUt4rcb2P1ydpE0VQIaTFcO7+ZIsqIsqfq07kgxigA+Y/kBZYYfPmVdcvtLbGmWPCKNS61yvsUua8LlK9QVG3QupDbdYlxJIaENYYYktgulooxCmUMxtq270ZRf1e380Vr0xp2xEK65PTGPW6AVm1arMscffOXqu36vwGuvR1vx79Ro8Ljp4/52u9/jYvrC774wy/ig+d3vvU7/Oa/85tkm3/Wn/APjh8TaDx5+oR/7//y7/1UACWQtX2YBv7qb/5V/sJ/9Rf4/pe/zz/6i/+I5w+fv4URf9qjwrd+51v8zf/j30QX/QdjwLfj7Xg73o634+14O/7A+Mnt3pR0JitdCTESknRBGWeY40xNzcs9Rjk8t6RwTZWEFCW1UZQ5EEKU5Gw7bydTsNVIkhor9mNKU3IkRen8k+RKhgLaWJbuN+cFAlEFUVfIWQ6vqpJSaFK97axdEiGUUxK/aoPvlnYqeUtRY2qAkGk+7C2RFULCaoPRCaedWIkdJtabHmMVMVWMcafrkJJ0l2oqdnCS8M6FmhWpFjpvca0LvNSC0s1DVIPWFpQmpJnVZoMfenKOqCKqDzEk8pzRxWCNqAqcna2xncVax2635/L1Tg7BTeZ6GhPeeNYNCCslE+aRbe/xpie1Q24IEa0Um76jOMvKrPBdh/eGm3FCW0eqBWUtBc0cEqmAVw5rNK5Z4fWqMoWZ5y+eS4HFiGrVdBjRVQq5Yzqw6tdcnJ9jnaiUVARSM3qxBaytEyiSwwxKMU0Rbyy+68BoynTEFg054YzGO0tnLM44tJLixfmwxRsnNkjrFRjFajrgjBLLNd9Tjcc5w9ppemPw1tD1nchHVyhaUZBnIKVITZLlm9PMOB6bipJ0WSmtcV2PWixsWlEkThOqREzv6DYr4pxwpbByBr9ecx0Dx8MO6zq0V5QJgqrUrjKniLOV825Dip6Dmun6HgJUCof9jouzDfv9AaMU0zEQ54mSEzElulVHt+qlLzOLMpj3PdY6Yoy8/OylyPl3Ekr3nWPjB+6fPWQqipsXR2LUnN+9QPuKNp6cNVMKzMfP6IxC+y1dXaM9/Lt/469x/fqHPP/sKa8PkegMYZwIqeA6SQb+/9j7j2fLsiw/E/u2OuKqp1yHTFGRohSKVQCrjU30gG3GHhCGQbf1BBP+azRr4wRtHHRzwDZrDmggjQWioUqnDpERHi6evOKcsyUHa5/7PDKrgKxGVWUW4Nsswt3fu+KIfbZY61u/394PFCNAdwiR1aKhcYVoNUEXVqdP+LXf+B1ePf+Ymy++oF+uODu7oM2Ok/MTbm5vaZuG9ckJl1++4N2nz7h7teWnV1uurl6SSyFgafs16+UFUzjg8siXX75i1Ws+fOeETz7+AcvVE2zfE662HG5Hnn70Pqt3N6Tgycbx+QGur77E2RMev/c1AQJL4OzihNMHp2y3d9y9fkVLQxgP3B0O9MsFQ8rc7gKnFwZnerbTLeebU77+0Qfk2yt2l69RneGLT35MOuwpXY9dtOhWc84T/HjLTz7+Ea7doDLkbeDm9opm8DQEmhhYXiy4mzQnFw/p+o6TpYOzHrt2HKLnj/7kB7z/4dd59/Fjrq9uKLsdqzPN3/v1Dzk76VC7zGFsuPjWE378xQuuU2SI0DUbbu5+gosZZQ2P1i130RMZ+fZv/xYvvviS1y9e4ozmYn1CoxS7l5+zWpzQna5Zt4ohJa4vn3O+6Nlev8aebNi8/4xeRbw1fHnlUQGGoPny8gWb/Y7xZmDRiZJQym9WO5ejXc99gl7abK/1swDTm6+b5dfnSO9cCfqzTUx01Fc+Xyl59omSrLXLDuc63tsseP7iJWYMXJydcvnqlhATTteAsIL9zUjTORbWoEym7TVTVKikMapwsumIi4xRhr0PhElgmO1uj8oKoyyNM9i+pWrTs9vvaJ0ljJ4UE4P3Yr0yiTT9YrlAucx+nBhvt1jXUFJmv92JdL+SySZmqar2IWCAcZpomkZsDA6eKUxsd3vG0YvSVFXEmaaR9XrDYtGRS2S/G8TqdMwcDol+kWkbSaqEKGqJ1oodUxIZIQCBPpoapM2pBqAN3vuqWiO2oWikgttqtLb0S7HsNMYyHEa5YzVIa6xYIR2GPcvFAq0TbadRBWLIhDERJqmMDj5TkkaTWZ9s2O32pDRhrKbtG7SFru2wxnF7dcd+N0hwfQ6iG4WtNkkxJo71qErmLYyiRIXPs8z+bAmRSbnw+tUV434khMzhMNbkhyR7VU0Ix1JQSuyJoKrAzGuWeh2VUqRSmEoGI2qSsqYRNUlrGzanJwKGoPAHz+5mJ8BUgZTF6kgrSTApBTmHCgUJVBRTIvnC4eCZpknAiDnoMnOBCVHOVJK4CUWAKuucKN84UxMMGesM1rbH5IfASQK61YUAWhmB9irIQpxEGUopGtdJEslZUr1mRYl6xFJ3FBJ+ihVSUlAkWX04DAzDVBMQFtuJtYJtOtZLsYmNIYBRxBTxPuD9cBwzVLWka5qmQnYKhWEcAyVtMUos5JQuNTEUicmQSqbpWlqfCCke+85yucA5qXpXmGNCSSlF0fdgwZuA0nHcK9Tvl/44Q/LlV7xST1dLulSfg7miPaUkCapSpBq9JgrFRlqUK8UmGlJJRxDo2P9muEdGcHkUkTV2zqmqWUpfyog11TzMGyP3UZKT9/ZzUOedaiUDCHCQCwpTlQYAcz9fzDkrUUeaVWglNSqWI0nAjQrOKRTBR1xjxeY6S98vVBu1apMiwNGs9ER9fgX+MFXZbU5YzschhRi6WjU5Ue2s4K8kLQs5ZlSRsXfeU2gryTY/iXXhDHlpo4lR5qtGbiSZQkyBxopiq4AzVd0WRWMNBY1TpSbXNFOMcm+Ra6ey4cknz3j8yVPWeSUJ9gp3ff1yxet3rvjSPGccJYFYslhp69r/Qw4429B1LT7INZ7HSdnDGrkf9b2ZCDWRabRG2apuEGUfS86ibKsFVDXzfdYa5xqssjRDw8XNQx5ePSSEwDgMaBRnh3Oc6zCtwhmNrYloW5UjoFrQQIXcpECGOhaHavFKLkcIyVS7vTa1nLw64Z2bd/jy7DmfPf2M4WTAtFaskYrAC6ZpGFOq6iwWZUQ5KFEoVqxLjYHOOFIyBBWxyhArVO29p2sdPviqMpcqPCn31Tgjym/SuaEkrBXYIKfMYSswpqnPhbWGxjgWzZKUFeMUyEnR9R3KVLXEoggpEcNWinhMg6VBGfjo177BNN6y324ZQiZrTYpRnhUj6zUf4yy4RYqZxhmMkeKXpApNt+L84RMOuxuG7RbnGrHuK5qu7xjHkZaGX3v9TUiwWa/xh4m7wTMMe6r5oQBFbkHKAVMiu92e1ilO1x23N1e4ZoW2ljRMxDGyvjjBbVqxY9eGrYdx2KF1y2p9RkZRSqJbtHSLjslP+MMegyWHwBQDtnGEXBh9oltoUXSOI33XcXZ+SpkG/GFAOcXdzTU5BLAW5SzaKnpWpDhyc3ONNq10Pp8YpxEdMoaEzhm3sEwROrvEOkvrDKp36EZAsJcvrzg5PWO9WjEeRkoItJ3iycNT+s6CL4RoWJyu2A8DUSu2MaBtB4c9xIAtit5KYr4QWWx6+s2S7e0NY870bUf2E8WPFCKbTUceJ1yz5nDY4YwiBrFAWj9a4lpHOzXcDQmTISVkTewj3N6Sg4HyjlihSW+WZ6+UIwxCXSYcFVXf+P+97uo9fPHzGcW/GGWaFXR+7uf1c5Mv3O0uuHh0zWq9IviRu52hbVsaa5l8RNW5oFTAHp+xjaGoiHMy/qYsR9k4jTUaEEA/JrFT9D5WlSKNVgbtKqShtShRlQrSJQgpyvyS5CidsxSliUrhvZfr5BoZp0qu9rX6OGenCvTLuCbijjlkYg6Mo5f4YMoCxVQoT2spntJGM/kggH9GbIG1qvClzI3zGDorGM0WVrN6kpoBFyqIXAHVNMOf6v61AtGY+ncQd+X4xuvkOqUaI5tfp49wjvTDUoHmXHPfzrkKnErBojEGbQWwcVbUA4dhhkOlP86C3ErNa566rqv7UdnD3kPcx76U5VXj6CvsI4qyAsiUY89VcLRnm4GkI/kEPwespDcgZ601FV8FpWjaBjvb/GXwoxfAn2rLWy15BbQVcFweBlH5O8JcIRNiOipXHo9Abt5RWX8+31QSxejj9RAYqKqbGwGoS32uVa72zXU9ImtlifsKxJ6OwLfRsvfRWoonyhsFKwJtC/A0LznnY0wpk5KvULQ+2g4qI4W0pjFHReCCzO+z+iNwtOA1xrwxDOljIW3U8tpS+3cuBZ1nUN7e3wMln2WdEVi7VMqswGz1ojTHmPcbp/DzAxP3Y1aBKgn1tr1tfzeaDZbf+19+j//sD/4zNnebr8Ahf/9f/H3+8Df/kC/e+eKXeIQ/0wqc3pzy4ccf8u0///ZxDaJQvPP5OywOi7/2r1QoTm9P+Z1//Tt858++w59+90/55//gn/Pq4au3ykp/Ta3xDb//z38fk80v+1Detv8EWkqGjz/+8Ct2b2/b2/a2vW1/F9svDCmJJL4FXcglSaWt0bjWMQyDVFOhaiBFqn2B+yong0A3XjbkmSzVWwrc7Pmd7hdlksiDRGbZteiY64cpYk51I68wmhqoDDSto+1afJSATgrpKIdsrcEYR5giIXgKDm0VXdcRq2S8j5KETTFjSsYU2WTOlWApiU1cJtfkk1T7xJTEsgNJLqpSRMpXaZIfScA4BLFqQ1WrisLkQ1UWEGnracpYY2mdI5HpVg2qb0iqsB8Hckxo5Lx1znSNkVuY5buG0aOng1R7x0KOkWIsoYC2Dms1KXim4DHWSKJPK9qavDZKE0umcZZVv+DB2ZrJT0xTwjaWzemK3RfPyUqxWp1QUiZOEkxXxhJTxjUt2lpKKYQ4cXu35frmlq7piDGT1EQJmZikqm/Zr2mbJWiwZiKlwvbuVqwoZvUAXY6BjxQzIYoyiXVwcrKgaIPDEIOn+MTJcknTWFzjWK4X1SbO0liHQaqbXNehNbTtI6ZHT+TauoaAJeVEozJkCdp1/YLGNmhtSaqgCyyaFm00PniKKvjiORx2UhVYFJP3TDUgaK2TajMjSQ6noHeOgOc2HNimjE4Z17YEnyApxhgwU2C0ljAUTk5WGGuY9hGnC7vtnm6xYYh37O622Gy4eHDC7e0NGYtxDX3x7McRPwWCnwg5YRcdMSnSGJkOHq0VwyGQsyhEjPs9fduz6DtKDExDZLOUauPL3SU5K1y7pDs7RW0WfP7yFXnVcLHY8PKLz1E508SJd99/ystXjv/3v/hz/HTFyxefop1YMOai2Kw3DH7LYQx4CiHs6buWnd/imgXGtqJGkBoenD9h4QpPV4712Qmv/Yrm9BSy4tn5BX3b8smf/QjVXLK7G2iMYrU8oTSGs/iQZ1//AB8Mn//0C/w+0y8N7339PbxPTPsdr16OpPac/uQM02h+evklD5YPOT87obUNVy+3+BBp+xW7fUYXy93VDVOYMCozXr7iau/5t9/7IatO89u/9R1OL0744vVrcm549OgC2+7QaN7/xnf41m8abi4vOeyu2F1esbQLzi/O+Gb/HV7c7hlvtyzPT3j44AE/+KM/o207Um7IuuNud8V4+4I8XHM2XjASMCji4Za0XHN9uMW/esFpp1l3C9YXz/jii5ecPXxI2yquXn/Gp588p9WFQ1acLR5zUjq0KSyWPYPfUcJA3Fnev3jAdrcjv7vhs59ccXd74OLsjNVixXq1oITABx98wKPTc25ePud2e82LuwOj97z/zhM+/LWvUYpn0TYclifsy0C/2fDee08oOvHxj77k9nbLi8srDnevefbkHfzOM+xvcc0KbE/IGY+okahCVaX5+c3zHByuw2P982dApmPE7auVgfd2bj+TfFBHTmJ+I7pAxjCQ2WwWFK9oFoYHDy4oIXN2uuLHHz/nduc5dZaSPTEGklFsx4FF19AvHLeXA1OtRl+uWjanPU3T8OXz14xDZrmQyt79IaGKxpQJNChtWSw7bNPStI7pcOBwGMgoYiqMhz273Z7lekXRsL274zBOKGN4/fI10UsScrFuWKwW3N7tREXCeygF6xq0sXgfyT6wT0kAoao8IYCvQSFJyhIztzd3VSWgME17/BglYD1FxiqpXYpCK/OGNZFcT4XGGoftHEZDCIlxqqAzirZrGYIn58Ji2dAvWrHaConNZok2mt32IEknrUBlWaMQ6LqmHmtG6cSyddXmDJK/tzfIRUvy3FlyLmL1lsVioW0aXGeqkpIohKAE1iHXynadjxZNsi6R4L82FYDLosaRYmJWDSpVBYkC+93AeJjEnqNan0l3rokDdR9KLsTaP1VVgJHfzaASiNpY2xpWqwXTOBKrikXjWlTR7LcHgg/oIla2mVht9QRYSJPHHjRt0wssXUAjSfmsMtFPlKzQylYFGhBDhQoUoY7KRWU+1yDqM7PaRrYCKTVtR7/o0VCtQT2FCteodEzOWztb5Yk6gFWaru/JSRLaudyDGbLGzLRdw/mDU8b9xO3NnilFKJrjlc2i/GStoW0bmsbSdQs0lt12D6Ww3Czo+45GW/bVBlAA9EiOokCZUhZbtiJw4JSywNpdh6tQRCyi9ul9oGkstm0oQaENdIsOa60AbkUSEEpJgktpUeLMM2n/xnj3pvpKUaCVPE9/F9oMJMkYKxCLqdX2c2LtPkN4PzZ/JX2mpL+WI7JXdw56VpyYU3L1c+ozZW21J5MPvC9EqElLlSWxqrXBOX20h7u3VqmWy1UNLOV0tIoWpaWqKlRtO0ouaFK1o9HHRHMpAi3lUoRtKvPPc1XqlP6sqMoLCkK1K0kh3VvHzH2/zFZ0cj5SFyBwTSLTNAblZH8WUjxa24BClSTXpQjIh1KEGFGp1ERsBQjl0mG1qGzknOp+TKyENKIsW6rSxwxPNdax6FuB9WJGG0PbO/zdjlJhv2Z0fPQnH7G5PkFhyFru1VGBLSbWn2/4+OHHdTwoAhlV9QpFwdgWY5oKNyaKKkzjJKoPc0JWqeN4WSoAJHbj0FoHKHSRc6POAVZL4rFpHbNa1dIveeeLZzx98ZQ+LwSCMpakgiRbV4aEjHeGen9KqbCmqN9lBaoUUZHT9/05k6ragshYiLVpruoqkpyd1STO9yd897OP+KR8wvff+SFj9qgixyJ2h0oghSiFEzkWUe3VAnkYVfBTwDYtMYH3EzprAWXKWFVWLM4kfD2OFBOZTOcEKsohk4LYJuWQsUWuVwwBa60keLOot7SdgEVDCKKMZh2mW6Jax3a/h8awcC377VYg2JzYnLTs95pPv3hNigP7/S1KixpxAdqmIWaPD5mkMikFnDX45AXs0hY06GzouyXOwKrRNF3LITWYroMCq77HWYP9nmL4wUiYYoVhW4pR9HnB+uyUmBV32y0pFFyjODndkHIhei+qSbbHth3aaO6GHUu3oOtbrLYM+0liDK4hBVDFMA0jMUtBUxwODCHx4vUVjVU8fvyQbtGyvTxQimaxXKCtR6E4OXvIxSPFdDjg/UAYBpxy9H3HuX3AfgzEaaLpWxaLJZfjqwpwa4qyTH5gN+0pYaBreyKibn2IkF1DCBNxv6d3isZamn7DbrejX4pyz7C/4/Z2i1ViwdW5JR0SJ3KNQ5QyIyl6TpYrKJnSG7Rp2O32OOuwzomdU0wsNks61zAd9ky7O7b7gbDd0VjLg8cXoAoGMMZBYwg5sVltaFvL/jBy2O6ZfODm5oa+bWis2A8ba0AvUVrU3jLAPF8WjnsKxT0gMf8Edf8v2Raor/7+LwGT3piojjPXz4JKAnlrplxILGjMrVhh9R3rRc/JZsN+P7Ib7qpiTyHlgAuZPCZiCgIRjqIqF5MoWTatZbFsGcdJ1pZaQ1Z4P1uaJRQFbWy1lrZH+8YYRMWpILEt74PcH9WJxdk0AWLhPI2ipmmtgOKFREzpWPB2jIMVgUlLyvjjlQaMFHApzRFmDT6Q6xyZS1XYSaCLFAGIzZxAHIV7C6/ZoExrg7YyX1IBrXn9YI18lxS+SUzTGIGurHWyDguxrvMlpqe1IpPEavioJJeqvbCMoTImyhhfiqpAkcxdM6w1Q+eNaygloZXY3B3X+2VeL9c5t5QKlsygVV3GFFXhr1n99I29a5HCmGFI1ebuvsf9LNwuLd/3ynk9Oa+d6vqpKAHMXOtQReD3lAQUN8pUFaRQD042NbKuke1YQmyWjRaYW2W5+/N9TyVTSqrPmqzPVZWTelO853iuiqOiqKqwGEnL67USCFuLxXOKuVrl6XquVelLV+XZuThCFZyzGGVE+fgNiKfkTCjlfp/gCtPoCb4c7xllVnwCqrW2rbbbxjqij8QYqwqrxRrDpGTPmPKsiitq7NR103wfUlGUVAt0XFWALRJrTjGhXYXrjJECDVuVv0Qi7Tg6Ka2qjXKu/XTucH/J+KUKRwvZv/gVb9vb9qvXCqy3a/7x//CP+dpPvvYXwiE6a77z59/55UNK9dE7uT3hd//l7/I7/+Z3WO/Wf+uHMSsr/e6/+l2++6ff5Q/+t3/AP/vf/zOyyf/+N79tf3kr8NH3P+Lp86e/7CN52/4am9aZtp1+2YfxF7ZSNHd3Xx1D/l0iiCYZVLREV4ui3k72b9vb9rb9irS/AqQkvtgpx6NMLDkzDgdSjLXiKVPmSh+loaS6MdcoIwHZohQJsZOx1SMeZOPpq3e7Klbsu5QEvKlBAtc5SpKAglQXi0VADgmjDTEElC64xpBCwBhDSpJwMFazWDgOFQ7SKFJSxCGgqLYuJUKRKvZZKjjVCteUEihDSBkdPa0yKJ1rxY3YqTSdE2uarHBWLNmsafB+Yho8TWdo2paSwzGw4oOnFPA+YrRi2Vum5DEatFqANXgfOBw8OYhdXsmZtnU0rRVLNTI5eaARmeB9wKKxxtIte3y1fHHO4tPE7nDg5GRF22icXqLrRjpnyNOEslLlFbJiCjD5go8R4yZKcYxjgCIVm9podNtiURKQ0opYk4nDOEmVs5IgWAx7qDBUNmJnY50ogxg7+6ZHscAoUtk9V/+qoiToEBIqglUObV2VMAd0w/npBlMyi8ahkPc2qqF1jlIrbDOF1WKJQaqvgi/oZoO2UlGcxwlVbUNUMSjtyNkwTIW+MywWAgZI4kGJxV7OEAteOZKSa901FmsSVon9SCmKVGG0r73/HjFEXt++poRCGCPjmBnHjNEOy0iMiZu7kd40NLZh2O9IutDqDqVavDWM+4MEd6LmbLXBZUX2hqvhQEmZxyddTUBDCh7bGnwYyQG61uK0pijDOIkSS2sszx6dslz03PnAfpxo25bVak1Wlun2hjBNfOPJCfvdHUrDMI6oJnDYRqzuiCWw3Y3E55+i6Pj8Ry+Y4gRNwjHRO0NSmqxrEiQUbImUnNjvbwlJ+ng0EhzOMbHoNLefP8dEhXIbHi/P6VvH4uFDrnfXrFaP2JwvOIyJp0/O2G3vuNle05jIxbMPaLsHaLcn6UTIgaenZ8Rxj9aaRWM4P3vIxfvvcKIin/3kp6imJy9W3NxsGbZ3PH9xxfMXN/z2tz/kwcMHfP7pNd//0Q/Y9C2b8xXDcEfGUdLExaMPOX/ykM8/+QnD/oaz0w2tTVwebrlm5FAK7ywfUjD88HtfsOwc9rwjRkc2Dd/6+19j0Rt0Ltz89IZwGGh6xXsfvseQMu88W/PTn3zK7fMDX3z+KQ8eLzhZnnDYCYjC5DkMIx2KjTa8/skXWCKlBH70k89xyrLoOnS/Yv3gCSoqfvqTV1xd3dJlWCx7Hl08ZdEpcvCslh1m+YQcM6enGZ8s69MFK2s4vL5mW+6Ypshue8shj1inWC4fsF6tubrekozlx9//Pre7xMWjB7zz3te4u97yh//i/0sIBx4+eoxdbOhbaLvCg6ZBrXvGZEjTDltgtezx00Askhibg71/URMw6T5xMNu8fSXJcFRT+osCt/dBvfn990G82d4rM6ZM4xpca7i8uaOExOlyKZZm2qEMNI1l8hOdsaz6ll2YODk5ZT94tgePRmwuHl5cgMns93vGKWOMEVWdybNYLQEYbneorAkhME0e4xrapkNHGA8jIYt8vGvFdiblyBRGlC1YZ2gasaUah4FF17PoWqxzhBAlwBwzOUVGHwkxE6FaDxW0NazWK3LKR/uYkjL74UDJI9rOVbMGrV2FS0Q6v2lbxP5lpKkwcUlU4FQqckPIKBPou0aWDfPY3UpFtWoMkcj5xQJrDbc3e6xpcK2iaTvu7g6iCOEMTdfStA2rdYM2iugj42Eip1wrgaVvZCmVFoBHGzKQcmF/OFQVH0nM77Z7yvYN66yCqHT4QPS5KueVY3IZVA2c10RFyeRMrb6dA8/Sl0BDEZWoDJQidqFqDiz/TPn9DHaVOVLPbAt1n6xQWmGcYXWyolt1OGdJsRBCZr8bOewnSW5kUaY0VtEuLONBjq9xhqaTZFWoCS1nrCwUU8K1jahiKsU4aqYpHKuftZrtLtL9s1WT6dZpXAUAjKqWVtbU5Fa17SgFGzN6SmQNkCnVMrHrWiAzDiNaGZarBRqNn0I9H+qaU57VEBPpMJL7luWmJwZP8IEYBX5xTqxXY7UsUkDXdbRtx7CbmEZR+zTDKAoN9XmZxsDhMDCOI7HECsLXoP+cpCiIVY2aaHRL2zicthWGkKpwYzUFWcO1XUMMAT95YhBAQdt6b3NVtym6Kt/8BYDlG8k0Z90Rpim/wvHFIxia8zERQhGLwiOQlannxlcTxTO4xJywKqC4t3upL09J+rSq106+9x6MMtbUav50vHeqcFQhEMW+alOSJKk4u41oLYUPMFuIKTKyXplBKTUniWpie67unxNsoKpCUsaqLEmhatuoNBhlqu1YTapVZaWUxLp6thBO1S5HFOokITsrD2jrSDnVx1AUb0LK+CAAjiQyiyTAjK7WZnPSUIpHShBAWCtRBUi1DxqjSSXhQ6DtGqzRaOWqkoAk+3MUgMsYI4oeWeAplcX6s2CIIfPg9Qnvf/99VoclWCVqsvVe5Tq+xZhQXh1VLUoJUMT2ptRpWhtJSCgt0GqO1TJp7mtKV4hNSaIvF8hgZtuXIntUpQ1900py1sg1ssXSho4H23Mevn7E8npN51uaqhA3F6Ao06K0WJOWeK+WQKnJ+KKrWq/CWdm3llIwKEwFZUMGRRI1J0BZjdalWuTJzzKCc56enpBTwn3xDaZ+5McnnxBjIkRRJtLIc+B9wCoBbqVQp2C1A2VJWhF9kLkla/qmxRQoSTEEuc7LzlCYQakk6is5UpLs042SOS3W585ozXrZ1X1nwkew1tI0LQVNnEZyTJytW4KfBMiMEUwmTVn6OpnJR/L2FrDcXe3FQtQUDGK/VxC1OaMtOsleQsaSe0sdyetLJ3FWM91tUVmhTMey6cXGc7lknAYW5oRvXH4drWC96pmmidEPGFXo1qcYu4DiBSUriXW3JEVRZXRG0/cLFidrWjJ3N3co48iuEfWYact2P7Dbjzx5cMpi0bO9Hbm8vqRzhqZviWGkYCgl0S9P6FcL7m6uCX6k61qsKgxhZCQSKGyaBQXN9eUWZzWqt+RsKDrz4J0znJX+O96N5BAxDjanJ8RS2Kwbbq9vmXae3faWxarB2VosoxTELKqRChrVc7jZVsAlc3WzxaBprAXb0CxWqKy4u95zGEZcUdLH2wX9wqKr0stqs0HtFRcXsr+2TUtjFKTMcLslxEIMI1P0aANau2pHnCjGstvecnu7p+2X9IsV1jqef/aC3bBnueiwrsF0PbZRLIwCZVFNzzAeeHD+isbZWrD1hmLLXzZPvTHrHH/wZvvLEvy/QJtV/gAZU5WibRxjEKXs9WriZBN5/qVYGxprKUmKUk7Cmm/+0d9D9YUXH7zkk9XnR1WVvu9xTpTMgxcIRSnFNAWxIm4Msa6bKLIGVloU0ayFHPO9orWS9aRSqlp4zoplMs5GHygF2rbHOZlfYqyKoaVUdaZynDNENQmsdRhTlUcrcJ1jJgSBgTI1BlPH5aLS0SbYWFvtlWdoqwIuR/AXYspYW9fhUeZaU5V3tBY126ZRdJ2oV87rB+M0OcvcL9aZApq4xmKdjO8xJolNGV3tO++hnhl6pVp5xhDr3qDe55gYDmO9FHKdBGwuEvM8Wri+uTet1mpvdL5U8r2F8ZvrImQN8ybY/cZv3uh98yqpvPEMVERP3V9LAaMUthb9zSI8pSRSKgzDeISkZL2fxWZWlsQCZTWytvdeYp1aqQplZ5Q2AjMCKgrQlesiWh2Po8JJbxy9rpa+s9qxPEvqCC2Jc16F2VJGZTkvAcjK8d7FIAUaMyiZYv7KdZ/rQwpit5tzoW0cbedkfVnZLK0lfllSOa4ltTaiXpzlvaKuHgUk0oaubYkpHy3vYplVr+aLnI/nnIESE0aBNQZlLLMS1qz2qY2uz5YFVarltqw3Bdqe7395827/XM+A4/ZSLAiP95y37W371W4FvvW9b/Ff/j//Sx68fnBcK/9sUyga3/wtH9x9s8HSTi0ffvwhv/6nv867n73Lerf+S4/3b7P1Y88//Gf/kLvNHf/6d/71W2jhP6A1vuH3/+D30b/iqtZv21+tORf46KPv8+rVQ/4uPCDn51dcXFzy+vXDn/vdxeUF/+j/8n8mLPb8we//Ad//6Pt/F07pbXvb3rb/BNovbvdmEmgnAYhSbRFUEUCpSOBCqmBkMlbW0LQ91tg3djeZHCUgI3ugRMkFP0VMkmSVbJzmipdMLJAHIVYV+ZgQ0lpTUkZVqducEjmJLLTJYitGDYakJEocPogFiaqxITtvwFRGV/UhbazI+xuxtoshHZOKuWRKSpAbCf7axOgTuhg0Bec0WSmmELFWEZKn6CLVL8xV1AqMnsUWCCERQ6JxDYul2MbFFCgabsc91loSSNLbWMLBU4qSxFa1n7CG4+Y8DIWkRLlh0VgyUik7QzvW2uOx6JLpuwZQ7PaT2P0YQ+cc2/GAN5lhP9DohkVbFaqKOtrvmcaxWq9xXUdTA1RFVeuHFFguesJ0QJ1scM5yFQ6oZGhcI77wSrFa9qTkCSniw0jJmc5qlC6EArHMm38Jmi4WKzaLDdq0OGuxqhBIOKcoMdFYR9/3+MlDNizbBetNzyEVbEj0TpGyQRvHYtWQsiImsRpcdJbNumO3P0AxAvYYi9aWtumhZDrXkF1kylkUgZoFpEjbOUI2WDSkAaPke4yBFD0UTdGa7W7H9jAyDDv2wxZrDTplgdlGT9tppnGPQ9GYhtPNKW3bcQgJnQess0zBo63BNg1gOOwDp5ueyXvu9iNdrziMB26dYhgj41hYLldkfaBQGEYPOrPqOzBOLAKdpoTMO08f44cd20PBtZbV6SmXuwMli5XI5tGaGA5s7wKt7Vl2joOPvHp5Td825Cx4w7APaKNI5cC4PdB0PcEm+lNDg8Vmy/rU0XVLXr96xaJ1bMeBadJc3t7RNA2mWZKz54//7A856Zdo0/Ds2fucLA2bNtGeXLB8+ozz9YJ3n5zzk598ytWrLxlK4Pb2QG8tFx895EefvuLm9jkuJU4ePuTRkxOa9YpPf/gpn37/E77169/GdprhdgfZY7yhsbA6Pefq5YCKLacXD8EahunAdrrE9pZ23bE6WfPkvUe8uryFL7bs77a8en7Jq1e3dH3P04slV9cv2Y2e28MWvRs5O1vwxaefs7++ZfHojFQyN1c3XJwvyMNEyIXt1R2XP/kpxkRM0Wir8HdXbF/tON+sefLwu/ybP/lDVCsy/Muzhuv9Fq00X/vwEb2Dz3/yJWrsuLq65el7j4m+oW0NfaspjeHzT1/ytfefMPnCzT5wumi4ubvm6ek5JSquL6958PQRTx484u7zV7zYPqdfL3n26Cl+v6fvFqwuLhimTPB7kt3hVOLlbuST19d865tfZ3ezFXWVPKENfPbZj7m7vOPBwzNOHryHdkv+d+9+xOtPf8jh9nNQsHn0hOnyjs3S8huL30adPOCL60s++fGnfPHZxwzTRC5VTUBC0jKO1//e5IokQYzMS3PEcU6QS4bzGGRVcyVn+aqN3BxYp4g9iwa2g8dnLUmckFEhEWNhtdpwfnZBsTt6VxjKAeMsq0WPyz19t2I/3LFuljQ2s94saYriy+fXXN7d4rOAtqqCq43SKJPBalLSJB8xxlOSBHN9CBJ4jYW2a2ibBlVgu90TtVRU4hTWWEKeJCyt4LAfyAz4lDDW0DcdMSS22y0xR5brBQ8vzqtFggScS07c3ol6QPJF7M50FLufokgxYoyhaTo8AR/jUZEmpXRMNhfU0faMksgx4ictdjtIoH+KgaQ0TedAie2kaxzWWbo+ojAC/qQRpRX9suf8Yo014L0nxEAJmeQj4xhIUSwYmk6C0aqTf/uUiPW4Q024iNWaJD5ihXRSFDirce5oLZZTIauCRmCH4ANN28lYisBJKYIfY03GVFCiFHKZLdskeKzf3BWqUl0JamXyfbagshtStauOXfn4SbjWsj5Z0nUNzOpNuRBDIIcs4JlWJJXQurBcLln0Hc5MDIMHVSRZ1RgO+xEFjGNgGiepUm4blqslbdcSUxT7t6owOafO5bmbAaVSFS7r+iDfv2q2jdIKTFWtmVSsZzfH6QuH3UhJmX7ZYhuHcVLRPA6eOKvbKNBFEtHy7EuyaPKevrWiIlNtNGxjafuGxjm89pLgtg5dDPvtXvpLElvdw+GAMoXVaslqvaLpGlJdfxplRMWsJtpEwWYGpcS6K1VbsX6xoHEC5WciSmnaTuAnpURFwHtP8KKgUlJdA5cKrlT4WVZyMqYZI5DKm1YXbdujtSb4KJaRv6pNzwkWSQrNCRSBsgA9g6Q1vaZnu1x9fBzE4iXV6yFXp5RCilCMqnZycCTH6v9jmJOG+dhXdB2TpNq82jEWUVxQKEqSd2htyEqUAdKbEJgCo+ZApCRTBXqqa+3a9472Y7yR2KtG10oLiK+KwVCtZKpalNYCuaPEXvL4pQgQNY+nOSeB4Iw5KnHNNnVTkCT1DEFppSUxWsBganIVtEWOSQNhfqJBW11Hmft5dAbD5p1bYywFse2dFais1nU8F0sco0xNzIrtzsnuhI/+/FtYb6u9pj0mx2bIsWRReO1LS992Yh2eZe4z2h6h0KZxsk+LiZQilCz7PCVjbkYSmSkLEGqto3UtSlUrN+kVGGtoJ8cy9Fz4M/rbjuV2w0U5ZaUXhCxjkzhVStLeNQJi5SL301lF01i8l0xmqYlvpQSQFEjIUEyWJH4pNNqhlSTYc5HjocSqWiV9Os9JeRRT8PgQCWEihMA7Xzzj4/UnKG1IUdQ+YvQyxiojtqXWElKBElBaE3O6t6ZBE32iay0x5vu9bPBMoSVEUQxxrqGoUJO3EapaFlqjbYXUUmGzWhKjxwcZr1zfcfABiihptCspTJmmhNUWZw0hFfb7EWd0jQUogk8VYA5EH7DWkXUBI4CZLpqmE4jusD/QGMUUIzEqURg2Gm0aSsm8fP0lnW1Q2rBen9A7RWsytl3gVms+vHmXZ+UZt9xx2E9EMtMYcFqzuFhyfbtnmHaYnOmWS5arFt003F3dcnN5y4OHD9BWEUYPJaGTxmhou55xH1DZ0PVLitaEFJjSgHEa0zjatmG9WbIfRth6/OQ57A4cDhPWWta9Yxh3+JiZwgHlI33n2N7e4ccRt+wppTAOI33vKCGSCvhh4nBzJ4VVFbJMw4APnkXXslo+5MXLl2BAG43rDaMX+6LT0yVWF7Y3O7CWcZhYbZbkKNa71igwirvbPWebFTEVJp9RzuBDQCvPSe/YjSNFwcOTE7KP3IVbilIslx0agbVd02B6y7SH5EdwkHzhZnfgUd+h8rzWkDE9xokXV5dgDA8enmGbhgUNm80Jw/aSHD3dckkqFpsC3/xo5JMvvsnLu5Hd9sDN1WumaapORlWltQAq38Pix7H2Z0iJN8fgr8wwM/xxDxQeV3dvFkhw/2dKmSkI3BKCwCpaBVwDi8WSph1oG4cfIloZLs5ueeQv0Nmx+eEZl79+i28PuEZs7sfRsz8c8EmgiJxFVUYZKR4UPn5WB0xYl2UuzbmquMiep6kASaw2j9YaKUbjjWtT403jMB3hBussGikojFkA6uWyx5rZ9kod4WI/yXiQs6gaZjPPhRUS1kb2ODkf1eVSTEeYhXnN9wbckWNdwRuZR3It1DPVJlZifLPSzawGiqhIZVH8bFpH0xiJLVLtyFKplpcFlTI4K59nNWTZiQqoLKB1rDHOeY2ei4xXlHvbcmttBTvz8XyUkvOngshKVQAri0Vajvmo9jN3IlmD1pnhZ4p4yl/0L3Xfc8sbd1RApfoSrXCNpZkBpbnQolqNzd8lwIwUnrZNU9cSsdrTKqyrSqFp3hdV9UWt5Jk3sv7ISc1u4l89tzefRCXAntYwH+i877//T+Z5dXxs763iYswwepyzaCPFlc6J+vubapnzHDs/96X2o5gTtn4HSuZ0Y0U5qehaPDtb48VUrc5FWTPFCikZQ9u1GGOoJSACkJd4tFO9P//57szx6IJzriqRyh6rUEGpGTZPiVSf+Xu7v7ovO16zWatXzlGuWVWvr7/RRqDmXIrE1N+2t+1XuL332Xv84//hH7MY/v3WaN3QobL6m7M1q/s/gOV+yXq75unzpzx+8ZgnL55wcXnB4rD4lQRYTDb87r/6Xf7tb//bt2pK/wHtW9//Fs+eP/tlH8bb9tfclILf/M0/5l/+y99lHPtf9uH8e1vT+L9E+anw7juf886XT9C6cHF1wYsnL7g9uf1bP8a37W172962n22/MKTU9qbCJ3VDoyHWgLgyot6AE5/7tulYLBcUDcP+gB8ngRdUIqf7ynWK2I3l6hmudBGYA1AOCQhQKFGC4XP+R6MhiYWGs1oUcFIRefsMYZREV84JpVK1GJHgsEKqbWMNOBgj1aCueqTnKsMcQqrV7vfbY60l+ZFiYr8dsJ0hU0gFdIKUAiUpQBOzVGo3CoxtiCEe7WGatiGbCEmswFarJYtFB1q+XxWDMbZWwsVafeogKaKJIhGsMijZjBqt0FiBtig1IadJBAafJOBUIKhE9AlrGg77SKMVts1sOsNdDBxiYukaslLsw8D2ekRHzcmDU9AwTWKH1zrLcrkipUzTdDTO4awhK/BRYLGcE8FPWKNoG4vrWtZlRQgRjQQmdN3kxxiIeWKaREFo4RpQGo3GVkBg0y/QWtO3PaeLNcPg6z1VONfhrMOHgkOxOxzwfsTlhqkZiFqTjeN8ueLpxZKfPr8ix4QroIskhNebE4pKXG/3ElhNgb7rqs2Nw4cR1zgmP4oimGnwuXB5O3Jxfsqis7z+4gZTEmebRqCbQ2Dvpcp+2XdibXh6QomeMYjFmsWxXm+4vNnhCxTEXi5ZS8gHxhRY6DXrpuP6MDCEieWyxxiIxQuiUTJfvHiJ1o3YPsVISImXN3usMmw2a7resttNgEYrkZ1erJdsdwfOzs+wTmyTQsrsx8xu79mcLomTBEz3Vy9Zr9dsFmviFHl08ZDgA6PybA8TfppQMdF3lrYDnyb83YCxisVC0TQK13ZQPCkH4mi4+XJicXFK07cUAmcnp4zDRLs0aCPP+umDh9xc3dFay0W/oTM9T5+9S8xw0j5E64xVipvPX3D94hUvrz2PHzziH/zut0hE2tWKH/3wJYe7iaePT1BtQ3Y9U7EcRs/Jsw/50fPXPDq7YHfrKRb2dztWt3d8/G/+gPFQwCuePLzAFcPu5sCjzQkn33jM809/yvZ2h+5aPvniC6yaePZ4w8svX3HYe/qLUz55vWPc7+i6luubkeF24t/yE4xVPH73CQ9Pz1mfn+C310zhwM33DvgS+PHHH7NuFe9++IzGNly+fEWKA5TC9u4GlQy//tF3eX35nEDkZL3Gj4Grw8Tus1dszs5YPP2QzMhJTtw8/wSVLY/f/S6lwJcvX3K3D/yru+eYDDFkLs7e4b2nDxkmj5si56fn+JR5/fIVbrng8ZMNu9sXvPzCsd+NGK5pPn/NdghsNhu2tKzWjvcerNke7ghpT1GRr33zPdQPPmUKgWb9kAebp4T9Kw6v7/ja+xdc7e/Ih5Fp0KzXSxytVNU2BhrDr33jm3zTfIfbj2748Q/+mB9+/BO+eP6a292emDIzaSSxxVkx4z5Iq8p9oFFamdPS9xOcmpOtHD/r5+3i7gGLYYrc7kdczmyHA+u24XCYuHh0yt//nW/z//vn/4bD9paiCu3C8fjJOUX3TClgtwK0LvqO7e2WKUYOhwM5BUR90GKs2MGEIYONONdK8mYamPzI7U1hvT4B7Y5B667rGYcBP3pyUez3I1YLsTXmqYKsBh8St3cHYko0XSOBcmdkDGdBzJGus7SNIkwF7xMxRHwI2Fbk6g9ppFt0rE57STKOAWe02CR1YnsUQ6ygp6aQalB7DoKKkoZzkihIBabB1/sn13mKkRIkcDoOEzkWsUClkFMgp0hOEwrFctlgDCiRQiF4L1ZBNTgdkiQLW1pRPWw6hv0oyhqUqrJxb8GkDLjOsTrZYDWidpGk6nzyE1BwrZOkRpKeE33Cj0HUpBCJfn+ITEOskJesaagqHkes7o1+9qY14ZzcqIul+776hoXDHFzWKNAC7qkC2YvKw34/Mo6+JgWquggJbQubk57OWcZxpChF2zZM08RhCLgOur4hTgk/RXm/MoQwMA4T1hixbOosMXBMugiVKwF1pQT27hcdxpl7izsQ+wxnaZoGaxxaWaxBnuWjDFCRAHkuHPYT4+RZrRdcnKywzjKOb1rfUW0TUoXPJRmoUfgpMI6xQtoZY6slhLH0S0uuKih3tzuBKxCr2lxVb2LwNUkfWK82R6BmThId1Yxq8lQsfCVxliOMB08MCW1kHdu2osoEmZINSmmssgK7pSRWg3FOWlFVfSBl6tq52lq0hqZrxM4rZlIWGN9YsZP6Gwq9/rU0a6VS4Kh6p++hHYF65B4qJYClbcTCK/hwtNaTa10hPoAKO4laEVVdR75nVsArcA/U1edqHiNyEkVWlCLX5FPJoiwhH19QKtdjA+ldkkgVC+tq4VIKph7HfBOkiv6riUNVHUhKKngfjwCRJMMKkJizvrmIIoxSYOcEruQLxdKykrlaa5qmwTnLnIZSRRJ2uRSxmTKS+J2T8dJfSwVhRJ3nHnwqRwWKTKrwnBykSpmSRDEohIxRoE2hdaJwFlLGOQdKEVI4Fjm0fQdKbHgosBnXrPSS3EiRiNWmQkeQKsRWciblxIOrC84OJ+zP9zQ0R4sgUxN2SuWa7I6kamnnTO1LFQVVSmBVXRPEKxYkXzi5POXB1QOW01KsbAbHwrfkau2oMehWMzaJog29a1gtHNvdIMobxRyvTdu2QGHwBwGiCmLppkSlN6Uo+9AkaoIoQyyFNEUWfYuzmsP2Bk2ha42o//hESAL5NtaigF53lJyIKVOKZn1YcxbPeWWvqnpJwVpHUZpcAqkknGpojWYIgZgirrF1by3AXy6Fu92+2nlSbTYL+yGglYxfxmpR2wGUEisf2R8FukWH1jLuplIIUdYQbd+Iqkkp+OFA07a0TtZ6y8WCXFWLfYjkGIlZizKQlbE9ThGtFY2TaUZbi0JghRwUY0o0fYeptlNd1wmA7GrsAOiWC8bDhNWahWuxyrLabMgFWrNEqcLj14+Y7g4M+wOHIbJcLHnn6TMKGdM2XF3tCVOkW3ZgNVk7StH4mOnWp1ztDiz7njAmigY/eZrRc/PlT2WuTLBaLDBFEcbMsm3pzpZsb++YRg/WcrvdolVks2zZ7w4En3CLjtvBV0jLMIyROCVevLxGacVqs2LRLmj7luhHUg6Ml4FUMte317RGsTldY7XhsD9QcqRQmKYRsuLhg4ccDlsymbZtSCExhsR0t6ftOtz6lFISbSmMu1vImtVGKnO3+z1TyDyfdugs41ffr1k0LeiG6TDQWEfUMA4DU4hsTldyjbdblLbkkGiakYMP9N0Cj/TL9cmCwzSRSkTnwmK9oJAZfSbR0J8+oCSPH3csXE9RiRA90RcpYtMtwQcwlsbt+J3/zed8/0ffZRgUd2enXF6/5vZuxzBMMiapGoc6Aq5fGbXf+Fv5ud+Ur/z7q+P9PEfVh6bWTMhrUi5MQZRMpxBwWqGK5uLsBdsHX8ePI7vtFqUip2c7Pvr2l5yerAmloEc4uV2z/1pmnCZ2uwM+BgFQqRPhPEdkidvpanU2W0b5caS4BmMdpYiCuNj1wTiKtWCuYL6qa1NVbSdzhuCjxNuMQEBaiwpLg0MlsT42RtaDclxiBZkVuMaRqjJR0zRoUyGW+ZKpgtOGnHVdQ2ZEaylXOHa+jBV6n628ciGkcITFcimUlMSiLCUpMqhgcgFKipQgn+OcAHgz9JJjAl0LWQpHO65a8oezVtTR63xE4Q1b8hn4EMjf1aLK2WpsBpS00RUom8ErsZ4+gtMFShRbzVlhcf7zuJfgfnvwFTCuHsdctCProPLG7+o7qgzT8XdzRWcupCJqQD5I3LcgdmsCKGVsY2gbJ1BXEWu9hEBBAtHIfixm2QsSZX2X4ii/01XtqtyrCc0xvnJfbSSgnJO5VqwLZ0hKfqeVYVZbVKruJ+t+YlZRFhs42SP2y072q3GGfwsw2/LmegnegA3z/dpFawNKoHD5O3X9JLBvSpGMOq5ZKRIb9SmSSqJtOlHxv797x1v2VQbtjbVkzJTi6/lVkMgY6SdFQRY1XoOpVnpi0Vvm/cTcW8r8HfU7tezbtdH1OPOR0zquF9+2t+1XtRV4+OrhLwQoAXz0g4949sUzPn/n8zen9f+g7+/GDpMMH3zyAd/6/re4uLwAYLVbsbnb1L3nX8eX/c23Ry8f8ejlI758+uUv+1D+zrbv/sl3fyUhtLftP7w9fvyCf/SP/u/8j//j/+lXHlRSqvCd7/wZn3/+DvNg55zn0aOX/Of/+f+nqpLC5m7De5++x+1vvoWU3ra37W375bdf3O7Nyku1UegkFdBS6WSxyknipWnIWawGtts7iipMh7F6cRuxsKie5FCO1SZKVe2kNG+WCtZpotKgjFS6lsIwHshJoZFghUYUAigKciHnyCzQoI2pFYUeY6VCk6yYy+klEJBJIaKsVBSXUoSsV3MFjT4mGmawShtNzgo/CXxitVR4pWiQajAJMuQg1VVai8pPCvOOsGCURmlDzhKAazqHUqI2EWLCWMc4SFKudQ0lJ9moJ3BNCyExhoBDgi1agQ6pWlVkmrbBNYZp8qQiyUWtJPni2mr5kCdKMRhfSKFBq4zRhRQDU0rEUIip0BrDbj/Q9g3eixwxRuz4itIiq50KUwkULYBQipm+b9HW0PQ9uUiyfLVYklJkmjyNkwCZjx5VNDFPc34T17Qs+wU+FXbjRAqSjLSupbES/F8sW16+fs2y66E4Wt2QiUyHUZIC1jKFyCGO2J1BObhKB3aHW3JGVIRqwBTdsd/vaJqWGKRSzRjNFIJUPCfpE1PK+KRobUsaRYGkXS6wi579bsfFgweUHNEGhlIYVaFbdJSU6Pqevm2JcWKaJjZWc/vCs7AtvoucnXQsc8fdNGFNjw4FbQrDMHAwA4+fnBHpub67oaiM7RzDONK0hrv9lhHNpl/gD3ty3zBO0DWapjU4lZm2I8kLRFBUIZTAIU+0mwVFF+62N1A027sDh0OQysh9YJp27PZ7zpcblosTTrtTvtx/hncWpw2klqUztOeWECZs0zLlkZgSw5jQQL9osVahVUIrTQwD0UDKmnh5S8ieSSdc1jROKjW1FejO6szJxYbN6hydMucnLYt1R7YdS9WiyPTLJeHuiifvPaU9HdkszlE5ctoaXn32ijzuWTWKJ48vOH14yuefXvLk3Q947+sf8urqhvHFwJ/96fdYLw3NAu4OgVXQnBnD4Pf85MvXnByu+Hvf/YgmK37w4+e4SzgcdhTjufrxx+SQeOekY9HAs/e/QZoScZr45OUX2KpoULoV533Dk4tz7vxA3G3xsdA4S3N+jusLN69+zPNXVxiViCnwySefcHbxiLQroBXXN1seXTzgMI48/+RzEpnlquXmasc0Sn975/E5k4/cHSZev7zmcP2aByuLXa14dbPlbHPBg9MLbq++R2MW7Pd72qZhe/WKdQtPHz/j+aef8PKnn9J0PS5bHrz7kPVqyX6/549+8GOePnxAozN907PqF2weP6abHnBzdcmw3fPk4SMub65J+0y/aFidbriJkavDxMmmJWXNl1+8oG3WZJXYA3p9jmo0afLYXIijwraGpsCm7bl4Ynj64B/w7J2nfPzpF3zvRz/ik08/JYQCxaCYg4xIgFNmE4FO5kBjqVLs5OPvS01UH9+r1JEL+QrsBCiVyBiGXeD2duTJkzOena+Jw564Sxx2dzxY92y6jqvDLZsHZzx9cs6D8zO06VFGwIurq0uIkTBN7A4Do/fYzmCVIpaCsZrNssc2hlICRlvQhZ1ObO8GUg6EdIs1DuccKQbubnfEECrwW0GYJHOXSNcUCcynSLGalBSEgnUCpZ6crDlfnXB3fQO5sNuJks5hHDHK4H2qtjMJ1ysenl2wOVlze7XloMZqU+cxRlOKYncjsGhWCdsobDYkX2pVc8E0BttaAVFGDxS6xZKUCyEEtBbrGBKUpAk+4yIYK5FgrbS8dhoxtjAeZD5pF47NqhewKgrElosou1lnaWzLfjdWyEVjXcE5CbDvx4niA8429Kuexbph2beUVBgOI9vbLcY2NK6hZM1wGAXyqZWm4yGQowTDY4jEkMkJsYVLc4KqHCt8lboPWRWolazUyv5CyQLgKZWPAXZd9Bt2GDUBUi2Mcswc9iNhSljXSCVtyRQNxoJzGttaFusG12jCGPDRU4rGKulLOWfCEMhWlLi6vmUaxTIvpRrgN7Kma7pWbCB0tVHQWtQ2U6FrW6wVCHy2AGKuvkbLd6RCWQrIPB4mwiS2Ocboe4wwFXIR+DnFgtYGZx3GeJSqyayiUDofEyRGGYHZI9wdDkxjwGiH6x1Um16lNWiFUZJQD6OvfSpRtFQ7a2VwWRFC5LAdiGOibavdX4gYo2r/kmdMVQuOuaqdnCmh4GOqSQUIQ5CETm8oSWz1FLPapiR8ZkUCsc+bEywV/NJSLa2Nou0szjakKNYqOQucptBvwDS/ek0dlXJmGJSafNRopTHGHqvrSwE/iUVKjHKORuuaDaoqd9xDfrPFZ8lvPG9zAgcBdBSFEAUefPMJTNVejyyw4mzLJspIWSzHKkSl4LhXmO1eUn0uZ8s6mVuOZ11BrBl44nisknjiaHUsz72cQ6nWkzN7Z4wkhksRVSNJCstrXNNgrDkmknNNJosSRqoJsZrQLGCMJZEFBpoT0YBOVe2iZKwVxYEUc1Vxk+Slnq83ApHM86ariX6lROkqZkXKkti1ShFCwFgjNskFHrx6eJ+YzYWsZaycLcBzlvFZKUVLz69/7zf489/8M+6Wt2QjCgUy59T7h6iDzBCY1pbGOVGUCXVsGjvOd+c83j/mYn9KExumO09jGrQWa8oYM6lasaEVKSdCBuMVGBgy+DhSMjTOCngVIkoZvPcYa2rBhoBlsSoszLboqWRSUVhtq7W1xjiHcg7vPf1yIeOlglggKdkXlyLgkbOGnBMxRYGi9ommOB7ePmD77A7XWKaYMNoSs9yPECJWRZarjoRjnAYIBV0MIYa67/HEAK1D7FkxhAS2quxoMsnLeDyPc4lEKAlblQ+naQTEDjQEUf2IPpHixBQCi0b2cp3t2Pk7UvYYraAYnFaYvgLPxpBKJM0Je0SlRZwAa19MkawhB0VmEtUYlQWM0Op+rM/yvHSLtirjFvrOCqyhLQ4ZF5zryAj0Y9soryXTGsXhdg/R0xixIe4XHdvbgdXmhJOzEw7DSNwFXr+6pHEK62AKiSZDpzUheW52B9ow8OThBbrA1dWO3UGs31GJ4fqGkgubzuIsrE7ORYEkJm4PdzKuK8A29NawWvRMKZInT8piZdT0PcYVxv01u/2ARuIjtzc3dIslxcs4NY6eZb8gpMj25o6CFDmNh0BKcq3PVj0xZaaQOOwHwnhg0Wh007AfPX3Xs+wWTMMlxll5vo1hGvaQHKenLTForq5eo5zjcK1ouk4gaD9xu9thbEtrFa1pME7TrHocC/wU2A8HurYF4DBMVflM4zrDwQds47BK46fI63DN6cmGwU/Q9lDV1tS8jnSax0+uWPZ/ymeffJPL5oLNZsnl1Q03d3e8vrzE+xlsgTcz8wX1BolUfp4k4H4umUf9e0ulN1d593+oqoKSM4yHQCyw3KzRJRF95OHDT1guRp48uOPzl6/p1wcePUicnjY0TQdaMTrLsu/ZpSvIheC9AKFKrMRSFpt5Uy27Uo7H+SuVxJCS2Hz6gK52uEbrqhhUbaqqWo6qcTCZv0qdn0oFqBXUwr+QZK/QLhr0JFBHjJmSI7GqoeciEKoxAsd0i4blqidFUWU6zqvM6+mMn8RmES1K6DnN8bm6drZVwabGJ62xUrCXUt375aM9a6pj88wOq6oKKEo2CZ1gDBmlxUZb4oUF5iKLqtbjjFh0zqrrqhZUivVuxseILrL3cK2laSxGNcSYRPGbQtM0dZ7OAm/VuXGGtWZQJ1clIuk0Pw/Q/Sw4d78+uu/JMxg+r5vKV9SI5o1J1XatYPOU5ZmeY6GlrkW1ETDMOodtZIyNOck4pKRYUmcqEJYwWlebXAG3c6VlclXbmpWAfrbNdt3WSlw3l/v3zmusksHniHWyz5ECA7nvYr97Dzxl5u+V66aNQeeCUvcxhPnZLW/s0xRVITXKvTbWvAFzqQopCRAXYzyuAQsVNlOy0k8pk0NmjCPWWbnXtY9qo49A00wSzeqycww5x/k+gYqZpKPsi0siVlUyXfcbb0pTzUrG9wOQnNNcBKyNAHql3Kuczu/7WXWut+1t+1Vr3/2z7/7Cr+3Hnv/6//Zf80//m3/K86fP/+qgUgGdNevtmvc+e49v/PgbvPvTd1nul7RTi8nmr/iBv1rNBcc3f/jNt5DSf0D7uwKkvW1/9aYUfPe7f8piceB//p//D18BgH7ZTezs7xl0peD3fu9fstlsSUnGpYuL1zx+/JK29cf3KRQ614qeX41TedvetrftP+H2i9u9lZoY1FpszRKkIrYrssEpKCIxBoZpoqQsyj41kZZSoVT/BUk+5WOleCkC6Mx+8aUUki7HAH4MUYJsKYliUMlStaQU05QwSsvnF7EqUVbgmZhE9llRSDVgro3Y0GWTKCESkhcZ7FpNb0SOgRA8JVIri2tlCRlnXQ2YFhQJ00pAhGhEwSCXas0hFgPaVJlqH1FF0zSGMEZyyTTOQZEAvjZGqovKDD1FnNGkGInBywbdOMYQxQ5EZXJjJWhcq5Wh4IzDWidVQUqjrFRGpxAwGgnaUPBhQpmWq9Gz9YmTB+ecqszhbosPihClSqhpG7Gr00igvkSydgzBkzKkdGC9XmHMXI2WscZArnY0ReOMg5BYNi1JOxrd1MOVc4nRSwV213K6uWC9WNJqyzAFmjawu7tDZ0VnG9KQWJ88YB8nmqbDqoZpSoROM6YRozM2W3JR9IuWQCCNe0yaKKWnOem5ub7BYFFqIhVQJUGeAAHfjNEoo1EYilIoY3HGVBhOUXzGoDAkTJxI+zt0CnQNRF8gGpxtOV8v8eGAaRqW/UICVl4kmLumJ5+ckVKh7xusnTCHgRAi19MOlQquaNplQ1CBXZzIGoqGl5dX5AKLbkEcAmEMKNcSY6K1lv0QCFOiN4XVcsOq6/n000/IChZ9J8oRRoJzmUJxhilHxv3ENuzpmxXjOBBjIsSRtnesTla4bsHt1YFpTFACq/WKBydrTh9vaBY9N4cdn335Em6vud16Fk3Lo/PHfPH6C/zgScNerHPWhsWmYZw0xkSs0+x9piiDdqIQNg4Rv93jUsJ2PXp5RvCZ7WHi+z/4Uy5OTmBxzsPNBa0+5S43fPDsXYr/nKlp2euW/WGHWzZ8+OEFXfeMD772a/z5935Kb1u+/OIznjxaYuMBjMcvIrFVNLbn/Xd62k3Ly8uB1fljvn3+hNOH5yRGdvmGZA/cvPgYZxUfvP+Irz17SEmGi02HWhraVvP8xWtC9Dx6eMGiVYy+ML0+cN5bhtsXxAzFZMYUuLs5cDvsUHogpR0TgScXD4jjju1ux3C7Iw4F1zsePHzIfhp4sb9kfwg8fPKY29GzaiwnF47b/YHrqy13w47N2WNcq2kfPoS+YQye1rXcDde8fvE5680GiubK7VmebWjtglXbYErgrhTuyshJSpyuL/iTP/q3fOfXfp2vfeOM+MlnXJwsSMWwnTLkkdvrP+L99z/gm19/h8P1lunuBptEBW633/Pi6oYn7zzj9rPnRDMQDzv6Rcunrz6hVZaFtaimr3YwmoeP32HKkJiIw571qid4izKWzeqMp48zXduiKXz62U/x/t6W8z41XBPIag6sz6DHm6v3aqc0B7qZN5ZzcmFW/asfhyjIbBYdrdW0ruV8taG4BXd6z/byku89/5gDhfc//BrnqwXrVUvTGDSW5PcsjMYbS8DwYH2CH0e8LoSUMc7ix4FV37M5XeNaw93tDWEYUarQW0d/sWAcA+MwYqzCp0AKArimKAoCxklgPvtALkVskpCq5ZgTi2WPUZZp9DhjWK8XUBL9osOPLcNhwk8R68S+x8cRCdInYvY0TQMFri+vOOwHKJoQPCGEmrtR+OCJRRQj1qs1ORS21ztKlASy1jXpqRXWaryPHA4DpgLRy9USbRQxBqZJ5gitCymJckOhkHIAXUghsxsHIhMnD85YLC1XL/fs9oEpiH3Par2kcZb97sDhIGBOv+jpe4PSieA9roF2seD05IR20dD2DQZZ72hlKVHJuQPXV7cUpHo3p0yMhTgl4iQgqCSCNMZoMuk+WTD3wwopiE2qBInFRlcqmecYtTGK5XKJ0YrDbiT42p9VkrVUKTWRJIH6aZI5pqmWDNopTjcbGqcJaaJfNrhWgBitLKkUpsGTChjjMMbggwAZKct82LYN4zgJiKM1xs7pkCKqOFrmEm0UBknIhxRp2g6jNLEIXKaL2OLlXAgh0Wr5rmnc4wdPjJLIIEfKsaIamXuLKFyGkEWZz1msDUQqwIFB60Yg+AI5JUKI+EkSZNl5TFPtgXNCa1OVWuqzrcVayyhF2/e0bYuzor45DhOHbWD0E97vRUEgRbSCtrOUUqvzq71CLrMFg1wj+Q6pPBdYX6yKfQh4LwBX0zXYXmHbRiCZmElJkkQxRXJRtI1jVv4pFFlLGgQIb5oKvAhk/ivdasJIro+q62sZe9UxsSbKKjHWBGOeEyWlKo5+NZl1n1C5/7ue7TzfCLjkfK/CJGO/KPVoLSDOrIwENeGotCTFakJWa7mfsm/QGGulSj3LvqSUfLQr07UoQuCnXOeYezvDGS4qc+GGrYnZo5oClDcMHkXdSZKVFCVqBVESWtqY43tQ8nqZ6srRakySt3WvpQyxiC0bSZJjqkIdcx7LaItWNRlcITqlqEoKAgMCpBxR2jD6hE8CS1sg+Kkmg1WFD63Y1dX7kUtGFwEZS4EcCi3tG+IPpcIr96nD5bTkt/7Nb3L59BWvzy+52lxTVKoqFEGujZYEfd/2NLahKRa3azl5ecbmizXd2LLIK1FRXa/wKRK1WHfGJGprschcpgUFwzgjalIxoI6Kh5ZxmlBKg5JzUKVQSjzCqFrXBOa8utD3toUURI0KhSKjS6L4CZUTTkNKoLJCaUvfOGIWNSPnxEY9pSy2c9pSWrH6OvUPaJrnYo2kM4OPAmuhMY0mkfE5VRBSsR8GcoHGOrIWZRWMjI1WaVHOiKKe3DQtjbXc3ohKZOMsxamao612rloRyUQf8NljdUOKMubnIipArm3Q1jEOQex3yLRNR9O2dKtWrmv03G33TNNAmRLOOJb9ku1hJ0niEEBD20hiNSaFVhltIaR6rY38GUMm+YAuGW0dqunJseBD5OryFX3XgetYtgvG1UDIG043J5DuSNoSsAJgO8PJ6QJn15ycnfP69R1Ow257x2rp0DmCTiSbKdZQtOVk7TCtZX+ItP2SB/2KbtlTSsSXkawD4/4GrRWnmwVnmyUla/rWopzCWsVuP4iF+2JBY5WsNQ6B3mnCuBelDF2IRdQcx+ClP2ZPJLHql+Q4CVw7enIUG/rFYolPgX0Y8CGxXC0ZY6IxmraXQp1x8EzB0/ZLmfcXS7CiFt0ZwxRGDrs7mgoSDTrg+harHI1xOAP7QyRaTQkDq27BOO4YBsXjRw8p5haKorGGkCXBfnv1mq7r2GxOiJ2FEDkc7miMIcbIYZxwbYdTmjjtoAiA6ZPn8uZSrBuNKCinGOkXS2yWGE7JkQcXdzw4+yH/+g+/QXzVsegXAmMqxavL1/gpHAveZByaZw9FuR++3oCWOMZgjj8+2sW9CQW8OZbNv5M15H57QSkHWtfSqMKkPKF4vP8h/WbPhxtY9gLYGSOwcskRWwrPrh7y+uFz+qYlh0hUkEpVdMyFTKbvO5rO4QPEKRw3PMuuPxYGiE2ZzLWpznlKCayekZheqTZlMn+JQqYxWiwYYyaT6Zq2xr9EsSmNsi6qZHG1Pa2WaCEyK8z5MRCCP9pu5TzP09Lnc8moIiqmRhv8GKSQYYbG6lAr86rAUarayhmjca4l5ShQMLPNWy1c0VqUZyr8GL0UCrULS9O6oxVvjLK2a5wTVaSY8VMUMESbasU1W7vWAoi2EfVOK7aicriGksEaiVtOk68WcGKBPENJMc/Heg9hM29jC8dyG+o+983M1AxCv7lGUrqqEVlT14oVqD4qP/EG/CNr4hmakg8sNK2ouwtICrYRwBOlKM5QQqprDi2xzaqeNCtKHqHi2ickNCwnJXNp3cXLCcl5zmtqo4+KXrI2yUcge74uwUdSqnPZG/up+bzmcxHVUlF4neHz2cZOrp/hKP9aBC6aVbgA2bPNNuV1IyEK/hLrni2+ranqyEbLOixJTDiEhPdSmFFq4awoV5ojJDSrZc3Xt26I6i1WdY1KPXe5prmu58TOTqOsrkAhtZA2175Q1yKzJWGF7VQtIJZrJNfn2M/etrftV7SZ+FcDg86uz/gn/9d/wh//xh/zg1/7AR9/8DHJ/rttDZ13nF+d89EPPuLbf/5tNncbVrvVf3RAikLx+MXjv1lLvP/I28tHL/nW9771H13feNukKQUffvgx/+1/+0/57//7/4bPPnuXXwW654c//Cb/8B/+M5yLx5913cRv/dYf/Xvf++3vfZs//K0//Js8vLftbXvb3rZfqP3CkFLwGddYqQxHrNXIRjbKpkhwA+hai1KS9Jq9uOfNZ05U33HZqKaYUVYqcVKVP04poeqGca6AKiXVAINY28QQURSMaaRCf4aWSsE4iwac1aRwr6ZRMsSSIEVQWuR341zVLwpI1oj/+yw97GsgRzsFypASoBQp16BvtiSfUVaDmtAYjAJlC23rWC4XKJ25vbmRaqVSmHygFpLhrKJojTaWaRgZp5GSE86KvH8pMIUAZLHPKxCKSHWXmNBFYbQVuMqKP5Y1DSlltDEoLcoWuSTatqHVjtaJKkQSXX80sGgXONtRgljVFFcoUeSEl6slzmkO4yD7eqOYwkQuoLQlhsQiLySxnBOLtsNWye9SFMq10Ck5L61IJTGliMqJkgIrrcmx0HRGFJBwoopFZhxGUsm0thGZbq0gZVaN43zTszSF27s7TOPorOM2K25utyy6DYvlguWiJ40FHw8snaHrHI2xLLsVN7cHtGlo2qbaLwRSLFgNWCt9LWVJTOdCIdG1DW3r2B5GkpZAUYgFO0WGacC2lhQDaUr0bcJpx3rRHyvmYgySTNIWg6ZbdSysJY6Fu9IR1cTpquVu0Bz2O8YIq0bjxwPXryKBkZADXd8w7A+QPPu9JEoVEpjZ3e0ZSkZnxeFuIJdr4qkXBS4tyeYwRmzRLIpj2Z+y9RPDfoQIPhZMiawXS1RjafsV0/6A6Qq76ZbxbqRpNSorKJqXr6754uoL1ssVJ+cXGB/wN3eUbaLYSJju+ODpBdEHbl9vaVrHat1w/uSUwWeGYUfOgc26YR89h6RBJZQr6G5BKZqsIi9vv8Qlh77p6Bc9++s9+mlDuLplerhDmYZp5zhfOLxRXH72JV/cvuS9D94jx8iie0JILefnZ7QGVO8YvGK4OaCj4oMPvskyR/pmxeOLM56/vmJzZjk57Xl29gC0Zn93S3gIV37L3WfPee+D75J9JupMt3BkY7E0/Oj7P+Sw9YRUeFg6dncjFw9OaeIty+WSkDO7XeKk73j36Xvcbbfc7A7cPv8pZ8sNjx9+gM07zGLD+YNH5BJwZkEcD7zaBi6vrnFx4qxfYUjoInY4l9efs+jP2Zw84/xxQccJvcssTx/xzodf49WLL/GHA3/4pz/g8TtPefjgEbvrW566xNPHF3zyox/zYJW4vHxFMBt++zd+i1Xb8OkPf8Lrl5/zk27Jr9t3aXLGTyPLkwsIiewT3jeM08QmbJn8KJYD2bNYLjA68+TpQ8L+msOLl+S9JfqBbrPh9fU1t5cDyge8gjAFvv7wnIsnD7h4dM40FKJraBqpHN60LTe7wHY7cXaq+Xu/+Rucn254+eo1Vzd3DONASpGUxYZTEoG5Bj/v57PyJrw0VyS+OeGVmhCmphZrQNS1HWdnG955csG77z6EBB9//yes10uWK8fq0QVJRU7OTmlVA85w/sG7DIc9Lz5/ybJbYBjJ2rBcL+i04fmrLylRwBI/RLSG6CPjuCcrmaKVUvSdwVrH6AXYJRcO25FpqONxY+m6ltOTDbEkpmliSqlWoFpyKbi2w1hLYxU3V7dMoydFhdaRtm8Z9IBrHDkrYsy0fYd2mrubG1JIUnmqYbnu2ax6FD0nmzU31zuur28ZxxGtRfp+ddaxWJxQSJjG4cdEmBwH8UerKooK5xzWWFIemSaPKHokypA4PTvh0ePHhDAy+ZFUEiFKP1FFY5RCaydV1tGzPmvplwZT4QTvI6VoLs7POdls2N8eOOwGUhIVEaMEgkppAgWr9ZJu0dO6RhRblOXq5TWH/UhjW8bR431isVwAipQibeOIPhCmQMmKXAP5ylErjoskS+MbUNKM0dUKXFWvh65l3UorrDZkk7HVFq9pm5rECfOq5h7GMKLcKJC1VKinEiQJtezo+4ZpnMAoik40nWXRdcRQKEqTquJT8EFUMa0hxFoBnRIKJRZlWuxq29ZhasV6KRFloHGt2PyUQo4SCB99QGtRBZSAtzxTIUpSJ6XM7nZLmOLRfsOoOYsnyjpHsYIi9/3V80vixQlt24g6oU0Cd2lDToVxGPFVFel4rTW4RrNcLXBNy8wz5qxETRGx93PWoZHkltjETVilRPGpSDIkxchMLiYShEzXtbjGiu1JrRpHSWW/MnNVstjodH2D0F5iS4EWdSDrFG3nsFrAk+BTvY4IMJYE4MqpMI5eEh2hYG3GtaI04xondoo5kXX+RZf3f+tN7JlrRon7BJEoEcCchLGmKj7ERCIfE0GScMpHIEmBJFqqNUqqSSRJsiKXW6ma5JQkpvRf7m0wVLWEqXAfgNVGkq01GTbDcszJQdkUSDLqqNw02zfKHmZ+5udk6gwCvVmlXkpBFU2KMlYUBECUJFTBGEl+KlWYxrFeHrGKmfcWWs9qXFpU3GKUn1dFGQGr0jHBCpBSkYTobPOm7m325jF6TlQrVURlrAi4aLWoXkrii+O9dMahta3JbI0yQE4oTLVZVIQY5VoosR8KMVbwr9xDtbmqOKlZU63O0NbRlpbNiw3vv/qQq/U1l+evuD655Lbbkk3GWF3voSSEv/GDb3Ly2Rkq6QqUCRBGyTRG07UdThdRedUaqzVjUfhpxNlWFDCcJUcBY11VHDBa01jHNAa0EoAZzTGxp6WzHW0rj0B0lmIOaw1TCHXOUEcl4pCiwK0lU2LGmoy2hrYq3eWUKhAHgh8pbGNxRvNs+4ifpBVbdUPXGKYgRTcpF1H1jYFxn0mI5Yy1huADJSe8n+1tBJL0PhCKWGKHKVLKQO7cUUHCGEOKXmyxi6FpOlHi9bI+SRlUyTSuAaNF3S94tC34NJGmUO+D7Bf3h4HtcEfTtHRdj0qZNE6i/KPF3vV03ZNTYjyIamPTGvpVR0iFGHwdZw0hiboTZDCgrKUUTSGzH3foolGjQKt+9KiVJg8Tw80tpFPSpOmdJikY7rZspwObk03tl0tStvR9j1WA08QEYfSorDg5PacpGWsaVn3P9jDQ9pquc6y7BWiFH0fSEsbk8XdbTk4eUpLMndZBqTbu15dXR5B1UVbspsBi0WHKSNM4xlLwPtM5y2Z1wjR5Rh+Ydnd0rmW1PEUXj2o6TpZLSsmyz4+B/ZQZhgGdI71rBMcrAhYMwxbneppuTbcqqJzAF5puyeb0lP1+R/KBF68uWW5WLBdL/DCx1oXVsufm6hqjera3niFo1usT1ouG8TByd/ucwUdO1itMrna8zlX1P0PwReDGNEFWTONEjEliUAb6RY9SMNzt8CGidMJaS6JwfXdAVZWvKUbWTcNqtWCx6mmMwU8F5xxNk/jut1+z3X+H/X6iFLg4O8M5w3a74zCMeO/lGcyiMHe0J30zZ6e4H5ve/LEq94Bs+ZlXyBIRpUXBc71acbJpWPQth7sdQyk0nWO56ABRJbLKUkqhWS2xrePu+hYpEsy4INBf17V4P3Hwou4ZpxorUxBjQB0VvQXgdc5WK9kKIpRECgKnq1pA0LSNPOcpEUsUULcqlWtjMMrROIOfPCFKzMyrjHWWWNe21tmjpZuxBu9H0pRrxXfBtZaulbVL2zq8jwyDqLDLPKGrdXB/hJ9yLrhsj+qZM5CjtOwLQFRvisglSsGhVixXC6DUfaLMh7mCJ8Kqy5wRc0JpRdtaKaiokG/KUuyxXC4oKTN5AS1nuIhqoZdzxlhL66ysnYtYqsaqSKZVnTvTrLKp7lUilSaEeFzfFGRdJJ9f7kHi2o+Oio1V8ae8AWvd9zd13Ofqau0lkNi9Ddhxsa2qUmK1mC2Famcr96FpHZVnk8/UmcZZFBoVZKy6h9yqgmCaFfMrjq5l3tJKY+pcKucqVQam9j8p/LyHmsobS4HKt0tcucgaJoYgqo95trebizru7fpk4SXXTVS7oGkc1so6WkFVIzaklIkhHjm44/XUiE36sUhUfhEjFd5SKOsw87qyiJJhvW33679cwan6X0ypWtrJGirnqlhW+8BsGzz3Z1eVBcvcd1WRIgilZE9YXz/DWEf4b7Zzq2BVTgVSqYpKBWvFSlgbI+aKP6fc9ba9bX+3m0Kx2q/4/X/++/ze//J7fPrep/zgox/w46/9mNcPXpNM+srErYriv/p//Ff85h//Ji64/+jhk699/DX6oeewPPyyD+XvZHPe/bIP4W37G25KwcnJHf/Ff/H/4r/77/7JL/twAHBOlFT/17TFYYEq6qvQ+tv2tr1tb9svof3ikNKYKAlso2vwudq1WUPfduQYqkwyJC+qBEeZaNnhoo/V0zW5pUTiNheRZi9IYLQUhYpgnVQ967pB1freDkN22pLk0iisMyhVsI3G+wlrrFQKpUQhEWvltEWkdEU2WQLF2ogvQMoJWzIh1EC8NsQkkBBIACQl2XyaahGXi8EZgyKS84Q1UgXfWIAkChDKsl5Z0GLztt8NaKVonKPvWyY/CcxVAwaNcVhtmbzH2YZSkmzwiyT3Ykw4bXDOihx+FoULciS6e+sXpQxGG6YpUnTCtA5jFQlFzhFjNVYZso5s91t6ZXh08YjtuGf01zjrRHWABEZgHZ8mmsagiqJ1jtViSdc42Qgb8YEvlKqWJdYO1rU0bcvCyecVDVplSIFXNze8fHGJKiI9XkpGN5kpJTKZYfTkEDHKkqJHKfj8+ZdYI5LTJcPusGccMk3jOL/Y0LgVKQdur16zaBpQhmEYcd0ZWYl9zXLZ03QtKGgbB1njtCGEgjJgnSOXKOH/IoGVGCNZS0I0TQKLJQ1eKZRtyFkqrhdLgzWGpnGSRNWeYap2OblIYNE0bNZr7q4uyWNiipFsG8bB07Y9/SIwxR37w4AmY5RUcIk1DCw6R0qe0SfatqNrGm6v7tjuJ0xrWHQ9vW2hIJaHphNVghApPpGshmxwxeGvr1FjYQoJimLwGZctJidU1kSfGfYTxkGzsVgSw+GO7338iqZtefrsggL8+Ec/wAdJbG3WDm+AJvLw7ILO9owXkex3kCPjFIna4vQKawPdpuFweUUsHl0EnDOdqHCM0x2Jga4LjONLsj9nuBlZqYb3n77D5CcON9eM4x2owk9//AWTD7z7/vuYfaAow+X1FTF1bE5bjLG83O758qef0esdh/2IvduzON2wPwR+cDti2yWPn5yAKtwctvSN4/WrVyRn+fp7v8HjB9/kg29+nS9++FNWmxVTPhBCxHmFSoXN2QkGaLLn5OSU7c2ek+WCaYys1mvcuuP29R0//uEPiRzIKfHw/JTWnuCU5+FZQ7QnvH59Q9jv6NpAOOzQzSnvf/sjPv3hD/H7yJPNio3t2O1uaZuOBw8e03ZLTtaOy8+fM+4yH3xwBiVzc3fHpm9459lTpgjrkwsePjzj8x9/n+svPycVxZd3EuD6+m8949HDE3bXkcvbyK/95ncpTvH9zz5lGsT6ARpOOsveDCgdGe9ecR0PvLzZ8eGHX+PV1SXbwdOkSIwjtnNcPHvGLgx0qwWrtuNxyLx6/proI8qIncmnly9oTlYcPv6C5aLjdL0EP7FaN2QDDx894YvnL1DFsurXfO2993ny4BHjdOBue8vkPZOP7MeJYRxJSRTbckzElCR5VSsiS02uzjCDtJlYkqCytZaubVit15ydbjhdrVi0C3b7kWePHrG/uWEsIxvd4EzLuu8oWVOUpmsVhIBOheQDmwcP6EqgqCTg225iyoYhSia9s5ZsM6UklgtHxBPCgFKacUowRXYHzzAEUoAcMjlrTGNZrHs26zXLxYLPv3iOnwLaWvq+w1lRbclF7E6sNrh+pBiwjWKxWdAvFpBhGkeMdWQCuSSaxnJ2fs7+dsQPI6ZVuE7RLjRpSoz7yHgYyVnAH61VTSg0rFcLDvsD2WdO1hvSENnvR5SSCtQwetkQIVWb1lqckznPNpqmdTIHK4U2jnHvJZGfNOMwCcykZA5frB2nZz05Jqacoch8tF6uONlsiGNg2I/SFxJ4PzIMidW6AzI+RFzXs1gssNry+tUVN5d7ht2IHwMp7Sgl0y1aURdEQKL1csVoBvb7gVwEPMm54H3EvlE5XYqa+YZqb6CPVc6zapCqyiQoSYqIkonAVjlDmAPFRfptnhMPWqGsleMqVDUPea2xmpiCWPDYzPpsw6LtSCFxc3NgvxXLsejFni6EiGucJF1qcFpbQ7EKmzP9qqfrHBrNNEwVOJCknCoZrQS4SUkALe20AMpZEo+zJKC1UHIiTJ4wVbWYIjZPytTq4DJXEQNKkg7DYSKE1zhnpDI+ZVIKmMaxWW8QlZ6a0akVwU1rWa46jHYEL9X+TStJvc45Qoq4rqVxFn8Yubvds98OhCTQYN+0pBTISc5VK4Uy1X+rHqCxGqUFJMs1MVaQRLVrLdZC27qqxFX7PKJEpUDgwcahTE0k3A3ECm9YY0FpUeSpcICoDklfmiZJisma21So6hdd3f/tt1ShL22kyl1VME1pjbNzcibJc5PLsYjh2ArMakxzBXnNVh3tPVFUO5h78O9eBeJelelYsa85WjLqCkdJAUU8JudiyaLYU4GpWkN/tL2ZLdBmm5q5Er7UueRnEz2lqlmYWVGpVCUj6lpYy/NsNChyVUitam5KoKK5El8KOSwxCZykqKpR2h6tMwVkKscEXcozGKiO49EMalETf0fQT8lzlWJC23JMmIkzidxLraDojA8ei2LZL5liIKaxqirI/oBavZ9TEXlxRQWxDFaL2gBV1XZ+vma4R2tJnDmj6XTHwi9578t3iC8nXtpL/vDxH1E6KaYpBVZxwennJ6gkcFRJGY3GZ3m27rY7Sf4qOedpCsQgSdK+bzGmIZfEOBxEUbVCYMaCxmAtuOZehdcaDXq+3xyT6qXcA0DkQtaZkAVaI8qfGUjI3i3Xfmsbi1G6qpUY8nweZX7GBdBs25bpcBD7uW1L2YjqjDEOZzMpeVH0VQLzyXgh/cS52TpOwDCjrcCePqKM7PVc7YspSJ8qpaohp0LR8jzqYkjDCHFWyRBFKm0VumRSkbkx+oQyCt0aNJkYJi6HA8YYVmuBCK6vr0RJSinaRvZa6MKia7DaEvtMSQFKIiZJZBvdyH6pMYRhEMU1Co1tUNaI3XQcKSqgrSbGPSX1xDHQYDlZr3E7x7DbEZMkr++ut8SU2JycoIKc0zAOlGxpOnm29lNgt73F4fEhYqZA0zWEkLkaI8o2rFaiNDTGCWs0h8OeYgxnm4csF2ecnJ+xu7rDtS2piKqKSQqyqAxrwJRE13b4MdA5R4yFpm0xrWE8eK6vrsiIReGi7zC6RZNZdoZkOg77gRwC1maS9yjbcvLggturK5LPrDYNbW/xfsQay2KxxNiGrtEctluiL5yedFAK4zTRWsNmsybmQttKYdDd9SXDbktGMUSYYmTz4IzlaknjGq6vDzT9kvaksB13+ENVLNOGhQNrIskkUjzgh8IwTrTdgmV/wn5/EDulaaJZtLheVLHRYi2+Nob99sAYfS3a0hz8ATXJeqDkwmrZoXLGaVHlWfQLjG0IMaK1Zb1c0zUNKQnoH6LYn4coyoy5zk25AgQ5i3JiqnGu+30E91uJmfRA9sdz0V3btSzaFucaFsvXOKdJjWUKUx1TG6wxdE1DjEUUa3JEFYfKBWUNy9bweDjnvKzZ54FcFCGpOh+JglAqCWtajCnVzq7aqPpAykUguAqJl6NapigAdV3HNIxMMVIA2zhcLXpISYBQYy0mF0zJoKRYsGlbmXdCRCGqLpRSwZ8WowTqBvkM7cQKKwaBQkQtRybyGbhoWkdJoq7orCiUTZMXJcCqgJhKomhTwaX7ea1QJJ41j8NKxuSUEmR9VAyabf103cOIwuJsVyxw86LrUMi6PM6/q/OztRprBTQvKtHN+68psLs7kFOpUKjsx0SJvsZGUVgjlmexxlOPe4RcQZy5AqMCXkcomq+wO0eg+82+qJUoxpcCIczne2Se33i3XB9drdfmzyszIAXECnmZxla4XzH5wDhKwc1c4FAKWGvvASruYTKUgFzOWYxWR0XaNylAVYsM9LwW0BW8qfsfAY9m1SjuAd57AaQ3CpR+5pogqpDDYWSaJG4MVKV+aJrm3jZ5hhFrn3KNwRpb4b57haqulbjz/AyRM34KTD4SokCzomhPXePKPXyzgGUeMpQxgFg4Hw8fWesZW7C1MEVpdVznClSp6j7cHNfISoniF1TgTleb6nqv5zU4VFC6zu/zGvQrYObb9rb9ijWTDC7+r4dCbLJ8/eOv87WPv8bUTrx49IL/6f/4PzH24/E1Jzcn/Maf/AZNaP46DvlXvrVTy8NXD/lk+ckv+1D+Trazm7P/6EG2t01ajL9wOv1vvH344ccY8+9WhPvL2pMvn3B6c8r1+fVf81G9bW/b2/a2/dXaLz6qKtl05yqHrLUADSnVgF3K5FQl+5NsPK2r/u5ZEk+zDK7SplZRV2swLUHue3lb2YAaq6rNlliFGGuOwVmlFMoUdOLoD944i3GKRhmpoKoi+qWmg4wxlCTBJoWoS0jlsARnrJWghbVWghLMiYYKTqHJs7e40eQCfbeg7Vv8tCNHUUFKpSphDEOtdrFgQelytIFJXgAmtVckEkaBdhKMVtrip0j0AeMszjbs91LtL6ofhawU4+QpowSc+tbRNRZXVZ9ikERB8AGjNKVofCz4aYKiGSeBypq2gTaQR0+jGtxqRRoDMWRKDtxtt7hGPMpLTPRNizIFP3lWmwVdu8DoamChxLam5Ewh1eq0RL9oWHUtTov8/hg8PnpKDBx2B6JPtLZBKQmqR5MJ/r5KGNvQWYczjnaxpF1YisqiiJMTYynsDhNNgIvNGq0dQ8psY2GbPCUnNg5WOdMoTbEF5yT4l0tC18BHKIVsDUZpyFkCcVFk5BtjRdo8iuWfcQ4fJvx0IASFswqlLI0VWecUE8OkmLwkByg16ZYLWmXCGKB4clYEk/DTnt1+YH9z4HJ/zTAeiNOEdQ67aJiiJ3o43AWmccI2EuSfJs04bLm7vqPEwmKxZL1xJC+BU1MK48GTGVAkvLE422H7nhe3t/z0xQ1LZ8FLcrNED9aQ44TOCk2P1S0pQsmB5eKEEhRPn61ZLdeU4tne7dicf8jmyde5uc1M8YpPPv2XVTHAUqbMsm34/7P3J7+Wbul5H/hb3dftvU8f7e0z82YmM1NsJNGSoIJsuKwaqWomwQPXxP9YAQZqQMAjyyMJVWXZKkiiKVFMMplMZnP7aM6J0+3m61ZXg3ftHXHlEkRCFJkUYwG8GYw4Zzdft9Z6n9/7PMenSz7+1ne5ubniDz+9QWEwq8D67hl6pzg/Ocd2hnE705ojEdtS5NHRMWlR0YeRymiWRnPy7iOWq5pX63u61ZLBJ/r7yBdffsXJ8ZJv/+qv82h1RBNgrOHlq5dcrtccf/TXuHr+JXHs6Szc3M6Mk+HRwwWpNujQ8/jsAqoOV2cuzp9w+dVn/OzzK14+f8Gv/eqvEOZArDQVkUcnHVE7luaIm3CHayreO/6IqWpY391x0mrm3ZbWKWKEySeeXz3j6uaO49MLdPBcv3yOtQGlKi4eWX7w/vs4E/jiRc/tfeDJ+UMWjxb0u3vybkKHNRdHx3QPVzRHjvO2YVFr7jc9V9e3nBx5Uqihc+izFbm2fPnpc2rdsGwaLr77HX720y+5/mLDOF/y2YvndLXj8eNH2KohzwMndaRravSRoasVXXeKCiNf3b/g6cMnPPjmOywXxwwvLzlfntBvbxl2E/fXtzhXc3d5ibIC6u1evmKcJz78znfY3T9nCDPOWEiafhv44IP3uL9/xfnRgpOzM55fb9HOMfQTjownE5Vl9AafDA8ePcBoS5SMC9q6g5xpa8uya5i9iAoSKRXwYT64z8QknYqTn+nHkb4f6fuJafbEJAVEcR5ydE1D0zR0XUfXtVhrsQZc6Sz88qtnzNsNx0dLzlZLNpuBL+6vca4mLZY8fXrOAs/v/+inDNHTDz1fPXvBOw8WnKyWfPXVV0yzOAE17QpjFY1TDPMosK/PzMGTkrgObtc9dd1QNy3BwzT0Imo7w/HpMYu2wceAD4Fu0dF1HboWuNRZS52lG/zs7JSbyxuWyyWwIKURlRKbmzvqdoHShpw8XVfjQ8DVDSdnLW274f4+0bQt2mi225k4R/p+ggzLtiarmu1uh/eesZ8ZthPzOAOa7TowzwFXVVJwTjJD+9nLe2aZoyFKXI+zVM4QwsTQe4ZxZhpGFt2Stm3otyPTHLG1xlaZdlGRcsKPlA7hiNWatq7Y3m8YdiP9VsATgYYS3aJiuWwFAsoS6fnq8haiIvrMer0l+sAh9iAnpknBess8eCCy2W0E/kTJ+iCrYu8v6wk/BVKIxTI/lRgR/WblXASHmMlGxBEpKiv2EkHOiqGXaNq0L/WXNUkuIMcerlYqYwtgDBwiDLIONF1FXTnGIbK5H9hsPMFL93wokOo0eUJM1K0U6HUp7Dd1TVa5RABKQb2qK1CRRCgd0PEAk1urBYQ24vAx9BN+LHBdiCWCIBV4HTG80FqmfGfQZi8OcYiP3VfKY4iFXUiEKHFuOk7sdE9VVYeYH2ssXsuzYLPZFacWME6zWLYiLqWMD56sMs4uaBaduHMFUNNEVVu6tmE0PT6k0uGescqII00p7ocgkVfKgC2uKuLyGdDWSnd5iTlRShNmL9dEgf5TTIQpElWWTnWlCSmSfH4NXqFFeNcCtogLZCjXSGYYesq0eYgs+2Ucitei2yE+pyhlPngo0I8IUSKa6v3a8k0HIjiIO4pcorUKenT4OXkvrcVBYN8lL80Sr+2w92BTLrHLEpcBKC3NE/tiYwGLtJZnmMRW78XQ8iOUrn32rg+vgaTXsJX8+z5STvYect+GOJGLC97efTZ4X/QsDaZ8VpUPDkQxRvCUZ8A+hkTJdVRiCLWWSO159oePoMjk4vSUg7gYOCNCqzyLXr9+jOkgCsYEMYgAHYrAa4xB2ShOrxh0VZPLe6PEUVQaUuRcrvySo34FOVFZhzWuuD/IM6ecQci5QDGZyhlZZys5aSFFmbuTohs6fu3LX8NVElMaizNt9qoYXSkoDlBaaUxVYawClbFK9qSBmdlHTMqy31GyNxhJ9Dmya7fQzZyawKPpEVkXx4HiBKEKVCXXtjpE92gjbhJaS1STKnOgUQatJTIvJk9KvjxDdXHXk6aeFCDsXdrKMdkD1jHMZKJcdVlR7xxTO+PHwDCP+OBJIcg1bY1ECCXwk0SLayMia4yKEGamcSbHTFU5qtocnps6Z2nWkDNICrLG19aynSbWu1GadmJxjYqxwCF7CNehEfcWRcS5BiKsVjWuqiDLvrhuT6gXinGCkAbu758VsTVBkLihptWcnV4wDD1X9wMKjaoS07hBeUXXtBinCXPEqqrEqScWdUOujLhVKUWlFc3Rkqoy9NNIVnKc/ZhYrzc0dcXFo0cs6hobFcG2bPst22ni/PSEfrsmxRmnYBgjISgWS0c2GpJn0XYo4zAm03Yrdut7bjZbdtstjx89IEaBaSyZRePISlPpmnGaMNZwdHJCNI5pGGmcIvoZayAnRYiJ7W7DbhjFeSol+t0GrTMoQ7fQnJ4cY1TifusZp8Sq7XDLCj+P4COkma5ucIsaW2taZ3FGMU2Bvh+pmwTJgjPotgKrub/fYJD9bnd+zs3Nmn49EWLP/XaLNZrVaklVtwy7HqciTWUw1tBUGj8blk3L3fUVta1ply3HF+f0t2vapiaEiRgjm/WGGCPOVoTgJVpz9oz9QLtY0taKed6BEvezefI0dYerHSonVouWMYiLtzBzCp8Sxjl8VHz5/BFV01BVFX2/k1qTMmAcRmmcNYdnWy5rxhiloY0y/+zn9RADs5cIp1CcdPaApUCu4rpiraVyrsAFYMv8NY4T19fX1Nay7Fp0htv1VupQusatKk5WDbdXr7i+viGHQJgS1aph6RacX55yc3Ejc5EReE4MthMphQKFFkcVtNSPUFSuwlrFFPZxY+Ka2bY1OSUBo7W4zWHK/KkUTmt8CLRdS/ABrTVt25JScYOdJihAaVbp4OanFNRNTaoi45jJWVxjQhCXov2xM2UOkvVdIEYY+0nW2hmUisXpR9aZqszNORdQCQoIs4dodZmjZa0cQyoRd4q2aZnSVFwyxQHTOnEBlDkPYpDZqHJWwJbZM0/+AFBnxJ2qrl2BfeW8z7NnHCZUNiUyLnwN+olZyZpyH+OqPDF+HXRWSpU41xLJtQe4D3TRfs7kAC3Bft2j9hP9YdUBqsD9/47bZlaH10o5QSywjHq9vlEHF8iENhJnlxOMPjCNshYXsLzEyBUHIesEptmLtgLR2NduTUhkrSlrPpR8/33ELLnA42rvgplIxWFOHJsK3pMOX5U9FSwQtxyXvevjG0dM1pkhE0vo8D7a1ysvAFZ5vz3Mk3MmhCiwWXklV1lZ7yl9gJSUFuisbkoNNc+gjMSkImvHsI9eK+CWliVbiZ2T61dpVSAtWVum/Dq+V/Zo+hBdvb9uBBKTa0O2m/rwnq/Pc4Eni9vvPvVgD8ft45b3Dkxvx9vxyzpOb0959PLRf/TrKBTN1PD+F+/z3/8//vuvOYqorDDxTxcp9/9vhAJiXz64ZHO0YbFd8P4X7//SAS0uOC5eXfDZh28hpbfj7fj3jZzhRz/6/l/0x3hjfD054k8z6qnmO3/8Hf7l3/qX/y7P/Xa8HW/H2/HnOv4U6Gcptu+7c5Q43+gkwQRk8EGK1HXbHiIuwiibHl2JVXXfj8SQcEaKNlXtSoEnl41QLhtJ2ShVTSUxCipKbIASGMRa2bRpDSgpUKRSyKhqhw/hEG2gMgIBGc0c9vEM8n8heOn21wqrrQBKKZTCVH5DSBQxwRmH0jBPM2SJVqlqx3Jxxv3NK7SRyKx5DCWTXRFSIMyZelHjaiM2zwqmSYSxfU65VeCcY/QzRiu6rkZp8FGi9pwRK985BFIRTSsrESXSLZcIQ8TPA8HLZtwZIwUXY0ErxrmXYq7VSIr8visQZqu5241o6zg+WTJNMyFN6OhQQbqtrZJjOA0zUz1SVy0hi4NCZQSywshG2sdMUzkcAZU0yli2u55x9ngfJaYowsnRAtD0fmL0nqqqaJZL8DMRMK6hM5q2brGLFacPTwnjDhtnku9Z9IpxkoLTbrB0nWKaBhprMcYwjj1zSNzer5mHmfPTmkQtXbmLGh8DMSBCMbEUTBSpnA9bmpRCing/kYcRrS1+9uLWEDQhK7SKxJyZ9wWiEKUwmjMpzsxeOnObukMZw9yPaKOYg2ez2bFeb1jvdtze3QsYR6buLCnPqCjZ8d6L68U8RWxliF6cYciZ2lgaazhbLbm63bIeZ/IcmPxM3bXknGicpraaefAioBiIObBatYwZUqhAax6drMTZa4oEbZkVLBtNHQOP3/sGJ6ctTjfcb3dYU7G7v+Lddx5TtYmkO7bHj7je3rIZBnZt5Nxajs/eoV0+QU8KU21I2w1H5yt0PqPWjiePT/jsNvNyXFNqYNzcbnBHR2jtqRrHUXPKh+9+m+QDKkZMu6LPHebEcLTq0GHm6eNzTE7c3G3Q08Dl3RWnT85YrWp+74c/ZLx+wf31NefnCyDza9//HiFuOT0/o1aRMMHLF5c8uDjnMl1z1/fch8A7H37Erofd2KOV4dmnz6jaBbfbLY+qhEuRo/NzqtqS64rtzTXBw+bujhfPrnn6jY+4vnzGbhyZ5sz11S0hjmwniT2cdhsW3R3MH5DbhqZOhNjT7yLNXBO84ZNf/IKXl694+vg9Vu+uuHx2SXSG49NzvvGdj/n0088ZtxvmcWZ12vLt73zAbjtxdPGApoE2BZR12KOOLz75nJPW8413HvDj3/8ZTVXxve885uLpdzk6WvLz3/8EYzPvvvuU+xkaXdMsKna7O46uVqjtTOVqxmGiNoraOgZlUV3L9e01J8enrJYd7/z6r/Ll51+xmzy2rllqjfY7vvz0M4Zs+dYHH6KVZ9m0NG7Bw2NFGke8yWQMz17eoNQty7rm/PFTzh+dUlknDm8hHdyOon8NR6gown+tLZsQqJr2IAZrMkYLcBuyZhgjwxSKS0mUgp0WVxNnihqsJK4lo8gakoJ5Flv2k5Xl5KRhN/T4YYtTFmsz8/qWNGdqU7EZRkwc+eLzl9zftEzjzPXmnt3Ys9nckJSha48lWjQqms7ivWezGRnHGWOkiK+YWLUt7ckJ025iTglbSUf/3Pf0wTPOQeDf4Km7lvX9HX2M1MsW11bUbUW3aLm+vilxZYr13ZZx8CxO4Oi4o20kZkfripgS1hmWJx3YxDh6lCogbfDUnUPlTO0MwzSz3kiBOoXE5OdDd2jMgWwSTltSEOdAo22JUCjxRlqDjiI6KM00zqA83idIihhEGE/WY2sNznG0EsBrnmaUVnRNdYjLskbRb7fMcxSXPCUAzN5pZrmqUUa6v5vWoHJk7D3TJJCT9xMp5FLoFkeUaZoJPhBRuEqTFPiUyEphnT50r1pryEmiZVGahDgi7ueXfXOqOK+U4nBMxAzGCsi9j6INoQhfxZ1CGwVoVC5eLoV5MsYQc0IZzWKxOMTlxpgwVU3btvjZMw+R7WYmlCJ/LMdDi6JT3kc+W0yRHANVJedk7kXIbUu0K8hazBQxLmRJ1TVW4+fAPJYo3xDwc5TI3hhRXkQdVYroezAtA652WKslJtVHUi7AghLByBpL1VSYymJxJU5C3DnRiPNTECDMGF1iBCU6z5YIhHkY8eNMSOLo6YaRGMVZgQzWKNq2wjUW1ziU6vABtPdkEsYoXGWxRkQbcdlRGGcFeEBJjI0SwFnpjFKWnCzeB6ZBHFtCihgr0SvZJ4YCcthKuulTSKQkx1aihTPKaeqqJgRPQmLRqsoRYyAFRfCJcZz/tPuBP7eR4RCnuYd+Mhlpfy8d4cVlxpZoqZwTOeyBDyNrTB/KsRE3AmO0iLp7KGgPMmURSI2zHBYXZV0nMEiRbMp/FOK6sRdLY4wHlyUoop1ShINbgdw3MoeUn3H7CLt0ELkP338vSpWYFwHNiqOQ1biqYxp6ifGISAd+EdZSFtcLU5nyrJFIlRBSEWal1L130QjlMzlnDvCMtiUSR+UibhXnDa0OAE3KmRTk2bF/Xhol8YV7wTJkf/jcqsBFB/FVG0YfUFpTN+JMEnOAbFAlXu54u4SYBZQ0AWMsMYPKEnuj1d7FIKOixHgbZL+B0sx+IsRUHBhEuO1cQ86yXs8RlDJy3lMkB9BG7k9nHLqqaBYtOczoFMnJM3uFV5GYEnMIVA7um1t+/s1fMC5GBnqSDRz5E/7mj/46Z3lFRmIBnZPnbz5ov1ku9gLjGVMigeAw75EDai9sKonELFJpcZjNh9faO3HJM106Ja0VUdx7cYYKKVG/apiXM9M8M4wje+cU66QxQxUXsn3MUYzpEO0nMI/AE1Zr2qqiH2amIKRHSFEA2AIVNyW6fS+G5uK+GFDk4i61aOoCNWWS0kSgsgqbI8vjU5rWoZVlmiU2bx57jlZLjEtkHHO9YJhH5hCYXaY1mro5wtZLVFQoPZP9RNVWqNxilWa5bLgfYRsm9jGNwzCimwalojjF2IaT4zNyFFcdpSt8dqi2oakcKiVWyxaVM8M4o0JgN+5oly11Y3n58iV+2DL1PV0r3fWPHz4g5ZmmbTHIvbPbbll0HbssLj9TjqxOTpk9+DCj0KzvNhjrGMPMwmR0TlTdEmM0GMPc96Qo89Zm03N0esKw2zCXukffj6QUmGOiUoo4T1RuRMUTsrU4k0k5SERotKSkub19xW7Xs1oeUx/V7DY7ktY0bcvJxRn3d/eEaSL5SNU6zi9OmOdA3S1wFmy5D3XtWN+tqW3k9Kjj6uUN1hq6tuPBgwcsVgv6zYAPW4yC5eoYlTNVVZOjxw+aeb2V6z1kdKk3oQ3BGcZ5xCqDawzNyRGurmTfW8AfYxX9/T3bcebo+JisAn4aMaaiswo/ToQY0KZmHD19P5NTw7OvKk4eQGWlFJZyFqNurVBZAHD9BpihMJBmgZGL8E8usY4F3QtRamHxAClJHclo2cOLM47ePxaKAYqSuQNF5RRdY0pslCcluW9VnJm2sg6WX074oeflOOCMZnF3zOQCfdqK+3Rdo40lxIyxAojMc2Ce5JkcE5ASWUeapiEFaahSWgAdUpK1YpRGLZJAtKk4TBlnJRLOKGotkcfz7LFGEebAPHmUFedqJ7SUwNnFvcdVBnQlzk7lEReCOLdZZ4RRURCGAi1lcwDEZcLZuzHqw1y/j+pKWSIqQR3gY3neJWIBwgVeVgXckLqPcRpjZO8XcyD4jHO6xL3Kz6QUGQdP3JvgFPAmxiTu5rY0apZjE0MkeIHVU9zDa28gMjkXaFjqqkZr4j7eS+3X+mWtXJwM966j+/UNQFZ7/KgsZMoGI5V1g9k7ApW1VYrpdYzYgU1Sh9/fuyfuhSrrZE+4j3zNSglYisL7yDyKE2su7yn3i7zw3lFyf65SSqgo+5xc3I11cdEsp7asj8Rdcg/c72PKgo8HECoXSOng9rj//noPaMk5MtYWwDeR0hsAdDlqxgpECQpbYtZz2u8pymIxl8g+ksQXKonj1VrigH3yh++/n+NzVZU1lcz/yqjixCtOnwIXyxpNwMLSOFuuc6UkdlihXjsf6dfwFWhizEQvzoipQEcCqcs9lXLG2H1D7n59og6vkyluV0jUtcpl3V1gp6yVrK/ejrfjl3Q8ffb0zwQg2g+FwsY/e3eU54+e80/+L/+Em7Mb+q7HV57Tm1P+u//nf8fZzdkvHaj09NlT/nX+12+Bhbfj7fj3jN1uwSeffMh/DjeJQvGb//tv8vt/7ffZLXZ/0R/n7Xg73o6/wuNPvAKLKR5gmn0EAAA5YzIg6VGkJN2y0ua6D7TQItRYcFY2cVLwN6AMxmomH0mxiHUlzi0ETxwSThuqRhaf0m1CseDdFynEctcYW2xuLW1dM0YReHQRLyTmRQpNEnUQRRgpX2X2npDCYSMdowhRlG/xuogs3ysBYz9zdKx5+Oicvr+T76ByiSoQwCglRY6R3AecEReK5MQWWimx5PazJ6I5PuuoOosfZzSaqjGY8r62CIYEg/fyvc4ulngvzlDzLJ34Vd3hqsQ4DHKs0cwhUDeOxdECq6SjVyXFanVMP3iU0yybBTpB9p5Wg1uIY5GzUDW1uBJET+xn2dA7RWLC2QanK7q6KpF1k3Sv5oSzhqYWqCzlQAgzu12Pn0KBwhxKZcZpxPsRQqB2Flsr+uSpnaJ1Fm0c69nj+zuyVoz9NdMwkVVm8iMBT9aywY5TEGvllFhVNVlblBERIzBTVytCCIxjQNuGOUZAo6MURTyRqDRaOwwZXwo4/TTh/YhG01Ui1BhdIhh0IqdASkpEgX0BhRIJk0Gh2Xf4h5iZA+jgySlRV2LrfHd/yzjOnJysmPzENE6gEtkbxmkkpsDqqCP7gHU17mxJip7MhNGWxi7YbCM6C2w3+lL80hqjDK5tqdsF427g/MFD/GZLMBpbK1YqUDcNzaJFD5bsA40eeef9p5imJvYj4zRxdXVJ7d6jOlvy8N2HrJ8/46SLnKwWPL3oMGpDmN9l/GRmDp7L2xsq12Kqdxj++BPW4xW73UCmZp5aThfHGD3z1YsrXt3f0OglD8+eUJnET3zA64YKaI1i2G25uboh+8yjkwXT7gZz/pi6XaKs5qPvvEfabrh7dcnNOnL78gtyU3HxrW8x+55895LTCpZPnnB0fsL7Tx5hpjXKdNiTU3JKPHvxCcpVGJ0hKd7/le/QXN+wu9zxRz/5lJOzJX478c6jC3786U/YBMv4cIkhc3S2Y9pMbMYRHSy5OWJ5Ad124PPPf0FtDI9Ol7z/rXM+/+KG26uBm1dfsbYNKU88Om/48tPPaZc1m82G9fWXqPGYkDK39/f80R/8hNMnj6BWvLq7xoeJDQ0P2hXLo4bVR0/44quXbJPn4eNvoMPEkBLRb7nfDtwNnqOjJRrP9773Tba3V3Rqw4OTlrvNli+++pKmO2K6XVNpmHTg9n7L3WbH5atXhDjz8GhFHyLPvvyCp48ecXFxTL08hW3P43efok8WbO9HPvvJLzguhf3r63t8fc+qPea8rnj14o66qqkiXD6/5L4PMOy4ef6SqANdveRodYFKic++/IKsMx+9/z46x2LtL6IzCkLp/NNaoSMS8aRMiayRouNmu0NpRVO3VFVFCgmrDa11NEvLss1fc86L+67FJBGN+4Ke0gZNFvhlnNB2QfCGn//8K7Jp6ZolnVVMYcfNs0uW1YrN7Q1Xt3f46Y6ruy2fX2Y0gaarmYwmVRU+QbTi+oNWmEqg3TBHos9ozKHb+uXlNcdHx1hrSSpyfn6MsonZBDQw7nbElAjTxO3tvcw9WUAjP028nANNt6BbdITgmacRYytca6kqS2WNWPePnpAS2hl22y0xDYQoxfboFdNuJoTActWyOl5yc3XDOM9UtSF4hXGKVdOxdyLUWtMPM4lia58QV0WlqY2V79fPpCyF/d4PDLsRbSBnVbrAI7vdjhxnLi5OWZ4s0Dj6fuLy5lqAAqslyiBrrLOMw8w8zRjnaOuGED1z8lhrCqQc5fVTpqosbVeVaBxxl9O6FJG1PoDHaBG2louOGPyhYK21QptSMNeIOGUtqFI8Lh26WWVUkkI/6nWHeUqvC/v7btcQIr64qKDBWk3T1iVSdx+7K9endQ6HwNfrzRqVpficyehKHBajz4QpSMyTMQcgNmfAGIFukCJ3ZQUoiynj5wgqIM4sgXHXC3xDpu0qnHWk6KU7XYkr1TR6gevUfs1WnC1VifxNAv3tI3QPro1ZCu7WCtQdvAh+2sq6ShuFdiIQBB9wrqNuGubgD8fch4mksrhroiX2yIl7pvdy7aZYAPkMMQas7cVVao74yR/EBGsMrrVMc0Q7AZ0yCUU+RBSGJDDKPI7Mk8fP+yhjTZ1rss5E7xmzL99dTqhSWmC9CNM4k0IUMT/ogyuOLYKXtvuIOQSKqBx1Ux3ETzUrxjmWDvlfXlFhL3KVxu2vdbXvYaGsyvNXiKYDpLN3TtJKk3QR7MqxRGk04HPZZ+xfuYiL2cvcIRBkAQSLs9VetJJ46XK9FgcrZy2huGEqJVBUFHskWdfl/fyxB7A4CJK6OEjkfbTX/vu9AZ/sz2nwkbpWLBYtwY/kfdP7G+CWvFYizxpTFxcprYqLVAGZooiPdVtjlACCGi1xz1nEcDEOykiMYD7cx6nAWAKvZIxxaJOLW5x8lpAE+HN1VRyusjj41A3ei3tOZWU/QEq4IgDLI0ZEc60Nm7MNf/TxH3F0c8wpp1z0DqOtrFWtLYC/gDRqD1EZLTBMcd/1XiJAtZJ7SRyBAjFKo4jRGm3B+4Q1YLVGac0UI7EfQSmC70X4VJmYggDQiuJglJgqz3V7h7aZiIBPfd3zw+/+kN+4/gGru2NysChdYp+yKiK7XBfiPKdJWkRXEFAzpoDKiFuD0ofnZFZ7B98s8Fku98xhbnjtBJGzxN7EhEDWOXO+OcV5w/00EEKkaSpCEkcSyOSkCVHc76raQUxoY9CuJqdIJqCVwWrHNMu9lRHXh/0FrMpz1lrH6ANt15FmTyrP80qJK7F1FhXExdiqwNHRCmUNyQdijPT9DqOPabqKxWrBtN3QuERTO1ZdhVYTKR5xeSfg2G4YigPHivDqjjH0Mj9iScHRVA1aRdbbHf00YFXFolthVOY6JZKyGMAqCH5m2I2QiovRONPE4uqkNScXRzDNjP2OfsqMuzVYQ3d2RoyePG5ptaJerajbhuPVAhVmlHKoRmLRtjd3UGBCUJxcXOD6gXnneXV9S9NWpHlmteh4dXfNnDRhUaGBup2JOTIHafTB1bgOKu+5v7/FaM2irTg+67i/H8Rxcrdm0o5MYNFa7m/vcZVhnmemfo1yNTHDOI28urymXS7AQj/2xBSZrWHhKtraUZ+uuF9vmXPkdHmKShGfMjnPjHMg+0hTVygSDy5OmccdjpmucYzTzM3dLRencu4ltimLK7Cf2ey2jPNE6yy2cdyvt6AVp9WSxdFKIvicQdWWpA2bm3uGXY81lmGYGPyErWsWXcc4bNFaUxtDnGaGOKNyZjet8WmWOdo2VMaw3mzYjT1tc0EK+TDf7J/Fe3hIKbXni2R+KGyJ1oZ5GgvUaXCVI6ZcoH5F7QzOUpzbZE/xpl/Nm5GfqoAE+/nAx4wxNet1T8KgtcMqcV+e+h6ME/fS7Y6UPcPYM3p5dhtteHD1hNsHO7KWeMTaGqxCCJfyTE9JAB6tND55hnEq0bxS35NIWksIEtPoQyB6WSvlcZDnTkyyp6gcu7sNddMIuLifZ1Fo5w7Qxb5u5oM8V+O+iTDv3dMjKSIxmknT1DVh8ozjJK6RxpS1tS7gvjyvQtg3l+zdfeS5ZClRreG1W1CM4p6kJlkq5KQKPByZpkxVVSyPjuT5mxS7YSCGiDUCVcYk5zsncVfKeQ+Iynwj7neUiLMy52dKs8Lr+Mu9a+Ih2iu/vv6ccwLQBy9zyN5wVclcIvObNNpEBFhTe1Dp37G6OVzHCTCv9xiH2lRZeCkorquv4z8PEMwbTn7eewHytNrfFAID+1TmoNcRuqTDhxbnxPwa1BM3fvndWOJrc84E76XxD4latQWWDiUyTlxDxamJA0D1Jmz0uiawX9vJWmEfpSvrHolKLhDVAfZBnIR0adBQmsq61+u6PeSWE2gw+bV7oqzv8sEBrDC+CEQvANucvXxXpBFE3KAMye4hMVOWeLl8bvt6bo+JFPaNs3IdGFOcZlMWh6+8dx6V7yOr4P31LwBl9G88d/bf+eCwtP97ReXsYY2dCxQmrlhfv77ejrfjl2l8/v7n/OP/6z/mg88+4PT2lPc//+VzJgKY65nnT55/LUbu9vSW3/pHv8V/8//6b3j/8/epp/qX5rN/+OmHdH1Hv+j/oj/KX6pRTRXLzfIv+mO8HX8OQwwvfnni3v5jx9nNGb/6w1/lX/ztf/GfA3f1drwdb8df0vEnh5QKKHOwtE9iR1saU7BO4Zxm9lGiM2KJXyjiapwmtFLiBqQ1fhYL2XkK2MqScomoyEWA0gJ2xDmCTmQCphIgRCPtxbJZFdt+7WTDmEJkHmbg653LoTgr5KzFCp2ynzMCChkjXTbeJyol3UHSBatKQUcRs4BKWmusc2gc3mtSEHGzW7as7wbpQrWWFDUhzKXAJV2k/a7HZ0/dOFwRy6OXApPSAiFV1oiDUDkOKkt3qriVGym4mUy7qDGWQ6ScNhpVFxeLlKhSDVmVzTSoVISdLMfDasc8BZyWTWrI4thRW03lGiYSm90ao2HRVBytjhnnAT97zo46lssF0zTTVgqrFdM4QE6k2aNypqlqXFNJF2gIoGCcJ6ZpQClNU7fS4WxEwEgEfPSMfsKoyDBM+GFmtjPt8ojRe7wPvHx5T/YjxIqmWdLUFbbynJ2doNCMW89RUxH8iAqJ1rQ0TjPsetSqY6s8fpowyjCmid0g8UpH7RKjFEmLEFHbhDYiMgYyIcmGP6bApDwKaOqKOQr8FqJ8737o8X4CVOnCNCK8lKKL9yPRWLb9yOmy5XixIM4zj8/O6boFz29eMgxb8pyYhkD0mWk3kXOi1g0qi6X4atFxtDomxEDME5VbEubAdrelaitqMqTA2WpFVVl8CFSNwxk4Wa44WnWsHp9TnZzz7Gc/pXEBXSuG3QCTZbmoeefpU+rK8Wp9zeQdkxcHtVc3V2zHkcubW56eXfD44RGfffWS85PHnJ8YPnr/fXyG3RxwJnH96pr+yz/i/Fyzub7haHGKXa0YtyNKZVxd4aoz5vmad959zLc//hhbW16u77m72aC8wYSam/UO26z55nsf8PjRI/7wxz/jxauXvHt2hh4tU9ScnrxDfZSJL57jOcEtHuCnDqVGjo5WfOuj9+lOjhk2HqdgHBX39yMPjqR4+/zlNbd3t2wujviV736Pu096GlPx2cs15+88Jfp7Hr/3PicXSx6FkXMfmWPPboh8+tNf0B6d8Ts//CGL1RmnR2vG7SWV3vHw0SMeX7yLMvDZzSWv7l+xOjnhO4tvcj94uvMjHpyfcHWzgd0t69tXvHp1xzxlVicPUFbx5OkD6qpj3kyo1vGtb7xHv7vlR//23+BRnKyWfOu73yIhxdLdLrEbLWcLw7Pbe1YnF5w+OiLoAeaRVLeMPuC7iuPFCXVd8/lPf8Y7Tx9y+uCU9aT44xf3nD1+wJgzOXiYdgx9jzt/TN8uud8mtPGoDF0MrD/7nJ6WeulYHVc8u7pB28yiqujX97QnjnffP2N1tGA3jVzttnRuhZomHl68y+LkBGsalA+8/OorLh5fcHwi98nqpKP4XGC1waepWN9nVEzFpUAV5xURbZtmweQ9PkR8yLRtxd16S904amXQJqKsKoU+BVGjs8w/OQt0WiRwmRO0gJ91ZTg5rhgHz/26pzlSvPuNdzhaHDGGyM9/8TOGeeTjb7zD4v6Mfh5YvnjG3XrNEAZcV2My1K4hkskuU+WM9TKnzVFcBWwlUEpWCY0psV6a5dFKLOFVZvYz7XGH7mcICR8SuqvIMROyxJWt79ZoFP3tlmCuWB4t6RYtx0dH+DCLEEYAEv1uZHs/MvlAu2zJyaF1EEBYSfd/QkTW7W4ncWZKs1gtmcNA9OKIlFUUsKsUjytnwRqcqxn6AassRmvq2uGDZ7vpUSjq1jCNntlnKhw5J0LIZY4MpGQJQSC0ECPTPOGso65aclKM00i3OEIrxTh46dI1hmma8F5EmWrZiVOehqyMuO2kWTq/nWbSxd3RiHtjRor3bVujS9SFtRqFA8QVzzhZoxgjRWJVIJQ4zocitKATr+OoUpIYPlfiZ1MUQMZrhUa6vykFda31Ifo2hhJ94CSWSjqBHda6AjBFJGcKubZjYJ72Hd6axaIm+CjHEZmDq8pJxBXiJGSMrBligbR1+W6VsiUeTjp1t5vIPHoyUcAppfAplphQeW2tDbmI6FDWSDmhtbhRWqvRVgBDiVRJWKXRzjLrWGLToFk0QEJpWZ+FnBm2O1JdyTpQiWsnWtPUTtZu3pd4i0hO4SBu7bvNyQJBhBAOnyvmKAIPDqW1xB6QBHAx4rxZNzWVdQJzkMkkNLCbIsHPJDI67d3eHCGLG9Y+hljpct5zJoYoXdlOCJ1Urve6rWgaJ2tOIzDTOMx4P1PVmqatpNs+aXLUpNTLmlD98lYXUnrt1EUB5A7xbgfYD2Lk9XmiOH0hc5tCrk324lEW8VCaDFQRg79ue51iLvb9GWVE+FKloeLgcFBckmTdnohe3PWAA0C4dyKQTUR+fW/v+bGyT8opopSIPvnwGvLfdLDbUQUy08QogJQxEoEzjxINs993hZT2iraIvrMnlWtSG13i5/YgF+zdkRIcoEmFKi4HHPZ0priYSe+HiL5aK6zNReDLZGtQWR3cCUAdHKpSlD1SCPHgkJWzOMgZqzDaEZXERCvkmm/qGu88V+4ldx/ecq0vsb+neTw8LK/ly3NLnn8SoWlAC2gFEKLcywpxU9S6ODFogc+ij9x193S+E0eyEIk6YQtUGFNiux3JKaCywZgKa2u0jrRtC0D0iYf+Eb/6eeIn3/ojtMsYowizpz8b+N3Hv4fbOM5vz3ly9YT6roVEibB+vX4wWu5zcdUTx6I9MBBiFLHYGGmeKWI/QPD+4Jq0F1+VModzHFMgK83sA23lqCvH0bjkG5sP4ZFiM2wJfoacS4x3PkQmGWXF0dBKdGVd1yIi54g2sj+dvcSOWeTaaKtKHPuSNNporWiqiqauqJYdpu3Y3FxjdUIVVxVionKW1WqJNZp+HghR3FxSzgzDDh8D237gqFuw7GruNzu6WtG2ipOTEyLiTGc09H2PT6/oWsXUD9RVi64qgg/i0GEMxrSEOHB6tOT8/AxtNLtpZBgmTNLoZOjnGW1HTo9PWC6WbL7oyVcZqoAOmpgUbbPC1JB2GxI1uloQowMCdV1zdnKMa2vCJOvPkGemOdA18kjYbHuGcWTuai4uHjDeeYwy9LuR7mhFihOL4wJppUCXEiF5fMjcXd9i65Znly+pqpam7gjzDqM8y8WC5eIIFNwPO/qpp24azqszJh9xbc2ia+iHCXxiGnv6fiDWmapdgFasVh3GOOIUwRnOT47wfuDq+XOikvN6dnF2EMy9T8xB01aazThRNy3NoiaqgIqBZBwhZZLTNK6hazt2mw2Vc5ycHmG14rb3GNdQtw2mqsBPRD+jXY3uOoaQcSRizticYeiZozwvF8uaaZY1v7MSJziHHYuFo66PGMeZKQa0t6iYqYxj0RzjqgZSJowT2hrOL06JYYVrJPY9l9gkSWQvjnT568/8LIUYtLHF2VTWELV2jFMvAKXVaJ3eeP7KHuKNxBj2kUqv/4ID9NfUUgeaxkDSEtu86DpAs9nVDLstXVfxqDpliJG2bdjteqYwY6zm8e4xz957TqijRAerjEn7WODXcJJ1tsx3jjAHclYCcBfnwhCDAOHlvMecKLSTND1ocfKOvdQFh35EO0tdVzjncNaWyO3iXBNhHj2zl2bHjEXrEuVFOeZZ5uUQA9Ms60brHKj98dwDxeoAd+ligWhdRQyBnPbReuKOOISJnARUh4yfJZZOFUBpfwIOUVkJ0Eqi5nOW+FFl8X5GaYszlnmeCmyry74kklJE6wKtKFnhx/K8BV2i5uLBYU8VIDVlcU601pbaIgX8D4d5bL/u31+Lxhgi8TXVTVl78BpaFQBHH0CoHPdQ/P7H8+trsbwPWaNVOrynRIxpca0ssHChoQ57lxgiGDkX1howCKSc9hF1+4g9+T0xJNoDTvk17KpkjZLz3i2pgMm6QHUlziymN+LvtC7fST7LwZmT0rixr58qLe7HuTRLKDlHe6czU2rHmQKUJ3GQnJM4Tiq1j80V8M0YQ47S3JHeAL72McGvwTMBfFJZs+3/PpeJfA8yyRJWnhfaGKyx5Z5AIGcVCSXOW2LtIBJRJfM35TebEfawdolYJRU+UR3gKWM0zpkCcL2GmUKp0QoAVdIJojQL5/y1i+3teDv+YkdG9h6HvRfcnd7xu6e/y+/+xu/SDA3/7W/9t3zw2Qd/ZrBPUonLh5ec3J38R0FE73/+Pv/gf/4H/E//t/+JuS5uxwouH13yW//otzi+P+ZbP/sWv/bDX+PJ8yfievoXSAqc3Z7xgx/9gN/+zd9+Cyz8KUbXdzy8evgX/THejj+HMQwtKen/8A/+JRkKxXd+8h1++zd/m2h/eZsd34634+34z3v8iSGlnCUrXqlUCqVli5UhEFDYA0AUwyRFH6SooJUScUsrnK3ox4H9fjn5IHFbPh26eWWvl0unLChEuNIophDISTa1WmnpatGGnJFuyrLBRGVSLEWVfUeTsUgnkxSFrbUiUCgOLghkhTWuRCqUTPXSpSPH4dBzIkBRVWHI9Nud5NyneCiqp5jKn8Fqi9GKEGaJMjHi/qCzwSmDthllMpvNWpIolIjp2tRMw4ytDJWrmH0gpkxTa2pr6XtPypCVRIakLN3DJEOS+gFdZ9FKOoincUIpI84PlSPFjCaijCaECbQXm/Da4Lceqysq7Vg2CzpnIWmWXcXoR/I2QUzQNkQCYz+Qc6aratqmE2Evi2V4iqWDF0XVVCIymURbKYLKhH6Wgo22kLV0Lw8zk/eMwbMZR5q6pnYGawx9AEOiMmJHPE6J6X7GWOg3E8d1Rde19AnGKXF9eYWfZ5SxZCKVsSjluX15TYiZyloMCm0skx9pmobsI6qqUVYz+SCd1iGijeGuv8Nay3YQQcpoiWcaxp55nglRBBZjFEZLVFPlKmrnqJzBWEuVwKTM1I+khAhQWrPoFqQ4o7BM643E5ARP1dYlviOSq4qkDSZmrFYsj0/ZbgbGcYAU6cOMzorGVByfnGAqS/CerulIk6d7eIZuNY/ffY/q6JSf/PBH3Ps1x8dLVK65eHBEu1yyGSayqdFqQdKRZqFQMfPV5Suy2vDo4QnRzry4umK3GRnvB/x8xun5Be+9/y5fPvuKcX3PqmoIzORcszo75eZux3R/zXnX0itHNEtaral1pt/d8fyzL7h4/2OWJxfcvrpDJUffBzlHaebk9ITPnl+x6Xd861sf88H7j6l85vnz57x6/hUfffyrmKbh6Tc/oG4WmJTZ3Izokwtss6I9XtBvt7zarNF2gVo03Fy+wpBxKrJ79ZLLFBj9j5nHmfOzIz76le9zenzMz3/yI17dXfHlzVeYCN//+Ak5TdyvJ9b3W+4vrzg9Oef0wQNun18xru+InefF5RU+d6R5ZuhHTI7UrUGrjkYP1HnGbrfcrbcEarruAWdPG86OHXWnWNUNya84bS7IVcPq7JxxHEhx4vys4cV6YhMNSS1Y375keRRpdCRP9xw9eUB38hH9oAmz4dXdANPM6eqE00cfc/LoMZ999jk6J5KCTz9/wbNnG9qLBYuLFU/ffUT1VeLkZMX95obV6oTl2SOapiPe3HN1f4k7clzuNvRDZo4Ko2qubrfYyvHe6QXdouX51Yb1OBHuNoS5J/iZyidyhH6Y+b0vf8LDhw94+vgplYWbfke1OmYOkecvrom5palXAixk6c6OKaGSQAavY3QUIE4mxhq6dsE4jfTjiEJcB/Yi6yEOVKq1RCXPKemg1BhVgNxSRDdZipzGai4ePqLOirvNFmUcL768Yq2uGKeR2lSM2bD2iY++8W3SuEFPPctFy+X6jk0ItFZxdmTxcWYXZuKUmKeZrlkQcsIoTdtV+OBJs8cqB9owDCOulu74mBtca6jqhjgHgs3UbUPWAvkOu4jWjnEO7MYZkjyXht0OozKLk2OU0VjryFkzDSPr9YZplLjKtOmZZ0PbOZpWgFfrwJgK56TDvO97YtBgKdF7kckHqqpCK4MPAa2g6VaM84RSmcoqwhxxxqJQVHXNw8eP6HdbtAmgFN3KoZUIHM4ptOnYbbcMU8Rf3rHZjhKjpTO2LlGtXs7b8uiI6APGbnFl/RJCEEv8BP1uoHKZarmQuCEv8WQpTThnxC0nRVJSJTatRN6WiD2TFX2/wxrLYtmQUsAUVx1jDCkmhmGW+d9Yson4GA6d9NYY6rpmGseviVYpFWG+XMcHmKAQYlop/ORLDFrCVQ1NXUnEQkrEIC5RdV1JsX2ey9pNEYK4czkr3cR+joBEJNZNhbVyTe3j6mKMAso0Ttwys3RzpxzISrrPYwz4ORwKaTEmlPK82XyriqCTSWVtJoV9EfVy6TJO6Kz3Tf8leoHiXiNwsJ8j2ikWy46cMtM4y5ovJna7LdpZlkcrFosFqhMXgDCHEn82HdaIIGssiYBUB/Arp4D3AmtbZ8TxygBKIC1rJeZFG41zlqqq8aNns97gasvR8QKDYnffF9FRXAnEhdSQCggVQiBmsDrLexenJKuMiBcpMw/SfW2MpapryDDuRqYxMM8B7yf6nUTSdcsWZ5042iBrWYni+OUdBzFNvXad2F8vmRIphghWJZ2tgPpF0FEcYMH93ZMKoL93HNqP0nJATql0z+8jWsT1QO/hj7wHjKQxg5zZs0t7kUf0tlwAKURwSuK0VtJ/ymvJ/uPQ2FF+701qaj9fCWglDgKaTJhn+R45HdyOUkr7AyX7lQKyCNinBRpEYZB9ETozzaM0WiCuZPIMKEKtMSIkZ7n/jZHXyBnZt5kSsbeHdQsfZYsLlVaKGCSmLqWMsnLcVBGSY44CPFmDsppq7fj2T7/L/eMbtu9tsVqDUVTOEKJnx5bPH33Co19cSBRrCOXZaXCuAiXnP8f4hji5v29F8LZGTBxS+R5jN/IHv/qH1L7i5LMTjq9OaKcGM3iBnkp0nU8KnWW/RM6EkAmTiMbzFGiM4cO7p7yaLnlV3TLsemKU2KRMwjQz26c7fnr8C7r1ksfXj3h3+4R2WhSHNrFWUcZCiZITMTaXxgUBaee9MK1KfEzwEhNUBHW5TvXBBc8YcXPVWmOygBXBB8iKp5+/y4vVK6ZqlntIacJYrquUDhFQKSeyMWSlUSljlaJqG+YpEIM0Xvgk15ZVhqYpce4x4Zwjh4RbtGBheXyEqVuuX1wypYm6rgDDomuwtWP2sVz/jqwS1gmwsd720M8sFg1JBTZ9wE+BMAZiamnajuPjI9abNWGaqMo+LmdL3TUMw0wce1rn8NaTVCVxdSrj/cjm7p7u+Jyq7RiGEZWVuBFnhcqJpmm42+44ulyxajpOjpaYmNlut+y2G07PH6KcZXV6jLEVOmemIaCbDu0qbF3h55l+mlDaQWUZdr3ElpHx/Y5tTvh4RQqRtms4vXhA0zTcvrqkH3eshzU6KR6cLYHANEbGaWbc9bR1R7NYMG53hGkku8S274k4iUvyAZ2zQNJBIsotET17xmkiYXFuQbuytLXBWKiNgVjT2BaMo2pbaTBLkba1bOfIlBVZOaZhR1VnjEoQJ+q6o2pOmL0iJUU/eoiRtmpol2fUiwX39/ekEDBKMU4zly/ucE2NrixN11BHg0ET84xSsn6tuyV5mpnHkaASXmlZQ6mWkDRzAfAXi4baaWaf2E2e3RCK85zUJKoskMjN3T3KGk5Xx9RtTT8NRG1AO54/77i9HViu5J4gp+KQnb8GPxTiAJXL/EPGWgdIDOcwDOyjrfb7icJ+yE+rN9D0XFxgC/BUOARxQB07XDVycnLCPM7MSSLT4nAvLs1ZYqiGGGnaBSdtx/XVczQK5y1DCBxtjjlLR/T1vTRWFSehrATiJItbj1YC4qis0dqSUpZzXxrxrDOYStZfUXmck8jBnCD4LI7bKGYfiksWoAJeZaxpCpiiyEYmxGmaxFmyRKimlLBO45wuzuj7Ot8eeo2vXUK1QLw+xGKWqA+ApzECfuZ9LGuS9eze6b3tuhIRF8g5oRtzcAaKIYnjpvekIPG4Puzd03OpDZbI3SSulc46QggYs48Zi2WtIXFv8+SxXU1OFOBNkXOQ2qjWJBUO877UO8s6CNlb7PcZMh+r19BIiT0NQY6duG/mw/y9H87u47Pf8O7Kr99jv/ZQZQ1BWavk4uwZk+w5nRHYV6ChVPYDAs/E+DpqVJoUxC9ca742p5kSfZ0P50ofwBxp4igVwQIs7Z3J5HsKRKuzkvVX8SI77Cf0a8hH/lt+XxXnpLyPgFOHxiW1B7QRF899zF8Ombqu0NqU9WMua4AAEWzlqCuB73LaR6pJvG4MscBAe4C4OOEWt/89RGy0lfOf99en1BQoa1hdoDCpUcM8zqScqWonTm0lylaXuOr99wR1AO5SygU4E7erjCoAvowU5JoXeExAJIkhnIvjklx7wWqJsbZW1nNZREtt/vMRYd+Ov9zj9PaUv/9P/z5/+L0/5Eff/xFZfx2iG9uRf/Vf/Cs++OyDP7P3vD6/5n/4v/8PrDYrfu33fo2Pf/YxJ3cnuOD+VK+jUHzvx9/jd/7m7/DpR59+7d+ijdyc3/DbZ7/Nv/31f8vjF4/53o+/x7f/+Nuc3p7+hcBKCsXf+Rd/h08//JTLh5d/7u//l3V88xffxP5n5K7zdvz7xyeffMg8//LU266vz4lRY0z6D//wv2c8ffaU09tTXj149Wf4yd6Ot+PteDv+5ONPPIMabQkxQo6HaAFt9l2iWVyQtHRohJQIky+W0BlTVdLFmyU+BaS4bqxs7ESUE5F5v2EOKWKMKa1oyOardM/Ms4A61kkhJPBGp7WWjXFCOnop3TNWKeq2KRa5kcl7jLFoKzn34qIhryFFjSTCQ+k20VqXwnLJ8zbSwRLCSN9Hrq/E/SCliNEKacEvXdxZOoi0kcitRbvAh0DjWrH89YEUPSF76b6LiaPlUlwgtrPAT3MmEEg5UbWtgDm9J06Juqmp64qcPD5lsWUGaufElWEOOGeIWgohlXPkNEGa2WwGtFI0bcvx6ojG1dROHJaSjzTOsWg6rLZSMJ0nskms7zbklFnWLa9evqKpHNZp2qalqSpcZfElZmiaRBi31lFVDRK34nGVw7Y1wzAwhUgKkVppXI7c3u+42wxYa+hqh8ZClA5onS02R5aLJc7B4Cc2my0pZU6OF5wed9gY8T5i64rWOqr2MTF4pinQbyfsQrOZe67u11gMD89OpSsuR/rJk5XG1I6kRVx1zmKURlWOnNUhQidmERwTsslPKaOMKWmHiRwVPkn8kI8z4zhjtaatDM4YNikRkUilpGDXb0hBIg6TsVS2ZpomrM0sq5qmbtDGYKxhtehI4wjJcXO9ZvQTy6Mjzppjxnnmxctb5hxo6o5soWo6uqol6hGjxTHp5z/6KdpYjqoKr4/IY2LRaU67lu0w4GzNPM5cXd2SqoytlLhb9SMfv7fiN77zDr/3x5/zi89e8PS9BywXmcsXL7m63lAtG7b9KABYVvgwYnTDFCO305aQMmYwdLrh6Xsf0t+8om4cdqmZ0oY4rbFjjwmZyjZMU0+tDOOm54svvuLi/AnvfPABftzyb/7N7/PgyUcMasU7p5p5eMXjR09xxyvub17ysx//iB/9wWfU9RH/57//CJUM682aKSRshvOTjratGdPAx0ffYLO95J0HFwLMVRV5XDPePuPl+pqTkwWnT5d8+dlzjpaPCabm8vKayjbsdhseXDzh3e6Iy+3ML569IM33fPfsMcddw/XV59TOYULDtx5/yERk6z3Xt/d8+PSEk6OO2TVMfcJmx4OTcxZHiXHKrNcjujpmTomoEjqNrG9uGTdr1DzQLU755ne+hXMK03Tc9T2rDKum4mY9s1w6apsZd/esFksuhw3hds2rn37Ct37lY1aLEy5//guOTo/58nbL48dLvvedb3J7d4OdJqbnL3Fa892P3qde1Vi9pO9H5k7zdPUO22FilxwPlw6TFapacXnT45KIUbvJc3V1y+3gMb6nqrOAdf3EMI+cn59R9xVaBW5efsXDR+d0rUFHz/sPznnhM03ViviRIyonnNH4ZEjRCyCapZtdUdpiUxIIyYgDnWbi9vaWunYoVR8iuHSJOqAUyWOWCm3aI6pKoVUmYzHJoLNinDX/+7/5Y460Yri/Z+xnQlJcD3f4ectqecHR6RFfXl7z+Ze3PFqUoqK2PDy94L2mYrO+pXGaKXny/ZbrcQsOooq4xtGEGmtKHEvKTNPE7BOuNigj0KqtMsZ71nd3pNkzR4FlqqaFFmxVMe1m8uRZrVpi8KUbXDEOPWulGccJ7RRnZ8fUXcXQj6hs6ftJxMIQUCpTNy1WaQE3rGWx6CBm7iJEm3FNhc6aMO5oqpp97FdOkFDMk8S6jnGishIJ148T/ThwenHG6cmKprWs1zcoZWiaBmMFRA0h0y5aibKbA2FODJOnaSw5SkSWqx1VU6GjIquE0rBYLhh3E7t5EOdHFLaAIW3bHYBpVMIai3MST9o0EOaeHNMhAikicXfWNFSuLkVfqCuLtg3DIJEIfvL0u4F5Fghi30ksUQ1yPVnnRGjeR6qFRCIdBAWlpJguYoISsNhoKMAPWuAnZTTosn7KqkQdQUryXvJdLcoa/JQY+4kJX+Y0S+U0VW1LN7vIcCkmxilQNTWV1bRtQ4yBXd9jjBUgeppJStwyTDZoY6T7WWXEG6q4sVQG4yxhmg+Qg6YILiGSSxRFjBqlE0pHTHFzhIT3kRAkQqptW5aLBq00235gGiYBp4rgZypx5VouO+Kc2Nxv6XcjKUbmOQgcVQScrPYONCLs6KxKfIcIBk1bowwCGWlFVUt0kThVeuZpZuxH5sEz9hN5K39fu0acjKylqiq5NspaUxktjp1BoGdrFZWTbn3UHnIR102nPMNuYNxNUMTDaRBBIWWIMZOzrDv77YBzlpQ4AGD56632v1TjEPeH7AE0pXtfvRacct6LXCVC5eCMJNEYRYICBJ4rpgqAPNPVnijK+y76IowV0WUPs8ay/9DmjUaEN5wGlJL4LTQo4uHvXYF+Us7EyOt9whuOAxTx8vC+B9eM0gm8398UITHlgPeJvpfnwb7J47CXUPsufV2cEqByFTFGEcKK+1NOUWLdFCVOWFx9whyKm1QiqbI/c1YEylncC4w1ElFTgOWYAmSJX8k5kQ5uVSIWGi2xO6TIHHwRNB1NVWONwSrL+bNznvz8HY6GFe/v3uGZ/oov3/tC4BeVmfxMnqGq7llPa5pUo43EoO1hnL3zgTjE5YOrAUqRojQPaGsF7Cli6cunL0hu4iZv+erdF1TvOD7+8pu89+X7BdY1ItSTqSqHMdLAMk8TOUNTO9raobPck49uH3J3tmFhFyIGx3QAJ6cU2PmBbTvSf7zlMj/n0cunPPnZU+qoioOIDKMNWiWhozMYLRGbKRfomtcOVij9BjAmkegiTseDc5U1GqMV037u0Jo61jz65CE3H9/IdaHkfWOUudwZizW2CKSa2jly9IBhGCZCDFR1TWNrQoxsd6M4/ForkbRWxOysgjT++MDNpbxXZQ0p1eQoMHJTWWYf0NoQQqTvB3F60XvxNHB+VPPkfMWL63tu73esjjsql9ltt/T9hCmvYbSSNUYKKGWJGYY4y/UYIk4bzo9O8GMvsYKVIuaZHCZU8OiY0ZUlBo9RCj/NrNcb2nbJ2eKCdO15/vwli9UpnpqjFqLvWS1X6LpmHLbcXF1xdXWPNTUfffMjVNZM0yR7mgxt46QWkgPn1Smz37HqOrnnjSKHET9uCFNP3VQ0zrG+21K3S5I27LY9Rln8PLNYLLG2ZjdHbjdbcpi4OFtQO8vQ34sLW3Kcrk6IOTFHcSE+OWpoasvSGOIsrtaLusXVEjc+TQFlJPotqwQ5MA8jYZ4gepxrOT0/l+NtHaP3VEBlNcMUqSqN1RDmmdpV7PxMP0z017ecPTinrlo2t3c0zjJl8MHzweMHrKwAgONmJMbE8cUJbuHQuhJ3bZ1pFg0u1wzTTLc6Bh+pmobdMIljpRIvkXHyrNc9VityCmQyfgpM80TbtBI1aBTz1JNzoK4t83Zg4To6V2OUlRpJiUHczwl7t7lcGiHY15iKy5JWewe6xDhNKMCYWn6kPM9fN0u8ng4E/CgwwR6eyBqVYb0+5vr2K+bhBWkaBW5SBmIg+B6tHd1iQQyRq1e3bM0dRgs56lxF1y3wfuabt+/zybd+weBnfJQ1mjYZ9L5uUSAVlMQ3h1TgBnE/0gWUnqepzI8CNlS6AleeYyEzjBPOGlDynDLGyNpm8qQsIEddO+q6EpjDUaAIcanMOWGMk/hNnNcLPQABAABJREFUhRCiVmG1Ka6cQWodWuAjrZNALHJgirtPLvO/OMZoo4hRPltdO9quwVWOaRqY5xmtDVVt8HMQhyUjbjSBUOJNU1mH5bJ3lKhXbayszVSWRoSMvEaxRtq7C1pnBVyNAuOr0ngn616BYEIoa5lcvkqBlYw15BINa7TAtyGK+5K4mIXyuwUs2sNze9ioxJjKMqFEGOfXtVHKlahA3IzedArLsp7aR+pllQ+gnaxLKHsRuW4PMWoZ/BwlFrysBZQyVHa/GCt11dK0SXFm2rv1zNMMKLSVhtY3nYUO7lGHNaGsnfZOWTkVh2Mt0r3AYhFScVRKJb4NgYl1aTDIMRcgR465q6wA2iGVJpW90y0yz2lpSDDaMg4j0zgVQC0d1tqHe1xltDFlzSmR2XuY3WiF1fv9haz/nHOH50xKiTnOstedQ3n9QN1UBVQXFy1bog8pa0A5NvtYw4w1pqx199eGHKekM4pwaCoJBTKPUda7ab8GnYPELpripJb2a+1f3v3E2/FXY6ik+P6Pvs/f+9/+Hg+uHvDtn36bo/UR//Lv/EuS/rogf/XgirEZacf2P/p9M5nf+Ru/Q7/o6Rc9/+TRP+Gf/Zf/jP/qf/mv+Nv/6m//qeEhlRXf/aPv/h8gpdc/ILFwn3/wOZ+//zn//P/0z/n1f/vr/L3/9e9R+T9/GOL07pS/9a/+Fv/4H/xj/pRf9a/saPsWnd+CnX81huKX6cZ49uwpMZr/KEjJecdv/O5v8E///j/9Zfpqb8fb8Xb8FRp/irg32eymlKVoVTbDphQFwhxQaGpj6ZqWIWaxJEY29vvfN1E2UFqLgCidKKUTWUk3Vc4aEOGJnCQ7PkaizuXfBeRJZTNLztIdZlQprGS0lYJ1StLN65whxhkfInXtWDSOOeTSBSab4FgiJFIqykZ+3fVVOYeqpXPMWFe6zxI5B2LI9DukCFQKQX6O2MqhrcSixOClAw1Nut+JA4KT7rfKaNquETE4z1gQV6K0Nxo3hDnik6duanJIzAHiNOP9yDwa8qqjshXD1stmO0jcWNt05KDQdQPWYkxms92SQ7FLT4lsHDlKEaqxDVaJa8b5kSIhgvDd+p7d1NP7AXTC1poUFChxCTDWsGhbTk+OSYkCKEWxFra6tEALfJN1Rd3WtJVjYTV308Dmfs1227PoOmYSo59IKrNoO56enfHs8pqYoK5bbFvRtEussaQ0o33kydkZ2Rps0nz48ILoE3ebCaUDdVdxdnLMerfh1WbDMM+EOHO/3TCHyPHxMQ/Oz2mbGlNVHJ8lNpsdCekuruqK2jqccRhrSsyhdFHFHEvBT4oTPgZm7xmngZwS85yImYOoqTKonBijp/czNkQRQJOlbgyLyrDLM9WiI25mhnGmqTtWZwuWbS3Xfsj0u5FeW5rVgu0wslkPVBmOL1qOT1t+9uVLXFNz3HW0RnF6eoSpG3762ZeEYSRcepbHS7Zo8jxzuqg4evCA49WS21ev+Or5PVEHYl5z/ewa3Wbee/8xL57fMmUNTYVeNXx6ecVu9KyOL2jac46ahvMTiRZT08zCWXyC67sNN+tbtrEHF1m2Fe9989vcfXlNazt0q3AnNd8++Savdj3t0QlDuqddwJP3HzDnzOgDT957n0FpxnnHUZr55ne/j60Nla6ZfOYXz+/Y9XfUThGfP+fpUU1bgcmO5tH7rPuJf/V7f8C3t09oa+mo/fCdJ1w+f8luUNxtXqEwrE7e5fjE8e6DC766uueTZ3dsPr/hnUdP+d7H34LKMN5s0GwYbi/57I//kLp6QNUZfvzzn/Gdb34LFwKPTwzHJ08w2vDjH3+ObY9479sXTKnmdj3w8KSmPmqBc5bLU05W51S1x17Al6/u2a4vWXYrzldnHFUd0ViyS3zx5SV2G3ny5AM+CS8wbeDk7ILtrmd79YLz998HtaJfT1QdbENGe83F2YLr+ys+++JT7kf4G9//PinDdtrSdB1n77zPauE4evoIVzX88e//ATfPr3l0dkquRhYnNbttINc1ywZePX/OZ9c3eOOoomHVKS6ODVZXfPHVNTfrmc5Av+g4e/KUE/cKv15Tt5pgG2ytuVhmUtgw7HY01qGU4/r6hmXjaJoWbRtUnPjonVOOHp3w1eV9cVc5hO9Iwb0IdylLSU3A0whZo0lolaUbVCWZw0rBVO9BGpmtpBMxQdqLw0VFNkpJ9KhSZF2hdMLHDS/XAytj8dM9JIOKM5WrsBUQNixdZKsMy4cPePfhKT/+wz9gGCM2g+8T3immFAXMreD09ISQIn0Uy/n77aYIsjVh3pJRdIuObtFijBTz68oRCGA03XKBwZKTzEWTF7eZrmuwrcG4jhSkS3m33rHdjBKdOgH5nj0bLACxFD9VljWAVUZiXedIRgQMqzVN05K1QDVzPwsoEzLWIjAPuoAzAnHaSlPVmmnw+DhjrCXEwHp7h1ECsOQsDoyLZUvwijx6Mpm6rUo8lnRIx5ixlZOZ0lhSChJZliPOObquY9zNpcgtAJvWmq5rRAgIgXbRknTCmooYPcMg3dUCAwjA4qqKEHyx+I84VxVxIoEKoMRlauxHoo+E2ZOCOLHsO2hz6WItugAxJxF3SmxZioc8CPbqgsRG5cNGcR4TmCzRnVUlApSSDvkUAV8cYsgkI521dV1TO4s9bhh6z2a9FhEgwTR56VxWGbuPd8uZ2QeSFoimyATFZSaBzjRtfRDY/TyTfBRYQ4FzlYgGCmxlDkKfMYq6rQ8uSJRzMflEDAJZVc5Q1a6sHWpymvAh4irH8ckRldVs1oNAgQUS0zpjbYWzFX72hDBjtEMrwzz5IibsrZ0KhJLFtVNbJc5YBXqX9W7AGkXbtLha4rpsXZESjONECHL9+SkyjR4/RWLyXPuRtukIXrrBdykwjRpbOaqmoWkbqqahNboIoeKW0O9m/FwED5XKOgFyFDEszEFABSj/IP+4F7BiSsQwSzMA6nDv/rKOvZvY/kFzeJZrSShMQRoEdInD829CVwoRdbI8owU4yq+/c34dZ/ZmdeVNkSXlJJY7aj9PvOG8lFKJX5ZzuHdZOjgi5SRQSUrEnCTe0eniHLY/5vnwHfPh1t3H2iWBBpUATKrEABNLNE7KeNHuJDCyADoSbaNfOzhE6dqf0uv7KCQBL5yzzMVVSheA5PXXFzCL4jJIKsBbiVSMQUMlcNDe/SJGaXxw1kGW+Eu0iOvTPJdjVo6lkoeb1obT3SkffPEhD+4usMqSO3nGPfmjp7zIl7w6vS3CnsA3p3fnuCh7uco62qaW85z30SUakxRZlw7/PXxjBfp3RjFOQWDeeWZTbxlDIKQgyXy1ZnpvhC/kcBjj0M5gs4BzmQgxsWw7conbPFmIa1vvPeuLO5a1o22WTH6in2Z8jKSUGOeJmBJdU9N1Hdoars9ekc/gyR8/xe1qstICFBVnNXE8yOWc5teid4HZxBUjFlcpgUtE8xVYlnJtxRTxMWOKA5+1ErP3zs0jbl+94urhFeMkUJO1jqqtqJyIqTmBnz2zUrhawOd58uLE2jnq1nKz3mGsoXEOpxRNU6ON5eZ+TQwBfa9Y6AXHt+fcLa8xJ1B3C5raMfQ9681EVpGUYdgOKJs5Pl6y2Q7ErMEaVGW563t8TAJD25baOdpWsR1GiJHKaGKGfhwZp4E5ezCJyhmOT88Z14MIwU5hsuW8OaOfPbZuCIw4B8vjBZFMiInV8SkBhQ8zpynx7fZDHlxcYJQlRrjdjsyzNHXkzZZVbXEGNBq7OGLyka9eXHI+r7BGY5XmZLVkt90xB5imHtDUzRFNYzjqWjb9xO0mM98PrBYrHpydSSzeMKOYCYPn/tUVxiywlebq5obz0zN0SixrTXO8RGnN1dUdxjUcnR0RMYxjYNFYTG2Bjso1NHWHMQnVZdb9xDztcFVNWzfUxpGUAZNZr3eoObFcHXN3v0M5ceuZZ8+829KdHJOp8VPANjAn8EnTtY5h6rlb3zEFePLwgQAuccY6x9HpGSnMLLoaHzLjsGV7t8Zph2KmaxtyVkxTpm0VYZq5vrlhVhK5bLXGNpnOOoZ+x27bC6SgFdVySVPVVGlN5SxeGZJykCfaVpyDNRmtBW6LIbJaLaiahpwjXa25OF+RczzEh+7X+6/hjLL+P5Ds+UAcqf28cNgncHBB2y/wXkd8KvbONHt4Q25xme8zAlsqIv04YLMwOwLSCRRlrIbssUScBazm7MED1P0t280OoxRzzJx98Ygvzl8Q2hF0om5dmRsSWcE0e1n3aEtOsjewlaWua2LM+CAgYFYacioxmgILa0zZC3iBIax8rj34G4M4G5akSsYsbpApxwLWCLwhdInMX0brAjWpw+HVxlAVp/QUi+NNiUU2xmKUkmdhsa3S2lB41eLCI/PQNI8yV2dpLlROCTyuDDFNMscahc0GX9yWxJHHkPeQRwF9FQYFAoMf4JT9Ol32lnsnI1PW+CmJW+c+Pm4PrwkwKnXORHGWQiB2soD+IE5+PogjewqpAMgl4qvsIdCv44DE6VTm3viG8+KbI5dFSS7XZdpDakbAKNnTvIZtctyvqzJZOoBQWlFVFoWmqaXJJSUBZmMBsfbLL2n+ESg9hSTR1GWTqUpT0B5ykybVXOqwcs5S2WOg33Cb1Ht47vXvxXJ8lC5xvGKOhirzrdIC+WSlicmDylR1ReUsMUSCDwLslc+tChS0dxcTAEvWX/L93mwDeOPPWa4pXd5zP4+r4nponT3A72h1cMfKOUsDQojSCBETMcreTLNPCwikKE6Y2orbkcTVWSpBtcSB0UdiyAf3572EmpNAWj76EvW2JyrLjbdfZ+fihFlAyjeunLfj7fjzH1mcPf7u//fv8vHPPj6AOjZa/uv/z3/Nqwev+ONv//HXfuWjTz6iGZs/s49wc3bz+v9RMDUTf/TdP+Jv/6u//ad+rWgiP/nOT/5kP6xgu9zyz//uP+fm9Ib/8n/9L3l0+ehP/Z7/seMHf/ADPvnoE/7g+3/wnxRaqMearu/41s+/xacffMrVw6v/dG/2n2iopN5Gvb0df6mHQvFrv/dr/PBXf8jLxy//oj/O2/F2vB1/BcefPO6tdFOVFIFDASZliCkTUkLNidqCsSWaxFAK8aXQnSBlX2J61KEjPOVIVhEw7DdCe8ejlCUSY18wSvvuUl4X/lVWmNJt2tUtOSfmOaCKba/BoJUl6VA28Ymj1vHyZiBEDoWQGFOxNJaivCkdKd5HFGMpLGdSDLJpzSKK1l3FYtXip5E8RTSitGgFVe3ItWOaZuZJrLGNq8g5M8WJ7BO1bnDaUClF0g6dIc0Jqx1JlQ2/ytSNIZOYvUTIoLx0+ilY328IQQolXdeSkpKutVnRrRacnZ4RomcaJpwRcbaySprXbI3JlhAyO+WpreK0FTcJpTNeQciBOEaJkMuGk2UnXbljYtk11K7C2IbdmJDmtL0ApIrduEajqIyhVo7aKVLwPLu8xhNZLjvqVmJyfIwsTUtlIstuQUyZRSPQGTkRfWAeIs5azh+fMuQNx3XNpKGylpc392SlGaeR1mh0ZXm1WbPbbKiVnOObacRay2pheXh+wnLZ4VMiTCPL5Yr1ZsduHGnqisZWpBQJJuFMJde+1lRaE7MtcF3pmjOWytVY6zAacf2KkZQ8Y4kbjCkQosdHEQxyiZ5KKdE2DT5k7tc71vcbrM4cdQ1npycMfib6RNdYlouOMGsePXzEsxcvSPWENYZpHtndZZZNg08wb3rG2WM6w93dDTpbmkZTdQseX5wx1o6rV9csFh1NbZiniXGaBawjsN3OjGGiDprtuuf0eMV6Hgmt4arv6bcCC2o3s91t+CIOZL8j1RXZJ06WHetp4vr+ht4PxLue45MFjx8/5jd/8Cv8s6t/jTJHqJRx1nJx8R7++RUvP3/Jo3ef4G3H5HcoZ9Cu4tHDM17dTwxToqkdZ6sjNqOnbhqWrcHWC7a3NSenHVfPb3j281/ga83y7IwfnDdkq3nx82fopuP80RE//72f8Ok844Gb2+f8jd/4Bl+9uuPuRlMtjplMyyZuqBZnpAQ/+/Il2+09etHx6vqS7374LjZUHJ81LJsFHs0vvvyK3/3xT/j442/y6MmpRD3WK07f0cQ54JSlW3UkL4W/3fYlN5e3HB2dM7uam5t77tdrbm6vOTo+pt9lTBoJ0eN0wPeam6++QD99Sl41LNuO09UJRiUWi5bc1hgCR6YiPTzn+LjBZM/dixsUiu70AbP+lAfnFV9+8imrs2O+8esfcNpcsL26Z313ydX1mq+++AUow8OLhzQdNPUFrlly2Y9srmbycWKzG0hmgaoqTo9aVgY+efYJy67FmIoHZx1WN0QLq6OWm1Zz8+oVZ+cr2qXG5YF5hM8//5Lb3vPuu+/w+OFD3n36gDhKnMUcE8+3O45ZoTezFB6zRgIfs0R67LsA054/iIcOXxHzUilmW1ato1s2oIw4EyjRq8lFHEwZncEpAQph33cs0QVBbDDQaM5WZ8TVzMpWqOy5fXXPNoxM3mDmwAdPH/PeOy23Q6JdLKhSpnanBJVIeUQZy9X1HaayTMkzpZmrTUCj8TnjZ48fJvyccdpibEVOEecadpuR7WaLdpm2O2aevTjAOMvq6IShH9ncbNluN6WjWONjkJJlAu8jlWvZDlvmmNABYmvQxUUjlIKt0iKA+ykw7DyVXYp/iZauYVPVrFzH/f2a2jrqzhCmiegjOWaSjmiFiAAq45SGlIlzonGGVIuLnAamXS8A0bIRq/u6xrqGo3NHPUqMrJ8gzhLtuS+sagO2UqWiDmmO+DAxp5kYMvM8vyEqiNtQ8IHd1pNItItI0zUlCi5jKgsqYEphvnUtRmm265k4J/r1hELjKoV1EhKyL8wbqySS1ohj4F54ERCjuL8oTdIKjEapjEUX8UGXz1m6+tHFFYfilFSgjhIRkGMiBrH891liX3LMpVMZfJjRFqqqYdxFfFhzcnYC+ohpmAQSS0GcREoMiHOO6AxOiVuTKfFCKYpAYKyIIDmBnyJhDhgtYmeIAfFsUGgt8IHKFIclTd1Yuq5Ga001WqzW4uxyPzAHAau01hhryUEi2nICVSJZ67oqLjwD4tSUyES0czSVI8yBrY/UVUPbKhFwtKFYeR26w/eOaeRMVRu6VYO1Apr4KTGNEbIvkXOqOCrMB4HG1RXWOIyO5DDgp0iOihwU0+ApypbERxgHRlzDrJUue59yiW0wWKepKsU8bJnGuURpyPoxFzhwH8NkrClCgkD+JQ+ZXFwyVQFERMD6ZW5/ei14HACe8tf7zn2VMkZSqg4iLxRoL++jpuWB/7qTXmS/1zZKRUBWHGJRtHothr7pmvTm2He7V7UAeiJepeL2qkWsKuE/qExtDdvBS4OD2sNI+SD4pQNkJAKaRK4VWTwnYomzU1qA/6q2Mm+FEl2T5bs4K248hw74JIJqQkAVib1x4mqQRGgW2C3LfbyHp5Q8pyATYizHT86CUolpmpD0YXERyFmE5xQlsrttmjJHBJI2aOMw5d7Q2tCMLe/+4h3eefkenW9xtROnK6WICnJQvPPlUy5XVyQbaSpHFWref/EulbNYLcLbHPIBvJP78PV5BBEvFRKNk1NksxuJWVyRrDU87B9yZ+6otMMoiVze6R1x4WnnVu6lKHOdUZp22RCyojaWWATQ7TgCmk+efML16hqTDP08MU8zRsnzqi/CYVVVLLqWqnLELM/D+yc3XFe3fPeH3+WBP8ea0uigsjw3cxLHhhIz+/qeoLhGCCSgFNgCW+aUCF6V55iATCqJsJxLFFPO0Kia7/30e/xw/gM+PfoCraG2lrZtpJEkJZzVNGZBjppFu+A+r8lGmidCDOhB9lUpQZw9yYNbWNSN4f1nH3B837GYOh6oM7KqePXimk9+4ydMZhLxNxTHCRKzj4QUMEkxT562rpliIFnFLni8z8IO6sQ8z9ynAMlLbFQSx8IpBIZpwEdPGgN141guV7zz8AGf9s9RqkaVe2+5OCJtduzudyyPVkTtRKA2CmUMy65lN8lndMbwcL5AZXHdrKxCWYcfDU3j6LcD65tbklFUbcfDTqygNjdrlHG0y5rbl9fcRWnPGoeRJ09O2fQj46AwVU3QjinNGNeSgZv1jnme0JVj1++4ODlCJ0PdWmpXEVEM92tevLrm7OyU5UpcBJWtaVeQiwuoc44cZd3g5x3DbqCuW6I2DH5i3E4MQ09dN/g5o3MU12c1EYOi39yzWK7ItcU5R1svi7uYBWfQOdFoTV601LVFkxi3AyqDaxYkdceiNaxv76nbmtPHJzSmJc6JadgwjjO7fsMuBNqmo7JFsLc12Wg2ux5jNOM4krUlZUPTORqj8dOO635L3dQ0VYW1dYlCqshaogw365Gj4wWTnyBFduPI/f0W27acr1rqI0cKMyDQaz/P9MEzzZHG7J8nJSKp/OngAFPmCfXGc31fg6K4mDmrxBas7Cf26Io6/KnEsB5gBnX419coccaZStyElcJqGIcJ72d81sSQ6VrN2ckZwxzJ2mKVxuJw9ZKUJRqWjeKbv/sxf/CD32fXjKV+Jc+KEAWCCD6hyp5GqVyirmAaJ2IMOFejtDrUxJxzKKUZh4lpmuRZ5CwZaWLQyhDK/5KlWSRnICqyM5D1AcTYr21JAmA7a9+AlAVoqZuKcRSIqLIKYipgrax59w4xKZeIL8q9UM6FHGtkrRUCSivaRS3rYmvAatoCGqeUCDmjo8yBe5DdGH0A1HLM5BwIodQ8w2tnxz18lso8knJxeS/udjHKXJ8zKLMHjyXay3sPJYJZobFO6piyDS0QvYaY9zXRN9ZK+6tWNhevlzulTpsz0lCzX1ip/RX3xivsu1GUOFnKfAgkTYi5fIZSRzVGQCCVcJUlBYX3s7iFtjXzNBegLMu1qE1xHBOQLx/WcAWoKrFwEtddPlfcR0GLQ1Io7olZwthfr5nKWk8bLdGEJV47J3nuz1PA+1jWhmW/hDo005LktUxxJd83xQhIt49HNGgUfoooVfY4kgeMUvFw6PbPjr17lawb7SEeLUUIsTgkKoqz0pt3/mugSalcGnq8rC+zIoVcnO4ykEjlc6riHKaQa0+V46yNwWRFil5c+gv8vP+s+zWvNOvsGxrKhVQeV+KktT9fb+Gkt+Mvbqw2K/76v/nr/I1//Tc42hz9H/7dRCNxZB98ylzLHN/2Lb/5O795eN79WYxvfPINfvrtn37t715dvOL++J6T+5M/8etkMr/9X/w2n3746Z/uAyj4w+/9IS8ev+Af/o//kMcvHv+Zfr//0Kjnmn/wP/8DgH8/qJT5WsRZsOHfDzS98bMX1xd84xff4L0v3uPk7oSzmzOqueL6/Jrf+ke/9ZcOVNJJ8+T5k7/oj/F2/DkNrWWd8p+U3vsLGIt+wT/8H//hX8p78O14O96Ov/zjTwwpvWkpzL7InzkUC1RWhBDw04zFls5Y2QjGKDbzWUlHFMhCTSIYZGNlKgeJ0hlfNrZWuhnFxlk2/DknnCneGWpf8hH3JT9H6sbRdB2ZLfM8S1ybqkA7gWViIAUR3hTSYWyc2OYaVfLnci4FGKQIpfcigcSroCTSQSn5DikJjDIMIzEGkjJlA146lWIgzqE4PGlcZWisI5GY9UzdNMwxoIwhjB5FKYJYfbDpNsUmP6VE3VVolanqBj9Lp1q/GyBZ2krjCXRVR7NsqZuOo7NTurZms1kzZY/yikXb0LUVOQUMjn70+DhhWiPv5SU+xzpDToraVtS2Js5ROv8ZsMpC0uROREu7V42zdAsrYPYeazQhyrEw1pIjzCngg8dUFVXOLDoRrv08Y3JA6YpWQUBzdXfPMAwo7YiLhvefnDKFe2LwXH95yewz1cOO5KExhmQbQprxyTP6TBUCKQfq2hGVZ5wm/DRTZcWqccRxZJ4Cc5q5X6/JaJrKMfUjIUem5BnnGacEMCNHse1XHLrHQyidVkhn4KJpySmQvIiR85xYLVdkYPYjwyDikquqAkdIUWHw8l7L1YqqbVkUQWNSGR81y5MlNmWaZKmaBUscT8+PaTRoLM2iZRp6vI88ePwI9wj0nNkOsNlGHhyvcPWCeZxxpVB/vOwY+h1X11c0ixXERFe3RGZcjLTnj3j44AH16QmemfHnPyEMM4kaXVvaiwZsRdgGbu97wjSwWC24ePweq9OWr/74luXC0eSEwpN2kXkDf/g7v+Bs9ZTzh4/5znsr/t//2/+C71fkTU+dFd/58Jt89fwZnTHEObKpzjDNKbdffcKqXtIHzQ9//AvSGDk5W/Ktb77L+emSMNRc3c68/9E3efXqmvUObvot6Ijf7Xhwfszm7o7fe/YpfnNPZeG0W3L24Jg69Dw+MZhvvs/19YZx2LC7vefyxZrH732Td957wtXVF3SN4gc/+B6XLy7ZrXfMueYXN/ecHF/w7vvfICj48tkl1y9fcvboPT768BRb3WNry2pZcdwY3jt+wGZ7y/HiCXW3YLUwvLq7IrctNioetQ0Lrdj0nlszg8qMr64Yh5mzs2Oenqzor5+zvh8xJnC2WvLs2RaPQt18xe7ymvf+xm+i3nuPo27JNEOYN4R5zfc+fJ9l7bi7uWNOhtXigvuXl4Qh8uijb9A9uufB0yM++aMXfPrJFwy7L/jORx9Rff+v8cEHT3j1yTO224kPf+UjjtYzIWXOV5Zhm3j6wXfwacOwuefm1ZpffPlzbBz5weYDUg588I13sY3j6HjFw3DGehtYzyMnGC6WFevLZ1jlUNqhq4hSiX72bPvM8ghCAY4yHMBVKcya0kEZS/lPlSJrQmUpODoD9fKI84dn3NwN/84kxxudzmW+k7o4+wgIlMaqjEHjfcYnePL4mKenpzx5/xuMs+X65Rdsrm84qQ1h2PH+d/4ay8cf8ulPfsr1y89QSrHsOupsqR5DNo67YaCzIij38ySi+BxZZMvgI8knJgIgUPDdzR3zNBODZ+mWjLvEdlec9mKgqiZWi4719R06KSrjZO7UlqZpaCsH2pDmQFc7tr3E7s1zwNUlmkoHrLOYbGnrmhQj290g/4aiqRy1qQhzJGWPH0bGzSBF7SRW9zEm0jxLJ6kS4CkTixmMwCiLZcccA7Y2hCzgSttU0hE7ixOixaCrmt1uK127SiJBrMqkrIkh4TqDNRCKMDGOM5WrRVxPe4cKiSWLSSI9x9Hji+DfLCpi8FSV4njVIYVnzbAdscayvt+KY0tS+CBwjirRGNooeZ5bTWUdqYEdPfM8E4uQIpeUCB9KS8xSVVXE2ZNTEPGEeBDCZMmVSvFaYUrcQlTijGSMZZ49YfaoKUoURmGDI6EIUAmjDMNuYB4iIXjGObBarQg+l0K+wlWO5WqBtYYQPVYZOfdKMc+e5CeCD4zTiK0sTSvOj0M/kmKiqiqZy9ACY6ckx0QXSD2KEKaVYZpmATV8KfRTjo1+QyyMmWmcmKeAygJ+SLyEIgsqL13f7IV9LdElUQSnYRgFMJ99cVAqAoHVmBJrEqP83TTOIoOYfaf03rlFk4A5xNLVXKKVrBXofk6Mw8Q4TiU+onQupwKq5+KMomQ92TQiMI/DRNYahUGVOKuqcjhnmcZJBAeVyFoApb0gGiPFuVEfnlfGFHefcqxFaOL1n3+ph0K9+RHfqPEINLM/5vprYlAuoBCU+6QQR6/lX/U10Yvy/NZaFTGGIhYh96beC3n7Z76ofSmK05CzBpiJJXJQui/MoWFi3/kPShz+yh7pdQFZHQQr9cbcsj9Pe5cBxV4Al/MeisC0d4vdi0V7YRUKFGQkIkdgqoi1hlh+LxZwMqdcgL1yPPT+Oi+CKuJuEJO4NkgEtsYZRSziua0sxjqapsE6yzxNcl8lhbMW5ww6KM5fXfD05+9yvDsSFw4nkONeQMxZInAu1hf84Mff5+XpS3ZnGy5uLqjXDTR83aEkF+deLSCWVuoAKiklrkqxxKVosdCjKsd3OS2wJR7QOhFK7+KWO7WFyZEry1HTYNNISolh3RNTxiycOBFqhdKO+8U9n737KWOcMaMhE7HGkFUBtULEZKitIYcgkUZJHJ3oFGmZ+YNf+X3+5s//Os6fEmIUl5esee2wUWaHTHHA2q859g5Wca9WE3OmriVeKsYAHpQp8UUF6ss5EmIie8UPPvtrnDw8Q7uMt55LfU0IgYfrx9Sz5eH1A+rcoBeaF8fPGQqY5SpxpJlDwLUtJisuLs8wpibeRxaqxRiB7qrKkrTi1B8x/fwpv//R76MaBynhrBOYNGdcu2CxWGCbhkgk3LyS2E8lTiJ1Z0Flkk+MoycFj6srFssj6saxuX5F5QzWZlCR7DNxgqtnt7TVinax4OKo5pPPPyV6T54DNivOT05ZbzdU5X6zpkW5hnFzR2UrYjBcXt7RbBqa1nF2dkzXOnbe0I+R45NTdv3A5GHwMyhZ2yzahmka2W3viNOE0ZnGVQJFpJllo1Bnxwz9TPAz8ziy204sj844OlrR9/dY63j48ILdtsdPMxHLbT/SNB3HJ6ckYLPZ0e+2tItjTk8btB2BRF0ZGqs5qhfM80DtlhhXUVeK3diTrUUnWFqLUzD5yKBEPIr9juAjbduwamrmfss8BbRe0Fa1xKijYFgz7waOn74DR0fUriJEiHEmx4kHJ8c4YxjHkZg1tWuZtjum3cTy9Bi3yLRHDffX9+w2M9frG1YLx8PH79KerWCtmIaZetFSrzq2O8/Rqpa/W50yTju0ToTJc313i/czq7VjtVrQLBoa1VI1FUtr6Hcj1teErFguOtI8Ms0TMeayRpnIOWGrF8T8PcLB1U/W+m8+W8jiJrSvd70GWwW+lmY8w3LZMfn42iHw9SP+MCft60kc1nav58A9VjPNgdPzBbWC07MzlGmZxoHN/R2ts8RpoGuXPHj3IePg+f+x95/Plm3neR/6G2mGlXbu3Cefg0iREGWKkmiJKpVl17XK5bIpf/J/57p1qyyrXPK9cpVVV1d2kTIhRpAAiHBy6Nw7rTTDSPfDO9bqBpVAEQQgqgcKODi7d68111xzzvGO8fze51ldPZO/qTWVsURd3qOzvPHgXbp3/5gudTKn+IhFEQvok/eAjTRDBB8IXsDsFBQhxX0U2Zg9k+kEqzVDTBjn0CgSqjheuv2zPVnD4D0hxNKgJVFgKu1i0UrclxKApx/FlUmjZA8uK2mmyAnfvwC+dQFu4t4hskDA6gXsQRYXT5QXhycyKUrUmjFy3xPl/Fst86QPUeYVq7ESxiyQNAKg7aA07wVUtsYWkLzM7VpLU4wWV/mYIjEK/C4j0TRV4YcMscAzKWWp3RG3IIn3KnNeAXqVUlijZF1THHZCcRF+uXhSKu8BZ5WlTtRaS+zyj7gpvYCV9n2EpQ6xJfY4xF29vINpctnyLRF2pa4a/EgI0hhRNw3SkBhLI6iAk7Y4j8tn0qUGS6WGkQainMXJC1RxCpLaRWJnlTR/FCJIyttScylZz+UkzkAvGlhfKiLzi48dU9yvOaBE1gG51HtKKdkvZnefI/HbKcu94Ww5lvTivlYCcuddjVX+OY4FQlfy2jnnnT0iMe+iXFOpAfX+78Wwq/vi/uDF2Si99ECR68NaW+Jb5bmjjS773eIclYwmKKkDdh96H5tXHmgxsT/G3efZ1+WKApftOLaf9/XEq/GXZhSA5Z0P3uE//63/nDsP7/xbgRyF4o1P3uC/+1//O77/5e/z+f3P+dIPvsTp89Of2OEoFIdXh//az7u2Yzlf/pkgpUe3H/F//43/m6zzv/+X//UD4eL4gn/0G/+I/+Ef/Q/cfHLzpwoqNUPDP/j//APuPLjDWI30bc/77wi49e777zLpJrz7/rvUQ03f9Hzwzgek/fz8o8Mkw3s/fA/nHZPthHqo/7XPcnJ+wt/+zb/NP/lv/gnBhb/wz/eTGjZYTDT//l98Nf5SjLfe+oi6HhiGn5xz28/DUKj9Pfi//Tf/G975n/UhvRqvxqvxn9D4M0BK7MUS2UTNJS5ENmx06egcx5GkEtqVzp8g9sRKiy20QuxyVc6yWC+bM7JJWxanO3teVTZglS6b1uAsWG3JUTGOYW/H3XcDIXi898QomyNWO1CaMCaCTiVzW+F9ZLPuitAhgImtRDzciQLSsZuwtoBGKdGYhgz4IFFm1jlyNuSk6daDdKnlJLnyyII9BokSqqsKpS0hpLIQ9djKkdGsu65swkjHltIK6xzaatqJJWdF30fGXrrX2knNzhp4Z0XsjINssFQ4Kly2TFwlrgg+sk2eq8s1235LHjy6mhB6z5A9KUd6H7ExE3xCJ4OrNJXT9MNI33doI3EK8+mU0YWy5WaYThfiCGAUxijp7EaJSKfA2YhK0hVuraVyDh8G+r5Hk7FGNrGtSmAUk8WMmBPPLy9QStF3HTolWuvousjBrQOCzmxJbENg2w80bsLzyyVoS8gGYxpqZzBkQspcXK1pGkNWClNblsMWow3GZnH4SJGLzQpUYsiRZ8tLKmvBZAbfEa96FrMZFsW636JVwiYIiJsWKIytqGwlzglZugMzmaaq5ToyVuAKxPUjR7mpjFViM+0Dxlhm7YK2mol7Sa1QPtBtB4beU6uKqZvQaI1TCtNaDlo4rA44mNUk71hFxZAUx+2ExfyQ7dWS+dTSqQp9fJOTg5rny3MWhwsmlWPVBybW0dw4Jj4JtCYxOZ4Q6xmHszlxvYW6YWI1Png+++hT1ucdvoLt6gnDbMFEzWgmLVWMODq0zcynM8aw5YvH5/TdhkBmdnDEpDGM657NesVm8pwvfekrfPrkM37n2nG1NYShI/Qrnlxe8s/+3/8/MIH5zRaXLdPpGXdu3KCpHU229KuADx3HJ0e4xQGJOW62YHKyZfnwnO/88H369ZLb9+5x685tNiFx3cxYX61pTMYmuHn3LqdnZ+iQSblic9GR04a5MzzbbPjok8cczBxvvH7G4Z2bzJqWu6fvMPqRG8fHhDEyjIkbs9fon16SwpaDpuX1d+5yvVrxrX5DHkdunEyp7Qnr5RJnYAiJq+tnzJqKszv3Ob2lWa8HtsEztTXOV2QSzlhO3zlAKc2zzx5wdOsWWRsmsykhOz568JTZ9IBb927z/nc/QIXI62/dZNsrLh2cnz/jerkiR8uTR1/AOHJ42KCqltoYTm4suHx6zR/89h9yNK1R1QFVn1HLFa5bcvvYcXr0JsvVgjBGVpuRmjWffvQDhuiYP5xycnLM4vSIq0dP8BHu336Nran57OEXfP7xJ9y9c4+bN+/SPX7KRZ+Yn50SFazXHaofWK86bi2m9P3A2ckJj6JlM4JqLNMmM15fMYaISp5n589Ayya30RqPIitF2m++ydAo4n5zVIRUozTRGCaTOW2zwNgAxY5fAIhcNlTVXiRXWu83i2W/VlwAMeDJDGPk5MZ9vGr47qdLaj2hVVNu3rEcNQYdMqZuydqgnObwxjG/PF/w7e99iNMNR7MEfY+KCaYTln0kb2EzenwXSVnh6inaJvzQiSiZE2MfSBkW8wNc5SCJIJ0jbNcjy8snTKcTiWezNZtVh889k2mNbisy0DSGpDR+yExnDQrFWOzlrZH52kSBTo21JW7C0NgapTVdP7DtBtppK1GVk5aL83Vx01CE0TP0fr8J7mpHVTuIIuKmlEocSqadTajqmqquJRIAWF5dy4arFqAlpcgw9jLPh1AiAMB7ES5SCtijmWykl65xCESfXohHBUZxTYV1EmekC9AwdAM5eybtlPl0ih8D3dYzbEeuh1WZ92WjN8bA0PUoVZGVxhnpNs8hs1lvmM5mWGtewBGFjJDrKIm7UW1k010bXCV/5gvYkpN0uIP021prqCsnVv8KrHNUroY9UCEb9MZajFNAZL6YUllT4sR62aBHBKpu29F3o8T6KNmEX202oGDSVjhj2a46AcS1QA2KDBGGzUgY00tAT8bHiKsqKiOCVvABp638TqlVfC4OlEUsiiW6yFiomhpTubJ5nxkHLx36xZ1EHF0q2cAPIyEFXG1opy1+HBm6IAKUWOaw3YgwNw4iSKYszkT7jmUQYcyIKOUHcfpwBRxTxpaubYkiTjFhtMNozdgPbDdb/OBJUcS/nIrTjhJBISaJBNNaY42hqSpiiAx9L441SkGOpEocrATgU8U1S4SQVPQWXbqm0TsHoZdE1BKZosxOTFL7OIkX0WM/f+Pl9QQUoWznArXTmUqsoqjBO3Ap7zved0IeOzek3QnbvQcvOsJ397hSqQh08u/y9es9GLRzLctFKBIByBZXJA1Zi9va7tizuIR5H/avmbLExe0g2r03R2nKUOXvaSObmOIwkQSSy+V6HOOPfNc7cVwX0dhoKxBnFLeFkIJcy1kiqSnoXk7sn8dKK5zTZFSJK5T7y1o5DnFMkGOWtZ1GY8p/NE7LnCviaqTvR3zwECKWmuPzY+58fpv58pAQYKBAVlkaTLRRhCjRZbKe09xZ3ubm1Q3yJwISV1WzF/d2wN3u/AmoqcEkcokrNcaQfChuULvvaK8HslAHzOyCVVgBihA8zeCoseSYqauapDKejE8Ct1rt2HYDaE3KiuQUn775Cd4NkKDrR6wtx2Q1fUh7xwiUzEXdOIDKBDKbocMoQ5om/vjLf8TXvvdVTtIJBsXoPeU2JiGxollJ04c4wGUoMXckjbUvID0RHDNKWQG/UGgtrgoCOWlxdTUVqMxXrt9DFYD3tY/E1bd2LY7iwGA1k8Fydj5n8AGiYcjQjwNWQVXX+G6gtgaPJjpF2xi2Q0fd1DhjGEOi0oY3N6/x2fgZ/WSDnTiyqWiqmjx6MBZrZE19fXnNuA1EC37cEKsapypxok0JjUcZqKuKkALDppPIVTJV0+KsIo4B7wfG0XBycsb1esmDXtN7TYqBFAY2Xc+HP/wYVKKeWjSGyk2YT6ZYY7BZM3kyQ68spnXouiFToV2NmwT61Zan5xf4cWC+WDCbz/Ep0duKsR+xSSKCp4s508kEMXgz+M6Ts6c2io0fubxaU1eGw8MpzXxKZRzz6TExRqZtWxydM9PqgJg6UvI01nJ4tKAfBx5HDykybR1GTRjHXuIcU8b3WypnmM8PmMxE8PclulJHgfeM1kyOG1CK7fUSM5uDUtiqImfN5WqNczWzxZzzpxeolDg8muGDojPQbTf0wwBJs14tUSnSiH22wOXTmn7T8+iLxzTO4H3GRYVNHtX31DrRHs+YTh1+6BljIgyBzXLJZt1hbEXbVEwWC8bNFu89tpown85Z9SvOL86pXcPR2QHKD6yvlqi6KXHBmTz2+MFjDUwrw7SuGJRmDBmvEqqymOgZ+xGtI8PQkallj0lrVJQ6Lak/5Vaze6LmffuD/B3AGkdVtfjUk9POtWg3r5U56aX5bgeY7AQ5VSCQg6NLEgFjaurJhMtNIjNQKcVkOqV1GjupUbYmZom4zFZz69YNnj67ZBg9jatQKZF95LXLu7iPMz84/gFX1WrvUqOUFWAzxdI8oEp9nLHW4SondU8BfINPDL1n6ALOGaxxMueFAW2g0k5wJS2w7BiyuNBozTi+NM+XOUijikOcAEtWmT340w0Dzkr0buUsYZQGAl0aFEMB3nfzgysOczmJg1FMEXKQGO9S36Uoz+fgpS41Bmkgy0nm+CRxfy++J3GWkfdlvxe5m49DDntgDaQ8MdYWx7+8d+yMxfXOGoF4tdbS0JEEwP8RR66cy7xIWSdobKkf/TgKgGTMS7DIDh55ARHtmgJyLOBMcRJml+q1qyQKeGKKa3zKsiYyWqLQyXKMu2pK4qkF2JY1iMA+PkmNorIu8E9+CSgCH8SlVeJnnbjq5byPz93B5TEmUi9Qj8Sul8g9TGn8K/MZipLjvQeSUsr72m4f2avEYdFVdr/uSy9BeRLlK05JGWlUlToT6toBpYEilgYIBTHGfWx02tWbu5O6+yzFyQglkXWxOH4Za0qT7u5J8uK5sKunvPfEEEo998LFDfViz73cQgVck7WlH738Pi9gJG12bp+7hxB7gJ9dPVr2M34EWqLASLvDVC/Opawn/gOgilfj1fgzDusFTvob3/wb3PviHib9+2EPheLLP/gy7/3wPaKJ6KSlAeAnOGbrGXVfMzTDj/zsxzm+3RiqgX/x6/+C9Xz9H34gBVT6n//h/8xv/OPf4NbjWz/xz/rvGs3Q8De/+TcBeX78vX/+9wABc/40ZHTn0Z0/13spFF/77tf45l//Jg/uPfhzvdZPc9x9cJejy6Of9WG8Gj+lUVXjfr/252G8+eYnWPuTgfp292A0kd/6W7/F+cn5fxhg+Wq8Gq/Gq/FnHD82pJSIZXEmm8U6ayzSfZNzkO6Q0q2y3+hJiRjk7+S0c7/IKGWQXTy9h4FyLt1DWstmfemalX52WUjmrNBGxAwfZYNht/BUKGLymKTou4EUIlXlMEY64WIci9ihGH1knSJeVyhn5XXKxrxWSlw4UulKzewzzrt+KF0vuVgUQw4U945UrJmNfE4l4kPXdThX0dQN2hpS3xHDSGU0TmVCCvi4i6sogoVW2EoTYxDL9gzXy41sNupM128hiyNR2zQ4V2O1IQ2JMEZCTkwqx2I2ZTafcb0Z2PZbqrbFTRyNMsyrhsm8Zdmv6bcRZSOkkdo2tJOWuq5JjIzjiI8BW0Q0Zyxt3WCM2kc/WCMdVrl0GFktmyxkiZ5AZ1zWRB/wPhDGnuwD2ogjBdayODjCFaDn4uoSHyLaJ1qlODw8oGpqrjYDhyct5+vnaKe4UU8JRy2rLlCbine++iWenz/h6RcPWF4tqZuKg8Wcs7MDjNLUtaMbezFsSIrZYsbYj/icSF6coabthJ7AxXaJM5baVqw2G6bTCSZn1v0GmxPDdotra4aug6w4OTmjbVpx6kCiQELphgohYZzFkghBLLGtsSQywziggKpyaGOJOUAK+DGCdqy7gcZYZg7qdsbxrZu0VAxjQB9NOKwq/LChsh2DjxhvcU2LU4kmO27cPyb5C+rliG3m5BRpcouJyIb0rGFiK7rrFUeTA95+5w10MFyPgXu3F4Sh41vfe8jH55c8vrhm0624eTzl5q1bJAJRVC38xSXZVazChkAkdo5xPRCGTA4WUx/x9a99He1XfPc736d2NUs/8lu/+ztM7YJbd97ka1/9RcbNBR8//AHr5565jtx97Q4rv2IxOyAqzfpqzfNnS8J2SegHXr/3BgvXElfnfPvzZ/zS3/kVTH1Adag5f/Y5B+2MZj4B5bh6+IDprGF2OGWMW6aTKclrtpvA/HDKZrVluFrRGssYrziYN6j7t1F5YH7nFtViytXTx0xqy9PnVyRjmC5mvHV4wGk94fXXr4hhyeay4+LhJYdnR/zyN96j6xJOR969d4/PPvwEgkZXium0xtYVqp6jxsjtu2cMGS4vzknLnqZtOL15SoyJDz/4IcvzJ0yqmsnRIarrCKnjxo0zGifOM3feeouHn33B6ekdnqeRQ11xsGg5OjtDqwlVE9j2K7yu6C97rq+e0tmEtxkX1nTbSNPe5Dvf/pCZhtnsiEEPTKqK4DueDSv++I+/xztvvcXt1+/jo4YhMplMuN5Gvvm773M8MyyfX/DZ5ooffPwBX793j+H6gmFRk6sWxoHbd25xfHzC2G958PQh7lQRlpc8fnqFriYc37DYfmTTrTlYLBhUjVuvSSlxuVoxn85Kh6bEu4UoESKJSMhRQCOV9iIeyoASaNCYTN1WvP3uW/isuHh+sd/opfzvbkNOFfjp5WW3QmN1JVEFZuTKb3n4vEP5kVsnN9Fk1mMkKsP19RoTEzfiBMsV80nLs2HFEDLt/JDXX7vN9fnnqDERsqE+nrGsGh66c+og8S3Pnz8le4naUnXFtutQBLIyAvmMHh88VeNQGYa+L2CIgpgZU6QfPGMYqCbQTB2mymSdiYyEKGKfVpmMQXVbfBoQOlfgFYUmB8tkUskzvnSc6srhvUcbReUsKwJRRXSC7KRLM0SZF3TW5NHLd0DpHEYRvDgSKuupKo/Tlu2mJ+fEMERGPxJjL/ul6oVrSqUMCl3i/Tw5JYZtpqsj03mFaStiFABUYKUCeChxW5zN5bOkSgMCDw/jiLWOYRtYXvVsNyOr645+HAnBQ4m3VVk+QwwBHxS6cjjrcNay3mzo+5GUO6kHTHFkLACFAAPgnESXqazx3RbvRwEGKkMKFCEkA9KlK5vtZl8Tdd0ARtPMGupUE0LCe0+IkZgydSXd/RpFtx7wowhSWSWqqsUYjTUKryTuyOeIjx5bWeqDAzQQ44APEqdmTAFo1C4+jX3nsUQQlAirnXiQEyYqYtwBBgI57QSgnAuQojPGalxtxNlpDNgSLWKsLi5NDmstMQS6LknEidUYq5gvGoK3LPNGwL0gMFKKiW7dEUKQWlNJbVnXtdzIWlFVFdZK5/E4+h05AySccewiSYzRGGcJPrHtOoIfi1OYIcdQRMaMMRQAq8Q+FHBBAeM4ikBGcWFKiWHMtJMGUxwbcrH5UUo6zrVOpcubvWCglEQJ7p9HWhdRQa6vlOQ60Ppl96Gfv7GHgTIlrjmDkvpboi12AkoqiXby3eTSFLF/HXYQC/uf78EetfsOhHDKJW5GIqgTutT2u+aEnWi4E29STqgs8GdKqbg/yDMopxInWqCUwSdicYLZgXYiRuu9wrQDaCgA2Q7W2YmMOyE7p935eaEYiY6U93CmsRLN6HMgZ3EXkufqC6cAcjkXOaOMlnvSVqQMYej3DlVyj8i1bq0VMRSZPwTIEge+uqqo6op+LC6o1tGmluPhgLc+fYPT/oRxDASbRMRHAAlbOXFQpUBfOZX3FlFvF/cjOp+scXYkV4b9ceYssS0GRTZaHBNTWQcWl7NYPmtdN2hjaMYJX/mTr/JMPYMoa8mb3SmH6oh+Fmhax3bcooxiah1JOUYvx318esK2W/PD+Q94n/cxvTw/JtMajbhs+BTKoSqquiJ6eT7nJJGtzjkiic73GGXYTDt+92u/x1effYV7T+8Te3nCR+/R1hCDrHMn7UQaOBSoEoMei/NC3DUIkUVQzi+i/HYOH8aYl6DHQIoJlGEMAas0rXKYytDOZtgC3qnWUhtLCiNGy7ypki5RfgmbDdODCTl2mDFiijujxaIz9OOIriSqz/cDE9swP2tRUdxXFvOaFAKPni/ptj3rvsf7kWlbMZtOyao4VCRIfQfaMCQBkpLfksZIDEDSKNty48YNVBx4+vQ5RhuGGPn8wQOcqZjNjrhxdpPgO65W54zbSIVlcTBniENZ3yrGfmS7HUh+4OyjE1QaqLUjjx1Plltuv34HZWtso+g219S2wlYO0HSrDVVlqZqKmEbcxJGjwo+JqqkYR0/fj1itiUNPU1nUwRxyoJ7PMHVFv1njjGbT9aA0VV1x1NRMrONw6ElpwPeBbt3TTBru3DrGe9Aqc7JYcH0pzyilFFUlYAa2RsXEbD4lkOm7jkzAOUs7m5BT5vL8nL5b44ylahoInpQQhyutcNawODpidb2kncwhR1plqGtHO52gcBib8GEkKU3oAv12hdeZqMHEEY/FNQuuLlcQPG1V4cnUtqaKGe9HrlcbfFRMpxO0tahsMApQmifna7rNkpPFnD56nm+WODJWZ4Ztx6RtiNkzaxoWBwussVwvL9CTCcmPEoWrtByvD+RB3IOdbcnZoJM4kg3jiCnzQC6ObymlF/PPHkh4AS5ltauB5L+z+RTXNFxeXMmz/0d+m/0s9aM/k9lLK3EVOj1+RsSzHjze99RVQ1MZRj+QrCb0AUKkspmZbgqsXkmcm7YsjmZYFdArRRgFHlts3+P0+Rk/vPMRj28/Ye1XDL5HodHW4mMghFhMLGV/zo/iQgS5gDYFYNUC5Ibi5oNKuFqAoqwzmeLMojXOirOlA0IY5dlNgYliiTyzVr7zMvkpLU6yiUxtjDjU7ebhAtaktAN/Qe1iU8vckSiNJilhEUivoiL6hC/zRAiJcRz2AE6xdC1hYi/XD3Kc45BoWlNcmbQALS/F1pEzykJd2335mK04fYYCLuesGPqAVpquG6VRcQfN7OAQpK5JUZwYrTXF0SpK/VEcnEDv32eHuO0AJWOkeSfEsJ8HtJG6cleT7HiU/buWGmEH6bjSHLm7B3aglVbSKFFVjr5L+1jsnBNKG4wRFykBxuR9gtinY5taILQggFkk7WGrxA6o2d0m5YbKpV57CfZLGfSuiWgHtMO+1t59Pq3EMVUBKQcUEoG2q8l2wBfIvvKuVjZW4Zx8lkEhoHiJ0FSosgedC/ktJ1HOuSYW50NTnIxeRBu++Fh7UB4lqQAlOSBGcZ7duVvtr4v935F7qxS08r2lzDiM5ddUgcoyyWqccpj9+XixP672l/huTVGApfzSzygla/nJ7trYN2m9Gq/GX8TIEut274t7/PXf+evc//z+nwn+2Q2dNTr8xQA79764xz/8X/4hT8+e7n/2+mevc+fhjwfiJJX41i9+iw/e+eDPfzAKLk4u+J/+x/+Jv/Uv/xa//Ae/TNM3/xok9Bc9FAoX3F/se2RV3I3/IxkZvvYnX/tZH8Wr8VMc+efo+tQ68t57P5R9lJ/Ua2bNL/3RL/HeD9/jN3/tN/nDb/whfdPzU37cvBqvxqvxn9j4sSElWXyJ044sbmWB62wlmwMUe+EYCTGgtCPFstABxA+gxPEQ0YhINI6jLNCUdAVDRuu8jxpJURZaIYi7gHHFwhj2C9WUpAO+bcVqLxfr/7g7ADIpCtCUEHFJO0X0cb8hr3aikhG75JQyRlsq99LiVpV8eSPOSKMPjIPH4DFWxEdxidq5OBlSjIz9SByTdKBlOZaBwMjAGCLayLlKMaKUCAVaS9770HlCLp1BDozZCSsWUpJOGiOQy6xuaOsWimX2ZDZhsZjRDWKFbI1lNp2jQkQlRWsrhmRRQO0Mk+kCbQxt01K1ldhg9y+doxKVYY0WKEpljJY4M2srlBHhxDhHyokQxGEhJtlo6oeeYRwFaguBGBIRJY4L2hJjous25BQxTmO1RRXx8+bBDapq5NbxGVh48ugxx4sJtdMklTmYzDloDJ+vrghxYDabcHC8IAbP1XKJtZaFnpKTZXXZEXKkH0ZcJa4iNkVM3ULWtFbj6obNdktMnqQj15slbT3BasvxYsHWGkztCCFgMLSu2m+goBUpF8GEJJF5SqI0vPdELxE21oCuKozSAvuRxCXGGfI4iqV+TsTeY5LBWcetwwOGIWCKcJu0JlPTthXKboh5ZLnaMvSBw5MzjE30qiLOawyO2hlmMXJ+uWLwnpN5RWsdQVVEYHOx5o2z1zk5mbH0z/n8yTlPHj/hbLbgtb9yn8F4ct4w9p7luse2NTYHMpGkNbPjI2Klubru2CyvOZ4cgFL4oeMPvvm7HDaO7blncebwPvHpg8e8ecsxazPNJPHN3/1Dqpnhzu0bvDF3HFYV1w86SIe0i6nsDaXE+fkl2hiSsUync77zg0/47MGSe+/c495rtxkXDX8ybDiojvB9hrqnrjWPv3jI8dlNZqcLnp8/5Kg+4tmTR2RzxsXFMwgRM72DTi2v3TljeyOy3W549HTD6sEHtDYxNA2dV3z28DnGddy4fYTeepabLbWBxeGU8/UDlheW+WTOdXfOoy8esbEWr1o++PQLnAksJpaxS7TtOYvjGdPKkHCc3r5Dg6PKA8SOmKYcHt/h5t07fPLFcz58es7duaUlkpNjiWb5xUOJDFIDf/Tt7/HavXvcvXXKkDqO75xhVcXp6YKLx0+oz47RHq4+/Bg1m+BN4NbpDEbL5OgW22cP2fqIHhSbdY+3HuVhOj0mqMTtO4eYes6HP/yUsR+p15Y7b7/NW++9RtosWYeRJ4+fsnl2jr51xt07NzFuzqfPHrLdXDCtMqunD6lnUw7nJ6y3HmaK/GzFhx98wPGsZdrOaZspNmgJrkoDxmoePHyKu3lX7rUkm567jfOUpCt0F/+UiKXLEXEmK9bt0Xu0cty6cY/V1Ubu8QLZ7lz9ZOyghRf/nowhoqmc4c7RAWfHpzx/+pyn55fk7YrXbh9jsyZvArdu3aULPY+ePGYyqZnUDXHIPHv2BE2maQzV7dcJqaE9HXn7q2/y7PkFHzz4nNXlFcunzzhoNFkDtmK77Vkulwy+J2XYdj3b7ShW+UYzjpGsNDGNTBqDdZH1eiCmSNVa2qkjK+i6jrpx6KAZB9gst1Ar6rpmOmu4vu7IQTZoFWCVYlLVpDGQrLj94AOVMoQwcH15je8rQow0rcMPo8CnGarKYmyZO8trhpzJSktsARB8ZLvaoHKGBH03IjFZBWbKItZbLQ6LYYw45zDasB1G6locAzebkZR06bYVoZrc48dhLyqIM49l3tZM25oQxWnPe4mVSkHRjYFue4kfEt5n0q7iSCAd97JBnVQmJSUOO9nQdx4fwLkJMaYiHmkogpcundHOGpqmpmlaUpDogxASugA7pjibxJD2m90RJDooZ3FqTOJaOZk0tLMWpRTX1yv6bgAlbo3LqzU5wmrVMXajRBeoFyCG0mCNIuySBBKoJGLDtuvwowjnaE0s94Gxu9ovE4kCqGnpvE8xijABBVhPErVjrUBRujjH5F0kYy7XB4xBahTjLM5Vcr2M8p4hx31sldMVMcs9n5DO+nZSQU6s9UDfjRKVmNXerQtycTZMxJ3glRKj92hXU1mDSVHqgMoRUyaMQTbqtcFVjpyRubvUqlITJVKSud5kjTaauqmIITEMYd/Fvfu7KitSLm5KWTrZ+9wLdGWq/e/vIry0Uvu/L1+YCIYiIhSBU+vSKK8KJC6uTzmzd8j5eRw7l5ydkJJLhJ0xAvnLeTZ7kdjkEtVG0WnK5/+R7nlj9vEhL4tWKpe4RV0i+BAQiKzKuXtJTEKOSdY7sjzKpYkilwjAXdwIxW1DoDJxMxEoanecai9S5piKOLYTBkX0Ebe+3bGn/XUtrjy74xKoR2KtUxH7ilvC/rgysQAsqsBQqbguaavL2kXuz5yLk4WGfaJLUaaiEGE4a6ms1JiU78ZVTiKTfWKxWnD/0X3OumPqzqGyoqoEyJHvUWKttdJy/1tDzOKA9LLACEWwLiK0LsKcNHuI05yAkLk0gxQIkrRfQ0B8IdIhUJMp7ljee466Q5q+QZeIJquhndcY7ZhNpmBgvVpj65psYXQZ5yzj8ZoP8g/44PQH+5jUlCLDMKBK0wNJF1dDcZHYuWPpnNFG1mFWK7SxjN6Ts8W7wPfuf49nh89589O3uDGcEJVGW01XnGgl/mh3famX5OwCKJXrW+L5CgS3W78q+X6lIUjutZAkjjrnTAoJlcSJZdbU4qhl2b8uyuKsQemR7AXeHX2imUzROjFiyJUhI/NxlTJdPxJjoq0yTmlSgYjHbuRocsBkUjHELdebLZv1hklVc3DjJlFHMhJZPgwR5Qw6S3NHUoqqbUhGRP5x6GldAwZS8Dz64gGN0fhtopkaUsxcrdYczhZULmNd5vOHj7BOM5tNOaoMtTH0ywBZ4eqq3N8Z97hi+uSANDdUruLJ+TXLZc/B8YL5wYxYW57Fkdq0xJjBBKyB9XJJO5lRTRu67ZLGtGw2a7Ke0nWb4tQ5R2E5mE/x04QPntXaM64usDoTrCVExfVqg9pWTOcNyguAbjTUjaNbrhg6ReVq+tCxWq4YtSFiubhaYlSidpoYMva6o544nNHkrJnO59iZweQAyZNyRdPOmS7mXC23XGw65rXCkclZM6AZlivZJ1GRJ0+ecXBwwHw2IeRAM5tilGEyqenWG8y0QUVFf3kJzpF0YjapIGpsNWW73XJ+vsJaTUywWXdUGqypyShm04rZ4YzV9TXbzUBG02rF6Y1jnj8eUFaz3fRsl2tmlWV6uEDbht5HtkPPgZ6T/UDfd0wmM9abgaq2DJuRzXqLIdE0NRNXkbPcB6TAZn3KZtOXOC2Jqt/NJ6kAsS+SstQOFWDnhmdsIAQNSWq16WTOZtUVCGZHgpQ5fP/A21EX5f8qcdlcLDbcvr1hNp2hU+b51TltVXPzaCGRrj7RVA43m7O6usR2a6bTKZVynK+uScljTUPlGpR2hGw5PD7A1Zbq2ZTjzQ3Of/iUT84+4OnxU3ydiFlAh8GLM0SMSaJ9AesMwxiK46M05VkrDqIxlX2qyr4AK02JOM2JoU+k4kDknCUlzy4yT2TNLM+3DCFnMJRGBnGDG0eP2s37VubsVEAbrUvtVdxqKN8VShUXXBk7oCQHiS7d1f95B+aUOsJoTS4QhjFWwEwl8cUh7FxmBHLWRmOzuCbuJzDFvqavnDgNdoNnHMMerI0h04WxxHntAOjd5fCj8Eep6gQ6DZkQMigJodtBPzsHxV19IedE7wHj6EMBhXKJSZX1sJyvXeOOIoYX7o+779+6TOXEuTT4IM745dwFH+nSwDh4/Bhe1G55Bx3JHJT+lOuOQhwDfRBgCC1NnC/PT7tvB+Q72d0puxjlvP/3VKAijTIv1XnlWAQUUqVulPMrMdN675IsMF0oc6Z+cc+X5gHrLHXtUAioxD7Wl5feR5f674WrptRyZV8PTUyyd5rZwXnlGtdGGjRLFCK7Z0px4pLTLdeFNVK7yf73i/Pw4u9pqYOSnJcYirOq2xFz5RvY8U27M/unrrmX/mT/fNsBbftr5uc+PvrV+I9t6Ki5++Auv/I7v8Jrn7/GfDX/qboC/VmGQvHOh+/wzofv/Fi/H3VkqGVuPT8+54N3PuBf/q1/+RN1IekmHf/87/1zPnznQ379//x17j64i40/tqz3avykR4b7n9/n3fff/akDY6/Gz258+unrDEP9H/i3M1U1Mo4VPwnq5/btR7z99od/7tf5N41JN+G/+P/+F/zSH/0S/+pX/hXf//L36drulbPSq/FqvBp/IePHrmZc5Qg+EiNQAKUQIj1DiSORTlvvB/pxIEZKpBXkvIt1o4h2eb9i2m/k7zuZRCQbR4+zBldVpCTxMNEnTEjYElmgd3b4KUqUWFXhvWRmDmog6ySW/TGh0MXeOWCNw2qL0ZEcJbNdWws7Mam4ISkkVsWPXhbF4qVfbIKl658kC26jZCPeGEddaVKAjJYNkuBF9DKgraVtp1RG3BiGmOgHX8Qzi3WGpq2pG8t6lVivelAWaytcJbnjETmnSpXNtBLxMLENk7bBR4ELrtZbtkNP3wdS0uQAQUFdV2zHkc2zS8YYMEZTuwrnNEmBDyPVkBnDyNCN+MFT2YrKVFitsJXDWbHSrqu2WHtbMlYct5TYbi+3ax588ZTRB7SOVFbj6prJoiaQMAoUluVmw2YYOVocYlHoEKhRpJwZEvic+fDBI7brgeAV04MGi+F81aO0ppnMGOLAn/zgfbpxZD1GjmctR/OW66XYhQ/DwHq1Qo0Zg8T/GVuRrWEYPcM20ocRFy1NVTOpWuq6knihFAiUKL/tlmA0tbHUdc2VUkzqBp0S2Y84J1FICY2uW7RK+AjdEFltNoR+i45QV07gJKUwylJXNdYZ0Ik+BLJxMASmqmHpIJIZqRiGxEG7oBt7uu2Kzkt8Tp8bfG+pteL0MFOpBqMl8u/w8Ihnqw3DeiORd5VispigthWtbWmtRR809H7Fclzxg8/eZ+UzTy6fM2qDqhQXy2dUdeboxm3WwTA9iNy7c5svHj9hvbxm0wVst+LuvVuc3riJvmF5fPWI7WrF9aZj82zJ9TDSTSekpLgKGy4eXUneisusxiWf//A5Tdtik8fYhuthxRtvvMtXF6f068w4KPrVNWmz4mixoD1c8PWvf4XN1ZIbt+/wlV/5Vd589w6Xl1s+/uHnHN84og8jzx8/4v7dm0wXU2KVaY1iog3XuaJ2lrOTKTfunrEdN3z8Jz/gSe44PZ7w9HrL5WrN8ekhjz75gvboiGpxg1tnZxyttwxJ4Y4XtLXm4YePeLpa886br9GFzHWXue6uWG+u6fuRG/fvEQhsL6+YaI9pW5gecufWgqNpy+A9V9dXLBYLRh+5WK04cJbsPc5dY8Y1rplxtJhz42TB0dQQ1ivGQWMWNTEnnn7xGW3qifMZq7FDLZec3DhmeLpkdv82etayXQZsbNmSqO/c54uPPoLoUZsOmxy2nnPn3m26ZU/fX1I7+PThE07mEwIbFodzHj96xu03b9EnxeNHz3mUn3Py2l1mi5pPL0Y23ZbFvKF98zaHp8fcfOM1PvzkU27fOuP62UC33IB2fPL+xxwdHKOTJleOL331y2wun/PxD39AOwRcXXO59pw/eSgCT6xojWO7vqbbbFhdXzH4iPwnlS5btXdqKHuxZWMvokloo5k0jnHTkZO49sVik6602jXWFoE4v9i0U1BXFms0Tdvw5r03uXl2gw8+/hRax927t1n6gU+ePaa1E2oTeXv+JofmABthoxQPPvycy+eXHC6mrM6f8fijT3i23KDrCV99+y3GVWCzTBxVR8CAmkyZNRUhJC7XG5SPHE0a2umCdjolxMRy1XG+XHG1WVGNRpzNvGYcM5qA1om61phaOkT9EEBlqsozmc4JG08/DBwczKkqje88zhhCiKismLUT2rpBK8Om6wldxA4BcqYv53dIXsRorVEmodoa1QWUi+yizUDmnhgkrk7pjDES4WqUACTB+/25L4F75BDR2mCdwzqBENCKkMVlRlvZ5PZ+pG0t84MJdVPjfSQ7BYMSoWQf5ZTZrDqOJhXtvOK6W+8jVnOKBcBRjGGUCCFtcIigE7LAL2hTrowkot56ZFgLmJWUdDPXlUXpSDNpGEdPHgbMPvYBhn7E+7iHU6UGeuGEobTGOUNKEV/g5Z0YIMLDCxAhAUSJraucRKv2Xc+wHTHKkNML9x1tNeMwlk33AmuUzmQNRB+4vriWWI0csTlSNRVV7VBKohpiKt30QSLejJJYKFKmG4ojhNJYZ/bAwTiOIuLvYqesAxRt60qUh2YcBfoexm0RyUvXOAIgVq6STvEhiIAUIptNR+U0s/mUup6wXm/ZrjuJ+M15D5CIsCEivdaaqpZnZt8N5CpTNwLwGeeotSG4yNCPIqQYiSip2xoXnbi3eE8Mnow4gUlkhoBKKI32AoRZK/AGxqCzKrGuxV0nZfzgWcY1dV2X7750SpdW+V0shJw3gR4ysXR07+4VAViUUhIXprNAfObnF1IyRtxb9mptaTYIIRRYRWOc2Tc9FH2NXYzdbt1AFs8e2dbeCXcvCcI7ETNEtJEO+p2otXMDMEbt33PXxa6UuBmkPRkVRJBTeb9+Edgo7e9HVb5T8g7CyiWCUO/3nrSWe/ploUgAJHH/EmVI1iu6xGxYo4qoKe6lIUV5niVxULDWYZScg5gLsBtFVNJaYZ3BWs0wZPwQyeW1tXkhEO5g3B3wlVICLc+rlGEcI/04En3ktR++wa2Hd3BJIqC11fgg0bsilglkY4oYGVPERIqTRSSGJMCpHABaye8qLUKx1iUWvMRxo+R7GseR5WpTYlRKnKI1uMru5GfAMPoRHyNtXaMBlRK2fF8RceO4WAqYmhJUjSWbxMeHDzg/u2B92mE0BDXS09N3gcZUNLUVd7+USSngxwGiAElJZVmPalXWquLuaLLGGIszTiKfo8QMRTKXh5dcT36fe+vbvPfBezgmdGrAGYvOWdyhdoI8CmscysizJpQ1cgwelYvoXzLutJKISWXEvc6kBFFDSDhlGYzcYxFDCJnG1uKo4kd8GuT9jCUGg1GKSe0wjUR3Om1ompbtOBJGWWtro3C1BW+w2uK0htriGs0mDjy/vmBMmXW3JSqNMop+2GANNNMZY1JUdWYxm7PcrBn70ryjMovFlMl0hppq1v0aPwz0PjD2PX2IhMqRs6JPI916EJ7AZMY4sDzfYq1D54TWlj6OHEyOOasnhBFihDAMLJ43fOWjrzCtD7hx45SxH5jN55zdvcfh8ZyuH7k6v6adtsQU2a7WHCymVE1FNuC0wqHoERh3MqmYzSf4OHL57JwNnknj2AzXdOPIZFKzvlpi2xYznTKbTIluJGaFbmusUawu12yGgeOjA3yC3gNhoBoHQohMDxZkEr7rcSqinIOqYTaraStXorN6mrompEw3DDQFmNa6R6URTUVTV0wnNa3TxHEgBYVqLClntstrbArkesIYPIwS7Rs3PfXBHCqLHRIqWQIZO19wfXEFOaJGj86aZqapasvBYiE/z5ll1zOgMSph6ophGKmGQDaWrl8xbLbYpsG1DUkprroeZTQH85a2csyPj7m+vsY6y9HBHN/3qHbKZrPGdD3ONoSYmB7MWegFF8+e0G82NE1LSJHtsCSFka6XtXcKnpAi49DvIZ1c3CGLRl/qL2nUm83W3L75mKOjC87PT3nw+RuQ5LmmdqAfeb+HtOOVXo5M2jmriCsefPndjtfv3KLrBjbjyOxgTg6Rq+2ayjpUzjS1ZT6dkcYR4xyX6w2r6y3aWFoV6ZfXbJH4ycV8TusarpYbajMhD4mT4YjFp7/A+NDzZPaczw8/5+LgOfWkoW4EGPM+0A0jvff4GARQL4BQDAKkGLN7Vpco3CR1qTESo7iJHqMtrjICZhSoJsWMK8+lqnKMgzh/Su0q+4JaSWyVz1IjaEBZQ0xKrl0jDuYo2V8U93F59u8gDF3ihMmZEMMeftlF98o8XJoBsriDppxl/lYCQsXymaraFUhd3iOpnRuq3u9rhhDxY2BSVVJbxDLn7+o0xC1e3IrE4ccUuOUFgK4LUyL7n0M3vqjtEedQAaXEaTAjazBjdlFcMA4jxtiXAKEXAM8OaBfYN70EppTr9CWHHqkDXoKckpzH4EdGSkxh5gUMnnKBn+X1dmzeLop3HGSe2APZSu+d/lSpc2NxbtJln3XnbBXL9aG0FnhJvYCzxQGyvJfWGCRWVsA2tXdZlgaUWFxHC2xYjl0bU2KFU4GaJep81/RqbMQPYwHIdyW3Kp/vhQOU1uJ4u4sMds7KHFyAKsp++a6u3zc6FEiK4vS1+0529d4ubl5rgdBVgfHluywAoXrh0pRTLhFwaV8R/enxoum2nI/igv8jY9fcVf5cq7K2eTVejZ/QMMHw9/753+Ov/f5fo/LVz/pwfiIjkxmrkR986Qd8/0vf59PXPwVgrEZ85f9i3lNnPn7zY764+wXvvv8u/+Cf/gMm3eQv5L1ejX/HyOK29Rv/+DdYrBY/66N5NX6KY7udkP+McKVSiZs3n/BLv/RHvPHGJ7z//rv85m/+2p8LVjIm8Au/8J2fWNTbv2norLn59Cb/4J/+A/7u//l3+eitj/ju177Lh299SLTx3/8Cr8ar8Wq8Gj/m+LEhpVhssI3KRARCURh88GWBlPB9idopOzumWD6nKN2rVmvZNCgbAj5EYpZOdNmYl86jnDIpaHzyuNphnJWNx94zenE1kMWxWO0bZ0BDzLF0o4idLlk2MozS+w2BlBUhZoYAKiEbFEpEpx0npTDkBLbROKcZvTgB5eLGpLVFk5m3jTjmxLSPLDDKFgeETCaWhWfCGk1MgRwSIwmc4WAxw5FopzX9VjLZbaVJOVLVmgN9KBEuPosNsc1gFNEnspcNkp0oRoYheK7XS4x1eDzn14PEzCmHdRalMlu/4Xy7wlJjdATnQGsq52iaKbk2pHHEKc1l58lJNsfrylFby6SZ0ExaaitddM465k0L1vD08kqEFgPbYWDdDay6FRbFbNrStBYzadDOkvKACrKxvu03IhKRcMaw3mzZbge0smhX4ypLABZnB5yvrxnYMJnWPL/u0NZw0Br69ZraamYYTl67x6RtsBla67l5UvPk4oLBK5IOtFWLKecuI+KJqzRNa2SzMgTGsGEYBnw/YJxDzx0MiuXzK+INxcnZIeuu49nTZ/j5CfWJQ2uDSVn+qzVKG0Yf2XRbtv1IDCNaSQyhMopsDM5qTISYIQDDJlJbxfHskPPhkuwzp0enrLZrclB8+NkjXju9i1KBYRxp6gqlMkPfM6w9ujJY29LUFcY5Km1wJlLlgLWOg8OWbqg4mcHTyxWr1ZJxU6FNJNvA0+slsZd7PoSRhENlj4+RJ89WnF+PTG+ccXp6g83FJXVIDNliVCTGxOrZkrtHJ9y+d4vFkeOTzz9i1sx48/gunzx8wOADp8fHPLk+Z7NacePojIODQ86fPeXk5C43zo74oz/8PZRTvP2Vr3Hj/tvcOrvBH/zm7/GDBw85v4o0Bt748jtcLy/54HvfwZoa25xy984NLtcb/uXv/wE//Pan/P2//bcZ4hW/+c3fx01+jZOpJqzXmNmMpx9/zuzWKapqmB2eok3g6GjK9ckxy2cj56sBrGZxdMS8ajhZtHiTMWPEX2559vQTTm/doQ0dl8s1D54/49GTC9p6yv1bx8wP77DaXPHg+QOOT27Sh0waR/CJRdsStaMyDcvrJRBYtC2TyZTZ8YLzqys+e/SEyigOpy03Fo7Qrfi973+XsZnz2p07NLpCBbH51r3n/PoKEzUnpzcYJoekboNtDcdHE8aQ2a5HlA58+vEHfPbFczYj/Prf/QY3X7uFX69olcO2Ey7Ozzl/esnk6JTXv/RlHnz8BTdTzax1JLXmww8+5Qff/4Rf3r7H22+/ya1bt3ny2QN+///+HTZD5vjkCBV7ulWmOTzmqvc8fHpNyJrlcsXZrTuYtuXq0WOur895crFkUbWs/RXrEV67f4d7d27x7NlzvFbU2rI4PCQpzZ07r3H7pmcxsTx8/pinTx7w+NEzxtQVAFZhrETLOGewWmNdhasMla3RZGbzGXdvHOG7a/xoBdyJFPcdIIkvYM6JpCAnRRwHbGX4+te/zs2TEz7/9Dnv3LrLneNDVFJ8eH7NzbMDzu6cMVGKR598yOHxLZZbz3GryWnkshNh+f79O7gJLCYVDx+dYytDv1nz/NFzojNMakNjW+6/8zqLxbv8y9//Q56uAlWdqeqaioCzmvUQOV1M+eqbb/K73/mALvQc1BOGHOiuI8Fb6qbBZgNaIIyYI2Mv80xTVeQu4oeBZqIBz3Yd6LcDlGgjZTTZZ2KIbIaOdddLR+/o97BQO21pJy3GGkIYUSX6LYaAzjCbzsgpMIw92ZXnbXgRoRdDoKkrUEZgVmVLfIOAAnXrcE1FyFE2pWOCKKBTdgIRV1rE2EQiRo8fNdY4hjhK1MMYipuRbOKGCI+frdkOkXbSkIxj7CTabKcq5QKtyUa/3osyItRIvNcuymu7GcXBRSlsXTGZtRKL0A+MwWO0oW0a0EiEmZdY1jGMxTGlQA0q7+MwVJbYV+M0tbXy8yIcKKVwVY2tZDEbQsAYQ9M2eONZX3lykO7+WD5HVrvYDgGx9/FgeRc7ATtr/xQTWhmyAp8jrpHjVrq4C8QkjisJfOfps1wvlXU456iqumzAF+ghw4An+Ih1BmNhMmux2pFTkhrPGOwYQHWMw0CKAZ2Kg5PKuErgYaU0IyMQSCGwXXq5zuZgbcVkNsHVlr4TF8qhS8QgopWtLXVTS3ybsaSQGbpO3C+1oplUOFehlWbQck6rWgT/OIJWEVOJw45qaomK6Dr8OBBSpGkbVM502w5jBJvQpogBqkRbOE1lRczyUb7vGBPbbS9Qf46oUgvvxI2UEiEF6sbRNBUJ8F5E0RdORAVsMeKgJJ34f4aVwE95pCJo6QLap5zQ6CJ4KiCKy9hOZclyv+2j9Chd+zntheBUnC/EevsleSZBLvCIMQLoyHpg57RVIKK8AwTVC7eqAkzue8t3oJQcVKkfM1Fu371DwE7s27FIORdR2iikL2IXacc+sq92lryDbIs4pV5au1DOk5y38sSLxQXWiDOMJmOzuNOpAillBMRqmkZEtJTFqcuU440vjlcVERXEwawfh3K+El0fmK7OuPHFbQwWFPjk6foRjUUraQrJSknMm3VgFTmkEtkdyakI88ZgtcFZi3Wu1MsiRFbWgVZs+r7cm+BDZAiBwY9ooKmcRDU6K1F2RIkBU+CDJ+NRyDUzjkFc7VAoY0XEBupJw9b3PLzxnC++/oCn7hJlFLPJhNFLBJQLmpODA2nKQJF0QreWTdcRkzxXrbXsHCJ2wrA2Cuv0Pgp8SAJpxhjQ2qBqDQHUJejrGhUdY/ZsNxtSNcFODK5EbIoTmFgh7OIcfYikFPawltKU867RKZNKI1EMGaMVbdXShQ5SYtLI58sJLq/XHEzmKCWAoLXy3I4hEMYosa7aYst5s0qL41/OKG1oGksIhkmCTT8wjgMJSz/ZMla9fIflOSTx7AZyJObMejuwHSLVdMLETRn7HhszEpQnzh/DZmTeJOYHM+rWcHV9QWUrjto5V6uVuDdNWjb9lnEcmDYT6rplu9nQThZMJy2PHz8EA8enZ8wOjphOZzz69CHnyyXuyYKvfP9L3JzdpB96Lp8/RSmDsRMW8wn9OPL5w0ecP73i7dffIKaeT794hKleo3WKNI6oqmJzdU01m6KMxL8pnWjbimHSMGwi21GDlnuw0pZJ44gadMikbmSzuWIyn+OSoRtGltsN602HsxWLWUvVzBj9wHIrzk0+QY7i8lE7R1byPY3DgFKJ2lqZi9uabd9zvdqw1nLfTCtN8iMPnz8lmprD+RyrjMTsAdoL4KQyzCYTomtIwaOtpm0cMQm0qFTi6vKC69UWH+H1N24zO5yShhGrDNpZQo4M11sGnzi9cUIYe4YAVjusS6zWK86fnXOy7Tk5O+L2vTusr69Zr1Z0zy5wVY3D0409dVWDNVxcrTHWsVlvWbQtVesY+x4/dKxjxtCjdGI7DNTtlIODA67OLwg5oLSirmp6oGomHB4dUVtFiB7vt1xfdQxxROUkQn1xojHaYEzm3Xc+5s7dZ1RVQpM5OXnCe+9mnjxIPHpiBJBVRdwv8xIql3So4uSSEilH5keH3Ll1g9nsA77y7pKT6ZyhaoirNdpaZocN0+mU9cVzrLMkZfE+oIExegYfmLQ1rnGQBjarNZ2X54LvB65jRluNMzCZz5icHXK5vOLJxYrb5/c4e3qTL+5/yuM3PqNL4vxz++yE6+WWJ1dXsmZQmeA9YdRoI3tIGZlHJf4tkiPoSmFQhDFgdMZYiYoOPhWH8BfwCFH+bPCjzOURIrIvuINOBeSWedI4Sw65uDPJn4XgSXo3D8qJVuwAZqicIaS0B5vJsuYwRmNKlHUqDt+UujiSynetefGqEsdltJEA0wJb7ef38h0PQ+QybQV21yWmLeYXdcLLHTNQYpNViWErW4+q1DQx4WMhYrREIbvK4sdQ4snM3vlLGYG7UgGFQpCGBnYAEHnvqJjLfKh3kDw7GIkCLVuUFsdvU4B7rTVjP0oNFfdeYi9/dKl/YngB3LwE2OecSgTzDsQGpTK2OEDtXIxy+R5SzuQoE4bRAujunOVfft+YdjHAGW2lrnLOlYYT/eIzjhCQOpsSH5dLLSkgtTj6Utb80Wf6ckzW2tKAWRe4OhJ8JJUGShA3VK0L5KXEnV+aXQRU0gUo2jlfAViryUmV+qTU+RhykgaTGBTEVKB6TfTF9alwSUq9qEEzoK1Bl+9h13wiTsZqv5+xA/ihuImWuso4OceprOt2oNmeVldgtNpHKr4ar8ZParz22Wv8Z7/3n/2Fx4X9tEZSie987Tt881e/yaPbj3667iIZppspdx7doRr/cgBfu3F9cM1mtvlZH8a/e2RxUPqNf/wbLJavAKVX4989tI78l//l/8Ev/uIfU9cDSsHNm094662P+O3f/lW++92v/ZmhJ8h84xt/yK/8yu+85Jr4Fzd01szXc/7KH/8Vvv6dr/Pbv/rb/Nav/RZ92//Fv/mr8Wq8Gv9JjB8bUhrHgNPSkZtCKHnh0gmicsYZ2SAeiqipEIF3Fy2g9osreb1cLN1VaYvSpcNFl4W7QhaJ3peoK+fILhGUdA+l0sGlS9daziVeJcur6dLBqigiSAzltQ0pZ/rgZWPAKKw2EmNXulJSDJAy1jhyCqTgJd4sZWxVU1mHzhnrBMIKVgTE0Xt0yhgn0TahbDRYV5FC2n94sdOVxX/OmcmkxU4tTWNRVvPs/IrVpqMyFSlFFrMJk9mURGTbdbSTis1qLedZiSVw4ypMAu8TMceyQR3QFbTOYssuSDQChPXDiEmJ2ikwTjY7kyEnA5Mp26FnPp1xMJtLHErpbqqqCtvUOOsYfKCLEb9ekcn44Ekpse4GUoJJVXH/7h1yTjROYy34JJPb2kdW24FEIORACJ7hfMuinRHGhNOGyXSGnR/jjGHsBubHhyxXF7S1IQdP7QZ6Is+fP2duLJV29MFTK8OkaTDWsBk8uQ+0zQEpb9Ao7p4dAInVGBjGKMIxInY6Y6gbh82gg8K1LcNm5Hq4hkOFbSvGnNgOI2Po0cZhqxbrapIqDh9JEUexUV9vNmzHLRlFhWY2aQWIsI5sBGyL/SjXBYpYLMEbZagmNetxRHtfBAlDwvJ8s6WqFY0xrLpAti2Pzx+h/cjZ8Q0qpVn3IzZFosrYMaNG6QZbXic2eaRSmZwHRj8yZIPHM/g1ve9BNWyWW0IamS0OOTk4xuTI2Cnmswbneh5/9AF9CLhZlq5prZnZzHxq+fziOcFMOL9+gleGr3z5HcbLLQ8fPmI+m/POW29w/d0VT663XD3/mMurFY3KnMyeshkGnj57xvzkkMtbd/jOd37A6nZPGju+8t5d5qe3Wcwt280V49ay7LagOupY89H3P+WTJw/51re+yY3FCY8/+T6DtXRZ83t/8G309ilOZe7eu89idsjd2QLvR66vt4SgePpkhakb3nptxqjkGRVzYD1sODy7wTol3v/oh9w6OWM2g2Ai3TpSK8vb9055+/4d2oNTzj/9nJXv8KnjtJ7y+sEBk4Oa6Cq6VcN0vuDTz55ysjji4tkjcq7wvYZseP70GU3bcriYo0icr5YYO+H0+IT5+pIvzq+4euy5fDBycuMeJ6dn2OQ5P7+gW3nqZsL6yQOC11TzA7ow5eL8nPVn3+a9L3+FrBVbv0T5kW9/63dY+cCt6QS/ChzcusVs4qinisXtOZ2xbLY9w/aa0+MbmGYOTnHStEzwpPUVzh5T18ccHRqOkiflQJpXnE1OObtxg8nxnIsnV6h6Bmakahtm9YRrNGZ+yJPPnvHUb7h9+xjWKy6eXHI4M6i6wrQLPv7sEc+fXtAag0kirL79N36FX/g7v8ydO2f8r/+v/51Pn3asNj2rYUvygdpapm3F4eGMG6+/xunxgoP5gm7o0XbK0fEBldZsHzyFFMheNtGVhpS8OO7FzOjFjcaPHdXsCGUnnB3e4OzkDazKfPr5p3z2yRe4es7zzz0PPn9IRcZViZuvv0HnR54MHXffepNewxfDR7gUebocuXv7TRbZcWIMf/j73+G3/uj3uXHzhHfeuM+v/9pf4+rTL3j6/Bm3bt2hOdV8+tH7PHv+mNpqDg6m2GBYXvVs/AOaueaOmfPF05HeJ2azhogl+4RKBm0SSmV839N3Hq0tlxcdMWasTbx2/4zVauRy04lLRdYiZpNRWTH0HUPvCSlhNGA1WStcVbE4OiQRiUncrMhJ3JEcDEOgHzqqSsCxtJ/zd1WFuCVorXF1hfdbwihziFXSwZ2KvX9VWdpahNx+HPApoowiBE9M0FiLqZzAG9njTGLYDLKxnyJZlQilpHDaUDUO21SgLMN6SxqigCs5EmPEWSeugj4KCFCJ6OxcYRlUliikDF4FcV9EBGGVM9vVRrqhY8Q6x2TWiNg+pj3kYxQoLd33tq7RGsZhwI+RFEqMQIwC3VWVzOklOk5gBdnIFjjPoJVlHAdiDqAzO1uwnAsEVUZKae/aI0IExWWydDKrHVkh90G/7qgrQ107EonKaqwyjDEweI8yRsSNKCKcEb0TssQe7Dq727bBGo2uNU3T0K8HltcrjLPM5+KYUbtaBKgQ8GNk8KMIi7XDWCPOjl7EmhQC2mg2q5FhKBGAVl67rhpMthhVgKVhJPhI22qcE7hLaRGOxjBCJwJMsBIHEwrgZd0ElTTr5Zqu30hXcemOtsbiKgEi+7EnRokxNtqC3XVblw5nRIyIKZVIK01lMloJzOaHwK6ZeecEFIsbQCJhSpRHkZRQRkAkccOKEgdBLqKKKh3dP7+dzzFK7a5LdOFeACmC4g7SieW6lO71nUT2QkRUClTexX3wosbev9MLcUVrTUpR3LWMKee2iIVZ7je1E5izuOXsOu+lfDZyWyiKI4Pa/26IScRoJeudXXS13Eby+YwSMS6XdUsuDjimgEFa7xwd5D0lekbKxVxgl5xFvEu7G2z/YUucZhYXLV1prFWgNdttz+BFaCUniYWtXKnZgzRilO570Td3Ucsiyu7ObY6Z+1/co8bueBySkvVECCKem51glyWij6TBGUIMVFVFXReQZifYaSMiW4m78ykRS1ySrPGyxAmV2vxgPgOyuPbtTHlRjCkRxkRSia7ZQsiEzlPbihRFzHauwtStxKL4iJtUfHjjCx6+8ymRgBkgkNh2W2olzgwxRQwSJ6q0RLQQEs7VZO9RBObTRhwjYiKUyBeQtajW4silc4YkroHBJ7iAe5evcevhDWZ5QWwkgkYpgzYWXdz6UhEMUxTAafQeHz3SSoMcl1Lk4uKkUC/NsyXKJpUoOGcZ44CKscB9moxmO3qMlSaiIWTQlvV2hUqRaTvDKM0YxYkyATrKvJRTZhgyY46Il5XMnQHFn9z5iKdpSUgBpSzj4EkpUjWGSd2iSESvqCuL1oHV5YXUFxVgNUY5Kp2pnGLZbcnase3XRKU5Oz0m9p7VakVdVRwfHTA8HVj3nn5zRd+PWDJttcHHyGa7oWobutmcJ0/POZwFiJ633T1+afnXObjV4n1P9Iree8Bjs+Xi+TXX6xWPH3/BpJ6wvnpG0AaP4uHDJ6iwwZCZLw6oq4ZFVRFjou89KcFmM6CM5fCgKu48Mm+P0dNMpgw5c375nFk7pa4USWX8KLXP8WLC8cEcV0/YXl8zxkDMgYmpOKxrXGNI2hBGi6tqrq43TOqWbrMiZ0MM4qq33Wyx1tI0lQC0w4BWjknbUo8dy66nXye6VaCdLphMppic6LoOPyTMocNvVsSoMHVNSI6u6xivn3JyeiogcxwgRp4+/oIxZqaVIw2JZjaTmiF5Josp2RmGbSJ6j6kVk+mE5WZF0zpqo8D3YCqMmeCcPBtQihBBT2qmdUs9awusEZnWNUpDVdWyhrYOHwNXyw2zWYuzNcOmp9Y1tq6IKIaYuby8gpRZXS/p10uqgwPuvvEap7dP4fe/y5PnF/RDYAieGGUvq7KG09Mt9+4+5uCgoWlqjFaMPjOZJO7f/oLvfC/zx985EHufPcya5JmfBdKLIe6fZ/HIcHgQ+cYvbpjMjum2a64uLgk+YauG55stV+aSHD1HZ8c0lWO5XtM2DbP5hKwuoff040jdttQzjcsZrq55/Pw5tjIczOe8dv82E2tYXlzS1A0Hh4Z+HLh4/pybH9/iaLng43c/4bK95uJySTIwnznYejbDiNEa22qZcxL7/byck9RhSaGGiPfiBjOfF+fV7ViclgRyELdwqVmSD8VJkT2oD4qqFkdpiQPe1boRZZBnegwovYNW9P415AXSfm1hrC3vEYsLUqkYUgbEDd0ZcesLMcrcVwCWECV81lpDziVqS0uccQzy3IvF/VTlhEIV+MmgtcEPgeilPthB2AqBYkJxQESJA53WQjbvmg+01jKHFAhlBy4FH/BjkIg2nXBO6sHdHJnK3L07E1LXC9RKiKW2zHtoSxuz3xvdNRLs1mY7VyVrjDQtlBjhHaddcq8FjC3HnpI4A0jDhd43XMCfCr3Jsj8czW5/VgBxZeR1vI/718jl9+Ufeg//yb9ngZSLU6p1AgoPw0DMmapyVFVFU9ck5wSQ3Tk+IefeGFuaLmKJTRVIPSKR49pEiY+z4o5Lln3bgLg7xRLFrQtMJRG+sm7IQaLmTYkAVqgSpyfQ0jAGxmGUa7v8uSpx5tZZtE4FxCoVr965fMpFkV+qcncxdzvgKaUkQPjuQlMvA2nlyy4AJjvoTClxXszl914C/PZA1L5j4NV4Nf58Q0fNr/6rX/25BpQymavDK2ywzNazP/0k+5ERdeS3f/W3+Rd/91/8dN1EMhxcH/BX/+Cv8o1vfYP5av7vPM7/2EbUkX/x6/+Cy8PLn/Wh/NtHfuGgdLA8+FkfzavxH8G4c+ch3/jGt6hecldTCu7efch/+9/+E+bzFd/85q/+mfbwTk+f83f+zv8lNeVPcSgUJhn+5m//TV7/9HX+2d//Z3x+/3P+Ej2GXo1X49X4GY0fG1LaORyJWJJLRI4AGYmENqrY+YtNMVkWTbl0kOuMZJIbjdOanERMTAVo2q2Ud4vhvaVzztIxnkaUAudEDNzZ05ZmEcouoAgYP9L0oUp3tmyMGycLNF9soLVSmGJti5LIhEymqgxOg0ri7lPX0sUfYyQMIpTZSjaulSldclps+XfRMCFKZA7RS+RcLrEdKaK1RfZXDINPNLWhaRzL9ZYQEtbKBoHWCu3AR8+2GyDDrHVslEJZK/FiWdFvBiZ1zRATNkn3G1nOe2MNdd2ANqjG8PTikm2/prGaOikaY8lac7lZUccGlyuaqqFplXRp5lyy4GWhLt1Cst8TivsCWTp6QwwMfsAZR+ssbTUj5ESMGR96+qFHkxmHjqQl/mQYezbdlraqaVKibSdM25bFbE4XEm1joGq43l5yvbykN5Z+s2LMA8o0ZO3wccPQtmTlcNvAL3/jNT76+Idsr67YpoRrao7dBJNqtv3IsutxVcN8OoPkqScVl+sV19sOoxv86HHacnwwJU4jRlkWBwe4CjTiGNH3HndyyMF8Is5F2uDqiu1mQz90jEOPVnA8X+DqGoXCmUwOoLIDawXOygFNxmRP6yBuR/p8TTtvMRgmk4apb1lebdAqYRvFEKSjer3pwAw0k5YqTzBNzdOLJyzmC3w0UDuGXsSf+fER/XXHxfWS1CcOmoqpySy3lyxDTzW1TJuWy2vZnDw4aKgaxXa9pFYNlWtoXU2FIlQwnTVc9RccHSxoj07ory+4eTDD1xN0rbi8WhOy48njFZvLa47PzhjX1wzX16ghoTGE4LlcLfFd4PHTKzwWRSatV3z/4x9i3/s6h33P/PYZVlfcunmHO6/d5ouP3ueHH39BGhL37hwzP6q5ePIJv/e7v8uDT97n7td+mds3jljcf52Tk1OeP35Ad9VzMlmwjYF5paiMoltuefh8TW0zY4RkA4+WS778ta8yDFsePV1x8+yI5eWKL737OgdTy3rj6TbXfPbH32PTZW7ePuOrX3qHzfUSM/YYC77bUrcNzjgul1fMb7xBdJqb9864vB5wBzeYnp1weLjg8vycZ5eXtLMWZzOff/Ipl9cDb792j6N7C85OD6irGe3zS+bLiPeB9966y+mte3zx+QMuPn/A1eVz3OSUqqm44RwPrnvaxmLzQD3xPHnylPd/MBA2mfu379H1z2iO5zTekFYdjx5/ga803h/QuMytRc3z50/ZLq/BOB6fP+P80SN0c0q9qImzhov1NZ/94FNU7lh1lxwcLVier3i2ueat+6+jo2MyPaQ70ujNmoYG5WC5WULT8t4774L7Hs8+fYzvliymoPsVQTXUzYwnj66ZNVPqe47gO07vHnF4esqt996inllu3Tzj1sGcy9W62POPdCkQY09IcOvObW7dukM3Dtj5MfduOpI3HEwanp8/RxtLjplxsyKGQTopkedaipHgt/tN06aucbZl242cnc25c+8uz44XPBxHdA5oD9vlhlnT8vo77+ByIGfDmBRPn6z59JMvaKcVIXiuLi44rmfcv/sG8+NjquaIP/yD3+b5g0d81MOscrz+2ut8vn7I88trjo4O+Vu/8g3e//73yv2uMdqz7AbSmFhuOy7XElvW2oaYMso6tINhs2YYR0LUeI9s6ueM7zNZw+HRDKMUacx0K0/vizuhMcWVEEII+BJzmsgEErPFjMViSl07tr1s5raTBq1D2Vg3jINi9ANtW9O2U1bXa8bsZZ4unayySV1ck6oan4YS5SabtOMY6XtP3Voq5/CDx4+BpDOVNqisMBamixo3rcSlKGS6bY/vJLqmmbac3DhmqhwPHz6knlRMJrXAWucbNpuhdIzKZrPR4hA4Ri8b11ljlKKuLc4YUoRQYiNUBlsZopc6I8XI8mpJCru6JRGUJ6Va3JRywOcRV4lDj3MCC2hnRcSKAa0lWnccB8gKq8QRDMAUIMO4Alo5Q1PXGGPpuw6U4vDkkBwyy6slY++ls7cUSMbasgm+i3QyxbmyiC4FMhBIQ2CKOHqWF2vaiQhI1tnSeSuuS9baIjhkcpSIhRQCKKhcjUJTVyIUFC2JcRskvnWEMIwkLy5edVtjK0PW4sS5mCxwlRV3gEHcLnUR31OiiFCKGGHsxSmh2wxUroKs9t3nOSdyTGy2HSlnqqoClcXFKZfvIWW2m4FdvKNEAGtiyPgxEsZMyn4fAWatYTqb0LQNOhjGfiShSxqYOLOlHBmDRyWzh4xiTKgCExmtcc4Vl5kdwCeCDcUFyxpxrYw5EYZAZhd3XCJLkiIlET6NsSiD4A0/z5sEO71F6yLkFUev/KJZIWVxbCXvhD4AEWukgz8VwU3LWqS4BO1eW0S+vBdARZRDhLIsMX3GvDjXe8EGeQ21byZ/ISICRdB8sWYALeshXjgiFOsM+ZnKBcyR99bFHUCp3TNDoEFjDTvxb9cwAWVps3d9ErE3F5hJqRe/WyRfYspYo7AlyjiV99zdz6rc+9JtD7Y2jHj5LrRBIY4YzlokHE7us6PLQ44vjrBWBEaUQlnNpu/wYcQajckCu6AU/TjKehFxfrBOrnf2oqZ8QHEAEEk6IUDWiwhMWUcZLetGV1d7YTWmQAgyX8UY8Dby+MZDPrj3IWZl+MUf/BVscjhncdZRVxUhgbNCfj2YP+T7d76HHiCMg3yHkh8qQp9zZCS68c7tAy4vz/F9z5gzxhpa7dDZEkJk8AFtLLWrIYtjXDdKNJlWVly8lKauK06uT3jrk7c5jsfoVtasRmt8UMzbhrquSlSMRMJ47wXGLcBEW9dFZJY1NlFeIxcILxY3EZUjVkMOEd8PuNqiaeR8JMfQjyiV0VacXGOUNUXWQdytskNZw2a7oa4rYtJg5XkYc6ZuG0If6IeBFBKNtTgNK7Xk0fwLsJlKWbperrW6tlIbj4PEo2tx0zJK0RhIlaUPHU1T4+Ytoe+YNTXRWJRVAv+gWW8GfDfQTqZEPxD6AYLEXuYsxxNDYr0Z2En3eRx5fnnOjZMb9CFylm7zCx//AifulPnJnOXFOeeXK3JMLOYTqsbSb6548PABq6sL5jduixvw4pDJZMJ2tcQPgYmr8SlRGzBK4cPIajtitZg+Zp1Y+4HTszNiDKw2A7NJw9CPnB4f0FSacYz4ceD6yTPGALPZlLOTY3FFiqFErPoyb2u6oaeaHoJWTBcTuj5iminVRBx0u65j2/XYymFM5vrqim6IHB8saBY100mDMRV221EPiZgiJ0cLJrMDltdLuuWSrttiqqlEFWrDagjFTSxibWKzXnNxHohj5mC2wMcttq2xUcEYWK+viUaR1ZSx67h3cgSpx3dryIqQEo8fPmLwmrpdkCtDtpqnj56QQyLEDjRYbbm6XtJMWyZugtUOM2tYXa+YTiekKPDbGCPzwyOaFCE+IccR7Qy1TfhtR9U2XK07EorZfCoxur5mcTTn+OYNbNugdGYxaVg6J+4qSlyvY4zElLlxa8Xp6YKYM0lZqX+HJFGt48C9+5/xwYfvsVl6Uiw1x/75LTBxDEFiZU1FZSvOzh5SVQOLxTFx1jAqxXh1SVtp9DZgkmI2n9PUFToLBBmz4vHnz/Ap0lrD0Mn1fnSwwNQVs/khaMvV+VNWF0ueGMvpySGDrrjcXJNj5ObJMa1VbNYb0nbG8Z+c8O3Xv8vDm0+IPrHpB9mHUkY+gxJXzxQCMXhigSdSgRpSlI24qnbighQRF1Mfy/xT9uVULiCQwMIoSEjjYdPIs0lcyMsaRKni3gTJKgH4U6KuK4KXY9kNAYRlFs45C1iSKDVEcVKPiRAlKsy64lAaUzlGw84z0VaGqpbaPCek6XAM4kJoJS543k6kWTBFgeiNwfvE0PsSbVbgjwJCy4d9AX+Is2KJJts1Eyj5WUSKFQUlvivvXZdIkZQEZjFKnnlaK9C7CDF2dBOEIIWBEdAp5YxBFbhH7aEUlLilGlOAKyPrgli+U9XU+GEUmL7UH/vapsxV+5/pndOQ+lONqbvCLEvkdInalRgxtY/oyyBuVgrEYEmuFxAgSGstzkwF3qa47om7qMDmYxqJIcraxJpSmIErDTNQ1i8F5lUlPjznXOorJe5QgPLhRTRbTHswjPwick6aRMQ51Si7h+xD2GXE7eqd4pZZInlTzlCaSpVSZGeoqkoAohgLpLR7Cf2iDsx578CZs9RN5XIr8cOpNNOwh9735kglIhBNaSyRaDiBoQQoTOgXdW6J1+OnLH6+Gn95x2ufvcbbH779sz6Mf+sYqoFv/eK3+M2//ZscXB3wD//RP+Rwefhv/f0P3/7wpw4oqaT48ve/zN/9P/8uZ8/O/lLBSbuxnWz54J0Pfn6Bhwz3v7jPb/wvrxyUXo0fd2TeeefDHwGUXh7WRn7t136LH/7wPc7PT3/sV/2rf/UPmP0MHcd01tx7cI//8f/5P/JP/x//lD/+K3/883vfvhqvxqvxH8X4sSGlHZ2ZUpQOFjJOa1KUju9hHKHYQOtiHZuSdMiQiy2xMhhtpJO82DGLbb1Y2kv2tTzVdt24unSoxJDQWjYC00uLYZDnYPCyERGRzpQd5LNbFxsjm6HWQNYanRTDGERwDAFyKqKpRFA4KxscQ/AMfRDbfCsxcOPgCTHigkSbNZMaVzuUERecFKWL1pbOqKZyaKMJXoRX5xzT6YST41O2mx4fI8pkuk7cl5pGk0LCmpq6qUFDNwwSS5Qyl1dLlLFyzhBRdXYw4+TggIvLK7quBwV1VaONZQiJUUXaiSMPHp0UrbVEH0ixdCw56fKqgVpZalOVzXyxG84YfOlaM6LSSnRChtF7DAKMxZRwxhYb5YRVilnTkJTmus8E32NLR7G1hlFlNn0mRU1lpjhqKgytbcgxUVnDZOK43mzo/IjWmt6PeJ0ZRg8+EXRNbeConRKVxafIH/7Bd+iGnoOjI1K/4nq9QWtHYyzOVSzqKd12zbBZcXIw5eRgQVs5xs1DWq1ZpcgwROZNxY2TQyaTGkMmBREgTVYYnWmqiior6S7OCZXETWNS18yaBq0NoXQ+T+sWa2C17Rl8QqXAZrslARNnSDEQUuDgcMa8ajn3A1jD+dWK42bCu2+8xtPlFfdObvH02TnLoae73LLdnnN4MMc5x4PPn7NebahD5OBwhl+vWfYeU7c8fXRJ6xx3DqakSeRqueL51bUI/TqTQ88wiivXbFahU2R1fsminhGNIVUV18OIShFlLCEHJrMJXdez3j7k/GLFZhY4mKz4xl/9Gt3JIe+//4hHCm6/8To3jw/47u/8Pp88eMKd23c5OT3l+tkz4hjR00Puv37Cx58+5PnzFSpG/NBweT4yV+ccvnuXZB0fffIRzVFFfXjAm1/9Ot/7oz/m2WdP+OjDcy7GgW2/oZoeoJxhHDXrJ1sOTMW7f+3rPHzwBWOoWF885YdffE7VHlHXE9ad5unqCSEMvPtX3uL4/utU1QH9tqcfe4Z+IKqK7377Qy6ePOLkxl36PnN63GCXHToHHj16zsX1OWd3YbCey4tzYoCDgxnTyYTL737Mdr3ltTtH3H/vXabNjE23xaOgVhzdPaMyCZc2nJ29zfufPWfIibQdMFHz4KNHHB2dcPfeLWxVk4eeOCYODg8YB88sehrnuH3vJsvLkQO9pW4My801toF3f+ErfPzh5zx48Jg7d9/gsJ7hrOW1129w/uSC82cTlKvY5MDZrft0XWY1JPKs5bBqWNw45Hf/4Dv4uOQXvvIm2tyntpmDG5Hrzcj1MnP7aMHrt4757NNHNK5iOXR8/3e/zenJTZra8fTymjffeYNq0tD5h1QE3n3rbepkGJYrDg8t223g6SpiZxOi3nDj7m1+8Wtf4tu/+69QUfHu175MPW/IfWL1tCNrJzFofk2MjthkxgDzwzmv3b/L7RunKGWpJgfE7YomZ6a24Yk3TNo5d+7coF9dsdl6fBhIWiRwXTaDRZzOHE4MdJd88XCFqw3104bNmHj37S9xfv6Iq6tnuEZhneHi8SNObp1w582v0M4PefbJpxxNZ0yOpnz7e9/h4/c/5PmzK778ta/y7uEB928fcn7zlIcPH/Lpo0+pG8WwjQx94PV7d1hfnHP1pGfVewYtUVkH+pCZgsvLC67Pn2JxLOaWTfC4qkXpTGUsw3zCdtvRdwMpDSjEfa+pLKenC7abLeehYyzOOlVVEf0ojiNotLXUk5qqcbhKBOJIZDafcHR8IF2xMRKiJ4xbjo9nGKu4ulyKGO+cuJYo6e6tnKXPHqUzBwdzJm3LGCJ9P9LUNSpKN7ZzFakbGOMo0TzGoion3dFaAJKqbVGAs4HZVOFmmnGbWQ2RYZCoNV05mspxdHjIaTNlfjBjG7eMW8/1+Zb1shfHGi0AyA5W6UNf5scAGDIapQzWiTMIQTaLTXFNSWmAlIljABQ5qT34kKIcT1VbbK3kuJVmHEaG3jMMHmMzi4M5VVXRdwJyaSUAS13XBarZRUEpbCWw0aSdoLVhu90SYqRtp1SVZbPaCsQTdrBERjn5DtS+xnopnoHd5rYuLpkZjKKqKyrnCCEw+khIEYeIUj4KWIAGbcTFx2DxMe47sNHihOX7hC/C0ND1JN9LFEgSGiTEiA4jNluBxkuN6JyhbizONXTbnpQ21MmhFXgTCN4XdwIR5o3R+N4z6FEEqRKJVreOdtrSDyPb7QatwVUGg5LoqtI9bEvHckwJXerOYTsw9BLXZIwAa7HEo+ScJZ4uiEBCqT9TiXxQOoN9uRtZxKuYo0TykcvfUyjzAnzJiJOna5x09JMlygIRdHIWsGcXT9I0lVwzVuNDIAP2x67ufwajgDy5XM+UJgKKELcXpZSSa3HHEO2SSor6tRNqJKZk90slQoQfFcryHnQq4pbK0lhQboHdfUERM3f/Iq+v93AayL2z0wFRIvbFmIpRw67D/oXjkzFCfMrzsvy50gLbFDFKnJwUxpkCn+XSgLH7HCIg2SJEphLzYozGVY5JM8H7INeFAu/lz61V5JglssiWmLYY98BW1w9FiKK8j6ZqKtq6pu97vA9MupY3H7yJxRJSJpaYM0rzhcCbiWwKFGLkOWKQuG2rzUuRZZGMeuESwO6+ke9SosQpwtoO8BL4T2eorCMDQ4SUArqsE8/vPuOz+58RQqBrR5bHG46fn2DQOG2hxDBbZ+hCz8e3PyXrLM8xhYAJQQAEo6GxEqOVSDx69IQQI3XTksLAMHqU2sWfOaqmIviR4AcmtaNtaon49iusUow540PmjWf3+IUHX6exFcqKCLuLE1QKskmYDCpnVEki1ErhrKVydu+UAFAZh9YwZF/g44T30nzjjCmxUiLo19bSxUjUiq4faZzl5PCAzdCzmMxZb7aMIbDtPb7vpOnCaJbXW/zgxXW3rYhDYggRZR3rdY/TmnnjSDEzDAPbvufi9ILgBol1ikocSyqDyolx21PbiqwU8/URw6xjsANoOc+ucgQfGMc1XT8w9onGam7dnuAnDRcXK9ZXMDs8ZNbWPH34iKvVmvl8zmQ6YdhsJFrHNRwcTri8WrHdDqicScHSdxG3tHz9yS9SxQmX2ytsa7FNw+GNM54/fsr2es3lxZYuBXzwGFfL/R8Vw8ZTK83x3RuslktiMozdhufLJca2GOsYg2IzbMgpcHzziPbgEGMbQtgQYiCESFKGp08v6dcr2umCEDOT1qEGj8qJ1XpD13dMFxBMou+25I2ibiqCs/RPr/B+ZDFvOTg+prITfBiJWYFRNIspRmV0Hrlx45iL6y2RLK6hGZaXK9pmwmIxl/osBHLM+0jIOklE/fxgytBFauUxVjGMPcrC8c0zri6uWS43zBcHNMZhlGZxPKXbdGw3DmUMgYSdtKCdrKOsw7jM4uiAx487Hj99yo2bp0yaBcZOqOoRWsXy2Yp20nJ8MscSyaYikXlyfgnaMZs0rLotk6ahmR0Q8xpIzCcN8eiYYdNhdMROKpYrT8gaXdWEceDNt96kW6747P1D5osDJospoPHbSIygS6RYSvKsBajqyJtvBqaTFmscaIvOGhV7GmNYJ4Vzmffeu2Z5dch24wVIQva1VHnW7lBSozOzJuDMx2yHRLttiREmkznkzOB7lJE5xI8jepOZHRyxuHGTMA70bGmmDdt+y/nlBTlBiJnj02OmreNkMWWzqri4WsJFQW+1oa0bDIHt9TV+DHhAOU1tG/7q07+Ga7/LJ9MPyCHT1DWD92AEXtUKcu0IoWIcS+NdQUu1VrSNPDO6rUcb88JlBgGBdrSKtppKO3SBWVMWR9C2rdFaSWMIhhhHnNM0Tc0wDARKLJl+4cxujN4DrtZZmrpCKcW4g74tZL97b3GzEYBIS5w1SBQyoE1xzCFSOUXlICvN2AVilNi3hMIqQ+Uc08mE2jq8CoTRE8ZE33kBP4qTkMr6pXqQAvjsZjdVagRxsEkFUlfW7J0dc4mppsR3Fn5awLkCNtvKoLUT10Ef8UFcdKrKYY1h3MHb5fwZYwpUU+r/nTuo0ThrMdaW6LhQagZZE42DAM+kHTSz29d9sWf7stvOHpbiBQiltNqvsXLOhCCxiUqJU73gMkoaV4qz0K7WzXnXiSqvFUMsdVnEdwKQ7SKxU5k/U1ZoNEoJ8K9VAbGsuMYP/VjuSyNNk6UWi8UJSSkkjtDLnLtzs9QaqsYV4C7IOXT2Ra2XKZCZvIZA+EKS72LjYnHKlHVY2j8bUpJjyGkH4mt2Lny7ElX+mffnu7xdcRVVL8Co8suqfD/aGLTV7BxApRHpRXQcBca39kVNvHO13L33q/Fq/IcOlRRHl0f82r/8NUw0P+vD+TeOTOZbv/Qt/q+//X/hnefZ2TM+futjvvGtb/wbf99bz2//6m8TzU/XQekbf/gN/qv/47+i8n+54t1eHp+99hmb6b8fvLj3+T0uji/YTrc/haMqI4uD0n//v/z3rxyU/hMeKSk+/vjNH/v363rgnXc++Hf+zmTS8cu//Af8s3/293/M1+x5++2PfuZztEJRjzX/9f/+XwO8ApVejVfj1fhzjR9bxnAlHkGpsrluNEZbEV2U3TstaWOoTCKiCCmTcyxRImrfwVNZTVU7tn0nr6cVOSpZiKeSgV1EgZ1YsFscZsQC/IXVcbG0fWlxnEvLiPeefXd2Fjtbis2xMxZVaRGysgiLlXOksjAPIeC9FxAG6aJJSKe6qSpUShin91npOWUqpQhExiCdv7aqUUoxnU2wzrDZdOQkMXYpZ9abLVVVo7DE6Om7AVBoJSKLQdN3PTFFrHXiRuRHGudorFjooxOuqjiZH5B9YNY21E4s4NvJlL73jCljY2DVrYljx9Qo3MSAmjKfTgiyfYkBVE5okmwoe4iDL+4Ku26nEjWTs0A7O9eoFNBKYihUFhFIGdnIOVxMuVpfEdYDicgwJpZXPW1T0UxqFk3GrzwMiWwjuQLbSHtvGjKh09y8/RaTw54Pvv8d0J6QE9palHZUxnHQTNgs1xLHdzSDqqKpWrb9ivXlkmEIDH7DydERTTNljIlNVJiY0f9/9v7s67Yrvc/DntmtZrdff3qcA6AKQBWrKBUpiQxpSXZGKIsjuokjyyM3ufA/luEbXyS2cxOPSI6cQdHDii2avcgqoArAAXDar93d6mabi7n2d8AoNiGZRRbJMzHQfWd/e6+91lxrvvN9f+/zaz3r4ZreepSa0g2Rup4RlCcJwdAPCG9zx5+umVTZ3EBpTfQp28XEhNSaRBiTLw4jFaCIPmPRpY+UpSG4iFAF1nYYU+Qu4bZBCTVagwg6OxCHbBvQ7TqSrJjWE4aLC65efkm7bvCF4GA+yde7Kmm6BmUEBwdHBDNh/vAxRkXk9RUyaF6dr+kGy/HxlFjBsN4i6ymrixvWfUsxE4ioODjSTGbZItB0gtnykLtnR3TWoVTBsNsQg2fnLSEpki5RCSbzJXe/9T7rq1d8+XrDxWqgnkyYz5a8++67vLh6SVmU3Hv4CGEEH3z4Le4fnXJ9taKNkmZ9Qe0114cbvvzyGbN6xuACL15douua6cGMotty+dVTLq63mOmEX/rlv4F/fcmX1z11UaLPn3O1anj4ve9hlodc7yyl6rFuQdLHWLfhex885nmRaHbXoBL9cMnnT3/MydEZ82pJc7VmM7TcOVly58Dx6mLF1WYH0tBuGrrNJ0QjMNManQpsu8VNFY+ePOLk3l1enF9zeLbFtgOmkARnsXZHNIIvb9acDS0zIv2qw0xruq1l6DZs1lfcOTljMhmo8dS6oPeKj7/8ivWLSw5PFxTmmKvrlnJ5zOrVM6ZFYn50ivOeg0lNeXiM71Zsv/yUQQlEMed4PiWZHXXyHB4UuOGGRblEyAVdqnjVOT4/7ymac/69v/+3qBeHXG4cByf3CRj++//mv8Uc3GFx/zHffeeU5aLkj374Y6YRmu2a9z58xHvvfoil4ebVa1oMykUenhyyQ/L06U8oYs/733rC6/Mr3n3nPQpR8Pyz50RR8NF3fo6nP/mEw6WiFDvOr2/o1mtE1+CvLvjx7+0oXM/xg/eYLo8QUbL68hWffvwFTcgJcS0NUjq0lNSTKX/nb/4CDx88QiTJO/fv0gZNeXLK9vo1MTrefXjC1a5jUipWFxd0u03uuGUUcqR9oTQnliWBo4mhLCZsXl3w7MfPuBkaHt4/IwTJcnqAM4b1ruMHv/iLzA4P6b1mGAIvXlxwfbXjnk8UTvPhw3usg6O7ueLyy5pkB87uPOYX/96C0G959+CUm8sLttsrnrzzLURwXG56ZocndJsrvnz5mieHp7nj1ltkaXjn7rvMCs3z1y/o3ECz3bIZLPV8yp3TO/Rdx3a9xbUD0QWCjQw7m61gCkPSkclSo5Wh2aWclBWCojKQsr1NVddZdOk8QsIwDBChb3oG2yFkoG16UoqsbxpSMgip2GxbCpOx/FVlUCavrylC0+bXe+8xSmEKhfXZVkcXGhU8MkFyAVWOBWqfQAiM1JRGYaqCsio4vfcQ2Rv+8OXH4BJFWZC0YugHLl+cU5/d5Z17d+n6hk+unrFetbiYiVJSkruuR1pFGLtskSBUzFQCLW9tXHVRUhaa4OMY36SRODhSTfbeXXCbV1dKMV1OcoEAxfpmy27TY3uPLgS2d1jrGHpLDJnYImVgsDavuSqLJRbTWRYtIZBJsl3tsM4xmU0pR2uD4CMxcNvxK3WmGaUksL1FKcF0NsU6ny00AMZOYGk0WmuSgKLUHB8usNbR9Y7I3v6BsUCiM41IZRqIlgpTGBCZVhNDwDmbi5tKUlQGgaCzfS5uaVAj2amoCgpTUFclRWGIHtquARsoyjllWcBc0tGipKCuK4bB0uxavA3EW4sJ8NHf0qCEFpT1hMmsRJcK50ImiClB21j6dqDZ5eSW1pnUSRKkIOlER7ftCMGTUsD7dNttnu0pLMOQzzXkjvLcSR6IKVAoTVEqpFA460YbEb3XjeWu/piLLaXJ521PRUoR3ODQUqOyR9woiIvZ9sl7hExMphMm0xIlFN4FvA0QQfwMi5SUlG9oQWMRRQpJ3JOPbi1QZI6HRbq1vuK2EJPFHWpPnBnpXYxFQDEWhfYFmjTSCvbFnZSy5Iux+zyldLt3+PrY/2S/BwHGhgmZmzD234cssgpk4Y4ahTpSiLHIORIk8qeSZMz0BqVQMo0itfGzYxoJr3G0CBS39BxTGKQUWOvJLl+5kGedu7VQyVTbPd1plGsJkZ+7KSJktr0OIWKUREt5ay+odBbZpxipRcXjizu8+/w9JkzxciRjxIT1jhQcRgiUFiRTZmLauD8YS2H575TpOymMRKpRjZcpACOVLl+ZfJ33xbnbwmyeC4UpKEtDb3uizd/FBxh6z92ndzm9PGbwnq7tmYc5SSdQuTBOzKS36AXyrEY80ogbiRQjUUEqEBIlJJU2WOuQUlHWBai8Njpvcd1AGK3d6qrODTEp4RKICMJF+k032vUV+JDQpqDuK9758jH4hJPDSFfQGJPJDlJlClaIAVwai+jptki4p2Bl67+Ai1kYGmMCqUYKX7b/9M7dWqgLxEi3y/PXWUclMi3QNy3tdo3rLVFBVRq0zOJk6y1SCcq6JilDOV+iZEJ2HSRJ0wx4AvWkQOpEMwwIXdB7R9MOqAJEkiMdbySmOUFRVsymE4ZFi5AKZXOR1oZAEjITfwFTlMyOjhjaHetmoO0z4aksKg4PD9h2W5RSzBcLkILj4yMWkwlt2+OSwPUNOkq6ume93lCYgsnNnEd//C7dJBFKh/ID7WZF2w1IY3jw8A5p17LuPVop5G5LV1jmZ2fIsqZ3HiU8IZQgJ8Q4cHZ8wEYlrOswErxvWa2umNRTSl3h2oEhOKaTkmlVs2t72sEihBzJkFckKfI6iCK4gVAIFocLprMZ26ajnlq885n8FgI+WKIUbLqeWfAUJLrOIwuNt57gA0PfMp1MMcajyRbqLkouVxuGXUs9KVGqpusiqprQbzcUMlHWk0yrMRpd1XRuwK6vCVJgVUFdFOAsmkhVS6LvUVUJosSj2bnITRNQdsedeyfMF3M6F5Gy4PC45uknP+F6vSUVJXfvn3H/7hGXlyv84Gg3GxbLKY8ePACj6doNjkzMrKVgMZlzcb1it7rk6HCJC46hdxSqZNds2K12HJycUOpMX620oN25bPc6WLSI3Lx+jW0VQ3/MyckCISShd9y8uqIdbCYdCYUXWRhqlORvfG/DB9+akBLMptPccGcKrMqx7HxWoQfH6UlisZgydFkUFkeLMyFulbAjFTBRqMjxElSIXL58zW4YqOpMsRZRMpvN2bYt8+Wcs7t3GFwkJkHXDqx3DfNRFH84nWHDgLcttqkIvQQ0dx48YHK4ZFGUlELw+vqayXzGtJrSDxtUWWGEYLVdMyki01jyrY/f5eKjl9gpHB4cst2sGUKee25wIDVVXVOYkuA9Wx9IIZM4Y0gwUsKTSKgiizhjEDg3ClJlJkiislWllG9EKGGklgaXY8aUsh300Fv6weFdREqNd3u7yrxXMzLbU+e4Pd6Ke/I6PVqohZAFTkrmh/S4xmqZLd/EKEY2KucXjVGYomQ+P+Di+SWda7Mt85h3tP1AI3YcLJfMJGx8w67b4H0clcvxzcp7G7bs/Xzzs17JLA6JIcCeikmOXfdkpbTvMRj/ubcC3sc1xmjUaHuWYz+fCa4pElQm3Qe/35+QG0hjJPlMX0oi50JNYfKfC0mwmeKqtM4ivVGUvyc5pTFukypTjTKNJ+V1TEqC39v3CvZUUiHV7X/XdZGffc7n/K0YxdhSoEYr3ixGy8a+2T5uFOqPFCfn8zkySiBQuOje2PWOVrBZkJVJSnokITnncN4hVYGUuSnH4YFMS9JaY60bbf3yHjiHjHHMBeSARCiNNlksLnwWEZeVwdtsvWytzWu2lPvABiHAC0+6tdseRWijeGsflzrnx+aRnHfNlCqR4zZyXCnVSHVKaZzToxgs8idIZFIK3pCvRleBkPd5WfzE7T4pi+ezJZ0qchxA2jcA/xth8dvxdnzzkaAcSn7wez/g7/53f5dJO/mZJf8IBH/7t/42H378YW6Qgf9FSs7N4Q3PHj7787s/EhxfHfP3/ru/91daoAQQZfxG5/XZw2c//YP5+hgFSv/xf/EfvxUo/TUfm82CZ88efMNXJ375l/8HHjx4/r/4KiHg9PQCKQMx/uliTqUCs9nuGx7DT3+UtuTX/+mv8+ruK87Pzt/GDm/H2/F2/DuNby5SMgY/uHEzs+/8tYgRDexDQgmVu1ZUTugrJbKlWYKUBM5FiJ5SmkwbglFflG6LCJLc7ZJ8yNKZJIARh4tGkBO6SqlsOzfi/lMaP3O00WB8byk1cl8UiNB1Lm9OqyIj2YnoaYFkj+CVoxd49o6PQWBM7ugREkqjciJCKYQSY9dNQslIOa3QRqIVKGny5jlE2t6jQi5IlaZkUk+RUuNGghQp0be7XFiIHhciyRu0ycksk3Kyp5pI+iERQ+7ezzYqRUZkp0BdFZRUOB8oTMYaqzJ3YGmtcMmxC4Lp4pDOtkhVoETuvMI6qrJmMq0p6oIUx05rMmY623JoICBV3riLBJUxRBmJLiHRhBjxSOqyzom+EHm9umG9XeO7QIFk53qSCBRGgQfhI6eHc0SShOgw9TEeQd9t0bJgqiqq7Q2vXr0kNmuEASEiktECZ9xI1NOKo8UcHwPbtqXQmhg8p8fHbIeeF68vuLq5oml72sGxmE+Z1TXRO6Q0HBwcEpyFkLuP5TRSVNnGpvcCKc2I8R9yQUmqXDgSkkJrfIq0XYtUCm8tQUiU2lcuEqYuMZXBNi3NZkvXbJjN5uhJRdYmGaLSbKLAxZ5m2yCUoROB15sr3OcJHxX6QBO2HaWZoEVHGAIKRTU7ZLFYIKLnvUePcElwvWkx5QFaTKC0bC9esJKKm2HL1fUlQcFsPsFKjdQxk0KixHrJ8mRO0AN6Mufg8Ix4/gKjoJrWbNo1sXdUsylCQj9Y5vOKk0VFVZwhkuLs5ISHP3dEGeE4WloR0O/f4b13voUT4HtP1yfOVzuM8yzLKQd6zlV3weGyohAWJVqmRwecPVhy/uI1EcP15ZaX168Yvtjy3YdPuLxYcfqtJxxIgbDXNJc3PPvkCzhsefKd96nnxyQKjKqI9povP37Kxetzjk7P0KVi15zz7PwZAke/XfHqxTm6nFBPCsrpEVMbODhZ8PxqSyHP2KyvEUXB/HDJyXTOg9NTtj7x8nzH5cXH1MsF7zy5TwqasjBsLs9ZbVpOHj/g4OgeKXq2zYZkBLvVDc+ffUnTdMynU9Zt4vXlBccnmqbd0bWBNFkyP1xyeXnJtu1ZLO8gXA9+oG0HjhZnnH37Ccq1pG7g8dmSg/4+P/nkE17etFSTD7lzOufhwZx3hUJH2G1bLjaW4WbgdHGHX/zlkqdfPMOvG24Gx/XqhuXBIa9XW843Daxe8YNf/XnefXTG808/Z2IyPcFUS5Z3T1GqpNk2vFr1pHJGUSiEdSxi4Ifnr0gq0H/S8/De++yspYma1SCZThOzRcWdBydsNiuev37N6uocUU6pyxKVshj06OSUR+89RGhJHCzPPv2Uy+t1tqEkUQjFIAVeC+rZhNO7dzk4OsHbhPWKnXPUsymJAGjmM82ry2vqouTDD77N1eUrBtcRYiLFsbSaBIK8Hqybnq2N6FnF0eGcw8cT5lfXfPTh+1T1nFcvz1ldveT0RHP18oYffnrJnSfv8sE7Z7z30bv4jz/lZv2KeaH49ofv8dX5C2QF15srXr685O79U1IXWUwf0CLZdg5Fjd1FNjdbnl28YtU3rFY7Xl1fcWQMOIE0iid3zignNYbE8y7T5kqlKScFShVsLtes1yuUkBihiAK6rWcy0RSTAqUVRVHSmQHvHLNZTb/rGVxAibz2aa2oJxUEOSY5s1ipHyxdZ7HOo3Ti8mKbC+Y2I/RD6DJJZlZQlYYQAmVZUFUlwWe6Tm6ozs9JY3KSutl1aK1ZHMwxUrPbbOmadqR35OJ63/bIaUWzGkhtZDr3nExmfP/nPmC93fCTr75kZy2FkvSbHR83n/Ps9WvqquJm0xCCRaQs2opCIs1I/9D6NnGrjKaoFdXEAOBcwLuI0gZTlmgBDS0gxvUyF1xgJBORk8bD4Ig+IVIm/ZSFYDmfEXrPzeBxg2fttjkRH8VIlxztKXwgiURpCuq6QBuBswMSw/X6hq63lGWB7SzeObSRVEXJdDpFIHCuz8XtRKZMxGxDli1c5SiaSVR1RVWVJLkXUkeECCA9RSHxXoAyOO8geRS5wOStw3Y228HSj4Xtkqo2CC2QMuErg0+BcqI5PMi2kCFGXIpUVYUSgqEbaDYtXdNRVmUuOshs0WCto9m2KFmipKYPA4U2GFOg5BsCmpJjtzLZ9ojx9yORwfZoXVBVE8qqRCnBbtXT7XqGzuX4U2VKlUoSZ3vcMOCshyizABlIIVOYiiLbMgUfcDETypRRY7eyIASRn2FGjrbGAimyYElqlcWPKt2KR2Qh0EbiXSZgRZfjPDu4kSjK2AyQg9kQA1ILYpXpTVIrfOtom4FEpCi+uZ/9n/dQUt6STvdFlP0+QEg5FnIlewuXINIoeWEPSxoFeHl9eCMKzNWU/X5iXxjLFmJvRErkV7FHM8mRdBTH7vY9iUnKfaFtjHmleCMyIuHcSLPSCiUgykyxAUZak7j9bvvrlwunOW+jlBhrpuK2mJWyTh097mVysU4C+bw4F7OAZRQ+Gm1yE8XYSQ/gvb19huWirSKOnzmyBdBa4sfPDCNJT+8LhE5x7+Y+D54/pN5M0FLnczF+NyklkYD1UJQVLrhciNxXZGPIJLAiE1PfEBbG68xekJUJB3k/kUlHezu/bG+SRUxKGSSCECNNn22jg48oBDY4IBecTVshvWNCmW24U0Dqmgh475BCUQjF5fwFfXNFcn0Woo4iKNjTsXIBuB7t5axzuagcA5NJpv9tm4aua3Eu79nKwlAYnf3HlaCq62wXGiMzO+P7n/0cyzQFlTLxJinMeIxiTwYTec4rNV5r7zKJI2TjvShHxSugtEZqSbQWazPFyRQFyozrl1BEIRlStsazg0VIhROR3dARVhCTRFaCZAVKGUT0RJEFUbqoKcsCkRKHiwUBQTdYpKqQwpBUYGi3FELQBUvXtkQJRWEwphwpellMGKOgmhQkEZBFSVVPSM02U4uNpncDKeU5g8jzsSg001JjVF7HppMJi2mNAiYp4EgcHU45XB4RhRgpIom2t8gQKXVBJQuGvmeuas4ujvnoq28zlxNm85JmuyOh6NqBbbvDu4GzxQFN2zM5PKQSIHyP63q2V2uoHIenR+jCADqLJ33H+uqGZtdQT6dIJbGuZdNsEUTc0LPbNShlMEahTY0pE0eTkk1nkWKKHTqQiqKumBQFi8mEIcKusXTNFboqWRzMICqUkgxtQz84JgcL6npGSpHBDSQFtu/ZbDIlpygMg4OmbaknEmttFouYkqKqaNuWwXnKaooIHqLHWk9Vzjg5PkAES/KBg2lJ5edcX12zDQ59WDOtCxZVyeGRQCYYrKMdAr4LTMop9x8qVqsNcXCEtqex67z+6ZJdPzC0jumB4cE7d/FthwwRU0pEaTDzKVVd0XtPZwMWRSkz5SV6R7I9bdeBipS6oqpn+CQZvMBDFlnOKpo2sNlu6bodNiRMUWJGwVDbnTCZnmIqAwm6zZbNZpuFhWSathKCOFIi332voZqc5LVXaHzMa5Y2msFappOSwQ7MpzfcPfuQ3XaH8xYRxrVqXHH2C5gLkc56otQUhWR6MEU1HdNJxfLggKbp6NuGA2MwUvPqxRXRlNw5rVgeLej6Fj/0BNdzdrTA+Y7OeZIIXN1s0CaLxY2okLqm63ekpEhBYjtL27X0MYt/ml1Lqjw6RpKHv/3pL/L0yVOa45Y2Rgj5OSu0RkhNdIGmabJwNpGFSD7ibKKaFAg52nKVeiRO5ie9cznntxco5/VNjTFpXg+sCzjv8S7HbqH3COEJIecCgw9EIhpFYdTtGl+Umc4TwmgVOq41QmZBRrZfdmitqUyJH22A9dfWau8DWkUCWdBJ0qQqsZzPWcznXK9vaPpsB4zPtLOm6ymLIotWfSD73I12rGpcXPcWykFkC0OVibtCjk1/I41QqyyoCs7fRjJ7gdJeZLyv9uxFJQKRz58Imf5eVUTf4n0mH4l9DjWrUUhyJDYRQUqM0qPQNQvErM+NEnubPcdo3y2zQDiNlKE0EkP39ro51vi6fVvOGRqj2dtI51hotJ1WmUCQLf8S7K/ZKMbxNsfLo/dtFhoZ9YacpbPIWqhsf6qVyjTTFBFKZYqhjwSXqUVKy1vbMqXzv63LJH050mPFSJmSMhBHIdstXRNG4VuOFaWUhJiFTYUpsg22UgSRGxKDyxaRQsTc+CFkblwY58Y+hk+MwV5KaJUtUDNFK4uixDgnJNnSWkpx20gRGAVgY5w8Bnd5L51BUCgtiCk3NzDuJ21w4ywa75LbHP0oGNs7FEh5u//Mlru8HW/Hv90YxUkf/egjfvl//GXuvL6DTD/7E0kmycH64E99XSLx8Qcf48z/f+umn8Y4vDnkn/zf/gnL9VtxzO348xBBJChsgYyS9z99n1/757/21uLt7eCrrx6x282+0WuNcXz/+//6GxGPHj58xmy2Y/OXVARX9RX/yf/1P+E3/v5v8Iff/8O3QqW34+14O/6txzcWKTnrCMGP/ye4begJkTimm/NGdKQNxUgKEW6T5rnLkyDZBo8uZO5alTnJH0NCipRrBiIndeKIOtYyI3rjuBlOMeBsRI0o/H1RIvuNK0JwebMF2Y5A5A2mE4IUyEkMIdDF2OsbI2iV8dwik4mCj0QfqcZNvBmLSjF6YsxJGKVyoj6GhHcJ21mqUlPPplgbaTtHRBFiRMuIVIYIuUuMgNJFPq/OQowYIzDFlLDtxs4hMFpjynwMOcGRbehCTJRFSWFK6rpCaYUj26spKSh0tmlBByZ1ybrZ0e56RJJcrTvqQjKdaCIJ1/ZUlaYuShazbNfT9C3Jx2w5o3UugIzdZiJKhhjQMif+FWT8eRSQYkYZ60QSgSE6oogMQ8CokuAiShVMaoEQGX09m045OlzSbnd4n5DBcf06F6Qb37LabSlE5Hg54cmjO7TBcrlrEEnQNh2JyOB7SiPo7IarVYOLieAjDx7cIwTHzXqNKQoKlTsVUwhMjMbZnkVVcXB4QEyJ+XJOMa24ur4mRcu0LIlRkUwBKSLIHepKFGPixoydzYLBe6JIRO/ynBOJ3nbEFKnKgmHwOJ+IEqwKlAdzVGEIKYAyROdysdZavE5UVcnElMQk8MFz3Www5YxV0+MN4CwpQVVLpM6Es81mi1Tw4y+fcv76NbPFkteXW5qto/UdJQM3mw2JxLSSlJOaophwfKdg3d6glUQFWM5PODjSDGWLFobnz19nUlflEUbgVJ5vsrO4bcuudcT5HNEOPD65y6uvXhDbHUbc4cXVhpv1lpUdYJr44tmX9DZw9+CEyV3NYlLRrndQGB596326wjGkASNnLA4mtM2OrrlmXiV23rFxDdIEVKUxxtB7gQ+Kly+fsbp+zQf3lxzcWVJWJc5vsecGVXXYfsdkMUUfVIj5HNv1VFpRKcHRbMlsUvEH//oPwUyYec/rV4G79x7z7tldOtsxOTjlt37z/8PR8pDl2RHbTc+sqKmKkg7LnTtHCJG4uFyhk+Li/JIPvvMBTz56HztYDqYHvHq2Qs1KRKGQwbK1G+49PKAqH7PbbMB1/O6PP2ZxNaMddgytxxQzsCtkoZnXU5KUtG7N61dPOVncYedgc7lj4nq6F0+ZzEuOj0/41i8d8FgYSlVQlLBeb0lK88MffULrLNZZmt2U7/zC93nng3doNxt+8tmXvPveO9ysN3zx7BUffOcD/o//5B9w/uyci9Vrnj2zfPH0OR999zuUE8k0ChonqROkzjHsGialpGXgomspqpLHjx/wYnuNmc2Z1TO8DiyPp1y9bNm1I7beR9avVjy7vOT0nXss6zkvnr1G1DO2VuXC1OESlMB3HeevX7KzmUwnyd02Smabltn8ENs6dBAURjNsLTE5vvrqC6oYOD1acrNdsTw6ASHRpWY5P2K96YBhBGJIkNmKJkTJzc0NL88vODy5h65K3nnvEXcWc1Q0PH/xglcvLtB2oFwqtu6Gx4/exaUtX33R4pqOO2eHHLx7ym//D7/DVTvhzsP3qI/PaK56XBOYVBMKmUBFdKGZHh1z9GCOkHDeRZ6eX7FqVvRdCwpu+g1nizOqssQNa5xrWDU9TmqcC5zOD0nOse4cN1c3bLYNBZLppKQ+rBASju4uMZOxKo7h4jphuwHrsrXXXmTaD5YylrBtSQFKU+bCeJRs+hY7Wn+iIqWpSAFE9FifbVFTTHirSSYnQl1vyTlTiTaastBoA03TEpJAScYksqX2GjWtMHUFKVDKAjHJ4oJ6XhOFQGGIQnCzvqH0icPpkhBnTKczEg3RudypjWDwgXbTEJOHce2OKJTRKC2yxVsKWdxiNKbMghM3dihLcmHFdgOud2iliT5mcYDIxYQk8jqZBIikECLHQba39NsOXWiuNze5CB+zEAKfxo7kHF8BCJVJLUoL6knFfJEtGpvdDm8jwXUMgyXGlG3P0hapBbP5hLqaZAqWrPE+2014G8c4Td3GUmVdEl0ueB8cLdBa0rZD7u4WgRA8Q08uVo9CoKLQWTgifSYJ2oAbIjG6nHQn0uwUk3nNweGCyXRCWVf0fZ+LHNGzPJzRNgMm5ZimbRq22xY7BEyZCxCm0NRVCSniBsdu3TL0WybVvgN/DELHLmuky+KfkCC+EZcoLVAqT3NnHSTBbpsLUX1riR6IihTDrb1S8AHrAvRjwVKqnKQXkBmSaiQgJYqqxO8GhsFSSKhrzaSYjPbBgqZp6VtPDImEQ/mIqQt0kQk6e4LVniqkpAYZRruXTGrwt5Sf3O1+W65KEWsHfKgASd8PeBfxweWmgJ/REcbnApALK3tBfGK0yYBRC5S7xlP6Gl1gT6gQJCGwNt5SiKQQxH3n+vhZafyP2+ki9vKYN53xb6w38gEJkYupYqQh7Tc8tzZxKRLFKBiL4301VnGyzU02wkljQ0WMKZMb9NjhP4qe0ljsFiKTA25tPkIkimytrYs9RTWwFyrJ0Q4lkS2WIc+V3EAyEpGkQBnDYP1tEUuMpCApc8FUjt3y6WtFsqP+iA9/9CGL7QyZo3vUWMDTMmG0YnA2i/eSpB08WgnK0T7HjuJWrRSlyWIh51xudhDi9t69tS5JgrC/OOO5RMjbOZHPSRrPZ/5nCBEpNNlFKKJ1nkQpQWEMdV3hrM3kphTpmg4pJC5aOtfzx+JjlIgcLKa4GGity4JOm59hIXqUFrgw0PWWOIriFvM5KQW6oc/2QFKhpSYlh1GS6D2F1tR1RUz5uTn3C+59eo95O8MUipQkmVs7zqOQC6tS7Olbea6GmBlTYhTgJZFGolsu8PsQCCllgY5MqKpAqvzsRCpSyBbpPkAchaeFUqSUSW+9HZC6oLeBKIGQibpGS5D5Wg2DRUi42qxodg1FWbJrB5yNuOjRePp+IIlEofJ8K6uao8MFvetRMovwqmJCVUuCdggkm01DipFS5z1/lJkwE3wkWod1IdMCnWc5mbFbb0nOImcztk1P11v64BEG1psNPkSOOeJRc58HrwWut5RFkUkiX3iEFVR+RjXJtnzOdhQabIwMwYEOdJOOflbhd9kmaLvb0Hc7jmcl5azMxKw44FuF1J7gLaYylNUcUZR479FSYATURYkxmtcX5yANpYnsdpHZ/IDD6RQfPKaa8vyLr6jLimo2wQ6OQhq00jgC02mNEImmHZDjXvfo9IiDk0NCCFRFRbMZEEVumBIxYMPAfFGhVYW1AwTHy+tLyrbABZcL9qqE0CGUojSGJPI8b3Yr6nKKjQnbDujg8dtVXocnE44eVCyFQkuFUjD0liQkF5dX2eI1BorBcHr/DgfHS9wwcH19gzEFzjl2u4Z6MuVb33qC61surze0bcPm6obCVNTTCUnJTBn2MZOUvQcbQMDODZS6ZDGf4UUgCqiqCZFEOSmQ20hwAz54CimIvWe92ZGM5PhowdAOhJiI0vD89QxT1fmZHRN902Q6262YklEwqDg87JhMHNFmgX3y2T6rGbYoArOqzuIvaZjNNIfHltmrGdttw15mwiiwFSLTxUKIbDYbrA9MlWEyrZlOarwN9P3AarVGhIhWYNNAWU8QRtK1G6KLGK05Ojjm6vUFm7ZjPp9yeFhD1ASbSFKgFcgSkBFdVsyXino65eb6iu3g2HbbMbYIuCDwIovUZa/44Mff5kX7kouTG3wUVNqgU8TFxLbt6HuLSGCUpCpLlJboQlFOTRZdSoW1nrYLmew5iiSATIAEhPek6LMV6Njw5Vwm0SQxCnlFfsaScuOgD9nONAhB0up27XLBs88DZiKOxHv3Zl0nW/im4BGFydRrQSYZCkFUMjf1aZWbCaTAx8Cu2THVJUIpClNifRaakOIoopd01uUH9mhfm/cAeb1M41rMSMtRUuYmv5RGsl2WDKcYsb3Nz+/xXO0JiHuh0q0KZczDxZDjYl1ovPcMcXgjWCGvmXkPkt7MvVG0rZSkKAuM1llgZd2tCGxPbnQ+F96VUZRFgZACbfR4/OKWzpQF3KMoXCk0Ap8ERakpSpPJQDFxSxkPozhbACNJP+/i8/tFn26JodkQOSKcQDlFVZdoo6h0JhmllMmDplBEJcEFlMpxkLM2x8ACDBopI2bcu8SYcNYz9C7H9nub2jQGpEgYrdFvfz5u6sRINBRjY2sSOS8eXBbX7a8r43nfC9XjSD56Iyx6c+7IsjFEysfPSF7NoqgsTCpKc0vltOO+j5SpikpJpFaZIJU3eezFbVJIkLnpVkiZ1/mv7SfGiPc2YN43IquxASOE/J2iePP6t+Pt+FNHggcvHvDr/89f5/6L+38pxEn/tiPKyI++86M/N5HM8dUxv/b/+jXunN/5c/jAv9iR+At63iQ4WB3w+IvH3H119/bHAsG7n79L3dVMmynqf4ZwE2Tg8uQSEQUnVyd/Jef925FHSvD06RO+6QPg/v0XHB7efKPXGuO4e/fVX1qRkkBwfH3MP/qv/xF3zu/wm3/3N7Gl/Ys+rLfj7Xg7/hKNbyxS8i5vWMXYZpxiICEQQkMkJygKTYh5AxR8uPV+z5u13CETUiSNFlgx5W4ZJXOiOjMxsn2KlBkzLPZd08RMKvBj0kFlgQLkDqhstRLwwSNVpjoxJj2FHAuxIndBl2W2h/HeIZXGeYePNiecx074EBJaSbwPxCAoi5KDwzm9d6ybjpgSZaHQSWJdJDiPswmRPHKixkRFPl9GKwT5NcYYUgDnHUM/4EOgLBRGQHCCcmKoJ46hGTK5ICm00iSRkwIKQaFNTuCmfIyFlKh9cUXlznMbPSIKSIF2iITkKaoaXWQRWSkzBcmlxMFiQaEMKUV22x2IiA0eI/Vo9zN2QI0dNjHl4rNUBYO1GKlzoZrc35MA6x1VWUICZy1D1+Glo2m73FmWBMEnykIjtabpHT5CIQXK9kg/sG4HQhR0UTCtJyxiyenRDDO0vDhf0YcBQcR6hR0sm92alMB5EDKiZcXLlxcMfcNqs8E7z2wyoypqEoKu7UEL+iixMVGXBptygsVLWE6WmXA0eEg9UY0dYSmRFEitGYYho7ZVQmrFbDrFh0DX7kjRIYRCi1ysDMnTW0tUOncte0+pciemc54oVbYLCYlcxtDUpuCglrTBI4xiWhSUhSBqTbNuqOuCZANt5xjcwOAcup7w7NUVyXqstmzCgIgt00qwPDji8OiQoes4nM84uHefn3z6BfOp4aK9wRhDaQxVuUSkjt3Qc7L0JB15vblEmSmVrokpC+gOlwvScspZEtyZLXlwMOHy1ZfErmM5KZHC0/ie6cESf5M4LEqCjXz7nW/x/oN7dOsrts+ecXDvHazUONvy8M59Nq5j6CVG1tS1oZoc88F3H/L04iV/9Pt/RNuu0UqzXjZEv+X6xecANA4eP1jQN9csJxP6zZZXr3aUE09sBpScc3yy5MmjJ7x49ZKrq5csJhX/+//d/5avXrzifLtirgRP7j0hhIFyovjRZ1+QdMF733mXX/5b30FHx+WupzyZ09jAF9crpIpcvF7hfODxB+9z72jJ6VFi21h2/cBypnl985qmbblZd0yN4fSdOxw+OOTHv/cHtKsXDL3l9fkl5bTm5OiIyhzx5dMvmR+WRDfj5abj8N4JEk+3ciyOjzm5c5/eZnvG4mhJSoEH7z5C+QKhBNebhoubS148/YLDxQHvffQEYSLHkynT6oB211FJj3E7vnVnzlVpEHaH7VYMuxXPf6zor5Zsd1tOzu7x4NETrKnx0yV3T2dMrjdILbneXTJbHPCt73wHJRNHR0t6L1hvbvhb/97f4vzFNbvVDcIFJsmwE5YXV685Oj5BFTVW17xed9ik6S2cHmp+7vvvc3G55vz8FaeP7qGURiYNCFwKWNvnQl2EgMRKUEby/vvvcXrnzmj/1GNdz8FyiXWaoXO0EYSaUhGYzSdc31imVQEqk04YE8dRZps3hcC7nqqS3DtZ0m8jv/uvfj9TJ4LhJ58/5aprOT6ck2pDpcBtOl6vbqinirouadZb5sWS7/38Rzw9v+SwPuRgNmPz7ILLq5eUy4rQR55dfMVUCSKGs5OSk7tLfvVX/gbvv3uH3/ndP+Djp58iZwU2Qje09LbBeceyKKnKmvceTFjtNoTOMtiEt9nm4OBgAS5iux4hFHVd0O96tKnwPrBrWpr1KKYAhDJobYgiMp1NqaqKFAXdMCBVQJPX6Okki2GSCEDuTI4uImIuHOR1PCfM1ViYHazLIlIhKGIihYB2gmaXn6XJxlyc0OAGS0gdVaEoi4p21+KjRZuaJ48fczSf0bmeo5M5ZwcHHJZTvnr+ist2hyo1wgq8TwQZ0ErStTtCyOJaH/JaJXWgnhjwgmg0s6kmOpftNWLC99lewmhDVdUMg2Xoh7w2pETaF10Yk8B7AXfK6BIpMvHE2YHdJlBPJ/TdMFIe1S215bacNYol9kh+ITLa3w+OvunZrpvbwn0YE87Cy5Hso3HWk2KH955IJEmRz6dKuDFuS2OXslCK5FwWh8uQu8hDwHsLKhfHnQ9ImQuFuZtZoZXJljMhW0clBmxnRyoOxOTZbhqkFMyWE4qioK4qvPO0bYcWhq4fAIlNnq7LhSxdCFSRCzkhRPrO0veghMb2ETdE1kODKRSz2STHPBKKSiJ1iRKSoXe33cExBVKUFMUMUhaiu94ytJahdzgbECSKAgTZvg4hcBKUjBCz9Uee49muy7vcHV/VZSZ/JY0UASF8th8xKovvTDHaF1tiHG47q0NMCJ9F8llUEDJJQApihOByIV+OBa3cFZ1uKyVK5874FBhtPhzbzY6qqN5YaKT0RgT0MzhifNOpntL+u+XiTS5cSZSWo8XaXqC0rxR9rXCXxo7y+OanUuTyXrp9731BjFvx0r9BVRrt2b5+bHm/4W+LSfnPElJE3qRQM31IaTXae+QCmU97e643MaMcKQbEhDKauirwMdCP9h5KZkvMEPL+KoQEBIwRvHk4jCQKkYteUu6PmWzbHGO2XhyLXsoojM7d/THkh5HU+d7PoqE3AiSRBPdf3+ejpx9hUibHibFpJOzxTimTNSKZOJcpAQI1PuNiSrloLXMC11oLZOtHJSRKmzffZRwpxVzMVQoXQraciWks0ua5nC2vdf74EHLTC3EspIqxYJjpU0JInI8j0EgggkOEQB8zuetmuuOq2jGjYFqWWSzeDrjo87FGQQhZxJOLgIzPccV21+C9ZRgGQoyUuszHlcBLnwvfZNGVlpo7L+7z+OX7yHWkKEZbdB8QZJEbMhPSZGK0ysnP2TQKyqrCZDqtt5n2gBxpXrnZxvtIknmNEDGTUP1YWOSWvjZaIyHRSlMZgYsSlKRQCqU0yWfrMW0UySe8j/iYbe2E1mx2HSlEggzYGCC5TFWta+q6xjtHVRSo45If3vkxZVXQuP7WAlSpEpGycHlSGZCJ3a5DKoPGkMjzsK5KUmmYIpgWJYvK0O7WJO+pijyrXQyYqiR1iVJpUoi8l97nV5//HcQmcHlxRTVbEoQkWEfCYZXHJ4ESGnQmGh2fLli1O85fn9OILb/z87/NncUhH15/gNrm+8pFMJMyW4cZgx8su92AMpHkAlKU1HXJcnHArtnStTtKo/n2e++y2e5ohp7SGJazA1L0KC25vFmTpOLw9ICH90+QKVN19KTE+ciq6zPtp+kJMXFwfMisLpnWMNiQ99ZG0nQN1mUb1kIpJssp9bzm6tVrXL/F+0DTtChjmNQTtEqsVxvKWhFDyW5wVLMJkojvA2U9YTqd3wpKyroCEvODBTLmfExnM4Vns1pTlxWHJ0uEStTGUOgKZ12ODYPlaFpikqdQiXbXkcJAs3EUUuDcQCE103qGONNYl9D1lNkY79hoiREOj04Y+oG6LlCmoGlaFidLpgdzhrYnWI/y+T4f/EDT9XlvrSSN9diQbu+xg6M5Q+/YbC2rqwln9zKdDrLlko8+CwNHcUEQ2Q7ryeOGo6MDpFI5BvA9yhRMtCF4jYtitO+CstAsF46qMPm5P96ro1qELM0fSSnJM5uWVFpz+foq39dRMAyOy9UKUxrm05qyUOAjQ9/SiUBRGELwtI3n+PiAm22DjYLFZEa32WH7FicFy+mM7XabiV8xize1gJOTJcvlhPPX57y6uKQPA9oYrM+xQyaIKt756jEian707o9w1hJsFpCQEmVhEEIQrMc5jxAFwWWitpACO1j6weOtH+2nRrtSmcUZRZHXgSiyaKms9K34sqrLW7F7FnTkPKB1WZicuTJAzGuOt9n6K6Ycf+f1Owueci4ln38xrpV2cEgpqYpiFOXkmLiqSs5Ojun7nqLSTCc106LEDZabbTuunfn9Pfl7hphpPPv8I2NMoU3Oa/q0pyzmZ2piFCCPzQmZipObIGIK4ELOtb1RVGdN9H7x52tiIxLODuOalclKehQKpzcvvxVpf51oBOQ9RfIMQ7Y3y/HyKHwhi8OV1pC4zbHGFMf3k0iZbi3S9x+Y88PkuS4gklFiMWaxEQJSEviQLeHkKFrei5djCllfIyC5LOzfi9edy+tzRYk2ewLUmGsmx0M5duI2L5Bt38St2Cj4SCDT773LNs3Be6RMGGNQeuRrqiyQEzLTonwM4wmNow23RkqVBcUhNwVkS984Np68sRrcE7PESB7LjROZkrm3Co8pC8eUltlJYAw6BCNJaU95EpIUfc7Jxv2VzjGKSNlO8TY2HjeSIcQs/BejMGr/OBp/W47NHDGO8XVKuFG0na0Dbze0vB1vxzcZIgp+8Hs/4B/+03+Icdni/a/iOD875/z0/Kf+OSIKfvC7P+Dv/Xd/768NQamZNvzOL/zOn++HJnj8xWP+o//7f8R8O/93Ehi1k5b/7P/8nyGS4D/9v/ynHF8f/xQO9O34WRjDUPLFF+9849d/97s/RMpv1jyodeD4+Orf9dB+ZkZpS371v/9VVFD8s3/wz/58BJ1vx9vxdvyVGN9YpLTfwIhxx7zvxJejAEiL3J0fvB+7USFvePK/9v0ie9sDa3PRQUuFgCwIihEfud1I7buk4r6ywOgxrlT2PycxDEP+JLH3M89JJz8m/qXInbRJgFQZxV9VJWVR4NyQu8GMxvp8oFJkAVWpi9wRpAJGV9w7PeXOnTlPX7zEz2ZYb3MxSuTkeU/EDwGiIKUOpQsIAanf2Kkkl21YRBy7UlL2XFdS5U6jAEM7oLVClQapdLbRG4Ve0YeceFEBESN1WVIZTWWyx3tICa0MujTZriWGW5uGQoC3A4O1VFojJfQuY3+NUETn8AlSjPgUMw3CgA9u9HOHlALOWxIj4UmOdhEx3HrL74lWEei9xQ1dTq4LzWAHlBxxyaJAG0OUit46fNvn61QZMBoXC+aTmsWkoBl6OuvY2B2r5yvaYWDVbPDBIQgUuqYoSiwJTy4kit4yKzTnq9e45HMCLgS0zcVJQRZ2VfMp17sGnxJTU/Lg/iOO50d8+PCUmBJPn11hwxoZLFDBOIdjiiD2loYRbQzTqmJST7i+ucHvN/kpoI1GFdk2YugGpDbolLDWsmsNVVkxqR1BZsHboirxMTKbLkhdj4qWSVngjaE0ighs2vWYJIJm8FRGk1xHPZnSDgExBKpKczirKWTg/sMTojbYKJkUJX0Q3Ly+5uXFil03sF1F3GBZ254uaR6cFlxeXLNrBoK7YogDXXCIQaE91LMZjw4OOa6XvF5dU01Lus7x4nxLpQtOn5yxXm24aVoOjueU05qF86ih52R5QFhv+O3nL7n/3mM+/KX/DT/59AtkSvR9oB0Celrx4GhKXVa4aFExstoMHC0OqOaG55cbZrpi13cI7Tg/f44wJaWZ8cnLDe8cHXIyqUiq5HnR0IbE1atz7PCc2eRv8OKzL3m1uebeYolrG6qy4DvvP6H94x8xDD1fffWcR/dOELLj+NE9btaByxeXnE40tZmyGtZcr3bU8yNO33nA1Rc/YV5pZkd3ODs8QdkB47ccL2puusjv/M7vc//uPWazAumhbQJxNzCfT3ny3gdcf/YValpSTA642m45mJQcT6fMPpAcnyzpt5ZvlQd8+zuPePrxH7NZDdx55wG9D6yubpgUmj/65FMmszmFmRE7l+0T1Iz1Vc+u9dyszgnK0O4GNt0Ndx7c4979h3zyr34XTEk5nfPqq2d0CcSi4uzRI5oucb0baLxl0m/40e/8FvXhAQdHB9xcXfL5j7/gB7/4A4bNa26+vIFC8O2f+zbJOaZFzfRexayeI5aC0+UU3zp2l69JlSAGz+uPP+fz+YwwXXL48AnVyRGH8yOmRUKEjlK33Ds95sGdE3TWnaInNY+ePOTF02dsNgkfIyEKVNIUOuCGlqg1gxAUUtCLXDg9mM/RaK6ba4pacf7yiq9enqNFyGQDrcBbRBQkkXLhUAjiKIr67MsvOT25y0RWpFnNVdsybB3Lu0d87+F3WV9cgE5sdzt++7d+g0Eqnrx3wvvvPeDk3lkm+Qwt3TDw8vya47unzO5MeVd/m4qCbjcgdy2tsoRygixOaduGre243jZc7Tbcu3Of6fGM9c2Gw5NTOrvFXt2wu9nhQl77jEwkqakmmt4OzHXBphvYdR3eO7ZdQ12XFEOBXMkxeSwZnMcJKJJChUiKDmUEulBUs4pCFghtCCHSDgO7zYZpXXN4uEAogXOOvuto+y29c8SQxSXIgFY5odu1jr4bMlJeZcvArrM5ER4YxbwJqRSTaQk+0rUDyimEyx2eWmm6wfL06TPC0RmDGzBSU3kFB/Cd7/8cRj7ly69e4Jyn1AVSGHpnSSlQVTX9IJDCQBGRJrI8qDGq4GrVk0hIFTEAQuLsaOsaIkPvsNYTQg5Q4ijKftOtLJGokZoTSDKhq1zwjynRWZvX2RQJ3hHCvjjObRzzRhCRhQE2eNzgaHd9ft84hkMifa1TOwsynHU4L1HKZwHBaLfjXBiJlFlGLEKmhpiiIKVIVWciY0oeVwYCmdYopcBHB26MJVIuCiUhMWWBEIGyNlQTQ7PrCTZgR/KBUCrPlV2P1R6js/1DCjD4LGDzMSB1iakE9dQwmxm00bTtQD9kaqHWBmtzPBejxweP8y5bB1YFVaUwRbZgsf0o0hnL8mLsxh8am0k0abTjS1kMEkSi0IK6LNBC4MYCfQh7awZIPovAMmEln3ytFUWhUELSbHqcz3FgYQogE3bskK9bDFCW+dwqna3ikHK0zhJoLYhjkWhPf8kd0yF335ussEmjKEeOpLHC7OO8SBgCre0ILgtoRP6In9nxpu6R/sTPxNj5P+p6boV4+yHY19hG+7e0pwpkmZ8cSy9SjOTVvSIm15fGhoevUXyEvC0CwZ5Us9+DjEU9RhuZW/rPuLsZ30RrPdKSBrKFn+SNCEsS436fI4gioqRmPpkwm5XcbLYUJouVlMrXWEqB93EsCAPJI2Re/LL1yj7LI9Aq2xHf1sAZRVopV4CDC0iZn7NCZkrP/s9jiiSfshg3Ch5cPuCjpx9QimIs7KdsTTjam+T/11nYJLIA0AeP1gVC5MKg2H9+CLd7xL39pVC5MUXui6SMNnMiE52k2NMERiLFeA2yOAB8DATv83lAEsIoDpX766hIQuJDyDTTlBi9t4kpN9GURrM7XCMKz+Ch3w644OntkIvEpExkVDo3xpAFcvhAoQRNv8tFzphJYFLkZxQiN4eooqC3mXD6+PUjPjj/iFk1pT7NpIjVpssNPikX0vdFxj3RS8o8TcVob2WMoeu6LAaFsYFHIlTeU/rgEEmhyIVUaxVKawqZCcchxmx7nTLxDe8RKWU6rpK39nqDy2K8mAQuxLxWRIcxBucT+IjRWTSlRGS+yNSbECVGK3yEjVvzh0c/4nV5idxGog/0weOTZD5VtG3HYAMxdAQCLgVaL5ABdFGwqGpqXdH0HdoovA9sG4uWiunBlL4f6JylnBToQlPEiHKR++09Pvrx+1xtr7MF84NHXN2sMkXKR1xIqEKzqAu01oTkEQn6IVCXFaZQDDtLHBKNbGnnW+QLBUqjVMHVbmBZVUyMBqHZKEuK0G4bQthyV99hd7NmazvmZUW0Fq0VJ4cHuMtLfPBs1hsW8ylCOCaLGd2Q6LYtE6PQsqD3PX1v0UXNbLmgXV9TaElR10zqCSIEZByoS03vEy9fvWY+nVGUCuHA2USymT51cHRMd7NGFBplKrrBUhWKiSkojgWTSYW3gSNVcXyyZHV1ztAHZss5PubjMkpycXWNKUqULEg+P5+QBX3rcS7S9zuSlHltdh1iPmM+X3D14iVIhS5KUky8fvkKWZcUkwmg2HUDiIhRkevXr0BJZosFwQ1cX18zWyxRUtBvW5x3HBwf5DglwqSumdQ1vncUE4laSHbrhsIpIGCbnpvnL6nmU0w9YyElWhsqo8figKcuaybVMtvNp/wAmS5mzOqKvuvHZ1Yu+huZmE4afJpm2hdZWJMEVGXFbFrRtA1CC4IbuLppWa+3hHBItrIan2d74jf73Jag6Toub26IU0NUEqEM26ah0IYHD+8iU2RwFgS8ePmSXeeZzEqOjxdMp1OUkLiRttY1LQsX0ZVmfrrE2oBJEuE8EYdNYKosbvLJ0Q+WXd+jjOZ4OcN5R2kqkBHbdVn4IxLzzxfURyW+dmhtMjFOyNE+12ehf8gWbbpQ9N7ekkRjAp9Gy9WROEiKSCNRRuVGQiRt15OAtm2RQlBWBaaoCCFTdu1gcSGMNmUSRjtKIQTeRZwLIz1OjAJlcStUTymN1NYsCNJKZhF/yOcthLwe+ZTYNR1GrpEp2+8W0tD4TNe+W81odl+MIlJBITKF3EefRZ4pi2+ywCZbF5amoBv82B8ZcjwmJSkkkoij4Davdfv86t76dr+feCP8GZvjxBsL2pRyjB5He7aUEs7ZMV56E1flvcKe3DjaPYdsgwZZd8w+rtoLxkexUaZG7UU2ZCHd+LmC0fZ1/LMY461drlKZkquVuCWN70XmKWUxURYo5dxnTCMxSGjQCWMU1mYbwTBapDFaoXofbkVeSmUavh/tlIVIY65XYZTAaIExehQ2jxZ5Uo5iphwzxpjj+hgTOuR4p9C5uSbGvB+4DVjG6xFDIjj3tfh1JGACQo72dEKMVrv7OGiUD8WICHme3saJUqCUyHlwF29jCqUV4mvXzoUspJRKjaIzNTaziNvEuRwF6Flgvb8mo2MAZOpeuj3qW9m/VHuhfiZEOetujz3ndnk73o4/dYgo+Ju/9zf5h//0H1K44i/6cH6q4/rw+qdu9Sai4Bd+5xf4D/+b//Cv/Pncj910x3/1f/iv+PzJ538+H5hABcX7n77PP/qv/xGL7b+7jZsMksIWrA5XnJ+dvxUp/RUeMUq6rv5Gr1XKc3x89ddyHRUIfv4Pfp7f/oXf5vLk8q1Q6e14O96ObzS+sUgppTcbYwClzCg4yol1ay3e2ltcv5KSJPIGCUBJMXbO5G78GLMFHKNIKI5drvunV4xjx4rIaHGx3wyPhQlrHTE5Ygy3RQYh5IjUDUgEhTFEH5BidKkX+X2GYWCwPSmF3NcWxyJQgBA9WunR5qxgNjPYPnudN32TC3rCUBaKsi7Y7lZE57PAJsacJPeAyBtDkXKnjVAKY0zu+AoB5wP9kAtqWktESswmFWiFSFDVBdIIvIeqLJFCsNk2aCkppEYJhVYFpOy9HlMiAEpEjBLgLAoolM4JhbHjKCeVxuNMEZVAjrYiiUiMYky4q1tveSkFbjxmrTPJhCDwfbY4MAhs8lmkNnqx2+DyZtmH8TpKqrJASSh0FmD1NpCkIAhPSIKqmHB0cAjRU9aapmvY9pbGdmz7FtW3mUAhJHWp2baWJCUuRKoUOZ5OuVytkUowmUxxvaeelcxEmUViKeF6i/MOFyK7naCqCqK33NxYtrLAqArbD0w/eEwMjokskGVF20fKcoqSnqLQ+BCwzmbLlwRu61kNjptdQ7SOeT1FS8mmbdDG4BG0Q6AbIpPkkcIRFHzyxXOCdXz03kNms4rFtOT06JCTu4/48vwln79+jZEGrSXdbs1iMc8UGb/L3YoXipMH9zg6nHB5/gxvBw7qgrquudju+OqrF3lOi1MIHf3O0jnHdFpT1poUWo4OJhRSULSCi82WV6srfOy43u0oiwlReUxVEpLATOfU1Yyj0yNqImWquaMeUM1qfvL5S4aV45e+/x7f/sF3uby6YnuzQhnD5mZFLAzrneXo3gOGzrI6v+a4TxS7hma1pq4182lJZwfOTh9TBEEhJd31QF1MudpavvrkJyyXBxwdnGZEv2xp4sAfP3/JwWzJvbuHDHpGI0v+xe9+zPLwkHceP6CUgonUbK83eF2gCsl8NqWNgl5NuXx9QVhfsL66YXnyEOqCnbMc+YLjwwohIpfnL9i0CeV6jk6nfPvskIv1wG67Zbdp2LWO2VQidg2fffZjDu4d8+j+Ge6V5513H3I0WbI5v2S72nH//kNk1Dz78Qva6Pj0Jz/hweMP+Oh7H+GTZX2z4e7RKZO2Jbk1FxfXTMo5z3/8Batry+Hdh3z6w885OMzdf599ecV0XtFcbJkWa9758D6mgMtnLbvdgJCJ9959wPMvnjGbFMTSc/zwHj/844/50R//BIfmzp07lEXi3skpQZTcPTyhTQNawcefNbx49ZpaJT68c4L2AZLk3t07KCF4cOcOT3fPsN7yP/2r3+fJozs8unMXe73j9YsVr29uOL+5YaYlT957zHI+45d/9W/zR3/8KX5asNq17DYrPvr2fY5O7pKc449/73eyqM8o6sUCMSYOlVY8eXiX9fuPudluuF7fIFLEpMTjB/e5f/cuykNoA154zmYzRICSCHGg7x1XbUvXNLmgN2LUFZIoNEkBKWSREqCSIkTB9XXD9eWG8qzg7OQO6eKa55sNu22PfHVFWK2YnRwiJyXf+d47XF6tqFOB2Houzz8DXXF27wEffvQ+Tz/9ArdtqIXhF37u+6zOb/idL5/xwQf3MTHQF0v6YLlaNTx7dc3z6ytmp0c8mi+JJA7LGfV8Sj0942X8nOt1y9XNivV6R6GysKSaGo6P5qzWa2zTI6REa4ESgumkxKVE33tC9NkydLRrlS7inSMJgYiS7c2OoihRpWQyqen6TLBbLmdZTEAgRQVJIUQB0mBKQd83+OAyYRHPtmnwPoFQtzamWeSZiElQqJwcDQIKLdAmCzkEGVHfDA60ojKK5VyjC8FnL54TI3TJ0xwdMh88Ly+2PPv8nN7lZHuUgXo2Y5rm7NYbbPQsDxdM6ymb1RoEHBwsOTqcgb9gZxuUEcxUwW7XY/ueFAXOBxwdufs+C4CKItMV4lhEYQxhpMp2PftO3hRzjSbEBMlnwcuYbM9J4H0J6+sxVxZBIXKiKjJaWuzTynsCCbkQFsMokpa561drjVaa4HNBQKtswRRi7iKGHJvkokEYLdYUk2lBElmsURQ6W1QJgUxZiO6GQN8NVFRMJgWySFR1yWQ2wfaOru1JSSClubWf8jbgertv1B072xU+RooiMik1dVVTGgVEUh3RSjO4kAXY3oPwCOVREiaTCcF7hmFgMq0y3cloRJTYzhNIKC0xhcnfOUTCKHK7FbggqGuT7R8S2NFSyqdsUTJCFnJ861zuiFcaIcGMMZv3fhQrCITORaoYEr0fsK3FWktMCT2u4UIoBBpGq7831wBSGItnUWSiVYwIkdCFRklJTDF/XkpopSjKElMYnHV0wY5/xviMlJmC+Zdi7K353oiXskgsjIKULAiKe2FN4lboIoUY7Ufy/QW52JMJSm8+IY33mUTc0hzi2BCRxntnL1IR+4Ky+FrRcN9MkPbE0PxZCAjBE4LLBZ+RvpGLcWLsus/FNSUVZWHwPhcgrc+UISVUtsvRisF2uZCYyEVJRBYLfv3LxLEgO8bn+wKb928saERKuQg/KtWMyeSHmMiCJZGtvJISHO4OePLsMXc3d1FoktybqmW7UyXFrW222tssxiyYyXZ12Z6HrxU7hXgjqsvn6Q1lQch9oTJmwdX4u3mvltenQN5bxvDG3i0/POKtbZzWGiESSmYBlh9fE8eirlaGuqogRZSWOOewzvNy+ZrOD8jR/koIgVGCYb9exISRidIUtH2PFFCUhuCzXUwBpHHrHEb7nxgS1sJUGXRruPvqLnefPaCf9DAkiuMDUgwYofA62/MoVSBlHAVg8ZZCTBqJDz7SW0cKgVIbhJAMLhN/I+B8wvlEoTJ1JAm4Wm+IIXJyOKcoDKXRTCYVk9mSTbPl5qoZ7f7A2Z6yLAkpEmIubvtGMFnMqWtDu9sQo6cayXCNtWw2m5EmJmEkpbgQMaXm0+99zs3hBbUyKJFtx9thYNt3hOTprEUrAzJmW05AmRJtCupJjSGik2Y6mWdL1JsdoY88PDvk7tED4k1ik1Y5JlglisuK2YsF3y7fJ4jIjVtTe1DW4voBrSVlofB9YDpZIlMm7vgOpDJ0NrC+vqasKhbdAYvNEnd3x4ujVxz+SFOVJbNZDaLACc0Xr64oq4rlwRwtBEZKhm4gjoXisihwCbwsaHctcWjo255qshgbbwJERV0bEIm22TBYEFFRTwuOpjXt4LF2wA4OawNFIRGD4+bmimo+YTmfEncdy4MFtSkZmpaht8znS0SSbK62uBS4ubpmfnDC6dkJIQWGfmBWT9BuCqFnaDuMKtlcr+i7QDVbcH1xQ1Vnwsdq3WAKjWstRvUsT+YoCe0230OIxOHBgu1qgzGKqCOT5ZyL80suL6+JSKbTGSJYZrMKUU0wKHRZkAjs2jaL1rznYDnHSEW0ntlshlaKqjS4zpFS5PLimnpScbiYo4HmaoXziZvtFkFkMZmQQuD+/buECFT5OjTNjtnUcHS4JCVBs13jrcN5MGWF0DorO1OmIp4dHzAMA13f5XUnJeYzwbtPFFpI8BBCxEiFURoREkpmwWHTeXw/ZOulUViQ7UcleyHirRgAQRKZ9NPuemYFzGZLhDQ0cqB1gdRbpM0NayjF8nhOsesBgY6afrUGqVDacHR8xNXVBX3TMK0MB7MFShe8evaSalqwrKb0HqLWdEO2CL7ZNnghODo8QAKprLIwsirw2rDdNjS9o289x791j5ff/wOCDMzmFSYo2i4L5pWSpOQptLx9Bu8FJ3vhqYAszIwRgcIPDqEUVZlFKoXJcUpZmjEqS2Psm5BSAy6LRoPDR49UgMx2ZDGO0dytoINRDJxpgwKZ7dtG4czesoyYsD4/M7VUGAXaGJq+xdtEYXVeQ4qCPkT67UA7eG5twIyi1gVusLjgEUqynC0ycSrkpozFcobeDZkerqAqNCGADW4Uy492hl/Leyq9b1gM4/qfxlhkL7jeE3H2lLwxvyjEuB5/jcj6/xtm7UUyew3SGPu8kc6l8TPH2COrxDOxcxTRSCH5+m9kATO3+5gUc5yxz7cJmcmiOU7JNrO3+0whx7htT96XeS8uAQ3aaGLIjRdxJAGl/XmLmZzknR9jrTd/jogorTDaoNXeVm0vOh/JkyFTGoWImbqu9W1jAIKRdCSzrbVI+ZqPsaZSb2wG9/nt/Xn9+p+H8Wf5XIwK+fGqhJSF4bd0o/HvFN/s6fZitHy82eowuJyLlmJ/b+33g2NHwp8IE9MbsVLaNwTk6yNGy+h93l0gRpJTjmtc8l8jgzHeXz/DXQ9vx1/8SPDg+QN+5V/+Ch/8+AOM/8uy//x3H5988MlP7b1lkCzXS/7m7/9NfuVf/spfi/MJEEXkn/2Df8Zn7332Zy5mEFEw2804WB+wWq4AWK6XPHz+kA8//pB3vnwHGf/XPecm3YRHzx6xOlzxow9/xEc/+ujfyO29HX/9xmTS8vDhs7/ow/gLG5N2wq//01/nP/8//ecEHf70X3g73o6346/9+MYipf1maf/f+86dlAIpySxuARjtBvZJGaUU0WfksxopO4ydzF8nBjjvc2FL5M1SjPE2rVOWJTFFhsGBCKQkbt/DGHNbBNgnNkY1ElJItMkJEoHEx3HjpyQiRaQyJJE7q/dd1kpqtDZombtYy6LE+54+OPqbHV03YMbPdb3H20A/WAS54hFSJEZJHLvMwGNSiUKM5IBEURboUjK4FUpCEgHbDwTn0HVBWWgKZRBRIWUiOkuIoKWkqirMKFIqijJbI4REZwdCSogUMEqOnVg5SRBiZBgs0UcICec9ShmkkGPBJm9aEwkXXLZ+ICeZ9pt3UmRsKicmn230omBaT1lMZzRXF8g44qKDJ1o/Wh6AUXq0hoBS5YSfNgXSZAuzwXlO7hyhhcJ5j5GSaZmINrLqLbuuY7CWUibmZckQPC7mC1Yag9EV88UB98+OOJgs8CHbkzkXmRY1hIgpTaZrhYzA3zUtMUl8cDS2hxAppOaLV5bnFxXPrm9YVCVPTk9599FjfvzZF3SbHlUJnIe+a/INtMcVCMVUl5RViSscbd+SrCMkEA6S84joKQuJR1IUU3ToKKRATwpSdLhBkqLi8mJHa1/y7PxVnktYfJeg71n5nmI5ZVnXXAw+F1hsomkG2gDL2YLj6YLrzRWLlPDagp4QhETGnlI7ikmJMgVFZVitrnHBQpScX9zQhR4nPFedxyZQKWDKmhACx4sFp1XN6voGV9QkbejSQNtsORJLtusbCjSpnCJETeclN5vA0G2YTg3FZMbT3/8Jx8s7fPDth6xnr9FDz8WX13z+xWsevf8RR/fOOFMFXDdMJnOmx0s2O0utIs3mnCOjsG3Dt9/7Nh9/+jmffrni8GBKOatIRrLudtx9eIeTxSkvri1OBHA7nn76ObOqIKzXpIM7PHr8Hs9ev+T1dsdkWvPiy3Me3blPtJ5vPbiHmi94fXHFdTPnyf2SzSd/xPWr1zz81reYHR9z7/4RqoAYr7m5vMKkwOJ4BqVlGK6YTguaHfzwtz9hd/ma++8+ZnN9jgtw9uAuog58/uoTfvLD55jJjKKq+fL1FVfX1+w2K4rJhN2DGyZVzfMXn1OYCWVV0ncbSpmQfUuZAvfnBdvesS0EZyeHHJ8umBZzJsWU7fYaZ1tidNw5u8fde8eI0COrkuvz58jBc+/Ru5ycnrJeXeF9jRYnnG+3LJcVWtfMS8U7Hzzh4TsP+PSHP8KGgQeP32F1vub81UtO7pyyXV3y9IvPmU9P8W2g0prN+QX/79/713z40bchSSbaYNBsuoamtSzljO3qOaeTCSeLQyKOUib8esuNhaZtcHZg2zRErWlDFjQKAO9JfY9OgVJJRAokHGUt+O5H7/Pg0X0uLrb0ux0HdUkXEl99+ZInjx6wnGQLEUPNQXVMFLDZ3hCCR0ZBEnp8jsLIekAoUAiGvkGUgijzM+7O4RG2a2lWN9w9fYQ5KtisG5YH9+hdy9n9hyBLXN+wW91wMKsRUnP/9C6vvzjnD3/0E57cvc/VH33GxbZhUIYej5aKL3/8CcEIlicLFgc1UR7Qdx3OB863W4xWdHbgwC1IKKKEaSHYCMsuwGI6yRas5YRvvf8eqnhGFxzWOwzZ2nLTdTgbICTC4LPVaQxoLZksZ7kwkAS7rqXf9dSmzBj7GDClZro8oWkarPNY2yOFwlqXSSJJUZSGeloxX05IBIbO4bd9tv4hYYcBrUYUv8wCGh8TUkNZKhazOUVZMdEK23t2u4HFck6h4cl791jOFvyPv/VHrPqO07vH3D0+Zrdp+Oz1C168vkGqyMG0pJhqjk7PuL885Y9+/0e8Xq94/Pghjx7e5erigqqocb3NAl4l0VpSaInWJVpHlM5kyLIsR7uvTD7KIhiNloLgPHEUHaeUxSVFVVCWBcZo/OCxwRNHMUbuSk/ja/9kbLW3uMpjFGnw5v9HdEhOTycxdstmUYsuTBYBy9zpG30mfiiR7ahc8LeFDJHA2YEQM2nQ1JLF0qCNYDoz2Ra2VBijkElibcS6/B5aaoiKEGS21x3PRVkoTCHZbTusHZBCY0wxduJmoUAMdrQsE6SQhVRFYRj6wM3ljhAsUuc1dS8YCSFbOpgyU5vm8xl9N2CH/P3aNhM1C1Mwn0+xY3e5MtmSKltsDKNAfjwnSqPGBH5MkiRS7nSXozWJyHNSKTUKQXJXuZISSRaHD53DuZitJTw4l4OklLKNSYwJRGSwHd4rrM1lOKk0xsgx1k04l4mVRhdZPBKz5RciC9uShKIsmE4WxJAJotmmONx2OiNGK46xSLQvyPxsjq/PeW7j97FichvjM5IY9rM/F7bi7c+V2st33hSB34hbxntk/95AEtmejbGDPhfpsr1JPg71tftxbwm3P86x6Jzye8fxGBgLsXIvUNprc8bj3TdQSKlG4pLHx4DvPM4FlMixdvBZ7JK76NPt90pJ3havsp2bzpY3Qow2IRqlwId+dGTOBa1cMNf5HIlMHJCMdAQSEslxd8z3Pvkela0yMRVJTJlGGhMw2pLkQxlFPGmkW40QtxhyM8n+mTSqyoBcBNsX4pCZdCtGUdLtWR6Lq6Q8x0tTYNtmj3YYi7ZxJDnlIqccKWlayiwZVRohQy6Udz3T6TSLG2OmbhQaCJHOZ7usEAJC5P2IT5EwXi+tBFJqirJiPq2pTJHniUrEkDDKZNKXevMccdaRusR8fcCDzx4yuZijnSQKxyqskE1eawutOZxMOFwecHWzxluf7blVHO3U0xtRg5AUMlORogo470jB3YrxUsjCJK0y6VEqg0weKQTG5DmarUAFbePwYcu62eXfJ4BPCB/oQ4uqssVzOxa7VUhY63EJSlNSFyXd0FECUQaQKt9tyaNlRBnN7qBldXdNcJ6QAiRB0/S45IgkOh/Iu/CI1AUxJuoy04n6tiNKjZUKh8c5S02JHXqEL/j2Z9/jo88/Yrdu2TY7grOUWpO84MWzVzT3eo6PFgxFg/Ketu9YrXYsDk+o51OmUkFnMaakqCsGGzEiYYeGWgqCcxwdHaF1xfn6Eg5alrNICoLBWWaLKZNqwrbf5oJ1cKxubii0IvYDqZyxODhk02zZDRZjDNtNw2I6J/nI0XyGLEt2TUvhCg4WiuHqnG7XsDg6ojATZvMaqRIpdfRdh0yRclKA8oTQUhQKZxOXL64Yuh2LgwP6riFEmM7nCBNZba+4vtwijUEZw3rX0nUtdsj2ZHbRY7Rmu71BSkOtFc4PKAHSOzSJeSmwLjAomE1r6klJoUqMNFjbE0MWDk2nM2bzCSSP0Jqu2YCPzJaHTKZT+r4lRYNWc3Ztg0oCpQu0UtSLKcdnx6wvr1lvViyPD1AoNjcrlFaUZcHV5TkhCMqiZHAOmRLPnn7BZDJlMp1kypFQDD4wOM8EjbcRlRKLesIQEsvZjORbhqbBuYi1PdY5rm4W7LrEXNzKvcF7CAEtRhoLAUTk0SPPvbMDeufouwatsiXserPLYoaDJVpCpQ2xSjk0U5kyxygAiYK9IuTNWjISyF3wqEITgmdaTFhMa5rtmkqWzI6X2K5FSIMuJmhdUlcTfEy06w6jJFJpClNyMDvg5fkV4vAImRyt3dD7CFLgSQz9wLZtmcynSA3TaYkesgi1d5aQsi1azt9k8pOSoEViej3jna/e5dn7XwKSxXwBSdA5S4iRZFS+F1IkuPy9o09ILVCjKl0XRRYlSoV1lugCUUeU3MtjInVd5wa+4HMTYkyInJ3LjXNKYoSmKAuUzrQjb3PuUEo5EmPexAtZrAtRJJQSGJ1/V48/7zuHLgxKCqbTkoODBTfXGy5vNlTTkvlyRnCBdttws9rhU8DosdGjLDg+OKK52XG5WlGUJXfvndK3DUpp3OAwWtNixzUvjcSlhJRhtGbLlqjhViiShVTZenmkA8U0LrsxC6xG4Q0JfNrHfiNdMUlCyk1z+/X3TZ7264HM1+bhbRj2dUV3GtfumG1w9zHAft1Pb957TznaRyt7sGtMCQaB1BolRba/I5OV1BgDZJJUtizN4qecRxYyN7NKJVEqN3w4G0a7Nzna3cJenBSDH2lCjL+f4/aUMrnXe5/vt9v4JIvH0yjYMUZTlpmA6py/FQl7su2wKfQbkqQahU4psVdlC8Ro9ZsFW+z11CnHm2mMh+QoDsrxlLgluoqvkbH83jJuFBWJCCKk231hHIVGMeb4TEaBc+R89ygkI+UGGVKeT+FrYqWUE7gk0uhIUGSSmM9NKsn7fH7G/Hq8VbTdXva34+34N4aIgkdfPeIf/5f/+H8VheYv5fizvC8SVH3Fo2eP+MHv/oD3PnuPcij/WolcXtx7wccffvxnLlCquopf++e/xnd++B2MMwSVhRIyyj9TQpUg2/aS4Mt3vqSdtEzb6Z/Z+78dPzvjxYt79H31DV6ZeOedLzE/Repa+hlfoAWCJ0+f8O//i3+f3/j7v/FWqPR2vB1vx586vjlJKYzEIqVvO7rl7WaN244podStyAjeYPz3G7x9R7iQGekbQkbtptH6LHd45A6WJPbdv2lMKo++5dGjZO76iOMGPKWcBJBjEv22u0pKfPQIkWlB+xYirQ2L+ZRd2zB4RwoRo0rqqsIUxShCGhicRci8805BEZMgjZSEEDxGaRwB6zPCWEiAONKfxqQDgbqeYYfcnZJ0/pkpcmeXlCkXiFMuwDjnGFAYBEpASCNNSUW0MhSmQCAoioLKFBlNXWq2bYtQOXlBTBhtxm5VhcHgQqQuJZFsVxO9x4psI2HG5CAib7bLUo3daxEfIoUusCFgB4eQiT44tDBYH/jk8895fX2NUUVOzhhFYRSHB0tC9AzWIrTOljNISi2x1oKUXL66pO8sUzNldrygG1quNpfE1jPVE3bbAYVCkxMP9+/fhULy4uIaG3NReD7Jdm9eZrz9vFIMviGKRNe1DD5QyykqQV1WFMowq6eoqiTExJE4RHpHKSSYAhkF0uQ5Oj89xirBdtgig8Q2YJ0lBYcPnoPZgoOjQw5Pj2m3G2T0WN/nbjJtkAa8D6gkUckjRMQGwdBHREw8vn8HqcAYma1iomDbDFztviI4T6U107oiuMDB8RGqnvLs/CXSOlIArT12uKbxisFFbtqGYCUuKBQ1IQa6VUt9oCgqgygF5bQCJIMP+GQZgkNOKuwi0V17ysowmdWI7Q6pLE3XInWB2zXsLreoWFFOArt2jbMOKXq2N1dILzk4mPPq1SVF8YKb9Yp3vvVdlJKYwvPP/vl/y/l6w8c//oyrVy85O5iSysj6uuHJo3t85/0H3Lt7xqtCMZuXvHP3hGdfPqdpGg5mBau+o9leU/qOX/47v8LBUc3/45//JmrQBDew7RwTcwjblovrT5CFwWGIUSAnml5WnH33AcnW/E+/+0dUR0c0XeT1y0+ZmTmVKLj//b/BfLHgk0+e8tmnX3F1ccPJYs6yMGynU5J1zJaKq5eveP7qNZdffMnD+6ccHx+yiwpVlpQnR7xeXfPq9TkP75/QDS1fffkFPZKzOw85vXuMrjW6UKxe90QpKUzJO2envPzqx2y2K6bW8XsvXpDwTJdLHtw/ZDmf8M7jM7qu4/L1DQ8/+DYnZ4Zq26HqnulkztPX55wdVFxdfMnq4itm0xJTanyUvLy64Hq74vvv/xJlpfns05/Qp5o7h1PuHVY0cU69XFI3HTe7hh8++zFP5iXDvEKJiAwtX37+DG8th1XFj//4E85fn3D/0UOEUGwGy9nZHQ4PF1y8PmeWFBeupShqPnjvEXIqWMwecX15zedfPOXxt77Nj3//D7g4f8VPPvmCm6sVUWvuvJPFYvO6QgmL3tvV7JPP1jPsOq6uV6zWW6xzIBOHJydMF4cgNPPZZEx6Bqx1PH7nPqau6HrP2eGSGxnQ07sEaeh9RKiCKAQpjgSllG0FhJTIlNAyEZ1ns7Xo4ZrN2nJ49oDqYM7ywHB4NGFZzDg9CPzok68YUuD47h3O7s5ZXVuKes7pySFFdPhm4OzsAVvbo+sC+o7BBQ7mC5puTetajk8WnB6fcN0MfPb0c6LvMSphhcOHhlk9Y1GUzCtFoxKKRFKS0zsndN6xWW9JcsKL8xUpeIrKMDM1zvpMx9AqiwxvVkTv6HuPcomikMjSoLSm1Jp6NqPqa9bbLZcXN0Sfk7unZ8f0naXvI0nmNV+NhfbGeib1hFlVE1MuPiASMrX4PpJcS1kWmY4TA0lkWxohsm1CWReURtE3jvnigJ//8D36XcdXz1/yc9/9NsvlFI3n9cubLNh1kWZ1w3l0yCDxg6WuFEEmpNG8c+8hIUmuV6ucNA7w9NOvmJY1h/MDZvWUq8truqYBIbNQIEnsYBmGPhfFjcokHZ0T0cFHBAmtFabI65717W3ck4FJiarO9Kn6oODmekU7ZFudssi0iT7lQg/kpPQ+zskUnVFQDUiRxuRxlhfkBE4W08nbMk/CezsWRLIYAkQWKkgYnCXEQFmWaK0ILmTxU8rCZWcHlFbMZlmgCB4RIyHkIsG2aRFS5eKkH9juOoZ+YHlUUxSZaqIrRVFNKcuSy4s123WDkoZ6XlFPDVNV5s9REqMM61XD0LUMrWLoHSF6qkpTVCXeuXyce+H1SLjM5KRc+PA+W/rkvz1OBw4PFiyWWajkQ0KbbA0l1ZszFWMWacSxyKKMGs9/tuKQ1egtmRIhekj7NKEg+BwjDUPIlic+CzE0CjFScGKKKCMpqxIhEm6wt/Gwc7kQn4LAmBxrovM9oKTEmAI7DKMNRkAqAULhrCeG/rZ7WipNiKPNXGkILtD3LlOyxgLSz+zYz28pxxg+V3b22tDsvpYLT0K+ERmJPZmBXMjKdJ6xAKVy8SmmPX8Abgk+4/vuX/7190spjkQmddttnsc4X9JeeDMWVL9GB9pX+aSUFGWBdW4Uh2SbZq1Mfm7ITAMLgSxASgnIFoJppCTEEFBCEkQcyQT7w85FvNtiJBFtCkKIY3FsPIY9NUDm4prMTApCDMiwLyzmr2dkwTtfvcOjV4+oYoUYCQBaqdxQolTe+wiIjAWv0RpMSkFSCpkSZrQdizEgiAQhIOTj1FqN5yaNltGZHhbH4h97Kz8BLgaUyCLV7WpF07UokfeHSuZ9XFWXpBSzrZzMwsFsly2zXaKEZtfifcBIw2RS4bylGzqSixTS4GxApHxupBDM5zOSFuyajtDluVOZ0e5NjCIALQnRkhR45/AxYooCAWilWfoFH37yEbNhkYl504SMESUEyEzGFTIX/YrphCDA+iHbykbwfYCUr2VVFFR1TTWtM5mYQIp+j63IpLYY8/0/2nKHlJ/RIsHBfEr+2JHoEME6T2cHUoxoISmMIoZIVdcIY9jsdoiRmiBlxIcO2+fml945UhDEJJFoUkz4wWKqkVyiBVTw+lvPCMoTbcCngDCGUCV8m9BaYkoNg0XIgHUOIRVxsNhmQKDRRWKw7TiPPEPXIqLgyC2Yf7qkWWY7tJOjuzkmk5FPP/+Mph+4urqh2+6Y1AVJJ/reslzOOD2aM5vN2ClBUWgOZhPW622mnRhF7x126NHJ8fDBI36JH/Bfds85uDlGDQIbBoysYXA03RVCKSK5+I2ReKGZnS4gaF68OkdXNc4lmu01hSowKBZ37lCUFVdXK25u1nRtz6QsqJTCFtkSvqgE3W7HZrejW61ZzCdM6hqbBEJr1KTG9h27pmExm+K9Y71e44HpbMl0XiN1FgB2jR8FJorlbMpufc0w9JgQebXdkogUZcl8UVMWhsXBFO8cbdMzPz5iMlVo6xAmYEzBetcwqTRtu6Fv1hSFHkl1gm3b0A09dw4foLXg5uYanzSzumBeGWwqUEVJOZvQDD3rtqF2kVLOCFWFkZFmu+F1gkllaDctXT9wcucsixeSoJCa09MzUgoMLhA1bGzH6ckp81JyqGYEm0lTh3fuMJvP6YeezXpL1/a0Xc/i+BASaCUxumTos/3v7boQIdnAMFjarse7/PyeLQI/971LEDVGZ5vDJDJRsyoLdFUwOE9tDCZFgimRRUVRTpDSkIQcxeDpTxYQRL5Xg1NcXMw5O3K0uxY7B1UVTJdTiqJgNqtJlWGz7llfrykmNVJptIpIbajqilJJ4pAJZcvlEqEVKoFtO4rCYF2gGTxIwfHhgqKc8PLyim7o855GQIhZIFkVFaWW+JRXJiFAl4alqjBfKQpX8Py956zKhkSirkpiCNyuyELgYsqC/ZRwLo7rgAQlUWPOylQFfZ/v56HP62VVFreNZTGzncjOU4I4DEipqKv6llSllEKiIFqCDzlGlznO248seh7pN3oU9vjI2Z0jKq25vl4zm02YzSaUhaLvekQEhSRYR9PssvXbaJmqx/h7Uk8xRcnQjyRtBH03cH21YrmYUpoChcy2yOMaHgN4shg95yrlrThFBP5EY4LWCmKmze/Fbvu4KI0C2WokaA7WZbGKlHm9SdzuQb5uMTb++m38NGp8bn9+Oym/Lh4e/8puu/JPxEw5D5tzoGJsZtwTgPbHGYKHlC2e1UgtE/t8bUxYn61SjTH5HPaeoQsUVW6OgJxDLZTO1MRe0DUDPoIymqLM75tijiu01jjnsdZjhz1dMtvsFWNTCHvxjcgErRhz7jUTrPJrox9JTTHiU56b9SRbV/oQMsEypT9hdbePX/ffXci9GCq/D6MgbU+ouhWH5f5PGAmsIeSGkxzfyttQNI2v1UblfXJ8E/ulOIqbIpAkSmYrxUgc54bKzcR7oZLYN8MkUvKj8D9/n73YTBsN5PMX/BgTf03H9na8Hfshg+Tv/4u/z9/5rb9D9Y0K9m/H/9w4vTjlH/8X/5izizOAv1biJABrLP/yV/8ltrB/5u99fHXMD373B8g00oV/imSqX/pXv8Rn733G9//199/eE3+Fx3a7IIQ/vYy+XG74D/6D30Cpn05Orutqnj59wve+90c/lff/sxoqKn7lX/4K02bKb/7d32R1uPqLPqS34+14O36GxzcnKY2tIbl2MHaCjMnSGHJaQYzdIhkBHceNWNw3YuQudUb/8bEbxgePT7lzVJK7nIWWZBs5j/OO0LpR7CPH7pKc+JRK4fqe/NZqLHbkZLpUuT9ajJ3MYSQOSCFwKWOgt7sdiT2qOBeJfIiYsQjUDQODyxtrLfS4wZfY6BF4tGDs2B4LH2N3NSmiZcYFT6oa5xxNu6PvHLUx2BRBQmkMzg0gFVVVIQV0ziJiTi7Z0FAbnZMeUv1/2fvPJ9m29LwP/C23Tdpyp46/vs3tbpgGQQIUyKFASkOGpFDESMPg3zjkxPDDBBUzlILDAT1AQWigG43u29cdXz7ddsvOh7UzTwMUORAJkCD6rohzTZ2qysydO/d+1/s+z+9Bybwp10oTY8xOGK0wSmV3cFlQlDofc6XQMv9BghcyN3IEeMSICyYP5IRGFeNg2mjKwsDoqA7je+V9JkgIISnLGls4dnc72s4x2IH5YkKhC/rWUmmTRVdK4VNAKUlvB25uV0y05mi5xJQlTjisj8h6SjCawQ/Uk4oHxRlx6BiagXuLGaY2NLZnt2vpmgG6wFwr5GTGxe0qUyC6nt1Nfh+2q5ZaC7rkudmtMbogDAoZQaGY1TV1OQ4IlcQUEg0Io5GFod3tQGikmvHi4pptv6LvO0QQzMqSuhBIWZKiQarEvC5ZGEUvwaWEVIaZUUTnsmswzxjpB5BKYWSOCJEyi8B67xG6QvuATD3OWiKCQo/vmSooteHxOw95+rVv8Rv/9F9w9+oVpXZs2i1XbUs3BIwumFSG5Cwnx8csj5dIsWS93pKSoyprBu8JWqIEiOQplcG7QKEk944LCA6ipNQFSRWcnz9gsVhycXvN5fWGYW05OV5Qzha898Fjrl5f4/zA6XLBw/NH9Os1p/MZyW44mU1YLApikHz++z9mIQ3f/eVvcnd1xfU2i93K8zPqesLj+TGV6Pnisx8jiynzxT1ubhqubjZ47/jy008w8ykpKC5vHX/wB6/Y2Fvc3S3P31wQhCQkWMxO+OTTS2R0mEKwmC3ZxDIfX1kwNUvWvaVYFCyrwHtPPuQnz6BbNSQlKedLNm3Hex9+yGQxhaSYVBXzd97j/ONv8Zv//H/l9uYLgurwbQMqoU6PsJMZd1/c0F3d0TSO6eyYtNtyOViudo6PTk54+vCMZ89fcVzU2Jh4s9qij47wYUVoe1bXF9hksLLk+GjK7OyIk7MTFstzyskcFzx3tzsWZwu27TNWq2vW6wpVVmw3K/pXbwhyyrtPp+hJZLvSLBdzBucY2o6lmPLu4w+I64RtBK2LXL9+xvn8A252O37rhz/i0ZOHfOvjbzE7WbCYl9hPv+Di05ecffN97r3zHtIUHJ+fsFo12FIxPz/i9P4R5k5xvRlQwaHcwOL0mOXjBXZ3zfo2cvnmjpefveSoUFzfvCKWM+bGUM0XxOi5/85DOmn5ub/4F/nm19/lB//rD/mDT35CQc+D+TGlGpt/SRAGR7NuuF2tWe0aUoQn7z/lydP3aYPkWFXM6wnOOS43K9qm4RefnpOC5MvrO+76NSfHRxxNZ0Qf+OHVBd51SDE6FccmYhKZziFRWfAUcoTEXE0Zekm9umMe5xTHZyRZ8YMffsoXLy75/PkLhu2WIUUcgfceP+XR/Yc8e/YF51XN2f2HpHKSIzzdGx48eMDJ+Qnb7R2rneDu1mOqGZN7DyjPEq0ybG5vSe2OXbfjWx/cZzKbsN5sGKzjaHrEbmOJ0rLabqmNpi4rBufy0Ns75ChgqcuCSVXQNT1xiKigMFFgrcVGT9CJtJDousYpCcEhECSXaAfP0LcHR2hC5etUXVCWhqFvgYSUKTvpQ8QOA33XUxiTG/QxUk8rJtOKFMAOmWAUY8jueGPwyWMHnwcRQrDdbPn005fcrjYcnRzz+Ok7pMHy8vUz7lZb2nZHNRGcnx9TScXtWqKSplKKoXV88gcvmMzmLI+m+JSoqpI4BO4uN7TrgdvrT9lsNmMdEkAnAolu1+djOMZHDV2LkJLFbEZKid2uwQ4Ohye4cSCR9poJCUnQdxajJYWR1LMKLyzeZcLOvrlP8AfnayaTZIfJYYghBFJmKqXz2SmdBXsCXRZjhJQ/RCBIqSAKos8kEe8cSmdSlik0VVVSlobgPYJE3yfi4KgKw3w6ZTJRCJWIURJcJg0JKUfhExS6wCiP7beU02ps2gMxoUz+PpEUdVXS7QbsYKGHxfGE5XKCswY/Rq9J7YntQNcEhBTMl1NMme3Ihkw6FAqqwiCnJd4GBNAPA967/Jq0znFyVmOtZbvZUpRFFopFSELnYzm6wUeoC0YbpFQYIygLw3q1JYWAljnysSzzEK7vepz1b5v0EqLNcbZSKRQcBg9pnADJkdiT46gkojLE4DFGYwqN99mlTspuckaCinM+R/eNAx9lsnM+xoh32YEvhcqDhZAjopSS1NMSJQqKdlAGR0UAAQAASURBVKBpMlGnqv9s4+H3QiIxDnMYr7eMdfyegiT29KRxaJYd8T8t2ttrhQSRLBCDLHA6XKtEykObGEkpHAhd+zbwPloj7D97Yh+fkWtm9ueOFHn/Mxb9+bTPr8QOb+MM98SbKCMq5QGVDwEf/Cg6lOzHhSEFwvg4+6HiYbiZp9wjiUhgtCGGiHWW4HKsTPD5WGglD6QDY/LWLscRy4MZREtJIQzvv3ifd16+ixLqLSVg3CtJMQ5Nda7h82Av06CUkOOQK/9RMoMD5P54jsQ0qfLvVaOAVbCPgHk7IMsiOolSmqAiQzdgfSB4T1Fmmq13Psfhqfw+7ulV3nu6vscISVWVSJ2jYUJMSF2QVDanaKOZqZoU8jV6Uha8a5+wru+wzuJcAB8ppICioGl7Qkwo57DjezDYHq0EPkVaO+S4teCRCaSWvHvxHifuGKlVjjnTWdwmpEQoibMWhESIgs2uxYYe5z0iQaEURuXoyxQzHao0mlJKAjnCWwhFIbMAL8SQiW9CEDwgJUrk68VezOdTQieNDBHJSFQClJCZyCEUxmgWyzmLk3t8+ewF3W6DkpLB9rTO4Xy+bplxeDupKsqqQkwqhmEgpYjWhkEO/OTrn3N9/wZCjt6LMRNSppUa0RoCJTSIwHQ6pyhLmq6laQf8EJhUJaoouH88p9lmoVJdlcymc+Q2oG8CyQ3UhaEsFTFKVlc3lCgePLpH1zY0Nu+p9aRGa8O8rNHCs767RqiCspzQti7HVMXA+u4GWRpIgqYLXF9vMUHx8e2HTFY1LuWjXxY1N3cNIgWUGsk+USGkzsdRlfQ+oApFZSJHixNuN+A6S5ICNdZhRyfHmNJAkmhtKJZHTO8ZXjx7TdeuiNIRnSPJhJjUBF3Qr1pc2+NsxBQVWEsTPI2NnNYVy9mE9WaHkxqfoBkGZFWRYk9ynr5p8EkSpKauCopJRT2pKaspWhfEFOlbSzktGe7W9H3L0Guk1gxDj9/uiMKwXOaYettLyqIYawpPKQxHi2PSAMEJXEh0uzXT8pjWWl5dXaOM4dGD+8xnU6q6wq3u2N1umJ0ZdD3l/P79TFopS25XW8pZjSk1M1Nzeb3Kl11nMVXJ4uSIQnu265au7RmajmgtIliaYcgkwqLAAZPFHBs9x0dnvPfBOwy7lpevLuldR1lISr1XB+R/+8HRD5Zu6PEhUteaX/6LLdNlFksZZRASWtvT9QNzrZiWBbd3O7q+y8aeyTzXYsPAMMQxonMv7Php8WsuFFISdF0gRo8LnuAdNJ5iOkGbCdttx/X1XSZiNbssuiBSGMP56T3Wmx0FgflkhqrqHFkbWopJyfnZETEEdl3CWXBeUcyygOb0XLJabVDRM/Q988mc6bRmcHaM0tRUuqB3CRscKkaMLHj45gGzZsbvf/wD2qIZKYRQlJrkI4PziJgpd3vync+5oMhag1a4lIWlIgmCT3jv2Ed4Oh/z9VupkXgZD/fwGD02jj0omfcJpETwmUikjUJKhfSjeCYXfllIktIh3kvqfG+7u1uz2jS4EJjMZlT1nNVty67tcS5H9DKtKKtM0hNKYJQm+sh20yGkZTbLVCulFITE0A50quC222D7ATdGCyNHopULWSQrM2HL+yyo0kZTFeWBHpXjhsda57CpyPVJDAnvPF4KtMlxyYxi9MReaPJWhM2eonOom8ZiaaxR0755uScvqbFuTTmS7CDITj8lgBKM9KJsFJVSYAp9KHxijEQ3EgwLQ1EohBKH9znGXLftxdWZWCqIIRO9hNDsC6ksSM33fqM1VuXPivceUyjKQoNQBD9SjXymb1kXSDEf26JQ7HV0eZsVUaOIN40RsWHcg+6FQDGM+x+fRbUxjb3ug1BMHHTqe/F63qflWq8ocu1irXsbTawVEpH3uyPhdoRKjsSs8XhINV6bOCjGBG/fryxCznGGcjSySCUPNK60/yYxEjjHr+3FU3IfeTfSpFJGbyHSPi4YTKHQyqB1yudliGgzCq2+Wl+tcSmv+Gu/8df4tX/2a6j4s3d+fPDZB3zvF773Vtn5H7IS/Mq/+hXuX93/E/hl/3mtRKKvev7hf/0P+f2Pf/9P5nj+kXV7csvqaMXJ3cmf/C//I+vh64f8nf/b3+Hhm4c/k5+Lr9bbpZTnr/yVf8Lp6c2f2mOkJLH2T44G9qe5VFR893/7Lvcv7vP3/q9/7yuh0lfrq/XV+reuP7ZICfLQLBDJe7kRX/uHBgp71/PbJntKAWRuEviYIwKkVJkQIASmLBEh4sM4UVI5IizuHbdKIpQ6bLSUUjmr3I8b4Qypzg3skJtBY6AGxEQUiSQyrpdggdwQjikS495JDXlYAC5E4rbFjk12HzJqvHfu4NotK0NnexImDy+w4+AjI4uVgKHLmOeRCIxnbFTFSEiS6COKMV5OaWaTaXYFtQ0iRoySFIVhVpd5s6jM6P7PA2WpDIMNFEaMkWM+R8pFkSNdSBhhSCFjkvdIZSFTjrITJkcD6CzI0qagNiWVVkTAhjw09CnSDnnD7wbH8eKIn/vG1/n9l1/Q3qyRSfLg+Awbu+yuUxotNb0baPue3lrqUtNsW/rWcnoyRWiDUIapSkwenHG9banLiuPlnHZwVGaK1prOlCylxpQFN6tb7p8+YN223OxWeN+ReoeQkmbwzAuF6xydG3D9QGcSPZ6irphVExCa2lQczRdUpkAkKLXJ4iwlIHjQkiFETDknRs/7Tx4QRc0PPt0ho0LIhCNipETp7OQOPtLsupHyoNAi5WgYHwg+x0h476lLw6KejMc0MPjsxooiUVQlIWqiUvg4UE4kSpaIpFAyj3d2Q8+zV7esut/G2x3CSHSTmBcThmixceBocZzFeiECmlk9JcmEUZKqNKz7ga7ZotCs+jXr7R1ETxLQdA7XdNimR0pNr1vQCuEUoY8MXWBR1yAU5UQyqxRf+9oHvPvkQz755IecLWsknsniiPnxGVd3tzx8PMcNWy6e3ZJC4hvf+piPvvt1vvz0M5q7La6xhEJy/uCE+2fvELXj/ntHrF69YXvxAitL1n3HN779TZLbIWdzrl69Zn50xCfPXrFprhjaxLSuULoEWdL2Ft91zEtN20JyjtW9I56+/xFxsPzw+/+a8uQRQhsenJYcHR/zneV3+cf/8/+X7mLN+x98yOXz16il5WvvP+RqY2lCIHSJyxefMZsWdI2jD557ZydIc0rUFa9eXxASfPjNjxAo1rcbnn3+E67f3DArNB+++x7r9S2Xt1va5iVetNw7v8/V1Rts1/Dii5fcP7/P1771cxwvj6mPJ2g0y/kx9dECN1gmRcGXzy54+eVzgre8eXPNp59dMKk0L57f8vTpO7z3zhHtZsWb1SUTM2EIBdt1Q7O6o4qes5NjiqNAvPWEoDg+O6IwFa1NyLKgKCpQNfNCcd3uOP/mB8ykohoapCo5+eBbqBImC7hqHCf3zpnUJS8/ecGnr9+w7lo+fPqYr3/8De5WV/RB8eTdRwjh+fEPNtxc3iGIVGrCZrWiPprz29/7Me9//Rt8+IFmnjQvP3mOaxpO79/jWx9/RPPqFVKPncDocO2Wm+sbblZrdnZgMZ3x/jvvcH7vnK4b+PKLlzx9/xuc3Z9z87kjdZ7dqmG73bLaNizUnLvY0e8uqXTk+OwYUxUUYzM2yuxAzJJUQRiHr0kIorPcO31KMZ3TrhuGASah5O7NNd/7wWf8i+//Huv2BhMc09mEj7/xLebzGXVl8GLBh197SgieddfQDx5ZJW6uXrPpLSfzJR88fcTdtOL5qztWdz0To3hwMuO7P/ctPvv9H/GDP/g+s/kR7zy4D4/h8tUFd9e3nD0QzE6OeXXxmgG4f/YOvu9Z3W6xydN1La2zBAld19Fbl+NTEZACKQZChOATcddRVCWTxZSuG5iWNbqoUMliRiKE9YHo/Siq8bhO0jU7qrqENA4flKKa1pRliRtyo1PqHHE1DEMefKvs+icAMTtrfcxO1rKSbFa33E5KfEqsm57v//BTVJKcHi2IKVEUmigrQtL4AYIMDIOnbwfQ0G5bmj5QdT2D71jcW/B0eh/pE5dXa56/fk3btRACNjiEhOOTOcGFUQgsR7R+RCjJdDZjUk9JMdK3jpBSjrkgN3/F3m2c5QtEn2h2HUhJUZWjYDu7WeN4/RdKomQiRTGKG0ayTMzOfV0oppMSpTTNpsUOo3vaKMpJSVWWuCGTOdq2J7hMUEpjfSMVSANFlQUDZaWoa4NUBkGkHgzpZkOzabh6nZjMFNW0oqoKSJnIJBVUpWa77rl+fUfXehCSyaxEa4F3MHR9jloFgvUMvaMssygnkNhtdggiRbGPVggIqSlqiMliO0e3axkGwWRaQhKEKEnBo5RjWmhEVPSDw4WA1oayLHOdF3oQ+bxpWkvbjShvKTBuH++1J7xkMYBzfT4exQxvI8EJUhid94WmrAxCGExh2G1bbJ9RzUpLdJGHMyFEpFejQzmBEgitKKWh3bU47xC1QWqRaRcyoZLOry3EMeptHxM4DnnGQY9QoAtNYUwWdI2mAGM0IuXzKKIxZf4eKQypygMXrSX15M9w02Ic8CTSOI/ZD9AOfz0KYf5otzKLmVLiYAgQ40BGCFA5a2f8nWkccnIY1ImDwHIUN8kcQ5JSJIX0U1SIt4O+A3lgFNnkxxJ5OJjSIV7v4KZnLyLM56OzjjCKDeM4fPIjgUII0Frjs+JkFEeFUYwFjDsc70ZhVcwip7h/UiOlI6V4ED/JkcYlpQRnIeWobaUUpTJ88OwD3nv5/uG1ZXpbHnjKpNmnu4kkkInDNU6NQ698fuY9lpCjuGmMn8sDu0yl0mO0c2KMHxmFXjZkQWbwkbqsuH92ytV2hWszJWxWTwjJAwktDFIofPQ4nyO0tZY46/A2UE8KhFSjkCdh5hPawaG1pipLfMjXcKkkXilKISl8wRd8QVzmfV1nu0xL83nP40KkVHlA6UMgBo+PufbXRmfBwhgFuYxLHq8fYwqDEhKp93F2EZTIgidVEEkcz2ckYbi8tciRzhUgGwakPFy/rHWHIaMEoggjfSJfI0KMGK3QxuSBMWk8nxgFQqPJR+b4H20EAp3fl/E9siGw3nZ07jUx2DwMdolCm0NkW1VWeT8f83lYmByPrmQWxN1UG37ng+/RLjp6bxlszz4K0fpIsI5gMzXJS4dQEkIWPAcXKbWhrAS6EBRKcnJyzHJxzO3NNZNKI1OEqUbNK+xVZD4pCd7SrDtSSpyen3H64JTV7R22t0TriUowndXMJkuSjEyPKvrNjqHZElD03nN274wULaIoabdbyqridrVlcC3TmzlGS6RWgMb5QHSOQssc5RkD/bRmMT8m+cDVxSt0PUcoxWyiqeqK8+ohX3z2BZtdz9HxMc16hywjp0dzGpujypMX7DZ3lIXE2YiPicmkRsqaJDTbXabVnJydAIKhG1jd3dI1LUZKTo6O6IeeXTdgXSLhmExnNM2O4C2buy2z2ZSTe/epqwpdG1TKBiNTlQQfMEqx3jRs1mtSDOx2HXerHUZJNpuOxWLJ8fIUNwzs+gYjDSEphsHh+g6dKia1RFWJ1EVSklSTCiU1XgDjNSAJRaFLbL9CT2om2lAoCM5ycnRKTAFVlCxOHQIoq5LYW3a7hj4EZlXNw8WMCZq+s9STKfV0wtDt2DQbRHRIXTF0PVVVcXN3B6rg6PQeMnq6dcPQdSgpOH3nCUqccXOtD9dPgqPvO9q2yyYxIXj6BL724RZjarabHVU94/T0FN9K2sETQqLdNTRNgyo0wiqC77DGcnQkKOtzpEioDKc5EEoOAXMim9rSeG2eHR8RfSJ4R0wFYRi4u9vyxYvXrPsdBIuWkqOjIyaTGmMU3iXmsymzumLwnmFwCJ0pzUPYUZiSWV0jZxPu7jb0rUNNDDolnjy6TwqJF8+egYT5dMFSCdxg2W12kOC4rCgLRTtYqrrCaMFxM2P2ZcXvfuN7bHUz0nSy6GIfGZXTxN4SDZ0PCOtQRuf7gBjFLSGhdCJbH99GbcUQIGrc+F4oNRIvRaaCK6UO4hsxKs6zEMkf6KMqjnV0fCv4ESR0DGx3O7TUuBC42+yQ8gLXDzk2TkiUkaMxj2xYCDFTwAME7xlsACGJKVDWJcuTOUYqht6yWq/oBzveJ7MouqwMehSnyFFIGtmL0DVlUY4UqEh0YTQ7vo2BHisS9jQb7z29yNGoQspRaLOvjtJb4UzK1+7IKKLfn4Mj5VBrTfAhx5WOdYwe+6ukhIz5uDsfyHeZUdQt8n5YanEwhGq9FxMlGN8X5zztrid4iTb59x7iescIPinytS06CCFhSp2pV5CNDJ3Ln5WYCD7X9EWhR2qsp+9zhLNAHsS4Uit0yjVTDIFhCKOITeZjG/LeTKsspvY+juJ0caBeevzbWs3HgxAc8h7ip0IE8useRcSESGH0GGWX93SMezA9xuapqHDS4Ww4mBukkgexeBaOjWr3sRDOVPuA82PknRI5Mps973O/bxzjq0cyYhrPmUMtK8d7W3rbq89xxPnx5F58PtZMAog6EWWgKP4PjQu+Wn/OlwzyZ1qgBPDO83eYNlOaWfMf/LuW6yXf+uG3/gSe1X9+6+L8gr//f/n7XJ5f/qkIlAD6qqev+j+dX/5HlkySpy+f/kd5rK/Wf5q1v/////kunjx5wS/+4vf4N1pZf4z18OEbhMh7qz9PSyB4/Ooxf/v//rezUOlo9af2uf9qfbW+Wv/5rj8+SUnlBmzOH48oVHaKiT05KR02WLnRnkVMOXc7HcRASimkzFSishjd/CIQvM0/HyJRZMdwUZT0/XAY5mTXjh7dKbl9nxsWArGnDJBd2Um+xfGCGB/30CIayQA5bkL4MLpUItFZpMgCoUTEGJMx4LuOwhgmdY7KkkkiYsR2PWF0xcSUm9yajMyeFBOW84pVv4EoKFSJ6x0hBiKBWhuE0nlDqCVd11KM9uS6LDFKI5JCq4KiKLDWjptaifMJIXLM3BAtwbnszicQpSCkSOt6tB8pDFJTqOIwgNMjGcSlhNHZMStGTZWQcozjkDRty65pIEl2qx2rmzXedfQiMakrohvw3mKMzlSDZU0zDIS1IwyOaV2DEiStWJwcIesCHxzNdkDGyKRQTI1A+I4vXuxAaXxnCa7naDlHm0BoOkBRFJrCCoL3bLsB2/bIoiS6iO0G+ujog0UmMiq+njCbTpmVEya6YrmcUypFSQ66L+qSJBNucCQEAYkLAQVoCbeX1xTVlIk2BG1QpWDoE4Uq8M5hCkVhCozJwrTgAynkczmG/TkR0cbgvCdIhZEKU5S0rsvRPD4ivMQ6i6gq5os5SYHrPH5wRA82JFAFrQ8Mqx1djGx2O/ptx5Mnj+iGltnxjChLUjI8PF1QxkRlCho3sO4GSlNxfnyP29Ut2/WaDT3bYEldPzZ2DAFNjFn011nLNBruTScU9++hjo+ZxsDrZ89xKXE0r2ncwOdfvmTdd0yPZ/zks0/4ha9/zLyI3PoWv12zOHuEnSrE0Tnnjz9gWswhlhB7Hr3zEMoK3Tkm04rzD97l8vUrbq8u6NueVC55/8kHLJZTfvTDF3zx4y+43XZMJhJlA6fLUzbHpwQZaAfLO+++C2mgefWCeVWjj+9xfH7ML3znl7h//wE313f0puRqtebu2WvWL15hd4FiUXN0dMzTh++SVEmaT2mCQ652/O7v/AEPTs4Y+oGgNOVE4i3IEJBV4Pz+E7p1Ty0k5YMFcwG36xWlKfm599/hMzRFVfGjzz9jbirK2RFJDMznmsur57z3zhOW0yWPHl+wurnFDpbzs2OOzmbEEPjix58z251ml/rZPZbLIz5785LnL76gbQXf+OaHoBq+//1PqScldrfh008KmqLkl3/+21xdvwIrqVTixRfPaG93vLy843d/+D1M0Hz8nW9TTRccxcDf+q9+jbPHD+k2lhc/+QIxwPHZOXa1pVu9QlMwFA+57dfoQvIXfv4bROu5u7zm7P4J372/5PnzGzbbjt/94acM/YD2DecnDqXgl371uzQ2cP3qgokqsXhqk3j44B6LScGD8/f57JPP+fzFS1x3w8//4q8g+4LXzy54cD5HhNxIDV3H3eqW682GshK89+F9Kl3w5bNnoGuW81M2fU/ZSELv2Fyt+cJGYgE36xW+6xHLKeYsQT3jaDLNtBIZEcRx2CzHofK+uZf/FLXiwYNzUCV1NeNqt6IIFlyknM75zje+xtHym9xs75jPJrx//wnJax7cP+bh08cc1VBPpkRhePnihs8/+5LLTz/lyfvnNF8+4/XrisVszr2zE37/2Ut2t2u++93vYPvE8zdrinpONzi2m4FlZZhMFzhdMUdi247To1Ne3t1wdjzHrre43lIrw0QlSiuJRE6nR/R9RKhrZNfikkIPmt5migUqkVRiUho65+iHnmpRoZPB2QLb5/uQnqp8XfOewXlMqQkhx+shBVJGFsslIu4HCFlcEWwYMfKBSV0xndS0XYMdEjHlBjgiMgwDN9eR7arHuUA3WOLa8dnz52yaY2LSTCeGwlfsXOD1xZqT5RxHQEtB2zvQhslM47zj+GjO4wenvPf4Af2mZ7NqUcIzmyi0Kmnajs5GCi1zjA0SPwz4pPAhUlYlhS5Zr5txIJwjmvZJHrk2+qmd1tgkzrWGzhVTzA33pBOBgFAJLSVSqjFmJDvP4xiBS0oUpmI+nxNjot0NpORBJCbzCbPpDO8Cw9DmJnbwWTizjxtICW0MZaVQOsfGpRRw3qLHGm1SF8TlnNubDZevN5hKUdUDs/mESaVRGhCRFCA6yd3NjqH3lNOSDGyJDF1ku7L5PYoxD6tTZDIRVFVJUefhQwyB3baBMYpxv9EvK51jbp2nGAkqud6Me55IFnIIlYUlQh7ipIbeYm122M8W00OEWx6g5UFD8AlnxzgHLZBa59pRShpr83+XenQVJ1CAzDWnUgVDH7C9R6pEWeZ6LIZEsHkglWOswigaK0genAs4H1ClRMscV2kKjYiSGPKAxdmA928JC3tHttYGZXI8itaZoCkEOTYDiD7HnmitUUbhrWcYdodaN8RI0/7Hacj9ey0xkq3YD9bEoYmzFwqlcch5GNaNwp+fHtoJoUbKDyNxKg+gfAwHItPe3KCUOgxSUxoHNsgxsiUPbcRhECd/KioljVokcThfpZRE8XY4uKfIIrIwZXwFpJiHjspkqpUUCh8Czvox2m+kBmRVFN75POyK+9c+7p2AQhnKUtP74bCXCj6On5F0OMfESEl1zqLGY621poiG9794j/devY+WmpD2Q7J8nxPjdSekfF2LI90qjzcTLvhDrLcUMh97OQ7YEJkcRaYryfFYHt4/kf9/cC7HsyaRKXttT4wODxijSdETY444lFKhSo0NgTjk2rowmr3yrKwrhFbEFPLnP4GRgkKBCJ711pKEInlPDIGqKpAyEFYJbQvC3KHGqB3rAsH5TDQKkeA9fox7EeOsUGtDURQUKlOeqrLk0cUjpnKCKGSOjBSMcS1vBadCgEyJrmlRpsBIRZISqXNcpZJ5GKyURGmRjQl7oVOMedCe4ttzeTQiJCEyzUIpXHBZABAjIuaBrTaaoiyykMlF4hgJExwgJTYmfG/xKTLYAT94FosZ3jiKOuZjh8pGmZQj+2wI9C4gZpbX33rNRqxxnWNIniEFcHmoLKUhh9Dmz6EPgSJJpsagZhNEXVOkyHa9zhF7pcZFz91qy+AdRhTc3t3w4OQecdqi3lTEoaeczAmFoKqmzBbHGFVA0pA886MjUBrp8759ejKl2W7p2obgHElVHC+OKcuC6+stq5sV3eApjECExKSqGeoJiYgNgaPjJYmA22wotUHUU+ppxf3zh8ymM9q2wyudzTjrLf16Q7AJVWqqsmYxX4LQpNJgU0AMlovX18zqGh8CSUiUyfGzIiVkTEync9zgMYCa1RRAN2R61/3jJXci1xI3d3c5BqmogEBRSppmw9FyQWUq5vMdfdcRfGA6qakmBSklVjcrClvnIfVkQllW3G03rLcrnBWc3TsG4bi8vEUbTbAD8lbhlOLh/XPadgtBoEVis1rjOsum6bi4ukAlyb3ze5n6lDq+9sFTpssFznqGpmfYdixPl2htcO0WlSzBK/oEYbfi9GiRxQ1dFow8ffqA67stCbi6XmXCU9txdjwFP3B2dkQ9n2GHgTBk8WYQkaIsKEzJcj6lb3ZcXl3RNBsW0wmzcsFvfVrirdtj6kgh4oaepu8IMXB6T/Fz33nD0O9oOpFJzELSDUOO7LSeTTvgZzW9dwg7IKsAZSCampNjh1HqUBcK4ni/khzmGqPnQsjEZFYzmUzwLtJ7R+ssM1UQUmK5XHJ6tiDE/Dk9nS9RQlMYxb3zU8pCUheahSlodwObbcvLy0vqSY4D3a03FFVNXdas+57nb16znE2ZLY+5vrsloNAKut5RKUlpCtqqZjHWlbN6wqppkFpQCkm0gbPhhF/+yS/yo3d+zNX8mqLQ6FqzazsYEiFJZBD4MW6LUZSvxrot+BxHW04MIajxXjPGv46UvBCzYUAKgXPuUANorTJt1TqizPfhFLNxMsaAlCPtSwqSc8S3t2hiypF+bvA5rtd5ILLdNVnApEukFlRofEy03YBKEp8SUiRCzEZGU5hDLPNiNmExrSm14ep6xa7pyLcoBUnSDVk4ZbQkJZWFaPHA18qvxWchbIr7mmesbkbzZDr8k7HyyeIeKTLZJ38p/1QS6VAfp5SFPSIrug8/LYGiMFn4sv8MpIjWiqIskULmz1TI+5G9WEccHj3ThtRelITIFKJRdK2UpKqKTAlvLXbI4h9TRkqjkONeOsYESWJ7ix18PidqgxDZ1GqHiLM+05VSFoErlWsmo3U2LkGumdLbmpE0xp3G0QiBRISR6P/Tx5d4+CAeiLXj+Rl8zJ5Zkyld+3tvGuuyNFK8gMN5KMb7cUiJFAJJCoR+GwnHWGPmvjR4kXvjSmWirhAS7/fnwVti00E45bI4EhEyqXKsoaXIaucQRqHgISr4bVjUnsqrRvNt/ht1+HqO6hMHsRQk7OBHcVv+HjeKxL5aX61iKPgr//Sv8Gv//GdXoASw2Cz+xERKH3764c9cNFgicX12zT/8P/9DLu5f/KkLFe6O73j0+tGf7oN8tX5m1ieffPTv/PvZbMev//o/xhj/7/y+f9u6f/8CIdKh7/TnbT169Yi//ff+Nv/Lf/W/8Pn7n38lVPpqfbW+Wn9o/fFFSvLtEEFJgYiZYpTGKIL9ZjeElFsxSR7iNUjjlkhlx4u12ZFOyJnmzjlSCIDMtIoY6fo+N89jdg7tIwKctaNDKxMZ9hnnmeObN5BKZ6eW1jn+w1uLG92pUo84aCGQSh/c62kMY9+LsIahRUtFWZXYcQOsdXaj1lXNMAzsmiY7ZaUa21DZBe+iAzLtqSoLPnzwLle3G5rdQJIeKRNSKMqqGt0qiWEYQAgqZXJUm1ZMypqiKEaXzjiEkDmWLsRIcA5nM3pfIsbIuEDyjjQ6i4wpqU2ZyVXjsME6S1IC5xLbZuDh2QlVVbALDp9A94EQA5aAjIl5WeFDIk0nrNYbrlcrZos5UeZmTFHWzGezHJ9gB9q25fZuQ2U08+WcEOH+ySkuBAqTyQg2DiAMnY0kPJc3LzFlDSHgbaKaVgTf0Q09boDp7IhN29Gs1xTeM5MFaV7SBUtwHh8D06MpIiiGbYtPkcJ6pnPNvcWSSVmzmE3x1tJ3jqKecHx6j5vVLV3foBP03vHmek01zRuFWsFZWeJST1Ho3DCoFCn6PLA2KrvcU6Dp2/H8CbmokNkP76zHkFHMu67DOjdGLpVomYgmMLhMEPPe0u4SymTxk/OBIeYh5swYJiZh6oLtdktMkslyjldQL46Y6Yi14L1mWle0N9fcXXtEpemd59X1HcvWU5T1GGNVsNv0+Jz/x/Z2S13XmGLKrt8gfWA5qTCVptnsePjoIZvLN5ycP+R2u+X29pbO9yTnMDpy+eIlKUQ+f/6M7//Lf0k9O2M2O+fyuqVrHIvFlFfPLqiHhh988gU3Ly/5K79Uc3xSce/8lCEFnr245He+9wOKqBAxUYfA5csL7LBgSIqXry85ufeE49Mjat9xc/WCd995Fx/gZrfGtx1PHz/kLhbM53N+7pd+kSAsUVZEDO++/y6L0zNur1/xg27DsBt48elPePTkHuczw/bNT1jfFajpjGbnmEwqHj5+lCOHCo2Mmmq24NWLCx6cnVMt53z58oqjyZR5bZgUiba5JiWD0JGPPnrC/LjCtZbPn33KYj7j8bunVAjadsuj+4/YtpbtdsfpYsZRVXN9u+XixStiP+Hk/JQHT85g8CyWS2b3j7i9XXF0MmfbLfjgg4fMjk55dfclH//yt3n34WOMgzAtuRwiLknafsv57B5JFxiTh2sOz4P3njKJFTElvnz2Je1qw7spUrod2kwZug3B9Xzyg++DnPDzv/gR3XaDUQX2TWB9vaPZrphO5gQ1pdeWD99/RJ0EFzeXzE+mHC8WNDeOFy/fUAnNg8dPkaljla5wIXD84JxyOmV192PWt9dE/zVO7p3w5fPXHB09RMiK7//w92naJl9/nAcDru+4W28JMXF+csL8KItuZDQ8un/Ck4dP8FFx/fo1Q7vlsrmi14ETOQNnaSKc3z9mPtF4myO7jKlISJxQOXpnFCsJIUbhQtbO9JuG5589Z37vIQ+ffkCMkomeokrBu4/uUemB9x+e8vmbKZOzYx48fojvHclbtKwIKbHZBYyZcHXTMHn8hP/i6x/iNq/ZRMHdqqVvPF47pIHF0ZRlVbG5veHsyX3aO8nQ97x4dUM8P0VpzbyuePjgAZ98+jm7yy3L+QmlCkQzpZyesN3cYqo5Wih8PyCCRATH0azm6HiGT4HOet5c3tI0HUFl73dwlqHvGBKcHJ1SS/BDyS7sCCkxP5oBEddbBNmFfXdzRxgcZVXhvcf2PWVR5hgD79F1Hpz6ITdjpVQ5uiuETFUSAjGSVbzzWO8JPtIPDm0MxycLkIKr2xtCUNh+h+0tffD42hFsh1IRKwNqYviFjz9gWRd89sVLCqXYXDf8cPs507pCSsnTdx8QZEJYyfrujleXtzgXeeedh9gu8PrFFUPTZMqIcAx9nyN3UiKFvdt1FFukTH8k7WNxR3KPyeKtIPNQIIsf0iiyyVSfPETOTmuhNc7lY0BMWbxjx5g44TF1rq0qYyCQI9VszIQLnWN1YszCa7kffCsBMtdGplAgIt4n6rompj11SGMHNzqHPW7Y0RhJUWiEjJnGGMf3MiaKmEUVQwfNzmMHR4oOowzegbOBXbA0O4suJbN5TT0tUFrk2It9/JBMKAX1pGDo8rBE6ny/1WQxhFL5WKWUKEqTRQ9CIYUmmOx2lkpQlgV9NxBiohA6O7BDHvQLEmGkfyUXMEXB0aKintbosoAErne0u2akeY3DiOBH17zJ93wpGXqLsxHnfBY1hBzDVE4CEkHXdzgXCKPwI0aJEAk7ZBG8Nop6UiOEBXz+PeN5oWSONlZjdIRzbiSImkxwEgJKMx6/LP6IQZDnRDFHdiEPAq0/i+tt3Fr6Q8SA/X8cBnTp7X8fhkz7WAzxNqJN7KlCY22cRupUhi1F3DitzFuF/HekNLrv82dY/tRzIu3pC6MAaRzuhJDFlXE8tmJv0IiMxNd02IfsVyLH+wry5zMwOv6lArIhw3uPs26MM8vXhD1/I6aISDLvAZTiZHZE0/XZiS/iOGR7G70CI1lHCPQoJlo0c771+ccct8d/KN4NObrsx6jIIMNoKgGjNUIkwjiAjOPPaKUPwqNEJuQqkcFS1gXmkyrvvWIeEEqfB4yBiCBR6Py5THsDSDdQVMV+/IrShsIUhFGw5Jyj7waUkhS6JCWY1vVIKRKQAiHl/aMP+X2z7Rap9fi6UqbvRofzHis8QUQG53BDj4qJQipSofAxD8xjSpiqQCSP35MmQsIIyaSsMEpTFgWTUB0MNFU9oRs6nBvjVWOiaXt0YUgpYSVMdCDiciTcSLIl5XuBkllsF0k4bzmcsIehaqYoKZlH1s55Qh9y5LdWGVQ17g+ReWjvbDbrKKUIKRFCvv8UQmFUQmqFtfkzZaqCKEHrGjPSj2OUFFrhuo6ujQgtWdUb/uCD3ycUARV1/gyjsIMnjkK+vrNZQCkNNgwQIqUpkVpiB8d8PmNodtTTOf0w0HU9PuZrqZSJZrMhxcTdZs1vXf4W37r7eYpiStM6nI1UlWS73qF9yeXtim67452HD6hrzWRaZ/LiuuHNxRUqCUQCnRLNpiFMHCEJttuWerqgmlSY6GjbDUeLJTHlWK/gPMvFnC4qyrLg/sOHRHwWHgnJ0fER1WRC1+64dK/x1rO5vWW+nDAtJXZ3y9ApRFFgbcQYxWwxy9emMb5eFyW7TcNsMkGVJattS2UKCpPfH+daEpnie3KyoKw0wQVW6zvKomBxNEElcN4yn86xLjDYHOtbaUPbDTSbLckb6mnNbF5DSJRlSTGt6Lqeqi6xvuLkaIapJ2y7Ffcen7OczZFRkIyiCYmIwHnLtJiQZJ3jtUQWvs+PFmg0MSVWqxVuGDhKiT7m2N5gLYnAbnVLJNdxRTmhbQPGaHbXu9H4o0EYnDQsZzMeKMNmfUsMifniBBXdeL50LGZzpuUU31tcjFR1RVFNSOsd67sbnB04Ol6glaLQNaacsl6vubwtmZZpJOGF3I+wjsE6ljPBX/ilL1geWYZBUJWG46Ml2pQMfc/Qdljf0zuH8Box1rWBxKzUSALeWfbxmFFATHK8pv6RSYMQJB9pNw3BJWbLE2amYhh6jFLMZxNS9FRGENOENkRmy2UWoHhHCgmlSgbrUEngHHQ+8viD95FDPp5Nb+m7gX4YcCJmKmdd4fseqfP56G1H2w44JTlaFEgkR4sj2r7n+saiZElpEviIKSe4rmW+O+YXfvxL/N7T32P9+JYUI1qK/JxJhARdN+R4xfF+klImTFsX0FVBVRVZYBIUfT9QlmUWeYwxaMTE0A9ZkK00iFy/Ga3zfXG8zunCkEIihFFkEvf12BgVl/a39CxASVLkHliCqi4whaF3lmTdSMB2+BBBSnYxjoJZ8DGyPF5wejTLlK/BE23gbthSVoYQInVdYqopdghIwPkNIUS0qZlOC7ablq7LAiAhE26wY9TzKAZOe17RKHLeC28OgrcsiEFkEueBkiP2IhT5toQZhUk58m68iyQOhKeEz5RULRApkwGlEJlm6+OBtpPrhbwnlCIfC5ldoiDIRKTxfqO1Huu2gJSK5CI+MtbAnjDkmDipsrBJkqmicRTDpBiJXuB9jjeOKSIBxEiaijGb+6TIJsFCj1Fnbw2yCZ+FUEYeakUlc+SbVHl/mRPPxjpI5l4wZPF1Nr0mpMivJ45iLyklQo3mlH1U2ygoDxnjT6klptibCgQx5GhM7/1B3JT7xHmvJ7UeRUujiDjEAzExpSzuk6UgjnVninty5thaD5EkMmFfj4J37+PBqHGwPyRxECTtBYFSjrSk0Rh7qKkZ6Yn7c2hPH01/dvcTX63/OEtEwYM3D/hb/++/xZMXT36mBUoAtrA44/5EftdsN0P+OSOm/LtWInFx/4K/+7f/Lrent3/6jycTX77zJd/+/W//qT/WV+tnY+12s3/L3yRmsx3/w//w93n33S//oz6n/5yWQPD49WP+zt/9O/yD/+Yf8Hs/93tfCZW+Wl+tr9Zh/bFFSjGmEXGbN1lp9IcdnBoC9s3U7MDZ05OyiCf5CCHhUqbWCCmwzhODHzGzOaQtxjjmbefNVnaVK4zRuDAOIFICOTb+x01sGHPc9bhJ996Pf8IYe5KdwimKMfcc7BAIIbtwYsrY7bz5FgijMNqwx/HWk5oUE13f4a8tLmZse4gJIkTGxmO2dFMoTRKw3bacLBeczhb07RWqMqhRbFQajdAK5xwIiZYSJTVS5jzwlHIkQlEY1EixImUkvxZ505yHZhmjbLRmsBYX3Og4UuhCo4zJmGGVm/DJuSygSYFt11DtDFvbUJU1ujC0wVIIQUF29QalKGtDNalRhUIJRSkFLiWiVDg8m6Fh6Cxaj1EvXc9ifopWiugck6IYRxT5vUOCDYq+bXGtzQ1sU3B794blbMnZvRN0kbi5WNFZx/auZzGvKSpFJSpia6nrGnZrVk3D7OSExydHvF7dceE2BCK7PlDJmoVuCcZxOjsmScHF6hZuO7x1NLan6yxGSgY3oAT4tkUgSfOCN1dXRB8gCSoERobsttM5YsJ7jxUBFSKl0YdGxr5h4nX+HGgUUSekUnlIHxNCGLQ0CJHd6975fA4nQaEVsTToomDQITfSuoGm3aGi4N7yGGRg6BN6XiGVQ6aBFAObtqPzkVXfwqpBaUMTspAr6kTvE6XR1FFjQ0IpTRlhs2uIPqKFBpeYzpf4wtCsBy5eXbDZNBzdOyZsO15dvmQ5LFhOK0qt+PzLz3FJcbnd4bctj2vPy4uXXPzwB9jBohU8evCIv3z/l5nIyBtr+c1//q/51b/0K2yaHS9eX2KHls5bPvzGz9PcPKfptmChe7nlbtfw8MEZTx7fR9ULXn/+jPnREx49vM+b2yvSVaLygvb6FmcDfW/5J//zv+TDb33Mk689RVUlX372BS++vCQMK4qq5vzxuygb+NHvf4/752c8OD1lcbwgUuGLOY+ePuKdd+/xr/7V9wlFxf0nDzieLOj7lnuPjjNuPiY0mmQN169u6UXP/fOnbMOWZ28GVjdX2F3LR++9w/m9M4ZUcH19x2K5YFIZgu2QwrA8PWW7uqW/fkMlFTfrwGXrKOoFSjrM0YSpCSyOSz6avoc5qnlwfEK/cSDOeffhA9599ymh69m2nmrV0K93vLjdIeolJ9URH3z9AZOwQyjD67spt5dbVOFxrqOYlFy9fM0n37tmfv6Ixckcx8BkeoRINTevO5IsQFuOT4/YDZ6tc6wvr1ksl8ynx4QmoGcTHtTv8fDeGUf3FqSPP2C7a7h8dskPn7/i4tUzXr74jCHB8sUR0QWW9YKjk3Pe3DZ8fPKU7/6Fn8fMC5aLY5rmFrvL4tA0dEBBbx1Xq4bl0Zx33nlAOVuCqmi2mWq3XTU8fPyY24vXtJs1tU7MteCkKCgmNbKcMKlLYgh03cAQE/PjUypZ0yU7Oiw5NPgY73NSCqbHR9QPThli5MWrF1RCkCRs2x6361kUJevNltB7amP4+gcfIRJ8/3f+N/5f/9M/4v3HZ9y/f4obIGzXmOkZ8/mM3k3gQYVQN1xvGrp24OG9B7SVQ5clE+Avvf8uP/mDP+CLly9ZDz0v1y1ToNaC77++4qbvsYNle3eJerhk6D3SJ2aLJdNCs+gnrHcbfAoECdJodGkwEpCWqjS5ga2hqqoc12UqlvMZwQe6vsf3keRyhFGcRCbTCYUoSTFiOzc6PSU+RExVMPQDhHGgGiO1MaQU0IWCKLBDjuyUMotrpIDBCuLYFFZKIUTCRInRmXC3jyp4/eqaTe+ZFCVFoZidzlA+0LYOpQVGK3zvsSGho2S3bZFaU2NYbxu2u47SSU7Ojrm8XTEMDi2ht5Gh91Ra0/WetrMkPAlPVRuqsqIfBvo2x+Vpkd3djNFdGZ0fc8yayqQRgK7r37pvQxzPs5Fe4hljdBVKZ7F3jHmILIRgsANSCSbTCkTC9pZmuyP4Bu9THhDIHF8gtYYU8d6PAobRWVxIykIzrUusswSfcu2Q9nEEmtTa7GLGIVCIqHNUX4rZvYxHCtA610xDn6MwrA2E5NBaIMf6KzfKMy0g9CILn105EkM08+WUma7o2g6AyVTTtw7vsigghjw4yedWYEgWJfIwXUgI0aH3tCWRHdGDHUjkwUN2lufiVJtcT3mXsgBkjMVyg0ebgFQJbRRVVSIibLYd3iekzIIPbQRmUqOVpNm2WVSe1Ch08WM8cWC73pJ8GAcTWexgLaPISI6uZXKMn1ZUpYA0TntI4wAkEKInjeIsIeTBAS1FFrArlYc23nuCi3RdT992efgkEkqrHL34Z3Tt6+rx/yDtqTt/6Ltg3BPklf9SymxYYDzm+ffloV3ak1vZCwfHw7sfuIh9RIk8CAbf7lX2P8uBHsAoxslDtv1wb88TGAVJKUeB+pAOjvQDU21PiJJjrGXe/WCMIqU84G7bPIwLaR/1MT6GFCP6QOYIL8BaR12VTIqSjWuzoG8cUOqRDLuPLhFCULqKD778kAc3DyiiycdC5mNwEGJJhRRZuKXGiI/9ECuEbFiQcn/c3kZ1SyHz846BSBbXWGfprEQGh1Z5gOhiRAtQjAMwCUKP8S9K5ogdRL4ajqKHIViCy+SzNJ7nRVHnIXTIUVVjagkkKAyEKPHOEZ0f91iKrttRFiWTaY1UifWu53p6yxXXFDbT3TR5mGpMjqnunaWoaxZ1yXZINGEgErE+ooSmFJakApOyAiXY9QMkfyDZOR9QCPw+mm805aRSsWvaw/BYK1Dk65EaSQw5migiUx6sHo5zzOafKPM5pRAkmc9bpdUYTyvz8FVkyvHh+kt+75LKkTxBZnqDd4HkLCIJplVNEvk+JMt8PiTyPn7wea/b+8jLky94/t4LWtNhbEGSCR/z89dJMqQ86NUSBucgjLGACYqyIqosZmK7ox8s1aQmWs+22VCGkspotBTcrVZEBM1gKWzFECPbZkNznWk2UsJ8tuDJ9CFGRHYh8vL5a548esxgLetdQ/QOFwPHp/dx3RrnBkjgtwP94JjPJiwWU4Qu2a7WlNWC2WxK07WkBnQE13R50OwjX376nON791icFgitWd+tWK8bku9RWjNdLJEhcn11wWw6YTapKauShCaqkvliznI55eXLS5LSTBczalMSvGMyr9lPniWSFCTttsPjmU6X2GhZ7zx91xIGy8nxkulkgkfSNj1VVWK0Io20waquGfoO3zq0EHR9onEBpbORSVUGoxJlrTgpjlC1ZlpN8EMAphzNZhwdLYg+m2h0Z/GDZdMNYEpqWXF8OsOkLMjZ9gVdMyB1FiMorWi2O1ZXHVFq5osFaqyFtCzwQ6TxAqEM0QeqxYRm2+F7h8BR1VPSmEZczeaUpmJWFyyP5/gQ6ZqOu80O67esbi7oraUoS9T1FclHlosjBp9wHs5Oz7AnjslkwtANHC0H3CCzcDk4Ygp0g0Mby1/+tZec33fIokSIHEvV9wMn9QwnBqJzpOCotKIUIIzGSkFhDEpmgQdioJoJCl0xDI5Evg6k/W3j8K9ccxTzEiEV26ah0hohc/1se0shVRbN+CyYmE2nLOdLtus7nn35mrIwnCxnIDuitSgSRoOhoBOCyULQtT2ddZTGYKoCVRiklJydLPF2wsXlBS6ELMzZdcgYuLu6YTcMxAR905KiREtNtAGjNUoXTFLFLz3/BX5Y/gGvT18hVCbrCSWRMWLH6LBINl7thQ+Tka7trctUI1QWGbmA0SZ/b8qCpCwGGcUkSkICay2kHCGqRzEIMqGFIobx7ixFpp3LXFt4l+/n+X6T64X9LVYIMMbQdz1tb0FIzEjxKwqNHWwWMWedC956CLn+aPsebTSu9Xib676qLNAC2rZDivyt1gXqMpsNs3jdI3POJ6bIr9c6P1YW2VyQIkgRiSJXFPkF5JNnf2+OYaySRsrPftca95G3Yx9qL/DeU4NCCEhynajIQu7gA8F1GeA31mdyfC4C9TaSeE9TlDka2egsIMPnM1sKNQrEcq0TY8zmDQEiZUFOcvk1aZUFzHKkaoaQcG4vps0dQ6kkwcWxfhsrw5hJSzFG1EhULQqDKTTay1yzCIXWP0XziiPxSI7C9VForsb7YkwJZDoIzRFyNKTwVpR9OIbZ/MGegir2RKJMWMrGi5FcNIp+Qoi5zy3i4bOvtcqxst6zR6/lyLZ8747O03U9gvzzMQEhE5b2JoVcPufaSisNBDz7Xv1e2B9J5N64EiNxcyQq5Yjgcb+0p2mOMYD7mEUEB3LtV+tncCWYNlP++v/nr/Od73+HwhaHPdbP8ro8v+Tu+O5P5Hd57cd945//45pI/NYv/xb/5K/+E7bz7X/qp/PV+mr9e62zsxuePXv33/j6bLbjf/wf/x+8994Xf6Sn9X9s1XXHdNqw3S7+A57ln/1VDRX/3T/47wC+Eip9tb5aX63D+uOHTI+OVKkk4/4+O0jlW3dPdijnJut+U2d0gVKaYfA4N+S8eilRQhNSTmYXaYxaSxGhRBbSpNHxqQpMofHBH1C2Ga2rUEojYsjPIYzN3X2O9oGqlBsAzjqkEGgJRmR3zD7OQSkFIWLGYQAiN9FDiighmEwqOutw1mdyTnQkkYdX3qeDe2mPAo5+dA0hUZ3gzes70DnWRReGSVXnxr7LDRqlJNOiotAalS3UGK1QWlNXE6qqHBtgY9M7wbTShwFcCAFEwqdIJEfX1GU+blkQlA7I4EjIUSJCUhSSTd9x2+xYyprFJOPxbUzIssiRE1JmyoAQJO+ZVSUO2PSW9bZhtjzBKM22t4hgiVESkcxnU5azJaaoWO8ahpCHCGVRcu/0DDd0XKw7tJny3W99TNKO7/34BQ+efsS01Cg069UWJWpMLXFuoHGBPkiiS8ymM6bTCX3fIlzAO1jtenpvqeYznA0M0aO0JgTPYr5AVyUxKo5PF/jO0zQNsiw4PV5ihOBqfUcU4wDQD9jQMww5FicPPBxFAdPZDKGye8+6gBKSSgpsCMiUHWLD4KjKmkoJtMqCJgoD1iJiotBlbuwEj9EFUQvSTBOChBiIXiKDGnHdkqowrLsWIRLL6RTXtnQ+UdXHhKTZ3W3odluq2YICxXxeEi0oVbDrepxMfHrxkrISLE6O2bQ9fd8TvCPKUfwnAhSJ2CWigNtuR3V9y7Recnl1wd26YdPckoQjtobVpsXICYtJhSyOmEyn3G3WvPvoA45rA3rg5HTOq8s7bIpoU/DiR8+Yas1qe82bdcvj1+ccnSw5MpKj5RGT0wUdAhsDi+NTbhrHxfVr+qbh9PQEe3uNqntWm4ZvfPs7TE7mlMFxXyXWz99w79E5Rd9RlXM2hSWqihefv+bii2eUs5JPX7wibq4plGLY9BQ6opF8/cNvcvboIabQ/OgH36eo59y8fsbqZsOLT1/w/ocPWfjAxSdf8q2Pvk51umA2Kdic3iGj5yc/uaZxDtt7rvwF3/6rv0h/2VImSbsIPPngPT7/4nOePbtiVhR0SbHwBWGAq8sL3k0SVUnuf/QOcdMR2oF2Z+ldR6pL/FVH6y95/+EJm63l6vWWSteIrsd1nu3lwIOTjpN7C5QfWLWXxNDyK3/pl0lxoHl9g6gNzgVaCVd3W663G85nR3im3G4uWEwkZ9/8GqdnT7i7+BLv4OL5NU/ffUJd17x5dcOPvvicb//iN/nOL3xMOS1prq549ukL+s0d8ydz1n3J62cXzAjUqkefnVNrw1Qrrl3LXbvm82ef0/ueejFnPlvwN/7Lv8r2pudqt+P2bsX9sxnl0YxyUvPeB+8hBJT3TmE2QyLYdD3rYSDoRDcE5CCYLgvEQtG1PS/uLlitNyQGJvMJ9ytJsIGr9SUPHz3g5OQ+0Q+0fU+UmtWqYXp0Qj0v2PQh30vEvlErYIzcqauK7/7lX+XXfu1XuX55xfd++/dYty2T0yPqcWj0k5/8Pq312Xl9ccf3f+NfsZgtKa3naFEyPZlxdO+Ml89f4koIbc+nnz/neDbji6tr3O6Oe2cLHnKK33UkHdl2A4iSyzcrZFFSzytWu4airFBC4UQiiILH9+7RTy/43tVzbhrH0fyE+bTi+OkZ/fU1Lz/9HO9DdunXE5KQdM7Rdi1GaI7nC6Tashs61rcbYojMJhNK7wnOs7tr6DtLCBHrHCkFkssDIyHBecd0OsFZiw+BqtRolSlyWmmkzPEBwUcIEF2g3bXoQqNLTe4eJ4zJg/f9vd4HhzYSUmR9u2IxnXG0XDJ0A6a3fPO9p2jAzKesV3e8fnVFCIF22/DFF6+YTaZ5YCkSi9rg2ob1qmO3G1Ay0bc9u2GMFdC5nnn96opgB3btQEiBstBMJiVSgbVDHoaLSFXWGcVvXXb48pYMUxQGZXJ85j4eKpKbz4dIqJTygMbn+kHJMU5gFPPW0wJdKpDpD6H5hYS+d2PjXee4ViUOzW2tJFoYILt8tdbU05LSKOq6wnjDMAR8hOQz9cMUhqLQYwxZzM7/JLJglyway0LyNIo+Il3bI40mRtClojYl7W7A29xw01pRTwqU0ZmsORIGjDEIEajrEjcoVqsWoxMQsjA6CEIco5NCxDuX74USyphF41pmOpHQAp0Uajw2KWbCUR5wZXGIKQ1VXRKCG8/ViB0cfW+xPmFaSz0pqcoSoQxFGQgxiwu0VihRIQX0vcXHSFEVWTzWWUDmQUiUBBfYbVsEWWgmzBgrLEb3NQofEiJl4kLwOVZXF3p0d+fPUY6GM1n8lgQxZAGcd4GiNJTVGAMnFVHFw9Bq6CxSQF1VFIX599wW/EdYo2hI7GMJx+HaIXBtPxD6qa/DKNyQYyRHCJmgKjJZ7OCmHx/gELq2d52nhBKjQCm9NTzsiUw5pjoPkkRKhNFlD28HPkJIEFkAIhhnhlL94ecqs1tfjXSmJPLXMokoR6X40TUvOaQO5T1JfHv9yE86v66QMonJOdjt8vVWjYQnrfVIc4qHoWQpDU/fPOHpq6fUXb5GCSnR2mCMfksBGN8Lqc144MaIbvbRMwIldaYs6L3bnjFuZtRQiXy9VirHuXXWUpaaUhf5XpASQinkqEKT+2FXzFSlCNjg6QdHUdXIIPJnPYZMDUBQFIaqqFBK01ubr1tJoJRmOpkQvKMZHFIWPLx3RpKRNzcbZosTCp3JYn0/IIRhe9YQZcDFiE+CFBJFUWKMxocsrIkBeuezQLEwhJD3V5lKkSi1RmrN3f01D6aPwYpM69WKutIoBO2QSEKO9zJPSJmGIMfzyLuAVIy03Jy1nYfHaiQqxQPpKviAVgYt81ARIbIhJ+Q4OrmfoMeIljKL0QpJjJnUlCKIKA8CKaUU3mURa1VogvO4CNpUpCTp+gFvLbooSUlSlppd1XD19SusGklEzQatBWVd5Sgan8lXScQxZimSNOCyHLfzFt12GFPSNA3d4BhcDwSSk/SDYydMNu+oCl0U9EPPfH5CXZYgA1VdsG1zr0BKyeZmQyEl/dCw6z3zxZSqLqmloJpWmEmJS/mzVdY1rYvsmh3eWepJTehahPb0g2V27z6mLlApMpUwrLdM5xOU92hdMigPUrO929Gs1uhCc7fZkvo237OsR8lMtTg9PmMyn6GU4vrqEqUL2t2avrOsbzccn8wpY2J3s+LeySm6LjFGMZl0iJi4vW2zKStE2rjj3rsP8E0m5vhywvz4iNXdHetNk+NRkZRRkTw07Y6jJBBaMD1ZwuCIo5DYB0cymtA4XGw4mtUMg6XZ2lwveE/0Edt4ZhNPPSkR0dP7hhQdjx8/JiWP23UIm3s+TkDTD7R2YFpUJAzt0FAWoOcTJotToh2I1mJ7T1FIlosZQ+e4vr5GaMmjpw84Oj1BBM/mbk2/a5nWBlMUrK9aovXUKoBMSF1QyCxr9MGy3m7o+hZpFFIZPnrvPU7mx9yuNgzOoWVkMqtQhWamDU/fTbx8NUFUFShNTD2t7fj6tz9hOtsRwgxFFo/EGGibHm+vkDqBgul0gveewfYYYzg+PUYphXVDvj/IjrKyVNOKpt1kUfJ4RyIdLrNIIVkeH/Pu1x4hU+Li1RW7zYbJbAZKsDw9ZnN3Q9tnyrbwkfXrK4bbHUYL6kKha0MxrfE20IsAUnN3u2JeFbQ20DQ76kJxPJmRhpANCiGQkibaiBsc9bSmv9tkwbo2EBRBJMqpodQC26zpBsd0NsFUgsmsxCjB6vIaYSUf/fhrqG8IXt97QxKCweU46KowpBSxwWGtw8ZMkVRaI3wW+wz9kEVEo6kwU1zS4R4klaSQBuc8UoqRopR7d5nMPt6nxprUj0RKpdUhTlaMgpAY0kGMIsfbtXcOKwSz6ST39kJkMZ8xLQqiyP3D29u7XH+NUcXe5gi1SEJoiSBge0ff+yzAiZkZ6ELMKqiYidrX13dY6wkxIGQWqSst39IfU0SMsbRZLOL/kJh7/zOMgiMpJIFRgLPPFhzrhrQXKfFW+L2vxzNJlXFfO4qVxUg7jGkUu47iakF+XnI0cGb5K5BNDVrn2OUspg3EJPAxjlGxIh/3IY7isYhQHEiOQkCUe2F2fqzgw1sRuNhHwApcsONrFmgtUVq+FQal3GNDZCOt0ArbuBzTt4+kG0XwYazbfppYFHXej+x7xwgQKlei+/d5L1BnrE0zXUuPwp38jL0fyak2GxT25loxRnQm3OHnM5U/12A+xEPMWvDZ+iujOPSTc+9avq1BR0FzGlWPCQGjIDlHbYtDZFuO8s2vUyl1MMimSCYlhpgNGlrl1z+KxvPjgY0WUiZ4av3HHxd8tf78LBkkv/yvf5lf+c1f4eT25GdCRPPHXV/+CVJSfvz1H/Pr//jXMf7P8L79T2hdnl/yz37tn7FdfCVQ+mr957uePHnBb//2L/2hrynl+e//+//nf7BACWA+33J8fPfnXqQEUNqS//Z/+m+Br4RKX62v1lcrrz/+rmMcKiQRkTILeGJMiChQe/yvyBFs2V08Oo3JrnrGja3cT2LS2/zwmN5uIlMao1JgdFCRiUsxEaM4bPiMNpRlATHTmLQEQnbhSpUHayEmirLKA6txg2u0JiCIznHYxMWIiFAWBVVpsN7i3IB1ibooMKWi6ztIAgXZsXWIA3rrVFFCIVPG/yaVUb/WJdZtz7TOQ6QUI23IzQaZJCpJ6knN1BSUphjFRIpCa4IQFEWZhwExokRukDM6k6IYj7HcO+s9qIhSoKVAS0VEIITGuUBRKlAKITVKaoSG4+MFm3VHZQo2ticJxaSoCClgU4QoMC5QaMnQdmilUTi8DWgpECLkCD6VqEuNqWtkNckZ9S6yix1DDEQfkapGBkXTOE6mM7Yl1CdTdLnEq56H52cYVSEkDEEw1SUfLD7k9cWX2NCxajZ4F7E20A4bLnd3tO2OJgVer+4IRhB1HrKmwSMCbFc7hA3EaDi5Fzi6d8Ju14CwCMAJTecsjfP0LiC0YXp0zJuL17imYWo0D+7N2W43eCfQRY0qa6RQmEKTyMPnIXkUGusG2r5jdXPH4wdPmE5KRMq0jZQ8QSkSgbIocH7AC3ApoaVBCoPzgc12hS00ZZXx54USzCtD0yqkLOiaBhl6qsmEJHuSTRQiUR0dEwpDNJmkYbuBi4s3SB8Ri5KGlhgVVbCsuh13uw2zaY7NSDIhvKOsNF2bKMqCdujYNC0ugLMdSgS2u4ZqNuHsdEY9m7BcPOLRyTwj/h08mM64ulqzqI/48efPWN1tePzoXX7x44+ZTWreXF1hB8/Ts1N4+C7vf/QhXdPQrG+ZPHzMo8dP+OT5NcV8zsP3P8Q+f8PJ0RSTFC+u1+x2dxzFlo8eLjk2kvuVxsmSDSWLp0/52jff4eXNCusLfv7jY4xW7DYbQt8TQ+Lpo2NWZWRiCrwM3Lv/iPsPt4TQc3vXcnrviHc+eEIP/MY//U2eP7vjG9/8Jt/49re52jRU04r1xQVf/ugnHJ0cMfQd5ayinC+JuuTNxU+IdU01m1N5yax+AHoCA5wc3aNrB6a6hspwc/WSOHga79i0W8o0QZia1188w3UrismEJ+f3sN6jnWUiNTfPr/m9T77gxy+uOHtyn1/45Y9xzvPj3/oRl5+/oLmbEhF4MXC7WpMmJfeO5piHj9nFQKFLZotjnszm1Cdb7s1q8APf+doTilIxOb3P7es7wnTO5MkHmXDQb3nz/MdYafjL/6e/hPOe1d2Op7MpN+se6zLZwLqBZWnopxXrTUMzDMQXV7y4vuXy+oJpqbFbS2Oz0PN+PWc+fUDfDTy6/4AoboiD5fu/8xPM7AhCYqojZ+cL6qMTKKbErufi9RXVcs7R/QWxG3DDQLNKEAWySDz68DF3qytwkfPjY9bDwMu7K1SCrutY390yn004O1rSeEf0icv1inqxQN5e4/0w3ovIjdzxPkWEi5fXfPK7nzKbTTFVye2bN6hnr1hvdzx9/JD333mH4OBf/LN/hTpfMj0qMGWBlzVf+/o5WpdUk2N+7i894tX1Ha+vboiyZ3Y64y/cO8P1Oy5fvub1Zc9uu6FrV2w2jm9+/Ru03TAObSvaDuRmy9P7p9x7cIpWBf0wII9nnD24T2cHhFfcbe44nR5hpkvKpHjx4gXbzYYQPet2R5QSD3S2Zde19K7PdBgfyEAOiYiJOASSz81dZVR+L/ueu6sbnPXoUh/w+8rkBrdIueEshSIEO0aO5pphaAekkNRlQRKRUguSKHLDNUWCdLgQkSOtTkiB6wd653j2/CX90OK94+T0mMf3l2hR8sOfvOTV9RVNNzCrSsqqZD00LM+P+c47H3B7u+GLlxeYqqY8KtkMF5nSt9mSAggZEFpRKIHtBnbdQEieolAUlc6RTJ3DxyzYqauKsthTpPoDhYWxOa6URJt95FigrDLZZrCWvSxDxNFZfHAJjw39FEAKkvBjNELEuixIkqPQyRQFQkiKMSZDiIT3LjtgR+WD0YaQEtZ6ylCg6yxQ0FpjhyzUsTYQnIOUKKsC5yPB+UOEWBIBIQIxKhIKH/bngRyjaxOqMNRVQXI5nikLzEQu+1JuwEfyEHcyqXIkhweiRAlDdIrBeZAeJRQx5tfsnCX5HA0nR1f20FtIYw2ls+ihrAwyCtpdi7WZ1plSfp1lVY6N1YQp83sgXD6nlBYjEdGya3pinFAUE0yhkCEiJSip8US8dQipKMosMHZ2QOqENgbjFM56fBhFXeMARIpIUSjKqiAEP4prIDiXRTpkIqnSOQIuDzWmYxzIGLURc5SGdwHfOtqmZTqfMJ3WWbigVR6aiCWbtKNtW7qmy1SNP8trLyoSYqz/c8SeUrDvUMh9ZPRblsA4LBonWyKHGB9inzkASbII/PBzb8U/eSC4/3H5U4SqMR4kxgO9If8c47Ann0/7mJVMKJMHAVTaT6BTQqSRnqUkIY3xMzFhlEIqhfcui8/IlLM03nD2Aqv8O8b4lwBpL1aJMNiAMePwaRzOSikRSSDJ4rYPXr7H1778KLvmi5GkI8QYm5h/1z7yLt/exj3beMykVHlQLNMogslUhVHikgkGKpNWhciDOCHJ0VG9x0jFEHLstJFZROX2ppAQs7DTufF553gSKfKn4UADUxJlzE9FeufrWEhxpONqRMrRkVVRYAPoukCqiig98+kEJbPqNEQopOa4LHk1f8a8mtDbgRgTISbaYSANHc5bHJHt0JMURClxIYCPiAS2txASKUnqaWJW52g7tY87FwIfsgDKxYiQElPV7HZbwmAppGQ2KTPxLeSYGaFydGOOccvxstnAkw0o3ju6rmcxW2RqBVmglkkgeWislcrUB5FjpqVQ43Uo0Q0dRss8GJUCQ46lcUoghMFZh4geYwxJhEzCAXSVyUdJSZIIfPb0cy7sVa6HSoXDQZLoFOmdpbMDhTFEEklG8AGtJd6B1ArnHYPLkYYhOoSImbJaGCaTEl1oqnLOvC7p+54YYG4M9pUlAjerNX03MJ8veXDvHoXR7JqWGCLLyQTmBccnxzhrcUOHmS2YzRfcrltUWTI/Oiasd0yqApkEm7ZnsD01jpNZRa0EMy2JaAYU1WLJydmSTdcTo+L+WY2UAjsMJJ8FBMt5Ra9yFHuSicl0xnRmScnT9Y56qjP9B/jy2Ss2647TszPOzu/R9Pm1901Df31LNakIzqMKhS5LUIrdbUOaZbGOiYJSz0AaUoC6nuJ9wMiMmOyaDSlEXAj0bkBjEFKzWa2Ifsj0wukkRwbGgBaSbtNwcbviZtMyWUx58OiMECI3r25o7jbYzkCWA9ENPfSaSVmgZnNsSigpKMqKZVFi6oFpYUjBc+9kgdKCop7gXKJZOczsiKIo8UNP325oup7T8xOkMjRtz6IoCC5iB48cz2eVJIu6ou9aVtsO2Q101rHabhEEQBGixIbAtDBU5ZQQBKUpmNUTkhCs7zbEVYvWJkfl3fwC1aRGmBKSYOgdzjsePS3RhcvCgcGO947IbDkjhYTzA6UuEFqybhpcdCgSQ99hipK6KPaqVeazHaqYIrXG23C4NyH25Jt8nXc2cHt5R1UYTFninKXbtYQQMcYwndZMp1Ou3lzRdA1Hywl6FB8uj5cIqdC6YjIrmXLEatMwDB2qLjiqak6PFgztjtWqY7ABZ1tE03F6cnYgtyHyMfTeU5aBybSmmpQEFwnR884HH9APPUroTHVRMJ/VqJDYbjbsmoZ3Pn2Xl5MLej2QBPgUsc7jgh+FE6NARGeeXgqBFEYhjcgC+RgDQ9cxarlQWh4MgLmnBykFhNzHe+XnnkUnWZijpSJEn9OrpAAU+6iysP9ZH0hSkHwaa7JRNKQEykgW84ppUbLZDdzcrOmdRyaBMYbOWYboeXB2ghGS67sNvQ2Yqib5HcElGpfv7dlBAFpnMakdRa9i/JoQjGL6PdEnGy/3xozDObOnF410wzSKZrTWmTDv0uGkSnEk64wmTTGKjPbHABHZ0yFDzEYEMd7XhVQokQ7PId9iYhbgj3XCvrea75sRI/YCJUEU8kCdiyHCSEhSWhFdJtqnPQVTvK3VYsqG16y93cciimymHKP5smhN/NThkGMMez4OUoqDMEsKAUkSfCLKwEGqlkaxUQjjvXNPb4qAR8Us5BZyT5TMYuksnMqPm8XYY6xuAjnGtsbD8U75HIs5sjWS6WBCStTY2ZZC5FjWMAqSxujPFCOImAlNSeX4t70hZHxPEWOE+CgY39eihz3kuMQY0SaVxEhzEPDv++97UXsIkeQcXudIU6WyiEkKSVlmWs4w2AON6qv1M7YS/Oq//FX+xj/6Gz/z0W7/e+tPkgIUVBivaX++V5CB3/irv8F6uf5P/VS+Wl+tf+8VguIHP/jWv/F1KSP37l39BwuU9uv8/PJ/l9b053FVQ8Wv/+Nf57MPPqOZNf+pn85X66v11fpPvP7YIqXsBAnElNDjRglGd2aSSKGR6u3mU47Ocecc+x2eGKcHGWUcEftNVZ7s5dzs8VdoclM9hnTYpEuZN06TSZ2pSzIRAO9ibpYz9oiUQCqDbXv6rqeqaqbTmmHoic6PEW8ZAyxGt3CIGS1vJCwmNTe7HYP1lLrABk/OAYtoqTEm5wwUY155JOIDhwazFlkg5aMgiEgKnuX0mOvNjqa3KOGZVhXzSY0WkmlRM6lqjBQHZ7lPoJXJbqkY8SFTpGJIFKZAm3EjbhP3z+5xcnbMZ8+/wDmL1AY9bjJ765DkOAqtDCIGEJEoAn07UKIpUIiocqNfCupyinMdKVpsyCIk58QYr6LQSebBR1Ex9AON3VLWJXd9z9FsgSlLYpQEJeidpdYGqQVn54/Y9TuabU9tagqj8THx4uaOGB2u7Ygm4ETJqulxm4bmekU1FRR1xWll6NuWu7hj03WUWiIVUAjQgsE7TkzF8b1zLt7ckkRCyETC0/cdrtsRmxoZBdPZhJQSXVQEWlCSqZ6y3ja8/PJz3GApjKKxHTcbydRU1JVCKo1OCSUigsBkUlNPCjbrO6wPtG3Hql/jVWTbt1R1mZsTMaFizBj0AG3bZKy5kNgUiK5npvMnsskSOJqhJ0WJEZIX11eUsyk+CNYXlyB6ZJIY1TMtC6pKoRLsQkfTKLq+QcUeUwjafkD0Aj/0DBZ2wtBtGipjSNowrDuC7DEyP0eCYOgt3lkm5RFox7ZpMKVEIyiT4dGjR/gQeLRYoJPi0aNzbGd5/XzN6dmSdddQ1BP+y1/6C9x79JA3X7zid//Z7zA9mvPX//pf46Nux+/8+JKb6xWdb/M1w0xwNjApQYkjcB1vvvwEGTWmKLi4WXN2fsyT9x/QrLdMZyUvXl/w5sUzfvjp59xdX/P975+wfPSQp4/f5eqlzTFGKuC6ljY0NF2HGwYeffBejnYKc8xyymdffEq9GFh3G5Z1CUnzN//mf8M/+Z3vcfPilu//wWeZBhUGdusdbtuSTMWnL59z/2jORx98iA/w9INvZJpWm6+V9dGSYddyd3NLHzQPHz9lUha8uLrj+cuXvHt+zr3zUx5+7UN89Lz+0TNm0wq1PEbIGXU1Ya4Sz189x7rEzcUFemZYLjWbN1e8mdbYvufV1S279SXm88A2DsxOz1iUmloGkNDZhEuR2cMTYtTEzYAJjnun5ygx5cvPX/Lssy9ZLCbUZg61wnl4cDblN//Rb3N6PGN2VvL6+TOqcs69J+fstg1XVxturtccvf+E51+8JoTAo/tLXrxZUZ6ccPHiGa8uXrNe3bIuE/cXj/ibf/W/4MXlC6bVMSdnj3n57DnqkaTQijZ4bNcxNJ6b1RUPz8/44BvfJlm4u7pmfXnFl58/pyqnFOWcaV1SmwnrznN7s6ISc25vGqQQ9B5m95/w5HRB/1u/ycXrl7x2HnW7YzGZwLuPGGKkbVpKmXjv0X0uXj1jsDbj6VMW1OThc46Vev7Zj9ndbnnw6D5V7FEiMJ0amsbz5cvnPHrnCTcXd/zo2QuefOcjPvrW+/hG86MvXnJ7eUGykpvbNffPjzl/9wHvfvQLbNYtzg/QB84eLHE+8dmzH7HetUzrmsHv2KzeMGwGtjZgZjXf/vh9rLX4ZuDLL95gbY/3lnJS8uDeCZs3l4QhcHa6xO4aXl+8IHWWQkiCABdB6uwErcsJwzZCZ3PcizbMZiYLRKLnerPBj+ITVBaFRO+oioJZWWELRzmdIIiZFqF1JmgMCR8sUUici4gxLsc7j3WOotSYSiLIsV5CK2IEPwS8Tbl5nQIi5vogRAhJsW0H/OUNUkl2fUS5wKPTY6zt6UJAFZqT82OMkGyfvUZ4jw6Bzc2G9d2O+4/OuH+2pN+t2bV2rGkChMR8OkOkhBU2N+RHTfVgB/KsRaGMZjozlLqg3fXYwZM1RYowipfjSBxSQpNkjguTMlLXJVJrlMkDCj94lBbELkd6+LgXb49Ca5eQdabxdD5HW0k5/kn5MaLLX68rgxaCYCMueIjggiOJSI9HK4tMgl4NhJAY+iz+2Tt2E+CDR8ksPmB0RAslCSFhU6AqDHVpiJWmnGgm80kWIAUINrBdd9jeIxEHslHfWXyKCBUxStH6HhciptLIKPFDQAmB8zkqT5nsJAxuILrssJciU54kCR8ifTcgJYSUBT5yjBRKI/0yJYEYY9H8MOBtwJQaVZcHlIFWOkffqERVVpnwqTVFqREpMQyZQuWTBZVYns3wg2e7bfLAxWjKymSBuI10O4uweVgQGKk94i2JJyWRz2/vcc5lyKXK4g6ldY6rMAUEsJ1jGHp0oSmrClMZTGlwvWK3bdneNYTBY0qDKQy6UDmublLR9wNDN4yUpz+ba08t2pvmEeT6X5DP/ZGSNX7zOKCM40CJt0SKxIGi9Id/P6PgMe8nBIK0d5+Pj7mPyjLGHAZAe9OEED/9+0EIlWkzzmPG4WAInhTiGBnHQTCUtzsix34JqIymtZlAp2UmyKaRsKBEpreGcaC3N2qMnv2RdrB/XmK8LwWqoqbtLc7nmB6jNaUxSCGY+ynvXbyPkSMdSQhi5iNkUdxIbNoPepXSeahL3m/NplPqac3d+o4Q8nulxmPlQzhIlfZCJjEeKOc8Gkkg7020yjFkRheE6PJQLEVi8ISY309J/oyI0cUffMAGizKazjnqokJqlT87IkeoGalACqbTOYO32MGjlcmk2JRYd10WujpPkokgFL31xMHh2p4zc4+XT19RK0Vwji5ZOudG0wUwXvd9jNRKU0+m7HZtFlyOQlLvHdFZosj726I0kMAlQcKDhEIWDNayWd0RQ96juuDorMBInQecUo7p1xGQGJP3l0Pf42MahT0DSaRMhdGKPNAEOe6pYyRfT1QWOYWUSMFTSI2W4MZmqR0jZRSCTduii4IYoR8skCkmSnoKlQV7AoFNDmclr49ecbl8hUzghoBwmXLng8eSSYJaKlCS0HuS8CiRnyNREFLAhYDRNciItS4LTGXe68/nM2JMzIsKmQTz2ZTgA7tNz3RS0zuL0ob33n/IdDFnu9py+ewNpi55/713OfGW1zcNXdvjYs4JE8oQQ46/kqIkBc9ufYNI2ejUtD31rGZ+NMUNFlMoNruG3XbN1e0dfduyuKypFnOW8yXNNsfRShEJ3uOSwDpH8J6Te0c55jQVY2z5Hab09M5SmfyeffjhRzx7c0G77bi4usv3iOgZBkscHElp7jZrZlXByckJMcHi+CwTN1y+R5u6JAyevu3wSTKbLzBKsWk71tsNR9MZk9mE+ekxMUV212uKwiBLAbLI5i6R2Ow2+A10ux2yUFSlZNi17AqDd55t02H7BrVKDMlT1BNKJdEj3cuFfJ2czWtSkqRhQMbApJ4iMKxXW9Z3K4rSoIVBaklIkmpe0qxW9E3D/HhG1zYIDOWkhJRom46uHSjL8XmsWxaLGTEokq6IwbLdZSFuwlGXNY/vnzP4OcPgmM9OSCGyWt1SFDU2+Cy06Bxd2HF9vaDZnTE70djG0rc9q+s7QghoXVJWjlJIgtC0bZ/vBX3EKAg+YiYlJ2eniLtbri7f0Pke6z1i13GynKMKg3WO+fSOeX1CWxVYOxzG+3txUhYnJFJc8+rFmrKqmU0KtEh5zyolm2aLNLk+vlmtEUZzdO8Eg2DXBlbbFTJJml3PdDZhMq148PAUZyM+epL1FEajtGK1GeiH9hDtNNgdMjhsb7FKcXy8yNRKn8mo211Litnct1hMSSGybTdURRYyrG/ucH2HHEXGuiupfMVQOIzREDzWx5Hmk4k6ezpPPwxZqPj/Y+/Pmm3LzvM88Bnd7Fa3+9Nng2yQaEiCoGWRVtilsK+qIhTlqH/g/1UX9QccobIrdKELyRFVZVEkSIAAEkggE5kn8/S7Xe1sRlsXY659kiVRJkUIYHNG4AK5z96rmXOtOb/xfe/7vD6O1JrXhL6yMKQQQassvAweoWWui0M2TyDiKGzJxPY0ijkhk4+UkqNof7znB5EJNUmQwkhPhJGQky+O27YbhR+S88sVi6aCkQqUEBRVwbSpCKssztGA6y19N4ASzGdTUvCs3BYfsnBfpIgWmkIZbLCjkVOMBJ00RollMYk2ElNo4hilncLYDyVxGyCb8rGUQsAo6JFSAea2WPE+i4OyACsf/1vCpBijhpMYBbEyi8Jlfnw5HsscoxszsUjmmD7vRrq9z8KmKEDYiCPcxorun28/nUu8jurdUxdfR+vmf1MiE+ZFoZFKUJTmVvhNTLjBY23ey4yQe2KIOBsQal8bRXyWxpJ3TWLcP+VaXOpRsOtjPv9xH0Otx9oxviYr5VIrf1a/1p4WjOcuO0bxNo71o857xNEEK8bzK7RE7ONaVabYh8AYjZujvk2pUUIx9DaLpyRomQVipJQjCl14LVAaXwOMIvzx1cWURrHSngqaz4FS+7j0TG30zhJE3mtIpbLhVEWszftQYiaQydu/E2ij8S5gXcgxrW/WP6o138z5p3/yT98IlP6K9a2ff4s//a/+9NfyWEmkfxQipU8/+JRPP/j0N09KSSCT/A0/6Zv1D3V9+eXbPH78zn/wc/Fr/A4LAQ8ePOcHP/hP/56UgcnkH4aoZ7FaMN1O34iU3qw3683664uUctN+dPGEvMmXKmN3lZSUlSGEPUo6En0YHdJjlz+JMUKH0RkrXlOMRG54Z9Rt/nfIyP2UBCLuN+W52ZedPZGiKG+jEsSILhbC5AiWwhA9Y3SJzQ1im7HnkZxBL2997OBiIopEPzgkIjfHo8gxKkJSZrUDTV2jtaIgsU0dkAlHRgicjcSY6QkqZaGWURqtNZtdx67tiQkKU4CUhCQolRk3iypvkEcXmlLZKRRTdjgln51ISiiaeoLWib4PQCAMA7uba0yKSLJT25RFHnxohdQaEUUmBQlBUopAoneBru24vllRKY0pzOggioQx3iUOPcvdBoXgoJkyxEBdlHlAmhLeDoShJQqPtY6LVaBumhwhEyJNVeHskF11m2sK4TOW3XXcbQwvNj0b31MaRXKOVbdFmYbUtcwryZ3jY9oY2IUB1w1MipI4jayHFu/sbRxMCglCJkcoITCFZvD5s3gwXfDu2w+oa0MMHYu6JIpIwiGJFAJsBBECZQwMrqMsDLKoaFRBXdQ0tUYqiC7SCIPRudGUhKQfLBKF9z1tt6VrB6qixPeWoR1QhSKm/GwpBObaICtD7yxGlWSBXqAfOrZ9T12UCJlwKFLwTLRgsA6T5lQFxLMjylmNx7BeXbNzlgLBrKjol2uudgPBDpxNGpqyYmt6jCmZVBV26Lharum7jpPjBVEJTK1YzA+4usk48sEGpMlDYec97W5H5waSMsQoqJRmuVrjA5T+monUvPPoEZ0w3Ls3ZTe0HD/8Do/unZKWLdNyRnt8xtnbXW7gTA748FsfseQTqj5wd3KE9ZI2FNSrjlm5wKTI9uKC9775DT774jkoxenDM+7dvUM9OWBaTXj8+FOePFtzeXPDp+fPsTuHk5oPD09ohy2Pn79iGAaOFwvODo85vfMQcfmMWWWYzI/ygOpyw1fPnlMSqNKADIHLZyuMnjBdeO4eLFi/OGd7c86m72i3HXfu3uXd3/mIxcExg3ZUfqCqDcFF6mLCUVXy7PE5pYQnT7/ECMM7Dx4QtpYUJC9fXqCnE/7ov/9vOZQlbddxoAs++/IFth/44Nvv8vLLx9ysLetdy2Gjicnzy1/+jJQSu5sEIXGl4P13HhK8Y7VdUVQFD+4ecTV06KLmeCqZTg75ix9+ytnJKX/0f/qDHHEyCCZ1xZ//4M853+x4+fgrfvbxp0QZeJTmMNFcL1eUXeDk8Ls8+Ob3OTsqWF8/QfieZ58/4+c/+yX1wSGb66dMpzXWDmyXawqhOA8911uJk1twkKzn8uKSRSFY7wIPvvkOX623dINCzA+JSuD7DffOTnj8wvH0esXFpuV/+O++y9nMUM/m/OB//xl/+r//MV99+ZhNe803PvyAt6eHvPPggFdPrih05NvffgTOstm03H/nfa7PryA4tjc31Kbk3fff4+333+Ozn33BzeU5P/38MdYLTNSUdUQWhrKuEdueFH12j+6n4QKKquRwMWU+L3B2w67zXO4Sj3/0c0oleefD+zkuKsJb7z/i7O1HNA8fEXvJ5Lrj6vImu3QnBXa3QnJAXUZchJdPr7i5uOLR/UO0MRyeHaBUZLO+wgbJ9QBHxyd88cmnhHZHLS3vvvUWk3LO86sbfvXVl6yGHffePqNpTnjn/fdYrm+oo+PR4pRhteKzF5/hQ8f90xNaZ+m6novlDXpa5fucH5gYTdICLwTT+SESxa7t6dyOYlahQsxu9z7giZikMbVBaCh0wa7dkbxAo9l1Pc4H0HkQnlLEeZddtiJTJBAii0xEjhITIlGVNaBZbTbZXRoT1uV7ohxjT4ch3/ui27GZ1nz2/BXOw52zU946O8ToCpEULy429IPnhz/9JS+v1jiReHVxRQyJu6f3aFvHarfF+THGyxZ58EKObMJHhBHMZ3P6oSPFHNk6q2u6NseXeD+KFeIYBxQTRBh6i1LZoSqFRkhFWVVMlKYfr/NMMnGxNT2b9RY7DMQwFlwhD1G0KShKTaTH2oAQCmUEKIVrB4bBUdYValKTYiT6SPBZZBdTQI60IGsDeghIJbCDxzufo2S1yMSqlJ3YKQkKY/DB4b1DpXzuYgJSjjFIItM7jB7rm9WW7aaj72yuD0UWXqRxOK8ZRdcyx73FEOh2WYQkUMQkQOa4hSwEKSirAkSAQdwOtKSUKJmF4Ht3tB08xH0ciALy78skyUm+kcEPuORRowggxUgMMAyB4Dq0VpRNRVGAUYay1khZ0g89UknqusSYgjZGykrjXCZW2CHTlkggjUKLcXgW8z2/KA1alcSQ60PvQhZ2kH8vkoc0SmWxWLttcUNkGAZC8DjrGTqHKYsc4WYMZVmy221ZDl0mKRhFPa1o6ilKCoxRuEHcDuD+Lq69u30vDBKM7m8YKWSZgLAfcqW4p5a+/rtbXdE4wBkfavznMdpKpJE+x0gTELfPvv//MWRHvlKaIGBURebHFBKtNELlgV7wPhMhxOiED+n2c/n6aOc4miRyBIgYBXGZSJT3PRoJEsxIAVDA4PwoAEqo0aARv+Z+F2F8HikZrM+iE/ZRX/kvpVDcf/GA2tXjK9kPBvPeIs8QJZm3k9+f0QYpyQNOsqnCdu1tLJkQeZ8XUxpJAxJSFvGI8VxEkSMjnXV0/cBMSooxOgSyGErKbCgZ7IAQgsoU+BQx47ER5EG0D45Epk/thg4TTRZSpizGCiFkEtvQZbOAEojgmBrJ1nps9JkcFQODGxCqAO8oNUyaBier/P0MHqMVCcPg7W383+v4oEygEmKMRxN5EFgVJQcHc7SW9GqHO2pplgcksoBLiRznSUyolPDBo6VCqBzPqJXG6CxOTAEKJONckiSyuA0hiCmLGZ3zaKWJIRBcQKi8Z41jTHqpFEKpkfCn0ONnyAeH9SGLukTeS5Py9diHgESgFaSmQpWGiGQYOmwMKASl1Phh4FJv+PjsZ6TkMUpjVUAqjVGaGBxtb/He0dQlSQikFhRVRdv1hBAJIYHK17gYIi5ZXMgkn4QgCkXfD8QkULGlEIqDxRyPYjYpedQ+4u7DB8ynE+gdhSqw9YTmwOXPX1FxdHpCxyXGJ6ZFIkSBSwo9OEpd4VPCtjsOT464uVkTpKBZTJhNppiipNBFFtJvBtqu43q3IdhAFJKjusEFy816SwiBpqpoqprJZIZIG0qtMGVNCgHXWdr1BkUkEZAp0q4dUhUUZWJalwzbHbbfYX2OkJ9MpxzcOaCqaoKM6OhzTH1ImNJQK81muUMJeLVeolAs5nOSzaKz7a5FFoZH775NJRTOeSqhuV4v8T5wfHLAZrWkHwKDddQmC+6vr85JCWyXey6dgHQwJ8XIYHukViMxxyOVpikERVHx8sU1k2bCw7fv5XG7z/H0m+cv2VnLdrnm4vyKJCLTVFCIAl0aNtstzWRKNTuimi6Q9ARnGboN15eX6PMJMVi876mrI9quI7hI37a0vQOjKGQWrQ/DQHQ9YnDMjvI1Ydf3xMoiZBbYzyc1AlhZz6ubNccnh/j0O5RNzWY98NUXT7g8P6cbWk7P1tR14PDgMMeqbXpmswV1WbDb7qjqhslkgrUON/SIGGmaCUenRzgbuTq/ZLnb4jfjRVYakB490i5Jf5mmJABjAnfOBspyghSBwVpamxjaDcl7prMaXShCn2imDWbaUMxmFKZgiFvEZkcIjsmsJgVHChIlA1Ir+ptRzKUE02lFWZfMYqLbbTKxyBvqpsF1A+2uw2hoSsN8scD6yOXVFbt2iyoVUlVMp1OKpsZ3HfOmoBDwfLPB2o66NBQU3IlnbMSWyCgMSTELFaXCi4TRBUppnMvx0WiBEYYQXtesjkxfk1KMokuZr1VC4YLPZoeREiNEppAKxEiJyT3GTJHbS0uykEcaRRgsPmQBfabYZFpTFqik/NhEnPVsRE+MIJXiztGCQqoc4T1EWttzvVzT7nqGEFBJcbNcM59OaKpAaFti8PiRRC6DfG08SLk2KKqCbLzI8uHCGARgvc2in71ZYRS9MN6TvHdj71LeUiCLssCPvS6jcxXkfcT2FjfG3+2LgRRzbaSNRsgciwziVlATxmhlISXGlKOJwd8Knfb0+Gw0zTVDEiP1Z6QhKj3ez+Jo3Iz5HKSUhUBxL7ZJ6Ta2U6UcJydFjm7zPl+rnA23hKCsL4+vz+toAtiLr2KI9MnekpTSWAdmqitjRJzCj0TgNAqzspHgdYhVjAnvct0mx5i7vZFDjULyGONImszUyT3tKMZM5xJkwZw2GkGuUbRWI4UxonWOa44h5f1ZlESfe+t78R1CIPXXTCRRjsQvnevWOArRxkI4jSbgJCR6PC7ehywK93H8rOXPhlIKpfVtjNsQAsNgEXYUpRtFYQxypPQLL/4SqenN+kewEvz+n/8+8/U//Kih/9xVDAUqKIIOf+vHWs/XPL//nHcfv/treGX/4fp6pPpvYyUSl8eX/Nt//m+x5W/eQCWS4Ju/+OZv/HnfrH94y3vFv/t3f0gI/6F488GDZ8zn61/bcx0fX2GMxbnir/ydqup5+PDpr+05f5tLJMHdV3d5dffVb/ulvFlv1pv1W15/bZFSijlCA+RtwzlTf/LmT+xNHikiQqIsDD6G0a2Tm9tyjDeII1lpn/MtpSQJeVtEhZhGfO2tLwaRIApP1wW8k1Sloe9znndhNNHbvBkVGqUKUowURYF3DuccIXhiDEjGTZfIcWhKaGKMY7Y7xCTph0CjNaVWpJSx1LNqkiNSgsc6D0LgR1R1YRRSKmzfYXSZRUpS5AFGVEznC6xtkSpjyKXIwqeEREpDijmLXRl969aRQhBDYPAJqfLgTRtFVdQgFV0IbGxPjIl+vWYyFNTGkGSktY7KZEqGBHBjvIWQoPLzWjew3u4ILjCdHuBTpjdJaRiGgMAgdEKXDcXg2S7XCN8znTR4UnaUyhxHJ2SHDxI1NkiD8yil8WNTuxt6SILNtsvRPqahFwOb1RIhS6SP9C5C6Dk5mCGEZtEc0Q47Vv2GkDRGSIqiYHZYc/P4Gk1iSHnQIpG4fiBVnuXGI/CosqQqAuw803qKVOB8RnsrBJ33hOhy9FsQRGFy9FESyLKCGDkoDFNlEBJCEhxO5zSNZrnrWA09ygmkDKzcDmsHlAqYwjBcWYY+UByV+OAZXBY7tMFTakmJIvpAu2upSoUsCuwwIIOnKjUKgRSGoetxziPqmlljcG6Dt5lqQQzoGCiCpXcty95x0SYwmrqsWBxMqYVh5Vv0PEfoHYs5l/1AlIpCGypdsdquiGkAJ5AUDL4jJo9MGmMk3W6LVzKLB51EUTBvFhxOGy5XG6rDmmdPXuA+s8ymNe989BHdruLs7j3OHjzg46/+jKdfPkXNJ/zRH30Pv/P4ZcvPnv8IO3S8vNzw6M6C64sVH330HZp5zRfPb3A28Pa9Uxb3jxBopsUEFQO//NmntIuW97/1De7ce4vTY8EQB77/T77NVSdpjKFcXVIL0HeP2YbA6fFdYtui5MDRYoYQHadzQdILnjx/RiEM909OcXbH5vKSzgaO7zeosqTbeFRRcHgy437zgIvzJQeV4N7RhNlxwztvfZubF0vKuuH3Htxheb3G77bsNgOb1ZrrVyuCrNi4Lzg7OEIJzaSecvedR1Sl5OVXl4SgePz5E/qdRVUHHJye8fSLpyy7K1ZPe5aVoag1dntNf3OJaBa8/d5HbHYrvvzqK5SRWNdTYLCd4/7JHWbzY5qzhkoq5r98zKQwXH71itBbXIRVt8XEyP07h5wdHtIUDZt+zaP7ZxRmxvvzhtX1mio51ptzDhePwE9RquXtb77Hv//RZxwVhtMP32G73XD3rQeoh3codeDf/2//H372+AalNNZHxFSy2w34TUSJhhfbnsnJQ8qi4uZmxfsP7jM/OOTF+QVp6ziqNaaecHZ8ynQ6YbvLbv/m3jG7J1/w7HLD6d2Obtfziy+/JO4Cq2WLjz0HTUli4Gazoo+Jn/3wZ3S7HXdPTnjw1gELY7g3aZB9zbJvQQR2/YbgE4t6wqxuuBLXxBhGty3jNSaTqExd8uE7j7i6ueLJcsWHbz9ESM9q23J4MOeLJ5/z9MUls7ph/dU5f84v+e633idsbiiS5Xg+w0fLxbrjrpjgKLjZXXJ1fc2snrPdRKaHNX/wz77Hxecv+dMf/ZiPfu99+qHkwbtvM5/P+cVPfkxwiRAEy/UWmSLHp4dUcU5vE18823IyMxRRUJYlBwdHPHj4Dl30CLFjc7Nht/bYzrK1A8triyQwP55RItnudvQiIbWmNBWD80ybmlIVbNa7kWaiGLynHRyVTvghQgoIIviUnf+jYiATGhRqPwxPEZXGuIFcSOBSIvmQo1KBvusyFVDk+iERKEyZr5OCfI1UWTB0fb6mmU549627qErTVHNW12suLy7p25auCwxbTx895UzzztunaB+5eLXE9rlekUJRlIbBO8LgEDE751OE0hQcLQ5woWG92uB9YLtsaTuLcwFGotF+GCBFjiqJIbHbdewdsL11yMKglGC32ua4IyWIKROT4jgYzwVXGpveEEah0sFhTbvrsIPNTlipwUdscCjA9j0xhEwUCpm+KFJCIxGeUfigMEWNVBbXbdA+MamKXAnGSIw93udBhNhHbcUsTGrqAikFbsi1khs8u3VLM5mQkuTo8ISdalmvtrmmSiCUoGxqJtMKpQR+FOqEmDIJzCnKskQIPQ5hAiF4fOGoqorJbIoylmGwKC0ptMZ5hx9yTIbQo/OYTLTxo4gkRRAyIrWkqisQgq7rsM6iVHkrREgxEX3Cx4izW3K8y4x5arLYuygwRa6lYsgxqEpnmlHf21yxpjw8KBtDEbMIKY7u58IUiJjYbjtCyAIxrQRCacLoOhdCEJxnsANuyGScELMjHiVz1Mzg6LY7jDZoU1IUBc5FvPf5mLnAsBsoi1H0PIKK/q6uPSuIUUglskpljDQRt260vQhJKXlLOBo5FAiRxj3JOJz5WsRJfo7bR7gdsu1/sqcpeeeJMqB1jpWMMaGUII2UA4TO5oiUUGo/jAu3Aiop9nSE8XWThSNJ5O9yHrJGjNT5WkeOJCm1yeSgOEZ6sBdbZdKsFILgHWp01ss8d4OU45VCcNnJPzrex9A7Kltz7/m9230V+wFcVsWR9aGjoElmAVa+/sZMHUngB0sRFHqMlvEhx+NIlaM/uSVGiRFdm4ebw5D3YGVR5ssG2WARQgLU+N4yUc72AwRHURTEkYCwfz8ISUxivPaPUXB72pRQ+JDFGdZ5EgmtDD75LFYUGhFj3ptFR1OVICSVqbHeMnhLtaqZ7ibsJo6iMnSrjizb2ptkBNEH0IF+GF+3VugkEC5S6AIpxtjAaHl65ylmWaKcxFoHUeT9rMgRgULrLG7SKsfjkAVDdVHmGtt6eu+QMR+DPtp8rRCJmzvXvIwXvPXkbVSVY9bF+J1xMQuOFBIxRmNqVSKUIniHiBGtxv2zkOB9/qxpQ2kkIQzEJIkJVIrIFFEx4oOn94FNDLy6d8Hn7z1G1hEtCobokWWO0GvKgnbn82BZKozS9HYAPCkYBIoQY45gTxKpBM4NxH3kexRIFKUpqQpDN1h0bVivNoSrQFloDk9OqA8UM98wmy44X79gvVojS8Ojh/ey6ah3XG5eEr1n2Q3MJxVd23NycoYpNMttT/CRxWxCNasRSVKoHCN4dXmFKxuOTg6ZTOc0tSAQuPfglM7lgbnud2hATBtsSkzqCcl5hAhUVYEQnqYUICtWmw1SSGZNQwyOoW3xIVFXBVIp3BARSlE3JXMzY7cbqDTMakNRGw4WJ3TbHm00d2YT+m4gOosdAsPQ020HotQM8YZJVSOCpNAF04M5Wgm2q5aYBMvlCm8DUleUkwnr5ZredfQbT6+yyDnYDte1CFOxODxhcD2r1QqhsoitQBJ8ZNZMKMsaMxkJzZdLjJJ0q20WlyQYvEWmxGxSM6lqjNIMbmA2myCToppOaNqWWktu2g1CaQpREoJnfjCnixvs4Dg7PWC9uaGa1FRViZaJ9fUV5+cXRGlIIYDR+BCxvYcg2DlPkoZmusgCA+s4PTyitwO2z2SkplGU5ojB3kXphm65QlYFoi7YrJbM7AAhcLPaoAUMg2OwA1I0CBGwbkDpgvW25fnLC6qiYDbL9OtCa4bSYKMnRo+PEWMuqPSWYoys8mEvIHh97zGFJYnAYj5FAdfrNVVZcOd0xmqzpp7UDEPHzXJHiJFJkjz/4iVnD++R/IDwlspAZWC56jDNhIjGx8C23Y13OkPXBQ7PjjnygS+/8JSTkrKuMdWMe9MJ1+fn7DYrZFUxWEdIuX8n9BQXE6uNoykNRqYsTDcFSpYsDiyD20HybNYd9U2Nn+QIYSFAF4qybIjOQ8xRa1LrHCWZEkIYkt/XOvmeZH1ACIgykyUkYxFMrmn39y4xkmLEKM7IhIQxPk7nPmMW9sR8rfYxkw9jpgDFFMfo03zPFaNlUWqZCacucHgwRxmZazif8neo67JYqhtwPoGKzJqGaVXQtZmqKsYY33206uBs7gWOIiEpBFVRorRkGAacCwTrxwjk11G07OuZ8RWmNEavITLJMcYcN1zk670b3Fjc7ElFaV8EfY28sydFSspC5z7dKGSSIz2PkJ81jnShUZ00RrilLBKT+bSkJBBkir4fhb7aaJQSxCCykXDsk7KvzUbij9Iao7M5NR+blO+fo+jMmAKjBV3b59cy3p/VWJdrPe67QrqNnwtxH1fHSPHKveQgAtoo9Ci8cX4UEqncz45hjKgbRcl7EVVKoxAr7fdmGlNoZGEYrCUEnx9jf5BTGsVZKUdfW5cFp5S3EXJKZzPo/uTuRWZ+fI+CbOpVOkfE3YqURpG4EgLvPD7E2757Fuh9bWCaEs76/L7ia3LmCPPCR4d3HjeKrPbfhRgCkZDrLh9uSUyC11vTN+sfx5qv53z/z7//WxO1/H1Yd1/d5eTy5NcyUI8y8oM/+AF3Xt2h7upf+3H/5KNPuDy55J/9f//Zb5woZI3lx7/zY/7Nf/9vaJv2N/rcX1+7yQ6nHdrrN5/rN+s/e61WC549ewD/kc+QMQ4pf33Ntzt3XnF8fMXLl/f+yt+ZzTYo9Q+DdCiT5O7Lu/zF7/3Fb/ulvFlv1pv1W15/bZESWVKTXVEhu8JCjMQIMbo8RFIqxxcoyXwyIYnAZtfSdh3aaGLaO4ReuzKUUsS4zz2H24v+uCPKmzZuRTZSCIyWOVouhTHzXGC0pmvz5mq73RGiz4IpEjKNZAEEQqUsPBp77VpqTk5P6Jxlu27HgVXKmOZSsh0Gog9Uusn55CngU8DZdNv8DeNG0BhNXVfZQT0MlNrkoZYUX3OvKCT7v8nuI+d8FjuJ187nsqyyPEvmnPokM8Z/0+1IMVEWEKwdmxEeLyK7VOUcdyNwPpKEgBAppB6PsUOEAFpBjBzNZhilMTrHm9Slpg+SbjegjaIUGqETvRBMm2mOcROJNkVkyL+PTpzcO4QQ6dqBrs8DUz0OVlzfI8nDEacU1g3MZlNOzk55cnGFTAEhI/22R8TAsAkUWmFK0BLKQrPb9JASk6nBDj2L6RyhNVebFUNyVAaM0PRhoN9YJkVBZQrqsmA+W3B2d4FMnsH3rNbZCTgkx2rwCO+x1iJVjfeRzXaLloKYHCRLiIHgFFCz3LbYqGiaOVIoLu0SUiYxdF2PKhKyVOimYn21xk8aQmWJscYYxWFp2DlPS6BKESMV3nm01ggBk6LKDKtg6UMkaYEWJdVkhtCBzW6HRnM0LYhhx+WyZXA9KQWWqyWr6575bM7R2SGlloiQUIB3A1UJh9Mpm5sVQqp8jpRnu14TUQiRsjt/CCQCSqQ8kPaeGBXzxYL7d+4wdC0hrfGxZtrMicIwSEE0im+8+4j6oEKWmqvLJYcn9zl89IBPfvUpD02F9ZLjwwO67Q0dCXYtkp7jk2/w6P4jjg6PuFhf8fTVV9y9/5DzTc/NL55iNxuYCXbbLWHoaYQndRt0VfH2t9+jv7zi8uKcyUQz9Cu0LrBtz1t3jzFNhZge4ZWi26x4/uqab35wj6HtWJwe8Id/+F/x/Nk5RVEwnUi+/OTnJKN568P7PH/xgpvdjvnpPd7/5iPs+hq7lhwUE776xZfMzjZ883e+g6wUxgi+/PjniGQwEhpRUS4KHpgJFy8uKeOURw8/Yrveonzk8suvWF5fcn29o54d0VrP4WJKY0pePn/JECUP33qLFB2rmy2Pf/WErYBiUvPB+99gEAl0ycX5JS9fPKMopxTTCfOTRzSHc37xyWd8MPs2y37N4Z0TrpYDL/7iF8h+yX/9z/+IdinYXPT86vNzppMabQQn+oC33nqf1XpJax3nN9f86uef4lLki6GjXV4zmxSc3T3j7eMZKvS8/953mEwLUlRcPb/m2fUzeuDsbMZb9+/x/HLJwUFD1bccPjzl3skx77z1FrEXPH75nCfn54i6Yh0ST9uOaaGpppK+dXzx6Ves25aPf/IZn3/5mFTA0WzCydEEVSSKUnCztdjNirqqaYxgtdngnaKLa5qjGW9/9D7tdkNYbrj46jn9ZoeUBlNKisFzMJswnzRILHHoODiaIp9L0hivIdK+C6hYHB4SpOTZyxtevbpAV4bTkzl3HhzxJ3/6Q9qbLQ9OTghB8eL5BT/79FN+fzZjdbVkFSxiYnh6fs5gNd/88JtMlGL36oaiNHz00Tv05zvatsUkz/bigrjdcPf0mFlZINY7Lr74kmG7Y7fZ4FXgYrfh7PiUR/NT7vSnvFpf8tnjZ7z46inyeAm95aeXlzz/xo5pUSOFIaiSb3x4Rj295Oef/4rN+ZZl2/PdDz7inbcfcf3yJdZ+Ree6LHgxkUldoiLslh3takdIKcd+1gYtBd4GkgRTVVS1ZrAWUxmiSAwOnA+4YSBFgx4jfRKZ5VEWBmlMjnFImR4RnAMhKKsqR2l5h5QaZxPeJ0pTUNUFdV1wdnLI8mqLR3A2OySqyOV2w3boWdmOIblMJ4pQTxtO70x57+Fdbp5e8KvNmt5ZRAKjCqQS+R4fMp0nhEgE2l3P0ycvaJoK2zvadsjxBiPdI8cXhNyYHgcAUujsnv9a491HjykLVALvEt5GQvQ4n525aXRQjy3uWwd13/ZAYDabsVjM2Wy29EOPENDU1UhcymQKP8bNQY5l2DfaU0g4IrvNAMmgTEGpa6J3pAiTyRQRLRvRIfDkqUEej8QQMSYTk1IaKR574UzvchSLENR1wcGhoe+HMUIIxEi/ygOOMTbOOiJ5mAAi/3dwJJ8jJsraUDYFxhiGPkdsyTHSy3qXhzouD3VEiiij0FqgVIEUgmEYGHpH9BbbZ9GJ1pqmmWRay/j59cGjRCSpHMOwHw7sNi3KwGQ6I4XIMLQURo2CsUBVljSTJkdFjDF/cYxKUDJ/LtxIrRQk+m1HCinTSYocJ+dGMQPsBzfcivZjyiIYMdJkpMjUyhQSweXoQm00xphx+JCr5uADW7tFSYkxkrI0f6PNwG903UZTjO9t/FlIY8Qj+fhlt7ykLAwQGVweruypCftBHnBLHUh7Ah7cimm+PqTLCrbXzaVbUVTK4i455ikml7/fzmXxDaRMbCU73l/3p1IeoKVMLGuaBh8jdrDZ4R/J5AMtsN6Pnz99SweKaXw8RgFRilmkoyRG60xA8j4LPZXOdXVMt7QJkrwV3d15fhfdGYJ6TYNKKeWIj/0xGsVLkfx9IlmUghSy6J8UiCLhUhZICZXPETEPfdWI/YkpkEL+zpASdVnm/dhIWjIqi/6995mWoCVCJryAwhiU1iSRcCkfUy1zXHYzrXLUiwt4H3Ic2hhjEr27pVGEJAjRjxHgU9Zth8ioCLz1iJTFs0pKpM6J3UoL4uC5++yYJ99aE4KnKkqElHTDgE+BpPL5cingbY9RObqu0IqyqJhMS0iRkDy73uEOn3L+O5e8+/GHzPsJIQSE0MQE1tpb805KOXoqxH3skSMkiTEFQgi6vieN8eDeeaRK3JwuuZI33PniPnUo8jmKGqUklZLYGHEx5pgoIW8FXYIcR57I9wYfA0iBEhJtCoSKDNYhkdSFIkVLO4xR6ERWac0ndz/l5q0bqrKiUBKRDy0x5D1LXRQM3ZBFZSILDe0wkMiCgRCyiQgiknxfjCkP4YuyZDaZErwjpoGUNMaUgCQIQVKCw8MFptZ8/r3HPN1c8Lv996h3NZfXV8zVnJCgriv80Oc7lsuxdXVTs5jNqauanW1Zb5dMZnNa6+ivLMEOUIKzluQ9powkb5HGcHB2iGs72t0WYyTBD5ny7DyLaZ2jSIuKKCTeDmzWPcdHU4JzVJOShw/vs9nsUEpRGMHq8pKkBIvjKZvtht45ysmUo+MFYejwg6VShtXViqKxnNw5zYRqCcuLC7IELe9vdalBGtpth0oFi/kJdrCImGiXK7qupe8cuqxwPlJXBUYqtpstPgnmB3NIOX51ebPGIlCF4fjoEA8gNbtdy3azQekCXRjKZo6pSq6urjkqT+n9QD2d0PWe7asrhO958M4jXA9257i52WFMpsM1RcV8epDFFSliveflq3P6rsNUJW2MuKFHqwMmRqFDjoN99xvvjtQwWC2XdL2lqAzTyYSEIACNToTFjKouuXt6SvS5H/Xy6hqhNUFK1n0WIggDhRZ89ssFz55tWK6ec/7yAhs9xigO5g1SLZEqU1raMS5yUk9wdsC5iIoKGwdmRwfouiI5h207boIdj5XG9QOVVmAKUh159OgJm+37meAyGpVGvAsIweFxTz3R7LqBOAQG5zk6mLI4mBBxtLueqqo4WMy4WW5Zrde4GDnqD+mcIygBMXBxtaSuZzRVSewzee3weE4aAt2mwxQ6i9FcoC4MZVWiSdj1iiAlbrAMzqJiIEbPYj7PEYt2YLXbslzvwFlKKdntWm5WGw4Wh2NPTlHXJXU14catICR2fUtVVDx8cB9nLdv1Ctt3xJSQMWKURGido7y6YSQlSfRYK6ZRZK/H+58g1wFCkGMmU8x9mb14eayBsodSIJQa70/5eMdRxCKlQukcQZz1Q5luKRhpggomkxoCtP2AUZpZVdE6j/ORIThcDDlKL0SE0lRNyWI+YSIV22Wmo+1jx9RIEfQxU8VTzDIbEWGz2VIUBlLKQum4JxXtC5X9PiD3PrNQJN/nQ4hImYUzkUTwhhBG8jxx3JcwCoy+LlB6LT4aBkthDKYokFIyDBbIx1OYTLv6Ol/olig81ml7ao+zAfAjlcfgvc3H1xRoqXIsmwi3tB9G+p8UjJTCvWovC8liyjRXqbLxs64qvPMMyY3fnX3E2/79ZipSHPdhpPx5iMGP9M0sZtMm915T4nVkMIwCuX00Xt47CSXJibJqFErnOiT3az3SZ8KW0SYfmZiy0Vbmz5aUvP5Mkqmuw2CpqlxnOOcJPptRQ4i3sWxlWaD1uA8ZazU5Hp+wF5yJsU5LWfelVBYzsd+Psj9N2WJ1S+Qa7VYx7c/paxOMkBEl1W3MXBxFdqQs4odsWNHyTeTXP5qV4Pd/+PvMN28oSv+ppYLie3/xPf712b8myfR//Af/qSXg4+98zPmdc/7Hf/k/cv/5/V+rkOaz9z7j+f3n/OEf/yHS/+ZESuvZmn/7z/8tP/rej/72x+hvsZJM/C//4n/h5I9O+Kd/8k/56JOPKG35W3s9b9bfz5US/NmffZ+ua34jz1eWln/yT/6U//V//Rf8x0RRkOlNVfWbp5P9l1p3Xt1BO403/zCEV2/Wm/Vm/eetv7ZIKTtbs8CHlIeMMeZCJ8QwNhciLvi8UQyRelIglUYpQ2GKkYgQiUgQ/vUGeBQMMTqRYXR+7r3QIm/QBFAYTdPUzGcTOtezbXuUUlRFQdduiMmP6GORY7+MJiqFHVzefAmRnbgItJCEmGi7Dusc0XvGdBmCD4hSMjhLjJp2cBwdTDmdVVwsb9h1lkpnp/FutyMl0NrQ254QI5UxObIiRGzbZrLRGD2idHYIkzykLAIxpkLA6KzytJuOSd0wmTYgIIaQXfPOoZWmMQ2FKrIbf3ROORswo/Naa8UwDEilsKMgLJKdcNnXLNBSUpcGjyDZRN8FbEpEqXAECAGSp6gMShuOZnMWR1MeP32Zn0tIohAIXTAMLTGCTwGjKgSJYC2TuoJCc73ZYXvHbL6gLCe0qy2FlZSFwKcOfM9kPmUdeoblioPZFKkzKcSYil0/kGI+j2XZsDCa3jui22Klz3n2RrE4mGNtYNcFjmZT3r5zzHRS0/eWvm1Z71rOV1cYmTg5PEIXiifLni5GJqXheF6ghcCJglAYBmkgRCaFRhUCHyN+u6VWCZ08vQ1oYWjKhFaR3vYcVzVRt9S6IEQBBZhS0HYDNmpkI2mDBaEoEijrqIwhkVj1A5PSMJWSUhUMg0cKz3rbYbc2C45mgJIUckoxM6x2GzZ9x3q3pCkFhT5kN3R0G4vUASMS11eXXITEth9QWlMoSWcHhgRSwrrvsN6SfGI2nVJqQ9RZTGhMdk7vbB4IbXdbPn/2jMlkznSxQFcTnm1u+Ibr+dUvfsFq2/HhW9/hy89+xUCHni7YWslf/OIFJnbcOT3gcrVBWcdJU/P0y+dsdw4ZoZ6WfPuth0QDn/3y50yFZHYwY7ddsfOJx8s1T19cUMjE/MEh3eqcT3/yc169eIUH7tw/wiymrFPkl+cbRFzz8C3Ne99+n883OyYnJxSLB/zi558yfPyCUoJQgXsP36GsGkqtCalkMjni3XfmTJo5befpthEZNdWkwSfF6dkhA4kf/ugT8AYjt6xurjFKcefuCad3H3HVaarScLDeEfvET//iE5qmYVYpLm9ucKLg+PSI2cGMl6+WrLdLDps5P/vxF7QhcRbmKFlw03ruP/oGXnpOasODeyfs+p4vn71gc3NDXUmaScm9O0fcrK5YhwGh4MWnvyQ4R6k0daGhTDz7asWrl5fUx0cUs4YX52u8e8WH793nq88+Z/b0JdNGMq1r5kdzfv7Tn/DOvTsUCk7un3CzXFItZpTbDX4IPPnsMe+9f58UJM9fXPPli1fM5oeczQq89bjdil89/gWTWvPuvRP6G8vjnz/l7uEJylq0B9slPvnRL1ntrpGF5ng6Bx/58U8+5s//4oe8XG4ZfI+IkvXRMfNFyW7YcX75ksFBTA4jCpIwRDFQmBIpIG5XzKeHlIViVUbuHJ9ycnrC8/M1vXPoomIxn7LtLEIqzjdbOi+QsiDRs4/J2W/nq6Lg0eERk2JBX3VIEXj67DnSSKaTGVU9py4U81nH4e99ByMT7c2a/+e//DdMT2f8k995SOg9N2sPKfD5x7/g5as1Zj7j2x8+YNrk5nm7W2F7yfZ6zeG9Iy5u1lx89YzT4/sMAWb3HoAa8H2H26yY3z3BTRqYlLTrLccfvcdu6NgtA8IGPru84U61Zdj2zI4WxGDYWbA+0mhDqgXbmyVD09BttrTdwK5rqZqK1kWqqmI6mWB3NosFRCZLlZVmWpbYFFGlppAGIRJdsNjoaUpDYSRdN9AFjwhpJAzl2C0p8kBbSYmNdhQciDxMNToP6JTAFJng4foeYo4MstIzaWomRQVTeHpxzb//0c+5c3ZMnyyD94QYIIKMYArB3eMDKiX55OOv2Fys2bZrPDk+pJCA13jriWOzPNxi9KHvHd7lRm+IWVSQHd2Mwp198yUPAYTOeH+pMmUnjdFn7XrHsO3xPtMYo08kP0YH7HH6uRd/S90hRmzvWKctk2luiBttCN6z23aZxBg8yiqUVCChmdWZ7tgNOOtw1iKlxg6WoR/QY4NdiOxkj17maIX9e4ax2Z8b91IKhiEPFcQoQBajOHu361Ba03cXFEoSiZjSUGiNkFBV+2iDkZRjDFWRow5iyMPi4IZRlACm1pSlQUTJ0Oefaw2mzC7oooBYFLR9h48Bo3O8q0g5gigP68nRLNaR0g6tyzykkCnXRVLfDjx88MQA2uSYgyT2AxiH8+F1nJvIx8i7jum0pm4q3OAQIxFz7+x3NtJuduOxzZGAznqEiNQTjZKSIWRHe1Hk70ymjYKQaYwF29N/EsoUGDnGPYVx2CBCpqjoLJTSWo4Dm/wdq5uKqv6r8dC/7ZX+0v/bD1L2+4Fcp0vAh0wOSClijBoppHGMg0uE27FMHjztDQ2v/Q7jjkJksc7eJL+f+CiVo1aK0uBHSmoeyBi8s5Di7cBJiuw6l0JmmtK4nwjjYCqNcdjO+9HA8VpAFlNEkgklJIkTWUTQFDVt32NFoBCCRMK63GySUuLDKGq6HeBGgnMYJYgpmw+kysOxcjDce3EHUroVqvjxtTjrMLqgKOTt63lNKRIYWaAKdTvQTAjSGN+S37fEe4+Qkr0+K6XRwQ+3Aqi8vxAjFS0SyJTcIBIpBiCOcT6Suiwp64LlepfjGdF5vCsVIbiRxpSy6Ik8nNPakJTEWUfwgbKsUMrgBosMZBEsDmKOSBySJ/QDVVmABNc7lNIcvTjj+VuvaOstWhkqKfExjHvETCjQUlJWJSFErIssioLFtKEoDN5nSoJ1jnbokGJD+HbgD374e7ibiE8JoyR1mUUmEZVjtqWEmM+nUONnxzqMSPREgs9kWKMUUibuvjxhohpqNEaOsZhKjGTYQEgSYWQWV5FjA0WI43lI9M5jtKQQAi3USF/IAqUwhCxuLfO5U8KgCkkXen766GOe1c+YhBotSqwfr2EyS5C6rmUXE9b7PPwf99WevF/f339ThKIoM5Vr7K/mz6bAhYjSCm8t1+sNRVFSlBVSGzZDx1F03Fzu6K3neHHKH8//HafxmJOn97BB8PJyi0qeSVPSDhYZIo3RrFcbrI2IlDCF5nSxICq4ubqkQFBUJdYOuJBY9gPrbct9CdWsxvU7rl9dst1sicB0XiOrkqFPXO8sJMt8ITg6Peb62lHUDaqcc3V5hT/foiQIEZnNDzIxQwpi1BhTc3BQYkyZo0JtQqQcuxQRTCY5ku7ly0tSVChh6bsWJSXTaUMzndM6idGSanAknzh/eYkxhkIL2r4nCEU9qSjLku2uZ7A9lam4eHWDj4kmlUg0vYvM5odEEWm0Yj6rsT6wXG+wfZ/vtYViOq3ph44hBhCwvboixogW+fOJcqxXPdvtDlM3qLJgsxuIccvx4YzV9Q3iZsV0UqG0ZDKpWS6XpGhpZElZVXkfrBS6TIQQ2K43FIWkNJp2a7lZtkQC88UhIiaGoWO7WRNtz8mDO2hZsLxYYlRF3SiSDyhTcnO5YttuiSJSFSXRL/j004bnzz7jar3BBp8JkapgPm+YSkHb7xBJksS+LmIku4EaI2qF7ZkoyRCBSnN8tMgktN4BmrIyRB9BKaazls45hDSAJY207n2PS0rBpCyYVjVdsAgStuu5WW6QQlE3DUZpEJb5YkZVlXjr+eLTr/BCcOdsxrQybHcOow277Yar8yt6Hzk6WTAtNLEEhKfbeeLgMVVBFJm0pdBoUyGKkok5zO95GNAkZGlQdYXzjuqkoKgM281AMdXc7Law28EwZBOdLOlsT7WZ0vQ1rRmyuH6zRaSEcx5rHULlwlLLHBOcAnjlbsUYQiSqwtz2ApWUI98oU0GllBRG5Z6KDWM/MQt990RKQRa/eL+P62asWTPNFcH4OrJRkJHgk4WlCi0VWuU41YurJW1bowo1innHqmEsOerK0JQlu03Lto+03UBILp9bXgs+0kgg+nrcX4yZ1iWEuCXd/P9XR7dypQQQbwmLuZYZxdg+0u363E8UWX9NfC0iygKn1482wu9zXzK53AscBSqChHNu3Nu8jpbbi5eKItNEw0icZIzgDV2OGc2Co8gQc0y1kmMN9LX3kUbxWCIgg/jauYP9DcL7gEyQUu53ZiqkgLFm11rlyOnE7QnRI1EyjRT+EMJIX8rHu1C57rY294eFzJF1WeQtUCoRfBgFc+RotlEcJ5UcX3sYResONQqTGOu/lF73qFPaR7blvx3dJuPnLNMfkxTIlCPznPe3tNY9GUyMtP09zHZ/HCDeRuvFELKYaxT651pQ3Qqb4r4wC7eldRbiC5BK3wrbgfGaN+5B9p+TMQ0gE5hyjPSb9Y9jzddzvv/DNxSl/6MlEPzuj3+XH/zBD7g6ufp1PCAXJxf8z/+3/5n/6f/xPzHbzv72jzmu7/70uzx8+hDt/wZsgr/l8srzr/4v/4pPvvnJX6Wv+I0uW1qeP3jOv/y//ku+9/b3+Bf/r3/xG6dKvVl/v9d6PefHP/7d3+hz3rv3EikjMf7juAffe3GPg+UBl6eXv+2X8ma9WW/Wb3H99ePeRhxzJGS3Ttgj+vPmJqSYIxJiHi703hHaBFIQk8iu0ZAfh715ZtyQ3UYxjIOKPX42N+ntbWyFEDK7lckin70DyVmPGwZI2Y2VRI79iCneOlakzBvNGBIpZLdVCBB9wPldFl/lnkUecqWMng4+DyIGl91e+DDGw2RXbzZYZ8+RVIqQQiYqNTXJZhRwZQxSJFwUDD5kTLuApiiZ1g1KGZTUFFpSFIbeBXado4sJEzzJ58FTSlAZg5YZ0SykQhAxWuJDfq1exrExmgcMwXqifD3Asj47poRIaCK+swQhgYKkc0zBvDFUpeDqak0UkhiyAMoGuLq6YXVzjXCS6VFF1dT4lKiKClNWt8PIGCPRKIbo2XYtpdHUTUHAcbNeUshAjAbnBElKykmJMBIRA93Q0fU9PkRcCsyM4eT4GBfh4nrDYV1yejwHmaMp+r7HGIkWEZV8HuyWmklVUtYlUigOZ3NKo2ij5ercUgtNTJqr1RV1VaPNhELCpMikLoUkRElQCl1ImsowaSpESrSbjnUcUEJTEulDC1JgXSYv+ehAJkxhKKoCaTKmOUlFXUhqo0lFQQqCftsiK0UXLI0uqcsJg+2IMiG0pZCZxlAWkm3qs1hABHzqKasKYSowivp6yvnlklRoNt2W+WLGweQAO6xxrSN4wXYY6L2lsJEPP3qPly9fUVUNSgacCCzqCXF8/5OqYNV3JJkR1NE6utYypMB6tUPpgpurp8ybCXdO3+JF7Pjx558SQ8JGxy+ShwjnN0u0PuD0W2dE0fDqckt/ueTeYUNwketry2IqeeudU56+fMEvH1+ydYLF3PC733yXP//BD/i3/+5PODm7yzvvfYMPv/E2n/7iU7746kt+txZ8+uwpnz1/xZePn9OUJQenJ7z7zru8dT9yNfT0tmdeGH7xo5+QUsl3v/sRVd3w5Mspz2823D0+4+gAopZ4o6GaIak4f3kDMZAsPLp3higM6/MVJ+Wc+eGcqyfPcNsNdbLEMGCMo64K6ukUiorJQU07rAg70JMFtu/pdiuag0O2oWPrHNXkkKo0PHv6lO2m5epmx8uyZL6osIPl4599wT/7o9/nu/ffYlFrPv74Y653HZvlFdY6moMjfA9vP3yLd9//Jh//7KeU9YRGK+69dY+r61ccnh1zWJYsDmY8fvw5r140nD97jjh/iRsMnz1+zNC1PDiec+f+I1Q55eXFOcHdIGTidDFlUkK329HtHNIPHBwfYHcb1jcbtl2HEwXb1ZKbiye8czrjw9/9Hdrgef74K75/NufqSUG/2+Kvrvjpx88w87ucnD1gdnpC3Q9sd2uc33J03DBbnPDh229zc3nO//1P/oQXlzcMyRGSQwXNcnNF05wxryvmSlPXU6w+4uL6muv1kqNGstt2FNUBQ/QsykSlNaJcMJ9NmaiCMAwMw8DR8TEayfxwwvLqFWGwTKuSstCs20wgkFKRkkArjUCy2+7YJYuZSO4uTiinC+YHx+xay9H8iHt3znAC7p7coRae/q3Ew3sbDu7e5e7dI+JuID75kq8uXrLZduzWLeL8nDkBQ6IdNhyf3eHh/VPWRnIzOFbXK756/pyyLjk+PcYtHcdHp3z2i8d8/ORTXl2ec3D6gLqeczg/5ujolO7VJbDl+OCYg5NTlNvxy6sbPvmzn2C0YG17LrdXRJM4ni+IIfFqec5ys2FnOxKJ7WpLU9SEzmO0YlYXeDuwGwZ8jOgoQEQOZjXNZEp0kavrJYOLhBTRKVGWhmJSUijHYB2DGxAxYYTI7uAQSXhUSrgQ8T4P80OMSCPRhSI5sJ3LkQlEfAC79cQkOTxwaKmIwbFRCbG5xg+WwQcEiba1GCWopyUHh3PczvL5i5fsupZJWVMqQWsHYgikOA5vQ8ziprEmiWQK0BB8dsmmkJu6IzHitp4Za4FEHnooNTaLY27yKylIzjNEDyKOMa9xjNLdF1qM9+f90CWO8W0CZz1t21KUBgQjkYh839SGQEQg0IVGGU1TN1itWS9XBBfyIEalTLgafB5opEg/ZHLZXnyRO+OM7y8TYnyIWOuzeEjle1IhNT6kHKXhHUJJXMhEKXKK3+gqDtje410iCUVMgWGI+CELv1LKjfcUsgBsGHqsLfB9xHY51s2TKDCUZYGSWbAgTY7QK0qDEoK+cwSbKUNVURO9wAdHcAlvBxLQTEuqaZVjlfxA32UqppQCoSR1U1JUOS4ieDuKk/Lgai9ASz7ibBa2CKlyPSlV/sAkwdB6dqsOYxKIQN/l2izisDYP57qdw+MzQXFSjc737OhWY622JwI5HzBGobTOwxReU3SUlkido8asDQghRxFIoij/LjffxNcmfvHWdc5+e5ByjND+cxhGUSAix5p5H/hLc71x7SPTbiVPo5JQilzzx739fu8oT6//LgvyuD1XwNci2iKB/FmG/N1EMNIaIMdgQ0iJOLg8fNv/0/g8+2GWIDvoBSJHw4ziqRRHyVXK71GMwiqpZBbnxJhJOKMYLozPnWkT8O6rd1gwQ5gspFIqR874mLAu4FNCjXS3/cBUyywYylEn+XqlpBxjuhJpnFrtRVox58VlX34c9yUCxCjRij4LnEDlLz9QlhqloWttpkKNdIsQoWt7hq5DRChrjTRmFGUZpAbp8yAvpURSkkDEeZfpaEaRCPRDjxSRlBQ2CiCLP4QUiJByPM/O50EekUIqmrrm/leP+NHDn1CWgqaumAiIfov3HjVe40TKAjSt8mA9DxIFdVmipMARaLfZsNE2A08mL7i3eYCS+TplJCgpbveUcTwvRkmM0XkwbB1DHGkiIuGjB5E/L7PlnMpNGEQm+mitEDLBGCdnVDabICQpijFCVOKjR0udxazB5/uVzJGf+bwLLJ7C5PtGJKCVAqUZjizbuzvCOoGSDN5SViVVMcmx6q4nBbAh5M90SByfHLHdbtE673UjMX9mQ37/hVb03ufvOjlWxruAdwnbW4TU9N2a0hgmkwXb5Hl1fZ0NQynASPD7ov+c7zTf49t8myQMu53Ftz3T2pBCou8DZSE4OGhYb7dcLTfYCGWpODs+5OXz53zx9BlNM+Xg6JDjwwOurq5Yrpbc0XC9WXO92bJcbjBKUU0aTg4OWMwSnff44CmV4vLlK0iKs7MTlNGsVwVtb5kWDXUliFLkWDtdIrym3fZ5OB0E89kEIRVDOyB0SVWVtOsN0Q7oFEjRI03EaIUuCpLSFJXB+QFrQRYlwQec69FVhU0eGwK6qNFKst6ssYOj7Rxb3VKWmhACFxdLHj28y+l8TqUV5+fndNYx9G0WH1U10ScOFgsOj044Pz9HmwItBbPFjLbbUjc1ldaUVcFyecN227HbbBG7LTEorm+WeO+Y1yWT2QJT5LjgfrNDK0mjNS4OSBK2bcENWRysG4J1+JCwI1Fxu1ljhOPk7Ixy0rBcrqhtwWJSsF1eU8TAzc0Nqy5w/+4DJkVB3TTEEHB2oCglypQcLg5ZXd9naOF6tcF6RxQ5FteHgX5QFEZjpKSUBl1WbPuWth+YNhpFjoMVOostKyMJUlEog1EalzzDMFCURRY3KEFIkcIsWUw7dhvNTjCKWvP9QCA4PNjhXaDrOlz0TCcVhS4oZtNRdBk4nC9obUcdIpMiR89vJzVJGuaHMwwS0ppt13K9afN3oBswEkKRyTZSSRaHh6TS01nHruvZ7lpEgrM7Ja7zTOqSrh3YbLfs2i+ZLw7QRYMShro2oCTg0MpwtDhgWtdsbq54dXHF5XUW2bd2wKxLyvsGhKSzHcRI7waSSEQXsuhBRIL0KClvrws+eLTKpLXCaHRZoIWi6wa8Hw0DKY7XkgIl8l4hR3+m12Jacm04qkqy6HRPVRrpPQhBcvm6NbKKskA+RNreMatrSBGXPF0YkG0WkggpcC4bGU0hKUpDoQuWqy27vkcKqEyFCyHvJ8Z7fr7vf60e2T9r2v8g10B/eYp7qxa+FRntKa37vxFjJJkfSewwEnxivH0O9s+TtU1ZpA15nxKzgAyT+5lhrL+FHMXiQmTCqJRIUr6nGsHQ5SiwNCqghIAY/V8SDfkQUFKN4ql9FSRuxeh7opEQ8vb5pJKItCeKhlEAHm7LxX0kMOP+KouQsjA8jO7S4ON4bPcUqfy7IeS6z1l3W//IfdTZSBCSUiDCvpeboy69DyPpyOT76/jZCj4T9aWSlJXJcbQxEuz+NYiR8i/ReoyfS/H2HEqRRYp7emrwYSR6yrF3+zp2LvqIs6O5R2eTzp4Olt+bzGTeEJBppBOrUWQ11ogx7s/pKF4a44ClEl/7fGRHlhrP6T4+WY4ReFL9HVAZvFn/5VeC7//w+8zXbyhKf501aSf8N//uv+Ff/Z//FUGHv/0DCrg+uuaXH/zy1yoUe+vJW7z91du/MeFZIvH04VN+9Y1f/Z0QKH19JZn46Xd/ygeffcC3f/7t3/bLebP+nqyU4PHjt9ntJr/R5z09veD09IJXr+7+x14Vjx49/Y2+nv/Sq+5r7r66y+XJ5d+5a8eb9Wa9Wb+59TeKe8vEowQxN9JFTCidB3CIHJWiRjcIKW/ocmNGYf3rOJT9cGzf30/jxlOMDfxMBgiEUVyzf26REsl61psdbdfmBrkco+NCyO4lOQ4wQsjDThJayDwsE7lZYZTCCInWI3I3JvZpcyIITCGQKgfNlWVFTIIUA5u252ZtCeQhbHZrCQgRrRWFljgfKYTKg8WxmT1tGkJyJGtxEVKSGAlVqTOGWGiMysM/IwS1LtFywHqPdzl6wRiJTnkTi5KE6EfaQn5vhJhd/9aC0XmwYRQijbETKTvIkhAoqfEp0LqAT4JSC0LM0XEhJlZ9R1fosQkCdVkhxYCQnuAzdrm3A8F56rKkFZZ21RF84OTogBgi/WBxCVwMqEKjhUJqgR8cBJEpSEQmxQQpC4QMuRnlAk1VE5Kk266RAnpneXlxiTeZ3LTyAwfzCsbmVhICLQQnhwsWszlDAHQJpeFm11ObxKIGiBzNa3yck4Ji2fXc9J5HpwuUMgQ/jJEEikJr6rogpUSpNKXJcRlORGSpES6gY26ElUJiI6xXI1rdeTa7Ho9Eao02Bh8Ek1pjABsgjIOKss6NR2MqBi+4Wa2YzgtSodnueuIQ2Ox6ppOCslKZHIFAEVHS0xzcw4jE9NXLTDyScLPccnpyRu88zgWG4HEiMkSL1AKdFEVhCG5ApYF6MiX2Pa4bGLqATIpt2uFkop7UKK0J3mOcJ1UFD956xNBazl8NPHl6TtdHhI48X23ZrTY0TcPlzRUpCaxNnBwaLs9f8nvf+X1+7zv3ePnqBVjL8ck9Ts4Um13HarPi0d0TdhvP9/7Jd1mfv+DV06e8uHhJNCUffvN3ePjoDJkEhwc158+fcf7qgpu25f0P3uWmtxzUB5zdOcUb+OWnTxCho5nXLAfD+vqKRjXsXp5zESIkx8M7d/jg/W9wemdK2w/Yoef43ru4VmCHiJkUlLXh8uqGeSkYlluSFlx2lsePz9ntWs5OJqyXl8yqgsWDh3z40bfo1mt6u6M8mrNZtwxby/H9I+zVls+fveDhUcXdowXlZM7Fy2dcr9aQFO9+4228t/iYHetnDx7Q9gODu+Ri6Li6eMmkmfCND7/F0ydfcX2x5nAxx5RTvvr8GUPbc3hyzElVcHR0yDfee8DyeknsLNP5AR9861vEJDioJVfnVzx5/Jy7776FlxGKhO96Vu6cuhLo+SESj/mVwe0CqtuxbHfM7hyxmB6wbS4xssI0DZ/88GP6znF6ULJeb/jJD3/O/KDB7TbsEBydHPOTp08ZrntUoXnw4BAbA1frjjuP3uLF518xayouzp/TrtY00XJ9s+Hy6ioLSIRFpUiKHmLA2y6T56JgfbNk0/Vcd45dvWXx9inFRGP7nvnhgqEduF6tmE0rVBM4P79mtWlRSnH3zts8e/Ilrl2SQmAym0JvEUojkkQkRxI5gmZ2sODoYMFmvUGhePTWQwppUAoWRxN0uk+3bHEhO5ZFCMiyxHUbcC1ue8PPfnKNFpk0g1E46RlCh2gt55dfIU2BbSOvLle8by3ORVYODqYTHjy6Rx8Dn3z2OedPX7A4PKQyDWd3T6gmkvXyhtUQePvsiG61Jfaezx5/zsF8zuLQMwwONWn46DvfpColT16+gJc95zev6HY9JMmL9YZutwMJVVEyJEdnPYtJnUkPfYspBPMxButsOgWVowyWN1tkUAw24ELIUTtR4rxjMmuYVHp0LGXUf1GWdNbS7xxKBaRKY9wQ2JAx/YVQaDStd/gQqCqDINHZgDIKoSIvLy6z29Vkp+x6s8nEweBRSmMKQVEotJEsl2u6dZ+H3AXMpw3WOro0gNIEH7m1kopRq5Ny/NZ+iBCj+BqzZe+KT2NsVR7A7sXbIb2OSSu0yTFkIYtulMz1UhyplLdaJwH7+CafclyOdplMpFG4niyScR432Nz03k9AlAIU+MRgW3BZNJ6QCBFABYpKUxQyN777QIg5KjelhAtZmKGUyvWFyPUFUaJ0FiSlwVM2ZW7sy4jAocTtdAKEzJFKMRFcjsuTyecIXO8z8ccLBhuI0Y3isD2hKaEliCjpNhY3eGLITb/oEn4IOOkIJHzwuJApR0Zp6qrCdRu6rift+uw+9nmQJQi52Z8EuzZQ1oqyKDPFSkJRK6raUNZVfr8yobREobMoXopMWEqJsiqzCG7b44eAlHoUkFu01rTbjtX1BkR2Ofe9w1k/UmQS7WZAyizYkjqSfMAOnqIsKKuSGBPdtmcMCAPyMM1HS1CZ9KRNJowplcUo3gesD5gy39eLwmRRhfrNOSb/xivlgUneC+xVfqODWwBCjhEtYv/rt1FRQmSRT7p9oK/Fu5HrbnErHhqHNOP35Ou6ppRyhN4wOJz37KMM99QDkUDIkYZwixgSSLn/rqZRxJbPVR4yvR7upAQi5kgOIfP3QylzSxQYnKcfwijbSK9jSMaBmZI5akR9ra2staIwJr/WkIWaJEFtSx5dPBgHSvI2SkUi8j5nPGaZkhBHEQ7sp5cxxXzPG6PvBK+HYEqq7PwfRZfBvx4c5nMmiSnhxjibDMwIkH0fmfLmbw8aRmk8AcR+oJqpQDFEykrjCLihR8bIpK5JMV8HA/maKtRI2JCZ9pRSyIQ+EoUqctyPzCLQGCJGZ1qNHwYQAh8D27Zj8qsp08mEzeENVWkQcSTaARLBpC4pyzLTaqUCJelcwASoTD5+dWlGCp6gD46vDl/x6OYdJJKU8qA1X3/zQB7yEFArBeN+VCiVBVEAKaCVwCcYuiw4iiEyWJ/vOzKbYWISFFpmUMK415Qy0/sQILXJIrChpygUaMlgA8lHBucpTY4+iimhRjGWUBJTTbj44AsUCrmTIBJ9b5k0U1zIA3cfA0GkLB6S+UqVqcEBmQKmMFifiD7gXSQgsOSIT13kgW6KERkjaMVsscC7wG7nWa93OA9CRjaDxfYWYwxt1wKCEOBi/or25SPunt7j7umU7XYLIdA0U5qJxDqXzQnTGmsjd++fMey27NZrNrstSWqOT86YL6aIBFWl2W3W7HaZfHN0dEDnA5WpmEwbooSb6zUiOkxp6L1k6FqMNNjdDhcjpMB8MuH46JBmUuCCJ3hPPTskuiwAkEahtaRre0olCN0ASrBzgdVyh7WWSVMw9C2lVpTzOcfHJ3g75JqlLmFwBBepZzWhldxstixqzbSp0KZkt13T9QOQ4/JizBI0XGIym+N9wMeO1ju6dkthDIfHp6zXK7pdT1WVKFWwutnk/X3TUGtFU1ccHs3o2540EsyOT08hCUoD3a5jtdwwOVwQRSIpSN7TDlsmdb4nVVVJ17b4qEjW4vsBlyJVWSOkoDAFs8WE3XbH8uKGssixS1cX15S7DkHADY5JXZCE4OpmjQ2K2bRCF4ptO1DWE4a+RYWIiJ719RU6an7y4wmb7VWOC00+1wRpfw3JdU82f7ks8BosSIlRgbquGaynkBWSHHkWgbLOBLdtm0k2k8kB3nuGviUER1Ub7t5b8/LVISByT4gEIiG14vhEkZKna3fUTUWhczxrUSrKYsKw6fHeZfOcd6i6xntHDB6RIpubLK7RKtekQkms60jR025XpKbEe3CDI5LFjC7lntrBYsauG1huNmyWa0iJqm5y5FQBicjNasXJ8VEWoEdN2+5wzjFfLLJwPCXmBwvqytD2HWID927ucX5ykYmwIRCdzYYGrYmM9ZiCQsrbaMmi1MSkqE2RhfwiYQeHTzELRUZ6JJFcg5LQSiPHelvGTEz3MZsns8BlPNYpC5wSmYYlRRaT+P0ew2icy4JnpSWDHbJoJEW00dnsOIox98YBZfJ1NoTAruuy0EekUeimR1KPeE10vL17Z+FrGqO39rVMrhcE3N7nR2XSa9UPjAKfXJNnE2e+L2bTqBiVxCl+nerKXzJQpEQ+pjELn9V4//Dj8Qk+GzUQYhQe53qelEnuLtpb007W2qVRKJ//O/g4xofJ1wKj8T3uRVNSidw7HolQ3keUyQYOIbOo6/ZeePsGxr8fyVkiCZKMI60o78uCT6MIKN/39/syKbK4OrhEwGeRNVkwGEPM1LORWroXkUslKLTJ4kNn83EZa7YY9gKxSEqSmHL8W1WV4Mc4NZ0JuDn2MhMEhcwm21Gvles0mUme+fhGXJ9JlQnwMffSYwj03UDwfiTwh/E8pbEWSwwxR3anXOjeCsnVSM2PMV9D9nF4KTEaQvLnVI6UTjHWEHEkBQsBRTEahtU+vvDN+oe+5us53//zNxSlv8n6vb/4PX7y3Z/w+N3Hv54HFPDzb/+c3//R7yPSr+c8qN8CheVP/us/wRXuN/68f53lCsevvvErPvrkozc0pTfrr7WsLfjjP/5D0m/486K156OPPvkrREqwWCx/o6/nN7G+9bNv8fG3P859tjfrzXqz/lGuvwFJKW+cR4NSRsruKUij+2a/yRGCW5SyFCPSF24dPsDthj/e/uxWjoRRCqV0jinwbmz0ZtStGjG1dvAkwtjgzW4TLaEsitxsH50jexdI3G/4R0ebtQMCjSmL7PxMjpQkpc5uuEjE2oj3ualktCEJ6L0npNyUiMRb94mQkhhSdt0X5W3UW3ZuJwqtcSHHlkgxIq9VkR0zShJloiA3rwfbI5OnUIIoJEVVEpwdBy+J7L/dNzhyJIYPkeA9KWQhz2BBioSUEVMpSlNws93gbEDFnDsvlEarArTCtl12/ADOW4ZoKZTGDlmM1DQ1wgfarqOuCoRQdCmwHSyyEAx9D6bg+fU1UggKoQkuoEpNWRQkFN55yqbCRkXoHYVwROdIMWCUoXc9XdszKUqmBwtMLdkNLTc3G4oIJ/MpXQz0zvPi6oqqNEzmR6y25/Q91M2cxXSOSAXVZELEIpNi0szZ9just3S2w4iM8+57S60ahBB4u2MYLM3RApkEITicSyilsC4Qo0clxardEUOirAwuBWRhMEIivKdsGq7XO642PVYqXt0sqauGSaGRpaSzjtYrvBfMjrLoqBhyRn1SEhsjelpnt3TvwGdSM0phQ0AIQ5sCGoEeEljL4ijQJ8F0dkDVTFiud5wdHaG9x6877hwf0e/WpF2P8oEoofMDf/bjX2LtgCoU3dWadtOxmJYQHF4LZs2c0mda16SaoosDDqeHWN+xvrxm6HoWpcbbLVJMOWxmVGSaRRcS3WbFwaKiMIKuu2B50bC7WjLYazZtR+wdbp24Xl6wu7nh5OyM2dkJ01Lz6vGXWBfZdIl6ccp37i5YTAo+/eIxZdlwb15xcHLMFx9/RllMOT18wH/7351y+XzJZHGHVBZYFdmsd/SXSyb1jEmpUIVks1mBLHHektD03Y71Cq5uNqQAMSn6fuC9t+7w4vkzfv7VK64vX/HgeAJR8s77HzA7mhLtEdurgm3yCFOz3fZ86859qqni1VWLWRacvvuA9EiStOHZ+SXfeO9bdMsf8PxXv2CyuIOZepSw3D1eoCcN5+cXtL1nu1pjUIhmwquLxOLogH59zdFBQzmZMpktOD44pHAbjo4M62HDs6eXzOZztjctzVGFfXzN/HzNq+UNh6d3Wa1aCIGjyQF37h0gywarK77/z75PUVX86se/YLndsFg0SB958eQlQ7fm7sO3qOcV6fo5wU6RB0dcvjxnfnBAYWZ4nVheX3J9veLkaMG8nLLcJH7x+AqJ4+bqkrcenaFOH/Ly2QvoBqRtUa4j2h0H9Rl3v/87tP0WXZXs2i1yonj8yXOuNpvslhRZsCGEoFaRqgkc3jkg6QK7G6DSFEqghcGLBqUlRgb69RVRKjZD4GZ9wXK1Q0eJiB5TNnzx+CnPXjzn/p0TTg7u8iJcUqSeUus8GAgiD6ULydFsxoO7p9BMSH0i2cgu9JR1zVcvNqxvtkxt4nzzOXZw3Nxs2BQF86bg3tExz54949VyzbrrSGXBex+8Q+o2FIsJ9ckdNu01d+dzjhcTLtdrbpzlpJ7y9MVj6gf3+eCj75BEz8Fiwc9+8FN+8fgJn335hOO7R/zRP/0DHpgJX52fs765xLpAEoZvffN9VtcXLF8+JQXPyZ1jPnz7Ac1E0fzccHN9xdFBZLVaIjCoarw3+jGWp6qJZMHu/HDCoW+4vlnjlWAyrVmUDdFodjdr+hCQMaBDRDiPlJrBOZQU9LuBQmpSEEhRMp9VSCPxKdEPGb+vERihcoSAJA/qQyQmByEilGDSVEipiMIhtOTgYJKH484jtELrXDMoAVFAVU+YTAticGglubpc0rcdTVNidMFqu8aO2UXJ53voPi4gxfh6qIS8HRAgEjIxUosyXWc/eshN/Rz7ikgoI/PrjZEQMvUx+JBj3UT++V5e8TXJwO1MI5FQUqF0JvnIBNF6un4gpoQU+XUF70cDc6YSep8FRs46fMgNb1Mp5kclzbSkqQtEFGyWLW3rEGj6YRhj5HSu25RBa4MbHN7lKCHvM2XK2wBlFqNXVZEHEj5inb+lYu7LrZgSXdeDEkwnNYXRrG46go8oJZEmf8fCrYg90vc9zo5xHeOgR0qBHTIFUpLJkaNnmujbTJschQ5+PB5SSYzKg/Y4Di6KMg8+B2sRUlDWBUontBHoIn+GohijHJLKxFBBfq1SAh43QLvrsXaHLg2TSUWInr4b2Kx3pJQpGH3X0fdDroVFFquEEPA+i0VESAhyvG/X9TSTCm3GeEAX2MeTIcaxU4xED36MDE6jgMYODiGgLHK8EKQx/uHvcpM57f/HXuS3H9wh8kB3NJLn3xiHRHvh/OvH+NoY8Gt7kq8vMUZK7r/XjANMMf4bMApvIkg5ipfiGGs47lPG17onKH39OfZufYFEjrF7Oc6ZHA8nxSjWyfEn+bOQxSQ+xiwi4LXoKYnXw0uBRCqdh1fx9ftVUhKSRI6RK83QULs87BcyDxkl+Xvjg0emCBISOUozjZHXpPF6+/X3Qv7expCj5OJIy4n765/O+5Te2iy+8GRqksxDYKQkeD/SAPLj5Ehwmb+jMVCYLAoanMPovIdzRJQPCA3Be5CKTdflwSyjsEVlQUwWjCaU0SOZKaLESPNNCSUUNji8DxilqMsKpQU2OPrOooCq1sTa4Uls2hatFEVZM9gcO6lNSVmUiDQSbVLI1xBTMnhLjB4XXDbDhEzvTWX+LMbgCCFg6jKPS2Mg7AemMYtfZZL0LhtIlFJZKDYKD3UMKGPoB0trPUFIdn2PMQVCJYTKYqsUJTFCUetMEQ7j+RKZtCULk4V+PiLiCCUWmfQiUDhGMlvIxqCyTjhtKVSF1gX94JjUNSIGovVM6jpT6ZzPFMT80Lx4dUUIPtP0OosbHFWhIUWCzPvPNEbgGF2gVJVpd9HRdx3BeSolicEiKalMgUbgXcRFcsx1pbO4bufpdx1u0hNCx2Bd3msPibZvcX1HM5lQNhMK1bFdrogxMTjQVcPpLNMyr25u0KpgWmrqpuHm/BqlCpp6zttvT9hteopyStKKICLWZmqTMQWFyvv2YehBqDyQF2kUuUDbDaSU723Oe44OpmzWa25WO7p2x7wxkAQHR0cUdUEKNa6T2BRBaawNnExm6FKy7TwqRJqDOSwESSrWux1HR6f4589Z31xRlBNUkQW506ZCGs2ubXEuYochCx1NwbZNlHWFHzrqyqBMSVGWNFWNigN1pRiCZb1uKcsyi8SEYrPsKHcDu76jnkxzvFnKUWrTaYXUBUFq7r11D6U1168u6a3FFAajFe26zcQlKZkdn6Ciy3HiusjPURnmhwcIXRCSZ7vdESOUzYQ0wPWqoygU282W1pbIcooLO9a7DXeqgmR7dKkJIXJ2cowPjr7t8Akubk652ZTcbLa3/aYsIt2TXDyLQ5BFgR08KIk0ElAgSiIKrRPRDwSXcEiss5mepAuIAaMlbTuw3W0QEg4mE5xzlBUjhfVrmhOgUIbN8htU7z/JYtxRbByFoOsDXT+gfaIfWnpvqcuC9balKAzTqmLoB5bLS4YQsCEwP1wwKTQ4yfRwgR16YkqZvFx4Wmc5nM3p1lsCicXBIeXEUtcFh/M5z5+9YLnZ4Lzj4aP7zOdzYIfttpASPgoWizlD3+GHjm2/Q2nF4dEBB/Oa1XaDswP3tw85X51zeXiNMiBlkU0b+UZMWWog30OaSUO/63EjabTSGqkN3jlScpn2khJipPyFkY5DBpGOxzIT6YpCg89xrfl47kF+e9nPKOYPEZGV0WijbkuIkKAsTRaFxjia+eRoTUijeFpSlrm2l/v62uV7zrQuGQabIzhH+mmuAdJt7cJtzSD+co1yq9EefzbWQlnTm8nxQnDbZ4QxTmzsve77r/vD8/WH3f+f9LWfZbJ83rcQYybKj0aHffzcnoYKYrxpZEG5jzk+FpkJiUWVjZZaSrwNDL0jkYW1MeXzKsZ+ZRZWvSZWpjR2dUPM8WZjXSO0Yk+2jPvn3r+BlO9TKYDSiqLQmTI0kpeEENmMmfb15Uhdiun1d3D/tmLeK0iZBV/5qbLIbUg2H89xPxjH2lOpfE72r2UvNIr7ukOP4nCZRYOZaMRIsfq62GzfK1fEmPAu10KIkYSrJNGOtEE/UsZCIAR/S+YaS9cs2N9/fvxYqHp/K5KSXyNfjltU9mqpNAqk2AvHEMTxeGmjbkXrJEEUt5+oN+sf8DpcHjLb/Ppixv4xrCQSu8nu1/qYbdP+Wh/vt7H+Tr+HBLPt7NcmAnuz/uGvTz75iJcv/+NCof2aTre/9ucVApqm+yv//c/+7A94660n6F8Hye3vyPrgsw/45i++yacffPrrIdS9WW/Wm/X3bv21RUpfI+0y9t7yRkvpvPFRrxG2aRw6xHGjG30ghr1Dmux0HTehQHZ5IEDljXNMCUIghNyoQChEyoIbIcLovs4DwFvM84jj3yOQv561LZWiqkqss1jrEDLHDVjvEUpgXcbrl4VBkhv8vXP0g8+OVWNw3rParklEkszDNK3GDb2SJCnpB4+WCissQhZIrdBNxfTkECFhuLymFrlBX+mSsqgzblcyvvdx01sYpM5iI1WWWOsoTcWsbuh2u9E1nJufMUXKMjsLy6pk2/fUlaCUghR8RjQD225HO3S5eawrmrLCDo7eWpp5k6NEpCDFSGU0MQWsd6gEhS5IAfrgSDEPKJpJSTc42otXBNczn9QURYWWkp3rCESkFqQQcJsekmFaTjFRMfQWgqBqamShSD5iXaJzDjcOWvthhwS0NKgEKVja9ZpyUnM4X3AwnRAliM2Wg6qh7T3Ww+HREXjBZrej63dUuubs6IT1esWmtWPMROByfcPQOw7mB2xGfPXBdE5TNAgf8ClSVRU+JHZdS6ElKgiEg+A8SUu0zGKnJCJGSgqtqUzJ6eER6jgwLysUidW2x4uMfi5Sjpvol0uC0syaBu/zgKNrO4RUdMOADIFaaU5mE6JWLCYVq5sNIlicDYioENOSq9UNqqhYTCeUZcGmc0wmB1gfqQ4PkacLukvJuh8IyYESRAdD19JMJ/Stp223RJ/oC8MwZNR+TLmRaApJrSUPzu4ShUK7QGMOEM7jhp4vLy+5WvbU1YLF5AQXDb0Y8KHHD5F37j/g97/3BzSzh3zjww+QdkdwA5998lP++I8/Rk01d5vcEPzf/vX/m2HdMVyvcKbizsP7fOe7d1hv1pzev8vbv/ttVssNYX0FfUdPIMU80G5qzfXNJcvVit//3kf83jff5tnzKatNx+ZmRT0pqaclulbcfPWKg9kcM5mgU+TZl1/htKaZTqlKjZOBlxcv6NsNV8tXlGV2180PZkg8dSWJYeD65iWtkRxPG2LR8Pknn7NbXfDp85dMqmMSGlMZkig4W5yiAxR1Qzy5y+LoHm+//YCXTz5nu3EgHXdP7vDies1yZbl69YRSKxazGUe1pqkKBiuxTvLk8VecP3+GEQX3H53y4MGc+4uKk7OHXC4tQUeur58jO4ksKrzRrK1ke/0SOQy0V46LpysOjs+Iqw4hDO9/9D6Xx1uePn7J1ZNzHt47Qk0jm/WaYZcomxlNEQnFhC5KhC959uVjmkXN4dEhy4uWL766RgZHXUbmk4abnePo9ITNztLMD3mrKlmd3/D5ly/57NMnrN2Orz5/ygd3T5nfW3B05w6mO6Mben7+yy/ZDgOQxQoxSYwWmKLk4PiE+/fu8dbhHS5fPOfpzTUnQaBVRaM1d+6csRscz5+84Kbd0iym3Du6w/VNy2az5IP3HlBWCy7Pl0ync1arHcOyow0WUSiqqiIImUloUdLM5nz729/hvY8+5M5bb9Mvtzz5/DFfvXjBdxYn2Ms1Q7/NNDYlQFdcXW+ZTBqO5xXX1xu2SbL2DnPQ0NQz3M6yu1qjjWBxMmE2q+iGjmammUwaplKxqAT3TktultcQLGUpsbrn5PiYxekJQ+i4vlkhhKFpapqqZLnuuLhe02jB8aJGOnBC8d3f+4Czu8fEVcv1csXdySFn00M0gqPThm27o4sDs7PjfE/sWrarlvnJgl275ma5odYlzcEpMjqmtcEIQ0GBKD3WbXHeUlcFQUasEBwdzZkqQ9f2UBRIH/DbDpFyE1uQ77kpRpq6yCIVZ0mj+9+nHAmWEjniTIIyEh0UIeXG8XQ+yXQA5/HW4312wiMkQz8wnVdMJ3M2my2dt4ha8/7773BQTvj40895tVzh/ED0HhFHt/vX6ofb+kd8zZIsBUaaHIY2um/3ka97qksmA6ks7I5xjLbJcRe3g4Db4QV8baQAIgvytMqiGUjYweahx9g4l0ZT1gWFhhA9UmmUMNjBYf2A1ioTRpKnbCSLown1VFJWmqKUCC/QRmBMJrGUSdwOaUIYne8+3TbGGWkgglwvRRJKg5A6U3tKhVSSvsvDAiXFOBzITm8tJVVd5gg9EUnJo3VBOdIKh96OQwM3ElzibTM/pSxGMGVBiOG2SY/Ieq/gPMFub93FiezI1lWOmM3nL/9LWeUBgHMeF3x2cStNUZQYbbKwTEuUVLghx+sZrfEqAJnc2UynxKDohjVhsGidXctu8BgpSErQdTuGwd2KUoTYC/P3gv9MGM0xZh7hPT2JsiowShHk+D5Jo9t5VN6l7Fj3LgAOUh6qISN2cJlkuhfN/z0wIO0Hcfk/xK1oSIyRg9x+7xjJA/vv3HhOc9E8CkH2dKWvPfg4FEp7gdLoxM9Pl2OP9wPDLDrcD/LkaHDI+5F9TEn+u1yj72NEcoxJFuIQxxgT8hBNjPHWOY55HwOSB07DPhpR5GtG3juNr2CkDEiRBXl63GMJoymaCiHA7zq0FmglMcaglbndY91eTsa/y5FjY+RdiChlKLTBOzsS4MTtUFXp7MDXRuGcR2t9G4mSo8US1jncKFrUYowV8wEvUr4WCMk+mUapMQIzBiRkMlMajSzk16ULg/eRTbslRU9pDEpppBS4kCk8IrtN8r4wSQpdIFMWZRJBF1nMRcr7TRdyZKAWAh8sgkx9yvvYwEbsCGZgVlZURTahiMFS6gLvAyFCXdUQc5Sz8xYtDaZuGIbIMAoJY4q0Qz+S+Bx96BFeUBUlRhWIGAkioJXOotrgkElkgVnI16r9+cmEsBy5p6VESU1TKWQdKXW2p2Sq0kh4I6IQhK7PsdnG5CgY8p4CRBZ4x3wNrouSJAVVYei7AcbYHJKAQtMNHcm5UbypsH3EFBUhgq5qRFPiWsEwkseyzi0yeEtRFHgXcC5H6ngVCSEipc7fVyly1J0UzCdTosjiMiOrUYDpWbYt7eDRuqQsGkKSeAJd8kSfOJos+MPZf8VRdT/v9aIjBc/15QVPn14gC8nE5IHr48+/xA+e8P9j77+eLMuy+0zw2+qoq1y7h8qIVJWJEgAIQYJDThPsGbOxfpm2MWuz+Rv7YV76ZWaeMJzpJggCBVGoykqdGRnStV9x5FbzsM91jyIJssAuKCKWWZV7pF+/fu6555699lq/9f3aDi810/mMo6MJfd8zmU3ZOT6k63pi3xCdxI0KiLT+Sdqu4dXrnpOTfU72d1htMrreMXQ9OtPJgtMI2mVNmeVJEEZM9qpKYkyG0QovJJt6g7MDbVejdbLey7MMQcRoAcHRthsGKajyjCgl1xfXDH3D1XpNpqtU8zAKhGJSTBKlzRg0U/Jyys7OjM3yhmHwIALTcsKaga73NPUKLRvyLKfUierlfBLMLW+W1Os1Sihm84xZkTErNNVkTtN6goq07RppBUJpvJT0QTA0DcJ7bBuoVx1FOSF2FgrF3v4+bTmw2bRc3dREH9hZVGyWK2TIsCFSlhUuSryQKAz1pmGwa6bzkrKsaOuGTbMiE4HSSIYgycsi0Va0Yjqfg9K0nWP96pSAA6npb1bMdyqkMkx3Dvj22RMuL2s2XTcKQu8oNlprtNF88EHDdDIlm0x5fXVJpZP1XZFlFEaRV1OuLq+SbabwTCcl0cNmUzObZEwmU+wQMSZjGPokYrbJxtcYPdbDxO3asru/j/OH9MNjnjx5ylCvOLu4YFJOEZ0j9MlaPcsM0SsGFwidJS9ybN8xBOhCAJVsx7RUdHVNHCymqMimM7wbcCO1qRQaFT3zqeZm09HUm1S/0qmGdnh4wFGmqOsNSmqkVJR5sjCs2wHvHLMqQ/qADZH5Ysbe/hwVBX3TYlAsygl91/N73/xTrq8u+ezoS+pFi12kAcOu7tBZEvkMfUfTDGhTkBMxKtUANAqlIMjA4B1SJtqRiwFpMqo8xw02SXikxPcDtzZiMd03Y7yzV3bjuh9HSXsSdsa0vo+UOqnVKKoJZNogpB7FtKnO56wf19NEkivLAu8dLiTa03wx5XC+w3K55mq9SdawIVHWb8Uj233Bmwvzdj8x5jtS3L2OuN0TbNMOMV47t2Lurdgn3j7NfyjOvksC4u3vJoJP2kNsrfK2A6hqFLUIEUZRkU71Mr+1vmUU0sZkdVeotB/TAoUgeO7sw2ISHCklbwcNlEy20VsBd0rv5G29dyueUiSyz61wL2yptinPiqlgjNZJsGzFaO8nwBiT6PjOj3li+AUS5ptirW3tOowEX0YxFbfC//8g95RjjiHuzmsimqYB1TCSOOV4baXPkbgd4CUKhsEmsbW8G95VWkGUON+nARPnEOjb99eolOO48TWlHJTbr9trLNG0xO0+0UaLMeZWaB+3xFvBrcVeKuYnItP2Yts+n/dJWC4QSPULO9S38TbexhuxXCzZ/IrFCV55vPJI95by8zcR2mk++uyjN9bkt/E2/uoIQfDTn/7gP0tREiLw/e///HZ9/tsJwSeffJ+dnSX/+l//wX8zQiVjDf/T/+N/4tsn3/KHv/eHvLz/kvY/I9R6G2/jbfy3F7+8SGn7dZxyhlRsSejgEV8/brSdtSMsQN5uEmEsECsBI1JWsCUcwa3NCsmuTWBvmzrp62hrJlIDS4zTsgKBlqkxE0IgWEtvLdHGEU2cJqJ7O4z2bGn6XI5FjL63+ADG5ESv6L3FqYR+DiQMdNelJmCMyXZFKjU2GMWtzUDwFi23U9SC4BxVVVFlOWVWkBtDo9YQIlpJqrJCS00kTRzjwQpuRUGN7YgSJsaQPOIEddvRDwPJrsGgtSai6WxSgE2KAqWTFUTft0gSzaG3PU3b0nUdeVZQlGXCEJPs8GzXJluHLCNGgfUB65MVjRundKZmgogKozOarktWA77lenNDICIzhWtrFB7hPcVkQm0dF5s1s7Jgd5pRKIFRiipXbNoNjZPsZwV6Yjg9W6JkKsAGk+NUwA2RaB2PHxyzqTc01qGipNQZeOjdQNOsiVimswIRA09fvGTTbLi8WSGDYW82p3Y967Zl6HsW04qiLFHNBryknGUInSOdZzEtKZQmBI8p8tQglpFcVCgi0TtUpsA7fLBold0WpGKMLKqCKsvZdD3WdRRlSVQSU02wK4tBYIQnM5LrVUevMjCG3g1oo5mUGWVesVqtk5BPG5z35FLR1y1WWFrX020GdvZ3abwj9pH+ao0THd713Ds54Pj4mNevXzGZ5SghafqeLnhMlmzbmnVLOc8oK8XN+QapFEJZrAuozKARiRxVZhidszfb52RnznroKeZ7/Oh7H/D06bf85OefI5RhdzJnPl3Q1T1F1Nw73Of+3h4hGP7VP/s/sptprBXkwvLFV19zs1yxvDzlvQcH7L5zzL2jQ7599pLzesP3Hj7kox9+j9frhgfHJ+zPJ1zpK3wbqUzBIGuWUnJ5fUM1XyCrOc0QONnb5ej+EaeX1yybDiEqTl9e8eHHD+l3M4L3vPvxh0z2d7nee831qytq6/ju22+RIZAvdtBFJNORd3Z3EiVDWP7P/5d/jq8bMpljbYOSis8//4rXL9ZIs6CoIrPdCVc3Dc/XLY1rWEw0TA3rZiCuHF5l7E1zfvaTv2DjPT5EDnxL3tfgI7qsKBX0nWWvVMzf2ees6DBSoqXA2Z5qf4/r1xfsTAsy48hzhZKaofV8fvmM5y8u+GGsePju+5wtLzh4fJ+ZLNkfm1LPv3kGquf64hJjJuwe7vHs9JKL569479e+x2I+4/LFFcMQ2H9wD2EGXB+ZHh+xc3jC82cvOHpwRN9uEDHni0+f8+rVlzx6cI/rs3PWmyWyrAjWUrc1hZcUmeKdkx1EEBydHFO3N7yYvObyZoN2kd2jA2or+Pzp11x+9lNOHj5h9+Qh59894+tvnuFcT4gDPkSEkMzKGaUu2JkeoqVm794eVSGZn5xwdnbJ1c0Ngxv4+ulzTs9vmE4nzGcTXN+ij/d59/CEi2dPuXfvHfJ8QlO39IPhZn1J27bce/CAtm3RPiLCiFyXEa8COycPeed7v8F8bwdx4rn36DHTn/wpdugxmSSub7BUvP/oQ56dXfKqvUB3mtMXF6z6lljmfP/D71EZz2bwrIbA4YMHHFQ5mILGgc8Lnl+uOJnPODk6wsvA9OiE5fMrWh9ZXaz5o3//l0Qih/eOefLOIdpZzr57RlzUnBwfo03N5dU1lzdLNp3GlAV90BRlTmxa/t2PP+G716fkyuMizGYzlquLJFC1mv2DQx4/ucfm4pzn3z5n/2Sf3f33ef7da16fXVFOCvbzguVmRWMHmq6ldY6gJULlTLOChd5j3XaUhWGW56i9A6aLGb5veHl2xeA8gx8IWbjNLPLMYJ3F4BNxJIInQlSJcJGZ1HwOEWNGemKIBOdQIjUj+jZZkUyKfBS6dlyfX2P2DzlaHDGRa6pZyayacPrykt5GbOcYhgEpI5AIikqJRLAbmwR3RJv0bykleZEl8fWwtWhKlk5SiFuE/jafEUKNNB6VLE29xXveEOGMZnKjmEUyNhJioje8SSZK4o003SxHYbjJCkChZYYbAiGKZDubS6Y7JfPdgrzUqYEgEvXD9z7RBHtHjANGS7RWSJOsakWUCZEhxThRHYkjOSqEJM5AKMLgsT6QGY1SmjzX9J1lsDYV3GV63UWZsbU3Kqv0vZCg8zTN7kJAhXhbdBeoWxFIjB4hDVmWMQwdzrrbXJRRgBKQaVJ+/O95UZDnqQHJKATRJk1eBx9uxVfOp26J7R0xQlEVLHYnKC3oQ7IbMVKwWXU0dYsPniLLIURkTLmbrQf6kBo9QkSGvmcYBoIfRS1j88X7bYM0CVKyLOWUW7Fa39pEbhqFLdsGh1SKrMiS/VuIOO+xw9i0GJsOcjsB7QNBJRJQ5B9esWI7sc7YWJEiWSXFGG8tVLbUAUGiTrFt1Nz1lHizpZIERHeNHQTpGh+nLm5FhjLZowkhb8VkPoR0DYY7oZtA3grwttP6YhTlJGuQJFCMQSZhzvi5DUSIAe/8ra2HvCV0petw2+iKwaemJQFioggZY5JVtdLJukcOOFLD1WidyGqEUYSTpufluD8aQmq0ZkreXfPW4dKNCCFVavCSPosgyJROQsuYKK2jHgzvPNalz7dSJg1CbAlTQHA2WVqi02uJ3AruwtiAzdJmDinVKMYSiODoh44oYqLLugFBsiLTJmMg0PQDmdGUmUKPNIJMSfo4YL2gyjRSZWzqDiFkEkRKRRCk98tHdmYThmHgZrJkMJ6J1OM9yGPtAKRcmRhZrtf0dqDtekSUlHnOENIAh3eOIjMYbRBqSE3IaU+3GJgvpxSZSXvCGJBaj3S2iNJJzBLjaPUWE3FXKXUreooBcqPRSjM4RwgObUwifJgM33uUABkjWgnaPlFPkRIXfKLIaYXRhq7vQepbSpiKAjdYgvC44HGDo6hK7EjM2tQ1nWmIwTGbVkynEzabDVmWBA3WpRxWakn0ATvYRKEzkq4exs9k2mcLqZDjZ1BohZSaMquYFjm99+i85Hh/j5ubG04vLhFSUpiMPMtx1qOjZDapmJUlRMmP5j/i4ekJSIkSgaura7q+p2s27M4risWUWVVxs1pTDwP78zkHh/tsBstsOqXMMzrZEmzESI0XAz2StuswRY7QOdZHZmXBZDahbjp650AYNquW/cMFrkjv0+7BHqYs6MoN3bplCJHlzQ0iRnSeJ4fACIuyxPsBiee9Dx4SrEULjfcWKQSXl9ds1j1CFWidhKptZ1kNFru05EaCUfTOE/tAkIrSKM5PT+lHkXQVLdpbiBFpDFok4khpBPmiotFuHOiC4B2mKmk3DUWWo2S6hoSQeBu4amtWq4bDQ8N8Z4+mr5ksZmRCUypNFLC6XiGko20apDKUVcmybmhWa3YPDsjzjGbdYAePzgtE9MkWMTMs9ve4urpBVxVi6MlUxnrVcX11idZg+56b6yuk0RAljR3QQROkZDaboJFjDQNmZc7Nck2sYFLleJnR1DVfPXtOnlegDzk9r3j1+hl2sMToR6FDqkXk2jCfSnYXNXm5R2UUh1JgfWS5XGG9RdjIxYtXxAh5mYNL9q2z3T2kEFRlxnyxy2a9SXZhAup6SVlWFFIifEDEdP9POYpEGsN874Tr1RyePebk6AUPH33GanlDVB5JT+8c82lFmVe8vr6k0IZ23RC8pRew2NmhUIIQPX0Q6CJnMSnRWcbgIirLqNsWjeBgZ5GoeBiMg6H3IBXPvnvFYC1ZnrG7v8OsLGg2PdcXV0yrCYv5grY/p3MDN+sBlSl8SHlkJiXnZze8Pr8ixnRO8rygHxr2rnb5jbPfYJhG5PuS64MzruIFK7NisTen7waub9ZEoMozQrC0fsC7Ia25AtBpbZzpMtFdBeRaofICpTWZVqw3G3qbrq0oY8rjI2ilxvUGJOl+yjgAKYVKRDaxteRMpMwtXUfLRPUJ3hOcTxRTmWzihq5HISmLkmySY+3AzmxG07QMo7DJ2yQ+3oqOhIAouRVHb3OVO7HLSOoUW6LoXWz3BGIUKm0TGDGKtESAEJOg/Q4TlGqT2xRIiLs2bAjJAjqJptjK5u4eJ9KajBBIqREx4EiCVBnBGEVeakwmR/tXcbu+Oxdwb9jtGXlnd5bEMNvka/ut2KZyqSbLSPyJHqmSSClRExMldWuHK2Qa+EvWZGm/ZrJEphWjaOiW/B9GEtD4Gu9omkkUh0hDHim/2wqSIm++CXH7/miVBEhyK7BKxyEQiZR7W+tOa/vQO5RKe0WTJaFuCEmq6F0c9wgpF9RSQkhrevRxJH2PQw3BjwKlMU8Vd+TRLWlKbPcLW6EbEHzERncnSNpec0LckWHHvYcfxWNp0GO8TkdKV5RpGGRrzfs23sbb+MW43L+kLX+1DfTzg3POD8+5/+r+r/R530aK49Nj9i/3/64P4238A4nlcs6zZ4/+s4/Z2bnh4cPnf0tHdBcxSv7wD3+PV69O+M3f/HN+9KOf/i0LpX71IRBor/ngqw948u0Tlosl3zz5hs8++oyu6Hh98vo/aQXnlSfK//i/v4238Tb+4cUvb/fGG2V/8caXcVMUgr+dtpVSb63Mk+BouxmF0Zt+tD1588kAQbI02E79JEuEsXg/9jOVUniXfOZFjCgE1tpxckeMuPwkvgmjj7x3Du/HPxW3U3TcTekLTfAwBItQd1N26TYZx+JFEgKFEAjD3USLVApj9Hj8aVoYD4UwDMPA2eUlq03DfDIh0wppJSIqhqEniAGTKaJzCds/+pOfHOwzn+1zeXXB0HbkUmNdoBsGmr4nzzMyLUeBDPgoyPKMvu8RMr1uhEJIg3Mgo6A0OZu6Sw3/4Ol8y6ptmJicTGtiiFjnUDrDBQdCJ5sln163zAzBWqQXOBvBDVSFxsqcth8IAlo/MDGSic6QkjQxLBTTYs7E5Lzz8IS6ablZRXZ37xFcsvQZhg7X1YQhoENqsAUXmRUFg0xTi8MwoLMCFwVrC9dtx6q+hmhpux4TBZfNkst6Se9aljcNM73DXhUZ2pZ2U5MVOVIb6q5NjRkFm6ZhnmvmkwqlJuw+eIQbVtycXuGtwzqHi8kGRI2iN2M000nOYC1KgDaavCgoMs31akM+mVDm+yx2DtksN/i+5nCSY7Tgpt5ATFYOqJz1pqNta3Il2ZvMENHS9R0iwuygJOYaVU0RnaVvlgQFTgaCCMyyEpVnPK1f8fr6DO9hMS9ZXV0wm5Y03RVn55am728tA0PrUeSUZoExExY7GrBUuaISgkEJNkNPlBFBIDrHQOCzly8RRD589xEvr2846y3FYsaRcHT1Fd3KcPLwMVJqlAic3ww8eviI04slk/cfc3X1kqd/fA5IZmXB/N1HdGcbzr/9hnBdU04K/tnv/oCD/X06Z7l8dcbLL57z6NEJP/rhR6iiYL5XkWto+w3z/SmPT+ZUxYKu3/DzT055dXlGbkqig9rBi7NL5vfmHB8cclDuUqqC7nzNd19/zep6g5hO+ObpF/Q3G47uP2Z4ljObVDw62OH7v/sD5m4XIRR/+pd/xMm9+zx8cp8vv/mMdV8jZhmlMWids75ZU6nIzsM5O0XBxasL3nl0gJoXfPf1Kx48fEhB4N2Hh7RNR8wmFKrj+dOv2QwBFxR9FrhoPI/u7dDfXDE7POG68UgCIuSoXnJ47z6TKiPHsXjnEbIqyCR8/eqUWBzR65LqcM47iynrTcdQO85erBBxxWd/9hdkJnB4dIQuDA/vH1EUU4YYyKuczbqj1Jrde/s8fX7K8/NLduc53/v4XVQM7NUzqr05zWlNnnmO9jWvX3b8wf/vf2N3Z593H+2iteLwvQe0dc2L85rz8yWD9eAc15uednnJw3cOme/MyURGMdlltrfLvfv7/Mkf/gkqRl5+/QX//t//Cct6SfCWIFIT36jIYj5FBMH9k2MO9w55/vKSthnIJnP0fI/jxS591zJRBftDZLU6Q8YCFSrOz2puWJPFyGdffsfOfELfrTEKZvMKtVsRpCeIiBUjHc8DItIuN/y//pf/N998ccbv/M4/JVOSGDse7x+ysh11E5EXS1zruTp9hRo883lF3wW+fnHO5fKG+dEBRmYU04JCgykMr55/xydPn9M0ll5r3ntyj5Npjgg9m7YmxILnrxvq2rJQGUcPjjivV/TeM9k5Zj4/Zm4y9ha7UDvOn7/gbLNid6bY2dkHnfFg/5DlTcv160t+8vQFl8PA/XcOePbdc27qmvlUU8wqfDQUOM5PT6lXlzzY2+WDR+/w1XdPsXXPyXzOjhQ0bqAwOdZPmSiJ8w7VdhQhWVOKvidDMEQB1lPOcqrpgp3DBTt6DxEEp9drCgq0buj6nmFwtHWD9UnsqUIiiAwx4mOyVbBuoMoLtEqCn+iTWKjepHs5kSTMiKnYmuUapXNENFgbyEyJWASuLq+4Ob+h7x3X1xt8bwljIV4pT1mVaJMmiIfBMvQDIo7UCqkIwd8Sf6LfTjHL2yKxVGNOkOcIGW9FBpnUeDcQQ6IR3glIRiE2jBO3d02FODarw9hQQCRqilISkxuyTOOto+8szg/kJgkUtM6IBKazgp2DgqxIdmaQRAjeeax1SQQUEk2yKApihLrpCVKSK5MEI3IUliOSpYOLt0QlKVIT3EfPMHiKXJFnyb7F2SRU0EphjHqjAZRIYSbTtH2Hdw6lEwHGE29HgwXpfEKidSYOQRjFYS5RacZJdTlaeTFaM3gXkFLibMrbjDFIBQ4/WvDGRE9SSYSytfoTCBpfQwzMdyYQoSorJJK2Huhqh3eWLiaCTRitMggjBSUGYkyijzv6Tir2e39nVRbHpkKILjWJQhyJSyKJ1mUSvGl1N7Ud/djkN8lmCClgkClnkxotUrPSWpfytbEh8vc23thQbLVF8hYDxK2QK8bRMno8D2GktxATnUfJsRk5CoZuG2HcZu/pezFaUo8/uW3RifT9m5SD4EeJorhr4SUrQm7FkQR3e/zpGhS3r0PcNu78VteYnvu2oDLSncZfTtbYt51LlNoe5Z3ASqkkjGraZiSrmmSNgkREQaMbVmbJtJ+MtiWBKAU4mFYleaZp2gZnHUooQkwkBefcHUU1JoFjJAnjnHd35C9konONp98ozWB9suOJMdkrWUs20o9gbMhJhY9J0Bjxd7YySkHwqcnqSZZJRhKETusAYEMgUwIj1UjQSnvJXGcYqdlZTBkGS9dDUc5SozFG/GAJLtmEygCEZFWTjVaOmdF471ndXyKESlQS5+iHFmLAudQkbW1HawUuWPrOksmC0iQRlhsG1CjiGtzWzggGOxB9INcGITPK2Zzge7q6TYTAsGV6cHvtSSlvxZNSJOsnrRPxrRsGdJYhVEVeVAzdQPQDVaaSleqQhGpSpQGPwTqstSghKLMMSAIzEGRVQVQgTQbOJ/qS2ALakiW5ROFDZFU3SZSRa/q2Ic801rXUTUj2gVqn1+MCImqMypEqIy8EEBL1Ugi8EAzepSY9SVDqiVys1wDs785ZtR21D+g8Z0LA2w7XK6aLnXGtiTSdZzZbkD2viLKk7dcsX9YQBZnW5DtzbGNprq+hHTCZ5uGDI6oyia+aTc36asV8PuXoaB+pNXmpUbLCuoG8ytiZ5hid49zA+XnNpkl0zOgFVgnWdUsxK5hUFZUpMNLgm4HldaLykhlulpe4dmA638GtNuTGMJ8UHN4/JA8FCMmrs+fMpjNmO1Ouri/pXSJ4GimTTW7XYwTk85xCa9p1w3xRInPD8nrNfDJHE9mZVzjriMqghWd5c83gIyEKvILGBubTAt+1ZJMprU1CA4FCeMFkNsNohRaBfGeBNBoFXJ/XRD3BS42ZZMyLjGFweBuo1z0i9ly+PkXJSDWZILViPpugdYaPEWUUw+DQQpKVCh/h8mqNz2C6t0s2MVRdhimyW+vV6VRTryLnV9d4L9jdmVLkCq0NeTZntWlZ1i1+1SCio+gHRIgYA/u7OzjvKfMKmRXs7++CiPje8eJVxTdffsf1epmsIBnphETyLMfowK99fMbe7hTnI+d1jdQZQUK1WIyNecFkoqnXN7i+Rssc28P11RIdPOu1S1Qq1yFIFC49qxBCsq4neCJR3q01xMDpi9cMbeD+g3eYT6d8/rNd/vW/LNidT+kDyD6DzjN0HSL2VLnBR9i0PU2zIWrFdDLFVDlKS4qoiT5wvVzjBkvnI9NpyWxaEZzDuh4VMrohUG8GtFbkec5kMcW3DVoX5PmMTAxJXBIFXduzqjdIHItZgUcwqUqET+LE1y/PuFzWlNOcoY8slw1SJdqMcwoTFKwd8ieCJ+YdfjT7mLP+Ahc8s+kEvKO3A1Jprqslq8mGi/1z1vkGGRwohR8GlJBokjBSAGWe6jjzSY6RgqtVk8iZKll8+pGsGmJIwrCQ6oSjxAUXAiJEYpBIsa0xJuu/4AP9WJuMW7u28d6uTRIeJ0GLQulE6Lu4uIIAXWfT5zFG0l8OaW1VKpG0fFpbbucyxd06Gbc54+3KP9YoZXqcVGocLIxjTpSEOG5rSBe2/ndjxvLmlzfIP9ucmUiykhNb27Et+THloj74tBaNQuIQkiCnrDQml0kMts1Nx1xzSy6KMaJ1Ej0nIT2jWDVR6tOgxTbX3w4lMO4pZKLv+wAyYsZ1xo7PL2QiMd6KcSS3pEc70v3irXXZNle8yzOFIOXPo5BIa53WpPjG+3Ir0gl3X0WqTTuX6txSJjKRd3dDKkqqtDGNo31wBB8iXexTXVzJtH9F4l3A20QajMHhxkGQUeOUrLu3lM/tgW33E2/sLd6MrYVxOuZRqDTy27Z5xjY326rHU048DtSEJGyCdH0xCqZFuKP8v43/9mM5X3K1d8X+1VsBxy8TkcjPP/75r/55RfxPNuHfxq8gInzw5QcYa/6uj+Rt/AOIGOHLLz+k64q/8jFZ1vOv/tW/Ic/7v5G//1+ymQtB8fXX7/Py5X0ePXrO7u7Nr/w4/q5Ce83+1T57V3v89p/+Nk47VrPVf/KxLx684PT4lM+/9zlXe1d4tSWhvo238Tb+ocUvLVKSWwNsRt9wIW4FRyFumwRh9C9PiF/nLJAK34xFAqUUInqGuLU7uZtK2W4mt9MqCaWrxo1/wDtQ42T+FpWb7DLSjL8UCsYp+W0kKgC3jwFxWzCSSiK9IgZBnmtCHG6nS4be3QmlYsQ6jxQ6Na6JGG3QWZryUVKl6a8Yb/9gDB4XIy4C0qD7gcJUCCR2iBRasFhMQEDdW1ASFcA7y6arkb7F9T3RgtRqLKIIlNJEL8ap53Ru87wYaQ0eFTyDdbgo8EFQlDPyrKLtGqYeMpNQ3qHvWcymZEpjXZeQwxK0kfTWp8nsqJFBYKTGIHACHIHcJGsXWShE6KiA2bSkHzy5zvEysmwblusVs3KOt44agQ2BJw8OcbtzZK55eXXNy9dXSGBvZ8667vExsFreYExBnmVU1S6b9Yqd2Q6bzQaJ4GZ5Q+88MnqUTghl7yJdm5DtUUGIglW/4XQNaiNYTKdM8hzrB85XS25WG9recbNR7E8HIodMp/vUN1cMvidIhfSB3BikiGipkQhU9NS9wzvwXiC1xocB23Zsrhxepina0PSU0x4krP2QGjRSEVTERo8PPZPSIDzkIseFyMVmhc5zelLx4+HOAR//4H2yasKf//s/JXhD7gaCEigf8P1AtSi5tz/FuinLyxqEYDFd8IMffcQXX/8lzy4uySLsVXMGOxBMZLo4YHcxpShK/Kxm2azJFlOqaLlaLzHBAJHedphphcgEm/WaTBhshNparvuaal4B8Pz1GfH8ggcPH2OU5PTynMEOfPOzT9gtj6iXS1bra2yA3/7RD9mdl3z7+hWffvEdSmeIeM0uO9x/dI/5bMrXT1/QDS0Xl2fkMnA+mfHqZsMP5IRgB5aXG4Za8NouOdrxvDpdcrF2LHYXrM9vePHtM3Z2K54cVxwWBjXAZXPO6sry7OVr6rohKM2DvQXVfEqZlSx2KsJ0wnx3l82mp3Ge7778hsO9Y5782vfo+w6hFO999APe+yBj43oEgatn5zz/bkWZFxTAZr3iD/7wz/jRtWfn4R4vX5wzMRrbN0wnGROliPkOVzen6HLGpIqcvzrjaG+frBCUecXL5TN29475l//sRyzPr2hW17S9x9uBDx+/S31VQ7T85eefMp/vsrfY5fJ6QyUlZ9+dsnOwhyby9fPveH51zfHUkE1KnIpQZFxdXHNzfg3eoacV7eB4eXkKbc/hbMr15SXT/T327u+xfHVJvW5YHB6SzSq+/ncvObs4Yz8LXF1cUhY5e/szLi83dF3N/v4+r16dcT04bl6+4JsvWuYHh5yvGqQpeVQdcXK4w2Q2JwYwUlCiuXfvIVeXl/z8k0959uJFKjaP9zcVBZMsp6wm7B8cce/+EZPZlMuXl3Qd3Huww9HOnHrokVrwzZ9+wubsjNbV4MAbxXy24PrqDNd3LI6PcaGnv7mh9z0agZSGm3bDZFIyK0qMEAwiIwgYbOSTr77kq9eXfPvdc3KlyaYF/7ff/22GoaeLkvv3jnDRYzTQBA73D3n+7IxvVtfgBUflgsV0xmQy48V3LyiM5eTeIXXsefnqM1rrKbTjg/c+4OTkiCFI6mXDejPw6P4xj092gIh///vk8wLTtBxnklfLlmvrOdzbIReRQngOFxVd39J0nocnJ5TZkp99+jk//fkXPHh4guglfmipFLh1zc3QMZ3sUxbg4pyub2n7Pt1/d3Zpho5/8uQhGfDpV9+xaQY6Z9E2iQeEhaEeaKPHhYGJUQQtyKcT6rZl03gWD4/5wW/8gE0tuVh+hQ99Iko4h1ABhKYqEmEiU5ogJMu+o+4tXddD9Az9kIQ50SUigPPJrmUstiIFKIkXAYxmWlZM8yndpmF5ecl8keNt4Hy5JjpP8A6ZCRbzBcpEitKwt7dHCIHNekO9aelaeUtykUhiNCPdKBV9wyiillKitEBrkSgg0aOFQimN0Rl+SIKAO+uBccp6K2GQ3BaQb+elhUziilFSkeWK2WJCXhisT43xrVBmK6zWmWaISYxjx4l/icE7EPhkGcUbzQEpKQtNZhTtpqdtezAalSXxAzJiMj3mfIrateAD1m1FHe7Wbjf6iPUDEMmyJHJSRmCKZMMUY5rCV0KgtaEU8taGa3s+pREMbU83DMTRcrWalqPdQEArQ8hK2tC9MdkrsMPYUIqpUeKcuxXC92pIVAstUUYDyY5OaQleoLUkywVSJPsH7zz1sgVkmg63ln60PGFcm71NjcfbJkLYNhjibX6cFBKM1NDUDEgp7mgTFUYBvgujqAQICqmS2EtKdWudhIg4uxVDCLTUiCxZ8Ck1UqRuRVp+tPRSv2x6/7ceW/LO+C+k4JYutL04t+dnK/oJ8Y4WsL36tkKi1FuJo07pTjCUnp1bSoAQW1uzsdkzUlrj+Lvb93DblIm82RDaNot+8XO6VRkKKVPzc5yw31IaiFvhU7JbSTTYOJIc0s9TE3LbnHxDxHR7mtJ7mwbdA8J7SpXs5IInTZZ99IKPPvsYP4xN8ZiEPYOziOiSrYlPn7OtVZcQMvXydPpjIiabl0SyCsgYcePfDYFEXlGJepdl272gJHpHkWcoIQnBjWSpONoUhtE2RKbnFxIlRLL7IlmdCSkQWkJ0GDR5pnE+iRqjiPTO0g09uc4JISSaT4zszCcE6xBKse5a1us2NbKLPNlSxkjf96mBqHK0KRmGHjWVrHeWKAFdNw5vkOhuznukjzg7kGX5LQRicAObHuQgyDOTrLyCp+47un7AuYAYJoTrSKssJisZukRfi4hE2JHpni7FSOuIgcFvxaiMQjCPd46hS61uqTXROkyWyHS9HYlsQhJlHAkOjixLe1eFIkRohh6pPY4kcpznFQdHuyiT8frFK2JQ6OhHykckuoAqDAdizmVuuG4GEJBnBUdHB1xen7JqWhRQmWS9GWVGtqgoiizZ2WWW3g6oPMPgaYcOGZPFnvMWlRkYaTlSpOO03tO6AZOnhsFqsyE2DfP5DlKmQRIfPO3zFbO/zDnLTumHDh/g/vEhRW5YbtacXy4TBYSWkpLpYkqeZVzfrHHe0jQNSkSaLGPTDhyKjOg9fTPgB8E69EyKkPL/IVAUOX3dsb5ZkpeGnamh0hLpobUNfeNZrjdY64hSMitzTJ7OQ54bstyQFwV28NgQWV7dMCmn7Bwc4L1Ntl8Hh+wGjY2J8tyualbLPtmQRRj6nm+ev+KoC5TzkvWqwShJcJYsU6O9aEHb1UidY0yk2dRMygqpQWvDul9RlBPeeXBM3zTYvsO6QPCBvYNdbDsk4czlBUVRUBYFbTtghKBe1smWncj1asmqaZlmCmU0QQJa0TYtfd0mG6PMYENg3dTgHLlKdvPWew53Dgnes7laY11kVuYs25Znz14wLQ3NZkWMUBTJsuni/Iajewe0m4a6a/FDz8VFjdea3V0YesvxyRFFtUgEYKURCGzXMCkr2mj55uuc84tLrLOjPCndv5UQVIXm137wHT/8kUFrhZGKde+Y5lPKQmNdKjg1Nyva9RrbdejcYENPNs0I1tK2NSrLQCtC1+GCS9Q7qWhawcX5jCJL9zuJxAuIUbBpW5bPn3GzaVhUE3pvuX8i+ejdjj4EMmPQiwkmU7jOMssLvIfTzQWdtewWVSKOFWUiN3YdZZ7hxYT6/ILlegPCI4kcHx1iQ8AFqOsOk+Uc7U6TTZdQTHf2kN4yNYmkVXuLyXLyaUG9ckyrKYpA2w2UeUmuNJfLJS9eXwBQFhpvB7QEnKfvBoTOKfKcghzrPRGPGzyLuMuma5kVcw53ZlxeL2k7i1xl7IQ93vnqETfVklfzU84XVyyLnqCTIFhqTRSCum7IplMWB/uURcW6fokPQxJni5STRxlQIn0+CBFjNJ11DCEkIXdM179QW9JOWtu3llpiqzrd5gBAliVbPYmkb1vKMtEtu94m2qIPIMZ82WQIGamqKgnmnaPvBqRN9/c7jYlAhDEn4c4OONlFi1QHHW1gt5awciTID8OQSDfxzUznVhJ9l2fd/uRWfpPAkRJMpslyc1tPjZ5bK2pEEr8K4pgvba3aJDEmEcsvpHFjqJHKSog46/EIlEpCJcbXkHIxlc53TPlFHHGVYisyioyWZ+HWehcx1pAVgExUqDGP0VrfEvq3JCUpBGGkV4YxD8lGW+tUld4Kle4GC8T4O8HfkV0jYXSej3gh3hCPJWG5GHPY7XEKsd2/pffWWod0KomUg72lxI43pGS3Jm7/mfYD4/fpZd+d6PT6ePPdTF9jTCSqhKNKoqUokFGO5KSR1OhTLfnNa0cg0TLZqP9CDjq+5yJGRHjb6fvHEDc7N/zB7/8B/+P/8j9i3FsRx38pmqrh2yff/sob4XtXe+xd7f1qn/RvOXaud+DJ3/VR/McxX835rT/7rTdWyrfxNv7qCEHy6acf8Vd9yLW2/A//w/+T3/iNn/yNEIyapuLbbx//Uo/t+5wvv/yA3/3dP/nVH8jfcWw/r8YZ9q//0yLa/et94k8jv/9vfp+X91/y6Uef8s1733Cxf4Ez7m/xaN/G23gb/3vjr0FSircFdREBmaZpjVa0Q5MEOT4mm5DoUx1/3AjdFucl9NYm33Gt07TTdv5j2xgYi/POeWQQCGlApqafiBJr06Sa0QrnPcGnydOAwA4ubT6jAHkngNpubH0a2SU5qKcJGWc9gpCIQxKCi6mIIeU4CeRu/cbvbOsUyRBmbK7lI8ZfgItpkrHrB3KT7NOc9Tjlaa1LtgF4qiJHKJOKr92ADWGcftUMQ0tfO7reoqQmDJ4iM1S5QYiE+A0jZQKVrOXs0JPLQJ7nBCVR2pBhqKSk6wach6ooESJtPKdVhckN/WAJFgqTobQmeIcWArwnM4rORibTKbvTApMpvnn2itwYdJlRYwFJZSr6toWoWHUNrW1Yb1bkJsfnA603BCn52dffcHk15bCYIbXmqt0gshxnLXiXkM3dwHxaMKkmRCGw3mIKQ92uEAS6rqO3lgBkWZpSq+ZTzs8v05sdDHmR44eeYfCcDpaiyplPK3xr0ZlmYgyrEOnbDjDJrlBndEOPWnqKsmQ9dGgpkB6qsqTpWqKIrDdr+qbHxxJVlumiiYJm01CUGVlhGAZLvV5zc+UpiwLrG25WAzIKdk8W9HVgkk8QPhAHn6ZdteblxQ0yy1moEuE8q+slf/FHP6HvWzZtQ9f1aB8o8oIsy6hdoNSWD945wWSOL796wWBBFDOWTcvJvUOeXVxgh0BZTDBSEyeGvNBkmcT5QDktuPf4hCcffcxf/tm/Q2SR5+enICR5kSOEpq57Njc3TEzJzfkZYVFhYo9Qmp3dOS8vL6ldT7tacnj/Ecui4stvvqN9dcN+eYH78hMePXjE0ZP3KfKMzz75lPW6Q/uAyQKb61dUueRmVbK5qlND5WDO++8/5OL1OS/aNbODfTrnEGKgWze01x0f/ZMfooTlgJK8qtnd36GrClSWsdp0/PqPPkIMnhcvT1nWa4SRzOcT5jszqskMET0PTh6Bd6zPnvHRB/dZPHyIbQXWSfLZgvObmvv3dimrgtNXVwgTCUNBOZ2QzSfkcs1ivuDwaJ9yOuPps+ecPHmHar/k/Q/u8+DJMX7V02/gk69eMKkKptPA9dWSSmmkcugsJy9mfPPZ1/TfPMcJ+Gh/n9htuLl4ztnNBcfHjziYzwnNmr7vaf0AOqO38Ojdd5gtrpnuzBDkPH95RdOsKKYlR1nk5Sc/4/GTD/n4d3/I+atT/u0f/jmffP6SySRjanL+yW/+gIdP7nH+4oxXL1+y7lt2JvdQ0x1ef/eUrz75joNHHTsH19xsVrR9x42zNARUNaFtN3SDp5jMCGZCFwx6UoJJU5rHOxWTSqCrkt3dfTKref31KTYGlhcrCuOZFobv1jc8f/Wc3g1piggBIa09OpMUeUaWT1le93xhnyFtoComXDx7xjTP2QwOckU5z7BxwUGxz7DpOW9aLlfneBHIC0OuPMOqRcrUHLrZtOwqy2x3FxsjUSm8TOQI7z29t9zUHd1yxdX6mp3Jgo/ee8wX335HXsywOFbra+bVFDOpGJRKk8sMTGYV90/us1uV3Fy9xm8u6W86ztsNs6nh17//Ee89OOH1+QZRlLSqIKiS/ZNdpuWSq/Upy+szXuZQliXt9Ybl+SUBi5Qn1DZj52SXR0/eY/r6gun5axZVwSeffUM3CP7yZ18xm1WU5YQPP36PJ08eMjWK/YM533z9Jc+/OyVTBQf7C4os4+XLV8gYiFbQ3GzIo8QHzdVVzXtPHjOf1NTteSJkKEVpcoIwiGzAbWoqaZhNcsgMhycnXD5/xeXFij/78c/IneL6quZyvaGcKGZlhZYZgRW97dDGYMKo85UShSA3Ch0zfEyT0sI7REyWb0YpkAY3WgEURY7JpnR9j1aSRTXlcP+IpV5ydnlFbnWyjSDgvcXFlD/M8in7B3NMpijyjKZtMYVht8wIMVLfNLRtn4q/IRVwnQt4626bBz7GRFYaC+NCgh0ck2lFVZSsuhXe+tup6btC9mh5uxVRsC1Cj8VjSbKI1YKqyimLIk10j4V8pT193yOVxLqB4ME6hxSRrh1oaoPJDEJBDIJg3SiqUhiT4b1lUhZIYLAuWRQEgZeJ6IOI5FqPNj/hTuAUklWucAGpoCozEILgHUKBlioRn4xCG4W1gXpdJ4qRlKMV8NgkyRSlyNAqQwpBqzSrm02iE4SQaI4hpqK+HG7FPnFsDngXU44WAlt2TrhFZwogNQu2InPvXaKPCEEUMln7jjQYKSVD39Osk0gpkbNGG7UgUUqgdBJFiTC+PySrkS0cK44T8MnuI9kN3xXDRuHN+N8CMVlGjKJ5IQVytDkJPuLtONnuPIiIUAIzkm8yk6NEImJJJZAyo++H9B7INM3+9zfSVP/2exBokSyYrU/7gtRxGS3P+MXHinF/4b0faQDJWu2uyyPuJtAZqT5RJFqAEKPNtEj7ByXTlH8MaXJcCIjp2tvSnW6bVWPTSEqZRFNvHlkIo9gljPcCbikDtw2z8fMft025sdkkRJp5jzFZ1ZBe3riHSRP8WimIicgQRsppEiumpuDZ8SVF+x3Hn91PFDTSc3nv8MNICxOS6C1GSYxStw2v273SaDMZbEh2YlqlBruUKJEs1pLYkmRzNk77ZyY1/nxIghs9iq5iTPuaGGOiNSHIspwi0ygluF6tUUohtcKSbK2N0qM1t6B3Fust/dAnCx/lsUESheDs6oa2NFQ6R0hJaweEVonCEAJyFHPkRpFlGZFEG5NashIrrOlxdkiW3XF7zBKTZTRNMzYL0/0rOJ/IjiEkCklmiC4glCRTifrnnEMMAh10skXyHttFtNEMo7VXaooanHNEIv0wpHUkaqQxt4I3a20iROiUg9hhoGsjRitCtGxan8RY0wJn09AMIa1BeWaIUrBquiR41BoRIn3Xc/r8FOfdrR2nDHEkUShsiGjheT8+4nz+kqurNd6D0Dm9tUxnFaumwfuI0VmiLWQqiT+lIIz389kiCXFOXz1HKFg1GyJpqEkIiR08fdeRSU3b1OS5QeGS1VuRsW4kQ3DYvmMxn9Npw9XFkpNPD6hfrFjLFYv5nMnOHlorLs8v6AeHjAElJLbdYJSg7zRDkyzQ8qpgb3dOvWlY2yGJ9kMA4XGDxXWW/ZMjhPBUtKh+oCxLnEn27t3gOD4+QLjAalPTDz2oJFbLyxxjckQMzKZzCIGhXrG/f0wxnxOsIASBzgvqbmA2KzBGs1m3idzsNCbPULlBCUOeF0wmJTrLWa5WTHcWmNKwuzdntpgSe0cf4PxqhTGGPIt0bbKHFiIkmq3OuL68xt+sCMBBWYLr6eoVddcwmS6Y5IZoe5xPtn9IhfOw2FmQ5y1ZkSNQrNctg+3T3lkVrM7P2Fnsc/DgiGZd893z11xcrjFGkSnFyckh850pzbpm6Afadk0+mxOUwdvA5atLbJDYKGg3G6KItP3AEDxRJ6pH13dEpVB5RdttiMogjScQmBQZhYroUlMWBZnK6TYdTWgYek9wA7k2rN3A6WlPZ4fUyBcpbxFEkHBwsObBg2u8O2S1bpGxwyjDUNcIm3IsCyACujLMJwtkjDSdpevrWwtFoyXBjvmhkPTB4+zA1dV79H4Osk33diEgpLVn8JbWOrqLgZusZFIWXFw6jg4bUAo5DEmwr2eMaSfRDxitmM4n7O3tsFmvaNaWaAN12zO0kXI+5cMP3+P09TlZNaMbLA6NzhVVntG2Nc5Zlps11XRK31uc7XCuJ85Cqv2ojMXhYRLPCEmRG9bLNSEobm425KNt42RSMVtMmOQ589mE5fqGm8trhFBkRjOdThMh1SYLSNdbEBIjNENvCUJTljP6fplEEUJilGa/PWKx3uOdFx3LfMnlu2dcHV6iZwUyBFbLDc31kqffaSYqpx0sg7dUZZ7uScIx2B7klm6T1lk5rsFGp8FEIUUSFTOulTqJyGQc8wopyE2BHyk+RmuKrMBow9VwjQsB58MoYgqj2CbVI8uySEMLxozrP2SFIa8y3ODT63+DGi9GUk+I/k508ob1Vrp2U66gCzOuR3EUF93lObeSZvGGQGn7NUZuUy5IwjyjR3HKODShImxJUiS6ut+SngIMg8MYjdyKr98UwyiVBvq0RCvJ4DzOBeJ43qNI50qKtNZu66nbtC7ESBxt/ZQaP1dx/J2R5qrUnc2ctR7rbdKSybSfkOPwgTapLpfy6EAf+ju60Ph+xBiJzo0idUZBeEq6YtjmaFtherzN97bHuxVeJ/F4IIh04qVK+fw2fwwh4GyAaFNKMdKm4ujxPaabd3CprWjuDSFbsngb35XxcW8ey62Qafu9kON52Yq40i+kfdI4HDNuj6SUbxCq0vlKYrI0oBNGr+Q35pTfxn/LIeBnP/gZe1d7/Ov/z79+K+QqiCAbAAEAAElEQVT4L8RmuqGe1L/y5837nLzPf+XP+7cVAsG7377Ln/+TP/+7PpRfjAi/9vNfY76a/10fydv4BxLWGq6vd/+Kn0aePHn6N2axFiP89Kc//M/8/f/w8ZL1evYf5wn/iEIgMM7w+LvHPP7uMV3ecXZ0xh/90z/i8+99js3s3/Uhvo238TZ+ifilRUpJ4LP1cQfpwfaOKjPk0yk39YZhpChpDT46ogtImQq/SulkmyW2G0/QmQEXxs02t02FW5uMCG6wICVbkG2yP/BIUiNwO2UuhbrdiEUShcn7NAmktE7NB5k20URJCEmMFAIolYREQGqKC4ExKlmWjU09pfSdJ7oIKKGx1t8W7IVMmzpjTNowu0jwqfAilSQo6J1FGkGuDV5GLlYb8syQacNOViJzTQwWicR5GHrPtMgQUqQiNyMyIYDtIyYriMIjxvcmyzKGYQAJIgZsGGgJREUq2iOSBcW4+fZjI6AsCoxJExM27fSTjUuIzKcFJwd7NF3H9fkSoyTlpMBLxbCxzKRhUlZcuZ6Ls0uaTY0LgSLTTPKMeVGR5SVGSA7mMybTKcvWY5sGrRXSwE3T03ctuZGo4KmmM67rhugD94+PUbnh+euWxnZcrZbooiASaAeHiOAHP14zkYjH4+kHi/cR7waE0lyvasRMMVEl+WTCIgTqoed4tuCgnDP0LZuipBks+Yiojpkh2IHQ1oRosdFzU6/AOkqtkcJgygJZTemaAWMURZlzbT0yy8nzEq0Us2pC3w0EkTO4SJ6XlFmarO5DIC9nmCpj2TYgPcKnQs6LV2fcXC/ZnWrKTDGZV7ioiSJgdOBgPmPT9Pzp+TPOrk6xUeF7x3xesr+/y7evbghZhTIZTVujdMDkgipTLNcr+t7z8MEDLpcdq599SdsbyvkRk/WGunUYoYibnjrz1LZhtWkRU8O0zSjyAiJcr84ROGSheXZ+Tt9bskVFriU1gccf3WPv6IDVWYdvWtrzM/Cei7NTSplzdHyEoGFRFWxevebd9z7g4/feZ7XpKYh82g188fKC+6pEnZ6zXr+gmEr+6a/9Ojv7O2yuN6wua7IqEIVk4zpU7/DW8ez5JZkoWewcUG+u2Sx73LomKwXySBK95PH3PuLLr77muvZ8++lTfvfhu3T9NdevXhBj5Pz1msy31M2G2FnMXHN53WGo+OjXPyIrJ1STGd98+ZTdk0ccvXOf/+uvvcvZizOOjg/Jypyb51fUqxV7ixldW7Npl5TzHR7t7tE0l5gdiVQwnU3wlwPVYpdysuB0bTHzIw71jIuLM65OX1B+/0fc9JZu0zHbmSKF5PrqnL1sytXFJZs+MNvdI7qI8j3D+RW+H8iqHHpHqSvu3z9GSsmDk30qk/Pt06e09TXvvP8I4UvEOhF23HqD7zpmOzmLCSxyyQdP3uH6ymAvXyEnOWK2T20Dy8tn7FRTrs8vuffgIbNFzg8fTHl9umJv/4iD3QVff/6UZ198DSIg83R/Pq/XfPDkAblTNNazGixCB4yHGBUyBoJwBCkQRjLZn7Gzs2DPFAwTwdANDK1lZWsWiwXLTY9reqZFTlFobtAI22BEy/5kQbSC4BUiJkuSe3snnOc3mNByvVzy2bev+fzzL1m360TrCY52GGgHi42Ceh2ZZDn4nn/74z/nN377XzCbVQy24+r1JX7esEGz2QwsV2vm1QRpHdfX1+g8iVI3vqPFomTG2cUVvuuwbuD9+4+5fPaCP/7333B8csgH9x+wu7vHq7MzqsaiZcFyteHrb77FzErmO3tcXK7pL2/47ovX7M7nTI3katlRTefotuezLz9nOpUcLeZ8+Gvvoaophbdkvif76IcoM2e5WdE3LatVzaSc0nnwQrLsayIW23m+e/qK1dUGHz1FpbhfnDA4UMLRr3skknsnx7z7+BGPHxzTh4yd+S6fFp/wR8s/pnOOv/z8S3zd4sNAtwn4tqPte6rFBKECRkmE91jnyEzJhJw8BrwObNo23d9dQItkPxCiQwlAyXHaN2CUImjFpMrRwOuXr2g3HUJLNuuGfhhGiyjJkLxQsbanG1qsFQydxXlPNS3Z2VuAgFW55vz1FW3TEwUYIZHS03tPFIGQlHQEn3IHLQAXkpDJeYLzeOdHcRLcyRrSlPZ2IxnGonZ8Y2cZhcRkirLM0VrjnWfoLJ2zLHamFFV2S39xdhjtdxiL8Mma1duIGqlkfmxkxyCTLZ1OApzBRqyPiW617UCIRP7YWiokGyYJCtRI8Ng2gKyzCJn+drK9E5jMoKUkBo/RClEUtG0/ChlSoT4rDYvdGW4YEgmQZMGhpEoUEZWs9AIgtLojB0lw1oGPyTZN3gmUEnln28BJdkZSKlzwo2UGt0IRoqcNYaR2SoTQ6Vw6d9v02E4Vh9FSQwBSpWRRSoHJcqRQiej4hlVYHFUfo57mLka8TtySgaS8bWwEH1BaUZYloBCiw4/Xj/Njwz1PtCXnPH0/jMSokSzq0qS6ztTfa5LSreUVpA4NqRlilKbIk2DcR27FPZFb1MwoOBvtW8bp80h6jwNvKm5SvPGX0vsjRtuRUQAUR1s2xun9bePwzcn2LVVJjPl8HMVMYvycbSfxGQc4ttY0xHRPSMQhxj3E3TW11VMJUnNo2xAUYjupL0faURxtIknEOAk+BoQUaKmIApq+5+nRc3afHTC3s2RrEpOw0Md0bWQ6NWd9TJY34wEmqzGlxn8nAZ9SAufHcxMiPnoEbjzeeNtYvDXMGwlVZrQquxVijc3FGCDPNJOqxDpH23RIITG5IgiJHwZyqTBa0wZPUzfYwRJiRCtJpjWZNihlEgklNxiT0blAGCxSpdfWWYtzNg0ZxIDJc7ohEclm0ylSSb7Z/YaWnrbvRnFQxAWH8Iz3plEsKgIhJgFcjBCsRwhJ1w+pECYM2mTkZWTwnierB0x0gXeWQWkGBDoEIonKG4Mj2OG2qd0PPYSAkRJEQBmNMDnOJsKU1prWRxj3sVJKMpOEuVFofEi2kFql/YQjok2ONJLMudTcHF/LerOha3uKTKJVsggPURJFQMmIyXMG57h62XNZJWFF8JE805Rlwc2mIyqDkGoUHqTrxEhBP/Q4F5nPZzS9oz+/wnqJySeYoWewyTooDh6rOqwfGAYLjSSzOgkqo6DrG4RI4q9lU+N9QOWaDMXB+QE7+1PKyYS+toTBYesGQqSpa4xQTKYVIhpyY+g3G3Z395js7jIMHk1EOM/lumEmDHJT0w9rdCa4f3BMURXY1tI3A9oYEKMFvEvr1WrVoNAUeYntW4bOE3qL0iAmqdO8s3fA1fU13RC4uVjyYL6L8x3tZg0x0mx6dHAMrk/kqlzStA6FYf/4IA0XmYzrqyXldM5kMeWjgx3qVc1kUqG0olt3DMNAmec4Z+ltj84L5mWFtQ2qSPelLMvo2xZTFOisoO4DMp8kYUdT09Zr9OERnQu4wZEXGUII2ramVBlt0zL4SF6UMNrE+6YlOo8yiVqtpWY2myCEYD4tMVJxs1zibMdid0EsJNY2aASu7ZAiqdCrSpFL0FVBrhYM3RrtBBNT4qRhvVmhosA2LTrL2M8qymzOalYShWFnMaPdNDQ3S7CefugoJwXres1kNqHIMrrecLnSBDqUBB+4FQoi4d6DZ5TTDFUYJqMYbXCO6AN9b8lzjcHQdEOynJQhLfzOg+0ptUGInBglkoiPlkk1AWMIQ+DpiyOub9acnl+wqdtxJUr3+GEkwUUbE1luUvDFF4GDo5rje4cEN+D6niZusEC0yRczxEiZZTR1fSuIaX2frGyFSGTSpsV5zzTTFEZy/vo1USuOd3aZVhVXqxW9DeRj7e3q6preOaTJkEDTd7TtC4w2VJmh7xMNZzqpuLi4YO17ZlXO8d6UcjJLr2uIiPkCrXJuVitEjKzWGzKlUaOYa3COEBP9p20Cr1+dJbqLCGlNsAIlE9mOABNdcZQf8Xvtb3ExXPNycU4tV3zefsHgapabmtpvcMERnGPokzW0ygxZluhAEvAiEITEaA3eI7RmGJLNc0xpbsoLfbgVbyiZ7NTS9iKt30Yp+q6j8y0R8C5grU2CFUaBLmn9sN4SkW/UDAXVpERphbOeet3Qd+lcJKvYmNZkMeYRY14UxvqmiEkE6scaoJLyDRG24BcSntu8KnWptlSh7U+EGNdorSCmgVDrHMqkoVO9tR+O4Zb2I8Y8IYZ0TCKk8xRGhfOWDiuVBNLePgm9tsSilGtJOYqyZSImpamPRF1ke8yMQukAbw5zCCXH150earTCkXIqP4rFEElAbJSga3qcdUghR8JRGC2175JxIeXtsYSt4OzNadw3hUK38jHuhO7x7r9ta9jee0IYc7yRgvXmcMpdXhrHnHb7nCnvS3ZyaqTk/hKWzbdP+cb1IOJdjkmqX2utccLfWg4molcYaV2JJuq9Hy3sRhvBMUcVahQ+vY1/FBFl5Me//WN+8y9+k73rf9g0n7/p+Or9r7DmV9z0jvDxZx+P98h/uDFfztFW/70imGin+f7Pv/9WfPc2fuk4PT3m6q+gmgkR+Wf/7I/Q2v8nf/6/N/o+54//+Hfgr3G9fv31e/x3/93/92/smP6hRdEXvPPsHR4+f8gn3/+E//Vf/K/c7NzQFd1f57S+jbfxNv6W45cWKW2L5ty2ghKqvu8GpvOCMs9wvh+LudvJmVFTE7YbvABbq7VxLEPKZCMQxw2+2G4opR6n0NOGS45IeqUEWW4SRUGlpp0dHDGkBkLYbvpFoicZkxFj8qiPSPLMoI1Aj1PnSoZbe4OEgE5e9jEEhEgTpgnNmzbNyRrEJN/0sC3sQwwCbTKU1GR5mlyLQeBCQOqIygA8ykiCjLSuZ9VuEBEmWZYEO5YRV69YHOxg48WIMPap8aSTr7vtPSARzmFdh1YZWmdEIRhiQPWOGCx9jPhcU6qMTCkGmxJF7z0Egcp0mjxSY2FICqqqom06BuvoB+g2azbLK/qQgVTMZ5KIY103dOsGsMgq4NqezWbDdJqw5POqYj6ZkKucSVninUUpxfnFFXXdsTObI6Sk9z3SKFTI6a0nBEO/dmxcYH8+Q0Sol2vabmBjI2RZKvSEQN91BBcwQjMpK5q2QeKRbmCqcopJQZZn+DjaKkRLRcZRueBeUaJ7WFQziqqkDZ4YHLnOmJaC5fIG5JS2t1x1LbmWzKuSWVlxPVxz2a5QtuVHD3/Aw/ce87PPv+T69BS7apERZotJ8q+PkbkpYR4I2kB0SOEZOocSivlsRnSBoWmYZDnLTc/1pkabQFEpjso5ExExIqcwGVfNJjWxXc7x3gFqtaa2kaOjE+plR5Sepy+/JRKQ2YTvvfc9KqV4+vQFQUaOdg/wjWB9tQI2DP2Cpu7xqyXBCazP2CsqNjdXWAFVaeiDYzatyKqS+WTCcnPD6eUVRhvskIQC7eaGYe2xg2cv9Owv9njn8BHvPrmPHSLhaIKalFy3LeV8yuG9Q86+ec1kOuHD3/ldlINXXz5l7+EJzvf87Mc/ZugCm2FgPt/h6GiH9WZFNZnx/d/6mDIvuHh6yvNvX/Ht05dUM0NV5RydHPLq5ZqbzZKeSFHMKOol62bJ8qalqmbMqh0uNy3NusMVJbsHB5zs/B+4ev6MT//4z/BhYFYueHl9RR0E2VIwDB1zU3J8/JjV8C1fffE5a9uOwpOO+bSiqy3NdcvJwQ7zx49pa8/1xZqn311yVbfEoSPYjvlighWK85trSpMTEZydX/Hg0T32Tw7ooqEZetYXp2RaYnTF4dEBVy+/5fybb9k/OURVOflil5dnZ1gR2DucsHz2iqOjx7z37iOePXvGpz/9MZuzS44rSYHl1bPnGJGjnGXhLBM8J0+OaYInNBJMzr33P+DLP/2UTz//lp/89Eu8HXj3yQPKPPLgnUN09g7evccnP/4Llp9/RbtZ8+Cdx9y/v+DR/Ye8fH3Gg/ceoJWgvpF888dfIPUMJQSNt2zOLzh5eAAIrk5fsjOb0SxXBLthdXGOtxYC6ChBpSlOCeAUUz3nN7/3Ae8/fkxzfc1f/slfMs2nCC05PNnl1fkVzbqhyAxWGvLpgu99/JBH7ZrnX39G5iWnrze0w8DJbkGMA229QQcQ2Yzr9Ut+9vkXfHt6OipOGIVKo6AiU8ymht0dzeXNBTc3DcXsgB99/B5DuyH0PWvfYia7rK4b2uaaRSY4ffaKIUS+9+Fjur7mcrMhestsVrE+X3F2VfNqvaa3Dr9csW4HDg/2uL5ZsW467p88QPRr2puak/tzOnfAxlq+ePodhZnx+vyKebXmZH+KLkuyPMNkkqvnG1ZNzcGDA5xfsr6Z0F2tyKTi4vKc8+sN4Pidf/ID7j94wLrpWL0+42K5Yqg7mnrDq+UVFzcrRC7xGWQ659XZa/CaTGqqnQpdSFRQ/OiHP+Sj73+fJ0/uUd9Y/uLPP+flq0ukkLx//x6llFxGx/1il3XdsWo3VIsCSSDa1AxXuUYajSHZEPV1j5MCjUxrvU2FZGe3dkWp2arGdbLb1KlRvWmp+w1tOzB0DiclRigG7wjR413EA5lR5KVhMZ+ikFxerHAukGXZaMOVLFYXO3O0almvamL06X9E1CgEiEmhhAiC6O+EC0Pf0wpGIXa8LYjfCrFH4cNWJJFEEampIACFRCFxQ8pzOqlS4dpAXuYQMrrGozQURhEy6J3HeUcIjnrdkBlJUWmi3FqVjcLwkGymhj7Sdy6dpxCTja1Ir1uQbPU8yWJC6tSw0SZNfjM2I5y1aYpaSZRO9BGt5WhfBEpoQkgUTefSxHiWZcxmJUWh8UiufMN63SBG2zJtJEVhQEYyo1FKj5YNEGT6+z54tFYolayjBILokzVaEkcYpFEIJW5zViEFSiZRtnc+kXRkyoti5FawlETsYsxHJTKGNHGsJHqcto8xEW2MTnYTt+KnrVrltonDtnM0ClPErY1UFDD6nQExWfFEKHKNoKDvLI3rGAfACS7Su9Tkdy5N+EutkiBOpGOSY6Pj73OIcfJ8KwYK47nMdLLfCUOyAtl+Frafja1JYvrsiF8QgG2/v+vfjaVIKYHwBl0gPUPKf8f3eNw/hFsbDvELjSUxio2IYxOP9G8lBVKm8x9FImexncgfSQep4Tlao93am4w2kUpuHz7ui0bykFLIUZQnVRJB+K2ASW6bfoIoIzY4eutpaXmx84LJ6YepOTjSi4pqShObdGxxS3aSd41GBCKMAyBSIqQiCoEnIn26v3kgajla3qQmnRgblEGMgkLSxL1zaa+hzR3pznkQQ58s0KICKciy9M4OtscNFkFAaIV3jt4OZLkCL8iMIc8y1EjpSJY8gqZtGQZHkeeoKJLQaHw/XIjEoHB9YAiRKs8gpntyeVPi7wtQGiFH2oH34ANSKDKTLO2SzYknExqdp8ZuiFuSbcAQmOiSmco4fn3Ih5cfYnSGHW0njdJkRtB1LYgM5wOtsygpyI0hM5q272hcjwiOo8UB+kHG6qZmvVklkWcO5VARrMeHSK405DlRKiCRgL1LIqA8y9N90brUVB883TCk+5YRTHSOIdGAjVI0dkiNkCiYVhV13zNtd1jkC7qyBwLLzQ1RRKQy7O/uY6Tk5mYFAiZFRXCCvh2AAe9yrPXEPpFlQlCUKmPoWgISYyQuBrLcoKJJYpKho278LfVCCHDDgO8TIW8SCn7t9a/x/uQ9dhaLtHZNDDLTdM5icsNkWlFfbzBZxv69B4gAm+sbyvmUED1nL1/ifRKS5XnBZJozDAPG5Bze28doTbOsWd2sWS7XmExhjGIynbBZ97TDgNtEtM4xQ09ve/rOok1Obgpa67C9JWhNUVVMH75Du1py8eI1MToyU7BuW4YoUL3Ae0cuNdPJgt4vub68pA9pjxyiI88Mznps65hWBfnOAmcDXeO5WTa0gyV6B96R5SVBSJq2RSudBItNy3wxxU0rXJRY7+nbTaKiKUM1qWjXNzTXN5TTSdqD5wXrpiEQKCcZ3XLNZLLD3u6c5XLFxdlLhrplYgRaBDbLFVIoZAgUwWMITHcXiUbqBEiFUJLZYpfz8yvOL5YQkxD7wXxCnkvK/QOIgc1qyal7Tdu2VNOCcn+XalohgsBJQVWWaAX16yti9GQmw8VA0w+IrCfLM5q6QUWPDIGurembgLcqiS5HVWoQ8VaAmOvA7myX44N9TJScnZ7RNkMSORQZWE/bNGgpiFIiVc5kPmV+aFhdX2K7jhgFy6ZjNiuRuWJwNllFRs3gSi4vzzlfrnDOvlELj7fiFKOT3S7R0vSvOb+8YLEzAW8hBK7rnqwsGYaAdRYZBnzf07aW6WKCFpG27xi8I5eJsLOsB67XPX24pCDStj15VWKdpbeOPK8wKtLXK0yes9idsqlbVvWGTBcMNrLerDg53EVKUHlGISLKe4a+R5YKIR3OdjQbgfMRGQNXqzUxRuazinv3TrA+YNuOpmkYrMf3A43t2DQtUQiCjJhc09UdfojgwVQFykiEh53FnMPje+wf7PCOfI9HP7vh6elTXIhcPTjD7afhNqEyrFZ0dkAYidaSvndpjdcCJXV6/0dBjk9vAYKRbDiKcsYlP63JW5HIuI4JAU3d0vc25Zch2emGEMd64d3vq5FQVOYZbdNjbUCN+XIc5wyzLEMg3xCZJwFbIuuMucNWwTwOTiaaT8RZS5B3JKLt4MNdzjMau21zoTEh2lqoyXHQNA1mJtF2CAGTG0yW4WxAilTb1FLhw5Ykn0RLfWfJC5NykDEXSvMKozAmRFyIaUDCp3xbqu0+R4xCnjDmQwIp413ONAqEQwh4QsrNxEgYHQVFt+9dBEQiL8WQ/k6WaTIjUSLZUw9DTwz2VgyutUpWbVIkmtOdRghIwjMhQOrRQpl0LpPtHOOxjMchtrKlbR66FS6NQwqM1CKRiNJ+pL1ua9/j25Ze2+1gxZhbinBbJ7+14rvdLIz/2Iqb3vj/26EXkYRgWxpUGN9/bTRCJApV+lkSnnmf7A/9aAUnlRrz3JTrSN6KlP6xRT2p+dn3f8a//N/+5T9oQUcQd0I/EcWv/LXce3UP5RX+VyAI2Foqfvzpx/zuH//uf/WxRiJRRC4OLhiy4Rd+tne1R9EV6e/9DZyPN+Pk9ISiK9iYzd/Y3/jrhHKK3/83v8+jZ4/+rg/lbfwDitvc6j8RQkSm07+56zsESduWf43fiOzuXo81rrfxZsgo+eHPfsiHX3xIW7Z89f5X/ORHP+G7d75LNPy38Tbext+r+KVFStuI4wY47ZckbmzAZMYgYkeIEetBibQhCz7Rl4LwCBnwxDRhr9Nmqes6pEjNPhfDbTMihlT0VkoRvEMi0UaT55qqKnDeYbd0Au5mSJRKm1Cl5Sh+2m4MFd4BIVkTKKnp+4E8lyQ7EIUQYZxWTsh0EdP0biDS945h2Da+RrpAVLfIXjluir0POOvI8owsz3HR07uWwUWGIPEuoHUGJHrTznTOZDrFx4gfLAJJniuuXl+yWq5Qu1MUaUMdfcABVoxFLm9RUqF1sjHoe0frLNoHtFTJa36cjon4W6sCH5IYSWWSthkIPln1SQRtZxNxCoEuIyJURO+RPmIKjSkMS9vyenOFa1rqoePVeomzjvm0oioLvA/kmaG3lq4Zkl2K6/FtQ90PeAeFyTFCA5FcG7TUWNVTVRVN01L4KVWRI3NNJg27fo67WSbrAg19bdF5Tu9aXPBEBD5qLIlwlReGnVnFopzikDgZyPOSaTFjJy8Q/cDRYpfpwT7WDZT9QHe9ROUZ6xuPtZb9mWBW5sjC0I3N7jjazoTMMIhIVU0Y1hukbRgIvL44w4hAJiJVsSA3miAUL8/PKTLF4e4OOtN0EdzQ4ZVCCUV0lr7tEUEwBIvrHfd3dwheErs2FZ6tJ0hFlWlElnF2tkQpyf1qwnT/gGFwLDcdQhqmswnz2ZzWOeS70DjP5cU1lTHEueSjww+4uH7BVVdzsr/Adj3n9QZklYR8mUrNGymRg2Fa5JT5FOkD63qNQLHZtPQuYkKkWS9ps8DOPKdzOY/f+ZCP3v+Q5nxNX98wrzKiElineefoPp99/ZRPX77kgx/+iErtIrzl5J0ndJue9fUFmBnH79zjcaaYL+ZslivKLFCWc5pLS76ryZVhb1HxQkXqVcPBb/w6obnhOpzx+J0HHD+8Rz0ElmcX3Hv0mAcPBp5/85xm2XCzXIGSfLQ/5513T1i9POP1y8D1csnu7i4+L8mKkvXyBtsWHB2c0NUNn376nLPVmuXgeP31V/zz3/09dnYN3eqGtmnwDbx6fc7NRc355ZqDox3q0DPd2SMPniKv6PqWvdkCw8CX377kybvvsjCKTCvyfM7ls9d06w2liLRtw3J9Q9vV7O3k7D4+QggDfUeoe1j2lIsZm41gaAKXp+eYTLLsBn70u7/F5uVLWF3y8ulzpKrYO1hwcH8PIyNHxw/obhqG62uef/2Ko6N/wf3H79A+2SXfz/j2+Q1dq7DWc3NlWa8t81nGiy+f8dM//4LLumZnb8p8NkOJQNd2rFzgB/u7FDpnzpT/7vc0P//qE16fveK9D36Nth04OrjHN9+dMT884N2TfS4uVoQyJyszTExCy1RYFSMdQxCFZjrfoTSS89cXIAWttewf5ZTzOVrlbDYt3128JC9KTg6PsauOV599hSoroMKGjiAt9aZlGUDqiKSnKEv6EFj3DavNNd71MN5TApFMS6aTgvm0YlrmDG3NxtXMdvaIqkNnEaNKXlzdYBAsjKXMFFU+47BUmCc7vL7e0CnNyf2HvPjqW0LUhAFevXrB9OAB71RzdmcZ315e8vz1C3os35icRTVHC8gVrJuWiZC8c7zH5WYDWUmZVVxfvWJvUsFQc/joAdP5Ll/+9OecX3eobM7pWUelJIePjih8w7OnL3nx8jUHkxkmy+kam6aW7x1xETX3H9yj2TT85KefYs8C07xE2sD56TllrsGLZIETO25qKPOMndkEe3VBd71i9hu/RXPxiuffveD85goXHVfnpyyyHLxHi8C0KBBKoJTF9g5jMno8CpAuUG9qkOnaM2XBbFYyDJa1D1jnQAg8STjcd4mcIaVgMZ9hMp2aCr7DFBrrLUPXMoTUQBCkwq/SgtmiYnd3TlnmrK9rmk1P8AJnb1hdrxFCJ8sD14+WNhZQOJt6/VJohE6F3jiSSdIUsviF4nGIMU0Ci/HnnlvhQhIL3BWdt8IIpRUqgnOWMNq7eevwAaq8wPVuHHhVCC1xQ4/3kegD0QViTKa0m7XFDhGdpwaMdwrbJRuzLJM4GxgGlwrWPjJ0Hq2SYFvJNK2PUQRcEgcoSTWt0EJT36yx3cAQLEppykJhMoVUEm2SQAIhcINLk7sj8UfrlJ+ICEPnwEqik6OAakhCDC1uGxtSaOzgUUqSaYllbGqrCHIkGkmNlBoZJXZweOsxJpE/ghyL9zKxjaRMtlBSKrRWxJjWfKVSg0OSqDLWOrwb30k5HneWJbG4dVhrb4UndwTQ0cphFKfcCV22YhWBIFkWZ3lGnudok4Ty3vtkweIjQYA2GmuT8EUrQ4yWbqSKydGSWCrI8wxySd8NqSH695zzLN78Ztvd29KnYrKeSP55ER9SkySdy0SM8WKb90eEStaCqVG3JWBtxTeRrehHiq2tShjtSeRoSZhELyGEX6hGpV6PHEVBd8cWx8bVdnJebe09SNZ96TcT3W0rRRQi2Y+okeTltg0h7iw55BuNRiGSlUgMkSBCogcphSTigk1kJE+yT1SKRC8IlFnB8v4Sf+6RXoBPFLR209D3HbLIEYAmkSJSa3Rs3I/nSI4NNj/aQMmRQJLOcWoIbhvtQqUmaiLICqzzYzMuvWbnRnKUFEmHFw1b+prSSdDYecdmaOlp2aiG9WzF1fwKO7HkKmP/fJ9FN8dc7eNGYWAMnugsg/PEkKzHx6sEJRXSSIL3GKMZrEPHjExrpE62dQd2n1k/ZTOpE5XKpqazG61bIoIYJWEUrmmtKDJDYTICAjNkHJ2dMDUF73THFLXG3hjKYoYPDu3AdT1CO4YujEQgQaYVaJXu4yKdhxgizkTOjl9z/tunDLs9F+sLNl1P03YoEZh2JQUTtJLM1guyZwW79YIdNUNqcBF8SMRJKSRxtCMVUaR9tQ/MyyINDHkLQmF9upK1kiAVdd0hhGBmMg52FrSqox8ckOgUeZ5jQ0TsgPWBpu3G3xUcVLs07ZrWDUzLAu89TTNghEkiu3FwKAiBcJLMaIzKIESGoQchE4kuggqRYeiwKlIZw8Ov3uH7qx9x+HAf2wz0Q0duRhFdECzmcy5ullxs1uy5I4wsIXqm813c4OjbGlTGdDFLRK4iY+h7tAwYk2PbgCqSVVxZGFYrGHrL4fExwXW0sWZnMWM6nzH4SF83zBYLZnPP+nqF7Sxd14OE/TJnsTujX9ds1klAUhYlURmUdtB1eKeZlFOctZxfrGj6ns4HNtfXPLz/kEkpcX2PtY5oYb1u6BtL3fZUkwIbPVlRomK4tQ40eY6KnqubNTu7u+RSooVAZYp2tcENA4Zk39Q1Hc5ZykJRLCYJk+Es0XroHDrPGAaBt5G2rlkqQec8Rw/uM6xWiL5lfbNCSENZ5lSzEiUik+kc11p817K63jCpHrFzuKAT4OOEVWNpmh4lFF1j0SajKCND13H2/IyrZY3UgpnRFCbDSMV13TDb22E6mxKGwMOTR1xvbnh9esr+wSHlZMp0MqEfAi4OHBzt43qLj5pi0lJkgbaL+HEdSMIAwaRqmMwcVZHT1y1eZ/TeI5SgmJck/HSk7VsG75hOJpTaUF+v0FkGUROiABEI0dE2PUYKEDaJuGVE5Rta2+HdcDuEN+qT0Wb8TGUaKQL9sOb+o2dkpSDEgSLPGNqeprdIU6ClRBhFIXPKqqTpPQ6ByAt0hK5ukUJTr2simvlsQZFJrG2p+5Z6aOntgIwwn82RmcHagI09ZZ4hCQwhWUqvlgPCaGR0aFMyn89pVmvOzy5BZgzWsxwce7sL8qKg32w4v14iI5TGIKIk2MDubE4nDWWeE4Hl9YrVeZNspYChHbD9MK6PGpRncAMhRGaTEh0D/WpFdnIv1etuThkuLEftMcev9vj8Nz6h29sAEaMkgQwhA9E7lJL4GHAxkaqG3qYaUYhEkWwaiTDEATeue2GsZW7FGiH4lJsplcjszif7TeGJQ2CwSeCjxN1Kn2jaGXlhiIFEW7dhrAuub/OAZC0sCCHZ1YbkUDqKfOW4LjBmOKOi+Q1BTRxFKnIcbNg+lvEqF28c060YZhTLxDHX2dI+wyhqJ4K3IzFfKiJhzGu5tT9jpLMKPFIlQX8MibjnfRIVEeM4iJD+cPDbfC0iRBz1+Gnd2OYgWiuMNrjBYfthzMUSSVCNhEQpGX9nHBy6dbpLwx9KJZq+9zHtp6Ighi29MuX/yW5OjQK1dB61TnlN8OOs6qjvSvmiSteGTxbS6RyqMWWNt6p4uRWyhzsKpvdpn7q1hQOP9+7Wdm5MedP6uBXIj7S09B6/KU4a3/fb/7CNN/JVsT1f6vZcRNJgynYIIA0vSBD+VgDlfXIDuH0dYktzkiOlyv/CIMDb+EcSAj79+FP++b/752j/124V/Z1FJNJUDevpmqePn/LNu9+wXCyRQfLxpx9zfHbMB19+gIy/GtHdyesT9q72OD86/685WBarBR9+8SHSS9775j3myzn7V/vkw3+d1ZuXnp/+4Kf8+Hd+zOvj1/8R5Wn3evfWRu7hi4d8+MWHPHz+kLIt/0GL0f5LoZziv/+D/57f+8Pf+5W992/jH0dMpxvKsqVtq//oZwcHF+zvX/6N/W2tHbu719T19Jd6fJYN/N7v/TuU+iUojP9IIx9y8iHnt/70t/j1n/w6//P//X/myw++/Ls+rLfxNt7GfxC/dOYZI8nWZLSv2Fow+KgYrE90Iq0ZwtjI2u6MJYSYNr6SiIyM0xp3m6A4+jbc2mqMiFvvwQmPJKJVhpKGruvp+/4XNtdqnEBPkyGB4BzWgRQGokeptIF10RJ8QkJ7FTBZmqAfhoTu1zpZvAUkWZ4lSoAbCQkIjNIomRpJWiqUlARSccGHgHPudrLbG48PDo/DBYtB4iNY55EykOcFWur0HDG1ChSCKCLLZs3QOwKBoe/Q2tCNuPDUQNMELTEqNRhTsXYgRI3znmFwzCYG8MkORUg8aYNttKKqSlabmtBYBBqTlYCkbnqUtEiZHjOdlGwuLxE+kmlFcF1CzXvLvMjYtDWXQ08TPFVmKDKNd4HFYgESLi+u0FLiN5Hj/QXd4LjpOsq8YDN0WGuZGc3O7j4IQUeaqGz6AS0V+4spHz5+zOnFGUInHPHzV6/onCVqibOWelNjB4/WJhG2sgI7DDigsYGuW7O3v8ekzJBRk6mCfHeHb54957KuiUWWSE9RQGYgM2QoUIKoJJ0PnF1csVmuefLwIbuHe9RDR+Msru158fQZIRe0w4adecHpWc3Fcs3+dIbOJwwMBNfThTXeFsxtBOkJImLx3DQ1WImWgZ1pSZkHTDHl6fMznj09pchK9uc5OzPN8b1jvnp5SfQDOktTEMtly72Hx6jFLg8/2uHmz/6CZuh5evaKR9rjh8huafjg4QHL60uGJhX/RWioL24YREF+MMHJQNN3KCPQxQwwMPQUuuDdx+8QfWDT9Dx78YJ111NlJZISb3vc0NP2muPdHd5/9wkPT4453DmhUAq1mFP3NWWRI5zjpqm5ev2a490jlu96LpY1f/SHf8TDgxmznYqf/sUn7FZzfvN3fouzyysWmWBxsMvNasPh4ZSu7fj6z79AVpLWDzz78uf0w8D+8RO6XnB+3REnO+wfnrAz26NynuXLV1xf1Qy2w2nJyf0dpMr57sU5T798ylREGCyP3n2Csz2r657JfJc2RuKqoQmKpesg3PDZJ58gTM6j4wNMucf5dy+wm5x7iyk29uzMjsizOU47dG4Zbs44zBbsHhzRD2uMKai7yB/9yZ/x+N4hqsiQlaSroZpP2dQNk1nO2cuXOFMQVCqezuf7HB3vsLuzTz1Iqrzn6etLXt5c8SDP+fGf/ZT9qWLYLBmaK2Ix5cHx++x+72O+/unPOf3iS7J4xcmjE3aPT9DtwItvnvHiYkm5U3H0+Jhca5qbNe89esLusiWXZ1yev0bgWa03hJXlprvmvKm5//Fj7kWJ8o6mrqnrgTxTRBvZnC6pleTZZ5/y8Q/e5f3f/D/x9OtTYqjYNGsyGdk73KOoHKt6xf5sn7Prl7z33rv8xU8/p73Y4NhO/yWUvs4MO4c7HO7t8urbUy5vBtBTXID9xQTX9IQQaAdQZY6InlcvnrPpPbPDY+rNDZnrWK2uMVWBkC5R+YyhKDWFVBzt7rO/d0htPT7akZ6UUeWGwmhkDGw2LcLk7Ozu8eT+CceTKRfnFzx85zEn9wOXyys21xc4lfP4ow94dLzDzv6C7ItvefHyCr23y4/e/4CL5Q1a9BjjKIueg8UxNgyoPGeyO6eaLRC9QykwWaDtW27qlut6YHl6TjUzPHr8iExbhFY8e3nJ1WqFqGbMrm54eXFJmOT87m99SJ4bTs+X7BwfslvlPPv2guBhsDWbAX7+b1/y5WfP2Nnf4f6DY77/4YdcXTzlfLVhVk7x3nFer/nm7JzdacFiZ8GkypHR4F2kNHkSF64tr27+kK+eLbHLDd98/nNWl2eYUrJpOzbXS/oYyKf/f/b+81m2LD3vA3/LbZf2uOtd+a723QABNAlRIYKkoA8zQ01MjELz/yliNBGShsEPojjkMChQAiCgYdqWv1V17bHpt1tuPqyd5xYgkGoQDXQPUSuiu+6952Tmzp2ZO9/1vr/neTKiT41Qbx191+OFJEgwEbIiw8ukVp6XM2bjMUeHh6xWG86zKy4XV9D3uODwQeBcctzK84ym7VivN6l+iBGUoCgLohBYl+IcovdIGZkdTjk8nJAZQ7CC9aoZ6glFcIH1tk5DBSHIchLo610aOrgBnlCRIkuRH21jhwF+IA7v2/1wIEJyGlEgfMQGOyhUBwXsF3pDyV0lwTDRuwSpDM5G3nsEEHrH4mxBjBIvJJUyOB9pdn2KBSE1vBEp5sn2nsxJijzH9p5m2xGCI5YZvXV4m2ACBgco26fH9CJgVHpsHfaDjhTJ1nU9bWeT80+IKZpptB8qRJzrCFEQgqBr3fXARgpJkRX43rFa7hDTCdEHrEvHqzN5HT/QNN2g7E2fR5Np8rwcXIx8ctiUMinTpSS4iOt8UncL6PpUK4phOJ0ZkxTUNtBbS+8sQhQURZ5cM62ndy7VcoMy2/UR55KDk5IpZo19JMa+zJUK6+yrqIg/t4SIKYZ3OMeDKSlxiIeQ2mCMwZicvBCDk6dMooDBLcyKjr4NRBHJMk2e5wlGEgKhJVqmOKi+l18YXP1yrsT3xOvzIAakJ8QE20iVgJ6kYE+q0OEXryMoEqUkhhi+oXbfWxSxj2J7FUnihRiikdPrJYXEO3ftiBXZxwGJ62NM0GEYTA7SIG+v6t/HZiS3gDSwE2JwKiXFde3vSymVHBH2ETNwHQEXQrgGnYDroaAXqWYnQJSDyn6ICYsxvcY+RkQYHAIGoG9X7dhWO6abaaqrbT/EoSSHIyklzjsgDsO1NDCUIkW5KCGIwRNIg7O96CCBSRCVSI5kg7OUNOlaEAmImKK9I8mJbB/NZ4whyzW2biCmGMkQPK5P125VRH781g84VVc4CZmSFLmhiTXtUcvL+JLND+5y9/Q2oY+MqgLrA61zGKXpvcX7QKZkgkIQOCJd1w17LoHOMw5nc3bNDjrBnfYmP83ex0U/7KECfWeTG6+Qw7AvXXM9YAOMTkveWr7GyfaIoi2piorpvGK5WtO1LVJ0ZEYnjE1JUBIZJVGkx3AhsqtrbNczn0wpRiUbveP9Rx9wOn/JUZzDGqzryXPNZtdTdx3OOMrSgYqcj85pJz1lP+JBe49bi5tkTYHeGVprwQukiBSZwRCQOmO13rFabdHKUOaaIpOMJiMW6yZdR5NehLazjGdjpv0dpseSs5cvscGz3G2ZyhQVWmjJ4ayia2u8dQQBIlr6psWj0SOTvg+8S4NsnSUQxqfXaj6fQ4z0vU+x085jlERikvjIe5yTjIuCN+Lr/Er7LcbjSQI18hzr+yRy8oHWWprtlnExop1H6s7y9MlTZlVOVhrOXp5RZDm37txhV9cUWpBXJW1nqUYaZz2Ll5cII7HBs746x3tPOZ5jPdSNg6ygHE3I8xLjI90mOTTuobDxtEAIxXKzY3W1IhcQfWA6nxOCp28cJi+Sw1BnsUHQBoeILZfn56A001GFMgW71RrfayZ5lhyV8hFa5zQqILXGtzsqlVNWY5zvkEpjJTx79pLZpEqugUbg+xTf56zFZJrdZk1QZnBkgTwvGY0KiqLCBoHRmuW2YdM2TJTi+YtTqkzi+w7ft0RtmI4PKY+PWZxesLu6QtIwnt6hGI2QzrNZrFjXHaYwjOYjlJT0TUdZlGipMboll1u86+lsR9kVuLZnWzeoUcHJqEzuJSGBum2b3ANd3dObntVigZGRR2/c4eB4iusFnU0uhjFKVD7Fk/oXMioOZg0nJzmrTZ8+4zFBEgl+iBSVYjwZg7WsFmtsH1Fao1Vyi2ubFhfARYnShnq7obceaXKQMsU22g5iQMrkgpOcWgS5ERzPe8ajMZu6xQV77XCoVXIxkwKCc+i85/W3Trl9O3AwmuDaHq8M1XiEDS6JmQJkkwnTgynjKqfqLRfnC7z3HE6m5DonYsH32NAzqcYoKXFeoTOD0OlaFl3aUyA8re3Ba1bLLcH1TOYTtPRIJagbx9nlChsFUUjabUPjHYfHE4oi1dkqKzg8PsT1nhBWiOiwAdaXWxaLDeNRRTkqOTo8wAjFpmkRQlFqRRss67YjRk9V5mS5xAzuQLlK9up107NrLtn96D0yVbBaXLBdr0BFCIGjD495+u4zQp4A2KE4wLuQgCORgGapJDHXCSL2gtLkFEWOQLCrG3ZNPcS2DTDHIGxEJGCptem7MvVA4+DQrlMdeA1ZR0ymGE1KlE6Qe9v1g7N7+l62nSVGP4ArA0hDSLCx37Mn6XhTbRKGGnP43+AKud9P7F2XhABPqlGuge/9Eq/AvD0M48LebXMokIb/2bbD0hOiQJkEllo7wNsMtQtxgJwiSguMSZFx1nq89USThr9uiLXd1zPBx2uhQIRXDknXzynVGs75IQ46gYUhRIRJgFIkJAEGIjnC+nDt4qS1RiDouz49rhI4N0SsyeSABMNx+FTb78+UUtm++kyAEWJwV5XXxx7jPsov4kMa+kulUGaIoAO8dTjvU72TGYw06TX08TpKTqkkng1+AMj2tx1iomPk2pVp38/eV8xfQM6uAScGsP2LENHeOUlJlaIK1QC/DzV0HCAkQQLvrvvoSg1R3+I68UDLV06Tf2aT+uX6W7HOT845Pznn9svbv+hD+ZlXW7T8N/+P/+aVi9AX3rbP7j0j6zN++5//Nt/54+/8XKCcsi157dPXOD8552e+uwgPPn/Ad/7kO7z+yetM19Ofy7GsJ2v+5T/8l/z4qz/+dzo7XR1dXf/5xZ0X/NF3/ojpesrrj1/n3Z++y8HVAfPVHBX+6k7MxhruPL/DB+988Fe+r7/SivDmR2/yG7/3G6j4y+0w/eX65VsHB0smk81fCCkZY9H6ry/OMMssN2+e8vTp/5H7V2Q+X/Kbv/m/cPv2i7+24/mPaQkE2mm+97vf49OHn/5SxVJ+ub5cX66/DKQkkkPR9YZZpg27HZoJI2GuN3V7G9+k9o7XA4m035YInxrIIXSkfn5MkQn7hj/p4hG+qH6O0LYNkaTqkFJfNxSkGgYXg7peKol1noC/ViaF/XAvBLrWkZeSvMzp2p68yJOtsfc463Eh4FyLGo7D+qSwLoqkFpYqKVCkSI/1RXUPpA2njIJYBqJKsQDJflphlCTXitwonPRs2g1CRibViOg8WW7QGmRQBCdRRlG3LWVVJtWqi0QX0Qhcb3EOhDJEPM4FCpMhVYECisLgWje8Tp5C5wkks44owGTZYPVrCTFQFFlS8jc1bb2FK0G322K0ZjKbEQ30Mbkv+N6Rz0vkbo0IAScd66ZO8XqbNW3f4bxjXI4oqxKUIspIWY2ZlAXz0Si5IQjN09Mrtruag9mEtnNcLTdUVcUtlfP556c0fUPjPZfLJV2fNh192yXlrUtxgl2f4mNwHdJ5bAsUGl0ZOtsgjaHSSc304sUZp5dLrpY1nQWjVygpMEpiREQMoN3KB7xKza3pfIyUgWa7ofc9p6srCp2zaDasm46u71CuJwecj4h8hDGSnW3QZUTmAiUyvBT00dL2nra1KJkGWnbb09mWSZWn97SR+Gipxjm1i+htRzg9o8gqdkvLle3wtuVoNsXZnvPPLzBCoNue6e1DivKQ5WXDarPl4d0jpMwxmaSYZDw7u2Kcl0wOj9lstjx5+oQOQWZybN2xC5HdeofverCK5lZkPp8xmkascpgQGJcFzbJB7Fq2iwV37tzi3s1bxE6zXXaodsGlW1K3G8hzWhsx0rJYXjKeVcwmc37t2ze5WrV89mLJ89MzDmcZu84jK8Pjx89ZL7cspeKBnjIpK5rtmnGZsWZHXkyoCs2zx45vf/urlNkxJ6VgdP8mq9oSnOPf/q//G9vFijyDX/9Pfp3Tq0sWqzW3795me77gyePHfPDTD7h6+oJHD+8yv3VIXe94frrGItmsLxA+cOf2HaIJbHZr7j96QOc9mapYXr3EE7GriqrKmc5nrF6e07xYEUyglB1XFw1dVnJ5+j5a97St5eTRHfRkii1GHB3NEELw4N3XGE8K7Kbms4+eok5u0LpA2+8wSlBVJU9fLlmcLji+dcJ4UrFpA7Ec0RO4c/8GOmx59ulz1Iun/IN//FuUpebJp885X+yY3JhyMJZcLK44Xa4Jbstu13BwPGV6eMCtk0O61Y6PfnLG0eyIF8+fkxUZH//wPZ6ePiM3JcK1fPfv/zrHdx4w76BuG57+5AfcOT7gym346fufIbWicDtuHN1iOj7hk59+yo0bM9aLNT/++HMyLbkaTZif3Of+0W3+2f/0b6g3PW++dYd3332D7//pXU6XVwS7S1EyeJTU3DmZk/mGq89OWWxbPn75nHFZYbsW6yNNFzF5xdsP7qJNDr7j89MrOiKfvHxBdBbR9ex2W7JJRaEEt+8ec+PkBjKmocZisUN4yawq0cU0RewQ6fuepu8RRGaTGQ8fPuTRw9uMhSJuA7OTKbbtWC4WeK9QyqCVxEjDbi159vIUVzuuLjecrTbMJhN0Bndu3+QdM2KxusD7DpzjOC8Y3bvHd3/tu5iu45PPPkFKy6Q0KD1jfnCD90NElVAUJVpK7hwf8qR5TjMM+7brK1y3hq7n/OWGr3/rG8yPbkDX8Qc//JC6sbzz1a8wPxizazse/+vf4azb8s23v0mWGZ6+fAFaMz6Y02wapO1RXctY55Rmwpvf/FUObxwTmxaWSwrp+PCDx3gpubh4ycefPoPQs9vtsLalbz1CRlRMLoCh6ZlUGaMi4/yy5Wq7wyPRSpDHgphLbhweJgeQuuXGyTGH0wNeu/+Qx0+eMipL2qZmXW+4Wm2JUYCQeOupXYsQ0FuLJ1CMi6RszjStdUSfBtdFmXN0fECRa1wPpxdLmja5C3gX6HYW2zuEhLwwGK1wPuID+OARKpCZ5HQjpaRtBkX4vsk7uHFIAW6AhqSS5IWGoT6y1g3N78FtZGhOJ+Wup6sHl8C4hziG+iskp4e+s0ilMWWWGtFCEn1ydDFGwaDqNZlGaYPvAzvb4ay/bp43oU/1jUiDIR8G1awIySkgRIie7XqXGtcRZBTUmx1t2ycwR4LRGq0GJ0kfUYBzgb5zOJfuZq+2FkCz6xJEJQVFVoCPA0CR6hKjNL212C65KmVFhjEaYmRXt0ByrTF6GGxbh+8Dtk9RfhAxJsPkKTbHecc+QksP4AEhDZObpsE5R6YMXZucvXwM5KUky9J59B68d3RtGoLsaz0hBJKADe46MiTCdbxcOn/p79qowckqDHVpAt6dc7S9I8syiqKgKAtMnqdIDueRymNMRMYM27SDW01P11m0lkitMHmGyNTgaCPpnYVf6ngG+WftqIc/70F+I1LkYPwzvw97O4G0p4A9WBdiJLjwSnW+Hx7GuL/rwX1gaAXH5CoCYRjiDS5Bw13CcLvhMxlCvHbKUlF8YXCXhqLKpAF1ckpNLrF7F9cQwfduiMxIbg4AWu1dmuS1I+weOou8cuGKQWCjI5oEayWwLV0zpBBoJdBS4CN0rgMR6XRyME2DJxAxOUhJJbDOXTsf4eM1U5fcpBJQF0kDQC0VQqTYR60TBLhX5WupriO6ECK5XwUxQFQRbVRyCXI2DYFb8H2PlJK8yEEIfAwIE3n/7fdojhrCxiOjJIiQnD+kHvYSnvXr72Gi4eHyPsOJw5jkkFRkhjRGlKy3Lb3tKYoc5wJN22OMZiwVq/UW610CYD85RLwrwCSXhDDEPcYAXiRnJbxD+Ihpcx4tX+PRi4fkUaONRMjktbjd7tg1LU1j8V6gJAPAlfwTBAFCpI0xXaOBvMgQMtKGmg9ef59PJp+jhaZ1HZ0dHKzqGg00ISK0QSpBHxzSRKKJdFnPs6MXvLj3HNFqykXFydUJh1cHmK3GB0dm1ABpigHyVNgQUb0nbmu0MvRdoG1SPGhZ5ETn6S4tGIu0nnxSonVJW1u6vmc2qZLDhJKYXHO1q8mUISsr+q5ntVrjRQLzvPXYmBxTgksx43YMRVEwyiNeelSEzGhsa6F39E3LZDrhxBzy5vtv4/A0fUMdW6zrEUoNbs2Bpq3JCkOeFdy9NaJtk5vsZrejzJNblIiK5WJD23W0SGYiJ9cG13dkWtGRPrNGCzbLwM0bJxhZMTKCbDam6xMQ++TJM7qmQyu49/Au27qm7TrGkzF93bJeLLk8v6LZbJjPphTjEmd71rsOLwR9VyNiZDKZgIp0tmM2n+FiQAlD22yJEeo2xQDmRUG32eE2LVFGNI6mtXhlaLYXSJkiCqv5BJHneJ1RVulzNTs5wGSa0Fu4WiOrMS4GrLfpO9Zo1tuWZtswmowwmaG3EUyGBybTESr2rFcbxGbNa2++jtGS1XJL3fZko5wyE9Rtw7btiKHH9payKsjLgnFV4jvL1dkF48mUerNFKkm32fH85XMQgtVkxlcm76KLgnlW4UJgfXWJdB6dZ7w4vcQ6j+0aYtNQVBPqesPyxQUBwfnlkrrrmJYFUubcunOTsxdXnJ5eUpU5N+8c8+i1gk+fdLiuRQyQBUTGlaLMJP1mSwiS5W5LiFCKBD/IvUvXZDSAM4pV09Faj93ukgNOCPiuJyiBUTuKImM6HWNUTkCQF0u8HZNpjREKqVNU6B5M1qbm4YNz3nxjy63bFVU+R/QRhURrlZx5XQSZruGJa9EsFh3WdngbWayXVKOSGBzT+YR5dsxus4LoCT5gIsyqEaPDGSezGZcXZ0QCSkrKIiOvxrRZznq7Ii9LCJFRWWK7nrZP/bPoHV3XoISj3jaUxTGz2QytFGcvLlgst0zGY0aTEqkU7YtTFsslR7eOGE8mtLZHRUlWFBjviNYjPWiZAJfR9IDDmzeSeKCzSCzNesumszjvePniaaofncU6Cy4JAUaLMarT9LrHKEGRZ1jraXuLCwEhFZlKYsos0+RZTm8tmTaMxyNynTMejbm4usLZnt5Zmq6j9+4aGLbWDa47Hh8DUkuM0hidHOIiKQ45CMjLIgkLYqDdWZq2S6+bStFqwSfAODnLKQRDnFZIbklSvXK6SVDxPup2cEXa1zHXtQxD/LJCCD9AO4PLIfxZqCkmwaWL7vq27O8XiCFg+yG2TKnUYxWvRAtCildRawPQQkxihr2wNESSaHKAzeUANO2Lqj2EFUlQkxCvgO3gPNb3164/exAcwO9j5Ia6x/vkqJlqo3hdJ+/rMSEc0ohr8Ed+4Xidc+lcRzmA3eJaXArJaTfVQh5rfaoph8cQUgyuq+lcxhjS9+DgQhWGwtQHT+xiggJDuIbNhIxoI1Fpe5gAcOevo6v3hauQDFDTF0yTBhgtvQ0EiHh9jvbQ/v4cOecQPuBVGIC6FJ88lL2EQIrYE5HgUvzvPpJ377YltQKVhLhaabwI1++VL9ffntVnPbvR7hd9GD/zstryz/5P/4znd57/O4GhPuv5H3/7fyTrM77+46//XB73V//wV/nBN35AW7b//l+MMF1P+e4ffZe/+7t/F2PNz829qM1b/vl//s/5yVd/8rPDUoDXnsXhgu8ffJ/vf/f7VHXFned3eOf9d3jro7eYrqf/wc5DMkiqvwDs+Jtek+2E3/6ffhsZfpl7Il+uX9YlROTGjTPOzm7+736W/bk4xb+OdefOc/7kTxz+L3S0S3DSr/zKH/Htb/8J4/H2S+fDv8QSCO49vcdoN2I1X/2iD+fL9eX6cn1h/cyQkjZJahkHBe1+U+dDwHlwXr0aookUoaZzhVLiOppNBIkQgw2z9Yg4xCYMjXfEcNNBsSFigpN88IiUj5Js45HJ7pdklRsHlXOeZ2QmuQkFeqJPmz1rI8bo9LtxGKL5gA4BrXOM0hA9EsgyjfCpsS7VEOcWAlVVcHJ8SNu1NG2X7IxDQMoUXyeEoOuHBoBMcFGWG0L0SFnQO4dSgVFRMRuPaG1H27V0zqE6TVlUTKocIaFQit51HEwrZK6JQlEVI/qupbM9EYnpPUVh0EJhdJachlqbzmkMKKkJzqcNuZQYYTDKpGFuSEMKZ7tUfMakiNr1LcurJcE5cmMYjUaUR4cIrSkqw2a3ZNt3dKFFEAgeqkyjkGydB5PRDY0eH4Z4OZHRmJbcGaKPzKczJgdTBBG/2bBYnKX3hO24Wjj6tifPCyblmKo0rBZLut5zdnWG7VqqzND0FiM0ne2T0sdEnHVUecVkPhnsxBVVnuPbHRKNVDltdJwuLyBInJMIbVh3DZkVZEKSSY0crL2Trjcw1lCOS6wLNH1P6xtwPVWeoZRms1sjc0m7rVlv1mRS00fP1WpJESwyE6xsjfOBeSnI844eS/TgmxRZN5lWnNctXR+pyvRcRlnGuJqRCUEbIp2TNKsAskWpnGxWEvqG/HDKwWyGXdd8+NMPuTy/QmhNmRXstkvISn7y+Cn4gHQ5q7Ml7brl1mvHBBlp+5Zm22Kygtl0xMuXl3i7RGsBwRAcLK86ZqOM8bzk6zdv8OmLZ4wVuGxEfnDCarmkqsYoH1lcLOlbgZtnrK4uyXJBkCV/7x/+OuVE8C/+6b/i1utvgYDbN+Yszlf85EfvI2PGONNM8gm9Mbz3yfvEqJiNjnioM+aTissLw0Xd0BYFbR04qsY8fPPr3LhxQug1R68d8cHv/W98+IMnFFKybTrINVIqzl48Z1JUzG7dpVtvCM2Gv/e9d9n08NrDR9yczRBKpeiJseDhO2+yOtNsFjXH05J1s8XnE0otsbbFRUU5mqCznEIfU84O+PzZp2zOr7hxdIfD2SEvnj/h+fkOlbdMSk/mQJKxbTt+4ztfxW+vkNpSKMM4Srafr6nynLcePeST+AFy3fD1b3yHGB2ff/Qxmc44OrqBrBRtH5gIQVSOKtcU2QipS0a/8oCrx5/gB4tx23d8dnbKozcfMZmP+f73f8y4nDOeZTx5+ZhHdyWnz1qImiIL9MLyyZPH5NqyqXvMrOC7t76NEJLPX75g/KcfUkzmTOdzHtw+IF/d4OL0lDt3DjFZRj4dMR/Bkx9+SFkdcvv+DRa15/0Pn9LalrKsGJ8cML93QD4pcRou7JYbvYWnp9y7fYvWWT74+D3qTQ3AW28+4v/2X/42N0+OKZjQPHnBgxsHEHpWF6d84gOucyzrDiF6jm7cpmstF+uOdbdDA9uuZr3bIL0n6zv6tuGzyytOJuc8uHuXo1tH7Lxn63tWzQ7jcqoyJ8YEPuR5RaY1t0+O+daD+xwfVLRC4kY5o3nFaDzj2bNzpge3UDJidEu3POO5X7COcO/GIa9xAzOdMzk8oVlfcDybkR3dRD9XXCzWuL7FxUC97fj0/U8Ru4Z13bGIDdvthjt3b6Emnrcf3uOyX3P75i3sasWF7zg8nFDNJ9S7DdpIbt8+JNqe6s5dHr7+NiYzPP3pB9y/fYs7dw/58PFjwkKRK8Pbj97CicDjnzxBKsPNm8cJDu4VJsuYlhlGR+6f5BipOBSBh7MRr33nu5w/OeOP/+gP0XnBrNScvrzAicBoXKFUoGsFrU3xIhAoCoPJM4yKWGdRec5YTGnrlr5zrF2Lki1u2zObTqAwrLYNOigKWfDo3n1moxEXF+dcbSqKvGK53rDebumsS+pcKVDC0Pc9rg3Uoh2CgFIzO8QUJ+GcY9MlcLDedehCp6FCntxospABDq2gbbsUFRETFJ1XOXmuUzO7tRA9UUSU0KmBjkgAkkzKVWSqc8Tg3pXnBtd72gG23UMPxHgdPRVDJAyQdZYVqbMdk9IjDu4qKY4tuZ/4sI9UgCg8ealTNJlQ2N7RNj1CDD8PabBgPfiQVMr7AZrQoAYgPZBU1i44MpOjo6ZtWpBAEBRZGtbkRYYUsGtrYoiMRjlFXmCUZ7NuB9V5UnJb64lhHysBq9UaGQXeJXcp1wc8fWrEizRs6NuOGAIq0xCTKrwoTHLtDAKJJooAMSTIIgqss+isoCwL+t4mNXWI9L7DdR7vPWZQYLve0Q9uNS6khr12QKYRMhJ8irHywzER4wCSBGRIERB7uEVpRZ5lSCVTLeoDQkayPMcYg+0szroUPTXEMmiTYbIco7MBZko1TN81NG2L63sI+xgqiC6mwbXRZHmOzswwdFEYrdB5NqiifzmXUMMncu+mNEgT9irwcN1MjEMTN4kDEku3H8a9cl+Nfj/k+YseLP2fGH4lEBFxCAD6ggPDMCIabjLELUpJiGGIlhaDg1YY3A4GmChExPUgSw2q/XDtXiBCGnqJYZhFTDFkVZWuQc6568g1SHsaRBJs7FXyKRpzgJmUuHarzYwhNwYfEoiXBuySy/kVN1fHyd1Dppq/yEwalJPgPj/AOgDKMzhAyBR1LcUQ1ZZGmVKkQVokvnJTkwOCE9PQOwQHQzNbKYl1jqZtwafBbKYMpixBSbRRdH1L7x1dbDitzumdJVNJ4d+HNJz3Mbkt7cGnj+9+wsFuzkGYQYAiz8nKFGEXup6u3aVjCp6maRJAphS5zsn03h0lUNc1Rch49PIBH999PLgcJfc7odK+0WhDnhecXJ7w5sdvMXEjQrCDi4HGxcC2rRMkFwRISecsSoASgiAUIhfXDmoqRowCnRl89FxWCx6/+THn1TkmKISUdH2H0ALX9/RdhxISHyNN26JjiqPqQvq+KIxAKY/H47VlN92yPLiiertEv8x4+Owht5tjQogYqchMjhqepwsC20YQKd5bF5roHbrM8Eeezc0rVssr6rpJr9dQGwulOV+u0+c2KNpti+s943lFFAnktL1DKU2eGba7hi7YNFAd9upt7ShMSVYYboxGLLcbMgFBGdTRCLfrubW+zf3H94hXim1mCYWmbWqUhigMD16/i84EH7/3mPHBEZC+05u65fzsAhEVmZJ4neGV4nxxAUgKUzKXiiI31LWkthanNd5CaTJmhzcYVRXRS8p5xeXTp1yerjFC0DsHKjkX7jYbMm0oxlN81xFtx/17J/Q+Mp/PGecFQkq8d4hMMD86pN1J+tZS5WnvanSGkYLgHR6BNvng3lVhipLVeklfN1TlhHJUUm/XbHY9QnlyE1ABhFD01nH/1gmhbxAioEXEILDrDq0Uh/MZCy4RbeTkxm3As7paoKSiLEfJeclHMgFRBIyWaJUhpeGomtMsr65dPIJ3LHc75odzsiLj+YtzMp2T54rVdsd8KthuLCDRKoKG1WYNoUfGiBeO2cGc2WjMelfz4tlLptM5aM10OkbPxuyuesBxfHKA9TCe5nTLNfVZzXg6JaC4Wm3Y7mp0JjFFhs5LsipDaJVifkXOZrvj4f2G1x894PNnkrquCT71Tb73G4Y333hAlVVsNg3TUYm1PcFZFpdLsizFR0uTXLg9gtZGVrsGObzPW2cJ1qK1Su4sO8FiUzOtxkxnE45uvOCtr7b8+KcTFosJmTAY4xmPr7h545Kjoy2zaeDW4SFHowq0pFeQZwlUbusOnVVkJkvgBZbdds2u6ylHI8bjgqw0jOdHtE3NqDAJnpGSpm1pmgYlBc57dustorXUuxYhNYt2k/plmWdSliAcZVmSR8F6tyXTElOM0VrS9x3lqCC3EnU4Y3J4RFGU9E1Dt224e/cml1fnNK1Fq8i0miCkot319NsrirIkyw3RpZ6eyRXGS/KjKUZFpFKMJcwOj8lUztOnT/E0FAW42iXHUqMxKvUH0/dWZDPe4gqHMWr4HKWa0mTJtdk7T+8TJKJ6AVm6HxsibdMhc0GRF9w4Pqbebmn2ruW6o+t6evcK6BFCQgDvwMlAEOm7McTkZqi1ThBp3xN8TPHJJLBXDi6LUqkUMyshRp/iNgegWmmJyXQSN4SYQJyhlt+7b14DRX+urBNKkilFDANs4l5FhgHXsHOq74fHGwDjOOwZiMM+RYAUgzh0gIpS+RWTu6VKtWmCjwf4RnDtxvRFUN9fH0JyM0rwc/p7iB4pUkyvtW5wdkzRt3vxpx5qCNs7hFHXdTHRY60b6r/UC96/9gC2d8Qhpiwm+yt88Nf7iRgCwQfcUKfs+9l7aCkJKWRyOts/G7F32IrXvxdjRMRUawQf8SEB70ql+GDvEuAWhz3dNWMvxPXrnF6fV5ancYjClWJvlRSv60ilVHIICwkil1KitU737/b7qXS7V85IKr3vhr75Pr7NWTu8Eq/qzhAjSg0OUUpdO4AhxTVQ/+X627c+ef0T3vz4zV/0YfxMy2nH5/c//z+EdGxm+Z///v/M3Wd3OVge/JUf9/jimF///V/nd/6T3yH8O2KWpJe88/47/ON/8Y+Zr+Y/NzjJS8+L2y/4l//wX/LZg8/+UoDSn1nD7epRzUdvfcTHb3xM3uXcf3Kf7/3e93j06aO/FKwUiZyfnPPBW78gF6WYnJze/vBtvve732O+/Pmd8y/X364lZeTv/b3/ladP77Fcznn1IYt89as/+bOCu7+G9Z3v/Anj8Y7f/d3f4PPPHyBEJM87Hjx4wle/+mMePfqMyWTz5Xf0f+A6vXn6/1cw7pfry/W3Zf3MkFKyJ06uNUkfyqDUifgYrwd4101/lTZQUkYCEukjDBsdP9jn7vPYESSVkpBIlTZdkhTPktIbZIKURECgEQwq1mHq4Ae1jnKOwihyo+mcTWrUoZkuxDDgIA4W/pFm2yWrXl0MsSFpkyeCQ+6HeaSok6ooyfIMFx1Z9Ndq9UxLlE6baSkh+GSvK3XafAfnkFqRZwXjSYlvBxV1pmjWPSIqhAdb1zitkFrhg0vxDiLStj1C5DS9wzpLIHlDm3JMUWV0jUWJdBujFc4GOu/IigwtFFmVBhrBRTwOiURpnZrwJJWNCxEbHN2uRiuNNIayyJBCop0nKoWPFhk9MgSiF0RkUpDJFIsW+x5JJMsz6q4hkNwabHAstmucT04B3bJjvVyw6VpkiGQqcjAeM61ypJRYKXFpFMf54pzVZouQJqmPlaEcZ4htzeViTQyCTGc413M4mzCrSkKfYvfKwuCJIHWCxgIUmcZFwa7tMVnB7fExLngmhcb7hrbzlKXh8HCK3XU0dU3rQcgMk1syrZkfzzg9O0V0nvPlguz4GN9v2G4u6NpAE6FpLa6LzEY5sQ98fnFBbgw6pAadyBXrbkPnPEJEzi8a6q5jXJYEqakmJSb3KCmxMb2ntciZHczJSkPUhtXynIf3H/LdX/01PvngQy7ff48gWsY3Rmg89WrDbrslj2vGJ3Mum5qrbY1rNgQp6W1HcI6mc9TekW8aVBA0nWVUZJRljs86jsYHuLbn+dMzRHaPafDcOTrk8uyKLJ9z994bvHXfMs5yTlcLFusaJQUHk4pJLnj+/AXF9IDbRwf84I9/n5Ojm7z+xuucX17w+OOnNJuG2kV22y1Pd1tu3r3Bnbv3Wa4WbFcrerdjsV5QZGOqTDKa3iAvXlJf7ZjnJdnNB3zwyUeMshnlyZx33voKoRa0qy1vHkyxytCstrw8OyN4h3KRW7eOWG53vP726xy0gW7bYQ4qhA64vsH3DTY4xvMDbt64R4yWUmiihfffe8mNgxNu3pyxWisaBNFZCuGoCoGYTlFZxmcvLnAx43z9hHIaKYuCSgqs2/HyyY5JnrE8v0QUI77y7Vu0XYeIls5p8kJiTM7Zi88o8orbd29SyZLX3rnN/OYhrbU8+eAT3rh9g1Yd4H2CBRbrMx7dvcudUrLbtPTuOaJZcnw4JouRixdXtH3LwTRyMp/zRGk+evwpJi9Z7WqiC9y8e8TtN19DBstysea/+D9/h0IKfvz+RxwFzfsffojWBd/6zteZzDWizLhsatwnG7QwvPXGA249vM32Yke33PLi7AU6U9y9ecDJ8RvklSKXkfE4xwjJO2++jdWf0fjIBPj2V17n3qN7fO0b7/Dpez8lKwru37+NdpC3gqA6rPeMywl3Ht3gD//tH/AH3/8hs6MZ56sthEB+tqMoR3gCfddjxmNGmaB1Dd5LrItEpelc4PlqycZ6RmdXLFcLMqOZT+Z0fUfbtiitkUqnAZ8U7FrHi/Mlm8UGMZlwNJXQd+TScPvRI+aTnPXpgtPlFs+STI9pvWRSlIy8Z/nsCYurDaMy49JGltstl1cXuLZjNlY8uHufum149uICJeFgPkfKwOV6weXVipeLNe88uocRiufPXrA5PWfnLF95600a2zIeV9x78yHGQ7trqY6PaBvP6emWzBQcZw1qfMj56JJnp+sE4kaJCJaXqwUhwmKzpfUB53rmM0MmoYowPTpgfDBnu+j4k9/5fd77o/fJS8Nme04IlqvTNXlVcn+mGGeK4Ep2bYNXAWxg22xY7TbkRlGpnOW2pnc9JpMQDSFGrA/Y6OnqHVtrMVmBVFvWoy3Pzy6ZT8YcHx0ymk5Zdz2SmulohJKCbdvS2j4NBILAB5XUw1aQFwaNpK37BNjI1OyV0mByQR4sbduwagN5WZJl2QApFLRNg/NgckM5SuppkxUYrdhtNtjeM/TAUVoOjkE+xYUVWYJRtKLI89QsD0mpn2clWhtWqw3BtdeDhQSAC6IUiJAgJC1T/O1eXZucHFMZ5r3HdoHeeYLwKC0oSkNRZnjnaXYtrgv44K731qn9vW94D4rdOKidY0xQ19BEl0pgCpXAVXRqwkePVirBRsGihUlQhRXsmp6+tZSlIs8zlEhwhw8hRTkMLlNigENs74cBSgLXg4MQA9qkGlJJifWOzjpyo8m0YjQqGI9LurZn55vB7QK0SSp1HxgcIyNZmYES2L7Hdg5nXYp1ipE4RAASQWYCFJhSolwa5EQvEgQv07BDXcMi6byHIIbaMv17nmcopa5jG5TWKUpLJncrKQ1SKfSg6M6yBDurASCPIj0eAna7hvVizW5XJ4heRmJ0KJG8t6SSZLkhyzMynUEUySXLp/gmk5v/sF3B38D6s00d8YU/DbHNe4Bp/+Nh8CJEGtrE4TOyv2kchj5pPxG5Ro4GNb5gcCyI149C0r6r4X7i8HkaHF8BEQJapkgzJ0MCoQQgEkjDAPIJkV5v2w9xz1IPg02uXcmGbc4ARsnkPKYlAYlCIkKC8ZRMQ80EHO7PVdqX+JQrnepZpckyk2JDRHovuM6nvVGEndokkEvKLxx3HGBBhfPJNS3BiSBNguO8TdemENPAMISAixElFFIIlNk7GOwRxuEch5gAJyWT60UIOGuRQiCNToM9BHI/zIweEQMiRuqiwUuf3AVE2odFnxzdlFTYOMTthMi62vDj+z/l3c/fYRzGuNbRtgl2EhGUiJRZBjpBP154Bs8rdm09OLGmGEUjFF85fYuyL3kyesbZ9BJkGjrO5IRpN+X2J3e4+eImmdJE6dhH6omYBtAxJnhFKs0kqwgxkukEbHkf0FqlWtqm646LsBs1PHn0mNXJAj3RZDsDXrNrG1RVEn2P7Rqci1hcGgb7tH+J3rPa1GnIHCVKCdCCzvfJPUTA2m/oZ471fEe9eMCbn79Joczwugb0ENdZlEVyTJCSrV+R38jx3wn81PyU1eUFEUc+ylAEXNfTdz2KjmyU03SWprcE1xGFTO8lH7AuYEMgOIuIyU3P6ARORuUps4LoPZt1jVBTshiYlAX1riVjxOvd27z28g5H9QE1LadqgRBQ5IZMVWy2G3RWMi5LTl8+papGHBzM2TUNi8UK2zmsB2t71n3PeDpiMpnRtg191+KCoukbtM7IlCDLx+huQ19bCl2hxjMuF1dkKsfsSo6OTohW4LqewyLHC4nrLNvdLsGKMTIeVbS95eBojnfge48szAC3OoK3+BjIipLRaJpcbkiuY5cXW6qiYjwuUjQhIgmoCBgNIs+RSrHa1oSo2HUNJk+iKyMEIVi26xW51rS7GrTh+NYY7xzEgA8SoQVSanbbFUobJpMRRmjmRxPKcYnzgdXlgsPJCCvK9D0qJW23Yz6dMDFH2N7iVxtwLVWZoWKk3jR471BZTlWWrKRgsVwhlabrk32iyRTTwwPKYsZ2s+XWwRFFptntatSopN20PH/xnMODI/JckRU559bibU/0gdFkwsnhMQuh2Lgr6maHjRolAndvHJOXGQKPyQ2CyGQ04ujoGOcDnXXcv5Pxj//hGc/OD3j8oWC3lZSjigf3P0NaCTK524goOTg8pNltefL5S2Sm8SHSrxNwZ/I+uZuEgJcyRenhcajkhoNEEums43KzobYpRvTgYMev/soLLi4mCNFRjnqKPMFjSml8kNSdRS+3CGOQ2lBlAeEj5WiMyhTCeVarGo+n6Tw+CCItpjSEruPq7Iwsz6m9J9Ky3e1w1iKio5pOmIwnXC5WbF1yeZhPRzTtDus8F1cLyjxnNCpodg2d9ay3W6YHM4wxxBiYHkzJ8xzfWoTRKJOz3bTEEBjnWQJNxmPOL9d0wQICjRxAH0/TW6IUOOvQRlz3qUqjqaYV3gqW55dcvrykqCr6vibgaOsOH2A0ysmNSs5VIaP3PUILLu69QJXp+yg3OW1nk3uOSLVWZHDeGf7rmgZtDUhJr3t2TYuWisl4hMlz+higsxilETmIIRZ1D+aqAfII3iP14CLofKo7UhoqQkikAm0Czjq61ibgQ+kE2QiN9+m9gZSYXKb6U8hBOJhcB2NITo57gGYP/ygtkSoB8Ubr69pHDHC8UpqOPjmoDRFlQxEx1Ezpu1AOLksDCsVg0ZP+NDgWBeQgSk0wj84G56E+9fb20HJM5RN7l6RUY6XaYCjDrgHxa8h5qKOvne73ogUSwCUHIQARvAu0PqKdu64jBHtHyjhAPq9qyL0Q9RUYNNR0IjmpKqkJMTmmMcBJSivy3CAEdG1y4oohJNB/gLF9GK4Vg1OyG6KChU9uTPt9WRj60em2JNHHtYPnPnrt1SHvxQT7ulcMr5cQoHQS1+6rYyUFKJHEJjK5aMVIcmOKASHldZSxGFwbh5ccHwJd29O3/dB734Nw8RqGlyrtVbVS7CP44uDqpfSXLiR/65aA5Wz5iz6Kn3ldHF/Q5z+bs8nZyRn/4h//C/7R/+cfcbA4+CsBLDJK/v7v/H3mqznvv/0+H735EW6IgBpvx0w2E/7OH/4dvvWn3/q5xKjBKwjo3/z9f8OHb334v4u2+yvfv4y0ZcuHb3/I5w8+51e+/yv8g3/9D9B/oZvLq2NqyobNeMMPv/lD/uTbf0I9qn9+B/WzrC/ASb/xe7/B3Wd3/4OdoL5cX679unXrJf/Vf/X/4oMP3uLx49fYbCYAvPXWh3/tcJCUkbff/oDXX/+ETz55nTxvOThYMp2uAf7aH/8/5uWl5yfv/uTLqLcv15frl3D97HFve7VyTM3ptPFWWD80l0PKVRdigIJksllGCkRIg6447M6uFUKDBW+Cm/bZ2kn566zdi/WTMlmkuIL9pmofY+B9iuaKUdD3jrVPiuWAIHiANHBLAFIcVM5pYpAscAM+ujSuEJLgXGp2VSWZNmzqDq8kQUBdNwglKbIcL1MTvcwzIG2vpQj4IddcKkEgEmTK/c5URoyK1rfs2p7ROEebjK62mCqBTdu6IysKlCS5UwlD03tk7BmPNGWh6LY9WhQYk9P2PXVTo6RFGkEAMqnJdIbtOnwIFON8UN0mFXWIUO8anA8oodjUG/IyxdmM8hyRJZVzURh2bYJn7Lol69K5cs7T1R5iwOQarQ2Ntbgg2TUdSvYkwbnHRY/1LZBsj8dVRt9b6m2NEoqoQnKbEh5pUnMiihSB0+yuWC4js6NjqlIivCZ4jc40mbRoKcCk2DcdBUjFbtegpCQSMUqgI3gZMSjKvMRESZlNGI9Tc6hpLLHXjKsRyhTsNmuKssBLQy8trevYNR3lbI7OFFmWEYKg7izPX5wTI1xdLLhYvKDpe2KUaKMZjQzCC4ie7W7HbtPQyJYswP3DGzTW0rqGxbZhIVf4GJmNZxSFRKMILseIQG5gnBfJoQvFtmkR6w6TG5Q23L1zm6vVih9+9BEv1j3TyU1+7XuvsX7xgp2N1CODaFqEznn3q3dwhePJJwsyXdE3O6xLETyhcygzobaaKp9wOCuTkj2WKFEgtaRpezarHd9443UW3ZrTZcuoLHDeU1QZtw4nPHh0n+rghPXpKT5InA9oY3jwxmssty1bL5gcH/DyfMGPv/+njIxi21gOb9zljbe/xns//REozTwf8Wt/59d478P3uXrxnEwGsjJjenNG3Tpmx3fpjhuMVJw9PaNxggePjnn6yQsO8oxvPHydJ59/RHlQsfMGDfTG8aM/eUylM27emhM7x8uPT/nRTz7j+MENLi+vEH3DvbsnfOXN+0yKEpOV1HXDpJrgMXz8/uccPnyd+w/vU58/58bJHRoXCNZwfPeIWln+5PlHPL74kEJKNJLXb9/g4OYtWufwvuVrb77LZx+8x+PHH6OigeWGzz4cofKCxcWC2ltunRyQB8dkdsCf/OgDfvDTD/i1d7/BfDSjW9UEIXlw44hPf/JTNjLQ1YL7X/kqX//WN+h3lrOrNR998gnvfufrHN69z8vmU3rXURwf8rXjr2I3lg8++pTpyRjPCNt0KNPzww8/4eD+9ziZjqi3a7JHD3nw1j208FhheP+HHzGb5Zgs4/a9Ew7uHrPerMimhxgc9XbHZtvRf3oGleLqdMGHP3pKZXJef+Mhx7MRZ883vPPoHkXf8+STn7B6ccHNg2Nms4KDPEK949tf/Sqmyll+5RGZkTy92PKv/+0fMzKa+WzEwa2HtHXP6Q/f53S1oxGKxdk5NgIuYDcNk9EEETxd24IMaAWFMkQt8Dn0u4jtepAewZbtbkvbtSBgNB4zoqTrOmKMQ8MOkJLFuuMP1p+gCMxvzPn6w9c4mh2yW2949vyc1WjMclmzCY6TWZEU449f8NHlJW+88RAxmnG5WKDUiNXVktV2x8XqjG67wx/NMTLHKMFyecH8+AAXWg6mE+4/uouRimAMdb8jU4qr3ZamWRN95OnTZ5STKafnL/nx+0+YTSZUZcn02RlKZjy9WHAwMtSbFYvHW2K9QjpPVpT0jaWpGzZNTRc9vRZoBVH21LVgZ2tu3Zzzta+/Re8d7118SKXg8vwJrZFIYSAqJIJSCwSOpt6xalLkgRcWek9ZFYxHE+pNg+0jXYwEEYh9chEoxxprB7hYJCeP3XqHkJJ6cOi5XBRst1vKvGSkS3Z5AX1IKvzCEEVS4K7XG4QUdN7hRUzxMwF0pgkx0rU9XdejlSEvC0xmqOuGvnNY25EXMoE+RXL8MCanKHNEcPRtS+9bGh9p645kEiWJPuCiHwqm1HzOczMogKHINU0d2GzrFPkVJd5HXG8ZUhpSXTSoYUWMIJOjyq6ur+EASBGzYYhZEETq7W6IuA1k2qCkom8dfW/pe5dqM5ISGPZq3j30tG9lRxgAmM55IgKtJUpq8JG2a4lCJ/W49VjviNGTFylC1vuI0BoQdNbhRaC1NjliokCE69ovlWCp8W0KheuHhv9QqymRFOdiULGrIW54PC6IIbBZbAg2UJbloBR3hBgRSiKUREeByjQmUygjyITGB09vfXLBZIjoHSIy9DAwERKUNgSZQHmiuHaOybI4ONGAH6L62Fd/McH7RudAZFfvEnRiNFmRD+DSEF8mJDrP0vOXCoHG9oG+T0PEUVnRect6uaGp2zRwZjh3SiRHH7iOrgsuJDB8cBRVKn124l+zuuuvtGK8fv8l96+0Z/D7PUbYD7teQWCRcC1q2P83DakGmO4Lw579EsOwJ/hXH7BX8W+vlOppqJPguP0deB/owivhRYzXvz68MdNxpzt79fhhHyE3OL5CJDMJtuttijiMDFEyArRSBJGGU3oYQCawKYE5iEFZT3JRiCEMda7AB4+1gSxP+zHfB6QGl1uaYMliNjwvEMgUf4UnM+k66UNITqNSD463FjkAlpE0XFODm1lwEZ0lFwWthtckpucRQhp8etsnUFAkdweUHhT/kt45rHd4B9qncx9C4Gx8SedtGsBKhfPJtSqdn+RAFwhpPxU8Z0en+LHl1z7+FVSd9jpCyDSE1IooAkKlfSoivZ7ONrRdpCgrjJGIMMC5QnL39C6z9oCrasWyXDFuKmZuRmFzVFTDYwdkTOdfIjBaI6NAqgyTFSglsM6jfHLKE0pjuw5tdIJ4hMAFxzJb8/7XPsZNa4zSg+NbYLPdESM0dUvTbLEhEalSyRTdOQxAe9sPrnAOFSPTaoTzHhcsTe9oRUeIkSIvELnn2b3nSJHxxievYaRAKI3zAZD01mFDw8WdC57de8rBozmiMDx98pJt58jyMXfvz+k2W2yIZEaCcwipGZ1MCCqwXrQoKfA2fYfFCNEHpCywXmFURpkPgpGokexduhx9Y7l3cpfssqB/Grm9uckN7jLWikmZMZ/NMeWIbpciXUOMSKmYHc5pe0cfBHlVst21nL14SaYEvQ2UowmH5Q3Oz09BSHKdcffOXS6uLmg2WxQRqTXZKMUB5tUUXzkUgt16hwuC2XzEerGhUIqb8wNWyyt0YbBRIhE46bl4uSSTivG4AB/YXu04O19SzUfUTYPwjumk4vhwmr6TlcZaR57lRBSLyyXF/IDZbIqtN1TVBBciMUiqaYWVnpebK/q62UuzOBiPKMfjNESPjpODOcurSxaLKyQKuo7VVYbQmrZusCEwrgoUgawoeHl2yenFJXePb1CYHNdaghDMRiXL83N6EXFWMDs+4eTWTYL17JqOq6srjm/fpJzM2NkFPnp0VXIyOsZ3gcvLJXmVEciSMEs6Xl4umEwn3CpvoUWkqCpmRwfkmSSvKuzzC5zpIQpG05LxbIQPAVWUiBCwfYePkfVyl1xtDLx8eY6IkSLLuXvnJtv1hum4IhOCfr1heXGZXNOyyKQ06GC5eyPw9rvw699qiK6ncx3PXl5yedkyKnOyskLrgourJW3bYhHYtk9AOeB7i+pdul56T/AOUMgIRimilnjrCN5ho0Nr2DW7FCEZAlkmuHdvN4AMASH0ADsmwd7lasdV8OhMczCbUmUZRRnZbregNNFHtr0nywXjzCA6z/riEjEbU43H1E0DtsX1qQfW9i27ektlMrSUhMKnqLQYGFUlIVhmB1O8j+jMDMflk6OndcRgqbdbimpE7zyL9UuUUpR5nkDsLGPb9EDAiMC2aYm+A++Su55Idbe1Lv03BrI8IwqPD5Jd0yNF5PbxMaNRycXFFZKIsx2rdUMUcviOFqjhyzp4m65XPuJ8z6K64rMbn5NnOV3X09Q9PqVJJiGiVGijETIk+H/4Tu+sI0SwOo2kpRBY21NkOVIqMpPRhuR0KLXEeY3SKoHtvUXINIgN+x6mSA5xIaRYcCEGcaaSCMfgXJMgH6UT6BPwiJjc1lO0syN4Tx+Si7Z3qZ9JTO42+wFUgnZTTBkioodasOsszvkB+k+Pee2axND73JddQ8njnNsTSeytmSKpTlAxpvqWdM0VksF1iSGe2A/7kL1D0zWLNEAxX9hPDMvHMIDNYLRMDkTODyLUAcLau8kS0TrFZEdS/FwIgd7FFA+bKsahrtk/yXS7BPYMkW0xDoVPit3eOxMlyDgB08YkNyfX2+SylhcJ7omWody7dozcA+RSpp50CAO0FuJ1bZ/eanvAXAyPPdSq4dVZEiLViwlA5zoaOJ3IL/h5iuRs6WyP8354vyWoasDb0k0G1yMx3CbG9B0bQhiEHipFhPf9EIMX9g91PeHcv78ESewQohvuL9W6KWL4y/W3bW3HW3rdk7nsF30o/94ViXz8+scJ1vlZloCffuWnXB1c8V//P/9r5qv5X+nxVVB850++wzd/8E1e3HrB8zvPObo64vjimNFuhPLqrwRC/fl1cXzBf/t//2+5PLr8ucJJf9Hqio7f/d7vAvBb/+q3UPHPglaRSF3V/PDrP+QP/s4fsJwv8cr/tR/XfokgqJqKB58/4Pbz27z58ZvcennrSzjpy/VzW0LA7dsvuXXrJb/5m/8LIUh2uxGz2fpv7PGNcbzzzi/Imew/whWJPH70mD/81T/8RR/Kl+vL9eX6C9bPDCkN8d7AsLlSA1RCRCkxqMYlatiESbUHg7ge8mithw102sgF75M6GNiraPb6nn32N0IxmA/AoHoWIiltI8nSNmWKS4RKg6gwDNjC4FiAThFew74ff938ltfRDDEOQ6SYmszG5EPz16FMUqTHQd1c5BlBJwDDKEUIHmMMXdfj8CgjkToBXMmqV9N3Dn+1RWmBzg2TbMTGNAglmI0riqJguelpVmtGRQJ/mn6LdYEsU0idcTwZIUyOs2nYkBmTbLSjQCmDQpILSScCzjtKKSmUZhc66ja5RimdDY0BEEYyrqZ476i7nt5HXN+ROQMByrJAT3I2dU+z26CFx7sG5xxN05HbDJ1pfG+JwdNbN+zgFVF4QNF2jmJaUFUl3kVUZihHnr73RDJsH8lkavIYk9HGFAN0tWvIlYK6oW6TdbSQSb3ZtD2jyYzt4pKuaxEyRwnD4c1jpIqcnZ+DMZSTMSZX9I2jlpJ5XlAVRYp2K0v03RmXL8/Y7TaM0BS6ABux247DG3dovaNtXuDtjjYKnrw4J1ck1e52g7Ke3IPQhmmeU1Q5re9Y1TWr7ZLaN0gRQXqch95GTo6PeL49p7GWbV0TlMcDWZ6D9Hhn0TqpuQszQZmMID11cPh2y1TPOL08JRsrnr34jIurHY8/ep++N9yc3ePOyRsIG2G74enpc7ptw6PZCZlXvH5wwvi+5+nLDdPxCRaHVg3d1Za3336Tr/zdX2V5eYqvt5yeX3GxuqTZ9Hz1tYeEoBgfzPDKcLH2hJBRGsFBIaAJCFGRyZLbR8e4esfnp5e4Xcc7X3mXb/7KVzi+cZMHr9+m37YsLi4ptWA8GiNzeOvttygqWF/O2Fxe8t4f/4Bv/+Z3+fW/+10E30YESdv3GBkYjQtUCARlEdIwno15zeRk1jGucrJZhS8UoRwRYoYRksXlgnGmOZpPkaqis/DifMF2+zmXK4s+MpSjDNG3zA5PcNJwdbrk6YunvHzxAoD5eMT9G8ccvnaL3rbcvn0P13dsn7xAZgeEPrJ8esnr9+/TuI7MOi5WG95+4x6xj3z+8oJ7d+9xML1JfGD5oz/9AeNRQduuubq4wEfJZFRysVzwh4+fIlxHWWUcHI6YHB0Rc83Hjz/m4vwlL06vePToJs9fPicfj3j+0QtWLVTxDU5PT6lGJW++9Rq9C5wvezI9YXlxxt27r/HWt+7x/MklMnps2JHnJ9w4PuInP/oxN26eYETgk/c+5LW336A6nuO7wOefvuTzxy/5X3//+xgD7777FuvVgmpecjwbIV9/nVXToHPD459+wGa15NaD2xzfvE2w8PJqRX5wxNYEJke3efnkEtSGUBZUc0O/vaJf5FxozW7b8sPPvs9qt0V2W/LYMZkfcOvkkGJUIRF88vFjtq3jycsnuM6BNGzrFXmRcXx8zNVyw6ZeMR1XzI+mLJcLnJJpoA8J/hCKvBgNQ39PjG4AadPAWiuNEprOdkmZKBVKSKzvccqALtj1gQ+envFy2ZOpjJcvz/C2Z3pyxJ37N1Bdj5Ubjm/MWO/WZLOcb73zLo/f/xCMo5aB0AaO797k5Ysznj9/iSgMx9MJk9kINSoZHd+ksz2TPEdpqK1AxIxMw8PX7lG+/Rbnz884X23Ybnd88Mkn5FXOZGxAGi4vVlRKo0SkOJygJhXudMnWwcnIcfOwpJ8a3vtkyVnTUE2OqTctZe5588FNrk43nC+2TMYl67Mtjz95wrKrmeeKo9EUeXjCi/NTVs2a5XZN3bUgBKOyQgpNbqDtLdJoVKYJPjkEudjT9B1epGhS53qUlmR5Tue6AeYQBOvw0dG6BMDsouX54pJMSIJLELA2CoFjonJyUzKtJlzkBYt6w9V6DSo5NGbZYJdPimdomgbbJ8A3uTGKoVHsaZsWKQNZXmIyg3V+iN+BiMD2lr71uD4M7xdB9CliIooEFuyVwn3bJ2euzJLnBTFI+s4Rg0/gdfBcZy18AcBIkEL6u7+Osxoa3kIgB5cXEVNN40MYGvQpzsK7eO2QJGSKJpCkeAqG87sHxCGB1TrTQ62VIAQpU8xFdMkpJkHYKQbXD+puFyJt7xBSUo4yCpHTNG0ayA1xZkqAiKlpH0K4HpJoo8m0Rgs1wBepVhMSPIFg00BISokyEmKk2yWobrvqKKsSbVIMVoJyBM55siyjGldAwIWQVNdCEqIHGchMgi36JhK8HYCVAY5SKgEb1kFgaPSr5JwiQxrGB4WKKRqC9NbB+0C9S6rB4EOCFbS6HkwaY4hCIdUAgw11bd90tHWPdT1KCaINdJ1LEYM2ucikeN1hYKREEgWEQL1rBt4nAVVSSkymkpOA+uWVV30RJIoDHLYPCkmQ3rBv4JX6/hpM2v9MDq/7EEEdQxj+Puwj9sM9BoBoeP8lDin8meHf3gVWCkmqyBLAsh90ReIXPiv7SMVXoA0I1DA4+4IeHiJDhFOKAAmD2h3B4NAFWukU3ajS0DLG9H73zqdhqEyfdR8CcTgP3gVC6FM8ipJkMiOTll4KijzDa0cvHaGNGJ2AcRfSUFxpgRCKKs8QUhF8GhKm40zPZT+Y00LgYkwOPAK0kFjhsS6BpEIq9vSWkJJc54QYcN7jIwTvUTK92EZrZK6I1mP7HikCMTiuphd0fY8O6bMffHodXUgDyQR1pWGqG9yJ+oOOZ7ee89qnr6fBr49Ehr3iIHhRUg0uv4HGOrQQROsSnD+83t47nPPkpmC6ieTnBUYoirKkGlUgY/pMS4nOc5QWeBuwQlBojVE6gVzGMJoW1Nst1vYYJFrqFDXTe8rxhF44Prn7Kct8ibRgtzVaQO8cTd8n5640FSVXKd7GRU/bW7re4oJLDgoiORf7AKOyZNOnOOne2uTAG5MDA0RCdDy//YTDyzG3d7eSc6II2BhYlZd88tXHnMsLlBbIOlJf9iwuL/FBMipmTKoDhAf6jvV2g+st83yEDpKDsiILgfW2J88qPBEhLK7pOTo64vj+bdp6R7Q927qhbhts7zmZzyFIXr94k68/+Rq7q5561zIpJeVEgI2IyqCEZlxWeNuz3jV46zk+PuHmnROq0YjZwRjfO9q6wUiRYrGU4PDoCG2gqwu6uuHi5Sm3H9zm7v07CAIipggsJSIm04gY035VKLIi40ApVAhkRqNzTdCSaDIgfT7bpiFXkqrMEMLgvGCza+j7FU3rkf0ASHhHUVYEoWh3DavNmt12SwTKzDCtKsr5GO8dk/EM7x39eotQBdFH2lXDwXSGiw7pA03Xc3gwBR9ZbRumkyllMSZOAy9OT8kzje0sdV0TEeRGs+tani3WiOAxmaIsDXlZgpYslgvq3ZbtrmE2H7HdblGZYXO1oXNgOGC73WEyw+HRAT5E6tahZE5T75hMDji6OU2uWDEQsGg1YlSVnJ+dMxqPmE3HLM4vODw8YDSq0Eqx3bRslltOTy9Yr1ccHs6wfYdtO7LccDCdEJDJ3bnpePr55xSjijzPOT48YL1Zo4oSbxSCjBAUV2dX6GqMKXNss0N46KJn5wNt19C9uCK4DuV78jwj1woznWCMpqk7Otuw3m1T3HeUuOAIwTMajxByD6BostLQdz297dFy6EcNsIBUhvTVFUlxn8N32dCzMsZcR1ClONcUCRyIRCkJQrKpO5xbkK0amrpNNafRjGcTSpMR+h6tk9uyl4Hj4znTXUHT7dJ3iuvJypxCwXq9ZU1IEcO5wTlLMZlgrcdoiRIp8kkJTfCRybgiywtc07Pa7pLD1npN7yyzyRhRmeSQZVOEbT4pMFqTC41tFCa2VKUik5Jl6DlrOqTMIUrapuZwWiECbDcNyIjrPYvNktVmR5YpMqUoyhGtddTNjtb29M6m7yat0EIiRWQz3/D+O+8TTaqFkOk7w8XkIinU4HAkE0QWYsQHdx33i/ephhPJiaa2HZ2zw/d8ci1MJjgKLRVVUWGNpTYtTdfhQhgc2hViMGJMbkABa+3wd7HnsJOLKMm1UBuZAGOZBAZ7sQEM9bXbx33JJOAIA2RFHEDqV/WzxaZoO5ITURwo0Rj2e4VX9c91LbQXJgzH9eqXxFD/DO/nkOqqOIAr3vsUMbxvogoGgP+VyCFe7yf2j5t6wpH9AyY3+1fAdwJfUg2x59bT7d0AxCgjMUqnGDvvBxiZBAyHL8Dbg9g1vS7iOp52/xkUYg94v9pT7eH34AK284Rosa1HD1DwHmja1wpZZpK7ZNzvJ9JnO+ARKgHd3inCPmZu39MWqYr1hOufCcEQG7eH3pIby15EkmpY0n5yiDeWw94kDjWmlMkFcdj2JNFEHJ6PTbF/kN4PNtoEkw+11R5Lu3YcvYbXAt717IN+U+0sh1g8vlx/C9fiYEGf//JDSgCfPvr0L3cDAae3TvnDX/1Dfutf/dbPBSJSQXHv+T3uPb/3V76vf9ey2vI7v/k7XB5f/rU9xp9fUUa+/yvf541P3uD1T14f6p50vXp+5zn/wz/5H7g4vvgbA5P2SwTB937ve/zG7/4G4934SzDpy/XXuoQApQJKBebz1S/6cL5c/4ErEvn8wef80//LP/3SRenL9eX6JV0/M6QklB42XEOjXqZ9nDaD4l94kuWwvG5wpw2SSBnm+x17DNd5133XDZvBockjBVlmUsMrhCFOI7xS+g8uCVornAvXgwopPQwNo/CFwHY5DPKuN1chDXmMSZvNzCSVr/fpOIWPiACu92xcg48+HZeIyfGX1Kzv+6FhAATnyfMMk2Vo1SBCBCVovcMGi9GGvvXUuxaT5VRVjnOe9XqHFpKyKGj6Dp2lQW3wFkjNmCKXFLnAO2i3loXbpSaYMEhvsEBmDGU5YnGVontq3+GIZCZDKkUfwmBbHfBRoEJ6/pmOGCXx3tJ7DxLKqiDkAzBDpPdJkVt3G6yLrLYrgvLMjmZ0py1t1zHSmiovEKXDesVm26aGAUkhJVAgNL0L+GBxbY9CopUBoTBFji4KfN+z3W3Z1S1CwP27t9OATro08AiQGYVCoXXGpmtRQVAWoxTtYx0X5xd4HEZIgvVIpSlMBt7QOVJMQoSt84R1Sbm1NO0KnUn6LtCHgI09I+tYnb+gGmUc3jri2fkZpYtkSrBo1jTOY/Ihpz0XKJVcnFzjkVmGyUZkuSPGyGgyxviSpm5pXc8Hn35GIx3LzQ4rArZrEUFx6S6JzjOp5syyMRJJ0CW+9wjhEd6iBOzillbssI3m48eP0dIwPjlmd7VChQ0vXjzFaMPB/Jhbt1qePXvKpqupuoy5mrCNSwrjMbriZCQJ4zlZD3OjeKPQnI1KLnYNjSp5udlyPL3FvYevYbSgLATCbVBuC31Lv3a02RVejXi+3HGYj4iyZDa/xX/2jW8hrGc2qhiNRrz4+CWnLy7Ybrd85WuPuPfoIU/f/4yjo7ucvlxwcJKjiHz+8cd861t/h8PpjM4KgpFklUKSUW86VusVq2dnlNIhTMmNO8es6ksKmXHn4T16H2m2Gw4ObnL69AXVtMSKSNMGvvmtb5BnFb1tuP/Nd1Gh549+/4fooDk6uY3tN5xdLLlzdMxPPn4PdTRFKNjttng2vPvuQ+aTOe/96EM+uviM5XbHarXg3W98jWkzpq97qrADEWnbyPz4Bno84er5U6JtefLpMz799JSvvHmX737za2hT8fzsHPIZMvYcHBSUxxnvf/qHLC9O+bVvvMlbj24ii4qPfvoRn59e0Nua1+8fY3IgL5nM5sxOVkS14/d+//d57e4dbs5P+PijzzFBMJpOUNMcTUW93rB4WXP+cs39e484O7/gg89eMJ5OmB+OOXsescsNj371V/j08TPMyxWX2y3NqmFbbzk5nnLn5JgYNN///Z/y5rbja+88YB1qZtWEUAic0Hzy9CWNh7//ve9y+9Y97u0Cx0dz7tyf8uyDJ5w2W+Z3bvLNb3+Ni8+mfPbkOZcvLwjaM70x58d/8CM+/vQZ1luCbSiMphxVvPXGG4gIF+tNGgKLSO/7pODVGoSg6T1lWdLVNXXdkmdqcGVRbNsOoxTepYGt0JpMJdv4ENPnWGuT3GmGpq2W6TrqQ8THNGjVRYGImklW4jw8PTsHEWj7jtC11KctXb/lsqqYH0x5ePseVVES+5YXn35AvdnQxICQnnI+ocoNM9uxsx0iCH7y/hM0Da9XOf1yxc5JZCYIbcfJ7Jj55JCjg4r5fM5nj5+y6wPjgwnKBw5nE+48eMC9+ZzdbkU1N7SrDa6LmHhEjJFbJ4e8CJbLsydk9CzPL7labhlNZ0wmE5qXS8ZHM+4/uM+kuCIrJSJGztdrLruGoDPkbI6yHu8k3a7FuoAyhlmpEtyjBMtVR1YYDo+OSP6EnqvViqIqyCaKqVA0dYMMNgFDQAgepRRCREyuyXJFby2bXY2zlqLI8CKy6Rps2yOV4qCcEpFJUdy3yT2hzJlngiAiKkvfua5vKUc5zqZmd1kWICNKCvrOY0xGZlIjrmk7uq5D1QKjJC4kpXJWZgRjCJ3DRE/wHdEnxZhQexAn1RkCaHYN3kWs9TTbLWVpk4PH0Kgf2sDXzZ7rFV/BSuwHAQNIs1crxwAuDFFIDOVVlNjephioKEDIFH8nJVIMgwCXHFySQjo5AjiXKHQp1bV7URQJJBcqAT3BB1zwaJPU8kLKQe0NnbXECFJHJtMpWle0XT8MTAJoSejdtbo3hECeG4zWuC5FJRDEEEE1oCkiRUkok1TDQkiaTUffWLxN0HlT92SZRJk0WOr7HudS1IbSApOlqCmt0ve1Mank9S6BaAPCgveevu8xaORQk0oh8YMzVggpykgqGHK+rutPoriGWKyNAyCTwA/hPdroIepN0LXJaVIbPbhDKep+R992+OBwRFyfnGm8T9F4chhjxBgHN5EE10cfcd4xyLITOIbFObBGkYdf4qbyUD+nP6dzGWNMQ8frAVFSiMvrX0zvaYkkiP0wZ6jFpRjgu73MIdX/SqUhThR7pXq8BiDTMHCIGxkiQ17BUF/stKY/X38c9z8bJklyULFLJdk7wqYZdRzcuiJdsNd1sbzmp9LP/aCQ37vKapVin51w1w/v9pHWUqYYZeuRSmGMJoRI1/dIkaJ0rHOM12N0J4nRD2p4UCrFFcYArg+0wV5DVcnVLTk5aW1o2uROZKPDx/TvUrw6xykARCDjcA0hpuFrTJGOewAx6gRpQfr+1NpgXZ/c7LqWKCJ3m9tczi5wzpEJQ6Y1iEAIyZEtxv0JGy6GSFwILIs1/fC8xSA4kVIhtU7OFH1Pbx0CmE3GA0yWQLEQB4g0pNt0ziGiwGiT3j8+UNd1clASYogGlQlMUBEXoOssMoM+BGLnMH3Aug6pBN6lGPSAxQhJt9uyurNg8/qWrunRIQ01GzsMvTWoIEClPavtHUEEhExRkEolJ7Usy5DBYK3DBc/laoUVKVIpEPHD82jqmquQYpBy5fj+az/gO59rvAzYvOfq4IzNdENfOFzb463karFASUk2KrFNhwgdm+0aJSVlUTEeO9abNZ2zGK8oZE5Pi1YRJQ0jI4lZjg5QSMGBktSZobaWXBi23ZKqGDOdz7l1eYNvXL2LjNB4i/AW3ymcaogiY91aSpURpaYoJhzevIXwkdwYjDFsrrbstjV933N8Mmc6n7G+XFGWE3a7hqJK/YrV4opbt+4m9+MgiFIijcSgsb2j7Tq69Q4tAkJpRpOKzjqUgOl8ggvg+p6yGLHdbDG5xguwLnLz5k20Mjhvmd48RsbAi6enyCipRmO879jVLeOqYnl1gSzz9Fm2PXXsOD6eU2QFF+dXXNUr2r6na1uOb56Q2wxvPYbkCuAd5NUImeU0mxUxWFbLNcvVjqODCXdu3kBKw6beEVWOiIGy1OhK8eHHz2nrHXdvHHI4HyO15vJiwXq7w3nHwaxEaUFUmjwv6KuWKCxPnz5jPp0wLkZcXS2Tc1CeI3ONwOC6jmZr2W07ZrMDdruay+UGk2cUpUGvI+16y9G9O/gQ2JxdwdWa7aYeXFA8xwczRuMJF+crmsZy9/4N8iynbR1lUdB1jqa3LHcXvPnaAyY3p4znhwhpODwe0+521MsNHZ67JzMO/ITFYsl2vcF6R14W7Lqes4uLVKMEjyS5i0ymU8ZVSd322MHxLhBSPScFQiWnFCkToOycu77uK5GuQWH4c/ABqfVwLRocK0WCyBOU8QUYQEQgAbBSDH0EkYAYJTV127NtuyGSyiJ9h8fTtxlGa2bTwZlLwm61JFhH09kkFtQKow3KSOquIzOG1brB9S3jcUloWlyQ9MOXqiYyGU3RSjKbjWnrjk1fo7IkwKvyjLzIOZofgLOoPOUO+7ZFhhwRI2VmMEKwXLW0beo/bbY7kJKqqmjrGgiMp1MMyR2u6zravsdaRx8jeVagTAZogu+ua3STmaH/ltxdlvMFn337E0yhMCLtDYQUFGVGNsC7MSTnKBf3AM0eAGb4vEqsc1jvkSpZ41jvCS7VXXmeop6tcxBJ/TklyfN8wM/S6+e9S3VMTECM1hopUyRbihKTCZwUQxxYCNjeYvQrQE1KleJkwxAYGP0rkEWSQKA9SiIZYKG9A2jEuTbtl/ZA1L602Vsm8Yopuq61GGqNL06T474eifgv/JMYYJ8Q4iuNxLA3FsN38t6pSohU3Ijh+/I6LlrIgQ8XA0iTHCj9sA8QyFfF1fAk/ND3DUSUkmSZwblXj7UvBfZOqHuAXKkkqvDxlRiWAPu59cBKIdk7ooYE7vh0Phwh7WNUOp4Qhp8Pz1cbPYDhqacgpEDH1N/eQ0H7J5Ici1SKtd3vqfbhszHd9/6c7Z/33uF2eDVSzejTvwmVADUx1AhSJpHEfk+wB69cTIBS8ElEvHeoCtfuWvH6td6fy/1eMznzJuBMDLcJIUVM6j/nnvLl+tux7j29x2g3+kUfxs+03v7wbT597dO/9O3OTs5+/gfz17Qikfe+8h4/+saP/sYfuys6/vv/8r/nn/y//wlee3bVjg/e/oBn956xHW3/xgElInzlva/wD/6///4Yui/Xl+vL9eXar0jks4ef8d/9X/87NpPNL/pwvlxfri/Xv2P97JCSkGgpB0gpGeYE0uaNEIe87gTx7DOxYwhJEbPfC2mNVhqfRGYooVBaD3sygdKDrbAPQ9532vDFwSp4H8mwB4akTIcvlSICrrdDkygps/cgUYoheKXc18oQSU4AKR8+ooRIDTih6W2f1DFSoKWiMBmF0Thvh03f3oFJoI0hNxkxpvvIckOUAt8DJhJcpG9brHMEKVEN+KKkc5Iqz7GuYblLFvoSj9RpszgdVfgoWG22SOcZTUaMJiVCKGzrk/V/5+lFsnpOPbBAMKBiUp3ZGNi2PSNTUGiNiwGjFSGkxxh02ri6ZZwXzKoJvfXIzLBudtRNh9SRfrtjt9thbcS5SO4dk/GI1dWWtmkQKqBMxOTZ4IKgQElsmyypne9Z7NbYvsX3jlk5oyxyShMxUuPaHRrQMlJOkhJ7ubhCmTFRJ7VzaXKUriBYRkVSIWVSoXJD73p8l+AnR4aKAkLAtj1b63A+UhZTVJETpCZqQTWZp1hBr8kGCCGELr1Ry4zxyQGH84zTZz0vn7f0rUNYSVmU2GgZFyW50azajn7X4mNkNNb0fY/tHSoKCpNzNB2zaRv6bks5KtjGluVqS+gd88mYTRPpu8hkOsH2jmqWc+fkiGKarNabuqFUkrptWCuFGmXUm8ih0dw+ucHJ8TGn6y0vgbZd8uLiOX6zw3YRVODkYEzd7lB6gm1rbGiJ2iMzh5Sai/MF85MTytmcrCi5deOQ5vSMYBTvvvE6rS35yte+SVZm+MUFbe9578kZOmry4oArJyilZGYKQg9Hswl3jk8oxhK7btHSsHh+yeePP2W33TE6PEGGCroFpm/45Ed/zBu//htIYVhvdkyOD5G55Mc/+BGRKVYFskxyPDvi7msnnJ2vWPc1vQTtBJxd8eM//lMqk3Pzck1mRty4NUUXmi4XPLh5wvHtm7xctkxzzennz/j8s89oQuQ//0d/j1znfPj+Y4iR+2++w4sX56iLBQel4OFXHvDOw/vUixVRBorxhLatefTgJo1t0eOcw2lJnjt++tM/JctL5rduMFWSIi9Y7dYsz1ccTE+4WO0gK2g3lrOrJc32kqqseP3tt/jBTz5GCs3dG4eMR4b/4j/9VWJsmZbw5NNTqvGU20cTdFkwOz7h4d0D7t055sZrDS9fvuStwxtcLFd8dP4JPP6M9fPPGZ/cxPqGy3XPbHoAYcK271mcrzk+OcHLyO75GQKPyQx333ydh288pF+t6Lzk+XLLTVUyKg3zUiBCRvHmDbQwXO4auhE4UfC7f/BDbo/GTMsRH33wgsPZhP/st36dOydHNIstm95zUI24MR0hWo/wkeeXK37w+BlGZBzPRrzxxn2efvoRz16s8DKBP9dK1WzEdtOw2C7ZdO+RawUmxSnW65be9ggR0aWmNDnReQ4P5pjDQza7hq7e4F0PQmCUJniH9xbnPSZqdrsWrRVKKay3eJ+uAVIkVx+hUrM6z4vUbI6RNjpGWZGgJJmiVtq6AS0pMk2IlsV2RWcdy7rl9HTBtDD09W26kznn5yt2LlBNcw6PThAOjk9usq071tst+XzCWJZs6wbklluPvoLvPX275s0Ht8llTt03nD15zOP3H/N8veHhm4/Ii4xvf+tbTI+PmbrAx4tLNrbG+g6iwrUtm11LlEnFv9UV5+sFoRgjJwlQs6bmO99+h7becnXeIKl4+PpDbN0gpGJ2OOb0bM2qi0TXEXdb8sxge0mWafJCsV5vsD1IpXG9Z3bjmKvNlqZtUV5zfGNOoTXbzhGsw7UOrQx2aObmOsWDut6y6xp6l+LKlEoRZjLTaGPSYDqG1OOVhjb0xOhQZSDaVGTkxtB3w3BKQjUuyLKSpu7o+44QUkxYWZV4naI8urZPjdoYUvSY0Ujn6a1FtgIXPNYHqqpAyjTQBujalq5NA3BjNFqqpF51qQkeIjRNl1TWIQ640b7b/yq2KjlIDq5e8IUG/xfgiKG5HMReiZ2GY9G9srxMTWiPUKlOEhKU0skxDI8xktxoYoy0bU/bOPqmT64hWhJFci2RWuP6HjcMRoL011Fi++cSBgi93lkiG8pRSZaleFc/xKlJ9WqAkdS5OgETzhN8cuv0wYO35KUhLzLyLKPIE6xb7zp2mwZr/Z5tBxHwgBYaPMl5yQ7uSc5RVgVZliEAVWn63uJsZOdaYlDEaIfYYHDWAwKp9spl+UoRH2NyawnpPO9r2nQSYuKWhEgDkZR3S9dZdCapsiq9v1vLernF+YjJFEWeo4TCO0uI9nrYEoK/dgSC/VAsPeGkII8EGQaXq71z0B7AiCgkSiquTUp/CVdySZLss9f+rEp7cC4K6byLAf4h7l2L0jmWahiApZsgGNTew8Bl7wwQY7hWkMfrAd0wrBtgPRyDw1FMG4yYnIv2gE+6W8n+7uMA4qRoazUc0zBUSj9Caz249SS3DASD65pCq8HVKzIIK9IBaymHaMB0jpQUyaFgf2ZCAlFCSLW7xBG1xgUwSuODpbWe6nyC4FW0Ym5MinHsekSALNOY3CAQg+NavB7I+evYkUiUA4iEwAO9sxhlMFIPe70ByhrgrCggeEemNLnJ0jlUKsWUWZ9cgIbIsuDBi0i+y8l1ciFNDmsxORMM6v3knjDEfQ1wQ9t3bOsd292OwhRordEyDf2D65EIpEyfswg0TYNUGVGm18lIhZSGGD1GKYSUKJGG/D544hCfM/hjQUznPQ5DQa3zwdUgRW+avEjAW0j3EwXE6NNFwmia2z3nv/qcshast8lBWASB1pqAxwiDzgSd8/gufScZqfAhuWtI0jWuzDJ6b/E+YIymjwm0ic5T5Bmdi3gHWZHjfUAXmklVog8N7x+9R+96lI7JuUZKhM6wIlIqyWQ0YlRVbLueLSu8b9nWG0I3QK8yMioyrOsRMsdbm67XIiBUBBFo6pa8qtB5gdKGsRLY7ZZKCsThAd4bXivf4Bv1NynKiPOBi9UOgULrgtaD1oJcput5ledMyxEqF4TOIYWi3dSslkv63pIVFSIa8A3SWxZnLzi8ex9JAvfyqgQF52dnRPIELStBVVRM5xW73ZrOW7yIyABsG85fvkQrxbg5SPDVOEcYiVcwG42oxiO2rSPXku1qw3q5wsbIm288QEvF5cUSIswOjtlua0TdUhrB7GTO8XyGbbv03ZplOO+Yz0Y4n+qaMjcoFbm4OEVpTTEekQ/XjM72dLuWMh/RdJYoU0zormlxtsbojIOjQ07PFwghmY4LMiN58+FdiJbcwGq5xWQ5kzJDak1RVcwnBZPpiNHcst1uOapG1G3H1cWCuFjSbVZk1ZgQHU3nyfMSYkbvPW3dMRqNCETsZgciidAmhwfMDufYpiEvKs4XS0CRxch4nKFEZFweUpgMO7ibZEXF2cUaaTsOJzOWVysQcPPmMUWVUUrNZtcglWRSZEgfkTGBjC/OFwQ0JwczZvMpbb1lsd7Qbzb4IIchPohM462nbx2dX7LebgfnPoXrbKoBYvruNwP8oaRkXE3ohkioznaDqC65yMXgCdEjYrp2EGOCX6IYIuPS9UNrna4vfu9Cl2ovHwN6cBK0foANrRscJNO1N4GdAa0MTXdBoTVVkSOHemHXWIQWjMYjoo+UecFoNKJpGoIUFKMqQd19S1lNKaoJ9WbNfDJiWpZ01tFuN6yXGy6vVpSTMboyzA8O0EXBOMup10s2zQ6hIOCJwWP7QOciRgrKvGS7XeKMhLyCtqOra2azEcaM6eoeTE41GjMalameEgLd9zSdwxhJ6JrhXKXvfGUScNr1jvV8w4/f+glZKdFC01lLcIEiLyjzDBciXdvRt37o/aU6IoFig6OMs9g9BMQAdrsUn4rWqPgKjg6kWh8VrmtApWSKxBuu7UpLiiwj+Ih1DhnS67iHokLwr8CPobYRMiEy3gac9QnAcg6tDSoTODf0LH0g4giDY1Cq6UKq+QZoyHufgCC+QCnt9wLXf+fVz8QX/S/S7+6hlT249MWbEQJBfOHo4z7iVgz1jBiiz9L+Sg+1mvcJpN7H7IpkTZUecYiS3cebxeAHx7FXLkz7+je4QNf1CVZTCgbx6j5aV4RXheNeHJtqmfgqfhSPRCRhgE4uyRKJtZ6+s0mkOuy50qlKcahCpD5iGKLtgvcIoxMUhrh2zwoh4mzAE9P7Yn+uBgetBJ+9ioBLNVN8tY2Lf+61El/43xf+3Q/n0miTasQAtrdYO/SqlU7vTx9I7tBp5+D/f+z96bNl2Zneh/3WsMcz3THnzKrKGgAU0ECjB/QQoqkWRcs0P9Cyg/qkf89fZCuC4QgxbJkMMUSa7W72jEKh5qzK8c73THtaoz+sfW4WZCoIWpQBkvkiClWVde65++x9ztnvWu/z/J64u76v3wy/cP1j+pOdUOlmHTr+L+2hS37xjfGm/qOoCG998xb/LmPK/tcqgeDo4gjpJUH9Gi9+/xdUJPL8wXP+8d/7xwT5q3mNzbThv/mv/hu88r/a8xzhzskd/u4/+btvBEpv6k29qV+qdgSl//b/+N+ymb8RKL2pN/XrXL/0nd0NJrkrJKOLI20WoyQSidi5aH3670qnmI/B9hATOUeOWGIzDMm5crNQG13IUqFyNbpVNM655FaV6sbRLkYHf4wuIbilAKWILtxEJygpCcKTqYS8z/Tonh9pCGEcWrgQyLQeCRog9TjsceHGnZ3rjDLLmE4qdDbFh0Db9KNTSlAUZaIlOZuQ1FkGUpKFQN929N1AcI6iyAgBChSTLKeoKjSOTEpW24E680wKTVUVRAR2cCTXuEYUmtl8gZIRazw6zyiqHDs4/Jh7X5TViKyH4NMwPcs0ihQNkhUagaNtNvgIRVkymdYY55HasOp6rlZbnIO6rlFKcvtwj/ffucs6Gj598oTtxYq+7/AOnOnTpr4QdMYSXSRzYXS/5fjgyHLQKqKLQNc1hCjJdY4PButhfzJhUpU0Q4u1jjLLmBQlEAk1STClNdYpFvs1mozv/s5v0fuGj376c4x3TIuS6d6c6/WazkawAeMcZabZNg31ZIrUEed7YiMYFgtm+3tUOsOZfqRKSEQGtdI0bc96s8GJyMuXLcNmxXbb4kRAW8n9/QXdsEYJiS4yojF0w8B8UqYBcRDY3mHsQJ3nmN6gZaDQKT7kcrOiawyVLLm1v2BSZmy3lnsHhwirmOQ5w9Dx+OABSmv++pPPOO/S4Pzh3UNCNDQ+4LeR7jTwym5xwmF9lmLwth3rTceyHbi6OuW3f/P7CUNtAucXazYm4HykLibkVUFjL9g7qvjOB48JpqcsM44fHZGZgFtvqJspbtNxdfqSLFpOlwPPX5xy9uSE+jd+xN/6vd/h1uEe3aZnuTY8Wz+lmtzBSs8kz9G2pa4yJoczgkpkrrXpabotdx8/5Gr4gpffPMWbBQ8f3GV/v2ZSVrR9x6uTp+i84uDOMVZEXr045cnf/JyjowV1XhGj5bMvPubl6pTMaWIxY75n2H51xv5Ihbk4uSDzgcvlko8vLvjkky+Yzve4+9YjOpcUj9/70feYzaZMs4I7dx/w1aefsD2/Yvj4OafnS2aznNuLCeenFyilqGPgoK4RWvHF6Sl7R/uUWcHz5xecn695cPcWoa7YbrdIVbB4sM9vH80w1uGbjvOLS6iPWNqBYj7h9r1Dzi4aDJp7d44oyiRMc7EnUiOLKf3ymvdnGbPFlMPDA159/ZTn36y53Ky5e3zMdx6+z/07b/H005/y2ZefciRL3lksKLTi4d1bPF68w/pszXSek02mDM4j3znmqJI8Oj7CC0G7XUNRsrpe8eMPP0CrnMliwvnFKcZs6VZrRLDU2nP7uKA8qNhmd6Hb8uLkOdt1w737t7h3/y7ltOYr84J7bx1SKEVrPSefv+TlV094+vUzhMo4e/6MaX6XqKYcHN7hsgusth3784rVtmLd93RtQ9OtUxxKqVHVjBDTgC5IMDiU8+Qx4+j2Pg/feYe3HzxkWs74+OOfo73lar2kGzyvXp7gFIRCInuTtmNFGiaHcTNTkDaU/Th4gDSkCDGQqYzQD0ThGEI/RlJ5cgEiBqz3bJ1EScHUp4irpm84XW3RWcRlkmw2oZhOCH1Hnis2y0sGXeFLjbOWwTree7AAF/G6YG82pcBR7M3o2ojKNMvVlmxWcPzoPt/Z2yf87BuGpqfISvbmU956eJ/Tn30KIXC4N2N+8Ijzi5aL6w3XlytM25MpaJo1q7Yhn0747ofvkjvL9bLl1uERswdv8eryir5p2b7YUuSKvcN9irzgwb07vPfoMT4OXFxec3n6Ams71p2hWQ20g2Db9gjlyIWg7VoynVHKPMXnrDquG4Mh4PzAYCyRQKZiivtCMvQWN1hU1AgXUcAwBPq2YRCRui6YTSfkWeo7MlGQobDWYtsetKIfOggRGaEsS3QpMG7AOYOPiXBTFCW9sYBAlh47ZHgLWSaIMpCXirKuiUrhlhu2623auNWaWATqaYFWiWqzVYn6460nywq8saOwIkVAKCHHKX6K79qZnW/ILfG1YGPnYt7RVcQYvwbcCDWEiMhxkBZiREQ/RhykoQwx3Dw+Jv0MWgiUFpR5xaTOETLgvUsxBl7gLDfu27zQY18myKsSqTWmN+OQXoFK0Rg+WPCJToASBOGxYaCeTCgmNdbam2HCbg9faUVRFCOBRgEKYxwuOPJCUU9KilJTFkkAvm671DemXITR1SyRY9+Wlxk4Qd/Z8TQmMZS3nmYY6HtDniuUknjrcYNNxIR0VK8f7zwxKiIRqeLogvejEPw1lVOqNHHZRUFkWpPlOcFGnAsQQ3qtI1Fpu2np2wHb+ySOtwHTmuTYDimWaXcscecU372OcVCw2yjeufCjiAglwIcb2sxOpB9CwJtf341a7xKLZycmEuH1oCQJgxKt50b0o9IZCCGdpx3B6saxvhv07Az/cqQoCZnWItInOpVLlAzG6OYdOSmSBn47V3kYB2ZqjFiJjKIwGIeeJPrSbqgTX1OuEmELRiQXkNYTiBRBpqUkz7IkmokRY934uRUorZEyRUgLuftsJIGOtXaM/4g3QiaFJJPJ7CGJKATGespVhZaJOhsRBJ+G5QKJUJK8KJEiEQukUqhMpeFWSARQrTOiGKOIghgH5mOYd4zjcUWsMURSvFieZ0l8M5KJusGktcdIrp3WJQd7M0x0XCyXmLZP9KSrjOn1lKEeQOyoUXEkMiXRVoh+FKUlaK51li4zxEwQYiKtVllFpvUoNvYoqW7WfjGLeJ8GxCFKilIjURzdu4sLlrOzc3wI5EqTFwW9GbA+/UyIAZTEGEuW5QgVicERgsCpgqIq0VKmcxxSHCYSMikwJrBmw+e3Puf6+gJnhiTQEhHlBbNygvNhfF2K6H0SRecZN/EtPg1mda4JziNFRI+kg3bocdaTyYxJWZA7iTGBaVUjvCCXCu8t+9UcOZGcnLcMQ8A5z2JaEKLDRogm4raRTTAEAiEorLNkxjEYR28dXddw785xuj+5QNsOmBvCZIbWGuNbZnXG0dE+0Tt0JqkXNdJHwmCYXB3w3b/8Dn490EfPtvesN1ua6y357Ts8enyPSV1iB0c/eIZhhc6nhG0y2EhvyTJFVhWJSKczBu+w1jDbn9O7KzarJcGXLOZTyjIj1xnWWbbbFUJpqukET2SzaVienichq9LEGLi8Pmfdb1FRgiooyhxz3VAVJXmR025bVAy0/cB503JxcUlelEz3FtgxQur4zhF5kZErxXQ64+ryEtt0uPM1TdNTFIpJkdFurxFCkBEpswwhJVfbLWVVoqVivW5p24H5dELMkgEGqSkWJXfr20lMZxxN20FW03uPKnIms4qmtSlCejpBZZZMCEJ0RDKEznFdz2GhKIqcqq7YXq9Yr3o6MzCtJxzOD5hNF6wvTrm8vqQWmr1iQaYEi9mE/WI/9ZyFQuZ5+mz5mlrDoq6IQmDMQFbVbLcNe7MZSqfIUxccfd8Shx47xi3uTRUyB5lNGTaRtm9o2payrpjN5kkY1jZUewW5ViipWG5a2vWKy4srhranbxpMpVEZ5EVFUfSYtkNJQVXluOhxIUWq92ZAk6FUhgggdBJkBlLcrwgCXSqOjg+oJzX78z2ur5ZJ3DfUWB9ompbBGIRO1Eli6rHESDpMonuZegFSfBa7e1sELcYWLSShdRTps6R24qcYcELgYiAXifAYCcnMEByzyQRV5kyKkiwLCC1xY1ydICPGyGAs8/mUQit8lGitqTKNIDCdTlBK4rzHeMd8v2ZvUuLKim7dYJ0lLwsOFnPiYLHGUGjNZD5hKD2Di3RdixlsoqnjGQZHsDCdTrl1vEffDAit2V/M2bbJVOJak0hfdYo+nkwqqnLKtC7Zdi1D0xCCow+efryHNMHyV299RJu3CJuTF0Xqp4UmuEhrOqxPPYUP6R4pZESPQmK/i7ry3JCPAOxgcSThYpHn5FmWBGeIRMiKAW8dItM4v4tUIxk2tYKRNpqo4aQecNcLxEiMiqG3Y9xsIjepXCFDiqGzg8GN9/4g05qk1DlipOkJKUZRWxJIx7Dr/3fRs2ndIMaI6Z1geLeuuJGjCHjdQY7/PP7Za7rOa5Jk/HYzNT4+7oRM3zZTjOI/rVPEsFI7QlR6XmfHJ4hx3CcW7AikWuQE71PkmxAo9VqZE0J6jl30b4g+RRlnGhVGgqt/LR4DRpJV+iwqlfpuHxJlP8s0OkvicCkTbdY7O66tErV1FzOd3lYCLdN7i3EfIC2pQhKXuXQNtJZjXxluBFm73j2OAqBdhFvqz0c60XjswM11SJdttwYUaY2FSGK+GBEhjoQjkURRzuFsEkkRIDgzirrHCPvdpRsF5996I/xC3cjUYhJ5x5sfen1s8K3X8ab+oykZJLfPbv+qD+OXrre/fpsHLx7w9NHTf6ufayYNNrPk9teYPgxsp1v+yX/+T+jq7ld6HDa3v9LfT4S7J3f5h/+Xf8j+9f6v9lje1Jt6U//e1FAM/Hf/+//uDUHpTb2pfw/qlxYpRVJcmAijc/61mYYoIzY4YkzObmfHTeJxSOADWOtGNG1yIaW9GU8M44IaiRsEvR9QWlBXJYK0MU9IwwIpE4Y3RFBZxmAtIgQUItEMImNESBrqSZWlxdk4mAOBUAmvPIQ0GBBCkmXpuWOMZHk2op59Wq3GdOzWRVQmIQS0kORFxhBS/IkxA8Z7hpCoTFJIWjPQDRYfIlVVI7NsFO4UmBAoYmDbD2y2PSpGykynjW47ZtD7JKCYT6eY4Fk2GzKhKXSeHGGdxTpL27ZolSghxnqEjDgApSh1ImbYbU+hC5wxRO/IywlllhF6wzBYVAhU04qht5ggKKuKtx/c5869Iw5nU/rzZ/TNcONU2qwbhAwcHc9pOkO/tYTo6QZDnudp6OYTOj3g6E3EBU+lS+qyxHtLNU2kKCLMJ1O2Q0/bGWobCN5ST2qQChsie/MKZwxB5VjTc/LqhOAiZZ4xDD3r5SpFPAgoM4EUiqvlmoP5AikDZjBshgbTO24rTVlMuA5bTOioswJdQtO39MaxGRps4/DCIWRkuW0YbBKgSa24Wq1pu4b64JAgBSIkItfgA0OX0PxypHgN3rHpWvIqoipN23W4QUBQlDOJJCBMYL+e0nWOg8mc41sHGOO5uFpRliXTyRRvNgwu0jQNxazmJ7/zh2wuGt66e49m2PLVN09T/IfOMJ3henlJZx3r9ZbLs2s++I0PKJHE0HPyZEW7dQyNB9fywQfvc/foLbzIef7ygsViSn14m+dffc1XHz/h7fvfYXG4T3U4ZbW8Zo7h1vEdSlny7rv3uTy/4MWzU+pccbruOTw4Ig8BP/Q0znP/wTFf/fxzylyymN8FIpOq4PhH3yPXkvPrDZ999g3khkcPbnFrlhOFZ71qWV+fMp3v0SwVp4Mjnyli7PjmkwuiVuzf3efoaM7hwQfkakqdz7ncXPHkq2d81jkO7x/w1ruP2W492+stm80lt+/O+c6HPyKvKj755AsO9uYEpfji+Rnry4EP3nnA3bv7fLK85NWrJXcfHBODY9M5hCwwKLb9FWLZ8tajR0wnFZOs5t0f3kVkT/HG0YaOrz/6isEGyAvKScleqW6ENfcfPeL5yyWb1ZrnT14SrGFSVaxWW+qznM4aisMDpsWEg16gZzVPth3dqmM6DZjecHHZcnZ+zhA9f/1XH/HBe29jouX0es33fvgDgoy8Oj/DDJ7mcsmjt+7xZ3/xEfce3ef2rTsQJScXL9kul+wv9rA+st4uudyec/Jixe39W7z96C1Onj0jFBkf/vg96DvOnp9z+vyU5XJJvclZ7M+53m75+OsnnL245sX1Jb+t5rz19oKHb79NTqTdGO7dPsQBX3/1NfdvH/H2hx8wiZbVxYqiMSg0g/HITLGYlHzn/XcgL/nq55/jug4fLAJPa3qs9Uyqmkxrjmb7+MHiveSt+w/5P/29v8NXX5/w84+f8fD+HQ7mFddXG4y1hBg4X67Ybjd0fYqaEcGxtQM6r5A6Z1Ll4Czbpk80BamQqkBIibEd1qWIMZmBlJpoLduuQ2eKuipB6EQCDCkuprcGFy25Llmutjx58oLjvTlKCZoLk0g4YcXBfM47771H17XcWuzx9NUpOk8ikdXLE/ZuR27duc3FdcvqYsk87HH33Ye8vX+LKl/w0z/9My4vrsilZ39vwfXFFVfXG+r5PtdLy9V2RdsHAnC1XRGcp641IsvYm8/pOpPEPlVJDI7zi2tOXp0znRVI71nUM3ov+eA3f5v7t/ZpX5xxcrbl8uKS82XDeohAznq9SvE33gARrwWvrlcoLylV2kC2YcBFhwiBwQxsh55JUaDGzd5N2zE4C0oymU/JnGe93kKwlJki14oyy1KsZwQvNIt8wkb2lFWKwdiY4YYaUmQZpdYoIkpktL0lxkCeZzeijojE9APW+uR+zQTVZJridSTIkFz7WmXY4MbNaYcSGZkWRCnIiuT6LpRGCEVvbbqXC4WI8SYmAZnkBDF4kHF0vCYBAWMcgCANx1PUwhj1pPR4D04xaFmegRAp7tTZFAsANxvSMcpRx5Ec4ClyTI3Cj4BSgrLK8F5R5JFca5bLht6m4UMchQLW2iTyynQiFHoPSpBl2ShSjmR5TMNeLfAIooQsU1RFwXbl6Y2lqCrKqqbvO8xgUXlGVZUjnVMxdAZnk3io23QIKrTM2W5ausYlCYZKrmgxnm+VpWi/uq4wTYqxU5mgqHKElLSbDucFxjqajX/t9Hbj5j4ChESIkbQzUm1GmRfWBXxIfx4jY6QXvyCwIabn0ypFzMqRKipHt7XpDW4IWOPG6IUU4RBEIIbXrnIhUmRdDElEI8Uvet7hRk6VTOkhjmSQRKnaHX8METdG+v36ViAg0lt1vAw3Sc1ijOsYB2jfjvNgJHF5v3P4h1HMwQ3NKz29SP1l8CniWWvA42+Ega//CiP5IomdxgMI4++/GfIlQqgYf1gIbswZQoyiq3EwqL4VMZ1EfvL1ew3wPkWB7Rz2KqmXRid+oruGGHEhjGsUgfUe50aKT6YRUhHH6GwfIypGjHfYwfPo6UMOtvukqBbS98t4bEWe44n01qCEQAmdBq0uRWtba5NgJksx2EKkgauQyfxRZBnBuER18C4NJHWGlorgPM575LiOcs7jY6IF7S3mTGc1VZ6zatY460YiA9jOkw2a+qjAOI8z6Xo771FK73AIaUAqksg+xkgZMkqdE0IgyzN2krw8yzHSJfGOT6ST9F2ZrnWZ6ST8kYnSut1sUlyPknjn2PbD+B2dSLA+SLp+oCpKhExCN+Mt3gUmIt0TXPT46MiUQmpB7wzeRwZveLJ4wnl1Cg76wYwkiDSw7YYBay1ZVSViXkzfB24UWKa3XrpH+RgYnEVlILL0nZaiYAQUiZCBj5RZjrOBKi+ppzXeB9quR6uMPM8J3kAAYw26yLh/7wGmtSymM4wzLFerJDYTMsVi9i3WB4ZhoG16Dm8doElD9+1ywJqQrlkwHB4dMq0XRBSbbZui0Osp26sV1V/VfH/1PfYe7BPmgb7vKPBM6imZ0Ozvz2jbls26QStB0zvqqkbFSPAOGyOzWc31xRVaCcpiRiSSZ4r6zjFKCJrOcHm5BBVYzGsmRRLTDb1l6BuyosD2ksYHVJ7MTquLK6KUVLOSui6oqiO0yMlUQWtaltdrLm2gmlfs7e9jbMR0A4Npmc4KDo/voHTGxcUVVVkQpeBq3TC0nsO9ObNZyUXfst10zOYTYgwYG0AoPALjekRvWSwW5LkmVxn7BzOEXBF8wETH8uwal/ISyTJNoeVIWYP5YsF607Ptt2yuN8TgyTNNP1iyVmG9R9cVucqpHMgiZzk4+sGRZ+n93HaGpm3xMXJycsbhwR6ewLYbOL51iygi27ZJUZNtz2Ix5+XJKbPFnMlkClGwbTeYvqcsS0KAwfTYYFmtN6ioOTw4YogtnTEc3j4g358RBsfF2RVNZwltohFH4GK15vJqiVytuHX7LkKVTOYLQnBEF8h0zmJP03QtmVLcv3+H2azGDkO6RzhPjBIfocwkeTFlspgztAPn7gznLZKYSGU+ooJGxEhZFgiRyCiZLnjvnUdIqXjx/BwlNYujahQpOJZFzsX1EucDzvWjuDkgCHiR9p+UlGiVoiFDSGQkgRrFkgHn07BPwhgdBdb0AIngqVSimAHOewge5x1KClwIrFZbQh3IVPqsMgpPezuwN5tzqywpshRtaJyjyFQiefWGveMjnHVs+h7nPLP9BfU8524x4cydsG3XNMFRNyXKwXbbUk8nDD0MztEO5kYI0rQtdZmDkuSj8a/vLWKM2G3almY7EPDoGMhGUq6uSx7cPcY3LUPbY/qBphvoTOr3nA2JUITg/U/f5cVbz1kdrRhch4rJEOnxSUgak9jbjvfxTEpiBDNYrHUpOlhrSq0YBoO3LkXAaY0SSXhEBI+gUBnKBaLW6FE467wn+kRdkkKgx/guFwI+hhsD545ylEQ6LvUQIhlrdK6RyaIAAaRQeLEjCQExoPQoaNbyJg5NSXXTY7yOaUv9YvpXOYrbx1+8E77E18RWEcdu5obcI0ZRUdr7FDL1qzEdRiI0CW4atNTq7p4tjvu7YuzT0gpG7/Z8VYqt7YXB2HDTVqX+JowkVXljzAgkg0oyPQSEiCP1PjVpyXshyDJFcALTW4SU5IUmZB5rHUiBzrMUpyvSuXM2RfYF57EhoqoCYxJJLeyoqOJ17K/UyTCbZclUa4UbzSAyxb77gLVJOBe8x4jdNd/1nzsjwXje4ut+E1I09o3YJ8aR3pke+wud/iiIklKnYyQSZTrORLyMY7RhuHmum2srxA39SewoWDcapW/9nvgLf7sRoO/6251vZteD/+sETm/qP9ySXvIHf/wHPHz28Fd9KL90Ka+Ybqb/1j9XdRXa/frTeP7yx3/JN4+++VUfxq+0RBD8zp/9Dn/4x3/I/vKNQOlNvak39ctXMRT8/X/89/mXf/Av+fLdL3HavWlt3tSb+jWtX7oru0ENj4uY5NhJbuYwOnulVISRpCTUzgEL1lqij6MzhtFd5m/czDduYR+wMRCCYGO3+LCLHtghitPv0ioJiyLJxbTL9k6I5pBETVImgRORqGQaHkmJEmlxrMqSkI1RIzEgGZ2jmUqDy3Fh1hmLFYqqdGjSAlZmGb3pE357loZ3prdgkqM7CElvHM5DWRfkUmNsoKwKlJK0XYsSMAwD3ie6jJCSMA4RIEUwIASlFmQOXEybqkKCHywBhVYZs+kMpcYMdwFCp4W/C468LAgxMjjPqt+ihGc2qRiERvhI3/b0QxIYRaHwQXHv6Jgf/cZ3Obp3yKvnL/nzj37GsxfPGYaI14qtS1EDUgg669OAJwSiFpgBemuIZUDnEikUzgVE0EyzmjpPjurDg9vkaFw70DrFDx8/Znq4xx//xUcoJzm+fcxkUXN9taTZWGRQzIqMq87yL/76I8y2oTCW7333Ic9PzziLjnJWYxrLLM/ojKF3AUpNO1i88Sg09bRAKoEJPQ8e3Oedx49QKvDpz3+KWV9hjMXGnojDdJr5fEY2RhQ672ltR9sbwNP3De1yYNu2CKXovU8Eln5IiPhc0TkDg6dUiqzMGJZbbAdK51ijuVpu2HQDD46nHBweEI0iy2sElunxMSqTbM9ecHVxwnvvf5dSFxzMF0xyzQe/9QN643n62TOkdgTfUU0PePj2W+zfnfLTv/mUuiio6orl5SVIxVmTaCfOGi6uL3n8+AG3Do5xW4sRHdV8QmM9V8+uePXlCVJpprOcbn3Ns9NTdFEwLaa8fXxMPNzD24HgatbNwNXKcefePWaV5q/+/E8oVMmPfvQevlnStj1ZUQGWly/P+fiTz5kv5qip5LMvviR2nh/uH7G8vqJfX3N45x7V3oIHj8B1Hc3mjK7bULQFz5+d0hvB3/5bP2YyLWg215yfXVDtT3HSEKLhrXcf8OrFGWVQlGRcbq84nOf8xoe/jXMeoyacXm1ot4b3vnuPe48POXt2yskXLzi9uGB+fMjf+jsPePn8hFoFXnz5nKLKuXV4SFAZ15nhbz75iL3JHu88eoetgY8/+ppFXnHvvXt8dfqC7u4xyli69SWf/fSvuXfnDrcf3KbpHbnI2Ts+YNu3PH36koWCerbP+ckJp9+c8Oidd9n4NXGWUaicr774irOrLZ99+jX5zxzv3DpGZ5qH7zzGRc9L/XOqGUzEIZme8PD2jKg8cr7HF599ysuvn/Hqmy94+vyC03XDf/ZHt9nLFPfu3OLUWWznmB3sM7t7i+/OP2R5fk277Th7ds7RUY0PGXbVU9YlJ8s1y6ZhMZ0zrStWZycsN5f8/t/+Q9qN4cWLcz765BP6/pTf+MGHvPj6OadfPUcRqG/t85vff8xi+gO2nePJkxc02xUHU8u6MxzfucfRXsXly1Nk01MWkecxUBcaITK0hH5oGIxhaFvqumSvnBGUY9gODK3ji4+fsl21LOqao8U+1TRj3UW+9/iQupryr37+U05fSaKBvMoR3jEEj9aKftvQxZ4yK0BEsqJK36tSUNQFwSuIW0CQqWwcHI4bhzYkJ2yeIh+sS3E2mdYomeHMwPXqis1my8uzGmKKFitUDhJOplO2m4FcaZptYDqdpQ1fBMjAxz/7mEdDz/bqgtVyS3hZ0PqeR/fu06477t85YtvmuN7w2adfI7TA7pe8XF4Qo6ReTAk+icFUloH23L99xGp5Se5bZJyxcgNFXnF6esY3z895dXbF43fuYTdLYq35g9/+XebTQwg9i/09Nm3Hl89fsrSGh/fvsJdnTCY155dnZGKGGTqWbsu22xI7T6kF+aSiUIqiELSDS47VQuK9ISAZnMdJUHWBCRavUnzsZDbh/q19FnVJvx3Yth3BBYJQmN6w9VsO5nPqusZYw3B1ycY2ZDojEDHBkcckGMi0wpmI6R2t7UaBUYbA46zB21FEbX1CWttA1w0jGSRt5udFPm6oR7puSLQJ44jeU9Yl3vox7gCIMqFipEDqJPRNTmGJ0umYvE9RI9HvxAHJZp8MzTtxg0vyFAllUSS3vnOI3Wb0GCOQNrV31MvUh+W5BiHwLg25vE39mPc5CM/+3j7TicQ48E1341TOdTFGCrjkZFZZohFFj3cptkgKyHROofPUEsaILiRFkYZVpvOsVw1S9xRFkeIYnKdrWiRQ1hUShTOeZjvgjcVHn+LxWsPQDWMkVRJcCJFITHmZ4mWHzmB6B2NslZKJtBB9ioow1jEqFDBujBS+wVglMVCm9U00S0p5UASXBkY6G8k5LowDJ4AUEQnj9R2j9ASCoCRxfG8KqdIwWUn8OFi8mVoEkrU6RkQUOz09o3Yb5C7C4vVgI8VMgBBqJDNEkGnQFuMYLfZtsc6vaQkhbxzw8K3BW0zjmp0gXowko0RQFQh2EdKjq1zE187/OL7vR7f5jsYjo8AEM4rzdudx/HVxN6AS43AuvB7UfEukJNjRiNLnRil1c1xSgNA6DTjDa0FQGsaNZKhRgOR8MlBkLtEz5EiGtd4TCchRmOqtI2UHpqGh8+nzoHUSC3k/xgdJgXU2vZ2s5/7Th7z3/D3kGHMmxyi6cDNEBOVToIlQKg0OnSeS6B95nt+4/eONmisJJpXW49oigEsxq0WW4Ufim7cO58MoupSEKJjVE27fOmIyq9hsNrw6O2e1WeMcRCkwIWClZblY48fhrkgXBe8hekfU4YboFnbGEqmZxBKFoK6nKXLGOmwI3N7fJ69Lnr08Q0RBPZ2QFZq+G7AmUTJypehc4NnpGW6w6OA5OlywbhpaArrQBBPIlcJ5n2gXSmCdJ/gkMMuydP599MznM/b2F0gZuTw/JQxtiseMjigStaEo8iQolJIwitFwHkHEOYMdI0UZBUm74aogDWht8IlYJ9J9w3uLH7/PvJd0vcE4x7zOE6XEp0hNEQN5PUFIgWnXdO2Ww4NDlNTURUEmFYd393E+sLpYI2QgRkdWVMwXC6ppzunpBZnS6EzTdx0IQWMtg/OE4Gm7jv2DOZOqJpiAw6HzHBMi9tKy9zf73Hlyn8XeBNd3rJsGoRSFLtira6hKgnfIkNGbFGc4m83IM8nJyxcoqbl9+4Bg+3QvGkWHm03L+cUVRZEjC8Hl1RXYyLSs6LseZzqq6QxdlswXgmAt1jRYZ9BGsV5vcV7w1qM75LnGmI626cnKHC9SZM5if85205BFgUbSDh11obl9fDeJNGTGtjNY4zk4mjHbq6jXDdurNduupahrHj2es1ltyWVkfbVGZ4pJXROFpDeBk4tTirxkb76P8XB+tqRQmtlixnWzxk0nCO9xpuPy7JTpdMp0PsG4gEJR1iXGGVarNYWErKhot1ualWKxd4CJhphLtFRcXyVR0OXFEnUW2JvWKCmZ7+0TY2AjL8gKyKlQ+xnzSQEyIIqSq8tLNtcrtstrVpuWZrC8/faESilm0wlN8HgbKaqSfDohKzVHQ48dHOvVljLTVGVGNAGZaVrr2fZ9+vOqwpmert0wXUw5vHOb1XJN2/a8Gl7wML+DN5711RI3DGR5xmxec/j4IVKnuPB15yl9DyF9J98+PibYga7pyXUiJSkBZaFGg1zAu7QmlkJSTyoyrcD26VxdrilUloxpeU5dVax9x2xeM5tMEUpzvbom2AKkRI7i8kD6HrO2R4os7XNJmb7bQxKg7ASYMSRjmxRy7G+S0CW6MXaK0dAXA1olkX4YzXFJYNYn2mtwI91apX2O3lEVBa3SlFVBkeXIkVq+XK2xMYkw222Di4LOD9y5fSsZwMocQU2MnuvrNWVWICYFjbeIrUUXOZnO8AS8SvG/dV0RnME7i4o+kb0yTRgMTdNwtdxSVjlVnmK337p9zHx2kFrjLEdNBP3JKeebDfWkZl6V1EPBerMmxsiku8Phx3ucza/42bsfMxQDKkt9mFaJOBXDaGT0nhBS1JULAZElAVmUiZilMs00z6hH0VDfDUlAMvYkfd+TK01ZppjvfkjE16TQSd/PinRvVlKOtLuIcckMI3QSNIeR6hR8TL2xj6l39olml4jsI31e7e71AT8+n/cerXaiNvctYf3YR8mdUzQd2uuI4pEiFMQNYXLXYN30vqTH7Gimu6iwbzVp6V68+xXxtWBWjvexFPWc7vnpkFLEbZYpiklFjAIfzbeE5qmfHQaTeiORxGox+HE/N970f0qqRHiNiYyU6WQw9SFgjLshuu6Is945HIIs1zfCoUQcSp8doVJj7Ud607faz5u1mdKKGEKig43rNEYBkyCtiZwbKUWR0USyo09xc6KlTo38L8TIjXQvNVJYb8RiO0HZDbUoPV7KnVjoW1HfY3+bLs8vUo92782bJQq7hYS4iee+MULEXeTx+HbaHeModJNS3fTVbwhK//GVDJI//OM/5I/+hz9CBfWrPpxfukxu/q0pSgBVXyFuPmO/vuWl/496oF70Bb/zZ7/DH/2zP3oT8fam3tSb+rcugeDR00c8eJ6Ie//oH/wjVnurX/Vhvak39ab+NfXLk5TGFd1useZjBJ+oMTpPEQXWemIkIbQlo2MUtFJEAc47REgOc8JuoCDHxRyMy+zkTA/+xu2T3CMJkUsEIT1KJQel3zn+fXJ+pgXkmGmvFM47wojmF8jkMnHJaW6MGze9k3goua7MzYArjlnwchxIhJgQu16I5J4znr4zBGuTm8qmwCCLRQhBVZbkheLe8THtdiCrM4z1eOOTgEqIFINTFOMGlkBnCdMtVaQqK6IxlKpAas1AcrAFGVB5mdzNKkvUCgHbZosYBLnOqcoC4ZJTTylJECkrQcq0wW/dwDY0xCAQKmfoHZnOiF7w8vkVP/3kS549fcZ1uyLGnslsThSRqs7QSmB8pB8Mzg4MtsdbAeNGmzEWIXPAI4IkLzW5LtCy4PjggFu3D9hcrUAWFNWETOWsLq6RPjkYl8smudacZW+ikTIjz3ICLcIHnKqppKSaT8lW18xdzXbdEoxgdnDITATKYsCTBtz5tGa/npFXNTIv6K2lXW7QTU8zbPnyyxdJODZe8+AjfdcSnSGXEhFiomL4iIgBvGdNQ1lWHB0esGpabABrBpxzECNKBpyEHMlq0zITFZnKiTqgC0WUAqRGZIHLZosNntAF1tuWH3//x/zwt36Lv/roT1k3l0yLHOEiWsLJ16e8/94jvGs4OV8S1QQne+4/mrN3eMBeVpD5jFW7QlY5IsswKmPdbDE2sNk2BN+BqTmYHXJ0dJuPf/YlyI7a18h6wdnlOUuzZXK4j/MDVy+f0qxarltHKQVHU8HxnWM+/uQr1tseqpxcRLYXJ2SHUw6P5xSyZH60x2a15PD2PrfvL3j62RPa65dEoZhM7/Lg7TuIvuP44JAsOr75/Dk+Rr7/k4e0fcvnn32O0nC9bZmKEj07ZjCWR48f8/Z7Dzh5fsrXz08ZBsdV8wpdZBwsZvTeYtyAUAvOTi44OV9zdLjg4jqSh4BVSyba8fA79zneq3Btz7PPv6TdbHj83beZzirWl0uO9+ZM6oJnL85ppeTnT54hkLR+xavNko9OTvjuZMLJi5ccHc+wfsOf/fnXvDi/5Pbdu/zOb32HTz79mOWV4XTT8fb8CJm12KFHZwN7c0Xcu8P28oqylKB6bh/uQWz5+U+/4dadY+YHh2gXmWvJrcM588MDDvemFFozLTWff/wFR3XGTAs++/Iz1ssV08mPODk9Q8qXbLbn7M8qbs8t9lqRH04I5hpsGgatWsfVcEm1XrF3+y4H03vcnh4Q9wTDuuWrr5/RrAIf/9VH/G//D/85P/jBB5zNp7x4fsbl1Zq8LCjmBzy8exd9bJlpyf/w+We86s5YPzljkwnuHS346K8/4mi1x6O3HrK93rDtGqJWHNw6xIfI/UcfsLhzwPLyBcYZsuWG1gz0UfLed7/LbKK4XPVcXV2w2WxomkC92MO6gM4iyA4vPMvliu32mh/85PfJVcE//X/+j5ArPnz/AcNqwwe3jnj7+IC/+ennnF2dMS1L5tM9mrbH5RlrMzC4nrIsCEKSFznGDti2RYqMupwwnU0xJm28W2PItUYAzpokXIgpKqisSpSQOJfiSHrTE4LBizSgiKRoSu895+uWy1VDITVlXZPJFP+5XxbcOtqj2t/j4buHDMeOf/XnL3l62nCx3fD86JQSmNUZqs6o53OELui2HfuLe9SF4PL0lPsHh5iq4+XVih+8/5Bt02Fthlcz8glU9R7zPKO3nqdnG4Yo+c5330MFy7UPhL0Fgsif/ot/RbG34J1Hhyg54fjoPkdF4P137tJft0iRU1Y1zfUVa+EJa8ewaTCtwdQ5B3lBVBUyU1QyQxhDWWbYwdA1PUpLSqUx3hJ6R+dayqKiKjNm05IyzwgO8B4UqAhTLbl7tM/+bM7VZpWGBB7KvCSEwLZt6AzM5hNUJglSYFyg7wyIiMoU0gfsGOmVXLsqRUqokUbiY7q/ZVCUGTpLgyIlFVrnOD9QlhpiIERPb4ZE4EHexD5JLZjtzYk+UbYQsHewR1EVGNOxud7Sbg3epGiq3Rb0yMggjkMFnSfxjxvJPHHsz3aal7FjSz3FKHIxxpL222MSRhFpO0M3WMpSk6mOEBhpP4lQQwyImAZog02OfydTPFSI/mZgoTMFIdJu2jSoyxX1rKIscobWY03AW7DG4AZHXuTkWYkZBjarLSAJrme9ahh6myg2MdCElrzMxhlMcnVLrW4GMcE7pMwIHkw3pHMxisj6tkOMrnYpEs0F0tBntyGfzsfooBYCqTN2USz4iFKastIomQYOwUW6Id3jk/hLj/SimCg7MjnJdVbQDwJ8GsqEX+idUx8pxsGBECGJ5lF4n4Q2chTci3F4lZzqYYyWSwSrdPw+ObFJxJ5vR/3tjuvXuQTj0IvdcHA3nNkJ+dLkTY5u8zh+r8qRkLB77ycj+rf5At9ar9xc69d+cbEb0sQUoZEITYxkkt1zpz/fHYOSSQQYwu7cjtE947AnhDRYjAFEpnbcAbxLgv5dtHUaEr0eavmYzAVpDROxNsWGBGIyfJAiRcUopFNaMK0nOOuQWXL2Rx/JOs3d54+49/QhmUqEuBQhlt4fIqbY6+gDWkuQEs/O3DCKwkQaDMaQYk+9twg3RtRpibghRgiiECDSuk6OVKUhJuqtkArn/BhbJNhuOs4urlmtVvRuIEZLnqe4rixTeJEhpMZ5S/AOP67XdtPRXbQ2RERMAh0tNbcv7jGpp0wmFUPXp3WczpFS0TcdMu56+XFIGjxlJhFCjQNhl86LiGiRkZU5aujIQ4btHSFAXlUURLT2I1FKoHJJmRWoLENKhQsB2w9I67DOcHW1wTo7xv2ka7sjxMlxiOiCZ6cxFDEykKLL6kozWIsfh6khJJqSRBJkig/qjaEQ2beibUYag5CgFK01+CYSXYp7unPrDrfv3uXk7AWD6ciVHCkesF02HBxoordsmw5kRhCW+WKRyHdSo6Kkt0N6XyuFl4phvL8NxkBw4C1VXlFXU86314CjlAVTc8jxT48QX3vyokrE3e0K0zt669FCUOWCyazm/PwaYzxkEiXAtFtknVNNCpTQlHWBGXrqaclkVrK6vMZ2GxCCPJ8yX0zBOiZVhSTQXK0JMXJ8f451jqury3RvGAy5yJB5jfOBxf4+ewdzmk3Dcp1oQZ3ZIJWkKoubmDBESbPtaNqBqi5oO1Ax4mVPLiKLwxl1mRGcZ3V1hRsM+0d75Llm6HomVUGmFat1gxWC8+sVAoGNA1vTc7bZcpxlbNdb6klOiIaXr5Zs2o7JdMa9u4dcXJ7Td4FmsOzlNUJavHcI5SgKCeUM03UjgcQxqUqIlvPTcybTCUVVIwMUEiZ1TlHX1GWGEpJcS64urqi0IpeCq6tL+n4gz26z3TYIscGYhrLImJQe3wtUlYPviV7ifKS3gc636KGnnMzYLwq0zKmnFQK4urii7y2n3Tn3Ht1h72gPEY/pmpbNZst0Nscjmc0W1GXGNNd8+eVTum3L6ZeG1sNsb5LWBqslRxzisxzrt7gYqSYVEFC65N7+Hj4YmuV1ilhyDhcjZT3lzv4t+t7QDwNdL7GDB5khlcYHi9SJyuN9YNutqRdzDo9u8erFK07Pr/jgg0fYwVAJweTWAddZw+XyGkGgKkocYAdDFILeuBsSi5AKiSd6hw/pe0znSYRirR1F50mEHcbPvxjpmUqlWM84fpeFEPDB4kJM+yMxxcVB2mPqBpei8VSGUqClIFeS+aQCJZnu1VSlIMSGk4s1G9PRNQNVVqBHMUVe5SPfU6JURT3JGNqGXGumZcn1ekueV9SlIgaFRSAzgdYZ02JCFOn7tx0c88WcMtdstxtkWaCLguvzC9rBs3c4oxCKIq/ZW0QW84pSZ2yFRkrN0LdYM4ARzM+nfLB+j6/e/RJ7nPba0CrR0oNCSgeZwg4WQRLzRgHe+vRZCaCUoig0uUpxqEKpsR8T6BApioxFPcX6RKASISSjpkgUrRBGUbFOIupATPufjDGxu6ixXR+DQI2GgTiKyJPPMwl+dDZGqRLQKiPGnSBaplhW55KI99vdkwjoPEtrAevA+9RbFzmRiB0GTO9GAtO3lUrfEoePIqSdqGcnXvn2o8XuZ8RrkVIMEedT9O6OwBRCpO/t2HMIYjRpPzbsyE0RKZLA10eSgVHEG4q9+JZAXQLeOrxLPUBe6DH+jDFaLfVOwSeaZNq/jZghxc9qGTHGYUfBqyCOdKhw0xMx3jIF8rUKazSGODtGZ4/i7iRseh37JtVuX/o1YWgn/dqdI0QSjUHa7t6tvV6LlBiNHn7sDeVrwT1pPzUJviTepz3nm6ux0z7tjvu17P5G0L/rOb/dB387zm8nwN9FFH97vXAj9OdmSfFrv554U/8OKsJsM+N3/+x3+cN/+Yf/XgmU/n+uCB/+7MOb9/ub+jWrCNppbp/e5u/807/D29+8jYzy3/xzb+pNvak39a8pgUAFxdtfv80//L/+Q/77v/vf8+ruK5x2RPmmz3lTb+rXpf6tRErJ1RFG/OvoKNY5SimGYcDZHZ5WEHeoXcKI3k0iI6nAkzC3kjBuHqdF1s3/RzkOZyKZ0olKEQNKKOQudqDI0uNdohepEcWb51n6AtIyRbc5kTbdRxdbCClPPDl70oAoBI8ZIplSCFQSQ4XkYZNCoiX46Ig6x7mAN5ZgHMYEuk2XYidUoif13iAzic6Sy9uZSNsMTOsCLwNeClAaJVM8UNM7cp1cbsPQs/WG4D1KSDQpH7nzltAbiJAVBaoo8USCt0m8IiJqFB85F6mLCiUlXbslxJAi2IDgYiJDGE8IBpVponMI4SAI5pMJm77h65++RAFSBqoyQ+eS6axG5IL1xoGUbK9WuMEQVUTmOXiYzmeoXHH28gznHJmU7E1LZqUmUxFJIPpA3xi6PrC+bvFxxen1NfuLPep6xleXL1g+3XL/1h1u396jLiWLwyMGrwhaIAeFXMwpK8H18oosBvZnU7pe4pVl2bZIAnWZEaMiyrTxse62yK5DlQV4yKzjz//iL3l1fcXFuudwXnLreMLVZovrDV5EhqHDekdnEo1BCYHzFtM5bBs5ujWhnk6YTiLbbU/UGTbzxJBcZSqCHSyRmEhbAaL32MERosfagays6HuPCoHjxYxqWpAXistnLzl7ekKMinJWszUd677l/KyjVYr902uObx2jsbRD4O7ePsJH/uSTn7O+OGN/f8Fvf/c7iJDzat3SrRoWZcEHjz/gs8+eMDl4wCyf0l9dUk0qHjx+j5OnZwyrnigK7j98i2FrsH3g2fmKsqg52FdkGRwf3MECzBeIoNg/PMCZjsO9Pe7fv0v/08/JouGrj7/AG8+DD95CCk0UkuNbx8ynFcfHt8HAnfmMSMuzV+eIoiQGQdM07M8q9mZpgF/qjnxoOHv5BYuJYpZJCjVl/27GXeP57K9/hsiT+OCrb55T7024ff8e+7MDzi+uOThYkJeCn332KavllkxLppXi939yRJ3lnF5eUBY1D2/focxzJpOazbrl5ekG4da8eHXC5eqcOwfHaCF5cf6Kt959n73FMbIqWRzMOD5YIMvAi25Ne2r55NMnTKdT9ua3EGLD5ekFf/Inf8PR0QHv3z2gqCQP7x2yue74ixfPeX7S0ax6Xl1+BWXN4WxG2zXYM8M3X32CyuDO/i2qssIPHi9KBmfoVUDoklfPz/jq08+49+gOIXTs780RRcGdh3NWT77h3u1DQjllQDHfniGU5usvTvl/f/acB+/c5/0HD1i9eMGfn59ResfB0QFVphC6YohLplXOxdmKw3nB2dMTVJERYoeSmu995x0m0wkiRCZ7W1CWrRfQWyaHB3Qi8v3f/wlRRjoEuS45OX3F0LTcv/+IwXsmfRJo3TmoccuOYX7I2dkpD9/2/O4P3mVWKV5cNty+dcT51Tmff/mM623L4cEBk0mJWS/5nR//CGE8T55aXn75isnhlLNmyZwFQ4Bbb9/l6ZMnDNcbfuOD9/jsm5zlcoXbtPRNQ5SSWmdE7wnWsm3MSLZzxFEoUJU5k3oCEVZ2SVEksoxzFq0UxvUUVY1wAqkyrDEIoZjNFil+qu3ItKSqJ6ybDX2MZFna8BcCOt+zPl8mnHs0zMqcW+czfvcnP+SgmiJqzYffC1Svluwf3+Pq6Qnb1Zquqyi2BdMywwnNsumYLQ54+8PHVFVJdA45ONrNhqzWyMFgvOHRO/dolxf0AfbqOZuzE956/C6Pvvs2Bwd7/PWffsry6hWrFw2fyS+42JzyOx8+ZFJKvnjxNfNpgS4L5rM9bBtp/Zr7bz9A3Nrn1fk5gxuQg4BSsu23DG3HtrdIBdJHvPEI4Qne07WekEWEBmKgVjsijsVbz9XSMFQTqnzC3iKjNQ3L6w1aCFbrNblQICTGeUQQiaDiLTrXFHVOXpdABONRUWCanqzIiBEGG7AuMlhPEKAzKOqMPNe0qw6lFfWkIMRAUSgyLXHWoUVM7nlnkVJS1yXBBwSKGHvaZnhNwVFpwF2XU7Jc09sBmSnyKqcsFYUuWemW5eUK75Io6PX2cxzhO6nvcs7h3C5ObheRIFJM0W7YojUyitGZndy/Otttkidhd3SRtrMM/TVKKPrB4XxESciyFAW1I82kQcUuhisNsfRInjRDGkhIrSkUxADWBFbLhr4zN0OKGBJFCaGIISZySNziXcAYmxzVIbkFhU/DislsgrEuuddvIiYicvw9+N0AYhyshORaV1IhVXJH50WGtW4cKiQBQBoEjS5isbOmp95RZZEsV1RVDhHaTc8wuNQ7+jRAsSM5M4nKR+JSoajrKUrrNEQJHjtYjHE3cR3ENLDUBehMs4vVE/61uGgn3rmJ4IgCEeKNUG03sJRj1FsSbSX3vZDh/2vo8OtWu/UE7IZiaUgllRrJMKOBgNcDlLCjUKUfe/36ktrpRpy0S8CASAiSb19eKcUvxMdJkQwIOyrW7v0RJSMhdjeoEUitEEGMIlRxQy4LPtyQnHbDIe9GitIN5em1R16KFHYnRzptcKkv9j7ijL0RnHjv8dGPg0xAQvApQibXmiAiQQiOro754PP3mPopNvcomdYX3juM8eyiWMYgF2yM4FIkjtQKpVNUWozpGBSjOQM50gqS6MlaS4zJAMJIGYgCoksR3lLtzCep/y3yjMEalqdrBGk9lCmJUGmQKhQMIq3rfHCJHiVAKIUMkBc5Ukm2myaR54SgyiWFlsy6moPVAlTEGY9zMHQDkZ5t11GVJVmWc9WuGXrDbDJlOq3QOsVZuyiJokN4gShydCbo+g5JpCpynBMQA711yNH0QhzFWcBgDdI6hFbpPPrAq1cnbLqObrBURcakyugGQ6Fz9GiY8SHc/F2Q1sneJRFnPcnI8oxcgBkcUcpEZQtjhHlMgq1IGm6O6ja8cyOZyaN0WgPKGKmLHJ2nAW672tCstsQoyIoc4x2DszSNxQhB1XTUkwmSgPWkfiRGXpydM7QNVVVw9/AIERXbweIGS6E1R3uHXF5dk1dzCpXjuo5pmPKeeczi4z2KZkIwnjg3OOPwLrJuBpTOqKpEhZtUUzxAWUCQlFVFDI6qKJnNp7izS2R0XJ9fE3xgfrhIg2Ukk2lNkWvqepLWoEUOWNabFka6mTWWMteUeYnWmkwWSGdoN1eUuSSXAi0Lyqli5gOXJ+egUpTa9XJNVuZMZjOqoqJpO8qqRCs4v7qg7y1KCnIteHC/IpeSbduSqYzFwTSRb/IMM1g2zQABNtuGdmiYVjUSwbrdsNg/pCpqyDRFlVNXBULD2g6YJtBdXpPnOWUxRTDQNi0vXpxS1xUH4/t6Ma0xveXles3aWszg2HbXRJVRFznWWkLYsLy+QCiYlhO01gQXkVrig8eJJLjdrhquLy+ZzqfE6FIMmlZMFwXD9ZL5tAZV4BDkpkEIyfJqy/OrNfO9OYfzOcNmzatmiyaSa0VeFem+iEVokUxixjOst7iYei5rGw4P5kymVRJzKoVUkSAj7WDJJ1NM8EwP9pnKwyRozCu6zZquXVMVE7KyYDCGA60oJwu09xDT92FuA/sH+xzv1bRDIizmRcbJ6TlNbxBSMp3UeGuYViXHB/tcXV7TbweaYkszdClW0wbySUk+lDTbLbM60aiuVqv0XW5touBIdUPnc8amaK/xfhR8QGlFoQqUVpjBpH2DLAmR0jUJKCHH2OkdzRy03pE8U0+RZRnWiVEYE5NQZYyDNUNzExusJDRtw2I2odSKSVESDw6xQZNXU/p2YOhb+pD20rxzCCEwIeI9TKdTyv0cbwxxFMYYYymVYjN01LMpSmq6ziSBn+3Jspy79+9R1jl9Y7i8alDBszxfYU1HUdfMJyWriwucM8yqmiLL02sKLVlVMJ2VDG1HWEWCC9yzd9j/eA+bG5YHG5ppy/nxKUabkUYVcS6ZKYVK93QtuKHuxOAxQyBISVFUyZBAoO97gvNIAb3sUZlOsauRFMUZ0o1cFxky00kc432KbvU2mQgyjbfpvutGwXGUILVMpF3r8SSBboiJqKqlGIXPuz3Q9J7RKtGDUs8rGaIl+vCauiNS7LPWGmPM2A9KlBJoKVHK0zX9uBfL6/7pW7UT18TgbwT1u95qJ7aJjLSvHT0pvI5wey26HvtXH2h7gxJ2jAP8RTFMEiuNwdYCdhHXO1GWGns0P4pypE4CpBiSEMwMbrwe6ed3VNrdvrQdLI50j93R/3dy9hgZDQvcrJm+1frvmtN0SPFbYqA49oDjh1drNf63cHO+dp/Nm/O2O79SoMZfkGWJ8uSsTxR/Hwm7+/goSN5pjqQUoARKZenndDqgML6uGxpUTMckFTdRgfEmojq+fg03xzMaX+K3hUy7OPKRWDo+fiekvrnYb+o/3IrwnU+/w9/7v/89FqvFfzSinePzY956+tav+jDe1P+0IixWC97++m1+8qc/4ejyiMIUv+qjelNv6k39B1ICwYMXD/iv/8//Nc2k4ck7Tzg/Ouenv/FTttPtm5bnTb2pX3H90iKlNDQZN+IF5IW6ceo775LgR6cFrLeGMLqRkwM6jIQleRNBIgT4cdM7irQAjSS0r4hpgfUaLaxGB3NyJe0iLXSmU0zC+Ny7YUBaUkesM/gQUmyOJG3C2bTwzbQmy1VyPckMgUIrhRxXiFGmxaOUgrzMyMucoijItMZEgYgSIR1aghYSF9PzF3lOWVXoHLyzXK87OjOQ64iLAR80SmQomRbkWpEcR2M0QHCCIi9QgHMOXWast1u0yiiUxrs0JM2rnPW6QbFzSiuquiYqBSJi/ID1kUoXCA9KgRURYx0iSkqZhrM+UygZuF51XK+WhCyiSkspoJCC43pBHx2DBbyjHSyDteRl2pwfbACRIUSkKHK6oUvXQ+gUoyIlwQWWbUuROcRa0Wx7Yoi0Qwt5Tt8bnr36jExEQqbQuWZwHuMUWbnPwf5d7rz1mE+/+kvOTl4wm5c8e/mC65crSiHSBmbbkeU5WmbM65LZoqLdNEyKkt5Glk1DUeZ0bUsmBGJS4JVkWhU8unsf/IDAcJUBUTEpK0pX0Q8dLlPY62sUAi0sFodxnk3T4YlMpgVaOdZNm66xd6hx1lSUGSpL8RzG2NH5HijqLG1WqkgeJJNqwuHxIX0/8PzpN5x+/RWb0LDd9lxdLpFlRZmVzPYPCJXguneIdcPXL58QveD0lQcxgN7y8PEh88mExaTms29e8c2TlyA1ew9vcTCd8P7jxxw/vMu//NlH5K5nf77HTy/O0PmUSVlgG8O6XSFtIJsaLlfnzKZ7zCdz7j24y2TvgJOTE27t73M032NwgVDMePedO6yvzsgLQT0pOHt+iTGOrz8zTGc1MQzsT/e5d/eY7XogFhl5XYPv2W46Hjy6z/2j++A9Liq+/+Mf8ef/r3/JrcNDirLkm6sr9g+P6Vzgk7/4jP07c9x6RXN9zXd+6zd4+3uPefbknL35HN9vcF0DPjIpc06efsnV1Uu+++PfpF13ZESchM+/+py/+fmnHO7dpcg9n/35p3zn+9/j8tUpImacnJ2xaTYc7x8x2zukuV7ykx/+Nqoo0Tpy796CbpojgqTdbvjgwfsUPvL1y2vICjYry/npFShPOdVE6Xjy/IS3PniHftnw4ouvOT4+xlUlJy8v8b2lD4aT0xOGWhNcS9933D28QzktefLNVzgEP/6t32Jvf5/HAg7eOqZ7+YI//9lHeFlwfHwHEwP1/ADTXjPMG5aTCplbPvqnf8z1/ozZnQOu25Yf/+j71AcHOB959ewJmSp45/4xn335UxbHtzk83md1+ZTmeuCP/8eOH/74Q47u3ifGhrLSKVZvXqEnGa4NDOuBTEhMqZke7vHjH3+IjSptmNY5+/Mpn//0S7qDu6zzNV+/PGOe5zRXPc+fnjGpBK+uLji/WqFC4Ohoj7dvHSGk5uWLhrAd+N47j/n++x/w8aefM5vtMavnfP3J58yCRixmtP1TLl5+zYfT7/Bf/K3fpble4S4vubO/z8HePu16S+865o/u8PybZ1y/OqF/1rJuWpTMmU9mtKbDuA4ngZi+QIMQGDtwvbym73t606NkiugUSmCMwUdB5h15lpEpgZeJmqBEEoruYhmazQa8pyhLCJ4qy2jbLb0b8NFRSEXXDWwygTYDP/34Y8zWsnc45+juXW7t30aXJbffuU+zWVBrRbPa8NHnX6J1xf3H97B2xdXpGZlKw4rTdcPXJxfsTTRH0tP2hhemZbVacmUCH77/Xcym58WLc37vj36Hdx68w2c/e8m9R7fZNpecrXOyuuLjv/wbFtM5Xzx9yenZKyZ7U7LM4QaH7dbYjeLu3gHbiw2VyOjzgrqeUgw5TdeSu0CmM4p5xdBbuq6nbRrycoKuc4ztyaVC5hKZaTZth3UCXdR0LhBkh9SSrCjY29cMg6F3cHK9RlcFqCRUJkTyXCNzSVRjZKqWOCJKZ+g8RcHtxB8RSVZkaCI+Wpp2i3UZIUQyrZiWE5QUSBXp+xah0nDSuoGy0Ehd3IgNdK4pyowEuknDJCR0XZfi6xZT1KCJIqThQozp/ePd6w1l8S2BUmrCkAiiBxuTQCnEJFBOcV8xbfAzDj6UQglF8AYfBMgd2SMJAEqtMGYgCkGmFNElSpIUyfGsRsFIHPugKARlWaCUxjl7M8gwxqZou5DoA9JEmm2PM5GutTjnQQRUliLKXHSEIYnYvQ+0TQfsaDfh9XEGzzD0ZGUidUY/0oNGQXsIieKitCbLIn4nVBpFGYIxtsp74pD6uizLybIU32qdxZnkihciRV/Z4FBSUZaKLJfJge8CLkS882nYISApRnZxDWkwlBeKuq5G53WgrAukjDQR7OATPXH8PWVZMFnk5EWG846+G+h7g3fp/ch43XexYrsYP2tTVIW36b1cqIJMZ4mSqSIacUOT+nWu10eXJii7QdyOWLobmhAjwe9EomOU4Thc2b3GNFhhjGMTN+uHG5e5EOMgZzeIkUmgthvSJIVOMjGM4ie5G859y7G+i26RcvffRrorAinT50aMg1BBMlqkQdq3YuOEQGn1+q8g8ImVBCJFJ+7oW2E0X2RaI1QyW/SDw46E2uAjk+2c7336PXKnkZqR2uTH9VJIEXFKJxpGCEitMH1/E30dAyidjmkYLPLm4iRiVxwHVj6k59RSJ1rSeHq99wgkWqT1QJARKSNdb9PAV4HQiZijBeiswMbxsxoTvc5JP8agkWLVRrKBUomuxLcoA1JIoofDr24RukiXDRjjiDFivQOlsN6zvrhECdLxK5k+v16gqoqqmjHd2+fi+hXtdkNeaFbrNf12SJ8f4bDWJcKZkOSZpig01lhyrbE+0huL1ArnLBKByJNoLNeKxXSGiB5wdBJKW5HnJTp6nHNEJQlddzMc9qRYc2MdEcjyUag3mETUioE4zpiFTlFOIUJwLmnCYiDPZBLqCVAxEXrrSY1zjvVqSbO8xkSDNY6u6xFjjHVR1ZCJFI89GFbra2IUbLcBgQc5MN9PooEyz7hcbVheb0BIyvmUKs852D9gMp/y7OyMo8s5P37ym0x8iZICpQ3WOgY7IHxE5Z5V78nzkiIvmM2n5GXFZrtlUlbURYkPkUDBwf6UoWtS1E+uaNYt3geWl568yBIZKy+ZTSeYIfVoKsshOoyxzBczZvUcEQMBya27d3j59BmTqkZPNKuuo6xqXIhcvLqgmpaEfsD0HUd3brN3vM/6uqUoc6I1BGcgRnIt2a6uabstx3duYwaHAoIQXF5fcXpxQV3OUCpy+eqSw+Njus0WgWLbNAx2oC5r8rLGdj0Pbt1FaI2UMJuW2FwjQiIPHs4P0TFyve5BKobe0zQdyBSpHkVgudmyd7iHGyybqyWTSU3Qmu2mI/hE6tg2DT4TRJ9oPbNqis41y+U1AcGde3coy4p9AdWixm03vDw/JQpNPZkSYiArKpzt8aWlzzRCec6ePKcrc4ppRWcdd27fIq8qQoxsVtcY47hzfMR6s0bbgqKaorqGOPScvnyF954iK5hoRYwGY2yKTi00IgrMpkdFkYxtdcHh4YJyVieqsVKUVYbvPd22YW9xyNVyTeaS4PfZk5eJ0oLjcr0ZgZaRw/mUaVliTIvpDeWk5v133mLbtKy3DcdHt7g6u6TSKR5PZprt5ZJMa+7dOmJvUqHcQKZLjo+PWcwXxOBojKGcT2jWa7abLWZriCFQjPHRvTNpr0uk+0AcxeWDGZBOYt1IxZK8FubGMFJ8kngjRvFavCFSpBgiYq3Bj6KnMD4+BI9zFhccSkiIARMCKmhoGr764ism1ZR6VjGpZgQpmS6mmCIbTVaR5dWSYbBMF3OyXNJu10yqKol8PCy3LcYbDsocbzuadSLOtIOhGDyLqmKz2VItJty+9YBXLy6ppzUhDCw3S6azKdvNhlc+0jQNq/UaRMT5KWVREr3F+chsPkeoQI5CCYnKMjIyBjNQn0wQQvD45C1O7p3y9PAZ29gQSSTcRK5Mwlk5RqumPjIZpwZrRhqdoCgKnEqC/tZYlA+g0v2csS+QSoHa7TKmz30kCax9fC1Yjru+QKV7sfMWYSP41BPkWTbuoQp8SAJ4LSXEJJKSOsUHJzGNRKq0ntnRjnbiG2MNRVFQqCIJm4MHZCJxjRG1QvxPSDg7Yc4ond4JrXfxZFLK1waJ3WPlLqr0tVFhbNGQUqAznQQ0u/ME6dzfCJN2kb27SF5GQZViZ5pIvcZIkwyjOiaAtR4hk9Dfh0AkgBrFNqTo1F3v7923xD7EMeos7Q2HEFMcoU77k4HALk47vfTXcXbfFh3t2v7defe7XvNbAncfkkHR+9ci+BAjhERQ2u1Dpz8aBV2vFUD8wuURIpH1dRInejfuF2dyFDfZJJgfr4+UirxQ6Hw8Fu+TKcOPT39jMn4dF3djEPCBOIrIpZIoocbeOkUj7sACv+5rijf1v6xund3iH/zf/gF1V/+qD+X/byWC4Cd/+hOqrvpVH8ovVXvLPUQQ/+HTPiI8/uox/+U/+i+ZNJM35KQ39abe1P9qlducfJmz/5f7RCK/96e/x1/++C/5y9/8S7bTLUGFf/OTvKk39ab+ndcvLVJKGx9p4SR1yoFPi9kUU1HkFUIohj6RgEJMPyNGkm6W5Qkbe7PaCzgBiN3gTBDFuBgf8dY3FSNSKPI8J8aQYg/GTRil5GhNDqNDKg0RhExu5RBTNj1+NMeMQwrEmAEffYqh8yHliItEtnAhYK0jU5ogAB9xrcHa5IovyoKiKLDe0w8eFyGKZHcOwdG2jqIoiAo611O4FFOihEQrTZ4pyion7uLwYiSqiHMBGwyDScMyZSQyRHx09DFSlxpsGlRkpNiGSGS1bVBZRhE8R/tzhpBx1fQ4n7Dje/M97r59m5/+9K9QnaeYT7GmJwpFjIKinpBVJdZ1YJLDzAnF4CObrmGz6lCZYrVZY/zA3sGUvJzSnl7Tt24cchhM06OVRAqfNlWtI/gUC+C9QCpLJtPmiReCdr3B2SuKTCPzDBUjkwwe31vgo+fV1YbJrOd2v6GqYNOvuVyf0TaGajIlWoe1Fi0dwoFgglCSftMTjGN2OGehNFELyPNx2AQ9guX5NbcPDnC+xfWOelKxf7TH8nJNiIJt1+G8S4j81RrTdBRak+cKXWsG19FdbjFmThQhUVOkRNiA1BrjHNpHdCEYrMf4FHVTZBl1nUhPMpPUuWRRSnKpuDQOWVrWV2dYPKFXvHf/PbJ5Tdd29F2LaDMuLjuEHDB+YHu54oV9xaxWHBzNuVptOb5zD11PUHnG/qJisbjN4f6Mk9UF88kEOfTMjw+4fXxA5h3h8pqiVFgBotTMRM522TCpp2yWLZfLSx7eesD15ZbevGA20ewVNS++eTLSAyq2q2sO9wrmkzmn5+ecXl2Q11OO6imZ9FyuV7z96DHPTi64PLnmg++/j8gznr+4oNmsOX1iGZ5dcd31+MWM/83f/gm37h4QvWK59dx9+JhMSk4vV1gHVjRcXZxR3DlmiBl0kelkj+VmCabh1mHNZrtmaBwXJ6e4xjAJliChrvc5v1yiasWDB4+4d/chs1KhpcJ3PeuLS8zg2Gw3lBreun2Mns354PEjXnz1hK8/+xSN58XzM8rJnMW8Rg2G29Nj9mcztsc5xnmObi3IC8H56pxmecH1s4b7Dx5weHtOiBP++s8/Qp5fU8xKzk+vWOwf8v133+Lq9IR135IhODnf4l6ueWd6QD4r+NEPvs+77z3is796wt/86V/z8PI+B/OC/+K/+vv0W9i2juN7t9lcr3n+1dfsTTKq6YyLpy/YP7rDisA335zy1v07/OA3f5MoM578/GtUJhgQXIVAPdlje7VF157z80ucGfhbf/f3ePi994jGcvn8G3xQNL3n4nKgnAW61RXPnn3JfG/G3p37VFLz6tULOhOZViW37t+nG7acry+ZLeYsJiXT6YTzZ89piMRuA+yhMs2ikPTGMskkZ68u8MWU+WyODQahSmbTPcLwJa+WZ9QPJW89PEapAl1NkNLw/PIFkxcz7swnzGpYr15ydnVJvrgNUTGb7vP+Bx9wfvcuXz35mnffucdnn3/GxSZFllWHE44zxfJqyfL8mlldobKMQBIqGTskEYkUVHUJQqFUPopGBFWuKbJE9ZFSIuQowNUaFyJNs2E6qZAx0PUt196R5ZpC17joyWVkXur0/Swlp9cteXnGh4f7yCxjoXMKFC6T7B9NGK6uODu7oJjnVFqjsJTVhLOzMw6PZ4TtSJQoJToarmyAMiNkOS4veXj3gHfePmb93PPZF5/yp//8L3h6+5T3f/iY/+Q/+yGnXz/l6mrLZttzNaw5Ojrm+GDBN0++4JOvvuTZ6Svu3ZohpOBqCZumZxCSvJgy8QIzDrOn0xnWeobOUESYTjSTYsK01uS5xlqLmM/QMbLdbBmQRDnGcAVBrQUPbu+x2TS0bWB/f8a6aRiRedRVQQyBvsjxOPQkQ5YSG13akJYqxXg4S6aTIDZG2G5S5OZkUlJNSnojGLoeO1ik0EgEmUjClERaFIl2EvxIEdEpQrZ3+ODJcoXKQOosOea9RGcZQqVhlHGKsi7TEMlaTDvQNT3ehiRWULuIAPELu9dypFSGmIZdWmfkY0Sss4YQPAFBphVKJUf3LkpLCIEa49H6zlJNBEVZEoVHCUEQYwyRSzFTzjm8l4QoCIDK04a5yhIdYhiGJJgJAefHmAaVBgFdM2D7iB0cENG5pKwLQogM/TDSjgTs3MAkOgsoXk9FktjKGosQfhyQJCFTSv4VCJHEBEWlMRa8TaIkYBR6pDgsYyJaZUlw5B1ZkVGWBeQ5xpjXEVbWoLQkzxPFRSDRWlFVyd1urN0BTCAk4Vs6khwlNRJF0xi6zhCiZ7YoqaqC4BIxJQ0OHTE6ok/xgEom8RdRYKLDizFaSkjkGHER3I6Iw+i63jm304Ay0TllGr6MkczfdnP/ulWMKfY59epyHICkf47BI8boPTe+7l+Mr4tjBPP4r+N6YidKSmOf16Kgm9gKXg9nxC7ajDSYSd/P4fUQZxxwfdtKnwz2iWjDzg+xUzCJXUxdGMkZIOIotpGSADgfkGoULIVIsH6kXyUCjtYKHxKFKYmWRmJRjATrkhBRRlxw6DG++sGLB+S+QI9CoyjcTcQIIQ38fPTpdwuB8DvhVyBKyLQEH/Ahpk+gSOuJFNks0UBVFvgY6GyiW/kYKYuM2WLB6dkJwgUmeZ4GhQhiEKgsR2YagiW6NAf0MsWMGWcY+kSe682AkQNF1Pgqx247nE2kXe893riRSBVvBpjVtmL/5QE2eqTwBJGouFEI7DAkmoVMEUoiQq5gf1YSiGy6gayomFhDpmGwA+3QYI0ny/KbIaMUYaRCpXu8M57oA3lVpFgt2SXnh0nvZRuhb3qmdUWIluACea6p6pL9Zh+CZHB9EpLqDESPt26kXUhkJnHeYp2h8AVRvB7aCj+ejzhSh1USKvhRxKZUMtzEmIbAmRIUWqCEoPUBdMB0DZ5A9JKD2QGqyLDWJnqVkrSdBRK5y7Q96xApMklV5/SDYTKdIbMMqRRlmVEWU6oqpxlaiixD2sB7l9/hu9cfUFYK2h6l0z0FrchRGG/JMs3gHd3QMZ/M6TuD82uKTJLpjPVyOcbLZJz0HXWlKLKCbdOwbVtUnlNnOUpEWtOzt7fPetvSbnsOjw9QSrLeGIwZ2F4H/Kqjc45Y5Lz19gMm04oYBd0QmC32kQi2XU+I4LF0XYOeTvBIsJDlJcPQEb1lWo/3PNvTNlui8WRjXGOWlTRtj8gE8/kes+mcQifyRrSOoe3wPjAYgxawN50g85x6b8H6esny8hIpIut1g84LyiJDOs8krynzgskkkfkm0xKtBU3fYPqWbmWZz+dUk5IYAycvz5Bth8o1bdNRlBXHB3t0zYbBOaQWbFtL2AzsFxWq0Ny+dczBwYLLkyWnL06Yt3OqQvHe9z/AGTDWM5lNGbqB9fWSKlfovKBdrSnrKUOMrFYNi9mUW3fugFBcX1wnspoStCGQFWWiJtFjjWG1XnN85z77tw7JtGZoNgSXYWxPlIGhCygZWS0viXhmszl1NWEwPf31gFY6xSNO9rjaLtF5RqU1BwcL+m1DY3ownlxoZKEoVbqvRATBWK6sQ6oCqVJc2rSc0LaWvhloiy3TSU6uND5I8iKjHxqu1iIJ5kQgBsdm04OuECpDS82twxm3jw44Pz3H7O9xdXXBumlTMnGWU0xS/PBmvUGi0Jm+ubfsjH47cqLWOn0PyTE+TEoyJXHe42USQCSISrq/DcYgBGQiiZS6vkMpjVQ6Ca2ISRQbI4k2GrjetMisZKIylJRUKiMSyIsKQWR9cQkiUFQaiSPPaqwx9Eoigkl9oogUWtBbQ1CpV3I+UE0nLPZmzLVmeXXJ5VkHDvK64ru/8R627dis1oQgMT7gRKSqCvK15NX5GVebNfuLCVqBkDnX623qibKCXJvUqzqbvrMBM1iKruS9Z4959Oo+J4cnfPPoa2xh8TEZFa0xYxze7p6eFCOTukBJSduZJEjNVFq3RTkSMjXROrRToBUyU0TxOvqUkITBghSpKlXqWZ13SJVMLJG0n2h6O96fRRJbCTEKfXeCG24EJZF4Q0GVo0BEaXFjNABJrlTqv50jy7LUxwSfogMHS/CjEObbJJ3/mX4sEm+ESLsos5teZnxf3jx2XJtIIUdRfgQRkqiGJCYXEWR8TfRMpEZx09OIb/V+SiqE2Imrk0A7ksRPYhQwmcER/Y40ytjrCvwYKbd7YfFGeLQ7q+LmHAgxPrdzaR94fPy344aF2Blq5U0E82sh0Xh8YXzmkZwpdSK2iqhQaozrVikiN4wEWDmKmRKJSadedSRa3mCldsJEdkJ3lSizgxuJmlkSPPkxUnh8fOpP481bW0kJWuNiuCFe3oi9pXgdlRzTudmRqnb/jEjXRo6PF9ycgjf1H2CJIPi9P/m9f2/EOv9zJaKg7Eu2s+0v9fjDy0O+/7Pvf2tt+Otdj549QnmFk+7f/OB/T0s5xe//ye/zB3/8B0yb6a/6cN7Um3pT/xGVQLC32uM//Wf/KT/505/w0Q8+4p//J//8DVnpTb2pX0H98iSluHNWJIGPD2mjRAmJIg3iIu7GXXTjJvIBISWZTo5WP8a7JWe0wLqI2FGTeJ3zHeKIEU5+JLQeF1cxOZcGmzb8tVAUZY6xBuMdUivKPEMogR0cSufsFnApIkOSK41SSaQUYqTvBqKL2GAoygwPWB+SM1knrLz3KdJFZZqsVOR5iQ8eH8ZcdiEo8wIXklimLkvyIqd2lsFYtq1hUc8odQ4oYvBsmw4tM/K8ICAYbAtjfroQEKJHxpiiZQIIqeh7g8WS55osz3A2uQ8HO+CtwWnF88Gl4ZwWDLZB+py7xzWPDo74RE/IaovIJCrmqKzEuciiLOltj3OBXBeIEFk3DWa7xlhDluUMzjDJCvamU4yzSKGY1RWmX0EUtM2Ac5GsKpjMJpR5DtYjA9STimk1xfm02a9UpJ5OQEt0rNhf1Gnj7HpLYzqePX/JZJrcps+fRp6+/Iwurth2G6TQuCEQQsdm3dK0A4FImQscgWbwFEIgpeb84pK273ExUlVTFvWM5xenmKHncES0X2waKq1QQ8/QD2zbnugHfPR459m2W4beMjQGmwfqSZlilWJg8IFCS4xPmw3DMCBIBKsQkjLOdh6hZXI+aklepfeyaQ06KjrhaboW9/IUlxU07YbOD9y9dYzPIgTBLK+4c3jAzz/+gs8++5z53oIn3yxpmlVCuxeB3kWW64KiWHByes0yWxOF5ge/+VtoL9ifT8nqjL/52Vd025YPv/89/s7/7o84P7/kX/w//inDakO92Cd0PQ/u3Ufc6rl/74i3+shXzy7Qs5rf/OGHLC/WfP30c55+8RXbyw0//I33uX1/n2Kyj9KSs/WGTdfy8N33sDEjm9QY0XK2tWybnocPHtCvG06fv+D+O3c5vnvM6atnfP31C+qq5O7b73B47yExFLz33vdoupZXL67YPywoBKAUl+stn79suL5eMj1YsMg1Z189xamMvJQsjg55+eIZ3hm++70P6VyHfnrKvdv3WHaGvg08fO9tLs5X3DpecHTviOX5Fb01fPwXf8715RnLqyXbtuGtR3coZCC3LcPasFou6ZYrirJGlCUyOjarFbNJxbOXLzh5dU4spzz+zvuUleR7+++x6Tr+5i8+5vzLbyiKgpdfv2A+meJNwA0d+7OCD995wEBG7Fr6wSGA28dHRF8wnZbcrucU1rE3KXDW8OLsklsfvM3tu0c8vLUgP57z6c+e8fLpS3pvWNQVk4M5hRgw6xVXL0/wmeTZ8+eg4etnZzx79c+YzqfkWcHRnbtkkwm5LqHvabaXHO6VfP/HP+TZ6ZJV19C3HYOXnJ9uWPcN+XxKt+r5+C++Yu9QsTiYo6LA9pH9e3MefPct2u01oe3YXm0oxYR37t3iy29Oeeede7x78D7Pbt9hdpDjjOKP/9VHaKkoJTx6dIuDvRnldMbFsmN9cQ1FxlHr+ebzj+h6x6ppWHctt44PuNz29F+tEaJg/3CB7QdeNlvms5y3399jQs5m6zBW8Gq1pNl0rK+XTIqao7ffRmd52vQFVu3AwXzC8xfP+UQrFvM92rajsQ6pM1y0lDJHBIWQiqIomZU1vTO0fUt0jgGRhgBSooKgden+iHfIaAlOsrE9WiikClSFwkcFw8AQHUIqSi0xzuKFonMGZ2B5vWKvLolDQVaVFBlQZxzeOuZ79++yf1jy9bMXrK4GrldLYpmxPb9meXGJ1JAXJaGaMlvU3DnY56SZsF9NOaorukxzdLiHaVqa9TXz8i0ePXqAW3d88+SEaVly/913eHjvDt3lJdVkQTVtaLcNYa/g3uOHvPP2uyhfcHpyTukHPvnsc7poyIRkXpSICoYiYIYBmQnuHu+zXq9Z94bbh0d4BUNjaLZDcjkHjZQB2/Vs7cDFGLXmo2QYJMNg8DFSlSVN24IPlHXGZHqAlYFNGCiyEqUlTdPRrXq6TZdEHZmk7wfiiOEZrIUmpuFCWaZFiQuUKiMTgtV6w2AtQkmkDkQFHoWUcOtoj0xoLs6vcDHStB0RcC4N201nKKY1UsgkUJCeYD3Neou3FmciQmpUpkAEhFfjhjFAHOOluIkKkiMBSTA6c5G7uTownqNxA19I0HkSsjhr07Areub7MzKtwaWeIYxDid0ev78ZFihiEDgbUAqCiKPoBogptkcq0LmkKHMk6bx6FxI8SKUeqSoLyiInkmLQmk3AmbBLkSOSIqyyTFEUKokmAinSaHQPhhBGakgSletMjiIfyeAsfhS+pwENo9gjDXus85hgKINDqQKlBGWVIbRC5zlKSwQhDfikGgcrgSxP8cHOe9qmxbQGhETGJPAgRoJLQ+ahs1iXRGPOGCZ1RQwCa5M7PIaIw9G2fRJBlzlCasqqIsstMTiscQihqaqc4D19ZwhO4vHYEFPcbww4BwSP1hGVZ6NAK44xEr++UwWBGKkS3yIWjQKgFJWY6APAL7jZdwM8lRQ1r93yJFpSEm7thlMjkWIUGAlA7oZLyVZ+87POp+eVIq01kvjOI0Y3uxBJGKJHEU8cRWRCpTWQHGlOMUpccEmENJLbUiJh+gzuxFgxxHHIKZEj1Sa561PMY3qN6f0XwmjMUJpMJ5KWsZ6JKLm9PEaNz2etRYgkWomAC/bGE7L7bIlIoq2NQ0bnPAF/QzTYkVdSn+4JUhJcdzND88EiomJWT5nXNecyQ2WJNiFRCKUJIVIqjRvpS0omUsJgDd5EQvBIqUYxrqbSBXtX+3R1T55leNcDAmtSjJnUirxIkWmEyMH5IbNsQq6LG6EepNibKAV51FRlhveRrjcY71mtN+R5htQZ69WS9foSS4+xJpGrfCQGizE2ReSJRI0KRIwL6NHc0rTJuJBIvjmFzll3W5R31KOwrjWWbBfJGR1GOAZjCCISQ8BYk4RoxhNUROeKQitCjLgY0+B6fE3O+ZuhaRwFncGle4FAJOqMTjtnYYwdsgS0cykmTyqsNdjgmE4mRJXW27nSTOuK87MrLi+vKMqC5arH2CEZkHTEBU8/KJQu2DYdvRyISG7fvouMUBY5KpNcvtzy1rO7/Nj8iMfvvkPTdDz98it8b8jKCqxjMZvBxDGbTVi4yHLdooqMO7eP6duB5eqK9dUppjPcunXAdF6i8hIpBM1gMM6xODjAR4XMMzyWxniMccznc9xg2W7WzPdmTGY1zSZjudrQaMVsb59itiBGxcHBEdZZNuueKlP/H/b+rMuSLD3PxJ492XRGnz3GjBwra0BhIACyyRbJ1c2mJF7zD/Q/0x/oS3UvSk0RTYkgAaKAQqHmHCNj9vFMNu5JF9uOZ0JraXVRIrsK1bHXyszICA93O2bnmH37+973eVEJr0LTD9zsatq2IysLciWpV2uCkEgtKKqS7XZDCJ7jkxOsd8hNzWw6o7MeZyPzwyVN0zGdFFSziq5ucT5w+eolbVvTt+n9tljMUCKigsMNDV3XYfsOrQ1Ca0QM9F1PbjTr7ZZ61xB1xsHREdoIjotDBmt58/qS+maN0ortakNuMqJP8X9FpjlezkexlcW59IyaTioICpNppiZH+0BpUsT9tm6YHB0wnVXMqxw1ybm+XLNb7RIl2pgU2YbD9x3NbkeUgs1mAxLWm5rN9kuyPEMpRTmdUgpBXlREH+htjRaR45NDhNYMQAyeZkjRsM1mRx89udLcXqzJColQiul0Qj+kZtX88BBhAqHvsT20m5bFpGLoNgQRuHfvlHrXYcPAdDLh+fNLejtgRtLLdFqiM4VD02x2WOfIywmr6zWr1QaUYls3HB/OsFHQ7WqGfqCaViAETdNCsBwcVkyqjK4H76Hte4Z+QAqBs5HFbIoQsJg7tFY0I4UtBMfLGBBSIwR0g0VIhfM+kSbDKE5WCq00Qgjaob+jt0Sh0CPtxI/xp+kRmAS2w9Anso2SaJ2EriJEfEiUNq1SRq6PYMf789BbsizgQgCRxFNSCHRuOFnMmc5K2r6hqRP11AsQMdJutzif3mtRKIoyZ1IUTKcB6yMHVUF0gSw3+MHRtS15mTGbTHDasL7d4KzlaDFnvpzj6pZraciKksFZ3EimOjo+oshKmrqnbRSubdj2HVFAJpIwykh1R6leZBMOb97ncL3gxbdecn1ynQwFNjB4S4xJwBm8x7pIK0Dr9BnwIgm/rHUYkwwMvk+GlKrMQQn64ECo8XoG+sEytAMxJIMjPomARYwpfsylvbxSahSGpOdwphXOujvhu7gTWae6xGSa2SSn73oGm57L+9jm4FMfNegUu5yExz4903uX6uWRPi/HfYMI4hs6k/2v9iKi9AyRY6TZXpZzR7Aca4w94TFpvL4mDsUQsEMSimeZTpHNfEP8NBY1+96wEF/XQXGkC6V/9rXaXvgtkDqJmBJdaYzEGwmPSipUru7EOm5wOPu3694Yk3FV6VSnwT6qdoxc3dfJe2+EAKUVMsRvROCJr6PwxuuT+tvgg0NFgZL6zvy673dLmfZyKRIv1UF7oVOiTyUKlO3tN4RK+7pWYId0zb0bBUTBk2Xmb12POIqonItEQor5lhKpNEYmAXfwnhhFSgsYaxPv91d5NL7A+D3D18IkSRLhieQDeLt+O1fe53z4yYd/Z8Q6/99W3uc8+fIJVydXv9LXP/nyCWX3d1uY9du0irbgH//bf8w/+LN/8Jae9Ha9XW/Xr20JBJNmwh//+R/z5Msn/Ov/5l/zyYef/PZT7N6ut+s3aP3KIiWTSZCQ5zkgccOAC5Zg3disT+4gO9i7QUOyUY7RHC6OAzKXYhFkaoprHYierzemMA4n5J3TJVEUfMqKH0VSkTH6Yr/JVCK547Mco1VqEAuHVgo/xh8E55Eaokj498Ha5MaXZgjangABAABJREFUBp2DUWk4FgBjDNqkTWVh0oBS5oaiLJJ7LUaiDZRlASZQtz1aSYqyRDK6j4kYpejCwK5pKfSMxWzvhBwYbERlOU3bpQGISufR+eQeL/IyEay0wvUDccQUi+gZQsTbMA4m0rlUIz7cCxBSQ3RMjcEUJbu+58uvnnJ+uqBZr2g6T/ACo0FK6LuWLFMU8xneDvRtS57lSDwxWDwOr2BSzijzPMVRtWmgMp/N6HtH3/dEEZDRoJUkhoBSI+VBGDrvUT5ggBgdJ2VGITUxSJyz9EODx1JUGRu/o9t2DBe35JMN8yODlTUxCkwURAdDP1Aaw+SwYAiBSIrmaduWrMoxxmC7BotnkIKZURRGkRvFoijRWtF2Pbubmk4I4uEUkWkypahth5LQ9wNNvcP2HULsUdOKrkvEi2qSkWeKZtuCEkQvCdGPrtcqidu8QwJFYZBaMlgPKKI0Y/PB0uuBvCjomjXbzUBeaOpdTewlt1cvqNuO3/vD32FxuGSQDYN3eCkxswxdaq4vL1Fekaklx4dL1tuO+ckC71s2m5rgBtqhJyhFXmpmRY7oPZ/+1c/46tkL2l3Pdx6fUy0rqm1B31nmQnE+W7DVLfH+fQ7vP+AnP/slz3/xjKvbl+xuL8mU4ac//SVS5nz7d8+YLJYMWrC5rAhNx5N3zvjwOx/w4uoNn3/2nE8+fcZiuWF9e8V7H32Ls4fnuBefc3J6mNyOIZIpw2FRcvPmincenTGZ9MwXJyADn/3k5yijUJkmRs/R0QldX/Ojn/yIzEo+evcRJ0fnfPn8Oa9vO+6dnLCrLb/3h7/HX4W/4vryhvxwQSYNi0WG6pKwYX2xZntb8/LyhvN7D/C2p5oWZEXBsG34+WdP2SF4972HLM7vsW535JM5i5MZYlez7QSDLuksrKLgrCzQoeXevQdkUlCVGR+8/z65i1RZyfPXF5zfy7j33vu0zZbL2zf8zpNHPH3+mk3TYA7mfOfbj1i/fMl3f/8xF8+f8tc//CG+tZycn3FwcMxBlfHg4QPqzZpPf/wpJx8+4eHjcx69c8abLy8QvWeRFRQyY7u74Xq347oT1F1LWeW8bAbIFd+bnyQCwNDTDYEX65d897vvc3j+HvfPl6zXPecfGlS0DDdvyJdH7LY3XL2+4PDhOc0guLjc0K1mTMrItt/RDwr/UnD2/ns8fPQer798weuLa9puy8VXX/HsckvQcNx5YtDELjCfHfHBo3d48fQT1kPPLuaItqCcG4zccXg04ejsmNDXKOH57gfvcHFzy2K+5Gi2pMwGfvzqc+o2cnh8go6Brq15edFwjeN73/99jnPDD//yb4ihRzqP947BNtw+W3HTBR4+usfhpCDGDXlZcXQu+f7kgGlV0g4tq9WGXePZ1ROcbRAx0Pbpe81nU05mR1xdX9A1Pb3zibqhIlGBdY7o0lC1H/qRuFOQT3IW0xkhiCREkRbRR2wI7NoGawdybbi50fzk55/y+J17rAuNcAWewMHRnKN7S779h9+l8IY8F7xW16yi5YNvv8fZ4RFuWfD8YEZrDGak9HS3G1avb6kqxdPPn/LJZ19xfrzk/Y/f5XbVcu/eGcOm5tUXK158ccOb61uyR6d88OH7aF3RkDE5OeYfvPuY66tLXr18xspdIKmQg+Plm0s2bU15tOSjx6cUOufm4ppge/rBc7veEmTk1eWK3a6lOJpwdv+El8/esNl1DDJjcTilvl3TdhYfHYWZUHcR7yJtv+Om3WF0IjkYoci0ou2GRNNQCq8FMQa0UBQmQxhBa1oGNUBM9Ds39OjRMRoC9L1Lg+OqIDeK4By+82y327FJnqILovcMPhDHoVGKV/IUkxRp1AWLVBppPTu3w2iFMRrb9dR1Qz0OtIa2R2iBMgptIC8LFFPqXcvQDcToGa3VY400smJCZOgTBehrwQajmMCDlBhjQCS6EyKkWFmSCIsY6LsOWeREL/BBIoTG5BIl0tAj2pHmMQ7YvRM461FKkOXFXbTCPp6gqnKKoqDZtXjn0jBdprgeYqDdNeRlTjmZUOQBgmQXWoKLo9gqoDLB4cmM+XxKvevZbWt83MdtASJisj2ZE0yuEVqiMoMJEPuYnrthJOOMLvB9Y18bOQ4Q0jFnWY7KNNJoiiKRuFJ8ShIiKAVeOoTwlAoyI1n5LcElKmOK10tDsmEYm/8xEHyk3rQMrQUk1tp0jURAjkKwoigQKIZ+QBtNNa1QMgmx9tHGPkSUMSgJMniEkqPQn3FglAZRaoxRJu4NBL+5DWep0ntWacU+Hi+MpJg0HEkXN4xUrL/FQYoigZNUopaKUYWTyDmRuwnb3TBp/+uvz0ca+Li/FWERQiQy5mOMgyolVSIhxYDwaWgWvjFQE4EUTwhjLZeGUVKNAzYl09BYyuRuFzENikQiIWmj9weU3ptag4xYlwaOQhsE6fcjESUkLiQq53E7JY8lOhujggIYmQasIYZxrzTGs8QU+7YfjqUhZ7gjNKRzP55vIca4u3TvDKT4j0ggUxIpNIPzrFdrZpOCoUvmhhAFeowq8t6lGMosifUTNShF4lnriYwEmjxLtFo7UtcE5FmO9wHnPYh4J8hkFIYt1gcEFC4EZIxj4HWgMilWNsb0+lxwRFLMZB+GNLytW3TWkZWKICwRUGNMZHABLRWm1EkkJJJYzjk3kq4kwVl8jHgBmRRoJdFSkmtzN/wb2iHtS8sMoSSlKyjqnGZmsd5jh4HgHYi9kFAmEQkRkym0TMNJxoF5eq7ERA2J6T4sAW0STSz4ZA8ClcRWIr12rRXO9fS9R+tEEsEJ2npD5Rzn908pqoIgbYrYEQKZKaSWtE2NiBIlc6qypOsdi4khWEc3WAiJ5lv0E/7gZx9w1C4Rk8jNq0vWmy1u8JwsppjCYAaNc4EcyTTPGaSD6YxyNuPy6prN1Yam3TJ0NUpIri6vEUJzcj7F5DleCvrGEK1juZxydHzAtqm5vd1wc7OmKDq6tubg+JjJfErY3lJNyzt6pZKSShvaumExn2AyT15MiCJye3GV6NBKEmOgKiuct7y5fIPykqPlnEk5ZbXZsuscs2rCYD3n9895HV/T1C26zFEiRYRKb7CDpdv19N3AtmmYzmbE4FL0rNaEwXJ1s8ICy4M5xWxK73q0KSiqHIaBwYFXGmehizDRGhkds+ksiZON4uDgEOVJBKpdzXSqmB0cYG1P09acnhyx2tT0bkCVGSfHJ3TbLSfnC+rtitevXxNtoJpOKcqKwihm8zm277m9vKHyS+bzKfPFlHpVgw/kSqOFYhha2n6gcYLBWbTRbGwSdZ7kFVlmiC5R3dbXt5STksXRnGpSIIGsmuOlJAw9WZbReUu9WRO0IuQd9bZFZ4aiUPjg6WyKl1W7nvOHRzjV09ZrBtcQbcvt1YZsUhC1QUSZ4mt95HB5yOr2mk1tiSqndTrd11VEG8FsPsMYSd/2TKuCo3LBdttQFhOIETvU1O2AMjm50QxtQ/CBN7cN04M5J4sDbi6u2W7XTKrJXa1U366pmx5VlCyqOSHsUMYQRdqbFFmG8w7nHE3bY13EuwGiT5/FENDKUFUVxiiGvse6UaBBTHuKuBcmJtGF8x6tDEppiixHyXQfEyIZqHyIOGeTsS61zLi+XeF9ZFJlqChxXpDnmnJasDw9JJcZRisIgY1tmR/MqaqSjMgukzQhPctjjOA9za6lLDNc1/F0syMvcmbLKZkNaG0otKJetwztQL3t8NJzcnrIbL7gsnFEYzg5PSVGWK9uuLptQO2Y5gP1tqEZOrzSHB4dMJmUDG2PHWyKBh7SPakfPLYfyMSEP3j293hVP+dn80+xBkxeIJzFDXY8x4oQBYONOO9p7YDSCnzEI9A6PZedT2JREZNIWQiRotmkwquAk26ktqfnahJIS4JIccFS7AlZiTTknacfkrDpm9WJ9yGR4cffDCEglcRIQRgCUibh2tAPI5UvmRTskMyLxFSfx1EgLWQSRxmjCT5iB3sX18Y3/h3HCuuOnvTN2nH85Z4SLIS8o/yF6NlrnNLxe3xQiH2NhBgj7RhrYhgbxEAScUmfSK2pRk8mgVF5h9KJ2hpCxFl3R/mRCSKPs4n4mOUGIwwSSQwp+vAOHyTTHqGaFMRIov27vVk2jvWZuKNc7snHCIEKAnB3cXgwismETHuiUey9/3ox1uFKK5DijvYU/EhXkmo8FwmfpABDEicGl87Hvs4hJmKq39OwYkyi8hCQo0hxL1Da1wGJMCrv4n6TMUWP9e0ocvZhJImSovCkIAaJ2pfN42tMVFG+QSz9zd1PvF3//63zN+e/FWIdgRgN9b/aevzs8d8pYdaknnB0fcSb8ze/7kP5z74Obg74l//Dv+Teq3tvBUpv19v1dv1GLIHg7OKMf/k//Et++Ls/5M//+M+5Or56S1V6u96u/w3Wf4JIacTnA8E7oncoJFme3CPdkNweCVG7d7tDQiqDtQEXBpy1CZmdpbgFme03cGNiG+nvCZGc1vsNYBIsxdS0jiFt1mIEJfHeYbJ8xCinjVxCHQe8cOMQIaKUGWMDxiEdjM0Gzbws8c5ihwEpFXmWmj0+pkg5EUm/J1OEgxQSk2u6YUhN2xiRkdFxyyiisqPYqKDrLJ3tua3XqVE/eJQqaGNDCA6jTXLlEAkCokj46RACxibX7Gxecn7vBDf0XN2ucdYhCHebTucc1jpilUEUKC8o8wyTaUJ0bLY1nauZzaZ0WDZ1y67tcDblu0xFQWk00afXnBuD72q0FDg/EIRINA+bnH0hJCd8bjKG3uK9Tc5eNNIF+m4ghkRgyMvI0Pcss5xyUhGCZnW9oo+RTeMwecFimdN0HSIXKDKklGQikGnP0PSgHbkpqLSmjx5dTJhMctCKqpoRvGNb11ifRGJKKyCnEiC8ZWh2XPkBLwI6N7go2NZrfNxR5VN2fUu9qem6HcJoJuUE2yV6VqY0oki45gj0PpCRcM0uk5hMkxmNHZJLXAHCe7SReKnS8JWYGitdcmcrISF6JlWGkYKu21E3O5AGLXL6IFhvt7RrRzVf0DU95ydLTs8yfvzTn9J7T14Jur4hQxOR3FvMqRhY1bf89fOnuCFgigmZkvwf/qs/4nA5JY+e7bbhzeqS59eXFCg+/vi7eN8g8xnvnZ7xH//8r+gHwauLDWdnC2btjr/80z/l2eUlsQ+c31twub5g0/UU02NOHj7k9Mk9nj2/4s3FGpPN+PHf/ILTe++hCs29B0f843/691ldbtnuOo5PDjk6mCOjRAX45adPmR+fs5gvUFEw9DuODhZcv3nB8fkZOs958/olV2+uCLlG4DhcTvjsZ1+hVGrYZYszrl1g8/QrsszwnY8+4PTsJFE2vKUsJkwOjjEHJZ/85ef87Me/5MnDMzqhqddfYLLA5ZuXvPxFw7au6WNIxzkvQCtC0PzOBx/xs59/wenRMYvFAZPJjIvVlpvVjnIyJ88kxwczTidTZOvZXbeUBxX1tueXv3jBT/76M85nc3ZdzXSyoNTw/M0Vy+UBdpAUVUm/vkpRElbx8llNuTA8fvg+hydnfPX0KZ0VNGuLH+BHP/wJXzx/ygePH7D79BUffWtCVJJffPWSdr1jsSiookDrwGRxyGSp6JcZOwx//I/+KdJ3XP3ic+S2JQbPTV/jg+Ly1RVHh3N+/OIlu+ue8/cesY6Ov/nFJ1BV3Ds5JdvWXF5vuIpbNusNP/7FLcuDBb//93+XvNR89pOnNLc1fVEwXx4yqx2b2w3//q9/xmAD5w/v8eWzF3S7gYcPTjgNOZVvWJQZG5Mh7IA2hu265WbbM2xvuXhzRXF0wPHpIVEGzg+W+CC5fH3LxasLbjdrJouK5bRiMZ0ieMCu3qJ0Tv1iy9M3z2mk48HxkllecbnbcNl2bNuaGHNklLx6eUUQcHjwiA/eecL29jVN57m8usVnPU8enROV5NXrV2zXW+rNlgf37jObzWmGARsCh4vItt6yvV0RXSJhLOdT7DAQnUebeXKTGoUpFUFIXJT0zYZMRaKzNN4xrQqEFFSTguxggpqXrOqGy8sdOMG9kyX+dU2mJf124MWLC6aLium84qMPH3PvwQm3m56Xqx3l8pDv/v73OFyUhG7gi7/5lF/+4itePb1gcbjgdFIwn5bMDg8R8RasZbda8+O/+Xc8ffaM2YMZqsi5er0lhoHD+QEPHh4Spef17QGD7Kl3lucvLtGTjNnRAd31wPHxEfcnc3ReMKkq2q7ni6dfEbTEuR4hAuUkCWW+/Ow1KnqKPGDKnLZPQuNJUdL2Ndt6R1x32BCwriWblBzOK5QU2M7hjKXzAU+gEJJ5OWEKWO9p6x5jMiZ5AZOIMgpBxCzmHB+dcLVe8ebmiqZt6fqAyjLCMGL2haLtWoSQmCyjrDJC0DR9i8wTuWTbdOiYyD+DtWihybOCPg5MpxOKvMDkmiZ6ur4lepHiCwI4Hzk6m3BwNMf1gWbnaZtujBaTEEJqoO/b+Hfd5G802cf4hCgihCSoRUSUkRhlEFrgrSP6vYAhooC+t8QwChl0inPTSmA7i4iRosywPtGXgk+OfpB3MbXhrlmeBiS7oU5xZx7yiSEvDVWVE13kttuxWTcM1lMVBUVRMnSOzg1JjJNJZgcT5gcTqkmRGugCbJ8R7CgCih6TGUbjMjrTaJNIK71MVEXpJdKKu8hhY8w4rxDklSbPDVIk8pAdAlFGimIcMogMbwPr9RZr0yBLqSQSQ6bBq1I6FawijvWtZxiSCCnsB08xDUqGwSOkR8g0vNq7xr0PdF1PP/RJiO8DMXiqaTHGEEaEhb4LSdRoxyFYDHdudKXGuKhxECQkdyIU739zrc9SpZo+nY9U/EtAaZkoQHcxgGM9fef2T3W79xER9wMbkHvhj0oDn70jn/Qtvu4n7Acvd8SCNKLz4wBHSnFnDBAj5SmEROHau/hTSkxMURjjIYmRypTALJJM6+ROH0U/Wum7aBAh03tJKTkSZElUAj3G+YQUkSjTfO1uOBTGc6J1En3IVjN0FivSICvRiSwxJtFccC7dP8ZXacfoPB/Sz8xzw3Q6wXtH0/V3AswUnZLc9T4EotEQBXLvxFeKSKAbBnwYyPMMJ9KQeLDubu+XGY1REmKKlkNoghtpI8ETxRgv6ZNLJc3b0nva+xSNiACtkinEWU8Mgluz5sSd4nEUSqMzA1HStR0+Qm9TfF6eK6y1oMT4fhMokSKKgh1ABrTUicIREyHRGA1SYLIkVhzGiCCj1Z0Izujx/motbQgEkWgWAeiHnhgHpM4YXIrccc6ie4VeKrxMRhslZFIJJMRVIigB0QfCKJpRKhGeGD8nYiQchNGkk2alkmAjhCSOIIIxybBinU2xtKhEnyXFQtk+YIoCZ1N9MZkoLi4vIUS0AectEglRMssLDI7Otrx+tSL6iNQZSsI7Dx7wveuPWKglvbHs2oZNU6ORHB+fEKNF6IyDyYQXL17jPOx2PZNpQe56Xj17xrpuwEems4Kmr+mdR+cVk/mcyWLKZtuwq3ukyri8uGYyPUAYyXRe8fjJA7p6YBhSVHdZ5OOQCq6v1+TVlDzPEYDzA5XJaXdbqukElSl22x1N3RBVIu1VZcbN5Qop0/1V5SVtiPTrNUpJTo4OmUwmaK0g+hS1WlSo0nD98pari2uW8wlWSGy3QqpIU2/ZXluGYcARqaqSMh+dQVFyenjE1dWKSTUhzwuyLKPue9puQGc5WgnKMmeSGYQN9K3DFIZhcFxfb7l8c8s0yxi8JTM5WgrWdUuRF3gvUnR9P6Tr5iXbjcXkPYv5IWU1Zb1ajZHwgeAFb15fstqsOFzM6G+2HB8dEaXger3F9gN5rjFRIFUkK0oyIXClZIiKB4+fIIKjub5F9KknMuCxPiDagcJo1l1Hu+vI85JsMeH1m2sCkJclxXTCZtdws97Q9wP9bUsIkdPTI87un3L15gpnLbZO+4K8Khms48XrN1xeXXOmTujanrpumVQFPgqU9xQq0pqMGDwyCryN9NbR9ZZmV2OqiqzIKPMcLQSToqBvB7q6Zds0SWhoNNOqgtkE78fnvNPcvrli1WwpJwVVWaTnOdD0HT7ATCrquqXvBuZlyWw65WA6Sa9vsOx2NYvplHJSUbcNTd1g+wGlFMvFMgk1B4mSmiIGurbFj0YHYxIZPDqPVIIQFVImWnOibibRpMDdxfdKozBSp6jgwqCKHEdkXTe43lKVBZAE90oqLjfp+pRVznQ25XA5IwjJdr1h8JHj83NmiwoF1KsN1xdrrlZrhBZUk4pcScpJhR4Ctk/GgFcvXrNe7bDSM19WDINnc5vq4Xunx+hM0dsBlGe13tE1PcMwUBQFmXBIrVlUJZkyFPMc60cDgfVjHGsS9kipaG57jm5O+ANT8dmTL3lx+ipFF49xsda5JLANEEJ6XpZjRF4M6ZwFvibcZUpRyWS8s84lI4BKVCVhzPiojpR5CUKw3m0TQTB4ok99PBdDImF5NwpLEq1RqSSWSgXNGHUbgD0sMKRnP6T/SqNG+lbA2T1FMo5UIdBKMptX6f5nScT4fUF0RwUaa6y9PGUUz8PXvddUIe1j2MbnqFajsDMSRIryhlR/7qOJU+ki7sTaBJHqPKUQklGMNwp1Q7wTTN/Rl8a6z1qbyIMuIrVAG4U2SUDeB5tE2SPFSkmF1poQbPq+IhGpiiojK3S6zjGJeYJPvVM/CsGUTq9TSZWESiKJqrFJVCXC1zFpiTiVyLVSCbSRSDlGuI3CIq2SSEySesbWJep9iskbe9wxJQJIKYli3E8AhIiL4W6vcFfMxkgIgoBnH4G7XzGCd55h/Np9VDYmRQkrrdL3C8nEsqdx3UW8feN67WOP9yKlCGmP+Hb9Vq75eo5x5td9GP+br4vTi7GW/rsxcc77nOluyht+y0RKEf7hn/5D7r+8/3fmWrxdb9fb9b+fldmMP/qLP+LbP/82f/JP/oQf/t4P8dr/r//Ft+vterv+f17/CSKlkhA8mQaVK5oQKPMZx+dLNtsNw82GOG5oRQwomZqrWuux4RzSJlulDVsYc9i11tjR3StIzb/UWE9RbFKMwzQlyfMc5xz7cYUcm/4Rxt+POMBIleZHo3NJKEEMLjXfQ0xY2xiTC8ol4cgw+OT8B5SRhGjH6AxJ1yVijxozxWOIKKNxeEIMaDOSHLRGklzeXWep2yYJmITEuoCMGzIzoyhyjM5QAjKTjsF7hxuPS0uNi9C5ARHBZAVSSHwQ9IPH24D0ESMkUkS8jCATwccoQdvtCEEw0xmT5QJTGLbbW7pOAQK7s3jb4UJk1/Rp+FAYblYrpsaQGU3UkqgiLnqCl0yKOVp4ondURUZmNLtdw+At1vYondxK3gUKnTGrpux8y9XVGik1SnimVYk0im3f4QeLd4666ag7QVGloeZsWpDPDLtbj84Fi9MpIkq2g6MbPKUSZHiyUpNn0/QzhWC7qenbLSbPyJXGRE+mDFQl275HBUXvLb5p0Uqx3mxRKuP+4QHFoxO0yfniy2fIEGgHn4YlssFGx6Qo0YOi7RowEaE9KtcsygoXPNu2IwaQQZFLg1ARqSDLJcuTBXVjGbpAbxtcdNjeg5H4CKXJQEi6AC44ZK5xrWN1vSY7z1Oj2kDd1Pzki89wvkOqnkEGWteQuQIlNUJF2l3PV189wxjFF68vaNoBpQXzasY8q3j65ZesZjOENGRSMviBcrLk7PCQotRc3FhMB4tDw+N3H3NyeEaUml2e8ac//wHPn12zabacHU75g+9/i3c//oCuDzw6OuX4/ITBWaJzHC4O6ExEL0o++eqCJ995wuIgw3eB1eU13nqmJuPi2XOuby/55U9/yqtXV8i84jvvf8yDh/eIleR/+Z//lMcPTnj0ux/iQ2D96ZZ8OWM6m3DgFFVVoqZz3G5LEeG9jz/ALA/5H//Hf4UJkeN33iErJdcvX/Hq+QtePX2O6x27Z/DixQWr3ZaDJ/d5eDjHuxve3K7JphXz2YSJm7NpG6Zlxe/90R/z9OVrZs1Au7oln06YV4ah2XBy9BGXl2smU01X77i9veHdx+9x7zQNR374Zz+nXM5p2g3aBe7fP+b5008oyorT0xm72wuefOsex6fHXF5uKMoZ16+uWMwqbl/fcric4G2HXQ+cnJ9y/9EZgzPgJcfH5ygtKRYV3/vwPbarlssvLvGTgt//h7/LX/zrf8tmtSM7WDBZTNk9e8X56SFP3n3M9a7laFpRxgnhtKF784K6b3j348e0q5poLWFo2bQNZTXjzRdfoA5mHJ/dQxcFWkoWJ0ccCEHwEWFrxNpBXaMRVIcz7r93xqsXr7E2cnQ446uf/5yXr14RosXiuLi54PGjdyhj5Hg2YXNzTd3dsrE1eVUS/Y751LM4OmEwkvvffo9/9//8AauLhu9+77tMc83u5prduuFP/+wHvHpzSVDw7e98iMmWdEJxfnxAnht83bNarVFYPnj4kObmgpdXK5anZ/R9wb0P3meuMyDgRMluU/P00y+p54cI1VMtjpB5T1RTDDmnx0cMTaDdSc5Och7dP+Ds+JynLy5YrbapmV1qzk6WKSKh8wwRQjHh5nZFWZYQHXkuKU3BdrdLcR0qUk0rpvdOyDc7ZllGlme8//5jDuczjo7u453j4vI1n376Ga92l0Qfubi5wVnFm+2OBw/O+M57T3jd3PDLT78CXbCYzrh6dsHJ4hoWc27WK5pdYDab8nq7QijB4WJKO1jiYPG957PPntE6y/OLa44fnvF/+mf/NQdVwcWLFU234enzL6nbDfOqwhvF+dljbvQluVCcHJ1xNCvIhefVi2t+9NlLlmdnfPDtJwz9DbNqSmnyRKvrGtqmZRgcUSpsjJSqwDrorCe6iPaBQkoGUnROHz15ptAuMGw7ykk5ovALTk6XNLuWuq6ZVRNyk7Hd1QQPtrMspzOqskIogRs6RIi4YSDXGYeLA6IPdD7FmQqfyB/BOoY+ItU4cG97skxTFgUiU7gQGYbA4DxDb2m6Dp0l4pvKBGWWJXGJCmSVZmmmQHJHb9c1nXec3z/k/sNznn1+wfp2g5ApSjAk+3GqdfaoWZEcv0rrROQYhRUmM0m4FJJgXAiRqCpaoIymKku8czhrRxd3pO97tBDMpgVCKYQwows8ELDJSS9G3KVOznM7OPowjIOLJG4QQuKdx7lADGKMOoAs11RVwVBbiBLvPfWuo6/7FD3lx9ekwBSGssrJiwyjDJkWGJXqmyEOBJeE3955TJbf1VKQYhGVUVTTKglLrKXvulSjjXGrPoiRpKAILtK3FmcDBZCVOkVRCYUIEt8Hmm2baCx3oo1EuCGmYYaIQPA4H78RtTeKGlAjnSdRqxD7mjX9bxIqeTQKpTXeBpyzFEVGb3sCkGWJ1NjtxBiVFUZdQ4rNcmIfY6zIMs1dfMV/gpv017ESYTMkZ75MIg2tcqppQT/0hCa9/rTi1wMTKcfzl6Y3cpzSxDECUEpJIIxu2uTKT9qXNGkZdUd3JNcwZliIuB8aMQqT0mcD0rAnOebl6LJn76i4G6iF9A3G+ENS5OA41FFSEmMS2EAaPhopk8iJ9D5QQhAII+koufTTf8VI8/FYl0g8IBJlaxhw3qUouHGwpKQghEQxDSKdJzlG1Ln98Qg93hdEEoOFiNiLZMR4xoTAi4gS4OxABHKhyIo80UCHFucSPdcPAzGkQeEw0gOlVrRdh1eJRBWlADnGUkYwOkOK0e2vFUVZoHWipqQ4uFGwNsbF5TqjD5a267kpb/DekmmDUJLBuVEQFpIwyAp0lgbPeabRuaRv0z0wnxhEFPQjoUwLUCJRJ7TKkKNIru8HvB3S8FJKZIwpYtBoBu/TviuGtK8Tkq4fkFIyK0vMokIqze3tJomrfMT6yOASxcIYjQxJRJSUaGF8jYYQA4N16f0WE9FuPyhUSlBMCgbrCS4mknFMwlGUgCDTYFQIXBzjwpXEu0Dfdig5QY4kBzsMXN7eEqID4fAiYqNFR53Eg0JhnWe9XiOV4HZXY61HSkFucnJl2F3v4PNEfVICVHSYrGBSVGgtqbuAtFAUisXBgkk5JQrJoCRfXb1ks24ZbM+kzLh3dsTB8QHORebllGpajYP9QFUUWBWRueZ6U7PslhSlJNpIX7eEEMikotlsaLuG68sLdrsGoTUnh0fM5zOiETz9/BmL2YTF+WGKeb/pUUVGnmUUQZIZjcgyQj+ggYPjQ1RR8sknnyIjVMslSgua7Y7dZsNuvUnvuQ1stzXdMFAsp8zLnJ1vqbsOZQx5ZjAhZ3ADmTbce/CA1WZHcB7XdejMoIzE24FJdUTTdJhM4uxA17YsFwfMJqlV8+b5JbrIsbZH+shsVrJZ36C1YTLJGbqag6Mp1aSirnu0zmi2DXlu6OqWMjeJjNxlVNMJs3emeC8hCibVFCkTkfr0aEnfOepVTcg054/OePn5VwzdgCpysjynX2+ZTaYslkvawVJlBhMzmFjsbot1PeViwkwb6s1upG85olK4oae/6SirihAFWWawRCZE8qyAuEbaMQ4tpMjH6eEEMUSurtYsD5d0u5rLq0v6riEKTze0zOKcwiiqIkMET9vVdK5PVBMhIHbMZnO2fc/xYsZ2tebiasujx3Pmyxmua0FE3ry54PLyBhcSEXlaHWIDFGVJTkawlnrXQ/BMipxpVbK6uqKYTMmkQk2mVHmBBlrv0D6RkW3nKLIUY6dMQZA9SkiqrEREydBFZK6YlIqDxSTVWbcWmeWAp8w1LkbC4HEhIKSii8k0pgFEoMgyht4BASOTsGQ6n6KHAUEiAE1mExaTiqKaoKTGWcubize0rqP3IOqG9XrLtu2QmeaeOEJkkucvL3E+UlUVwxCorzfkUTM4R9ck8ZjONC76ZOoDOuchCJptw3pt2e5aopI8evSQs9NDhrqn6waabsd6dUtmxgjtrGI6hWgdZVFSVQXkmpvbLbeXtyA0x+eHGGVQUo8Cq4IYfIo0do4QBUFA6Sq+8+nH5LuSXzz4JSJ4jBB4kQTR1gWkGp/DvSNmWRJ9QtorIOi6DiUEk7LEWgeMFDGpmFQVsCcSJhpjjFDkBQC9HUZ6YjImOFwiL8YkSnJjr1EpjVDpOex9xLoUYWdd6jXmY/1hRhF7JD3XskKPdRB47ekGS1EaDg/n9J1lvWpSnSNFItfDSOzhrs5JYuvRZDr+WRJzjYKmfY3EvoYiHW/UY5xY+ro9CSw3OkXRiUTFD1Hg2VOl0r5ESUkcyT/ep3jar+N0U53tXYov3pP1pZSp1yrSfjCJ8QJ+FEB/zQNKsYeJUJvimwWMvWk/Xq+xJywCMuokdFIKIRIZFZEolkqrtKdwPtHL9uTSwDdIrYxiqoBQ6brIIIlylIEFcIMbCa/pHO6jq+9q2ZhqsRDD3xKUCSmRYl9vfr32IqUYvxaSEbkTwnvrUk0oEq1UjWI4KQTOc0fy2v87xECQXwvLJF9f77frt3RF/ndLrnn28Nmv+xDeLqDoCt774r23AqW36+16u35jl0Aw2834F//Tv2C5WvIn//RP3gqV3q6367/g+pVFSkJo8ixjuag4v3fE5cUNr1+uuLy8HolHoxMpjG7/caMTgse5hEpWMomWhJA478ZYAH8XnWCUIC9KAiGJe1xAao0Ysb9aa7quS+5aYwij6zehckc3zDgoEFJipKEsclxwqDzhju9yxWNAookipqFk16OUJMszlJY43yOkxLnUDCpMjvUhDReUwsdI3XYEIeh6S289Rkaid1jnsdEzWMsw2LSpNhnzyZSqrFA6IkJAJ14yWhUo4+mdJdrketNKUhQZmdIUeUYIAus99baDYNHjAENmGVIrOmtTk6XMOdCG3geM0Chj6IYBKz113SEGj9KGLNfkKkCmcDE5epRQBKGwQtJ3A13oGKwnVwUSTbe7oe9qxMEMISQ2DAy2Q5rUyA+dRwpJlhVkpmTo10iRHNsmLymrCcIohqbBSIHMNQfVgrz21M2a4ApyVRA7T5FJpkXJJJvh8eSlousr5rNDhLNgUyNIC0GmNaoQTPNDXHQM3YCOkeBcGmD4iBwCwujUDHERj6c0AhENtzcNoXC41B2iMgUIzTQrEKJjV2/Jipz54ZysEKz7GmctQaaYv36wI30rZz6dgYG62yK0xvlA17REp4hBpegmk5Fnhu1uwAnFMPTpGiiBkSkyqN40rLOcIi/RBkyW4o1W6xuETIMFLSXYSKYSEcSryPPmmmlZILXHhxrXK47u3eOjJ+9yfHrOetcSvcf3O0qTHKOrqy2GnPun55wfn7DdrshiQaw3vLh8Qx8Vk6MjHqiSJ6LncDalvdrx3e9/j+pwxuuXb/jq+RWffvGcMHRMDo6QMvLwaIr1Az/9y0/5vT96l82m5s3lDYMdGJaHnC4OCUbi8Hzvo/d5992HzAvPm2cv6HWJMhXTas6bz96wXW2Im45vf/fbDEPLf/jTH9M2PR985zFmsqA00KxX5N2OR8dznMopigndzvIXP/gRVzeXNLdbtp1lfnaPk5M5H3z0kIdnx0z6lraSdH1J31ree/SA3eaSl68D02KBt+CdwEZ4fXnDIA2qLPjOH/w+uhCUOuCqyOm9CZebK653LYczS9t6XF+T2Yyr9TUvnr7ivUen/Nf/8r/DZXOsTc21jz98lzZEPrn6il3zhirP8LZndX2NzjOa+hprLZ+/+oon949ZnpxQLqZY2fDwwYzrleLV81cMLtIFEMrywfyUv/fdD/n8ixUHs4Lz4yWTv6cYrOQ//OCvubmsObvo+W/+yR/zh3/wLS7ezPizf/sD/Mayvt7QOAdSUegMvKXtW1Zf3PDOozMO85y6c5yenVMYQVUZClnTZIkAp3rLg6MnLPIjPvvZl/zFX/4VWgje//gh8XDGZzeXxF4yzSacHhzgZxPa7Rq767h3fo/l8pgvPvsKComYzQkCjIDrizW7bUvbbQgDVGcHfPnVC/7Dn/+Iz968plwY7h+ekBclImp842jXO3aNJZMFD9+ZocOMT56+Yd10vFhd86atWWiFDRK5mHG1ueJivebBg0dMJxX3HjxE4VGDwClNLAzsGu7PF4SjBt/WTBfHPHz8CB8cj969T9O23OxqKl3x6OiEoiy5WN1wcX3FwWTK9cQk8WimODxe0LWeZ1dXnByfYLKS8+ND5pXm9asLNus1sij4+J1HNDe30DdYK3j34YfEVvL66gVqYZAusHp1yXJZUGU9T5/+kjfXa9559wkP72UUk0jzsuUnP/05boDPvviKqAXf+fgh5ydL+s0tL557zh/f49EH7zIctLy6uSEbLJl/TfPqir/4v/05y4M5MpMsZgsePnnAxSrjqy+eEmTkg4/e5aMnp7TbnnsPHnN4OEU4yV/95BmbesvyJTTWshsGJkWeqCExImROZCBEiyMwXxwiXEB6y/lszmp1y+XVNU3nmM7mTLPI4C0nyzkEx6bpmU9zlM5ZljOOZgveBJVIH0Rm0wlZljGLB1xfXSXUfxwIwZEZgx0G2q4lCsm8rHBlR2x3qJEM5JzD2zhGqQqkl9R9T2cGzs8PEQrW65pm2yGkoO97PJ4iU2TFSCeSKUbOek9RZoQ8CXqClmSDJlMZJsto6o4YBNPpbCStbGiaNsUrIBJhJ6RIEJNpJpMJIXjarkWNzXtlJEVWEEKg7y297ZII2jui8eRZhhAGbz3DMCCB+bRkUmV0/YBzFtBEIZFK0vc9UiaKShBp6L0nKEFMw/OiJMvMKEjv7wQXbnA0uxaCwPdjAz/uCTVgezuSmUCafcRXIjsI59je1tzebJPr2blRjB6S6MMHfO8xxkEUWG+JIqZBmdEoLTGZSd8/eNzg8V4graBzA0OTXPQxRsLOYwqNVgYpA307YDs3ilfkSHJxibqUjhKlPEKmuKm9oCYRfCI+CqSMCJUGGZF4F6ElAKnT8CTL9DiI8Vjr8MGxUzVaG5wPmKVCq7Q5DvHrSL8kSBkJT3d9Pfl1tEMMd0Od38glEkm1KAyzaUVdt+y2LU3dJhKYGIVH4RsCpVGwE8LXDCQ10mhCjKPgZz+oSZEgWqWYtLuYQ5FCLRJ5KsVPwyhEgjEuLolnxDhUJO4d5mn/EmNAaHm3b2H8ufsIkP313EetJJNEGEVMkRh8MlLEtFcS4uv46jgOTZ1P4pfo0sDPx3jnfk8ELcWDzf0k1JHpuNPP3osDR1HSSJqKUqL3r0GpNMAKiUwmokclBd2dEOwu3kYrCqXwIY7DRZUiXUZSrPAhCb60REsBMhD2pAYhiaQBmXMOF32KtRbjHnDo8G5AFFkS28QUvyqVSINal94HSulEtXU9AmgXDcPUMfEVQkm8tQk+oZPgV+uItR0xpKiT6AJGSTKV7rORgDYC5yN5VnKH8YU0SBYiXTNVEEmDSSki+IAbiVvCJ+GkGN+PgRTtLZC0rSXqFJ8GYKTmsF5iVYPFMdgBqRWTIkcZ6J1NUZYyYgc3DkfT/TbPMpBgXQ9qHJRalwRvMRlTlFRoqegHT0TgpE/3WJmoUcTA0HmU0milUQqUSmSHrm9BBMQoxMRHtJAMAqKMbGxLhh4FZRbvBNVsxtFiyXE4RTcVA5HgBowyOOvpY49CMZtMmVYVQ9+hoiYOPZtmh4+CrKyYC4PEUeYZthk4OTvFlDm77Y71puFmtSF6hykqpIBZmRGC5/L1Def3l4lE0zTp/ViUTIrqLuLt9OiA5XJOriO79RYnNUIaTJaxu60Z2h46x8nJCd47nj97g7Weo5MFMcsxUuC6jugG5lVBFAqtMpz1vHz1mrZtsN1A7zz5dMZkknN4NGc+mWC8Jc8EzqfzcbCYM3Q1210k0znBQwyJhrirW5yQCGM4uXeI1KAFhCxSTTOarqEZHGXmsS4S/IAaCY7b1Y7louLxt98jqDwRNkLk6PAAFyNds2ZwDqMVMTi6JvVIrE31xO12zcGsIp9UmCLHi4H5LKPpBdvNDh+SeFRIw2E+4f7pITerjjLTTKsCc1/iveDFq9e0tWVSe959cp/7947Z1TnPv3yBax3SCHZNh1Ca3EhEtCAl282WqnLMZpMkJtWGsizIjSY3kVoGpmVOJiETGdXRPdbXa25v1lxe37CYlxw9OGf31TNibZBocqPJJhXBWYa2J8sMk0nFarWl61pMNcUL0FIwdANda+nahqEZMKc5w2B5dXHJq8sbvHBM54lwJYSCAK4bCDISPFTTkiqXrFbbFEUWHLvtGoNgWhR4G0Gmayy1ZrFYoLRmvpgx7Fo84KWg2WwolKKYVNiuI6BZLKYp0lZrDkNgtd4SomRWVJRFgfOe1W6LEpJZbggiEWayPNE7r9cbtDFjL8awnFU0TTIDuOBZLhdkIeKdI0jITMHZ0Tm3qxtsdGSFptk2KB0pMkHf7bi+vkSajJOjA7QOoCObzYamSZG8m7rh+GSR+lXesl1vmM5mTKcTqiLRo1zTokXH0PfcvLjEbXuiCBRlSZEbOF6yul3RNTtmyznnJwdEF9CmYD6fYvuOy6sdt/2AxBIvV0mPLUWK+iKM5Jox9jMGTFaghMDHyIfXH+EOLZ9MPqPve4RSVIXBWosxmjIzNF2PUUmsJxHMizI9k51LFCadhLcmz+n7HtsPSAHOj4IQkhA/0YxSzLT3fsQMxbs+ZIrkItWHIeCsoyiTaHIYHENvSb7KJI5XSqD0SGAcwfKDTRFwMkt1SXqMRXSUiXDoPc6n6ECK9Hwfxpo7CkZKPaNwRqZISilxzqYotpHOqnUSwIcQUmx5DHcRaKkOHZ9No+jZqESjjzHVMnsYkBjFSdGL0YC6j8+Nd6JvRNozpV4xdxFnjOL0u5ptLyTaq3YE488Pd+KvfW0cfIpTczbQNT3e+dQ3HsmkIgpcTJRZpQJCjNRSEvlSqfQak2A9EWQZiZ0ECC7inf36eEIcCUmJxhRcwA8+1bPjKD4Jq78WsweR3iL7cj6OddReUBYFd/uHfd25/+p9fZr2jNzVdyEEhmghT+J4QRJ/C/aErPST9t9rT1HaI7XEN4Tyb9dv7/r45x//ug/h17Jen7/m9uCWw9vDX/eh/Mrr3ut7fPb+Z79VysGj6yMObg9+3Yfxdr1db9fb9b+6VFD8oz/9R1yeXPKj7//ot+pe/Ha9Xb9J61cWKVnXAwV9L2jqNMBWucDHgB83rWm3HYlCEqMcnUJATBndRW5S3JWPdxuftBFLjlkfPV4JdK5SRNm44dUmofbbLjVYRNq5jvnb3GGCGd0qItllCEHQtQ6t0+Yrepec06MzxfthJOaINCwCGAcGUQiGMfZgNq3Ic0MIHj/ijq21tK2l8xZnU3NZConWIBQjDclTqYwiz1FZhh4jObJSgwVNcgL78biNDzjhsd7C6HirdIqxGKLHaIMUif/spCTGJJpKxCnIlKasSsqioO17rBfctk1qZgwBqXMO5hrP6KqJnhyDSvxfopLUfYOt/Z3LX2UGU2Y0fUPT9bjO07Q9eZljMoMNA9po7DCMZAFJXbd4e4lznuOjJYeHB1jv0SoNSorpDBkEbrAUk4J5FVHqkLzMcS4ipGfb7PAErEtNiTyDqc4J1rPd9hghOF5OafueZP1Lm2hdJHKXJ23kRZ5TALbv6NqBKCU+gBGGqpqwGRxd4znMK2JWEHKHF4JgPU3Ts+0HZrMF8/mUSZWza3Z4rcmkISiBMyvytsV1nmU5Y75Y8PL6DSIohk4SncNbgbeWKCTOCaSPRNdDFORZCmrLtIGYXJlbJO02DWHnswmT4wIZAqtmx9npAc9fv2CwyUk+qTKKzHCvzMn8ijoGtNYUk5ymM8iQMykmGFVge8fxwYTV7ZbeCW7slkwVbJ1AVmuev3rFRfWMTHr6oDh9/yEPHjwmXyzoB8fPf/45fqgZrESdnBBESfQaMLx+/hUnp+e0fYNoB+rbDUoYrm7eMD8qMdpwfnLI4vB3mC6OGJqeqdRcXV1zfLSks57jd97h5uqG7U3D9Djn9HBCGCw//Msfc3H1hqkS/M0nT9l2Ddt+YF4uWF+uODs65OjggNVmw6rpeO+97/D05Rv+5k9/wMG85PDsEDE1rPJbPvjOt5jPFzz/6jmbqwsuveOiE0zPTvng3XPqzZrN9pZ2WyNCoG42/PBHP0KUJSKbc29+ShVbmh6sk+xutiwWc4zpeXh6jvvIMCunHGiBIhBipCg1v/e732G32hCiJVcZk3LObbPlxVdXzLIDyA39asuzrz7jv/3n/4QYJZ9/8pIjU7K8d8bJ4RG2D/z1D/4GM3nJo3cfERGsnSUrS/rQ8+bqmsnRkuNyxu2XGz775DnbHRwXhldfPmNTt9x//A6L5ZKjgwPOz+Y8+8lPuS5LHn14TrSBn/3sMz76znd5MJvy5ovP6deX6Dxyev6A9s0V9a5hs2pQRcnJ+RnXVy2h0JzNj3jRCP7DD/6a8stbnr1qOXvnIeWy4rCd8Or1G+wukg+G/+oPfpdXT1/RNjteXV6jpWR7c02ZF8yixGQV3/7wPfoQscJgqpyPTt/h819+iSxhOZvy1VdfUXc9Rw/f4dt/FHi4OkPGgAglKMW9+yfMqxkvL17xxYsXLJYHDN4wERKpNGW54HsHh9TtlqkxtK2jmBjeO3jExV+uuF3d8L3vfMDxbMblpmG3XUPryZ0mZpoXb16DrTmZBnrr6FuwbU9UMDEF/RS+9eQxdtuwWbUMbaBrLFZa3n/8Hj2ewQ3cP3uX6WLG318uaOqBofbkEtrbNxyYKTEPoHIuX2+w1jMtUuzPLz75JUZKHp6cE4SjqTdUOSyKnGwyZ75Y8sG3vsXZ8SGr1Za+bjFS8vkXn3J8csiD9054dXPFarWm1JJ23dJSc/L4hH5nqXTGw6MTbq7ecLKcc7Pt+OrlM26aGVmRc9gNmMxQlXPeeecR1neczZccTCY8q1f8/Kefcnp6xLsffsQf7zp2rmZzu+Xe/Qd4H3n5i1/S1juElqgYRwS/YTGZcP/kjF3dMj+Y8uBwyY9+/FNev7qm70GVMC9zJAppDMFCFOlZN5svaPuer15dcLNpWPU1ITqMdRwfHzPJC5rNjuvt7Ti8UCOmX9JbT9v16CBZTCYEGYlKUU4Uph/oxUAT2kTEsBExDqZjhIPZnEKVuP4KGzyxBJ0pJlU+xoRFYpBjdEPED3YkR+qRaKQoy4K+dtxeXtA1jiAEppTkg8EFi7WAiExmFRDo2i65lGUSXOzFOC44ohXUNgkCYmQUV6TG+t69q6Rm8MnNXRY5Sip2255+cKA1UgWQEa0NcazDkDI17n0apCfxtUHpFFdhjEGbNBDwtktiMAHBCla3O8IQ8TYSooeQODcCSQw+RR34gIiatu5xQyIh7rY9fWchekJ0RJL4A0Qa5AweKbvkrFYSoZMAHkmKB8kMIga6uqW2LXZIUVqCSNc4pAJjBME7NqsGEQ2Ziezqjt4NSJ2GONZaPAFUErDsI9cUMhGvYkAEd+c2lzJFIQspCT5gbao51Rj9GolILdHGYPthjNxLR7bd9ChtKSYZIPBhjKHQIKT+mqwyCm0gjRmM0RhjCCHFIf8mDxZCcCA03qVBG0IgdRIYxD2OKFXiIxXqm/sFEGpPjeEuDmM/CNt3DPY0IaUlihSLE+MY9SxS1EsIaSjG3rk/Wtz3Iqjk7GfcFySnfJqtia+HYSPpKYQ0BJKjuO+bK4r9AE6kz4xSBMK4/2CkJiRDRIpUTIMyOUa/JEd7QIo0vFNSkYcsiXh0Gn5KUkRdYG86EHghxtjH9HkzQqbon32syV5UNQ6m5ChsSyK49PnWWuGcx0donQXGuD2pKHNzR6YVMZlJ5F4oBlhv07B+vMcLlUwe1tl0/l1EOk/WpXtQkCP9x/uRLCCw1rELDTEGqqqgyivy0iBbiRQClWWImGLDdabJDUhZoEZTgiDSu4EgRkFRiCg1End9ZBiSMaQq96Ter8eESqv0LCAJEYXWGKD3STDJSN+SpHPV+4CzgVIZotJEFQjAoxcPQUW+OP2KrMzJ8wxjFIO1RKlQQqZ7pRQo54guUuicPM/ZtDVEibcwhEDwjHQ9OZK7IjEmsodSKsUmyjTFzrSmJyBlGqrmlcFUBhkDnR2YTEq2u00aZEuJMQqtJTNT0IQOG1Pcqc4UyisICqMMUmriEKlKQ9dafBC0vkdJTR8swvRsLnbUZo0SERcFk4M589kCVeR4H7m6vCWEgRAE0kyImJE2Jtlt1lTTadoLO49te6SQNE1NXiUqxrQqKR6fkeUVzjoyIWmalqoqcCFSLZe0TUPfObJywqTKwAVev7qgrndkUnBxs6J3jt47Cl3Q1R3TqqQsC7q+J3SOg4Nj1tuaN89fUuaaaloiMkWnWw6Pj9M12mzom5omBqKFbDrhcDll6Dv6vsUNA4LIYAdev3kD2iBUzrSoMNFhPfggGNqBoshRVrGYTAlHktzkFHIcKRcRrQXnZycMXQ+kyEJpCtq2Z7NuyFSJUBLXD2xWN7z7/juA5PZ6Q1lWFNMJk7LC+8iblxfI1Zb5wRwQdCEkql9w1F2LKQsqndOtem5uNgwDTLRit9rQW8tsviDPS8qiZDrJ2Vxc0RrN/HAKAW5vNiyWC07PH+D6jnq9wg4Nh0dHlGVJ8J5622B9YLZYJAFFZ8mkZDJZ8PzlK5rrHeudZXF8gskVk1mBvVkzDI6sh+PFAZMsx/cDddMQoqBraggRlU/wAQ4WC4YiR2QFLgQWBwu6uuEGTzExuOB5/fKCxdEhi9NjVKGRIuAdCGHI8oz5dIa1lteXb/ARZtUoRBIp/vJwcYB3FkEchTKB+WyG9Z7L21vOzs+Y5hlaG2q3SwJoG8mzjLrv0EQqE+mdx9mIFBHnHIpUNyzmCypjqLdtEiC4SAiWxWwKUjB4R1XMmM5mnJzfT8JcD/gIrk+R8DpPUcmtx8aAUJosl2w2G7x3TMpyjNkM9DKO9wSDLitOZ3OmVYlAjPRNyabZAjtmiyW9GOhdjwyaGCxt25FXBd56RC6Z5gVhsFBkRB9o2ibVVFJQOY82BqUk08mUojAURc40r+iFY7NraZuWo+ND7t87Z7qc0nYdmckpy5Lt7Zp2txnpf2KMLAWtDJOyRAmFI3Awm3KwmuKvIz87+Dk+g2wUsyutiCJF5fkQKWQGRLYj5bWxA8iIEYIqL6gmFdEH+q4fn9egpUrUGiEJzo/0eU3IMixJlKxI5CQbHc4HfPh6xhFCxCiDKQ3RQz/YRNHR6d6caO5hLChSfRLunpUyPWc9ia4dJbtNqnl9SH1SnSmc98mcGeMoBlJ3oiSRSq0x0tWnfdkoDLoTgCPu6k7GZz+jyHsvbDJGp5rB+USx3JdWSo5UoRQRl2q2kET1fB1zuq+hkyhIEIPFjTGHMUjs4BO90ce7GiyO9NA9VSjFLSuij7RNj9eJ8mqtH+OtA5F9xFqiT9qQqJV7iuWefJpEYom0JEdzre1tqmMDED3OjnuCfX05uFHcmARCdhSG7c27ewItMu0jIxEZ5SgSSokEceQYifGaJN3zGA3N13SpvbhLqvQeSMKu9LUpznBAqr0oaTw/It7FLu9r2L2RYk/03J+HcFeTv12/bUtEQdmWv+7D+M+2luslvyr+y2mHV393SBgCwd//s7+PV57/+If/EWfcr/uQ/rMsFdSv+xDerrfr7Xq7fuUlo+Sf/9//OcvVkn/3j/7dW6LS2/V2/RdYv7JISUtBiI5dt0Nce6JzTMrijhyQNqWOru2IjtFlDCEyOm1Nco65tEEOhG9smJKDVam0KcpNhhQBWSQMuTBpg2tUcgsNgyOIiFARkbxN42AjuZhETE6eKMGFiLNpw5o2usnJorVIG2YhkEqnIYmSaRMqoe17IoosM0iVmsm2HzBGo7WhHwaGYPFjnEcIYXSyJAeqlpJKZokqJVRqEhhNpg3zoqDH0TaB6C1CgRGaTEkkmhToIDAIgrXJ5SQlfrBYEZEEbAzYKOgj6ODIlCTXGdGl2LrgHEZpRKZYbzZgPVluMFmJsz0+JgFFlAIRBbZPUTuDdylCSmmkKKh7jwsWpCf6iMlLlM6om45gPSJKgoM8z9HKsL7Z0Psk0iqqAlPkNDbFEjgrmJclCMXrqxsEgtxG7GCZzUtKFTBCYUJAidSY0TlEqRliQMaYYtyyhOb3EjZ1iySJ2kyeoXWBmRXMTJYEbUXGzXqHmVR4HciUQZGzWtX4IHn3W++z6zbsLi85mM4SYUvDYC2yKpnGQz5455xdv2Oz2XA4P+b8uGQYeqztuLq+JvpIKQ1SaLbrhlBb8IF2cPRSoBXIIIhC4AaP0AKkRmqDVmnQc3gwAw8P7h+xHSx/dfspSmTkWYlGIqRnOq2ISd1GYUr6TY/PYDqdclBN2d7UtMIzrxZ8frmm6+E4N7SrHe1hRzHpOJgdEmtPbB0GUFnG43ff4ZcXz/j3//4HHGrD73z7HXRZclaf8N4ffh8nAhefPef3v/1tiiJyudoSg+H15RX1FzWToiAOLT/84V/w4tU13/3+9xChZbXdIILm93/vW0gpOb1/jioDbT3wo0+/YPv6muXRnMPTE6rZEXk24+rVU+7fu0cxMezWlh/98ksyJcjNlMtmSyug7RxDsMwWhtOTCdLt2N1algczOlvxxS++5IuvXpBn8PDhkifvP+FmteLl9A2bbcNqE3BWUM6myMxwte0Quy2vXj5lOp0ihaZYnhKynFdXrwi248HhjCcfvkf75oayEuyc55Of/JIQBQ8eP2QIgX/zf/0zdt7zL/7P/5D6ds1nT58To2M+sbx6+RWzSYEqJwSzQEVBu7nm3junyMpwOJ9SmsBBldNtO2bLM+6dn3F4MOHg0ZKLr55z++VrMqO5f/8+syzj1Ztb5OmSd959QL9q6aPg/qNzBqt5frlh0wVOD5eQSS7WA//xL/6KPxi2PDxcoAhMteXZi0subGS7uSGbFXz4R9/lw3c+wA+eZn1FoXqcG/izf/cfOTo5YTk/ZTcM2O0K7weWy1OEMGxcR3FwxDu/+7tUR0sYAtPZlFx74mzKcjohE5Kje6eY8ojH77wDQXF9teZ8MaW9uuRqu0M1Cz58/C6F9Fy/uWSRl+ggUO3AYWn47/7B72NmB1xvt/zgL36EyUo+/PgRJ08+4PzkiJ/99Sdc3u6wztE1DVJojhdLTKFpvaNx0A5bOhuZT0/Q8zn1dksUPZ1rWDuFzwx5OUWqij/7f/0AiowPnjzm4vaCqjLo6TG+g9j16GrO1W1N9/xLlsUUKyRZOeHb7z5GWctWeEIOhSw4CAeI0jB7cMaBMYjBUamSs2rO6zfX9K1jOanoOs/tumVdd9R1j8gDZjnh3sN7IAqUyqnDgBCeeaGolODp51tynfHOk4d89x/8PYpsgr26ZVqUZCHj009/yuNlxcP5u1itOP/4Ay6vr/jpX/6S7aZjVhm+8/5jzo5OcLuBy11N0JFGWOTxAi08k0nO+cmEwQWmk5ymaVN0pMiYTUvOj8/QmWIek8tYVxNOnjzkd7uB7a5mfbrl9eUtrmt5994pu23GZbOlHiNHrXB43xBsO1J0tjxvenbbHnSOiw1N3aG9xxSGzloEkvnikCDAR8VmiCgvRwJHIg9hFP0wIEPk/skpBM+LizeovCRlECWiYSRgnWU6mbA4XrCczxl2LZerDf3Qc3FzzbZtsaPIWRvFalPT945M5UlcEDwyU1TTKdU0ucOdddTbhsHafXs4EV2iwHUDXWPphmFsyAfaricCeTQgA5NZkQYgOj1TpRTU9Y6+swiZREiFyrCDu4tP6juXYupCRGlBmeUoLdMxukSwGgafotucZ9d0WBdASDIhRqd2JPh0jn2MEFJTP5Ia4tkotogh0LYdSmtMlpOZDGtGp7Lz9E2qYYIPe/lIklz4mFKzxsitGFK0xdD0tK5DqhTbm5r5PgmyhBwpnfIbLfOIjy5RkqQi0xqjE1UquBQvkZUlQ+8RjWXoLMG7keqUhAfaaLx17DY1WmmausN5j1HJ7S2UQAmFGochwcu7KC32EQvh60iy9I/CGI3IElHHuZDGVIJxwOIZhiQUC3eOaZnc885TInAu0rVJOKELjdapPlZ7SpLgbujT95Z26NPgy3uSVPs3c8nxkzA4i2iSMMnoFEPmvBtr6TAOx/iGCCneDbAio1BIAKNgcC8sYiQUSSG/EVmSPOxCjoSecTjj91ElQiBI+4P9z2Skne6jngOR6McxTwyjCCZRm8R+GLcnEo3EI0Ry8cdRRCKEGKlIHikDXiZRjt+LnsR+iJS+b4SRJqVHOICgaEpm9QwtFbnReJtIK4xDX7kfOMkkfhFRICFR2GIiMUTv8WL8LJJigURMVB09krpiCInQElNNjhL0/QA+RaRJZfBhjDCJydwB6XvHUSAlpEALleirLg0kkYmAq3QSnEwuZrj7+yi7RMCSuaRrB3BJ+KWNRmqFDQEXE6E3NxqBZNe0aV/nE0EgyzVGujQUFiO9QMo0qBMCj0DEMepNiTF2hrtnilJyJCcoskyRqUS+ElrRdgPKGIJI+zyBpussMQoOjg4ZXM/Q1JRZGnILB8oLvvXq25y3D7j9g9fc5iv6vqfMS6ZVEph672jaNsWiC4lA0vcjNTYkGph3I+1ppNElcsN4jxqHikZLyjKHALNZyeA9r7rb9LqkGeldkGWGiAeZ9mt+8GgNJssos5yhHXBCUpiC23qNc5FSK2w/4KxjeXGAznIYIlEE1DhIXSyXXNdrnj9/RSkkpydLpNZMbcXByRlBQH2z4d7JMUpD0/XEqNjVNfY2EU1icLx5/ZLNtuHk7BQRHV3fI6Lk/PwYKQST2RShI856bm9u6XcNZZlTTipMXqFVRrNdMZtN0Zlku/G8vlqhJenP7IAFrAv4GMgKxWRiIAwMnacoclzIWF2tuF1v0QqyWcHicEnbdeyyjH6wdH0keIHJMlCSrneIYUhUnSxDCIkupkTVsW12RC+YlTnLwyWu7tBGMITAzeU1MQrmixk+Rr745QuGGPjww0fYtuN2vSESyU1gu92k977OiCpHRLBdy2wxQRpJkWcYGSgyjRs8eVEwnU4py4xykVOvN7SrGikFs/mMXGl2dYuYFCyWc3xncQjm8ykuSDZ1T28jk6IAJdhZx8uXr7jneuZVgYyRTHrW25raQ9+16ExzfLTg5PgYIzXbzZa+2bColrx+/YYYJMujOS6C9Y7dboPWGbNygnUDTkrmx8eUSkEImMKkz6GMLOczMpMhpeTk6ADrpwipaXYdWkhmRc7FzRpRpNp0MqsI64BRKoninEfFwP3jJcqc4qTi6uKay6s1B0cLppMZB8sZ29WO29st3kecszjnKYsSaweiiLQuEP2A8wPSQ5FnWOcYuo6qKqn7DitAZjlSZ6xvd9TNBcvDJd4m8XU5KUFIfNsjlCEiWW03LCYTrE/CluXBAUWm6fuOoCMySIqyYHAWM50ghWBR5LjWMs3LRPHetZRlgfeBwXrqzqbeWQzEXDCfVQihMTrHR+hsS2YURmYMbYeWisxoHr7zgHI6wzcdRgoIinbXYAjcP5wRBOhpxfG9A968vGS3qcm0ZL6cc7BcIKVmt9kSBNjoiLkZDSWWyTSJqk0mkSLRBJVUyGiYTWbkeU5QjomU2N6ST6ec5DnZjSEuYbXe0jcdVWao5jPqoaOzFu4EK47gLUoKvHPUuwbbOZ6s3sddCT575zMGYdFaEKLEek9mcmKCygHi7hoIRqGIkgQBwzCQac1yNuN6dZu0KgLGnNVUJ4cASjGbTtGZRotk4rPe0/U9bd/hxvpRSokPke2uSeaAkOqdKECZ1N8yRgOJUDqMRCH2wiGR6ghnAy64FBtpFNY6QowolWJftZaYbIw+03oUKakxwm4vgE9RzTHEu73AHfWeiJEqiaMjY1SbT6bUQCL/jT8zxpH8JBJVLJ3U/S4gfkP49LWIX8DXdNWRYBR8SESimITi6WV/g6K0F7XvM5f34vJx3xF8wPWjqHi/5xiNjSnedE8kGv9uTP1kHxOhS8kkigfuImiDjkibhE9pLzMKeUSKlIZErYqe8fnuESISSftTodI+646YFPdhR4KvGUdjzTpSPZNwSBBkMpp+k7uU9mvhrvcO+2i49L4SI3XU2kTcEiqZZpVMr+9rYUf6+X48byGM+5P4dQDz2/Xbsw5uDzh/ff7rPoz/bOvdL95FRJGIvL+Fa7ab8c/+53/G+5++z7/6P/4rLk8uv/7Dv6NEj49/9vEY0f52vV1v19v1d2NN6yn/9H/5pxzdHPFv/um/YbVc/Z29B79db9dv4vqVRUrKaCZVEiU1bUvoPZkUSJ2Quy4k90lZVfghRVc47xBRorQYXRwRxg1rEg1xt6nSSo154CI5k4IHqZKraaQfyRjHYZ0iCpWERTIN+7zzaSAgwVmPwqNLkyJO/Lj5C2ljp6XASInODFLLFOPiA0pnaKUJIeXMOx+xXU/rA6UxBO/pQkC4JBgpdcFmU9M2A1pGhEw4dU8YqUKj+1tEhs5ihKGLPSo4PJ7NdkAIRVlqVAZlnqODohssXdeTV1Xa3I5xDM56wCGlSucUhYqaTEuqMuN2WyN0RsARtELnGUWEIcsRRpIZg+ssCoFUhma3I9MKZTQ29tihpypylBBoBEVVoTLJdKqwdstEF3htiMKxq7dE4RDeMxBo6uTui4DUKXt+17Q0naUoCyZVQZ4l0pOUgkcPjglDoB0sochxOLrOEVXEI6iqWaIzaAMq0g6Wpm44PCg5OliiteLF85dc3a7QQqOV4sH9cwQKozU6Kyi0og2WzCiwimoypaqmBJ8hyxltEFQmZz454LPbNW3nKauKamrIFgsW9+4hNj0fPD7ix599ym7dE9uAjAI3RC5eX8Ig8T4SjCSfJkGWsQVqawl+QEqFURnz+ZS66+iGhhAcAk0mdRqimAxrB7TIcb3gZHbA2ekpy+M581lB0wVWTUvX1cjYIxDUux1iEMQh8urLG5q8JzjFdDpjfXmL7COTckLrHB7JvaNDzs/PefDoCQcna16/voQhoIsJxEBd1zx4cp8yes7ee8RgAyEv+esf/owvn71gaDpO5wc8eniOFZaDRc7N1SW//OwZVVEgleP1zTMuVg3zl885WuScP3zA/OgEVRi6psUNMFzW/OInn/D02SXf/vgJy9OS0HvWtw1ffvkS6zo2bcvNsOPbv/8dRCG4vnzFxx98wPq6Jp9p8AMX1z1VYdDOst14nn71GbNpQSc123bLqrnmKDvBWs3R8pTBBnRW8+1H93izuuXmYkdlJrRdT9Nt2Tx9zf1HD3j+7Bnnp6c8/uAJ0c7QRuB95Nvvvcf99874pGnZNR3Hh4esV7d89ewlzy7fsCgM988PqaZTXn3+jJ999gWvn7+iyBQPHp2hiXz8nd+hVZLrbUPm1ihjePTwBOEVf/7Dv+HFq1vKcsaXz55TvLihaa5oz88ppx/R3tRcrbacv/sORgV+8qMfcXh4zEcffg9VGFwLJ/dOWK8u2HYZ9WA5OJ5Rb7e83rQ8/ugJ3/vD7yH8wBdfPOX07Iyf/uQTVpsdD++fcvWmZ356yuZizb//8s8olOBbH72DGJZc7rbsREHsPefvvs+5zrh8c01ze8Hjx2eIIfLLn71CYvmd3/kWj999hBw8v/ibz/j85UuUdPz+H3yf+ckJ08MZrnfcrhskkrIoWWSSy+sJZ9Mli+WSqqxYr7aIasmzi1eEzrI4mGEmU7avL6l8xoP793l9dssvf/mUtt3y4fvv8O69d5jNK3rXg7O8eHmNj45gB7ZdT2UyJvMZx7NHCJWhdMbOdjy4/wA11JCVPLvYcrBccHpyTL1bQ5VRb3Zcv3qTIrZQ2J3H7Vq+evGc6eGMv/d73+ev//rHPHv9mo8//IiTgwVSK25eXdLuPEEpZgX8zkffoxEeHTJWm5aJLihNRt973tw2vHl9RWlkErMZxdHxEY8en0FZkkVHGDp8uyVfwPv3T1AiQypFXmh2daDtBZe3O5rrmpv1DS+fv+L8dMp77zzh4PSEz7/8kijg8eMHGA8n00Punz+C2GFUQMmMly9vWK2eUWYalOA73/qY5fKA519+wdOXz5lVU7q24c2LVxSTCeW0QsTAF88vcdJwPK3ohsjt5Yb5oeDpL55ye9uiMsPJtCLH89WrDl2W3FtW9M9fsK47rPMpAksadvUGgmSwgtV6zbreomVkVmVoKZgW5egoBUKkUjq5oPuB9e0aIVI02NnxMU/eOWPoB/JyQjc4nr255Hazo4vQ1x1hJIMoJZnnFUoaHJHtZkvddRQ6kYJyYTg+OoCNwhJBSNRIR2mGwKpb03UNKkvROxLAR0SUZLrAZWC7RDqyNtC3HUMz0DQDdrAopendwGSSU0rD0Ceyk/OeqqooyxwBZLlJsa56zlC49Ozxnr7rkrBDKvLCEDx37u6kowmp2T9GHiQHdrJwRyWJSqYhQghoDXlmklNYJCGRdR6EQBuDFIIgkgjK9hZExMdAvWupytFNPcYmJaJPIpXAXnAx/oJIjEmYEEdnePA+1XM2EUlESu5IpaBUKK1GEck+qiGO8BuBMoasyCjyJCQPzrNd1UQSgaooSrqsp206hJRUkxyVybt4MSVh6Bt6L5OwXezdxkmMkd5zgTS2GOP6RkGQc4BMoicpE51Ta4nONEZpMgN9bxOpJQqESNfNR4dSSRhvncPZcTAVPHZwNLuOoXcpvjhL8XC5ziBEuq7Hh0ieG2aTCTE07PrubhCJ+M0dKuwNAYlK6gh+FDnIJP4KY9yaNiZRVr0fHQ8gpPj6TSTSuYzj/++HVMn0kIZA3rkxDk7eCZoI+xFOcoxHIe7eRzAO58abTAgpQma/Vxj/2t8WTQmRhnYjWSeEMIpcxEgoSEMg7xw2BoxUKbokOkRIJActoe8HrE0Rben9l/ZNUuzHVuPPHSBagZMpri0S6ftE1zFGjkQCjZQCF1JUjcrSuYzjeziEAC6JiIQc3fuk2DatU1ymEIqIJEoJSmGAoBRIjVKJFiFJn03bD2PEicCTCA9mjGyRMUV0SyUSuSwMGKHTvYfAfJgx72c0ZU0gGVH2NCYh0znoB8fgAplMJ1+rRCITQrBQFdFFXPAoUqSbcz4RigBjskQeU5IoBc4HrLWUhaEqC6RMNJGm7ZAi0Wvns2m6z8tEX9RS4GJIBLsgMVmGNhkxKoTOsQiMUmRZwW3XY11AG4PJJCovyKcz7g1nzJ5/hy+GZ2y3DbdHN8RScDG7ZDOswSWamJQSlSls8MigEX0gBjcOFhNdxzqL84xxNek4BSCkwgeHRBO8YJKXTCcDRZmT5xrrIq11ODcgRiGjtQM4QVSwW3VY7QlBkmU5Xd2BB6MzXEyRctOq5Liac8iSsurZ7mrwEakNkKIAZ8spOkamB3O8j0RteP36itVmSxgsk6JkPp/iCZSFoq0brm7XGG1Gmu6GuhvIt1uqQjFdzMnLCqkUzjqCB+cHri9vWK1rTk6WFBNNdJG+taxWW3x09NbResvx+QloaJodpweHdK1FZxKip249Wktk8PR9ZL2+Jcs0TkgG29O5lkpX+CCpigneR6SynCym7NqOtvk67m5wA/1qx2wxZ7PZMKsqlocHxJCN0Y+Rk4Ml04MpNzaJDaqyou86bjdb1vWOQitmswJjMra3a65uVuw2W7SSzOZTlIgcnZzihKTpLSp0SCVZzOcQJS9eX7DddRidsVpv0NsGO7TY2RSTHWIbS9P1TJdLlIhcvnlNUU44OpwjtaR3msmsoutqeq9STG2VMQwDu41lcbTk9P4pInhWtyuqyZTLyxu6vmc+m9LUnnwyQUZ48/KS6CzLxZxHD+7Rdg1OKXbrlmI6x5Ql3nnWt7dMpyXTsuTyZqBuW8qq4OH9eyig3bVcvrnGupajwwMOjpfILBl9urZPQl6dIULADzCbVSymU7IixzpAFXTBsV1tmE4mCJ2YR/22ZX58xPLggPX2JVeX10wmBYvJjKqq2G63ZFrS7BrsYIl4nHWIkEQeRTVlUkZ0ltP1A7PpDGUHTJGxrQek9CzmM0RIotAgoN3WiXwiJdFDcJbddocXgePjI8p84OpqxWQ65WAxRxqNbTuaIRKCROE5O1wgjERIQ9cO+N5TZjkxRLrBc7tr2DQdkkBVFiitOZpNk6jIKLBDEq0OLbMqZxI0WmXJNGeKZAaylrbukEFze7VC68jRwZLlcs7rywuGwTKZVuRCkkvDrJqhhcaYJCztO0/d3CTRrJLMplOm0xneDry5uEAKRVlkKRJPapRJQpx13TLcbFhOShCCvk1RWs2mZugHHIpcRA4nBZu6xfrApJpCI+k320QUjRGtNd6n2N4YIru2pe96CIGH1/c42i14+cEzbu7dpD7jWDtoqVAixRQO3qFIz/OjgyVSRIRI0V9106fIt5GsOrj+TtxspESZ5LDsrCW6gVzrO5pOUWREGRnG2nrUOOMjoxDUkuiJeiQlpbpFSoVWAi8jzo90wBjwzo7x1InY44NHi1Q3ulFw4kczpcnM36pbhMpQSo81dRLVJFFM+vN9vR3C1xT8Uc+Saq7x/O7F1VGKUTyfxEBGa2L4WjafiJlJmCSFSFCokJ7f+wIrhK/FV6kOkERrv64L+P8EpuwLs/F3x1/uSbB72tC+pkgabvWNOm+ssL7xNVIl0pQaBUquT+dYZymCVusUQxtjRCuF1Pu8tlFsHgJ26AlhPGdyJEqNuW53ppVxT7M/zhACMXwtVtrv46RKz3mlFErGkZYbxvSCdI2lTMcbYiKpJQJpEjA560ZjyFhjaIEa+5BJaJb2XHmWIl67fkhipbcCpd/alQ0Z2v3Ko6Df+HV4c8jR9RFXJ1e/7kP5L7ZUULz/+fv89/+X/56L0wuCDPz8Wz+nqRq+fPIlu+nu79SwPLPZ3d777Xq73q636+/KklHy/R99n0fPHvEn/+RP+Ml3f/KWqvR2vV3/mdavXJlmhcFohR0sbd9he0cWE045iEiUEPCjqya5ebVKrk0lFYyNdMaNbLBh3BAnx6jYb7yUJMZEW/IjBph9zve4qUQI3JjtLqJIDt4APnq0EWitCTEJjLRKTQHv44jkV2i1xztLRsPQ2LQe8MGhVPIWa5Ga9pM8Z1KWWGfpvaNpO7Z1JL0shxaBqCFES8Akh7gd7gYdMUS6rkMEQTHPRneMYlKWDM6NDVefBhdEgndJLKQV3jvyPLnh9nnje6d+7D0owRCTcKqczSAmWtG9B+cQPa9fX9AojfeRduiTkArYNA3Weg6qCUYKlJHkRiO1Tk44ZZCFo3eR3BeYrGJKYFVv8cEz9AOZHgcdUtJ1nmbXjo0/i42gyMhUBJcaHlqnxkiuFciIqiS6F/S9pasHjqoD8qqgGQfWm82aLCsRRhMYiEpTTWYcHhzy5edfIqOirCbsdh0BcF4Q0UhhaAeHkQqiQmuDKwSiUPgsQw5w/2DCpvVsrq8ZhoboAuV0yq7Zcnb2Dv/sn/+3HB1X/Mn/9P/gL//ql7y6WRP7gWKaQxyYaDheLJlOD7je3tB2NZPScHQy5/mLyM16R5Yb8jxDxYiSkWmZEcKEph9AJkT8YB0+SoLKWbWO9uKG9/IJxydn1PUa6zzT2RQ5nXLpBprVjt1uzWrTMC1nxACNd9juluU0p1os+PmqoaimvPveY+aHh1xerPnhZy85XQ/k82O+9/1vcf/eu0Q/8OXT52xXGxbC8ODRQ6bTOY/un+NaixWBi8s3aOHR8yknjx5xves5OlyCjbx4/ZqL9QWztmI+N/9v9v7s19Iszc/DnjV90x7PGHNkRM6ZNXZ1s5oaTZqGZQiiBMHSlS4MX+i/MgRd+UoGTEC0TIGQaICk2KS6u6orqyor55gjzrTHb1yTL9Z3ThYlw2pRoqq7mesmAxknzvn2Pt/e+13r/b3Pw09+9B6zyZzTo/ucLk5Rs5zy7hGFFjSvtzz/5ozVbkXdDZzevkvXWZ4/bbl7ekxZeu7cew9rO968OGe9bbm4rHn/nfeo7zzkwaNjzp+d8+r1GYU23DucAJHdesf83m3mtiH0lsXsgHfef8R0aviH/59/wosXrzk7qwlmxkX7lK//6OcUM0MMDhsyXIw0tsVEiW0tkzzjarvjv/pv/gmZULzz/mNuny4Ymo5m1aCrCus8ne/55NMvUDn4pubtW4+4fbSkby0/++XXXA47jo4ntK3l8P5DYr3ixbOvmN+5y+X5mkrlNL7n/gePcPuWLjiiEazWG+w6MjEVy+MloZjxs599zjSXvPeT73P/4W2ePXuGOVqwuH0H5RWf//GvGbzm7sO7HN17wIs3W/JM8Oj2O1xernm9WnP75JSX3zzHDYKmsbw6ewUisKsbkJJbj+6gteGrr18h8hnzEn756y8I1hIL+Mkf/oT1+QXvf/A2QmbYAeaZwbcDV+crtpsts8JA6zEu/QytA7fuLxjqhhgCqsyQSpAVmqktkEpS6SOeffI552+u2NeOq/WeF6uWWTnjzuGEejrjH/7iT/jgvcf89N0fcuE058+f0WxrbNvRd1uenj/lzsTj2vs8fvcDlpfnRN+w3W95/eSS1WbHwfEJnR8o8wH0BNt7oGPoWy63PYJAcSAoJZzOJwybNc+2W6KSTKoJm6ZlOa9YLJesVzte+CvuvPeIu0eH7F9e0u9TGHBzueHi9QUPHz1kcrTEby5w1rPe7XmjK2oXEB4wGpENzArB+nLNfr0mhB4hpuw3Gy7XK966f5vJfEHvDTE6Xp6tmBUTVBiYygoTM2wfON82TKZHTKcbrDZcXOyYFJqDtxZUueHszRmL5Qmzg5ZXL59zebXn3Q8nLA8O2G9rvvziN3z95CmTyQnvvP8By+WMo3nBq4sV+66lftVzfrWmDh41q3j39JhdP7BYzNlcbrGDoXh0DzLDvulo+p5VsyOflFRSUwfY7Buk9ly8Ocftdgyyoigroo3gIr2PZEpTZRXSe7rQs+8sboj0Q4/wA0ZAnmU45xnsgMlyTJQUVVIC1E3HVEsG7xmiZ7/Z8vkXHU5AXpYsZ1O2XctVN4zUkdSoVUaSScPO9hgN233NvmvIi5wyLyjMeGgux0NmnxQdiIBQSYXUDi1BJtVBXqTmIkFSbzu0MXRtjx1sCvKGiHOBwaXPToxM9MIySxPOUiClx3kPQSCkIngJBPrBMpkUZEbT7S1d2+FdCsoM/UAIHjsYIIU0rg/egwdnI84lhUhwdgyCgAsKqQRVlabCc2Pomx7Xe5yz3wZAxmlvVAqCDz4FvK6bHX3bMXRJoZsILIHRR8TNgPMY6rhWGiRREvhxwltrTQScTzWRjKMUTipMZoB00J6miMEYQ5ZlaK1BSqRQBJcCP0Pv6NqewQ0MfU9VVmijUSY18xNaJhE8r4MQRIF1brweQTYGnsRI6AxEhBQoAW6QdG0/HvqLG9rOiFVCyoiS41MgQBudAiJCoJTB+9RIK/IMYqTtBoJ3OGchBrquT0qpKMmKpIhKP+M6ZOEZbKLYSAFCpcC5jol+c62C+Iu4pFaJbuADdtQHqsiN9iqOjbDrxo0YaVYphJEISNxoPsYG2fVNxm+TZa4bauFbYpeH6w2FHH+ej9+G6yLj9xMBqdRIbUoEMjmGeeKoJ1Fjk0upFGwRMjXgklYsJIKbFKRwW3qdZEqTaZ1U2SFgnSMO6b6KIaLG/VSMgUi6p3zwv0UNkBw/P8INHpNrrvVkxuhx8j1gQxibe4lSpbVGSokLDqX12CAcu6LjlH4arxf4cZ9mspyIINea2XxKjJF6X2Nl0ozZkQwggH4kvhYyQ42alOt9ytBfq6ADLkRU1EilyTNobWrwYUEHDSSam3cpqJRel0k1J1BoEilPBpWoFiTKL0IijWBwSaXjBkdlyjSAEQJyJP5KpRFKEX36OSbLKIqSzWqNiBJtMobBoaRIjcUUwcL5gBIKSCGhoDXoFO4UHmZFQe8CfdPigiWGiMkyBtszmSx4/M7bVJXhm8+/5uLZGtHmzJzmZHWA0prH+X1+/vYvuJxtaIYW6waMkZRZzm7XJHqTVjc6PSkimUlkYZtcPukeDSHdD0LTu4CrGw7UgqqajM3SQJZniCyjDg7bDQxDT9dbMpMRY8RGT+g9hVGYPOeitRidsTyck5cldd1zftGw/cbTzHpObx0xmy2JwbPebBnanhzJbL4gyzLms1lSHxGpmxpFQBYZ1XxBMziqsgAf2dV76q4h14Y8k9y9fUiW5UzKOZN8gswVelahJdh9z2bd0A0tg3NMZzOc82w3ltlkgtaRk/khwXv2u5qudTSt5ejwiNl0weKgot407Pc1WipmpYEIQ9+TzwryYInOU+Qlh0dLskzy9MkLtts9dT0QZU7jNqyev0HnY4M4KAIR521q+tpAphTNMHD5zXMUgoOjJdNpgbcO29mkrA1pyOvs4gqhIDpLOV0wqwqcDbw+X9O4nqrKsC5QLuYwdOw2K/LpnKbuMFLhomN+tCRYh4uBKAVt1+GBTBqKqgCV8fr1FUYLDm+fslhM2Wy3yLKgmE0RQXD58gIfJbPFjGo+Z1sPaClYziY0Tce+65hOJuw22/T+bQP7eg9E+iHVC9PlFCUVbdexqy2TSclqvabWhrZvOL5zi7KcsFhMKasJ212DHxxaaPq2o97XRBHwg0OmHDNusExmGcOQ1IQhRoxWN1Qw7wPFbMLuYs12vae3lqurNcXU4YPiYFaho+B1b9l3Kx69dY9MaS72r9hfrWitQxLZbTcIn2MPJ0yXJ5zeuk30PXXb0nSO3WaPzvMkq4oWmWcM1qGiAxtohj2ZVPS+QyIptCKEwOZyRRCpdrSDIy8MVabROuPy8opsVlKVBRmS3bYDkcJ469UWmRsO5jPE0BK6gLeWet8itMG5btQyQa6g2e9puoHo02tOS8XV5RXKaBYTjQ3pnXTbJTJZnqeaQQsDIZ3HBKEoixKPoBsCmbZkU0ORS/q+Q6qcyWxJf3lJXXfM5gsmkwnBgx06Li4usA6Ojk8x2jCrDP1Y/+7qHcF6eu8QUjOfz8izjKwo8dYmStt8QlQa6z3EQNu3KUTjHLk2dPsGhcB2PUPbJiBqZpJ6y8f0eR4FudRoZKqLvcf7mOou71HAdKj48POPuHx9ydePv6FZNEgRMVKm3ykRI1JtkJTAO4JIdKQyz/E+UFuHDdcknxSykVpBTCq3ENLZGwIGHTBakgjwI32ReFNHiFEvFqwdWfPXCjSFQOJc4Jri6H0KyadSKKaBhShu6qPfDtcgwEHaUwhxo0bzMSBj+v7RgbNJ+xZDqk2C90gvRn0oN/UUfBvqCeHbMAwiEYFiVEgFkyInM0kZPQxuDLmOlKA4Kp+lQIR03nsdfkpPS2Doh7HeiiNt6LdqvrEauhl8uH6g1/ElwUjnFyMBM2nyrr9WSoWU3NRq1/ubaz02jM9lTArrGBx2cKO6LX1eCiGQ1+egN7n569A3RJlokoFRuTvq7OQYWr9hHY0ZNO8SmemaCvrb4XRE+txP3zj9DBnT7zz9fuSospWjki5gYyLgX4e+bPKGI0W6N67vuzhqcP2455Ti2+dCyt96sr9bf6WWCIIf/+zHyPAXd6/4P3dlQ0Y2ZH/ur/3LGtASCKq24tGTRwC8/fXbRCKrgxV/59//Ozx568lfiqCSGQy3Xt/6XV/Gd+u79d36bv0LLYHgcHXI3/4v/zY/+MUP+Ad/8x/w4u6LvxTvv9+t79Zf5PXnrs5isLRdaozgPQSPE3JsdkV0pscD/YjK1Uj9SZOl3nustTe4WqM1MtPYcRJdCIV3ni548jzDGEOeZfTO4eyADNf6grSpCs7hrE0Ns3Hw5rennrWRaYpayLT5U2NzLUKuNHlmECKObnbFYK8n4GXykesMJQUyCozWVHlOpiQIlQ5wxwaSkmnquCoKum4gxsjgHN45vAfnPEIIjDYomXDK+7YmRENmNEpqitxgjCEEn4JdUlNKOR46+DR1N3Rs1ztEZES2l4k4ALjg0Zkhy0oylZFNJlRFATYQ2p5M5dhY07cdeaaZTybs91typRAO9k2HR+GiRyjwriMaQcw1bfCYPGOwA7qs8NEiM4UdPI5A31oIMWl6hECZNC2FEylYJhzRR3ReUYSMbuspVKTZ1lR5wenJEpW11Nme+WzGvJjhnCV0fZrg7XuuNlsmswlt2zJYx67pGIYLzi7WHC4XaK04OD4Az6icUcyPT8jyLBEvvKcwBVJGvv+HP+blqxc8+fQbzi8v8W5gbzLcqLwT6z25LlAu52f/7FPmM82rdQ1VyYNJxXa9p2kdeTnFiB49dMjdwFD3DELxelezdI55URLvnOKiJwTPfrvFBc9iNsOGSG8jRmdURU7fD6x2W/bdgFE5Rha8udwwBMf51YYvrtbcv3PKdFrQXK3Z7xvause1npaGN1cXzMo52kji4MlEzkc/+B7LWUEcIpuzFZl31E7xk7/5r3Hn7j1++bOnbDaX/OG/9hMOl4ecX665++Ahw35HMZ3zattSBFhv1zStRVjPW3eXNOsz+iEwOZ2SFxovDSYv+ObJEx6/dZd7t4+Z6opf//e/5Fn2Fcd37/BQ/oBn6yu6yy1ffvk1Qnje/ugj2mbg7YenXK03hMaxubgi11Peeu8ex7dOuLWu2W8iw6bj4tOvaF6esetqvM6ZLUrKLPLJb56Crvjw8Sly6Hj18oxJNWPoAr1UPLr3iIuLc7788kv6rueo0jzZnLMQU/76X/sR84ND/vt/9nOCk7ghMC2nfPz+Yy43W2aXO6oi59Hbb/H5b77g8f0jfvWnv+T+O+/xB3/tPX79y8+5fXfJW3eOuXz6hqFuuZJbnrw5p1GOWZ7x1u0Fs4O77AdLP/QUJuPpkyeYfMriaI7oA998/grVtvzkvUeI9+7x5WdfUMwWLA+PuNw6ymrCyewUJQV5Yfj5P/kFQgj+2o9/xLaHX335hovLHUWV8flnn1GVJUNrOVgsaVYNi1xz8vZbrK+25EWFzXOWwbIoHMPKcbJ8l+/9+Pc5unsL6zqiMrxe1VgGZouc/TpSTkpO7x7z4N4hvul58+aMenNJHAb+8W++YHF0zA9/8mOuXp/x+W9esJjMEBIePLjL/KDi6W+esl7tOHxbEZD4YeBXf/wLuu2e4+WUX/6zP+Xi6oz5yR2mh6fcun2PfD6jrlu63jI9OaEsSpqLFdZ5GqPQEvKi4HgxYx17umaLUBHvoFAF1lkOlktWlzu+ev4aM53y0fsPYL/larOhk5J7B4ccT3P++Oc/xwbHg/4WRVbgpef84oJ+CAyx4/1336PIJ7y5umS/29B1jpOjBe2+pWsbtgyU04KP3npIsJZ96KjmhmI64+3wkM8++RXfPHnO0ydnLG+dcHC4QCtD5jMuNxtWlzVBKR69fYd79+7w5tlrzJ0j7pweUYWB3arjwYNbOOcwQVLvWqTNCK7mfHdOMSs5nk4IXYOaTvAy8ui9t6lmOZevLvjNn33Fvj5n117x6N4JWVmyvloRO8/UFAhZcbmx/OrzX/LqasvvffyIMs7ItObOg3voLOf41jGt3XPvrYfofmD7xZco79i9eUU+nXJQVfzZ5085uXOXxXSKFIYYA/V+hxpa6HvcvMIVFfPZHKVSkOSqa/HeU+YZ2iRyxHqzYdu3hJgOYZURZHlO7zz7bhibsIKuG+hth5UDgvR5mgnwSlLqimGw2LohKkndtdTtnt5FrKvx0YEEU8ikFlXQek9jG3o/oLTAKIl3Aw2J5Ni1A/umxVrH0A2JCmjSwb/JMq4Ptb0N7DY10UesdSgh8MElig4xhV6kpJiUSCUpnBsPymGwLhEmA2RZTl4Isiwn2Agooo3U25ZgA+urbWqkqFQ/OZtCFE1jUUqix8Pzvrco7TFDordEf01RCmRZhpSG6D2TomQ2m7Df7dnua6xNjYqiLJFSJnKH7ROVRqSAk48xKQOUQgtN21m8d2My56Z4/FbFBd+GT+Ko1iJRKE2eoTOdyDrXjYhRGRFCwFlPCG5UQaRgiNYaInRtR/itCWofQtKoBYBI61q6pk21VgzE6BHRYYcUSJdKonOD1gZdKGSIZNk1lSrQNz128NjgUQqKkUpzrbSIN82JpE/QWdJ89V2HdwKhk7ZC5xqtRqWxlPR9n4hKIZICEIosS6Sua52Y0YkyGmPA2UgUeqQMZQw20PeOKFKjK+mKBUPf/8Wefo4+qb9SOijdIwh89MSQmjk3dIGbsN3YtImJfIoYmyki6csC395nMQa8DaDVOH2uU7No1JJdKz6EEOPEearVvxVofEtUkmPThxuAUySOmj8pJfpaBRcDIqbm0DVlINzQAtLXKDHuf6Qgqf3SPRScv1G0aa1TcAlwIYyBvzGEJQSzruT2+R1CSGFNohoHGGQKsoz7B8Y9kx7DSmH89875RJOAFPCTenztpOcwKfI0SqpEttA6pbhcorimP7p0H2eGYRjQQuJhpHilwAwiEoMlSgFaYkmhL+99CmfgEUESfCJd9c4x+EgInjCSN+JIj0BEBJ4YJbcvbjNtJ9gQUCXYIVFsJpMCIS3CW/Isp9AZPiTtpFAy0eC6Pu0NxlDVYB3eNdRNR1HkSCkoq+ImrCisoKgmST1JRISAVhohIqf3b7Pb7dhcrKmblhg8g1KEcS86dANKakTQvH55QZFJdt0ARjM3s5Ga5VE6Z+oV3/v8Y/7px/89O7/DI6h7Sx4iudLMZpPxfSuOr+1InmeEGPHBooRKykrnaPuewfrUhM00ddvjYqDpOq7ajvl0gsk0bgzOWusILmBx1LFNGi0liCHdt8e3TigyDQG6fYsOgTgo3r71PtPygLPXG7q+4f79O5R5SdN0zBYL/DCgs4J9b1ERur5L5wI+sJxPsV2N94FskqXPqvH+Xa/XHCxnzKcVmTBcvDxno1ZUsxlLodl0Lb7puVqtESKwPD7G2cDBYkLbdUTr6eoGLQ2LoxnVpKLuBmwPvnM0FyvcvqZ3lijSe7xWcHaxBplxvJwigmO/q8lMhncRLyTL2YKmaVhdrXDeURrJuq8pRMb9u7fIyoqXL14ToyC4pEM9OVrS9D1122OUZnmw5PLyioN5yfmrc+aHh9y9d5ToPbOC5ayi2ewJg6MVA+t9jRWBXCsW04K8nDE4j/MOrRSbzRqpMopqhnOR9dUe6Sx3jhaIwxlXl1fovKAsS5o+YExGlU+QApRWvH7+BiEEd+/cYnBwsapp2gFtFFeXlyMpJFAWBba1FFoyWS7o2h6tDF5p8hgodMB3gao84vTWHcr5lBAcdd0QRJ0CwQpkpolWkRcZh0cLorX0dUO93RLxnF1siFEwOzxAS8H5m0tW5xtmixKtFIfHpzT7mnrb4HwgHxvs9bbm7MVrDg8XrM8uWK+ukMZgiglVNSUvc6KQdE1NViVyU7SJROmlJIgIMlF93GAQBLwbUvgRRUSR6YyiCqxWW/q2ZXb7BINn6HtqH0BJqmnF5dUll/s9k0lJmeUIJeiHjr51uOgoq4Ll4oC27emGFGTSRqKVxnU9osjwMnJ0ME+BcWfJco3KkkoxXl1xsV6xXe/QWaLDKgRGGbp+wPlA33uqScbiaEEcPOSSoqooMsmwa9FKsphNsb0jRk/fOjIlqbuaIDyT6SSpP6MnEiiqkqPpISF4Ll5f0Wy29K6jyDVFluG9o97WCB/QOsN6yeVqzXbfc3p6SCYqEJKiLCkmFd46illJURVMihJ/eQkx4ruOvhuYLmas1nv6KDmYT5lUqUwY+kTExQ5Ek+OkwkynhOhRWU672WF9qoMVicTeDwPt0OPTxwgQ0UbhgseFAENgdnHAB3XFLz74BduDLXmwhCjIRNLQSa1Hbd6QAlEuBfiFVHg/EGP6vJYqDTYqmWpjF91YuyTSjiBinUXIRA3tB5vqaufRSqOMuqklE0UyVSTOOmxwN2FsMZKSEp0nfc5LpVAmffakMNIYnkHcfM8s+zboTkj/zw0ehGfoLMMw3ITbvUtnjD5GgkikfEjnmiDwKgWK4pgYioRR06uJMaKEJM9T8LW3NmnRQhgVbiINS0R/A/wcxwQSaUqkALgfSaU35CYYw+n8c+mklF26TtKMwS+VnpP09/5GgSbENWUppKPsMaAkxnC1lInMH37r+12H5cdfZSKZ/lY4MI57nEi4CcHf0Cy1QIQUrtc61Z3eebxNoWLEt8GiMNLob/ZLIgXn5ajwDWNwDHGtlE5qPi1TmD6Eb5+vsWJGyvStbvZcIhElhUiP/UYnJ1MN6ce6KKmKxQ2NLIS/wPuJ79a/0Dq6POKHv/jhv7IUm+/98nss18vf9WX8r7YEgoPVAf/h//M/5D/7v/5nbBfb3/Ul/U+uois4XB3+ri/ju/Xd+m59t/4XLeMM7375LicXJ/wX/+f/guf3n38XVPpufbf+F6w/d0jJOY8WgsJk5HnGfr8fpysE1lqkEpRlwrcLAa9enjEMEXzadBElyeyedkxSCCQBH9OESppK1ghkQv0TcSGmzbeIY5MmMgwJP3u9IY3xt6aQxsmZ64bFtKwo8hxEpKk7+t5jFGhJOkj2Ah8SMlnEQG/tOIUEWkoyoTHKQIhpwojwrY/cRURIm72EftfozBAI2OgYBkdTpyDTpJRkJiMQaYcubeaFQmUepTRGa7xLj0drg+8DQkqcTyoQZy1ZnjEpSoqiAglKS0LbI2JEB9hv9xweHVNUE968fMlL25NJmQ5o9jVd1yMnJduNpbV9mjATEJREqxypNSE6JIFikohKq/WeWSGZzSZs9zWDs3jnKTJD33XUuw4jDX10aC1QCqI0RAsiBrI8IscJyN3miqyasKkTUtpj2T9/TaYi1TxHlxmboQWfsPtET1lN6K2n8CFNh/YDF+dnCA/RW7pmh4wDpTYok+FsRAtBCJbBRdphwA8haRek5ptffErT7inzDJFLLjdnRO84LA8gCGofuaxr9Nkb4jAwu3eHeX7A4XQGQ02VZ6w2HROdI6XmXO2JeuDOwQIxm3C537FtWg4mGQ+Opmx2LRe7fSI5Rbja7Oj7hFvuB8tsPmGWZYmk5SLzxYSiyMFoQttz594BsRjIFjlNN+C8YwieKDUH0xKpoaomnBzMyStDsxl4/4Mf8W/9n/73IAf+9Gc/47/9f/99fLvnYHKLmRg4f/4Vf/TzX9J0ex69e5eu3nK4nLPbWe4/uA2xoR5gdXHJbnWJtYHF8hZn6y1Pnn3D3aNT+tvHeJ0h3cA0BB7fucVQD3z+6TO+99H7PL94zrScoWcF7tefcV63rC6u2GzXLMuMq8tL8qzkzdkVV80eowuyo2M6P7C73NFHiRt66s2OemjZ2kuadc3rNyu8nhHuHnF6knPnwR1igE8/+Q1ZLjm4fcpyNuHs5YpfP3vJp59+Qrff8eT5Gx69/wFHB6ccP7zFYrZAUpBLgc4kx6fHzE1BPi8TGWVbMxVQasPQW/R8wdPXF9TNQLk74k5fEVc7Pnj4AGcb9pcXXK2uePze29y5MyVeDTz/4pIXLvCHD97jnQdHvH6dURRzToMD4PyrVzx8+AhfTbnyHS++fsL56wuOFxWPDm/hguNkViGUpN7uePXNGY0Z2EfLvJry6vkZQpUweA4ODyinBYXImU0nxKHHDw4fAt98+Zr1dkM+Mxip+PjjD6n3G47zwLDb8mLVUk4Khv3AarPn4Z17+PozVpsGayKLKuO9h3dQzYAVSYNVHeQc+UOefvmau+/c4/5b9ylFxRe/+oavnz+jG3ac3r3Nhx+9y1IYMm0QeUEIkt2+p6sbbJScXazJZwWTd2+z/vkbLl98TTQZUnh++cnPWeYlB0clf/MPv8fq9Uu+efYV1kqmk5IHt09oGsu0BCvuUoTIkxd7gmx4+fwZl6/PuH9ywu99+JjDKueLl+d8/flz7h9OyJRieXxMWS5YXVxSTWdou+Hs6ydMTt9CFvDy4oLlZMJ0mvPq+TOymOEyyV4ohgjDrsZ1jsZ68iLncD6hr2uiNGiTE4Skbh3RCVRWYMoFu+2Wo1Jjcs1+SCSgIUSGPKbGGQ5jMt79/vv8/uIQZQe252fsmz0Xr/YYkzGfFFQ2YLuAcwOLWYbHU292zOYzQuZptiv+6X/3c27dOuHWnQOmByVX23OcErQhcHLriGw6oQuaDsHDh3dZHs/4oz/+Y14+fcHF2YSZEry5XNPs93z03ofMleTO7ADR9WRFyeHshF/94lOePz9j0M/58Aff5/j+MVE4rl7teHO54c5bd1jv91xenuFlpN5t2HU9D957TGwartZnzA8OsLbHu4GiysmKjF29R/oCGQJaenSmMFqS54ZmGPAhNaZFjGOoJMN2Dikigw/kk5JMKnwJe9vS9QOD7an7PU7IpOwRiewXgNY5DIIsM4nYIwVD1+B8gwuRvnEE57HW0/UWO1gGUnPXFIa8KimKnOgDQiXqTtfUuMEmWowQhJimbwGQkJfZWL8EijKn64YUTDJVokLaAe86lAooIm3T0jY9IiZiZBwpLADeO3zwFGVSNjT1wNBbvPVpkjpKREwNIm89fTskcqUZD/B9IAbPdrWjb5OmqO/9zYQ2BISMaJNqnegTHUnIiIwp1JCUWymwFAMgx8N479LB/tgYuF4309hEhIpJr7JcoJShaVqGbhgDQILM5EglxnrIkOcFSimMMTfas6G3SYUk5A3NM4T4W42JdCA/DMONNiHLMoJLpK4Q/EjqTCGFLNM3wXKERKoxrDJqEawNqU4RIGQi9UjJSDuSo05CIJTE5DqRdlQKIWmtU2MAQV4KurqjHxzBR3QmMVmRmvbOJzWc1DBqw2IMuDEocd1YCTGmZpsUyJGOJaXADX9xmwrX1CKlEh1mGIb0F2PATMj0+szz9DrZ7+vUUP7tRlQcp+avw0yjXiOOrFIxKkeuldJhDO5cT7Snn+VviABju+tbAtX4PKZ+XiDTJgV2iCnc4hmDRSlHMwKIkpUuJvLCzdj+9ZCFkjCqYVIQL+1x4hiwE+JbPVxqsEUciQRrrUNHxb2v75O7PP3dOKyQC4FSoxpGKpJGMaZ7xztSCzDchLKUHrXI2oz3sCAkdxgywtAPlGWFNoZ6t2PnPUokDYwbLM57hNH00WO9Q4tENEGOCm4hUwMSklJLyqSw1ul9dhhSMz3GgJYpuNR3PTZLeuvUeCWFwQIQIlILMme4/ewWQ9eijKG3ctTMeIbtHiUiJtdIrehCGqK4VuUYY/AjMSCOzbymrtP7XAh4OyCjR0uFEJLg0441vTdErE9UAj/uS9dvLrFuSCE1LWi6mhgCZV5CACugHQZkvQfvyWczCl0i8hzcgNGStnNkcgwdthXvfvke7p1fESpBMwzY3lLkinmZ0Q+Wph9SMxISaW28t50PZLlAZ9lI64O8+JYwF51jNivZKY8qNM6lAQoXUziyNAYhk5JvUhYoI7Gd5+joNm+9+xiE59Xr13yz/YpgB+7v7jMRgmaz4vmbc5zrOTiY4WxPUeQMvWc+PwQsg4euaRnaJukpiyl127HerplVU5ybEKRC+EAWI8vZFDd4Li+3nB4fsW026TMg11xdXNIMlrZp6fuewii6tkUpQ123NLZHSY2qJrjoGdoeFwXRe4ZuYAiWPrTYLpFogswIoWIy0UwXM4hwcXaBUoJyOiHPMppdy/lmx8XFGW4Y2GxrFkdHVMWEajElz3JAowGlBFVVkSmNzs1IPLZkCLSSeO9RecFm32KtxwwlM2eI7cDxYkHwA7ZpaNuW5dEBs1lGbD3bq5ZtgPuLIw6OS/b7ROCZjGSRerVnsVgSTEYbLdvVhmbfUBWGaTkhxsAkT+op2/ds1jVWBgY8hcnYb2uEMOADRVkkTSmKLM/Au/E9NIWgur5HZampfnJ6wjB0VCri+55dZ9GZxveetu9RynA0n3B5eZmUZX3D3ZNDsgjRBobBEolM5iWbdYPKc+YHE2bVnKvzdVKkv3zJspszm82YxjTIJdU19SyRdnrrcDFRMNVigh729Jsdg/McnB5R77esBs+k0Nw6muOtY7dbIVVGFLCcVkk/nSmKUlNkmtZK5L5mvVnT7mtEiNw+PaR4cJvz1Yb11YZFlaNk0h8anROQhCiYlBm+rdm2jmoxY9e0+MEyn0/pu5atAxcDQmust5hMowPYwVKgKMuC6B1OKiICqTS986Tto0BnJf1QI0Qgzw1d3yNUquejBBcsfucQSnFwtOTRyRFaKXzb4JzE9gEfPXmVQQgEL/HWkhuBEwrbtiilyDOFjI6L80vWq4zDwzl5ldM0+/Q+HRUqTzVwkBLrAiYzvPXwLtUk49WrM+rdlq4Yw+e7PbdOTsm0oiiLRIDxjtl0zvnrC64ud/SuoxGByXRKdJ6u7ai3e2SekWUT1vsdnetxtaPvLdm0osor+v0eZTLyImcYuhTazgy99wilkTGd82mlCDpRYgaX6lPvPdVQ8MPPvscnf/AJg+kQJNKQGMPwJoANHhd8Cil5l8BNY90gR3JgCtakUJJSiigjkhSMd9Glz6CxPk2q4BTS9tKjvUaaMXzv0veWQqXBR+f+uX5H2geMtY7+NtQrpUQLPZJSDUqmPY8PKZAmtSK4NLwQrwlQ14MDADEk5ahKRCHnkjo1+BRUEghCJOnNpMBaPwaU1BjYSUWQGxz7XZPojC6MNNXrlE8Kn4v4bUiIUX92XS+loPM1+Wikr44hnuuvudlU/PZ/xtBPXuYYbW6CPWEcbhBCoLQmhBRM19qM4aTrANEY9LmuBW+GKkh/5vo641gbXKvj0v4jKa4jgYAQPhGtxv1ECGEc8lAI6ZFca9kiQo21LInYexN0GoNQ1z9HSXWjybsOF6UaR6D0GJAe9xOMQxNK6fFxjM+llOPvOo7XM9I0bwZJGP//qNO+KXK/W39Vlraaf+Mf/RtUbfW7vpTfySrbkp/+s5/+lQtoCQSLzYJ/97/6d/k7//7foc/7m7+LIhLlXyAsWoTHXz+mav7VvAe/W9+t79ZfrSUQLDdL/qP/x3/Ef/5/+c9ZH6x/15f03fpu/aVdf+6QklEGozPKImdS5hwtJqx3NXXb4wkoqYlBJL2G7RMRIIqkChkbC1KmqYzrKRohBJkZlXBKolVqCMS0Z09T0kohRUAq0maetBnU42ZTjpPDYpy8BUAIlNBMiinL+YRuaOjanjHFNGo+YmoThEimE/42RIV1jmxsIrnR4a61wWQS27V454hj6AUxqhW8J8sLjDZAmrAabGqyGSHIjUnUHGfBSKKQ+BjTdQPRp0Pz3ntCADU2pbSUxKEnlwpjCgqtyaVBaEFeGnop6dsOnENpw6besdlvobc4GemEIDpPVWVMyozeWpq2S5vsXFBOC5AKNwxY78iyDOeGpJZAkAsY4sDL9UBwnkxADAP71qeGmtFopbC9I9jU7IkiIFRqQrkQyETEKJhMSwY7UF8NFFmBDR5d5jilsJ2nMhGhNY2LEBz9MDDYwGbXpiaqH/C9w8Z+JGoljQMIttsGgWVSlcgYcXag2e+4uljhQ6Q6XmJrT9CeWVVwNJ8QlKcIA69er2hy+OH33qN1PV8/OQMCXz39gl/9/E+YHJ2wuDWnMiUf/eiHPH39gvZyR2YKtNzilWMyz9FSsqqTbmfDHpFnKGkosgwXfJra9SC1RptIVZbkSpPlGVFK+j4QcZwcVNy5fYvVtub47hH5Fxnr8w2lkhwfH6SDQOWYZJooI7YdOL+8IK8rcjPl8vUZF18+IcsUUy9Yzg/Ym4xJseTV8zPyacnp41N++bMznnzzhJ/8wQ/pgT/52ReovKK3nl/82c9prq4o88j3P/oe73/wff7BH/1jtvsdy/mUn/3qC8hzThZLpqXhrUcnPHn+nK++OOdyt+PO2/coq0WaaLQD7z24zbOh4eHJHbwfODmakqmCWTnlne8/YrdrafZ7Tu4csbmsqaoqNXWXCscMMyt59PCUB5cXvDrfsyimtH1HVU2xoQc58PT5BQ8f3IOu5o/+5BdQGHQpsTuLKQ3/9t/61zm5f4D1P+LrL1+we7Hj+bNnGJ1za5mjfAom5llBEwKxMAzCc+/+KUcnhzz/4mveejxhcTLn5edfo5zn8YO7nF+dsa03PHnzAhskjx7cphCabVcjtWTTbnkwe0C2nlKUU24fLdm3DZ99+g3+6VPe+/Bjfvy9d/h5s6XtJYvjCf+vf/APqaqKe28/YjY/Ytfv2bhLfvjx9zl5fI+2bvjkT37D/dPb0Oz5+vkzfvgHf8DhYkHXdWQmMgwNJ3fv89nn37DrBPntBYWIHC+XHB/O2b/8BoTicDqFGKibPZ9/+YTbt46JQ8ujew+4894jslyyefmKi6963vvx+5wcz4kSzHRJUzvef/cur798ypMXX3N6b8E7v/cOly/XvP/oMb5v2e/3FPcWzBdT8lIRWohRc3hwjHHw6NFDTu1tNk9esm+e4mXg4OiQ71UV/W7PrTtHLI6PMDrj00+/QBuD8A6329PsHLN8gZYdL15dIGeRW/eX/PKLLykWB8wP58wWcx480thZxfmrNS/qjnv37+I9XF7tsCFy/9FDlrHhyYtX+NzQDzVvPX7AfDFjV3dcvTrDGIsJhvnxIUbkDI1FZ2mKu7eCPJvy5OqC+7fuUJQFbQdff/0V23WNl4b7bz8gzwL33npAvxuIdcudBw/IBsvl9oo3FxuabuDgqk73z5dPefbqNTE6BmtACp68fMn8aD6qGSKFH6g3O55crJnOZhQTRVGVLI8P8E5StzVXLz2lNjx4dBclIlVecXx6l2oyo9kHhnaL9nA6PyL/ve/zx+IXmEzRRtgNlub5G7o2vaffOphy9eqcbD5lkk+wPpDNJnSt4NmrS/7mv/nXUdLwx5tfIvKeGCRXVw2zg0OObk9ZmIqf/forXj5/QaEUm75Hy1HxSlJ9KSGZTyYYPdDYIaHnQyTPTHrfNzo1/JkwNRlx6FkPPXmZ0/YOZwN+1+DznCzLOShzWgXbzo+qBImWEjE2CZyI6FEXpoxK4Q83jNPhnr5uRkqRS0EiUrOcEHHBJoLHPIWhyyLHB/A20u2T4jArCooix8fArqnxwVNOcpaH8xRW7Sy29xijMFmGUhn94LA2YAdHkJGOnn7oknrNpWBCiAFTaIzRWD8wqQqWyxlt09PUQwo6+UBwcTyAh8xobISOmzYBIJAGJIbBukT2GalOUqWma9f1Y7AjTeu6FNdOyoIA0QVsiJRlgcmSojaGgJSpKYoUyDTKe0MdulkyUlQZs0VFiI6uHlIAXCi0GUMVwSOuCTQq3Sd5nicSUden8IoTRO/S4X4UIynntxoiKcVyM/UdvKfvB6KPI80z/Z1SiqLMyZRi6NP3RaRQmZADwhqcI9FeQiQvJJOpGRsjo2rYJ+0NMR3u67HpJKVGSIUbUmhEm5EsWuQoG4jCkpcSY1JzKHgDUaffkww3NFDvw9j0+VYZoqXAjCqOcK3y+gt0Fvk/XGoM4RiV6E9lbugGmwhCjrE5RFL7BY8fwxi/faB83RhKmrT0XCglbwJKo3EjqU1E/HZifCQiXU/KC5Huz+tmTGrY8K1WjtQozExGkWe4kXzgSV+fzCnxRkmiRt2HJDXgrvcn1+StFFYbKbQjKelazZZCTmEkGaX/54PHBwcRTi6PuXtxh0wlEoRQknjdNBTyW9LTeB/E6G70I5IU1lAiNb21lCihxntU4kRqVF8Tojo70K17hA94kcJSxEShMEbdqOqIgE66OcawU3oMKr1OYiJLKVJjdd8lSoEiEqNnGK/VRINUIqljwqixEaMyeyRBnZ6dMGsnZFkiYw1Nl5rvhDRoIZMqzqj0HmJJIQbvAz5Euj49vhg80aVGfbon0p4MAX1vEQSM0SlsFjz90NO2HTGCqQq8DUQZyIymyjOiCOjg2dctzsPpyREuOFabGoisNlecvX5FVlXkkxyjDCe3biP3W1w7pN+3GDi5usVhtwAVuNrtcdGzP1rz/INv0utc6W9DiRHEqKwxxozNSIWWIuXSCExKw3Qyoest1bxEXUm6uscIQTkpiW2Hl+l1CElp2DQNShu0ymj3Nc3VBqUFWYAiL5HDhLcv3mGfN+hMM11OOHu9Z73ecOfeLXyEV6+vkNrgfODszRts26I1nB6fcHR0ypMXz+iHgSK3vD6/Aq2o8oLMSJbLCevtltVVTdP3TA/maFOk1473HC2mbLxjOUkE4qrMEkVRZxycLhmGRASZTEu61pLpRK0TpcCToTLDYjGhaxv2dU+us0SpNHkiLArPZtewEDOiszx/9SYR2YwgDB5pJG+9/YDJrCDE26xWW4btwG57gZSaSamQYaSBKI2Nkaglgch8PqGsKnZXK8zSUExydlcrZAgczKfUbUNn+6RVj4LlYoYRkt4NSAmd7Vhkc5TO0DpnWuUM1nJ5sSZuNhwen3D75JA3tsc5QV4ZvvjmKcYYZgdL8rykdwN9aLl1ckq1nOOs5ezVBfPJFGEHNtstt+7epSwKnHMomfSrk9mMi8s1vYPJNEcBZZ5Tljl2uwIhKLKkLrWu5+pqQ14UaGEps4zD01NkrpF+SAGfkxPK2ZQooQjQdYGDgzkyOtYvz3Ax8PiDh9Tbjmk5pcwN9a6hqAzlyZys0kQHuBRknk5nTMqcYl7iu56hbnF4tDHMFnOauiUzktl0QohJa2ZdQElFHCwpKyKZFxX90NE5mOeGKNN742JaoI0mLwuclGx2DY215MowUXocroNiMmGWz6i3K7qg8d5SliX5co6Qit46WtuN9aZkWhYEG4nE8WzMo7OMuq/JhacsciKK3a5lu94TYqSYTCiqjOliQq4LopCYsmCel3R9y9Bb6t4i24GjKBDdwMXVmhCTnk9pw75uWe9SkC34gI4OGSLr7Z4okn4YBSZPdal3SfephaCaVFTTMg0uVhPKyRTvJNG3RAVaaopbx+Asg/MERKo9246z80uUHL//YOmdYzKZYK1DGo3EsK97FotDTk+XXJ6v2ewaSm3omkRQXyznzKqS7abmcl8TnGOwNtGMRtXodRA5MxoRU8DIx1SHSiExRtzQEyF9Hh6JCc2bB3z5+CtcjHiXsKaJ7qjItEIHGESkdyIFyMbPRa6D0HIMlkiBVIooPNFLJDJpUUclq7um9UiBiOn3Hwhk4yBo0kJ7QBJ9UqVKJdPnkhQMNoWFr1XRSqVAUbgJ/6YaK4ZEd7z5ucKPf07neMRE9JEqhcYDAYW4IQv6ehhJSdcE1vFsdnx8wvl/jkApBDcKNDv4FOcZv0DKFAgLo25OjpqyOOpw01M51uSjri6OxKjrWi38dhUY/4dlbnqOssKglEjkqzDuc+S3SqtUc13Tg0Zd7xgiStSk65COv3lk6QJionFdozLHmi+OtV4Y6afjl6aaVKf6P45a6GslG5DwYF4Qg0+1ohJorUZdXDojRlyTnfi2th0HMoS4pu6nAZF0Dq5QKtWaatzDyZsaFMYD8G+VdNeUqDGwNuahuL7EsSz6bv1VWhE++M0H/PAXP/xdX8m/lPU/qXuL8P1Pvs/xxfH/Nhf0v/ESCD74zQf8p/+3/xRr7M3/f3b/Gf/1//G/ZsiH3+HVfbuW6yV//Y/++l+5oNh367v13fpXey02C/7gj/+Av/+3/v53BdR367v1L7j+3CGleTWlWsxp25Z2XzOtChaLCZYwTrQL2qZj6MCNxB0hJAg5TtmkQFKeZWPDIC0pU9Mw7ZfSFHSmFN4n2gwjYUmNU0IxRvo+HYxrrdBGjcjaNB0tpERpjYyKet+Cc8Ro0xSNFHgiXqSmhRICLRVFljQjddcT9m2atAo+bddG8kJX91g34J1nsJY8S5PJKYwTEc4hBXg/4JwlzzOqQmOkZDGryDODGiAqhZIZk7wElShORkXKqiRESdtZuq5DmnQNuYIsz1GlQhLphh7fOTQTdK7ovWLoA4aE049hoDAl3gVU9FRlQVkV+MEhmpbJZEL0iRjlY8AOXWrWXTOBgV3TUKkpqshooqOzHSZA2/T0tkOYjKysULljaFoQAefieBDhkVn6PaA0RVEgRGC73dHaRGdACObLGfNFydBblAsUpmBtezZ1iwwe7y3bumezrbFdRyYiVTGhVJq2b7AohMyYFBnWe4zO6LqePZEiz+ibDumTqqoqclbtnvVqiwJmVYXAcXG1pbeBiYfV2YYYBlTbU1QZYV6wdz0NlsLXMFjOv3rC2fOnzBYL5KSEYNlsNpwPDq1SI/9oOidblFyuLplmGQuTUVQ5u75lu2/JlGa6mDD0Nk2kKsXh4RyxzFgeLOi7nrZ33Dq5Dd6jGsHQOuREIglI55lXU6T2bOuG6NIktgkTlsd3yO/c5tm+5/mXX/P0iy+ophUffnAXHQzSOV6+fMV6d8nQ7ti83uDXll2z5WBS8vHHD/jNb75mu1tRX73i+NFDyirn6YvPMGrgb/xbf41Xr17SbNe8c/KYbr9jP7S8eHHFy2fnuK7hT//Jz5gcLsgne0IfyD8uOJ3f5ke/9zGvnjxF6Annr15z9nLF7/3497ktj9m2A7O8oiJHHmVordhf9Wy3VzTbHcfHh+xXHdvtQLff0706570ffMBkdsBqfcEH7z5gu93yyS+/5O0Ht/jhH/yIput5df6S5eEtpuUB58833LtzQJmV3D084dUWbt8+4NXrF7x68Zq7h7c4XcyQHu4+ekjTD4Rdx9Nff8XZ5SWL6Yx333qMrgx/+tnXtGSsWk9tDYdvvYs4PKa93KMPprz/9iPe/sFHRAePHj+gawJPvr7g08//GXePj5hVGcvZAYVWfPbLT7k4n3J0eEJVHPLk6Zf4CO8+esyjDz/karMjxBniwT02bWD45hWCwMc/+oBqNuHXf/YJd955i3pXIzvLZLHEBcPFpqEdnjKfp4Di8dExp6eHIODFqzeIHg4WRzz/419zsf4Kc1Dx8s0bmmaDbdd89c05995ccXT7kLP1BhsMb33/MZPc0HeBZ9+8QETYbzsuX5yhK8X7f/gxy+kC+7Bn8+aC5+eXvH7SU92a84O797HbgTfPXjPULWY64fitEzarc/70V5/gZzNO3n2IiIH95oq33nvMxZnkoq7JFwfQej6495irq0TfGYYtz7dvaGoLXcPyzgOGoWeaZ/zk+x9y9uoVNsB/9yefI7Tm/e+/xbv37vPs6Wua1nK+e8PVpiUrNXkuGSYlJ2+/Q103iI1lkpd0O09XDxwu5zjfYkPEtZ7YXpEXJSaveP36gnzmwVS8desUEx1X52+oO0uMkZP7M5bTkgenB7x48oK4F0wmJ3jdkVHgux7lMz58+zFtvycLDZ//2S84e7MimoKjgznPLl/x6NE9hmHgYr3laDGna3terS5YXV0hq5K3Hp7irGWICpyCrkcG2PUBbyIffvQOfrXn1cUVL795Rb35jKa2SNHS2IFyNiE4z+/96Ad0TrFvLXcf3CF0Ha1tMUrSxZLpyRFBeS5WF5Qzxa07d+g6Sxs9m6sNH7z3A/7gp4rPP/0l24sVv/7iG8rFjI/0e5RHBceHB4Tzc/b1nqoqOT054u7xkrP1ir7piNHhc8UwRDIp03G5SGqEED2DdSAURWZwITD4HpVrClMyuB2DCLRDR2d7lvMDMq1Q2jA7zDgoDPWqYb/d00ZPFBGtJVqAGRu0kqRW8L0l+EgMqWnkvUcqgclMqkV8IC9zqmlJNckxOkMg2G3rpIxVghAcw9BjMoXQEm00ZVaxPJhRVcXYAFEI7wg+Nc3rbUPbDQz9wND1IEVqnpGCMs46Qu9Ro/ILCbkxHBzOyfOMru1IbZd4c3ivRrS/HZJeKF4HIYTg4OiAsspGRV2T6BJunLhWGq00g7UgQEWBc/GGdJOUDJIQkl7CWpdoVENPQBBJRBQj0qSys3akMI0pEQJKS8pJgckydtuatrYpjKYFIsjx+tOBvSDir4MdMWm0+rYfH1P89tuKFCL6dnI4QkzEITHOQYcQksIqjlSfUQlsTArKtbVlt23RxmBylfR/uUKqCF1Sz0XSdSgtyYukEE6qvpD+HFN4JkSPkAahBLYf2O8atNYUUo/qqOtmgUOrPGmcfKRvO0KwKYivBXmWJbIP4/MiJVKKUaGRGgw+pECdd6nR8xd1ZVlGludYm8hkuVEUhSF0iVRKFFjrbgJh19oTJKOyYqQwjQqVQGoCCpHuy/SMpoaa+i261g3FVQii8CNBaAx7SYkag16MU+qIRAYSUTD0SWMYR9IA43D5t3uZUdc2UrOscwxDvPme408hRHDW3qjIgg8IJdKUa7zWuqVWXIzpsWulONmc8r0nH1GZPOlBPESZBiwyZRAy3tzLRhsi6b3LufQ4IxElQCmN0BJBxHlHdBGJQWqBizIFGwHvbGp2Kn1DXDDaJKqt9/TWjXu/NFESYiC4pGOMIlHHIqmZamSG1ApLwHmHjOl91gWHkAqtDR88+5DfiE9ZTVdpJxjG7pgChCBzBW+9eQsBo9bounGZkaucPNfpuQwRLTVd8HSDQ8bUnO2to+8HgncowOgMM2osAwIxhnVSsEzhnGMg7TO984gQMZnBaEVrPV07IIDcZECg6fq0n4uRrukgeKR1GKOIuaYPHktAR4uwgXq9pt5uyPIckRmInr7v8HVAysiUCcYYbm9vIX9jePLRNxS5RxvF4By9tSghyXKD96npLaWkzArIJWWZQibOByaTCYSIGATeBkSWGuP4SK4zhExKnhhConhhKKopejZlOzg2b1bU51vurx7yYf0uMzlDBM9u19L2Ld4O9HVPaD296ykyzfHJnMvLNX3fMrQ7DpcLjNFsdpdI4Xn08C77/Q7bdxxUS9zQM3jHdtuw29QEZ3n14jVZkaOyAXxEHyuqbMqt28fsNxuENDT7Pftdx51bd5gt06BFrgwGjShH/WXr6PsO2/eUZYltHX3n0mfiruHo1hFZVtJ2DceHC/q+5+x8xcF8wq27t7HOs6+3FOWUzBQ02575tMQozays2PUwnRbs9lv22z2zasokzxABZss5gw/E3rG+WFM3DUWWc7g8QBrF68sVDkXrIjZIqsUhoqhw7YAsDEcHS5anJxAiy4MF1kY2q4bzqxfMq5LMKIqsRCvJ5fkFTZ1RlhOMimy2VwTgYLnk4PiYph9SIGA+p7cRv94hROTk9jEmM5y/OWN2uMAOA61Lw1chykTydRvyXJEZRVVNmExKhBBsdzvwgjKv2L4657JbIctExGzbBq1SWKFuBuaLGUFGNruOfDFQTAwEqHcN1g44rfBdj7Udy3snzA+WnCxhqFuatmW3bVA7wemD28ggaPYtzW5PUVVkkxytJW9evGLTNJRHB5ihp93vODiYkWVTNtsdvU/nNfNyxmB7QvRkpeHs8hLrBX29ZzqfjwQyz8nRAUYKRAhcbhr63jI/mnP/3inNrqVpeuqmpa47kEkd7J0hK6bMMkO921PqDBUVddNjtEGKML7/Q+iHRLCqKprB4hgQMjKrKrQQDF3LvqnxLpBXijzPWU5Lhq5lGAJCG6pqluiVQRBsYD6ZURYDikC9umLrIvtuYLmYs2/3VLMJUkJbd2ijER66YWBoW1rnODk6oMwMg/WIoIkhoEIKeg4xMDuYUWnNfltT193N86AkWNcjRqXpcrFESEk3ePKyIM+TPtBhcSGRjopc0w0dnsBiWSIo6QeLswMiKE5vnSJlpN3vWa93NMPA4fEhmc4wWUaVWfq+QwjBpCg4mFZs630KATlH1IlGrkaap5Ry1Osy6jJTKBgSrfPk/ISX776mjV0KwPtETTImQ8sMMQ5LzCYFznpsN9B7S7wm6ghQ4jr8EcbP+BTMiZHfCoQwKsnkSIRPe4QsNyitbmpTZ69JiOlapEw0MTH+t8jzkQIrAI+PIWlWY8TbNJzhnce7pFWNuJvzUilTEEqOQeZEQ5UYo9J+Y7D8NqboJgQmUp17M3gAECOZMRRljgDskAYBEhE01TNpGDQmcpAUSaUZrsP23BB9QkzXrLKRSjoS4+JIpJQjETKGeHOmyHVdOOqRvQ+4wXEN0JRKjORK8W3RFhPhyTmQMj2/wYdvVW83AfTxy6/DUr/1mMX4s0OMiDEEF8cHJGUKpMcAXTuk+lONA7YqhfE9ER+T9i0mB1+irY6DBuG6DorXu7oxTDTWlcMwpJB3plGM+4Nx6ELAzR4j1YKJ4p/Ov9UYdEo5LilBGj1q3eL4eFPtdKMb/m79lVjvf/Y+/97f/fdQQf2uL+V/9SWi4N/5e/8Of+/f+Xs8ffiUoP7H++CqqfjpP/0pMsr/H9/hr8YSiP+RRu307BQVFH/33/27OON+R1cGeZfzg09+wE//6KecXJz8zq7ju/Xd+m59t/5lLIHg+598n3/4b/xDurL7XV/Od+u79Zdy/blDSkIKwjDguqRbmWcFuRiYlTluSBNHIdd0vcOOaHBi2jBLUmjFKE1ZFCgt2G236dAly8apYoc2aSI9hIDzlq6pUWo8wNVpkkmEgMzGwloKfEyTymn6N03wKCXJ8pI4OKTWzGdzSmd5c3VFdGmKxfsAQWBMlnDtSiKkBaGwtieKCDFHCElvHTEGlDFE78nKhNRPIawI3qGFxNsU1sl0QTXVaKkoM0ORZ2ijMXlqrAbvwQ04kadAVATvk+bCOYf1DhVTWGtWlUidEwns9vuEkdYZ1XTK0b0TXrx5zfrNGus8gYTGLucTyszgfce+bthu9mlqX2iKXKLKDB8ivokYkyNlhg2BvCpZzEomcUrd9Ljo6VsLziIEFJMK4zVt00IUNE2XEP1IhAzYyHggEpjPSzKdDuxsiFgfKCclxEBR5GRljpeBLjjaXU3rPDvXMykqht7TR4v1HXkBQkesjez2NdvtFhcjRTWhKEuENATh8MIRM7ASLi4u6foBoyQqEwyuJ2jP0Dr2XQZ1TXAtVmZIBqKzfPXqDZOqREmBUYJ//fd/n/LomK6refP8CX/2Z1/z+Vf/iCgC86sJWVVicsekzFnOD+ljz9FiwmJa8vzVK/p1TSwcKupEyQiSPNPMygJpctJhhcQ6T1P3TGYZWVaxXw88e3LB/qDj6GjBvXvHHBxPOL+84mq15vToNqd3T3lz8ZLtqqbQhio3qOjo6oY//fkvuPvqDa7b8fLyFflac7gomM1nbLqWfT8w9DtiHNAG6v2KZ09eEqhYvTxnc/GG9z94i0+HRHb5/LOv2QHLZcXm/JyLp2/Q84qfffEzzp6dYYPgez/9AcX9+3TZOZWQ/PjHHyGMYmg0t+/doypmfPPp56zP1/z4977HbLqm2XZ88/w5ndtzcucUFz1/+qsvOH9zxcliivc9r8/3RAK9XHHx+dds6h3eDajW0+cZd26lw+mDxZLHD+5Ru8D5asPjaYXKFa9C5Ccff8xiueDNq0tefJmzmE+p955vnr3gaGo4PTnCNh3VbIIqCvZdT71a0a4tWWa4ales24bt0NL9459zfO+U41tHvH6955M/+YzXZ+eYmeD06Bbi8JSP/uBjDhYznn/2gsurHReTHV989jWdszx8/AjvBqrlAeVkwosvv+Dq6pJ2OCZ7pyLzjtPDI0QQPHzrPvcfHnLczgj+Lk+/fM6rF2+4c+cOKsBiOWNdd3zw0Q/RMrC92uAGz7pZ8+mvPmezbzHac3iwREnDSQ+XL85AOFrnEGRcvHjKV89f0QfPohKgAi/ePGO7vmS2PGbaVsTLiMzm+O2OF9+85vEHD/nlz77i13/2GfOq4vbtW0yOjnh5dsby2ZatveTF85e0HVxcXUK7593sXdy2Z7/pmR0dceXesN2sGLqe2PfMj07oWktRnjJYyx//6S85u9zx03/7D5gFT3e+5ud/8ic0YkJmLO9XD1hfbjmcTRiGK67qwP1ZxiAku7bjrffucnhY8U//m3/GV69e88O/9nvcuneH50+es95s6ZoNH33vI672Pa/OzpnPp9h+AHImmSLMFKaYsO836KzDyoGiXDJRiv2+ZV7lWGcZrGVV78htQ4gLemk4nC24tZyybjpEVEhj2NUdn/76CUM78OziOe998CG5yfnk579gv7rgwVv3WcxKwqDIjKGqNHJSYJTmzu0TJgdLnI/cOT3B0jOdGh69+w5d+4DV5WvOViuuztfp8Fg7zl/ULGennF+d0cfI4WLJ2bNzLlc123ZPHCzb1QXbpuZwUvH81ZrFyZzcQKk1QRn09JBbJwuqKPjsyycUmaaclbSbmosXb1ivGlZdzYN7JxzNZ0zyjG6346tff0aPpXaCVme09R4bLM2uZ8WKZ0+fcbbecHh8wPfff4cHpwesz9YUT19ysb7gantBWeY0TYcOkRAsvYfoPUYJJmWRKEPOkRnNvnOE4Ni6lt5ZTKmpyoy2brna7mlazdHtJT/64fvkQvGnf/wJ/b6jE6nh4vs0ya2lxuQZOoCMgt6O9JYQiT41F3RmUnhGgsoMRZWRZRm2dUQlbkIp3g8oI1LzWUDTdpgiI8sMQoGznr6xuMHT7lucdQzDkFRkpOlYNwzpYD8KnB1S0yAzZEajZGrSWxtABEyWoZXEdhbXx1HplCZglYS8LJIKrxvw/jqEEZnNK46PF0gPq3o3Thx/q5HISDPO49ztGBQPidwSHEEmHUz0Ed91DL3FaI0xGV6OEgznR6LMOFEtFJFUq5ksQ5nrAJUn2fAEwgi0MUSfKEpGG+xgCT4d2Hts0hwJiH4kCsk4ToKnCW4pU8AsBVrkWC6OcRYFSmeIILCdTRqKcSJaROjqgf2up6lbhGgoq4JqWiK1RmUC71NDwhgwOuC9w9lUg4ogsTbgwxiUiTHVhcInDXEI5IUeaVVJURODIMsUREWz62m2HTEkZQNANSkhSDofUEImuoyUaGPQmUKQFHTeDRihIESidf8DZNVfrCVEek0HPxKplEGTXtOJbhUJWiYyQIjj75GxUTI2eUTaUwiV9GQhBIwyNw00pVS651JnEGdtUpEhb/QeMaSAUEq4jaEjKRHxWnORgk/a6KRzFIqiKDDBU7ctMaSmXhibZVKqFAKS3CTmUmgHBCpNxY9kACkTjUgZNQboxrAaqZF23RiSUjOh5MOX7zPXU7RORDOl1ajLjhA8Qahxsp4bXYe/DskFiRKCPDMImV6DwzAQxms2WUY1m7Ctd3R1l4KAJM21lmYMKnnsYOn7fgxkpWahzFRqyLpEjhFC4+NIWs0NWcwSWZeYaLjjUInODDLIsQkLxargB6sfcHV0weePvqDOu0QFC5HS5Hzviw+ZdNX4uFJTjhgTkcRookgKJdsP2BAYgifTY4AnekJwKE16HfpIPwyJHMeoDTWjnksEgghEJQgi0jQtznnUSKTzwRFlah4rp6iHIb0fohB4og+sdnUieAiBlIIHt+9iqhLnLPV2zes3ay5Xz4hECmOQmUEpT6Y1Mje46KkKQ5EZNrs9R08PuJpfcnFygVQCGVNIMTcaoRQM7kY1ZAeHyXOkMgydZ7NuKEtHVeXM5xXlxFA3HV3bMa2mTGYT9s2OvhswUmGURMSAHSyvXp8xm+yZrHLu/+wBt1Yn5CcG8kjvHIP3eD8AHiEj1nZs1zsChm7X0NV7jo6XXPge6zyXlysGoCgMfdNQb2pUbnh99Zp6WxMinNy7hZ7PcXVDJgS3b50glMBbyWQ+x+iM9eUVfd1x684pWdYxdI71bosLA5PZhEDk9fkV9b5lUmSE4Ng3aXrciZbmakVvB4L3CBfwWjGdDBhjKPKC5XyODRuarmeZpQDfDrhzckxRFOx3DduVosgzhj6y2ewoM8mkqgjWY7IMaTSDcwxdh+08Wik6N9BZS+8d7tlrqtmUalqx3w+cvbpkX9eoTDCpJohqwvG9E8o8Z3u5pWl7GjNwdbnCBc/iYEkMHlOUaGPYra5o2xbnS5Q2qBioygoiiTyzKCldDmHGepXCVNPZDBGhKDK6wXF8fAspI33bE3ygtR2X51d01qJkoChKpJBULtJua1oCNngEiqvdhqvtHh8jhUmDYJ1r6TZ7dJYTJWSdAlNgpGZzuWE6q+janudP3hCsR58aJlXFarWmqx3S76l3W4Yh0LQdbhgoMkXsPb2NSGXIyoJ+6BJBazcgjSGvJuRaE6sJ+7bjqy+f8uDxQ45uHWN7x9XFOeudRWjBfFJAE5AIilyy26bQZZFpOjtwMJ1zmh+yOVvz4vlzpgcLZvMpUgraYUNdbzk4WDBfzFhtdggpktopRpQwZFlBlAIRFbG3CA0RSVGkIa0gUliltxYbAk3bMKUi+PR+UBQZylm8MYm4IwQXl2tUFGz3Naa0LBcLdpsdF/sdJtMsl3NUEIgoyYyilxEd0lnE7du3GEIAD0uZKI3L+QKtDujaPXWTgvZN7ZEa2v0ak5UQInXXkmU52V4zCMWuadNna99Tty25UQy9wyEoS52ofUIQdU5RFMyKKdv1jtb25LkmRkFfN9T7hm5wmFwxn02SKo3I9mqFMJrBepw02OAZ2jZ9DrUDfd+w3uyRWnF4uODkcIGK3FCLtvtNCq4YhesdSoikw4wgYsRohfAp6B2FxPmA3BvMy5yrgw1RgMk11g4MzuJ9JMs1y6Mlx0dLXr88Z9P7FDqL12EOh4spRJ3yICnkEsZQ8vXn8zURBzEqucahSwJ46xNdMabzUERAa5VC7yFgbQqvA2OgJ+ABN7hR5Rlwzo4BnhSCCiPOKI6hYq0kUiikSGT76+dFXw+FhoizaQ+C+DagI2VS9Mbgv60/iCitqCYFuTH03ZBqqzFcFa4Jk+N+wjPW5SLtt0IMYwAqEYKii6M2L9Vx1+s63BXjeMZ8M3aQzn6lEmNwP9GFYkzBdjnWeDHEm6GA4MNIvxrpR/Ka9hr/OfImY1WW/vPPkzzTH0aip5AEF26eJ8aQUHBpqMEOjhBGTXQ0SeWm0rBGCIn8qvW3wSDGPUTw8Nv5oBgiQcQRTxVHg8B1eF7cXJtWkuA9XTOMZE3Gn590v965ZDoYa18xPgbFeL+EACHtIdOQwF/coYfv1p9zRZjtZvzNf/A3Kbvyd301/1KWQHD7zW3+k//7f8KnH3zK3/8//H02i83N3xtr+A/+zn/wV5ai9P9vCQQ/+MUP+PLtL/nk+5/8b0/4iHDn1R3+xj/4G7z/+fvfEZS+W9+t79Zf2TXfznn49CGfffDZ7/pSvlvfrb+U688fUhKRZujwPh1IvbnaokTAGMUwNASXDp699zjrr/9V2iSqNI2MUEQEbdchhGI6m7CYTVFK0rYN3rsbP3mMETki6J130Ht0ptFa47Ek2n1qDPiQJoGCj2PIyeF9i5E6HY4lmQP4OG4EJVJopJZkWqOFou1brO1JG7FEFUqbv0huNFIaBmfJjEEIQT8M5JnBh9TY0qPKLhiFVjlRjCqAqkobTSGxISACZFlOLg1Sa0SA3nm0yRDCMak0VdTkxSRNvMSBrh8Y3ECMAqk1u7Ylnl1xudmyb/Y0+47JJGHTm8ZSqJb5JKe3jqvVnkmes5jO8DHiYsDINP08DC3FtKQsFLu2ZT+01N1A0w00dYc2kmpRkVUZlVJstt2oJUuHT7nOSIY7i+/adAgTk6veDR7XD/SNZTaZcXp4gM4kfWfJsow8M8RgyQvNi9d7fNRkRcbq4pIYJOVEcbqc44E3Z+cEB0VWMfiItR7Vw3x6zN0Ht7lcXXFxcYlRgr3tkG6kKiiBjR4Te4TqQAXqrubi60uEjShtaIaeCo/vI3J2wO17d/jxxx9Qloc8Pb/k1cunxGZHs7tAGYvJDOvtFSZUVF4xdIGqMululwWvzrastg2z5ZL9fk/rPMIWlOWMMjfkRYZQmuOjE8oyZ7uvefrinL6PPDy+zYPTI7a1xWiJ8pK29lyer3j5+pz5/JDjk1Nm04JdP+X+OxlD22HbhuViRjGbojLDx997QLvb4nRPt+tpQ+DuwZyD5ZLi/A3/5OWnNEGBUXz65Wd8/eVzZrMj8knSgNy/e4dmv6Mqpjx8cIfNvufy/DV/9meforzgYJpx+tY9bj14yO5qxf/ub/wNbr11H297/HbDRGia/Y4vnp7RdZHuvAYZUFPNL3/9G46PjpjNZ6Bynj1/zfz2MQcHh6irLdjUOEJ5jpc57334ATsfeCgjv/yzT/js11/QXq2RRUahNYs+cNF5QlD89X/t93nx5jVPXlwhcGzXHfXFJSfzGTZ4vnzyBsMFDoFvO86bmqurlvXqBeaR4Ztnrznb9BSVxwSLWwWcFRzdPuSHP/0Rz5+84eJqTZ1LXr9+xZs3l7z99rvcf3yHfrfh7Y/ewuQFv/7TL/nqN5+yd5a9a9heXtIPPR9+/DFHpwt225ZqOmX2/ffY7W/R1I6333uLzdkFr359ztX5Fet1jfz0FZ988hui8+x3a4xW7I8ybt+5x+Zyy2rfYapA6GpOj+acXa65/c491NTw5tUFhbAMXc/L1yu+ef6Sq6szHpzMmUwKRFZhgyc7XFDpnGVV8fzpa/b7Hb/3/Q8x0zl5dUi732GGnqrIePnmgtsPbnF4cMi/+bf+kOdPn6Iyxa3HD8mXBwz7jtX5Jb0bCEXJ0ekUOo9sHb/5p7/GipLe9nz4vQcUheab33xO07WYPONoseD+/RP223O2R8fsY8Zu1VEWCuEiej7lp7//ezSrC7789VeEZsdbj2+xmGUEIVmt1hw/esy9R3fIM0lRZLz7/j0OHy1456O3mJUlE0pOFsfsS8XlekWIGaWIHOUZflJRe8/q6UtMbpBkZIVi00icr+jbnmnu8V2XQEU+MtgtJ4uKuu14cHqKyxWVzrg3nTPb7fj8+Rn7bUs/NrmPlhPeWRiUtBS65Ec//ICvnhVM5hVu6CkPDjk7e4l1A/dvnSJVwcuzFfiIEx4vA8tiiu/Tge7tO7dQMnA1BDoBLlju3tLszrasL69SU1ZG7FDz3/63f8Sjjz/mcFbx5OunrNo9/dASCby6vODV5Wve/+A+jcx4fOcUFQz1pkWUJXlZIbxnd3FBUBk7U5CdGMxZw2bXc36+xuQlx8uBp2LF8nTGcl7xvQ/eRncdv/riC148/4qD99/FBkf0cPtgzrJUbLY1b9Yt/ZBUE5OsRGcVzgZ0CAxdy6pzuKEhjgfWTmqGfkAJwWK+pO0GmjYFZ4uyTE1TJZIeVUnaoeP1Ny9wrWO1bWh7lyaUhwEvUjA4yIgfHOQZ3nl667E+qVzTmbVA+kiMARQoozFKEW1gs6sRjI3y4BEJLYQZD/pjjMhAImBYS0eXdHEukRGttYRoicKlWkUoTKHISGrcGD3GGCSSwQ643iJiJM90mrgO0NQd3oIdAsTr1kBSgw39gMl0mgoPPinW8gyJZLepGVrLZl3TDZ4QUnNEmzRNLcQ4eawkeZahdEAMY0CKyNCnRsj1hHhdt0lXMNJrpJCjrjWOpBuw0YMQmPHzMARH0zSpllIjcarI6euevrP0wUIUY7BEIFRqOiitk4ov2qSDMzrRLYd0nwgtU00Z00TyKPFCKUFmskTN6j0h2PT1UbDfNmOjP5G1Yow4t6cfeqqqpJwU5HnS+uYZaC2xFqxzNzWm93HU4Y26Op+IOpnJ0EpDVIDHe4HQgRAd3lmGbsD2cayj0n2nVNLnSZ1K9Tg2E7TWqfkXUrNHm/T3fdth7agV03+xp0StT69DgaRu+0SKVBLnXZq0j4xNuevGVPp3Ulxr21JzxVmPQJBniUIlhRhfUyHpusbG0zVNKAUJU9BLypHQenNV1wSfazVges1b624Uddcnu+m5T78POV6XkgolBNZZvB/3QYKbhpcYwyViDCsppRKdyfuk+BtpX0nJJglRoDF89OuPWHYLjDFj44+kJxvr7aRtS01NHwIShRCezCSdilJmDOt5nE8BTGJqIA/Wsatbmq7H2gFrEzUiChhsQAlLniUyQdP1qXGemZGgkJ5HfHqv0Zkm0+l7Dt5he491qUEnlMAUJunipKDrPC5ExnYgSmiM0Ny5uk3WZnx99wlZU3C0PcIIzWw9p4+WPMuZVIkq5t2oxhsDlEpLts4SSMrENFBB2ssUOVHAfl9DTBQKN6plpIA8K5nNZzRdS1M3KCkYvE8UB/Et9UBGj5AOZMS6gXbdQAApJNY7DIHgQOQF09mU2yfHaFOyaVr22w3RDti+QciAVpKub5HRYUwiS5Tmuimr2e17un6gzCve+vIRl5M1fe7I5QQpHFoKooRqMUFrRW8tm21N7iOLasp8kshCSopEWRkCbdOx29cUeUlZJXWecRnzwwXeOoKzFHmOzjKkUtxfnPC9Tz+mjh2uctgIsyKFDlSz5/n2giEmdc7F1SWrqy15XnJl0r5/Pptihx6jMxbzGd3gaJuaN28uEAGKTDFZzpksFgxtx6NHj5gs50TvCH2PQWLtwNV6j3fgGpuayJnk/PyCqqzIiwyEZrPbk08ryiJHtIlm5bwHEakKzeHxEUOExXHk7PUZVxdX2LZDapX06j6OhD3Bvft32NU1612LiIGhc9imZZLnhBhZrfcoJB4I1lHbQNtaum6HXEjWmx1179Em3TPRR0IQlNOSW3dvsd3sadqOQcN+t6euGw4ODpktp/ih5+B4idKK89dXrC4uGIJnCI6+bfDec3RyQjXJ6fukas9PjxiGnmEIHB4t6OqW/XlNW3d0nUVe7Dk7uySGwNB3SCUYSs10NqNvetrBoUwkOsukzKjbnunhDJlJ6n2LEp5gHdu6Y7Pd0bQ1i0lOZgxRJf2iKnMyqcmNYWv37Juao/mE+XKJR6JG4nGhMoZRP2+E5vbdW1jbEQLkVcHh6Skg2G/2ODsQtEHnmqIAYSP7iw1DgBAFk1nOdDrBXlzSDh0oycQYFrM5UjqarMdKQ9sOZMYgQyQiObpzTFUazl9f0Ow6MiNTGH+SJcKcUhwdLMgLDcIQlp7bdw+ZHS6ZTAps6yh1AROPCx7fD2jACMhygxOC7XaHHwbyqkKokb4XNM45RHQE5xIpRmvarqMwGqsEZZaTVTlCSSqVoWXJ+XpHOzhs70BKciVYHMyIQhCs5fhgQV0arLdEPMoYrLNs9g1VWXJ8uKDrLF3fIKXAektuMvwYZskyQ54taIcBIXNs7ygLgfQO2/epHhGA8JyfXeBFxumtA5rNhqbvcNERbaLX7fY1hwdTdGGYTKdMTI6zgV44kAqjDUPbo7SkR0BZoKjxATabPSFAWZZIZZGZIs80x4dLprnhm2+e0ex3lEajlcA6z3JSMs01xMC2HnAhKX21UOjMQIxooZAx0AxJIRu8R5GGH71I7E+ZZQinyGLSBV3TGp1LtWemFTF6+q7j4tU5TdMxuFTHhDHYEUbqY/QBRopHCBHnA6NdbSwLxJg+iUknKdPnoB0s3sUxnDNS50P6jIrXyZiYCJF+JA5d1xdupD7FGNKgJdefXYkan7SyYQzPyhvKUwpDj/ozwLtA9DYR0q9D/OPy3n9L+YkpzKyUTOd+1uNtoG8HBudv6DtJRToqx8bHflMHiUQ1vVHU4scfl8JT16oy4Caofr0nS181hork9R4gaYKvCURCpr0CIWKdHQmM336/61pSjDq4EP3N716IVNeI8fP/hnZ5015PQytyfHxu1Gyn7y1HVXjS6l2H7a0NeO/T4Gpmbv6tEEn3lsJE42OK1wMn8eZ6iRCcB5Woo3LEd8WbeyvtH3zweJvq2ciI4xUQo7whW0UEQsSkjb3+5vFbPVxSHn5LL/1u/eVeyiv+9n/5t7n9+vbv+lL+pS6BwDjD93/5fQ7WB/yjf/0fcbA64PHXj1FB8fDpw39lAzLaa/7Wf/O3ePbgGdv5FmNT/8Irj9f+f+Jf/y9bs92M//i/+I85WB38K/v8f7e+W9+tfzWWjJKiL25qr+/Wd+u79T9v/blDSkiFG3raviPGJBRRRBDJdU5IU21inABW4zQZI35XCMngLHY7pMYXkrYb8G6TJl+8I02UJAy2D5GqKlPIiXFjGNP3ktbebASvPeqpmeQQY9NDiojMJFfrFKaKITUsVCYJIqIyc4MCllIwqSr64Bi6MO5cwTuHEpHcmDSdLwRG6YRR1hqUxORpo5mbbJzk1mgpCH7EFCPIM00UgWHwRCTBC1AKFyK5zikyifVJNTOfTBEiudT3zQ6lVcJoI8izgsHZNHUXe0RvMUIwmZWoTNE3HSfHByxmM27fOqSzLUKfkytNOSmwg6P36dDW9g4hFNF7bLAolXRx0kHd94lMBeRBUERNs2/xIdANPdFHMlMyICEEsqygrlsEo+pCpmYs0ZNp0FozyXNMrhDR3GyMpRcooG8sXbSI4HFuwHqo15HFYs52v6VpOvKsxAcHCrKsYnFyi6ycJuqAFQSXUNMYSZRpUkh6T981NBFsGJARRJAMQwdBU2lN6wVtiGjvuDpbEaLEut9web7CuoBRgf3mEm0Es3JBmRlqnTEITQgW6y11t8cUhm++ec5utyMvFSoDjaRcZGhKIhJlckqdc3L3Fu99+CG/+uVvWO3OkFrjRMQJyWI65/Sggr6jbnd88+INz15dEQa4f2fJZHbA7cMDEBmbckUIjm7dY6RkX2957+77DK3Dtp6P33nE2ZMXvPvoLR7fv812tQXbo7KSo8WUh28/xmvHi9WOh2/dZjIrCIOj0AWPbt3DRodR4Jo9d07n3PpbP8W3ns1qi+KY97//PS4vX1CfW2b3wRvDsDigXe14/mydDjqdx9seAlyerciEYXl4wP37x5y9ecPdkyn9tubLNyu6zY52v8UB8+WEew+OKUvN7vk55azk7ukpZ89eM3U9M2G5ePGc5+4bIpqf/OT3eP/+fWZasXlxyeZijR8Gnrx4he0iRw8fIrShr/csD6fcWdzlYrPmat1zfOsWi5NDnr18w8FkwsN377DabJFRsbtaMS8qmrMNU2UYVIauJnz8/SWzwzesLzd89os19x8cMgw9zaqj0hm3To/44PZt1qstX128xAVof/kJh88ndC3k8wWHy4r1+ow79+8xdDVeSoJSlMspbd/z8tk5ddcxnWv2dYcRFedXNQcnkTdvznn7nUc44NOvv4FuQJYF508uOFkuiMuePNN89uk3nBwckJUSZW6xXa3ZrGoO7gmWyzlN3fH1y9cs33vEw/ceUr4s2V81XLxY88H3Kw5vLagWR3z92VO42PInf/RzHr71iNOTOScH3+PNN685v7xAm5L97gwlIg/u3KKczLBNy+dfWp6evWFxPHCx3rN6c0WVbcmrJeXBMa7esr045+1HDzl665hDv0CKkk3d8NXPfwk+55NPf0XHwOxgzslyTlYZTh5/yON3H/K2CPziF19w/uYCt+t4+skTJgcHHB7PufPWQ+5UGe2649ef/5qvP/uSvR84ffttLtc7jk+m/OijdzicTwgu8uzJK1biFdP5HGsHTk8OmU0UFxc7kBWTieTVy56DgxnnVzsWs2MWWrCp97x69orF7RPmC8Or1yuqScHd4wlfv9qiswIZJaUxLCdT+t7T7beczCsOyyWrqw0P755wfOc2RwdTvvryKbsnbyiLkmfrFctqznJSkOcSiaN3lqfPX+DDXbpdxO8shckxkymlynmyesPrs5dIN7A4WjB/u8Ky53L9nPuHD5kuZzQxIPOKGODo7oLzs9dkWcZseYRre5qmxkzmBLFHKYEWBe1+T5Adjx/f53BR8frJjM9+8xWbzZbJIjKEgnI640cf3OXN8x3dbs+du3dQk4rL81d0g6MwBt/XTItIGCyX246mr1HGcnIwZbcTbNsdh8s5j45nLAvFp68u+PLlOX3b4XqH94G8MCAFwjq0hqrKMEGPjSJBs2mpRc/xyQJax2fP0qR23yadalI3jCEW77FR0PWWvh9Ss3lUIwQ/JKpKjESXagwvIwjFNJf0/cBuXRMCmCzpwGJMagViqoWukf/X9BE7OLTSY+PCJjITEiF0Uu1IyWQ6ARKlx9oBwTgtHQNCK0pTJBXcGOiwgyd6QAjEqL0VITUjvI+oAFIZkA4hIdOa4Dz7dUPfO5rOJi2U8CnklxuIIQ3rjqvrujEIwY0CgBhIvZCRwuRT0+P6kDsRXcbJ5eBTeLtI9UhZFePzAdZ6sswkUV2MaSJ8cASb6CtCSaJITREj1DiZnoIcJjdjwyJdk1IpzG6Mpu/71KSWgmwkMolRFSHHpgRjzWptooLE8G3N+f9l78+eZUvT8z7s901rynFPZ595qqoe0QAaAElAkIJB0GKEbUp3oi787+lGId9INm9MB20FRRIEBDYaje5Gddd0pn32nPOavskX38pdBZoy2wzSbJrnjeiuqnN25l65cmWu9/ve5/k9kIYitgvsgqPrW4oqI88VRg+vKYo7Yk8c3NtCiiFKzGNbT4w9ne6JMQ15EGkYq1WBkhqtgGDTIDumBC2IhNgjuojSBUpnSK0xOiOESFP3QxwH6EJjVI73EtuHQezya1xCErwbBmrpfAsAF+8iPITYX0PxTpiUhkIpzsL5gA/9nZc+Ok8I7fCYfRRJHOhfpGiyCPvQDEgiHc/Xw7R9jGEcxCsiRCC53IUSNG1HNwyqxPDziIjUiuACchiuGZPhY8T7fVRLElwJDVoqwjDmklJ+fe2INBhLQ6u0plFCcrQ84Gh9eDeIVEqSol8CREkISXgXYkRLlagzQ/RInmdp6Bg8vU2fX9e7NLRUieQkJfjowAukAJNppBI46xlVBXmWMxmX2OBgLVCDKC74mMiw34jSiyESGKhhziED9N7BYBXRMfXFtneEvQElgNKGQIpoVFIzWU34/vL7w7mX7CP2pBqiw1UScPZJJpWePyZ7ibeJ4CviYFgJgt47iiKn61M8pNaaQBo+KpORj8YonWE7S/QJUqCUBCW+HtDFRKeIkfQah0Gp9w6iRCiJiwILqBhodk1aK8frJCINESUjfVsjJeQmTwQ8qfBCpvtGDPSuR2rFarmm6xOVTyKo+pLf+ey3qEcdB4tDogp084a3v/uW6YMZl1c3tN0OIeUQ+CnIspxRocF7etux3OxYbxqCh9m4IMsLxmUJQiXRcoy41g3itY571T2ef/qSfJNTHebsVim27WA2pms68B6pDFWeMT2cE2Vg3fbMZhNMnuhjRirmoymBdK0F2zMZ5YxfPCK4SNt2SCqO7p1Q12v62nMwhSgVvihwTc961QyErkAMHkKKqlJCUpQl0+mI3XbLtMrwneV2d4trO2zfEYC8yJhMC4yW9OsanRsmoxH1eosJnkwE6vWadUgmpfsPH3A0m5ErSbuuU/Sm9yzXW7yLVLM5yEQ8LMqMSTGhblua1lGNRhSjkvV2R2kMs6MJTdshoqBrGnKlsbuWTCq8VEiTcXKvJN9saZqO/vKa2axM9/7WkUnFeFRSjMe0bcd5vSFEsFcXlOsM50DnBUWhadsdk+k0RasiCEJiCoNzPgmSnSXLJb11KAy7pqccRbbbmoPDGQG4XizBOYQx7FY1o6IgFj7FyV0vGRUlSktGckzXtrSNpZxUFEWBtZ7lZkt+NGd2NENmBi0EN1dLismYYp4zPZrRtxa7bbk6u2YyHTOdT5ionG7bs7i8xYWIwGN9S1kUZFWFAtarDevdmrDb4KVgvdgwb0qOjg8ISIrJjNVywXSUMZpXSBUZzWdEqbk5v+Jm27BYrlnv1syOLNnRnCzTeFVxdO+QsszQxZib2xXRR+rFhk5rRtMxSmsePH6E85HV5ZrNYs16u6aaz4aYzMDh6QnjMkdKQdc6zjd1EvvJJNA+Ppqx3exwKqMsM9brVeplieTkjItEoul7i9t4ZgdT2rZDS8V0lCcKnycJ2aWkNGIw+VlirxjnJdfLDqEMk+kEIWG1WrHcNlQ2sutSFG9lDCZTxOBQSrLerAlAJhXRgoiePNPk2tD1NbfLJdF7pITDkwOQnrrbQByT5QbjS6JNMa2m7DGuwcfArBoho8C2LS5KhBIEPFrq1HdbS1EWjKYjfDvm5nrBZr0hCElR5Tjf8/DgOBkJ2w6jFaf3T9k1W5z3aGWQMSCiw2hBW/e0vQXhybTAVAVt16OVYjwumRWGXddztdrSdB3BJaKqEnLoCtI98P7tPa4eXKbe0UeCDbTWQpkEr5vdjoVPYufUn0sGjXCizgiJC/EugpO9AGcgAImB2hkGwlGiOqW9xb61OOsTOV7GgQzp/1ovrobrSQwxxt77YU2Rhsz72FtIoiOtk6EhBE8I4u44wr7v0Cr12PueKSSh/Z3ISYq73596mTiQd1J3o4Ze2vWOEFI/74fIZSkZ9gX3wu8kIvDe3wlf7sg9iDtokQBiTOsXIQby0l6IMwh3kkhaDIIfnaLzArhh7aO1JBDv4p2DH3p0kigrEod0tNRjSCEToepOGB8HEdO+J0sCowBJ1BrjcF7iXQ+b1hdxoKWmNVRqO+PdCUw0rGRIUFqhhwSAuxePuHsf9oItMYjOgk8kSekEVri791EpOYie9hHFEQbj6J3GLEacswhpkuBeiHSdIRK5ajBmiMF0SxzWyIMg/0P9R1wRnr96zssvXv4nIxARCB6/e8x/+z/8t/+hD+XXqubLOf/gf/gHXNy74OWXLxFRcPbgjP/pv/6faKrm38vvzLqMv/eP/t4HgdKH+lAf6j+Z+u7Pv8tf/OAv/kMfxof6UP9R1q8sUto1HXgLCpxzROuIWg6OXYkPjratsT7hbLWUgxM4oX19cEhkymtXEhcShrYZFtNaKRLVN94Jm+TgGIdA2yU3vfdhWPiF5P6QGq3VnYPYWgtIjILeWrwXFEahBJR5gZWOzvVEbwkuonI5PA/DUMOn2BMhyZSmKsv03M59nX8e06LcD+75XBsyqQgCsirHx0CzaXFbS+gkh7MRUgdKo2kttJ1jko9xuUaonKoYoXNF2+zYtbvkVosDjthZonXILMP7DkTa6LWdw3aWXGlUrui2LaOiYlRm2L5nva5p6gWVigNKvE8bCyG5pFrv2IeR9z4gY2SWV8hSMro3Y7fdJHKEi2zrdB5zbZiNSnZNi7MdzW4HQAMIDOORoXUd1jryLCMzOVoqogAfBCfTKWXpCGicD9xe3eBDT+cjZ5eXjArBbF5S5Bn1rqHbbZHeczSbg4DxeIqSGtDE6Hn95itESENmow0hU2SZAQVFWdFs1kSRhn5N4xmXOUEETGYosgowFEVAhIC1W0wWubjo2NZL6q5mnGscBp1XjPL0ukVRUBC4ulji6XAhsF3smJUjOtujc8N8VFHkClu6RGoqDQ8enrKoNyyuNuxqx6svXnH26i2lVlRFQV5UzOf3UtRMfYHoe8qDnNpbdk3NYW7YXd0yn80on5W8nL9guZpy9v49fiLS5oIXyCjpdj2Tas7jp8foWlJVB4hiRht2zIsxD4oJ14uGMhNs2p5xVrC+XvDm9TmT6ZRnjx5zcnDIsm3pfcm3f+uHHB2UCBd599UbdvXnvD67pprfcnx0TJSa95cLfvLjn/Hg9BF93/DlV6+4d3qP+8+fM703RW3H1NZxcnLE4+ePuHn3Bhsjvu25+OpztpsO5RW+1CxvbzidzzmdHPL6izf88tNXHB0fUIwy5rlmUxiW9Qpdjnn+refcrDpu+5Y/+dO/4M3nX3Lx7g24QFHmPPr4CWOd8/jRIbfXtzR9S7OVPH75gI1bcaxK6sUK2zqOTqaMiglPTx4grGe5XqCMZrVbk98YFtuW2jvIDE8OJyjhmR7NOJnP+fi3niRq0WdfMisNB/MZJ/fv8/Jbz5kcT/jRj/6CUmrywTX+9OULXn/2ijxIdN/RLGt+8dPXRJMxno6YzTIuLpYcnEyZzAqyUcHLJy9oFgtuzq+pqhHCey7Pz9EycH1zgTAZZVby/Nl9xkfP2W1aJrMdarumXi9ZNz0mLzh98IDv/da3EDvLu3dLtNIs1wsur25ZLbac7zYcP7zPd188YDSZ4Ci5yM65uLzl0b05Y6WRLaxXK37x2S/4/OyS1bKjMo7D+YzVpuP+fEbTOVqvuOl3/MWffEkUgo8e3+P2/A277iumDx4jM82ttXx1tUBUB+Ai4zFU85JN1/BXP/kxXgdefvySKqsoyykfPX2KFxKhct69fUsgwwfFn/3pn1EWJR9/8h20fUZzvcBlGbb3/OmP/4I//+nP6KNi9sVbvv3Jc/7W732bh4/uUW8adpsdXd2zC46TINgs17zrLMcnM2xYMJ9POT6YEJRks76lcwEdLK31PLh3j6/enLFdNwiRUdctL0YFoyqnmmSsV1u6LvDZwvLi6WMKqdh0a7zteHI4Q8YALvKTP/1zLq4WHNw/wuQFUkWeHh/gLIRmnTYOJyOywrDcrtl9vkM2lqoo2PYtBs3NouHV1YbRbMTD2Qyd5dw7OmD6Ozm36466sRzfv8d8PuLz9+9QQfHy+Ak/6Rrqrcfojp1LA8GcHQeqRCjJbdMRYuRwOuLbLx9z7/595sWU28sVi92Ozu/IqkOePzyivem4vK756KNjylGP7huyasTr82umo5xiMuZi3VL7W7arFtvtWK9ueHD/CIunsY7D+Qmr9Y6ZKHlwcMzOStabmq5uyGyf4iW6Di8lKElVGLI8S6IZD9fLNTdNQ9FbMpOcpqUyoCK7YPG9JS9zjJA0raNvOmIQKOfu4m6MhOmkwnmHc5G+c9iQXLF97WlVR99bvPW4IaLWGJEiB1RypwXn8ARccMiYBLzeW9q2u3Nda62T+CpElBYUZYYxoLSkaQEPzgeU0YzyMVnpIAi6IXpXG5liIpTA2vQApQUyJHGEUnKIM9IgEjlIiLT53VtH2zbJTR1TZI8xGqUiXZuOKYTk+N4PCkJIm/pGqxRl5UNy6gpx526+G0CINOSICehClmuqcUle5ORFTnQC1wdETDFtQqS+Z9f0hD6k3wWJCpMbsiL1Fc57emuHx4jkfg5fO46dc5RlgZQKFyxZocm0Zr3Y0vee4JPgK1USVzjn7ohQqWuNKJLoKy8SuSVEj4gOJSXOedrW0ncpGjQzhiDi4IhWKJliA51L/6OzSdAUY6LJKIG3nra2eJuiNWKwd6IVSO7+QbGElGlo0NY9tvcQwbmIsx2u9uQmJ8YU+ZREWF+733/dyjrH/s0NMQ0C96J+QRKROWfxcRD5iST62tN79vFoEgZ7fcRaixsmKUruRU1pPZEEQeKOnOT8nnAQ7gZze1HUnXAo7Adn+2g2TxRf0wb2Qhc3fHbSR0CQCT0MdJKIj5gc+VJKzJ6IFb458UuDsBiSdElJeTc0PWgP+PYX3yF6aK0jekFRZAgZ0UrifFoT5TojKAlSkWmTBDOuxzrLfvSVYuEcMQSkUsNAM97RArwLaJmud+cdRqd4yeA9XWextsEM5AEf9sPWIYJx/0EdQDQiRgqdTCtmlGP7PpGxfKTv97EykiIzWJsiO9PaDZKsS5GZtE4M3g+fp4F8hUgElTxHmzj8d6StE83VxUhX78iUoCg0JpPY3uJsj4iBqigAhjhOkchmMbBcLxExRXwqqYhKoLSEKFFG4/oeRBplWxvJjCLFRyq0MoBE+RRP532P0pHtdkNnW5yzZFrio8AXAq0NnXVQZEQT2W53BBw2d9R5w736GBcSTbgwGqMlXgdELThqj5iOxzS2pz0vad5YrooLtss1WspEYdWavKhw1tPbHcJ7dKGx0dM7S6kkfd2QFzlmZjiYH9C2OZvthpBzFzdz/+I+h28PyYxhNhshrcCYElSOi5bCZIx1Tt1ajBR0zpNJTVc3rFZb8jxjNp1RlSWdc4RoOL7/gKrU4GG9XNHbBavNDlOMqaoKhGS7a7i4uGIymuK9ZbFcMR6NGB/MyUc5ostwIVBVFdODCc16RYjQO892dUvfeWQURC3ZNQ2jomCcl6yWa26vV5RVgc4UhZZ0WtLaFqkz5kcH1J2jdZazdxesbhfsNmvicJ+eHk7JpGY6KWjqNvUGVjCbj+lDSyUMtm3xLiThtM6ZVmPwIRGzlErrxEYlKk5SwzEtMoQIFFVOVRQcnk7xzrNZLMm1pCwKqvGEg6M5WZlzfn6BERKtJFmRMT04YH27QkeJdB7XWq6vVun7IE+i2t2uoRwVZLlGGcPBbI5rW+ptkwScIbLbbpEiUtc7UAqjNPPZmINqTt858rxH2A7bNXQuILViPJ5xcnoE1rPeNAiR6GD1rsH2jrbvEEpzOim5dzij94I2Kpa3awqjyZVG+nTNLZdLbpYLNjtLdJbJpKCWPdPeopWi6RxOSm5vr7F9oCgMAsPNxXuiyammU7yIrLueYtMhhcboSF5JVGY4O3vPtqmZHUyp8hypMiZjhe0tRmfUdU/bOZTKWC0X3FzdMD84IgbIgbbvkDrj9nbJm7N37JoOs1gzGY94+uQBh/MJhEDXWlxn6Z0nN4poLXVvEdPJICSPFGVOlDO87WnrGqEzetdTZAYlFattje0DddszylMUdZZr+qbH9y2bNtLlhtl4jI8dne04GpWMiwKtFJvlitvFmqzIUVlGAEaFSVG0IRC6Hm0ypBJEH1muluhBHCFkitp1TrPctrQxcnI4xntLWeRMxwVl3WG7Hm1yjg8yVts1TWc5Hk3IoqO1AdumfaYYIlJptEv3ttYHfEgRZuNxyb2TY2xncZ1P+0uux8eeg9kcg2S9blBZSZErRNOR5Rn1riUQycsCG2CxafEu7dW1zS5FJOeGzll0nhGiomt6qqJgVEWEMrjOJgqW9zhrcTHF6RmRpfeHiBYpNms3mPy+KbQSIeKFwLoeJZK4l0ASCQ7tlxr6WhEjhVGp5/Gpt+3tYGZwEdcHgoiEIeI2RDdQegbR0SCYDSH1d2EvoBkE1TZ83Q/HSDItENGD6FhpAT6RedJjQWcapXXqgzxYb+/IS2rfK+3JS2KvHko9UCINqYHSM/RyIUWb7SNtGUiLUqVrwPuBlC/E1z0S6XiVHMwHe+rPNyoJbcK+xRi0TEk4boa4V631sBedhKYxhrRmiRHXp8y0OzH6nbhJIpVGIFKvse9j9oc2HEgyP6j0O6RM6yStU1R3l4T2+4jc/fsehljbcPc8gxB/EJrvhejEMAjjhySCgYyltRrIR2nttY8nDiEM65e/fo60Tn2p7T3B7ePuwp1CKd4dw9dkWSFkei4Xh/1vhvWDw/YpHnlPIv31XU18qH9jRXh49pC//3/9+yiv/s0//6F+7cspR5/1/5t/3+Udy9mSJ2+foP3/+6jv+PqYh2cP7wRD0/WUtz96yz/9z/7pv3vqR4Qf/OQH/MZf/sYHgdKH+lAf6j+ZyvrsP/QhfKgP9R9t/coipa7tEXiETotLP2w4KyMxSiFiih/ItMK7YUEYU3yDkGoYWg0DB00ayOBxgeQAIjlc7haCYr84j3cZ6yCJwQ3iJYUUGkhOlgF+lDb8JUSS41Iqgxry16MIacM+QN9bRFRoY8gyjfOWLNPJ8YNEqYxCJdrCnqrgrceThEpayOSItx7vQJaafNhcurrd0nXJQa+jYqs1WZ7yx9umxfcCVwWECRSlAR+wtSPPM8rS0Oy2uM4mZ7YWwwZTIjplBDprCYOLWOSGosopJGS6JCYmNJeXtyjpyU2WFr1KIVXajMiNoRCaru6AiFQi4bhDxKE4qg7IZYZyHhccV4sdbd0yKkdkkwPs7ZLzs0vaxmKyDCEgNxllUeKaNHAcVRWZShtSs/EIYzRt55C5oe0stmkZVQXXm44sT5SuoCQyCsrMoAlkWmOyEc4HbAiMJmN26x3NZkffO8pxiSlS7ISQks5ahBIczA7Ytt3gUpUI7xiVU6SGqihR2rO5WaN0RqEVtu54dP+YR0/u84tXZ6zbDeAJvefg+JhsNOb68h2VKTkZHXBteyyWPlhymUEfUFEyztO5GI/HSClw3Y7JaE6WG9bLNbvtluiSO/bmbMn2ZpeEeSHgp/Dqq1cokZFrQaUVLmgKXTEpcqZVwWhS4QkcVFOeP3vETz5XnL09pzSG2keO5mPGpaF3Le/e3nBzvULIjKeHh/z5T/6S1dWCV2+/YLNdoasJ/49/8s+omwYTM+6fHFGOSw6ODxgfHNI0O07GFVU1QWcZf/XnP+Pm5gYtoMwkSnSsbq85PSh5/OSQxWZN3XRcvr8i04ajk3uc3Dvl0ekxxUTjmhWTccHJyQmLyxX/9P/5p7x7u+S3f/c3uf/imPxmzSirmN874cd/+SlvXr1hefYOXUgeP71H17Vcnb+l3i2RRc7RaMb89ATbBjKZcXl1i2tqzm8vEy1EWx5M5tybTqmt4Grb85NffIlrGk5PTrm9vWRUSl7//EuMEqxXDQ+ePsD7yL/44z8lKyPFxFDIkr7pubm9ZufgyfPHtK7nq4srvvXxKSJq6CKikxxkGd3RhMPjEV2r+OWX57y/uODdm1d0u1t+8If/GUcnB7y5uOX0eIbrH1CvMrJRxe12y2w+ppiMOH34La4urugETGYlqqgIK8t0VDAbHWJ9RhSCrg8IpTk4niK0Qk+mjEcFeqQRNiD6HcQtTez40S8+5969h5zOMp6cnnL+5Rt2NyvmR3O+ePeaP/vxp2xrwW/+znc4Hmf4zY7t7Q2To3toUVBUhpP7c148fEjmI9fvLvirt2/Ydh0Kx2wiqEYVRZmxbJcsv7xmVdcc37vP7/7ub+HkT1lua/JZxquLJVIZfvnFnzI+OOS2aXFd5N2XlxgheHA64ff/7h/yw//8t3Fxw/HskLfvb2m2W87rLYXOqK3n4PCUyeiQaXnMca5Q/QqVjzHe8+kvfsHy6gpdZqis4HJ5gc4U23VP22158/Y1P/5fD3j187fcXNwwHRWEYPno+UvqxYrbZs1HL14wq6a8e3N+J37ZXK3YbVpMnvP00QOq2PPZp58RrWU+rVA6YzIVXF5cs2sdVBnKbbk6P6c3hubeA7I8xbL81flbJtUB5xcLtNtStztGVcXm5gryitHpIcp2vDo7Q6rAy5fP2bU9UWV8/MlzjPS8+fKML95dILVi3WwpxlNOT094+dEDnhwURBspzYilg3q9RvuaUdYwm4/IdcVyuWXsA6GrWa1uOZmN6NuW8nCCmRmCFDR1M9ABe3Ic7rbhl5evePPqHduN5fHj5ygduFrWdPUXyKCJSjG9SUNSrTMOD+a8b6/pesu9ozmjfMyoKhhXhr4fs+5qYpbz8aNH9F3Hq7fnnC1rLm9vMfmIg/kRUpact+do6cmqMVlWYoXDSMF6ucLWbaLw7TqCl2ghcXWNMDlFVoBweOnTd3NIG+n7viO6NJyOUhBiioVACQ4mM2JIESfOtsQheixaz2ad3NxJNOEIzhN8ElNIpTBGk+XJVV+NSpRSdH1yvkopaZoGYxRKCXyXBD5926EHh3JeaDJdINApTkykSKFMGaJPg5FMGcoyR0lBu2sJ0ZMVmkJm9H2PtynqJsXYDo7lGDDapGGK60kb18lZnGcabXRyIRtF6AMJmDhs+BMJg3tb6q/7LRm/pgrtN/bvIhFEIl5KrclzTZYZlFDU645212F7RwSKKrn7g0uCibvNfRHuRNvOhSS0IA7UqTRQiQokKokKiLRNg1CRsqywvqMa56goqNctde+S2FsnEsw3S4g4xGSIwckNIkSctSijKKqMLE9xLX3n6DqPcwHvOwSCMs9wnhS/EMC7PZFJfB0FEsEjaLYtIOkaj/cQgiNEm373ILDRRpFlGSASFco2eBsQSLTSX1OEfKRxSS4O++iM/+8WA/+/LO+SQGY/EAuk4ZUSiTgG+9nK8H7sh1QDRYkQ764tMVyfaUCU3PBhiDwUIpF/0u9heN5w5+iP+5/ZR4oMrvMB2sQ+2CMmJBhCiWFtIr7B8BkMBVHcxZqEGO5ENQKQQt1Fc/jB3R58OmZiiooLA0IrhhRBc7g54rtffhe/FGkN5CIWieodSqXvGe8cwUMwAYZ1DiEJv7RSGKOwfZ+EhMNgUg4kphRxmARGUYIjgtJoo9BCoJROr1CQSKkiJNPBMMwSUg4OfpW+a+3X76lROtEEkJSmRAudBuMxsGt7XB8ojUFlBSG2NJsdziVxXyTRprTWBBsTBc1kSJHOU1pnySQ00wrnAsFZjFHUXSKDBO+TMBKRvk8znd4bmQ0DXjBZhu16bN/ifTIvCCUHVWSiMRAERZ6naMJBQEYIGJ0jBBijETLQNUkQoVUiK5ljQXkkuVltWLtAwLM+uUUcS5rDnnq3RgrBpCrZtTtuNlt8dEghcdFyvz7l+RfPGW/H5FkOAtajBZ9+55c8O39Gdmno+2Q8mV7PeH3/FX3dDzE8EZNHVssVAoVWYGQSdmlpyLUmH6JmIpEiy5nPJlwuBJv1Fi0VLsCT9SO+c/4JRM9m3dLUHUIoZmXB+eUV7a5htVnQ9R3SZHz1+g29tSgUYlRhMk1RlWRFgbOWqjIYkyOV4vr9NXVTJ3KXEkjhaZuacTFlMi9pu0S82m12KKmoqlGKSB5V6FwSbEeWaapRRbPreP3VGZt1y+nDUybziqbuyJShGFecX9ywXq3oNhuEFkxmFd57dts1fd8itKbMCspRRfARJRS7uiE4x7bZEUVASM84L6jyHBtgZwOXtwu8tYzDmKbekRnB8nqBEoKus4ynE2KEd2/PUCaiM4UWGm89dVNjA0znU1zwrHY1R4cjQIID4QWFUozLjKrKcE5wu9iy2W3ZrFe4vub06RPKqmS1axhXOdGP6TuJMhlN31MUGTozjCZH1LsaB+S5RmpDbAdSjikJMQ3D/UBHKao8CQvynMxoVCbTd5/vAYuNnvc3C0bjCeMiZzoesV2usHVHWRYsNyven6/orWA8HfPg6QnNepfEU85hiildZ8lLzeHBlFIpfNtxu92w3u0GYnVAGkVZZjRtx3LrcDZFsB0fH5KVOZfXS/Jxxq7riF7Qr5csbjd4AVLrRIsOgkwLnjx/xMHxAX3fMm8rIoKubekzg+uToKQvLFFK5tM5Nu9QrqXuFaXRbNcbFl2H9ZayrFjt1kQxUOSco262XF3eEl2k3tZolUiWk9GIGGG7XiCLgvFkTtt0SDn0m9az27QQBdNJxWyUs14saOqG0hikEGRZisS9vm4QuUHGdOx136P0wSBGgHVbE7eKXd1DcNi+Tt+hLgmYRFVRGcWu2dL2HdPpKAkLe8d4MsYYiet6Lq6WeCBGjyOijOHeqOJoXiaRakhUnI1vaa0lt5Ey1xSmYLOz9CQqdt+1hLIkG8hueamJ+/tf8CgZESGgA2xutmy2Net1Q55XjKcT+r5nud6yXdcEBGXpkVRJIJ/lZH3AOktmFFmWo7UmzyDGbBAPW6pqxGQ8ZrOr2Wxrdr5F1B15ngx9a7eBkO5rutBYn+4fjdkQrCMiqJ3FuhRdTPD4PiKlRqhEDdzPXEMMyLin/SRBjGAvyEkkPqNysszQ9TYJlPaisMhAdk+UH0Si7KTI29S8SCkGSmjqc7XWdxFiQqZ7nhh67eDiQFAMKWpVaMIglNYq0QlhTwkCqTQOh4wykX1UiioLIZELlVZDTK7/hnhnMCAMIiwpJO6uN0/LDqn2YiYS+XYwTux71LuTt/d/8nVft++NvlmRr3uzRDdKx6akTP2R7VJUXUz7mnuC2V58sxfq3PXIyUE5CN256z3ZQ1ZJBlbnHBGPNjnCe6QWGK0SdTEm40qUcYgm/sZBD6SpPQ0JklgthohnoCgNwrUkUArpuUivIc8MQn59mvw3jBh353BvDLGJCOodd9dFiHum4hASPAikkggxEHxP8HHQ8su764Eg7sRQ+/frg0rpP86SXvL81XP+q//Lf8XB8uA/9OF8qF+x4rD2Xc6X1FV99+dBBn7+nZ9zdXLF+wfv/zcfH2TAGsuLr17wR//4j7h/fn/4FohcnF7wP/7X/yO//8e/z2/+5DfvzEHPv3yeREr/bl8IP/jJD/gv/+//5QeB0of6UB/qQ32oD/WhfqX6lUVK0Tm8DAgLwQVcBOkkjpSNXRQFKjPs6ho/DA4YFqmIBB0WMTlTs0KhtUBWOcTkJvfe37nwY0h56iEkoVKqFOuWFRnO9fSdH4zYguADUqXFm1KDWkmkbHMxkJ6kSpvawTmEUkSfiAFlnqeoOsSA3+/JpEEpgyIhiT0RrTSIFCfnekteFkn4IxSKRIwSSiVBkIdxkaMnmnE1QkVJax0hgpaarDDoTJNrhXQ93iciT5ZNabYtwUcEgTLXGGXog0RmiscPT5EicvH+nLhuMKOc6WSC1hHJ4MQ3SZSVhTRsVXmJiQ6BpfceYZJzKgOCTptNZTUihsD2dk3UBndxixBJYDYeFzx/ccCnv/wlu7bGbhw3t0v6gXIQYor288HSdZKYUvvwnSVoBUjWbsOsnGGiJLqe3SLFlxWTkmlWEIwlH+XkZcmkHKG1omk8tg/kzhG9YzQa4euWzXbLrusJzjORJdpanA2U4xnVKKfvWm6vFxSjkqoouFktabqGssqZlhNMXrLaXbJrGvLccTo/INcjjB7x/nzNrmlTZI+ITA6OefDokOuLa7qm5tp3rOyaTAuK0uA3LavFhmpUYoqKKldEb9NAyEvyYoSTKfZuu3Hk5Yzf+83n3GxX/PgnvyDgmB/MuFnWLC+WGDPjhz/8LU7vTak3t7x9fU0lDH/jhz+gmlSMMsNodsLVsqbIF2Alv/m93+D9xXveX1xxfDBnt2oYTWecnBTcf/SY0fiA2O+gdyw2W2oRyUc5XVfz+auvuPfwEUoXyNkxp6fHTLSmdy2/fPWahw8e0lvFj//iT9iuNrz8/gvGheD9l19ydDSDUDMvNbNpxXK15Q9+97fpNjVvzt+RC8XmtubL7i3VwZhPP/sCqRTfPZpz8PCIk8+e8H7VcP/lE158+zF2Z/F1w9XlOQdFxsq3yMMDNtsllfeYIkdUFdODKVrnaFkxHh2xtivKTGB3LcvlOaMyEtB869kTHswO+PzNBa48ZDIJfPLoIddX7xGixxtJIxSHjx6jlOX+06c0dcfPfv5zhFbM9QmqK2i3Dcv1Eqkgn04heHbvLxC9YqzmbLdLtrXl4nzDg+OSm9uG3hdY6fmrT3/GT378F9RdzfNnD1ktd4yNplltWS+2uKbmYDRmufKs17c8eniMjTXtriJ2gVIoxjrn+PQehSjZbHYUpaGrO8a5wfU9Tx/f590Xr/n807d86/d+k3YXWbkajef83XuUgoOTY4ovxsxmI2bjjM8//wIxmbBcbjmaFvztP/wbfP76jL/87Jy/97//O2wu3lNf11gZ+OUv3tK3nu/95ieYquDdp1+xuVny0ScvmVSKfhN4dDJBCMlodghR8PTjj1le3XB2/hVVPuKoGvPbHz9jvd2i3Y7F4QH5ONHlsqKkmk0wUXL57g2jMqMuJP/i//anzO8d8Buf/Ab1bsfDjw+xNvDZz35KVZQ8fPaExdV7mp3lzdkNzi55dHzM2+sNXyxe8eTxKY8/ecaud1QRXj5+iOtbvvXyMdNxxvnlDePMc3Q8IUpBlmv8eokKPT6XTMdj3n71JSutkc5Sr2qYzpnPK45OZigU6+slb26WvL1a8fzZE2RWMJ7kuC5w1rUcnD6gyCVvNjdo3TMuNHZzxc1WU+X5QMyLTCtFfdshTMb8wT2Cj6xXO65uNhyNR9QuYDvPzaol6yy9XbK6WiACXCwWmNmE49mYLBPsnOTF6QmqsyxuFW9eveV6u+PgoKJpHa29otLw6pXjs+s16xi4rjRkY4TvsfSU05KjaQUqY7Nx4ARFqRiP5zjn+F//5U94f9tSNzVtv+JBdUKuBKvzBWe7Lfm85MmDh1wurljf7CjKEt8uUTKiq5LCaOpmlwQ/aD5/9YZNvWHXNuzqlpenx7jtmrquKQvNbr1j01hkWVLOZ/T1FikVtB19C0SJyUu6ekdtO+royCtD6D1NV9PZMER4BYIIieRIoG67QcSgkATEIIbxvcPHiCVwdnZJlWc0vaWpu8Gl6/HW4u0Q26TFIDZNQgMx7Hk7G8gyQVVW5CYDEfF6EGX4gDGJEkkMGC0HooqhbdqhDxJp0z0Mm+JGgRqi1JSgGheEQBIThDAIsgNRJIe6VAW96lP8gbf44JKIR4Qk5pDm60FAZNi8TuJrKWR6Pu2Sw9Z59l7a5DYWd7FlgmEYERNd6O4Ph0FCEmtlSZAlwPWedbOjb30aPEbSUEAEBIlAJYUANQhN2NOZBL6NWNGmwYRJgxpt9k1iEqlkuUGZRMqIQ7AWUdB3FtsFgkvDG+E8RDEMAZKrWgDBp94zzWIigUBwfhiGiCGqwQ5EJgEhkWXaukORet++tylWI4hhQDGIvAayo/OW3XYQ1AS+MdxIjbMU8U4Ms3eoJyf4Ppos0jk7CHeGAcQw3NoTP3+dA9+iD0QZhyFcJJAGWIEkelNaI1Wgt24Qje2JWt/8l33ccxK3C5MGTSF8PSAcJFt3LvFvRlaIYWAXoh8GW4Pgbe88j3GITOEuamN/Vvc/t492YSABaKXvjlUphRQ+fb8IiSTFrATSQG9fIYTh9aYhkYqSJ2+e8tHZR4ggaGNPpjUyl2RmiG/z6TWleBI5DAMFInhCTBQDJXNclwbwIgaMkkih8IBQkul4hBCw3WyJvUNmmjzLkvCP4Zoc3PkyCiISoU36rsTjQgQ1iMqiRMpEXMi0JhITnU5A2NXp+hxEkPN5wc3NLdY6fBeomxY3xJqEmMSSgW8MRCN3EZIR6NqOwuRpIOw9tknxZUVuyJVOcc8DWSE3iYDmXMT6SFA+iYxMRrSOvu/pXfpM5RhkCDgf0VlBZhTeO9qmTXEyWtN0LdZZjEnPLVDsxJqzowtEBuFeTzfucJNAZyy7tibK9HkclRWH0yndrqYWNX10bLotUkEYOVzX07ceYwzLe2s+Pf4Fj14/5PT6Huf3L3j/6Jw2b/jl5FPMMmPuD3l0OmcZNvzo1hJkokTVraXdtihVcP/+KaNRge1r1qsag+Lh/XuY3JAphSkq6qbHyI6syXkye4y9sWRvCr599Qmhj5hCU40048mULCvB9+A9bd9jAW0U3lluV0tG4ylRGUReMRpV5EoSgud2tWIymeCD5OL8HX3XMT+Zk2nBdrmkLHOIltwoitzQdj1PHt7Hd5bVdoNC0tc9C7fGlBk3twuEEByXBeVEUN1M2bSO8cGU+dGUqQ2E3lHvtpRG0UYHZUHft2QDoUoYQ17mSKGQwmCykq7tMEoQrKNvt6SESMHR/IBxUbJYbwm6JM8Ch5MJdb1F4AlaYIWkmsySoGk2x/aOq6trhBQUcoRwCmcdbdcmikmeQ4zYzQ6CwMh0fNYGtpueyUjTNA4fNEHC1c0Vl+fnWO+Yz8a0rcVIhWv7RFV0ltLktG2g6xqm0wofHc5a8AEjJJlUVKMRCk3f9Sit8NaRaUXwjul0zGax4vZmydHDU5yNtBuLFJHteouQkbKq0DqjyA1FpljcLhBZTtt1lLnm2ZNH3K42XN5sePnxC6aVZqlXKBHZNY7t1XsOD6e8/PgZ3a7l4uqa2XRMWRiahhRtPy0RUpPnOdP5EcZolosbIJIrQzXNUCGQacFu68kmU+R2PVAVBUobum2DcxY9rrg+u0EazexgQtA5bQgYaVguF3S7mtlBEjBFH1nWPdtmy7TUFCZjtdmglOD46JBdb8mk4mA6wfYtudEcHszYbjYo4ShzjRBV+o4PnuBsimjNNH1vuTw/g0Hw6HJPWeT4YCnyEu88q8WW2+UOkxvKckQkMq4KloskcirLghZPKx2ZiujYU29XKG0otSGGRHhzXZuEzEVBlhn63tF1Fi0UAUFrPVkfIPQE61i0Kea4azs6AaOyIM8KbBSYQpErSd966rbndrNJ0VrD96pzHW0rWW4a1tZT5xoZBEJrnOspRhWZTES4pg3EQUBc5hmEwHK5ZlNf0/WB3tbkuSHPc0JvWdQNQsFoMkY7xe3KDtAeB8ElM0BmCCHQtS1GZ6w3O7ZNjZDg/YLjgxnSO2zXJNKRC/R2h84yVJYljceepjj0CVJqpFR0ztIHT1SQZxrrezqbouViCEN3mUwHLgx0zgiS1FeIgSLlhx5kt2twNpkerR3Ml4MwybtwJwpGcic4DTFFt0YgikRGMjoZCZABUIOYSN71J1IIohAomf4ukTcFkOKy98aBFCeXehxt0n6gkOqu5xHyawODUF+TfYgpqlXGpEbat1Vir+yP3PVJxERjlUIMcWzp7/eRxPs43r+m7RnWDklQvv/D9I99HK5SX0fs2c4ngpP/Rkzz0O9J+bVZ4m5dsl9TOPDCJ1KnEsO6R9z1iXHoR7Lhs3X3+hEp7tan+MV9tJsYDl6Q2sJ9dPAAlboTYsU4xNMOZoQ9yTJdDklI4H3AWZcSCcIggIr7F/G1A2G/LnPWI9ywRhtOqLj7//055c4AEQbB051gPyRxFN945v1pSz30r+964kP960t6yR/+sz/kb//Pf/sDQenXvIIIbCYbvnj5Bb3pefv4LdfH16xmK5ryr0ewxYFQ/avULz/+JWcPzviDf/4HfPevvsuPfvgj/vy3/pzteMs//D/+Q45vjnl09giAB+cPmK6nrGfrf+vXIYJgtBsBMFvN+OSzT/iDf/4H5H3+b/2cH+pDfagP9aE+1If6T6t+ZZGSj57o97nqYJQCRNqEFhLrA95ZIKIUKSJEMAzFAJc2urXSEAVaC4xMWdhRS0LQ2M6jtSTLDcNOAdZ52qYDKTGVSXj1EIfoBohySMMIES0VKIUdNp2FHKgGRmODG5whEIeYA4Z8ceeHbHJHwl37QIrrjtjg8TESg0BLhTQaoQSeSPBQliUiJERv2/VEJOOqYlQUlOMp290OJSPRBwKSqiiYTmeozOCjo/cOIhSjirbeYduWvCrwSuBdYJSVCOsJQiL6SG07tMo5vTfBC0Xf9hgVCTKQaUmQaRFruzToUQNhQCDRgDEK37e03nF4NGe5qqmyjG23w2lF6C2+kGRSo7OcshoRYoci0lrHbruj7S1116ehqgdjckDStRbrbHJ5ZSmuLwTQZYmLAlMUyDxSrDYEIru+w8c01MyKkqLMyQuD9x7bp2gdUyrKoiJGxXKzxUWXBnhqQGxnGaOqQBEoM8VsOsc7SZUL2qbmYD6jvQ2cXyxZ55ZJ1YLvMYUhyzU3V1dMRxUHI0kfBVkh8KHDR8XtbsvNv/wLTAxsfcOi2zKhxBidNp1CxFSSR0+fcnp6j4uzM7rO4aIDJK6R6FJxejDh5fNTTF6xu7nk/OICpOLRswcczkuKfEJ/rDExo1utaHVgPhlTfe+E67ML5tWY2aNDxmXGelnz5dkVCIXfrDh9dIyWBYdHc26ul6w3julmy6g0PHp0yrhSfHm2wLqOrq359ouX1Jsrzm+WrDeWk/kJRVkyH424ulgwf/EQJSK/9YPf4t7phP/lj/+cXbfjybNTnp0+wNmW8be/zflyxZtXN7RNTdSCq9WK5fs1q9sVG2dR3jIdH3C9WSLOPf/0n/8xRwf3eXh0ynd/+yWHDx7yYtOBh8/+6gzpOx4/PqU4OibeLjnKM0KWEYKg23aYKuPwZE4QsFrWeBEI24ajyZjaWQ5PDnn8cMbm+pZ6veY7v/073DuYkb1Z8cV1zWa7YjoqKO2M3/2bPyCfjHj36oKRyVC2x0vNYrVkfjjn+ZMn3C43dD2IckKoO37w/ZeMxyO8ydjsdtjbmhgl3/3eRzS7wHLX0wZD5xQ/+5Mf0YeAzjXf/f7H5DIgsoyr7YpipBiPKkRvOZrOaFzHF1/+grptOX16n8cPTvnpj34OriPmBbtdy82PPqVrO777rce4XrPetjTbhiACNtf8/LMv8UJx9uYtxJJRLgh1Sxcann//JTmCe/MJvW3R1SmzaY7XOSf379GcX7BebKm05vmjQ7rFltublj//s79gPi345HvfZrW+xbYPmZ8eYaqCq5+8I0fx3e99RPv4MUFp/uWP/pKryw19bzk4fMzhyUNefOchtnW0W8t22zCfTOg3kftHOTHXqOA4Ppyy2DrazjK+8RSmRwrPpttw9umSb338FInl/uNHZMZw8eoVn376Cy6WK/7GD3/Atocb37F4f8VmccPtZsPWKh4/e0BwDeubNbIqeXR6n87VlFXFd15+jHM/4e3le4rTe/zGb33Cp3/5Oa9XW7LMcziZo0zB5uIKVxmauoH1ipvLC8aTEZ+8eMZ0NufNuzdAJJMZudb0neXt20tKlVPOZigcstPkyvDRJy/QKG5XG15fvWNazTg+mkO/4PnjeywL2HWSo/GUvu159uKI29WWd5c3HEznlLmiMNDVHmxD1284qx110zJxDS/vHXJ8dMCbs3OwkdvllqIoaWOgUZB5z263ocxKylnBzfqGy+WawwdPUKVAmEC9XtN4Seg7yrrBmMjV9RprLVFYjqZjvE7OzuAX3C4W3H90TAyWxaZPYq9pRTHJkAHqTc26b3EiYHyg2a1Z1xvObWRUZTy9f4/XZ1c0UdD5DtF6vnz3hr5L95fbXc1cVtwsVix2Gybjigenh/TeYnvPdrPFdi1xoAUpIZmMS0xuaDNFWHuaBoKGzveo1FIgh4FB8ElAkOIJwNt035div1kraazDE+lbNzhxPUBy0OJBpkhUaVQic1iHQKX4MO/YbmqcBaEapAKtDXlm0FpCsDRtipLDB0ymmUzH7OpdGmD4RIm0ncXE1NsopZEixfloleE7h/UBRHKTe+vonCcKj841qAzb2rvorEwXicwTGN5XCSq5npUW5Hl6f61Lg4MwCCuklINYYBimiIDRahgSDFQjLTGFHvbO5CC8AaM1mVJ469nWPX3v8D5ivRu6y3QvjV1yb8uBEqMLlXqCTBMcNHUa4oeY3iMhPcpIyspgTMI5BRfxPaAM3gf6eoezDrtr6XtP23b4OAhfBgc7pGENxBR7o0XqIYdhh7VpI7/vHWIX0VreDSWC+3poYUNkve0TbWWwksco7oZAyaU8DFBCEuMH8XWMgojxzu0cCWijKao8iVeUTpQhJ4jB4p3HD05noVLkn5IZQsgUm+KSuOzXtcLwnofhGJWQw/zl6/iufdTaYHInvU/7KVOiScnBZi6FQMn0g1HGO1KRHMhGw8MJIZFZxRApHaK/iz4RA451P1CSA841RZvtBVJpmJWOL30+Eek4Gdzv++MmJHMGw/NDxA9DRwaqgRgmRxEQHg66Ax6/ecTxxTFBpuFlNsSu6Syn73skifIjpEBrTZEXiIHe5IcBojZZ+sw7izaGIDQxOjKl6UNIgiMPNjik1IxHGYHh8zcIBtUQ1Qwp3kbuyWVRADpFd0tBcB4fA1VZ0HYWoxS97wlSEL0nikQ60FKjjSFGjxRJNGT7HucDzvl0DiIIkYYpbrjGxUCRQKbBpjGGgEAahVQK1fUokb5PwhDhmMSL+u6zmiJMIlKr9BlH0HYdYS8elGmNK4UkMxpJ+pznRUHwAqPBOUtR5Lgmst213MzXXD244PrwAptZlBbEzlNkhsJUeEBqCNERhaTpe969v0AS6YOlcX0SRg1EKiIoI5jOpozGY7abNZ89/ZyvHn6J04n+JJ3ElIrVHy548oun9Lc9bd1SHY2RD6EskrDUhxTF7rsOJ6HIcrLjEbtiR6kzpvmcuR0zfjVju+iZmDHTq5zxZMR6XeN7R1O3rPuevO/JtGI6GZMZwWLTEoLHO8vRwQG227FtWnznqcoKow1FluKYyvkEISKnp/cZjTJevz2n9z3T2Yj5eEIIjvzoiE3bsV7VKSZJCuq2o7UdXdPShYCMntyU1H0L28ibt28pizGTcszx/TnlZMJBnyIXb6+3iOiYTsboqiI2DVWZE1WKE3I2CU7LqhhEbzZ9D3eOKsuwIVBWU6bjgr6psV3P8f0HjIoCvW65rS2d7ciNRuc5Dx+fojPDerUlkwoRAlEIGtlSljnz2Yy67fBBgE7iuNOTg0SyUpre9vg6ERpPjg+xNtL2DhcULgiuzt7jB8PX8b0jtIgIpdh1HdrIFHHuAlVeYL1jsbzBOsd4PmY6HnF1fg3BgdLY3nFzfo1znuOjKdErOpuETBHwWnJ1uyAi2a7WgMFoiNbhg2N+b45CML7J8d4hzZg800SpqMYVdreja3oyKZlPK4Sz9K3g6mZJ6DuOT48J0dG2LZPDCaHIcX3L4rrn+N49Hj24T4iwXG9ZLzfUzZbJRJHNSx48eogUyYy1WqzQWmG0oshK8iKDUJKZFCUfZYZtdhQiIqInysBitcJHqAqF1JqD2YTYdyxubtmevefBg1OyPKcJjm1v6eodENi2ltl8hhBgmxovNKOiYD4d07me+WxGkeVcL5YsdhsePHxEu95yvVzT9w3jqkSZHNducc4SSYKErmuQSjKfThiXFW3fses3KKHS/lqI1E1L3wWkylBaIJxHRkk1GpEZg+0tq90W72E6SbGCVVkwrqas1jVVUSEllNqgxorFekOMkvlkQp6pFDvmPRLPuvN0PkDwjHLNtJpSdy190+OcoA8+EezEILJwHtc5zLjEWst6t0GUY6TSKCOwjcchUy8pAsamNVLfe3yweNujlCEKkNLTNGt0lsjmTZui3KRWqDzFvQYX6H0y+2USvHd0naNt0j12PhvT1y31QDwX3lO3josbT6k0rbUoNNGHQcQkGI9KlJT0IZHSrU3UwdVsk+41WiG1wlqHkwJb9+lzEpOgREnBAN5Me45D7FeIcQD07KO80n3MR+gG0rwf6IaRITY1qYmH3iHRWPf3hT3N0Q5mR+eGGFqVaI0pKi2JdPywbhBAUWRJMGztXURuuIsPVgM/YyDoKEkQX9NzpFLoGJNIi0SxTILUQBii0aRQdzFjcSAUcieWiklINES9uX+F7ClFMg+EoQ+Uck+oHNo1KZBC3fXPsBceDcRIwHU+mU99ovOnz0MAAQAASURBVAbF+PXwPgSw/bAPLAAlMVnqCYSQKabbJhpagsnF1PdonWhTw9omiZAgCJH6FevxLpFSnUui8L+msPrGv4shuncvMpKCO1NCCAzv52DOjaln3K9LItDbgPTDBSa++dzirjcelrPD3wTuTsDQyMrBwsDQ80otQcjh/Ke+dU/13Jsl9hQquT92/7VJ5UP9mlcEGSSnF6f8/r/4fb7/0+//a+O+PtSvR+3JRn/8+3/Mp9/6lLZok7Hh31UJ2I13/OM/+sf8k//in9Dl3d1XRJ/1/MP/wz/kv/k//zfMl3OKtuDk+uRXFynFFBN3dHPEtz/9NlVTYazh6eunyCBRXpHZD3FHH+pDfaj/9CoSWU/+7QWfH+pD/adev3LnmhcZ3no615OZDJ3pFJeyj12IiUyESO5nJcXd5n+MYlhcSgQKJdIiMHpP13c4ZxO6V0pMnpHlGd67FLM24JS0kkgFnphcWkPkQwRMng8rP59cJ4B1ccDxG7TW1HVL03ZIIcnzHBnS8fRdj4w+bbrGiMl0oigpDR6Ch1wbiqK8IzRpb9jWO5qmR4eW8SjH5BKhAtYFlCrQKsf1KXIhzxQ+gHOCcTmhyitscCiTgUnDlrZtUtSLlkigzEo2bY+QijzXWBHZrFd4GXG2JwqorUe0jvv379FLT1O3iBBomgZvPUomtDxS0jYdWVFAFEQXwUlE03EynXL68IR7pzN+8fk73r65RJmM2ajger3m7btLZLSMTIaIkUUM9C5F7uWZocg0WgsUAheSK2s2n1DmOVJElDYoYah3W+xsDESyoqCYZWybhsVygwiSssoZj0dkQrJ1DqkCk8qAlKxbjxAWrQW5zPC+TznpQiFlBlERXaSQGY9PH3K73XJ5cYNtI9U0MDKSjYBdvWG7WTEfl4wnBfW6wVrH/FHJwi4BTd/3aESyWBU9VnbY6HB4dKZofE1vFVoayBS50oyKHKklq3ZLX2/JVIkj0vc9z2ZP+bv/+R9RVgX/87/4U372+Wt0obh/75BqMsIYw8vHBavG8/7yhvPVDV+dnTM2JYf3TslKTTmd8GByTD4uGRdb7t2fMJrPaJYdWYBMSr48P2MRFpSTiCg9mx6kzNAiMDme0LOmvJbQ1IjGMitL6jZDiJx6sWFjI9m0Ytc17M5vuX+qeNWsUDryv/u7v0ffOB4/PWWz2nJzpbGx4f3FJZeXCz6SgflRiZnC5eKCy6s1wbYEb4mqROE5PZrRBc9Xb2/oaofLND/8nd+DrmWz2/H69VtevLxP4TVPP/kex/fGfP7VGev1mp3rGfWC6y+vabc7Xp+dUXeO+fExUirKrOKP/vYfEKXhF5+/YV4cENSMZciQZcX9+2PGueTq/SX3Zqf0u8jt7Ya+hvsvprz//BXtpsPFhqPZiMXNmqKccH32lqg0Hz1/jqDg/P2Kg+MJp0czLpuatmt489rRLHsOjudcX7wnxg6ZC0qTU4pI6w3Pnj2mHI1YNA2HB1N+8elb/urz/4Vnjx/y9MUjHr58ws22QynF9vyS3ESefPsjRtNDfv7TX7JcrMknJe+vV5is5c37Ww7HIzIZWK1rHjx9zIvvvuT1+2vOzxf0bQ9WMBpVbC+3XG3WvHhxjyff/oQ8G7Fdb3j//pxjGXhzecOP/vJTZuOK+ckURc/HHz/i9fmXHI3GPH32ANfXfPbLLyhODjm4d4AsDG+ubhhdnjDNIlfrG6blhF/87Ce8v13w+uwdf/R3/i6nxy/Y7C4o8oyDacnF+xtWy5qnzx5Tjcbsdg031z2zKud3fvgRnxrPqm7JphW/8a2PWO96JvdO2W5adusOVUlmh3P+iz/6A7746jU//eXnfOf73+fv//AP+OKvTvjLH/+MZ08OmB+P+Y0fPE/uyPwdq9stB7OKp+Yh12+XbG87Xnz7u8QyY3pySDk1jEzP8/tzVqs1F+9veHj/kJeP58zmJZ9++Z6snNK5mrYJ3Cwbeq9QpqCoCo4ODtgsd4jxhC46nO3IXcHVuiYrC/LpISpGRmVGKySjvub+4ZRH945ZN4Hb1ZbWWdre8id//EuK6YSnJ/eosgxjQhqKTHNe3D/mTF7z7mxN23aI0FMZwdHBnCigaS272rLzHQ8P59ysb/j2J0/52IJvLa+F4myxoVn1MMp4cDzm+MBw+uQeMjguvnrP5dkNwXnK2YTf/tZH7HjNn/75T8krgykKfNfy4GjG86ePMHnB09MDlnXHt771Me225d3VNUI43r67ZXJ0j9Y5Lq8uKGXg+HAMuuDydom3PU1bU85LHp885fpiTNf2bFZXvH71mhAcK5fO5SI2MNIEHXh1fkldd/S9xQeYmBQNq1WKM8iMpu8czS654rs+EYRaHGWeMSoKMifBOkTT0XcptsvFgCAgZRp89b3DOo91kd7ZgawjQCoCAYIc3M0RmUE5GaUN3eUWZx1peeJxPgmYszKjHBX0rsP7njwzICJ5nuFdg84VJtOE6Kmqiq7r0qa2FhgxCA6aHuMABGWVYkBkLgl9n8QMmUGpCm01xShRkmw3RENFQ/AhDVu65ML23qKzFEUXYhryK5PEMDE4vPPDxn36nTGkgdawk46U+i5WzA80yyTuligpiDFt6nexR5AGJ+lnvyFAUUkMwH4zfBjISCmQKlIUhqqqsF2g7zxCWgiQZRnVyCDV3jkc0jDBBbrO0fWeLCtwztH1PW2fRDFSg5FyOO70ZwjIMpOGKYPLeT+kkVIk8YcPKf7EpYGhNhrnEgkqDWsS5cW7gRCU8i9Sv/XXHOISIZIDP/nmv7Z3p/FAigy5izwLkSD8HaEnxkTOStF7Hhti6jFzgzEZzqbrTQT5jViIX7/SOjn8kyhtiOvgG675SBJ7EdMAZRjG7JlRwKAaSgOnvWPdD2uGvehI6uS630ft7YdY4i6jcNCTDZb8SPou2dMChBiMGIMffR/h1tskBBMItFbDhEjgvIMov3bLKzmIeyTDUw5RZubuhaqgmJ/NOfniPvNuTinzge61H95ppEgxiFJItBLpExhSDJrRBh9TVNo+/s86OwiO0iAq05re+RQJJzUB6PouXYfBgUhRN8KFJMYWMVHOiEnMGEIamvo4UOIcSiexDyENVXGOKs8Yj0eMxgU3t2vW6x1CJYpG3XXpvwkYqSE6WuKdEEmrFDOThKTibqiaFzlGJ+FSEnZJbN8T8owAKK0wWtNZi237ZIIxKVZSIvDBIUQkM+mxnY9AWqMq1B1RIIng1N1r0iimowlN37HbNngPWQ6ZFKzKhj/7zo/odEuBIRMpXir4QFGUNCFFOfrg05AwBNAeLzyeQJDp2nDBIoJAokAJlBwoGRI6a/GuQwlD8GkoP8tnvHzyApNpfhx+BD+T2NMe96gjLwqUVByPJsRaI8+y1KevbpOYYzRmFEo+vvqY7+4+oYpjnOsJ0pGZAnvoUDHFbi7Clja2mCwiTKD3STwmieRVRsCga4GwPcJ5Cq1xTiHQ9E2H8hGVG3pv6XcNk5FkZVuEhJcvHuJdYDob07c9dd0ScGy2O+q64VBEisqgPNTNll3dE71lUgWi0EgRGZUFPkaW6xpnPVFL7j94CM7RW8tqtWZ+MEZFyfzoHtXIJONB19EHRxagXbb4zrLcbHA+kFcVUgi0ynjx7DFRKG4WKwpdEGVBi0Jow3ickSlBvd0xKsb4PtI0Hd4KsnnOZrHCd44QHWWR0TQdWmfUmw0IycFsDmi2246yglGZg7U471ivdtjWU1QFu90WokMogZESLWJ6PbMpOjM01lGWOTfXa65vXzOfTpjOJ0wOptS9S/sb2x1KwuzoEJOXXF/e0DYdKjds6xalHKttQ5kZFNB2lslsyvzkgPWmZrNtU4yQF2RG0+0sruuYzytmx0coZei7nu12Sylz6m3D+eU1+RBDT3SMqgkHRxM2a5hMRsQYWNyuKDYjqnFFPipZLTastw3jKkWbiSiwveVyseL6dsH99pSPXj5Ne0Ukalpb1yy3LUoqRipDGUffe6ILPHg4YZoJVqsNYdiTmExHqKICoWjrBttalFScPjzFe8divWI8nvH48Sn33SFvvnyNFILp3HBwOGU6HYOKbLYNXgQmszFqW9OsW6rZmOOyxOQZplCEBioDVTZivd5SFAWnxzPK0lA3LY1NAo7O9rgg2O4ahJJIrSnLghA8TWch0zR9Q64NXe2xyiGUJMtHKAGqytg5iwHm0woXBN5H6rYHCTfXV1jvmE2nlNqglcD6iMkN4ypHRsFVvxioPg5FxGQZxmis9zgbqbue+XhMtA6da55O7+H7QNM3LH3DumnJlKAcFRgjGU8LskLTbzPW6x3LdkdRZhzdO8FU8NWb9zRdx0xLVLRoJZhNRjgXqMocQUSMKkZFzs1ijZCw29b0AlRmaOottfcUuaIqc5re4fqe4F16rw9n4EfUu5oYHHW9pUPQuYBQgRB6nIJMS3ZtSwhxIF+CVpLl0Q2fffQ5cSD/SB/x1t0JTVzwOBFTRKzWSDTKexCJCh9cHIirA9VICmKUd0LZMNCW4l0PM0hL9qQaEVGZwugkQnN2iKUemqNgLSH4JHKMEessUSmEiGglcTEkmqBSxOE4DToJ42NEaT3sryYaPSL9rJYSqdJ9dk9mUnIQkelErPQuRV/GIDFDb+ZdREmd4ukEmCyJn/wgpN5H43o/CLCGl532hfcC76+JTuzb8pjEw3d0ooFAG4LHDT+YnuOvx6zdRUAP/RyDsEmK9JnLMoNA0vn02hl6xcxopBoeO7xBIcZETHI+9QYhHcM3iU1Si7vebq8Wkiqtgfbkpb24KtGukjEziboEIgxCepH6hG+27V/HNg+9KHcvc98ED2aIeHfu/lXCSvzmud2L6WRkj6FKx6UGYlcSOakhpg/EYAIS/8rv/VC/jiWC4Ps//T5/60/+Fvcu75H12R017EP9etZivuC/+z/9d2zH21+ZjvRvU0EFOtX99T8UcPbwjP/+H/z3fP+n32c9XfPVs6/u/jrrMqq64unrp7x9/JblfElQ4U6c9Ds/+h1+51/+DpPNZHi6D9fah/pQH+pDRSK//OSX/KO/94/+vX6vf6gP9f/P9auTlFyi20QvEDrFpQlCMhELEDINjqRMrgtnAwKRELRCpgWyAq0UMtlu0kLOqL+2AHbBEdq02HXep0W2TgOMECwCNyzKGARHGVIo+q5DSjW4PQZ0bwScx3cJZS0QOBfQOh20FGIYVIGRhlIrfJZhsozgoW0cCsHh/IDee7o+4dGl8BRZBpUiNxlFkad4FR1pWwcix/kIwVJWOYKA1hpi2ng2ziG0wNYdpTGE6FA+MB2P2HYNXd8SXE/nLNJaTFZQFBm22WJtj7MWa10aSmjJ9WZNcBYRI3Xb4Ifol67r6XpLpjVKSkaVwTlPkefEEPno2XOOjo9RZcH16oqb6wXedzT1luBHtN2W3nqwaTi53dZJu1OUjCudYuV0omIVeUbTtShZMptMBye6QilB07QQDa/eviMSqUaa4B1Kaaqi4mp9jd15RqOSLZ7Fekff9uRKoYVgPJ0RomNS5uRZzvXNkqbuUsyeTQKzaOBq3RDf3/Lk/iHqoeSz15dsr5fgLW2zI3oS5WoyYrtdEWLk3qMH7GyPrz0vHz3itr9gtVkgs5yu3oIS5KM8OUK3LX1n8TYwPZqydDXWBj5//SXZxSuqIsepnrqFb338kvHI4KzmzfkVbehxAp48fczl5QWZUIzHI1ynubldsd41aJPRh8jkoOT2as3tVw0ffesRZ7e3WCkwEqZVTpkpPj/7ii5IMhVZXS9p+ohwmlIEfvvbL9g4w+XSImTHg3uPOD2ckRUlq6sVWpeMtUSXHarSvFvsiDrj6XzCeDRmt9nx9t0VD18+5zvfe8LpYcXyfMHZV1eMxzmzWYlaSTbbJedv3rK5WPDs5B7BtRACDx40WCSvPv0loV3RhY4Hp6c8fvCEWihev3/Po/unbG7XzGc50dWM5gdkkxnLV1/w+mxHJl7w/PQxE1lyfX1Bv71m+f4Vpw+fMzmeM3OeR8+foEzGZtHw/tUrDg8rHIqX3/4WAsPVInB4eER9fsWXn72h7XqstWy6Deud5+WTR1SVwWtoQsfrr16xWGy4We5YLHco7fi93/sdjg5K3r4/I+Qj9GZHc3vFpDKo6JGqYrm55C9/8RNaZ5kXJTdXN8hxwb1ZzrNPXvDk409o6ppxr9itbpkcz4g5TEcVuc548OiY758e4dYbXv/8PZacNuQUMmc8mfKt71S0XY0UhkcvHhEzz+XrW37w3Y9w3vH5Lz7nOq948vwRT588Ynt5zWbdcnxU8eUXr7i83vJf/OHfJFM5529uCdHy+rPXLLKSWGY8efqQnW25d3qfSs25fHXGRw8fcno4w+iMJ89ecPb+gu3Fks3tiicvvkffbPnZTz/lN7/7nEWzJY5HFPMJv/3sIQ8fH6AKyeuv3hGMA+8JsuTRy6dMbm/Ii4yrtxdY2/LyO884nhRMRxXzk4ew21AYzXKxoe0ajk9mLFcbxqOKvmk5qgruPzyhyKCzGkVg8+4dzc0NmRJI7zidTAheMjmacHCy4uV3npKHjJ/8sx+zOFtzONly7/QBp/dP0XnJzdWW1mXcf/SQqlxg9Jr+5pbWFzSt5WAy4uHpfczJmIuzFV/99BXL5VsEnsIEslxydrXg3mzOQZYTcYzKGVYpvv0bHzGtSs5fneM2Ky4vLzkeH3MyPsbuPOtNPdAcJDY6gjZU5Zj1rqFxPdV4hOxhlI+YHRxiihGt0FydXRHOXqMkrFcLjA/0kxmu7ZBlzs523G63hMtrZkXFOK8oRyXjtkXJAFrje0fsW6gdtmnomwavHdqkjeqLN5eIbc/D2ZhiXmBkJIukiI1NTwC2TZ+GvL0H64i9Y7vdpGhYWh5WY3ZacL56T+cdL46mTMsKkRn6pkP0jv7mFtmmAVNeTpBBcru4pmu2HE4znh0dUuQ5z5484e3VLT/79FPsrmE+mzGrxjgfKLKcm/WStmnofaCTgk5GimmFyjWj2QglIsF6rLdp49h5bGfvHM1SCiQCpQxlaYhNgxsiGKIQ+L3oAIEPiaikC8NoVjCdjmm3LU3CTKXYB5Gc1N5HBJqyyJLAobf44NFKYrROxBeTNrrrugNEEgp4R9O2AzVS4n3EuSQcCI3Dk5PpPAmrpUxRTUoQ+khRFQTv6bsuCUKsR0TwfaCzDUJKTK4YjUuMVvgI2HS/znVGpiJd12Ndj7VD/6JB4Ai2TwIcGCglKcbMuzDQn0QarrIX/SRKShyEHHvHuBICbRR5mRFioOvS+6K1JMsUOpMpZiEKmrbHDtEHWSEoK02WK+IgINoLn2wfcJ3Heo9SkTzPk3grEwi5J2iCt+lcN3WPiCK5xIfYrOAjuETZDBF0psiETGI4LdFGsxc0hJBi5MLw2vbn5M7hzBDnMQwD1BDpJQRDNF563NcxEUloorUCIe7c6omYlIRf+6GKzpLLXymBMWY4Fz6RalSKLPl1rUShGqJfYhJU/atGcTUM3uwQ37Z/XBrwcDcATJ76IR5PiSGGWdzRruzw3EnYnpz1+xiRFDC3p4Gl9YkgRR5+c7DzTXd68IF9WNueqJR+4utBjmK4ltQwLIwp/lFGKPMSHxNNY1pPefTmAYfnh4ReoJROawkph7iaFOeS5nshRT4SB/oOiQQ7iLK89UmAR0DGiM4M1ju8d8QQcNEjvEqkC60Irk9GEx8IPq2RkIK675KoJkasc3ekNBf9QFhKoqvMJHqT1oro4HA2p6wqpNHUbU3dNClKr+2JwaTISR+GuJdA36XoHq010iShmZSJTqG0SiIwkdYW7E0uQqTvwBhZrTdEIiZL148UEqMNu84S+hTJZok0XY/3HiUFUkCW54QYyLVGKU3dNDibxETBR4ieKKHuLHHTMJuUyKnkZrllV7fE4Hl9+opG7siUxuSGvu+IMTKajrHeE21kPpnQ+C1d1yKUxtk+RRkaPUREDtE7QZCXBa21BBdYrJbIrUgRXMJjHRwdHpAZRQiS1W6H2wbqSYP9Ycd2t8NITaELDi/ucf+zY/QiR0SDeA3t4ZZNV9PmPd8KHzH1U7aVpRELcqMxSnK7WeIiKAFd0ya6X5ToGHkwO6ALil3rQTjGownjskBpQ7trEdKQSYHUHmEku9aCU8yKnMxk2M6y2uyYzuecnEwZlYZ227JZ7sgyneh9raC3LZvVmm7bMqsqYkjv83hi8UhWNzdE19FHx2Q8YjKeYoVktd0yHY/pm44i1xAsWVGispxuuWC5sUgxZz6ekglDU+9w/Y5us2I0mZP7giIEJgdTpFT0jWOzWlGVmoDk4OgIkOyaQFmW9Nua5e0K5xPpq3cdnQ0cTKcYo4gSbPSsliuatqNpLE3XI0Xg4aMHVKVmvdkQdYbqemxTkxuJjAEhDW2/4/L2Eud9isjaNYhMUxWK2eGc6eERzloyL+i7hqzKQZEIjVIzmWhOxhWx61hdbQhCYaNKhJ684PDE4JxDCslkPiGqwG7VcHpySAiB25tbamWYzqdMp1PsrqbrHFVlWCxW7OqeZ08fooRmu2qIBFY3KxqtiVozm0/ovWM0GjMdzdkuazKpeHBylIQAOqPvPa6zNH6HEDn3Tkfc3tyCL9G5xAKqzJmFGQcHFUVVsdnUhGgpiwznIuV4TF4kAlWzSyavcpxzcDon0xIxGrPrHJlRdF2XqDGqQZKhEYmkSUwCHBxFkQOabrcl9C7dQ7yjNCVaKoRKZMN8lFOYnN1yx+37JUoFJgdjDsoxVZETXGS766lGU6QCoqRvWkLr2XqPkHAwiLOcENy8X7Dd1ul7XSSSZO88LsJ8VOGFQClFrnOyUc7x0ZzdusZ3HevlglxlZDpDRc2uae8ELRHwArTOiAi2TYOpcsqsSMS4rExiL59iyNrlEpwlCNhtdmA9PiShjouBzlraQeyb6wytDcZ0yJDIlnlmCMGD88ROYtueKJJgRmtFs2uIXlBISTEpkzAjBnKTTIlCCHrn0FKiI0TnESFie4t1DlNoDJFiNGbbbem8ZaJHlFmODVW6N3Q9se1giMWNQlLkJX3X4rxDu8C4LAghcDCbEhBc3tzStA39qOPqoxVn985QpSbYQO9sEqtIiQ0WaTRGKExu0n1vEFpHn6LivEuEobjvARFD36cAn8iCkHq7oVeQAzU9DhFvOtMUZYaIAm/dHWUpsjd9JsG/lEmMu/99DAL2GD0gE3kwBKz1ZMYgjUiC4+F+nkQyIdGMYpLNa6URUgzRtanX8DGgtERpiffdHVGSYe/Uu4FcJRlIRUOsVEhibaVU2o+1A/0zOBiMCFEIYvTfiFf7WtQT96TTuNfe7IXkcZA1xa/FXsMhSSlQeoitdl9TMvfRcKm/EylKzaf1gNIykUh1InXGPXGf1NsFN6xxYkArk6IOVRIHiQF5FGOiW9nekdKwEyFTqmRUQAzk1WFdqI0ixkGQPawJiAJUOh970fT+nLB/vUOPvBcliUG8JYbnTz3t8Nh93zoIpITcC5QGglLYx9Cl45N7sf/QXyYjS4oGZzi3H+rXs2SQnJ4nctL3fvY9jDP/5gd9qP/gFYn82e/92b93gdL/xxJw/uCc8wfnd3+knOI7n36H3//nv8/p5SnaaayxvH38ljZvWc1WfP9n32e6nn4QJn2oD/WhPtRQQQQW8wV/9rt/xo9++COaqvk3P+hDfagP9a+tX3mKUdctBEnwAu9aTKYww2BtvwCz1g6O5WFQs3eLkBbFWikigb7tk/t5yJOfTsc4b1mu1ljv0kJTJWJBiB4fB4dyWmXhfUTLjLzIUVLSdD3O+/2SjigimdTkKgPv6VuLzgzGJFKB8wGjDcbkCWmrNUYlIkMYaAFdm7DURV7Q9j02OlrniNaiZHIsZYUYnL8Cax34iPMRkyWXSnQO19u7jYBqlKOVoWl2adChNS4KCJ5KK5RUZCYjUxIlIChJ2wZs6CilROosbXgj0UJQmQyvFI1zaWBDxBQZsbfAkP8uBG3fkytNvdvQW8jzkiANrZf86Y9+Qt21OGlZbzustxidsdxukTEN66KILJuGXdcyygydF/gAxmhm01EiMXhPlCkqwWidNrlVRhSRalQSheTmZkN00HeRNteMyjG7ZkuQaWC5WK6praVrLEpKul4yqQo0Fus9+IJmV9N3yT3bOIvUgjwvkcqAHERxUSFih+tXZFJxu93Qdi2zcsK4LNk0NT2B05MZu80S3ytU0FzJGxrbpPek7/F9YD6fMy4mROWZjgsWqxXbrWV+MGWz2SBjEqxFrdIwTUi2Xc/19QLCmNW2Zzab0PQ9i6sl81GO0pK3l1fsuobgC0yRMTusKMsKj2BaaPKq5Hq15Xa74Oz9BT/76nO0CLy4f4xvPberGpUVTGZTnr98jF2v4EbRrR1jPeXpy+dcLFY0Xc37r1pmE80nR/e40YL2YETXeU6PNDLPGGWa2AWePnvO4ckMnUtKUVGVhrdv39AtJ2zXK/o20aR2zTVPHs75G3/zezwYP+Lycom6admsdtTrBd/5+AlWQnzYIEWk14J2Zym1RmqDqyQSy2x+SHANy8tLjl9+gu0d0vdMCsUvfvoV3u64vHyHMBWPnh1z/9kLcIE8yzkYjzmZHfD68j2NMpwtb5iP4AcfvUAHx/XNBV5P+Xx5xfW7Mz56eIrMFBc3KyZlTr9dEBZL3v35lnI0ojvIOAmRB097fvbzT5keHoAIjEYTXJ/cgqHbosYjDkZzlOiIruHTn5/z/v0Vm+aWalpys2n52S8+5f6Tjzk9PGUyucfVxY4Xz09498Ur3r56izKal0cHabPL5NhtR2kFF7c7ljsHmUG0ku3Zktgnusz52wWjgyPKsmAWBExzut2WRbNmUW/h7D1d2+Fjhhfw+OOH5KHl2ZMHkN9we7Wi0hlSeta7hucvn+FDx9X6lk++9ZBXn72jvlrwJxd/jNCBMs/4/NOvMPmUR4/uc/LomKrIuPCBYjylub3i8y8/5/ThMUdHj7i8XjLRJc9Ojnnw4B5VNUfFnvmjGf1qS1evyUyOcjPWu46zqwtCFvmDj/+QaZHz7q/O+Muffk5p4OnpMT9780sUSZxzebFlO25ZXt/y9NERzaahHI+JG8e7txf8xcUFMfZM5lPOXr/m7N07fuv3/w7fkjmFHzGrDum7QC+gD1vyPCB6z9mX18yOjihnJUTN+/c3TOc5s8cTmgVc3t4yLU84rHKk8yzf7XC14+LyGqlhNhlR91sc4HyDb1doMYM84/69I6oip35/jS0mvDtb8vB4RFHmXN9u+OzyFhkj02mBb2t0VjCfTejrlmlheHh6zPvFDVWRM9GCXdPx2S8vuL29ZtOuCbGjDUkA9u5sQT3a4Q82zA4O2HU1X912RJ2x3HSc3n9IWZbMokd4y/n5BVkx5vHpQ24Wt/z8l5/x+PSULM+YjUCLnO1yx1ebhourGzZdx4gJ2bTi8OiAODvgNz45pvrpX/H5l2eYsuLtq3csdw3rdoe3jvnYcGwszeY9Lz9+yg++94DPf/GKm9WGvKyoqglVNuWrz1+xWdxQjnLuH03ZbVa8u92ycRuE7LB9j9/C+fqK5W1DMarQKkeZEu8tu2aHdxEZk9xg0ze03uELgc5ycpEToiPTgq7r0sA6+OS6DiFFOQ09CxEsAaEseWaSq1sMkbO9AzmITkJAKomuFEfHMw6mE1zXs+lsir0dRBdxIAsiIn3X0ey2lOMSBuGKdwFlFHlmiDLStT22T4PrPUFE6wzr+iRKMZAXSWAQ8UnIoyXepiiGRH4aBhY+bUIXxuBCZN12+D5FyEkl0vAoqTyQOsXAIFJEbFnlBJ028a2T+BAJwaO1RpkMNdh5g09OZjm4p80Qv9Q1Pbbzia40OKkD6XzsXbyCeNfLda296yGVUozGBXmRDSQd2G1qus6CTKL08UhiCpXc4NYTPHdUzWAjKUFX4KzDhSTSKJQh0wIpv96YN0bQq0GYwNe/Pzm0w/DPiJIKk+3FIYPwij1tKQ02go93W3V7QdKe2pPOcwrWSAMrcTc0cS4MMW+JjpPET+mZUlRZiq2SMtGmhEqvlZgc5XIfpxEjfnDzG2OSO1r9+m4eOuuSCz6QCF5K3JGskggpDoKr/WBmGLzcDevEHSXIeT+Qk9KaosgzQvC0XTeIn8RAuop3kSQxRvDpjKfPqULrRBizzhNiSO9nQhyghEQJBSEkOs7Qr7t9jJhM4h+EuIv4QCRnc4zJie99TGIV71BW8/jLpzx4/wDjVTp+HVN8zCBOI6bIGLV39w/xfvsBVmZU+tzb/k6k00Eapom96CcRaiWABOdS/JEWKUrF7weGpAjvKFNsIYMILA0mhytTJlqY8x49/F4fIloZECma6uz8AuscXoQU6xM9Uira3g6f+fR+ttbSe4dREiGSiEtKSVEkikcajAnUcPzeA0KBSOuOKARN3Q+xOYmAkemM3vUMmXG0bZdoIC5F7ngvyI1Gxv1QV+BsTxjoWy4MA0StEzVBpvdBxCS6DKFDIdjEjov5BVomEWVvLZ7IeJRj+47gBTJKalHjvEufa++IIVIUJUZlYGISoHQphrIoM/q+SwJFJYgyRYqDpPc+rb/LjLb3FHmGDZ5211JkGikFm13N9HLGk588QSuNyeRdLN5RU9E72G16ooncdLdcLZOw4GA0IrhA01mE0uR5zvxwiu9aaAS+CxiZMzuYs226FGG63FJkgsNqRC3BlRneB8aVBKXJlAQXmc3nlKMcqQVaGIxWbNZrXJvTd226bytJb3fMpjmPHp4wzqfs6gbZWPrW0vctx4fTdA4nUwTgZRL8GSmTMcmIJBgvRsTgaHZbqoOj9J0cArmW3FyuiKFnt9sgpGEyLxnNDhDDd36ZVYzyktVui5WSbVtTZhX3DudIQjLuyJxFW1OvNxxMRkgl2TYdmdH4viG2LevzHmMMvlSMYmQ8C1xfXZNXBRAxJruLcQ1dh8gyiixH4onBcX21ZbPd0bsWk2nqznF1c81odsioPCTPxuy2PQfzEevFivVyg1SCg7IYYkEVvneYANvG0tpAVBLhJP2mBe/o2prtpiErKrTW5FFArnF9T2M7WtvDZpvEFyiCgOnBBIVjPh0jVEOz6zAyEco6a5kfzgjBs+saDg8nrG43uLrlvD2jtz1VVbC8qQlCUpYV09mYoshT3JE2IGC9WuFD4Lg6IpOSaLfMqpKD6QSTlyjAVAVaK7ztEMLQt+B8ZLPbsa43TE+fMD6a0axqrq4WLNcrTmYTmtiz3jUcH0xRKtD0FmLEyERQiQLyLGOzaVncLrFdQ1ak3vHd23eMN8c8y0eEDopxmSI0afDBYbK099JtOoKFYiTJ8pLtZks1LjCVRhYjms0GAozyEq0U/a4Hk1HvGqztMUbfCXVc9ARvEb5CREGR58ymE+q6oVk3bNYNWgmKomBVN/S9peldElqLdO/IcoP3BkJkOirpraIPgVlZ0LYd203DerVjs9skkQMeGwJtW7OtW4RzGKMpioL1eoMHFBEXJf8v9v7zWZIsTfPDfke5CA91derMUl3d1dMjd7BidoAlF+Aav8Gwfydh/MAvSwPAIUAud0f2tKiuLpk686q4IV0dxQ/H42YNANLGaGvsnkG+1mVddUVcDw+P8Pec93l+z2xS4XcN47Kk3m3pes94VNH3HevNBp1llNpgcAipEQjWm0QZ3exqdJ6hMkNeZsS8YDKdUOY7Li8X1C5Q+MjOORr7TmBa6QiuQWeGDx7eYXmzpO8sSoMyhrwocW2KgdaGFINKYNu3tK4jCAtR43pP17S0dc+oqiDC2weXPPvgW8QoCe2NNaQWIUXMeQloSWYyYkz9f4whEU4Hqs6e1Lj/hyiIMsW6CSHQOhFzIoNA/VZwFIe4NcgKQzUqkULQNl2iLzEwmQbxDiKRQ63th2jWpIhPjxUSxXToIbxPPUMf031TSkUMHiHi0B8kQXC6vw89Y4C9EDyEodMdjjP1EsM1atPa6ZY8tNfjyD3FM9wK85WQt/G++8eVUtxGyKY1EbeKo7QHnPZWwxDFFwZjyL4/TgKloe+Wg1goBLwH8b0oYW0UWZ6oiknkPKyTYqKlZplEmyTq8X5YTwy/GyODcJnbnjR4j4wiEaPE8LeDeBdXd0uHSudR3Krv918bzvXwPXH7nXArborDj7/73fRY3/8/9i89e7GS/J5Q6d01I8Q7GYEcBOZiECHFoS8U8Z25Qg5i8H0PKmUKjPt+7N77+i2pCKN6xJ/+T3/KH/zNH5D3+XvRyD+g6rOeX//g1791pI0Pv/2Q/+b/9N+gorr9Wt7nfPTtR7diyffX2ft6X+/rfb2rIAJ/9Yd/xZ/9qz9jV+1+6z7X39f7+odWf2+RkvMhDYJ8iiuIIeLs4A43DG7hQN/3xABKJnKQlGpwcUhynSgDpPlZigvxKm024/HB45zD6LRJrZQkDItYFeWQMiKZVNUwGErun0BITp4B+auUQAuBUZoY/EB6StEIEXe7odC2HU4mLK/XEecdPgaM0bjg0YUhLwo8KXdcMGyO5prMKLSBTGcYJVEq0tuevuvpOst4ckBhcnIj6eyAQdaCPnQ0rqZvLFUxwsSIDY7eQuYseZbhbTqOGCJaJ0xzU9foXKFMjhgGF1GCipBJQzSS3CjyTNLWDev1Fr3PtJcCk0ts6HBeYChobM3PPv8CjKIc5SgcAUf0gaavKRSMJmN2tWNTNwg1vMY+RVkVZcnh/CA5g5Wks5bZrMRIUDFw02wgCIxS5HlGHyyjcUnoAs5aOhuYVpJRkchVdWfprCNYxyjLiApa27FuJCM0CM3b66u0wRKS6KvIc8pRwXg8xuQ53rVc3ux4eXUOscOIQN13dN4xGU/TxqCzWOGRheZmW6Px5CLH+sDLxQVRRrL5CFUotqs1tt6w6zu0EVjfsl5v8UHx+s0VRhlCIQgioJC0tmUynmCVYxc7jtQhItd89/IZ1llWy5anr1ucBiEztpuW7XrB9HiGMRljKZDKIPMM7WrOTg19F4mlpastQhW8Or9GBEE5LpnPS6Z5QbO84dl3z8EGnND89//+Z9x/vuDksKLHU29aPvrgGL/qEF2NbXuK6YyTaUXfh0ToMoK31zfUvufm+pqJyBG7Dfc++ohyPGV2fMCr1xdYVRLDhJNixMcPPmZ5s+HotOSnP/2aX3/+DKLjarng40+e4KUGnaFMRqwvePX6Oad37vPBozOePn9F3dU8f/MSFSL59YpdNkMHwfXiBV6PaJsNm901mWhYXebcf/SA+8dT/NNnyJCz9oqjkyfc1YKmvmZBz/zomG6z5er8msePC65eXUJpyCcZ27rl5OyAz3/5SxovWaxa+rrms9/5lGhgZHKyYsyf/Bf/kkcf3Gd9ec2Lr1+yWV9RGEMuLTc3rxgdHWJUxvmz19xc31C3HYdHB9x/cEZelTRG8uTxDxiXU6IsuHj5lrevz9lub7i4vuLszh3EaoOi4cnRHWTwPPvyBX274879O1iTsViv6FZbVpsb5kcV9z/9kNNHd9hdnvPrX3zLBx/e4+DohH6jOThxyGD4/OuvUDLn0x/+kCrX/PwvvyXEyJOPn1DInPNXbzi8c8LZ3VNefPM1bVD8y3/5z1Ftx2FW8Wf/8a+4uLrhs598xnm/wR+NMQ7GpcE1jk30zMdHtP2WvCr4gz/+Hbb9mjdPW375019gbcMP/+hHrHeeL376V3z0+Iyj0xkmwoPTCXUb8OUxb79+yac//jE+WNrLmtndCcvesgmef/8ffsbjk2PyoxkiBrrul5weHpBl0LLjy6+vuHvvjB/+0R/y9fVTXO+JSjEqK37w8RPuTHO++PVTltdv+PlPL+m2Ldcvr6hmM370o4+Ifsfleser66/QZkRxdYMQkc1yxZ37cx5/+JhyWrJ8u+SbX37D8mZLfucBs0cnLL5+DR7+4Mc/4NXFa9a7HYfzKcdHh3jnWW52bG466AO0nnsP7tK3kVXznJtmgWsVm+WWXAhitPR9pO0VuVKI4Mn1hOOzM1rbcbXd0VgwXuClZLOu0aZlNi2Yzyc8ffaKjYOqqLh/NqN08Ob6msuuB6HxQnB6dorWCqUBCQfTI3KjOF+3iKLAEZkUBUILXl+8pmsbylLRbJd0O0tW5DSdRY5yDquKyWTO4fSQiZnQbHqMUoyPDtPw21om04oYLasQGGWS9cVrFtsNo4OKcfmQ+3fOuLipuby5YbFeczI7ovEdLxfnPC7vUkV4/faKy+UNshQ8Ojlkt+3YdQ5TZTRtTbQ9pRC4LCOGjqbvsH1guV7jZcSbCIUkCxKsxQjBdtdzU9f4GHDBI3zadA8CfHTs1QhRioFWk5zLe9GC92nDW0iJlhpHcqNOJxUH8ym+86xvtjR1lwYWhCHeaS98kRijyYxGhaGXGiiDfd+nDXvF34lS29U1bddRjgrMILD2waK0IMskKeYqrYCEELRNg3WJoKNV2ojXOkXbNrtNiiZzSfRdjnLyUYbJDUVZJAd2COQyQ5Kc0c6lnicOO+XeB6JNMa/GKJSW9L0j9hahBHluyAo1RHfB1jVDfFsS+ci923cw8UohB9GSwDvSLjmJJAPQ2z6RGI1CGkkeNTGDEBxtl8gaSiU6pneJymOKdJ5s16b+FIuIEtd7mnUkVBqpIwJJcGmYobS8FSYoJQcylL+NBwOQKt5u4McoUuTDYPG+pVw5x37I8G5wwO0UIcYh3m1wdguR4vpEtHgX3tmlRYoXcyEgbBKKaasxxiAH8YRQKTDCR4+IDinN4H7XSC1vj+u3eYHswyBYGQg5aRi0d8PvXdtxcHKnn4F3DnWBSIKevZs+CoSSECXOpvfR/v2X3ov+1rkvh4HMfvaTZTlpwhaGL33Pyc9wTCTBTIzh9vW9jehIP4x3Lj2+0ET5ztkuh+tKaolWmlE94tPPP6VYVwQXQcsk0pJpbZUGXXEQUyaxX5YVKQ5NynRtkM6Tjx4XLN56MjO8f2PAE1AhERCi9/j98xkiPpy1t9QpEVMUCklPmeIetUCr9Jyds3Rdf3tcUSRxXoiOEARRgfWWt1dX6TPSKCSBiIcQcc6iJZgso7cB62wajEkxrBEkWhvKokjvDSkSRSY3pMs4Ym0HMQ1VjVJ4PCbTRJcElC5EcpnoQ0oprE+f9TEEjEriJhdSXLkhUcq2Tc2QgQMxGWOM0WRZNkQEOuqmZ1NviSTqSu8969EGP0sCQR8HWoOWNL1FElEofIism5ooIrowCC3oux5vO4x3SAkhOrquJ0TJZlOnz0QdiSKRFZ0PKQ5UBnocI1kilORms8IHT9c4bjaeKGMSiTWBer0lr3KkVOSkdTcqQwTLuJJJwGlCEqxKzXpXIyLozFAUhlxpbNOyWq7SUBnJdy/OmawaqtLgidjecTgfETqHcI7gPTrLqaokVgou4hVsmwYbPW1dkwmF6HsmBwdJPDwq2Gx2aY1AzkgbDqaHdG3PqDK8fbPg6mqJiIG6qTk8mhORINM9BrtjvVkxHk+Zz8aDwcmy2qwTRazp6FWHiNA0K4I0ONvT9TUaQ7tTTGdTpqOMsFwhoqILgnI0YywFzjbU0VOMSlzXU28bZnNDvanBKHSu6a2jGhdcXlxgg6TpHN5aTk6PiEpgpEYZycMnj5jNJ3R1w2qxputqtJKoGGjbNbosUVKxXa5pmxbnHGWZ6IzKaJwSzGdHZDoHqdittmw3O/q+ZdfUjMcV265H4piXY0SMLK/XBNdTTccEqWi6Ftf1dF1LMTJMjw6pZmNsveXq4oaDgwnFqMJ3ksIGRJRcLhYIqTg+OsZoycXrG2KE+dEMjWa32VKMRxxPDljdLIgEHj16gHSeUhmevnqTxHPTKSJ6+kyQ6QyBxyhNW1uMySm0wPY1J3dOCNGz3G1ZLRsWl295+MET0BlX59foGLj3+A4QGZfZYPQqWW4biqpiPJshHPguEoSi8Y7r9ZbrqxvmR3N65xE3azLdMJuPqbueTWNp2w13Hz3C2oCzu0RsU4rJpKI0Uy64wPmexdUVzXZLVVYYk1HNKu4+OGO93nBxtUBKjagzzNrQth3GQF5UTOaztD4Qku1mh7NQnh7S1C27Tc3xwZyub1hvt/gomB8csttt2WxrVtsdvvXYtkcGUDpL1CrfAQFhHSJEjIa+t0iVAQGjUn9VVRV129IM9G2kTqa/EHBtS5FrJlWFs56F3+KEYlQU6BDpbM+2b8m8p7eeUTVKghOdbhRKaWaTGZ11CBxhEECM8ozGWW7qHUonYtW23zFsxGFDEjQWeUGW5ZTZCG+TCMbkGdGkHlppRSESoVtrRegamqZBFwWTfkJVlGgV2OxabNtSudSvbvoGE+B4VLHb1mzrhj46xlWBiJGubUGnm3jX1KwObnjx6bPUL/rUG/SNw0dPlOn+JoVE+IgCvIe+7RJpZ0/JvG1n4jvhjAiDsFYMfXDaa9yTF/fC3CTITeuNUVkk2mrT07dpbXDbGg6/m+79SbyrhMAP4n+lZDqelJWWjmf4W967RG/ViQKUIm33sc37nnXgQ4q0t2q9BRiidFP/oLTCDUaKffydUoIs08m4YTRCyoE2qW7pmH4wq+5F6JCoQjEmUb6WKvU8Lgz3YoE28nYdFWMkWn8bAZuENe+EW+JWqDWIrAYB2J5SFAaxl1Sp31dKIIRKfZv3CWKkhucfkwFD7M2y/l00dBCBGBgoTLBPhx28K0P/OkQQS5m+tY8Z5p2BgcHcO3SYt68xA+mTYS873gqV/teb+XffZ4iSE4nWNRhJGH41EAdvjEMM4t4kVhLvxEoiRRHKlDWchEzye3/jt3g98b/FEkFwfHXMv/1v/y1n52fvRSP/AOvi9ILro+vf9GH8L8pY83cESt+v99fZ+3pf7+t9/S/ruw++49/9m3+HM+43fSjv6339o6i/t0hpL9JRWiWBTPR4n9xB+8gNqUCpjDBEJXjnU0MjBAqIPjmzEqJYDi4bIPqEm5UpB9s6h5KgTIYmbdZKJZFxWLTuB0neJRHUsBgXMblv8txQ6CwNPkjOHhfDkDmv6bo2LeSkQOcFvXN475FKIdAomWHyjCxT5EYnkkFM8TC+8wQpIdOUWQEhuazBU2SG6GHXWPrOU5YqiXTKEVJE2nqHlDLhrIuMIlP0tk20Bg9GghGKuu/wwaOUIssEwgu892hlUHmOt55IiqJb7rYEnVPGnL5vaHY2obMB27cgIFcGKSR1B1rmycUZO3ovyDOFculcVGWJygJeJpFX07c0bU9RFBgXyUSOjzlaCiZlSbSOCGSjknwYogXbEF1DVeb0XiICFKZAR0Pd3OBdwiEXZYZ1LZlSKb7AgXc9o1HGtCjItUBmhtbtBW8e5/rkWnb+NrotOkdf74i2xxQpOrDeNXR1jRaQj9PghujZ9R0yr8iNpnWWrQ9Mco2PPUIb8kIxykZ4C9koZycD22YNrkR0sGq2uN6R6YKu95SFpvc11C0mK8AYyvkB+l7O5etLvrm84vDOGYvFinlZ0fdr1m3LaDrl/v37bG5uEMstp7MZWsPNouPe3Smz0ZjjgylFKXn9Zg2HM+60gePZEYt1TSkVWkWmp6f8+ounbJsa23uwltY1iNCTNSM+OLmD6DyjbMTjT5/w6tkznv3yJW0XGFmJyXNen6+43jaYKKC/oVms0FpxHnYsX12x1hkP7ziub9ZU1YQoOyZ5zvLlFY1rOTo9Slj0bsv8MKNvNX2UlOUh80PD8+cv+OWvfs1ueY50DjM95N7hR5z1gqvrC6r5jOXFmldv3nL1+hrvW8azKa1r+frbp5RSIIoeGWra9YKvl0ui1pSjgqOjY6azkrEWePmA8qhCSsnVs2f0u557k5Lqsw8RZ4c8/fzXLK7W5JniZrXlyac/ROcZN+sd102N6CwHR4ccVEfcvX+IziNhDEK/JcZAZQx5bqjZcjotyIuSr778irIUHNy9g4sC1/bkZsTJ9C73jg65rC2X6xsODgsCOfODFAfx5MmHaBP51c+/5PI//BUff/AYUxieX77h49HHrK+v06Zo7nh4cMT8ZI4h4/LlJV99+UteXi259/g+q3XNt9++4Om339HbjIcPD/jkB4+p8ozvPv+WN2+uuXvvhKsXF9x5eJ9N3/CL//t/5P79+5R5xAjornu63ZogIh//4EM++6HgzscfMjqdY6Sg36y4enXNf/h//RVSj/gv//RPqJzkVQz8+KP7fPP1C1bBMakU84MTfvzjh+zqlubqNTfLG77+5VdkwXJ29w6TowlFVtB5xUgalILl6oaLv/4l692a01nBB588ACIu1EyLOXXbcnl9wa5fk5dT5rNTXl0uyJ695cGTR5w9OeK7p8/o2sDZ3YeczY8wxSHXVxe0m7SZ+N2Lp7RfRz75+AFZNuWnP/+CRw/P+ODJAU1T8+zpKw7vnBIEvHxxzeHsgC9/9ZQ3Ly8RhUSUgp//4lvW55cQPQ8Ox3zw6B5PL885f3uJ3+wYxcBytUYVI1y95ekbjxgpcqm5uj5nY1tcNmbTdQQsse8JEbbrik4G8kxig+DRg3tcvb3mxctLnAjMihFkGZNCcb64wMQJ0czJpwf8sz+cslutaduW68sriumYmGfMqhneWnb1lth6vu0aJtNDbB/Y7TbsNi3G5NgiZ7uuefXmAlTk8cMHHM9mPH/5hhsWSOUpI2zaHU2z5Xg+o1ksubp4hQWi7Ng0NYfHMx49eIh0Hjs/4G3dgNvydrnh+U3D6HrN2Zmn9pH1rqaaTzmYVYwzxaPsFF14dostP392zcX1BVZs+PjkLj++e4fvXl9w5TfMZ3O0kJyfXyGUShF61xs65/Aeuuggpn6gyMu0HS4EhSkQhaBd3DB0ISgliN4RJWRlgXaRvuvJKkNZlInO0XtsH/DO4UIiq3jvUSp9DkhtqPIR3dax3e5wXqJUjlZJIGCMQogUM6K1pCxzRmWBiII+eDrbE7MU9aZUInLkxhBJkbDWDVQcLQh4dJahoxw23yW2tzhnUSYwKkqEsGS5wuQawX7jPaIyRV4VdDYiZI9zERcCuRSUo5xRladYJSUIfcB2lmaX4n6ETBEPJkowSZjug8PkGeUoh228dWXvd7GFTLFk39/8DjHFpAmtiIEUbTGQNpNYJB2rVIoQoG36IcosCYClAp2Joe8TWCuxziFkRAoFPomy6EHLJOqOARIHIjnGfe/oZUCZIWLCD67zYZjXNi1qGLIkB/G73jfFICgQ4Xub//sIshQbrAZ3dyIx7X8RGBiXsCf2iFsaE0M/nSIzBnrTPvph/zsxieTAIUJAajVQQDVKD33hIMzwITm6b0dlg8jqt7MGN+YQwcUw8LslHoUUHyJlirpjIAmlLdIUXUFMBLFEdE2iLLGfFg5CMCnlEJkHCJUivUhk1+GKHV7HgYj0/dwR0mNolYhWSQ+V/k4cfkaKNPANIYl3hDLDAC9dNwyEJ60lRcj56PmHHL8+xliN8zFdhyIglEYrnR5zOEat0vvFuhQNl0gIgtzkCJGERkKk609qjVYC7y0gb8+lRKZ4S9LwSUsxiLrCMKzSxGGIJkiEoygVRqoUJccwGIwQfNp4UTKJA60fBFkxEgfBkpISGdJnrzEGoQZRk0g03CSe1MgYUWhiTALGzGiiH2JFhEEPbv8YHDEk40qI6di10igUzjbsY/u0TlQoJSRtP0SQhvQ5nGuDloBWpEspEXnDELeWnr9I0ZIh4G0PQQ1kGrCtw9keKVI85T6DpneOPE/ENxc8fYjkWhLxCKnQWiQjgxcoo+np6F0HIhG3Otulz3+p8TLFXHrf4fuI1CYJvvKSaqzYbXcsdjXleEzTdBTG4ENH5xwmz5lOJshl+uyv8gIpoWkck8mIwmRURY42sN70iFGKpBrlI9rODtStSD6uuLpa0lub3nPB44KD4FGu4aAagwsYZZgdz9ksl6zWG6yLGA9SK7bbjtraFLXuW1zdIpVkF3qaTUMnFVMfaNoeYzIQjkwp2nWNC46yKok+4n1PWSi8V3gkRpeUpWK5WnN5fk3fbhMFKR8xLg8Ze9jVO0xR0O061pst9aYmBkeW57jgWCxv0AgwHhEtrmtYtC3IJCIuyxF5kaLropiiRxlCCOrlEm89k1xjjg8Q44Ll5TVN3aGVoOmSOUJqTdP2NNaCDxRlSZGNGE8KlIboBEJuiUSMTBREGyVVrtHacH29QGsoJpNEcXEeJTVVNmZSluxsYNe2lCNNRFOUOUoJ5vMDpIKr8ytev3rN4XyO1JLlbsuRPqDv6vSZqSKzWUleFSgU9XrH9fUF67plOp/QdT03NyuWN0u8V0ynBUdHc4xWLC9TJNl4UlGvasbTCZ23nD97xXQyQWuSgKMJdH1HFHB4dMDR0QHFqGR0OE8igOBoNjuuLhcsFhsePnjAQVVw03hm0xG+67jedmgNo1HGnTsHjGcjXNfQrrfcLNJrmOeaohojlSbqHNtZMqWwruf6ckFvLZmC+bSitRYX7HBvFtTNDqkjIQrG4zHNbsfF9ZKjg0PuPThju9uwWmuq8YxxmQGa7W5Ht9sCsGt2dMsVo3rHdDJiuWqw3nHn5BClBavlCh+hrCZstzVaF2zWG9Y3W+q25uTemOVmx/ZmTXCW0mimVUlUsN5sWF4t0v5H8HRdiund7nowgmk1pu1qmr5BKkN0ARscqrcE57AiCVijgigk03zOtChZbWoaZ6nKgmACmVbYpqVre7KsxCE5PT3Bdx0hRnabLWK476nMUJkMHzy+dYS2I/QW7yUxOuqmg0EA7IRKAnvbMh6NmM+mNE3DlpoQLIqI9Y6+76jKEuE9m6sbehsQMsWrSS2Yz6YoIVBRsG1LbHD4Dtb9Fh16DvokmG97S5SC0aiiKjKstRyqGe12x9XFgrqp6V1LXiqOx2OC8yzcDiElVTliu9myLbaoHEQn6AbTQCAJgCWkeFSRhOFSpB7RDdFlRBDynYhDKJnunc6DjGSZuRXJxJCEsnvRSrqvikEck0yUIkjark/0JalTDxQH8tFwT4YkqMkyM/SviQIYY+pz9vRPqQRGJ6OiG4QrSu2NDYNJNIZbAk/wnojHmOy2T5VaDtG5A89JSpRRqEwDngTtSt2s0hKT6SSKkSA9BOeHCLzUT0kpiGoQzzI8rgBt9C0JKsbvKWLEO6H4vh+LQ9+2J4jG4RiGbm4QVA2KoShuTQBiOFcDlDTR6kMkBomzKbZvH7sWIjAQsPYQpD1Rat++eutv+849aWl/jCmC2n+PzBq/9/29qGr/uO/6YeKeivTu+X6fyspAX4px/5q8E2jtz28IQyxeTH2Y4N3f2y9f9pSkJPxWA2FJEEJ6/EQK+74I6p2o/339hitC2ZT86f/0p/zez36Pqq5+00f0vv5/rChS8sf7el/v6329r3+4FYlcH12/Fyi9r/f1n7D+3iIlBsfLPsJNKpXQwUMkGzEtcOJAKRBDNrgbYke0zlCZApNczWn/PuDw2N4PYqK0E+BDAOTtpnccHDtxWOyFzg6LfI8gDFj35PLJMoMUau9lGhzxySGSstKHwZJKhKdAwLu04EdInLU4kVyyOYK+726zxG82G7TIUL0gyxRlLvGhT5uPIrl/c63IZgUiGrTRbLuezIExDAMGjQoFQiqarseKSIzJWRi8ZddCDwipmIzHSWDkO3adpGktuRGIaJFAF0BqAzENK7ywbNqa6AOlKVIOvQTXe0IfMdownUzo+pZSS6LW9DhcvWU2nXN4MME1W8qq5Ga9ZX3TYaMgN4rKjNHjKa0PKCnpfWBXNxQqIwbIioy2bun7FiVTfIbteiSC1WaLlJFMD+IsU9A6y6LZ4lqHG7DPSkgmWcnhdILJNV30SAvaGKSMtL2l7rtB1AZOwbpuOcxKOueQm5YQAv3O4q3FTKegNR6L9TZF5ai0IdLVO1rfI0JGOTlEG40uFf3OUm8dWezxztLUHTHz5HkaUgoDOpO0doeNAtfWFGgwhroWLBtHUVW03tLVNd2biPIWHwRHB3NOqzMOZ3MenN3lOykxNvAv/uAnXC+uePFyjfGO4yqjjZJ21XMyO0Zow6JfoPue4zLj8eN7ZOOCz799w/Vyna5tCZ2IUFb8/o9+wB/++FPGRvP69Ru+/O41h1+XrHY1tY80uw2SDDeLeKGwznN9sSCbeP70P/9DvvrVNwStePj4EceHFX/5+d/QN5GDyQFlppjNKlxTMz87ABH46suXlNmIG3/FyeyIjz/6kPW6ZsKIe/fP+PO//SnLmyWffvwRo2pMvWm5vLigrXfcPThhcpgznZe8ePmCKBxlYRDNjp1vOT56wKcfPQadZkMH8xm7ruft+TXT0YTizpS+blivdzgn0QaOT+5wUM55e36BzjLGLfiQ8cGHj5mNMiop+b0/+X1evLnkkx884PmXL/j4h59wcDTn1ddvsXXH3/75l7x8s+ThB3eRfUtXN9xcL9luWn7yyZjxrODJh2d89avnPPrgiJ21/Pqr59Sbb4nCsNjU6Krkhw9OaOqOpklxL+FmzfObn2LmM+4/usfnn3/Bq5cXHBxOuHfnPqNCo+SIy6sV9z86Jsty8qJgc7nlP/7lzyinJX/8T/+I3a7hSPYo1/Pq1UvWnUCKDcfjMe2h5O3bc2RwPH36lKPTOxw8OOXhozs0uy1N13O1WhF2O148veCHnzzkuxdPKcYVD++ecDguyQpD1waK8ZzHn8y5vtogvGC3Pufm5prVesU3u5oXb1Z8+ge/w+E4Y7XaEr3g4HDC3Y/u8/K7a16+WfPZjx4Sx3NePH3L1aqGecWmXXPnaMbx0QFvVjVFjDRK8sNPPmFcajaXb3l1sQSZ8fbNgmpV8MMfzTECPrh3lzuHJRcXr4gRPnh0n7/4q694+WLBWLhEVisUN1crmqsF0/mYvPC8Pb9mdnTAT/7gM45nY3LpCVjufnyGQJFFxU//n3/Lru8RClzXczo5ILqWum646Rrm4xF/+ctfEzBMxgZDxtO3FxQaVtsVc2XJRxmjcSLelfMpVbNDrC02OpbtmnmR8eSjBxyfzNgtWl6/WTI7nqDzCev1mr5vOTk6IKsKXn/3gm/rlscPTiiqCW8XPVavOTmeE5sdrXW8vLwCoXl0dEAcaezWs1pvMWXGZFzSdz1fffM1u6ZGaYUpJ/R9S1WVrFWGKqfgWrp1DdWU+6cnlCaw3C2ZzKfIZc3rl2/pNi2jIuPV87c0Dk7OZmQGTpkifaDe7qjGc37v8UNu3rwl9Jrp8T0KEfCNZ3G1obaWe+NTTJaBlsxNYPLoEc/FJYgVUXpWDcTG8ezbt7RCUI1nbHYt3ks6JFoonHMQJdtdm+KJNCgdUTbS7VqEF3RNR6ctWZYjlcJal0TTSuHoiSpQZjl9bZGqYHpQUWQlfdPT0WJtDyTHbmY0fW+JRIoyxX0472nq5FA3OrmkU5SXSjQRKW/F14XJ6Jqe3aajafshPk3dun37UUE1zphORkwZ0TQtJs9QWrLe7uitS7FIw7BAaY02iVqiNRiTDy7YdG6888ghXiLLDNU4ECo9EF88ygwCJJNEFcQU19t3Duc9LoY0BNESIZI7PxAQPuEblRaU4xwGsUQUQ9yaTwQZpEiCGyJSJ9HQPkogyhRXEYUAkTiYSiXaY1ZosjwRKJIgyxMG4U2I8TaGy9n9vMAhSP1h6DyYFGWXXjcIIoUmhaFPTIElEIInkg4qhHROghv6WAYRlQChBVKLNNGI+81/bgUTkWSWL7N8ONcZve2SgEQq9pFmaXDhh1iPJApIgiKIJvFAhUvHLAfn/W3Eh4ygQOpE0FRaDpQvPbjxkxEguuSW99YPcWq/zSIlYBjGxGH4JcXeGR+HlLU9pWgQH0mRxCcxGQOESk7wOExS9kF8Luwj4ZK7PQwDLBkH4VDcx8il8+99uB1ABfbX1WCaGEiwtxUjPr6jpYn98cn9YC0SAhg9EBRCQBA5XB/wo6efMt5Wt1Sttu+QaOSw5tFafC+uQ6SvSYnKNQKFUILee1RIFCUBScyjU5yO8x4vgMENH4PHusjg+SfLsvTzwWO9wLow0KiSmcRFBtJSGN57gc7bRLhQeiAECKJPkXdKpsf03mGkIEqJF57W9hR5QVlkBGvRmabteromrfOUEhTkyAzc/r0RAtY6tFQoFRNBxjr8IEZMppeAiNB1fRIoykSCKjKdYopsn97He+GWgFwbyiKJOVyMyJAGcGJ43a1vhxc8EmSktw6lCroQkN4RYsTbQPQBkecwxPX44NFG3g70fNdjg0egGGVlMtUMUZy2Dyg8MfhE+VLhluAmVIrltr7HI9L5EhIRA9ZC6wI6M4l8Yh1us0XGNHAeFQWV0ZRFwXQ8QV8byrLk4d1T6rpmvelQITLKFC6C6wJVMUJISe0bpPeURjGfTVCZ5vJmQ9OmiMRhKQ7acOfkiLsnx+RSst5uuF5uKBeGrrfYELF9h0ASCwhCEnykqWtUFnn0+C6LqwVBSGbzKaMy4/XlW7yDIiswg6koOktRJXHx9fU6RQjGmlFecnh4QNcnQ8xkWvHq7Ru6puXo6BBjMlzn2O12ieZYjsiDIi8Mq/UKREAbCTbQB8+omnB0OL+NuCmKAus8211DbnK0zvHW0fWePKQIptFoTKELtrtdigdyEKPi4GBObiRGSM4e3mG9rTk6mrC8XnN0fERRFqwXW4L1nL+6Zr1tmc0nCG/x1tE0LbbzlEc5ptAczMdcXy2ZH5T0wXN9vaLvFiAUTe8QmeZ4OkpxRQN5JrYdq/YtssiZzCZcXl6zXu8oy4zJeDKIpTPqpmVyMEq9iTZ0dc/L1+fo3HDv/iG9dZQEZPBs1mtaD4IRVZbhRoLtdgsxsrxZUlZjymnFdDbG2R7nPHXXEfue9XLL8eGMm/USnWXMqhF5ZsiNJEaBQzKdz4d7ukDLwGqzpO1arO2o6w5dlty/N+cNAaJES8XsYIJznl3tKQrFdDKlrns2qxUhM4kC4izVuBzMZD0Ez2w65dAosB2bzZbOduADN1crDo7mqOipyoJqUhJCx/q6YX4woa471usG5SH4wHQ2Y7vZ0LU9gkA1Luj7nl2jODo5ou97qqqkbVvG85K2t2il2C1rLl5fE+VwM5IRJSPBOpquxxjFpmk4v1qQlwUqSpqupe0dfW9BQSY1avjsRgjyUYm1HVIK1q6D4KlGBfP5ISIKVssalCAvSkKM2EEofziZ09U1b88vKIuMosxoWkvddWSjglxo6tixa2pq65hPRpSjDOsirrX0wSfaXQis1xuark97ItJg8izFIEtFVBlq+Lzy1lNmBUoIds0mkTgzzXrXsXA3jIqcrmnZ1j15mZHlmkLowdTosQEOD+bEELi5FpycFMTowEf6PlE1TZGRm5wgBFpq5qOSTmluljsqAXQRLSO7dY2PoE2O955t3dEHuDpZEIeIM+cC1rnUvyYo5WDGS3QgG2wSE0mVRLURiJIoIp6ANop926UzSZ4XBB/weLx3Q/Rv6kPUIHKSct/PJRqWc/v4WnEb0yr2MV2DsEarZM5s655+iEITQr6j6uiAyRR5pim0ThQtkYih1jl662AQ9AQ/EPH1EFUruaVbiu9RlCJ7EmgSPyVhvnonvhnIQylSVxCCv42b25NopXhH/Emip0F0JEGJPU1piMLbE4b2wqBBYJ2gmvG2r74VCQ17u5Ew3Jf3vXKKROaWtvROELQ3CxAGeNEQupxawIAX7+KdiSIJCsT+v7m9bvbnZ2hsk3h6MGLsqU7Dt1Kv+HfoSMNj7cXvRJSW6RpR6SJ0zrEniO7FQ3+3j7795UQDBggpVvt/lXwi0vlMRgAGmpa8pYMKwbDvPuyf+3c0qPf1G6wIT54+4d/8u3/DnfM776k27+t9va/39b7e129BffHpF7/pQ3hf7+sfVf29RUppgZI2VqVSw2I0DlEmewJAT/TJHQQBqUQC/kZBZgx5YUCBD5Lgwbk0SIkkp4+UaZ2ljRmcuwGGPHBixGiNUipFkfiQjiEEnHfDICPDDc4dmeeDW1ekhblPjjQlQWYK7yIiemKA3nq6vk9O6BgQFWQqZ1u3KSZOaSSCvMzRKmdaVigpaKzfp9dhXcJDZ0qjjEBLiKFLQ0VVgMyZTAwxWpQxbDY7NrstRVUQQyAzCScdiOR5AQFETAPHyaikjx3BBYKzRBJiX5kSpTW5gtmsou1bGtuDUOR5wXg8ISs0bevo+o5uIAzlRjKfTtl2Nom1+gzXC46nFR/8wac0Ai5/8SuMWTEpM+bTCZ33BOsYS/BSoowgoFDGsGu25H1HNZlgMmh2G0IUiMxQGkOmBVIGQtPTB8f1uqO3SWBWaEllMmzrMSoj1yUuCnwbyIoR01HGweEMGy2r5ToNfoQiy3QiCAzDmMZ2xOBT/IWAapxzOC85O53zy6+2bNcNvZdUJkcZyWg0JnQ1ZZZRjipUVFTliLXdIsrIxx884S9//hf0dUDikTI5L/OspG+7RLqRiq5xSK0orKDetSy/+Q71UlHkabN+ua6phCE3BT/6+AOsgupgTlGW3Ht4l1FZsVi31IsdumlQIefw7D6vLxZc36zwqqMsSrZ1y5vzK05HFR/evUuoO1y95mRWYPKKLraYomI2PmBajHj19BKtJb1twVt++bMvkKOcZ6/eIHxkdHCHxka2yy3TbMTJhyPuf/AxH//wI8ZnM9Y3a1YvX7Fs1vjguXvnjNwY1ssrpFUUWcE4qzg4mnPxZsFX3z7HKEUIkfVmQcgL5io5YD/5+D5PpcbKHBcDF2/f8s233/Hkw4+oveP14oLFWlMoy+lsRGUEuRpx/+Q+LkR++dV37LqGj+7fZz6ZM8oKVJnzH3/6c+a/Kjg6njI5POarZ9esmy3/+z/9XQSRr168ZTo7ZNRKjiZHHI7GFKOMw4OeeheJIePocMpiNuXbL97w6GFkfbPi4vKCpmkR0lJvNmgRObk3Aw6I1lNWFc47NsslL1+f0wfDdDYi7BpOD6acPbjDdmfpgufrr77ksBwTY6RzDXMDtm4QvSZ2JUYHXly84XK94J/9/g/JtME7R9cEQlswmo349rvXXF41nDy4w5O793BdCyMYFxmns4rf/Z0PiHpM41p+/fYVv3tyh6g1lIa4a7h7POPiu29RWlMZzaiasFjVbFrY1Tf8zec7xrnk/uEDvJP8+V98xd0PnvD26SVnBxX9+oZf//RLRKYJn95ndljx9IsvKKtjfvI7v0+3WpAXBQeq5O3rFQ/uHVGIgjcvX7J4u2RmCv7iz7/lzcVrcq35o3/xxzx4fJ++tuyWHefnFxwdjBgfThjNjxnlI87fXrHY9qwXrzmoMuzO8vmvn1KWY/JcMzuaEoPn1eUKmStOZ2O6eokYa4IT3Jmf0O0iX15/x5dPX1CUOQ/v3+f07ISjkxO+/tU3CNdxdm9GpjXffPeKX1/9mrdXN/gYmVVjdrstIhP4v/iazXrDyVHB6USxnRQ8v1ixWLVMyorp3XtUVcas2yKbHeu2YblbsdrU/O7od/jk4we8euFoYsHpnbt0V28oo6KoHePZiNX1ikf37rFetrytV5Tjgl1T4zcNB0djJr/zIXOTs7y4YrmyNLEnYFFG8uTRXapKE7Tin/7kM3bO8+zlG6K0nJ2c0fSBz7/4mpvFEknk8PiQ8SgD5/j62TPu3X/Iv/6dx1y8fspquSMoQGpOHz7gOJwSGs/1zTMW12vqTc30cIIsNGPvmOSBgONvf/Uli23NoSm4WexYLDZcvr3gm2++4u6jU3pj+JubDfeePOLJ/VNi63j13QW1tRzNx8TgUEXG5HTOp599yHpzRfSO1fU1Mlisc2TFiOVNnaLBgqNpW7wNrLcNvfeYPNHloncYkSIHvPcorRNtSQk8qecAMFUOGryNyExSZjlZlicBbtshQmSUZYQY6YIHJRlXo0SyMQYYBA0EpBQpBsHVOGfJy9QDpA3fbCAXCrqmYdd2ydUcUvxAGvo7omiZzUfkRUGzbVmvGsoxzOdTqpEk7jrw4HyP1JJ8lKONxhg9REJ5REzOdylUGjKQSC9CBsoyT+h+l8ghQQhikDSbju2uSwP7PvVjLnqUVkngbEOiFBGQmhQ7ptLmttKSLFNASHQUKdMgZhhApmEEpB3xMIhpk8DbuSQS0FJi8oK8UGSFQZtsGCaEgV61j2Abhh37mK6YtMrpFRhiI6IgqETf8cENIgCdjj2mY0mC9XdDgzjEKyS4SiJFCSmRCXZCVprkhv6e8z0NJ4ZhxkBHigRMZshyRZaPBte6xvaOtk1xWSGEd8MmOQxUhuGNUAEZ03BAa3UbhRFJoiWlJZkxmCxL5BUf6K1Nx5hnyEEgFWTARo/rQxJd/ZbW92Ms9m5xGAZdchCC+NvJEXsHeVojCJRUaKVAckvTCYPYKInIwi2haf/67b/OEBMi1TtKwO1Ajn3sYhIKhRiIfrieBzO7kiq9lsNz0FoOArh4K6pr+3fnfr6b86Mvf0TWZVjpk8BqWJcIqVJMmxDY2+crCcHfRsSkSEHSBR8iKA1SkRt1S0Tq+57O2jQkJaYB4vBWSdEuSfQVfCQzBo9Dk0hoKcIkIqUe4rmhKDKcd9jGg5RopTBZjtIS79KaKw2hbRId5Tn9njwgFcFDmWcc3D3GAq8vLpGyJdOaosjxQ5yiEYnAISREXBLsuB4VfPp7Eqzt06hNSowazodI8S8uBurO4X0ayCklyKQiuPR8lNCECMFFlDbkRlGUOYFA23XpWhRpuHorworDUJAkigyAyRSjwlBVOS9NQx8sygqMVMgo0Doj+iRMMCZDkNa8re8xOnJ4MOf1+Wu8DQgkYqCyKaWTEEuIFE3pwhB/I7DW0d7cINYCrdNwsu0tGRIlNceHc4IUmDLHaE01nTA9mNN0HttYpHWIQlNWEza7hrrZEaVL6+Hese1rKpNxOJ6kKB3bUeUaqTN8dEhtKLKCQhk2yx07KfHBI4Ln8u0VZIrVOolXTDnG+kjfdmRaM5pPmRwccnh8QFbldG1Hu97QupYYA+PxGC0lXVsjQoofypShGBXstg2LmxVKpufcdTVRawo5JjrH0dGUpZAEFIHIdrvh5mbJ/OAAGwKbZkfTSbQIVHkiI7nMMK0mhAiX10t6ZzmcTgahlEIazcu35xSXhtEoJxuNWCxv6FzHB4/OAFistmRFSeYEZTaiNBnaKMoy4CwQFWVZ0OQdi8sN8xl0bUdd75LwAU/fdUgRGU1yRpQQkggthEDXtqw3O3y8TsKt3jEuc6rpmL4POCI319cUOgPABUuhkrBNeEn0Fikjq92WXad4cOf4lpDhbCQ6jckNN8sNu9pSTcfMxhOid2Ag04pRnnF2OifKHBscV9sNZ9UYhEJoDzEyqXJ2y0V6P0qJKZLYpbPQu5Y3V5ZMCaZlQWYyrq42GAvBCqKzlJni8vyC9a4meMd0NsJGz/nFmocPnyCCpWta5geHNE1PWXuU0Ljecvn2isP5HNfB5WJBcI7DkyPu3DlOn2U97HYt0XXkZU7UhrKo2K6WdG7DersjEwFjMhY3K9rW4UPgTGmqSUXT9chdQ2Ey+s7S+RYnArlQTKoJm/UFq/USqRRFnjGdTRmNx1xfLlgtazIjGY0Mfdvz5vVbdnVL21vyLCMET5YZFpdrbO+R0jMaVXipWe8i3XaLBlSRk5cTcmfR0dG1LR7PYrXCxcidkyOMdOyantOTU3zbIIJD2UCWGzotUEXJqCy5vtmkGC6ZYt0zrTDHM8bjitB09L2n9h6NJyIZjUvyXFFWluP5lOlkzPV6y2a1plQ5RTni6mrJersl+ET3qypNJiWb7Ra05uGDM1y/Y7PZJFGHFJii4KDKwEW22xprd7RNj3UWJWUSqKtIrgOb7Y7OOg4m00TA7JOo+Pz8Iu3djEsubpZkRcns6ADvHLa1XG23VKOSGDxKKlShmY4mHMU5zvfYrkuUvBiRSuNsoFU923yHcy6JkJyn7W0SskqQgxhQK50++4Sgi2mvMKohNpZEwdNCJ+FgjOhMoc3QE/eOMIh6tUpxrVEIzF6IpBR7jUnqIwbhq/MD4T3Fq0pBUt74RD+yzicK/CAkESIMkawQrEPrJEhEiBTNTLrfGG0IMRlKQ0xKG5VppFYouSd4BkJInx0pC41b4XccRDSDlCw9ZwaxsQ0453B+ELbszaUiJvLRQHxKsWfcCpeSeIeBjrRfP4ih737XJ6Z/G3rIwYq6j3DzIX3VqEQxVHqgIYqkSI1xH50nbklWe4LkrTwo7h+ZJEoa+jEhvh8rl8wVg6YeSG2ZGI5oLzCL7OPTxC1pS6q98Oh7QqMohpY03gqNIPW6SgmEVOm5DMIxN8RxA7d/a//4+/WIkIM46dbE8O7vJbNIIlGpgaIEyUSx39MX6t25E6R1dQi/veuJ/01UhMfPHvNv/9t/y2Q7+U0fzfv6T1DXh799UW/AYDr7/yBwfF/v6329r/f1d2o73v5WRne+r/f1D7n+3iIluUfOSonUanBwS4w2w8SBYUNM3jphdGZQARhcNbaLCC0SGnq/ESz2uP1E35FKDjnsaRPbD+5nJYYYjBjThr0Y4h9EWtgGD13XDfEMGis9mZJDVIccNtdTJJvWBiXSZrvQKfN8teuQwHQyoSwLZISmCzgXUuxNaZhUJdGnti3ESAhpqGdtGtLhodAZ04MJ67qjaywCifUBQ9rI3tXtrStmVCbaETEN64J3uL4n9oE8y2lcneIGvENqQXQ10gu81CiToguK0YjpZExVZriwQOgc13qa1iJEixAltnXstjUhZarRtp56K3FBgSkG7L7hJz/6EQ8/POFnv/olpu1QGHRe4slZ7q4xUlGajF3TYlCUUiONpN20hLrncHaAVBHvCurWooNgVo0wlWFxuWA2nmPyjjdXS3zsyYUCk6OMZlSN6GxA5hm2C2jpsbInWEd32aMzTVVWjEoLQuBsR9c0jLKCpt2hpECKNFDQSjEucqajEb7tGBlFUWT01hNlQmrfOThF5YrV4godJd4KqtEB1WzG29dvWFyd47YNru9xJicbV3RtjQ2ezXLLKM+p8jmZduyaDi8ERucY78mVTAPz3JCVI+qbhs5b2nbH/OiIe/fv08Weq/MLHh3dZXw0IcYetGQ8nhFrT3OzAu/5+ulzTo+OUdbiG0dfwF//6hsO5zOKaBjnFf/iX/0J2UyzrSXbTcem3rCpW8J6g7KOftdg25aJnnL3aMqkmHN4dMDTt8/ZbRqOyynj0YzlYsmzXz3lh3/8ETy+Q/fZh1y9WiCiZnu+pDWS4wenrBvLdtuwXG7pLcxmM/JSMp/MOD07o60t9+7cSbGPHk6rKdndwHbbc3N5xWw+4ezslMdPHlBUBderS7781dcYEbk5GvPRHc+PfvIJP//6NWY6Ic8Ux/KITz/4kC+/+I75eEolHA8OSgozZlaN2CyuISjuPT5jMh+zen3FvChRWc75xTkHVUlZ5lxcrClLjZRwdnCAslAowzcvX7KpV2zWK6bVAcVojOobom2ZHlZslitubjpGKmBvVlysVpyfb/jgw0ec3H9I22w5nM2YHoyxSjAuJ7x9fYHKR2yC5fHDOzy8d8Krl2/4xc+/JO7esqwdOp+Qj7b87u99xuRwxC++eMW9+yeoccmXv/qWybcZaiRYLZcUWeDi4i2f/P6nHByU6G1HNZ1h8gLpA//yf/cnLLuO5798zkwVPP7xZ7x69ZKLqyvatufRk0fIMnK+WGGynCYqXi5WXN8sGCtBV1tUkWPOzpgclnz1qw2/+uJndJsrZlXJ3bNDfvjJE169+IYHJzNaF5gUkpffXnDd1hxPjvjZ67/h+u5dyrGk63dMzw7YAN+9esqN74mtY/dn/4F/8kefUGUlmcz50Q+e8PLFWzoryZXj+YvnrLct+cjw5PARI22YTKc4IBsfUmjBs2+eEfuIj47FReSTjz/C2cD0eIxf9ly/ec2zi3Mumg4hAmMZCG2D71qq41OYTfjmmyte3KzJiox8MmViNNOTAyY60Kx3+DtjTs4O6NpI0+9YrVts6OltoBwZYi4JtuPB8V0mVclq0XG9hTt377GrAxc3K5q2Y7tRPHj8EW+uNigMZjTi8GjE1dUCe9HStg3meA7dgvGowtmao/khCoUXgarM2V6uef7inF7AZDZmNi24fH3BbgvjbIrIPJv1Fmkynjx4zOPTMy7PlyyvL/CNJfQtrbeYbY5rO3Z1S3U0x242TOwJPp9xE3vq1jIvcvIIwhdsXcd0PuOjXHE8H3F2eo/vvn3B8mZJ0zhOTw6QRSSbFIyzCfW6ZrFYsLQ1baZZtTuEyynGE+7fO+ajB4/58tff8aubp1yulyBPsG1Ls91SzUY8uPMJzaTg26fPEjnCdqw3O2YHh1SjjNXNkq5vCThs79AyEUCiEHTOJoe67RFZGhgaLVPMhElkC2M0WZFTFiP6tsf3Q/yCj9jW0tqW4Dy51pRFjgsebx1epAF4OSrJ8xxre7q+Q8q0Sd91XYpNE8kVrfWA3o+S4CLWeaQ2zA6TaKmpW/qmT5vgIkUHuN5T1x3LVY0LioCh7QPeR3znwAcyo6nGFWhBbzuC9xhtBmGQRKARwhOCI0SPVOn5Rh9TbxFBSYOzjnpbJ6JD58lMRllmZGONC6l/K/KcdtdRbzuct4NIIhBlIp+ImOLNylINDm1LasgAUv8mhEJ4iTSCLNPvHL9CIIRDGclkXpLlgIyJjDk40UXcO4EjEjlsmv1dN+9elLKnzwQ/UEpkij/TWmNyRXA9ztlbsdO7FIcUt5TlGf0wnCpHBVqLFPeh9uImbjf99wOZFJmwf6AUseecTzFXIkVI9H36WjoXe3JQQAxDmH28QpZlRBOG3jAJYWKEQCLGGKXT11ykc90wqHBEkvM8HxXkWYZUGjucQ/9bDFJ6NxjaR3+kc7ofkgniLXUqnbtkjrhNvRjOt0gP8U6A9H2nvEiPfStIux1KJXGSGL6WiAX7wdTg7g8xDYKEGMQrYSAViGEwloRKSTSjECYRuRJRKdLadGxTxvzedz+hcAUuBryLIANGJ6E98d1xxOGK9N6nv0laF+RlTmddii0hDUYlKaajty59fiEGE0eifcmBeBR8wPmYBHODqC3EMIjy7DAUS4LE1Dsb8jwjM4rQtQiZDB3WBRK1zOBdEjSG4BEyPb4lDRejTEYShOTs+JjZYcX55SXKe6RQKRIaTdPXaWgrJdZaJEnwIKTAek+0gTIv8VoRosbagIiRPMtQRlLvGvK8RGlHX7dEPBKBkBqpJCZTSbikU6SmIFHV+oECJbXE6Ayj/UC88jhryZTBun6I/Yu379NcazKjCc4z92OMMrjo09A4CiZlhVCSrtkN8eMCo0vMrGC72dDUO0Kf4uWEEuTS4JwlEOnaHqMUpixQUtE7T6BPMSwhpIG7gGgUymhs4/Ax4LylzEomkykOz7K6Qtz5gNwWEF0y2GQF0UZs20GMXC9WjEcjhA9EG/A68vpywajM0VFhVMajxw9RhaS3abjd2Z7OOmLbI/f3Q+vIZc54lJHrgrIsWG5X9L2j0jnZqKBrWpZXS47vHSLmY9zJAfWmRURJt+1wCkbTis4G+t7R6B4X0n1Ha0GRF1TjCmcDk2Kc7pUhJqPJJNL3nmZXUxQZVTViNp+ijabpaq4uFygRacqMw3Hg5PSQ88UWVWQoJRiJkqP5AddXS4o8wxCYlgYtM/LM0Dd1el1n40QJ3tQp0lwptrsdhdFoo9jtWsxAxaqKAunTZ/d2s6Z3HX3XkZkCbTKkthAcRWmSaKtxGBnxjWHXtux2HfODGdV0hrM9ZZGTlzleQGYk282OoDL6GJjPxkwnIzbrLRcX18R+S9EHpM7Qpufs7IS8NFxcb5hORshMc311Q36TPqu6tkEr2O22HN09oigMsvdkeY5UGhEDjz54SOscq8sVudDMTk7YbNbsdjXOe2azOUJHtk2HUhqHYF131G1DLlNPY/KMxkfunx3SRsv52yv6dpcEZNWIw/kUbaCVkVGuyY2g2zmuljeMyhExRJp1zXRa0fcdOleQZ2zqmkW9wZiM+vU53llmswqcYD6t2G0DbefRUbDrNux2LT5G5gdThHdU1Tj1DiqjNIbO9vTnLQRPvXEcHR5SVSNUptBC0m8abrYbNn2PjZFcJKqM6zrUbEo+HrO4uMDvLNmuRWpJNh4hMsORFsS+x4VAOUrRPCF6vOtZb9Jns5QCZTJ811EYxWw0wrmW7bqnKEcIZdhsG3yMNHVDMapAFTifhNhFkYTNy/WGrmkZTyeQZylGyyfxZ5EVycxnBMIHVqstrbWYXFPmmug8za7DSE1pcoLz9F3PKC+Y3q3YrrfY1uI7R3QB7/skWGlbdtaBVuRCIHpHpXIa0WJ9IkcZKVBR4UJAacN0NkEJz+HhIfW2ZbPdps9GFJNxTtASaRRGKOqmxQuwMlEu665DKENeZpwdH9LuOl6/vWC93SUhvBK43hKiJ5tVzMcTLq6u6QOJztQ7GCiAq2zFyq/xwQ3km0E8LQQh+oEi45OJUiuMSqJ8SJFrYiClmsykHsQFokmEJO9DWmM4lzpzpZKIyHk8IEQiohqjb/u4INK9OVGIElpTyIFaNChRRBC3PY3JDRkC7zzWutsI4kgczAth6BXT30otTYqZ9c6jhEBn2bCfmHrKZEAd8ETss+xSPy8HeqUWKgmpfaI2hpDWOJ23OJdieY1WmMyA3JMiNYRI36U+HFLk2L7v2vdiSiWxVByolftBeSKDJiKbEKCHY4FBaCzSvnGWaXSmBiMAt3/j3bh9/9/753j7Y7ffYxAzhZDopVLJgeKajg8VEo11oPR/n4Qk9sL4oa9TSqH0bYd5K4QWtwSo/1ndHnYixCpBSgeIg1kjfK/H/d5zEOzps3HYi+c2Tu/d2mMQwQ30ekES9+8JuCEGYpComK4XKeVtBN97kNJvtiabCf/1//m/Zrwd/6YP5X39J6rTy1OUV3j92yUAfPb4Gc8fPefx88e/6UN5X+/rfb2v3/p6ef8lm8nmN30Y7+t9/aOqv7dIKS2FAgg1DAPSZpxzLrmJJOhMo4RKG7tKpkx1JXG9xXufYhJcQJnkzokxpIx0KdEkRy1uv1GQst9DCASbhk1qwB0TErlo73y9FUZFAJlGWUKgjMFolYZukYRodhohNdpo8lKis+Tc3fUWIwyH8wNCsIgAzkVs3zMal4zHBU3X4IPDKBBGYb0lCjAopACTZUxHI8qs4GbbE2Xa7I8x0nc76m2KFzHaJCe1UuSZYdckvLcenN3ORTrbYbRCC8N605IVEuUcmcxRWYmUgSgzlM7pOkcIluV6y269QXhJXo0S4UpA5y3eWXIl00a71nS9Zb3e0fUbJpMJk+kx33x3wdevX/Ds5XNW2xahM7yLrPodBMiKnMODA/rzc7z15ELhbY8TkOcFjbUok15jrTPMkGe/3Wyoe49WkdBaKqmgKnA2RccZbQjA9GBGrjXzsiCrSmKes9vWGKPAeXzv0SEiFPS2pTAZk2qUkObBEUUg9GmzBsDHSO8CR/MpIQTOL5Zsdy2ddvQx4KKlsy3RCU6O7lPmY3b9NWIieH5zjpqOGAmFJ7C43hB7h856nA00QLa1RJc2S3prKUTGvdMzhFFkhUyu2J1HAzvf8XRxw6Tu2MTAvUd32Gx23Fw0jFcVJydz/vl/8WMUCmkyDvstLkTGo5K6axlXBXfmE+4cH5NlI1a7mq+fPifPJ0QHZ9ND+qsrPjg7o7z3MaGu+ev/2//I0zeveHV9xclkRmhaXC+g31KvtngVsb7n7aJGaIffNnRNzwcfP6HdNPR9zfrZW0SAN/WS0WjMWTFBKMfkdIKQkf/4V79gvVxwdjSnQqMjHBwfcfX6LUEE5rMRQWk6HUE7ut2Cn714yuMH97C7Nc1uTa4Vn37yhEk1JppAlecsrmqUKXnw+CHt9SWi87z49htumg2/ev6MUQwcTwsOJxNulpKL9Zr7v/8HfPD4Hn/557/gxedfIO2W+w8/5OG9B5RjRVVJtrtAbgyTLMM2LW7lUM5xs3iNyU7QIrCobxiFyMnRXerVgv/Hn/05Pgo+/dEPOL5zTKYLLq1nenjMZz/+kPv3Twlt5PWbKxbXS6QKZIXh408/RMbA1999xfLiBjYdm+2WLKuoxiP6bc1IKx6cneJ7T2sFljQE2TRbdCUQWYEu4eGDYwoFTihm8ylGSd5cvKT1Db/3T36f+qZBtpHcpeGbiw6w3L1zCFnJ65fnxKC4//Auffuc4HcsNze8OX/FttmRHx9y1a355PEnFLnBX9zw+tsv+PKrX/PZj57w4NExxyen3FzvWF5bxpMpx4VhsbogSE/wHS/PX/H6zQWmKBh1hrZ26KIjKsfDR0ecygLnHbNsRJGP+fLzX5OLwO/+3scUVcZXX77m9fk53nmWq4ZqWvLZpx8RoqYYGXITqaannN095G//4m/5xd98zeHhmH/yT/+I2eGcetXQrhteP3/D4x894tPjCYf3Dticv6bSGV/8+inNz3/FR59Egguc3TmkFIGjwzkfffSY7XrBq1dXrK4W6APDg/v3OTg+5W/++nMOpjl37p1x8WZJ1/T0zRqtDZPJiG1bQybQxRhdRa5XPSoYMql59eoV0R7juggucr3d4BvHqn3LYt0gbWCUGXRU/Pj3f4/Fs2e06xV//Vc/4/Wm4Qef/oDm9TXPn71i1zlmkzGmDTSrhrKs2Oxq7j9+xHZ5w8tXK6QS7LaWO4cTbjZb2hj45MlDXryK1K5lPBlT15ZslHP3oMIoeH695nB6xKiskYVm1bUcqJzdesPl4oIyzxnP5uAstu4pyzGLbU0Te64WN5ydHKM7zy70dJ1jUpXce3zKv/qv/hmz0Yg///Ofse1ahAy8PL9Ej6Z89NmnHF7f4Lotq/aSg+MZp4eHbJZbnBN0XaAJktpGNk1PFy+ZVhVCgZdDBFaIKcIzKqKRNK3DuUTWkS4iY0QLgROJnjiqxhACwUViH2lWLXEQ/oiQXh8RwIdI6xyhF7jgsCRXrg0O5WwaFHtP8MNmsBZ0XY/JFNi0kay0Tm7UmOgqUic6SWFyghPE3uNwA2EhRR3UdYdQEqUUQiUqYGstUiRxVOht6k1kRBvDPrJKSjPELoV3MWGI2ygCJTWBSFZC0J7oBUZqhMqwfU+kTU2VTLSkSV4RSfQUvKDZ9YOwY4jU00Ps2dDnpVgAfyt+0EJQVDmitYnoExy5zhiNUlRN23ZDtICh7zq61g30EU8YoriS6OT7HWi8FbF470kNHbfRGu/c1UnwbjJFtBaERymFUWYQFvVIAt/f4/cxDVBykfpYZZLbWaKG4dGwSR/SkGL437uoCZJApal7+i4AHSDxzuHDQLUZfl4O6qjgErUp9c/p739/sLEnYIgQiDAI9hwEMQwq0qBTCEEXQiJYlSUCTdv2OOsHl/9vZ92mU3xvcCLYU40SomhPOko/nwRHeyFa2L8Wt8Kg/Xl753bfD7/2vy+HwVcMMQ1o9oObGPH7eD+xj437XsUkV9m/JiG+O94YJIhkztAmudN98GgL8+2c3734HSo7SqIgCd45jM7I8xS7En0iPgk5UJtgiGBL66vcZBilaXo/vCeH4Z3r6UU6DiUVQqf3hlIS6xzODw5+JW4JYWrI9mg7i9YSMQhgUDoNTIVCKI3ziXbQdh191yOiQBszkOHiQG5IA06pZBpCukDX9XjfkWU5WTHiZrljsV2zWq9oOwciReF0XZ+en1KMioJN8Ok8MAzEBDDQb6VKHwTp3CsE0PUdLkSkT/fxTAgweqBJJPFWjIKszNFSUugMZQxRK2xv0/MIYfib6S3sfYqay7L0ueoHTl7cEyEGL44PkROOeNCc8SJ/Q987vAz4mOIwXXDEKBiVE7Q2WN8gMli1W2RuMAPFoWn6RLVTaUBoAdUHCKBEEoEaoRhXY4RKJLWu7wl9RAJ9cKzqlsY6ugiTWcU21nxlvkNf5FSjggdPTtPntlKUvifESG5MIhMaTVVkjEcjtDK0vWWxWqGH+O4qL3F1zbwaoyc50fa8/e4ZN8sN67qmyvJ0j/QC4Xtsa4ky3Qe2jQUZiNbibODgcI7rHN5buuUWImxtgyGn0jnIQD7OEMCrNxd0bcN4VGCQyAjFqKTe7IgiUuSGKCVOAjLgbc35eslsOib0Ha3tUEJwfDQjNzlRRoxWNI1FSs1kPsPVO4QLrG9uaF3H1XqJiUkkU2YZbSvZdS2TO3eZzya8fnXJ+vIKfMd0dshsMkFnkiwT9Dam96lSBOfwbUB6T9NsUKpCEGhsSxYjo9EE1zU8e/qKGAXHJ0eMxiOUNOx8IC9HHJ8cMJ1WRAebzW4guiZBxOHRAYLI4mZBs2uJvaPvLEoaTGZSxLkUTMdVElkGQUDQ95bOWaQRoDRSw3RaoUUkCEmR5ygh2O7WuOA4u3cH1zqEiygvkCL1DwLPeFwilGa93hERTKdTvFsSo6XtW7a7NZ3t0dWInes4mI6okMjO0SyXXF+dkxnJ0b2TRGXUhs1yTURxeDjFuZbOdSgJbdeyXm8oyoq8yFP0egQfLHmpOD06QGhDsI5qPGa3rdkt15yczMlzzabuub64osgN210DQjAdjymLkgDkmSQiOTg6YrdZ8erZOX3X8fDxfSbTCba3CASrmxV5UXB0/wSKnG67Iteam+sl59cLvDIg0mdHXmYoETk6OkLLyGZXs1ltoVCUSnFyesLV9Yq+axjPp7je0zY90ScBY6aTgabuWzKtUFlB7zzReozStHXNhiT6UFInEbQNdH2LCx7bpzhQEQWTyZRC59hmx831DW8WF5STKZNRznK7Zls3aGMwSFzbJ7OaTHtHuVFstzt6W2NtoDAGHx27vmc8HqG1YNfuEvkSiVeSMtOMcs2maZiOxmRZCcFhYwAPUSpW2zVCwDjPkimvtWilEUrjY0/ddVS5oEARnE8GQKWoRhnHp3Omswk3V0uul2syo6ibButgMj8gSA3B0zRrUJFZNUXGSNNYiIreBWyUdD7g+x4hYXOyJshBIKwiMggyFCiJCxEXXZIkhUTjlEPzEmUSCCmR+m4ZZRLf2LQvKYVAhIHcEwU+BqIHEQQuhrQXKRJBXunUZ6aeBpRMwmzYx6dFYpS3sb77uDCtU48uhKKnx9uAjz7RFUXqSbveDtTvIZJuEMtLlcg8wSdi4J56GkJEDKLlGN9FuSHeRa8JmfpUtRddDenOWiiCDIAdxDERZERrgxYpTowQcNYng+gg/r6NKx4ESXsxTRx6fEEc4p+T8DiZU2Ui7gsxEPnTc0hxfQGl1UDq3At6BjPDsDZK6wlIoqfvq/mHDeb9ikIkcZRU+z3rCCLe7kV7vucGiNz2k4i0ToohiZKlfNeT7tdtfycCLnJ7DvbH53xIfan1w89zK9i/7Ym/J7bfG3tvhfeDaTh+rwfei6KS0MmnoIK4N3qkn/NxMO6EOCQXJOF8/C1eT/yjrQjKKx68fMC//h/+NfPV/Fa0977+4dfZ+RmPnz3m24++/U0fyt+puqr54tMvePT80fvr7X29r/f1vv6/VCTy6sErgvotdoa+r/f1D7D+3iIlY3SKQ1OJSHA7UBgE4EroAVWcHMQhgO1sWpSFwODZSFEht5nlAS2GyK6YRCUMTn9jFForuq4jyjA4i4fF3H4hK7iNtBB7oVJIi+ekV0qLQu89IUB0kb5ryTpHmWcUuUYpg9aKPFN0Tc9qvcaoNChompauD9i+JHQOGRUyU8OwBIRIrt22sSipGY0KymrOrq5pdi1nx4eMS4W1AS8k0fs0uPIea9OASWYSERWSJPTZ1QMVSEpMltHUHbu6IYqCaV4ihcTHiJYKlMLaDkeg3jV09Y7oPbkxFEWOEJGm3dI0DWFw158enSIKzfMXL9l1LUEqetFzXV/zV19umUxL8swAHqkEeWGIQnBoJoQoefHiHBF6ynFJ3/e43iWnKAatMtpuR1GO6Lqe3WrDSE+JSoB0CJVYD6XSbBtHEIYYJZfXC04O5pxMJpweH3N2esS9h/c5v1ny07/8W7yLvH57Tt323Hv4mLPDKc9ffJfiGkQaIpRljhaRpavZ1Q2ZEvQucnIwpzyYEBYrvIisbE3oA3NlUUSss0SxYWS3nF+9ReQ9OnbkwoGMTHLDuq7prSWTitLkrHyLkJGm7dEibVLbvqejo+165sUMIxUHRyWv3ywoJxXWOa7aji7COHrqThBMxmqzRNcjJuMz3p6vOKkO6OyW3aonesnxwRFNZzmYHaAzTdA5XdPz7dNnvLy+5j/78RNOj84w44qzH2SMy5LOWl589YqbV9e4pmY8LTjfrAhLz6Ozh/zon3xEu6lZ32wonEcYw9nRAZevr+nrmtcvLxhXY95cLchHGT/59Id89Duf8KsvvmN+eMTrV68x0aGBvIByWlDNJkiniVbggiebajyW7149Z904qlmFKR3NYsvyesXRZMq33z7n5cUlp8cnzPIRtrEUWUUxv0vdWf6P/9W/RpvAnz//hsXrBUor5ndO6NURE2OYFJHnz85x1xvuf3CGb3uun74hE4GF7Tg0kvX1FeOjE+796GNyadiuLVoa3rxdoejRukSN54zvn7HcbpianPt3TjmYH3Ny95Tt9oDNesOu3VKMYdd0zI7mnBWSrCqZVSdMRlPasOH+B8csVjfUraVtt0wOCrAdD0/O6KOh6Xq2zuNCz+Xbt0yrMcZUTEcj1jcbvvjiWzabll+sr9nttvyX/4f/HBU76DQShYgZnev5H/8v/57JuKDMIoeHYw6qKcLn/OVPP2c2mfLJR0/4+Rc/I3Qto3LE1bYluha0Y7lY0OwW2NDSBcfHn31EYSoenk5RWrLabvnq27e8PL8gG2s+/Z2P+Of//A+5e3jMcgdXV2vWdeDhwSm2r9m0HWY6wt4sWSwblvWOX/36C64Xl2x2NT/+vZ9wdHKADD3fffmKz37yQx48OCKXIzY3S559/Sueff2MnY/UIXB4MuOzHzxhu2r46quv8CHy6N4ReVnithti29KtNvzw00ccHB5ysbjm1es3XL2+4NdfP6WaTbhz7y7j4wM+Oz0gPnmAa3o2Vwt0OeLgNEWYXX77HXqsefDBB1y9XXJcrjk5mrGde9Alz1++RGjN81cvUcLjWsu0muHmsLi8ICeRHZQD5QRvnl7SbmuO7h1zcHhIvd4xyypc54nS8PzFa169fsPp44c8un8X2+0IrKh3G6azKYtn57x5vkH6FoNFzaZ456h3W+bznA8/e8TV+Zq7h4f4YLFDpFUeDcvdisVmy+XVgtjXjI9OWfUt3vWMxoZ2V3P28AHaaOaTMZ9//jVKK8pMcvTgjJPTu3SXN3z2ow/ovONy1aKkYFwYNnZJs205mE7ZbiLL7Y5RnvOjjz6miy2b3Q5MznrV4LTjzuEZeMsoL3jy+BHUnpEv2HWOxdWOohD80z/5z/jjPONnf/4LvvziS5qgUNYTW8fC3lDkBVlh2MZAQ8SMDfjIarXCxx4vPV4EvPaIQqKGeIDCGDIhsNIRo6cwmqos2PQNRmvm1QQRJNcXCzbLDX3dIgGXBYzWyCAGAk2gsx5HTDEIArTRFDpPm/vS4L1ls24S7UQlIkqWpRgWHwI+gIoCrSV5ZsgzgxLQ7hp8H8GRSFl4nHd0faBwDqkMxmisddi+IwRPnpfkeYYXkd765EYf4mCFkHjHbXyBC44Q3N/ZwO7anq6zKYpMGaz3+ODQWaKmjEYFITp629N1PUpnFEVO8BEfA1mZY4IG4Yd/Eq2QEFPchPeDeDzRpiQy0T+UplM9trdkeaK89L0bXLsJfxS8YLdOlA+TCZQSRBEGmcheQrDfkN/HSuz/ie+GAiTnu4xyGBhmaGOwtkfISHCR4EEKjRf9O8d5SFEUXnjyIqMoc/QQmeH8nhgTb89njCSHdohIlcT0MYCzMZGTQj8c87uBRtRJPJLEEXs3dBJ6hLCn44Thd5JYhYGms3dTJ5e/GJz9kWFOk1z33tM1DtdbjC4GYViiaf22lpRyr/RKcXu8G5bAu2FPGOgGRAaHfnxHU7odNKV1wz6S+u861JMwTEmJVHKgT+2FTLyzsYs0wIrh3YAqDoiuONC09tOh26FOSMMb5SKjUFCGgtPNMcYbRm+mqJ2mkAVOJKGhtUm0FkIguCSyEkrdXluQyADOeoRIMdo6y+mtxVlHVZZkRibRjBCDODDcnicAPQzTBIno1ts0aBcyCYqc9VhrQRhyrRFJsncrYPLD0NIFh7M2GUlkWiMhwDqbeubhHVqVFUJLVus1vXNEKVHC0/QNr6978nwvvuuHiMi01jEqIyJYrXeI6NHG4H16r0mpkCRRkvM9Shuc99i2J1N5GuYx0LVIw9HeOaJQRAS7uqEqCqospxqVjKsRk9mEbdPy9vU5IXg22x3WeSbTOeMyZ7W6SbHhw1DTmGQ8aYOldxbVp/feqCzIi4LjqxOe339DGyzRR0qRIUSiV7SA8QW7eptiHPFoEXAikmtJZxNJQolkVOmiJUawzqOGazN6j0PgvKfURRKqliPW2waTZfgQ2HmHI5IRsF4QpeLN7C0fP/sBWTZmu2upTEnvO2ybBI6jssQ6T1GUg8BM46znZrVkXTfcP51TjSpkljE+Uil+OHhWiw3NpiHa9Fm+7TtiG5iNZxzfO8B1lq7t0SGClFSjgnrT4G3PZl2TGcO2blBGcXp8wuHpEZdXS4pyxGa9RurhfGjwucbkiXgbfbrOVS4IRG42KzrryYoMZTy26WnrljLPuFmuWG1rqtGIQhu88+g8wxRjeu/5+KMPkSryarWg2TRIISnGI/y4JJeKTMNquSU0PZODKpFlVlsUgSY4SiXp6h3ZaMRkOkNJSdYlQthm2yFxSGmQWUk+qWj6nkIqppOKIi+pJmP6vqTrunRNZWCtpxgVjLVAZYYiq8hMjo8904OKpmuxAwklFwa8Y1pV+Chx3tOHjkBgt1tSGINUGbkxdE3H1dWCrvNcdDV93/PhR4+ROPASSTKRee959uULssygdaQsM8qsoI2O128vKbKco8MZ51fnBJ/i23a9h+AQMtA0NbZvCdHiYuDg5ACtMmajPAk6IcXLNR0ImB1MmM8nPLh3h671dA5aGzA6Re22nSNqhdCSZmdpeosLO7797jvW2w1VVXF054xMC+ptjRGa03snFDqjMYbtesV6tSLPc5rOEjPN0d1jDlxks9lgneMwN2R5QfQWfMTuaka54eHjO2x2Db2zrK5vuLlZ4qOgGBVMjg7IRxlVWRLcEdEFjM4IUlLmBVcXC9rdhsnpMcEGllcbHtw5ohEd04NDrq4XlFpT1zVd16IE4GE6nlBvzxHBp30fBCJA3zg2zRalFdV8QtdZorcoJwkxXTcXV5eJ1HR8iCKn61tiaFESZIhcvLokConBJSFqniI8g9eMZxXKJPF2rhWd9witEpVcBLZNz7btcX2D0gY5GMWUBGLAFBnzMqcqS9brLRDItCQvMqr5AcJ6xjpHl1PWmxohFSI6iqqg3m5RIkMaQ9Pb1JtPZ0R8Ipd6T4yC1aZmVE3Qw71xOpkwHlXUskY6gesj6/WO45NTHhzNWF2vuXhzgW9rvO/BBSwO23uMlngBXYygBFoqGtdyOTsHERKxRyTzQxLhCDQgVRLyBe9TVLHWtwLWTGsyndE1HU3TYbs+wYFkQGqNCAIxUHxcCLeEnURkBKXN0Mcm0b+1SWyuhvitRGri1nyQOmuBNnr4rFR46wjeE1zaYw3so8xC6ssHg0WMicjunUsRs5lByEAc7v8h7tlCQ+Rt2PdQ8TbmS+7F3yFirRuo9Wkv1McUU2qUTr1CDIkWNkRRG5MlQVFM8cY6M0C47ank0AOFvdFiL4gSA6GfdJ6E9Hib9iblIMBO4p04RKalyLlOOIxOMbL7BjLyferQ/t/iHlCVXv+/gwsaIuIGkVemJM75W5HQ3gSSzln4n1GRIkLIdJ/aR+iFJIa/FfvsH2gvxhoongz75+nnw3D4+443pr5/T/i87Ufj0Ae+G5Lt6a1xeB3FIF7aU6tug+5ifGf2SJci0Qd6H26pWimi7/0A7v8fNdqNGG/HfPL1J5R1yQ+++gGTzYSiLd4LRv6RlfKKzz7/jG8//Jbftpf224++Jfz3ARXUb/pQ3tf7el/v67e2nHZ8/fHXv+nDeF/v6x9d/f1JSoPbJRBxMWCURkrN4FHBx4AMabUnIwlp7D1RRPRA8FFGg0gxIYS0yAo+pAGOUMlN7FKkiJZZGgDxLoscBM4lelFejpITOYYBa+tTbvoQFRe9Bx8wRiFIcQEyT7jp5DJ0OC/IQ0aWZUwq2DULVrsdo8zgYk+IAqUNu64j0xlBCpTRZCZDyogMIS0itSIKSWd7rhZXoD2FTu5GRCSXiiYkm43zDpsY3TgX2DYWISR37p4QCWzrLcbkCKmxMZAVCpNVmFzjfaAqC1pvqZsOaTydtcjoyZSgkKAmEwQKrdTg5HdpNS0ECEPfB9abtCE/GWdoU1DqHKUTMYje0juBMQbnPJnUVKXhZrPDRchHJR5DHSybuuZwOuVgVGFdYLFZ4doWk2k6IlU54uG9h+xo6dseEyWjgyNW7Zq2bRDOY6Tk4PAwufOipBAZ9arjL89/yZfPn9Fs6jQ8bVt8gGfPX7I4zzAZ2BgheCbjCqsjRDfgviVFkWLkXIx06xRPdzCfYmOk61qi65gdTNk1Ek+k9TsOyhnj2ZTzqzUuSNa7FttajJSYckTbdyyWG7x3ZJnFaEPXWjZ1i1SaSVGyqB2qiIyCx5jAqNTJbe0jwjjKasrBbMJkXHB27wjbtRyNKz75+Al//fkvePr8KTc3F9w5PmFWHXDy4B679Zb1xZLl1YJnfYcRke12y2g85ez0jNffvORM38dngtjC02+f8d/9d39Gu9lx984Bma9plmvu373LDz79hGo8Jdclx8endE1POR5TjDJ8G0Ebbq5X1Jst9XrNtrO4bst22zIdz7i+WvLFL78j95G79+ZsNxvKbEyhM5z0/O3nv+Rf/skf88kHT/jFL36JcvDZ4w+QpYR2xpd1z4PHZ1STEb31HJ2eobKMq+WCYlRwVGZ89/wVTecYlyPWq2tW2y3e9FTzY9r1jqP5jMwo7t07Ja9mvP3qBQ/u3eHt67d89fQ5dz+4z5/8sz+mCI7X375gOh1jm57nL98gRaTD8t2rC44nE86O75KPCu6fHDP74BHNYsOblxecnhwxmmguXm84OTnkDx/9mBzBzabl2evXTPFUOnD17DUHRzPyo0OwjuVqx9mdM7TU5OMJ3o3wds3RwRzb9vT9ltevX1Nqw8ndM1RRIfGUhcDZLbVd8WZ9gXSBn/38VzjrORiPuffBYzrR8+LtCwiOT3/ye4zyiq9//S3PX15zcXHBtm7IleH1d9+wuV7xUi948fpzyuMzfu+H91Bas1psaVtPGzydFfR1jdCWD37/x4RRzv/13/0PxKj48Ic/Qtoe7xSnh/d59u1T/vLnXzOeTTg9mKDKnPPrS8pyzEcffEg1mfPy+Uu2doXQjulhjsoDR0cTDuZTms2SEC0vn7/hs08fs7xaUY1LTDkiH49RQnBf5RwfHFDlU4rTGTYG/uCzx2zevODNd2/ZLGvyfES1bZkWGceTMdZaglOMZ1MuFlfkfcdkPmG5WHN0OicYw835jt1NTZUXPLl7SnOz5Uc/eMyy2bC5vEZqw871cNWzXCwZlSWFyVjc1Fxer5mNC6azCuUDHz44Ypx/zJfffcfKBuoYWbx9gw+eerule90yysdsmx0HBweURvLm7TnOO/JxJNM7xqVk12vq1QoXO5b9FHuz+n+z92e/lqVpeh/2+6Y17fHMMUdkRk41JKt6UKslwqIhWrZhGIYhyvCNL/SvGboTaBEE6AsBhknRkrspdnXX0JVVOWfMZ97zmr7JF986J7I1gC0RdpXJ+BKZERlx9j5rr73PWu/3vr/neXCiRirQeKq9GR9WGVmULLYts0nJwf6MYmxQouRy3fHq7IztYkmpMs6XK/KRRjmPX5yhujGrywVZlXHv6Xs8un8f5eFnf/XXvDq7ACkZl2OKdcPhYSArcrp1T/Cemc44uXeM7w8xMuPs7JTgAvPJiKZuqYwixB6tMqaHY3Z1w2Sa4kelitR1x+dfvaAj44OnDzi6P8WfWWxnWVy+4Bd/kbE3P+b5d69ZbjY0QbJZNTROcPfBCTE3CJPx0x/+iNA1fP7lb1mullR5RW8dioDQGhXBEXB9xHWWUmdk5Yi278mMYJTnFEWBbRK8YILCto6+ceACudKIGMmkvgUfnLXJYUNK+tZCZ9H50NSPsF1uUKIlBGh3FufaBEBIRVkp8tykgYcGkykykxNspG8sSgqUMJhC07fb1FiHlKggEwAeEXgXiV5iux4nAvikyDVKok1O3wVC6FNsBQI3KHlNZlA6OTsRAM8ALIhhCKgQSIxK9ZCSkswYggchM4qiSu4pvUNJi1Iqxe1qgUATokebPDXjXQKtbZfuuXIYVqiYIK2mc8NxRYoqw2QSH/qbg0pRVPEGVAo02w5fmKSAVjeNeG6HODeDkqQCF4iBvxFD3teN/tj5mAZdsSUzGmNMciDoe/reobVCDnXsjfJZDEOOvu9TtIMxSKnQShK0xg0Q1s33ggGkSoc/QCce7+IA6t+4Aw2vQ6ph2JIgmATN3wxEbhx+EqQwSMeJN0OmwfEngVI3rzUmSIO3w48QYjoGG4hBpYGC+P1VPgsxqMrhFpKRIpWqw3xq+M8NwBRuHYykFGmgq2QSTtzEeQxKdJkmTkjAD++z/N4eQnyvGXwTh6H14NqaxsRp6HR7HCkCIynqFZCcDpQwFHXF/tU+D87uUfmSQmWD65pn6xpa+hQ5ObgkCZmAGiUVUZDcgWSKJtEDaCiSHRTee+qmAZli35RWadApJC69lCF2OoFVISSIEQTj8YgoIp3tUUqDkIQYkUpQyAw5xFwroyAErLMIGW5jWJQELUCmHMa0VxviQG7dqZB4H+n6hhACeaaQSieXNjl8Tn3aIyXHtQSiGKNoO0uIaVAbhcSGQG8tZV5QGpPc7PoO7xxKpUhPYwzT8QyLxbsVEoEpqhR/uLUQAgpJWZZkmUkAEwrbOV6/vuByucT1bhicJiBqtVrT7JJzhI/JhzfLDGGIrIwxuW5pncQpIYLrHMf1Mft399gWu8HJwVHkOdYKggAXewqdkxc527olBEFn3TBMTlFG3nvaNjkcSZKrlXeezqbY0FwbWhuQOmJiAkCNlsMQH6IK6CynyHOyTDOalNRdTdyz7O/PeHNxznK5pG13jKoRRVYwmk7ou55u19LWDSu/Ss5MtsdkGaPRmM1iw0hOiAqig9ViyTfffIfrLeNRiYoW23ZMJ2MODvfJsgItDVU1TmBQlqGNIjpAKpq6xaoUfYb3BJ+uxXmW09QtVxdLliEymZT0XYfRGVpqggicXVzw6NE99vf2uDg/RwY4nu8htCC6HGc90/l4cBKMVKMRUit2TYM2mtIoFqs11kUybei7hq7vidKjixzX9ZRFgVKSyWSEMjm76zXT8ZjtZsvVcsV4b8LD+/fReDaLNXmWJbfP9SZBzsKzXCd4e1yOUZlhUo3I92a4umez2jK6W2IywW7TMaoq7s7GaKDpHcvNlpxAJgL1akNZ5qiqAB9oW8toMkIJicoyoteE0FOVRYrdcz2bzQajJNV4jDQZgoDREHyPDR3bbocIkbPzS0IIlFnGZD5DBc96swICB3t3MNpwfblgtW7Y7bb01qEnks1yQd90rGXDenOBrsbcOZwgZRJoeRewMeI9+N4iVGB+cgyZ5vTsnO12y4PH95iMS5ptwXz/kK6xvHx5RusDs3GJKQy9tXS95fDggGo0YlNscaHHuuQyXVSasjSMqgKiR2nJbrNDnBykK3Zw5EWOAPKypAwwMRk6KrJJhQ+B6aSilJ7Nes1u1yGiIKsqjJIUecaoKGg7i1JJnHW1WHKSH1Jvd2SlQUiJC4Ju10OIzKYVuTb46QidSXzXpYioomRb17Rtn5zMsgznAqt1i/eRyWSEFIrCKO6eHLBcrVjVDV5Kdk2Ljz45J9oEnDjrkFpRFTl939E5BzqijUfiKLKS7XpDcB3R5GyaHmIP2tBFR1SS2XSMihHrPcKm6ExjTIKynWbdNGzWW5ptS9v1WBLo37c1Wgtc0xOCp5qOOT7ao9AZq9WG9WbHrmsRcUxWBGxvGRcFzaZHNg4TRbomG81WJWFg27TkWUZ0HZlSRJKDZl6U9NZBCJQ5qCGyartr6V567j80qFwxnRbpntH1nL15Q/CBzWLLrm7ofUjuL3VLWRWMxyO6rmM2m3GoFZvVksVqgVQKkQ0AL6nuVDEkN1XnE0xr8nQfixGjUr3sQupRiiCQHrxN9Z8SyWlQSnlbesUhLk7cwD3eISSYTCOFxlmH7RxSKLwNWOtwIgFJSieRgxCKmBji5JxEEmS6Pj2vVnpwrBruC7eljkjgTkhuR9GTYuskyblviKoNMeKsJ4abyFxxG+2mlIJbiPwt2C2FunVfSjVqih6+iZuNCLRIcLH3SYhhlOamVlc61RMykf4wANe3ccyDW5QcijDnE9wfI0idHCVv7s8DoX4rfICItw5CchEUcoCAvudAdBv9K25qwrfumW8BpvQbHwLRDjG7cogkDgy10iAGGQClG0ckYjqX3oHQDG5WAgX4RMS/rUNvHJRugKIBZIr+Bj4aDuTmqG4FE3GoYd9CSm9fweD4efNHw9/duCzdPOdbVv/tuYA41OFhiCOXt+KBd+v/CyuCdprji2Oefv2UP/zLP2S8HaOdfgcl/Ru+BIJPPv+EP//TP+fy8PL3ClRazpZcHF1w5+zO7/pQ3q136916t35vVxSR3vS/68N4t96tf+PW3xpS+v5ex1mPCGKI6hqa9tEjhUQh8C4Ng4SQ+BDIlCYzBpUpOpuaOHHYqAUX8aShnvNJOSKFSE1zn+Iu0qYpKVqMSop8pMaFgCRtXpPCKEMpSZ7lqKhSE1vq1Dx2Lm2IEbeDSG00+dDgdSIp13tnkT5tlifliMlojLWeJlhEUIx0RvBJWVLmihAkXrhkm63zFElmMqoyIwZPXTu0SHnvne0xShFEoAsJsjFCkElFcIFimnF854BmmyLFhBNUVcV8f87OdnS7jtZ6+uAoihyjNb7v6Kxlt2nRgMmLpKysd2kgZ5J6aeCieL24pOsbsizn0aOHtM2OdmcZlTl1b7G7HY/uP8ZOM5598zl+u6N1hkDg+OiI1WJFR4bbOUY6JwTJYrHBe4sVGhuhFIo7exNaG7labem6LbZ2rMKG+/cnjKoRQi9w1qI6R7k3R+Vj6hj58uULRkXJruuRAtCCetfRtj1VUZBXJTF4Ml3QdiBzQ5blTKcjLBbXCUzIkC5FzETfE1XG/mwP02ypXQeup3EW7yP5qEiOUNby6vQ1s22BkZHQ9SgjcF3A25Dcv4IfBkoaZyNt19N0DdvOMioMonPUbUdTVQRlqJSirDKkS4OLYloxmU54+OgRksjx3oivv3LIMmO5PMdET+ct+XjE81enfHjvLod7Uyb7B2B7TK6oRGC1XqOFRBdzfvPVC77Nzvn3xiN6W3NQjFifLZjujymU4Wj/hOO85wdPPuGTP/wpKlN8+9kX7BZrRO+4dzxjb2r4xWdf8flXz2nayPtPniKlZblquH/vLt2ypreOzcUzXr18zbOXpzx5/B6Pp3PM9QXPv/yCF597nDLocs7XX3+XQLXVlu2q5c4fH5JPDW9eXHJy94Ryt2Sx2FJvHQ8f3Ge121Fby3F1QCYkFxevefzkMTtX8xe//pxmZdmfTcimU86fveLBvQM++fAjMp0sv3/w4Ye8efkC1cCjo0c8fPCYojB03Y7TxYLffPEV++sTlpuaO8cneOd4/PABlxdLvvn2GTrL2D+Z8uDJHbaTDZfLDS/P3nC1XFDvLHkxZjo9pl0vefXma04vLrm7v0doe0x9SbdreXVxhfUCGTK26x35eER9cUXhDcW04mD/AK0cvdtxefkao3NGkymPHtzh8mLFbDrmaXPEY7GP/clHOCfIVYlUmu76iqLUTEcFL970TGczMp3Rdj1t77lcLTi9eM3V2TVORCaTnKhh0WypXc37D+a89+lTutbyZ3/2f6d38KNPH/P+R095efYCX/cUsxnzhyf8e3/yU/Is5+F7j6Hr2W0dq3XDLz//lp1ruZPPeO/kiJ311NFD19Gttjzc36e7OuPjR3c5OblLNitoVysOR3s055eEtueDD59yenbGF7/5LReXNU8e3efvfPopJycz1rue9Zcv+OLzr3h9esVHH7xHe7Xkxecwqwq+eX7KcrflcDphHnrU3iHkCWQtNKzWFxxMR1gkMki++s1zQtAQI//iz3/B5YtXZCaNxLfLhsvlBpOXHO+N2NY19W6HzFIDtBxV/ORHP+Cz33zHyd0DfvrpQ05fvWF5vuDi5Y7LxTXOBqa5YlrmrIUlasfedM7+0UMePH6Pz3/7Wy6vrhnvjxiTMz06ppDHzPIxi6srXr64JKoUzXT66ow78znH+1M+eO8Jz775jtOrBVpEXMhpmp5u4xlPSryM7BYrXl8tObl7wP5kxPXlBZ1rWV87tBCM25brl2fU6xXeObarDWqxQ6JYrVccPDxmNh1RliWrqwVfbnbcPb5H3Xf0toHgMNLQtz1d6zk+usPB/oyqMPzsz3/OanXNtt9x+N5H7N29Q/PtC7rOcjif0bgWoWGkK2yzYzI1/PgHD8m943zZUkzH4AXfffucL1+9ROWOT//4B/Te0dUNffSUAo5mUyqtqW2kYsRpcw1Zio3tbHJDE1GABdv2BOfJi5wYwSjFfFQSfWC769nWFhsDu80pwkei8xRFTvQBa3uU0WhlyHOB9QHl37oF9b0lWo/w0PU923WN7z1CKJy1KXZLBBCOKARlVZCVBcU4J88ziJIeR99b+rZNQLCSBJfizIKISCMZTSqqyShFBjmHBxAaLSXtrqFua6bTCbkxiBCwbRrouaHRn+WGPDfkuSZGQ9v01F2CVpQxKdYpgBdJJfvWeQaEGqKSSC4s3nnq3Q6dGXSmEmgD9J2na5MTkms7+t4iIA0zck2Mga63WBfwBIqRwWQ6MdIxxSspKckyjRU+nVuRoAfvBX3nMVGgSE6RUg6A+uA6EEIYovAkUoYU/TAUplLI77XxI7b3BBvIco0wAmM0Jktkk1QKEW7UxQx9+TQM7PsOrSVK6eQGpXVyjokJ3rgBk6JPgIbtbPpeLr2+mxo5qcQH6CYmyKbv/TCA+H5lLW5dnQRpsxtvrYISeCJFvH3em4iydG6G90+kR98qyqNL74v8/Z0sRLidBgUfQHLreAQJvpFiUKmHIRJk+MwqkWJQpJLJGWKAmW7+PgzPdRthISI+CoTndoiVTrFEipsYFTm4FTC4VjFEogzfi6TmL1xO4Qr2zvc5vD6iqitknwZGWmmU0gluG4Y+PvgU+xIimTHkWY73ARt8GkR+bzBllESS4iqVUilmyaefb6MTTNTHgBoGUH6IXItC4FNSWDo3IkUw6lwxHpfp8zn8rBhjKIqSPji89XifosqUViipCN7hg8f2DolAKU0kDZ6lSgPd5LyQTvm2qXHBopRmNpvhXNq7ZFrTe0/oLbPpjJArlosrQm/T0I/IaFTRtR0ORfARozQhQtN2CYgSCQoySCZlhgvQdD3OpWibEDsmkzRoF0oQbIqNM6pE6Awb4Xqzxqh0LGKwXrJ9ilk02qBNum5pqXE+InX6mc9zQ4iBMDje3UbjRU+Mipmc8odf/YSf/+AXrNQaN4BDKtMJxAmBzW6DtRoJRO8HZ5l469YVbsUj6RqQBCyO3gUyo8AHeufJjCFmEiNkEt0oRRQCk2nyImM2myIEjMqMhVzx9Sffcf/iLoqIix6VGdabDXoyoSoKsrKC4JFKYkSk6zqkEEhdcHm9Yim3PMiSW2ClDe22JS8ztFRU5YiR9hzNDzm8e4JQksXFFbbtwAWm45wyl5xeXHF1neCgvfk+QnjazjKdTHBtcpLqdis2mw3L1Zb5fI9ZUSCbHaura1aXl0SpEDrnerFMP+ttT986RvcqdC7ZrmpG4zHatjRNj+0Ds+mUdrgvjo1BI6h3G2bzOTY4Xp1f4TpPmeeoPGfXrJlMKo4ODm7Bx6OD/eTu5GA2mjGdzjFa4lzPtmm5uL6m7Ma0fc94NEb6wGw2o9m1LJYrhFKU45zpfEyfddRdx3q7pWkbbB9QJiPPR7iuZb1ZsN3VTMoiwdG2xlnHurb4ACJK+rZH5xl2V6OCQheasiyRVcAHS11v0zUiz5lNx9R1AkD2JiNmoiScHBACaGlASHzTDA6PmvXGk+UFSiqc8zgfqduG7W5Ds2sJxFRTSGhtjw2OvWnB/GQPbwMvXn6JD3B0PGPvcI/Ndk2wHlPkFLMxUgkmRc7hySFKKUqdExFcLNasm5qiyJlVJUJIelKMYd92VFVBzDRdVaCzjNF4RG87TBRI52jblsl4TIw7NusVi96T5SUH+/too8jzjC5KVssV69WG45MTYm/ZXC0xszF13XO1WmO0YiQCuS6S44xIcVt932CUINepj7Tbtgi1oxwVXJwtWFxc0zU1R96hlWK7aQhCUOYZmUrQX9eLJKCLkcODPZbrmt1ux4OHx2gZub5as1quaJqa1jqMFORaElA4CZmBPCuZ7h1ibc/Z+QVRJOGdLgry/QodBVJILi+v6F0Aodk1PW0XmJQFe7MR0SsuF4vk9BYlzkdCm+4FUURa79luW9CCg/19mmZH7ANtmyBRQSRcr7Bti7OW7W6HsIHOZNR9j8o1e5M5VZ6iz1aXV4TRBCEEnWuxfQtCYFVG11mMyRiVFeNpxdXpJbtdgw0dMivZG42g7ditN5R5DiLiCOkaHyNEy8H+hFwErq63RCVRJmO3qblcLqm7HYeHs1sgvOt7gkiRjyOtwEc6kQ31W2Dvco+L40USIAaBiILgHMF5tNEJ6AiRXOsEy7pA5wPWO/reU4tuuLbL9PfWIWWKHNVG0vUOOUQhS6mSC2JIN+vgAn2XHAtT7NjQ5wQQKZYake5HJtO3PdUbhx3nHCJCplUCkQbHHAQoo8iLLEWghZsaKcFFMQTa1mGy1JcVCOIAAbmQwPgbGMdoBSIdtw9+iKfTf0M4Gm7Icm5q1AFUijd1acTbVPtKKVFaDo9XQ3Rzcpb0g8slgB6gnjDEjPmQAGtl1OAsdAMkpZ9XdIqcDbfQksD7tN8XCG5YKMQN9iEGQF3cujglJ6XhVQ31981+IrmZpns4mgSN6iSyvbX1v61sb+rRVKPJMAg9pEwxceEmYu77tehQvw+95+hvHJfeChNuvZTi22NKp+IGRrrZzKTz8zeCi8Vb+F/894ij74P7b7+eOIg/hg3L9+H+d+tfc0Wo6orJZsLHX3zMx59/zOHlIVmfvQOT/i1b492Yf/Bf/AP+8//Tf85if/G7Ppzb1eUd/+X/5r/kP/4v/mPG2/G7z+W79W69W+/W/8Ay1vDhlx/yL/b/xe8VaPpuvVv//77+1pCSUio13oMYVCmpoSdlyiO3HkL0JC3q2xiCIbkC7wEX02baJyV4TF24Ydjk6F1EMijOSbnfWmuc87StRSuByRXRO7rODrBTRCFQxjAeVQghyIxKG9MoyPM0FBQonAcjoRqlLHOlMrTReGcJNjAtR+zaOjUUgmKcl1S5ZhcCre0pTJm2rTGihUEIhQ09SEFuNEoL6t7jg8Aoie8dHklte5ytCTZiJhV5plN+ffC0XU8dAzsPx/mcqhgzVoHrxRUNkI8qdIx0u4br1Q7pPUUm6SMYIymqjGbRokyG7Xv6uiEvR8Qg8E2P9oa+9UQpIUtZ9FVRMRqNmU33hkYObHrPqumgd1wtL1G+YG++T+4Fu65jPprgdsn2X2QFWTkhL0uKaoRTkos3L7k726eOHml7+noDuuDl+RtsV9PYPjVvzk9xzlFITSssQgmuFysWmy15oWjaHSNZkpUlZZUjY8/IKOaHc/LC4LxDRY2wATpLKyK11rDaYrLUKOqkQ0rJZDxGFRnbuiH4iM4rMqUYB0G7XHB5vUZXmkwqdGG4WK1oug2zymC7llwYtl2PEppSpNgDaQTeB/J8hM4V0fZoKTBK0TQNEdgbjQg60vcuWbQrzUgbxrpERlivN1xe7dhdXrJZrvHHkl999gVv3ryhGO3z9P2HxId3ONibc71eczI/Jl9WNBtLqSVxMiebQJSSdR2ZzfZYXa/IyozaO37wxz9g//0ZLz57RTUqKXLJuJpzfLSHKiSbixnPnz9jls9wVvLzX33NVy/OWaxWLJc1o/EeRnpyaXjv3iHTwymtl/z2i9/y6vqUk0d77J1M+cuf/wrbLFCZ5OTeHVAZewd3ESLw5dffcnlxRfQF1kfuHcyJvWBSlFxenVNUG371m6958fI5aMX9hw/ZtQ3jyR4PP/gxx/sTllen3LkzY5l5Do/26KwFnVFv4eJsTTFSRKFYrLacXuwospzF5QXtas3B0T6iynFZyXg+4e6dQ5rmFS++e85kVnJS5Dx58oDPv/gaKzp+/OF9xtOSy9M33L0/5d6jx/zqLz/DBkGRlbz47jXniwu++OY5BsPjP/mIl8++ZlQVaCM5++oNUSjef/wEJyM2CKJu+e7b59hrw9r2/PCDu3zw9AeMsinPn7/iYO+Yqhgx2dPs1mvOzhao0Ygf/8GP2K02vHj5nM1yzTzLKWKkkDmF2eflm2su17/m07/zAY/eu8OddsqnP3rEX/38MzbtFik1J/N9ICeMx3z9y1+TmYLZpGS93fLkBx/xyUdPWV/X3P/pn3B+ds0Xn3/H8eWWojfkZcH180vqLuDqmi+//YqREuwfHTDNDN99+w2j8YxpPuL+k/eJ0dPryNlyTaENc5Es2Z2u+O71Ga/PfonKDH/3j/5dHhzt8fLlK6wqWC03KC14/PARr05PKeb7HOWaZ18+o/lFz8nxnHw2pRiNOTy+Q9bsKFRG7SJ1U9P1a5QwaQB5OOXex0/4zV/8nOffCEaTA06mM4L30G4xo4zjRyfc/eAR/81/9VecXV2zt7fP8f051y+v+a///Jfcu3fEZG9G03nKvCTPBLnynL66ZrUT9DKnzlrkfMzd0YjMSF6+OmO8d8Tj9x9w/uIFRydHfPDBe+yu11ycLbi83nE4naJ6x/VyyzLsyMcZffAcHOzzcPyIs8sr1tst1cE+x/cf8O2Ll0gtmU8qlMwompbTqyW7NmCqgjzTaCXYrls+/vg93nt4n8O9Z1wvV5SFZlSN+fLb7/C5S3Afil99+zW9jdy5e8h/+NEHTGZ7rLYtz1+8Ybdb8PV3X7G3N0frgLUdL16/4vh4j+OjOd4KmvWO5allu7XYfocxgT/48Ud8+KMfs/jkiv/6n/4ZkojuWnq3Y1f3tNsr/kW7YaoNu+2GajJmf38GuSLXJRdHU44PJ+TBk4eMaaHZtR3nb84R0dM2PdEU9Eiq2ZT9ecVioWjX4K0lBqjKioPZHrZu6IKlD54ex3K3RUXFdtuzdRaVm+SRYgO5VEyqis16hVZJEbxrkgI7eMikQgiPKgxFmeP6lm63AxSF1PQy4Ly99e8JRLJMEWXA+UAuUls5M5oYU8xTNSoIhaGre+r1mt71CC0w2jCZVYxmFWVZAhJrPFIl56lu12O9IzOKgMMOkEty//EJAs8NRiffmGQoKQku0LUdkUiW+xTZZG4ilFyKZtDmpnOPVBBDSA6MStN1LSFGsjxD6+QqZXtP1/UDRJ6+9y0wEqHrLNY6ooDxrGQ8S/b0tkuK9763CTKREmFIMJaPaGMQIkVxCQUmH2IwBjel6JP7prf+tsl+40IlVYqWEEAQEi0TEJTqTGi2HXVoKMoUa4eUWOtA9jhnCX7IeiBClAQPcVBgp6iDVNeGEAfoKOJdTO4RXRoyeR/gZkgkEmj0domhzk3wjRQSP7gG3DgpCSERxGG4leC1OLgDERO8L4eIh9tnvanBZXKZEopbZ6Ubruv3Wf6cnJQGyOrmH/F2WCIYQCXi20ELDO8HyAHISpOXtxEWDI9LjlXxewBXHIZEaXhpXQCZ4krS17rbGA5BGjJmJn0OtVCMd2MevLrP4e6Asi8JLh2LFKCy9BkSQ6RcCGkQmZuMfohGE0gybTAqDaicT46fN5YLkjSAdD7FqCgpERKsD8SoUFIMTkZiiMRJ1z+ZmQRFxQQiOTw2puvESBcYnZEJqNsaF0CbLAk7ekvTWUSIDEluaShpNK5Ngg7vPd5atDbJ8cp6pFJ4F2/V/EJKjDRkJiPPCyIR7x1dCHTOQ/DUbY2MmqIo0FHQO0eRFQQbaOsOoTTKZCit0VlGEIJ6s2ZclLgYEMHjXU8UmtVuQ/AW6z1SgKh3BB/QSBwepKBpW7gRGViLkRqlU4S4iB6jBIUp0EalSBTk4DwXsGJwPRhcp4RMbn1aCKosQ2hFb9NnZRb3eP/lB3z29Nd4X1M3LVKnQaREUrct1kkKI5MjlFCpVkFiULfOVjHEFKmkJfiAFAzxgBaAwhiiHBwdQooX01KQDaBu1/XUTU9f1/Rtx/XBkn/G/4ujN0dMOWR/f0olCqpsRNP0jIoxujW4GNACyHNknoOQdH1yM+nqDmUkNkSO7h1SNQWry3VyXtGQ6ZLRqEQoQVcXvFmtKFSO95I3Z9cs1juarqVtLSYrUCKihWQ+rsirHBcFl1eXbNot43lBOcp5c3pGsC1CCcaTKQhFUY0RRK4XC+pdA0ETApRlAV6QaUNd79C65/zymtV6CVIync7ovSWLJdODY0ZlTltvmYxzWhWoqiKdT6WxFna7Dm0EEUnTWna7tG9r6xrXdpSjEqE1QWmyPGcyrnBLx3q5Ii80I62ZzSdcXS0Az3R/QpYb6u2WyaRgMptx9uaCEJNr23q5YdvuuFqsUEhm9w/YrBYYo5FSsL3egBDszecEMdwThGe5XBLa9Dk62p+wv39IpnNWyw1VWZHpDF9I+q5jt2sQWRI+2a5jvV7RNR2F1mhAC42SJetNQ91dcHKyz2xvzNjlnBzPeHN6Qed6BIpxWSJQxCzj+uwcJTVFrum6jvnRAYcH+/SNZXrnPrttw+XlknHdI2OgzEr6XUdvE+h3ff2KtuuYVyVlkbPbbpKATGr29w7QJiNoQesc1jpmZYn2Hi80vXVcvnhFZ3tOjo65d3xE1+7YOYvOBNvNjsPjI5wFHyXj/T0W1wtOTy8oi5z5fITMc4pqROUSTGl9QAVP29Tp+h8gZIp8Piara9bLBVk2RkuJjuCbBiED+WTE7Gif7WrLqq7RSpOVOYLAq5dvyPKcalSQ5QUgCc6RGYHrLXWfYqCt6Il5igOuyoLtbocXgsPjO7iuJbjA3v6cvulYXq+p657caPIQcG1ku2upxkWC1bVkMpow8oHVegNaMppO6dsGdxUYj/KE2kbBtq7pfYe0qcemlaTpLWo85uRkzHS0ZbleI4UgzwxNa1niqCYZhclZ7zZculTj3jvaZzwaEYVgta5pmy3L9YI8K8gyhcBT1zUm81SlARIMu1ls6bpA2/Yo6Zntlzx6eA8QvHnxms1qSybB9h3Oe4IPnL50VFkOzhFDYDIeg0qRolWpKUdzSiOJLjnAZJlkt2txzrIdnBKdTUJClUkeNo/5Tr3ECXcLG41HVYqK855AIIhI5y06SJxN97UgUxwbPiICFFmW6jDBrUN8Z5NbnxruJ0oKojKDM5BN8ciQYlZDuK1zYvqjBOmEkL5mqA+VUljrUEqhlMS7BGJ5lzYFQkuyLIkWUqSbIoSIlx7hBb5PYDIywdsh+ltiPA7ORELexNKlWlrcADc+OT0lNx459H8TNHUDVgt5E4l84xYkEgDpBwhJq9vHeB9wLjmkEt46ZSopb6PfkntSRGlFXhqUGiK5b6Cm4diVlEQ5xAMPj0+QUMAodTtgF6mwvGWJgh/q+hvHIvH9UfyNm5O4/fvgkjullCJFZObmdm8QvE/wdnz7DEQIQQzg1032XOAmle2mxk/nI+0rUu/87TF8/3MBg2tTeCtkGLyPvue4dPM6hni3v1FBf0+cIiDGBGd932Xq5si+DyXJmz3Su/WvtaSXnJyd8Cf/8k94/Owx0/UU5d9+Pt+tfzvXndM7/L1//vf4x/+Hf0z8fREXCfj2ybf8w3/wD/n7/8+/z9HF0e1fGWvQ/m89Pny33q136936N3YJBD/8zQ/52R/9DGfc7/pw3q1369+Y9bevMqQYlLVyAHwGVUgMOGfxw8bPu0FRKuLQtFegZIJkEGg0feiJhFtFjQ8xNdCFQqthoBBSVIYPcYhKiCQASqOkRMk0aIPU5zdao5AYJTE6xQ0oociy7HaQE7xHCE82DOfE0EwIPqCITKoCHyxt21IWBaOqQmtJVWm61YoYfVIvx5RNThT4EMirAq8VTZMUvkJIPBKVG1brdVLudo4iy2itJcsFBIcGlDHgLX27Y3mZNu8yRMbjir29GXXX8PL8NZ1LilclJJky+CBoWot1HUKAkQZlFC5afLAYZUBJ6rqh73rycUFmNPPJEbODOZORILiOsFSIKOlcoDQVptLsNMjtlt4nS+gQHXG7pu560KmRqMYFhIb6esWi3tG1PZ3eEoLDC0lZ5PTR4fsGKWB/MqOzHa2zNF2LC46DwwOC9/RRYKQkLzVWBto6IKPgernGupYiyxiNy6SSD47WO6ILZJlE5Rmdd3jXEjceVeTkVYFwkQd37yVHriCp2w4bI5k0oHsO7u1zvdwgSO/lxXbBZrdhWu2j8hyZFciQ1FxaC6azCtmlvPuHs3lSI6pIVh6wWrQYJFEYhNLUdc3h0R5r13N6uUF5mJdZsrLKJF998xWzbIRtNigEUViyUU42ysE7FosFTx+cUF9uEUXBFy9f8OXP/xrXO37ykx/g2xpn4Y//5Kd01lNf7Gjra/am95hPpmR5gbcJHOqbDZtly3a7wXz7ChEj337xkquLBW7uOV+cs3Eddb3C7q6RIqDsFXnUECX/8s9+Rn4wg9EUbTSjvSOm/ZaLV8/Ix2M+/fGPcOseFwXG5NT1ho3dJaepXc3DvRHu7Ioz33O1rnn55oxlu2K+NyHPNf22pqJgd71k19X4NvD0Bz/i0Xv32Zso5leK9mDK/cdP6PqW/2b9M2zj+PXnX/PgwQkff/QeX332NV//+kuOjg8ocsnKCa4Wa/7w7/4Rd1TG8s0VhYG8zDm+c8Kbi0uevbyi0gsqIzl6sM+o0uzWLUEZ9g7vMhqNuP/gHovlEhEtRSZ58vgRzjVcvb7i9atnZEXGbP+IXd1ycjhBZ4ZqtsfzV69RMXDv7h7Nbs63z09ZXCrieyeI4Gh2DdPRjIvzM4z0nL86ZbtpaFxAO0fbWprWc+/uPS6EYLdYs11uwMPDR8fMDzLqLnCyP+c3f/VrLq8WGKU4OXzAewcaEy3K9ngrWQSY7x/xzVff8f7dO/zv/lf/C1rX012tEF6R5SUXF0uiEpw++5bz82s++MmHnOwf8IvPPmNkJIeHMzbLBUUuefL0KU3fcfbmFfvTA6RrEUqxt79HMZqBhHXd8fK7cygnnF2dcnznEOMsl6evEcqwahyN3bD2PcvtDhtg/84Bf/jxe2RacvrJU375V79keX1BcA/YNQGMYX92Qm5yZC6x25rZ+JDT83OqvORgsodWNfuTCXXw1OsL+l+uMCJnvlfy6PExo/kB3hq01qwWC67OFuS5IEZH1284W0mK/YrO9bx4+ZLppKLfGc5frqnmBff2J/g64JRCRIEQGQd7E6bjjDuzfcIqsFu2/PavvkZaeHpvn6ZpGBUS4RxCZ2zbhnbrkVqybevUQO06pIT1dsfPf/EbvMwpixGP7txNwIPUlOMJ3746Iy8q7j0+Yv/uHWxnOZzvE/ua8WjG+fWSddPRtD3BNjx6sM8n73/I1emaXz17QT4vkTFw8eyMz5pnbDY9680aqVsqU1Jv1shMYruOaTXhp0+OAMUqRl6cLVhttxw/PcDvSrbbmp///K8x+Zy7d465f+8el+evkQLavsPhWC9WvNmsqbTh/tGYHx3fw21bltuWajzjycGcpqn5+vSKZ28uUTjoHeVexSdPH3B9ec3lakm72UDbYUajIZIgsmtqWm+ZjityLanKks4p1rZBmYLoBf2up3cWQcD1Hd73CBewQOwTZKQznXrKEnARkymC14gIhU7xRY2S1HWLFBpBQAiF1oqAx2MRIiQnpKqkrju8i7TrFo1O18RVTQwpjk1qhcodWkqKIkMowWw2oagypDTEKIm+R480LtN0TYuKkiIrKPMSIdNgIcZIlWUgFVIojErRZpnJBuVxPcDegehtiqgQKQopDAMCRLxt+qfBiCIIT3Cevu0JIdCoNinKh0Z9CB6TG0xRJfgmpHgM11l87wkIRmNDNU4xutFLvOxvo3ut82k4o1K8lxACbUw6gGTKiRhccqQUEEIC3IeBQvAJQA4xuaKYXA+A1gCvyNTEt32g2fbY3hMBX3f01lLkeVLyVwXELLm9kFx7Isk1se88OkuDIBC3g5B0gAFvk2vHTbxbitNIQ5b/bsNfSomR6fWQXk46z8EnmOp7X3fj6pIg/oizbnDkGTTUUdxGVNwAPUWRAYKmaYkxoEyK+tVK/ndGE79nS9zAQPJ7r0fcOlrFQfY9JAbesHTp66Ug3oJNCTJKn9/BlWYQR0gxQEmDQ1IyzIq3avs4/OAng52YPnvD4UkpMV5xvDjieHnEweIA49K9QwiBFyn2Og0Pb5wB3rohCCDXmhhTLKJWCqMNUqYoZe87YkwDKSkEIabBW4wBaTRRpro0Jv4thfupBB/c7Fm0Sm6ySgIxIAGRaEO8s7T1MCiMKcKsHBdYZ1nvNviQIMHkXqUJQeBc2t/cnFdxAz/FMMTTJXDGe48yaR9W5BV5VZAbQQgOOjnsiyJaGaTJsRJE1+Mj9DK50NJ36Vqg0jVJZBqiwzYdre1TTIztb90OtNYQ07VMAGWeDzEyKUrGx0A1qtK1jwT5aJ0crdwgfkkOTenn2uTmFuJzg/uYUknE4WMaMNMPsaKZRgSYTiZ4HxAxHXuIkTtXJ7y895w4jTRtn4arIbDrG3rbk5sEtwg9OP+JNIDOCoNwCbSb5nm6BsuI0iWtdMO+IA19rXVUWUEXPLumQ0RPOTgYowXXi2sKlRFcPxggeNbHW87++Bxjc8qqYH86Jrsuma+PGJ2NqM+2RBc4uXNIdI7g4d6DY3yI2NpibU1ZTCjyDKUNIQhG4zHe9XStoxcdcrFGAMurFU3dEPPArt3RB4e1HaFvEnwZGnRM+//XL9+gyhyyPDk5FRW5t9SbJSrLODk6IvSeEBMo6GxP63tCiLjeMiszwq5mFx11a9lsdzSupShzlJb43mLQ2LZNgKCN7B0dMZtPKDNJ0QhcmTOZz/He8bx7Q7CBi8sF0+mIg4M51xcLri+uGI1KlBK0UVA3HXcf3WUsJe2mQavkVrI3HrHZ1SzXNUYm951qWmKMou8cUUiKaozJMibTCW3bImJAK8F8NiMER7Np2GxWKK0oyhG9dYyrDKkUJi9ZbTYIIpNxibMFi9WOppbEvTEiRmxvybOc3XaHEpHdekvfWWwA6QPOBZyNjMdTJBts29G3PQSYzcaUlaZ3KUr+8vScum5QUjKupuxVEhkDwjtiSNfnshyxuF6yNxnz4fuPEzTZtBAEShnqegFSsFktaXc1elRy784R6+sVbdsyqnLyqFINM6rI8oLtdpMca5TCe0s2GlEUFWQ1USmurpZEU1C3DVILxpMRfVuzEYLOOaz3dF2L61tOTy8ZTyqOjqYUueHkcM7l1YLlxRWuzwhe4gKYIqcsS/JUXCClJnhL21qmeUnUknFZslpv6IPj8uqC3WZLJHCwP0WZDJm6OMQYWFwnF4TJKAMcTR/AQDUZcb1cpPgwrbm+2OBFTCIEBTsXkTI5ThZ5TlA9oyzDi4zNdsfiYgU+MB+XtG26figBPkBUkqbrE0QaPJ2zCOcTyA1cXFwjpCAvCsosCRyEVORlztVyg4+wP5tSjca4IYa0KnJs06dYtgFW7/uOIpccHx6g0JxfrQg4dKaxdcfZpqZzgbbpCbFPrkK9pVEDRI3g5GCfiSmo+0jXO5brLVmpmB9OsG3Pervj7M0Fh0dHTCezBNnbnhiTm1JvO3arDik041yztzchV4JNXaPyyLQs6W1HvW25Wu1wrk8VW4wcHs2RwbNpUuxk6C2ZzJgtp0w2Ey5Hl7R9hzaajAQSainpfT/Q8pJgU3RpjCHd42xIbmchpH7lUJ9ws5/wQ12pJEomSEkpSRiOaSj+gCH2LESi8ERS1FpZ5UNNkAB9G0HkMv2+H+pTkZxMw+AGmClx6yQmpGRAbEAJtII2pLhBrRRGmRTDSrL7lFImpyIhb10tldIDMJTcROXN/ZsUYydlqmmCT+LNG0A+lczfq+l8ii/GJgc/MUSi3dSzymiU0cSQBAcxJMfbGJO7cZarWycpYgLHuIGHQnhbPw6Ar5Dy1kUTQQKX5A38/tZ9KPiQ+tODwOAGBLutBMXgSBRSgoAL/raGDF2PUhKtdIrhUypFvMXvxaiFBA855zFDrft9x6O0r/IDgPw9WOrmGG9q5eFxSdAwuD/Jm5i4oe78vkWreFtb377Wm1SC4Uvi33B/ErefX6XUICAJSJW+102037v1P2NFyPqMj7/4mI8+/4gPv/qQoit+10f1bv0eLYHgk9+m2LfTO6e/68N5uwQ8e/KM/+z/8p9RtG8/s0cXR3z45Yd88PUHHFwdpH7oO9Du3Xq33q1/S9eDlw+4//o+zx4/+10fyrv1bv0bs/7WkJKUctjA6FulC0RETGpkaT22T5stQYKTitykBnsIRNcTQ4ov8C6gjaCoCrz3NJ1FCpWi4rxHEEAprE/2/WGIS/A4+h6MFmlTKNOmVSmJEhItk3rEu0BvA5mGqkjgk8hDUhaJ5KiQmuB+iHRQKftdC4o+w7tIVZV0tscHhR02wWlDqpI9vlIIYRBRkcuMXGWYUUaWJ9W0lBofQ3LXcUmp3VuSwllVaJmzdzgjCMF3L1/gXMBaz0gZRuOK0bhCtC3t5TW7eoeLoFFUVcV0NmO1WpIJjdGaRnRsu4ZJnqAq624a7qmBl+UgnKNZ7widwllPPxV419A2Ndt2R+9AhRRlRikxUtDXLSgoqozgI5OqApOzWu/orq+p5jlNvUY7jy5zFusFWuT0QtP30LYbogOlDEWWsdttgMi0GjEpCoos59X5BTZ6iqKkEDm9yelVz950RNdDNZqjjaap26QekorO1hAi42rMKC/onaMPkY6AERpbrwne8Ob8kjY6hHUgBW3XoqXk8aP7LP2S4Hts3UEuiSIyLQuqaoRXiqIsUU6gpcQrSScF09kemVAYqekCPHp4l4M7+/zlz/+aYFPkRpQSVeYIo6kqTd7sUAHGVcX+fIwoDIvlAqe3rLY7HIpm15EVJWdXVyipyCYZl6tr8mi4eHPGX/72MzabNfv7++ix4s7sAB33OTl4QLGX88v619TbDdfnb3B1y3I9ZrdcYtuO3WbJrvMUs4yvv/6O3bbls69+Sy48zasFfYhJfZoVHN29y8l7T5D1mtXpkuen17Qx42P9AQ9nM4w2mIMjoivJpeCDj95Hq8BXizesNlvGRnFysEe7hlXXUddbXofA5XLJ/p1jxkdziqMRxXnN6nzN7nrNbrOByTy5HFQZ88MRDx7OwTu++Oo5od3xgw8/oMoqrl+fMpsYtu0O13dkWcXXz9/w2Zef0foN1fw+RwcTPv/yO97/4C73nx7z/MU5F1eK8uiAcQ3CRu4fH3N+dcnBbI/lZkk+nWNXjuWbLcvLDlTA9yvOTq8IwZPlGctuyygDPdLs37vLetvQ9T11k1S4j+7fJctLNusVbb9hfzTmyy++Zt1Ynjy8g/OCX3z2NXfu7yEySWw6dvWW33zdkkvBvffuEy6v2csFsl3TLLZ07YbjSckXXcdvv/yGJ08f8h/8/b9LbC3PvjvFtyn6SpWwalqOq3uYpuHozl2md2bM9k84+eYFfeNY1Q3e9TSdoyymLK9W9MITx2OevPeQV199zWcvzynHBfeOjsmkYm8+o6tXPHp0wrYUdFEiZODly1csFtccHxwyNoKm7fjNz39DJTOO7uzzxWdfsGstVVzx6aMTvNQEDC707J+cMJGGzz77nEV0IB3tasHr1Yr69Iq9w0MOHp7w9OPH/JN/9F/x7T/+5/zJH73Pbrui6qc8ff+QyX7JF1+9xG0CnZP00bH466949u0zCD3F4R6z+YiL10sur095cO+Q6mzJYvsl+WjE/ljzySeP+NWvvuCXf/ULHuxNuL8/4v2n93jvg4fEvKCuLwm5RqiMdrPB2cjD/IC7x3fIZmNWmy3Pv32N266YjUr6ruX84pzlbksIp4zHGXdGJePJiMcfPuTFszcQLGNtaEJEioZynKJGt+2aIBXtesvpy3O6bocUjntHh8z3Z6ggOSxHyOM7ZFLz8vkpTfD8+L377E9HfH264ejeCfuHU15fXmCd42qx4LsXl9RryW7tWbuOH79/lyoqml4iM8Wz8zOEFGR9Ty9TRGvjLEoLrruG49evubN/xLM3F4TgmJQZOgi0roil5up6wX/7Fz/n0x//iKgkZ5dLml3N4d4+x/sj6rrl85enKF0gzJjlqme92rJpWtTFmm3dkpWKo72KLox4/voVbVNTTRSZ94zzgm+2lzw7v6R3HQvb4knAjc4NYwyFyvAB6q4nErGdTz8XLrJtOxye3Gii8zS2x/tIpiSliIyrEp1pZrMpfWdZLte3zW1rO5RMA/TjyZjzs0uaukPEBO76IcKhKCqKSiFVcugYVQW7dUvnPK5bkxcl7bZP8UlKkJeastBM5wX5qMBZR5nn6DyDqPBO4vqaGJLKXytJby2x7/FdiiPxCLJcYTKF1hnepegIbyNBgZKKPM+JcUSWqzQAjBGtJVIJCpVhrUcAzjravk/3HWOwfZ/iKKLAdh5wxCxQlAV5loEISR0vZGJ2fKSpW3oX8EGQlYbxdMRolKcIKv+2UZ/chFK0FyJijE6ulSqSFTkmN0iZ3EW88ykK2Eba1uGtGxTakqjC8PuIMWmYE4cmvBziFILrBqgpoo0iyxMwUu8aYmwwWlOOMspxhskUSqcmfVdbNquGtk1qcq3N0LSPQwQDSJF8W6y3N6luCSaSCSjSOqncIYEyUty4gwrs4NgjRBxi68Rtfc3NAENGxKBWF+JtxNww70nuocPwoe87sjxPsR5DpJQyYnCX+v2FlG6GHjeAz83QSoiIJEV1JFgp3rosaaVu4/Bi9BAGFb+PSAXaaEKMOOfTUApxO5hJv4+3YBiRBKX5m+i8VOsJBFVXcrA44N7ZXSbbMRKJCxEvI0YP75kOqKhuYasEqbnhPUvuAUiB8pqgUrSOD56IHI5p+GwM71s6B2moqIVOcYdGIdXN609xdG5wMogh4HH4ANng6jqqCqKA5XqdQMQQyaQkywwmM+Acrm6wtsfHNHwyxpDn+SCAECgpcCLinCNTGqnSPkYMEXo+BJRKg1nbW6JvkgNALgjBYq2l9ylKWSDRSIRJ38tbm7gao1NkszEgNW1n8U2LKRTWdogQMFrRtC1SKIKQeA/OJbBCyARl2r4HIDfZcK1UbHY7PAmQ0ki80njvKTKTnHSzIp1z69K4TkqcswPIlZ7Hh5CEM1FgkATbQZBsdjU+JjATkQaPMkh+uPuYX979JTF6gvWgBFEkSE0bQxwgKzmAc0EIvBBkRYkmDYR9FExnY6pxyZvTc2JIn1ekRGgFUmKMRDuDCJBlmrLIEEomkED0tF1/6xSitGHdbZGixqkpIjrUfMPz8gUX8RqjM3785kfczY4Z5yUyloyqKabUnL6+wPYdzXaL7z1t19G3TYJXuxbrI7qQLK6X9L3ncnGRouX6Fh8jfd9TSkM1njDem4Ht6bYNq02DQ3Eg95kVeRqCV6ME5QrYP9hDysh1u6HtLZkUjKoS20LnPNZa1nHDrm0pxyOyUYGuDGZn6bYddgAQRFYiRIs0inyUMZ0WEAOX1ytwPYf7+2TKsNpsKfJ0f/XeodSc69WWi+sLXOjQxYRRlXN1tWS+P2G6P2K12lE3Aj0qyWwED9PxiF3dUBVF2mNmBb7ztJuetnbJscS37LZNAkm1ovU9RmUoIyknY/re4rzH2oggMpuMUVrT9x3Od5RZzvXVNa3zzGdjQoDTi2smkxKhJNFarOu5GCJ/J3tTYt1QaoFwLbbtEa5nlBuu3I7L62vmezMev/+IaD2r5XboUwSEhtY5KjNBWstoPCYfF+TliNFijXeezjpi8FgfMDqnrVs8EbKc2d6MzdU1F+sdIQbujUYYpanKkqZrKcqM2Thnu9lisuRAvFpvGFclmZHY3rNZrNmuthzP9+i6lrr3ZLFnkimKqsR6jxIJ4JwfHGDPL2n6BICZYKlXa7q6ZlSNKMYJPlstV3z5zWvu1j1FBtZ6sqJiOh0lcLMH76BHslnvWK1SxJkqDDqD6BVniyXGKEKEenuFyDJyo9ifT4jBcX11iWsKCiUpxyUH+3uU0xGEnsZ6hDH4vscSsdEzLkfkZYXUisViTd+0aJVu+G3Tst3t2OxqIDIfFxR5xnh/SvSezbphnOe4EHEiAJ4sMzRdhw8WnGfTbej7nhAtKkbK0T5EQakzpkWJVIZ6AIxGo4yD6Yhd36GKnOP8gKZt6WyCoBaLLWcXS2QwbLuWapozmZa0O4vKDLvtkrq1ZCad25hFutreAtpquyYrcnZ1R9N15FkCT7U0BAXeW05PzwhICmNwIbBe78iLjHlVoGczrtcbWhsQOsN52NQ926ZDthbnkqOPMYrZJOd63dE0DVpphHdk2hBjx7puaLuW2vUIJbj77D7rDzYEE4bepsQOwHCqYT0Bj3UpplVJgRIiwbE+1WUuegqToVS630qpaNs2gR5S4r3nxh1+VJWYtqdru+HnTQ0glk/3NpMhZHKRVEZje4/rU3RzcAnWt73DitTnM0ZRFAaVqVRHcNMflcSQRIbeuSTkFBJHcieNzhFITktSJRfyVIcmJ9YQkqvYzZ8bbVBaDACLH+ombmvdG2jIuyQMUCo5FYabGOQbwakPaJPcr9AaRAKkbiykvEtuTyGmusxkmiw3AwA81MA3cA4pmjs9xxD9JkHp1BcW6i0YFPwAfLkETMWUujpE7CWQR8gEeYkBdr/x+QwuYOPbx9w4TQUfaG03QNEKnSuM1rfnJoSYXPO9Q3o5PC7V9TdxbaSOMS6GtDeIydjxZuafHFbF7R9IceMKlWqEMIBdCcYSt8/5NyLcBiHAW7eltzRZHOpuEAkolAnySuoQgVA3bk1/I6f63fpXrQjz5ZwPv/yQn/7ip9x9cxcZ38Fe79b/8Mq7nD/+iz/mn/zv/8nv+lD+e8tmFpvZ2//fTDd88/43/NP+n3L3zV3+o//Hf8T9V/ffgUrv1rv1bv1buWSQ/Omf/SnXe9dsJhveXQrfrXfrX3/9rSElHwOud0jhUFIPQy/FZFySZxn1rsH2O4KPeG8R3qNyg4gB73qkVAkOchalFEWRI6XCWo9Smq7r8VJiRFK1WOfSRmmwtk2NgaRANFqTmSGjXUqUTC/D6KQijhGUipRFhYhJS6SMAWQacEqNEJ5AT2d7jM7JlEqZ59qQF8nSPfgUX1eVBVJrCLCtdxAF41GWIj6kZL1tmMbIaFQiZaDrLNtNapBEazFaoeWwGReKvk2DmPV2R9vXgCeTERl6nPRsW0d72hMIdF2dGugovJZ0rufy9BydaZQxSGkYI9n6Oimtvcf2IdlPR09WlITQ4K2jF4626eltR9uPkMojg2BcGi7XO5bbhpHKKSjpBOQyEp0l9oDMiM7T9TW2a7GuY3ldUyhJjA7feVyIFGWK5qnrhokZ4a3FuUDb7DBKIXVSB4cYWdc7XLxpMgiWqw2rvkN5aDYbhIhEkwaTWmmyIqftHbZPCqYgND7CnXsn7HrL6cs3rJYL6rpBBM/Z9YpyPgaRPhsFJdNyTB4zCqeYlzkizwgINl2P0CW984ykIROp+SwenLDc1ugQ6ZoGIQ1KK0TM6ReRpVvjWg828unHH0CW8+tvvqFykZPjfcazMbvNhkJmTMZTdm2DbwVdqbmq+wSaCUvlHQejAlUpvvjmc16dlhztjXjx6hWn5wsmRY62nhffnTHOSlxzzfHxPlM35/BwynfPv+NXv3jGbHzMwwcHHBxOyfZn3PvgPVzvkUXB3tzw+S9/y257RN/1LNdXWGs5P1vwwz/4Cf/r//P/lupoztnLl/zqLz/nsu+I23S+6S1nZ1dM96f84NMfcfr6jGa1RSnY29/nk08/Zn+qwfXEX9a0m5YtETEpycsxe/szHty5z9XigsZkNMYjipzdekPlWkY+Z6zGPP3gCfv7JV/9+ltMVEz2DimKEd98+xJrFceHD7gnPE1vCX3L1XqN2+2Yj0Y8ff8T5vOcbed48OARZy+uWZxeMZlMefN6ydWbM1QIPHr8gAf7hxhtuHPvI7744hl/9tVfMRoVqXkcen5YfoizjklVUeSSq/WGk/0jnj58nxfPz7CblnW74fVuicGQzAECL1+fsbc/4cqseXN1ztP3nzIbj5BVxsHjO4xyzTe/+ZZvX73i4fERrgNUJJ9UHGcGe3HNxZsLtusG5xuWzY6QGR7enTEZZ7z65iW29YzKgu3mGh97ciERo4y+b8i14vL1BbYX2DrjYD7j2dVzdqsNozLn5TcvqcYT5vMJFxfXXJytef+T93j+7XOudhs+vDvmmxfPmFQzfvyjj3j2zTf0USOKGadffcsv//JzhFH8+O98Cgo2bcdoMmamNcXeiLxUzO/f4/PnP2NWaE4OZmRa8v4nn/DZL37B7vyCMq+4f3TAzjv8+pzXz79ksfM8/PAjNiINCUIXOTo4ZLlecOfBHsuF4vmzKw5GK9quY73r+PbsJdkoZzaesrGW2cGEIlry6YTx4RFjk3NycozODMvrJZvYsz89wqiOD4/v8/jkhL/+7ecsLxeM5xVP7pyQW8XVpiZnRBQ5T+4dsF5nNI3gxYsLnGsornKKLOfJyR7l4wPONoF//v/+LaeXb3jy3gNE6Ng1Wy5CRZEJdhdXSd0PuK7HVBqBortY0ihJORmx3W25vDxl4yNSeGaTMcu2Z2YKVJT0wXN6cUb0l2RKsuoazgpFu9hwvVlz9/iAUS6xB47rxSX3Do4QR8c477i+fI1WkrbuKfOcMhfsjScc/bs/RVeas7PXnL25oBqN+ODpE/JCcHa1YrlpUHpNGxyjqqDdtDx/vsAFz08/fcpoa7D0uO2OJx9+hHfwm89/ATHQtp4yK7g3nXJxseS1C7x6vWDbNowrxSQrWO1arl417BUGGR3HkzmXQdC1ntdn1yw3NRfXC1x07LodNS13juYcT8YsN0ts0xF6R+fAeZLrhS7otmu2TYOLYIbBcxQSZyNaRopMDxb/oJFUKkPJQKMlXd9hbaDtHTo3ZAja7Q4Z0xAoRofRAukhGElR5YzHBdbWCajuPc729NaCMqggUCbiY0RrQVUZilyTl5oYLJlU+K7HhkBmihQf4eJwr7VMRyWMCrabLdvlliAEujDk2SjVVFIjlKCua9brHUVVkhmF9w4fHMbkVFVJ23ZpQO4DSmmyTGN7R991rDZr8jxjXI1o2xrvQrq/hoDt++SGMai1i1FOkWfsVrsENiiNjxEbkotPlhmc9XStIwRx+z2cczAMHUIc3FGMwuQVpkgqapMlN6gQIn3s6dqepk4xc96HQSnt0IOrjBjigKWQKUZHKgQpZrWrO8IQJRHxZCYnRkndJ7ck3/f0vcO0HWWVU40yiionyyRCNPStRdKS5ckFwPYuKY8jRJ+GcNa65J50o9IWb/+NQyRdiCG5VUWJ8wHXh0EFPQxahkgp728i4NJQ5390fzt8H6kEWZbqXucSuCIHGELJFC/1dgjy+7fCMJAJId4OXaSUt3V931v6LkFKPgR0FEid9gYueKRIw6g4gGlJZS+I3icn0wH8kcOZDD4kC4ooBuV9CtKQgrS3kIrKltx7c597Z/fI+iwNhtQwqJIxxSMyeGql/L30/QfwJPjkRCSluhVypGNLUWY3DgzaZAipBhiyBwTGZEnKLwRdb4EE8QnBEC3osM5B8CnaRN1E+8kBCEqPcz49VomIiI4QJb0N2G2yI3POQkx8YZQCHzz1dpdEF1IhhMIgIFiEFPg4gH5SJfdbZYjBDpBUwFmHDx7nM4QMyAiZltS+p+06MqlRpNehUkYl0ZNcRUOKvQkuRV/7RqBFQuuCTzCa1IIsz7HWkmWGGDwhgB0iV8QA90VSDIuPQwyKgLbraL1DBoHt01AR/9a5TMnkRBW8Qwo1OBKQXFp8YLfe0LUN1lpEUOzqDlOk6LsURS7IdEaxUJRdhjM9Qmki0HmPMJoQIkYIFCTIcwJtb5Ex4q0brh0GosS3kTZ0BBcgwMnBPijNxWKBDzAaF2RFRt/1GKHI8ixdgxw4LWlsQImIwmNioMw0Ukuury/ZbAxVmbHerNl0LflM8dvprzn65oCpGxNsw2hUkoeCUZWxWi04v1xRZCOm04qqylBlwcH+nOAjQmvKQnJ5doW1I7zztF2DD57ttuXwzpynP35KVhVs1xvOTy+pvSf2Ie2rfWC7a8jLnKPjY7abLbbrkztcWXFwXFHmEhE8nFtc7+hEROQGbTLKMmc6mlC3dYpAUhGUpo8dJlhMUBiZsb8/o6wM1+cLVBTkRYXWGYvlGu8Fo2rKhBS/GLy7dVkpsoz9vSOKQtG7wHQ6ZbdqabcNWZaz3bQ0mx2SyHQ2ZVqWKKkYHxxwdbXi5fUbTGbwJOfDI7NP8IHMGLQSNF3HqBixN91jtU4OxK3r2fQdEkkM4H1kvdlSljmN7Nk0O/b39iiMAaOo5mMyJVlcLllu1sxGo2GuHFGZYaQkoW6pNzV95wjR0tqeqBSzcYri2ixWeJtiu7q+IUSPFhKRCbxPjo/1psZ78Da57CyvV9iux2jFZrFGZxllkVPXNfWuY+9wj9VyRd13jMcFves4v7pmOpujtEjuxkWBtRteP3vFrm44PD5kNKpo2pYsS/fhkkiWSzCKcL1itdlwvJ8inGezGcFZVos1udCM84xGK/CWdrei7Swqr/BS0SPIpKDMK4zZUI40oyqnuVix2dapLxVhsVoBHlOUeB9STSJzTGZQeYqHVFKhTIZ3jl4EcpXgwUxJPnj8gMvrJevVGi9gMh4xzgvqbYuMChlgXBbIQtP2Ad8FLrdLtFFIIakyw6w02Ain5xsWyyV5mTEqc7quoW57RIwUdYsQEq0yQtsjZEQbiW96mtWaKCUmNzTNDhsTQG20xAmBDZAbg3OBru9oux16iACOIadEsu0aVFYk2KIsiXi80RztHYGI1NuW4AMSSd/bQTQouH94gDCa3tasV1uCD9w9OGY8Kmj7jq51rLc1QYAYhIV141it1uztT5mPMprO4puGYjbjWN9N1zffDTAxjMsK329omp62temeSKDM0h580yZgpFCCXChkUWKtS1+PZbPZYb3DR0/fWfJc8373iIPfTvnrp7/ierQcgHgx3Pd1in6zqUZP9w2VYnlDuoerASK5Aar1cP93UhK8u401iwhkrnA23cdTnehvnSTVcP/Ps4yIJ0af4Gfv8d4lUDgkBx1xE9GqU+2j9VvXHEFysZLapOpncHryNrkQjkYltk/CiTgI+DKZDfCMRAiV7mFth1Au9VUZallSjd/3A+gSGSCnFI3srBuguECRF2+PfXA58tYTbtyfQkAoQWY0wQX6znJD2wQCUYDWanDoTw71ISRnuDDEwCUXyjjUQgJtdHJh1Tei2sGt34ehbk/vR/BvXYrirRtmej4x2HaKAfSJIYHvYbD1jHGI+VUqxW/HFNUWfHJ000ZhTBKRJCgp1eK2d0QdB2f/70FKwzkMwx4AIRA3dcz31q0jkoiDu9XgiBt567YablxHY4qUG47/f1Sv8JZpQqkbd6YwPI+4ddS6FZq8W//qNcBJf/SXf8RPf/5TxtvxO3jj3fpXLoHgyXdPKOuSpmp+14fzr14C+rzn2ZNn/MN/8A/5T/+v/ynz1fx3fVTv1rv1br1b/z9fAsEnn3/CnbM7/KP/4z/i+aPn70Cld+vd+tdcf2tIKQSfMsCDQJIGAUpqBKmx27YdXdvi3aDwIA1P8tygMCCGiDTkbURF1/Qpzs17gnfEIJMCVqVGcCSpRLTMMEYwrkqKsiBGyKQiHzakkNQ3CHE7AELIJLOLcbAtTuo3P7gEKKUxIiC1wjmBcxGlIDiIDvqmpyoyQN1azzM0V7yLRCGQWtBZRx8CoU1xAjJEmkFJJIRnXKTHtzapn7XQaCFofceurgl9h3RgTIrniIUhyIi1lig8NgaUkJTK0AdP13cImWJddnVD0zSIQZ1dtw0uOHKTY3uLDQ4bHHk2QuWC3qamjtIhWUa3PRqLkoFJnmGUou57utClqA2ZGiZ4MFVBD9TbDaMsx3qPcGkgtrEdwQmmkzH3jw4oy4JXwqXIlbYlWj9E1Ag661ExqZtXuw0RSZ7nbAbVmTEZ03GByhXOJcVcisQIGB3YbbaErkWbZMU/n+9z785d3pyf40OPiZ69+YxdH+hdYB4EURsKrSizpNxebltEkSOlQcWI9Z7pfMauTseqrUjW9koSpOdoVrE3nXLV1PheMplM2DSRV4tLiuvA0dEx15sVL16/oes9u7rm3viAB6MjGtewDRqrDKu2pttsmJYjJpMxi8WSg/09WtGyttcI7VluNlxtL3lzqVluxrR9x6a3mFzz1ZtnLJue/+CP/x0mI3jxzVecbI9p3JoqRu7cPeLqumE8Lvngk0/I5xOa5Y7F+hIVPYt2zSjX/If//r/DX/3yl/zkpz8im1T87F/+mh/86AdUx8e0uy1ajXjw4D6i33J+uaZzlovdir2jPR49fITygtyUvHE7Mh+QdcfkJHI4HWFGc7JcMvniFeUzQaanTKf7vHl9xi9/+S15pahmJVEL/s6nH/P6fJ/l5Rmniyu2645p9Q2byyVv3pwhMUjr+O3iS4pRRmMdy/MrFudnaQCtIKtyDvamSCFY7FZsmsDF1ZbRmxWaLYX2dF3NxdqxrS3vv3eX16/e8O1X3xGF5OOPPuTi8oJ7HzxgvV1S6Yqy1JxdXlCWCkxg27XYrme32nB6fs7Z4pr7xzPuFwdcXVwjZYmeVvz6V7+haTvcwuKj5ad/+gdIWSBNQddY3FXLFy++5Wd/+Wuiyrl/dIc+7MAFVldrVnXN9nzN1XpBNa4IWjKb7vNkskcpW5y3tJ1l0zvEeMpus6bBc3W14tHRAYWUSJNzvjjjm4s17//I8KM7D+iJaCAs11w9+4Z2OkbYu+x2DRcXVyzqDa+vrnn6g4c8vnPA1y+uWE4lGy9YXDcU88BkPGZ2tMfzs1M26xVFlXN0fIflrmF6fIyoO8ajgmVbM23go7/zHm7X0IkM1XtWF5egFN8++5Yqz8jne8xPTnh5LflqcYVzML2+4N69A3RhePHdM/bHhvXS8u3XZ3z38hVN63j68Akiz7n//n2mM0PmPCZAISvK+3uo4Dg7uyLLcsz+iO2zM7QqOZjkyFARtg2HHz9ACoOya+7fPcJIQzmveH29JCsER3ePKa5X9M7TNZ5qdsC3L77ii6++5uRgnzuV4ZrAyck+Tz/8FL1xfPfynGKvwnrL1dk5Umq2xpFpQAYmsyn5RHFxdclsdIwxBS0bbNezP93ncDbhcrtlmlcsrzbkoylZVnI4P6Dd7Oij5OT+Qy5enNF0a7rQ8GZ1zvNXDjJFJj0vXp7x6MMP+Pi9j7nOTlnVO6zrOL9aIKwjdIptH2n6FUVl+PQHP+TgsGJUFYymh0ymIz64d5c7B3u03vP82SsurpeUWY6KGivg6MFRAp5axx/88A+RwvKbL1/w/PQK1XqO5nPyUmFEwcX1OVEI2nbHuqtxdU9AELKKclIx1YazzYLr3qFcw8nxAXUj8NKSH5QI12AMjIwkGk0AcqWZZxVBdTAaUQyRCNfXK1brNb2zyAil0dRtB53F+TRk8C6ipMJ1nsa2rDc1mVJ0rWVSVkgUeVERtcf1O0LvcF2PVBqEwguFBXxvESE1kZ21bNYenfgHbB8QUpGVAp0LonTILA3upZaoKgE5QidgyHpP1/SokCWToSAptKSoJnRtz6bdgQKdK0L0GJV+9d4So751mYkh0HUdIXqamGohoQJtK8mLAikNTdPgvSfLU8xb1/Zp4C0VWkps1yTAXEpcl4AHHwJN19J7N9Q/aaDpbhwuSfd2oSJ5oTFasV21bDcdOpMDdBOJIUFKNysO/9XGUI7Kt8MFoVJdaBOo4N3QzBeg86RQzjOdBhZEXB+xbTuAVQoR02Ncl1TPUol0zgZ1thiMUBIIEQh1TNGArUNvk0Nm7wTBQ99ZbqIVXB+wNy42w9AJknJZyji44Nyom5MjRTIEVQiV4BlrU0ScHF67EAKpA9KoVK76Qc19Q1kMZ0nIQcUskopaKoE2EmMS1OUtNLbFxeRuQ9SDWvz3V/l8C2SFeKuYFyZFQiW1e9pvhOF8RMD7gNYKI1IcRwhpICd1epxz4TZu7WaggxRIId+6J8WYICIhBiBKU7QFD1/e5/7FPXJXQBQEFQYl+qBIH5yekitTGoDFGPE3Ay0hUCq5Y92Y7UiRnLdiIDkZ3MQHkp4vDe7C7TBJSBI0EyPRJqGGDGDDzeQpkA2glg3pWKRgGLJ7rLME55Mw40ZRryVRJJgLAsnLSWBkijXzwYFIzl/WugTkDO+BdW6A7FI8YQjp8UplSJ3AuhBCEhMMw9QYA0LGJPookkuUJ0U8BgFaqXSdywyBiO17MqUSXBTS8LX3jhggz3KmoxKjNWuR3Gidd7dxiDDAfcPQrxuALyUV/QDpKaXIM43Uw+dlgMMSeBmJfU90yf1ICEFelEzGk+RgEjwyRoq8wA7OVAUChs8PRqb971oz3s7ZjuthUBzIiyI54IWI9CINvaUgikhVGMo8p7GWEARZltE72DQ1uomMqhF117HebHA+0lvLOCuZmhEuWPoo8ULRuR7X9+TakOcZbdtSFWVy2PANQkbavqHua3yjaHuD847ee6QWvLan/Mr8hr/Hv480sFpcM7YjrO/QwHg8om4cWabZPzxEFTmu7Wm6FOPWbBsyJXjv4X1OT8+4c+cIlRtev7rg6PiQbDTCWYuUhul0Cq5nV3e4GKj7jqIqmM1myAhaGTbBoohI68jHkapITkNKC/KrDWYlUDInz0s2mx1nZ0uUEWS5ISo4OTmg2hW09Y5t29B3niu9oK87NpstAoUIgcvzK7RRuBBodg3tbpt+PiQoramKDCEETd/Suciu6ck2HQ0WLZMIa9dFeufZm0/YrLcsr5dEAYcHB+zqmsn+jM62GDncE+sabQRCRax3yZmj69judmybhsmoYDouqXdJCCMLw8XZRQJQm0DAc+fBXYTQCKXT0LxxXK2WvH5zDlIzHY0JwRJjpGs6Omvpdx1112IyQ5SCPC+Z5yVGOHwIWBfoQwCZY/sOJwJ13TKrKrQQCKXZNVuudy17x4rj8ZQgkstL7Drq5QKTZwg/obeWum5obMemadg/nHIwn7De1GydI5qWbtegjaISkmJc0diexnVYbxmPJ9RtS1aWBCE4qCq8CPhdw97hnKbWRKFxQeK6HucdNnjOL04pqgpZlAhhuOosdbtjIhW+b6gO5iwvV8jgKYyg3rVs1zXLzRY51+wZjVGaPSXAWVQEayNFMcEoaOsGFyJlVVJvt8mVjMDepKKpLWZUklc5ofdUZZHuW6Qe2OVqy3g+x/hI1yVHSF1khL7n9OwUFzzH8ym+7+lyw727R1R5Sd1eIXSKFNzVdYJkVAQRYQtZpiiKirrtcC5SZiMaxNAricwnE5q2wQmJ98n1x5gco3PKouB6W1OMxoTQ4Gxy64oucLEKtNYyHQe2q44gNcfHB4yzmrpuCKTaJ/OG6MC7BMdGadmbzdjfn9H2GUoVBALzyYS98QipJJtdw2azpbMJfgshoHPN/qQkxsi4nHJyWLBerXn98jUEQaEzYg65LmjaljA4rdddCwisDQkGEZoq1ygb6FzEeU+ZGzIpsC4g8gRFUUeMEuAF6bIvyaRm3k35w8//gOdPX3Bx75ym72ibFusdhICWcrjHJRGki6k3mW5DqbfZR4sUgr63VHkOiAFYVljfpx6qTRBgcuQZXPX8jT1Qus33fX8Ly6R4uZs6EpDp3qd0qiGkEUgjbx10YkwgchQiwfxCImIkNwYpBte9mOCgZM4z9B2DJ8ZUJ93Up36Icw7OEkkRZk4EjDGYLMNZj3cBqZMDYwgJWhYIlJDEkAAlhvojhKE+G9z2EGm/o7VK8WkxDlXvEM8rU2Sr955m5wdXpO/XdzdfOdSUpDpcG5Uiqm8UAwHi4JwUw1CTwSB0EANkJm8hHNffuD+JxLWHSHAJqk/1Rfq64D1Do5owVHbCJQfGMAgZpFIDcC1SioB4C3Z5//Z8JDcnbodaN+/nTWLBzdem2jPVETeQP/FtiJuQb0UTtwf2NyZlad9x+/XDOVID8J2gMIGzfui/f+84f3+3E78f6wZO+tkf8dNfvIOT3q3/6Wu+nHPvzT2+fvr17/pQ/iet5XzJL37yC/7eP/97v+tDebferXfr3fqdLIFgvpzzn/zf/hP+2f/yn/Hzn/ycoN4VTu/Wu/U/d/2tISVB2siFYVN2o7xNqvmO3W6H4K26OwRP79ImTUSZ4CAhGI1KTJnRth3eeXrbvx2+DFtUozRZliUlr7VU1ZjcKKoyNT6c9ZQmJ88MWkqMMWw2O6JIeeJx2Lz6kIYaeV7Q911SzChJJvM0JECBgt26pu890XtWqzVdG5hOKoyU5EWWrP/dYFkcYTwqkVrSDGBUJmWKUSBQjEqUkGnzLtKGL8VDWIzQ5DqjrEqmxYjlZs3OJRhJGUn0gtgFgoFmiD2AiNACpwTlZIIMgWADjesQLuA6iy5yOtczzjRVmRMHxyopRVJFCkHd2aFpn+FFoGk3ZEbRhR4iZDpnpnLUsAkvtcGp1DxoVjUXu3O62DNSGTpTjKqcurZsdjVRSMosp+89Z9dLRkWGJbLa1vgQmY0rCI7drsVZi3cWmWWpQZTlCAS7viNGSSEC46KgLAt2jUWgic6mZm8UGCUoRhUSQ1nk7JqOr776jnq9ZF7k/OinP+a6bvns62fYLnKxXnD/5IDZbMJqV1P3HfNpRW03rDZtakBGT7nLaZsWpKF3AemgGpe89+CA88UFi85hraRrO8a6YVaNubM34uH+Idl0zNev3/DyxUtsHxiPSy4WV5ydXjDdGxNsRCrDrrEsrje8aC6YjSoeHO5xMh3zZlnTdx6VlxgspRFslzu6RmAMSO/YbGrarmdaNEhgfnzIixfnjE6OebZYc/r1M3788VPunhwzP9zn/NUV7fNTXr46ZbVaYnvHo5Mj7t874GK5xcmc89Ml4/WOj+4/JA8auwn00fDtqwVf/PprjvenPHxyTNNY6s7z8uUbri4bhO04ObnD3t6c67PvaM8W/Pz6ml/8t5b7j455/PSQT3/8hB9++oS/+otnXC0u6dmiM5sc1DLFfO+Aw3HGR4/u8c2z57w5u0KEyMa2/PLLZ/RdR+YiB3sTpFBk2ZjDecnyvOG63nJ0dEQ5MsyO7yKk49MfvM/h/fucv35NYXJQilXd8Or8iof37vDpJ8f88q8XvH7+gjen1/QEHh1OmeaKgw+f8ub0jIyI7zo2zYq2b7gzHjGbznm53IKA706/46tvvsV3IKMnzyR7VUHbWhiapx89Pub+8Yz5fI7QJbu6xYaGyIQXpxs+/+Y1qso5Hk15/vI7XG5QncBfLyjKbDhXjoPigDvHh3z0wydcny1RvqDb7VB9x95oSts5glPcPzzg7t6cru7IJwWT6ZSta+iBg9k+4yLnhz/+hOuLK1anrylXI85fn3O53nD3ww/4yd/9Aw6ODvjg0ydMM8mrL76j9PCnf/ADvvzyOderFSfuLj6D8d6cu3fvcug8L797yeuX58zvnBCUZjbZ57vfvkZWhsP9Iw72x5y9PuPlyysUkW0fyE3Gkyf3ePzRexQHR5y/uuRZDBzducN3X7/g8988o7Vw/+GGxeU5i/UaLwyn5yuChPnhiPXuDHW24ejuPS6uVnz17AX78yn5eAZZRjUqGY0KcJb5/JjL8ZbVZsvF5Ybzs1OED+wdzTk5PEFohY2BozuHzKbTNKAtS47uHXG5XLC73nG22PLh/bvce3jE1998xeXFKToTXDnPsuswWcX1ekeh4M79e0zKjPXmmu16y96oJM81lCPMeB+pNGq2oGt2PHn6AZODMdvllm5TMx6NuP/DD9isPb8+b8mERClYrxaMVMmjuycs1pc0Vwqnj3l8dIBvt/zsy8/YeUcUDisirmvIvObh8Yx8CYud4PEHD5ExopzDt/0QVxn4+vVz7r33J+xVPZsLy8Fkj9dXO3qfM60MWmqqvEILTVf35FnJ+fkVMnhmozFXRxseP9zj/sM7rF+8QUWLwVEaw1gZ1tLQSk9WGualIR+XXO9q5llGcCmaaT7OWa43RKlY7Tq8l6yd5+x8S3QwqQoKFRmNK3Z9x2rXUS92tHXN4cE+x0dj3lxcImKCZTZdjZYyDQJ8pPM9eI0MArxn17SDab1MsUBS0IdrRtmOPM/JTFK/zicT6nqXVMtDoz43CR5y1iJ9Ap6FMggPbd/Q2pYQBdoYVCZAenpniSSFqlSCICPCyMRPD2piBkC5qXeMTEGhDVqALHK2tqa1LZ3rMLlmNM0RIaESfZ+G3FIolJHkuUqq92FAb4oUTSuUSlGdJqepe8ANQIVIwLgw5JlJg1qRFM06U+RFhjEpJk6owfZfQRSBcpJTxgSb921H5jV5lqN1gte73tL3HUJFlNKImAYVcRjcSJWGAj765KapNd4lN5Sm7sDHwVEoAVWIFLWrtBwUxG6IbEiRBCDQKg1SvE2q50i8jZ9onR+gmKGaFUPOgRe4zuK9xA4xYXGocZ3zSGExmSbFRcQB6hAoo1BGpdcU4uBulFT26X1J/28yTRRDTNegnI7DN4gRokvjAqnlDb5y68aUbJMikNx6ssyQ5QZEGoEaY4ZYqDAcsyAGaJs+ARni9zla4AbESr/cxJSkoYil7y1pICRheB/D4E6VQKb0qzEaadQgoEgxHojvPXtMcSRSKW7i3zJjUEqSy4yHzx9y8vIOI1+liDWdvmfX98NnVd5+rxDD4KCjb+NbktpcDep3iZLQdz3ep8iwrktD5DxPQ0KteTtcSoc3xFAL7PDaJBBuAKHMIERSsgvk7SATmcQLWih0Zsi1oe16rE8xNVIlkUb0EGXEeQc3Q0AJQQq0yRFDlLYLCSSKPoBOTmyZUhiT9nM+DJFvMUFb1vnkKCDT59u6Di0lLroUESN1uraKtHc0ShJEOpeus9Q2uahmIkVQGqOwNtD16efLKIX3gW3TkmmFB7reEiIUuYEQBpeN5Dahh/dXKY2AFKuIQAdSFJw22EEkc+N+pWJy59AmORsarbDOc321xHYthdYc3T2h6S0XixXBRXZty3RcUuQZrbX03lHkGfdePeD5kxfpeh8DWrvkHicUPkREiJhcszfbZ9vsaId4TGcdmXDkJmNcVMmRJ89YbLbJkcVHssxQNzW7bUleZoOTkcTaQNN0rO2OPDPMqpJRYdi2/x/2/qxZsiw9z8SeNezRxzPHPORYlQVUoaoIgE0MJKiLlrFNN90/QL+t/4BkppZa3ZJopJGESBSIAmrKrMrMysiIPBFn9nmPa9LF2udkgc1uAmSxCUDxmUWaRZ4T7tt9b/f9rfW97/MaKhsQSiODQytB3/VYG1+vCJ6+s1jnuJpe4Feeshiz2VSkjFi3HdvFiuPDfSbjkrws2G0b3Lpis93Rtg3OeWbjEdNJQdV0OKGodh1pZziYzlBB4rqARbLatFxfLRgVGdP5CGsdxgY2mx11bRHeMh6NKfKcplrS7VrOmwZee6bTEbP9kuPjGYfHM87frGnaGk+PVA6tNShBURSUqeJgdo/las2uqiFA5x3VzSpSgTwUeTZcJylFntBUhsb0jMoROpXkowkIz8nRHsVkQr3dRvKylLS9YVPVTCdjTg5LLi4btusN210Ub8zKgkxLioM9drtIWQrW0ZtBhJOmZFnOZtcRgNVuxWK5xLs44NYKilRjjUP4eO/bn4+Yljl5noPSGONw1hDI2Ow6rpdbZKIpk4zVZk1QEmEFu6ZBJYqmbXB4Cl0wGZXsH81pqhbpNc70CGfJkxxnPcEJJmXJOM+jmCbVZFlK7zIcUOYFqdYcHh3S1g3tbotuU6ptRdP3jPf3OXl8j6Is2G/nZFpimxZTddx7cEKSF3x5fU0pR9GQlGYURcHhfrxvnb46JS1yeucZjad0VUfvDGmecnh4SN+PWS22GOtorUcLwbjMKcuCyeEBbe+4ObukGBW0pmOzrug7h5cJbV3jnKHzAd1HQWc+ygjCUu1W5MUI5QNXlzcoIcjLMl4nSYZKE4ILCKEoRxO2dUXTdDRtS7OrI9Uwy9FaY1tHmmekSYrWis5Y8jJHaknV9TSdQWUps/0pN1eXNLuW3WaFsxbXpSRJitQVXdMwG42YzUYsVmvavkUHS5lmoCQqK1FpgSgsfrdBKcneyQFt1WA6Q+gNB3szkJrryw0gkRKs6XFaMR6N6E0DpqcKir3ZMWkiub68ZrmtcT5GxwnvwRrGeYLC0RpLOcrJxjnSOhhodw7Btq4YzUaMyjHVypDkOdYFlruOcvjcaakhkdjeIISiMZa22aKVpNI5RZkxmU2oFmtM36MJeAJ5onC9pBWxf0xSRZ6kNE2HUpJEaHoHaZJgbYMLPt5PXcAj2VYdozSLNO80IUlU3H8MnuW6IvQGpOC3Xv4m56s3/Ojhz+jEIFIKA2knDERGH4W+AoaIxnjPuo3ktb7FWBfjgpWMMXsqw2AJYiAo+Ri3nGVJFNv4r0U3ciBBGmcGYW08d0LFfVV/FwVMVBTJeE+/FWUHGRsg6yJ1VKsEESJ9VOkobnXOEYSPAt673ssTgiUMQiidxFhrQhSqKCXwXmBd/N5VgwDH2QDK30VZihCPVQ7H6KzFBVBaxXZPDDQoeStJ8igtyUQS93ytxw+0TCkFhIEMa2J05p0Am9temkhUHN4C5z3Sx9+7NRTcCcEId8SkGMMcd53drcD9VokzCOeDFHfitFuR+m1kXDxfDMaCr2lFt5Qn7wXCff07UWzkhq5XDL/j73pgNcT+3aqlbt+nMMQUR3NtFFbdkZju6EYD6cgL4hUv7nwOt2L74UFjHyjivrRSajgPsScSRHomw2FIIe7em7dYgP/10kbz+//q9/n+D7//Vpz0tv6jSzvN7/7J7/Li2Yu/XcNtAZ+99xn/4P/7D0hs8l/6aN7W23pbb+u/SAkE0+2U/+b/8d/w7ufv8j//1/8zm9nm1/LY0kmklwQRcMq9bcne1t/5+quTlKznlm6ktEQq6PoGZ0R0yAc5ZGczRB4IghB01uOsJ0sTxqOSLE8ATyJBZAkhuLgoQiIHp7NzPsYvZDn5JKUsc6SKUW1d3yOFivEZPsa9CevRaRIjXQZ3iwgCrROyLItO7SEKJIqnerRO6Y0jiGHQpQR109P2BqVTpEpAaNI8wQVP0/i4OBfRxaa1wAuFNxYPhDQbhliaclTgvKGrazo7bErgQEb3pW87QtNFYoCLw0KUwrlAsJ55kRG8p2ogTzOKLEMOi/embvAhDjaSRJEGjTEdWaLjJnwI2AAyTUmkIAmQlyXObfHBY43BdB6lE4KMw4ZURpxzkgj29vbIkpTFYoWUgum4wPaGuq6RIm4Y7bqexvQRwz5sjpjQkyYZnQs0ix3bbkfXW2bjCWWWYrxEuYA3Pd70CBFQQsf4BRXQSuJICCIKo+JGkMe6lkxrAopdbSkn+/hdjUDSeYNtGvIkIwTFrNzjww8+5PXFOcubLZPZIX0wYB337z/CvDnD2J5JOYbW4bwmCEXbdTS1RRCYzEcENHUfcDblo4fv8nt/77fJ9/f487/4EReXVwivuLq+ihSN0RS1reiqhr2TPRKV8s7jR7w4O+env/yMo9mMvb191stz1rsVxvb0pmWx6JmXI7KiQieKew9OUMHx008X9L0lSMOuaWiXNU1bUaY5e6MRe/MxDkFZjjk+6JmPpoy/8Ru4qqZLCr7znd8AqfjRn3/Kyy9fsak6tPT8zvff4+HBHn1ds7nZ8uzBfWSa8uLFKeNJivSW1WrHo6eHdPcOsdVjsgyCVaS5o1tuKLIJLz9/wc16x+Pdln/4j/8+uTjmi6sVapxxudqy+OVrLt4sUUryre+9z3a3Yb1Z0/QNmU5Ik5Lf+73v8erNklcvXiMMKAc6LViv1+x2V2gl2T8+5OLNG25eXpOrhFevNCfHU3zXkKYpD997zN50DCHh8HCfcVZQLba0vWCSZVxdLvBaYbxkdVNxkS+odltwsFxd8+3vfsRIStpgsGbH69cvefe9p+y2NU+e3mN0MiI0gWZleO+j5yQ64eZ6xdPHD7l6c82jd59wef6G5es3WBvYvfyKUVFwtdxSlCOyacrFqxtSJZjslVzfXOETzcGjJ3hX8/qTz0jGGSiBdIJUBO4dzvEybvKtlju8tdRVR991PH/ymKAVn335inxU88EH73DTJWBnmG7BerlgNBrhjcG1Pe12w2c/+TG2fsqkLNE9PL7/kJuLC9xxwu/+H/+A/aN9Xv/8DW7lOJkf8fr1KdugePj0AQVgdluSVCLw3Hv8COs9m21NoiSrTc2PP3vJ9yZHnCiNCj1ZqXj+4X1Ma7m+BLP1XF5e8vd+89vszce0qcIZw+qq5sMnJQffeZ9yXvIv/+m/IHjP1racvnmDThXf/nvfYNsbyqRkeXpNKO6xuLji5ZtLflEbvt14Hj5/TMgV2/WWs9fnyIuEZ88OeHC8T8gKEin4g9/7bX7xySeMyimmrXE4VJYhheHkwYyjRydcnF/zxWcvePTOOzx+9pDp0T7f+4Pf5tNfnvFP/8d/xie/+ByUZ7fb0LUt7E9xWjA7mJHmCfVlQ7Nr+HD6iPe/9ZynH73Ppz/+mM35gt4b+gYWy5ZVtaFQObOyJC9HHJ8c8sv+My6vN5x/ecH4aoFpBW3X8ijfR3lFqsdcL7Zsl+d0zZZiOqY1BmV7rBPce3TC9PCQ40cH9I3Brnv+/Gcv2JuVOGvZ9R2FTpDE2Jiu7ki1RI3GKJly9eaG1bbhy5s1LxZLfPA8PFlzOB2zWG8IridDsKsbzs6XLOuKTV+TZTnX6x3fOHuA6wzJOOX43gSz3RHano1z3CzWhEQx29/DpwpZB/QoBy9Y7XZstlvWyxtUKnn+9AjXGhqpSEQkHk1mE/qmpRKKzDsIDmEE66qi7jvUZsmXp57zzY7OtFRtx66zMdbARUS/sw6XOkZlicTjg6d3DkEUCuEElRO4zpMaw3iUkSVJjJgVgrbp6HHkWU6hBcU0RwtJW8WIIpUm5CLhcnGD29k4IEgCUg6O6z5gvSfNNVmmY8xSCNjgBuGJJAykF9s7nHNIrTCuwwaHkw5kjPHSSoCIj9f3PQFQSYzfjcIci+k7pI4O66JMSRMNwWGtGFzHkQQpVSDNYmyuUnFD2hhLJvN4fKYH4dGZoMj1IPSQCCVJ0oQsjX2eEBofBKHrY/QUAZ0qjDUET4wMURJ8wAU/kFaiaCSISI3pe4PpDVqlWOsH93gkiPghmss7T1e3SKmiK9mHQfTkUPqWwBNj0qyJsVthGAAM0CPAE0IUbd9SnaJQCnAeYWNknRCDkznEgYywkcgkNXgbRRo6U2RpAh76Ng78pR7EMUrF6I4QyQfeBXDxWhMhCsHidCFKaYLz0YmtGIY3Q6bbv7sGFYEkVaR5jvcOERRN1dN1BufiAIQgcHfOa8ff2LodzgzudyEj7cH722OORFRB/LwIGa9fO4hqlIqiLa1UFKOJKIQh+GikELdjgigI0kqSaI0ehDdCCJ7/8h3uv7wfz40UcZ0wCKWkUgTEnbCMQKQiDHFet48fB00OKXU0YvhhGDYIeYzzQ5RIpCgppfAEvA134jalhoGRJ14LQoBQkWwQogkjBIe1BuvCcFF4boWWwVowFmfd3WtnoNkK78l1/A7obYivX0dBTxgiSOBWYCdQA7lASRVfjw24wZQiRVww6jQZKGqB4Fz8PpESK/yvxPcFpBLkeYGWiqZtEQKyNIkEOWOiiENAPxDlUIK4CIzx4korXIC66eltj3UxxjpRCi9jRFNwDu9tfL6YoRjFVFLg+ZrMJQZ6kvcWpeJUtzeeJC0IRHqUxeGNHaLtBHmac7h/wKba0TY9WVZi8QjvGU9muO0W7x1ZkjLtZwibgLAYG0m4iChOCwisEwSnOJzs8fj+A3RZcH5+zm5XIYKkamq8d1idc3x2RLmckh9mmNIxOspZbrdcLm4o85y8KOjaXaRieIfzlqZx5EmK6iMJbzIZIQhc3kRBURAOYwzWGowxJEqTJymjUBKCIE1SRoUjTzLSw+PYR0rNyb0TEIKLsxvWqzWdieukRw/2mRQFzhj6pmdvMkEoxXK1Jk0VwodoqpiNcJMSZ6bx/hUEOvG4pkdrwXqxpGl7pn3H0+eP0GLEsu4QqaJqe9rlht22QUrB8f19+r6j7TqsMyip0FLw+Ml91tuW9XKD8AxD8oSu7ej7CikFxaik2mypVzVaKtZrwWiUgbMopZjsT6NgN0jKsiRRGtN0GAeZVlSDGccHSVsbdrqh73tEgLatOLl/REokmkkX2GxW7O/P6fue2XRMOkoiHa317B/toaSMxKLphGrXMNubstttaTc7vA/sVmuSJKFuehKdojPFbt1EAlyuaZoKLyXFdArBsL1aoFIFQkOIn9NJWTAgNeiafhD2Oay17M2mBClZrNboxHB4sE/tFPgMZxvapiVJUoLXeOewfcfi4gJv5mSJRliYTibUu4owkjx87wnlqGRzvSV0gVExYrvZ0LaWbFwyLnKqukVJQQiOLM9J8wyHiPdLpbm4XpAaz8PJDC0DnTfs7Y3RiYox9VVHXTXkRc58tkff1QivcRa88ezvTyiKlNenZ6xWa4w3CGu4urjg4ZMHyERyIDW+NnTO4qzFdh1fne+YjXtOTvaYHx/QNg3buqXfVEymBbNxTllGQtLJ8SHjOudmsUYrjTMGlSUIYjTdUX6IDZLLN+eoLGP/4JCsLBjPJyTjMV9+ccrlF69I05S6bTB9y5YEpSV5FkXIvXV0Xcc0S9ifj9k72mOzqbg5u0TKSDmxBhbtFmd7xuUYKSXTyRQRPF1v2FYdu75HCU1Vd4zHBRpBojP6PlDXNa6r8SGQ5inCO4KDJMs4KUeMZ6Moqu8Di8UGJUErQWdjdFemYmRd1xiUDHghyPKMtu4QDqre0FQ1AkgzzXw0wrpoStTDfXO3q2k6S21ahBJsm56qrcm1ovee8aRAWhupNG1H2/bU1pBmKWWQaJHEPkEJjHG0XU/XthjgcsWGAAEAAElEQVTXM52MyJKEro3xp1optFbkaUrtAqkUWHqCs5je0BqLVLDdVCSLCdP2iMtnS3oXhc/CR4G797HHTAfxMG6ghPtBWT6IxY0NaKs4qA+4tz5mVI3pZM/pw9es5wtEIcikRAxETGs9wXqChEQlmL5n2ziEDAPlzw9EonjrDzIMMYFfE5QYKJFSD5GpPvZCIcR9u1uqYSDeHwNDnNnQL7pBjCXvaJQeb+3QD99GDA8mUO/xQzxd8F/3aFrpOxFR8IEgbqPiHNiAUPE6UkrdidOlivF4fuh9hfCY/vYYAwz38wEQi5TyTsjj7jCUg+hpWDuY3gwi/UgwQkQS560oSDCQVF24ew1R6ONjDx7/FkXeg5joVhAVBnLRLY2Ioc+44xkFIjnSxx7oNuouvifghR+iauO9KnBLjRqE9G4gdg3rkCh+k7E3EoO5IQREuDvKoY++a6kHUtdtqsDtD2KM3K8AbRFS3JkwCOBdNGeEoc/2Qy/rB+LT2/r3VIB//M/+MX//3/x9ZPibbAx5W38b6uDmgMQmdKr7T3ocZRXf/YvvUtQFn7/3OdvJlt14959tsJ326fCd9Lbe1tt6W///XcorPvrkIxb7C/7p/+Gf/sd97wbQVjPZTnj68ikffPYBx5fHNEXDD377B3z57Eu2k2383bdfvW/r72D9lUVKcnAKBfzgYPfRaaLkXazFLaI4TbPB6eHxLkY2WO9p+x7r7eBmjLElDIOBMCyoBYreeKpdhxJxyNa2NjroB0d1IOaj++DpzRBBoONgRwo5LGqjA906Q7BhIAtJUHHh27d1RBFLQe+Jx+YgL0akWjObzCjzFC0FbW9pTcu4GFNORxTjnKba0dUtwoJIUwIwGo8opxPme3ssllc01RblHTpN0OhhsWup65YQDMZ4VJojhKB3jkRLvIeqi+6wUgvKLCcQaNs4oMMLDuZzHj885mp5w+X5Nb2DcZrghMcESwiaXKSMRynGNNR9Sz84aoT0pKnCOUfX9UitQKYEF9+zSV6wWG+omw6p4gANwHobN8+URPYOIQI5gYlWeCS9C7RtT/ANwTqkgixJ6YLjbL3BtJa2NSgEicqxxjNMbJEiukhFEINjNA6iQ7zw6JsG2xuycsS227HdVeRZytHBlHeePSXPS370F59ws9nyL//1vyVPEg4ne8wmE4pRwfVqy/pmA21Hu9lwrQyTcclsPOcmGMzOoUVKmia0jUWO4sbpojGcLz1SBZTteffwId/78BtcLhb8+BPB4nrL5XLFeG/M0f0Tjk5mbJse7RQPD/b48cc/Z1lt+UBIjvbn7B2WfHX1GujZH++xc57upuJoMqVer3hx+pqrmzVS5njVUbU7wJOPckqZsj8dszefcTCdY1rL6YvXhE5w8OSAd58+xnvF4vySm/NLbr484958zB/9o99BC8c4Nezff0LX9eyttswOppy+OCMXkvc/eML45JDl2Y52CwezA+xjS1u1rOsWF1p+63u/iShTlus1UjqeHE3YG49pkfTic9bbHUrlGGO4aHoePXlIPtnn3oOeTqSkxqFTgbIp88keyXsl9fUlm9UaVY6wtibLM9JpzusXZ6y3r7je3bC+qQlN4OG9Q4q9EcVoRmo17c5gsfQYfr5a8+6TB9RXK2ovqNZLbCEwQrHdbkmFYt21PHr8hM8//ZSD2Zj98YjTL1/jjCTLJdPplBdfviI4wclkyqwc4VJJPimY7U+pdi2rmxbh4hAqmIBpHMcPn3N6ec4vP33Bt3/rO0zGBadvViQ7x3R+SC4dAsNYaR4+f4aeZKyqJXa3ptSKw0eP0FnKmy++YpQVPLuXcnp5zdn5G9Z5youXp0gvOf3iNc505GXK/UcFb16+wgjJ9XJD6BvG4xnjsuTy9IyryyUtlpsXv+Tnn37G4eE+3bbnwb0jpHDocUGpxvS15eXZFRcvL3j48B4Hzx6we3WJWG7gs8+5vrqmrre0uy3tzRKhC549eMDq5oq9pw9ZrHesb65xT++zaNZs1zuuXqTcLHZ4HFkh2JsmnH/1kuV5xsHRCcvGcm88Y7fr2EszEqP5xjc+4r1vv8f64ppRSPBW8ej+M0aHE8yq4l99+hJnJNVqzenVDUFA8Tpl/niP7/7h74L1fPInP+P09AyVlRSjMVprqqrDd5Z21aJtx/e+9QFnF5d89rOfk374FNsUEBoSJJt1zeXVNU+ePqLvPPko5cHxPt/85kf88M9+QOss2ShDJYGH908oyxHvPHvCbDKiuLri9MszfvrnsLismcxmzCg5rV+zabf8w29/m4fvP+fVq3NOPz9FZGPOvrpG3N9DqZLrqqMYj2lU4IurUyQG92lNOVqQeknoLJebivEsw3nD67NLPv68J01KvvnBfb7x4TOKoyPScY6tLf/2X/0pu2rDwcEx3W7H/cMpZ69POdqb0Zcly2pNb3ve3b/HwWSOkAW/+Z2czWLJ9WLDWAd2y2ucyjg+PsY1O1oc637Hpt3x5OEJB4dzBLDuaj7//CWj6Zi93/pNeitpuhYzDJvNriUdhtq1MWSpIC0L9vdnXJ/BdnFNlmnGWtMn0OeSQgUSCZvVjvWqpdOOcpRRyglmtyEZC+bpAbZzvLhaIVWK0DnO75A20Js4uI1Y/0BvLLo3aK0oigLR9zGKwDuEj3QPEwJ6cMZ6b/EukCYqxsu6nkRIdKKZjaaYzuC0BNfz+MExhVK0tqUyhiAMOpP4EOhsj9IxSq0sc8DhWktjHaNREQkpArI0j0NxlRGcpwsG6yJdKM+TiN4PiuAEbd1jRIzJ0ELSNS2mcVHgNNBkJvOC8TSlLFNmk5K67tlsHc4NjmwRBUo6VfH+PtBMVAiAJisK2sai04ysSMjTGJMTvEdYgTUGL8DhSNK4AS+VABXuIqAgDiC0jMOhGLVgCMHG9zfEDXQl5F2kQNfVA20moW8NpncD/TGKeWJPOcQ2DBofqUHq2+lNFJrcRqPdOonDMN2JkVxDPLBz3NmQxTBccLG/vHWci0GA7YMjTXN0mtLVMVIqzRKcH2LfhIgxX9zOTqJTWYg49LiLmRiGCbcOZvg6SiH6b/7yKlOIYfgAqEST5yl6IFBJIlXDGocZnOcBogDFDcOFv9H5DDHELb5nkTo0SFsA7tYSAEol3FKx4vAsDnfscK1F2o8Y3vvbadDd6AZcoMdG4piSWOvZX+9z/PokDvwEd+sK50IU98jhfHw93+Fu2OZuHfBxMOYBZ00UWAmBG47NeUiSBCljpHEyCH2sjzFriU5Js4Qk1dg+fubx3F1LaZqSZBl5ntO0MfJH4FFCxTiVACG4IYYwflbkoJSLA8c4NI2EMEEiJYmKSz7rLMJHikCe5UynI+q2odpWuBDj2nzwuDgRRQpFlkaigbGWW8sKIn4+fYjkM6RACB3PkYdMJzRtizF2iKUMd++j8yGSmZxBEFBIUikJw3vojCMQI9MQcY1pCWy7Dm8jUVcKkELfRULeQhYipEGgtAYpaE2MwdICXGfwzqOTlM729MO9YVSkzPcmJDrh/Oyauut5efoGPRhmsiwjSTR129M1LViH7Tpq4RhnIw7MIWf5G3zoh2stDp8TGYeojfVUbVzvSG/ZKybcPzikahrOr28wG8vJxw94cvM0xjJ1KVtZ87Pxj3Gl5fL6mmbbcwCURU5RJkNktqNIc/oQxT9lmtF3LavNlqruEEKDiFQ/COhUkwhFmSUc1QeMkhJnPZvVhmAF5axgbzYjBEG721HvaprVllGe8uzZQySeVHuK8QxrHXnXkRc5m+UWjeTgYEY6Lml2PbYLlFmBn8V7VGcMPlju3T+GRNF2LUJ4ZmVGkaZYJI4FXd8jZKRpVdYxnU3RWclo4rBCobyPA2CnyLMclSSYuqJtOmSSELyJ916VsVltabs1TV/TNpZgAtNxSVKk6CRDeYHtHV54fHDctEv2ZhNM1WIA07Z4DU4Eur5DIuicZTqdsrxZUOQpRZqyWW3wrkVrQZZlrFYrQhCM0wyhU9CQZJqsyOh7S9vYOMx2cRjuTWA0nbOpdixuVpzcOyFLEzbbBtkHsrxEiyhyTYRkujdHpioSHLsOrQSjyQyhFdvlmkRp5mPJpqrZ7ra0WrFcbxBesFluCd6iE8V4otmsV3iiUQtvSNOMNEnYbXbUVYPFs1guubq5YVQW2N4zGZcIfCTTyAxrHKttRbXeMZ2MKeZTMIG6alhtt1SbehA/B4Lp6a1nXBQI06OShMODPW6uVjhj6XtL07QkOpKlemsBT1FqbNdyc3VFkuSIRIGQWBdFB8IJirTg/Y/ep97tSJDY2jApx5TzCUoKrr46Z1e14APrbUXTdyAl2VZz7/F90lSzW2y5eHOJlAqdRsKmMR7bD/tJTcfedESuJZvNDu0DMoxx1pOmGQTBblsznU0hCLyHUZFysL9P37as1hvSVKO0pBwVlFnOaDahGJeItsW5nuViEWMv84I8jSS+TV0xm8+49/CI3nku31wiVErfW7brHVJqOhvoESRJxnpXUXc1nki99k6SK0Xb9wQpUQm0dc1u2+KDZDIuuH84o5hMUFkaY9SvVlxfXpIWI7QKJFoQnMVbR6oSOtNhjEUrmI1GIDR7BzC2PXXVxt7Lx6jycjRC4+iNweGpTUOqNfsHsyh8lYGb7ZaqbniU3icfojsdgxnQRCGuFIre20hPRzCZFOSpYtF3OC/RUpBrjZGeIi1IlMJaS9cYeuPQuUYlCYkAY3vSUYYQkk0bKZj3rh7x8v5LROiiwH6gVYahr7BuICXpeL+9E7F4wcHNAU9eP2VezSh0FNWKEMhDxkH3G/RJx3a25vroivZBjxUGIR29sORZwnwyYr3Z0dpI45MaEJG66mVAEWI8ctRkR5p6Eq+lQDR4gIAU8PEe7geSvdIqxrI5AahILRIBZIxo8y7Qtx1+6HGC9yglKUYpUkFZpAQfaIc4ZYh9qpQClXwt0LilJIngIyV1EANpnUTa6mA8EAgwHivinq5Uv9JvDTr/254vPlcUU8f1AIMoyROCiANyEQ2v3odIhQKUVFFwM0RU3/aVt+fzjkLEnb479u7Dgdz2H7fH85e6WPH1D76GDUUiVgjxu/2WiHQrGgoDcitJYyyzd3H/+i7e766B4W6JMuiwhuMOv3ItDtYTKQcR221PfStaGhZBv9Jvi+GFKq3i2moQQfkQhr39eC4CA8VLxH3gr0VZb+tX650X7/DdP//uW4HS2/q11N5yj5PzE149ffUf9wAhCob+6J//Eb/7J7+LCII//Jd/yG6847//P//3rOarX+vx3j7nvfN7aPdXHim+rbf1tt7W3+kSCL7zo+/wg9/5Advp9q/3b73g/c/e57/6N/8VD18/RFv9l3qMB68fUI9qXj15xc8++hkvn76kLmuCfNunva2/O/XX7ygCgEdKTaKGhfLgwoCIFlZSQbCDKz26erTSgxNR4Hygd46mjc5gHzx9b+NmfpqAUPTW01tP1XYE70gSHQdriY6LT+ExziCRCKUHl010F0OI6G379SAqBIFzARs8hc4oy4xtvaUxFmc9idCkmWRnTdxg1orOOVwbnS15OebwwX3yPGNxeUnf9hjnyFWGUinj6YRRWbDarKnXFV2zQ+Cx3pKGuCHSGUuWpdAHNtsdnfEkVpDohCwTKKI7yVjItSJLFKbvCBKyLKNre8ZZyYOje9jesFnWHO8fsf/0kFe//By708gkAQeTPOdwvkc+zvn89A2L5ZZUC/JEkmhF0xqk0OSjGIXXdYK67VhXNUmqI2khUTR1RZbCwXzEcttR1TXWWXKdkiYSGwS7to6OM9MzGuWMJ0WMOwmaxltcCAg8WSIYj0qCMwgJo8kE6z22t5SlGtzoUPUWJSXOG1zXIKwjS3Nc8HgpUEXGerMj9JC4Aq8XWK1xWWDjPUqlSK04XV5hz3rKcopMYTQpeagLrjYrVr7FmhDjeXSCNZ5u2yDQWFdR6IxMKS5XOxoUn52e8mA+YnF2w3Kzxd60JI1HOsPJeMZ7H7zPYnXNol7xelkzLjRHkxGv3lxzfnXF8cEc27cEH1+7cwaRKS4XS6rGU3QrvOhxWvDk4WP4KrC8vODeyRFSp1gTODw+4L/6/rd5/uAhn718jZ6OOHiyx5Pn91j/8kt+8bMveNF7Dg/mTPbH1MZx9tUb7t0/Ye/5eyyWHWWaMN3bI800213D2cWO9Kdf8v39Q5aLDa9+/prvfvt9DveOeHnzEgn0rUE1jos3rzmeTXn/4X3GecmXb95w9eaGXdvSIzBty/PH9/nGRx8yOZwgkpyj+48pZ3POX56zqja0refViyV6ZBhNEs5fXHD52Res6xXHx0dgA6ORZHww46ufnpONE2we2AmDLjN+6+/9FqvtjsvXZ+wdTFhsNuxP9ygnU/71H/8Zr86uOT7c4w//6PfIlYLtL3n3Wx9SjBO++uIND9//JgoYTxOyWcoXn75ikuS8985zCIaqbnh9dsNnL694/zuPydKcT37wc1It+PLLL9EqcO/kAV3nMFbw8uUZPR0Pnp0gU09btSyvrun6HU9PHnCz23B1c8H1xQ3Hr1/x7vtP+MXPP2VSzigPxiQG3n98RNrD69cXdO2O8zenJFjWuw6nPF3dce4s46zgUE+w3Yhm2dI6ietagu25XFvOVzWbek2K4OHDe3jpaU+v6ZYpC9txqPf57e9/h8VqxU9+/Au8c5jQc/+dPbrNguUbTbdYU+zNOPzWExbbhv7a4BNJGyzKefLjPVLRk5rA73zzG5yeLVjeLPn4sxc0JvDg/JJ7T+6RZIrZ7IDfv3fI6RcvqBvD2etTSBQrJXj6/Iir10uuLm7Yn+9z+PwE/bThJz/4ET979RqT/IJvfvAOH//5z/nZJ1+STwqqdokqBEWes9pV/PjPPidRY/bmY7QS3D855NGTx7RCsK0tu3XFrr0A4oA/VZL11ZLr2vIv/+wTdqs1v/u93+D40Yz3vvMeX315zv/0f/sXZOM5f/hHv4Nta2ajksePDrmuerpdRiM2vPryNZNxziRL6U5OeH214cXFNVfbjqAk490GAYymY0YTxavPPmN5vUKjSZ2l9S0KuLzcoJWmFIIH05zpbMRuuyEEQbPpMU3PX3z6Ma62JHnB3uE70GxZLypOb9Y8vn/Mm/Nzzs6uGc/2ef+D5xztj7l/fMj5m5bQ7EiMRRjBJJtSuTWXiyuCh70yBdPTWcPe3py8UxzlGRORYn0U3LQ7w+u65fB4TJpInn/wLtmk5CTNeHP2FZV1LHc7eiSJEGw3FdYYLqstEkkx0tRtTZdm3H98QtN2XJ9e0W8qtLE8mk2Qz46ohGW520Y3eiopkhzpHRvbkM1S5rmm0Bmr1RJhAqXI2JvMsYXjOgTWuy2jvKBNJW3rEakiFTpSDgeiUtv3aK9IEkU5yjCdxfXDpq2WMUohRAJGnhXkeTIQNTwuCFAaLVK21xVdAGOgbQ1vXl0xGZUk5ByO9gjKolLwIlC3LVvquNEbJNWuizTGRJHIDCH9EO1g6ZtuIE1qnBQkJPRNj+ijQ7q3PaBRQlGOR+hMI4Og3Wzo6v7OJRyEpzeWvlN4U1OmOUVWsllvCAPlRCpIkyjA8EIBEiUlKhNYIeiqHtNHAmbIQCmNlB7bOUznaeoW4x1CQVbYYQPex3QyAs4bENER7kx06N8a7JSKwiylBGmeDIQaTd00eC8o0hzfe1xv72IfhJDDJvxtTFYcGuhEkZcpOhkETE4SQozG9TbQt4bgYv+n0wSdRGFHFH0NrnGphv413EFwvA9gXYzOEQoBaK1QOsF2lq7tB+qRHIYK4W44gYxUnLu4Nh8GR/sgmZHxPdDDQEdKgbUBfCRqJloNY4dbF3UUV6WZjuQgrbE2YEyMyXMRtEUYBlbex5gNKQTO/83dNBe3oKnh7xJxF70BX7u9pZRIIfG3DveBViCkjIMgBH44Z1G0FD/HbjBRaCmHAV/A+oCwlqRLePDpI0Sn7t7jIMJABovDul+dRgViBFyMAvnaTQ/RyZ9IjUoEnfHYYRCmhELpaKIQRMqsC55g4/BKJynleIJOFE1V4Y2N8dRSI4QiywbRfNdiuj5GMw3mDEUUDbngo9jNObp+EP2oOJRTSiAJ+ECkm4kolvTOgYhkCWsdqUqZjMaRVNb0jIoRxbxkvVgg+kGoJyDTmjLL0VnCYr2haTuUFGgZz1sU60UhZ4xiBGNCpP5JeUeMssagFBRFSttFskYIcbCqBppV7wzOR0pTksbrPl4rEuujkASiOOo2plIISNJ0iAT0Q8z1IEB18bx6BuqU92iVRKGVAJko2q4nwm5bgmzwUhCQdLdRP0KyaSrC1pEkGUJDmiUoqam6lrazjFcTwr1olPE+4HpDHJgaEqnQQlA1PSZIwnbDJE9pdg1t2zO+LHj28XPm9ZTJfsHewT5N29BuFPmLkvU7S8o0Zb2t2dU1ozLHuihOi/FBHrSkalqMBe06Ao4gYT6ZITZrmmrHeFwipMa7QFmO+K3qWxzuTbhZb5FpSjnPmc3HtMsVN5dLVi5QljlpkWKcZ7feMpqMyCf7NK0dItELlJb0xrKtetTVivtlSdN0rK+23L+3T5mPWNVrBJEILIyn2laMsoz9yYRMJ6y2O+ptTW9dBM9Zy95szOHhIWmZgdKMJjPSvGC73tL1PdYG1ssWmTrSTLJdVlSLJZ1pGY1KCIE0kaRlxuZyh04kXgV6PDLR3Htwj7brqbY7iiKj6VryJCdJM7766ozNtqYsc549f4IWAvoFe0eHJKlivdwyOThkCqSZRGea5c2aVCr29/dogqc3hs2u4WZds38yRauEq9fXKAmr5QopYTyeRBJeEFTrLT44pvMRQgVsb2nqBud6ZuMpdddRNzvqXcNqu2Zvf8bNzQ1ZkpOmGdIH9kcl2gU22wprenbbDYoYpegFMYaw9aQ6oZQpwSXYxmG9IDhD8I6qDexaQ2c6FDCdjgmiwW46bKNovKOUBQ/un9C0LZfn15G8EjzjvQLbNrRbhWkbbNOT5ePBzGRwAoJWdE3PZD5F+x7fWw6nU+ijoezqcsfNasdmVzMa5ZTjAu8D9+7fo9vsqJuGvm/wfRQe+3GO7Rzr5YZMpySjnOP9Q7bXC06XlzRnV9xH4lrD6eklJjiE8DgMeZHg8SwWW7TOOTic430gSxPme3uQKOogaE2H7CqE92RZhiD2CU3VYFzg9fk101HJyb09xnsjQtXx+tU5b7664fDeEfvzEcIFZpMymucQWOvoWkNb1wgCGkFjHOuqwVhLEIqJc9QVoCTjUU7oe86/ek2SZCTeY1yPUpKm6cnSBC0khRLsjwvwNhJbvKQ3jsVmhXCR/DPdm5FJjesdm11DkiXkRvLmzRVCLpnuzdmbjcgSTVHk4CzSeoTMUEKT6pSqqTDWkipJKhVd3zGelJSEaDIMEmNMJGtax26zI881SSLJi4KHB3ukRKHqtmnY1QZrPEEpemNQGmrbR1GQlGgt6L1jMpuQa0mza+nqBiE6MgRH8zHbrgIRqLoWIeMenSRgvCNoKJKEPM1iLKs3qCAphni+BkHdNGS95GC3x26yAQ8y0VHQL8NArYyiJaWi2EN6ibeB++f3ee+X76OIpk3vPEHF+6IchOhZl5JfHnN/8QDzpeFquuDy+IbzyTneRRKV91DoHKfs0GuC9YO4y0fSvLP2Tvw7dFB4H8mNpu9Rt9RIGfBKx2MZYsvcQKyUDMemFVIKjLcDwfRrQyjeR9KS8/RSkWcZSsT3Uwz7rVJ+bWS9FdxLFRBCY/u4Drul8whij4wnrs9MjJuNlH4Xo3lFfG6pBMZ7AgORMsR4uVuG0K3gKPYXchAqS5zzWBdihK9QGNP/ikgp9t0M4vQoMxpEVIlE6VsS1PBahl7VWT+IouIT6oEGdUvYQvyKaOlODnQbwxa+Tm8eBPhaq2iCsJGCqbQaBFlfy4HCnWgqCokYiEa/Kpa6jc6LTy3uKJcQz8nXJKVf6beVRCmJUurutflfiSGOGu8hVllEAZXwv/KkbwsCjKoR/+if/yOKtvgvfTRv6+9IiSB4dProry9SCvHf3j+/zz/5H/8JD948uBtqJzZhvprzrZ9+iz/+/T/+z3LM3/jFN37tj/u23tbbelt/m2tcjXn66ik//Y2f/tX/UYDv/vl3+Sf/z3/yvyr8VEEx2U341sff4qOPP2I72fLi+Qs+/ubH/OLDX3zd7L2tt/W3uP7KIqVb1KtSGimiI1cpBcHjhUMqObhbLYIYT6K0vBsYBAJd36OkxJgeYwxdb79eVMW1EELGRWSiNMYZTNXHIYBSMU7E+WFhFbC2J01yGKLcpCQ6dlB4p/AuYnV1kiBVdBB5Y+PC0MfNfo1EZxmJEnjXkyUTnFf01uBDHE5pmTBKEtqqplvvEL3HtBbX96giQ3pPtVzRrtd4EbAIOtMihacoS6TScRM+gPMdfV8TBCRpgiC+1kRLHhwf0RhL29UIJXB9wHSGJFFMxiOCddiu5fLNGZXvcUbyrfe/xaP3D2C3YqFaFtuaMk/IspTgBanKcU1NKj1ZUhCCoW1atErJspz9gyPOry+xpiXJBXmeYl0gGE0fwASPCpIESaYTZDlCZgLTG7Zti1Aa0xsSGTg4OECXCa7thjgLS5GnLBYVwhuKURGd504wG0842N/narViUozJs5xd17GuG1zvKEclSVKQKItwcThatz3z/TmTwnNtLWWe07mIRJ3mBTLPKIoJzoJTnsY4srTk6MF9xuMMb2our9c0NzeYqsMFT98b+q6nqqKrNUlyXGsYHc4oypxplpIVmjfrLd3ZjtenZ1TrimmWsDctGecZTx4+Zm9/xun1FeeLNXbX0bYwn484v7phUW342RefUhYarwJeSK42Gxq3pNQF3/2df0grahZffcX+fkqWaqalppuVeJEyzqaEQpDIMaHPud62PH7/PZadRfSWs7/4OWevTmkNyDTjt3/ve6x2NX/y55/htODi+pLVtmV1teNbH71L01mmWRxQt4nAKY2pDGWueL09Z7c5YLFdcn76Gl9oNnXLv/qTH5JozdHBmOAkaTZlcXXB5fUF/SAWVJni4PCYMp1zODtGBY/ZXpIr2FY1m9rx4OEJX375OdV6RWdbdlXF+GCPqkipsjGFUOwdHnLvwTGFSpiWKcVkRprmzGYzJvtz+gCJzsEJjqZjlrstL39Rc3z/ASjFrur4yY8/5+LinNnsgPWy4vTVltGo4Gg+ZbPcsj/bZ3e4ptrWaBNdeZP5HBcMq/qK1dZx7/qAP/7zP6VVOScHc7qqopE9yiuCt6w2ay4XS/KiZHYy4c3Fgl3l2Tua8eh4ystPP8e2hqvVJUrDsl7yb368QXaO9aKnqmq+keV8+bOPcWmGsTsWyyXb3Y58FDicHnB0eEKeKHq7pW0db07P+PTzX1JkOV3bk5YT0vGU5XbNw3HJ3mzGk5NDHj99yNZ0/EX/b1kvdjz78CmZFrRby2h0iBwpRF1zc3aJ1ilVWPHm048RumdXa66v1+g05f13PmC+v8coK7ha7ji694hkFnj1yy94+eqajco4Pz+nGCsmQXC4N+L5oyNUltG3jtQ5ssePmB7P+Oxnn3N9viLrG9ZvFmzbHi2hWS5px1OuLpb84nRBOc54sJexW16Q5JK8lATl+cZvfJOu3eFFQlmUlKRUizXLqxVvzq559vge+5Mpp1dbMqfREv7iL35EGxTvvvseW9uRHB7w/cf3mU6mXJ2f4eqKq9fXHN57wtHhPv/TD/8YHxRC1EzLCVanSJGwunpJvW7IcsXNpuLVZkcXEr4/2+fDdx/j6gWbXcVue4Z1FXkxQ6MplOLi+oazVYtGM52VpJVA+UCTKd59+pDfTD5AIthVLb4DJRxTJdk0K8L8iP35Aaura25ubijKlNnRHDVKeLg/QqqE1bZnU6346Sef8u7jJ5iuxVlBMlJ0TcWL15dUm4bt8ozldknTGPrjPXQxwukFT07G7C5rTs/f8Oidxxzem/PpJ59y/rMv2DvZZ5IXlB521ZKZKJBWoKxnlKVk6Zjje4c0XcNnr17Fe4QXVNs1ZZnxjXef8ew73+DR44dsrm74Yv8lP/34cza9Y9WvKCYFE5XSVC277Zb53h5BSW6qjmySs1eMuDxd0vqW2WzOxfUN56sdi9aSKhAhYExPVTnSRDOexwGdt46mGkiKw+DauShaGBcjwkTRtRZhQYkw/F4c6KskYTyJrnu8jxvIxMhbYwM6L+j6BpTGBkllDJ0xOGPJU8VkVDAaTzi7uqZvI0Gys4a2CQQRsMYS7G6IC4txZ1JJKARd29O6Hp2kUQi9MzjhYlyc0pi6x3QeqRVploEbBAtEMqEQ0LQtRZExn5V0bUM70KSsA+kBC7ZVoBTGxI1+nSiUAoUmkRmKCh0EfdWwsz15nuEd1F1P19so6FBxw1ylijRTaCXxwqMkiEQNcXt+iFuIfyIdJiHN0ui8DtGtnedJJLBYML0dhhzDZr4UhIG6JIAwDDyc90NcVXSOx6GRJBBFGs4OsW93EVBxdCC9INMJOkkGx3cc8jvrhk15fmXgAFlWIJC0TYfpI72oNzF2hEGkwR0lSUax0BDzhQoIM7iSBSSJijEdOjqbvZRAJDL5YYCUJPFEKiG/JlMFMUT1OKzxOHsrqhqiI4TC2q/jL8LXWKe/kfWrzvhbYZCQXw9hYp8Y30eUGARlgzt9IEy5IRrNezcM0SLJ6Db65DZm4zYixAeHqwUfffI+k90UoSMBSAg5kJocSiTcIrSEuE2lEwMNIw6ClJQIHQUwtw7zEMQwJhRIrVEiUo6UipFtzkWHfBRdKRIlcabHdQHhBoKTc0ihEcFj2hbXdQQRhfTWWYQIaJ0M7vZbsqzDOUMQcfAEUSSjpGAyKjHeR1GChGCJUW5KkaYpwXc4a6i2W0zweC85PjhmclBA39LUlqYzJFoOaz2BEppgDUqAlgrwOGvvovDKsmRX1zFWLRHxOyGA9zIKT0KIqSWDMDJLUoSOUSydsVH45yIhqSgLZKIINlLxCB6t4zBehFuCVvzk5WlGURZUbUuapGitMdbSDkLVLElIFUjpET4OOo21FHlOKojCJa2xwSK8IEsSRAjoJItkgSFmU6uEcjomTTTBG6q6xTQB3/fMr/YIB/G6NCaSJpTSBOFIsgydaDKtKH2Oel2SBIF/Ezi8yjlsZ4x0TponzCYziiJnW9dUTYerAnXTkucJu1rQmI7L5Q1JMtAThKDqO2zbkMiEew9OsMLSbNYURfxezhKJzRICilSlBC3IbUlWj6ikZbq/R+scWM/u/JrteoN1IJTi4eP7tL3h9PwGL6GqK9re0lWGo6M9rPNkKor5rAQvJL73pEqw7bd0XUHTNVSbLSGRdL3l1etzlBSUZRbJcDqjrip21S7eWxBIJSnLEYnKGeWjOKDuLVpC3xta45lMJ6xWC/q2xXlLb3rSIsckil6nJAjyUcF4MkJLSaY1SZYhlSbPM9Iij2mPVYxJG2UpTd+zulkxGk8QQtD1lovzG6pqR5aXdK1hs96Rppoyz+jbjiIr6Msu3stdHHCnRYbH0ZqatveM65Kvzt9ghWZU5DhjMMIht5Ek3fUtddPGmPpxyq5q6PtAXmZMRxnrmwXeOqq2QkhoTEN90SGcp60dfd9zqBWryyuCUjjf07QNnenRaaDMSspiFKPVfY+1nu1mx81iGaPLnEPqDJWltF3LNB1T5BnTcclsNmXqLecv39A1hvnhjAiTDKRJidiTiN7Q7CqEVBhatjeXkWgtY7QX0jMeT9A6oUgzmm0LAcb5mNpuub5asO09+IAWnslIk6eK+aSkGJcY62NkWeGZzceYrufmakXwFnrL+mYb+wLXISpB08PFTYXxnqNRhrAd1jvSTGM6w2g6Jk3j9ajTlFREIcputWO1rZBCkGeR7tU3hpHSXC8XbOqG8WSOlBm96ti/f8hsPqdvWrqmoqkalM6YTaZcXy5Ybxoa09BspliiMNZZQ1XVSCHovKfqenq/Bp0y25ty72DOcrMB39I0Dp3kyJCQqCj6qbotQjRkiUYmitQntM6QlRn7B9MY/ekDwUmwnkRKXLBYJxhPJti6pWlqtByhkoTpfESqIu2pbi3CO5bLJd46siTB24BMJU5Zdk2Nt4Km3mG6isZYEiXRSYJFoXUUfC43G9CCg5NDmqZhd3oe99TGOYXWtLJDuECaRPKbEqDzHIoo7qiblsbXKBWFVMb3TMcjpsd77B0eIANs1hvO3lxGYb7p0dpT5gVKxIhGrTRZllC1PV4IxpMC00VSe1FkKB3NGJWx6CHyNAzfMwfX+5wfnIG2QBTY3hofB/4O3kOqNKnOma5nvHP1DkWSI/A4D0HERidJkriHScD7GOkugFAr7vcPOLg5Zjqfcf7knE5XUTTtHFIJEi3J85zeOryt8MFge48dolgFgdAavI09S3CxP1d5FL30dog+C2A7G8XMcqCKuoBpe0SvkErdUXXA3QnFPdFEOh7nQFyvWOdx3sXIVh8I1uHF12m3UoqB2hp7BoFBIggu0Lc9IYn7uXaIer01H4QQkAM9VWo59LZhOC9RjO5d4BbVKKVE63jstyKlECJlL5EKgcSZSDMVUkRy47AW8GEgwAZuQaw45+960gF4FCPoAgQFbjjO2wi82MMOfZ2UvyKk/8sRcbfriRCG6FwVKVZ34qAQ+3x5K7QauEdCiEinDP7uWMJt5p+IphOl5N3xBM+dOO6WTKaigixSq8ItBXSgcFk3mBvCHbUqat4kMvi7tfOvCqfeVqysy/hv/6//LY+/evxf+lDe1t+hEgje//x9fvA7P8Am9n/zdyebCc+/fA4BTi5OePT6EffO78XotX9nSi0QFE3xtX7y11ijasR0M/31Pujbeltv6239LS8ZJO9/+j4/++hn/2HKUYC8zXn+4jm//8e//1cm0wkE0+2U7/z4O3zj59/gZx/9jB/8zg+4OLl4S1Z6W3+r669FUrpdSMaNZD+gbOOCN9EJne1ijIG/dUQLwCMIGNtjjCdJUkRwWBcjCHzMZIk55ULhXUCncYGrtUApjZaavMii09YHRJC4O+yywXnBKEtRIm6q+pgjFp3nSmGswVqL9wEdIqWp6Q3jJCdLYNU0AKRpRhYNPnQ9d7EoqUqRzuN3NSDoeoMPAZUmCC1wmIhFlkPMAYE0jXEsqYpxbjJamulch3Mmirm0INUxDsI6z/VihVaK/emIbd9iQiBNcybjSB9KEoUTnrqPm8TTco+zV69pd1eE2mO6HuEc3kLTtziluXy1jW7uEDcgjI2kBe0lznfkux37kwkmyeibKBCyvcE4cCLuOOyaHl93SCHiUEHEDYTK9pRlwXi+xyhJePz4Mbtux/Xpa1rXE5zDripKrREqYTQeodUQ5WLg8noJQRIS2NY72s4jveLg5IR/8Lu/RZ4r/vRP/y03l9e0raM3jtVyxSjPSHqPzixK9SidkmiNwHN1eQ1aEbSPETmkLFdbCpUy35/x6uKavCig3zKZjtk2C3oTaKoWrRRZCiMlGWWKy9UN28WW2bREJBJEwuHJHkp7Hs5nzCYFj54/5Tvf+S1q0zMtzylUyuRgxPnNGctqi9Cepq/ZdArrNaNxyXQ6o0oszWoLznD54lOCEtBZslHC+uKcxAvG5QStNDeXV9jgcUXPH9/8gD/6r/8R7z4bczKbcnW+BNPgJmMOihHleI8kGeHaNUfzPd754D2+evVLfv7Fp8z3j/nhL39OrmbcPxpz/8kD/mDvAJzlRz/5mPE4JysTfvblL3EiIRQj9o72Mddf8eqrlzw8ucd4MuHLr875/KtzEi2ZziaMH5zgug6fJ7Q2cPrmirYPmGaH8J5kopg9vk+288zKnB/85F+TJZq9+/vcf36PLC34zsExR49PWJ/d8Mmf/ZzF6w1d1SKykuPykMP9ET7J+PRnp+A72rrjJ598yXSe8vLsFc3GURYpDw5KPnz+nF1reXPVg1acvvySstRUruVH569ZLLdY8z6ZVhwfHseBmhCcvrng5mqBUg4vU/7Nj35EUSTc29fsdldQaIrxBG/jRrOxjnRSUGQjHt57zLvZCJ9qlhdn3JsX/NLv6EzHfJZx72jOerejQvDw6SG/+OQF1cZwcXVBJmHV1qwWl2zWDb0XzMdHTJOU1dkl+7M9ynFJ7w1ZMUKnhvF8j5nrONy/D9mUx+Ih7bYhTXKO5/skacJHH7yL2Rl224rDwz0Wmy0//fwVk2LGN7/zPuXehLZuIQhmh4fMZ3PuPT9hsYLaOGZ7+wQv8E7R957OW37+k8/YXF9zdvUG4wTZ/jGPjo/oNwuc88xnU6SxjKcTVtsNy9WWspjwy88v2DaGg6cPSRPJ56dnTEYzgusYzTOyTGJdB0LQrDd89vEX1C4wP5jx7P4Ra1Pz/oMH+K7j1XqNMZbr7RLrDHVtWWzXJHlKmk/56nJHfX3Fo5liPBqz2e1YtzUne2M+EMcIBN31DWqz4ersgptNxfdFzrNHJ2SpZ902fPbFLziYzvjGN7/NwcN7fOODx/zi81dsN2uUvqaYljx9/Ig3N9dM04Rn9x/wZnHFaDwiS0v63rLeOq6blqqr8Lrl0YMTHt7bZ1s5fNWy3d3wRfBkPnAwn7Ktdqg0YXF1ycFszDTLGSWSkewY3ZsyO56BE8yLObPxHrORxrUN6SShFwGvoG976vWatlqTH97j/sEBy3VPUJIkPWaz24Ay9Kni+ZP36NqOH//8Y9brDRcXV4z2ch4ez0jRXF8vaEKLDIF209Ari5Jwer1hXW/RacL+ZI/j4yOePPuIN68v+cEPf8hmWZE4x3uzR6QY3vzscz75wResVltcAp11ZJlGlzP6rqfUU1TRYHuLlQV7kzH5xJOlmptVTTH3vD57zePpHuMiwdEhiRGqtffoYhQHcQLGRYnqezopEKJACknjO5zzJIliNC75nb//fb7/h3+fal3z//q//384e3mK8QahFIi4qb+taxKl2JtPmeQ5kyyjMT3nV0usd5SlppQ5E6WQ0rPWlk4GskRjm55Vt8G1jhRNEJ7gA0VS4IXBmh7TGYIdInF9QGeaum1Bxpg4YRzBebwKjEcj0kzRbGuCitFWzgWqXQ1CUJQpqh/iDIKPcUIhkGmNt5bFYkXdWtI8B6BrezyeYjzCmGGg0cdNdGegqw1dH4knWZYgVBR698HGjfEEvI39kbVm+COBlFFZQKmoqh7nYzRHAAgMzu4EIaLowrjoqg4+3Dl7jbUY10cSUyLJ0hJwWO9IijISKeuOvot9inMQOg9eEERAqCHaSkXqULDxfYnidkmSJDGC+JZ4I8UdrcWHKHSJ9M8Yc+Wtp+8sbdtjjY/i6zsREKRak+RJ7HYHZ3YbTHSOB4b4Yz3EvoXoXk4UWZZEomXdEYKLAjnv6HtDEJ48z0m0RlqBMRZjHH1n4NaFPhBKY7d6Oyj5ekgUbt/3v8F1G40HkXIjXHT3x7mMwmP/l2IrERAhirHi+ZO4IZ7iVqAUQhzUyGFYJOLcByUkj64ecrg9RCc6UpSGocwtoMv7eC4Spb523A+rGa3kIJ7ygxgskgicj3HIqdIoCZ21kRYmVRQrIeJ1OtB/lIzxL6G3CKJwKMYMqgjfwg9xHXJ46fHalUKgpI6cgiFaxgUTCSbOI6SMAkERabV1E3v2Ik/orcUQUEpH+tAgbguAcXHomCY52/UG01dgotBTDHGF1lmClFTrNc7FTZEAg/jTI4MgBIvpe4osxQ2kh0g48/G6HMRlvQ0E4wbBl4qvR0qM70jShDQvSFSM4DXWUG83WO8gOHwbB+5CKJIsRiA563EOqqphmPDR9z3WxbXiaFTw5NE9lJa8ef2GuqoH0oKnaVtSrZEuoJSP8XFSR5qWCNS7mriwDARilHjT9CRCkRcZ66qO4ibnOOmOOFzv8zI/xQxkYK0gEYJUCaqugZXgvS/eZbado4RCSE/bN0xGGXmaMJ3PObl3gvGeNNmhpeJZ84iX9pe0rgfhMd7RO4kPkjTVZFlGLz227cF7qtWCIAHr0YmirXbIAGmSIaWkrmpCCBys97j8+TWj9yaM5xlVllNXDTiLT1PKJEWnOVImeNsyygrmh/ts1ktuFguyouRscY2WOZMyYTyb8LQowXsuLi5J0wSVKK5WSwKSkCQUZYFjw3qzZjIakaYpq82OxbpCScjyjCwZ450laIV1sNnVWBdwtkcEUJkgm07QJpBrzeuLr9BKkY8LxntjtEo4KUeMpiO6bc3V2TXNpsf1DjFKGCUlRZEQlObmagPB4Yzl4mpFlivW2zW2D2gtmZQpB3t79MazrWOc4Wa1IkkEvdfstluatscPpJdROSIEhwQ224qmbhDCE4Ti9DyumcaFjEYlLUmyjOAiCcP5gEwTtE6ZjmboWYJXina3ZVxoFqHHOUuea8ZlTtv3GALTyYjrqyV956iqCiWgtYa2qeg6gwuCPB2RSkW7qyjyIkYNBY/S0cCV5jnCO8pyDCpjRiQcK6UZZwVKSY4OjvB9vA+VZUHTdVwuVqQ65+hkH52nURAZBFlZkmU5ea7R5Zj1qqFIc4SPAltnA14QidLbHVW9i+QgmTAtxiQi0FQVRZEhGWTISlJtKrTS1FVP3TToPCcvs0gos4I8VfjgKIskksyEwFvHZrVht67xWjAZFQRhmY4KZmXJqqppTI+xBmMMbduya3ukDCw3NcZLNusdY+niPoNUNKajHOfsjUucNdD1+LrGdx1Xmy2jcsL+ZEyRKTbKsd2tCbZlvnfAuCwZPbxH0xu224q6rtFZymw+JSjJcrVhlBdYa5BaonUKAXrn6DpP33cEKVDacnhwhLUB4QW+79lsdwgfmBQFXd8TRIwmC96TZRqhFUnwpLkkKQqUUhShwAdJlikSAUUSb8JWCJxzOARd25AlBWVeIGU0jI2mY7ZLgzAWrwRpXrI3nbFcr+n7nt22IssT9vcmpFJhekvd1ehM0jhJazrS3GGbll21I0hBpqEc5Rwc7gGS09dvWG23+M4wnZRoBXZXcbpuaRuDFSEKsggkRYZzNtLVpUKkDuMC46SglJHCbky8j2zrBmSgyNIooA8CPYhmhE7wFkaLGUUoCLqO4pREI4TABIu3AW0U+90e3/Qf8puz73B0dMzL1Ssuzy4xXXdHzPEEjLNY58iylDzPyXXsP3ZVTW89aVA8Wz3hefWYxdEFrx6ccqGukUojA7RNHwXVHrRQ2OBQItKPYgRywNk40L6NPrXeEUyIBHJcvFfiUVqRZyneDfuwgyjHGguCGD0mwTsXqZ4hDAJs0FJG8ldnY8OposC/7x2JyAjcCn2i0Dy4SEuKkbTxOxUhBjGOJAxRtOJOBDOcTw8hSKRMSJMUEyzGxvXE112juKMchhBJmrc/vBX03PZ0iMEkkGqkIK6TZBTWOTeYKWwUnDv37/SbdyIkQRjE87eCKaXUYI51d2TQW9NHbF3vmEjxvz7+MV3cj/46ym4QRSFQeiDHDuWsvyMsRSPEQI8bTLhSxvdTaxWNGdYTpEQMPTK4ga6p7nrpEEIkynIbTf3vtNni9vfu/s/da3hbILzgez/8Hs9fPP9fiEHe1tv6T63HXz3m2ZfP+Py9z//9gqIA082U/+7/8t/x5NWTv/I1+MFnH/DP/9E//w+Kn/669fD1Q2br2a/1Md/W23pbb+vvQj3/8jllXVKNq7/8g4F+l3UZ98/v89HHH/Hu5+8y28xQXv37H+w/UFmf8b2/+B4fffIRH3/zY/7kd/+Ei5OLt2Slt/W3sv7KIiWlNN7buBgOgTAsehMtUVJz6y5JtIoYW24XhxCI0QvyNt/6Vsk9TFLkr+RvCwS4gPWGPE0Zj0qkECSpRAtJ31ucc3R9fzf8cc5CnqMTTddb2r5hlGm00vgQN8qdj25nZ2x0H0lBjUUSUEIghB4cJvHgikwNQ62Uru9jhIBS+MF1K80tncGSpjpmbniH6XuSLCVVmiA1XYhRCRaPNT0QKPIcqQPGeUSIG8lBabZ1SyYk+bAR3dZx88F0LRIfF69KYp1FJoK63/LxVxu6Lw2JhlwLemMJsqSte3LZUO3WKO/J0zhkRSpkqkmSDBUCbdPSbzqMi3QAHwLBxuFhnskhhiFDpwlNu6FMFCop2G5q5sUIlWqMdTRB8dXrS6ypcL1hvdkgtWRvNmaUlCRlivOGtqpJRI7F0TtLIhKcAaUy5gcF4+ke+9Njuo3g9Ys37NYdWqVobZBSsHcwZblasTEtqRxTZJMYI2F7ApLpbEY2K6i2K9qqx9QVVdBctI71Flxv2V5ek2carcVAsUrRqifPUiaTMfPJjKruuNqsGKuCg/kz3n3+lIuLBWWueXDvkEwJMj1m//A5Nzc1X371ks3VFQ+m+3ht6S5bynzEaNKgbU+Qgd4ZUueYZBmrZU2OpLUdL24WnExHKOFZbtbcrFfUu4okK+lsx8609L5jud6yX+z4fVtzfXpKfb3k0dOHFCV89stTjLW8OTvl5ctTtEr56HvfYX8+Y3uzx3iy5OjeMTdXV6yubzjZn/Jnf/YxrvXUtuPV+Q3TccKzh/c4ORhxfP+ET37+KT/50x8xnmY8e/qYD995h/PXl6wXC9brFbPZhMcnj5BBsfdoH6clF28WXG/O6KsKpGeUa1KjUUrS1RVfXL9Gp5J7J4cUWY7uJJNizCxJORhljB4ccfriNXVdc762bM8u+cmnX/L4wT28TllvthzOCsaTCeieZKQ52jtkpXZMDuc4AlXb0BnPP/jt7/P68pp8PMb2hi++eInpLapI+fHP/oLHxycsti0Q0C66UyvTUi+WTNIRR48ecXA4odq17DYbVuueosxJhGR1eUlZ5Hzzo+eMihRZpLx+9RXTvTnNruGiWbOqVlycnnF87x7rpmC9a6hty+FI8ejpPqlLsG3F3uEROoX99ITmoOe8adGz/RhpGAK1sbS15eDeY77729/j9MXnrHc9pmtJ0pS2XpMnKapIGe3vMRrPmYwm2M6TqpKDw5xxmjF9MCG4U3brBRcvX7F38oAPvvk+1WZNuf8OfhfjuvKZxNY1Eseb5Y7y6JhyrHlQ5DTbBi3henlB0I6D/QyzvubPf/gjnn3wIeObBWdfvODo8QN8F7hcr0nLFKzj8Oge7773HFu15PKK/UeHNKslfduzuVxwc/4VF4szri8WlMWWp08eErTA5znPHp5ws94gnGR3vWM6HjM5PuLew0N+8sOfoETPzeUlyjlmR/fRfcqXF6ck4z2O9w+YFjkvX71CeUfTeOazlMvzN5yen3H47CFHzx9wdn7DfDYnzxc8fzDj4b1j6u05DpjKY3IX2FjPb374PoVyTI7HKJlRL3ZonbJ/JOm7nr517O9NSXNLV2rGRrOue1brHS+++IrxwT6P7u0zqVNclrO+WfLlTz9BlRnvPX7Izd6IVdORBIvzlvXWMp/POZzNcVXFV33Fww/f46P3H/PTP/0xX71Z8u77TxF4qtWatq3IRiWnb7Zcb9bUQ/SJNY42SXn6zhNGSnH66hXlpCTLJXM5ojM1n372gi9++ZqqaRnPcub7I8p5jsShTGCxuGaxaWnqijRXVLuKvNBkSUaG4nA6patqSgKaLZuV4fMvbjirAl7D8cGceZkxzhXzvT3Go5JCp6yrHvdKsGsa/K5GhgBZGiOF6OjqNT/5RceutfhEcXS8RxpgX0nGecEvXr7CecteltFW13hvKfIMvCR4gel6ppMpH3zzI5J8QqbmfPSt3+aTf/OaN1+uMDikNehEYZzD1nWMeAJE4ajYRbqfSqnaiv3ZjMP9OZdnFyx2NT6A9YZlJcjTFOc6gpfMxlOM6ahEhQPSfEQIgeVmTW9i5EeSapJM07YN3g8DlyHuqcEAHu00rvMIlaBLhXAGYSPNJPg4pNdBItDYYGh3LW+auCPe9B0qK6O43FqCiMKKpu0IDM5fIWjajq6J5BG0RCaBNNekeYZUMRZtPM6p644QPMb6GPMgozPcdo5OWPKiQIgYr2YGkkkIgeA9xliwUI5HBAJta/DWI/AoFXPhhIAgI6VGqRjHmkhNkqVkZcF8PqJtDNWuwnQ9wQFEaqcXcXCgEk3qwRuH80AQhNs/Hvo+RrUWo2QQDklSpQjEQdbt70ohadsuUpZ8jBa7HSYYY1FakpIgJCSJxnvopUNrPUQ0BFC39IQ4vL51JwshB/FJQGkRYVMyCvOlknjvsEOkhxvOMYDSQ1QEYRjIRCGNUsP/8/9pi4L/PSoOltydUCnGcMRYNfkrER5x3SCG5UK4G/zcDoP+8vAkfP3vbv86rDd88IzbMe+fv0ea6OjUFwIXBqGN95GcxuA01xo1mAesi6SIOPS6JScN4qpB1IQQsZ8Xt8cWSUdiEFndCpyUUpGq5GPUYxiGQ+I2DkV4pB4y1gYBkNKROoSQuBBpYY5oEoFIe0WoGCkYYkRKEJLOWLQALeKg0po4EPM2Uplu31sXHEIJrOu5Wne4VfxcaxnJAUFIrHFoYTB9hwjxM2Z9jHgTwxpQANZYXOdwwQ/0qBApBgi0ZCAN6EGQ2EXBkUrou548iYYN5z02CDabCu9jTFDXdyAFRZaSyCh+8cHjjB0EbXFdqoQkHpYmLzRpVlDkJbYTbJZb+s4hpcLLSGUpypymbemdRcsUrbMo8hoyKrM8Q2eavm8jwcz0GCQ752l7CM7TVzVaSxSSd16+y9XzJUa6aHrIUrI0w3aB5DLl0ctn7CVz9vfn7HY1SZIyGY8iRUSlFKM5dWNYrdd0dc0kK3A+oVjnNDNDmplIhxviCX1QZErTNg0agfWOZV0zzlKkCDR9G19f36NUGiODnMUHh/oyYVGteeIN9WaNqRumsyk6gcVyg/OOZrthvdogpeLo/j2KLKdPctKsYTQZ01QVbV0zLua8eXNFsAETLOtdQ5Yq5pMxZR4NKtfXCy7eXJCmmvlsysH+HrtNRVc3dF1LnqWMxjMIgmI0IUjBbttg+i2u70GEuN/g4sC463uW1QapJONRgdYJygrSJCWXkjLRJNMR69UWawy71tFtay5uVkwnY5Ax5q/ME9I0BelQqWRUlDSyJytzAkQKofc8fnifTVWjkxTvPMvlKn6Pa83F1TnT0Yimi6QV6R3G9fTOYvqGVKaMplPKMqM3hr5raTtP0hsk0FYVSaI5OpqTJlFMsllvyPIc21t2tqM1DdV2x2g0pjWarjcYDzYRTGcFKii87cnLEVJBocaY0rEzBplF0QoBjPNY4ynHM+4/uM9mtaDtHd7Z+Lk2HVophJakRU6S5qRJhrcBJRKKUpMqTTZJWYYNpm3YrdcU4wkHhwdxXVLsEfoeZwxCpYjCkUrJ1vQkSY7Uiul0QnABOQr0psM4Q15otHRcn13ipCQvSxbba7bbeAx13eBkFEsIJIfHhyRS0agGJwJFkbJdrcEEqvWGptmyqnastjKu7YsJnbdM53OEEOyanq41CB/J1uP5mHq7I9Q9PgiWixvKyZTpOGO7vEYmCVmWUZQl1a7Cux7TWfIix3QN69UaIwPzozmtd4BkXKYoEbh3PMM6S1ttKNOcxINwnrIsGacJMhUUozFt1SJdoBxPMM7gTCDPEnQiMNaTprH36AMsF2vSLGM0KtlPZ3RDtOzlzQKLZ1SWnBwdsG7aaCgkEs0TpRgnGUWasKhrkkTx4OE9TF1zenrFaDJimqfY3tI2VeyLbWC93tATBSd5mtF7yKZjZqMRXdNSKQXCx9hil9H1LZ//8qt4f/SW0TiPQhEPmUwwpqfrHU3XI5Wk73vAk2cJaZIxzguapsG5QCId1jbstltutj1OCHSmmGQ5SSIHgvg4kg5RsFFsqx1VHw1z+HifFjhEsNysVmipsAjSLGGU5xhrKYuC7a5i2wSeXT3l5f4L3E4wrWeEIBA7yexiSuoTHhWPmM3mZHrE0fF92v3A4nxHi4Ng7wQoxkZly63QyHUGnWi0TGhci1bx+rS9Ibw6ZHy+h3/+U64OrvGJBBGJN4lOSUXAiB7jBpGhFPR9T2dMbHmkRGkZxUPWcqvaEYlE6hidKxE4G/dEVUTSEgYKkACwgBdIZBRNe0+97ZFCROqsGMhFQ7spEFEkdNe7ia/FSVEDhtACoUBrPZDtA0mikAIMtxF6g2gGcSekSZKEJE0RMhoq/OB8uBWk39Ih1RBhe7vekPI2Di78yoAmCrUlAqEkOlXkMsEPRFtrbIxORQ7b08PxSBljlV2I+9q3RgVuBUtE9dEt2egu9ll8TSIahOfORvInd2aCMDxeuCP8CyIZSQzRsVHIdRsjPQjRh3N1J4YKUcDkhEAONKRbU/GtYN/fxk/fkpNCXKNEau1fhqzcipciUuutQOmuBmrNH/yrP7iL03pbb+vXWdpp/uif/xFXR1es5+u/9DNlFU9fPeWP/tkf8ej00V9LJLe/2OfBmwd//Si5/60K8NEnH/36Hu9tva239bb+DtVkO+F7f/49fvjdHzJbz7h/dh+A8W7M+5+/T97m7C/2Y4/3a1IT5V3Od//iu3zz59/kf/g//Q/84oNf4LT7tTz223pb/3vVX1mklGUp3oO5c/0OkW6JGFzi0W2vVYyzEDIOBqwdULtBIqUnBAfCo0Rc/qLEkEEuSHWKkio6XKRiUhbkOiFNNGWZxyFX10UhUtcRnGc6HqOSBO882zoSAoT0cZO87/EhbrT31g64W0ueZLgQ6NoGnSjwAZVopNQYYyKOV+ro+HMd3lmkEOiiQKjostci4FGIJBui6xqQCiUUwQUcEa/trKWtBHmmsaGnt47j6ZzUxYgYKRKECNF5m2jqvsfuPGmiUBq63kZUug/Mx2NmkxTJrZPb4HzcQA1eEfq4CLVNQ56ldDuDaVocoBR41zPOZ1gnqKuWLE/oqh3O9OzPR7hM0hqH6xzTcUlRapquRziFxxFEgs7KiHGW0cE5mpWc3yxwJrDuapztKdKUJ8+fotKEdrUhlQrpFG1v0Dql7yw6FSiRxAW28JheMJ1PGZcTLq6u+OyTz0gxSG2ROmXv3owi1UwmE9q2J8umPH1wQCpHrHZLdJpwvHfAwdEJFJL6ekIynbFdrri+2vD66pxDNWa3qxAicHJ8D68dj+4/JsvHnKXn1NuWIsmYz2dUVYtIM/ZmRzx7/i7WNeR53Mxom4CYl1xcbijGK9b1mtX6mqrtwQuapuGdk2d8+Jvv8YMf/pDz9RXWeERvINWAZTouCEXKYtWhvODh/Yd0ZseozNA68LLt8NYzmig2mxhzEYShyCW77YofXi9wMmG/acErnLN88tmXGOsRCA7Hh4xSjbAdnbM8eHDM4/0Jx6XiZbpmNErYLq/YVh37h3M+eP8BtbXIVPLVi6/4ycc/55evXjEtZkwmJ2Qq4+r8jDfnZ/Rtxf64IJ3knF5e024s//jxY1q7ZdM2lBIury4oxiNs0IR1j/GC/GDEeHpIViYsrtYUfcd8P+PTL1+TnL7m8XLHru7Z7joWN1f4AMcPH/DixQteXbwBK0gTTf7wgOn+Ph+ePONwPuFnP/k5J0f7fPPbH7Lbdbx5c0UWPFVlOJjP8A4uu4q8TMgSKOdjurql8ZY+WKZ5wWe/+IyHTx7y7t4Bevwe7XrH+esr2u020lVMjRctp68vmExmFImmmKQsr2+wkymPZveYTVNef/lLlEpZ68DxwyPGI4nrEpIk49GzR4znB8xTyWK1Zb1coYUjn4xQvSCMRpzMpqRnV2w7w6Y37E8mTOdTZsfHaJHAylCMxvRJw8xNydKEdrfjumr48IP36Kzh+uKc1+cXMJqSukC/2/F6+5qj/UNGRcmbl+d88F7CwV7J1atLXn75ipNn9ziZjfjyi1NkUdJstsz2xri2oW92yKSk6yBF8PDelNeXRxQEvvP++5y9+IL9oz32Jynn56d8dbniW2kSh5xoHr33FBEE0niaRcWuamibNZtryShNOT17za51ZOmIk4M5yECelhjf441jNptwNNvn4mZJ0IpsXFDMRhzvjTme7yG+800+/osf03UdF+envLhYcFgUiDylmI3Yn+2jk8DlhUWh0KrlyaOH7JcSJwOjfMTZm2tEkfPhN55zcR6dr4ubDZvOkSeai4slxvccH+5xb3+PumlxJkUpuN5sOJjvUWQlidacX1zhrwJBwWhecjg55HJZcbnZYHDsZYqL6yXVbhWJIHjqdofycNpdUIwKnj56jGi2bJYLLi6uWS7XBB94eHLMt77zIdZ6qnXH83ff5/DBliJNOf3qgnXXsrc3IThLUSZU/Y6QFPRtS9VZjh/d54PnTyhlyqZu0ErQrWtmkwnTMuXi+obVrkVlgvn+HipLuf/gIclDeP3mnGKT0baX5MkIkSiSNJBkcHp2yeP7xzx/9JAgoVtfcr1aka5zVJby7efHlEVC13v61jI7Oead+8dM0ozr5TbG+NnAweE+iVTsNjt2ncWpBGs8VdPy1c01WiqED+Sp5PH+HKESNosKJSRta1k0LU3bU/U1NvUIFOMiw6cKbw2LsytEr/l/X/4L/jj/KZ+/+Iqu7xDeoVNJkWV4Z2n6nrwouFwsWLImUxlFtotRsx7Wqy3VrqFtG5CgkhSdFIQQRQXeBRrj8FKTykhVDMEzyUbkeYrpeq66Lm4aW4HtLULF6DQtIh3GEvH/LkBrLW6gVgopUEPslOs9TdPS9lG0lChFWmYED52JNATrIUsD1sZoBYgb0XaILxNSkKYJpjM4G4cnRZmjtEYSneeJ1vhO0FSGvomUJKU05SQnz5Mo6PKC3jp6aynLjMk0x1lPbxxt1bFebWj7HiEFWZaTZAo9xJ96y90mvJKRfhCsp2t61CgnSTRK6zun92hSkBUpu01FU3UoIVBpzHFwJpKenBNYfzsECDgn7yhKIkRSUowYBmcs3t3GIqhIS/IhxrkpdRdZJ2QUnPgh0q1vDMFBVqZoHclLzsRhb5YlUVTuPaqPvaW3LgrOhRhiVMAqEOr2ueRd7EaMd/OEIMAJGIY4zkGwMfKPgbSjdYzbAocXPm6eh1/PYvc/R2ktsSZEEQy3YiQZ++tB2COl+jqWZKBUhcFKL75m+US3OyIKgsStEEYMpBqJQDCpJ/zW59+mcBlSycHgEOkDzg2RaEqSpmkU5IVANzjNI0VncOoHhjWFH2I9buOnI9VVDZF1ghjJ5vxtfIgk+BDpBmEwbWgVzQ1EcV0AkDGWOka0RZFcCAOPNkTymjU2Xms4nPeMshwlPdZ7JHFoEpxHKBmjVHozRJHEa7Y1bhgypyQ6fp8aHwh4Aj6aUIIANwjqgkErhe1jtFsUYUHwjjTJ8QHMEJfTDtSOIk8ISsTHtYEsjUN26xz4GHEIEqmTQYwW15hJllDVDT5A2xmCdyRKMZ3P42epjZ91EeIQVMgo+ooDwSgqRcRImDzPSJOUXVVzUy/QOIT0KKkoRtmdiMhahx6nzMclSqY0XYNSilFeUJYjSAR9naGyjK5tqaueTbWjFOlAN4PxaEyQnkf2If2N5d8++rMYPSYSjs0xRy+P2Ds/pkwnzPf28d6gdbyXWBMQecq66kjSlta0tG0dqR+Aaxzvte+y+e6K0/Mzdm0VB5fOg5QEfKRjJZ6mtUgE08kU63rSVCFFjLYLPpBmgr4LjNsR+8s9tBb0XcNZVROkorAx2sgHz83NMj4PgiIto1BvWG+OJyNmecpIC1aqJUkUfVvRGUdR5BzsTzDeIxRslmsuL69ZbtZkOidNR2ipqbdbtrsdzvUUqUZlCeuqxrae589mWN/RWUsioKp3JEmKR4J1uAC6TEmzESpRNHWLdo68HFEtN8g11E1PZxx972iamoBgNB2zWq5Y77YIPxAopiVZUXAwmlMWKVcXN4xGBYfHB/S9Y7et0fz/2PvTX1uy9LwP/K0hxj2d+dxzx5yzKmtgkUVJpkHZbclC96cGBPjfNLrhTwZaNmzLpCmxOBVryvnO555xjzGt0R9WnJuUuxugJEqkqPsCCWTevOfsiNgRe79rvc/zeyLWeOqiIEZBM5KNY4CszHHWYmPAEyi05vb6ltlixn5ZofID7GBoNi3OJKOSD46IZbPZkecFmVLoQtG1HaEomC+mlIVis7pFSEWQMJ1NyDNJdCl+cb43Jy9rSnUnMO7TZ2ueI4Mg5hnTokTvGgYXGJynKopEq5pMkEIR+4DOczLlkCE9E27Y0lrL4cEBPnjaZse22UFWIAN4Y9kOW+q6JtcZu37HwYGiKjPadcNqtWK6N2VS5umcRU+IgXR0kegt1lg8SUQ8rXOcreld4PjgkExGNreauijxpuNqtWbqZkwri3WBen/BbJaMWMIHus7hnME4S5lrCJGryyt0llGXBd2kHD9rUmRXUeTUZUn0kd5asiLD+cBkUlJnGZPjQ4K/E0H3XA0DmSrRQiDzjDIrmUxKlssOEUGKSFko9qYHIFJspekNLigWB3vkrWTX7DC9pTMOlWm6dsB7j84V0+kEEZIuBC8YrEUhUVpTKMXO7mj79ByqXDGbTnAusOuTCG6WSbx1rAaDcybF7fkBHyW7bUtZ5FRFRV3m9LsNfdfT9AYfIvuzGdO9GTWCoR2oygn37ifB9dD29NYlsZpQ5FrjCkvw4J2jGwZUmbO/N2WvntD1qbfTMQlF9vfmtK2k7Q3Weaq6QEgoy4rZpGa7a7DDQAwNIc+SsIZIXim6rsdFmNYlxs/pGoH1Bru1gGZvb0I1KQgh4m1ElymieV5VGOPYtj3eeYq8oKwK+m7AxbuIXIF3gV2XyOgxJPHWpMqRMsXI7xAQBfd+fcae2GMwDuUVWmXj93sSN/ehJ1cdQxfY3BjaJsUrxjAKfZVCCpH2FaUkWIsx6f3VSqNV+n53MbBZb9P5hEDmMn7wxY94ffyabz/9BrI4xqGqdB8KicCjhaIsCiQS45KBUyBHsuIodJEp9i3ESGoPUk8aiKlFFAJkRJEw8s75tM87XpdEVkqU+ztqodCJ1upG4ZUU8i2xNMaI0mlfNYxk0hQnfbfdHN9GuPkh4swYaYxAZToJl5RIxPwQR8qjpqoSqenudYbOYK1NPVomUDpRjQBikN8Rle4U6zEdv5JJrJXicdP5Ky0plcJpxzCYt+bZRNu8I5TGtyYFxGh6HcXl35Gg7qhEkejjSGUdxfQjaulOcBRHfGfy6Kb/Dj5gB4fSCp0namb0d2kD6brE8d4TUqbrO75CMtWM0cEI1JgpeNcbhbfRbePlCHd0pxQpLEZq6J0wK9GjRkH+aKD4z74inF6e8t/99/8ddVf/bR/Nu/p7XPdf3+ef/M//hP/h//k/4JVHecXpxSn/4Gf/gB/+4odkLvu3/p3KKz754pO/OZFShOPrYz766qN3RLF39a7e1bv6/1ECwX/9v/7X/N7/8XsoryhM8R/tdau+4p//v/45P//xz/kf/+//Iza3/1Fe+129q7+J+uvHvYW0uPMykGlFkWukUCiVnCKS5KwRpH33TCt6MxCDT25xqShFhnMuufelQOjkLM6LHB883kOmE74+baqUCAR1VlCIjK3ZMTiTsNBVTqlztEyu877v8SFQVnla+I8uZOdDAhXfLQiVRmpJ9A4p0+JPqYReRiTXic4ynPVv4ySk0Eyq5NTcNQ1VPuGzH/0WTz464+dffMGXXzxlPt/HWoNrHGVZ4KJk27YQPLnKIVgEEa1yrFd0vcE6mE3ztGHgPSpCFkAT8dEmHDuBXIEHhmFgzRhbk+foIkMbC23/9jxsb5L3KTiCDYRgMNZC8JRVjcwlmIGqiuS5YrA5RZ5TZjl9CEwmBX3TY5ueUgnySUXbOISTzKYLfCbYtGsm+wtKoTG9JdeS3nm8dwRjyYqSRydnWG/ZDB43DOzMjrIoUFmGiS1egYwggyfYDu8yLl+/YrW8JJIRMVgp0UIxrRecHR7wyaNDWtNzfbOmNR4XE/p87+gEFRx1UVBmFVlRQWHZ7Dourzac3yyRUaFUDbrn+MEDhBJM9YTjs2PKShNlYHa/5NNPP+T85oZZVjCt9+iN4vJ2w4P3j5kcZGxWK967/4jF8QF/1PwpW2vYLiWfffopy/aaP/6jP2e33TFTBd/8yS9ZPb9AasH3PvmQwba8uLikszuCVtxebdFRMkHy0YNH3Kyv+ebrb8g8TLMSfMEHZyecTAdO7p0hK82T4wfs65JhEIjplKevXjNsW7pux+HRMeWkIgRD+2bN8uU5J6ff4+HjU1SAg4M9nj17yawsKFXg7MEpx0ojo2F9vcJuO5Z2ho09m92WoRnQZWSzvOHmdgVxIAbF4wdPOL88Z7Ps8CJQFlPadYfWjkwFHjw6YddH9ub7rJbLROPJcw5EybBdcbA4oCzn7E2nHMxnfP30FVrDz/71z3l+ccukzilk5OzRA6aZ4t68Jq9LblcrjmYH1FHy/r1TlIr88pfP+Pbilu+99wGbVcftdpeG7kPk+uKaIDxZOeHBw4d8uW2YVjN++tMf8eblc148f8l+kXN2VBOHh5RlTSUVh4envClm9FGhTEeZCw5PZtTzGd98+4rF/h7TLCNEjzOGN+fXNG3gZnlB2zacHi6YkXP/5D5Xkz0urld4H3lw7z4fPHzCqy+/5uj4kA9/8CG+ixzde8J6uebLLz7nprvG7hq2Nze4tqPeu0+MgdffXjAYSyYcP/ndH/FgOuHr33zFs6++YNc2PHj0Cfcf3GcIA5//5isul2umC8N7D+8jcs/mxRsenlXcP50Tuw7p4Omvv+aXf/Ernp5fUP065wfvP2G1M3z/93+X0w/uc/ntS4wXhExycDBFxIhpI03nOHn4gG7b8vrVDa82LYtHjxF5wfGDDKcE1hmu247J/IR5NuPq8pbFyQJdabzrmN075svPnxE6z26z5dn1BXuLKd97/0M++0jSdT2vLy55c36BHXoup68ZouPg+Iizwz3OHt7j7OgIT6Sa3ef86XMaJzg+2OOqa5hmChkM1UwjxcCbb1+yvL5EIphOZ/zlX/6GwhlwjufPXnFx3fI7/+B3cFoymR3w4P5j3rx6xe1mw/c/eITXW7ohCTNMiExnc2SW8fzFS5arLYf7e6gAWmV8+MGHvHpxSa4zynxCb9NQ/mg2IxOCVxfn3Ow6oiqwJvL+gz0eZILXb5aYTHFaFdTG4KLm/OWKF1fXHCwq9AuLiIYf//QnrC5X/MEf/Izf+8f/kIdn9/Gd5NX5mkkxMCsznj1fEQ/3mNQ1z796ztW65/h4j/f2D5BWMATDvb199hYTniuwMuPB8Rmr1Q4RBx48uIfWgbyoEC6yv7fP0WcnvHr1lFWzYT6tOT44YF7nZFnF9W7g0f1DQtvTdQOvnWdSCNarDR998ojjg0NuL3cEGZgfF0yqPRaTE8x2y3ZlybKc995/xMnhBNcbso8/5PZqydevlhwe3eNos2J38QrR9cQQePrmgkxoDquKpm2QCnQhsEim+/tk25Jh2zHNM/bn0zTcj+Cd5erqDd69wTroTU9ZCbzPEBmJxjhYQogMfYrXqqcTppOKbtvSty1aJ4mEMZ4i08znc7wPTOsJWqf32oiA9z3BGIwIWCVpB0vc7KiHkhg1hS5p+y5Rg0IgStA6RytNoSQiS2QSfNqsn84rhNa4GBCqgOgRKlJmJbETdNueGEDHgM7yRKpxdtyEdoSQKJdijKGQQmMGy9A7+r5HRMjzjGlVI2TafG+6nqJQ1MUUaw3Gp+gEqSNaCcosoy6r5HQWOcYOGDuMkQ45EU+0nmEwOOux1qboOONQmSDPc+zg8dHjY0xb5JEkqHLp74cYyX1GjiDElM2VBgyKsqxQQqehjI4olTEES9N2GGPf0jGT29knkfzoqI8xQABvAy7Gt/FRQoEmxXqAQmc6iYaMST2c1qNjexSgIDGdTQMcF7GDwwmHHUwaNMhEgypFgcWk9+0tBQgQPolxMp3EMKP73Fn31u38XYbb6B4nDYdS3IQY3dHpXKUUiJw0ofq7WneO+XGIopV8e18m93carNx5u5VMApe3Tnt5Fw+dzlmMwzYh5SgaSsOYPGY8vHrEh68+YBJqEKRYNiSDt0nsL0BnCi0VUiTXuXOOECM6UyP9NY5O9++85nEczkmRBEN3w6kUQTLqx8aokLvhUKIESHKdIaTEGEumco5PDtg7mHJxc8PNzYoiLxNVzQYypQgIemshRpRQ6R6KIIUmBDlGoUR0rt4OoyQCGWMaiMUkQEqxd+kR8M4zjIaTTCmkThS5aFMUgBBpmCsi6ed9JIYkjCIGtE5x1ziH1km85wJIpROhIgbyXOOMIxgHQqPyDGsCBEVelEnQagfyqkChCM4nMqoP42t6pNIsJlN8CAwuEnyKhFRaI6WgHwJRjkK1kEQQMaoxiqsBJBGfCAOIROioK44WNdY52m7A+jS0dd5R1RNEDGRao1WGVBp0YDCOphnYtf1ousmI0jGZz9J9JXPqacZH3fv4cw+l59PtJ4QbEH0kn5a4IGnantn+hEktGbqBvfmcsq548eqcwXtwguOjI3rb8urFG4wxiJXk9vySYb1DSsHB4QHeWzZNgwtpTdxtDRJJFgUH8zlt37JcLpFRkCuN9Bn39AH72yM+2n5C+X7F3mROJTTOA3nOarPFmRRJWtcTdK6J0WO3A/1my+T+EfPFFAlUZclqvaHQGi0js/mUWkgknr7t8YOjCzmBRD52xlPqiOk7uq4HHDFI5rM9ds2OoU8DZ6Vz7GCRMiBlYDafYlykLCqGrmPbJRJMJjTO9NRlhc4KyiynKgqWfoOU8PrVJesmUWKUgNl8Ri4lkyJDZxVd31PnFVmE/ekEIeHqcs1y13K8f8AwOPohRY8qH1NMHgGpc2bzObeDochyzs5O2W3XrNcbSqWYVRnszdE6iZOrespOGxwC6R1aCmqVkxUFy2WiJeUjqTD6JIqyNtJ2DdYaJlVJjmQ2mdHkJU3TEyLMpjMO5gs2t0vqumL/eJ/ooJ7uMXQ9Nzc3dLbBD4ah6wjWosuMGCPb1Q7vAlIE7t0/YZbnLK9vWd/eYKxhtjhkNp/ho+Pmesmu6ynKwGI+Q7jAZmOZzzSzaUl0DhlgdbXk8uKK1W5HdqU42d/DGEexWHB0dki/a+g2LSjICk2VabwZCMGjy4IZEtM7dq5HTqZIISnKjJmzaCnZdT1RaA50QTRJbKKrgsG1ZHVBu7a8eHmBCLDabQgCDuYz3n/wMMW4DYZd09K1LbvVJokEpWB/b8Gk1hwd7BMjyEyymM8YjGdS10QJxjlKlYOEPBe02w3ddov1jiIrWK837EIScQ69oW0vOTw5oa4KBiHZ2z8i15rb3TWTLGNS5QymT/FRCDIlqfOCrutomi6950LjrWNvvqDrDUNvqLICH5Lyosg0hdYMw0BntskY56EqJIv5lO26ZfCWWpcUElQI2CFwu9ohJMjdhugt9+ozqizn5esrZnt7HJ8sAJFE27uOSZXT7jpaH8nyjGYzsFy3CKU4OphTSI01Ke50OilxvmC53TGdTyEG2s6mPb0qIxLT92yUHO8fMZg+kcE1zKcz8ixFkTWdo5qUTNQY5WUsSpU4M6SY6f19vA00rSGrMmSmKPIpSihMPxBcZDqdkBeaXIKbTlFCcHG9IZAxmc1posMPQ6IVDwOrXce8LBItJ3q0FoQAhZ6Qq4jpBhRQFUWiGYZAjJKuayH2bNbrRMgRjjxTBJKg/g654/0dPVORlwX4QG8MkHqgwScxdFkUiCjIYsb7y/eI146XD18RdPodwUc84MeeIEF8AkrqMarsOzJPMlwm2qGQd0JvCJ4khJFJ4hIAkSVSkJIQvUhCwvH7XwsFaiRHjrGtKVo6nQ8j9VKEOJKC/Fuhj9Y6mezGSDYXPbUqiYHxGiYhuBQCLSWZ1iilEFKPP2PHXioJzhGJuuS9fxu7G0aBj1Tpenvu+rWxbQ68pQgZY1FBoaJGjU3a2zWRUuR5noRBo6AoSvC9Sz3/Xd7cKEl6S9K8+7O7/tylOLkUFTuC9kchk5ASGSHEu35WjvTGOAqrksnFmmSsdSOFy/iQxFujeF0rhR/f+7f95shWEndiKJnO+y5S+E6Y9BaMFL8TKn0X/Zb67kSMSr9SKJKI7T/jyoec3/mz3+H3//ffZ9JM/rYP5139PS+B4Ie//CEuc2xmG773+fc4vjpGefXvJQiabWf/3scmvWSxXvCjv/wRP/3Tn1K37wR77+pdvat39f+vtNfo7q8vufibrMxl/M6f/g6XJ5f8q3/0r/5WjuFdvat/l/prPzHGWGKQSASZzijzYlwPxeTYDsmBXmSKEBx2sAgERVmBEGilUBFMHLPKRzeTs54YDMgUpWFFQBiHEhZNilvzIdBZgyOi8wyFpMwzlExDDu8tITgyXRCdYDAWqdKQJ2WuJwywUikCzscABOqqGB3QkX50zwqpaLoGghhjGWJaNEuJdCmL3hJwA7z4+jU3L1e41qFLDUFR1in6brdZY7uB44MDskzRm4ZgU8xJa1q2XYNAETY7ZKaxwSKDIxOSqCTDMBBEJJMCvCWTikwJpFT4KOmHgTITTOc1bd8TXQTvmU7KlCXvHCqTnJ2dsl2t8cYhshIbFagcEXq6piNGjfWRelbx8OEJSsCzV8+xTlDWM5wK3A4NSpa0qy3WDygC2VTS+R5PwAeH1jnOSJwH6yOvXr0c34MBrRXzokpDEymZVSXeB7TSRD+wWm1wLqJ0ifEleVmS54K8WjCdzbl/dMRHR/f48L0zrrpbjm62vD6/pirnRKGIPrnL+0pw7+yUpy/OeXm9YoiWEAUfP35MFHBxs+TR+x+zXN5SlxVKwNNX51xdLolBc/bwmEU+wR8o+sLQbno+fPKEn/zeb6Onmr/42W+4d/I+9+4/xrk1H52dMZ8s2Oy2rNcNy74l5hWnTxYsbzb88RffUteS/fmcbtnjfGAmcrb9kqgyQhzIi4rD+YLLN0teX1yyuWqZ7tV89MnHWK/ZP6h5eG9CrgqcUqyXjnyieO/RGX1s+apriJniZHHMtuuZqpL773/Ir+wXXA2W+41jQslqecOVlXz77JzFbML5m0v6JnCxuiFmnl3f4wbD737vFILjz2/XzPem7FyPyioKKZjVE5qd5YunX9GKgM4rHh4d8N7De2y7G7zpOZvfowwZVVWSRUW2P0fnOc4P/Pw3XzPPK356/zF91vLmcsnrFxdcX22YLgqU9rz3wT4nZ0e4dQe9J5rA/YcPMV1PVU+Y1RNuLm54+vwNMiouV2tOTs+QQfPNr54xBMvB/pTzi2uenr8mBMvR6X3cU8vD6QJyxW7b4EJkOxhM2/DBgz0++fADOgsvXj2nffGavJihvMcJQcwKZvWEPC+p6ymvX7/mydk93nvvA5r1imZj2W6XXLx5Q5ZlXK0ELPZ5MD2i8Q2Nu6USGVdvVvzrP/g5q/Waf/Rf/iP2ZhmFEHzz66+pcsntm1suNjecHh5Rzub89B/8DnmwXG0Hfv2rz3HCsdiv+fLXX+FcpFcClSkOj/d4s7zl64sbHp+cMism7D+ccXz6gKPTI6yO7AbLzfIWGTo2bY8XG25urnnyyT12fs2L11f84Z/dsndwyu/NK06PFyxkxpfxKdvB8fWzFYtcce/9Per8hMkDz9e/+pYSzU9/96ec32753/8/f4jtt3z20QOyKHj85D5njz9k2wx8/eIV4vw1hbHovOKjH31AWdb85pvP8cFx/9E98iInIpmXUx7fO2M6n/H8xSu+ffaUF7dvODw84Ob1OWbdcjjd42V7hRNwcLwH5Zx+uUY4yfv7e5ycHWPjwNHDIyCydyCYPBNsb3fs7Z0wdC3Pvn7G88sVXkN7+ZLiN1MwAZ1J9vKClS443l/g+4HNco0Xlk07MPSOQgukghfPnhN85M2LN2Qqo5iU5DGy6zbEtaHd3JBN94ja43vHB48f4fWcYtcixiHooojoWU1dlFzuOoq6wHjP9WZHyCQPPzjlw4f3ubc/x7eeP/s/fs7NumXXO375899QVSUff/gRDx+c8fWv17x5fUVjWgpfsjjc557tCefXzArJy6evsGePODycQalpreHyZsvXL675eq8GPHuHB+wvFmQykhcVZTnhy69eEjzM9grO7j9it14STKQZBlbbNX2U+M7TDgMhat7/3vcIfmAx3xHagdvQ0PvI/n5NNZkwO5iTlwV9P9Abw3a94WBvxrA2/OpX33BwdMT+fMJ+XTJZLDi8t88Hl6/pbm/55sW3DNaw6zvIBH6M1ZKFotIFUgiEcuhJcmLvHczRQmE6x2ASUaCxHVqBVgafgSAjk1DkmugzjPApikQC0rF3OKXIFV2vyYskcojWI4Skt47GGISRlFoiFXgF9V6OCommM4tTbq6XbNs2xVGOw08hBNZZIhrvAzYkEcx0VlHVBcEoVtctMUCtcgiRvCzICkWwnpilHfgqL9lGTbNu6VqDykkCiixHiCS2KsuMqpqkvuaOPqM0brXB9AZi2uyWQhC8T9Eb41Bjt2kYekNe5WSFxEWPTggiup3H5gVCpciOIiuwxuLskMQeI3UpL/LUKsYUreCjo65K8iwnuIG+H5BS4pzHWIcPd9cnEHrHYFpUpigqTVXXCJEEPd6PbuzBUlcjydJ5YvCj6ClZqu9iFxJxJQmivPP03oxxdh6hHXmpKbIUA9f3JsUYZwpBEtkbY/9K1ESA6FJPOZIUvU+RP0LCMBiEkpRFpCxy8izHGoO1iXpiXSDEMDruoR98oluRBmQhhDH+LL6NekiipeTwdtGNjucUA6YzPYrtxXcxyn8HK1038dYBrvW4FIkkok9McWyJXObxziNIUSFp6JMGPT7GJMaK3w2hiGmDt95N+OjZRxytD1FS4bRHySTiiSFRkqRKg69MqbdCpzjSjpRUScQWAsj0XtxFgSQnu0KoFOsGkextzHXEufS+IATGWcR4fJCOXQiRaCcxDdeCj6yXW9ptT3B3w7Y04IsChn4gOE9dVUg5Rq6ESJblWG/TayDS/TrGwQkPKj3QOG/H1xbE6BN5bIxfS0QAh1BQFKORZDzWPMtGUm6iFc1mU4a+T0M8qZNoUCqEj1hjgSRO8kXBfDpBAquwJgSBzgqCjHTeIoRm6A0+jJHbUWBjuu6BkCLZgsBHQYiRzXaDECQzhxQUKnt7HxSZfktzQHj6fiDEFPnmYyKwKSlQWUFeFMzqmoN6yv5iSus66m5gu23RuiDFvKSoSRdhOp2y2mzZtD0uphjIw8WCKKBpexb7h/RdR5ZlSCKr7Y6m6Tm7fcDhbMZiMaUrHE567ODYX8w5e3QPkSsuXl8xne4xnS0IfuBgOqXIyxTd01s6Z4lKUx5qXjz+Fa9v1mSZoCoKXO8IIZILxWATxTfiUVpTFwW7bc+uaRgaS60rPuYhJ5dnPOhOqUKFlpqQSfouoHLB3nyGi5alsyAFk1mNsY5cZMz2DrjyNzQ+MDOBHE3ftbResFptKYuM3a7BmhS1HFXAjlSPB7MJxMh521OUOcY7ZKHRQoyfhZ7b1S2GJDCd1yV78ynGtQTnmeUzdJSJpIdAVQVSK3zwXFzfUqiM+7MFmbfsmp7tSNbLS4VQgcV+xXRW43uLcBF8ZDafE5xDZxl5ltPuWpbrHQJJ0w1MpjMIktXVChcCVZVoXKvtlhgD9WRGXK2Y5wWoJDQMMWKcT4SsecnhwT7WR9abDXa9RekcGUaZoFJkWYaWmizL2e627E2n7O0dYIYOIwNm6NntdiglaYceiop5XmOixcYOHRXtrufViwuGfuDBoweURQoKWl7dopWgazqaoWVS1ei84OTBGSoG2sFxdX2TCFxVxs3VLSGAlwKhBFVWsus6lruOxXRCrjKO5jmT6ZxqWhEkGB9ouw4RXYqYZ6BtW/YOp5gwsNk2PH+TRNOfnBxSFpo6W7BBsB0Mu9YSvWExzykmFdl0itp09JuG/f1D9rTi2bevuLq8ZFZn1JMSrSXzgwN0lrFebdl2Ldv1GlxkcbxHWU24uV5hzECWp14cJBLJ/nyBDR6pFNvtlm2ze7tGvb2+5WBvn64Y6AbDbDEloIlC4VxkPikSZS3T5JUmKzKGtkNlnq7p0DJHSEW/27Le9djocT4Qbm6Y11P6YeD0OJk8JlWFAswwYO1AQOA85FqjTEez6+h2DSqAMw4pJLmUGGswpiOshnQvFRnWDEyrKVVdIQaTqC1CUGhJLiN6b8a261N/oCStMQzeU4+95eEsCXc2t2u6wdH2Bh/BmYGqmjCbTajKgnbbMDibSIPlhOliyhA8eDBdx8o4FosZZanwRLrBcnO7Y7luyTOFznPKIqcskkCuKKr0d643SYg0mSURuQ8EJOu2YbCJXLYVYFxgvreP0BE/WMJg6NuBECU611RVDlpTlkUyJ0aw1iJiooTdXq8YXORgMaPUGpFJJpMTZvsz+mZHs9uy7RoikcZZMpGGwFGQ9hvHqN6oNVpKiionzzK8CwQXcSGR6gQx0eJF6jdlHAU8MeD9HVUxCVuyPP0uMcZsKSUTeYfkpzQufb6rKKEH6ywyS+crYgSZowZD1/f0wzCKUEZh8fjeIMCP/WGW6fQZKgVDaxM9UMtxrZQo9oJIkOl7PwsBLRRDMHgXiDFRnJACiSKOvURR5twJooSAoBOF0hgHo1A8yzKS6M2/FdTc9e0IQZYnw1cSyES8tSMJKiQx+h1d0vpRp5+ESXcESx9TRLaxDh0ToYoYsd6+FRD5MdL3rk/EJ0KksxKlfRKjK00co9DSP6PBVqi3PVDiDI3Cnjg2rIi3oKQkUPJEBFoJYnSolOWKzlQyMsRE2RJ31MsYR1F9HI8vXbd0P4gx3i6Jpvz4viqlxn3pJIZL9E3/V+LhkhgqhDC+f7x9rb8qZHp7Ctwdf0SIu/fiO4ppMj/8+3b9/2mWCILTi1P+2//pv+X9b99HBfW3fUjv6j+TUkHx0z/96d/Y7zO54U9++if/bj8coRgKHr14xE/+/Cd89PVHFEPxjqD0rt7Vu3pXf8dLICi78m/7MN7Vu/q3qr+2SMm75MKIUUKQxJgwtGJcYDmbFlm5VhR5gTHJDZtcrILoASHJVEYgYsdBVAwQYhKvRAnWOQiQKY1TGUUuiQKkTos275NjSIaEMPbEUXSUBg+6kISQ3GkJN5+iO1SeEWMaGHgfyZUY8bjgg0dKiVL6u/gJCSIlgiC1IIrAMEZDeB/58ttvkTkMxhKUZLnesFjs4ZVjtdlys15BkIjVhsX+FF0WSG+J3mHDQFXlZDpFT3jn0bogEhn6nqHpyKQkz3KiFEgtyLViPpkwWEfX95R5zoOTMzoz8Np7jAvkQlEUEaUixgWUzLFDgCDRusD4iB/S5nE0Hi1TJEmUkAvFzasrmr4BwHrJ+dUSXYKzlsEanAkI6XDAtgFIrmclNaJ3+G4HMTKdpUg4rRWqyMm0ppaKbuiIPrJX1HSDoXMpHqOqSoyNhCgp8jQk6WJBheC9j89QWtIbx8p4enRCGUfPREn2Tw559uw1uEBeTJBZTj9Yjo6P0YXg5ctzMqWpKsEHT37A4mDBt88ir17fst7ccnm9odl0oOCLZ28QMud3f+8nzA8WbNcDpo1UeUW33fD9xw+JAS4u33CzuuHF8wt+9OM9Pv3t7yGDwJ5bzu49IFeW68s3nJws+ODjJ+zNJ3z5xQueP73i9GhCbnMG45hVOdYGXi1v6AUczvf56LMPmUz38SIw35/y0YcPefrVBQcHpzz+4DHGRK4vVpxvG472Z3z/+z+gCwNlmfH51y95ebmhc5Lg4fHDUzarDX/5l99QVhHvHYqc+VFGqwwvvr3i4nZHDIbJdMIPf/QZMc94/fQKJFTznHpywIfvPeLlN1+z2e5om5bVtmVx/4RJXeEHhzAeXRQ44MsX3zLPYX+2j5I5hw9POT08YdNe8+DJMVlvePHl5zS7HeXeCUFFBt8gVh3RwcPFGX5reHV+Rbve8Q//wU84Pjnk8mIJTtC2lsl0wtfffEmuS5589IC9acnF82c0uxbrc5Y3a94sL1mu10zrkrrIqHPBm+tXbHYdz19cUBSCUsG8nLHdGnamZ7VsuVivyauWUmz57HufcLXdsNyuefXqhroqOH/6ip1p2J/ts1n1XF/fcP7iMpEAtGSwA2bnkVnO04vXRF2wmM9wvaDxHjmRTPMJxnv+9M9+wdC1RBTz/SlUmtJnFHXOvXuPkKrCRIkPLbPDjNW6p2sd282Go3uHvPfwMavPvyBfZBQxZ7fred29wQ6Ok+Njahl59hefUx7O+Ue/9T2un37Dr37xG4rFHm5YkwtPFgO/+71P+ex7H3NxveT5yzX/8n/6Yx4+POX7H3xAEQI3Vyt0lSIxzp9eoRY1dVEwkTnrizWvnl1wvrrm6esXdLuW1XLN8Vzzw+Ijnv3SMNs/5mhR8tU3z2nPrygn+wzeMMng8f17hFzx6PFD9usJ0Vkmk5q6rqj2phztz/j0o/tcrW6TINFEnNI01uLaFuMML1+9JCpQhWTVNyhRUBU19x89IGZpePvh9x9xf0/y1W+e00ZBDCUfffYJZx8+pGlb/ujP/wIXzYiwz/iTX3zO1WpNFHBpPdvlDfO9CevtFetv3/D4/j1+/NFjnBl4dnVLFxxVVSM3grpQeGOZzROp4WAx4exkgekDgxN03cAsK+n6jvlhyeFezcWLa8y2ha5jvdqhC03XNBRaMa1LVuc36EHQDY6v3rxmsregmmZcnr9Gy4yDSc5i/5C9xYJfXd1SzSZkmaTpeuJgaW5vcZMpQilO5UCR7RMDlFWFs5627ckLxf7hhLLICVEynR3RtQ3L5RYjJM9ePmO+qzi7d0IIitvdjna7JYpAlDm2ETipqIyhO79E1RWZVLRRc71uqKYFT/bmTKZzTs4e0t3uuLhc8uryluvVDec3txAD5+fndF99xemDe3z28YfUmWa3c7S3HetNz95in0ILLm9vuNnsUH0gQWTSwL9vejKteO+jhzy8fw/bD7TbDsWA0JZCSkCwa9rvht5aUmQKDUzLEjtYmrZHaEW727G83iCip65KZtMZSkqcMfSdJUaPyyJOBIKWqALKUvDg+ABpPTerFQ44OKrJWsUwOMQOjDHIIPAuuYVlplBaIaQYyZKeaCO2T47mvrNEJTg4mZLrkt3tDhc8RZbES4XMoUqESnQiQhZ5jjOWQKCeJBqkcGF0VcN0qvHGszKJxGKsZdfsKIscpSVZXhC9pzP9KJiRZGWODJ5cK2QIKK2ZzGboIidYMINl17bJ9R3cOJhJUg6d6TQUybORoqPeRgsolWKxvLME/52zNySFB/iANUkk5GwSrBhjsDaJxwUeEcdBgA9jfJjCjhv8chRkCCFH4k2KFrPWIGVCp8sIXqZhtVIyOb+tpa4qirxkGFIchDFmjEIK41BBjAOFu0HMOLiRgmADre+wxpLrLAm4nKPv3Bi1AcKBsx4z+OReF/K72AjBKCgZ3fvhbiIy3vPBE96eU4rtQkby/N8eB/8fq9JaAtIE5C7ijbckreCTe1xKgdIa4T3+jmIUx78vRBogja7+uyGUcponL55w780Z2muCiHgdUCGOxNT0s3E8DinGaLyYAs++u7QpkiRI8VZcl1zmYhS1kSLWYkyG+b9CXBIj1SmMJxZHalQgIhQgYiKojuuN2+UKoUkEISHoh4GiLAkiYAZDO3SIKKEfKMoMqRXCJlGPJw3Z1PgspZiWdHzeWdwYHyRVEk1JmehOeZbjvcf5NIybTWY479nEBh8iWki0SsfnSfF7b8VlUuMjRBe4izaRY2xKBBSSbttibBJj+gC7tkPqNKQN3hE9COEJwGDSNRGj8IgQCDbFrmR5loapMkXkKSHJhExDyBApdYZ1HhfuomWyFMNCInQFH3BRkQnYO5whZbrOfYjYcX0qSIaQqq5YrbcpAlxnoOQYVVSjlGCz2aU48gz2944pq5LlCrbbjn7oaNoeMzgQcLveIoTi/qNTiqrE9B7vIlpmuGHgeDFPAtBmR9e3bFYNJ6cVh/cOEQj81jObzXnx3jcsZ9dMfMn+wYKyzLi52bDeNEyrHB30+D2g8D6y7TucENRFyad8yscvPqVuaoqy4OBszuq2oaomLPYXeA/trmdrDHWVc3R0jMOjleR6uWHT9CkyM8DebMLQD1xeLlE60f+kUORa4WRgs2zYdRaiI8tzTk+OiUqyXW1BQFYosqxif2/OZrlkMAZrLL2xFNMJeZ6IeImUlwRwN5slhYIqr5BSUs2nTKoJg22ZLyZI71nf3mCNQZc1UURcNNAnXNhsPiUOnu22xQ6GB/fvUU8q2l1PDAJnPXmes1zeoqRmcTCjyjW79SrFn0ZF1w00XUM39OSZJtMSrWDXbhmMY71pUAq0gCLPMYPHeEffWXZDj9YSLQaOjw5pzEA/DGw3HVmm2K62GG8Z8oq+t3Rtx3bTjNFFAucd3kSE1Kx2W5CJNB0s2BiQmSCXGT4Gzs8vcc4CkqLKQAt0UKhMMZsuEEKngX40FJWk7y3OKow01LOKyWxBfxNQpUJFhbGW7WpH8IHJpEaLyPrNDboqeHjviGa55PrqGlWUBNejRUASeXB8yMnxAbu2Z7nacXWxZLdruXd8jEYSBkMbJYXOaLc9GEte5ugIuMjqek1nDMvVkt2uYbcTrIstR4czdreg8wlaSVQMLK+XqKgZnGM6LZlNKlxVUE4q9mazJEbTmqLIiUSyTHG0P2fTbAhCgI94koig6Tqcs1xedIkCV2qsdfSDJMsy5nsLhA7JdDcXVEVkfRnprMBamMzm6LqECOcXF3jcKL6A5WbL0BtMSHGMvh8QMkU9bfsteVFx/+QArRKB28aQiDpCok0HIYxij4DQgr35FBFrrBMMdhSdRoGLntmkpm+7ZBR0DhMHpCiTiDQEqjwH69itO/Ki4Ga9wQmoq4ph6AjO4q2jzAVVWdJsG4LUFJnAx4C3njAMGBdwRU6lJEoCUaRIr1G8bb0ny1WKVgWULiFG+m4AKdkNA43pmE5rynqKHQxd0xOCAyFxJiKyjBgiuu1AiSQElpLOBByOg8WMKs8ppjMyqVlt1uy6gdW2AQKbpqXre5qmYblZc3Cwz6KqE2W9t3StAalZTOc4a2itwaOTCBkgRpxJpPPZdMJiMUcrhR0MFocnUTCFkZjBpO9HUt8glRr7AgU60jmXaIQi0nc9mdJIIciLnEzpUVCS+j8twQkPEqISyEJQFim+sWkaXIyUQiFkgR/pQM75tM9Kiut8G6ErkrQmjJ/XwX/3OoFENZtMJW7wGGtHerxARkGmNFFFUKmf0SqZML1PZh6tFSPMCAAhI3lRvN0njYREAhR5IlbqUbQVxn5uJJeJqPkrrRk6y9B5BlEQfGCwAWttav/G/jqMxE3FuG4ar7VAjP+ehud3oiPGnjGO1yMGiNGPRKaYep2R9hTDuN+tkzjnrcBcypFKeRcjl14j9X5J2JMi79JQSEQIQhBH4wEiiZjUKBxTKmCtf2ug+KsiJTG+jzHG72QASV+EdylSUSs5Pm+jekmE8XiAMRYv0bXujhHgLmJuvB7hO7ASY/9LiESZzD9JzBT/bpNZ/0NUhLqt+cf/8h/z23/+2+8EGe/qP+mKRP7ov/gjnj/+d4h6i/DZrz7jv/qX/xWnF6cA756Fd/Wu3tW7elfv6l39B6u/vkjpbuEWk3NQiiTyyXVyhHhxF9PhR/fFuBgMAAlVGxVpgyYErE//AMgAWo5mESGQOi2GrHcM1iZHSoiIAHVREaMcjUJpAelDygq3JgmQyqpAEFBKj878tOj7DtFMcrCFRCaqyuJtxIYc3SPeh7eUoFwonPcY71HjMCvEyGI65SAXvLwK+MFgmh2DcQTvmNUVRI3OMqZ1nX6/DlR1gYgaBjg+PCJoy/LqGoFm13fE6Ml0hkSgVI7MNe3QMTjHarujKkvyIkNnBdeX1zhnKaUGGchVRpEVZIVmR8tgHYPZIWMEEcjyDNzAdtvgfWB/MSVi8FawuV4jc8V0b8rpwT63uy2v3lwwbFtAUFc5epJTlTm3mw0xRIosp+87euvIMsXefEJVldy7f4RCsVlt2XWGbrDIEkSegx83PLRCiDHOBU1RS4bBpsH9fMYQIpvtlmYzcLQ/4/7pAUO/5ZunL7i52lBNKibTEiEMg7Np0e4s588uyGXGR5+9z9XlBXbR0zpH9ILNbctf/uYZzy/e4INktlfy6Wcfc3tzQbdtCUazOD5lb3qIdBkTmbM4Kjh7cMLNhefLp0/RhebwZE4xO+STH3/GJ9/7ELfd8e0vvmWRV9zkK16/eIPtBuqypmksITQEHFWdUZQV15sNYppcf826o14ITk73+PTsA3yhePp6hfKCiZYsn+3IXMWDk4dkXlFmgrYQXL3pUXnB9PiQRwcz8I6vvnnNi8tLGm/JnOXq4hKVg2HJ4cEhX331mm5l+ZN/9TOmhzXzkxn/t9//EW/e3PDNV28wyx3l3oTJbMLHH/w2r25u+KM//jWVFGxby+Al1oNUBR89eIw3HUpPmBwd09wsuXhzhZ4KZnVNFCAqzc4GpkrQNRJPxu3tNR99+IiHn77P1795ynbb8e2rV7S7Bh8FO+VZTCrKuqacVpxfXfPyxTm5VoiiJFPg/MDlxRuqasbscka/6rlZ9pjo2LQ7lM6p6ylHR0cMtmMYej5+/z6rZk3c7fjll59TTSYUhedwNmE9tAxRcX2xgkySzQpWuy0vnr7kweMnECW/fnPJJnQEHfn0vU84mO3z1RefY+yOclKyWu8QKvLhB495773HtOuGLFdErWl3Dc9vLmh2mo/u32c6nzJd7POyW7O53GG8J1OCtu9Z1DWiM5RRMM1yeinQsmC+t8/DR/eRoSAOho8eP6GLgvUgOCgPKFrDlz//JVpPOHuwz8vzC7TKqQrFTDj61yuef3nOs2cX/O7vPeDj90758utXvLq4RgEff/iEDx494IOPDaud4XbV8L/+4c949c2XPH19y0fff4/f/dEPcUtPVk8Y1g2/+vU3XK6vkLnkkw8fUpQeaxxLs6NUR/i8xnY9m9cv2W0b1ldX0C8RrqUKB3zve59y+eaK61XH6s2WDRuUBtc7vAtYOxCt5dPvf8Thk3u0EvKyQmJ5+tUzSiRHx4ecb7YUwpMR0VWFdZHeD0TlEEgiSbT38tmSpxctj3/wAfZmR4bguKzJwpoPH95nPit48/KS3TZjMd8jysjy9oaD+ZRPf/tjHj18AlrzxdfPadY7WmN59P4j/KziaD5J7l8XaYcebzyllUQRaHZrVlJxNF+QFYrW9FwsV+y2Lbddj87PePnyguvzS/KZoBs6Hr3/kFwaNm7AmJKb1+fc3m7IpjXf/8Fjfvzppzz94oI//+JLprMJLy4ueHm5ZV7AdJJxdnpM23RsncCFnPnpPR49eMRRPWFRa7yH1y8vaOYzyknO/mHJhx8+oNBpyNCZyKo32LbHtA3rZst8oqiUIosJ/7/d7NC55uhoge9tisnJcjaXa375xVMoFMenCwqpmNc1RZ6xvFmz2jYU82Muz2/48tkLLq5WHBzMyDNP0xs++N57rC/P0VVkeX3B85eBXz97StsPKOk5mOVkESpRsF4tWe8aoghMlEyDgyBwg8U0A/QRv3OYnaWuayYK2q6nLzSFz0FGOtPirONk/xQRI30/JMphIA2/fRKGVqXG9A7TQV3lTOuC+SynNT2xtOg8oyoKduuOYeO5GG7J8pzeJhfztCzQMmObtehS4Ixjs9nQdWmAUE1LdDGKZYTAm4jtHcGnvsqHgI+R7XJHNI7NumVwlrqsCM5hbWA6nbK3XyHG+Kw8ywmjOEJJiXNJVE4UaeCgJJOJxzqDdSY5h5XEBY/KVIq204K8zDG9w1oHSLwxZFVJdCmmt+8MvukxbYrI6YZh3MKKGGOIAlCpB8syhZRpcNB3PUomcZLOFHZweJeiIpSWZEWGylKUcHAeZ1waLBoLeIie4NOGPTHQNG3SM42ubUahkJCJynNXCcAj34pKQnAEn+LkzNATHSACdV2iZYbpLQLHYN048BhtyOJOVBPeOpElkMY/yYUbSb2rtYmwQyANDu6mOyKMkQ7g/Shuwr+dCXjnkjhDZ0jAmnTO4q+cCyEJdXo/INNkLA0O/45WGAldkKIx0mApHbMc1w6QhkNSJMEJfOdejyGClG9hrj5Eohfce3PK45dPmAx1eo/EXXRcGrDK4JEpsTDFmOhspDeluhvIRNKwKoRIlqXBXCL1iDEaYxyCjeKqOA6AhJBoLd8OncRIDw3hTgAV0vdRDPhwJ3pKz2eV51RKsG4iwXm8MWPsmafIMojyrbgoBA8yjoQvCY4UTSQCXdsCEuvGeDipUjScVAgpsT6ZLfo4kCmNUsmg0TZtojyQ3PNqNG4oJVNcl484bxAxHbFSCh/9W8FeWeaAJwbB0PZJjFjmTKuS1hi2uwY3JKJTlilUJtFZTjcYYgQtJc45nA8oJSmLjExrJrMJUgiGbsA4jyUgNMmAkqZ5CDk+dWGkGGQK7z3WOooix8dENbO9o6ryJGZwhuVyTdcOZLkmzzRC+FEIGIg+sFs1aKnYP96nbXb40mFDiokcWsvl1YpV0xCjoCgVR8eHtG2DM5boBeVkQpnXiKDIhKKoFNP5hK6J3KxWKCWopyU6rzk8Oebw+IAwGFaXK0qV8Wbvkl/v/RpvHJnWmL9Ck9BaoTJN0wyITBNFxFpHVggm05Kz/JSffPM7DGuBDZFcCvqVQQXNbDJHBoGWAquh2Tmk0uSTinlVQAjcrLasmxYTAyoEmqZBKPCxp6oqbm+3uD7w+uVr8iqjmBa8//iE3a5jebvFdwZdZuR5xsH+Gduu5eWra7QEYz0uJlocQnEwXxC8Q8qMvKoxXU+za5A5SYQLkEmMj+QCrBUEFF3Xsr+/YH64x+31CmMcq+1mpN0JjmWgGAfeOs/YtS2bzRYlJSidxJ/B0+x2ZFlO0eS43tH1iY43WIOUCp1lHNYVLjicc4n6aHuiCVzeXJPlGVqnZ7h3Fo+kbTqQApUrejuwXm2YL/YgCq53DQOWKCNHe4dURcntzQ3eG3Sm6YdE8DvYX7C3t8D2Nn2uS4Uxhk23wxjFwXxGkefkZcXGDgytwYcU2WSto8gzhPMoIJcaJ1LMa1GWzBczRFTgAgfzPRzQe6hUhXae24srhMyYzSrirkGKnkxJchFw257N7ZbVasf9hzMO9qbcLrdsmxZB5HB/j/35jOOjQzoT6AfL+ZtrTNfw5vKGoip49PAMl+fYBgo9cH25ZL3bYYNhb29OVSq2W0vUGY13HOicKARN1+BsIqY50yf6TA/79w8JBNarHdHC6naLlEmI6l3qBawZ2FvMOZwf4aXAC0GRa5rtjnbTMJ9PaayF4NFOQJZEqZ5IwI9CiiRsHDrHzaojn+2RT3P6dmAyisJn9QQyiesN/WBxoxHP9AMiRvb2ZykesZqw3jZsNjus8+RlwcHRPlJJtJQMNn2eWecRUqOUwHtL1/aUWlPlJY01DMZjugFPIm2abmB1uwZx1ztArqCLDhfSPd66DpXnlNOCJ6dH6Jjx9OU5gzNkMef88pYqz1EKiqIkk9CYgA8SkZUsFiXzakquoMgydk2HNQYpoSgleZloesEHQoTeutS/9Cb1lzIkwh0ghaKzDucd9aRMtMEIushxxrO+XdGagcmsQmtJJjWVzvDWsR4Mc11giSzXW1brLUJIqirDGMNkMaUoZIoUth3rled6s04GjhgockWmBTFKpBds+gYfPJlM5sqAeBu/hY8QIn5IopOqrnDOJoKTT0JY5yzeO3JdUhYFzloS60eMBEZB15oknFYi9fc6kGeKPM9wyoOPKCJ5npNnEiwMziSTTkjCbq00Ik/f50kEqjGDQdjRzKkVKlf/Rp/i3SiMDhBiel9iNGgFzqTPOyVTxK33Pu2PVgU6kwRAyxTt9lZfHkXqXmIyAUiR1Jo+z7HWgFAoKQmjEVRIgYgyve8ypr53vC5SSZSWY1xcIPT2rZjKjvG7UvBddJngLTFUjlF2wXusT9QnOQqUgx/XAQKkTusbIdNJhJFAFX0gvG2owyhguju+MO59h7fnfdev3sUT3/WObxtSRuJTSOu8ux5dZWqkRCb6e+o17ghHY28bvxO7j7/pbe/7b8oCAnbsnd/G0I1RfCImmFYcIUyjAyD9/5h6XKnUGFUcE+WLt4dw16Tjo39L/BV/Rcr0972UU/z45z/m9//g99lf7iPj3+HF1Lt6V3+NevnwJX/4e3/4f/0Q+WvVpJnwT//nf8rh7eHf/IG9q3f1rt7Vu3pX7+pd/V/qry1SitER0aPjPWF55Wh9kQLyPLlXe5M2xou6wCuLMw5n0wI1bbhH7uhKaXiQ4hZ88CnfXKrkaI4RpRVRRFpjkTJtbGcyLWITfvY7zG5vLNZ66qomc2ljP5M6bbITcM7hrQUi5WQ64tkt0nu0TOKp5NAOb393WWZYA944ZKbQKsdYiw2BPC+wMgNnKXJJxyjiUmkzQ2VJxDObTPHesmk6cpkhokISqOsaPNiQHNUCixKRxXTG0Fv63jCEDtE6whgbEWMkDhatNZ7Atm+RMVBqTdfscLmgtxmdGZAqZ1JNyHKNNwNt0ydXsjDUpcDEgra3VDJl0/dScrS3j7eGp8+fIaJABI9AUpQFZS4oM41Tyfmf6cjgOmSeMyk0ZZ5RZjmzxQyRZQTnkATKDJrB0huoZZZcSyqgcsVM1QxGIlUYB5cCEXMePzrjzfUSVyoul2/oXYuVhqvzS775+gWxEByeHPD05Q1aGqRXPHp8nxAFt+slB/eOCFGx2fTsVmtm04qjhw+4WLXIaso/+3/8E8o8Z3m7gmFgu9tQVzM+fPgek8NDPn95wfo2xfM9eHjGrttRFYpOKBSa7nrgd3/nhwgkz3/zlNfPX/Lq6XMePJizurzkzYuXuNiyc4bbYUCi6LsVUkR2XRqA3z885NXFkklluTetOH95we2rjsdPHjGfFLx+ecHt1Yb+vuXHv/V9rq8v+NN//Qtm5ZRikbEbLMFFvJfMykMul1foTHH/wRGTqsJsdqx3LWf39jndn/Pim9dcPL9g166JsuDR/gOePHiPR4dHSNPhHh/y/PlT3rePqGYTju89QOQ5n306cHqwR3Z5jQmOsjzFGUHsHArN2YMz7p2c0i1KbPCUlUJax/x4n5OTe3zz1Wtuli/oB0v0HcEFHpw8IMvA4kBGDg7nZJWm1BU//cmPubq55vriioNJjY/wm+fnlBmcHu/zox/+kOXNDVU15Sc/+JDr5YZ/8bOfUcqSDz+8T7COYdskrLyOLOazFAX31XNent9wc7mmD4ZhZ8m2Bh0GTLvmdtcTPNw/O+WwLjgfel7fLjE+styumc2mnN4/Iuzvc3Z2n6vrFc4ZHj48ZXEw49efv2BS1UzKKbnUnN9s0EVGXmlWtzcoaZAhCQnaPlLXimk9Y+fOuVxv+OLlK6oy4/0PHiOp+Oarb9kcHJDnGc9fnOMC3N8/ppgW9K2jM/Cmu8VWCqkrBIbD030m+4eEXcvXX73mB7/1GSeLgmGz5WfffM5vnj3lze2S/M9+SfP6nM9fXHBrBhaHhzyUJXvlHvsiUIoO6QS3wZMd7eOub9iullxdXqOFR682+Bh47/v3Od1p2p1hlpf8l//w93DSMwxbsJIHJ6cMyxVfPX1Bs95xMMmgnHB50/DzX3xOXk148uFjfv7Fn/CLX33Lw/fv8ejeARfPXnNxsyQ4S79t+Itvv+T73/+YH//Wj3Dbjnpa8uDeGavrDT6AipHQO0xv+d4PP+Pm6hYtDcP6GqWnZLli+eaWn395wWrn+ZHIEeWEL19eUojIctkwmR1wNDtgnW2wpaaxPYv5nMf3DpACPv30I+4f3UfrkqnK+dd//nOWneO9x+9xcHiI9wPLTYcUGd4bnr58wYvzZ3zvo8c8efyIstpjefEKO3imk4IhEwg5EFt48+yCpmu5bDbQDFSTHWpWsz9fsDCBXCuyWlNMNTJGhpuOdmtBK84ePkzi1Krk5asrmtASpef6SiBlwXxWMSkOKdaSUjiqXNBF2D+YcTUMrK1lVk348N4Zvum5aHoyLRF5jlSKSa3Z3Gzpmoaq1Fxc3bBcbzi6d5+8qljtttRW8PD4mIP9fV6+vODly5d01jA0PcZ3nB3MsM2KbedRuiQrS3S1TyE14Mgyh4qGXdMxnUxRwMGjxwQZub5csRss2+2aiKfMIrOqYjCW611DMwy4YPHBorwEJD4ofBTcrFusf4EWiRhYZqmHkENgMs3IK4VzJX2Xs902OBsZuo71ZsuuH8YBUSTLFTb0ZL6k0hVC+TFiSY6RNSmKKUTJbtuzaQxVXWIGz65rUUJTRJUG6DYNfEQh0bOKotQ462naDl1pUKRBQ4DgAsY4jHFYZ8myNDRpN4HYe9xgGIzFdS4RLYnoLKPvNEWZIjaiFynmJBvd7CoJj7quw0SDkkmAUdUledBILbGDpe86lJO4XDKtS2RI5Kd+sCjr8cHTdUNyOfeBGAasTdEQIUaESkKBUblBFIEiz1A6xU1FJELK0VGcoYSm73pMMIiYBFUqS2QWpWE6q9FSs9vs6JserQVFoVAyJ88sXZfoSiHERGG6Ey+MQ8UUiZZESeFuwCFAKkGVlwhG9//g0+A8BCKBJoRxMJiESeGt6CndS2mQ4ZKsJaaBRdIvpeGB0oKsyMizDIGg7wacC2lWEL+LYQgjWSiO4hkhkhBCCJGizXSKcQt+7HujHCO5BPKOuBSTGCqMtBw7uL+5lcLfcKU+W47EofRn37nfI0qlWDY/EpV0rhOxbRQOCZFc5iNSibKvee/L9zhaHiGD5C5+JEVqfEc3igKsD4hAGpQJ+bbnvxs+xZEE4X0g0/lIO0oUMSnTUCeERNCC5PqPJDqPFBEpAiLeSfTGodFIEfB+HIhFOZKJPCEmwU9AgfdpYDiK35CRYBP5TGuV6KrBY4xFCZWuYUyUjRjAi3R/CxLBo8iLRANzHu/GCJZxmpaGVyNxLEYGl7hCWkmstfjxnJwPCKHIizT4i36k4AKKdLxe6XGglwRDTkBd1oTgWa7XaT0RQ4rQ0TpFbUpJkElIpmQaPgqlyJREK4VWiqLIEUq+jVrRUmB9Eo5qoZI4T0WEkhRZhvMS4cZzEiBQ7C1mbNuOmEmafocLBUF4mm2iPkYtqOqS1bZD4hBRMl+kCKJu6KimkyRKGBymH8hzzWQ+Z9dbyHI+/OgErRRd14NzDGYgz3L253tkdc3NpqHvDDHAfDbDvLwgUwInBB6FbR33750ghGB9tWK73rBZr5nPCr49+5JVc0vAYYKnc2lN5lyPEBFj03/P6ortriPLJNNcs1s36C9rfAdFlgTFfWtwM8/pvWO6tuH81SW5ztGlZBiJWCFUFLpm17VIKZnParJM4wdDbyyzacWkylkvt+zWDcYOIBSLas5itpdE9t7hFzWr9Yr9MEcXGZPpDKEUx4eeaV3QyESr0XpC9AJcQEbJbD5jOp1iyxThp7OE4Srqisl0yvJmS9tvEjUkJsHofJLoWEkYGqnGSDgtNWf37tG0Dd2upcozAnC93qElTCcVJycndF2LznLuHR/Q9gPfvj5HCcXBwZwYAmZI+wZaQlEUCCSr5Zr1tqNrhsRTMR5lPCJ6vO3pxsH0bDqhzjVb79l2PT6s6E1PnudM5zWhrJjNZjRNTwyexXxCURVc36zJsoxM5yih2HY7pFLozNH3XYrkien7wDrIvCDLckzY0fQDN5sNmZbs7e8hlGZ1u8SUNUpJ1pstIcKsmqCy9Ny6AFvbEbREKA3WUU1K8rImGsvyZsvxvWPqIt0Lr5c3XK+XbNse9eYKu91xvdnReU9RVcwPNKUuKRRI4VFIdq5DVQXkCuctu22DqEdBgpRU04J8IrBDh5KKxeww0Yk0dG3PbDJhmmXc3C4xXYeE1EsPA+vdjlevLrj/8D5CZ3zz7SukVhwdL4iDYbncEInYfuD11SWL/QUPH95PkfODZ1LXBBsJYZzlBzDGstjfI8tzojdE2+KDRsmcEAzX1xuWO89pFZlMCtbrDmM9djAEoZhVEzrTYHLwo3jh9PgQaw37ewv29xZkqmBWTXluDIP1FHXN2XGJc4kQqWQgzzLW2zW7dsukzDk+OaKsFtihZ7vdoPOMTAkG6VEBmnVD8JbeGgaX+nkvBIvFHkWeI6UmKJNofESkS4JLckU1maS1c17RtC3Dek0mPD56rNApRi/PkHJKCB4tEyWQTKGqgn4wVFKxP53hgqfbdTjv0VohdCAvCiwe0/cgwVrPTb9iOp0hdUa0lm7w7M8r6qIgRHhzc0FnUnTwZrOlrgtkpmh2FkbToJcZs3qKVInOp6XEmgGlFCIEZpMpQkSGwTA4kyhuzpAJyKRA6YxdZ+mtTaS/6HF+jD6OcqSwB1ab3dt9yiyTSC1SL6EFhdRkQRG8pu97QGCtp+8GjEvxZiEkAUmmUp+pdD6m1QZ8ABnvImA9CIHrPaZN0ceZknS9ISLJlUrdhU1iE5XFUWwsKHyOtY4oIjKTSdTjGUUnMcUjez/2KhC9YGgsxJDE0YS7rgmpGGPEknkzfff40QQx9qdjH2PNGHEb42hUzVJvF5N41juHjIlumEuFsxbnfcIsAi4GIipR+QczCr/uwnS/6wnv9kITZfOuv0v0UUQSYyup/k2BEinWLkXwgs4U2ShyG3qDFGM/qCRBSaz1IxHpLkFgFKbDW3HSHanpjrwJaS88PVepj0x9IuNfCASTBNh3vf5dj5iuY+rLwkjj+jclQd/RkKRKhgspkunWOz+Scb87kDtxUxz70LtuVNxpmcbI4ZicwWMM8N3/vPsFoxlj/LO3Qqi/zxVhf7nPP/sX/4xPvvgE7f/aI5J39a7+zlYk8qe/86cMxfBv/bMiCP6b/+W/4eD24D/Akb2rd/Wu3tW7elfv6l39f9dfuwNPueBpA14rhVQKJLgoyCTM65yAZrNrU058kdFverz140Ahvh3EIBNOXgo5roUEoJPrTwiKLKMoNJMyp66K5KBRGikkzlpQaQgTYnIFESR5XlJN0zAI7xk6S6byt5EZQkR8tIio0pArV8hxcQsqRcbFmJDao2tCKcFsv0YIWK8bTJ8W1blSWDdwe31LLsH4tOEjhcJ3LUUhqeoaoUuCiOy6HpFJUAkpHqVk7RqGaiAvM6bVlPV2S/QaIwReSrIsx0ePGt2PKkSqTONEwAaDMgIlFC56dB6o6gxnI13TM5lMODs5JS8zlusbGmsxXYeJUFQJjVyjMN6hpUrDQJFiQy7XK4iOWgqitWRFTiZzThdTHj4+4hdPXxBjZD6f09mBLGRkMmOwnuAFB/snzM4O+erXvyYTclxQQ98NlFokcpLOyIoUeSCQaCWJvcFZT6kVOkTmZcFkf5/biy3RR9bbhs9fvGIzbDmbHbJXzdn0LUIr9md1Guj6CDJgfGB1u8Vay+XthsXsgE+//xH582t+8uOfoHXgi998ydFsj/n7M3yhOagP+f6nH3O5vuZf/Iv/jZfPX0PQNMZS1Bnvv/eQIURoHTpE/rf/5S+4ublFZ5Y3b15wMCt4cdHw7fMXiCKiouambci9Q3pS5FDTcCN3RO/Z7Na4GDiezylUzuvbJZv1NaLImZQZxkY++PARH3/4mMefPObnf/wnPHvxlB99/8c8eXyf282OP/nZF+zPD8ALXt284fpyTaVygvHM9ifsH1ZcXF5xdXnN5c0NWak5mR9ydHLG2eExMWq8y3h09pDJdI9fD56+74hCUBcTjuaen3yccXFzi+mT0++DR/e5fLPkm8+/5eMP3mezXvH8N4YnH5xwdLrP6nZJ31nMmxten1/QNQ0KybZ1dF2LaTr+9Gd/RoiSptnw6P0TVK15+OCE1ZtbJt6yi5FyVrLddWg0pyf7HJ4csZjkOOf54ukLMhzzKuPypkcKSxDQmxYpHKt1i1IeEzz/9Ld+xNOvv+X89SVXV5dc3mwQwlNmknJRkk8rFtM5n3y6nzbThoCqCt6b3qdvPV9++S2XF9f87u/+mJNqgaXim2eveX5xzqwqeXh4xt7BFPt+evaur9dsdw3TukTYjouv3/Do6Jh+Knmzacg0dLs1fVlw+uCMh0NHfHHOdlbwYH/O6f6CwXucjdxsWzbLKzbrDdXeHl+/uGS721HkEvvEs39Q86Zd8usvOmb7exw/uI/WFc9vtuj9Q04fHGPO3/Di1Wt2zQ2TCg72CjbXb/jj81csjefw0Rl7iymry2uaZcvW9LSN4Wq15OTsjH/2T3+faLa8Ob/i6fPnPLl/yJPvPWS9bdBRcnLvCX/wJ7/i17/5lscffMDJg2M+/fiHXHz7iu31kvOLS7rBUZQZ73/wiNX1DfowfXdc73Y80ord9pbJnuSzTx6h0Uw+0fxA30d6zZ/94gterTZ8/eoFZw/ucfnykqKs+eDj9zk4OALXo0rHCsnXT19y9OKSqfL82R/+JaurS3Re8snH7xGQLKZHKN3w8tkLzt/sKOcLcq159PCM44MJv/mLr+l6w+OPTwgohs7y5NF9rs9f8fyLl3z5yxf0jcGLSKYkZrPkq68cttshVWTXGmzfc3K4z4ePzri6uaEzkbqqODs9ZHv5hm9fnjNblKzajnWz4ujomCAy+uC4d++AKMHFyK6Hx4+P0KrizXLL4uiQSgm8V5zf7Pgsq/nk+6eEr59yfXHNi+sbdtsdoVKILLC8vqTIatxlj3OKrC4oq2ocyE55/wcf8/CHH4MLrF5e8fM//iXPXr8iqwsW85qTxZyuHXh6ecXV+Wu8iBwcPsYQAME0y2i15uD4GGssuqw4fXCf45NTmu2ah8EgNOj5Hv12zXa5ZO16hnag6Fser6+ZHe7zwf1DTg4mOBE4v7jicG+fzXLJ9aYl0ymutNQZp/tzgm95fLjg9OF9fv3qNSYk2kGmFaXSWOfwHvJSI71EKIGJhiBzbBT47YZJneNlYDrJkULR955pWZEpRdOn6BmkpJ7URBlTjIwApSDPU9SLdRYXPDGT5M6xWm2wNmJdlyJpJgXf+/Qjhm3LxfUtXdcwDD2DCzR9h/CSrEyY/r16gpaaW7VlO7QgJUpmSajjI1oIVAZBwri/jreeZvBjbJIncCdGCbTNjrIqmc4rQLFarUGJ0Z0vCCE5xosyst1sabY7nLPpmgnomz6JQqQeI+0cy36HGGMQpJZYa1BaY4dEKrEmOa4RoHJFdI5IiiWLRKpJQVZKsiL1HjF4nIsIJNYEhsEjYhII+XBHsvF4J9PGvZYpYkcoZBCj4CNFximhyLQmU4rttsP5iBi5O0JElB5jtnwkhjGqSwYQMUVkKSiKCjy0bXLW49NgwsdAiIEs00h554JnpE2J5IJ3AedEEqWMCqNIEt/npWRvb8KkzskyTQiw3Wm26w5rA96DFCGRJYWCkKgPKSMi9a1a63EYlIYE3vu3jvA4EkSJvBXgBECMw4bg7d/EGuE/SMkxckMQUSK9z2mdMJoeMgVCMBiXhHVK4dxIsRqpRWkoI9hbL/jB55+RdZpRaQQiCV0gCfOUkuRZulfuKEhCjAOhcdh2FxsHKbZGjwQvYsTbgJIqCXvG9URMGBisTcO5tJ7gbZwIMUWkMd6PUgjyUiOEYBjMWzqakhIfHF3bJbHOGGciRrKQ0kmAgEzHbpwFKYgyvTZCMFiD1w6ZSXKd0RtDDAIv06srqUYSgSSIFGuo1eiijz49Vwh8jCgNWSbxIQ0X8yxnOpkkM0PfYbzHW0sg0c6kkkgEwaXBoVQjaCxGmn4APBkpHlyN66RpkTNb1FytNhChKHJc8Mgo07pmjO6rqgn5tGZ5fZXoGtIj4kjslYn2EOVIWvOJbiGFAucIPqBVhoyRQmvysqRrDDFGBmO52WwYvGGWV5RZiXEGITNKnY3Pf8QLyGOgbweC9zTdQFGUHB7vo1Yt907vIWXk5vqGOi8p9nOillRZzfHhAbuh5ZtvnrFZbxFRYsaB/f7+HBcBm8752dMLuq5DSE+zW1MWmmvT8K14htBpeN1Yg1JJYOe9wxlDJwwxRAbTE2JkUhTpPr3SiC9zNosmiRR8EiYf7i+YHyy4eP2a1WbJ6dEpi8WMbjCcv76lzCuIgm27pW16tJREHyiqnKrK2DUNbdPStC1KSyZFRT2ZMqsmxCgJXjKfzsjygmufzEEAmc6oi5J7hwc0bYdzAa0EB4s5u13H6nrJwcE+Q9+xMp69/ZpqUjL0Pc4FQtOy3e1wxiCEwNiIswZvHOevz4kIjBlY7E0QuWQxm9DtOvLgMYAtNIOxSCSTSUk9mVBmiWhxu9wgRaDIFLvOIURCrTlvEQSGwYz7B4EP7p2wvF2x2Ta0bUPTDUAgUwJVaHSuKfKCw6NyJJdEpNbsLTKcidzertg1Dffvn1LrglBqlqst692WItPM6hlVlSchgXV07YAxNlG+gmW33LGoa1wGO2MTMcn0WK2YzmfMnSNudphcMasKpmWRIro8tMYy9A1DP6DLktt1gzEGrQRhESmrjMb2XN848rJkMpsjlGbdGWRVMZnXhG3DZrtlsC2ZFtSlZmh3vNpu6UOgms+oyoK+aTG9xY/P2mAsLgQeP75PlsGrF6/Z7DYoAnuHe2itMMYzLSbsNLx8vWTi5pR1xenJHtEa2k3DerOj7Q0IwWRaUWjJatcxOSzT/gwC7wwhDhwfnTKvK0yWMakziqJgebPicrVl3eyY77bkUtM0PYdHB8k4FgIETyw0200iRR3uTel2Gy6eL/E+MJ/NmM5qgpPMpjXOGi7fXGNMYDatkTkcH83odz233UBeZ0xmU3a7tDfjBkW/63i9M5jBIoTA4ZHRs1ltRuLlQBSSvuupioJpVZFnEu9StOy0LhmIrK6X0NtE0BsGlBKUuqY3A1mpKeSUKMBFSZQZs0XBZtejyxIVHUpqut5S2MDJvX2cEOy2Dbvtjq7rEsVcRfzQE4NEDwJrA0Ip8jJHqCSsmO4t2Ct02uMzjqvXV2xulwzeUtcVUqXvpdRzbhmGntliTqYzgolvYzmzsgAEPkTKSZ0ood6hl0n0LrKMEMEPHaY3iVLkHGXfMi000zJDH8yJUtC0LVJqMqDpOqRWeJe+lydlgcRTZZKDvTl9iCx3bfrulYIMTaIphpHUkwQufhTaBkSicw2jUFkJcj0emw9oKeiNw1hLiKC0JhMixTHGRICXKgl2IOK8IwoNPmD6PpGDfPrutnjmsynTqmK13qR44+AYQvr+Dz4ider/MqnIsgyjLJ0dI4mFQogwGjHTaws1irhH4b2z7jsBf/xOGBRjxFhFXuQolWGtw1hDWZWjwQHuJDHeh0Q3G0UzWkmc8dzFlUmRxDnGOJzxY5/DW7F3ROGMx7nwHa1IJeLRHckIErEpGw0PcsSF3gloYki9/h0F8y5ONzJGMt/1VqMo6I4fJMRdXy+RMlEkB2OToSClz45rirvIt1EAdEfrHI8rrQ9GAZFLMW53KqY7+tOdMPzuut31vnd9fgzirVkhiju5UdrzzktNkevU2wqBc4G+N3g3Rtrd0ZKESMS3vyIsiqPAS4rvzL1hXEDckaX+TZ3SnbTp7hf8lVy/v4clveTJsyf88//3P2e2nfEuzupd/X2ptm759r1v/50oSqcXp/zoL3/07nl4V+/qXb2r/0QrEvHa/20fxrt6V/9W9dcnKYW0oS9kWgSGcbgSYorvyHROb9KGubGOzWZHsA4tJVKp5BSKAq1zdJ6celqVo9AoLZaVUgiRnPV1lRyGeowtCZEURZBlmBiw1iClwDtP9IJZUSci0WDHRWZy7A+9RWeJLCC0wPQWlenRDZ02tcPoulYyDTbE6GQRQuJsiq/TmcZHi9KJGuSDwXQRL1MsnQ8eMdKghNDgJXhLMwwUdcVsPqMoFM1qTdMNhCDIyjmbTQdBYFWNcz1Z9EgZkDoiPGRFjgoKPViOZhPqwzmrpmN1u4Uo0VKR6bSpH6OgzAqkEqy2a/zKYIcW2xtyGRIxoCjZdVtihHyaI4XADhFne/r+Mi1iY9qUnhyU9NbQ9wMbU/Dy+obtesAayWbdIzXkOmKdYbXecrA4pCxK3GCxg6XQGcFbpFRkGSAFRZGT5znOOawxECN94+mHnqgVVVWy6QKz+T6HBwvOX9/w+dOnPPngIZ/+8GN2TUsWBBJLHj3WQlsk2ohzkXbZosINcT8yKUo++cH3mS8OMQYO6jl+53i1vOB63fH+0RN+57/4IXtHe5x/fsurL1/S2iXeDgglmc8nTCbJofv02Wu27ZqqrCllyevrC4a+5+x4gQ2Oo9P7HBzUXNxesOtBioqpb3DeIBHkmWTjDcZZMqXY7RxlXTObLbh3fMg2GKaTktP9KYjIwf6ceVGQmcA3v3jKz//0F8xKzdCvub0oeX51y6ubC4I3/MWfL7lsVmy2K6a65NGjx9x//JjOWl68vkmxCUoz9C3dxvL+oxlFXWJ6x7LpeHX+ipfPn5IXBesQmbrAn/3rv8CYQNu03O7WBGBeL3jz/A1fff2MQhdM84KgAtdX5yhpmB3ukwXBxhuWa4O3gdC1TLVg7/QQv+452D/myaMztg5Cu8d8MWUIHYXN2N5seW4dh6cnTE8PuL5dsrpacTyref/+IZVW/OVffI7Wmqbr+ZNffE5rG+pJSV3XZFWBUlDveRyR/f0T2nVHLSNVBk/eO2WQgWa7pKhKsqpGBsl8useDB+/z9NunDDGSRUkVBF23pSwDH376iLyUfP3VVxzMF+TR8uh4Rm8CXz17yenuhPv3zhimG8qi57ieMK0suIEP9vZwCJa2ZHr2gN3GcrNecnP7gpN7B8yn+xweWuJKs+ksue7pug37ezOCDewt5uwtSk4ePmF5vcQERSnBmhtevNlwdu8UpyfI8oBZVeOVYH60IEdw/fKKOs+Q946wrqOMPb/16BGbbUcUBZ8dLLi63ZJriRWeX3/xBSKXvHpxye3tmn80mxMHODt+zM4Gdq7jw48+YFLOaAdYX10xExWuHZDa4MyauT6kvbWsbzt2yw0UFY8ODjmeVzz68GO+/voZMdccH9e0jWVxMOH9jx5RXd2yV9esN4a2MbRDQ9cb9o/nZFVOoXL8qmN3u2L2ZMJqteL51y/ZrDZIIfnwBx/x4OF9Mq2YFZrGCv7kmwtWqw1/8Ge/4smDh3z06IyHJ0dcrjdc31wxM4YPP7jP44dnRKmZHFww66YcTmbcvLmhu1zysh+IdcbN9S3XqxWXtzdkIue3vv8eD+7t82K1pawEbdOz3LboUrKxHXZr6awn9I4Xr6+p6xlWRuJU09mWwQ8cnp1y//SUbt0RyIlIDvdnzKuMIWZUZYmxlrPpCTeXjhcvX+OCpyhqzl89Y3td883Xz1m3HVlV4ZUm0xNyDYu5Yr4349XLqyQcHkwi9Ayeaup5uO7YX9S0jWG3NaAV88WExd4UlWnKIkcDb9xAYwZa13Ow2hCI3DYbJlqTk3Zvy3nFpu24fHNLsA6HYtd4JtOCadTMsxnFxOOE4Gq94XB/zm7Y0gwlzapl1fQcnx5jmkt+9uILemPpfUdVVdQqRSvcu3+PXERy27DZdsxnBzw+2XJx9YZl0+AlTBczFALbpU3ySakp9koCAttbvBP0JmCNISjJYrpAl4KqrDg9OsIJ2NyuWa1WWOfo+jJFf+UaEaEuCmazaaLneJ9EBIPDRUFe55QSovdE53n21QukVGy7AaFgUhd0212KeGk9tpfIELm1Lg3DY6AbOnz0FFlOcJHBGJRSTGcVqIpoPf1IXHA+CbTEuHMukPjAGC0x4EKPsYK2G/AhkhcVVV2M8VdpYFAWFWawuDCgR6LQpnc0TZuavjE6AOIoTBdkSkNIgxvnxmg2kiBIazVSaCC4JKZQWpDlNbN5icrk6HgusMbjbcRGk2IhSLERQqbYCjUKinSmKKsyxVQ5n0QsWuG8o9m1FHlOXRYEpZOwJ6mc0nHLSF7maJ2c0dbc0VoERVmQZRprxudijOASAsKYBZac2gKdK8qyxPsx7m4cOGR5QVQBa1IYTBIojYMHJZhMCybTnDLPxlQMkaKFTSRGg1J3hCBAJJf6W4FRCATvk5M/ZXKQZTpFbIUkitEqS8SfsY+9e/U42rT/Tm8qjsQARIp+I0TuUkmkSoQtNw5YfPjOWa9EIrBGAC/54OWHPDp/hHICVYwUgnFWI8VdbFka3BV5MbrVeXud5CjUuSMXxJAiOtLAMcD4Hty5zl1IAyalNcg0qLwTIoXxfOLb1xcomdYucDeAGolNMhGQ9LjmiNHjnCEI0iCU8UFCgEjiKBE8xvkkhCgKlBKYfkjUhCiQOsf2DhAEkRFwyBgQchTuxURdEFEivafOM7KqoLeOvjMo7sgIEiHTUFNJhZCC3gzEPkUqe+dRIpIpjVCawaUhnMwUQozPv3c427zVjCktyIsc6z3eeQbvoW0ZBof3IgkV5UhUCp6+N1RllUgnPkW+qJHiJEZSmBACrVMc3VsBHxFnRrqZEmip6F2i11VVyXbbcb1asbe/4OjkAGMcMoLEo4j4AJZEcgsu4nqDjB2USWhzeHxEUdZ4nz4vg/Fs+4Z2cOzVC+4/OKGqS7bXHZvbDdb3RO8QUlBkOXmWNotWqy2DHci0RomMXbvDOcesLvAE6klN+2iNWERkUAg0ebTjmjWtb4cQcCSRmxk8OsvI84JZXXN8+4D9asKkzEEkulChFNJHVlcrLs4vyVUSQ3S7lnXbsWl3hOC5eNPRmJ7B9ORSM58vmC7mOB/YbFussaOAzmKHwP68QOWa4AKddWx3WzarJUprQvTkIfDm5QXeR6y1dKYnkq7Hbr3jdrlCCU2uFFFG2naLFJ6iLrEx3Q+ddWlQbS25FJSTik46yrJmbzFjCBBtOUb7OZRXmG5g7QPVdEI+qVLMa9sxKXL2ZhWZFFxc3IzfLY7Xl9dYb8myFNMudbqfszIxmspqgu0dmQStYG9vihMRazqU1omKEgVFVjKb7bNarfDjZ52OAucGlI4cHC5QSrC8vaUqShSexaTA+shyvcGYCfPpDOcHWuWos4w8C4jgiUXqZ/qQkc/mmMHTDT1tv2Y61BR5RV0F6AWDDSjpcG6gLAuiN5RFQVloJvMFfdsTokSLSAgdm93AdDohyAyha/JME4WgrAsUgm7ToqVETGtCsOjoOJ3PGYwDociqgrYz6RkmcHV9QxQpMmm12jCdzTGDZVrOqCYzettTTioWsxn94HBuhxMR17v/k70/e9YsS+/zsGdNe/rGM+dYlVXZVdXVDTQaIAaSoihaDsl2hP4G/XO6dISvHGExZDuCkkkKBEGAQI81ZuV8pm/e45p8sfbJAsMXbMgkAUK5Ik51dNUZvnm/a72/93kQBIIfMBiUF+wPlr6x2OCp5jMqLVkeHWOdJ+oDR8dThr6nKDUwY7mbMS0LJBJnAzhL11oCkaPlDNv3aC/o6iYFTmNgtV5T72q88yyOF8wWc2KATCtaJOvastpskW9umE4qTpYLZpOKiGDXHHA24gvN8WJCURY4G8mqjKzI0QFC27O3a1ShGZynaQ7s2xpvA8vFjNPFhCFCP6R6bN/06bMoOqQV9NYRhWRf91RVS/QOcp10Y96hjGa5mKNItVOIEqMN0ypnsI7caKQSFJOCEDTb1QrnWiJQDh3rmxt2+5rtvkZkGUEmVbbRBhUd1aLE9o62b5DBUQ/pmqGkpq175kahAxzaRPuRWjIrSrTRGGPIMkVTB1zwdM6iu47CGFxwbPdb5uUE6QNZmSWCetPjh4B1EefThaTQklIqBumIk4pt05BnBVEEOjego6I59BTTCRrD9WpLcB4bE+2yyjOcG8jyjKPyCOUHrPVErZlPpxAcbd9jfUAbRV7keOvTe1gJslzDHVnTB1wY65gQKDKFkYpcK0RRMVfiHZU0DVB4nNMpSC7lOwK9UipRe0balg8RISWZlnjp2Zzd0h0GXO8YbMBFT5GpFGTEp3NZnwiaSYXWjwqvtE+40yn3f0WjXJo81VY27Vfi3cAn39OC7sihITgCHucS+WoYHELakcYzFjbcUVo13rt0bVbqHT30LmDEeB/fUfilQsmkwiXGMbA0ko9EIv7chZiCTxWu0jo9bmYM+ow1cvSJSn+na70jHcm7IYDxpiqdBjDCGMoSUoKIWOeQXqQ6W0rEXY36fUpnpNml8I/334ejlJLj/icm9bOIf0XBBndEWSlBSIEeFcIhhHdBIjHWgsGn4HEUcazq01JapUEZo8Z69E6fbUh+6vCO8pruq/x3bnt4p3Qb9XpCILQa/358p8O+e7z/ap38V0NLfxeXcop/8s/+CX/4r/6QfMj/pm/O+/V+/QddLx69YD/b/7V/TnrJ3//jv082ZP8RbtX79X69X+/X+/WfYjnt+OKTL/6mb8b79X79tdZvHFKyLnJnRRhsmmg2Om1KBWm6KgpJluUJ0xuT0mCS5xSFwQfPENK0TAxJYXG3odXpVCttWJUiz3LyrEgTlKPy4m7zCmm63A09IYAPkaG3DC79d6MUZZkhRMAOFilUmlqRSZeh83FqBYFSKSzjQkClgRiccGNDI6ndvPcMo3PeaEVwqSllTIaUIilOCHgfRy2cQZmMTV8jnKNQU4woWcwWuNDgfdooai3YbfcMbuD89Jy+65jkGafzin17oBs8uTLoImdwjqChiwHdDojBJaKCiJycnzKZFby9fJvc9Hi6dqBvW+ZVwXQ6hxPN4DqGfUfTdGiZUVYVTjkknqHvkAayPE2qqZhxcrTEWkvf9lRlhdCa1faAHSz17kCp5mQmA6nYdx0uaspqwmG/pb1uYXAceoswSe0wDD2D1UzyKb5zDK5Pm3WhYZ7T1pFMSayvud44YkxTa55A1IK6bpnmhvq24fXNmgzL04f3Obt3gpRwOpux8lva6Bl8x9XqCtsNfPjgEfurHf/jL59h8oyPn37A/UfnrFvLauO4/PZAIWfsueRXv/oVIljuP3jM44+fst/uuV3dMpvMWe/3DN4xLypu12+pw56T4zmffvQBqviY5cwg/J4f/egzXl9d8erVS7At3X4PUlFVFZNZhVGGKsvZbGp8nlFnmnXb8+j4PlfrLTc3t9w7PyPzgqP5EWf3zjn0HR//5Aesbw4EWdFlM8qF5yd/8DmrN9dU04yPTx7x+lKhNRQzzf56zXw55eLBjP/P//ILNqs9bd3hvODs7DH3Ty64Xb/hdrPly+9ecnN1xW99/pRJbpA+sLMHbncty+mcB8szgrd8/Zc/p97vcSrnhz/6gNP7Rwxh4PnLa/T2wNW+48Xz13zw4X0uzo7ZH2pe73YIF/nB+Tmnp1PancOYGYUGZxX1YWA2y6ldy5A5zs5OOVscsWm3nJUF954+SWofofjq2xc8+uQRD6Lh2bfPySrN7esNWmXMZguGQULImM4nPHj0kKvLNf/sX/wrhnaF7T3lfMFv//iH5Dpy//5DgoDVqzc8ffSAqQwsMkUbUmO7a3tccJzMZ5S6ZD6taJRCTQpcsyMOntP5FK8iq8MGc2PIC8GkzFht3vDm+YpJWWKEpJUOOZljYoGMlrPzI9rDwHa9oQxLAoYyK1GFppiVdK7jEANFlpHnJZ88/ABdzPnw/gNu6x3tfoceWoqLJ8yLCY1X6GxCqHdU8wWF9jz/4ku+vbyG4JkvKo7MlE3YMhxaHjy8z4P7j1mezNlsG24vb7h3/5xZtPgYKESkcQPd0PLll9/y6MFjzu5NefP2LbvdjjdXGz746AN2u1t+/vIVtXUYfFKnvbnh2+/eUs1ysumEhw8uuH8yp1nXfPvNG0SWs1we0zQdnQPbw9//w9/nZ3/6lzz/1TPyecXgWtCKUGV8+uEDshB5/uaG56+ec/HwlIvjY7787jlyrnjy5CmFN+AtZydJ17E6WE5nS3706Uc4BnKjOZ1POZnN2G53vL1as2v3zO8fMV1WzCZT3u57fFEhjOHbb99we3WDcz1D5plMT5kcVczmms9+eI+3tzXbfmC43LLdN5RZoJoYHpxVFFlOZQxKRKb5EVFlEB1h6Fku5jxSmvXlDaINyDZy/ewtDsvx6YJucJTacLI44vnlFV9//YIfPn1MqQJVf8zNy1tc7FECmrrjxXeX3NY9P/jkQ+ZVwfMvv6WpD+yC5ePlQx4cH+Nt4PziHGMdm75mu1txudrSDgMf3bsHHlb7FfNjw/nZYybzBQ8+foxSgstvX1Kv1qmZPcmx2wOtc5zfP+X4dMksqxicpO96bl/ewN6z2665ur2iHjqCOma1X3FoOnRWMqtKJqLhqCg5Pj5OwUkCezFwf5pzcbbkZnPDq7dv8cEyW5Q8+e0fEHrLbtfQh0ilDes3K2JZII3CCwgaXPSYXFOanFiBICQtqdEUWuEj9IcBe2jw3tMpiZItWhjyrEhqlLLgo88uePnqFa+vL1EyEEoDUlNkGd5b3NCNoRJBcJ62t3ipmRU508qwaxvaznPoG9rO4RyoLBCGnsZavA8MdsD1KawqlUoH9DIy9I6+7XEqNSx6nygHU12RZTna5AQfaYfDu2tjYudAlKMCC5k0GGFPcJEQBE3TMNiB+XLGdFaSFwbvHSEG5sspRa8JziJlfKciEEIQfWSwNul9RzVX1w3E6NHfOwHeTUNHn6ajk24tUZvk2HSb+EQTugtcRJfqFO8SXSWE9Pe1UcQ4Kh8YmyUjG0lnBpNbXGuxNqAUlIVAa0HXxHeUqNRUSdPsWkuM0QipCcESCBRlTlHmSKlwNtLZNuWxRKqBvE4hKyklyqQvIT1aJkrLMPjUrOkcRZ6hhMSLcRJ9vLXaKEyWGnVeyKSlGoeqUzNHEfBkuUJnBkSaOg8+kUcUSTESRnWVd0n5pzNDoUtiTP9e3zWmRj1dHHUewf/V5srfvuVHqqq8C4XFO2JBoiH5O5Wd+l7/HKNIoQ4tyduch999wL23DxBRIsSo+yAFme7oUlLeqcP0u7+J+KtqjDSMEPHj30mUGj82apQUCK0RIhJcUmOIUbOWmlZ3jZukPQkhjMQiUlgqhKRjUSpRz+4acWOjLk3+p6CTFILg3bvGUPCJWCGlpE8uQ7TMUCRaS4j2XehJCuj7Ae89k8kE7xyZUpS5YXBDIowJiTLjQIOLuAjShVG3kgSFk0lFlmn29YEwpLCUtxZnLbnRFHkOVSI/+d6lxp5IIbAgAoKQmpQqkWiFUingWRSE4HHWY7QGmdQ13gVsP2DESAASgt45AgKtDcPQ4RoH3jP4pJmRAjyJzJKpjOACPrh3akSdC9yobwnR0rQRYkWMXWr5yUR0zZRkaC37pkXhOZrPmExKhIQqz2hDhyPig+PQ1gTnWc7mDHXHVzdrpNIcH82Zzie0NtB1kcNmQJPRU3N7cwPRM50vWBwd0/cDbduSmZx26PEhkOsZbXdgiD1VmXNytEDoY/Jc8vbsGaenx+zrmv1uD97ihgGQmEyT5RopFJnWdO1A0IpBK0Kt+Kj9kMEEmqZhOp2ggqDIS6rphME7ji6O6RpLFBqnMnQeuHh4SrtvMJniqJyzr1NTVeeSoe7Ii4zJLOf5d9d03YAbHCHApJozrSa07YGm67jd7GnrhvOzo/T8h0AfBprBUmQF02ICIbC6umIYeoLQnJ4tqKYlPnq2uwbVD9SDY7fdsVjOEjlmsOz7HgIcTydUVY7rPUpmGAk+COyQPlNtcHiZwl6ToqS1HROjmB4dpSEmIVhtdsyP58xjIg4qI2j2HVKmMwjvBcREEZnNZxwOHc9evMK7NlG68oKL81OUiMxmc6KAdnfgeDEjE5FCCayIaJNCsiEGqjzDyHS+YKVEZopgI9EHJnlOEJF26FCNGolmirY/cNi2ZMYgETgZwORINAJPNSmxQ6Lg6lgShcQogzAh6d4bxxDDqFnUHM8WSJ2zmM5o7YDte5S3TKZLMm1wQSJVRrBdCtjIKdvbFetDDTGQFxmlzGhjjx8cs/mU2XROURV03UBbp9dcTkjXLSRd34MS7HY7qqzkw4f3We9XKCW4Xa3JiopqUrBar0dyVUASECHy5vUVGInWkklWMltMUCFS1z1DcExnM4KXuKCxQ2A+X/LBw8D6as0gOtACGyNIyWQ6Y5pnNE3HoT6QZYblfM7Q9XRDx+R0SqELwuBQWjKEQF13iAAnRwuyXGG0JDOGaVmAj+zrhqZtMXmGLjR5niUqDBKVZbTNwK4/0HUtLjeYrMRkhomA5bKks47eBnZNRwgCa3uq0lCV6VpYmETWzHVOQCElxOBRUjKbT+nagfpwQEawdU9tB0yegSxRQG5yBILNesPR0RFHRYbzkl7n7AePHJVcm+2B292ByWzKcjGl2e1pDx1N48gyxbQoGZQjqkQu7fsOFxyHpsO+jtS7CVVeUtc1qMDR0RSjDJPljKzIsV2P7TrwgcVihgghDbPlGUWZM8lLypACJ03Tsu/31MC+3tMNfQo9ishNUxOFoshzcmWQQjApS7Q2BBsYhMeoSDUpyZsDN4cDw2ARMjCd5CyqKUM3MHQDWkm8tQytRaSUbiIhypCCdyZRa4SQxJiuP1pJchmxPhBsqr0Qo9JMRjKdXqtGSOaLObYsWe+29EMiXUVAqxRSIUacs2MoCJyPeARKSsoio6cnmIiLAdu1SRdLhJgoPTHGVHO7VL8opVL9MGpf3eDxY62Yws8BhMYonWqOUd8W4ruIe/rfMTCOkDgf6VtLjBZIw6pN3eCcI8szTJb+Zggp2CVVMQaVYqL2wLs9RRpqiDAqmMOoVEO8yzqN3x//na8Uak+1WwrmB3SKVcOoknVjmFkKQZBpD6g0gHoX9Ic7amaq76XWCJ8eSxEToVSNdVk67xaj6i2MFCXG82Te1dtSputx0t4Fgkt7IUiBeyHT5zuQ6hcpxuD4GMIiae18jCiRKEyBO5rVWF2OajupBIwGgncBorHOTaH79H1CyrTf8ElZLkhkzhiBkG5zCAHGmvBuSSGQUY77iVQfx/+fsNbfrbVcL/lH//wf8bt/9ruooP79P/B+vV//Ga1I5MtPvvzfRNGY1BM++fKTv90DT+/X+/V+vV/v1793OeP+/d/0fr1ff4vWbxxScm6cTIkRFZLrvCwKtMkg+DT9o2SaahWRvguEkBpVeFIYyMc0KewDmnSgLaUkOI8SCiUEWkpykyGRWOveecbTVHk6+H43PRMjCInMdJryEAKMwiuJkBrGzZ9ShrKYIlRPDANdZ/EjlSlECM4SpQZFmtQ0hq7rEqo5JDyxMgkDrHVq2E0nJSFG7NAhZDocLyYVg/NYN5CZDKlyEIYsyzhaFGy2LcElYpRzlq5PlCcVOx7NS6Iy1H2HdQIREpo6E3B8NKe1GW3dY3ctUkSKoqDQGeeLI2wYMEITc4GKaYIqqSEEy9kCjOR67xiERGQZVaZRUTJ0qdF3tJiTFRofAqvtDlNM6H2kaRuCACUjQz/QWcub1ZrDoaYqC6bTMh2maM3R8ZTjoznN0BK9RUiorcU1A8SAlgYlcgICJyT5fI5CU2lF1B49zQiNRzpH4zzrzZ4+TDHFFG0PbLZrnLc0TU0meybZhGq64N75faZVTrNZU3cd9dAgG08XPZs2ULvA0HYMveX3f/+P+PgHH7LZr7l885Khfc2wuuL8wTFSeD768B4qKoqixGEJIXB5dcvLr75AKslktuDF82f89uef8X/5/f8zQjiWRnE47JFxoN6nZlORaZSEqASzeQpG1F0L2iCLCQ5J1JZpNmVupjgbCKHnkyf3mOUTVNT0fWRWleRRIjx88vAJm3uRrh4QQ8BQcZzPyIOkb2oI8IMnjzg/OublqzVX6zUff/IBb65e8OrtK5rW09Ydi+WSfb2hbmsuHt7jm2++5bC6Zracsh867G5Nt205Plry6NEH/NZPfkg2K/nFX/xbumFHPxxYNRumr455dDxlwLFva5R2vHp7SV0HpHDkecGnP/6Uk0VOe7DUHZwdnzDsthy2DYd+x/Vmw48+e0p/GBBRMa2OuLncs9t7tsOO+/M5BQIhFb/89jleCC4WC37x819TaMm9syOaw56T0wu0Ufzqy5ccz+d8/slTEJG/fP2CNzeXTErFZJaT5YLToxNwlmGd3kcyGoYQaUKPKDJMp7hYnvK6f02eGaaTCcZU/M5v/wRvHW17YJopvv7mG0IQaJFTzjKKaYGUgmVhqI3i4Dx//MUzPv7gCZ999gl5kfMnf/4ll6s1Dz48ZnaSMdNzrjYtrmt4+tF9Pvn0AVdvVhxWDVU15fOPPsAYw1yXhKiou55ZucBEWL21PJhPyTLDzasbNqtnNE3HafOIECybQ8dXz77DOc8kU3z2ySMm9085Wcw4OT7lm9drTttIIS1D43j94hKsQ7ie+2dTipNPePLwMcILXn33HcEfiMWEXRDcHHY0X3xFsz2gZwXFbAqD4fJ2wzevrnn62ROOliX1zjM/PsVmkj97/iXtoeXpJ4+5Xu3YbGsmk5zdzYHJRLK5ueS7b55x/OCCv/dHv0NVGb777g23VxumVUUt4PjhA6TJsF7wwfkCtZhyfHKf9nrH7eoKguD2ZkOrNOubNY/OLigXisePLpC95+rtjl44et/z5INz/vE//gOmZsL61Q1v3l5TX+/Y3dRsu5onjy+YGsl0seDhB0/59vlz2t2GUpc8Op0B8Ob1a+qmxpgpVTXjONN0jWXwgbLMKKLACcX0eEG2mPHg9JT2i2+4dZAZw+36ll1dc+/eEfM+0u4OxFBSigXFpOLlmzXf/NLiXEubKUSmmJkJLnhevn3LdrUnaoMZevCBerWhDgOL02NubnbYg+dyv2E+ndHtNgQDmc7oXMeq3ZHfSnIfuL655na/5dPPP+fxx/cps5K81GRPP2Kz2jLZ51jXseozROc5my85W5xye7MmkqMwvHxzya++/RolLZkMDN7z8PGn3D8+5v/1z/6EurE8OD/l6eMLbtdb1m/X3LhINs34vR8/5WJ5gmg7fvEVdK7DtgPD0NM2A8fTCS9eXuKd47K1NM7y8MkUQY53mkwahAQbHaXMOJqU9MOAk4pSTTjKc2xo2LlAW3f0bcvRvQvmiznBR4YwoFXFrmnoB4fWGZnO8Vk6DA8yHf5GD7bvybIshYRDIJORWCrA0zYeJQSzPEPayKZv2TWWbKrJZolc553DWp8OuaVgsD0m1xDTgbeQJtFSNFSFxvvAYd8g+54izxFSobRGhogfkgZ3vqgwmcR5l4JR3lLXIwgp3VK61hK5axxMgEBm0mG2JJGwDtsD3kXy3FAUGSHAbrdPk/oxIIRGyhR20FohlcZqxzC4UW2QiEtBgrUBRACZwk3eerxMjQTnIl3bEVxEjc2aeOc3AGznklIkpoCGlB6feZRJTaOmSQoLKTQgcT5grU/X0RiQWo5KuNQQCD6mQWMf0UKSqbGZNerDxBg40SM5Q2tNNKkxEfGpYTrej9zkwIAdHG3TpeaQSM2IyBhKkZDlJk1LS4mP32so7hRazlmEEilo7xL9yfaWSMSMmjHvA1GCEomMQAwgBWGc6L7zT9wdIKrxNlrrcTHp9v62rjCGkO6UIkJKtE5UgfReYAzfJI3JneZGWc39qwvuP79HsZ8k9Up0iLHhl4I/AUl67qUYCa0wTrjfNc2+D/fAyPEa3y9ibPQhIEpJlCDCKBGMjK9/gwhyJCClJp8S8vum2qjVSPuPUVXnEwkshY/E2PRKz1+WmRQI8mOzLgoyY9KwR/BIpcYAV3rflbmm7d0Y9EpDHM6FpCuJjnluiEKOlNf0++JIq6rKAqsddnD43iJFTLQMqZgUiW6rkKDuIABpnwWCIitACeo+4EWqzYyS6VPGp99f5DlaJ1JB2/UYk+FiouikgGcimjkfOLQtw5DoNSbTSCEwUlKWOWWZY70jxvQes8EThtTklEIhUUQEQQh0niOQGClBBmSmwAYIia7QdT0uZiiTIcNA27X44LHWooTDqAyTFUynMzKtGPoO6zzWWYSIOAKdjdgQ8dbhfODBg4csj5f0Q8thv8W7Pb49UM0qJIHlcoKI6bUSSM3Cum7YrW5BCrK8YLfdcH52wif3U81aSMFgB9pyx/XpVXqtKYUYFS5ZntOP9CyUQiiDRxClIlMZucyYrxaoTnK8rMiVSZQ9B7kxaEQKXMyP6KapiS18RGKoVI4OIinVgePlgklRsNt31G3L0cmCQ71jf9gnuol15EXOYDustUznU9brDUNbkxUZvXP4rsX3jqIsmM8XnJ+fonLD9eVbnO/xfqAdOva7knmZEQgMNgUK9vuawUYgBWxOzk4oC4UbAoMTTIqSw9DT947B9zRdx9nJEW7wECVZVtIcBvo+0IWeWVZgdGpS36y2RCGY5jnX17coCdNJiR0GymqCkpKb1Y4yzzk9OQLg8rDj0B4wWmAynaitRQkh4Nt0bRWkz3sbPSiFipJJXrF3h3fUC6UMFxcXY2hvwEjJer0eVZcanStUlvSrpVYMSrIPgZc3W44WS05Oj9Fa8ertirptmS0r8kqRiYy6cwRnOTqacnIyo963DK3DmIzTowVSSgqpCUis9+QmR0ZoD55pnqGUot01dN2GwTomdk6IgXZwrLYbgk/DRKcnc7JpRVVklGXFet9ROdAiXYf32xp8QANRBC7OFxTVlCrPOewamkNHlDBECTFw2G4SbQpQWYaxjhAjl7drTJFzb3mM7Rw6zzFFyWq15uZ6w2I5RVpP3/fp2i8URkps37PfbbA+8ujJI6pygbUuEcyiZAgRWRYURYH1KZSoVGCyOEIGyX5YI4Wkbzu81HRthxKCs5NjqipjUuTUu5YmOGxsyTLFo0cXHB2fYA8d+92O9tBgW8e+rimrgrNpCsgdn57TdgOHwx6FYFrmlFmk7zv2hwaICKmZ5Dqpq1yieUuRtLK6yFG5ocxLRNPQHTqU1Ay256Zeo41iYSShH7ACtDdkmcG3A+vVhk5BEzyBiMkNgkjT9QTX4KxDeIewDt8NtF1DVuV4FKubHS4kSrFH0LuezBgQkdb26F7hncV2PfumJisKHjx4QGYKjFZkU8OwHMZrhcV5jx3DtPNymohH1qOUxg6O690tiDCSvjxZOePxgwtev3rL7a4hz+D89BhrB4a2Z2gsUUROjhfMpxOCDdyuNSGmgHcMgabuWEwqmrql73vaEBmsIytzCpMRQiJapsAs+OgpsxxiwEWFkopCZWgirU7ni30/oPOMsixSresDAYmPkbpp0WNIWSmNECn4K2Six3vvEJExqB/S8ytB6hSkRcBJfYyfXNK5pKMOIqJMngisIRB8irRIKRJVc1SZuZBq9TCSnpQWMIaSfAjjbUqDEmLUq8YIWZ6uxTGm4UvnA4N174L8cQxa912XrsUyRwiBUqnOkNoQvB9D02E8NzVIJbG9Tc/FnVcMMerOGCmPEeG+V7WBGGvhOAasUmAnhkR+ulMe+5HQKEaM0B0v807pm8JQd7XyqFuTMZE5EYQoxp+9o0elWj2G8blKT1giQN2p3kbgkJIqPZfWEe4KHBj3DACjqxsSUUqMlFPBu/e1DymUPsThnY5NIN7p19R4ts4YsIqRUYGXnotE0BoFymMgK/hxPzTqChOwNI5hpRQUi2MYLVGr7orhdB8Eox44xqQe/LsUUoqQ9zk//sWP+aP/9Y84vz5/H8R4v/5OrpvTG37xo1/8b/rZJ8+eUDXVf+Bb9H69X+/X+/V+/adcyisev3jM6nj1N31T3q/36zdev3FIiXEDBHcTNiIFcmw9qkAMMm2RCMGNh/KRrrejAiAk6pHrUtPAyFGTkDbo+NT0U+MUshwne+82Z72/wyWPnm8hkFGAD6mJI2QKC8lETQCZGmBSMAyWsN/Te4tW6WABkg/ekppjLiR6jxSRpq0JMSS3+jhNJcYDxruDhLYbcG4kNWlFVhqiS9QlM04ITQoFwSMDDA0jDQCcT40KrTRaGZre0nY9NkhUmaOFBGnHzW+gjBpBRsTiraOcLzg6W7Jbr1mvb8cOS0BJGJqO4MGFQOMjz19fIrUgaIEfIkKk5wAvcAFypTk/WjCdVfR2IA5Dahx5S6YNeV6QaY21A5umxXvLYjFBmrSxFj4iI2RSsNuscXi0AO8GgnPgx05QlJRVxceffkyxnOFDT78f+IM//B3uPzri9fUt/9f/4f/G/vUBFwW167neb9kfOgqd89GH9+iHgclswnximE+PyKoZb57f8vB0xnRacXJyxvT4hKMq47d+6yl/+m9+xn7dsDMaYkXf1Fy/eYNXiqwq+Obl1zTdgUE8Zbac8PD+A3xfs7pdcb3a8vpqhYiRi3v3efLxE8pZjus7Hi1Pyb3l6xff8cevb+iGFi07chOQeUF0Hco5zmYLdl3DYB06KpSQ7Dc13aFhcJHirMQEeHH1hiLPWB6dorRh8Ja36y23f/KvOV+cUWrF9e5APp/Q9QOTRcHydE6MgtXNiqzI+cf/8I/QsefNyzd88e03HJ+c8NV3L3l9vePppx/hncUPUE1KghgY/MDl8zVfPX/BxcUpf/8Pfg9yxb/8V39GbVsWquT09D7zckbvAmV1xGe//VPyHL5+8RoRcp69vkwNwuhwFh58cMaAYHW9I6PANQ2Z9nzz7Dk+av7hH/6E1+sdrrMcn02ZP3zI+acf8e3PviV6yW//6Clf/upLrravOX1wn3y+QGUJvfz5jz/n8vqab75+zqo+YKqKq+sNppwQpeDZ8xdsdjuitxzdpualJnA8y3hwdsbZ6YKr15fsX95w+sF9/uLnv6be1CwWc+o6cjLP6b1jiJL1l99ixEApBIU0nJ6fcvnykuurNSdnxyhTocuKF5crTDR88tlH9EKw3zn6tyvK0vD40QfsO0snJV0wfPLRUw5owl/+ismkojQGMQS0DJzMCx6cnvHo9AOCLXj4seXe+Ql5iJwsj9h3ga6zXO1qtOzZXF5ineNks2fw8Otffsn15SWf/+5vcfF4znffvuTifMnpgynPL98yyTL+D//NP+bnP/+KX3zxjOLrNbfbLY8enrPIMkyeURQFk2nJxcUZg1FMT4559uvvKIzi/O/9GCEdtZQY6znKIm+vb5nOC/7eH/wWf/y//DE77zk9qjiSGb/99FOi3fHRjx4zP54jvODT9UOGzvHJDz9kiPCXf/El128v2d7eILShkZLsfEIbPG1dMy/mLKuK71Z7jo9OuFgq2rpjN0SyqUNFzxf/9tecHO0pkLy8fIXKEtGhFZ4PPv8I4RXn52dkSvCXP/s53jmq6ZQnTz8kywzNzjO7yHl2u+MXz1/x9s1rdtuGNjZ8nD/g0cU5/eB5++oV++5AVU7AC0IYUBqWy4KPHt+j3h9wjeVwSNP/UktMnpQPyypnWS4IwjA7OmE5veLb6JiXhlJVHC0yQgi8vbxmslwyX85ptwf6Xc/+sGPYbdFa8sFnn5BLxfr2mqJM4bTZrGTftNzcrNg3HTs/8OGH5xwtZ2zWDf/m669ZHxqiHSgKw/HJlCcffMQf/dEPabue19+9JvYtITo225q/+PkX9I3n8eMPmJ0s6dua68st2+trQrDcHPbkVcazX37L81+/ZXXYUw+RECyH/YGTZcmjx6c8+eghr95cst+33Cs1x+Ux36yuiEry5MMPKIpb/uRnvyJXBcdS4tY9O1dT15ZhEHivMdpzcX+JVvD2ekU2zelby+pqC0KxurxGCUPvIj5ostJw//45D05PmWC4vl3jQgoOKJWxnKfA5waFLnKq+YzlYsFiMqFpBvZNi5OCprcMw0BAkMZwHVWVk5uM2u1AZfgh0A8Dq65Daw0yQp7RW4fJCnKp8M4hhEJICzikjhQTQ7NpsL4nk2ZsyrgUnAieLNfoAoJzCA8SQRSSIViGziada5FRTgtoGJUDHm00RydTAp5h8HSdpW16gncs5lOkNHgf6YeA7XuYVORG0fc9h73FWUfXDQgE3tsUgFFgtKKqCrouVX0ueHJjKMoiaZ+iByUwuUFKydDbpMiJEGJAS43ONFmWI4UhhhRI9zYi0Vg/EILF5BIZNT661MSwnuBFomFFsINFd5I09y3QyoxqNoF1Hgh0dsCTtGtmbIikujOpvNwQsdYjBLR1OzZBGAPmghAT0eVO+0sU+OjwMalsssxgjMYNFmIYFVOOfuiREaKQ6EwhQ8DkkrLKkVoT46iGcCGF3NzYSCA1s2JvkdYjRfpeSI1W70OazPceYXKU0amholKDwY0T6Xd0DERSKkMK0sfgQP0tPnQfG17vmi6jgiJ4PzZ35LtvjKPCY76Z86OvPmfZz1MDLcRRfXfX6BplFjLRlxJl6Hvt3V0j5k5VGEMKn3yPVwLi9xPud98fxvfh2GdKDaFhSIQCEd/pOtJ0un+nnLv7XdYOiXgQAwI5vjYTJeruZ1Pj0L+beFc6qRG9DUiRJtsznRr6IkbcOBAlE6QrTdGPJCHrA9Z1+AhS67HpNZKmYkRHCUluRgwBnecUVcnQtrRtO4ak0u9z1r5rbtkY2e4PiDFgGXy6fy648T2f9muTskhN8eBHokAiPyQlyqhaCZ7OWkIMFEUKmcYxzCdieun2XSIfJdDHSKy4awIKMMZwdHKELnJCdPgh8ODhBbN5ya5u+MVf/JJh3+IjDMHhhz6FUKXiaDHFe0+WGUSmyE2BMhn7bcOsyskzg6sqsrKkyBTnZ8e8eXtJ3zp6KckweGtpDnuClCij2ezWONfjgawwzKdzgh9om5am7djVHQCT6ZTl8TKpHp1jXlaoGFhvtrw8NLSy4csf/ozN9gahNQSLDJEqz1PwJyQVnxSCYaRc+RDTIEiE8BZ2bUNZVIkWFwOHrqN5/ZppXqGloB4b686n605R5cQITZPUZR8+foiMnsPuwO16TVmVrDY7dnXH8elyJOclUmFSuXvqTcvtZst0UvHo4X1Qgpev39I2jlxoqmpKbvJEwTAlp+f3UBpW2z0CzWZ/GD/DAsHDbFHhEbRNj0YTrEPJyHqzJbLn8cML9m1HcIGyyshnMyYnS9ZXG4iC89NjVre31H1HNZui8zxd2xCcnp9R1zXr9ZbWDkhtqOsOpQ0IwWa7o+17YggUTTayPyJFpphNJkzKnHpfM+waqsWMy6tbhn4gz3PsECnzNPTjEbSrDQqPFgIjFdWk4rA70NQtVVWmsxNj2B1aJJKTkyM80PYBd2gxWrGYL5LqSQp8VJwsjxlQcHWdaC9SJUKGiFS5ZlZNmFULQtDMXGA6qVAxUhUlgwtYF6j7AYmkqw+EEKi6AR8jNzdJEX52/4zJPGe72TGdFExm52wPB4xWPPn4Q66vVlzfrtGrlqbvmc8n5FKhtMJojckM02mFBy7KHGc9h82Oi3unuGEgagFSY/d7OgW7Xc2HTx6z22647XqyTKMzw9HRCROtECcV5XKGEpJjscBbx/nFCcpotrua1fWazdCx2+uk1pvkDG1P3/VMiqQTvAujVkVBNzj6kfZcSM16u2fXOHKV03ctnR0wmSHIQDErKbOSCMxnM1Y3K3b7jjwzzOYzQvTEICEIeh+53h7Y7DYMXdIbqlwxnS4gRLqmpe57UBItNINzIBMR8vR4jgSGweJax+DDyLaR5HmOVDAtKmIQ6LygDEBMRKpSKDJTwhiGREjKaYmIMNQD3jqaoWWQgmxaMS1K9tt1IuwphZYC6xzODqw2W/ZNTTUtmE1LQLBaHdi3Pd5ZlJCYXLKczzm+OCcvC7abHbu2RZGCP3W3B3HJUb2kmk2QUlIferabGkmk6RMxl76n2fX4GGl6CySCpxSRxazg5GSOD4G2s7T1QGUmrGKL856yqpjrGS9eX9IPA6XJCK3DK09nHcGDH9XBZZVRlIa27bEhYErNbnMYKfDpHCv4pCsVSlMWGYvFlEqn19GQMEYwhtVlgMENiYxkDHmek2uNkIq2S6T3EH0KFt2lnsfwcp5n2MGCVHjn8TbQDgNBiFE/qHAjAyery5ESelfjBKLwaCNx0eOdgwBi1MYhx+8FdHYXfmKsc1KN6UeCUSSdv0YRwaagTySpWaVKYR1rPd4HnHUpTKzNSHCKxJB0c5nRqUYYA7zeuXfk/RASLVUI0EaPwfSROCmTXg3GAA8RqRX4SGRUSUuJiD5d82R6rUqZ9M5EQfAeERNRKYSQaEIjSSj4MA5QfF96Bg9epDCXkuodVehOI+x9CmeFUbubAlhyJCelPUXae40kK+ffDWmIu4DRGI66C0rd6ZhDTCR9KZMOLwWNwrswfgjp8U+5cIkCEBGTqVQ3ktS2d7XSHZ2V9Kog+pBqqHeJsjRUGxHvAm139bUcA7uMIfcQUs13d45+p+iTI1lM8ndkRXj08hH/3f/9v+Pi6uJ9OOn9+ju7mrLhf/pv/ifasv3r/3CEB28evH9/vF/v1/v1fv1nvmSULNfLv+mb8X69X3+t9RuHlJJ1IY7NgTQlQ4xoqXAh4flzo4nRv5ueEULgRaQdDxy8d2MjQCYsv8nQRuNdxMdEFSqKYmw4pF2YEpoYHEIElBIJwS5kahwASDluzjzSC5S4wx2niejgHT5Ywohb9yGiSFqBrm3ToX/w2Jg2iWWu3003IwTG5BhtsM7j79QM6UR+9HqnKZ/O9+RaoZWAELFOcnvoKZUC0bE57NkdtgghMUbRdRalIgLPMECeF1STnCzT+L6lHtKmMCqP9z2H5kDT9UkV4Hri7QrcQBgbVViPjBFLZN/3RK9QpoAQqWRGmRni4BFKEKMlhEiWGXSWcbk68OZmQ2bUSC8AJUPS0UhJiJ59vedwOHBUVpweLcBo6n2LHTxlXmJMQDsHMhIzicoUszwjWJEw/8WUf/Lf/tf8l//1H6KNod7X/OWffsUPnv6E3MDmdmB5dISxkTfrHYe2oalbDocDraoY2i1Fpnj06EOkUdxcrrl6u0NGwaL6jA8/esjZgyO+fPaKSMbu+gCNQ+ocYxR1HbhZb5nOcqbzKUYE+rqhFiUKwf2TU0Ic2B1anr14w3a746PHDzk/P+EweC5vd3Rdz+n5ET9/9hz17XP60PHF82dE0iHog5MKYweeffcKHQSPHt3j6vYrRDS4IaBUZDabcXJyzMvX19w2Hfb5G6SAyVTy8vWKs8/vUR/WZEVGTiQrJdVRzrQQaKl5+NEDjpcVu9sdf/xnv0BnmuPFAmEHmrYhCsn/8f/0Rxgv2V23PDp7zI8/f0JWatarhuvX3xGsRsRArgRPHj7Ghcgvv/wOHwNt47h3csy90zmb1Yp/efmWwUM/HFjMjqnbA2VZ8PjBQ0LXst01LI3m4uyIz3/0GQOR/8f/85+h4kB96Lj1lqvNLfPpgss3b3l0/4zeOm5ubjjN5rz+6pJD68m05JtvnqOLko9OTslkyWJ5yux0yurtmm9/9SUhWI6Ojpl0A3VzwAtD1w4QDrgAi/MTTo8WXO862ramKDSVXhBbx/rmgMwq8soghaUsYTZZkMsMO+wRpmJ5fMTV7Ya66dhu10znE+Ku5tn1msZH8nxCfjTD9x3tviFXkdm8wNmObh84/egpWRZ49vXXaJlxsjjn0B2oN9dcv5nQ7XY8PDvFmDQx7UVPnknyqmT7dsfX3TN+/eI5D5885Lhc8Be/+DVffvGao9NjnI8Mfcv1tuYXX3yF95bV6sBkUpCLwHySU6/X3L66Zn2zplSC3/293+Z4vmC12fLq5YZDDfOLD9i9esl0ptjZDS7O+ekPn+LqjvXmFmcK7j9+iPcaoaacHC+oh57ZScXFrKRd7eg2O5aTkg9/8DFaQ9dZVtsd1tV89PFnfPPVax5/MOVoPiG4wDe/fsl3X10yW0zpNi35dMKPn37I9nSJj5af/cW39H3k448/4Vdffsf//K9+xuliSWngdvWaLIs8fvwhbTlFZjP66Pn1tzdMZgu8aHl5u+bQtfg6sKv3fPzkMVjP5fWW1282nCwWdFERpCOLjrnM+PbbS7752SsuHpxjo+T4eMF8mXNzs+bm+pL9es8LC/PFkhAd9B3b5oCWkuJ0yWS+ZLPaYyhRoWPbH6gmOROdE2Vkvqw4PTlhWmXsDw31y55nX73EHjYMvWe/X3N+NuOD0wt+/dUzLAEhHBOtyU3O61WNEpFYCLIssH/7BuscwlqE6JguMpbTGWVbET1IA08+vM8PnzxGOM9h2zDEjt3uGjv0PKru8+D0mHv3TvnpZ0958/wN62dvWNeW46MZn04StaPt1rTNgu3tDS9eveby7SuG9kBT7+mc48OPLritNzx7+Q0yl2ybnjCkw1HrMj779D5VXjExU25vd/zJq5/RDz3CNrx+9oJ/PTjm8wW/87u/zURK6psDuyGgheDJDz5k1+/x0nM015weT6nygtfNDcsqR80MQ9ux27esbld0faDtW3wYmImMecy5KI/Y3u6oyPngyX0e3j9h17Ssr/d4oYhZiep72tqxdjv2N1vcOFnv+g4JOGfxwaJ0QvqrABpJnpdYF+i9pY7gZTr4zXPNDz/9gFwqvntxzWrT0rct/aiWK0oDShFswA2RofcMY9NSK4EZKY1eSPrBEn1qpFnrCRJQAolAyECIFqElWanwThF7wW7bUFaG6bJC6TQhLQT0PcyXE4zWdM1ADD1KggievnEcDg2HusW5pDZRSqNUwvwP1iGFJy8y8jIjRM8wWKx3iGFIpMBxqtpkOVIkQpKPEUQgKzVlVZCZAuc8dvC4IbzTd901xiJJ/+SFIAzpkD54j8lN0tINYxpDiKSG6hzDEBAqBSOiUziXmEdCgxQSpZOmSADeeoYhYG06hBcyhSpiGA/wR8WdHLVpaao6TSYnPbCmKiukErjB4awbm+wpYO+cw0eBiBGlBCbXFJUiK8SozIMYPNFD3znadkjEG6mRIqBkCisN43T5nUIiaduS0A/p0TpNcMtwpwhLtbjAgVTjtLjHe4+UgizT78hUfxvXXQbp3SQ4KcyihMD59BrM0Mx3c4QTVLsJ918/oBgKrEhU1Tg2fIjy3etJSJV+pwtjKEaNYaOkq5Zy/DkRR00hhLtDWHH3j/TYEr9vLqXbfKedHqf4xybfXTgqEWjGKfaRpqRH4pUYhyqUTM2m4O8oAHFsSn6v0wgxEr1LZCxJCiVFSTM4jJRE4emHnq7vx0abHF9TAIl8oJUmMxqpBdE57B3OSwlidAx2wHqPkgrrPTQNBD8+Ru+STwQRGawnRoGUOUQwItGT8HHMdqWfU1IilaJueg51i1IyNQ+THQUp0vssxkA/9AyDpTSaqihAykR28gGjNF5FREjPU1QSiSRTGjzYENA648nTj/ngo4dIJRn6gavXK46PLlASWuEoigLlwXV9ur+2ZxgGnDDc2B6jBPP5EiEF7dBRH3okkOtTlssZ1SwFc4iKvhlgiAipkEpgbaRpO7Is6cCUSM//IDRCwLSq0v3sLZvdga7rk05uWjG4wKHtcdZTTUuuN1vEeouPjhf2NV89/YJ9tWYWDHLwbDZpnzOfz6nbFSJKgkuvmzzPKKuS3b6hsQ5x2/KD1zM669ntW6qzKWHoUFqhiEgjMIUm1ynQNj+aURaGrul59fYapRVVkSO8H8lXgo9+8AgVBH1jWUwWnJ8dobSkbQeaw5boE4lOScHRfE6IcLPapuDnEJhWJdMqp2tbXhzqRADxA3lWYu2AMZr5bAbO0fUDSkqmVcnp2Qke+PLb7xDj9cfHQN215FnOYX9gPpvgfaBuGiY6Z7+qGVxEC8F6vUVqw7KsUEKTFxV5ldEeWtY3K2IMlGVB5gKD7YlC4VwgMhAiFJOSqsipe4dzSb1q8gKsp2NAKJNUOSKgDWRZgRYS7wdQhqKcULcttg/su46sMNAPrOsWF0Bpgy5zgnO4waJkohiG4HBDpDo6RsnIZr1iIjRVMWFwA0NXUx8Mru+YVZNEMEEQ8WglUNLQH3rWbsPNdpeeY51zeX3L6nZPUZWJ4OctTT9wfbMmRk/bDmRGo0QKY9muo93XtE2HkXDv/gVFntN2Pftdx2Ahny7odjuyTNL7jhBz7p0eEaxLerMDlJMJmcpo246qmqO1SQr0eUHwgcNgsdZyerKkrDI2qxTQ7YeO46N5ohENAxfLU7SUNPuW9c2OtrG43iGRLCYTdIioTLG62VB3A5PJFIThzc2K7a6mLHLqw4ayKlnM58ynEwYH0hhut3sGL5lViro70PcdMQgOTU2eF5zmM/quZ9/09K1LTf3x7KvMcna7jtc3V9xcrcmKRNQ5PlnS9z3mIIk+kcGMMphMgHc4awlRIoyknM5p9p7goTCG2nYoBSbThBAwmWIyKcmyFLLru463b64JQ4cfg0+ZhuVyTlO3NL5HGtACCqPoRsqkUICOYAc65yGEFFTNNFmhkLqCmGg71aTgdLmgygz7uiWKwGA7hr4jNxlHyyOqsuDs5IhMa/pdTe8CSkuWy2kKL3qL8z3tPnKoa7a7LW7ocbZPoaJJQWYUl+stkcgQPN5FCIngPa0MeZYCbm1wXF7dkMB6nr5puLy8ocwLFsslxkjEkMJMXQgUVcnFxSmt7QFPWSiqsqRrejItyXMF04J93eGdY9PtGHwikaog0CFnqgpElOAFsyKdfUUJzaFDSAm9Bu2wztM2A1YMIBLFKMb4LqTrvRuv5XdfAq00NkSCGAPXYiTdCJhNC46mU/Z1y02Xpdp7GAjOI/RYl4gUWElB/JCCNoCWGiVFUg3fabv8GGi5KzLGME1KtJCCPUEQg8K7QN8NVNM8kePvarIYyDJNXiTF6jAkYqck/X1rXQrXOfc9JYikGPPhezVa0iEmOpYPia4q5d0AbBxreDmGveNIDhUorTHGjMEecDYFiwRyJAal8HMK2sgUkiIFxoUQ6Ey/C68LmULpKWCU7luqRRU2xnd5rne0SwkiyjEcFHD++5ot4tP3x7sweKp1UsA+1UhJHxzfhau1SsML7543cUeMSkGoCIn0LZPiTZs0hDsWzRD4PkDmxvC7EO+eVu/Cu/r6TgkXxvsYQ0SqMbx/dx/CWIuLUWQceXdfY4woLf86I81/u1YEYw0PXj8gGzLuv7nP7//p7zPfz/+mb9n79X79R1s3Jzf80//2n/LlJ1/ewd3+Wivvcz7++uP/8Dfs/Xq/3q/36/36T75m+1miwsu/vWfD79f79VfXb7ztkON0TgREDO8mzrVKOFg5erHd6OLWWqYpdyFROsNoCNqm6aGxydL3w7gZk8xmU46PlwgpccETrAOXcOg+emLwibw0bpwSnpfkHhdp4kQIgVCC6aTEB0/Xtnip3iGYM6OTCo2keEuT6AobPcqPmgKVDh2zXI/0J49z/egxHyfgAwxDR0RgjMHbgBsGnNFEmQ4ZJtOKIWi6vqc77GiHDi1FIhD5AZ0ZpI7ImGhEgkjoOmyfqE5Ka5TKkEZiGdCZpBCzhHT2HU3vEMFDP6C0JsjkZa8Kg1YaITOkzmmaPaaHGO07DYoSOh3cRId1gUPnUVHgQ8I8Z1qhU1cBiaD2lkFGqmmiokShCVEwm07vjjzIc42zjkJnSX2hDUSNtz2lmfJH/+C/5B/+4/+KrCpptw275xvaVcv/+5/+c4a+5s3b7+jXG+aFZJjk7PcNHYJyXlJUJf2u42i6IGjHrtlhNz3OReYnZ8wWR9zctNThwPO3N2hZcfXmGhUF5dmc690r+sGBt/z5v93QWYv3LafzGfPFnM3uii9/fQsjDaHIM/TpCfPlEbNqynwasV3L0EdK20M4sNrv6eyBxWRsvkZJ13j27ZrewvL8jDfrFftdQ2GqdIC/POaHP/4hLnoO+5pDN7DarVFB0jWOk3zJarPh4UePOYue/e0Oq+DQd1jv2Ky3PPrwY3a3K968uSSvCu4vl4jB0e9uUUZzsTxmeVTx9mbNVdxRFIoHyzOikPz6zSX3733E4CI3qz193zGtZjz+5AmD9vzyq2dkuSH0HddXa6TsGYaGYjbFDQ0//+o7hq7nw8dHXF2v2K03HA4teZGl9/6f/zopbVrHUCheXl6xXC757Acfszw5YiYMxkecKhmc4urtDf/2519QlBmVVpwfH3NycUaz37NvPZ8/vsfypGD15pI311e4IJL+wQ48uDinqCqy7Y6hbTmdTRlioAoeYTSTbMJQdHRtDzbipWe+WLBtavq3nsfLIzIpaJxncIKH9y8QOme9uqaLHdIo2m5gUmmauqacTvjgw3vU+x03by7J8opZGcm1gn6gqw88+MlvsVhW7N68ZXVb473iJ599hpGRv/jFFzinyKoM7yOPLu5zu9+TBYkKjtVuxeXla/b7HuElz379nFAFQh+5/fYbNnXP/fNjzs+X/M70c663a1QfOT2aI41k1ez52a+/5U//8hlSRJbTkvYQyUKPmU74cveKQSruPX7A/bMZFYJeevb7lsefP8Hvem7/1YFffvWWX/zqDfcf3GN6PCMazWFV8/b6kq5u2d7c0vQNH1ycUnrF+vqARXLv0WOWRxOinvPL714TjwT3Nh35dMJ63/Dr777h06dP+PUvnnF8eh9tBG3bcryo0AE2VztKWfL00UO+fvUKrwRXN29ZrTZk+ZLpYuDQdwx+SzWZo2SArub89D6ToiQzGV998w1vV7d8+/Vbbp6/ZW89oigJ1qGNJEiJyAzNMLAdesqzOV9drhDdwL2jCh966vUGHQK3mzX1fke1WuP6gMzluynq3KX3u0fx4voaLSQ6T/QIjaYZeoxWGA/9xtL1ieAQhMSGQDmvQFuW5yfofILIMp6cTnl4csxsueT2dk3nWjIZOV5OKXPN9fUOqTOm8wk6QiUDBIdGclPvOT1acDab8s3XL1hvGnyp+Pyzj8mN5PLNW86nktjv2G52vPn2NZfXiQp0sJ5uVfO7P/kU6Tr+9Z/+BS++eYURisYNmGkOVrDrGny0zOclF+fnOP0MLT1127I7OG43B44+fMDxgwc8/+6Kr379jKau8UKSLUrIIi/fvGVXez75VHMiA33f09mAi4m447xnOp/yD/7gM45nM4zK6PoWESTr9TXLWYG7OOEyb6jrhsvLFWLUAfV2YLM/8Kuff4sbHHluuLndMs+K1KCVmhgNb19vebu+RRvNbFKgcFhA5IaJkRRCIyRkWuPDADHRKqz3FHlOnuU07QBCMp9mZLnhyQf3+Se/+zlTmfE/Hv6Mej8QMo0pNHoIZLog9Ip6cwCv0dIwxB5TZRxNZwy2Bx1x1uM94AWZUngRcAKMAaFTE5gIQktyKRGlIoaBwXZcX6XwW5ZLpBFUpSFTgq62rNuGoR8Pm5Wg72+TIsGFsXmSmijW9gSfSDTRB4wRqFygtcZ7ickzrLP0TU8QaaPjfUTGFHbQZqwFlSIvNUWRI4RkcI6u7fGDI89zsjxLk9QjIafrbQrq9JbgxbsJaKkEMh9D50QOTZuISN6iCWA0AoGLqck2zRTO+nfNmjQlPDYLxqngeNeoGak20YfvtRguNXRS4xmyTFNUqeFoBz+GKFKbJ8sURWkYesswfN/okFIlutFYB/ngiA7sEGibnq6178JSWkuMMkQREzEhRJQW4zR7ehy11u9CMMEHbO/eqSKkgDhOfDvrU2DKeSKeEDPKSfH/3+7gP+JKYRVGVsCdWiI1l7Le8PD1Qx5ePyBvMvB83+gZCURKkDSAPoWJYkzhHDX+tvydfoVR3xHGAYu7hlQaMEhJu/Cujo3ja0aOk/dCJu1aiGGko8mRxhFHmlYYe31pbEKOpCsJKJUGHhBxDOyMe5dRyRJh3M8IbHAktcld4MwRxqRdFIlYIxFj4K/HeZseL5V+p1RjoAkSVYFI8DY1J2NIWkehEErg8anxJbL0yMdE7BAJE4AQo+KOmAYVcgkiESKsHZAeiP7OAIca1VGR9N4bXEwUuPGzQEnxjkIlEKkRLcBkWXruxsRaUt6l+3D32Cqp0mtESgQKHxxaZjx69AGPP/wQZTS2swzbDtc6vv36Bd4N7A9bfNuRa3BG0fcCRwoRamNwvU1kFOnprcN3SS9VlBPyoqRpHDYObPYNUhoOhxoZBWaSU/d7vAsMwfP2ssOFQAyWKs/Ii4Kua1jdtoBAqrRHrqqSvCzJjCE3iZbnfER7R4wDXd/jwkBRRGQ+IIPA2YC3Fh+gmFTsu5a+syhlkEJQFAVnZ6cEko479ILFiyXiVtGonkpb2rZjfjSnioGh7QkCBp+Clm3fMV8c0TVpGEQbzbQswAV83yKVZJoXFKXh0HTUdCgtmRUVEcHt4cB0cpQIKG2Pd47M5CyOlzgVuFltUrPZO5q6A+Hx3mLyjOAs16stzjqWizLpl7ouqdX1qAh9e5uaqtbjtWZXN5RFwcnxkrIsyYRCBghSE4LgsG84XN2ijcIIwaSsqKYVdugZXORsMaUoNc3hwL6uCTHRgPGO2XSCNhmqS4GFMs+SDouIUZKgMrxOIVVColbkZU5vB/whMC+KFLC8o75Np4mo0tZEXAq5ujSMMViLzgyL5ZSh72kONUoZMm3SNd573DAwu9AUhaE/HGibgRAlFyenSBm5ur7FB4kyihAj88mCduhRUSBjCm8f6n0KxEfBJmyTwtRDs17TW8d0UjGpci4enNJ0HcJHyjJHSEE39FzdrHl9uUEARa6xA6joUMZw2+/wQjBdzJlOckwELyN9b1mcLQm9p301sNl1XN02TKodxWTCdFoQAux3HbttQ9/1dE1DUWScFAW2sfQ2kBUlJleU0xnXqx7kwLx3THTER7i+XaG1Zr3aYXRONZnQd5aJVBipcL1j7yPL+TSFzhF0Q0vbdlgXKIoZNvT0zqGHDAhEb8mlxJQli9mcpq7pVknBFgeH8w6nFNY6ZmWZPtCUIghBax0Uii5GNrdbpoVB24jtO+KIvVvvtmQ6410SQICUijIrCS4glaZu61EHmsKQiWKdghdaSULnCVKmwEpMdBepJbrIyDOFyQtiO1BOchaTkrIoiUT2fkDEQGEUVZXRt5beDul17hyZBB0DQSjqIWnGjqYzuqZlu97Te89kNkEbzc3NLaVRGBzD0FPvajqhEu1HSHZNz8nxguW05Orqitev36DG64GXoI2iaR2Ds1Qi5+hogUfR9h0Q6AdP01pUppieHGFd4PpqTde0uBCQmUHqpMe9utmwPFqy0JLYpfeeCxDbdB7pQ+T8bEGeGYxKIZVMt7ANZEqgJgUxSnrriG3HYMdQUUg64O3mkGiGMgVHmqajyLMxcKvpu5bNfo+LIek0VbreRqnQWmBI9YISadhvzDDTD0Pal6g0YBiiRyuJNpK8zHl8fsK95ZI3b2/ZbI/RQuO1QzJey6NOmmUbUWiisEQJZZ7I03GkioYxhCIiaJWoelJJlExBHRFTLSqjQBo9BnASWTXGmMLuMqKkJM8NRGjrYVQrpxBP2/UwkjCTRuyODulGUuRIORKJ9KZ0uqbLKFExaUO9S4GjMAb1tdKplvLjWbNWKJ0olH6sxbz1CCn/ConpThEXECF93qYg0fdBc6UkQabfaf0daSu5zMRYp9yBNbNMEaJ8F0gXowYt1W3fI4zSniKFydPtAC+SajaOtdddrWSMHmub7wNKITIq8TRKB7wL4/24+4xIZKNUywYI6W86G3DDaBZg/L6RIJsIVoyEyjFQBUmnLEYi10jD+qu5tRTiSj/vg09BqpACjiYzv3F9/7diRZjUE3765z/lp//2pxytj1A+DZe8p8O8X3/Xl4iCtmwRf+Xz7zd62UfIhoyf/vlPObs5+496G9+v9+v9er/er/8066NnH6G8wkn3N31T3q/36zdav3FIKTN6rG8kRiWUt1aJCnR38O7DiOJVafJEm4wYkv5DeChNRmly3lH7pQQPWZ7z6P5jPv3kI27Wa262G25vb9EqkZmklKl5MO6nYggomTZ7Sdem0EaN6g6QMQV9Qggopclzg3M+KdpCGDUmFZnWDG4Yw1V3m2QgBLIAlSnoBot1jrLKUVpwaAZcb8dNp2RwFj9YcpNR5DldP9D5QF5IVPRk2uBiagJGIZFesJwvKMuc+XzK9Zu3mEyCUHTdQJYZXNuSZwVRKIrjBXlpyLsBbyNN12JrmXQEAQYnkEYRBZxNF8yrguvVhnbw7A878J6d7TF9msDLCk1mJKYo0ybaDYCjdx7vBIdGk00q8iyjkApnA0RJoXIo0+MJQPAcVQVBSQbvUFEQTUYfQGqBigrIWBzPefDoY/6Lf/RfkCvN5bev+eLP/4L9q+dcrQ6sbSJTrDdXXBSKqsiIYcf5yZQYFJ/89ufMjwyrV9c8Oj+ncR1vXl/SdY6z+TEPP/6cWGh+9d0zHj24x+l8CVFxfn7Ebl/TW8vyaMl1XPPlN88JXlHkBT/46D7zquTtmytWhzX5ozNshNwU7LsGScGb2wOvrm85X5SIaKn7A5uXr7na3uIkWO8pc8UiK1mUM0IQyLxCBgVtT1/3nJ2c0LSO2XTGTFccVyfc+/QRt52jbzrWV2+ptweW0yN+8NnHDBKcN2n6cTZhOV/g6oZ9e8O901PC0HM0X1DNJlQ31/z6Z1+nUI9vAEW36zmbFvze3/8dZj+a8Cd/9jOePbtMNA4tqFSJii2djLy4vOZsIfmj41NkFrh+cYWsDgRj6V3HfFKxPJ0hipxvv75EqsDDeydIKWiGlpv9Adc5ZvNZOrAXlnW3p/ctmciZLaZkBey3NfUhJ04mnJQlcrA8ujilKAQyt1hnafYD2+2eeujZbndMF+e4PrB/vUH7yONH93l1u+bqsEZYS+8CH3205NOnH/HlF1+iszSBbK0nhI4weLKsAq+oKoMdBhCwOWwRhx2xyOnWNWIxYXZxwr/8N3/BcnHMdD7h+esrVutbuqbj4cUZi6qiFIrDesVgA+vtnqgVduhYVjlC1vS94MVXl3xpB37x1Td4aykKjR8OFFXF1c0W3zta13G6POX1i5+z7QeOjiq61SV23zDEnsnRnH2/pizmnB8t6OzA9dua8+WERw8eUOWCapJzdDznxbNnPHv5grZzeO9odxuaYLl/esLxvSlDbvn6q2/JdMXD+4+QkxlXb2/4nd96xObFNef3z3h8YVBW8nazZ7078PEPHuH6AZOlhpUUcHFaMmngX3zzNbvO8vDeEZOjJcEYcJYHJwvmRUUxq/iTn30DyvHRD/4e2bRgGCwffHSfze5jltMJX/78WxaHhp/+3m9zdfMiTcj7gT52vLx5w4PFEbOioK4bbrc1n3z+KcfLBYM7cHZyyss3N9w7P+ZeJfj6m+e8vdlTNwMf3jvj8b0zyuio13tW+z3l6Qmn52e0+wPzcsZiMmFWZDCZ8/kPZ3z+u5/z4ptX/Iv/+V/wiy++JM8lMcvJ8inaSJRyLC5OWV1uONQNhYT2sEdK+O7FW5yP5CrSuYGjowWHPpAxMJuUDH3kn//yL3F9z5MnH9BHh1CK2A+0fU01KWmtRyiQJsNkOZNySrtvef76BisFJtPc3mzIdIYgkCvN8cUp+92e1+ua/aHh6PweP/70Yyqh2a0PrPYDh95RZIqpzJmXU/bVhEWZc1FUDNuGX/zil5xc3OPx6ZRlfs7tbo/uewohyXzkxc1bTk+WLBczJpOCvRro5DFuGJDKMLQWiaQyOYXUGFVzcf8Dnn78AbEPrPctu65lt9+SlRn3jo+5OL3P7mbL7aFnCC1Xty31tk7hWi94dXXD/UePuDid0d426EExzwsKCf18xsOHZ5zPDM+eveX4csP1+gbXtXgx4ELOdDHh9PSY+s2O3npssPzsl1/zzddvO/xjCAAAoFVJREFUCCKm8LGNXN6suNnvEFqyazVKBqROeoPZ0RyjBPWI8ZdKoeKogRqLDykli/mEYy3x0fLog4d89uQRUz1nc71nte0ISCbVFBcivbV0dYftPa6zFFKgjMbZHmcD88kMHzJWhw39YLE2UGkNd1qfXDKdVSgtsN3A0FhCF7DeE6JGyqRM8BYOu5asEOhcM5/mFLmm3vc09UDXOYL35EWOzg1SQTYxVLKgq3uapkkNDYA4at2qjLzIUpggpKYQPuJw9H2PMIIiT9oLpQTVtEjXQCnQ2TjNnFAzRAQuQuwHtBmDN1IiSA0CZz3Ojk2FEPGDZ2h8mu5XkuBFCmZowbTMiTHVImlyOI2oC0RS3bpAlmdoJRnaccqZVBvGhN5J4riQGp6pkeMRd+oJCXmWYbLUBOwHj7OR6EfFBZHBDkhhyLL05b1PpFCZGg8ShVIyNWB8YOgdzoZR0eDHoH4Ko9zpF1KTJAXJkCmwYrJUbyml8C7SS0v0Ib2eAWcTFedump4oUjBssEnh8bd0KTVquxjpV0qhUTy8fMCj54/J2xwl0/OLiuO0vyRG+Q4QpaVGq3e9otRliRGlNPPZnJPjJU3Xpa+mRUkF49S6EJIY76hJ8d3jH8aYzF1j6V1bapxCv5vyDz7gfGowKQmZSYrBMCrb/EhESD271Ag0UuFGJYk2KQw52KRLESIFpPyoT1EyqdGc9ynMokV6n0lJGF+zEZABirxAG0WeZ9T7AypLFFjnUngwOJf2Ugh0UaCMRLkUirPWEezYvIsBH0CMmsAqz8mNSXsOFxmGHkKk9y6FKRBpwl6lz7QYSC4VxscmCILzaGPS8ytS05GYqKCYkJSYJLpVaQxRgI9jyEkoXEzaS5FYTBRlxXR+xOMPHqOkpN7suX1zRb/fULcDrU9ava6rmehEqyAOTMsUiDq+uE9eKLpdzWwyxUXLfl8jnCfPK+ZHZ0QtudlumE+nVEUiaVSTVMu44CnKgiYmtVkMEqM1x8spmUlhpraPKDUhEFFS0zuHQLNvBvZ1wyQ3gMf6gW63p+5bokifLVU/4Q9/+fcYjnus8tycXXOwNVu5ow+OSZVoflmWUYiMqZxxL3/IvfoJ86s56jZiC0uRlRyfLAkSQkhBKZdHyqzAW8vgGqaTCcE7yrwgyzNMU3N7uWYYeoZoAYnrHVWmefDoguzU8PrtNZvNAUa6hJEaERwO2NYNk1zwqKoQKtJsG4SxRBnwwZEZQ1HlCK3YrA4IEZlPq7FhbGmGAe8Cs7xCaY0Xgc72uOhQaPIihROGzjIoTczSHl34wHxaoZRA6HQWYQdP1/cMPl2rsnxCcJF+3yEDLBYz9k1LPXQI73EhsjwqOTk64na1SsQywkisS812JU3SmxqVSHtAN/Qw9Ey0xrUWURiyScWLN5cURUmeZWz3NW3X4gbLbDqhMAaDZGhbfIipyS8l3ieyGMLiPGxXB26D5+Z2TQgerSXR9ejMUDd9+gwKjjIv2W97ehcoSoNrD4Qh6VizIqN3LUbnTIoCFzz1YaAqMuazKUalOrMsc3brDdvdFjsGbm3fYWMiYZWTDK8869UGJTWz2Rxhcup9w8XFjG7bUM0q5hOF8IK6G2j7gdk8DTIpIVBGoqVEK1guCq5vN9zudkynJVlZILMMHyNlbsiFSISwpqNuttx/dEY1rXDOUxQ5x2dLlBQ024bVbs/DMkcaxX6/T6QuPN0woGtBJjVDjOz2DdV0ynIxIwpHlhWJXKMEp8sjbtxA2w301lEVUBU5Z8s53aFmGAaiFMzmFTKC9X2qpRQUWcFiPmdxcow2mmdff8dmtYLgEEYjZbo2gCebFEQPdd2iRKIseqvYNB2Dj0gCB5cGz4QydIPDKInRhuubDYfdntlsiskMjoBCMgx9CoFKyeA8USik0mhtkEjWuz2tdSnQOfQc9ilVoZXEZBmiyGnaDtskOthiuaDQGuHh0DkGH3EhMokSlCYzOZmOTIyGKNmuVmRlyXRSYISjyxXSO3SETEj6rkVIkV5HWUYMDjstEH36+96OAW2hyLRBxJ4sM0ymFZM8p6k7eudo7YD3jnllWCymyBjZ7hoQjrbvCL3Deo8UEudr6n5gPp9QqoxoPZnUifqjDIujBceziuZwIDc9h6ZB4fHBIn0KQk8nExSSrh3QWrLd7Tns031J4VxF23U0XY8NnsElHaUQIJSkjIYyy3Dhe5pPUpfBXVpJCInRiiI36f2aZ5yfHTPLc/wgqFuHbDOW3YLVJKQQpA903ZCI9fHu2i3ekd3LIqPtW6z13we35Vh3EjHGpPBoSOH2OKSg+93gp0i5bewQiNEiVDr/NUalsL4No5I5IKUYX6upbjB61FgP9vugDREpwGiN0nd0y7GGcuPzdXdea9QY60oDpGqsc+/OlFOdRxoYHZVqUiZq5jiZAGOYJ4WmeEc88jYgjBoDzzIpZEkqtUTjFCOZ6fslRqIkUqC0IvjvQ1iQHq8UtB+r2RhHMmf6PqlUqiNlChkKwVjj3YWHRjBSGAlMY+gqxKQ5jne/PaZA4919Sko6/+53wEjUCmFU06WAkhBp33P3uNxRdt/RP8fhiHQcL0fl8h1Vagy4CZHUyPY/n8aWdpqf/vlP+Yf/4h9ytD56H0p6v/53t45Xx/z3/8N/z6uHr+iKjl98/gv6ouf54+d0RffvBJZEEGRDxr239/jkq094+vVTLi4vkPHvjOTx/Xq/3q/363/Xa7afcXF1wauHr/6mb8r79X79Rus3DinNyuLdxIp452pIGgWhVPo/IVKWBccnJyAC692Wvvf48aClyiuyLCMIR9N1dL1DKEOVT3FW8O23L8ZD3g7pIESHIE2XW5emkKSSZHmGD6nJJceNvowiNbqAnW8IweK9ZFIVZFmG9804SQ3CBbTwuAhKijQF7ALep0MaYzRD36NEmmBRWqNVhlABGGCcMPY+4q1NyHolGazERQdR0NY1RZ4ThURp0uFcbpBeMM0K+sGx3zYEKXFCEZ1NYaw4UqbaniKv8IeB1bbH25ZpqYjeY0zJdFayur1KmpFxWx+EZLVvOPQ9LgQCCbssEO+86Ebp0UqfCAd9XeNEBBRCahRpYv1gwasBk2Xk0aAQqZHpHXawGJXCZ5nS+JgaZEN0RJ2hSOqW0/sXPHz8iNcvrvnZn/ySn/9p4Je//jmr1y9o3R4jS84e3iPTOUob1m2Nmk6ZnJ1z/d1rpFCoPuJ2HqUmKFHwYFYx+6Biv2xYHp/T24h3A4ujKblRZCdLrq4OvH1+xZOPHlFWhtlswlevn9O7wOrtmj/4yaccXcx48/qKjz95DCHRu4TSDM6j8wnN/kDegSw0b64uGfqalogykYf3TnHe82a9BpVUgH3fYYo5L19e0m23VFnJJ08/wMxLfvnrF1gXcVqjzIxYKz45+5A3r7/j3pMPWW32XJycsZjlqGJGOZ/TbVbooPj6L7/g8s1bvJD8zk+P2Nc1q9VACJaTZcl8mdOFlvXtlubQ8+bymgfnF5xd3Gd6NEGqjKAqHv/gHrP2mG/+9Ctm8ylvbt/y3dsr3rw9UE4nTHLJi9cvycrIvJqis4yIxKics9NjDrcbMg+H7RYz0ZxMSx5dnLLa7MjKHJlnzLOKSZEDgvN7Z+S6ROqc4CVP7n3I9rClyktEjHzz9Xf84OkDHp4d8+tvnvP68pZJ1fLBk8ecnZ+SqZJ/88c/J6qBo5MpZVHxo48rWlvz5sWaft9w8+aS+TRncnLEbr9DOI8qS1Zv3jKfz5kdLRkmDX5fM58twcAHDyqIkevLK67rmodnR1TVgmaRoYoMOwxED4v5hEWhqDc33F57jidLzHSLLDPW7R4fFRHHZJIzKXMoNd88/5rtYY9QkFeC+/eOKKTh6nbLzWrF4mhGkWW8un7Lbd3w4PycT598yHoa+Dd/9jM6a1ncW2JyQZADWVFQzAu6wwrpPbG+ZTa9oJUafzjwg6cf8/zlG9bPX9H3ex5/fI/7j+5R5RUf/uBDltM5/6twfPPta7xr+PjeEzY+sjw94ttvr/juF894tJgiW4uzA8fLJfeOpxRkXG/2nN+fUxWGr/7yJcJGjPA8/fQRP3n6ATmK3va0r17x+psXvGg6ghH4quTB6TGHqy37YgJdUpr8/X/we2RCYRvP8xdvaXcbLs6X7Pc9lVKcZBGVezCef/RHf8ju0PDm7QU/+fxD7GHHr756zXY3kAnNF3/5Ja6vmRyVtAS++O47vvzqW4yJLOgohSeGnqPFRzy+eMAmX/Pw4pTz8zOCD7x+8RrRBmQnuH96zqzMufU9vhe43rFtOop5xYNH53SDY7qcg5JMM43KMrquYd/UtM3AIpec37/HT//wp9xcb7h59YJJlbHrekKu0QV0fU1jI32E3nY8eHxGHtNBs1YDJ7MJfdvy3cu33K5reqmZFBLrAzf9gSpKMq0RvSUKzeL0guHmFiNy5tUEe6j5k69f8GbTcnLvlPPTOdvdhrdveyaF4QdPn9Dahl8+f81m+y1nP/iQ6fERw67jzdWa5WKK8IF//ctfcrtdc+98ybLK2WxXdLWmXBR89vEjRNQ8unef3ebActcwqwzb1YHgGs6OSk7nGbEdmM7nPP3hxzT7NU547j0657QsKYOgY83J0SQRb0Sgt55+c+B2c8DGgdCes5hO6KXk61dvePntC5jn/PTHnzAvjplOeqpJzzwc80Qb7nV7tnUNUlGonH0QNM7RHQb6vqcxltZaOjtgFHg8i+MZddPSOgvCYcJ4gCwVQin84NL0rhIpiCJACEXnAkP0zKYFp7OK/erAsOn44uvXvDRr2m1L3aXp07YfiAiyPKdpWtzgkAiCd0TpkVLjrGC72VNVEt8HfJcUT5NZhRs8rh1QRqSmaxvoW09bO5xz6MygVERriRKGYUiGJl3oRH4JacK56x0+OJzviT4QgkIIhckUVWkgCHoiRZGjMwNCELwlM2o8VJcMvU31kYv4PgVshJBoLZjPJuQmJyDoraUfUoBbytSE0MpgFPRqIMvTIbuLjjzPKLTA6IzoPN5ZnEx0HXRSnHTDQJQZSkeEUKkJLSNFlaXwRUiKCTEGMqJPNB6t1UhOUggtkUYjQho/llIglMZITXAObx2IgFFJD2G0RCj9jr7pnE/0pMC75pKIkWAFffTIcSpba0leGIRMwY2kB9IQAnawDH2fGhGj8iPGSPCRwaesvlRJ6WKMxhiBNnqcnk7T5VpJVK4o3Nggj4KhdwzO46xL9KmxKSRVRAlJ9H97Q0qZNkkrNuopyqbi6TdPOdmcIoNMYbIY0dpQVSWI1Mx3PhB9QInUEFNKEUXAOodzKfRiVEbwgvV6h7UD1nlEiISxfSQkeJ+6Q1KIUTuYwm6CNDEvYgqRAfQhjpQgkXRIUhJDIrjFsQGZwk1j2Gicdg8k+qtSCuc9Zpxgl1KncI6IMGru5Kgn8eEuuGZSM2skgFlr0UohRWoGSjFOzUfIlML5wNAlPVdAEu+ISJAaTMGjtSEMnqH3RG/JzEg7koYs07Rtkxqn4+l1FIJ2GOidH7Ur6f4x7icgqebSU5VIEd7apN8eg2ByDFRZD1H6pOCLiXflnIUQcKOiJQXMxqGXUfUSpUysLQ/VdMp8MWe/a7h6dcPV68jN7TXtfosLA1JoJrPpqP2TdNYis5ysqmi2+xR1chD7kEizQjE1hmxh6HNHUU5SCDE48iKFHJUuqOuBeluzPJqjjSLLDOv9Fh8iTd3x8PyEcpqx3zccH8+JUabXgEy6HakNrh/QLiK0ZF8f8H7Aja/F+bQihMCha9O/cILpTYbSOfmzCbbvCJUnPPXESnJzsyUEmDLhxy9+zCKbc9g2HJoNagFt3jMpK/JcI1WGyXNc3yKDYHV1Q70/EITk4l7BYC1d2xFioCo0ealwUdK1PUPvONQNs8mEyXRGVpgUPBWG+fGM3Jas36zI8oxDe2C7rzns057RaMF2v0PruwBfIjgooaiqkqHtkDGpo2SQVLlhNqnouh6lFUIrcmUwOg3XVNMKLTVCagiC5WxBP/QjHcWyXu05Pp4xn5TcrrfsDw3GOBbLOdWkQknDm5fXIB1FlWOU5vRojvMDh126Prf7A4VZYMqCoe9ToFEb2sMhEQDLAu8toR/IswKhSOqyCHVdU9uB+aTAZDnGK6RWI40C8sxQaIHtGto6hcVkphFG0dmeMO7KM6PJjAIjWW/X9MOQSGxGMJ0WaKFo2p66bSnG1+i+qWmsZTapOF0uaLPAm7fXOO/Jp0XS1kqPMgotNW5oETHA0JJNJ7ioie3A8fERm92edrt/t6eezmcYbVgcLyiynJcisFnvicFyND2ii5GyKtmsa7ZXG+ZFjnDpM6woCjItmU+nNIcOlRuqacZhU9PXPVhHNc15cP+MUmtCiHRNTbPb0+wahIgErZmXWaIFd5boItooLi7O0Fqyyw+8fn1JfdhzfDSh9QrfOQoJuYqA5fjklGo64fLqhqPllMoo1usNu+0eKSQxOl5t61RnaEFTJwWeMQodHaUMSb9ZVMyn01RnSFgu5milaJsOGSVhSCGx2aRic3MNwRPG84lAZDafEAIorcmLHEEKz0cBg7O0vUMTKYqMs7MzsjxjfbNCqxQisCGgyoyAx1rBECPO9eRlRlkYfG+x1pNrhbWSum7Zupp28GS5SYStAC54jFIpdO0jVVnho8RGQZ7nqBBZr7esdw1ozXI2hcHTNOk5OT6a47xl0w20hz0iz7l4cB81WPZ1TxRwNJtwu1pxs9liTBo+887S1gNKSxazCcwmlHlFkRkOnUNnGhkFTTeQF4pJaVBEBJLZYs5kWtD1LZPZhElVIl3SaeaFScQpKfBDCpb0TYv1DqJlkpWozFAPA7ubDUN0zJczMlXisogx/v/L3n89a5ZceZbYcnH0p6+KGyojNbIAFFCF6qruJmeGnB6jDWnsv5YPVEM+dHOmm1MojSoAqUNf/ckjXfHBz40EhzRrGGlkoc1im6VlZOQV59Puvn97LbI0YzIRpHmGsYbBOLIkxfcOF8AMUTeppSMAvbUx9I5HZxrhIkXeEYmK8cRsfL/0bqQBgiR+JqqR8mScRyhBVWZ4Y/FOsNvWNLJHBMGhHZBWMr9ecJ3fIZWK61Jj4rneGGYRUhC8ZOjtuJaNylu8R6cpSkrMENcaiFFz5gLWBKyNZEepYrgmURI3sjci8TOuQ61xMdTsAz6Ma5MgUcLHsFWixvPUuP5XWsfrCpEUr9R9EIZx/RRJoMHdU4oCiVakScq9ws2MQZx7PRvEM1kpPEEKggQfHEpKlJBoLZEChsHEcE24X1uFSN0UMdQl5LjOEzHUcx+Gcu4HqmYM/cdrjhrm+6BZDJtFVNEYBBrDZ5Hs6d/p6wTEcPwYrPIuUonGZd27AZj7c98w/kwpBEqPVE8ZFblRUR0DTc7a+Ljfh8rGMHzMVN0HnqJCTqp4fZHqOaKiRk2wVvfBp3gNzo7UUX8ffop1f3v+4CvA0d0R/83/+b/h068/Rbv/XB117+t9/X9XAkFqUj78/kMAvvjNF3jh2c12fP3J1wzJ8O5rq6bi2ffPKJuSxP5nRkx7X+/rfb2v9/WfrMQkfPLVJ7x++Pr3o+q9r/f1z1y/9wo+0TlZlrybLrbOj02oEVkc5Ni4SmmbFu8tqdQEDZ2JBKNtXSPqmiQRCKnQSpGmKRDYbtbsD+MBfwgIYldIKBHDNEMfiRIiBqKkFOMUUuToWmswto86CJkgtEIJxTBYjB0QYtw4ejDOI6UjBBcbBSI2GbyLmjWEpKgmTKuCdhig97Rdi9Q+6lKcxwzxNoURRQzx2hMlyRJFnmiSROOsxxrLfFoi85zb2x27eo9H0PQ91vTITpHnKVVV0jQ13juUUqS5phsOmA6cElzvDxRSobzj+rqJDUWdsusNWmlutwf6rkGEEPHWicIYR5lVJInE4dEBbNsxCEvrHTpLKJREexXx2AhUEjHVWqfMJwUOy9vL6/i46JRqVlGmKYnWGOdROsOEgUQKUh0n/gMK0TluXr5hc33H/+ntC0AwKXKcDOy8R1vHcoBqkvDZp5/ifc/67o7rF1c8OD3mtmhZ7zccqQV5MeFqs6fTgZubLfPjc1oHJw9XHB8tSHXG8niJkIb1rufmbs1h36LTjFcXN2wud1Tec/LhB3z+o084Wk55enzO8dmCv/773/A3f/9bghAsVjPqQ403nsn0lMvtDYGexbLk2fyMSZbhQuCby+dxcjBkWA8fPvuEn/3rn7He1vyP/+4/Mhxq0Bm7rUGrnHKS8+jRY67WN3z/8iVd22Ftw9n5EednJU/PnzCpJiyWK75/8YK3r67Y7hpeXrzlw6fnnBxNebu5oeg7VsslndP8+qsXPDw+YTaf8fLVcwb2fPDpQ54++4jb4DhsDkyLCcIGCucYrAMMbdswKQqWRwXz+YqN3eGSnD/+l3/M1esrXO+w3tPUNU0zcHu3x/uB7WFLMZ3xyRefsHt7zTRPKbOoJby8vGUjGj75+DGfPDvip7/4EfVu4JvvXjNbPuDtxS2mqwlC8eZqzdV6z6Sx7HZ72qajlJZprukPO1CeyYOc12/u+PjTZ6yWJW+f36BbR1UqEAqmJRvT8v3339M5y+rhGR8+ekBSpmyuj3j+7QUTnVPNZ+zyNWYISGEY9h15mnB6dkRZzfjsk2ds654npw8IduDli+84O16RlwrT7dnv16x3LUmeglaUk4onVcns+IjD7kACLCZzJmXF+vYaETxpXmKDYn9bUxzPefRogRAtiU5xBurDgfPzJR8/eUiVZBx0wvR0xjzN4qGX1HzyxcfM0oz9pub89And0HG6OiYTkrc3V1xf73j47ITPPnrE0O1ZTM/59NMfcbc78O2LSz6SJcO+pZpM+PQnn5OrlJdvXqPSCdvrHZ988hC0pJSazfaOzc2Gosi5vLzB9Z4vL+743/z4MSqDNM/ZHPacf/KQx598wFd/9x168NxeXbK/2nK9tpi+oUggty3JcsLmbsNmuyFVCfl0yR998QyGQJ5XfPjRY45PliSpopj3vPjue2xj6HYNgxeUOmH5YMVhu+Gr37ym3VzxN1++wCYF//a//a+5vN3SrHt+8vFHnD5YsJpI/vf/l//AVC4IztEkng8//ZRbMxACHM9XnJ+foZRme7Plq9/8lqEZqJsGdIoxgUme0LiedF6RVILpLKoeHdDUDavVEfvNHctc8+yDj0j4nov1mqbv8dKzv9lSyBzlM968XjMIwaTMOZ5XrDdbhhCY6JwUzUKX9IeatrGYZo1UhslkQm8GdkPH4Bz13mCtZ7GYc7yY0bQD1bxCpwo/DBSJJEkKvPPUTjJISU/H6aKkCJ5rO3BTt8wyzdFySpLkUDn63YGbiyueT95Q5VMGb9nt1ti6ISkn6FnNzgwMbcsgAqGuUVkCneD29o76uqYfLEIEUqFJ0xSV5BzWe7bzDZWc0HcdZw/PSNURTT9wcnJOd7fD9nuenp5zPF1weX2LaXsmRclytaTpapTwXN/cMlnMWC1LSh14+eI5Q9NwdbdFigL0gi7cUFVHTGdTVOJpm5Y3l3c4JxE6ZTJJOD3LMXbAtD1XNxuscyjhyQrNbDZBiUBre9Iip9AarOPQ9pCDl5LlpEJLMJ0D6dFpgjAWj8MOlu2+pRl6TG8Z7g5UZRFVIbmmVBlWOFKfMKXCGIvtB/p2oG5qhBRUQtMOPbfNnsandJ1FCsV8OmG1XNI3PWbY4VXAh6j+sS4QVNQe5GVKmkiEswzteO6cSpI0TotbZ0HERkiSRurk0FusN6Qo0jTDOUd76OiNRSiJIOp6JrMZyUiV8cQmgHGRJmG8xXpLlmckqcR5S2cCZghRqapAITAmEmsGa5BSxQZdsAx9h8CTpIIkyZiUJX3TxdCIGOi7IdIzhXxHPfLBI4UgzSVqnGiWUiFDVIxY5wixW0GSaHQSJ6+TJCXNJEpHil5wNoYkUg0eehebdyjPdFKihaI+dFED5DzB2jitPIayYhpjbEygoirCOhCeYYjrwDSL4aLgAy5EjQWB2NQYAymx4qS1d7HDIJVAa0GaxrBTnmcoGdUyzvmRNhQVTwSPtZ4siSGo4ALDGMIKxGaMEAEp/nAP6JVUaKUpu4KHbx5xcnGCHnTUqKhIORJjgMgYG8lZo3LauoAn0A1D/BpJXPcLGRtCBLquHU1/8X6+348LGWlFzrl3zSMx6kgQoEX8O+8d3kXPnBjDelG17HDeIe4DO2OIzPn7JhZE9tI9eSnuDZIkJU2Sd2Qk6wzChx+m1L3Djc+N+FqM1y6lQAuBkiqGo0J8fPMsRWgdFYImarMNbiQ5ebRWpEmCMQMB/67pZd2Ad9E41AwGjUTiaRozdtQ0vXNIoWg7E4NEjCE5JXAukKkEqaJCQISoLnMiUh6klmghkCPRK4z3uUQghSJLNQHP/tCMhIIYqkzG2+dDiLpJ72PYbmxqgkA4T7Pd0zUt3+y3QNRyehHogkf5QO5iaOtodUTA0TYN9a6hqiraxNAOHaXM0Tql7gasDDRNT15OsQHKaUlZZChpycschKfrLXXbUfYWqTT7Q0N76EkIHC/mHB2vKIuMeTmlqHIurm54e3lLAIoiw/SG4D1pVlF3DQFHXqQssopUa0II3NUb0kQj0fgAy8WKB08e0PYDr5+/wg0GfaGwPlDWK1QSaWG2d1wM1zGoGAyTScmkSphPZ6RJSp4XbLY79rsDfW/Z1XsWsylVmXLoGhJryYsc6wTXd1umZUWaZex2W7zoma8mzJdLmuAZuoFMR6pe4u+VNB5jDanWFKUmyws63+OD5uzRGc2+HrU2ATMYzOBo2p6AiyGjLGN1vKLf13HIZAwL14eGTiSsljNWi4LT8xOG3rLe7MmKCftDgzeGgGBfd9TtQDp4+qHHGEsiPJmWuDHkk001u13L8mhBkSccNjXChhjUQ0Ka0DnDZrPBBE8xnbCcTpCpoq8LNusDqdSkeUav4+eVEB47hgKqqiBJU45WC/rBMa8qgvdsd2smZYFOJc72DH1H20f1OlKQJinJPCErC/p+QCHI04w0SenaOg4hJRofJENrSErFdJoBZvycgaEfmE5yVvMpidIMUpGVaaThiDjEtTpekinN0A1MqhnOWaqiRAvBoa6p657ZouR4OcPZgSKbslod0fYD623NkhiCSdOU1ekxWiq2+x1SpXR1z2o1AwmJkHRdS9d0JElC3w/sqbm4WnPy5IypijpVjwQtOT87wzSG3c0Wbwa6fcOhHegGh8ahnCHVkZ59e30LPiB1wur4KAYhpKaalMznk7gmyXJur2+x1iKco6Pm6PiYIklYzisOu5bGGW7Xa+4aw9PHD5lOK27udpRlxenpiqNlzW9++y1t11MmCTvTs5zPcUIxGEOVlZRFSpZFCtB2vWG/3dLUDftdxeHQkiYaMxhCIkmzqBXN8hytNX0/jArROOR2slqN7381bR9DPqbvSVVCqlK65gDCEkJgPp3gjaEZDKmOmvVUKjI0O9PhbSAEQ5omCCLxeHAG2w545xBSM51WMbAuJWmR4p1DiUCW6kiftA4vJIO3TNKMXAucCey7AUWgymOQhSQh6IFh6Niut4TpAhsCwRn2O48H0iKn7ltqayFElVUaPLmLFMjNYYuSEmstSRYDwFJrnPH0bUuuNN47kkRTLUr6viDLC5RQtPWOMi+oygrrok5XBqiyHNv3WAJDN6CE5mhWoESgqxMOmwZjLbe7hlRnOKLSbFKlIAqEgP2uxoSAFwGlNWWe4n0OIdA2XTxDJBJ28lzjHbR9j1CRjCR9wHr/LuCrE02mo8rVeY8ag/NBxGDI0Ns4jGA93joEkizVeDxJqnly95iLZxf0+UBRZFgbSUZmMLhgSaQEZzHBcujjwKj3gTRJKfIMrTS1azHBRwqRjyH5MK5v3hGOgh9ph3HtL5V6F5K572oIEYmjXkaaj/cxYC+ljO/xJtJLBR4lJGka9aQjDH8MIPsx4B3/LIRA66ifdT6ezVrrR310XHdIIUZVrow0qCQGwJxzMegv499H1SyAjPeT91GvOK6vYp7H/z+FeMToo5UjkSoGd+7D4AJQI4VIIuOkK97ZSCAa14fOundqNqXjYNG9wjuEEF9z4/l2GKlVP6xN49r2XpfnCAgX11xohVKMQaVRJzCSkH7Q68VzbO4tdPJeEyfGsHW8/vA74XtBHK5AjKE2H9dzQ4g0yh80cSEScv8/X+7//7yEFxzdHfFnf/ln/PRXP6Vsyvf0pPf1vv4nJYNksV3wZ3/1Z//cl/K+3tf7el/v6/+PJRD8yd/+Cb/8s19ST+p/7st5X+/rP1m/fxdDaEJQJFrHDaGLm7hI2Y3TwYi4CbIukCUpSZoQREfbdrhgx+loQUKKEHLEXVuMaQlKo0RE7moVp5L8iLA1Qwzh6CR55+WOk9COREmKSU5nBQ6LN3GDm6oUY6PfPHgP+Higk45NA6XwdogqASFRqSKVmizNSFRKkeUjmncYmxJgzYD3AjFOvsRQz4hPVpq8yDHexukgoQhCkeYFyIHBe/yhxuNpTEeWlXTOYoxFeYfWaWxeWEOSaYq8ZDqfoGqHV4Ggc17c7DHSUIn7yRYPMmoUyjSl6WqMc/E+siZiwFHUbU1qJNW0whqD0wKdJBwXM7zpcErhu4FEZrHJloAePMorpAtkVYILhjwr8DqLP8M4bg8tznm8EpgQp9QVBq01retpr1+QaGi7jnZwKKGwB03ve5wUOOv5/s0FHz97xIySL5+/JmBZLo/iAbzIaOqB7XaHEjvqrqadlmxag697Cht48viMq6tblidnPH76mPXtLUfnAYqSy5s1Mi9opeRy0yCD4k9+9mNUNqE+eB6dPeTVxXfc3lxze3tLWUw4//QDTmYVg+lIcsMiTJktHlOIgXbdcLWreXt9g5ynzPIpvnYMAxwdPePDx0+Zl9f8Kkl5c/sS46IOQDiN2Q3c2SsePjnGhhaZaxgy7u4aKu9g4dCTjOfffQfeEsKAlwN/8ac/4UeffozXhtv1gXprotaj3qGrGTKfkrWSTz/7jMN6T+IkH5zMqX3g9csrdnc7skThfBv1BqZju77B9I4PHjzA94G7F9f8+L/6F3z20TMON1tQnu+//oabzZ5cZ9jBkGcJQns+++gTHp4+5HlvSDKJ2w+43rHb7FE6Unt+/KMvqG8sX333gueXL3Cd5O3FDY9Oj/nRB2dcrN9g6Wgay35zoMgUsigi9ULCrJhiuwacYXt1h93fIZVg+eCcTBg+qZbcbG65vbzhZrfh888+4l/8V39BVeVYAxLNq4sNZui53t7x0Y8+wYTA+uINbedwUqKznEJKTk+WIHboouTN5R5R5RydHCGtpQ2Bo/mUT3WGrgrerrcwCBZFwR//7CfU9cDff/U1l5sDt9c7VBKJH6dnK/adZXPT4HzGvFqwXHrc0HJwNYjA3dsb/up6z/WTJ3T1Hhlynj58xJP5hCyvOH74AGF6mnpP1xl0NSHJKvr2gBOBl9cXSOnJyoRd2yNCwvpmiy5S7jY7fvOPX/LTZx/wxWefc2gb3r68ZFJqFrOU7cUF5+dnHB3P8X0gWZ6x33iUDKhgeH77EmcC7a4n85rry7ccT+bMT05QTrC5uOSwPXBze83mdkd+tuQnH/4RVy/ecHN9xdWvfsuTzvKv/sXPWZwd8+3LNd/++iXrux3WW06mOW7bcrnd0A0NeMN1b7m4vuVJkXF9aPjg9AnT03P+8R9+yyQpefDwmN44MiH46NEp/skpw6Ghv0357PEHfP/xW5zz/OnP/4JNvWf9+o6qyFktZ2RktK3FdAee/+PX3Fzesm33vN7ekmQFSJg9esiDsmBxskBYQxCKu+stz99e0e5rJrsNsypnZwcm3vHZp085upnwZttRzSZs6z1VKbBScFc36Fzy8fExz84ecv3olIu7W8Rmz2oyox9qhmCpco1rLXUHQ9tx2N/Rdy19AFWmJEXK2YNHPD0/ozWG46OK+qbm+cUFr28u6YcDRVaxWJywKAtOTj7g2dNT3ry8oMwrgpFIEVB5xrQqyRPFbb1DWs9ut+Hu6obVsuTq5gZnBX/0+Yc8OP6E51d3rDe3TPIMqRW27fjy5juKoznt0HJ7vaYeBr574SmrhNOHp0gnqbceI2t2+z3q2vHZh884yhPevLjjxZsL2sOWTz5+DEFR5FPq5pLN7sCjoxU///lP2G7WXL654erqktW8oprMWZwfc7tbc3d7y6s3NwQnaV2HF4EfPTtjvpigfOBw+Jq3uy3VfEHat3x8foqQsN7UdIMlLVIS4VCJ5/H5KWfLJdvDbtSlpHTNwOAsd/s9Ks2ofEHd97RdbMBOEkWeJ9imo+kdtyOtMMk1wzBgGkeZphydzEF4btd3EGDoDagMpxOMTkjx7IYBj0XKAa11DDqZqElSIqp50tmEEBSHUFMUGukFddNT9y1aS9JMRx0YBW3SEg49IlFUZU4YlVEIj07iAXpS5LS6p+nadzQQ70IME2lFUWZIGRUgzjh6Y0mLDBFBFkgtCdKTVQkygTzLgLg2c8R1kXdjmGc8tA8h/v/ge9Iipahy0kTQNi0EH0k4gncB9+DjNLEYKTFSCdIskizFSNYJjKEfRKQrSTDG421cW7oQyDIdaRzcq7UEk2mBGPVWjFPFVhu892R5xnRaURUV3q85HDqUEAQRlRj+3Ro4kGYJAhl1F+8mjeUYVmHUjXoEIk5Lhxhi8e+oRgEhwhhgCTGQA+O0eWyaaB0DJVJIgonPIWfjY1mUGWWRxSao9AQHpreR9jSujeU7ndkfLknpsy+/IBGak90xqUnjtSrGYBHvKFJRhRGJE1GZE0li92pCH0BGocnYt3E4P06Oe/FOoeG8G6lCsbEmhXxHciLcK/9AKUgSHbVswcdfEPxIMOBdMCeMxCWlYutGSUFwbuwfCYRSKCFRSsdAllbj3sWNDb8YhHpnWBy/714zKYQcwwnj1P04Mi+VJgiHC4HQxwCSdR6lEmzwsREdxKgGieEppRRaJ6RZijA9SAhSs20GnPAkxP1EGENTEkGiJMaaH0hOI+FJEBXXyhMJtSESDaRUlHlGcJYgJd5alNCgozZPunvFIuhUEXBoleBVbNx6Aq0Z8H58Ht8HtoiPpQ0BU+9QMmBs1NgIJH4QuOAIAqwPbPaH8TM/4XazA/yo3coIKAbj6LseQc9gDSZL6K0jDBbtA7NZRd205OWE2XxO2zQU00DQKYemBa2xQlB3BhEkD85OkTplGAKzyZTdYU3T1LRNg9Ypk9WcMos6SKk9eZZFTZRwmNZQ94Z93SBzRaozGDy9E5TlgsV8TtbUXCnFvtmNRCqHCBLfOzpfM5mVeCwikWA1bTuQhAB5QKaa7WbD6OEjSMuj81OOV0uC9DTtgOk9WmmM6ZFJBjpFW8HqaIXpBqQXLMqcIcBuV9O3PVoKfDAMxkadWtvgnGc+mRJcoN02nHzwkOPVgrdtTxCezd2aph/QQuGdQ2sFMnC0WDGpplHbo0BKj7eevh8QIrDZ7Dk5PmFoHXfrHZvDhmBlJDyVJcfzikO3xwuDsZ6hHdBKIBIdlXQCsiRSXAievm4JQwtCUEwqNJ6jo4Kmb2gOLU3fcXS05OGzR6SJxnvYBcn20OGdpd63LI9X+ADtYYeRHi8EMtEkUlCVBdAjk4T9oUYkmrIqIzEsBMpZxpFUyDRh33bgINcJZ2enDMZxdXtH3Q+0TY+QMfVYVSWD9XTNEM9gkpyiGPf4PgZw20PDm7qnmc+xw4BAM5/OmGUpSqdU0wl4hzF91EAmKVKn8UwD2NWHuFZMZAwtI2PoI1G0Xc/N9S2nizknqyMGa9nvDmSJJM8U3eHAdFpR5AXYgCwm9F2kDSU6oW3rGM7so+aoqWu8tRxNpyip2Q0HdndrnLcc9jVOwPH5MaHv2e/23K13pIPj0cMzjk6O2HeG/ebAzjo6Y0ilIgnQbGp6a7B9i0OwqTuEhrY3GAT5ZMbmYOi6lmo+o3Ub8jQhVYrHD09iMP/QUeQpD09PeHN1zZOH5wTl6euerrPkWcakKAkC+m6g2R7Yb/YcuhbXNCRtjQ+BtMjJqoJiUqJGeIk1ju2ujupRJSjKLFK4rKWoCsoiYb2P7zE+eHoTFXODi7rEalqymlQ4AdpZzKEmSzVSC7ohKrqDcdggaTtHsJZ+6PABnBTINKVIchaLFd450jJFGEe979jtW7q+QUlJmhakScJqVrE8muONh06R6xhoClKhs4RUyEgMHQzWGHa7LZKAVIGb/YH5bMrJYkbR5eybmhAcWnpUgO1mR1CSJEupm4ZuMPi9RwkoZyVaZgQvaJtI58T0FJliOZlT1x3rumG/2zOpcqogUCpBCMXhsCM4x2q1xBPYb3d0XUPTZsynFVlVkJoOMwzcDpuoyAqewTnmk5xJOSFLE/CKq80WmaSkzjPLM5JEEwLcuIAXAiUiYbEsclKd0nYddgzCCw+9s3SDiflnpTDe0xsDAYKMA5baR2VsPzjsu+BzJHgG40m1ZjHJ6bIanQFC4n2IQ4fSkwhohxhqkUiCjOsYNwZDGRW1WimKokDaAaEDSiRRQ2wsHhHXV1LEYLv3dBhcCJGOpOI6+p5kH/AkSuOVZzCRciRVXE/5kcij03hOLEbMj7Eursl0XOCJkcyjZAyJxsChwvtIxPTwA23od8iNwcfXghh16DKRmCHE0JGIvxPPDzTIkQgkxH3ofVTUjgTP310i3681vP9BwxYEyFGTdo8sEiLe/+j0XdBKSklQHjfeR0miKYuCobc0TfcuBC/H/cB9fCYGiWRcv//O9dxHgrwPYB3Oxr+9n3H4f1nbjzdGCvHDGERgpD6Jd4ElPyrhnIt7FJ9I0kSjdVwvinvak4v0q3tl9L0e7g+x/u3/7t+ireaTrz95H056X+/rfb2v9/W+3tf7+p9UILCb7hjS4T/9xe/rff0B1O8dUop6AkWi00g58hYhNWmmRsysjI0q4vSNR1DXLU3bIZEUeUU1KSNaeJwicdbhvAccUmn8SKO1wb3bYOsQNWYuhDixmUa8emzIgLXgBoeSIqrflCJIgTMDIEjSFJBxQilIhI+KFJwjT9J4OC8C2sbDTIRk6GN4KS8rTqan7Hctd9d35EWKMZYBT5qlyCzDWYtCkgqJdKCRWBHo+gEfYFCxcaekwngLMqCEiof4ISCThEwneO+o6wNaJyQq5dD01M0VCkOpFOCZZZpgHdJ7wjCgEwVS4Z1B9B2zNGXQCus9Xd+jhEaJ6Iwvsnjoo7KcPEnorEO4wDQrODhDT4JOJ3zw8RMub1+zXa/pSkmzPxC2A4MLSBxSDDjTs+97LHGzrJVGaIHtLK0ZSGQ8hDHCMZioUeh9h9SS3keseRESTpYTqqNT6sHw7//7v2S2mKOVpJcDt69eMnQDh0NHWpQoGRBYbvsaF3J2+2u8i3q1aTHh5CTnV3//HR9+/IjPf3rKf/d/+Pe8/uY1k6Iknxacn50wzUvOlkfstgd2Q09vWzbblsdPnjFfrbi8vqXpWrb7A8dHFQ8fLui+3dDdDXT0vHl7iUoEIhMczRd8980LbGP59OnnDHctr39zTeP2FMsjktkNR1UMGnz1m1dYE/j0j3/E8ckU/9WXCKFpjOLi8preS76/uECt7zBuYJpKViczlo8XXHz9htvJitnJAh0S1psbXl5ckATJ//Z//W9YPl7w8qsX3N1ckc2XPDg+4TAcqA8988Wc6byirbdkhWc6m3NyXGGcoWsdm13Nt1ev+OLnP+PP/oufE4Ti6aefcvvmLVJn7A6XhNKCC8zzBf/Ff/3ndHd7Lr/8lkWeMp3MsEXGX//dr/jy+xckOmVdLni4OsK0A/PzJZ+tUr797XPQnm17YHd7R2hbcqf45lf/xGyW8kd/8jmHQ0M5W3G0WvH8y+/Z7DeUi4Lr3ZqX1w3SS5YPjjh5+pjvv/kWu9tzvpxR9y1VsaC+8dTXDbtdzcWbW6a64nQ2pWkmrJZnqFRROEi45tAM9L1F24A0Gu0Vtmt5+vCUjz44w3vPV19+SV+3FPmKkwdPODlasZzf8ebVBXXb8e2Lt/SHA1hDpaOOopxP6PY1DJoyCNLVHNsZrq7uSIoM4XqEMOjUEoTBUvDi+hbbNcyzDAZB01naYcf+N88pioybmzXTYsK0mNF0HUEGWm+Zna3YdC0Pnx7zwfmSr/7xOY+TnJ9+9AEHq7i+uuLFxRV//IsvyGcpTW8wTcebt6/48ec/Zn255mZdMymmVFnKR58+Bt/zq7/9NbXzXL98xf/47zM++ewZxgcut7f86qvvOH5whkozQmo5fvqIZDYhzTWvX72k2x9wSG42G8zXb/iTn/2cZmPYvrjgRdPQDIbt+joGao5POTouaYeG86cPEJMJ5/WBn3/6Ix6cHJFLxTRJOV5NaXcb/vW/+DP+/p9+wy//7h94sFgyO15hVM5mvaPKE37+s5/xm3/6NUpmPFhO6dcDm7rl1csXrI5WfPHh5/RDy6uLnPnTMz6Yf8h6t6MoKpTSpArEENAG6n1LejynmgbK7ZrFbMWhiQSh2arC+sDhYKj3hkIXPFgckSQpu9YgEsXJ2RFt2/HixQVSJPz4L/6MRKTYtOTo/IhgJK9fXSCl5Zu771n3A5OsIJ1OWE0zsqJET1bgBaLvuXl+wdnDB6Qi51cvvuVqu6XuB5y1uHDAbCVnixXBWOrbA8FKhrbl5u6SNEmYrypEBsFKknyCtB4VPBbHxfU1J8cTciXY3t2R5yW2bun2e+q+ZbVcUGaa9vpAtSj5/ONn3M4r3lxtudvfMZ0WnC+WSFnQ9w277ZqjkxVnywXSCao0QSmPSzy3Q415/gIbHKenZzz54DFv7i4hAeUt9JbpbMpmt+PX373kF59/zI8+fkzdn/B3v/w1t4cdPknZdVFjsm0N52clN1eX3Kz3XG9rqjQBBF+/uKTvexSBBycLFkeRDtS2HVolqEqymk/p+4667rCphGBRJMwXC4pEc2gdXdOClzx89JQqSXlpXqDTgUPfsa8tfjAUqcKT0BiLXW8QwtHUNUlQpCphGBxN1yOkRGcZRSLISeHgGJwlGAdCIFDUTUtW16hE42SgJOGoqFAhoLxHpyPxJVUMQ6BuDGmWskg1bde+a0grHYMeVDlDb+n7Do9ntpiQpBqdKuwQF1JBRPLiYlISrOD6es1mV5NPDEWZkmaassjehSusiWsP4QXWKWSiAEm97aibFkGGl3F6XGuBs45hsOhUkqcp3gacdWMDQWC9wDn57iBeAFmaRcpliPqMGDhinAL3IAPeWySQSEWQLq7jEtApSAVaSLTWIAJaatqDYbM+0DU9QsaQiHOeEDRK6h+CR/JelRDDUZbYSFLqB1KSkMMYSJIjvVPGqeyxMRN8wNoYkA8/dFtiM0EIVKIpEk2WZXTtQN0O9L0jy0ctiIwNEec8xnpc72jqnq4ZsDPLZFKR6AQp3btA0r1SROsYivlDrocXj1Aykr+QURcs5H3oJ0RlFj80WgJR4WFGykCiJUmavJv+jvQjPzZvon4kvCMdjXTWcJ9Jij/bez8Gn+L3x0xSGENmIzdAxnCQ9x4RGLVVgQgbEO9oR4xBqjFNh/RjYwuBs3HiXucp1aSi7wxdE8OCznkcMUgkRs2hJNLI5EgQ8kQlS1BxYhwho9ZtvEHx+RZfJ0reT8x7BhMV0kIKBuMYTI3Ek4wDDpmW4HxUxoxNRGQkFgnryJXCSfFDOEaoSA4YNSGBGJqSSmLHCf9M6ziQgUKqlPlyxqHZ03cdNsRhhtBH1Xa8nyIJobcu3p5x+AMh8KOSRon4OHhi41XrBBdiCMIFj3GeJEjKPCMpKwbruHn5mjzPx+eOo93vxvchg9IJsUfqaZuBgKYfGkLI2O9qUp1SlpqryzWL5Yyj04rt18/Zr3ekSYLONNNJRaoTJkVJ3w8M1rL2hq63zGZLsrygHpVDfT9QFCmzac76rsW0DoNjv6+RCoQWFFnOZr3Bm8BqfoRtDfubGuMHkrxA5Q1FolCJ4vZ6h/eB1dkxZZURbm8QKIwWHA4NNsDmsEe2DS44UiUpqpRCZRzu9jRJQVblKBS7rmF32COD4LNPPyKf5exut7Rtjc5yJmXF4AaGwZHnGVmWYEyHTiDLMsoyxftIveh6w3q94/jBAx5+8AAQzFYr2v0eoRR9byCJ2natC55++BDbDtS3a3KtyNIMrzVvLq+4XW+RStHVOZOixFlLPik4Llbc3WwJ0tPbgb5twRi0l6yvrklTxYPzI4bBkGQlRVGwvd3Q9i1JnlD3LbvaAoJiUlAuZmzWa1w/MCkyjJWkSY5pAgZD3w0cDg2ZTKmyDGMMRV4hlESHgKRhMPFzRDoQXkb1l7XMpxXLeUUIcHd7izWGRBeUkzllWZBnLfvdHmMt690B2/cxvDs24JMsxfYDOEkSQBU5zjqaukUmCultJESryDwMaDZ1Q7CGTGtwAmM91vUMNx6daJq6I01SsiRqrYII2ODIJgWdtUznMxaTgrvrLTOpOVrOGbykqQ9sDw0PHh6jgsZYhzOW/WHHydEp7aGjaQ2pzki0ZHk0QwTH+m5LZy3DMHD56g1KxFCtCI6LqxvCtaIoUtBxQMyr6EMdupb+UMegt3U0mwPLxYqFFZhDx253wANN1yK9ZV8eqKqcIDxJlnB8eoSeFCynMxbTKXma0HeGqsjo6z3L+YI0zbhdr2nrhrIsIUkZjEU4w3SxZNnF0GRVViivads1fduxsZbj0xOyPImU7kJzunpA2zdIGcPjUoIcwxJ+MASlSLMUrTvKSQY+MBgbg11E/ajtLBJFlmRMqoJ+iGHULM8IIaFvB67cmkdPH5MIqF2IqrM0pzm09CZSWPdNg1YJWkrysgQCSVERhEJYR7OrSZWinM+53tywqxt6YyIZPMRhGqnimdXQxHOk4D191zKYAaWn5FkyfjZrVCqQAqQIdH1PmipWizLq3TqFGwzBGNq+RSrFrCywXUdwcHQ0JxQZh7rn0LQEHJMiJ1U5jvg8EEoym1YkUiMDpFrhsTgVuNvvCApm1YTptMJgiasFj3AxgGkD3Kw3pEnCpMgoilPurjfcbXZ4JbAeLILUaGZSQwg0bUfbjZ+fQrFvepyLlHKlJCfHc1KtR9Jm1JSmSYJ3jmFUzCpG9a5WFHmOcxYvwDnHJJuwmM2odwdE6GII2Azx819Akiish87EIOLXj7+lcx1aRiXeYGwMxEiF0qOaeSDuJ3wMwQsRdaP9MERi03jtiRQUaUrX9xG+I8aQTYj6NwFkRRJVymPkRY5rKZ2MCmIXz251olH6fu0rGUc4EQLyNEVLRdcZ+taAEHH9rGT8OSr+TKXEGCKSkSwqI3nUGcfQxYB+1JXFvxcjpTISlGIA25r4OIhAPIcOAu8jnSiS9+P1BeFh3E/EnI94p0oD3oW6AgGEH1XM8XEEMdI3VaQ6uUDfRUquGympYdTvSSGjBjiMtCo5BoiEvP81MbSk5Dv9XKRS/UCrEkK+07lBDCzdn4vf1z2d6n7AIdExSNcPkcCq/Pgz5A/kJT9StLx3GAMudeRZilJ6XO6OXzsG+KPO7g83+POLv/7FP/clvK/39b7e1/t6X+/rff3Blhee//iv/iMmNf/cl/K+3tfvVb93SClO1Aa0EmiVkCiNVJq8SJBSUjdx0sy4qAYZRIibTONQCJRQTPJ4YNJ1XZw+EeB6R/RuqzgJPxgcjNoCOU4Bq6gd8Q7jXWzeeE9wAotH64xyXtF1A95ERYMUkIwb4nvssR97Rc7asXGk303MJDoFIRiMwQ4eKwTCVfRtz/X1DVpovIuH8TqLTa2+N3gbX+xWaqyUZFmKFD5uxgUIESiKSDfonEMGTyY0TkSliFIKmUqUEBRVnGCrDy3G9gzWUWYJIkkp5xUy1wx1R9cNBCEISmBcwKEQWUaSZTjl2d7copUmyzTBWrQXdO3AAJRFwaRMyRLY7w7UNuo1tPM4B29eXI54cQHOcBi6GKYKCqUFWgKJJphAosSogwEtNacPVlyt13T1ATpPVqQYmeAGz6LIkSrQDY528IgkYbaaUR9u+OrNW7TKSL3n8ekJj56sqA937HZ7Xr66ZnACEXomRcX20KI0WHOgN4qvXrziZHFCSHOcFfjecb15ydtXb8mPKgbp6O/W4AK7zvPd91co0TOfLZA6J82mLKczfvLjj/ibv/sHvnnxBo9gNl3R7AKL6ZxmvaPpNwymo8wKikzz9svvuLncsXrwkOXpgoOsaa3h/PiI11XBbjrj7GRBILCf1fz8F3/CFz/6jNfPX1DJnH5wnK9OOX90zq+//JZqXnAym5BVJevNjmk1Zb/dM/SOX3/zLY/cU4wdyNLA8ugYQ8Jus2exqNjfbfiP/+FvOT97SKKmvL2+xQFPHp9jh471usfuWiblwOp4xeVhy91dQzlf8K//l/+az3/8YxKd8P2Xa+ptYFO3LFYV/7OzH7NaLvnyNy85Xs5JwsDFzWtu1hu6JpDphOUixY4N+bbpSc4nPPj0EZvrNWG/xw+WSVnxp3/8CRdvb/nlX/41x0cLVO7ww57PPv4EGSSPTk/IiimXV9fc3q15+tEDJmXOZlvz5toj+56ffv6IyYNjjBtYTKbUhz1ZN3C7qXnz7/46NgFyODoucXg2TU3fWl69fMsHz56QVFOm1nK9fc2rt9eUSc7F1ZbOduQTzdD0TBZz1s2eza7h7mbDdjtg+oTV5Jjj1Snee7a7nt3WMTs+5cOHKW+++ZpZlrIqJty5wPM3t5RlSTUrmFQlTW84tA0YmC7PyKucRyeW9d7RWY9YKFIhObQdXfCUZU7pBDd3Gy5udvj2Epl+z/HZMV/86BM+yAs+/+MZVy/f8NHnj9FKcp6fUFVTLi/uCDbw57/4F7Rth8oL/GHgrJzw4tCRLZZcre8QLlBM5pSlxrUtQnkOpucn/+qPqc2AyP+K64s7ylwzLVMePP2AnuecnR6hHx3z26+/5fzBgpvrkr/529/y/fNXVGng00+ecXI6ZTY7o5rkvLy84+XdmturC5SA1aKksYajJw/49NkKmwjm0wVn31+yrntMF7i+2bO+2/Hv/v0vudxv+KMffcrzV3cEm9B1d9w1mo/PP+fpp48QQfD8mztur29ZPnjCwQpUs+fsbMUnRcF6d0CEqO4pZyVPf/YxBykofSDPC4IXDI3lsFnjUPyr//LP+Pqf/pFf/vWvKFLFREuqNCG4hERmLPKCXCdc3ux4s95jreX89AjRNxw2OxIF88UMt1hycXPDxe2a7v/2Vxwtl0hd0OwDSqcEWdB1htnqHPo9D1YzGBzdYc+udWSLJX4I7LrXrE3D1W8PHN+eUMwnPFsW7K81tqtp+w4E9PWevelZ3zWYwYOSPP3gQ7w13K733N3uUd1AOctYrnLysuDQCHqXolRCV++5Wq8JTnJodkxmGX7nuXh1y3Sa4jNF2zsOdcu+jcS+Z08f8vDkiInO6E1gebQiLxTt3nB312KsptOGKpH8/JMPOJ5k3O63BCUI1nGUVjSqot5syYJECUWaKqYomvWO779+CQJudzvaMPDkyRKC4uXNASViE2i97dh0jv1gSbKU8+MlXng61yLqjKu3l9hMsBSCxWTO0fQIlaR4b3F2wA49t2rL4Lf0pmc1rTiazbFNj5IpoprQdB13V7eIxRKhExSBeSoo0xStFPuu5fZQ01rP7aZHCBfDiAESkdJ2ht57pE4pypKPHz8hCZ5ff/k1N7t91MtkGfPJJIL+BTg8TkOwcLveI4OnDx4SHQkpViKFwuMQWlJkCTqBRCtsAGstddcj0ZFoGeL0c5IlIGJTs++HSK/B4Z1hv6vp6oHdrqHvLT7EifM0T5nOinGqWqISgRxDSNJLjDOR6pQpVK+w1qIThfcOiOo17zx9N4BT78IO3gasDSiZoKRG63RULRjMMMTpbAJCjuoHF+ktPgSctXgXxonxUe+WJcwWJXmuxzWgJE1ThAg4EzhsW4Z+wA4WIaM+wQXL0Ev2+wbvGZVVCoJ5R+sRQiJGjVpT9wjxu0Gg2IzoGoP3BqWhnGQkWdTOmcFEup+Q7wigQoqxSTLSJtIE0Vqs8e8aF855zGDp2gEzeEQQOAd1bRgGS9sOaKkxQwxDAbFRlER9liA+B/5Q614jEZubkiBkDPHpSFM1ZlSfjIoYJwLBhVH7ESfNU50A8XaGEBAq6j3EOHl/PxUeuNdWjBPlYxPKhx8aPvcT994HpIyvEzsG6SAGluR4bQGBknIke91/rweiau6eBAXgvIsNIRwiBJyxNE0TJWtejDoTiRQi/r7giLLruG9ROjaZlLxvWMXXXQgB60Nsmo6BLOGJISMZNSVJEhvmwxBVMtZ7Eq1IpIpEMC1xgxvvPxGDTz7gEVFZoxVeBIamHXWDEsawlrUOhyNJEtJEoRUxrOPjfS9DwHvYb2usGae2QtwPihAQxKZjpBRIcFHtFp8VIIWgmlTUXYcdBjABlWR4YnMw1zoOtLgYokcpsiJjGBru9nuk0NgQmBYls1nBMLQMw8B22+BCfM9LdUo3mDGw2OO84Ha7jRRCpeJ9YgNNv+Ww26OLFCc8ru0IHnobWG8OSBx5lseGvUrJs5zTkyVvLy9Zb6PaO89yhj7Ef3c9xrY4HwNTWgv2d2uaQ08xmZJXOYMwGO+YFAVlkjBNM6oyBwFDPvDg/Jzj4yN22y2p0DgXmBYVk+mEm9s1SZZQZSkqTei6njTJGPoe5wI36zWzMMd5h1aBoqzwQdJ3PXmeMLQdr15eMJlMUTJjX7d4YD6b4J2lax1dZ0kSTVHm1ENH2xqSPOfJh084OjlBSsXmtsV0gc5Y8jzlyeMTyiLn5mZHmeeo4Dk0e5quxRpQQlHkEj8MSCR2sKhJyuRoSld3hL4neE+WppyfrqgPLW9eX1CWOUIHghs4Wq0AybSqUElGXdc0bct8OSFNNF03sG86hLOcHc9IJiXOO/I0Yxh6tHE0nWH//C3OO5QWlIUmEKK23nh22wOLxQyVZGS5p+n37PY1idIcDj3WG3SW4YwlzXPaoacdDF3d0vcOZyVFWlIWJSEE+t7Sd56srCgSzf7ujkwpiiSl9bDZN/F1lmvSNMFaz2AG8JAWFfNEMy093RAVUyKP5wmDsZjgo07RQ9N2HJqeYA4ILSmrkuPjFQudcHyWUe/2LI9mSAGTpCRNMupDR3CBR+ePYmhBa2TvqNKUrbGoLKfumpGQlpEkgmAsQQZ655gfLVg8WJLNJly+vGC72ZJpwXQxR2YpbnAsl3OMsySJYjLNubq64+p6gzMdy8WM4+M53gnms4p2GFgfGuqmxvQ9ZZkRJIREc3R6RBCWtCjwvaPYHhBCc2gGhFJcvLnm4vaW6WzCoTWYzoP3NENHOZ3w4HyFThVdbdnc1ZSTeVSGGUcg8OjBCdY6emsJziFVRrmaMncG3xqmSSSCBS8wfU87DJycnZKl8PXXL6J6VwSqTGNGDW6mFLlO6IaeXTfQdj0rpQhZxtC2AKRakhcTtvs9Dnjz5pKqqEiSFGtjICQIjTUalZTkhafIE7SQeGPp+p4QFEpVGLdncB2183TOo7RiMqvIB4XtNNaZGO4whp5A0/XIILHeU5QVpayipm3XoMbP1kmVoZVCKI0XkZDprKVpO+xhwJoBqQUKRVsPYANOeISIARYlAv0wUJY5RZEyL0uGzpIVKWkq6JqBvjH4TOLcgMKznJRMq4Kbu7tRD+vRQVDpgqY50IWORCUoGQlBvrds77YUWUYz9LR9T1Zqiizl0Fm63qClYBgcVkLv4udglY/USjfgQ6De1XhnScqMRGmKNEfIcT3rbQxz9Un83PIDqRaUeYYWisE6qiSlCwND19MnfZR9KUmqRdxvENeJTd9jfSQQvT19w6vpG4J1WBGDutZGgluSJFTTCdNpyfp2zbZuMMYghKDMsviZKmOA3Y9p7t44nG3jGWp05UaLsVTj3sChE8Vozo2hJDzG2rjWHtc2CFBJ1LcKET+L/RhQCsFjrWWwJmqmx0GMEKISNgRNkvwQekb4SHKTCutj4EeqSF6yNobnQogBHzES+SMNKIaKYlAf3BgMlEIhhX9Hd/L3h78ixGFYMe49xkDhPf30nqKEiOuRNNOkmX6n8ZVScZ/X6VoTB4XiL+U+pORcGDVzfQzfK/GOAhvGtWkYQ9rWRrKnGG+DUvH3OOvf3Q86USTj4+FdGNe08Vf64JD+PkB0v6eIISrrQgxuyZg2igMPcS9FGEP5PuBdDIIprcCLeH+PP1+MISop5A/34ft6X+/rfb2v9/W+3tf7+s+m/uGn/8BvP/vtP/dlvK/39XvX7x1SmkxK8lQznZQkaYpz4IMgeMPQd1gzYPp7X/iI4B8PyJSQCJnStMPY6FKkSkaMs4g+d2ti48iNk7UEEadMUSipKasCoSR122C7LrYDdNzgN23PYCxKJugsqhK8jwqBvh/izxACrYihGhXdvPdTz0optBIMthvR2gLtBdvDgc60cWorCFzvMS5QlDlSKYxpSTPF0WxKEJrORjyzSiVd1yICEaU/xAOHeLAQEKajaQJCZSynFfNJxbMPH5JPc/7ml3/L+uaATDRZphicxbkUc7D0g6EdLM45dKrJ0pQSRS8kvXOYXU0QoB0UZc58MeHu7pJDbZAqo5pMKdKUPNF0/SGikXWGFwZvew77O4ZOkSfx0P5wsBGTniSEEDUpIWh64+MsuvU4AjYIQu8Ymj4Gr3SO0pLV2QlWe1xjyHScTd8fDlgz0PqB65s1LgEvo/f9448+4qc/+ohSBaryGXf9ju3+f+Di7ZpqUtD1liIrcThOT845P1/R9gFjwLZ7Pv/0M+7u1jgnOH/ykCFY7q5vmE8qpFTUfYsJlvnJgqKYkiUaN/T43nK4a+gbSy4kHzx8wGqxZL3eYHc3XL54yaZZs9331IsJ9ZsOUxuOjh/x4ZMPyIuKh2cnCN/z13/5NX/1t7/m8emEIlWsdwdOVgtkgO+ev+LNi7e4ocF6QXN5zWpV8XC6Yr9uOZuf8MVnn+C055d/+U/893/5jzx6cMLq5IihH5gtSk4Wp+z3HfPjEwZr+ebLr3j+3Vd0dUOaSK4313x38ZZgLIfdFu8Mfd2g8xSZpyRNy3evb/BWcbyqyETJzcWezV3L3bblbtezZcazZ2c8PtL83T/9GqVhu7njm98anpyd8ulPf8Iv//LvuPzNd+imZJYqTo8nXO/2pMrw3Tff8vLNJfv1Hp1XfPTxMx6dHzOfTGm6U4S1GLllsSg5bLc8v7jj559/ymZ3xdu3F8wmJVJotusG7yyawJOnzyirKcIJpukEpOHs0RG7vufF8+/58uuvMMJzdLzgaP6UB4sFd/uGddeimprryzUWS2dgvlhghKRIM4wd2Nxt+PzhA9abA68u7qibLdY6Lu+uudJ3ZGXF7XrHpCrIfcZeBJzvcd1AFxxeaWor6G629ENHlsioU2o7QikokDiZ0IuGy1d3zBZVVIR1dzxZLQnBI3RKUUxABC4u77gZ1vzxH/2IB+dL/uHv/5E2eF5fXPPmzRWPnz3hJ4sFjx6ds1qu8IPjfOHZ3e0Rk5TTxyty7fn+9Ru2l9dcXVwyy8Alml/8yz9he7Ph+atrQttyE25YLJd8+fV3XG12HF+ckqSSxWTGk5+e8NnTM25eXXLz7RtWecrp8TI+p4/PODtZUc4mvNl31AmsypTgJJNiyieffYCvW/LM8fEnj5lNE7SSLBY53339lmF/4M0rxwdffMh+a/ibv/0KqROePDsnwaK95MMnx6TrhGEwvHj1PQ9OV/wv/stf8PbtLba1mNbRbDp+8zdfsXyy4pNPP+V0UTGYGmM9hVB07iXlrEJPE9JU8sGjcxJSvv/N98g05+byirrueP7mmuZw4E//5Kf85Isf8/LVG/JpyVQIhqGhTyCVBavZnERlHCYDi9VA11ieX94wzROcH0hUwWbvKAvBH33yIUonvH39lqNphlKC12+3dNQUpWJ1VLJsM168Hri6uCLXKbP5nF23ob67wRqFTjWmgcu7W7aHPY8eHlNkBZu7mrbb0lmDklmk42jobU+1PMa6qEJ9+OQjhqFm3zZcvH5NP/Q8mpziUeA8ZZIyr2Z8v9njtcAOLSpzJKmgmJWU5ZTT0yU3dzdUqkKYhCRJcW6PciU3l5fss4okqzAqsJjP6TZvudvsadsdu3JCva+xpkdKQZaV1L0lCEHbNWy3G45XFSfHUw51z3Z7wARLYGDnDgQUb+5uubm9ZrV6yuMHD/jgkxlv3l5SpAXWWo5mK549OWf+cMlxoqkbi9CSYdfzTZJRTRUniwVapUgk07JksZwwW81pDi3/+Pe/4W7dcLON75fWJcgA9aGh73tCcPRtiyknI3XEkyQpuoAgIRGOudZMENze3VDvOzwtVsVj6ZAKlA84F/U666s1kywh0Zoi1QSRUhUZ01QTdMpqsaBrWtbtHhsitaV3DpFpdBqntZ0xiATSMgYuQhzbZegGgpQc9oZD06OVIUsTtIzhCjc4BmvA6/gcyeMBuNaazW1D0wxIrdB4kkTGRqe3CDxVmaJSjSc2N+51Vc6Bd5FC5B14PKlMIuUlgmeQIYaS6qGHAGkS14RCRoWX1pI0UTgnY5hcBKQiqmWtI4yhbikjSeaetun9qGUIAoyhbweUUHFyWUZ9kFRgXKQhxWaHw9sYbMqyDCUVTd1HJYWOmjkAhMIHN4atBNZYvIvKsCQLpGmCMQPBgrcOoQRpmqBH1XHUbmmC6AnOx6aZg2GwBBsf1+2mHsMqsbGYZHHt2vctTW3o27gWFiMpKYhIlrD7LobUXGy2xKl2yNKoRbPW4UdlxB9ipWn8PEjTJJJ/7ilZweFcXOPeK/KUis2XSO2M0/pCRuWeVJEUpIQcm0UhKuCcJ4KO7sNI97aOGIZKRh2UMQZv7RgAEiAlxtjxuSbfkYp8iI0b6+LwhITY3AIQkVpwv58QUsYBDO+iDm1Ux3XDgPWWgI9hGxuvVSc6hqq8QUlJkWWAwPofmmj3gbOoBonhKe9HKZqzGBdAagqVkGUpy8UUnWrevr2gbYZIP9JifM0qnPFY67He40fCglYKgYwDFN7j+ziAIcdrzLOUtqsZhkhVStPYnNZKYu0wkqd0DFp6G/dSTqJlIATHMESNix5JT7FpGWkPEWwU92weEfcWJr7GhdRIKSiqEi8hWIcSkSjXD0McXgmOpmnxCoIQCAnL5ZLT4yWJCKTpgtb2dP1LDvuOJNVY69A6IYRAVU2ZTnKMA+/B24Hj1RFt1+G9YDqb4YKnbVryJEEIweAMRfDkVY5OMpSSeOdg1I4549FCsJhOyPOCru1wfUO92dKZjm6wmDxl2Fu88RTFlMVsTqITJpMKvOPtm0veXtwwrVK0lnTdQJkXiADrzY79bk9wNqom65qiSJlmBUNnmeQVJ0crggy8fnPNi9dXzKYVRVVgrSPLE6qiou8teVnifGB9e8dmc4c1BiUFdVuzOewJzjP0XXx9DgapNZVWDMay3jWEICmLFE1CcxjoW0vbWZrB0YeMxbJiVigur6+RAvqu5e7WMZtUHJ2d8vr1BfXNGmVSMiWZlCl136NkVMXt9jV91yN1ynI5ZzEpybNIAxLe44SkyBNM17E9tDw4PqLraw77A1kaFZ19a2ITl8BsvkCnGSIIMpWCcFTTgt5ZtpstN3e3eBFicCKbM8nzGDSyFmkMdR3JhNYLsjynQpAohfOWrus4mk3puoHdoWUwHd57Dl2D6FtUktC2XXwPDIqeQAiWYD02GIKQmAC27nDeolWkZARjIRFoBF4oHJZ6W0eaTpbTu5ZZUYzvQQqtUwAOdUPtWs5OjplMci4vr7DA/lCz39fMFjNO84zpdEJe5AQbmGaBvhsQqWIyL9AysNnv6eqa+lCT6UhLPn98Tt+0bHYNwVgaWvI85/ZuQ912ZHlBmmlC8BytFpweLwjDQH1o8c6yWi1gDPEVRYHSnt4FDsagREWiFDhYHc1JxveZ+bwkTSVD1zGZldS7GqyjOdSkZYZAcXOzZrvZMV/OSVOJsI6qSDlaTvFCstsfMMPA0ydnY2Bd4GykoGyuthz6geXxnCrPSbSn7XqKNKM+1GB7kiJBKChVysOzE24u7zCDxbmeru9pup7NZkuW53z84RNOlnPWzYFZUeCHHrRAeMjzgjzJcD6QF5aAoDeWbdMQnEUphfWSrjdMJyVVWbHb7dHCMy1Ldruaum8RCiazDAkI6dkf9igxrm90iul7zMBIpZR0fU/brZlMCsqywPaOQ90RcLgw6r/USK1MUtIsJXjPpJqhlWSwPU3d0HYtpapQicaauOIo85z6UOOEJGAJwiGVQipFrnLmsxnWD9jBoWNKntG5iut7tsYidYbrDWmqyBLN4dAw2AGTppFQ3nUjOSbB+TAOy3m6vgUJZRE/m/q9wSEIwWKFoPOC1gxs9nuqKmWRTpjOl3T9gLVxAFKphPlkQlblLKYlfrA44uO1UzmDjapJrTQCgdaaLNUUZYGQivXtmmFw1KansYYQBIlKsMbGoI9zSMQPpKIxQK11EtcQ3qFJ0FLTdR192WL8gJDx0xGhEJr4vucMQ+9pR0JPouJnKhLyJB7vJllCIhV1247rEbDOE2RcT8iRah9CJLCGeyVZEGOABqwL9L2LazAdUCIGofEe73wcHmXUl6VxT2EHTzcSlIQevz4QlcshpmSUUjGpHAKoSMCK/yuu2d79WckxKHSPIAoEzxhgckghkFqNwwAjjVQJpBcEN37XqFl2xiFGrRvwA4n0/veF8etDDBtF0pEcXzseL8c9V4j6jPsLDYExVP5DyCiMFKORj0Rc5vwQjPdu1NHJqECNt9eNA7XhdyhVkWAlRcCKqPMWQhAZ+/7dWtkYB8HhfCR8qiSSSe0YTrLmXuUm3u0nArxT6BLED8QmAXokxMaH4w+XpvS+3tf7el/v6329r/f1vv7f13q5xmn3z30Z7+t9/d71e4eUHj88QwmBHQx9beI0fyAeNrgB71zcwBlPQI0e8HiAnaUpiVYjapY46S3i9EmS6jixITxKRW0GI9bf+0BAxs27F3R9x9D14GKzwvmADYbaWIo8I8v0iMyNh002OOR4eOKDBw9ZmvLo/Iyu69hutggkSZIxX1RYn3N5vSO4QJpleDwESSJTCA4fHKlWBCfo2j42J6QmSXLmqyVXN2vs4Fgezzl9cMrFm7cc9jXOBnSSQIgNP29BCk0YDNubDd7DpNhx+PYF280BtMK5eGjTG0MrB5q2xQKDsRwfn3D28Tmvv33BsG85dAMhCKT0lAlMypyT83MQAXN9Q6IFZR6n0sBxe7vHWYvUCts2qGBJM4EUHq3jtFNr+qiIM1HVEpxlQCHpUTKGw7wPCA8Jit559l1LpjKUFEwmEyblhHSS8mr/ikPnaPseH6CaTKmmUwSw2+1RusChoOt5881rqkXFJ5+cow6KZ08esTg95lBbijSlEHDYbsgSxclshQiCpm0RQvKrf/hbtpsdKivpZZzkO1muWC5nlFkKyYSPPvyQw2HD2+srylRTH2r2uw7rLYeuYTlbkeqE3WHg6uKam5cvEDqgEphOEkKu2DeOz7/4nEePniEGTVc78mJC3+/opeT42RlaOlQxobneUpYTPvrwKbuu4bmG9W2LCJaLixtefZ/x+OkTruuW9ObAFzbl7fUN//Ttc/beQFlikCg0Z0enVJkm9IpjrSEXrDvDw88+43rI8FnOdJLx57/4KX//q19zu9uwPK5ougF7sJyentAeepqdQSlBNwSS4Nm9eY6wga9fbnl5tcObgdujJXcfrKiDYlJqVnnB6uSEfL4imyzRRYFeZdz2O/JBMNGC088+5vSDx2wPe47OliSZJi8nqERhvODRgzNyrbnZ79BFhdlv+fbb73h12WF6w2KZc/rghKY1rA8NdzdrpHAsJxV5MuHyzYCVXVSk6JQsVTQ3Dcl0yodfPGM+SdAqJcsqemvZHJr4XLWWFy9ekVUFR6s5eZ5TZpqbmw1vdhvyouLl2ytut3vuNluCDyRKMp2VTBcz5osCg+PqZsPLly/Yup5H549IVYr2nocnZ+zrA9YHyiKjcAM6zTjUNbt9DI+tdxtu11tWk1OyrODk/Ijzpx9y+eI1dV1zVOUsVjOkTglDR5qUPDg/IpWOF98V9G3P9GzF5euXyEyQZ5rDTc/t5Y4weF6+vWZ9d82f/6s/o5yl/NOvvuLvv/otvu25vLrjyfmC48URh7cbrOsoJxW5mrI+1PT2Fl1oPnvwjC+/fss/ffkNf/ThY7742Tm3r9/w/VfPeXm1oVxOSZczHn/wgOXJnKu3d7is4r/9X/0buv2G3e01333/lourPel0jnGatu+4u9tQLlacTyZcv35J3XlerTfsQmC2Cfzt33zNb56/4uc//ZAPnpxw+e1rnn/zgk9+9JCf/eJzvMz58h8nBCSpnGK6Lf/0228RsymZTJiupiRC0dzV3Haetttx9HCF0glpOaFznsGM04E2IHrLo8fHZHlKmgcub3fMbE33/Zb/7v/4f+WDR4/IhebRcoHwjudvD6TlhFRrrtY7+m1PyKKeaDVfEIRBaYntPK83N5jBkQTLi+cZ89mUrtnz9vk1zoPKEoppxQcfP+Wjj58RhoBIcv76V//Adl9DUVLlKaQOryNeXicJrszZtXsu3ngWsykOy4DEKx3JO9aSBce0KEiF5Wh1xGGzp97UzMqU2XFFrlPevnnB5mrDZDpHW0sztDQWEu/56NExzX7PoU+YHR9znuZcvb5ilpecf/xjfvPbr3lxeIMnfia8vVljhpZyVvLFxx+iRTzw/eDpQ169veR6v2d9qJnPZzz64CmpTuj7gbpusYNnGAaktyxUxixodC4wXuCUY8BhO8PpakkXDE4ZnJd0TU/JgXmacrPZsQ+eRVlwVOb86U9+zFQpfvub7/nq29d8//INInOcl1NcO2ClpygqirykSgsyr1DJFEzO0EmSXOMRdC5wMpuSFCm3dzu22w3dYGjaLpIQeosOHlWkqESz0BOOVUo/DBTCcKcDdzszNhJGZa33mK6nJ9AONZlWMQBlHfPZjD//i58j9z3/8N23XF6vSTxIFGkIOOkZxul2RWwgBSVJUoWyRJ2IixO0bT9gXcAMFukDiRYkQKIkQXqMFQyNI9gOnUrKQpNoRbPvMZ1BAnmqcNIiVSDPU3Sekiaa4NwYGCIGnYgH31IqnHcMw0BbdzGMlqTkaQbB03c91sbj/EiqiWtHpCDNUpwFlSjSkBCERSUeKeMhu/ciTtsnyRg+jxPB0dAQ3q0pCQJr4XDoGIxFyjixnKQJWsdmUponrE7mdG1D2/ZIpUl0gnc2TjRbiw8SFcZWnozBKOd91DwQm3yISHJqnQUfqT5KB4oqJS9zgpRY4wljIMnZOP3so4kP78DZMGor4t8rrcjzNKoaesMwOPreRPIScqT//DDJHEP4EMaA08ifQRAJP955fufL/+BqNq2QxDCMGzV7IcTJcB/cO20b45R4NHPEQJJWKpKMIOo5lHzXPonKEWK4SIIYvdD399D91wA4Y3HWRvKRiI254B3GObSOFKIwqkUIsRkkx+aWg3eq42o6wVpL13axcaQUWZbg8dR1F9/39bjVCnHK/36yPhKZfgghRTW0Ji9zDk2Lt4G8LKi04nA4MPTDDzSDEONOMe8jCM7Ttz0hCBrd05stfTuAjE0mXCSFWeFiOAtwzkfq42rKfr0lDJZhJCtJEUgUpImmnEwQAg5Ng5KKREeyalTjRMKNEBJvDCL4UeESkOKHcJfWCtxI/go+Nn5DbJgxBtFEEChEVP1YE0kYCNI0JU0zVKLYbbdx72cjaSBNU5I0AyLNSUhNQIK1HO72JHnCKpsgvWQxn5FXFYNxJFKhBQxd3NPE8E8MriEEV1cXdF2P1AlOeAZjqfKCvMhieEKlLJcLhqHnUNckSjKYgaG3+ODprSFPC6SUsWl9aGh2W4SK+6YsVQQtwQSOj4+ZzhbgJMaEGAS2PU5AsahQIiB1inEdSZKwXM7prGG7h7Y3CDyHQ4PeKKbzOc1gUE3PsVcc6oab9YYBD0mCJ4b6JmVFqiRYQSkVaOisY3p0ROMU6EiReHh+ytXVDW3fkZcJxjr84KmqEjtY7PBDI1sR6PZbhA/cbXt2dU/wjqbIaRcFA5I0kRSJpCgrdF6g0hylNbLQNLZHO0iloDpaUc2n9KanqHKkEug0G+kYgmk1IVGCph8QusP3HevNht3B4K0jKxImkxJjHZ0xNHUbycZpSiJT6r3FE4l5QcazirqxqCxlebIgTyRSarRKsD7Q9WbMIXq22x0qTWIYQmsSJWmbjn3fkeiU3f5A2w80bU8kxgnSLCHLMvI8wYlA3XRsd1t675hOpyghkQGmVcUwDLgAWmh04pBaMwwD/RDDY23f0XYdRVqhdEI1LZkulhy2O4bBUCSavMji+4SPA1zTSYGUge0moTaWbFJy2O8QKr6nDu1AexjABbaHhq6tefT4IUmuuL684+LuNiqF65bZNKfMSoZ9iw+WJE3RMqUdDM43SC05OlnStoaXr65QWvLswQlYy+Z2zXbf0lsLiWaxmnN0uqCvDV3vOD455ez0lGa/www9r9+uEWlOEDoGUbpIQ1suVvihwwweKwxJ0zPVOe1Nw4s31xS5YDotUMDN6yvyIuHDp2egU5p9y2azJdEZppfc7faINGW2mIFW5KS4ztB7SecNIpGRKpIkeGuxLiB9iOFr48izhOm0oB9S1mtwGtJec3N9HXW+wTLNMqoiY2si2SjNEwZn2WwPUb2nAlmWoogKXiUlddcx2IAcNWDbtEEKx3a94/LiDh8CaZ6SFTlHx2dkOiHLSzrj2O13eKlIRCT1BBxCCryJg2ft0FHXTQwHOTsSPKNfyo20yjzRSOHJsxRnLEPbo4ucMknJFhliHRi6DulzJBCcoWsahPOUeRJJokMHUlJNZ9T7GpzlZHnMZrNjd6hRKoZhrPV0IoZmj44kWmmCh7IskMC2aajbBikVk/mEbKRq9n2PQI7kQ0cqBLnQSCEo8zzS71KN9ZY0UcikpLd9/L02YPueVEgG62mGlmToUQFOlwtOjpbsNntubresN3s60zGbZsgQsMaOiixFnmSoMYykQoK3ijBSAq0PpKkkT0qEMRwONcKDtQbGsLKUAaFEXOc6mCUxYJgS+KA959K9ptU1kviZ60MYBwMs1oKxURXnXVyPr06WHE/nXF1fU3c9NtgYdieudYyI9Edv7Lv1sVAjfdLGs8d7FZp1DueAMfgieWfBjeEwF58rSo9Udq3wzr9TsOkkkt2iGleSqgSlNSKMKuQg39Eovb9n+ERVmhkszsZAjs4SpIjPFef8u+uLy6pAEON9OAa5o243ROQu9/sJjxniYlOMoan7QE7MGoV3C8UAI90yjIH1MGqdFfexozzP0FphrXmnog2jdtiN+5O4fo/r8/vQvLx3uN1Hf35nDTgudtE6aj/FSIMSnpEcO4aIRhKpj0C4uF4ew1MAWusx1D4G06x7F4pCiHfrYbjfS/3On+PIQHwsQnzsf1cz977e1/t6X+/rfb2v9/W+/vOoT7/+lL/5k79hN9/9c1/K+3pfv1f93iGlw6EhjBukuNmM9BtrHe4eMasD1lm63iGkQmk5TulHitG9F5xRK0CIm3gtJYkSUWswTub2Q5zoQsbpX2HBW0OwFiVi81aKgHUe4xx9F3AmNh+kigf9qdZY55FeRGpBnrBYLsnynKZpSBKNtUTdiMgw3qKVpvc9bduiUxU3nM4iZCDLxolF4yNZyUqcVfS9oKkH+s6xnBzx6OQxh3YHUoOWeG9ItI6BCRI61+NsVCDotKCXgu/fXJKnAanjlJtCkgjFyfGSoW5IywScp7WWIDT1bc2m7ri5ukIYz6KsmB9PmZ8eM6kWdH3HmzevOKwbCp0REsHQGTrXYzpPrjMKDVmZ0LeBRAYypTAyEJSmKAVaCTa7PYdmoMwK8jwqbpI0o+97hnYAH6ibGqkTZKJxAVIBh/qAutUke8lmu2a7PgCS40VFkU7o657OGo6XK8rZlOAkTbvnarPlmX+K+OqCk+WExfSIu+0bnh6fMSkzLl6/ZDGfkGUTXr3eUG8OZIWml2CDp5oopjpldnbCm7cbbq93FCJlOi1ZLie8fv6ab19+Td/0nJ8dobKUq2bN3c2e//mf/4xHj4/YbG+ZVkueHGe4Hz8jYPnmxSu8FHzz4pJqcsqf/8lPaW3g4m3Hg9URt7c7MAPHizOSNGVeJCSJpms9b17e8v1XL7hc37IdehpnkH2DsYY//S/+nM9+8hHffPuW/cWGX/7y77htG/I84y9+8TP+5S/+gr5taJuGNFH83//613zz/DXzTPH5x5/yL//NnzI/m/H4yQf88j/8FbtDB4eWLEs5PT7hwfmcN5dX1Hctb1+9xrV7RNeznB+TpYIPPjolDYJf/e2vQTlevfkecJgkoTBPefhgRunWBF/zoz/9KYvFEddvr/mTLz6ifbri8vI1orFst3sWpw/5/ItP6HYNX3/9mi8++ZzzB8d0g6PrHFdXG968fsPQ9SwWS9pmQKcJjx5oJouKDz96Rr2rkQGcM9T7O2ZViesNF69eElTAioAJgkwrdrsL6s5BnvOTLz7Cbncgck7Oj7hZbzh2glQGmr7BppKqmiDKkvXlNaHu2e0PhFwym0zww8BqlrPeXVPNFzw4mvHs2QmbzZ5pUTCYnsubG7z0HE+mpMpRdzWy7ckTHfWMOM6Oj1AuwQeBG3J2XcPnX3zGB63lr/7+H/n6+1c8aOcIY1BZwf7QEbyjPbSI1PLFX3zG408fsXl1y9C07NsWLxMenMz58R//hLvjM5r1nl//9W9R6ZxPJwt2uw2uTJlVZzz/5pLr6xta51kePWBz/ZbFasrR6TF5lvPy4pKf/ugTzNWOX3/9it3tLVXi+PkvfsLZakb/qOe777/n4u0bvtIJL56/4K5eI/OUQiZs7lqEWtM3DY8enPHyasebL39FsHs+/PgDqqLCmC13tw1FmvH620vu6oaHT6f0veH0ZEnjesoUtHP0+z06OB4ez3l0vCBRKaGc8N3hwPf/w9/w408/xAfJZn3H5z/7EwZn8CIGMQ+Xa9R0wvHpktvtjuvbWxazJQrP7bfP+dGnH9G0jm+/v+DuwiOl5+R0yWw2Yf5wQTlNmFQV9pdf8qJ9g9Ape9/x65dfMy0KZrVBJglGVeyuazIlSTJD4wZUB33fIuTAfFJhgsVOErbX1+jBQALGK0oJxemC9bZhv294sJyhjaG7uuXu2ynZYsKHn31Ikmm+/+03HA4tne04neXgPNv1mt4MiFIwTyu8tTTdHpUFTqczUpFwqFtu93tEnjEIQbvf40w8sL9YD7y9Sliulpw/WNLVG7bbPTe3O5w1WCW4thtQgXwicc5ie3BO8KNnT5mXObebPa2xmETQGUsSoCxTZCLI05IiydAoHhwdobMMbz3FoSPpDfJw4OPjY46Oj9BZwWAkb95e8PbiktvdFc72/N1vv6b96ClCBd5ebVkeHbF4uKIvOg7NgCbjg/MnlGnGXd2zGRrOVjO+ePSIfbMmdD1n5Qq9a2itYrNtOX4wo1posiylKlNuN3eUkympEaw3O+7WNXXXI6TAaNCZJmzgaLFA5TlCpSyqkiIrQUh0AvvmwK7tCc6SBqiUI3UJkFCHgX3fYJ2kLErQAp1pMifo+4HOWSZZyq6pqW3HYAK51KRSIayjebujEimlmnDX3eKEp5oWeGvoQiBNsxgSGizBeawKSBtIUFFF4aK2KE00BEOmJUVSjMHvGNr2Ph76D4PBBcckK/AhBpfqpsO6+2noQDnNUFqM5CIIMqongvFIrd8FHobBAQ7nLc47pIqEmbZr4ySzVFjnsc7EBkYaJ+c9YF3UCUyXFVmZU9ctYesJQ2zqEcbmhNaRmCR4p/kVIyVH/M65eQgC6xyhHylKSmKdQ0oZgxxAmimmeUVRZQy9pTnEJnKaZGNDxI0BDYGS4++Q8X7QWmFxaJmMWt9I3UEIgvAkiY5KhTaGiwi/o5oIUT0mhYi3xQuctz80FMZQx33I3hoHPqrQYuKGsV8wfsPY1Al+bKyIMQhn7Lvb+4dcwxAVbfixISLiffxusnz8b+c91gHjf6tx8l+8++denRdvsBxVZ/dfE3XPIpIDghjpPfevB0/wfvz6OKnvfWyOWWsJ9xqNkRqghMKHkQwmoxItz/ORljrEiXM/6gGFJjiDlJH6ZWykJMXb7BEioLRC3e9RghibTRLnYBgczgbypGRWzhhsB0ISpCQEF1/XQkaqmHHvVBxBaayE9b4mUbFp561FjMGUsizwxiB1DLNZDwiJaQydsTR1jXCBPEnQZUpWlaRJgXWW/W7L0BkSqQlS4KzDeoeznkRqtPaoROFMbMJpKWKYS4JOE6QgDpoYR6L0GO6IYTDrLHZsjg7WRoWOjAoXgYiBVtEgVRxW6doBgYj0MZnGsEzwlHlBkqUQBMYOXHc9C+aIuwNlnpGnJW23Z15MSBPFYb8jzxO0TtntOkw3xNsgwIXYXE6lIqtK9oeOtunRQpGlCXmRstvs2WzvsMYxnRQIraL+rOl5+vgB01lB17WkSc6sVITTOYHA3XZLEIL1tiZNKx4+OMV6OBwMk6KgaXrwjiKfRK16EvfO1nj2u5bN7ZZD19C7+BgIF99/z58+4uh0yd16z3DoePvmksYOaK15fP6Axw8fYY3BmDio8OrimrvNnlxJjlcrHn10Tl5lzOZz3rx8w9Bb6A1KK8qqYjrJ2NU1prUcdnu87cE6iqxEKZgvKhSCq4trkJ7tYRMDaVKi/ZzZJEOXOQTD8fkpeV5Q7xsenKyw84JDvUcYT9cP5NWU45MjbD9we7fn+OiYaVVix6BbXbfs9wectRR5EclqUjKdZKT5GCDrTdTiOI8ZOrJEE6zjsNsRRvWPH88h+v7AYANCa06Pl/iuB6EpJyVt11EGkCJEGooScdhKJ7R1Qxgc/TAQlCDLUrxz5Kmm7RuSNGNSZCwWJV03kOoE5yyHpiGIQJmlKOEZrEFYF1833uIITKoS4WVsGUtNbw1HJ0fMjeft5RV3mx0Tk4NzSJ2M76seO1h65Tl+dMT0aEq3bbFjKDMIyaSacHp2SltOMF3P9dsbpMo4SnP6viMkiiyZsF3X1HWDDYGiqOj8gbxIKatIktkdas5OVvi65/p2R982JDLw4OEpkzwjUZJdmbPZbdmsN2w93G7uEFqSJClD76jrnvrQkiUJSZpxc7FGuoEkVZRViRBbmnogVSl13bLZ1GRViU0CWaKZT3N6Y9DBE4yBICnShMUkJdMaG6CTguurW5ZdS1VWHOqafDIZh0la8iLF9QO26clSjRfQ9B37tmValtT1FpUoEJLttqU+OPIsRSnBZFJSlBVZqal8STCC9nCDQBG05/awJpGKiSzpTcCrjL7pEP2A1hLr+/j5PdiozdMJUmucBtMHzNCRyEBQyagGTlBpwmHfkOUZWkt839OtD4QiJytzHj1+SHah6duewRjSTFJmCW3TRhKn8GRFihsMzsX1YF5EPRoeDm377vPGOE+oDygh8aP2UMuE2XzCdFKxPxzYH+oYmiHQYKJee5ojtIyUlxADHZMiZ7PdcWhqbPCRfOc9Win8qDXFB2QQ5ElKkmWRTOMCylhc2zHJElZVhUoTEJpGttR1zf6wxwVDM1iMscwXE/b7GiEk08WMRCV4E9W/VTGhSBOMsQy9J9WB1WqBCw4zdKRSUWiNPXT/j/berDfWLDvTe/bwjTGTPDzkGXKqqkyVVFUqSZZsNGD4woD/gAX4NzYg/wHfdF+0G264Gy7JJWXlPJyZZDCCMXzTnvpif2Sm2oBaaKAsCdjPReY5mWTEFxFkxFp7vet9GVqLUILTR1Ocq6mqgqHv8FJQyAxvHNtdix0ff/ABXSjCMZBnOVmRIaVGKcksL0axusU6h3Ee6xwqBDRRsEqQOC8YfPz/y+MJf/b1n/LbP/otvor1v3GO3HmMMXTO0tsBiUALicXjWoNVBi1yZDAMxkRHJcCF6BgKEm/HxQMguECm9CjW8Q81F8go/spGN59ozvMgbInCGY9U2ehkGcZYsSgihrhUqnWUvcixXg7j+7LgB7GQ8+Fh+SCE+9i3eAZsTDzH9aOLJGIUpYt7UVPsAWI0Wok1jr4nOlcGN4puwoPI9T7W7V6j9GNx0oM+5/7xhTDWh2EUSMWvUVKSFQqdRTGQNTG+TesM+bBQERcKhPD35WS8ZgEixDpM6Si8v3fHDCE6iEJ0uXqIoRtr3fDjax0J/qE7iHXxGGl9v8gRS2TBgz5KjHc0Ps74zT/cNjDWleL/e2eJRCKRSCQSiX8RPH31lL/83/+Sv/pf/4rdfPdQ2iUS/1z5R4uU+sE9bJ8IAUhPP3Q4Fx2T4mZGiM2nUhRFQZFnZFpQ5HGjIwSBd9E6OTaf9xa28TblfacYfGyE/bivIgLO9QRnqMt83NqNThaZUrghYJ3BmUCWxQMekauYh24smdQoqdEqZ7Pds73b4Z0Zt1EUg7Vst0dk5sg0lJVktZqTFznvrtcEFEJohCrJ85q+v4t2x0pRlhOscxzbjqwoCCHw9bev6E1L1w7gBGVWELzH9AbrPZlSaBHItObxxQX73mCHmHmPC4TeoFXBclZzuliwCwJVaG63a6Qz3F69o9kq9oc1x+ZAsALpPdPFHHsEjyH0B0ocnYI+DPSipNICrKGsMoT3DJ0dBwmWo3VIl3NysiJIx9Bv0WWBCz6+MEoRQ97iivowWIz13O53uABLnVGquGVrTY9DcrVeU+RRcJLnGXk5ISsLmmag84anTx7z619+wt3ujqurPdV0St81vHj7mi+/GviLP/81+fyM2aTj5Tcv6foO76KTyHzpObQHRBnwGqqyxNmWtrnDt45sonl5+453r++4vtrw4QfvsWsHlrOapx88pSwK8pBTVjm9hN3RcHJyiu00Ws44dp6rrcHuD5TakMuSzX7HJJ9y+fh9fvLsA2ymubv7lC+/+5zNzQ7tBe8/f8ysyrnZep4+OWNaSLrdmu1djlcB33cIP9CagV//8lf8q1//KYvzOe++fsdPfv4BZ6cnvLq64ptvPdiMzEn2xyPffP4N3g/cHo5kM8VuGNg1huPOcb15y/b1FcvJhE+//YbDYctqMsOpms2mI1MZedbw7ZsXLKqSUgQyZ/jkw6dcniz43W+/5fb6jrt3r5hnA2oy5dH5CXm5IpRTivqcxxcVWV0TBsjRTKopphlYTS949Lxmd7wjK894cnHBp+sv+PbdjoPJuDy7wHUdfWM5HHf85osvWU1rOmvIJxmynvJksaIsKj799CuQirosuHr3hvms5vnlJe2xZ705UB620TWtmjA7PWF1/pS7uy132555MaeZZcwXc6Zlznbfs5hnHPc71HTOsGs43LXYPvD1d295//kj/vv/+ad47bh5saFZH8iDJ/MZ54+e8uHzC2g2bMsdMpsivGUxLwg+Y17NGLBk05xQS4IXmE1D27TIUwFSsdsfOR5bHp8+QqO5vr3h2HbU0wInHd9ttmzu1tjjHatVxd0w4dk8oGxGpkuqE09/MFxvd0xXE1bVhEdeIFXO16Zh0xkIAx8+O2O1mjKxJVoI3r7d8MXrVzy9fEYtYPn0gkkZKHRFj+arV9f4IHn77obPXt3QHracLZas/81/YHkypR0GRAj80Z//cdyu373hV3/2p/z8k5/SrPf85jff8OqmpS41128/Q1UFh90agqHpFFm9pJxtKMua/XFDyBzXuxuK25z3zj9mPpthb2/44vs3fPDkGZNcILOek+WUiSy5ershz0t+9atf8u7qHZ99/4636yM/+9kH3HUDf/jhE06Xc16+vuarb17w4QfvM5tMOJ1UfPTRI6xRvHl5Rd/3lPOSyw/PeXt7y2dffsaxa1idnXBWLlmdVDz94AItNKKo6Jwj0zk6V5xfnDDVOZvNHUIJgjO0h1saH0WWj+YVh31LVdacLmdU5RRP4OzylA8fPWN79Ya+P9BbjVBxO/5nHz2NTjqtobENX1+94ugc9WzKJ7/4OdNyikTQ2w6hJMYGhu5IZ3qOvaMLltNlySQrKXSJ1xqVKQqhOBkM87sNQkrKSQnAvm15fbMnhI6T2RmrszlCWhaLFbkqeT28RhUFkyKnMy0nJ3Mu33tKPwwUd3sm9ZSz6ZznJys+/eo7vn9xTSE1vbBY46PoNyuxwXLser75/jUiZHz8kw+43W3pguTjn37IzYu3fPfiiq+vbqmnS+p8SrtvUHnJ4/PHONNxc3tHtpjx+HTF7eELDtsdJ6sVViomZ6c0bsPprOJkWvLpl99we3dEBMPFoyU/+egjDjcbDk3L9fWaF9c7Pvv2FauZ4unjFcoFml3HtF6yWJ3Rrg989fprrm52SCk5O52ynFdMZwWtnzLRBQE4f3LC5cmKV6+vyMuCk2nB9XqLFXcEO9APA9NZdC5o2j1t8FSzisuTM/rDnttOUy9mnBclx67l+m4LpaHIJOIQODYNSmUIJcELPv/yJcGCKDSZzhlChzMDeZGB0hxNhzWOLNc47+m6HjNYaqWjcb+IW8lKBHIdf+aCD3iijX/TDRgLxgQcjrrOKOqM4BVSaXRe0Pcd4OlNR1lWTKc1mYyH5Afj0FIydIamG8aog+gqI5VEqpjrVszU6EAj4gCAgNQa6aLoSCmNHAXpiLj5WxQ51gz0vRnj26I4QQpiLBeewcbt4TFVIkayjQvfwUc3Fu/9KFiJ8V3Si3GIETe1EdGZsyg0KhMUIsMZzzAYlIoC9ygkkiDjxjYwbkV7AvGx3g8RsiKLLoHW4lzAObCDHV2TAojoXCDkKCYiDtfjpvUP3aEnCo5ccAgnx830gFYZKPEwBAoPG9gChxu3sv3DgCEIxsGQG/+b+m9qCv7/IEZL/DCwCSJgnHkQ+cSHFLfjA3E4pZREyRh9JIQYnZfut/75oZfgBxHT/cRJCvEjY6l74djojDo+gVHUFIVSPniCGePWtBydQ8cYDRF/poRUtF2M93kQjBEHql03jJGDcSO+qgqkUhybJsaRoRAiQ8kMZ7vocCAFWmWx5rb2wQlgs91hncFYFyOkpR6HZy5GtQn5IOCaTKcMzuGtH8VYgeAcSmjKQlOVBT1RHNh2LQRHezwydC390DAMfXSvCoGsLPAmOnBgBzQBK8AGhxIKLSTgyEbBk7sX4Qk/uqxKqroCEWhch9Q6uoFFO4d7w4Do3OFiZGHbDwQC5egoFd0hLF4Ijm0To/98jGBROkdpjRlj6+azCY8fn9H3Pcdjj85znDLs9ntubx1Pn16g8po8t+y2uyhEC4GyyKEMDMaAHkVVWqG8xZqOYDwqk+zaI8d9z/HYsVrO6a2jzDNmy1l03kKNQkbojKMqK7yVSJFjXODYefwwoIVHi4x26MlUzmy64GSxxEtJ31+z2a6j05sXLBdRTNV0ntlsQq4ltm9pe0WQUdgAMW7n4vyC5xeXFJOCw+bAyaMldVWxOx7ZbgEvkV7ghhhxHLyjHQZULuidozcO03ma9kC3P1LmOTebDb3pqLKCIDLa1kaxnjRs93eUmUYD0jvOVnNmdcn11Ya26emPOwppkXnOZFqhVUnQBTqbMJ1qVJYRXBTP5VmOM44qn1LPM3rTofSE6XTKTbvm7thjvGRWTQl2wBofFwdu15R5Ft3uMonIcmZlhdaa6+tbEDI6BR4P5IVmMZ1hjKNpe7TJGFw8M8jzirKeo/uOrnMUusAUkqIsyZWiHyxFLhmGHpnnuN7SdxZnYXO3Z7mY8PTD5wTpaXYtphlQISCDZDKZs5xPEaaj1T1CZojgKQtNCIoyy7EhoHJFyOLnmuss1phxWC7phyg0mFQTFJJd22CsJcs1QQbuuo62a/Gmp6o0nfPMixrpJUppsjrgek/T9eRVTqVz6gAIRe8MrfWAY2lryionc9GJ5nBoud3vmM0WZAjK+ZRcB5TMsEhudw0BweHYsN41mKGjLkrab19RljkuOAbjWJwsWJ2dcXN9xeJ8yfnFOYXS3Fxtefd2SzmpkL5F6hiZ2DdHpF7gvCYrc/I8wwWHw2L8gG090zKnWk7pvOFwaOh6x/uLBb0doignLxlagxWC05MT8qKgOx64fnVNWVdoJDrTXDw+pesMb97d4INgMZ+RCcFsNQOl6FuLtx4kVJOCWVOzvr7jdrNGZRn1rqLSGbNVTZHnCJnhRjGsVpK8zJhUFb637PYHpJY422ONI880kyrH+YBDklcZk6LEIcgLzdnqjN1mS7A91hMX94C6yJlPKvquj6KirsFvN+RNwSIsqcqSTGmO/ogf657BWKyzGBvorSMvJGWdR2GKiE5RUojoCJRrrLFkRY6QUahxaNsoMNUwnU6JWnXNtJ5wDEd6PEWW47wjU4r5YkqW54jDAaUyMqk5XczIlGJ9u4MAWgoGM6CVIlcaEcBg2e2PECSnJxlFpjl2A7P5nFAUNIeGN+9ukXlOkZd443BeUFYVShQ0skNkGfV0ivGwu9vhB0fIBLKoUNKTK8NyNuFuv2d3aDAGqjLndLVAuIq2abGDYde33Gz2GDewmpWUWYbtDEJqqrJEo7g9brndHmJNmCmmkxKdSfJRQJYJicwlZ6slZjD44Cnz6OC53TcoJTHGjPGTgWEwDH4ALamrEkVANWf8yVf/Hd//6ReYrOfQtdGtSEqEgW4YuBfgSC/o2oGXh2vC6OyIjELm+LkZ4xeNNQglkAgGa/FDABkeQoJj8GpACUCNbkejU491sa/wIQrJo8vdWBcJhVSM8XSjKCpItI6R5yIQa5Tx498aM8asidHBRyDGeGqdifE2iUL/MMbpBj/W++HBGfM+Dk6pKGQfejO68QsIscaMTpciPhYfYh3uw/3hMw/F/SicGh8xwsXYNuCHJQAR8MGh7+svBAQVUwXGOj3cuxDdR9qN+Ps/j7afIcTIYK0lPkT3VhAPzkkP3yrCuLMQfiQU+7GwKPxIYOUJYexrxh5JKjE+12NEuPjhMuJrG/4LkVb4ewKpRCKRSCQSicS/LASC5y+e85d/9Zf86//tX3OcHv+pLymR+Af5R4uUnHNkmR43WgaUj6IjIccNDhvIVUa9KAkhxlOUeT66J4lxG8rig0ONdxt8tPz3Y/SBlCr2iiIeuIuxXXbj5rEYrX6VFBRlgXUGH8Bh8c6iA4Sg8d6Om/ABITxBBJx37A+HsWmXBB+jFrRWeG9j02yi9fvl40ueP7/kav0WETymtTjnaGXgbtcQgmU6KahKTVVnDG1PEBrrBja7A52JAxeko64KrIeh69BCMisrBjtwaC1a5Nytt3GjTAjaoUcEx2o2RYRAVihev71mt2sIEgIWIRS9GbDBo3EsSo1xgiwvcDawWa/phh3BdxhrmKwmWO8pVIBhgODp+45cl7TWst8OTIoMJwUmeNz1hlLHgc5ud0QImFY5UitEANcPHINjGLfET5YrvIyxDd4alA/kmcBJydF6irJgOZ8wmEDnBIfDkbqs+fDx+5yfr+gNvH19h7CW00eK9y/O2W4NIp/Su8DNd6/4/PPfsts3SJkjXAAHJ6sZlZa8uVnz6PSUy9MZ1pUszj7k7YsteVXw6z/7A/6T/X8xB8Pl+YJ6VvHRe884XUzZ7Q/Mpgtmy5qzJ+d88Pwn7A9bDuuejz/+hPJRyeTsMV/+P3/Dl1+/pOkNwTtmyylhv6F5t6E8XTLXgZ05EtyRk9M5xh/Y7RTPnpwzKxSfv33JpNBcnC4Y8Dyezbg5aN7c3LG5PfJ//tv/iMo83fHAX3zyIVU5ZZdt+MUnH1FOp3z3+nf87otP+bu//Y7VfE5V5vzi5x9TLyZcv2v59LdfkC1mDE5QnS44c6f4lwNVUfPTP/yIi59d8u3vfsc6eC7efwb9gQLPxdMnzM4e8flXb/nt7z5nf9xQz0o+nl4ymy6YzCYcmwPDYsFeVPitYH3nsF3L8c01ymx5/tFj8umEk9Uce1dyfb3nr3/zGV3X85M/+AAbPF+ur7m7uY3W9DZujFZVzXI65eNP3ufm0BDIsMcW7wKL+ZSuvWM2n3J6eUEXBNSKiZiz3saDuTIvwMFx0xGcp55O+e7VLaen53iR8frVjtOzU+7W1xyReBuo85zb9Y5Xf/sZjy8X/PJPPmGxnBCc53Sx5Heffcuw7Xj/6RPqec2udbiDwtg6Ojt5G2N8gmOwMX5iUc/IdXQHmM0uef32ls22RWmNL6b0naGxji+/eMU31+/IphM+eXbJ83lJIwJfvNiwv9Es5hNOzlY8mk/47jcvGILi/L05rumRBM7PHnO43vLNZ9/y+uYtO1oePz8nmIy3128g1wy7gUNr+KNff8L/WP8xx0PP2cVTTh4vUXbg3/0f/5G311t6JNQ19dmM7OYabzQnlyfcrLcUUvL4yRl32w3rd7fcdAMfXFxwPp9TkrMbBKfnU/7wjz8h9JbP/uZzZK5YnC14tJwznRZcvL/kZz9/THvbsNkMfPT+Y+azKbku+fbbl5w/ecxHP/k5zz9yqK6l2+0oMuhCwfTilOlqjjAgmx1qPmUiBoYQyHLP1c07fvnz98l9jBtYzgqmlSJXHlVK8gFefv0927sDp49mdF3Hyarm5z99ijkeKWannJws+ev/8HdYt+K4X/PsyXOWRcXFfM7eWwZnef/yA54u57y9ueZ6e0u72aC0oG2PXN8ekf0UIQu0jgPtQ9fTtgbb9+xagxIC5zOE0Gw3WxanS/qmR4VAMBZDgKJk1x4YjOE3//dvmNUVmZYsl1Om04rHj064Wm9QmeR4fYs/WPa7Fl8H1CxjKjWzaoIJATmpcHiaruPs4oLLs0e8evmOq+s9ZalZTiWnk4yirllNZtxev0HIx/gQmBQl292WUuXoQTCdnhBchlaKt2/XzCdz6vqUyaID6bEm5/MXL5nMSk7CFBUEx8HgZM+mb/nN579jaC13PTD0tE3L1bu3DMJzcnLOxfkzlAqUteRkuuTFd6+RKJr9gC08wsGbm2vK5Yp6PkN3lnmmmRQZi0nJn/z8E/7ui68h13z+7TvefL/heLfjer9GZppytuT80RTvPC/f3aKkousMda5xTrGYL/ngZz/l7LKl2W+ZzUuWiznH44FymlFaz+A7fv0HH/DB0+d8eXrD5mZLd7zD+oIQFP1xw4tDy5urDaYfsNYhsBAMANO85GZ7pFcOn0lW0xXDEGjDgZO5xEOMVukN3jg8A1kWBTWyN7FGKiS98XS+ReUarI8bzwqGYcAOBqkgz0qCVBg/RGeTYSAIFR1pvI3b01lB7wLtYDAuilnKMkbwWiMRCMq6xLlAwCGlj1EzOmNe5vRNR2Na8qLEdhZro0BZSEZxRD7GExEFC8Sa0BqLc30UKTEOeJUkVzlSCIq8QKmM46Hndr2j7wwgCYSHQ/woDAIdP/bjGbz1BC8fhhIC8TA8uXfmiQv5AeT9BnNUwVsfkMYihIixu1FfT9cPeC8IXsQIu2yM6ApjtNroVIOMQx3rHG3XobRAF4pMqDgMtoHBjC5BcozEcNHZ4j6iIQozHqYO49X7KIJxRBcmxMMwJNxvZMfpwsN3+dFpSoxRWXJccX8YKoR/vtnjwYdxYBLdo6SIQ6n71xQPSiiyQsc+Q0i0kqN70P2zNq6Hi/FnbnQxuBc43Qu67oVQPwzf7qMsGDfkRRzc+TF2jtFhaRTiheBRxN+be2eAEEIU9CBGwVS8P6mi64BznuCiCG82nTJfzDg2B0QAbzzWB4SEbjAQPFmuyKVEZyq6nRCFUl1/xPiA9w7GxQYfAs44pCC6sniHsR4pFH3bxZgRQRQ1ESjzPLo/Kcn+cKTvDEEybtFHtzEfLBJPqSUuxMFm8IG2iS6UBIf3jrzKcH4cXHo7ujHFOCnrPL3ryZUao4MC/tiSjcO9vh8AQa7jQByITg4h9mdCSKqyJIzGYfgoylIyui8MPpArRVlUOBewITosZSpjuVgynZQ4D4d9B95T15LldELXOVAF1geaux3r9RV9bx5i9/BQVQWZEuyPLXVdM6sKfMgo6iWHuw6VaS6enPHm5Tv84JlOSrI8Y7WYU5c5fT+QFwVFkVHPJiwXK/qhZ2gsp6dn6Ikmr6es37zldrPBOEcInqLMoe8whw5dleQSOm8I3lDVBS4M9J1gPp9QaMH6sCNXkmlV4AVM8pxmkBya6C71/bevkSpgh4Fnpyu0zulVx/npEl3kbPc3rNc3XF9vKfMCnSnOz07JypzmYLi5ukWWOc4Lsqqk9jV+59E64+R8xfRkxvbmhpbAdDl/EK9N5zOKasLN7Z7r6zX90JHlmrPVjDwvyYuMwRicL+kpCJ2g6WLPaA5HhOuZryboPKOqCnynaZqBd29vsNayOl3iCdy2DV3Tcjw0BO8AQaYzijzn7HTBcXTS8SbGOBZljjU9eZFH0QICMk9OQdPaUUgS3WNMZwk+kOcZd7uWqp4QkOz3PVVd07VHBgTBQ6YUbduzu14znRY8vjilKHOCD1RFyXq9xXWW5WxGlmf01hMGgfd/36nE46OoI9Px81DEpZ6iyNgfWrrOIKQiqBwrHSZ4btc7Ns0RmeeczmYsCo0RsL5rGRpJUWRUdcWkyNm+2+GCYLIoCMYiCEzqCcOxZ7Pesm8ODMEwWUwITnE4HhBKYvv4nvLo4pT3sguGwTKZziinJdI7vv/qNYdjFxfOsoyszpHHI0pJqllF03YoAZO6prADzjnWNxsypamrjEpnWBs/A548WzGbTthcbWiNoShzqnxGXU8o6pyffPQEieD67S11VXBxtkLIjL7tWW8FZTnl6XsLTN8RlcI2OpOUJdWiQkjFcGhwnaSc1hhryEtN0xzwpwt0kSN7S1VkZJlECw9Z/Lwwx47tZkdZZNjeoKYVJ6spbjDsdeDs/JSrN9fs+w4XOqqipCxrpkWOLQqstVR5zeOTU4ahZ3880vX96FDj6PoB5Q1aZQihUEJGZ3AbI7SaQ4exDjUKd601CB8jpxQCGcA4BzrDBk/oO26v1+R5Dt5R5BlImM/qWFdI8F0HzmB6F+M2hSRXglJpkDLWh7Kko0NlGSerJc44hrdXWNtR54pSQ10U+KLAygYhArkx5FkUnPsQkI7oNFROCAiGfmC3a4GMoqqxfo+SGfvdgaPvmNQlmZAxyjN4quBZ38WFwGMT4w+FNXR9Rz/06KJETBnd+DyzqsD0A8ex/hlai/SCfhi4OxyYLOZk1pMDQWuUhLOTJZnUHPqOprcMb28RNnDojjhvycuavFBoX9B0hrY3UagcoDCO6XTOZDZHlzVD30OwzOZTumPLxIwuy33Pclbx3pPHHI4DVdXgho5+sExqgTMdzhiadkAE/1DrKR/rAF0UKBST6ymP3lxw9eFr6kLQdh0yB5TEWU9vDANudOMUCBHP7Ky3jCnADDbGvkV7uRiD64J/EOQLEZcMovmVw49RYSHcC2liNHEQ4kFU7kOMk9ZKjbFjsX7QeRQZC3FfkY3uc6MgGRHFSMba6Og43r5QEiE1KqgxMlY8xKR5Zx7cMxldjqSKvYCSsQa/F4n3vb03CsLzQ+08tgIEKX5wEHLhx6r2hzqRIH4Q7PhYK0ZxFA+LBvdxcfcCHznGF4ZR7BTuo9lGcb1zPwofvndVAqyLfYlUAj26VjGKwB4EReMl+tGhKfw9sRMPr+19FexHAX+sT+VD3/CD8OiHPuT+tu6vZ/zLg7NVIpFIJBKJROJfJgLB85fP+eO/+WP+/b/69//Ul5NI/IP8o0VKVZkhBFgbEFmGROKMwmPigYnQaAVaETdxpSDP44Dhvim7bxjDeEDvfaA3A0WWjdvuAi8gy+SDnS8EUCq6MIVxwiY0/WARRAGSGCNJlIyNnQYeTyZ44J3ZYL1HIkHG5thbj5IKbz029DhnUCrHBY93mu2NwfZvOLS3xI42CprAkOuMIq8pijxaY4cYJdEdO6SOcSaDbRBZIFMx7qNp4xB7UVeIEDfdyXK2g2NnGma1Rhc5PigUmqAzjm3DcbdFCo/IJEpKpvWEYehwmWJ7sOyOhuWiZKY1oYcQWoKDnCmNDThKChTTUrPd7xiMjVtGQeDCwKwq42O2lkoovDMEIajKGf3g6JuBPC+YFSUDEowjy3JkEKhM0wdPUZb0XRuHM0JgBcxmFZcXz/j+9TWVcGRB8/r6jqt9gwyCR2clejdw9ijj9nqHkpJffPiIk8WM72927DaOHsP3m+/x/ZFs6JGmx2jBgEI7QcgyHp3OOQpP1wlm2Yyf/NFzCD3TTtN7RzkteTlfkS8FdQXL2ZxHp6fcHRreXu05XZ5BNeHm7YGXX6/Z7l6zWp3z+vWeT6Ylev0Se/0Vhbc0weALwaffvuZxPed0esv+u1u+vb5hs9kwKXM+eP+Mv/t2ze2bHdZ42u2O47ojm8zYdUeWk5pyeYpV0DSBz796x7dXtzyewp988jFfffUlQczYD455MaEKPWyveG9VcHi0Qk5n7FvP00dPOMksb/oNr3e3/MV75+xuHYN3rC7OKajwh57z0xMuFhX+ZE6/adGzCet2zzKfcHJ+xptvv+c//e1X9O2eD58scargujNc3zW8fvEFrVlxqmsuiyd0Q3Si2B0aVDtQG8PhYMEFXr7ZcmwHHj8+xXSOLOTMdEnISrb9Haa/oyosh2FgmlccOodazJFC8Is//BlN1/F//bvfsD50WN3yaDFHOcuT0wXXr2Pkm5+WvF3fcjJfIesJe2d5uphy9cUVVt6xWpzz+t2eV9tAGHqeXcwpzmtkndP0HZO64Psy47OXr/jpasnVywPvXncomfHTP5iRVYrmxvBktuTY9mw3LYXKODR3ZFVBXih8KynqFV5KjJS0xnO9O7C5u6POSh7N5gzdgaIo2OH58//hl7x9d8V3f/0VqyLj5NEZ32z2NOtbMgTm2EOVMfngAn80KNNjnKVH8dmnO4aupdKevR04dJ6CA9W85icnjzg/O+ftTcvVzYG88GRFiXo0J2Q5JycnnH+Yc3ZWkDnBzUYSzp+wWs0Jx45nl4/pTmZ8/XpNoedIJH/25x/zZ3/wMcP6jhe3e/72uw3b24HHlxe8eHHks6+/JyscT84qaiWhrHn27ILBB+RswddXb/jw8oJnl3OkD7xwGSFbctgc0YNkWmXcofnqm3f8L//Trzj7YMmbr2+4/e41dZAcekeoc4JpCcf4XnK73XN3t6dcFFDndMYjsoDF8+L7t3zz3Tu+/eKaKqvJFzV5qagqxfkHJ1yeTihrjdaKR+enPH/vgsks58lywfrVKUwKptMJm8Fw9WLN7nqH9B2YFnN3i5pWtHvDUk9YnHvuKtgfltwdjrzZbrGy4VLn2CYO106eLTnJHIdX15RoXtzcUZyeMFtOIHiurzbM8xlFJnHB0R4900WBE47b7TU5J0gUDoVQBXe3LaZxnK9WGBvdKuIgv+Bm2+Lmkru+Yd81PLtYgpVsNxbDHtsUfP/1Gw63DTvp8S4j4x26nnE6q3l71+OEYlZpFsslx7uWty/WHLeG6WqJmBXMV6so6jWOsih5enHOoS4RWEJ5zZApuuARbXwP0BPNUgtcUTLkGafOUWWKrmmRuqS5vaU/vmLoLZfPLljVBVUhEZmAAtaHLXVW0LSBm2NAvrvlk6wg+BbTd+ytod3ccbE65Y+eP8aWjuDgZr2j3bXoMjDNFKvlhPn8jLfXt7x+feTFyysORnB5tkT0B86qU55PlgyTKdnFGZ0YyOcLeq948f3XiLznbHlGKWZcvW1Q9Skf/uySr774Hdu32xh7U+XoIqd1cNs0WOuovSOzJa+GHVlZYtvAen2D6AcuVyf41lPPlwyHPcHtwQraYcC7QFkUVFNJWZZIB9u2o+sN1gaCsiyEQjqB6x1H1xFCINOSQkuctTgREHmGQtAaS2sdSkoUIrofFAXGOvaHPkZvyOjkEpzHW4fHI5ynLBQojbcW78AOHlVJMpUhRId3jlxr5BgpIwloHaMOQohRO7g4QHDGRJEBHpxFioDAM/Q9WmcMxmHaPdt1j7Ex2irLs1jvEQcbcWs6zg50IA6fHQ9RZw+ZXtwftd8PUqJ4UIgfak0hPBI9HvoDwUedkIhCKzNYfPCAJASLD4FCx/gu6eTDIX24t+gJcRAhlKLMFDpXOGcx1iG1QAiN89G5QAQ5biRH8UscfITxvkeV1OjzE4KM8XyMIn7rsTZunRPEKGaKg8Uf6ZwIYgyzGAcn95vc/1zJsvsNb4+QcXgSnb/86FQUY0WkvB8SCbQaY49GIdr9qx7G+VIIMf5ZKYlEjOKm8bm4/yIY/30vcooCGOf8+DXh/uUdRU7xWZzkOQE4+hbnwzh4I/7MjCKqEEJ0/fFx4SIO1iRt43H2wGDb8f6j8A7cOFiLotD7+/OjKEmMkdrOW4QaY1KIUSrGOkqdxd8vAkhFZwO9i25tUimCkvEnQI6usn2HIEbACSHIMx2vVwq6wdOb6O5SSElwAkIc8qnRCcij0UGSZZK+72NfJaIzQggxDsaPf9YiOqIgBFrnWBeFVUopCqVxCIQP4zLKfTRjQGsdB/Gjta4nkBcZs+mcu31DhkcGyf7YcxxilFddZcjeUdeK9tgjheDRqqYucrZNT98GLC133ZbgDMpZpLc4CY7YDwUpqauMAY+1kKuC1ekcgiM3ChtinOOuqFClINNQFQWTuqIfDIem51FZQ5bRHAZ2m5au31OVE/b7ntNCIZo7fLNBB48JHjRcb/dMsyJGYG8b7pqGtuvIlWS5qLnetrSHPkZ1tj1Da5B5wWBNjJyra7wEY2C9ObA9tkxyuDw95XZzSxAFg/MUKkfjoDuyKBV9XSHynMEG5pMZpfTsbcuOlqeLCUMb3ePK6ST2pINjUlVMS02oclxrkHlOawdQGdWkZr+94831Lc70rOYlXiga6zn2hv3dLca31CpjpqaMM3H6YUAYR+Ycw+ARIbDbx0jAyaTCWY8MikJqgtJ0rsPbjkwH+t6RK01vA7OyAAGPH50wWMvL797RDBYnLZOyQHrPrC5p9i15nhFyzbFpqYoKsowheGZFznEdnWfKcsL+MLBrAzg7xtRliNE5L88Ud1qy3u3Iq5LjbuCwj0tEJ2cxCtc0jlleMlhH1xm0UAymR2YKpSUY0FlFEAIv4jlCY834+mvqosDZAaUUPYGnzx9zOBzZvrulVIpqUrFtB2zbIgFvHGSKfDkjGId00T3FIVnf9DhjyVSgbxyDDagwRKFdVTOZTDgcLU07IFVAKY2oFUEqqqpislTUtUYGaFsBkxlVWRAGy3w2wdqcza5FyxKB4PLJKU/OThHWsT803LaW9c2e09UUYwWvXu2xITCtFKWWKCGZzabI5kieleyOB3bW8HQ2RwswxkNeYfqeYEFnkGc5213HY51xcbnE2Amb1+vo/uIFVgiEAvooPrPO0TQdQYCuco5NF8+PVHSC2t+1dP2OXGXoogAFRSYppgWzSU45yREyOj/O5hNUBifTClYz1seWclrhvGB37NhvGzAW6Q22axBujjcB4QSLqqTKAm2rMS4KQfdDE6OFB0NeKvKqZFZpDocDmdB0xz1GK4oigwB912NloFASRHRyVMGTlwVt3wKeXGoC0fHbDp7BWAqdoSoRRQreIVVG13t8Ft/fu6GnqDQFAmsETT+glcE0Dc2hpzfRuUmInH4I5EV0MmptQCtNURZIBLvtnr6x9J1DZJpqVoPztF0blxmLAiUFpm+5zQ/0JuCkIFgHLiCUIpeCXCt6oSkmmjJT9N6hdI5reoxp8MYznc+YTApyLXFGILRgcIZj3+EHz+Ak3bFHlwNFkFjv8QR2xlDkOYuqoK4lQkbHsmbf4aWj0IpMCabLOYPpudsfOe6O7DobfzczSSkc07qgMhmiLPE4yDVZXtJ7T7Ad+aSiLmfx+XAwX57Stwd2765jpKhWKK0wTjAYg3EO4Ry10rTO0NkopB1ag30d6C4NMkTHyaysMPtDdBly8T1bCoHUgjxXyCCw3tMbix08XgR0EFFI7AJmjKgTRKGRCHEhNUiQUuNtoDeOMZ0sCoalJFcquqn7eyfPsQ4f48oIASVj3DOEGAU4xv6pe3dT55BiFJ4zOpWONY8QPzggEUahTwiIEB4E6IJ4nutcXGi1xmCHY3R3cv4hCi7GCf/IjUiOeh9/HxF3r0P6kRBHPPyDUYEUxaWjk1F4KCPlD46e460IwSgE8g+3DaMASwqEvxcEiR/dzSgGIqClRo31sbUu9gl6rC/vz8DhQTz04KQKDzFy90L6e2WTHOvVHxyk7j2r/gsB0n0tLX74+w9PyD/ffiKRSCQSiUQi8Q8jEDy6fvRPfRmJxH8VEdKKRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikfg9Iv/rX5JIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQS/+0kkVIikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpH4vZJESolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJROL3ShIpJRKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSid8rSaSUSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkfq8kkVIikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpH4vZJESolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJROL3ShIpJRKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSid8rSaSUSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkfq/8Z2kVZ0Hi7EPJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAAH/CAYAAACxPcr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebxmV1Xnj7/33uc8052r6taUSiqpjASCkIQ5gAySFgKCDbY00gQQ44Twewn9Qlom4QVKNxq/yNS0TVRoRRARRVTAMAQDCIQEEkKqKlWVmuvO9z7DGfbe6/fHPue592aAEJNUIPvNK9S95znPOfsM95y19vqstZSICJFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCRyH6FP9gAikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpHITzZRpBSJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTuU6JIKRKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSidynRJFSJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSuU+JIqVIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCRynxJFSpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSOQ+JYqUIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRyH1KFClFIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKR+5QoUopEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCL3KVGkFIlEIvchb37zm1FK3aPvXnXVVSil2L9//707qDXs378fpRRXXXXVfbaPSCQSiUQikUgkcu9y+umnc/nllw9//8IXvoBSii984QsnbUy35/ZjjEQikUgkEolEIief6EtEIpFI5GQTRUqRSCRyJ9x444380i/9EqeccgrNZpPt27fzohe9iBtvvPFkD+2kUDsqH//4x0/2UCKRSCQSiUQikZNKnUxQ/9dqtTjnnHP4zd/8TY4fP36yh/cj8Y//+I+8+c1vPqljUErxm7/5myd1DJFIJBKJRCKRyP1B9CXuXaIvEYlEIj+eRJFSJBKJ3I5PfOITXHjhhXz+85/npS99Ke9973t5+ctfztVXX82FF17I3/7t397tbf3u7/4ug8HgHo3jxS9+MYPBgJ07d96j70cikUgkEolEIpH7jt/7vd/jL/7iL/iTP/kTHv/4x/O+972Pxz3ucfT7/ft9LE960pMYDAY86UlP+pG+94//+I+85S1vuY9GFYlEIpFIJBKJRO6M6EtEIpFI5MFMcrIHEIlEIg8k9u7dy4tf/GJ27drFl770Jaanp4efvepVr+KJT3wiL37xi7nhhhvYtWvXXW6n1+sxMjJCkiQkyT171BpjMMbco+9GIpFIJBKJRCKR+5af/dmf5eKLLwbgl3/5l9m4cSN/+Id/yN/93d/xwhe+8E6/U/sJ9zZaa1qt1r2+3UgkEolEIpFIJHLvE32JSCQSiTyYiZWUIpFIZA3/83/+T/r9Pv/7f//vdQIlgE2bNvGBD3yAXq/HO9/5zuHyN7/5zSiluOmmm/iv//W/MjU1xSWXXLLus7UMBgN+67d+i02bNjE2NsZznvMcDh8+jFJqXXnUuvTr/v37h8tOP/10LrvsMq655hoe/ehH02q12LVrF3/+53++bh/z8/O85jWv4YILLmB0dJTx8XF+9md/luuvv/5eOlOrx3bLLbfwS7/0S0xMTDA9Pc0b3vAGRISDBw/ycz/3c4yPj7N161be9a53rft+URS88Y1v5KKLLmJiYoKRkRGe+MQncvXVV99hX3Nzc7z4xS9mfHycyclJXvKSl3D99dejlOKqq65at+7NN9/M85//fDZs2ECr1eLiiy/mU5/61L123JFIJBKJRCKRyJ3x1Kc+FYB9+/YBcPnllzM6OsrevXt55jOfydjYGC960YsA8N5z5ZVX8tCHPpRWq8WWLVu44oorWFhYWLdNEeFtb3sbO3bsoNPp8JSnPOVOW1DX7Zm/8IUvrFv+ta99jWc+85lMTU0xMjLCwx/+cP74j/94OL73vOc9AOtaTtTc22O8u9TH8td//de85S1v4ZRTTmFsbIznP//5LC0tkec5r371q9m8eTOjo6O89KUvJc/zddv40Ic+xFOf+lQ2b95Ms9nk/PPP533ve98d9uW9581vfjPbt28fjv2mm27i9NNP5/LLL1+37uLiIq9+9as59dRTaTabnHXWWfzBH/wB3vt7fKyRSCQSiUQikQhEXyL6EpFIJPLgIlZSikQikTX8/d//PaeffjpPfOIT7/TzJz3pSZx++ul8+tOfvsNnL3jBCzj77LN5+9vfjojc5T4uv/xy/vqv/5oXv/jFPPaxj+WLX/wiz3rWs+72GPfs2cPzn/98Xv7yl/OSl7yE//t//y+XX345F110EQ996EMBuPXWW/nkJz/JC17wAs444wyOHz/OBz7wAZ785Cdz0003sX379ru9vx/Gf/kv/4WHPOQh/P7v/z6f/vSnedvb3saGDRv4wAc+wFOf+lT+4A/+gI985CO85jWv4VGPetSwbOzy8jL/5//8H174whfyile8gpWVFf70T/+USy+9lK9//es84hGPAIKx/+xnP5uvf/3r/Nqv/RrnnXcef/d3f8dLXvKSO4zlxhtv5AlPeAKnnHIKr3vd6xgZGeGv//qvee5zn8vf/M3f8LznPe9eO+5IJBKJRCKRSGQte/fuBWDjxo3DZdZaLr30Ui655BL+1//6X3Q6HQCuuOIKrrrqKl760pfyW7/1W+zbt48/+ZM/4brrruMrX/kKaZoC8MY3vpG3ve1tPPOZz+SZz3wm3/rWt3jGM55BURQ/dDyf/exnueyyy9i2bRuvetWr2Lp1K9/73vf4h3/4B171qldxxRVXcOTIET772c/yF3/xF3f4/v0xxh/EO97xDtrtNq973evYs2cP7373u0nTFK01CwsLvPnNb+arX/0qV111FWeccQZvfOMbh9993/vex0Mf+lCe85znkCQJf//3f8+v//qv473nN37jN4br/c7v/A7vfOc7efazn82ll17K9ddfz6WXXkqWZevG0u/3efKTn8zhw4e54oorOO200/i3f/s3fud3foejR49y5ZVX/oeONRKJRCKRSCTy4Cb6EtGXiEQikQcVEolEIhEREVlcXBRAfu7nfu4Hrvec5zxHAFleXhYRkTe96U0CyAtf+MI7rFt/VvPNb35TAHn1q1+9br3LL79cAHnTm940XPahD31IANm3b99w2c6dOwWQL33pS8NlJ06ckGazKb/92789XJZlmTjn1u1j37590mw25fd+7/fWLQPkQx/60A885quvvloA+djHPnaHY/uVX/mV4TJrrezYsUOUUvL7v//7w+ULCwvSbrflJS95ybp18zxft5+FhQXZsmWLvOxlLxsu+5u/+RsB5Morrxwuc87JU5/61DuM/WlPe5pccMEFkmXZcJn3Xh7/+MfL2Wef/QOPMRKJRCKRSCQSuTvUdvrnPvc5mZmZkYMHD8pf/dVfycaNG6XdbsuhQ4dEROQlL3mJAPK6171u3fe//OUvCyAf+chH1i3/p3/6p3XLT5w4IY1GQ571rGeJ93643utf/3oB1tnWtb1+9dVXi0iwtc844wzZuXOnLCwsrNvP2m39xm/8htzZ1NB9Mca7ApDf+I3fuMOxPOxhD5OiKIbLX/jCF4pSSn72Z3923fcf97jHyc6dO9ct6/f7d9jPpZdeKrt27Rr+fuzYMUmSRJ773OeuW+/Nb37zHcb+1re+VUZGRuSWW25Zt+7rXvc6McbIbbfd9kOPMxKJRCKRSCQSib5E9CVqoi8RiUQezMR2b5FIJFKxsrICwNjY2A9cr/58eXl53fJf/dVf/aH7+Kd/+icAfv3Xf33d8le+8pV3e5znn3/+ukpP09PTnHvuudx6663DZc1mE63DI945x9zcHKOjo5x77rl861vfutv7ujv88i//8vBnYwwXX3wxIsLLX/7y4fLJyck7jNEYQ6PRAEK1pPn5eay1XHzxxevG+E//9E+kacorXvGK4TKt9bqsBQgt7v71X/+VX/iFX2BlZYXZ2VlmZ2eZm5vj0ksvZffu3Rw+fPhePfZIJBKJRCKRyIOXpz/96UxPT3Pqqafyi7/4i4yOjvK3f/u3nHLKKevW+7Vf+7V1v3/sYx9jYmKCn/mZnxnarLOzs1x00UWMjo4O2x9/7nOfoygKXvnKV65rnfDqV7/6h47tuuuuY9++fbz61a9mcnJy3We3b0d9Z9wfY/xh/Lf/9t+GGdYAj3nMYxARXvayl61b7zGPeQwHDx7EWjtc1m63hz8vLS0xOzvLk5/8ZG699VaWlpYA+PznP4+19m75Zh/72Md44hOfyNTU1Lrz8fSnPx3nHF/60pf+w8cbiUQikUgkEnnwEH2J6EtEXyISiTyYie3eIpFIpKIWH9VipbvirsRMZ5xxxg/dx4EDB9Ba32Hds846626P87TTTrvDsqmpqXX9nL33/PEf/zHvfe972bdvH8654WdrS8beG9x+PBMTE7RaLTZt2nSH5XNzc+uW/dmf/Rnvete7uPnmmynLcrh87fk5cOAA27ZtG5azrbn9OduzZw8iwhve8Abe8IY33OlYT5w4cQdHLxKJRCKRSCQSuSe85z3v4ZxzziFJErZs2cK55547TBSoSZKEHTt2rFu2e/dulpaW2Lx5851u98SJE0CwgwHOPvvsdZ9PT08zNTX1A8dWt4t42MMedvcP6H4e4w/jzvwMgFNPPfUOy733LC0tDX2dr3zlK7zpTW/i2muvpd/vr1t/aWmJiYmJ4dhv71ds2LDhDmPfvXs3N9xwA9PT03c61vp8RCKRSCQSiUQid4foS0Rfoib6EpFI5MFIFClFIpFIxcTEBNu2beOGG274gevdcMMNnHLKKYyPj69bvlZhf19ijLnT5SIy/Pntb387b3jDG3jZy17GW9/6VjZs2IDWmle/+tV47+/z8dydMX74wx/m8ssv57nPfS6vfe1r2bx5M8YY3vGOdwwdoR+F+rhe85rXcOmll97pOj+KGCwSiUQikUgkEvlBPPrRj+biiy/+geusrXBa471n8+bNfOQjH7nT79zV5PX9yQNhjHflU/wwX2Pv3r087WlP47zzzuMP//APOfXUU2k0GvzjP/4jf/RHf3SP/CHvPT/zMz/Df//v//1OPz/nnHN+5G1GIpFIJBKJRB68RF/iviX6EpFIJPLAJoqUIpFIZA2XXXYZH/zgB7nmmmu45JJL7vD5l7/8Zfbv388VV1xxj7a/c+dOvPfs27dvXYbAnj177vGY74yPf/zjPOUpT+FP//RP1y1fXFy8Q4Wjk8XHP/5xdu3axSc+8Yl15Vzf9KY3rVtv586dXH311fT7/XXVlG5/znbt2gVAmqY8/elPvw9HHolEIpFIJBKJ3HPOPPNMPve5z/GEJzzhByY67Ny5EwiZt7WtCzAzM7Ouiupd7QPgu9/97g+0je+qXcP9Mcb7ir//+78nz3M+9alPrcugrttK1NRj37Nnz7pKrnNzc3cY+5lnnkm3241+RiQSiUQikUjkpBJ9ifuW6EtEIpHI/YP+4atEIpHIg4fXvva1tNttrrjiiju0Jpufn+dXf/VX6XQ6vPa1r71H268r/Lz3ve9dt/zd7373PRvwXWCMWVe1CELv48OHD9+r+/mPUGctrB3n1772Na699tp161166aWUZckHP/jB4TLvPe95z3vWrbd582Z++qd/mg984AMcPXr0DvubmZm5N4cfiUQikUgkEoncI37hF34B5xxvfetb7/CZtZbFxUUAnv70p5OmKe9+97vX2cxXXnnlD93HhRdeyBlnnMGVV1453F7N2m2NjIwA3GGd+2OM9xV35mcsLS3xoQ99aN16T3va00iShPe9733rlv/Jn/zJHbb5C7/wC1x77bX88z//8x0+W1xcxFp7bww9EolEIpFIJBL5gURf4r4l+hKRSCRy/xArKUUikcgazj77bP7sz/6MF73oRVxwwQW8/OUv54wzzmD//v386Z/+KbOzs/zlX/7lMJvgR+Wiiy7iP//n/8yVV17J3Nwcj33sY/niF7/ILbfcAtx19sGPymWXXcbv/d7v8dKXvpTHP/7xfOc73+EjH/nIuoyEk81ll13GJz7xCZ73vOfxrGc9i3379vH+97+f888/n263O1zvuc99Lo9+9KP57d/+bfbs2cN5553Hpz71Kebn54H15+w973kPl1xyCRdccAGveMUr2LVrF8ePH+faa6/l0KFDXH/99ff7cUYikUgkEolEImt58pOfzBVXXME73vEOvv3tb/OMZzyDNE3ZvXs3H/vYx/jjP/5jnv/85zM9Pc1rXvMa3vGOd3DZZZfxzGc+k+uuu47PfOYzP7Q6qtaa973vfTz72c/mEY94BC996UvZtm0bN998MzfeeONwgvyiiy4C4Ld+67e49NJLMcbwi7/4i/fLGO8rnvGMZ9BoNHj2s5/NFVdcQbfb5YMf/CCbN29el8ywZcsWXvWqV/Gud72L5zznOfyn//SfuP7664djX+tnvPa1r+VTn/oUl112GZdffjkXXXQRvV6P73znO3z84x9n//79D5iKtZFIJBKJRCKRn1yiL3HfEn2JSCQSuX+IIqVIJBK5HS94wQs477zzeMc73jEUJm3cuJGnPOUpvP71r+dhD3vYf2j7f/7nf87WrVv5y7/8S/72b/+Wpz/96Xz0ox/l3HPPpdVq3SvH8PrXv55er8f/+3//j49+9KNceOGFfPrTn+Z1r3vdvbL9e4PLL7+cY8eO8YEPfIB//ud/5vzzz+fDH/4wH/vYx/jCF74wXM8Yw6c//Wle9apX8Wd/9mdorXne857Hm970Jp7whCesO2fnn38+3/jGN3jLW97CVVddxdzcHJs3b+aRj3wkb3zjG0/CUUYikUgkEolEInfk/e9/PxdddBEf+MAHeP3rX0+SJJx++un80i/9Ek94whOG673tbW+j1Wrx/ve/n6uvvprHPOYx/Mu//AvPetazfug+Lr30Uq6++mre8pa38K53vQvvPWeeeSaveMUrhuv8/M//PK985Sv5q7/6Kz784Q8jIvziL/7i/TbG+4Jzzz2Xj3/84/zu7/4ur3nNa9i6dSu/9mu/xvT0NC972cvWrfsHf/AHdDodPvjBD/K5z32Oxz3ucfzLv/wLl1xyyTo/o9Pp8MUvfpG3v/3tfOxjH+PP//zPGR8f55xzzuEtb3kLExMT9/dhRiKRSCQSiUQepERf4r4j+hKRSCRy/6Dk9v2AIpFIJHK/8+1vf5tHPvKRfPjDH+ZFL3rRyR7OjwWf/OQned7znsc111yzzrGJRCKRSCQSiUQikXvK4uIiU1NTvO1tb+N//I//cbKHE4lEIpFIJBKJRH5MiL5EJBKJ3D30yR5AJBKJPNgYDAZ3WHbllVeiteZJT3rSSRjRA5/bnzPnHO9+97sZHx/nwgsvPEmjikQikUgkEolEIj/O3JVvBvDTP/3T9+9gIpFIJBKJRCKRyI8N0ZeIRCKRe05s9xaJRCL3M+985zv55je/yVOe8hSSJOEzn/kMn/nMZ/iVX/kVTj311JM9vAckr3zlKxkMBjzucY8jz3M+8YlP8G//9m+8/e1vp91un+zhRSKRSCQSiUQikR9DPvrRj3LVVVfxzGc+k9HRUa655hr+8i//kmc84xmxWmskEolEIpFIJBK5S6IvEYlEIvecKFKKRCKR+5nHP/7xfPazn+Wtb30r3W6X0047jTe/+c2x/OcP4KlPfSrvete7+Id/+AeyLOOss87i3e9+N7/5m795socWiUQikUgkEolEfkx5+MMfTpIkvPOd72R5eZktW7bwqle9ire97W0ne2iRSCQSiUQikUjkAUz0JSKRSOSeo0RETvYgIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRyE8u+mQPIBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSifxkE0VKkUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFI5D4lipQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpHIfUpyd1c89yEPBQVKa5RSiAgASimUUgBoXWueBJSAUmgUSmlAYUyC1hqtBWPM8Hv1+l6q7YogIhijMIlGPPhqf0mSkDYMSWKw1pOYFJMolALvPUmSUpSW0npMAkYrlIB34DxhTEahNGitUGhEwJcWAFMdnzEGQSPiMUaTJGHsSmmstYgSTAppYki0AlE4L4iHPCsxSUKj0aQocgA67SZKN1BKI+LQCkSEQVYAQtJIaLQaaK1ItMY7F05LkuK9IGJoNBLanQZaNUi0ptkQaDTwrsl4qmimYG2Kbo2zdeN2nvbkx6DHDcdOLLN5aoKRkTZaaxI0WjkUBdACpamvRHU1hqxdHolEIpGfUEQQYfWhrxSIhBeCqn6v1gPwKLp5yfcPneDgsQOkZgXj++y+7Ti9lS5FnuG9o5lqvBO8N5hEgwfnM7w4tDLgDK4ocDrHax3ezUph1ChKGRQZrizRLdi0dRNFBs4VFEWB1gpvHU5ZJkaaeKVwVtNsJDTaCSOtCTZtPpvHPvSRTCYjADhgdjnna9+8hQOHvguyRKedcNHFD+e8Mx5O6ps47Vl0OYu2ZKU3y8zsYRaOzZH3c84751wuPuOhaEkolUIrMOJRWlFi2Htilm/fcD2zC4s89ZKncO62cQrR7Nm3yL/8y7UcOnYjRW8BZQp0u89IY4SiLMhdgTKKxGu0gPXhOJ33WC94LyhRuLIgSTUeGHQttqyuhvZoSh5xzpmcd+HP8rQnPYmsXOIzn/86X/niNczMHMX7Ap0KWhmUETqdES74qQv5qQsezje+tofDe48xv3icFXuc5mTOY596Id//5m3MHZnBKE97vEmDJiIlmQNTKJwv6eclznnAkzZSlFE459CisaWjKD2iwSTQajcwWmMLDyJ4IfyHAME21BhEgq3kkpKpVsqzn/N8nv20n6NlkuH9KcHMRAGDsuC67+/nmi98gxOHD3N8bpbC5niT4Ww/HDslKB9ubRTWK8CgVIr2niQBbUCUR6kU5xx4CyIUhWBtbZtC2jCYBJyAUbq6tzRYj/ISrhmatBnsysIpUA5daozydEYMI+0xnvOMC3nKT/8cc24jn/nsV7nlhq/SSHskDYcXhy2FoigpCkeRW7KyYNAvKEtHNiiwpcVjScQBHq+g1DA+Mc7f/9+/vq+fGveIjX+yOfgTsPqcqX5W6/5d/z2FGn6mlEZphUKCL7HOn1jdZDBowzpaq3CXiaBQwR8xwYcRL8HG16vbUUrjpfrbU6v3mgj4yp8YLq/2L0K4oVn1j1T1RZHwbFO69ptqX0pQJnymlUKh8JUf5F24yY02ePEoIE1TqPwqRbWe9+F+VQptdPhPhWMU78N+hudIY4wmTROUMoAiMaCMRnzCSDPBGEVZAiZldGSUXTt3QEOxtNSn026SJilTcgqPX/gVjFIIDlW5lGrNhYv+RCQSiTz4GL6Dhw9+qV/P4b1QvzPxfH3jn7KYHGWpl7HQ7ZJny7QbwvziMoMixxUO8R5jwpbCOzm8R733iPjhrsKcoUPWzEMa00Qpg0gJOJx3tDoNIKm+78I2AS+eNDEYo3HeY1TwXZJGSqsxzratOxhP28N3vhNhbqHP4aNHKcpltBamxkc57dTTMTrFi2dgM/q2IC9yijwjzweUmaXVGmHXKaeRao0VAWUwgK4MoH7pOHTsBItLc0xNbWLX9i0YhNwpbrttlsPHDpMNlvA+RyWONNUoURS2BK1QImip7AnC/KrzHl9fB+eruV2wpeCsZ/UKecbbHTZt2cKOMx5CK3HMLSxxYP8hFuYXsGWwp9EKjaCNZsOmac4551wW5noszHRZXlqkWyziGTC9fQKbO5YX+oi3pIlGGxPGJIJ4RaI0uS3xThA8urLzUOHeEQ/O+er+AZMEW0bcqq/qJdh4AkN7SlDh+0owRtg6Pc0jLnwUY43OGrtkeGfivTC7tMzBg8fodZfJ+zmD3FFKjnc5XsowGPyqa4yqvm1QaJRyaF1vU1V/D8GWFB/8CV+df2MUxtTfV0MfxXtBV35SfcyJUYjXeDxKwnGZJNiF27dO8NCHnEujuZEjJ5b53k3fx9k+JhXqKXrvBGsdznmc9+Ff57HWI97jvUepar8qzL/rRHPrC265p4+C+wwVrcqfCLYOHsZv3vw1DOnJHkokEolEfgzxWN5z7hM40rnuZA8lEoncBbJuZviuudsipbBJhXi/RlzEULC0OkEvKBUmzcPPuloPvHfDeIS1dvidMFdfbb92nMUjEgIElbc2DDIoFQJg3gtWLFI5dKDI87yapA9OofMWUzmowRnUeAFjNFRBMPEeqSYnlKpEQiKEiQxfHb0NjrKAVhpBKK3HW4fVmsQYUArnPVqDc5Ys8yilSUwIJkglxtJKURQFZVmGk6jDmPIsxyQGlSa40oXxWkst8FKAtwa0pfSmCtCUaK+Y3nYK7bEmhw7N44zFN3qslAsM5h2Hjs2xuDSHFAlnbD+FbVsnw1gJkyGrUehIJBKJPBipJ0Bvt+QHvhq00aTthK2nTHNs7xILy8thot8LvjQ0GgajE7wtECmxFmzpqglnjSiPd2X1vk1IJIiSx0ZH2LnzbI4dP4pzUGSazGUsLa6gfIqIpSzLEMx3HpWoINYxCucdyhtU6dFtw+bpzTSS5tAkUgiTYw22T09wYqZDVlqKwmHylNznHM8WODp7jBMzR1jp9sizAm8tRTFASYd2spG+sywsH2Nh4Ni6aTsTrSaNKgCQrRQsL3QpXZdGE5RoWnh2bh3j7LN2sNydY7HsUfo+iWoE28h5vPNoNM47itKiTBAPiA8T2UH84EHCJLOvgghQics8ONfgxIJl6aZvslxm2GwOBBpNT7OR4EuFrcQsSakZbXV44iWPY3pqBxPNUzhxxgz/es1nsfPLJChuu+FWiuUCVf1PCktOCAAVXmjpFh4NWmMQhATrfRDtqMpqNIoEjZM6qKQREXSiMDol2G0l3q7aWD5EmQCDEoVKGvT9gL5aocF4NTHtERXOgPPCkeNH2XvLzVgWueiiHUj+UL514wEOz92CkxxnBVEKpTVaK7RJGGumWAy5TVDi8DqrbFaNtQ4RT7OR0khT0tyxstKjLF04Bu8Bg9EhKhLsVw9SB8wUiAMXhPKpqwX3YJWQW00qGYtkdP0SI3j88n5OHDtGWfZotDzNVhCb5Jkjzwqcs1gvlGUQLNnSIqLwooNgRofgB6WlN790rzwX7huqgNMaIaSq1D+iQmBtKEJb585ISCwIUR6QoBCSyk5n6FNUQaHh12QYvArSIFX/UH0c/pqc91V+Re3P2KHAKIwnXFeR6jzX4qNKrBTET+st6jqIEoRNvvJn1PBeV9W2w9+0R6FCskTl62gdgkSlLauAna7ESILSOgj9nAsCpjW+mbMOr4JArhag1sIoYwRNeK4oFRJMvChwDoOi2Ryh2W6wuNSFxOHVgIWVOQrxDAYFyysJYg2NqSlQFmggmOhFRCKRSCRwd/wJWf1MKWg0EsamOvjZPktLS3ivMOjq3akxxuC9ACXeB6GFSHgXalQQG0kQ3RiVIAJJAjtO20qe5SyvLCFOM8g9RWGHVoL3ITGwFrI4JdW7N4hClABOGB0ZpZU2V9+1lfB4tNOk02qhtKO0JUUBuS8Y5Cssr6zQ7/Uo8iKI+cUHHwjN1NgmSudZWJ6j289oNEfZNLWBlgnJg9458kGGLTLabTO0cZoJTE+P0e1N4WxBURbh5PpKtOUF8R6tFKUL84hKq0qEIkMBmVC5Y5VpoquEz2DnKFYGJb0jRzmxkmG8ZXxsBGsz0MH/qywJEI1WCdu3bWNqYpLR1hg7tgq7b9lLeWKF0iUMFvsodK0iCuPAAQovHhFFWY1NaxUSFajsKqn8iUqEXSfK6lqsbcLPClUJbtzQJgvH6VGVnayNJrcFS/15OmmCQQ/vSw9YJ/QHA2ZnjtMbLDG5oc0p55zJ4SMr7D9ygMzmQUQlUomQws3bajbR2pDb4NMFGzT4bCKCFyExCmM0KtF4XwSxe+XD1TZaLVCv58S9r1M4VK3VCr9VP9didlEls0vLHJlfZOOYohwsIT6n388RLMYEUZevhEnifRDhi+BtELoH01xXinod7GERfOl+5D//SOTu4pTF6QLjo0gpEolEIpFI5MHM3RYp1ZWMQtbSauZw7QACQ2ES1L6+4MSHakbKICJhcr3KHq7FTbXwSNSq46xUCBj40lfVl0zICEawNlQ9Uiist3gfsmzUmsl/0WEUWilEKawNoiatAVGVA+vXBCwEpUxw3pQiTVNs5cApLzhxIeMacGKr7OTKOVSCT6DRSGk0m3htsc6R5SUog0iCtQM8iqTRCJMA1oVzpcPPSSVCskWOlAWpMbTSFA94rxjtpGitKAY5SeLojHTwCK7wNDEszC/QHt9C2hKsypmdP8rnv7BIjmAdpNJhcmQTu3ZsA2VRGBRpcPpFDZ3/6kKuXngVww6RSCTyoGMYPAiT6WGZrP6jhDTRjI42WDzRpZ/1yZyiqZtY3yM1kKaa8bFxisKyuDgfhBbeI2LRJqGpDdobnLa0mw18IRRlzo4dG3nkRTv51nWLLC1anCvxJRSZQ/kghHbOhzI2XlBe45oK7x060XQmRih7OROjE5w+fQoNlVSH41EYjBLGx5uctmMrhd3EwuIyt84vML/nOxw5epyluSWKQUa3O8DjSI0gWnHajs10mp4vf/MaDh05gisabNmxiyc/+mKaaYKVkuXuLL3uIhOTwsRoyooraRlNp53w8At2cWJunn7/KEW2gvdCNnCUpcNaFwL+IkGwY8xwctuVrrK3VieljTE0GyCuxHtwDkrr2XP4KJw4wfe//T1azZR2u0GW5VhtSTopTd9CvEKcY3rH6ezccTqjzVHGx5v0i2OkjQIlHskVLd9hsSyDaFoLidWoBLRKSJSjn+cUpcWYlMQINhRHwjmpZO0h2JAohXKC0gqtE5QKdl0QmbFust/ZMBmuELROaDaapM2UG2++gZ07t7BzYopOq43WCaUYVgaOmcUVjtx2iGMnbiOXHhdf8hQ2NHawkpccnb+FoihwpUObUAUJUXTG25y6Yyu9pZKlbkne91g6iO1ifY7zDq1CdreIB+VJUlNVjAoT+t6FTGdrXXW9VLh2gKrE7q5UkGoUQolGdILG0y/7uGXFZ79wA4eOK8aMsLTYpz2i6M1ZugsFaSqY1GOtxduQ4ewkZLu7MgQZUCbYlGJJdEqqEqiCEA94ZO2PqznRcuerrAZn6p89VYIDdYQn2PzVGqvCxCD2E6p7sMquhzogt+rPiKzuaejjaKpzrdCEAFR4KlaVmarkjZArsfqvSBAeGRWqINWjqcerWK0IMVxe+T5GGbTRQKjMJSI4PPigVfTi0NpUJrqseTZUQicT/BrxFqM1jUYaglEOWu0UBRS5QxkhNaGKg3Mg4lheWmFTa4pGqsmtpde1dJcH+EpTlqiUifFJ8s4ct8hnOaN3CS03UR/e3cyRiUQikchPLHf2IlCrIt76fd5P5snMUvWb0F1ZIc/6KK1IMLhC0DqI0lutBu3WCPMLC+R5RvBNgi2kTIpRhtI7lAp1bYK/oVE4hBKQShAjeAsKF2wGqd7xtXDYKJwL66bNFPGC0YaJsXEaqk7v88NETG2g00kYHZvEe81id4mDR49Q5AU2t3jnKcoC51yoeqoUjVaH0U7K4SP7mV9eBqdIGn3SRpPm+BhOHL1shbzoo3E0DXTzPmmS0DQpo6NNtmyZpNefp7QmJH1IsCl8Zac6JZWoC/DVfGdlLNS+BFRJoEohavXi1ImgOnOU2QygWVpYRqmQJKETQytpIT7BliVpq8Hkxk0kJkEacHz2BN18OZxvp0LV3FqcVJ1no1WY30VjrWCdq6XoDCXqtUCpun+CNnyNfF0YVlsSX9tU1UeVCCfo0j1GJ6RJSp7n7Nu/n5WxWVqpodFohQQCp+hnlizLKbIBpctojEwwtmGUqbzkyAkYVPfP6v0d5p1HpzpoB40c8lwoncb7DHE5npC84LVGe0GqKkvDQqLV+RZkVQAfDmAowqttWi/BvvMevDJVgojFO0t3xfPdG2+lkRgaJiRlJKkiywl+irXV30tQRYXcl2qf1fFofEiwIFS60kphXbTqIvcds83dfGb77/Ck47/NZHlarJAViUQikR+J2eYeFhoHTvYwIpHIvcDdFimpYSs3CBPia9u8rRqTUk2Yh4l6PayK5H2dGROKA62tvAQhs501WS+1kKmefK/TXJTWVcbJalDL++pf8SEDWUJmja8CBE48zq4pDV05raF9W/AFPZUQq66cJELpHRqNSYKTVn0Qsq49gAkiJgNlaRGElJB1Yp3DSSjF67VglA7ZPYMCRKrqShLamnhLmeWMjXcYGRnBlgMQx4apNs4Lg0HBxqkWxhhWljOM0Yx1FItZQZEHwRXOcv5Dz6KVpOzZfwifJMwvL5NZhysVkx1hfMtmlvMl2v0Gk52RMAmgVq/rWsFZJBKJRB481K/u1X+kyvatkHUfIsCgsBw5Osvh2w4i5Ext6LA8t8ggtSTeIQ7OOnsXJ47PsLi4QJIoEkmwVjBJg53bd7A4v8hcb4ksy4Mg2Ht27z7MoSPzoV2XtVWmsEcVglGhHWtRlGiCODhNgoi5LMvQ5ihNcRSoJKFhDKYesxK8OEpVknRKRsYcjzz9PBYWu3ztxn/n8NFF2ukExo2inOBdl9IXICXGtDFK+P73vsn3bj2AtYqRkQlGRhtY8RxdWeHw3CF277uJJBFGm01u/M51zPa6POQhD2XT+AY6Y47JjZ604UldSrutUFbIikFouxCmsoM9kpcoAVOJlYJA3FVZtoqyLCiLEu9AqaQSWHgSgaZvgFMICb0sw0mOKGHb9ml2nfFT7NlzgsWZo2zatJ3FwqNlwPU33MIX//2bzHaXUTrBF57bDs3Ry8rQLgJFUSo6qaHTGcHmHrEW53OctaAEV4knIFSzUVqjTJiID60MhDLPURqShsGoBGt9sOXq9m4SMr2TqiVwK03BKWYOL/BX/++TtBLHpo0bSHSC85oih0FeVZRSFhqOQ0uzZG2L10cZbQvZQFNiqgpKlZheezxddm7ewPiZOzh4XNh3dJb+0iHEWcSXeO1xYsitxYsfBhVCJrLG+XLYjkuLVBniCp0oUDpU9FGh0mbTGPouQXSDxCksAs6xPLPCV2e/SiMR2mmbpNGk1VaUFrK8RPIC8JWoRWGdx1u/2jrCO5R4tBbSpqadNCiyhMz/ONhzMhQnVQWFbieMX5O1QP2MWl1WB3RqkU/4WNZ+ZVgZYe0mh8GtYc+TsM5wO2vWCfvUw0CSk6ryauWzrI3ErhUMUW9aQqDPV3/Dao0cS2oRqNS/r1nqLKaqTjSMH1Wrqqq6bBBLhWQMVN3aRPDekaYp7XYzVJZwlkYztLIuCovRQlL5NVor0lQjpcPZkFhSWiE1CZ2pSU7MzGHS0F47y0ucg067RWpgYXmZ7098laWpgzx84fl03KY7XrsYbIhEIpGTQi0IOhncyZt8OKD6d1HCoc43KPUAL0K3n9Ff6WFtSbOV4K3HllUFShvm3pwvcc5WLbI0tgjtpzdu3ITxjtmFRQpbVtY0FIVnz57DKF2/b0MCIhLaodZV0EFIk4Qk0UGQLoJGBeGPE8Q7clsy2ggHEUwHj8XhVAlJyUhnhJHWKKVdYW5pkXZ7lM74BINeP8wLeosQhDjOlhw9dphef4BzkCQpGzeOM9ZpM7+8wlJvmcWFWazzbNi4kePHj9PPMlqjHSbGNzDebtLLFvFqgFKORiNFK0We+eo4VxNHfSVKUahVQTWrQiXvqiRSERSGunmeRmiYhFQ3UaqBIBQ2A+9odVLOPecsVpYdRw8fI1GK4zPLIIp8ucfBQzMs9/oIYLRhkNkgIKvsJ+cV2kOj2UArQyE+VBdyDi+WVfF1uG511UeobamqimatXtK6Sn6tbaSqSlBte1WVKUPiB8wenWfu6CxpIyHRpvKhgvhHBLRRiHbML86jtGFlbh5jChqppqirDSmA4LP0VrpsGB1l1xk7KaXFvkNzLC7OImKRyi8SEVwtRqpE8976cL491FUvtVFVZTDCfHotrFdglKHdSBCvyUSDs8NqoN5D0e9RULUP1glKK4whCNGtHdq2msq29H7VrK7n11UQXo20GhgMgx+HpIfIjy2iHF/d9H72jX6ZF+37KNP5OSd7SJFIJBL5McHjuHb6vQzM/MkeSiQSuRe42yKltdk2QJUFX02K19EAtTr1Xrf1CHP2lcNMyEivS9pqHdqZhKwaF8oAs+okoVQlJFKV4+iRsgokVA6orrKFkdphDMIkcXWFJo24kFVljEZpQVdZKnUWj9SZPd6tiomsx6swGOdcaLtuhqGUynEMWVfOhX7d1nmUtdWkhgIMQsiKpmo/oQQQhbOhzUKSKFrNFuILvJRo02B8ZJSyyFBGaLcbOO9ZWFim0WxikjS0uxNPK2lgGgprSkqEW2/dz9atm9gw3qE5asgy4ciROYrCMbF5O42kw03fm0E9ZIqRUxxGV+eYWiBWXcZ7fj9FIpFI5B6yVii6tnXPSaGqSFI1rhr+V70uwuS/LegvL1AOBpSqYKw9QqNl6ORtbNkjz0u+8e//TlGWOO/YunWK5eUu+UAxsmEjFz/qEXz9365loafJ8pDtrEyDwUDRG6wg2Koaj6MsPanWpK0Ua4O4OW0aprdsoGEUjXaLpeUuoqG33Cfrlxydn2HZdmk2mySAlZKlrEvmuywXi5TSxyQ5SbqMLRZoaMUTHnsxrkj59vU30C96FPkA6wqcE27dt5vJ8TEaqkWjkXDOeWfzqPPPpd/r8sWvf5XDRw4wGHSZ3r6DPoprrvkyAzvghuuvY/P0ZlI8R46fYJDP0Wo1aLUTBit93JpWExACIs760PZKZE17sar0vwQxl/OCrqq0eBfslzQxnLXrdE6ZPgelWxw8uI/dh2/D0+XRT3kMDz/robjyW5zoGA7sX+ZTn/43nnrRaczs2c/K0RWKvGBqfAJdlhxfmgexQfgtCiFlZGSE7dtPYbKxmRu/f4Djc0fwpcVJaEFV21KCxyQJkgRxUGJ01Y6hCppYjygHCIletQ29CpWytPYkDY9QYF2COOgOCvoGFhaOhIxrobL9KvMv0aRty8c/8XFUKZjSgvKkDQjdc0twwd50856WJDz7+c/mwkc+ju8cWOBjn/xn9vdOINaABPu1KBxgq3bFCl+J9J1bI6I3MD42inLQ63ZD9rFWQSBnEibGR3jErtM5dKzHrUdnKD04DIVWGCckUpCXwqBfoo3BGIPSgkhBaUvEV6J6Dc56xMlQQ+jEoXWCGMWmyXEeccYZoNt8d2H5fnpQ3BNWQ6eK1bbQNXUlorCmrAZo1giCwodDOWXVLm5VXDQMI675yjCwRUieUKKqzPzVykrDLQgM21DXlZKqB6BO1vg91aGsSdUI2/er45YqY70OaopQtWtWw4pL687JMImjOkPD5Im6SsCqsEmvOUaNImmk1T4chS1JE4MyoS6B1hplDP1Bjq4qNSk0pQ1Vy0aaKU4suRUOHz1Op9UgTVN0g9D6owDEgQaTtFhczGmmlsXJY3x/5F+5YOXnSSRhWN2KO/oTUboUiUQi9y2roqDq3XOS/Im1b2yvPKEsYV0NB0rd50Tr5lXzV0rEFpTWoazCICRJgrMOhWelu8LySli72QwVxr3zKK0ZHR+h7HUJ3YZ1JfbQaGUq8XsJ1C3CguApScN40AlooTXSotNqhEQIa0P119JiCwdG08t6THTGSTB4HL2sT7/oQyXeyQqF+IJetoy3js1Tk0yOb2RmbpH82IDCZkGEg8K5AcZApzNKkQsTGyfYNr0ZjXB0eZ6Z2RmKfIDXmrkVT7bcRcSyvLjICXWcNNUUpcW5IsyzSoOiLCld1fKuth+QYeUcKqFP7UesrX5flykK1YgcKBXs16kxztx5Lt4nFNmAPfv30x10GZmapDPeJFtZZHrzJCZtMTvTZ6TTpKU8Ps+Q0tFqtZnqdDgxP4fPskrAD0onNJoJE1PjbN14CieOLnL4xFGcC6JuVDW+epxVhStVJQvoyugLxxdsutrKUkhoSVfbjUpQxletbV01FxvOTpkXDIZCHVXdO2FbyghHDh7m0G1HSXVoPVjVH8J5t5osoDV53zF5yhZ2nHoaViXkHgaDRQZOgQ83fGjr64bCq6GNNxS1B/u00WzQSBoMev0gRNfVnLYO1Y22n7KFxBn2HZ6h8B5RCldN5OpqDt2FdJfh374fznWH8yGV2L3uCjCsHBrUYKSNhNO2T7NxYorD8w9kfyLyE4GC460b+Zdtb+IXDvxfUmmf7BFFIpFI5AGGo0STrKu4109muXHyk3FyKRL5CeFui5SqvgrDykd14AyqrAutQa9OyKtKYLR2vboqQ0iWVkPnTqo2CFrqSfpqot5UDpuo9etV7d/qykshC6gSQjldZUaFYJ7WiiQN1ZAUIcvEiQ1BB1E4F3qGe6+qnuyrUypeJLTRICwX0cPsfhEf9qk02iQIqqoGFSoClEWB9SFrSXRwBpUKQTpjQqZWyOpXNFuGRnOErMhY7ncpfBMlglMFbQ1Ow8AqBrZEmwJvNaiC0WabnVu3ksmAA8cWuXnvQW47eITpzRsxuWVpRSiL4GTPrpwgmeswyDVn7dpGL09YmO+xefMmRpoGEarcLqrcbYbXdh3qdj+syWpfjezcNXWQZ913b/+ttVnzkUgk8hOHcPtH6/CTtZOF1CJcWJUG/RDWpsgyfJxWi9QdVltdsKZ8PuG9ZxGsgFGQsvpcFurqgx7vB5RFznJW4OwsSIbzqhKqlHR7RdApK8vs3DzGpDhVMJAuxxaOUEpJ2kgQLzQabbZu30p/xTG7MIeVLloJ7fYIS0srJMZgjGJkdJxBXqAblqnpcTaMtrFeozHMLy3RX+6T5Q5ZmOfQsUNM7pwgd56DM/vZs38fQmjZOhh0+dK//xtz8zPMzCxz1s5z2LZhijzzNBINyuEKS+lA4UD32XbGWWxqn85SAQ976ENIteHE/GGWl49isyXyfpdbbllArCWxoBONW3H053tY8WRlHykGNJo5vX5J3nfYql+bBqgCCN6G1mRpmgKKoiiAKuhiNJQ+nGMPZVnixdNsNZnYOMaznvcMNm/ehWk0uPZfNUfmj7GUJVx/0352X/ddtk2dxn994bMYFCN863u30tw4yfgpo7gbFzBGcfFjH83i4YMs3bCMoqDZaTM2OoFuNti6Y5xnP+syRu00Rw7/DTMzJ9CicGLwvsStbXfmBKNBGVNlQIeqP86GGXmpghBKhDRR6ErQVGdD61QjeHJnwbogZiodWekYFA6lDalJ0CIhsIEgXc/CkS7iFY1OQkMnFIWlLC22DG12tVGkouiMjzO1cwuZLthx+hiPOG8TSyeazGRV9ry14HXV7riq1lQFcnwtg1EKk2jGxkboLa4AniRJaDQNRhmUSWlsaLFxxyRHjy2ALRHCtVYIrvQMrK0sbEWwxDyIRpxCXIJIidUWpQx4hbUeJZAkJpxfIE00m3dM8eifPp+mb7P05et++LPiJLJaqagOKq2xC4cPLVUFWavEgqEaKWxh7UNs+DyVehtrBDEC6LU2ar3X9U3m6q8OkzK8GhYbrZ/HdfWh2oepg30MfZpVcdFQNBWiT2HbSlh1LNaMRMJotNJr9Eoh+ObcapDO1/5VLZjSqkrAqAVOQpomWGcpbVndu4J1RXjOotBJigiU3lW+k6GZKsZGRrCi6C52sVaRZzmjIx2M06z0CrQYtIZetkIxU2JME7uhTekMN/X+HdvWnGMfi5EW3ms65SSJ1sPDWSvFCqfoB0iY7sqfULf/cY1YrN7KnTgP0Z+IRCI/icjtn5Oy7p/hu27dQtZ8+IOW/8DFat0+7jCu6r2HgoFeZu/INXhr2Jo9jA1+GwbNgZFrKUwPCML7oixxzuGsZ9ArUKoIU3tVdR0REB+EIv1BRrPRwIvDupL5pTkaSmESQxpU60xv3kRqmszOLtIfrICyJEmCtSXWObz3jI6PA5os65E0DO2RJgqNKgy2cORFUSUNeBYXF9g4vhGvE5a6C8zOz1OURRCWA0uLKxR5RlGUjHTG6XRGKH1OlvXw3gZFiFM4AW08pqHYfspWssLQGmljraPbX2FpZR5nM7wvKXNL3l9B+aoyKQlGJRSFw1qPsw5jFEWRU5Y2VJevWpIN29hWlTWTxGCMXrVxalsGhVhXVaoK4hutg+h589ZpOpMdkmZKd8HSaECaw8yxeVbm59k4PslDzn8Ync4oR44vkdk+aSuB1CIUNNvjpK0GWikMCm0Mk1PjJEkDj+OMnWcwPbGFwbLHqBmc0kOBkvi6WqRe47+q4b2nagHWGpG6eI9ZYxcFjXdto1XzxbLaNtg7T+mqdr5KYVS1X6laAnoQ73CJqhJbw3fqtnUARkOSaApdcHj2KK3OKCMjjvF2QpFpvAtzzHVVz0r+XsupwrLaZ9eh4n+R56FDQKJpNjVBcqWxCpayLtIrEbHUiqsEcF5CxTFktZpUbXVJ/V9lU1d2lq+ESsbUQvww9600SFPQbUixd/5AiETuTRTcOPlJ/kYSHjfz67T8BIlvMlWcgWJtMkkkEolEHkwIwlJ6iC9u+Z80/CgPX3gB2wY/hULxpc1/SDc5cbKHGIlE7iXufru3qgd7yHqWOuEmODrV5Du+chAr4ZBWdblZWJ2ern5SlXM5DL6Gyf7gLBOETaJC1om3VTZUNdXifdXyJAQRRBRefBASWRCtUaquXqSDg+ZCBo2o4MR558AFL2xtcCC0VPGhR3pVEcATfhcfJvW10YivnTwZlvGlGldpoSzd8NyJB9FJ0HapIFpK01AFQvCgHWiFSQ2DLKe0vvanGfeeZtpgfLyNNgndbi+US1YJzjiyJMcWjiLvgU5xHqaygs7YFLPzB+moFu12wlJvge7eLlOTG7n1Vk2SnM/Soqc9Mkan0aEEZlb6pHnB9IYJrFGIFxIFVnlM1XhiVZO0ei2DTyvrfg4rrQ1HrJ1cuFuh9kgkEvmJZK1AyQMqzF7iqnZDBo+q3l1eQttRJaCUR7AIBsHgxGGUQhPEHAo/bHe6PkTB7ZatXV6NafiTI9SOMZzoLjLfXWYkabF9aoqWDoIZr6B0lmMzsywvd7F5icLjM6Hf61IWJbYssc6SJikGTT/LsaqJx1MWJdnsLLceP0I63qbdG3Dazl0ko20ef/HFrMwN+Pznv8zscgnKkQ0s3loGtmBk01Ye8bjHcODm75O5FZrtFJUaUp/QaDYQ5ylyh1YemxccmZtl26Z5jh+5jZv372FhcRHvhZHRDZSDnJX5GYq8izZNdp1+KrMrM9x0824OHt1PMejT0JrcgsXTcIqWbnDaOTu4+cBhbtpzPUuLCxw7doSZEycosgG2HKByG4wckyCi2HbaqYx3Jjmwfx9lkeGNRhuFLQQ8lchGEBWCL85RBTEMjXYT5T1KC4XzKEJmuWiPFUGyqrKJVnQ6TTZv28G+w7PsO7HApk1tbtp3E6g+iZR89+vfZNeuTTzuyU9hfMM0LZthzHG+et0Bju89TGlXcM7y71+7DttbwXkFeoQzTj+DZzz9Em7Zd4BTTtnGeaedw/Jsj/GxlLTVwOsEbR1FAalKUAkgBpRBYbE2BE6ShCAQp8pkH7ZW8BijaTdTnHdBTOQAG1rnWmdRKJzSeOfIB4JXQpq4cN/6IBx3ziGiEReyol0BubKUZWhnUZXARCmDMrCyssAHr/owY+NjTG+epOxmNBohQ99nCc750PpN/PCvRLzH2WATa63QScjYP3L4OIij1WqyYUObHVs30O0nHJtb5OihGf724DG0TyDVoZqnF5wVbGFxrqyCSQbrS3wlFVdrRFyhxVhdNWpVXGOdJUmCHXvL7v18tMyZao2ycHzpP/iUuu+oExeG4ZlhNVaGtuTQrwiRp/B8U6tpDOuF7axWUqrFTKy2p6iXiXikqrKgalFm5a+stppbI1oSgp9Qf6SrHHpfBXDWDGEoKpXK4h0OtBZFVcEhxVBFU+9X6i8R2q2ZOuGDKvO+qqSkfAikoUPArq7sZVRVVTaMGuds9a/H2jLsXYOIIk0MRiuSNKUsFaW3gEeUZyXvQV0JTRkcVStr1aAsLIkSdGqwzmPdgFbTcfToIXq9DTTSEQ6OXMfS2M04NEvLORvYzM7WeXTsNiayU2nSQJFUFdXUUJA2vA+GJ3TdmV1zxW/vT9xx7UgkEnmwIoBVBd3kOIMk2ACKVUGGI4gvjKrT0aoqfWicCJP5DlqqQyJNan3tahIat3v03h1/QlhKD3PD5CdZkBMslEskyec5S13Mef4SjrS+jcfjROj2+/QGPbyzKB1E9y7zDPJBVVU0iCiarTQIOJTGKalE/kK322VsbBTEs2HjJpqdNmmzwcbxMfr9Pv0BOFG4wuGtC0kWFjaMjWLE43xOmhqc9xi1+g4PlSzD73mRs9RfwmcZ80uLZFmOF6HVGkWTkPWLUHUTxfjYCFne4/jcDCtLfbIswygFup7vNGgfhL/dbIETs4dCG2dbkg+qNsriqqRKQHk0is5oix3bT+PYseMsLS8iUr/fg6WhVd3era4aSbgDFKgkJHKmCkpXCZkqe0MnGl/66vcgfJ+e3khZKm783i2MT7aZn5mnnw8Q5fBFiU8SWhMtlgcDlnoDVnrzzC/Oc1uWU/RyBKG3tMTKrMeLR3SDZqfDeeefj7UFRWnZMDGNKI9JLWmqsKLDfKqjqvhINTdbV8DywT/SayTuQphzFAWExIIEFeZrcfi6oL+vEl5FBX9LPL4MNoU24X6Vqt1bqOJUz15LmG9WVRJJ/bdB1dZaBXHX/r2H2KcO0WwlNNMEV4aK+SIG6wTErlaHorJJq0lxVVdLAoqsQERIUkOjlbJ1ywSpbnPk+AI2G3DsyDyaqipYJcD3vqqUJPXcNMO58uD3rHY1WDW9q+q2qhLRiw994MSRDTzfv+UQ+5snSO5M+R2J3AeIclw/9VG+M/kJFIpU2mzrP5zTeo9j++ARnNF9Ik03RkM6J3uokUgk8hOJIBS6y9H2DSw0DvxI39VoTu9eQsOP0nTjaPQP/9LdGM+hzjf4q9NfzHxjHyB8bdMHePjCC3j07Cv4xsY/Q1RsSxuJ/KRwt0VKxpjgVMPqZP6a+XwnoSWar7RISim8csMJ/To7HggVl4aZx3VLhCqjuMoODjGGypnUMqxSVDtdqvIcQzs4Peyf7X3IcAmbEZTyqy3jqv0FkVHILdHVLIT4EAQJTnAQ6NTb8L7uaV45dPUEQAgDIBLayYUSwVUmioTAgqqDJkm1L1MFN7SvEqk1g35BnpeYBGzu8NaTNlKUhqX5glbD02w6Rsc7TEyM0NNdiiKnKIT9tx0JmUkqXAOrU26bW4SZRbwIeSLoRhvRDazAUm+e7363x4G9s+w6YxcjnRL8JK3OBPv3H2DEKUabDTKVkmc5DSN45WinKe1OJ5QaHt4V9XWobgS1ps86VRBi7cTVmnmu1S2s+7haeLvAVSQSifzEsRpszQhtrlIVsiERhVdCTsZytozRTdqNERIUKaFNaiklC9kCDZMy3gjtBxBdCYCplcC3e5zeaaRhOJ6qGQMeReEd3eVFFuZO0DWG6ZEm7eYYKI0Hlnt9Dhw7xHJ/Hm8ytm6b5JSNm7npW9+h7xwT4+PMLS+jGw1Sk5LlA1xeMHAWn4f38qFbD5I4aLc2cuGjnsB3brqJb91wE8pnLC4dpcgLbCVotqIpCk//0AL9a66l4TJ0Au1Oip7soDxYVxKqJFmM1niXc/jI9xg1fY4dPM6x+UXyLOeU087mgrMv5MDe3XQX5ti84zS0K1nsz3HDl77BzNwSS8sDbJbRGknRqiSlQZq0GBQZ13z5s3x/zxHKMkdpRZ71ybMMb31QJbtQ8QhV0m7A0376QnymmJ87Sn+g8aRhrFX2ap1Z7TyhFYQ4lAadqGqCHrTX4AStDUog1QafKIqGJfWKBMsjH3keF1zwCL7ylW+z//AxnF0mGwi+yLFVOzjvhG9+66tc86WvUxQ9lpaWWOr2KLolXhTbTt3KxnSUQ8t9RlpTqHaLDTvPw46PMn3OViY3bOHm44eZPXgbhczRaYNDY1VKUt2/46MNNCmL3RBwAYFEB+FRdV/qqm2v1sFucs5TFLZqRRFa2poqEKBVsJW8hyIPGcxpM0GbEECy1lJ6h0hl++EqcY/GGINTDlEaZSS0rdLgXElvJWN+bh+iodlMaCZh3GlTEBKy3IUqVVXWdAgsBbEHAsqYILYvQztC1RBUq8X4tnGe+ORH8e/X7Oa2YzPYQUnhPCIlpqoq5ZzHuhBskcrm9N4NWwWjFF5KlChEQuXNNNEoUXgr1XG7Kjji8bmQFSXz83toaE3L/AiFUu9v1OqD6fZtaIbVF+B2j6sqYLQ+xkJdYWldZSZVf0mtbqduQSYh0WJV/7S2ct2qaxPGWPko9VBqn0MPPZYgGHJu/b7XBKGG1WWrIYUAVXjSqmpnw2J5a/4/XPcqEOdrnyNsWvsQ6Awtq0MpLeccSmls6dAmPFfEhV0pA+Igdw6rQ+DLeWg0EpQSXOmwtqSs/v501VLaKsVKnqOyHKMUosFJyOhHQV5kFIUlHzgmxnO8DOi3GkyMjZOVKxwpZ+i2boNmkzTpMOI2MNU/na35OWxsnIrRpvIFh1efNb8Mr+nwPqmCeWsv6+oKPyhkHolEIj+hVA8+qzOOt77Hvs6/s6hm0InF1IJmpXBYBuWA0jrazQ6JTkhCCgQez8BlUKSMNSY4JXs4u7pPIvHNdc/S8B6sJdLyA6dpBMHpkpvH/4llPV8JbwoKO+C2ka/jW3OUegCE5MFuv8cg6+N9QdrUbNmygbljM+QZjI6M0M8G5NbhRHDVHJz1DucEJYq8l2MHOYqE6VPGSJVw+NBRZhrHWVpYxJceqVpmKZ3gnUMKz8F9B2kmGq2DDzExMYIxIUlSvA3ijlBunDLvsrR4FEqh3x9QFCWNVoedp54OZcn+so9ujdBOUwqbcejIEllWkGUlRVGgtMIoj1EJRhmsePYf2MfSYh/rBV1Vai9tEd7phF0bpRAVBOubNo4z0k4QX4YkTq2DAKhqMVsLVOpkyrqao67ENCChwmIlXqmrOmpR+Or9r8QxOTnG6adt4/ChGZYXlpg7cbyqHFm3igs20uL8PHMn5ijykJDgHFVSALRGRzlt+zZmjs7iBNppC5c0OXhiGejTHmlyy+H92KxPd2EJpS1GB9GcktD2uNNMGGm2WO7l5GVB7ajWdl8QYYfj1krVxYKwLvgQQt3GTCqBNEPBv3XVnKWuknskHN+wOv/ayp2oVfuIYJNpvTqX7ayn9ANEhDI39KvE1zA/DVrAuWAD1mKitUVD1147nB+OFwPN0TblclFV4wrn1nmPI7Q6VNV4hpe1VqfBcD42JFvUdm5Vzb+utuRqMV4lXQwHiLWOPCurtnmRyP2EAq9Ce05Hwb6xL7Nv7Mso0YzYTWzKz+Gc5Ut5yNKz2Jydh/5RGoNEIpFI5C4ZmAW+M/k3XLvp/cw191Ca/o+2AYERO00iLR6+8Hyecvx3aLmJetbsHlHoLp/a8VvMN28dLsvNCt/a8BccHPk6AzN/j7cdiUQeePxIVl2dnbF2Qn+1chJ1N7dqQt8PJ5WDQ7bGE5PKKa4mOFTtUQ2zq+u2M6uBCh88uyAEqh1S8bhKOBW6v6lKQOQxVTu4OghRV25SVWBMVX3svUgo06w8zlUNN5QJQUJ8NdOtwREcRgNGG4zWVYBIMFX5ZK0N3oUAiKqjDrWwygkoT6o1nZEW3hesLK+gSBCvaTR0VcjXIChsYfF4lG4gVuOsIyuWGR1r02l3aDcti0sZtlSkjQaJSXDWURYZThlapslYM8WKo7Qhc8cYyAcWqxzt1jL9/ATf+36PmbkNnHvmdk7bPsHxA8e4Zc9eprfvZGy8g/dCvjKgN7/C1BbD6GibUDx4TUioDhJ5QZTHVRMjqdFrHNu1UYXq3lmdGwnrrS0vEolEIj/JCKA8VhSHl5bQCUw1NVme0WmP4iiZ785xYm4WbTTTk9NMtieZaEyg8Fjp0c0XUCZFp5pR1SYhoa4eKEoQdCVpgmEs+K58hOHrVtO3lmOLc8x253G6wHnPUt5ltDUKKlSr6fcH9FeWKHo9nM0Q7zh+/AS9rERhGBvpsJz1Wc5yimwF5R1NDdoLVjzeKvxsD+Mc6WljLOXHmTt6KzMnlljqLyKF0EoajIyO0EpGWOlnaNfHFwMWDx9irN3GK2G03aDV1Hhn6a70EVeQpo6ib/EK/GCZE0dvo9cryPIB/cwxsXGanTum8MU4x1fa7HzYmSzs38/ufTcjYlDisUWX3iBjUBhGRptsnJxAGc1thw6xPLtCdyGj0WzRSjoUZYHNHeIcyghGEeyTQrBa8/2b93L44BEOHT6AtQVJM8E6HybMTah84pwLlXuUgBYaach0L0qLFrC2av3kPb7WQpQOUeH9OTY+Qafd4abrb+LI4ePkvR7iLS4Pmd5KK9LUINZx/Mit9FYG9FcsWe4AQ2o0jcZGHvqQixhRhjIZ5ZJHXMBke5zvHu7xl1d9Ed84TntE4VyO63axfYt1HoULgRwNjWbKw846k9m5BbrZHEgSqoEZA6rucRWqX2ogMQpIEHxoY6YJ7QKVxqtQISpRwS4rsjJUFEsUztdiczusqKmVQtfCcG3QJqXVGiFRQt8XoC1pI6WwFu8cvW6GczlaJUiuyOhjkkrILgrvLd6HijTeBWGKTjTGBOE+hMxj5z2CJzEJiVMsznb51D99gf6iwmiN0QZbhmscxCahYqd34KxbJ8rRQ8PVAjmKIGrSGMQ5RBTGgKu+kyQpTnwIqBECMoWC8oHcnqH2H9bYg6zxK4aLhqvXFYdY8/kaMYsKQcrbf7kWG9U+CjC0VWtfZihmGgqIWBcwCl/Sw915Eaq41JrgV6U7Qlbbp/hKVDX0Q6oqSEM1Tdi2Vgalq+QKBcqsCvxD8oSrMv+pd1oF5sKwTKLx3oUAKLqqUhW8qBC8DPeviEebJIg5S4+r2sQ0GimtVkKWl5U/pcOGvUeqv8fEGJLE4LzDuRIRjdEahwsVJkyJSiwrKxmNtI0tCzZMjtNd7tLt9RmbSElGCzKOc6hzlAPZV9jCeZxVPpEN5Q7WSszqSxgqPITnXcmAlumsz8ZbdzOsisPu9PV2F5H023scMQwXiUR+/FAUuseNk59kprmXbl4wKAvGOw0ymw8rvWR5n14/wzpL1uzTSluMdyZBaZyUlHZA5lawMmDQWWC+sZeHLD+TifK04ZyPkqrQCqva4bt6cCpgpnkLC+YoK/0eK70lRFlMosjcgKXkeBDfALYsKYsC5VwQRxSOI4ePkg9yrISKkbUgOy8s4j2JCWJ3XzW0woG3HpUIuV1hcXmZojegtxRau6U6oWFSxkYnKArHyqCHkOOlQNFAicZbjy0t1oItSqy1aE31voRGaiiyDF+u2n7Og3UZruijtEe0kJcZRd7HS2hvJq6PiMUWQNMwPjEaqrSWBYUNYvjEJIy0xsjzglJsqLCrBK1kKJJyAgcPHue2246TDfp4cSRJgq9sBF1PpalVwYooIdHhqpWlQ6pq8HWVnWBOCeKqLHQvJGnKyOgEx47MMju7hPcu2AA22Nq10NwoRVnkeGexpacswjZMommlo0xOTtNpj5O0B+w67RS2jI2SOc2NN9/G8dnj6LTAGBBbVhVQq/lfL1Bd106njfKhxq/SQVwjqhL4VEmS3rswF6mDDa2MHt6zvradqNvlhl9roVZdwb+ekAztyQ0QKmIpBK80ShtM0sCQkLkSpSyNZoL3YG0Z/IRQGhbxCq8UqGAjiTBMdBjao5Xg2hg9NFHqCk6iqMRHGpc59t96GHEm+DlaB5+jUuyL80Pb2fvV46iF9EKo1iTKhXNTnTfvBB8mt1f/huuTwxoRG3AXllUkcr8iytNNT9BNT7B/5Bqu3voOzlm+lCce//9xWv8xPzAILgiZWaLpxqqZsUgkEomspZvM8LGdL+OWsX9ZDez/qCjopTMAfHnzH7F37GqefehKdvYed4+FSt+b+AcOd667w3KnS461v3vPxhmJRB6w3G2RkrUh4FG3JRDxVbWkuhrRmhYNYcU16cGrQpUQl60dojBpX7dxgNWWa8Gh8+v8JV850Eqp1eCC+KrVm1p1uCvnUKuqlYh1eIIjKKiQPeXrbJKwn1pUFVq91cESPyyfjAQnOBxiWmWghACjqUoEl2WJ1gawISPe18KpkPLcaBjEe4o8R3AURRmcfG3IC4XzhkYzQbQjzy3eQZJYyiI4zcYZVlzOIMnZMDXO1ERCt9evqgs48rLAoNENjU88mbNYD8YVaK2xFsQXjLQTyiKn2+vSSkc4e8cumiojbY0wfs5ZDPolRhe0mg1QCa1mh7JosmxzesuO6bERdH0tURRVH3tEaKSavMjoD/pMjo/STNIqUGPCZMBQkBaETaa+VyohWeVy3+VLbBjEqu+oWG0pEon8OKKgxDPXz+iu9NkyPYHogjIpWRjMsbg0w+LiEivLAxqJZrC4RL55O+mWBtZlLKwcY2Z+HmWaFIVlw8gYU40xGqqJRVOIpyxX6KQtQsM1c5fB2jVDohCYXVji4G0HmO8d57Qd0zRVQqKCAMpKyeLKMvsP7sO7AeOdhF5fc+TgUYp+gXhIU8NK3iUvC1zpq6xaT+lCSXyjg00RsjUdeX+OL33xX1mZ60FWoKwlSVLGOi3OOuMcfurcC/jCv3+DW4/upSwKREowHRINRV5w/Mh8JdItMQoslrKEpJHS0A36vZysKHGuQHLHgb17aBc9jh87Tm++yzeuuYYmHpWAdQn9lRWwBToREmVIR8d4+GMeyS033EB/UNLPCxqp4aKHP5K2nuSb3/0mWZ7hfY73VbDfhQqMSwPP5z73JfJ8gEk8adpACsGWtqoQ5If2hPUeTGjdpBDKvMQ6T2KCANpatyp08B6p2koobTj1/As474LH8LUvXIv3nslOQl9g64ZNlKIYZF3Ksk9ZFphEI0BhHYUtaTaEM856CBec8xjOPv98bt19M7seeiaPfvyjGG8njO+b4dbvfZvvH1xAMSA1Fmctpber1RWdQ4swsMKN+/YxyAbkyjAy2g7tp5SEQAqqOg5IUw3iwxvfBMG1r4IRiKcsLU6HbGJj1lbjFDRgfArG4JVHKYeXsso612iToNMmExNbWJ7roejSaLUYmxhlaaFLnmc4MgSDtUEopozCKY+yjrLwVdChqspEyMBPkoQ01XipBEcShCGJMRiTUjrorziKgdDt2ur6hhYb4kPVmrUBBVW1p6iF+iIW70qkEoAkSQICzpphYMaLIFUbZY8PFT61DKvtrGmg9YDED+24KsI5THqobDpV+xmrApTapajXW2sirmbUr36mqgDQUKhUt0obxmPq9sVDxVG17Wqf3g8rZqFXty1utT10SNJYbc8MVYBJ/OoAheHVGLbpkxB+q7PYh8dTZ7UjVZa+rp4RtdCqCrBpRZIkOG8pitp/qj+vgo8uiNlUAlL6UKHLhQQDow3amBCILXOazZRmM8XqkqJ02CJsQ6PwiVAowRahJFOi1bDihIinkWjyzLGi+oyPTjHZaaG0wxYFk5Pj4FVocSlBNCsKkhHDgfx6DsteLkiezBnZYzGSAgTBHZ5uepxBY45j6hZO2L3sSB7CqeUjGLdbUdK4nYdQBRvXLxnGz6OXEIlEfmJRwm2j1zLb3MOgLOlnGSPtFuBRRihtQZFlFEVGkVvwkFmHawQ7WylNXvbI81ChuygcZavEpvuwkx/nYQsvoFVsw7kCozRNk1aC0bt+siog08vsH7mWXp7RXV6hP+jSbKdMjY0iKkWhqjZvPWbn51nprdBoKEpR5NaSZ0XV5hasWHIb5sxqO8D54FfU9oOvKhgq7zh+8DAeja6Eq1oZ0jRlZGSUc88+i9mZObLDA/JK7OHEo02oNtNd6Q+r0oROWqGSplZVFUzrsS5U8BRnKbMB83OzKC/k/ZJ8aTkIg1KNF3CFx/lQ9TJJNEoltEdGcVkfWzqsC7bJ1i3b2Da9nQMHD5GVg9DyzNvquHz1mlP0e73QCk4FQb1zbnjsnspGIByLKKrqOFX7L+uH7WND8mR1waRS51R2SDI6ytjmrRRLy2ijGE9TBjZnw4YNJF7TzQdkWS+0fROD0mbYtk8pYcPkRs7e9RBGx8fp97qMbxhh4/QUrTRFlSVjo8L8gpBlJWGGNvgHokLyBlXFfEExu7hMokLFVt0wGIJvFcRMVbs0QgIBUm3HK4ypBWIhwSMsD/aSVvVdGkRc2mi01WjTAOMpra3mlIOdpiqRUpo0wZvwt6UVSico8ZVdXlbGaJW8SzVnXFWWkuHyev652q5S1Am/ddUzTRAj+crvSHVCUVhKW1Z2YSjN5KvW1kPfqE4IritOClUyRzifSpuqSpgZ2r9Si/yUrNpMlQhf1TZ4JPJAQ0Gp+tw4+bccGPkKj5/5TZ5w4rdIpY1C4XF4VXK0/R1mWt9n7+jVHOp8k7NWnsJPLfwXtg0eQSLNexw0j0QikZ8kBM+XN/8Rt4z987332ldwpPNt/ur0X+KF+z/Cjt6j0Jgf6bm7mB7ky5v/KLZzi0QeRNxtkZIfOmrh99rREgGMqaomrRbnV1XJ2GFidF3Wts6WHiqZqlmAqsSxElBUGfKyKmYJfptesz2G+1NQVTAKNYDFS2jBIEHM5KwfOotIyEDRhNLHSAj8iciwLRy4IFTyVTa0pnJswzE5W+KQYbngkPhl8U5I09BCwZWCE4cQygGHYJMmz3N6vYIkNWhtEAcmUagkwYsmKzIarSqz2qpQGriaqAgXS8izEu8NG6aaTEx0OHJsgW7PY1QIdBUCmdU0dZtGY4RNGyYZG22w78gRbOnIdcaiVyjT4IKHbQV/nPmFjMXDB5nevIHJyY3gPQeOHyQvoN+zbJrcyLGZOcocGmedxsap0WFcp2EMzoB1jkI8/WzAwUMHcVs30W62SUxCa2SMRK1Wt4IqR0pCCWRUmKxy4mnou5/hcPtAXHQ1IpHIjwMeoV9ajs3OkpqUst9j0S5gJae73CfPBxQ2B+XIBp6y9ByZOcpSNqCf9Wk0BVsqiuWcrD9Ht91DbRQ2j2/GesXcoIctF0gmNmJUC11VIVwN0d8OBYiw0Btw8MhRlhbnKRKLE6H0FpqGmcEiB48dYs/ePRw5ehRJHKOpUEpJmeX4wmJ9SSNtstDPQvayMggapwx5YVHiMBLaXSEeo6A7l6FKw2gzYWRikuNHl3FaozsdxndsQ08kOHooV6JdCG5YcbQTw2CQkc1meK8wiUYngleKRGlUahkMejgHWe4Z9DIQT2IGbD11G0dmjpF1l8mKnJ7xkIDymjIrcHiaaYLSikG34Jv/fgODlSW8GKwt2HnamTzh8Y9l9tg8390Lugu2EJy1WG+rNkYaY1J0mdNQNpwHa4P4xTqshOpLSWpwYrHOkhgTqul4MGIoC0epLM4KeKqAShAaKB2qM5Yi7D1yjKXPfZZ8cZ7JEcNYZ5RivMHjLriQvd/fzZEZWFjOMInHK4NXhtI7nHNsmJjmeZf9PGeeeRY37rmZ/bNHeMozfoZGu8HBuTl27/8ePlmk2RIG3ZIiD7aNaBtsKULVp8RorBfywnHKxs3M9DO89pUQRyitDa05TKiI4sXjXGjF5p3HicOkDUQJzjq8czjrgvhbdJXhrDENGE87jJoJGmOjnJg5wmJ3OdwDStFsNNCmQac1grOC8wlJMkVRZMzNZiSqgVGCldAiS5QFZYEg5lZewveGRY4ElAfReB/a0smayXsvQssYUm2goXCJJ0XhbUZZepI0wSgdggFKYavKNt4HOxPWZHc7HQJkeJQWmq2EDRtGWVqAlX6OlzIET5Sgaxu8qvoZfgzCpR8mSDyZ1IGftWOsKxJBLbKSOxzDWnuvbhm91g8IgRa1uvYa/0MqsZAMV6kbhcCwzFz94fCra9ZBre7Dg+haYFUHdSohUV30KAwSrcN3ayH/Gi8pBNQqEZw2VatpgqBKBUnPsDLSsHrSUJAUqshaG/yVVf9IUMqglMa6EgNVC8VqHFJVY0MwEiqaoTRKCa1Wg7wYUDpXtQASvA3t5VKVYBLF5Ng4rWbKsdkZnBWsKkOlAg0jYwOWejNkhaWwQrORMDo+RrvV4ujsLEXhcU4xPjJKv9dH3BI3b/0cS+1bOXflPzEw85xo7mYpPcISJxDtKIuCxf4iy/oIt5gvsVGdwen6UWy259DwHYxvDO+NahjBJ6yCfonSQx/yTu7EdTeV3O5+e+D+BUUikUggM4scaV+PA7IiVCQaeEspBaLsqs0pQQRvnYcitBgu5kMbriRRtJpN0kTjSku37OObnvbEMtdv+Gv0YBObFx7GDs7Dkwxr2snw7bgej+PA6FdZNEdZWeozyPrB3hLNQneZ9sgYC9kSy8tdlpaXKPOMfjYgTRSJ1pSlRZzgKvu4sMHuCe1NPQ49TBzUSg8TD0UBXpH6hHbH0Gi26HcLuoOCtNXEG8PsoMvsyjzWFWgxwT6V6rtAWYT5PCAUUUyqCoXaU5QFoeOYoixd1XrYkTRgMMjJbb+y7YWiCAJ1fCWCUgQRsbUcP3wcrSshtHe02g02bZ7E+QHW90AF6Y73gheH4KsKQQnaV2JkVVdglKHt56SqKARVRXgFdevYqlq9q6rI49VwLlcpFZIlqpPQXVjmxutvIDGQYGglCUnLMLlpnLLfp1QaJ6ayH8C7qj2eeFKTsGvnLjZPb2Bm4QS3HT7O1JZtJMYwu7jIkaPHmF+cQxmHVqEtGxISVrWuRTNVFVIBtGbb9DSD/oDlIkeqdti1aItKp+YrETa1QKueX0Sta1OHqu03qmtsaDVbTIyPgUlY6a5QlF28rwRuSUJiEkySYLTBOUWajGBFKIsSRbAxVCinWQXSVq/L2nnr1TzL+jOPc6ufB5M2XI9gu4XrWJaCVC2tna3a2g1bAMtQpCTDDTFsGQy6Es6HyphTG0YpC1haDudydT5+OLTKnpLVQUdjKPIAppue4LPb3sIt4//Msw/9EXPNvdw8/hkOdb7BXHMvTuXDe/hE6ya+uul/c0bvEh62+POcs/wMOnYjLT9+cg8iEolETiILjQN8a8Of3yfv+6X0EH++6+fZ3n8ETzzxas5e+RnU2urYd4FTBV/efCVH2t++9wcViUQesPxI7d7qCkar1Wyq7BwfemKvDQ4MnbE1PdKrT8LEfRUMqDO+6wzgegIdz5o2CVRVjqqytJXDWVdTCmKhKhNEglBJrcmWTkwaRupCRpZWGiW+6l2uhqV4w+pC2khANEVeDsVQ9bGJeGxZlWBOE7QYDBrE0Ug0jUTjnOA9VVUlwRgNeIoiI0kMg9xR+pJGotEairwk8YpmU+NFk/cKtE5Xw8lKEHHkeYm1wTEVnWCWLRs3TjAyOkp/sISqgpe+BOUUkloUA0bGDc2WwbmcslQonWPFYucd13034+CRW+lnDkhopQlT2yY49dRdHDp0lOW5LuMbpmm2Rpg7fhxXaNR5Z+AUmMqZzn3JctZnYXmJibEOvayHSjS3HT6MwjA6OsLW7acxPjJKFa9BEErv6Oc5I2mT1CTYSjDWbJg6v2nN/6/ikap3euySHolEHuisfV/WU5Ohg2hRVciYmzvG/KKjV3RBSmxZhPejATQM8oxRPUGZew4vHiVJG2zePM7mzdOkqsXBgwfIlvqk000kvOTQGnLr6GcFzXZrffCeOw8ueEL7qW6vy0p/maJpuXnfrYw1UxYGy3SX+hw6NkNqFFqXLMwvkacGcSWudCinQBusg9I6GmkDdGih4HKHQZMmKQaFk4J6ptlozdmnbqXXW6IzOs7c0UWmd2xhetMWbt1/lFsPHuXA4WM460h0EycGcQovCinKEJhWQlkWQRTb6uBtQa+f0+tm4Rh1gjghbWhWerN88atXc+zocZT1FLknLy1Jomk1NYUr8B6SVFEWPchLjvaX0UbQojHaoVuWa7/5WQ7sPcSJuRmyMghwXGGxWBINRuuQbVspGcq8DMEKbYZibOcsENoAKB2CGmVhUUmDkUbKoBQGtkR7jThVCaqDdCJRKVo02jp637+VbkORdJp0TMpCX2irCb7+3RtQvqSkxCRNBMGWgs08Uobj2bB5C7mUfO1bX+bIbQeZ3ngKM3N99t3web5z4/WcOHqCfr6ClEUll3A4B9qDThReQBmNUQqlPVvOPIXHnnM2X/q3bzGX9UOGMZUNKYK3DpSjdDIUk0OwJ7x1uKKs2petZkl7v9qqodmY4smPfzIb2x2++I2vkedFuHm9oFNNq90kMU2mp6YYH9vKxEiLbrdJ7koGg3mKwRxaVkiVx8oAkwRrS8QHuZUKFTJ91UahFuRr5YLISq2Zu1cOJ0KhQYum6Q1l5nBuVcDiirrVm68y9GtxSi3IrrLcvQvCJVFV5Ruh2WqwcXqM5aVFNBatPU58GIdWUDUKdgilK1HOV+L6B651dGcVMFcfT3I7m29VDLRO31Oti7qzfKza55DVpIhVp2D1u0glTKnFKlXr4rq9CmufmcFX0XXrNy9VZSs1dCC0rqsrqWFihq6TGart1VVjQ/xntfpV8Gl03fUaU7U1qVuS1P5EaCcXEiPCsiB6MzpUj3XOoTwkKSTahGoPa6ow6DqA6X3Vog5KSmp5T5o2KG02fD4pD4jGGUGJo5d16eea0obWg9Z6jCnIM8+x4zPMzs3jJbRpbCQNksU5Wq3RUDGisIxMTNBsp6ysFHgHkggz6QGWN34IhyWzGSv9HtZZRjpt8jyn0WrQ7ffRylB2drPYOsJoc5wRu4ERu5GNg3PxpSYvSyb1Jib1FsRrvBNCIbL1YqTb3111UHAoYrvT+ykSiUROJrL+p2qS7HD7OnLdrarYBImmRciKnLIqxa0q0a9JDOItqWnSbrbpDfqgQmW9VKeMTI7R663Q7/Zoj7dClSXVw3a6zKrdLHQfzk/ZZ5KokdUZmlosUiU6oGChsZ9DnW8G0a4XrLNYW1DYHGs0g2yAQtHtZXjxpEaTKIUtPNaXgGCUxqvaFvKoSrhConBFiUaTGE2iNbktg3C52n+jZdBaMegXZHlBo91k0+YtdBcHHDk0R7Y8qMQelT3iQVyo5Bfm7aqWvAKpNiiBoijC+6ESFStCtULEcfTYUYq8CMIfL5SlRSuNToPIqLbXRIXkDFtWwiOlSRSUVrH71t3k3QFF6SldVZWoshmDHxH2LQheSTXX6IdJnBCmQJUO7zytCfusqki2mg288wzKAlAhUXL4agxzp6ggXE68R/IBLtGINiy7HBLF4UNHaTSSYL9CsHVc1SpOQvVFjOHo3AlOLMyQAts2TtPNHd/69nfodRdCCz9XIN4G20ZVlR49w3ndoY0H6Jahs2GULO+Hud41ohyEcHzDKkWqepcrlApernOr1UuHUuZawKMERcL2bTs5bfNmbt59M3mRDXU5Qy29EjqtFlNTm0jMKP2+oShDC8VBbxEnfdAK50NiUU09h1vbdc6tNWRZl+ywWhEp/OcIojFDSLZFqjlzkWG7t9VWxqstjevD9Kx+FvwbjXcwGBSUhRDadFf3k/jhPVSPx/sw16ruYJNHIg88RDn2j3yF95/90zhd4NVdtDxX4FXJ3rGr2Tv6BRp+hE352Uxn5/KwxeeR+g4AE+UpbMrPxkiDO/MyI5FI5CeJb2z8EN3kxH2zcQX9ZI4945/n0Mg3uGjuJfzM0TfR9GN3+RVB2Dv6Rb626X/HaZhI5EHG3RYpKeoWBqxxZCrnTQRxrnJiVif167K19eJ6+rfOqg9rVcuqBmJ1tvOq0x3WrcsTC3VFp7o8rsZbN8wursdmS4cxCiVVplXlqHvvSZLQ9saJkCYmVDEoQ7u2YaUoQqZOIzXVMo2zoeqAR6ONwtvQjsO70K5FJQYrDuskZNxUYqok0aCqVi2Eak1lUaKcoZEaRDxlkaPwpI0EJSmDfh4CVVrRaDSqjCqPSDgn/UEfb1PyzNNsN2m1UoxKyLO8ygrT5F7wRcmNu29FEUoSIwpnw+SIK3vMWcf87AoKIW0opjdP0z/cZ/ctt9FqtGnphNGJUZZ6c3TtMsonHFuYYX7FsH3LZqwq2X3bHvbfdoCRTodNGzeS9XM6zSYLc33GOx3SjuHI7GEK2cxEu0HhLHPzSywtdSmdsH16O1s2TeKdoywEn9blnsN1CFo3hVF6jXCrzoCvWsXc4eUV32aRSOTkImsj67K6zOHInCUrChomZXJiEkvGzIETWFuSmmpSNWnQSBImRjqctuMUigJmzRLNZhvV92QmR4+lKOWYGGuTdlosFX2StMlIw7Dc1ywNVphqjw5Ho7wMxUG3FwN4BOtKnC+DmGW5D1rIUii6y6z0cvrLfVJjaDcapCjyXobyjrHRERCYXVmhFFDeY5qaVrNBJ23QW8nQRrN5ywTHj8+S9UN7MOctuqk5trjAynJBefQIVjXYuOE0Nk5uoeh36c6vMKI3sMIsYhx4DYWiNB6NI22aIDbOwoSzWBj0SvLSButCWzojCc1GsBvybklv6QTaeRLdIPcZuNCewVoXRDSeIMbVIWM7G+Q47xltt9Gp5uYb93BjXlJkHusUVnxo02UtxmiUBy2CNkKJkFsbBDjeI7qqXkJo26RTBVUGsqpumVa7xTk7T+OWW28lt5pGu8V4e5yVQUZh86pNrabEIgYSLXjtMWWOUz5Uczw+h86FJDWUZUFZlsPsc3A0GgrVaLB7317e+3/ey5bxMV70c8+nSCb46N99itnjB/Cuj7clRTmAKiiS6iC8CUplXVXFAStQIiz0u1xzw7dZzntVywpXZbgHO4qqhQdCVYFSg1FVdnCw9ZIkZGe7yp6pJ/dFCWNj45x+5uns+/53WVqcxXqHQkJTQ21wNmNsdJILH/EILvypx+BlnJk5OHjbEjd9dzfHj+9jkB1hUMzgZIDSCu9DJrmiarVlwKQKsdSdiVnV4gdhFr62YEMrLNGropRhC7eqJbHzYbt1G5G6Lk8Q/quqslKlGlGAhJYMJ46tMDe7BLTQqrJrkdA6sNHC5uAlVLL0XqNcqGKg7Gqg5AGHhPa+ocKNXmOu1Q9JX3sQawKfa4Kga+27NRqmdZtRqg5HBTHR6m9rAlbrLcU6SKTU+g9CRn1o7+GUW7U3K3Eeqq50pDCpCW39XN0euvKMTCVarCuyOlfdCyGpQryA8mgJ92HQqIX7RRk9zIrXVTs8LyC1iM55vGiUqRI6xGHLkCChVC1UqqpXhahqOFith2NBwNscbXQlkNK40g8r3XqgdB7bDcHlYSKBaJwH5214t9lQEdcbRZKmlNazfGKGNElpJClZr8sRW1AUoT31sRPHSJOE6elNlK7k2Mxxet0uaZrS7aUgijRJyIuSTlNRupzuQp9+p0+nOYfo3XzLfpa8cBiTsHlsO1sbp7KxfxYbuw8hZWo43rqticiqWCsEIlcvdvQcIpHIA5H1EqXwRMt1lxPN3ZTiKF0QubebbTyWMg82n9aQaEXpwxxUo9FgtN2i3R4jMa3QOtYJPvcsu154NidBULOc91DKkBqDSi37Rq6lKcJPdZ+Lluaa5+WqP7GUHuLGib/HUWK9xfp8KBRVzuG8Q5zCek9R5KESeppWVWJKEEgTQ7vTZnFpBedCUmFiDBjN1MhImOtSGpUoinzAoKQ6J0FsUVhHaTXOKkSldFrjjDYnaEyNk2UlfW9Y6s5jfV6JfoMgwxP2RRIqCGpJ0GistbiympusW/ia4Bs4C1KJpBJjcALpUEAiVVvfVaGs1hpbWKzzaCOYNKHMCrJ+ESq/V9UYvXdVpSQwtQVjGG4TqVqieRWE1VR2aqJD8oNerQIJis5oh6zbhRKMNkxt2ECe5fT6WbBBqSorijBMcPfB7vEADsRZbBHepc661blZEZSBRGu8tRy67QBpYvip889namqcgzftZn5+DueCaM57Ozw/QQjkq2OoRxxsbBHB55Zb990W2tUKoSKSCraH+HobYRY5tM6rWmYP558Via7FPUGg5Nf45Vp7cttn78G99Prd1apD1TiC4Dpl69ZTOPP0naRpm9LCStcxe6LL8RNtut158mIJKMM8tIQki3V/sYrQUtAPhzXsOuCHYqL6s7qlcG1/avxQPF/dHxJsmeF36i2szaJAhn+jtah8YaEf5ty1IhTwVNV9oxCvQ3s6CWJ7qvti7bFEIg9YFJSm/yOsLxSmy5HOdRxpX8f1U381/KjlJtmaPYzzF5/NwxdfwHh5SrWL6CVEIpGfHARhJTnGLeP/cr9MgmRmia9Mv5u+mefnDv1/NP3onY7pwMi1fOK0K0IlvEgk8qDiR6ikVAVWVF0+dri4/r87MdxuHwId5ouArioCqeC8q6q8b8hgqibOff2Nanq5Dh5IlXWsTVg2FD1Vzm0V9LFVsFAQrK0FVkEEpUMZIKwrSXWKSRSubqXiQrnktGFI0yRsQ6DIBSl8Ve2pPicOjEYrMxxfaI23NmNeQks3bbDOYctyeOwoRZIa8qJgkDmsS9E6QXyYFAllrMtwFnQoya1VcByVeFxZ0rMlJk1IU0jT0OYhbbbIy1DiO9EaEYuiikkohSfFeYuyGc0kpZk0caVjYWWZJG0wWM7ITMnU2BjHDx5keWWBvCxwWcn8l4+ydcs0pTuPIydOsPvW2ygGGQlwW+MAzdYoo50RPIpWCrfcMstyr6DT2c+GsQ5Tmzay79BhBsuOyZENnLoxReNJxJI7X5WQdsGJVmCrCRtt6vtJVUUChJD9papqDAw/j0QikZNPJayQUDlJA1YcA19QOst4s8no5k3kZcFNe79H1i9Cu7ROivclZZGTJoaJDeOkbcX2zWewoZcBnjYpC4Mu84s9VnqOTrvkO7d+l0FmmRif4oxtWxlvd+jnA3Q9Aa0EUa6SBK++sy1g8fTKgrmVGcR1SZUjF0tZWpQotNMMBgN8ljEQwSYJeb9H6cPEfHt0jOXuMkVZ4guhkWjShrBx8zTnnXY6vX7OngO3MtdfYqHbJ3OeVHtGmymtVovxsQ1Mjo6RDxQTGzfwqAt+im1bttA9z7G80uPb3/0uu/fcDGqA9aFqkpMMp8C7EqOEtNXitJ2n0lvpU2Q5ZVkCljRJSJPQmsAWDussIhZjoDXSpD0yQn+lyyAfhIxnH86QtRaTmjDZ70FsaFkmHrLcVu3AqmqORYnNC6y1pIlCpwlpahBftYTQDSQpKWyovBNkDZ40aYZMax8yxVMMidYM8pKbDxxgpddHUOw4ewcPOe98vvyvXyWby0JWNE3yYgXxDnQK1uISj1EewZMYQ1kOcNZQlDlFkVfiCY13DhJC+7C8IC8GbD3/TKZP3cw/fu4r9BaO4Is+WdFHfIH3LohKELRJMaYW7Hi0TvCiqmOAxYOzrBg1zER23oHSaBUEEVpDs5liS0dpLaWzaCXgg6giSRO0OLzSlTBKQFywm4DZuYP86V+8Pwg6bMiYRpUoHc7zWdt3ct4FT+AZT3kKm6bGAMP/n70/i5VlzfL7sN83RGTmHs/eZ7zzvXVr7IHdZI9stkiKlGzSgwa/+EEwBduCYcOwDAswYAMG/GrAT4YNA/aDLcsSQELUBEqkKRPdYrO72U1WVdc83/nM5+wxp4j4huWH9X2ReS67ySq5u+sSnatQ9+ydOzPji8jIiLXW/7/+//4t+KnPn/BTn7nJr/3WKV/5qiX3c6ydFGJHIKYBqDmkTtNb4xAplsZG8zAFspRUIhmcczTeQxLm8xXee5zzut8owUYVP5VgYk21KGFU0qngi63gRMkdY0r0gwBLGm9pJxOMbbEkppM9UvYs+4iJPYYeYzMGh+OHt839Y4+PM4O2H6ukHrP14PbztxnpNQ/ctn3b4Lca1hTAS0GbbcUmDFv1TFWJHScVtkhSFFCswKB1jei0eiXpVYBPiTD6nFy+16qAVIEzVQIVyVTlJcr7VNUuVUQoFVOxLtHax2BdBbBkVElQuxbNmXOMCgTrwvX/KlBLtYnTZSjYqmBVUY+QrApHUpQfBLxXxYWYEta5EVys+22M1dflROOgbSaEGFgtl1jnyVEYwoBtlYxpnA6FrIaBVTcviklL5qs1q/Wgimj0OAfOt7RNi289kLg8XzKEyPXVnNZ79g4O6EOgX0X2Jp5se64m73Pp3+W96T/kBveYxRuc9G9ykl7HB22GWVcBve1TbFNj7GIXu9jFJzMMCeH59Pu8c/BrnNtHpJxonWNiHWYy4Xq1AFHVpMqXRoSUIpPJBNs6JpMJrd0jpMDepCUmrQEWizWziefs8pwhRKz13D49YTqZskJ4OPsGEzvhc9d/FStNWZH27Xp3zddu/Ccs3BVdDCwW16TQMXFCDolAJhX1nZyTNniyEAiEftB8yBic82r5hqiqZlEKdN5y6+4tUkgsFgseP3/GMARiUiur/UmLs3B4fMCNo5vE3uLbCTeOjzjcnwGWlIXLxSEPHnr6folzhpAyYVgTUk/KAyYljPGc3jrRY/HsUklUKWKd02HHsuealyoF1jvLZNLQpoZu3RVba8q9u95Tq3IfpQ+ZiDGNPVYlGWUdrEyp9C2t1iJURVFVXRwVRlFQp1rfVa6RlPuzAE/PLshRLcP2Dyfcfu0Ojz54hMx1mHIymdH3qnal+YZDTBmYMXoapRzJRc1I6ygZc5NR4cgIZNg/OOTo9AYf3f+QxeISkUDOUT93yVtnc/0fm7yCrdwsCbH0MCnPEaoVmm689o3JlWhlMFkw1mleVbaneVchhZc1J4l8+OH7WIHWNUAhTlld2+nBEW+8+Tb3Xn6VvbYBY2i9YTY13LxxgxsnU7793Ux/scIYzVMyqeT2Vd0MMODKtMO4b2UqxdactZ4DTj/HUMjuzrnSbi/1ROmDbtJXM37HNyJTNZc24+9VWTSL1nMGpyR4HN55Ju2MbsjkPmAkgFXSuXyS64ld7OIPIz6W9nf+kvcPfpP393+L37rzf+bu+ie5ObzNp+Z/gddWv8hReHlHWNrFLnbxz3UIme8e/X/4uy//73g8/cYf34aN8Hun/wEG+Ffu/5/+CUWlq+Y+f+ONf5Or9v4f35p2sYtdfGLih1dSMm4sRkUSdmyevzj58aId3AvvoMWZAUwtqDMWu5kwsnmcDqnIgOSEVNsKKdPDiNog5EQWo++hdd8WWaUCP9rEt2WCOadIHAac91q4xUwcMttLzjnijKoYpZjGpsJmCj6PYIWxjpwzMQo5qyqCEYgxlP3QQtei23POIOKw1tI0Db5VBYiUEyllYozEGLRwxCEZlaQGjBFSDri2pXWGSSNMphaxnsWyo1t3OO+IIdMOgaZpySniD1pEMkPf09Jgncd6S0yJlAKmscymDRdXa9YXA007wWQLw0Bv1xwd3cDZzOVyxWq+wDrDerXke9/9Hn3USfDWefaaKRPTMF9c0rcdL795h/2DCc/Pz4nrjovlkm6+z7Nncw5vnhJ95O7NU2DNkIAQSd7w9LKjXy9xzrE/O8LaKYbE0WED2AKuqz2gFtkjGvXDns672MUudvFHHHVyVglCkYQlE0VYx4yknr5fsLd/wvH+AS/dus3qcsH16opUrADECkNaMzm8hXEtRmAqjv2jA2becXSyR3j4gMXeHsvVkoePn2lzNfbYl25wvbxgJbCQwCFeJ02NbO69hRw8iHD/4ox377/P8vwpN/da9po9lg/PyQaCOGwQcqcKPW7Ssl53DCGRxdIYw7DqSF1P6x19zMQsJCJ2CmfrM3IyLLs514u1NleNMDk44Ob+BDdzfO6n3+bzr/8kjTlmMt1j2jgswv6k5fSkIbSfZhWuePMzL2FxDPMF73z/2zy5eMK6vyIiNEd7vPmFz/Dhd77H4qrFEIlimU5brDXELmMx+Maz7CJRwMaB6dTQ7DcMeSCFaumaaSZWJ0sFmsajOYnQpUwIEd8o0GON5fp6wA6CNaLH1rKxaxAlWee0sS+zzinxwUAeBJMNYBGn5AVC4vlqoOsjjRdW3ZJvffsbrJdzrHX87J/6KRgavv7tb3G9viRkGSnd/aAAf86WrlsCjhgGUkqkrJPXxlRwJdFYi7ENd++9ym/+g9/im1//CutuQYwdKakClLEKwOjqNQdKOSGitrXFuHcEGsApABMjWaBtPUJWIlHryUYIooStarlRCRc5K5nPOkPTeFLKpEEKKSyzXnZ0ixWN90xdi5hMO23x1rM3nfGv/vf+ZT77hZ9hr21HG4OJg8lx5uhPHTC4N3n//e+wXE8ZYkPO9djo99ZaNFdDaBqdpA8hk3IEESWL16njLFjndV+HzBAC0Qm+EVJWwrszDltsFaxVgkk2IEaBKM2dC0HG6LmhSpxR81fAGiHnSEgNDapE9em37zDjmN/79ocsLgeyAeOgEcsfIHT/iYjR5hnYnDMfe85INvr4H6rCktYIo5orW0STAs7BhlC0YRtRn6WsnZLMb1Rd9eePW9KNMI8oeciaYgeT8qhIBEIa834zkpusEZ1OT7kQoypY9LEpeAHEkAvhyUqpW3IeAUzGQRE9b7xz45oq+8g5t7EWzMUCu25FxqWC1e+ec3p+6XnvGIZI34dSZwnDUAc+wHmHc5YYAlkMrfN6vFCVtWQg5kCIgZwM1gneOlWRIjNpW4a+p+8CKSWGITP0kbPnl4XMZ/DW0bRTptOW5bJDUmIyOxhtV6xRFYdkLJfnV7SzKdPJjNs3j4lpRTc0SIJoBh6vHxCHgHeWG+1LvGl/hbfWv4xzxcJBts6bj4WY8ajtYhe72MWPN7YuUc+n3+ebx/8pwawwOMIwsO7miPEcHxwzaz2He1OuktpHixFwhiQR42dgLDFEWmvxrsU5i7MGMZ71XkMKPfPrJVky00mLMYnl+orV0OO844Pp7zGLt3lr+SuAXiM7d8n3D/8enbtkuV7z9Pw569WSWWM5PjpQwnsSNM915CGTM4hRNT4l3Oi9P6WEZPDOIui9LItgvOXR08c4axn6QUnbYpHcYwpxyKD7sXe4x8lLt7DGa10kUoi6CT8BMQMvvXabybSltZ6zJ094fn5GN2SiZOX3Wsu670vfU3uhlHw1xohkoWkaQkqkAOs84HygbVpsY4utalHn9BZrlIBkjCnkXyGlYulmBOcbtbQjI9lAUVo0ltHiSwlPWcnLeXNSGGsLASZTrQBlO+/JEJMex9W64/0fvEtYD4iB23fv8PLtO7z7zodczAeSZO2xGVOUFgXjXPm5MqA25OlKNcpojWWwpGT47vfe4er8kiFEUozj8QCK0mN5vRQ1Ryk9U1OyxJqvjZwmXb9zrhCzNySsqk5prC22vLpOVZ2lKDYVZX3RQVip5KqypiBRVZasEuUQy+nLp9x97ZCcl/RximumuELasl64dXvCyZOWxdyTBotIqa1ypQlp3k85ns6p7Vod6rDF2rd+nsa4cb2SqvJqUYGkWOqNB37LLttsW75t9CPrgAVpczy1h6+1qS3qugeHU165c4sPPnrOMMRCTtplP7v4Ex5GuGrvj2D5P7z1f+XG8Aa/dPZv8eee/ts0MvsxL3AXu9jFLn70EITvHP0d/uYb/xYrf/bHvwAjfPn0P+BO95P8+af/TukNChftB/ydl/83XLYf/vGvaRe72MUnIn4EJaUapgwtv2iZoFFKqN+HuDT+n+Izj5DQoiqXiV1b3jvltGmoY8ZJ8yI9RCaPkzTG2rIWBaIqeUldDQoIWKaWmtYRg5BTKoV2qfxzmYDydRIHbKM/55SL/HIu00q2TPpo01/XZhGxVKeOag+jCkoeay0hKmTkncU3FoptW4wR760qNllR+eeUx+LWOUtjXZkS0qn8xkM70SnqVdcxPdijmTasL3skaGHZdyusVdISxnJ04xBjhNgF9r3FNoa+60kClzEyX3bavLEGlxKnx8fcvnHIpJ1wvbhi+Xxg3UXIhhAH5pcdrW+wXjBOMGbCbLrP3t4Rq/WclNbMry/o5hdIWXvf9TqFlpfMV0tee+ktXnn1lG+/8032nk2xZsrghefPr5FOOD6acXw0cPvmHU6OZ6UeF2wBRFSyWY+jLaff5sz7J0GmXexiF7v4Yw9RqfxsMkPowDQY0/L07AnPnj9m72jFq0f7nBxkbh57Li7XzENHO/GYSYMxjpBguQ7cOzTcvLmvjXIRJAcaH5hMM2dPr7i4uObwaA/bCo8vH/D42TOya/j+0HPj8A6vHN1lT1rKuKaC4ST6YcX9D9/hycP7xGHN4d4tujAUS4UG9hpaGmYmsjKJMGRyQKXzEaJk5v0KP3W4bHA5F3KF5ezimscPHzNrW+7eu8krb7zFh9//EK6uievAPCQ+dfcLfOPrD7h18jafefVVte1CG9bzrud7H37Il7/5jzH9giiHvP2ptzj7aM10Ckf7E0T26NISYsc//M3fJixWpH7QnEMghMQwBEIfmE5aRBI5ZLo+sZyv2T9q2d/fx088sa8WsU6b8lEIQ9B7ceNJSYghF6IsGJPAZKatKul4VxSDJJPCQNM02jxPQsqijelCEKogBmguk40hilqXmSy4GHFAipYHP3hE69QqdnZ0k5/+mc9z/vCM77xjYVBCl7FJSRJBQYpoE5o3JLV7zUqGMhiM2EL69mRx5Oj5W3/317EhYLJOug8hEpPea721ak1nGe/ldbq7aRq99yZVb8k5E4eh2LfJCIBlVDkyZVVSGYZQQBirw/6SSDEoGckInqoCaTYgkwgSlewxDIFILLa4FhOEdDjjqw++yXsX7zORPW69/Clee/Utbh/eZEqLN4a7N6e88vIhz88ndIN+BilVwMKQk4Jnxght0+CsJ8SAdZ62dTStA9GcxjcN1itwFYNggpLLJenxzracI8Ko4iNsiPHGmgLcMQIvwDhtT1HhsSbpdSRltVduG/ZPGmSxpml6bBOxwZOzJZuEmE++PUPN818wniwHZrSDe+EFG0Cm2nsoyV/GmqCCO3bcwPabmE3tsAW+vCigJOMaKnFOjCpfbdZciUp67uQCHFa76dHaZly2HQc48khQqtuWLcWkCkMVA+yi/jQORZS9yTkXdYVNbaVAG2AZVZWsNVq/VGDKKCA2gqAihZBlwRr6EHCSMc4jQYhJLewq4clYQ98NTKct3jtSUPByMmlYrVZKLoyZfohlnxRaa1vP3l6Lc47L+VzB6EK8yjkTJNI2bQHlKlEx0g8WjILUy8WK1TyDM8SgJKV+6GlcS86Jg31LHzqeXTzDG4v3U7IR+iHh8RwcTLk2Z7x3+Ou4vRWfnf9LWNkugU0BsIvD3dZftk6PXexiF7v4scbzybt87eg/pZM5KURcMyXETDcMdLGj7wb2p+B9RlJQ1UwL1npMhhgynQRmhxbfuPHalkis+yUxdsXGLGKdPmfZLXT4LgnXwxmrZgmz3+QV+7NM0j6Xk4/4+o3/hJW7IKRAt56ThjVIYEiW86tLhmEgp4xvLN41TGcNZOhCD6kavCoBO+ZE02idY5JgjBLjhz7Qp462bWi94/bd21ycXdOsGvo+EIeBl19/jZwNZ2dXHO/fpIrsVCr9xXzFBw8/JA9Lzp51HJ0c463lanGFcZm28eSQsAauzp6TQixkcrWmlSzkFIoqaCGTp4QkCEPEeb2PO6OWcDZljHFqcWxQdSUqUYQqjlPu45WwpPdwHIWELRvCtVQrucqz1jcwhXAz3rBGZcbaMxNcud9LhPW8g5yQkiv0YUmUgDiLzRZjclFNMtisqpFGNvmRjP9uiOdWXElZLNfXSy6vrjVPK73cnCuxpuYpRnuyWbfTeI9zhQgmuk0phCzKbulQw4Y+Uy2UUyqDAGyOgxJ/CrnHbeXW5X/b+V5GVSixZsydjPN8+PART86e0LoJBweHHJ2ccvPkFkezYxoMzggHB57J1NMHo/kogNEhXClEKRCtFcrO2aKYZK3W0ZrXObWdtqrYb6o1u1AGGer62epxbjLozaBwtS22IxHLYEY2fM0lS0IJYlmuOx49e6bnrjdIALLXWuKfg3piF7v4YwkDl5MP+C9f+t9z1Tzgrz74P9DK3o97VbvYxS528SPF9w//Hv/hG/9j1v78x7cII/zurf8bf+b83+Ag3uWD/d/mb7z517hsPto1Xnaxiz/B8UOTlD5OSJKtInUbVFGy0JYXOJTJEZ0Y2ptOmbae6/lCobNSfDvjGGtFWwsttqaEinVIKcbL4A5gCnlIyhRNeXpx1nAjcSmTosE1DTHnMp1SGv3GYQwjKCVlX6rnPNmSiDgdV1Zw0ajUbhZVIiBlvPdlSqhMSTWqmFQJS8YYEpmcM9Y2iCQcllQJUMYwaVucUUCzTr9YA02jzXqM0KWBPMBk2tIPkfnZNU2zh1As4qySoFLS0nW97BHJNE7lj8Ow5sbBEct5pu8TqXjDN00D1mKy0HVLLleZWZ5yddmTolG1gVCAsiw03mFNQx4iYoSr6yuul2uMaXBeWMxXxNWaLkfCYMhRwAX2J0e0IXE/vsPz54+4XF4xAW6e3mPaeOLacHJ0m8++8RJDyBzNWqYOyKacG1KaNpaIoe8De5MGt7uZ7WIXu/iERAXMM0KfM1fDiuvrC8CSXMOyX5LzwNNH73L20UAzhauLBZIGvHdY65BsGJYDZ4+v2J9Zrg8G/JHBSEBIPLp4yPsfvEcXBoZ1x7QxvHrnJjJ0XD6PmCGTw5onz95ndbri3sEJYjxYCMAqBhbdBY+ffMTQX3GwB503PHz+mLBakUPA+szxwW3unt5l8sbrfOVrX+Xs8gJjkl6vJdN4h6So6jApqcVEtiznC7p1x8HBFEmJo4MZ63DN0cmMz3/+bb7+tW9w95U7/OW//Kt882tfYc8HDJFoPFkiGI+fNlyu1izXgWNn+NaXv8KDD3/AxdmcMHQcHTiSnWBWCek6Li8viUPCYDYS+SQFXVLCN5Y8BFIfiGshSaC3ogScbHCNYTJtECM4b0kxjPYEzmvKJCLlZ0MISf8tU8I5JcSCONVDzONEKhuWSiVfx0wymyY5CKmQcK2IqhfpnpCisI6a/yQSDx9/xPe/+116MzCbnSBDIsqKnHudHi7vrblUKnlIsUEwVbrfYsUQU8l9lr3aQhlb7DisTpAbg/Ou2EskYsyknNnfnzGdTcb8pnWq0FhBEWPBWYOxQkoDIhCKrUUWi7eNHq+UFWyhWHtkg/GVpF7ssozDeV2XpAIUISRJWPS74l0mrFf8F3/z17F+wiuv3uX23R+wNzvil//SX+FTt19jmiPz5TOa/RXtHpgVo2UbeGIaFOxIWdW3YiIiVAXQlBJpFdWGw+o0vJLrIznX6XD9nK21pAIwuAJIVUAFY4oNhRS1J4rNhSEmPaestSMBJotBsHjAkgkD/NbvfIe7+7fYb/bpWovJmZgCwQ54+eSCCtU+ZKwqRrSEMj5eACbz+/QoSm4uqA1Z03jWXQ/FQlkpPmZ8y6o+VBL7shWz2a7hhY2UpSGiqkA66V/Ow6L0I1lIZCUWlvetgFj9XHX95bMrr60KDAaLmLrOF9V6RsXaehxKVHWADfgmWueIqCVh2XMKEcoaBQKdt+NxqDWasJneTzkyxKTfLQzrLlLNQPOozlbUm7JaHXZdr9cEY0AyKYcNeFvUHqxKHOCypTcdMQ54r1bWOVNsMAurClH7aVF9P8lCP/TYGCg6tKRyb+liQLItgFsmW4M1mRguubq+JkmiwTCdGvbaCY4ps/0DTk/3iCnjneHh5IsMds6rq1/AS1uOvWMabpGC0Da+7NsWs3AXu9jFLn7MIcCzyTss85xu6Oj7Duc71n0HYUBiYL6eczXPxJQwKY/3gPoGsYuYxjGXOfbY4D1IzoTYc3l1zrrrS86b2JtO8QZCN+g1PWXCMJD6RNy/ZO3O6NwFX73xH3MlF6xXK5bLK9brJcYknIOYBmKxPZOcaCcNk0nL0cEB5gz6s45kVDmTrPajBkhFqUjvKZYksF6uaBrHMAhxgOHRU3LKvPnGa5w9P+NyMefg9JAmJ2IOWBuVs0/CGwvGM5l5MODblqHrOXv6hIwQh8RkavDekm1LCmpBp2vXfHxkQVN6fdaRsygZOAmkjKgnMGL1pmmtUWWiMlS5GfSsBOOaq5lRMUrfM5UeqKoDGVO5IkpyMcZsfq+EHNmQvivJZ1N1aA+tErhTHbzEEHPk8ZPHrMOK/b19JFiG0CEyFK53ITtXe+KseSvbZB+2esFFrdcZr8T/XInfaE1hlZxT7bBFSj43aYpK/rhipPRbkS1L3JzHXmQuOZsryvY1R6ppn27XbPKYumoLVtRCt+aGlWAOhrb1GGB1sWAumdm+5hCLqyUXlyvuvvwqPgwYyay7C3CDEtGUjzT2fyvZXOsHIecw1ggpVdUwXZjzmsdpLSkf66drNrbps2+R0tiQlmp+bUputTkG9RJQiUy2vI+e36tlIEfYb/eYNQd0JFLoVZX1RQhgF7v4Ex9iMr976//OdfOIP/vsfzbaFVnx3O2+gJMJOzu4XexiF5/U+P7h//fHS1Aqcdl+wPnkPS7a9/nrb/4PdhZvu9jFLn4UJaUCIZXibWOrRnm8FqAvToGPxVUh9mjxaYvLwWaWxSap4zGlmW9L2ZvJCA67acxjxoZ/lenVaeCyTasNbC18ddKpEpVMiJsiFm3MOGuwjdtM6pQpLlLUJntRMqrbts6Pz3WYjQRzKdIFBfC8URWMlBKpTMp7r4V5SgmLqiGJLUCFZLXHKRYnxirgF0MkrAOTWctkOsEaz2rV08cVznn6LrNeLPDFciIWMtb48WQh9JHsDLPG0zSW5epaAQ5MkWBOxBCwpiGFSE6B9XJFO5niXAsZQt9jjCGryT1937NertibTEneEGLPdC8RwpzQG3w3Y+ot14sFkqwqLznHch3o14F+iMj1XKe6DSzPr3n1ldd57dW73Hn1LocnnpAjwzoQUsI5RxcswzCwN2kwHq4Wa0LfY5kxa9txMm0Xu9jFLn68YcZ/xMBi1XF5tWQYVqzCmtVyzuF0Qg7XrPqe9fWAzYZJ48BakmQa49lr97h3fBtS5ns/+CZ3XjvFuYgVy9PHD1mvrri4WDB0SyaTGfPrOcnCvXu3mE08KSeGfsnJ9Jg948EmxFj6kHn/wWPOrh/x+On7SA7EGOn7nhwCTgwxApJZzRd872rOnTu3GGKvVj713u0sUVR1h5hJUZDklCQbBnwTWNlA46c8ePCEKIY3X3ud23du005bns6v+P7TdxnsBfP+Ie8/SeAbYrfk9bufUjJq94i+O+eZrDk63GO9nuNsJplI01r28YhMuboaCHEzcRxDLMoYtXNsMeKIQaegjVFyUtvMcLk2zINaYmCQ7HDeMJl6whD1nu1KXlKsvqqVQwxRyTaiR8ZisQKt8Riv1rWm2KzlpCSinCk5TsZhteFulADsnCNmQ1VC0txCbWCHFPjS177G2dPnvPXZz/P5136Gd77zPu/cf5eaqxlSmazOo52ECMUKyoxEoixCNgbnDe1kjzZO6EMhUcQeoaPxienEk9NA1w3EBM552mlDlkjIGeXVaAPdWoMxVi0RyuR4SkKM2njHKJkHq0qWkjO2acaJbGMEXwjkqlQDzqpKpVTBy5w3IIkRjk9ucPNgj8cPz4jLQLvnSSGQloG+g1/79a/xd+b/gD3bMTWGx2dXDPECMQEpqjKqGBPLN9ci2dD3CQg0jVNlSlHbvhASrnHEHLHGkIKQUiHQiLyQK2fySDCRXCa7TSG9l4lnZy3GqPWH2UIVjK1qnxYjhiyZaAVjIiZ6Zvvw9r1P89HDxHuPPkBWZ0QsNn+CUYXtNE0+9uBIJFI733/CcsvUc7ecV7lXsoupFQWYrPWEMVuvNGyBOVvbraBjAcF0CQXkKTl/RfVUJUxGJTT1B9yAc0CxZt7YXo9qCWyAs7oWrZNKHQBb5KoCTNYaQbKCkVbBwXFZAsZYcspKnirMLmPspp6pKrZWbRTJMMSIsxbfelzTEIZA7GOp0VShzyqjSq+artroKPBZCWQYwGqdVbev38mqwqRT/EkGfHQktxlqyeN3RUlTMSq5tW18IUcKtoGUAzGAcR5v1SoHyUWFwBFFsDmQjSpueKskXEmJ4/09/GTG9GCGcYJ3htWqIyRD336d9/gGfd+zN53QNhO4PuCe/CSflV9hIrPy2Y1fxj/wdN7FLnaxiz+uqMJAYVAr3r5b0YdeB80QJeTnpMqZhRhbKRitazi9cULrW64XSx4+e8h05rBYUoikPCA5MPQDRixdNxCiZzqbsDebIMRiHmpompZHe19n5c/o7TX9MnB1fc2qm5NyGO1Qc0pY9HYZorCcr7m6XHB+cYHEONoQk6Ey+oeUMLbeCosaTFFZTwHtzXlPCD3GOq5Xa1ZdzxAi9x8/YuqVVLTsO1wzBUkc7R2zt3fI5cVj8jCnSwPT6aQMI2as08FDaw3Ogppu16HIQmQphJjxJixW8/mcqWo9xpV+ZS6fRVXzMZoP2NZrvZAF6xzG6IDlSFAe+5qbPqsYNW111io5OkbdXiFm56IihBnpykVBCEwlzhtQprEmAqYokZMzT589RWLk8OSYL3z28/TXA+9/+CHzVRr7uVJs3rbzWzMSZ2rWpmeoMQY/mTJxU2IwxCRIjsQUsC7TNIaUIrH2R0uOklIs6kmMRHO0JbwheovuQsolp6KcN4y0JoxRspsWJoz9YaSQtU1RsJSyD4UnVvW8mtZzeHTI8npFTFFtcdHB16ODE/rB842vfoc8LGm9sqG6ftDvj+jxzakS0DbbpuTwaq1ry2ll9PtaSFWZPK6zHtFKrqr1Qn1sVNBExlxZ91f3ow45bKLkNLVXj5BFB0kcwrQ1vPbaTYbllPefPCelvhzaXf6zi118PMRkvnX8n/Ht4781PmbFc6f7Aj9z8d/nl57/T5jmox/jCnexi13s4pMdgvDl03+f55PvcdXsCEq72MUufgSSUgVeYKtY2vpXSjU5TnZshTF1Chn6IbHqV4Xk5LTZUSaFSuWvf9NXqgpTnYBJeWzkG6uqQpviua4tY0qTfhygrkWcYQSjKpHJFrlha9SKJEvGW1csW6pUsr5HnXaxNr94DAqoYkwqsr1atMcUVSUpFXKTNeRcSmjRZoJz2uTQYpkyLa3YnbFgsTSmZb1acz1f0cbI3v4MJNOtAiKxTO4IKRiMcwoeJApQAa5RX/WcoS8WCZN9TyYTUiQREQs5gTfFs76PSDLk2GNsr+BYtkwmUwyREKLKdhtL9IHVukyVIWSgDxnphJVzYB3WwjB02NxiG7XoGLI2XY6nN7hxcsBBs8+nf+JNhgYmh4ln8wuMt7z3/YdYBppZw/UK1osVd26ecHrzNov5nMYKt45fV3CvqGKBjJ8RW0DVrszexS528YcZL97utn4xKr/vgKm1zGzL1LUYu2bVLTESWIbMkAEsrVVp+JSS3t/KFObL9+7yubc/TRyEr3z7m3ztW1+jdZnG7oMJNNOEMRGHwUvLzBzSHkw52DthtXrG3t4BizWEpuU6Dhy3+xiB1hpsFC6fXIIYhj4SIrTmkBCXdEPPcgATE+vr59jG8vTBI2KIEC05qC1Z8krasDlSfTcNjsyAN47WzgiDcHLrlDQsGLqe95884HsffUSYL5DG8Bu/9Vu0NvGd9z9iNtlnur+Px3H92cSTp0/51te+gvcwO5piGiHmTGIgSOaqy5gopNSRJWBFAXIcNG5jZZGTNoj7LhFCoB8GnWxGWK7WGGkwVgixI6UykSwN+4d7pCjEsCSL4BuvZJnMaP2mOYIqN1lnR0taYx137t3l0ZNn5Bi3Jl8150kxa/O9kKpzyhjvMOLKRHSZmC3KSNV+qos9Hy0WuInn5U+9xC/+0ue5fTjh+eUDzq4MoPfclEIhHSjDwRk7giGIKjtKtjg8e7N9vvCFn+amv8O7j+Zcz5eE5TVrWfL2p+7w/NGHPHr6hNhbkiiA1PU9xmQESxYl02AUYCmOhJQUiRQ3uRCipK0KQqgFlScmIeWgqkLWlueVxn2u9gVmJO+4rAKLjfckBq6uAl0QommYOcukNfyZP/uLvHXvZ/n13/oy/+ib36YPlzRWJ8xX60gMAzmHEXgxRamzEroqYQXAWV1/CjIS6lPOYJ1Oz5tUcsWspAtRMpdzpvwuRcWTMR9VAr8tBJhCJhsJLRtAwVlTlGwMSVoaYzjaa/m5P/MmP/vZP8Xf+i/exz5/gHEZl8G6T66S0scnvvVneJHw82IdIVTSUDmnQFW4qEQ1++LLZIt/VI+3ecHkrS7mhS0aTBmi2ABE1XtufJ4I5veRedoe3Kjgk6CfXa0n6r7mLAXwUxBr3P0CIuWclWhV11RrENlAg5LLukytH/QvuTynkq/MuD9gnMGIUSvHnEdLnRwTSaot97YCgykWbAXHcxYnev2LIpgh0E58sUhMFKR5/JxFpJy3ogTALdTVWbV1ybHYY5c6cwhJyUtFfUKvYYlslYylYGYiiWCtYJwtRCmL95ajo32cOCYHE/rc06XM/HKJb1oWl0tyCoQcSdlhgelsyqSd4t05l+0HML3iJ+b/HSyTESmVFz7rXT2xi13s4o8mNveCLW7tFtfWYpi4htBMyN6xXA4kY9ROTbKSUopajap7JyVEi+DbhtlsxqSZgBjmZ3Mu1x0Gh2DZm5mRaD9pGvZmR5wcH7LOCTGJ1WqOWI+xjovlNe7g9woxV5g0FpPVyi3nhOTM3uwIYmK9WhFjImdL6BPOO1I3EFNEFT1l7Hv1KePEITHpzbvkQc46ptMJMQjON1gHIXVITHz08CMkKMXj6uKcrnHg4Nos8b4l58zVdEkSw9XFOdYI070JmFTUbVR5KgpEkwt5NmPImn+jOakxotbFSfOAXO5DMW6GHFOImJzx3pKKkk4qilDtpMX5or5U7ofWGCgKjVUZCIp6kKGoxeu/s8M9+j6QhzD2QLXWUFISwkbJsVJuZIv8LOi2kv5uCskp9ErO74eB6/Ulp4eHTFrLYv1ijSuFfCWmWNKy2U7lmakNr+f27Vu8dvtVFsvE2eUSCYFuWHN0cx/pljx68ghJtpCmpNRdNW+zm/treXD8Xgha05TjtLG42+TwYAqhu1jAjclZzbs0z9vUFJpfak/YEkPk/Pyi5Fg6nIoVXn79JV6+/RYXZwsunj9jtVyxptTCWcliSNrKbesoLuMaasZZ83zNnXJRltKjWT97Q80Xleim+Y8tNnxbF4mSKdbPtPalP9aOH3PUuoZCocKIKojduXeTV1+9xYfvd3jnGCyYJCMJbBe72MXHotbyJZIZeLT3VR7Nvsbj2df51z76v4wqS7vYxS52sYuPhYEvnv67ZBN3jZVd7GIXwI+kpLRpOG8kdIvsLPYF0OHjdm8imwZ8DlWmVgGFXKZ9bSHUIDqpUl5ZtqLbGSdfUAUAHVaRcW36L0qUiUlljcv0fYrF/qCoNSngpSCiQAHMdOodY7HW4YsvuICqQ5SJeMmlaSFFJhidQhERwhDHSWkxarNC8Rk3KNYRk+CcNlj0YpyJsagPlP02ZELXkyL41uMnDevrNXHeE7uBtnXkKMVajjLFTLEosZBATCIbCAmwghVLyIaLy57DPANxmJxxIohYnHE6pQWYbIhZiH0YP19Doi0qHzlEsBmahpSFLihYmZYB16j1iqQBvMM5oyoJaBPNZYHGYwX29g647hfcMHv4acs33nuXq/Ulrp3w/MkVh0d7zLzHGOG7X7+PczPu3jzm3MPiYsHbb7yG9ULX9ewfzLbAvQowGXZ3vF3sYhd/bFEvO7VJKaq4d7x/SDud8uy5ZbG8ohsG+vmaKLn0GNXiKoZAHgasdxjvWafA+w8+4qU797h384gHZ++zDB3rbs7NWzfIoacfEjdOj7hxeo+f+dzPkl3Hh88ueP/Dp1yuVri2IX2w5HTScnRnD7Ak2zM9mvD25z7Lo6ff5+mjFS+9+hKffeMnWT+74Gvf+xbLYdCpTteyv+dYXg40B3uEZeDm0Q3eePklPrj/gOWQ2ffCs+srkg1EiXhreeOVVzk6OObsYoX3jm61IkZDHq7pu0gKGUmR/gr83oTYCF1eMr++pusi737wgOVyTQodR8f7NNHQ9UtyEvo+slp3tH2DtQJFAt/W/CMDRievvfPEQoaWnAmDIQaLb7SRbXyxiw2RGCM5CyFouz0U6y3nPYaMNTI25721iFN1D713JrUfM6Wx7BwX6xXrfoAE2SpQYayu0RtX7q2CWCHZSi4WYgUZxJEQ0qAEadM0eFuUZIbEP/j13+bJRw/ZGxySOkBIOZGlTGdntU+zDkyxaBAsTmo+J0z8Pkcn9/jLf+kv8vmX3ub+0znnzy4gCI9XV/T9FZcPHiLe4pIjx4RIRFIqijU64S3F0oNie5VESFAsABX4Srl+QbTRboot1DAEciG6WQcVfLBspqatZVTIkWJFNWkniBHOn1wjAt41aitl4Y3PfYo/9TOf5/rpNSZe0lhh1adCUMiEGNSaUOq0NSAOsVWlRvNJBacMMSgxZhjC+DtJySimWLbVfFOSlLyvKGeNyjZSlGmcqipZBcMo4E9VASuHRcHDks5km7AmgzicEW7fO+EX/9wv0gyHOJ9oTaK3Dk9Ccs2jP4HxceSELTD2hUfKc7fria3nqqJS+b7XYQHYEEo2ONFop1FJaKN6UnniZmi9qBAUhKhaqG2WsrWtCnCVbWxWuQW2bT1az6OcNtZ0MkoGMIKJVQFKrQ63DsX4n3quZrIYrLEYV8hNxZZFlRfsCFbqYAFq22jMSByUlFXVTAqwKVJs9oqVttnaZ6OAGuU7oeTWQjByOiBgsVsA4Oaz2Uz0y3jNSykqYFqmSHIWTC7WOKjqBiaVo6g7ZcVgizJEGv29hZgyTTNh2XUkyZwcn/LhoydAZgiJFKCdGKZTj5s4zp+t8Kbl9PRQr739mhsnp9jG8iFf5XD/Lm8u/9yoGvICf24Xu9jFLv4IY/s+Nz5QwuUGZy17e3usujVZHGAxOWmuNRJTir1nUW40xtCHgbOLc9qm5WBvT3tZSUn+7WRKPyhZxDeeydGMw+NTZtOWxdU5588v6NYdprF45wjdBHOgJKNEZp06Dk6PaAfDxdmavVnLKy/fZULL+cUZHz15pPkeHtdYQrfEtw0xRGbtlJsnJ8gQOLtecng44+r6inUIav0swqRtuXXnFmGdcRPPYnEFWdk5JqliUZaMSRlcQ9t4IJPCwDAEunVPLMpOxoKPquKtak9CPwSctcSqoLfVzzR1uKBOPKJkJWcdQyiPG/3HFfX2mNKo3F6J6SlnJMpIYqm9Ks1njarr5DoIWXJBU23KDIvVWm3gpN4VyxubjWqjs5YsaXxNPZsydahzc2ZJGYzUkjXTLTq+++13mDUtE+tVUaoOOmwkPkfijWQhm9ppU3LNtJnQzg65e/cVXn3pJUSg73qstSzXgacX53z0/CnZCHjBJKPTBmzlc2ZDMtLkF32s/L5Rw9cjMA7Slnt0qrbTltJbNSPZqfayc9K/VzaPiGxyi5RJWcrgqL5pO5kynUx4dnafZ08uMUaHRLU/XIhEhVxdv7SbvaofU8mpyhCGEuRqflnWlA1SCep2q7dtt47L1rVC696iNmbqsTEjoWtcyxaRX58hWDNS2XAeDo72wbcIC0zutFYVt7VPu9jFLn6oMMJXTv4699Y/xV94+r/+ca9mF7vYxS5eiDbvf2J6G9mGH/cSdrGLXXyC4ocmKW2rI+WxMVwYPGajWvPChPQf+F6wXWRuT7LUgkrKhPGGfGRKg7/WmYmqXFAniWpBXslGJgupTOwj2vh2rvigoz15Z0CMNvozOh2UYiJIRpxVj/S2JedQpoRLcTtO3bvSt8jF6kPll22ZAsoFYKmNjo2qgVrNKCCV1N4nA+LAOYwY+m6g74SmiaqQlLRJErJOYVt8ORaCrUCOSPFqV8nqjK5NJOG918Oc4Op8zXQ2YTZpsOKJSeemU06AR5IpKB1KtCqgwnq9Hqe7U84MQcljuYBzORlCCIiAtQ0kUSDYKrAQ0kAOBWDtB4YQcVb43tDz5psN3dPHvPX6y7z7wROOJ7c5nDjOrh8TBHzruLl/yJtvvEQvmUlwTLxndnLA5WJNbmHmJ7TOUyffof7zItC1i13sYhd/KGHkhV6gKndUYFuoMh7T1hMGYblK9ENDY6ZEBgRhMpkwdJn1alnIMQbpA0PjePzkMU8eP+bJ/BlhuWK1WBNDx+F+w9HBlKdPV1grNDemrJrMsmm5PHvKO+98m/nlFaYRWmBqDccHOs01yMD950/5zkcfcHyyTxyWmNxz87jh5KjhZO8O7z37kMPlLZrmkJPbt3j80bsEmRO6Bd4JJ3de5pU3XmV5ueCnPvUWOc35x1/9JvN1j8QeEU8nLW+/+Wl+/lff4OGDb/F7X7pgyBCTR1IiZBVfGvrAG6+9hSWyWl+TGWisWlZ4otou5EhKAykkFouO1bLXxnCIpBxpW1XzUMIMpJwwUu3CEg54662Xubpc8DQtMbYZp5uth5Aiw9CrFWsB/cUK3bpDslprWGNoUcvRGBP7+3sKwKdYQCGDd62qfIRETAMhXrKNb1jrdEq4sL29c8xmjuvFHGOUuaz2Eao05NDH7CSpKqGf4hBSCpATw/mar37xXX7i02/z8p1Trrs5oYtgMt5ZMsp2yVInlYVsMlhh4iwHN0/5uZ/6VV57420+8+ZnOWgbPnc4hU/dIKTMd995wN/4m7/J09U52XZklzC5ABLWYJ3e21POSo4qjXqX3aj8pETzqh5DAWcMBp0oj2XaHATXupHMIaIqQ9YZhhwIIZRGv9kQRrKQJWm6YlWVMmXBMOGDHzzh//n/+PeYXy1YzhORHlwuFhOZnGJRLyqEsAIa1RlxyUoedyV3Gga134VKtLcK4AwZb00hV1nathnttSRvrEA25BNBFaiKik6d7K77BEV9dPMemgOXfbcGGkOwlq9/813CesJi/hBn1tjGK/nvD07BP1lRhxjGLkk9R8ymd1IBqQIWbu+abP1d32YDCL3wnPLYBmajMn3GbZpimSxCASU//h6y9cuLFCQRUSvCkdOk69dzPisYiNYxuYCpBQcdX1+NfFR9qNYO9btSbUrqrlXFL1UKyKmCktXGBHJUMlE2RpXfol5XXqy1UKJsncgwuooNtqWvGYFSI0WVrtZvhtAnpIHpVG2mc04YYwkxkZIBsaXO02NayU8hKpnRluuEmKLwMNaRG6BSH9LaDbsB3PJ4fcmEvMY4WK4TwjkWuHl6Qj+sOD484fCo5enzx3RDoG0bjvYOmE4asnVMbEPKGedaVquOj+w3eUV+gYmZvHASjKfVrpzYxS528UcSsnWvKveYLbLB7f5zvHf42+Si7JjFI9lhyHiXmUwnSEqs1utij2nIon0mWXeEISAGzq49q8VKVbG9sD9rWK6K1bEVFusVzaSj6wMX5xeEfg1FWchime3NitZQYrFa8eTpU7LJeBNJoccZz9AtsS2shg5rJhzMpty8eZP1asHT9cAwrEl5gInHzTzZCEenxxwezpiv57S2pV9rRpZyg50c8MpLN+nWVyzmZ0hOJIEsm0HHnITpwSGHsymL+RViBpqm9upktF1TASNDTJmuG5R/5FTZzzs35qAaxW+1koeN4ehwn9m04dnza6TkgpWQnrIZ82HYEHZT0nti7QWq1ZsQQsB7bclW0q6hSEuRlZhEySMLdVaK4lXtyWE1H27bhn5IpRjd7jsKo72Z1XuqdR5bbJUlB8iZuI4kN+PgcJ9130HJV2zJR5RYXPu09azUIYLZ3h6f+tRnuXV0i6MbR4VYA7P9CVEiueu5OHvKaliTJRTSF2N+q7WBvmOWalNd899q9bshVNevS308l57omKOJGQchahvQoAOnkMhp862rNVkl5Nii2phFsMaxXPR8+YvfQCQVS9pizWYqES1tEY4qAY0x39r0vEvukpSkpDlbteQrw7+VZ1RqArXp3iKvbRGyRKTsz4uXkBcz5U3vfqwztvrrxhhoGoYh84N3HnB5vgQzqF23Eeogxy52sYsfIYzwneO/za88+1/QyPTHvZpd7GIXuxjjJ6/+Vf7+3f8jyQw/7qXsYhe72MUL8UOTlEwhwdSSZ3vKRwuf2jb/uNrSPxm14Cy/6euMIMWiTaoKTt1eqTdtadzUBrwY3W61URvJSlkb2CPAUbZTAS2pnWYRIgmnbwoYxCgJiDzOCY2AFqLTOTlpA15yVYIqQILUaRpVJ1ALE7UzkAKEOeu0gZGiEnmcUWITWrgmSaSY8M6TkyWnyJAjEBkVq8QQQ8agYOqmmq3HN5fC19UPjxxhSAFrM9Y0ZAtNO3Dr5Vu0jaXr18yme5yfLzk/78i50cLYO8YpI4yStyhT0yKkhALAXpUqolXVI7Xyy2QsSUBixDuHs24EnUzOmL4jtcJiEfngne9zsn/Ik/sKGh/cmPLGW6/x9ItPOTu/4vjomDfeuEtjLX007N054qJb4jngyfMLIseYQ0c7c5tTq2IpZjxpt869XexiF7v4/zOkUmOhqm8AmwZi+dEDe95z88Ypl2eXdCmRkuXl129z8+Yh9z98SIoR8kDf96rgExserh/TeseDxw+JQ9T7Q9MwnRgePHhESp5+3fHgw8ec7Hd8cf47XFxeIKsLcuoBx3wYOL19m6UZWCzPubo+48P3H3Hx5BEXT3okdISu46P336dtb/LRB4+4vFjy6dc/z6feeJM7t4/5SuP44jeuuVotSdJxdvWMK3mN67ZnffYRV8+f8srrt7m+6nj28ILT01u8+anP8oWf+Am+/953+fp3v8755TkhC2IcfrqPX6yxESbHt/nJn/tF3v3G73FxdYbxjomz9OsIKdE2nrb1NN4hKROHiETNM9arjqa1owrgIEGb30AWR06QU+TocI+Tk2OurhZYp/38MBhCEIwZcI0hRr1vqu2RKiMGiWQxqnZoDJINMSS11iiEHGsN0+k+4AghkEJkGCLWW5xraRpPn5S8a6zVaWmjykMpRdbrXhvY1inZJykRKItgc494h3VwOJtw69brDL3j4vqMlC6Q2JMtzFdLFt2CEAdE5X0QUbpBLoorUkgQRpS4fHTnhL/6r/xr/MU//ec5cC2uEWLuuI6R9WrN9999h698+etcLZ6ABNxgkFgsL5xHyMWeQu1fY0xKFMMWa64ynWy2XX11SrmSMARVXDJmo5CEbHI65V5XMg8F2LEvgD7GqFpWNagSq8f5w3cesO46Ulb7CWPUggOTELbUpqQ26wXI1KnqOpGcon6PleQBzlmcd/jGE1IixYhQrfSinntZn6sAhBQlH91OyhnrRM+PQqRT28Bi8VcuHHUeYDMpLWAzjc2Ih5fefgUZhN/57S9zNV+QiFhJYIrE0yc1tmqAf6JOkO3EDdi+plaC0lYOZ174fbt2UNBqVFUq5KXt7dWp9lFZoJL9K7xTzr9aDYwLGTe/oS5pivkCBaosuZBvjJ4POW9Uu3JRNhtBt2pdB2Ner9eAzVtaY0rNVYg6oiQ9JRdVFbmimACEEIvtT1lt3hyjF8zvKvhXjtwLeyh1ZZsjl2KmqtGWs5rpbErTWEI0WONZrwPL5aDHNZmi9LD1uRdyUiUeVgsTa+3mmgAY68o1RLACKSaMlY1qXmWBlgENkUwwhr3JjIuzc8Rb+rjiwE6xrkEkYsUymzW0bctiPWBnhhATjpZlt+Z6cqWqF05ePE71vxV/3NUTu9jFLv4w459ChhQM+/EWJ8NrnLXvsT+Z0LUTljGSJNFMWo5u7NF3WkNIKpZkRVkmxoSzEZHEMur1Vof9HM+en4N4yIncG6ZtQ3d9zvW6R8KAQQf1QoqIGLrUs7p8QsqJ1aLDRIHc0UsgpcQwZM4uLolxTg6Rl+/e43D/kOnMs155VstLruY9Iob1csX5+QUhBoYQeXYGhwcTbuzt8eTRM46ODrl5cpfj02OePX/Co2cPWS+XRYXcMpnMsDGR+gHnpty4dRf6FUOM2okyRlUARe9urtoJj4dZ888U46i+45xFRJWXNI+Wkh4KvhDzr+YrQsqIUetmSShx3lYCjx37omp3rESTXPpqoD2/nISQw0jS8V7VsmJMhexUhiRNUf9BFXgq2aoSbDJC13eai1TFoGItCyA5at5gLLN2wsnJTSbTGzx7fsYQ5kjuSw4eeHZ+Rh8GzUm3TkiRPFrSVUIRCM205bM/+Tleu/cGExxZEiF0rMLAsuu5vprz7OlzlsslSMRki9kaEKAMgOqubAhKiG6nqjhqerjdz1MSllCVKM3W30pNYbXuqPuh5Oe69rovG1Ka21L315xE84z1sielot5ktIf7Auu7fn91IYxKWfX4U3LCZNgmLVljxveKqdY8m+fI+BGOhdSL14VCuKvngdZYNQ9+MS+tM8GV8V6od5jGkmLi4tklV4t1IXtVva4/qKO/i13s4p8WV819tTHafYV2sYtdfILiTvd53lz+Od45/PUf91J2sYtd7OKF+NHs3rZ/1rFYnfgwm7+KZJ3xqcUSHy8meWFKXsGmTfGsVb5OEGmLvoIM2xPEjM3r0ce7TuPoH7XoKlMwymnSCs9ZAyarapGxY7FrUMKRLY2LjBBjUVlwTgtIb9UKpgJlW3Ypombh2kgv0y7WaHPb2qpQZEBsaRrEgsU4rLEbu7cyfTxIX46NLdNDCVVfqmCb28DiRtdL3kzoQJ0wLhLQYhXYEMG4ohCAoWkT+zc8ZtFyfnbNYhUZQgAyJEOOVdUArHMY3yA5klIqykkFCCtFcTRBG0DOI16IEnHJYga1fWsaj7eeoe/AGJIBklr3JROITeb+gyfYPU/ohRv3jnj57ddIFvIi0vfXNLNTri/m4DPGeJr+km5YkIZTGt8qQKtnGi+cNC+Q43axi13s4g8pZNP8G5m1FNJSuU5bMlMj3LtxRHz1JZ5eP2WxHmj2WtYh4Nspk73A0K9xTogZYkwYp9YKqeuLVahRm4dVZN1d4wsRxVvH7MAwv/iIxfUKE9Tb2URVFXr44AmL+W+QSVzN1xzObvGZT73Fux98kz4KxnsuF0t+83d+h1vHr/DLv/xnuXvrLs5lLpYPiZNr1mlBDJncJ55dP+Hvn/06YiM5NLz58uu89fLLfOXsm9x+qeG//Vf/MkfTO3z1y1/ki1//MmfXlyyXPa233Dk9ZnpwxLP+MS5P+cKnf45pu898vWLR9WQiRiAPtRmcGbqOJRnnvN5bTbHrEsH7CbNZg+RM7Adi1LnnbuhVPh+h6Txf+uq36fpMksx0T0EGGsE7UyZgLSIWa6xOPBc7pOpihgixj4RBrZMSCVM4sTlHUhzoh0En1TPkaIhGyVIpJsQIzlTpfCUXpBiJcUOK0NcV0N4kohFMajianvAv/8qv8NM//0t87/1z/v5v/D2ulj0pCPvesF4/Y7noVMmwEImbtmHoBnJORAGHxTiHyWpV97N/7hf4+Z//KVb9OQ+fX/PwwQOunj/jyWrO9dWCZ/efcXa5gNTjrWWwDdigFmySIFJsRHKZxBasdaP1QCUQZRHECN57VZIqwEsllGNMUbgsRO+o7xVjHMkfUtvtUkngbswDtwkbMUYwQsqBlCI56GNCT9M4yEq8VlUb/armOnRujeYuKavqVMlCKxFfidsW722x+E1Kxi77byrZvbzniFbISD3BGIO3qtRli7pOOYPGa4hOultVz6QSTvRqYquCUxB+7x99n4/Mu3SrgXnXI2Ix2eAzxE+w3Zt8LA/bStHKRXRDUhrNKEZ0SV583QuEJfMxvGhkkrzw44sbLXl0PbfGP1d7aX0baypZrG5ARouRlGWz7vJ8BfY2NVBOUgBIJZxp/hxHYNFsedSJ2QaHiiIrW0Q+qUquMh6TauGmRL/RHQWkEorUktGM9cQGINscXz3fx/ffIoht13Ei9QjVbZd9Fr1fkSxXl6oKWIl6Aki2oyVNVTfYfDRK5BNbAMftY5gFsWoNmW2tLRO+kD23v5+Iqm31ORQbFlHwLQgHNw45uXsTc3ZBWg2sVnPWoSf2MJkckY2wHFYYyVgszm+fhy+S3HaVxC52sYs/zPjYne3FMNs/et5Y/jLXzX1wA6fHh7hGWA+CEFl1A2lI2s8ygFEbq5RK/uE9znqCicRRZduRoo62ZfRekXNmvV6T+qFYTOVRCXDoAg8/ekDjLSFnBM/dW3dYzQf6VY/zniEOdFcXTNojXnn5VWazGSYL1+tLnj5/zHx9RRcGTAZS5vLsHNtYchZOb9zi3u1Tnjx9irGZe6/c5nj/Fk+fPOHxw0d0YSAGvQsdzKZKNl2ucG3Lzdsvcev4hMeProk5MYSg96hcyUiqsB4GzZMRVQtUdUNVKvLejurgEbRfFZXUXnPSy+v5yPl1vuRuRkn5Y75Ra0BhtDytyplZMpIqEYeRrAtKLMvFLi5tKehUNVIpZKmUBCtmzBErs12tzsq2NyJKqrqULd62fOr1T/P6G68w4OmHnvPLFRGHNUmHZcr2c8kvvHeFwLTJO+qApxVVUdo/OuDi6hnL+ZLr+YL1Ykk/DERUPb1bB7CCM+C8JSclYVd1+hfymnJPHwdTt4YVaj5knd2olcoWAWc7x5RCCK8kp49930aSF1ukp/KdE51GJaY4qifpfwopKluq6r/RtB0Z/e+qLS7korZkxpSidLhtTR03tm91QFb3R50BNufIi0yHul1TdnyTxW23P80L+STUvFrXLUZ7xMuLjh9cPcAXd4RYCWKSsWLYxS528aOHGCHrXWQXu9jFLj4x4WTCv/Dkf8VHe/+IwS1/3MvZxS52sYsxfmiS0ujCLpsSp9pdME6JVLhISuP643LJjAXn+HStrsaiykCZsH/hz2PBKeVvqoZkxwkRnYqqhaIWtMbqxHvb6hSud4522jAMgflyrQClQhEbSWY228loUWtzxllH6xus0al/3c866cI4zSuioruS8jgTrZLBChiltJmiZrQrUGu0GBNCxDtP9befzhq8c1gnYNTiLqeyTWuKPLTQ94GQKilJQQe1XDB4XLF40GI3pQzWEAZYrQKTg5a+N5w/X9GvtMpPMiCFUDXKZJfzQLEFUyStdRtJYgEQoXHayBiGAbLBJYcRi3MGSZlBhvHTFqfTapbI+WLOfL3GWY/vWiRZPnr4ITduHuNaz+HJhCfPnvCDB485mpzw+c99FnGwzpG9ZsaNvQkTryV6ykpOM1aL8pQzrkyOa53/ccRqF7vYxS5+uPi4nWksQKujGvZoVAA2ixnvZ7NJw53bpyzSBSE1XF+uGdYdOSZyHMgCrmkwcSjTjsLx8R7tzSPm8wVDjrRty9BPuPPKK6zOz+lDRztt+ejJBXvtMXvGscrXYCM5D5CE1fma1fMlsz1PFCFN1jy8fMzl9YLZ3gHDsKLrV/hJYnbS8IPnD3jv8WO6xTWPzt7h6YMHLK7XhJhprMe5TOMh4Xnp5Xv88q/+PA/ee4/1IjM5cDy+vuTLX3uXd77/Ha7mPQTPFMetG/u8+eotPnzwkFu3jnjjzS/wZ3/+p7m4ekiMkRgifd9hgGk7YTJpsE5zjBSEHAMhBmIeSJLGSV5b7LWMASuWlDIhRHISvPMsV30hyxiMyfQroVtlECW3uMbSNg7JRcUHgyoRASkhKJChqh4G42xpngs5QV+AnHrfVdUlUWBDVIEppEQYkpJcKjm7EKxTykwmDd46hEGnpBtPjsLhpOEzn/sM//J/469gJ/Cdjz5gtg+rwZOiI6XI0K8IScbpY2vq5LYSW7ytJAAF9721vP/Oh/yH/9F/zPP7D5lfLFkNkdT3hATWOPrViiSC94lp2zDZs0inBJwYN8qVG8DAYYySgFJUKzXnaudcynR6JTlsvilSG+zG4Mo9OSUlKuWt75oSoswL/69ECc0ZLRIjxkM/9DpJbDI4tcRVUCcWEENzJWdAHAoEjJlo/f5WjTQzTqYbA0kypgAjSAFQqIBBsaQy1ZYibUhGJZ+1dmNxlevyC8CBUWsuhJJjVxJ8xtiSnxnBRsv142uWWfDG4J0ju0TMGUfG+U8wSWn7My3/akpcCTJ5zMXr80fgqYJJ9fft9y0g36gFNCJCH8vzRuKNrmADVimo68oJUs+TkYRqTSHGaM3hG0dKmVXXFwVVNudjJc1s7W+toVQFVsmQMtp0bJFh6rrM5pw0Fdys34Gt47J1WHRAwrqi3qqgciUGUa5LzjX6PcSoKkAdrHAOaw0hJFIottGVwCRSDoMp5+PILiKLECN0XcI2DXHIxJi1jBEdABHKpbZa2tWhifI9LLCcfqeq7wtmJFGJ1NfosbDOkDGIMiX1+BUFDDGqWJVCRFVdPT09T54+pmk8KURmkwnrfiAse6aTKdPJlKZxDDmBN9i9Fd+b/G1eXf08BM8ex7QyQy0eVZnDjtcfNufKLnaxi138iDHeEUXHrJIIzqixl9m6yFQSwo3+LU6Gt3g6+R7WKVM+RVXmTDljyzBcLjaajMQHwVph/2CPnFQR1DgPYtg/OkJioOtW+MbRrQImtdw6vsF8eU0f1iAZKXlw6BJBAliYzizPnj8hxR6LJyUhhoz1Bkzgo0cfgnGkLhDSmqFbIzGNvZhm0mq/xmi+enjjkMv5Net1AGl5/OSMj+IZ69WKISQkO5zJOCNMpy19v2I29dy99zo3T28R+iXr1VLvGUkp7t67ohq1uVCnlIkpFnLJ5nNQ1aQ8knVNJfrUIsNYJcGWvC4OMqpyigHvS66AJaaEQevA+gFqjq5EdWU6beUBsslKyt2/1DdKHknlPljJK1Lsg0eiEtrDtAjTyZRoIiHG8vmrkuudl084vXeTprU8eHCflFdMJh76SIpZBzGkEoL0Xp+qEpWxOkZqy35YgxXDcrHkK1/8CmkIyBCJI7lG+8E5K/EKC+K1XnBZ7cS2+8vb/eQ6EKskJBnz5ywbRSlQQtaYN9UjV9T5X3zvrS/d1v16rCe2e9xYJRxJ1nzKFk0hU7ND2VioaeZW6iBGwtWL/e9NnYBsE4a2Pul6vMcFlp55RmuKmuuMsbG+3T5vMIwOCMimR6/HIpcaxYwEKUQwyRCyELLgrPadM6Itebt1sHaxi1380HHVPOA/e+3f5pef/0+ZpAMO40vsx5uUO8uPe3m72MUu/oSGwfD24i/x9vwv8e0bf+vHvZxd7GIXuxjjhycpbfmqq/+1KgVZqxLKWTY+6WPx9cLk7aYcy1sN/M2kuhTtJMbn1deJlBoKKTYG2mSoxCNjUNCtsWpDZoxOHmXBugIOS8Z78B4wHteZMjVlN+CU6GyMNgMyYhinrKR4ujdNQ/VnTzmNNt1VUlkJRnUXNvYFRnQyTaCQjrTQFBGiZFoHvnGqAkCiaT3OO21bSMY1hsODA6zzdH0iDpEQApmIbxoa8aQ4FEnvXKbttT7N5ZiPzRaj+9Ot4MmjJWIaVos13kK7r+9PNIQyXRZjAUVE1OLNQNP4UuDaojZVAF1jCjnNjqCHTosp0SsEbZSQ9bU+G5JYaMHiQBLWtqScmS+XfO/b36IxlqZxmLaldZ796RRMz+X8mpfvnNBdLbl5eMKNwwZrBlKGs8slR4eHTFpVsYgpqYJEKdy3IbKNlccmtsuGjxMSdmpMu9jFn7zYBppfeBy4HgYEOGrbF9qLOpVrRm03/dmw7iLzs575VU+2aw4PJ8wOpjxczAlJaNuGnDtizPjG0LSGyVHD7OCY+bJnf28fGy0rY+iHJa+89QpXlwuOpi1/7pf+BQILvvh7X+L66pJ139M0nnbqubpYsOo62hbmoecMofUtE9+yml/jxbE/bVg+f8T73/8W83VHWPWkEGiAe4eHPLu65OTGCbO9KRdX5yyvlzyTS/72f/n3aHGc3rrF2fNL/t7f/vus1wGDY+JP8bljlRJnFyuu+vcwccWf/xd+gZ/9hb/I/PqMf/ylLzG/vCR2AY9hf3/K/v6MIQyICMOQ6LuBkKJajDZ6LCtRZbXqkKSTxTkJEnVCV62BGiTrJDQ244AYLN54bGtpWot3qgDYdT0xDKSkOU1NQAxwcLCHM4Zu1THEQJXkR0who2k+45xFMISUyQkkJcgOaxqErMomFowpE8DFAuL09ITX7r3K937wDvPlkjwErLH8xJ9+k9e+cMo373+LZ/ff50vf+A4YuHN6xPll4uLimtTptO54nzOWMAzjpK23VkWESo87A/e/8x7vfeM9cgzYaOiMQWSgMRbvGsLQkWMmNZ6QIoglR8gUa4tcAYhCPBCUdFGmvEUyxnol0EgGsqojGVfISkUhSbLmDU5tD8gyEsKrHVbFLaTYYBlXtp0rqUXziqrCJEZVJzMWa5UMnkYLNs1ZLAZnDW3TkHOmHwKSCgnFubFBD4ojKeHcYW3dpiq5mOw2YJImGYU8AUZsgRr0amENGKRY8lagYzSqUAK42SjhaC6rOZ1pHNZrPptjxERDNpYgBuOFmXcM4uijrTSdT2bUHMxsCF4KqjDmzxuYSn8StkCX+qjI1gW5Pi7je2zeTAqhRCqmtRUVDANnN/mdc6WesC8CSjmnMvEuSKiqqaYoa0mpJ+pzq5rSi6QlKlhlDQXuG4lCpi5fCo1PNvtLOedG1VfAFBJS0Soqag1FfSDrG9piMSmm3MeKsoYxroCzebSUiUnP4ey2artit2Kw40S/bH1QAqQIq8WgIGrMtI3DTS19FwmJkXAoW8MUdb8q8DsOmSguuPVZF9VdW2qqcs2POY7XBmMsLhut4Zzug8HgrENQJYTVfI4roN96vcZ7z95kgjXC1fUVJzcO6VcdB7MDmkZ43H6FB81XWC4HTtp7HNkTXlr+HDe7t2nNdHMOsgGH/5n1xD/lb7vYxS7+5MTYW/jYPSyL0KfIzDVsXWkrTwmAq/YRZ80H5X1UtVMGVV+dHXhmk5bFfMUq91jfYIkMQz8q6YU80LQemy1ihIPJlHXfsVismLSedjolD/DSnXscHM948CgSzwZCVMVI7Vdlhj5hshC6XI1qOTk5ZNWtSMbSNp6Twz2WizXn15ekGFTdVAynx8csFgvAcOP0mPliyXK1IqXIB+9/SOtb7t25y/XVNfOLFSlrPbU/OwKxrNbXDMOSR08vMCZx4/CI6f4hQ8588NF91qslKeiq2sbTTlvtuUVVLO0HVWKtuWk9wNYZckwkqTmj6IChlIONGe3CdGBSybzeOYy1o11c7fFJsXOTqngkqtLpncdZSyKpWuB4L6njn3VzlRC8pagjALbcIjdKS0qM0SFHP215483XefboKRfXc3Kx/Ds43WN26Hnvo3f4MAuX82sdMGwarGlYLAIxqb2acUpSNlvyUNsdNOXRC4JFYmZ1tdB8VoRcchVDwlkdvswpY7LmrELGiC0En7pTpe4ytZ4oB8FQyFibemaTO6gyan2HMU+sQmLjcSzPqO9beGE6Z7BR46/fMTGJLFoDSBKsbPK9mmepmpLWQ5XH45yS4UKIo8XcqGolNU+sXDdbaNs6sIC12Gw2OXE54tt8e1OHg6mDELI5JTYp74sXDVPPj9J1N2Wg1ZryWeXxgBsDYtUa2+AYhjwO5+5iF7v40UJM4qsnf52vn/xNAG4Mb3DSv8EvnP2P+Pz1f4tJPvgxr3AXu9jFn8QQhIezL/Pe4W/8uJeyi13sYhcvxA9NUtLiuRB6asNaCtKVtxvvm0nfWjB//H02IO6GqKTEmQJEWYORNNpgKBCj07gYVatAVKZ50mx84w1qhTOdtbStJYshCwx9IPQDMQvr6x6RpMpIU1UvCjGTSrEZs9rMKJDkABmL9FjAJClNf6mwQEYJOmgBbqmTNYx2cRXLtNbWwfvSpNfGSEgBV8AG6yzWG3zrwBiEhHeGdd9jiDTNBD9rcQ6GIbCar9UCzlskDTr5Q8ZbixVHClJxVAXPJGqD3zbMr9aEGLF47t65wY3jhkePF5xdrCAXyxPRtaqiFBhniP2AseDbVj9DYwkh4ZwnZpU1dU6bWBnBOUtEtNA3+jlbcRg8xmSICpYYa3BeT6kYB1yfafb2WC2WmDZgD/awfo/T0xv84PvfJNtPM6wDn3nlJtYZuu6a+48es+xhvj7i8HBKlgkHk5bGWxIZl42eY7//mT6enbvYxS528UII6EgtsEWrnXi1KPAZAhmx0IzNZpVVT4ATiwP2ZzNevfsyMqxZS8edV27AkEgfAa7hxq2bdN0aiQM5CU+fnjPrJnjXsFz3LFZrPvfya1x+dJ9uGbg8v2ZvdsDtl/eZHHqur9ekmPT6Gy3NwZTZgQIFMQzMfMPRyRGPn59xcusWn//cZ/jyV67xjeFTb7/B63de4td/4x9xfX2NMwPGWG6cnnLv9JD5Ys6tG4f00nN8sE/fdXTdFYYjPv+nfo79pmXoPqCd7DGsO27evsNrb3+Oh/cf8OXf+4dcXC0IqxWzqeWDx0+5c/WUr/2j3+XdH3zA1Fu8m9C0iYODCba1EA3WeIahZ7HsEGtKsz2SM0wmDmehW/eEqNZeQxgKsKAk4RBisWZKkDK+ccxmLb5pCGXKWop9XEqRmAaGIWFdgxGj90irzeghJUJM49R1KkSEXKaGlbAtZYLbIViwDmenWGOIeSDnQfOeRCE8ZJKDV3/609xkgn9XQXfEkmaZeRr4nV/7HX5t9ZukHLDOsLe/x/50grUJZzN9jnpcTMI68H4CVoGGVBZryjko2ZCdJfQ9cdCpWpedpnI5kSSBS6QYCmlBIEedQM8CJKyRQp4xBZApyiaix1KMqvkYa7BelQxzrKTgXOye1KrBV2JCUZgRMomA8YIXS0pqqSXJFNJFLFZypiiaOERSseATJWlHIUnAWlUZUNs/j3qeSAGTVOVytr8HAvFyTgh6fJ13Cm6kRIoFHXACOEyMGKsE8KbxNLkhkMkSkWr/W/FHu7HoAjPag2Ryse4wxTqYFxgq1um5YWwlXSiJhgKaZGuxWVVmjBf81HBwuE83j8TQE90f3WXwDyOkMnXYIiNtE4hKPWE2TygvLCjKFklmVFcqH1MFuBhBnQoAbm8t1z8C1f7PFCVS3XbKEW897URJaMrJc+So516MGZGsaqBWrUtiSvq8ChgWIMnAaJtiynmwuV5shYGNomve/ssIEY6HoajS5iwbGzWDgoHCCOjVY6lEKX1diAkk0zQtrnGYBCkahiFsEa22wMgRYKNCY+XY1XpHrarzosMaz9HRjL09B2ZgWAybz7d87Dnl8t2wCpAVYmDdYiqWaykrSdFYGYdCqs3eCOlK/UStKg3oFE1ZuBKgcs4445jOZqy7ddknBedmezOuLs+IEvDGcTjbJwuEoefs/BzjWxb9nLb1vOO+xctHb/O54S9ya/g0laBadcs+ftw+hjbuYhe72MXHot649B+PYeadWq+JkI0ouRK99s6bR3zrxn9Csh2qsiPcOD7AmcTlfECs9jiyJLCGZqLqdrYQw7t1IGUp1mrap3J4JsaxSkIYEsZH7eFI5PnlFavlQEyZlFR11DROlZCs4I1w4+SIq/mClBKzgwlD6shYZgdTjm8csV71kC0WC1Yw1pGcJaNDc9fXc5x1SpYKA8Y79g4OiJLIxnHn3qv4Mjh39+VXSDnz3nvv8PT5CqJgnVdivQw8e/iQq/PLYgncYJzBNbbc08ekQEm45RjLaMeqn0Qs1m5ZVJFQlXxMUUysaohFockamrbBOUfKovdWygBCGZhUFfXNYB+FTBSj9g0rKbeScopL6kgIEhFtjBmLtQ7vWqxxxFKvZDIj7bfkm6ZxzFdLun6t99pkwAqLbk3/Yae5vwFjBOc9WRJFzFOTKSOjWlTT6BCB1P+VARyLGe1lpfRA601+pM6UfRWS5g9GRoJQlliGT3V7o/p8ORZ18EFE+4iasxciTSUZVbL61nBm+cOG7CR5JObkLIU0Xb9RMtrk1eFLKWSiXKx8DaoEP97LC2Gq7kftZ6tbgFUSeDTj+jYE7PI+5ffqnmfrd99ZZm3LkISY43isR8ZWrZVKfqfHsKTO4yCV2fpZj8M2yWkjrCkjwam+bx1ktZbRGrw41u1iF7v4rxuG0fLtfPIO55N3eO/wN3h19XP8i4//t3z2+q9gxypiF7vYxS7+aEMJSr/H33jz36RzVz/u5exiF7vYxQvxQ5OUjKlSwzIWRhUEqFL+m+faUaK3qiFt/pWxuHrBAmGc8oCK4qi1mGWsz8oEcDaMhX7MCWOhbVtAJ6OyEZpmimDoh4F2MmEyabHGsB4COUWc1TUOQ8SGSEyJEBK5NAFyNgRJ2GywSSeqFXyqxa1OHqvPt8FWtV2Jxd97c9zG6R+px1Gnsb13UF5rzJblnFWZ7JSCNiScRcpxsFZoJxNtuFgLtmG9Hgh9KFW72SqW7fieGPDeF+sVPb7GaIOiXw84a8kpM91rmUw8sVrKmU0hnGIim4TNfgQ/jFHZ71SaDyEGMiqrLZLJpoA+Bii0M8kKPqjKdcYk1AbCWrIIIQasd+ScSdmwd3BAyFnt7MSwWq15+uwZV9dXXH1tweHsEJ+Ee6/dJfVrHj54xuHpCd/7wXdpplNm+zd47d7L3PUtvoFoEwnDhAJCbjPpRpCQDfD1ghLYLnaxiz+JYbb/U5t8pcm5Zw3RQpRIyIkGhxXIxiIoWdSiBNdVHFiFBTdOpzx6alhdRB4/vmTiDGIjWQaenz2FoogXhsj8qiPmTDRrrDGEdsYHj67xA7x86waL9cDTy3PysarBMMxIybMaBkyGZBuuF3NCijQFtA6hx4lwtbzgBx98l8yAmU55dnnFgweXXF8GJnLAYB3SrrlaL7l4/5po4J33P+Rg7wZf+NRrvHR8wv3rS3o74TsffhN6+Imf+Qv84k/9NM8fPODw5Jh79+7x4emE9+5/heXQ4gbPT33mMxwf7POtr/0uD977LieHd2jaGZfz+2TfsQqBFBKxD0wbxmOeYmbohRgKWGKEFHtykEJMTqoomMu9NunkeM5Rm/HO0E5a9o/2EYHl5aKoexiGoVdAIUghIQmxTH43bUscgoIOqTb3LSq2WEEIkJyQbEkIDpjtHfLSvbu8dud15os59x8/4uzynCH3OBuxRoF4ovCNL30ds1brqL3ZhFXZjx988wNsSmo31TryoHaq5vhQbVWNoZl4wiB0XcAkwXlD03qMzZATOVucGGJOSt5CCcR6WK0mYRJA1GqEnEpPXLvbRiAntc9DErmQZ3zbMJlMMGU/hr5XNZPGjnmAwRBDUpIRFKI3ShYuZKfCnlDyTtSp9Wk7KbZvcbw1b3JJRkAADLkSvkTzoFwIakqsyGPzXfNSV+y6PNYaVqtVUbTS99UTR0njbpzIduQghBzwJtJ4y9Fkyk+8/Rb9auC9J+eEpOSjYahqOzperYCHHW0qJOdxQrvmIJUMbqgEpwIAmQ0AIVkwbkNur/93GHI0XF4umbUTDk8m5PYTzFKqiMkWwQjq3myUWF9UrdwCcv/AR+qDlQ1TaSyl1qhqSsqI2zyOKvDEmLA2F0UBtWkJMSkByCixZ1thyTjNsSsQpICl2iPHGIuyhObSSfKoSFSBwZKtK4C3NV1fD9H4QK0n6kNb96AKYkmuuf8GaK1T+wrKoepihRgIxRqtTPCLRUmFodhmYsr9rS6majvor87bAiZuiDklYyZnIYQAxusasmyeUyxvpIDTG2BMCYZms2vkYuep1ohmBPaqRZAt1wJbFM1EX6RKSyMYulGdijkTcsI4P1rnDH3g2dPnYGA4P8dZz9B17B/tYbOh6yLt1LJYrbHO0056Hux9n+X+c16e/CSvrn+Bg3iXRiqN4J+M7fPUjEdxF7vYxZ/oGHlJm2t8dQSzGBKJ3s5VQa4MRazcJd86/s/o7KXmrDlxuZjTNg1DHAgxMCwyOST6GMiSmM+vy6vNqAjkktrBJQHvLasu0oWB46MDQk7M5yusMexNG5pmRlh1zBfXgCh5H0sq6uE5Bp6fXWEEfOt5+uwZKUaMNVxdr7i8+AgJMPX7DKkn5xU5B66urjFZVYxy9rx05y6tFy6XC86vl1wtLlnMhdt3XuX111/FpsTl9ZzpbEIKA741+MYjAsfHhxwc7HP//ffouxUnJyfs7Z9wfv6EPgQdLIipqFbWbhSFQKRkHGPBOUMIuaiEbkgmmxZQJbBkJTUDGCW1W+eIfSjKhGYcktDP1o65q2TBOzeqJ5WtANVCtKqMUlTcBTFqTdw0Dbfu3OKlW7eRJFxez3ny9DnrvtM82RTSSob11Yr712uMEfb29hkKGSv3mb70Y6st8ND3eGMKaSsXpUXIQ9rUN6YQVsrByFlzHlWJ0sEDHVpUy+1KqAdKrWEKj2hzXGu/d7Su9Qbv3WgBq7bRjAMJNZNIcWPFV21oqfn72MPTn6tVXO37ZlLNzF5IIEciUY2tG7UOHpR8cqs3mqk1heZWxup3LMaipFrT0PJaw8aud/ygDOCEg/09jvcOmHrPk4vrsV7Kojlbzf82i9qQ2rZJ+DKu3Yz55O/H7dfH7Jh/jscBMGIZ+kDbeGZ7Den3T212sYtd/NeMbCIf7v8uf/3Nv8ZPXf7r/Mqz/zn31j+F/eGhuV3sYhe7+GdGJrH0z6iKkQDnk/f5D9/4H3LevvdjXNkudrGLXfz+8SORlDbFqYyFzwiV1KZxlfAfn+fGwu/3I3q8QFQa/6v/SgFzhGojVoqpsp6Uhb4PpJjB2KLiI6QuktMa5z1DCHRdwDtL03p826j9Sk4KSBpVXmoax2KxYt0lFGs0YwEtOZNTAeScwztPCGFs4Buj0+4v1LZSwQc9QLYCJnVqBQgh4ozFNmqFUovwCt7o6w1kSBmsszRNQ4gDXRCsVTWpduLLFJCl4lvWFBsSq4oBvrG0EwXkXGNHFQEFVHWC+nqx4rSbAToZF7Y+I2st2ZRmTcqjOgGDngGqEFU+c6vKB977wofK2uwpYIGCcQUgkU0DKOeE9Z4QI640SfoQuP/oEc56DIbVqmPddSwuFxwdHkBKPHn2hOurc46fHCCDJfSJs/mcbCwz02LtNQ+fQOwDh8d7GAd7kz0UXd4+GzfgYC3867n/woe7i13s4k9cyPYloI4kbk2KZkkMsac1lsY6Mo6BYqtAS2ssqxT49vvv8eTJM6bThsXVOf3ymierC7CGZd+zWg0gwtQ5bZ6niHeOiW3IYcBIorEdy3Xg1ZfucO/lV/jG177JsI5M707Y94HgI76JTBywP+Gzn/k8cXXBe+Ehb9y5xffe+4jL+YJPf+pNjDOcPX3KYrGC64FH/TW+PeWzb/00Uz/lm+98jevlA4ZuSQ6BiTfcff0mn/nsz/PZN9/k+fl9+m99l++9+yHZC595/fP88k+/zY2DKf2NGzy6vGL/xgk/+MEPCH3AOo/MEubI8fVvfY3les1nP/8p/qV/8a9w/eyS//LXHtKtM2md6OOApMzaKthtrSUNA32vqjl6D1M7zxwT3rUYhGSMksOsIaE2qNYKk4lHyCQjiHPEkJT0lTIhKFih1k0NvipCZlWwsdaSUijAupJgqiqJMRZnlcgbQyYFg2kdNw8P+dwv/Cn+7C/9aW5N9+gjfPUr3+E3f+N3Ob+KxNCRTE9Myg+6fnAGVji5eczBwZTV0NHisNkQAG8zjbesug7vpzjrCWFFygnrLTY5jMuAqmg5XxvkanWXREkCcRCM9bRtqyTvqeG43efyek0/dCQiCpjYQopRcrErTfZccjrnLc3E4ycOax0uJ4xpiCEUgnQGI6PNWuWk2JFYpAQQa1yxpNXp8xRjOd5ZiVFZ8wy1m2JUvKlRbfakkAZzToUEQgFXBGddISJVqED3KaSiBFO2r+9b80+9/ztnSTFhMzROMB5e/+w9jmaHPD+f0y1WiA04A61rcNbgioaakkiKKmXBI6pdmCu2uFJADucsjfOEYSjAjC2XF80bs4BJ1Z5EsF4/I+scOQmuzZzc3icBQ/7kTmVWUkq1Htwm3Gyes4UffZyNVGsJs8VJqq829XdeJEDJNpWmfLfrC8pbZgSyIUYlBOYy5r7uwri+GHXtzjm1w6jkyZzAaI3gnGEYYAhpHNDfrKHujAJ2Fksaa4lST2yBZSJGc2spr2Gj2jM+jA45WGNf+F68ANjZWpMIiB3VwlJKpJBHJVdX96mel2WbpvzHOle+f2UbllE5QHIlW1mGEOm7iHMWb4VQ7Q3NhhRW1ZkopCIK6Dkq7JadEKeEpPpBvZC2VzKSlBqoIHmS80giU0Vb/XmxXOKMDohUmxZnLLPpFOMsQ+i5nPcs+xW5KKjZboX3DU1jMZJYLOakmFjNfof39r7MG/lP8/rwpzkaXsZLs1nbKO21Abl3dtG72MUutmPTGhOEzHXziCfNdzm397n07zOdtAiq5j3kjmwSE9OSJXN+fcn52UVRII/kFOhXHd1yTSKTY7mSlmt6vZY3jcdaS98PmJRwdOwf7DM7PGQ4v2S/3cO2DfPVnBSuWKwWWDSvPb55ys2DPT68f5+bJzdYL9ZcXi/ZO5hxenrC87NnSugXze2Mabl95x6nx8c8efKMs8vHDHlNSgEjmb2Dlhu3TpkcHRKHFS41NAu1mDo6usWr915i5gzReIYsrIfI9cUFy/lSj53N9HnN4+fXhCEz25tw7/V7HLQzlvNnrFZKgk856lClbEgvGBmt2yqZSPtSqhJqCkFW0wX9V21cN9ZjIqIqotXSNKs6e061L1jVRtnkHaZYl5Z+nxQyjRJdGAccRdRyDqMKvLfv3ubG3ZuYnMAZjk6PuZ7PGYaOKFKGCTV3tSmRrME6zSswgvOOxlqGnBCqCmzCe0/TtvRd/0Kf1zoD2VLJ3UpIKupTot2yOkiqcwcG64TT433Wy8hq3ZVxiJqKbO7jrhCacjkexoKzrqjXF+6Od1Cs52RDCdrK7cxIbJaSK5tqoFbytzH3k43K6fidq9veui/nukMfyw9rT7cO21a779oDTzlBZiRv17pkTF3KF7AO/RpT7J+tYbo/Ye94xvnlAglZD2aplezWtnW/MjkreWzjRrBFgB5ZVGpbvBnYMJt11OvO1hrN9jlaDvFk6mnahj68qOq5i13s4g8nenfNl07/X3zzxn/KT17+6/yZ83+DV1c/T5P3+IMGH3axi13s4p8Wicjj2df47tHf5dHsq7x38A9IJmz+bgLBLX+MK9zFLnaxiz84fgS6ti1N6U17uAJKWqy/CIjU4mlUBzKb4siOBdr2c3Ub9XedqikFvwGkEnjKZEmxWMGordt6PYANZXrW0HcJoS9Ftm6/bTztLNI0Cs5ltPBVCezEZNowhEzOjKoImIz3bpzsAZ2Ar4Wmes9rw6dpvE7QJAU7RcCWMXhrwNRGQYmcMlLAttrAqAV0SAlvPMaoYkTOmbb12Jll6HvWXWAyaXBOlaSmhy0Gy3K+hqzHSie7DLPZFOcMMQ3EHEkBXOPwzmEbQ0wZa4UuRB4/nHPjaI+DvTnnlxExdjzeAN65TZFPLebNCCJaP8InxYJCJ4ACsYCL1UrDYSQDqu6k9j15nNWOIeObRj/LIdK6FoMh9D22tUzaCfsmF6gjsl4G+iGRou53kwyT1rM3aWBoeXb1lAkTDo5mLFcLWuuJ1pFTovG+TNW9WAxsGgC72MUudlFi64KgV5/AOi54evmc+XLFqzfvsD9NnC3mJKtE2nun98im4f6jBzx9eJ/L52fQCDF1rOdr1l2nZNLW4Y3DOMZJ3cZ7mtZz71NvcPnkORdnF5Ai9+4cI43hH3/lmxxNj/hv/uVfYm16vvSd73J+MdCtPI2/QXNjn4Mbpzy9fIKfWT77+U/TMuVscc3pa/cIiwWPnnRMGsf+bI+j0zu8+vbP8pnPv4UJCWMc3393ypPLB3ThAsnC2fKa8N63+e4H7+AngdYmTm/MiNNDPvfTv8yNyQ28WCbTGXtdYAiB82cXDKuIhIi3ke98+6vYaJk6RyYyXz/h++9+i8V8TowJ74QhBOIQCbGn9QbfqK2XMbmA1hnJ2s1VoFzdvLIYJeQUsm7jLdbWnESb/qtuYFj3dKs1MSRSNuMEMVRQngKgC0MMUECFFCFFvS/7VskKOpEdCVkQAm27x1/8y3+R7B3/xX/+a8yXV4ibYVKilzXYgMlCjoxqOZS0Y71YEoeBFsOnX32F+WrJo6srlIAj+MZz585tctR8RZvXGecNbeuUaC2G0OexQW2KaoqeV0r4TjFgPbzx1j3uHJzyrW8/IV4NSmLGEkMiJm2GN97hradPA955zassyo2Wcv+2DustKZYev1GijTWQjTb0NddRApNI+fxK2pBSUrWZcj/OReHKGkOUjXrQdr45WjKUifN6LqgiUdmWQEwBYzw1N4lBFbNc43DOFWs1OxKmTaUGidHfRwKHKlg+fbrkYX9Jyo6pB1cIQ8YYWjfB+6a8V6TrOlKqpGeKta2+V67rF5RAVxW5KoG7ABveuzIsYMnZgpFCkAfrhdY3tI3BeUMKiWHZ/+Fe9/4Qo4JVZivtGocYzEblYPNcJdeN9JQtwso/Velygw59bBtKjtmQmwrCUwCnGNP42m1gTR/SekWVu7Q+cM5hreb/Oactq7VKUKlAkObEzrmynqyWPFvLNcaM75mykpw2SkSMAJQCmbL90Bi1nlCrEj2/VG1IdyjlqCqx1hRSYAYr5GLrYb2SnWQotmzGFvvDUldYVGGuHEMjqhyhykwgRCRb5vOOo4MZ04knLAetGSpRsHz2ppz3hTqmn0EFSW1V5a0ArkMQUiEqVZDYFXuWej7A5tiPH22ZjqjbV5uapBY2dkMds8YgMdOvA2CKqivkoVdFOt+SxTBrpkzahi6s+WjyRZ7sfY2D7h5v97/KreHT+Nwyblw277+rJ3axi138fhFsz7eP/g73269wtT5ntV4zbSactMdcrxZEEUw27O/tk23merFgtVwicSDmQJJECpEYMpiE8w5nTTU21XzMWowIfjKh8aqWEsUw8Z4hJ84ePMLZlrfffIP92ZTnV2ecXy8QM+Ngf0qf1gxD5unzc7q+J4lw5+ZtjvYOuY5rhjyQYqCZTmidY3+6z40bLzE7OqSx0Ji7TJuGp+dPuI5XiCSWi55V/5BH958y3WvwjVGLNtNgXUsKCTO1xBCZ+YZp47lOGStKwLBJiOsB7w3TicOQuDh/zuPVivPLKyX5WK0JUsyqmmRUNUkJHsXeyrBFdq0Ec71/xnL/oRCU9R4r4+DkMOj9Ig6h9LO2r/WVEMWonlTVTA1lxlDQgUSj1shQBiRHP7DE6Uu3uXvnNt//wQcslkti6ctZMkkCoPnyKF9UiVg5s5wvMQbunNxkNpnw5OKCPhYLZ6N9wsZ7eoaRdGSoavYJEVPUi2QkCdlRGb+cXymRxDDZbzm4MaMfFkivRUJVa1fr5o2afe2nui0ruZyLFWzZh0rS/5gx7uamyovEGyVkbewRlcC0UfGveVx93bY9Wn2P7Rt1Xcd4UKgkatnkMIXwoxa8W3d6s02e2iYGgXFaG5E9/UroVlelhqrkpVKLWosvvdSRaAVb+2E2pDk2w58AMRXVqNJ31/crvdiRhLd1hA0YpwOw1jgdFOnU6nEXu9jFH1EY6NwVXzr9d/ny6f+bV1c/z68+/V/yueu/wiQf/LhXt4td7OKfo+jsFX/r1X+Hr9/4jwh29XF4cxe72MUuPvHxQ5OU6tSHgiSbq51zI5JHvQqqgq22RV4kImkhmOqT2G7kV1C2Fk4WyaV5P068lBJVGJvKZAWvTGloC4aYq7WHUXAsoW4mkkiSkQkKGIkQQiQQymSwAgMxKXhoMDRNUybOSjM/6RSWZC0EddJKsNYwmbb0w0BMYWNTl7Xz4BqvikeluA0xlalnN06y5Jy1oLSFFCQZW4C9nKVMJattBBmGbsA6oxPCSclXe3sThi7gvGc2nSFksslIzvTDgKCgnIREGAb9DFyDEJAAuReOD/c5Ojzk4uqcnDIxA+g0VhAptkVWbd5i2vocLZIEsXq+5KzrzVKtXEzxNzf6eMpIDuSsViXWW0zOGGdorCUMqrqRk9DTY62laRxt40lDwpfGWp62dLGnW6yYTqdY1xBiolst6BdrDvaPOZgdQhiYWMNlt+Y8RpaTPYYucOv0JrPJtMJQm5PebB7Z3d93sYs/6WE245dF3aJPgbV03H/+hCePHxH6gTv7J4Rhznc/fA/PlHs37jC92bLqej788CFDCGQGloslSTJODI2zNJOGmBMxdUzbGXlQ+fwsBoPl/PkTjrzhLGaWpuGjZz0x9IQhc/raXU5fvYfp19z/6BHdzYbPfP4e+0b4zjvf4Ev/6Eusr56WqeY9fvVXfpUffPgdvvngQ5q8Zrq/z6d/4vMszp7w8z/98zTTG2RZcjI74M//0p/h5Xsn/Fe//V9x4Tw5rLh88pyzj87Z35tydPdIbQ6Coeuv+cf/4O/yxl/573Jy83UWZxe8dnrCetXhUTJwjIFJztw8PaWZOYIMpLjmt/7Bb/PgvYcsu4BrDDhDyIlhyAoyFMKHtYbZrFGCjiTNE8o0cA4RSRCKRYBzYD1KRLWGmCJZLOv1QIxLcoiEPpBiQopdUCqqG946csqEoHZvQi4TskpmctarckjOhJAKmAFWwBFp9y03PnOP7/7OV3j03gMu1wvi0BVSggIbjVHLKFLEeQ/W4q2hXw/0fWR/NuXoxjFdirq2kHHOMplNmU4ndKu+NKTNSH6xRkhlkjuNDWy1lKogvGkcacjkEEjOsQqBdx9+yFUfCAacV+VCEwUkIpJpmpYY9GdnFZUQVD3KGIPNkI0oqSkLQmmq60ix5goF5MHIaH87Wp05hy9WVCnqlDfFTsNYJZlVqw4FebSpbou9lipgaV7nyvdGySJOwZRCQNFURArJR+/uKeWxgV+n4alWVpUcZQx4gxW1iY2rRCseJoJxCYzXbRiDsdVWKxP7QsooIE2d2ja2PE80h0wxjbYU3vlC6FDQoJ02tK3mjykKIRRik9WM0nmhbR1DP/DgwTnOmtHS65MYL1hLbOdZY22xTS6SEfD7/fKwXP5otjK4kdikGxjxpa0FbP2sKNM4pS4bKKzarih4U5mE6DmNQFQSW0p5U98UQpG1rqiFFnhKyveqPE8/a0ZQCVPz6EJqMvX7kV4A54wtJCZv9bUIMep1qNqIqNLBttVMOZfqfpRjmmIa9zeLYIp6Vy7WJs4p6LUhVglJ4kjQLAvSmiwnUhD9vSCvYhwxZYx1GzCsLqlMJIwgYb2gsFGSqnVn/QqKVasiU+z3qqqdlJ0eVQ5yUYAQvSi6cs0ukg1637BG1aNMOYopYtsG6w0xQxwGmrYt4Gsm5EyOGaaWWTslxYEw9HTrjrWscL7hLJ9zsf+A2wdv0MR9bg5vMcs3aNI+R/HeeO3Y1RO72MUu2CYzAPdnX+H95ousuhWL+YqhH5getBix9F1ksV5zODumtarWtl53rFZrMto7SiJMp1Oc6XDe0sdECAPG1XuRbsdaR79asX+8T2thFQ19sPjc4K1BvCO1DUnAJsfebI/p/iEn+3vMr864/+QR8/WKFCJky97hMc4brp7PWS06jBWOb93FSGCvnWCbyGJxztHeEfv7E9zkFoOsiBJwFhaLK2LXY2Ug+ykxqx1nTMLV2WOOW8Px0QEGobWOYbFmtVyXfD5iJDPxEyZ7LVG0hza/vma96IghqjUxVQ1Io+aRqi6uJPWU4kgWzzmXHNFuSCtG+3kbkrwhlwmDGPSeOdqzFfaOlHsa1hVV9k2uqelnJdPawmnd3Fs3xFnddrCZJ2dP6ZYL4jCQYhzzUzGm5NSVNFR6q0Z5V6nknlfrFasQ6FMk5YRJFusd1qldc94aQiyU4TFfGvOV8gTN8jW3lVz7ljAMiYcPnzH02j/UV9RpimK35wrh32Ss0WMuFLXQmouX7dfhgzFRgqKyX79H9Scz/mpLjq29yELU3pqlNVbrkm2lEtl6f8zmb6YS0sp3tn5kbP1rTN3+Zg0bslAlLI1Hb0OcMg5jM76xONOACHlMQDe5Td09JcXpeZnHHP+FRWwRlfKGYGWq1V5xBShDDzlLsffeypsLkSqlTBi2h0t2sYtd/JGGASHx0f7v8jfe/Gu8vPpZDsNLfHr+lzgZ3mA/3uGV1Z/G0fyz32sXu9jFn7gQMl+6+e/x5dN/n42s+C52sYtd/PMV/zVISi9CBbV4GyfftyZZkQ05aZx2NlWCF0CLamu3AYKMq1Zi5sXicbuZPWLFKKBkDVvTxloQ6+R1tVwzRLQoXaeAcYHGOybtBENm3Q2IUeuRyaQh2Qyi9moxRfo+lgkiJRZVMMEW0lZMia4vpB9jCKHapSh5aTJpaCdeG/1i6Pq+AH6lISJmVCyoFgPx/8fenwXLkmXpedi39t7uHnHGO+bNOSurqqu6em6ggW4DCMhAiCCMxCRAA0mZTCaT9KY3ik/Um/SmF75Jb5KMRkkm0UiDAU0RE8UG0OhGD9Vd85hz5s07nfnE4O5776WHtbdHnFvVVDWGruyqWGmZee85ER4+he+11v+v/9dM8GVqS7QAwYmYojXefS1S7ewnHbFJZwgBxjTgvWOIwwSmijhSVEJp4Kcx20S0mL2Kuszp5SWrlYGwKZr1kJbGvzhnwKcqpDRd2406gqkOVNWAGBPOedq2ARFitAmpRMJuAo8mJaJ4bMLPiSeXc5f6WM63giacC1QFq/OzU/Zln14Nio1pZOiBbMQs5wL9qLx8OOfO0R5hDt9+5y0W12vG9Ro3C7Rth3jPC3fvs1osmc/nOC8M40AIDa33+NqwkV2Rvotd/LjGpONRlsCMsM6RJ+cnnJ+dM1z3gKebHZrSRh9ZN5H9F44YWXC1uuD0/BnL1SWZNUpm//iQfedYry8Yk3L+5IqYR8QHKMSZvf0O74D1wP79e9y6A37W8dKLn2W/PeLh++8iCF9//236Zz1v3P8Un7m3z/HhMY2OnC3e4dHpu2juSSnz7Q/e473HH3F+8hGLyyVpuCA1M54+PePi2Rlf/OqXWK0Gjg8e8N/7U7/CyeqUU04Zw8CD129z9rjnYu3AO5Jkcq/EPNKnkZwdfcos8hmH/gXu3b3FW+98zMMn53zw6IL12ONb5Wg2x89AWocbPavlirhWghPakKzfqoHgPK4V+jHSBKEJnnZm1hfLxZJhsAnfMSWSjrRtS9t1JHXEGDFpomxE2Oyo1rGNb42kE01tp1rL1iZzTmYJF+NYQIcKXBSrsoJ3S1Ek0pyK6oc1wpvQoKvEf/n/+lX6k1P6fk0eRtJo655TI8moM7Kbbwwwz6hZdIjgsmPRj/yT3/sS4Cw/kYwbGtp5x3K95OLikmEYSFkRTIkwj2kDVjgjJ+Wc0WykbbwzEkyMpJyRMfPet5/BMDJoRvCM/QYcyFDUehxOlYCpKGW1qWitTW3vEMk4ha4JZnuX2ZrANoQgRlNRcmITx1Pzu+R0Y4xGbMgKwU12Vs4LNxQ7XWnYa1V6VLwLZjuFWauZ2pabAJCJ/OFsm1IUWCbiRCGZoGZFIWXKnHJ/qDqyCG2Xuf3CLYaLNWNScnYbQCgpVRLLSCugmNVcVkFjKuBUmZamKkcZAFZce8skuZqigIfQGMlpSKORwct1BSH1sOwXlp9lx6Ag8gmefK7ko/pneZ64sfVDlfI82ORh3089aTMRT9lYBQLtOz3BTFu1w4QyqWz+yObHBh5utrUBxTbqB2YtaKBbWwYahiGW3NcRgpEd6/1W1ZYEU/xiyp+LvUpB0lJKE0EoxlTAMSngXtmZYhfXBCHnDeGOqV5iqhEQUzo1RQPbZxu6KGRAceU5t1GVqCq3itrwhTizbqkIHGaZ5rZqvhTt3pTybLterkiJogAWN7VbmV2YILyqLlAfB0WVoIKmAJKKYh5SntvFXq5el/KsqIRRcSCFJOakWrUwkeG8eFwBh1frNWOORDLePOwY+oHgzC5SvCdlTJG3dfjW8fGTJ2gsn+4hNI0R0fbfo089jw++abnCKLwwfo7Prf8Cx+ODco/tjBx2sYsf39DNMgNcN095++DXGMfIul+j2foarpuRnOVbWSPuwLNKC7RPXF+fMw5rcKac5MSeuVoULschTmqUJtcphMaen4KyHjPd0RH7TUPX7XN0cIf1YsnFxSmnJ094Oiq3927x+gu30OCNsOIz4iJg/z49eczF4hpNPTEmUhxRMsOjx2iONL6h6zpUHe3LLdoNvP/sEWdX5ySGQtZIaBkyTKrkIZE0GRk4KUMaWcUF83af1RIW1z1jcgwxE4KjaT0SYEyj9bViZswRcqJt6iCj5RDeOfCFWC9CaELpTUVygqqclHMyMoff6DrqRNgpJHFxiHO0TWMksXFrPdrijyhaFDI367JS1QEtD9acp1xDykIlUFRGBYfj8buP7HdUxUbrcTorJ9hWandFgShPuYDDqbBcrkGGKQet5KUYI2mM01AGQBbIyYjBVSUR8pSL1axtUvhMClkZlpFRDWwv0jxFXWqTR2nt0/rNOqiqliup4vHU0sAU3JWUKPm+olVVf8P/gSm/l832it2rqpKn82Q5vciml2z5mE45oGbLP2wQt37OJvfc5JIb1caqyFTvAdHaB7cBErTmr2zlUHatmzZYvRUV1LGt0rSVtJbjNkVJU8lMm2dJLjnidGVcvWun/Hd7KBhsYNc46YVIhkB2ZDX1WOc8WYvl4C52sYs/ssgS+XD/dwD4xvHfAaDJe3zu6t/mLz76j3lx9bPsqohd7GIX2/F49nX+0Yv/+x1BaRe72MUf6/hD2L1tLAsmYozURrOZbk1TQYUUJLVQc7KZKFaKD7lOAEsuhZWIkWhEih1JkeZHc2mp1D52Ldg23uN10thUe7DirRSNUprnOSVSxgAwlNR4mtDQzDskwbBe07WBEAKaRpvkinHy/gaK3YfgvU0ACULbNcV6wYpS1wWcF7OESUpMmbhYsVw7QhPo2kDT2iQ0xapu7Ee8QOM9wzCiCE0XODhqmbUtq8XClIuSAZhZFE2gEbIOhNYjjbcCNitjjEAmZVMZiFmpRmuimWE0KfAxZdJg58o5JUnk4cdneN+wN28ZYpliUmtACFasb9vTqboJlEAzxPJZZXpHRRhjxtUJdRFSLuCGs8Z+SomcFCcZKbeliIDLJj1cFCzaWUPwDu8D1/2a5ZMzRlHmzZyum7Ner2mjEd9WzhStHp88Y9kvmV1fcXp6Sesb5rMOST0JeHL6jBAcq/MlLz54wJrIsh9o2o6jvT0QAyynZsaOrLSLXfxYhmBqMBVYDT6QciSnHpySpONCB06ePORqcck4u+ZLb3+Fg3VkvVgxri4JDQxrxZO5PDnhbEzM9lqzaegV8UoqKkqtdzhn6j8XFyvc4chP/tIvMqwib7z6WVppOZx7vvOdb3CmA7P5A/bvHnK9fMqqhe98+Bbvvf8WfX9FwtTtvvLVL2LgcmQY1jgfmXVzvnNySmNSfbz6+utozKzHgbfe+Tpf/MbXOD+94vHjc/IwmEoGypCV88sryEr2oOKZuZbvvvM+L9x/g8OjY37iJ97kU59WVFZcfvkRsxDxDpaLHln2kDMxJzRlnM/MWqFPiX4YSUmK0lRZS5wj40g5lvFis4BIaoCBdf4TwYOoTQb74HFlDVIHR0d77O3t8+zJKXncatJm2FiDRbLzJXeBRLYGcipL3JDJuSc7pRWzKshiZBIJYmoqQ+Tpux9bm1hGm/h2gYmMgBF6KJmKE7MfGlNCMPUPj8ETIbQkEpoS45gZ+pHl9Zr1qmcchklxZ4yJGDNNaArQYrmO9x6lqng4sjpSsbDwCOMi2g1epsqdwDBGUtIycQz9epwmz7USFbIpT0WK1ZvYlC5VaalXUrRmvKlRUkjlG+IIUF18SSkVsMZglZTLpLZIuT6VmCDFLqJ8L8UI8i6Uzy1HWgGf2mAXKRPWVJBI7DO15J5UdZa6Y0Uhp+SSTpVZ58mqnD9bFHWwkhejBdAophUFnHIh0PiO2YFjdX5NP46YFKhZZHmfaQQSUogV5b4u9gqNeIY+MYzLkt+5iVSVxQhxZsGl+ODIWdBsqmGf1JhoJdssJSoppl7Uzc+lYjlsrk2dXLfv15aNmP12UhRwqN2PFTCaXiU3WUfKpn4p29xM6N8EeOq+avl//XsUwTUenKDT6bfPsropgtjgwcbm2tg0dcsizr5DmMWdKY86cqaAwJlYniG+WFGH4G0oI6lZXUZTJwjem3osZhfYzQLBO2IcDXzKpnwWczZynVbwqiiCiSv7brVOdhXsq99h+16kZCTNnNWASgESJJTVcsR5U0HdxHS0ZfijXs96LqcfbCwc6zXJulHPLQSvPIHHghe/9T4DblW0lqUG/BWgEKegGcURsxLXPVkgSMAHU9ZrK4lptDXn/PKK68bThJYYE40PhMYX8NOzXK3s6KISnTcib4aPmq+xaJ/yCxd/i+P4MhtFhV09sYtd/DjG9lr0pPs2g6yNjBFHUjbLsOUwsB4WLBYL1sOaR48e0mShLcSStnWMydS1c4os10OxiZKiVk1RuSwk9ZzJCDEpSdbcvrcPajlFjD0pj6Q4sNfMaQ+PEO94+PQhrm0Zx5HzZ09Y90tTeHWBYRjp+3M7Gk0g2Qb9xhVgufNs/5DgWnzjWawWXJ+fkofIsFqzyr318tQy4fXaSDA4yyM9nsVqbWta47h1+5Bbt+DouGO5Omc1joDlqhotkc9q+boNVlr+EJO9xkvYEIdQKETdqk6TCpmmEuIrAV5KTue9J3hHSqbw6hy0nSevI1l0smfdNCztz9VKeqNEVPupJZdIShbF0meHFruzwqex9CWPlgNW4pGUu8e50g/d0KkqyamqGxk5117rQ2fDgsmUaHM2glWuKlBl/+p6bgTjut1CSpJqi229sZST5cDFTtDyp6IOZeluyeFtX3IqHdrSD7bzZN8FVTuHWtRMxVX+kaCxHKfbkGuk7MeU1pV7aWMBu6kJai5f9oTt3nbJOKh2dlOKWI65WvXdJGiVrUxDsXV7W+llvRW2fiKFgdS1DYrQr8aSU0FV9pSStt7IEMRq2r1ZR78wJeUsMt3vxmHa5FG2f5thDBEj2OeUyrZlU4BJUXcNRWGy3IBON/nULnaxix9ClK/o6Jd87fi/5NH8y/z77/xnvLz6xV0NsYtd7GKKbxz/XVb+/Ie9G7vYxS528S8VPzBJqU5d1OJrmmauTYDtCfcyLVKLdJPZ1WlC2BXyUdR4Y3veu4nsYz8zwEZ0o4ak0/5o6YMb0GcTtzbBiwjVmu57joNiGSJCHDPX10v82EM2dQEQsxpRsxPJOVpzv2unCeicR1JyhNAgAnGMNF0oxZ7SdoFu1pEzLK5X9P2IZvBNpukc4hQfPB6h70fEg8aMiqPrOrquI6mytz+j6ZQQhKNuTgg23bta9VxeDQyrCNmONaZIGjKhCYTWE4tCkrhSVOeEuECVko4xMQyR4BuymupTnaIe+oz3Azkb4GngnZbi3xoJKaVi/1CBCjbXO+nUfKBYz/jscRWc9U1pnJg3/RjB+2C2HVkZh5HkHd7nch9JIa/BsFoTJZBcIDESYka8Y71eMY5WvM9nM1JOXPYLnPecX16x6nsODxIhBANTJJOHzOHtffrrgVM9pZGWJycnjNrTuAYdldF35ODoGrH93xUDu9jFj2VsNyYVSKpcXK04Oznn+uKaYW2KdN/6xjfQMdEv11ydLhmeLeju3ydr5vbdQ/p4zdgn+vVAHCJZIY9KHMoUbgqkCOKUSCQlRxptMtidnfKdb36Vi7MFT59+zLBYcfHsiuO9jj//y7/Mk4Xya7/zmzx68i7t3iFXz06QfskQI83ePlkj42pkiAMiGZWe49uHBC8sr3tcB8t4waOzD/jFL/wp3n/6Nm+9/13u3pmjq54nT5Q8RpBkakOLnkGFZtaSsxDIpJmSD/bIfoYTz/FBYIhrjo4aZvN9xrSgj2uz/9LMOPTEOALQNg2oEYdWqzXeNQiBmMyWKMbIcrUqhBBPCA3jsCrrillEjHEkp8QwGnC+v7ePdw5d9/RjZLk0G41xGInRJok1F9B94irY2uW9n0ALygStWYMlFCPPBjG1n9q8duJM5ceBMBJHU9UJIRhhh5LjFJUepyDeJpEVkJhxYvZKvvXsHdzmzp1XWK8HTi+e0Mdz4jgw9EYKEG/gU4qJmDLOB5tGL1PJzpl1nQ914rdYyxZC92zeIgLrYWQcIzHGqdGeVXEZcKYO6X1RjqqIv1pel5KWfMKOxTceCULIBkaIyjTNLBXk8G7K0WKMJYc0oo81/J3ZymlV4yxNd615XEbcBqCo508LGOQkEHMF+4z4Yx/nJqutlFNRrKGQ5Kudnyuqj4pXA2TEebpZx90X7nF2csY4jvS6IUo4IBZll+p4ZXYOiXu3bxEHYX5wzGLdcb1ak+KId5nkMmspU9sYoc7AIiOXjGOsUAoUAGuyixOP96bW47wRMlyx3oBtUsgnLG6Qf7ZCtohKusm1KlFsG66p946TLQXXrY1tJsbZjNvXn98gIm3v1laOpxuF1wpEVWCRCZja4jblcq1SQsQRvFkbmgJXIf4Uck+9l2seTLKaYAJJS/4sGLmoYHKAMg5FpdUbgVKKapg4bwoaWQ3AK0Bv27SoKm3boCRiTrjggGx2bt6Th6Jwplv3bQbn7PnhMAKh0y0rN3WTNXXOSo4R7/0GVC3IaM5K1lQUnsqzT9hSY6DUiNvXloo02mz/9KsCtDm39f0yGzopBCt7XLkJYExZkaLUYfeRfU9MccPWlSwZs/M0+0gDUEfECaNmNGWSZhxFBVYU7zxd1xWFNAOZfaPomNFgz5f1ODLENa1v0JRZ7p3x+8f/BX/q/H/GXjq2e2pXUuxiFz92YeSHknNK4qL9iH6MLBaWn8YxgirD8grvOoJr0LRG1pHZ4RFt42G9RDWiGhlzJkV7Fjky41gfLQ5VQTLglLEQ7XPKOK9cn50zjCOhbXmmig62Rrx07zbd/gHvf/yEk9NnxVot45Mp00howAlBHTGPjCkBiXYWygCevT4JPDl5wu2jOzw7f8zJyVMkOI6OZwz9mpxsba9qpjlpyTNBkinYjR56hKQ1141cXp3bM1k8MQ2mVKRFOSeV/Nx7XCG9mJonZCmK5clUjNLY25iAg+AbnAgx56lfWQlPNWd0PhiR2BVb5aRcXy0mQk9xSi15rJYhTLvetff5vAqkLYx23L6sfdXauBLOBMWJraVKJTpXpcTan2PKh6Wwt6XY3DlnKoqz+T7Ht1/AETg9e8ZyuAQoA5m55JhCTqV366suz+bY3EQe2lq8Sn0kAqENpJRsMCRTVGptP6sCUuFmTz+fFDPLj3IhBEnJrXFYPVDO+6Z3vMn1av6eplrD6oycTZnVuZr7aSHr6PTnKRspOaE4YbuH7MT6hlqVHW8Q1pnqpclibWvfJr5apUpJsbpzENqGOEZEbOCjHsekgZRvpMKoQjcTyInZbMasnXO5uDYb8WxDTrEMrVietEWcukE22ihQTvyuWlts9W+lJG07itIudvEJCYGT7i3+H2/+T/lffefvcWt8/Ye9R7vYxS4+AZEY+WDvt3Z9hV3sYhd/7OMPQVL6A0qUWqw9V7CKc6hspm1rOLcNsMgEGtlnCJooUsMG7FmhVKwSntuXOpiSxVSbaoVeytWtSqyDoAABAABJREFUAnMLwCiFm/UEqt1ZJjSe/f053jv69doa8i6YNLQU4kwqk1TOSEAi0ARflBx6fAEDO+fKlE8iNI5hAOc9XSsEZ3Zoi8U18719mq4ho8QciUNksVqxf3BA4xTfGCC4Wg94L1xcr9AE3gVyMvloyd6ISJFyDiIEs3FIaTTQyjtTRhh6qqpUKhPUyRsoU73NRRyaMynBOKbSjKkAImh2VGP3lPJmiqjY3tTw5e9SbOW0NGoEA1OpQA3WvMiaCzhgihKZ2ohx5FhA5CK7LTGRXbT3BUfrGhxCjomYIx8PJ4ajBEdQQSURZWS9WnH79l36YYBozaXTkxOO2j3mt+8wpIR0DedPT3hweJu8XuGOjhiSgT6zLVnqXexiFz+OUdR6RIkKl9cr1ss1miEgzPaFWdfx0muf4q13vkF++ox5mHP8wgs8+egDQCelOe8cCU/KPcvFkjhm2iYYOQNP5xvWsWdMENdrbt++x6u3XuXp+Ud0rePxo8fc7mY0usLnhM+Ro70DWm0ZL0auTt81O1IdjDyReu4e3eOVew/47ntvcXrxBN8auq5Z8R5yHri6HLi4HFie/AZX11cs1wve+OzLLIYrVBPiAzGF8uyO+DagOZFiwntYrRZ8453v8PKDz/ITD14hJ8dXvvotfucrXze1iewZh5Fh7EkxkcaEaqJtg9kXJMhRIDvGNBLV1t5ciLEpRSQI0nW0PuBEGKLZguKFmBNxjNYg10jjPY33pGjWF6sxk1Nv1gyl6d61janprfoyMewK6SWTk/1byShKpmkdWaFrA47MahhJCbw4pHB3nRc0ZUQzofPcun2Ls5Mrs1MolmKV8ubwZseqgjhfiEXwyouv8G/823+ZV179Cd768rf4tX/y9zhdXqIpFWAkT3lOioqInxrKiqJiqoWkTNf4Yv9W++vFYtYZGcbAj6qcWI7V2TmiLO3OM00Ab9tuiXW/yepxas127x2h8XaNUwEVhCn/q4SuqpRi2y/kAs2TWouiZWpbyZM9RMknvBRgRQr5o8JylYxQFXWEaR5eq4JSNru7Sn8p19dUmzYmbE7M4hcMvDo9PbUTIkaaM9UrAxwoiqEyWYEpe0d77B8esLwWbt0+YPzgI9JiQdaMZNCYLF/CGyEjmxIAbOzgKPeJpbmRYt5B0waqmmgFW8wGjsly949F1Ol03YA6FRzZAD5S2SvTezakk23MqJKTboJI5U/UQsC29Px/y2tUpi19z+/qvunmezB1hJSiPJDA2zPkBvAk9vww9TbbD+d9AUHBiU6qAVUBgGkfciFjGglNMKJPzqYS0bYO52QiNaUhMfQjTWt5dEqREOy5lVJmHJOBkOIMiNVs0lxF9YBCovKuAHDlOJxzODElCU2VfGWvSbUG2OBgGxIXW9dL6yBDPXUb+75qnfIHlZzUeq+c87x1fikKvVnKM0O0gLzVls9qiFSsr7MKoqUeQVC1QRCEYjsjrOK6AIoCuVy/qPTaW82qRT0O0H5N6zxdawC+c54xZmaNRzSDJq54xofdl/jc8s//AQe4i13s4kc/NmtKZmQRnkKSoijtaEILOtAEx9HhEWMciHnEZUfwDet+ZYrZGkkxmc1wE0p+mciFHO8KmXnezRjjyHocySnShMBLD15lubgAUVTMZ/Zwv6NfryErwXuODw+4PG2JcY2QyvqkxDiwPz/g1QevcHF1zuOnT6iduVyI7ihmIRbh6fIE1af2c299vZzs2ZvU1iyc5Y1oRkufKOrIxekpJwfPOHppD9RxvVzz0eNzUoYgnjFbHphSKna7OtkD29rkCvEnkTHLUSOBy7QuiTfrT5WiFphSsQ7eIuJm601KIRGlVNXgK8mqKG56h/dm06qa0EKQtyHHDQEJ7Fw6J6i4ieyeyrZULR+80bfMZku2tzdj6CN9P7CxHtuicmcjqW/3Qff29vjU53+Cuy++xHjVM3zjkiEKmk2RtuboqBQ726ogrjeI4Jp1o8LDtPmJqBNT2ljcTre72WGTN/kVW7UIZXs1D3Bbc6+55NRT79gJkrAh2amK2uSAG9IS0/+3iUj1OFz1xa5d45J7PbfnhRCdNyR2N+3+9H+d/lMyRtnqcZdcETb1SM0zV6t1yfNL1VZSqOzqW6QI/FrN6L3j+NYhOQrL1cjYD9ge23fTBksEwZMoSqJbhK76f6XkUcJWLlrzICbCmd3/OvWId7GLXXwy4qR9i9+9+5/yFx/9xz/sXdnFLnbxCYjRrXk8//oPezd2sYtd7OJfOn5gktL3UyXablpDmbR1m+n4+mcrOvPU6K5qSWZhUNoamzrKwMEy+WHvrdMuNmE/FZvF3kVVyYUA46gKTxWoyNNEsmBTUVaTFoPwMn4U48hqBU0IpKQ4F+x9Wqal6uSwOHxokCKTnEYldJ5u1oCqAXTJJmkMpIO9/Tljr6QYGcn4xhQfhmHEN44mCHQdq2FNvx5Brzk4nJHGnoODDtyc9bon9kocCpARCjCZbXosOE8aM30fCSHhMBCBrITWgDbvYBgGs20TAxoM7CvFsUqZAipFduEjVZlnEZvIEk0TYKSoqROJTvLNiEzgqRZwVzWSXZ3Isp813mwxqu3fBNgU5YUx9iRxdk2ckqIwjokGQRoD8uMISQaCBx0EHwJ9ijhv1jajTwVoNhB9tRrwwa6XiEMNmeetD95l72COX54RsxBxHMwCq37JiMfLHPF/CHfEXexiFz+ioQiZII7Oe+bNDL+XGfyKfn1hahLukvlB5gv3Ps3d/XucLi64PD+lT2ucRFb9ktmsw4snXq8Zhki/SgSvNG3Dq698ijdffYnf/tJXWF1ekPOKWw8O+dRPfJrLL34MPpNiYLGO+O6In/vpn2F2sE+UwO17B8w/PiAtFgYSYIoRsl7z+V/4LC/ev8cHj9+lWThCcAzr3gDmZDaZsY/0w8CHz87BQUzw5S9+C4+j9UpMZh/atg1t2EMlM64WSDblp/XVFd37HxF+ec07H77NvfufQsIhx7fe4KBb8uHDnsVqwTguGfuIqKNpW3xwhK4lj6Zyh3qGIU68hBwzTgWH0PiWWdvhsWlisikaSrJmcEqQEoBjHDNpzAwxEk0EYzM1jBB8Y5Pf1Glfy0XMxi+RE6QC+GhpErdti0Y16yU1pR7NQkLsgx2E3ILauovCarUs1mx1jd3Y06Yxm00C1qwWTRwcHTJ/cJun4ZrF6bd4+PQ7xHxdcgyT6685TE5KHDO+WDiZKogjSLGIjZmxz4TG1j2yWAM8KavVWEhDHu/DZHdmvBstZORNLueEiZAuhYjTdg3OOVOxMu4aosFsADNsbHzFMIoKeGBEI5dLnlia5j44syjJdSrZ8hFfckpTXnH44Bkm0lfNOwqolIyB5t2GGGH8qgoYVLuMooTkam6ZJ3K9K6SQaldMzqQ4mKqimg1sLjYdWRVRN5FjNGc0RY6OGn7h59/kt3/927zz9ncZVgNOMl4UvCepQ1IwkIoBzcnSWwogRFUhLXZ9QplOF3JkInpXupKqMkYlpe/N2T8xUeuJ72GibJFYnico1fdtgXGlAJiAnwk00kokYiI6VRJUBcQ2n7xNVCrvp1p+2O+3KUqVQrXBsG4eQwXaYhyRVEmBRcWrTrOrTlPuVfXALGcEV9SxxAqW6Z4W53BeaZ1HU7FXycWeQ3yxXLM9cIjZQmdTnfASEO9wrg5ZbNRPTRnB2T1c7Gq8l0k9otZWk0VNVShwQk4bFavt2i+njeVJJTHZd44bCkr17Nd6bqOidfPe0HLt6zCKFvW6wsozwNEXcK0Al4qa9VvZzMb6cou0pJ7gXLGqLpaBcSgAqUNwpAw4U5ESMXogKsSspLjE+XK9nEMlgsLp5SVtG5DlAucDY8rsdQ193yM+MLoln+Bv5y52sYt/zWHLgT2cns2+w9qf4bPQhoDmhhQjfZ8Y4zVIJsbIrduHHO0fk2Lmo4fnLFdLnLd81pWeWhyNdJASNigXHAcHR3z6jdd49OhjhrMLskayQKRnjAOSEs7DmJSz5cgrL77C/vEhQ+6JuiLMPEFb0jiUR7OiMRKckIis+yXOW98MNbU/nXyqrA+VciRns8uOgx138EXNRiE0nsbvkTUR4zCp3kTN+H6EvufDhx9wcHSXo/khL73wEiqJq4tH9KcDOg5GzFbBO2/rtBPa0LJa9UCxDJ56mUWhu6w5XnxRUdKJqJFiLmtzXcMsQ49VlSlbPqA3lH0sj6xE89pjnP4pa9uGvFz7YkYszzW3KUqrdV1yUx5hBP7r60VZZ0v3TIRKfbKcu5LWLdedz+fghbc+fJf3nj2E5Uh/vZiIU6KVGFwyq0JcqaSZSuCva3uKecoFakIlxWrWTJrdhv9Tc7atdX1SuqxHv7UgmsWtLyqFuV4tcvncmhpscrStb1XNG7Xmf0WltAxg1mtQ923Toy79R1W0qHLZ6zaknQ2pquRw9Ti2cpr6s5s986LwX/qo1XjAeNVaN4iNxdgJy7keT9lEIUSLyzRBWK7WLC6XxDEVw3DLA8un2PFIxBV7xxs7OJ27qohlxPfpfsbyb1fyZVPDZBe72MUnLJb+5Ie9C7vYxS4+IfHto/+as/a9H/Zu7GIXu9jFv3T8oUlK24pKmwnim6Qk58yqpE5oPF+8Tz1+V5rplahkH7BFTuLGe2vRu2lkbxoAFYzIlCl63RSiFfizV9dmQyajODVCk8OK6zgaYNu2rR2PWtNAEvi2LZYw5kNfi38RYYwjwQdUIUYjCTVNQLBGzPyoYxxikY7ONM0MUOI42PFHm4B24gnBm1x1FuIY6bqWxgkHew1jY2CriGM2a+n7kRiTSRwkJUeIKaOa7FizgaxNY4Vx2zaT3Z1dIzEp5iGa3QPbPvOxgIF+AljEbaSRRXyZJrN9tSaEgQiRch84Iz6pkyKXXKfOMh77bHHVk56NGoKCw5lEs4JTIWVl5gIv375LbJXFYkkfEy6NdpwFFE2lSeFVCQmkEMjSGMkJhBnDesT5BnU9OcCij+z3A61ztHv7nF1d0oTb9OOa49u3mLW+lP47aGEXu/ixjEIY0LrOSOb4YM443uXps4Hrdc/l9cD55WM++vARzWyPn//F1/DzwOXDExaLa9bjAEGIA3gfSWkspEyzAdUcabpDfurn/gR39zJf++Y3uXA2fPruW9/h6aNH+Jg4vjtjFnqulolweJ905PjqO1/i4ZMLHj5+SHMY2EszUsq4bo+hPyWuB7705S/y+4yMccnefkPbtSyW15NqXg4ZrWQSF3GNkTjJCfVKH0eIjtt7HZ/77OcZVvDxs/e5CGsa70wVMEZWl9f8V7/6q4SD+/yP/vob/OLnXufzb7zCYjjh7/y9x5ycn5GTqVaE0CAI19dL7h4cEIferFXHSOMbXBAKco4XzzgOCA5NsI5rUwNSIQ3GQApNQCQQvKBSbIxSLqoZpnCYo607PnicM/Kr5lSAB7P+kVwa817I0aw0bDLb0fcjOcGANcAlGymgDY5WA32dJJYMORJHZXE9TA16U+cxcMIAkEKcyIlMNluxu3d56+vf4Itf/RIhCU2sk67KdlfcFbXCJrQTOcOFBufM9kDKZHkaFc1jeV+5qdRsBkPXUi21bHuQUpysby0HqHZ3YESeMqm9ZYshVUlIgSzEIRPHPBHagUIaqnYCFJunYkuhCZVCfHeYdZKhH5YvejeRqHzwNF0LIvTrAQoAYA1+A428ST8xjMN0HBUUcZXQIVKUH7dyTdEpRzWeQ5rISpb/CQY82PHHlEgTWcY+w4RTHI8+vubv/+o/o185+nVkHC2vCm3Dq/fvsVooZ6sBp6ty71VLrbo/xfrEGUni6HAf1HN93ZNVCUpRzDKFzMnO7hOcq0y41fcZfth+zQT4uAqEbVtU3KQO1Vx8W2l1m3i0Ib3otPX6+xvnqmJGlexSct+JoDTVHvXlMhFw6hoh5XttPEg14YiS21pOXcFJmGSLpt0sBCdxeMo4vXOI2sRAVrOx8d5tbE+2hjI0mwKQDwHnjKSH2IR9HBOhsft9Pm9tWKKQ/ELwRYE1FdUGtQn+rVpKc1E99XYvOu/KoRcinVRwM0/11nQxK0hZr6ncVEuov9Q6tCC6uS6bN1KpaN77cvylJsxKtXFTV69BrVcKIF2uUX32NM5x9/CIgUTfD/YdphDA1IBhI0dJfePmPGtRb3MyWaikmKyWEVPGC87hG8dqvUIQZl3Lbf8iry9+kV3sYhc/zmHPjN4teWf/n5NItMFxsL+PklgMvdkR50w/XJKiMkZPTNCv1qyWZplsPR8lBEF1JCUjCHlXBTCVg+PbNN0MVwThRCxffu+dd/HiaWeBbmaqP1lartaXLD98xvWiZxgGCI7ZrGEdM/ODQ66urshRuLy6ZLlaEAJ4pzRtS4yRMafpGLX03lSxAb2kFFkcoipkpfUNL967x3x2zNXVOc8uTjbk2LLGPfz4IRpaPnd0m64RXn9wm4jyTn8BVRWPmiPDMERcNmWlOA5GhDKWrp37XPLWVNaQrIw5bq0p9px32HCiKyo19tpy/craZ4N/FLXvLbveLeJPzTCcd2VY0siuUGoUyna9INnWGvGwF1rGmBlTJKsCRmJPebNdtbSPbVJLJerUgQVVWC1WrC+vTJm8rIPemYWesiEiTdmXFhWj6eelB5ilHnrJNY2gNJGiar7w/B1fzsm21XOezk/NFqTYp6bp71LIMtWG9oayfyUS1U+rPd8yVFn3Z8rpywuqsiWUQUwRI4JrzXM2Spb1SCo523qe+Ub+KmX7taaw01860lObvNR5W9srXKGpu+hdOf68URetmaxmJUbHe+89s9ISIQvF7le4dfeAjsCz8yUpmzJWNi2l6RjqbVt3vesamqZltRomdXznbF9yVWPVXedzF7v4pMXd4TP80un//Ie9G7vYxS4+AXEdnvJPXvhPUNL//xfvYhe72MUnPP6lpGEqcWgip1Ab2lqmX6qU8qbHPDWUtyY7KrBQZZezbgr6OsVSt70hS7EhKqm1xKcJl6kpkqeJ7KrVA97Ar1LQq9o+ZoUCuSHiDOyRRCjWBqEJiPOkOKKaChFKyJoZ+pE8JJyMdL4lYJYKWsBTm+pf03YNMVWrkWTgWPCgCYKj7RoDIBDaYs2yWI+owt6s5dbxIQk4ubhgcbnCh0AnLbo2qW/v/QQs1CaB2/J8NwCtgngmpe29J2ltGk0ntvy5HGNSnFe6WaCbBWKxb8nJFJWkdKBs8jtDtZzRYmHhHE6ErutYrNfVOaYoD9RdNrliULqmIYkBr8G7cj/Y5LlziVkrnI8JL547d/bJCc4vr0k64saED4HQhAKaCMEHxjiQYqZtPS6Dy2bVI5qJ6xW+mU/AkBtGVss18RBefvEes85TgS2d7qNd7GIXP26RyKyjIEEIGpm1nm42Zzab0ThnNlFNw3qx5HpxyW/+s98GFVbLa9J6TYPQ9wMxZlYkxtWS1WqgaefMZqbGgxcWSVk+fMowrnHYc3ZcJ86XZ9B41iHRuIFhSLjVwD/6Bx+zWvbsz/YJjUPaRNdEekqzlWhkizBwuNfSDw3rPiJOihIexDGxWhXC5yA2AA3EYaRpHAlhxNOFjpcevMJrb3yKtt0nfCvSf9jjgHGMZiVK4vGTd3nz1btEd422+8yalmePRvoxMsZIzkITPE4Sq+VAPww8/ugpJFt37xwdQOMZYywWFtmmRtVUk8gwxAHNBhJLWa9Ezd40YyoitcmdYlEtimbX40Ndm5WcpazXmawJ7x3eOQMUoKyVjRFzNZGSrV1FuImQldxkPvO5N7nT7PHNt97lYrm0aWkttnJlLRTdACO4okYoAhpJWF6gGb779oeMmvA4NCYGjbRtiw8gEvGNN9JxIR/gMGUdVXAgXoryEMUCIyFOSCka0SY4GgI4JXgp5GamBnnNI7x3eC8UWncB5F1pZBsROqZoAFhpbosTuxeq9YardrFmm1FZQjbFC11oAGEczTKqEsBdMNuCSlRp2hbNmX4sRAoUX0jxZnO2sb/zxTYvpWQ2VjVPLER1I8lvpqE3JCUHkgvpnoloYmEqSwktFr6WD0kEl5hsCacJacms1onVtRLLRHj2CYfn6P4en/rJBzz81kOu42j3dpmERutxbIgdTiAEoe0842C2KEImhAIy5ap6KTgteeUnNCaQ6TmS0k3NolJPQHF8LuDXZiPTK3WqGSo1poCJ9TpMH2D3QSXz6XOg3oRnbe3nZDNXCVITYcnepfXdhcdS+Sy57gBGFszKBF5VZaVcng/b1okp2ndZxMA/L/Yds3vPAKeUoikCTXZzFRi070lVQ5KiNuuLVXLMGWJk1rWEphD2Bke/GixX927z3XPOFFvLOa+KSZPS6oS8bQGxBehTr2hRXKjnydA5mTC3pvE0jSlAaXk+y/Y9MCF0UuoJJpLYVOttkda2bolyjWwYom07xlTIlmKfn0udE3PkcnHNqIJz0O015AzDunhc5ow4Gxypd4l33khMycha9UZrvDN766xlXfUGNheVt7ZtOeqO+YXzv8HR+GCzzzfu/13sYhc/qvE8aSNL4isHf5dn/iEuK5pGYkq0bUdqO4belIssN8tcX55zfXVhf0+RxvmSX2biCEIm54TiCY3DZevRrfo1Hz9+xmKxtt5PXf2SkmVk1WdicmiOKJGnq1Uh/ATu3Trm/Ooa1PKa6+trchoJ3tHMA23nrWboEykbmbt1DXGMDGOynEwtB4+D5c6WU3qGlFDnODi6gzQzBlHmB3s0y4tisZbxav25nAZCJwzjNYsYCL6l7yPL9cqIWbmuT2oE+2Tq52lc40SYtS1d1zGkaEqqZHtNyQlzMgJwriQb6vop05WzYynOn8WObco4VMtgwmatM3L+xvprK00A2RB1tBZbojUrAZS9g30+/fIrPPz4MWcXV2XI0a7etK7WfKPm1Wr5oOUElaYGq3Uh6pfepWnsUhqFtvbWdS4VBVNNm/VYZWv9r8nSVt9VEIL3E6lJbaG19baoxwpSCE+bPq3oRvlnIiKVO1RkQ+SxXKl8ltvkCJb3a/mZbcmGT5xZTedCFtLNtijHXV8XU5oU4+1XlXBV1a42pKZ63etAZzkNdgami1szxE1yOeV4ZcerMlTNQ6fBUTthRiTM1RZ4Kw8VhSzlew5QBm6cI4qi/Qrno9U62ZUcuPbjN/dfvQ4pxYk057ZIU7Yfdf8334Fd7GIXP/yYpSP+x+/+X3lx9XM/7F3ZxS528UOOxMjffvV/w4d7v71rJOxiF7v4kYgfmKSkdRJ+q5lep1TF+rKkbGCqJi1Fjz0pbfjcGsZUwlJiKnj1RuWkU9u/EoaM7LKZkq4F5AYkqIAGsEWYKo4ek/05SOVU2RC8M3Hd+mab8hEgk2MyizFnEsDOBbwILviiqGDomkklJ0ITaHywYncwcCrGgaZtS/EpDIN5x3vnispBQpNDxDOmiDhH0zSmLuQ9rvHEIdOPA8fHe3SzhpHELXeA957rixU5moVLSgnvoZu1NE3Ai2O9XpMTqFQiliFZztmUNU5Rl2laK9RXq96A2lzsFKbLYicyBE/TBELjaJqW66sFwzqWotaXRkC1sbCmhRPFO/CNqV7kYo3jxI7fQ/GUs4I/eHjphbs8vbimH0fUGUkp54SQuc6Jb3zwkCyBJghtWoJzDCkRshKlAgalQaTCehynO8qhNMGRRGlmnlnXcTjfp8+Og/0ZncA4eva7fe7evU3beaSCsxM8s4ltha5d7GIXPzpxY1qzfL1zFi6HgfVyzXB1gcuZ4zt3eP3V1+mX15xdX7Fcr+mHgayZ9XJAFYYhITpw6/4dnp6dk3plXCsJpdvrrNEvEAfP8fEdHr7zXe50c+KgxMHU/oIDjxJlZFiAiiMKjItzVhrIPjDfDzTNAacn57gYueoNlLi9N+Peg7ssWZMY0DEasYXI/GCP9WLJ1dU1y3Wi87DXzYDM5dUKTZm9/T1iGskpE46O+ek/+2/yra/9PvO559HZU1xhmyY1BaIYR5oWPvjmN/iv+sinPv8GojM++u57PDt7zDj2tnZKJqVIjKMp82RT0GuCZ/9ghjQNq3VPJBHX4wTOd75jNQ4MBQhv2waNtnbFIaKiDMlsWp33ZqFQetxmaZbRlElZ8cFbg7cQaLwvaoY5GyE3GilHnCsWaN6ax5Q8JxsR2jtPM5vjuhlJTIkjZbXj0kI+KslOViY1pxC85T1Z8SoMDvKY6CTQusZyklYRHfFBcMGsWcWVZn0ycMIJxGLFKk42jfwikJhzWf/apkxMOwNmKsEhW55nVnhK4wNN04DoRrEFs2Kruds4xg2pwVtO5B24pBOoIJhKmPeBHMt7ELNKy4m2azk8mNs0+RJ0GC1PwHK6VHKWxnlm88bywEVfrguTOmVKBRCqhO3yHTa7JiOHiTBNc9emfFVBqZZuORuZq1pxISCuqDRqBHUgARccKkakCgimAuUgqSll4Y0gr6CMqMaSd2ach6uzJb/xO9/gwHlC53EyQ1JEU8k/xeNQAgoNSPA4EudnV6aUFTxkR8KAK0zwDCQVS+VtmZpPVvx3Qx4149xYkjENKNh3rZJQtiYTDIzZylih1ACyecH25z5Hn7E/C9N3dEM4qvdx2ZX6KRNHp9KUCki2Xc9MSgoTjmW2a5IRXLFVq94fZTfVbMqcc6SciLF8V3MyFYOqQFtAY7dVk5Ep95w9h70zO0wjIFmxZmCmlrpNaRoHNPSrkVieSVZvFcvI4HHiJgWwioVaSbiZvMeVEy6YAhS5WMbV/do+4xRLolxssQPjGBl6G8pwdTilXvdaayKmDhUcGbNyrvVE1jyBrpJtfxzQBVMWi1qURWxSphy/cBXNCsg5YT32kxqGwbhaVFzTdOPYmmI1nHdC2wQSGd84vDTsH85ZR1NR2p+1DEPGh4ZZ2/LG8s9wOL7833nf19jVFLvYxY92XIenPOm+w6JfsV6t8MDhwR6z0JJiD9dXxJimPMvaTooXR1IlBFAcjLHYDWdc8KZ86ZSojr29Y45mLbOmI3ZzrharQmSxZ2+W8txJaoN4KZpYjxg5/uT8ChDWixU1mWxD4MUX73O9XrCOQ7FGtlw8tEY66YeROGZElK5p6bqG5XJFLKQSlzNOE+paDh/cR4eey4tTVusFKY4IRqrVXKzFgrC+XvLOt77NRwct7WxOXI70i5XVE2p2npYP6sQVcmKK3uLLmqAO5/xEXBWBxgVSzmWooJBcREgxTv3HpJmUITjZ9BS1kD2KJZypJMrUW6zElKpMaIR5e+0m8ZiYTmUN1+L0JqyXPe89esJ6tbQhgTpEyFYOVFqYlaRU1ZDMvs1IKpqtPmh8W3J0Z0o7pClJUs3TekxZg1PNeCrJqkSudUztZ4oRo7JWdXpsggPr+2ohLjlXVH1K/1ixvMSVPnJKqWy7nJJCyqkK9rY9I6JJ+dxYbI0nm1gsp3HOT9eu1hLTMGxZu60Xak3hsRDQLF/KmwGLcr4r8cr4SW4iv9s9V5O8rX3ZnK1NE3q67JtrOB1sVWQs116p38/6Vlc/rQx12kFZzmPn+eL0muCEEByNa0ipKN2rdbpFrAYUqbZyVjNoNjF+cXZNUy55rFYK1U3VqF3sYhc/xFD484//Q15d/sldnbCLXeyCR/Ov8M3j/8+OoLSLXeziRyZ+cLu30rC/AdyymTQBa147G1EvYIwRftK25ZvbTM3UiaSyoUJqKQ3sqswDk1TxREuSTb00+YvXv5UCc7ODVhAq1QpgM1FTi7baIajTPjlnm17WYuvjQTVagwGzHKHIP5McOSWcbiZSNDIBgOvVmiYEIgYM+GATL945XPDEOJWbqGbiYFZuvSTICS/W9BjTyDAIq2SEm9AKEiCvEzmZVUqMCWkdSZMhjkXDuapamcJTaUSIL4oBlCkkx+HBAeM4slwONgUttk/OG1AhIgzDSNsFnBeOjo+4yJelEWVAivcbOWQpxXLbedp5y6ofyRqRXIttITmBbFfIiRHFnjx+xDoJElpWw0idqPJFjWHUhDCQoqcfoO0CbVG6Us2knFgvl0VGWnD9QDfv6IJnNms5PNwjenjlpTssTyJ3b93no/NzLheZn/zMp1ks1iiZUBSXCuK3WfsnFQCmRgsTQLaLXeziRy2sOak4gc4Lj56eoaPjwd1bNC08e3rK9dJUkcbBiC2uqtMU9QrNmdPTM8YxQk6sVglCpukMAB7GzGzviJ/8qZ/hoA342NA0QhOEtB5ouhk4T/BAUpKMEECykXOGcc2H7685PDiiXy5RyXTNAa+9cJeDW44XPvUyX/7aV1ivB1bLxLCOtNmmuS/Pl1xf9qRkZIgXbh/RjwuGYcEwJtZxSddkvE/cvjfj/Uff5dFH7xHHNav+msYJOSX6MRN7I9yOvaLjKd+4+F1+7yu/hY4NzWgT0TElU/kpIHTThNLgV2azlrYLdEczUhL8GHHZkcZMzsLefoOLZgEa8LhGOL59zNj39P3AMEbSRMISJBhgUK3CnIMQHDmJEXJSwgfw3ghM1X4sxpE0RsAjEqb1sJJYyIIrCEB2ClH50pe+ZtZh4wiFiAOQtBJgbC1OKaFG36EJnWUoOTFiwEJD4Oj2ES/ce5V5OyPmFR89/oBlf23ATYRxtUb3hNAYoKKiZckvCoUlDzLVJiNaqRrZ1hULKKZ1frOsBS+o9zTeFfLPhgTuJNO4gLhyb8cEVd1FM+aVYEQMQSwnKTlWCKGoE1nuM4FIDlyw6zmR0lMiFqKTOGj3OrqutVxATV3GWAZmsZRViUWd0m2BFRmQIEYYSmWi3xVC0QTqOFO0xD43F2JZVbuxSWQDlkSK2pkTa+5rsdIQRwiOedMRBzWCkbSMQ4+mdQF7ivINARO0zJAaohNu3znE5xmnp5cMQ8+oxe7WDQQyGcc4qp1f1yK+oxXHMJh6WZRE4ypwlEs+VdVfPnkxVRHP1RPbJnWGg5XsfQKp2IBz3CQ7yc1NWZVRCPoTCIht02CprYxt+0MnEpT9otYXeftldZtlw6Jbv5/ul7qDtk27l4qNhipV6co5ZwCUbGoZVSWmWL47bhoK0ZRwWUzMWyw11fJdcBVEq7moGugn9fuZM04oCkz2uyFGe3/ZXi6DGtt0rpQSiTjVYCKbWo5ynJUQORGLsEGGlBJ5iOVUlUl+B00T6LpmUgOw54Sp1m7Xit4XxamUC/nQ2c+co6/APZTvspRj1y01K7i6XpBxOO+JKU8kMrelDiAISWUSlK32lnZM2awyKeDvlhWkc6bA5JuWO7cOWF6MtE3H1eqCkcDR0W3aYPZ9OSbm8chs+27EczfuLnaxix/xsGd9koHgM02EUTyHe/sk7Vktl1xeXjEM40YhqKwlKYGmETSzXg+F/6ATUVu9YJkkiAS6eUc7ayzvH9Y0DfR9sjVOrF8nORM1gaeQW8rQHo7VYjURIZwPvHD7PjmvGMWx7I1YagqSIERc8oxjIg652EeZJVV0iWFMxNEesmNSgij7x4Hrq6dcn14SY0Q1Wf6CPfdr/1CjA6fEfkm/XpDyuRHrCwnGCLWucllKf8aUtb13tLOGEBriylRfNepE3lUxxZrGmYJ527WW447R1sicyWNV3SzZg5Mp70YpvmVG6PdljTQx70IGUS2Kplu9Iq2q81iOUBeuso7GYeD8/NwU+QBXiSXVSq7eTWVoojjDGimq2FaDkYa7ecerr76GJE/beh4++pDFekmM0XKFqIgr6pvT0qibXGdKvzb1gNnsYb27TRfW1no1lSpXyEk2ILDpBZcf3CDtWI3hpmOrKleVbGaDD0X5XjYDkVQ7ulIWKFs5otQ8RScLNe8dwYWSz1tP2KycpSiNTWng9OeaE9a6pSrN2lWZRmUn1SUp1tB5+v7KlIPacdXzWL6DpcdgZ8OIbcEH6+0mwAfSaPXqpu9Yla0sL/FlAHU2b5jP9ri+XNEPRRApCyKp5G8OSQ51Rj4SFwjevjtGLLfmp4lT1ax319/cxS4+KXE0vlqIi7vYxS5+3GN0a6L0P+zd2MUudrGLf2XxA5OU8lZ9coOolHNpkpffVVBB1cgyOLYt21BXinKbNq8WAs8XQM//bOOV/r0hDige4mypLalWkKIWrlCtFSqZabPNPE35iDgrest0cOk9GDgpYlM6FHnoAmjFOsXvfZHMLW0IzWgcDCAVSMk+N4rgUrKJf2/bi4NZOjRtx6ybIU5pJDObeZoukDSyXK1IyeO8SQPn3JMiOPF4H6wYz0o/DqVRAE3w5ZplXAE1QtsQNTMOo4GDCtKEQr6yKb0K5XjnODjY587dI8ZxTcyZ9apnvbJJOTv9EeeEdm+O9yDi8cETQihTW0rO8QbBzKbWnE3wkBkVUwboE7iAL5hn9Um3RoSBuc4ZAOdx5Jjp84hz5RpqYtP38ahG4ih4DfR9z8XlJfu3Dmla88eZ73csPnxG8PuIz9x78S7jUCenDfhQKPYtEyRW+ji1e/PJBQR3sYtd/OGjrh2VCJvUrAeOGuHB0Rzv9pAA33j/PdYXV5w8uyCnyP5eg3c2WTxEsyiLcaALgRhtEtQ58E6IydEvBms84rl7J7BYPuThhwuePrykH69wISESGPrRyD9jJo2mzDLbn4EaQXXWzvCh5fLiEkdmvt/x6ssv8Su/8Av83re+ym998V3OTq+RcSyNZI80BnhI43BNR84D+I6zJ1dcjVcMvRohQxLDCLf3DzkIwtd++58S15nkIQ8jWazJnaLSx4Qj4UPD4VGDjIosFPHKol8zxgFXSLHBKTlGdDWgXnEefOsJs0BymTgq/bgmDiN5rSSFxWJF8AGc487tY2b7M7p5x7DuuVos0VVP27Rm4aYF+JZEN58RB1NwMhUlsynzzpcZVbOXSOqMy5ys2W5cXp2IApVQbbOoZpGmEVM5kUJqKv84H4hjLGQeAZxNPJctVGsK1WCWqOJQEbq9wH//r/9FfuELf4IPvvMu3/j6V3h23jDqjP7aFBRzdgyDqYmExiO+kFj05rSyWRKJAUlZTekqWTM9TVPGSooR74WmMbUis8RIiDcSdLWySJpw2XKKpglGNi62GUb6MVUpI4UZAQE11cbKYTcigK39ztn9a1iB4kNASQRAi+XerJkRnEejWS4aWYKi+mRKSyH4sl1jiYgIXjY8EVUjGNn3zwhr3pvykivHnVM2K15LYiaVpkqeKVwI22ay3MesuDxNcNy7c5uZO+DxomexXJHywhQzMUVOS31s/0KTCZ1jfy+wfxhIq5FZC1k86sSsWoK93idBcrErDJ5m1nLYdFwvFBkh5hFkZeo30lCt0T6p8QftmkxKASX7n16YN7SkSUmAclUqPFT+u1Un3ACqaj1Rfu+m12zvgJQJ+QoWlq1WoGvaN5l2cOK6qG5eN0F2lfAzHVHZ5EZhybZR1LDY2BFWhlxVDai1zWT7VkC0VAY6tAJtJVKpb5w34KpO0XtfnmVia1qO7sZ5q8piVTlgUmkqXyRfLeEqaOdscCOrTe3bBH6e3uuDM6JjAWCd2KBG8A71Bu+NQ2QYzJqzGFJTrWGcF9rZhjxqz2FTdMtVHo+qklQPw/bNROY2NiyuQoN137fvkXL9NZsqMFJJSTI9s+y6VEDe0Q8jKSshN5xfCXlUujSQ0oCXTByX7B8cIm6Gd8K32n+AY8b99ecmUd8b5Lqt+mIXu9jFH//4fmudPcUppFSl9YLba3FeObtYsO4H1qvRFC0bRyueYRiIRQ5Osz1HQ/BkzeRc7HbVTcQIVGlnwrwTzk4fc3U1Mg5ryxOxfChly3dyMtvR2rOJRflzf++AxWJJTJGubZh1Lffu3WXdr3h2ccXyOpJSLMOJJQdFaTpPzC3046REvlqtSckIoPhiL9bMaEPHxdNnpiDpCrmlkFY1m9qdKfQoszbQNQ3rZU8zaxhTZtX3COCD0DQesKEPyYqIR7zggiNqJo09Yxxt4LCQVoYYyY31jpqmoZt3GxtPijqs9zicqX1WlZvgMdJYLBbJeYuqsrGEs2vxXN906/FuFqS1b2n14cZ6uJBZCiFY6vqXKwmn9lZrlmFrcM7Wxwwu0Kopwj949UU++4XP8vThE558/IiYIqFpQYU4jFTlzZTzRA52XjbN32mfnCnupI0akmZIUusj2496DG5KmJny8q3NGcmrnLS6xm9/ccTS5WJPZko/tRa7MZCK5RuVrF2HM0zx0uEKIQcxWzrnNt8Vu37W49XSI7aZyHJeC/GoKjZaoWPHXVWiKPmOFJVKX0g/4mq9YrlOza82d8OGxCZYDlzzqm7W8uDui1xcrjm9viLrQFXTcuJNhD6X95WetZPMGAd0WVTBPOA8kgqprpCnELNDxJlN7WzWQg6sBi3nri+FLUwJ1C52sYsffgj86iv/EfN0iy9c/LvcrDN3sYtd7GIXu9jFLv54xw9u9/Z8gV2Kbj+VxvaLOkk7FZ5TYVN/t7XNvJGQnaaN8tYkilTP7+03laJwqpsLEPfcfm6ISluTv6XQ2igz1dfXpoBu/d6mrEQpAPKm4O7TWMDIcg7EgDQfmkJAUkKQYtdQGxdaJlSsGPU+EIJ9pFfrA9hUfihg2qb4XMQ1wygcHs1wwdSDJGaGPk5Fct7U+YDifQMIOeZJgchUCQxQEA9BHEKxMRkz/bAiBM/h8ZxxzDYhFw34HIY1ZycjbRvwbcM4Jvr1gCuqCs7lScnINYH9/a4AJ2LbyUrbdWSXiX0qEszOJse2/NJjwqaeXQJGAGvElSba5iitANcMOQlOnTWLpPi6h0I2K3YQaUgMGS7ikmUfuVqtOT2/phXPyifaZs5e4/nw3W/x5puf5979F1j3K0QDOtjndr4x8FAMhi6Ixa442MUufoRi0yDeBrvBaCxwdrXmYrkmhMTF5Slnj55wfblgiJExDtx/4TYpRhbrJeMwmq1AEvZuzWlb4fxywTgoziutCDkWawCfOTgQhuUZTx4/4ex8zRCvi2WPPWt8yqyHnnEYacWTWk/XtsS45PYLd1it1oyrkb3QcvfWbWY+8PTZBX/i5/80/ktfYXl+TnuwR+rXJATxiUzi4NahqUXMPJ/+wk9z+f5jrp+u2dtzKAkJI05aDo7v8+iDJwyLHryflPmGPiKuRXJDxixLNUZu377LxbMr7hwEPvuTn+KLX3ub5ZJCZsnM5gGyEMsaq5JRyYyaObu4JA9KvxqIMuJa6JcDY8rcPd43wL1z+JknkopiDgQRjm4f0njP1fWalAXFG6EnK+M4EsdYVHU2nIaswhjN7kuLqiKVjOQ81R4MNbJKxhr7OVqz3GEJlRNBgi9reGZM0RzCMKBFvJCzmE2cmiJRGwTfznnp8DYXp6doM+d6JfzO177G7//zf87l2TOyZA5vHRGXvU0Se18zFsDsh5rGk5LaNLpYDgKFJJBimZR1RE1oNutVAVIaCxEcwEAO57D1vZLMi6qjD9adt2PxpJQNzEDMQjZns06o5CU1QrpNLRsIAFI+w3KAFJVhiKSUGXOxvvUF7PEO33pQsWuXEynBOBhAZna6Ni0/kb8qOSIXAI4CrOQEjmK566tnFc7ZlLaK4htPJcNo4SrXZ4F3zvKJVCwTkv1MgDAP/Nm/+Cu8eefz/Bd/55/w3cu3QT0Q7LvuDW3JlQCBp+8H4jBwvYzM/QxRofPBwLWk+KYje0ceVmZFyD6EwJ2jA37+J3+G02XHd777mMXFQ1IaUR+hWG2J3gRwPlGxRUaa/j79mS2L5q3EtnKMdOsvBbCaCCb191LJKFv42FbNIFTikU4fUXhPULe3vQf1Z/Wj5aZ13I0N1PpoYrXY726qL5WfipBiurE9szRzBRArdceWsgCK2X2U55CBZG6qa6aZEbFBA81KGo3M6MURx4QLMJ83eO+I0QDvnDYAWq3XtExobJQA9AZxqSqyVWsS58xKM6d6n0PTNjTYcZoabSblyGqdCEUVKReFBVcUCKReOCkDKm5DLrIaqlr6mNpbni62sH0vla/aVAPWcz6RrKb6c4PD3aw3tdhRb91/VIA2m0JIUnxK9EPCi1luzvcOmXWBi4szEOHg6JCL5YphHvn9+X/OgbzEG8Mv80L6SVyxq3P1HtrFLnbxIx91zRoTnF4uC2FoZOxXxCGScjSyZDK7shQzKdrPVAXfevYOZqzWK2JV9J74poJvBN8oy+UV61VvKkZxgFi4kGK9DKfCEBMeUzxybUPjBA2QJBJ1RBBm7ZzgHBen59y5f4fZbE7qe1x7hNPEcrVmzANjTPjgCM7TzGD/zh1mEnj86BFd8Eb+F+vhiHNcXy/J0ajndf3JE/kjgBbaao6oOPqYyCj37x5yfrUgFgVzEUWcFnLQZhlIKZXndLJhxlT6hq4qjgqN32PWOGKxEI05T/o4mjNt19G1jRG2ovXbUl9UaTRPKuubtV3JWUouvnXNp/VJp0Wn/pPzlo6k2lpfe0uCKTblonJjdnCFcivFJqwqFYpjr+uImtmfH5D7gYhy8vSK37r6CqvlFXlcoyRC05C1+H1tkhtq/mu7WJVYa31QiVG62Te19bASqXLp7Vq5pFvs/q1h0/KzbfKPm4hSOg17KqZOVdWj6mfI1IOz/L7WLNT+qZp9Xy4DFN6X81xJX8KUp1hOn8vg6k2y06RiVr+0W33sSogWB17c1qWViUA15Z1TF9l+ONlP6xZhq+Za5aPuvXyPz336M7z1rYcslgPqEjHrZPVrZCihOhqkonzrkicHsw/3YjVg9kIQRYMjxUhVdfXiCa3n9Vdf4/DoPu988IyTp4/Jady6H27mxLvYxS5+uLEKp/y/X/9f8sbiV/jTJ/9rfvLi38HthqV3sYtd7GIXu9jFj0D8wCQltouoCb4rDWrNZHU3irHNW26SlabJk1qAVpKRczeaw5Os/tbfbQOl0V+BiDqks7V/m7DiSrUWclqKxzrl46ZCzyZ4dPqdkZvqvm4kNdUJqnHrEyoi4FAi1fM8FdWlOsmTYyp1vyuFcSwkpFjsC6xhhHcMaShFJBzs7QFK1MzeXqJpHMucEBxtM2PFMJGvwBr2mutklu1hTrmAlSAOQiOkPBB8ILSeFM0eJJfiF+fZP2jZP2gZ+pGhHw2EFKFpOlb9egJEm6bBB4dgDQEToRLG0ezxxjHjXQM41v1AGiKSjLykzpSQihTTdB3VW+We4gBALvLPNtnlcc7jvTdwsMhIGyBSgJ2crBEnhix4H8pklRK9krI1QVLOjEFwT5U3PvNZXnv5Pl//6jeg/YBLXXLy9IR7t+7yyu0HPDl9hms7jm/fZt407HUNYbtsrzfiLnaxix+pEARXAN8sMOA4ORk4PztjjAu8JppGuFazWHj48DGalNV6oO9XpJwIIdB0AfGREMzyakiZJig5CXdu38G1kfV6weOHK1aLBaoRTco4DoAQmkDKiqjgoqDegTR0viWy5OTkKcvlGpcCxwf3cXmf27ePefHuAfO9hjdefoGm9fzUz/0sH73zFl/+1jc5uzwlDpDXI2+++honV2dkzE7o6PgYR2K57DncP+Li/IKPHn5A46whvV6nSdEjDoq0wtHBLe7Mjri8vGCxesZ7Hz0EddyaCx89fpfgR7rWE3NCnIJklIRvMKu4MRH7kTCMtnZGkOxJYwInHM5nNN0x/8Yv/TLvP3yby+GSNI6McQQV+nGgjyN7B3PGcc1iaQpQ42DTzr5RNEXSWImypsKTkzAO2aa2czFic4I4AwVyNmDFhzKtqs4axSrgqmVBmchNCSemIDSOEVCC94TgcKL0UWkIuGz6MPcf3OeVu7c5vVrjfMudVx7wwouv8k//3q9ztbgCXTPrlMTI+cUpqY80PqApo+ptbcsgEmwKPY/TlHG1GEALIUg2QIOIqQWlmMhJCY2RW1JSXLkHROx+0wLep6w4vNkKlNyp2kxskyhQCkHJPkuzMg4D3omty4WAoQhjzIxJSTERYyLFER8cvvGmFlOAf4eY8ktRYKy5Wc3d7LMKWdrJpIAJRlxxzuEau6Y+eCONR7NVmGyLC+hgqk62oLvJlpBCjDZQRFXBY4CWCnuHR3zq828Sn17w8oOW0LzGBw+F05MTkg7knGg7j3cNY4yMKRWAyBOahtB0OAWfG+Ko7HeOpnP0GlmqgCYCDU3n+MJPf57/wd/8W3z00ZKnT/4Oi8tMCHYvJFW888VW95MaEyNoAuosqr2IfM/L6+sntVaYru9ETmKLfMTW72CaQJ/eVtChjfUKN+sJ+T7v2f6cehi1Hil/l81b2NiWbKWHBSCm7kP5QK37UuqGlPL08qyVNKnT74FSm9j3y4BaJsKTlO8OKZvahXP4trXvfMqkmE0AtNQ7wQeyzzdAMyikywl0E+pQQf2umAKtrQnVskTE1CvsbwY+drMAGoq1mw2hhKZhGMdSl3i7b8t2JyKRMqnW2jmRQmyCHCOTb3cB/jYqVkzPOmCycal/t0djrSEqCWtT900XrQCuVSUL54rdpyORNwMxDKgTxsEx30u0bcfFxcD5xQWLYcnYj8y7Ofdv3+X9/BXedV/n0/or/Ez8S+zL4fYdsotd7OJHOKq6m8OGxvZme5yfLVgPgrgGFwSS9T/iOBKxfCpGyxmcs77GGIeJ2JMKSUOzElzD3l5LzAPDerD+ExEvRorPWI6QUrZ8oahL+tCYIndKxDGy6AdIwvHhXY72j4g6cPfuIUikHyMvPbhPt79PFzzvf/gh55eXDOPAOCp7szmOzNXFFb0LhKZDnDKOPSG05BhZ9aupBzfGqrTpTALPCfP9fe4d3WM9DJw8e8J6tQIvNM7x6OSJkfWdN+vlsu7nSnB1Skq2Zkgy++2cSm5fyC1taLh1cMiDF17FuciT81PGsSelSMxKijZk0GhruWtZzyZCb/2ZVgs2I+tWW7PvGbSs+UCdz3SwTQ6qdsd1ea2qSfXPKacpl3dF3c+UnhxeAjlnQhO4/+Au43pgzBBd4M1XXubR4xPOnzwh5RETIs/0fV9UudxWb1WK2mshPmntidYc2expXSEXF0qxbUNqj7esZlvNWc06WSfXfL2SncTLRM6pZGVLq2y9d06KVd4mF0sp4wvZaOoVq52PFO1Ypn5u+byqxqQ1v6jfR5Hn/t3sW6ViFTrWRMoygrb961zZZirXXOpebnJNLXlfJaptc/RvJFzTZ5o995OTx4R2zeuv3+bkNHBycsY4ZsDqu6YJxBinfLF0LKy/6wKKR6Pi1YZhNDiibxhiRFIiNJ6Do31eeuM1gjbsPXrGuasKlaaQ6cTtspNd7OITFutwzreO/2veOvxv+aWT/wV/8dH/joN4/4e9W7vYxS7+iKMSt29i4LvYxS528cc3fmCS0oQRQO2TF3LM1ojpVNRZMblNUtruydv/N+Qk4IZsbyX3VJBtIvuoFFuWrW1svf55XGMiQ5HJqe7EVhMam77y3m0dYGk4lI1JAQC2j88XKWijBZkUQ8pmCzIVnlsAgy8Sxk4M6Ay+sU1l8zOLSa3JghJjxuFwUZjNO8TZOeiHSL8e0ZAY1hHvOgRhf2/PzrVKkeiNdDObkO57kws3gC3RzRqct6aYS4ZgaGmsaLaGmW9MBWO9XtF2gf3DObP5rEw9wRD7coUz3bwxuxe16bSmCXbVM6RRGcZEvx5JeQBXZBEySO2mlWZBTtluI29ksnpPVZCzgpqTpLIW8w/NSDbZbZNrjihiakoT4mRKGEEabMIrWcHuhXHM5CSspOfjj96nvz7h/PycxWrk448/QnAsThcc/uQB2jVcLK/o+4E3X3v1hhP05m7flfG72MWPUkzS69QlQnlwdMD+p17nHXnGKh8jTeb82UPO8glkiGmApKQxIlnwwHwvEPPA2A/0/UiMcWrS9v2K1arDqdIGR1BFSDQh42hYrgbUeYaY0SGSx8Rh19EdzpndPeRgPsd5ZbFcEcaWu/de5W/+u3+D84srvvP2l3l6+h7vfPP3+dlf+GW6y6eQV+zPWz712uvMHwYenT7iMkZOF1dcX1yj+T0e3L/H4oM163iNa4EGbh8dcnp5QRZHHEaGYQQ8ThxehMM7R/zVv/pXef3Wy/ztX/1VvvmNM+JyiWtbhiQ8PFmRs0OTI0NRYFJSGo18gtqUaFKcGnDcJyO2+MamYX/ijdd5/bXP8sL9Azh6lbe++zan52ese1OXWq/NEuPJySmSIioJXMYXFaCcMjnaGm82ogpZiWlk3nWAp++t4WvraVUCsintsQBHgp9yE1vXLVeggBVV6YOcJluBFEcGzah4jm8dMy57Rs10B3PuvvgiIqc8vTjlMz/zGdJ6QNI5Ia9Yp4GFuiqbgiKkSlIoKknjuJ6sZ11h05hNmTXEfWgI3hFHOy5xZkeQc7GOKLYUtv5iVnlUxRbdEHMEXDRQwSbd07Qup2TqTN6FrVyqfHtKQ18cBGcEZc12Dca4LjZsdcDZAIk4Ztp5ZyAADsk2Ie29NwyrkIsqWGInxNQAKLmlOI/LRmzx3mMIj1ngJTLS+OKkUb6MVUFL65rupjzSzmqxCy4gjiYKQJE4eXzGf/p/+8955c4eb7z2gL1be5xcBC4vBFFH5xwHB3uklIjl3nMIXjz7ey2vvPYirb/D5VJoLq+R9RXdUcPPfuHTvP/2Uz58+BF7TeaV1+7ywmuv8XvfeY/Tdz9iHi6Zz5QYBVVPkEzXNmj6JJOUtqLcIxtQq9YON6qOG6+/metvgCup25ObudimdtnYsDF9an2y/wE53BZ5aPOjrZpgq3awjW4IV9v0pC0e04YFJRvAmkqC2d7+hv03NZ8qx2l7iEJc+UJRQTkpYGAqAJMpi4mzjZn1oz3f4phwYopp3tfnmisAacIHj3NSvt91N7Vsz57TG+vrQnTEnn+b+q7YUvpQtmcavLFYf6ZiP1nnQep7N8dpJKlULGYo1jKiz10xKSCwbtZskVyAxe1fyFTHaqknxE7yZPtdTjoqanVeuSSZbEThQgDNbKzAURgYOT87Y3l1QUzKMCTc0p7Lccx45wltAy7yfvhNmqOeX7j4H+K0rbjw97kLd7XFLnbxxz2ed2Hdi/c4THfweye0zjOMCTyMceDp457IUOqEbDb35dls6nKWP1WVGcQU9eJoFrjpOuJboeuMaCBiFpkiwpgyKWME9JRpQ2D/YI91Hgmdo2nnjP2AGxLiA2+++SkO9vd5+913eP/hR+Tcs3/nPnkYuVhc0ISGw6MDjg4PefToIy6WSxbrBV4Vh3L//iFPn16xWPVkEurgzq3bNJdXLMd+6lMltf6QK2vii6+9yGdeeI2333ufk2cYeUkztJASJICcC6kcJClosvxbrb8kWM4YvGPMNkiIs2vhG8eLD+6wWJ0RuoBrHMNiIGZTrcrJ1rHlckXbhEmxKQTB4RlzJBdCzGZ004YFg7chvr4vfSndWL/VtdvyakWoykNS/l7TipJclHzAl6EQATQbwUyBbtYglRwUhIQQk7Jer3Ct58mzJywW1wgJkUwq++G0fJJU4q6pAWlKhRjtqEpHdiUpJ7qQvaSQjzQXwhYbUlLp1elWXmOHskUQEhsmkGmiQLdyIZ3OQE34KpG7Ki46Z6/VmjeWum57GNY2J5CN3DzlOCpmk1yAvU1Pe4szNJHM6pfXWFamOjsZtmJDrWLkr81Jmo7hpkLWlO1Se53Wwy7qkIV9lmLk3e++z8ed5/hoThNaxnG0IQtv1yoEX8hhJbdTwSE0jeP+C7c4OrjHqndcX/f0ywWJgTc+9zJpOfD+ex+jfuT+/WNu377DO+89IS57hvU1TVMTUYdDy4DNTqVlF7v4JEZ0a37z3v+J0+5t/v13/jNm+eiHvUu72MUu/gjjhfUXuNN/mpPZd3/Yu7KLXexiF/9K4gdXUmKjoFT+umn21t9M3dXvBReqEk6FBiYiU6kGazP7+35yLTa3gEDbhc1Uy0ZNyF7v66TPjQkmpYwQTVMyUKxatgrpqTGOGnmnFKATSQazIAEpDmTWdXBV8UfzVOSK2vQWrviW1wa/dwVIKFM+BRLTbMoOrW/Ym8+AzDD0m+FlgXEcSQjOe3JOBB9o2waAFB3OC00XCG0wFSUE5zOuEZwP5IxNiA2JEBqzc5ORlBIheMSXyWKnDMOARui6GU3rzRYG86mLY0LVCtgoWkhK5bpovQ8KQQtHzAlSOddU6xUpdikmu5yxa5ezK+CN2cLY5DKoM0ljrTZ2YtNSruzz9KnOCGQVC4ppxAv4EEAyMUX86PFBWA9L8rOR1cUl0rSMqzVNbq3pIQu+/PWvcXx0yNHeAbfu7jFvwmYaTOp9uKXGMDV99PmvwY0QkenXwgaYknoT7mIXu/ijj+e+e7U3qViPXBQODju+8PkXzIrNwQcfe64vn3CZEjEpMfd0QdA2MEaHdw2NeMZivyNeaDxkjeAjl4sL/Bi4Pd9nFROjCHu39tlvOs6eXXJxvWbMNvE8b1tefOlFMomHzx6zOpjTiOfVT73Kkw9P+PTrL3L8YI+H5x/y0dNnfPzxOS+8csx/+8//IWcfPOGLX/oKL756n7/8V/4Kyycv8/f/4T9kfbZivbrEu8Reu0bdM+J4xWLRM+aBNz79Gd6494Df/e3f4nJYMWtn6AJWo5LHTNKRflyyd+B5962v8PDj90ia0AjeZUQ9kj2k0gRXZegTmpwp7DSmoOG9Y3/WMuta4hiJxdLAScMyR04WK9bvfJvf/uoXkf0Z1xfX9Ou1WYytBjSbNc/F2SXBma2Qbx0PHtxndb3m/PzcJo/xBC9lHTawYNYFxjHZBHoUlstVsXErDeSUJnKQEwPkc22sF+ChkmVEKzDiJ7A/FzKvOlguF5CKXVpWvvndD7g6O2eMPc/+2e9CIQ6JOlrviapIVBqTHEFFChHKkYmgtq4KNlnuQ0uOCVU37bNSiEnJVA6d+Inx4Lxdl5Q3JAprrBvgYuwk+17EMkUukpEMIBNppBLGU8yT6knTecQ5gnc0jStWwEKOyhhtKj1FUzmpuUfwgRACs3ZO03U4hOX1Eor61Pa0UJ7yQ7NyEDEwxYCYTAhhIhZlBbIjiyOEQrDOCVEHJLTYWW1IHgVUKj4qNdvNJW+sdhsijrjuefdb7/LQO776lXfomo5+UEJQiqgjY4zkmFEc+IzLjrYJfOGnX+Nv/Y2/RSMv89HDJW+/f8KXvvxl9l9WXv/cy5w/fMRR63n9My/yH/zNv85Xv3PNf/V3vkRenpLkmtBmnG8qx4e7tw5xuf1X9UT81xDP20dUhSQDgah5/pSXf28itXmZTq+tryp4jb3uuXeXyuP7bFs2OBRbRCG2trP1XbIf1vtk+wPKjtVaaEIcaz5YVXueO5DnU76tWmpSWYINWanYVRqJaiqKbm6rgGumQCqmVJZSWeK8fe9JxJQmNVuHM5U0b0huLkSo0DbTwIZzWqwyjSDo6vdDhMY3+ELw9EXdiwI652Tfd8kgwRVFM8hFsc1IQqYSWJUZbPta5xomItGkcDcBgEY18hN4WL7LFcCGiUhUT41hiIm8paKQUp5UEipw6cqgSeU4VWUJU6Cg1JAOdULKEYnKmB34Uhdks4olRs4vLmlDw6ztmB+2nLVv8e2jv89nr/5Nmry39ezdqg7kxl33fUN4rp5gq57YkZx2sYtPRGx/s0PuOFq+yfXhCfO5Z9Y5VBwxC9dXHWPsLX/LIC6TnZKLvW/rG6KmaaEzsnRGAuSU0KR4bRj6kZgS7axlfz5jWI1cXi4Yc0IQvAizvTlZlX7d0/c9InB0dIRzgSANbed5dnHGYrmm73vu3up4+vhjlsseyWaR+xM//QWO5jOWyxnLfoVKLoT9yNOTJ4yJQoodadvAwfEB/WqFSwNN4whBGMZMjEXlT5Tryws+GhIPH35kwx9ljd6QTu2MCoVoXxW9pSj8OUfTmPKnZiWJM/KNKqhjiJn3H35sNlmFKJRiKjZwZg/tSg48jsNk1Tvb72h9x+X5ha1d1Gvgy5olln/GSNN6xAXW654iT0olxWtR2BHZKBJtMgzLherfhar6SVnrymKUhaHv8YWsrFk4fXZJijakmPue6+uVDXiq0DhPJKPRSPJ4W1hzsntps26UHlxRG3RgwwQCRa9q6rtWvciqNiwll6jE4GldmgZFN+u2rdE6LXMb69b6bSm5e7bPdF6KIhIToWei/BQSei4TQJXw5Iodri91hYgjjuO0T3XgFdkmN5X9k/qa0usTh6vtvXoYJf+Uem5yzRMs8d+kmXWfar/bIaLFnm6TW0yqCCmyWkT65UgIvu7gRGrKaiphRjjf5LXzgxk/9ZM/wfHBfYZBuF5F3nnvMU9OPubs9BztVzQu0+3N+cnPfYbGH/G7X/mA89MrkDUQJ5K4KnRdx8F89oM/5Haxi1380YbAdw//Eb/6yn/EX374f2A/7RSVdrGLH5eYpSM+d/Vv8Rvdd3fl/i52sYsfifiBSUrWGilFUv1Z7Q1LbanqNIG73YrROr2smyJuU6AWyCCVItVttl+LR9NE1mn6qBZpopsiMk8EEftYHwyE6oehyD8XpEDBpld0U5yq2b1sbEMMVKS8NKvDBzHkw9pABhDgptOhObKxiCsFo5a2gxOqT7pzIDmhurGDk2o1VzoU2SuJxPViUex9YNY5xjHSdQ1ZhH7dE5rGCD8pofS4EHDBMWZrQMxmHZmRmCKNq1NEYWrKN60HEm3XMN/zKErTdiYrPia6pmFYjyz6Ff1ySRobXGsgZxyMrCQqE+gxxkTwnpzN7zxUhaoMbWuKBX2yO8nuh0jKHgcEb4BvKiNxVQ3C1A8woFSEHKNdSudtGk5cARYV540w1TS1IeEZhmTkpgoSlam7sUhPqziCi2YHIxnvQSUhY0LxyErIfYbRM3cHOM0MwzXq7P5LBJq2IQh4plG2DRB2I54DHv6Ab9ouw9jFLj5BsQV2931kNSRuHbY0PnF6ccHe4T45rw1I9cps5tHQcL0eGVPG+46Dg2PuHh/QPztB6FEySTNeBNcYOUayZ321NnJHo9x9cMjx3jFXF0tUU7EXg7aZc3pxweX1FdEp42LAu8CwUMax47VXP8v56Zq3vvmUOLTE6Dn58JwPn50T44APF4Rz5Xe//mXG04f0usaTGFcD62HgajUynzUkcYhEyJGPP3qXi7MTVlnZ2+sIrcN3Ld31mqvzNT2B5cWav/v//NssTk84WfRGnCkE1Jht1TelpIIaF7U/VcFnI7HM9lqO5oEhj6TRiK8pjYwxcXh0TBPmPD45o489urgyW7DSMM/eCEBeQ1l3MpIFfMJ1jvFiRKQo72VfyCypqHN4Ti/WzPdaDg5mrJZrZK3kUTHEvigTFdVDxAAjKQB1tafNhYzsS8M6swHJszPCsxOHjiMutDjfcH020CikPCNqJA89wXccdjNaAt1+5uHpKeIDuXH4piOtzObI7NgcmgPZg5MGJCDS0gZPFIU8GsGKjHMZRyK7jHiPy6CNQ7IjpY0FHiWX8+LNtqnkV7my9dSAKaVYKiBGWnIByUYkFgqxqahQiTfLpEoMciKEYGSDlHNZsx2uCTjfFAKFfd56WBPzgG9kAjFcgBgraaKoxZjfrOUKRf0pAy4nm7ZXu3aWx2WyVDsQy3+yZFAj0zl742QfV3M4EsQsSEEiUnYECYhTGonkKCyvR/JeRpMU6MYz5Aj9SIqJPmec2LlO4jl8cI9PvfgaTXeHV191vPD6Pd794C2+8+Uv8p3f+w0OOrh7/y6/+Kd+ltffeJNHzy5p5G0eX76P6iXOjXjv2e9AXcef/qVf5PV7r/4RPSD/RaLm9c//dItYIYW8/xznpvyq8m8mYtb2piddJPneLKxuZ1slzz6zIk/fSwcxex3PEOMWCam+Y4twpdxUDiifMwF1z/FOajmysUHZnIMJp4MNQAYGcpaSpg5bbNvSPZ9DKpgdSFH7EYTgzfan8aZCmqI9G6RM5McUERUj4Wr5jkhAUSM4quCRoiggqOSiamCEIu8FkWBgJRQLIkdKzuyH1GoUihpaLt/j4IptjmAE0zK8MkZTIKrAoGA1Qi65//bJVTJNCMUasp4zyrPkxokrz+7nTlsdjBBFHRNYJ5jdZCVdVZAZVXIdosCe7zFFwOGcDXSUSQtSFDQqDQ3zo32axhHzmu/Ir3HSvc+D/k/wSv5ZZuyz0y3YxS7++Id8n79MJEIVXrr405x179J3T1n3a9Q5UuyJ42hETwc4MSviqIh6wqzj9u07nJ1fMopZuWWqspzltVqG0ULpoTgPTReIQzKORM5GjBBhtV4RUyJL7b14rk4W4DpeeukBs/aA87OeLuyx6geenS5IMRZbNiPMvP/+ezgysV8TczIyfFF5ilknxUkRWC1XfPjRB+RoBHnfOHwIiCQkDfTi8M7x9MNnnKRHDMXmrLiblnxRSksnF56vEJMNztm6YetXU8i2Eay/gxGIQttw5/Ydrs6vSLEna8J7hy+WeSIQgrP+YCGduKLWM6xHBo1WxgRHjpWAk0sv0lmemtRExPOIc0qi2o49d5PoVg5T1jPdZj9LWY9ks/5pWbi8K6pCJff1LnAwO2DdJ1bDAlFbi/bme3Qu4J1yvrxkdMl6aN4jSUpunEpvzhSbspjSpyPgXEP2Ss4j5KpeX2lVOpF0nFqeXYdRdGttnoi/WtUKt99uCkl5ypUqWciVmsRt8crLYOrUw7X6xDlXCEIbZSrnfemx2vpNSuQ8klPcIjgpZQm3PnWl9pb9rYSx2kOugy21PpGtSSarb577zmc7ZtvWxEYq56jWNPb+LA6v1ju1skMLSdH6pP2QJ9LUEDNON34Gdj0y0jRoyb98B3s+0HYZHdc8eu8C50YO9ue8+MoL7B/eIg4NbTsDoZC3IiLCrLX76oUH9/n8G2+wi13s4pMbWSK/c/f/wln3Lj9/+u/xUxd/jf1094e9W7vYxS7+NYfg+HOP/0PePvjHPJ5/7Ye9O7vYxS528S8dP7jdm6tTHBVAKAXdVgtGaiENPN/mr4UlpbCV0kSYJpPVmsvV5uXmFPOm0N34s5eevG7J+0stYm3Op1rIVCKUCFNjwz5z89lgUswbP/JqJ1DAR82lQaGQdWoE1bOwUYLaAgd062SVaeQ8NVcKGCNVjck83U2NIdMPAwFP27aUGSaTt44GGMRhJI4R7z1d25JixKVE17U0PtAPI6rFGiULsU/4mGkbh/Pe9l2U4AUwOeqpieSU2Z6nbTxtI3gHKcIwJOJgdnQ5emIe8Y1MTZyYBpJz+GCEqlEaNAk5RYbRCEfOWeNMpE4UKWhm/+CQVd+ThmigbrG5MwJUsZ8odjc2RaVl4rk2h4qKRVE38E5JsVgHeWdy1RW0qKoL0QBy51rG8vMmZFQMuHAecozgPPtdw+c/9ylCG7laX/H+Rx8gQLd3l7v3XuRoPmcenFn/UICp5+6HzWTYcz+avj/yPb/fxS528UcbN0EFmX6mqsxbIXij6yZtUWlIY+Tpo2dGtCUTdWRMPeuUkNFze/+Qn//5n2a9uObRszO0kiSKxRbZiL0xKSHMmO95kh9Zr0ZmfqTpHAeHHSfnV2QRlsOKuFqY0oUTmjCjzXP20j73PvV53njzsxzNW/7Sn/sz/PPf/zJf+s7IyeKcjGc+76CNXJ1d8Bu/9t/g0siQMmmIpJgY4ogLDhkdKY3kYpVzdbEwiyC1tSK0HicNwyoSnMcF4dXXXuf8o1MW6xFytElkcYwZXCrPN3MFIDSBYRgNkE4ZgiM4j5dETpkRj4ZAiAOrwYjBt+8ds0fDszNT6Wgbsf0TGOKAD0ITOlarAdRPpOFhCU8/OiMEODw+YLXsGXqdpm29N6KYaqZfj8R4Qdc52lYY+kxWV+zeBN94U8Ip6kLOOyM71IYzhT/rFCRN1kE5C4LH+ULYcYEQhP3DPf70n/wVXr71Jv/Nb/wOT598G1Daozv8W3/+z/PRu+/xzvvfRbNDArRdy93ZC/huxrPlFQOX5KG3pnzu8SFwe/8FDvduk2TG+fKcfnVCdgNCJsaeNE1DKy6IXRsKCUeNiCQU8Cg4O151JYfZqJOYQqQARmLSAhShm+8NYBa2CmWMvIBXif35nDJsTtMGgneEJoATYo5kNaLC9fKaGK1p7gA0471Nx+NtclxTAdyc4MRviPFilrZjSpOyk3N1RrwQoJMyJiNWV3BLnBoJPEN02ewoUiYmNSffyr924ILDScapJ9GhLtIGx5ufeYPzkyuePLukkcw4OhZrm8w3ZciEOrPNun3/ZVKY8/Tsgscnzzg9PSfkZ4TYc71YQ0z8yp/9RX7ll/4soofEdEbbmELmuE6GFc6V+3eOcft3+Olf+TP89Iuv/et5QP4rCNlG6W5wam4a525TjL5PRsVztKbvjW1Sijz/zq2N1p/I9i7VfMyeFbkQlKb9KNvcJjdNzCPZbGH64bYa0lZ+WGujahBtPBmZ9vdmJfT9jq/sdt2mSBnLN/CyEpi8EwOCgYl0WBTbyNlUAsngzYpN1E3PgZQS4zgWwM8XFaOMD1IUmGwffCEd2TEZkWmyUvHgRWhnAdQxjqmQiKyGsLqtwm3lvGezpswpY5hizeOZ1BQ2h11t80zpNqeb9V01/9lcE278ZBpkKOdLS76uWm2WijWLk+lWUrX1se5XJZypOFJWW9vE0EbnzNLIOaVthaPjDkS5Wi64vLziRM55t/0WL85/hz+1/Pc40ntVvO7mxb/BqroZN+qJXS2xi118osOhHDcH7LNPr88I7QwR5WJxSRMagg8MeUWKI7HY9x7tHXDvhduE1luOrWalOSnSKHjxJLU+W9s1BDw5ZVbLnpgGZvOGtDBFacTTx7EofduzrfENt/aO2T845oVXXqYJwqsv3+PW0T7fejsz9J4hXpn1VONRTSwvL6mWVbkw88eUgWwk+JynnpgrCnyqaSKzhBCII4Vok7lz9xZpncgxEZfXaCrvL/0mW1fsKeecTIqa1b7YBQGxWiGrGLE8W98oq5JyYrVaMIy99eWC9dlU67CcEppAHG1gURXUWS7PqDStJ8zaUq8kcrLcwHJIy29STPT9QAhGfopFNaeul+LMxlmrulMdbpiIt9tEmZJueylEHMGprasZ+3nXznj99U/x5itv8t13H/Hhw3fJY0K94+VXX2Ov9bz97rvEZAul84HD+TF3Du5ycb3isr8ijks0JURHPMLhwTHHh7fwYcbVsmdxdcGQFyCm4JqKCtB02FvrrR0ARvxxRbE113pp8/viVFv1mabvhz7PPmeLQKyUYU9bh4P3xcLaVICcCM5bcpRrfaJCjLGooFLyt01PsCp5TvtIGZTc2o1KisqTRZ3dfxSi0UTOgmJb6BBv19rlooCrudjz5YmgVfNPcXYuHULOnkzCSWb/YJ/gPeP5FaKKFyEn+x6Jq0pcpvI0m3XM5nus1gMfPHpE36/pV0uCRCNjZdg7mPOp116j8zPWw4CmAe+VOCqaBbyyf7DHwcEtwv4x7B38iz3kdrGLXfzRhcBbh/9f3j74NX5z9X/mP3jn/87d4TM/7L3axS528a859tNd9uNOQW0Xu9jFj0b8oezerAaTIvkvPN8DrYWWc5te7/fdRrHh2sYMnKMoFFXrtu99L1Tv8drCrgpN5XdVdUkhpjRNVVWCElBILBVJoJBXrNgU563BoJXmtA1aZFIqRKjyWUmNSFMJShs/cyug3dbf7aOzKQV4b5NBubKlynuc2cDhhG7W0M1afPB4hBgHUsxoUjSm6T1ZM4MOk/VZjCPqMzlG1ikRQqBpGjTDMERA6ZyjCkWFdkaSSIxWxDcxE4Jn3Q/kmU0kEzKHB/usV4nFdV88ymFM1oj3jTf7AjdDcyTnSI7QDxHnrHEw35uBKuMYrXGgQhO8Ne8Rlqu1NbEKEcmaHqX9L76oWNnEkSv3ViV72eRSNgs+74hjJjsIoV4be6/JVSuUae0QrEGUY0JcYNBIAlwIaA40XpnNIbSJ0K05W3zEuIAPPzrh+nrFQRs4zD2L5op5aGh8S6hA6uaWvXEL19n9aeppqxG1/XXZwQu72MUPP7YbqWBWWq6QK7P3zI/n9Itn4Ec+9enX+Pa3r7m8vqZPIxnl1r27/IVf+TMk1nzwzjv0y0v69ZohmTJh4xpTABKh7VrmBy3zeWA5CBdnK65OLwne1iJJQirWoboZKUa88rM//XP88s/9SY5euE+z36Jp4M7Lx7x68WlOTyOtW/LNt38fx4iTQHIDuV8z9pEs9lxM2ZkyTUok7W1SNCV8IdKu10vIyTQVW8XRMKZI8pEmwNELe3zhzVf5+rff5oOHj8hjT8qJnBxxNTBrgikTplgwcqFtW/rVipQjrZiUf1RYryOxjzAqfrRr8PiDj9FhZIxGahJ1pCEV0pDSzebElE3po1p34W0N9J6mc+CUbjYjp571OhqBtazfcUwFwDDiTRoTDpvazgVod84mjI3fomRNBq7nbFYPilm6laa8eIdrwKnHKcyDZ4gJmob9oyN+6Vf+Av+Tv/Y36dfwpQ8ecnb1EBKExuFC4io+47pfE0IHbuDVT73Bv/Pn/iov3H6Zv/ePf5NvfudrnJ09Io0LZpp49cVX+St//W9x9949Umz45lff59d//Z/y8fk7wJIcjeyMORDhGrMGybkqVVKIwN5IxQKprMe52iCRcMGUCnP5nU2HOyMzYeQlTYbYayrkpxRJKRfbVbOA06KMGBrLE6TauWbLoWIey2R1zdkUh5EUnDg0GRCUxkzM0XIRWvt8KKCUWVxtSOl+IlaoFosvTUiGQKDtWkIzQ6Ql9omYrg2o0kwi4dWUkXCOFqFpA4cHB8h4wNmiJ+VrVEdOTs+JqzWtH3nt3n3OFmseny5IcaRxdp+J9xwdtnzmtXuk/oov/dZX+fXf/W1i7vFjJDRKCJ6ma/iZn/1pbs/3GJYDp08+hnxG12TyYA+n4zstf+mv/iWie5nf/fZTxtTxZz795r/W5+O/aGxrGFXyyOaXxfpNNnk68H1s1Qqlp5BJJn5Q2dT3kE23STzTzzeAYd1UriSVad+2SUXPbXvrx5u6ZevYil3l99RCwkQeEjbkmyLZ8737v3WE25ZzVX2sKvro1j5Nho3O0bShfHfL79TUk7x3N45FKd/zcu6zGABebSythrGBlZyzKUVIBeYgFDvlSsDNMdE0gZgSKY1GQhSlaTzOe/r1YKRB5xljKoMVzp6bEqwWyImoNnBQrSCbrlg1pmG6nr6A7CgM47jhGzHxjp67gDLl5BXsrpdpstfbzuFFivXn1n1U3r9t/VbTelOYM6JqrlWBK8MPjHz85GMy0PcJwdEGI5edxHd5e/5P+ZnlX6HRMNGpti7ezRukXu+bt/WuntjFLj6Bsf29TBL5ztE/4LR7l6SQXWboF6z6S0IXCINjjALOyPDee+6/dI/DWctHjx6T1VSta7+kaVrSGEmaaIJjvtfRto6sjn5IXF8v8S7bAFfMJQ8sQ3fZLDwV5fDggM9+9vPMuxYNjmGM1rtqW24d3KY7vsPT049YrC5pG0/MA2McrT7Rat1ptImcIBIBI4yLKnghjQlV66tVhbpxTIWMlRjSyGuvv8z5yTnXfU9mMKISptrti4VXTplcnufWM9p6JjvLEVLKRR3JM2/KEF+Eq4trs8YTyGnTuFSF4IPlrYWwYkuzo3F+IkVNxHjnivJVVUavZC1bg2Pp2U33wETWohBTNk/52o+kkF9zIfBUOrSUgQknpnLjFcacadqWveNbvPHpT3M032d+2OIbD9qCZJ4+fYww0A8rIxOT2T/a4ws/9QXuHd/nydNT3nvnfU7PMoP2uJyZz2b8zM/+FHfu3sOLp19F3vr2+7z94TukFKe7WTCFwDoUOg1o2qmYXsP0OylEIeuXuSBbylj18EsOqJtzpFpzJTtbeeIASymHrbFpdq3lfBYrNPt3I3GkYAQxqYQqKfeoqf3W/q8Usnd9k/Ub6zWqeZ+UBVi2bKJzuV8cXdvhfUvfJ8bYG+la7bOrTTfiS2/VcXCwT9sccH05shgWwMjF5RXB2UDI8eEBznmenV8Tc0TIkxKVD3DneJ80XHPy5JpHH3zM9Wo5EbtcGSw5vHVccrORq+sLcrzGu0hwQhIhNPDqGy/z0oM3ee/jS77+7Q/gZ/7wz7td7GIXf/Shknk4/z1+7cH/kb/24X9C0J1d4y528aMagyz5u6/8b3nn4B//sHdlF7vYxS7+lcQPTFLKmH+5Zi0qMZvubZ1gmpr0epOws4mtKdaqULHVOX7+zzfUhra2M6kAsPUZW59nTenn27RsmvgYeFDt3UxSd0N48c6RoiLFSCZvfVY5vGKDcGPTRUlqc1yTErJU6xF7gy82Jio2RbMBCA0sbJsG7wL9eiBns1BDE1kHZntHzLqWuF5jGEGya+LrORhIfqMWNWoip4Q4U3Hq+95UiYp6gpPWZKO9Aa1DP2CFuuPifMV8r6NrWmsiSSIzcni4x+225cmTC1KGxgneQ44GYooLpiRBwgl0XYP3wjhGwGxdKGCmFLCj74cJ7PRT0V8m40rBT/WCRxExG4Ub1yArMWWCL0pJ2RSbbCq6qDI5sSkhtpobCQgOdfYau4HNJkZ1Br7h2fk17/3676AqhKbj7t27iGaG9Zqrs0vmXUdOmaP9OZt+xlbDoiosbdHrVL+f4ckudrGLT1pswEt7XKzWC86XS56dfUxcnXF2/Zh4AcO4Zm++V6YnB8Qv6Y7XvPXWe4xxxXzuuLru2O8ams7js+f6+ozglRdePObW7X2UiO8a+nViuTC5/n4ZkWTAsjizEnBSLbeUo5cecPeNV5iJslpFLlYDt253vPbSAw5/aUZoIsvxKS8+OCRr5Dvvf5fz80x2Gc0Jh2fmIdGQNSIpMfaRNCZmXTCljdHUKYYh0g+JxrdcXy6RAEP2vPTpn6KLK04ur4lDJqdYFBMhxUhyjjQUxcJoE+DOQ/BCCEKKRXlJHTpEbh8dcvvWy8x04Mvfepv1Itr7SGgW8mhTqYLDu4aUII4Z1JGJBBdo3CFvvvkaj55+zNniGpypNcaYGdYjPjjE2WS1JLFJ3JRZDRGHmPJfBceDBxzqt5BrrTmHkV7qdobRGuOuVZpQFA1xxCToENGUuPz/sfdfwbYlZ54f9svMZbY55vp7q+qWBwq+ATTaN6a7p2eGHCeFgmKQIz4oJAYV0oPEUOiFetODFMGg+KKRRnqSoYYRpBgTtDPTbPbMdA/aAd0NoAEUgEJ5d/3xZ7tlMvPTw5e59j630DNoNkyb/VXUPedss1Yul/mZ//f/i+dg+Qhqz9mD++AfUteRvZ2rnM/m/Nf/+Ffp/JLCFJTOYErDX/mbf4mnnn6Kw0fnvPSRJ2B1yteW5yxiT10U/MTPfJqXPvkcVy7dZGIsLzxxg3v33ubga3fouogRQ1GUxD7iV57QJzmtBLzLHcQxiha7DHrMEgfAd1UV1KMiyX0Y+j5grVMmSJu6vK3BmWLohBY0GU9U9isrhrZt1d9yTiVYe5/2o0l0Uke72WCYzBITXnxiV1RmxiyHYEhSchvfV8CEjsNaS1GUAyhYG/21SGEFKmP5yIvP8tIzL3Ln/RO+8+Y7+EbovdFCWJFQBjYVFOrApz/3PJ/59I/z/hszfuf3v8H5+ZzeR+4/OKQ2BUVtcFWBnwVUak69SlOon9RLz1e++Pu86l7m7t1T5ofnnCwXRPHEoF3Y5WTE3Hveun+Hw0dnPDx5C+MW1BX4vgQHTz97m5c+9iFWZ1O+9gdv8J984Q/4uf/T/+6HMT3+sU2QtbxZ8pEuYC42HTuTClMJbTI8feZ7AGM83vCQuuWFi9vP27wQMQzxwsaO1o/95mg3mI9yRS0V5JLsSP6MZFCMGL1h8/E8Fj9tjtuQYh5ZsyytJbTXHf/D8Zv16csFT9/7gd2iKBzGQN95itJSFI7Yr7eTSJgQE1WiegP9IhiCX8db3vthDrS5yJcY7IokExmSVE/XR7zvqcqCrvfKaCDCqBpRlAWz2UqlN1H5Hu+14YUskUlMjHb6jIcQhkKismvImslBNrE8Ruc20fl8fdVkKG7qXzKcvCF+Tec4GjDapTL8L0nTRWONdHYMyvBa2IHFKsbE9hAFEYdgmC1Wyg4nym413Zki0dP3HQi8Nf4SFI5P+b9B+UeF6Xm4w+0qGk981yafrW1taz9qG55VRTfyaPQq71Vfpe8aFssly3ZJ8C3ORmbzM9qmxVmHcxVd3xFjZNUc42NJ26+oKkNfVdhgsAVDbkMkUFc19ahkYIJLcvRdp+yl1hqCZ/ChIU2FztJJpLMwdgYbBfHKSD2pLM8+fQ2MFkV245idnQlHx4ecnJ4oGEgCgmFUldje0ib/KsS4zhGZxHyd1sPQquRn34XU+OcQO6KY7HD27h1C74lR53tnEmWPUTbPtbSW4H1Q1qIE3PVeAT0xQGEN9WiH65cu8f7dOyyaVud6SACOOKwBBk05iVEG9MyeU7iKy/tXAM/h8YkymCegVEhMTw6b8j1WGzxIcqn5v8SyaBOoJDAsVGlNZ8jXxcEXyEAro8yvJq3VBmIMRBGamaePgaPzI8JqyfnxfYw07OyMkBiZz+cqV0tUsEsM7O/vILbn1bdfZ1SPefb2E3TditN5oLBw/fo1bBERJ1SFpSpK9q+MKQ8cYZnX+gTEDoLvdI00iWlUJPsgKf8Wh7ts/UQYPabNZk7EYlxmRtS4YW0Z1JPv9TgA0Uxez0XB1jHnkNP9/d0AxuS4Le1iYFvPbo46bfr9uOk5mqFJNe93k80dNL947eplnr79JKtZx3t3HtB3Sf+bxOia2Ft1LY9cvnmFF55/hr4R3nz9DvRBpcZ91FythdlyBaLgPlL+2qSmziCRd96+w8M7BxjnCJ0Q+kAXOlSGL+Ksoel7Hh6eMp8tWcyXeFpcAa60SHSMRiX1eITv5xR+yfmjo3/J7La1rW3tT5UZ+PLV/y9V3OFfvfd/pJTxj3pEW9va1n4A9sr+P+TLV/8/Salha1vb2tb+7Nv3DFKSqJ0fJieshSHhm4O5daI6U/avTYM++cBr6+3n5H76ewOglIPBC0ClHDeuI8nUJTNU3LhQdkjBpWR5MKOjdM5d6K7RLv7MtoQmS9hIWosCZmRTrUI0kbG5T1kPEIMWxxTkFem6DowWaawxOJuoudEAsus6uq7ThIcx2FFNXZfE4FmtVqn7WUstek00CRLoiMZRmmJdPA2BLhX0UsZfGQ4AI4a67qBQCYK6LqmmNYvFir7zxN5xftpQ1QFnoOt6RvWIejTGFZbRuMRHQWJH33oQgykKfCdIUCajcV0AkRg9xgjWQegzY1K6PDHfUinoT+c0igbwNnVIixGVm0CTcHpf2HSd9Pzb1IUdkjyfFlvsBjhN2S0AgjdEY4mxp8DgakeBkM4kdRnxvaNZBU7bjhiFUiyx7pg7gy8KLpcTrImcHB7R7+0zriuK0ul53ry/de8IWtAICZhWujXz0ra0sLWt/SmzXARMiczjszkH58e07SkHR/c5PD7i2pUdfIycnc7o+56nnn6Ks7MTzs4DoVnx21/6fQ5OZ+yXI0bTCe60ZbJT0vWBZtniu0C0gWbVMisMkYCEgO8W9F2gbzzjuqQrvMrJhEBVjiisIyAYW/Hu+/d56qlHPLW/y6Qcc2lvh9rAzf2Ka/vXuHdyRrFzmcPVir0rU3Z3L3NyPkOcsuFdfeIaH3v6eX7vD77O+eJMJQJipCgKbOmIeJVs8MpQ1PWBJnYUhaGsShYNvPLq25R+yfJ8RgwtfZLomtRjyqpUxp6NYnznA0WEsqzofQAR+rajcBV4w2y+wpU9S7+g8R19CJg+ggSKWhk5oggSAxTgjVcmDynoeoN1JUJJqCpOVi2LRYcxgaoqCd5rt6wIRWUVeGMqfIw0bZtq1QokMCakpLMoa49PEhZKzadrsVXmJYxlNK6UHXDW4TvFpQQTCEQW4sF4qr4g9vDea+/wj/7RP+X919/m3t13kNhyefcSZWhwsWbZFqy6DkJH7Dt+69d/i19b/iaUV/hf/9v/c/bHU15/8IDJqOLDt28wcgV37r1FiD2Xpjs8nB3QFwume7uYc0/bzjAuMrYVq1VD3wRwRiXLUvHIiNGiS6dd69alioMxhBjpPUjTqqfnjXbkF4rdyaA0K25I6JucRCcVFETZptSHtIQgeK8+gvp4LtUuUie6ScWHKEk+Lw4+W5SYZEpIYKZcYIqDZIfBJllYBYjbVIHyMRL6SBEjNgHJrly/zKd+4uPUFJy89h7L2OBFsLZQXwSPdepHSgQZTXD7V3jv4X3uHRwgzDHocUgEbwv6NvCdt+7QpWINFsSWyqJm4Oy055/+068xKh31pKKSMTH0NF1L7yOlNezuTgjB8Rtf+Arvvf82wRuoLddu7WNOLM1qzsMHx/zKr/4aN6/cYH/ccFD98KbJP7YNYB24gBLiu/hBa1f6j7A/4o1NsEbqIvgAEOmxfQzFr82GhvR+jjPWjE4JIJN80Aw22tz/IBtNerZs5kPIx5R//+Co5OInHzu0dTwSQ1iHTib5xANLpyTgvR6JxRCDMhkZJ3jvB+BUXucw+lwRUlE10z0kwFNMcm4ZWOWlJ5XAads8l+izVriKvuu1QSEqE2AT+iGeq6oKwdB1nqKwVLUyUkTvMcZhjAJKJaosZ1kWQ8NHWRZYG+m7BJTKFzeuz+uaIUkbFTLzVr5MKt2Wrrdk9coNIFs+n4kZQhk6FLC0KcmXz5mJBmOVgVDE4AzKGhKDssSFlrjqk/9vUpOEsFwsKK1jujOiLBxd2/DO6ItUVcEL3U8zCZeJ6Tkxw/2iwCzFgMkwT//L4wn5l35ia1vb2vfXHp/Fg+14s/oih+fnhNgSwoqz87Pkd+u8B4a6rqhGFSenJyCGw8NzfAyU1lGWBX0M6dm3CfhjQAx9H1nMV8N8F7yCwIOPOGtxLhIKQ/RC4RzTnV1WyyVFXVKaiuPDU/x0wjiDnVBwQ105uhjxwfDo4TmmPmUyKggxryOGejLi+eef4cH7Dzk8PiFGnaNd4bDOkGAlA4glIoROwVRFWdB3gdnJCa/3Pc18iYiOPQrYGCkrbVKLKYcmRhKoJzFURl2jfPAqMyolXYz0yyWrZcOqaZEE2gpBG+dsyoZKRuka9U91vlUgV4yB4/NT+tDT9z1GIkWRQC5kCTIFYo1HNcHHxOi+Xjs274YQwgCyyv5xnpUzsLUsCybTEct5S9+HBJ7KROzK8lpYixFH7SacHZxx/+weJ2cnhNAro1bhqPYm+GhYrjrariUGuPPeA+7fOQJb8+Of+xyXpmPKu2P2RLh+eZerV65wdnLGsmkY12OiCAcn96lGFdbs064W9LGhcg7fdcpKFeOQy8uNmwJISCAeK+m8pjMboetDCjFsWr83gEF5HR4cxE1nTe93dU3WfkpuaMhnNoOQBjduuFNTQ+PGU7qJNcdkH0IbYmC95Ovv6hOpzGFq5s1y0FbZZk1paGPDw5MTFl1LMJo8z42vJh8ThiiO2azj1dfeRXyk7T0WleDOYCTE0LTKQhZRUl8BrNEmmiiB5SKwkiWmECpXAZp/j1H9kmpUcmlvn8ODYx49ekQMgi0LrlzdY7nsOJ/NaJqeb33zdS5d2mE63mUy/WMIL2xta1v7U2FiAr97/f8OCD99+L/kavsi66rDB20rE721rf3ZstbO+Z0bf28LUNra1rb258q+56gjJ23NZrCY3zEMjDGpRyi/dRFcZPJ2YBNwBMqeIxvyXbD53fjdGqIvJP/XFMmCiN3oTHaY1G2Sx5C3rR2wqVs3d9bImqLZmpykV3DPRcaoDMbSjeq414nx9fHlREpq8U2fs7nbSETZHFDZlSzDYI1Ngbyl7zzWGnb2x5QlLBZLfNTkhiZFtNHISGKSSOxLFps6ewNBAkWhga7vezKT1PHJCdV4RFVZpc+uSsb1BN8ukBiIXmhCpwkbYzGm4uhwDiYy3am4eXXK2fGc0+OVdk6nyN4VjspZqtLR9T1d1zEa1ezv73N2MsPHiDFu6KYzw/FqoUBS0SOkbjLrDLlNuigKQlRZH+fy+dZrEXy+C2XYDimBZYxRCRtJRUxjtTvaqTwgXrvtbKkJt67rMBEW53PA4YoKMzI4I3RtYBRHuOC4fuky5/MFsY80TUddjIkSaX3apzX4GOn7SNeptJ51lr3dMcVwYz4mCfJHFey2AcTWtvaDtU0GjcffMgZTjBhXO9jjyGq54t35nKoqubR3jYU5xTkoa0eUQIjCe3cOsSIsysgyCo1vscFAdFy9eo22nfDo+CHzec/5YoWxQdUtUcmGYLVTtRwVrEKHxfCJT3wCZwzH56d86pOf5fbNF2hWHV9++w2evnWN8/aMp29d5/qVq1gctS2o/JRvvvI6ZmeBjR3zZomNgaoa87Ef/yhx1kNhMNYR+sDOZKpsGlbwvsekgmgffQJPFIwmFT6Ab1e89ntforAFEjrNSKcu09B3lK7EYnCFxYrQ+R5B8FHwvbLn+C7Qxp5xCZiajo7T998itCtlZSqUzj94gdpgXSoKGy3klGUJIrq+OYPEwGz2gC9/+T5dEEoLdVUoAMf7JAUhhOC5NJkyLkZgKo5OTmn7lSaewzrpHTtlcDK2UCkiI6m7WTtnTSpqfPxTH6G0lpe/+jqrzuualpLc4iO2LBnVjuLqFf7Hf+tvc2t8iW/93tc5OV0wmVasmo4Pf/Ql6v0ppg38zu9+g4OjB3gfefn332QynvLxn3iO4+NHvP7Oa+yNJvyNv/2LPPnUkxwdLfjn/+1vcXD+31FMpzSLI4qy4Gd+6Wc5fXDCt775FbANrl/Rx56uCcSQVswiSazmjtxelKHIGazLrCBpjQ16LWPyVXQRz8WYtJ47p0WjGIjB4wpd7bIUlEhin4p6HtWXTCyWVqvxZui6V9kpR6G+k3PpicwslUDqenfOKTBDtBgSM5CDiDEKcgMGf9YalfATazien/La+6+zayoeHj4ghBWmsFS2IBIJsYAQMEnAKZx3fO23v05dVwQv+C6iUCajDJgYBWdESwgdhYk4Y3FFRVU5Wg+2147vxrd0faCsIkURqa2yV1blmCdvXuOVb7zMO2/fZ3Z+ios1z3zoOh999ll+/2uvsVpEjg8W/PZvfpMnn73GM7ee4eatyQ9qhvy+2ncnfkkvbhajvvsnUnHQDHJX6oFu+FWbm9uIRb77YDIIZP0zF7PI2zUygFY2B78GMw14pgGork0LaRs2A342x7vG1mgok5iSzIA1Gk6H+ssbfFBmAxwlKGYqxyAx7dsYbHqeJBVmq8JRV47FslWwp6x3NsjPRJW1dpktYON82EHXex35tV2HDU7n1iiYyuJcQSxAfKTv+6GHxRiD7yNd43HOMJ6qxHXXWpaLLhX+ks+e5oHMnJSLkM4VBBtVCi5fVLuOw0jAQEMuhqdzmwBGRjJbK4lJavMIFawpRob7QvFaa1DawFwkw42ab7ThRtDitmixOqLzj+g6S5GuC5ZxOWFUVOxMprR9TwiBdye/x8Hey4yaa7StxoGFc0nOXHCh5MPzv8ae3KR2dr1vw3d5Yh6/7eUDr2xta1v7PtsmJnBgdoHD0essxw/Zr6Z4RixnHiMK2Agxsr+/T980NM2KXnxihVQgjgR9dpu2IwSVSHPWMhlN2bt2jfsP7hOjsFp1iImYBKZ3hcUlqbCQEBuRwO7+HrvTXSR6nnr2eW5cugbWsVismM2XPDxY4Bw8ffvJ1FhnuH75CmeHZywWx5wuevrYgwRKVzLaqTlfzZmvljo/Rouz4BJASfNca6BlZsx0zir6RiJhteJ82WiTms1rmLK5h96rZLBR/zREUT885QKzTxsCOIFgFAgVu5XmghLrXgYOZYIfq/8kGVWna1RU9iGMwXcdvmkICcfkEmt5lhNOWHoF+kfPeDJhteoGNsG0tOs1TOc/N9ipD5ByWRvryWg84onbt7j3zn2VN7UKNsYoexOirH1U8OyLt/nYMy/yyrdfV2YrEaxxuHrMZG/C/t4O7791h4PjBkGIbaSoHdeuX2E1X3Bw/30s8Nztp7h58zLzVc/pw2MOj+/RR23fG1WGFz/6CcblhHfefIOz8xMsypJI1OtDAiMN+VJZr93OOvVDcs5LgGgGFtZ83Bf9wvX50AaAmCTvrIKHDCS6yfSZ/Gv24tK/xqzX+OzDwQXfhs3XSSBt2RhCuoi5QSK3QObMeJYpFsDHwOn5OcZElosFRI81kphYIUipfhLa+OKAdrYgNAVClkdU58Nae2EO0WHGdA85ysopE6U3kBtvA/SxxyZWKosg1jCdjjk+OOT8fEnnO+gNZbCY3QoTWyQ1jLRLz1GYES8b6morF7W1rf1ZNDGB37n+9/jy1f+IJ1Y/hpEPgpSquMPfuPfvc6P52BaotLWt/RkxQfjO3j/m7uQrP+qhbG1rW9va99W+99aITOmroVNyYtaOTqabJXVFJfIbMtWvBmIMyV6TAEEaf+VkrrDRpswauLEOUDcBQI+JHKTxpABxE/GRO6CNMiNtjjvrdJvNYHUALJlUsFaGqMFtS8lyiZvFAVExdSOEtJ2IwYomtrUbRo/E5R4a0Q6f3ve40imrU9QWfWOFojCMxiUxKq2yb1smV/dYVB0qDaeDCTFLqKG68KL7NqUW32wplMbhnMX7MATzIXXgNrKiWQpt09J1nvF4xGhaUY6E48OW2Amu0G612dkcorC7U7O3P6Ua1Uz2oekEv+qREBnVJQFwtqTrOi1MY2lWHZllwBgFgdkil2hSJ1oUTQAlOu8hiRSUASEYwdiYipAp2YRVFgUsIXistxgrWnxMBVaVmlFNmEDAYiitwzqn7EuaaUKsSuFJhF6UucTZgq7vKNO4XOEx0fDC7Re4eusy4/1dJpcvMTuZYS146Tk4m/Hg4RGjolQWlN7TR8t0NGVnOmI0Lgf5xPXtmMtO2oq1DhPyvbwVh9va1n5Ypv2gDAVjYwyX9yaUE1j2hspk9jbD3rWrXLm0y8P793nw6AhbQdc0g/pMVdYEK4jviSFyfrKkLipe+rFnuXfnDscnj2ibFV3ocFZwAjihKAt2RhVd3+OsI7aean+Pk+WSswf3mF69xIsf/ji3r10jCHRP3OTo+Jx3X3vA/s4e165AsJHLl/b4sU9/iOOzu9x9pCAcbGQ8GlGNLd954zVO75yyalqiUUY6H7QoKkGZ8fqgIB3fqSyCt4GuDTx55QoP2p7jWUdwHje22Ggw4vB9oO91hh+Na5wVIhZpA4URisLR9Qm0hcVKie8NEgJ93+MHiQcteouxmmiVCKaksJam7/ESKa2DGDAmUBotVPgQFFBD1DUAlNnDe5SRBwiWk9M57aRjOt0nBA/RpmJ+IPpINAFXWorKDQWEmBlKjBkS4sEH7j66z7SqKa1gJ2PKcgIBzlbnBGkV+BuFqfGMdqaM6glP3LjBnaMjhMh80fDlb32H5z/5LHbZserO8CjIZ6+q+IW/+svcvv0i/+i/+BU+9NKz/PLP/QzWw5e+9EUeHPY8etRyeLBkGQ4pRkt+6hd/ms/+7Ce49/pb3L//Tc5Ol5ytVgqksS6xGwUKFOwVBfo+QKXScM4WqagiQ0LeJqnaIAFjnEpwBDtI10Kk94EYIpgEKEhSA2sguhaqtOigwCWGZy6mbSkFUgyCReXdos0AAHVl8nVVuiQ7dOfro6sFE/VHHVmWT/0PqyC1AduggLlv/eE7FDHgVwpsM1WJs466nDJbQdeuMNIj9Bgr9KuG0PskhawbKwoFaUkMYLWAVUoaf1FQlxWjcY2fr1APWAHNJkZCtySEAiNCYQ1FrWDy2Vv3ma0WCpTrI++++R5n9w5YRvXNTfCYUHF2suKoPubJa7d+IPPi98MudMUP/v2Gx5OBN6lrfnCzzWMhQt5e8uOHIEM/zYW/NhoHEpJuYws5pth8bc28tFmfgizZso5dNrehm388ybs+vkG2beOtPLShPpbZfS58f/0dk2IcSQCX/MEIQwHPYFVRLsU+zllc4VJhE4IPQEFRFHT0A8AQ2QDMyxrYNFyyVOTO50NBguuzE8QTEKIPeB9U7rkwFFVJmHliGHBECn7FYI2jcAWZ8bUoC6LX+dWmArX69yrhbBNrSN/1qQEhsV64dI7jOjqMQootc/FQFCREYnYwidkVXZvyR3PoqaQa+ks0JgEozUDoIHEtYZQcBb0HgnoQktYHSUxL1li8BJyA9UYlVy3s7u0y2ZsSgPHulNViScCz6M941D+i7ToKV+C8VekcV1CPa+y04SfO/qfYWA6AtIu2jp//xa9tbWtb+/6bXPgtz0J3J19FrGBiTwj98DljoSgKxMB8vqBtuiTLHNWHMvo+zibAtEp3BmPYGUHTLHU9jEHBMWgTYCQiXiid0zXIGv1+jCyaFWdn54BnuWyob1ZgDONylxAix+dW5zljEBMQsYx3Rly+tkPz8IyubbBGKMqKojAszmecHZ0TOhUzMxaiBExMAM/MuhT1dyMKyOijMB3tsFMJB6fnChgqEuu5sYOkWggKQLfODkAXm0ErMeCRlBMyqJseIYPjjcYvNg1s3RzncNbhO0+QSJmyoznTOTAKor6i5hkVWrSWigNEGQOXbUvnFUCbwTeSmNrJ2zPJjxUZ/NYsC5thyLPZjLfebDF9pK5rynpM7Uacz2aE0IAJhKDHfnwy43B/wf6lS0xOTukWnlXTMJsvcGeO8bhkOVsRYo+xlspaXnj+KZ548jlef/UNdi9NeOn525ydzPjWt18jYnFuTOnG+G5JWZcUhaUPLX2zJEqHM8Jq1Siru9X8puZbUwOmUek6zb2awe9W/8WktVjvx+DDGjAkKBgv5Yi1sSFuPEdmfYHSFwYSpsGHWUuyDhtlk3mJtW+zkQPe9Ps2G2fVt8sxUMoKbyylRnLewAyuaLP0PFidYtURoXR6Y+1Np3TeMl+uiFGffzHqG3qf2S91nBqvOHIDJlYzhCI2AeFNYtbK/qMdjl0kElKQk/mbZvOFMun2KhVoxNH2PcfH50CBMQWGFotez64N7O/UbG1rW/szakZo3Yx3dn7nj/zIafU+/84bv8qOv/FDHNjWtra1/74mRH7/2v+LaPyPeihb29rWtvZ9te8dpBQ3Ev5mI6IjAYeG7HnqJrEpThKrXc4ig9ybQTDOpqBTA7dI1uneKEik7EOW9NrcX7acVM/fG0BRokw9eTvWrsFLQwNwkgzLHceb27WCdrqCgluSjIkZdppopslSY7ApGzck+RMbkySJhLwBEUOMQRMpwaRxKUtQWRnKylEUykTQdS2FNXhvWCw8VT3GFT0xKEsTAt77xM5k05AjJmgCxFinyXLRsfZ9TgSkLrBGwAjRe3zbEfemTKY19chRVTVES4wdQQQxISUpAudnK7oAi8UCZy2UjhAhEClKR/DaHWdswFqr1ORdYnQqjHYFV46iKOlaT9v2GnRHwUhQpoaUFDACOIv3niipa03AFJoQsTazZaVOtIgygASwErEGCmMJqUAlxmBCwKKSetpRbYlOE2HeB4xJEnw2Y9AiNoIL2slsdgx2f8Tdk2P2Lk85Wp5wvDomNCvOzleMxxOu3XgCMZYKw+X9CeW45NKkxhiLH9q9NpjHJEEAN2kBNgpAW9va1n4YpoXdgSHQQC+B82bJ/aM36GJPJGCdJv662TnffPs9FqdLutjTLztlZjNG5R8LlbCKoSX6QNt7RrsFf/i1r7BYzBlNCkqEMOsxwVHVJb30FK5QlgsLfddhes/s8JR28SZdu6ReLZkdPsJeu4QxJaaK3HxizC9d+Rw7owm9n7HoGu6frJjc3OPSzTEPjy3RCzvjPeq6pG1nPHrlAculhyJQOF2bFNNZqBQXukYYYzGuoBChaTpsrCjdLoZTqipSjw0dQecxr+uqGAhBiFGlHGLbU5cl1lZ0fasAFTEqWdoLOENlHU6cArvEIxIUaFtXYAJ1VXPt1i0W5wv64zOkj5iqR0JP9AFjLUXpcEWhY49JGk4iQqAs7QD+FQzBw2zWMTs/zE3TmhA2WoAvbIWzlhi0m92gfoXKDwmhW0t83X39AZW17Fya8vFPfYyf/dzP8+idA371N77AaXyoEhFmwu7oCbowZufmTV566XlevfMOh+dHzBanxAiHB4cIQaWOBOpizNMvXONf/eWf5Iu/9W3absVnP/spnr71BP/wH/0ajw5P+Us/+8scn7d88yvf5L2j9/Bxzjf/4GVe+dYruAClGELXKQDGGagd1hZDJcYWNjFeJZ8hnYvCWj13UYE2zrnE8KgMKyEEldYwNnW4Z+SFbtg5AXIxX4sVkta/mBgCFPyxlsUiFQBiUBBBNAAeK+vilBaPUjEq+XcqYZUAChlAIevt5c7umLrvwVLgBhhIs+qxIjgEMY4iBj7x0jN87tM/wa/91rd55877awktY0Acvo+p3pR8TxRoF6IfJKSsWAVBG0PTNITQY8Tp+AUFSwiIGELocVJQmILV0vP+ew+pXYnxBsERKuHK7as8e+UpvvPaIwJnWGuZ1Jabe5f40HMv8rnPfe6HMlP+97IPNBHA2sdJBR55zOcxGRSkHzUb3zGJMSvHDMIm4Gf9/XVHwhr0o3glc9HDGu7ffE03g5N1NUg24EgXACIbY//uUBAzFCQHZqGNfRsSIGt9wrj4lwzv5/1mZlnRgEoLsU7lpHMnfQiRGLQJwoqha4OykplUJE9F8BizjOW6YDicIFHm1oGBdqO4J8IQKwaJSOwgRsqqBNNjraUqC/q+I0QZjrv3gcWiwTYuQYUyg5qyt1mn1zfvB2tUskjAuTjEgcbq3BSD0PUeiYah0cStr6mg8aHKH62virUbjEwm/56/k4rIKdSwuXqdC4SJrdWkOSazv6okm84PQQIxSbtIFHDgjErYeePpQs9q1VLWBcvFCn/uER/wnRaop/tTTOGoReW5xQqtPeS9+Nt8+PyvrcfOZtRw4QG48Np3vze3trWtfd/MfPDXefmQ0+Iuy65l1ZzT9CuMjwloo4m584NjukblOEOvPpA2f+k8oribOOR1itLSdg1nqwZXWHZ2x6xWLV2rAHdJ/ldMLDA+KBOPBOhWnTJni9DOlPHF2ILee3q/4vKlCZaCtluxXJ5zumiod/eodhz2UEGxdTWmrmqadkFsIl0XiAScuziHKtBU1+BNKdHoNa+zWLZYE9WHL4zO1RGij0MuT9ea5Eum/I5zFT70aYm3mh9TQlesU6ZwjLJWIjp/m8T26azh+o1reB85OTwjRE8MAWu0UUGioXC6HZtk5/J6NIyJlG9MfqZE8BuyYwrESXeBKOhWZO37gm7foPKgKi+mTSLdoqcoDVevX+bjH/sEI1vzh3/4Mg+PHhJDxNqS/UuXeeG5DzHd2yP2rYJ5LSy7ToHLfU+7WKknIWAooCjY2RtxcvCA2fyMYlziDXjrGe2MeebJ24wmuzx6cML7d95n1pyzmi957eVXMM4wKisMUDiLNRm0lda35KQJknz0lHcl4pzFGE0/Z9B0bl7MdiEmsCblk3XNtrmplQwqSpJubDA0sc7pboKO087StVuDkjYf0iwDl9f8PL5sF9zBfL3ZVAGwG65iytOmcYn37O2N+cynP8q9++e88e49ui4Aa1nefB51DDmWyWxdaz8Zk58Foe99YoU1Kde+bive9K1FwPfK3mSx6vNZGO3UPPHETY4enrNsl/qMFIb9vQnXr93gqaeeYmtb29qfX3s0+ha/fvPf52/f/Q+xf4zy4Na2trUfjT0Yv8zdyVd/1MPY2ta2trXvu/2xQUoDa4BZg3KM1W53STrwazm0dVbbGJMCeQCV6zBWMAOFtaSOkY2Chck5cJUByUFsDiyBIUC70CWdfoqEdbCYXx2AT6mLlovvrbt4tHhmHZrcEE00k8aSTsXF7xk2jn+dkFLWBxnGHVMRaw0U0g58EcEHn5iQAl0PVVFTVyXWeGIQFrMON3LE4JNUmmOQnTEWB4mBwKTiH0PXXFkWSmNdaDKlKFRurW8DoN3JwQuzsyVt09P1HePRmCduX+Lg8JizUw9OiAT6rlcd+aMZk52KvWnNovf0Xuh9xHmlIM7XzjrtUK7qkrLSjt8onihRC3l2HWgjiRRB1veCyLr9Ovj1veJ9VFpuDLCWdBuKoDF1sTlDNEJIgblJwC6HS5J/DlBgWPAtIQqFs/SxpxePcyWdeIxtcb3DGM/Z2TEYKHGsugVx1XPv8JDQtlhv8WOo3DGjS3tc2p2yf3kH64S+izhnKIvMs5KTO2zcNznJkG/pdbJla1vb2g/Ocjpdm2WVQc4jnC3nvP/oPueLE5arBbYRou+YTmqmAo/mnoAWT7ulEBTdQew9cbZIMnAF129cZTQZU5aW44MTOum5cnmfy5cvc++9B8yXK/b2dmi6lr7vabuOtm1ZrlrEOepqytVLu5ydBQgV7XwGEgkx8M03vs3u7oi9yQ1Omo6vfvWLPHh0hzNj+dCnXuB0eRexLVdu3eSzP/YZ3nnrDd5974xu2dN5j4k9FE4T9Nbi204T59ZhJa/DAd9rUbvtW16786Z2f5cpgRwdoW3xfaAeVVR1mQoFOi9XVUmzCgQfiQGC12Sqj2A9OGu4evUqq8WC0M5x3mKco6wKRIS2a3jquSf53I9/ii984asUZUnwHaumI3QtbQ+jkaVwWriJRKLXiVPXRlEgTQRSr2gIuiYHH7Tj26LXy5X0osx9vg8J/KwSAzax5YTQgzGpI1uwQdf8en/Mz/+Vz/NTn/4JXq6/we7XxzShwkjghY99hH/j3/o3uXntNl/49X/Oy9/4Q5arORJ6uuAVPOMTCEfA4mj7ivcfdPy//6N/wIN3jzjrO/6ff/+/4YknL1M6+Df+zt/i2See43RuuDa+xH/5a7/CvYNT+mVLZ2ZM9yr2JyMm04rR2OJDpGtb+qBsJBijsqdo0Uv9B2VRnExGVHVJ23gW85XKzRKTtJR+Xv0gt/b1ypIQY/LD4gAKz4nyGBPb4YZPZa1F0PZ6lUba9MtEJWmtbl82wCPWWgrnVAbWq9Rblu0VWRc7IIPm4+D/qcSdrsWSQFEq1ahMBWEUee4zL/KpT3+cP/jmHe48dISYC2QgYtW/2yiaCEIMXvczIGXWcrjWOpDE/EQuPCjrSszyDkY9gMKUTKoRo7qmWVraIDjrwVQ8Oj6kW50TmyWudNx+/hZ/9Rc+z0df+CTTnUs/mAny+2y5sQBSQSuDvdL7hvU5VcDJGqy0yWRkU7PEJovOBuREt2VNQv9sQDg28VJ5TBd+ytp/T2PRXcpwb2YMjxmOZSNeyq+n8dqBWWfj3r4QishaJi6PaYNdIFXELgxY2NxOvt8zyCdigt7npStxpVVQf4S+C5hC5WVyMS5vj7QpMRu/o+c3P/O5YGzMGqSUosCheaP3AR+UUaKuS3b2KpbLyHymbHbR6FqrU5CnHqmMaNM09CFCtJiojG3D+c9xEyYVQNdFOe+9xj0DOxtDA8uFyHSzqSQXJTNwKhVBFTBpN4qUJoGhzABKzT55NJIYrJK8ZzSEYW9miF1zc4oYBZpJKxRFxezsHN959qZTBTyVI46Wp4Sg8q9d5zmbn+OqilFZ4ipHaR2rpuO98qtcrV/kWvvihfv3oskf8frWtra1H5Q9jrUNxvPu9PdYyZL54pyua2jaFUTo2p4okaJScEoUKKqCsNIcjbEajwSJCZwC0+mYejQiRE8Ikc53GGsYjWvKomRm5tR1DRhWzSox0HllPHdgXMX+/h6ha1g2CqrOAJN5s+Dw+CGjcsre7j73HtxncX5CEzx2+ggbe/q+oRqNeOHF51nNFty9v9Q8Vs5tZMnR9Le1RpsUg+ZxFMSRnT3owkpBL86mNckiIRBjSE18Kb9Dbu7T+bn3PaCpSs3VQe6evHz5Mg44OTvFRJWXTg6W+qdFwWhccnI8UxCpMfRBMDHQh4C1jgLWYJm45roe8qBG15HE9bqRm0wsrtlvDeB7r0B3s7m+6/HHLOGVfJvsz5jCsXdll2LsODs5JZpemV37wN6VPT79459mf+cyr736Nnfuvk/TLokxaA4sg7djWpuxYBy+L/nWN+8Qu4CPntnyPvcfHFLVls9+5lNcu7KHSMmNa1c4PT5PTJ4WiTb5rIItDZNypEBb7+l7vYfzerrJwpiXUGO0EXOQQU0Mq0PueAMotPbg1mupslflba9zttk2MOYDUAoxax9n8B1Tjjn7L+RdmCGmUfD7xed5ACcN8cym3zc4Zen+0usXJYOPInZaU0xHGHuOczmvnbe19v0em0nY9DkHMDukPLcZ9j0A3HPuUBJbq1VG2rIomExGBO9YtQLi6VeR9957CF5ZWQVhd3+PD7/0Alf3rlHY6gMj2trWtvbnx8QIX73693lp9q/wkfO//lj0vLWtbe1PiwmCNy2/c/3v0drzH/Vwtra1rW3t+25/bKj0BRkNcjAkuIgGdql7x1gzJMghgXMwuBT8aVEsBf2paLQJxFCZDxjk2NgEKGWgkdn4yQZYKQ5SWsZGXOrc1/GaBOBJBUdZB3YZZJQ2pseRigpRUrfPUI5gOC6RzeTvulCVA9QgyrygSX077EeHr/IFxgrGOmKMhCB4b3GFxUlPVVnGdUlV1MwWK3zsU3EgFSA2umlijFhJtNhJBi0zC8QQcYXDWoNLjEHWGupxAQiuKAg+0rY9TbvC4CisB9Nx6dKYs9NzmmWPdVo4MyLU44LpZMyl/TGugPn9M+3wi2CMjq3EgSEVDwTnrHb9WJWTWS1UZk6CpO44DdRD0K5omwPwmOR5clYBowkYAmLAleuCSUwFigxeGmRiRMFbfR8onSMGgyty0sPQdx0KpqpUHq/XgkeMgnF6nmwv+BreevNdLl+d8dM//gmiBGq3w8nxGaOrUxazGU30HDXnVI8ajrxwcGWXK5f2WZwsuXr1Eteu7g1Jku/6rOV7aX23fW8P6da2trU/kSmbma5vEUMbeh4dPODk6A5d09D5ltAFmqXHSsG8W9GJ4CqDNTXtsqMuDVi0UGkNgZ7CGi5d2cWVBU3bUO/UjOKI2XJBPaoZT0dQWS5du8JyNuf+vfvEGKhKx97+JbpFw3T/Jh969kW+/e032b90nWu3bnDeNHhrOTx/wO997T2uXXmKnWnF/eMzLFNmx/f5wj/5J5hVR98Hfu6XPsvV/V2+8bVz2gDBKHDSUCLR0HU9ZWmZTie40hKCsFr0eB/ofU8MPdaCKwRXKnBHooJlQ7S0fWAyqbh8ZZfpzoSu83RdoG0b6mqE6x1N29EHUUmEGJNWkeHqtav85b/6S3zld79I83BFMMqm0XQq2dD1lvffO+XgwReYr1qMCF3naXrBtJFGelxhKMsS5yz4MAAf8rovaR2wJksTGJxVCTdjI0VVDInoEH36rFkDcIzBx0DTdthckI8KxOqNB2u4cfMab779Mq+8+nXef/UOnZwxnQjTccW//nf+Fp/8yEf42pff4Otff427j84IbcAGqKiJ4pHY0ZtA5WrGk0uMxte4ceUZzg/mzGeOPgTeffVN7r9vePqjL9HXU8QI07rgiZvXef6JD3F8dkbfdtjoMUS62DLdrSncmPOzOcsmEoiIUTkGE03yQUJaax0i0PUKKG5WvXY+J0CPsS4Bi9SXK6wDFBwds5YHCjKOCQhmbXHBj9Qu6FSkSuBqreYrQ5O1mlSPUQt1WtxPQB7Ut4tADEF9nRCHbWdQvR1oT/IamsHr6bMxgk3ABpRJU8QQxYMpOV1FfvcrX2G2eERR9nStINElcHVcs7xIYnhM984af2Ioy4pABmc5jFHGF/1ckqlLQH8XFcRvnWUyLvnEx5/lyade4J33PG+++5Du/AHvfedQQR2uwDnHeDrm53/pF/nkJz7DhJ0LwOc/bXaxEx3y/bSJEkqXeKMZYP3ldcO+do0P/nf+glyEJ60lPC7678N3uOhnGUn3WI5f0qDU61xXwC40VTxejTbrQW8eWmZyyOO4UPQaNifrbcAHGih0SdkE1yUWgiEmyrFJBhUp208fe5wzuNJSVRVN2xF9koeLm4ewUfDaOAZrFPSZWTwej9msNSrxkl4MQeMZlYo09H1guVgmtrWI73VutgmAVNYF4/FYpXZGNW2zVECoUZmhzBSlIKAU71ib5nUoXJHip7Bx0vUhlATENCbJP2/cN5uMSXrMcc0ileMO1udWBnRSrkQmoGW6rvn+jFFhSkVZYq3BJ7aQzUabEAAxzOdL+hjZ2R1hjNM12JZcvnyJ+eycPhp68UgjzBYrZWCsa/AQJp5v7v1XPL/8PE+sPkUl04v34oA/22Sr+NM7P2xta38ebVEc8p39X+WgeIv5bMZycU4MHitGQe/WEj3MFi1dDODAB2VTUv9TCAmYIxIUqGOEIEGlkUVwpaPve87OZ1RFBcZii4LCOZbLBUJgNK60ISv0OFsz3dmlb8aMpwVPP3ubpu9ZzOa03Zyz2RnHMmfVz/F4rt24xdn5jIOzh4S2I4TAeGcXayLHRwf0PmCcxYZA9rliAj1k9r3CKUuT94GgiFJdQ5yuIQrS0bVSgBAjZVmwu7/DaFRhMHSdZ7Vc6VycthtCHHI/2bcsnGW6M8E3jc7dCbQSg0DU+TeshHffuk8GSUuI9DHiYurPLNTHsxmQmz2JGAdAUl7X8zKgkJeo/1s7SJTGsAbk5DVbc5JCiOsGRkl5QwXAg7MFp8fH/P7D+8qwFQVrA7YUnnn2Sa5evsT8bMV8Ntf1SBw2ZrCXIfieSI8xhmI0YXf3Mpd2r1CZknv3HrJo5/jYEZpAKwV3D07Z291lWpZMpxVPP/UE89WKYx+IfoFB8KGntA5XOmKngK6QAWk5V5cQ2ZontRgx6bqntTBmJzn7Esn3SD7MsN7GdH4Z4Dpk2dY1uGgTrJSuQgZ5CQN4SnPCCcxujJ7jYWFUsLsP2uwgG82sa3D6usk0j3kTbM/G+GS9+KLRhdAtA9/65qusFi2YXhm7Ui5ac94b8dHGZk0en2gzj7HamLEGbut3knDAcJ5sijEwmvu9efMSzzz7DE1b8v7dU06OHhHaBX0XsCYxjxmY7u0x3t3H2JIPShhvbWtb+/NmrZvxD579t/nLD/73fObk32LHX/9RD2lrW9vahgmRg/o1/uHt/y1v7f7mNpTf2ta29ufSvmeQUg7ucvKZFAxlGTR9eZ0AVUaCze4SIEbiAFBaozM0aWzXRQVhSBDHIFzshM/7Sh/8LrPzZu+NglJANVz04wGV8rKQgmdNsGtNQTY6rDTZEftMR5x3l5PzWnzOHbqbSW5lbNDRiCjYRimODVGURrosSz1XISBocsJZZTgQEUIXWHU9EisqV1PUjqp0zFYrbA6yTbo2CC7J03nvVfJAIq4oBsakXLAIIkkezuKcxZUWVxb4GAkx0vVKJe6sZ7Uw3Hn7iL3LE6pSaNue6A3RWIIYDBWT0YQYIuPRGCtntK2nqLXTyhpNmIXoQUxKTFliCHRdT1XUiBh8FzeKB5GIUU2JxI5UWKX9lqiFURKjBUYTRTEKJjqMYUhU5e6iDb4ijFgcFmcsBs0mRR8whRCJhCQlE2PAOkNM51iiYExAosVLoKoVyHU0O+Zrr7/CaHqdo/dPuHxpyoc/9hG+88q3qIqSvuupjaHzHUf3H1L1gclkSrOc005HKgVlDEWxfo4iWvSNErFslla3nsjWtvYDN4OCV40QEZrQcv/RPd57721WzYIru3tc3quZrVaE7hLzRcuq6TFOWVPOz89BIp2P9NHjXEEbA2VpmJYTls2KuIz0MbA3ndI0K2azBfdWD7HGYKsxTavSWdbBzqUpo7rEExmPHZevXGL/ylP84udf4ulnnuL6lSn/7Hd/i0bmLE7vs/ArmuPX2ZnBX/qFf4VpeZ3f+K1f5+VXDlietUTnee3Vr/HmasHJ8SkiQuUs4j22LOj7QAzQxZ6uaxhPKsajqR5T3xNioCpLlBzPEE1JYS2GHjGR4CNV5Xji9i2efvYWk0nNatnz4P4jDh+taNsVITMohjWgOIRIUZYsF+f8xq//E+bns2HtEIkYD10MeC/MThbESa3ze4xIjNjS4UyBk0jwgu/DhqSXAmeC165oa42ChxPgKIaI73tC7DFOCwQhaMd5iHFgyIAsG2QGuddcsogSMCKEGHCm4q1X3+OdN96hj5HKOapKATymHlHWcHb0DnfufIdPvPgiT125zBtvvEZrW67dvMHZ8RkPH96hZ8loOuXzv/RX+eynPsPT127x5S99hy99+Vu8d/g2bXPKKAj33njEf/yf/Ar/2l//OT75oY/w/IuX+fzyx7l/fM67oVe2xK6jMz2jcYFN7I4hxiS3oAUVk4AVg78gEI3F+44sM2AScElkzSyllZlcqJG0Bm8CMBIoKBqCjxk3oADwBAATFCQW8t9xkxkxSTkVDmzqniddt1yUipK629fMLjGuJdQ2wcDGyABgsEaLg0ECEgOSJRCkR6yn7B1f/2d/QFFCD1ij0hu+TwUBq/5f2MC/aAd2HEAt1jlGoxG9j/QJrJU7u40oSExEARfWBCwlYg2mLrj97HX+8i//NM899zHefz/wD/6rL/D+/BDTG2xREo1QjytMUfKNN9/hys1bvHDpFpNi5wc5S/6J7IMiFJvFHRIUxQz3SQZvrT80VH0261tsekqb3tJQ2JKNXza+c/Hrw0XUAuLw90XQzvpI8nOxcUB54Bs0TVrDlAvMTcNH03j+RZ2rm7vNMot5l9p44NJ9lxkBtFgVc2EtCgHBmAKJKp9WFI5l26LSM7KBnZJ1DBZTcVmEaMElqUUt4GmsppKdgZBAnNbaQQotF84iAt6wmPWMxkJVqp8d04MTY8D30LUd0atMqjWG4AUp2Ch6KgNfvoAKatRnvUvabRLXwLSNQxrOtc2grgEspAXF4fqLEKNN5K3r8zlsa7h0JoGszPCGsNn8onGuDypTCWuGjfVGVNYIAk2z5L1793DlGLrIdDKiHNeEmVDVGq5PyhFt1yI+MCkqymlJ2zYs+jNeGf0qd6o/5KPLv86V7rk0x+RbNz1TAuYDN+HWtra1H4ilqeHR6Fu8svffsuSc+XLO2dkJbdcwqkbs7dXMVkvqusAYT9d6kEhZlLRNi8RAMCSZWYNPOazalcQQaVYNPgQm4xHj0YgYIl3r8Z3qnbVtj1SahyqcU4bRBJYuS8eVa5fZG+9T2JKqLrn34D5H50c42+N9Ty8NB0dnPHHrSW7dvIl1BeeLI5ZNi0jk/PSY1xdneB8GFjsLiN08DYa+67FOJe0283m2KHA2yQaLobS6lmWQiDMqFT2ejBmNC5VyS4u5+upxzdpD8ivTHG+t4eGDe+orBvWzBJXtDNlPi2CqAmfyOigUlWNiS+bLFUYgePXb4oaEm67pJuXjQmKVT75NXDcRguZzole/OCOwB/9YJAHecw50DVLJAOS+9xw+PEb99Lxm6Pp+eHzA7oMR8/MlN29e4dmnbvH+nTucL+ZcurYPYrh39y5tJzhnuH37KT760kcZVzWLeUeUigePHrJoz3ExQA933rhHWC75+Ec/xP5khyvXplw/vUHbB1YNIB0SeqRQ/JBzyqKa2ZrUB1/7FHqu4hrgIxuwl/y97COxPg25UfVx5sLsmQ33yWNopRyvDUxOJq/XCuwzJJb8DBbLcehwfXPTo27YXABA5f2kkeT11DB8b1P+Tf2giBihMIa4bJh5T5vuR+sSM1jUe9qkBtnNeGKzadEaS1GUG/Hnhekm5cyVNV6SfyIYcIbdSxOuXL3EeFKzv7/L7LxhdlYRfY8l4Jw2H1lrOTg6xb7zDk9fu86N/atsbWtb+/Nvy+KIX3nq3+MrV/8+f/Puf8CLs7+cGsK2trWt/ShNiLx86T/nv37632XpjrZlwa1tbWt/bu17BimJXUM9DDl5v+4ekqGwuxE0biTsJUrSd48YLMYKueVcg6518KkyXXEj1MzBaNra0MEi6yIZm++tO1eG7aVtRSI2JQKsYQiYh++x3tHjHa/GWgWtpPOAGExISRFrc05+GEeM66qVMTZ1/RqcUwahonD4vsc5q/38qSBijYBoZ7AXoe0jZWswtsEWhj6ARAWBKd5LIHcIuWLjPKrEiiu0016iEHzAuQJrHd57Qh+gizgXUjBrB4k0VbeLLBdQ1YFrV/exznB2tkQkECLMZjPeenNFXTmuXN6ldI4+gYFUNsemuoJHZM1C4WyJtU6LwF4piE0CD0kKrEnFz5zUd9aupSdS0G/S+cySd4qZs6nTMBcLIXc1WavFEkskRq8SRE4vucrABSQInWlVzsasO+AsUJuSa5euc+vJPUQ6jpZz3nz7DoU74MpozLxd8sq7BYdHZzx7+yaTy3vcvHSNB48eUYnjqaeeohw7Hrx/j+PjU8TAzu6U3b0dQDvA2z6qPJ6F0qXup4sluq1tbWt/QruYcLxokYgQWfmG9x7e4f3336FpZgQJ3Ly1z9nsiLOzORI7oMEVAr6nZAzREqQjdgYfoJNO14ZgmZ+vmM9WKTkemBSO3fGEfiV0XUc0Pb6b07QN03pEXY9xo5qegG8ChYViEvnQx69xtdohYDicn3J6csjelZJHyxXdcoWPMxpTcHLwgHbHcXZ2zGRc4puCpu9565XXqUoFmoYQCRhsKWA9xmjXcgweVxSM6hEiAZvYlkbjKdYa2qahbTtcpUCl2HsiQeV5XOTg+Ijp5ZoujmmXntn5DIC+62jbnhC0MG0SSMoDOHDOcDY7o2k6fJ86c6NBfEzAD0tdlbzw7NPceXhEu5hjKsOzLz1B93DGu/cOCF7ouzBICZDy1IUtcUWlkhqlsnfEoCw/3gvGarFkkAWI2q06JN9FO7Bd4RQ4m/0fyXJJhsqWFLXDG08pjtpZnBNiKpicHs/4f/xf/x4fevI6n/6pX+bzv/xLHD66R/ePI899/Hk+/OGn+PV/+N8xnx/Q9oHbTz3F/+Cv/xJPXb8FYvjcT3+aBwcRHw3L1Rlt3zEtLMsHDd94+T0+/PxLVEXkuQ9f4/M/9znGf1ixag5Ynt/jvD1W4LdNkg9RICbfLgISKVwB1tB2PbmN15oSjIKhQwxEr76Hcy4ViMIA8Nb6i1XZtKBSZsauQSWDVNOA87ZDASBKAqwnCSftfNcu56JwKj1oElAqiBbtkvSGSYB59TWTP2fXfmOMEefsAPBQ/yj7nWvQjJJrKUC4KGt265JrV2qWnWE5a6iLEXbk6YpepS2iFpi0IJCZqDIo3uKMoygq+l4BclWRwSQJWB7XBTeLQWyhMniV4akPXeeljz/HnbsPceUurq958vIux/vPIrMjSttRjwOjsaFf9nzt977F3Xfe5X/2P/of8pFnP6oP1J9Cu+BvX/iNVHB6rIj1gQ/ll9a+/fCBFJts4EaGm2AT+JRfzwUqzJp9YRjnY/vORcTNWCVv819ma6BLjify/LF+NjJDj8mFLzEZG7X+XPpVosotDqCgVAm0iZXL2FSckrBRVDX4EDEmJslKA1hCXBddN+MHY1zyqbVJQLV7FDyEscPzl2VAiUKIKmk0nJSNODAiKhuKYzIpwRhWy5bciNL7yOzcY51lVBcK2k0xYmZbM5DigLXcG6LnMybmplQDRlsUGOaaIaI0w58Xr5AxAzgLssr5msVqfRnW11Flt1Mx2iQ5IDHDnKYF8cTQZhUAmbdZuZKre1fYvzTBx56zxYJV22O6BePCsWg6zu82SBe5fnVEVVeMqxFiIqPplNF0grVC10HX9/imoR/d42uX/zNeOv9rPDH/DCEBtjAGZ4e77198s25ta1v7Y9kmY8pgBoJpeXf6Jd6dfJGGBeeLGaenx3jfAxGxnqYNLJYrfOeRGMBofBBbzcVkQAsh5UBE2U761tP3PrlvAjFQ1xWlq4jeYEzAB89y6enaAmsU6B3EKONkhN50LJsTRmWki4ZV3GGxWlAgynbaB0Q6vAjHhyfsTa/x6OABIYS0LZXYXYUwMKuLMWDV94tB1yJJLNp1XWGMoQ96/MrurYzfCmAX+iAQIBKSvwZt13F6dsZOHGMwLBdNkuJSP1Ab05Q5yWAIXkFIxmqeMsQ4gJsUk598LmPBWZ64eYPZfMlssSBKpBxVjOqKRdskhvK8BqX5NK051hQJKJzugxgTQIm00AyeZcpnpbUW9KJGME4XKJMBTukfEcElCWVJhPBFbs7L24xw990HHN474Knbt7n9wm3dzrjg+pUnuXHjEo/u3qV0QnAGV5Q8+eQtdqcjjFh298bcuH6F3gf2/S6LtgUTmY5H7E13MEnmq6gszz1/g/GkZra4SujmHB49pJNmkNiTJBeNZFCO3qelU7BdSEB8kxhsJYGnM8BM/f6LQDDMuiEkN45m0FCCHeVs8NqXE/2eDJcg+20bvl1qRl1vhwG7nhsgM2gqH5NJ44F1/kBzmhcZLTcl7jKrPgLOFdSlY3evpq7HHB2rtGGIITXkhDULWN4PG9c63a/G2sSgZJNkNuuYKh2HDL5jZrqFnUsT9q/ucD6fY13F7sRzeadmdvk6Jyc1ElYUzuMqh/GeduW58/Y9Ki9c27/0Xee9rW1ta3/+TEzkwehl/v4L/xp/685/yE8d/TtboNLWtvYjMkHo7ILfvvF3+e0b/xcad/ajHtLWtra1rf1A7XsGKbmUGEHWcmXrHHRM0CXDkFEfkgBqOQDU70ZsJiNKnSwiSuGfE8ggQzfqpr57TlIbMUjqDjEqej+UKQSVlhti1UQlHTe6cHIAK0n//WKRJL+fCiUSE4VzKigIYJwes5C1QdJxrosduUpiBKL3KpNgk/yZBHzvKazF2QIJHlcalcbpO5pVkwqfTqVu+o7WB4rS4YyjDT0kObM1I5AgMWghziXZlHR+ytLiCocPnt73CpoKcTiv3muBLIpPBRIFDUkhmBJGO2PKyYi6a7CzJdFHJKASEctA6BwmCNPRBKkjUgqr1q/lMlLi3znlBopBkxVFVSDiScTlRKKyHDnLwE8lWb5lTVk8vGYsMR2/AsO0FJL3GUULsgaV8EBsKnprwV/EQBDEQrCGEMFawXqhDx7nSpzTItBoPOHq3mV+9pOf4Innn+B4ecadu3d45a336ELLSdti54bV/SNKU3A0rWiajiKOwDgm+yOii/QiBHq61rBYdVqUrGsKqyWVUVUk6mmhSAxf26LC1rb2/TdlwEl/mEikR8TjowJp7h0+4t7DeywWZ5SFw3ctL3/nW3R9x2zWETsFmfrYM58tsfQUViCWCoK1CrxwBWBgOW+xVtnsysqxWK6oqzFVVSdGvUC7XMLS4cuealJg+0D0PfQ9XoT7d97nH/7qf8letUc5usSNW88zGk84Oz7l4HgO9CDCvG85OZtTFGeczY9pWq9FBOMwRmi9xznDeFzTdoG2CQSvHbsWoa4LqlFFURb0bU/f9fheC94x5MIASOtpfa+o1jJSlwZDyWrWcued+1y5usdy2bFYNEwmJb4PQE81cjxx9SqFdSxnDadnc3oiiKXtWnyvbFQEQYJ2PFfGEquC6dUdnrl9i4PTc9pGE6pHD4/oFy3OGgV+wCCNoSAjqKspo3LCbHlO8J2y54VeQVBRO1hj8jeMNVgn2GjoU2dq7gBW/VASwDl1ZjubaPINOC0C2bJI1zsgPgGkveP+e8fMDhY8Wv4Ov/uNN+nac2anC5pxy9de/hKH77yHxJbQ95Q7Y6ppBRiCNdy8OeUv/fxLfP7zL3F0ds7DxYKdScFLt29y7doe47JCEHb2Kn7hF1/iY596kq5v+eZXfo8vfOk3aGRB2/XMlou1jK2HJvaUo4JrN67iZw3L+SGuckymhQJvvBB6IXpUwskIRYn6HqnQgCQX0aivIyHo9TYMYAPnUtLcGEhSc5L5AjNoyVpcYRIQO24AB9SJNMmxyoUhYxOzZAwEiUSxQ9HCJB9S/7PD2jpsDiEksLleOgVYW+eYjHd48pldfv4XPsPLf3gHc7LiymjKe3fv0oUeZ9MsEvU8RoEQ1SN2WFxU5i1XVFgqjCuQKPgYMdbjrCAhIt4QSeyU0RJdpK4LRnXF177xCjujXVbB8PlP/yR//a/8PHb3Xb71tW8j3SFF7VOhZ05cdpweLGmDIHTA6Ac3ef4JzGyAPDYwLMk2wUsb8YSsP7cZT6y7F9iIA8xFwM1w32wWfC7uZS2PJ5sb13c3qj8G4aKUnoKJ1oXDXJDcKIg9tj/d1EZRex2YDD8GuJTI8LwMta8kM6NsZdoAoQ0OaRyiTKJFVVJUBb7XArAkBqIokc4LeP3cUCRkQPMk5iVlBbL52Iwy0Lkky2NsYjJKAM5UodO5dDh7ZnhdlbcNYrUBw7g83vR1gWj0HAcvjOsaaz1ijcp9iiQeWx2jTaDIkJ6/DBLKxyOylulc893KEAsqyGnNbCSk5hKz2R6zvqQp0BjeX9+asi5gJgBiDpKNoHOhXxdtrbGM6hG70ynXruwx3ptytpyxaw2r9pgQPI3XBpN+uQQDB0dHlEXJ/s4l6lGFcUKzWlKUJU3bEqUjiB5DEOE71T/nuvk4dTG+cAhm81bc2ta29n21JFyLmMBZ8T6v7fwqx8Xb+D5wPpuzbFeE0FMUFu8jy+WCc+8Tg2kGXqIMcjEMIAtlvk7ybwhidCZ0JNYghIHVMjUBZvCCBJWejM5gYvKPQ0jNE4ZHjx5w8OiYwtVcvnqTejzCWOHk/Iw+9BQus+UJVWHV77MOkT4BICwiHmuU8UiioZOOGEiNiUJRqF8XEzg8JvZUCUkuOs+ZAkEU6IPN+TuHFUO7aIne45yl6wJlWShQKkQwkd29KVVVEfrActHQdOtcV2bYzixKkTgwb0YLy26FECgKq2zhjeek6QdAq57zjbUYsLZgb7KvTHZJmpSNPOUaYKJrSWbIyeCqDJ4dADmCgtDyftL6pgtj8plzbs8w+CIxCqum5+333ued+4fa5OY9tix5+22BrkMSmMxVNeWoGlwc6+DmjSlXrk0AYdF5xAg7dcmoLHTNTsdSjxw3nphyKdTMT0tOZwcqfRxEAftDklcUDG0NRV3gXIGEBiFSVgpO1pjBEFJTZBShsHqsxpoLPt8AFDKZGXftbkAGta/9r3U21gwgoSyJtilTu7bkH1rNaQ4Xz2Q/YvDaBoDa8LxLurZm089L4MLhoq4/X1UFN564gm8j81XPznTK/PSctpcNn1BjTEnstMPanXPSzlG5CkytMVIIRBM0LiUk/zSzWMkwjq7peHDvCEQ4n6/46Esf4cknb1DveN546wHz02Nsocz+Pk1kEjydj3S+g4qtbW1rf1HMgDcN//zWf8CnT/9NxuHSj3pEW9vaXziLBO5OvsqvPPXv8c70d/ggHffWtra1rf35s+8ZpKTJ+QwQSROkNetkvmwE2uSiFUCW5gDIdLYQTAYeaYIix31Dh6t+PAWWa0ajLKOR+uzT0HKRYaP4YLKURgpaNyohEmXI1koKWtcJHobkMkYujgeNAQca3hRMm0FKxKSEUEoeOUeIQTu10sHFEOmj4FPiPJiIsUELomJou46yLNndLWmWHatVr51iUWUMur5VlqDUNWaHgohDQhy6+MuyIHdIS9DCclWVVFWN90G77wCRzHagwK71KRRi9GAMfR85PDhh2kxSViAClhi1MzhLwxRFyc1b+8ybGatOaLoekUAIiaUoMxKlwkbwMUnp2ESnHRIDgm5f7wsLEvESMUHPWVGsb1tDokA3Wgyw6aezNiV18n0R0/VZJyjWBSXtAosChSuGDqSYivCFtdRVxVM3bvDRF19gFuc0Rw946523GZcFxIBvO67u7GHdiHZxSkvg7bfeo64ds2tLPvrhF7AS+PbL32Ey3aPpFohrscZxcnjKbLZgZ3+HG1f3Kdz6eRkKH1y8D7e2ta19P0zZHQKe1i9YdTO6dk7XdTy8d8jpbI6XnsmkxFlDG4TZbMVy3tCsPMpx5pE+YGKVWF8CRWGYTMcsG1i1HkkFxLoaMa4LZrMFMQS8j5RlpGmXdH2Dc1A4iytKQgg0qw5xHglBgQ/GMhY4Pz5lWcCLH3qOZ59+jq5d8eCte7S+YzSBZ28/xRuv3aH3kfPTM24++SRPFc/x6stfo/ENmIBzkel0hMHS+4iII/QKeCB13DZNRx8joQuEmOUTdPXt2j6tqwrYcUbXhBgCO3sVvhPOj+b0baOyqdGys1Mx3R3jY2C6P+HW7RtINIzGDcE4Bc4EIfpI6HusaEHXFx0mRjAVXuD+0TG/9dWvcvXKFU6OG0oHq/kSEaEoIEqPJACRjxErDleUfOzjH+O528/zG1/4DR4dPUISoNVag7gEUooBk5j9bGm1g7pTuQ1jLM6UOFMiCL1vtTPaJOCCEcQpw2JpLE4M0au0kkp6aTJfxDBvVrz6ytcJ9tuUxmH6wJ23X8NEoZBIINJjefbZF9kd7ynAyQhSCx//5E0FxXCD3kQcljIVMwxCL4aD4znfees1Hp7e5fDkkLuvvcuimWNdQIJHfAI4SK++g4D3kdPTGWYZiR6KCqrS0fvApb195vOG+fmSPniKymFNVEYgp+yHmTlEYmJSEWVfWbNVkpLuoixVm53HA7bDJDYBl9w0sy4UiBnWbQWSWZWECppRV1kp9WOipHqdSf5H8gODjzirYAGV/libAoi08BZioPMNXT/h1Vff4ex8RjWp6bs5MfbK0tULIRiqqgADXe+HseqNZYgjyxNPX+Pm9HmOlxXtsuH07JDWLwh+Roy9Fk4yrkVEJVxmDa+9/BZlWWLMMa3UfOqTP8Mzt6f8kn2BcnnGebPD/l7J3bsHPGprjJ8R2xVf/srLnJ0e8ks/8dd+GJPon8wexwzleMLkXMz6fGaQzhq8tAH4Sd+9CBjJO0jbMevO+82O+FyAGsaRwYjrEQ1xxuOD1tgkA5c27s/Hj9NkZiNZ3+ebxcmhACYX9nIR9LQ+TvK9IpGBOcpkDI3uvW1brElScIYEOorEmIpYomwX5AYAUhE3xVcqsRIhAQdz7BTzvGkcxiUWBZHh/4G5IMF8TL5OQfAiLGYrqkoLzDaNSyQxp24c5WjsqBCWK48RjVf03jBD7JFPixa+N/z7NLfEBJ40mcEhnWtJLLQm2gtsClpglHwih9Nv09/rwl/+P30rX7t0XYIXrHMDY4PeFxFrHYWz7E6n3Lpxg0fHR8jilMVigTMKEjZi2N3ZwUfwYUUIhnbV0ruW6CM3rl+lE+HkZEFZVFR1SVGXuAixDyz9irLeSaxOOdzdxhFb29oPzDaBCwTeqL/A66N/xsqf4lc9zUobH0iSmc4lgIYow3X02pinTOJgJMu+ezAK8okSNnRlBbAKAJGeGKHve6yzBB/xoccl5urC6c8+9EjnE9O0ECwUog1mIoFLV65y6/oNlsslR6eH9F7ZNK9dv8L56ZxV2/H+3fv4KLz44Zc4uHeXg0cP8aJgquxThQgxy/+mkaoMnIK/c6ODtcoqHkWllWPIrJv2gtzoeKrskqtFi+88waF5JQPlqKKsCsRAPR5p7gdLNRL6GNKaoA6hkrc7sCoRuulHPDw4ZH9vh65rwCQAcJIFNlbY1BqTxB547eo1PvT8i7zx1pss25XmSXMu0MQk4ZbWxbSGu9JB32dYDMZYyqqmwLJq2wGYlgFLkoBNhbU453TNS8BkXcdCym4lZsMwQ4yliAbfrDQ3FmNa/4VJWVGX43T36LpUjCxFWifGE0UlZXC/QX3p+UKv/eHJA1bdkr7tCL3KQNsEolLAVACRQWKsa3sCITGaZ5csMhpVILBctponTfg6kv+c9z8s7uk1sxEnrBG3Gz73GpnOJgPR2q/YzBtvNKiajfeF4d5d5wvz75nxamMlveCHmvWwNl5TvyLSdZ47dw6Usd46Fstzur5V+fNEVulsQVFaeu9JyOP1vVdYdi7v8PytZ1muClovnJ+csFjNCL5BJGR4Usqnpn0HoZm3Q8zk/YK7j44py5qdnSnPP7nP0diwszdhNV/w8PCM5aqB2HB0cMYfdq/C59ja1rb2F8yiCVxwcLa2ta39UCzg+Z0bf5d/fvP/zKo4+VEPZ2tb29rWfmj2vYOUSAFf8lMMDN2y+h7KRgBaSIvr5G3MbDobRYEhdnQbaf8cnJp1UAdhXRg12m2vVMCkhMDjKdeNIsTFEHTYx2ZxQMerga+5cHya+B+NakL09N6TpQMkFT6MaNJD/8yd2wkI45wyY0jqRk5jsqxlyKyFgHbCVVWNKwzz+RKJQuFKCNrhr591xCTboEl3i7XaBRWDx5gCM+wT+l6leXIBMAah6zwYS1EU1LUWpL33mnCxJnVtJdYBA87ptesaIfQNvvXs7k24tL/LfN7QLLXYYZwe03LVsGzmXNovmd05xwRD1/tUxFVwkQ9e5WTEpKKOFhoynYlEIWRZBxNxriQXaDJ4OIQ4FGIkJGr0KBgphm5zRHDO4awjGi1ESuo+I4BTwTcgF90NMQRl2xhVWKvBvbWGuq6o6xpE6AN85dvfYt51xM5jJYArqQvL7t6I1lt2XMHJ6QoTDb0Yjg8PeLg3QYrIvcNTpqdLbt9+kiefexJCYHGyYNl6ClfhEu15+RgQa2tb29r303K6VOUF5ss5B6cPaPo5i/k5i9mKZrbCFo7dnQlN19AsW7o20HeB0AtjVxM7z61r1/AI7919qInqxCKzXMw5n88JAuNJOTzbq9grCDLCcrlSqnefEuOiQJmqSlJxwbOctxgsrgRbjWiaiO96Pvzik/ziT32eSVXxthtxenwGTYdxBXihj/DNb3+Hvu157lMf5yd//HPExTnf/PbLBCc4V7JcBPq+JQao6yLJnilTznLR6DogDt97DMLe/g7GWObnS+1+DRFbCFIoExQ+4m3k6jPXePjWkSbOvTLpBB/p2i51P8POzgSfuqrFgassYdYRQkhJ+QIocLbAUdL4jhChEAirFYfNgrPjEyQIdV0RbdDEu3NYHDEYoCCJqXL1ymV+6qd/gnfeepc+tMrCY5I0RMi0gECWhYiBoiwxTov8xjqMtdRXL/HzP/GTvPfqu7z51lv40Kb2eVHfB0NVO1548VnOjs85PVkkST2BEPGxB2qsrSiMUMRIUaoEbgw93nu6GIkWpCh57623+N2v/gGf/eSPsT/axWIIVnAYShFKo8WMmAB3USIPjlb8+he+xO//wZc4OblP280xRtkai8JgE5Nj6AM+grOOEoPESLNY4YICtHRdXyESaKuWGFWS0JUwqlVatvNRu/Qlrcc5QZ7kplxRYEv1nWJK/huU2SoDgrPslTGA1eJObkW2qdKe3EgFkmUgQPKPsi9qxFAah/JexY1ChGwwEjggELwfwAsMo2bouBYi3gfu3z/l0aNz6tpRTsaEecdy1eq+g5Z6yqomxA7p4wCUNsZgS8fVJ2/yr/9P/g7PXnmBo5lw550jfu2f/jqHB28RFFmNo9BiT/I7QjQQC2LraFsF3t1/5w7/6T/4//HpT32Un/zE5/ipzz3Pe8enPPfkE7x96T7ffus+d+69T7s65ItffJ3f/cprfyZAShs1peGXXMAb4EOy8bnsfz/uGOXiVSokrYtU+bsbAKHsVeVi1x+Zf70YTfxRHxyASh/41uZBGVzhiBIHP31jJPpziEtk2KuI3vODjDYMAK5BYvuxc1AUCprzncr0GBPS+VCeUSvrY8l4G0M+N7kcZ1PBUOcVEy9egxgEITVYuCR1GOKFcWDWV3GIFUULz32nzBvT6Zim7WmbMBRzFczpWSxXTKdVKjDr+jnML05Z1myKC4eq67B/swEs07kta3IP5zwDJ2MCa8X8vfV2MvZImzLMwJgwyIibVALd2Fe2mFhCclSqYE2LdY7FasXdBw85X8zwUSXhDALW4Rw0vsO4kvG0Zj5vlGk4GkLfs5wvsKWlCz0Gy2Q8Zn93F2OgbzxdH1RKEi0a6+9b29rWfrCmPuA7o9/hG+Yf066W9H2L957oA4YE6BZhsWi1aa1XcELhLOKFnZ0ply9f5v6DB8wWi5R3Uzlo7z0hBsqqpCwLvI90XUtC0hAjtE0LsAbIIIkN2mBcQe97vA8YC4Utkh8TmIzGPHXrScZVRde0+C4ifUAkcPTomC5GxuWEg0cPiYVlv+/Yu3yJ09NjpA/YotL4IQG1q6pACsNqpf50Zr/O4BokUlWlgk1T09xwCtU51+YMCfQhKnugqGybswpmjVHwPhCC17U1qrxzJLEeiRD8Bju4M5RlRekci3alsYYAPhLFc3J4um6EGwCeFmudrsmy9g2tg52dMe/eeZeT02MkAbV0bYhJajiDbLJUnE3MUDYxixqoC57/6Iu4NvL2W++yWi3Xa7JZQ2Su37gCIhwfn+P71AyQfILc1OdcoU0VRIzT/YbgLzRmNvMZX/3ql3n2xed49omnKXJO0oAbfIq0fZSVb7Zoee/Ofe7evcNicUbwHRAxVoZGgOhVNntASktiZw+RYJRRVONBZQLzPiQQsTLVF05lZGM6Ju1xzcdH8iU0X2etUXbCoSEgAXHyZzNjljo0Cayj59GkbUle7jf8oLV8N2S4tLNKgzwwmElm08r+wxrcvLn2r/HNGSik++x6T3+W8rOFxYghdD6RUcrgt/qUP94EFxtrGY/HvPjih3jm1m1isDRN5NVXAqt2RjQpBjaODJjWS2EwouA9CRo/GfE8eP99FrMznrz1BFcmVynrAmMtly9fRcyUR0enrJantG3D6tHsv9eMuLWtbW1rW9va1v54Jgi/e+P/xq898X8g2O5HPZytbW1rW/uh2h8LpPS4fTfwxJqu1lwAA13oGn4spMvgI5EwbCcXa9SUIUiDwszMtAY8rbW3N9LPItgUZg/jzV2wG2MVYy6+L5ufUGrtGBW8EmLAoswO1maGp/T54WsGYxzOWC1K5n2hgKbhJZtBOqljxxhCUIpvBDrvM8MzYPA+JZ2iFrWs0Y41AxSlI0aj8mtDMt4QUqeatbkr2iIx0PqQZNc0sWXMwEtMyrVrksCCsXqLGGcoq4KiMOzu7+LKkrY9V2BaSuB3feT+/TNi3KUqKpzpCT34qEmizmrQ3REwRrvprEt685KuXQ7K07UIwWOtG4ojdki8e6w1iWo5XbcQUF2lBMxK52HQjE+U0sau74O1rnzSdhfoOw/R6RiMYdX2mKLi/YNH3Dl4SOh7xDiMV4BUKAwtBd9+7y51PWZ3v6Zylp2dPTwG6SJ903D11hWOyjMuX9rl8nRKJTDeGbE7GjNfesRqstDa7/ZkbW1rW/v+2jrRu1wtmZ8taNoFTdfiyoLJtCaKp+uWnJ7MaFaBrlX5qrJIXBOu4JM/9TlODh9xcHxA4yPRGvre47uApaAeOa5d3ceHwOxsQYweZwu8wHLZcXZ2Tl3XQ/K1LBxiPONpSdHD+fkcHz3OlvRdQLoOh/DhFz+EwfDg4B737rxLt2homyVdJ3yrOef5lz5Oc/eY49NDvv7lP+D87JSDk0c0NrI7GmEEVn1L33SMRgWTsWO5DISYpBawGOu0m5pIkWQGgu+JMeKcg6RSf213HxMMj04e0beRV/7wLayAc4ZipPT+xllWjQJjvfcsZ3PquiAQ8T7St412gHe9goIKy+7+Pj/1mc/y9muv8sbdu/RNr1INAYxxdFbH0XvBFEVa75xKWaTz2cYG37ecz475z/+L/4zjkzNWy2ZIALv0uVy318JNTDT6oh3brtL1uzDs3NzliRducPetd1VW1WvRxRlNIosR6vGIW09d5/T0RJm6YiSIyr1ZV4J12MrxxI2bzE8XzLtzghVi8PgkuUoAI4HvfP3r3Dt4n73/1f+Cn3jpczgKQIgmKNhALBCwBkx0PDpq+Ke//lW+/u2XOTm7x3J5TvQeXI/xEWcihbH44AlWu3YJKhVgSEyQNlJWyjDivSeEyNHh6cBKUo/KBBKOQ1I/JsakAUwkiUUlAwOsMic5LBLBxwxKkIFF0TqDxYJNElaJWTETpIio/JSRMIwFAWeUkWU0HrG/f4mz03Pmi/kgz6FFBTOwsVgDrijS86/js9amc4Cu/bEgemG56LCuYNV0MOuwQQsvCn3WMS6W8zSfqF/lUhFlMp3yiY99hP0r15he3WW867jz1gGjylCWEMSor5H2bW0CUkQL4hBxqGsToWmYHZ7y9huPCMtXmFRXqMZTAvChj7/E0lxl2Y05OijpV4dIKlb+abQMxbnYjf7BTz3mjj/WoT68qtvKb242Q5AjhfSvuVjMMkMl8Lts+AJ4SfJuhm099uOx4V8sWGXzqUCXC1GZYUxZQ2WjAWP9dWvX/vDFMeZjWY9VBvBe2DgUc0F6RACJa6lnkIHtB1J8lRnLjJ7H/CwP5zCxJJCYWGPICKaLTEoZVAVpbKkwa52hrkvK0lJWBRHo2nDhmooYViuv4C7nMPRAAhRh8EHBr5E1e5KJ67Oe48rNK0JmXhou+eY12kBgDZdw8/1U9twoGsrmpUDjC4vGE2niS/PUBsISTwTa3rNolloYNhaTY9ZoiMZxOl9hbUtRWgpjmUynRGvpVy1RhEk9YtW07O5O2J2OIQSKqqCYVJRBqILTbW4BSlvb2g/NWjvj7dGX6BctoVdwknXgqoLQ9fi+p+8DvVd5NyVR1FxNbyN2VOMNYBRclBXElJXbUZSO8WREUVpWyxaJOqH1Qf2ktus0L1Q4rLMUhVPQjIkUztL3a3Cn95EYAkYCu7s7LJoVp2cnHB4e0K0W+OgRCUgbqHd3KI1l3q0IrfDmq6+Cha5rqArNeSkmxBKjJ/pI73ud/1AfRhmc4rC8KeO6H9YrazVrN61LLu1d4sHBAZ2H1awhT9dVndKW1hJEUgOhAkL7psNVjuADvuu18SytcWIMZVVz64knoG1pHzYK0Ioq8Yxxw3yva4xdg6UGYIrmqHzfE4LhrbfeIor6r3kdsDaLyJkkKWeHZkFMZifaWB8lcHR0gCw6fFDmqk0wdUTHsmpbBR1nqdcEwDfGJaAu7F/egzZyvpgTxKu0HpnxXeMm3/UcHjziyrV97M0nMKYa1n4Fr+jv6RYkejh4cM6D+0esmgUhdKnxNMUMQbCFyi1nkLDDJJBYHFgU8/EImi9E1r6OSUxfITMyDk+TGXKSQ0MoSZI7rc9Dljix9yu7VIodzAaz1YY/OOxjc43fuC/1mqnfMR6P6ftAaBR8p+C/fPnS2m4Y5G91wHlsksBmKTaQJNVH1EYEn1h702BERAFfEsAzyNgZNI9pC8e1a1eYTsZ4UWDj+fmC3gcKVxBDoc/6GnlOZvrNzGEZbK8RPlSupltFDroZ08kOOztj6rrEVGO6UBCjpW3OML75l019W9va1v4cmrkgb761rW3th2Hn5V1++/rf3QKUtra1rf2FtO8ZpPR4yn0twbEBxNn8nY2m1twdfKHiIAkUoowFWZM+d6ZkGv+B0lcYkg0b8CYdi10nEQampJxgz0GsMNBHX6g3pO/EFDlnyYP8et/1KWFgydltY6CqlPVmtVp+4FwpeEaGIoRu6+KoY9ROL2sLEFjOF8M+TQLLDEkRJBXsEkAnCGI8rrBDgaMotJ0pmEjwMnRtrQtwjhC0C1miJlmM033LcNyp001Ugi1Elcux1jAajdi/vIs1HuOgqhzGpiQDFhHt5Oq94fioYbo3wtgeV6pMG9HpOUnXKcZAzj5oYkSBV/lakuVbLMSYgEzIOsGVQWzpPFmj8jwX7s9UFMmd2VoHFGIv2KJUkEECvWnCZ603H3xAosE6aOnoQiQaobAwMQVYTTiVpaMylugjnQ/4bkbbLNgdVYx2R4yv7HHv3bvcOz5m3vUUpuCZJ2+yP5lSOC2Ou9qyV9UpxxMHZocPsoRtbWtb+/6ZzhkxBFbzVsEvbYeNgaI2rJaR87MFXd/TdB0SwRqhKA3WQNv19L3ht7/0ZbrVnD54fXZjUCkHp/KRdVUy3ZnQtA0xjtnb3WE2W3JyviD0QtcKwbeMxzXltGJUGfrQ4ZyhXaksphgtavaNFj12p2NefvVlvviVL9PMZuyMCpyJNCFSGUPwkbfeepvVyRmx99hmxTe++EU646mqgs5ZysIlsK3h7HjJ2bHgU9FemSw6rNPEvSt0TmqWLSFE+j6keVXF8n7sk7e59/5DHp16ove4aPAkCTlfYAqd87veU7iScV3TLRuWswXRCO2iYbWYE0NP4ZT7yDrHpevXufPoEfcOj2jbQFh1WoR3YFyhRIxGC/UuJdhD1MJLDB4rDt8FmlWgbeccFwsFAvnUzWwt0encH6ICVGxZ6nqS2KOwEPqWIIKLBQ9ffZf/9LX/mNgJPkaMVaBOxNB5j7UFJydzfvM3f18LSLFA0LXbWHBWAcP1uOTmk9eYn54jfaQnYJJUbGEL6IVeBB87XnzxeZ5+4klcKl5YhE4MK4mUVq+5xWEEdosKs7Isj1tCK5ioPlD0HjGeelJz+dIljo5O8L2nLg1lUeE7z6rpMNEQUfCySJKBCyQwVPZHlH2q63p9jqzFWfU3rFGWFQUQC2IsuTxgbfZtIhJiAoOp3yEu+1cKxlZp2Mx8CYO/F7IvpQUMI4bCKSg8GDg+P6XpWnzyXZyzeB/SPaGAgKoulNEAErgjFfKTdK+xQvAFEJHYE0QZpwwqgVugoAIxCqqKAkH0OS2sUFpLUTueefZJ/srPfJ5nL9+gtCXvH51z92CJyGWcewIIOHNGWWnBUCQQUcCyRY9NQV+G4AquXL/Kz3z6U1y9/jSNNzz/5E12Jo6IYTSuKGzFd16bcu/eK3TLwx/o7Pkntz/Kv9Gr+zhAKdX4PvD6hievc1IuUOUvbHzCpOdnDT5Zb/CDm90AAuVPD0Cb73IkGyChoQC2uasMKLoQHenfJhV3VRrx4oYljWUT/LMZj2WQ/uYzoYxDwxOzMZgk8DKcm1yUjUNDQ/6KNRZRZH9uyl8Py9jkw+toNF6z62sjm2ctn06VSSEBI4219L3GMQrE0nl4aKgwIGJp20BZg3GCk8yKYBMwUtK5ydrOubyq52zAmW0EXxpG5mpsvBBnZcBXZsTIBc583RnmIhmk+yRGorgkV7NuzlFmDWXM0DGS2PIiUXoyUEpl1AFrKWuVwAnB6zmQQCBiC0vnW6rJiGA8p7MZs+WK6XjM7nSCNQpKyIdeFiUvrH6WkjoV9z94z25ta1v7fpuhNy3LcKZ5JtE1R3M+0DTKyh1CILPlGaMxfwyRGIXT41OOD09AwsCuYozgCpv8KhnmoqIsqNOcMZsv6XsFdUZR5knrGID7Ct4gsT/qdkPfE1TNk0fHhzw4OCIGz6WdHfZ3xyyWywT8iPSnc86ChygUxhBWK3oJKi8ngi1digdiajaI6zkXENFmBGXt1jk/hIAkyTsRo6AaEbCBVX+Oj90A2NF1BnwfcFgwIa1shsI6JApd2+GiMor7zicwVgZnqBzdbDHn7PiE3kdCFAhB121rWWNMDC6l/CTqdVFZ1ZAUjNUvCwlwkhnzSKyDOTElCFjNdZoM2klrp+acLKYVDt57oPGnyZ6ynrgQ48BsdHx0lgBQ6odbU6zvIdSX7bue0HVI8MmvFmxuFki+rZjIlRtXuf30sxibpd30mFdeY9eCDNTRvr9Le1MK4yBYbSJI0tUqDQ7jnSmr5QrTqcRgUdgkPxiQoNdbEmAKUr41A2aSzxR81AYZIeU119ciA4vWOeE8atK9rKd8YFDa8O+GJsbsCGz6cBedGt1TVHaozGZ0Pp8Pue51Pjr5HPk4UizJcEUYfAVj1nltkTW7Y4SEHVqzryq71lp2V/S2xAFFZZnuTnj+mWe5sX8Nawp8EAJgqx2s9SkeilRVZhnzG7J1udE1Kx5AOR7x9JO3uH7lOr1YSueoSz03o7KgcntMxjX3Hljm8+PvdRLc2ta29ufEXKz4+YP/DXXY/VEPZWtb+wtlS3fCvHz0ox7G1ra2ta39SOx7Z1IyGmDlmO4C1f0ArJELQeWmPQ5Qyq/JRhLmwndyIMhmYSAF2Sn4zuNZ98pDTjRvduMYm/TtNzpbLAZJgJgY18Hm47YujuX/NXTsugaiRYwlRZfDkUURpZveAF2RgvH8mhkKGSpZgoQUOyuV9Hr/G0WFIRg2RPHEIGRGIvAUziWJN6cdYolLKsvtYVTWRWwkdoJKxw+lDSSEdXd1AjlhSckPz8HDI8Bz86krYCyuMPgYiBLpvdNjj4IPnjYGbOEYjy2xT7IsQIg2Fbl7TbiIJl204BCHc6y5AKv6MEazaJriCMqOhEkdWqmwYsE4vTrW2IFZS6+tJr+cy/IViXLcMrA09b12aVtbUNcl1mnS0KDsFoaIdQUCdOIpncGOaq7evkm/ajk7O4JOO8JxJU3Xcufu+1SHNWA4WXmWiyVP3byl17sqMKOKiGBFkxQMCQrYBChtPjnbQsPWtvb9NJ1rnCt0Lo0Wg8NER+hhuQo0bYsPPUY0IW0dRDGENkI0zI4Oab3Hh047p6PgKnCFo+88/bKn6XegsFx/8iaTUU1AWHUdyxAxaKI4RE8IFutKRnVN9NB1gdBHqmmpCfzWI0aYLTu+88o38L1nd2eXX/pLv8Bv/s7XkIPIqu2JHbjzjj54xmVJUVj6NlBKxPjAqm0IUuD7jj72WiRJkjeZzUMTw1E7spOEa9PrumOdyo/q/8Jv/N6X6BtP3xoMDilRuctWWNAwmjiqulB2HqvFg9hHjg6OMWWB8ei5t2Vi2wFD5OjRfe42rcri+YiWxRX4mgE0IkJRljgsIXhN3HqPD8pIZI2CWHw0JB0wTbRvrj0xgXoN+IGBUEFp0Qs+asdrDILtI21QJiMxCrY1ptBiC1AUusb3rUoYGCNMJxO6zuP7jtrWOLeDxJI337jHcrnEdx4xgd26Ztk2hOD1fkSod0a8+InPUI6uEq12LNsIIQoHJ0t2JyMmI0vhDIWFes/x4Y8/wTdf32WxHBGLGSEEbLB4LNE65quVrsEB6nFBNJ4Q9dwVA6BY13YSI0ku5CNC3ymTUUj+SQEMbCGiICpEi0LYdG4jhAROkkCScBKV1oCBOUkSgBvRwl4u4llnyUwm6qJo0cpIhKByd918OYBFrFXWAS2EKbOW+keWoiyG98ASxQxSUs6lqpqJyf8g+YkGh0CpnfJOVLbJiKWLipwyRnBG2Nkpuf3CbT73059lsrtHYRUucOvaLj/5cx+mCyWzb3QsuxPqwjOuLfPFgqbriKmoYa2hKkplXBBDXY/5zKd/jJ/67I9RlVM8UBh9VkTguRslV3/hFk89OeK3f6/nvbvVD3ry/BPYdwHbbAJK8ruPAbU/ACTK33v8jaHVnaEINhTEvottQHwGv/yDH9qA3QygjzUSySQGBclsSKzBL+tj1v2st67+qDYQ2KHBwiRWigvFNdb++jDmVLzd3IsESYCfjd0+dl5keLgsueYnqbCdYEtJYpskT6RrXm4UiImxwFk7PG+bp+wii9Vjw4haTO27TkGbhT7bRWnxXZLIFl0Pog14I/Qx4gplNsAm/z1dUz1/GhMidrhlNmNOvQxmKHQO5yqjKmV9jYZzaXIMl+adBEgiXcGBhdes7yuT4q2Y4yobMUWh8WeupCY2OAV3atxjUXapaloTfFD5lzbtKzp8iPTzJatlq+fAqBx2CAWnszmXL18mWKNMfQhX2+d5ZvHT63iCx9gpvsutsbWtbe1Pajr3FkWBsY4QIYrFZNZHo897BuOkGVVlrkLyaYwCC7wPIAqKwUiS8jUE39N2LWILqlHNaDyibVpcYYjREqNLIMdAXj6MtUhUppoQEoO1VSCJQ9ervmkSC7dlZ39M23S6jejxYrCEJGOr83UkYiOYGHW+TjOMD1GlkY0oy12amk1aa6xL61daJ2OQ1JiV1i0RzhdLZKbrjIkq0wZA1AYMiBSlo8wyyaJgp+gDbd8nqWirjWkSVUrTWtrlkma5JIaIJKlgzSep+xqNQFRAGJKZfXQcMTHUOKN+ZMiENSRm8+SbXsS9pLUT9QVs9m/1oujPoAtoTGuD5lDTujpsM69tCnpVZkFD13vqsqKuJrhygg8dje+G8Y7KColB83SGlDM19AGaVmCqOUKTXYkgzM4bqrpUiXKjK+Lufs3Vq/ssVzNaaRJAx5AbWmbnc22CiIkxLCj7fQgRxCoQbIDdqK+kQWb2a0gxx4YnIxvfkM21Ss+XpO9lH8mke1D9lgxWz5vKWWkzPHfGbjSekvaf1neJuTkirdsmM16uAUrWZPBVZlHacCyMSYDCuOEexOSDpm2unclBIc+m+yekBGbiq6SsLDdvXWP30h6LruFkNuPq7iUqZ7h9a5eqKnmtaWn7mXIbS0zAbUk3qTZWFVZz1hm8d/3yFW7cuM7IVYw2/FMAZ+HKnmMymTAa3eDOvU1g/da2trW/CPbh2V/j5x/9u9g/mfDK1ra2ta1tbWtb29r3bN+715GDwVT0yxFWHDp41/8MgaH+xbq2taZMXve55E1tJO9zx0xilNGAUZMnWlQ26++a3GWT9pnj3hSwCkqvm4uVA/2vcUOQmfiFEmAlg5widgAAafBpIAWi2oFl0GSFGAEcxkoqVKagWTNSgBY7Qw52WQejDIGxpONL+8pdwWaoshBjQHE26wST9AIonXhZFOAE57QIF1InjUig71owhtI5IhbnVOFFTYvtxm4yFiWxuqjRc9u0mEQXvpy3THdGXLu2x9GjM7omJbmi4K12S6/aQFk7yqLAuQJrld3CGnDOIeJTAmhdOIBEs52uE4CEiLUpeWSAoAXmmJIcNhU/AQJBixZWwVuIdh1aY3ApaYExWsx16d5C6cJ98JpospHGRJVNMHo/OoTSOgTtGswSNNYJx2fHOGC0M2J23EJ09F3E2ZKwivhVR1E7RmNDNXLMuzO++uq3efbZ57l6dY9JXTMuRhSloyg3ilhDa5j5QKFua1vb2vfD1kwQBgemxpW7NMszVl1DNSqoR5bep0IDBu8jvtG5AmPpY0c0kT5EfN9DSl72TU/bqhyNWM/hwQmutDhXUpaGEPuBNagoCkS8gmKsoCwz0PcQcud0BGdLikIBqkbA9B4nAcHz5W98jTsP7iA0YDVhLtJTG5fmywJcwARD6Ds6b1it+sRYV7CzU+F9z2y10kS8M1hX4IoCI3kd0QS7QefS4D2Zzr9vEsgEh4SgtEbRgBh8F2mko64cBq/d0F4obKlsOUEoXclobIhNm0CtKn16evIQi1FWJCy2MIDDRqtsPr1HenAm0Lceidp9HhKTj7Oic7Y1WF0qkbRWa5kY7SZ2LnXhKreGRdmFYpIfMKZMRZUE4LIGG3UfYhQEa0OBdQZjFdAk0bBzaULXNIQY8aFj79IVfvHn/hJP3nqGpi35zd/8ZyxOF4TYgYkYcRTW0RmfJA0ssTN85ff+kF/47E9jqiqNLjJyln3n+NbX3mF6c4fnnrvGjlPpsI9/9DZvvf5hZosHnJwfY3r1P5wxNLMVc99DCBgKZrEBE7Xr1ke8In/0XMhaMhZRvJKxjhhUcs0mZsMYInkhFlAZOqPd0YgowNfEJH2UWRPz+df1ziUJXYMZpBwwel85m/yoVAyQoF3OilcXlMnRYSUXwiwSI75RuRHrrAIR86MfI4oLUX/FhCyJJfQJrF0Uuq8QTZK1FWJyZoNJjJkEQOXjvJaWKCcFn/yJF/j0Rz/Bq+/e55VX/xt+8Wd/gZ/++I+xVzs++vSE+8/s8earBmeEtvV0bYdIr8xRqePdORjVNc4IXQzsT8d8/NnnqKsxRqBO96oXRx8jVgLjkeMTH9tnXH2Uf/Srpz/Q2fNPYps++0YQMLy2QXr6R3w5v5+aFTKuTNad7PkWSm73usq10WAxbDIPKHfTX/zouqmADyCpNsaTgVB639qNQCiPKhc11/GPIZd382tDrWsorG3uWwYA0iasZgDdkArfqTZohtglbSd39ad4LHOc5a5/HZ+uYSq9o8904k9Q5okcs2R2gAuXRDZeybHgmkFVn/10ItL4+i5QVjCdjlhKQ9cGQPTZino9QgyEYLB2XYTMcaUWJJMUNrK+r2Dj3ni8dSYXipVpTpKvn++DDH4aQGPpyEjxRGZMypffmhxvZskj3Yees0DE4AZAmIK7tDC5jpejRGZn88SKZAlWL6KyXLm07gpBAmXlsA566Tg+O2HZtEwmNXVZMarGXG4+hBW7cbRb29rWfigmCpo04piMd5kv57TNknrktFmgN8ouaaICY3xQ5tAEmvAxAW4yIDKRXIdeAfGFc/jOE3ygc70CLKJX8HdmDrI2xRM5V6RrQow5kUVihjWEPPeTmuCM5cGDA5UXC336uMskfCgQExRU61AgVaQPaV2wjsmopHKO8/mCQFoSFYUxxA95PctzovdBgRV61GkNVVZVleHNE6sl9AFrItExrHfOOgrnUs4HxFgKhBAMEQg+0vcq2WXSWl8UNgFR0HUAZVSNPtAF9W1VfiuvF5l7L72e8ntihhVCx5maCTYTk8q0tAEW3fiuMRqfRNFmT3WfRQEnJupnxKgfa0xiso0URcmLH/kIT1y/Tl3v8Pqrb/HOewsiuq/ee/VD1k4F1jpW8yVNMwf2UZ4eXfMmlaNdWB4cnrN/ZczeuNRYp3Q8eesqJycHtMFCsCCaOTWivnhCLtM2noSxTuTsiR3LbPh8MZ8rNhyxNWhPNk5deqQSc6lu0pL+WTs+iQ1rDR6/IGG7sZ3hZ773spsWHpfaTeu7NYMfKQmZZoZGyHU+OvqYZOtIH04jSYDuvB29LZIPtjF4SfdWZl4a/DtrmFwacXl/zGy24tHDc872Fkw+XLMzmlA52BkX7ExKlnPoPHQhQMps2/TcGKvNRY6CLkSKwrK/u0NlS736aYfRQNtHQvCaJ7WWy5dKjg+3XsTWtvYXzT569je3AKWtbW1rW9va1rb2Q7Xv2fNwxq1lOciRXErf5mQrrJtF0RgtJ4c3e4djChoHat2cNM9p5LQhkYjBDkntmIpHm4GhNYaBxQmGn1m8TGQdAGtCW4tAmY6f1N1kSk1wWJsC5ZRowq/p/UnJkM2gWsQP+42pgEvOAw2B5lDpIANQYtqEIaY42hCFQULAxtzxK0OyPIPDrLH4cPF4tdPHJWaJiHORstCkxv+fvf8KtiVL7zux3zKZuffx53pX5pZtdDca6EajG27giKYJDh041GigkUKhkGIe5kFS6EUReuC79KSQJkIhMYIjDYeDoScFgCQINgwJQwDtu6u6fN2quv74bTOX08O3VuY+txtkAwTQEHp/EVX33nP2TrNy5Vqf+X//v2CgZJzk/IEidaBKUJ+LO/3htMr01gatDMZqqhrqStMuHcEH9ve3uHhxm0f3p5JgIqBiJeCykEhLTzAJWyVMLvhVWoBf2knSPkbyc873onQ/YikXS6QWIsF7yol6VeZiTuCQBKxU5qGOAwuXzsmBIuUnQx8IUZJXxhiauhHGDWuISvXFZ53ZlyAXuxOSkEMRlx2+82iVqGtNVZvcGefxLlHVtVxfghgtbdfJMdvIa6++ysao5vL+JZ669SwXLm1TVWXyr/65+re1rW1tf2iWM48qKUZVw1PXn+Lk7JR37izwvmV/f4v7D+6jksIow7JdEEPEu4DVkuyNPop8gw9yLJMZXxaOlAKjukLbBr8MuGXgRB2jUsC7jspqXOsgS05qbRiNxliraNsW74Q7rqorgAzACbRtQGvD/t4Fdje2mM8nvPvOA2aLOd636FgxGlfoyhBDpPUdOgnbj1KS3A8+koIHbdjc2eKpazsc3j9mPm+JWZYgKUVICRWSyIGFQPKBUdOwWCxwrUjgxaBFiqfSGKOJKhCjdP3WxmZ5M4/3mmRBJ2E4qscjKsA5jwsOhaKxFUvfEbyn7Vwu6EJdNZjK9h3mwUONoXMRHwLLxZKUEnVdo7Uw9qi814aYMFWF1pFu6WRvy2BlXYr2WgHSwa5iAd1oYbUAiLkAVAnwtqlqlgv5XMigHq2EDSOZlCUaFNPlFBUU0beo0HHh2g4f/dTH+J4PfZT33j7md3/33xGSxqUIITBbLNCV7Msxgq0NyUR0E8HmOQZEJcyFezsb1OMxv/WF1/j6m6/w0ksXmLSBW/tPUTcBa5wUaYIlJI+ODjAitxQTzgWWIQo7RxLZDJT4MsXLizEzH0GWOZU9zSpE8lUJywpJoZIGk7KUm7xjIlsmMhcCcEpSVMuVg74LWWX/KtGDvYt0RnIBFegBZymDJUzuYO93SZ2795GOdE0GEyiFjxFdAAIZZG6twWpw0eBRhORRKbMAZAYDAVIj0mspoWIimtxlraCqLFrKSSgfidHy1rsPOL4/pdq8wpWLV2mqRoB7CXQyXLu8ze2n9mgXY07PapxfQhL2LG0MViuq2nLx0gW6VnPaKp5++Tn2L18RwJSSR5EUHJ05Xn/rPknNaDYrgoaDe4dodfJHvYL+R5iAw4qVDnrxecvzHOKG36s80kN4ip+vBthM8WuHwtBQLE2l0NoXF3NBKg2SHqWQBfTxRl/kyhXL/tglRiGvAxnk0y8tSvXsAuJOpnPHkZNkOZRU7imDZcq1nacTkHstn2UojhW/d/XQPXQrFT97iE90Wef7qpjM97hyAJVlF4UrSvfgnzL+SoPKhefy1PqwKY+fsIbm52o0tpKGgRgT7dIzGik2N0Z4t+iZkdQAoxI21gjJMIxtQbNZARHHXjroPFhJLkXiyX7irMytHGKQg8R+7FIGJZWb6cc15sHPz7ZIqoQgjG0FyGS0Juksa56PlchgL1UYLIax1Fpn4GEuspKkhySGzKCUQZpJ9s0QRMZ67md0yyVbG1tsXNxhnLZBZaTaE7aOJ9a2tj8CK8u4UgIutgKmdM7RtkuMqQhhLiyZaJwP/VrVr10hiu8TYw/YQGlpVtOyl2gjgOrghXlyuVwKIMkIaaXP3WeCIzW52S5kKa2BIa+AR4IXNsnx1ogrl66ymE45nZ7m/Ur2I2Myy2XKEscg19WvtbIwag2mqtFGEXsQuYxLJOW+kJjlz0Qit7JVPoYXbEdmKFJGJNeMkeNHpbHaZEm2wtSkIUbJBynxDVVMwubEyr6d2auMKQB5PexzMcm6bbOELynHDTJWFIbEAb3SyxZTGhdgJU9VfIUBcCPPQ55t7H2SlPN20mAYQyD5NOQPsyweJvsgCXzwkjFUhZ2rY7acMNp6DqL4uKUxMybQIWYZ5UjC9P5zVEHiqQhWxV6SWYBQhsPDE+68/y5XrmzQ+gVb4wvEZUfn5qQQiDFLl5F6n0kbQ/SBkCIqDGNf/Knhvoe8ZczAYsnD9um/wVeJStjcc3NITDqDeMo7p7LPk/ovKoWwWub9uzzjc58j+1NRn/OrVtk2B9lWOYbOjPzFV809DZB9PqVkvzdZznaZEilk/6g0XQ6vQz9HFDneKWz/GfwtYxUhas6OHW9M7rO5u8uNa9e4cOEyTTOS42Xfd3e3pus2OD5Z0nWuZ6YVaUVh4N/a3mZzvMXp3KO1YfPCxdwMkzD5xl2Ah49mTGZnGBOIOhJ9pHWzb1jy1ra2tf3pNRsbdt3Nb/dlrG1ta1vb2ta2tu8w+5ZBSufk2hLACoF8DkKlKBi/2bf7v/V64ivH62XRUlwBLCGyBWSZrj4RLN/Tekjya63PH4sVUE9akS9bAUMVhqKUAzlJfAj1cd1U2Lqi7Tpc66QQ6c9fr9xMyMw/ItcjFLoJsnxPL+1WwEXl+zH1wXQJ2PtunHw95CFSucMmFThTghSkDFdYLbQWauHFYoExhqoWGuyEJCoMQjueVCJmxg5jTCZukmMGn7v6+msWtgaSBLnbu2NGG5YUArPZkvksADMuXd6nPm5xMymgkjLjBoqY2Qn6RFlMRCtU4+PNEcZoghf2qRCjAAB8GMBeMUEe274TPKW+2KDyGEekK1HkNiI6J08KKCwESQCqELNkTOlYAkKQ85ZEUUzYpkHFRNd1RGsxxgjzSRfRWlGZStidIpimzgUDwArDilY2JweE9lwbAWZ5F/FuSV1pklW0UeFGsL2xQdNIIgmqlfdmXU5Y29r+aCyDKlBUVnH9ykVigtoaHj3YZNHOePTwgHa5JHrwPuLaNu8dEJUSkI4HHVSWcAjy2QBeBcxYmNl8iHReioyLhYIjkYzTFpSNxGVeMxcJY1rCphEAVPSDBFaKhBTo2g68wowjP/FTP8iNi9f47L/+FY7vHAEKlaqSasT7hHPCGKONMOlE71AIAMk2lv3L+yg/4rXX7tN1HZ3zuWoryfRARCWwRvd7ra0r0mKeGaDAMYBHyYXjGA1VPaJSEKKj3mjQlYIg94pWdM7ltTP0bHi+SKuZxMaGpapGaK3pXGYtConoI+iIsgqNxmol0hiqdEKLn6CU7HN1VQmjT96LnfOoSiQkJHUvIJyURAoDxNcQmTDp3tWQk92RqCOdb3FeuteNkWMZazCVBaPRUZPIoFajMsjG8/5br/Mbv/5FRptP8f5brzOdHpO8Q/mEQpgQY/SkZKibhnEzxvnA0YPHfPnzr3H10z9AU0eisqSUaFt4/70Tvva7X2fR3uPf/FpL8okXnn6Oo8PHnJ6d4IPLRQBLSAEVhCmwrgwxtXgXKMx9JhdGlDEZSC4dwkW+NnkpgFWVztJLpu/Sjk7muk9BWKuUzd3Nqe/CT7njH6P7QowUtqSA4rOcYEiJFFUv66SNEvCYjyiT/ci00m2spOgQYshFiorKWoLPPgUFdCXvvDYGazSNhqefusxkCnfvn7D0AD4fuzDjMKDesx5WjAqFABJDENaXRMSiiJ3i4L5DX0/8p3/pk3zk9oe4tHWNGk1QiqPZkrP5A559YY/J/CqLt45xWa5OK42uNKayXLx1nR//iT+DZY/P/ubXOVkuePXuHV68mdgf74s8Q9LMZoF375zy8OBdYpww9wticAS3+CNfRf+gdi6eWHVzMpDoW7bVD58DpfQzYyXUKID/Aag0/HIoIj3Zdb96odllL9iU4TNpuPCYMlNDkjmpKyt+p0rgs79d5H9WrzghIJoSpxS5jpXf99cx1NKG4Vu9zzxvUymEnr9EUhruOOS1N6ahoSQpkT/UKq9rWd5TmGSH4l1IpQkgxwz5BMHHcw0U8of8aaxmvNWgNbjWZQYNzWLRsbk1FhnGIsGd1yUBReWyfSzlX7l+rVXPcKpTGRF51t6HLNtcmJLS8CRXYkpVxqP8qegZzXKkOAxxGo4vANeUn4kUTEMQfjWtFUGlvESKj+BCYVQoe9TAsERMWbK63HYGL1MaTMo1pCw9BCkGKaJbibe8CyQcb+39Epsn+2y6K+fnhlLnnss6wljb2v4wTdHETfbSVc7qB6QEG6Mx09mEydkU13UClhBaI2HnBHkve5nlApAtDU7CMKRNYXQROcmYEjEoutYJWFNlqbAkDNUxJpaLDuegGdXy+czORIJIluOKoHRka7vm0uUtjpXjeBIyQDOz7KhEzKClGFbAU0nAVKiE0obRVsPO1h4H9w9xrhNgVM+6lxlySChC3jd0ZskT1lmjjYAiUkkTDvlArSQuCt6hLFSVEXBSkmsRsFEGOuW9rD+/FgC+MbLWej9IcqYcKygt0nMFwKvyfhkz03kBnlpjM3Bf8kHepUIJmoc2QZHaSwODYExxkC0rOdTMpuScgEpiluJTWmIkLag0SvOjzjlKn4S5KLnIww8eUdn3uHxhF9fOSCkIC1PSpCwnSoTKGjZGG8L6uwy8/rU32P7YJpf3d/LMFR/g9KxjdtYxnU44OzmA5Liwt2RzVNO2bY5JE9ZYfMost0phK5MZq8IKEHvYa3QGQqUsAbi6ixtVmMRWQF4hCftqSn2snvE78szK+PaS1Ks+keydGQssOb/M4joAtmW/jmoFULXyJgv4bMiH6ix7uyrnS/azVAYwaQU72xuMRmMePZ70cuj9VfV7b3bzYurPWgDrsbDxKzBJ9U0ZAcWFq3vsXdllczTG5ndqGSKT+Rm2DmxujjibyDhSgGdK/I16Y8SN2ze5efEGb793yN3793jjzXc4u3qBW1dvMDYWyZcmfIDJtMUtp/jQ4pJH9czTa1vb2r4TzOuWX7j5f2S/u82V5YdYRwxrW9sfn237K1xdfIT74y+ty4FrW9vavuPsWwYphVycKYFi6pPBJehe6VH5PRbTPsmc+D2cnW/sfoVMna20UPKnnDCJqu90gbjy95IsLufMCYg0aLzHnOgu4KYYJXngopPPa0UyJdCTREQyibgSo0lCXuRdqrqiXXgpTAx3glKqLzLrQnOdStA4BKY9C1Qcqgir4gQFjJOQbmLpsF0BcyWReNNGE1NAa4vSBueEecpUhuQ8IQZ8QLp9TKSube4IS7R0JCed0D3oS2mM1mxujdjYapgv5kxPlxAEfDOdBIw9Y7RpWbQQve4z7EaVEidSeIySlIpJUSkrCfwcjCstxeamafAuMJ8vhzHMzA3SGaVFfgdyp2EpNEgnmIoyDvJMQ85bSOeTZpAODEmK9pUV+ReRYwDnO6ytMC5SVRaU0Gp7H7HWAJLsSsrQuQ5tLcSI0QqMxqYKq7PEkFb4zpNsREVPRUVKYHWFS60UUIPHuSUxeqCiwNiUUGoNc2llXpV5s7a1re0/1sr+lVBK1pOt8Yj9vT3uHdxlMT2TxDARlRO/MXpQkvyOUWRXlktPSF4S+LlTNhFpRrmwa2TNSwlc54gxgIoYq+g630upta1nNp+ytdOwvb3FfL7MkpiyawUf8h6kCGHJ7/z2r7C7uceDR0e0bQtRY5XB6ESKLcELoCf6BPm6FSKVZZRC1xU7ly6xeDilVppWSSK3FKeFIUf2r0CkrmtijBwdHeF9oKoqjFJgupwMrkhBE9ISY+DC/hXoWk5OH+N9R0WFSQmURRtD2woDVYxgrIWk8EGYCa01GK0wVuOcy13nmpSEWdFUBcQVBHBVG2IUJgulZB+oKkvTNCgFM7/Ie+MgtSpA11zYyJ3HAg5QfX5dK9XvyyKvGknJ42LEdwmMJjUWW2kMIrGXdAVGY7yCLuCUXL9NFbUa8aV/99vYesStC5tEWqoKXJeIWuNNRHlDQ8OnvuujbO9c5suv3eHsQcsXvvYGP/SpH6DOLEqKxPFsycOjjugs7cxzenZG0wRuXd2im52xMdoiJc94Q5L+h2cToulomoZKR7yLdL64HVIQSD6INJpWhBB6dhLxYwxVfjYyj7Mkh8/yfySUsph8jeJryfsCuTO/FMdL4Yos/cEq26InJGEv1BoBsWVgR0INSJKczA9xACsYYwRAl8+PLtJVSPHG2OwrSffy1s4ep5NDTJWwRGLGWxfGTa0Uyur8ngqDmpxaOqV9iEQVMguVQWnxdUIKfPVrXyV0kR/++EUaozmbL3nn7j1myxPu3nuP45NDUsySHKnCGIUJCWVhtDvm+ZdvYecNv/27iffeusvfvf82P/gjn+DP/+CnqcY7hNTgUiSNG6ZzmB2esuhOWPgFhu6PegH9A1tfKCr+jMoFSVV4g75JILBiPdhmOKD8sQLEGX5x3mdKq7FKf+78qRVgj8Q0pdkh++GKzByQP8xwrFX/X97O2ANlzMp90xeiz/t1wqIlDFrLeZfjKolDzt9XvqeVgGuIyVbvkwy2OT8GaeUDq79RKyNfZJlXYysJATOjqCIDOgf/dGDoQNgb4vnrVvkz1lqCDyxcR3DiPysV8R7m8yXaKpSDFHVfjNQrDzVm9gqRfZTqcn/tSVhIYowYI1LTwtCRVqZCvu/V8eoHa5hDOZrs468CXCrMXX2/TZRiqtGmBxOlDFZSmUUwqczcoYSpzxQpmiTrUwihlx7XeaIZJRKk2igqq+mcEzmbouWHFO4jXqTdVJbDM4qZOeIL+z/LzfknuNg+x6a/jEnV+UnyjS/L2ta2tj+wybtUx00+dvzTfGn/7zG1BzR1jTGGZRv7faSswv3fU8y5IjlSjAKsFn90AGWoDJTR2mTwhjCqpRgyiCJlFjrJPXkfUZ4+FxWE3lIALpm5sshYPn74mJPDY0ia1olPTJa5JoOiCmMSef0lA0Xkz0i3DJx0Z2w0hqUyLNoMRemBSnmfUfR+lPc+N6bRy3VplfK5DTGJg7q3d4G9rR0OHz9k1s6IoewdwowUC9gp0TMllXHWK2t7jCuMhrnZbVi3C1u7Gnx/SsOD+JZKaWlgyI2PSq8ydK+y9mQbcCkZ9MS5z8rZUg9YSUqjsqybioGoNBhhJw9emEKFYEhjqgalPffvv01lb7JwM5QVqWIfyEpuBhU1F3b3+NDLL3H33jEPjk5wSRNrS1TDzh8SuJSwtsHqEZ13uOjRJpCiZ3t7h7qqCaljpDSnkzltFBZdpSSOU34A2SgK+HkYisLORQYHFebJGAewWHlOJQZT2qCT5G77OC03qqpeW648BdnXzgPhB99S5+cr8zaz3uYHVDyiMnNUkWhVargmch4uj5vOx48p4oNivvTMFxPJeZokzKcrjGJy3xngV2JRVWLONNxDSiRlgZTfB8X99x+xmLQ899yL1NUI13Y8PjphsVxycnzM6cmE4F2e7yvNplFY62MKeD9HhyUmRI4enzKdTyF6bl2+zKjZEkBWY8BUOJ/wXUcXOgFEr21ta/uOssfN1/lvn/vLfOrwf8ULk5/i6vLD1HHz231Za1vbn3rb9Ff4mXf/B/7O7b/Bw/HXvt2Xs7a1rW1tf6z2rTMpqZUkLlAokVc7c/PfAPpAv3Q0qZL8Xw3A8jfUkwHluZ+tdEKr8yCNUjiT368AnNT5EoBSpQunAKTKcUuSPd9P/rzrvMiAWSkc+OCEdnjleFobtLLsXtjg4uVN3nztAxKBFGrQYWVM1PB3VYZwAFgN0hKl40rGVWdq/163Pv9Oa93TYwt4S67JGE1dV6TcoeacJyWNyjTgI1vRtkq6nGLKMmfkrjsB4cToReYmX58iYYwU0h/eP8G5lkprtrdHQGQ2d5ydLqlHUhxMUegGpIlHQZKCeMIjInoKvHQ8G2OyHIIRaZ+2Y7nsMLqSxHtOBgx0y6Usm/MNSvdjWrqlJGHQ94LngkIe39x5rLQcO2SGBmst2tiBXj3r0rvYSRItSwBqZanrESF6JAEYCE6SAUZpVPLoZDBKsbVpuXr1Mu+8+z6xBV1ZFBGtKyIBYzTeL6kaja4dCz9l7Md0XYsxiaaqUSnLXKjCGbW2ta3tD8O+gcWjIFJUWW+8FJWTInmkqBpEJsrkNdz5gA8O5ztc6HAhyHoTkTWEhFs4xlsjmnFN13lcFwg+Mp0scpGVzCQ31E+DDyxmHd6dEnNBoXSLxlh4fzSpS7zz+gMUB4SkcGFJCEI3j4bYBcCiE8TgicGJjGWQzuKlczBd8srpazxz/Qaf/P4P8VufewXfBZKOuVCtewaIGBPeBZwX9iNryjodUNrm5K8kVFOy3LzxAv+b/8X/ksMH9/n5X/gn3Dt+wHKZqKoKawTU4l3IyX6d6yZZ/iJmma+ks5+hUSp3TKckxD0h4DoHkFk+yJtA6ZKN1JW4N13XScLYSvZbh3T+PJK9BTIwOT8QnenyJDmtSIEBTpPI3cQGjaGKlTDl6ERtNvHB44KnUsLE592Suh4x3q4J4YivvvKbHG7v4VOg3mhoW0tKQcCwuiZqzYuf/jA/8vEf5fKvv8avfv5z3HrhWXQtiJ3SN7yzO+KTn3oOqzrefkNz7/GrzNvHfO4LX+C7v/v7+J7v+T7eevc9mrFidv8Bv/2VV3AFtKMUKItKAvayNrMv5mKWsEut7r9Dl3OICaMFyBucyAGQFFWlaSrDxZ0LzGct08UC713/vbrO0h6UrnrpWJfufEnaO+el+7vUHpRCaWEPkfqYgI6VzqCRwuCSt8kCrIJcBCogEyX+hsrML4HEZOH47c+9itE1pk40RhM6i2+dyPtlaaXkhaFRadODuFeaotEpd3ZngHttN0iLhofvnLA9PuLBs3Me+ZY333iDD+69x+ODAx49PGJyekpKnspYlFGgAxH59+Jkxi//6m+yHccYt2SsGyaTOf/u136b6eN7/JU//xe5vHed3T3DxX3Fg03D9DQR2paum0Pn/5BWzD8aO+fxPwHwH+TbBmbUUkz9Dx73G7AX50E6g5U5M/jYuRbUA1hWC8qlrDzEIOk80OXcPQ33IHM7M3yh+nlMjotgiGs2Nho2t2setHORWEx6kCFbBRqVe+ynfWHnIfvaT9y9KvIh564Qk0FDRd5GorMVdqJ89BBKQVY+obQSxtJYtk9Ze+WvpYqYi9flyvP+2raO1CYgUFnNxsaIlALzhcN1EW1KXJTZg1YAQ4V5omc20/TFTa2yDI+W9co5h+pXyoE5q4xAysGEKtXjJ+I1Xa45puEY/WfzuliaH5KwJ/XSKitzS+V4QWWgUqlsVrYiptA/k55FV+VnmaWZrFVsbDZ0Jx3BCxgBhiK/FHUDymiCckzmZ2zpHc6Wdzk0H7C5u8N2vMrN2Se50n4XlXCwrW1ta/tDsCH1NWwa43CBp2c/wCu7P4fzHWTpemGtU3m9UsKCpsjMnUNeImUW6/64SRogTFNRNxUJaXggif/lfUKFIh9XLkP1a1XbOliRQCbn72JeA1OSWMR3HpQW4D7SEFgZna+rR4IIMLOwxCRpZkgx4SeOqt7g+jPXePz4MW0X8pqp81qchs/GQAHtalWktMpKX0BGkkuydpOPfOgjbI0qvh5aFg8XvSSxKAVHhhxRjqlShJzfKn6kyc1u4trHYR1PiZgZgArbdtnTVAGPxERUUe47g64U4pvK+Qbwaw98ofgzA0irjLdslqqfQEoVZj2FigajNdpq6tEYHQPz2GFrcYoXXZsPEPF+CQlmkymVMlhrCMZAiDI2SuStzU7N/s3L7F++gXr9XVQNG6O69xYUUGm4dWOLrXHF4eMN7t+/y/FZx8nRhGeeusFLL99mOllyPJsw0onlG2/ilBdZ0wxkkzg45H0sexQp+wWrG89K3jWpLI8LudlH5qo2Cm0Ve7s7BBeZTOZ0wfUOheqbP1d8juIn6DLW6Zzf0OdZyyMePDvKK7Oap5avxh7zVnKQ8sxU+abkFlNkOpujlQDajFXoqIg+5XhezhmTxPaDnzD4gjI0hZ2S3GRhqU2DpcbYhhgUx8dLDh4fMpudMl/OWSxaurYjRo9SUGmbc/URrWFkDI/uHXL2eA5eU5uKEBxu2vHmW3cwxvLU1THGRHY3EouNRDcTNuaIJ4Q/2fHE2ta2tj8CU3DS3OEXb/xNfiX8X7i8fJkfOviv+fDJX2YUd77dV7e2tf2pNYXiUvsCP/Lof8s/fPq/4hsSTmtb29rW9qfYvmWQUklqrLSwrwSgkZRM/zOVeZJLt20pPpWukaLpXQpH8sX8o3NFCDX84huuZeVfSaj1Syq76JdLznkl8ssVCF0SGeUzfWI6Za31RIgOVEIrLZ0wOYEtYJ6YCwKeutYCwtE+B8KxLxqcL2hk2uU8Ln13Tn/2IfGtte4lwkpQXTqJK2MZ1Q1oJUl4pSR4zEOlU5G+QSRNrMEHL5IKEUhS2QshopDCZEhSgA6+dOAVAFoixU6+i8ZqzcWLG9y8dREfPe/eOWA2j3QuADn5k68z9uCqDA4KGZiVEzsxRGGe0Ambi8ntssN1rQB0+uOsSAAm0EYJw4a2eO/LKFM6nmOIfVeyMTJ4SsdMfw1EjdFKKMYjGYQg4yq1R5kUIQRCQLrQtSJVEWukuiDnzdTVKRJjkTiSObBYLrj/8KFIQrmAjg4yW4ipS+ElYazCq5Z37r3FwdkZk+MTxiPF1StXqZsRnQ80ozFbG1tSxDxfeVvb2tb2+7TV/SWmuLJyyL7WhZbOLRmNK5ZzS4uhXXaEFGiaBiMnSacAAQAASURBVGsNy2XLou0yoDOiUsQqYYZTuWMzRpFKaEYjRuMaVIf3ywxuNYQghd8UBfCR+iKvIXiIhdUP2S9TSviIMAEhsgBKmSyVk2TNR3Hj5kVSTDx8eIQLCbxIOsQkNd0QZCENKkIMqOB4PJnRviGsTcYaXIhYU7E5GjM5O5MCBZHghZlFKdUXSsU0OifYE5EUDNvbVwluziuvf4nD2TE+RXTepuTaUy8FmiK0rRM5gBgJ3mWmJ5s7xgWYImutl7XZRXwIK+wdqQ/gUhKGm9l0ka89exFGJLUK4NoH2Zs26hGV0sxd1zMxSZE4F4S1oTYVy0VHCl7YLbSiHlWgDCM9pqm32b1+gWeefYY9at688zbBGG5ducCbd97lvffvslwu0CcL7GiDj33kY3zf7Rf45V/8LJP5CbrS2JRQyhPilNHeBqNLO2xfvcRn/txlti/v8t3f8xIjBTHT+Nuo2Go83/fhHb7r2U/x5S9f5Z/9k2PuPp6jdc1P/OR/wsW9G9x6+y7z0PKFX//XUCt297a50OxzcHzKUnuIEEMgZOBcAX6vMr3oDBgQgK+iqWsIkdAJQ2NSiqoy1I3hwpVdPvTcc3z1K68zWQbQMSfdDbG4aQmRTYgJn5m9jKaXeSpMXlJwEEaAYbZJYV4XNpJz/ht5jiYKcyUqZsCdsDvGGNGmJhLxnaM2+R2LGm0UmEgoUriUGqHMGaNXimcF/IzC6BptBMBkqopm1HDp4h43b9/ix3/kR9k0m/zrX/kcjx+9h+smHE0mzKZLQnBoAqNaYauK4Gpa1XL10i4fevY5jk8sISrqaotmM9FOPN1kxsE0ctQumX3wKlWzwTOXHPeaKffCDOc7QljQayj+ibQ0/FEc4nPeeLEBfDY0Oqz+9ht9or5x4onzfeNnSwAwfDL1YJWVgtpqba0UIkss0x/1yR78/uPyu1CqkuXzq3Oo+NuBrutwJ53MRwrv6xPjUcZiFVw1VDrlj5UGDJ1lY3qGqHwUnX3xlJk7RQK6SCzmom/el7QWScvCZuq9ywVW1V9TIGbGMpUZBVeGub+8KIBTxD/f2hixvTMipoTzU5ZtJPpypwVgmMqSQR86Jil5q/KLPBqFjUTuQ5EK0DfPo17+LgkriCwhKjNxFLoDlZWiC4C4xLMqz4XYj3GJ43pwQS58myz/0s+5sobk86cohVwp7EYUpr++GIUlI6mED5HUOrruTPauJNLeZEmnpJUw2ypNyJKwk8WE2WJB9IHKKpajBSfmkDvqFW7WH+N7F/8ZG2Z7ZU4PM3YdYqxtbd+6pSf+nog9q9mmv0JMCR+9+O2Z9Ud8dmGHtsbgvMtsSAWQK/tKkaIsoBaRlNKZkTqviT2zS8lqZb+KAqIs77RIhxZWvZ5NUCkUcdhlVCIG1y/Ym5sN+xf2ePTwkK4TcE7x28pe2a8dOQfnguftO/eEgVYDUfIwG+NNlosFPku7CRPRMHgqA3aENb3EPrIm+uC59+Aey/kZj48OcMELw15msRa/LpxnyVEy3gKoEubact6QGbnJkl4ynsXXGHbUAsBVStZd57K4dQGQDDuvPLMQqYxlYzyi7Tqc9/IbLcw5BfhrtSWEmBsthElImuBAa8vmxjZ2s+HG09fRbeL05IhdW3F5b5fp5Ix33n2PpV8QfKSyFZu7u1y5dZPDD+5zMj/DGE3I8oAxOLSRWHE291zc3ea7XrpNVNBYS0hDjlGrRGMTly82VPU+J6eHTGcVWgX2Lu2xsbtNPd6knjU8enQfT6TZqLl55TqT0yVHZwco7VGx7NslLkTGvvh4eV+HFZ8uDUzE/YtQ5Ke15DkjstexAniS6KIAoej9BZ0/V5hwV6Zaz6TVy7wp1TOvr77Zg9dWjj3skXpF3q9v5ogpj6PkIkuSOckXyismOdB84JJH7+dtfhZl/mqlMdYwGtfsX7rAM888w+Zom3fffcTxyQk2eYhZdjrLLxoDldWkZPDRUjWW55+5BWbMYimnc2mJioCT6144z3v33gUUdT0m+hnOzaUxyXtYy72tbW3f0daZKXc3P8c/2Phf8+Hdv8xPv/f/YCNc+HZf1trW9qfariy/iyfZt9e2trWt7U+7fesgpTSE4quBnND1ZiAPQ71BglPd1x7iuWRKTmyr4WgK6fZ5sj6AIvdfDcHmSlqEEkaGIOAonZPJMSdx0RIEl4R8T1GdywuqTwaVI+XkujQC4dOQ+FCKXAyWaFibwMMHBzx4mAjBkEJEqZDPZ/p7ENCRIubkPch4SIFVgvX+s31SOydCcodSkYwjJRaLOWhF0zTUdU3CslwKY0Hp4Klq6eLJJT1hyMhF8ZQl44KXgmBSCqUtxiZiSBmkBBoj4CsdUViauuLypV12dxtcrGmairPJHKWsFJiTgJnKvCggsJTvKwQpuvjOY2thqCKItr0qnXSFRaGwI/QloPzEkxQQBJilpLCKhhCFtloNiShiTj5EMKoA04KAoHInXCTiXCeSKzlpKPmR8vlIjArXdUxTkAJ3VFS2pqf9jhGdaqKS5JdzidlsLgWEXLCI0VNFLd2KjSSGnDvFJ8eujhyfzGiUAizvfdBR1w1Ka7a290hBsbO9RWXNN38NV2wNZFrb2r4167wTWTBtKewTMUWUTcTkqauGVi0lGZwSplYs247ZYkHbOSqjiSHRVBXT2ZLOOelixRM1YGpciMT5guWyYz5fkqLsOYWlxwWR3IrkAqmSonFV60yLL+x3pETQUlAglY5r8G0niXYF9bhmNLbMZx0xgu88wXuiF2YZpTM7n4LKGFI0KKWYnZ0yO+loNmq0tZgONje2GdUbnB2fyZ5RwMc6ZQk6Ye9LKaKTQRtIMdC2Dhdavvb13+HevVeYTid450jBY0wkjmqUMXjvsFZk3aRYrLGmEnIMK/J7hdmn7TqkCTUDokkir6lNr4opzIKB6AMWTQCSF1BNJKCVQUeNynI40edCdoLtnV1GxtIdHxJIfYG6sor9Cxc4OZ1T64puITKktbF8+KXbLLrA4+OWl19+mdsvvsD4xkVMCrz2xS/xo3/jL3H54kX0bMrpP5vz4N4j5n7BaHuf7f1Nzo7u8lunx9w5uMuoatjY2ePx2Smdl/1QhzG/+E8/z1MXP8rLt2/xsY+8SOsjx/MFx8enKFNz6+pl4cRIivfuHfC5V19l2s4ZVyMWzvHl9+6wP20hTvjKV3+HL7/5NfRG4i/8lT/L7d0X+cc/98/p4hLvHe0yUQpZIeWEflIE74cEfi4MxBTpfAseKaxl+aekwLnEowenHD/6Ii7rTWhdiW+gUn+MUkRK+dkVtpkYBr+olBV8fjUSYI2h0uLXxb5YJECmlIqPRO9zKpBu9LpGa4PvPDFG5ot5LzOrMKSoWCzlXdK6QWsjc1trdCID/dKKX1IsS/kaAWcYZRnbDbZ2dviej383n/rU93P9wjVefe0hZ4sjbt7cZq95ii+9+S5nJzNS8jSNYWujZmd3h63xNT54fMRLH32Jv/Rnf5yTqSYmzZ0HM/71r34NPzsh6SkH9x/xj//xP6JRCTXapVYVhw9Pmc4ndIsWFWKW3P2TaQXgAwyFU7L/sgKkGT7bo1z6ItRqwWi1tjTEFN9YRC51yCeTPasgpPLZUicrnfpDwXcF8LM6FdIqRCn/QuXiZxrgSeUMIsGT8t/l523b9fdGUsNne3BSGnzlXBwbhmZgaCUntMr6WMD+BVzV12NJhBhQSRgDdQb3e++IGQTaxykxN5wgjGSrsUxCGiREzlGuxWT5ofK5HG31T8NoQ9NUGKsH+e0sjabJBca8XvTPbCV2K6whMUSMyXFciZWM7G0RKIy//awqE2Hl2acQ6B8Chd9BC5i2PIOi05NK7JrHrkfFlU8K8FJFenaIVfSPfC8Su0FCXWtyc0Yi5nUxIntUihqpJpKfqSamiCkfSiIrK9KpgSbUKCXrZEyG2Xwue4o2fFB9GbtV872Ln6Zh/A2gvydToN8MBLi2ta3tm1mSRoXchySrsM7S8WCrmkrVnEyOROJYK7yXBjIBx4vvb6whBWEaAkgqZmC9ABGWyy5LuYUMbNKZpUka0QRrmQYmyljyKboHU8TCjGdWQBYx59gyuFlZjfOBg8dHwm6Zmx36z5UNWJW8X5FMi/jWYYyiahpSTDR1zWi8Sdd6FI7Y41CGfJO4Kzm2yBJqzoU8DgvefOv13DyQ13QfiVoh3WfC+k1mB88OIkkj+0tKFCI772O/n/d7J6qXmhse57C/ppxPlLVcwKsoLSzbWhGS+DHCZLsiNZfXdQUordjc2KDtHN4nktBqodFcu3SBre1NHjw+ZWfvIi+8cJvJomU2X3L46AE3nrnJtRvXOD04YH7Yyh6spOFS1ZbaJt76+itMJ0sikb2tbU5OjumiyC83oxHdNPH2Wx9Qv2yIPnF4NmXptphNzlgsA9euX2V/a4xJmuOTOa+/fZez+RRrK0JMvP72+9w7mtJYzXxyxNHRES54nnrmFs8//yLvvH6HWTchRQ9taWqNPbgnJQawdvHTkaESRkFy48pK3i+CawOPHx7lMS0sW6nfpeUdKQ9t8Mn6nPPweso/YvanlPgFNs+1lPd0k1naS765eNHF35BcrPhJJRYOIfT5xojOIPMIPqKU7d+Ncmsp5kaYPheefcT+fVL9PVllaOqGa9ev8ewzzzCqGyZnHfPlnMtXtrm4s8vjgzOWH9zFdQJQaqqKre0N9vYucXayZJGWXLh2ha16Gx+hCzBzD5lMpwLac547b71LZUGbCqUNyUPrXQYmrn2Bta1tbWJJRb62+0/hafjr7/0/GYe9b/clrW1ta1vb2ta2tj9F9i2DlCTM1pzLYkrkLQGWkVxBAQkJ2CcnpHOgr3pU0tAZO3SnyjlWu2rk45Jo7qUM0pBsL9Wovks3KdBBkrpJScGJDA5KciytSvKmAI+0JJ/zMaSnLKeXssRb7M85FH2koJ1LK1FYehIZmJPbe7XRPWWztqZP2IeSnCiBrg+5ACBjqpUmBpEHUFavsETRyw1YrbBGEaPDVpbxeETbtqhaYSojnTGzDu9jBkwpjDJgFW30koCJIg0kdNUi+aaswbnQd+uWpPxq0ccFOFu0dE5yDS55bKowSeGTyJllRZT+2SSVAVFROtKCz0XukGi7JdpWgCIpoUzWvV67PMvSjaW1oqkb2q6T7rhcNJSEhMkAJymYpJD6AktU0mHdemFVUEqjQsxMSQj1uFL4XNwQKRtyM5fCxYR3DgUYbcB3qAwIw1ii74hKYYwiBYXREaIi4lGpJiaF0gGbdAYleBrjmZ5At+zY3NxA1TUeg0otOxuJ3e09fBuo6kqOWyjD+yKyvEvDSzkkd9a2trX9+62yFTFASIBJ6KTYqMfsbu3y2Jzy4e+5zf177/DFV77EaGuTm1d2ee+999EqEpNjuYwYY9jY3WI6X2KUxnWOZBDpFeeZnc5wwRF8zPuPhphw3hFSoIg5NrVFG4V3HQlPXW/ifcB1Add62a+sIipJyscYBeCpNUpZPBEXE6+/do8UIl0ngFWUyGJF7yB4lFHYysiWXWtSVISuw7kFzbhhNBpz++ln+fT3f5zDx6d89pf+BSdnpzik+1lFAZQI842APHe3N9BKMTlbELtA9NC6CYfLKaaqpAAcoXORZSdAn9G4YrQxwoeO6CMpaIIKVCODsQWWHOmWUWSPSBBlPzC5+FIaVXsASULW7ZikWxthnaoMpGggQW01PkS89+igMJXlcHJMFcCrIEUNjBRPUmQ5mdItlzhvhXEIxVM3bvEDn/w4n//yV/nwhz/FT/35P8Oli/v80q9+md/43Jc5OX3EjZdPePjBu3z5C1/j4Xv3gchm0zA5m7F/6wYvXL7Ov/uNL3J0eMLe3iW093TInr95ccyP/ehP4adj/r8/9/N84cYeDw/OWAbNWEcePTyi2brIz/zP/xovXb/EbBL5jd/5KpP5jOdfeJHTRw94//67/K3/5v+DqiJbTcVifoJ3S3b2tzibL3hz+SaRKfXYUC01uqplHGMgtiL1FpwUvrUVWSfxFcT3UMSskqezxKqwV/kYCCnQKtBWpPC0SviUMpghrTAggbIKrYRFJGZ2AcgFhlwAEFCEFOqtVRiVMJXFR/GxrDJybidzs7cMMjJafEHvsgycEgABMRE1tF5h8l5fUaF1LUCB7IPFLPFaCgcFeCCyvJXMMy2+i9GG3c0xn/7E9/CZH/9Jtja3OT5d8Pb7H/Dii9f5/u99mYMHp3z5zbcgOprGUI3g0tU9PvNnfpKz08TJv/ldzuIEX1U8c/kCjsjRcUcdZpjQkpJnOYncm81EktieQgTvlYAZtIJgCX+imZRWSx4FgMNQY1LnfkPPWtU7lPmPFYBTf4xzZzlvfdyx8m/1xCf6loHVKialqDqA7+k/mWOJHFcUqZfC1jpcrAA9hw7+Vb9N/qm0oqcDWwE1KVWYONQwTkrisVVwjnx/+HbKMVksBVfyOVbuXWk1MKAGL3GLyYyxemCDDWFgNFOoc7Ee0DOKyjOUn4m8TurBWOTxU7nQ7EPE+cR82eGcNByU2FGnouiWC8iJDJLiXLEaEjFqYb3L+0GRpzv35PuHPcw3rRTNqBFwWFwBPQrtbP+sy9M6182YnfD+eeZmkx6qVK4vx46FGUrl56Egy4bSs58U4KSgDUSSkjzv5DnkYq4yJJWZC0swqjXRRdrYUtUWZSwuijSorhWjegOlDcdbb3Cn+jVenPxZChBODbdzbkqubW1r+73t/D6Scyz5hZrbx2igqWoqtcHe3piqSizdjIVzXLtxmcnREWcTh1ICOiKBrUfCJKQKE3kGgqMIzuOR9U1pjVaGFGMvYa+zlJnWGmN1ZsgEayUP4rJPV3JuklShf++1VtTVGOc8PgQWvhO/Nw3rkDaaSMxMshlQpMjgrAIeDYSosAm2d3f5rg+9zKiq+MqXv8rBQSus0wXsk+nxVAavbGzU1FXNYr7EtQFRehYpNlNXxCj5spgUyUeSEplko232SwurHZILY2iak6aylGOZ8hBl74498U0GbDEwmPdqbVGAvyJNJ02EZUOT5j9hwZ3NRJIsZcBJ/iqz6TSPjxaGKRS2rrhw6TKnpydcu3yVj37sY2xujjiZLHj3g4dEp7jz9l0ODw6Yn02ZTecE1wr4ioTzcOXSdY4ePeLsZEoXAgfdaQ+grWrD8x96gas7N3jnvQ/47d/+HDFFXMiqqd6TqFh2LeOXnwMPDw6PUbXi9nO36aYzjg8f8fjgkMcPHuZ9E1LyWKs5PDjkVf8Ky8mclEQm0NjM+hfJoLZICqXRNGVAD73PojXZdx+aXYH+WebHlMdyeL4pT+QVzsJBAk6lfp7LXhwZ6It6NTgSUVjXM4ivf+YUluOV9724ainhnO/fCVZ+LhNLZfxelu0zRlgRBaHUrxg9RgmVc3mq/7FGmkfrUcPTN67x/LPPUtUjlq3j0fEhu7sjbly7QLv0nM3O8GGJMfIOYeHZZ26gTM3xyRQXWs4WC7aaXRoDi8US4xZYOoLKgxSgC4lE18d3kFk4lSL1cK21rW1t3/GmEl/b/SfsXnuKv3j3/4zGfLuvaG1r+1Npj0avrkCy17a2ta3tO8O+dSallZx63+WxkgTuafl7xFDpPBlYglJ64jjlPwVPdnSumoTypWqh+mMO8IzhOjIJDzFKAbmuLa3zg/xYSSiX4FhJQVk60GK+FobOqSeqHoXVqBxLKy1Jk5ztUUrAN5IsUv21RBdR2qCUxuYirMkFAG1NP3YlGaSRbtkQIlVV9V1wUnSzKITVKSnpylUKqqpG6xIkgzEG5yKdE4kapRXW2v7aU5KuMnJXXwgJo6GqKqJJxCRFulAkhUJgMm2JyvDo8JR20WFTDRks5TObgdyCAZKAldT54D6EXKzIBR3vIboW0LkBUAL2lJIwJSktz0kpbGXZv3iBx48fEzq/MgUVKeXOw6iICil3lPmiV+Yuw/yJUYohKnfRpSCgpRC9nFfLNcUonXpJ5YQZuZyVJLlmTCVsyEqBCpLwyDMXAkZZKgwKh7Ua7QMXNi9gRgajpYs9pUQ3dygN86TY2brIxb0LbI0btJIuzYgmIN3UBjBrYNLa1vYtW792k2R90AAand9jrTQbdocPPfsRdvc1jx87rLHYsaUaaVRs5R0mMfcO7wP++EzWhBAILhF8ohlbIOE6AQ9pZWiaBlKiXS5z97DsP83YsL03RqlEuwR0LeDHDpz3IolpTQZxCEugNiLZuXdhn73tC9z74D7TxRTvPCQloMjKyFqTQUnOeay1FDmzREeMtXS+JljOF8QAl65f4tnnr3M2OcBUFqMrfPK5u1Rgvz60GCquXr/EzZsXWcwcs9kHAlxSSoBWzTbjzZqz09NcUAZioB5XbG6O+g5NYiLFgDaSvA5RGDw6H+i6vA5nn2O1SB9iJERhUCrsGiQILmKUQZlIiiJPZHKHaIgJT8zjEdHaY3ykC4qgE1FJZ60I+UXOJjNU0kQFyjQYPLPQ8W+/9Cbb40v8lb/0F3j29jP4FPnRP/dpNi42/Mt/9M/4rV/5Na5d3mb6eMbsbIKuAlWlsQbCMuGix9s5ozpw9Og+bUpUVWJs4bs+8V185q/+edxDx8/+/X/Iv/rsV0idlzJOiFBtsLXt+fIrrxIWz/HKVz7g4fwxP/VXf5Rt1TA7PObX/vkv8fkvf57jk8cslPgEynqmp4Evf/7fsVnJc2kX8yxtKlIeRfJIGAQHqSmtFaYSRkhjM7C6x1YIaE0BrkgXmtLxnEERQViSUookJdJSBWSgbd5/s2QwiV4KSXzGBP1eHElGfKYKlQt0wjQmLCRZapEizyTyty4EFGCMxRpLTEHeI5UZBbDChmk1ox1LrUdMJgEXPZHMEKmQz6fYS7uFDIoyCkZNjRlt8UM/8mn+4k/+JPV4m+PJkt/5wldo4wEffvo2k9MDPvfFr3JweA+lp3gfmcwdo+2rxG7C19++wzyccPfujHcfPaa6YpjPFty9+zabdsFGY5iEEdsbGpxn1jnisiOEjpg8TWVpas0yGXyq/hhW1D+g9XHAUODpX+wVE399AIuU6fCNdl7O7ZsWlgTd0ccccvYBflKaE85dQa6YDWymum8yEHxM6Y4vQP6UY59y7pV/9ICTb7x2iTUkfkkDLYCcMxfBUl5Ei1y2kmqp/H4FaNT3kvRjthIvZWmx1evSBeyUmYKKRNoQ+2SArda5MUKKjuKHmhwDCTguptSz0CqQ5gCtsUb31x9zkS7GxHLp6HxksWghyjqCMiTk/exBNHmuFIDV6vPJj0GYWlUudxeg1wqAKJVqJeV5SWCijTmH0Ekrz6v/WwaYDVaOeX6+9MxWin79kUMPoKkeK5WPI+uQsEOoKBLYRANami1UJucQgGWOMa3ODBCBqqlIXWR/axdda3l+1hCcRwcIKgnzY+XY297CWsNd/Xmqboury+/BppE8R1aYfNe2trX9vi2ojijuD4+b10gqYVTF3u4u41HF4cl9iMJccnh4hJ/PSTFgtSYg/uxivmTowStschGMJiZh+lYq54EUAkZWJbchZipN3ViEjMnI9yJoo9Ax55vKfhJX1j2l2NjcZDFrSd1S2JNiXtO0AJQKOLWsYqlfhAMx6szuJpKW3bLFmAUnp4ckH5guZrL2lmtd2ahjCmxujtnaGWONoe0c2ihSyjk2lbBG0waXNxfZR6w1NKMqN6sNoCDxQYecpOSeBpBt6sEhxRVJfc6yhyqnLIeasoeg8v6sUs/K3kvvkfNJqNzQIMfRKstyAiEpdNLiA1cVOipCCLz9/l12dvb46EsvsL29SSIx2qy5enOfyekjZvMJF3Y2Ua1jenIm16oy018I3P3gPZbLOWiP8R7nFWjJQNm6ZrSzSaqigOSWS7quy6DfBNrSjGq61nF4dMrhwykHx6dcfeoC2xe3UPtbjMYjZvOWruuIqSWowqoYSaHFtRO6bo7rhOVLGIbOZ2iLW1OAbiU3COQ5qPr9W+XPEXMeOT8ryeUVB2eQUyN/b/XfasVn7JPO+YTluZcfpRxX9iD0Ao5ST/qF0rAxNK6qLHGbMrB5ABjFKHleXWs2xxu4TrNoO0JoV65E5NmEedJKLCuJZeq6wtiKK1cv8+Lzz2NMzXS25PHjQ45PDtjZaXjwYMFs1jGbnEHspMkk68I/evSYzkfm7ZIQPfcfPKIxNZWGw5MZMS0Y15ZAja0VtYJ52+K9z/mJgFZQWQtJE+IapLS2ta1txRT87sW/zYXuWT5+9DOMwt4arLS2tf1HWiIRlSMRCcrz6u7P/16Jr7WtbW1r+1Nr3zpIiZUiwZALP1dTUCoDfZIE6LHvfFZ9hKpy4Fc6fwfk0gAAKpIFJVmw0tvcJ861KmCY85T+JeNQjuE63ycpYihsFvk8SZN0lv1Kse/k11qkdlSh7h7KDytjkQuqwvvc51q0Vr1WuRT9RJ4BFMoKFa9SMg6S7EkkPYC5hMq/dBKrHjxljDh+IQj7hgTBEWX0wBqhI8qATVJs10rRNBXUQiseYpRCY2Xo2g6Qa4sJXBfk+ZmIMZV0pimVg2a5j85FDg4mPHh0hnOe/a0aZQ1TB14rYpQCRpGyM1qLDEMufsoo6lyIEUYhaw3aWGIGQpViRJ9ayB2FJZHfdh2PDw/wuUiSEURPzA1kfmWpvHygfL9F1inluoHIK6gkQC2pFawUlQqaq8yxZPApZHkKYVwS2TyNToZKw/buJtooTk4nImNkDeONEZvjMc4t2dzZoj1puXbtOs2+YXZ4RqprJifHbJqamdLMk2fenjHeuElKmtl8xnQ+QVuDrRtGo1EutGi0Gl7jVRDd2ta2tt/DkqzdB5MzxqNNtpos+ZZgtFGzs285PLzH0fEJ0Xvuv3uXh28HjPLUowaiZdlCdJGYAlZXUpnA4/GAJyWF80mYAA143+E6B0iRkeDwLkKAtrNs7zTYqiYlWCwcpIi1FakRWUnvAiH6LEsgoNKj4xNmc8/O3j7toxaHzwlWTUxKisMpoq3CJCOJ8yB7i+88oUtSHNYVKSi6Zcd0ecBnP/srfPlzr3I2mxNNQCeTu2CDJOGNYbRZM9q2+NQSlafZqFDKcHayxLklXbek7VqE/ShlObyarZ1N6pHJYFUB8+pcBI+50OFd7iyHAeibwBpLIgNYMpBFZcqNvkhvRD7Iuw50jTYKjPgdITqhYEKDDtKpbSo0MUtuRCIGrQ0oiyjtaEa7G7z87Hfz/rv3mJ4ccPWW5j/9z/8aN5+9xdl8yfuPHvDGB+/y+huvM96Fv/Rnf5JL25v8rb/199AmUlkDWhFCx4M7b/ILb3+doC0mBRQBExBGQ2N45dW3+H//3b8Ds5bj40O0iiij8mU37F24wA/+8A/wsRdfYn7seP21Ix4cnfDZX/oNnr5+je/96Ee4/dLHefv9Y6bLGTFNcMpjlICkLJ75dM7Z2Qnt0otv4PMencFAyqoMmtY0owpbGZmDwRM66UjW2kKSrn3ZK0tLvjB0OSfg7aqqUIDN0kUJCJ3PgPLMDpPEB1uBeogvhtS8VDkHworpvLAbGS1g6BA8UVBsGXCshxpGALTCWENdV6IE0jNMCjOiRaOiYtxYnrv9DC8/97189WsPeOvOmyz9Y3QKaISxS2mo64rgPDHLRDWb29y6dYVrl67xqe//Pkajfb76ygNefecV3n//PQ7PHvOlL36ezaahXXZ0izOCCyyCx6TE1776Lu+9eRfdjAkxMD2o+Bc/9y959cZFxuMxh0ct+xcqdjaf4p2DI7a2G2Fh6E7FD/XiP+7ubXDp4hUePY6cLRZ/9OvoH9BS7/cP/r/ORbNUiqC5yNWzG8gX+8+vHK0vl67ofvze51753MBstApPSpw7Sx9bJAHnDQcaYoKUSphQftX7nkNRLZ1DKBXo0ND0MICYzvdsqP77g3ssP9PlnHmsVpmNlCKvqUN8kdIKW+1wG2iVmWFVlmzLRTgiJKMye4L4x0brvhlB2IsShNVnKUxE4rOrPq5JrDRiJAUhMl90/bVtb4qE8mzpiUqAtkWWJ6UhtoopZpmjEiuW25fx1UpApUNxmr7on1RRmpG4zYfEbDbrx2H43wqMqH9mauW5pP5RCvPG+c8OTTWr8W3/NMuJ+pkbiZk5oTyfhEqyL26MxygFk+lMWGBNjimamuB9X1BtfUBrT2g9GEPwHbW2RGOJMdK6Jc51WGNZuAm/q/8hWxu/wtXwMs92P8ROvILKrLs9CIt1PLG2tX0r1ukFvz3+WSbpiK3NhqU5JpJwoUOZwGQ64+xshvOeGDwnh0uMEkCRsRrtEklFNMIQmVRmK01JmIt6QJGs8SG4QdIqgywkP6TwPlI3ql+fo5c1s5ekWmH0VmYAYHgfODg6YnNjm2ENlIVTwBslXxX7NVQAPIrglbAr5VxKVRl8hHpkWbZLHrz3iLZzeU2hP34P0qg0ttY470gpoHRiY2vMfNoSO/FPF4slSmuMUrgkDLPGGISMMwOCcv5NKwEYpSQNHcMWnPeVyIrEW5ElO88+qZT4qClKM6D4l7pvekspZSZ1JcCdCDEOEmGKYcsvubaAPPMXX3yR2cmSR48eUDeGD3/Ph7hw6QLzZcujo2NOz045m0xYtguuXL3AUzeucXpwTNIRk2QfiDERu5bDR0vZQZTO9yybYtKK5bLjy1/4CpXSmcFQszEeodC4NjEaj3nmuae5efMatamYn4Kh496dAxYnC24/e4uLly9yejJn0YrUeST0oLV20eE7L/FkD1Aig3YkVhVAtTTZaKMyU2OQOVhARXnAB78rD172dcpno5bnrJUa9s+8B/YzdrWgV/bkgpzm/A4vKcTMbq+K1HQhpEz0gOY8pgJ9E3ZEYzJTcWaBEqBTblCNAqC7dOkizz/7ArNp5PU332U2Pybhcp5xyDXGAlBKcozN3S2uXNzjxrUb2Krh8GDJe/fvM5ufslwKWAkiNufdU4j4KNfo28SdDw7QRmGtATSHDw+ZHZ2yuTVGm4p6POLi/g4HhxNmXZdjKJ/fhUCKimZUcevmNZYLzeOjM9a2trWtbdU6M+Xnbv4f+PXL/zdenHyGH3r8X3Nl+SGGXXBta1vb78cW5pifffa/5KR+n0jgqHnn231Ja1vb2tb2x27fMkjJZw3tnKvvLcbUS3QAvTSZyomL0k36pJVEQfmz/AyG5HJvqU/PD4CjleSMVorV1EJcOW7pdC/BZUmOiPRa6Dt2SqI7xZjpsktXz0pdREnBIfXHOw+sKoWMGAuFcab5z2NQgFQ2U3fHGFDKZCYmYdNRWu4l5oQIEXwIxBhysl0xGo8gJDrX9mMm3UuS2E4xYW1EWZ0BPiLZYnVNVVdI4VAAUN4LqCwpRfCBEFIGFcl9xvxv0Dgfmcw66a4xmov7Y3a2NnnjziHJSbBeihMhCLuBNUaC8cyItPqMY0p0rcPaKgPDYs4MSGJAkg46J8slCRGiYrFYQE4SpNKFvDJ/SkHk3FxKpfhTfh7z91fAS30xZxjTctwyR6SsUFitDHVT4Z0jpYg1NaNRjbVKigdJuh6DU2gVuXFtl+lsxMHJjBDhtTffxemlyNLVFVYlzqoKOxKQU3j4iITl+edfYDo74+DwMRd399ne1syWjvHWFqb+E8yWsLa1/Qk211pOjgJua0GzvyVgUA0Hh/c4PDrg7gcfcHB4ROtb8I4uBazVjOqa1M6prKaqDdvbDRvbDQePj/CdZd45ls7hXMAYi9Hgu5aui6QYMcaCSgTvCSGxsbVJXY9AWVznid4RXSD5RPKR0HmWy44YAlVj0ZXOhWRN13pMEzmanDJvFyJb6YUVKnSRRXQZ+CNymCpLXRIVKlWk5LFa8/xzN7Ejywf3Djk6OuKth++yOd4ihMh00knSVotU53irYWOrZvfSNorEfCYdtpvbI7TynJ0sSFETfIe2lo3NLWaTSU4GB3x0GCLGCnAkRgEQx5zc9j4QooBdVE78By/rrezTUiRRKFIM/TqNkQS40oqu8/gkRR5lgSyhmqJmlGockaAdKjg6PCYkYcdBCeOhFtBKFwPGwo9/5tP8+A98hv/ub/893rtzxNMvPcvLH36J2bzjX/z656g2G5jApeYiD9Mdvv7aeyzPjjk+OZL7NAKIdi4RXUtyEadFAqgLsYdr6BgJB2d88Td+l5FS1Lbi5Y9+jI++8BEe3J1wfHfKj37m03z8Uy+z2TTMr2mU2uTdd+5xujzkE8/c4oVrW+z/yId5953XOTt7h7NFi1URaxLtPPLVL97BKsWoqWldJ5IiqexsUgDTGqrGoIxce4xB/JCQfTqVRCYRYVzUSkDJQUmdJ4RIVJlxxUes0cIWSBLpwwwg0gg7VGFXFGCFnMNkiVydVhg6yZiIUApdAUOW3QgFFJKBErmrvfgdVWVRSuF8RwhRCoNaCv5KeUYjw4e+51l++q//NW5ffIlK/Rb3H7xHu8g+Wb5oHWE+FWCDrWqSgrYLXHnmGj/yyU9w89I+nYd33jvmq6/cZzY5ZjmfMVueodKSSgm43PmE9w6rFF1Xc+g8djFhsxkRjOfu23eYHNznxtPXqMcXufb8U4w6zazrOJwvCDRYvYVXoLRjo6n41Pd/Ny8+9zK//NlXef/B/T+WdfQPYuVpKobGhZQBSYNfvYrpGQpNPSBl5efDUZ8EmOTffMPH07mf9wCS1apiDwySIu03godWD7giC9IHDvTsPUNNtrCDrcQiZQzyKvAkg2sPotIr/nMsF50wSuREQgzfAI5aBa2vxgrSUCK/q6wVoEuOQ4o8nJxbEQNoXVgHy4gUkL6CXKyTYwvjp1oBQ6UUMiPqwEohR1GEMICfrNVsjBta5+mcFCKjLut9ue7sr/cP6HzMWBokvvFhDSilHuj15HPr59gAiIQs5bjauLByBSWulBhC52c1jF2u4AOF1YPzz72cJwkzR1VV+OAprLm2snTdUsCQ+byyXzrGow2c00znLdoYXNuynLYZ1KmwWuN1Qlt5VrNZIoYjrlzRLLuW+WyO3tI83PwSD+tXeLn7czzVfRyb6pVGjSffqLWtbW3fzB41X+dAvyvxAiO6eUczakgxcnR8xGx6ynS2wHsPKQrAVAvQU6RjZY3e3Bwx3myYz+d0S8+y9cQgACKtTWZRDb3c2pC/krybsCjVgCIEAQ4JqBOg+GTyfWUyQJzUMyCRYL5c4Ls2A0KR/E1ShAQ+g01X8zkgDOIpBVSCjY0RV69f4sHDQ6ZnE85OJuzt7LG9s8Xh4aGwgAMhJYzVbG2PqMeSywje0wWP1oqwAuQQry5SNzWhc/0+64PHRJuZy1UGYUX5btk7VhwAwSKt7K9xACXHnAMEyYn10qg6MxhmJjv5ocQmTTVGJVgGh0qeQCAARQhZTqvzV6QR8uqVizzz9DXeXN7B2CTSxbaBpLn36Jilhms3bnJl3vHOnbe4d/cx9x88ZnE2hRhISkH0AgSKkDIIKxR/ReXRSgkVIn7eCugNxdWb13nxhZdJTvPw7iFXr1zi0o29zHaouP3sRa5d2WWymLE1qtjfbuhQbO02bDxucMFmpyQQfWC2jKChqUyWRytg6pz3LM9Phi/7Hn5g6MqtCCW/hpJIpPghq35DQu4VJUzx5VkPrl/xj1KPEFNl7mSHsgczrTqFea/uuRNV3q+HWUKPdEbiFp3908IQ20vXqYH9cHO75vkXbnDtwh5Hes64USwWSd6hfl7n3GMIGXAn68GybYkmYQ2oFNHW0raK6VRyBN47QuhwyHsck7zrmiSNGEkLeCpJ82qKrQD7TENKkTZ6qthRNwaHJXpDjJo2LkkqoA3s7W+xu7dB8Avq31dL89rWtrbvGFNw3LzLb9f/L76y9w/4zP2/yceP/ktGcefbfWVrW9v/39lX9/4Rb25/ltRrEq9tbWtb23ee/T7CDkmA6JwYEIrbInsggakp0SADeEgjhc3SRVuYbPqgUT78Hzhz+d9w7CG+zN2eJZlQgtUCKDmXoF9NaOeEcVpJQqcSxObvrl5D6aLqj5MLKzko19r0CXQ5L+jKSldviDnJHFFWuv+ryuK8dLxJsQBJXuXxKBTaRWKhrmqRREhJWJBiJAqVkzAfqJXCRkx4L4GzsYaEousclc2yLdZIYSIlqsrm7qdAqgawmXMOow3aINF2KjTjRiTlUHiXGI0r6kYzX0gHjjGgorBuhCDUwyVxlFLCR5GSSDFgtCHFiE8uJxsCJaWgUp9Sk+ekJZFfOrNLp5g2ZmDQyI/GGNPPydJhZVRmcFKZ2arPRQwU3xGIIWQJNZ0ZInJ3Yp73CZHpAynINFWDVprOS1HWe89iNkUjiRJtJIl2Npnywd0HaG1x3nPpwg7X97Z59e1jlklhU6SyDUFrdGjRxuJdzdHhMZcuHnA6PWM+W3JxC8b1mDYD3MiJQ6X72+9BdMO8X9va1vakaZ24sLPNeGx49PAB8+mS52/fJmExTcW0O2XpF/jOYVICo6hHFm0TZgSVS1y8uMe1a9vYEagqcPRowcl0iXMQgxLAYvDE6PtCtawnGo1FV2ArjQsdfhZIXsCjKM14rCEt8TpiNSRtpRAdkiQfg+yv07MzOYf3kBmUNBEdFC5Id7bSOrPOKFIIbG5VRGWYnHoMimXbkfySbtny7lfeYu/SJf6nP/Pn+M1f/wK/8/kvYZwwEEUSuxc2uXJ9B2MNs2nLbDordVYWywVKB5SOIgGmAi4sAcXWzh5du6DrPKZSmMoQiTgf8T4Dm/tCQBxkKKIkrUMobEdSHEgxkkLqgaopRZJWmMqikxbJNy0FCZUCtdbsXbjJJz7yET7/1S/x4PiQQKSNnYxZUKA1AQ1KCi7GKF58+UWevnqTf/Uv/zkPDu8RVOKtu49ovay40xT58EvP8NLmHp//zc/xO5/7t/yrX/xVYpiTOo8xEe8j2pSCicJoIDmRJit7d0hEhA1D9nPLxf0N/rP/yU/z1KXnOHhwTFp4nn3+BlhwCZoaPvmxS3z3hy8x6VrscsKjg3f4+vuHnC0OMdYSIhiVSF2Hd5CMpt40pORJQYncXq7ciyxu6sHGRd6qL4L1xZac/M5Fh6ZpUB6SzaCEOADVKd33sXh+8qx60EFmrEwqofLeXQDFqyDw8vlV0HeICbQA71SSvT5mMH3xGVQWMUohEpIUdpq6EukTJdJxm5ubROfwYULwB9y7D2eT9xmNPMYkvAskDVZn3yIXKIzN4+EcX/rSV5lNjqmi5eWXPsHt29f4/Jc3mZw5YjcndC0xdHTagxXQHAG8jYyMwlATo2LegbIzKg3P3n6Jvd0tXn/jA+7ef8CNq0+xdXGHZ198jnaS+OrX3uCw9QTTknTitbfe5P79BwRqLlxs/hhX09+nDTUkZJZkP6XgQ85/9Pw/0uo/h3+olf/3mJQncSrn//LNLy2tXpzqz/ckQGlwrdLw/1RAVuW+zp++h7SUrohSVKOUTzk354WJZ6XIl9+Dco0Kk1kKJAaSWCt/bgXcJwXY1MdlRmtclkns2jYfi172pCDEdBnlJMDAwswUQyRpTUKkOXUp/ikBG0lxeIi9vBdpZmN03isyk0UZ4qRwLpHGmZ2pE8FNYTUQ8I8Uk8vYyJiGFVm3PjbIP1s5/O/1oHuAUQ/EWQFBpdKUQynG532HlMdFDdNjJUgdAG95Xe0bL3LTSAZSqQJRyuMtkkwioRcQ5o6u62gqiRdDG1CZUaXrEo8fn0isoxVNZdgaa5bHTkBuyaLzmGhijk/Be8fp6QkhFkZeubZYO74++uec+nd4bvLj7PhrrNxi/5ato4m1re2bW2vOaEaGkdrAh46TsyMu6Is459FG3mFlIskFiAJSUsZgrcFHJyAla9ja2QAVaDbEH4gL1zO1ALlhrWxuA9tciS9SEtZSFbKUZ2bzNlZhbcpM0xFsAUTmHFReL2KMeL+U9TEDZpNC5LH7tU31eZTCZrqxMWY6XUKMzOdL3nvvroBQk0Ipw7PPXqM2lsl0QogOFQXcUo8szdiidRoaFnK+zTtPIqJ0ys1oCec6AQc1YwTkL4y0TS0S2yFL1CUUWnTCJJezAmRVGcATfRpApXkMCldO2TyaUS0y2hT5YwF0jWpDU23xwosv8PjhA95/9IAURTo8RRF7K6w7KCXs6Vox3tpkZ3efr3zpaxyeTgjRY5IRgL+GZqPBRcfm5ojTyYLpdM5sMsfFFoIwTGmSNJqozICYtdNUZhjs85ih5EdlPLXSXL56mZ0LF1Eetre32BiNUAaJFUnUlaLarRhv7TA5PeXO3YecLRY8fniKiy4DkSOaLKGslTCvIjFb2SMHj0fGTJ6pzvnDMo/y78j+Twb61HUt7FQhEKIw+/SWfavBt5FctLB7JVRQ/b7VfyW/F3K6we8qIKbys+Jj6KJFl3PFMV9rOaY0yAgDIipRV7lZMLP0jzZGRJ9Yto679++xmLRMJy2JDmsUwcts0nr1HdIU8LoC3LLl3r0HqKD48Eu7bG81bIwajo4SzjlZB6KABntnN5U4StEYi8vNIDEElApUVUVtDKfHU5YuMNvcYmu0xVO3rlPrhvfff8xhd0hUgZQcB0dnTKZTNsZbbG6vGyLXtra1/XtMwcIe889u/e95fecX+an7f5Mbi+99IhJe29rW9u+z0+reGqC0trWt7TvevmWQkrDWl07QUg5QWTN++NBApRxJqXRC5V9ngNK5BlPoe0pWYtfyhfKXc8cYLA2ADJWTC+X3afgMOWgfJL/IlNCrSeV8L6oAakTvvhTa0hPHLJTV5XzG6Fz0ktNJ170DbSjU2FmEBJ2TxSEnRNCayhrpHMuAIeKKNALQxZaMkqFrW5TKQa2W4ptSCmsrrNHSnV9ZfAg4F3OHjbBCOOexVhJmGilcmNpQF2BPTBhT5a64SFPXaKVwnaNtHTF6XIRoLEennvF2izJGEkFKFNa1Fqry6EUWzZYEkcoJNiV8DTEmYVKInlSSKpnBqiQNinxFijEDjYr8Q8o03FIsEaCZJJFiitis705KmFxEkWJOed4pJz5yATRJUR10BmMNICcQYIHOmQ+NzUCoyOnZhI2NMaYyOO8gOpqtMc2oZtG1RCI+epQfM504NjaEpv3g+JT57AwXPBUVRitGtWG0oTKzRsLojuDh9ddeR1vN9WtXuXRlj9lyQktk2s25vLOPrWopCiNSHOe6oNN5uYb0xPu4trV9p5qpYGevJiVHy4yDs/uo91pef+ttdPJUNlGNE8uFQ9XCJjcajWkqRdu2hJSw4was4fHhKWeTlsWyo3MtMSf3vXeU/SK6SGUrSe1GAS96H2i9ox5VjDYqNAlbaaytGI8t2ztjJmcLFnOHc5HpYibf6wKVlu1bh0BwAjbSWLwWSdNaKzyKqGUd9F7Y+LxzWJ2wowpNg/eeO3fug0lsjEfsbm3y/IvPousOlRbs7ozoFoGQEs1mxf7FLVzoaLtI9JGu7bC2ol06QkjUI8N4bEQ6oO1oOymEbG1vcNx1uDawMdKY2gqrjROJN5GFUyidZC1WUox3wZMCuZMclJZChE4aYww6GSk0aMXNp26wsbnJ22++iyJI8trDhUtbvPTsc3zP9/4Q3s353a90RBxaG6rYEAkYZQSUk1t+q8xAcTyb8fM/9684Oj5jmRLKOy5d20Fbx2Y94rtu32RLG0Lneefdh5yeRFQLKgSCUigCldYYVRPwdDqgVC3duFHkwiIKnwFDKmiMiiTlmHrHQXDsJI8aGy5c2kBZAZ+9de8h0Uf2LoyI0fHWa+/wu7/zOe7evcN0sSCGChpNiND5wO7Ysrkz4tS1mbEr4DtPpLBhChhA67JXK4ilqCBStSCAgpShvGjY3tni+qWrHD86JinZE2MpfBWHqO94zp39eV8KWR7YGnmGpWC0slH34KSyH6ukM2MnGVxcikwFliBgL5OB4zqDYGIIGK3Z3NwUxhLvUAq29hr29nc5fLDkrdeP+b//X3+Wra1dlK1RNlLbCqeEQdIogwsBis+RZV+tNVinOD6Z09UbKJ24tKfYagL4pawJIRBSEPBbJ76WMop6s+alF54hzDV3D0/wXUdqodWJV1/9gJF9TOcTthlztrnghz79UT7+4gu8986Mew9bTluPmWsW7TF3Pjjk6pXIRz7yIS5cuPnHsYz+gazg+VPva626+6uRQf5bKcCcP0oPoHjSkyk4o3KcHk2yAiwaODMZQE0r/xxiB1YQSMM5B1jRUFgqByixQeq/XxiZUr7uJ+OUctIiGZL/00V6pMQcQ/G0FLcGaexyuSKnYowwisYM7izXm1ISQOvqPfQPYBgEa6WA3jknLGlZtlmuUbr9vYsoFXpWA1lAREKxSOIopalUJc0CeRHxzglLR75urQ3LNqAXHYMsS4HQrMSOaWCwPT9wq4xI5bxPVCpZnVq5wF8eZilSMjTSkBsXTB/XytUURobVphRyzFjOOcyuofFjFVAXo7DVledVfHHnPE3TkIi5WK8yEKvEQgIYNUkxakY0I8PZbMF01jKfCxhYo9FJMRrV1KOKxbLLBUxPDInpVJi0dna2RE5pvhQGRuD++GtM9h/xkeO/xp67lRtAUj9XEwNADL7J9F3b2r4DrQCEiqxz6+Z0fsHB0X0m0xkpQmVDbvpC2D1R/Xc1mi4mjFX4mFgsliwXrl+7JZ+EIFLKnpBBliKdlTKgI5B8bm6rDKaRa1KCiqeqK2xdoRcdMUBsIyEGyW/kvIzkvcQ/0VmiTGtFZQyCexEmG++D+HMxEHxiMplBsqSQm+ycrIsbGyNMPWLuWh4+uEdVQVNvCjMnkY3NESEFOif5or5ZD1nnrTXUtexnvgu0PggbVHQ9EtVojcps3D1+i2HbXt3Yxe/MINl8gNIoqPSwNyugqiouXLzIwcEBuFi2cozVXL12mQu7lwix5fjsmBh9zg9pYt4LlRaJbXLe1ChYLpe8/da7pBBEJTUmKp3QqSW6OTtjw+J0SYrkZ1uhqaiix6tEImQwj5HnpYusmpb8Y4k3o/j08hsFKuFi4mByxsb0BLVMbG+McuJVM18suP/wEG0V403L2eExjx8dcnZ6hvMtYKmbEShNjML8fnFvi/lyybzr8D5lRqeYc3wMble+3vIoisRf2TTMyj5pasvehT2W04WwlDuXm00kD12Y+8t+3Eu9lb03ZXCuLinf3Kiw6nIVNyfl5tNVXwO14lf1r6nMiXKZafi0MTkfGBNJJUyl2dxomM8D7Tzx3puPed8cYkc1ukjBKYUBjMosrSVHneMfabpQEEDXDUErdPLUlcfgcUlYmSPS/KojGRSuUJXiypWLbI+2eHRwwmzeoqIiYjibtExnjzHGYK2lUoadvV2uXtpDRc2ihVkX8RPwIeKDp0Jz4fIuF/ev/B6r39rWtra1rZhKfH3nF3g4eoX/4t3/nlvzT66BSmtb29rWtra1re1btm8ZpFSKQpKUgBXF7r7rV3IoJWGreiaEVTCE6hPBDAl9cvCpVmn1Vd+JW7IMSdGDiCjfKQCjpCkMSeeyqOV7cvL+pH09ZBXYVIL5/NlU2rpLoJoG0IfK0XfMRYiQ5WeMNRk4JEFjjMJAFJOwA3UugDWZ2ltuQmuoxzVNU2GtUC7PpnPmswUpd9AFaZfKUfJQ8FAxUwuTaGrNzoX9rFVuhFkg5k5nm4t8QdEuA64LWGuxlcYvOilIVAZbVygFlbECfDECnurmc5wLcs+5eDxbKu4/Oqaqa1CJmAykRIhBGI4qLYF0CojUgRT0tKbv3ItlfiSwWoBeKc+zoUJVgGN5TuR5YiiJOpHEk4SNIqWAywCpRCIm6XrSOYmhSqGD0nWuc6e4xhr6glLIBSmD7jsZtSXL2ZFlcBTW1MQk1MtGWSaLJZ2PGK2l08o01M2Yj33vy4zqxO98/lVmC8ecgLEGYyI6RvYu7PDU80/x/r37OOekgOwSVZVQDmazM2bLBe0ysVhOaZ2jiopma0RKsDneXEn2nC+3rW1ta1uxXASdTE84mz7k4YMPmE5PuX//DtOJ48Mv34aTEx4fnWGrGpLIYk0nU1K0mUnCMJ3N6NySRw+OUFGzXEqnaQqSwEcJc55Vmi5EtFXoqqKdzenaDh8j2mt856kMjLdrokosuiXzZWJzc4N6XONDZNlJB3G3kO5SctFD6QxQNJrQeSyaD710G+ccHxweZFmpSIqql1WbTJcwX6J8RVKJKxe3GNdjprMZe1e2uXd8n//+792hSp4XP3wDrTUnZ2dAxBrDyemStnUslx2hc1Tbhpg8TaMxGxsoJcUC5RVhFggu8vDeQ4xVbO2MaJqKEBM+yN4YowdkPZVuXOmereuKpEW2tao00YUsEaTRVuNjxCdLg8i+nZ5MOD2d4jqXO3cNSnviqOLq7aucnD3gl3/l3/D45ET2HKOx2uKUAL2ihuAESIKxWBLTx0fMo8EnD0rG8cEbb/DLv/D3uLBxkbfvHqL3nuJv/IWf5KMfeZqvvXGJS9sN7999l2k8g5DwKRKqDhA2HqMjjdlAOUuXZgK+MRVaCeDFGIWm4uws8I/+wf/Ipd1rvHjzef7qT/0kWgnbyPJ0wj/+uc9yEk/YGQUevXuf6XTBcjmnrgwbo0t03pBUjdKWq9evcvlCzZvv3OVo4gjtANxICZmbpudOwWj5MyRhezJGOtWl8J67uLXm5kvPsakth49PmMzmuCiMWwWo0QPXgRB8z8iiezkqqGrxiVIScJRRikQQXzOV48iVFVmUmLuEk+jjIkRNKwgOJaDzkARgrLWiHo0xSuNcIPkItaayDZuq5lTD8tQzmbacHh8SR4YNY7FaYeuakYlsjhqmXWAZAHJXuxEZRQHjweOzR7x1v+HowRzFCdYIYCpopPBXYFNafJ3RqOHZZ68T5pGDkwk+QkpG5vNpy0wHNjY3ubS7ywsvPsv1a1fZrGuee67i0/5jHP3ChHZ2KuNmRjz/4Rf4sZ/4Efbtn9yigoIeILIKVBL/bgUU0texVgKG3lYQQZz/tXryM6x6RL1jeQ4A0zfXUy7um1gq8cR5MZDhUlbOnM6fW600RnzD9T5xC5Ek885oKXJKR4Os32XMkvjR9Axjw13JuywNA0Y3+BBoF0uRSUSu/9y7kq9XJQVami1SkjUpOYUPpfKbygCRoydSBBeCSIwZnZn+nJzbmN7PFjCmNA2gBoltsiykDzCfxywLKc+gxA2pFJALoCibzj/PPSX984RBNlJiJbX6tWEWFIqElZ+mHOcVhruYooADnnhuqY8DZTasjgsp4wn0UOhUWfqmJOuLtHRCwEhaybP2PpBUBoRpLQxTNrMSK43ShrqpuXLzKr5bcjaZiyy3ykxXKmCSDM54a5NoRH46OAEiqQymWi6XHB+f0Iw2AE9wnla3+Oo+X9j8WT45+xn2wp9coOPa1vYnyeo4JobIcrlg2c5IRObLBW27ZH9vn8oGZvN579MIW2WiJeQlQxFC5PRsiut8ZgnNObXStKYEIGqMgaggRZQ14D3R5bxTXmeDC6RKgQbvgrDZLZRI0CkE0JSisO9FZP0wmcs6a1nFJMCTa5cus7u9xfsPH+DbwuTEsIZnJjyVBGA0aizXr4rcm4+BxXLCO2/PGdeWrb1xlrUMLBdLjDW4pcO1Hp9Zx8ejWvy2vIeBMHtGlYEwCVzrUSpRNVZyMbmprwcopSj7dGEHjRFjNMrImq2NoFhCZvvWWhNSJEYtwFQSXet4cO+hSOPlfUwrJUNfW0JyvPXWHWbzBSppKiOyxz5C13UCoFG52VAbjFJUCHQoYFBRGkdSF/nK5z9PbWsUmrnTjMdjtrcMe/s1+/vXOXjwmOPZiexlMRERdl6VZbGrymLVmK5r8bHLgCvdy+BVVY3ymrtvf8Cje4+4vH+Vj3/so7LXA6OqYnl2xp0H9wh0pGXXA5ObxrLVjMCMWRqRfk4qEpU0HhIgBiDpPjcpfoReyevm57DiK6mVPVMbyZfaUYOqNC54lm0n8zSzveqVz68CiVbzuEqXptESJ5T9PzNQMviYq7FFmcfie2QWyt5HIv+ZZ4GSPbSqLKaSfEDI8wyjcEtPYxuCMbioqRS4ZQAdqJTF2gqlDDsbDc4FZp0npIRSkYJQjyRChNPTU956521MsswXC7QJ2EqjlMGF2LscSklOlQDz2ZKmqmV9IPVkjglFTNLYU9cjLl7cZX9vB6stSsPlK1ucnk5ZziaEoDFYtnZ3uHz9Optm8w99zVzb2tb2p9SUSMD9D8/+z/iZd/4Hbi4+sQYqrW1t34JthP1cP3gy57W2ta1tbd859i2DlNIQ+VMCRGBFQmsAFJWguM8arx4nRgrdUJ9UL8c6l0XOP0Poqfv+5VUAkvrmDs8AjoJBckCSFqUw0VP/ZvmO/tpA5M1UBmaVJHdxr/JnVfmr7oeEpmmwRtF5R/C5UE0GdeWA2IdAWCzRBqyxCADJE6LD+YTziaqq2Noeo7VmeraQa9Um30dJcOeke+4k00azXLa4wyNSgmXnIEoSRylyIkY6q2KMhJAIocN7g7WaeZZ8qKoKa410XitFsIHKWpp6hO+WhKhISZOiousC00mgqqVwnEsWAlRyDmttTjAliJKw10ZjjEjNxVyMVlkGQWuDNkqYCsITBc6iMZ+E9WE18REyE7Q1Ujz1XgrWuhQRlCT7BRiV4Ukp473KXM4FhF6CRikBeSnVJ/9JSAEmRcjyCZHI0fEx2sr8cD6CtVhlSQqMqaDW1OPETCfev3tAt+xEisgaTG0IPuDwnLZz/PvvM1/MCM6jIjS2oXMdtqo4Ppmx+NrXuf3iC4z3GkZdLV3uS8OoGWMLu0U/Q9cQpbWt7fcyTSB6j9IVdV1Rjxu60yMCjpPTM+JUE2eRs3aKzsxqymgWyxbnZQ09OjyVdc6YvC5p6VD2Ce87lNds7++yOdpkpufUGwZtK7yPjLxl4bsMvo0s2w6vHApF8IHFsuXkZML25hbBBbwTJgRJ1hrZEzIlrK600PXrRGMVT924xVtvv8myXfb7UZFMU+hBgiZzdNx66jrLecfdw0NO73zA1s6Yp29dZXf/AsFGOu8wRrFceoiaxaxjvliQgI2NEbYyVJUhBgGpxuCJCdquk8KHkj0lSAaYzkkxI3gBTakMCA3eS2I/RrQu0kEG7SO6sXQxEpYOZSp8lI7uKikqFE4ZJkczCnW+VRGlpNB+8eazPP/hj/Gv/v4vcHh8hkqKC9UmH/3QbZI1fP2t+zx49AAfWwHmxBplYNRorl+9wrje4eHjKcfTQ7TSzA5a/s7P/rwU0l1g/8YL6DRj+vh9fvjHnsGdLjn8F++zmFuqaOncgug9OlhUiowv1Hzqkz/I8ftzXn3rDWDKeLPBhIpoHfuX93nu+ou8/co73PmtrxNvz/nLP/EXMKYmxYCLsLddsZlOefW113hzeoYKgWQDG9sbfOaHf5Tnb73IG3dn/Mq//XWOzxxvPzjk/UeOsHREJ4XxpEX2TZHlPrIMUUg+g8WKTAOInq+wudja0tia2dLx5utvYnzATTwuBGLM+28qPt4gFxfC4BOmlKgrm5+z/BlTlM7iWGQ7kL1YDSwsJrO4kKL4n1oKStoIM1FKJkMBhg5ytGJUV1zY3yIkzXTmCMlhsZydJZ6+us+PfPJ5Pve1dzCN51oDr959j82NTTa2Rzw8POLll25w6+I+X/jyazw4neKjAgNBa7yO1EoxP1zyC//wFxmNGra3dtDasHOt4rK+wr0P7rFYeFKM1JUh0BG9YnrQ8tlf/jzjjYbgIz34CY3RY5pmk63NDV54/nk+9bHv4uLWHirB0gcu7W1w++oe7WKH0bzj0rWGFz/8EWbLMW+++SY/9qmP/PEspr9PW21GOA9ASufDhrTykfLvVWCNHOz3iAVWz1G+9URAotQTnyAXIour/2SSqBS2yqWmHjQ/nGP1YnO8dO5KvsklpJVbQ3xprY28D1m+hgK2oY9GpDDrMoNDoeYhEXygMNoqlQFDtiJkuZYijz2cW/VgRZVS7y8vly0Sw/TV6Mxq0FcapQCbfXSXUg8+FIm3gM5ssiAxVchrTGGaSvnGQ5ab8V7kN1cZbFNhPFAColKlMKelaK8zoDLToOZLG8BAKQ3PuGdEWplHw5PPhyjPMRXGjRXp8PK/WEBu+SmXudrTLwwFVHl0kZUHLPeXCqW7FL5Vgs61Q+yTmWKTTnhkX9MmEWPHvYcPcF0g+sxkpY00aWRWkC54Hh8cDoyyKsdeQeTJF0uPcxO2taIZWTZHG6SgsNoSqzlfq/8RHz39a+y4m6ik++tOw12ce3PXtrbvZLvYPo8daxQWpSzWWrxzoOBsMmNnY4SOluAWBCKl3Sz2AAqR1Axemt20VaSYgREJQhAqmcrWVLVFq4jSEXntLZWqCF1gmdlbY4osWzm/VsKo6V3X50Fiyasw5Fr69bHsHWhsbZktlkxmCxZtK6xrZWuDczmxXuJSwWQ6pc1MscZq9i5u0jQVkcR8uRAW1s6RIgSXcJ3PUl9VBrqQ7yP1oJEQYgaFD0zjhS0wBVmNYogZtJHXQjJMVpEZsJM0cykBfQqzYCLohDIiX1YpmyXjhC12lTVPK0U93uLStVscvX+XrhWQWWUMT9+8ysULe9x9eMTdB49Emi4FNEYYpgxsbm5y/dp15tPAo4ND2m5BDJqjoyk+BkxKKAyf++3fQunEzmbF5Qt7PNYdxgoQ3bcdIQPCiAldw/Mv3WbT7vD6a+9yNj9jY6NBqwrXdVQbmtvP3Ob4/hEHhwdoE7j97C3q0YiYFG3XMm9btO7ALVjMFxAj6Igyies3nuGFm7cw9SZf+eqbPHzU4dOSg5OZ5DljACFKLcnWc3OjPL8SB0DqJZMBlI7y3iSYn82YnU3QUVHAxbGA4hjyfuXwvTxvEnCSMb0Yq8zvNOxYvU+nMndSBjKL/N8g5ydNBCt7O7o/hhHhQ7TSNE1FNRamYZE4Tyhj2dje5/bNpzk4mPHw9IQruw2PHz8kqMTe5hZHx2dUI8uN65c4fHhEF6bCiE8BKMl1GBc5enjC8aMTbGXZ3t6i2lDsjPY4Oz4lzrwwblmLVuJzpag4PZlzNl1gtaY8ErSwfFW2om5q9vf3uXntBuOmQSPxxLJN7Gw1zLZHVEuPqWpu3ryKpuHd9w/guT/w8ri2ta3tO9CO63f5u7f/C/7zO/8tt2afwnzrZce1re070l46+3PYG/8nvFp+uy9lbWtb29q+bfYH8BaKHEHuMs1p/x7cQaayVyvJ3AJGeqJr9d97lpz4F8DIN6b4NQIkimS+o5JsXwlIV664rxekcuwSjsbYX1NfOIlxkAFYuVc9/IjCDKD67HeWRMsFOikqlGBdS0eRLoeX4lvwXo6rDd1SOsO8dyQW+aq1FPVQaAp4JgOt1BB0hxiFUUkp8AEw+Xe5CzjlpJJPGbQ0fNf7kM8h1+W7DtPTMieMdgI6Q+Xj5ecQhT1qmSJt61C6BiWJN4MwCKUQCLrUNw3COy7JeJQwG5DoacUhEkJJlKVzc0pnYFLMnUFkkJFSEFPoacljCD0ArSRBSiFLrXRHFWKwVfYuhcrgpgyCUjF3FGbNe8jF/dzlVDr+UUSvsEoL3XNtaUbCSqJSoraR+VnH537zdwBLYyu2N8YkEi56KqWxRjObzZhOJqANGoVRhtB1GCugrulZy7zpCO+8yaVLO1y7cpOdZoe6bkBpfHAyzrlAO0gfPpmIXNvavrMt5+zYHG0xnbf4aKnHG1y4eJFHbsLO/g029i9z5+4DiAGfIEaPVRrvS+EzELysec1IAJneVYAwxiitMJUCLev8eMMy3tSYqNi7eYMXr9/ki198hQdnh0TvWE464lzTjCq0NigM3nuWi44YEt4Fgg99d2gIoZcjDS6iUuLShV1CCvzzX/1VfEygfC8LQfKSXs3oVqVAWw1J8+prb+K6RBdg3Fgu7O8w2jK0weFcoJ3OWM475vOOph4xmy0JIbC1vYExsFguhb0OWTuNtYQ2UNc1dmyYTRciOaEhhkTX+pxgzoAWo4gpYLSirip8cCuSndKRG4LPjB6KZeexUWMbw5X9HS7tXeH1D+4TWAhAKlPva5VQ2tJ1kV/5td/ig/uPAdA2cvsjt/jRn/gkk+Mp7zx4gB4ZXKsxITE2tUjJNSO+74d+mB/6gR/m87/+Jf7tr/4qHzx6yMPHB6CWsqZGjzt6i3/6s2+x8I5nbu4TZh2TxYLRRo3xCe9aAW9ph4qR57/rJf76z/xFfv1ffJ437t5hZ+8pfvjHfoR7b9zj9fde5bs/8Qk2/Zi3zDtorXnppZts72jalHh0dMJvfvGLvPP2G9x5cIfl7AzfLVF40IGgtxhdv8UP/uSP8NSdI9598w1MPMWHCSfziPdLCF72YQQMQ5L9P3XuHDBYCuCyJ/eAIcA5R3KJ5BLTgwkqBkyyiBREkoIFgxSVKjKqDGBgaw11ZTBZ5tbHlCWg8nmUBl261+V4dVNhkha5uiB7cogimyDMRDE/d0NlamGbSR4PJKO5fPMio3qXxw8XBO+4cmGL3SuX+bGf+gxXNnaYxl/isJ3STh4y2q558dnrLI4nnE3hZHFG+8EZXewE/IZIz5GlFpyLTNwMdTZjPJLikB3V7Fy8QJp5jNVYDbrW3Lh+hcnpKWfTBd4nZhPHdOlpjMJmNkTdGHZHFTeuXuT67af4oU99muu7F7AYQoI7D6Z88MGMesNy69ouZ8uO7/70s7x48ypff/WA3/zq1//EgpQGSa3+J+dCg8GPX/Hn+zCgSH7lT3yDT/ONMcC5Uw2O/QrYIl+PWgUVPRl3rMAx0spvEplVZ/X+hvrc8JcCRFJD4Wj1ilZuM6WEc67/bgHyyNdXWAOG0EaKz4DSmuCFIUL8/5UiXf4+aYBSnbs9Rc+eUZiLVgFFsveEofmjHE8NoJzyXpYxKpLJCTIDROgHafC9U1+kl2NqohJ5Ha1UHwImBJioKY0K8szOYd7ONb2oAY6U48M+fl0pePYj1GuRrxRD+1AuH6n8vUd4qQG8M1AylC/lv5XxSv1498fLa6LEnQWclYZ4MwPMOtehYkCFlJk6poAWRlxbkVTEh9jH3V0nMm8iCyRxVwxeGERUwjtHiBBOTmjqiu2tHbbHW30TyWl6xO/s/Xc8PfkBnl5+P03aykMzgO5Wp8/a1vadbE3cYiddpavvsewWGFuzua3xIbK5tc/+9pjpbCJg7CDrddKJ4Mmg0ZjXCwGpaKNIWvIkATAmS3zl91hphTaGxmqCrrj98jNMHh3x9r17pOAJPuBDQlsjqRdUBnoPAKVe0oq8Xj6xxdWNpa4tk7MzYcrJOSyjhSW7rG+JlNnWZeXqnOf4dEKMspptjEckHWlDC0HyGiEE2tbRIrJ2PhQJ6wxQl4Rhn/sJIaC1AGy99wJKofwurlx6XneTxDjGSj6syILFfn+IOceUe/0SqKjZ3Ki4de069x+fsGhbguvwIYNJlYBrXNfy2qtfx03m+Ogkx9UYqq0Rk+kZ88W0zx+lqLHKstE0dDGiqzG3nnsefKR5LXHv/gOmrgXlsUoyTVvjCtOdcTzvmJ4qHt57KHk6na8hy/9FJYAsqw07+9ukDrCRemPMd3/i4+gAb7/1FkF7umVg2QWSMdSNJfo5y+Uc5yJ33n+fh48es5ycsVgsSNHncyRU0hzPFqitbXY2Nrl8aZfp/ASrG07Ozmijh5UGUJUyuCjGno283ytjZijUenXXHUDNQs0kMUKOGwpgreRdhwmqhhxzAnRukO3zzSss+hn2s7p3pZQw1lBbS9c6yQ8Ohx58QoThqKoqiDIPE4FAQjeGK1cu0S0U7aJj1Bh2drcY7e0z3tpmvFygzlruHZ7R+ZZxXbFYzEjRMV90vPnOnZxLLXGSXGrxV1wMaBVo6gpF5GxyhjJW3m3nJYY3iu2dDQiR2WKB8wJKDh6SitiS7DSaqrJc3t9m7+IFLl2+zNaokeelwEd4dLhgPllSWQ0jQ7PTsL+7iVu0nE7P/oNr4NrWtra1nTMljEp/+/m/zH/y6H/Hpw/+Kzb9JdQ6cljb2r6pbburXF6+xP2NL3+7L2Vta1vb2r5t9i2DlERzOyewcyJXKdWz1Yjuek6wpCFxrtT5ZLgElXoFUPTNbZVdqQSzSQ0J0ZQTGKiB0vk8M975AHjlEvrOm75AkZP+oVDy5OSxdO+CMqakuYckdL53AHJxrfWiDy6BtZxN9SLmK8WFlMeL0uuv6dqYk/9pJcmdC61amChKEqgk2SV2TwNQSWmRhchUxMoYbFWxXC4IvgBVBqkVKTjEocs5FytL8K+Q7E1MQ2JBgujQB/MxyvWlEPpnURhF5DpT7sLOhcYY+y71Xpc+IYF1voqk5Fp6iUFKUSquFLcCMahhTJUU7ftAvxRalcrnWZFBS0NZYhXMo1np9EoiwycdhQGlTA9oU0nlrr7Qn19pLUlDBZ1zTKYzfIqMVaIKhjbPPZ0CGGFSiTVEJRJNKUBcRLnvTLmOUURE3kNpDV6k+06PEsuzObPDjqevXGdjfxuvE513jDdGRBfZ3tjCmEqYq554D9ZApbWtTWxzo+aqvUwbp0Q9I6YFO11i/8Yu777yBTwtlbXCHBcNrnOkZArZHiqvmaNRhdKa5aKlrg3NaIsYvLDPRHDLllSP8cHSLjo+9L0v8ezNi7z69dfRc0XsIsFFdFORoqAvrbHUjXSXprw+Cqg1/2kkgZtiEJYFo3BacXY8JboOjSbqRFPVIocQHMpqvAvYppECt1Z0bcSFSDIakwJNrcEmHp0eUpsxKijcfIELEd95FvMz2rZFKZFD8KHILMie0jSN7Kd+jtaBtluibcIYi7GWGBLOZ+kza6Ug7SOkSLM5pmlqOidjHYJ0kEdAxSBseVVCmzG7VcPSzXn+2ctsjLeY6ytEF3jvvffwnSP5BJWmVpG7b36duyniFi2kQJVGvHPnEf/N3/77sOw47TqRg1CKVNV84uOfZLvWfPmNd/j8V97m5oe/l1hNuX1jl6PTh6QQ0RGCCuhRxcvPXefO2+/zuIscPjilXXh8Cig/w/R7ocJHkTN76833+bt//x/y3ut3WYQZn/7hP8MP/ZnP8PDZt5n8/Cknjx3oParqMvUIdkZb3PnKl/iqf5Uvvv46b736BqePT1nOpoTYyp6sIlbDze1d3nn7bR5MT9na0Vy6ucPeC9/H6btv8cWvviaF6qKPVOT2UukYh6q2wswBqMpQ2czokvpUP0UmhBgxHgImAyIiBbMwdOZLIV9npyvGiNJQVVbkNRDJNE0GQpWEvQZdOv6TsFJubIwJy8AytJKgL5JSKSGETwlTJS7sbbCzs8/Bg2MWyw5FpNVw4eYVfuKTf57jI8f86IgXXngKX2m+9OY9/s2D3+DBvTe5e/8x08UcpTy/9egIFRKq0py+PcEHh7IVKRVmxgTRobQhJU0wntG44tr1Sxwen3B4cMj9+4+xTt4NXRlso3DJkbRG1eIThAjRa2LQRBvR2jI2I566dYuf/PEf5dZTN9ne3KJSSgo5CvZ3t3j11SnvP5oS2gk+LZmeTvjg7bf44L3HnJy888e/oH6LpoQ2qy8CFRCOUsOf50E+532WFWzT72HfGFuolZ+mfNy0eqIMduld/H/PsVaPOrA+iKeq9ZNnKwCY1N+bOneD3+RcqSiMrciDkQtn5ed9hS4DYNTgt8csbdJLuBXgzRCZZEbb4Zr64q5S/eVL3ToWTxmtJMLpGwH6RpLCWjoUFHsQUbnHVVBY/o7Ei6kHD60Cgsq1FHKkcm8lOurBSEL6em4cSxgloCC9Ml7DBwoLVhnwMs2G8U7DM1v9avlJP0kGIBPn7nf4Qlp5jivouv55lEmXfwylQKrABU9YCANxYzS1tiyjl+eRhPHEOUfM8jYpJoiemHJzDEUSRmKUErckLQXo0EVa34E7g6Wn2mzAGEIMdNbzSvMvmVWP+OjJT2O0pW/66W+Uta3tO95MbGjSFv8/9v782ZLtyu/DPnvIPOdOdWuuNz88NGY2emazOUWTFkmTpkRTFkOm5QjJsh0h/yBF+C9w2P7ZimCYDpO/yLJCloKk1CZpstkcutlNNhpAj0A3gIeHhzfXq1fjrTueczJzD8s/rL0zz71V6AaaIB/APiui6t57Tp7MnTv32Xvttb7r+53NPJfMJRbdCUOIGAfiIg8f32O5WiJA0zhSXJMnk7V5HQUk+cYShoQxMJu3JT41AUGt96Rs6LqM8Yaj4zNOTk6K7FnWmNDInq3znXOuAFungi2NCZXCNmQE74hACJG+D+eZrEuRl/UW54yyhpdzKIjUEGIio6Tktszzq05B/c563c9IxlmrPn7WOUoKg6bOvdon1oJ3rjDE5VLcp8Au55wWbBQAki0grhpCMw68d+NaWOVSc4lHWaMsdVjPlb0rDKsVKQ4cHj/Genjuxi3u3rmr+7essU+xgokDy+NQWA4T3npSl3nttXeQGBmjlqLsd5dv3OLTP/BR3r/9Hg8OT/jqa2/hbUa6M+07DyYXX9lYsBYjidZkMJ4Ui5yYpBHsb52ymmcgDMLvfPlV3Vt1kWZnlz4lWmPY2Z3jmpbrV58hrxqGAJcu7+Gy5bXf+R0OzhYsFkviaiCGSFpjVjUIt65eZu6Ed2+/g3vheZKs2LmygyVyfHqia3cp3tPxqT9z0TW0zuIKUNZ6M/nrpSChFj6acZ0sQCdqzEpKUaE592zXQc4YRqbVVOKE2j/UgxkBwlJHusYUU0rjeK+yf0BhYQJjhdncc/nyPmcnS/pOxzhO2L68y0de/iiN22ZYrWi9Z7azxVvv3eM33/gqoTslh0A3BITIsOzUX3GMYEWVsnXaF9SVv/plyujUzBrIQrfsSFmLWB3KnJizcLo40/0TGrfMlelS0A52htY5dre3uPXsc9y8fp2mcaNfh8BW67iyt8Xx4yOWyyWSVwzJ8NYb75FjZnG6/K7NlRvb2Mb+YFnvTvj5Z/6v3Jt/lb/6zn+Lo/mwm7SxjX1P2ixfYjfe+rCbsbGNbWxjH6p92yClymIzEQ8VpptCl2sLeERKMGRKUK0FfNcCtRVIUu1pgKV1xh8pARKg7mqpVU0V6DKWedXURwmoTMAivbLkPAKpprjxhc9MrShBdzm3IUYutHmtQsuU4LcCkTIOZU4WmTbApmyqrYBvFIwiIZNCxNarVzBXFqQEm+r91USg1FsztWsykkqgQzLErLIRJqMMSxqAqpIMVABSOZnefwmdm6JnT5GSMFOAmwoSE33GercKpopZj3He4qwnx0BGqcrJGmAbA//l2VjsFJBwHudAKgMUyoZQoUQUqm6oTEaMAY762pQDmoIRYyKhPCUDSFLWLGvsxLwkuQRLrAZfLKPsAgJJEgYFeo1ANRGQTMYQUiQsiwTDfMbMNyxDh80KcBqGHkmB3GslpDcgUUhZENuMQywjeO8IoQOT2Zpt0WQHoYCXuo4YFxyedrQ7u1jf0g1xlLzoh452Ni+sLFy4/41t7A+66Uw7nzXcuHqD23ePOT1dsOiXfPW13+DROx+w6jK50LjPMWzt7nG27MmSyJJo2oateUPjLcMQSTHivM5JKRRmhATt7gwxjtwbbly7we/85pf40q91LM4W9EOgCwMeZRNCHH3X47yhbWfEMOh0bhSw4b3DOU/OiZC0WhosEgOPHzxGskO8pW0aJASETDtr2dndwjvP4qwDmxExxJyRBH3sySLMtj34zHKp1bTL3NPOWlpTmKd2tlh1YZyrc4Y0FCmGItPmnSvymJkUAyLKmjObt2RZA5Oure9gSvJASIV2P6VMGDIxajW0SjQ4rBM+9cM/zI985BP8s1/4BX71N96kaSJ/6i/+NPfuHHDnroMwYIxidiVnbIhglLHPNJ6Pv/QKw1nkjft3SXFATMThtEp7a8b1z3yaT798k2Z/l69/4zb/1f/z/wPLA+iWLE1AfIYgmJzJ0fDqm7dJIWEbwZhARmU1bFLGvcY4msbTGouJhnAc+fwvfhGJQkyZL3zun/HaV77Mlct7/Ik/+hP8kT/yUzR5m1/8J9d59cF7/OCf+NPc/cqX+Id/72d4sDhDhoGhj4TUIznhxeOM8Pz1a/zQK8/wW1//Mn/9bz7k+UuXePetDzgR4ejxfYYckGyQXJI5dd3PCTE1aVVAAd4ym8+Yz1pWyyUhJowYYswK1DUCNuEtIA5jJiYAay2uSEblVJJCVtmwhIx3XgHMZV02KGAtBWVKGX2wnKksKxIzBw8flwSGgiwqUEKB0Ioc9N6yvbtDSgHbGHxu8TZz46Vr/Mmf/hM8u3uN3UsLnvnRZ+nF8/DhCe999Rv89td+G2t6GjG4mMixpx8MyYCnV8BU9sVxLAkWJ4UgMimLpDhSFu49esTQ9+RuoE+JKCrzKMaw7AfOzhb6PTZWwQPO0BiDQx3s+Z7jhZs7/MAnXuLWc89xdfsy1f/LxSm5sddwdS/zleOHLFYHIEu+9Lmv89Vf+yrGGFYFCPi9aDVpOIGTJkaHb4Whlid+WYforH/uPDjm3MEV/FH/nJBQY9K2IHNGOE91nmqhQk2WGSZpsPP3BnV8PHE/F/cO5vzr9fyydqMj44CheNn1Imu7lAqWF0HJMlT2WPLacbJ2D9Xnr6+XZJhO6/UzMu0/xqKIshcQGZtbk7FVuMyW9sjFey+dsbbrWwMzVYBYfaJj7489oP1uxyKJ6vevv7+eSNe2lSIFV9ta93nrD8uUdk2gufNjbK0PR0d6Yo2o+0izBjqa9qTT86vzmKFsn2x5VdavV9o7joPCcmd0zk3GEFNlubBkU+ZuSZBr0QaYca7Q4guDztem7LNSBmdbXVPLbTlrmG17utBhpaWdzRUwkIV77dfZb7/ES+EnqNxUm63ExjZ20fRboYUNsFr0hBAJJ49Jq0Gl6Q3EOECGy5f3WK56lT8uRXFt26js/RBJMY+goViLoqzFNR7nLHGAq5evcnJ6ynvv3taYCUKoQEQjCmQsfplxnlrspUudTjy1IEy/72j8iESMgep3zLYaLRhIGessW1vazpxEJeCSFH+bIlWacM5ijBBzxEarDE8u4Z3T2c3q3JvFIrbsm6KuJKrUVSSbjTL45ZTIomzX1mpBV2XcHiUyyzqX0eK0PDJ0qtxwzqVozdTVQdjd2+Xjn/wE77/1DvcePeTBwyNu3NrHWQW4O6sAeinzfC1uM8ZinOWZ525xZb7HG+/dZpUiFB9Yst7/2dBz/+yEKzev0LYtd+49pB96SD3JCLikrK8Izhi6ftB7cA6DMvdkEayUMsjRZ3a0riGnTHfWjdJ48eyI3/n1X6WZzfnBz3yGj774Ik3TcOPyPjt3tmmv7oC3nJ68wcnhETklZXpVsWVELNYI89Yzn3tODg64/eAh77/7DoRMHzJ9GpBYGYhKnxSQlWQd6DU+DIxFBe281XFV1OrIa76XyVrimW2JI0/xTVOZ10usdT32ZgrgOo/xPx3XzhhlFKa4ddXnLHHjFLIWk1S/Qwq4agSUmxra4+T4VOXSrRYQudZw6dIuQ7/kcHnA/v42PY7DR4ecHT9mdXzCKnQ0pvhHKZfYtdXvdPV9sUhl6ioSBHo3+ixzMpwtllREV04F0EeCwkiV+sKMbE29OZyZ2P+dM2zvNFy/eZnLVy/ReI8t+yUp8V7JBiuBOCzouxWZgBuEu4slBbG2sY1tbGO/fzPw9f1/yJeu/nf8+OP/ZLOL2NjGNraxjW1sY0+1bxukFGMs1RmlyqRGeUXIRYpsCjKXMO4InKmBWzvFy1lPLphz5xwBTkyB7lppK6ISLjWqa6lJhSIFNpbUVnSJns97rWQPcY32t1aujgmTKXFaj6kAp7QWCBmLhore+RRkl/EeZS1Cr3F0ZToaj3MWi8GYjEiknTWkFMagvlbxKHX/yGCEUnRnyfhG8E0DCCkmUqkyk2xIMZHLNjdnaJoG56p0XHkmtfLMKHDGWKUWN2PAXjfJuSYq0hr1NkVWpW6ypQZ8ynMpfZRjxmaZaJdTBURpkkPzimNLqUGBnMMYNBvZlHJ5TlXuwSqzVh1bNXFQn6cxGsBS9q1Cj01NAUwjUESP0ZxnHW/KhJUL6xPZUFMwtgCVyELOCWytTpQy/sDWqsKUOAsd/dFANk5l29oiUZgdThxGhGAi27MdhiERjGGGaOUgQspJ7zMndrdatuYNgtPvhneYtuHs5AgWHTv7V+mjBkJCH5nPW3ato5k56pDd2Mb+oNnvxtinM0LCmUS37FmtAqTA6nBBztDOHQxCt1ixvb/F5Stzjo6PSFlIWSUHxHgWi46+C3SrjiEE+kFBikQhGg02u5TJ0uJ3ZsTVHbo0kBlABrIIwRpm3o0Sn4KuuyIqkZZz1kByTnjvtAI0JiSD85YUDDECKbKz67l2c49HB6eApd32zHYVYLHt5oQY6ZYDQwhIVhp4TMZ7SCRCyGz7bbAdmITWcOdSiRxxTsEqIURAqzmHYSDniLMa4I7DQM6prIkW5x0SA76xeG8VJFUkTyUpOBVj6ftACAMhROIgkB1ihWyUvadtDMlk3rt/m5RXZC8MIfLV3/wSZ8c9NkSagiLYahsuX75Ct4qEuKK1wnMff46//Ff+Ip//J1/kveOHrJYr9i5t4/wWi5OAS5l/9rP/iLc/+hz/4Z/9d8gD/OaXXuX46JhBAtIK81bwM1fWZkuSRGoarInkGEiF6c8KJKvJFmsyr7z0Atd3L/Hmu7dZLTpM1nXr9O5dTj844PKf+rP88Z/+M+xuW4xY/vSf/8PYL3t+8ytf58Hrb7McVsSuI4eekKOmYgwE27F7qcHPDL/y61/i4dnA9ipw2Fzi6PCE4+UpIS1pCtg3O4+tFdPWk3G0TVMkRSaZXeME2xiMg8Y4UpqC/d5pwiz1kILgCggEGP2mnLOCmoxVmVvJOKfg54wmm5w1yshkYWc2Y9UFwpAJpcIZrFbte5U5UAYU9USrtK4xqMhshmFl+OD9RyWZ4LQSufWcPjrlf/hv/0d27Qyz47lx/QqPDxd0p4GTwxXWZLoQEWO0uj9axIKzxb/EgSsgiawV8t75wiYQC3tAhjjQny0UoCg6tqNEkKjslsZBUp8qOasMZqZCyF3xMS2XXniWH/2JH+H6/h4UljIQAsLxasWDh6c8fHSboT9jsVhg3UAis+giSRLW/j7UnP8NWZWaOe+VrEFz5OKrsA5e4dxr03HjEeugn9GfNRc+I+d+Pg38MwFWCtRkBPEV9qF07qqjn37Rpn1F8axl/bV6pQvAnLKHuHAr5z+z1lm2rHMpJZx3a4CVCQRUYTvnknEGrKhPbQuwUNb8ain7DtBtVS1YoBakSGVYK203ZurGCkoa90h5fE7I+QTmhR5b65G6vxOMpPMDxKgUKOfuTztG1s4ihX2s7i0VFDcB48olpoSrma5RIUaa9Nd83Qg2KsnQsejl3POc+mN8nvXvsoegsG5NUjN5DNyLQLaVRULn3FAAAQajc7O1pS0qE+mcI+SI9Z4YNKHvjcOXfVuV7BSBxlvaVgHFMQohC4tVQCRAzISQSKIFHClG3m6/wLPdZ3F+6+LD2tjG/sDY776fqPOPgo40biSQlPFMQdOGENWB6UNPjMMokSkC/TDQZKesOCEUYH/hWBFDjpneJOYzi2Q4XJwSQ4eIFiRMkTM7gUXLnJZLHESyjP5YlTyDSeJS50mFN+ak/lXrHUM9r0V9ckohhrW6N0gySnY6V6FCypTU+BbvPZk4goY0flVAFyKjX4VAipGc1V+MMWg7qXFEZZKt15HCulTjWrru6FyfUialqEVgSvYJpkq86bPs+46vv/4acblAbETE8OjBMQePTsa1wxrwjefKtWvEIXF6dgZEfGPZv3aJ5clKgfPG4JuGvf09To8Ly+lyxd133+cHP/4Kbm+PR4fH9MuhFKaBMxbnNC6o87nCka0pDcWcc1eyaLFf0zbceuYGjw8O6RfL0fmRLKQ8YGfbtHuXCCYT80Dyma0dy9tvvsmwWrE6OyVJKuC2Iu8GZJPwW47ZVsODR49Z9YnZ7g7XLl3n6PCU0B8S04CVpGPNOh1nRbpbrMJfrSvFkgZdc4tUXWVKZQ37YhCVH8+QQ33WjHJk6rMU+dgS7wUZgVAikzSsiOAbx6xtGYbAENK4V9AuMmuAnjwBocr3u35fFLBl6PuIMQpmskbvKw7Cm6++w237Pq51NLOGHHUPoozwtXhXyjfSFQlAGQPkYq32X+l3a3QvrvKHmViKNEyq/sbkKGXyyNRVAWIKflZ/Qy9jEGOx2UAz49qtZ9mZbY1xUL1fw6IfODw95eRoRZJASkmLMW1GBXorI+fGNraxjf3+LdmBL9z4G/zI4V/Fy/zDbs7GNraxjW1sYxv7HrRvO4shuWymKgaoJrGo0m3TsSUGMG4WxzBJjeSWYO94bkTPNb6vr9qySVcK2zVq37IJHOUZqIHntfNVybJSbZ9UCwRl/dF70ao0U0+4FjA3eO8REQX35IQk0CCOBhAwhlIrRL2ZKbBdQUWFJcBYjHElcF5ASlnIhb47ZcgpgIB3VqvQkjIsJBGtLEpaRabBGTMm/bz32JnDxEJZXDapOZaSvWxKVKZs7s8/1XHTKzBxYJc+MIIyCImUQFT5l+vzrGNBj89a7gQSSgKi0WemummaZDAWU+ierWgfmLJRH6UPRMjZafLBaKDNuCnBUZOkprI4FbDSGGgzuQyhNXAXE5hslKGoZfAGcIyALEspmbN2ErrIjMxYtWK9Jh9yTiXYoMlWqVVH2UAQpQcvY5ygZxls5lJjuTSb82B5TNcH4iBkb9lqZmzbLWZbc1YxkFPAO0839DSzlmdv7vPw4ITVkLl//zHbW5bshcePD0jiuLS1g8ngTVOSaMU2MYaN/QGzGgjXOTrrHAUY0UQfxpElslgdM8SOVdchOZJjIrnMfHtGjB1Xr19l0S15550PGIaELUngGBPHRwucs4QQiDnhG0sMEZOFlFDwDnBpe5u+O+H99xdkG0kh0PqGNERa32CcJo+tA2sbMApSNAZSFmIMSFLwQdOo/INYsLHMizRIHEg5METL8fFKp7ZGqy27VQBb5BmyJYVE6DOpi9iZBuBjSNhGZRxmuzOsOLp+wTD0WNsw9IkwFKkZihSo08RJCgkRy2oZcA1gLdY2hJhwjc7w3nusFXKEGGtSQtczyUKKQgiRYYhKhZ+NJj8GITlNm9im4d03vs7bIZL6XuffDO++/QgKG1IS2DEtH/vsZ/jxP/yH+cWf/QXuPewQm3h09xH/r//6b3F6ohWizjfcfO45lstIa+C569dYBsNPfuYnGFaRk/6MIZ7i/YybV29wuloQ8wLXRMTkUjUMSEByVhlSGqzL4/KC0QrxVR85bQe6GDUwXSL1KSVw8P7td/jv/+Hf4uUXryO95847H/CNb3yTO3fuErszJOn9YhRAqyoZmdmW4+bzN0hD4mTZsXV9n//or/4VbjTP8N//dz/D6ekRLiYsATef49wW/WKJnwsvvvQs9x8eESRjTdREg3fgdO0IQ8RYV4gdEzZnclDfpJ01iEvYFDVBI1ZlUSksW1GZuoSsbfaVIWnyNWJQ0N21K1dxCA8PDvW558obU6R881Q9vQ5w0XSaLbF5Zf6IoXxvbMJ7S8pCXsCrj76JM9Bsz0qlu2HetrQ7u8xnLW3jiEMgiyGJx9geYzImT4kx9cgE54QrV3cxxnB2smLoBoaUsSnTFLdQJU8sFeSsfmcFRBvEJJwYYhFlNVawtqF1LXvXbzHfuoLJjqVEBAcx8vhoyZe++Rr37j3k6GBBNoMCwlNgtutZRUMMwPcwk9K6/7gOLxLMBdnmdZuQIONnZfJhRzBPPbb6p+XVMQn1xGnXHaOnX/wid0yWPCUP6/2s/Xkxj12/57bIc5y7nJFzv0q9m7EYo+xlzDTmKYw4lTEAmSQ+jIEUdG9RWVKlvD/mO4UiDV18/cI4YUoCTkYQEyPASG+8upR1XR3zomt7t/WuLHsHkfG5jkwGY3JRnvIMjH6u+tqAKd+7yvhU+RvqYDB1q7P+3M0EPKrOfplRxsSz7im0DVM+dL1gRcZ2m/W/WUugnrvn0sf1SdYOKgNQ1j8g4wxXpNNLsr5+P0QLRWyRELdlvyslU53LvJJNvR+DpEyfe0D3WjPfMPctzXzGsu9IMdB4pxLbxrG/15LzgGDo+47G6fqZY9bPz7bYms1I7pRVd8A8v8DGNvYH0+TCX7lMc3n8XgowxIGuX9H1vYJGbYGdOAWfz3fmkGGxWOk8uxZXyxm6PpQ5W9mIahymxqDCoMUAIhkGBU/k2gahyJ5VZjeV09W4SR7xLlmRLlgsl/b36VcrhhhGputcddFEGVtWXWEjteoHpVjOlcvxKRVAkPaHs77M9aIgHF9QKdmQYkA/rMVzxpSonC19XNclLDkbYqwLf2GdqWAXzLi2KmbF1PDhuOYhEAu4vrLd5ZxKkaAWeFgyi9OjwlJTgDqIrvEiZDG4bPC+5fLNmxw/ONB11gAx8/pX3ypxzFLIZxxDH2lcy4svPscQM9vbO+ztX+aNN99k1S3AWp6/9Sw5Rw6OH4MJMLKRlvGVFfilLOxj14w+Q98P3Ht4QBiGySdecx1it+S3f+vX2N2bMW/n9MvIYrGkW3XkGBAZqw7KyfXazlrm8xnWO7KNzLZbPvnDn+IjN17k1d/5JqdnJ9ikHe0az9bWDv1yYJCBZ59/luViyfHpgiwJKxljHM4rnWFlvqoNtRV8FHX/aAsQSEosVYdQGfs1xlnGlcZCpyVYv4vTImzLYFD/ySrQiNpN1a8w432vLd+Tvze6WNpPufj1lL1XkIDtJpZ85xyzrRltu4VzjYLtUkTEkUkYk8YxZuqeyeoJZ/OGtvH0QygShno7tvpEoqBlY6sM7uR3jj6NZMRYktHiB5XbsxrLFkhiCSGNrMZDHzg4PuHo5EjZeeMARjBJ93cYYdUH3XdubGMb29i/oj2cfYO7W1/lxeVPfNhN2djGvudMd/ab9XZjG9vYH2z7DuTeGAEh+rdu49blDkaQT/1Q2WGtv15ppzn3GXlqkNuUgEUNDFcQysTWVLeVlnU7RyFZkhi1SqvsBp8aV163CugZk9zldiogZ5IN0Ouflymo1dZTn9Sgeu2PdcBQZRaiVD5rxU9p5VoSQqTQY4vBGk/OmeWywzWWpmlGoI4zBrwbqfpjTOU6PNFXY8WxVMpfmSTp8iTPN1Yprd17vbecK7W4PjNHg3Equh6lKxt+90RHG+dwJbA3VX0DoowdSQRrJykKaw1O6RomWvIpVXGuv/R/lUSooyWXPnZrwKwajJC1ymvGMamvTP2KJjKQaSyUzxalHJTG2ZSgYMbKVE1FFnJQoFmwcBY7+lVH9I5F6nC2pXWGW1ev8srzL7F74wZf+cqXSUPG7TQKesqWbhG4vH2F6A1d6Fk+DvQI7XzO7t4ez1y/wv7eJYxzGpiZHv7Gvm/tabPU5pl+O6YACY3wDumMmHriIrO9dRk/0wrQk9NT7nxwh9PjBbO5RxKkrBT4iUy7M+Nk2RGCsvFJSjjnsVZZylarjhCCzieiwdTZbI7bcpytOmKInC6WODJpmDHEzNAHutSTYpHfzJpydI1VZrvC9JCzVhubkCFnbrx4nevXr/H+W+9yugoYgRQTNoM1Gestxli6LuKcyv9YaxT4IwoKkQShVGpGIj4VNrgsOBEa0yJZK8FzVOm6bBMiOgfbUjlNLqwMrYdsiKG0OapkphSJyxQT/arHWY+xBYw0lGhzCVJjYOgjMSVyLgwZ3iBEYlIYh5t5MEIOK/ouaP4EBe4mFACcsiYwuiS89vod3r99Qjw7BQsxZU4eLzl91OMah7GCJHj/m+/RNFf543/yf8Kf/GM/zb/85V/FtC2//fY3ef+dOwx95uWPfZr/9K/+z/nZn/vHfPm1ryCyKLl1Gf2gMMSSUDH4kuw3MrF2fHD3Hg/uW73ZrAFvawyN9QiBo/fe4J988BZbWx4vnhBFq4BjVInQFKmMJDVFtr0zZ77lSVEYcuT681f4zE//ET7+E5/mztfukLYCbuYQ5/HbDR//9MfZljlf+/I3aK9f5lOf/SzHX/g1FoeH5NDTGMv2/g7zrRkgxMo+icruIUJMQt8HYlA5WVcAylnMmHC3gCStSscIbdvQzJxKrFZ/yGSs0Wr3ux/cw4iQsiWJViI7a7UaGwqbSx5BbbmAIKytCYcKnVtjxRSK/6PAY8mGCAynUeX3nGPv6i7PvPIc3l/j8d2Ox48fMGsSnetZ5QVNHjBNRpzDW6dslQmM0aRcloFMUNBYARaMLJzG0DQKylb/wyrrgGbMsAYaDMY7xDla79ja2mZnq8VIZpXh9sGCD+4dEGPg7OyM45NTHhw84vDgMWdLnc8aB8bO2NvfJT8+JAaI5nsZpLSeDpr2F/WdaWVbSz+tLYHV/5K114XJJ10/0XilKYd3bjU169c4d92pJWPL1sA09drm4nUZGzfuWSpbxchmWptt4MIn18byWi/UTNS5I6XIb5vx7+rRiqzvPaR838pxa0lQg7Iu4PSvGCNETbTVs9lSoJAL65sUhtepn7jwbKTe/hNbu5o/rEUCIxPRuXGwdkIRjHEYZ8FCKlI6+j3Xg6tstbGWSnSq+0U7XnuUVDMVAFR2DVb3Azmv70trH8qa2yzlcmtPxazd1/i/me7BrB03Aq3WzOhebnwsTKBVMx4ra3Nl6ak18AGFGSkj9JKJw4BYZVixZTvU+IZnnn0GN5vxwZ33wUEo4Kb5fEaOsL97mUiiGwZWXSQR8K1n5izb85ZZ2+pa2QyY/uKNbOz7zzb7id+3jd9nw8I85kwecN+9RjKJ4+YOOi9nzs7O6FadFtpZjVmknEkhIlFGkGsWlXAyRv1+a01hxNbCtVRYq62xWkiQEjFlQozjnJoKQEhS1ngFylSpU5wtrNDF78gygnfA4luPFMaUnDKSBCHhrEMK20xl2DMmg9W9goj68ZPcbpGntAlEfbo6olIQpBWKXpk6SmX9tnaaMyWXwgdjaZwjSh4BtbIWKgT166yxY3wlRgVyuQLIovRNZdGuLOAm57JHmGKTMYbCLqXFkZR43iSXmskIZ6uOb3z1dV0urUqjxSiYnHHO4yzELIRuIPXCrRdf4eUf+BQPHxzx4P4djk4eMqwCThzZw0c/9jL98oyT5YlK/uUp3mZQnzenxAjGMtN6Xm9yuViOQ3NkES9rnKSe5VGgO1EQv+Tqo2q/SGFT1DGjq0pTpARzhmEIzLdmbO9t07aO2/fe56Q7xDaCF4c4w+6VXa5dvsyjO48Ii8SyT8qwK5kcIlkE1xha57FWx0Vdj42pjFjKlJuSssCPhStMi+nk5wBGC0h9o3G26popyWMB8oVA6Ae07LCAoY1ZK3Qo8rlrcVr1I8ao55oLWH8v0KZcGdNqDFQQMs5atuYzrl2/yt7+NVZLy8HDQ0JcsWUMy6En5R5nEjir8uMYlSEUIYRMjL1WnyAjWMuWdovR+UGZkwpAsn4j7OSL6pyj/ThrGlrfsD2b0zQtp6vA4eEZfdeRc2AIgRAD/XKg6ztSVtYorCHpZh6T8wgW39jGNraxfxULdsnKPf6wm7GxjX1PmCCcNHc4aT7g1f1/yMo95vbOr37YzdrYxja2sQ/VvgM9iLp5WwvSVwAQdR8nU2XHWsh3kobTH2as+J2SA7ohn/7WTXippDWlXnS8UN1ong+qjYmLtUDGGMA2FpGkAXZTq6/0nMZyDmwFjNU+IQRtq26jyTIBVPQeAFEN91GmTnKppppk4Nb7YZSNGyXkNIBlrRkD6hpglxphV3ager6Y6Loeay0haLJ7cAHnlLrfOosrbE4xp7Fjpv4Zn8yY2hjbyATQGqX0SptjjJqcL0ErBU2tgZ6KBJprPPOdOX4GJ8d9SdpPzyPGOH7EmDy2wQDOWRBbEqPmXFv0GRratsHakiDM06fXJdkqSIwa0DEVnGZIuSReajLAaGW8jIEQEFNrJEu/owmKUdKv3EsNslmzFrQwGvSyzuGdLdJIkZQYq+wwsEKIxuJEK5dFMjZGTs+WPPfSLY66gf0r2zRmxjv3HzJ3Mz7ykWtcmu/z0osvsUiPeXj/gAcPTpHY4wzIsOLs+BBrLDt7ezS+jvO1Qbux71O7mETd2LdnhowhhMyj4wf0/SkM27SzPSyJfuh49OgBi5MTQtczrJbkPDDEgTjAchU4Pf2AppnhWgepAHRMBe2WSmAxY6AcYxGTMM5gbCYLhJhp5lscn53RrQbSEDURkCHEgWyEdt4yhKAMNFmrKXLKkCBj2drZZlgteeedI7ou0C0CjTPsXJozb7c4PDimHwLOaNWm8yp7GUJHjCpBlrKey4pj20HacYRkiDmSYyYG4eRoRdt6JEeIBpEG6zzOZEiJxlu6nBh6lVGYtW1ZwxUAlUTvXQu3DWSVrJAQ8a0npkgIUcGfzoGxWOtVegBD27a6bpeEi3OalLZADEElKLKQsynFziozIZJx3oMkQiOExQFpcaJzuU2YBN5k3Nac5269wHB6zIPjU4bYc/OVZ/kz/97/jBt71/nY+yf83D/9GeYz+MwnP8trfIXTk/f54m/+c45O75HCSqt6zZQkt0YZpYyAq9JJIuSYSoLHYHHKfpSrzEZWQCsog9cqYlzDEBJDWmmSyCg7Rk6RlIr8X856r86ScyQGODpa6No/T/zO5z/P3ddvk1cZ6465fLkhZ8OKjuPugORmzLYyD+894B/97M/jrCZaCEKQRM4RazzOOWIYFARn1L/wziNOwUIxJkxShiySMlaa4r/FnMfketM62rkv8gE6JlzraFqv628UZfYKiZSUpVKM0Dj1ZLIUqUMEX323ssbbklTQ5BpjIicXwPU6UNcUf0UMhChsbc+58dxz/IU//dPcvPUxXv3qY37pV36Z55/ZgZPMb7/zNl3/iHmbsb5lZz4nJcvpoqcLpxweLVUCy1gMAW91lDaNw/kG0PbFmEYgtL6oPoMzlmQt1gnGC7s7W9y6do1bV27xE5/8YbbtjHvdijfePWZxdFdB320m9EtWixXLbgE5gouEGLhzd4khggOX2n8Tk+vv39YAOhfzHwVPAkxAkSdTJDo3TK7NBWQMMGY26zmfOFMBydcPVHSNYXy1yn9MV60j+Omp/umGzoOKnpbjGROOZv1oU46f1pcnZLbX7midHbSyLU1MY2t7jpIQr32w7sfqXFwYRkXncWtUAromka1Zl1e+sPeqPSnnQToy9sV6/zO1cW2/OJ53RBaVHwba1uM8rJapJMPruUxh8kD3YRf6trIOSJHmlvOPfkzqOadApTyCmdYOK5sJHWL1HKYkWTk3/mqbnjwJ4zPVc5Z+kTLOxhxpTZqe69giJW2LRI2UtackK40FW1LMRpmndF1KkA390BPSiuPDY2Zzi5WG7mw5juOtnX329/dIsmK1XHKUV6RQmPpSYHl2Rpgldmb7NHmbjW3sD7qJEd7Z+gKv2V/gNN4lC+zvXsPhiCFwfHJM360gCzFHRGKRa4YYRCWTrcE4i8Wdi1EAKIDZFjaVAgKySX3cXL7/YvFeQUthUAYkZyyugDkFxvhMSpkkRbS5Sq2JAkS8syxPT4kxEaNed749Yzab0a96ViuNNUnx1XWuzMqsUoBJgvpAW9aCc/RJY0G5sMGEkIgx43y9H6NstAiYVGpIDCnoPVqrvtHE0pSRIrtbwS0GCtCVccIcCwDNxA4oQtkTaL/pnmM6nspSpQRN5DK/KpBHRlk5vU4qDLKQExgRWmtxM8fe/g12Gs+DhwesQk+z1fKxT32Uq1d32ZnPOTs+4sHBCS899yyLnSPu3b/Ll778GzRNQwyDsp9bGeNxdgQ6T/Gsuj5XR9dUSb+cp7U5KcAki6B077oe5DwxEyogLI8AH2Ra21ViXIFtzju61Yqzk1MOHh4yb7exDuZzQ3TKxnd6fMzQdWWvlnh0776CgCv7fRmvOemewtT1az2WprejzxrFf0kZq6ZUL0rOFSekgGSvrOnVd3DWjPtdlfVT4FqK6uEJk3Rqfba1QHJ0DAzTMbn6W1V8b1rdWf/IGB+EJEK2lueef4Hnbt5iGDyvmffABm7u7fPuew94eHKAMwOucWzN5syaGSdnHatuSUxL9b1wiFljWzKVqcmM+5tprqj/lXsxlmzBGqHxnkuXdthqtnn5hZfZm22Tk+GxOM4WHTl1uLnFmEyKUeOW6NovBvo+ICZhncGK+3amxo1tbGMb+11tlvfYjTc/7GZsbGMfuiUCv3Lz/86v3PjrnPmHZBM26Z2NbWxjG+M7kXsrwleYiRGnsufoATUqvSanxToQSc9Sg/Xn2ZUYq7/GU7EGnMlT7kBfUrYaVZrTz6g02JSkuigZUTeb54PB55mBLh5fWZRGen2jG+faPle0AmoIvt6XLbvcPFJ0n7/mOmjJ2lr5rywVY6jegHcek2syJOOdsiPFnGCIJfmmgQopCcJoEu2s1YREmoIQpoKoCiX49Dy0OifXrJDo5t4YtBKHWrVM6T9tYyrBA1mjKq9J+ySZZmaZb1mWx0pvnmoAvQTNMqV/DdNzEGXB8FaT0jkxJndrcEqT0QnnlM58BCqV4WfHpIpu6vV9zsnErDNxmTGZrMliW8aY5g/K6Crnq9ev8oBVcgNjsHZKxOQqZZO1OnEINSEtxGhwTvB4TT5YpVU2vlFGkwx9WPIbX/siDx8ccevKPuI9PnuCET64f8CzP/QK7aUZxIa0chweZc7CoEFL2+Jdy+FJR6Lh8qVtvLvAnrWx7xO7OC9tnuPvx0yZwfth4PHhMYvVEbeu79LlBR+8d5s7927z7ntvEQYNtA79Emc1AN13gTQUSbOsQWTfOF0H0fmgbSxxyCXIDzklskSERD8IYVCmnaZtWa1WLJdLclC5oKZtSFElL32V8UypJBk18BxjUuk4ScwaR4qB1emKlATn4fpzV7h6ZZecDYnE4qxTSU0Ms5nK2aWkCQXvG2y2DCkzF8cPffLTfP39NzhahMIaJRjr6IdA3/d4nxFr6PvMzCrQNxeahpp4yBmizZic2dmZE4bE2SLoPJgMjVcmDGcNYYikpICs2cwDOodbZ0gp0g+B7a05s1nLcrHAG5QJyqg0lwikIZKTkCJksaQU1/yMAqQ2DYLBC0AkZUMOwrbf4lMffZ6+nfGn/tRf4K0vf5njL/022cKP/sRneOWlq1zyc37khz/Cr/7Ws+xd2uGjr9zk9u1vcvv99/n5f/F5rl+7gQMWqzCtY2Ra73DWF7+k+CyFsddZhzoQZY3MWjVsjCHlpJ5YtJAE7wJJEtY2OJOJKSkARyZZWgXsygj0yhn6LhKz8DAe4bxw9P5CZQe2HNkOLBdn9MvI7ccds1mDi0KbMn0UgolY0SpyYw1xCHQ9tE2rSaUyJlPSZH6IsRABqCSrSrslxGqFc1anA996jLE4D9isyahM8UsMthGVLbEAjiEUtgERcJrgczIxnVivPk9MCeMsbdtirZCGCUCO0WSBc8r6VIv3RZRNwBSANQjLvuPKR17kD336s2y7HeY/dInl8jF/+I9/lnTU4//pb/C117/M3r7h+Vde4kc/+XEOHyz4hX/xRe4fLkgyYLIhl0SStxZjtKoaSSpjkdf821qJXT0r5xGvvmvjDVdeuMZHP/4xntv/KM/dfIFtb/FXt3m9MRwPPWbLMN/e4uTBMYvlkkYSV3daVvM5Z6c9q7AiOdjd3sIMT/q13zt2AbJiRsxGxXM8YU/DWFegxRMY7AsgnfGaaz62nrS8zMT+MxYgjNete5ULwJz1a15o2/q+Z2JjXQOo1Pas/WpKsnVdynA61zrA5un7lRGoVbOOdXNVXlF2M1vuUya5yOLwVpC+9r/uCaTsF2ryV0938foXJVfGTdZ54JUdDxj7urZdyn2O+6VS8FEFlHJOCgYsbUnlOL3n9eT+ep9N92/HROLEnFABbjmXohJrSnJ07XRmYsWlgLxEioL1E2AkKeBDLTqY+nJ6anqakmxn7U2mZLSzthTOlP1Y3dTmTM5rPVr3zQYctm6RdGYxChyQrPItdx89YLXs2GlneO+LxIzhdLHg0qV9EgN96Oj7jpgGBJ275s0229t7dCHjhh22w7WnfxE39j1vIwPyuVc3z/I7NoGj2Tu8sffPOT15xLJfAZZmOGXxeMFisWS5OmUYemWuSRFjofEOYiYU2aTqV9W4SAWOGGsLqF8BOzXGlLOQUyjAG2WXjhILC5AyS4ujsLyoT0GJkTilmNExIFNMCYQklhgyOenc08wc27tzjZmYllgAkilFnC+Mr0VX09hSDpcFScL+pUuEPNCfLaiLQo2xDWFgZm1hdhJiH0cJOMcEkNW+0RiRbxzeN3SrniSZEVBc4zsxEUMCS5H+KgAVdO3S4j8FGeXCPmpMZTOvYB31rbUIbQ3Iux4zggIK1XhkLuuxNY4b128x35px+eazECIHh6eYENjf3+fK/i7eCsFn3Mwyv7TP3uVLHBzcA4HlqmPXe7x3hDBocQp6kWw0DqZywTVuVdbKqlNKbb+MYN1pRbFlra1xSKv+T2GnGsE2o2ej8oE5qW8QcyYMKgvmrSGmQOhPsU7BsmEYyEHBcstVV+SWJxlwSQkrKjkKE6O7+msy+hJ1DR7jgQrNKSxW2kZTYqqu+AXj6/UZjSxYNR5HiWma0Q+qPkce/Z212GORlnbOFfnyxKTKW76DtRCRNeelNMesxQv99pz9a1fw1uNnjuduXsG2DVf2d2jm2+Q3LEkW3Lx1nVs3r+PF8uprb9B1hRHLCFlUlm5kZBUZ90zljbU4JucaU0FNzkA7b7h04woNMxIaO5j5lr2541gizjktoOoywxAhw7X9bYx3nJ31rLqBkAPeu030aWMb29h3xfbCM9zoPvlhN2NjG/vQ7e3dX+afPvt/Jtn+w27Kxja2sY19T9l3wKS0FnS10wayhpKBceP3tNSIVng8vZpYdbn19wpKmeL4sv4DY6ZMhmTRHFkFRzFtvNcDwevAlMpwVDeA4yZ9LZ9RN8xj5Qo1SbDGDgVUpqcxLF+Sh5UK+xwgZh0UdaETRHLJ9Sl7UkqpJGxyAdeUhBui8fjMSP1krB37oW7+U1RATKXgrlJkyMQCNSY6mdiwELC1nUwBJr2/qeJpPblgSlCh9qUpuYizozOWp1rZZ70hDrm0VYNG3ur9mAKguSgVqDE1gaQhFGttkVZSRo71frTWaxtsDYJUMFgBaZWzeu/Xglylrc7hrNXgv9EEQx1i1HFV7kmL1FXexlhD22pwqWkbfGPpup4wREwB8okIXT/QNL4wT5kSOEtVXYPsHdaCzSXxnwYeHh1yGpdID6uTRDv3ODvHzTLHp494+73f4Wy1x/FZx9HhKctuhXOWEC3b85vs71/jcBmYz+bnma7Wnt16X2/se9MqIHOa1M7/v7Fv1xIQ6OIRZ8tjzhYnnC1fpVuuOHx0ymq1pB8WpRpZay63tnZ4/sYed+8+4uGDQ3KCFEFcTYonUlA5tSCGoR8UtBN0vmmalpR6hn5AkgJJ+9irdENMkIUQBTsMut6gmc+hj7pG+Zq4MEWuLdNgyTGzSImQHLu7e8wbaGcOvOCA2Y4n5FmR4CxAlkGZfJx1JTCfsVnoTeKbDz7gqOuJCHhT5mVDloHj08jO9hY5GRbLjlU30LSWplXQ0KxtiEMmpUiKhpwiu3s7WGfJbDGkQCzgkZI7YRgCSZRZB4pMqDAyzTTeEsJADEORlSvJHClsNEmlNMiCtQrEsmPiQwPqKUUyCvzKEVJJpnhruHbtWf7iX/yPMLMZB6cL3rp3wJDg2uXr/NBnfhDDwAePzvjCb3+Ok3SXz/7Yn2L54B7HZ4cMecADfX9GLrJBOU+SdSEl2qYZE0B1DarSBUhNck//JoYli8kWY/QeE2BcIqRQElIOZxymgG69taOsXQqCpFDGuiYUyA0nZwtkscDbhsZZYoIcDUkyy7DAiyVnN1U8i8E1LdhMSAmzMkXOwwC2SFVV56skDbxTAFlhCcxG2bva1pfEiSmsiFkXUWu1+rmwlljraFuVjYhxwDiHb9UxreCEJOr3GGOxzkEu0ijlX65SJ4A6Uhqgp4y5ook1MSwW1ihjDbaB/We2EbdCaLh6peWjLz3H4vHAx165xp/7sz9Jmgl/5Md+gI9/9GUWJyccPfodnB9wBqzMEBOLX6C+mJjCMpUizniw+r3KWUHYIyClAEZm3mPFsuNnbFtP6DPv3jtgOfwOP/HZTzLzW8x95Plrl4gmslgJaTUDtnnu+Vv8kR95iUeHD3n/zQe8d0c4Comh72liHRPfi/aUNaxIcD3xzhoO5DwYaSwfOI+bWFsvL25GJg/+yfdrMvKJtl08VCiJzpo8q37ilDQawTwXHK6n3tu5Nk+FFBcTpdOfUxHIE6er1625ubInWDs9VTZaoOwn1vdPlZlp6vRR5m1s6rQnOt9F0/1Pf693cMmxrXXC1DZz8clo643i/dMQiUNNNJoiCTT1gx077XwPj/sKy7h5GfeSTH17PnFpx/3qekdXPobaVleffb2OmaSCxv0gdYys733LPoNpnbC2JqR1nvKNI4RIDBFKMQowJd0r6ArRhHZG22stgqXqp2Zg1fcMMWBxnKWA8wlvPMYbgul58OB9jo4c1rUMMRLCgMWSnaNpWpx1NK3j2fhJHM25Z7TZT3y/mdQZkzp/bp7cd2bZRN7d+RWiLAhpRYwDIURWq1OWi07ZW1JQaUqphV6OvUs7iBGOHqu0V04UcESewDI5kU3xYStjEiXGYq0C1hVxTc4JMcqOVGeTlBTcUAEfY+xmXBdqEZ1gig8Xg17LtS37e7sMYck4Tkwp0EgygoBSrvLGZpx/6lx///gxqUiIWTdJ9SKQUqDrDNY4YlIAUYyCb2yRSjOkUgwiufjtRuW8fOsgoj5vAewbUbB/Lv6gStop0Kj6BK4AfGKIYwHbOBcLpZBPxjXRWIPJpT9l6kepa7mIFugVIEjTeF58+WPcuHaN49Mzvvbm11gOEe88t27cIPYLHi3OuP3+Xe4//IDty3sMeckQVoQUyv4mKjC0rMVKKmWpAN11zsapsG+NWXFtXRmBiGLKWlQ+l4wy2zIVOuhp67n1aaZCWR9DGuOEjdXOTFlIOWKjLXsuB64UCpLLuNSix+r7iCkSrEZICXTPVwB5whifqz6FKfe27ucpOZedgMJVrtDIeL9UMLG1CjQyliARY0RZSsv3IBdJ9XHWG8Fea4WSSYd0LUAc47y1CFagMp2NflYFMFlwPhPzgpQNmBnznYaH94+5vLfFjeu7nHY32d6dc3N/h+OjE27fu0vXL7A2Y5JF8BiTR/dJyv5HSnMp7Lrje1KefOmDxlkwjsZ4WvH0x0tSYznIx0je4/J+yxAHdrfn7Gy3ZCzH0tF3mdQGdq/s07aZ7bnj8CBzeBbp+w5/0Zne2MY2trHfh3385M/hZfZhN2NjG/tQLZqOz938aySzAShtbGMb29hF+7ZBSgZXNqCUQK3u8i12DO4CY/C02jpQZ30zeP79EgA2jOddD53VMM90jrqBXN+gT5tVynu5bMJFw7ZaTWZlDNTXQJ2CRzS4U+mFdVOaQeyo144xoy63oYKDJo1zvY88VifXTb6aLaCZ8xs9TVRO/Var5ASL8Ur5K2OVkSbpHAZyHCvSMKU6qFSIVckhrcCagvEXr3sRQHWub9EATmUkqsGREUR2IRlQkw3WGOatJulPFx1CYBwpaaqstlKAV6ZSh5fgSf3n9JmLodCk6/O05V+MsQSn3Citg5nu21pTwEyUgJJgHVQ5CgU+OYyZpBQo4CznTWEy0RY5pxI31hhSva51Si3tdZy07YwQI0Mf9G6N00rnLISQcCXQo/TXUXvFGkwEKe2rY9aYgXQqGONYOYMkYZYFsSqXc+f9D7h3N3P52g2uX7vEnTtn5F6QuaVxcxrvuXp1xtbMK7jKPPn8N/av255Muf3uxz3tWAFCqXpUwKQYt3bU5rk+aU/2pwCDRJbhEMkdse8IceDsbEk/DAwhsFr15CTKOmYNYoXtS3Oe9zcRYxj6yNHRgtWiV9CNNRq0FyHHKjvJJHGQLc47fNOSyOQIYYjkIvHkrCWawDAMylIjgk06r+AtQz+AEVzT4JsGi4KBVOos433LzqUd5jYR8kCMmtAchoGUMsPQMZ83CoworEOJBJIUFGkMfR9592RBGiLNzDLbmSGiwCDrIA2JR2fHOOMx2MIU1TOb7RQgbcZ5wYVEjgLOsuwWZMlka6aK45yx4ogxFPkKq8xORhkfconA2rU1SJO2Boia4IgZSRCjlMrwCvwpshPFF1DwgKgkWRJiihq8FV3/P/npj/HZn/pJmiz83b/zd1kuBvYuX2W7yfzav/wFvvFbv8Lt+6e8+/4HrI4f86V/kRlOzzg+PUVyZra1Rcg9yXRojN6WqmbBWCkV1rkkc/Snb9YYo8bER2EVLGu/x2kCxRiyMRhavTcUoJRL9bu1pgBsbFkPK5uhJmC2t2ZYA50ok6IVFLRkhO3thuBh2UcklYp4m8Y0SMqayfde2VNUlVXXWB1Hyt5YJdRskZdVRVlda33r8I0ygXjnS/5KSNmUZ6+MXs66knhwOD8npYDBKkGZyezOZ+QIfQzEnJQ5qfp2oAA1ga7rte9z8U2rVoO1mDWpVrvm02XRgH47b9jabrj9+ht8zjou798kyQ7vvHuPl1/6OIkrXLm5zSd/7BPcfPFZPnj3Nj//Lz7P7Q9u04UF1oMNxUejPNck4ME4q6xKoixRCvyW4t4KJgM2MW8dl/Z2kLzFbO8Sz998kZeuv8j2pVtc2d/HmpbX3/2A1bDkx37kU+xf3qWPni/9xjf5/G/+Jg+ODvni75xydd+ztZMxtiOGjhh75DurQfg3bGYdzQKTh8+YX4WnLnGjC32RLvUcjKYk58z6B9ZP+vSEy9QkeeJFOXdAZeKRse31ez0ChdbPY2py9OlrdmX1qeCgconRFx/3SePn6z1c9DMKywaVCen8fRqqb1tkcii+s5Q9SMk3Z8pcihkBPOPebk2ybMzj1Z+1DWOGrV64bi5qX9Tmnt/rje+tFUt4Z/Des+rCJFVkzChP46xmCq1RNiFlDaz7tHLOcq81qac9l8cCDpMKO6qxa00owC1jxps8Nz7MWrvXxwBre961R2PsVBwzAo1yYagiUypuEFP2qDUFWxPTUveI0x61FrOMAyYLYgTHxBxhrcEKYJImkI0hETDJAZlOhL6Hdpa5vL/LyUlQ6fVsiEET8luN59LpjXEeOz8G18ffxr77Jk/57VvPYetPoh4RTc+Zv48Q2Y038TLDiCuAgvq5zTNct4nVjXNdfTS7zUH7rvruEpGUyDEqu2ROI+g+JWVutBawQpKI9w2zrTnYQBgioU/EmNTftRbfNNRJ2JRgiCT1WXLWmIU4IRfZN5XXReNwRv2wCm4qwQ2NEyWBIi2MqfGmAvZQ8WckZ1arJdkkbNRiu6GPep2UyhKmcZEUhSqv6QpgR1IuAC2DKUDtOqKcK8UIQWWsnXMlRpMALepKWVlBrVUpNdDYTB/60k5T5m5tb40b1TlylGqTynI0MfyZNYASorEtVXSr60iJMdbigXVgL0V6DWU9lVxiRtayPZ9z+cY+zbyhXQi78222dvaQoeP2O+9y++23yBhWMSEh0J+dsHh4wHK5ggJ26mNQv7jGQGG8nhlje4xrorU1ZlkZnrShIxBXPWlqMaa+X+IH472W83EeclzXcmf1fM5pfC0VvzVLwte112qxhJAhKagqlziW1oiaSabUQJXfU2AWU8xv3Q8p7ahye8YVycKyUJtyvCm+UfWHbHnQUuKnqbJklS/u1tYMZzxdP5BKoeA6wMtaq7WfaYpDnl/dKT5SfUW/P3qfepWm8fjGsTpe8uXffJWdrTm+3SJF2NvfJ5hSwDQzLPqO9+8teHDvHo+Pj0lJJV6srRKHesERhI3BOHvO5xzdzOqUlLjEzs6cxm3TZcPlZ67x3PVrtH7OrG2xGB49OuTg8QHP3rzG1av7ZIHt7Y7F4oRHx0e89d4x89bTekMfBrLo+FwjcdzYxja2sd+XGbHc7D/FpNCxse8XE4TOHXNv/lUAnul+kDbtYnGb/cN3aILwzs7neXPvlzbb541tbGMbe4p9R1mMKeA9VR7VjWCt9LoYFK+fGyUPyi54YsIRJkYiyjllpGyeTpLHHWJl95li4HLuWnpMed2M4QcNqmQzvl4+MCaY16ISU/tKsGcMFpf3xjaMF6uyBLlsnHXnWP8+jxOpwW5N9tXNqDIO1KREJufCqlE26VmybsIB66xW3mYIMWpQRsz6LYwyaMLEoLTeW3kEKslaFZqMAYCacKmAsKI2Q2WH0N8NhcZpLZATkahVvMZ6lTMyQi5JgZ3tbZz3bO3uMNDz+MFjJTsxJeBmnMrcmUlioko8ZMBZiKXtzhvtm1yT3tN9OmdLwE6DSiklZVMq4zHGIpXgbGFuMijjgwb8Gu/Xkg2C9Q7n2wJUSkipCnPOaSI1xpKszEgqSZYSWIglMEcJnNVqqJwzCZWK8n6SBMIYTAPG6ThYkbBDJpPIMWMcRHmMiZHWNexcukwfDUcnZ1y70bO7vUutkpW1cXv+W7XxjP712Pl58nw2awq2TvNHZSqbgHElHUXOAyLK3oXxGBGUl8ZemFP+YNu5tYmMgmo1YRck0/Urhm5FCANhGDg5OaPrFJzUdQP9EFS2LMH2bsNsp+FsuWC5GFgsFzjbENIAKItgNjBrW2aNY7VckjXyj2883aoj9ANN02KdIxYGlWEIOg8Yq6w4VqUxQ47a1qiSn84NOCcYb9FcQMYanfuNM4W5JnPvzgfM5i1+y5FyIqdA6HXNkpzoO12XU8z0nQKJDEI7V56a3CcIOhadmwA/Gtx2iLgxeD2bewWKZoeftfRxwFqhsZC9LZJWmSEoYCplsMbjjAauc8oMQyJjsIXlsLLchBCxGE2giOC8AxWAKOuiJkuMaRBjEWNJqKweWc8dS+LWOfVDVHLHIEnPmVwiWcPp8oS//0/+Idf393nplWf53/6h/4T57ja/9s/+Kb/0uc/TrU6JjV5jniMzSRydaULh2as7HKXAIkQlrXCQrSsB8qTf4QLKyUVazHmvlb8xQc6lUlnXSWsMUiqSjYFs9PkqqGpKlpBTSTJNUrJOlC3RGsE1ju3tLXJJ8kTRtcYZp36T6PPoowKKbAbEKsjOVmAdI5hXK5ENznpdt0UK05XRe5aMbRwWBV+Rk67HMiUasgiUqn6d1xJk7VfnDVYUtLVaDQrUKoDvTObm9Sv80Cd/gPfee8TdwyNWy2OVxMsJ8FqdbyDmhMSpytlaU5SfCkCr+oDFB0o5Yp0CqNqZZ3trBln46he+watfeB0/b9ma73LjxRvsvrDDNx+2LB+d8vUvf53Pf25FPHvM2dkJy25BilGfhyssjCV5ZqgyIhljG2w2RAlEElJYq3ICEzN+bnnxo8/zJ3/8p7h7b8lb/YLrn36FW9ducuvKdXxMvPfue/zK536DW89dZeuq47Q/4/a7j3h48C7Lkzscnj3i0d1M0zhmrbI3WRPIAp2J//on3n9FW+cmHeEPa4mg8779+U9Ob62Bf0qC7HdzbdbP88QaKlOy7uLro1c//vdkMmtMGq2/btbeewLgcXFvYNYOLTCVkREWJoaji/useq41hoUn3td/60yy41gtmUpXmBH0I3UvBCPAfmpd2dfUJ6jPQIkJ9Fi7dux4vrVkq+Ze671Uv2jqH13JYYiJIRYwZQGmrgOGnHM459ja2SEQOHl8gpXCGmFQyZkyR4znFxnbs5arxFj1Gepx62PBWjOuW1pckiem0rpPKvN6ZVmoEp0YLXaoz7euD8ZanDHlOAXturqPluqza3tz3WebqfhEL2PHdaEC5ETkHChK6tohRWKqJrXXWCvEDBwentC2Dbv7l1gue0JKxJy5kq5yc/Vp1r+x578iv8eXbmPfBbs4dzz9mDo2qh037/Pa/j/izN8j58BW3Gc7X+XlxR/j2vDxsn/fPLtvZXVdRwzZJt7e/jyreEaOAzkogHqIgTgkZT9LWf1xUb/HOsts3pIFFosi95whBAVT2oLayJJpmoYUCyhJCsDI5AKemMApCtARUk7qcyATSxB5msOyIaFyyqBMbFXeE0R95cI2lGJQMFIp8GoaO8rNGaRIatnCZJMhF4C8s1ivY86i7XXOYpFRHrOuSxoTUWk2BWU4fOtH+U5rFECOk3G9yVn7BtF5VW8zk1IZ67bunnWKz6XN2ZZYVZ37CsAyZwor6NpaiwJbyqlH9kBT5m2piE9x5b4AEU6XS774q7/O9es3efG5m3zms59CvOf43n2+/toxZ8sOMQnjPBIjl67ewHtPv+q5cu0yIQSOul7vzWo5paEAf8bYaAFelfUhlz0hos+kzuHUOGdh3pNS8Knxy4zNug5UaTgRRiZIU8C/xuhrTeMxRpmqQpqYSMmFfV2EqLgq9Wf14Zawlhljj9YV1sCyT9JRUWKZZTzoOGB6HqXwssrrAWMcsvr02j+m7EnKceW5mpBwRkF/wepe6NbNa0iCh4dnrLoFBc6mMdPKsIr2pfo9elPrhZx1/JbG6GFlra+FP1kEQuTw4SEHoqCj+c4WXV4RZWDbNRwdLjg4XhBCjy3y6coYO7Gm1RiyPnsdD8p8puNQC478GO/NWftmZ3+XT33y49jo+MbtuyyGJQ+PhZtXbyB9R7fseP/9RySEYPZ4+Pg+R4cLTo4WnC5OyXFFyonYlWdnGeOyFTq1sY1tbGO/X7vW/wCfPfwPPuxmbOw7NEF4b+eL/L0X//MRpHRt+ChX+lf4kw/+j3z89M9sgGffgSUT+NzNv0a03YfdlI1tbGMb+560bxukNDHvnE8a5LIJtr9HkOtbsfWwrvNdXl9nORrtQtZgpEEuTEkX2Zk0YD+BbuqF7biIrsmFmfVrTYGKGvxBpvOvg1Yq5TMwyrjU984H/c7/fT7RYfC+IcbhfB8bZdLJMeG8wznPbD5n1fUMQyCjASfvLN5ZBThJ2UDXjbzkSX6gbviNXrewOo8BmDF4VQEU9VRmPF0JEmg4yIxVTIKQsNYWEJEQB4tIzyhjY+pz1cRh13U437B9+ZJWtMWMyxaxQrKCEVcYJ3IJstffSxVZTqDq8+QsxBgUACSViUrBSNZamsaQkjI35ZyJSg8xBgKM1SqlxpfEfaYkHxxGpmr5mFIJGGlSpCZZqjnraNtW2SMEYgxjlaKIPuOavHDO0jROgz25Ph9l4jAmY63HNV7jJVET+433GDRZjAhOLH3Xcf8gc/PaFW7euM4HHxzQNi1t2+LOAeOm8Wcu/L2x77LJ+i8aaNSKu/PSkecTm5Wefj1wKiCJOPSkFHU8ugbv50X2cGNP2lriOEuZmeDw9IxudUhYrlierejiQNcPdMuerutIRdLAO6GZOa7dvIpzjoOHxxwfnbI8XeC8Jww9iPb9EALWg/MNq6EnJpVvoMh/GVfmwwh9lxAplZtZg5vZaEWqQZjNGowR+lXAGZVTEcnkJKSYkJwxKeIai7cNioVJYAzLZUc6jZC2mG83JClgDARR/Me4Nnjjyaln3nh2Lu1jAjx4dEA0yiCVYiLGTAgAUdeWxjCbezCCJMPW9haUIHNOUwUpFHY7gVL3qUlYLxBVPkAyGGfwtsUJI9BIkoIqUtTEjs+C8wmMQ7Iw9EmryF1ZR8oalZNWZceoIB4FDyt7zzBEfHK0vgGEIQdiyHzpS7/NyarhP/hf/RW23RnvvP0mH3zlMY8+uMvuvCX6Oc8/c42H9x4TQ8NJD4tl4CMvv8SP/qGP8LkvfIl7/SlIQ9MYrJ0VkE+PpFIibASTa6Ikk0TXy5yiAo6jI0tCrKikXQE4aSKhANGIZQ4QckikWAC6XsFbqazVrnVsbc8UbBSEPgbA4K0mGySpREZOEGIoYxSqjGTbtuTkVaIDTQ6RDcZr0sRbyxBrhbvFWME3riQGjA73ZLCtm0DRqfhWTtfZlCq7iy1JdgfZMp87XGNwxuNnLbkfsJIQ4PL1XZI47p50pHSiSQGbsQWIrBJqFnAKiqaCleq4UJCfQQEBlPHhmsKAiCEOA651zH1mGCLLoxXBr8h54B/+nb/HK888x/7WLquzxL37xyyWxzRWEInEOGifWRRgVaZuU5I7qmaYCUlBY8kIPjlNrkgRn7COj3z0JS7tzXn9tTu89+47PHrvm3zyIx/h0t4efbfk+NGCB/eXLIdjHj56l/5sydlZx8nxilXf6XySAlEGJLHmrFWp4O9Vk3M/aiHA6Nevvflk3cM66P6Cn/2E673+4clnq7mm8+0x5z62hg8Zf69HTK6VOb+Uj+dfA43I+ftZb8/6+eu/sTDgQpum+326/1av7b0b5YKMMWv3URgmCpCzaRpCjApAZEoOGlNYYtf6RS60fdoH6fkFBVaaIr2ZUnp6K9XRGe/xHOPQCAyqidmpj3WPN127JkoBQgjK8idCysM49zLihy6MtSf6rbbDlMRvPvcwUpYiGzTJtNW9ZS5MJqUTxnZLHYtr96lFIWuwvLJW6MfVP6x7Bl+Y5irjUh5BDwBlf1L611oFS9Z7kPG42p959BmVzbfKcRbmCKtAiRQTfdbfQ68Mj/OmofWeFxY/Rpu3n3ig38szzL8Vdn76Kt+RifXr/FtTHKN8zejcMV+9/HdZuSOQREqBU3nAmXvE4aU7/KHTv8wzww/+G7mV7y+b5l/duwEGHrdv88C9xWrZAWFkB62sPrkwhFpnaTw4B1u7O3jnWS5XrJadAu4xpDSx5OYCOFEJtDTGY8Z50hbOmwIAqSzRF2NX1qqP5ZxRn1tKjGwEVpQ1oMzb6xKl2qZEHjI5WZxttBdKLIZcgKOiRTXOecQknBNm8zm7u5c4ePQYcsBiSlEdBeQesMbgvS1Sz7o3s95pLCmnErvR+cwbW6TYatvcGkumoQawTAXAiMal1IuNOjenCsQpj69IZimLkoxKX+fchQL+WmfREhEkFUCLAetVTjPnAvjMmdlsh9PVGe+8/Toni548CHtb23QxcOnyPt2qZ5Hh+GRFyhlnPDt7u5weneAyJLGF7Unn6Vpcp/5FDciZIic8NpYqkSuixSDWKANW9aYqU5L2WwE75fJPKiiqgKFRv6BtFfQbQlhjUSx+NCXWqb+ssVCp76CgXVPiWNU3qj4v4zPU/SFlX2HWih71+VqxE+NjKVgsdIBlLOtDdRWki8W3jrb1xAJoyyLYXFiwnOP6tUscLXqWnceQwNR1Xs9rjQU3sSmt+2dTHLl+00pRxpqkYb2esdouKQU0adVz+MEjVo8XXN7dpp1t0RrDKmTIES1GS2j0FJ0/6si0ClrzVsF5qUjd6bt5zbdE47ghcv/+ffpV4ux0RTqJhK0Zh/cOFASVMjFoTODV08PCTC+EmAh9GsNWYnKRoyw98aQTvrGNbWxj37H95MH/nu107cNuxsa+Qztq3uNvvfwfczR7d3ztYPYmB7M3eX/71/lf3P6b/ODRv88GqPR7myC8tftLvLH3ix92Uza2sY1t7HvWvmMmpZFudg2k8WQIe7KJMelbndSUjdYk1/W72QQWeurJzoGIplOVQE6tGq1sTRfAR5O0Qj1DkVNZu/Z6UF1BBQpCkSzjMVxoYwVJjYmRGnMobfDelQo1zTKpvFoiDAFEgzBOLGFIhR5bN+kpZcg1vOSmdpbGPwEcqwEpUyTqCvtE03q6Lp0LiBpMiZ9rojObiQ2rVl/VKrVzzzjreKihL5M1YKcyeNoBNbD3/u3bGCI+eU14SmGQoFSqIWPyyho3Bv+Vxav0dVYKaskZV5iPRBTAlbPgnC/yCIyydTWZaUqCIMZYgCAVzKXSMXFIY0W0swVUZDKZOFZQ9/1ACJEhBmr189Z8TjtzWg0ZKyV6oepGxkSr8x7nGsIQFZQgsVRjlYCF1OBzZr41J6ZEPwyINKUvAkkyDw8OOT5eMG+3ePaZZ3FjkOqJlNq3+Htj3z2TC79HkFi+e4V5ZHw266/p63WukAI2iTEQQqBtZ7RNU+bKzfN7umUUROR0LTGJISWMZFLqMLZH0OpnZ8CajG+0L71zPHNrj3Znxu6lK/RnHccHhjQIKRqGvoeccNZinEXEQjYsznrCUOXeyrxfGAwqK6CxQooZ7zX4q5XICZyj9bNSRaqybJKVBQYpDH/GMpu1ONMi5MLEojKkKURCiGCEbtVjjWBpQWAYKkA1qSzBzi439q/x+OEHODLPvXCLxw+PMMeOxmuVb04Ri9dKyhhxrePytWtAZBkj4h0ihhQSEoQQFQgxa1QmKCWDRRl8nFOZqxQjxlmcgSRFgrRxzIJjFVUqQ9epVNZQS4rK5hNDJiX9JxlSHhTwaRVqnI0hiIbZKXIOxhYmomgRE8leJc9cgoTh+VeeIXSn/Df/1X9N6O4TTs44E8dP/7E/wWyv5avvvIEr13vl5Y/RBoekLd6+fcTdh7+B9OBMS25zCcSXuTY7klDWcClV5tovxlokx1Idn3BGsE7IyUGagRfER4wYZl5BT8YagiRkkIn9ET2/rlM63Fzb0MxmhBhIJUllKWxfYwJMx4jNJflvFURnrKEPaWTx8x4N2BsdzyFnbNtgEJyhtN1hyOQ0+TwYsF7lASUX9kAxNL7RcWyB7Gi8YeZb5lu7GON48eXnmLsZdx4esugWZBFmAjY55nv7zBYdrhGM8zgiOfs1h9Ux2/JIEPo+kasUUixgK1MTL8o6GXPC2SnRJVklEMkZsYPK0/nMlf05V9uWR6cDD+U+H//pV3ilvcrqc69z+7QjpQUxDeTUj5XqTVOANUUCzwg0rQJThyDEaFQGzkbEOEh6XE7wS//k83y+/XVsuw1RIHq+8ZVXSdkV1rCMJMvB43uA0M4szkW6LhCiJvswZU5Ax6IRhYO57+F1Yh0spC+Uv8s6WLzp88esfW7tFVg7dkos1TFQz/n06092LlV5/nXDBfCUnr/Kn43YgXNtXV/nv9V1OLefqPcta8fqnuFi286fYx1EVX2H8+AkgybCRJOFRU5s6BVoJwXRY8e+02vXhFndT0z3d6Gvx9/KnrCcv3ScHrEO5pI14NAIIJrmuHP3JOttOL/Hqu3SfVQidakUVZTUrKztS8cmm3OP99yTNlPbqmx0vU6V1R4pO5jYoKYT6A/1+6N6deP+qLCxlGOUIaXsp8x0TwpIVnaWekrfeGW3WxvrY6q3tO8804YUVtw83m/OhVWq3GTOeQI95SpFrre26nr6PtD4hiF0xDhw2t7lLDxgN9xg/E6sJfLL01/r6I19Z3Z+HiuRCMza74rMyOO+W4h07hiRjJMZM9kDChuvUSD7m3u/SOeOGb9xosACh0F84rXL/4jmaJtr/cc2j+73sKP2Xb5y6e+S6ZnPnbJimqDgc9Fkv/MWI8pwtLXVsrUzozLbeGex1mGNFpVJZmRA0+dlCEMsAKXyIvptn8BBWdf44v9pTENjBBkKmEGBKhTJ5bomFJpPnU+KrNQE9tS5R7KM+5YwRLzTmEosDEqU4gjrPJcvX2Z1dkYIK5w3dGFJla0cAZwySY9h4NKlSzhnWa6WCpoQZeLJUgGaEwNc7RhjLTaXMV114GyNcxmw0DhH7JXhmhIfUty99oEYoxJ1VICzmebMOo+KAqcm8JYpwCE7HiuFSbTGetrtlpR7Xvvab5OINOX7tXvtCnvXL/Fgcczp0SkxZm7ceIaXnnmehw8ecf/hY9549z6N1TFhvPZtXbNVulRK8YAUpIwp7t4ERNUnmrXYTgwSFSGTvYARvK2MtMUfjrI21UxFnHVZ1JCaIBVkbE1R0jZj4eY6gHokQDJl75WL3KqpMoBTjDXnPO4By0LLCFhOVbZvfOzTfRf/y1k3fV/Kc5u3Da6ZYaxl69IONy5d4exsxeOjY2KKOGvJKXB8dErse0LsdQxbZVis7POCwTcO7xx9N5T1kTXg9uT7mFKLUplupQAGjRiMOELU4gULzOYNz1y7wtHRKX3fYW9c4vmXX8C9+5huFRlSohajULw/3VNq39nqXFrdR1YoXt0TWm8QsQWmBcvTnrdO72C9V0ltY1icLkq3qjR1LV5h0DFiKku/mBHUp79PbF6UsbCxjW1sY/8qdmfrt7g//xq3us9Qd2sb+/BMELIJHDbvgRFm6RK78ea5Y7IJ/NPn/k8cte899RydP+b/++L/gVna4xOnf+7fRLO/b00Q3t35PD/z0n9GMv2H3ZyNbWxjG/uete+YSelJcE8JVo4b+6fb7/aeBmSmjf96heD6tS/+Xjd1MO1ta4BuerFuqqegew1sP61tF0FVsvb+uZ9lE12rxaYqxvNApkr3Xze4ExCq9mdmtVrVKwGTVrsYTUbHGDWIkpNKjRWwmLeuBGM0cDnRI5+/n1GSoDSkVtUZgZQiqS+yILXfZa2fR0BabfdUvXORvWoM5qyhvLJR9iTjDL7I+UjKRZ7NKPiIWhlNoTSWqTsKaMgYW6R99HPnwuFS2RKSBvOtBtRqsE0lLFSaLecJWIVoAlMK60oNGhqjQAStnp6eY5Xjc86SyAxBwUXWGEJMY7+KCG3baKCmnQKTlYnJGktMWRMZRqspmwIAAENOQt+H8VoicHR4jBjB+5YomZyhNVo91g1hpC9/8OAD9i/vce3GDZx3hbZ9Pn1P10b2+YTTxr4zO5+dOt+3la4kIRJJocc3DRhlE0uxI+eMa7ZwdhtoxvNNLHKaaDJGZZecn+FcA6aCmjZ23mqSriRyEELuWPSnbO04jLeEFLB2QFLU6tftFjM4Uki4NrF9aU4zbwlDxxA6fAtbWw0htKxWQttuYyQQUoCcWZ71VIY4sjIBVWCNBjlzCazqvKrsEiUZaaGPkQZT5qdITCU5WgKHkhPWGeZbLeRM3/fEoGuB5EzsA9ZY2pknR8jRsbc7Y3u2x8P+iL5baNu84dr1HWgSAwGXhTsfvMvirMdYndckJIZuUDClVea2dj7jx37ix3n73TfpH94nByGEDFhiBGdKxSiQSxWojnNDCElZksr8aIDGq7zNtRf2uRQcb773AZmMcwYRp/deWGZSFJJJBeSlcmipzP11pXXGkK2ZgMRlrdNlI5OdMEsGyY5OEtYl7t57j3CWiNlinGc+QPCB1997ldPHJ5weLljce8z8xnX+6n/8V/no1ef41S/8Bv/oF36J909v88zVbc5WHUGGMciulestKQWVNEX9oSSaZDRJVIIiG2W+8eCNIYbMkAdm+w3ezXUNb1SiLcZIGCI5lLWYKXniyrospU9OT0/1K2DAW6fZGbEKeKvJDVNSnkalFVyja1IflAEsSASKFJtVEF5OiWgSroB8at4gDHn0QWrSx1plKaosLJrIMhood44hJl5+4Saz+Yz5zjUer8748T//R3m5vcY//8Uv8HhxRuotd955xMPHH/B3/vbPFvDVAHTg9HmbdkaTPcZZnn/hBo8fHhMGIckwVsBbB955bVPxSepKPgxDASwbtra2kCSsQsI7h83C3uVddmcNjw6POFkFHseE323Y3p0zO95hCBZnW4IYkvQYo99RQWicY9sbUg+D8TjfQAjluWXaxrGzs02XGiRGZAisVpnTVUfbBua+5bSzJIkIDusacMqWqUC3xGI5EIPgjAWTSnV7AWjlTGVqqlJS3+u2vmw+bYuwjik5l7g08uTBekZGGbLq91csxYXzf8stSUkMyTknc3JJLwJo1kFEE2BI6vZj/Mz5s1y4fr3Pc/LQ5ikAJP15se16nL5f2UK1n+o1J/+vsvVUsGPFslQgf91PjI0y5693fv9V5iJKAjNfSDaeayTn2lPb/fTnOflBT4K0ShuKTBKVWWCtz6Serz6jil2s/VLPnWUaY7K+p6igAKY1xxQ2OKvsSlWSc/zUxU3JCDiRsQCiJoWViaEeZ5VdMefpY5Xpovxz3o37TjsWiUwDu7JjmMI2oawaZpwDUgEx5rJG5hTKuZzKjJZ11JaiDlvas1ouOW0a3t7+Ne7tfZ297nleyD/KtfAKbd5VBpM6DNaekrnw18a+XTv/PdChX5LF5V/OiZOt93lv54s8bt8i5UCTdtiTZ7CmBSxOZuyFWzyYfZ2y8uv5hAJiUenxaAYezV/n2vADbJ7T00zAJN7Z+Tzvbn+RM3mESCbEFTF1xdewhD5gnTKepJhpW4/zUEEYIQzKJuTAt55MwBhlUE25FCmlykyDzj/l7wpAzmWuqkCNCuoByjQsDCEWH7h8VnEIOKvM0WmNJSjlVBiZdH6LMY4xEWsMiKNpG/b3L/P44ITVckkMGbGGphW6YclqWAGwXPYKYjAGclQXNCkbiylscIJgvcM1DukFE1GwONNc64r0nKBzuHMehyOEOLHWoYuWMzpv+pnj6uU9Du4fMITCIDmCXqe41LonsT7nS+lvKPGyGoKqANUaLzNCg2PuGs4kgk10izNWLEAM4iwxO0iJ08cHvH70mJQEm0CsZf/6Pq988hVeeOE53nzzXb7x7lvs788Iy57lMICYIiw4LgLTV7LEDgQwmbIuGGUcL4xFJutY8o0Wv6RU/HSrn61stlOh0wRmrsxLiO5jq42goLLO5RKjNcYUPrdpT2HrayV+mNCCiglYZEpcjvH6Fewzrotr05+1RlmrhLFo0RhL03pSysxmDVcu7xCyY7nsuHxjn+uXL2NyIps9dncucfhwycODhxwcnHBgDcaKsrUWX8A0jnm7RRoS8+0ZkhNDnwqoqwL/zbh+V2lEW4BvNd6HNYX5EGLWPbJkCEPk4PiYHCOSDUfHHem9h0iX8LOWlAVMJkVLygMVqGbKs5m1DpstfRLE+SJ5rXshay37O3OSWLqYSIMWSmYgh4g4IRmnPpkp4KcCxjNoDEJyIoUyluzEpl/dmlHmbgMl2NjGNvZdsN++8rd5/dI/4aXFH+WzR3+Fj57+NJfiMzhpP+ym/YEzIfP27i/zyzf/Gm/u/hJiEnvhGW70nxiPadMez61+hK9d/nvwLeMuClR6df8f8LHTP7OmWLOxdcsk/uXN/5LP3/x/cNrc+7Cbs7GNbWxj39P2bYOUngDvjBUx58EqMIbEn9jWnNP1vvD6FG+151iJ1sFRF/XBx7bV6xio0gDnXi/tGSsQx6D62rmmfXSpQuWJ+z3XdpHzEmlP9NeTn5/+rvcBImkN/OTGY2uMAkoFUko0tqHxnhCG4iwktubbdN2qVFzZpyYI1sFl48ZT6uvlVFmTHCM+6CnPqPYj2T7llqcg0MVnJSVSZpxWeRoDldI4awnYmHiWUq2XmKrbZE0yriYactbqMWMsteIn5wpKUmCALVWFtV0pxdKmAnoCJE0BGR0xlbo5jeNDpexqsr3QSKPMTpTqI1eOSTGzWvaEkGjbRoFFDUAmhaCybUZZNlLMGGvx3tPHocjFabI+RaXyzkkTLOK90pxLxrpE23qadgZGk9rOe7IIh0eHvPr1r7H/wWVu3LxOTJlr159ld3enyAjVnq6sM3VcnxsxFx/uxn5XW/tukIGAApUUfmedhyLdGEsln7F1pNVE2FPOmoU4JLQy1YJx47jd2EUz6PwXyLlDjCXT0fePef/dBxyfHjDfNszmM6ztECJt2xBjYuvKHju7jhB6hgg5Gw4fnXC2PGU2nzFLjpgNzjbkmMkFgJZjnbuFMAwMfaFIl6zgzyR4p1JpKaZx7q3rI8YQQ4/zjqZxWOeJg37nZ7MWkcDQZ87oMGSGblWSyZYwqJykAmSEtmnBDvzoT/0QsZvxa1/4GqFfMkRBJPD48QNlsEuGndllLJd49uY277/3HkM4wxpD23hSgJhUiiwvM//yc58jisqxyQBb7QwRrVY2zhVGnsIS1xh2dnfpu8jQnxYQk87PlgLuzMJicUJYKbm9cabIJmjSxZQAdsoJrcK1pFzWoxJwjVK+VyUnUpOttXo7o1XFSRw//plPc//BAW8dPcKEzHDS6bxtM9a2DNbCEHn/a2+AERrrUc7/gZWcYW/s84kf/wy/9cYbuGXDj3zyBX7jV7/Gw5NDJGsVrMltkSTION8g2ZEkEnKP07S2Vr6KpTGQja4VQQKzFl68fpNtf5nHx4ecpVOyREIcSvDYlrnZonN29ZW0Sl2iUBRDFaDEFNDPBVBcAbkhZ5VFtZrotEbPakRxTSmV9JCUhDiOLBSZC13vhiBUYMYIKkeXEucMvjBAIcru0zQO7x0hR1IOrBY99x48xrVz3nntdd54cMRSDH/hL/15nmmf5f/3d3+Jz33pjOXyIWfdGY1JeK9Jt9bDpz7zaS5vXebrr73Fo4cn9F15nlX+w6o0k3cKULLOlnFlRx/Ge4v3jq3tVpP14vCmIS4j33j9febzlu2549alZ3j89sB9HtK0l7l63bFaHGNtz6NHPWHoVdrBWJyFnS3PR19+geN7Z9xb9di2IQ6GRgzew8c/+XE+duM6r797wHsHDxhSxuSMS5kUhAUWsoMsWB/xNmN6Q3SFjUp0Hhn6esO5JE68AtqZJGCMNVPC83veqg+95oTXd8ZkybdzjumzE/jlCXf49/68rLXhIsPPU367ePUntwTrrDvfwrc6tz+owJxp7/OUwy/YlJQdoTjm4rFmbGDdtyhjw8TcaY2roiM6t1H95fXrrL1XdluTfDW1DuQcOGtdynYdYFPBSRWIdBHEVPtjnbVIKHuM8kdlHRi7d1JnWtuW1OvUJlx4kiN4aLr8CEIqgCgjoiDU8n4teCh3tPZozblU83SsjAuW5MTEzCs6T9f2ZHRN5SIrrAODytNaBZHa8RxlL5cn6RycVek7tE9qH0oWTWyXpLExWedK67SYg+rJCsu+Y3gcac9O2d465j53uLP9Kntb17ieX+bG8AmuDq+wlS9jxk9u9g/fHauDdx2kBA93X+O1/X9MyEtSCCr16k8YzBJjG93DGniw9eq0PlPiDYVdRr8k6lvc33qVFxd/hJ2NBMeajd9GHru3eXPrlwh2RRo6jo+OWS1XuGbt+2tKjEMMzbxhZ3eLvlvSrQYEQ+gjq67De4d1YB0YZ8lRGR5zAaHUWSCLxnyUSKcAVApwMo/7CP2uVcY0jZEYkihrqzUoQL4UvencnomhSDXX4jYozJvVn8tY77Fe8LPEfAusLbEXq2Mrxcji9JSUwfmWre09rt+4xoO79zk9HVCG7oYcElkmqbBHDw8otFMY0Tl11mqRjhiDGPXdKMAllYPToggDha0nj4ubZKHveu7fe0SO0zpR+0ufYNWsKnNgFnJZ5+vcP3kgZV2qoNIK/gSiGPb399hvWrrjQ1I0CBZrpBA65cJeJZiQEKv+sBTw52qx5NHJGcMqcjb0+Kblueef4+CDh6zCMTGVcSRuXIi00M6rbJhS+0xSYBqoG8FBWXSN2Z1vc+v6TWJIPDw6YEgdY7EkKJsOhioDmGFk7JG1sV/BXqVkkilWZNbietpPyv5qR8DbyKUujAWDZaNWWl/Wn3FRNyOzX42H6O/qaUhh+mEc88oefJgyQ9DvyYPb97n/1vuIsXzysz/Iyzef4+HuAYuzE07CkpxCkTfVDZNDuHXtOi+//BHeeut9Hh8dknJfYpBTXMaWf+o+Fb9nbT+hUqsqxe2M0ZAcBhKEkDk66Whby5X9Szxz7SZi9+jINLNE1y7wTebo8BHLVaf9Wr5n1mR29nZxYkknS/AewYEkskS29vZ47rlnSF3mzqNDFukMcsQmURYuKez4UtkgI7VQcnRvq3xcAUUKRbKvvF9w0WUEfL/sJza2sY19z5qBlT/iG/s/xzcu/Rw78SYvL/4onzr5C/zA6Z/iyvDKhdzdxv51mJD58pW/zd9/8T+nd6fj64ezdzicvXPu2K9e+Zlv65xfufI/8scf/hfnQE4bUxOE93a+yL+89V+y8ocfdnM2trGNbex73r4jJqV1O8fOw3lQy/l0wdOsVAQVkfiLIKT1wPzFIP0IfqEm4NbaMebM1gLpYxCpbLjMWDOkQXmmxHHdkElJIK+HmWtAubZHq40vsjpdTAys95ldC8jX+8jju+dAPVKD3hYl+FbGBGst1mkFTSp0/YuzRblPN2rF2wKsGYPNpbrZwFQJxXqgvwokTAAvDV6U8xiLQdlBSh70CdDWBMo6/wwr00hOJVRUqr8qdMigf1hrlEUp21JRrO3MJQGRzRRk0RCAnj9KKn1lxsrkWglepXGsMXjvMdady+7U8aD3U4KDtfRQtN/WWVAAlTLyXivWnMOV90PoscbinT6b0AdSTFjn6FaRxnuQTOyV7UmBVLUzNdmRUiwJSGUk8d7jXGEKyRlrFOCk7CUqURdzVErnVcI3M5bDwGIYOF0tOD47xLuWRwcn7F3e5/LlPWbtjO2tHWazGixaF4XZJBi+fVvvpzqjRIRUvrFjdk4ZMbDEOLA4XeAbS9M2iESamSYhpk1Z/alJBGdbwOHdHJVyqNfbPKeLZkr14mJ5QrKJLpzy4N5tHj86ZtUHThcJaxKQEJvJOXL12iWuP3+LlAbuvPs+p4szUjKcHp6qtGPuCXFgvt2AwFmvYNAcRWXJrPK61++oJK32NSnjgTQMYxKAwvAmZBrvMBnymrSBzcLcKpDz0vYus60Zdx8dTPN6kWioSUtQ+YMhW25cvYrkJV/43G+SBs/xcU9CaOdzEIirQM6JkIS0nfnoJ17g8v5lPrj9Do0zNFstbbvF6qxjiKmArQyHj04BoWkaJCboAjt722AtznvaeUvjLP3QEZNWi3fdCu+NVpVGBZMmdO1JOXN8f4EJhoTF2YSQCuBHg+KggCbn3ZhwyFGBL6lk2pzVhEbNRNe5PMVakW5g1vLB4oxV7PCNIRtXKnsdklQmzs1nxKBr0tWre6x6IaSWndlN/sUvvcpv/fopD96/w4M7d7ny7A6t28XLDCfbZALWOKxpCLnDmAi2JYsnxqVKfBEK4YcQBJqZx0piGXSd8rnlhRc/w//6r/wlfv7n/zm//OtfYLkKWONxjSCpzC0CiCWmpJWwpiZiDM43kzyE1LVM+9A7T+wTQz8o8xIqEWutMNvypBywsYLpAFEWMmuzrvveFf+iKstqYkbX9OJD1bU7CVGiJkKtIUthFEOIQ+T2u4cgVQbkjH/58PMIhh/76T/B9WdfhsdnbM1WtCYTxELS2RSgsYZLV67wv/lf/vscPF7yzrsPObj3CMmdJgicfv+d0/URSZogSQXwUabjdtaUJKEmPlrfYFIkpqjY6wB9H7l6/TL/3l/6d/jMiz/MSdzi3uGC1XLg4YMHvPfuN3h8cFfvP+nc3TaWvhM+ODhBQmS2O+fjH/kBHt9Z8MGj+6xyzyLBR3/wh7h05ZSDz/8qcQhIUNnJTCTJgKXB2AZyIHeJnC04BezlZAowvoh8JF07fAOmgMSctQo4i4n0fbNEnGcfhTU/mjEXd96dZv0FufDaOqjmafat1s+La/DF16d2/V7nr9iWtVfONfm8HJuM8/nTGWdre3/3do/XLIeuszKuN1rGa+aRQacma0MY0P6zY1FA3aON01Atdli7+kWQ+/qfE1CspifNOH+VzN94snoPT5xvbT9R9y5iJkHrioEyuST5zNQOGTeGa+m2NVBU/ey0fZkSp3VfI6mwL5jKnOfA+TH5O17N6M+afJW1/9afz3phji1IUaGy3BSQLmvFFFnnVsqe2ZbCjkQue7TCWFGTqiWJmlJh4RVT9o927EtrLK78DZmUwphoDiEUBkNTJFdTYYJxLLuek/aUR7M7vOl+g92dy7wkP8JLq59kJ93Q7dNacnNj345d2E9IiXGgDC4IZJO4v/V1vrH/c0SjkukhKuNu0zQYm4osOYzg5LXzG5SVFWP1Z7Fglry/8+t84uR/+q+YHPq9Iz/fb9a7U75y6e+yzEcMQ0cIPSkOWGfoh4i1yl5DYe7b2poz25ljnSMEz3K5IMZECgkwhCGRRWMJ1kGfFDiQcgEJ6DYBg/pVE3vQFJuaCJQm2S/rDK5MMHltzvLGs7U1R3Lm+o3rPDw4oA8DQpknKUAcKTEVVObKek/bzlicdJwc3iOGEn9xFmcUIKnoo0wi0g8dmYRIom0UdNXMGrK3hJgULJmNyotmKdJ3kGIm2Uw20LQKHnfWliIFZcCWHBFJOG+VgbsEj3LOCh7NllR8flMiZufWFhhBR6ZuMVJhoCws2tagQHZdOMe5WJARjG+sYdEPDJ0WCRqn3yndl+ni0TZzxGdCCGxttTjb0A3CfL6LpBnvvHmP1VlkdbbAZMfhwYquE5yZg03KcmpaLWhKq8KgPKPvBvq0RGTAuxr7Eox3tAa6wpJkATub87HPfob+9ISTr5wRFgMWB06UPUeUsc+U+Fq9v+oDGMwIRqvrl/pghsarXHkcoo5GKWupKew+zmJywl2IJ67v0aQA+s6fuxTj1TWxOA2VYavGikUm30USnA2DgrNEeHz/ADGG/WtXCQHefuc2Rw8fEnNXQFimyAqCs4I0Lc995EWuXN6laXQ+HAF9lSDQ2FK0qhfPFxDo1tkC6hHGNR6QlKhwXytabHLz+ef45EdewZgZXcikBEfHS+7ff4jkYxCPSBhZ3wXL48Mz7cvG8dKLz9HGltsf3GfRLxj6AdN4nr1+hZNVRzesyvfDQH3GVjQuQglrSo21a3/nEp/V74odGRwro1iVk8y1gGVjG9vYxr5bZmDRPODVy3+fr+//A7bSFX7o8D/kpx79Z9zoPqnr1sa+6xZMx1cv/wx/78X/gsGdfdfOu3QHfPH63+TfvfN/o5Zhb0ztpLnD33n5P2XlDj/spmxsYxvb2PeFfdsgpfVAt1lPKmgUd9zE1ircGvyACbBSAUMjcEhreMZj6rnGv2HcGF2Ue9NN3NNbOQZ1SsDZOjMGl3UrWX+rpgkrU6LtZtzI6XsIWFdYCnIuIJjyHuv3VNtYJd4qwGpiAho36uPvjEHrKtdwLhtjpjbHGGmsxzeemWvJIRLDAGJLj9sSbBHms5YUMnEEU62FEGu1U91w56lNIhQ2i/qLVuZVyNMIoBphRoDJpTKuJBkKsElKMK4W6GlFmlZG5bKbN1nAohrpFJkSV6rRyvUxpUqs3KUG5N2YUBBR6QXK2SuATIN8Ko/jrErESK6ygnUcmfG5mpIg0ABYiTaUtkrWwEmSjESVeIkxkDAjWwo2j1VXgjJJ5KTXiEVCAREsmSQGnOC8LUwqzfh9ySkRg2hwzjfYVgEStnHMZi0qjZgYhhXWOpp2RgyRNGSc8+SQMClBjsznOyxXkZOzUx4dNMxnW1zZv8y16/vMtrZpXIu3fnInN8mF38Wm7+WIdTuXYEuIiayzcYEb57ucAykNhBixbqewe4RyjmbthPrTmAbvt/BNU4BOrM0P3yoROzXsaQwM07nP38+/HU9dMKZhPt/htH/IyckjtmYNly5vYQpmZOg6EgGM0G7N2dnfYghnWqnbNJyePEJCZjbzdH1iedoRQqBpHCEEFouOnKDrIjkKODAFzNjOGoKoFFwua5lWuWq1bUq1+hTIiWuX98m24fD0iNAHmgg/8aM/hCHzwaNHbO3t8ODw/jifkVU+LsVYEqKGjAKWUlSJqNXS0a06jIgGlE0iB4tJBpsNThxxmXnt67d56ZXMjZvXWA0nBInM5jNNqHS6Pg6rQA6ReeO4PN9msVyQEjw+XmJbuLV3la3WkzKkrImWRbdiCIHW2QJ0zVBkGUKMNG2LHYKyw4jKIirTkiu0PoUVTzI56PqRkmCSSvukIn3qGjsGrBW4WdITRsa11CZ4//5jGqcMQg1OGWZyJomwdfkyn/qBT/Dmq69yslyxM9/BNzOuPfMif/wn/wQ3X3mRtHS8M7/Cm7bhzsMH/Mrn3qdtn+XazWeQMHDjyhVuXr7Fm2++jvUdn/nMZzC54XOf/xXuPniH7a3IS8/c4r3b73Mae3a3Z6RloM8ZYyJmG67/8Mvc6e5x2B+SrcXaGa11iKewXyVNMmc0wF8rX1kj4bfrTCMKPGi8Sr/lrIAdSkBaCkAgG3Ctp5WSWM8ZLQMusqpW2cK0nN9oUBuVcatXsqYQO1cfUAymJEo1IF7moSSkEBhiIEvCZkccVvjtlkfv3ub//df/G44PDlgsD+hlgZsZcipMH2QEz9ZLr/D26QHf+NLXGOIC54QhCg6LdSqN0TSt9k/OSE6ljxTs5ryj9R7rjbJJkemHHpMtYYBBhKaCIPycqy9+givP3OAqhpee22cI8OtfnvHql9+BeA0rmZCPSTbhtjxJhLv3jmgt/OGf+kH+8p/+83zpF1/jF38rIGcPYXHC49P7rPIJ27MlC5dJEogmIklosqNtWmUVMzOatiGFCETECDEloiSkyLk5p4wsOWcF9RmLZQJ5/y7M3B+6VSYemHx7/aO+/8RLnPfu6zsF+XHhXs99vp5T1j930ep+Y+0z4/Fyzi9a9/Xrz/NnnAoc6lnN9BYVzFLnr5rAm2TNpv1EBbZMcijrMr1Tu86Bos4l0ur+qf4+tT1lUd/YKYsOomD8miw3FOC/NTRNZXMoBQ9FXrrelIz/s9bmqQVjk4HKaKvvSZF4Xuv38c/adi3WGNEv04mq8vQIzBg/WQswaj+Oz6A+yHKPJcF6nqFy6qd1oNb0Tt1vrD2HMQu4/ncdARNAydR2CxhT9kPZjgCjkZ2p7k0KQMXU+b2Cn9Z8u1oIAuVZOt2tVfBSKv5DTcBWUHWdIOp+KKG+TK1EkZIspc4nqMR0ypGcEsPQ450nbQW+Mf8l3t39LT6x/LO83P0k3tqpx/9tcC3/tZg85bfJdNQmFu6Ag9kbPGxf57C5PY5fQ6boNyGioLZRu3H0/6f5SXAqd+RU6q1OCYJw0L5FNB2NbF1o4VNatj70x1/NhQO+3x+6zssPZq8T2hUtDUNYYg00rYcYaGYNKQVS1BhTyiDW0HUr9c2zKLhvCLqWp0QsIHoRIYU8gupr4UEFtAMFVKhxE0nTfDmuVXkNApISs+2Wy1eu8/DgMSENkBI3bt3gheee4xvffIODwyP60CuQwdjxO12nEp1vijyuYWSDjbEA142CmGLMmMwoG9W4GTO/jbEt165f5fT0kCEOWGuJIsSksY+UMylErIOZbxmisg33XSSZhHXzwqoEktV3jCkhqayoI0gEoDD8ZI3bqaSZrE29VudMo2CNdSbzOqVPr2ekFJDUhcqWBbrG6yjymTFEXfdMiVWVuZ0MeMu1W9dYHh5zEgYkZua7M67evM4rL77MlWtXMNbSLSKHh6d8cP8RZ8enzGZX2L02J/QD81nDretXOTtecHx6yHPP3eLy3iXeeusd3nznbVLOPHPzOsvTM44WWkBicDhUTdrYjNmyvHXnLbrDY5Umt1oQ46rcfAHtm+p/1Pjc2nfWrn19K5itguZyymOcd/yqQJEO1PVHWZqm4itl6spgMxTGK2W9X3ffpPTptE4aY0qcpLRRdI019ZylLbr0JrKHuFrw3tdfZ7EMpNyTckCKDKqR6ngBznPn0QF3bt/h7HQJyt+u1ygxUOM0lknK5+dC0XHhnAJ963tZkrYlq9y3pcYZHdZvgWuxxrBTQKLe7nJ6tMKyjUXlwin7YesMocSbL1/e45lnrxOOBuazlpAHUhq4f/cuh48f0YcOZxM47ZMKOvTGlaJWLXw0KAtaqkzfORVwX/E3yn1X8Fkt8DjPC7mxjW1sY99dE5NZ+gO+eONv8DtX/g5/7oP/C3/44H+3ASp9lyyTeTj7Bm9c+nm+cekf8/buLxNt9929iIFvXvpnrO4ds52ufHfP/X1sgvDq/j/gsH13s4xubGMb29i3ad82SCkbGeWJKIkQgQJIobwjE9W/kTEQD7qhOxcoFgOmUOAzSbBdxN7quRQQcy6ZUT6fNSU3pgVqGMedy1uYMRg3JhDKBrie35WLXYQyKZOOAlXyOsBFb0qPK3I3kks+jymxUHpP2zD+vABWoiY+ZAzgm5GeP2OKaExGSJJpnMegEl/GOoZh0DaVQLWxTqmHbYNJQ0k8RAxOAwPGjC2pfQxrSZIanCmSMjXCrkF9rRrS5rrSl3kCpKGJMuMKOCMnLBAxmjxEkxsjc5NIwTiZcVgIFrF6zmxrgEgwYpWFqfSdsVYT3Vmr3ibEFyUQoSdMRhhSQlLCea/XQp22lKLK8Ujtf703rSJSNpBcEklSJN9ISnGuQKVEKLJtVsBblSzSBE+V79NEohiDNY6UwErGuYadnW3m85ZVt8J5ZVcKoYTJjB0DndZZQuyhy+N3ycWsgaOUaHyj18gZyY7Bghs8jY80rSf0K2IayDFzeW+Hw8cPic6xvb3LbrPL3s4c59uxqnxj38ouJqdqZ2X9LuRYhHgCQ+yInWFv+ypZgn5PJNN6vzbX1Lmwzo6TjAk4XLON9XZtYlyXfnjyQcn4vzzxam33+aTRvz0PXBN1lsa3bOWGmW85Wi1ZrFZ4J+y0js61wC7dcMhitWKQTIw9kqFbDuSQmLUNftawWK7GtaJfRVarAUkwdIGcKEw/ymxUE484R8aSLUjKCoYQiEEBBo6MWCGJ8Okf/hQP7h5xenZKFwcQx961q6Sw4oPX3uT43ds4G/DWFwYmDdrnpFXZ1hrE2hJ8TiwXK7pVTwgK5NE5I2Kzg6CAoK3tbf7dP/un+fiP/CBDG/mNf/7z3H+c6IaBEHraliKtYFgOkShCkMTR8RmdCcx9S78MeEoVZjbjTxMVBOasI6FAoKQ6BIVFKUEYSkBZ+1UBNR7xgreQpSQLMqh8X/ndGmJI4zqTUPk843TuDyFrBboF1zgwCWfAxkDMBqyA8UQJmJgx4ghd5O6dOwx9wNuGl19+hZ/64z/ND3zqh3jxxnXEWYzAH/uxH+De4x/mK199m9XBMS9/8kXc7ozTwzNefOEyN3b3eO21d9m5scfzz1zn5P493n3vdZZnj9je6vFuRrbKpLjqB7abLXw/EIwnGfgX//hn+e3tGemkI8RAlIwkXc+tgaZR8Fiu0rCCguDKcmcMyh5EWfbEYCSTQiKlTMyJZCvzZE0AWLrFgLHaf1mEhOApbFTFjxGjFdPWqA9Sx3POhYmj+Dla1K6+h3HqH+biF1hjaF1LVyQK9aEpQHd3e86PvPwyt9874I0HB3TDEZaBiC2yqiDJEBHee/VV/sab36QtsgSCsksKgnEO18BsPiP0mRwj5DRiEgwW61WCxFoIOWpCxXti0DVWTEKcwfqWF27c5Or2JcQIgsNa2JplfuQzN3n0wad4+PguIZ9CWuKdYafdJkgk2cTceeIi8Yu/8sscHZxw48YcY7Z4dHDEz/zMz+FnntZYtmaOwTTklMgm0XrL9f3LkA29nfHCszdYnJxw5/5d+thjjMo7JaNVzdVHBAVABrLKsqheBMpf9j1q6678uPJNoJFv+ZlzOXM5f+zaR+X3WNa+FXCipoLPn+xiEt6M5x+LHcbrjSm28ROVUaAmgqTud9ZYeLRNZX8yuuFTUnX953RBvsXy/RTAgKndJ+O9rN9rLgwXlIRsTb6qjI2+71uPzVFZunI5Xx1u55pSmYrW/JmaCa2tGDcdTz7vi8y5hoyxniwqbTy2ba1TRi/MoExxxpwHMI29UQAAImOS2RZArXGuJPjKUyz/yfkTIBRmVWOwTiV4656xsjZJOTYXSUbdr9TnzyTDVk5qrcMYCqBIX8sF5GwK4qsCk5UloYBRTC3oUMnT+dZc57cQz93vxAKs/SumsJSUfTCGwtCnY7PKTiOCWDueKaaId40m9pOQC3Bh6Ds60/Pbzd8jDpGP5Z/C2YanDM6NfTtmIqf+A97b/iIPZl8n/P/Z+/OgW7bzvA/7raF7D9945uHOAy5wMREESYgzNVCWHYqWaUuyHEXlVNmxU7GT2FWpSiWpSioV568kVZGr7FhOOWWXbQ2WJZEUJYoUJ4gECUAEgQtc4N6LO98zj9+0p+5ea735412re3/nXIgAMRPfKlycc/be3b169eq13uF5n8csCbEjtTAeTfu1QwBnHVoI5SiFRfkkD5yTLD2Nzpu1N2O3fRwv46/QGfkX/Ht4z/+4tWgCt8ZfBBMVOGAMbUy0XUeKym5onWEyGdN1c2KILBZL9QlSJIVE6AKuMJJlgIfkdzyEmF9lXS+tUkD2rHrDOpiBGimzaoGCM0Tlhq3Ny2jtCEHBSTYB1nH/8AgzvkewhsOjGUhUCeYCXIShcMtmu8JA6JQJOoQwyEFZO4Aoky5yxsEzT17kPe95jplErr31BtWqIhmhjR0iEWsLoF5t0ygwWzYIMNkc0y47rfGytmeqKcAT2ykAOyHEJAOw1+R+A1Zs7xfo/mkRk3owr9oVJaJHH2vs4z05ZqSyeXpMyjEu7x2FJQsEmyWU9Xs9d5Kk8cNOuHH1ljJaWcf27ml+8KMfYbp9Whk79dRs1BW7u2MuXj7N8mjFaOQZTdXGdw4qbwldYtk9ilhI7QrjIpNxRcUGh/sHLLuQZa2F0XSEs4mwUlbRw7v3WB4dUaHMXTEJkmlPTZa0TjIAjfq9Oy8Xdp11qo+jKfgFyUxe/dIyWBMiELoA/bFq04jQM00NhYpk32WwQgYLhd4WKWCpB+01m5+x9luPs9ZQe8/TTz7JRjXmS6++xbLpQLSoJ2ZAp0H9J1ktufr6W1jAuczUVGxKo/PIeYsRlSnvGReHW+/31VLkaK3LRTCJQbrNsDkdcenUaVxvKejYTMaWRy6d4u7eXbp0hIkeITKejKiMZd51WC90y8CLn39FAU5bY1w1Zm+/Y3//iESWuLbqz3RJ93drYXd7i8loyqLp2NzaAiJ37twltnFtLOlBfMdC7KLFHlDenT9+a/xJO2kn7TuvLfw9funR/x1ihI/d/XdPgEpfR0sEbkw+z++e+8/44u4v0NgjvmkVbAJPzn6cSdz95pz/u7QFs+Lzp/7uN2/cT9pJO2kn7Y9h+6pBStashemFHigxBIkH7+bBsGQfCF3L6ffVwGbd63u4lQDt8Q+FAhRaD8cdC70fiwFrInVgcCInlSVX6ZRAbgmAPMyyU6pRj3Wj9C8DDUo1a/nzIemGYwHE9STEA0F5U8BRhV1Jr+2MAmFiF3MhXAAMRcWsBLdrZyAZTp05hcQ59+8fshKbAUclAKC/lfIs1wLUx+X23q2vOZhQJNjEZKBPli6QDotDsPi6wlcQF82QuNASOH0SNlNuZ9m04frZmRelS54Yi7ee6IXtU1scHBxhrCG0KgMkGJDYyxyUYS7BrtgFrSy2Cu7qq01jzEFCfWYxauBRAUMabPHWEoJOXkkaDPHe5XFP+dkr/blETVpoqCVmEJ/gvdeEBpkq3UBVOybTCV3X4L1HROi6TisVMzDLWUsXVO5GYkKkVRm4LMOTUOCCcx7nfM+K5auarZ1t2maF6Rpc5cEKUToOj/apKwt1rZWItbAxqb8WWrXv0ba+4qy9B0QMLdAhKDV96FoWiwXeVEhqsNZTVWPq0YYmmJLH+wnGVAguV61pgFAvpeBH10ta5av2Mg7vlvwpodeAvmSOQYLODZ+JA+Myg4F5OAL43dpMQljSpXsczO8wm82IrUqwLRctR7FjvFGzalvaRpOt89mSGDuaVctq0TLyFZISi8WSEEK/NrRtq2uRVXp353RtilGw1pNSGBK9FKY3S5KAFQGTSDFQjSym8oQY+d3f++ekNhE62D29S5TIP/md3+bik5dYtQtMaBEPsSQ9YtSEQYICijIWnPHs3zlUppUuM6t4RxsCKV+XaMFZNncrvv+jl9hb3uVLL7+OCYlT0x2ure6ybANdG4gIhRLORkcXIpWNnDq1ha0q2uaArckYY6GLHV0KiLSkNnB6uoGtDPcXC2IoSVCyNITJAJfMnmS8BnVDBKPV5DGspbp7Jj4dP+sMElVqZ5CoEaIos93pnV2cc8zmmtCz3jDyjlWniaEQAy0Gr7sVcd5xbXYPW1lGoxGPPfUE73niKba2tmkw1BgFOlXCYxc3uHDug5igUhVYwXAOMRFjPO95/5P8s89+mX/2qRfYv/Eat2Z3+OjHvo/Z1bd54dW3WNiI8Y5nPvBePvrMc/zTX/5drh0JcdVweP0+i7FlYhxNK0gMWkGOUFlD5QQnhlCqj7MZUej4VdZNJdhClsVLWQ62B3/nhIrLjJAmB8+FgRnSoonrlHSvS9k+sJQq9qgsAqJ7ouQq34KA0MRbUDCxc3jrETF0IRJDIEnUpA+QrDBxnounT/P+D72H2dEe1i/p2g4vmsRPMSqDolHQlczmdDNYZWYXSSofaJ2CpYxA0zSYpAxDtrBrrSX3RIRm1dHFgB9VGBHaNqh9aB3JClvbnh/4ofdzfnMLJ1aBDygAohobNk5VTM84/GjCarmF3za877lnufXGbW7M96gsvPbZt3jJdzzyxHmef+9j+NRyNDsipkAzb0nGM9qocd7i/QhIPPvs4/y5P/WnmR00vHVrD2+FF/f21B6IEUkm21eAZIYBa8CC95B5rnIy7zs7GGK+wr9KoUOf0cuffsWzPGCnvlvLGPs/zNUYzlp+J+XvA6NROV9xZobknhz7zfp19XZMn+DSd6awFQ19Go592MY4/nn5/bv4Ov1xx++n+BPIYOtaoyBMiQPgxRiVDRQZpFZq7/De46saZz2z+VJZEXL3CquQWb/gsX48+HAeADUIWQImJ8OyXltJXwoCGZjrvMN5Q9O0g/1CSW1mIOb6A6D4qgyAKoHaOpx1BJOYbk5YzJe6x0rKhRhq2x/zGY/dR2aZSlqgYIrdVpLlJZGe54opQB/JDLFKmZITxwNrkjGlv5kBRG8pF1YMiUTvXD5nSSaq35pSIoTQF9fEqEwtxae1ufChjEsSlaS22TftfV4RlQTL2WTrPJPphKZZEVPQfcSCkFg1K7yzGO/p4oqXN36ZnfY0F7sPMMzhk/ZweyhSAkBjD3l961e5PfoSLQvI+3oIAW8dkgLGVTjjqEeWFEJm+vVkOsr8qosC4/rLlRf2+HWdjHhk+ZFjMZyhP8LKHpBMxzjugFqHWHwGzSiDs0ovrkdjvvvb/dHrHIzeJMiS1eqI2XxGisr8FoNKellviRJpu0CMkLoWUDbkrlNgiKssTdPkQgMFRXZtp+uLtVicAo561mtLAbGmDAbqfU2RDJwe9j1rFcRzdLhknhYklN15ujnhaDbn2q0bEBImxFwgUdiF1s9PD1J01qK1Xzk2klmtS35FUpaSQm2PVZjz+luvcO9wRoXh3O4pbt27SxNbtc+ziZiyzWlEGHtPVTvlcxHBW58BRBmkKTHLXhlG4xHz1SrL3ElfZCZZAmydXcmuMSKlAqwxWgykDFIlSpjXQ6W9pjCtF5tXRBiNPJPplOVq1a+hk/GI2CXa2GV2HZN9a5AMAk0ok2kTGt555yqnzwlbp3bYmk7wuavOGDYmnul4s4TiqL0j74CYynPtzgGvv3WVdnFA28yopiNOjbe5cuU6XUyIM+xeOM+H3/8+rrzyFstr14kS1KcMK4IzGLH5eakUtDGCMRHvnMah8nwqNnwBUvfFDHn/PW5ProHKod/7elBYfoYldlsAZMLavEXtDmOt+pkPxBn7KyVlMDLGZjCmFgamoIC/vAX2c8sBy2ZJN58j0uSYQJ7bUla0vI/mYLQCm1PeD/X6Nhd0xC5iTOzfP2MUKL0O8IwhEWIEo/K5wzuj9onxhvOPnmdjY6zjK4MtGBGW3QrrE5NpBcnSRs/WmV1sE2kPj5SdO0Iza3Ajy3jkcHldt7l4WJIy4+qHFmct29tjnn//M9Su5srV23Qhsrd/RNOm7I/nt6YAn/M8VHsmP+f8lfqR39k+xUk7aSftj08LdsU/vvy/Z6u7wPsP/sK72Kcn7Q9rR/4Wv3L5/8SLuz9P4w6/6der0wY/eO9//q7PShCO/A2CbdjuLgNgxWG/BzJPX97+Vd7Z+OS3uxsn7aSdtJP2XdW+6t1BcgKkgFSKY02hUz6WVGAtsJL/mYOrfXw/f11kukypfC3BtTWQkDrPmqjsWw9eyg5VSdq+S7aip7mHIRjMUM1rzOCE9yChHHCIMR5L+hyXrst9xShrgBxnSOqvV669FgQexuTh/lprmU6nGCtEyQweOdAjok5xIlJVFVVlMcbTdS0hJByWrcmYjY1NSMKzzz3NK6+8wa27h8Setr/IxKwxW/UB8IEm/iGMVZ+lUYCaVqvZDFJyuEoDFAFBmhZjDbaqEaM08xLBiM3PPD9PGQLt/Z85m9AXx1nD1njCxuYmN+d7Ki1nNVEholVVxdEWWauuMsMMNDoRiG3QSutKQRsphSzvV+4yEgOAkOzwPCpfD+wQkrMHGAUT2czqlLTKTPuU5eZih/ee0bhWEBEANW3b0oWOvb09jIF6XFP5GmIghaDz3SmLlkjsgwjOa6WWlwpjLVWt1Y3NqmE8thT9+bquwRql+xZ9Vt5VJDEsmwVJ6p7Rx3vbJ69P2oPtKyXayrcJaICWJB2rdkWKHW0bsEDlDM1qxnjjNK4asb0zYnZwCGKwps4AJQECA4gx/2fi2me5F38YoEgCwgJIWEYILTF0WFMTQpcTjZXOCTz9Wv7HoKUI89U+h8vbXLtxg8P9GeO6plkGjo6WrJoV5shydHRIs2xJAUJK1FVFCh2SoBqNWCxnNCESu4T3NtOla+Vq5Rz1qGZ2NM/09gbEEaIQggIMy1rRNq2ue3md9daTohCiJvlSAyFBNMJytaBLkeW85c3P71MHj8USjRBthAgxqOSTyQnmsn73gFZEwQricN4TY6KLgdAlxsZhKziYz/nr/7//jtgq+9Kf/1f+LKFbcHfvNk0Umi7irCelmFVfLFNf8aH3Pc0bN6+wv3dI0yXcLDDeDIw3NhFxrNrIvEmID5gkdEGD0M4ZnLeEaLDW07XKXJfyvI8FiJKklxnSREPsk/nOKVujNVaFDcxQOW2t1QSCaJI6iGTgluORy+d44tJ5vvzqVe4dHJJEme5GZoxzI5JJRIFodP/+x7/8T/jE77zAe//Ej/Fzf/HP88jGBHISwkjCu0RymoRoovarllzGLsKbL7/Op/75p2lm1+lSy6pbEe/v0QXBGcFtbvGxP/WznE6Rje0vMOqOtFq9CzrePtI2ESsRyUxCbSVMtjaxTUCWgZQZpKwYZQ9SDVFlBMx2kiZnBqlVi9HK4bw/asWv2lvOKnuIQXOYKalMKchAEmdYkyjReVHkb0XKGpjBQAJI6pPkzapVBqxu2C9T0uuFFDmaLfkf/u4/5mDvUPfzpLKMJun9SKlSjiaziuicjE2n77zk8xmXK5oDlfdYbxExmdUr9oCtGBOhS7Qh0HQBi0pJmJyUF2PZOX2Ki888mSX0LFZUNmTRCtdu3OfW7StMxoZLpy+TVo9zc+8e12/PqX3FxDrOnTnF1miK1MK9vft88hMvsJyrrOfOZEwbEquQWLaREDuwhslGxRPvPU/wR9w9vM3h/hETRixnQowWgjIsWO8wovJwkYSxFb7yPcDBGpffnWxjfYe2ntGnOATHgC0PglzW//nuoIe1PCXHXJF3OcY89Jf135b0mx7zblivwbZfO28Gv+jnrAHl12x+kWw/rv9u+HufFuz7vP7n+u+Gey7gq3Lsg9+DrpGjulaZL29Zzlc5YZ7vVLRivoA/VRIzM1msJSwNiceeuMStW3e5e/dwYJZlYF0wxwZ/bbzM+qdl3Aoj6/p96q9s7oeQxysnEQ2GqGQNCqISs3ZUXorXB0eGgej7aqHyFZPJmPvzoyzhmjKYsTAeleMK09DwDNcdWYmZWUJ0bZMM2uwhVqVwJaW19VQ04WoKo5asAaLU5LPWZYC03l2SIsGj92CdzQUZ+nwLK1LTNAo08KZnxGANUIZNOZFe5nBmrCsS3c5mvyUhLktOZQBK0ygrL1bHxeqEIqaAMR6f32NTJd6YfJzdvccYx21O2nr7Cv5EnqMLf5eXd36R+/VriGQmmxiy7KkC27rQUtsKrMMbSxvRYgaUUUmT+pl1kcF/ePjVVD/+VPsEW92lh3oaTMuV6Se5Ov0kybRUaQskMWp2eHzxY2w3l6hc3S+ZgrIZ/3GQBhKEm6MvsVguaMKM+WLOatVi0XhS03RaxNCpjHHo9B1T1mMtOgEFVUYR2rajBLjM2nsPWsBU7OCeJUiUrTLFqGuBZNu/rEuJbLuoPYM1ChS0OVYmkcODQ7WNO7W5jWTwUy5y0KKrsl7pPSMCzmSTNtvSeQ0QEZWiTeCz3Cwerty4qzK/GHZ2N0neYEzCkW2WfAVBEKdFBpPxBOOhma8QgaZVYOV0tIV1CoQNISIkUtPouPQ2v8kgysw0nUoMThSkD/0cLEBOBV/kgTWFLchi8z4yxB3pQa0xRparhb6axlDXFY8+eoGjgzl37u3TJZUv88YxqjYwWLoYiZIwJrFctrz59jtcvXPA933sB5gyynCmIf4mJiFiaJOCiMaVw+f4aGobVrNDFvN9JLas2obZ/h5tYUUSQ4oVN27uc7hY4GsLyQ2FLBFCCvpbQ94cE6lyxDwUZViddmsAXKe12GTeQ9dtoR6AhPSFccVQ6O26HCbrY3vZFtIpnNm5UlJpvbV4b28TZR/EJEGUGqyXRiTbLya/LDa/U7aqWS5aZvsLlk3MvoyyXfXnXHvPbf6UtfmVt/MeTFT2wBgyH5gplQLrNogCglWtfHjPjVEwdD2eYJyOO6K2YkzC3f0Z9/fuAR27u9tsT7e5d3fGwf19phNH7SzjzV1O7+4QU+BoNmN/74iuDQgwHY0JMdIGLdhJMSAied2JXLl+ldgmugCXTp8nrhJHszbL75HHvaw52SYooLMyvkbf53ezhU/aSTtpJ+2b1Tq34Fcv/V94dPGD7HSPfru7813TBOF+/Qb/4LH/gNe3fuNbZo4/NftJHll89KHPG3vE7537z/nUmf8vwTZMw2kAzjXv5cdu/695fP4ncNTfmk5+i1si8oXd/5FE+HZ35aSdtJN20r6r2lcPUkoq+YaURFgaArfHqjyHpLesAYeG5Prg6Ugf8F1jWpJc9W4EMuBCAUolQZ9BNMeYR/T3xyv5ShB2PSCkzfbO9NBnsqOm13EIRitr12j5HwQoPRiQfzcAwfDb4oAP/RoYk46f33uvOudWOHf+Ijeu3qRrgwaq7SDNoJVwBShj8R68daxSx+pwn53tKZeeOs1ou+LTn/wi83lD03QaVMj3jh2CBn0Qp38+Jche+ksvZSaktTG3uMriapdppROm1eM8lhQTVVWxCs0a26H0CdW10ULjL1neDZvpIsDUFZund2kP73Pr5p4+Kmt0rEpiQfrioJwAKOc6Pi+SCCnEXMxcKtqHZ2dzMkRizJVRmbbduZwAt4TQKQu8AVcbRuNax1asSuUYg3EGZzUBXqoCrbXUoxrrNLEQYsJ7T0rQdVpNaTLzg0nK2FTkQQBiiDkYF3CuIoREXWkSIcVIVY2oqpqj2Yx5s8RaYVLXCBEcjKs6gysco1GNryrqcY1xHjk2Cift3dt6sE4ZlERaUmpQgFvDqlnRtQmTDNG2VNWY8YYBo2Psqgl1VYOp0MndgTR59Ov8n6HACeH42vIVWTIEoMPIEk1DJWJomR3NsIwAYWOLzFoQcyDXI2L/cPDTd0ELIbC3t8+9w30O9hpCSJCWCqxpWkJsCSvDailINLRtS9N1dF3IlbKOLgaWTUO7CohA20BMAUk57O0t3hpcZTPgQlRGMam0lgFi7PL7DiCYoM/Vm0iUDidGWYGcRol3JiMkCoeHjQI4jcFv1HhXsVyu6NqASUkVXnKyoeyH3huME2ylTGs2S0tIgi5qBb4xltGkwk6E5C1H+y1bG7ss2yW//M8+xc5WRZOiJi7F4l3F7qnTePZoY2Q8rXjz7i0WATY3xzSrI+ZHDRfO7PBnf+yneOn1q3z2hS9hcsLSIiAqieGc1yAyCWGNtVASTatMgMYYvLVUVaXMDymxsTGh6zpi6vDe5fMYOhOJQVmVyt7nKwskDg738XWNcxXO1LjKcfb8Ka5ev8/9wyXORagCTzz9FB9538e4ee0eb759jflsD6k6PvpDH2Xv9j6r2ZzrV25z+vHHWTYNG9tjZa5Qq4DlquMTn3uFc4+c5UOPXsLj2L+/x9Hda0h7hITA2NY0Bx3zZaCxhspAmLf8zf/iv8ZJR+UbxmOhS2NM22LaQLcKSEpUztIlBReRhNn+ETbmPSBk6SiXpUiTSoYosx4gWQoky4hATnob0wN+dA3ThJYCvPS3RgwpKINTYQcxgibf886qiYWSRTB9srsE+4sNk1JS9qQoWdZEtJrZ6Z5tDfjtCT/9M3+G/Xf2+Z3f+xyrZpVZtSy4iCGrivTyE5a6rjR517Y453IuxKhNY8FXntF4RGwV8JVyP3P3MsuYpxIhpJjtWa2hH9UV49GEJ598jtOb51lK5N58jsdzdnPKlWv3+P3PfYGD1R2e/9B7+MjzzzEOW/zqr32aK4u32DknnLpwjh//qZ8gdvv8/mdeIN47YNG0rOKKaT1GkqOJZNaFRtcWoHWG3/6tz/Np8wrVpObP/NSf5qmdi1y7+Rvc3btFjAEKEAsDTsHhxlmVz5UhOWyzLMuDcmLfUe0BYErP0LmeGPsXHjw80+G32S8o/yygDqNBu4GbpyRyh/kKA/6kP7QHIR27SA8uWv/9uh8wJNmOfdwD2B/6nTn+58BW+uBArPdn/doPjEm++pproe+gSVS2zkmn4WbK9TThVtYMlRE1xhANpNQhSTiYH7Gxs8li2bJqWrVH15h5yi3L2rPNCIYs87ye6WTNr9N70DGzWF9kxB2JhHTSv+dkEE9Kce0Y6a9TzjQ8tcy6uwY2ijlkmCSzJQDG2J55phQ59M9p7cEde65rvxvmU55vMhS8UMBCxXtKKTO7FpaPzG6Q+2etJYju3T1jTWYhEXRNtTb14KIiWVeeHWRGhx44puu4y4AHWX9SQm+vaPK/gJs6xDlEHMvVEtMq8KnyHufIElQ6BnVdU41qrHFYZ5lX9ziorzJevZ+T9pVbeRJiEvfqV3lp9xdozD6SVGa1SIVrgjyq/+CrPE8UpOJcleeS7ee7siyXWIYWI7zbumEwNO7ooX5FOl7Z/hVujH8fYQlA6+bEGGjMm9ycvsIZ9zTviT/Fqfg44DAok9MfBz+ys0v2R29hQ2ZNajMjmRVWTUPXRWVPxRCDgkJSCHQxYWPq16GYVFJeZSSPy3yaIlFvNZZhnO7jkuWRi9RSygBEBWKkvP64HMMCUsxggsJ8CeO6ZrZsoBRt1Y7t7S1mBzPaLiISexBCWd6cU1ZOk8GsOjuz0FNfRJDBIVYZYsSCTcLWdBMxlr39GfNVg3MKwhA0aLS5u4UTw97ePq4ytNIRlglfOUiRVS7AeObJxxjVG7zwxVdY0WAduuaJMnlqcQZ9zGqIOSrIpBQNCqaP86WUqLzHWEOMWQrbZmAJCeKw3pf4o9qeCQmCdb4vBElEZUwymU3XwM7Zs7z/uQ/ixHH9+h3u3rnLqp3x6BOPcnprm+s37nH7yi3q6NioR3gPo0mFwSgAXuDmjTvc2tvj+fc8wfZ4QtdFjg72iGGFxajsu/V0cak3bzssif1bN7h38zqVF6pa2YbEVCAhMyXBqKpIKdKhzMwmJp1T6Nha/Qs9g1fKADANyGa5vzxJeivzeBw3iShAxwy/K/NGsTAF7Kx7js5h08s1r1sMPLA+9SZEkfsrkqhJQUzOKdgMZ7n0+GVOb2zw6uwdwqJDUqSPI2agTemdoP6CMYbYBbxT2zoVgFGOiVqbpeCKzaoGwrH5Z42BzOKu9jhUzrI1nbJ55hTnz12mi4n95pDFouHi6TPELrF3/5BFu2Tn7A6PXr7IZjVmZ2vOy293TDYdMq559PEnqSvhrTff5uBoqZLvRu2Ftu1QFy7P+pTtjwCLWUc338dYw/nLF9jc2ODg/gyDFueYXExSpOTXGbHUtl2PCxnWoqsn7aSdtJP2LWm3xy/z9sbv8eH9v/Tt7sp3RYt0vLr9T/l7j//7zPyt42GBb3I7rK5pfmHNze/Mkl989D/mD07/t5QE4Ky6BcDtyUt8eftXeO7wX+LHb/9veWL+o7pf/zFqS3ef17d+61v6HE7aSTtpJ+2PQ/vqQUqyFrMHSvU8YvOGNDgz+s/sCpp1YM4Q7i+yagUg0lceryUUJCcSKEmBHhd1PGFfmPPL9fVax3eEdaDUAEoZ/l0OfTdQ0/G7W/tLdsgLUdP6vT48fvJAH9ZZi7IEAMP1F4slgjBbXNX7lpJYKJW3RivoUCYcY6xKhhmg1gD/ogt8/BMvsLNzClt7XBcYmZyIFBCOX1NKMkEkJ8Rt3+f1fhZMVxlH5x2nz+6wWq3wdkQcweHNfUz0NMuWUEmfYBeK5Is6xyYNVb2SBGuKBjoYk7UOEuzNjzh4Z0XskgbyMPnYBA5cD7SQvv/9c++fl2CdwznbS1kY61XuYv0Z9dkdg0RU1sBqsN85ZVYAZQHBGLpOE40hBGVDyvfT07sbS9t0Obleqp8HcJnLCUdrjUrCjXLVuAXrLCFolXdJHpg8VmKE2AWC6DkShmA6RCDEoExL3iMTYTQeISZhpWN3Z4cnH39CE/1YfO0IKeHtAIo5aettWPj09U5AQtKKJC2SGkgdKUsnmWQxWZqhMHRgNHiPWEaTDQ18rQEEQ9cSY8Oo3tTvjC7NYtbWx6+qqwmJKjmHEZbLOaFrmE5GdE1Lih5jAoLP7+F3P4NWGZt65Dh1aod7ezcxyUASjpYLmhDpYiCGQBeEdtXSNY1WRjtP6la5WtKwWCxoM2gpxgy2iIGqriGDflLM1bd5v0gp5mStSsulUk2dZQcqb3GjCaFtSG1HFWHkKzpUgmwxX+m6qulHooEn3vcU3aLljVeOaJoG6xWA5MQSYsIZBTBWI4t1MJpkVq4kmlSJOTlvBOsh2KDyailxqvb8yA89zyc/+3lu3bnHau6wlYVWE5VuMuK5j36YF37vD6iaFW4sNPMGVwHSsTHxHEni3JOX+OEf+xBH+4d83kUSGYiZ6CvL153VJAousmJIQF1VKpdnXJbWCwoKlZLEhaoe4ZwhiVEpuiLZUBLtRpMKAyMFgMVXcP7iJvWkYtkkXA1GPJNzj/Bv/Xv/K77/qedYHC754gtv8I9+6R/RjFb83F/6S6xuLfj8l95EDlcs5g0+GUZ5r3DJYI2jmS944VO/T+sDj//bf5npeJNbd25x9/Am1dhybvtJLj/+DLO9A25dvcKN+3fx9ZJmecTs/nVsbTl3eouRHTNrhYYViYRJiZ3RBo+eO8sbt67TusTuxhY+wcHhjIRQVwpAwaZe8sA7p7IahfUxSWZeMH1QX2PoCnKJIdJlpqUeSCdWiQ2zHWCsHq8ycVnSCHp5MSkMYUYlKiiJpJQrmk0kCjmZl9lEEEaVxztlMZxubvD2O29y/507NHEOBKzNzIV1jUggxAygSJAsmNpjY2RcjTh7+gz3jw5po6YWjAXvnSZSu0RMQmVTLnw2hJSwKeKN642+lGUNRsbwkQ8+y6MXLzN65kneuXGTL770Km++/TZPPfUcP/qh78c6mC1mHK3mPHruGTYv7TJu4cxFy83riYWJbG3vcO32Da699SqvffkK+7N9RJZUzhFjS6o81XhEFUGCp2kCSTq2JxuM3Yjd6RTZsOzP7vLC1etUtqGqHF1XUZMwEWUpM24wwpKCGcaTEZKgabr8XL9zgz0FJGEe+ET/Nnz6la2RYwihdz279NJfJa1H+cNAAAEAAElEQVS2DuQZ7PDy73XgDjLAmtb9F9Z+sm4TmN4fGC5RkoDy0DEy/G4dtNTb37m6ncE3eRgMJfl3rPVBSn6weEH9uRXkBsv5au07OTbAkoSISiZrHq5IRGrCKkTh1s0DfOVpuy6vEwaXb16kSOusP0PJAF95oE/r9sxxZlvrDJtbG7RNgzMWqSzz/SOQLAn6ANrLOgXlJFn/vPiW+V+GDMBSb2PVtiy7gd2k9zFjTkyiNnrPAPwu5pexZR8afmAKy8Kx55pf1bW517NuWdMzUZQ9LMTUs3sYK71PnOKQIE1JfaNUpGWURm9I2EvCWJWsTqb43sqQkvI6r0/X9t8ZzcyTt1BNxKZEysAJY43KckvITyxixDIZTdne2kaZ+vQ8Xei4Vb/E+dXzD/gU6wP5ve1rlJFIOalwffT7tDKHmPR9KMH+ZLDC2nupskclNa3y5cP5jCiILcaOuh7r79fQl2U+ltbYI1bugGk83X+2N3qLm5MXe1tMUgKTpYStwddwz73CkX2H98/+PBdWH9b+ZWbkr/3Rrq/NawGZb3nT+R9MS7KBuva4le3DPW0bKBgkta0iKUS6EIihsLbo22GdI0QtXiiAwdQDB/N+ZITUSv8bJLMxZ6ASGaw0xGh0eHytsYJmGTDA9saEkBLzpbLCxW6lTIt5LJ0HY0MvGy1GYxEqWTkwUrqqyIurLB0ZtDIQMxqMVSZvxOGwGElMJ56mCxiJNMuA8wMoJUkAZ1nMlwp+dTYXgCXtozNUI4+palJlOTy6j6SWJAmXp0XKwG7jBgYqYVijScr4RGYcK6xKJgNMuhA0dmMziygFzK97lsg62HV9UySvw4bpdExVVTSruf7ECpiaS48/xcVL56ms5+KFC7z66lu8fe0dLj/6KJdOn+HUznl8ZZluTrBG98uEgrsMhpgSy/mM/Tt3mF06g0E4OpizP9sHL1zaPc/p0+exznN47z537++z6ua03YLVco7xhq3tLSpXsVi2hHaua7FRtrvt6Sbz5ZyQAtZbxlXFarnq9xMdw9TLDVpjMkiu+BEP7n/5c3s85pb64SubaXlWBjEDULjYfvquZAbBnuWqLGSD/aP7uPTSgKmAebNqqvP6/Jy33Lt9h9vNdZpGfVktztC5YVxhiVW/KIkWKjhrcd6wMZ0SUqLpOsraap2CqFIq96cFlKWANkrq4zPl/VS7CHbP7vDeJ5/kztGMt69eQdrEYrnAWqfAvs1NhJbDwwNs45jubtDWKxbtISktODhQcGL71muY2LGcrwhtp4VARu2eqnKMXE2IJQ6RiLFle2fKpB4x9iOWzZIQGq7fuY6phMnIEqKHGLDZ3iyqj8YIySSsUUltMLnQ6YH34qSdtJN20r4VzQhf3P0FPrj/c98T0mBfT+vMkl++/H/kD878NzRu9i2//mF1nYPqHc60z/afvb71m7xw6m8fdzrWWmeXfHHnF3ht6zf41678Z3zf3l/mjxNQqXFHRNN+u7tx0k7aSTtp33Xta9jxc5hGNPFpSuA0y8BxzPU0PTERcLwaIwdC11ufKDAlai85wZsrA6UnR+5jWQab5QCy82iKPFjuhxR5AI4Fb0s1W+8sZ2e1sOrEmOlxMBlAUmRNUp8E7Z3tHJQtTm8fXOuzFsP9p0K5T/HhS/SjhL+G8dKq2qxvHodEi0ofmD7gnSTRdZEYtZ/WWnxtqa3DGGHVtezfbtm/MydIp0wJErDOYY1VKuhc+WsolPEaxFYA0dDvAirToI5oUlCG+7CVwQeYuIp5UjYGsYmAJQQ08Gqkl/8BIOYghQx3KDnIIUYUPiEJEjSSkBBz1VcZf6PPSjLjlrW4PIXWExk2B0E2NjdYNhq8Iyn1gvcZQNInGUyfFBBMrnLUQEWUhBVN+FRVpbeQ9BmkKD3bhjVl/pq+ujVEBYYR9LfOG6w32GSQFInWUNcjvPf4UYUxMoC5bCS0HRIFj8eZ/LwL4C1JDtjkBLYJpMyIIkZYLducIHGM7YRzu+dxxtEuG6ZbW8S2Y+/oHlub20wnk+OAmPXE3PdskGI9oalR3ZRaYjdnuZojKTIeeQ1oJSE1UdlyRLA4DDlJkAImAwXIwTMjAlGYHy1pmiPOnh1hrYKghszDg8Z9Dvy9S+ZMRJjNV8TY4itLPaoYjTapfMWSjmZ5hK9rrBtjzZhcdP8VQVCmX5MfvM5Dw8OD69jQ14d++HW0IYFxvM8JocG6jrqCUW1YrhpCNLja07UNJENoVxiivv74vC5pjLRLQRkFMmV76ELeE4QQG6xxdCHRdYG2bTWhl1QCIeZEjmQpK4lJ15BkaNKKM+enzPYTaWU5c3qTn/zJH+E3Pv4JjuYz2tYQjcFZBYsI8OUXX0FwxOSorR9uXQSS7roxBYytCTHCqsV7Xcdil0gBYht1fbGJtm0YVR7rK+7PV/z6Jz5J10acgaZZUgeLMw5rYXV0xO/++sdZzlvOnjuFqxKh6mjaSEyWalKz5Qyvv3GT/+Q//S85ur/HolnisFjraJqWbpXwle1BXFphmsGZeW3WnS8HjKPu5c44kgirtmM08hhnSSRCTtpo4iQPRl7irVE2mYQlRvDO88xTH+Lpx97HF7/weeZLZftIIWDnS1785CfYbGY89ewH+cEfeB83b15BJhPOnrnA+HzFI88+xc5GRbQKorXGMlvM2Lt5CzcZ89bV6xzu3eSZ9z3Hm1ev8ft/8FmuvPYmtw7v8tN/6k/xJz/0Uc4+dpnl4Zw7N/b4pV/5HV5580WuL15Dxp6f+pd/ivc+8Tx3bh7wqd/5bdr5PjFFooVVDNy8d48uJxRmqyUpJgIJiSBOsBgkJ8Qq7zXp3nQqg4DO5RQzoHht7Uq5crZnCjQFHC1ISMPxzub0dTFj9AVJSWhDh68dPtsbmiRPCrA1BhFltQqhQ7pWjzUW75URxVjBeUGcw6fEC5/+Et2iwXrLqKppY8CYSOVqrFeWAsTRdh0diVWzoqoN1WhEE5b4kS2YUd3/vc1sg7rFh9Cp9BuWJIm260g2ZunWDBK2lo0L23z4X/5BRgcrPvnZz/KJO79OuwSbOl778qtcff0Ntncm3Lr1Grdv3ubO3g1eefFznJlWNPePOLh2h9liRjIv87I3GchsMTRI1OT+ZHvK+558liQbXL2zpOsa4v27nDlv+Kmf/CFOT86wuj/jE3/wOa5cv8lzTzzCJZlyfR9WK8/ORk3oOkILrS5gGBLWC+ONismkYjFfgaTMOPCdu1+bYRnv/1Je60GSwzxgfxz/24M707E0t9ADfYY9dC1Rv27vcfxA6Q97wE+h2EDlXGntQDNgU2Rgr+mZJ/K1dOu3fVKrP9aoj1FAM71LdHzY1CpdS+QNQKXsmxTA0LGDit1isq3dZ5zzV6WHCu6PKfbMLL5yKlOaokqeRohd12N7QPr7imkAda0/C2UAMoMfUZ5P+a1ZH35dp+aLOSYJ1lUsmyZ3UTJrAJnhbf35mT6/3N+7HH+Gvf0qIDmRanokkxnuZW3obGY76Z9Xn8w2VPWItmsVwCGFUcH2rnKRp5PSCxk+K3MwBX0WrjAgCgoMSoVlVwpmgB4QledBKs9OdKUxRu9LkiYZ8er7KNsSmSnBqIx4iPkhrPHeHHs2+tuUBGsTQvZVyOwjBBBlUpmOp7pHdYHpxgZRAl3TcNt/mSN/g+3u8jCgw818B69O36omGaD0q7wz/iQxNrpvSlL2yMLMETURXpgpFaSE+sZlvoHOOdHwStd2hNBQ+RHGpeEHvebg8F60dsHKHTKJp/pe3Rl9uZcnaJqOJFpc5CuHrypl4XDQpjlf3PxFRt0up9Mzfdzj3b2J3pN6l5HguFPxFefJN8ufWF83hL36LTozJ6YG6xJ1bYkJrFicSM+yHboM7M8Sb5I0NgJGpfryXmCsRQoTkRTQqMFaR4hBba8elCT9GqdDsuYHino6QTpsUjYcawwXL11gf++A+WKhtg1mWFfFsFq0NKsWYzxVrYVZerm8dkkGcqBri9pd+dJrwHdy4YUy5wgGLXC6evOugi8KY00sMTaDM46ju/uEELPsvesZjFIiF3YlQhA++7mXAN1nTF4XUx6zyrnM8JRyEdqwhyqohuN/z352eboaIzL92ln+3Q9UAYZijs1jSYazFx7hve95jhs3rrNo7imrVI61vPXSyzT37vLks89y7tQFzp8/xXRryqmd0+AcG7ubjCr1rWLeJ9oucOPaNbquJQI3b92kcjA7mvPaG29wdHDIcrnk9LkLfP+HP8RkMtZX96nLXL+5x+dffInlckmyhsefvsSzTz+HNVNe+9LL3Ly5JIjKk4sR7h8dkCSCs4QQOGy7/PYMrH/k8Sz7S4xr8c61JcOsv5OZyUjdg/UxE90bsrStKazoufXbLbmQz2Shyhwr662/fv8k+9kBMtuhywCpVJjFnO7nq9mS0EW8t1TeKVti9ju0MNCpJHKMhPz+CAnjLKtWpVKtI8cWy7Y7DMAQx83vTxRCBpPqyOic9bVncnabxgfa5YL7+7dp26CxBWdoVysmkzFt29CuVsR54OXDfSbjiq3xCJMCzXxJiB3NbF/B2sYqOBBBksVUjgsXz7O7eYo7eyvmq5bF0RHWG86eP8XO1jbTasLVt69z7+CItDVmXDmsU9DReDphUnkOjhbEECigSSs2G1iyxshq1hjpT9pJO2kn7VvXvrz1q1yffo5HFj9w4jl8hdaaBb/8yP+BT539G4j59rDezf1dDuprPUgpmpaXdv4R0f4hIB2jYJ6ff+w/4FTzJE8sfvhb0NtvTXtj8+Ms3d63uxsn7aSdtJP2Xde+epCSrAfISxA8g1UMffBrLd47/H69Ff1ykR7gs34N/bdW5w/xYwXo9Kw+iFLylhOuBd6GgKvpHUxjiis6hO81SD1QDRdmHf1SPfMSatcKRkvKFevWGGLSyh7TH7eeBBnuKSJac2NkYIIyGigWEYx4yJVVJScjJbmStKrJGHoZIJMDl+TEr8ESukSKUFWW0WjKdHODtlkhzYwuJQU9ZCe6BKwFIEgOlueqMkqARoMOWi2XAzWi8gUFjFXu2hqVHrtx5Q7eGsIocrRcqhZ9LxNTWIP0+YWQcnI0XysnQEs434jN1VJ6FYtqwus4DmNbZarmIn+XjFA5lXtZdg0pBQg5UCJWqZGD5MAcOBOJOWlk89iWZyso4MC6XJ3nLDEmukYZKEKM+EppwFMMxGD7ZEVVeZJRNhUlZTKZClqvm2LEWk8KGqCJBCrvSTYRJTKaqDSXGA3w1COrDEvYHGBJWsGZ40IpOWIS2k4DGF4Eby1REhBxUmFWGmRY+oplt0TYxdqKzekmbZxjJVI7j5TKtmMvvqBore9F5+DBoH4C6UjtjGY1p+uCgkUqpdgPoaPrWqyFrhE2ppvU0y2UfqTDOMOw7OaAn3W5vD1hClU7LYYJrAVMhz6sP4fUB/ZMTirNj+YkApOtKcZ0KgG5mmG8YTya5AR+zMfbY0vXV24PBvOFDJfIn9hjv3l47L45cyfXV4JATEtW7QHTLc/R0jMOG4jpaI4OiSEwny9JKVJVjlDHDFJwhFap01fLBmxZVxIxeUIXgUDsAsZr9bIEBTJJUtnIGFNmv7IktGIzdB1GEkki4uD27T30DY7sL5Z88dW3aVYBE7SStoBATN4D2xY2NmsmO1OMGBZHC9omELuIw3Bqdwc/dizDgiRCbIWQK0BTVHY/ZXHLAVfrNJEcI00bWXZLRnWFsQnBEaMhpo6qHjGqxoRVx3RjTD3yYANgSW3L5saYjdEuN27eJ6zm3Lg2p+s6ksC08phYA44nL59iFlq62BBDq3tUMQxiZouIkETlQK3LcjaZXS5Flb4kFckM/dPnxEd/fyWMbSzWVGATlx55mn/nf/G/ZLV/xO9/5vOEtkG6LG84D/zub3yKq2/d5N/9D5/i/PgUf+anf5J7y8i1a/s085Zl2/Kh9z9Gs5yzMomNUc3vf/YL/OYv/zJtajicLVg1K85c2OHj//Qur771Kt3RjKODBW3ouPzUBUYTz/bmKc6cO81Lb9/kMy98li4mNnZqdrYC599zmcnGKb78wqfZP6pIIniEkFr2lkuMsxASi07l2XwGAaWoVP2FUCqloLIUaM4SAbH5vcySHt5ZtVeSAKlnK3JZcrTgeUuQHXKgOgFWq4LFqHykLSwjojyMzjmiEZwB5wwmKVCsCxFnHc4roHY0qlmtWrz31LWn6Rr27+6RosU7YWNcs5Soe2GtcopiwPsKlyzGBMiyNY5EmxOAWO1zSJJNwcx46HW/TuiYlcRVIhDzelrsqspVOGv4zAufwx+17N1csH/vgKaJWIRxWnH9LeG1pqWJEWHJ6v6cN+9eo3nkLDtb2zjfEkODMR3ndreZH7bc7xqiBCwKonvP88/zs3/uX8F1U/75F6/yysuvY6NgZc6LL77KhUv32WBMu2p469UbXLt2A29UTnKyWfPM889x9+pt5s1NpFlhrK7hKTmWy5aQQWZYTaQWhsjvlrZuRw+2OENhPusmiCbC1iH8g82ff9Gbi+++95T6ACkn57iJ81DxeJ/17Q11ht0wH9zbx7nvw7fD7ij0YPhyepVMG+blvwgE3Et4lYusX3q4xEOWSw8M7d2UwV8prB0FKBOj4MhAR2tx1igYlpK4XbNF+oKPtc9SWhuTbKGUr+WB5zEMv/48Ce0qYIFkZbBV8v0WgFK5kZSE9QmjcqcP2EqicuVGcmL6XR64915/lzLAOLOb1vWIpmtVyroff0PbNhQAgeQ/C8BrfeKUsSnMioWBah2oJin08m9l/hQGOudcv66tA7PWwXRS5M9Nhs5Z9emMc1niTdlYTZbwUwBxkYleS0iXJH7S/aNcwapmqGIUYj7OBrpg2D/a53R1KstYawds7RHX8eLuz/Phvb/IZji/9rzLvON7sJW5p/+9sfVxrk4+jYSWFDoFP/TxDS2aCinoNE0Ga0WZkzD6fHr222FOG2NVHtckrPXou9diKPLSeXUojyHPo5U95Obk88yqO9waf1GPS0JoA1hBvKcLIddbaFFOVVek1PH29JOcmj/1R3qkw+r4bv7Cgz7FN7g96FIJRNNxv34DEELowCRwZW+xxNiRQuzfGx190XfYucwajTIURY0h2EzeaMn2rjU9qNSQGV+E/O4VJmVlcvbeE2NEYtSZYRIxWJLJ8tIJ3nrnJpW3gw24VrVeInPeO8aTMdYo+3PXBEIHxigAbWt7k8VqqddHmSeLzG++Qw1lYDBO94UYC7hBGduU0M1BMlrw4RO+qpVV2HR4b7EYolgkgDWJnY0x+wcLrAl448n4eyrnGLkJy7bj9O4mIXQsu1bZbTOQs8hzAj2YotgMtjBiW9sXkEgaigsLi4+BNRa+EvcTLBVYw2g85r3vey8jZzg4OiTFrpdFraxnY7TJ4UHL4WzF6Z3IqVO74JbcunmApEToIqfPblGZxN78kI2NEctFw1tvv8PhoYK3giQee/QSKXQQk9rXQdi7e5d5M2O6UWvMrHKMtyYY41RA2zj2bt/hDeOYTE/RtXO165PFZpBQlNjHXIt0W9k+C+v4YG+k46/e+sacY7AuS4uGDJ4s5+rPt/ZSlf2m2Gsi2Z/oAVAa31RC0+z75Tlre6bpDPuzLssRqi8UY8IZZV2NsVVG82OxYI2feccgE500VmFs6gHINve7yNv19yFqia7bSwWIWAoqDRDXh6gMnAj3bt7h6M49pLO0TaTrAgVJZ2hZHCxpFOmE84YUG2VKGjswAUzAWGFra8LYeu7uz5U5XvS+ppsbXH78cbYn2+yeity8vceBtSxbx97tA+7e3WM8rukWgeVyyWwxVzZ2tJDSjzXOONhDxU4TSIa2Ddhs/1no5SdP2kk7aSftW9lWfp+/88S/zV99829zYfXB9QjBSUPtxl+/9J98WwFK622/usJnT//33B6/xOd3/8ev+rjGHvGJ8/8pj771Aziqb2IPvzWtNQte2/rN71Ff96SdtJN20r6+9lWDlB5aY0ucqzigZi21cCzCXj5ao/vNQV4Nmq5f4/hxQxx6reJnEAeDXGlT6HYfTiqUbtreMR4iSA8HyvWiQ/CuVBknEXxlca7qA8sGVIKtP9Px8w2AKvrgMTkQVYIh/VjkDhhxvS74kIDI+uvG9CAfk0FNkuVdSkVUjInFfEHTNjhniCEDToQ+UQcqp2ANvdSAM0prXIBaKaVMBb12d2t/L4F1TczTO7VdjByGud6zRhcoQLWe9UfK8UMAvJezEjIoy2DLcdb0dNSUIH2uytKhVCBA5SrqsSd1CesdNuTKx6wFaEiErlPwTtJqY7GWiFB71z+LSNKISZZ0Sp1Wk5po+7E0xhCjIBJzlbH0gY6YErU1GWilQUznHNYZBE38SmGqEktVKTAoxkTXdWWi5KBkltNwWgHmcgVZMpauVUkv6x3G5GBUScwEwVV1Dvyo/FRyBpInhpY333ydlFqefupxUmroujnGVDkglNmYUGm7hxJK35MtB3CMrh9JAjF0hBCIIbPEdIllWNKuAskKYvX3TbekahvqatoH8MqIltCQMY7t7bN0cYpzIzCJFFulr8cgOIxRxq9SWTgslRZdDSIQSasVYdliJpp8mu2tlB0Ox3js2NrYpmsCmBF2spawYD359S9KDOT1RMUF+z4cj2iuf1bu9BvUys2vJW41SJ4QKlZNZLZasmiXzJs5i0XLarmAlJiMRyyXK0iG1AbatmEymfQpIedtL+GSJCrduQHna3xwdF3U9xfBW0dIKimQUsKVncZZ6npE2zRZpiH11dSSdSKWi8StW0d0IeQ90PSATuu8yjxWju1Tm2xsTghtwFWJ/TsrBUQ5IbmOCMpShyeFREgBrcL3vayENVqp7GqXg/JQj6scBXY4W+NCgGAwdYXxlg99/wfZv3uHGzdv4DB0jaVrrTL5tA1Nu0/lEvW4wleGeUpUOJ579AOcOX2Zz7/zBS5d2OZLb7xGF4W2TbSrCEbXWWeMZlGN5H0hM/z4LEBjHMGQaeY1GB2yzIgmiXR/Uip/QyctI7PN7niKnXp+7Ie/n9n+Df7+P/glbt66xcR75tExco4/+bEf4kM/8ON87sVX+dRvfYY/+xM/xuZkys27e7xz5TbnL5xm5Cv++Wde4g9+/3eZhQPGU1gctuzv3+VocUTXBjZ2t/nBH/0I25MzuE8Ybr91hb07L/Pmqy9wd/YDXKguUdkRyXrsuMKNa1xd0c4a/snP/x6//psvMbEOu1quvSuaFBoSQKlfdhLK+pGSEGUI+AsDO1Lq0wOCcWoXjUY1o9GI5XKJhAHoXYDBBTimiTSXTaMC6hneZ52nCrp11palkIRWIxeArxjJvzHU4xrnFRzXNA0xJjY2NxiNPV1oaWPMldSGo0bfy2psOP/IJcaMuXvvrsqkimDcCE+g8gabQewxzw9rLSapTEFSTQhSMMoEmTQpohIWuq9JBoSYnBBpU8AczHnjU68yciPaVNEFh8TIyjc8+fyznLEb7L1+jUW3ZOQSznraGLh/7w5HR0esVh3edbgdz+nLO9Dtc3e5ynKfho1pRbDCq7f3+OBTZ/iRH3iK9z5xhrffPMvNO9e5d/sOL33hbRKBbtWQush8fwloMjTEyItffFklJ1mTo1AIFDGCtIF6NKKqPNEEYm9jfSe2wR48hn1+ECBd9juzvouUWb5WlLCWpH/oNKzvccMOXMAjwzGDJV/A+A/myI8Dnx72V/pPCoDEHAdclT+shSLxXBJ3fdZrbUz6Qo3jA0A/KGt3t34dY3SNOAY4X3Mthu1z2PtV2ut4ArNtWrqu7TuzztRUwFLra4qIquDg3LAaZTv4D7MDjvU1r3kSIw8N4JqDJusDVb6RtZ8Xv7T4DjmbOsj7lJslg7Ay56jzOO9IIdK0zTH/REFZWrRhbCYGllQeqq7feYx6pofch575Iw1MguU7ZSeBIrmjv6efEwW8YIvMTpkSsgZ4yMx4fdI9RUw0/bwVY3p5dEPsGZzU5hdYl80uwygGrIKDtVhG9yr9LayWCw72YXdnG+cMIbYgBkvFwt/jhd2/ywf3/nV24sU1f+LEr1i4e1yffJZEYfYDcoJbQqJpu96Ht9YgRmW2utAyclX/7j78ZhnqekKSGoxDddEFTMjxBwvW9wzGoAClV07/E+b+Tn7yEZFA166IIYAXbJdZf2PEWEd0AWMMoYvcq16ns0tGaaS23QN9+hd5FPq9AVPkyQqjz4NHHlvlvrGtX5uF2+OXuDn5vAIXEiyblqZp6EKrzNVBfW+VQ8rvJWTAh7KtSF64lQ2ZHkBsbWGHcSrNFEK+e+2AxhVyhzJQopfc69c4029SBUihMtRdL19Wju8RIEaB21WtgMXKWGIwmKBrgtjEfDnv7Txd35Vx1tqH4z7rDITWucwcKeqrkkAi1ahGTGLn9ClO727zzjtX6JlpQ167xbB3cIgxntG40msF7fuprTM8+8zzvHH1TZq4oFmtiD1zbbbjyu2ubZomj436VXnWOKeFXamsvxpPctZqrKu4r4qSBTw7G5tUteHM+QuEZs6XX3+T+3sH+Aw6t1XNE5cu84EPfh97+0vu3bvPXX+fRy6fZ3d7jLcW4y0j7zmaL3jxiy9zuNgHq8AuFw3WJLamI2bLJbay7J47DZXlOoHlYkZsG27cuYJzie3t08o0myLGa+GcEWE5S1xZXMeY63jd9nO8VMelj0VKHpe1/eYhg4X8hhmz9lm2YXKBo/OOmNIx/vy8hQ7uuTG5ICu/VWuxD8HkbaBEb4fWz/N8wt62GRC6WGuztHUa2Aat1RhAjoeGLIdqLGzs7rCzscPh3gGrZpXBNrrG2FwUkyd4vrZTNnQGgFV5t4scaimoEdFiDX0PLWKUpSvEiJk1+HqksVpRqfBIYvPMDucvXeLOOzeJyyVGIqIBapoYuNvex+C0SNIbZGRZLVodiKjvX11VGIQ33r7Go48aNmvHpUtTLpwZczifsThccG/vkMV8joQsD4cySHVRi0+P9g/y81B2fITM/J2BskEQpyBpsy6NcNJO2kk7ad/idnf0Kv/9U3+Ff+utv8ml5Ycf2Dm+t9vd0av8/pn/+jsCoHRQXeMXH/2PtNDha31EBl7b+jXm1Z3jDLzfhU1IfHH35/n8qb/77e7KSTtpJ+2kfVe2r1ngtQCMIPuxZoAW9UmD7KSWwLE88KfS9D7MsjRUbXEsCDIEmxliEX0wXQPCxnBMUm29v4UFiHXgUB/cGPrFmstcqnELeEVylU9fAWsiJDtEA9Lx8SkBkn4s+ih5uZ18cbv2hyRItv+9SoVpAGwITGsCvTjWMWiwpfy7C8rsUhIDep+a9DSu3Bfg9H6ss0hMWO9JJocnu6AAKBkCGX1o2by71VGksNKxpMhwbEl4il2TLDAZYlG4t/uQhAbp7ZpcjcnJ7PVgfxc6SoIbQ2aLiOzt7anOvFNGCetclvFLuByAC6IyhdY4pSl3CgBarZYaYM+R/ALYkSwPVwIyQ8A0V1bZMlc0oahJ4LRGYW36CsWic98HGfMzDQniakUIoX+e1lml1zeGNjSM6hEGDdIIymjhvRvAWPmZqlSigqmszXIBGaSQUuT27Zs0qwVnz17G17C1tcVyMWe6vQlG5aFsstTVGIN712f+vdpSjLRdlzl8IkikWQaWqxVtp+9m7R3WJuqJJ6ZOQUu4d3esBKwfUTkHpgZypWZs6GLEuhG+cvQMdgZ1RsT2Z0uhYTG/z+xgj1lzBFEZw2yExXyGqx0hVYzrEYjFWU+KJq8JuRvvsiZrGz4bAuUqrwYOI2OGhXodhjWc+xvV+lRkWbMlEOIhmCUHB4fMDvc43Dtgtj9jdnBEs4qE0GEs+u4LCmQ0ntHI0TQdXacSG85ZqmrEbL6ga1VDyhiVNE2IgmOCMjzEFFXOIek6kmLKgCVYrVbKjIUhpQw0kyydIpEkS+7cfofQtYgYIgWcqWBa48DXHqwQUqdsLN5gq4QJiWo0ZhUi0gWc98rKloPGxhhldkuZjh6tmm5jhx97qspTWc+2GZGMMDMWqVo2t2t8XbOMgcNmxaINNAlkuaRpW6JEXDVmETqs7XjmuUdZrpYs5w2SIjv1Bv+Tf+NnGU+mvPG3X+ULb7xFt9LxaVvdbEsFaswMDcYYRrUDHLELvQSDkHBe12ZEq86dQF05RqMx89kKiTGDbhNIxe7pS/zUT3w/zz33LIsl/M3/7u9z9co1UtcQbWC0WfPTP/3T/KWf+TlOnb7M8x94P0cHRxjnGE8dH3rvOd779Blc7Ukd/OIvvcPLX3iLo9VtosyovGPsaz7wofcSj1a8s3eHX/q13+DS1mXeuXGF+/duseoWvPTSl/h//L//Oj/5p/8cP/bjP8Jqf8H1G18GP8e5gKQA0bG8f5dVSljjMF4BWyKAVQmQMsctaACe1O9FFIknQ96/bE5g616PVSMpkWhCSxQNnDtvKEBHMuAp5y10v4qaLEsSKSwiRaJP5cNsH8AusrOFTSBE3fudG+yXtmkZmRFV7UlJE3CzxRxbbYDN0gUZMx5txIjB+xGPPvMkm8GTGuHIHdGuVqwaTWD62uOs74G5KQLGUteC8QZnFeAbu1bZuERZQJwF6/IKIpaU7LCEIHRJOHX+NBd3d7lza8bSd8znCe+meD9htmqQ0BBWK0KKajtYQ7NaAasMIIeRGXH19j2WiyWC4A2cOb3LuXPn2GTKa198m3t37rCxARd2TnPx6bM89r7HeO2z75DefhMxe9xLd1XWqokcLGZEiXgsi/miB4caowkjbyvEtApeSwmRgPfF7vlODuINhrqo7unXFnQcTPb+g+JyDECiNWfADIcZeIDMpd8AKXa6tfQJzeEiJcHZ58tYBw3L+vXW+7l2+tKvHnxkslkphjX3p5+bvRu0lgTshVPWhqu/stEeZQv7gfMMicfio9CD99Tf6JNwDwCGig8kOcmpYN7sMRnT+2RFokr9n2wfrwGgkhRr2Dx0j8O9D8UrD5HuCMNa+cD4DhLeQ/LV9D/Sfw3MJ2RfbC1RO2RYda0N2deLAWsN3rm8zq75K70831qRTD6fsk8pQ63FHntepd/rhxRrrmcHy05qjPSy42V8jp1mzX5La3MsZRtA+2z7AellmVIiWWXjKKxNJu+3xhVfxwyFMwzzsoxlAU6tVivudoF6NMVXjo3phFVcMnZjFv42n936m3x4/y9zikcY5OG/k9enb24ThKsbn6GzCyQqY1KULK0jyr4SQlTgnDE4qwDhelwrGFh5nL/yCOb9gSLnmgTldc7vOetPQHhl55eJps1TV0ihY7U6outauqhS8dZ4jDhl7DQRWzkqH6iqEYhw4G9wrj3Vsz5/5Sc8rKflfVW7ImTvoTrmQ0gf/IEh2rR+nj96k/UXFuHO6Et8cfL3COGQtmtYLheEZkW36uhWgRCUxadntKZIY2kxQBcTMehzNNZQVzVNoyyHQ1GeZDagAQiekmghWW/jaTxLWVJjjnUVOcjyHipoUCSSukW/B5VtzGWgqLEaczDOEqJKWJPUPjBO2fKssz3ow2bGNMThDRpPKmuqaPFAyuf1lcMZx2Q8ZXNcMe86Fl1L5TX+0oXE/uEBR4czmibgHCDqn6hN6RATuHjhNEjk8GiZ+xw5dXGXarfG3Uoc3D8gdBEt6IprcbU1UBd6z957YgiU7bswIzlfCs0E53S9HI0q2jYgXczbhg6etTWnLz/C008/hkueFz7/Int7h0gMGteywhPPPM7zz72frY0tplvbXL58jtWqZdmsmIzHnN4dk4zBJNjbE1YLYTFrkbQCkhbWTUdsbm0jBm7dvsOta/eQpADztmnoQuRLL77ClWu3ec/738fWZMzVqzdZdYdYE5VZxwCiQMdWSkHg8J7o+p2ZvNeMkXXpVV3rs22QY0n68QBAApVbTV3X7wtlxyognuKfi6FnFj8W8zT6DhcpwP7Mkn2XNWCe5PfFWqu+YWY4dFaL50SUhbgL3bvaKybvzyklNqYe2g0QQxcbQht7e8+Q5VCdySDD7I+7AaDXpZCZyfOYGgbglKgNW2w6mw2B8c4mj10+z3x/zmrZsVw2tK3QHTVcaa5C10HsctFJHOZzEIxR4JANjuXhEuk0HmtMYntzyu7OaXZPnaZZGq69fQN8x9bWJk4MW6d22a5GLFaRDT+iaWbcPzgidbo2JYTaV4QQCFEwRv0ZMuuVrgWFpTX1Pvg3PJhz0k7aSTtpX20zcHf8Kn/ryb/KX33zb3Nx9cFvd4++I1oi8smz/wULd/fb3RUAfuGx/w2tnf2RzfPWLrg6+Qzv/y4GKQnCF3d+kX/46H+sueKTdtJO2kk7aV9z+6pBSusAo2NB5LVAgDG2D5oeYwxZA/qst/XP153MPoDef4ACJYoTaG0GJA3BaufcsaDpep/L+YskTwlspEzNX/rx4P0eA1UlIaUOMUkTwxptIcWoDqu1w7ElCA+YLFmm/vIAShnc+VxLWyiQU6m4U0c8kcl1cj+stQpMSrF3KJVdQdlAvBit8DWOEKMyThRgUJSszW4zZXdOhDqjnxuVM6qcI3aq2d6FRMrybOtjtD7GQ4XdIP5k1p5pT19ujge2jRkS9ICCkoxBsoRfjPn55MRRHxN4APQG0LUdodMJKSniKhhXNTF2dDHkRK4oo0MGcBmjQY42ZvYH74hdp+Nu7NpcX0vErCVXQOWT9DshhLYP8o0nYx0na2ka1bp3zmmiI4PMUoq0XcB7n+9LQQ4KbnL9PVZVxFcVzhhWqyZX0+XQm5ZpYVBpnCH8m8BUGQCmlWWm7Vi6FePRmOWqIYRDDo+E0cSzuTFjc2ODU3HVy/F4X6HSARXOfM14xj9GbS3DmQEnXRdoYoOkgJEEOQjdNA1BIrWbMKoqdk+dpq6nhOU+uIpqtMNDCZoc8DJ4xFiMOLoWTArUkynGjeAYUCwN3UHftW45Zzm7T5KWyWiM92Mmo22wllWbaLslpIYjP+PsqUtInGBMxdfmSZS3u8NIC2YF1IjUef33D5zNrB3zDQpwGZ3bRgLQspjdZX//GvVEuLt3l2WzYn40YzVvsXicEarNKctmxWqhUk+rtgUMq1XLqmlQtrrA9nib1apjMVsRkwKRKm+JKdA2IUs96r20bVCQUpewNidejSGlQIzCqKpyklCr2GO0GZCpyceIAgoLu5JxRsEFxuBGnnrsaTsN5scuaZLIQT2tME7ff2eNMrGRwQrRs1osCG2HsYYUIyFoYliMUKGgjnpjyo/97J/l0VPwW596kSs3b1N7aGNH2yz50hdeJq0SyQYmI0cMAWMclasYmREbp8Z8//uf44UXX2SxMqTKcJQO+bXP/gphHjm4c4e0WBHajja0pBSpvcW4nNRJmry11rK5taEV6s4qkEUUHOYcbExHGqQ2hq7tmE4npGhYLRtCBu9iLGI9+21Ld/YJLr/vT/Cl3/00k2oCFs5d3GF+sEe1VbNzfpPJ7gTvWi5cmlI74bd/+3f4wR/+KI+cO8NopHvP/f0l16/PiXFKiIJNlgsXL7M47PjsZ1/DSeTM6S1e/r3P8YXZ74PrqEcVoWtpD1reefMd/sEv/H1efvtLLPfnvPPmLearfSyC85qUoe3okoDp8MGsgagdYrKsW9mnKPI7xd5ZDxinDFhR2KC1RlkvMvNgSkInsU/eaDxcCJ0mnjSBZXpGMIsokNgq4MgawXtLMoauTf1ltRB92EdTBqCVHFuMKmFIoxIMMSo0oOsCR4ezniGwsD+JgDcOE4W0OOKZx55l7/qMedtgbIMn0QFda0iV4JyhrioCIYOsNIDvnQdRVidfFVnABN5T+QpjBWc9XZvoukhdqfRDNZnwkT/5I/jZAZP6gCTCW29e5ehgyeuf/hKughEJK0EBRFk+SZ9PggwAn93e5whBsCQTefo9T/DnfvzPcOni42xtXODjv/55Pve7n2O0reC0jVO7/OgPfxQ7WrE9iWyfusDB0SFH8z3SsiVg2NzeYuws9/YPIUVq68BYkgngHd6NkAyYtMbhjFeWqO86eYYBuaG28/E9YwD5rKXgerQPlETbcaAS+l6tXUHt8zUegGKP52Snzul1v2AtnT9cGFlD0HwlwM2Dx5AhMgooKfuGzZX5w/WGezesX98c60tvAfQALVOSgr3TsX5sGdc128EYxXmWBFz+ohSRWCk9HgBAat/3o6DyXv26k33DDDozBnCDhItJGfi/ZkOXZyXv8tnwb+mf43F/sZ8sg79WDlqbK+vHFVanPtHYP3oZfpsLHgamWzBO99wulISi7vdFbk5SVDmhmBmmyjqMUWBuP13WCx3yfBSzJjdTnm/CxMy8YocEssq6muyvqV9WWKyK9Oy6ryRiNelZhssKUpjvkiAS+tkhMnAVK5GnFlQMRRja35gTxj1DB5CSIcoK21mapmNc13Sxy373nFfGv873L/4ytRlngML3ajMs3D1ujl/MU1dZjNVejDmJn2MKMRJiIAah8hXOjvG+IraNynpWE+B4vGWYZ2WMFQySUsJVNaXYpjQxQjArerlMEULXYI0wGnkq77G2xleVgg8MhK4ldonGNLhJjRjDvfGbnG+fP3buP7yV9TWgzKxC8XWkj47AILUp73qWP3Lruxq5N3qFL279HWaLm2ASbdfQdAoU6ULAOktlDV4cXQzK8pgSIYONQox02fY2BghCK5GuK0xZZb/RuEGKGoPStSkDvotNsbbRFTtN38/CeMYDi3lmxe3jabp+lNiPdVb7GCIZBwcC1g/7kcYoFEzpjLJldm2nspEoaEq3idy3DGwXEuPT2zz11FmO9g95/e2bGBQcklIktokgCoKSVCTCFCw3rad0sSElg4RIIoP1UuSNt1/j6q3rxIXK6xFVWlv00hkMonO/SBb7ymMNRAtWcswqr4XeW5X0hMxya9QWzOCnsqaKMYgEbtzdY+fCZTaJPP7oZUJsSU5wMXB/f587t25x6cJFJt5iradZBd55+xZ2VPGeZ57AZ2mtJHB4uCBGj7EeYywXLl5gXG1w9co13jy4xriqIHSs2kCSoPEfiX1MqFnMePmFF7DWsmqCPhdJGoc0kRi0IDGLluV4gukZ8Hq5u7LXlghk3vMGHKrQV3AW08pkBr0MMioml4KZdH4qG5X0YJ8CkDV5thSWP5vlmY21yi6miKBssw17yvDe09vZ+nfy8yq2N7RtwDm9knX0No8xusdNRxPOnzrDzcV9DmQ5sEViSCnbRlawKcf58o1rrFLPJdDL3CXR0SvFkVoMaem6gMlSckAuJgp0IVCPK2Lq6AKEVcuibTXmuGajlZj2ANZSYHezCP2rPt2e8N4PvI9Tm6fw1Yj7t+fcf+uANi44uH9AwnK2a9kyDm8amlXLsulou0hsO32m3iloMaK+j7Ok6OhCzHajxdpSmOuw1uf3/4+2xJ60k3bSTto3qt0dfZlfu/R/4y+//V9Rp81vd3e+7e3e6DU+d/pvfcNC7F9XM9C4w6/rFNG2vLLzyzx/+DNrPsx3V/vy1q/w9x7/91j5/W93V07aSTtpJ+27tn31cm/rQeQS3C2BsRysL5WgQ0XS0NaDvWth47VA9FoiW+irVJSWWeV1JAe4JUt4DNT5OXlW/uuTD9qXQtFPdjAHJqihR+uAlHVgSvmu0OH3lbW5Mq3IJEhmcbI5MCHZ0T4G7CEnEdaHxghilL66RACMsT2dMhn4E5LgM6+wpNSzBOioq8xKMoYugFibKXp1jGP+bR8XDoKzFYUtodd+T8rMo3TlAQN4C9ENWY0+GLp2G0MQYpgTfUCuj6cNx62PbZGYW89KrJ9XxxsFe2VmgJ7dKCeVrBWcdQoaEMEZkBjp2gZXedqVgoe882sgKQUJmZwQNlh8ldmnJMvu5HljKUxVmnQoSYFSGamBC733FJUOfrVYaiLWe0KntPgpCMkpIMo6nRs2uRxMVOk3DYpoAtTmoFmKkSYEnHNKT05SmQYp9acJjALSvHdIFKg0wGKt0yBVDnjELtAaZWKQFPF1oIvCbNaytbHD/GjBXgj4uqYeOepK57H13xk28LenydrfRINVSSveYgo4q2Nb1zXWOvb29umWLdWmB+Op6glto1T8NoQcNNZAvAENiq5fxjjq8Tap6xBTZzDR8e701faAhI6j/X3qkWdjZ0TXCpvTs7jKEyXSNUc0S2GxWrFarti3B+zu7GKM4/jb9mAir1xh/cknoAPpIClQxxqD9QbDGIzLCQUDxxa6b1DrByoBDeNJoFpFuhhoQmC2bOiSYGrY3BoRgmdv70iBR1FYNRq069qW+WyOCIzGNV1I3Lp5D2dsDuJHZffpyIxJolWIsUhmaBeSJCTGPjGuldFCiF0GsGqw1KEJqCSS2fIcidCzm5EEKz4HPOkTiAmVNjPJYCtlugi5ItKPPfWoyMpA07akGHKSKeSKY4c1Fus8JGiXgbvLPT7+z3+b73tqm2ZxQGUhtC1d2+GjstHYSc0qGsKiw4nB1o5n3vdezm1s8sKXX+I3P/V5TFrRdAu6JrJcRT7z25+kwrNcBqWVbzvA4q3SxTur41PyTXXlgUjXrYhRWaeME6rK4jwYl6irCjILRdmHVWIRvMuMQ0ngcJ/f/Y1/xuXdXX7wo89w7kzF3/nVhjMXdnj505/l/tv7/OLf+ocsbu/x7GOPsLVzimtXO167ssepx+9y4dxZKgyWROUdW5MNvN+k8jXvff5R/tpf+5/x8V/6FL/1id9hrz3iYqzYTJabsSW2Ld0q0EmHmRj8dsXzTz3GO5/+Erf3DuiS0KUOfJaXCCDJaqLWCMrs0+XcYd6vQ8xysoNMSMzRdQNZsmewc3Q/WrdnimSKzluLIxkUnJRtKGuh8rqfkBLOKMDWWLVBlI3QgElFX0MT4QjWeK2wN1A5raZHCkgpSxI5ZS5bLhuVrbGa/GqbSFV7vHeYKkGwGKPScLvnzvCv/ey/yfLWffwXrqksSTUiNRDEksRSuwpjHF3QBIezmiRJISkIOSiARIFZhrbrCF0kpoCvHKOxV3ZBK8okR6RdLPm1X/otzow8Map0RNc1BNOROq007pzBJEto87orITOy1cTQoPKFlpir2W3tGJ89y/TCZU5fvEDXGca7hnNnt+iaGbdv3Oeda3fZu3mLP/Ohj3B2Z4vPfPENbt47pIvZzjNwODtkaYRkIqPasDOdcIRj3q0ISdkXvLdU41plfpLJ0lXf6W1tvpaJLcM3JXm73tb/vYbzKN/q5+b4ntZneMoJTLH3yUk6eeg8KtNlGE6Qz7iGBOi3OHn4u3c/rndQjvkFCvSRnpkgyfEb7e9nHV1Uzln2wyw9TZGze5ett9/by/cGWJMR6tky1pKRMSX1ZR4cn6TX6n2HvA6bzDbbJ8vXxmJdHq6/7zVbpnSqDNV6MUf5Oj/hHnuVPbT+DAWWN4x0uXbpJ/04ke3nQdYyA9csGKsyo8PYKYMIJrMAi8onSTKDP2yypyNJfav+2HSsN9rvAViGKIjYMsgoDf+ffd5uAK4UX1pQYIMxEPvnb3p/uGfkY3gW1hgFS8eYn2u27/Og63iY/j5sfgmPsQkb9RldSVJnCaZSiGGtAu03NjYREm3bYazjwN8k2JZapnzvNp3RVzc+Q2sX/acplWIgUQbNKHjr8eMJ8/lcC4ycSvp6M8L6igQK3jDKuAscW0PXJjvW1YhVTq9jb0aetnXaprFH+t7HSNe0YAKutmDVRsZIBtUkvHO0nSbVm7ZhOt3ksLqGmIgR3/vzpQvHPXs4/j4kEg2H/jptXDBuz7LBKaytwJZCivy+moeO/jqb9imSeGvj94h+yWha0XYNJEtssryuRcFaxnB0NKdZZfbCqAyrMShja0pqA4iQwYRdX4RFBlsU8HnxIR5Y7nv/q4REBrDhsE5lbk1SYSVlvahuGHO79gwKeJEs3VRYliSSmZVsBinp/heCss30cZi1AGBhJCoFc++8+Rb7d68y8g4RrzGtLmDEUHllq45Jx4ouUHnLeHOLZ595hjffeIP7szmeLKUXIzFA6iKxmRFDJKYh7qMAYhn2VKEvijMl3pVBYQZltDMWhJRjPvoOKPA/DixyRQcTcCkRF0c08wMef+wyi5ngK09rhPl8QYqW/Tszfv/Tf8CZU5vsbO8wHm8T7ITKekKSXhbZGjh7eotbN8c0sWZUw4c+9DztPLI8XHD7UNg+tYNrVty8e1d9ypD7ayE5w2PPPsnq7hG3bt2lTeo3kueGBaJBfTyUSDUmlYbMzuWajVLmSF7jje4J/fu0Fp9LZt0mGOalxiB1/qTMljTMsQy2znNP7TphiA2aft8qY13icb09Y4bCxX6v65kAdf9NsaDsNP6ZIjinhQ+IYE2FGIMfVTzx5DOMNzaJdo9pXeGioZWW1AXECN57qqrWQg0JGBvznpfZ2bO/qXuqxWYWtC7F3p5xTgsnpIxtEu7fusdi74Dae6KIgvBEmc+UXEHB27GQOmXrxfvMeiVaQCKl+Bdo2si1O3eZjDYYOYsZRbZ2RxgzYnG04P7RgptXb7H92ONcvHyJK9ducXT/SGUk8wNOsWOVOh1nK0zGNYYR80UgEnp5+rqucsxUbaETRvWTdtJO2re9Gbgy/TRLt/89D1IShE+e/S9ZuHvf7q5oE9jqLnFU3/i6TnNl+mmSCTipv8bLa8HF1elniKbhTPssu+1jfCvBTp1Z8vEL/88TgNJJO2kn7aR9ne2rp0cx5ODLupRAdp1KkDv/VGRwgtdbr/1dNLD7lv8uQ5C2SCqUjGZP+Z2dVLsOuhGlpFYWm/XknVItl6BKH/wpt7QGlnk4OV++zzJyFPafLC+XA9qqkDBU52pVrUafBLA5EJ5DAmvB5xLYThlEMvSjrxCThBGLyzeqLDtK2e6y9EApgC7DmaKSpkcJmQp8LSkiAmgQWaufAhiHsQ4rWoVeOQeVgiJCUJafEHLAKuvxDBJ7Q6hwoN5eC2bJkEzQhIQG8EwOKhUAEH2AaY3MvbBIMQCprFGpLQXyZDmgTK0siDrYBsASkiE2HanpNFiayEEEo5VBzlJ5Q+i6fm5pNZ7J0m7aZxEwVsfaO5er7CQ7+CYHhyUD4az2L8aeLSqEIsumUk4pRpVXyMCo1D9rnTPWWo1q5UCBNZaRr1ReKlcmOlwGbJks1aCBDmMFiQkhatDKDM90Yzxid3eHxWyBSYKJFZPpKbam2/iqonJTHr18mWQi9+4f0sXEZLzFaDzWACDfm01KFnINmZIk0KwWtMuOamQYjUYczRZYMYzqMZvjCWLB28ThwX1G1ZSq3kRQQBw2QZYBHJo9RtNuXIVzHrB9oq5/3WQtyYgGWkmRg/1D6ga6YKirLVJ7n2Y55/DgCIMndi1gCRJwtUeTsR2SNIh8jIGuT07lPq1FMZUHCEKXONzfQ8I9NjdqfLVFNd3GGGUzwThE1iUSvzHN5MpwdUg6qs0JBIfZmxHafYwJ1BWMas/R/pz54ZJ22dIFZSWSmEhBGI1qUooZ+JLo2kCAHkxjMYQu0bUxJ+QEY1xOJCvQo/IVIpG21eB3XTtC7Ihdl9dZZTdwxuXAsiabUkz9GuKs03mVIg5LjAFraqbTETEGjARC26lcTkqYFNmc1Ew2p+ChCx3NYkEICW88wYAzgvVmSMBKJDQa+ExBuPriO+xfsdSVx46mumatAqPRiPHWhJTAs40sWs5uG0be8+gTj3Jmusnr77zDvJ0hKSmjVBuJSSXBmtWSrumISVRS03pKZbwzOsesBCya5GzbFUkiURwikdoOgeam7YjRZGlCoetWSDAk0aRbYeHx1jMdO37qxz/Aj/7gB3j7xZf5lV//BLev3eDa22+ymq9IYtm7O+fv/cKvcP7MDh/54Pv5mZ/9qzz30U0unD2NMaWy2HF6x/FTP/Ee7jV3mN31vPfJizxx4VF+9Ecsi9mcz7z1KrtPPsXd/T3qZkEMVkEyGEIQpmcucu6RJ3jjS9dYdgkxWR4BMBns7McOYytchNR2rGLej7OskHXKFlkSSSYzKBagagGEF0nRATAbFdBWbK2kUnkSEiFKBnqrjeGtw1tDGxU8RcrJirz3pKSybymDkxDtk8rEZlk6o8dWTvc0mwrroilcV5l1SXL1fk5sB8HVyoA53dzCe89oZ4vHnno/12/OefuNKzz+zONcPrPLobF86cUv0x4esLFp+cCHPkKMnjffeJ2228PYDmN8BimtVL4jyzd6lxkpM8gwBnC2ZVx7qjrbBUwQI8T9Qxb1iK2dLeYLYbkMSEiYGDExIZWlS5G2ye+/6RhVRhOakqitpa4NHWrjxJB46YWXePzMee5feZvti2fYuRj4yac+ysTs8IlPfIY/ePWLnN7aImzUnNq4iH/zCstFS5CAyRJ/3nqwynpw+sw2P/LR7+fa2x1feu0KbTgkpRWjkUosjcZT2kZYLjuSfQDc+h3dJP8vJx0Ht+L4bx4Ae7zbeY7/arBLh9RtzyNw7Lcl6alJY+mTgMMemPuW7cV1D+crA5Qe6HO+tlk7yJJlpBnYB6T/vzwOJgNN1vyJ4V5zArCAnSk2cenRg//OvcuAUYrl/dAmnVmpgMK01Kczc3KusJwONkMiSQG+2DWfb0gkD9JGg13xIGsW+Rn0ts/D3/a+YZk7x85TEthriWxZ/9gMrEzDDeX7k5IQH66ue2+xAfXnBcRU/EjnHDGGtf5zbMxLl8vELnwRPaY7+7flKGtNz5Qq5TCJ/Zj3zDfmgfvLZ0ipMAiXxG1JqFqsGKKkzL5WmK4GNuTyOAfKrIKmUKBp5RzbW1ssF0uSGJyp2BhvZzCLwfua8Xis9o51pNbx3uWfZcruN9QW/G5rAtwZv8SNyecoAypEBb+HhHF5HqWWtutwzjOuawyORKJdrvBGWY2cLX7A2jrRt7V3I88XLUoYvu7/Kp6Liw/yzuanNOaQfcemCwjKgmhkiaAg+OWyQ5LBmERMDmfU91xUdzm0N9hsL2Ody+wra1GgY0uj9P27O/oyb0w+zr6/wmp1RFVt8Ej7AS6GD3A6vAfvxggmg0vswzfwdbTytt0fvcZ+9RZROrVb3QRB93BJCWsSJFiuOkIbe4m+lOjBR957JBcVxF4mXtTH77cD07MRFXY4XXqlf1+NgRAz0NEom2WMoX9vZC2uYwrQvfdRS1HeWjGXBZMMlc1g91yElbItKDFSV56q9mCtrgslhpHXcUHZnQt4CjLzE4IRSyWOtoEYApiocr4hYTF470lGsFVNVVf4ccul8zvcP1yRDEzqKYtVS5SOKBAKK09mgyyFiWX1NaL7Vi/LledfkT1OmVUcDNYW2Vu1P0NKvYSXrn3ZLs1S4MYYnLE4b3nmPU/w/HPPEBctr79xjcODI0JsiTEgFmxyLBYNTbPiaLbghz/2BFunzuKMocoSzZKLBc6cmfLUsxc5dbSJ6xomfpPNMxVPPhWYv9IwW0VMm3DVSAFKRgEyiCDRcri/YHEwZxUiyabMSKTrutrza/tXVAn6sm+X+JmydA17TbEdzBpQSfr5Nexfpj+o7P8ZTJ3jgZLfZ2NNz3JfXvHjcd5hD9VjTD/mZZ+SHEsz1qicdAHXsuYP9XZZvq5oDE7ngcH5msl4jPGeS5cfp1nBKzeusLG5yfntbcxoxNUbt7l18w7GRR578klO757lnbevcHh0H0yXx9UQ2y7HXQWMYLOfVQpQBUMICWvUb42SMMlpP4z6DuPpBMQxC0tS6oYxy+9hzKFVjPosKUXI3pPJz1Xjt4bYBBYH+7y9apHKsb27waOPnmZcbXP39gGH89cxHu4d3uWorVh2C1LsiF0EUyjUbC/lXY9rnnr2SUZ2k1dfu8HR4hCkxTpH7R2+8ng/YrkMx2ybk3bSTtpJ+5Y3gTpt8C/d+L+y/V0sB/aNaILwxZ2f5w9O/7ffKHP4625Oaj6y91f4nfP/6dclc3Zn/Cq3xl/i8vIjX/UxQuKV7V/hn53/f/H25u+SCGyFi3zf3r/J+w5+hifnP/o1g57+KO3L27/K2xu/902/zkk7aSftpP1xb189SEmGkO0QDFOHdQD45B9SgvwlwDn8DugLVvtwbB+lXbvcMbCLaMVYYrgW5ColQ0SDNipt5rLzlwOtotUipg/YcTywN4Q+jl37WD8IfYDPGGVwqOqKIJEUOgqAqb+XEoQuYyZaKUtOL2hCwGbQV5FIkyFYIDlY3EemtR8xV8d7ZzFkin8jfVChIIIk6o2LUWCONVaH2DrlQekSMSZ85dQhDpFkHLWrCFmeyFU+U2ML1kdMB6HLzzCRAz/DvZag1xDkdBSGJ2MoWCLWEx+IkCPn+TMZkgSSegd9aCXwVP6tTCVKtZ76xANoFRg5AGJzP9u2pcg0GJE++KChEQ0WaGAgBz1QR74HHDEkQaxhqIgEkinH2Rxc1HtKUVmPxA7sUjEpq4Q1KQdYjEpFWAWreWMxmQ3LWdePhTUma8hDGzJwwudgmBgQh/QAQEOKAe9qRrZi7GtObW4yTp5l59ndOcv7nn8vG1sTQhcYTaaMphXGJpyvmc2WeGOxwtp4f4+2kqABIJKkJdkENpCCp1sGTBKV5+pWnD61i6s2mc8XLPZmLPyMrTNnsJVDVfNy0LQkD0MgdhE3GiFWgSpGchV8n7h6sEUkV+JZp7rU3XLOdOMUrq64efU6UQ5IkpjPhNgltnZGNKs5dTWlaWfU1ZQQNBlni5xfLwuyngBFI92ASEsMR8wWK7rVgna1hACpirTJU42ntDHi/ChTsMOD1dtfVzPleSwJaZ+j5QF7ByuWS2H//hGrlVLhhxC4fzTn8GBJCIEQlQ0lhUBoVljnscYRgqiMm+Sq4iS0IbMlGQVoOF9pgM4IgkqnWAPSasAvhEiQhI0Gia1WVosgKQCWJBBSuxaIRZnvYgkGJzCJpkusukg9rTQY3injQbtsiFFoWyG0kY2NiulWjRh971MQUpep6U3CeKitQ0Cfbw6KmqggpfF4ROUtIVpiitDO6SujG1jc79iabvDkM89x5a3rPPH0GVYHMy6ePcNzT7+XV19+h5e+/HmiC2AsIgEryswAgpVEchWOBJIT1SZqf63FVYZqUgGJFAHxGGPwI/AVfdIlRSGIJnlCTEDABgPGg1HGJ2crKmf54Ee/n7/yF/4iO1unaS4uWHYB2gYnK0ZbnvPbjzHbO+Bwtc/B/iEHs0PcSDDcYbue4NDK22QMzhjOnd/lh3/yB7l8+k8ylUjoPKefuMTZJ54mvfoWX/jCW2xunmfSwWK5j42CXc4RZzkz2ubzn/oCN2/fp5EWN1Jpiio5le+LuucYCUQRurjKEmJkGQqbE39r7x0pAxkMKZq8KOt8bLss4VGC31YwKDBObJGvUFYujIIkxYCtKiKZCSAnq8nJwJJAK+fMgh89y0i/JOU9OuQEgiB4axhXY2JS6Q5jIJAIRCwRo5RSTMYVbuyZTDaY7G7w5//Cz/HY6ef5lX/0W1y/dY/3P/MYH/7Y8zSV4ca1W9w/POCJD36Yf+Ov/TXuvHWN+cE97h0GatfStZGDWZPlznTeCAo49FjalBQ8icpDVJXOQ2Uls1ROV9OzF87yse/7Pl588Q1ev3KFhkAnltAZTNeQUiIkS0Koaq8yKuiYdijjWRdVMtY7D8uWT338E9gE7tSEn/zhD3D2see5efuIo/ke0h7y4os3+dLLL+CsQVqyvaVsBikGYl53XGV53/d/mD/xYz/J58wrvPb2bZpo8JXl1PYmZ3e2OffIE6Q45a03bnN/ef8bs+Z+U9qD9v7D/zYlOYMmcfM3FDvwOAJkOO/DO02ffhtOUWwmCsuODG7Bes63gO8xPU2PyUnn0uV1YNVwnfVeDEm5XpLHmMEmLkwDYiADZNeyfPkUBcJf7G3pvy79LLZv6Vv/iuZT6a2s+Tb5/3p5sJz8Lb5E3+cybiYnFG1vXPc2rjX0gP1yfwmrrG3oNVxOJBa2J/XV9Fp9gUgPuJGcmC6ArjUj1KDymOsjXIZqLaE65EhLcjb3uzz34guYYotle6wfZjMMoBl8T0MZn2whmcxoGmJ/UdOfbSiOOZ7clJ4No79IAWWZMseGhHCfQpahL2IUtJaSDs/67fc+bPYjrdE9w1h7zG8hzyplXTXYfhyKzVb8MAUoGAwjVzEZj5EYmYwmJPFsbGxy5txpJm6L7VUGqQQdi414nt3V0+x0j5Wt+3u23R19mS/t/BIdy2KUIUTdV11m7wgR7zwpJ+9HdU1Mlq7rCE1LrCO+HgF5vaA8RW0xdIS2oxqPFdz6oP39wPhvxLM8vvghbky/QGNnOpdjR+xaRuMNfOVYzZe03UJ9WHGkKIwmlUoKNx2tX1JVwt3xa2yHR9ajKcPf1t9BtIzr9vhFXtr8Hzlq90mrhMSOJq54e/pJbvjP80z4Mzx5+Ccx+OxPPLi2fn2t9OTG5DMkWdC0C5arhlUb6ZqG0KncXkqJKIm26wa7xlokBCRFrFGQekrSAwt1rA1JlOXYWC2wo4DL1tZyZ00hq8xSWToXQoqYVEAfw5MeQKPlDKUgoewxevaQi6EU5Kog7dCFHmCiDDSOelyrvZElLiXm78mxClviMmiNYZlxRRlMErEjy/omrFVwjFhomxWV8zz55GMsV5G9vdvcu3/E2QuP8vgjj+KT5/7BPl0o17JrkqCmB2tYUyRalUlJY1ySY3I226oKWjGgLJm27OyDPyuizygVWbO8RjurjLMG2Nre4r3PvJdpNSFsVEw2xtq3lHATx6VLjxLmgVt3bxFTR9M0XLl+g43ZIad3tjhz6iJOxbzAoMxQYnn0yUfYrizNssGNLBund9naOUM6muEmI4xxzBeHYCMuaDHmpQsX2KxH7DWdMuViEJuZHtMgP2Zy3LNIC5aVPEVRUFUeR1mbm8XOSUl9Uoo/WuyoLENqzTqw2qxtNgOLvbH62yhFVi7bOayvAvkf68BmM+wJxdpKfXGN+k6jcYVJ0BYG+TI3kV6ielRXVLUjiq4tTzxxmScuP8rtG4fcWTVatDCqqSsyA1nCj8fsnD/H5nTK9Lal7WqsrXESOZyvsM7iBQIBYy2j2iubcUiYZNW3ShpPNTYXgBZgscB4Y8LTTz3B7GDGatUSiNn315szvR0KBtsXfpDnaRcHwFdh5rp/d48D2QPv2divWe4eIjLiaNGS4orFYsnhwQEgeOcwzuK8QcRmBqtEiICFrZ1TjDd2aA6XiHQ6j6yCly6dPcPG1jajyTb3bs+5fX/vq1tUT9pJO2kn7etpAtN4lsfnfyLnSLRdWH2A9x7+yzwx/2G+W6XAvlHtpZ1f4u89/u9/RzH2nG2e40fv/Id89vTfZFbd+iOfJ5glL+38o68apBRNy4s7/4B/8Ph/cExu7qi6ye+c/+t88uzf4Cdu/0f89I3/M/ZrSHt/rU1I/MHp/5Zku2/aNU7aSTtpJ+17pX0Ncm/2AfBO+RxKYNfkQAiUmPJQdbUenDVpjQZYv2SgxD/ObqR/gVIBUj6XDC7pcxXZ8R1k2TgGcilAk9KbPvkBOWjOkMNYu0+t2nEgtk8GBIlEUWezciqnE0LIiZXMiiQcu0afHyj9zVI+fdC7OOkleSElcSG5Ok1/YHNg0jqbAUE2M+lkSuL+WjLQjBvVas9S530wS5IoEMYoO8V8ucJ7TRiPx2MkBJw3mMxaYr3VoHjUhGbXhT74UCrdFKiThkSDGYLzZR6UIPv6WNs1fftSNVSSKiWInrK0QkliDxXEQ2LDGqPgH5sluZImxofrKNgsxZIshoECW7931hBy1dCQHMggsT7RoMw3QQTr9Jj82DQ4l+/D5meYolJvO6uBAs0/l2eoky+GoOAXEt57YtJxiaI0+4jJ8c0MijPKIOZ8ZpxCv9/c3GDV6PtUScXj5y7x1Pse48r162xun+aJs5c4e/YcZy+fxbiSLBNl+MEwGlXUdZ3vpX+5+J5sOcooqSWEBb4GJDCqPbXzhE6DXTvbZ6mqKUk6usUR+/t3aVYrrK0YbW1CpaCjkgYaTh5ZzA7Yu3OLs49coppuIKKJbzERh3/IGZOSIMxnS6FjfnSoEj+S2NoEGx3Xb7Q0bcfGZAsxhsqPmUx2aGaJsLmidmN8NdY1xQDEfHZ/7GqQ2cawQKBdLVguWiqnc7ZrErK7yWRzC5ERKUJVacXCkFz+Rj0PARqEI2ZH97lz7w6HsxnL5YrVqkGAJkvQZUwOiYCvLO0qELqGUe3ootC0gbYNOViv76FxRplY8lrTdRFjlNVKq6YTvvJIZlFomk4ZkKxBHHRG1z5vPCZFYmaiSehma42hy/IFEgvwpN/5KBXAoBTr7SrQtvqkvRXc2LFzZpPx1HN4uKJtErELOGMVBOJUlkJE6DqViCxAE2c1kbparViuBLNwCmS1sLk5YrJRYX1C2paf+L6P8ed+5uf4r/6bn+ef/d7nqOodfuZ/+jHOj0dsbm4y3hyzChFCwNcj2j6BKir5YaEyyoAkaIBVA6CSwZoanHV4DTLn5SVGrRIWorJ7kSB2VK0QrEGMw5nIeLTBk08+i3c1t/b3+Ok/96+yMz3FIjS8eecKyTQKeKotP/uzf5qf+MiP8bf+1i/yzz//BehaXvnym/wXf+NvMNkc8TP/6r/Oex5/H2e3trEYuk747IvXefnOLT7w53+IqmuJkji9u8GPfeyHGE+2CM5w4+13ePGFz5NioumOEF8xntQ8e+kibyzeZmNzijlKhHlLZEmsva73ZHnXEEld0sSOkT5pEDqtRC/bt+63Lkt/KkMVQRNZKZ/PO/19SipLMapdlr3IAKWUZ5YYnKtUHk40uK7rfE7s2LWkQg8Qsbi8MigAeZDdENT2SHk/dhbOP7HLc5ce4/WXr3NzvoTUYI3Kwlmb8AjTyYjzZ88wmVTcunVENXLcev0l5ldvcPa85cL5D2KN5Zd+6w+4tX+b2d59xLRcvfYOv/hP/gd817C5C9PdS+xujLn5znVCt8ekrpjPZjRROHv+DFYSi6M5LDuMreiSsla0bWRSjXBOMCEqCM4aLj5xhqpaMB0LEztBagsskGRJpsKYgDPFEs0pFdFxDUmZnIyx+b2LEOBOs6+gs3nDP/yHn+A3q89hqzFYw6qbM180mJSwNjKdbuBqTVbE4AlBbde2a5mOPXt37/J3f/4fcf/6Pdp2ibURP6r5kR//YX74gx9ksnuGrp3wT3/zZT73yhvf2LX3G9iGSviv1OTdvzeDwd9DQWSwoUuS64GDOP7Ng/bM2hEPXFQGxEoPcF/TMO6P198eZwxcP1UPYOp9hNKLLF8iEYxkycUCJFnvf/mz+BQPSMTKkIYdxoE1y0GvvW579+dJkoGN9GtAYWg9Nhw5+WcyoKX4V+W4cj5Qd60LXWa31fchxZyEdtlHKN3KzCIx2+vrt2X68c4+i5FS49Jf69jQFEer+BN5X3rQei1ArGHdLZI0w71ipU/slq8elG7r53E/vAocOvbIBhdiuDN5eJbqtyr7pqCzAbhV5mHvPyE9yG3d/+39TLJ0W7ExrMo7D77m4PNABiHkGWQNOSmtc2IyGdM06g854zm9e5rdc1vc39/HUXPq1BkqX7NrL/Ph/b/INJwps6BPuCKsRRu+N/2JYBre2PxtOrOEFEnSqN+bhLrySLYxBcHhqCcjEpHVYkYMKuHrqpp6Ms4ANcDYtZHUORK7juX8EGMj9WhCmQsab3HH3xvg3Oo5rNRldmWp3kYB1E3DeOKZblSEA0+KkelkCsbiKo9zjtWqVYZkY7k3foPHVj+UZTiGF6MXfhQQE9mvrvDOxqe5P3qVkJYYMdRVTRsDRRItmsjVjc9yavUcp8PTwDd+1hiBlTtkv36DmFpWK2XGUaa3krS3g3yYtVrIYxUAFGPI/r7a6ymuASyAqnJ0WRZPv1N2yl6KMccIBgbxzG5mDc5bLcDLa4GVUtSQQZ5G7eoYQwaPlTlgCoa9t+NSTKQ4ANvL+2+dAkB8bbVgY5WIMWocxZo+noGgBQ19XIbiffagKqItyxB1bbHeUo0cEiOnphM++NwzvHP1Drdv3eL6/pzxDnTLRDNfMprU0ARCbLXv3itTXWZFEnTMYwZ3sLbEagGffq7s2kMMLMXUMykNsZykcp1JpdSMSVRGgUcXzl/knWvXOffoI1TTTVap5catG9w/uA8mYhxcvHiG73v/09y4dpt7R/eJjdrR71x5G+ccp85d4LHHHI+cu4DPY7h3tOSda3d5dnPE7nhKPa5wFrZHNc+/52nMuKJZNty4epMbN68zm+3ROUA886MZoVky3Z4wGlXMDxd07QoqEJuL6aIyL5kePMux90UZvdYsiAw4LfOpFNAVpnxTcI2ScN4q63CM+ZmUPQzIEqUFGCuZfWsIPfYbZw6lDHO9l4Azwz5U7JOyO1pjGG3UPP30oxzdOuDm/SNaRfjgjMeYIm1q8JVjc2uD5WzFctlw/Y0r3L92m1Pnz/P8+5/Fmoq333yHN6+9SQwrINLMj/jSC3/AdFozrjyb22MMltQGRi14H+hMCyZRjSplues6TMo+bQYJSwYnqv+ke3YUaLqWazeuMPI103qEiKNLKxKRJAZwak8Zg0jqQd1ljLQwtdiMOYadREvUEhzuRw73G7x1WJ8ZY1NSCUeCznXr9XlmSWGdDwmJwuH9fb5w+KK+323h7TbsnNrhiccfYTLdwPox3k3YW7T/gpX0pJ20k3bSvjHtwur9/NU3/w5nm+ce+u7dypC+19rKHvIbF//v31EAJYD3H/wsdZp+/c/IwCvbv8zH7v47bIYL7/J1oRYIXNn4FL9z/q/z5a1/SucW73IyCHbF7537//Ds0U/z1Ownvmlz6KC6zlubn/imnPuknbSTdtK+19rXBCl9CDxECdr2vxj+KIiZ/nc5GEyRNht0yjF67pJQe/haynpTwC/vJiVXqln7wHN2nq3tw/kDMAZz7B5KQqRI46wHqyUHY6AwRWVnEQGXk4LODVTY6bgEQKmg1Vj7UNEoFAYk0agwJdp9PMux1vve+S/BAu9dD1Ty3hOjBmVKha8kDfwnE6msp641OelzpVoMUf+LmmBp2o6WDl9VIJYYOqzXIFZV61SRGImmUJ3HLMtn+qBVH5OWkmRScFkBib2brMN668ckgzCMWZfhy8Afq89A5bBKoEWDUcYIVVVhraVtGgRRMFI/98jzSZOSJWxnjFGmiZR0HuYZpkGXYY71Ad8HAjspA4i0j5ESDuplNETZsYwprF4Z2Jf/dE5Zccj06yENIDXvXR7T1M8TnW8q/eCty7I20s9XiR1Yg6trHn3iKU6d26SaWkzwPPrkZawZY5zSkUsOMuXQUb7XB9jHvqdbQliBnZGSJ3aRzY0p7SqxubNFDJHF4RGVh8nmhChLduqa/XsrbF3jxh7pGiSBHU90PUlo8DvPpRgb5oe3OeUugJuS2g5b+0wt83BTRh+wAqFrkZQIYjjYOyR0iY3tU5w9f5bZ/opHH38GN9oAF9m/f4+4nGOtgHcMqcn1Jx2Q1OXKVZ/fRcESEPn/s/dfwZZl+Xkn9ltmm2Ouy5u2Kiursqq7urraVTu0gyUIgG7IIUMEZiSKpGIYUoykYYwU0osiJEUoQg96Uyj0opE0nJlgUJrhCACBJgnCW6JNoQF0eZOVmZX2+nuP22Y5Pay19zk3sxq2gXa5Oqpv3nvO3nvttdde62++//e1aC0ZliNsU+FtZJY6ODxkOz/DeE1QaJXASavpy29Wi+ezrqZ1Ld578kxjG0WrIvW61roP9ulMU/qMKrQY2yBlYFiWzOZVXCvT9wKCtfUSrSVH+55mYTHW4E0EYFghIDiEFNiU/HMpoQCx2l0gWBgXH4oQOCET+YyMyUIRE8LedfJZIVUyd3tVlO+0dYvJY3JX6oys0NjG4IJDZRKhA0F6pFJ46zHWoTNJjuyLtE1rMMYjhOqZOeKyKuN9CIm3ce/JMk2uBUUhKEYDqBznzmwzKHJy4VFkzCYzfvFf/yJ/43OfYagF40EO0wUVDq0AldHWDc4ZPD6tYTEIi/D4tPb54NAqgsRCAJmJbqGNjG6FSrMmVo0Gn+QydQAfYlJFOT7+wvP8o//kP2Uxqfgv//svcv2kov7DLzM9vs9Xf/3L7B3cp6VCC8Hi7h53s68zObmH0LHSOmjLweEdwv6IX/mtr3Dx715ha20DCXgJlatYTKdgHINhgXGWvZt7vPv6DT75mafZPncGN32B1z/9Cf71z32RV995ieGlbWbHU37xV7/C+z72DP/gr/8VXv2dr/Ol332JaeWReQQmZ07hmhbj4lzxIgX2EUu2Pecio2KqBA8m7vMSGWU/XSf16lFaJSmHuAeOxgMGg4L5dErTGKRUSCUIXtHJilqbQLhSoHUCKCHimpQAuasmUgc2ANCZQmU6gSt8YmOLC4iQnsGopBgU8b1xFhEcQgZyqREKghBUwlIJQx4UrXHUd4/497/yB1z98PP8nZ/8ewztGr/5q7/J5Pgu8+M9aGoK5zm5dZuvHt1nNMx5+splJtUJzq5Rjs8wbgKLxQSdSUSesajmiAAm3asPDkWUSBVe4GoPMlAONUpomtrxpd/6ffY+cJXPv/AxqpMb3Do5jHKL3uKExNkIxJIqMls0dUzcxTWHxHSYkoJa9O+jJTAIhgbJbLEgUzO0UtgAAo23LUEFFrMGkTKM3kXQqJQCERTN3PP1330Fioy8yNF+gJQKYx03b15naCo+9PFPossxljv45s9eyfYX3Tr34E9kXXRFBBCTcHSByqW9fMpy7oFM/dWgn+GrCbZw+iuQ8BSC9/ygT75F4MxSQm753f5Pp/yLroij+84yI3f6DCuA1WSQdfbq0h8SS1D9ypEdELVn4Dm17YpT/1re0fK3yKQj+1sWCTwRz73iF4XUfxllqaJcaSwOcUnCLTK5xvM46/FihRVJgNISJVUyi30C4cf1K6XYVzvPsrAhnnPJYBWWY3BquMVy/MPK31ZaB17qRz35lTHX3yVOky0sO3mbVQDV6uidniPL86d99z2Ra+L0s0rXBXpGi34OnJqRob/S6v+fnnKhZ2zskvXOud5PiyCx7oDoS3Ug1ThUspcEDwHqqsEHEFJFBrzRCK0UF85uExwUowwhFMbPOMpv0Mgpa/ZC6pdC+Xz5rMSy399rzYmWSh8S/QlDwMU91Ee2XY8gHwzwPtAuKpqmJh9klKMSEQSz6TQylXiDDkmeSmakSdLPcSEjgMiaJsrqZiXeWKTOQEPHCNa1KIHQvXXxJdNaE91hRVW1ZEVgOCoxLYzXzyB1hveGk5PDaEN7SxCBk/wOXzvzz5cgpRTDODt/Bh0yhMzYHbzJfvE2XrQE3+K9RWYKayPzp5Ae51uMzTFlzWvbP8enDv4RpdtceRNW3v0/RwvAQXGdJixw3iKVIM8z2sZEm19EW6sDHQshUoGYJFiDUpJMq8hG6VyUTRTxvdGZYlDmSAGNtzjr+lF2aW8Xols7E+NN6CTflsVqJOCI7x+zQHQMOs7Gz8PqkhfjX0C/NgcbcCqgsyjxa5MkLnEWRom3sBwUF5KkWNqzYiFcvEi3/3bMah37G0R7NdMKrQVaxaKsyMKmmC0a5vMFoyQhv3//HpMLF9jaGHFvHww+SQR6VIgyvTbF84ILGGfTmijopC6DcygVGfmc86CW8yIQlkzi/eaRChZlBHIpKQhSsLW5wcc/8VFGwzWq2nDn7i4nk2MyZZmfTJlO5ljXEoTjaO+Yt15+k6PJCdY3qbglsuV6l3FyPOPZ9xfLNVjAcJRxbntEBhEsohWzacW9Gzu43PLE05c4s7bO2TPrnN3e5JVXX6HcGINRHB7uko0HPP/hD5C1ltdfeZu793dxriGEgEZGSecQfdXQ2wfpvvs4VXq+Iu1eISSpz7DcD1cMs5DkWKVYxi279zkWySV/NhWGxqVdrIB6l0BmH4OMfR96ibf0uVIqsTgmqcSVuWgax+1bu7gqMSInBkIpEuO8iMzphgjkbK0jlfUwHJ/hsctPMc6HvPXmDU5ODvBuTkj+FT5gFg2ztsUVBULVjEZjynJI03jqJhUXaolzMV7aSWaT3jMZkcyxcClEqUClNcJ4zLxlH8nHPnaVQTZjcWcfgkLgkCKaWBFkFYe+BzEiElg8vWfpXZSpqNAjESFEsGSA1ltkKnZJR+MQeEeSGF+N08c9QoQEEhQLpBYoUSClwhPY3z3kpdmM8+fPsb65yfF0jmsO/nSL66P2qD1qj9qfoc31Ae+Mf5Npdp9L1UcBkEEnu/JRa+WMg/zbrwitcGO+Wf7dreFX+H+976+xtgJSkkHz4eO/2/sXL2/+DG+u/7tY+PHHXLZWJ/x3T/5P+J+9+WtsmSvflD4+2N5e+2UqdfQXcu5H7VF71B6177X2p5B766Ps79mW1THwoA75KvgmhOV3u393ztry6ytB8fiv5DivBN/TKT2B4DuQRXLSOkdZLvl7wvIQYnAo9LG9pYzDw/cXwUQ+AUxkX7mjtMKLZT87h9uLZaBpec5lZdB7jVtH6O9TIKVLFHbOfl+VxGqVVGJH6AA8KVLdVf31w76S4JBComXUTu8eSQgCZ30MVJNYmVqPCRaVa4xpCL6lKAvyTCOUoPEeY0wvAyaETLI9qQ+nyqKIQZkV0NkSvLUcoyWD0nJcAr5PGnSfKyn6QEl3jyGBdnRihzDGIohBNdkhxPrvL511KTr2JlbAZdBJS4QHgirdPXWB/9V76voREwFRa74P9HcsXuH03Oik5uKvMlXGigSq6oBOsTpKqtTXrp8h9kRoRRSqSf3zMJks8AikClG+qNRsrJ/hzMZ5XB2QusSHQDU5ZrQ2xso4BwqVg4jJV0Egy3Tfhz8GW/Zd3ALO1xg7x1pHkQ8QUlBXFVIMGIzORIBa0Bzu36YwGYOBxAdLY2uqqiK7X7C9fhalh3H+dUk0H0B6ikHJuctPMJ8fc7B/wNa2JjiHdGWfVIDT61OKCRNw6FIzWhvBPBAYYNHsHU6RQbB19iLF+jnQGb6ecHy4G+Uv/TakdTOkOUsIeNti2wnV4pDheJ18cI5ADhiqesL06B66hKzcYjazNG3DaJShVcZiVlGUnixXK+956ugD/f+zN4+1hulsQVZIhmsac9TStoYQPG3b0BpLpjOkUgQMUqgIJtWaMi/QUrCmhli/AAHWGRCCsswQwpNpScgV0gmyLOCsi1IuQmNsS1ObmGQIy2rjtjEE5+IW5QNSgFWRPUaIgPOB1jpk8BGc4CPAI7iUoPAJ/KEVrrXUC0NW5ozXhjRVhfCCYEBKTd0EXAjMZw2maUEErPHkSb7Td+d04L0hhqu7pGNXnQzIwHBUsLFeUuSCoiiQIgMt+erL13jj/pzGCP7mX/sJvvzil2gRPPG+pzn/zpd45UaDkw4XFJiWDVUwzzNOvMUbgWshVnF2a1dkp9NKMR6MOZ5MI8BFJFa5AGVZIFXcX51zeBuwxuG8ZzwqGeY5SmiskvzoT/wVnnziDLdv7qAXJ/z0P/t/o1XLYACmbqibFomhETm//aXX+frXrrGzOMT6gJIaYy2LaQVSMCwcW+sFMu0ruRJ84dPP8NHnL+MmC2o1onItJ43hSy+/zi+/+dv85N/+EZ55/CoffeEp5sefY+vKOj/6V3+Cl37nNf7gjT/g8lNXOHvpaf7+f/Qss4nhS197EVfPkFqhBxl5JphXFQsXpdoic8XpZHa3rUshI8DZgdQg8EgZEuNKTEKJtNe6EJhOFixmsaJIiTxKjYiAsTaCm/BoLVEqJTGU6BPTUsokb9K9r0kOiBDlElTUFfJBJJBe/HdMTkiC17zz8h7XXz6I7H/4xEaS7BcUQikQga1yRKgsPi/48Eee54c+8wWefub95MWAV7/2Jn/4yivsHx3QmhoZkvSfDxTktJPAm6/f5uOff4Ef+tTneOXr77Czd0BrAz5RRtraghM4GxnRpCLet5ZEZSqPUhlKS7yxZMFiDZhszPaVq6yv71Hv3KNuXEwqdOMsUyJNxXN3kovxsXWMigGcQ2UK4cFLjdKa9XzE0RycW9AGh8wD4yKn8prWB2QQREhTTMB09gaSCOwgsnZmJWTDgizLmS9aXntll/pwwevv3MYowWLW4ub1N2G9/Ytpf9xOsNwqljCQh495j/1wxVU4bXJ3Z/hGV+4AG/HfD+5VYqVP8fm+x3lWfZMH+3fq60lORSw/k0r2dkFMUHfMpF36TzxwnhWQ1KnbWrlmSNCQbnB6P6A/Q7J/ky8Uwqlb6Ea+M1f6ggvo7doQwAWx/J2lROSq9HXHHuK8AeNAgdZRzljoKJlKl1RFRKBT35ZPv7+VP2YGxcfYJWuTHyJOs3P1wJneF+rS793/YqLWJeaN3nd9L9BRP3BiOZai+6BHD/T3sgRxn75HsfIAesbUbiPo/Fjf+YZh5ejkX6Q7WPp3/YXTc/H9vFoCDVgW6MjEDBG6opLI+hcQCB/vq3UNW+U6waXEstBYZ5lX93h1+DMgMqQtyHVBzojHJp/kseqjaLkE3H8vV0P7YHHeEjxkOkdpH208FFJmCCkoSsFsekBjF2gd95emNVhXgwiMyjFZMVqetANhiCjjPtLrVNWCurEM8yjt2knWx+/TT79JdpfH+BhdnEKkJLupDU4oBoMRVTVBBM94tInQOUFGsHv0R12SOIpg+5neA3bAR6Yh29bcUl+OjCzDdRAF0Y6vWcymON8yGI9ACIyxEAx5ltNUNYE5jCRvr/0qHzr5DxGs3MM3o4nATN5jXi+QKqA0NK3FWouzkdXJWBt9eaJEWCw0iGuHzjQQyIssAs5am8YissD4EIu5hAgoHeXTY+FUBDR09npXxKWU6MGenWQXQC9Anzainr2IJOUoRC/9RQ9KBCFVZH9xDmE9RZnH9dxF0JMPEu8Epo0sq7a1EWRFLCYUdCzW3f7o0xyOk2iV4c3jUSLKSSslIvO2UAgpmbctX/q9PyB4wdWnrnJ4dJ/aSQZnztBO7iKkxQmPQxC8ZKgF2XDAwXSKcXBqrQwegUps6oKyKDCtjZLD3VIbot8hxDJ2FNluAs56dK7JcoUWGicCZ85tszbU1O2M4BbUxztM9gxSBWRioFUASjBvLG+8excXLFHaTsU10gQcIMyM2fyEs+tbfa9HZcb7n4rJNmMdIpNkgxw9HvDmm69xNNvnmScus3nmLKNRwcVLF3jqA0+hreadazdx2nH3zj4ffOZJrjxxiYOjI5q2IRMSr4j+bhNojI0PNk0akZ5Ovw2t2DCxfjDyEcR5FP8vAobT/uADprUYYxO7llrG5JI0IEQmI9EXyoXEBCv6PSikuNopYLWgZxJ2iYl9GXPrgFDgDRwfztMG7BPzc7yWT9eWIqB8IA+CuZCcOX+W9129yvbWJrZ13L19m8OjPaq6wbgQbfIQ455aabRQzOc15x8/z4c++ByL44rpZEFrHTaBpqKUYGSZ9AmIrVToAW8CIjM5IkkqJtnG1nM8qRMAz8WiicSAK0I8Zml7kOx+lrK/nR+WYkZCJOb0TLG9vkFVeWb1guAtQnqKQiOUorLRBuwFDzu7KcWkhUwSij6QS0lelmhVYlpH0zoqA/fu73Pj9v34nNz37p79qD1qj9pfXptlO/zslf8F2pcM7BYAI7fN53f/Mz55+D/+C5XsetT+7O3W6EU+efiPvzknE7A7eJVdXj3157fWf+nPfMqT7Da/8Nj/jp+8+c9QvHcB+J+1BTy75esE4f/4Lz9qj9qj9qg9an9s+9Pt9CtBk4c/SklpAg+6MstkdUcrzzI4vgqC6APF9IGFJV3w8jrQJbzE6URESvSJdJ1VLEAfOF9GuflGiYuHwAD9d5dVNXmRIZTC20ihr5TEWddFf0/fO8vAcc8oJZdfCn4JXAgsK3Yh+uJdhXOUD6OXVvM+Vvh1AgQ+dIAqICyrt0MIWNPSVAGrovPvvY+JOykTWEb2wQkvwNroZHs8wgsqW+HLgsGoYDAakZeepjZ4G6vsatumxxRSokWlvMjKfT4AtjgtZZCC792Y+SitFpApmBC/63xH7yxjZR9L0FOURlmdM6IPhCz/vjzGJ5aknuEpVeyLsGRJWp0JIZxmRgrdselefAIndAF+l2TdukAWIgX7RAySLOd1wBMlfuimQgI/WJsABc6hhOzBcCEVm3kPbRODE1rr+H75FHwIAqzl1jtvsLU5ALlFWZSUwjFfVEx2d5kc79MKj0dx9sxFxuNxGveOov+BpMz3XAsY19K0FkmJUkOkaJnZOWU5AGJQqRyuI3XO4cEuITS0tSegcNYz3d9BmMD5x58FdJpTFo8Bb9Ha0dQWW0vKch1VDBFlOKXFvdrifIvVhC6tLi5EUN5wPODMuTV27swJVrF+YRupYrWk0DmD8RjnKibzlu1xB1h0ECpcU3G0d8jJ4T5ra2PKYffsHaadsHP3JpOTE4pxhiwXLI6nmMWCo6OaQTbEMMF4y4ULFxFCofWALrz+zWuOo5MDdncP2D6vmU5mzKua6XyCcx5jPTbJLhhjWSwqXGMxjUUpjVISa1uyPEfIWLWNDwgVWFQVzlpa08Yga4rs6UKitKBt41ovhSIIwXBU0LYtVdXghEAGR8y+SnKlOb+2iW8b9qvFSoI7/k8piZQCGy8Rk1YyoBDoLKcxNcHFSsksV1gDiigBuZgZpDS0tUGEWAfbyceF4HHW4wIRpJU2vbZtU3IzgBRxvQ8GrQSj0SCuQE6gconIBPcO7nLt/h22Ny5gbix46rkLnL16nteP3uXWwbtY29IYg6kDeev54PMXuXZvl+P5AuFAiQBKEfBRahQILjBeGzPMSxayorEW62L1tLUGpQs61gfvA3iJaRPAUzhGJVy5sM3udMHBznW++tsT3j2YYTkEfxyZAC3gDM5Y8jwjuMDe4oT7xoD0ZFpgM0fmJUFYfL7gq7//NT72wl/hh144AwTauuXgaB+pApvb5zHBMSxyzlzcIB9qbn79Hf7v77zJFz7/acZrZ7hz7ZjnPvJB3vfkRc7qARe2C/7917/Ez926xmc+/D4ae4xQDRe3RwQcu84wzAewaFEehPP4FOyOiUSfAD8JOBjA2wg2EwSEApGMGikji5+SGmcd3saqWZdWbxNslBuM/P9p7+zskU5iIBBElDPBu77SPI57ZD0JhCgvGicx3rpeEiomJyPIwgWPDIaQZDCFlDiZIYKmDSC8ZYRAecnx/oyN9XXe/77HuHT+IvvHR9jXX+Oll9/g7u37TCfHWGewDrxrMKGhkJq1gWI2b5GDgnOXz3K4u8f+/fs0TUPVtFjvEc4hXJT/cM7hfEBlAZ0JhAwoBVJ6lLI0C0lt4jsEkttv3Oe/nfwS4XiG921M8OHBSYSGuHmnKnAtAIV3jmB9b8dKoh0hiRJeXhc8/8KH+dDFx/j1332Je/s1PhjGa2u8/+ozHB/UvLuzC6bCEbAuELxEq6x7ecjyHB8km3rIxz7+POONx5F2yLV3drlx7xY3906Qdo8GT6EUTn5zgzDfzHbak3jYvggPfLyK6VgmupZ/XIV8LIVdluAM4AFgyIMgkdXWgTw6eNCSAbRL9sQE7applBJK7wE86frwoBnVAVmE6BJ6yzuTUvVV9aGTN+4Go+tl7y+tfrIKiFn2M93VKb9jeY6u+50Pt+L39D7f6fuKUjrghQAX733JLNqtVMsBc8FGuRkBQiVQUgCda6RSZFKmYonoT/gkt9w9xQdBLWHlPlefDZCSgaeGPwJ+VopclnOjPwpOnYUkmUJ/T32mN4i+V11BjggrM+4Bv2c5EEtfc3X2ibD6D5EuEZZdWfG743NZzqnOX4l5zRUOkRDiutyNnhD9PfuU6Fz6PstuhhBZIhEigVjjfUkhIptD8JzsHxCcQxdrjMZDtLcY46iqivl8ivUOqTRraxsMh0Pe2Pi3GFlxtfp8lLJLI/W9BlTyIoJPoyyYQMkMkJGd2HoGw4Ju9ZI6Q2cldT2JrD7WJ99PgrU0TUNWrtGjMkUCCyXJoGpeQVAUgxFSZkREQvcmrTxwAXO9jxNm5Z0S+ABKZZTDkqwQ2FbFPussrRkRoJDnBQFDay062Q0ICL7BGUNwnunJCXmeo7MBEO0b5xrms0ks9tCS2XyGaQ2utZEVtg0EWox3ZFngtvg9NosneLz59Gk5xT9nc8JwP3uVelojlcP4hrY11G2DNXENkim+4F0qWDAughDo5NaizeRPARM91llcJbDG9TGKKBkX2Ss7BsoIEBc9qMZ7h0trhoToi0jB5toG68WA+0f7EdTRrdvpnJ10e2fX+RCiDaJUjGn4CPDwvpP1TgAR6xNYqlv/oxRzJ+0VfNdv2YO1nLX9utZFVSCCbaWK/XXdfCCADLRmTgjw5rXXWFsv2D53ntv77zI/vEvTtHgbpau9CfhCYE0b4x8+rUF9UdwyfqSVQkuFJYJoutiZdx6FSkV7CaTUxeBEt6Z5Lmyv4wUcHezw5S9PEHlBazxBOoSM4xQBWh0brMQZE++fNNeFQ7i4tgcFTdNw4/YBl84/SabAGMv+/gHz+ZSLFy8glUL5uLbOFxOUt+zf3WWyf8zaxojgMtbGW5S6oCgU25vr3Hz3HXYnh8yOd/F1jbEVZanYXhtxb3JM6yOIJIQkpdq/H8vYah8EFaIfExEisyGAt0vgm1Jq+Z1uvD1JUj7tdJ09tgyrLcGxiaH41OYiog3Wge+7+MWqCcXqMWnPiuuS60/eMRPG7Tn6j4XM8E7SypxLF7dYW1vj3q1b7Ny7z2JRM5stUkwx2uixVCNJ1yUWOKkVddPw5utv0c4NTVP3cWhCXGJFmvFBJHCU6tbfbjwc3kvi6xGfh2jhnTfeRYuOhR86OsgYw+4cKZHel65oc2WfDL6XklNS4oOkHI64fOUSO/f2qMwCa0HnJZeffIJC5Lx7+z5VNScE29svUiZGfDxSCLTOCD5w5cpjnD1/HhEKFlPD9XfvMqtOqHxNkGmdku8dj3rUHrVH7VH7i2hW1kzzewBMuce/euKfUukjvn/3n35PA5WsbFYcx2+ftle8jhFV3Fu/HZsIvLr5c3xt9t/wyYN/jPwmFj20csFrG1/8pp3vUXvUHrVH7Xu9/el3+feKtp/6PIVFUxId0QsspMNXA+4pwOKjzAgrVU/QBVBFPGdKxqaj0s+VoG86b6z2kQl843u/fAluWo39LgP/q9d8UAou3lDqcaK9rusmyoWFCJjROiMGCSNVdhCRdLerghXJqQ0h4Al0lUD9NTkdfIEU8EnHdEHtzvGP1XrLsfIhsgnFoIpPjyndnaAH5ThHArjEgFpXJee9oZO1IwRscEgpGAxyyrKgqipAYG2Ubukk0XxKgkiVwFWpUjeESDWsuiAV4aH7659B18+VMVg+5hgc60SZur938n/vxcoUz+uXFeMr47RaDd5RaAUirXJ3fZ8CBEu67u7nEriwTIyElNTtKuBF300hOoX3CAAjSXX44BNIQS4DSKlvUqywZ/VAO99Tlksp4xzvgz+e4GUMuXgHIbL4qCxDycgCdOvWbXaOJmycvcTjl8+hDzyaATu7e9i2BmfIyxIlBEFE4IDWGVqtxcRZiBXy3xwmnO+Edjpx5awkk+uUhaZazJidnDA9mXD5qW2EcBAUIi8Yr28yn50wXzQ0VY33sLG+zcZ4C50VBALWNWgNYCI4yAfqec3scMrmxjblxiYiBfKhgVCyyuwl0vSK00wgUXin0GrI1tkR4/UBi/kBIBltbiLLHIGDdsZ0MmVtdIbgKxAlvp0jixwpM4yZcXKwTz1vaYzj0tZFinITkBBa5pNjTo5PMKFhazTiZDJjPp3g24BrBToEQtZycnIHZ0/I8zEXL15FyJLTa3Q3tH8iLoT+2OXfJJnKGZU5J/tHzKcNxlrqtkECUmaM8gF1HZMMEaTqaNqakJjTXGtwfpEkDSKQxgfDovKYysZAnoyMbCFE9hVPrMCNgXyNUJbGtoQQGVqc8wjhUXmG1ILtzQ3+4T/4h7zy+7/Pr3/5q9gEIMJHynZkXCukVJHCnkj1nuUxyJ+JjLZumU/mNG2DMT6BbQXSATiCkxFoqiUBgY2UBxFsIUAoyDJN07Rx5LoFMSW9y6JgOB7hcXha8iJHKUftXKqybNjdu8ate56PPvsEN2//G373dzz26IhQOdra0FQNizbway++Qu08LsmQyCzujUpKlBIYE4PbmdbYpoUkd2GMASDLcpQuQARkSONBkvCUoKUmz0o+8PzzHPze7/MvfvpfQhCce/xxJkczHA0aR4bESYnXCit1AqtUZEHgnCDIQLAGC3jt0F5g5jVvXLvB+e01SqX4+u9/nS9/7UUyKfnkJ15gfX0TZTPeunaT11/9fYrM8/i5J/jal15jY3uLj37oEzx/9X1ooRiuDXj1lXd4+Q/eYNoe8tKXfhdfN5i2YTzepp5PcYs5x43B28QkJWNluHdxP1FKpiC/RyEjBkDExPX6eJDWoYbFokWImPCSomM8kbGCOkRWRO8jCEkKkaRIEoCgS7wkIE2Xg5dSIny0AUQae0lMWvqUPJdKJpmMxObYgSlDJw0Roi3n40ljhbbrE5tqMObqpadYOMVzn/4E60PBuvC8+OLvcXvnCCM9ImSM1zbYUFAvFkxPWoLXNK3h3s4eG2fOYefwxX/5q5QuZ7w9ZLyWU7eC0KSEGiGOhffkSlAOsyh7FwUJkQKM8YQg0UIACqULRkJyfPc47bUlubCIYGhFNJ4iQGzJfOMxy/eqz5/GJMAgLymykhMT2NndQzVTGjFD5QFBzjMf+zg/8gOf5d2vX+PwV6fMTIOUmlwqBDlaZVGGRnjWxgMyOWBj6yyf/MLneeL8RYZyjdde2eGnf37Ovf0pAg/KYa0hqA7o8e3eViEbq7Z3Mo46+3eJ4YhTTLzHWVY+fNiWX541PHStB8/UnWYpWbLK9Al/lBt0ystYnjXZf/HnEmgSE9w+7W4xGSTFSkLoFFBoab92/YpXWbLiLPvQXT+BEzpA/amuJsGeLsmYDnM+2pxR9s2v+Ey9OdJLnixBYJ39nRj7Vvfu5ENFyWlJ27YgUtLTRdniCFD1PVC/u178GfoE6IMkRKeecVeYwOn2IDDjoRbiftOxx60gu07FgjvwWnfdfpRTpzpvdxU81t17BwjrZNeCYAmo6v628qSXCDLSl09LuC3nmUhrb/fGpOec1vpeHrDzK7qfK+/Qw+O1Mn8TCEoQMLZhMrfMG0NWTCgHOUJBrguato2+DZG1Ms8znDcEBG+Uv4iQgcvVJ8n8II7UKdnCVSDWd76fsbyX5eQ5KN7BiQYpdATxK0HdLKgXFdZY8nIQZa6SVH2W5zSVjsANG/fOwWid0WgtSreJgHFNLDSwNu7fQhEcZFmB1jkyU31P8AaEjnZw99cAjZpxffw7tHIRfVUHmS4YDMf4YDk5OkEIzXh9HZlrQnB419K2liwbEtmls0jdKYEgcKZlNpmipcZ7UHlBPhilxSOBA4LAeUeeK0QQNDayB1sXbV2daYTwzOcTCJJX176IlBmXqhcio8l7rd/ivX/tv7lKsSfgoHibNp+xtjbEuQVmTpIP6+I2klznOOtobRvfGRltCOc81jmCi3ZUJ4/VvWCxOMwnWyGyvvgQED6yzkWm0yVzjHM2xYkiu0lIL3X0B+DqM1cZDUpOXlrQ2lm6nks+THdLiYlZKgixhKWLN1hrmc8rpCQxwy7XJ5FYiYxJYAgZ6FCQcb9KtyYFwUV4iBQx7tDZlEJK8jyPUw2LziXDYcFi0aT4B3hncN6yOLHMjt+h9h4lQAURweRJZvhwZnG+SsAM2anXxfVNpnhginmF3jhNYKr07uR5Hu1f6fsYkBexsE9rCV4wbwPGtkxncw5PTghCkkkVAWTekWuNR9CmArbIbuNSMVrqkPcEJE5EW1h6z/Roj1fefI2N0ZDFdMbd+/eoFjX3793jscuPI0LOzv19Dg/38cLy1NNPI43gZDrhmWefZnO8TplFdq7WOvaOpizqBYvpBILDGYf3gsMwx5vImBuLDVKsrQPBBOL6H4jP6tTeJtCZosg11lpMPyXi/EaA0ssXKgTAd+Whyw2kD42G5bV7di+6z5bvYtzqwgo2JzISC9nF9ZZ7p+xtljjXut4Jkar0QkBkGZcuP4FZGORwgMg0ZZljFpJb93ZxwaGLkvXN89imoTU1s8mE1kbG2LoxjMcZhciYHUw58VPK8ZCNM0PkSWA6N6xKrtHNWSWROrFHdXtYYpXMMknwAh8ka2tDcpVjXAT+BVchpMV4SxA+FR0u44mhWx9Jzy7ZVSIEiiJnPB6xqA2LecWrb7wVryljMZAelIgiQxPIpKcOxDmtFQSJkDrZLZ4814yHQ9pGYkQR/cuhYnM8Yj6dUi1mmKASw3CKLz5qj9qj9qh9i5qTDb906f+IE4bv2/8njNz2t7pL35L21tovU8vJt7obD7VJdo9fv/h/YaH3vtVd+YbNypovPv6/AUQCKv35wbeBwBvrv8BBce3P38FH7VF71B61Rw3404CUVkAgp5PN0DmV/d8DdFGFPmj7QHT4VFoirAZCRR/D6kERCah0KuDfn3uZeI3VnrLv41KGqzvNMmTVJdACXSKCHgx0KjDd/SH1IwDWdo5jQIqAlAkUJAXC0YNautB+x6IkRax4UyKy1AQX02USgVgBIkAMOMvUJ7/S/x7U0kktOIdUqtd810oBsYqtO19MhMQKughkiuPpg0OuMDVF8qJ4bxJBkSuGwwJjLc57qkXNYhE/z7I8Xss7rLV9n/swQgcKYsnotDpPesBFEHjXVQmt3n9nOCR2qHQuUoDkFOioE3TvEwRdgqqbrzE4E3ysxjsVQBYp2SKinEEcdCIwqqsk6+fUUqYjxlISBClNzeAjC1WCO/UBs/i9QEqbxufjUkIksWesVnaHpCsPIoHuRBqf5fP3XcApzQmtFFmW9cmKTMdg8KxZYKylsIH5fM7e/euITFNkBV4JtJKUWuGD5+7dW+zs7ZBpzfb2BYJzDAYDsixPclGr79F3e1Kh+ykp8zFt1SCCwtaG48MjrG1pmwU6V4igkVJSDMaMhtvU0xpNg1UeFwRb5y6TjUcEAaapaNuW6ckhUgTOjLbIizEXrmzGYLYOEFqcafHtHKEdWTHu+xRCV4ke1xAZIFjY2DpLMRpwtH+f27f2WV8/x9mLlxBScnywg/eecrQFoaQoFKAQoiXQElzLyf4he/f32Nw8i8pKUAqhcsBj6gmDco2NzTMcTe/SmppFVaGzQZSjKDQWz7kLVxgNNZOTY7yR2LZFZ3minRcpl3b6/V1tp1jXSMH990hEbKyPGY3OcHBUY/WQ6WKBOozSAlJlEYTpPM44VJJCFD7QtC3GRjmG4CN7kQ8xmKhUFmXcfEyexXVXYFpDvbBJKiC+A94ZrI8saZnWDLKMvGkxPkChyIREBsmd4wlN8BRZgWSBVhqpQZeaJoF2fPAJCKJQQuKcIXiDd9BUFts6UCGCXoXE1A0hOMpC45ynWrSUwwKZR7p929gYuBexoj5W7UfAaTeUUiqEhKLI0ZnGBkcQhqeevsJ8UjG7PyEYUBYqGXjuIx9h59q73Ds4xGAYD4YxudXamKQJMK9cCnwKRCYRWoCLIKUAKBmQXjAar3F2vMZkscA3FcJ7yo0xH/3op5gfzri7e4dADUrhg0aIBeVIogTsHiz4//yrX4EEXrLWcuOt6wip8c6zluc8fvECb92/i/UeZWxEbAlJ0CpZJAbpNVJqnIl1/Zma8uVf/2le/8NfZVQOmOwfsb9/iFYjfuCTn+L55z7CV77yFq++fJOF03zhx/8mf+9HvsBbf/Amw+0tPvihKxQiow6BnYMDDqZHVKYiNC3BW6yp8XXLy6/dQuYiMku5WNUrA4iQpPj6xHyIVehpn3AehBIoHfe11hiMc2RFjlQKgo97sIgg1i75HOUSfGJbCpFhL1H8d6BunSsGRYbOctrWICBKnpkoQyKJr2G0o+Kar5RASYEPsapZi44pM1b5EiTGe1xwKFL1MhrpM2QpeOEzL/C55z/Fb//Kl3jpxa+xdmmbZx8/y9HkmLqas335Ih/6xOfxjWLv9k1u37jGYlYhhMEEx/b6Bh9//mluvHWHg0XFQrY886H3M2gMrl1wr57hvENKjcxAC4V0EilAZwLvM6z1tMaBFIyGOec2xhweOTbPnOOHvv+zuDbn/n7N9XduMp/sEMyUw+oQlWs0MrIp+Ag89EnuRggPMiB1gfaC8SDjh3/wMzjj+IPXbnDv9j53rjeQ5SjpCFLw8ksvc+/dNxk6h3c1QQSGgzVGg3WclZDl2GbBaDzg4x/5AOc2LvGVl+7wxV/4Ks9cLPnwcx/gsUtPcunMiPt7EisytA9o5Uloxm/LtuR8WW3hFO5imQVcRVR0bJbwMLTi9KGnQTOr33kodf0e/YMO6NT3KTx4xIo/0TsOp3sVuvN0Xe5/dh1Mcomhc3Mi+4VPyd9uxzx1b921O/tSLD8P4cFRSWO2mjNcteP6G0r2nE/2LvR2s+jXi+XxHVins0u7M3TAnZ49N0TXTQpBlsXksHUxed62SxCdlFFKUsnEnhBO2wir1ubyX8v7O9XSNTsgTuiSqd3HYQUFtXKm5SCveKuBnrlB9A/3vViAOoDSqnTLMnnZzclVTFLPprDiG/XTnOX0XwKs4ofdWnvqHD5Ecyn5niF9v7O3RCcnGpZkWt340BVjpKGI8jWx2Ke7y84XdWmSeWdwtcW0VZwvcoaQ8fl5FUETx8fHSKXQStEWDb+f/yy7wzf4ePVTFG5t9Za/CzyIB9uDa0sgYJMtlOFCBORomePdPLKmORfnamL91VnBaLwBIdAKTxCJcTIrUHkOCJRUONtSLWYEbxhkJTIfkQ+K/iXwrsWaJrK2ZgNkVq70UWBEzZ3h7y9XGiEphiOEVDTVHIFEZzlZpgneMp9NCUExWt8EVF8wE4LF2AoJmKbFWUs+zCmHQ4RYSoc7U1NXFXk5YFFPscbStiZJlAsKlZOrDJEVrK2ts5id4D1YX/FK8XNUcsKVxfeR+XJl7nTFcXyDyfTwWn+c3eb19X8LwpHlAlsHpI6xkrS8IpXCGoN3PrInOZ+AKjF+Y51Ne79M70cs4OqK63wXc+jiAx1AyS/fR0L8HQlSS1QqYDPGEGRcf70PvHtnl/Nn1tFKoaTERnExUu1FWm8TW2pIrJwiQHBYF5mg2tqitOzBP9Y4nLVJejPGYmRQqTgg/g7d/fkEruriMR3zTi9GtyIH5lFKx7XGR/CpTKD5jYvn0a3nYG8/+mNKEZRMvkoXN4pzUQqQMvQFW108TiBQwpNnmitPXeH2u7dpZtPEHAVPvf9pxtmY69ev05o5Qip0NsC0LUG0SAnGBO7v7iNEtGkDAm8djYhMUso7zqxtcryYU9sU+wkpdpjYD0PiMc91HueCDSA8vplw58ab3FUQnMDUDc5Lts9scfXKFRZN4OhoxpkzZ6HMefYDH0Bby3zRsn5mDUX0ASbTGXsHe1jfRpXh9JwDDtNGkG/HsAOkIrkE4OvNJ9FvJt0c6eJG3nua1sS/S7HcJ0PcJyPTT/ybpGNuXjIGShIzUnrnpJLkmUJrneSgI5goynbHt7QvCO1+dsV6cVgRorM/4joopQTror9BspEEdAyu6+MhZ86sc2KnLKYTZhNPtZjTLKaAZWtjk4tXrqKykrvXb2GaBoFCCo3HIaTk7PYGbWWRAmprEbnAuTYyrgqBCR5FZJdDCrwTKUYc2WK9JTGHBYqi4Pz2JtXCYL3muQ88w/p4k8m0ZX/vhL39XXA1rp50b3A/5zsjIZCAZrEKFpFSqWfPbnFu+wwHh8fsHc6oqiY+ZxXHqprOePvVN8k1yCAJIgKGx6N18IogdYoDw/lz21x57BL3dqbc3dtnPrnFxtqAq08+zXBUoLWkbSJwLNZVfWN7+VF71B61R+0vo1nZ8IuX/vdcW/s1furGf8Wavfit7tJfenOi5duRSalWx3xl+//5be/QtWrOz1/+X3GS3ebze/9Lhu7Mn+t8746+xM9f/s8JfPvG3B61R+1Re9S+09qfiS/xNFApOq0x3r0Mep8K04bVwINYPVH/swtuSylSUVRH0bz63dMUgquBVZkC4cuA2ekAyuoxITy4gy6jx6tgqmWwPX2eaIpD3+2AlFEyScoO0EJfxbR6zeSexyBSdztK9JcOvpO1EQn8lIBTpDhTF0SAlBzoxoiYhBYxoGRDDBospc2WwassU1FiyMQgjJAK52wa1y4ZFJtUkuFoyGhtzKKqqBqDaWOQSgqFNy0hV2SFZpgVQKzgizJxITJnpMB2H/VA9MxQ/bh0Zc+p36eYofrqYr/yHFfnT3w+XUAjMiupHvDVBey7eSOF7FMJ8Vn4fqx6GT4iIGA1qxW874FKK1OcfnBD3xkQ8oHZ1sWEYv+6jG8Q9AFPn6TaCF3wJX7W6dz3SG+RmJqkQCnVB3CkTlI7PlVlBWitiZ9rjVPQ2BqPIsgc4Qy2NWglkbnGZAUhCBpzQJbnlGVONW8YDoacu3CR8+cvgIrSEUvmquUz/e5o4YF/d++ERElNOYwB39HaGYYnE04O9lkczxmONxILnKAo17n4ZEZWOm7dXpCJgLUnVM0J2XCIkJJBOSI4zUJNaRbHHFRz5NoFzm2fR4SM4Dzzk32OJrtoqTh34crKMC/7GNlP4nqq8gKpchCK8foFnn6mRGqwi2Pq6YTpZEbdDrj67OPooojn8p6msezcv81gUDAajxltzNi+dI51V5KXAywObxtu3rxB20LrptTVjGo+Yd60DMo1THB86H0fwJoKqzXOWYJXnNk4y8nhXYryDOPNMzEZS0CglgHTLtH20DMIK7faPQtJwGLMCdYecDi9z8HhIdNqwmJe0zYWqSXCWbz1TCczTo7nNI1L66kmWAMWcp3hhcUmSbjgIk1/8IlJRgZsE3DG4WzAG2J/gyd4F9dAKVDKU5Y5RVbQKAl1193AyaKmCQXf98mPc/fWu5wsZkwXNdKBaFPiUAqyLNDWMUisMw0yJjGCi8AH2zhEJshKTVM1NJVBBoHu1sO0TqlubUqJ45ggcTjTAXJXWPecJwSH1hmmdWANxUDz7o27CC8IxlFVBu3AacHh7ISTeRWTylLRNo6AxTYWn1jc8jxKjikt4/4oo1yMdwHniNILtHzy0x/G155X3rkeQZxYnvnAE/zjf/IP+Mov/y7/5t/eo1aKZz/4Mc6vneXrX/sK8/aIhYmSiwSBzmRkuwrggkCYgK1aDqsGLwTNwuA6iTMX9+0gk0yoUGyMthgUioPDY4KxDMcFvj3h8P4hewFCLTBNw8YT5/nkZz7M2kbJxctn+Mn/+O/gnEXlI4STXL56AasUjQ1I0fDyK2/za7/zZd65cxMZoBwM8G1F6wNBu7iieBV5fAIE4qRbBTNLLdPeH0G13lmUiExZwUVJHZ1leCQ+OIKxKWETkyzORWbKTvrCW7dMsouQ2FHi8xEK8lIxHJW4ENAJKCdFZIN0PoKelVJYZ5b7jRI9CCBTOvYvbZ+D4Yi2rgnWInSsBI/SAg4lFVpp9m/f5Zfu/Sbnzz7GpXXBO7fu8etvXmN93fO57/sgX/ihv8P5S1f5hZ//de7evA+NJxcj2mCw1MwWDa+8eZ1ytMkHnnycN67d4PUvfZ1RBiZIpC7AV4zKDKkKgm+xTUsrfXzPXQRIBCzbW5t89KPP8vFnnuG3v3qNz/7AD/IDn/0M3uXs7VR89Suv8Ftf/RInBzUiZJi2xtHZErGCHh8BeJ1tGLzGB0FtNa9eu82HPvQ+rl6+xHx2k4VvgQqZ54gQcIdT7h45ikKTB02eC85fPsP7nnwe25aU61uYqiIvMj73mY8zGgyYuze5efsak6Mph7VguG7JxwXFQFPPWryzOGlx8tuUcht6s2EJHOl+Cw+YFH2mjfdKNK/aIO+5l6wUOKxYnX+E1dL1YckQELejFauuP/Xyb6dZJh/o50M+UXel0yxEUi7ZjoTs2M5WYpEPDUE6V1i5p9MDmpKOorfXluO8WjywPHnvi3Rp6N52fWDERAQUdLLGHe4nnLonsXzOItqsSmep6GJZRAH0vovSEqWjPmjwAefSfrjiM4ju/lYAZKtDdLqfdE5fb9+fainbGh7ob/fXzl89xcS02o/VBGMvKf3wXDgFTqJj0+qSvcvn0x/V/008cFMP2qn9LaT8ZlzvZeevdL1Ln0fAhOjnSvcVpZa09zIlq32iuhABTBofSWTti6wKMbksfECiEEnuNhBweLw3SOXxOrLGGGO4NXgVNfhZPj77j9HopYP7XdUevp/e50xN6ch6rLKMwWBENZ9jGoPOCro6Iik0+bDAhZL6eB43LhyLxQljdQahNEJKMlkQyoAzNU3bgJCs5RqExDtHWy1obI0UkqwcP9S3rnfdfJYqFc0IyMsRSmuEcDSLCc1iEaVIGTAaCXpF0RCl0KYnC/IyZzAc4IKjGA4YqCj7HADrGubzGbPJDCkDxjSYJjISISP749pok8GgYFotmEwcpm3Z2jhDwFC1+7xV/iKH+RtcmX+Ws+1zqJCl/q8s2NCvYcu2/NzIBe+Mf41F2MWaBc5XzKuKuq4jQNsmdqRU1NA2hqpqsdb175YUEiVjrAQCbcfc6rsCrJDYSzu2at9/3u0pUZ4sslMK5dEyRKBmkP3634Eqi+GI9z37LMI1zKs5tU0+ixOr4Qd8CDjvUCLJnYUoG91R13jnUVJhre2Zi4JnCZZMAadlPEYkZs/kS5xisYqxkljU4TCtQWrIMok1npmtIoO3dSQlYo53DwitxxiXrhHlP0OkEgURbUyhk7Q9aZ8QMQbhfARcSR/QmcTYlro1kYUnAVu2z26Qo5EiYH1g89JZnrv6fm5fu8H9nXu0pkmFYqQ+pJmRwozBOmrruLV3kBijOoab1VkVY1RaZgyKgrqyGB8Y5SVCCxa2JrQhsg85T1AZo/UhQliapmZje53Hzj9N2zjmhxWLakrVzFjYlvPbGxzs7vP2jVvs7h/ikxxkCJq6WkTpsRRIDMnGDl01wcp7LcRyDDs29fhmiH7+CaH6+dhJvPU+SAp4RenA5X7d45s7tu9UICETnZ9zDut8z6wqE/uYFJEZLHjfS6bFYgrRx0X791gIsizHhzh/Olsu9SraJTIC7W68cxtkwYXHzlEv5uzvHCGU5cknL3DliQ8wHm1z/94hprGMihLfOKZtACzOWd69vUs+GvP01cvs39vn8GSCPfFRzllG37bMBXmWU1WOxrVYEq4rMcr64BlmAzY31rj6xGX29ybIwRqPPXaZTGrW1wRb402chXu7dwkig9BGoFl3310MuKtM9ZFZLwKJBfd2Tpg2jjPrYzKxoFUCgkVqFddtE0FFjQlkErSUDMYFl69colBjpC6QSmPblsFwiB4WnD2fE4RA4QgKKuewwZLlCmFiHMTjvwv36UftUXvUviObgGvjX+VnrvzP+R9e//+iQ/6t7tFfWgsEvPg2BcN8B6WDjKz4lYv/Z95e+xW+f/c/59nJT5CFwekc9Z+gzdU+v3zx/8Qs2/0L6umj9qg9ao/a92b7E4OUVuXQunZKBmHle6vB0YdiqmJ5jlPMGalCaSlx5vApaCI6He+elu9UxDc5rB3YJH7eBx0e6NsfdW/AsuK56xNd8L8DK0XwSJZrioFGSY0xkQY80wpjHaH1fVCg62FXlUxy+vvq3vRfNzg9ZocYCO5ktpbU2knGzpPAVgmskILjkZUoQGJn6M6vUgAhBh5iZZvw3cX6XvaBgyzLCAgmszl1XeN9IMtznLO4KLhObcAGTzkoyLIYQPKti1TZK62Pv3dzpS8pXmaq+kBU/zMsaelX6ca7gLtYsi09ODe7+z4VUPFh6WQHeqffu7ACbAtJwkKcejarc+m0tFyaeysBx4dl5x4MGsWAkug/k0mGb1k1Zm0M+HTHKq1SdXuqiBZRKi7KVDlkiIFlgewDlM7GCioRQmI7SRXyxqXziciu5SQWj8oCEKsqbZvhM3A+cHQ4RQrN+sYmZVlGNrD+uX4HWaR/ZEvsDHRMRR2z2cqzkxBwqFxx8dJlSj0gywKHOzsMt7YYDApkAGunnEwOo6SYq/FBcG/nPjofoXSBHo0ResD21uPYYsTd2++AOGJ9WKIH67jWEoJgbWMb11qULlcyiSvsYjg6ti2RKYKtCKIhywOLyYL59BhTT5kcTlnUnrNnn0sa3i5yt4lYSetNTraxTlbCxvZZssEmmYjSdK1t2L3/LsfHU/JMYtopi6nBuxovPPvzGp2vc+vuDtX0mBZBmcOgLJgtJEWpmEyn1O0OmZIMhucohmdAuPTOZHRAJfGQNnRI/3li/abB2Al7R9cpyobKzVhUDfOjBQQoi4LaWebTObYOHB8tmM9qBsMhRRHlZZzv3jdHXbfx/fExaO+ShJNAYJsG21qkUAjvkrxASIFXQ6EzyrWcMtfoEDDB4aQgywuUkBjTokvFcHMNI+oIFnKWIE1ivlFIOnajuCZElZvEjyUlxUBDXeO9BZOqqd1ySkbZUMdSXUukqu5AY9p4nAAhFDpTfVJSSYkxFhFynLG0VY0uJJkaIrwkuBZFXJ7bAFkNd1+9QTOzkAlGeR6lv7xDKEuZl7ggUzKbOKecRziBl3HMmtoTTCATgl/8xV+jriyLyuC9BC95+7Xr/Mv/33/DvXfusVic4M6P+ZGf+jEutDnXXnuZe3sHWLtAZ4I8y/DeY1pLl1jzpqVtWxZCMj+ekUuFcy7OcS9ABXyqFpdO0dQNwRqEb8mLNZ5+8mneuH+b2cIjnGOcb5INBwzGayyqOW+/dY3f+L03uPD4k/z9v/ajyDrwi7/8h/zWi/+eutnns9//BZ69fIbf/o3f5dq7N5hN97j61FmuPH2WP/zaa7S7dQQcBYUPkX0qyoOIxKJI2gOjDRTJ0iIQWWUqVuOLOAekiMlwKQARg/2EJLVKJ3MbMM4RXGd/RYlZqRJYSwqkVhSDHJ0J5vOKpjaQpC7AI/BoBVIFoqTIEpAdJd9U32/pHI6AQtE0LVVV4UMSlxCSTGq8NAQZKIdDnr3yHG9f2+HN3TuMKoerDdWs4vyFM3zkUy/w9NWnaI89ZtHwYz/2Qwyaip/+t7/CZLYgMGI+bzBM+ds//jnOZiU3b+5wPG2pvcPrhlwrdFby5AcuIU3Jay+9S2sDSmUEEyU/rPCU5YAPv/ACj1+6hA1rPPnc81x8+v1YUTIqc65cKcnlx3j17TscHO8h9BThWgwGLaIUn5eJ9UV4gnDk5CgFw0JjfcaNm8fsnrzKODh8sIg8RFnA9Q1UUNRTh7AtIjiUFKydWedHfuTzvPC+F1CMICuwISaPnBAEJfj0J97Hpz76BM54jn3LrJ2TDwR5IZELiWksFg/q2zep8J6m+Dc0J5ZAD/HHmhzJJu7MuLBii9HZ893np9PavV3TA5Q6EBD98aup79PAk/e+x9Pgky5ZePrepIiyKypTSBFlebzzSJ2KCNJ73HsTvW37HhcW722VLe3rBJOKWfS+n0vwUvxD579EMP9yTGPf5UNSyu/1PLsuSgk6UwQEVVXjfORjkAmF75N96gIRVAkR7EogeNczyZ6+sQSyWj6c/seq+3l6DJI/0DkcYuVrDx7TJ0sfHM1+A+6LGYTokr70v3djAw8+7+WFlnMw9B0X3cAtH8973fypc4pVvyYd1/kiQsSk5RIsIZGa3r/pmved1k+0g6RQvU8Zki3Wfd8vJ0zyWSJrLEJGGS7vIyOMSmMeIiONlAprHHfUa5xRL/KU/UyS81m+V989Lb1b6a68sOwMXo0fieV3hJAMhqMkMWaZnhyiy5yiyJEBjKmZnRyBi8wqzgdk1SDklCzLyQcjglDk2RAvFKaqsfM5DYFsGOW682JAVpY4G0EhS5DFkuc6OcV9/7ypITEtt9WMullA8KkQSTBeKxEJnBPfn1gQU5RDijJHCkc5GCNVEUEQyfd3bUNbVYxHA7xvsFZiWouQEcQWRIZxjv2DQ6wL6KxFCs/R0R6DwQCtNZOTHRbZDvfVy1zaeIHnZn+DsT2DDxIhdHpruzV/ZVal98qIOS9v/DT7+Wu0zQxjF7hgcUEQvER4R6Y1zlqapsW0DmsCxjqUUgwGBd7baMO5CCa1zvZLR78m+tgP5x2+k8/s7DYiqMHjUUKRFxk60+RSU7cVFo8XqfjAx3hYXc95+53rHBwc07YWESJLZhfXkInVrgN8eEICO6TCNQXBRVvCmsSAE1b2Abq1LE6CyPoUku2awFRSoJI/0TOQ+0AyQ1fGXkZ/M0SmcCUkJjHgKAeNiZLORRmBac6JnsEt+mjEohDR7aMy2bmsMC5Jjg5nHBy93T1aQhCYOvC1F79GoRVtZTHBM9wcoDKH91HO3Dof2V1VfBucDen64HGxyCHNWS1C/0y7dToEl9ZDibOO2WIe9yokQWqsNxgbx78sSzbHG5wsaoRU3Lx+nZt372N1ydnzW5zZGjA5rnnlzSMOD+6i8ls8cfk8i+mMtjEEW7E2znjy6iXu3LlH09RIqeNaGzwueLp4oWTJ/tjFmJZFEJFx26cNNfoUoQ8BxnhC2jf6JX65Cfm0lndAZNGxHiaAktKRKdE7hzEWDyjRsW4lYFGS6kOsMC4me0SSfIsQ+r+1bQST9baLoI/NBOFRSnDp/AWwkoPZlBvvvovAY40DGzieNVzREoGjqedcvnKR8xtD3njtTWZ1hbCRfdw7z5mtARtrmoN7Mc4aJAgckjhP9CBja3sTc+uYKgSESOy8ISQckebC5cd47MIljmc1YrhGPlxjWhk2hzlKBcYbBevra+we5hgXB74bzy4C0gO9he+LRgZlhkDROsHJccV8Mo/fFwElJEVRUpZD6oWhNQ4lLFqCzjKeeuppnrj4OJoo9dmGgGAU1/kQWBvlrA/OI4BF4zC4yBCepOi8iMxR32Ub9KP2qD1q38lNwJtrv8jvnfmv+MzB//Rb3Zu/lBYIGLHgpc3//lvdle+OJgI3R7/Lratf5cnZ5/nbt/+vXKifT7bQH90CgYXa518++U94e+1X/hI6+6g9ao/ao/a91f7UTEoPg36Wv8e4vlj5fOXX6DG/d3IincsHot63VARiAi6yLZzmYAop8SC6cEgX3AjR6erAREvXPB2XnOzTVc9/dFtKzi3vVeuM4bBEFxKBwnlP0zTkSkepHh9JfPuqGNFJqsWKrS7o2/UuxTr64GGXhOgq8uIX/QMgmu7OVuXTBB2Y6sE7dN6BTcl2m6quiOMkhepuNp5XCpCBumrx3sQqmhCfh9aaTEqMMTgXaH0A0SJFlqjNJVon6m6fIh0dyGg1sxO6J5JojcXpubVk7Hkg4J/+/8G/x+BWl8TpL0CXzOiTV75jGkmfsZynvcIc3Rw6Xcm3rCxL1+xl5QJhhSGqk8/r76UPmAL4WHFGqpaSEZrQJRVWAVd9lbnX6MRkFELAO4fzNtJ8d98TMsrwaEUIEYQkU3V0lK2LSQglo8a8d5YgYxBRBRjnivW1ksY4dKYYjkasr6+j5YiyHNIah9SOIpMsK+vfK4nzndkeBDCGFJSFgE8BNBFixaHSks1zG1hTs3/jGjt719CDHG0Ctq4wtiETiqqFyra4/QOEg8cvPUE+WENIhZegyzFnty4ymR1xcvcGZx5/CjVYY1ScgwCuahAJNJCI1RF4SEk+ZAzq4Q3TnTuczHbZPjdiNjtkb+8gUomrEjUsyNYzQh5SvtEThEKXQx578gqZFgRfk2lNWwvyAUjhKaRkLcvIHruICIHd/ZaJaFDlAOtqbGvIEKyNBxzu3KccbmCqClvNEWbAE089S2v2mcx2GY8GKDbJy4AQnraeIPQQnQ/7QF0aeWI4NPRpE+9rprM9TJhSt1P2Tya0vuD8hQ9gF68xnR3iAsymFZOTGaYNGBfIBpr1rSE6l/hJoDmZ4aygbVuapk7sAV1CwWPbCMB0iTVGZQKlAReitJOI7+54bYweZGyMz9HOpxxPd7GEKGfgAm3rsHbKz/2Lf440FU1dYxpLISVZJmhDCzJKNgQXYmDXp0StjcmPPMvQWUwimNZRzesUTA39OhXXWkXwnqZq+2SIdynoqaEcyJQcNIQQKIuMosgxBnSuKIc5QnkQRKCkC7ECNggqYxgOBgylgNaycaFka2PIzXePIWjyMkOJmNSpGwhegA9oqVFS0lpLW8U9XOmYttjfmxH5FhxKaJyXLA4afvUXfoNCaUQTqPZbfuaf/wvGM8e9+3ewziBVjsoiADe4KMugM4HCswgWq4hrXAgEsmVFcIhVzD5JU2RFjgqKo0VN6yTK13z5pVcQuUIFxWAs+Xv/g/+Ae7fv8vqNHb74b3+BN157lSrXfOqHP4PINYMs8PHPfZBXb9zkD796jZ/52X/J5qjg7NknKbI1dLjL9lbJ7s49FvMZwYOWGdZFMuBo5niCA6l0nIddwjxV2QMMhyUEQV21CWAsyRJoqTUu7umEJdNSH9yPgfwo+ddJCi53IdVJKwkRJU593BeUjn+zrcdbUFmUaAkhSpWqjuKByI4ZZUgjWEdrgQiS2WKONSbNTZESKQFhFXmpGQwKJtMTrj51kUk95823rzObTzG+5eW3WwZf+RrPPPMs1bxBlMcRUNQsKLTl/OaQkxNBVQd047n1xivcaQSmrdA5CCXIgyPgsAj2jo4ITYZ1Fq0CWkMmJE5Jci35yMee5yd/6u8j2jVeeec6zz27xcHBhEvr5xmNC7xyZEPJ2rBAS0FrA97FBKMVHQDcgQMfZJQ3Ac6e2+Kj738/19/d5+7BCfOjCTaPgCYlcsaDnE996EOU2QZff+0WxydHDIeOYpTzsRc+xUc/+HlGqkQEwcJ5btzfo8hha6NkLRtSbGRIIanncPPVXY6n99ndu0PTzBEhoLTuQXzfGa2zCTtbm+XPB2Sev/HxD8hg9YkeVkDoK9fqje0VMIhY2uMd08DSXE12WVjtTWcHrfRk1ed56PfT/ewO7YsQEsA8Jn1Dsvk722Q1mUyyS1ev/bC3s2oP93YuEVwjEtNs4vTr+7gKVur6ftr7SmADn9ZWwlI6ux//FVs8dcVaC9at2OaifwZKqrhv+TjKDp/kxUi2cgTM0/kTYgXS8sDjPPUs+jH5BjbqygGCpQ9y2l4P/VxY/vvBZxxOTYXlM1/t1XLi9Mf3tnvqw4pPAsSChvS3VSBSJ9MX+u+s9rhztJZ96Z6NSPfnfbI5OrBRB8rr35PIGNKx5nUFQEu/NPoqPgRUiGOnhMD5CJ6XSjDMFKNhSdNG+dlyUFIWA4TQlEVOa2cEsxyz5QB+d/gTq22u93hz7Rc4yW5x6j6TD+68RecK7yS4GbPjA47xYAPCe3Sukn0G1nsW1YxMwGDzbM/aHAQIrRlvnMG2Na6tQeeIYgAyJ0YfIv1KWJ2sBPAeH3xiOwkE17I4OaKqZ4w2h7S2paoXiZQyyiQFGWVcQSC8A6EQUjEcj5OfGuXBrIEsj9cRQJHlbGxsYG1gclLRto68LKlNjRAySo+JdB0E3luch1xp8nwDnSmsnyBkQOqMo/wmL279M548/gwXFs8zzM7RsTYtX7gIaKj0Mcf5DW4Pvsyue4tmOscFR93UWA8b6+dRTDhc7OBDoLWWpjF4F2NTEUikoiScFbjgY1FaiOzUdO9rAnmGBOqKAEDS57GwILLVxb1Kp6KhECTGCYwNWFx8p5zHuXiuw537HO3cR6rIVCNCZEDzHSObSABBQYxHQP++BglKRZtQoGgbSwj29A4W6OeA7YoAVuaLFFFyWMootextlHRTKkrFgUDnOj4blZjYgu/Xdm8dSFBaoCQIDVtbI46OZjgbEpAx9tv5EGX3VmJ8znu8jfuWkFF+yvnlvh5BLoAHUxmcNEgfV+ybr73Dzus38cYSgk9M1K7HZXaFgt06GsczIDqLPYgEOlsBLEnQWrCxtsZ0UTGPyCoOjo8pCkWZZbjgeeLJi2ytb/HKa2/x8isv421LUJIPv/A+RsMBCMF4o+TZ557gpa8dczjZ5Z13TijKdQb5CLymrhuuvX2DuomgHYRIsrD9FD+1louVDb17vlJJsiyjbUxahkLPEO6dS0xfqUBuZaVa3cf6y8glhLeLwwbnsCECW5RSaBlloZ2LIL8QRCrA6Gyybh2MwKQO9BbZmCI4xxiPS+9Jf18BRJAolVEUJQfHJ5w7s82zTz/JuzfvcHh8gg0GFwT3D064sH+Ppjxh3hxxPJ3TzsdUTcPW+gjbOk6mU6yz7N07YHp8gjMCnboW55QnCMFi0VAvdjBNSMClyLAuhUQoSVkWPP3MU5wbn+Vg2qALiWstRfILEHGd1kqipYpzynV2nMeJJKsWAg4JQQOBYljw7LNPszipub17iG8qQgCfChOFhPPnzvHEpcvcvnvI3uExUhiGo4wz22c5d/YiCI0X0Q44OJ4ynU0ZDhUboxFZOUprChwenLC7v8N8ccyiqnHO0VXufqPY/aP2qD1qj9q3ojnRcpLf+VZ34y+lBQK75at88fH/LbdGX/lWd+e7pwnwWK6Pf5P/4v0/yl+993/ghaP/iIE7856xg4DnML/BO+Pf4Mvn/h/cGXztu9FtfdQetUftUfuWtz+T3NvpdtpzOS0FR+/fngoBdICPFUAGEFkEiFSGsivV9V3QuPOSVitAY+WTSk61D1HGrIuz98mAlaSAWCJR6OiPVwOwXf9O9Z/Qe2hR3sCxWNSERQQjSSFxLlC7lhBWrrtyLpUo1IWUfedE6FhEQt9/gkjfSQEBF5CKJRAJgZDqoaD8cizDQ9ePLAsx0BXBFysgGrGkgu7O4ZxnsaiQKMoyQyFiFWEW5aiivJzskzi+dRgZATJKK2SSPeiCITFxurzvkKL0qwGhlZzRqTnycDudLOmeSZfMESIGoJbHLwP3XXIgsirJCFZayXJ0oLvIYkSfloifxev64FKAReJTECM9vBRAWQaxpJTJvz+duOkot6Xowjun34kO5NT9bq2NczwF/GLVmkaIBMpzDu9qsjyHLPZXSx2BF94jhEtBuciyMcwKttbXOZxOMc4ihCCT8OSlS+xNjhFqyJWnrjAcjhE+p8g1LvjIcnZKe6SbZ98NFlo3FwJg8a6FEOX4hMpAFQQh8c5yuL9LpjzGSNYGZ3DVHfYPd1hMLNJ4smFcV9omBtN8M0XJdcrxWn8ZKcHnOeMLjyFyyWx/BzuZUxZrBBmTEqos0/dTkBtJwGHbCtssyAclrWs52bvH3q13mNs5h+2YtracHM9xzpHlDcPhFsVAx3ffeOr5CVk5Qhdr6LxISS1BPoxrTxAJZCkl4+1tdFtx/a132T+smcwbdC7IVcZIKsxJzbE+5pmrz2NDw7vXbvLU1ac4e+E8460txmdK6mqL6WSfoC11u0+zsEjfUgw9Ih+k8e/Gvvu3QNDi3JT57JD7O7eZtzPmdUVVV2TFJqVsODqZc3B4jNeKxbxOgW3Y2BxRDjJ8sLS2oTEG4yzOSqwFyAgBrGmS/KUj+PjctJJ4PNY2QIgscTbgHUgtcL7Ft5a9o50oY+AEwUdGM2MtdRAIY2nux6pOnef44BBBIrRGBItzAdMaBAGlFFL4JKmQ5Nh0BJbgIyNaXdcs1/RE2x9icqltHZIIOtJK0Xb08UJE6vemoakbQGBMrOz1QvRsclornDNY76NYSxD41uKCZWEWKCuQwlEvWvYam2TxgOBROqcxBmuipJ5IlcWNqbHe440jSAlaRzlK5fFeJdBLQOhAJrMok2oSG9DM8/q/fxUFCOnJMkUH8BVCICRYE8G2sZo3gyBQ0qBliMnwrko1dCxCAoXgM5/+COfXz/Dzv/5bmNYRTEOrFd/3woeY7u6zO5/w9o232bt7mxvX7vLmq18nG2r+4X/yn/K5Z59nGCITz7lLA37iJz7BjXe+SsucyxfPcumxK+zdPebWnR2+9OI1hI5AJIdECB8Te0ldtaP2F4gkJ5rkF1wCBONp2sjQ6ImV6gLfM2dFWdW4rksl++poiPaJT0xKIQSkllFKkBDnjHPYtK/oTJDpnCxXlGWOVoJqJmiSvKv30b5SSmGM78dfq3ReJVFFjlYB28bK/lzHwL3K454j0RTFGucunGV9ax29vs7f/Bs/zq133mXnxhHTZkIQDuPhD7/6+/zf9nZQIuPopEHma2xmA848+Tj/wcde4Hd+40VefOllWu/4w9+/g1KKMs9jUkEpEBkh8+AF+7enmIXHmECWAcqilGI8KGC0RqDEW8/6IGP7/DYjDe/7wFNsFIMIwgpRCmMwWEPrNTyHONfGpL0UeCSFFEgFTYgyll57fuCvfB+ffvb9/MYvv8TxxDIzhvWNMUJkzNuGC++/zI/9+N8kuBKbv8y7d25w9Yk1PvD0E5w7+xgHB7s04xGjcsDJzPDii3/I4eEdts8WfPTDH+ZDT7+ftvW8+c49/v2Lv8ftu6/RVAvqqsXaJq7zUfflm75L/sW01b33gU962+tBK/HB7562S5ZJuhhUQiTA+cqYdAm37jodWKcDoiwBSqtX+ZOO6QqwZOV6YvX4dCvee9rW0LENSBnB0M761I+UBFwaxywJP5e+kOj8lM5d6r600qeugKG/j2TnioeSUKePfeizkBh1Tt/yA5bgEuTlXEAQQZaBLmHd2dQ+jX3nB8a1fcn4GVKS2i0v/w1NzgSpeiijlg4Sy3TrKeBV7ydyenqtoNJWGVQfHpTTZzs9p5dymAGxcvyyX53Pujxbb5b149iz7q74Rqdk4/pzi+Xp6eZcB1QKibl16ad2DK79oYEkAxX680gpk9+TQFFpI/LCU+QZG+tjprMFNnhEEDjjyWROyAVCZQxHI/K8QApF6cc8aT+Fkqf7e3rsvpPbsv8ew+vrX2RfvoWwScZbaaTOIYED5tNpLG4KkkwXFLLFNhWN8Yk6po3AE6fIVQk4vPB4GZ99x8YYhETqnHY+pVnUSFlQZIPEAkuULoLkTywBx94ZvGsJMvq3i+mEejHH4tg9PMbbCOAXISS2pIKyHACCYCxtPUflBTof9nYNCHSRLsdyzXESZKmpj6fILMPMHM3MoqVgXAxjUUft2Ng6RzbI2N/ZQWcZZ89tIXSBUIG1bI16MWM2P2EsHHN7TDX+RW4Nfo9n7A/zWPUJOmBhpY6p1DF75RvsFq+wCDsYU7FYzKmbGuMcbRtZVYMX1PMF86qJNqbz/UuklGQ0GmKdwVpLa9wSrNLHZCJzqOvkKVNMQisZWZMiygVJLCCyNjLfBBzeR4BqJxcvXXrPiaBSLyTBRX03GaJksIflO+RCYg9d8cy9T3Jcy7iEcz4tuyuFbdBL0a0Cc5WS/bH9nmPBC9ePTdxbZQ8+dS7eEy4yOCuVGKCJYxF8lPgLeIKT7Nw/BlQCpfrIroogpP1CEMG7bWvTeMcYn5AKFwSIxFAeJIjQ33/cQ2MfRQBXtSxSHEir1UHq1lGfCgQEIah+ziopovybXwkFEtdiiWA4GvLU1ce5du0GjTFEJzGwvnmGrfGQO/f2uHHzDrflvSjX3cTPn3n2Oa6cfYzce7x0mADr6zlrmyWVy7h86Swb6+fJ9IDXrefoeI/We/J8hLELgrPRT09bjCDGNgUdWDgBEv3SYvHeYq1b7lQpFtfHux6Ix3Y32xXxdPFZkaS800NNYycSsyCglqDWGDMSsfjHhxjPFILQse/5JLmHBJXsMBn3IwVY4eMzCElWUUqk0EitObN9BoJnbX2Nq5efwNYNSuokrRjnWj2Z87Wv/gF5lqNULIqZ5gtkJvjwh5+jPprz6mtvMa2ir1MvIHUFEHgp+/01WIFNEvB09mKI/mk5GuLIuX//iPJiwWxe0xxUPH7xAoNBnuZhtDl0lpNlJUKWBGERoSsolGQqvku17UDkgXKUM97IyYWiamD38IjROKcsNNP5Aj3UXH7qKpujTZwakY3WyLXj/Jl1tMqYTiacBBeZ6KRmcnzM7t4+QrSM10a87+mr5Cpj7+CEnYMDjiZH2HaR4pTxPyEVfJsqDD1qj9qj9r3ZxvYCnzr4x9/qbvylNCtq/tXlf8r1td/6Vnflu7MJqPQRP3/5f82Xz/4XfGHvP+OTB/8oKVAEDvPrHBbv8OrGz/Hy5s8yy3a+1T1+1B61R+1R+65ufyqQ0oPybOmvfYVmF6hdZcGJv6cg8Erw90GHeLXyJ7gASvZgjWUwSK4cpxKDUneYTxIqndceUoCj72ZfNbV6Dz1AaeWzUymTXmqOPsBtXax+lAKUCIhMUuiMNlWXxZOtVK8SEw7IxIRCqtDpA0UxwEAKKPjEAtFRMEf2n/id0PmNYvUZLNl7ToenT99n8AJINP5C9IGYsJpMCQ8mReIZnQs41xIIPVBlFVzW1o5yoNC5ipTNIhCcx5hORiCOh/crz+FUIimkoHyXrAjddKBLwMRgRpLSOxXIXoJ6OuDZ6rhI1dHNJ9BJiA9FpEr1ZXR+yWAF3bw4najpKsC8D/F5JqCT6hMIxOeYno9MySIRVB/cEimoF1YSBB1zjBDEQBdEBh8Z5eCqpqGX7QtRFoMQZeCUSlX4jSFYj1AyMo0oiVT04CTvHM4YrG3Z2h5S2Tm0Di0L5jPPW2/fJxspyrFn7+CYi9mQ9VGkfdbILv23MssefhLfma1bwwAcxi6o58eUWc5iXpGXQwbjTTyCup4zOTrGNQsaa5FSIzNDRpzbVnh8G9ehIhty+cIT7B3ssD+ZIHZucemxpyiKcQRgBIkzlpvXr3NyfMhz4zOUQSCDwAqPUCFSyNsWlQ26yYESAZkLFrNdRDCE9gg5CPhacuPdu5iFA+NRElTh0MVjDIabkbmmneNbg9cGkTsIKRAndXofEojRtRzNdqjcgraZUIcjZNHSHM5pTc7FC49TbiiCUDz15PvRozUm1Q5bkwXnLp5lMBqgssjAIr3g7t4eh/s7XHrsCnUN5y9eQeUDElcSYCKQR0i6CvP5fJe93Xeo5nNm9YLJYsZ00dDWc3R+wGQ/Vk0a7zB1FeOyAUxT48sc5wSLesF81lIvDLiAVpCVGXUVQUGRSSb0a7HWCrCIyPWekp0CJTUyWKw1tHlNoTJEJiATbOsRvgqcPbPG8fyYe5NFpEc3dUwGWofxlsGwRGSSsADfeIKMAdiuitUHkFqR6fhOOediotp1oKAUdHYBYyyIhBYKEQQbpSK7itiYiPSJ5ULrgixLEl9aRWYLPItFjawDSEuWw3AU2XtsF1CWKYEhYHbc0hqPVoq8lDgbMHWDF5BrTa4zmqqlrqO0nscSnCP4jIAkExolHagk3SBDCk7HvV2E1H/TRplKJZFaUAQBWkTwlIOARSiBdQEMhBBBOIXSiOBpfMDhU5JHRHBhiPv2W+/e5pq/jSOwubaOqSuMMOxXJ1Ruwbz1/M7vfAXpHH5hCM5x5vELfPB976fe2WMqGua24s7ehLu3bhNkxdXHH+P7f/ALfOrjP8SdW/vMvOfm9Zf5zGc/wuTggJe+/hKmqVks5oTQpKRCZCaKy30EvoYQ9wrnI5OYC21KHssEpnYpEaNOARRWGS29i/M63n4AJcgKjVRxWxGCyI4h074vJUpHEFRrLMFHYIDKwNiAd2lPtb5n+9JaoKVOQB2LEHBxe5vJ8ZzWerzwpBQ2uhwwHm8xPLdFkWWsnR/wgz/weXzl+PKXXmJvPqWyLb6xeNdwMq/58l5FWWbkUiKC4pawPPbcE8zlMWtjSak8rbA89dgV2qnjuJphBJQ5SVYRrLEJ8BWBXy2KvAK/Lrj6/NM8efmDHBwG3n1zl/3jN3jnxl2evXqFqz/+REr6JutIay49tsW5d8+wWOxBqJA6Jy9KdMg5v73O/vERftGgrMEFePHF30Nqzxf+yg+TbVzhzVu3+fRHH+fu7Rtcu3OT7e0RrWnZ3trmM5/9GNvXBjx+bp0zG5scTibcuHmN2jlGg5JClbTzCdPjBYuTY0o9YoRm/2DCy69f4/j4AO8NQXjyQiFUhpISa0qaRfuXs33+Bbf3BjJ8oxZ6QPky1ZbKI1aKER4+g2Ap80YyBkIPVv+GePkHcTor3/vGcItw6sueuM/IFX9Ja421NoF7Vg87beF3dyJZAbp0xQx0SefuX6JPYj44pg9Xyf9xVt2Dn6dEeMrkPvi0OtCAS0lJHwDn+2FYckLEczkXAN8z+RAiUMm7B3hgTg3l6hMn2fgPdHn1PlNS++F7Xz1A9HZ6X0Cw1LqjZ15aARR14NjT6/N7jLU4bT0nF7dPOi//eJpdqZ/RK76LSAn43gdKYLT+vxB6X6aTro3AvZTY9inxmkANgrQXJVmjHhTXgR4IRJYUgTEmSswSE+BCSKyH/eMpWabIC8nJyZSNDcWglFysn2fgNx56p1aG5Tu+dVPtoHibA3kNa2sypXHW0M1r76Gpa7yPkl/G1CyMJcssudBYYfBKIIXCOk+mFWc21zk5OWG+WGD9LltnzpGXw1gME8C0hvl0inWGtVynGMLKiHpHSCy8SEU36irLMG2dZEchaGgbT103UVor2cjSB3SW/IU0L7O8jABhOuDKco5E8J8EHHV1wqyagXDMZwuCdwRanBOMR+sMB0Nkpjh79izGCBbVjOHasLc1Ov9aCok3jnox72MLHhDDGW/IX2K/uMbZ5ir38peY5LcJ0saiA9MwnR4SvKNpW1rb0rQGazwCQ+Uc1jpUYjbtCuS8i6xD80Ucq7Y1eBtwxiY2I8AHnHXRp1iZyDLJXyX6pGj3slwzQohgHikjsMYB4+GAQmiGwzWUcrx77z6NdX1sxtvIZIcCoeNYBJtsQNnFy9LS4ZOsVy8tvVqYBx1QJQWh6BjlCB1bmu/jbyEa7fHWhERnUUpaJgmv4KOvYIyPU0t4ikIjhOhBTQqBCHE9Cd5jbGQs1joWdAXvIjuNVGRaxYKHxuATkLMDGYfgkVIhRQQUxZBO2vdFmqvxseC87wHbXkKQCpWobTq2cpH8q7i/+ATQ0sgQsCECwlYX7kjs5zmZzvjaS68RQmC0toYMMFvMOTw+YTaf4YVAtC0WcMYjgkdnGVtntzDNgv2jCdlQs7O7z8lkyvHxMViHJ3DpiUuUqsALxSuvGi5eWGdrY50333gT07YsFgsa1/Qxsi7I2e8WSyNhZf+g338jQ2oqdONBf2LZQvCnTqBUZO+Ju1AELYkk3SqVJNMq+TEBk2T9pIrAn+66rgOL93HOOJ+ViJbA1sY6eRDsnUwQuMTaGBmNxmtjpM6pKkOQLU9euMJ4NOb16/c4nM4w3uJNKvoRgtZLrGnQyiIDTBYzQiZ49c2X2ShGKBljLecvXWBIwcHxCZU1lLnEmDrOXUJfRATRrw6tA604e+UizzzxJMFolNRMTiru3tslVxL92OW+JDQIMA5GawXbm0PqOqMOmoCnKHO8lRRa4YJFeQveEpCcHM147e2bfPRDn+DZTQ3XbzMYSDIagrfY4Ni7f5/R4zmZ8mRZoKliAVdeFtT1gqY1HJ5MyZTE2chCZVpLs7DcvX2f4EJkA1tUEKLEvRIRoCVVgRQ5Tb1qoz1qj9qj9qh9a9vHjn6KrfbJb3U3/lLaW+u/xM3x736ru/Hd30Rgd/AaP3f5P+f19X/DByZ/nZc3f4bbw6/Sqjke+93hpD5qj9qj9qh9m7c/l9zbMua7DCB1FaldZVX3+x+VVuiDJrAECzkPSkWWouBSzqC/GlJ0El8hVqklmZQuYdfhRZbB4sQUtBI8Pn1jy3vqq8dOefcp0N6X8AoyHSVSwDMY5oRFwJquUqkLprC8vu8k3AIkB3A1uC6kXNK397ebok19MF6eAvE8/FxCP6ZSxop/KQRL3I7vYy2pPqj/t+zc6RT0CALqNiZKXQf+6tmHwkqlfkx81HULTUOWZQmQlBicfFgBQnWR+OV9d+O8nFrp/D3YLd6fWikTfC8puC7jIFICN9KCp4RsSnIEYpAzdCCjdB+dVF2XT1gmQUJ//hjoO53M6ioQhVgyckFizOqTYekc/XVJCTOJ1jrdZwyAdPIWfRDTe1xKYCFVCkKSgjs+JlQlvWRf6CrT0vXxkcpSyizSbkvHrGp45e13EYDOCmTwNLSctAtGakg2CBwfn7A23mRtNAT8MsnXpz3+qDf6O68t3wmHNXUM1OAQwVFVM7I8w1rHwc4+G5vbrK89wc7uTa7fvsnaSHJ2vEU7O8QKQfCWaW2gqBlvOSYzz9HhnJ35W6zpkvKJp3Em0FRz9nbuU0+nbG5uMDy7iU/v67L82SEFeGMgi8+4bRqycojOJGZxxKJuOFosOD6a4ysTJcOawMIb8hA4GyDPRDyXEghZ4GUGwmAbS2MC47URBIlHIDyYesK9628waWbM5nPmsxopHG1Tk40zpn5OZQPb2xvsTN7h+HqNUpb1rW1k5tE6I3jBdGIJjcF7xWwx5803ryGU5WB6zLPv+zi61AQMdXPAfHGAUI7heEC9aNm5ew/b1KyNNtg/OWSxmDCdtrjKsbE+QueK0TCjNmCmjrZpcNZhTMv+/j7lIFY+NwtLPW8xpiXLdGIXqmgbk9hhkmyaiuAGUpLPGpveJ4ltXcQOCoXzAVcFbOsIheJv/cQPcu/ulM9+7vv4hV/6OXa//moK38JwVFBVDcFGoKqpHa6NpbmBEOUgbKwOjjKcNiZjfUBnmiDj+qm1oq1Nn/DMs5KAxzqH95Ygo+SES0DXLhHtbJTl0LlCZ4JiIKO8WxurQk3ryTLdr89tZqhri/WBHI2yAuMC3kUJiNY40A6dlzjrcN6Q5wVKgBKOYCvwAh80zkf2qCAcQdQIrZFSEYTtO+gSAEsChlhR7FGpcjdE4qFCoUSUsbM+ytgpHZOr3juksGidQfA0rad1HTA2xISWC1hnyTPFuzfvA/D4M0/w4z/213nxt77M29fe5I2Xb1CUJWUpyURLZWIVdRAZo40x+bhkPnG89e5dnJ/zC7/w77i3t0tTWebH93nuhY+QFxnvf+oif/2v/jC/8O8mPPnkRd41LT/4/V9gsn+fr37tJRZ1lfaCuOdkUQuFTk42golJe1NMIkup4v4QwPqAkA6hJFrGBINzLu4bUuBaH9kO036vOwkN4VBaIBJwVSmNzBSjcUmuJIt5Q9N4nInAueFI0zSOtvWYto1g2LSX+uAxweODQwtJXpQ89dT7ufH2u0xqz3CcM1SKveMJTz71Pj79qc/x5pt3ufbm21x97kkeu3qR+tqEw5MJrVmkBJ/B+IAWClyNmdd4lUfAFZ5rr73Fv2trSlNCKfjQJz7O/+g//Clu/+F1fu3FrxKkpT054N60wguPQuC9oA1RNsQ7h289+fkLfPzH/i4/8PT7EJVCqZJf+p0XceGIS089jRIZQQgsgWnT8vbt+4zXWs5tKA6OB7TFmLOPrzPMxty9vsPOwRHWQ5EXafeQ3L674LPjx9m6eIHHLhxye+8O7968yVOXzqFkRrXvePn3XmVz7QZv7e1y684O7axhvDnmySfPsT4a8MyVD3D71g6m8Vx54mkMBaae4m3Jb/7OmxyeTGjchNbXZEWBzsA2lqIoOXv+PM1iyMHOyV/spvnnasnQWrEjOiDLKsdmSKAPukTWe50GHggaxXN3tlcPzCHaz6s2cHdoMtFXrOEluOcbmjrJPg+hMxhPiVL3/1re1wOdXbE1BYmJVEbWDakEwneMEg/ebHeOsCxYIN6g6PyNZCt3pQu9fROW51sWaXS/PzygqzZ5X1Ailwn2hwYkLMdRrPy5O6Xz/tRTXz7pld+T3RyljpIkDSKtBSt+ZnfMElmWfiTATnfvp/rR+ZArf+o7evqeu9P2IKTU086VEd1YkPxF0V1vOWdO+yn9p/2zWjIrLR9CWD7W5fxIyeeHn0fo9/rONu/8iNPzMR21IiEe6D30/lr9GK34Wv29rvrR6TqBKEF2PJmjlIxMFsHHIh4l+xtw1mBawzAfcrZ5X5qnq2f/LvMn0v8d5zfx3iKR/TxomjoyloaAaVuGozXyXCNmh1RHM5yXZCICiKSIe5dzAYlFaMtgmDE5XuD9AjeqoChxNtDWC2azKc5aRuMRushZfcNEdH4RQq+8Cx1oMUPnimYxpXEmMgw1JvnGDmciWEXnAolDSodzBomnbVpkWZArR1M3eC8ZjAbp0SfpteBpqwXtYo4NhmrRIoTAtBbrYTKbsKhn5FnG/f37BAu2qSmHY7I8oyg0OCKDkbNYGyiKAUdHx2glcRyztRk4s7XNXvkad9Xv0TQz7KwhLzUhwHxa0VQV6+M1qhCwpsW0hrZ1jAaRubBuZ4S2wdqAsS6CVrzHeodv0lx2DmtiAZZSEuccxliMtTG+g+iZwF0n9UZIsmdJ1t2n95bIAORstFFbGXjswjZjVSDzIXU9j+u4jMCITEcwWCyEEdjG9nGWjiQ8kaz28S4vItNrZFNeylUKAitYEZSUEeRNiDaoi7LivntXfWe2h3Q/8VoqgVI8UY5aKhlrJ1LBV1wPEkQ2xD2tu+bqmhwCyWeIcY3GOYT35ELQBHpZ0SX81hES85SI9KQEF1lwO/CN62JZ3QVW5OFCiPcvxUpcLQau4hEBrHNLQE23moYuXkRi7XHkZc6HXvgQ7XTBm6+/TdVW1Mahc4EWAR8EWSZROsMpgVCKrBzg5YKDwxn7e/vs7u9FpisfmE+nCEApwaXzW+ze3+JkcszJ5IQz5y+wvT7k9dfeoG5bujheV1BDBzxNi+wpSPaKzdGFFUOIPm5k63YJ4JoYkFyaC2lPlrFaEvCp4EH2BZRCiMTmK5NvGHrwq9ISIWPhjLPRt5NJao4EKguieycErSWB0HLyErbGJbOTBWI45oWPfARrBG++dYNsLFjbWMPY6N97Z9I4hLTmxTirSr6wDfG5YQWTkxmu9DTBMlof8uxHP8y6GHDr5h12Dw8wzYJ60WCJxxMigCgC7KJFZyVYUTJc22CrHAOKk5MFgmPOPX4Blen4DhFomobd/UmUlPMVeabxoSAflmxurHO8P2W+mIMIZDrHu8ge6YNgtHYeIQWT6RG2nXFYtTxz5SLra+vMFxbXOm6+c5OFa5lWNaayBAHlQLO1ucbly0/hrOBkMmFzc0xeVkynM0aDHKVydg4PMabFBotQkkxl4D1Wwtr6iEyvcXJU/8k3wEftUXvUHrW/wKZ8wXOTvx5tqO+Bdn3023hhv9Xd+J5pTra8tvlFXtv84re6K4/ao/aoPWrfk+1PDlISqwHS1QD0Srg3xRo7Kvgu8dYx8ojVqq3uqJWTrsTNorPqAlqlqqdU0QUxYKNU/LJPwYb43zItEAMaDzjnfRC6C/D6PkPRa4b7FIQVRGdXiD7QFv8eNdcRAbQmHxR4byNzg+qI9bugq+/BWxFAk44NMTBw2rYS9CwHRLYcABvssu9pgHoZCXFaWm9Z4RodcSFDuo7qqwO9T/TYHTNOzyok0rivBL29x4cYcIgtUvl336O71xBrA62NgVdrYwBS9HMhBUJk9yBWA/rdWU4nS2J+qENWiT64tpr66RIlEZSTqgX7IBQ9UMm7JF9FpJ8OwSNUB6wTaYxXGJjCMsHVsVuRpkt371LKU2Pv0rORIgZyRF81mfoh3DJdEmICVUtF27YxKJBlkRbe+SitpxRCqCg5wzIo6Fyc9VqpWO1JABclo6KEnYxjJ4n3KHUP3FNak5UR+FA3DWWmkUGmoGtLmQ8Zj4ZoAcE2VNMFZsOhBh1s6nTCg4d+/85ty9yPQHpFJgcoVaCzgG8rTLXA+AbvG7JiE1UqkI5Sewywe3zA8aIi4MgEFFnG5tom4/XzPP7UGs3kNS6MC4YjjQ8WaxxNdcT+0X2QmrNnz1NkQwgxSYmMEcQgFYICSXquZBSjLRBQ6oLZ4oRya4SaHbCYt3H+tJZ60RCCIISGebXD8clt5sctG4MhEkk+KKmnE66/c5O1M48xXCsjSFGECIpTUOQKUbVUzZSmDbRty2Qyh2nFyeE+m+sjrAmYoDi5u0MeAqLYZX9/G4wjH24yq2quXL7ApStP4G9c5879fYo8p1rscbB+m/LyZVo35e7dd7CuIYQaOVUcHhxzvDvHmoZBcciibvBVi28Ng+GYFz7xWWbTHa7ffIOqbljUDfNFQ5lFJhFnHXVlMaYmBMeiaTDG4QhYK6hbj3UxMKqlR+Cx1mGcR8hYnexsx/QQv5fEd2ibQNvWWAduLPmdr36J+dTy0luvMJnMyHQG0mGCis9RJiCQFczrOSEEyqIABa71OJtAtgQCKiZmA+ihBgG2q+pOmQrvoxwngiTNB1VTIzONJ649MaEpQAaKXOF9oFq0ZEWOKgKt81gbpeiyQscdQYG3gI97ddtGeSwbHELGgHnhc5QWeBxBxuRE2xisNUwRPHXmHIvFnHuzCklkhoqJsQh0DSJWpWYCbIiSD9ZbZOPwRqQEi09rcSAYgTMOoQReJBvAq7RtJVCPtQgyWmMwNlbQKq2QWiJSoLyDfgbh0CpDDzLyYWBro0TnOaZyNIsF1jgKpVHFkB/94Y9x8+37jNY3yVWOLmveuPYad969yf7+DifHBwgBo2FBtb9LbQxaKy6cK2hbw3/5X/93jEZj/tbf+mu49iSmTnoAYgSPtbZFSZ0AQAJ0YviCCN4JkXEruMQgKGJWpSg0WgXqtgGvyZSOIDYb+mrwXsojeLSK58/LDKV03McVBOHxMa+BUjGBIFSUEi3KKMNRVS7JXspoi0mJUgIZLL6WNBjuTg1rW5fQxw3bj29wuRxy8uZdvv/H/jZ/7bOf45Un3uG/Pl4wm0tefecmzVv7LOYTXNsivKPMNMpKyCRnHz9HZmDv8AQhA0pFCYe9W3u4Js5LXMueX/CpH/8cF55+kle//hJf+9rXcO4QpVuU1rTG4Vyb1neFD3C8u8O/+dl/zeM/+Xe5fPEpcDX1bEFQijkz9o5vMdAjbt/f5Z3r73Lr5j4itAzOrHNmdhnPFue2BIvDFl2UNI1ha7xJORywv3tAU5+g8zUOd475Vzf+W+7fnbC7t88HPvgUn/nsh1k0njffPuD2tRvcutMwt5562uCM42DviKqu+IEf/QGefuIq59Yv4DSsFUMef/wSVVvz5KULvHP7hN/8rS/j6hmqLJDGo6TGKc/aVsEnP/0JTo5yXntp9y941/xztC5LtgJQ6GzB+Oew/ET8WSyNZWKxA3LE3xLI/JTd3LkkHQNP9/0V3+QUqKI77x9x3c7uX571vY/r/B2iFA8JNOQ6QM6DTXTG8bJTYuVcHYNnDwJJTHtCyAh27mzq1fvpEpeis52X1+3rIcTKvQUSCL5LhD9wbw+NVRqDlIDsT3fquZMSoaK/VD8fesYl8d5D2PlrK91YjklYOaa7Upe8pR/Lhyxb+TDr1tK96uhgu6OWa213SdH1q5vPhNUp0fsYUZ5b9D7d0odd7VRYGY+ln7c6JzumYe9cL8cjpUyFMcsCigcLOwIBn/wZUgGFx8dCjt5XD537tASqpQS1zhIQiZBqL9KY+eiI5UWGSkyutrVgNEN79oHxizf73eNN0D+soTmLyCI7YQiCLCuQssXUFS7YCAAmIGVB2zYoFQsFFk1DbQwhxL1xOMgYDscMhlsI2eBqy7DIKAZ5lOKWAp0JXHCovCAvBkSB26XE48qL3I9/QKDyqMsmgkTqjGIwYLaYY1oX2RN9Yt4iyjZV9YTDQ4VZGAZlwXhtAykki+mcw6NDxpvblKJIyaM4EB5POcyYLixN22B9AO8xxmKtx1qDVpK1s2cRqmT/4ADlA3VzgpCSw4PDyDwrYXN9nfWNMbZ25DJDoFBS4ExD08yQWjKbHWG9RUvJdDKnbluausW0jsmsQqDJJORKQSbZOnOGLBM0RzOUVIQQgUcSGQuAvMf5CMyGyNptTAR0RCxQHM/lXhLZeCKTT0hgL0hGe3waXYzAemwIEZQqBTdv3iNHRHWlENciJSVeRnvQu8h2GwFSFmcTSJ8I5OwA7V2cq4tBdEVrhAim6t5pQidT5/pYik8SXvQgoOW6Ewvf4jvtbECqkMDy3XXieqZUAsO5WLjnnMN1szAtG0p2QMYQ5QplPMb7yCY0yErWsoy92SR+Px0oEkDfdyzjiWU9MnUHgnN4L5cAG79kzfYuEFTHnh6P6QoHOrNEiI7RfPkMRCpqC47EfBrjjlLH9+769Wus5wV98C5Y2sbjZIzDXL5ygc08Z+dgRik1J8cH7Oze4v79Xdq6wjQ1QQSKQYlrG/b291g/c45gagKGvb1DTLtg62zLbCKp6rbfU+MrHZ+pT3HGFGI7tSbFeFg4vZeIKO2nO9looWJxW2JljWPQxezSPSdZMqniPOzicd4HvEyyhkoklqY48DJJE3aMuEAfS5VSRZvMRRb2cjjmwpmzmOu3WPiGrCgR2vD/Z+/Poi3J7vNO7LeHiDjn3Plm3pxqSFShClUFFEGQbE7iIFNSS9RkSe1h2W27l72Wn/3kRz/71Q/2gx+8PGm5bcuSl8xuqdVSS6JEkRQJESBQQKFQU1blnHnnM8WwJz/8d8Q5NyvBpgagKOjuWpWZ9544ETt27NjD9//+37exf4Wr126gQuLp0Qn3njzke9//hCsbW0znc7G5jpFxTirzCTb2NtmZTDg9nQreRiISCa1j1k6lD3vP977/Hm++/iVe+uILHFy/woN795kvapT3aJ2k7yZ5twV7VUTveHLvLh+VhhtXr7G5vc3h8THL5ZS7D2rq+il7G1u0beDk9Jym9lhj2N/fQ9kNFsuaySTSLhYYU1KOE4WybG1vMZstmM3FCvTw0SHzkyNJWgyZ+KcCk0lBNJanj6eCK4w3KRuIpkUpsUVvnKgIj8sSs7fDZDxib3OD5f4Ok6ogJMWyTZwdB6rKEHxHjB1oy3g04sWXXmBjvMujx8t/nRnwslyWy3JZfmiljBtcbd74vKvxIysH7Zdy0uelot1luSyX5bJclh//8q+hpNQDwRnZWANv16AvViB9D1iun0NdBGr73z6DaGcx+wEEEJDGEHurtB5AXjumJ9c8t+Y9oWb9Op9BpfvgyBpyP0iMr504CbBHgq72+G6J1kk26kn+HxKreyB8CMisB07yufpNvIoYrVFmRZLS2mCxqAzGDMGJXKceEL7YwnrIqOuzkvoK9ZZA6+cawOpnyU7Dc+qDJSuAW/boAkCm1P+7f9Z9nXIgIK1l8yZRwBpyd9UgKrSqcF+HBOg124Q+IMI6mWllbyC2BVJb+b2AKDHEgVSkcmaY1koC8ll969m2kEDQWuSmf2ZpZf3QA//r7SV9QNILU/6uUkruI9/fYEenBIRMfVAqBAHs0iqL3JihIwHZDiRJxmJIEZ0kUKSH/psgRbQu6CNWKokyjzaGouiVvxI6GbbGE4LSBDwaQ4iOotBURUHwliIZVFSD9dWPc1ChD1WlqEhYbFkRYmK0sUvrWh7eu4dPjqZumJ9OeeGVm8yXCzEqqz3LWUdIga5bsv/Cda7s77I92UQD3cLx8kvXGJWKaBRPHj/lYOeAjZ1t9q/dwGjNvGnZ7iLVGHSKxK6FlNDWElIACoyGiBYLCMRWYHvngHv3H/P0yTlN29E1XbYrkmzWojAcHz/hD37/dyh85MrVq7z11Z/Dh8gH332fByePeW17C8cVChQ6gvctdTul2Eg8/OApTSvKSAQPQVRUXAdXR5vc2N3nex8/RFVbbOxvs5w+4e7dT7m6ecAnn34PYw039zc5XJwRnOPtt76GNhXV5hhlG07O7nN28pjp+SG3XrnNyWHL/Y+fcD6fs5w5vPOo1HJtd58Xbm0Tj5+QouF7779DCAtchJgsJEVwnqg0XRNpXQRqYuitHiKuC2JzlgzW2mxfpUAHqsmIDTthPm+YzWq8i5L9jryLPqsdkYQ0FGLERI2aG9757iGGCMqBVow2KyEJFobWRUIUJRwNIkOfoCOQCJDEPiNF8F4CIdpqrM3k0BixVuEIWGVoa1EJ8tkmoawKUVJamyuHgCNkGf4slZ9guWiwXknmtpd5NthIWUpQs6k7sfYKMi8t24akFLYQ67VCiQVmQuZhXYwgBbQJECyzhaNr6/w2ZcJtHifFYk7GoOAUTqSpMCFhtSEUJbiAd47g0yqIkWR8TyRCbnuJE+dx1xbD3KC1RmUbjJ6ErK0oDMUgYDgGHtz5hG/+5r9gfjyjCy1Rid1gbBUUUNnA5mbFT7/9Bb754RF/62/+59Tnx9y5+4Dp6ZR2MQOVsHtjfvpXfpV33n2PR//n/xMvvfIys8ePOD99QjefUZ884m/+Xx9gUqJrPVYrYpL/y7LMWcViEasQSwSrJTAUUhgs/5RS2MJSlAZjFWVpIEV2t3dAKZqFw3USfOqDQKbQaCvzkjEGbdUQXFCIklYHpCKRlCi5hJDwPlAUCm0UprRUSeO9kIy11RgDGk3wYlPw1pde5s/91T/No2/f4e6duzx+fM4ZZyxZ0qQl5+2MaiOgY8dv/f3f4qM7H7HVwuHJMd459rbGHGxNuPf0lK4yfOnN23Qn57ShxXUtIQRiiLRNByERvOe93/82Z/M59/6jn+Qrr77FL/3yWywXj3l49Ah8idKKQmkSng5PVBIU1W3g8JOP+Vt/6//Nwa2XGBUV9z94wMn5nI8++V2u721z8+o+i9ozP6+ZbF3jr/6FP8v+/gHf+v4p8+kZG8Uph48esnvjBZZzz81r1xhvTfid3/0284cf0Byd8pt//79hPElMRiOImne+8y71+RH7V3foQkGrND//p36eNBvx9W98ly7VVCZSbVR8+sFD4tRgxwU7+xvcfPllvvLqdURgK+HUFW7e/ALHTxXBnLI4W2KKCjsx/OTPf5Wf/9rPEPyEqzfOfwQz579FUQyUlczjyOXZNe2qpGd+fv4i5OI3LpA5WCldDBZXFw5Pz1x9FZy9WC7W5GKd1rVU+09Xa94c6xtIOP1aM2UiRx8o7kfQ4Xrq2ZZYtd8zvx6unVfp+Td6WC+nVSbAs3d78d4GFSu1OlOSYLjYCOU162f2E0NTPNNA/fPoV1zrewRZX6/UhS7WaX0N/QNqe3FV+rzby5UarqlW3x4oUuv7kSS/H5JLhhrmGkUGK6Wh3dNanYbzX7zvVV1X7TVwsJ7dpubrXiQZMRCcVt/J/ajfL7J6CAPpTvW9Sl2oSxr2a4hqBKt+r3tbsLRSfeoJD/0eUWOwxgxbVKNUJmFI2xVFyago2XcvUYXtH/De/viVa81bbI5+h2V5PPSt1nUs5gvBM1KirZeUo6xAFTzRJ7pOlEpSTNiqYjQqMSbimgX1bEk1LsFqFnVD0yzZ2dylHI3Y3b9KIjE/n1KMA0VpJCjvJIHBFiWRiFIWpcT6PCmFyoH3opowPTpjMW9FGSjIe661QWUMoW0ajg8PmVQlPiixVw2e48NDll3NaGNCZEP29ikRo2exOMf7BXXbslw6iqLAWE1Hr3YpW+du2dD6JaUx7Fy/QtfOWc5njEc7NLUjdB31+RwdxNv56sFVynKS5TUjzi2YT+f4dokdVfgUmM/F7qhznuRlnTwZlRwcXOFsfko7W/Lk6SPQgg0IOWtlv+l9yOvRkEkbQihVShOCqMIYbdfeFyFvlEWJNoGm7nBBcBRRtZbkMeGhqjUcKKKjxncQklxPqSSEeyMJJEobiAoIxCCKpAqTLfkEH7PGoAqxLhPiqzy3GPu6ahJ98pMacvVkjNE9wkdKK6xtSBhTgvf05M0YEq4T9dl+napVwlghOfbt0483MQmhScVMmrQ6q9JotFxQrqM1Jiba1uOaJsNnkqiglCb7rw3r/pBW/yZpDJCsFYKdy/s8VlhUStk2kJWdnfD28pyW20ApjTaZlNonampyuwuuIjhTYH58SjQFbVNnMrAo+ZCkvidHZ2zevErXdfzB7/+BEOtCoOs8wWcFIAu7166jXOCbf/ANJttCJDk9OiO6juQ7jh4/QGWraKUTOkm7omSvleJqzhH4Sdpa9k1x2CNobfI4nlVj00pVWJ5rWGFiGqwVVVZ6vG1QVs2Kb3lf1hPDMnuMlLJafp4vjDV57pJETWskkS4mha0Kbl69wsGNHbxrUSrQLRvuNQ0pesL5Ux48vk9hNM4vcIsl9z8846gqSa2j8x6tYWtzjOs807bFkIihxWjZS6dsmx5Tr84eiS5ydv8R31suuLK7x87WNlubmrLUdJ2oyBqj0UHTBTckLClAec/Du/d48ugRo/EGoXPopKnPEh8dHVLmfVvykWQr3nz1LW5d2WPRJJ4cz4m+ptzfJaFYLj0Kzf7VXe7fP2TRPIDujHY2xzWI1bYxeJ/4znc/YjIu2NraQtmKF154gd3xHg/vH3EyP2djVFCVhqA1Tx+fgNaMJhVlWbBhCyor5FSXYGdnm2bR4uMMF5cUxqKtZfvKDtcOblBpS1lt/jucGS/LZbksl+XfvNxe/ALb7ubnXY0fWXn77D/htw/+9zwdf+/zrspluSyX5bJclsvyQy9/bJLSCirPAK3KW/7U2xikbFXW58quc04yGPsc0PgCaNsDmwNcLFmgGp3l66UGvZS2AD3xIhFm/XrDOdcvehHSXgeJV6pQ/WeKNQRH7k2tFHR6YEnwYEHZTJ9hNdxbT6zpZZfT2vlX11HIZt97P4DRMQqUJNZ2vb1N/33Z5Pey8SSG6+p8PZXrGEPMShwCLltrSJm8EkLMWXPpYjspue46uNWD2/KMVvUegkwwEKT69hGwwqzd8eo7Fx7JWscYiEk5iDRkrGWQrz++P05A+YhSfbYia0B9/+/VNRSsgVor0L4PLvWEsoFMlRRamSF4tJ6NvB44iDGs2r4/5pn+139nkLoGUcxwni5GCSYbIR/FGEErjOrD/QxAd9+TQkroDD6pXs49t0dCwGVUzsQcwFUJSLdthykFTB3bEgXMZksIipdeuMnVgwOq0lx8Vj/OJUeKqvHmQIIEMOUm3j8BY7h6ZZd24QjJM59Ncd0So4RwEVKgtBO0nnB8PMWkkt2tjsOjB6QY2dgac/Sd76N8wej1ir0bV3nx9h71csanH3wf1y6oRpJJOj9+QL107O5cJY0UxWSHREBHCVRLNoXBFhOa2rKYeZbLhhTEMklrQ1FqnHPgFAu75PXbL5IwPHx0j42tA46efkLbLOnODvHdAegJWjXcuf8BH3/0PtEtmZ51uOi5/fIOZ6GlKDVVUVHXgUeHx5z99u+yWVb81M/+NHNT0DSHaG8Y7dzktRuvcfz4Hp++f48r12/yxld+kta1mGobs7GBV+ccP7rDcnpIYTTvfv99psfHtE1HHQKxCYS2weiCqzdeZ+fqhPbxA6ZnZ5iFRevIculZzlu0ha2dCcF7EjqrjIkCkfcyKhZFSQiOmBJWQ6EFkC5GlmIk2aMq9bL5aZhzgg95nMygddQi+46HGOmCxWjQJlAVJTF1uEzIUdpkcD7guoDRRsbsQWnAMpmMAI13kdl8iSkzUOwcCiGndN4TcJhSiwhPErUN5zzayNiVIhRWAhArR00hxChlMEYAWtdGIe2kSFDgTSR4JcpSSVMWFd7VkBJGGRKK4BTJFGADSmmKpLA2oktNShZcRWoDp22NAUzUdL7D04ECa63UM8gcF5Mh6YSOiRRLdB5ngpNxtw+KxRhpuxZMQVVVkBzOeWIQqw1tNH0WtWSXA8YMY75CiZLV2FCUFbYw+OAIjeMPv/UOuESds6RNUmhVYBMwD/xX/83vU41KTqcNf/j+R4y0BZ1wIZJ0QsVE0zjeee8D6idnfPz+P+LOjSsszsR60bUdhU7Y5HEhoIzDRMlkRilRkFJKAjpKAP+RNQNptQuR2Mhz7VdZMQYM8hyb2lEvW8bjEtclUsgZ8DqxsTVia2eCc54Qk7R/7htRDPVIIdL5SL10uasYSNkqKKSspKgwpckOSpGilOfonYdRyVu/9DO8ceUK//Tv/xc8fXxCG86ZHbUcxYjWgf/y//mf86/+2b+gKBVnp4dUoeXut99lpAu64Ak+Mo8jbmzuMG7AdzWfvnsHH1pCdGIToRQuxsFawnlHZRK7vqF5/IR/8O0POdjd5PTknMpqTLHBF195ifOThk+XD+iYo/AobYQsNpvy3nff4/2P7lDYgqvXr/LzP/cVzk4WvPvepzx+dIfNTVm/vfQzb/Pi66+woywb27v83jc/oQ0T/vzf+I+okubwcM7+1R1U1Ny7t+Dw8BDtanR0dG0ipcBIG3yn+fDDE14OJV9+60Vuv/5l3vrCl2hPHF0XqSYlt67sUIwnPDw959GTIyIFm1tXUFis7vtAZHNU8sL1G7SzKUfTGRuja3zx5eu0ReCF268xKbYxheKn3jr40cyb/wal5270xBNQuY+lgZixzhd55tv5757p8wMPHA7PV1iRZ/hswkSfMDCQ+1ef/IATr63r+jXkerUu1LX/O+Yqq8+cdljPwjAHXUj0uLCfWv3iWfL+inQj48iKNDVIgeZgc9/0F4PQK/JSb12mGDzO1m4wInNlbxnX1zUlWO2RVt9SeR8jSjtre7/Emh00q++pNcJOWjtZWn/eKxWizz5Qnl/WCEUq/3Hh0H4vtU5gGg6W6+cWX2+ONWLWD+iMiqE9n933XuxLa31VDZq3uR55H81FhaYLsrwJUVzoLXW0WrEOLpwr79zW9jN99+htqSWppbeQlntXOUifYiTlBAhtLN6LnbC1FmssSivquiOWcHB1h/FkjO2stNvFqvzYliJNeGP567xb/gadFvJ2UY4xeklpNVVpWM6XLOZTlgux+jFZgZoYqYqK0pa0y5ZyaxdblvhwTtclitIwPzuhLMaobUAXlKMC39aQIsE3FIVAPN1ygXOR0SiiCo0uJfmJoTvl/bzSkCwx9GSaFQkBreg6J/tHnVAjy3LZ4MNTbDWmbefyiriWrpkDBUWhWSxPOTo+pmta2ral856ykPWI0kqI22hc5zg8PcViuH5ll1LDwgVCgmXnuX7rZaLvWE7PcD5x/dYtum7JbDnFVmOiiXTNnHY5I4XItG7pmkb2BEYPPmgpBEL0LLqOpnWyR9IKlaBrPF3tMYVhvDHCtR0xKQiCe6RByW7N0i1jVkYLQUbI3LLmD0ESEVQey4QgFIi+xx90Lzie379ATKJYLeOljL3BO2KIwzPr8Q9Qksy0NrfpjPOIfZcjpDCoTPfX6jEbY9SQhibjdlzNCf2Y1OMkPVwRe/KLHvYyPUFFGxk7us6vrcmNkJVyP9KpTzDsVZ8VBo3VEaxmVFU0XaAyhuWiIUQt+4SQlXqSH9TiIONEZEJMFKuypITUFbOylM79OxLFgs9HyrJEa4P3PhN0JHmtJ2qFjKH0hGFZt0tbaZMJSloS02KMzJc1y1hLopxWiNi7Ag2GxGxW893lfekzQeppBF5aqTr5xKP7D7BYkheLxPOkcC7g8ni+OSqJMeKCE6XVYT5bJShAn9ypMyF7pf4X00plSZRpE8pmu/CcpNDbZMvcligKw3hSgZL9sCRDqowDC/ZmjCQBBidKY32CoyiJg14halLHTFRDZc4ZMNnZxm5MePDpfaaLJd4HFJKoEUksT8755tf/lYxfUaGSw6RIt2wgSRJL0po6gdIFxiZ8GzhvHJEwPL8eR+uvrwvN7vaIV1+8ydHRjI+f3qU0suepxiW3X7qFDoa79x7TuRkq+bw+MBADbd2QWkVd15QbY770+uuMteHunYecnM8wXaS0imJSUGyWJKXZmCiuqy3u3O/Y3N/h6tYIgqyFSmNp5h2PHh/ReYtSHSmB94K5myTqXGUx5trBNXZ399nc2MFEuH5tlyvXdpiMKpTSLFygaVuc79je2aSyhaD4+X3WCjZHJe3WJrVTGFNw48o2ttR4o9C6RCvFZvXHn/cuy2W5LJflh1l0KhA68n8YZRz2+PWH/1v+9u3/JUt7/HlX57JclstyWS7LZfmhln8NJaUe1O5pSqvfwWrTl9k5zxCU5O9EpN9FD7LwPSGlP0qvKfHQE0wiPS1j/XsxrVSULqbergG+FwhKfXViBmg1K3A3rR9A75Uu51jd43A9kGygDCGXZYEC2sYTcnXToDgkG/0eGCA9I7fcXyNFIZ0MhCwlqA89MJJASeZhxsWISQAD1sgwMUcKegWLNFxWZL2HYIjSkj2YDIn42bbK9VsRrATE6oGLzx68Au6HNsqA2qp+q0zu3NKktef6mfOtZ/sOZKRnQPvcgENQIWfsqaEfrWTn+0wzCdjoHMBZ5fMnNWiFrQIPKVsgIN8drN7WrtMHGmIPgqjVWZ7TrEP/HQJIKRFygMcUNgOM/RclqCOy/gyZfjHGwdLBu4BKiaKwIp2vFcGAGQsQ53yHSQVBGYqqwhYVIQSKBNvjbXa2tkkmslg6rHJsbE0YbYjd1IWY0I9zUav3Ffp+EdnY2GZ3Z4+iUpQ28ODoU9791j2CgnJrA1/XTEzBjjEcXL9ONSmYntTsja9g7IiNzU1cHdmYjJmeL7l+6xZb13ZFBj6BO5sSXc3Z8UM2NjZBV2gMI1uhbCkAOqJ+o5Mo7SgsSSlInthBoUqsLuh8S0gOpQ1NJ5YFSmmij9xJj6iqkodPDhntXMWZxI3r17h+Y5d6dp/D0wXWBk6e3qepZyznS9qmxuM4OTmnXnqiBl0GTAx4Io0yqCby6ad32X35ZRa1YzpbcuNlz9tfuc3x3iYptfgE5eYed99/hzY9pFWBmJYsT46oZ3PqNqGLEaaJtK5DWUNZKPRkTKoD73z3HaqRxTU1LnQ0tSPGxNnJAmLi9qs3QGnOTk5Zth6bMzVTp4Tc6KCPjaWoJKBgpWOHEKBL+C7iXCfWGVZTFiJ3fnp6JpYK+b3zAWJQWDRRB5IOJGXBKDwJ37pB/c5YT1koahdJSmMKI0EMLMEFQvAsFkusLdDKCuAfIoGVukTTerSxjKsC13pcG7BaY1DZciKu5pmU7zsJpUEl8NnOwBiD1YYYIDjJ0Lba4l3AB1GYQkW6ZoFWYDNZclSO8NFnKX+DMgWF8iir+cmf+mmWs2MabdgG3vnDD6i7SGEgtQbnxIqkKkXtyMeIVgZrLF0QK049HpOMwrcdITipt+oDCh6CptIVRVkKwWldxc5osQHxnrbthIhrFSkoQg6amtJgCkMgiKVGEDB+oRSWVXyeFEjWEyyoqDie1di6xbuWGEtarTE2kZQZ4vi2Dhzfe4JRFbEr+PTDB+CT1LtI7N884IsvvsDdTx9wfHZC7WqZg5BgUmXF/lEXMB6PBtu22IFJCmM8SmVFKC1rDmsMGkMMnuAiyXd0bSJGaRNbKjZ2RlQTg/YQfYKkiTkYb7RiYzQmVonFoiXkTHhRC0sYk9+RrLoXk1xfaYPzAZIGZVBd4r3vfsRd/QHdrGbZBiKessx2G6Ggns344N1vgi5QwaImmqvlAc3ZAkdLVSYCHR8/fEjSBZNJxWLZ5IBMIkUvhOqcda5ixFYF27ub/Md//k+xs7XPP/ln3+F794544couu/tLvvanf4E/84u/wG/9vd/mwdMzdNuQUiQoCdy4tkUliwoON6nYeOkmL7z9Ovb9D6k+dMzPpkQPk42C+/e+xyePv8prN19lMrK8+eoN/uvf/TbvfBr5hTfe4Auv7qAINOcNGyZQ6ERrFDoGGXO04caVXUaF4pUvvsGbP/E2X37tTcpyB601ekfzcz//FoUFowzHy8TNjTE3b+5TFobtcUkBBKVzyMcwKeGtL+5y+9ZXOV68SoqKt167ysIvUbYY1jI71Z/cWfsZngn0491zCRurAy/c0cUl+2eLuvjPnpSxWnuvtg197HdYTq5fOa2O/8HX6b/xAw4atkdr9zcQR7jwOwUYK0FmCfY+e7I/JsMjpYH41S/DZQ6UdYfSfdB1WP32jZT3OuunuqgylHpmTmY6rfhB6eLad6hpXh+n1TWGOq3/rdZ+eM66eXXtvG5WaU2s6Aer6arnLmJz/QaF2tW+ZlWNvHfJ9zvsqNJ6T+rPlYlqz9yfUqtHvb4XW93kytaaXt2GvL9MmbzXz3d5zyHt3J9CvjfkjrC6Toxi3SZzTq5UrwiSxEJ2/Tn0olBRNpd9lcQCKgbZ5yolgWxMptxFVLZBL4xhc2OL8XhCCB3LupO+ozXKJDqzJCiPScXzH9SPS1kb3K52r/PG9Nf5zu7fJRExtmCysUGIjoQnxJb5WYMuCkxV4JqWkS0pSsXW3g4xBerQYlG4zlGWI7xLTDYqUvRs7+5TjMqBS9jOG7xzNHVNVU5AW4qyRCmw1UjWQfRkk4uEOZKsF3RWwAxkoEGbjB1In2qajqIQRdLZYs7ElIx3tikKw/buFjHUnJw9lf7hOwiS2KGIGJ2o6wbVaJxP2FIBEa1lr27KCU9PZ2woZF3nPD7O0XqJSYkrV6+wbGay9jMF9ewUtzwjJk/oOrx3eJdQpmBrvMVscU6XLXTLSYGhwLcdT548FrJ/8EMig/cB7wKjSUk1KoXgQZeVjTTBOZmHU04WSaxUgVRP6ookl+3IvLyJQqiBsiqhFVWrLHKa7ZtAp56OmFUrjSZpSSSTtbysx8tK0Tb5O0b2KgmySpQkLqBAKzMkn0Uf8hpSD+TGoihIUVQqUWLhG1MaVFQvToj5d3m870csndKgdgoJbUQ1Vr6TE+28WO4aI8lxtrBorYh9QkluO1Ric3uPmwe73H38iJvXD3j06UPmiwgmolWEIOla1or6jg8hk+aEfOOjRxcaZXRW0Y6rMTOlAYPUpsRYm20MYWVTl1XBM/EqZrJmT6xMSJubwsg5YxB3t5xQKHhOP24nlEpEAlFrggeCEOViEpKPphe9le+apDHJUo7GmNIwn8/xvoMUUDpSVCUvfuEF3KLl0ZNDYmhROqIyB6korMznJlGUFqMNwUW6ThS3BH8TtprJ6lwmJ3rIow0El/AxDPaESieKykiuYRKVLFImceUuYQuLNYam6fL+bLUfHabzDI7FHhvU2Q4urHC32dEZzfkMnRLBR0ISEp4xFjygFM7VhC6hlMWUlt2tPZpZQ90uKYz0pcVsRsJQVgUhekKAlXrYqmvHtEram2xNKDcKdtIWS+fY3d2jnM0IZcXLb36J5fEpjw4P0Y2CqAgZ79NJMIQUIKFxIXJ8PqVKgbZbkGJH1wZUNMTZjE8+ep/ii28yGY2ZVJrKJu4+uIt56Rb7m1uoBE1T47oai6PJKw0TEhjFaLzJuNDs7e+xd/WAq3tXsLqS8Uknys0xEy2KiCEpxkazObbAREhr+d1dW3Wws2nYGO8S2OVsWrM5GWFLUT+OwRGMQa9noF6Wy3JZLsvnWJb2GKdqijT+vKvyIykKxZvTv8hfvf+/42/d/l+QVPi8q3RZLstluSyX5bL80Mofm6S0AvYzyJ5Upn5kQDr7sPdgdk9oWi8CKq/9/KzKDGkIUKqeTNJnCSUGUEf2vaus5wERVqvsskGvpyfEDMGPteutMJcMskdIK4Ub+Uw21iviVE/aiZjCUBQlKTpQiclkQghzfLtCi58lYfUNsPpNPu9awCL1li0CJRIzgDJkvCoBsGJMqJ6tlC6SieAZCD2fe0WAynVLCKik1qhna8GbEMIQFJb2XoFWKkd5hmedMlBOLxHe37u06zqRaniOGSRYWa31fz2D8vdNN3x/Ta0o5vbOSE3KPVMPRJNV3yT3TTIopgcLtwxY9N9RvWpVDgbEuMp4W7+B/t85wCPkrz47sZd3Xy0mlRLSxPqzpr8XFUkkou4z+vrj5KIhBtAKnUTFQx4exIAAaRG8dxJoUFaeG5oQowTslZEs0ralTpHtyYSdjQ3e/NIbXH/hBU4OH/Do8SGmLGhdRySh1bMqZT+mRfV/5PezBzSJYA27N/Z5/OgTDB2drtnaGrO5MWGWOo7OFhhvKasJBy+8yPHJI2bLJZ8+usPofIJyBdO2Y8MUbG8d8MKtV4V8lEQufzFvGY132d67ikoQlaLaqJi156jRFqfHJ2xuNBizSbUxwaucpYnI81d2A+UTOjmKQuFchzKSibm5uYlzjpQ84/0xWlsWy8gbb3yFychwNn9CbVua46fcf/CEorTc2rvB0fEZygY2tkuWTeLw6YzgISnHxigTW3yk2h1hzCbf+fAOxeP72ELjusB73/t9mqcfgtthcrDHwcE2Lnj2d7f43off5LSeEzvJBHVtR2zhxZevsXltl+mdD1ksGsYTw/7+mM1o6FrDvadH1HXDfLkkKMWoLNAq4aNnvlhgrQFtqEYWUyq8h9o32EKzUVQ457ChpMmqV8ZqCVB0nqZJRB9RyVBYg45BJPCzSpnOY513HpcEdFbRCnCuOiZjQzEqcCHhWk8KYLSlLBRd14maTanYuzqhrArqhWNxvkCbiuWypmk6tDICdrcJZwKm0FSjktIIwSe4QNMFsS2rsmS+kYxX33Zi4wG9yr70kDxuxRRFhceMRObfSJACxLoLRGUtdGIhUVYlIUFZVZSjEZXy3Lp2wJOnZ8xdJ+SsZDifdZw/PYdNiylzGyhNSi0hQDUaE0OkLAsWi5oQE+WkYldrntYBrMaYRHDyv9jTJZx3Mi4bsUUbjyf04XRrbVZm0qA1yaccWBPLiRBTDiIZYoroJMTervOEBFpJhnREY0tDkRIuJLwBixISF4kUA6HrCDGCjexf3WW+cIQuYA0ok7B6wkuvfZk/98u/xHtf/z6/9fXfY9Eco01gXMDrb9zmv/tX/hJ/7//7D6i/05EUtHVH7BzjUcV4s8KUMN60lFWJUpbFtCGdNUQvQT2lE+ONku2dLdq2RpPwXubykBLtMorSV0woA+ONCm2hCx2gKIqCrnW0rRObuapAb1qC7wjBC1nGGIyRdrTGAJLN3znJiDfWkpAMeWOy9V9ULJ8e0hQavLw/GM3OrSv4znJ6PKNxC1JIRBUYVSO+9NU3qGLJB9/9AOdKKq0JrqNeLHC2wHcaW1hil4ipVyGI+BQxOdiODsybBX/w/Xf5s7/6p/nZn3ud6fRFtre3mP/zP2DaKb7xwXd5uvyU8U6kc5blMiuRWVHDCi5gnYKu44M/+EOO3v0YE1oWCyFBmlAx0RvMPnrKb/ydv81P/eIv8hOvfJHQBpqTj/m9ozPGtualgyucPJnx4ON7tO0RlQksukhKgbExFEXFaGcfH85Y0tCmSBfBqkQX4MlpTVEWHOyUWKXYmyhQQkLNKwVUApMSSgUJvJjEC9dLQqrYnU/46M4x33j3IdUoQTMlvHyN6wcHWOUxjH5kU+i/SXn+ymIYvZ77aUpr0/Xzj1j9tcZNuUAyUqtjhzjaWkDtAlnmuTVVXLjO2pVV/u5FksrFi+ftyoUiVooWUg6uao0xvSrgD7jZtKrJaqV4sUIX7yJ/IRMl+0YZtkcDa6vfE63Ot0os+Gxt5H7Sao2f1+qDYsHQVulCEyfWPusf6to6nwtXXLPreeZu81L4Bz62ob2f04yJZ9a4/bnU6hmukgn686YLbf/M1y8+h1455EKdVn2nb/ZEViNeq2j/DNZVY9eL6vejQ5Pn/XPf91OS/aRee8b0e9peDetCE6/aRIlKyur8Mr+u6iP/kyIpBlRRYJRiMhmzvbtL8DVlWZPQg23ptLjP0ej7XG++8vyH8WNZFAftG+y4Fzgr7oKCYlzSTOcSAFaB3b1dFImla8WG1XmcKRknzWw+pVnUzFvPeDLBUrJoazye0m5RjsYotKhwpISyhu2dfcYbI6STJtCREBb4mJiezyhsQVVtUk4mF/q/UopRNc7EC5nrxSJZ7JyqqsrqNLJ280nmsaubm5SF4Xx+wtHZMbFpWDQtScH+9h4pdSyaRvavWtG1os4cgs+JWNmGiYQuNa6NHD55ii1EWbhrGj784HuUqiLqis2tCnTB3u42OgUW8yk+eOmjMZBcwBaJ8cYu82aGW8h+1lbyfm1tTjiezmm9o22FgG8LUY9WOrJcNhn7yLZQNickKQ0qUFZm7V0IpCBveE/u8T7QOy5qLevQlMSqNvjepk3UeWS8TPRJU5pEVWqKssDHRIia5H0ekxVd6wgBlFZUY8NoVOJ9ol40aITMHLJaVI+jRKJgChohJyVDCommzdbJhgHL0UqTfCAkUeFWmhUmRsbEWKlDQa9u3mMyMmf1SlxZgpaUiaXBB1RhufXiLXzbcXQ6JeKJKTE9n7KcLfCh41F4LM+stKQo+02tzIDphCgJd9pY9rc2mZ0vCErWrsHlcS+3WYpxGNO01pkwlQYCpcnK1j3GFUOisCUheFn/K7kHnQfR3qI5xpwc189dxqBVAi/EGxQYBDhSSQj/QoyB/f0dkk/M5l1OPlOopNm+cp2fePst0qLjW++8y/HZEQmPUTCpLFevX2V2ds5kNgMNXdcRg6PHXU1hKCqxZtPGUI4MpvF0tSNFj1cJbRSb26I8HEMcbAGVUtl6MQ3YnLUmk1SF1tKTVWIIotZntBDtgpNEAi2WZDGmAZsbkviiJKaQFZ56jE1rhTKgEes1j87AFuzu71CVmxwfntO6ZX53DFrBeFQwLg3epKwQL8/fqEAXE23TUVghYcWo8z3Jc0h9j1YJHzyn8xlX2o7NrQ2u1EtsEZnRMZu2fOe736VMHcp6ypGla9KKaJiZvSopdIJYL3nyyT1MnvUDEWsNV6/uEh2cPDriDxff4ODKFa5s7+DbBbOjp7zfnHOwv43GMD9fED2yz0QIYVqJqroLgZAci6ePOa8bOhe4dvUaha2om4DzgY2NSshXSNLJOrbVF51ixjM11ohNpI8wKQsOD6fUvsMmx85WxZWre5Tm4vcvy2W5LJfl8yr3Jr/Puzu/wVfP/of/YcQoAIXmy+d/lZeWP8vdjX/5eVfnslyWy3JZLstl+aGVPzZJSV9gCK0g15WCkloDu35wRmtfUkoXCDP5txd+r7UayDfrFm8hZ8zGmFaskQH4vQhuX8xYZR1B/gyw3KtP9BvX3nphsG9bq+mKoKPRtiB4R920GGtRbXfxUgNZR62fALEZSAOQBD0+rVbAcUykrC4VYhr85XUO4BIzqSplYGgtGCCb/zVlmDXC1oosJG2bUk/2WWvBIYDRQ+69ZHRaEXLoFa0kY9dk5ae+zT7T0P1nqbeI6JWm+vaXjK6VWsYKOb+owMSFLK31QEpP3hgCTypb1OXuctGmoc8CX9VWMMPcl/K99834GWJdEoWS4T6V/E7UtbNcuFIin53ioCzVZ7H2wOM6YS6GSNIZUElISpRSoHRObk6kJJLcKquoxBjRMWddmz6LTTFf1EOwSyS5wajAyIwkTJ8CT548whnFyzf22d0eY0ebNF5xdjpnd28HrUV1ar3P/FiXJOEw6eMIIGZLtLLMp1PK8YiD7VucnJ1Sn9fU85q2cczbTbr3PmR2fkIzb9CjBbdffYUb1w84+eCQj75/wku3fwo9NiQCySlIkesvH4C+ji0NXT3FpY5mfkTdPKV5cMKDTx8z2dzi4NbrHGy8iEkSxI4k0IlrB/tMKsv5wmOtJRhwvqNpWorSUJQQo+bR42MKU9A4x4OP3qPSmofTpyjnoIPGBZxynJwkZuc1nQ8EHEorfPCkEPDBMTvzlEVFYUrq8xn7typOcBw/rdnZrhhbxeIs8r2zT9m0m/j7gb29PTpnePHaBk3tOJk1qOBxzuHbFmqPv9Ggt/ZYLgLzeUPbBEgdpy4S1Yil9yzbhqYRO7ORVSgcIXiePjmmKi0xaJKK+OSIIY/mBoieolC0GaxOKeHaBlAED94FQhDA1Rghvrjg6FqXM3IhhIiPMmlGFYkmkFRgUileefkqTeg4n3cUW2OmZ+diVdY6xPV2JgABAABJREFUmjoSo6YaG7Z2DTEpZnOPKTTOeYwtiNHjOo9RmugT5dhQliYHISrqZYNrAkRNDEEswIy86zqJjYTtVQiHcU3GnRAjxmiKytIHF0wBxiqK0kqmbh5vTSmqW84FUgx0y47QdHztZ3+aP/Nrf4rf+Dt/F38+xQUNred773wTlWCyWdKMNXZTMakM3VLhraIoDI5I0zYAGGN54cUv8KWtEb/1ze8xT576bMEqcK6ILg7kYGMMSmmapiXGQEqRsiiGYIcPjuA8G9UON65t8ejxU7rQoU22O1AFpIRrPCZZCbhVAa0NlSmwhYzLpVfoIuU5DGg8Jia6BMEr9ncKfu6rr/CNP7iDN1tcv3WNs/MlL7/yBr/+n/x1rpVjjj86Y3NjQl2fkoyhTHD44AG/8Y/+S7xpOLi+RTwM+E5A5nq5oAtLdq5u07TQhsB4MmHn6i6jUUtzXnN8PKNxEW0VpkiUydI20i8FG4/EqAYbjKqosKWVgFrMAad+TRUVIYDXcHY6J/gOYwvG4wKyRYdPHpQQnpJzRN8rLAppQpYIYr0GksHtul7lx/Pyy7f4y3/x1/jW737Mt6YfULuIMSUbhWVne5vZw1NOl5GN0SYJeR6F0ZhxYuGhSJqDjR1msWbaJLSJoAK99W+MoD1QFiwXLb/1299gMV2wOD5jGR0pJA6//hj99hcoisCVvR1pr+CxpExkjFAosV4MiTBfcDJtMTpgCoMpDV/7mTf5uZ94i3/1ex/ynQ8/4u7HH/F7Nw546ZXb1NMlD+9/yt9873tc2auoyk32d7ZJZoRKGh0SqYCyLBmZgscPDomFo+nucXZaExaOV155lf3taxxsKpSVtVAkISGWnO2cemK0QqWIyVYWspaToOb+pMK+fJVvf/iI+w/Pub0zYmO8JZaL/MlVK7lI3F9fo19YZV845CLXP/HZVcgay+KzF6QnfPdWyKvDU7+k/cHnyfuLdf3P51xkVb/+HCuZn0x0eYaQP5BGJKgakh8Cv65z+aZ/0HprTRdgWNKuarh+3LNnuKAMtLbOX7cwjnnNfOH21OqHZ1sp0cdyn7PeX0sq6PdEsFoDr59jSERg9Z1n95OrfWca2mF9uzDsYQYFpTUqxjPdbNUXfvCmVT3bDhcOVaz6Q78PWfXX1SfrZJC+HhfvLw39ZG1HspaokLkAQz+6kJTyDJFKki1AMkdMbvL8fFErhZD8fb2q1IWK99VMKJz3EvxWGpMJJypBaQxGacaTMcE7jo8O2dneYDyqGG1s0naBtu3QY8OHW/+Y3e42VdxaPesf8z2FTgUvzX+e6d5DYgrEqNEIblCVY1CWZdPQdU7UfGIgAEeHh0IkcAodHa5o2drdxHULuqah3N4Gw0CUUEqsXkOQedx1Na1PdMtzNI7lyZzlvKEaTyjKCpVEHQlt81AUmUxKqsrSBtlD20KUm1MKpBSEnKYNs+mCwhaEFHj68C5GgU+iWxy9KDu66HiwPBJiAjEnB+T5Lga0Atd0WGtR2hC7QLuYoTV4L/P95gjG4wmLpsFYj/aRZtqhEavkECJdEEzBu05wIR+BQNt62i7hugg6spjWQGKmHQFJ/IkhZkKe3H9KkRgSXZ9slpSo4cSMOaFkT5AVuXusI4Y4EDmymzPAoPCcYsRHPxyfomA6PZkg9YqZKjEelVSTimXdYJPGK7ItXULFnIRlNGWpUTpmWywyziE2zT751TifFYyUFkKIzxbWxmS7s5hEWXZQqBPSAinjOxcGafnZWENvlwXyDhuzwjkyfCdr+iD2ZCqBsYZbN27w8u3b3PngI7TO+I/XRNfQAKU1eOdQOmEKCD6hAv1ANCjEKQ1aW8aTDer5UtajrWeYW1Qm1/TJgRnH8S6Iki1R1GWjkOYkmSOhlWF7e4PFYkFyHrE06+cjRQoASpLFjFxLjCzzvsVmQn0/cWQ1LBmDs60ygeQDI1ty7doBdeuoqglvvv0VjDI8PJuitKjO+ijvT1s3fPtb32IyqajGhrqVeuh8n23TUKRC+oFRGBOwRYEpDZPC0s4bmjYRSbRtm9te4cMgJ7sG8eY9VGHWMED5TK896xSh6zzQk5qs/DvPZSnbRidSlo1SohaYIbZ+4hYMUgh1MldGTFFw7fpVuqnD9POWEsW+7c0tqtGEetZidMWotLjOk1TAFAU6J0we7O3iO8/R+XkmGmbcsyevBUlr9K3j4w8+EXtHH/ExYq0kCoxtxe7ODkYVeHeKcw6jdFajkvr2eHUKERc6PAlrNEppitKyf3WXduk4my84e3LI9PCIJ7tblLbCN0uOZ+ccP3pMNSrY3txgXG3mdylhcp+ajCeoZGg7RzWyeOeIrqNZLEhVYqMqUaMi45y5/elf0X61uFqvrBO3e6hxd6uiKiyHs5qRhp3tEYXRz1lFXpbLclkuy+dTgu74r2/9b3hl/qts+5ufd3V+ZKWIE3756f+K/9ftPyBq93lX57JclstyWS7LZfmhlD++3VtmafQwZo/tK5WGTWafBXohV1YBrAgirBFynmcvtl5k/6qyJ7yUmMEGEf8Zdrn5wxVIgIrPnKsHyHUOSKQ1/L+vUwYVlIBTfXZqbxY2ZI6lDH74SO1qjFIYq2hql8+/Bsbn4Mhaiww1lq1iT1AZkJ7c3jG3r84BqSTNqLIPfG6TIYNNg9IGla19+s3pqiUBVipRwycpkZRIT6usPZ168le/mdc6Z46tPXsUMfUbXiGxqSwknNRFKeHVlnj1bblVCXQKKJItcFTWQVqh8QNxi5S7YX7uq/7T1zUfm3LfUH3/XB0m95vr1R+8HlzKn6+D52I91LdgH4xJub5KEEktJ41BrfoJ9IJNoFZS0/2z6bscWcEpJpODCBFiJk/lwJHRKgMeavhfayNgjkpYbaUvRYhKzqGMkJesVlilqIoKrQsUinE1Yjze5K2v/TRXr+7z8N5DDp+cU1awv21IwbFcnlMVltHmRDLG1troxzOo8Gz0SgLCGnChZGf7AOs7zEjz9PiUp8cn+DgjqYQjYWJD8jWEQKUqru9f5dG9e/iYKItEWUxofUPnHUVRosv8DjeJJw8/Zrw3YX5+xqPDI5rpCXtXxixPjpnXDRs7N9jb20N5USXRVpNQBNUx3vBcf3GbbjxnMV2yOd4htAlXGKqypG5rbDliVi/Z3iooC83Hd95jXFp2929y4+Al5idL6k4xc+c8ffyEmBxdcMTksNbgY0thR6gUmU+XbG6ANoau63j8+Ag1GhHm57TLmje+9DJPZh3LuuDW9W3Ojmf85NtfpjYdS2fx0ZFQdE1Hs5yjtQVjef/TB5QPj5jPOmIMtEvHYd0BiY2dhPcdXecorNiiLecOFzqUzRnQMZGCI0boWk/CSnAiv4QheJzLGc2dp+vCAGCnbKek+/mBRMzWYv24J9YAGo1FJY8tE3t7uywXM5ZdSzEqKKzDeQmAoGE0HmF0Yj7vqMYlyiTcoqVZ1Fht0AjIazBgIISOhGSZFkVBs2zpaiG2gMYUCrxI/2urwWULNaswStPUHUmDtiaPKWIpp9GYICo1ysjYW1SFdPGk0BZUJryk2iMOYGJN9wu/8nP8T/4Hf51/+k//JQ8fzlAjh0HhMSg6VJGzl0MiRkdKWqwpDbgg9qdFWVEW0HaOe/cecGwUnfLgPG3jZKzWebaNa6HTEAhtoozgg8fpROok2KViwodIVAlb1JzXkWQjtg9e5JnHR4Wo00SsBWOLDLLL2261RZUapUW9x3d+eOY6gcEyO2/5zd/+Q3aKG7z66mu8/PJLLOrIn/mzf5ovvXab737rEWfBMil3GY3muDClTkvu33/M4ckhN29e4+x8wXy6xHshHkcg+UQ97bCVptwcsZjW1BuJK/v7bO/uEKJnVsu8Op3OKY3Y9TknILQoFyZAo6yhmliKykgAKYk6lrEWaw3WeFIU8lnrMuGZRNN0eOcw2pKyGh9a5zUFQrxBFLsMmdyDIkTEBiUJUGKMZrZo+c3f/F1OHixxIWKVZbKzw+s3X+EXf+kXaRrFO9/8Djt7Ozx8dMjT48eMSsOVzR0OZ0t+4qtv8/bt2/wX/+U/5uzj9/F+idKBorBCqHNileJqz3vfeZ/C3kGZCpMs2Mita3t4DDdvX2ev2sXouzw9PEbhRbWrMOAjyiZM6q0bPV3sqMpSbFF84J13vs/ZyTlnx3NReeo89WLB0+MjTCqo5y2u61iceTa3R+wUt5lOT3FxjkkSyL/92k3e+sJX+fjOYx6dH6NS4JXXX+LLb7/GyOyiLYwLITalvHZSikElT9YM2X4kk5JSUtkeROz7tEns7Zb83Nde5qxpuVpV6AIsHp8S5Z/UaXpgcKRhbbf6jIFsoZ45XH545uChPDt/Xwys9iQhtXa4rMNWRI0hmJOePW9a+/f61fQzx1y0SZMTZnrKQL5Z+1itHZhW5HWtVX63/ug9kmwvVN4rrJ9dXThmfQ8wbN7WfitqABeVVnuC44XEgP7Pnni0fp18p/S/1evPVa09A/l5/c6GKimGPVy/PJfbW9s35OusAmzrkbb+yNUCvLc6+yNb8plAfJ+gQt8H83WGNh4Ce+tkufU6rvpBr8i0/nhWRKKLfVb1H/aEo9jvQfLeZP2e8zEX9o5rNxlzB1eIKrHsd3siGjnhpf++Gu5ZKSEohNDb+aySKPp7662RYpB1oFIGows2d6+wu7tFvViA0qQYaOqaqMR+FQJhHHg0/jZfmP+pP+qJ/Htdnh12E2L7tuVucV7cRxnLxtYWrfYkoK47lnVNSI28i0FBCJiqACU23rt7exydP+WQE2yMonzhZe62RZnXcrI+mp8cY0aazrUs6poUAuPNEhc8SWuq8Q6jySYru/se8/CgWyY7BbEc0TYdZTUieVl3OhfoXAcm25ohxO6maTBGsbW5y5W9K0SX6HzCxY7p7Izp9Ay0wntP8JI0FBMYbfDREzrHxsQQS0mGa31EW0P0HmMKjAVtLEVlSc6xs7vD9sEWtV+SlBCGgo/4zsn7Ygyt9zx4/CSTh0SVpfOyD7eVQmmxd9NZJaZr8x5dp0zCRkgMSSzZQohihxZXhI5ewTKFnFyUX+wV+iTvVK+ktPouoFJWPVWQNFpF9q/s0jQ1jfPEJj+ZlK+b5GnZwmRlZDXsS1zXQd43pCjziDUFMfls57YigbSNX6urEuKSVWgtJKyYbR61UngXhNihBSMSlW/5LwYhHOk8Vhhrhs+UgqSzWpQTIkivkrq9v8lXfuI1Zuczjo5m+BjQNo+kSgjYIYladI87xdir2sk+QyuNsUYIfb7j3pOnZAmglQK7WpuL8vMSIloQq8KkmPtsdd0TNKPoJycVmM6nuS2yghZ5HsrAjVJRCEpZhakHoCSFcGVtmjKRJ58gK+wojk7mbI93uHbjBcaTMVs7BdeuHXCwu4HrEnsHVzg7P2e5aEg+klJHGwJq1hJbT0pa7NWyXSD9+B5Fodkag4qKkMSOrSpLkg9ElfA+ErKdnaInIZLJV3nSU1qssjPu1L8nKWVru4yzKS3vs8pJMt77fO95rg6iNqWMHjBGFMOz1cOaQOc1j1jiKa0hJu58fA9covOy3ig3Jtw8uMULN26ysbPDg0/vU1YFRM3d+w+JsePWtWssFjXjrS1uv3CLD7//ESfTJS44QgwoBUUhfTcqUQ1r6g7fejAKhQUFezubomy0bNHGCOFL9880EQ3opFbjaOpJXqJ6HmIiJc9i5vnuux+K/Z6PeC/vyPnpuah6xUx8jIEYOsHf1JKmSyQ8KsHe/iZf+uKXmE877j58gnc1sUpMdiZsbG2Lytiwxl2pV6n02fXTsMDK+4ngZdxTWp7HeGy4MdroDQLzeu+z89xluSyX5bJ8XuW0/JRv7v8/+NNP/9efd1V+ZEWh+NL013mx/mnubvze512dy3JZLstluSyX5YdS/tgkpfVMGpGTTxdjAgM4nDNVtB4ADTkBawf3X7lIdlhlx8r5ZPO/fm45f0oXLpy/qzMO/oOg6JW6U09OWgEOw52RQ38DKPxZNaEV8KHyJm9lcafonBvO07fLhUCLWoU1hvP2wDw8E4DJgFdIA9guKsgxAyGiTCHBaAEMexnr/twCjHkhAcXVvQ+BkLWUP601yoIKKWcCxmdqso6wS+YiCEjRW5PFIZaThgzq9efWt6PuVT/oVZX6FhAbopASPgQhvg3XHMJAQwYj+WeUHvrFs0EDlRt/sOxbf+wMIaThIan19sj3dfGMrIIt+T1IQ8Skt/rrM53VoH5ljF59N/eFoTIKCbwrjY7gnRewOgezozZYJe1W2LJ/iCilKArFjRsHPHr4lJAgJoNOQmIZFAe0ZEE7FyjHE1qvMK3n4ZNjNq/u8erbL1OoMedPjzl8dEhSEFQg0LCjrrI52cWaPz6n8d+3ciGEpdbClQlQETuusNUWy5nCNS1Xtkc8PO5YdA1aGapkmFDw+N4RZeF55aXXscWI5mnHp/cesF1W6NhiRlNcu6AoSlAdRAWtJp43PDp5wNwvWDQN42rM5v4WtfOMd/e49cU3MZNdkRRXoi6ik8LNznj45EP8qGb/2pjJliEqw/boCnrR8vDBYyplmc1m+Bg5d1MKY9CFYdF6qrLj+lfe4Ctv7dP5yOH0If/8n/1jDk9OJRO661BKbNGaMEeRaINny0cObl0Bqzm6+5hp54VEpy0dBaiIUZEHRyf4Dh6dP2J0sMXdJ8fU3tPWS7pFhzKGSEApRfAd0+US37W0vkMbIcuVI4syhq71KCydczTLlpQSttCUVlQC2tZJME5bYoC2a8XiKogCjzKauu4IDpIP9KoFaLEx8UmsDXyXcG3INm8CxAfnMVaRhFcJQVGNKq5eu8annzYcn84z0K+EpBPEYlElySjvg8DeaabTc6w1lEVFKi2uDag2UmDxXtE0LS542s6Q0DStwzuHthofA+WoQBeakDw+BpTWWGOJLhIz1SrFnMEawzC2UFm0UdjCgIfOd0BEa7WyPwiSMW6KknE5wvk5T55+wj/5Z/+AP/zWHWb1krFVRDw+kgMUibpxmI5hngpBgudt63CdZzyWeS7EiMbTRFGqErsLee1SFHvJVTBWgj+7+5v86s//FN/+5nf59PQMlyIYQ6AbQOGmaeicIwWxhIhRbLUUGqtEPS4Rxe4tGpKROVNHLWpMQUDxlOS5DRm/gFWBIhn2927wN/7af8arb3yFpq65cf0a165uMTaen/upF7h588/AsuX46zNc2xB9S+MdXadop08hJLEL7DwxRYxV2EJhCoUuFDZEktFsb2/h5nNq7zGlxnaaum5JeLACKKeUJGs4KwigEmVlGU9KCZF4jzLyXtR1I4TWbLWgc2AsxoR3cVjr+OQgB91MISRY1Vt1EAgxq/flOUWcZhOIAADaGJqzBZ9Op3StIqmSyZVt/tr/+D/lyy+8QTEuOTo65y+++jKv3X6Fb3/7Dv/wn/wmv/yLP8PrL93ifLbkxS+8xLt/+B2mnSMZURqIIRBQJGUoR2OWixk+KXAFKili6rB4XvnSK/ylP/+r/P5vvsM/+o2v5+xfT9PNCd6RgiFEhSHbMqxN7SpFQvCkZAjec3zYcXY6ZVQUqGQBRb1sadoWa0tU7K2QIsvZkm989/uENCb5RFKe7Z1N/trf+DX27Q1OTqY8evqA2XLJB5/c5+VXn3Jzb8SNvd1+shnWA7L2CHn+6RfDIFoLkRQVjx/POTyesXPFsLVnmRQjKluws2FZdo4YLNvGYKPiwmLzT1AZ7mxt3XeRrrF24HpZW08/52hWK7S1dn3OEWq4InkMeebAVdPn/n9xX7Fa5qZnrvHMXQxKPp89/TO1zZfq9xbIvOvDxSSG9euo1Xc+c+Lhn6t1s7RHWl/ODsf0Qgpa9WpPEozUSoL566eOMffPZ++t376tNcFg3Z3HaXVhT3CxDYYf1PrvV+NweuaAPEUM1119R62+kZKsI5Bg/nC2C9dJ619ee/Z5t7Gm2pVyG3LhkDSQiT5zTtZpSOrCM7l4sVWP1H2yz9A9V8fH4RxqxUkaPr943mG/ldJg+9p3ViGYyf7aDMqrogahNWxuTTg/n9Fb1Q33sXbvobfZ1poQoVIwOz8jpI79vU2sGdEuG3yM+LYTm82kCZ1hqh6tVfV57/GPU5FnZlLJ2O8KSUnL/qzrAjEFiiKhTCR5IYIUKEZVxdnpnKKAa9euMJ3P6TpP4+aMqxJSYGxbYnQoCkTpSKGUYTSaMKtPaEOHMWDLMeNxiXMLinHJxs4uSdusfJbolU/a+Yyj08d41VGUhmo0YbFsqUYbaBeAhqLcYDpfEEOkCx2FNWIN5mGeavb2R+xc2SIhJKWmW5KIxCBWxT3GEkIkEIZxRgOTzTHdYknbNmhtMcYSKfBeU5qSrm0JIfH05JROOZK2NAtRoIrOo7SouIQg9ubeOVKMMv/npCitodAa54OQA1LEO7F8M0ZjMKQIYXjbZP0evSgshRDF6sloQkwE3ycyZDIGQq6IGXBJAbGGS0JFloQuGUMHTmgeH5d1h3dCcAmxy0pBRsaumPAuZFVz8p7C0LkOpRS2KAAhCwUfCAF0sni8rN1CT8ySdaM2Ms5rrVFai6pUr+yU5Y36xEJZlqSVwvX6K5sSWoEPK7K6zgSZFDOZtTCCVcXI+ck5v/PbvwfK5AQalQkzOekrIeu+KAqakiSnEBs5WZ9HJZrhMUWMNqK8FUQFKwM+8uYN08BqjNQYXrr9Im5e0zx5is/j5EBuymOx92HA9rRCiDdKVC41ZIUgUEbaMOcuklLI+y6d18lpbYxWRA0Fiq3xBj/1ta9x64WXe0c8isJiVMRUihdu7UK4zcn5Oc2iJkVH8oIFdklTWVHQDd4PxDJrtdj6GSQhAVBJE7qWRVOLolmKxGxjJ6p40i5xLUFRbPSUKAlllceY1Y9CDKj8bqQ8twwcr6EN5ZziBpqG/e+w5lM9na3/WfBGqW+PvSiI4BsvSk/JYkaGV7/8Orevvsj0fMrh8SF7V69w/doBwSVmjWdzc8LtF28SnceWltOTM86WCyIelZWjEuBCxOQETBFRU0Sl0Mg+sBqVvPTKbdrzmk/uPObe8WMUkuwUkUSW4BVBiQJRGjIYYbjZjA/GmGhbh9Eeqy3WaJz3+Daijdi062GxrqmbjmUSm1+lhPB09WAPYyLL5YzQ1Xjf4rxluuzo3Cn7W9tMqufbO68rJq7+FAy5bSKPnk4heTa3NZNJybiqMBgWjSQZTUYFI83F9/6yXJbLclk+z6Lg8fg7n3ctfuSlipvsta9ckpQuy2W5LJflsvzYln8t1sFgBdD/zJp1mOqxxtWnSucNuvzI83Y468SVNODuK8sB+kDSQFJZAQkX4eoMP6+RiS6e+9nQxLo2zjN1GTJj1jfca3VWchaNJAtba7FWGsCHKFkpPKM2kwTAykjv2mcrIPnZdgGVAQA1gMW9THKXerBIQJyYRAIbrTF6pbgDfRZg3z6sAIGksg+5ZIoJSGdQBoyRYGjsCVi9SlIOjqxXV5KfIqsMnjW4PPVQxEVlq1VGoRqy1KS948V+lVN4h/bK5+ufi+5/H/tMnwS9zdp6tCSt+oOAhRlVeRYgTyulJWmjXq2KzwayyOEQ3QP4ei1g0gevcr36bgWE1KtkrchK0q56uLcY5dy9XVwKYuWntSbhhz5jC0vnPEcnR7jo0LqEQRUmPwe9yuZUGFIMjEzJ177yZfTI8P677/DG6y9zZfclNvausH31OrPpOU23ZGtnF+M0vunQY/0ci8YflzKECVdkNvp+IEBdvQycHHbMmxm6mqJSTaELGtdR2chko+TJ8TkqGJxKfPLgUyIaX7dMuw5djDDtEefzB2xslEzP5uhiwmRzxNXXv8CTdw9p28Abr7zCed3S1I7prGZvb5dyUhBUROfcNtD4sOTj977De5++i922WBO4tr/HR58cchY8B+WE26+9zNOTKWefPMSkxO7WiJvXb3Ln/n3KcoQPlqhG6KrClgG1VIQUSQgYrrXGmkKIFUEk9sflmEXT8eD+IVpbZmdLgjFsVmOs1Rw+nrK/f4tr18a4MOfjB+fcv3PCzrylriNPz2vO5+eUxqKioe2tq3xHvVxSGIPzntg5qsqgrGI6n4r1mkcUkXwmTKDxnSekQFmWaFMQk6i8OCfkTNdKhqIpIYUsja+inEOLQozzPpOVPK5zBA/EiDV61Re0EmCfBBHmi4bvvfeRBHKNoigV2mRgXQno7zoZ04wFRcFyHgheMdkY4aJnPCqYbFqaZUe99Jn0Y3Lw0VDnAExhdQ4gSADAeZG1V1pR2kICMUSUMYSIkFRCGoBzU0jQoWsaSAVJSeamMYaqGhFCIHQegGJzApVlYizL2Yj3v/uEj947oe5qTJmIdbY3MBalRL0vuERAwGdtEkQjagsIScoHsQ3UVmNtJDgByZPS2KqQ8Sl4IZMpye7UShFDou4Sd56cs+hEyYeYJCAVIWkJLMUQSUFUsZTODpn5XSk1mKRYLBNeQYydZH0rBckzZLirXslOoTNxNhlNqzVjW/FXfv0v81f+wq9hbZWtORJKGVLUYCObu9uUOzuo0hDbSIqeqDqg5OrBAXs7Iz765DFnZwuCj9muUaEMxBBocn98+ul9JrYgkghtH9wLhBhR0cv732fyZuVEpROjsc39LEFU+BBwQRQGjFaopDDGEkLAqJUVYEwQU5BZPqX8DPLaTfVKiWSygsqk5CT1QaOSlqCaB6cSUUHooCoV1195gZdevML3v/173Hl6j4Mrt/m1X/l1tsbb7FzZ4ks/8SZvfO2r6C5wY2+fj+58yO984+vM/SlFBXgh6tlsS9I0S1GYQKN1x+7+lpByNZhkee979zk9bol15KyZ4pPYv9hS432EIJnkOipC79JKwmgt5E2lQRl8EuJBCJFRKQRo5yRAmUKLRlGWJWSFqZASUdUUKoFOdM7xz//Fv6Q5cxw9WRBdjd4c8fZP/ywbox3ufnKH3dGblJPNC2sQGWnM6odhmShqb4lI0JqPH55Rf/+Ymy9avvKV29itfaaLxLvff4Axip/9ysuiGvXvUVkRUdZ+wVoTrH10IeHgjyj9nmKlNkNeQ7IKmq0f3+8j0nPWhj+onhdqt17b1fefDRJ95n5Y0dK01oMI0TrBZzj72qn69fjzSEwX6tjvJ56/5JXgLmo4X78Cij1RCYYv6mz7uP4M+oQPIV880wRKVJli7M2o1Ro/v08Iebb6+cufbeh87KqeqreS6VtIrdoTehWT/lgykaA/98UL9FuICw2dVq0pdb34jHsS2dAGFxo4rZ2PtfZf35eu2lHljfRATFsjSPVtJmddJVakVateuJF1K73+eJkrVA7KxqGuq32y7DlPz86RBIt1pTCkVVV//nyplBgXFbdv3ybpwPHxCdMU2d4uMUVFqTVxNKZuGkblCB01O+2Lz7whP65FcRFDUEMfCR6aOlK3DXYUIHpUEgW10ojCjTEmJ600tK6mKAtiTNR1jTIWuhmzuaawB8wXNeVoQlWVFLqimXpiSNy8ccDpfMr5+ZymbRmPDCm1uR/bYW7xvubo+DFn8zN0YVAqMRlV+C7RNQt2qg2uXb/Jk8NDFIZRZRmPC7a2djg6OaUoS8pqi3I0wsWOEAKdb2naRsgtWvbS1pY0TZtfjdU6ZLbsYOmEdJEJHsqAa1vGO1vs7+wQ3YLzeYMPYKIlJY3rIq4NkDxKZfuyBEpFgvdCRFDSr3vihXOdzOXZvlYI/TFPD0neO60xRgjvIaThvGmwfZMxU2sDMeGCrHXl+ABKYYwSdcZ83ohgJXmBxTD4ZWJIXS8Hwoy2BqOEXGm0Edwpr0vkTBbXBZwXVa2kMgHLalLUtI0jhCSkK58yaUvWg/1lVU7uiqFPNoPCFkKI8j6PRamfJIb7ENxFPgshZOJV3iNp0TANPXakoSgtxiiUB3zBbObp3FLUSx2QpK+T12BxuM/V+6NlIhH1Jr02NqokxKDcnioTb2KepPp5tFeE8z7y0Z2HFEoRU17zBrEuVnkvt16ySDYGRUwJYxTjUUnTOHwXZX4Zllp5/kkJBpLJ2hpEKaKCqBRb27tcu3mDssg23Ei/AyE8xZRYukhAnnciDJaAprDsXdlmNl8Qp0uiy6hmVpyKQYg3RmnSoiVqRdJK9oQp41ZJ1vixx+bWMFalEkVpsVYszWJcWRv2U1rqCcAx5vrncyaV+6fsg5PKfWu4RH6eWcVXXfAcy3NqlHnak+gzHw2y9miWS+58+D6LZsHu/hVGu1fRytD6JZPNkus3D1g2HW3dMp+f8vTpIXU7R9uEDpJE1OOUwYuNPcZiUmRrXGHLESHCxuaEw4en1AtHiKLw67xgb6UpcIQhobEfy/q5XStRNRP1MQh5QZX6tUTe56qoRIldKZRZzdFy2kDPwk4RPvnkAffuPSYGhQ6gC8PW/h6723u08yXBO6hGXFgJpIur1XWKP/ndKSvNZKviyeMl57OGazc2qaoxMSmWTeD0ZMrNG7uUGxWX5bJclsvyJ6YkuP1jrMh6WS7LZbksl+Wy/Ida/vgkpX4vli5uc0SGWoKnQ/ZqT9RYI4U8D45cfbZ2mQzirpNsEnGw4Oo3yTxTj4uqTGuAdb50D/72313bxQ116wkYaoXgXAD0UwY8VgpAcs0YAykZ+qy0qCKDTcJ6AOqZn1cBiLU2GNp5vR36zb0aMt16yeRIzDyrABkwEiB6ZR+ijdgKRZ9y1pzK5wo5M06vAVECYOkcoO2vm5GX3O4KkgSQ9XoD9RvsPriZQaEsufD8501PxRFgRCmF92EllQ3Dxn34xgCs9xLLDH1uFazoA1FrG/TUBxokoNB/pNfq1dexl0qW57NOolrrI2t/x6wapnRu89TbTKwUnkII+XlePEd/PbG0VxmXWNPsym3ZZzGu+p0E+6OCWRDQ2mozkKPIpCTI5zUmW0zB7u4er331bZJ1LP+w5uEnD7Ev7VB3jt3tMZPJmNN5zcRXbGxMUPbHmaAEQ9Bo/Vc9oJZBvcKWOB9Epn3f4utEFwRwHE22uPHiixTFJt3pCXtjRzPp8HrMvGk5n89wdUvn5oRmge5qHh0ec/uLbzIeb9L6KScnh6RY4FrFvcf3WcyXGA129oR6fo+WTXa3b6B0Qe0aTo7v8vDsAW1oqE8h6kS3iEyKCW3bUhU7XD/4Ip9++ru8cOUFrtzYRpeerlVs722xsTPh5gsvo0eO73z/68zmM+49uMuTx4/xocPYbFFXdzR1l2XSrVgNWE1QhuAckYLkIk1oqSaaYmeLr3ztaywfP2F66rm5vc2bb79GNVGczc84/da/Aq+omyVt53HOkZKAz9YaolUQFFZrrNWQIoU2JKvpgsOrgEJUwWKE8aRCEWmaDueXaG1pG0dd1wi0mbOavQQUfOdlnAySLds1jpBEwS1mu0lTKlwXCSllZR4ZW1WUzGhiQpmENULqaGqP95aiVJistqRUtuQLkRg99aLBRc9oVIlKnFVgYDQqQQus2y4DRVnQti2+Cfg2DHL5ZWmJSdEsO0yp0VZRFiUbkwnz2SzbWmQlHGQEFN6qjLAkAbdX1gUylnRtS3ACqAcn41g5VthSM5poTLCcTxe44NDaIu4REQyUpkLbRNO4bA8EKfphnp1MRmwXGyiVaLuOzkkWetc6IThlzl2MQcDaPN+MRiUxRpz3zM5mfOed97FWVHCUTjiTKLTFGDne2kJsD6JYZQafSE6IRDdefoHdq7t877sfExaNWFjEIXIgmcQxCemrZ6j2WaMpYVUgGKgLy0IptnRCpcCw4tGaQOL0ZMmDJ6eStR8dUUtQ3rnI2aJltFWwvTNmPl/iPZA03kG9cMQYqMYVY6OxKJZdR3C5HZXJZLooRJso1jmS9SwWGpPNiq3tMZONMt+fWOGFpMBk4kBWUNIS7SIEORdIQMhYIbyJ9ZusNWIIaLNaMimlSdGTejO9lEghZ2EjamSogLUFtlAcfniP/9v/8f9CoQp+9S/9Wb72Ez+FsYoPP/mQTx/e4ed++k2ubW/yzjuf8I//0W9xfPwRjTtH02HKRFLZ2oSENQrtFakosZVhZwS3ru5gx9u88ZW3uHn1JoulYna8wencs2w8hEiFEOHmLDHZQsR7sfkzWpQPZGqL9CRulYTEF1SUIGsAkhAcrZHAjdayhogxoULAWLIigGU57fidf/Eu2homRcnWaEwsDffv36doAq+/+DKT0egiseDCxBPz+k4s9TRWgsoablyveP2Nq3znHcd333/M7q3I9lbBxgSu7u4xXbQc1y3TOvDC7s6/5bz4wynrwarPfpbXj8+QMC6U/zZ20oVjWZE21q462PqubwfW1gGDqOkzl+q3M2rY6Dz/ohf2Dv1pLm4o1j5d1SsOQew+WWO1du3H8WGNt36u57J91hpg7V5Wh1/cm6Vsb7NaT7NSzxj2RDIGExmCj/1YEGNa3WO/pobVe7Vea9W3cR/A/GzdpZusEhrWWmE4IKmL31vZjjOc98KW75nzP/vsn1vWt5bqOW2celUI1p7PhY+HZ5YuBA77fcT6sRcoVyvBqme20X2ix3pyxPpzXe+fq2Qi9dz69deVqVD2IP1ecXgjUp476N8BlRNiJGBqRpVYWC5riJGmWdK2js2NMcpoWhewpWI0KtheXP+jWvvHoHx2P5FIROWG32pr0BbcwqOcJjmV8ZRIpGBn/xrb24F2OaesEttRE5Nh2TZEDZ3zLEMgdAHfNLTOs3/1GmUxwbsO1zWEqHny9IxpMyWGSGE1XVfT1GcoCjY3dkEZlk3NYn5CEzohsbmAT5HkYWM8oZ7X+EbRNOC6yI2rN5hsjwix4eR0ii4UuoyMtwum80Pm0zPatqNzHYv5QtYyWvCRtm1yAkFPRJFxx1rZqyqtEMfzhDYw3qgYbYzpOiCUbG9sUowmFJViPClw8RPmzYLgIiH6FUmpV0Luk4zyXs57R1kVWG3xBCE8WYWIo3iMNhRFKYqtTTfs2dNgj5Wt0ZJgJ7KOSnnLLWvQFFK2e5J3VBvBOUS5Wg84yQrPylhP7jkhJULnCFrlJKk0vL99e/nO4ZzC2JXESULIQVoruSc0MXggk6yiWl3PCPHH+UBSShR4epXNFIb69WqBSgGRVdJVijAkzciYEH3M69Lc52NWsHPIel9FIeU7B4jalc7jVK+8rq3O9nxrc19ajW3jcYXYdwdZD6dsJZkrplRPhl3NP8YIMBNE4pXYtfhCLL0MCq8TuhDLbBD1KpA1IEn2iWRlH20LJlvbOGaYtEZ269cZz841edzuk1uMEuIW1hCUIhAxqyFjKNFHzk6meNdBDFncVZFCom46Dk+nTEaF9I9+gksK76TOSmt0KfvoEEUtTKRk8wyqVvZ9MfT9UZJybGEoK4stdK6WGTBCmZ/SQJrtlRHFHrT/pdRV5eQI+V62GOzXYhewuTxHKTVYz8m+PWVLOVAWdEzcff9jSIprL9xisr2Np+OTu3eYLRZcPbjG7nhEYyKffPSEh4/uklRDil7mKa2JQZSgdMokImXAapQKhBTZGBfcuvUSV/avYrCczzru33vE0fEhIS5RMSA70ZzckWTvrmSrRW+fmhhSXfMeXNo4iBk8MjSogeDX329+uQb8VMYtTb1woD3GaEa2QCmYn0/55M7H3Lp2g43J+AeucfJuHxD7vwHXVQqtE3vbBSnt8fjxKUfnHXtXoFCJva2K6LeYLjuWzQKuPucCl+WyXJbL8jmVa+0bn3cVfuQlEgi6/byrcVkuy2W5LJflsvzQyh+bpBR9zEBoIq6Rd4bNTlJrSRvDrhzIm7a1vesPiE2Qz4RSa4QI1QdY1whCaV2JiAFESRk0Sqh1XPtCVGLdnkFnZYA1V7PVeRUDaWZ1jbx5HMByhiBV1zm5a30xe30VcAGFXoHZ+curDN216wzhT0gIWJPW2nM4L6LAEGPAmEy2QYBOFaNIqBsDiF+8sWqNiKVRSkvwHlYZQVHaR1uNJg7tn/KOuycoEdMAjsj2O2/CQSxiyJvs3JifAe3Xn3mvMJWv0wdp+kzgi+QutUacWj3jPg+9t6jTGVwXIGDoiHI/GQjogxs9QDIQj4ZrgEiM96D+hRCLEIVSumilEHOARDFkg/WAXn8dk4PGAjZmBaos2GJyAMgakXjPdywS1PmWV8GJnCmHXFdni0VRM9HoBBqDUgajNBohOmijOe9mfPzpfSaTkv3Nfa5d3eZkOWd6OmVUXcEbCEkTkyIWYLUa7vnHsgxBJtVHefLvAym1REpUWVBtJdTjhm5q2J/s8Oj0iLZecDRT3P7iFX7qp7/EfPaUR6cfMZlMmIx3ODo5hug5nTU0c3jc1pyffh1ValyCn/yJn8lS9XDWdfzzr7/DrJuhiWxtjFFhxscffYcr+7fY2iiYntc8fPKQ5fyYuWsYbVYUJA7PlpzWC25d2yJGT9Ml3r3zKaoyvPriW+xc2QQ751vf+jYuLVi0HY+O7vDhx+9Rn0+ZzWs61+C7Dh8kQ7Sp5yznNUVRoTW0nce7ALXHLWtUYdBorC6wVclbP/E6127c5MPvf8Kr11/l9V/+eVJSzJxje8cy2nqC+nYiOBnHu7qjaTtAFIK0UZjCEIOj0JrgE9VIM7myjR4lYuiIaLa2R9LHDWxv79A0LSdnC7zvGI8NZRlBjXGdRxdZTS5BdJJdTZJRNkRRUSEi5I7gGY1KFGIRlyJE0iBjn0IaFGlQKQctRM2nbRpcKxacg1UkEiANLjKbLlA5M9UYDVHTtiFnSsNkY4T3EsBBRbQRCy/vAQIheHwnSn3aaJJWuM5z7mZ474VolMAYRVkYVEp0TtSWlBaFLKOsAPuIbD8KsGIvaU1B5xzeJ1yKmO2I0hHXNSQiZVlSlJqyEOup6CNt0xKiFysAAxDRSbJOYyanjsYFIYhaVmEsrvV5TBUbsZRVgbQyoOV5GKuITq5fGCh0S9AFJhk5b5GoRpLBbkyB0QW+C4ToaLoWUmRrss1y0XH306c8Ojoj5vHPRbL1h7zqmn5to7NdiASrUg5IqWgpxiNeffkWp9NHsLHDdrVNUAlNQGExQTN9csLhk3uEZiEKSDlTOKbA6fkJUdfoLmTLBYR8BvhsQ9Qpx2Snkqu3jraNkHwmIWd7Voeomvk0rGdsqZhslphC0flseagMSmlRRAwd2misNaKO2IltiTwfLauLHOcSK5BI4xq0tdn+RyhvPdAtGcJgi4IYwCcPOZPdRo3WFosmGXBdy8O7nzAajfkHf+8f8tF7H5A8nJ83fOknf5Jf3r/KWGtuXr9BSGPuH83Y2PaMqgl10wporyPGiHWELTRaF7joOaod27rlL/3S27z1+i9SlmN2xxNee+mEb319l3/yL3+f47N7JOepVEmXPI1rJQBfGlQmHIWgM7G7t3gV68qEyZYeEvQKWWkyxYSPXrLTyco3RhEpwASqokAFlYOfGpUSnkgVYHl0xHxjh/2Dq9hhjfu8CUkigo1TPD1phHSHY7Jdsb9Z8vrLe2xONvmv/skTvvPBu1y5VnEw2uL1l3b4nW/e4+//w3/JpjnjP/vv/ff/Xc2Q/05Lis+J5PUEin6NeXG5lYsaAoH/7SWvu1X/r/7XeX5fJ6/0f6wRa4bwTh+VvViL1RoxKzoMwaln65b3Tc8ugtXav1YkJPkghLVNyYXzXVwLD58PCQGrW3x+x1qnfPVhq9TfUc/Z6oec1T5kINLnh6J6VcFVTYaki+H0apgD++fwmec5kGf65/6cKj/vLoa6pVVfec4tJ1g5MK993hMWLp6LYY29OnilcNW3FEN9n72XVTte/HTVtsOZfsA6uq/X+jNibf+zRr26eI4k65T+i736lcovy9AfepIZK/WpdVXaXiFlqE1+T7Xq1SeEsCF2ULLuUUpRdw1PHj+hMAXjsmR7d4Oz+ZwYA03XUo0naCU2WiYW2FT9+O4lYPUM+6EsQacXnNpPcK4GbWVcMhGFx3cwGVWcz+ZE3+Ew+GjY29miKw1H54e4NrKzuy2R8KbGx47gIwvvaJpTdGFw/ikvvHgb5x0hRdoYWEwbXPBCdChKUowcHT9lc3MHaxV13dJ2LUaJBW81thTacDZdsqxbgodxMaKsKqbNlGJiiEoRgkbbUgg73tG1gaOjJ7gukJzH+5TVo+OK8BITXdehtaGqLF0X8EGsvVwXUEajolgfaVsw2hhz/cY16mWitCVXbr2AtgYfJTnL0ElPDpKAFbwoBWVRaQAhOfeKqEmhYoQS0AlRXRbr3Wo0oqzKAYPxMaGCk3FPQzUqM1klDThT8HmPkAJ98pPK5AwgW+TKOxVTPwaktTlC6k3KxKdsfW2Nlj1YCISgsrqeqM70KnY+Y3KSHGflfddGlJIKgy0tSpMV7Mzw3usga1IUhOhznfvktUTnPPSErGzBJnuWnEDWY0Ra9myippTyfSXItsk9jhJCIqaAtZqiNKIs5RLGWIyVpA6lVyTXtm0Z5vkBQdKrccr7rFAjGFeMmdyhhhkBlQkgvZKs0j0+mDIZKxKTR8nqnwSiNqpA57VzyIQrSfwLjKuKGBRt0/Ho4dNh7NPZurEfmZWAVllNx+Znn5WeECWfEBUbkzHnp085V5pbBzdQyg5zjUoQu0C9PCf4RpRi17DLlDxN4/GtJri4IrvlsUfUt/PvNfLvkJ9PyPNXxmW9S2uK9wllwJZm1Xdij2Flghw9xpbx0yT7CdZw4f7fid7+OyvPapUto1dYrMp1UVpjlCRjiG641FdnolMKEaccMUZKozl69JDzk2MKUxCjYv/mDba3NgFFURg2tzcIjzTKWraqEdNpIratPF8d87iRVR5Dok2JVAXe+sJ1rmzs03rDuNRc2ZuwPbrNh0pz7+lDvKupyoLCaRaN2JkaI+1hsu9byEkbZHvslMcMcptIM0k79gpu/TpG3mMl605lMBaMMqJ2ZiWhQtpVMylL9nZ22Nrekf0zz65LViu0hCgonp43LJeOlBzYxP7eFuPCsr9TsVhY7j++x92J59aNW2way8bI8v6dp8RueklSuiyX5bL8iSlV3KIK2593NX7kZW6fcGfjX3ze1bgsl+WyXJbLcll+aOVfQ0kpZSAUBCBlAPZVIhNNMpC6DgqvRxQyGUWtvpxP3WcMr2Ry+9+vI+/PSuN/FiZOpOHia6STIfawUsjpr6eytHT/fdY2zbCWRfzMdfq2UIgRWkqZmOKj3O4qdXa9wjAA8WqVNUMSwAzFoHyzlgm7sp9S9PZ066pEfVskomTKIVmIyhiI0p7aaExpJCCa4x86B+fpM3lSojCGPpXJGEWMaiDSJMjAxdr3U68EJdYvw7N+JtggcZQ1U3OV7ykD+xfxdvmhz7Dr22NolzVC0dCEfbAiB50EWFllKKHUhe/3j0L1aW9pBRwqbXKGmVoLLvXgvtxLn+HF2uWJUThKKJRZsxFkrb3opeJVtn2LQkxSVjBTyOSpRFEWAvjFtGrWJJmaWisKY7A6S6NLBUgxoIzBaIM1BVZnglIGIDcmIwFzmyUPPrlDNdrilZdfwBSbNPMlu/vXOF62bBhFZccUxmKSGgIUP65l1Y/6d09eg3rZcnr0iGTlHW2aOclEFl1D5xd0iw7jIrvbE3b2JoSwwJ0d0p45Hjya8dKXr+InJa5dEqIAi93MsT2xFBPLBx98QIwVy+6EJydnRJNASRZrs5yjU8SaEU/OjjiZ1Xz66V3qumFna5vNUUG7mHH9pV3KpHh6OOV8WlMvPV958y1uXb/OR3c/phopjudz9m4ecHT8BGs13bSlq+Ho8A5t22GCoWkiLjWE6KmbBhssigKtDZNJxcb2mMePznCuw3mHj4oigVIRrwIhee7ceYAJBW++9hov3Nil2p+gNGxS4boFp4/PcIsOoy2tW0JKuM5JAMtHuuCxpWG0MSKqhIqKEKBpO7RO+ORxMVBUBTduXqOsSuply9l0jutEeaYsi5zpnIhBUY4Mm5u7LBcts2lDdIm2bvI4EjFWY7TFx4B3Scg7AVJUA8lRyBmI8k8U0D4msVxDaSwaVRQ47wlBsqwnk4pEElIXPSE20tQ1RpeMNitMoalGYheaIoy9IUTLZHsXlaBwgeBtj7rT6UAkYMsCjCi/BC8gsUoaqxToRDUqBJhfCtGjGpVMNjeIKdG2DclLhxeQH4SMKcpRMUWqQgupTUemx0uc92ijKUuLsUIGjtZQ1x2u9mjbzwW9bZoEkpTRLBdLUso2E8kK4Zms8JQUWlt8THQ+oBR5TPOgA+NRiSkNnXOkEAhR4wiMbYFFocsSMLR1h2vFqi8lUd0JypMK6NoW7wPKygBrssWpxJoTxEhpCw6uXMPaCdP5lPliik8RZUqSKWmD4jf+P3+HcnebP/8X/mN++au/AKkgRmhDwIfA46MHNO4EH2qCd0Jgshp0QKuO5WlChSQZ/95L0KawRIS0pImYUgJbSscMbmsUEWPEksW1Ee+Q7GRkPq7GBeggqklBCOUxeZSy9NZtJttjxBQJIRNj81onJiG7Wisqe/26ZOCWB1nv2MJm27ckNnVaUViLVgqvNT4GQrZJCSmyXC6IRLYmYyqVUO05R/c+5vDRnPHVHV557QClPHPfEsyUamOJLQre/vJbMJvy7e++x8zNScaBcbldKmIbSE7RYqjbSGVLZuctp03D8uR93vjyF/mVX/45HhzWfOP9hu2dyJtXb/CHX/8Od70EnAqrGZWGjY0t5vNA07SiEFXkdRNRiF4YVPIoEtaQbVCykuGwPlH59dZUxlJtFhJk1WO2Nyua5ZJoS/auXOXP/PKv8vLLr7Fdba1WrwPPYm0dmoSU7ELiO++ecvT0mC4+YryZePvtL7K/tcPh4Yxm8ZSPP/4INY78xV/4NXYLxbiIHD865Gzx9Ic1Xf5bl2HJdoE0s4rsrwgtP4C1suJRfOYX/dJ7CH49s4bsvyZr0tU5Vsf9kbVmtXwcUgzo15i9opAaFoWZ/pI3IWvLjFVdnr1gv9ZTz1bmeeuvtXXwxZZ87tHrrKJ+hdvXP+V9nJDmNSmrafTkMRk/0mDpo9Uq8C5tmdftaqWCZQuxF45htY+6oN7UW/YMv1IXesRnK7/2kPqHzNpDXLvJIZlkfRvGWrd65ms9Qegz6mbqj+oT6UKz9v3g4t6MoW1XtWD4PKXVtYc+ls/Y222ntXOt9rH9c0sXv7duR7d2K9qo1bNMfbvnPtkH6DPx8oJyLRqtNIUthj2QQp53YQusEaKr7xrspKDanOAjqFiwubVF4x2dV1TliI1iky/P/jJb7sYP6KD/PpX0zE/9M1j7ZO2Qp9V71H5BWzuCWuBcK2sxLYTu8/mUGDSFsmxtTtjZHlEvzmjn54xtydJ1TJuapq3xncd7UdmMKavppMSinnL37h1c6HCNQxvQKkGUIL/XHWVV4lPg+PSEw6fHxBCpyhKrIbSOjY1N8IHoAz54lNZs7Wwy3jC48wDKUlRjtvd2OTl+jHcO14qCc0CUZTQa5yIheUgRH1f2Z8ZYtILxZExMNSG4bCeV0DkhKChRrzk+8qgucvsLLzOqEoEabSfY5AnBc356SrNo0Wh8CvQ2U71EU4pCIrK2GPbtRmma1lGNbKZCSNFWYwtLiJF62eC9F0JEWaIUOCeKl1oryqoUm9ysPCXr6TQQP2yRic9J1gwx22yR1tTgdK8UlBWS0aQkRIIYkygrZwIMKJTVmVQdIfYYj6zrgg+UI4vWCWuF/JNiIsUAOlGOih7mQEdRvFHC3KFtvMwEPTSVxFxM5XWNDDUJZTRWCXlKa01ZCdHQ+Ux0SmpYL/b3GGMAFbHWMJ6UaAuqy+QuUiaM5PNncCllEo1+xnatb9uY70sUm2QP0S/DAKw2RBLOZQKazspVRGxhMIURddsgtfQxYqzBKJMxIYN3orYbQ59cpqlbB0oPpMMQIsqCyddbKUgljDYcHBywOdnm6OSYxXJO8qC0xRYlSlk++eg+Tx4fcf2lW1y/coDVBSnCou1onfTtupuTcCSCJBBqZJ2hEjplnConDaLEqg8iIR+rDNkiTuwWU04OMUaQS9f1BKd+DSPE+pTPIZhVGqzGFT2RVdo7ZiLdc+fHgQybFUrzuUSRLCuEqdV829ss6kH1SuoW8+9TAhwUhZU5SSe2NkoW04am9cS0ZHp+iJvsEpynaY6wJmDtiN2tDXwXSEHhgyMpL0po1goG6gIqaXwdufvxEzZeu4LdmHByvgQduHVwwM0XXmTqPMv6hBsHO5w/PKTuhFCnFRid2NjcJAXNYtHgg8t7SH2BvCU3G7OC+wqrHBp1bVthlEarhC5AFyVbmxt0TU2IiWoy4aWXX+b6lQMMhShO9afP7/HqJzX8FYLh6GhG586Jac7pacnOzibRK45Pz/F1zaP7j9jdu8rGqMBqIHbUy0vljstyWS7Ln4xShS3++r3/A7fqn/y8q/IjLYnEd3f/fyzt8eddlctyWS7LZbksl+WHVv74JKUeYO4ZKv2mh16WNsP+arVRWqGQa7Bvr040AKtqIAVoJECZeThDBjsDCSNn9SfJgpFM3mztkus4YNcDVNgHClZy/Kv94nNQ0j4jS2U7rRgH2fCV/3hc/0JvmT6Aw+vWYc9tyv46a9dbAdTys6girc45PIIM6sd8bxHJat3e22E2n+Ibh0IsfUJKRO/RSmONgDuhb1MEzDFGABiDQhcFX3jtZY6Ojzl+coLVApSFIYojQKwxvbpI9lXv1YbyQWk4NrdlT2TqgSj621Rrz3atvVT/zFfkqJSP79tA+Gu95HQCRLFgrVv2f2TspQ8iZeCyv15G3NddKsjAjwRwo+haKbOWKL2SXu/VovpsqRQFjEkxERX0TnEmE5QG8F8lJNtODfcSYsz2CTm7L0XhriHnWZHVyGBZAp3Bw5hIWm4+JBhhuHH1RboQCW6OsZGkC1yruf3CVcrCQkx84dUv8MLt63RLx8bGdSbbY8rkKMuCzY0xRWlycOXf+4gCq4iB3M/wKNbjXEmUqBLSnlU5Zn/vBnU65NM7HzA9nZEUTDYmLGbn2NGIne1t3n77La5e3eS73/gDTh99yvVb19GF5e7du5yfHuIctE1NqSdsb+7gXYPyHj1SfHjnHSH+1AmtJZM2doqd3S0iDl0pmm5J7TuiU8zPa+5+8oCRDWxd3aUc7dDOzqhGFt0aJvsFZ90Zu36fzckI7ypefOk1brz4Amcn9zl6csR86XG+Q5fgQ8L5jrrx+Nhbf2WJ/JQziKPDu5IYPdF5USSKELTI92utcK3lk48ecWt7Bzd/yuFZZKuCrmmJseZ8Oee733qPtouETkA8baEoetUwsXy4crCNHSnOz5c4p4ltgkXDZLMAqyh1gQ+OJ08PqUYTfBeoFw0gAYSmaQkxsFguhZCXNGfTGa4LWYUsYKyWLGcURVFKlmsXKMcFrvP06v7Gmgw+JwqjSDrhkkdZQ3IQvBaA2ge0iRTjEmsrTCGBCmsV40nJ4rwFoygnGu8cIY8PZZkoRzJDtbUjJofSWbGFyKiyxBCpa0ehS3QS8lpoPdiEsaBVJFkIWU1N24SPjqooqMZW1JQKRVRy/8GLTZ5WUbKcvUErjU8eYyLawGizwJbyShiTMGWkrCTLnShZ5pK1nsQmrDIoo0SlCslkrYxFoXCdE+WfHrA2moy1o5TBWotzHSEFVISQAwHFqGC8MabznpSs2DJEjykN1lYSIPeK4Dx13ZCcF4UCNJ2P1OdLUAaDInhHsTlme3ebdr4gdEvoFCrIvPfmV3+K//n/7D/lg++8z9/+jb9LXCpGG5u88sqXOLj2ArOjGQ/vHsIZHD065vD2OXs7B8xmDb//h+/zwccf8MlH79C5Y0ZjCK2iCxajHFZBCpaURNmI5EkhUE5Ktvc2WSwWOB9JSlQNUgpoY6hGEFJgPK4YjyqW5556tpSs4iSZyWVVoa2S7HetsNaiVMKQUDqIJStJJjidxIoPee5DcC7L+AWJZeJDWFMCy8EYrXEhCHEuq01F7ykKIUArnyTTOQaCEVJVYRSbkxFlWeB8oAyR2XzOsl2weLLgb//f/ya/e+MLjLf20c6zOJ+yt7nF3Q8ecmW/4M0vv82Du084nj4ixCWJDoum04ABGyMP3z/mD77+mP/R//SXub6xx6efjvGmZOfmNX7lz/0KC91w/+77fHj3PsvUYIwQuZWGg5ev8Us/+8t84+vv8smd+zg3JwTAWnTK4UstqxBCzLYxiRg9qBIdE7q0EnzFEDGoEHBNgyoqtrdHogiWYHt7k1/47/wqb77+NmNdoQeFx37VlDPl6YObYmNiC8V4tMXR8T1m9ROCO+aDD7/F3t42vlU8PTwlzDsefXiXp28eYsd7xGZGaM85/xMcVHgu52Ptl/1a52IyQj9Jr1b3KyJGv1CSAF6/tFsZ9a79vbY+1wOxPmXiqZD4nqsMm/c3Q1Grp7dOgu9JLev2cqvlRRLr3T/i5gczs/U9wfqR62tVLiq7rg5a2+g8rzxzjr4dU76palTSdm224czKIIrBjoUUGWKja/u9fu+lldhMX7t5jfl8wdnJOT1HRqX1+uXzJlHuQMszWSfJDHuK9fVv3/LrUTl14SvDvqJ/hBdbUq19J114zCulg1V780xzfubzVY0uNnO6WC0unHtNdStlypi6WOdVVbOS8IWrpLW+sN4D1hWxVooWKfZzrup9aORcQxtkJRitKfL+MSWJ4VoUm5Nt2ZeElqRCtuKEK7vbVGVFxHLlylXG4wofA+NUoq1mqxwzVltcjV/gxdnPsOte+kw7/XiUtWe3VhTg9JL7m1/HGsPYbND5xHx+Stt0KAXjqqKuZY6pihEHN6+hNJycTVkuZozGBZ5IN1vQtQtiUITosbqiGk3ougbrA7o01O2Cvk+L1bA8+43NESEFAgnfNig0aE3XeBaLJWWh2N7dBqUJOIrK4lLCjhTLrmFza5/J9jaLxVLs1ooxRlm6tqPLKpaCySh88NnaLFuckXGAGPK+OrGYL4TI1CdOJVmjonJCjxJ7rtlizuGj++xduUKVEofHR3TNksnuJodPj5m3Duda/Jqlk+ypI9poqnHJ9t4G89mCrhV7N71OuMwqS3Xd0LRO9t/Oi1IP4DqH0lpUlJQQOJdNK+NVvo7SKpO5I8YYlJY2EKVjUWEEUUlWOSFAQd7rrwic/3/2/ivYli1Lz8O+aTJzme2PP/ec6+uW96672qObIEgABElRZFB6RIRCepBCUgQVDD7rVRHUg8wDg5ICBIMSIhSBhiMa7YBqX1VdvurWtceb7feymTmdHsbMXGufexvdaKG7um/vWVH37L3XWpm5Zs6cc8x//OP/RbFc9QR6bSWmE+tFGUxVYQjGEGPElKJa1DYeHxJloYVEjspqmR1Gkp9woyhLIwSeIAUOJIg+kDrlRw1omdtJ8jepRBQCiUlSkOeDF/wirNSVhCSpySKd2RZX5zgqyHqLFDNoKwR8hSjmdlbVOqs2Ka0yeY1sXyerecjXmqW9+3WkmwZjzMWUwrjPargZP9JCfvFBcJ2Yoqj3aiM2WCGhkscHidGVNqJgGoPEhlkxSwFY2NzZwS0anG/6745WFIMhr3z0NUbFgMm3J0wXCVsVvPDCC1y+dA2VDAdPDpg5x/Rkwdvv3OXmCy8zLCzTRcNbb9/h9Hifup5SloZCl8wXkag8hkhKeQxpcn8KrmpLS4yB6AIpiWW5VwlrNWUpe15bWAprcG3ENa5fbFKOgYxZIyYh60NnURezXV5PDMtFEB32JRPeiqwW9Wr9PDczqoxhRkg6450xZVVbvbpvGVjs7p21UkxBkv3nyfFUyJoJHr3zgMOHh9iyoixKRkXF9vYmrolMFjW3Xnieetby5OljGjfL9vUS7yWVEeIQOTtxOBKbQ8Wo2sH5gDEFm7tbXJntcffOhHt3n5BCC2t9U22UfOJTH+PscMK7dx7T1IlEyN8HYq/ZlfoiEwk/c/wRZZyjtejbdhhwzEplOrFYLkkhUlUVt557jiuXrlKodRj/fLSxekBWUWhViZVh3TR4v2Q2O+Pg4ClVUdK2nrZtUV7z8N4d0pUb0Io9ogvte5e8i3bRLtpF+7NoSWFSQdCreUcny4a7xovzn+LLB/8LXpr/tMSxf4Xa0hzzu1f+b0I+vmgX7aJdtIt20T6g7U9MUkrp/IK4Lpfft/WqWOjR62ch+e5YAp7kxKpW/WYvwVqFbgdMK6wRdRiIVKVhOBqwWC6Zz5YrYOLZ42fCQQ+Oq44UpXrbLAHJV1XQKZNvuo2/JI3OV3x3G+9eb2cdrO9IW+9TXqTWXz/XJ/Rcpe5ccrlr7+2B8nPoNSEkZtOFqCTl8ypj0B0gHcWSRWXSj1Yi062SwhPRhCznnwjJY8siX7oA3EWuQuwkzJVKBB1wTs7X28r196uzJJNkakKhks4JJJFhPy9dvUrw9ApS3aZadUC87hNAfZKp6/e1Pkk9cK/6xETPLjp3D1d3pHv/ilyW6Hh0HaifMplqfSy/V9kry8CnSOz87rNXnO6AoJSAlZIF62NRKxQRm20Bo88EEKN77KEDa2KMBKUwWjPShtHQskyJZpEJfMoQ0bzw4nNUoeHp6TFL79nd2uCF51/mypWbVKMtdq7som3EbBbcGGxka6i1ZAZriaAPTFsHctal97uRJ2CSUhpVBpp5zdnRnHo6oa5rjNFslIY4GDNvHY1ObFy6xvR0xqPHZxyfJu6dvEOkICwD9bwmNIlIxNuEJTJr5gyVYjQYM5/PKa1ltKmply3LugMcNVSG0+UCFT2V8cRgUIjk/HCv4Oq1TY4PH6KMJuhIMbQ0seHw9Jhbz3+Ey6+8xltvvU1jPDEZmgZMUTCr9yWJFUtS0qToUSpRWE29bFARlosFndVNjIHpZE7bBgEzrSDmkYApM4GPRCoSv/f97/H2O+/wuU9/irv/4qucLhytarhy8zr333nKws/BzfA4CEGSwzFRFJrNnQHXbm+TAOci09OcDMAKIGgNy3krtgD1kslZLVXby5oQFN5HvGvQVjEYFAxHQ2bzBYtFi4oK7wIeIXR08vcueBIBW2iZE/NiYayVNSjImhBAErZKgVY45/FOAE4NaKsoS40twRQWbVWubDZUVUkxMGAjJ4dTFjOHbz3V9hBiom5a6mUgZuWcellTDi1FZVDKYmzB2dGcxWQpdhoRBqNSLLeSqFilnNQYjEpRWUoKW1gSYuHV1Eu0sj3BUhtRwwgu4b1nvFVRWCEFheTxzgtJ1QvZJeUqct9GmkZUqwpreoUdyUnJem4LTdJiI+d9YDVLp5UFgxJ7MeccEZVVN+TaQorE1tNOZhksFyWhpKQqPoZEW7cQNTE6YvAYo7l8ZYfFbMHhdIGOCYLHa8TiwTv8coEmUhmDU5IrjwTefXCHf/bVX2N5PCHqRDmy/J3/5G/wH/37f4eNwR6TU8c7Dx/xw7uP+Be/8rt88/Wn/Cf/+X/Izau7bF82vPsr3+bBg3fwJD77xU/z1ve+zf2nh8QU0BGiEmu74BIhiJWc84HFosa5QIiJUEPbeAbDgo3NAq0CSVlGoxHRBRaLVsZbJvBqrSgqg7aiApBioK09ZWkZDAbEmFi0Nd6nnFyJ/ZomFcrdvCfxTkSI38Z2ao7Z8kMLITamhMHgQxLFpijfR3cJsRhQed1KHrAaX0aMl/l0cjaj9aLCpbxh/+EBR49PGW2UfOKzH+Wnf/oLlOVzPH7wmNufuMXLV67yL3/lt/nN3/1VTmcL9na3CbUj1C11kPk5NA3fe/27/JPfgr/+U7/ICzdvsjPapmnh/uN9jvdPOD46xqYFXo8oVAWDFqoZP/HTH+fnP/cx9u/uc3JwxqJOxMKyNRoxOZmydLUQxrRUbWPAqoKkc7+gsXogqklKoqtoDIWRWGd+OmcRFVubW3z+01/m8698nKEaoICoPbpf1LvoJautKU3oAukQ2RhatHI0ywVtM8dNao4PThiWhrppqJuGt78947/fP+XlWy8Sl4p2saRul/+2F85/iy098+96ImXtXTlZ22da80fOkU2eiep6lVT5JceE3Tq/Ymb09mVKURaWoiiom5oU/TnrrO6k7+XDqFU8ms6/lvq4ci2+SOfjx3P7g8Qar+j9aA6J9b5a32+8N6r9I+K1Z7tXNht0iaz+LBEW82W/x+uGYk/eycSV9dfkGREFtd7WJsLh4SExSLK/+5zuAsx83RLPgib1qqArgpfqixn675r3Jt016Y5003131d2SdK7PV/dG+IZdcUDu0f6Yfbi73l/nEq2p37P0Z33mtp77/T0JQ/qx+K8PrVfKv90V9tY753ci+ej9RNJfd0oJva6sdP6q+z0sEZKKJKUplKIqhaDSNgGd+9gHz63bN7HA/skp9bJhazxma2uXwXCD7fIat9svsH1yk7PigRzfwdhfZtvdpoqbq0v7QGwpzmupnevfjG3I3UtMikcs7CEQaNol9bymQNHkz6XgqMoBy6ZmUTc4p0gpEJwmxiFnp0uU0USVCEFUkZTShBiJzQLvW2KCylRip6YUw2FJXXvhJxtN07aYUlG3YkFWaHlGR4MBcy/2wkWZWM7PUIXFRY+xOieuFxzZY6rBiKX3bKoGHx3LphHSU2hAi3WqPPtBRrtRvZV1jJEUhDzRqQF3U6ApJJEf8norpLokdnTec/fpIceThVgYR/AxYCpLaCJepFDkXgSJNTs17tG4pBwWhOiF6EMUco1e4TveiaVbihKPIgCUFHWFbG2mwFpDUVra1vVE1k5JRuzSpDhJyFmCWeh8j2A1J3SqUTHlSR9QVo4lAlCCGXSKdUp1v+vews6WClsUoJMoyDZCNDKCHhBcEAJYDvJCEHJYUUjRkbWaNgScc5kgJLEdrIhBKSvpaK1RNmM2GLTRxBiEnKRXyt5a52LAfB+HhVgQkxQhZYvjSLYjXs1lkYTzXrCpbJ3bTfkxyhPU3a8QOxJx94ytHjcpGIu54EXs85Iy/bwYE7St7683qe47CbYUfFZxynO80prhaMCwLDk8PRNcKFvLKSt0q8XpBGsNpSlwMUhhGpFlPef3v/Z1xsMRrm5AKW6/eIvPf+HTFJQoSl548XkWzvPmj97hh2/c43DZ8uEPv0g1BqOXtPWE1rfsXbqETQ3NowYX1ta2vBaGPJ6IUC8bepxJQXL04yYpT6fA530U9VkX+3VUCKqKpBJaSaFM9B4yBmi0IXjX2+t1+GkXVvVrc0e4zYtsRzTvLOk6W8QOD0wp5f1DIigpnuk0mFZrcSQIR5C28b0KUwwr5fwYI82yJjQNey9c55UXX2ZQ7dHMW5oU2N3bYnZ0ysnpMYv6DGUS1WBAHZbg89gmsFzM+Pq3v87HP/kRrmxfZ2u0i0YxXdTs75/QugZTKIwdyvmVB11TFJrtsaE+lXgyUeKTYmt7k2Y6Z76sSSFkbl0kmYwxddwlBdoU2bpR9otRAcaiSBRoogdtSq7fvM3tq89Rdcr7dBTj9QVo1TryeUL2a4WVPk0hEomE2hMaUYWLyaO8Zv/+Pmf7U4bVgKb2ffHaRbtoF+2i/Zm1BDvueb50+He5tfgi90e/3790pfkwL8x+ik1/Heh2rX+12oPRH3JY/ejHfRkX7aJdtIt20S7an2n7k5OUuk3xGllC/rbGYk5pZQ+wDiyndXu1FVArx2FVta8kgRlj7MHq3oe+l6GPUllUCJEmhtirTnRyPuvVq12TIl0hQ/XkJFYJjdiDJ3JO7z2dPZlWq++RO2OFjzxDfPnjVJTS+nHWzt/36R9xvO6zdH0pW3j5nhGaZUtPmCJXPEGuUEKS8sagU5Y8T4HSiBe7DyIJ7tuGd956GyIU2W/eeY8xkhgOIfREAa0VpRb/eKkoFDJSSlKN1ZF1RIpakTA9UKlNtrmJAbRBKyPS6plkpXIWIeWbqbXCWpOVrbK09BpI1ZGnROVrbYzmPo3P9Pf6v+tEtK6XV5ZwSggc75MIg9W47clVikxwEnlnGWfiSR9T6NWUOhKUXguxVc/eItsnyr3uKtc6NS8gJ0gFgAxK4fGU4yF13YKBwiqsUtzY2eLf/cWfpfEtv/rVr+EfT7m6eZ3nrr/IeO8S1UaZSYEic27LNZW0/K+c84NRqfAezqBaPVOwnpzqLGIiEU/jamxSvPrSq7z+zps4N2ezNFy7/Aqvv/kjDo/OePNHD/nYh1/mQ69+kqeP9zl++pjLN7Z4dPqER6dLqsKjTGA2XzBvalzw+FaDgcV8TmMU169f4ex0TggGbRRHhzM2tguWLlIWBQWWSo343Gde5Hvf/S61WeLDktTWuKpi4WuUNyzrBGbJb/6rX2dYjtnZGTO/9A5HZ47j+SP2p8ckwFQWt0iAx/tGnt0ikxVDzIAwBC9EG6Wl+teWmuASTd0IOSoE2sZjtCKGFm0N91p48NWvobxntDlgMpvz8OFjojekUuzEYtJEFzAGilJhLIw3KqYzIUMF74ihpW5qquEGRlVMlwuWy5ZBWYltVpQEiVVijRR8wmix9KqqkpQEjBX0WOGcIyUoypJAQkclleYJtC2kklYZQJSdYow5YZ3wMULSmEITvVhaxBCIKlKNS4aDkqQ94Glbz+ZgTFFqmqalLBR2kPAxyLOsNaU2ZBV/ogfvE85HtDbE4Pu5JcaQkw2iAKVUIKaE95G4qFcJ4zxPKqPQthBQN4ltT4xBiJJGEh4mj3vnQybGlAzHJdpEBnooc7zSudJWURaFAP0h0brOesugCBhbyH3wkRjECi8lcI0QlHyUDIGx2V4jSpLMWENMmpC/q9EKjCUFhJBEBC/PorVC/PBJqqB92+CXrVSfForBcEBMgaqqaOZLysISg0j6m0HBYFiidSK4mspW6FAQdMAMS7TxnB3v82u/8utsjUYs5y2bV6/yxZ/5BcYbe7zz5n2ee+5FfvrLn+SVV1/m6dt3+Pa3vs3B7D6/+PM/yezgiHq+j1tOWMaG/cOSJjiM0oRokWpaUT6SsSaLl2s885Rt3QiYwlKVJVppptMlWkNRFgS3ZD5Zsph4UlCoFEVxwBZEAiElBmWF1ZrFsmbZOIwR64gYuiRhRKVs0xdWROCUEr5bsxPk/Ngqwd8pqKROmSHbbMT8bKgukaUo7ErBoCOG17WnbSPWqp7YGEIk+iAVu0pxbe8mP/Vzv8hrL3yGFAza1zx6fEpwjtpPca1nMWklPrCaoCJFWcg6h+f08JTf/PVvU9g9vvCpDbZHuygNdROYLpfsXrvKh29eYzZp+OEP73O2PCDOEj/61lu8uHsDOyy4fGuPxGXs5iU2S3jjuz/ETQKkTFDSkKxUTZMMOhkG4yG7m9dRjGkax2wxIVqxkSmN5aWrN7l7dMhLn/0EX/7Zn2FnOEJJ6ThRdfV/MccXpk90q15xQKGCYVgqbly/xHJ+mUmagfM0C0cblxCFWLY7HjNSBQ/vP8F7zXLp8Iv3xix/cdoz13YuxDoXAfdJsPOMkRwzrYXZHflhXZGzJyitH4tVRBNTwhpRJVgul1mdQKHi6t2ynzifAurCz/6y1+JKKQxYPy/9M9/zXN6n9V8l5/rUuTe/dz/xLBnm3LHe5+/dNb/3hOf/tCLurPo7pU5IbC2xrlf7lZgiek2dLQKESFjUSASp+zg59lZxcqEalePbhE70ycwVSSontZXqHMNXfZSToaonHUic3O1L0voXy/sTrZXsGfM9iv2GgnP3Jqm09tEVWeg9G0z1nh/6WLNTRuoUV89/8D135H1fO2dtnYPWbn7tztuT8vprfZ9Dd0S9PHC75HE3inN+Wex0lSHkvZrJShdXt3e5ce0Gs3qOmi8wjaGyG4wH23wo/jWeP/sCVdqEpNlrXjnfmXksf5CSCs/OB6t7Q/4tEZTntLzPvfHvk4hZGUQxGg/RmwPaFCE0bJUDyvE2+/tPOavnHBwc8dxz17l+6znm0zn1fMHW7oiD4wOOa8dwoEgqMpvXQtKOiZQ0KNcr3DgnaikgBDPlE1XehycFXnlKXXHl0jYqtXiV95oovJdSjU4xNanIwdOnFLZkd2eDtjnm5GxCG6c4yZxjCi3FGFFstuhILVrjfOiJosGLvda6JWKMgrnI7ypb0kqhgtUajOZoLutdUYjCUqyjxLdaYY3MITFjAFoLcbptPcpqkguZTJSIwRG0QaUSHwLOB2yOlwQDUigVMVl1J8aEigplZF4JPuQ4aXW/jdbZ2kl1Isk5jqKfO1LsJ4XV3J739j2uk/uiKAyDYUkIHpQQ25UWIm2IMdvRd6o2KVu8q2zTuTYCY4fRZQIKoh7U9VNRFiiCqMymiHeJ1Fl+qk5Br9sT5b1K7FQfkYI6lf/tyStCalRmVfBUmBKtNd55UfdUOj8ua8WAQCBitBHLYBfyHoge6+vm+JDVPlFkSz/BAXkPvrhSqhbimrxm8npBxoei8yQfe85uOSiBRN22+KaVuE9B0klsAa3NRBnpayHLJGwpe43lfEFoltRRMJyiHDLevozSQ05Pp3g/5/qVSxTWsDEaEoPn7ttvcnbymHE1YDGZyf7XNRwfPKFbenVWj5KxFddmoIyPhpi/p3wRa42QjaI8x8YofAyiFtxG2RdnbFev3S9jjVgLAs4FnPe5CIW+PzuibXcRUkjSYWpywWkFssh16xXpuCsoXE2iQv4V1avUF652sVv3ncSqj0xmE2L0asgHquGYwWAbO9whac2ynfHg4VMePi3YrsS+OXpNbFu8EytyjKIwBqMTRE278Lz5+j3mtyIfe3WLQkkBISTG29tc2dtlezjk3r2n7B8e4NqW6XHN3QcHDKsNNnbHXB1eYT53UqzRNFivs8VgV3STYxcDKirKqmB7e49BsUHdSpHYsq0pyoQtDDf2rjCfz6lV5NrtGxSllWe1q/p5H5xS/hLzuqsgiSrapcsbRK5wfBwojMEtW3xoSVlCuqosuzs7EC11k/ABVDJctIt20S7an1UzseBn9v/3/MTh/5ItdwOF5kPTX/pxX9ZfiObUkjsbv8VvXf2vz+09LtpFu2gX7aJdtA9i+5Pbva1vh9eJHh2o3L1G9/saOLu+E11lHCQxlgHrlGTLncKKQJTSylKs+3BIItftFw7vs/RyJoV0Cj2rvXNaA38y6SSePz5ksgkCtqDyZnsNjD+H9vZYdnp2P/i+BKX1n1fkl1W/rP/tvS3117N+HZ3hm1J6BeSnTEjqkbFVX2ulGVUViUjdOpJW+JhwC5GaV2iCSpJIzX1qTZY8TyAph870TWEQkL/xol4hCWT6SrfuWpUypBSJPvZAgjYGY61UCSqNMgqUptAlyjlCEPUOtFT1kcQCzRghRhXaCoGiAw+VqDWpDIoJeLZegbxKHK2Pw5gkucp77kE3XuT+d8C9vB77cbTeunN1417rtPa+1fvlT7lasEs8ZNn3PECIMeJ9lDGZwR4BfBErDGPppbYVaG3wESazGmVLNrdKTFLYUHD76i2s3eZH97/PrdvXGIQht158jdHODoOtElEZkxSSWhtf702erKrV/vK3taRfWn2nnGrLYKPJwLFjcnpCUoHLz12iWUg18zBZdsc3uPTcS8ynCyZnP+Luu69zaXfArVef5/Jzl2lmr7F3bcy3vvk1loczrlyqmCymnJ7tg00MhxUxaaZTIZl453nw4JC29QyGlWBJOmZVo4pYOxZpwpwFbxIYbikGZojGUpRjZsuG0XCHebPAO4df1mhtCcy4tnsZXx/ye1/7Hm2TKMYl1A5bliTncE1gNBxiC8u8rjGFJTiHQuPbFqUsKUpiwBhNCuCdkFdUUgSf58woqjzXdrY4mkyZuQaDopm4bHEWURgKD95YlLWgNDGJ/Vg9dWgzZ7w7xhghh5aFpm0CTV0zOdMsFo4QNE0dcI1HGcvm5iYqOZSpCTOPcwLse+9ywlhR2rKvotVabMlSIgPbsa9ebL2jS2aKMozCarF0y9OR2BSoTjnJkDTcuLVL8JHFbElMUaotNVib0LbEt4HWeSF6aqhGJboqiMjcKdXXqz7UuiAljfcC/nsfGIwGVKUmtGfE4CTpktcuayy2KgjBkZpIoYbZ5sOLmo8Ca0DpnGxGiGjeBVF6GlZZjl6A2NIWxCBVq908G6NYhxljxSYuRQpbUAxKlPPEXGiZEjR1Q9s4CluhE7JWI0mM0AZ51mLKdkE6V6wr8NmKQSuxmiShtcFocEHmxaZuICR0FHKbMprR9gaTs1PuPnhCicImRVAKPbQUoxJrNdpoQvIsGydJJpO4ev0Svq0x/hQTA5VPXL1xnZ3bL/P6Dx9w+8pLXLp6laI0pKB49+37HJ4cEepT3v32Q/7b732PUVWhvMe1LaF1vPmDd4kkjNJoayVhmHxObGk6AhxEAcatIUYBgLWS/zsfEQ8/zWxas5g6kjfyOR0pCoMdWorKsrFVCekvRKqiZF43LBY11hSr5LUSgDqGrAKiJLHWKR6uJ7y7qnudrR+6yumU5Dspk1AGOQ6aGOUckrTJwLuK2TrC4H22yiARkxIboXy2Ky/d5MarH+KrX/0uP3xzQkHL/rvv8u69+3z5y69xeUdRWkBXhGVL0jVJS5KpKBVVoQk+0h6c8qv/8Fe4NL7CXgEn0zmTs4dcubzH1Vdu8bd/4WdpTmb8/f/nP+SbP5jifMX+GQxuvMbNpuL5T32Yly+9yK/9xu9z7+E7lKMBlwYF08kJKbZ5LlUUhVSlbwyHfOYLn+EnP/fTBD/g6anjD776PU4mj7j96h6Xb9zk45dv8i9++7e4trfHsDLMnacsFKVSmCT3MuWsWKdEhwr9M+RR+JS4+cKQ8eUPsXQ1l+KIzRJ+8N03OZk8RUfH7vaAz33+NT78ysc4fJj4wZsnJI6x5uTf1qL559Tew6r4Y95/Pgbv4/wc+r2H8A999rhLsiYlSnH+HLtgfX+zFkyvhUXr6jzd3/rjs36cZ8gv577i+i/d+1YnOU9CWietnD/NH9dW7z1/Eau4dv21tct+Zl/SqZxqpdjY2MC5hrptUeREb1ZQkn7NB8kxZlId1T8nznWOKfP31VrjnJPktpa4okt4dufWa8n+lAPznmiTZB9ILjLRxmTSQujnP6V0H293hSraKHRSfXJdcqo5Sb+W9OuVlnIc8J4+XvUq7/uGvsPhj7XiW/Xi2j1Z30f2IyHve3X/Qq921SeHxWqq34mo1Rg4v+9ZjXmtNM5FjLHYyqBCQiVNURS0PjGZzHnu2hWWo4bLl67xWvpFXql/RtRy156/vHn9q9PyFBF0w9Q+5aB6nYl5xEnxAGUTxMRyNqX1LWVpqedO4tAIUQ2pBptsbbYsFg3tcsrZScX23h5be1sMx2OG45Jl2xKWDUUB0/kCEDvewaDE+STqxkrJnOZrpKirpCw06JhtrExW9AhMfMuyqRkODFZbnE9C1neesqhoo6NdtqRMMk/KE5OjriNHRzNSMiirUS6rImWmc1VWFGVB27b4ICqpbdP2z24KSeyW9eq57BTWQsgWUlH26cOiQCmxME4JnJOYWYhZQZTCkgKTY5pMwgkhQeswVmMKC0nssYwV4n7dtELYVkbIR9m2bDgaUNgK5xqSilmRKBCTIkZNSqLqLWu07ClCkOIpnUlCEj8ZvPMrclI3l3RTRLcOaYnLSWAKg06a4biiLA2LWbcf6QaZWOlGlS3kMmbQwSU+RJnPYqf2pjKGlu3mhV/V42rWWoKPK0IVeQ5ASVFBEsVsKwyTc0iUNqKelPqpfGURpq0hkZDwUkjrFtsXhKC66+riyK5LcgzZEbmUEqusEDLep3vcMYbY70tSpMeBUKonoKo8TlTG0daXtHPrUf7yymQ6skp5DIm1WrdWaWMwhZH7qzIyFjNWmElLMUWM0lTGMqxG7Gxvsn3pMtPpknsPHvLCczcxypAUnE2WPHl6gHcNhIajxwuOkEKzFGKvuCrqRvREq7jONl3btyllpBggScFA9PKMpGzPapC53bXZ9hgFmZCnCimOKkorBQd536e1kMIUolC13pexq5Dp/06/AnU/rVacFQ7XEZ26JUJple35ujtDbxnYjUmlyAUwae0YK4JSQshll29e5eTohKcHX6MsCowKtHWNdXD5xmW09SQjRasqK5iLclvMG7CISYnFyRlngyFPhvfw3jFvIlVlKIsx1194jq2yYjEPHB2f0KBwKBhsUW6MuDqouHnlBpP9CW+8+w5aF4w3d2iWc1qXrTaV9L/RUBSWW88/x8svvkxlh7RR8fjRKQ/uPeby1SGj3W22qw2ePnpMEVuG2tK0gYRiVKqVfdw69pzoidYJcHkeGg4Vg2FFSJuYKrG7XfLk3hP2jw8hwaiyXL9xmedv3ya5guMjz6OjU5q/0MqsF+2iXbS/zE3Hgp9/+l/yC0/+SwzFj/tyfuwtkWj0hMfD7/LD7X/Ew9E3uTv+nXP2dxftol20i3bRLtoHtf0bkJRWQOl58Jx+46k4T8SB8yCzvHcNt+yPI+SObvN5/v3y7g5UUUrRtnFt55sg+XPJiI6kkp75K8/8pQO3g+/OtfbqGpC8AojUM/9dIzytHXW9D9a/x3ly11o/dYmTXGW5Xlmm1kDxDmpegeEr+d0VMLBKPnRWa1VZ8oWvfIW377zLo3v3MbmfI9n+BUXSHVlHKhMb57G6AxUyAJVEqaqpQ66ERJSNlKAJKYEyJgOMKSeYBdhSKeVkpZzH2gKjFd55yL+XZZlBwARaYYwVSfEQcN4BWX1IKwpjcRkA7BKx8VzSotP+On/H41q/d4mKc1XIuf86WzbyfeiJdPFZotJKFan7PXUEqP7+q/5+9tfRJ72ykleSqlClFSEhcv5I5VtXxZ/WgDkykBhjZKg1RmuK0jAuFJtmQL2IFKPE6fyQ5mzOZz/zCdQnLKPtbbS2PUiadbfyAO70BdbBvMS/NvHyl6idz7mtqvj6hFAKNG0LGAaDIZCo52fcvfsO2kTqiSOVitNpwNiGK4Mt9q6+xOWDYxSRxfGMB+0jhlslT54eMt77OJtbe7z48mWcX3C23zAYDrADja0q5kvPfNESSCgXGGhNRCpaq0GBLgLeJer5nLRcMh6WnCwmnNZLShxbozHzecRuSOJQhUiMjvnkDKUt1dDSpgVv3HuDQVkxO1tSFpu44DBGs5i2+NqRgqcqK6pqwGTeUFZDfJOol8ucKIi0TStVvSAErpDQ2tJ6T9IRaww+eFyInE3mJB+wCKE0BAtBlI4SjtFASJN2aGkjzGYtTdOilEMpjWs0Thu8a4XQMyzRxuBcQlFiDbT1EudbiJ7BaJfoBVyMKVG3iaZpKYpSwPFC1GmsFRQ0BHmOrLV0lj8xq81474le5O5lWIganLZShWyMQhuwhaEoC4wpQCXKUcHp4Slt69GlYbw5xpZi1RBDxKdEqAO+caQgVerLtsUFUZwz2qK1lfNqmT9iECtP771Ue8ZIW4tykzaSjOm+l9YQvKNxLTZZwGNyAiKGgC0NRWEJUcDZ4HM1rffYwrJYLIipxFgQeoRGY4SYZCyuqQEFWuPaBqU0VSEk1PlsnpMz9AknsYhTBJWIPkCM+EwSE/KnEJPI67QCko8EJ0CxztaXSkEUaSW57px4MMaIzlmKqBg4OjlGeUmOR2XxLqCNYWd7EzuwtIs5yge00XhVEHUC7Xn86DHKR67uXWVjvMN//j/7T3nt5etgRvy3/8M/ZD474G/90i+hR5Hj+Yw3Xv8RB0/u0bYzXLugbVvmOlJVkKLCJVl3y1HBMCpmi0YsWRJoLN1cKpaggCkoKotGFLcWc0ciklSkGIBqFItZS3RIzKBlbrBDgy4M5cCQnVZpW0/wkrBpvYNCZXKvTH6xI4KnvD53Fk1hVRnfJXR0TlZ3701BSMoxZ9iKnKiJ2RIkJRmrKhezx2zVUhQapSUhEiO5L3J8oyB6x8Hjh+w/+h7z1rFRVlSbFa5e8rXfO2Zna4yjZXfTMkglk6Ym+Qa3dNSNJowVKbaYmNjdvE59fMD/5+99jWp3l9c+9ll2tsYsi8Dx7DGP3z5gMV+IZUfUPHx6zG/8q6/ypc9+mp2rt7mxfY1PfeSE4XDE2dmUB48fMZs5UppB8hit0UFjTMGXvvwL/Hv/3i9yaWOXlAw3Zo6TxzOSvspf+6UvcTTTHL31iOHGDT782mcp0pA7D0+5eXWL3bHCJVEMSFkzyeRYMmbS16QJ7J+dcv3SFttDzbAouP3CJTZ2r+Enh7zz1tvYVrE7GvGRV2/zC1/5WfZ2ruFvlVy6NuEbbzxkdnL2Z7KO/ttpz8QTfxTp5n3JPe9zpPMhmcRL0MeBqze/d28SnuGdrBdZ/LFkoI7Ms8rw9mSF9/tSz+6dzn2LtRf/ddFWWr/e7vzvQ0B631Pw/udfEZ/6XQe9zV6XBMxhoNKanSuXOZmcEk8cWpasVbzd7b1SPqnKCqpd8jmfJknkQ3Ayz6v8vq7qXxRCVC4m6JL7CtYSbzHJ3KR13nckmaeMlsRnp166shjVfaFKYm2+0yuCk8rX3eeB03rfrPqrj4v7f7rXV4pBq73Y6mCdUkm3V+gG73sJad1YWo+/U0/Ekz5W5/bG3UH6/Xjf1xLnanX+FEKgSKs4KEZMtpi2FiqT2NvdZjJZoIuI8zN8s2R86RKX967w0uJneXH2M6isxtofvP/5/cbzB2Q/sfZzInJc3eGwepOj8h0WxSExedq2xVBi6fZcienkDFIguQRG07SOiVkyJlKMNtm91NLWNcEFzg7PMCWcTSbcuHULWxgGG4amafBJYQqJPzvBHLHvkTFXlJoQxBqtjz2UwsWWFDwmaQKK6DyLxZzSFlTDElN1e92EaxyubvuiIVNEJrNJjtMDVTUSu94YiS4TnIm0jRQltE7s5kgxKwDJ2PRB1D0lpu+oDRJjJ53kuVVStLbIFtshxX48qyQWUSElii7Gz0Ss1olNYYqeorCQPN7T26kpBbYo0EbUnCQe8Mh+XzANi+kJGsZofOiUoFbKy90zk8jPWy7aUFrjvSeE3C9ZPaUjWXZi4x3LRSl6TKObe01haLO1ljKaalBhS4mLQxAcJUYI2Z4upSwW6+Q6TWfT1s0L+T0hJlGZS4LP9OrVRmWrM3LfSz/ErJ4dfUSbbMMchFzW2fWlTBIS5V1RScV7QsjH0pHBoCRm4k83tmSeNngn8b2xOu8118iqJHrbYdVZCa4syjp4osfb8t+ke9Xa/J7nzCzF183LSm5e/0DHJIUYzrme+CFkWYlXB4OK0XhI29T41lFYQ9Ia7yDiCSGynC2xWiy6X3z1ZV56/jqjwYC33n3M3XffJoSamzduEEPi4PCIxewYH2p8dAQXSCmIUpDWQj1SCVtYxsMBi8mcNkS6XdO5sCcJriR7XkP0Ee9T3meB0uCRPVYM3aIg1u22FAVeY7SQ+AAfAsGLWnGMCZ+CFPWgQMWefNfjtn0stFonO2Iz3dKU71f//iTfb0Vvzg949w3zMTtCm9ZZ3bVXdUpCws0kJtc4ntx/hHLgOjV5I+QrhaJpagozYGtQMLRDpouGhWsgBEIMgCapiEqJalBy88ZlTg/3WdYtL772IW7dGHFyNsUtZjw+OOHw8ERsEZORApXXf8gnPvoaW9t7zJY11bDghReeJwa4/+ARzcKhVITkhNMmI5Xdyzd5+ZWPMSgLIeU5hzGJvcubvPLKbSIFTx+dMVkEdm9ew9ghzVIs3imhjWLLp7O9ocnjBhQhKRoXOZnOqQaW7dEAg2I8sJxNYXI6xYUaYwJFpdnb3uD2zVtsDLdhoBkMoNgccnS8+DddIi/aRbtoF+2PbToW/LUn/xU///S/+CtPUIpE3t78DX609U95c/PXOBz8iEj4IGyZLtpFu2gX7aJdtD9x+xOTlBS639zDsyB4R5FZbVpXajYrAEGOI80Y0wMofWUM54lKz67Jq82wQqEzft7vejs0ISctemS2B/XTCt+mB4G7a3vW0q0Dydf7QK19y54QQ78xf49q1DPfvScmvc/3Wz9X32/rrz1DpDHaZpA99IJPfQXw2nUkJSDlD958nUm9oCVQJElBq6QkIWqkyoqUE6mJXKEkAL+AUSHbs0ny3DuPtqI4lJKGbMOjoqIobE4yAzFm+76VspKQHRJYI8dMUpEoCkRrBK+YgUEEaOi+ZSdDXg5KAdYyWBJiIsWQ+/c8EN5Je59vq/dIH3cgncmKUIlOQSqmnAkmK+10w0Z10OoaIJOB4m58dfLbMSewIyKnbYzugZ4+SZM/q0HktqM8F73dYRSlK4whpohzjqVNmIFlYGBzPOBnv/R5/vDbr/Pw0V02r4+xuqWNhkt726wnWvokUv+3wCrb149GPlhNreYMAsQgZBcFi8WM6XTO5Ss35TUCIXkcUKbI5nDI6awmtZ7J7Clv3/sBly+/xGd/6ie5d+dNvK8hzcG3HD55m929EmVblqnh7KymGu0w8cc0tUf7hqIqGA40Hg1VwcamIcaKxbJBaYtrFcFHmuAJ0bGYOIYbm1TWEmvPYDCidZ56nqgXNaUGXy9QJIJvaRdgFLRKMz07w9WJa9e2WJwumU4cGkvrWgal5uTklMPjExoPkAiNKNUFH0nJ54SCgHgxeil6jC3JwGBjQFEVxGUgusTJfE5K0CDAcqlaonMEB0lHwsDS4ojRo4zYYLWNZ1AmQhuxhcenQNtCcJ6iMIw2xviQqF1LW7dYA1VRkFA0XiT526VUeDufQU4lz7R3AZ8EMC+LAu8DLoP8AoLDYr6UMRGlkttaJQB0iPgQclVxEgAxBYwtMaagaT22KJjNROHJGE01KhlsWWxpiC241tE0ntBGQu2E9OM9xoFDlIzsUAtpVEGIAvDbosCFSNN4rBVViJACtrCk6DHKUpQFaAGRY05AEBLBNYS2EesPo0EbfEg0jSN6IayEIPOXNUYSYssZxihG4wKzpWnblrZ1pKhISTEeb7CcNxAVpjCkGGmaprenKMsS5xzBdyoVtifoJJTY2GWrSqWk+lxpSTrYrLDX4lFGo0wmxChR+zEodIqokEjB45SYZeqs4qNc6hd4Fx0+JKphyXBni0u7Wzx8511Uafn4Rz/Ck3unHJxMacMCkxIxtUxnEyjge2/+Ie3yKrraZTS2DEzil//Hf8SgKmnmjh98+4c07SHKBnCyloUQsKpEynMdykRu3nqB9nDC8elC1jgjWfbV+izJcucjxieM8WKhlxRgAEN0miZ6kk94n1BKrG6rUUk5FHuV4WiIKTT1omaxaMS2o6siJ2QbW4jJZyJeTkAmSQCqqPJSbLIVTRd/GUidaolkQGU9l+W17dYhsvVIXkYUiF1fjMSo8NHJ2PWxVwlMKhOkjObw/j6n90/QyRB1wM0TZjlgYEsmVvPFn/oyV7cnXKoK7r/7mK+/8w5tk6TPSYRWE3XEk1ClJ7gzzo4P+dInP8yXP/8hVNjg4GiCTYbvHzxgvkyoNMSEJfVkgabhUqn47u//Ad/VlluXb/B3/sN/lze/9y7/+J+cMCx3qVswuqYoRfWt2Npj+/ZHOJgkTqb7nJ2e8fDePsXY8qnPf5qtjW2ePJ7ze995wJFzHMwcm9WM8faYalBwNlty9+kjNrYGbG9fZrMcojPRe94qnh7PufPwEWeLCYfzPV68fpWtsiI2c37lH36d4I5p/CmbG4oXX7rJ5z7zOS7tXEepinIMH/3YDrvXNnh4d/rntqr+adqzRJr3Je+sJbbU+4Qk6zHzir6f+pCmi9Xfc+61AgGJ3bqArvtUR+tY+0x/XNXn41YnyR/uc3UrRdf1I6xfTpe8647dn/qPDLnWrkmtv3d1EtVdJ6vvs7776vZYfXqzf1FLzryLnVWXw1xLGOZrCDHw4P59QjcZoLKMbf6922StEZL6ru2+SUc4yHuyXlUhB8KynesUMdbUdFOnoADdpNOpHmq92jfFFFFBrX3FVZzfX5tai3RVTqin/gJl3YpxLV7Md+2ZPl/dmrw3XRsYHQGqs1fqx4dW/fU/e39XgyIP+m4g9Td+dT/7XV/eH6y6vit+SP2oUXpt7KlOaSX17wfyHA1KiyKsqUquXL9Mmw548mQfdGJ3dwtdWnb9S7w4+ynBBs4N3PUHIz3zt2d//kvckjwXQbe8s/GbPBx+nTYt8N5BA3VTE3xgc2sX2f95nKvRRmF0wWg8ZlE7Icc3C54+ecjOpZtcunaT5eIM19ao4KjKill0zE4OSAaWdcToEaNh4nh6SkoRTRSFFyAi5BlbJAplcd6hzYqw0MUEKUWqQSnWu+WI3d09pvMpzgW88wxKQ1kowsCKtbJ3pKRQZSEKQUmKDoKLuFaUXmIMWCOqaHXTEFFZqUdiCVG9kXEhqrUdyUd+FvtNQzkoRX3VBYISy+WYOk3fgOokgRIoK0rQPjpsViXq8KcYwLUJZXxPtpBCJ9PjR96LerOxFqOSENmDp6kdwaf+c8ZmvCQTI3Te23f9CRLTxpT6ogeldE/66fYaECCrf6POabSJIhOQHL3yptagrfDEYkhSvBCTFDv4TC7Pc0To5ie9UrdLKRGDF1JWzGpLSvZHidTX41kryuao1RqSkpB9SKK6mpLgQUpruR8hZWs+mc+0Nhgjc5Z3gagSSidSiRTgBCmcS0BVDvBOiD1a6Tw+hKCTtBjg9tZ0qVsbuiW4W1uk52SuC/Qq6EBhC0K2RMvflE71j2wtqlIn4JPvgkzOEFJew5VgbPnvyWhUYUh1Iml4/pWXKKLh4aMjFs2CGDwJn3Gultff+AGPHrzNcLRBHRS3nrvOyeE+D+/dJUVoakfdLsUOmYI2BrwHkib5PEa0xxiLd5HgEeVS1WFl/Qye43VRN3Iu9Gvsulpe9Clb0cozZ7QS1UElBXE6W3uGrFwVspJvIgkJLnWKTULwPTcdQh9PnVeHXykTrvBd1f895X2Gyvd1VTTXhRfd2q1wWfVL5ddWuLGsbypAPavpBnXSiUJFrCmAxOWrV9goNxiagtnZhMm9h721vULs31GJqBK1a7jzzjuooNCFRWvPeKNgPLqKUZajNMXYCagKUgsqsHv5Mjs72xw93udwumRYVrz44otYNKdHQ0LjmdeKEKAosxU7mjYp7jx4wsBqvG/wbaCqhrzw0k2qsqRtYVEHZktPOp5Q4BgNR2ztbLBsW57uH+Fp2djcYGtjm6G1aMBFOD5dcnJ2xmI5R1k43dng8tYG3jWcHR8wn56B9lSlYWd3m9s3bjIebwKapMFWcO1SxebgrzZ54KJdtIv2Z9Nemf08P7f/X2Aof9yX8mNtjZ7ya9f/j/zB5f+GxvzFxm8u2kW7aBftol20P8v2JyYpdeC1ysCFIgOtwDq4ug7cr1eGduozWpMr1OT39aoq6DaeAipoVqL3ifMkoJTfqDpgew1s7Tkq3cYd2VxLteyqsqw74Xl4dQXe98VBrJ2zZ6f0/+kVkFZA8uq7dBt6SUio1fv6DMYKlF4/14r6kl+JvU9Pnyw3SmG0QWdQUA4ZMvkIkhaQx/uW/ftPQGkGylCVGmMty5xglstKkKv0tJKKKpFDVqioiCpXKCcBSEJMJJfQhXje+xAxVohEwXmiUlmXJ6GQY3VWcCLRHfBOkg+mt10LdPW/KoHVRs6pdQ+2d+8lifRz10UxBpGQT/SgilSC614fqEuExFzK2CcpMuDVkcGi4Dj9nZHKS0P0YZXvSs8csxsU3TCIUp2YBwhKZ1JSArQkhUMvd04PeAYv1V9KizeTFIL3aYb+e+k8/kIIuFZTzyMqBbaHlsHeDpeev8Zb37hHMRzxS3/rr9MCTb2gqkbZagNWUKTN/3b359nEwgclqdB9Y7EsCKFlsThjMZ/jnWc6maFNyc72HkVZMpuccHzyCM2cwWiXD73wCRqnOTu5z/6Duzx69z7ObfHiS7f52CcGvPX6t7j/8HW2R7vs2YrFwSNO65qnjxo+/pFPcXp8xsHJBEXElgYsKK8Y2JJqOCClOeONknKYSMmxqFuapaNdRDQFw2HB9k6JQVHuXOKFF17h7XffZX42xbmW3evb7FzbYHCyZHEyZ7kM1K0mqkIqNEPDyek+roFClRRW4VpJSoUArRdrA+9ajEKqlWMGfuNqzoxBFFmU7pISimFVUk/nOBeEZJdAI6oBS+9RyWFVQVJQjIYkq4gqYVBYCxtblu3NDSHS1InaSYIgeo8xJfP5HJTGt40Q+bTFGrEE875luWyZT2p8G2haT4ieje0xxipi8HgXaaOQAF3jIBmca2jaFkW2gdGilDQYDIlEmqYmeE8WN5J5ojCgI847WhdwbZBqeWvAeZnDYoQoAG9wAS0zID4K8XO5dAIMJyUkH2vQ2tC0S1IS8DzGJIQrF0AJqJlyJbh3LltmZvA9RpQyAtJrWTWj9zjvKcpKSE1oohLiUApBbOu0RisDSYl1XrYnIxmm02VORojKlELTNp5ZVk2ykgnKSnkKMISg5HrXEgoyTxuSzlXbmdCkFKgoa6cLHlMUlLYgJSHV+iDVwCnR239oJdXWpSnFMixFdKfgF0XFJ7gk8y1KKoEtHJ0d43G8+vGP8L/63/yvufPNB/zOt3/IG29+n/0H9/EqMB5VzOdTfvmX/xnDZGnLit1rl/jI9DYP7j1ic2CJ5YDZ1FFpw9b2Fm5gOcbjfMI78I2nGHiGmyMe3z1Cu8jADlg2SxRSiU7sgH4giWpO03qpWE9d+kbm/xQUsY2StMnV7rbU+NBCqxkWAxaLZbalEJsXbTQpJ3qa4EippSgtOc+U46icOM/Jgo4Aq43uSbeSmNKEkKt114gNIYpqgDYdSXmlKKnQGG3AWNAqqyfmMZGSkB5SAiIpV7KH6KSKXEdsZbh1eYtSa86WNT/8/tu8eOMlrrx4m2+9cY+2bXGhJSQhSZlseYKG+2/d45/ceUK5scns934DvaW4tPs8L95+BRsqPvW5j7C/P+fodMbSzxhtDHj+5U/w4OCEyekSO9zhR2894mSaoG75xV/8Wb79h9/nnUdvovSSrc0RxwfHaDTf+8bX+c7veKz2WNvwiU98gs9+9ivsbu9SAVeuDNnavcTxO4f85j/9De7d3uajn/owi8WYe2884Edvv44eel76yGv81Ge+TGkrPPDw6ZTf/f3vs//0DvPmlFo13H7+Grd3NlhOPKE55mx6xKXrQ7702Z/gE5/4DNd294SEqCR+KoDblw03dnb+PFbVP1Vbt/pIXaz+nrYeU6dnXpEPr8j7XQy9UkjMf1jFlOvHTc/+mNaOsvaTYu145xNvzyoZrJ2y/2Gd5pTOv8q6xpNsC7pk3Loa7fndybkzv0+XpXPvW+0n6HtppcGwCmWz+iddHGrwIfSv9uSvvsAiEpysF4W2jAYFyhrm8yUuZrXFNdJLV1SgyLYkaqX4oDOxNKUkUiA627HmOXw1cfWlAHl96YgxufNS6q0rOyvlrn9WydN8v5QoduQM7moXlhP3q8/E/h6t34Xz/Z3Wf1ndqW7/mDor11WfdAqzMVu8drF9vydUebR2Y7sf//muJdlTKb1OiFrtV/sLUKt5u9uqd4oT69+l25Z2oyamSPSJoEVleLZcUg0L/NJRNy3Xn99mWc858U84KN7isn8Fk4q+N1Zjfv3J5NzfPhhNgIb96nvcGf4rfHA41+C9ELV967BFJSqSMVDPZizrOSG0lOUGm7t7bKoC386ZnhxRt57FfElZ7jAaj9k/O2E2XWCUxqJIoWG5cDR14OrVHZp5i8n2qboQEr2PohBaViUxOEyhUNoSvCiFeB8JbcQYsYUqSptVghW1d7iQ8E4UNhlYhuMRpnTU80bsztCE3gY9sVwsiV5htUErJA7qVCLRfQFRP/5Tt8fU/eTfkUB60kWMRO/Fki6fJ4VV7JKiEE200vIZo+X/CElDkbCFYjzeRBtN23qcl5go+IiyGtc6efQiaBUJUZRyikKRYlgjc4lSWwgBMGLDHLMNV45rQiZbdXHYalWQv1lrcgwfMklfVJDJMZ3SUrzkswW1KD7FrBiUQIkqTsxzntKCw0gthu5t0Iw1opDqvMyXKvbWYwqVVXHytXZzboJe2inPf92M1Clnd28RhWiDth3uokVgC8EturUnxVyAANhcjOV9Qps8QYqkJk3d4JyXPUsml+mu+DCPnxhCP6dp3c2Ra2sGSYg2VudxEXORhKwX3bFkvHQLQhJcq1PlSULQXanodU3O16lvpSQW4k3TkFKkqAqef/kFro4vcePWnMcH+9x7+y0W8ylbWwNSSpzN5yynC1I6hcIwnZyiUmI8LNi9tEvYGDLdV7RK9rXJWxRCJnQuoFVgvDOmKkYs5g3D0YC0WBCT7onQ3frdXW9XpABdIWWCJDheSpDy0q5yv5H3kN1wa1shIMp+S0EUclQIiYRYh2vTKYXTr1Gqj7Xo+bUd7qvyNXbOeqq7tkw67te5niS9Wic6S8h+xk0dfrciOa0IwvmYnUW1ho3RiI3hgNl8wTtv3mU4HHH12hUWszku+HPnjNArHKmQmBxPKMqKgSl58vQhR0cnjDa22RpvMtwc8uqHnqd1iaf7DTp52oXjwaN9xoMRtzevkGLi3XefEFPihRduc/nSknsPHtD4kp3tTaZnMxZtzeawYn4yYX8+I6mWq5d3uX79OcqiRCuoCtjeGTOdbFCfzTiiwV5RTKeJs8MpxydH1G7BYKPi5VdfZWi2CQqWjePp/gknx0c4P8fFlv19xaPSsjUaYnXCqIQdGF5++UV2Ny9RlAVKWxKpL5g0WrG5obloF+2iXbR/221uD3hr81d5ZfrzFGn0476cH1v7/vY/5Leu/p+zO8lFu2gX7aJdtIv2V7f9yZWUVA9BsCLQCMqT+s2wvKOH13tASv5ijO5VZWQv2SkorVflPAueiz0NuWJGjgcrNKG7rlwBlrpt+8q6igz6r6qB6clM55WOnvldkUG1NTC8swRA0dljKSVYs9IZlU66TzR0BKq+cjVlxR61uvLU9YiKKCJaJZSy+XoMSXtMsgJG5uAlECHkKrcefIHUKUwoIEllcCRhElSFZmdzzKc/+VEuXbvEb331d3h8cCjvU6qvZAODVpaUEgMrye8mRVAahcUYUZBIUZF8QNsCoxIuip1OCpkQ1n83uTilwWQZ9ZRSTl7mBEkGOVBk8puAr53lhNgQmJ6kRsj2c3qlwEUG8GNau18p0VctdgmsrrviChTNg4qEEln6JGoP+Y2SBO4SJ/nOp7RKiHWAGMj1x5RQKaIzoJuV1CmsQSkhX3SJCBByVcwy3gIqZlUobTJIk3rLDGME1NNGoZIREkWwXN69xN7GiF/7F7+Brko+9JErXLoxYBGnHB7OePr0gJdeeo2rl69SVUOUMqwSC923Wh/8H6wmt8Dj/YymXTCfL2mWMxrf0C4dKsLO7gbDoeXg6AFP79/hbDJlNmmBgBoM2d7ZZnN3k82NPRbTOcXGHlU1YLk8YjoNKLXFOw/v42YTXhzdJDnNpa1tgj+lNImNQcVkuUCrATFo5rMFo6FitDnG+wFtiDQN+EasEFytaJeBsixYNrCZSoxNnM5nfOsH30ElQ3Cetm44my3ZGW4xGhUsTj2DjQGYCg0s24C2mnYZUFguX9sjec98umDZOHnWlMEoRTEYEqPHBdejjTGP9egdMWR1MwujjRGubjld1Fhr0BuadhlpQ0CZmIFXTcSQjCg7+ZiwCZyLJC1EvL1Lm1y/eZ3ZYsl0OicsoWkWWGNJkZxk8FRFSaEDiyaiS3nm6kUt9lJFAVGql30UwkvwAlp7J9Z50YuaTIxRyD6Q5wxF2zisFeOlEIUcZIpCnuEYSTpQVgUReqtJohB4QutxdSNqQdOGSMF4YyAKNUFUlKIXsNwWhmo4xNoCd+IIIdAsa1FJyjYXYumQ8wcpny/JnG+UkApZmwOc82L/pnUvfz+ohhTDUuYzElqJ+s6ydX1CN5FwXj43qCpMaSmqMt/zQPBNv9IvF3NsaSjLAm1kzq2qgqYRe7i28RAVMXqqqkQpsQhIZIKRYZUcKyzW+2xv0Nl/NIDMnybPtCkGLMKrVIXCx0CUxVZIVhmUj6zWjxiVEOSc4+n9x2xtDlFo3HLB4f5dfuqnPsNHfvLL/Oav/gb/4P/199i+vsmXf+Lj/M5v/SHT6ZLTpkY1LUUJb7wxJzjHT375i3zlr/0s03tLvvv173Hn7Ak/+tGEpEp0jLRNg/eJcrDLf/Cf/U+5+8O3ePz4MdPDx7RHC1LM9gshCFktj9PgfFYZ7PqoEOXBCCoiFqAEtIFiYFA6UViL1tC2MqadCygF1cBiS01UiqX38pwqCL5TrFqnSYjKWYyJEKMQaLskeI6fgneEmDAaysKilKZtHSiVLd5SXpe7ZLqQpMpSEtY+fw+tJe7TSDgVvBN7kURWAfNEJyaDIcDZWQ3BMZ0vefTkm3x34weMhkNSg6hHxZJl3RJRRC3XklMtRAxl6fnUS9dRZ2f87jd/nW9d+h6vfuiTfPHjn2Oj+HkePz5h/qND3PEpv/z3/wF/42/9df723/ybbA63+c637/CH3/8RN166zsuffo2rV6/w679n+diHb7E72uKf/OpX+fBnPsznP/JRfv/3vsU3vv8trlwf8uprr7CYLhhXYwYj2N0seO21W6jYUG56vvSl19jbLHlw5wnvvnmf/aNjGj+htZ6PvPohitEV6tbx5ltvcefOPY6OH+PTGSHMmT65x4PNks988hO8/NwlDg81n/7Sx3j59vPcv3+ftl5w7dJVhlUl8Z8yKK2x1bmM21+odi7MVs/GGuvXrd4/EskJMNVlx2CVdO1+fuYD6/H/+qlUN8Ghnjn3s7+q839MK0KJ6v++CmTV+uH6JN4zh+tyi+eSfWr1+rlrWFFAzl/p2kn6FGD3Srdnkg2HQoEWkovMB7FLIeZcXZK9Rf/5vMdBnbNBM0pRlaKed+PGDfYu7/LOO2+zf3Dc9836/egKJwalxQff2/coZP2PfZGFvL+zoeyLTuj2oCr3eer7tLNSTl2SNoFKqbd468g+Hdmy+19vyUzqFeNWeey13s0/C7+qi5ZV7pduD5D7vh+LazfwPY+hWhE3nxmQ633Q1dL09zqtRlogoaIoYawIqKtnSRSg+roW1q5m9Uu/39I9kUx20gajLFcu7TIuLffvPUIXht2NEco6Ts4OaFvF4/kf8nTrLrerj/GR9Itcaj+Eyuq75wboe57vD0ZLCgINdwe/TeuW2T7XZZusRFGUFFUh8frkkMVsStO0uCaSfEPYSRSVoTRjtm3BqG4wtqCwikW9xEfDaLzNdHrM2WLOph5jtGVne4sUWhKesjTUzsneUVuCa1HRE4uCmDR1HfDeo5IoZ4ZWEYNMOCFGjE1oFWidY75YYExBCvL8ex+hjZkQ35BCQhuFTrJWp7zXH46GDEdjIZzvH9G0beYmyQA2RvAbH0MuEMpW62mlrNThBGVRYK3Bt45EohyYXEjRKbikbJ+mCESJI/JnO3UjlRLWaspK4mQdFUZpYvJy/UbTEfhQirIoqWvXz4ExpL6QCZUoSoNNhpDocYCVKhR06pQpn7/7Pp2dfAixn6+00SvlOMTyVWlF6MjrSfXE/5ik/7wPmbzZFTrJfkZUbpPgalaUSAXyWKm2dSUEcW0S0rnwQLAe6KKnPoBGjrFOlhUczvT7I9kPdd+3U43qVkHVW22mlEhKiunIJB8NEqdGKJSRdSDjah15M6WO/CUnlz6BRBRCUwbd1qEeZRQqapSVsRCyBZbsJzpSjeBQ3VoWO3Jrh9WJnGD/fCuEvNYVh7lanjWrFTpGfvT971J+6DV2dq6iyiscPLhPvZyzs7fNYrZATxc0WS28VAqjYybIaa7e2OHS9hUOx4cczk559OQg40SGFFvpL2XYufY8l7eHPLz/iHa5yLaOKav6RlLI2Ghe+1JWqJWlT3C4zmZP5XujYkRnm3CV1wAZ954saga6m7pVns87cnT3DK7vJ6CT6usITtK/sd8bxGydrvIY7NZ4ea7V2v1R/SlVh3epNVxujWirsrJ7P3aTjJGYUq8APJ0sWM5r2R8kcK5lNpugdYE1Mk80TVph0KqLiCAkTWkSo1Jh2pZ67jl4cszG7iU+8uGPcu3KkLMbVzg6OsC5huOnh+ztbPH8qy8wKCrm85bkLV55ooUrNy/TpEDrlzx/8wp37z3Ba8VrLz3P5GTK62+9TVCRK89dRyEExKqQ/trbrQjhEilts3N5g3Fp8W3DcXvEctnQ+JamXfL48UPU5URhLMfHU05Pj5kt5oS4BByq9gSr2RyX3LpxmclghEuB0EYePrwPGna2d9nd2qIoSnor1w/mMn7RLtpF+zG3R6Nv8d+99J/y4vwr/PT+/5YPTf6dv3K2b42e8btX/q8XBKWLdtEu2kW7aBeNfwOS0vm22lD2OGxaAeiwAks7oo7WOvuZZ6lhuk1rB/SsEYi6/6TV5zvAW61Oj1rbPJ+raH32atXqurrNfMftiblMSq125Ofa+bSGynrj731fBwgoBTm/3fdLT15Z+1vKF6F6MCkDIVoKipOKUsESDeVojDGK2axBpYhVlpaQvdyzQoVaKe1EIioZSdRm+4Gi1Dz30jXssGQxKHn+uUt86iuf5PE//ZfibJVWwHkKkUTEFgWXLu1xNjmjrZdCjFErWwW0EkuGlMT3PX82RgHoJDmp16q6ztvhCelIQKEQIyonNFMQwImcWO0TDWplVyEJ9ExgywBIB3x0YEMPfGTbIBlC+f53GueskhAqA27nfs7jJHjfj0WlIOTPCFlJRkqfROqqEjNBqtfHiElIXTnBlpRCGSGShSCJZpsBma7vYk5mdwCl0mK1pLWArVpprCqxw4IPv/YqGyrxe9/8JrtXt3hy8IRHZ6fcOTjEqg3QCedrTk6u8MILr7KxsYdWpie+rZCIDy4aIU+eI7g5oWlQUWN0xXg4ZFwN8CbRNnNOnt6lKBOLuccvDaoIuNmcqtpAGVCbJdRTrJlyOpkynx2Iso6vGReRs8Jw5+EJ1caAl175EBs2ce/oDta2mCIxnZyi1QDvArOwwFQlQcHipMa1NYOiopk6ZrOEVpYmOvCRs5M5KdTMFkuMLRkPR0Tv2djcpCgKjo+mXLlyic2dlv39CcORgOIqQRsCOiZeefkVsAbvWvafHuAWjmXd9oRQaw0+SMW2zSRFdBAMUon1ozxThrKsgEi9XJBSQBsjFnkuoHzCaiA6XBRyjdYaVWiSVjgXRV1FKWxpOT49xIWIT5FqXIKB0hY0TUPTeMhQc3ABrRO+TUxrB9GQiNSupShge3uTxkdOTicoENJffm47sNa50CcLhBCUk5ZK0zQtxkAxKNFK45uWpBLloERpMogtgG6RyRvOJTY3d1kspqTkqQZjQNG0ifnMUc9bYoiYQlEOClQBUQVMofMzL8CzktJuTGEIKVJqCxHmdUsiUOiCSEJbjbKKEETRImbrndQlaRUoFbFBCDRoRTTSf23bklCS1ABAYYqSED2LWcu2lcTBbDIjxsjGZkkxUJRVSZsJMU3rxLVCGVJMBLxUQRtD1AlbaIrSkLI1Zkpi/+Cario9z7NGYZWsAzqTO01HcM3WHMkoAUohS/NLwrrokzI+q/jlBHbMxCgUvo6ctgssnh9964f8X/5P/zV/7ad/jroc8+4bd6nnc05nLUenX6WeNaSkcHixRNWRQinamPj6917noKn5+M0PcTA/Zv/wSJI8ShGMpSg9BMds2vDV3/t9PvGhm9y7XzNZelqA4MELIUksPRM6RVK2VUPuvFiL+JSrwSOFNkLusorB0CIqhp7QalGK8kHWhsLgG0mSimWhkLe0VpLECKJu0CXmtZTAo5GkgM6JmG7djjHI+3PFdIiidBhy4iuGlBNToKzCWElgKZWwVtY+F6TCX0hosn5KrAE6aTm7OG72tIjoE48fH1CVFlMarAr4+ZzZIrKzd4nhRmByGqBJPUFQaY0yCtcGmhCxpeUHP3ibNg64fuUG3/32HT71yZ+jLEquXVbs7I5JSJywt32Jr3zl57i2fYlE5IXnr/ChV57jrJ0zHpZsvXST7ddvcXQ8JcQlP/0LX2R37wrz01PqxYSmmbJ34wbTdsqV7T2qQUVKgbKAL3x6j499eItBZTmZ1ixmC1w9Z7E4EludZsFb3/khf/9wws2rzzEejHj44JTDoxPmi1NSWqCiQ1Vw+cYtfuIrX2RLX+Y733nCH3ztG3zra69TjBTaFNx67gaf/vhHefHmi6B1Hxt2Jrl/udr7xB9qtbvoyf9q7cUcfr1HSak/Wlr7fcWgSM+8630v5Y/eWuS2ltwl8r7Her9jdHZb6RkiVh9ed4m+8x9eXbk697eeQNMnl9evK+W8o2E4FoXBs7M5JIVRhpDyg5njViG46H5N6bda+YjGKIabQ5JWHEwnOBsZbY/g8DgnOddVb1kp6BnTZVIz6SgQ+j2V6m9lt/dLnTUNaT2H3icwE/TXe15VaM2Kbp0B1nWxWp2rpzDlJCr9OJN7kHSXsny2/9//vvZ74TXCUrcGdseVvezqXD2Z7Jmx+SxFr3tX97nY7Yv7P3V75ZV6cfd9Zf8V87V1+wzZZ3V7FtXtTWxCGUPrAt4ndnfGLJua00XD0dmM0lRoazjB046mHG29xSvmZ3l58XOM2V7r6w/uXgJgXhyyKI7QXgqMBqUQRUWBx6O0oqlrYluzvb3F4cEppYXN4RhCJAVPwjGZn5Jci7WK05nH6oRWienkmFIFivEGyzpA0bIzHjGqKpJvUXgSQloBIbyHGFC1JqqEayOkgLUWXwdal9f3JAqfPisWOS8qnJ1lY1kWoGA+XzAaDinKkma2pLRWCM8u0bYOoxVFUVLXdb8vSGRiTbff9lkdLUSUkXjXe1FcE4VRiQc7Yp+oJneFTPnJ6AnRGqsVPkT6yqaspkSSY6SUGJQlddtIHINYWpXDAoPGOU/bOolv0AQnJCAFuKxc2V1vTJGyKIXcULc45wXHyrGUD6HHpiTeynFUEOtma60UPJAwxsh9yFZ5trCojryR5Zs7ckmMkaKwxBCIBGwhhBLnZG8VfBQ7uK5QQYtNtI8+KzPl+AxIWhSbUujIPt3r8j07HE9b3U+VnR1ghkvoVzYt1xZTWsNbsmKTzjF4/q4kcN6Dlv2Nax3ee6qqAEMmt3fW0xHvvOwn8tzf2cqlKN+xrArIxVodbhhC7C3n1rGlTgV2pdioevwwIUuv1qI6KsMrq9PJSOznQ2RIrpaQvI8JiALN/oN9vna6QBlLGwKLyZK2jbz11gNEMa9b4wWnaxpHSjBbOL7xzdfZGD0gtoFlWxOcYH5egyoMOnmSd9x96w146RpWB6a1I3ZFM9nOLa3FPlqpfgwlJG4nds+FFLkJ8UdhrVgux0yqjHG1nug1XErWYNUvp6uT0veRUkJiFhJUh2amHnvtIbLcnyH3R/fM9yqv+VknK4OtcDX5e4/jZpXDFKRvOxwQpEhlPTyKMeJTEtwMUY1KQUGhKIYFzjWoVi5QVswOl0tSfBQU00VLOYbbLzxPevcpKgjBWimFtSo/9zL/X7txnbIoUCoyGFqev3VZns/8XAxHmzx555Dp9Jjnb9+mrMY8vPeYs9NjmuWMoB0PHz5gd/sSz11/HpJE8eMKhje3UCoxX3oePTqiXkyZTE9p2wU+eEiO++/c5en9xwyHQ4ia+dLjXUuMjk7Rd3N7k+dfeoHt4TYbG4nX37jD07cesrFhsdZyNllyuj3h9nPPMSo7ZZM/NhC+aBftol20P1ULuuXtjd/k3fFv86Wjv8vPP/0/sO1u/bgv68+t7Q9+yP7g9R/3ZVy0i3bRLtpFu2h/IdqfgqTUKcZkcDVBJ8Xbw5IZALDW9HL/K7KKvLMDGmLqlG9WwHDeUdOdQCpiM4AGAuasJSneu3XKG+O0IsZ0gK+A2akHjvuvkq9hnbCyfjz6z69sA9ahZa2UqH6kRAz+3NWsJ4776+0B5KxLpWI+jUYlLaCAgnK4wac//xG2dzT//J//AcmXmNKiXU0KQmBJCFZXFiWoQNN2Vgke2XgXKKU4PT5h6RyPHp5w584bGJXVFpJInPe3J4lM983bu+w/Oca3UumndSAQBfhkRR7zweeq51w5lw8kgGmu9lsj3XSvay0VdPSJ/yi2N6qr/8v/5vEUolTRaa3QSY7VyZdrlZWIlBLwr+/7bE2XyUepAzRyUmL9e6yPl/XKrn4U5ExD7BTC9Joal5Jxqs99LgmZSUnCJ3Wgj9YYmxMXIRJCR+iShHXMsvfaaLyP+GwzV5SGsiroqjI71CyZQDSOw+MD4sCSNOxc2qNZTjg+W1CHhzx//RrTecNhWjIo4f49x+bmFcpig71LV6iqsh8rH+SmsBhdoZVhUBrGu5sEBhAD9+++yWhnl7OTYyoMN198lUJtEhq4ffsVhqMKNztiOj/gW9//AZd2h5jjhrsPDxhYhYslJ8dHvLQ3RivNyUnLaXPI992Mj127xvM3d7l38ITFQlS0YlqSYqBxMD+b4VJLqKNYDhAITSD4GoxFmYi1iRgd0UUqO8LHxHLpSEHAJxdbprMZ05MZV67uUY4KqvEAowx141hOZlRVxcNHj5lNZxgDjW8JURSPYkjUvsVajTGaaqgpqwLvFYuZwxQl3rckLQBhCIrpdE6KAWM1RqkeQCU5lLbYoiQqj/YCqpaVxdiYLSoDTZuoKnmWl/OlWFbZClRkOLKE1lPXS5yLkCKtbygKRTEqUMqymDYk3xKV2AcUowF101A3Htd4opfqa20KtLb41DAsy17eXiUtzySeajDAWI1yQiQZVCUJaOolg6rCFoYQA20rVm6i8hZpnaesKnyssRWMNkuUdjT1ktnM4Rxia5MSxhTC0wiR5WJGconCFCyWNTFGBmVBh/Ubq4RcEiRRokzM+G3CFEJSigFSEOA+BhFnFyWemO0nPCFKIiUYk1VuACXV5t5L0qUsC1wLOI9rGnwdWEwbtNY0Zchzk9jbpTzufLsiiWxsDhiNRiyXcxKR4bCgHFZEAs41xAAWSwiJ4KGuXSbESDLAFjarEcrqGlygS6ZG71GlESJsDJKUQomFqHc90YxOGSgJ60VqdD2x0OjCoDEcHTj++//hn9M4IX0RLdFaDg+XFIVYpxaZKTw5nrOYt4y2Nzl6Gnj7jW/zL8LXKYYl47IgJU1VGXxyELQAwIsT7nzvm5TTJyyPFmgfKDV4FwnZIo3UJdYVxhi0pbcWcS709xxWRLbCSmJBkv9ajpfXbrH7kERVzOQk4dfqPlGlyEkHn5cNI+uTMZrCGpx3KK1zQk4q3mNKqOzPEEPMY4CcQMy2pEqUB5ROvR3UcllLzBOTPE85ZxBDEgJySnR2D2IjkuMqBYqVWmH0QsKKMUFqUGbCcAMh5pHQEWwSwm7SilIHFosFD596XnzpOi997lOYxvLcwRkPH7zDhz/0MjE4KuWwJuJiwA4sjx6+zY2BoRhscPPaLujE5TQmqcjCJ0Z6xL/8V7/P3/iPv8yXP/FZvvmNt/jt3/oqp5OnxLrm6//ya7z1nTf59//m3+b6ziWgIAHjAkal5eSs5dtff5dvfecbzKdPIM2Iizl1s0AtA3dO3+L+W2+zubVB9APqpSM0DcknkklcuX6ZT33iw2xtb1EwpgktRyenDLYcP/XxzzBIQ9569z7vPn3KzRtXGAQNRqOVEDv/MrW0FievEzS06qwMu+QYfeYr0ZFIOoLS2n6iO+76OeisRvIr2XLsj7qe9U++5/W1c3TXnP7otz/z7rXfuwxofxTWSP1r2b11csy6NNN6Xi4/RznKzi/KfsKWJc+/cANSzXQyBQy6UETXbbtWSV1rDNqqrJSnUGRLSmWIKTE7m+FjROuC6emx7Kuyog9xpd2hEhir2dodcXYyw/vu8rMyQ0fqIcfr3vd2Th1BgY6QtFZE0CU0z3dzJmPlG9wRSSUFTf9ZOdaqAKL/e+qOsbYX1JmwlTt6fQ9D9/G0yt2qLi5P5+/1s0Ua9N9tdaA+UftHcHxWt7tLHOd5s8+Fr6tNrCXZu8Q7KtsBiQ2VtoZeeaV7c95/lNawPR5wMj1lUddooqhgApsbhtmioa1hPKiYTo/4rvmnPOINftL9XTaLvb4fP7AtwdwcE1QgRkVhJMHroyjdnkxPUcYyGpQUxjIajrlyxdAuPZvblzBGEd2cup5xenBINbCoGJjMakJwRAwqJXa3N5jXNaVX1HXN06ePqQdDtjY3iErTth0mIc+MD5G2bokETBLLpuAyFqCEEGStFoWYrOpotc2xrSOGQAgG60U5MTSB7b1tqlFEayvnUi5bsClm07kQ4ZWQikIQ0o1YLsk8YLTGlkZi25RtIHsFn5UKT9u2gJBSTFZ3SSGSUsCWBtMprCWxq7VaZ1vgIDa3eSiHLEMas9V6N4/64DNJKF9HLg4qS9mQuxCJWenNuYDJdnGyR5K1wrUhkxMKlE498aHDj0StLmKNxhYKncyajXsm8VjTz9dCskmZhJHjXq0lPtUJaxRKBVHhzHGfQiwrVcqxIzLxRh+FdBoCLgSsMZn0Tx+HpShkCWNy/+clolOAlkKzuJrMknwGJQSdbsYNMYk0LvTkF5n3Mjk+YyPBO4yyIicdFd7FXqXad8q2QWzHs18ftrBUVUUIHpf86lpRK1VQtSJJhRCzlZ58FyHXr+bATrGrn+MVWVFJCCawUpjqlLC6mGBln6Yg43TKGFAa5xOHJzPZgyUp4LNlKcRbkhSCBNWrbtXLhtHWGI1lOamZHh6ChaoQy++iqkhNI3s2skqea3ly9wkFogyUv5oooinps7Q2f2sZkdJHGUtNeXESm3bZh8TU2Y3qfu3PdzDH3HK8RMYv81q9HlPF0OGlHaSZsNr040VnwlKMUpjRXYvgeisMeT3+6q41ZOXwjoAmpLpOFT2PZejX6jwSUSRifo9eI1OlbLcoPKyAjw0htees/gSOVP2yrJSo0Q2GJdWg4Gw6wVYKnxaczc5Iww1iaHKhX6L1jrfffJMiOvZ2d6nKLSm2BKSUKFIZhVsGxju77O1dZXq65PSs5vhsJmS91vP43lPM8wXPXXPyrCspNtMaGpd4/HjCw0ePqOsJhQ2UOtHWjpgCySV83dI2C4wuCUETgyhkxSSEzqq0NIs5SzNg0dTUzRlYuPn8LXbH25wcTjmen+CC2HmiK9m7XrSLdtEu2p9VUxCV4/cu/995PPwO//N3/99s+ms/7qv6c2mH1Ru0ZvbjvoyLdtEu2kW7aBftL0T7/19JiRWorddA2G7Tuk726KpfOn/7FaFFZVA5roGr659LGThdr87tNrUrQon8vbOx4Zn3cY580gHJPXLzR4Cp73fOnvSkV8fWGTT3IQhgtPb53Dv5mt4Lbks/dYpLmoSlw86roebTH32Og4d3GbpA0JIED2c6gzKKkGJOMBbsXN7m6eMzjBYlDt96lIn4FJiczAgZ5Hg6OcOTLdvSisDT9X+MgdOzU9pQ46Ii+IhOuq+uFlUsuWfOud6+oVNiMNrkCsEV4PWefowrq8Ct7Q2ssRwdHZJiRGOyP7wkWEL0AjbGTFpD1CCsWSMYZUDEaJWvTyoZWxdEPSTGvl8lQ7oiJK3/++z978dYN34kC3I+r5R/luL4LnGgWY3jrsJenoPgyQn5FYhjjBGyUpGlybMtYIxATBSKLG8tJDhJ/hiMNlRac/vqJT77yds8OX7E62+8Q1UlinJEVQ5IusGHyDBaNgcjmnnN9PQem1vX0GrE3tUB2qQ/7YTwl6YJAFfQ1CWlLQDFbDphOVsyOVtwMpnwwguXGY01zi/Y2NTcO9wnPhnx/HM3IEypqsi1rREHTx+hY0GhxxycHOLcEoPi5vMfZhFn7B2e8PbdOYcnc/7g9B5XdrZZeIXzHVosoHIIntm0oTCKnUFBNSrZP5phSoVxkeEANrbHnJwtWS5akneQNI33mKLAty1FsYlqQacCRUk53GCYPDFIBbBYERSEJjKpZ0znUxIerawQI7KSmpACAuPxiM3NkkjEtQmFqOugpBLP2ALnAsvFkrIqKK3FuxaCI3rP3uUNbjx/if2DY+anCrPwKJNVchI0yxrXBEl0JCU2VpWls1IgBVrf4BuPTmKBGIKQJwejElNq5vNW5qUOZETT1JJk8RF0sngvNjKF0pSDilAFQnIonVBRLCWNNdhSMxhZlIFiUDGbLmlcA0lsO0JKxFaeO9+mDNZ7krIUg4Eo32lFdAkfIsp7vBcQPBd5C9HSy1xUFBU4hfLQOi9WHAlcgiLPpTpXjGurMVYSFTEkdKGJSgib0UdcK0kXYySB5KLLleABUemQJG3M1crWWmxps41kVv/LyU2jIDkn71GihFQvPClEvE8ELzOWdwrf5odKdwoUibZtGQwNMTrmM4cpJBnj2iTVq+icBBMQPMSEtvI8dCSY4COZA4PP1gU6e4XpbCOhs4KTqBIhFiW5yjrGSKEsxmqxpdORqBO1j9STiSS+XMLYxNZWRbSatrEoHamqgnJYYqyhRMhwH//CJ3j7W2+jag+xoWlbhqMRt157BdrIO2/dY1k7orYkq3ALePv1J1ij0EWBrSyuSbg6klzb21nEmAhOknXeC6GuR97JthTGoIwmBrnPymh86JK/OYmRYlZeSmhtJVkXhPissrJBTGK/1ikr6hy7rexxu/gt5zXyWhW8kIaM1n3iERX6RIFYmmiSWtn6BR97koFUk3fqChGSljkgr40qJ8nk22SrUyPWgKGNxKDxYrDIfHaGa8GaQgD7vCanrLagrGW8OWA40HzxMx/nB7/1u0wW8MXPfpJ37vyQf/brLaM04PTsHtCQEvzw+2/y3+z/P/jelz/Bf/w/+c+4PBwQUAQVWXhHCpqtgWdzb5fXXvs0yhZcvrLH1t4uj04eSjIkBUaV5urliro9Rg/3gAJx5A28cfeY77/+DgeHD4nFnM9+6Cbv/ug+y9mUNrVoLdmH+WRKaQLaCUkuKkUIjuP9A37rV/8lT+485NqN29x/+gSnj/jUZ77A57/0E8SJ5uGDlrffesjHn9tgYHYYXbpFqc0fFdb+BWyZaCT+XWuX3aVyV6RyUdXJ709SsS+PzLOx2+rnLnF3jkxCPwL7OPy9V3UuYj/3W2Z/8J5AMK1Mwd6/pff+pcuB5te7wo+elLX2uXMKPL0N9/n/dsqBYoGm+wSiIhDaGl83mKBIShLx0Sswsh6ErEQHYk8c2kRRlbjg8K3LdyDhXaaGpYAPKav5nVcd6pLGIQSODk/z9Jbj7ZCLFOhsq7NKW7bHifneqvx6n0RNq/vd7/3S+X6qhhWFLZhMJj1xoI/x87jpiyrorkFnomSnwKF61dP+/1rm4t72ibUb957ben6sdJfYJ1bpyCVKEpn9d1gb/3m89nwjdX5PS5f+zIqr3Tl75eGsKELfTau7EwGV92ZKd2QDUYcwCpJ3bG/vsr054OhsgTY5xlCG2WJBiAWDqmRjOKb1Ae88k9EjJmGfjXTpmef4g9nG/jJV3KGOLUIM1LRtw3Je49tEUkuqMhCiZzI9xjvHfFpzNpuxt7uHtYnhxgbXFJydHhOTpRqOWS7nKK9IwTHe2GVjNzA7O6U5WBIxHM4bzpaOtnX92AgxZYWihE9gtaEsZS+8qB1lZQjRY63Clobl0hG8WFel5HE+9OQZuc9KSDba0LaS5HbOZ8tkAEVwkZBaXAiyN8gKhR3hLmayBiYTsnUmUCvBCAIhqyqSn3nBD4qikLEaPaRIWVouXdsmJM9i6qgXDhWjEGtClHgwdM+GYrlsKatCngkJgEipI1mCSnIdxmghp2uV4/CINibPl4boA97HHLMpVFqpX3dzdlwjkiYJgrDKYq1GmRXBMQSx3utiJnlmZW/QqYlrDVVVrqynMuk8dfacSaNV6pWMUBLnp5DjtwAueXn2lO6fcZ19vXobTMi/Z+JCvl9aKXyeL5WRIrEQskJWStmauIvWpDhAayky6FSZ+pgyi12lJCT3RMrFiqJYpUAIV8qQRD6879cUZY5t27ZX7m7aVnA2k63JfIcjpX5u7fCZfuZJK4ISSmXyjSi9dh/qv09cKWCdm6yT9EtnWwyRkCIx72Vkz8rqPSoSM26VUsQUmrK0VNaSQmRje4xvA8tFxGTbbBMLnrt1g8FwwL13HtIugwyKHEO7NuLJqtqFkNBlHfL0JCRkP9gFNP0Y6pYola2Xs3IvSfoudOSuvq3Gt1JKForYrZMpW7+v1vmOPNRx2oKKfSTSq5rLzJCJSqvLWm141jFlcpFJzIUP3bO2TiJekceUUnlPodbWyw7nldd1tqROUWe1tyixkKMf591EGlMSArXRDMYDLIq97R1i7Xjw8A7Pvfg81nt+8L1vYYqKOPfEtEQpwQUeP9pnNp3y+S99kWvlBoa8B06wXHp824INDDc30MYw3qy4fGmT0+k+znmUTlibsEXg9OyAvd3rGFXQ7eTrxnM6mdG2C9rUsDEeoGox5g0xEHUmeEeJzQqlScoQjSLEQHCeJ48OWEzmbI6fgtVEtWR7Z4vdvUtUqiLQsFzC8dEp5W7ADjQqlX+J9hMX7aJdtL+0TcHd8e/wdPA9Nmd/NUhKV+uPsuluMC0e/7gv5aJdtIt20S7aRfuxtz8VJ6EDcDsFmQ70WSe5dMkzWAdfUyatdBtSMkybgNgDpfSbXgFURPGCnuaT39KD8flAqxc6GFifV/YREkqnBLXa2HeghFarjWp3gSmD+11WQ+VkbJ8uUCtgxnufiTDq3GZO9edOmXiztonOrxljKEqDc2JxU5QGrRJuMecf/aNfh1DQxBKNY3G2hJQYjYaUg4rJbIb3kbqpOXiypIwjPvmlT3L/4JCHP3qACq0AHCFXGCkHIRKUQqcVSWlVeZtwPnC4vxSp8O7ehUhQHpU0pAw6mrUqnaxdEUU3enWfMkgYY5aUV/I7WvXjw/uQf+7s0eTGp/4e0lchqgx2kYTUZqyRSkeQ6m/pVIwRopOAkCXeOZxzdEocmM7OYgXsdwBH97cODBQwUcaV1lqSxVmy3vQJXkEbe8gnIQnINRLUqp9XiZMYk0ifryVEpGKsk76HECNN0xKiWHBZm6tDY0JZSQT/4PW3eO72NV566SXO5m9I8p+Ij3B4tkTrbXZ39nj5pVc4nTq8i1y5fJNquIHpK8U/6C1hTIkxmywWC4w2KByLecPG1i7t4pCDp485Oj4mqHcYlgXBB9744SP2n9zghZde4fkXbvLKh4dsbg15elrz9MkDTGVRXuy3fCrY2hxzun+fyXxGKoec+ZbT+49oF0vJw1qDT5FFvSClSKUthRnhNZik2NoZMd4ccv/ePjE6plPHsoY6ea5c2mI5a2iWDutlfDvnpApTaZrWcffte2gFrgmidmAtPgaMT3gnaf+yKkleqmNjgOATwYuVmPOR+ayRBKNPFIUQuoqypKmbPjlSDQustRhj5b1tw3BjyHBjwGir4ubwCifDJWdHZ0BiNK4w+f2xXZIsOOeoj2dsbG4IGUXX2FJjNQyrirZZ4rwo+AyGA7k+5/EuUBSWqjJENFUVaepaEqZ5HSit2Em0bYPznhgDRsuaIlYNksQbDAdCBDKS7BkMBiSdaJaO6BLGWGpXY7QiRUMMidFGRTUqMGUhSQyvaGsFFPg24h0oClIQG46ytPmZBZ8ViZq6QWuZRzuJ/RRUX/FqC6kcz0NXPuNaTGGEAKUKtIKiELOC4Fw/zmPy4BRktaNAxAfPcDygKIz0RS7Ljdm2QmeiV2sC0SSxGjOWto2SrAkyz2lk3IWQQCe8rzk9XeKcp6wK6rolErHRQlIs56LCpHVXSSvVztYaUaAzplcSEju/LrEuiSSVuqprQCda5wg+V/JqiTVUTsIUSoNOJCtxRPRSUR+VIrQyBga6whYlTdtm8gyYJNXr5UbFYFDw0o3nuHf/Aa9/+wdMJ0sa6xgNSso04D/4j/4On/vCh/nGV7/O47sHtIXHK0/IqlatS8ybQKEjpjJyPfic3M6gu0+42OKbHJMk1a8d2kBZFpjS9lXkKSXaxkmCz2ixVSOho86kLkNbe/k+5KSEkZgjRdVbOcRs3yAKRDLelVL4kMSOVCs0BiEuxZWyY0odpUOsxJQQlVNK+fyRiMpJSCHICHnYQIhyH2IAa5CcQuqTiKL4FFEqCrnMJjQWFQwqtaToEYMFkWLQVhIWUQWMUhSlZbSxySc/+hKzpyd855v3WC6WUBT84M59Dp885be/8S1iG7G1JqYFaIevHU8OWublFc5SRZqeMK6G6Krg6HTBH/7OD3nrze+yTGecnB2xOzBsjZaUaYJVNTGJRU/dTPjlf/KP+Ymv/CKf+/QX2VRiA9nWiaMnR8znJ6A882bJt7/3Q3ztiMoToyekyIABRbLsbm+j0oh5HVg0LYv5jGbZcHjsuXbc8vjeN3AGdraGvPbKh6jMgIlq0Zt7TJ9OePPuCS/fHjBkSWL8Z7aK/lm0Lm5ehc5pFUv3Cai0+jeTZTrFmo5Y1/3GWhzWsWWSWsX9sH6uc594H8LJ+2Vn0vv8XZ1/7fx24v0O/L4t9eS7974/nTts3j/l/umTzxqKwvZzQVUWKA1t7bhz7zEpKFwmkcRa5NWsMRhrSS5bpISAn3tKVXH7hRuczOcc3D9EEfvEZqKbz2N3t97bQ90WLeT5Le8XIeTPZtKtUrAWhnaqTomODLnefR1R6ZkuR0ZA07Q0TbOKxdffkvK8ROxvkVIqz15qtQ/t3y/n0ojyis57jhgVwfv+/FqtqwWv7X/okqwyZlXXKTwz/vp9qrzSqSSdu+mpI7B15+n2szrfjy5pvL5PlVFyvpgn9Ql2ky2gVJeQR9aGg5MJZlhhqgFF0fb3xvms0KYUtigYb25SBoVvA6PRBovyPnr6Ed7/mflgtU13gxcWX+GH1T+ndQ0xQlkMYKgZb4yo52dMzxYs6iURGA0GoAL18ox933D50hXK0mJsQVFUTJYtZ/MzSi2EfTSczeaURWQ+n9M4TzRCBFo6KUIigbYSY0QCXcGYtgYXE1ErhqMSbTWtEwXLzvI3pURZVdRLKWQIXmLCpmkpSiukHRXxbdPHLTGTJyIJozP5mIQtCiEoRyFtxNDN1RB8oF4mSKKiqshKLnlMCllFFHQgZXVTIXpgNLYsqOsGW1rKoUVn2zFtTU8eCUHkM2OKOCcEfWM1KQVsIcSjsrDE4AgdrqNkjg2ZOK6Uoigy0pSnHO8cnd2V0qAj+BiILj9dGRcKeT8BEsOkNXyoU3gWq+NMiMmWXd3vplCUhQGVlVJRNL5FdcTvTh0zBrGOtobua3RzVKeuJPBGt1CofuLriUT5xnRWa2Idp4VUFNXavJXy50SVU1RbV8VasccC7TmsLXUEEjolnKysp6VQJaXONg5S8Nm+PiskkUBF2rbOSt+aXmlcIQUTLokik1rhKiaPg5gXQkW2Tw4hz395uOluz7Mqkowp5II91jDE/vZCEqUkMKiY1XZ09z0jpSlkT6sSrVSnyGqYQBk5vrElUcHR/jHBgwsBUxgKrbl24ybPv/oCi9NTqkGJaRtMEuvBGOTeuwgqRbRPYjmfUg9N9mtfEiXZbg3p5mCFqKZqIwpq3TcMnQprJi5ppYhR9cQv77KSaYdN6W7Aq94u/b3q46t1s7uwDnuVW5OvKa2GZm8f2K2h+Xt1P3fno9szgOyXslVsVNm6Wqk8t6T+HMrIt01kslLKfyevk0rGJUriQ61F+dFYy6UrO+wMBhwdzjhqFqTkuXP3AdqAaxxN41BBns+EEMuSTyi7y6yJqKNDCm3Y2twgAI/uP+Xx48cs/YLjgyeMDWwMLbPJASm0qOR7ReEnj/aZzBxqsMneeAuDwUeYnC2oFzNSCugEhwcn6KxUFRFCXjKRUpcMhkM2tnap60jbitJs8K18Vg+ol542SiFXWZRiHa4Um9tjjiabHJ0uiO6Mq1ctG+MPegnjRbtoF+0vUvvR9j/n1dkv/rgv48+l3Vx+lp95+r/jf3zuvyIq/8d/4KJdtIt20S7aRfsAt3/zXccaEUn2qqYnCnUb1S7BGFPqK4HXlZQ6sGsFtsumt3tNd+SNjjTSnTr/fA7+Xas07gHivvrmPMD/7EZaqscECBNCVJcszPCuEsCpQ/9XyY8eW+tBjpQTbR2w3n259aRHJ31s8oa/q6TTSqOt5srVyyymS3xU3Lh1FecbHtx5wtl8gasDUXsihuABnVh4h1sGtjZGuDYwm9eECFUF5WBONaxRqiGpXL2YIlFBGxVSY6dJUffg87n+Q0B8FYWcoPBIUiFXSGZJcCNefLm6r0vEZLCMFSARcxKZGHqQIcbObg1m0zmp76M18COuJUKSz+/vgLaYb1FO7GqV1ZsSBE8IWU0pKxR11Zn9/VgDRFCrRIhavaW/eTon+lMGFlWu2hTCicoVnQKgdN9bSEirCucYQ3/tRqn+BFqvKhYhoZ2oYFRVKZL33VVk0lKXbNZ5qJkEVpc8ncz4//76v2JowZQlyQjxb7msSbEipDlHk2Pu3H/AxtZ1zmZLtnc9G4VCrAE157JEH8hmgMjm9ibVYIDVid3hNttbV9FF5PDe29x9cI+zScD5BeXlXaaTKS5GZrN9Du+3NIeG8e6Y737/dfZPp8z9ktFwjI0aUxhef/cdbu5tcnJYE/WQZb2Q5JHWNDGSHFTW4qNDJajKEVWl0NZyuvRUITDeCMybGVWl8d5SDCuwieg9MTiaZoFYfiSci8TYCpjoAzevXedsPmG2mGNsgfeBer7M1lIa3zqid6hqQBMcPoS+KlVrjXeeZYosFzIVlJUVq6kkxDwfUk5QaZRO1G3NsmmF8BMj4w2D84HHj04yKJx46SPXWS6XhFw17BpPUqK8EEJAYfEuYUs5htUFo/Ewk4MSxUDhvEcRWSzmKK2xxhKcI6FoW0fTepq6pmk8MSOxhWZN5l0sAWKA5MSyLWQGbCQwpMKWlrppMMr084GxBiJYZQlBiAUJUTgKeMqiYFQOqOeOBUEsCpoWlQpSUEIsMZkQ4gNGZdn2IIQwBWgr81TwHlLRLVB5zhByb/DSX94FmtZRFCUxiHoRSUhKKkVsYbBWE1PBctr04HwnwR9DoK4bQggYI5Xywcc8jyrQhfyoA1EHUkiS/InZVg1JJkUC1sj6oYy8R2vNYlFTDSxFZdBK0bqQyTsJrVJOKmnKsiTEgPcOckX1KmucUEYsVJWSCmGx7lPEHjzPi3UWqVNrAHgMHt8GorbYpLAYfAoQIpe3N7l16TJHywWnTY3WnkKD95Iso3EoF7jjHuJCYH7QUM8bYqFJI4MZFNxbHLO3/wQ9sAwvVdR6RuVKEpYYArNZjW88qWlQrcIUCoMmkhNA3RqTcy9imyGxiNZQlBZjDT40+AA6k36EfKAxVotFno+0TcAFT9M6kl+t4aYwWYEKklGoSE9OglWFuU9CiFtZY5Cz3fLMy/quVjYYSKJxMCh7dS5JtMlaLUkssYfrVBnFVsPkddcgzLKIMhGjIskHUtSEpFDB5OdUVFt0jsWs1dhCkzRiVxMRq4xxQVUVoDytqvn8Zz/K3TtTvvPOOzTtGX/4h1/HkigCTBYt02XEh4TPNkc2Rt749nf5x82S7cEGr7x0hUt7uxwcz/nud7/Bg4NHmDLyD/67v8fLt65ydWfIk6ePaOua5BzaWEbDEfOzlt/+2rcZbm3xyVuvYoshbz8+5N17dzg728e7JWXTcubFZiKoFqIGXXDz1g1u717hw5/6AqPt65zsT3j84Jjv/+B1Gn8KacHTwwlJic1gqxyPDg75yPOvcnV7wBc/+TIPH+/za7/1Bo9feMK/80ub2J3xXwqzNyGJdL+o/hletx6DjoCxFtOnFVVpjY2RD7M6Rhdq9eHt6gBdNH/+gtbivy7N935kofMfWe0d5DlO54N/ukTd2gmQ77a+y1ntS55teaeUz9ErniKkEtk/xT7uVEoxHA2FxKAtV29eYT6fcfDkKGtKRSCQkIIDRcLFRHCO8aAk+siikbUVEzk9OWS6WAD5b3R7psQ5u5nznXZ+P9W91CtNqXP3b2XZstZvSZ3r/3WFDICkVqSfVZGBqPGhVnNad2GdXdz6prK7BtWrbT27bwSIfUyRsgKh1gqMOb+n7D/UzfOpH4Pr91emYLGsUvk6us9qnUnFvTfn+oiF3vac1I+p9THTz+MpiTtRl5AtsiJVN5DWrinlopFEXud9wivH/UePKayWIoa8TsQYcV6RUsPp5IxwxzMcbqKN2BXN7RGRkAmlzzxbH6gmo/H24kss7Qn3x98Q8p2CshqCSugkdsApNUTvSSawrJe4CNBw8PQupwea8daY/YND6sYTNAQdKZJYgNdNw7DaRKUCY0uWbZNJvoqU12VSIkQhwGhjRClGQdNGdEwUhYwFaxUxWoy16Eweaepa4k4gJkPM6kquDeiUuHLlOpP5hMVyISTGHHNqrfFJFIJijODo7d1T9+wrle3DoHuKU4orcnwUwqMAIYmk4ur7ZJKT1oIfeA/Oy7k2t0ZAonWeGAIx6qwGKsfX2crQFEbmkExkHgyHhLREF7mYKkXa1gFixZxikt8VhGzF3lnOxkS2TuvILZl4E+nxr27PkLKaZKmLTF7KkVPM8xKidvL/Y+/PYm1L0vw+7PdFxFpr733GO+e9mVmVWUNWdXc1q9lsssmWODTZJDSAMGFKhgUYsmHYD34yYMCAnmw/GjZgP/lFgg3YMC0bMixBoCWBtqiBFCmRPVdXdY1ZOd+88xn33mutiPj88EWstc/NLKpa7mY2q050V95z9tl77VixYvx//+//t49qsbF30/zVtsFULJ3NHdlEoHYU3JjIRqZQZIlaUkhI0/UKJpULyQopikZ1P1fmDrMMVrJzE5F+0mB1heyFI6m1h9mFzevarKYteO+mOcVIn27GlEq7VtKKFjtO+7Op9CJm7Wokq6qOagqb1VJYhJI8VhUDq8UbZg9YMRux7xeY9ri1boa/lTVi2iDs7i9mhT8tWKbpJxnGqcWGrAkND+7c4nKz4WwYcHiaUAlSGSI03rFd97alTqYSCooLhgs9PT/hxvoOh6sV7SrQ9kIa3KRoFmMkbwdyNNVdyVKUSqsi39VZaV7eZky2WuNlclF+N9zKeze1pZZ2yKn0tdJuE4G22MbWZtrFgrVY2u0mq9YE0EpYq4eflwlNzplKsis42MRVEyal3IqTTbhpJUxhOk3TuJSSTKGG3GW19tIyN01LqmNSGvQ7CZOmFG0qjy9evODgtQd8+Quf54fvfcyzi1PSdoOSynm7zEGV4Fbue7g856O3v8/B/hGr1ZKz06cMKfPi5JzL7RmQefH4Y86fPeL4cMXQG26ghSS8v1oRmobzi0ve+eHbuM+9zuH+EWcXPY+fP2W7uWAYN3RiJL5RMxBLT/Ac3jjmjVfvs7884PDGbYYhMWwi77//iBdnJ6hujBi5WNCkBWOKDNHmFufg5uGC08M93nn/KXEzcvPm8Y+xHl6X63JdrssfUhF40n2HxICn/axr80deBOHPPf2f8HTxPf7RrX/rJ/vodF2uy3W5LtfluvzXlD8QSckwJwty1UDXdBjdyaKa3l0AI5iDC0Zy2clgLT/IRE6pIFcFXaVk3ZbP108V0OOqnVsBLcAC4LUm9gJzIGAn+DGBw2Jg+/y2KfBbv0ekqPxoVRSYCR15aiEjj2gh2EgRDmqaQNs19GM0eXVJDD00LtAFh3ql32zI48ide/f5y//iX+F73/8O7/zwA5rsODq6aeouGSQXuzXXoA48RfK9gFaD9vz+N97j+ckLspgUui++5mgu7VkDP9kkzGXeEU3EMgFHmp7LnMFUNBPEArtAueZsF1AJZuxAKHOmcFXYogQ5mLJ3JwWtCvppAV5lfhZggFGagjMFmE9XgT7VPCkc1Sys0Hq8+Ol7JlBRFZEG1WKJ5C3rMUfFqfVBcUISB9liyqGAPG0TCF3L5eWlASjOIJP6PKSAYbtjI5c2q2BhxW8yikYDcTUowbkp+7+2VRwjLkOzXBBVSXFkPD2nCQHvE24RJhJgaB0JR8pCzpH33v2Q509OePXuq9x65Q7n5wfsLw+McBJqVvZPaingnXh8gGWYQ7ieDJpY3TiifeTZX3RsLiLpbKBfj2z6HomZ7509Jo/K/n7D8xcvGMdMaFrOzzd0qePw6Ab3bt/n1q0jPnj4IQTH+jzRLZrZ+lA8F5stORu4lVWR1jPmSEpbLi4y6hqWS7MhUxyiAScD3sP5ySl5NEW6oY+oZrrGQzYC5HJxzPnlwDic4FygbRqGfiANiX7sGfqSFS1i2agA5CmYJli2a9N1ZDXlLk1GsEvZyJyudbjW0bSekBuG9cjYGzi82fQcHnegI/2QaLuO7GDMibE3QtIYM2OKOCyY0CwCRzf3Eadcnl8wpkhSpWs7lvsrUhzxg5KiM1uGfqANQowj6+drvPeMY2QczAKuHyKII4UACWKxAxNxBshnIyZlVTxiQYVkilJkZdTRyBd1qtSqVRBQIqELZBV8FlrvzbIiJ7qFyfMTDbh3rqieiQU/VM2Gw+a3BL4sTU4L2cdNlhpZFXVqJDFxqDNFoOA9cZNIGsFB8I48KjmaBVzXeJQ8gcbilNAIOQpN2xEaod+YulPTBoKHoY/lNguwj+AI5JhQFO8COljwwhf1IwNyS6A5Kz4ILggpmbVYHozg1jSe3FpQxjlTtsooY0plnShBjbI+tG1rynLOVLzimEiaQMCHZgqACZmsFgzVZGF3710B4T2NuKKKIcQciWOm6Rq6RUu3CmzPNqgqwTvaBnKOZifoG7rgSFEZtxgBBk+z9Lg8Mm4ueP/9h3zu3n2en58TQmK1bBi9tdo4QrvwjKMjqlmvaSFU1QAcuIk8NpGqC/mnaYOtNZVwC+ANpK/Wf6H0ExkhDjBuFLyU+cL2KCma3aN9kfVz7yiqTmYPkEsmsokaSNmwlMA/c2Daol5Atr4RXOnnWCBNFbxYvzA7v3mHQTK1I+8FHwJ7bUcaEkM2WxpHpY7aTKyxZHGnRMoWjDBFwljax9N1TQnaGWkzRUFS5HtvP+aX/9yv8WtfWPHhsxe8+3SLxA29JlOEij3jOCISaMQjLrDoPPf24Re++hbPThsev3jOb//Of8HTF6e8uDzFs0a3PWfxGb97+h5dt7RBKxscyluv3uWXfvnn+K1vfJ93P3iPb//ON3jt9jFnj3r+8W98l/ff/wFD/4S3vnyT9HzJtz/8mDFtcB5oHMu9I37uV/4sf+atn+XVu5+jcS18NfPs8YYQGs7TKTf3PW++fh/U8/TZhqcXz/jy/fvkMXExKEcr4bBNvBjOWR7dodk7QnTeA/9xLZPCS92Pl3+v7NF3eSb1B736a7nYp5arxKCdCNvLdfmUl6e9Zf3CK3WZ97XzGWP+rl1iTq3CbGVtSQJXqlJJMDUACHxiQ1a+13uhaY2AbOoRiThKCZB6nDdL1ThG9vb22etaxiGgOZKzZ7U65PziwpTNsHXRiSmEbsehEBptrz2myPPnF6YcKvVcgFn/TMycWenA2lLm+kp9XjVAWPbwVx5YabOXuqzs9oepTT+p2FSvbz/KtIbttn3eaexPXKGeVYUp+F7JmfWh7Aa56znELJvn82g91e5uHHLOOCmKiNM5ePfcOp+FazC5Pvd6Nqh1NkKCe+kaO0oWtW5K8Vqa+6cmtYB9PU/orL5SlXFVlSRKP44451j41vZDeaTa5lgg1khdm5RJY0RHpV20nL8QLvafkPKAuNVPNM4upd97Am9c/nOcNw85ax4CWsgUGdcaYXzZBAZV0pBxNIiOaI5sc+QiKSfrS1NhFlPmjVGJOA73j7l54wZp3HC+HRiLik4ZgWX8OvreiDVSBqdKPbMn4phwLtD4gCUYqZ09yJM6WB1j1Zo9OsGrklCenZwyxpExjqZWHDwhG4EnpzwpCpNme6cpYavM36oZ501txxcF45zs72U7hHNGvBYo1444XxSSpnXASAQxRrOwHSOoI2ezqq7ER/FCu/A4L4yDqQXpYAQh54w4RbHp8j4wDiNkIxONQ5zU1DTlYgNWkuaKrVclZFccwWpWH0vdP+kO/kVRTipE+zzjHqmMw5Qy4ryBcqqFmGHzS4ypqNdJITlWZcxZyaYSMGWHcFG/3JIrbLPlg6mgGRxUCR8VC1OaxvCDNCbbFxZCUlVHUur7FYqtnalnG36mYorC1WLNyDBcnZ/K3CjINNdNxMlyL5mKMxadvoKneefB52mxSNmUUJOm6d4Fpmfkiyq1CIX8bgQh23/LNI6VHRILRe3KgJxCZPFUW7yUjSznvUccvLg4Z4zjdM8x2rPpmpambXECXdtycdHjvNAugylrxQFBSf2Wj979kI+zcnl5ac8kGLEmFpKcc4JKwYMy2ClqdyMk0/o7rYQihKLOlcv7pSQWzjaghrfmbFig5pKsgcP7SoIy+eFUcIC6vNQzjAKzGHftjzo923L6qbWa1wWRYt1sYy1RdwZSxqp9b5ayXuWK7dlnnIe91YI8JLb9SJb52tM3q0KyNW8m1lmvErHzuCmZS0nQMAUr54ScHJej8NrxEatnJzy7OLNxjKmA1eQn56UQeY1gd/PmIV9960v4sM9Hj55wfnHO2ekZYxxwYnNNTokxK4+fbxDxiCaUzKpd8NrdW5xfbLkY12zO14wp8fz0GQ8/fM7zZyf04yWvvLLPYVjw7gfPGJPhHUZOFMR7km84uHmLrmlYNA0sbT+xf3PFYhk4Xq1oG884JM4utyz3WzoXOLscIGWIaxYhstxvcF330n7tulyX63Jd/mjLafs+g1+zTD/5JCWAoB1/8dH/nA+Xv8mHq9/4kZjGdbku1+W6XJfr8pNe/sBKSlPmzM7vMAOmV0lLU0o+O0jrrCJQAGyhZukr5PmAzfTJXSR/Z9XeeXmuR54OvtNXluBb/Y4pc7f8zXC1PMHfNeOIAsQ65ycVnJxqgOHq7kEL4USket3XzCGPOMH5zJ2bB2z6LVkS4yikOCLZsbc84sHrtzg5v+CDs8fw6DF/59/+dznZXpLSwDgs0K5BJCCMdsLOjj0Vsu94sb4EHS3QnWEYIk+evMAkfS1Qq7mC4TMRRV6q/8vP0w70Ra2ImTg2mdLsPNodXP9qu1BBcleuVQG08p0VxCrgf4xpp//MWWAGpleYvnxZSbdKBQytUuY1YODEI85h+FkymXkp18q5tI9nDhwZMONcwBgDBRhR7DuSZZ57XzKEFVarJc47NpvtJH9NylOgBLmqDrXL45OpnxlgpAXUrApPcYy0XQskA5kKiBy8SeJX1SiTT0+k7BiHSI4jKWeWywWCATmCKbiQEzkOXJ6f0JB5PCj7uuLmK3dRr1fG9k9aqWDkpxVVR45rxvGE2/duIkFYd0vOTjbsH97loIucnbwgr4VBM8+frzk4uMXlsCbGRNftc3jjPn/i5/4kr969ye//zj/kxWYgOUfrlX47FOKAPddxiHSrhq4rroPZEwIsOmF92TNuzfZNB+g3I2PucY3gRVkulvQu0l/25BQJlmpMjJFtSvyj3/ldECWmS7phpFs0xaorF0l8x3bbF0WaTCrWLpozTgKI2aVUmzG/WFoQpITSanZodMpi2YEI67g1AkHwhcgUyBppFw7vE5fna7aXI3FUckysLy9xTog5EzVxcLwk60B/uWUcDBx+PpxwcbahCaZqtF2PDIMFaNIobIeBvthbJVfmbvUQFa+m1hL7NM1XznsjCYVgFg6AuDLHeaHpTL1m6EfikAvRosz3KpAty1FTZnsZGYfE3n5LjpC1Z7NZI5gFmsnoW9/KOSPeo2rZrzkbEbISQ0Qcoo6xj8QYCc6CJgo0ywakWBg4y3BX53B+YRd3jiYE8pA5P70kA30fba4v85HzATBVImf5nxawSoomGOJoVhrBbDRqsHKyQsjZ1ioRgvc2f6Zc5jYLimS1vlNiL6gqbRNom4BmpW0dQjayXDIiJ2rEm9Y3psynmSY05ASSHXEYGAazJ2kaj28aIzlFm19NOaQSnABSySYH1wSk2OeN40hMkbbraBee0/6SF+9d4Mzzg5TgclC6Vvj8/RucbzI//0u/QDw/57u/9wPOh57l3gHZKXEQVq2wefRD/sHffc7Ji9PJvm+z6Rn7gSFGnHjapkFSVX3KO4G7eZ2cFAOLzcByFWi6xqyWYkQkmDJCyexFlbFPjCRErK/3Qyxkq0BoZkVKHW09rc9KfEacXU/A5hNfyFhDKpnwVdlvDtrXAFvpcJP9XN/31Ix4C677YhvhzfpWE6oe5yzo5Ykc32p487X7/OA7j+kvMxozMWsJUHbFmm60mUaCkQSmdrPgfeMFL8x7uWy2HylF4smWv/N3/yH39vc4Hy7QsTcSk+YyTmG1aumWLSJKjo67r9/nX/hX/tt8+Y2v8ru/8QN+4xvvc/roCU+enZB9j8jGgmbbTCaxHaKRlEUJoeVsveW3fuu7PH70nO0m8c57T/gP/u7f5/TxMx59eMqL5y+4d2/Bz7x1j9//x+/inGXI4wO+VUS3/MP/5O9z8eEp//yvJO6/8oDWLTi8seAv/eWvE/YXRqjqexYNhNDRZ6FZeNYb5R/95ve5OH1IGj7i5//Eq3z16z9DkMBwsSUc/fEE96bt+acsx1dUc3bGyZUNf/37dLWZ7PHydaaPTZtWefnFq3UqL0uN/+1s2naDa59Qat0Nv5XvmggsdUKmWJrUz+gUUsWsh5gIAzthtunqMAdcD/aWCJl+HBgGyGK2PU3ouHv/ButNz6Mnz7m43PC9b32PsYyjFJX15WYKoNsgF1a+IXqh7xNoKkFsO5vFHKkKHDI9jzkg/NKjufoMX/7bpx7nrrT+1fe+zB5TLRFRndpuetYy16fOg1eK7AbLd+oqtd3nmxGFLLt2NnOf0aJaQj06cFUxabeP2bmEQnJyU6B/VpyYv9N7j3PCMI5MKhlTW1/dn19ViWIKoNd2qPdWiVYpZ4KraoW5PEempCPNZU0v405VGWMkJhBRQmgwVRojtDmZ+3bf93Rth0RlcXlMyJ2dR39KUPZlOuZrJ3+Tb9z4f3LePLT+lwbSeMliuaDpOuIwcnZ2wf5igbrI2dkZomX/PwqL1Yp+HCErh4dH7B3d4ObRTdrGc/JkzcHRIW6zIcbIkIxAokmIyWR22mVD2/lCtjdFRi+mZpLGbOqpauM5abEkU6VtW4YhGkknGzHGl7N0SpkXJ6eFrxzxMZm6b0m8cc5PCQKqppg57R0rR0FsDzn0AwDqw0zYKRZP9WwbY8J7P6kXNY2dxXOGnMRsrsSIUTlDirZPiUOEMo7HmGidWTCPZZ+txdY+xS3eObNrTGr3jYA6S2RQU4LUVOc6V+awWNRV1eZZihJz1klh2c4J1bbOlH/atmEYxmIZV+oxzY0Fj6GSsoxEIBIQiWZPXephhEm7dsxprlfBm1JOEx4jbk4ciCka/mATTlGxZCKj2f7d9nQpz/NbEDtTJrKR7IuqFVNSl72vkplqcmAljqWcpqSEaZYqWIftJ9OV5Lgra3dlvkhRCitrgy/nyxkXsn4yk2HEFDvLNXM5X9RlzohFaZrzpKh5TVsLkSntsO6FK5HJGDHlb8XS0AdTJsbB5TAUcppM856pnoKQafePuXP7mMWT55ycnptiqCg4V9RsE/3lCUM/Wn/NwjAkOycWnMyJkU8iaSKMzUWmJUelKliZ+qgPdiM5GfELZypVNnWbQq1iz5CsEymwktfEVSKhw+VCGlRDTF1VFSykN1cIeNYdddoT2Ro6KwBOVZcdZdeJIDYXe1ZVJan0vbojUiW4zN7Ks0UYoiI5lX5sinI4X84hpuDupQ6TPJ1ZXNkP6HSQ1HmMZPj4/Y958fQ5TpWURjSlok6vtt9q/GQnac/Kc+OVO/jlgni55uLkKf32gmE9kEjgRhRTLjY1yqpuBd4FYha+/94jUozEmFiPmd/+3W+ZWn2fGEe7n5wSzy5OGTUV2zqPC0JwQn9xwftvv8flyQV37t5ib++INjQc397jhuwBjs3llsvLnqPjffYO9ivEwfnFJR89/Bjymm4p3Htwl2XbELdbWHFdrst1uS5/9EXh3uZrLNPxZ12Tf6rl5vAG/9o7f4u/9eZ/l4er3/6sq3Ndrst1uS7X5bp8JuXHJintWqXV31/O6JztQvJEUKrkE3trBWjL59gBtF4CoivBA0C0Qgfz4bQGLa5yKmpG8w5Abi8zaR1VULgcSg1r2SHfVGBFiv2WKCFYkDelPGUK1qOu1muW+ljguYgP18A5Hk/DjcNjfvb2kkfPn/PBB6eM3sKs3WKfX/nVP8k3v/M27zx6wvPNlpPNuQUIcAx95mn/CC2WXI6GznX80te/zglrvvnb30ZjRIMQhxrmkEniO6Vk19pVmqopSZ/yjHWn/ebnXjIGZQ6XaJbpfRZA1Elyvf6lKjDVYOYE0r8UPajWbxU0mrPc5meOzDZyMP/NiG3FjiHXjOJZpchshEy5xO1IW4vMwfhdqfJqz4aoZbvlbOBNzninJXvVcKthNE/6GOPOeABRI08JQiKVv+0S+EwNSwpxQkomI4KpqwB9jEgIhMaTk5FEvDMQwntH1gIOOsMqYxxZr5UQHE3niTHjnMmFSxCaJuBcIUv4fb76M7/EjeMDVqsjtHFkpxNI99NVFDSzOX/OcHHGegOvvflFSAPf/Mbvc+/uEU9PnvBs3HLn1j5Nt+Ls4SkaBDcEPn/nHl/52i9w47XPI9rQhMxXv/JlvvCVL/GN3/8Ov/5bv87mcg2bRO4zw2hB9cVhw71Xj3FRee+d54gmcopIbukvE9uLS1ofCD5YIF8MCMsIKZvqisSMpoRvDOjv+4Fh2JbxP5KGTH9hMvNNGybrx5wh94kY0wRoUwF0hRgzqBEiLy4uGYeEeJs7fQiTJcjl5RaHY0yZLgTEmSXayekli1WDc4q4EecimoNZOiVbA5wI2zHSx5GTFxesBiMOqJryUdsGhu0W17Z4H1AVtv1AGxpisrHlmkAaE0MfaYP1bcTmaiMEaZFyV+IwmsqZCyhmVScZjg73aBYe3zqcD1yeb0mjBUJTscQIVXa/ZCTH0SwITtOamAYOD5eIeHI2AkLTGDkw50zMBjZ735bPmr2EproGFfC12CAkZ8QzxUDfcRjRnGkaU7pwwUiJMWZyjAz9iMOy0K1+Zg1XlediTODtuY9DwvfVFsgx9JFhHPHeE0KHaiqBhJkYYq4YNtdUi4GqqJhzskCHb0rAxNaV4D2rpWUQb/qeGCmKQrtWDbbmko1y5EuG+7jNjGrf6UrQ1uxEInlMJAWzRQtlXrZ12jlnlmAhmDSPCKmPaEwsFi2udSRnSlQAkoXRZRoPi7YlLD3Pz18wpD2+8f33OFpkXn/1Fm+/+5DgMpvUg/f0ojjtObt8RtKEk8Awjlycb8ijmm2OT6Zg2DhSCcgAV9dXmQP2PnizOgwW5GhKHbM6s0HwgJqqVIxlt6IjOWa8b1HJeCc0wZHFnq+WdaLvrc9qCcw4L/gmEIK3AFOxT0vZ1MS0qCtNNg4765XzNWhhpOW52BpIcqUvlXU+KzGDOmGlgYXbY+wFworFSoj9BaMKbbtk//A2m62yWZ/hZEtTspvHOCDiWCw6q2fK5DTaPsSZddJmsyUBbez5wW9/g3dbyzrP/QAoqbR103maJpjtjVrQ6tmLp/wHf/c/4sGt3+Hkoyc8fPyU/W6Fk5YYt2RGUgJMtAJNI4OMiGs4OjxgIPD9j08ZN2tSH3nn27/Hd76drf4RcnJ88MEpf/vxM6I2xGBjs10s+Pyr99CYCYsjHr7znL/1w3+Pu6/f4cGdV/ncF97gjdfvcqMTzs9Hfvv3vs/BrZt88cuvsQiOzZDYjD3PPn7ED97+HvhzzpPj1u23kfNLPn7yjL/wK//iH9Ga+YdUdnkME1FEp99hJ3gkO3t6sf9cIQZRWUXTzpwauK6Ep8pBmcORc37/1S+98tsnqRY7ddz925XvhSnYKiVQbw5h5XyRM0nzTp3nq1SKif3/vG+XcqYQDUh23DxeMcTIs6fnuCYyRghNw/1Xb/HOex+ScySqMkqe7DxNAaAv32j73cY3fPFLX2YII9/71vdNQW86dkmxaKt2Slf37i+Tw3ZuA6rd5NTKO+oZNSa4e79XO8NENJqesJaEh50m1t2P6nQ6oZ6DZgWn0g92PveyntPuo61vnGxSp8C1tSM6k6TqM673Y+dfmc4E01FFd37Rqig798CqSpOZyQmq9b7KLdYzDrKzhnzyTDXdRSHH5Zwgy2SVqZkrishTI4oF0HNWYtQS7PZT8LqYVOHKnghxNN0+9+5/jkXX8fnTPw34T23bn+SyTMd84fwv8nvH/y5Rtmw3Gzbrnu2QODo+JDTCxSU4GViv1+Rx5GB/j8Vqj/Ey0o9bhhy5dXTMrbt3aff2uVwPQObo+JjDm8d8+NHHnF6c254pRwuYl/VZneI6T0vD6Yu12RvlXM7c9sxC2U+RjITvnBjJeWdQaFKyGMEgmre8EdoLaSkXrCa0jpzKPrSq7GhFUsrltCiYFEXESqjJqXxjPc9XBeaizpSz4rybMJcxqm2oU7m6jOVc76b9ChSyT870/WD7TA91jHlvO+KcLIHAFWVsUyUq9mxtS8y9WdSpfVcu9mqGaxlUJWJEm2nGqvM0ppq9WLaT+me5TSqqotM9SyHOFFI5AsmUaEU6I/JnOyuJiFlDi1gSUkxlXagW9DbWjDgxj+WalFD3xzZ/5Bm/s2NfsZE3UkZOmRHZUSDSya6PHSKLuLkNoF6/kOaQibylpa1r/5pwPGZbMKtutbI3wj3T3Gn1CMHOv2bBlydrMVdIRBP2pzopeqNmG1jhLu9C+WYbG5NFIGXvgVyxBLWzipsIqbkQ2brWVMyzJgP6MKUlFSO2Bge+7SA44gjD2QXnl2cctI3tWVVBjVg3ZofDrFa1QGk5m/1XPccqmZTLHkDsmdW1TIsyoSCTmKOprlLEGi2ZAyl36Oo+wvplngT+chknRYlb80y8qc/KCaqOPCXiuUJ0K0lAeT7bWL+vSaF6BdOdyEvl552tG0hRK1MmspstMyW5sZDSVBxdu8/R4T3yeMLaX4BkvBdC07G/f4xqw/nZJTGt8S6XI6rZyRk5rIz9WL/bXkspF/UuxeWePvXWN8paXCsqvtoq6mQhqCjf/+53+fCDj2jEcNgbR8cEP3B2cUHOoylV5TKZqKlcZbFz6HLVMqZi4ZYjogPbMzvfiCpOHSrw8OFTPIHsxeY553nl7m0WoSHhURacnlzw5NkPWK0WLFZL7t67zc39PRppudys2fSJ3EX2l55hO5DJjP2acb1hGC/BK29//12eHzyxcfYVrst1uS7X5Y+8OAJ/4uRf+ayr8ZmUm8Ob/NWH/0v+H2/86/T+/LOuznW5LtflulyX6/JPvfyBlJR0B0N+WXFlN/hW/3VuzvqtmVfT+b+A9leVBWZSTJUUrq9XBaBcsuZ3pe4/rS5XUOzp9Xqgn+uWcs2ymdV9ZtWA0kjBs1guLBCW+uketVZQdbrHqSZq2Uqhc3haWreH14ajw0PoAovsODxa8J13n9Gnnvfff5/vfff7uGFLyjCISbFX+WUkYspOAErbNLzx1lc4+vKK737ve2xOSjBafQHjDfig3NMuaJgsjvqpz2+XRFMfd5Warn1gBrTna1YS2BwQmDWPBD557ZcIUVfa8KXnufs9WoCZCgyCYXIiNRNYCngCKWayc3inO+Ssq89XirKJgSl56hsWYBCGYbDfvdnbGLg3B52G0WT2syo69duq7mQYhNPabw2Bqj+b7UxV7iqqFimVILMFBbTfspDWWjYZEJirXcMEAFm2mLjSn2PGBWFgRMXROg8RwJm10SKwXB1x894Djm7uFaklmaz9fhqLqtKPjhfnykcfP2SzPSGlgXV/wbsfPGe7WbP0LXlw3Hn9Nf7EW7/Mh++/ww/ee4cUB9L2lG484zd/7/sc3rrPm6/f4PL0Yz5+9AGbPrJYHTAMz8nakzFrrvMLx/hBpBPP2PeM/cjYR9qmIbQWUG9bAwwNmFac86zPz3FOGMdMSkYeGIdInyz7tlu0jH1CozNbNSo2bMBsHGJRTqleja4Q8QyUH0Z7PeVqL9agzvpzzgktRIymaek3g80x2ZRM+n7D6mDJas+sJYZeC3ibgYSKZxwGEGFIqYwvCGLqKKkS78SsqVRgs9kQQlsyqxuapmGMGbzQeMflemOAv2aGOBAVJNhYqlnHmjNjKhnIPhNTRFM2FaJkbRBTtsBPUTiK9f0SSjAmoq7K7JtlYyMBcQ3iWzIDMUHfjwhKF4wcmaKB6mmsQckCjCedFo26/vjgiyWXtX+KCZwQfGNksCFa5mWRLMqjst0OlhGqigu2XtF6s7CLQkyKz3Ud1iJlX4I22YiMmqHf9mSNLBaLAsqXACYGQCPV8m62Bkkpm3qOc0hRafAOU1UQISazlRsHyxT33tN4U9wxMlUkNA1t0zH0A/2QCsHK4bzJ8COO0Ni9W79lyhbPMVkfDbOFZ6r2JdnsUA4P9wltYD32jEMyC73G0y0bpHEElwkB7r/+gGG7IZ6MXHz8iBf0fGgmaTSpx4vZmI3RLF68liz4rKQcEZ8Jzkg6fd8zpMGISq1HnAXfKjHN7SzAzovZkJrPh60BWU0NISR8cHjnSKkE4UYLqIlTQtfgnGcYM1kj/ZBLgNs+47zQdcHsD1VoQoMLCpLJyQIOti6Oc7BLBCkBCuf9lQBkSmmyfADrQ9buxfogJ3JMRmYq2wRXAvqEQ37mT/4lXr9zyPOnf5fz4Zyw6nhw7w6/9Iu/zBuf/xq//Zvv8Ou//o/ZbD8kNJEQIGTbpvpg/SnHOahnxFsjSMcxkVjTNgGiY4hG3KwEeQmmjtkPWzbr0pbqaIcN3//13+Ht9pvsH3X86q/+VV47vs1/9h//Bh98fMF6wObTnE2NCmVw1pbHt/b40ltf4fvff8Hj8WM635Ny5snZqZH/sjOCo1eGaAHl/aVHFnu88bUv8Zd+6ZfZnm05fuVNPng48Pf/07/P9775Hh8dfMC33vs93njtVb7yyud55e6rfO5zd1lry5PznuGs59HHT4jDOXE4x8cNJ6dnXJwLf/fpP2C5CITF6o8tSenlHd6VgFvdXu7sWynniCt7QwVUpj297KhUXLm2zHvXGnicSS9XTwoziWbnRZn+M78oV+9hTmyo6rH1O+scX/efgNg6puNQbFUqOVimb5i32DJ9v3OCDx4RTysdR4dHLPY61ucvuHNzj8OjPT58fMrp+ZpvfvN7XF72JRhqZMeJOlBizZXMo8UG5vzykoN7S7PsjEzE5ald1ILdtQEmnpbs1Lk+S+az1m4QUsrr87Oa1Xiutqheuf7O05z+Zt9br12CtKU156f5iatSiUvza7XvXP2aeu3dZBdLlsgzgXP3dbQQQsASMuazsEx9aFafiHr1PDGr19anwtXvKX+5QuSb72A619R10AKwWpRETEHE2JZzwpFmJYvxAeo3Sxl3E4Gprvcl2F3bOZV1wYmY6pQqe3KbW+mLTDuHTz/K/UQWQbjdf5mb/Rd4vPgWTbOg9x3DcMLjxw/JOREjbPsEmtlb7XFxMeC7PV559VUuzs5o1hecnD5HJXNrvMHp2QXarLh375jnL57y7NlTcoRuccA2npDFSDmVcD6OiSCOnKKpEUUlNJ7QOIz34akqR2B7w6EQeqbJEUgxmbqqgPNqFqxZyGRQI9ArsZxD82S5Nc1zpW8I1dpMZ+KDiaHO53jsGjhvVlNFFagmBTRtYLW3AFFSLIos6opVcFGHKwTQlI0A1ARHU1QlU4pmEYZOmFPqc53pCwnFEdNQCEkFl6pzQCFIiBbb6LI25VxmkVTPRqZCFWO2M4CvuISNxZgKCaQoUeWUis3djD2JeEITcD6QisVbLmcVH8xKygg6daabSa7VSdiS7axNsxghxvCPMkdIIbHgyvmizMOTerT1KU3WFqEJNI0R1eIQy7Ov6zFXga9KRqEk+WFksytF1fCnYmVXl746z15ZRwwyKQpQM2aoVNKo7JBnCtFKzOIsxkQa84zV1aqW85SqYWa7CZhasCDnpazp5cwUZxWgrm1wTTByy2hWgCEIvhBF1BtFc7FsaLxnEwd0HMlD4vmmxzuPE0fwZs+egJxlrqBSCKSOprV6pFQIrGJ7AKeUhAItpLQyfMu6U+316ljMWgh1ripylXYvZ/c6GH0o7KWqUp7iDvHJCH0+2PplY21WSTKLO1cExSq2u0tEK/sgkQoXlrG8s/aKTASlXJh9KaeiQrgz06qR97Rp8W1X1q8EwQhBb77xJg9e+RwX5yPf+MZ3ODkZyDKYrVsI0zPPORViHNOaVzHIrGrqciETcKg6UunqlfhHUXCtKmhZLdnGSWLIFwwh8+DBfT53/w6PP37GsL1kPdjZ3/qv7RfV5H8R53nw+mvkoeG9Dx6ibkMbPOeXF/TjYN8sTIQ9stB5YdEucMuWO/fusr/YZ39vn1Fb3v7+Rzz++AMuzy8Z4ppEz9nzFffvvcLNo32yeIYsvDjZsr5YM2w3DNsNzik5RsYhE0fl/OzClBSvSUrX5bpcl38K5Ub/Bl86/yufdTU+kyIIXz37F/nS+V/hm0f/3k/VOeq6XJfrcl2uy3WBPwBJaZfkUcvuIbR6c9fiJhljVw6sMr3/5evO1zTA0znLwrSgmcmWO5mDezUY8HLmaCVEmRKO2YvN9ZxqbYEzb4oLeSj11h0wtpBIKoAyjpGmtfvYJVxV9Nh+nQFZFaXxDU3b4BsDg169fZu/8Tf+BvnA8+/87f8Xrx7ucXD3EP9izZN3nvAf/kdPSKND1eNyQvBkSQiUzCDPMORyf5E+9fzH//Hf4dV3bxLIBpxXZQ6dgRkLCnClHaRkIU2EopdIQxOpaScoMSteVRWsOYpjsu3lGZQD/gRAVhS/ZPPW+r0cOpiuIwUcn0CluW4VhK8g2BRoqIS2K9erYIiSNJaguwUMd4lSZnlv5J8qcR9Hk4B3TujadrJ3u7y8vNLXqg1dBeOzKr6Ok9I8UjvI1E/yTqDMapxzNlUlLOgbkwWcQcgpMfSmdOJhAtVCaAwUcuBDLlZN9hDapjWwBcV56+vWFzxCQxyVy/MLnj1+ztGtFdVy0YJQ/JQWYbXc42j/gPP9c9776BGbzRqS2ahIFm7dOOTDhyfcWm9Y3fe88caXePClL/IP/rO/w3/5D3+Drz16wd37t/nmD7/P4uh1fvM3fpPHHz8laMti7x4nJ2eM2cDG1WpF7jOnZxcs2pYYNwx9JLiWw6NDfBNJbG2KSclUcrJju40MY0Zzom0XhGVg3G7JQ2Q7DqYEtL5k7DOiASUCwawRNBq4nma5+Cm4mCHFiKYKCvopcKfe1LlMXckZGRLLytasuODxTtlsNuQ0cPveIYuls7lbYOwtcG+MPevbaRgt3CUCmvAu413CO6XvI03TMQxGKhmHRIxbvC9jsQD9682G0RfST/ZksUxon8y+akwJTZlhjFOwIOWIDsUOzZlVwenpBaF3HN3ax7mMcwaixzjStQtUzTLMiRGzkss4EmNMhNCxXK64PO/ptwM5CUM/oGTGIRiYO1rwIjizwovJMsZVFU25ZAJnU7wj4ZetPYdCsnLB0TQd4zaRNBPaUNZEgZRKtrQjxm3J4u5w4lmfXVrQoKrgYTZrlnGbjfCRjUSWU4JCAgsFxE05kXLCi8M33tY/lSuWnN6bIpYrc7AvfUKzMpZgiogv4K8FPVIGh87zffAlAJXJ5TNRzVLLSVPmVqhres3wHuNYAkAO5x0ZJZQg3LgdEYH9gxXtssV5T6u2RnrnWKw6QuNpxNtc65X16Slpm9lcjmw3Ed8I0ZuaU3aeZSNIzKQRNpvRVM6cYyxE1dX+CidiwUECC9+V/iqkMbPdbInbxK4CkYiYslFgsl8xezgLKBrZNpLVxl8eTdo/eI84JblMJpIl01RbBsSEDX1RP0ogLjCOiaHvcbEGe6SM0RrosXHVlDEWczSSnxq5vOSZ21o8Le6zsmCqliCAJCmBHmzcZ9imM/7zf/D/5cZeZ8pyfsMbX36Dv/Zrf5Vf++f/Gsv2iJXf43u//zuY603GNw1tDdilVJQSpAQUHBa3sf4YYyY0yphGsgRSEFxR76KqqWULikxqaJLoVoG2VaRJqG55+3vf4PTWLQ7utLQvhMuxBDAxuxtUCH4P1zb8zC/+af7Sr/w1Qvhtnp3+PTKOPAw4p7Sa8U3gxuEhrV+QnKMfe/7EV97k4uwSPyrf+cFj/upf+MvcPFqxtxr4/jcesD0/RYYzVgHSMLLxHYf37nHUNCT1fPx8y4ePNvjY8PD9S56dRtruADm/4HLds7kYeM6abjn+0S+bf0hl3osy76N3zgpXs+nnoNLL54mdbWnprzIHnF66PswkkBpEv3KNuh2SKSxF3cPW92nd3+ruta7c2M42uhAAUmZgKEEqNwXzP6E7s/Or9x7vnRHhUY6PVnz1Z95Cli0f/vo/RtRx2kcu40g/DvQnPTYJOMipXMrGbvBC2wU223Hao6YcefjwQ16cBihqAHwiEC5T47zU6tT9+JUz4sttcaVZds+RpY2ndpgfxHyG2HkeOgeyrel31bTm1+fnRxUsmL+7BtenN+1UZoecO3/JzvmurF2u2FxOyhswnYGn84GqqW/APG9fOct8yvl05753x8V0xNSiJnWlLWaFqqqSIpjdl5EXtJxFdFKGsli0TiTT2maaFQmuCplMwfr6/RP51Hm8M4XLcUxs1wP74R6OolT48mD7KSiCsEo3QUtiiipd23G+sYCvqClmaFScixb0Tplxu+Hg8JiDmzf4IEWePz+n0Zabt494/+MnPAtbPvroMakkqqSUGbMYwT4roTVL5DREcKGoBJoK9HK5BEkoRVGxEIqyZlvXxc+qld4Th8FINGV+imkkJ9vHaVEVmkk1leRAIT3kwm/QcsbIhXCgsyK2sz2YqQiV/l+xpGJH7bwjjuNkS7abIBTHYsumWiycTRZMVWrFSDEx9LBYNLb2lzFiuFElk1acQlE1EtI4jjMJoYwTV6zqk86Kyq4OhDyPeWDCD1JOLIpVs0jZq5exhlTMpJx/RPCo2clrMsunwSzB0Yp1ZTSLEcaKUpJ3oGprW04zhlI6IlXBxvmAIJOFXj3vp9JHvLgpay2XvlEt582G10g1saipyhXGT/k6MQJb1p0xryXposx5SfOEtfngJ3uvCXMrk9K85jJdywh+tqcUHK5kfymFmFSsuQ0DLBhKLmSrXPuqmMopypiirTW5qC7BRLSr1zCbbjtdVbyoaQOuCYapJCZVVu89rnHTeMjAsB2JGhmGzBAT3heMKWeyhywOko2Rmkzjvbczas6TcpZmW2u6Rbej2gMpipHGJl9apiXazhQ23nKqyvbW31PKEHWao5wzazSd/s8SHZrG9gJpd03zVRE8I7kk1Q07ipYyE5eM2CcTdpzrs8rzXsr+O6+51hes81whlyWm/Z9ISUbUkfPzp/z+d54TxJOJ7O8teeOLn+MLb3yBRVjiuKRrDYfI2DwUvCtJVVcJbFeVECt+amekmAy7cK6O+Z3xprMik0NxQXEtOGfn7adPnnJ6es7RjZuE1sNozyFLxpX50osl99x98Aqvvfp5Lk9HPvj4GZf9JdtxLMrZthYfHhyw1+wxZmW97dnfX7JsA+I9Tx6+oPncEXe6JU2Go8MDzk72iBGcjnTe0XQtbrEitC1ehCZDv3YcH+6z9YGnQ6ZdOFyC55cXDL2pbo7j8KOWvetyXa7LdflDLQ82X8fn7rOuxmdWBMet/kufdTWuy3W5LtflulyXz6T82CSlKtdc/d7n7OSaOVz/V7K0qqWWwwDeSVKY8rmr9nFWclEAgLHKgZeDtZbrSwlWeF9Vma5m9E7fjcf5gGoJUgNSMtgmoI2SOVOt0OpRWrUoRhh4G2Pm4nxdrt1MSgK74FSpqYFSTmi7Bh8aYso0jXB0w5PiCw7bm2zXGx72nv7Qc7bekMatySUHh2oomYQRy1oNLBaBO/f2+eD9ZxT1dcZxy8dPPuLxi4ckBPWCpkoWMkBiN2iSpwpeJcggOoOMzIdv2Xn/7uv2c33+OxloOwGhK20y9ZfyrgnwKL1F7ZOutp0wPQOmHvXJ64XgcVhm4xzz3QkWUcg/zpnkdQEDcpHApwInJcBqgFwDiCke5Iw6s5PKKTMMA235OeU0XWO3Tohdz5WqOO8KeFrVmSqGJCUoVpSR8g6pTAqZISVUM04FySUQ7GYgJUYjrigGoISkhAZCCFPAqwlF/SlnvGvwElg0C0LYY7G6xTA4UoTQzn3hp6lcDQ5ltnGgz9CGFTcOX6ELJ/TrEzZjJG4i7aHyyp0bxLVyepK497nPkZuBt776Fr/3zffQZg8fE9uP3ua3nn+Htz86oTu4BfmUxx99j7jtYVAahaZRxjgiOTEMEdRbBp4PrNcblvuBdrFkfbFFNbPZbEFaNJus/DDa50LrGWI0e5YE45jworho5IOkiZh1CjjMwS6ZAlLDMFgQr1gcaNZiO2JAp289YxwYtgMOb7ZkHtaXa7rVAi+OhAVCm9DRb0dcU6whIggWPPHBE7yZhTjniUMZZ1l48vE5xzf2uXV3H7eMReFOSRmabkW7cKwvLhn7gZ4NiqdrOiCRfWAcldhHUrJ5M0ZTrREVMkbEsbneAN6cLDCbJYE4vG8LUVHZ3+u4ZCClQNME+n5gsVhSVaaapjE7thzp1xv6LjAMkWFr5KdKShrSaGE6J6YIpEZwiDEVok9RmREb1z44mrYpc4LNDY03cmwcTElLfJE8EAuWDMOWEgUCgbZtAEeMZg/onCNH6zO+8YyjkaKatmEYRnI0cNwV8LxrW6oanAHuCWkcTRsKWImpUo2R0DaFwGnA9zSXpcyw2bJYtbauuWITVgLecYzENCvW9duRTU7kUU3oARN3843ZJ8QUGVPGqUecY9G2DH0NnM2WOjlnsrP+mbMRe7MTCGLWm96zWPoSnfUklEYTKQmiHesL6NeRy4stbiEs9jqzVdIMEtiOkTxm1ClBQNQxjIm+NzUx7wO5rP8HB/s47xjGyNAPOF8CEM5IZTDHyb33LPdauq5j6Ee2m94yfHMmbyqZyN7cNJ5uEUz7JCeyKCmN3Lp9i8PVHs+ePqEfRhDFB0/XNaSUbRx72GwGhq2AOBZdgw8YCUHKHkhcWZuq7V8JWmPkcTRPQRwlT4GLOETm7dBM5Jj2aig5D6zPTthcOLwL7B+2vPmlL/Cn/uyfp13coN+uefz0HZJuy1pdbEiiERVzrFayaktVIWOLK1ndmk09LjkyidBmvDgGiwhYvUoAJASzuBIv+IWDxjKg0+B5+90PeXRyyUG7xzBsyYPik6BlP2i6FYnbnz/ml//sL9PGBu17xm3P2cUJaI9zpoT34PV7/LU//2vkc/jOex/y4cMTTjYNX/uVX+ZodciHD8/JiwYVuHGw4M0vvsb55jGXFxEvjs+9doPNxQs+evSY7t4rtI3jxmHgT/78XRbe8/Hnb/N733vIMkW++Rvf4DuP3yONCXWO7eaPrzLitC8s8189V3xy3yfT36agltTM+xqcK5vc8g9StV6mj7z87fM31PdWcrlSSIRaCBnFzkS8KWBIZhjiROi2ALe9W8VI6okavxVEdig303iCqHlW0Cn14BN77HL/rljEOQuuiXfE1PP2298ltIHh8oKYPAsx+0ayWTgiGa3KqmpKnyZLYWvSzEqxfeumj2yGwkaZEgX0StXshLTT3kz0mElpqT4b2VG5ou45CsHsE89lZys2E5U+5Y2fODPuEJR2ArXzOUTnbvJp31fq1TR+UkqZ7mDnGUyJEDJXQQvhu9ZLdi5u+/kdolKuVuHWJ7Jm2rYpxIF63pnrPJ2/yrxf92zTfUzzq+y8sfaxohZb+pcTU32sBA6y2plpp51yzjhf7ISLbY1zfkrQADvP1CC89x7vfFFMbDk8vkXTdhyMD5DS537aSp27Nv45oEjwhOUeSwl0iz3GccvFxQv6vkeTcrTc5/iowbkFEvbw7YokA8uDFZebEdcGTp8+Y3vygssXI+shE5Z7JBkYLk/QmCEZcSc0QoymimX4hM1bSTPr9SXtwuxda6B5HCLgp31FTkrWiHc62ZtrNmVTL4VsoFW518gcKrPqCDCR10zJ0tpDp7axM7hQsZtsKj4F5ciYSqMXsfNEjJjqkAcsQQsxZUzB9qDzPFOUdvK8HsTBiEpN0+KCn6za6jjrugXjOBKH0e4zqSWVBW/2ypjCShzjBFZM5/hCzhFxiFdQN6lF1bHqy94252QqVt6jYnNCzmYj70RKYoKRXUzZx/aLwYeispfLULfPpWT1aaqdbtmf5aIEPdmclfm5WrplbJ80iRoV/KHeV2GhF/u2ovhKITBmiMWizzAlSyb0RQ01o/jGI5jytKqt53kHZ8oYyUITM7ksxWlPV4mTztncUZM4agIkWQ3jmsCeuR6pePlOCGRReCWrHYsqYcYeydxWJmPFYtkx9qOpZAHVilrLepUL4U6qYqjOhCrnTaGrkn9cUdwCj2bPmHI562WaznNFiS6auqqpBks5g9tZPhdLM1fW6ZqENqZYkoVm+7Vdnao6Hr23M5tmZVTb/6pic8b87nI2rcS50q4oXddw8+ZNLs7Py3lkbhs70TscdjaJRdk0BE/wMtkj1scEs0KgK8mRqO1BZN60lRrZ63W8snMdO/bOqugZQTJkEhFomobbd+9y7/5rONfSDwPPnz9hGC9t7CUtVnq5rHE64SF1brD9WlnvK1m7qM16Z31UZYdQrhTsU0tSblNscufzRtRMzgNPHz2B0dSDUaz/FcJWVsUF4ejWMTpkTp6/QMfe9vI6IMWusVkE7rxyh9v7t3hxek4437LtI6vjfe4/uMfFyZrV/pJU3n/z5h7nF4ecnAzglOPjAxzC00eP0OObHOzv4b1w87jFO8hHHe2q5fKy54LAxZDpBwrB9BO7qOtyXa7LdfnDLwqvrv8U/g9m9vITV5513/+pPEtdl+tyXa7Ldbkuf2AlpRoUbEPAMnAhTdkoUoJSfufAawfbXMD8CaxmPoRa0KscBsX8tsWBZClYiwECXgQlIAyoCEEgqxDFI4XU0/gFN4860EDbdozNyEcfnaBRETHwXtXklZOOpj6As6CpSLG+SXbwNI5Jse4qcEu1oyjBk/zSSdrhWBR59UQC5xiS8p13PuDD/9u/gzjlou95nuDjk2ecvDglJwum5SHaAb9kPdnxXdkOI++//8ysdUTImBLHmBQZLUg41bCAZ5qq6pKQ0CtARg0WTEGTmolVX2O2SZj2R5XwNAUId8JIUgLQBbgsyGcJHjt7trWGYkHtK1LQNciBTPYDu4D9HJwqJDWEo+MlToWTkzXiMkmVXLO2pHQgnMEHOZXsUyXncVItwllgZVbPirRdQ9uVAH4BmEITCK1nb7Vgc95DjsVux9oqZ5PY90XFI2npO1Ay3w2oqKQEJx6lKN6Xdsw5k30o40sKOOuMTJFSIVl4+04R1ImNE0NpTAJeOxBvtksCoW1QTGGi7Tx3btzli194k37T8bVf+Dq37hwRGje176fko//UlJyV/YN9Vodf5sHrFoR8cfqMb/zef8n60cfIKLxx/yscf+6IprtNCPsonsdPn/Ldt98lrbfsHXZ85/e/y7of2FysiduBbXzGth+Iw0Dc9vQxsdgLHBzsc35xQQwwDtY/w7JlHAZcHhnHwFr3YHkAAQAASURBVBAF7xTNnmFQUtyW/m/zEk6Jw5ZxGBB1pGzzAmWOi3k0opsYcJ4jIAYoV2KHjmMBqD1Z3GTr5stYJJl1QUqKagEYnZJyycxPiX4YGYYRFwQXPP2ghDGXjNCShYyRKSR7UG8kBDWwTrPJ2W8HRb0BsHEwywcvma6z6WfcCjE5xnFgzCO3j/cBZRhGlJFcbbIKwUPEmZNhdtMa5BtPGvJk9aZkxFu7XZxt6DrH4fEeftGatVs08qh4hytrEGKZ7Ioj5Ui/LTZbWqxUqgJOqmRRQMTG8qhUmTVVxfnG5ocUrR6YLZQTh2tsntAspDFOwYicAWf2Dzih6YqKTGgITcN2E0lDNCWbRYNe9hY4TErWEde0+DbQFMDeYYGIIRUAVYRu1bBoWoZNQwKz9rvcMgwm/++bmnlr2bTjemsknBIcCN4zbkdcALQoK3izn8vFTk/FWX8tkv8pZVvXm0CBoOfAD6DqOLp7l5s3A+9++wNbbYMFvbw3C4cYowWcQqDtGlB71qFpULFsckEsALRR1GGqgoUktY0jhMRi0ZqiFtbeGiP9MJJiwjceFGKysTdsjdAXQragXsn2Hjc9/TCiMdEGU1YUtcChiKl42TgW0pDZxp5tPzCOCRKTQodlOgsSBPEwxjgHnSSA9OytHN2e0G1aUjYbxXHUKUgeo5rqkA9IGR9IIQGV4KMFtIv5U1m3gliAyYgNRnyb7CEKQB9jMgtELfs2scx5ytIi4tCYSdmTyARJhLHjwee/wFd/8ed58vQpH7z9Lh/+8B2+9/3vEdoeISE5Mm5sfE5BNdy0L8sKGpWoRhSIacQJBB8sYz4JozOysSnWFJ8ZhSiJrgsWLBqVHBxRMyluCSFwun3KmT5Hshr5pPHEQSEHxA8kp1xuGz567xG/9b3f5L3336Nx4NXWYuk6HMLpReTtjx7z+s27fOVnvsrNm1uer88Y3ILL0bF/sOTi7AnH3QOWK8dX3nqdjx69Tz+cEUS4desI7fd49MFT8gBffOM1Vq3HtTa33H9wQBT45u98iD+4x43NyGa9xDVr2sXij27B/P+z7O40jABnimw556k/znvuT7vCjuInNbT28g7myg52CqIbKamsowhmuFKo3WIzT72W9w3Hh0uz43UebeDZ8zN0TDg1skcNwOeseNy0r7bvLJ2VOeliVhzaqSZzsGx6qWToN96b6p+aZZeOmWen55ycXzARDIHz9UVROWSHMJjKOJWd8Qox1qz4EuqvpJf63TX3ZHoASlVDvap1tPOvUNa2XJ/QlbiWfOKH+ftfLtPZZHr7zjmg/q4C08lGpza0tqvRR6Ykhit9o5x56mshWP9L22xkxZR3bupqdXMhamohZVXVIt15DxhZw/4uoI5qo+TcHHxGtVZlal8jG1QSgNpKWILmU99hPqtdrd/V86gFfe2cI9j5JKvOKpZSm1HK91c7OQBHVub6ipBKbkbwjr3lIa8+uE9OnuNbx7TNgjvPdjJ/54b/qSqKJZEY+fiA1d4BKFxcnHK5OSt7JMeyOybsO0KzQlwgppEnTx/x8UcPaTASyxgV37Vocvi0pd9cMBbrtZSMIBKCm/ZezpXRp0YqyznZaynRJzvf5gzjmIud8Tz52Bk5TnukmruUiuri1LGL7bwmmxNsb2xnAyM0Q2XzVTShqiOrKmNRNpWi4Gn6mqbSmWNinFSc7Pw8xoSLEJo6DxWSR1YodtdM5JqyX6vkPaeExjH0NvZC8JbIIxiJkGDqxGQjDvqWUSJVLU2qcg0zZoEYCUnrfCcUvKWOKWuncYykDItlR9MFkprtc1Y706urxEchlnVPxNSxhpSKkF0hiBfyodhgngk8JbFESl3q87T67xByioKT/bEq2th7UrRPzBZn9qxyNuKWJa1YUoUED8ms6gRXbLyrUpapEtVkqlz6qDjwrWfRNZCVcTSFohxL0ggyqT1PxCvNE1Zoaq+l/q6enZiwvIkQ7J3dU5n0ryj61YGZix6r1kHSsDpccfrsxN7mKoYGjTfLuKp0HYLHhbJr0EKQqnsOcZYoVBdQSSVZIhthPhSbRRJZ61hgWq/rejeR98rab0JpmehymZcznqIY60y9KRW8kkq8AbM+TmkiWM1dV6a9udkc2nmkCi15520spJGLy1OSKj44crHZHsc01zVZO3tPwdYS49TctR2LGrPU1Lk6rg3Po47TChFSCHcVUy5rcDlCU38wNalMFkvEMwQ0kB28++77BPmQi9NTNusNSkJcRlIutmzskLRrXct5pvQbGz82n/gyn+VU1lsp47KQMytxTsOsajYRqXJ9lhmIkyIoJalU6xh35sT6+OFzzh+9YL3e0rWw2XrGEURCsXtXHj05YdntcffeXe7cDbw4vUSDcnqyYXs5Mgwf096/y95yj9UisL+3x3p9SUxG1Lpx6wZD37DpB1arJcEHmoL7iIPjowU5w7pbsX+gyGWHsqVb+JeXuutyXa7LdflDL40u+crZv/BZV+OPQfkpOzxdl+tyXa7Ldbkupfz4JKWdnyupI3gpVjHR3iNSgIMJob/yfk1mF7RzJdilz5RTqGamw7YTy3BHWiOUOCWLgHgEy573BZgyrEDYPzoE6bhzeIObrx1yevHrrF9c0mlDcokxC+RodlmE8h1uCoZWxaWcLSPRlJYKMFTqW63fpqNuUSFYtAtuHB+wHbf0240pemTY9pmTM1BN+OAtG/rkvMh0C+NYFIYmgB+rj6gdrCfguB6gKe1TIQGZPNwzO89g55ntZheLGLCZNReZ652sR2rAZ36GtQNM1hQTyakGB+ygX7OKahCJCqZXUGhqsd36VWDKAICaDfbSF0/gmQpstluCeLpFx3LV8eLkZK67peYVKzcxW5xkgSgD3e3eESwzsVRlGEZSSoQQSuajZa7HccQ3xV4qmlpKhpKxbkDPYuG4eesGT56+IA0ZCCbLLrkENew7MqA5FSLfjrWgCClnggsF3LXsefUGOFXQpNofilQSmil4WKadp1orhdCQYmQYlOViyWKxz63br/Mnvv5naJs9FofLQqTKpYV3AOufsqKqnJ6cIpLR4NhfrXAOnr94BmPPOCiL5R4S9rnsBy5O30OTkQ7+4d/7T+lPX3Dr8A4aGz7/pa/w3q//Peg8R3cOefjoBeuzgWFIaMyItzFyenZGzpmmMaWWfjsUcDfRtKaYJEFYHezT94mwGMl9yfrNcwbker1hHCKSZVI42PYjFsxXQrAApybLLFbJeDG1GcvoU5quJSfw4kxBqWTNCaYil8YtoWmACqoakVKc21GY82gShjEy9ufsLY9oW49rG4a+JyYYoxFKxGXEJ3wDaCCmiO887VJoukCMoDLiWrh98xjvA8MYcW6PYRtZXwbipmezMTujOBTCa8keVzVQPhUA2HmzLKhBgCTJCFLZoZLomg4VZbvtwTWIBFAL4mZVxnFks94QgseHhpQzYz+acl0WNhdbUplXjASZ6LqWsXcslkubY7KSkkmm56JMk/HEmPE1wzcp283Iaq+jaQLbbT+tO2ghXyWBpKQ80i0bxMFquWRzuUG8N1KW5BnMtyWBYRhoWo/DEcfE5bgmRSM4ivcGMidlGBLHN/a4efeARWgYtz0X25FhayC4E1esMy27OkazJkhqylWUgKpzStsEXCiZtjkTvCeOCec8bdeCYO0RzerNSckmH8dC4HJlfJRgTB45ef6C9flo9nve4b2bgnR935OSWV+2S8/yoMEHmy9THMh5x9amWP0lFIKrsSdySvhgtqA5KjGNplCQjAzX9+NE1M45kcaaYe6Ig5GUEpmL8xEnnr0u8vUvvsoQhY/XI5eXW7b9psz7tpaN40g864u9QwlMJxunIRQrDoftg1BisiCTD9C4QEZ4+vgJbdeVvguokKOyTX3Zk9lzCcGIF/02stlsi4WAGHG3Bqqn9apY6QVXbAKZsosnK8gaVIpVUaaqXZbAQSH05TxaZCi1qFhg5Qfffp//4//h3+Zw75AGYdisEYUhRnyrEIsqw46SlKAWLJgY7wb6xxihWMVICf7lXIkCZpOCWBvkpBAK2TtniJk4ZkSUcRgYSYTGgpkOT9M6+piKPUmxwszKyUcf8X//W3+Lg1XgZ9/6MtvLBefnnrDoODy4wXodOT/dMjrlZ3/xa9xd3uJy8Dw+PacJnh/+4BE/ePdDnp98k7/+V4457PY4Plzw6oNX6YeeB68seHDr8xwfvMKzFz0+CK0za5i6x+qc43P3DwjyOq88uMO7H9zn/fcesbc/8ODB8R/hqvmHVOq+aEeZsq490+9127izPdkNul3dS9bryvRy3Usrtl/2hSBZopvYnOVNiUvNoql2r5wTl9seHxpu7u+x3G85OztnjNgei2qNlqagvkguyrP1zCBz0Hun/sLOnrbc87w7lsledG9vVRS9BlPyxMgBsShIVNsgC0hPNzy3g3z6r/NuXLnysbKvrM2T6z6+KCN9SmsDs2pHqpHjl8onSWTTw5oqqFce2u6PWjk8n7jqy79Or3xKHXbft1uXYRgRbN/ctoHL9fqKLRo1cAmz5WD9es2WGEC1S5rPSGlMpkDkHIKf+qGU99ZrTuHSEpgPjWNvb8X5+SUkBS2JKBNZ4eoZbyKdlz3O/D6z3RW0qG64Qp7WaQ6176wdxO7POyOaejcHJjWbPVjbdrSLBXtHB+zdOMSJqXx0+YCgy53n8tKg/SkpTj1xjOQ8EnNm2XX4xrNZXyIpA57QBYYcEQLPnz8iDqau8/EH77FsGpaLJT4sWR0GPnr+CHFCs2jZnK2J/Whzjf0HVTGlVapylyldevWIz3jfYNa8fibrSkmyqgQGCuminElnh8edfuKMnGbzolI5Bt5bApAWZRLn6167Kv3Y9Sln/Kx1LZ7nvtpdUkqQ6n3Y5/I4krypDTXBF9UnIBX7VkAllf4dpjNtuwgl+G/gUNOZyrD3RsRpJJCKJVNGSAn6PhLHVOpT1aPKDFWmKVcISk5sPpTSNmaNVc5cnkJGsvuPMdketvwvxUQSCg5RFJVS3UNVhmnFXpKdi8aKXdRzmrVPVZUSZ4pRUvETmdccU9Eapzm9qlfVZ5NLogDOLJ+1WIRVpWlX5ryqfpXVsLeJsDLmiRBjO8U8z59O2NvrjKiTEuKUmHYwqcL0varWXbA2cTgpRCdv+7uKc1UCE2qJJN57siRSSexy4q6oVVVsr64ympWcBp48fEoFEJ246XtijKjaeUIchM5sCJ2TYj9s67Sp3pYurpU0rMVGuaq7FwWlgm2maPbeKZb9tFQlx4JlquGcdXVIkhE8wcPxwYKbR0c8OjlniNnwJtWdcVSUk7F1B6cTobBad06rWV18yjjUCUPM9JvBziOVTIOUs05VsLUBYZioFvJlqYIrhLVyjthdCcTtqGNqXTPt+rt46stK9ZRzW11jKYpWUtbGcRh457sf0TSPzBLcOtJEOgpNVShnskeUnXmpznGG+WamZMepqrXf5DIebMyhWlTSyrxGJZwVwlVRhXJeyr+O3bW3ksUkRz7+4AOCF+7cuUGrgsNIqIcH+2hyXPQbENg/PuTGwSGC5+DoAAGGPvL+9pTzzQXbMXGwMGu7GzcO6YcRkQPu3b7NsutIC89eTHRNIGjg5vB5tv6Ui/CU1gt3biw42OtYb494+uySFEeOj396rZeuy3W5Lv/0ysF4n2W68VlX4zMvIbfzUeq6XJfrcl2uy3X5Y1qavOQL53+RF+17PF586w9l3frxtRRlB9RVJtKHl5ncY+yJXbJLJqvJ5uZk2X9AsSSbCUwU4GhyHasBBrHAXCsBvCM5Exn2usC1LcO4wccIOZfsQaEfR374/od0iz26NnDxzjN8Gmi858ad2wySOD85Y7vdEAvY61F8wUqqrHG9zxoktjNxkY2myGdPaL7dj3Oevf0D7r76ChfPntLkzEm6ZEPGZ8ueBAvoUVQ/pOQAVYKOZfgwA+zl4DuBEDukIQP8Mpp0As4s0JqnvlEP6PXnKduv/v6pvegqWARMlnCztLtc/XtFvwooUZ+rc/Mz3r32bBM3X2MG1j9ZJ1VoQoNzniGObDY9ThzBd0hvyhi5AFcGjtZsTOtbVWpeBFPKSuCCgbYpWYYTuWSNphEXPE3TTECg8ecyEux9oor3YQpWj1k5O78gplyCRiVQU++t4kfT473aDkAhMhiRz4hIxdZODJhNmgtFrsiKF1+5CnLlnNDsLCszZYJXOt8YSN56ZLXhQp5y+eIhy8tDjg/vcHDwclDhp68Iwv5qxThecnZ6hlxuWN7scNqz1I47Nx9wtnnB99//DuHc88GjR8R1pttb8ezpQ778xqvEBD/84GMu8gVPT54TuobNCOvzkTRsDNgLynazRVxXsp4NdFQ1CywfAvtH+6xWS05Oz1g0gWEb2a574qZH1Gwa4pjBZZrWrDhSVOIw2Njx1rd8CIQ2cHCwQlG22y173ZK284xRWZ+bFVlMAypGII1jJMei1qNmLWVqSSUwFw1Uz4kpsz7GbCRAV4h3YyTHyIsXkZu3D4wUkDOuKNps1hskVIKrwy0C6oXlasHxzY715QbnYP9gD5XEpt8aaI6AB/GwWLVsh5G+H8jFFjEEIWdn2YIwWai0TUMGhtEA56ZpODw44CydEVMCgdAYEUOHTBqV0xeXDGPP0I+Mg82vdlFoQ8Nm05NiMisILUEPoqkzNcLRcUfTdJyfrWk6yNtE3xfyTBcKYcisJbbroayLjnbh8EFIOdH3iRQTwQecOGIeIRtITMnU1JTxXlBNVJWGvjdrAFFl2Pa21ohphQSRci+mVqdZLLM5xUk5Qst82TQOJKKSyDlO6kdgAK+KKVVB4UNlMTKRCuKVbtnQNA0xmqWc957tZmC7jYSiYLVaLnGirIcNmnWyO9M4rylD6otlkENTZLi8oE8Z5xTfqJGUmsA4jMSYaNsWHzwuOJpFi7hMjkamiqOxwaTWtywIlmlswQXvPS6YxYgFQRLDtqff9Ax9tIBEWUMzuYDQBeyWTFkcyIy4RhhVeHa5tUDidkM/jtSMf0UnGzgjlxl47Zwju2KNEoy2nHMmJQP+Xd13ACnGokblGDWRNZn1mprSh/PFJqBxE/ieVcjZk2IJxqQRinUbZU9k9oO+ECdryjoWGJgsWy2okzNGHC/APKVv2JpkRGALlFtwTNWRXWRcbzkbBy7CC7MP8qa65hwsVx1xaOi3yRS2ytonQhkPWqwETcmr7n8QswzJNbucsncRpWkDzgX6bKT6lGK5nqeSzr24EiwsShWKKSkGT05myxGaBucyi9bz4tkpz55Gzk8v2W48uJGf/eob/PyXf55vf/dDvvf4fS7ONvRbRfYbVnuON1a3cBmWTcfp2KHNJetB2G+Eg6MFX/3qGzRdy1e/dJ87B/uoOO7cbPCY0tW0VqviRVk6eOOVPR68suTNLx3x8KP73DhquXnU/FEsl38ope5VYTdIbYEvrRnr09/n/9Tg4s6f5z3UzstVQayqi1ZlsKrc6QXUm9qmF4dvPMPYk2Pd24MFY5XNdot3kROE80sITkjOsViuEA/9+pLtmGzMUfeg9nktSlz22+6+r/z96l3C9M323xAa9g6W7I0NQz/w4vKMOCp+IhfM/bvcqL1WjgpTG9fon1KUU21d2GnG+WlkNSWS+RCxW7VPqy6KESvLTX7iqle+Ybpevcud99dt6I/Yju4qhcAnzy+133zaueblv5m6iCNrKoofQh5HxjhSrdl2P2fHr/ncMpkOqpFbna9zXp77rBblPJfx3hIQpiMeeSL8okzWqTlnxjFzenZpfdjJFEyl1uql9pmSaF46O2kuhDkppBIHPngjLxeSgT2KHXWncs9Zs+39ypixuVJAM+PQc37xlNMzz9AnhJbDgzXfOfwP+bnT/xYh14DmT9+54v7m6zw++haJLeMQ0SGhPrFYBvJmxfLWEZf9Oc9ePGV4HtmMW4gZFxqiRvxiwen6lOdn5yRvSS7BdZyfbxmHhFkLKb71bNYDeSgEtKJCbZbmCl5ZLJY0Tcvl+hIpZ4U0JtIYLZieijVWYRzlQjaa90TWt1wIhCbQtgHVPCXzhMYzDJGkZkWmJYHCCC1FKVWNsGP7HEGjJWrVuSjnPO+pKuloIgjaxjvn0VRcXDvbTZY9S4zR+rUzy+RKym6amghkxCGcMI5jGeuu3KOC04lkNAy97VO8kbzrSlDJOlWJJqVMKvu4ruvwyQjqdZx475BiO9ZvRyjjyQgfOsM4IkbsKBaLqmWMiRFfLAGqLeqiY5kzjRDknMMHb0o32c4xsQjjqpraU2gt4W4YBns2IoUIn68o7NRSyZW57PHqGhpCwzjYxU2FWsyyrSgyZftwUXya26sSVew5mIV3jJlU9t9aMDamec6uUxWuNWdUlMZ7fLHtq4kOqZxZxTk89j0hBDQPxVLcfQJ/KQwgU9rUok1XKu8DE+6S0qygVAmhdX23xAxsnyjOrNp219LSPe1+rZ1QmZIdY7H8MvXrqohHsUlT0LltJrxMLfEDcTy/6LnonxUSXN7BlcT6spiq1LTfEDtH2PpVcLqyh6r7FXtWczJAVmDMmGVsbaPyPeX4UYk6MO/rr9iNUsj05TwhhSBV26faDTrkKslHd/pSbdOpfxQsVAXEl7EiZduTcDEzppHoZCb/iNI0wZJodhNO1Rp2SsCo+yN2Eitr45Y37GLgZqFdrOXr/dSdwYR/FkJSef5VcczaG1Ohc5aIEgqJabMZef/9JwTvEe+5cbzPz3z5Lfp15u0PPyK7xLBJ5AOPE0fjjBgYloE7d48IFy0pO/qoNAH29zvu6k2cg1W3LPtga5P9eIcvnf8aN/s36d0Z7+z/Ax4uf9vO10tluQzs7x0jCm3707WOX5frcl0+m/K8/SH//mv/U/7me/8Wq59istIvPv/X+b3jf48k/WddletyXa7Ldbku1+WTRYW725/hX/rof80Xz/8yZ82H/Gf3/rf8xs3/M0kiVV36v0n5sUlKCgU0KoCDQuM8XdvCYOQgmLPy7KAPNaNKKFmZAngjcaSYLKYnYgBuzmaHNR3sTH4Y71g1DX6xh++WHATP/VcP+MEHH/L80RnBR/KY8RpQlBSVYbPm/Q8e8eYbD3jrK6/z+9/6iKH3vHrvJrLX8q33PkSHDJpQ5wglY3TM4xUiTyqy42SFmgFTAN/Jlk1mme2cEzePV3ztrV/ENR3/n//i7/HBh49xRe0jVzCjAN6GIciVoM1c5ozYiQRUn8dLhKPZM96RNF0B1A3UvnrAzhiIWLOq3JXvKUGW3X41vT4DE+yA4hOIo1UbS0oQ2+0c3ivIYVl8RrxiyvybQPYdafgrz6JIoHsvpCS44BjiSD8MmKT5J+WItWSaTkEZNWWqmJWwA4ya2pErdjxGCKoqR957XKloBfglW8ZhrdfQwzj2JUhaggq7lhLlvnft3UyuPU2gISKEEvhPOdUnh7hAcL4Ah7PqlCvWebt9JMZYVJUcsRDU4uUpfRxJ39oybJ7TNAu2G8ebb3yNn/u5rxCa1jIEfdUJ+ykrAs1yRVg4Fs0K3UR6PeXmK3fYl0PW8YxLvcUPvvkBp4/OuEiXbE/OcU2DsuX7H3/IxdmGcZNZ3l1xcLzPK3e/xG/8zu8S4wZR6Fo4ODrgg/c2XJ5vcN4beClKjsqwHVGXWMSOLA0RIWXPeNHTb/sSnBDLwIyKa4TLzZZxGEm5SMFTMnWz4oKnW7SoV+I4WDAseCQENA447xjjFlVT2kqxJ409XqyfOYFu2Rponx1dGxgwVTiHSduLGElVKEomGun2HHsHBxwcL9mOG7xfoOIZY493im8CKTu6tuPoaI+xH7m4VIah5/IislgGFm0g50jfj2zXA9BbRmiyjOR+NELKOAykGGmDJ+VcwEKdAH/nnVlRZRiTkRxyHBj7yDCa7WPwji541AlDUcsZNiNlwNt1mENtwzAyDqOtaVqyYjWyd9jSLgOhzRwc7NFvFb9okUYIGtBClFyuOrrU4USIaWSx7Bh6CwZ5J7StJ0VT1/ElMzonpe+jgZzJ1h3nLaDUdY3Nx6K0XYvzHu8aciGGgLVDt2zxTug3WzRmslgAQXywDGuJLFYdiGWeD33CiXJxMbK+jDRNa+pDyazNfJBpPhWHBf2TkmPGeWhaT87K+sKIZF3Xsr0cUYRm1Zo6Vt8jAk2wDHkvYmSdVMhUWEDVeVMaTKpGkNGAb5Suc3jniONAyol20dAEzzgOxI3gW28S9TnR+QDJgm0+mHVfTomUI84HxtFIYeIC4FhHUyaIY2bcGmGtKiaF0JBSLJYXMikU1GclgG8cy0YQH/jhswsWiwaJI5BwviD1wU1ZuaExsmth2uKLZYZ4QZKpu0z2PJO/R9mDKIx9MmtCb2teSrMKhhZalBMLyHlMoUqz2RM6cSXbvwQWSrDH5bo+Wp/QMoa8c1Ouf12jQ3DkuKuUqSUoXwIeBLxztF1RMEIQjbhoJMDoHbSmfBWckFJPzIVQUcgXSi7KA85s2LJZWhohqtheKCCJMAXfPaA0rbexkkFDyca3GHzJhHeELuCCknIiR2fKZE4YBy0KAJS1UhkVxt7mAsmBpzqwv9/whc+/wl/+tV/la2/8PK88eEj7jV/naz/3Rfb2bnAhnqVCqwl1cOu45Zd/4XWeX5wxxEifFe/hwSuHrPY69pcNHrNV9GL2KjYLuZ39uO0zvBMW4rh34Lj75SPEKTI9pT+eZaIv7ATjnDi02BN94v0TUY5y71Okt5DPtWxTa0Z+UYkRN/UjU4Izu2rftPimYREcN26sePTshLOTC7wofUyIVjUkWwe2my23bx9z8/Y+77//jHGA1165Q3fnJt9993363sh+OIcTb+uiVjuXWu/dJA7mQJnW164STVKMOJSjW8eErqV/9z2GF2c7FmGFkHWlQecW/tQ0hPrZTysvJwiU6OsuMUb4lK8q3/ajL/wjvu5HvVCCrjPxpgQjd+oxtefLZxV27vxHxtVMuVSqFS7WnzI7ahAvN0UNkO4InUx9spyjXk4y0Z3P5BwnAuhECioB392hOgc1P6Uxr7xkN/5ywkNNqqmETihqWFq+R+pZyU+BegueFhWInWvWJBevvmiGCSkWJZ+zC8ahp21bcnKmBnr7H3EZLvn6+l9hGQ5/us4Tpf1vDJ9jqbc5dx/gAOcD2+GCrI6jG/c4u3hCt+g4W1+UBBlls90grkdJPDk5sf1PUsKeEVQO929wcfkxMBZSu4IvZNqYyho4k4pSNGLceq20nakl6wiaTb0lF8tWUzUyEpudr4sktQEITKo+5Qw/prEknWHkvkJoso6VioqvN1I7RkRKSYvl7o6yihRSRhnfuSicVLJSyrbeLlYtbRdouoYxjSAOTZi1tdpK6ApZ+uBwhRPotyOb7cA4jjTiaVtTdowxWxJGUf4GKapMmWGIgCfFRM2hS4XQP81BYgl3lVxSS78ZqKov3tv9S2kSTTDG0RSXZMZHahqZ5mL9lquqkJ1dmtbTLRuzda4JfIV0gYJvw0QocYWkk1IsSVMzwShFOxs68ZhvlamCzgpaVSnP6lKJloqRMFzwCG6yqavFh6K8mWZMEGWyx6ukcKu7Mg4JGsc4ZsbRkgtM8dLwGe9d2SsWrLCom6Y0z2VGtkrkmJHGmTI7pnrqnCvWgbbeN21NMpjVnozoYjjHTCQ1BamKfwhMf/ONqclpsR8choHONYRCtsseYtJpDvfOGabmbL1KSWzPpnZurISvqpRaVa6qCp5xjWX6/EwOUnBmqxac6YTFGVKa8LbJx64oJk0LfSHM4GQmItX1anqiNpdUhU5RKWeGgi/VTYDUz+7sP6p1rpvnFWcy3baWlISCSjSqZ5hKTquqSiqUBIxyzzLfgk2vMln82ZbAl0QFioWe2hyk5bGitv/XYq1NXW9lumcRN6/rFf/kqspbzlWFsCz1zohpldTrhGIvOU+V5ixdLIyl2mWWflMwimoZ54rq2nYoCVfljNl2nv39BW9+6YvcuHWbfOi4TJG9g5bVcsk2RVrfYNwhO5vd2G/ZWzWoGmkagcYLx0fLkkBidWzzkjcv/nkebH7B1A8VlukGXzn7F3ht/YucNQ85bT/iRfsOyzAwuvW8FlyX63JdrssfZRHlW0f/PnxO+Zvv/Zus0q3PukafSXnz4p/jdv9FHi2/9VlX5bpcl+tyXa7LdblSlvEmv/rxv8Gfev6vs0w3EISbw5v89Q/+9/yZp/8jPlz9Fh+s/jHfP/hPGNwF6/Bsson/ccqPr6T0clE125sUd8gTFdikxJXqIbkAPLVixW9dJnS2gAYJXBC6rjGShnqctBwuDrh//wZrzRwd7nP3aMHtu/t89OQ5e11kceD58MkLZFS8U8bkSEkYN5dcnj7j9o0b0DR0YY9/7V/973HrPvyv/jf/Oz5855EFvlxLt1jgneNifUGMCe8qCKIT8DcBHnnOQJ1DDnYQ7bcbPnr/A87PT1HvGS63NAl8CMSkE4inWhRGSjCSJDuyx0z/Ttevh+uC0l9RQ9oh+ExSyKVNpywg6mUqCL0DPsxfd/URT5/BAkEFncglA7eCUxXAm4IZRWZ7kpZnFxRQA7t159q71ymoxG59ar9KmpFUCWJGINMqUy71GuW6uwSuWAEPA9yr3HwaE6E1q7QKmGhtvgRjMgn5GKNlKjW+KBi5ouAQJwLWlAlW+rsixRJntmbwblbyqPWT+r0YgCSq5DSCA1VvNjQu0rYdXehIaZzuMedCdipKEpKsrn0/0ISAxdsbsvM0IbLue779nfc5OFgQpCH2mdMXj1jtHXD37hu89rlXWCzaT+kJP5nlipoXmfPT55x89ISj1RHn5894/+FjHhy/znvv/pBHJ89YX/Q4l2k0crbuQXqSH9n2A61r6FZKGgZOzgf69XugI22n9FHpN5mL8yeMQzL1oQQ+GPhVrRH2Vi0nJ8/YDj1jGllfWCb92EdEC9CeFNe05DyUYFrJ3pdqJWgEJR88235LshxThj4SB2ErA0YRTDQh4VzAOcV1gdX+LdaXA+lsY3LtARa+pe8HUrL/oZ4cc7FHMZWRnBJI5uD4kNe/eAecMoyJHIQxJbZ9xLkFw7Ampi0hOBbdiuObC4a+IWnmqGsJIdO2nqZVYrE/kOTMLkwyOVrm7Ho7kKKg2ZEjDCkVkkm0gJo3FbQxRgPHMRJGLvYTWcyeRZxMEvCx18JYgJgi4h1KsU5wgmRTaxtiXwIqOim/KJZxulw1iM9crLek5HFNIObEqJnsbG7Y9ANdaI38EotCjhqhKG6h760SbdeyWFjQZNRE21nQstdI7POUHT5ZWSxbFssWCMQxsd1uTF0uW9axZiWmWGweHKqpKIYkJCh7q479gwUpK0M/cHlmBLY4QNctCQEuneKM80HTtgyjBWe6VUvXNmwvRvIm0RRlo816w9BngndmX+YDPjQ4J6awlBLeeVzT4L31Ixnr6DQiSeODEW+GjA8BHRMSILSmStEPYwlmLVBKwEewsdL3LJd7LBZLC2Rsetb9wNgre6sFwTnyoHgHftFZhnPCLD2rshACOaPT2myKAeJg0S6KRWIqNqBagGyHOiG0wtIrWzUCtwiImgWIWVzYuumDY7G05xaTEZ0Qy+a3KWoG/KegvFhAwwmI80VJyKwBTD2jfJ+XyQ4KzOptDiravTjv8OKnANc4RjSlopg1B6tRW59GMioQQskCLsp+rqlKXSUYWfqLJkXEiDlJFcGj6knFrreuk3lMSPb0o1qQSozM7r0NTVTK56sVyQ5rQkCqvWrKJFeDD2ap6X0gxTSpLXrnq4seKRthPvkSfAgOcZ5Ft48Al5e9zasOvCjOK9oLY3IcLDuOD5bs3zjkC2/e5+jGMa9/4S20XeCXDXfvHtL3z/nh+9/mjTe/wrJZoSU4F9Rzb99x9+AmGcWLmOWYKLeOOpIqEcVJtVCpjIZCmCjsCNVMlIwXh1OhMl70nyGKgGL7SrMyLOqQL+0Dd4tYd5wDWvaqBdm0EOO0BCyDI4+2TxQ8+4s97t67wenmgsZ59pZNsfsc6NqO1X7HkxenMFrfM4dTJRE5OTnhYtsQk7DsAl/56lfYuxn46PQpw5MaiDQSYPCeTd+b0sfOJrxWWcv/lce40xaVYGPj8/mzF5ycnloga7PFKYj3RdWiXHMn6CjOTUFQ6x9X27n+d67Hzver7rTm/H7dvcDL7J1PeZY/6h2fpnT0I9VT2d3Pz/VjIi3pbiU/pQZXIpwv1UGm69Xfq8rBTOyaLzzXV65cfvp6ZVLZq0Fn2LGyKUwqVTsHW1zR5smqEKETaWNup/nZ1e+d6258qDIfyHw/05w4BV+LYpPWvSao12I5nQtxj3nc1PNlnFszSbK1H29nY5eJKXJ5mRlHO3+cnjxju77gUfuYSx/58+m/z6Lr/on94Sep1Ht0BB6sv843/A+4PD1luVhBo5y8OKFxDednJ1xst7YuukzUZAIvKZEkIiK0vkE6IQ6RPkbWlw/JOdF2Db0aYX277qf+ZapcbuoH3guLRcswjsSithjTCIKdKUttawC+sDsoC+k0N6ka+aKq2LiiUKIpl6SBXALiRYUG2ze74GgXDSkp281QxpWNrGodtksMyIW0kKUQKbAkoL3DFaFxDGMEcVMyglmueuI44gT8ogEzwkRR9vaXRT2ynr8TUshA1l6G42gyHKtaykpZY1Mq9mwl2cGJzMo188JTV5ypA6gY+bG2rZW6WE2/FaIGZsG9O8+5WYkoZyPvp6SFtOUmhdiqpJSjKfN4V6zl6vwtRnzIUWyPLxQ1JpuHKmZkls9GOrPvV5BsKjGhJJllJaVxJpYA1M+q2ZPZ3tSIY4glTzSt7eFyUmKxRc7JlF695Q7gnJFhCqcF1Ij23SIYMWprZwRVI/pY7lad15iIGJWYOT0K2Vlfp5Vxruf0poq7eHvNyH0zCau2p6sK6imjzpmlKZCx+/LOTUmYmq1/eufKGSxPNn0ojMM4E8OAmFIh+ocJ44sTtlRnFoeKowmBlCMpRyhn/0rA0ZpQKUU5CUpSC9P91y3k1Nd3Zq8KFQpCdnVdqf+bP2+v1/Wo9KOy4arqfNNnxMhjlhOwg2/W71Sxz0odP6ZoWi2oc7EYVa37gTlx08a7WeihrmBwUupkjZtTnu+3/jCPQqt7Id9c2UrsDuqyp9Tdzxcb1UmNrI6r8lnNdpbEm3qUOKFrW7wLbLYDORd7arFzrneORhaIFxYLx2LZ8sqDu2hKrFZ7qAv0cWDbb7ncPOfo6Jjbdxq8b4Cq4GnJQksvIKHU3s4ER/EVVD2hX3FvfIvj4T576Q6i00MHwOE5iPfZi69wf/MLZOnJknjRvmsZ0cdcl+tyXa7LH30R+NbR36Z97X/Gv/ru/wnHJ5PQf9JL0CV/6tn/gP/w1X/jDxTYvS7X5bpcl+tyXf5Qihqu5bTh/ubn8dpwML5Skhp+iTvbr35ifQ7a8ermF3l184v86Wf/Q7b+hCg9b+//50S3hc//eF/9ByIpTQd2TPknpcQ2W/aH4qaDnUk028mngq72awVqLZtqer9mYlQcBuzvrRb0Q0+MgpOWV++8wr/8N/45fv33f5sn7z/l+brng299zMcfn3B7f483v/SAZxcXpJw4Plpxcr5mGEZ6cbz38AVvPzwhJ8fN4w3DcMHB57/ArbtLnnwE/SBotMPl/sEKFxwnp2eklCzoIzOpZ860sZ8tg3k+mCOZIQ68//Ap8vgJOWXGPhKcQzw4MXWcnIsKiZcJ9Mu5Wq748h47VKswKVEVRfYrB/bdOu30pznmkPOkTFTJMhWkyTl/0l5u51kDU1adYyb91AywaulSs21LSIQJVNFYnr91Xucsw60fhwLwV1hgBmMquGAqTFIIRSDTAFDQhKovdm4ZxeyNKBlLFQi1t7vpPqq9vOLQ0sZxiOAK2KUFSJmASCMtiZQAmqVu4gpJSSZv+d0gytW2rO1SgdmXbfIor82AkWJZUQHBm0w+kDWa+pRk2ibgnZBqZmkF8NQAwAqESQTvAZ8ZxbPVEe9a0MzxzX3OL5/Tv3vBjaO7uOGQOzeOWXTt1Ld+moooFuR2jrBacHv5Ot/77rv8V2//51xenHN6sSGmSJBMcpGwsMzefpvRuKU9PGJxtOLFySXjOHJ58YiYE93eHpv+Ah9atn0/kdqoyl9OkZRpG2HZNXhvhJZxyHhNJBXSWLJ3cy7Ew9Fk/n0oAYVM1lSAa0/bdTRtKOQXJTQdtI6kwrhNiCjdwjOOjpgdmhPLvYamC3Ti6GPEkY0opAawagbnAuNgWdm59JGkivNCaBuObh7gF571es16k8wSVBPBeaJGu+sxEbwSgnJ+cc4w2LVCB03j2DvYY7PZIMFINTElxpLFq8kyoV0ZK2OKtI2RVbZF1cQHb5mLUD5nc5I5kRYyhFr2tPNmjaixZFQDsaqxZHChqONkI2WM0chJrhBLhKJco7YWxqgQHaoO75RhiOQsiPO0wTJON2Ni2AymRlPqEdpghMNkSm1OIzkN0HS4IHh1hU2RLIhAIQhHCMnTdIFmASqJlJR+6NFsmeGVoDUO0YhJowUK8AbEJ7WAxN7+Ct+UeUeEzWWPqqdtPV1n2edtZ3PSMIyIh0Y8zge6ZUMbHGOvhMEhOMYx0rRGiPGixDRacCmA854mdIy9WZ7mHMkSLWAh81qSs/XBqgeUFLNza4TkFI0Z1OwuYh4JzayI6ApAfnk5cJG3CELoWrMDzJnttgfNpBTpB1OfywVYFu9ZLZc0bcOwHbjYRstgdhRlrkTjG1JU1ClJ6/4AKvEoRWUYofGWjR2j0jYL8gCX6w0p2gdccLjG1HJcEAIW7UsoWdN0L9WuylVinFpQ23lX7ODqrGIWgKEJJXhjYyAmNaKFK/YcyRQ0qqKHcwWod2ZVMtm77gbBKzE5awmuKJ5E03jaoirohmxEKzWlheAba1tNDFHNMi0rzo8WGMotqdrHZbOOVIU0JMz2ou4ZDXC3jOm6f3Jln2RrtxMPIka6dGLzhApjzCQSoSo0TpYrWoKvSs4jSqJrW5wIt24e8uYbb/HBe0/YrJ8Rs+0fNjFxdHefn3vwBtszx5Ytq/3Ea1+8z5/9hT9JoMPheHFywrvvfcDbb7/DK6/e5i+89XVuNEuaEjxQHEksC9upBRdKg1Oz77djZqORg67FqZv6AOUK9V/BEaDYSMz7u5IL/994TfyjLFLOEiqViFeCXbrT76RYf5Q9YA1ils3ntOeqQdvJ6gzLVHeYheByuSDmNSlaX1l2HfdfvUU4heePT3lyuqbfDmy3ib2uoQ0eJ4o6WHQtm34gxkRG2G4TeZNAhOh7PvrgA+52d9lbdpwFxzjaOhWjzWdd19p9lUDkHNSu+7/ynyt9XalM/JRh06uRN9WCcN4JVT2rthvYOcKVtlE1wqA17azgeSVKuBuRqwFH2AnEzUG5mbajV/9e3q8Ta2enj04HkfmeZbruld4wnTGm7/jEXy2qv3u2cWI2sevNhmqd/dKFd8ruJ1/+01VNiSsBx3r3O8ck2fldzE+mzP22tpTJ6GpV6nFXdGcfYso3Up59Vcqb6wDzS3OvsUe8+0yFK9Zt7HxmJ/A8KYpM/axEsIuaxKSiy6w0EryfVHZTMiJKyhkdzALWu4A4uHHzkDSYDdyiXXDuPyS7LVBt337UM/lRf5nv5Ud/7o/nGUUQ7vRv0R4s4cj2LApoes7TkyekGM0iLSUE23+FxtneczRVodx5QtuSx8GcmQpROonNmc4LsRC6lWJBCxPRLXhH8A5xwSzIVQleiCXJpyqu2lhLRWHGlXV7Ps2b7avtCU0BBAuuO1P7TdkUQM0OOpOyUWO7riQBBE+rhYyjabaBKop2gs2XCJMdVN27LVcdvvHEbOcAU7K0ezUSj9m0h0ZoGjuL295DSWNPTMpyuQDcZLBL2f8buZ8KpoBATnHCDmLUonJcyCnTvOwmu0Z0PsfXcWnKK/V3h1KI0WUepI57ZNrn1rnX3lIJqqa4M/S21ngv5GzkNBGHd7nM9VU528441eIejCzlpKgTap7OckZ0rxjO1Gmnf50TxFdSSSVm2Wdr3p7ZlcuMi03zyzymK7bkgzdiTiqqT76cf71Z545jtHt09iyrIHYlq9Q1rmkaohSbOmvpsuTYdXLpf5oz6mayZ95dcYttcrk1s0X3QqoE0ZK8knIqKmgOx2zDnJISo1mrhxCmtTWmet61mjlnytxKUW8q1n0oxaYv4LF2rMmPVVHLrjmTW226zsQxsxU7l2q5jlOhT3FWZipYVk5aiINumvOrYrjbeVZS98Rlz4SDEBq01CWXpcy5oiqF4Z25KKhN43XaJ1CSIurMtLMGVYIR85gTJ2WrM6s1SbVqE1OicmXMVhy5ksGMIFlJ2HbuqaS6+h21arY/KOeMWoe6Uu5gnXUsmopxIVa6+bsd1gfG0eYGE1OypJ9KzCrahOXzNj/u7y14cP9Vzk83DOMZGo2YOebM4njFm2+8hh88L04vGPMWWmiWS+4e3WDMnvPzU05fnDMMW5pFx61bd9lvF9Oeqe727/U/wyod2xyL5/b2LULuWKWb5GzYTtd4Qj0XyJV/pimxJkU4XYLAve3P2R+PuS7X5bpcl386RZR39/4h6/CM/Xj3s67NP/UiCF89+5f4Ow/+F0TZftbVuS7X5bpcl+vyk15U+Nrp3+BG/wYATgM/e/rX6fIht/sv4bQmPM3Y8D+pCMKy2LZ+/eS/Yy9+/seryo9NUqows4Gd9YRpAIXzc4UN5ZiDweT5MFgJLxSSS97FiUqmetc23L13h4ttJK1HGi+0S8ez06e8+eXPM4yejx4+5OmjZ6QkoI6zJ89pUkYdqDNlnGG0oLj5xzvEZS6GM/72//s/4PPvfIlffOtn+fjhCx6+f0LOkcv1JUMaWSyXhKalT9sJkDISwBSFnA7crhxqc70HlJgT9KZoAOb7XXDskhlU/dorCGNZikEb8nYo7etQsQy7yTxFd5QdmIFu+5vOwLnqbrLtBBbskk5mEtmcNaxQSFBuetJonoMc9dCPFAuBOaAyqynVv9drl+sUMKkNni9++QG//70fEgfwJfA2gRY7Ra/UDoyAtBM3mZSLSvBWLFDnnOB8y6KFrWaGTcSJmF1aBeaaFpyQ44hXhSxmy6FF4t0aCSiEiFLPZHguRjAxYN95Z+BUnqXq5yw5naIM4lwBmudn4aZogoGvNlwyIZgUujgLYBp4kiELQcTAVGe2RSmbBU4IvihcYYpP4ogp48SjZNbrgWFUlktYhpav/sybPP/ogi7v8wtf+3lWB6+wf7T/I8f/7lNheq47QZKdV390+eMaVDBwbLE45LUvHOGCYxwigQXD0LPZbui3a3LK9DqyWLaIh3EYDOj0LamPMApN09IPEZFMzj2btcP7hhxHy7oUAxIXixZEJtuovYM9ur0FyxA4vxxY0qDZcXHWl6BkZohxshrIQdEWhmEoRBCPiAFfZCENuczBwpgjKsqYI6NmurYlKcQI/bqn2XfshQ5x0C0ajm4c0m839JsNKWYDBZ3DNULnlX6bi+2RrQWKcPveEbcfHBJ1pOL/gpE10jiQxhEvwu1Xb7J/1BS7OVPKWedLHj86NcuorPgAcewJDmQZSIxGWnBC0ojznpgiOLPrSgliNNunrg2m6KKQs+DaBikZ02M0pRrnjeBQx+44mk1CCA2TbYMrpNtdMBbI+Ek23YB7EO8Zh8SLp+eIFw6OVoSydogvAeNsymwpmbKQqeklxtFDdmiO9r+UUSeIOuJgpNY4mqSBxTQdTjKCw/tQFIUK6RdTo0ljpF14NHv6XkmjEsSx2N+j7we2F6P1jZRL1m/JCBXBeU8rnsthCyR861FnAHzbNuSUCJoJXcC7xtQYJBKT0nRdsbQRmqoyNGxQzfjG0wWPc37KjM4laKUAY6ZPibEfi1WIK+QeI1tpynSLhv39PZImNn2PeEP+Y0rkGFH1BF/mJXHkJGYPkRNN63G+zPEx0ye19U3BN2UfExqzXUuZzWbDGC17f3W0Yl+VsR+4WPem2jWOJdjkynUUzWYtIEHxYsSw7bIxQmGydXVMiThkcqrZxpk0WgDCbDqLeoFSrEiMeJioQLmtDWm0TP/V3pLDwwOeP3/BOBrBLkuxySvPNfWRoTebviY4vNRlqe4bZuuhFE0VQbwFQhULSqOmnOS9GNlJLY/ZB4d4s0my9bCsWZjlXQgO7wIxC15tncwojROa1qxTh6GGEAXNNlayGknEgmx2wWpj60ogIYhC67h75yYhdTw7OSPlbdnVKp1ThMCmjwz9QPINrXgjfrtkSlrZiJMqSpZA0ypf+fIX+NW/8pdxmwVPH/+XhLAmrSNRM4sbK37lV/8Cf/FP/zlO3n3BP/iv/hFPt895+PyMy36gSYlv/+P/ivXllsuzDfce3ONP/9k/x53jOzRIIVW/tA7KrtuTzAEdzFLZ46ZAT3n7y6vXTkh/3gfyxzzzUD7xc9krTYwQmLx3YCbH7BStHyvBqongUjLEnbhiq+oRyaaa1gjPnp/QLBfsH8LQ96TxrJw/FnRdS9cE+hRJJRgoZf9ZLS8Ex5gG3n73hzx89oTPvXaP8/WW50/OUCzpopLGjXCfp7FmJMOp9nMDlPuY763sjXPG1xaqY7eQ03cteFS1kL6k2KPWYOC8H32579h3MgfLX96IT3XR3U9deQA7IeDpndN7dnysP9F/9erPu4oiV7/Hzlla22ciZSmhAd3YPFxORrtVm64ztfdE5Llaa2RWQTD1FYcDgnc45+k6x4iyudjauo6biAsiZhWkqqYMh5vUVCZruNpvdiq129wWwLVxbrafvERamhtkTlCZ6wsynY92P5NzUXycbq4+HS3WQnZOrcosprrky1k1UZOMXLGrlensXs5jIQGetglkFVbdIfcf3OeIe3Rn/3XniX9S+fR++M9GsQfjnKdrlrY+Jtt3By/0vVngtj4YwTkX0vk42voWPKLCInSkoMTt1kgqKZFHI9/mbGsWYqTiau8kYHvcpkGdow0OKdbMmjPENCXroFqUD4FCZk45FYVGX4gtRgao844iRp6uL2BYQiwqOamQOUOqVpmFzOKYlH5EocoYTgQHsT153X93y46DG0uUzFgsywTbu+Vo+5wQPItlw2LVkNUUFMu7iGOcMJO2DXbdnItCYyXBl1nNgVNBfUmEKESXWicXjGw1jrFY7dmyNMY0qVVXQo1QrHHVzjFzfygru063O+EbaocJewzlb2YJFs3+tvWI2DrinE7qWYmyNyv4gpTzv2axvakaiSOXNSGNmVRwhvp9tV6uPE6z0y0JbJQ+k011TYIgWYnFetyI8MqwjRPpB9VpflQ1hSInHu+LApbXad6E+p3O1CuxdS2XfaJzHtdQEmRcsfVTU9R2QtM2Zf6zc1xVmQJbJ1K0pA2zKJ+fREW8vBO61ojtGov9oOikGFXXjEoCNuzOrjOdfSdiqrUkOrchIkXFNpe6ZLPjbhvaDnKMDKMSY1H1QgtONKUGTDhY8I2NtbIXdNicklTLfYstkGVNqNbUUs6plHWzrvVVK83hKmd1en7dcgHbbVEeLe3gbMza99oapZmiAlgoynUvUpaYqhQ+Kb+WtVfLa66cO+r6nJGJ4KTkQshj2vuatZvhYjlTbPtKAkPBY6WM7V0OYl36stRnX/6Vq6Q+KfPR4a1Dbq2OefT4lG2/RinqvBjpT70zEhfW5nW/VbEQUlFkLHZwr7xymy988QvsdUd8f/MByBrNIyKJ0AX291bcuHWHm8tD2vc/4unpCzZpy7Nnp4yXPRcbS3ZyONqu5cFrr7K33Jt2PNP9AOvwhGU64MH6T7FKt4qFa2kL2TlP7JSXTiNXXr9KFv5neU2+LtfluvyzWLp8wCIdfdbV+MzKjxMEvi7X5bpcl+tyXf5wivK4+zaHw6v88tP/Mbf7tz4zJcMfX0lpyvaE6cgyYb67WVTma2/n+zxbvmGH7Sue3wXEKidYO+Or8tFHH3O53tLQsGobjg5bvv3tdzjfrOnU8+bxHfJ5JF+c83M/97P8+X/5l/g3/y//Vz78ziNQU3mwLHsl5YiIx+HZDD3f/uH3eO/xI/7KX/p57tx/hY8/PCUlRVJChpHRGcHDiYHTbRsYoymg5DSTi3T6YQaMK2CRnIEBRkKpgQILKoxjVRea29JITqUNs6KkCVlXZALRZguzGaDeRf4FoYbAdok/81F295Cpk5z1FBmQ+oxkB1SYj/U1kDA/zXpNmUDEGvycADBxJZBiNi7f/v23GRM4bewa5UOTVVq5j6raVTFM3WlnKX1ryhwWxTct3gvHe0ta8dy7f8DTfsv773xMCAJZilS44scBnDMgXjMEMdRjiEh2pQUrQCRT1mGtGxQQryg4pBgN5JxZR6Xubno+kw1faRhXlFSC91R1FjCA0zhgshO5FJxrkKy4xpHJjDHinQXgqrJTGsdpXGbJeJfRNBBcMFOqEaJTLk56fue33ub1V9/krZ//U7zyhTdomsXcWV7qWvMrc31e7lnlLstvbvpdfuR7/3htvG3MRTQpWVp84/nCW/fJ4WN+75tPcAh3bt9jyFs2F6ecXa5Zb0ZWrSN0DcfHN3jzra/yW7/7u8TYs7dasd0o43YgiZAk44LnaNXSNB1nLy4Rlznc6zg9TZA9Fxf/P/b+NOi27Lzvw35r2Huf4Z3vfPv2PKABNEAQBAFxEEmJkhVNViLJsVWJK6nElUpS5XxIPjhOUqnylwyO4ySuclVSSTkV2ZYjWYpoyRI10BTFGaTJxtBoNHru23ce3vEMe+815cOz1j7nvX1BNkgJAKl3kY37vuc9Z5+1117DM/yf/79lPFE01tKduFOSXqHQbUTQSaNTwvcus4IIA005Q5ZdhwJMZdgYNcQs1VFrg+8C7aIjEYm9R6mEd4njozl1bTM9vTDGyPz2sk6UpvM9JkliQhkB3RmrMbXi3MUNbBWZH7a4tiP2ia71dMseUEwnlktX96hGit47utbhewmUBifgzPFoRNcu2NgYoVKiqgxKQx2tgIk6gULUVQVJ46LLEdeI1fJeZSLbO1sYbdk/PCGFxHQ0wbvA4dEMpSVQDBJoNUb0y2L+T2lN9AHn3QAqHZgqjJIzLScXZJxWe11VacbTmqqSaxpj6HtP7zq0Fskpa62sBKUILpGCymeLSIwSwefkUGwFWCJbZNkjpcpZklnSp0jAINJwJGiakcgnpEQkkoLH1ppAIOmEbUTe0jsvZ0wy9M5jxjVam1wlKpIhpETXB5EU8FLFO2lGsgeFSNt1oBNN00g/bWG305JsRTIExhqqHIB3TkBSKFAGVBQwsXc+S+aY4SxDSZU0EabTEcok8JL4CMEBQQL8SRGckiQTCRNDPvstdV3TjEwGDsqcV1phlMEojakMvQ9orXC9x3s5f0N0aGsYj2oqrQkJGipMsOhctaxChe8cyiSWXcR7R9M0jJsRfdsRuohF0c87elMYreRsMBq0ThAheEg5KRyzhB+5gtsF6U9SwqiUtLCXgRbpw3iMSOhqoYTWMnoiqwYpMykktTqbJDGdBf9yxbDROgMqZB0UG0QBymTWgyjQiQI2M5U8Zx88xAJ4EvvPGJlDRWbNGkneh5iwych1DDS1pfde7AvJueW+6ZyYEzkiFTOTA1GA3bXh8gtX+e/9lb/IW7/yFj//S1/hZBFxviepRB+DAMSqitrUKKOxKmW2rkqS+zHmfoNVmq2tmh/+wvPs7k249f6cyWgbrWfUE0Wz4dnYsbz72ts8df5Znrp4mR/6wuf5+jtv8s777/Gf//VfZNxssnlumxeeegY13eLy0xd48twFaqwk7vJNmgGNIQkkrQrYSOX9COpa6p3XT8rHBazU447Sx774/dQeb12obGMOAI2cgBqMyyF5mD/zGODSYLwo4VE4OZnhXMQqQ1NVbE5HHBwcM7uxpDbCvuZ7WacXLlzg+c88w8GXv0x/9xijI44iiZQyEFzsGx8Cs+WcpeuxxqGUzXa+ZPwK86HKdqPWWtgggiMQcoJsdfOqWM7ltcF3EDt0wG7lMUhkRpQ1fyJGRDIwG8oCClhPND3uEZQv/Hj22WAbrvsX3zbTtYJGDXN3zbB/9Ok9+rsuGcz8x0xwSkLhIhweLMg8rwxUs6hT8+LUXaW1O1VrluwjBq8AcxR1ZdFoNqZjjtsWbQ3aKlJgxUYXg/hMOhdd6Mz/4IUJb10eCrXuT6i1aS0MH0qtJXuHMVt1rsyRgWnj1HNau4nsv8UUB8ZclRPS8p2yFwlPBTJXSQMDbQEoiSy7zs9C7B9rrbAIRpET6peBe3eO2dndZfPCHmYywnp7KhU6rO9v+6Qf19YLXeR39cjvq+t+v+13wsDhfUt0GlsZ9s5vUI1abt5oZb+xFUYZouvovCd6aCoBbDRNQzOecjibi92SZKyDl4R5YTKdTCpsVTOfLdFK0dQVfScMo9F5fBS/PXTFMyv7E0gcZgUMTCHkI1/2F53p/WJOyGstgJmEsLEarUS2uMsg4xQzKEXh+0A0MgNiFFZE2ZLUwJTiXI9KGVBD9n2BqtZUlSJFAb/7Tnyh4AWkhAKjYXtngrYSUwlBQDCpSEelRFPXw/3I9+Ywm8qSoknO2SHCkeM0IEATpcQXr2tL3QgblveRylqR3ZrNSWtrozAkGVNiHivfN8Ukks+IjSN7gBbjN/sTQwwpxx9EdkxkwkTOT2UGFhkvrQ3WmIEVqhRD5OlHicqInF5+ORawLMNnUFIkJQSOcnbpXKQRU8ogX+mbJgNFlHwuRilAIGbgYpB788GjohXG0XxGWStAIym0iZlBS9ZGYZ6JWf5OJPbKOpKhFOZZiRkpXTZvYR2SoVfDeVoASykXlJWDQ5HZhYjY7AeGEFe7UT43hzhPlpfTWuVxL+e4yedtyMAZYYIqINRQgE2ZKSnl89yHHmMNZDk5U1l0jsIKbk8kqJOKuJCyHy4+awpkuUKTfaV4Kv6qFLkgsvT99H2l8ryzX6Uzc5nMpexfJJjN5sXrHK4n4xqzu70qXtQDkDbl/8vrLTOQl1EfzJxhLcoZHTPbFxSQkXxI7jPbepnprzC/rkv7aYQFS5Xfcn9XhaUM+wGUOVIKRFYAKQEZappxzUufeIaRVxwdHNH3SophlZyPUacMfK9lHyPlGHe505iLdJX4llrjXMe9O/dAHYIybE23maUaTEdVJWLneO+t91levMT23g5Yw83bt7l/54QHtGzvbXPl4jkaO2LperbGUwGtrwHAyyjP7QPm9gG3x1/nU0f/Mhfal8oWhMo+WB5uVv+cPjvXXYdH/sJZO2tn7ax9N5tKGpW+vwuu/tC2381NOzsSztpZO2tn7Q9XU3Bv/E3ujb7Jq3t/jb/8wf+TTx3/+e9JV74juTcovt76ySVSBlLJJ45tzBU28pp8JmYWmRKQyrGQ/PcSDI345OmWUpVnjGF3a5tPvvQsv/nWG9y88RCrIq7vOZg5pqbBucR80WNtxbSuOL+7xfu39jFGpGqWyw4JoCWcc/jQ0YWOn/3Hv8gyxaEyjlzt5JwjZwXQSjEaNRivWC6Xa9VlxRFmcMrJ/nBxtEvyW6QoJFFc9OljlKCA0IoHKTGE05H+kpxhFbgqlO4lMFO8zZWzXdKP5Hfx+GTVembkkZcSJVgFVlnWmZLWAUrrAfH1qjilFCqkHIyHIKThJAIhGnQUsI2xhrqB1geIa4Cp0vG4sn8evYOS4zj1SnDCjOA7FqnhZGlZHjuuXrxMmxzzRUuctSLVlCXgIkKfb7BUShMrQ0pegkGpBGmUBHAoc1QCQSlG+t7l+05EJdWItpLkbvDleZ4esxIgKYC+QvUNkvgtVXExJ7lWayjhiRhl0crgvVT5mxwIDkHkRYrsTowRYzSjxrB3bpf79w7xIRG8wy01swdz7ui7XLhyiwuXLrK3bSVQST0M7iN5m0fmzOl7K1Ta+a7yO04/wfL6Stjj+6kZbDVi/967PDyYs7nV0LmHPP/CVVJQfP233ub4+ABlFHtbU/qQ6OceazRVoznpFrz2+hucnMyYjkfM5wu8V3iX8CrggoMYqDcqtnZGWWIpUVvL3u55Ll7axXlP3weWixZXe2LsODk+RnlDcgkVEppIKdQMviS4hanB5iphn5lZgou4PpCUpx4J8JIY8V2QClydqEcWayyhg6g1tsrAoaBFGkJLMNa5Tujog0ZhBMwVJfC8uTXCuyXHRx7fQT9fkqIhdGB1hakV23tjds41tL2jn3uWyw7XZ6avoQJUETwsF0JfjwJlNKaCycaEpeqh9biuF7BHkMC9SPrUJBUZjS1VY2g7h9IJYyz1pCEuW2xjJMmoZbxCEBCDGoLJecZrDVlaKiZFCDGzWWlUltCTmZ8T0FrGpEQCEx7nPZqKlEQOSysjiUEtSaLoE8Hlayq5vtFaguJkuZWc8NY50ZCy5JS2wpZmG4UL/XAuyF5ihKUq+iHZUDWGqjFghC2IkYGY8J3PMpER5wONV3Qx0Hc9Jsu8dMueCAQvgDBbVXnvilleQVazcx6roa5z0kQlnBfgl9EZDJoSWtssA5ElO4bAdxhAY5WxuFytXdU2zwM5f9quE0kRY8hThJQkiB1z8mc0bjAa2mUvzABKmOYGdppKMR43aKXolz0uVx0TRdoiBJHvc3GJsYqYGpqqQleWxmoaBVYrdkYTYqfY3z8kGUjKE1xFCo5lOwMMo9EGMTlcWEIQEIExkszQJstJZDnFwr6hlBmq9BVktiJhLJL5ZtC1kTmLJCxFFlVjbEVlZS743smaTcKmoYzIWCkgxARaZwaaJAlyVgkASWRHFImmbkTu1MkZY7QaJIBSWDE8lcNxJcgYB9YxFSVRp7JdJetM9hZNQsfMfpZy4l8VUdZVQqUyVva1mACNjqDmS37jn/4SD28c0HKEw0EQVs6Q5a+MtTR2g5AilXGZdQGS77BItb7SYE3D8iTxN//zX2Q6+hqf/vSn+OM/+Ud4+tljXvvG27T+LrXp0Uv4lZ//ZV7b2+WZyxdp7x+za3agmbJx4TJf+rHP8tLli/TLQKoSDbLHCGRPGBk1Su6LhB7uVVM4YfIIPe4Q/sPTHnNfJZG1um81JJkHe5dVMnX9/R9xTZA1FVNJJGsmowlXrl6iv3ebo9mSRd8TfKBzkdpYjo5PuP7uB6Q+UGnDZDyh7edoDba2dF2fCwkE4JeisNfdutNKYjKuup5iInhffpP35qRmigIjXB+MkuYrPpbKhu4K+LdK3ImM4ypZt7r/4SrDWJyGAhW7LYPiShXAo49mSGJ/9LXcu2/3CFevlURY+QqlhnsrXVpZkfkZP4JmOdUztWLsTIS872tUEkY3U2n6PheBcPrzq9+zr7Le86QyS9Nan1PCJIX3PTFZwkmP1ZpL53aZLzsW7XJgnjUIk1JUCR8TKuYVnMEFFNahPBZGr8nSZdt/ACgMgDM1AKWUEvme0/dSRu5xG8TqNZ1BFCRFgWQMbCGkDMQobI8r9o3CDqGLvRJkn2rqivF4xGy2kM+kIDhP75kdH3Pn1i0Iiovjlx7Tp/UnsfaX9Lj3laZyP8vPjz5LOQu+H9o6uCyphNKWbj7n6GiGsdD1czY3x1y7cpXr798k+A4fI+e2N1FmycnxXAC0KTFvl8wWPT77tX3viSgBK8Uodk32H7WObGyM0L1m6/4WF2aX2WVbQGpRQEZdGwix5059h8V4iXNFjki8c9c45pOFMKxYse8KEERrM7ADeRdARUylISWMkjku5oce2KV9H6hqjbYC8vFO7KqYQCWRnRKblrVku8QBbCUA5K7z4muIBp3EBLTCVppmZLOclcwJ78PAwFn2SOccJhqxC7O/rfL7tTEoJf5+8EVKbrXHGbJtZhTaKrq+y2Otsr3sBqbJspsUIKrSWhhR814s91YK99bOKS0JuLKXSyyHAWepWO0DIXhQRuR8iy/CigkmRYhenqYwTybMsN+ufUeJ8aTVOlJGxrWuK2GUTCs2IXmDGkCLpMx2o4U1U+W4ny5sRplNS84VlSW58qpNGaQ/rBdyzCGsXmA1j5SSGKAweRaQUAEZASmz/GYUU+ljyvdY9lKjdWYYLs+97JzCYBazppk8K7nHPF1ISuIotjIELxLiKUZMFFZRrYXjUBth24qZMUn2+3LmFzBxGJiCglrNGpFwTjTGUKmKuS8MxgpdVXJN32fgoJW+C92o7Oh5whTA4Zr1SIk5xShSuopcfEIZo8JOtNpDS7GkzC1hd4USwy2M5iugWpnTSmX21Tz+JWI4yAEiY6JNtodjWNl0JZ6a/QW9thhjidGuGSCFGa6wbJU+xCjzX4oa5EGnlKTQkxU4rywyOUUzD2yM+GXL61/5JhZD5wMel9+nSEqL/wPYZkyMErNOyYk/EX3ey8r81aioOHjQcvTwLpevnOcTL34C9Ij33nvIw8O7JFoMCe3hww9uc390H5tgox5zYeciQddMd7fY291kpMU/KMSIAlbN4L0cUwYBuyW94IPpr7PbPYsRDld54ill2ehvF+M7a2ftrJ2175+25a6e9tf+BWtBue/6dzbzhqtvXuWJN59g6/7WY99z+4XbHF06+sjr8+05+1f3SSR8488OmLN21s7aWfuD2BQszT6/dOn/ygsnP02dJt/1Lnx8ubfilH6kpZzkCpAlWoBcnV4CiGlwhoZK0EJRnK8hUZPIsuvx3gzBhfPnz/PDP/HjzPcmfHj3F4iLOZWtCKkj6cTR4X3e+erX8ScLYoSugxQN1sJkMsE5h3NSyS94joR3Sw5ag880yENwPyX6tht66r1nNpth7BqLUWE8YhWASkNiTRzBdXBRvrQECULM96WyY7mWYShjsx7ozK+RVmCvlOPbSquss57flauiYqFvH0rwV8GvUjHEcN1VIKxIGikpKZLK2jwmhemnjJNSqz6uAmsSaJRbUkMHSrACHCiPokLpSN2MqMaW9mSeE5MMY1YS8+tjWKqyVkAehqQziEzHud1d9vdv08eIu73PT/zwp3jxhat85bdf52tvvUVIGqtqxs2Iq9cuslzMuHWwT+v7DCorAdk+U9En6qpiMmogRXwI9FL8R1WPmM+XQwLJWCsBDJslcoJQ4pucJEi5Cq/MI611DrqlAfiEKhWcKicl/AAWcM4NQTupdpbAm3NSeVjVhrqqJDnthA1EkVDTMQ8eiBSQsQ3aaKLyJOtYLI548xvfIC4rfviP/BDTjVGeMmU+cjoztfaM8iJf+09DMlm+zwNBAsysJWSGdf69Siqcnrer+8gBNW1w3YLr775B3SgePLzP5XMXeOHys+zv3MMpx+37BzzzwidQ9iHLxRyvoVt6gu+I/gQferqZAOA8iQ5P6iMheKrKkHKgeevchNnxjN5DipoPrh8wasZsbm5w8dIu29ugrefg6IgYDV0b8R6c9yzbJcn39G1H1zl0QpJFKqIqsFUSgJIPhAC6svQuYIiMqhqbAi4mlDWEKFJIzgtIzjaayhqWM4+PkegCfd/nwLGRJ6gUdSOB2+nmmO1zE6JK9MtIjD1VY0nO0CtHNVFcfWqXpra0nad3Dud7AJpRI9eMAde3nBydMBqNWc4DvevRRmOswntH3TRD0N8TsE2FzcFd3ztiHzCVxtSa3nW0bY+1Fu8jDw8OqayVatQM/IsloWCMsKAlRezdABosspwlMC4Vn5oYtND2a53XYcjsQYpmXDGeNFI9H6IwKOWApQBSRbZNKUXvHD5EwGOMom5E4qPzgZgEvFoAJgqpyDRagU4oHdjcnVKPajrX4/qetu0kYWvAxyAypwnwclZoqzB1lqZEWEWctZhaEl/GChhLJYU1NTpF+rbDe2EiRBsgSlW9xMdJSRIbzciKHEkUqbkQEikFkQ7TRoLSmcHKWgtJ44MfEl9k2RljTWZ2iCQCtqpQWth3tBEGrrKKneuJMaDQpFikjxwKkSLTqUZAbwLEMlphrEYri3OeGFtqm6UYQgBt6LoO7xKul/GztcZqS3ABF0VmUxuLrQydCxwuA9Eljrsl02rKU3s7LDrPwWwp0ozBcXK4jy0sLLkSWqtc8YsE2UugPaYgFfoDA6RlPLZoo3DB44IAHLQygIxXVSl0gr5NpGhQiExPDAnvI8FHAYYpkYsJKVd+I1JsKSlCCtkOSJn9CkmSqZLkXgFmjTE52S7APh89WiOytkaL9KITprVKmcy6EYbEl7WGGBUhCYObqUS2xVIq7MVWbOpGpEWynIMkvzqiT3gd0cmiAty4/oAb1w9pqppAJOFRReqmSjS6YmfrAs8892nu3T1iNt9nsdjPSUdwEZQ1NGhIPeenu3R9zUsvPsmf+bM/xZNXnuWZ5yzL5ZgP7kRimrG3tUEKFXdvHVK18Imnn+P5TzzPePs8792fsZgZTmaeyztjUdnIrCURSceddIGjkznTUU1Knp2NMZUGo1JO12W7JuUEWrZNHgs4/4Pa1u3Q3NbBNOsgG1izOQognzWoszoNEChXAGE7Gpg0gKquGW3tMO071L1jRsZQTQz3Do6zTezxXUdwHh8i80VPIXst4JcCxx7YFrIvI31eg1ConHQr78sycCVRrkq29DH9V2v/FvBeyZwWaAapAP5ysnpIC7JCxJwCfD1y9XKRMqC/h1bwBd8OJlOSjyss1MqeT2uPWK09y9WL6zZaAdsUr0iS24UdSMbg9Pevfsm9OdXJ0g+9Nu9Ws9HYitF4zHx+LMAyHJ/+1PNcvrjLrdt3efv9D5l5T21rmqbm2pNPsJjPuXn3Lp3rBwlVRWHfynehdZbcFNnJtvdooxnVDYvFEpUToQJ8TtmnKmxZOvs8arBTVmyyBZAwDN3w+nDHuRiElGTPV8LKKQUhhdGxSBHqNXnyDD4AYnAs215sRWtXbLQmElVgsTjhwYMHbF+6zpG9y7a/uhprfreWIINmsr5Q/qSAWgZmmHI4Db7mx7r4P4d22p9Yf/1+8yZRiSTrYnaCsYrFckk/8+xsbbLRNAQVOJ4tRa5Za2xdzkVh6yQGUgy0PglAWScCYXhetjIZtKBQVuGOPerIcjA/pr8t53WtLZt+wpgxVT1lW+0KK6+yAtJBwDyenk4v6XzHB5/4gMPzBxlEUNhOkvwOUiTjgjCFFMBBDi6IDSnMYiFkZqUsI1jYbcrc1cqAlvld1Ya6ETu5HlX5ezU+OLTVaAwxOTSJ6VbNaFTh+0DXBbwXZk7xjaU4rKoMfdcJUDQJI40wF2tCBoqu+4DKKKyxCLBaCjwEqCd7c0xFiivhvB+AIRIPIUthmQy8krUq9xwGoFGxgWSGJAi5bCeBsCplfyLHAqpK0zQVIQrQNTgZV6WlKCgN/c+MaWWf0GLbKRTeicS1AEDW5NDKPqNkj6pqS1UbsaBcZvPMG3cBphQQiRThZfsRAfooEoYSCyn3UgCXAiT1zhGCfH9h8VH57CsFItoIe7lSUrggRQM5Tpc7MYAo8wWU0qek2GQ1ZvBPyoDilKBIGoeYn0cU8DwQfRj6Ww4niUXFzPQaMrsPFBbaGMQvCzGRfMJ7n6UYBTESQsTn2GPZe4uMePDiayVSBoMq5p2D0BGINM0GV3a2UHgeHs3ooshNe+fpvMtFAqzOQ1VsBbEOym5UmPBC9JmdOPtqKRKG56qGGF8BUZUiwQE0nVaAqwFUNLBhqRUoBwbVOT30R+az+DwytjGfbQVEW0yDIRarswR1WsUETWa3BwQsmXK8LcdXY8wMsznupijPMMtfo8QeLGswg5xSjklFpXAp0S8chij3lCULkxL/22pDU0945plnCV5z5849FstjYsxs+0lYtCqlUSZxbncDoyo88PwnnmVrawuoOHcOWrfER8vWxpiRqTk4njEZVWyNx1y+epF61NB5xdGsYzn3jDZrKg1pOBcLsFtxPFvkvTgxaipqqwmqI6mY2WlPszeetbN21s7aH4R2f/QGt8df4+ryc/x+dq81z5kCPP1+b4nEG1t/H6+67+r3Gm/YerhFsIGNw43hte3728MQPvX6U4/9rK897bQlVIFf+Uu/wvVXrj/+S77/h/+snbWzdtb+xW4Ken1CVO73HCf+/bTvCKS0/m9xHE/3ugCPspMPJBWGgIKWrJeEl3N0poBN5JoZnBEz7bxKHC3m/N2f+1W+df06DVOeefEa9QQOfv1VTKzwJN6/+4D7+zPavsUfHhOiw/tA3x8NwCBKsDgIqCJGYTOQoGccgiXrLUah4B+qhnMwpNz/CmS0HgwuoK1MaZ3i8H7B/6j8uVXmoLDlSGVjvh4Mlb1y6RyYz+M+8NakDECKkVQCDOUaqQQMciBDr5ITpoBkyn0rBhmklHK13qDXLh9aUS2vv366xbSqmQIwKeVgjEUktSJJKdquo+3dkOQYquWHb1slYFgzLkvQL+UAdQEq+ZB4OJ/TUWM8TEaJL33x03zx08/xIz/2Cv+nf///zbvvnvD5z36Sra0Jf+5f+UscH57wf/kP/kNu3b6N18IsE0PIwyrViSEk+taxMR6zvTnlxv17NLZhNBrTtj11XYm8k9b0fYdzJaiWn9saE5LJ0mxlHEvwNpFp07UioYd7KvIgGjIjSJaNK2DAHMBxvRMQVIKmyTTixpCiYr5wKB0ZNQ0bm1NG45GAXEyimVrMKHAwu8Ubb9a8+MIn2Nzclj6ujfwwn04/aSR50IGKWa+ygajwYYmPCwmIaQsYNDWy3ZjHJM2+m+3RL5fESCRAVBjGhA4O25a62ia1E05micnWJrP+CN1YvvHW28yjx0wN7dLRLRPNRsPWxgZ+fsLDhwt0pdmYWpaLJTppmlHDeGuEstC2kZRajg4XaCzBzyCKhEjXLnMwfsx0a0y92TAaTZhOt9kcbTAaT1HGoDIoZDlfSELVObq+J/Q9/XJBt+zo+o6ubzMQKWDHI2yViLFjZCp6F+jbjsrIfGu7lg29gUoQXCc0u0qqgq2tcCWQa+HJ5y4znipcbNE64r3BdSJhM2o28ICuE5ONGpsloU6OHW23INFjqxGjpiEljzYVrk20C2jqmkXb07chBxwjznnaRchVykoCjsrIWZI8QSUwmqapUSqRkkJrkSSJPuB9zEHlIPJ4KGxdEWOg63oB4SQ1AEmrDDgMPqAyYFKYdXw+x3RekzEzHSRGU83u3oS+73Eu4XuF6xKogM2V6akkGlGZ4l4CvFVdYYyib3u6riOiKUdEDEKHn1BEnRMXozG6FtnHylj6IPJ+JJGjEMmNDNxRicnmmLqR5GhIkc55ko8YCxiLtdXAvKaUJYZIO+9wrSfFgDKJetSgjcEYRddKssFYzXRjRFNrXC9gYOciQuK0xg4RArURuSvynHK9HwLektiQxEcIGchlFWjovSOGQGUVycu+572AomUsKgFl9nJWExTdMuJohXkqGXwfWIQldVWRksKFiLGKXvcig6YV2pIBTZ4UJZlglLD1RAfBZdBP6qiaGh0VC9ehomJ86Qr/yl/4y7xyzvDbr77K7XbBjTsPeeetD1j0PVErLDmhnx+Uggx+EAAQUSQuJKknSSOFFmyYClirMrDOis2kE8ZmCZgAoQ/E5AWcYysExBqFDSzEnGTI1fBWo7TAR41REMXW0plFoyTxjNFrSUUBK4XM+qgiaF0N1w0+yjmYE93RBayt0Mrgosd7T11VApLtpR/OexICfqyMxeqUWSIkwep9EEYtLckMlRMyJihUVARjUCaitcz7mBSVMehKY+sp09GEujnHn/qX/jQ/9aNf5Jf/6df5O3//Z/HdMYSOlCRhFT0ok3jxk1f5Yz/2OV5//X3MdkN97gkSE+px4toT59nd/QHOPbnDS9eucOP9+9w/OaZWHTu7U648+xSVNuzs7bJsIyObJR/lJEdSC1HOAm2JLoJJ2NoKQE8hEoIFpFESLYXl/A8TQIlHQCms2d7ZFl210+f1OlhpAL8UAMraZwuMZSUzJHbwyWLOb/32N2h7x/Z0j+lmxXx5AociqetR3Hp4xMm8k3ndZZayKAwR5TvF9sp7erbDV/e1YouVF/M9JNYSi6v7+WiwdHXPAyNBjGu/D0Mgly2ycTnxt14l/5HhXH8GZa4NKa+1rqY0zLnHfr4Mef6OwqyWh3ywX+Waa53IBRGrspVEpqYdxmhlfK57Q/K7TrJPxZSlLZHnH2JAFda2tXFdB749+nt5hsOHip+lFD5ETuZzkrIYEo3VTLdGVCbxzEvX+PDuPUhjXvnki3jf8sRzz6Gt4ei/+gX8QT+MXyrgsVQYURA0lTXYypKSIyVyEYISez/LPfd9j8qA4CEBrdZ8xHUAUkprz6kw7JTvzfuP1kPiXmX/fB38M3w6JgF8poS1svfqKjNkFHY/o2nqClsbYQNGmERMpejdnA/2Xyds/0f8mPofsp2urJ796Sm01hJetXhaTuqbOL1EYejVkpv6a/jQcc5c46L7BNvuSao4RU7V76N9MU/nqDz36tdJMVDXE6xt6INnd/ciIzumHlXYxYK+nYE17J8c40kkI3JeKUA9btja2KZfzDk8nMkzyxuIQqGswdSWkAKpF6YrbzwfPnVD/PtPCng7toHmsCJFTd3U6EplqVbxxayuOf/gApWuMVqzc3+PczfOszxuZaeJkeg9rep4eP4Bh+NDFtUc1Sq2j7dJ0eNwLJ5saV2LD60UUKUE0WOSzUs827E5hqJykY0AYCL1qGZzeyz2fJTiCvlX1ntCkZTBGmGh61qH9+IbiPScFillJXZ5ykAUpYQRKYSASkrk43xh9cxMSXmdxJh98RAHeVr5G/keMogvplyMlWNgKeXxzGdCTAPwY22xDrtP2apXgJIMBBdaKTn3LTRjC0n6G0MiZJC7sXIOlL2ryK8prdAZ8F+AVT6EFRMNOT6U+xxjEqCbFXCQz0zhxLX9M6Z8tKXBBClMV6vyw1wcBySVhjiSfJf4VeJ/rcXCDFmqXj4bMzO4MSoXPGSmr8K0tRaRCLngy1ixkVVSg227OmZWQBooFthaceFw7glbbjmCbGVyfC0JUzFiY8fgS7QOyBJxUTh4YgZApbgqyRysAa3QmbVUgIerW4kpA/90wGq5F2sMGM0zL3+CF6+c497ND9Bji6lrrr9/E9eKJakQH0AlNYCzSkwMJf0zthQKCstyCIXVfQXGUsVeyLHJlOR+U5BxTkqq8owxw7NexT7TEOcq81HrlSx0Ks9gCIaR+7P6zlhkSxWDb1yAfiKJqAYTIea4bTnf5PxbFcEVRliSHpjqy7oW1lmVC2iEufV04W3KvoiUyaQEIV/XGjBVzWQ0xZgRFy4/xSc+8QzdwvPwwYIYZrnvGpUiKiSiijTjmq29bYLzzFtPmzSRGp0U44nhmWtXqMcVm5tjkos09w7xyXGyPGSHRK01o1oz2puQYo4ZrA9ltmiUUmyMRxkoRvb/YRy2qWLN0JQa4E1n7aydtbP2B6Ht1+/x1579K/zr7/5NLrevfKzPdPqEoHo+nP4mM3sfgLm9zxtbf4+kEleWn+Xloz/Nk4svMQrbj/HBvz9aUD2vb/8dUN/dfXuxveCrf+KrkODL4csAGGc4d/PcIB//aNNB89xXnqPqRM3jiTee4Kf/Pz/N/tX9U+/rJh3v/cB7PLz2kJO9E0azEZfeuwSAbzzvv/I+sYofuf5ZO2tn7aydte9+2+mfZhS3vyff/R2AlMpPae13NTii4q+mVaQ7rUAUUAKscFombe36OVigMJAEMJBS4M7DB9z9ud/g8sWn+dP/jT+P2Qn8zN/7u3Sd5tL5c+xcucr7D28zmwfwAbdYSPVLCSCx0pOPMWSHWVghUFnTXK2qheTe1KrPSWRgJGBXgkoSNCla6iGuKKxRrDnQ8qrI3Qi1fpHKWf09ZdpgvUqsnAqlp/xtq4BXCTQX0oNVgoeSpxiCAINts54MKs58/kxSDOAZEIkmiCQjIJm27YRhYXi2ApSROLxeu+4qBKG1QqVIo0ViY3++QABWMmfGI81INxwuF0MQXhK3K0aqtfge1tohYSoxH50pqnVOWihc51DaMrKRc9tTHi4P+Rt/97+kb0bc+PAhn3vlS/zP/s1/nVd/6Z9w7/aHtKNA0nMaHF5pfIpUVphVfE4o9U4SCy44DheHhABd19N1wuphjIb8XL0POWiUclBS6LEHuY4kSd4yPypjsMZIoCpXMGudg5b5waUo/BAmr7X1z1ulh8QMKdH3khxpmgZtJWji+haDpqkMhoShZ1RpiBrfJRazJf3yBsv5Mf2s5TM/8INsbW/9DknRMkMjfb/kZP6QyaSisobkNUZPuHXzQxbLQ65cu8ioqUSeSDVYPUWpRtb4qWzU77c9Msm/w88mIovjfYyq2H3iKtceHND1ihdffoHajsDCYeg5eu9NzKhjfnKEVxCiwZhEbRJ1NeKTL3+Whzc/IPU3me5t8sHtm6QcbE8+oHtDanus0vheKvVC7KUK2Sq0rahtJaAa7wja0reevp1zfPiQ5cIRk0GbhqquqBtL8A6jFKNmSj3ZZDTdZnN7d6iQ7boO550EfENgMTvGdY6Ll65w48MP6JYLAV/ExHg0IYRE1/XEkGiaCtc72g661mdmn4itBdDUTEdorZnPe1KKeN+jkmXWtShl0VaTgubkwBNih8/9kMSNQRvwUXNyMse3PlezttiqYmNjjPOR+WwpbFFaY2srknZJ4aPPVZGB4KTSv26qzFgTcV2QYySzyaiczI0xgMmSJ3kOBp/BqAlhVcryAimEFSgDAXaW/dsHTyKwtbNBM64wI5Hkci7gO09wEHzAGoPC4jKLUlXJ3qY0OUmpaFsHJIIL+Lh+BilsllPw3ktlvK3QtsJ5SMGBl2pdbTIoKch9F2lKW8F4KonPvnV0ncNFAaigdGY5MnlbVyzbBa51AjLRNjOjJarGYCtF9HGoBhZgURrYioIHlQzaSALIO6mE9r2HGJmMJ6QAbb8gpUAmdRAgVK7ONqaSZ1HJsrZWC/g2iWyO4G1kXCpjUGolFWsyQC32Iq2glSblitroI32WIY0aVMyJ7hjBKLRN1E2NMUakSbwAbUICtFTZhhDxKaB8ZGzG/OAPfoLN0SYPdM/mnmVpHF95/10m22NSN6PSAjyqKss0x4q7hSN4SbQpJdXVPgS6HuqRxXmZC9aK5Nuy9UDCVBbQOQkgz1Yq3hOxF3tJ5C4iyghzkkoJnSSBX2QUlNZQEoVaxj1kxjBrs2WjZV56LwaFUSvw87BqkhImgCjJkBAT5GrzIl0SvQB8hSFJkgzEJImPnBiKAVwfiDqsklMh0YaOGLXYRlGIvJKglYgIiKqpGzbGFcvW05NIOogM37ldXn75M7z8xEss9QY/9CM/wu72lCuXrlDZDQFP6RpSREVJno23KtqY+PI336bRhgmK4HtMrRg18IXPX2Nj8iKm0tQpMTYb3PiNt7j+8A4X9YLnwifZMQ2NiYynxUpU2Q4umQWNJrJRK565so0CemJOAsr7ClajbDqD/bYGGvlne/59j1qxb8i2X7m3tVt4FNCwbuau/3IqZpYvWBJhkgDOyVcSbd/T+8S5vYu88PIzBOv47Ve/RoowmTbsnN/lYH4MBxphshIfofgsUJLmYgcn8rwsfhGDGb727PI/apWgLg5QefQiHbbmd6yNzXpRgIxVZiwgM6488tjT+iAgZ91qaMvPq3k5MDo9UqTxEZDQI39LpwozHvlcAZEBxljkzBOgxHLZDox+5fKrb1pdczUIaQDu18bS1DXHy3ZwMwFGtaHSFSdt+1jg1zozVwEukHKSlMJSJLaFQmG0yWdqoNGGremUOw8P+Na39nExMTtsef6Fl7n69GU+fOtN3n//XfYXx5wsjtFagK8xBuqqIoQwMMKlnMIO3oMXKZkY4pDA995lpot8NsLA5KWKn0oBVsgNxQxSM3oNVDEM4copFP8prKQmT823DFLNz0Pn+RFjECaJWJ5pLBozGYy6Ei10neylvXL0XYuK3+KbF/8en+7+HJv+8jCfEiWxverfndFrvN38Uw66m6iRQ1uRxLV2xNHREb1r2d96h/cnv8Y4bXNt+QWe7H+YUdolQ4ApzMwDYO/U3F33qD/aPt7O+Tu9Kw3jPbcPOPAfiFTbdMTuuXPEYNg5t02m5mHa9YSk6f0RXfAYFJl8F20EEEkSZqDdrQ229na4fusW4PEpgMtnvc6Asyi+qA/C3BIQqTQ9Siwv9sIybfKcRs5f70Uy8caVD7LvqTh/dI5rb17DGIupGgE0GcPUbrB5Z4tURagUBoN1huAFVHRQH/GNC1+nV61Ix2bAnQK6zgmDnJKYiQ9xKJAC6XffOxZzTV1rnM9xAsQmAWEmNgZiCrhOgCxJZfYXZVZgCBTBC8AkBrEndGGPVJmBJWbWtZSGYzUV2S8JWgnoK0l5TUqFBXOYrmt7sryQWLG2yJpdxZ8kNhJPMbOuWKD1IHGbSDQjy3gi8rpKG7GdhyUcMxuNGda41iuAU4nJyXMte8OKJWc1jSVGIUAmjcEM40GKQ2FfAVqlKNJ/ColPGJtjaiHiep/ld1cxmcIilaIA/0Pe36Q4Q4HOMt32tIQbisEG9FmCL+VzsTBPxyhnpfRRUEEhFx6u32MBzAxxlyE+lftZ9qLMjlSAXoOdrFbSZeu2x2r3yMV6usRqCnuWgI9MylKdGKKKA6gpxYyGykxeK2lPzbUnrvL8M89w98F9Qn9Cu6i59eCAB/sHaCW+rDUi+VXXstcHF/F9zGeEWtvnk7DkpTI3ZHwFPMhgZw5xv5TE3s8AoVLASQbGivWaPy8DJzbuAEQavn5giVdqxeQk66DYNGVQ5TuSymfL2roSvySvizRYiaSwsl+ULnHCla2wAjWlTEC/tg7XrcIShx5sbWFJmk7GuM7TxwTKo5SmHo15+rnnuHr+EkY1pKbBGkO0iaYZYYwlxA6NBRXQKWEaYYS7fzBjMq4EJLZcwEaHMg17OyO0msgzSIlYWyaTKR/evk89qlDaonKJgyKeVjTNhuRwNyoxqvM+ifhfMQtIr6/5lQX5u7Vvd1b+AfIvztpZO2t/OJqC/eZd/u61/zl/9ua/y5XlD3zEvystEfnq7t/gly7++xxXt1maA4LuP/K+9zd+md849/9ixz3JFx78D/j8/n+XTX/52173e9Xuj97g7vj1710HFESbwdo2cueFO7/j22++fFN+SPDZn/8sP/a3foyrb1/9yPue/dqz9KMeX3l00DSLBoUi6shX/sRX+M0/95vD9561s3bWztpZ+xezfWyQEoMrKIe4MeJIDvS/ei1vkB3QFJHkYg7gFW3ytQjl4JQmVlUzGqnMjYCLic2NisvXdrjwzJT783scHRxiU0SbntafkFKLUQoYM56MAQngLduWlKBpRsTocH1HGHTcy13Fte6oISkA60mDUpFVAlI5yKJNpvJXpxJIOqdGSoAFclVxEiagwpxUkgiqBGDSylmHwiRUpORyLZgqVcvZ2Wd1KZWGLx0C9aVbMUrQ6yPVxSWykIS1w2jDdGNDJAhGNdeeu8I333ibg4czdIo5uT18Y/n/AaQkkYrSZ5HXMJUdnrkEFkXaRGlPTLkCTulh3Fdjk4ZxlUq3tconJeNvk2FkJ1y8eonNc1vcv/E+L125ysvPPcc3vvE+v/3qN5nPPSPdcOGpC/zML/wDXv+13+DIRd67c5t+3lJpi1aKkVJMmjFd5Zktl/LMkyIkiLGTpK+2IkgQAgqYz+fY2qxV/ZVHkANYrIIvMaahGiqlRNQJmymkZQwk+Bi8h1zlmbLET1QiVYQSGnOjoa4slbG44IUy3AgddkKRQkQbsMbgXGA56xjXU5hYYt+ibWA+V/R9zbRpWKqE6w4R/Ft4JLB0KtxBjB3tcsGybbl16zrV2FI3mn7WcfnCNY6P9zk6OSBpj7XCBjJqNticbrO1sYfSUxI2bxhljv5uSYW09tKaK6FOv/d0e5zDsX79vM4T6Bg5OLlHtbfDuSeuor1mc2eLpC0qJp556lOoXkP8Jm40pu0W3L5/SB8C1A2983zza99gZ2vEyy89B5Mpt/YPYbbEx4gJgA/ECMu2kyT7WGTYggd6iAjrjo4RFaCdLahHloiAZUIQQGNwM2bHhW3E5WpiA8rmattI0whrSdOMmEynTCYTtrd32L66B0n2VqWlylmSCprloqdbtsKugsisLRcd/dITYw7YjS2bm1MO90+ARNVYXK8Zjxqiceyd36JbtnSdJ3iN83NGcYONSYOPlrb1eB+FuSZEnAtY0+BJaGPxQQBQIFWfldUkb+n6ACkzIWW2FUgYoyX1HwOLWU+ITmjPk5bEQt5jYxBJK22Fjcm5npgrlFNUg8yJAqKTwG7IIChhhCjJRFBaUdUWWxvG04pmUtE5kePzTmTh6roEFxVoja0qYQryGeyVv7frhWVGp1J9rgjJDyw2q8BvJHmRIktZ87OpRa7PGE2MDGwbImGqgEDVGJJKhAw66btAEi1LbGUxxmYGKQEbqShj6nphURpPauqRMCT44HEuQK70tpWwKATnWS6FkSpFCc7LsEsAX1tJjvngCd6RYsDWAlQUpiV5nsYaQijSRrIPQdnvstSg81gtkpc+BkKfMNpQ1RXayDM2xuC9HiqhpbpcYSqVz/KAMQajNX3nYZBhU2gEdOqTx2AwSVj6tNXUVU2ja7CKS5fP8xf/yp/nsy+8zM/+43/EG7/4T/lq77l+/YD58gZaa0bjEZOqp24s04klAbaqWRy2+JRkfDQQFFpVjEZjXOhFFrAkQHLFbwhZJirKOep9BrSlmAPZSp5LBuKJxIac9lZrImElcZiTE8aYDFCSKn2tIlUl8jGSRBSjTuQN1ZAsGrbjGLOUoTxnYStImfkLVBIAYIzCfmatHYLyRcaQpOVsz/IhcU0W1WQwgfysi2EooFs7ZW/3HKN6RAotxBnRdDTNmD/7F/5b/NEf/Ql2R9s4F7FNQwJG44ZmNCEcSTbY2hE6dVSV5drzF9CmwjRTdiYV3ckJD957mysvTxlVY6Y7EwEepAhJs7ld89S1S8znc566dJ5pZclcVyvbTAXIZ3oqNFpKo/BUShIJKiV670FbRtrkSuePn05YtXxKFrupXOPbApu+X1rupy525JA1esS+zb+vIzBS9jVitmnX/lQQLIPtovI1tGE8HVNPDUs34+ToiHY+Ryfo+pa7d2+z7DqSj2gqmnEjDGUxs3agGI1GpBTo+25NTq58dRx6X+zq9Tst9nvM6zau9Y+cLFy3q4EhoZ1YYzDNiVRSGaf192SpoVSSzestrfo2dHDtPevmkWJ9Kp3+ufw+WGer65YijuLfVHWNrYRxdGtvwq1b93DzuCYIvfbVBdmVHvtlBGDRZ9lPuX10Atd7nAoMPppSp4tPBwepsEUUZpA1vy0nKkfVhCtPXmG6NeX29etcu3yRjVHNh/du8+BwjnMJawzH831+8dduMzs8xodI510GBBgslnEt9rg3Ed91uffFv4viI6jMbZDnUBxYWNbHt/RxVRBSjnqtWIF9s3+tMoCpQLXKz1I4khA2puIYMrDJGK3z3EwZbJCTobkLRmthGAkCIqirhG0aYi82Vx89yWlqC5WtGdWKB+Ytvrb71/nM4V9iyz1BgWOQVvNk377Db1X/GZ1bMlscoXqFMpB8YmdrG+d72q4jHWewhN7ngb3Fe5Nf55XwZ7jSfQ5Ns/awf7973qO+yMf/BMDSHEDtWZ6cEEOFtkYAwDoNa3hne49+uYToOb+7x2Jxwv2HB7gYwYituJwdM5mMUSZw78G+SHtnAL2xCmsFCO59ygCeLNU3FPoIF0jKSXsfAzqtWKNTEiaXlEFOWmtONo+5/eRtth5sontDDAnT6sEfNEZTVTXKaMajCdPplLqeUL035pa7wcnOoQB+Eix9GACBIi0rjDrCdhIHkIcdVVlCzmNMQ0w5thJTlrQVOy1lwG9VqSxnZmg7J4AVxJ/x3lNCTGKqaLyPGRxCZhmW6wQfs30h+1fK/oSANAT40bUelNiYsnbLOStnkcpfFGMBoeS/R4Z1XXa59Mh+FFMarqetwRoZq6SynLLPUsRJ+jXMs2xgWW0IwQu4Kp91RR5tAJgUgNT6PrfGqB19xOUYTFUVWebc/yj7VYlvJcQGJe8RBUgpYRo9/CyAyzQwg5e+xxDRlaFuGqTQIxB8BiLl/SkE2SG8k+8u8Z8iqVq2Q2OzhHGMqLJfaTVI2hXprcKkCAI6HkJURsAqg5RfjrWFJDZc8Td0ys8ks+zKhpoZa/Tq3NVa7OCQ/cg87Pm9MnZGG5qqyiAs2cusrkgqYSpNNdKcv7DJaGT52ldf4zfe/5BF9g9RCWstVhu5/8rkGJMhRUdwcS2iASRZp9oqur6DlOOGeR4UaM8Qsw0yDuU0H+yMfC8hgx8HsEsulCwOqlYynjKnGdbKEEci5fNYnVo7K7Aeq/lFfvS5b0ojxXiUfSv3Q0nsVKco8nHF18/2t8kx1zIqOj/3Mk+1UigjIHara8bTLaaTCXM6Qt+KbaY1V564xqde+gSVGa0k+hQkpQa505RAayMMYZXiwpXz1FazaDuaupFiqS7k+5bipXLPKIkXb22N2F1uE2NPbavBrpO5yzAgaQ2dnYbhkvdmHigBgpaB/D21xxl+6du//aydtbN21v45tnc3foH/9Nl/lb/y3l/jieXneRyg6IPpr/H/e/J/jDOL3/V6Qfc8bN7hH179X/Pl8/8P/sSd/y2fOfjL1Gnyz6P7v6f2sH6HTh9/r7vxnTcF95++z2t/9DWe+NYT1G2NjprRbDQ8t7qtqdv61Md01Hzu5z7HwZUD3vzSm9+Lnp+1s3bWztpZ+z5p3wFICQZXSK2qWIrTqnOWISWpIi0evoqlqiqufJxv6+skUvIr4IzSjEZjds7vQZ146523ef/GO8z2j7BJ82D/AbcP77BoW8Iy0pgxG5ubtGHB4mgGaJqm4fKVi6TYc3D4kKOjhWjNKQUxkhCwCUOQV+6zONDWGpqmom1bCYiUAL+CkOIQZFpVQkvUWGm1ei3fj1TripNu1FppjJIEcIy+/Dr0RyHJwpXEGUNgZd2NlHt4NB2xPtQStHpUqi2RsLbKTrvItVR1w/nz55nsNNTTRIwenUoSSZKFmlXwJQ5ftgpykGDcjGhjZDY7Qaq+daa/huXCMdO9UJMX1Nip/ufy4Rx4CCEDZ5RCJ41JUCnFznTKiy99mv/Rv/lvcP78Ln/vr/8MP/5TX+Lm9df41b/x65ws5kIdT+Af/uOfpXcdzjl8CjINkkKlmmeufYInnrzIg3s3OTh8wMmyFwkwhTA5pJiriyMl5qWjpHxcYAUQG4IvOrM/kRlkMv00OREQhYXCeT8wY6W4qv6LaBnjHGiOSaprdZS5VBiYQnDYusGaLKWTUpZfSFS1sPIYrTEkuq6lSTVXzl/kiatX+fr7H+J6z2g64qkrF7myu8HN977FUy8+h60tIWiMmggjjpaxSkrR9Us+vPkhJ/Mls+MDVK1IBqamYdEe0nYLFvOWkHqstRijmUw8rhPJn9FIo6hRiCzR79pOTWt1+qVU4piPC6o8/joypfIHE6A01ajmwXs32b/xDio1TGpLsxmJ0bK5ucu581u89tVDnrz2FC+9/BI3PnyHX/zFX6IJcLSEOkXGxjFptvja629w+2iBizkIi6GuDL0XsFjsHKNJTVABosXomKs2hbklYETGIQRiG6irGo2m61t6Jwl2ybeJVJfShr5zJN8Svc+gNAm21k3NfNyIjFk15vKVq1y+dJVkE845+l4kz1JM2LqiaqQqfboxYblYkGKirkUuwnuPyomG0XQk4E9iBslEUjIslz0FODGZVkw3xoybmnbZ0S0SfR/p3RJlR3ROqgBJEaVF4sE7AfqklBiNKpRNkAS80reOWBuRgUNhsyxbig6dZG2GkAjBUdcN4AVnESTYX2mLMhaX5SCCC6QENlO8l2C1T0KjX7KgIVeBCxBolUw0VYUyFTFZnFsQeg8xUVW1VBFrSLm6XSlF6D2u7xA5ugzw8R6VK17JyRuVSsXqah5rJaw/bunxyyCBymlNVWuUjmssOhWQwVg5COuDAEh8BmqRA/hd15HaLjNdkJPwsm/USpLf9aShbgx939F1UrWriAJO8znhFBLBJ0wFygigy/tE8jKmtjJUtbA1+T6DxZQh6URoO6KPJK1xThj6YiyV3nEAr2boilw/SRLaVFaqljNYc7lYyNFcgDNVIKmIyaC8gHDZNI2lqo0k+ILIcBINvuR1FGyPp3z2lR9kb2+Pb7z6Ve493Kd1CVSiahRHR/t89etfxjx4wLvfeIvf+trb7B/N8SmCjlQqEtGMGpHGKMndPvghSRt1TmrFhHOeqhrhgs97msJqCKUiP0VS0iuwWnAkLdcxJXFRAtR57PLEyRXdCqvIsg0I0C94UiLLchYAtB4YUkJmD1AZ9KaNymtd1o0uUmQ5qaG1JIKsRYAjMRJ9yaJnNgSrMFbLS1GSTH3woCzKVEiSXe5/NG5IKdJ3DmKkriQpMRqP+cTLn+GzX/hxuoXmN371NT688ybK77N35RKfeuXTnJ9uo6iptdgofYCTtkVXHlOXBAXocc0zr3yCP/en/jhv/tdf49aDOxhl+PwP/jAvPvcZrB0LG1dm5NLZnjMkXnpxD9to2vaEo1nL5mRMnaUWpIg7S1MQiMkKC4BJGcRu0SgaJcwZq+NJxv5xzEIfr0WK7SRQhOo7vcB3p62f6QNYJJ36Zx34T/592L8iA+jkI02V1OHpPRSVK/s19K7jYH+fw+MDQu+G8zUFAYnHYotleaG+dSTAWoOtCguPFrDsmg+w1nlOMfpk10BlkPnp5GgekpLd/KhlP/hZK4DRcKP5z3neDPbR6rqnRiLvb8Vk+rYsSurR73rcUK97F2r4Ip2T0kPhQYLxaEQzsfRtS3IRk2RlRAozXBqulMomvDYfAJqmIcSQWQwTFBs5MwylIau5SsQO/Rv6LmNbQAMyphqdEMHipuLKE5f5kR/7ElYrPpxuceXpK1z/8E0e7O/Te49S4GPkxq1b2ecpnFZZbgnDufNPsHNum/t3b+FnJ9n3kgegVESRUCkzcilO3WdcTaHhea6zscp/AkCLqRSzZNBDWCuCKX3KrB1DHjf/JRZZ9VhkPiMhRYyxp+ZuTOXulEgia01lNM55wjyyM5myu7PLnYMDYghMxzVbGxuomDh8eI+41/Nbk7/KJ47+LOfdy9S2GeZSVIH3Rr/G4fwAFzx935GcME02pmY+P6bvHdEHehUHvzyYSGzu8JXJ3+LG6FUu9a/w1PJHhM3iO02mprxe8qL4TquphzFVwhZ4c/IqKMNiMWfeLohJ5IHbboMYFNvbe2gNi/aEze1NNjc2aZqKxWKJT47jk16YQJVGqcTB4RF9FNBMHOSiNL2LuM5DDHmfF1YhbRLC7svAPCw+uhilKjNhCoB4JeWaYmK2N2O2OyO18iHlFNP708xco4UBVWtsa7n69hMsFhvsbO1gG4tqBZRc5P+q2mKtJUSPNkak1BF7UJFZYK3OYKSUbXayXJr03/VhAP9oA3UjrCSu81n2VyTNVJZgk3UigCsfw2DjpAx4slZYMUlKAD5B5JFlL9RD1l/pvG7CSk5LBqQAi9bWR5CYQJHVLUBwUso+eWa6Qb53JaWpKGxywWdgudKkpARESQarq9MFPTGPRyyMVIKQyDGjFRxpwJkUubQ8v1MepyHOFASo3ieR7BWZ7QIYGQ4uAQKRQVBRZQYj+aKU508aAGOF+UhYQU2eNyiVGXnTUNiVUhpsSQEpqVPHkVIZtJVjiEKomeNPKebirzXQUSiAneI/MDBbDfccV+cN+bjRSlMwMlVlwaVcHLRmCxCGZxGTljCCUWvPnEw0LuNT1l1jLc8+8RRPPvccd27e5uaNmxzOF7n4R9hKjw4PuH/zJndu3ufkZM7xXIosBdCciMpjC3g0RgKZMSyuAEdJib0eU6R3Dh2lYG0FXl3FYeW4jBlsFonZntJ5nskZVBiYWMU61Qp4Vs6awhImQCONLUU2w+G2DspTw3XU2lm9fmpLgcVqAhTwUmH0K9+58j2UMKSlLHWqVvOzzGOtNUbrzEaeEPYtMFXD0089ydVrzzCebnPr+kPefe99uvYhxsLupXNoY1eRqhyLXbQdITnxJ3xeM0ZRTxquPfc0pnXcu3sPHzxXr17jyqVrVLrOJshpew2gqeHqlS1mJy0nxwvcqGY8arB6xSQpoPSIRxjptFZYrSSGkP0OpRTJKLRbW0N8p239E8V6PGtn7aydte9RU7DfvMd/9ux/h7/w4X/Ac7OfxKZVcYJXPb988f+G0787QOnR6x421/nbT/5P+a29v8qnjv48P/Lgf4JJ9e/+2X+OzamW3zz/H31P+/D7abdfuM3t529TtzUqKmxvufr2VVQ8fRpND6d8/h98nrqT8dZR08ybx13yrJ21s3bWztq/QO07ACmVyhkGPIlWCmtLQjEMgVSVK61AZWc2V7jFHJjIDu+jgBlKYg1JBiYii+WM+/dvs2yPePBgzO27t4i9Q6mKpGAyblAqcdzOBRSlgZBwfScAGHru379NigHn/BCgKQ50CTg9zo0rEl4h+FwhlQPcqYxBykGi05+LIRJy8Nyo9WpWaevMUavvL4EjCRiGEFdJBFbjVb6/yNWd1rrg1HiuKmFL1XDxjRM6R4VSDmyjFEkLoKxdzBhVF3jhyibXb96ERaLRBh97IgZRNpcAQYp2qFZKKaDkzlGIfI7zDhd6UBGVDLWtGVWa4DxdSlne5vQ9SIXl8NsqfJGE4jspg1aGUTXmwvnzXH3yEheuPkG/OOCLP/hZnnv5Of7Jl/8+7964i3MaqwLe9+zPHDon8YQkyaABg0ePPLM049bDe7QHR+C9DK2OKN3lCHRNIoj8EIpYgn4hCFuKyfTMeR0Io4cf7iPGRFJpEB+JXoJGOhWpicTAxa0iojQlIBB0ku9OWsAcCql8ROF7hyfkKlGTGTKEnaXSDbrSTCeWrk88vH9COoFFd5f5vOWJC7t89lPPE1PDOx/e4+oVxXvvfBM7UdTVFmN7hQsX9iiU4EKJrjg5OsI2Bt/3LLsWZQGzwe1wi+XcQ/CoWOHaHk/CtU5YVFRiMjliY7rLZLyNUWNWQKXHZ8QKFf7qt0ffpfh2n/1oW10nFzrKa7ohek17cIejo46Dwzlvv/FV/DLxyis/wLkLE27cfZdnnn+WV1/9bZaHh+zsbOPSkvtv3uZ40XLHO/aWPcfegVqig7CwoDxVtUGgJoQWaxVWj6isloC+tsToiAnaZSdghEiWYGpYtg7vPcFLcrbIdoAXqvEQ6bpO7iomqcDtBQDoiHjXY6ymbzveX8xpT+ZcefoJYu/pl07AISoxntpclS+Sb85FqiYHnPvE3uVtpk2NV4lmoxY2rtmCFDXRgnORxaylqQ1JQTOpcLGjO+qYzxzeC4NBCCLjZqsRk0nNaFzRmZ7j41kOSAquoRlVVJVlQU/vOnQG9sUoYCTvE9bKGhpPGpROmM6QkiElJ1nHIHIYTSXBwd45ul6k04RdKZGMzdcY0TQ188UC1wWp/NU27/daALRW+tD3EdUq9PESNNS1BHKDT/joB3COC1Hkw0LMcqGFzUnk0rTPwValqK2l70WOQquV5KMxGlNYdPL+GLxnuQgo1WAqaMZVlq0rCQ45S7qFw3v5nEZhq2oFZMzSdjHrhiYfwBhSUlTWkqLHdW6YWxqNNRKFH9UCUhIQZpF2iCJdWVZlKMHVHESNIrvmQiAgbIze54RLjJgCeMvyezpviTEmnPeSTC6yDFm6zSBB+Jg8caj2FaCYiQoXOjxRWMM8pBRwKubkskJri3OR6Ft87AFh03jh6cv8sS98ik//6I/y5ctP8Xd/7h/y1ocfEvqW4A1KwVtvvIu+fsDDBw/wusVOwfSKRRuwSYFzNFWNTomu9SKzZ6qcVA8Z8Cb7anCOhw/vC9tCYeVTgBGJI4WWZEOW0IuSHRG2oSS7mSmMXyozEikZQ9sYbGWGBIf3HudyUi+BsZL8iyERnEjqlaRQ2fdjApMTPiJxEXPVuiTmhfGJISkuLG8CAtMqMw16Aekao0Vxl0gIbki+u96TklSMozWeSGM00Yxoo5wfdd3woz/95/nX/pt/hu2tC/hgsX6b/+Lv36MNJ5x76gIb2zsoFBpZSwloXeLO/XsE1WGbmhSc7P0WZt0R33r7Xbb3znN3PuOlz36eL/3Al5jYKSpZWYa62KZZ8ojIRpP41HM7HJxMeP+Du1gLL75whZFVpGSlqjnA8TKyvzxhsTzhypXz7FYjdEqgZYsqIINHpXm/s7ZieVghHr6fEwvq9I/ZqNaq4FNWNvHQspmuyt44ADbIQINH/InhY0U2JNJ1LT56lu2c40PFcrkk5b1GGwE+OgXB9fm7soxilmiO0TOfzYbvPYXtOTXsae37c3cpTBeFfemjYyDXU6cSWcKwV2SCMoBWrVsyrPyZNV+mgPoLAKEkV4dOsf7S6aQtsAL9cDqZ9mhTq66KmVyy+lkmxrkeTeTyzpiH+z3Jp0GWbJW0TLk/wwQYOjiwXMSQwdArkIAxImVMUrTudKHH8BjUmhdRnNdhDJMApLKsy8WLFzAaHj44ZLE8wSRH1y24/uEtZosOUpYKF2s8W6NRnslwJ46Dozsczu7SLTuSD4+sxLg2b8oTU2uDWNZCeY5qGIMBfMoqaVx8bZUg6ZLIZRiHIj8tgCYo0uLDVEhpYEBE6SHJH5QADkoRRUgeoy1KGZQW8EZwcDzrmC3vk4ArF89x+dIe87njeOm5eGGbxWLGYXjAXXOdS/wAn7V/ij3/LArozDGHzQcwC2xOGg7aOV2QtYdXA9Osp8eozDiLAAmdVhzND1jYr3K/eQfHgheWP40awhrfzid43N74e918T8cOluaAg/oDNIbxaIL3C06OZ8xmLfPjQ4JLuAstG1sNi8UJzvfcvXWH6D3RAFoLEM85FiEwrWrseIRfyJ4joAdhgtQYvHZYYzHaog0DMEKAPlJQUEAqxa8OPssY5y0hxXBq7xRgU44vVLC8shSAUQYLqJzs76qWp157hrTv2b6wy3K8EMB5gkTMRThZCtplGXRUru5RjKY1F87vcnxyQjWyKK0EkJaLwQTsUWIsskZjSrRLJ5JuochKqcHeMUaKgzCFyUfA/ZGI1kV6MqJCBhBl8FcIK8lhkRDWGCssZ8P8z+8pLC0akaQKPo8NspoFKCR20GhcE2LE9Q7vso+e7SEBiDEATJwPxGVCtT1VZTBW5b7Jnmaskeu7JBJrecpqVVjPkgCc5DBEK51t+3Rqf1nZ0HEATGkjwJYYI9qUQpA0AONSlsITmeACbMvsbKhhz5CjJGUDcmXbkMRyUtlHSgiwSOTdwoptKWXQV0x5j4nDMx6OqTxvhVlR5Ip99Nhksh2Q5/panG6wjQrL7DqrEkp8E7WC9naxy+MraycUWx1hH9VGiW2ZIimzF6+AZ8J0KusqF/8RWc4OWbaHnL9wgeOjGYfLZQZ8RboucnCY+NZb7xNDIOCoxgYVoeuEdVSlhIowaho61xNiQOsKdMxS6at7JiWR/s7PI0WRz1SavHeoDPqSORATJK0y2IsywHJ+DHaFPAdjZW2UeRWTAO9BzgSlMotZkrMkxJXtDKsxTsic0wMiavha1vfn8ueU96Z14FPZI1aM8DGDnyTWAMielSdPZcFgaWPAp0D0sHPxAp965bNMG4lF6SuaG9dvs0ya6faEre0ddJKYRgyZCVlrlu0C71vpi9LE5FEBurbnrW++we7WHtFo9i5e4/Lla1hVnTorHrURNTCyiWp7xHxpOdg/gl2YTGq548zgtWxh3rW03YLRuGJ3Y3MA161m7O/RjXi0d4ncs+9nX+KsnbWz9i9K26/f5a8+9xd5bvZT/OTd/wXPzX4KheK4usk7G7/we974gu55b/MX+WDjV2nNMX/szv8S8z0s8jqo3+f96a/8/jfy72VT0I9Fbq+bdrz1w2999D0JZjszfuL/+xPUXY23nsNLh9/dfp61s3bWztpZ+75rHxukNFTRsOb458CoBJwLyKK8r1T3SOjCGE1SKVc+rTEQqVUiQnzMLDOCBEUXyxmtWzA7sdz60NEuWxQaM0oYq0Q+x+XAtFG0Xct8MRe/kYRzPa6XYEaptDslK0bptnj35e8SDBb2kBIYXlWfpSH5xUBBveY4k/A5sBRVCX6Jk7suJbeScZOKJMnN6Rz6dhJkKLS+CUplchkzCVrmpEUOIJyWqluNcSoZyVzpt/pZDZV+Pkqis+8dx4eHdPOG5WxB20vQWGuD8hqRC8rgm0yPncjXzZ5tion5fC6JhRzsMUCMPU0zYmvvEh/eO6RI8xXAVrk/CZ7lYNiQsdWAplIVtq6Z7u3y+R/4DOc3J/zC3/lZvvHum0xVx5e/9ev8g5/9eZbLnlqPRYKGiMeIBE0KqKSwSYKGPjnefet10pt5XuYchkblameRyklKqMVTkGoxY+0gO6VKxirP5RBCnjtljmdGsSEKk6vNExlZLs8nRqSnmXM9aQmAGGMwagXQKbTaIglU4oIy3+tKwCYuLUkmolPDbOEZV5sYU+Oi4mB/zpW9y3z+U6/w2c9/mvfevUlqAi995jPce/g+b7/7Opoxe1uwdW6HSml0TlrV1nLp3Da758acPLzNbOGJDnyjGe1uMB3XtItjdKXo2p7pZMLJfEbwHfcf3KapxuzsdGxv9exsX0WvOQIyfI+u0YGcHDWEzErFqIBSVok5vm1Lw/+qIcip6CE5VJV45oVn6drbHN6+Tzxp2bq0y0nXotsFo2B57so1bl+/x83rt1i6Bb4O6BpCpegIuBg5WSwZb0xpTw6JfcgyXo5+OSPZhqqBSdOAF24XbaF3HpflzFzviXGVVGh7R/QRn8EJIQSiD7IWtaLrlgTvc6Uoq4BkSuisP2hzULHrJNH/4P5t9i7t4r3PAeBEUpGuX1Jo5VNSeC9V81GBNoad3R1S26EbzXhaSfA8SwWkINWTisRivpTqZh2ZTBr6TuZn8J1U1VaNfDazVSitM4BUJMhC3vfa1hECOO9BRWJyOfAJPvRMRiOaxpKiRhtL1/coraitYbFwhKBIHoxSVFVmQuoDRgkjRtKK4EMOvIvM2mi6iakVy/mCto1oDArDYr6UfVoxpCaXs452vqSqKra2x5ATtEopqsZircEvnYAWIVfGF2kACY7bxhBcXO2bOQJvjZU9SCvqupL9xMncreoKtAAm67HFWI0PTpLCSoL2oevzfqyF/UiBNlaAJUD0iQKyLYHiIgcQo0jxlERXCCLP19QWT5EzSMQAzgVheNMCHPXRQcryC0hiJ7aR6MJAvx9iIvYOa4wkbMraB4J3qyQ3KsujmuGz8p+cGSEz2GmtcUrYqbSWyvyuW8p+6Q1eBxodMNHQRYVSEZeBalorjCEnxytMUDg033j3Orf+6n/C07/1VWxfM194tLL01LSxJ/Utr379Pd7S11Ejg52O2NzQxDZgjiWZupwvGDcTkrb0XUdUYFKRdSUnu2Qv0pUdzmKSEqAWScBOSp5TKhX7Kvc3yrkrgKWcnIQMaJCzvR5V1CMBRhGjsA+kSFVVlIp9kTwMpCCJspSKdIEArUuiyQeHVSYnlDIjTDgNDCngg4gkPcrOWxILYmcEmqYmpCByoPmZeS9rR1jPEs89scPFnR2+8dodun5JCFpYzUzPtIEmdri+w7XHuLYnTSZ88Y/+CbbGuxArjudL3nzjWxycHFBNR7j2NjZ1EPQgbxi85sFbt/gn7++zfWGHFz/3ST79mVdobENC4WKHJqF0haTjJBlkkgAjtPac3x6R3CWODg8xUeODYtEFAXeieOv2Pk2tmO0fEIJjcvUaTZNQWAEow8p2+D0EpE6bs5lRofz6fR7gWk9AFcSMUgib19qNKdLw2gDwX/td3pMTbAVQPXghKvseiRA9sfeEoFhk2U2VQeEJjev7gQkEpei6LgPNM3tSyZAinS7AvFVfS6qa0pvhlQJUKtncAgyQhOqjz76MirwYi12fkDWZAZtDAlat+QDlfbokpgVYN7BJJJUxOms+gtZ5v199+9rXr+5oSCaucTWt2aWD7V4SxRlAcHJ8wru+ZbFc4mJY+X1RZb8rf2G+l/URLPfjfRjuVRXmhOAJOjJqJrSu+AmPJNTKfazflFrNmEpZqqZCGUWl4akLe5zcv8udBw9xbsm3rr/NnTt3iClRGTAYUoo41OAHSh9ljiagW7ZlMy6TRO4m5bmmWNmweY9/1O5dnx+rM7H4dnlWlemUv1cnTg1BYWrSw/vlqWmlhtzjALXK/iBpNXPle2NmqkjEFORZJM2oGjMaN9L3AOd2z3Ph/Dl29vYw5oSRh+29c8wWBxzeOWQRe/rJ1wnnjnmq/wLPzf4oD+q3idaxsTlB6yA+Ri4gsXWDscKcszEZ41xP23bUdYNzHTF4etfRa0sMiW/U/xA1rnh++ZOo4l/l/x3GdZi/eb0MTy8D+ZT4mB/fn1j/3fPO5j8gxBlJJTa3t5jNHhJ7z6RquHjpPIt5R6UjVUo899SzHM8X3Dq5w6JdgE3kqhmiF+DAYjbHWANBAN4q7xuu64hKY4yiqkwGWq5s6ZAlt1a3Jz+EYkdkNp4VE5wa1urgAxePKaUhxCHSu8La8fDqA3Zu79I8qPHKMZ/OSD576kb6prQA0WMUAJVGDUzbzif2Hx4TYkBVRmRgc9FXzHsESeE6T4gR6wPaNIBILIXohCXYaAFWF0kwZK/oeydyWPl+nIt4L7GMEl9IRArjobGK0agawEghyH5ZVRlMnwas6CCJTYrZnhcAUSw1SQopSCrsRDoJICeI7Fffu1WspqzVBKHPQKikB0lKY/TALll8FSkx0wMgsYCdhLlJ7OOUpSQLaETl8IzYb6VYSufiphLDydcIIYPDsj0Xk4DRkbmJFsa2wvSZUgGFyLxasa2rzHSUGWiH84rMopX9+ey/+pA/r/VwnhslwDi5toCCfPBDrEDWaR6btdegMPwU+4AhlqeNziGwNOyRg5RX3hW0WknspcISlJeVsYlxZVl2kaAKEFSkjgvTb9IVOiZcgGUfuHHnIXf2T9jY3qG2NY1tCC4R8Cgl0uN3jo7RRgnw0BiUVYyVou+DMNf6SEq9MC3rBNELYE2Mi2IGDPJ3A/P3+nkRhMNw2BPzepT7z7bGI/HDEvvURmIJxTwbwHZao5RBZ1/Fh2xDlW1XlbHN+xTZllLFTskn1MBwtWpi6xXTQK2HWuUZB1lbpxgEU1nj2RZUMB3XPHXtIrdvPKTr3dC3+fEDHt67jt49T8Ty4OExrp8TY2Jjc4+6mpBI9H3g1q27PHj4gKQS25tTahMwgEsKqfVJWGBxMGd50rG1N+WJcTXEzvrQ431HXY0wpki6ZVsq+wJGw8a4wqQtmkYYV30GZBqraaNHV4ZJqmiXLa2pUSOxX8zaufeINfexW3qcDYX6yCtn7aydtbP2XW8Kgup5a+sfcWPyX/PFB/8Gf/zuv82bW/+I1hz+vi8flecXLv0fUMBP3f23vieMSl71/OwT/za9nn/Xv/u73hS89cW3eP7V53n2a88SqsD+E/vf616dtbN21s7aWQOSyoW6H0f56J9x+9ggpQJ6UTmZGULM9ObilOtCe6CkGroEc1aUvFLVW6pzS2KrVHWV9wlhkzjRBA+Zstn1Duc80UNlJVjaO9Gu73ovCR+jWS6XWVKmlsB8igjDTxoctxLIKK5bWg/GD0HizHaQNeXXg5VpCOrlKK9aBToBYbxQZNmuNFDw1nUtVZLerwGKVoHAdWk4bbNUQkhrQJf8DLRcyzm/SqgkOJVVGK6ZAwSqBPflOcQsF1BSPKo4+EnYjW7fe8DD+QnHsyNcjNhcphuVQJLq2mKriuWsp7aJLgRiNKxSRUL9rrRhOhlhLSxPOkLwnJwsce0DfO+kOgyZU3EY5LSaM6i14ITCYLi4tc3VJ89z894D7t54jz/xl/5leqVozLP82qu/zs/9l7/J4YNDDIbKOp7Y2aZSketHC06WGpUsIQd7JYcQMYEMSIgknZmWyvdi87MS0JHRFhKSvMrJGmXtAFAYgG5KKg2NLsEuqTg89Z4klWjDe3KSWicv9543BaMUpjJCZ51zOSFkQF8GDGgrAdngA6ayNHqE1TXWNEzrMRd2zvNHvvQ5qBV3r9/hlZd/kKsvP0u1vcOVq4rLVIwmW0wW2yyOHAao9hLzxQnb1XZ+/qBtTT2t+eDmBxI88gprplw8d40rV8+RYmJz/BTvv/shx7OHTKoxm5Oao8Uh8+WStg6QhPllVO8ymRSJhlVyYG215ZVr5D1JgDHEHh892BqjGpQq1yhr4PGb6SpgB6Se4I6ZHT4kpMTG1jki24zGV/kjP/wEz794mZP5kve/9TrVrciP/thPM+sX/Mx/8TO8d/1ddIj0y0gMDqOhD5HZw4fMjzR4S+8DUQVsVWHrikXbYbRhsrGFaz3TacOyXwptN5EQFRpNVVUEL1JVAvTwAniLkli32uCyhGAJ3MYMTJL1EjGVyOxpawnEvBY1VSX7ZFIBH4tsSmA0qtna2STEwHy+pGuFK9y1ASyoGHj7rds02lBv1+yqKdE7fCd9aGllL4kalSLOB+omMBlr+q5l2baZaSyJVKH39H3Lcp5QccJituRkvqQejVARYoC+cyjjaZqKZlQTU6RbOlJS1I1le3eCMVkeLmq0U0w3KrRWLBaJlDTGJiprqJuGrnNUzlLJKqd3kvS0lRFQUaXx0aFMYmNnzKiviD5C1PjQ0XUl+SNJCautBPM9HB12WKsYTa2wGsUg0gUKtInUtSFFTd8FYf4hSQU0EKKHKPAHozVKRazNQX4tyS90wjaVBPxrja6QoHhFltWKeOdRuVpzCPo7YYQz1hCJONfnfSgnF6KckU1TS9LBe1KWdDFaJDG0NUzGFUYLexVR4V3E9RHnMtAs70NWG+q6xlhLCp4+V5D3vYCXNALu1NlISEYyKCVYKwA1smSHrFeRoJDEk0jUSEAcEsnLGFdVhdaaZdcRshRUCAkTNBuN5Yc/9Ryz+wvevLtPpxJJJZROKJUTsMpiRyKb2LWOpY/wYA5vfMC/9t//b/Nj6Y/wt//m3+P67Tss/Iy60lgDrUlYrUidQ4WIMoaqMRwenhBd4u6dI3RlsCONqeRM9lmCRJcK3wwmkP1cdqeSSCrJspCTRspokrEYVNFgICRFQKRKjNFMxjVNZaWKXmUAUmIAlSmUyHdGTfQB5yMpBoyu0NoKW1iWmKiMxtZV3jtjTpgpimxJWANwr4O5Q5R70SoD8lROCSeF9wGlIpU1aCtAQTmH1WCvRBI0DQfLBX0KRCqp9A+B3/qn/xXV8j5PPvU0d44C3/jGLYI7Is0cr/3WazyxNWG7nnD97ft8+Tdf5faDh1w8v8sPvfw021PoliMOTzwpnpB8xNQVySUqZVDtklvvfYtzL/0QR8cz3rzxJo0xvPD0p5lMJsgOXeBgGqUslsSlvREXdi+iLYSk0XU5hiJPXduhax1xVjFS0DlHq2GjttTluPudsuHfQUt4UEaSNMqh+X6mzS6Mb7mqnzVwilKyLkrSUPJZpwCNDD9/1K9Ixb4rdnFSxJKWVaXuP189X6xI6oYMXDJFhjcVJgqGvP+alX26R6oAQR4DnmLdpnzk46XTxR8oiavhC9e5jGR8tNYrlqUC2DqNWBu+YvAtHpNpKuwIMYqdMHSj3NJjklziQuXnNADHOAWaUbk/MUXa3hE0dM6TiBnco/M1UmYAtbjOUdea3gsIdZUwK/6ikbPKQLvoJSHqE13qiNF9tL+lU4N9efpPSik2NyZsbo05PDoWi9so9nam7Oxt8NVvfJ0bdx6SHJjMiLE5GbE1rrl/MuNoGbKEXgbNkQsWVMxn1GkWAm3y/IgISCKpzIJQkuzlueenv/4883ivz4P1RHIBhxZ/U+XPyxrLaCqdk43ZPy1J4ZQEQBrziBf2ksKypJSmqUfUVY2xFU3dMGkannnmGnZUc7R/xPbGDs3OBtHWIh1cZ2BBgOAS1iimk5qT7j7vj3+ZVu1zUt2nFOrs7x+gtEWliMKyMd1ie3cz2w2Ro4MTlFJUdkrTTFm0c/puQVQBraRa962Nf8JeeJa97pm1ibo+aWUvUEgB0VIfAoEYPXWaYuJYzsDib3zkIo+24kvAsb3BrfQ1FodHhBDY3D5HVW+ztTvl3O4Ooyaxu524c/s2ahE5/8QFJlsdD/cfsOiEHTIFSD4zcyUIfU8KBqUqkvbE5NHaUI+qnGhX1PVUpNOMovdObFMjBVzirxoB/eT5UNa59F7Wng9Zxos07CPrW4WxNrMbK3zxc7Xm6IkjLj68KPseeddLIlauTWb4IQyMwj5IwY+WlwkuiPSuFwBD8Azg+ALcK8A57yK+C5nJ1A/Ss6QVC1CKCa8VIRd1DHZFAduAAKNtXjPRE6KshaqWe7S6FL0E6rqiqgyzWSsgAaOx2g4FSiFEbAYohWxLm8xEVNVVfj2ALmynAa00IaohHpCUxF+EvVSu6V1ABYWpRM5Z7jHk/VXACsYY+k4k6wpJlZyTco6GLO8sgBVWso/5bFJa5fWvVuO9tuZTXO0jw96eixxUUoPcXGFuWrEVyZzSSmIbKWa55rw/aitsz8aSpR0FcrVSYCsxNwmJKq0wtgJkXArAZmAxzwyhKknMKOUavDLfybE1AQ+VQpEsuboGipG9UvZErQWEX3yO9bGtjOLc1gZbzYRbD/bpYmH0AgrwVOW4aFIEcrGhFrnBT73yEk8+cY03X3+Lt95+l2Xf4kOOhWmN1mYoRioxER8DRepxuXQij6eTMGzH1X69kk/jFKMesGIsyvHZlJ8psYC2MrhHyVrJZXpYY2hGlUikR2EYLnvfwKCVD/4i4VfivyKvWywt8W8L275mVeAw2EeKFYPr2nMZIjslDqrKPJfzzPvClJb7nla2ZbnUove8d+Muvo8kZSFFkkr0bc9rr7/B+fN7hGg4PO7p3BwVPQd37vB2AxfP79C1kYf3Dzk6WRBDZDyqsVVie3PE4ZGwW6ckgHZtNM2oYXdnj3Y2p5+0GBW58/ABvW+5sH2Rza3tbJGIjOIw9xGg0nSjopxBlS3go8TOpOJk6Zn3nlFT0zQVPpHLqVb2z2HzAQ+bdznXP8epifC7tnWbI9LqE0JOUsDl7+A6Z+2snbWz9s+vLe0+v3jp3+Nh8xZ3x69/Z9vc79CCdvz85f89z8x+nOdnf+x3fG8iEVTPYX198Pk33WWauPlY3/njtNvjr/DW5j/+Z3Y/3/dNwTuff4dnvvbM97onZ+2snbWzdtbW2nvTX+KtzZ/jxZM/+Xs+0xKJ4+om/SDH+umP9bmPL/eWgyOluq0EAFKQoKsEpMguY3EMCxiDIVjx2EufCqyrIVASY8QYqGzDeFpxMl/Qh5ADLhLgdiEIQENr6triQ49KAaUyGX8CYVsh+15+wBSVYG25v8e2HIwTuYjC9FOCw+Lhr15Ta851iWqs7idED6Q1YJYEpWElfRBjGABDSqtc6c3wXUpJ0EBrhbUmy9CVG1klaoSRKZ16bUhs5GrJoeIZhVGgIoQkCdzOOWqvqI0m5ACgUHtI4ENpQ4yKxhqeeuo8d+4fcHTcD0kmkW0xaG0Y1RXaJjrb43pNiBpbVeh+SXASWCp9MsZkZ38VJFt7FKAio62G2fKISQXVpOEf/PKv81N/6if5oZ/8DD/323+fg/vHXNw8R9Vo5suWRT/npz/3ItMbt/m1d++gvCFhhNkCi1KRoB2BhEmiPa8SNHXFzl5Fu+yZHfks71aqF+UejYKRtXQ5KVvGVRLxEowJqVRM53mb14cETU9TsaeYcrBBQCdKWRGXyRXMAk6SMdMK8EL9H3XIAaIszWM1V85f5eWXX+by1SfZ2txh3Ciefvoy0/OXOTk+YWRq1LQiaM3dk336xRIzTdy6fYtqNKaxls2tmgd3P6A/2WRcbzHZ2qYeGSpjuXf7gM3xecJ0A20sV69eYe/ceUjguyOuPfUiexeeZmNzk5AWzOcHvPX2WyzaBfP5jKYx9M4x+baLTwA0ZfH2XZ9pxB1tO0cbhW9bmnqbpqnW8rzfHu1ZNthEZLk84c7Nd3hw5zaz4xmffOUHuXLleS5ceJmnn76MX9xFLxZs7J1j89xzxMmEk5vv0M8PiSSWrdCpG99gPNRW4ZYdG82YrXPnufHgLovZEb4LjLc3MDoQouLSpZeYL+4yP9nHO09TT4l+gQ8+B7qzHIOKhNbR9yEDLxWaIgNSMqZr/4EkdLSmrmuUyhWnSYBPMST63mF1lSWyQmZuSXRdx9FRQlc670lBEgpJoRzSJ+8wk4rN8Tg/Y49rPT4kbF1hKsNoYgl9h+vh+KATubHeYUdGmFw6CcbFFLGV0PO3ixaVFJWpZT9AEXzCmHpIxKYUBByoZP9v6hHtsmc0rhmNG2HcMZbxpGYx71kuO0iaelpR2YrOBbosS6ZBEgdJKjBHE8P23oYAl3qfK4FhujUiOEe3dFJlrUc414NWbG5PaWpL3zqOD+d4H7HNRGj4EWaiQqOvrWJ3b4v58ZJu0UsySAtTIAkqUxNVxHsvALUcpC1V5cqanFCRxx5TJHpJovseYRJMiroakaImJE9Mcr0UArqqiDlpk5Iw5gkrj9D/V1VF3Ui1kIoSUHd9j0dRj2uR3WsqovfU9XiQCzFG5bS/oqosKYYMUA4YDCFLrBJzpXkMeY8UYJfJ1b6ShEqkIoOkBFRVN5ZEZpVKksyxSZBLfd9nYLMhBo+UmotcmNEC2PEkpjsjnrl6iaM53Fm2xEqR2oDzAWsUxopMHckxGWuiVmxvTRlNNtjb3uRTn3mBH/+pH4fWc/39dxh/C27eu8dsNsMtPVVdE/uezvWkHnzMEhUhMplORAovJfqlQ3cRa00O4GdAZpauCl7muLY5uV+yzUnhk8ArtBFgp0lQWUPSCZ/iUPlvMRATo2aC0YquXQqDU2ajSggQSiQ68nxKknz3eb4YK8mllEEaAtSQvmiEzaowOoAiRHlmhcUhDQmzDITOSRejdcZUGQwCMPBW0zT12jPX8j1aYazlvQ/vY4goW4tsKS1Vk1iGntdv3WbWKd5+9wEP7x/h/JLaJm68/pv84/Y9nnzxeY7utOzPbtO3C+7enfEVM+fFTz/N9gf3+Nq3WlBaAFS1YdRYti6d44e++GNMrOXe/Q+5f+eY+8sTrl28LFXt+fyIFDBVOU8UyohcISisilS2AO8gKsNXr99lc2uba0+cY1zV9EmEc7/dKfWdNJEPZDjXfNA4B7oC+x0IOn8v2gAkKv4FjzPF8ys5aVmSa4Pk2iOfOPW7Gv5HnpQSuRMBpIacnJWkV2EgLGAOkSP0DGwECQbppNLpuAKVDNZ29pEevZNiGz/qcxTmhrUrrHf+9E/ZyInZQFZkP+GRv6/AJzkZ/RHw0mm/YJARK90efA41vO/RcV6/0orNqSRzE6RVEQQxovs+M0sWdtRVElXkbQM677/HswWLpTs1diJ3IkDtGFOWgkropD8yd8r9yr4TV0rij4xrItL6nvbBklFdcTI/4atvvM1LLz/PeKth6Zek3nN+dws7shwdzlm0HZd2J5xTU47bwyybKdfUylCkyqVAJZ9vESpr2d6u6XvPyXFPLJJzZULn/aQ2hj6EbP+vxn/ocfrozHgMNi2D1jNQekg8Z0/ylIShXEdbs+rHmgldgE5N3fD0009z4dIlqmpEAVObZsp4c0+euRbG4qPFHNcu2E5bHJ/MqCcjYvC0/ZzYRhYnhxyY+2zt7lJhscbQd4GmmjKuG5rxiM2tDYypxOdxS7b3dtmMEmsIsaNqDN73dH2P946mqQjJcW/0Orvd08O6KsOUSLRmn0Nzg4f1WxzGO8ybu5AiLvRspovszF7gpe5PMq43gI+u4W/XEokuzjmaHTA/PqZtO7yPNNWEyWSH6daU0M85OnjAdDphNNnBJc+9Dz+kWywFIJnBOeN6Sp96rPL0Xce0btjY3uHuw/v0rbCpBC9slxHFZLpD705olzNIEaMrvO+G3cQHKaZJpMFHLPtnKTgrcyWdmmsMyACdHdYQQ7bZDDFEutTJme/DIEsmkrKB2HZoo4dCnRQjUSlUzACXFMEKeEOrlGW+MoBKC6uqyWyOfZYyXswdBUiolCIGL+sIAVpoW6TUoLY1Lkj1n/fCqqS1wocIoTDxSlGA1gbvBGDV1DZTkoFIhCb6vthZELXGdz0hA3kowB0KoEYxnjRoo6QQIuaxNkriJj6uZLeM2MlVbTMQJNF3DtcHqqYeQEtSD7dixakam2NvcYiVpBwzEBk1IxJ9azGplItaWGeuKf+lMp4iB1jAa7CSXCsbTYlPhRCGfW+4UJbK00aDVuh8nMYgNrGpTLbvZF/WWvYcsRWl76UQQYAmeR/zDpR850CsrfLeChlUL+eY0vLdRXKuqJ4ao3N4MX+myFErmY+lACUlYY2KUca3gChTSpjGcu3KBXTQ3HxwSBsDhBULqDFqYIsy4oZgtWGyMcXaEZOJoes99x4eEFVkPK1JOrBoxd9WMaFdGK4xFBikSF1JsYCs4Sj3V+lsr59mNC1jrkw5ylcsiwMIsMyNBCZluT2kABQSlbHozMblnBTXhOAHQPm63VEsmHKkl/hmiHIGprw2FGpgnRJweRx6vCrcS6v3J2GBLAdlAlKOgSoyPhuRyBQ/Tuc4oRrYAtdjnz6vJZOZjHUFVQVeJxadoz2ZM5u3eO/yvuU4fngH72bU9Zj58oTge1KM3H14l53dHa7ubePdXY4XPWDyPqRIJlJNxuzu7nEyOyS0kWXv2T5/jsl4miFgck+DT7F2pqhT/7s6h3QSxrWqGrG1OaLKzHarJs/Cq44PNn6V3f2nMR8r1F92l2wX6RM+nP4GN0dfZ9YtSUT+NP/Ox7jOWTtrZ+2sfXdaUpHXdv/2P/PrRjxf3/lbPDdbMbMO30lkv36fm5Pf5s2tf8iD5k1uTb4y+MgX2k/wyaM/x0/d/beo0ug7/u7OnBCU+93f+Ieo9aP+e92Fs3bWztpZO2uPtNYe8YuX/j2enf3E7+k8O6g/4NfP/995de8/ZZnZDv/PLD/WZ79juTcJ+GamGYThhaQkUJUTN0nrXEGvV1V6mSkpxtW11kEzjzapdoKqstS1JQRP2y1JQRO0wvmsRe+9OKpaMV+cELyTPqAzlTmUQC2UYHWJwubkTg4On6baH25cgrlao9b6nkoJ0kcHahXaV0UCTwK3OkZJAmphmBKacGGFCDloFnPiOCrwMRFzcLkQHSklCfbQZ2rzkuhYMR0P/Utqrbq5PL+4ktsrIBpSTmrkz0aV8DFyfLKAXA2ccuJdIQmGrhWWK0ui73uhkE5pcLpJkkxQFcxmJxn4kEg6EKLm6Pg4v38dhKTyfSpSZmUiCiCnBFpiirx/6y4WxdNXL/Lam2/Qdoa7JzNc3fHNt25iveP8bs34/CbvvnGXrZ1L7KtEM9qmCvu4lLBRQEeCdYuEpIhJkZTH1gbvFFYptkaWkYH5cUAYCjK9da7YK3M8+SCBEZMBSAMzwKpCSg8JhQxNWkvqDIEblbA6cvnyOWazBScLqQ51weOTQ2EolPamgKBipojPk8AmQ13VHJ2ckEzklc9/gnPnnxB5ECLeTtg4N0LFCMoIrb223Ln/AQezGxzNOrxOHC8POPnmPFcoKkyc8IUv/igXRnsyjxxQW3Y2tnn6+WfY2Z0IK4aqiGrEdLthsiPP0QfF8XxfkrcpkoJjc2OM7zt8Bj00zXhIOuYwIj50HB7co28XtIsldV3TbFTMlgusbTg56tneTFy5OqUwLqwtxo+uT5mFJBK2quic5/7+IUcHRxz+6q9wbvcKTz33aXQ9Rvvz3L31NmFxzO35uxzGOV/91VeZzQwmNhglzFs/8qUv8eG7b3Pkjnn/+g2euLTH5vY2945uM97bwPUeQkdjDQuX2D/ax4cTFm2b54mjc50kKlLC+x5rrUgg9QGVRGLBuz7LOQR8DugbLQARpbXsF0GClyknuXwGcMSQchAv4lXFcrmgW7YiexYTbd9iK5E9GU0qrDW0bUsMMD9uZb2rRNVUdG2PNRCTJwYn1cEV1FVDDD3OtQSXSKomeE9TaUbNiOidBC5DxFYV48kIFPheWFzquqLrPDEG+rYD7VHaEvFSdZkMKllS6mlbR2ojWlmU8igdSAQO9mcsTgLByVx3XaBdzOidoD6kSl0AL1VlQAe2d6fUI0VI0HZeqjJNJUlQooAMraaiQlcanzzKJnSjMEnTTBumVU1d1ywWArKIMZCCF2YDBSfHJ7SLDmurnDTJNP0kjE3UdS17ZgiEuGKXQ5OTFBqjNL53xJAYjcfgYLFoCdHRNBaVRK6o6xwhJWyWM5O9OJD8ittDFxnNHLSXeZIkyZrl32JMWFthrMH7gOsDKhl8Du7rylAZnc/UbBckAV8VoF2KUWjwVczSJBafQUwxB72NrRA1Mvk7ZPYkXcC7MUuYZDmaKIw8IscRsMbggx/YAY1agXu3L4/4wc+/yNe+8iEPjub4bkEICTBUVTMwCUU0vZujk2Iy1dhkcL3hrW+8x//mf/XvMhmPODl8wIN792n7FhcCfQqY3qNdBqVpSYYRRU6wsuD6jhAk0VM3NZsbmzgfWS66NRyAhpiTLxGpks7slM5HUkiEnICqqxGXLpzDLz2H8znRtyQFO3tTvvCZTzE7WvDGOzc4Ws4F6JhEHkNrUFZ21ZCZ20CJTYPIvPogzJQEmbSVrSEnHFfyUHElHZLWK7clwaS0RiOsYCqJxFU1arh29SIH+ycsW0/X9TkXrgTElhNiCjn/jdU0taVq5HffJmITME3DaFMzHllmizlvP3yPo8MZXd+SrKXaahg3gTvv3+LhwwWpjxwdztEKXnzpZbYuPsXm5jn0suKD2/vMlwGflpJw1ZGH+3f47Vd/jSd2t4ht4OQwUF19gmvXnmVc1QOIxCXwQKPAlnHMKYfVmS/7TUSSFRfP7bG72zCpDToFRlrmoJx1q0TfUAhwOuuwOrkee6QVW9QChpPjwGvfuIltHD/+xZceewZ+79uarV1s6pI4y+OwyoCpAWghIAhJtKt0+oQvYG+1ZkMM46WhMPZoI/td9AUMrwkIaFP2MPmgcwOdxNDPddlrAaMUEAnrmJucU1MUayOn7soNrwz6tGJc+si9pPVr5STkGhjo9M/lU3kMdB7RdbAOBYSVhuui8mu+AL5WScZ1UIuAkNKQlJZ89ArsMPS7AL7S2h1llhXnS3Z5dWNlDyxJ8ETi8Gg+yE6u1oKsPWGW85AlXoKWwo7eSVEKaY1Vi9U8UOUsKU8hIf5RSswXLUZrRqMx+ycneA+zr7yGo6ddtJASi8Uc7Q3RJ65dvYYfB44OlhAyK0RmZSBFlMoI0wTCqCSgzxACs5OFzN+1MR4krvNd+rgqfCkFMQUotJItK/xcGbSUE7Ok1dgX1mOj4cKFHRaLltncDfdOLmiQEdECTtAq+2qrsa9MxcbGBp133Lp7m9G0YXf3PHUzFvZWpYaCGo1BK9ja2uJBd8zt2zeJKdEHjzKwaBdoJWwayRuqUU1VbeFdQKNpmjG2qplubQobUO9Ba7QdZxCA9MmomjYusFriATpJUUkKgRvVq1Rmj6fjD2WphkTQHe9Pf4kPqi+zv7hFP+9QIWBay3jaMO86juMx1+M79Dbxef5ClvVb34e/vT8BsD99F700LNsO5xz37t+n0g0XLl6BtEGMDUTDyfE++/dn2K0NZicdxkypNTg82hieffIZjh7cofWOuw8fUlWadnGCVpHzF3dplx0+OLQWttaDw/uAsK2qHK+IMQMd8n5mTJYPT0VKCwGFl3vI+4IiF5yt7bOleErAEjJvgu+HuRuz3yGywGKbEQprisQ7qrrCe49OKUtaF3CNAESkAEVlUEaUAAhamDtTzKw94qMbAzbLgWllyKL3GCNMSCWWUUBEMQUBoAaHL/uj0J9BEtsshLXCAESGVxkBcIU+MzIhDKQuepHJhYHNkgzq1haqWhgiBQAb8SEOTMkiUxdlzeRzDSWAneCDPAsFVVNhK5vZmldnY3me7UI0tLU2wsMSo9jlFKkyha0q8Rfy3qoLeKfYarKl43uPshaUzoydAWPzXpMYfBKdQSZlTgz/KtmJdAbBFEBrzIB4EsLKWnZfpYkhCqNmPueGHVuVozEN+x4p5QKx1dlxiiWcFSttiUGpzPSptMpS1noVC4syYwpoq4CTS/zAmgw0TUns3vxBYYYKzNo5tWpEfq3zA5jUGCkmiTFLx8aQJfIiy9mcpHraheHe3a+jjBVm2t5JMYlK+JhjSAlqNKau6JwjxYhOikprXHDELIdeJktV1STciopKCZAlk/WJNKEBKQZcsUdFEkZZLlw5z0gZHu4fseyWkBT1xohXPvkCY1Pzzrsf8mB/Xwp7yqOJ6+ySK4jwYLuxwonFIONolDx7hYDehrNYpYFwUKFWP6diUevMVBiFPMpoLl+7QjdfcDJrhZm2TCKVoztC3SXye7qw/WcbMomPpYzC1pqq0qQQOHh4SHRxKKbRlUWbRN92zGddLsKQufLk009w+coTPHywYDbvUNpQ2RE+dmL/JwjBcefGdY7v32FcN+hUsYywtbuzNsdlvPogUouVWkHWT/sAK5sp6cRk0mQWNz2c16yir0M7rD7guLrFjnvyVKx1/ZrpIy8l7o2+yXsbv8JJdZfeJe49OOZ4dvJxi5/P2lk7a2ftD3ZT8OreX+Pq8gf5gYN/lSZuANDqY37h0v+R3z73H3Ni7zw2VHN78lXujF/D6SX/0u1/B5u+M0br17Z/hm/nb5y1s3bWztpZO2vfzfbe9Fe4NXmVp+c/8rE/Ewl8Y+dn+PnL/zvujL/+e/rej19nrQSYMVR26hIXXwEtcoRiqHK1mepX5cSDJBDSUEEqWuRrX7EWqdUKCUZViqSDBLGy5ndKWhgKEEYIgBQDoV9Vo8QUhYKYklyQ7xBKflXi86vArxr8s9KbterhnDjKgdiPBOXXWsyBEblCCaQAKrNJ+SzjlS8Rs9a9vCHkwJN46VIhtSYXoBB6ZwUECSqnJIEgY8wgj5AolcWryqR89witfw42Ce6G1QPMfdYadMy0ziV4qfMYSaDCaJOTqI53PzwYnltSCo0EeUpiKQaPNYqnn77E+7fus5xLSmj1tauguFQvGXwIg/yN9BuRAVA5EWwVx77j+HhG1wbu/eqvE1InVN1J8/o7t7Dva7bHW7z8mU/STpf8xi/9GjEkUEYowYeK54hSFTpJ0qJvpSJ0GSPvXG8z24xGk0FnKQ2Vli5EUpTAf0mEkBMAKqqVvAICGktEYsryiKrkqzLzlDHUlWHaWDa3JyQDJ4s5MQrlu04qB5alNq1ro1RuKgnYqkrYGfY2d/iTf/qP8+a77/PLv/Gb3Lp7mycvP83nfviLPPPcc9Qp4Ps53WzB5rmLGKt44blnWRzf5YP33kFp+PDeQ5pNg40HjMeb1LZiebzk4P5ttjdHaG/Zm+7w5HPPs723hxlVpOBxiyWeOaOtXQle5oSM0Q2b022uXXmS/fohy2VLWHomWw2zkyOWnefixZqiAyCB157bd9/n5ofXmc9mbFaW6XiHi81Fbt2+x3LuUWlE/cwekSAV9Wo1j6UKEkiFtaRMtYBSmspMmIy26RY9k6ZCVXD9+juc29mh3Rrzzpu3ML4m2T2cq+kOAp/+3Bd46uCIr379t7izf4//P3v/GWxbkp5nYk+atdY2x15/b9WtLtPd1V1og4YhQBINwwEIxIhSiJJChjKhiZCGEzN/FPpD6c9EjEITCv1SKKSZoEKURsMZSiEKE+LQgUOQAAgCRKNhGl3daFP21vXm+O3WWun048tce59bBdMkQLTIkxHddc85ey+TK1fml+/3fu9rzTYhRF59YY87j+H00nUeHx/RKctWU/PJz36CDz54zNPDA0ylqJTn+OgDAEnWh0BKbSZdeFH5SfLehCSVtyQEnM6I22ChKRMOyoLWxRhQrJJctocS8F0UlBSKUdOglMEok0kGMtlaawFF3zlijFS1zXNJwFaQkkFpzWhk8K7FtfLCh2xvkLzHd2KzkHwSMD90KKNoRg210bhoUVVCW1EjSQm87yEq2s6zaIMQhFJCZWu7QBSZfg3RuZwk6KmrBqURa7peM5mMqUcTfNtS6UhTCWmrb31WEFKE4Egx5HUMxuOKZqvB1mKFllSiqkUGXiM2e20b8EHmpNB7lE4YpelWnhQQ8kwUmwxfKq2zqlpMEFzEhURLj60sWsua5lzEoPM8kjCVptEj2sUyJy+VVJlXibqpqLShX/UkH4RI0uV1jYipFcqAtZbgQesw6O3HpIguEJ0A4PLMGQB+kDEmykiyvmgNptb0LuJCRPdRlIt8xGixd2u7HmWEoCmEFQGHfa6mD0AK8v4Zy0BoKYB8yIkVYzQqxHx9CVNXMhZjIDhRSYwpoo3BKKnyjiXZpgy1MZJQIeBjglz5K5ZCiSf3TvgHq99mtexxXU/oJP9VNYqoIil4jNai+oeQY7u2J4QnHB8fCRHKCOnaYvDRQMqqQDFAPWJrO/CjX/gsdx6f8K07D+kXPQSyukDEBQgxEruO/jhQ2yLjP+jwCLCel5W6skSrMFm1JbhA1J6I4erHPsb/9N/+Sxx+8yH/37/7X/Hk+AmXbl7hv/s/+ou8dvUqb735Pg/uH7FYzAlKkjdCTlSYZAYLkKR0jg2K6pcoqpVq6yFhqSRZl6LKFiUpWxWqQcEkluxPyORPZeXcOlEpxdWXXuB7v/AGv/mlr5HMCrQobiUUVS3KTF0rldDNyFBVKuuQWLFg1YFkHC56Kl/hnaGbzTlthcCliGgbUQRmZ3N55w+WVEbj0WztX+KTb3wPld7hq7/9bdrTGVpt4aOn844GUDVUyfH0vbscorl6+RqobdTjQ77+5lf5gc9+ga16gkKe5+myY1JZ9sZ2eIYlmD3/bxhVhpvXp9m+MCe+sDnXI/GgRgKxpMTiQ1ECs3X7MAE3x42J/Dyh7RRPHi+4e+cxh8ePvotJSuQlOe8flMSYQzi9zrsMydKE2B1CTk4WacmkSjCfv5o2nsSQ/swEGkm4+xCG3yXIyel8riFxmjaSqOsYdbi+pDbOuX7iQ6JonVMd7nVTceh5EHKd9PuorspJ7XJc8l5jfWJIDAoM68OnrIaw3gOcA1XLOhCzCkXeC61r/Et/l3tjGIjr21cDSSux/v76fBJnyB6xFI6odTfAEA/HkFj1We32ufvftPgxRrO/O+XobIHrMtHruS8lkhDJdVbgKM+zXFcqNybqEbPVUpL0ATrvZLzlj85WPaZTNFVD6x2xixzNlsO8HYdnU8oS8vUkUYWERFCKVT88mJyETWVwUqbRWPabZeyXa02J9RakqPDKAEhpPdZliKm89lpqa5kvOlnLQLLXSfZ467kqJ6+zMoVCZTvUhLGKF168ydHpKc+eHbL4+jcY12Nu3nqRa9evMx1PIDl87xltbUOlmYzGNNWU0Ao56WzWoquEThFralF68ZHl/JTKglGa6XjCdDplNJmCTgTvgIRzPbYZCYG6jDilGI+3aGzDcrFg1bb4PjLZHbHszvj65G8zM/d4ZfFnaeKUt7d/nof173Byesjs7AzX94wqSxUmWKuYnSyFZKMq7l7+Eh9Ln+Fq9wk2ZqjScQwqiLnfMk2CYDz1aExta0bGkKzi7GRBtzxmeRg4OpxjjeHSlRfQpkbVmps3rtO1He+99zZHx0fEqDk6PGA6qpifOK5cucHJ8QFbO3tUrqeqLF0vBHCdn00MnYyJQRFpfW3F0q+QiYpaSbGwKj9vrlzk96xsddf/O48lKKUHO6dzZOWsXhZCzIR7RL1IMdgIY0XB2VaaqtFZNdRKMVee42NW+0whrhWg8jxojR0wFVVUGvN3ivdZKQQYeiOVKTG/RzEMSi1aC0k6xITyAWUNVVVlcoQXVZwc1As5Ps91+aBy/ERV1WgjZJCkZG+kakNwPitsQghIXJbJDMV6zDmJlwWjiCTvBgKSNoaUohT55UIPnQmFcm6J37Que+BicaYzJpHVZKwUUhmtJa7MmFNwgZRk/6KNzqpPSpRntWh2bawgMpaAHMgNz36YXTfGV1nWCnEoxYSLIRfmFewq5LFjBvyrrCdpkE7K86aWY5X5cSD5ZrHvlBWQijK31gZR4Atr+EarbLuX99Iq08rLPL6xFpf4I4aAToaToyWJpRQfrZ3PCClktT9NU9eyTlkpSLEGnO9phQMEocckQ1KVMGaCRyeJ/Zqx5qXr+0xGU96685jVsiWmRNv3mSioMzFKrIOdDwMJrmCaMQ36Q1ilRDooz1xEBjtmU1le/fQneWH/Gm/+9td4/949qoni81/4DNonDg9OcZ1YKpbVs4x9gxoIgYMa7kZ8E/NzE27SplKQwmbFPYlXFDozbQtOnBDrxKQE3ypvsVagjRnWufI7jBS5aCNFKj5k69oEKqsbqihWg3IJPis9aXQQ8p/PSsspFbu5iOukGJOosLaWq6gaXDAsF9luNiZG420WbcpW1h40jKxmWlV4F4lWUTcjJslw+OQIS82V3d0hBo0xEHzC1jZ3X8KmMdvuOuOwz/OtzHdqBcEsOWjeHuKbuPEeBhV5Mvpd9tztDx3jI8JMovK8t/XL3J3+OgEvhO2ZY7V0zM+WH/GNi3bRLtpF+1ez9WbO37r97/HWzj/gx5/8FbbdTf7+C3+FN/f+Px/abz7fkgr82tX/iFfnP8brZz+zsff8g5vTC76Dj1+0i3bRLtpFu2gfbgmauMOt5ee51L/6+350aY745u7f/ci1LSrHm3t/k9uLHxIuxB/QnFrxj2/8b/m1q/8xvVn8c1/+d2QG8bz0scq2IedkenOiK0ayJLmAp1KpH4ZEi8qJrrJT0iVzulkhlRS986Li4FwGToUdFYLfAM7WRCO5tnyODMycA9fUepM9JC5QG0oBcoCkyqZZAMmUQeIB1NtA2D90DgTYqSozgCgppWzTtSFRnVWNirqUQsCrlG2YlDawmYzKN6BzH8RSsUuWgN4A/9VwK+s+peAHG9ceU8pqQiqDGwLyaJQAE5ngVb6i9Pp4xb4ulUTR0J/5fmNE+SSbe5U4PHiGcz0p2nxvLn9HD8CpdzFXVDL8bbCDK4AEiRDgydMD6YcIRC+VYYBPoaBiLH3PL/zqb+BUy6pzROWyNLbG5MtOyeCDAOImSRJaaZ1JUZLkEUBFflZZ/UqeSkTrlK0nslpLxrIjMSuWCKigso2NCuV5yrONMUl/aKQyuRpx7+EC53q0SZACyRm8DRhtMOiS5yGlOEhqa6VRxtD1S776lTeZtz2nZzO+8dY7vH/nAd++8wGfeu0TfPrll7l2aRejLXUzodmboqnYmtxie3LIaGK4+/SU5emS5Fvas57RqGE0vsTjx3eZzQ7Z377M1eu3mEy2sNUYCLjYY8eW+ekJq2c9V69eF0QxBZROTLYusTW9zNb2CWcnp2ztjLB2xHx1xnQ6yWM0QGrpg+Pg6DGHR484Oznk+PSM+WiEmcGz0xWHp4ekFBk3U6yJA8kEBOiKRIKbAx5TTUHV6KRBFds8hdOByzeu84Pf+6doT55w1J7w9Nkx773zO/iju0y2bjC5fIOrL71INWpQVQBjWTnPk5PH3H10j2QqsJqnncfVU9741FV+4zd+jcPFinbR85XffBNbjXnhylXmy1Nmqx7nPb5PAwmwqmq6PtLUI4L29Eo+02eVkRRlrrDWYIwlOY8qyb6UiD7gfSIkskqMGuZBncHBqqpETSH4tVVCtg9oRiPCMuJcwERDCtlezmhGTYXWHm08daPY2R9h60RwinbpCAFGY0M1qgbCTnCeFFUG/KBfeVaVAJ3KSrUxubK57zsq3VA3FcvOY7Sitpa+9TRVRdsLWTL4gEpimdBUskRK4iJgrcZWst4IISknWaIkLfo+qzKghncbBc4nRtRSJWkjVW2wWhO1gI1aW2LQuF7mqT70TMZjeetTASSFMOj7HmUjKVvR2LoW3kboBgtPIYZGehezPUAGdxV0XScKPHWNthatFPWowoyUJA+SInWR0VaD7zy+D/gYMVYIZsZYsdiIXuYsXRKc2YY1V/mi5NpDCOLcqTTROVRt0NZirMjoh95jLKjk8V3AdVKRHY3MzyH4DMjnxJPJlcwx5DUtDHadJWm6XqClIj3lGCF6sdgz1gyqii74rKahBsW48jdrDC4J8SoCBLFZsCr3QRLAOvqIipFn957ifEAli9EKkyImRgiBVI156aWX2J1M2blymdFW4sl7H3B2NmN5tKBNkV5rLl+7zK7ew0z3OXp0wLPD+ygVqKuK7X3LjdvbPDleYrQSa1Of6M5WoC1Bcr9EVLZNEEKZuLlJH8akCClJAkIWWnyCgRweoWnghZu7fO6zXyBef50vfelNTlPLT/2FH0XNev76f/m3ePLkiMXslBS1qI9FUMUtIURUEpUnUKJ0iIZszRdTQKlEM6owlcYaISMHNDpJsjBELf0alIwVY0RZIHoiEawhxKI2qNDW8vjuA/7Rs2e4lcIFj9YOYzRRJZTRNHWFrTXt0tG2YolZeYkhdKNAiWpK1VTUdS2qcC6Iima2ulNJ4dtAq4REt7Wzw40r15jPFrz26TeYjC8BDX/miz/IXrPFV37zDr/0K1+m7VuS6qi3Gt74zBuwTEz2r/DGS69hx3s8ejyj7xWLFrYqUUwaGUUaN1RayXqvhKR4nhKTY7GUsCqiKgnKippiqXL3SdTcfPLEqJkYm2Oc36ttpgrlrC7IXLZc9hw8W3Hv7hGu87i2/f0O9Cfa1pXvH/6bkOgKMWP4pfwY1z28Fv/Mv8ux4TkwcOOfKeU1Iqu+bR54IPFsJlyTGog4zwOMw/U9f5L8U+FNocreAUmUbex5fo+O+cg2rBWUeb3E++V+M9Fxw+aNIaZPQwKrdMR6H7e+v/X4ZYPsUO59c2SX7C05EX2uK+Uz6xzven+QNr6rch8PRS7ZUmi9jdvo1c09iMpE4sTx8ZkQU8l+Pql0YE6YQl6jN4+ohjXpXLcn6PsNef0E6bn7jAl673n4+Gle34SIkDZU1CChos4kS4b3nUzYL88ysSYjqazoIn2WxI3JSKJVZUKMdN2megWZhGCGRPq6GGe9F4wp0gdP8nKTxoKKRdF48/kVolmiKCyCzvvRyNtvvyfvT/SsYsI5x+qDdzg5OeDy1ha7W9uMpztiWWtrEobJ1h7HJ8dYlcTetnf4GPBKLLVsNaHtWlaPVjT1hJ2dbaq6GQaSNrIn6pZLVsuO/UuX8nVJoYzWNWZUM9UNo7HHVpoUFcaICs2B+RbHzbsQPMt4ytnJKd73xOBYdR2d90CgWszFxlcpmiqC9nxj62/zudO/yF7/Mgt7yNIc8Vh9lcqPucFnmYbr1HF8fgyRmGxt8dLtl5mfHHE8P6bznmcHT1idHXP5yg0m21ewk1GOQWW/aEcjRpMtwuEhRsN4a4ez9hQzHuP7Fd47Do6PwAdW/RFbkwmv3rzO4ckRs1WHC26ItWWe0ISQrdMVBEKOzdaEDuE0mBzLxfXLtjGWBkxBFVJWUfcCOxCt40BEIZ9b6xwvJBn/Yk8s59aVXpPsDNQjS9MYgo+4XogFxmrqpiIpUfkRWzp5p2Q/pFitnBAzdMJWBTrywztgjMVaUU4VQpzDGinMKCq05b3WBRRSWXVFi+pK8B7vwprUVdaGlAZrsMF6W0n/OhekyEKvLemKqotgA1H2aEkUnoQQpElZ0YmkshJr2R8ykGtUwWRE/vIcbhIzcSrmorWQLYdRCmX0+rlVlkQg5HjNVGIj7F2QAjzWajNl/7Qu9imrSCY/FWKJynN8WVKj2Lqh87kR4pVWQqCKwefjSteJ4mdZt2JWYJJ+UQqK3leMZW4/vz4PC49MkcN6W3AjlQt7Yrn+sg+KG8T8MuYBsmqUKEPJ+yHrmCb6hAu9vEdKy/3lYouqsnQ+srO/z9VL+6RkuPnKLQ4fPeDZo6e4LmBGiTZGxrtb3Lp0jabeYrlouXvnHvPeZwVERds7um4umJchX8c65htmnJTXkVTWhvV4HO6tLHAUdS8hUlmdGDVgsmVgZS3KGK5e32P27ICnj46ZLVZE5wfrUgam3xoHVDpbr22Mj7L+QEJne10UQ5+KnXVCx7KPz/bSVohjoVyzytTQmLLwmezrHt5/hEqaGKUop6iwJyVFKLbSWKvpukDfi4pvyERHsaDUGCt7GBKZnBwHDHd4B0IupKkq9i5dJvSea1evcO3mLap6TIwwri3dIvDVr7/HwaFDJ4+xituvvMxY1QQ01y9doa4b2i6yWnlq26zn1JQYWZP3B9Km/gqfPflvMfGX0FSbi0z5vyEiO2re41nzDolEnpaIKdC6QGMrHo3f5Er/CS53r304jpUZhqU9ZGVOuDv5DQ7MXdpVT+88q1XPYt7RtitUXncv2kW7aBftX5eWVOR39/5L3t7+x9jUsDRH/EEEpdK87vgvXvq3+e/f+eu8PP8Rno2+zVHzPt/e+Tm23U0+efZTXO4+wSTs87yl3EW7aBftol20i/Yv0q61n+a/98Ff50r7Ceo0+X0/+/b2z/Ot3b9P+qhYX8FvXf7rfHL203zy7Kc/Yi8hefhno29zXL/PP7v6H3Fn61fwuvsXuv7v2O5tk4hTLhzgeaKO1lKx4r0fPiiVLQNin/fRa2LTGl1AEpkRok+QnAAXUkIloMw5UJYhKWbMhvIQBdhYb+oSJWG6AYYPrJ40JE8kBlmTThI636Mk8so9Pd8f6yREOvfzULGdCplFwIRS5RXjuurRZ2l1oh+qAkv/ep/E6oB1wmJIVhQmUlrfozFr5ZWUxDpssGQo38+WauQkT8zVREU+erNKMkYB0UPww/e1kaSzysBFVGsYxVixdUresVg6YtAoFYgqQRS7rJRCEf7AeZ8Ja2SQf92XwFBBlhLgyYSsNKgdxfxglVL4lGhdx+KglWIoAjGDhTZFrDFiWeUNSRkSBpJUEBdgR65Pnn/K0t0aI8lfI5mL8WTM1s6YR4+eoajkqjPJbZC1zmOsshZVafreZUJF7vMQCF7R657ed4QYqSrLeFSRgiQFYlT4FLPKmMlJq4LKRZS2KKWpx5Y7H9zPeFWg9wqtVjx6/B77W5Etjjh+cI3P/5kfI+iK6KVqcnyl4sFXD4iHZySWhKWTIWB6bl6/ROd7mpFlOV/R9ie8/slP0EwnGSE2VNWUECOPHhygvOby/mW0tUCPQqOV2Adt715la+cKxkScgytXropCQjLE4Fm1pzx8co+j0wOaRsDpdhXpXceoPmSsKtzqDJcMtdGsljOCX6BVRJudfD2Bp4ePODs75sb1l9meyrXE/CxUUlQYqvE+k9emvPONBW994+scn85pZ6ecHj3h058aceu1z5OaGl8UXpImxY4uq6U4d8aDuw9oq8h8ueTd975F13ckTgRwTfDytW3+zBde53fe+oBv3nnCanUqYFsCaypUto0LMdL7Dm0VzWhEfzIv2Da2MgPpI6SQVZc0hVhIQshBSqpgCzGkSLvbqsIggK8xFpRiNB4Tk0il100zJOqc6wGxw0sxiR2AKkmFCqUT3gmA70NEGUM9asCIXYCxlqqq8ctW1H1c5OR4ASox2dbsTMQWUKtMXvUehaWyGqyBFMQyoRJ4zjtIUVOoHikqtElUjaIZW4wxdKuevg8EJ4kOpbQcz1R4v8I5h1YGo6WqMqZI7zyz2RJtFVWdFWtCInoYTyYEl2hbj+uFCGVqQ8TLGEiK4IU0SBLbFOc8ru3lGWXLPWMNRSW/7x3Ry/WnBDHK8zJKE1PIle5Cjgwh4LFsjyf0fSsy9DpircV7mctEWaQSO5VOCCc+W+qIyp2HJN8Z1h1FrpCWtUarSFVXTHbGMicDvpV+0JUmRkdMRpIgrBM0Oic/iq2dNQ22MkBNDIG+d+vkTv5eIejGCDplWxEDymSLsFwx33WdJEa0RiUhX7rWiYJUXtOC9xCVEA5SVgVUhhQkzggpif1d59EGKmtImZBjtObGtX1Oj2c4AldvTLmys8NLH/8sr33hdf7Bf/6f8fBxy0ufeIO96zV3nx3yP/93/zLfc+3jTJsRP/ez/5D/6//rb3LUtsQUWK4U/+TX32HRGcbbE4Lvs9WdgiBroZGsFEGprJKWRBlNqZwUlvVIV1rUyUJWL9QKPRpho9gS3LnzNn/tr/3fsM7y8PAxVid+559+mbMnM05WK1GL8lJ5r5EEM0rJvKclOREzQTGQLTxCGuICYySGqqymtprGGJY+EaNBmUSlPV45Gluxu7PLfLWk6yLRiqKQVvLMjNIkAwGF7hIL7/AOlApUVY4TjViMuOAZjWvqZszJ8YJ25fHBEpImRE9VSQLIaIPrxH5luWiHMVUZjdWKSWO5dmUKTPC6otUVP/yjP8VP/+gPUY+nJBoMhiopVL/Fl3/7HVbLp6Q056WXX+cHf/jHmD1bcOvlV7gx2SMpeOEFRYyasdWZZ5EwKjKxoJXJceIgR7kZCW4AWQmlQo75hCAWibQkfDIo57n/5AmzLvDp2y+w2/xB0uCJYms1WyQeP+w4OjzjdH7E2eyM2fEZ7XKOCn84z+c/kZbzjc93mfwpbXxsTcIB1opHMFTxf0jxaCP+3STYr0P1NKyP5d8prc+bw+BsB7YmKq1t6dZ7h3Ot7IXKtZZEYbneEqeztsVhI+X4B3XXkIgtSUg29k/lEtSGWUgmpK73bkWBUQ39RElybvQ3afMcH7G/KZ8dEpZs5InXz2SToLVJ6to8RizXnp/Tuq8538mq7N3KeRMoi1aR8DxgnNLQX0mdV3co17d5r5snKDneQb1r3dUkhASQsjJdymuPUppG5XUpenwi/97ki94cN3nfWnY2A3FJD3ZXdV3RjGtOTmbDOCl7zpQ29hOlizREl9b9jxRuqGwfLfarMce9Vna52aowJVHjUjqTNXQmQuSrjSmRtFgQo7KSXt6b+74jxY6q3uJstmL76i2SNqKGqSKdP6ULLYu2FRJrD6Jim5iOxkQFO9sTYlBo21CPx5iqQBIKlCGSaFcdOqlMsLcISUkhanMaW9XYqiZXJ2D0+hieDseSo+MDsZattJCBPRAD05Fla1JxdNLSBwjaM5+dUTeK39n6z5hwi2V1RGTFyeyART9nMvp5roxf4gavM/bX0Biudh9HEdFUqJFBjRbMHi+J0dGGBASa1ZJqHAmtx45qIQunhFstWZyeZeL+gqePH5Aqw6ptcV1PRDEe1/i2p4+gCBib2Nm7zLw7QKmIMimrphohryCqoyE42SsqjfMhF83Isxcyuc57+ZTJcut5UogBOT7ZeOfFHtKLhRy5cAyViUsrUpLEvkAIccBmQPYNRa1O5TlYFL42lNWU+Mlqk4t2ktgIEkXFNCU5jiNR1XqwjSaBdw4f44A7GaOHsS8WXnF432QuTKRsBSZW6zpjJkJSKkQtlQnGKiv9xrS5zkhsrbUQLKLLKjXZmjCERGUt0YudblEhMtYCEuuDHrCVdcFZygpUhYwUMgFM9sQxSJxesKRyHUVtStZIUccTsg7YWuYZn5WOKHNaWQxyTCr7iPW8qnLxXIpxre77EWuX9CM0IzsoSwdXcCd5tHLYNd43rLu6kLrKM0KUubPSa1EE28SjCi4ml67l+CbP5fkaY9mAqfWYi7mgZVh3ZHBLfygGsm/5ddrs5ryPkT5RKGOparmf5B3d6pTZMrI72efsdIULsFg4TDNme3+M6hfcfu1jfP6Tn6U2hpNnzzg6PGR2NEcpUUl7drxEKYupLTYY2WdtPo/yog59wcb1yrMrZNeowAxxiAJr0WhicLRdz2//5m8xGm3TrTp86Hl2/ymHMeFiJEQ/rOVa6bx3lSuJw1odh7VhUNbaWNdA+tMYTW2MYHTG4ANEFdBGipPGozHee1wf5Z0s8dSgOLgmI6tYcI8Sv+XCQ20g0xmrylIlTd97UZlXOtumK7SSPU/sAyRwTkhKSius0YKxabh8aZvRaELXRebzBXvXbvHax1+ntoays9MJ7Dgybkb5flXe+2nsqGZUj6hGUyqtqSxsTfWAa5ZobKCeJYVG88r8R9ny14d3hI2YT55+HN63w+YdMrpJGxEL2/kpZ6uO3a0p9Q7cnf46l7tX2QyqEom70y/xZPR1luaYoHo6Hzk5dixmK7p+Re9WONcTek/0GyTui3bRLtpF+9eo9WZOz/w7/t7cPuFvvPI/YL9/iYPmHXq9oKzYv3DjP+RS/wqvzn6cG6vPAIrXz34a9y+Y2L1oF+2iXbSL9q9308nwE0/+19xcfe5DpKKPat/e+Qd8JEEpt87M+NWr/yc+cfZTbLo9BDy/eu3/yFf3/yaHzTt0ek4Gkv+F23dEUhoAgfIzspkrpJDNzwowJQScktgslWGwBpvX/1uDVCL9n4Gaobp2TdQJcf09+fwG6B3Th64lbQIRGRQZQF6VVUWQTW7cqCoUcDuD1TEONm7l+ikg75AQSef6aQ1AF+WSrF6S1vf//H9DDOcTDxvqVQUYKlLOAxCw8ZwKaYcChg+JjeGiB5CwJEhSgpCTwqBgsKBbX7tcSsp2G7kiqShfpE1VKgYwUKEIIbBatWgF2zvbTFCcni5JxtKv5hnoP38XZVs+PK1C4MoA41AET/l9/nSRdjflWiW5HmNPQqr4TKyxquILL1/n1vV93np4l/cezUTtJCWxuVNQlKFiObbehIGkgnk0aui7JSklur7PoFXps/VzLZWHSit61wOK0If1+8EamEwRjBFAwjvPKq4r3gVwlTEix9W56tMSifgYicFztowoKjCGpDU6CLFO65rkDJ//vh/h0aMWs7VHsop22eJXpzx78Cb94hnzeUuInq4FrUdYDY0fcePqVT77ic+QqGl2dwSUzmpfKimcZMLZ3h6jfaJbLmgmY0JYkoKnHu2TdJUltxOgBdwDhD7T40JL61vef/99jIZ+3NB5aPvAlMCL1y9x7fIuq85x2nYs2yXvvP27dP0zXrz+IvtXd/DM6dpj2jjj0eEDHj94wos3b3P11g1WnWbSbLMznUiFJZpoEzdeeolr730DWBCcPN/jszPuvPc+12/eZOfGNZI1KHoevfMN7r//DraKbE0Sp4t7mOk2B08f0rYRbxtef+NlDu484OnJjLfuPyJWW+xc+hiRI2xToU1E9QmCyviTx4eA857JuMnJBZEY7zuHAnz09CEQQxA7tgCu8xTLEJXfkb7vM0l0TfxwfsG4qTOp0JKSANW981grc58Q5zy1taBEKc91TsazNihladsAKmK0oW4MJli8U3SdR1cabSu8D3Sdw1ixNOpWHYlENTLsXbrKzt4IlTTL+YLO+UyK8hQrx5gra/uVy9YKUkWpdcJoRaQSmfXeUzUVFkPX9aIuFMp8Dd47tDFZ0U5srrQGHzwxBZpqImuVT/QxEZym7wMKQwwtfeeE8KFkHhlPRnjvcH1AZfJqSFI9HVBCMjEV2mhC8tjaoNCiXBACofekpKiqOgOrAR8cTjJPee4QS5QYPBrDZNSgVYIKfAj0ndhG2NqCk6RF8Ann/JB8ripLKlWmSqpEQ7Y3ImYrrTzJKgXjiWV7tyIB/SqwWDq0EsUdn4CowYlajBBe41BpvLmeOOeGdT74bN1XKutzoBCzyg5anoupNBjQSaN9rnZOuc9zQiyEhMvEqQQEFYY533mPUmCNJWWil9aGyujBM1ZrZNyEhKkqjLGcrWZ00eNWga/8xm/x8dc/xjvvPOBn/87fI54ecnbaMetWbB0qdKN478599rdeoH92l7vH7xNUh0zTjvnCc3qyoplsUdWKZlzjQieJpBSH6mhSwigl65SC5CMhk80SCWMrqIq1p0Zrw2hvH9KY5dmcrltx8mzGL/zcP0DbhtBrQuxoz05QaCHQmYg2YjMRXcSHiE+ZUBOlKp6cYFHa5rU2yvtuxFahKI8ZVbFz9TKvXrvCKEz4+jsfMOvPqAzcvn0bozXLhy3GVFkxJEJcJzeT1UStUVHhoyjdGW1wUZHQ1KahqitCjHROFBQmu1ss5z0paTwWoywqifWPdmKNFrpE38o1Nk2NrSuMiuzuj/mZf/OnmE6u8pVf/yrvHc24/dnPMp3soxN4pfA5OQqeWjkggB3zzpt3+PvLv8PLt26jU8XO67vsGlGUUiR0CkQUQRkUQrBUgw2JypFKiV7yfxOArDEJUXmUl1zSDJ33PHp6yvzkCY+fPcYReXG3YffqTfgIu7cSexTrleVS8f67p9y7e8Dp6RPa/pjV8pS+bdExEbrvXqBrSIqr9c+l6zZJOCXmlX9vRLoxrfsybWy/ykeHmJT1PMUmoX/9uTV5aaNtXJdYAjHEz+rcNZWLVutHr9b/2UgNnrt7ubF1gnF9u+fVcjb7IA1j57zqEXl9PH8j+b7Sc9f5XNuMtT/0mWIHO9zr+c45p0g0bCnyu7B5/cOx1ebrIl/ZeNSlUGVQgcp9mlQaktxiUyUFK+OxkBPaVY+yFd1qvt4LnN8VnXs2Zf93ntsk17eZrAZ51kOBa06Gxo0b00ljleaTH7vFjat7fPD4Me89OEBFefPRsldLaWNQDFUWik0CXknq987jgpPr2RivpYvLXishRUCDWmHu342rzwQPhMDLWgEGslJIyvvhVNRe18+k2Ev1zgu5BS1SMzErymIJXnP56m1WK1nTjVVC3m87tO9J/ZKuFYWQkMdkjcbQMG3GjKsdqq0RdlSjMINdM4lMuoHdvSkqSmEMRJxriSEwmuzkcZMT2gkh/gJCZnesuiVdv+Ds7AyFKMmEkPAJGqVomhpjKupxQ+x7fPCcnR3h3JydrX129iIpdqwWZ4TkcbHn4OAR7WTGs+l7uF4xaqbc2HuJ3i5kL0eiaUZc2tnGGIlbnPM8Ozyg6xVXLl+mqvaIxqKS5/TwKat2znS7ZjyasFiu0KbG9StCSEStGO+MWYUe1yVOVx3t41PqaiJ9ZGRvqHxWPyJiNKKqQdnHCnFIK4NzLhNBcqylhQiSEngXhv1EIQhJv6thPKVU1G2C2KPlfa/3gWRTGTyiWJSkEKHYPcWM3Qz2jknGS7Emq+pKxlzvMVUhWSr6EIb302fykDaKSd1IQYPWeC+FPikmscdmreaaUsrFAnmVznGZzmqIsdi4kdBWyPcSyxZsAZx3Ax6iCylDFZwl5j2SGl7zlFRWZ1G4PhCKLTxK4qMoippuIG4J3lCs9uR4epizdFY5lVoNNZB2tJa4TatS/BAHqy1UsTCTmUZngg1GlI6EqCNxWcrzdorrvhIrvEIYyUWC2UqtWLqVmazceF0bqlqK+oJPmQQbZd+pUi76W3+XVJS+y14443wh4H1+7nGtvHQuPMgFizIPiMp12WukKEqim0uPkJbyZFfGhmLo/zxb53suBX65+LFMvkM9XxrsDkNZs7SlnXucO2XRrFh+8ECwUB+Iq4757Ii60bz37XcILRhrODt8yunyFJ1kL59ioPMRksNURtRf7YYC2TBH5gvaXKJj2UumgXiq8lhNWrOzv0dlLKfHM9mnhUBcdnSrHinIVHkPnG9VGbDSr0XRWeC3rAxcCGXCiFrHa4phMYlJnnkExtsjrl67xK29a7z33n2enJ5CgtFkxKVL+xwcHKKL9GyeR2T9zLer80hOWalca1LGR7WWYkOlZf/fh4SuLRUm13pqkhYFV5IoniXksynPnTopGEhKieu3bnL9xgucPDvhzp17bO9uCQYas8pWjk26viWEJSp5KdL0irvv3eXK5T2uX7lJP3HU9ZjB/jAXsMU8l+gSFClQSbPjbg5r+PMt5f4/FyDm+Wa16JjNTun7JS54ahVge8qsesTKnDAJl4bjtOaE97f+KV51QMJ7xcmR4+Rkzqqd4f2K4Dti8BKXrYHXi3bRLtpF+65tOlnBwz48ff7LbwpW9oiVPfrQnxKRw+ZdDpt3yy/4Z91rzKrH/5Iv8qJdtIt20S7a79kSYv5k+L3h+e+yplPNi4sfQP0hF8Jh7/b7tAeT3+a4vsPl/rXhdyf1B/zjG/8hvfnOSbx/UPsO7d424M9SQZaSKHqo83eWSNmjPWP7ab2TFiLNmnS0CdAbJZUuIOC07IvSAKiGWNSY1Eecc7hQYC09DgxkmoEQlKXPC3izTmCsjzlYwWUUYLCVy1v4oaqX8/cjJC2R6TZGr0GcDFCdq4pSG2CxEtCjnKcQwT48atbV2MM9qIyebEDoCZH9BZESFqBnI/tTrgshaaVcybe2tCt2UWswO8U4gF2lhRgxyoiseq7YixloijEKyGkM2tR411FXFjOZ0rfztUz9c31OqX4cgBmxrHLOnU8CpTUJTcCZXB2nDTEIyO5VlYF3GWtjm/iRP/N9/Pmf/AL/8Fe/zF/9Gz9PHcQ/PlnHfCVJ0oAAL82opmu73GcCDsToWbViczNfBFgVYC8D+EMyJr8nIVf0pYhVZhh3pNzHWg/9HIMAegLqelHbImUrJXkXYojolAQYUl7Adyfvm4+WSoGNCmMrYuoHVayzpeP+oxldq1mezrm2fxlqTTKaV29+mgfv3ecbx/cYbzXYrcTsuGXEGFtPMWqHb3/jGa9/7jPYagS5ir0Y3yUf0CbxsVduobL6Sogz3n3nbWKv+dQbu1B7UFUmLxa0MZEIzOeP+eDee7T9gn61JIWI61ti55lsTbHW0uxdZmWh2h6xrSMkQ+8WvPPOHZ49mPPSqx1bu5779+9AYzE2Mls+4c4Hp7x795u4bsSrL3+a1z/9CQwa6JmfHHH/zgMqO6JtRbHq8PCMu3d+nb29B7x6+zZ/6os/wdb0BYJb8a23vk7aCnzf936Cbrbg2+/dZfVszuJsRsLijeL9ux/gzk7RytC6xG+9+U2Mfo+6CUy2Nc2oxp30YiuWLHVjiVFjVMwgoaKyFSnprJKTICWpvjYC6KOLFaUAq6KYA8vlghSFnGStkE9Mts5QaJQ1BOS9tFajCPR9T4xijWAqg6C7WfUliNKLEBSFeFMk+VVS9C6wOBOCRHCR0Emls60sru9xrSMR2d7dYzSuCcFBsnS9F1uuGLFaQyZoKqBzQkY1BtBiz2BqS9PUuD7QtRC8wXuNreQY/coREYKZ63v6zmGqepgTxM6KXG2c5+ycCDRK5guiJsTE6XIu9mumJAmgXXYYawl9oFQVJxzaWmpjBoC47zuqUY22WmxWKMRUIRl2XU9Cjh0zCcuL9AHGQIqaUhG/WCwlORJNVolK1LYhBtA2AAkfQgZ1hcSltSHGRF3VhCCkppLcCF7k50yec5pxxc7+FtaKFZIsKgFbiSIXXuM6R4pioSlqO2aYm7URjf2+63HO4UMQYBuxoRts5xTD+hNjIvieFAMjM8oKOQ7X+2HNsUbGlu9cJiHkuTFl+wktalHFTkeIdJpEyLaISZKiVtSaiEkUJ5IjxVxd3NT4laefJ7759XtYq2h9wiRFoyvawxXdLGIaw3/+f/5r/P0r4tV7dHDEYjHDaodK8qy0SrhVi3cC3htjSSGI5ZrJagExr2dak5AEoDGSsI4pYKJGeYNualoVufLay/yP/9J/k1//r/4Jv/Ub3yAkIFpMkndWAwGNU4EKRc2IaBTGQkyazvVCmiOrp2l5BpIgzKthSmDyApqTXUmDU4ntnR32PnaNn/kLP4N+6vngZMbhs4ihge19OtfiR1M8YuWotSgMpCon4YwkjQM6J8sTSUvfozTBWlqlUFW2eDBgx5rp1h4pZvsDo0i+pdY9KmTr394TvcwPCs+4sYzHht39bbYvvUTfKZKu0aFjefoB3bUtlgtD1GMO5oecHD7lna+/xao7IsYW+h5VTVgFz6ufe4OXr34cqywpGjyKFCI2Wuahpx41NFlJACJRicWCJC4L7eAc+yFHWZmYmxVMXNAsjgMP7jzh5Ow+IXZo3eH6xUBG+L1aBJxXPLjXcv/OAUdH91ksn+HdDN+1GBWIvifG/vc5yp9sG9SGNuPQ5296I1QdyCNDsrH8jmFe2vx8+ZRiXfwwfD4fPEe0Gyf76K3c5jUO50nr6yprSFEcGL6zeejNh1ouXq3Pfv7PmcD1/HWkQmBKAyll2CdsEpiUWp8ik3ESZa9y/ribcffQxxt/kGOsP7y+4s3OzHPwRt8OfTPEwfIBXZQVyp2m9XWeu08lscpAKMrrSELi46giXe+I2fY7+vWOZrjL4ZAbYyw/J61k7TpvdVUyoWWDkfs530jZaxTlFbnIhNaRZBTNTsNoPkIpxchapuMxykZOTudiQ5N3IE1TidJgXD/9lKIk5AtJa2NfdJ53lcfXhhKKKjnh/H9Fibb0xEB8y/O9LjUvw35Yr5VO8oqqjCYVgkaevysVsLbKypYKjKL3gTsfPEClitF4TDOegFUYPcHY6+zvLlj2T6nqimZLsZx1aGXw0YHe4uh4wbWb24DitdmPc3f6m/RmBkqIxQCj8RiSZJ5Dajk4fIaOFTdGu7K1RbHX3ea0foBUgQm5YrE84ezslKqyNLYWNVrvqRTs7kwJPjKZ7tD7FX1wNEZTjRpWvWO2aFktD5gvFzSNYrlakLL9VFI9s/kRx6egVc3Vqy+wrA5zD3tWszPm8xWdDyxXTgj1LqDikrbtadsZL9qX2bp8hRA8B0cHpDqxvTNmcbJg1fa4fol3WUXHJ54+eoaKEW2EUHN2fIxWZ9hGUzeiqtsHUU+yRkg7QYm6sFgLy9h3mfihlcrqJiqTAGQc2Moi+9s4YCcpJ6hTygT4MhyVKLRqI+qkSpNtwEImw63nlaIgNhAM4nmie4yRFNaMElGBysVuSWV1VBnCxZZJW0PT1KLWFBAl1RzCGqOJYY2GbBbCGVuss8RSMKVEyqrGKTEo9A3Yg872jfmdi6Th3RkIMRsT+YCT5ePFbL2W0lpoRimTsayYrY8zypRkD2YrUc9RSHECWgpFUihE/jXuVCyuNwu5yjyn0IP6tFaiWktgsFtOscwNeV5EihgURXFbC96QMgaXQ8aCW8QgN5mylak2BlNX5+dLSuFVJqv4td2q0iorpKthfOis/u1zgc2wjuuyTqzvHyV0mRCzIpWSvhVl6jCM01IoEfOY0kpwuZgf0roYT+U5mCzolfcZKivn5T4vi1tMCZWfk1YKpaLYrnce52QuiglqW4ELxD7Shki3OuGbx7+DMbXYvwcvStBF7dWU94RclCnPosB8Kf9NQg41EHUKGbAQfVNSaGXkuTUVL73+CUzXspwt6XtPxKBR+V3PlGpZ8IbnUta6mBXbjLBeUTrfP2W92Vh7h3hODe+tNlrIccagKouJDcxrYjAsV4qwWOB6I0TDQT0p5bB5fZwSkJh87lR+p/IdROAdBV5+b981cF3Dj0CaAimigpPCg0JGzCS4YrNYjyq2dydU9ZjjwwXPDk/pvOPw6X1Ot0dMJjsEZ1j1jsOjIxZnZ8zmM8FbU4CosJXl2u1bXN+/gaEa+qfzAR0UPgZ0FaUoDCjqqKbfIfYjwgYvDtbx1ZqwnN8FwEdYrTzzs5blckVSjpQ8MRpcCGjb4vSKzSLpuX1KxAGJEBXzWWB2uqRdzXBuSQwdMTgpxlCRGC+UlC7aRbto3/3tzz/8D/jS1b/KSX3vO/tiUry8+LPcnf46Uf0JzHcKDkfv/ss/70W7aBftov3/azsAZn8Mx3XAzwFLJOj++8BngP8V8PIfw/n+iNtef5tx2P8jPebKHLO0R+dISo/HX8fr9o/0PKX9oUlKm8pDIJt+lVVsyiZKZ+/3tInYwKCeUEALncEsJdrWw8Zf5/8ZvSbgpLje9sZYQIvhqjIoU+SX5YwxpexNHwGdq6IyUp4BFtmMF6nyNCAvQ/4hpeE7SkXWW8V8ZxvAxkcRldT69jf+K+fRqigrpVzZpilqIYkC2JVjroFCAXRKXxUSThyOr5TAKLokHNT6jjafU7mmNTRVpKtTziVI/+ls/RJzAn1juywVkWG945WKswwK5bFQgE3vAz4Enh0ckYIDpejaFTqrLakCcAzAU0ELWYMPKeJdUYLIak4pojAMFd1KFCEGUD5pSGBUwhRCj404Fflbv/Jlfufh+7z/3j126hGvfewlPvuZT9P7U/7xL/4zTpYtK5+E9KANdVXhereWmNZeSEkqg0iSeS0jVcaVIqsFlFGVK9MQEFVrsbHRVuyLApGY8pgUJh0qQaWFZNL7kAFEKySUpLEGrBEroyqzO1VUJBw3rk3RTc3Tpx3O1zSM0bHm29+4w+Vrt7HNmJg0RkPUgenOTS5deYHRs0PoNfUkUIXA/laDGXV0fsa1Gy/STA0EJ4+nsvIeKmjqWvoGA0rTtUck3TKbzwkriw8Jq6r83g6ZIUBsCe7evcezhwe88enXuTS6xgcf3GHVnnDr6jap2uLsaMntqzf5rd/9De4/fsat7T2u3rzG3SePWfY9ffeY8N6MvuvoYkfUMJnWBDrmx2f4vuLy7lW2tkcE7ekXC0yc8/juXS5dewnSnLlb8ezwMS4mXnzxJqenET3Z4u13vsH3XtkH13J0dMLZasFX3/wWZ49n9NbgerEBqxTE1nFyf8loZKmmDe3JHN+uqEaOuhpDUMxPerqFAPO6BqMN3gWROsdTVZbgI23b4pzHahkjWotlYNICxopdpBBwUkoknxjVYxlPKTEaNfgo1ge2stT1iNFkDAqqSmOUpe18Jp9YQgj03mGN2JlpDCnFXO1bSxVnSsxnCypjsVpBchANrofk5L3Q8mKgUVgtQJk1RqoOnSO4QO8SoGnqMSoJsUkAcVGDGU0ajJG3eTHvSNT0Tqq9ve9JCboeEhalLLYClCZEIUvo3GcFfJS5N9s2KoXvRWEopkTTVGir8SGDy1ESxd73aFUBhrbv0DpbVhbwXysq22CqhE5CtmlDoEoK76FdtkQfsGWOT0IqSoAUKArxzKh1xWlQOXmUr9uYSshzfZAEQ1FOyhW2WilMpcQSMCW6rl3L5asCdBayrKypPjia0RgfI/Nly1Q3xB58SNSTmkSk6xyuS4Teg0rYuqauxDpOVA401lRApHN9Tqpm4hwFtM/reJJ13lorCRrnSQF85+U5OLE7VFruT9eVgM1ewPaiOYQCXVVZnSiBF/KtDx5jLaayouhV1Py0ypZrsuaGmDAqsT/ZRbnIE3OEI6F7g+98tryztJXHq0DsAzoE3OqY5cmMFBVeRWxjobGoqKiMRU8NqJpVG3AuEiuLraVyHKNJToiqKFDGoLRYsBR7WgOSDKsNwcg60seGX//qO8xajRpfJtlltlKVhEVEYZLYFSRt8UoSeSEpqdCtZP2wsvCQlMIMie71Wq6KlW3+ldagVaJNFe+8e8r//W/8HJeaXebKMppsk4i89/iEulIw3qWpZawZVax9tVAZcyIDJalvk9flmIl/lQaLFt6vBrTB2hqtNb1zrELEhUBKkeB7bCq2qD1ktS2QZPaNm1f4qZ/6CT529QV+6ee/zLfv3WPWnvLlL/0aI6V56cVXOHv6gK/8zlu8f+ceh0+PmC9bUtIQJFFz5fo2127usdVMqZLNcUfg4ckZxlv6sGA0UdzYv4zJ1NzOw6OnZwBcuTSlaYQsXFstChKIokoayOYRnxQHx0vuP5xxdtaKLaNyaOV4cHrIzZuvMCpMgvKUSviqPCFonj0L3L93yNnJY1aLQ1w7I4YFsevQNhH8in6wWv4ubCWBNfy8JhOd/5jKCdA0fGdQKS3xKipX2K8TxCp/tsTaKBHDFFtgNcSYw1YlX9K6cCH/tN4QSASX2LjOnABnfZBScCD7i+Ejz91UyluRD99wUcNbE0ue+/uQoJIzr5Or68RtKkfKXx9s3p7r4JJ8HOJvNpRDh5OszzZ8KzFkzM6f8fz/524bfjPkgONGJ5Yka0obpJ2sCFIsTYb9zZoMpoCu64bnklRYf26jHzdbIZGpfF0hr8MMKr4b5x+ubfP5lj1wysKqGrSo8rx9/wl3Dw7pVi37Wzu88spL7OxMOTs54pF9wtFszrKX+MY7P4y1Ycujzo/F7Es8rNlDgjqtr4ONMaJ0Vn+wQu6MOQYi7+3KTZeZ3xohhvq8tSvkDK1AV5ukJZUt1BLXruzRBc/xyQKipkoVYzth3EyZ7OxSj0fEJHvUEB3oCluNGDUjsen0Du0Se/sTLl2esly27O/vUTUKYuBJfR7oUErnQSRzwGo5F8ugesxq2eGcozIjEonT6iFxyMDKOjE7W7Ja9Gxf3Wb72i6HBwcs2zl1U+Vdh2bSNDx5+pDFqmeranLc6wkpkoIneM3hvMMFhzaKutbE6KVwIFr293ZoGkvvWtxygcEzny3Yv3qLrUnF1s4Wx6eHHB+esru9z2IVGW/v8uTxI5pRA0qS5K4PPHp4RN96klHZrk9RW0PvPLEXkr6pDH7ZoRRUFTSNxfsoCqs+j2tyHOBFzUgp4QaktFYhkvkz5hjSbIy9rBSki8WYqKbGMhazJaEqCplGD4pLCiGjiBapGQg6+WESg6g5qaQIMYjlVJTfeR+IPlDXQiYTclNWIY0BM+yJkxRZZGJO8KJESSYRpaSobJ1JMGGw1gUhJ1krJCyxopMYvRR0lOKyrhdSt9KGSmdFT58LHAoukeeHNT6VbYbzGNRarKeGY+d3NWXru/J+xgFCycwTCkyUBivp5KSwIPiId1J0UAr5YlESyvMZmVQFasDABKcr87HCWkPMe0LSeZVzY+W72qyxJu8966lZ5n+xxsrEmHw/Spf9R482DQopfFBZrSqESPD5OhEM0FYWUhqKrwQ3WhcTDoSgoa37f63IpdAp400h5f1umelkXi0FKLIU5qI8yjnMep4flr98TTpvoDTruEAWSmGc5SK+7e0JV3b2ePTwMfPUQVAknwab0z66IYhLMWKUpu97SE6KE43GVKJmpdGyR6gMqtdEl4hK7NJUpQpfc8CiCnZa5nkVwOb4IqFID0A5QGu+ff8OI2NxizF4iyqkzlQISeu1bYi78hpTtlxD00VkcFjh5fdvK5iXNVViLSG9aVpleGjmHNgWdaRpjka5uEfuq9Y1VSrkxTQo9WvWhMZCJstcKfJDlMdR/u7zFeV9ljvuWT3s6X80EV/3ef7IVoghDHFIKVxSSrO3v8fNa1eZHba8dzajDY60XHFwcsYL021W7TFPnxxxcjJnuVzStTHPgxYp8IqQOlCi0CTdIR249A6jFPOzGTvbU0ZVvSbJrbaYHUbaesnW1lj6LkWqTGZS68MMMYIPUQixSUkhVRQ15D44uuiZxBobmyFG7Mwpd7Z+hagCEVitEmdnLV23ILglsW9zQY8npSAFPnGD4XTRLtpFu2jfpe3N/Z9lYQ7/Ob6ZuD/5zUzevGgX7aJdtH9FWss5kjojfn9FoJS/UwQ0I/BlhLDzL6MlhBT06A/x2W8BD/6YrqMQlEr7VeCXgf8A+O9wHh79LmuXulfOqaf+UbRR2GUUdoefT6q7/NL1/z1R/fHkG/7QJKUIuQpWgCKpNgskJRt1UYtIQ7JgA4MG1NrOKv8sf495D6soVbNFPhkjm9AYPSrIRrmArqXqTxKVesPuQY5XQJsYpbIpxjVYsYbPM+iQyUkpgUobuv7khIdCyEyJcwP1QypO5wDhKISjDP6ikpBLlML3dyMfAAEAAElEQVTkZGAhbUXFAMiUaiadUUUhd6VMWFIQRYpc+CsRlTfZpU/I/S4WBRuqTzGBEsBEgJg18COb8pgrrtRASFIZfBFiWLGIycCQsoMMu9x8TnDEbBuTx6qxVpQvSsI/unWy2ghgVmzhEutkRb6yoe8KLjRYcwzFz4o0zKC5w0ufhwywaAUqoqKoeyQV6KLn7qND7h4cUkXFn/7s9/GX/51/i3uP3uXtr/4u/8af/SK/9vWv8MGDQ65c3aNd9pytVqQgFbpJic3DkKhRAhqV1wNF7r+sOEP+AGoYn0ojY7y2WGsIGXUy1lJZPXxO53drMhoxUobT2QyDwieR5o4+EStN6J2AIsqgU2JsDa/cfIHT2HPn0QFNrLi6d4Mf+sIP8f0//ANMLu1TjeyQiErKoAzs7uxyebSD3d2iD2dQa37g+7+Xj716i0f3TzG1wlYaNz/FNtP8XHqxzHIwbiyJiGPOB3feZntymVc//gbf+t3f5fDpA2689Co+JjAadERjckVbpG8lKf348DG3rtzk6s4+83HF8WxBnU64de0qo6ZifnZK3wWO3JJqsiCGxGoxIzrPK7dv8cSfcHh0wHRao03PYr5ifrpgrCd87PO32Zkajh6/xdH9h2w1FQcHh9z42MdJW1t86o1PwTsBGy1b020OTk6Zu57TO4+pdE8bVngFTbIcH86YB4WLEb/qmBrD/u4WT49OiT7Sr/ohmTrdmlDVhp3dKadnC1YrL+9CQsgsoaP3Yv+ltR4qVEPwBO8Hi0MfIqNRTQwR79ww56icBIjZqjFphdFC2AneUY8aTG3pXaT3SRIxricSqMc12gZSgL7LYxMYb40ZT8acnpwSnCI56JZOEvFdR9IB1TT0nScRSKHYZQaaZozSinFd0TQjFvM5ves4fnbKeKsWmxKUAMSVpVuu5C0uyWDKhKtpl62AzyGK2o5eJzj61pPQjLcaTBLCSN+KvWTMc4FSGq0FiHfOUZLU7bIlGU1dmZwENIRutQbLA7nS1RGCE8A3ASn3cYqkqGgXK7RV1HVF2/ZEl2hnXa4G9qJeY8XWysWQ1ej0kBgMJWebcoLcCJCtohWAOsn8aayh63t8L9XXzchS1XZQqyvzs6RnIyFFDJa2FZuJqjbYkTwj30syoG89q7nG2JroPKv5CrQmKohOSHQhJrRV2NqgK4PvJclqlKZvO9zKUY2MqN7ktSXFSDRqmBBTXiN8FNUdNKQQcF0UQN5YCSNy9XS78vkZQ7Ej01osMnSSNS0hFdFRlYpmWRGcj+gmJ4lCTpSohK0rmqrBjCx/8X/432Z+7wk/94v/hIOjOWHpJH5XEKNYDmptZV5XgZRVAlFgLTSNQhuJ+aPS1JMp1WiHihpPIecVe05RM4jRQZIERKUVYMFGTB6PMdsRaGTN63vHV7/yNlYZzN4u07SVF7eE0VZyJ9n+QKts/anAmgK0rxURVU4CCJlIY5TJhL0klc0aUZbTKr9fCm1GKCzaGGwFt1/eBg+JAFrWKq0NGpMXwLU1iEJhVKnOXtsZFBxea1HMVDneiYDRNq9/MJ+f8eDpKQeLBX6x5GzW06Se4MQ+x1Jl1SiLD5pHj49582tfZ8SUs9OnLOc9KgaePj1iESzdYsHv/s7Xeee9+8xPj+hbNyTLEpqYAsdPnvHg3j2am5e4PN0DpaiV5vqlXXwEt4T7jx+xPZ2yU4/QWKxJVNZy794hJycLXn75OiSHsVU2xJAMV4kWU/73qDZcubTFePslFrOaJ0cP2B5PCb3j2ckzru1eodbV0GcSC8l7dDZT3PtgxvHRM/rFMWF+TPILUuxwbknnAz4mFnlO/W5s6bmfVSEeIQmnMh+iSh8yjH2ZT4pGRiHZbJJJGOb4oeOLDVRO7JHy4fNsWd6RooqUL0MSrTl5Wc6RyjFgvdEpp91QsvjQPW8klj6KkEW5h3UIPCQ2y/cLv6cQdYZxtUFQGnKDmZAj0gfr5HcsSiFqncotFj7nD7JJlFpfx/pan792UBsXP/QX6/1SUUMajjj0g3ruSGUtW/ebLqqGsezl1vehWSveftS1fei6y+1s7hmGv55XHho2IGq9TqfiAZcSgUDoetq+xypDXY+5dOkKx6eHWLvFjVtj4tOH+INjrl67TLdaMTub0UclajfDbubDfTkkLsvtpnXxDBuXJquk7Jm1VrLOkDJZQg2HkDGdqOqaxlQsFgtUgpCPGVPI6o8IcYqEzXvBvg8ka4gKaq25ef0mL7/yCruX97KazvrqtbUoIk1dMdYV127u0XYLVrOem7deZDKtGVUtUgCUCK5nVj0WRZAoKpg+aKbTETE6XFhxenpEU++wv3eJbnGP5fyE3eYKzkWMTUNSXCFYRdOMadslx/MTxs2YpmnY2h5ztlzRaM1k1ACRutKsOuhjYHfc0AfP8uyMGAPbW1sorelWPXVt6HuxInOdozJBYpLQszg9JvU9ROi6Fu+XLGZnrIKjbT2Xdi4z2dritH3GyfyU/a0xTx7d4WQ+IwCVQixRNfiYiM7T2AqlNc4HQozEtkN7ifVHo0YIEDlJnWICLXFiTIrowzCvkRLB53cjW13FjG0MlkeQiT1q2GsUBdJSvITKxL6UsFnVJoQotr5R5uSYROEo+CBxGmUsibLIZGtM13U5/gTfB1QDxJhVTULGPQKifJTfwVzYVteGurGZ2OVoVyuaUZVPklWzEcXNmPGCgSwBWdXKZ8J4ITuFHEdJGBNI2CrHLklRKUVwTorEouBBxeKtqF0LASn3qdm0HJO1zRqTx6aVPUGKw7oucdraSilFIa1pkSHN9mSBkMIwbw1T9ca8VXCUQoQq967L7JDjZtf5gRQkWJRgOVojCqAqZQJnXmOUxihygZQUZcWU0Clhqkzs8NJ3MSRCSmjtMdZIYVdMA6GpkGoS634qBSQpgQtuUCBXpqwhGZdibRNY1oCQx2xR84mZQFfWTlXWvCQYXOmw55XPz69v63ErBCf5vbE6W+Hla0l6IM/Vkwn7ly9xcnpKmyKhzcSusk5l0qFAWoLHaZXvMdshank8hKQw3mC+Osa+U5HO8h5WafSriTTOxKsU8jM22dpNiEX6PQVLlRWRNMySvJ+ZzBNQNIyoUzPEFwrZ86q8SMjeQmcCVCFD574pcVmJETJBSm/0mSo4sIBluSPMEA9rnXG9bZ1juYw7bpDSYoxyzcNxNwf9Bj5YntrGeyEXI/errWZ7usW49xz/ypLuRqC3ieQdOonSlVFacF6lwGi6PnDv3mPaNlBR4foO7RNh1fP0aMbW7oq47JjNVnR9R2UVXiuCKhFExPWRJw8PSL7hxqXrVFWNQjGyRgq2UqJdKeaLBfWuxmBRSnFdv8SoqVmuWurK0zSyBzs/MstPiR13k3pi2NsZMd5qSGHE8fEBmMSoNpyeHLMzusHI70v3qcBbOz/PafUQUPRd4uykYzGf0bcLgutJoSclTwgOFzxola0XL9pFu2gX7bu7PZx85Z/viwq8+uNRhLhoF+2iXbR/qS0Bc+CvAn8XKMJyCvg3gKt/wHf/EaJSVH5+ABf8TeCbwL8P/CDf1YpKL6y+/zv6/K3VF1BJk9Tvbe18qX+Fy92rAAQcf++Fv8L9yW/+C13n79e+A7s3AX42UgZD5avclIAyKoHSZvg8SQ2VUQJWa6y1GKMJ0bNGxHPV7AaaWog8xVNdfi1/1xqquqIo9RhjqGpNUtB2jlhKRMmb2wyYJRjk8OVvDIB+AZ/KNWzKVT+fUziXTGANNpVrh0xGASEmbYDzA9iciSybTZcquJx4TSnhXcj3o4fvQVGWYp1gGc5fLkN2zGKDI0nd4foKODkQYTbA++Ge1tXZBbyQ3394AJd8SklGQ060Z4BcZVIBrD3YI1k16LkTZ/x0AHVIohClyuc2Hsh5RasN8K4knkBsjlS+/yDgfQgdKWm0GvH+3fv8p/+P/4TbL97iz/3MX+LB4QHtaIvT41/k3/yJn6S2nl/7tS/zjXcfsfTdejymkoZZJxV0rn6MXqo7gZwc3nhvEHAteUhdi/Hm/LhQCluLvITRAk6Z0YTt/cssV3dJzmGMwqtAT8AtAkpVaKuAFhQsVMNvvnsHVVsu7e0wjVO++KM/yo/++T+HGdtzyadEj64chJZR3XBz9yrf90Pfx70n7/Nou+XarTeoGpg2c6I/I4QOqpqEQafIan7Aww/uEtjjE2+8yuL0CQ+evMfDZwfcfnGH/UrjZ0ccHTTsXtpi3gUu7V/HFBUsZajMmFs3XuDx03s8fHbIooOPvfgir+01HJ/O2drZxs/OOHr6iM+98Ql+43e+QR87br98g/ZtR/QzVq7jm2+9hY+Btl1AdDinmc1aVvOWYCNf+vKXuHLpXbRacP3KZe6+f8p4d8S9+2/y9ld/F6/g3Xef8vKNj/PSp97g0eK3eOdbb/IX/vyPcP/xA37tq1/DVmNu39rH0rN6ekzbBWJUhKrmyfGC07OF5AW1xnuHrjRb21usup6j01OSS6goyRFnYLlyJO+xtqZpNN552mW2F4xpUKhTWhESOOfX7zdS6RqCAPzD/KwEXO2co25qjLHEEOk7j/ee1XIptl0wWL9pRI3HWk09qmjGNbbWKLPN8swJCSr19K4T2znEii4GxJJMmVyJq+l95OqNXa5cn4CK+HbKfD6n75dMUkUMHqUrIl4qq5OXfKEVdTETLTEmVsuWvusR9bBA33VUVX6xc/LFxojOs9toNJIETzNGay8JHhcJvlhERKwVlaoQNDppsUcLQuay2lI3FVvbE87OFhitia2nagx972S+1SWpuCa1SiJJLAaKUlFKYGxFQsZHinrAVI2Wd76QV7WW6cIYjdJJKkC1xvUe7wLBR0bjEcZW+M5RiLDaGlzncd6jlYUIdd2IKhtCNqlqUbDSBqrGoKnotRwzhsTp8ZK+Txil6FdOwNrKYJRUsjaNlakuQvTyPb9yxCRWJsSIiTonryr6zok6TBBrOGBIMoj9kM5JiZwEiYngOkhkpaa8tuVsjLEGDKQQMvG32PdtJKL0GjT3vkdpizWavnNZGSgrbPUty2XkZ//m32bPVLgQMLXCtzmRgMrOebk6XEWUlirm0chgK0tE4YKsyT5pVGWp7Qg1nqJNxaSpuXbpGpOmQtOh0IRQKlGFiFRpI5XkNqFiTSTii2VKAqUsKENK4XwKO5W1razFDHFCZUSzJ+V3o6gYhBglFlNxjemndaKHGDAEdDLZbkJU4Uigg1gqxRRInZAnu9DiU17d8lodQ0DMD/M6nBUyy3MOSa/pxCqvcxvrfCGjWKvZ3mr4xCsv8soLDe6DhxwrRQiwaHuIGq1rcY3ISmKqgbb3fPmffZO333zE9mRMrVrqqqFaVnzpy+/gvuc1jGlo9Da3XrvKxGq+9JvvcHbmCLrDe8XJgeeXfuHXePLaAT/2Z/8cW+NdbNKMFRz3jtP5koeP7lNXC7Zf/jioCVYZblyZsDWqabuOxkJdjTBqk5q0JnhLAh32dhrG2xXzvuHkcU/rV1y6eZl4dsLDu/fZ/sQW9aRax6JRlNVmZ4m7bx/x9N595scPWK5O6HzLsjujb5es+haXEraq6Nx3sZJSDvLOxc3yB7njYrtVkrgbsXNMm+qhRdVVZeJibmojboWBnJNisdwp2d6c4lQqWy3LtRljREU0JZL3pM0wfZ35Xl/ExrmAkhk+f19ly7C5p9iMt0uiWW18Jq2PL//cIP+su2S4jnPqSykNJKASn5cEpLyf5UjrueT8NZ9v8hxKMjf/V53/zvCXjd+vSWbP/XzuWxudocp9rw+UINuW5qRqIVgqht+Va3xua/bcqYbdSR4iOY7feBjDP587yGb8vr4FLXYoyMBKwMnslN9587d56YXbvPjaxzlbzln2S86OZ7xw/RqXL+3yjW9/m/uPDjN5ZCO5+hHnhY35NO+Vn1fxLVfmfESF9b4yDoqHa+s8rYwQo22x3kuZ1B0lsR6C2Jga+Wsg0GM4nC3AwHQ0wqaa7b09dq7sbxyHfE5PcC1GQ12PmIy3uX7tGm2/4KzpwYzpgxRldN2cyfYWuq4pM6b3nvnJIZGaybTCdS3Hp4fMl0uqZsxyecJqNZeTGcBYtrf20MkMD08pS20r2rZDe0tlJ1zav4RVgdFkm6qp6RYLumXLjWs3cP19Wi+FHqH3VLbBJ8fB0WHGACLeSaLduUDvPMEFPrh/D2seoU1iezrBtXDp8g5HR084fvqM8bhhfrrAVVBNt5lMRqzOjrDbDafzOU8Pj0Fpbl27xNnJGQcnZ7nAxuB8pO07QggYraiqihADSYO2YrO8WrUUmRutwaeE914URbQUrKQQB5UdENUWKSbIhV+hKBqXPXQhCa0HZQ4piCFkizcrc1BW4On6jkKWDkFwn5hkbtFaFJltZYgpYishK4jgjSjHogTPkTgdwY2SxEPKGEIU8vXO/oSUPN4rqlrTdx1alxgo+1+xxluSEvUkpeW4RTm1LD4xiEJSWjNKJLBJxa5OiClGWyASUtggqiiUBmul2MK53GeybSP1PVprattgKjMoRNXWyn4jRkJI54gZZU4jkZ/B+vcpsbZGK9JG+bKL3bEaSDgfnlN0np9iEPUubSt0JriU+aUU0MWwtteT70lBn1IKQ8F05ALE5k0PKnwpJNqVQ+swEOKUjplIAybjUTFEXJ7Tgy92eus1LEXBU8rfSrwvhKSNG0zD/63X1yB9Z4xed0LGh3QmXaLyGpCPE4d/r9d3lfcbIZS4Y4P0TyJEIbw9efCYk8eHiPJQJOlNZcD1PFtsEZVOaJ0G62wXYlYFU6RnYH5REQ9Erb6qK/Z3dhg1I3jk5PhRD2RCMtalMXJcFLHRMlZVgkuFwKbO7Qs2McDyrhfVr7VSZSIMMX0iZcXmuPH38i6VsS9vvRjJWW3F8jo/A50X52J/GhP0vsenzXLDEgBt0o4/3NKwbq+bZnM5l+dstGIyabi+v8/WzON/tUP9mBbMJi/mKeOUWiu0FuUq5xQHj48Zj2qMBVvXbNVTlKo5OlqwO6qZTvaYTPd58foe77x7j6cHh4QYINs4tsuOZ08fMa1r9vevyhoFuN5zNp8zm50CHXvbdSaJGfbCDXa3a7amVY5vB8p0vvHN+1Zs+xtYDNRS0DrvIkZXBI1YUWfLzNI6Peewfp/gE66Hk+MVi9M5rp3jfUvvO5xf4b0TEmpWu0u/14O4aBftol20i3bRLtpFu2jfPe1rwL8L/DM+HEi/9y//cv6Vat8C/nfAf8zvr0j1J9huLT/3EXjr7/f570WniqC6P9TnZ9Vj3tn5Rx/ah/1Rtu+ApAQFEdHGDEQflQESrXWuxs0w6kaSQarVyEAJogaklSgl5GTrgDsoAZyCDzgv9jZKyzkNYkejlFQ1xZKYV5qmqTFWsex7YC1Xvk4mpIGQlNQ6MZIQC5oCYBVrCLKMt4IB+BmSgxkIXYN4ekhCDaSqsqvMCbjnSU1D1RDlWtJAOpICugxgaAH5MoRESooQEmQP9c0Ez7rKtgD5uVNzAdk5e4kNMHzN4fpw1XO5vpRBs3W/JUh6AKgYqvfWoHsIMVuPnTe22KxgU4Pb3nmwfQ00lp95bpLd3Lav+zEN4OIadEWpTBqxGVxxVJVhZ2+X5ZnjpJvz9Owpl1aX+O2vf5Vnp4948vgOWiWC7/j0932Bf/KVr9IZqRilgDZpGCHD1YgsvBqeRVGjErBMraXOsx2ed1FAZS0WUqSEUwlb1SiTxGYAS38253S5wLkVUFFFqR4OqZb3LnSopNGmwnciyZ/CElsb7HhCpzXv3XvI957OuNRcGsZoJHJ08IxHd9/n+pV9dL3DKjUsfcVrn/wsk8khd+7fJXzQ8urNK5weneL9kno0RRLZima0j1HvcXLyAb2/QtNsUzV7LGZ3OXr2LkcHkcPlisffepu37r/P3uUrvP7Kp7lx9QWoR/Lu64R3C54+fsZoss/rr9zm5q2X6RZnXNm9hJ5ULJ1l+/KY7bDg1tZdTsMK5Vfgl9y6vkeXphw8PQQso3qCxlFZTUo9q3bBrD3j6cmMd+7dp6oVN3cPuXX9U3zhez7Db/7GL3Pw6Cnf86nbPBtr3rv7NqOru9y6tsVhr/nVX/5lThae2emKtjul5jpWWZSLaJdQ2jJfLHG+VOUmxpMxi3ZFiD3LxZK27YTokQJaJ1xMeG9QREbjRtRWUsgkjAyga0WlK/rUY2xFTBEfEzarrhVyUgHAURlo9IGiopJSoi+Ji6QxxrBatbjegU60fY9C0TohRsVkQIvyTOg7RpMGjaFddgJoK6gnDUppZsdLQtCkoMB6TF0jjJLE9l7DeGpou0jUPeOtiiZMSDqASjjfE4PYYA3zkxJg1rueGCIpQl01YgnmHVYrUkiiPFbmoRAJzuFd5Pj4BN+JlViKShJmUZTijKmYTC17l3Zo28DZ2ZzondhphEhlFC+8cAMFPDs6BgOXr+0S0oT5bEGaA8kQgtitheCpKlE7ST4QNhjmIXjqugYljmUhZpuNYd6VycyYkowxaCXEIoJUOYc8HmKUSuzQB4jqXPLBuV6s35J8XqEwphxfIGZrZc1IKeCcTPYhSMI+RanuXs07Km3xXiqOdUhEIyC/saLStZov0ZVBBUkwpTyPocH3HmurrPAVZJznZIfWZqg4LqQmrRRJiwVdCoGUScXr+dEMljPaGNARU1lSiESf8D5lcjTDWpdSnmeTJDqDl/61lSSFnPcQFaEPPHnwhFOjoc5zpWFQuNJKrsvWCttU8oxiJGlRxgoBvJekWNDyuaSkina0NeHzb3yC2ow4my1pu5yM8ZqUKpKKmBTRDoI39F3Ex17e4djh8aQo9gPEhM99mOKa6BWDELhEpWmdVCjEhRAlYk5RDJNk/MeSTthISmRrqeQZWcOtS1e5PJ5SIfaoWoNRCKs+GoIacTif8fD0jEWI+FQSTylXh59b5M/FCmLtuh63WespxzYh21aK+lvbJaoq8NmXXmWrrjixYrfqu4aQ7e6SBWs14woMEVVVaAs+tKwiXH3pMp//ns/z6pWX6c2E3cuXaV56HSZ3+cLnXsPNTvnmuyecLGdobzExMB7Brat77OzvyvwaNT7Byke+8e13OZk9Q6UFXWsZrG1TotKRvR0DTIaYTEGWH13HM6UVwcU6KU4OFzx4OsPGhsd3jhlZz2sfu8XWeDokAVNSLJc9p6eBZ088jx4cMjs7YHZ2xtnslEX/jK6f412g9zLfVSkR03dvyctAQFfFFjJvJuRXeT+xJuIwxK/rwoHy2XPFAZuV9UPuN+X3Zx1N6iy1F9M6yZqyauhgf5gSPoh1TFlH120d1aq8zyhPea0aEVmfkY2Yu7x7H97brfcJakj4reNbJHG30XcbPXru/SoJvpLAToiahfTXmsyVBkZU2jzUus/VOmm4+ZG0+cF8vvN/O/+v9U85yZxE8STvVIZPDPG0Wn9nfa0bx0kbfao2Prhx7eeaev7vaTjb8PnSFYps07xxnLKXy9OcSUnWr/JzZdnemjKfrei8Z4Ll8bMDDs5+i96viL5DqcTZ2SlRwdOTOS6rH8r9qnNz8vq6zm0aP7Tf2ywiSesnhZBbJZ5KOf5R2bJF3qtA27WoCAmNRVR+ozKEbJ+liuVczJZZyaGDposOrxSPHj9hd3ePK1cvg83vCInVasXRsyfUxhKAlQvMFo7dvX0US549e4JzPTeu7mOqRAhLKjNG5BUVphrTNBXHpyd03ZimmbK9e5nVqqVfnBKaBtNMeHZ0xNOTQ+qm4dLOnGtXrmObUbYpCqAcfd9homZnukPTjMVSzEgRlTaeZmJYzU+ok0LXFTpFJhPLhAoXLPPFCmFrRcBjjVjfxejpupALgETlMvaJmzdf4srVS7z39rfpV57dyZhLuxOOTxcsFxOaGtR2zb0HD4ipwkRF27Xcv/9Y1MACg1JwiEJkkZg+iiVakhiwjz3Bi994sR1W2Xbcao2xWsgdxdgqb1gHfECJhTgqq1IPYypmHCIrOmcySMr2akqLVVty+d0dyDJC6vY+ZDK2Gkg2KeWCMwU6BuqmwjQGrwIhyfqmjFgQxugkdk/yJhT8QyloRhalZNZQKpFUpGpEfYQg5KE0qDDltyKJkqYvqolJFBtjKrEpmXyVCU5K3pOQ908xB7opq+nErKIKErNbq5hujVBa07ZOEvsu4L2oVG1tTdiaTjg4PCakwHQ6ps4FD13rMkEoCYE+lMK1/G7H9btf8ISiPDQ8UwaIqbz567lAl7lAjhFiUd4WbCmEkPcADMeJwW/MKQWnIY+Toly9sR4mUdMq6nwpKwZJ/JrXjpgVtpIShdasIpVZV3Kusr7nay0kupQJVeV6yHsoRVF2T2tyVJmjN1eUYcyXe8z4DTL+tSp2d/k7ZW2VbwNChh+WF61yIWFRFRPyljZiFa70RpyQ77EQj7URFWpl8n0kecel/zP+o0A90Ki7CsaClV69cgmD4vRsQed7Gd+BPKeL5WKVvx9SykUFUfacxNw/WWE3MTzTsnal/N4PuBzPtbReJ1Pu03NxzeZCqVS2s4Od6ZRJM6JWoNN63AyPQ1m6AMdzwQJ8kkLC4QmpfG61caYSy2Rsg7VAuYwbChmXNR4CtCtPtzWhNgZ1T4mSrLEyL+S1XxuFNYrKmgxUgzKJPjrq8YjbH3uZm5eu09gGtMGYmq2tjpikkKceHYE+IQWNIWErw/Url9javcTW9h4qajrvUEZzfDZjvpgxnVZS0JhV43SyVKlGKykq2hi4G7FAvuD889RfZt99jMP6XVSItG2PNhYVEn3v2d/d5ob++FrNFkPtdjh1M1ZLWMw9y1VH23b0vcP5Fh/doJoXYhSFrueD1Yt20S7aRbtoF+2iXbSL9t3XfjX/76L98bRfRpSlvttISglMamjiznf0tavdJ3l1/kXe3vlHv+dxby9+iCLQYFLFXv8Sj0df+zCY/UfU/tAkpSonyFPKhCElvvXDRt4YUpLkXoxJ5MYjWUIchg1qTq4XgDWRiSUqDSSlRJG4lm8Om+a8b60qy2jSiGz3StSY+r4HL5ZAIlktig/kDasoCeTt7wb5RmuNj0XWuvwtDTvpFNPmFpwCbRcooyRHB2lySqJBVKUksVjuuUgol1OoATQp1U1yCDNszNcqVCWRkEGdjWezqaJUVBRUSVoC5I37ZisYnjoHyhSAKSddhox6yRhsJk4gF/WRUhzki88ncjbktNWm+sOazFVA9fL70glDskblcZN/v1lTtGmFkHJGphxTKtS0jIek0CHhVcSiqA3Y8Ygre/s8mD2mXc45OFT80pPfJv361whhwU5d8+LONiYs+H/+7H/BN751D9/2kkg1QvSIUcA+772ApjENY0hIR2pd5Q8UefhywQVEURnYKfcotlSeKldx+hTwDlhFTDSY2rBT11SV4WzV0SoPRqFUIKlI0rlCzcm76ABvVnzzW1/jF/7eHl/88S9y7cV9opGK3K3plH7V8k9/8ZfQtaWpp3zwzl32dj/HrZsvcvjot7n34A5Ndcb2dMS999/kxvVXqJs97Lih84mtnSu8/e33ePbwAS+8+Dp7+5d49foldrd22XvxZa7dOOW3vvTLHB2d8PDxAc/uPeEnvviTXHvxNoFEii1KtZjakExismXE2mzrKiopEoHT2RmLk6d88K236LxnheXJozO+8IXP0y/mPHn4hP1rNamuiNbT9acoHVksJOm4Wnl0CqjaktKYxfGSW5/ZIbUzwllPdBUnx4o//1M/zZe+9GXe/9a3uHJ9wpXbl3n3m/e5/fIbXFk94+Hd+5wdnfLs6ITOC1EgREckoCy4LmJQnJzM0EbTjBrCykEv8uVdGxmNGpQO2Aw0VrURNSOTBltBlZUdQiYHVrWVeVZBiiGPPSG5ibOhXo+9TKwIiNJcVBB7R/SGFCKTyZhFOGO5XKKybUQciIaaduXxfkY9qpk0DbCgqiW9rpWmri2uF5UmryLGVGRmCiklRqMaaxKu76lMjbeOruvQRmy4tIXkPMlDv+oAk9eOQIh+AEKNrQguWx8osQGIIdK7nDzWmq4VdSgfhbhCBO8kQVOs3gq4aayimVhMbbG1pm9bFm2H6yKjpualV17k7vt36fqAsolV31I3lqppqDqESOb6QQrfGE3wHqOkclWsKqJUZBpJXmkNvou5glaq/IckMkV9EJTRcp9RnrlzTo5hNFopulVHdDIlW6tQBFLU1HVFyBZsrnc4FTCNwVYVwXmKVL9WOs+JAq7HUNZzAc/H4wbXG/quHzDQ3gdwgdoa6rpC6Zxw0ggZKc/gwSX6bpXHn0FpI4lCICVRmLKVxeSkUGC9BmgtlnshywLKOC7rgiJ4ea8mkxHEwGrZD0kSrWCN5soaWVkrCfBseaiVlvmwdaA0k1FNM7UQAr2LxE4SctoqYggkNNpqRuOKeiyoevCJvov0XY9RRghoOlHZSubePH+/ePMa2ke+8a13OVp29HQQAiM1ZjqeYkdbNPUUqywuObqupe9alqsli3ZJFxw+JdABhcsJvuHWKLFTAbXLGl8I1CqBLjFLTgKV6vNza7PaWDcVjCdbXNnd57o1mNWSGBw2aUkKRoelgukWZvcSsz6ynJ2SUj+QKgvpKI/ojVWdjbU85RiuWFuk7IJqBnK2VMvDoutoU8AYi65rJpMxnXO0XYe4ASua2rB/eUIzntK5QDBiX7kKnk++8BKf+/4f4mOXb2Mz6cQnw87uLmerwFuP5kQatLYoXTPen/DDf+4n+eFPfgY12We58jx4eJ95e0JE8eTZI157/SbT0RV2mi1QE1BmIx7ciJ9K05tJnPNNAUZFbmyPUbf2mY4qVotIU2uuX51mdcuSGoO6tjSVwnU9p6dweKaYt5E+BXxU9D7hswqFsRqtA5X57s0qDEUEsLYGyck/VchKKidKYxpUDjYTqOVD52zKhmxiSaNtjPO0HptFVQlE7c1aQ4wK18v3it2NnEKRhsy52swPnSOTFDWLojKwEal+iJw6fI2PGh3P/2X9nZiKLkMJj2UvMnxCnUsZbhwpK9qWzijX8vyHz/VtubXNIoN0zoLl92zpuYOW20nrLKUabm2938pnYFB1+VB/fSiFej4pXA65eV/53+tE58ZdPveKfmgPl/9sjWyVfVarlOR/pFJipxaUWOhCyESPmsPTM6I/IUXPzmjM7SuXeOHmFb599z7LZSv7XjaIR3ntE5IHFCJVuS61ce0bdzr8a3C4KXN93gvGKONZZxJQfpVQCIFpVBsmzYjxZMLJ2SnOifWpkH1KFliL6kQChSGmxGo15/4HD0hBcfn6Hj4TUKaTMf10wv17dzDWMB1vcfz0CdPRS2xt7eLansdPH3K6OEJrmC9O2d+9StWM0bWl7QIhaVbzFd1iwWh/gjGa7VHDeDRhtLPHzk6PomO+WDGfLXDLnq3JNjtNM+xRvXNSQKMjnVtS9SPqZjSMuWW7ZHZyyPJsTjOdEpzHecutF2/gVysWswU74x2U1UTtWC7P8D6wWq2E2CIMYLQ1xKDoYk+7OOXkmWNUjXGjiIsjXvn4bap7H/DkyQHjSc3OzpjQwfWbL+PCnNnJCZ3zPD44FNJOnp8K+SiEJPFliNm+zxBjwCgjFKQQsVosV9PGnhKKQha5GEgN8WkZ84LbMJAUitXaeTUbhbYSs4ZcSBURYr73Ydhvx5DwvcuuaxsEl2xt7Don1uZayC5S9JTjAauH/bRCSNk+yEQbh3g14J3HVpZklBSxUSwOzWB/naKQjIr9m49iLV3m4EJqKRiLVoos7DXYg/WtGwiailwYVmIspTBGnk8IQlyvdEVdW4xVpCrSewcRmnFN5zohIaXEctXivBkUs1MUq3OVChlLDedBlQK/TLrQQqbVBrF5z9BSKXiS5WlD8k+LapFcf8zFUoKLrNWg5X+FCAYJa+3wXIXAE9FWiG8qK2IKATJb9Z7DyDLWo2VPoZUGx/CsC6allcIaIYKkok6b8TqROlQDfiexkB76RtbvSFAx72nKdFmIVAzWZYX4OZCqyu8iYGTcFPJyWRCGOHYNhQ2kl7JmpJhIIVvqGZ3vNRGC7IVSTBiT7yMTrrTRGGsEK0LUQZ0PErPr0m8m2xUGLIm6rqi04vDwjEUXcCmgSTS2ZtKMUKoiak2jhMAXhI2NC462XeFdxMWsRK6EfFosudfr3OYqsv5XWWpUYTRttEHM51xMsw6MjK0Z1SMqBbrriN5JOKykKEEBph5TVWPGoyldSITQ5yOdB35T/t76h3Ku9Tq9GT/A5hqXn0FSdDHSoKUgyGjAiOpRxp6NNoymNZPRiN4lfOoHTHp3e58re1eZTncxypTZkUt7Y5xPHJ6uaJ3CYInaoKzi5qsv8/ILL2FUxdmy42h5zHxxgtJiBWdqQ9U0THd2MGbM1F/nk2c/zX7/sdL7H9E+HDFqDB+b/2lme4+gWnL90hZJpzzfK7bNlJeOfnDotiZO+IGT/wn366/w9eYXOdMdkQZPTTQtCoNyGrLlg7Wi0PVdvJ24aBftol20i3bRLtpFu2gX7V/bppLiSvc6/437/wdemf3Yd/Rdk2q++PR/yaPxm8zt0w9tQybhMn/62b9DISlt+ev8z97+h/zm5f+Ef3Tzf4PXf/RWqX94JaVU7DnEqqtsCo0R8KBUmMUkQG6IWUVnSCwUqHyjSioxkJjE/iODUkk+k0IScFjnRHtIAgjYnKxPcdgXO++hbP6jJ6VszbMB2gzJpCEZsiboSFVdsXzI4Fr6cAJALvZ812yCJwURF6BY5Qq9c90IbCRbCmCv1kmboiZBXJOY1tXMAggV67SPek7p+Qs95y/4e6REBtJQIWAJAlZAmnK4IfWjtJDQRBudQJY6V5vXGgZQ7/kK4NJiLNYdm2A9OXn5/DWnjf+q4W8y/jYSVSS2plNCTMzmC3w+7sgYXtzdYbyreevpEY8ePkBpT1IO3Uzx/ZL9aoxrAz/0fW/wQ9/3BqMbO3ztZ/8WSmcSShRwMeYEhjyrlAke5Vr1QCxLMQ0A5PNVfYWtlpJIdOecAj5E4qrHOSUVUbnjjdX41nN7d48f+r4f5BOf/QK/9Ev/kNOnD/jgyRELLOiASQEVNElpbF1RjSdgDJOtBu8db337LS5d/14e3H3C7ZdvMx41vPqJF3nr7S+je8vedMTDO9/k1Zdvc+XFl3j546/wwYP3uP/0KSE4KqeYPTthe/8qZtzw4MkR+9MRXbvi7OgZ169fZ2tU07nA4WLFbvRc3q/Yv1Kzaj0ny5YjH1islrSrJcpU1NWIGMdM6hrnVtx95x3qT+yyd3VM1AEdAKV59513aWctn/lTn2fRe65efpEbL90grRzXrjlUbdCjyLJ/zLe++VUeP3rGct6yXDh8hBQ9dTLEPnIaWr786/+U71t+mj/1p3+Sx0/e54P7T+jChN0rV3hy8E0O7y2xq20+/8pn+Nyf+UmezT6AH17x5td+l1/+tS+TXECTyWCdRxuDMhZrLMELmcU7DzEwGo/ovKepe67sG7StefJ0AQq8FyDXGE0yEVtnS7JegHlttCSatMK7IDZyWtN1ojhksiUcKpNRtMIYS3C9VBK7QCqEFUTZZrVscV6IMNpoUSiKYvUh4zbilWV+5pjPlxgdhNS2OyUhAPHWVk0IjtPjlr5PWESlYrVsefbkgBdu76ONwftA30dUijQji+vFMsOqmpQ0znsUhr5zQiwyGh8DKQZ877JtWAIjEKRt7ADU972HPqC0karXKFXDpepYa0NMELxnvljRnNVMtyYYC6PpiGpi6NqWpm547/07HDw7klk/Gk6OW7SRKlTX9vS9F/UhZbP9ncIag0+iVlPmg6qymEozGteE3uNUJMRIPR5BjPR9T/CZgKoAragqIxX5PuE7T0iRyjayJhKpKotHSJdKi33XqBnR956YlyCxJQhUo1oqmaMm+SSZKgPJJ7GZBCEFxEhVGZqtmqrR6LomJk8KAbRY4RGkzjf4TCZOZU4XflBShtRLssVaSfgLwVULQSlKbBCcEKm0tRglakQgIHAyaiDZpZykKkQulRQqiXWbJMoS2hohKKVMaJYUbk7qBGG2R7FClCStKHYpq3DeY2LCJOg7T3JSsdxMG7wPtKselKYZj0B5Uoj4PhI8oipBpG1XQgi1Fh0r6rCFAsZ1xfxsxqxd4SJUZsSNK1eZ2gmuD5z1jr29Ede2d1j0S06PDb7eYnvHs1iccHB8xKxt8SGRlFgJpWx9Qk4mloVuUPsgLxwF4s/9IiTHQYNxTfblfHKishW7WzuomIhtRzhbEaMnoqgUeB3pVWR7W5L12zuXmXcdqff45FEUG7m17U9RS0EY4qI4MVTs6xxFlsr/QrTSpKQHgu3K+UyIMPggSmRWqcEm49LN6/zIFz/P0YNj3r33ALTCKrj9+qf5mR//r/HC/k00dT6TzI17E8tkZHi4t0dtdqnVBG9aqp0RL378FXa2d1g6zZvvPuLRg7vM5o9paoVRFW9/e8brn/wkt6/fQKlqHc8UY7eNeKXcEaUv4EMxkEKzMzVsbV0GFXGXNBYhL218EkjY2rB/2YKe4PU13DuJ7smCVJ+i6wm6injX4UMPSshO5vfxlf6Tbpsx4KB4OiRL17FwSaqv9wecS1QNhIxiC7ZBYiqxbIw5MZ0YYtFYkrpF4S2lDZUMhvcNJLotChIkebprxZ/zSaM1oUdJ4rUQ03OMW657+M/mXuK5P6/Hz2bHIe/EZv+p9afVR3xrUx1BxqAQfj/8PNRzJzt32vMX++Fc2Ue2cxoMg+X2Wk1JVBE2D5vW/5/WxxgS6mrzmHyo/9aEtfMXt5nnPNdRG4npYZ7Mz3azWSPEHLxY6CSgMZar+zts7U949/4TunaF0RBSYracoaPl0tYWvlN8+o1Pcv3mVZ6dnbLoOxRx4xGun09MYfhdSa6Xi02oXAix3kd82PJtcy+XjxkT0UWUD5lcLfs6rWSXN2kaPvM9n+bStZu8/da3WJwe8OTghDZl1Yooc7QqhGlrsXWFrQx1Y5ktTtmPWyxmC6zdxRjN1s6UqjEYbfExsFytWC5XKFujq4qQ4HTRConbB1z/kHq8RVXXHB+fcenSHtrAyekJ1ahh1IyZrzqO50tuWk2MnkW7oO87KeRALMeWixlaW0ajMaPRNtvjMV3X086XTEf70o85hmmaMce9qFBe2p2SlELbMdrWNNOG0fSKLGk64PwM51rms9Mcf5d1VQi6OgaiNZyeHbM9rrl1+xVms0MePX7KvQ8e0XvHzm5D30a6meOFay+wc+kypwvFpcv7fPutt4WcFiMqJrHJ8qKkWuL54CVwi8GjUsJUFmLEmMR0qrG24fBoIcSPHFtqIypQCVH5Hd4plWODrNAYMp4Qs4pjUeApxKVBaSUPzeCCkBdiGZ8K77wQR7JqFwkhmBKFWBUCAUVPtglOgUSgbmrZgyhQVmEay3LREoKsrMZkhcVVS10L+V/iuYwfZSwoxIhWVvCPrHIWQxrIOSkUy7eNgrD8/ptKoxOD3dxAaBmgrrIebfIhJPZsVw5jLWUiM5Wm1gZtDPPFHNeFrB5kAIN3iZScFJHkZ6KUEeVpBdoIGlBs6ZSSwhMhCmViTBISgcoFU957yESkMo+bjQIpilBUJkKlFDM5WIEuirsRW1VDYZzWagObyQTHrFY14Fg51lyTgWTOqutiP68wScs+ObN9ynoYQhq+q7OfqqzHZb5WGZPTw7hLmXSp88NLMQ3krRQKlrR+bnJ5kfXyUdR8NMEHsSnO+wchrsi1xeEe1wqMZW6NcX2/clkK5zIhsBwr973OYyxGqKo6f0b29EW8K7EmRasQIFiINscrOtviiYpapQ270x10sKxWHX3s2L804fL2FgnFYrbkZLki6ZrptKHqV8xXS/rgkSLSEovIdcpYGm5laEMosrm2bK6fZTk/B83JOqaVYlw3xJAwjaWyiqBrFCmr2EX6lLBNg9YVOnhGzZiwivhUiEqbJ5Qx9vz6XWIEpctTOH+Rm2tgmYuSAmaKeBCJO2GIEbVS2LrmE298irHWvPfeXVofMBqme/u88tonubS1m/ctcsASpdcW9rdHPBmNOdUNKragJB7v+xWjRtT2ZvMV83mL1l7iieiZnRn2rl3nE7Of4oX2c9Rx8qFbH25gEzrkPFn8Uv8KP3D4b3F/8lucVg8gCGHVpBEvn/4gW+Fy7jTpgyqOeKX7YRY7T+CFr1FPLE+eeFbtCmU82jSYoAneEVLEGo35w5DTL9pFu2gX7aJdtIt20S7aRftXuT0C3gE+8yd9IdLqsMVPPvr3+cLxX2Lqr57HSv8QTaH4+OzP8Zff/kW+dOX/wr3Jl4e/jcMef/rZv8eV7pPnPj8Nl/ni0/8Fj8Zf5av7/+8/FC78nbTv0O5Nmg8eHTVRAxiskcR3jGI9tAn0rAlKay/4AlwJSSlDXEoSoTEmXK4eM6gi3rtOziXZ0C8WC5wXafBBFSBubMALApXBD62kek0KAiOhVCoiwIgxlqq2ONdlECsn3J7v8LS+3nPo+sYHFOsNtcobw3X13vmE1aY9Gvn+hyRNTkKmuIEGpOcA/A0CkNbkatcMt6e1gkhpAlCdT2Ccz26sUxxxA6DYrEJTiUElYKjyA1BClNBGDaDQ0GkbxzjfW+vKtaESLn9MK83aMCOdA1MKcCjfMYN8ufSDZrVa5epHhuRGrTXXX7rK5370Mxz+7C8w8YFmVHF0suLBvadsNVuoDLx//AufwV27wd/5x7/C2x8c0LcBoin7fFKuDNQosS7aILytr6skzs7llIYeKYDO8NmEALk+iY1Or9AmDu9N9AplKoJueOP7P8OnPvUKDx6+xjf6U+qzGV0nKhTRJVCeCg3eEum49cJLxM5zdHqf/RvbPH7yiKYZ5QvTjLd3uXz9BV64do2jNvDo3lO+8vWvc+PwKYfHRxzPWmLfMd3ewvQd8el9pu2Kre0d3nvnA378J36ENDV86c2vcTRf8YU3PsujgzmHB++xM1K8f/8eX33rXbarilEFLgQ+eHAPXXesli2vvfY9XL95nR/6/k9z8GyBqreZbE9zQlAG997+dV588RWWW2coP+NKU+O7M4K/htIjplevsFjOqIxia/wC09FjVvPH1FWFtVDXGh8STWOwvufKtSvsb29hlGd2esJiscJ7x5tf+m0u3xjzX/8LX+ToqOXs2SmvvPoqdaMws4rxtuEb77zPatXTLlZCliERk8dnxZiYPF3fw6TBWo0GHEH8k4zGJYdNakMFSSEKajor8Gic67HGYo3J01EkRS/2SkrhfRjeBQG4ZXD66PAhgtJDJW30fkgMimWDqAL1XcBag7FFrQ0mzQjX9XRth1Kek+6QEHq0FgnzlW2Zbtfs7tVMxhNmZytmZwsmW00m5mR1MaNp+0TnOlyfiC4rQ/mWru9JGCEiGYXRluAhaqiMJGRitiQTVSSVK4MTVW2o6jHLeUe3cpnMKdXsLoQ8Z8dM/EoUZY6UFH0bOT1aUlUW5x0+iurTeDohJjg6OiFpDRm8Tsj863snpKIoa0oIYr8RfKCqjKhphYjWYgVV1RZbG7wXEtmgmqY1UaVB/j/4TI61QigU+b2EqQxVZWUsZbIWtcZanVWbPNbW2MrSOalQT0HIG0RRVdFajpVilLWxJEBUQhDyPD8phW1qdCXAujIaFaOoZKWAD44YNSmJ1YdCoaKSLKcWlSdjhPhW1TIGXSYZi7pLoq5rlFI456Qfhqpkua5AlORrIidv5J3QSsav95IYBCFBm0oIUpXWg1JEUbBSSpOc9K33YVADMFYAct8rFmc5+NGaamyIIdJ2DmM0zWhEZWusaWi7iG8dq7YFrTBVJfapUSZ1q3VWGVBEpcGKLV9QiaaGl6/fws8a7j9YMlutePUTl3nl+hVOTzwvXH+V/x97fxaryZaeZ2LPGiLiH/a8c86TZ6w6rIFVLBZJcZDUmiWrWxJhGLDhhhtGG4bvfGH42vCVAcOGAVvwhQBbgG0B3YYtuCepW+4mKapFiXNVkTWeeciT8573P8SwBl98a0XE3pmsOkVKVZS1V1WezP3v+CNWrFix1je83/uWzTN+57v38dpz6/o+d27MuP/0AefrFURLxPXyKSSbQPUbYOzlNVLKJtEBZNuH3l6JQMj7SBDDK9sN2xsbaK+oZtvsb+/QbNQsXMfezpzrsxkPD45YW8X+rev4J6c8rRfsbO7TnGRJgGwxZNDGkOBR/SzzqZpbE5UwvOX9s5eKS8agimL3lUWBVhoTFU2M+JS0yYxks90dXv/859jUH/Dw6CktkVfffJk/+0t/mRvX71KgiCqKhCICdPNECh157cYms/kMbIHxhvXBMb/2n/5jwi/+PJ/5zBf5iVfvsD45Z7GsQbVUlWJzc4/gJzRNpJqILFhKF+TdPG3uOX1xIaswsg9yC3htBHQYDFHnMyRBuKgSeaVH4dHGsLtf8OWtbcqZpv7dBc+OzlGVY2Jamtrhm8yUobH6j2Xe/0jaANiKvZ+QARlZbjEnCnPBQIJ9j84h35f/Z0vxYmLKx8Si2u+xObtGnzAN3os/EMJFg38Ehhr+yPeUEslrW0hiU6RaL9rZWuvEVpc6e2ECZF+ldxQu+HajPOLQhUs+QH+t8XEXkqfp576IItnWYbh2f6bka6gL/RmY2rJUjJwqg0f7HnChxWSvX8gq0l8rA8t6QNj4DHEYi1z8kn/O3x7clUvpzOeASblY5LmrXHwW/ZTIPppG60F6VCloW5F1GY+tj4E6dEwL2KwqdvcmaK04OFyybJZoA+frJYWteHZ2ytPFkgcPn7BcLnE+im+aH2kCmKueGWRggxj6Ndgx5Hsb30jaB2J/XBqj/sGlopAEcgpKmERWnedocYq2gaZbc7yuCcZgkh8eEVloHTW+83hTMysrDLBan7J7Y4ez8zPms80EKPCgDbqYsDGrWPvI+ckZH97/kPm0onWe1bom0GKLAoNCVQptW+pmzbpuqGYT6gPPwcERy7rh1bv38FGxPl+xrE54dnzE6XLNrCqorMIHzdn5GdOZ4uxsyf7+TcpKc/ela9R1YN2CrWw//1DC0rmzd422aVk1DZOylLXHRbHjjGZxfsZsUlEUW0yqJUavmE2nrOsuyXEZCmvRIbC1OcUqxWJ5SnzygM4Hdnb3aZYN+1vbbG4VODQHjw7w0eFcTakNq+WS07MlYGi7NjGOQNQSNzA6gyijMAsaefLeJ6CUMqxqR2auVGmeKmV6QIlKnpSxYq+J5J+AMrVWRHQqtBmYrsW+SODNfhqp3s/I74bEK8SejGGkcpreFq00hTGsuw4VIt51Atoh9syo3gXmGwVVZfFdpKlbNrcsKGEOkiIfK7K6XnyCDJpxMSSJNyV+WNbLU2KnaaOThF26v+xvZ6C9BltIUUgIyQYdhQ5CWqsyy5LU1aVYRRBG0a7pMDaz5ogfJ+AV8Ue0Nj0QxRjd72nSH3pgEFGkoYWxdIjXZPBrtre04oI0XL6nrDSaZcB68K/RKGWGuFQO2miFzTJjSIzMj2STcyGDT/tYDz5neP6gegZduZe0RidApDAiKfFR+nuIfbwIRrEmhYBOghRAZkbJvDeHMMxDrXWyZfPvGfqk8r7Fc7Es0OndGQpZYpo3mmE+i9kQe6BU8LFn/8wsuvlV8B1EpZL/JDZsCBFHTP6RFP50IRB96Jm55LmkOZBscmWM2CZ5TddGVnsNO5sbhAZOzhuazjOfl2xO5hw+O0NXE65v73B25jg6W1Na2NyaMp9GwmopLIAqAfZHz/BFLZc6Dlv88Nz7/TdmO+7iWFdliVEaZSzTzW3iSiTVo4LtnU2WizVdcNjphHlRcLo+oTAlZeHwXZaIjP1+Ntgu8bk+5n71Jl3f49j/lNdDkRXW6LVCLRVxK5tLac0j8vTwiL1ZJbJ8GHav73Dr5l0255v0Ra7k9UAYy4OC0ijmk1Lw30r848cfPUK3gTdef5Wd+Qb22h6PAqy7FUWpmM0mzGab7C3e5F7zc/IepnfgOXulby/6TNrM7fKZs78qa3Iy8aICfcEuygMl/f/s4q9yuv8J+voJbbeNe+Zou0jUTkCbGpERjfTFvVftql21q3bVrtpVu2pX7ar9W9tOgcf8qQEpffHkl/mzz/7n6D+B/pxCc635LP/eg/89z/uIgxd08VPD33z4v+Xj+W9zXH34x772i9qnzmJMCospJbjVth7vs0SalJZ1ncO5mBgQ1CBTlirtcjAIFZKjn4K0yfkGRRdCHz+PvX59REtkPSUVPC4FTKToNFVgic8/gFpidseCBGwSU8XO9gylFYvlmrrOgWcJCHa+SwGodM5MO8zFfEWIsQengDil3mfqflKgL0fa5c+g551Zd/J3dfpOrsKKfVCqv24ONPaJyTEIRhx6larNlIqjgE8Oguek4QsmVzo0pAEbzjmce/wHJAiegxTDoAyMSflaSmsGnYuBGmkM4LkcfMjJi4GOXA7LFXrDs8gJp5TM1org5R4Ckabr+u+hFEFH6tDyzgef8PD8IZ+9/Qp/5c9/mYPjp/x//6tvUFpoO0etHPPda/xf/6P/F03jOTo6FaBBGIdeozwTnR5sqk5C5eBjHh+pZpJAVuKOUEPCIFOsZ2m4vqoSwMcEfErMIVruw6jAo+Nj/t7//R+wMys4OltyvlrhvMxHGyPOKHyMWG1o6oaVPeXZo/u8fu+zvPm5N/iFv/ALPH12xI3966jS0DXnfPDe27z1wX3e+eA9orU8OT7j2ZOHbFaG/Wu3aeolx08esbkr1NSzzSmvfeYmv/fdb7CsO96//z7vfPwxi0VLs15z/doNtq5tc/bsCb/9L/6Ag9UZMRiiMexvbtEFi6sX7Gzd4fz8nOXZJ8znU7Z3p7ROUccJtspsFQZwdO0ZQWnOgufZgwVvvvFZbuzd5MPvvMsrn/0Cq+WS977zdV5/9VU2btxgVu1ybfM6SkUePDqiblZYSnzdMt2YMrXw9NFTDh7e5y/8/AavvvoZfuqX/gJvfe2bLA8/4vjjQ1770k/yT7/3q3yz+Q6vOGjaBb/5m1/n/Oyc+cYGq0XNzZ1NOjoenBwTvUUhEmy6NBhbpHkak5yE6Bqdr6EsggSSI3SdSBv51gkrXJCpZaeWsiyo64au8WlOSDIiJIYSbVIgOCKB1VSBHFJwWedAHopJUVBOJkBHqUucdULjrxXKR7zznJ0uAQGcGt0KQ1FhKUsD0aEp2NiYsXdjQtcGIpqbd3bZvb6NR0AwWoF3Lc57wODalpQfw/tI9Iauy+x7SaITR2EtvvO0jeuBL1oHrLGEtFaYwmKsRZlOgKWNS2tpGuoQUoBc1hXvQr8u9bG2GNKrG2jqBoC69jRNwFiFSkAp7+W909oQDeAEaOHaNgVHIw6ppLbW0nVOgLqxpgwFRWlFBkIrmq5D24hvAoUu8EFkGm1lKVICLUSRYCxNiSJJqilhXfHBYZRFGUWpBfTTNsIEEKPvg/7eB2Ij4xRzYF0Ngf2onIRZvSRcbJDnZY1OMg8ROympJhW0DcH4xEaSwMNKS5+MSjJJHmWyJI5IFWijiQpMTNXsXq6hZANFiqgzK04CzkawFro2VfNH04M/nfOSnEvn6JqWSKDTlnRWYhxAUSYl6FSSWtVaC9gP6U/sFEGDihEffZIZEYlErQMhdJyfnwnwCSgriylsSvwIK5BznSR+0Im9KKCVQWFQSnFtf5+4Ujx6uOC8hhANNk549zuf8PCo5qvTDTY2KjSGs5Oa+6uau69vcW1rh7bpWAdHD9Ikb4Ux77jD3p5f/LQ3o9J99gl+MUKyjdQnMREg0M58g3oRmF/bZ//6NdqNhpNPnuKnWxz6SL2xQ4yBs2DZ2NvHf3LIbDJjXk6pm0aqdtP4S5InJdFHif/QXxOxD2METQIuDfIm0sU0H5KdoYLIFoQoTBNoxVTBwcMH/IN/8B9zbTohKs/OtR1effkeZQAdFGgjrHBAVJLdOjxZorWl9ZGqihRFpIsQXMGqUUy2d5kYzXx3ws/89Bew35uibODG3oTbt/Yp7ey5HEKy5EbPSV084I9oSilMHi81Nsb7TCKq51hMZ1SBSaF4/Y0tnh29RtO2rJaezrVotUIbqArDtKgwxfPX/NPSqsJirCbEQNd5fN7vrDCzdk6Szs8zG2W7mX49CNk96A+R8fc5kY7uZaSHkRxszsyyJABA1Q9//6apbHOOq/XFUDMj5qeYmeGQ91CYmUZ266V3efiU/rpjwP74575lsGv+EdnD0uSQM6l44fz9+bI93X9z3CTTJ7Z96oMajo8XxmW4T0YjcunG+h/T6ty/FdKNODpg5OtAkvcd+hkv9Xl4hv0FuPjDRTDbi97F5/o7mlsx2fcX1930vf7VFEDE8rwmhI6d7T3u3N5nsVpwcLTk9s1rLFdrYV1Smnc/+AjnnBTwkAAPeSGJXBihHtR2ub9x9Jj7z9XoPOJb6CTn5IPPF0kgqAxaSIOtBHxUtw3feetdjKIHwyglYJbMMEXyyUIU9pfl+YKb127x2huvsXf9OsfHpwIGUQHX1Hz4/jt88uQJhIAtNG3nWUU4PVFcu34LrTXL8zXTeaTDMtWK63ev8cGDj2namvfef4+Tk1OImhg6Dja2UIWiKDUf3X9E0AJ+6TrP5sYmKENpIqVRTKcVoVthKFitas7Oaza29oQVsn/Onuhqmqbm8PgEbTR37+6hjObhRx9x696r4Dyr82NKu0NVzjG6YHO+w9HJM2JE2GsCRO+oJhVd09I5xUm74jOv7nDn5ZcxZcmDj+5z8PQhi9MJd197BecCy6ahbFrqZskHH71LU9dooyiKglu7e7Sh5dHBgdhAmUnOiE0ffGIfjBl8EYnG9D5yjBA6J+tSCGIHIKwu2oo8Ydd5QpDn6+MADIgg7DsDYaMw2MmbeDEOAEzaClMYAh6rbJKzkr07CkIU5zu6rpPvByXrrNEp5y33UVhLNS0IIdA5TzkpmW9O0vRVCRAWejBKZtjLRW8ETXBe2I5V7MFIOkmmh2SjJDc6K8H14KuQ5N5EvjnLFA+rF3lcIuKbR9WPmdbC9pTjH77L7Mqe4GQt0jox65FiX2ka5nct9Hpzqo/DGKMS+F7YgpwPGGswVmNI7OUqJtCSIQN1jdUCiiGxEHIhFNQvZALEGaTpI9B1UhwCMnYyDgGCEghPHMrG5BY0kZDI+RIzj5aBFdC8hwR60jZJq/nMgH4RWBSTnY6SvSfLnYvPJgViOgwSeMHnOFi8sGfkIrngRcpaYmgJ1DbeX5FjlBa7P/qIVwoyA3h63jGdK6+39PGvOMSl0qOLMRI9vU2bmZtQIgkf095hc0FIjrcBISRQsw+DxFqUdU6jKMsK5TXLpaPz8h51beDpkxO8j2xPpvjg5H0P0NaBM92wvTmh0u0gHQgX5Gf7KTHe/xjbK2nequHIC7tr3oqTiVAWBd4FzLxiMp8w3djg6Pgcj8Kh6Ixhc2NOva7xk0JY1pyntJa6Gza3HP8b/IihiDGO5s3YdsktA3jH+5fYVOknnwHYnoQsQkXP4ZOnnBtFYQ22MkTv8E1L6ByUxYX7RUXaNnC6WGOUwYWWqpRinhgUZTnhxp3bTMoJWik2Nqfc1Ps03TaTyjIpDZtqn88f/gWRYs021iU795JJ9X1aEmGIwwhcrKPNVobqr1WFDV5afZV649fZ35+zWHTE0OJCh8ejVIe1mmlRDqxsV+2qXbWrdtWu2r/CNj+d9/9W4WqvuWpX7ar9G9D8Dz7kR9F2mlf480//F38igNK49X7Cpzx2q7vDnzn8n/Irt//XEnv4V6Tk8KlBSptbcza3ZzSu5exsJUl1rZnPSwlsLmqpkFJBAmM9U4M45WVpmUxLkSvyXmSKXMQnoJEwK4k0j07JVgV9wCsHq5VOlW1R3K0MFMoBA5OCx4MTmwJ3CBPDyZkDBGzlvFTWhRDRBmGh0AIaiSEiLAYw8hwvBOhUCgZDrvQbUgdjaQ+dS8NUZjJQifVB92OUK8qkzzl4FlIA+/mJciFQ3Qc6UlBt9Ls4GpvnA/Wqr94af3rx28M9X/py8tZT/2PswRAZ8ASgYuzvJ9/nZRap59ro434OjH5xEawE3ifqbPI16ME/OiX6LAVKabo1FE1Bpxu+9t4DzHRCXVr+9t/+qxwvznj47JA/+Mb71HVH0zREP+qnEn5uFTUkRhSRMtJphkggLKdJ0lMnR7pUio7mZH/bCgOKTTJPkVQdGzIAJQdJpYJQG0k2dG3NJ5+seKBzTFOxPZ1QVSXrWOLbliIGysoiknuGto1sbGzzC3/255jNZxy+/T6nxwdcf/U2H7/3Cf/Vf/IPefj0EZPCsrc3pYkBFwzLlea1z/0UzbND9OIUOlitGpqpZ//Oq9gPHhFPH/Df/rPf4PRswXxjxtGp57f/4OtUM83O7U0+fPsDdq5d4+Bgwfmi5qVXb8hzbU54+uH73Lx5j/XpCbiO3//at3l8tODP/Tt/EdU4glZoA0RP7Go613D//kfcuXOHe/duc//jj3jrm9/h7iuvUFQb3L57m2JrQlSB67dfYWO+z6/9+j9GI8w0y+U5jStwQXN9S/PmF77Eb/6Lr3FWF3zpM5+ldSsePP6Ib/3BH/KlL/w0n59e53Nf+Tm297e5ffsef/j1f8kH77/D4mxNFxS7W9v8uZ//Jdah4b/8lf+GiMF5RQgdWkOzWuFah0myMlFJELIqNa5r0VYRHLjO0dYuBXSFWSdGScqgJPCOAp+YcVTUvbSYNiYBAtPkRwnTF4kpImZRxoAPHcSA0hFjodIFITo6PNZElA8QO4KKaCsJgNbXFNaifEnrOrRtMWYTH+F8UaONZjKbgg4YCypquqZBayhVyenpirptsamC2PuAa70kSmJM621IyQKp8Jagf0SpgLWaorCEBG5p20i9Wqf7zUk3CZZrbQhOEmlaKYKXILmsuQKgCb6gawPKGLq1Q8VACI6uTUG9ECVwqsC3gaAk+Nd1HZFBwjNGkbGIMSUlvFTXW2sopxNJuGvQxkh/RBsNYqp4LjVlUVFWAliSRI6sA0ryARKY1/KDVG7KGuNiIHhPU4uEmrVGUm8xgYB9xPn2Qso2jAL5xtqUpxQmkWZVoyhp1x0QBQSmjchqjPZApbRU9KtxkF5jTOyTIs55JmWFLg2ddvjWJ2BtYktCtnStFdVEki71siUGhSlLglZ4XFo55XtS8ez7RIZIzhYpQZOAnnlfCfQsY4z2CKUiRWEoJylxkcAFIUSc60RGNkkGKpMq2pNdUJoKY4UlIsTEsuUETKeI2MSeEyNYbSl0SaFnnJw6ViHgVSB28O23HjOdKH7yc69zc3/Ox+98jI8Bh8K3hsOTNXd2ZpTa0LiL7Hz5zzhJJPuhVO33n6T9So/23Qs2RXqcEZmOPjqUKjEYtva2ONcrtlYzbty5xrOHh2zt7VGFwPFqSVVMMWaKU61I+kZSomycEEB2viQLeBGQkJkD8z6eEkeRdOxgDw3ga5WkFWWs0ZZoNZZAWDYcr2uKicaeBI6enfALP3mNUkeChqb1nC0bdjYnFAbW65Zvfu8+69UKXTTc2JtxcnSKjzV7M4uJnhgM2IKdnYKf++qbaKMpjUjJZcMmiz7kLMKQzBnu63JTl37oZeJeaOFd/FYEVLYHo2I+gXu353zy/gbrxQZaTUAXaAxb2xNu7+9SN6s/8qw/7masoZqUAqRQHSbIWlJYWV98EOnMGLiQGIeUwLWyn2ut8CHgOidzZiShAghYlZzwUoM/MZTeP2dQ5n0zA9x7ObqhA2mti9RNlx7RIM8TucgkMv5un3i7lBAcZQr7vy5Yx8nUVjHbw8k21ArC8ywDw3cGn4QMVLo820bXvjATY//xhcPyp8/18dLvGV9+BDj7NK3vehx6PP778sGD8mW8NJQD2Gj8iwuj8ILBFv8yHZXWtnwvWikMJoHkDNHDqj7nwRONLiucMezsbvHaZ1/j6GzBW999X2RHM6sW4wRw6kBKtvZgzt6HGvyJoQ95LtPPxRhl71cxMXxoJTZMKvzJxw3rLMk3Sj6FDyKLraQkYGtWYIuCpYu0Tth9jNF5AIS9MASm05LgA4vVmoeffMTG7jaHh6c8uv8hbbumMIbNrRlKgUv2mwuOCMxmc5QPtF1HbWqcUhg7YzKJnJ2f4Z0AnJq248mzJ1irmBSGcgKbOzscHC7o2g5VVBADy7NTnsWG3es3Wa/WdKXj8YMD1q1jc2ObbrXEFFUqHCDtKZGua9nb3GZSKU5PTqjrJcE3FNWUazduogtDRLO1fY3JdJOTszMUClsY2rYlBA21Z29rys3bN3nrux/QeIMuKtbLMw4PnnB8tuDG9U3QlruvvYYtLGU54f13H4v8UxA2t6oqMGVJSYnVp2nHV3hZCEWeyoeUMJYCLwFshBTHSMySzotkL2KPAngVEqhT7EuVgOf9rM+yuTkGEhPjNQPLz/hVigo2n24KsDvC5sGc9UsrsY+AojDDeqxUmv8CCtcorKkITkBUIcpa37XiE9hCJKLRwh4lgBrZ/9rW4ToBrUNmOkpLesjyvwkIk6XLbJYGA40egHzphexakZPVamA5ItIn5r0T4Iq48vKdzPSnHDSNw1orIPlUbOa92EAZNCNMQCGBP8WPG1askaWX/CAJPtCzgOYYARFcyPptqreVjBVJJm0SE6FzF9aPtMLQs7Vlpu6Y2Rcj3g2xiqDiiCkTohefst9KyIHIBHzQQ1wnFxUIs7qnsEXv+2VJOjHBk9+a+icFgHq0NgrzklZamJg0GBKoK61fWb6VBOyyNrM3kXCbhvHuI2Mgvc5ArbwO92BhlfevHH/J70Da4xP6I7NX5f0qkkBxMTJE98ZAZQGLKq16lqjBapBnG7yXwkyV1v0cw9IFzoGodws7aN046g62t2bMpyUQMFIpQESnQqAEzoMLwO++qbGXmMfhBXYC/U0M/+wdDPp9uPMdlSlFrjIqgla46Nna2SR6MJ2nKkra9ZrOuV4yfdGuyPt1yGDpbJ+N1ql+ux7bNvm/PapHDQ8lHT8UbyridwLxTn6G8h4prbCoHoBqCRAN+/s3mSaW48ZFTs9XFGXJ9rygsArXBZ4eL2jWa8pKEb2m7SA0NQcPHzCzBZvzXbSCrY2KSIUCZn6Xz5z/FbbDrdFz+CNH/bmmLv/03IEv+uZFW1RFxc3157hBQ+si/3Dyq6zOLWCIGGLUKB2o5gWz8k9x1cNVu2pX7apdtX9j28vffhmFoqgLXvreS3zvl7734+7SVbtqV+2qff/2nwB/48d4/Qi77av8dx7+b7hVf+nH1g2F4ksnf4efVKcoIn/35t+l1e2f+LyfGqTkoqPpWqKKVNMCW0hSVFuF6zwxBrxvc+FU8rfFCTRGi/yNNVirE61tpI5tqkpL1WBIBZgtTAq0pWBGHDmlKiVtARcGea+c+Io5kH/JD8/AJteJcy+VZ7pP3AUn0hASA84JN4GZXEiQjBx1kRJiqKDqEwgDGKcnx0ogoVxtp7VhcBgVoEfXyUkHcc7F11YvTNb0AJ6YgwxDBOFCpdflNgoM5eqqcWCmZzHKh19KgsQ+4S3HaTMKfjyXA8kRjBH7U75eH3wY3xeoqC6508MxuX+5inGczejzSXH4ntaBiQ3cvr3LbLLLZLfi4PBDjo/OWbSK89MV//w3fo//0X/4P8Z98zvUv/UubSNSgpndqu8X9Lme3GOphszgq9wfCcxqo1NVtupZb3SUxFpMCX1hfRE2DxAptP4c6ZmbUaWsZO4CmYlse1LwN37m8xycnvOtZ+d41aEdeB1FRkt7Vs2Kt999i1/71X/CrZe+wPc++Ih3v/Gb2I2KTx6dcPTsAb5bMqkK5lt3MFWFbwNWw9vf+z1u3LzJay/dZqJLHj475uNnH/Lf/uY/JQbN1nZBYBPvFT7C2XrF/fvvYYHptGJjQ/PSS9ucLpYEb3n25ISyKLm2McF3pVRH4vHas1gs0GFNd3LIO88O2br7GrduvIRSFqMqrt+8w7VHT7h1e4ePPvoW6CnX7+zy7gff5s69z3L9zst4FKvzFpzh4PgQM9FUE8tyZTC6RCcGlfnOlFe+dJNvfHfCh48e8ObDp7zznW/SHB0wmRre/vhdNr82486rL/Ps4ITFsuU3fvd3YbaJL5bEtoNyyj//3d9k0UQiJV3oECEgjQpRgvA+iuxaAlJ4F+iaDltI4LXuHG0rgdgQI0VVCMU8ER98YgrTGJOrSBWuTTJxRphcUNC5TgLTmVVlBCJUiNSXKQxohYstLtZ4D61rUaVhMp0SqgKlwbXQ1C1N3RFsRxlLdPB0naPwQFQcH6yRqRpwXuHXLVEFqnIiACQfWC0WNHVIUmIiseYBU1hslOSAazwRSVYoHahmBTElLTQG48u0HgurTQjQta1UwUYFUSdgZAaBCpsQ2qCVAE9dF9J+oqnXAVjho0+yYhoVI867VIGsaOMgp0FU+M6l91MSIEIapFNFt6KpOwHTKAHZGqXRxhBjpKsFXINWBO/wwVNUlqKwKJUkLEKujPdEnZmBwrBmKumn95HWC5Co328SK2HbdSKJFhWoIBW4RicpDCSZ7bMETkrERvmud7A8r+nalqqsUEpzdnpO13Q9WMSUAoZTUQA6kUjrnFD7q0FSI3iP6zqMEiBuSEFz2Xc1pGp3bRVKy9o5mRS4LtJ2DqJQ7cuW4yVxWhqiCz0ADZLYlpbnnkFQIAnUXGVNOsZaQzUthCVLkdi7JJnjvUcpiyKKzKDT4CCzRXVprRfWL0eu3rfaQJJkkcrnIEAsK0kgnRLGMb+BCkqr8Cg++Pgx8xm8cvcW790/53zZEX3AKkvrGjwOp2SdGt5lSerk5KG82bpPnOQ3fWytwAAgyuvCABKGtvOcrM/ZK3ZZHZ1Qr+/w7HDBxsYmuxsTllVF00LrHCp0nJ82TCrD4/MFK1ejg2esRns5uaMQ+yyQjavM9pBsDgTcnRMxKtlBmf0gTdIe2GuVxqrML6TAKBwR62Fjss2X/sxfZnv3JlrBsgv8wXc/4L0Hj/jqV17nzVs3eOnaFvW9yB9+52OWjaYLjmgUPig+eOt9fs0E/vJfm/P6zVexCjarXJEt9um4trz/+4UG1g9q3w+Y9KJjcy/EwC1U4O51y/7mJoePK5q1Yu00bRexruFn39hj39z7Y/TrR9N8DCKHqhBWjcxOoAaAWgauDsBvaSIDmRKMCfBprCa04nhk0zbbS6aX+4n9et6zhkQGhow8Ry/ke8bJ4/jcsxYWJgHU9nttWlvTtjzYzpd8EhhmQQZR5T684NALycHMoDPIovQvYLqVYRxS55870eVk5eUZ2fsA6kWjMf7e8IuL51QX//nCY+DimiVHiORf7O/5RSnTyx+O/ZHhO4N/lJPavWvVd2jo3AUmq3S+Cz5L6r82nus7O2xtX2eyO+f+h+/w5NEj2sQm8sFHj1DFjKfPjug613chJ/fVhX7nZ696H6P3Z8bDKE5av24qpUSClMSqktmLY2IR0SrJNfn+BNmPzD50ZtjSyZFVSjErC167e4vDk1NWXsD2eAEOap2KLHzHwdEBf/itP6CstjlfrWnOjggP77Ncd7TNGqLDGYNaG2ySUiuMYnF2wNb2FkZN2ZhtcbZccr445u23v0dZTQDH9s4GJydLnAu40MLqjBigKEqqAiIOayNaFfi6wRYle9dvM5sWdHWDsWAKha0McwsmRA4PnlBsbLG7s58KahS7e9dou47pbMLTZ0+oJhts7W7y5Nkj9vZvsbm5RYyKZt3QNmsOjp5gKygrQ3PmUBiMAW0ibWhxqkHZwMHRU3aOdjh88oS9jTnB1Tw9eETdLNjY3mS1bDDW8PTwEV1m18LjAjx88pC2i2hr8L6TcVciu6UVRK2SXavIYGCiwugM8PQXisTyKyyybgM4TmmV2DRjYp2UyZd9TgH459c/vyOqn4MoYWbKIEntBczhExhIiLu0MJAmW14AVhEVE6g+OLEHfGS1EOZVaw0xBmHmjhGnM0BJJYnl7NdrfEzXUxqNFlYonyMhEVSkLA3WJtBTVKnWaACiiumW2ZZi/7vxWOQXUeyULC+WjxX/wnU1AqhGilIYwKz5FCHKc46pzzKO6V01un8WGdBFenbyPss5fPDpWaoeEFWUJgHWIAPvM6gmMtiN/WIyLG8CNh/Nk5AYBfN58nEZ3NSz8aRFto9Npb6TGJC61qUxFt+3aVqx3dN3tNGpuIBePjnbtjoXEMSQbFdZf/rYlEr+UZ7Lo1hYCIm5SSdQlBd/IbMugRT2SFGY6sFvSmVbfRTcSWtkz7aYNjutBaSojUoMjjKXtFJEAya/e/3zjP0antmviCrFjtL2RCq6TLaQjEdiy9KRGByFLTEavBP21qrQTEpLvWp48PAZr758k635jNNlh/OR0ib57+ARj+0ym6Pqr39xhxtHDhi+MZo3gwUxshwiNG1LObWErqGpGzrlUbqgKgToswoNq1UrAEHXpvhBS5MZy9XoIgzvab52H4d7rn/qhX/39kl2QWJEHSlwaY1KngcxMbsiXaiKCZvb16CYADIHjk/OuP/wCdXUUNy7yUa1wa1rG5RFwSePHN1yKSAyreiC5+joBDt9wuvTTUptKWPFVnuXG/Xn2GtfZeauXerzpVv6EbSZ3+Xl9VcoguMxp/wXxa9SrxWdF5ZZrWCyMeHm7vaPtmNX7apdtat21f6tajpqivoKEHvVrtpV+zegvQ2sgemP8JpRUYUN7i1/ni+e/h3eOP9LXGve/KGyCv862vXmM/zZg/8JG6rh2B7z96/9/T+xP/OpQUqdD5wt1igtLAwhOeU+KglqGEuM7UjGLSQAj1Q2RQLOu6S1E4SVIKM9GAUZUvBh+KN6quqQgybjRJhQXwxB3+Q860ugnlx9DaniOYQkIxcRBhydcni50gsuj+5lBqCQZbgutbEUW/5Zq8TwFJ5nNXpO7iz9kcCiHgJFL2hDJVMKLvQ/5r6mSrcLUXEJNoRRP1UOfqeg1gVa93j5+imA1Qdmhn7mpMmFMcjHRi4Ex0Pfl3ghyARDgqSXjxvF1nLgSiU68hBy0lrAbxeSTFoTrcVpz4Yt+B/89/997v3i5/l7/+f/A7/zq7+N76Ri8J2PV/wf/+7f5+T4mYAqEmAoV9zrFEiLiVZdxYiJGqMiRQE+CoAgJ476avcEMCInZZXqg2EhJ49D7CsMdapWlvfGUlUlTdP08zvPzcz2ZQqLrWZ88PiYp8fHrIKwx4ROSu50afHeoK3h6ekBv/Ibv45zv0njHGVo6Y4dp8uapl2hHKxRfHj/GRubG2zMNpjMS6Cla0/xzNl97R53tjd59qHiw7fuE0rFfHfKy6/fpvX3OT5aE7oObQxNF2iWgTYE7rqaazsldv8Gn//Mm0yrOTdfepm2WfLtr/0L7r60y8HRI7aub/KZ3Ve5sXeLjx894jvf+Sag2Nvd44N33ufOq3fZ2Znx+OiYk5MjdnZ2mbgGvZxSlBVB6mTRCrp2zTtvf4+i0hhrcK2AXLZ3J1TTkgeHD6m+FrB+RVef0iwfc37yhJ/98k9Qvt3wW999j3/6q0/Z29vl+Kymix21P+DgWUOMwoy0VC1+eUq9cNy4c4vT1RlnZ2smpSX4lpfv3ebR4yPqJhCj9EOjIASMLuicS0AkjfMhBasNqJAqoFUKgEvSwXce5zxGyXGd83jvyJxd2mjQuSI0BfZyUtZGopX1lDaiPIQuoALoxjOxnjUi7aU6Q4Fhe7ukmk3wZhPwHC/PaWt4/OAQrGIyqZhvGrquwa1lfp75VWLCM/guQhAAlWskeeKcxxqLbz2uFYY7UsJtOi3Y2dukKgvOTs9papExcy6kwl+Fdx3eeYILWGsJQRjvtNUiwQG9zEOMEL0kOUxftBvx3lFOCpyG9aplWk0ojcHHTt7jlCQX+bPE4pfXIRWxpVSJd11ABS1gtAA+ekhgqFiDMGNBUdrESuSZzkqmc2ERaRtH27j+3c+JTJleJiU7oG0aNBrXeQFbyXARnACjgo8iaxfT+pIyDt5JQgRFGoMiJeUTU4mXebBe1ihFAk4Z1uuG5bJO0gNgCo0ptTAOKp2AHYNMSAYogSQS8x4bvE9bk6xxImOhKQojldpOZA61lliw7jxtAkDlfcJaSzkpUa1BIQyMwnQo71HMldkxohLwmKD6Z2WswZYWjLwTAdBGZPMUMTEkZSCpxbdRwA8qMfhoiF3Adcn+SExbWvBvKdkk13fBCdAodCybU3Z3dlkuOs47aAv44udfoVSOD95/wsHRktfv3qEqDFY7qqlif7vk5PhAxiDt031inRFeQDZpSVZdSCSRbKj+kH4PzoCnIXGvwAcWZyu296acL485Oj2ldjXX929grWZ/d4t3PjxgVa/Yv7XBYn2MUy0ni2MBN4ZANCnxw9imGGwcNQaZ5IRMXpsUSNZwsAcHM0CeoUpSvUFrASUqYTLyMRC6FkOksFO2trb55te+xYYqeGV/j4ODhu/+4R/w4OFj3Mlb3PvlX2Zrts9nP7PLbHfGqo2cHR+iijNUjHQ6Uq8WLM5OCTcdGoOOyQ5QEfAINC7z5PzoW1QQ8BhgYhX7u1vMN7ZYLUpi0BAtdrKJmWxi1Y/Sa/rhmvehTzqalJxVCkl4k6U6kz0H5FmbZVhikjQLo0neJ5NVtrPkmxn0dDn5CLJr6gxeQnwHhtMMybs4sk+TQZpttdC/p/n86dsB8S2yKZh/RX+xdL7hnYzkHF1K0DFiFOCiXdz3pUe2jBNdqrflL3w2DNfomml/GKcc48XTDW1IIMahU8N5+ltTw3l+UEvXGidGx0USQ0Jy9JU4XmFG69wfq8W+x3Ku8ZwbfNQ0sVDW4IJntWx5883bbL20z8HhM46PHoKXZ75YOb71re9BdL3kZG7Z15KbSHJJxAzRZDIp6Vygc+4imCn5ECQAl9gkqreLxoMRkXdsLCmktaYoCrquYzza2SfLIKTaB976+IkwlCUwoAqy/mkTiMGgjDBmPDl4RggHsk8riEaYP41GjsOwXneUHqy1qNJglGGxWKBUQR2ER3miKyZ2yuninGJSMqs0RSmAD41mPtsmxMBqtUYpARZXhaHc2ODeSy+hAhTTOU3X8OT9R2zMLefLJcV0xrXdXQpbUlaRwydP0VExnc149vgxe9f3cN2a+w8Occ5TlmdMiFy/cYfCFiJ5bDTl1KKLCfXjlrppcG5gtqqmBdW0og0dj+8/YGYVs2mF1Q1at8ynU1yYcrJacH52RmE1i8WC1ncUFZyfNQQvMZQuRmFA8oH5tKQtoGkdRostcv3adQ4OT2hbB1FYHkNMzzoVOagoRQ35+UsRl9jYGrEJhcF6xMCU1hCfwJyQZMASU1OeI3nt68ETiIxvdJHoUnFWDFhl2N+csaprVl2HyMFrZlPDrVs7HB+vibYURu0O6nVH5yQuZG0CWoWEr0tgFVkkxIAIIdImGWcpCIvCQOxDHy+JSmTkrDWUVYExnrbpEhBnYI6JI0BPv6RFKTXJP/eSYGHYE0yy17OMW1FaUFoKO2JMYCs/rCfJJh7WzdgzwMkrmsfdJFbAxH+bwCohyHsrNmsyPhNTkzHp+fkoRYPh4rufQTD5f8H75ONkKbMM2Eo+Ux5XLkl7hWG/kx1AJ+m+VHgVJc4TXMCnMVJG0XUuFTOK/ay06s0oKehQiTlWJSaiAaQlflF6Xpm9So3X/DTHSRKAaKKWOWqtxhMT89Rge2ZZuSy11wOs0jPIfiL5/nuqPrG5tUnvWupzz7o4jNRo3mSglhrOndawmMY0ryX5DGr032y61K5hUpRszCxL31JHKKdT7tzcYXG2wAcFWuOCQ6lANYH5hqVuFlL49twmOvrrgn9xed9+Hlb83IkSWA9kPtV1TTU3rJs102pCNbVEFYUNrypYrBqqyUQKqzSsmjUu+MFm6bezZGekD/tXtI+zveieRoYD0BdJ9jeo0E8UqlGomRqcqij+ufKBYAzV5ozzo2PeXqy5d+s6VhU8fXzE+fEpzSJS78+ZT+YYq9jbmxDCPvVijesWshdqj7EwKywGxavLX+Lu6qtM3HZaW/J8Gz/tH3FT4tV4FBWan+2+ytf1W6yKI9AFyjt89CwWHQes4PqPo5NX7apdtat21a7aVbtqV+2q/SlqXwOOgLs/msupqPl3nvwv+dnD/5Dd9hUMf3oAnQGDjwVGOf6Dg/+A357/Nt+afetPdM5PDVKqW0cGXEwqjfOOGBRd66UqKShGpcNADoqKnIvWwozQdcKi4F3sk4tEqZztq6riALaJMUvHpYRFpAcvSfAq0S1nL1ojwKZIT+kNKTDce9E5AJTi+30CIYIKFKXBu9Anq3PwJp+nP/RCXy+5mDkQTWZV0iPHeqheGgOfMlBn/O8MPsh/jS5w6eeL/RgH2uV3o+BH768P5xDXffj5hfIRw5XS/eUwgurldcZVx/2xkT4Imn8zpo+/CNoaV3ZdvNV+XJAqwguyF2p0aHo4OsktGaNoOsP7nyz4jX/+G2x8+Hs8/N4HaFVQxMD25pTjuub4yRGz+YTJxHJ2tuhBDtZoJLWtKKoCFzoUQg1t8Lxy7w6HZysOjo4vgsHIcUmJbPo4Ckam5Csh9pWfqNhT9hPpg2Eyv0WyCmA2m4GC1brGNS1P3CnHixUqMVbo2AnwxCi62KJ0xcbEoEp4+uwI38mzsoWimk6ZTyyzYkfkxwyApdSa0gbWfg3dhNXjE3Q84/7hEYVquT3Z5a/9jb/GP/q1f8yTpzVHJ8csFiusmbC/tc9PfeHnWXfnfO33fw9U5J337hNaxUuv3Wbv1ZdYPHqII7AuKr75wVO+8+GHOL/mzr3X2ZtD266ZTCZsLjuoGz5453scPPiQUgfuv/senxw/IwKV/oh7u3v8hb/4Ezz84B2ezOZcv7lPMdtE729w7j3vf/0dus6xsbHB4vwE52Bve4Nr165x+PAT3nz1Nj5uE9yKSbHmyZMPqCaGqjRMmfMX//wv8t6Dt3jn/gM+98qX+fVf+Sbr84751haL5Rmh1sz1JjeLgnI2Yzqp8L7FO0M1nVKWJet6CQSC13SNI0aX5Ms8WhmU9sQughZpMOc7Cbx6xXrVYrTBO4dzbgDRRFkWcpC+LEtJ4BuRM/DOpSr+SMCjgkIHqIKiaQJ1F+ho0LHj+v51/nv/7l/kH/3Kr/HkcIFXga29TX7mi7d45eU9/vGvfYvDkzW+LWijpp5EyqnFKEt0jta1OCdV1c5HfEiyaEGYnZwL/R6gtcYHCWwKO5HGh0BRFhRFQdt2kmzwEpgOBHx0AnbqHDEilPaGFOGVym2jtAQ6lbxL3gcZIKUopyVlKfJlAgCMTKqKs26Fcx2dthSVQkUjgCgvDD6FNT1gKYvPKiUyBpJYNwwJW50SF5G2dgmkG6WytlCURUnwsl+FJN3knZcqc5XfeS1AyBzwT7T3Ksi88G3A+ZDzpUnWLoMcZZ3tQStBEjDe+17iQ/Zim9hIwKtUretl/e9wdM4TUoW9QhGiRwWRu1NWoY0RqRgj5oNzHoJU/uflzUt2KWHPJBErY5Uqz33E+w6Qa1tjCHjKqiJ4h3OdBL5R0hcXKYsCqw1t0+I7n1jFMmOhJDDCKBjdM1BpsVd845lNS0xiFPBukJ/IYKgsb1FYjS1yYkFsD++jsL61QewYL0kaEggsc1wYDCoYHh0fU12vuHNvwtGTJYcLxcnqlJ/64su88tJN9HTCR48es+7OuX6tZGu35OT8CceL0yRFG/qEc64sJyU0NCbdc0qljzbMLKeRkw2RSNTD/hlleHr5g7aNHJ2fsr095+z8kL35lOhOeHZwjvKa3R2YdyXBtbSu5eDshLqtCdGj0/6uIIEjs52hezsg9EmAYTPPib4eHK0Y9vMkSZElizIIWhuN7u9X3n3rIopAeWOX1958g2/81rf5f3zz9/nK5z/Leql47+OnOO+49+qfp6jm+JQcuLtb8YV7e9x/t6BZG2w5YbId+cLnXuaNWzcwCTLQJylHd9bv8M9lSP71tyGFZkRms7SUpWa6M2eudmhWivPDml/7lT9gVkz5qZ//2z/yPn6a5hNLklYaYabwKeEbnmMZFRtS7CJrhDGCBF7PwI1eyqNPw47AILn1dn4Cxcb+7KNjVK8EN1jMCq3iheetGADjMheTzTnyD1DjQoMwkIZm23983dEPyaId2dCXjh2Bj/Kxl08z9ld60PxgLg/gq/5LI9t/fMU/Mgk4nOwFfAoX7PFR2vcF53rhHfZSp5cPVy/s8tjXyR/1Wc4LSc/4/b4yThCri5cfEtsRoidExdna8dZb38N+GFieLjAoCmPY29vm8OycCNiyIkZYrdaMn5ZK65tIVllQgqGN3lMWBQFPlyVLLw9ZAlQEBSqEi+MQ89yjB5gMPmDAOWF8hAFQmv+EmO2IFjeST1VEYnqXnAsU2jCdWigUy1VitASCARMtVimK6YQQXAIbii29sVHRdA7nSbJYaxZ1g1aenemcO/ducPrOEaenDWfnYscU1rC1scHtm7eo2xXr5QLnAgdHpxA023bK6XqJXy7Zv3Ybr+DgbMnBmceYyJyCqXVMtkFrw62bt5jMppyfnaBxnB+dsj5b0bkaiDRtw+bOLvOp5dGDD3BRs727TTndIGhYrNcsjs+xZcF0blktlrR1wBawublBtzxnNpvStJ6uFVrpk7Njlk2D6zylLtjb3WZzp+CTx8+o5nM4agjeMa0mrFcrCJbN2ZyXb+3x5OgQrTuca7G24ux80QMuhW3HJ9bIwY6R9TP52SH2PoBSYks555NMcaK8TudKEx0gMbfqZEfJYSGExPg5gOpMVNgIbQRPxJbgW89kMuEzb9zj/oMHrJ+d4gmUk4rZpGB3Z5PlsuPg5JwQIAaF92IjK3QCAklRBzGzZGqRdPcBVLhY7JXjJgmQrkK2XeXXzgdC0/UAF1FyC33RW0ygGZ0W/l6uXuV1OLHd5BVCJbnRJL8WEgvQwPTkUCr5OkbTOYlhKQXW2GT7y7j3diqkY5Isddof1WhPIYOD0ppuEmhbJB0FnJafo4B20oqTirli8hti6mvP2JRAugL0kntxhNEelWM6se9H3t8yIyGj8ZavxLRUCnB/2KvlOWV2pGyfSoFA+rKWa4hU61BsmL+f9/Uc94sxpviT3LEPIkMXY0Sn2CPkuS7n886jjc6PORPZjezoy7vvsHZHSFLroAuLzgA5kk/eA6mkiFKYsJUwiOk0SGLUyzhqAZcJY5owwY73KXkrNM7D6WrJ5nTKzq5lVUPTtZwsz9ndnqOV5XyxZFWv2dqs0Cawbhasm7WwFqm8Jozs7Xy/o3hebycNHUj/TPsIF2A/MqbjfTRC6zzrrmXVrCgIKKM5a5dy60FjrMd1LW3nWdUrOi8y9L2M3oXdVwbpghuBGu1P/Wo3iiXGfqcddrH8TNKYKtWbCRF5HlZpCmPoDNjJBFYdTx89ZHF6yKyasVh3tL7j1r17bGzvyUhEEWnfnhWUBSxJEuSlYe/6Djeu7TONm7y0+lkmbnt0X6O360fvSjzXi6gUczXnNfcy7xbfpioKZoDznvq85cOjFbz54+vnVbtqV+2qXbWrdtWu2lW7av82trm7zs8f/M/Y7V75cXfl+7Z9v8+fW/w5vjX91p/Iv/nUICWfQEnRQ5OSCkSNDgqjNCZTj5OCGUoqyYqy6ME82d0OPojsWtDk2L9SMQVJ1MCYNHZVU0BDAmYvEt2IfVBJ52RZlGBUn9APQmWdI1DGmgQokAq7XHlVVQV1bJM8RJJV4OI49xVH2WUegY3IFVMpoK/RicY4y5SpC9+53C4Co+TKgdAHBy4H0NOgD3mFEahqzFZFGtFxAmPow5DY8Vli7gX9kkOHYM/AiDC6//F5R9EWka1KMnlEUrZpNFYSQBgTWfWV5OPrp1+GFGzXOeDSR+ihKA3aWEL0hK5BUXDuWn7/m7/H/G1PbCOqbdna3OFLP/WTfPPd97BVgadjuVzL/O5jg5FJVWBUYGOjJNodVusVkyIQveOTR09ofEy56gGEJnedAqZRJM0UaX4oGQMVk1RDRGSCCP070XUe77v0fqT4rNKsmzXGFkLh7qUPjg6tDUZZjDaowuB9oGsiO1sz3rh3i8fLY05XnSTYE/OTa9YYK+ArMzGoJBF3bW/GT3/5izw6POXw+IS1q4nesV51WO2piim/+9bXOTo+5PTco8sZMUa2txuu39hiPm3pfMO1nU0K27I4XdF5w7OnD/n1f/pP2JkUaDOhmGvW7RHLZcdsq+T89Jj5G1+k3LvB5jTw8k9sYYvI5KDDn+9DMMwmM776xc/RtR1PHz/lxqtvcFif8y9+53c4X3ruvfw6s+091EbJk4cfYb3hJ778BdbNgm9+49us156TJ2eszh00NUfHD7Cm4Stf/jKzjT0Wy2Peu3/A06dnzKvAb/3ubzHfdBw8fsrjg3NWbUvULaiS0Dqm8y1++is/xy//u7/If/T//IesHz9l1aypJhUfP3jA4rxOwfiIxRKBdd3Rth1GK6wt+jnTNi1dF5lOKpyLrBcrnItMp1PK0lCVmtWyxrmA0oboPUoJo1FZFj2TV+c6eS21SFxqBQZNgcHoSKMiRVnylc++xHe/+zahXbNZBm7t7XBy6pnubjDb2OPxgePBg3eolxHXdlgt1e0+0dc719GdrSmriugUWkc0hqYNrFcdOnomE41O64U2Fl0YvHcooykxNOtG3pUQWC5WdM5SWEvshFFHlokozCl5HTESwHZOgKoxRJFuQpiLXAhoHQlpnZ9vTbFWZNma2uHWgbZZsl43xBBxyjGbVzjvWXee6ANVVYIKAsbIzGpAURSs6walDNYY2naNc5JkNzEkcK4lhkDwoIwESJ3vCC4QW4MpC1wbRG7OGLRV+FFg3udEZPB9tXNwUeRUvUjfQQrOR5/WqXSOlFANae0yxmCIEgBOAWjXOZE8sxpdCEgsuoBrM6B1YBey1ooEa4xJhtWTCIXIzCbGWKy1OOdok8yD62JfsRxTAjTGDFSGojDEKEDnJnREFemcQoW83gu417vAelX3sq4gYyoIvUH+TF/YS0KSAo3CHKFknDst0oKSBNfJ3gAfIp2WCuSiNJKA0UleImSQWmIqKw2h87Knh0h0Htc5yijPyViBEDkX+ejpI65vzrl+Z5+NbkLXrPn4ww+4sbNFe6Y5PW/Yu7lF61Y8O37A2eKMOjq8uSjnplSWJBgDe+TnCL19gMose4NJkPdGpfN+K/t1TmJHFVjWHc+Oz/nu+x8wNyYlX5TYfKHDR4i+4GS14PD8TIC6MeK1SFtoLQk7lTJbubI898Iqk5JbsrlFJUkmNbIBlDJkSRGFSckUhTIii9mlpE7UCq8VRVmyMy+IwXP6+Bm/8S9/k8IZTk/PePvtd6lbzVnTsrldMdvdYtHU7MwtOpRyfRtRNqKKSFF5ZhsV+3dfYTbf7ufSYGsp6IFXF63PH03rZ4OMDRC12DmVLTFFwcROuXNri53dDd557wEfP3z2I+3hD9NCku8JKrEEqgT4jAwJ3P4PCew42IHjhGXIhQy9RHDvKAjTUhhs6h5SM2RwB4a8P6plZMzIpu6BTL1Ml7wDZVUSQ6Brk/yn0T3wlsyq1J/z8kVT0lCNLXbyHfVfiyr3ZUgeqzRIcdRPnvv3+O/LV7jc4vNOz4XTZLv8Qjrz+YRbWvsjwzDyomOyvzYGgsWL9n//vTj8M/thWZ5pGDwZqDi61gVWqgtjcaH3vR85sFaRpNPEN40+YJSAag+ODzBafDrvHcZq2hhRVp57INKs1iOfTq4yqSqMEWDLqnas1mu0CWhrOF+uZL0dJcYvjn9KEueT5UeVkv8XxjvKTo5SPTuLSsVApGs471Bq2FvlFRTmDa2s7OGJjSdGxXQy5db1PR4dPUvj7QlBkuuu68jshcbIamWNYlIWvHT7Ho3zPDt4StOuiSRWnxg4Nx3ffOsturqh6wIkoKK1YGxgcX6A95H9nR2KwnN0ckrrA+fnp7Ttgo3ZlPDsMbOZoSo6zhcNZVmgXcPm1gbFbINiajBWEaNjc3uKaydUxQZVfc6N7T1CgMPDQzpj+fjggGdPn0HUrJYrERouFKFdMS0r9m7foOvWrOs1IQaaVU29biA4jk9WFHbGzXafycacutGcHp/TtI5Q1Lz70QdAx2Ll4LyV2AqBpqmJIVJWlhv3bnL9pes8OT0lNB3eRYIOdK6lSyxKMSKSs8lXNHoAyed3QqSPI2VZ4Ds/gPxLYRhSaNrW9TVQWabeWtvLwwloJoEytOpjMySZX4zYOoWxvHJ9nwePn6GcJzY1W9Mp57PAcr2mLAschnfee0LXRazWKCOMO3lND9FTrxy2MGl+erFlXaRrPcF7ykIAyz0I3Vh8cGm9NaiYfGutcM6hg8JGS3C5oGEAPChFD47JW49sP2oAoiQTRViz5R021mAKLbZwAkU51yVbEZEhTvEAMkuPEjbtEAWMkgHjWikBB8YkIawSy1GyZXWyr3pgeUJWyJ6Xl7wkLxcHBvMhNKPSey/9iYEErEqrSxTfS3zH0DOvElNplkp7Z8xSa6oH+qeFqGd7EsZynXyF0N/HeK/SWpiXYkz3oEwCKcfenxCGRSkQkaKqxNCEMHdlINcwzyXemGNfmdU7dBHFJbBnVAOTY5oEPYt7L5+c9/zx3jDcbzJj8Z0naNW/c7K/ZPm79Cw09HG/ZDhEn/er4fQqg5ZuglMek8a1n6cRnHOcLM6ZFSVFWbFZWUxoadbCSBsD2Immbmua9ZrWdfJ+qVxGo4hpvqv0jLOPMO6OvIsj1q/BAknvTuzvZbBp8r3IDrWuO54dn3KiFz3YLqIERIiHKEDJ2jlcCCgiIfXDpHdDJNR18v3yDBI5RYUasd7nOa/6Dsl9Zcas8S0MwNyY/ZRkOxgrrF50jocf3Wc2maAIROdZuQV159E6cnZ2zKMnj7h14zqlmQCGxnkpBkvxCms1deNx0TDzu0z8Vr/ujKbiaIx5wWi/yFKLLzTfhpj0p2y9HTU8e6XhZfey+HPKUFaG29e38I3jk8eHn/7cV+2qXbWrdtWu2lW7alftx9O+DMyA1Y+7I1ftX1Xbb15np7v34+7Gp2o/t/w5/t71v/cnOsenl3trHRpNVJJ4tYURFgwV6Zyja7rE/iDH58qzrpMAXKYMzzJVrktSbtmBTI5vZoSAnMQCifOIJ6/1EHwZgDgSrMgB2pCDA9ITerW0vhpajtXaMJ1vpODrGd53FGVBNZnSdp7oMktUDrbkkHF2EvuLXALQkCr9GPVJmG2IGu99quLJQY3R9+JArT4ONvYJkhxjz8GTy07vpX7kYqkhnn2pn5eSAHlc48gRfo4dSG6QLIER0/3qnnhgYMIaxf37IODw+RC4z9/JFWgXqppH95XvXZg5LlZT5UCZSUGYEAUM50Ok0B3geXqyIgSphFYx0C5O+I1vfA2UpnQFRVGyOl+ysTFntXJ4PNNSc2N/i3v3rvO5L/4E//V//fvUOtD6cwgdThW44DCZdSVKIFDAcnn88v1FkU7IAcQYIQX3YqqcNjo9ZAXBO4y1Q8xMCQuBb9o0DqCMBHu0UKkk2buAtqCtZbK5ycbOPqtHj4lti4qO4CLea9beE4KjrGZszCZgoKoC3lnuvvQTfPlnb/G7X//nvPvutzg+rkFNWNeOp8cLHh9+kzvX9qjbI1brM8pqwnyyhdWKD97/Ns5ZfvHnfxpbnPM7X/9DDk4cTw+eUhSbvPzaG3zn/W8wizX3bhR8591jWM/43JfewExaolFcv7FNuz7h48eHrNYLKLco7AZ6XuCixwfDyjn++R98A/d1j6uXXN/aBuf46K3vcHh2zit3d+k25qybFetmga4UITgWy1Pi+RLnGoKLKHXK/+e/+U/Z292idWveefSQ2ntmG3Ds1nzn259wtgzMZiUKT9153OGpMF/5FfePPuL//U+OeeejT1iuayJIBWOIGGPxrsF5YZtpuwbXOopqwuZ0QoyOdefx3kvQ2wtzTdt0SfJDY4tUlRkCpjCgDV3nCUGk0wpr8d4RCLSdnEfWuEhZKmK0oDVBR0Jh8UpD17J6ckRBxRs37vLsg0949c5LfPTJktOnJ5ydn/HERSql2d7d4rV7N3n29IDHh0uapkabDleDj5H5XOFajzaKEDVnZzVtHTDaY82E7b0NfAigND4G2s4lEIkWAr6oiN7jQsvm1kwqcJ3HlgWdj/hGgDFJYAdlNK7t+mBxv9fEQLCJccNKUFgZAVD4EOg6h3eRrksyaDGtwUHYj6SaVeOi72UWvXcYUwizmVY0taNthOlKTyQxFOwQGB8t0NLnSJJ09MSomJQVtqhwTYMyEZRU/yol4BJjYk8cGEIkOEnkl7bEuSaxOAlIyfc0/lmYJmKN7YP1mRJfG5324YB3bgABp03W+4jvgiQAcqW8MSkJJIkpkYMJRI2cI0aKworcRFHKXpeq4Md7dOcdwfmU8JX92xhNUZq+YlwrS0TTtB68lzEb3YN3AaW8AKKsQWuFLYTxMKaEy2ATqH7fkwB1Ar5ExXrdDSFsJc9aCHNCShxEujZALNHWEhTgZf8mASK8FyCasaXI7EVJ/vpke4T0TIv0VE7PV6zPV9iqZKsqYV1yHE4JumDdeE6aOlU7e8pphYkC6DFKSdBeieRNrvy2WtiaJHEV6dqW49Nz1q7pZTJivxNfmI4DeDYlYoQJyeFjxaOjU56dnguLkDFURUHwiuBbQozoWIBxNEjCywIYy7yqcB6arkPbwNbmFI1hvXbEECgqy972JovzNWerFQIGV1SFQWGTPI1CKUNA4aIT4FgMOdOAgMU1hoiNoIPYZ2unMKVi02tOD55S2oppVeGbNatFQ0DRrVv+y//iH/LGG2/y1a/+NG+89AXoSp4eHRJDk/qiia3mG19/h3vXPsP17YohfJ8kWBnG9XLrAQ3k11ENg/6C1p/lctbiB7XePkpsakRsNKigicawsTfnC196nY3NLWYb2z/cuX+ELbOvQMSn9YBk9/kQRKYyJYtVSozm342yK2TGoXFecdziYPwPH4qxCEjirAfrZZt6lMwaZIByYu/S81IX/6FAbDCjkn+jh2mg6OUZL06NS0mn57p8yd+Igx8gv77AffRcG0vDSeX/Hz0vn2u9nzFOpOW95vlrDv1S+ZKjW7gEOBq6Pzp3f9Hh59EBw6MZP/d8/wmkw3DR3mfrn+Gle7+QvLzUv77PckhIrHtyOo8i0KFoXOhPte46muNjjNHJdhOAwGRS0TQeoyOzSUFZaHZ3t9jY3uD9dx9RVXNibGjbNboo8J3rZaIvJGLzfxPgOPSMMtkvGj2TTMKb1gk1uv8B05X845BkbVOiMwOQ89xTwSfmJ00wcHi2oF47gnd9Ij0GRZa3igFUkYBdKtB2wqh37cY1bKV5/PgTzs5WoApCiDR1i1KRa/t7LJZL6nqNNQWzyZyqsJyfHROi4e5Lt/GhpmpW0Aa6rmU6qdjYmbA8X7B8smI+tdRth1GKm7evc7Y+w0fLxnzK4uSEo7MFznv2t3ZxLtCEwCePn9K1gbqt6Y5PiVFRloaNacl8Y8pyueTo2Rm3bl3D+5ZnT5/ggutZMV2QpHvwgRADdXfGN777TQpTYKxi3TT4GKkqy3RzzuGzQ1ofsSoQEYaiDNSou4YPPv6QBw/v06xbfBp7YclRAjhy4tcGwDthzrXGsLu1SdfVnK8aeS/S/Gnqpl935DkySGoJArRn1dGCAsF5Aa6EGHsbSynx84nC/hVVICqNihrXtTx9eEBA88r1mzx7eoStKhTQth1126IUWK3Z2JizuTFjVpQ8fHLIeV3T1DWFNfgAMWpibNOrr+k6kWFWEYKJTOczxP6NshdmezsIWDsikmORgLUl1iT2VgRM17WJqRRxQS4zXUt8Qd4v7weQItCzUDk32l+isHLmtQmELUxwTkk6OLEhxyisU338w/teKs2T3jMt+8flGFe/qgUFOibAlMUYI2CetABkAE4IwiStcxwoAaqCzwUEwzs7rCGxByQN9vRoXU2Lh0rjleXysr2dAUohs16SAUwZHKb6NYIUy8kxJ6UiOgoDdoiZMVb1vpVCXZiPebyNSax0isRMq4RNOAhrkuqpfuLgJ4S0X6kISdpQBeiBRP1/R/Gx9P7k9TTECG7YW4R17pKdHQSclpk5VV7I0y1kWb1eUvF6hHK0tyk5p1EiX6iNwUTwviGqFpwiOE3Uwv7piRgbmZqSSSz6u5Y+6X5Mc+xRIYWUPaAnBs7PVyzrNX70bvUTfbRfXqRQSjZyLi4JgVXTZM5XqrJAKU3XOUJwgEnFNAFSsYNBMZ1UaDTLuiXgmc8rZlXJet2J3ahha2sD33lOzpc43yUgrE17pkky3LKP1V1HwPdFjUpB7CAeAzOFilH8zShM107DdFqB87RNjVIG59pels9oy+LslPVyyfn5Mbdu3WZv8war1QrvOrm2VqioWS9aTk9Oubc7sNulweNTtReYr9/v0B/Sm3j+DBH2uz227CYndoEyiqqyqKpk3/0QduNVu2pX7apdtat21a7aVfvxtDeACVcgpX+drQXe50cm92bj5EdzoX8F7bP1Z7nT3eFh+fCPfY5PDVLKTn7wXipxlCbg0Ug1i4COei4DhgrnoeooS7dFMuhocKt6yutUHSUV9jHzA0giMyUmy1LAIE3d9XItQyAlVWIlWmVJFEiVVUyhguDT/URYLZdATq6LVNH5+ZKucygURSHJfzrp7lDFTe+8j4E/vbxCTIEvGJKGPgOXcjCsv/2LOYoYR+MhwIQ4CkanK0lQbXTd589EGpcsSSR97uvNR8GKIeg/BNxzEmh8b32iIx8Thwq6nKGQU4xCPIqUHAGfAusoUrVhpjUfsTzkfo7zSn1kZ5wvGa4Rc+BLQpZ0zpFZ1bU1+AhaRVwQynulhIEl+EB3vsJay3otkgxaKZEU8oHpZMJXf/onOT4+5Onxiqf//Gucn51y887LTMqX+eD9d4g4lAmUhQSPpYpeEtv5GfeVejmSF4fnLNV2w0g7H4T9xKSKQmv78QhIFSDeYZRG53kdotDAKwFz+NZTlpZyojDzyDe++x0Onx0TlcfHiEYq/kOQADfe4V2LNXKtxbrlX/7eb3L95g3QFmUmNN2C4Gup2HMtVgdmmzNuTSsWi1O2t7fYnG/iQ8P9Tz4GNUVVBmsiLpRszAvaToAizw6eEo3h0ZMjqolh/+YWobWcOMV73/hD7m0t+PyX3uTb3/w9vvPBR2gd+PM/+4ucr0957/5jYrfi6bMTFusV5aQieMXdezepZhV3X7nNtbt7/LNf/ZfcuHsPZVv+xa//FmerJYbIxqxita5RUaNVQac6mvWKb333fXCGjZ2CcmYJ5zU+eqrK0DaeLmpOzxYE5zFKAtVRK1ad43vfeZt3kCpBbRS20HR1A0oxmVqsmdF1qbq0i1Qobm7P+ff/h3+Hr33j6/yz3/62JE5TsHu9lLlolMaWAkbwib0uhiDyVd5DeobrZQrNG5PAMJ4YNCGKdJVWFqU8W1sGaxQmaBrn+O4nRxTWMplt8LXvPcBXE47Oz2idg1XElJFrr77EZ77wOT574zZ78zn/t//4P+Ph2VMWZy2FlYrOpu5E3kJpmsb1wbrNzZK9GzMmM8tysRaAUNOioyJ4hQ8drgv4TlYVW2gqY+lCR7QF0cN6UdO2Pq3/mrIqaNshgB37NQhiNHgnwVJCTHJCjnrlU2WuwhgtknIpMaeUwnnPYhFSrDn28j5SVV7iElBIqRToj7IXKtWlHI8aEjoIRXpOLIcYcU1AGUQSS2nWizVd3WKsJYRI1zhcqnSfb02wxtCtu561quu8/DuIxEdeWGMc1o2caPCJXUvWnKFyOyb5NkIkBGF+0FZjtaIwCqxOiVhZVVWS0fOpYtt72b+LIsvTKPCe4BXrdp26JBXuItcGRWFpnU/JL53GU+ZzQOQYQpBAvrEW4wQEHft9Yoj4CwNfIHbCOKHUcM8iJTjai/I+kdddoowb9LJ4gMgtajCFEbBMGtPooa07tIlJak2S1GJvRLSJGCX9sMqkJFRKNKY1/db+Di+/dJNCa2z0dERU0FgXiAaUrrihNc7k5xr66n0ffZ9kisqhgsYlJoBIxMcCH6EqoYyab373fdZnbc+WpfI+nOaJJFMH9sPBhgFrKjbKAmWMVPIHjZlYXnv1Ls8eHvPkQABUW1ubAuhYr9jZ3qRQkWlV8PnXXuf9Dx7z4ePHFFPDz3z1C0y85uhoTQiRzf05d/Zv8I0/eJvVw/vE0PLyneu8dvcGpZ2io4BUjK744JMnvP/kKYGGkOQvMpuDXDz0jJjBR3CBYmp55c4+jx8dcbZyhFKj8UzmJfe2b+I8rN05Tx/c561pyc58m1lxi8VygQqO6Dyxg2ACvm4kg8GYZTInCPUPTgIM2/tguySowzjfkC3fHy6pEPv53FfAQw+yc4ikzXLd4ArFdGP+Q539R9nGrEgqKkmq5kGJmUk1t3zsYGuP0oa9FRiTvaoYbMcepjKys+U8qk8Gm0LsdJdkeXqgf06CJmaHwWYTVrb0GGQepmM715FBMzkB6bO8dLZzdUBldZo/YgJEGJiH1IW/+rGgT6hfBOf0YJPB8eq/1FvMnyr59YILjwBPL+p13k8v3Mjl745PPzgI/Xp08Zpj0NHoV3EYvPzbnHzuvRN16Zx5pC51PQNqh2NIQxT778i6LG+csIrI0b5/rsOteO972aV8y97VgKKwBTdu3+Lk5JQHT0/h0TExOmZVSVns0NZRWOr6YY7DfLzQ5yHBPNz95bHjgs+R90Od2HZU/63Bp83sOT3iScvN+RAx4vajjOd8cUbbtGJfECFaQOwisbnETtHRiASwc7z/wQcUD0qMsTSdALZd1wmgXMn+vKpX2NIyLwXE4r1nuV6wXK0JUfPeBx8zqSbiR0aFtpG6dTx6+JRyUgmgHM1kVuI7xSePDwk+cm0zMilv8vTgkIPjY4iO2DVoU3J6dk5VaJbLBU3XJX9LMdmcEYlMphNmW3NOz88pypLSWp4+O6BuGowWFtN1XSefWUHUBO9oXKDxAVsplIWgIl3Xsl4JSCqiaBuHQotkVC5WidA2DV0j88xag9GK1XpNVApdmAQ6j0Qv66dRgd2tCV/58k/w/gcfcrp4cmEdCzFgEghCaT3I3aMh+gGAB8IEl9a5qHRi1gmAJnpNjBpjDArH1kaFXciZAtB4AVw8OTzGu47Agjqx1uT1TlWGu595nb3NbfZnE7rwXeqHj2lDwHUy3wTsley2BN4yCsrKMNssMVaAT5lpM/YApEjwHoJK72Ni2/NSCKC1xjnXr51KyfiOmYV69bbIiMEljWOIBOVEGi4O71aOm8g7MwLhABktmNfFzEYlbJeZDUi+6r1HR33hXc/3kSXdYAC2yBoBbd0m5p4Uh/ERlxjLtVGUlcQm8jj1TEKZHYlITxk+0sDqmZai2MFif463ruFYGaeAVhZbWrwLSQr64qIUU4HbIJeaChhVKgGMAe+V+GdDwEz8ssxm1z8/1Y+/9z7Jh2fJtGE/HLd+3PLqJ85Gb1elh9UzN+XQ03PFeqP9N++1+bMMutYMRXzCHhkznqmfV6EvaJQ+6GRn9iCw9J2isNy+sZ8nYiqOUCL5SSAojZWyA2HsSj5Fz4qUJlkGjZFlERVEZSRmpiK7W3N851k1DYQxC9UIDJ3Honc+h6OsKdiYVpTWoLRBo1m3Hdu7m5igeHpwTB0889mEzemU8+USUxRszqe0bcON/T184/n46TO6zrO5Nefu/i5d7XE+ogxsbMw5PVqwWNWE4JhOKm5f22Eymcj7oyLWljR1x/0nB+KfjvoYO+CxgrsgDMQKnQpsCJoyPT/nIj5Goo7YieX23nVMtByfn6ItTIpCOIejp3EdMTphnUvvpyoitjSp8vl5i/9FoO0/qo3NxTE2TAGGQJnWmRr73HVe2C48wsFnLimxpP3cQ113+CjFyFftql21q3bVrtq/0hYZAcmv2lW7alft35C2Br4G/PkfzeVeWfwSP2zm4Ae3ofy6xDFTHRHFaZyMfvPDt3mYMwl/MlDVpwYp6awPDygjTC0S+BEHPCcyh4CqBOvGgYBcCTUOQMM47j0cOwbzyMcSXDVWU1aSJNXGsF63EnRKSQ2Vggk5aRmCxxhNWRqMKXEh0jSdVKIRpUImerkPIjq4vsqKqPCdH0k75OTHEMggB1aG8D9D1Wo+LCUwY+x/Hv89Tmq9KBCSx/+PbDmIcylBMJZ9g5z0uOwkMwr2jJ5firgHooRMRgmF3tVWXDh/DsaMr69TROZCP/LDJRLjUF0nFXOZIUlfCCr0vVVZTS9eSHrk5G7ukwTxhLlrUOuIA4tVTNWRSsB0bdv2QfoQBQxUKpHT+uTRMw6PjmjWHd51GNPSPXofa+Y0TQAjfe66LjEAyPU1SujA9PD8+meiFCYxi0nVYXjumFwlnav5RdYOlJT7oZSwLsWQ52uQ5L+GqCwuKFyEg6MnhNZTmoJJtcPx+Sl16CQ5qBVVWVEZjzUKHRTdqmGtznnv3Xf55JNPhMHCGqyecnp6RllYVGXRGk5Ozgg6Um1O2NipaNaHHB2dcl4rmnrB0dk77O/u4WjoupZyYlEqcvLdh2xsT7B41nWJrQrWPvCdtz9ie3POzisluoSn56ecrc5p6yX/2T/5R9x56VWChlt3b7Kq1wQcPsB8VjGbz1gs16w7z96t62zvbXB0dASlp/MN68U5VVUyZcZ61QhTiZPAePCgQ6A0BauzFQenDbacsDhb8sB5fJBguPaK0pS4NjHaRKkC1EZJwDfCrChROrB0HUEbnBPJta4J+M5hlaaca27enfPJo4/56JMnoCVRK5W/Mg/mM1ncnfN0ddOvaVZpmiTzp5NMh3MOpTUhOGLwPYuXABMKrl3fYX1+xLyqqAqFSIQpoom0Xcu/+MYfokxBUIYuKEL0IidnI60t+Et/87/Lz712k3f+8Ld56eV9jt4+om2FEckQcFiUsaAFSGFNiSlg//oWpoSzs1O8j2hVooiJ5l/j2wB+EFKKPrA4X1E3HdraBCBRzMoKrQ3OdzgnLEtaGTwxVSsbBMs3JALatqVxHbY0bGzMhEXJB3yXmP1M3tNkfdLjxETamnNFcEjvWD42r2EuMx4gQBD5W8A4MQT5jo9QaHk+MbI+X6OUvO/Re7rW0dYO10pQ/9yvKQpLV7doJVJqAF3b0rMVkQDDlxPRo/Vc9kvTV+JbI8kYrTQaR1Ait1KWhumsIi5XNIklSKm8ZoV+jAAJbPtAUdqU9BRpF+cDrnEMAIEkCeGFnSkaYbRSaAjCGhYaSU54lxJL2vfATAGIhT7wL89Uo02yCXwK6CsjLANhABf0bITq+T0xR3ozAEprsLakqKww2EXonO/tg+gDne/S3JVqYx0VKoFdheEJJl5AW8F7tJJA+ubuBmVZ8PHDZ6ybBuc9OkRwHV1wVNWUqbIs2pY2AQu9S2xgSb6k0CXaQNM4kTqxihs3r7FYeg7Oztnfn/K5V16nKiZoJfMrpr0zqswpkMHagEpAmyiJHWssL710my++fJPpZMpsOmdx0vL+oye8fvtl4kLx7HSB1YGvfuUnmDrHx08O+OybbzAtCrrOcffmLY6P13xyeADGs7FV8hM7N6lvOJz3TOYVRTHnvcmEwmg8hsIatqdTZpM5ASimFbf2ruNc5OHRCa1vUvI/zQWj+8fnk7yjJ+CUpus0j58s6YLFFBqlAqaq+MW/9Jf4hc9/lT/4nT/g3cff5ad+9kv85Ge/zLza4/C0Yb0+pWnXtJ3IzGxUBddevstkc5ssrPbHbb25JDu15P3yK5SOMS/+6qc6+8jKA6UJMaC6wOnpmm+9/T5d0Jwtln/sK/xrb2q4CwFoq94OziAR+Stevlvyb9L/5aexrdjbsqORkh/yNwHZI7QVKUGxpzRtdAlQNEiojUEo8pFKbJeJSaFPNAtzRuK5or+6vIwoxP68MKv6fqs8KJfuUw664DflJOfoxntwIiIN3SNmcrZ9NC4vuEDv213q1CUATx7KnPy93EYD3P8z92t4turSV3qXKl583nH039zH8ZjkY4e+j+bK2GdDXbj3C1Pl0t/5OgMw6qI/JTeR11S5o/y50tmWGN1HzKweSa4pBO7ff9iD1oSNJ3J2fkyMWlhAMhpoBFCKozFU/b5G6kfqdXqPcmJavtB7a/25xiDmnDAf/GY9vIA5qR1JtguEoBLAHybVlNl0i6OTYzrfpMsplDZUFkxh5TvO0alIbAwhetkHlfBmBNckEJ9OLBhpDy0M63qNIVA3DW0HnWtpWkfXBSm28F6kWcsJ3iuabiVsvt4km9jTOcd8NqOcGhq3ou7WwsLaee4/fMzG5iamsJTTkqrrUK34Y1U1wVpLU7csVjXltMAWmsOjQ7RVQMC7TvZaAm2bbJ+o8CGzfio2Nqa0XcN61aILi2sD6+DQuiD6rve/fSo0CdHLfqdVL3cYvcf5kI5N9n4nTHMh2WtFpQja841vfZvzsxptNM53yc4VVpmyLIhRnr/3CQAcYwKHxL4vPRtwVKASYjzLYCmZf5ubJf5IYx+VsBEh+sGWDoGT5QJtLEobkS6Wk6OMwjnP6fGSu9duYHTHtWsbPDm0uLoTIJEK4KS4qCgNTdMAMjeK0qK0pmk6YVq12b4LKQwSRmulrM0ibRyJ6AQsV2iT2Icya1+yB+X9Ed9ImK/p33GRzgtiS1uxyXtJsxj7QqMMOFKX4j35HRyW5BzbyoVa47EfrUejdzWGZEfEwU6OXkr5egbudE/epeICF6lDK+tJEEB4jjuQY11p7Hqlt7wG5FhVjr1kOywDhsZxN6Rfwiil+7hFXqt0ngPpC8O4qP4eSfehtIYkqTyOl/XgpORrjTeoGATcn8kWxzGe4Tr5XuXrWXau/2z0vMbg3zGYKxcf9mtqvs3ROip+YHpmPs2t/LsYe9YtrXXP/J3P4VxAe40dhfyUQiSuFRwen7NKDGvGaEyMtE6YvDcmU+q6pU5+BDn2FmWOWGOZVhPqJsVNiezvblEay+nZGT56NmYTlDb0hYP9xvNHhavzpzJiRVmwvbPJrCwpq5KJnfDo8TETU4kUdlGggme6MeHutV1WiwmmqtjemFPXjsm0YsEKYwq6JIVpjaashBlLaUVlCmwqqmgTa5P3QVjKEcB6UVp01MIsjIx7D+7VQ2EmiFw2eRVUmjbJnitj0Eixzt6NW7zxxudwizXxwQfMtg0v3b6GZYJzHb5d0bUNifAOEyPVdMZsa4fj8NFonD5dU0RKPDPdAdBGQzPyGuaqZYMWowIGKNKLfBInHMcJ7ofyMPLaJ7M8RGFbcy5ycHSCsprg//j+0FW7alftql21q/aiNjudcePDGz/ubly1q3bVrtqf6vbe5q/xVx//r/hh/AlNYE7HNb1EActYchorQPyM63rFLXXORDkKAhMcEfgo7PBe2KOm+NdyL5+m/RAgJciBYa3BJEkZTySoSHCRwKgKmVEAWGd2IfkkS7f1gelRYESlgBlRWDkgVZBpjS0sk4llMisl6GEC66YTx1PnILaSRKpKDE7apICSpu1cT6uu0fiQgn8KIlI5ExSoMAoYeDck99QQ6E0fIqMyvlteEIm/+OOLKmNz9OSyxvrlNmZZkvOmNGQKaudxHZ8nB74yD8AgkXYxeJ3BNRdvhFHVTnzh93KAKabgwIVK5RAZ+I0UA7vU+EwXz/eie+8BYlGqxPJJdApU9bGqFJyUajYjVe5Krj1IjEiiP+hcpQkqBf0MhulsxsbmBrqIHJ8c8+D+x1glRcUdLaComwbXrSAGKltQlKWc0wlwRfV3l4OSF59bDIFghC2sD5SkgJxOyQKjNT442raVn5URYJORuKLRmrKwaJ3Yc1IwLIRITMHgrpWAvQpw89o1Xr77RX7/G19nvXiKJWCMojCBL75xC11NeHxySqSgnCqW9QJVRuq6JQaDVhprItOJQVvFbDZnUpaYUhNM5OmjI3RoOD+tOTt11HWNsRrfOVSByMq1BcF5Sjvl4NlJkjEoiM7RtA06RGK4yXc/fIcHJx/S+CNUBfWZp102OH+faAKPDtbYWcVmofEeXnvlFRofODk+53tvvUN8u+X07JCTs1PsRDObTVgsCuq6YV3XNK0j+I7SFompTLM5nfPX/8Zf4ZOPH/C7X/sGUSls0LhuynQ2xakT2rWj6drEpKPwMSTwmCYni4/Pz9AIU5fRFt95mnVHjBoHFIWm3Jzy8dMD3v7oGV2rsbagUSI3Vha6B06gFHSarvV0zsscjhFCwCSQjXMSmFUxgo4JxJeARkpRVh0bu0Jb/uxJzea1SIgOpRKQE1gFh7UxMUTJPLJFgTWRs/uH/F/+d/8nvvmVl5lZz/bWnOmkoGlWOC9JpVk558adm5ydn3Dkz3AhsrU1x1SWrvM0aygS3XsO4MbosVbjlaw71mqMFfmPqDXlpEKpgC0tQgav0E7TNi2FNjgt4EL5rqGvCI8RnATKJRmmiTFJlqXfW2sTS1B6bxD2I6k2H5J5IvFmZJ1IAd++AljlwLkb1tgEJNNagAlGR0k++SAACqQiPCdBjDFoY2jqLi3dCtd4XCvJIa1EmiMDK4UNKYOnUiJpFCEfJzqUgqiHinKpqJU1Twg9FDFo6rVHNZ7gU92vysF22XflI52qgnP1c1pnU2DaKItPcoR9AkJFohqY4LyPOO/SOCpUjBek52LniU4SannTyQxF430gr5NZvmQM4M3JpJDomJTRmJhAHGQGITWyORRd52SPqEySWxT5OYsAGLzyaOVlPvVJjUiXZB5a79Cdo0qSFNqYXtq261qOjk44XayppoafeOUejz854Pi85nO3dtmwEx6+9xFntcigEX1KYHuMVnz29ZfZmUz55rsfsWhX7E0nvPnmZ3j0/lOOj9c0NSS8FigL0Y3GYryPjhJmfe5Jgv4nZye8e9+zsTHhpz73JrOywgSNUYrt/S22TjY4aRaUc8MXbt7l3t2X2NndpVnWLFY1s2LCpJiiTYWmwa8c7YZHW0thC5QqWa8DREupJ6xioNycs3dtj7mqcDHgraGtG1zbQdQIwF0yW0qnv/sMk0dFMGGCRnNrfwtc4KxeU/gCreHGrVu8+RNfZb5zj1dfO+Xm3Zob91qq7h2efFjy8SGsjh7h6laAASgKNPPNXYyeyXy8lCj8/k1d3MvjpYROBEVIKmO6F5D7YdpFrN2wnvngcSFA5zg+OSN2gaKqsD8+v+IHNp0TRCnJpzICO7W81hIhqixH0mfLLpjYKX82fDfbwcQLNnsGsBIVKr2fxsgfSPJH+SSXspkpp5jWNZ0kifyQkE4JvMyk18+HnJTtbzVfYZT865Pq4xsaj5YaPr/U+o/yunZxIC4co+ILTtCf5xIbU1onhqGMl79woY/DXQ59zQClMWDnspuUtpu+D9+vSbI4/fuCk5EdyYtsUp+qxcvDmrxINZxrzPSRYZ/Zq+mHJuZ5dvGExlomkwkbmxtgAsdHJ7im6+eLUnmO6JQg9KiUWI3oXg51dJfJT07vwQjQcJltV/Y4SeqKrKEmRN8z1KET6FbTgxN0BoSOwBIhxmQjyYWyfG0xVZJwtpbom/RWRozy3NrbAa05q1u0nVBWluPTU3wjAJDghS2qKDSTSQVEbFlijfTTBU/dePCOpnM0rcc5N4Cokp8n0vFLjE4JWa1Edi4BN1QCBDR1x2SiwERspWnqjhBhtVoSCNT1Aq0NurAYFHvX9ug6x3pdc3h4SAgO1zUZCoM1hmoyoWlaXC02TIid2GsodITdjU2+9JUvc3R0wttvvQ0WCqUIFBgTKQm0rafrWmF+CclrTAAlEDB1EzxaCQuxSuwn3gexadP6aJRmsW7xviEESThrrZM0rRTEkMAdWhlIAOsgC9ngX+d3IuZVNs29tDYqoKw00w1NqCv82uCnmUlIAZqY2LVCdGjvRmukzDcT4clH91kdPaM0EVuU2MIwiSXL1cDAee36dZxrOew8DoctDdWsTIUYCq0krgOZgSq9+1oKBApr0LaAqOicyGJrc6nwIIofnfi9E/hrAMbk+U8UaWBjTM9KMy7sysD+LCmlkx1KHIoeBlCj7p/thaUojbFgh0brcPpdXgQ0Kl0ng2vFZs4yY6awPQN58AK0D/7SlhbTWhrzvjUs8fnZyzNjeN/ixT1sAGhJn2SvVQksFBIQRPexmcioGCXb/FH8VWGCHux61fdniFnFZLhqpVJBQEyFGiSfJY+V74vT+qK3PsY0AJXyPVxseVUf2gBUYlh38vMZHZssDgFdJgm5vC/I/pcK8pTI0403Q6VU8k3F7vQ+EExmCEvsdCnWQPAE1xFV4Mb+NayDR4dnTCclN6/t8+jJIauuS/KGMnfzE6iqkjs3r/HoySFnToraqtmErWLC4nzNKpEnZdAiSg9z77k99bKhIiNQNw2Pnx5RFYZbN/awlaXrWios89mE3a0NuqOOQMSWlo2NDbQpJFbiawgFtn/OGu2C+PymACUFF/WqwTkpKmt0iykLNrY3mSAS4F5BvWpo6jZJQA5sZaDExZhn+yhNtiAsVtOqYGNScb5ao6LEWOYbM+7cfInCzAg28PrLt6BcoMMh50eeZ8dwtuqI3kFidVYoiX9GTacbvGowfWLg+9knkQ06dvSaKa5/F4XoTPUjr/vdaBRJVYodaibK8ShsfGqgUj6P7GNZgtTTdh4VIyrIs7hqV+2qXbWrdtX+VTbjDEXzpzhgddWu2lW7ai9qFrj5o7tcbU5p9DmTsP0Dj1VErqslr+sjdlSNSTHxEMEz2PM2ydtf/C68qk/YVg1f87f/WEClQLgUq/3h2w/FpJQZX0IK0GqlUVYUx/vqzVErCksk4oMkzow2KVCag0FDYLwHckByRBNdsVwdYw3GKnQhAZ+2daxWXS/PoLIDmhy54HOQBzofcCm4FwmpslWAVrmqsA86jIIwOcje5xBGlVyMnMXLAJS+jcFYjJIk6ZtD0OjFD/ECq9EoYDgEsEaB/TQAffXaKHgtwzI4seN2QZLuBYmIXpbjQg9eFK5IoDCVb1ld+HyIdsV+WED3AYLL1YYXgo6j5LvctOor0gJq+P7oZVAAKaEfAwJEiTnwJmACozXex/56SikmVcXdl2/w2mdeoakXfPtbDYfrJR2ZaUnmsFaWoizwviXLGPYByQgxg99GgczL4xx9GDGADckdrSShFMKIlUlJQFp7oW9PSAdh3rAS7Ikh0rQtzkeCS+fwDlNoggfnn1C7iN3wxFqeSZRsL6fLM7Srmc5nTOcb2Epx8uFH1CenlMVUgEYqMp9X3Li9gy00ppCgknOwrlvWCweto3ERVSjiylHYKdWkxLlIs65ZnTWc2YVU9hYlQWvauiN0jqIsMErTdc948viU7V3N1u6E+eaEptFUGxOcr1ktOpYnK4wylNUcayzrpsFOSrRxnJ0d4utWWJKUZ328wuCYbW1St6d0awfBEGNH3ayZ2oKdQvPXf+Yr/M2/9te5/+gZR48fM9svcas1nxw1uK6DrqOpPS54kTYLhkzOHnyUz7tUhasU67aFxlMUCt8JXXaIAa87UIbprEwB/Q7Xpopoa6UCUIMyRujmjUbpQOucSBt4oXfXiZlnXG0fHSLJoRLLDob5fJPdvWucL5/SBI8LEe9dArhMiMoRowBjIh1gCQqazqOsxfiGp08f8qu/fUxcrzEVvPL6HcoHTzk4WDPRil/+O/8en/nsy/zn//k/5uj4HDsJzLZLCarFQDkpJdHifJI6yLIKEhArJ5atnU1AsV43+FaSBSEGmnVLDFrkuDRJUk/Tti0xOowW/giR8JF5r7WhtKUA7AijNYTETiQyiaTEQ9t0fcA9BhlznSpcB9CLSoxEsm/kNSWHCseMdF3XyfdVZiuQxJZKifEQEqg3yT5M5iW+C3SNw3uJ6iulhIkpgV9iViQYAaUE0DMKtI7WG+c8Kso8aPHDd9AS/NVKJCKjoypLlDa0dZKCiFEAb1oL8NKnFIOS+3RdKwkvrWldk/opyQNrLCE6fFr2q7LANS3BdQQHaIW2JlVie6yFqiqpVy1dG/pkS79epjXdBzGrxkAsYhxY9NLvJCnk++REiGmcyfbGAJIIBHmDjZYEkEmSb17W37YNGAvG5ip1AaAprWlbhwsej8K1wnTkvZPks1coT5JWked5bX+DX/jJ1/leLNg+7/jJ11/Br1re+ugTVALqkeX8ELDXzm7FnY0tPnpQor1no5ownU949eVbPHl2zjp0KB0wJgGtuJxUiP2/e+BaSk7lsT09XeHryBf3tyFqPnjwiJPuHD91fOa1OyyPz1g9WeM8nC9XHJ+1zObbUJaY6NDaYZSjtJrr1/axjePk/IxST7AYYhPoArx6Z59lc84HzzqqeYnSmodPTlh3HUEZog8cnC+kGj4lFhWS6IoXgG8Qo4AYX3n5NjOjOWsW+GAoJiU37t3ll/7Mv8PrN18jNJF7r77CtCrpzDPiYskHH33Idz72rNsOpRNoDvAu8OzZU+puzbQU4AB82sB8tsMEQOzzbIvQRWE3LJKB6qJjokxKH3xKMMVg6fXPNYLMP+chBpq2oWnWhNZRlIYN+8fnavqRtJirtkMvwdizQYzGM4+RJNplHVAxkqUlIyQp1PHhQ2b1OZYgpXtJaJUYDLvOiZxiiIwOBlSvgpMW2l5eOvdT+p2YEno/Y7jHi2cbJUlHoJps48cLR/4wbbAfsx80fvtf2C6b+ypb+epCTxg+Hl/p+RwlF9ftfl9i+FtlKaHL11cMdO/DrWSvhdETuPBLGbZ4oR/jx39hFIelcPA7+49G/selG1NI4jyo/NxHwCCSP2GEKcmHzHI6sIOUE0NRRpT3bEwqTto1gdDP4QRXwhgBU2dgTfZLjFF9srr3onq77/L9XR7UwaeN3g2/TeDlXuYonSb4gIoiN62SNFa/B0cBH3gvNse5X9G6TphpWgFKBCIuKh4enWGsYTKdopRhtW6IQdF5L3LRo/EzRWL5IdL5TljyYpK4dQLSKicluhFZ1sIaYhCmzHXdyu0YsWl8tntCFGYmrUTu07QUtWI6tRhjmcwLVJI46lZepMMAU1QQ4fDwkLKqMDYCHt+JvLItJ8QQWK9XYMT+9n5Ya0IIGG3YnlV85u5Ndnd2mM63ODs6oIsNTV1zuqrl3r2wZ6INMYGLYwR8krmPCcytFC6ExIzjMVZLQUyQuIsPgQ5NUVgyq5BzgRjoQfZJf/7C3h+CSM5dgFXGYfbL/KCfH9nPCEFxft4RluCi2Oleedaba8RGTFVefrSOqATgCUl6NnScLgMamE0adKXZrIRavGs6bty+xs/8zFf45OOPOTo+7U3bzNitjABjJO6UJIJRyaYMwpBXWow1dJ0Tmzt6fBcT83eSL0uLm1YZNhwH9p20ruhkw2st0nfRDeBXOWRY0zOIzmfwTBwxlyVm0sF+T+9nYrfMzEaX4zaKMcO0vDX5c1uYfj2S4juF807uoTSpMMsOz86L1Frf9wy8DBmElo3veGEdzSAr5ccrzLBXxhT4UYKiEcYcq3FdTDLFjPovDLIXtpjeZo2JCSn0G5m2Q4GgFCzm8q8MvsmFCjKe1lqsFTn2thmksfs9ZITGiqO1egB8vngX7v2H0eI1gHpzkWD2QUxijpLfZb+yl3bL7EkX8D/JdrAKtQvxPENh07WiIqITe5uhLCzXdjaxQYMqmG3O2KgKniVfJn2J3jdEfDpbGuazicwfBdOqZHNzg+1VS3N4QlQBrXvKLi62OO7wCz6nH4/trS1m0xlHRwuWXUulKrTVVNpilEJFJcWt0aOwUv5ijRSYKrn+xuac7SRbHFAUiY1XBcXO5gxUoHnapHkrhSONy4F4TRsH4HYGKSmlUJVCvSpzRgDDsl689MptDHB2ssAFAf7t3Njj5TuvsLu1j1UKqoqi2CVSAjXYFcv1Oc4La7pKRmgMsF7XnJ4dsbFrObeP2ele4Qe1OR139PmFMe1nenoHHBGjBRDrY8AoKLK1pGASHbf1IgGVvj8rrCHm0ScSeKqfcqZOUVFYtkPXQROpik+dLrhqV+2qXbWrdtV+6Oas4/j28Y+7G1ftqv2b3zaAN4Hf+nF35P+P25wfmdQbwLPJWzyafpNXl3/2B0aJb6glP2MeSAhndKhWUuTwg5pSsMuar5pHCaj0/aWkSzwTNRTKf2/yPT4pPvmB1/l+7VN7HcF7lJZknvOeGBWlzcwL4syOwTs5mFKWls4JY0JM0jHPAWXSd3KAJyY976jSv7VI10iyXtN2HctlQ7v2kpTvg01DkFuTA0gC5JBIizis2khwZwhKaAko5ICF1iI/E+klc4L3CVAyBDJ6+v9RkFddChx/v0TBGPA0BuR8P0ahC9/PF2BInPQ4nXhxUv5RrQ9SMXLiL/cRNQQ51KhmegRgkk8lAJaffXxBPONCVXsElZKx+cAhWDQGveWA/1C/rPqqYQmeZQm4nI7yzhP60jdNDmvlJLbJ1cJhFJhTisa1PHz4kKMnn/DStQ3uXd/m8HBBiAobFMpIIkLRoa2wHcUu0rVdf78mBYlCyEGiyxILw4D0rCBpnLWRpLqOGnxO2Cu0Mf08yuw3Ob2hnWMyqYilIuiA7jwxKAF6+ICLiuhh1bW03ScUpaYKoJRFmUjTKj486Kimmq0NR+dqThdHBISdpm1aYRYxBa2LHJws2JhPcN2Kznt8jJhC47pA1whTzXw+pVIGbKRuFlg7YTqZ4do1Td1hC0OzrGm6lq7phNFAK1CGNnRUkylnNezXE6wCYwvstMJEw/GzJetFi0axMp7gW5rlGfPtTfb2pgRf8fDxAav1gtfe/BymMLz9nW8RdMC5jqZ1qXLTCXAyKj732dd49aUboAz3XnudX/qFP8Ov/vqv8PjkkIXz7M42efX6Df7w7BHGVHjWuNAJoMPJ8/QhCPAtIsEdJ4kAAUrQM6SAR3mFq4WdRUVFdALc1CoBLJXCB5Eyiz7LbUYJtiuFwoj8QJLyin54Z6KXdwVAaWGX+r3fXuOCY1ZUZH5/USyQxIF3oDDEJBmiYyBGR+giHmhrR9M1vHpzlxsvTzirz5jPKrqdgnp1zGH9lOtnU86W50lOzRPqwGxnk3VUuLBGa0kAeG9Ydx1VWaCUBMdtUaKUoWnqlOhR1OtaQKhekgNEh9GSqDDWSmVzqqBXSgvwNYQkCaqpyoK2a4hA1zV0ne+TD5kKnyiSbXn97LwDDwUCXpJ3MwzroJK9CAXRxfSOS4BUpcBkFCQU2hiMSpW1AQmEFrIH+RBwTUdRlokwMFBUitl8TllVIvt2ukBHSTTkCm/BCfkhmT7aN0KMFxL93nlU6DemvrIbjSTwFGgtAMfJVIBXDZ6gArawwtQVQBcGl2QUlFJJWhCs1rjgcF0EL/MHo9HBEzU961fXNWgtUh1t6JICjYBNdGEpCyssWsbj+nDsaE9M4BoBbuaq9cTbMJbEHO9bSOIj7wdZFjGmJFQ+SCtFUZg+4KutxShD14icDCqijEUpnSrfh3cTEjOXyvNT+me0IRpFl5IVSlk2ZzM+//KrlJMpb37+Na4dN+xubnHWHqJzEiH40b4XCVEALrvX9/iFr34JWk9Raq5tbXLWLDDWEHGJPU1dsoPyHOf5/WZsJ2nF3t4mX/ns69y7dYNPPn7Go4MTwgzqxvHuR5/w8OkhrnOcHa/w2zvs72+yaM55+PiQk+WCn3zzNVodUBZmswlVVVEVJZvzTabTKc2yxTae2pYpTxKplw2Nj+zcuckr0wldHTlcdpy7D9E6oHzakxNGSBci86KUVPQWwOuffYm/9bf+Evfff8jvf+N7hG7JxvUd/vrf+mXeuPFZrIKgoWWDaF7C6G2YHbG556ieneD8hNI6ujagA/hO8/j9j3nn7rf4mc9/BavLNGqfBqiUDS55D2sXEsNhYNm2OGuYGosi4oIT+eFPcdYf1JwXOFRhFE10NPWapl6jVKSr/vQmFXpgOCNGiWzPkf0JGNF4EmLoJXJjyFIm6aujQ5MHkhKbQ8I1k86pBCqSRSUvoaqXeB73QvXnTO9+TkyOLta/cTHb4bq/ZraXQ0aY5mR3DzIZGcmyjch28pzXcNlnuuxXDJZ7/t2nTS8+/2G8MO4vdGBedJJhWR18k/75XDxf/P69ufCbHuqQARQXHJvL5xnWvwv3ML6JC05OHF+BDGhTPfBpvJ4+9+WhhwloN/wsx3rvODtdsD5fsL87Qyvfr8saQyT2zCxomTWDTFKer7kLMc+q4fML43HxfehtEgbbRV16rCb5Qj71QSuFVYrpZIInUqvBxgkDnZj4ID5Qrxvxz0OavzLZccEIS2PdYQvoOmGg1UrYZo0xmELAE8t1S90IAN8HAfkboxIIPwHLo0cpYQbq2k6YrTAUtsRHAZu3bdczYyqj8b5LjGngg6ZpwfsCTS1jYQTYgw8EJ/uia1dEAoSKznnms4KIYd0s6ZqaG1u7oBXn5+fEJJcUkn0XcRgtxSJFWWEnE6LSTKYVd27f4Q+/+U3OmjUR2JxO2dvf46PHBwLAjQK0zMCz8boTAn0RDNCzx8iPIXm3Gt/JOPRLVbJZgw9oI9woUtSVmFn6+a3RRsDpw3s5zEFIIDkldm/XdrStp2yKgUHHRJqtGq3l/HlJj5CYoaKsit4nFjqZmUZr5hsz2uCoa5Ez1lbz5PgZv/f7X+P87ByX2EkKpdnd2mRV19RNC4jvY3RBi09TU+wvkj3knUifKaWFZTUEiFqYtJ0UOHgf8ITE5vf/Y+/PfnVL0vQ+7PdGxFrfsIczZ54cKmvsavbA6m5SJEWKkixKNqy2IF/4woYB/gc2BMh/ha98YVgw4BsBgmHLsmBREkjJtgBRtGA3m81md1fX0DVkZVUOJ/NMe/imtVZEvL54I9Za3z4nq6sHukvGjkLlPnt/61tDrBje4Xmfx+SIbQ7bvBZnRQ0hFKZNda9h4CnPWxhO6542Fm9hctK292BsX9SAS42Zze3Yun/NisfE7HYt79CYhDLiLVY2vnPvS1GF2fEhBBToD72xoagzYLOrC4m9o3HhLn+ra4ybxfVGsGTB5Iz3NhLQmn1d2QkpXWpxtfKcWooek46Sg8gkVydq/pGUWFJOuUgsFt8tV8k9s6+0xuWYYjnGGDtOEpiNaxmPLn+54Tu88k5vHDuC0mrcps6jAqKX4t/YeldiWtmA69ZXZS1mznxocUdJmdwI3Fe4tnchmJ2eS5zVIbSN561H9yAJg4e75ysO/UBurGi0votxjJVrpGQ+yxsP7pLOrQioaT39fmC3P2DlT+DFg3qgFoC8vo+OGaVs3CyWLW8/us/d9ZrNpmPfdTQh4FW4vtzy2ctL+phge+DpxRV3Tpbstht2z3uud3sePbxLK7Y3HroDm52wCGc0wdiYY07kPtJ1iavrPTEnpFdevNxyslpxfn5Kk+Fi0xOTgRinEOO4aTJKv6mMMJ62bThdrTh0A4eUwcNbb73NGw8e4zE2K5FAxuEJqCxplw0nJ4KPQooNKW5RNUbY3CtXL17y6PwO373z9/nGy/8pq3T/hhUxGwMo99z+qL8VSDPge4yZHgNWejHbchX8kS1agUpvui0f57MbZztunkwoXHKalSgR3wgSba7llA2k28dXvnvbbtttu2237bb9ebXUpFuQ0m27bX8e7Rak9P93LZP4T7/w7/B3f/gfcb//yuce58h82b0Y/YE/batApW/4J/yT9E4hZXh9W5BYMoy/d65jkOFzj/9Z2s+cxZBSxeycw5Vk5SghUyjpxwBv+awyUHjncG2wABmmdV2db5gCITXoMYJPyochONpFg/gasPG0zZK43xdZt1pxiCXqKmiqBohKsqICknLODMNQkgqKKw6xVY8KKUWj+K6B4WyBiZTzeL9jUmHyeY8D8fbXMbheq8hq/NkqHGWi87/51dnfhCkQfcQu5EpSpN4PjNd7/UucAty1WtBiykVCp5ymvkspgZd55VhN9oxh8TFaXgBA1DhXeVfjMxwnEWpCtSZj7L27MYlk55t3BlNgVqZ7mNOyj5gxAanE4jpLQYwAKCXGOPZjvX7WTD9k8nWGVUtcLPnxj39EikoThPM752z2e+IwMCQsGS8gcepbKGNqHB8GgKuU8D5YtasTkxmqwU4Zu7G+u8Ks09oUHYZI0wTWp6ecn5/RxZ79bs8ytDw4XXJ+5x6dJj789BOi9zj1xCYjZJz3DMPAsI/EvSP2jqX3JfiYCE4JvkVyz2Yz4HyZyzkba0xU1qeO5doosDfbA1eXO/bbjr6PxioVoF0FXGjQLOyunpege4n5siO4wGLZ0ixaui6TuoGhT2j2SNswaCRohmFg0w3kKAx9ZLkMaNzig+P+vROWjbINgmQhDTsgQVqyu9ohOiBeOKTE5dWOGJXL7RXX2wNOoG1BsGB11IQ6R5cSP3m+Zf2lL+OWCyQs+PLXvs7l3/vPeb6PBPEE52g8eCJIg2gmxo6UjbVHEJrQWHA4YxXgWfFAHIaRXSGr4mjp+0CMCiRi6o31q8yBvo+smgXeNwyHDnJGJONQYrJ1yodAdzjM448ImOyZOANHSUAEYh5MriwrhCVeHIIlkbImvIPsLEjVrAJBAvlgDCO5jxxUSIV14pMXV2zkQBpMsuNys+eLX/kC//n/4x/xX3b/bwYOnJy0tGHBwztL7j1a8+MPd4TQ4lyiCYHFwrFYdCiZ2KuxfPUDUKqgtdDdJyUNSuMbuv5A1h6CY3+IeD/QNE1Zy1OphBZC07JYNzStg5xpF56sMoJkUrR5nkvgchgGA9OIFEmwwrIhTNJedW9TA2GmNF9fiwxRSQ5V1h7JanKOTUCL9Ohuc2BBICwbxAcaLwTxxDTQBksUicCQOna7A4tVg5fA/rrDiZDKOuIbj28DcYikXjlKZOi0pnnvMdCoAYKyJhAITUMFnhr4TTgcEorD+wYJFVBpzAUaFcUSXU0TGGKPb4IBmVAciT71VEbFFBXX2Hk9Jn3ig0edsnDG9BNTIibwCl0aOOTKmnDMqjdK7JQkvyXApr0dcUdh1ynRM+0ZwZvMyMhIRdmZy34RY8QHIYRQWNGSJSoFKEmsUILAlHftg9AuIKnS5wr7s2SeFwM85RxxqrSN54tffIcHpyf8w//PP+Px44fILnOIHS0JFetFlSr/WUCICB/9+GMeLRruLs84SGZ3yFy/6Pj+Dz7h+dWWvIZMQFiRcwmO14T7CFqaLRLjYpHH/fP07IzzdSDvek7Pz/mVXzlFyLT7xPMXlzzvOvbdwD/9w+/SxwNvnZ3z3R8+4cV2w+nZki+89ZDcD3T7jm/96APaheMXl6c433PQjGSlDZ4Pn7zg4xeXRE189OMLti//kEdv3eNv/NJf4uMPP+N7n7xk312wbDw5GdtGcJ4qEWm2nRhDV4bvfv8j7v63v8fj++ec3T1B2oYvfeE93rlzn1NpQQTfKjl5wON1hbq7vP3efZo7kcuLyD/5re8SX3yA6N7soug5WZ+hDOU9NFCkmGoPvs660tHC0TFZONrC6sgRDn0ieEyitRgwR0mk+cllfuZq+4xpOPskG9vIarVkHQO7rYFgXbK/bw4/x0mFsrZW0HidWmPiUyd7VmSyr5XCbBGKVKmaP6H1YBiToePvIuPnNeHnvVW9T4UKMple9q3xpxR/oh4naPnuZG/HuicoVCkvA7MKuYAZ6oIzJrCrMSvHl538osn21tkIG23oWfq02pQGeOGmkT6dfuYr3PQ5put9jhP6ykfHx90w1wuDz6vnOn4Wjt7NzevI7PPpGjdm4ITiOfr0lSvLdFQ9Zx1fx/f2uqeajcfXPM/rxpqqAbw1ZiR4LnY9h8MBVfBeWK+WxjCUkoEkRufmeJ5PN1/4U8q6MQGS7cGMiW8ah2aPMEq1C4J3xs6ZU0acJX2XyyVJE0M/sGgXnJ0s6A4mc+5T2U+KRKKomkxuzgaKSTZvmsbkc2ORJjPV3EiMxkJYARcmMyeERgiNY3/oSX2mSwbSrww3xiQqhTXFFRBYntaGsh74si+nFNE4seWGMvcooKYq95NSZrFsQDOC7c/OmU0lOJxGUCF4Rx4i19cRcYlcWFKvrzb0aaAfIqhJn0kBe2ixX5N49grLB/fo+p6mbWhXJwwpEdWk2foYudhsbN1DycLInFsLl0yOucrUUopXIJFnU9rYVdJAKXCpcn7TOM0540NTgNq5xFrSeF5XHWc9nhB1bUYoICX7u9m4kZzNRrGXKyO70wjSUBAPq2VLfxiMOUVN8jRjhTh9Vj59dm2+buPph46mWRCT8MGHn+K9MZEF3+CcsNlcM6SIcwHEW/Ga1vGvIwjLpLMSBoTyM/u4RDayGnipMGQmzXh14/qcNRa/znz20DgqlamvY6tMNJt2ebRJqyRzfT9zf6LKeqmOvDxl7NRFqbz7G2tZRX7l7MaNMudMHMxGsmImX3wWK/IIoSVj9m0cktnrzjH0kbFYQwyoWIv2Yp8K2HJuh8+eRub7VZlrweSNNeW6URdwiGASyYwLby0wMHA1RfasyE3WmJB3zKXwKotsvb6U94iUPdZXoKAB0ECIQylEmq2kY6hKZoZWGe91Hz9a3cuv1S456oPZ+61fk2qrlXdqE6fGSHX0H6yQoQCUyn6sxb51HotVuuN9xOxIxvVguVwQnPDk06dEgfPVCUNMNMGV+pVpHI2Wq8Bh3/H02TPevH8XIYyy9f1hYN8NBgBS8IUSqD4RRz9nY/umjaEQh8x2d+B8ueDO2SknJ2vb8wQ22z1JzW/a7vc8vRKWy4aXF1sutgYQPd0vUR/QlNkPAy8dNO2CZYTrnRW8nCyXJlPfWdFLcJ7tpqMfIu2iJatju9vRx57VoiljUUY7ycZTXX2t6K/rI08+fclX31tzeromI5yennL/9Jyg1f9QKzRSB+IRWharE9597yEZxycfXvDJk08Z4sacFFGCb8gauXA/5ifrf8zXr/+HR102TjFVWrEg/2jDlEHrxMaLIBAqe7JJr4YSy9P6NDODaqU957LnQlezQT0f4sdw+JgUpw2NeDqRynUPuIn167bdttt2227bbbttt+223bbb9v+7JvBk9Qf8vx/+7/nNj//Xr0QKazth4K4c/kwApfGSAg/Z8UV3yfv5Lp8bI77RVnlFqy299H/qa//sTEpVJF6F4Nwob5CyEmMJ7YpQPRnvjR1BxJIBwXtCcHTdQN6XoL0a0MYVBxyYpBXEnCIRq5gKjSDBglzDkIiHSEoW2PXBoWrulCUI1JIghYFDHITgGGpwSGGIxY1XwFkC1pLEQooKZGOhEDFZnuL4H8uSUYIYs7/PAh2VStr8xalCvLiXUMBRgAXa3HTuGnYvncDrBsUowcMUOBnTFjfi+DUYYsfWACRoCY67GmxhFtQZn4dXrqG172bPPLJbzBI/N4Ma079Kwrgmq1TGYExlRprOx8jiUR/MqtO0fGeWlijBCKQCwPJUzVbuwJLc9uzG3mUZp4wFBSKZzaHnD7/z8QRMQ8ga6ftY+l3H8VmDA1Leozg3yrzVT50XYy1patAqId7mhQEfUgkYZZrgjVnIG7hiiBZ4jjEx5IT3jkXTgij37j/g0aMTvv37HyACbTBq/6SRJBAqiK3IV2VVWif8C7/6DWj3fOv77xOTvdGh0GT3Q09Wk5Vr2sBq6cmSER8Y+kwc9gz9wNANDFFxLhGDZ7/vjV0qBFJO5GhMTjYHBcSx23cmCdElNFr/SyMEZ6ANTcpnz64JoQWUQ99z5+4Zi9bTHfY4lOVqxf37dxDf0B22eAetb+j3A88+3bM8yehwwCF8/4/+CPEKmjjsM4vFimaRUSI+enJMdAKblPnd736H3/4n3+IrX/0r/ORH3+W62xHE45zyfLfl6uOesFjQd/3IyqBZyESc9/S9SUI478gYy4wkS3AktT72LhRWhYS0lZXOqowRo+626mAPObNsHffvP+TFi2fEYYlzSowD/eEAWWmcLeG5jGUfvIHDsAlq80eK5KZHwwK8g2GgzQNelENWC5iqx0nAI+TGc75ccLXZkyXhg+B9YFDl+bM9q/WSpvUs25YnH3xGs3CcPl5yenpG0zg0wacXV3zy4gXr0yWh8YgscCEwpAPilDRAip4YE75pSBmca1g0jhi3NK4wGaWEapHzcZ7lyqqiSwicnCIZxfki++PKdbqDMZBlm4U5pyL9OEvqlUCuqJYEnsmPeG/JspSUWOamIDa/UatszCUIjQWdxYux9pU1IcVEP0v+5CTEAyiJrJFGGmJMuMaxWDWsVks21zs2F3sWyxXr0wXDoS/Be6uYzwLrsyWhdex3B3ZXPXHQsv5YIkWyM3BNZc2Rklgq+1FoPA4YhlQC+Y5hiGgCk8K0sZNVje0A+zeqLLzDI1Q5OS1jL7TOgrEFnKeDgrc9M8ZswC6xZGCtAHW5yGyoMESTW9LSX5W7RsngxSTZyppuVdKFnl6LbIbWZIIFhuseZkmRIregxmgmCuJNjsJ7hzi7D80Q1SQywRUpPFuTxKkFnUu/5mivNTTW135RWDFyQgtjGEVeJ2Xlgw8/ZPP8U+7cuUvsoGmWeAfPnl6YxJ2CSRaaDFBdX66vtzSrlnv373O9BUicnZziQ0PGquVddngyTlIxSCfQ2jHwYtbKBTRnnnz0lE/fuMe7X3rM/umW3eFAWC25d+8hb7yMvP/kBZlM1x9I3rNaLpCsaIJ+2/OdP/oRu+2eqNAdEt/6wY/56JOntNIgCmfnJ/zar/wiOWQGp7zz3mPeeeMh60XL8myFOOH+mw/5xZMTcn7E9dWWb73/ExAxVVO1vS9nGTkR0cRus+Xk7C6/8Y1fYnlywvU+8a/89/5V7i3uVOMJJ8IyNEjRUxZR3nj7Hm+8Lex3metLz+Gbmc32M9RvyXngj779LVy65PHDd7l7562SjJCZpHCabA3JKI4+Q1vzd2KV7oLZN6enLSsgZQgCTbFxExQ2pWOQDehM+mquB2IjxBdDJmdlt09sthvSMNDiyS7QtEIUA1L/vLY5Q2eVcATriQo6mluP4ip4VEZTNoQiu5mKPCLzBOrsWvUfAkKR8ZwlH3PSIplniR3nJ5bVyWye1npGe1Inv0Vn91uBBqNBXY2FMY2Ejvcz3aTOxs/rXMAJ3DP74iw5eEQcNE8oluuPbAdMKccpG0ZhpDjuw5tpydc1y71O4BmY+QZHR+nsGWa+ytG15JW/Hb3Ao9857sD5t8Z3xXg/FYtx/P1Xn2585vKP2bScnu913xvBsTNwqJrvPMRE3BSJXQy4v93tjJFvHCa1X6SADSrYQWb3Xa8/Pb9qHt+dD96uWeSSKujMe08hnSxMLAau6HoDe0sQfBPAG+Pq9WaPFIAtAuqsgMMpOCmAHlGyUxah5Zd+8S8hoeOPfvgjhqHIMhXX1YqTyp7rDdAQUyqgEDFwUjYGJDAwtSaTAnLOnqkyN00bmo2kKvWas46usjgDAkhhbj7sh3HtiNH8kqa1goKclcWiZbU0cH+MUiSDBXJm6BLr05bsIDSe3W5DaDxt6zjsemNmcn4EiKkaUOv6asvv/NPfRyPcu/OI3f6KLkUa34AofU5024j3nhitKEqKvVEm1EzyrxQ45Grv2LMbQ4gzG6l+t4yJXNYvJxNIJqfIch148OABn332FMWYaFKKpb+qVK5dzxVW1REcdmO+WqGU7Y3kyGnraVct14eeKkim6ug6Y9Zcr1pSF9kPAyF4izt4s21ztjnSNC2xfH56p2W5Mj8wJ7MBDsNA8CbnC77IZE8ApRQNoCRS5kKxzWOMFisq7IZWlGa2oXgxCenif1UgnOaMipBiIozgD+vgnMvnua5aFUyv43Jf5WkNoMS4Z88l9UY2l+JTlAkNrrAN1b4v61CMkSpjbO9Ui2Sg7UWaLdbgQ7C+zUo3DHjnCd5PrF/TNLICjkUo7/cYqFQWNouL6TELZz1FziYPafETxo0sVwnWca/VAkaa+koL6BGd7kk1FyCxNwaiZH5bwajPGKon6eUqrzYCesQT8yRV6Y72lWkNn5i79ebH4yrzuhiYfVhsaFEczgBzN22Leu4ydsbYmJqfJa76inkcO14EDW66N4r0WmX/FeFyt6Uf9jx+8IC2aQHHUmCIg0nOz2kl676lFstsmobVcsVm09OnRNs2tG1TRnE2N8dGed15XtmrgbHPRpukHJNitDHXtGyud1xuD6go9++ec3Z6xouLHbsBY8ZVk0o9WbSjn33Y9fTSFzl42O4O/PjwaSmusvH9+PFDVn5BlkyzaHl4/4xF0+C8gGaywPmdNSkvLHb24tL8pfo0dT+p8xBjPTx0HT447t45I6vnjbfe4mRxVtZZZZ3ucrf/4jgPsiReth+wWCSS9Dx6Ezb7gYtLyHmPMHD98oKPXeTe3btcth+P/fmqpSOcSIegxGK6eJne42QLC3W2ogb+mg/b0WYof7jHgT0NnQYmgN40gV2V9VNISTnfnnPiV+wEgni8F7JLJjd6227bbbttt+223bbbdttu2237U7X73Zf50uZfGn+P0vP+2X9DlJ7ebUjupwN7nqz+4Kd8qrzpNvjX+G1/2uYEvuJe8DyvuGL5Occc+wi/ePhF3hne4f3F+3/q6/4J5N4ywVVK2cK8M+qqW1JlpIIWC7KOlZCFMQh1Roeuw5SkoIZGdPSdxmAdWmTevMllYVI7OVq1DgouCMtVyxCTBaec4CRYIrEkoS2opCWwWioSRfBFQskqtZSc0ljpVR7EmJXGBAPMw+i1KmsKdmSrdplXgZcDbw4VhcLWNGN+eE2cxO5+khuZA3nq7/NSL4tnOW54wOV+7RpOpDJOoynPmEGqu34spXaTxWm8zo1A/dE93Xze2XnmP+eJnqNz1H47AjzNev9zsq+vDTrN+ml8J+WnBcbzlPyCkggvlZE4wNFlGPoN6iZWrMWyNfr3bNWEOVVGFxDvxyS+RasA8cS+BNVLgG3RNiV/ZQHVoR9ATSaxWXpyVrrepBJSVHbXB/arLev7dzg5W/Pi2Wf8+MM96SA0ZM7WJ5wsV7iF8unTl+QcaGlogmM4EQ7DwIPzh/xb/+Pf5PRh4n/37/37XLzcMqiB1YK3oCziWSyWhNYXSbtIjoJTR4q9JX8XC+7cXdIPA9eXW7pDpF00nJwGRIX+kCwA2gRi6slpoJEWLw2+8XS5ox96nHrAQR7wePp9YpA9IXh6emLfcXp+YmwU+8zqNLI6XSHSk1LCeyEmo/aOMfLw4RnXYUAl0cUDq/WaRXvCxz95yuVFxksgJ6HkN4hx4MmPP+E//r/+AzTD+fL/xd0Hp6zv32H/fAsS6WNit+84WVpVYN8PJBV8aBBnAcYhFskBtUBrSgnJ0ejZQ8OQojHLFUa45eqEQ5fpukgsslztYlGqwDN97PmlX/4yf+Ov/RX+/t/7L3j78SN+8uETLq56kIBvrDJaNeO9o2kbG48xmTxlWb+0zAuPQ6QcrwP/6r/4DZIm/ut/8gcMg5gM0yEzCKzfaLhzsua626E4Gu/xklmsAjErKfV4bVmsF3gHy3XD+qylWTg0KfvugG+UZbMytqIh03cdKUbOTk7oDonDPnLYRWJKnN3xtMHuf9cNDENG8EBmSD1N6xEXyox0nKxP6PuBzWZnq0KJvQ19pNt2SM4FpOPot8nkRnXg3r0zhmGg64V+sMSSiIysGjklvAaEAiCrSQhRmtAYqNYpLmcOB0t+jfJjWpPPJQiqmdQnnNgcEhX6fSSoRxzscwco580JJMfm8sB2cyB4j0hkt43stwN5KHIfWcEbGOvkfMHJacNls+H6Yk/f1bXTmIU059m+agC2EBpSShwOB4IPaDbJNu8DeOGw6yzQTwXdZlKOZT+whEyMZY9Qq8BOJFwQk3LskiXcsqLO4cUVRiEDRw4xIl2ibQPO2XqXs7EwOOeJaWcV0Bilfl3Pc5HQqHxFmqs0jWOsOZf5/pNHSaWcLClDlXvTZHaI9wYmVUXUpCrTkEtipLAtlmpvwZJcbRtomoaUMt2ht+STlOB+2cJzTmVPy0g2OyOReXZ1zRe/+Eu8e/8eH33ynKu044tffMzq7jn4T+vmZc9TEwtlz1yHFVdPX/D9T55D6/j1X/oVnA+mTpWNBcC2fAM45c8xTOe2g23BtsOlNDDkgV2GbZ+56jOrNpJ9sCQnESFBdnQxcna+5q9942ts45S8fPb0ik8ut+Q+c3m15fpqh4gHp5wNax5fP+K6uyKmnpcX14hGmsajTxzf533EeUiBpIm+O3DoN8R4CqG1ZJsWlga1+ZVV2V9Hfvd3f59Hd1runT3mxe4Fh9wissIkXSIqlaWn2jBTgn+5dvzqb7zH8+sDP3hf0PQprut4+fyCq+4t3gwLDAZZ5tEIOJdiS9jYGxT2fcItAkEsfZpL70aFpJARktrfvNjvk9zbZB/KK79VILsYkHKGnkiDMnQdud/icqLFg1+iJLoEkn5+mZQqcLnOQbPJZxIxZT7VVkztYk8zm9s6AjLqkaMFORngU48Wf6SyM0jxDSpzQ2X0MNB4tfWKVNCYtB2h53Wzt+96V37VyZ+Zt3quG4nP+TOOFq5QjfnxPBVwOnWizP4p5ZHLF46Sqcx+P7J+j4/hc36t3y3J++kedJxbUhLtk73O8TuZvdDXJTynM1bw2nSrc5t9/MdrTiHjHb36eONXdLoLmfly8yl303UafVVhvLcKHJh5g7Mun1/YLljZFGsRRUYK84iO3/V+kpEafaTy3wpYGO++XCLPfDeR+j0d2RViTEUeSQv4Doh1HzDGzxh7Fos1J6drLl684NBFAzuUPlouW3DKMOwN5CyAE7IPDDHRLlru3T/nzoNTnj59yfXm2pKsBYBgDI7G0ojhkgghYKdx+KCEwkTZtC0xRnbbA0MfjaVFCsvLkPG+gpaMOcU7h4hHgjHTxjgYKN2MIGM1zQYyriwakcH2kCwMQzL2jbYpsQdHCGKyR7lIsOWE84r3ypBSAUnYO+gPlZWGskDZZ0PX8/z5BSkrV9cXvPnGQx6+8ZAnnzxHZfILBUfORbYzG0Cygq3zCAIo43WUewLEFdm0AmjOymK1pOs6ck5FZtbuyaS3DEC9Pj3j9LTl8jl88Stv8ZMPn3C9jYi4Iq9nwBLvHe2itYKMGdCi+uzTfRVgNcrjNx/RLQcOH39CjrGAEBI5OdQbbWYqgKrKJuN92SuFUgjh8MEAxZqh73u896TBpAC988RY5MBE6fuBRWuyrH2XDISWrNDAZY/mTCzxHYsDTXKLocgNKtA0jb234TDOtzr3c2H5sjiB7QWxjyiRk5MF6/WK6+stfc9RDAypc5xKZ1beYymMEIqEbQ3h2Nhy4/uaS95r2bemWEaNM+VoRXYZLb6dw4kj9gMxVlZUpes6UtKxIKyuhYrJtYcC3N/vOvpDGoFrdUWTIvdnNnNhRZNaODiMdpExqc0k8YQiUz0truIMGKaqUIs9ch5BW6EJoGrFE2UtKZbcuO9pVoaUcaKl2NGNsT3nza9RjaXPj9doG9M3QRdzGO/Y7UcbwgheHueBLQTVdMmlKNLwRDrJ6FHjSsWnwZh8m8aKlqpsnSvPr4myyOtoc1YAmIiNZ98sWK1WXF5u2O17Tk8X3Llzhm8DdN1kN4y2QfXtqiSkFf+omM+hYsD5hJKdK/4In+tP1HOPsb1qHgFd17M5HFitl9xdGNCwbRqut3v62AOGlMspM8TEnbtr1ndW47sd+sihj+yHAvyMmViYpyQLV5sdve+JcaDrBj7uusJwNtlJoh6zSmwNXywaDNg5i0uX15sVJHm6feTl5Ya33nyL4DPbLnEfj1Oh1SV/+eX/hPPhnXEsKcrgdijK08V3+dbZf8lbbz2gHzL7vTEdqQrL9RnrkztEOqIcCLqY+RPj8ONUejJW0GD+pa2u9T4VJZVxkLQUw5T1oNQW1VGJ2rSjkcwDdjzllGEUthsvySl9GZ8Qhwiph5xw3hi16l6l3IKUbtttu2237bbdttt2227bbfvTtFW8x//8/f8Tb+9/Y+ZjZ7bhGUrmW3f+M/7zd/9XRHf43HNsms/o3BXLfOeVzwR4LJujMPCfy31L5Bf8c76dHrGj4UZA2q55dB9TnOJP235mkBJZwFX678IEI0zVjVICCCVQnXIySQvMoTamhGRJ9DSvzJuqqgpreklamKPpg8MFCz4QM7FPDF0kRy109YHlqsFFyLk4papoH8lWpGfdV+h6pVCmI5TAwgSuqkGheaDYh4DmAjjQKSg/yiLUH8VhzDVAWpzlOcCnYlXGvlK7vpsxKI3VSaNkxfELPgoK3PiO/TIFF46PK8GUEshugwfNdGPQu4Sr1IJRMt0euQSrb4618V7rM87+O/7tc5IKcwrraezM7rkE9Ue2k6PnKO9NTa5oks2bVecV4JhzbmTdOJIRmgELcr7RhwKUKtwatFIpYLU8nb/vhnEcmHpcCQOV/rf3OoGmaoVnla8BiENCNBPaQNM2OIfNExILbxIK4iBIIA0Zp0rf96w0E5pAt9uTO2MhGXJmSPBwcZ/+skNyYB3g7UdLNocDXd8SfMCHxA++/z3+1nv/Mr/0tb/MJ0/eZ9NlWjdwSD2b/YHK8RBTImlisWpYrlva9UNSGhCU3W5H0y7o9j2bzY4UM4Mo+11HSj15KMwpXmjaBTkaYGdkP8Okrrp9h0ZwJA5Dh3Oe1cmKFDtWqxXNKpATJITry2vOdGn3IFbJm7Nn2bQslg3Xm2t+8IMfQsocDj19jOx3B9KQCX6JZjgMPZpzAb5AViHFHqLSrta45Z5f+NIv0MeH/Fcf/hMGIhIc4hyHvufQdYVhSwkh4AMFnGEBUc1GNd82ASeZe3fXXF92pIMzqvNC59IPkf2hA1HWZytUpYA/IadESokf/NFHPP3gM1zX8bf/1l/i/3mxYXvV09mqSUwmy9GEwIOHD/j0k0/tHFKBoROgMUkEenKOHBJ88wcf067vsDo5Z3dxgcsDUe3M159t2co16AKcQxpHWASGNEBWzu6sufvwhNAuefbpS3bbSNcl1uctop6cGsQp2+u+jPtsyYWY6YJy2Bs4K2k2ORCn7A9bUpfwvhml6BSTbHPOg/MlMS30Q6LrBkQsqaxZLbGcFcGTEywXaxrfsn3xhNT3+JB45517bLYbPvvsGtGGQ3cAcQY+ibmAvDI0FujPYlW9KVkg3gUp7FrOqsFLAmCY0ZaICO2yxXvH4dAXIKSOeefhMBBahxRq/831Hueg7wacDyyXMHQD+32kbVuaJey3tsdqkfMQEfDCYt1y2Cf63pIrVbLUuzCyH+Y8JTB9kX6MOeHFk0Xpu84AxdREhIzJAnFC8BV0OJiUm3OkZHt50zjUQ7ffW5KoBJVdyuToiBV4o/b/nDK77jBKIalC7wdCE1guFwzOTZIhZd13ZSVOKY02UWVgKptG6fdx9ykABAMElHTTmFxzgu0JYgkh5yw4m6IiYjIuznk06ZiXV82QIjlZMrRWlTqMsU7WsfS1MV55deREqbJOuASH/UAksFzdpUkRxbPpe9RlA2tkAznI9BREDbzsBt69f4+vLldkMikN7Ic9lvLLqBNy6+xn6dMjQ/GmpSrTXq1ATI5vf/t92CfeeuMhb69PSX3PN//w2/zoo8/Yxp2BDDJ89uFn/H4eaJcNMTucelJMbK539Kkro9wVRjMgwfXFgX/8O9/GD8Lh0LHZXvP8qUN8KAwDCSQgGkAU7yPBKX3s0CagZHzjycGjfRnTLnC+XvPX/8V/gV/7a/8a/WXHi13EByXrHpVlef/MwEA3ukHgzUcrfuMvf5nLl5GLlwOZFzx872v84i/+OqdhhdSHQKhpsnnLYAxSUVm0Oksq2HxKCjHBMCYrFY/JcS6CMU0ktDDtCa3MIek2tl09m1Tb0uzj6+uB7eYlQ38B0uExlqWkBlX0JH5e2zir61rDxHTySk6s2oEl+WiyQrnIHlV70OywuSXKuDzoaJOP/4dyHituqJlyY7B04BSXZZZolQLgrInDiUFzvM0KUq2fmDNz/DjFL3gFyC/1PwWmo5jE9hz0M7el54lTGGVBpNzrzWv+sU1m3fi5Ocljh3TefLF1c0V+6/yHjuPXfv38pKcdPUuOf86hrwMzjXco2Pt5lc5p8tvGcTD5E/bfknzUowcYr1cZU+b3QUk8z4tHXnfHRyAzmTNs2HgahkmCej7u7KA87onHz3I86o1hUm0fd4IPhSlWJvnaKqGW08RCk2Jks4lmJ4sQNROzohpxhe2S7FgE4fGb97jebOkHaHzAe/jJTz4i6rucnt5huVoSsyDacRg69l1fGGQqu5OBYHzjOVkUiWSUvutxHpxK+ZuBsAYGVPPI9htjxHuzz1I0kIwxRQkuO4YhGeOllP3YGftfytHAUd7mh3PGGusCDENvbIpASo42BNq2YYg9l1dX5KQjC04cUgHZBHDC0PdUQILzxmyU1QDDp3fOabyBLVIpUsiqZm+JI+VMrGBSKRJ+XopEtjElpqyoCs4Fgk+88cY9nj274HCwvbaCsquEvQ+eEDw6xjaKj5vh009e8uyTl7Tesd/u0FT6W5VMNBCLKJorMDiPfvYcNGOusILY8wwZfvjhZ+gdj/MNFDk8my0RBrh+uQesj8xvKjadKi44muA4u3PK5eWG2JvNRJHpzUkITUMcIjlPi3hlOzVWFIvX+MbAH1YoEu3YmR8UGl+WiALWSDpKr6tO80SzjixBxvrtOTs94+ryErB4UEq5MA9nmsYj4umHoTBSmX1fGZ8NRDMt5uafWdyoMn56P/XvfC2x/vLmj8cJrFjjV5mMeNu/VKHv+rFIw3vzX2KyNahtjfVXk6FpNCtpMDBjzsf7zSTFKoUduhjE4x4ruLFvi80T65ieramF2a7u+cELsYCDXSmk0ZQLM5IQ+8H6rYQXVTCm11xkCssturpWJkilijORkWS+TtME29/HrpQC/nAWz5mt5dU/mz/b8Ub2qh1th7mCJ7L7Nxslk4u/ixYAszhclWPFihrjkEbHpQJHNWXoGfd+pTBBaQEMiZnWh33PxXbHer1mvTxBJfPiYsOhH0Z/rwp21T4Tgc2+4/lmY0zxWdltN/R9Ak0EI74f2SZ/+k5d43U34mcI+y7ywU+ecLZa0CyMeXUYMtuup09xnAf9vufDj54QGpO7durGsd8PQ/HaLB442l2qvHh5TcCOTZoMFDn6rsVXpvq0Zpc3ubLElX2zjG2b9ILz8OUvv8WXv/Y1vFvQH3pCAyluUNfScsoyPjgyOQShzSco8Nb+1/jxyW8R70auL+/w2WD35RYNd+49YtG0LLozAyjNhtl8MAkGBYrJ9hNTo6yWpjEBa5mj0xoMkG2OlHUnl7imd2a3LmXgbS650pZrlqRyvoVETt2BjDGpd4eOGPe4nBFXCzWt718ttb1tt+223bbbdttu2227bT93LQHdX/RN3Labrc2nPOi+NsbuwGLip/ENAP7qi7/Lf/vG/5any+987jlOhzdY5PPP/fwmq9GfV3ssG+6HPR/mc36c77InkBHO6XjbXb8CjFpUf+dP2X5mkFLV9Hal8isUCva+G0bn3pxVczBjSkicArdpJuUCsxhxCQRYJY4FmnLWMZCnZOIwjA8+9JFU6Iy991ZxVSjhJVkFT23eu5LIsGCNBQ7zSGlek72VuUk1zZxtOyZWRpL6cKXVxIqWYLNVYAeGYSjBjxr0qIEQmf72St/ePG/9YPp8zhAkMgGGLEExfc+q6aag+XjeenT5gkmd1bdwk2Eh2/t2U62xOfOzAH15kNexKb2ahHn1mOl53ecE9ivzRU0a5BngizEIU88/Z9+S+Zi60adTVWitTJXZ93W8J7BKPwQDs4lRxNdku6iS81SBWr+bMam6nBNCSaZ7q/wdn6wEm3ICUasOtuB7IoSG5XJhVOAFLGZVng4hs14HRIRhu+OjFxfkKDTekWNmyJ7kIi8uLsjJIVkJ0vKFx29xOHQ0q/t8cvEZ+23HP/693+MHTz4hx4633/sKvjlnu/kJl4eXuKtAikoTFqScSGkg50TXdxbsjIUFAwsS9rGn6w5lLtt8VU00jQdv1bB9LxYYHAagY71e4gswq+8iOWUW64YsmeA95/dOydmqzYxxKtCnCK4htJ7N9Z6maXAhMsSALoXTtcN5uNrs0WhrSYqgMZMSnK5PcA28ePGM4D1dfzDJmGjvNUnmrXceETz8o9/+Foduw4FUpKYKGC6lEpTWEuCNrJcn7A8GShqGnhQjQoNIYNE6/ubf/Kv8o3/02+w6YwRSjbSLFt8IJ+crC9Bh9+hzIEclDkqK8PKw5YVC2674P/+Df0S3i1hFby5SDcnGzhD5+CefkIt8nPd+nCv205LsWQIxezp1PPnsKa7ZELRD0oDRwRtoTrqGCLQniXsPTgyEkx05OgTHdjOQZctiFdl3HYvQIlhSabe95s75GZQqee8bY+JrHdshsd3syDlzeroCr6zWS5x3dLuOA0MBuyRC42iX7bROOU92sL3aFqCIVdmmNEA2mQeji++Ig0AWVnfXuBa8epws+N4fPWFIHTEp7733Dhcvn9IXST6r/DdmjjiUgHcqyQXsmDgYiKZtG2MggpIkMlmCuu4G7xEvJgfmLfkkWZGkkDNxiDQusGiXxuzUdRjTn3A49JZcEwNxNI0w9KCDEFXo9pHrlwfEwW430B0SIp6m9SMoU7y9fCcy3mdNfIbQ2PqnJrnRHQ4UpThcUttLgyV2UrQK+OA8g1gixxXpSFvnHaQCsAieHAdSyjSLxoAEaVq3fXB48VYVm1LZhwxcNgwDq9WSEEKpWq97SZHkkPw5yXb7ewVVWRK0wpJmgAApiVssaZtzpgmORWtrRnCBLhsQjQLyChKKnIwllyzhEEsyyRJcGsEqdWsyMJehatIWLgSWbaB1C773o4+43Fzz5smaII5vffcZT692BIQ76yVoMwK1q7xA6xw/+MGHfPjRM3wy9h3fBNKQ+MKbD6CFO+s1n+KLFCFHgINj1sVaj8u4P4qCusTVXvln3/6Ib//gQ0syZgPCpJQZJFMsKJ49f87FxQvwLV4CLpvcnwciCVdBOFoK5LHE+cuLLW21SwByLHJ1BlbJElE/4CrIUFyZA260OZx3aOkg8ZmTM+X0fMGLzY5ud8Xad3z4/d/jqSy5+8YXePP+Y1bL87HCmJnNYGPL5NfeeXvN4zcesN+9hNzj3Iq1WxMKu6EWMMOEeRDmg3GISj8oMUHjSl9nJSYlZiGVEnXVTHYmKehU2KvQdYn9MNAnk1Y6XRhbW0qZ4TBY4nYdCA6EZIA4FQ6d8vzFhv3+mn7Ygdvh6G1fyJFMRNzPb+VzLtk3X+w75vYtxzZyreGubK02tpVR3ggYoRoTSqV+uaRYJrtwLluRR8ke8GKg0yqVNL+fCkKoCeej697EyriS4C/fLdboeL3qT8xBJhPwRcYfTqRIAJWzv2ImT35GdZCODtHjYob5JSq4Rsc7K4D8mg+cfWUOGhr/KPNUsY7PNesW0Pks0VmiV2YnOm7z60wJ4xl7i87u9pX9wG7+KNE8O+cEUJonnutB0xucQ81euafXJeoUlDzaWtU3nM5QmSuq42L/Ht+e1kKQ2XPMT17G2OjtzFhe6tGjr0R1xCkAAGfgHZnmjjGM2LnbNuC9x6vS9anMqTwBmsQSlwbQVIbBcXm558G9B9x7+AafvvyUly8vebm54OoHWxywXq9woSXlAS+BhZvkWlMB3yvQDyZNlHIy2WssOZ6KX17IPMZ5qFPXFYYVGceYSHlO53DOQBxtsUFUwTUO0WCgE9zIYGJAWWegGKf4YADnIWagL7ELLYluIRbpOife/DJR4lCkJ7MxmGo2kHOdZ32Ey4trYuoKI4bdt3OC5jSBf9RsoeVyyUDExVzkAAuQo4B1TGrM+sZbFtuYY4IQ1OTL6rrmvBsZ57T4/lEhZ+Enn760v0spjChrjbHMZXbb/Tjipfr1MHMqBCWQ1WC0Qxrodlvj3lCzmyyHrigOsiBBuf/ohMO+Jw5AsdVizKRtZojXRWrcFTC5mp/WBCAgooTgCluWJc5jtKKQ0Pgi4WtgpRTNfohDYogmX+4LU5XNG5Po6mI/Mo5BkYtDxsdMKaNdb/5/LixOXhBaYhS6y46sibZxNI1d3xg1axyiSB5qjeU4iz2oxbqSTjGbOtdtHZnmeFZFUi2Msb4BsYKKukxUWXXKPUIpKMgl3lPsGWpBnb3bnIXYK84LKZnfCebD1AIwKmNLua8KHtMaIynFCKgxK9V9M+fKACVlb7VncHIM+BapDFJlmcSky3PODEPEO2OjjSkdrcHGxNYU1urJztVU9re6jlFBUmXFlAqumcWH6tI52orcsDEYF+EpDjazJ5VRdg7viqR2nNnioMXmrs9p/XdsT7JT+BGor/AQrfprOBzLtuF0tSJl5fJqw8FvaZwjq9CrY9G2LJpQg3aMsPfynrw49l3G4fAixKiI9zx8cI+kmdWqpdv3035d7KaKh7kZr9Pjrih7kNINShr24A9Q3r8cfcFY9nZ9hs58XzeCi+1deS8E74z5WrXibcsTZZNDc94kTEUnv6ysdQb8LJLf9e3P5pe44gOVefr8+Qvkhz9itVqTuy3xOvLcOdrlCffOdly5j3iQvsoNi2+0akQdwcPZnZaXVwsGXUIywLvTUaz66NvHZ7J7T1nxpRfq+MnFJ6syeHWc2tgwZr3dIXHoBoac8U5YLVtC2VNTzEje8nDRksKCrSy5zw7JmS4q201P13WQM1/YvcunZx+gZJJm6v9u2227bbfttt2223bbbtvPeXsO/MO/6Ju4bTfbzj/n0+Uf8sXd3/ycI8xf+HlsIrAg8RX3kvfcJS91xUf5nK/7Z5zIcHRsow1/5+rv8O3lt18Tr/3Z2p8ApKSFOhpjd1GjyLWA+xjKsmRDDSyX6tAJYOMK/Xp1dl5/19U3dt6YEPJg1dVakp4VqGMJWei6wRKfMRWpHJM8saSk0XQririAd6E4qWoyVlqrBJUYFTRPjnRN+DpHcG6k3B2dYErwozjVMcZSGShFukJnT3ScaJAabZ2DifTYcR0DA0dAoJIkkUmWbvzOLHgwAZvmuQNXgunG4gKF1WV03m+8jxJAGYPj9cZqUubm8a+42/VBjgFDcwYmq3adJxQYgwbTOJli+2NyZAxeT+Np3lfz4LabXXPePzWAaGPVPjcAm0Oyab0rxkxQK+1HGvdSAUgNXI5j0oANTbCgWk6ZJnhwocgWZSDjnbfzJAOEWTDPIlGWXAj0vQFOFsuFVe4GaFcNZ2dnPL53jxdX1zxLF0hwNIvAYdPR+JbDoSPh8QiXXea3fu9H/M/+7X+bv/Ob/31+63v/lP/kP/5P6dwVn7zYItKyidfE7BDZ24OK5+RkiYjQ931hqHHs95Hrqy2HriM4hxPP+kTQ7Hj48D67zYHDvivSi4kokaZtLMGfrLJLxOGdcOgjLkaccyYnAazP1pz6E/puoIudnSNGFssFvrXKZpGEF8fgA+AJwYEE9l3P0B/YH3pEGpq2Vj13dEPPerUmLDJ91+NFWCxaTtsTDl1HTgMn7ZJMYv9yx+56w2Z74BA7JItVhUZYrRtyMsBkLvNoGAZSjOQYicNATIn1oqVdOS6vdmw2nn/4X/8eQ3QsVw3tqiGEpQEGfKZxViFr79pkGlIciDEiDtqFI+UIGtntrdovunw8fhVEhaGPBTBTKpRhxhKWS6KlISP2mmOk719a4lsS4hach0zKjl30OEm8+dY5X/zqO3znDz6g20fLKYTMsI90+0RYDCxOvElDHDouX+5MDs0p3SGPCWjvPH3fo1qkLkSRkFmuA6tVoO/teb139o6Do23DbL1wJrwkJnuYYi7V7VZhb0F0B4UVIKVslPObjQVmFw3eBYZ+oOtth/rxjz/GcmM1gSd436Iw7ltWSVz+p5Wm3zP0PZVbwfnj9VPVpBW8t2RYCDbmc1T2+34EvAlCGhJDb1XHoQ0jm5NvPKEVkAw0BrhNimRHikrsjVHgsBvIUQk+EEJAs/WvSXcw5oZtrKZxvzOaeEuC5WyBXEvOGUDMkj2uzP2ML1WqPlgiSJIlgPrOqmKdcwbcCg5xsFiFsqcOxgSQLfGFDyVBWGpaczZ2OuCwN8i/7dGuBMRt70bq+ljvdQzfH207MkvG1vV82jNr8skq711iBE+7AoRSlOCbUuVOYVyq49LGQyrJhZwzoqVyulRIR4XszCbIMXO6CPzG19/j0AtRU6H/VwOfnLW88fAhLg+oE5JGS/KkIuEmChoskSSU6lZbj7LCUs+BgZfPX7LZ7UiqZJHxGY/y5DfGZ/2388LZqqWLsCLgHQTfkgKcrRdIhKeba7qYaBsITcMwGNguSCYniJJIklmfNLz78D4uBl68vCIHh2sdrbeq9dO2AfFcbTrSYc/qtOV0uebF1cZYbbyiWViu18ThQAXGW+LOwKrGjql459leRf7e/+X/zptf+CYPHp3A0BGdcNquOLnzfX71a1/nr/7qX0fcKczYC+d2SEZZrh1vvnXCR5+eot0Z+XpPigM0riR48miTvq7lJPS9gdJqWiknISdLaqecjRkuKa41xqyY4dnTPT/56DnX+54+J+6ct7z16A6NKPtdT98NLNrA6brh5GRB8A1JHanrefbZhic//pRDd8EQO5CO4AaGNHCIPcPQI/nnN6kwAStqpXYds9UWtn/Xv5nVJyPo8Qh8O5dtqcmp2a9otTVnSXadXV8tWWVJM0wutayLwbkjo1zmZx7tQSxZxszuhgKo0XENHplD67/HG6w9MmuKjZtywJja+jxHTyvjwDTtXykgePUqP/X3Y+DUzfVExr+rmkQMWgFccnyy+Rp042qvBf28+nCv3JN8bkf8TKdBZn01P/d8fNQDxiea+W6qx+ebX0Ar0mv0Rwog0lfmB6UmjOu35MhPq0CridWp+jY1+T+yzVaZwsJMSGUF1gIr0uJfSWV2KYlcLAEsTmgXDXfWJ2QVXlxdoiRb9ZKt70M/4JyxmiQRrrYdX3rvHu+99y7N+ZKXV99ExewA9YFttyXnjTGKqhUcBR+oAMDKBpFzou8GUkp0apLWTTD22OVqSY6JrjdbWNW4bStri70iKfLuYkVRiZHh0vx9IQQDyPfDMIJQsmLAnDqeVUcgVwXipGTMijFm87Wp78xsIheETE/s8/iMbduSc6bvozGLCeQ+E7uerMnuMRef2ykQELQAs3Qcb103FNYlu9/FomGxDFxd70jJ8eLFNTizD+15QwF/ZCjAEkWQnMdxWwuQzIayY1VdYW2dF0CB5mktU8x/rswnkxutiOTSZ3ZKyUBKBdQrOO85aYUgytVBLfHuxRhIEXIycBFOCrAEUuzxrSMsLCaTowHwgw/kVGJI9Q7yLD5SliPf2PmNWTWWsW9ScuMeMAJdzWYzycS6p1hcSKixEca+QEzmW8o4EIc5WGJzox8iQ6yri92TAYPMHxvnqkz9KFDGsLEWA0fr9rhGZDX202BgPKHEKpTC1GoFfTkVNiTEwFJFDrza/BMwx5k9rFMRofnbubDRaonBlHEx29e0rPW5sDDVGGAdZ1P0ClBBk717KcdlVZJO/pUPZj8LmG+Xqs1tZ3He/F5xSnBSfFrKPajJUrpyrWoLlDUmaYZS/FFjRtX2oPS9lHVzvOvZ2mzzgde0ur7Xt2jrWowJl2fjrMTqkAIcLN92YsxcFZiWRqBiOZ+FEUFrnNWe59AdOFkGTtpmBDBmtfW/cY4uZmJOxR6oBXn1/LnIz5kPkVIuQl8VKGf913WHwlhW7Y/P36On8TT9XC2XxcdpCIDzBiJbrhq8ODbbPbu+w3tYtg1DtOdwzkOCLhmTeAjC3fNT1mFhcaVsxS/VzvAh0HihGxKxG/BeWS+XHLqBlC0OEpMxm9orsL6oFZ7jPCsFLILn6uWWw+7HrM6XNMFivm0I+N2OrjuwPX/KQ77E6/hZBc+D7mtcn3zGybphsWhIQ4ukA91hx2rRcBrfhAomnr54bLYWH3BuvhkoyQBKNV5q2EFFxXzSwyHy8mLD/hCJqojLnJ8sWC0a0hALuMkkMr3fs/SeHSaJ2e16dtc7un5Dzj1f3H+R31/9Yw7O9ueY4/E937bbdttu2227bbfttt22n89mtVa37eesDX7HdfPkcz/32vCLV7/Jp6tvfe4xj/d/+Z/Hrf3MTQQaMo/Y8shvX38Mwr9+9a/zHzz4D7gKV3+q6/zMIKW50y5igdZUWIaqe59rgEKgVtFZUqGcpAYXtYRxhNGZLmc/ejhXvmiVgFDCkqiUqnowho8aTKyenqtBtjzSX49VY6oE7/Del8rEdBQEljEBag/rR7kwKcnRChCYIvCFVHgmE2d/t0CeHPn49ZtjcGeKdJTIyxQ8z5RgxhGwZzrP+BU9dnhL/Lpcf9ajIlSGqPq1/FPyHnMJg/kTv5pgYTxmCrC/miS5eW7r9xoBsisc0Z/JvI/Hx7Pg7/jMU9DxmA1qFoiS17vXtZrfudm5FCDiHJyfntIPkV3fH0ndiVOyTO/WAmyFQaVpjE1nTL7bPPE+4IIgCby4AsATKFKGMZn0lcRI24Qi0WQMLpJsHAe/IGahGzqcOv723/gX+Ye//Vsc9gdO7yx4/Cv3+NEffYKctCwXwrNne3ybGfqB589f8JMffpc/+v0fcnG5ZxUCp2cOaRPX1xdoMoCCPX9m5w82lkIgRmXoDgxdYr87GAgpWtX1VbMltLBoG5bLQGgc+0Nv+vZdpO8T3lmQUL0NThVhiBEnQhOgXTQoia4/kLMFjff7gwVvXeBwiGQMXKQ540OmaQxIcNgncBY4PsRE3xvjTXY1keVQTcQ4sD8M7LfR2NjijvXp2uKBKdL1Pc2y5eWzlyx8w4NH53z85Cndbm9JiUYIDbS+BFUFsnNIdmx2B2LsSdkCbU3refjwLl0X6VHCQvELYbc3GczWNyjeZNR8KGAHA0zGGC24Hep49gQXcC6To7dEt4TC7JPxLhQ2pSrLUCpWc00qlKCr8zjxODwBhRxREdQVqQAR7p62/J3f+BI//NEzfu8n16g4Lp5u2W1+RE4CrgQuB29VeZpQHC4s2Gln79OvuXtvBdqTY6BpLfjeHyyJFYIFJZ2DxWrBYhmIOTP00WT/1KqRU1mXU7KgteaI901hHDIaexGTYvCIAZPUAH/ee7JmQknGpaw4ySiR0DbE6ApDmBKTEeI7MWkUCXbtRppRolR0Asa2BbwTC/sPgMtTBbB3xqwW40AsQFAFokDbLK3Ce8iFkWwAIiqwWAR798D6pCVle74QLKiYYpE8LYmBzdU1MSWTFCsJmX44mOxJkWMT78aqZuYJl7LoV1k1KZIZmmTcgtJgsne2xgmJjPOeyliAgEYDXaasNAuT6nJe8K0jSY/zSuMdXh2aCvgmFer9xiPO0fc9sSTTavW6jnuXJVks6aaYFJixP6Wcp81Apr0qz/ZuS6eY/SHlBY2sIGpSm7FU2zvnDGyoSooGFqxyiYW4oozHTMKSKVmNlQEKi1etsleP08Cziw2/+63v8mCxRFJDIpJyps+Zr7zzNpfPnvODZy845A5Sogmes9NTdruOzW5HWHjefeNNLi+2PL26JqhyslrQOsd2iFx3kfNVy1fffhuPs7ynFqmZajPMEpSva8vFkrcePES98OU3H6Hq6baRvfY8uLNgtxkYPsoQ1jy+f8oyLPjscsf6fEXrAs8/u+TjywsDIZ2dcXZ+wolf4wQevvWIRduyu9yz7SN3zlucJK73AytvDFYraTlZL1mvW9rG8/Gn1xxUWTeUZEIFCJZny8Y54vGgSr/ZcPHJj+n7M0LTsjpt0djTpYw0C7L4Yke93s5RyTTO8fjeitPVKZvYcHl5wcv9NU3T0MzuQaXW4ytzgyAnJeUZc5TCkJSUhL7IH2oBKEu0ZEPXRT777AVPn15ysR1ILrLZZRrXc74IeAIeYbPZsu+E55fGrAaetOt48uELrp5/Rj98Ss5blIgzuqZic3sWi9XrX/rPSatzVlwBL+TjBOJxwrNkwZQJ2DIm9eoJawJ1WhqY/RzZRnOVf5n7NPZmKwNFvZepTTYm8wQkFQhZ7UlFZ/dV01HVAq1sTPMbP7aumUh9qv1ajrKlTsZnfLVpkdWZrlfXx/Hw+UMJUya0/nf8jxz1D7M/H/XLiNiZktJHbTrNaNvPjh4PGgEjR31x/JDT91/vtCgzWR+t552e7+Z9TN+bnmF+d3XPGDcQnR8xez6dxuyYsJ+9BZECUmo8KRuQYARbVabY8l3qNUuf2D5UAec2bowpsTAMOvMNpCS6qdJJajYGFMYeYWRgygXsKlgSd7fbE/A8evSIq92GlITVouWNN+/y5KPnnD04R3Pk2Ysty3XDbhd5+uwZKokPP3vKYdcTvKdp1MBKqTAy1fktBj6xfdobcHMw9tQYi0x38eHikHCOIoElLBaNMSIlZehNXjuEACKjvK+xrFVmQLMJFWNB1iEWm6L8XcVkhEtSXLPZB74JxJQhKoVE2GIG2XzUzATSqH5iigXUUZiKbKwZAChnB96x3W5pfMNqtbS9v+/MNhU/gQaEseAqZyVqGsFcYPZzkwOLRWsgCG/f6/sK1iqFOBLGcWLAFUbAh6vS9io48QgG8EjZYgzqjFHHiYwymjJ/5hvrjYjj9OVdXGrKbDImE8MQWbyk9fDem3cZui27bm89k4QXn16P80QxAK8C4sp9qtJ3sYDpHIvFEu8TXZcNXIMB7qvtCqBi4yJ4PzJ42vuze3flOVJMM7/fk4bIxKxci7pkjPOoVvm3aX2o/7SxU+YhdqE8xqnKfLNgD8GbtJ8B99O4dJisVo2hTeeet1pklTWjgxYQDATPxIiUa7GUnTs0k2xWuwjMpcTT6DdM65bZ8RPjloUBYgFQFabostaPbNRMMZfjjUHGfp/26vKfwvZZOQYNJGYHj7uimGShxe6MmdpYr3NZE80nKe4QlWXbjnf2jmf7SPUERKd7tCKOEu8Y12+ZHX1zn3vNJKh/mjHz5aTkpLN+oYyLCTw1rvc5U4X7prgoJgO+Bu2rrQlOvQHbX14RT1cspAERMsqh6zk9XRHU8dnTC7bRioG8c8ZorMrV1Y5E4uGDewRVXl5uyDlzfrLmpG0ZYuRqb4xgdx8+QNvMdtdTVJ7H57jZA9VXq4znIsJyYazKd05XLJoFqON6s2V90uDUEWNitWpZtIFVE7ja9mgosu1D5sXlNSlaYUzjHSEITeNZNAvOTk/o9j37w4D3jkWwQgtZtGRNLEKLZogoi8ZY5y62nbH8pjlTPuO8T1pjzYrmRBo6ul0mhpZm4YlYHOLuw8fcky+TtXp9r46FoEtAWQRh2TQcfCBpZrM/cHZ+ThtPpgH1Wp+sxhRlGhsU/yIXlYGyxmQ1ibcKiOsOVtjQ99F8ap84hEzrlUUb8K5htzswDJF+SKMdJAi7zZ79dkuMW6DjXrzD1w5f5Vsn3xz308+54dt2227bbbttt+1P3d76wVv4+Crw97bdttv2Z2gL4A3gxV/0jdy2eVvHh7y1/8bnfi44VunOTz3HWXz8531bf6r2U2AeAHy1+yq/efmb/If3/8NC6PMna38CJiVjE3DOZGw0G8uJAKIjiXmhq2bESQABAABJREFUrdcSJJ0FyqEk0vP4ZJb0KU4ZkKWex7x1J1LYMmpZkR1Xq8KyJguyFQYNKcFYoATrS5VjoQbXbIEtF1pyLPdfggmpBBbG3ICUELM4S+ZXANLUI9SgkhQWijGAWYLTbqRZLhVe83i5TA7iPGkxBogqi8AswVIZRWpAZRb3sEO1xEtqQKn2vtQqNjkOhlDD6Mfvabo/N/YFs8BUibwjUqsv3ejwv67dlFurY8EiNvV3NwX3pVZ1VbaiWe5h7INUEuhlzIw+tFXOzYNEaWRa0qOEkvWJB2fVeJp9AbHZO9l0Pc57XOMrJU2prHd0cRiTF6K1izI5xRJUhFj+pjmigxSZJEe7DIgEdjuTeDLZAqPDV0w2R5zRsztvdPWa1GQMRIg584E849P/9re53F1xenbCozvn/MY3/hIvPnnJ1x494unlS55fdPzyN77EH37zR/z2H36b73z8I55dvIAYwTekoefl5QXdzoKnq/M1TRtMMuvQE3yAPnJ9vafbdRbQLWM2VgmBqMTBcdgOlnReL7h755Q4RLZuj/Mti7YlxsxusyfGRKoAL2+BN6eenMUqX1OdsxkfGobcAUJ/GGiagBIRURYLe+8xphLsH0cbgtLHIr2Fowm2zKWBEZhIUuIh4prIcmGyW/tDx37fsxfPIi0gZlSNiW3ZLshxYNBJhiilzBAHmuwZoq1tKWc2u4h+Bo/fecDl5RVdFwlBEO/woUVEuXO2ZLPt6LsIXgsLkgXfa3LN1pFMwEEUht4C7B4I3huAxjlSHkqQ3eZlniW5fKXrz1ZR6F1DxlsQV3JZozLZJUKO3D1f4xbgyAwpM2wF8kBMGcmC+gyNFIBRgzBYAqlLhMYzxD0xBSAyJCV2hYEvg/OBmKwvQuMt0JxMDnCIEe9a9tsidebs3XbdgFLk69SRoxqzVJGklBKoVSd4nPWxd3SdsfhYpawvCb6yP6hCUrJzRZbBAAbZgcsJV5JGUpJnNVnkveCCp4/9rJrXgom2+RkITcnGKiAYSC9a0mDQgfm+kUuA3QdLnqWkrE9WhEUgdT1ZoesN7Jc6HQGlDjVQW7L1Rsv6NybQkfHcqMkzWiy97NE5G2itsBDImJzIs7X2OJst4kCF7tAzdOCCVZv74AlirA3iHN6bPF2VFBUElyx5FXMmiZLKcwRxLJcL9trZPl/3EJ3vm7YHt21g6COxj6MtMDGqqIHtKmjAT+F0mSVWrLrdFUOpMGSp2TLG9mTVzWYP1Kp2Vxjg7L3V5GGuqTlNqHp8FqS8VK/GxtcNW1brt/jqF77K2ekJ3nleXm/4/o8/4M3Hj9ldJV5cfsJm2ACRt958k1/+la/xve98wPNnW2QhfOG9d0n7D/koXfCVr7zHr33tKyyc49nzC3744RPO7p3yl770JbptxycvLhA19sgJ4FH315pAlWn/l0y7cIRW8KEheFienNHKJXrwPLx7zt4nOsk8PF3TYOD0Ty8PXG123L97wp2Tls+uLNm7lsQb52va2HBYLTlfLViIwHJJF7es2pYgmZiV/abDLxvOloHtpmez7Xh0/xTnIPeJdRvQwr6nKsZepUrGlT3X2DUzwr6P6NWe5UqNm8LDm48f8Ytf/WWCLJltDq80k4uA1WnDarFgu/Xs9j3PL7a8eXbPbFNnY2wObphSWgaW0mxsGIJjSMoQXZFPFPqYUI3E1CM0OBakPhK7gRwjLg2kuCO3CnrO6WrNO4/fYHN14Mc/+ZS+69jHDskGdIj9QL99Qrd/ipM9y6XtdcvlAhXP4rDm+cUFn13tP/e5f37aVKIwJWmrlTHlNu0zs2unnKBO83y0aOtnTPZo2RuN/VVHf2NMlbpqL5ZkqU72ZE3O2PqXRym46UJ5BAZpZS5hAv9XyZ+y+1ButkjB3RxRtUnN55afZb0rfzPA3OyA1/TpvHdHB+Fzm9w4zWTXWvfdkHsb11Y3Phnj89Y1R6ZDhfHppd7K0b3/tGd53d1Wn3EuZ/f679bRNb6zG48xu4Ojezva/WT+FT261Bx4VcHT4+4wA3hkoBuijTXnqnqPsSshxvRDdd2ms6Y0+agAtbBDUzlOdHwH45jTqf+rDFPWbLIzzpL7kkGcgVtQx77v+dEHHyIeVusV6yawbhdojuw3HbthoM9wtlygh4Hn11dcHDYMQ493jmXbsloFXl5dEQez35tFiwtSACNmM+c8EIc0MsvM2f1Uy36ahQSFWdPsI1BC43BFFi4VVmc/Srdb/2S1/4z+ZelTLQCR6tAm5/AuUUyCcXzk8l1xx75wPa+IGEtSGbNOSjI5G/CqaS2hHnygHwYg0w0HDsOBnMo9ixuLn3Kde2V/G313tRlj643Q95GT0wWHrjOZtBLvoIDI790/Y7vdcjiYjK7FTBjl7o5YQ8pamQsgBZ3AB3kEWarJvTuZ5r9gNnH5f7s3ZpRRkkgoooAmZ+ZQFosFp3dP+OTiY4Z9X9xzK4wYfeLGilF88DgxkHi18XJODMPBJGjREdSGMgKWnCguGJgvRQP85JSL7ZZHBvAKbCsm5QhygWmsjHPZOYI3+8MA7EWWr4ICtMSnCmMa2dZpA8PotPzp2DvjDjVfqVwpqEipvgtqeKXY7LWwT8eFqBa4ZTmWmJzk7u1qKWe8cyDe/FiBVMBJJgfIeF82NIxpe1zMy4qm9fnG/VHHNaaGbEbw/+x841pZHrzuudOZpfi8eQS4iDAyK+UsxX+bWFRHTKzO4jrlv1YM5uw7qQJ8ZoWCUnfhMn4w3zjPxvfYI1r3MmZrQfXLb8zV2dOPMPZRWrnGFOvxbhwAbvRNGMcnquhS0bcdvF/m5nhAxHvPyfqEuyenLBct292Bpy8vCE3DMixsjS3Swt57Ht4/h6T024H9kA30qQF3ec2du6e89+YbkIzhbLfrGDRzfnrK9npnsbKyvoxQpVe22WmvUVW8s6IOGx4WO3VFojGEltYH1lFxXiEmXAHAbDY7mtZz2i5GRrvWO5aN56RtLfbgHC4nFsGTGiW0noV3EAcrCEuJk0UA7YhRaZzZ5pIzzkqzqPJ9VSp0LI8dA69CFinx4IgOBqxcrBq+uP4VToZ7c0vmlVZfI0Fo24ATT8rCZnNAHylPl9/lC/u/jsyk32oLkqlwIPMpXJkjJW6bKf6qrYEpDyOTILZcW8EVitcImmh8i3eO9WpJ8I6h68hDIicrmKm2r6QDLu/wLuEXjhDhX9r/NWQ38OH9T3npL7nc/3fBn7htt+223bbb9t+ldnJxMhb73rbbdtv+nNpd4K8D3/kLvo/bNjWFL2z/Be4M7/6ZTvOtO/8pf+vp/4Kg7SufrRhYkP5M5//zaKpK3/X83e/8XT7uP+b3fvn3uHp4hTr9PBfqlfYnYFJKWCAAq4YskgiM1YY1YQgVlKOzZGKtaJ2CrZXwaO6E1wgEFoQoUhljdZoUeugSqKxBBGMisUBhjIw64yIyVdSVYIVmC4JNYbl6j1MIpX5mTm0JYsyC9lOfVDYgnZ2qgK9q4K/ch0nK1bNOLRcWnqMQ/ywA9Do2olFOQqZ7naV0XjlWqIwZJeCaGe/bul6pKu9zKZgx4FVfy1FeQUuSYHqm4+qxqU1U8vPxMPV9ZkoEWFXsdJ2Rpn68Jzk6r3MF3CPTPbgbAeZ51d/R7zhEPE4zkCrmaJRHqAFkUWOcOFm1LFYNy+WaH37wYWEeKqmJksisye0a0AJjEOnTYPfmLTDmfWXrsL7JahWDfqQ/h5Snc2lWmoUQnCNEpd8MNCctb7/1JqFt2X16ybf+8bfodwf+m9/5gIs+4ljxO7/7A7LzyOEl+4tr4hBpCPz6L/wiX/36e/wn/+DvQ5s47A8ctjv6XogRNApQZGPK9REheGPRyXmaV2STAXI4ui4S44YQPOuTBYpnt+/suovA6iQw9Jndfo/mSIpulFwSqvRiMiryLpaB4GiaBs0JH4RFa9faHw7GsoMF5Op8d2W+xZRQIk0INGEBklmuWhRlOERSTLz73lskTewOHVE6XNOy3x64erkZKyK9D8Qh0voGKVXIFlTWAtx0NKFBc08alLBcgfMcDl2pCG+MscXlkpxZ8bf+9l/jkyc/4Z/9zo+NQWcEaGRSLEFZcZZYbUE8QIIMXcwlsJ1KVa7NkaYJiDewlzAFQNsQ6Ibe2IIam0KCyTEwQKIhOKENgUdf+Rr3N5nTH13RqyN7T1gE+l2Hb1pOz1v8wiPeIwKpA82JNhh4Naul6RTP0O9K4kyKDMHAnTtnpBzp+g7NB1Jn8h6alJRMkqPve7z3DEXmIwRLRPVDh2JgISjSW8kkAxfLJSknggvEIRMHq9gkQ3Ims+WTkH0smj629joVvKMACC0Z5n0BmXp7klyOd+IIPhgLUh7GtYm6BI5rmkxrWM6ID1a1nbIxUOGKpIQvgd1Ailb13XcDKaaxItqYfALZDWjUaT3E5BazyyPj4Hy/iMNQguVlR1Mpew3jfFaZMdKNW1Ctyi+SMbMEV61gTimh0ZJAzoHzBgpsXIs4Z3uwlApXV+TQRGEh+GysTSalEm0NnskizXe7Or80a5F8uRkc1jqYx23J1aArHDFHjOwpcnx+KIABtXWmBo5zztPeWdixnJTEiFZ5gLKHSpF3VauijprBmTzbp5+9oNEF//Kv/woyRN7/wcc8vz4QEd54eIeHZ2fsX3SIwBffesh7Dx/Bu8rmsz0H7RDvaMOKu+cn/OWvv0P3csNPLq/5y7/0Jd64d8pBlTvLE1q/AOfIUsBWUpONzB5apkRXefYqebvdd1zvDwzDBQ1C4xccEmS/YNme8fTFBafna+6cLHFqY3oZlmw14pAC9mk5RFg0LRJarnYDb56dsGwsSdEP2arEk0ASWtewCEvWywV3zk45WzZcvzjgk4Km2T49A5kBkhUcJMTYMMQkZdoGJAkP7j/iq+9+iYVflPRR4nXyDKPVJNCuQpEmDfSd8tnHn/G1tx/jfBgts3kKbpz2WpgAsiX5nNpalkulcrffchiSyV8OBzLLAohLnJ+1bK4ckjNJhPOzBQtR+iFxtbnmsN/hXE86XLO7usb7Br9s0KHjzqLn/H6gkzVJFyw0smiNTePQJZwmrnbxNc/8c9JGe7sCJ0sCsaD9b5qR469TVpbPOeK1TalSU9Nxdb2U8bwz27L8rIlQqQZ3OXZuDpsNUpd/W49GsefZsZSE7yytN/oI8wTp8R3OkqGzR5aj4+bP+dP7Yfru3Ge58dDy6vH17/U5qsTSqKAyrjU/y/Vfvc/Jj/njn+Ho85nPOTkNRzc7cyl1eo/l8DnQ9XV7y03/S45fwvhTtK6tUv5t+64b9ycpe4aUfc2zaBtCY7bL02cvjAENQOfvWo/2vZpwT3lK7JucU5V/moB+073qWDhRz23+dwHnxUTKgXv379EsoOt6thcHPtw/Yb1ccb29ZnNIOPV89tkleI8OBxq82WNZeevhI+7dv8Pm299CmkwaYOh6iJZcJVthScpxLDLS4o+llCcWsnJzIYTCoFjYF50xXeZsslqaLSHug8nfpjzYHE8grjLb1vc/2UFjfwBaZHe983jvzSbV46GUS6FVZdPRrPjgadvGgADOoWLP673n3r17ZDL7wwFHpA2B/jAw9MPR+IoxEpqAMDG6qBbgUXlfuQxeLe/s0PVU0PY411RxbsHjt99ku73kg/efFRB/nRbF1qvriAopMDnZCqkAUCZ59er3GEihAi602EShCSbdTK5hg2JvCU4hF2nVlIXn13t0a0CBO+uW/ZDJThDJqId21ZpvU+ZklWcTgSY05JzMHs+1kMPYrVM2meTFosU5X1hNFTObrR9zjuP9Wx2YFrveG1OW1nc7SbpW4I4x0hroHjVAkNnNZQoVzbbJN2ZcaG7a4xNArHwvV1vXfroCnK/ycmbvjC9wivBUH7EwgYvMQGiU82CFTJptrcs5l7E3zQVX2J+siG963xXQOPkxxyDCce8cb26E8DK16d5vhmymZypjVwrQK4OOsP9aEFjtASu6IBVmLzfFxUzq3QoZzR8v7HHVZ5ltEzdjTxWMd8S0N2+lD5zI/CTlNc/6ZfbczPfVmye7EdMb98+6k5frjWvWyAY/yb2B43CIfPzsBW1oWbWBzfWOq6s9oV3w4HzJo/t3OXz2nD4p987POF2uEHU8vBt5dnFBjXkFHzg7WZK6gU+fX3F+95T7ZyuurrdlTHoEP708PqefuAnZsckb+8jF9YazxZLGB3KCrh/QYM+TooEHl00zgmjWqyV5SGPcuIuZbZ/xXokK+0OP84FGIKaB/jCQgh9ZAhsJCOaLrZeB9bJhv7P4VWWYnUDUlctrfHUoghZpvuAdy2ULeJarE959+z1+Kf1ruCK/fdP6nA2aOlTwjQE4Uxb2mx3b/Y6L9ccc/CXrdG8aNuWrtXxsKGPTYet1ThNwMw49+67H+0DWCM78cVtKMm3r0RyJweJWkhOHw8FkNAWGPtIPPbvtFu88ofU2rl3kdOXo+siTzz5lc3VJGnp+0X2Rr370Hs8WL/n4xQX8m6998Nt2227bbbttt+223bbb9vPSXm+o3ra/wOZ1wd9++u8QdPFnOs/H69/lov2Ah90vvPLZUiLtXxBIaRgGYozsdju++c1v8vHHH3N1dcUv51/m6+3X+ey9z8ghw//yZzvfzwxS8iVhK04IwVuQLQTSEEmzAOO8nmpe/emcG53C6ihWcNJYh1TjaLMAYQ2MjEEUmWTVJg+TEvB09p0hUQEPqlPCsSbthyGOERTntARN3Rjw0RLkyHkKFo/h3tn9TMGKWj1V7oUaoJoCOHojclOPPM4LlKNnAZZj0ND8+uXfs0BsDYDM+3zqO6Y+v3Geo/sbr0NJdNa70zG5Maexrsf+SdrxM8iUhBk/n6rVjt97pdHOR8+XmZi8KqvT/DnngcLxexWsVFmsnIDTAm6zCjADlFi55dAPpLYha2bIyQLmqoXISQoluRuvewSMq0EHJ6RY6+eV0FjPxlSrQ628U4dM0wRCGZeIYxgiLgrOZzQPSF7yxa99iYePAjFHwuk7bLsr/kf/9q/xyScf8l/9l79FSJ6XXcfQeGS3RXWB+MDJogEyH374CVkcbpE5W5ywP0SSDuQh03cmr5BzpG0bmkVDHiIpJ2JORg2vGHOUcxAaVBnl3VI0SvmUE/utyd/1MlhgMRsLTCrzMic3zsEKKsy5Urt7mqYhpQg69YcLwVhzRHHOrp1SMtYpVbybgrjeK6FtSDmiDIQF5Ow5v3+XxfKElDu6mAjLliY5uu0BAdp2QYyJIcZRCi8Ek4SpQz6EMLKyVSBE1/X4BjbbaAHy5NBsIBHvoF2sGLJyGDpSVmLf0/dDSazYXDU5vYQr38MZEJMsqNp4qNXjUmSwfDAZQeedSWkMBowLrSUVUAEfgIzzim+UhZrM1MUgfHrV8e/9+/8ZDAN//de/To/yO3/4AftDxDee1fnCGJAEpEgk+tbjXKZtVty9+5jN9lO22z3dYSCmRBvWKCZZppo5HAb6oUc1Ewdlc7knBMfq1CjifeMMOKUGGgyNjT2HrdtxSKAG+BEnNL5uYZbY0qwMw1ASYxYwbYp0iEmUGqgEMZm3mhjRwkrlmwJuGpMDRXLTGahp6AeCL9fJQ4l3ljWmyBPEFI21aEyCWCIsa0adSYWZkIVdI8eEln0oDpHYFzlT1SLxJmOyvLaaoPTejzHwmluoCWNb3m6AQ8vq4wqQN+eZTKCrQfgJPDsF422VNXkKj3NmE+Sc0GwAOV+lJLIBi5y3e26CJQGb1pjq8n4wAGa2fjDQsSPlWOTqfAEbzaU2yjvzOgMQlVV/9nzjHgIzadayX5dnnvrCjYk3sw8mMGa1ASh9CpCKpVLzOFreQ71+VpMWzNgYS7T0SVidnRBJhEZ4cP+My/0WkcyXvvw273/yjJebK77w5Xf4+pe+wEc/+ZTzu2f8lV/7Oj988oTGtSWhluhjxoeWZrFG3ZIkfdl8PRBwuYEUmKQx3NHmLEyJucr5kaKB5K43l2zP19xZrNlsezb7yHIpEIXucE1oTIolqbBeL7n74IwT33IRryzBRubZduBNdaxDYNf1XKkSBBpVrneXqD9B1ksIcH7vlLBoiClycn7Kyd1TQPGrFewifezxw1AYY2xdNRxwLuwCHkXwoWW9XvCrv/ZLNM0ZKgve+cqX+PVv/BWWvi0sNG4yyo7aZK/Z2imkJMQ+8eEP3+f519/lzftv0o7Jmtp3x+malA2cnGJm00eeX12z23aIJJ49e0bXZ0LwDBrHovScEl2fGLYD3f5ApGfYRp59/AkqQiNK6x1DN3B5+RIh8ejeKevTlrBYcOdBy6lXmpDwwdN4RysBY/AaWAS4uuxuPvDPTasSMrYWuZE9LxWmwtcmO2FMNI8JJvsj1QY/fsWzwgllStQzTxTOgPXji53s/tEnYZKim1u/9W/19ykVOflElmuaEpWvjMOj36eBqjfmLvNzj/crs+8cp0xvPNT0PDN5mhEcNO/kn8me11mfzm9yevbJOYGpwkPmS9KN79bz3XC6jg7/vJurz/SaZGrt+vrL7LaO2WGPrzL5YvN+nTHu1jNW/4TCoFHdmbqPFCmcuteKwFBYSWIW9gebpxVkVL8/+pZH/szRlc1GKEx/1WKprB2TbBmjhJq5lmKMj4PSeGHdepwqqRu4c3rCFx6/QRtO2R12nN1dcvHyOR9870MWoeGz7TW9GjAz2QaNBMeLy5c8v3pJKuw+bWhxGbSASWKKRX7O3q8Va0zgnMlmyYVBOZn/PW79UmwBzD5TLWxLxaaZ+V6Mc1Rma0ctcvIWt8hp7DvnbF80ts6y/xeGlXq+Claq/Zui2TZZC3DCCc1iwRAjE5Oh7bKCrXfeB2IpLDDgTCyAERsrFWCtamyv1b5JOeGKpGjZxEu/mY+UfOKTJ5+x32+KPZYKWKNae4y+iaj5oKOOk07jaJovMspGiwgqfhy7ioLVRRgodwbsXywC3jvWy4Zn255Dyvz4yXOcwJ31gq9+7Qt87/sfsi2ybe3KI0EqwaO9R+dGZqt2cYZzie3O2GhREOeK7JHt60NMENM4dfthMFbgk3b083PjRxYtk0i0PpecTdquFG1N76DGDQoT02BssbWLPAZEjFrBdbN1WShMoYor8Ypcx6NO642UtdKYXG38OjfNc5kOGuNdbozD2HVqkdhYBDba6zouv4qi0TrYeWN3jBpne2sdI7Mdpk67UTq0fDLbL6ahMvMtpLLD6vQ+ZVpn6/ZwMyYmYvPDlYIE63s/StnN92DSJO2GyHjOXNhgZbyXMogqW+x4n7V3p71YbjzL/JlfjYsd7w1TtLP24fwdTvGyMRZ0dF6Z1qryn3p2LcbEvO8UoW0bHt27Q9M4LrYbTs6XPCgxDnEKkk1q+f45jx/d4+XLS4as3L17iinMByRD0sj17sD5ozPefHSfpmk4dAMutHgfgK7c33wTfs3eOmsOOX4PwRMak5kfDhGfMolIzgNN42h9QFPEecdpG1i2gX20GEkwFCk4j5R3HWNiP/TgjGlrSBGRUJj2IARva2UTkCYQnc198Z6Yi/xnZQvO9b3kmQ1T1mxx3Hv4gMdvPsZJi4QFvx7+Ld7ovz75nH9Mq74ranNi6HpePH/G6epssnFmZk61HSnvuTIr7w+R7WbHvjugKRHTQNcVFneKrzkrdNSoaDLJUDQVO8Du2Jd9bRgGum5PE6D1mX3XMXR7YnfNehHwmrl71uBoQYWYE+t9QDbNH/vct+223bbbdttu2227bbfttt22qTkN/Cuf/bt8efMv/5nPVaz/P4e7+jPcgyrX19f0fc/19TUff/wxH330EZ9++imr1cryzqUJQtM1vPO9d/5E1/iZQUoWFGL0pNrWkqP7Ik9kgI3jyqv6UxALrI2UwcfAm+mJS0B2jCJXcIcrDEquAFTskWEKpNRr1YCOSd7oCGypt17py+s9VKcaqUngWgM91kJTAU41wDIPXNj93uDNHj+c/vY6WYLpNBXgZRWUMgYgJ3aj+fXmfTdPUcyPvdm/UyVp7WOmgNHss+kaJcZT6PTHaFO97tHz6HFS92Y3zMfCK4CrY4rHWmFWk8c1YDP9f6q4u9k3N/toHvCz2O7s+qqFcixZoFqmfIQoBcAgxBRRlJgTw1XEb4TMS6zK0pOouk9CZcwaBmMAmgJ3uXyGBU1zJiXwoYAXnBAHq/TyUkEHxg7kPSAGrkhd5N5qzZfefYwMez74wbdxvMNv/pv/Kl/+2q/hFw2/8wf/jIs/ep//wd/+W3ztS+/yf/iP/x6fbg6oOFK0JP+23/NPv/MtVidrwsnK6HD6RLNYEliAdgzDDlxExBgwMgYyScnmlAWiLFCMKv3hYOPFewYBzeCdSemlNJQqT2GIirhYKqVniQUUEaVt28JG5QghEJpA07YMMbLb7sh9IrQt3TCAwGJhx6dk1cOLRQMqDENX5r6j7waeP7tAnN1DswikbImT680VyzX03YHt5Y5Vu6RpjRGmXSy5uLgi9hak3h+UtrFzItC0JkHgvMNlRwiOnHsDNg0Dh85k6Jx4cmGOcT7Rp0/5+//gOaoDRDeTZrA+TWmqCFXN0BvAxTlXgC0ZkTwBR8XbPUuRmRFfkjz2/RT3ZXx6FotFYQZrOHnzIX6/56vvPOIffvN79EPm5bXQZPjRy2d86d03uX/vDpsuIiHjG0dWgagEcQW0YsCiLMKQjTWq7zuUluAzXZdKNXRDzpnt5oCIAVf6riP2EbduOVmf0PUHQrDEVyrseFVSZojR+gllGGKRAZiS3Qq0YcnFxSWxj0jWwm4G69Cy6Q4c1ABwTmerXc0tKEiVIXFgMox53L9UTRpviIPJJVIrsMs7Eo4SOapKcJaMc64YFEVuVDUV6b0p3CnOk8WSSznZ/Graltj3pBTLfRiTk6AlaaKzZfnVYDo1uJ2L7JqvkppTUmVMPE1Lqo27EQBXklWlL3NJkPjgbT8eahWzEJO9H03GophqwiIrySXEl0RJDWZHJZXkoHMeAz+5cR2ta2guSQu73zQyKc4BoHVdHwHMagxIR5+XhJqojuxNWipsKxObmSrH+1TOSmICNte+zRQ2SDfZETHlInmbCa3yq7/wLl94eId/+offYVDhK2+/y3v5MV038Lvf+T7f//AjFuvAF954wIcffsT33v+M5d0VX3/7bZaLBamLDPnA1eWG3/rmd/nrv/R1vvzWPT768GOePHvJ+d0zFu2anoHoE+ryLNGj49403reb7BpVOBw6ur63xK3AoTuQpCFJ4mKzx/uGfex54/yEU++JQ8ed8xUPTlYssufu6ZrL7QXer9HWEkuHYTAAjsAmDqyl4eqq45Mnzzg5O2G5XHLYHVifnnJvveay2/N0cw2i7HYdMSmx61mLsSHUpHCOyYB+qoQi8dvvD+xXwsmj+/wbf/Pf4GR5hygtJ+2aCkqxxBWf26SuY07QJKRBuXjxgvc/+AGP7j8C9aMtNk6QaksBKo4YHZtN5oc//pgPPv4Jw36Lak+M/bj/qzO5vDonFCEkh3EBxol9M3iSCpeHnpcvrzj0e3w4cLrc8/aDN3jrjXPunDesFyta743NI0VcdgxDYt/B/s1zPvz49PMf+i+4VYBttdkt6QiprK2vmHU3//BKwnTOHANzY3xcH0fwS7XVhDmz0nQ6HfeF6VOZ1sSbhzPbT2oiWqZK/bEIo2ZE68ZTE2NzA74+640E1vw5Xk0byh+XP+TVi7zafuopqq/wylNPs6GeY/p09k6OfKH6iILJgk4J3Z92+3+snvn48ezl1eT09BDHQ2l+4/OvjX067Y2vBzTV76gVOYiM1LBOJpDaKAEl1Wc0QIUM5njM5cXmfQLHPp31nYz9KEVbJ6tJ+jrnCd6NQB7BQB/1u2aPlgdKwp3VHdZLT447rvstF1eZk9Ml9x68weP3HvO9H/6Ijz+75Itfeo87p2su/tk3zb9Rk0BzAl0cGK6uaNsW1wZjSB0iORojowvBYJ4FN5ASlrmtvuiIvy4snIVNFBj38Pq59+BEES+grrCwmB0Ugj/yB0UYQdwis3cqRcJrKIyjMrGsBe9MDroMDGPllZn8qyXLjcHUkufeWyFBHCI7IouFI8VIGhJNcDRtgw/eWCb3EcVkm00C2RX2oMIaWe0VVwAbpLLumF+gxQ/QbIBwkUzSxKdPurLfF9tNJ9tolHUr9g7JrlPtQakMmzPboMrqVenoypaNKknzOJ68nxglnThC07BYLHDbg9mKCjk7LncHPvj4E9o2mL+bjFkqJzUWwhlDUb2Pfb/DC9bP5sGb/5lSYaj147uq8tdaCkiqDTnuLVQ7wI3MmrV/RvuwrBXO+cLcaSxeKc3X/alQyvbyaQ2RumSUOZpVyWU/u2mAjHExim9QTbUbx9z4i9nHrjjYZd1wWt7TbL1y5TMlk8o95jQDaIxzZAp82ClmoJnZ0n3kJ5QfVrAw25+O9lKtC83RMlr/YP0k0zpagUQOWzdUjT1pBF3VIrkaD8plHvvZJcs9Zpn66ajV/Wu+gOtk18/uXcs91Uepn97cpm1c1Z6ZAZRmftYYP5vHnqhjgNl354eVsVnGqkdAEk3b0jjh2ctLdoeek9WKZVhAVp693PLJ80sOsWcZA8+ev+BwiERMartRB6nIf6fM8+dXAMbmetiz2XfF/zHm7ySJLMYSOu308/c57UvT+xcOXW8ykDETUyYS6eIAA8Ss7Poe1yvLEACxAozB/MaUMiLKybIxUFGOdENP30f6GPHJI+rZ95ntdo+iLJYLK4pDWS+WZI0MKY/vRUcS3VSKfSb/x95DtmI9BU2Jvo9cbja8817g8b1HOLdktQ2kfkBY/jFW1DRKKnuhJpOo32yuiXEK2t80d2R2Xynbbni93fH8+SUpdVRPweIeNlDqil3nk2sEGlB89U6oYLoUM9vtjvff/4BPPv0Jizbz6N4p905PWK8aTs8XmBluLIGorc0+O1DP+cmrshK37bbdttt2227bbbttt+223baf1oQkPb3bskr//Oxp99ODwX8uTVX5nd/5Hf7gD/6AruvGWApY3G0OUPqztD8BSKlU7aVEOiRC48fgVG1OauWQ/T4mOGvg3h7tlXOPFXvoGECphSauREEqRXyMU8BSi2RPrVqpiY/pnl/nRN9oNXhHTTJYtEi8JS6tCF9NE32WWDm6/1mY4pjNQecxEGoQdgwoHfXI9N/j9MqxS3wEBBJ55XuvAoVqYKEGeEr/TtH48XvHMaYZ0Gd2nakS7bi9DqB0BK6S42/J7BgLeuQxAD99bepvu41SS6g6Js1rxePrAF3jd19zzfq7Cw7JwsJ7QsjELAy9VWZqTlZlS6nixaibm7ZBROgHY7LwzgItioH5pFRQOe/wrsinqWKyZcF6XxN9t6dpFsbGUxiEfAg0jUck0wQHDkJoTMYsCf/S3/g7PLh3wtPL7/Dshx/zgydP+D/+3/4Bv/brn/Dl997mD7//ARt1nLjMN3/wPfa7ocjZQcwRlwJDTmwOA6u+x68avFPyYaDrlSElC/B6x3q9IkY47AY027KXU2GpUVsTQvCWSC6B8JyN4cY5T9bI+emK0CwKsEnY73uj+k49jWsKU4wFpy1RmWkWnuBbo6ofOg7DAec9vvE0zlsV95CsEhkdWYxytmfUXAO/VuEbh1wkEIy/Zhjsne13B3a7K+7eW6NRWbUti2VDswgMMXLoOpqFY5Eb9rsORckKvsTMq0RCHCLeWRWfVc0WJiyF3X7PcuFImkZ5K5zSH7wlElJPjoWNY0gFoFKAEiUwL4XhJSycSZ2JgUC8LxXOJXBuzF8WaDPQRAkmSknuuIRoRHNic71ju7li6Twv9z+hT+Cy4kVoGs/lZs9HT17Qtg0uDgYc2MaRpanvB0ITWCxafAgMqefy+iOIimZH7IdS0Z0syF/kMTQbyKRSmIsTXBAO/Z6hH4xxKmVySoUZKZfqdCW4wKHvCmjGwCzr1QkpJi4vrznsNsS+AJFKNlJJbPZ7+sJIFNSRitSFL0H/oawGWQurkWphYCnV9xW8UsCoNXE1smdBYXwpa6UCokiw5FQqFZyhMQBdkjHqW/ZVk/wIhXEoiiXB9rt9AZbMdgTNI9DElmIZA/g1eDzKm41rp+JDGTtQJFSTgTHFGIxCqXr14olDRDWOa7p3tn7jKuuRzSsD5Rlrmo0HYbFYFAa2AkxDGQZLrgXvCY0FS6XQPBj4JBIaO7clfWYArLoPzWyN6dmEUaZVK1ujjR8VcFrZEwqjYrR5Me13WvadCmidJQ9KAqauT7n0dU3+1fJ/wzoZu0/WbKDWnHE5c+g7vvv+j3n5cscbDx+wdp7tfuBktUYH4dnLnpf7RNdf8V//9u/x1bcf8PUvPyY0SxbZ84VHj5HgLBnWOZ58esnHj6/gjsDC8ejN+zTBpCiNzadq69j6PMG958aGjolyUWM4+/jZU8ge1URan/Jyc2Df9dw7XRGz8nKz4YcoZycr1ssl17s9fYYGoY8DiHKijq7f8aMf9Sxcy/VVz0ETVy89DS2bTc/+ELnYXxHC1oB3L69Ze8egA0QDVQlCKuM7LCrbhiVIa0g+52xrbUowKFcX1/ze7/8h5yen/Oov/Tp3Tu+b5JpfoeItwTOmBF9tgkk+eudsjESjK9U4IJpAGuvPcn9zMpOs0HWZPildn7i63tN4z70HZ3hvCeVQ9kOcL0mTjKZMLMnhrHmsfA7eLLXYZa4vD+x2e15cvsA3W3ZREXeXdeg4aYRF4wlByJiMHsmq0FfieHDW8t6jn1+QUtHdorKGjBK9Zb86krypf7Yvlt91/Bezv99II77uwuXHjdFQ1u3Rjp+f47WnmZjyxuPLOeq96/z7Uhk8p2u81h+Z3dtYfvE5CLvZMJw9w017d37Ea/yJ+e+zvO0rF3rl9l7fzyNjxvjJMVBJZfRU6mrL/M0eAa5eMdxfvZfX3ML0i9SL3vionn/Wr1L8THu+iSGj3qOozL5fABvlGvUZKwhGvKP1nrYx9sbDIRY3syQM3YzZA4y5Qhhlfyf2wOKXFiASI0ip7o+231WJMLNHzcucM/2GUNh8yhwLTUtKHSi8/fa7vPHGQy53T9i+/2Mutxuuf3Dgk6eXnK4XHFJGgueTZ0/58cc9fZySv1kzOdp1NRnTpXQFfJ0t0RoLWxJa4gO5JN5L/+XZ56C44Md3UZP04iZ5q8WywTshFcB5ilVCWc0Hy9O7967IX6n9wfYNKxwQZ8wtqAEjJ4DDBDLXUuQ09+GrtKFts1UiTEtsIjIMiZxMdih4A4g554zdYhhoQiCEwGHfjbaa8+7IN80pgbgiTzSN4yZ4hmi2Vxp1yUp/l761ggcp/lYBv4xxkTLmLL9dGEYdQzI2n6lopNpZE1Di5vSxAWX2vKoSh2QA49xz3fVklWJfWjFOu1jQtiuuthuiFls6OUaGtdLHwQUcnqwJ6EGdjbFaTFaKgnIyP4gxTmFzWLzDF7bXIQ5FstuNoBbzW62wzslUiDABlIzxahgiXTdMsYdpVWEoY1a02Nzl5fmy9mURKgl3tScp42vODD2+EqUAripYqe4cc6CrvWvxniprJs6eYZQuY4qdKBlSKSZwBsBLKY+FhNO9MQL4Rtflxh6YbwCU5vbxGFsbAbyFfUlklEK32EAa7fjx0WUq9KgxPFVQVxniivR2GcNSGHFzLsxmQmHV1NKHboz5Zc2jnCXlOWvRys19cvz3jf1mvr/PN55RAq6uUfXLYwyt2omjBTC9z1e2o4mtyqb5VEQJM/8NB1m42uwYhsQ7b77Bw3t3iElx6miCo+8Tqo4YlWcvLzk9WfDuo/ssQotgvp1btFxvtqDO5q54xAcWrWOxbhEV2qYl94UNOMvR/U770GQv1b2tbre7w8FYew5C3FmB3JAS250VAsSsxDKGGu8hm5xbtZ2yKAEBzRyGC5rCAJYy7A/bIq1d4gQow243juehN3+kBD6mdVWEEAoLe3mMCRxb1t0i/65J2Vxt+P73f8DVG9fcOb/Hdvn3kVb4avev4fBzl3zqnxmIetxvy4VUFO8cjTuCFTEzOzgTC+qnZNKPXsyPXywCy0VL47TEUev8ldH/J6v5RGXvSiU25UvxBRmGPjEMPc+fP6frepBMN3Tk3JSNzSNqMTgKM6MWJrImCKerWyal23bbbtttu2237bbdttt22/4kLcvAP3rjf8Mq3udf+ezfxeH/+C/9Kdpbcv3P5bzz1nUd3/nOd9jv9/9cr/Mzg5TahR8dZs1CjNXDq4wWFqysDvwUACg/VAtbTWVGmAVq5q0kgpz3M2e9VjLOExHFu1MBqbJwNQAizIMKtR0zt5Qz1SBROW+trHYC3lswUwXTSq+85K/ccw3OlIBJDSojsyBMDTrMEhq1i3TO8FPva05RLa8eV647VdVW5/fVDINVvLkxEIxOWoVjAG4EAn1OFqAGqkpw/LgfPi9z8Pkfj8HQIoVQ/O1ZcnrWGUyBVQt2uyIXUCs63dE563levV49lwE8HDCkTAgNd8/WfO1Lj9kMPX/4R++TYw1QS2GwscBf03gLnFGDEDIyfVkg3KTGKqivBuxytorM3BnVddN4fGjIiVK1WateIz4E2mZBcB7nA4/fepcnT55y+eySPkW+8Y2/yiebu3zn/f+Iq82WH7zc8OSTF5ydtawf3OHy4opvvbim63c4vyK4RBJLlO53A3HYk6Nj2O3xi0ATAl6EiND3PcMhgnpQiClaBeYYjKxMZjbmvXcsVqsSO7bKudAGFssW7yxQD0rWiHjh7M6aOBjlNECMlrwLIViQugnlupmu61FVFqvWABHR5LaGvicEC0T3mhCjmyLFSN9FUkqEJhias4s2dtTmpwWoE65xHPYdEHkRt3Z+1Cr+nCcOieEw0PiG88d3ePb0hfVdjCh+Nn1tXvQx2trhHOTEbrdjuWxZLRc0jSOlSGgbQuNZLgUh0x+Uoc8gvqynNpZTHkYWKBB8Y0Gi82VgvV7z5PIaSRkfHI2UZ0/GNhPTgI5rpZbgL0gZs5JKgCwLcUhcZqtwFBHUNyxax2rR0DYrtvvM86fXyFJol21JSCUW65acIiIZIRIPlhBqgiM6pU895ETjHGfrBdvNgZhTCRwLoVTW07SElefOgzOyRvpusPVAheVyYWComNBkyf6cMs75IjVne8JmuyPHTBxSqTS3zyrfmoonkhAcIUJ2QrNoWSdlrUJHYktGS9W1rTOFHQgdJfRE6ppc5EYA3wQk5UIjX/aNkizBO1zjwTnykIkxE6ON+RQzDinV8gYySDEzxETbNqiURBnTu6r7S86Z4J2xBiQtQL1ZsqQG7W+0rIkgnqZt6IeeHDNjHea47tv8iCmOa6TNeatAXbSLAiQykBPiaNoqy2DrQnfoiYNJQKpPti4qDENmiIURJyfbt9QVNhML4la2qtfsFiWZlMf9aZSVKBXlaLEB1OZQPe+4h2QpMeT6/crkMH7d2GykSIRgaHShzMPKRlD2GC8CLligv1xDs4HrNGVEAzkFnr+84sH9u/zCe2/x2ZNnvLi8oPOONx9+gfurpYGWY+Jqe03Wu7x5uqANK5wPNIsFy7NzfrL4lCyOPESePHlKv9kjHpwKZ+slj+6c0wSHJ+ByMBm4sueNySfbsIrNUBgbiw11tetoknDYdbx012TnSGQ2m43FrgWSCNuuszUfk1tRZ/2TcOyzoG7gctPhJSN4NDmunK1vAYGciQKxy1SY3U4deEs+Kg6fHeoz4ixQrwKIzJiUTCIwYcCehXgkwoff+5D/4mLDb//uN3nr/hu8cf8hv/Ir3+BrX/w6ThrmTEivTA8FL5RK6ggaUQ8P797Bj4m7abVHJ+BFVuhjIQbRzHLpuXv3AY/OA8ErKdu8TYOSVMqzRLrdnqvNlkMBRB1Sj2uEh+sTlk1DaoXGN1xv7/Ly4ppu6Li87Hi52bKJC5YJmrgC8aPNjKglaDVwum5448HqNXPp56MZ68lkl+VqYkzG35QMn34wJgDH36d9bkrnzhlntKzdk5SWLRuZXA3KmnCbDJvjNXR2I2PCmLJnAjXJKbMv1FNrSUSN9quTIoti68irK/Wslb449nrkhj2t8zx/SdzWf3A02F8L0/sc0/2INeno4WTqjxs2+vxax4nYmyxXN4+Y7P7xqtOrvHmyo3t+/blv3Hs5fwX5jIfM/jln1Tqa6zf/LTe+DBOQmcJk6RzLRcPbbz5g23V8/ORpYfyxM025TC3MgsYa6YvckRUJzBl/J8bGqXjEujulhDgIwRFcQ5VKHu0gnQDtzjmaEDi/c5/Nds/11TXPnr/g/p17nJ084Gz5GTpsOHQdVxcXXF0qzWpBd+joukhKAyG0OFzxG52BhGJE1aRkPA6txSRl/KVYJGvVwANjsc9r3lpOGd/4cd+qsYIK5DHZYHsf3jtCY6CfynQEjP5YKgyl9f1nrb6GN7B9TJbYzUXqbVxXCl9pudc8AqWM9bSutdXdNsnvwvApymHfT4AMb/JiOSmaLK7QLhtjW+3NZ9By707d2C9a7KuacB+GoQBOHE6EJFbQIg582T8TQk5zP9r6LJGO1jPxghchOFuHB6PtQKQAxct7cM4VZrvaibmA3nzZB6tdWn6qErMl+sUBoUpDO4aovHh+TYrZAAOLwtRU3rd3xsQZAmhKaDKGoEIsXGJMwtn5HQ77PV1hK1Y1fwLNiDew/2LZ2BjqTaK3vl8nmJ9VlvzKXOu8PY9mA/LEoSNV8F2df7PlpK5PxmBkfsDSN9xpl2QSV7sd/WiP5rFoSfPExmVTegId1uIeyjy6acO74r9XE1QVyJk02p4TCGcMraDkwQDAKc3nwrT+WMyqyK1rAaaNK+rNh56vzba+eG8sv1X2rp61rpApmsxjZSyrrOSVGbj6VKkwYtmcdiP7l4H2Kjt6RrOMMUTNFD+U45uTac+t66AUYOm4L1dgV/Hrxr0aPX7Wss9VBnbr/1kc8Ghvqt+wnfrV8jimbXn2HsYtqQTCVBUeCfp9HcdGdp5c5ndKkTY0dPuel1cbclbu3TnlZLmyOKNUwKrFBLwL5sm4MseLMZL0/8venz/ZkmT3ndjH3SPi3ps3t7dv9Wrrqu7qHWg2CWBIAOSQM2OY0Ywkk2wMMkqkaTXJ9K/ITL/oJ5lko18kI00cLgYTOQJFYkgsRKOBBhq9VHd1da1vfy/z5XaXiHD3ox+Ou0fcfAWgMWATTUx6W1fmu3kjwsOX42f5nu8RDg+eszg5TexlKhNuXb9WWLKG/S1leMsRPNaLEvCNxCAmIpgorINXGzide12ksApKgLaUtRzORzGGXlISbJRUfl0wUfvY26A2r2hFd1Wxkh4pCbBpsl2YC25GRAb/r+xCrIXRZij+Q2ccsQ08f/Kcs9Mlk+Yh03rChzuP+S93X+FW8zqI+yO0t0GH0PMsJFkeaeqKqiDlytturBh9h6FEq7HKDr49r2hsLimr+qtuC10vfdfTrlo67wnBayKSEXa2Z0yqRsvmGR1TawyWmtB3rNaB9XbPRAwuNmBSDraxwCC7KufYmvzI4YKLdtEu2kW7aBftol20i/bn2T73592Bv+DtFWD+o39dTORf3/g/8dmT/4wb6x/P5FgzJAP9uNrh4SEnJyc/3ofwpwApVXVNiBqAw6gjxVqbss8zbXr+dmY4iMnYSQasyRnGxd2+4YCP2emVHfoyAv5EgyeBm6w+v3hjIAU98z81eGYLdXhmVTIbjoshAiIMIJ6UoZaci0CiWjbFaZJBNQWFkrxenxQEGIBFNo1JMuAlPb04KjZIo9PF5+4FDCUrZGScG/VSlez0McAJcraNiBDGIJPsLEiOHWOGp5dA0MipYtNnMnIK5GGAzBBlXug3MsxzziYss26Hew5jNpRIy08vzBcxZQbJ2LUxBiYNYCtj1LmUk2kNtjByWSMYIo1tqFzN7qVtXnr9Dt979z0qZ+mjYImltBkuZSdj6LsO5xxN0xRKs9pVyQkOdd2Aga7vCL2WCbJpTWWnvTp6lY49M/KA0t/7rldGm62aS7tbzJoJW7u7RHE8ePiEIIb/4Gd/nkvzjn/0T/8l33/nIVeubPHhvYfYo2NAaNeBVbtm0hhqZxUgJR192+O7xEJkaqqJIUStYS8YnLH0GKJXoIszyvyTyzkOTAM6h94HrA/YyuFchQ3qeO/anhgCve81C9oaKuNwlSvLw1rD/t5+CSD2oaXrPOtVj8XgKqGuLc7ApGmIVY+zSvnfNI1mLRsF6Pjep+zKBPTxgZJZKpo9q2UVHBIthorVeoWx6linU0do1TRgArEPEAx98NRtrwCdEFPJipAy1tVhiMksWA0xMVFFEbq+p3IOqJVBy6RgWIgK4KodbZdiETaV/utD3kxgIjiLqzXgfdauOVt3dF4wDqrapNIEsWSaygiYkQOkl65eYrE4o28D0dmUhS0pCzVSeYdtBKqaYAxdL3RHPU0dmU0cndMSIl1YY6qGrVlN8EKwhtc+dYcPf/CQsBJqp/uxbmochmuXrvOZL36Wr//2b9BHwbU9oapw1tC3LYaIjVA1DkQwW3PWK8GHlb6B0/5XtQqFIBZX1wrq6TuMqAPT95pZHSVoYMNUWIGenOWaZaZBnLC7vcff+NJ/wN/4uZ/ma3/4NX71X/06x6ueaEICdQkSQ2J7UuHhKluCqJrdq8CcmOiq8omWHdkOBVX5zpfSlQpmysLUJPJ2KedRDEK71kzQIYt9xGgHBKA3UFc1ldPSKSH5WgsIbxSMx5CAVoaqqcre1SxyimwiycfVek0MQuUqcmnNXDa1bz3RxfQcj7WGpqkxlaFrNXM5GKFuqnQkpbKFWGLQPWh81KprqYOSQQkpNuBjoKpsCQRoeY5cxnUMbo7FKV7W+vgsjXr/WOSVZt+K5ABGzupOOoJJ30m6iwJ4TBlXfUgsgb+8w2LSDaIkdh+v7+yNgtdCVHYFHw0iDmcnCrhzFeIiQq+EAjhm27vMr15hvQi00bD0LUdPHrNaL8EK63XH2z/8QMtL2oqtquHKlW0uX72CEIiG4pxPhe30M5RZLKboeC6rkS7AIgSnzGLTSU0fVE/oE2NFJWCSzIgy6GdDFrXFl0C6ii7S+arT4onkAJHOV0gbwSRZJ2ggONr0LBFi7HVvRc1KD0kP1LRqzXgWEZxYupOWw+6Qs5Mlz5onzGZbfPzoHr/0H3veeOlNGrYgwZtUR7JkcI8Q6b3hbL1m1Z3h4xrrAyYmMKHJb2o3tbS0PnKJRkQwlaOaRmZbNZU1hKD7xxNpfQq0AYcHp9x79ozl4oy+a1n3HZeu7HB1a0pVT6GyVDO4cf0yTx8/5/HhGetlx8nZitPVkt0tR7Q10TrV4gcRh7WWpqm4tveTC1IqhU7MZsHfLGMZjfR5tVpk86ON8lfp7qoWmvLreaW07GuTwYsy+v/o7jL8UgKapX+pl0KRFzkZYfwgk0HsZmBjHRReKfcbfo4+G1maUvbVBoRI5ZiY81eONPTzCvnmOIy0/fRt/Z8pn4x+lu6kb6UyTVnHTxWhNs0A4QUm1aFt2gtjs+o89OuPfpVPfr8yL5/41fF9lUVx/GYb66jsLTN8Vi4d2F2tTUwwxlE1Fb0RThcLcmnBXIYzI9ZMCghKYpQ0OZgbFTRp0LJbWgpVz0/VR/RZah6pTaHlVQvSr9ipGuQXoom4ylE5WC2X9N6zs7PN1tacq7dvsL1bc/lyxdd//1ssHz6nqg3Hpytk2aZHqJ0gfa+lfAzlvJO0f3LJHD0n8tilPVhKXidbOo+0yMacCOg4pXUe0wKLqdSZMLCvRO/p25A+03vXVQViCF7BwyLQdx5QNlEh0kukpsZVORlKmWzCiMkmszNJmneJcQgQ55NPtLCrNYYomohgjLLXkMuSRyFk/whq17ZrZR7SNZNBF+m9ix2vgCYBjLPpe5TSfVWlQCcjAzAp34vkI7FGwb0YUjV7tWPzvVZ9QDoFmNkKbJVWvR+xcBbdZ5CjrnIJcC/KesPoLM/69gagXIE+VTVjNrG0XplxjXg6DHXlqKwmIMx2ZnTrjrgM7G5tESQQpYXosFguXbnF0eFj4npJLco6Eg0QVdeprEuAQaGyFrEKZImiNhOGpD8JIWQfgn4HiUgwBQAvRZht6uBjPR8DIoErl2/z8z/7lzk5e87Xf+8bHBydFplhLMlfRVkDGd6V5XtmZ836+xiGW/ZXBi8Nl43ATCYB/Qd9VUYl//LUqFzIPpLcHwUI2Qzuj7quKfcanmEQLQWYmAGz3j32F1kG3aqUxDNjuAtlT+vaSONtVSYaQ9rvpsxX+U7MDF/Z1k39SlNp8nhFEJO+Y/I5MAIqlREx5awRxufF6L1HNsqAMBVMBr2MzoesUxSVYoygErM5mucUmbKmMHBHiMTCuomVxCYWCcHiJTKfz6ibBmIqYa91NFFtWpNrmq0GIxZd3oJv14X9FITOBzrfYYxlWje4pqbzngqdW11TKVmD8Zo/d+aOjnEraS062Jrq85ddT8jMc/ndxyOdz1byBIZyP8WA2mQ66KeZjV5LwmcmNRJ7lQzTl+yUhOxRmYvBXIM4FehTckIylkNia4ukczNGQtfTu451t+I3ur/PL13+P7Iz3SOnLpYBGP2MUVite7rQ0ocOYyK+75X5P731oMmBIZJhTyUZOPVJrGBs0iPLvkxgpmRHeR9YdZ62a4nea0lOC2xNsltYWR27NbNJw2Kp50bf9bRdT987GhMJiZV1SJpNmroxNM0FSOmiXbSLdtEu2kW7aBft34v2s/xJbsCL9mdpbwF7f7pLVtVzvnb1/8p/fu///KKP8s/YDEJD+JO/+GdoMUbu3bv3Y31Gbj+y1dF2Hcn9mZhshuDhOVeyGlRmlC0sKegXs8GYzLRsoxsKBXyMkpyicWT+JfM4QjRCMtX03uqNKAASddiTIh+Dq9tVVXIYaICLqIw8hR0pg3eSk9FVlRqoWntpoJUmOaSN2zTY8ztuRk/OBRkGgE4OPpMN6OIQSW983geQQTrZlTI28lOptDwROZiSfw79jskBrGOqwTcGJ8zYn5K7Itnwzz4XS2ZdysxY1rmUETo4AcZ93nwPNvo1/nvMVOQlEF2uKjGdXL4nl7myCZiRncufWO4uR0/Kc3VtzeYz6mpG23qOT1d87fe+y+HhCdbUTKcG3/damigBqYx1GOuQoACcmBxSWuZHHd2VcxhjcJXDOkNnLMH3VE1dnLUxMZMQFGwg0RPF42wFFmK0iFiaSQ0m8OTgKatly43dfX76y5/jyz/7RepJ4O7rn2bp/zlHJ2csVgvWrcHHFoyW1JKo7BjeOVzjiKGja3uMGKpas+v6LuIqfT91sjt16otmZ7vK4ah1DpBUkmJwYFrrUrmnroyvEUOXSk6pg91BgGW70nVTucKc1K6PktPVpIzwGglCHyIxOtarHmM6trZ7trYb6mlNLVYzzZwlhKHcQ6aIzwwrfd+VAGYuS4BVenRpVXZpQqsGi5xxhC7ifUfTNIjVYMXz56esVp0C0BqHq2vada9lrUQZ1uq6YtI4EE8z26KqNXO3qVxiytLygDEq743veiDRmIcwBF5SECBF+rGVhRjpo1EwTgrcT+pKg1oSk4NdgVGucoQ+7wfda4eHh1hrqNyk6CoBIRqD06JnGvCIAs7Qh8DO5T1ef/OnaE+ecrJ+ws/+9Ft87ff/gGUU6qrlrTfu8OG9pxw8eopzltfevMUvfOWn+Be/9W/46PEBEThZRZ4drsHVzOaW2lW0YpjUUO3OWXQ9e7sTqAW/1uzIvu/wPmi5LqtZf3XTAELwyjTQdsrYJa0yKPkUULCxAnrEauaiDQbEFdAEVhAJnJ49Ye/VCfWtSPedNZ30BGnBKhsN9KQDIsmlCF7oY0hMTsl5bhzJG16c4TmgEHxIjnYpckvvpYwJGUCZ2WyUYSjdgziSY0NgM7M1eO8BaOoaJ3qGxYJNG7RRY3Q91JNavxP0GRLyGbzZt75PTFZJ5hqjGdwhrUXfB3yfHmSEZezoO3Wea58UDDWZ1hijZeVC6JOzN/dNf5byTsYSohC9jrfKcjsq56lnjrUuAQ1j2edgSlk/1TdiOtOlBGmHs4Y8OeUMKaVb0oG3weaRzpTMlpKBxSKhBCEkhORw19IJMUaC74m9glZCiPggnJytuX/4lEklbM90TR8eP+fp0XMFMgk4iSzaJYfLMyqpicGWbNneKU9CJECMxOjZnjt+6vOfwgR4drDgYLlEokeBQTG52VOgDQ2imhLg0pcMJKa1GIjWcvXGJb7yxmf44IPHfPD0Ga3vsVGDJSkaUAAEcXSvxBVUxlCS/pKZ03IgR0Q0gFHWXEzvpHOsW0mBf5aUQZ+d5BaMS2X7UjC57wLG9qn8TWZCCVTbEeMCjx9+zG997TeYz3Z56eor2MLTlXQBBjjC2dmaZ4fPWLWnRFlTd8LzkxO8RGoUTFdW71hfEoheAanBlw8g1ohxCRANweq6DfR0pqOZOS5f2mZ7XhNDIBCZT2saazERfK86SuUqqJQNo+s6jk/POD2bstqaMLOdloM1CoIxYnUejGBry3z7J7c8g5Y0yupu0t8TIHzQCQedutgT5/TJ8wkHY1tkpFXnTc0w98P147ktXzcDQNEwqPEy+ruWAdXyJLqGR8xKWdbYHEAd9N0BmCGjDpY3evHXT1Bpz382DnkVq2fj5f+460dghPPfNaMvJ7thHAQ8DyTK80nZWcOrli98QoAz/z1ZN5tdHTtY/gh7vgSIc2DvhS+Mb7b5eQ6Aj++zYbfkV5QMWsnnZ/rMaOLEZDrBWUfbdiwWa5arluADzqmu630qR5bEh9qRtpRvzUzEuT85SUYSONYaC45UxkWZhrUkmJSyaNaaFN5Vea26hk0gEUsznRLFYboWFw3TiaVpDCF4js9ajo6XtJ2n7U4RsYmNMOkjonIoGimg7Ww/O2cxNjN6jmy/xE6T7VHnSs0loiQZb0bTMgIYDcsug/uSQpvOnRjU7q2cgtwlCOu+Tdcp8NjZrP9HIqkclBEg6SsJGBGSXlEYVtK0D/+WpAdpfwrrlpFR2fnBtlcAkitA2szEEuOgh+XxMM4SO2V1yok2dV1RNw7jJbHViJYDNoa+70tZq7QEU0nhVC46rZ0MSrY2z+Mwbon4T/eKKOPKWEfKLTOYDj4DZdvNDMZZpwg6dXreo/IwwQuUldIK9WxGbWu6xZpPvXqb06MjHh2eAJ7Ll3ZZtx3rRUsMwmRW8/nPvcHH9+6zetYlBiZ4dnCoQHBBy6gay7Sp2JppGVpnLXai46HrKxQdT3XkxDBlE5A7ZhYfBfxLiFpqTgwu6SoRBfYYRBWR7K9R8Y+EwOHZY97++FssjpecrZeDziQDONHktZiWYJ6TciZlpE3R2zbnWELc+HdWQ3Sess8lz2nSVbPvLD9pUMGH9ZDWpXHK0mWNzpmqOIXfpZybur9tSVoazmAth573T2ZvGkMxBlk/1hP1byExw5q07xAQk8vGJT02ZvDgeKzSqWHyI9QnUxIbRgJm6OtYrgzyv/y1jK0+KWa9OQ2iTu1orySd2uQ9lI2PMlEM8zA+gmR8TqbBGfkFs8wo/g0R+j7w8MkzJpVTPSqaVFZcWCX2aQTarufR0+c0dZNsFH1+2/f00auNkJ7vLNy4folLs22enyx53iqQ1aRS1jLqs+ZHpjHM/U/JC1kxMAKT2ZS7L92C3nDv8QFn7SpT4A7jUA73TeDcGByZTOTRdhgAkTJM1Og74zkukD02xNvHgltbqK36T0h2fqTYLGLA+ojYQHQBxPJs9RHPnj1jcmtG4ybD2i7jk3ZLhMXyjK5fE4LHmcC67WhDwJvuBYXSGWFqfLk2BiEYwUjERmWlwg7aUU5ukihEE3ATw76Z4cMkyTtd+3U6/9vOc+/efR49ekQXvCYlRk/XW9brjm5a0djku7QWmyh0yzluKeXiL9pFu2gX7aJdtIt20S7aRfvvdftN4Alw40932UHzwz/TYwWhs2cvfN4QuGR+fCXYVqsV3/jGN3j77bd/bM8Ytx89NULUWbYBMBlldqUvqSOtdlSVo21bpUBPdffUfjSp1AjJ+DQbRmgGK2QwiUlBR5eYbLJTNl9vkjMy16MvTAk2A5f03lFEASR2xBAkRh11MtBPO1tRMiklOyhkyIBmyOQ0xdYeh7sSRX16xjB8Y0fRUAYuJgrwEibIzpASEBiuN+WbjAA5ytBkioNgmAsdnezI4ZzjS/Ta0WU57jbEN7IjNjvmRu+U5y45bzec+sXHMgJlyUA/lud1HJ3YdNANmYvnS92pr0qzajNduI7jmHmJEgTAJKp3FNgUY8AaQzOZcPXaJeqm5snjZyxWC816xtBMtLzYMpUSElHHc/AeI5pBSFqjdSrL4H3EkVg5YkR6ZRsxSCm1YIzQtq06sBObj2jqsYKarGUymVBXE2bzikkj7F66TDXZ4fjJI2rv+fDDd/kX//K/ZW/X8Ntf/zXee+djhJq214C2BOVqCKlkU/SRYAONrZjOJjoGPjCZWKp6QhCDT44ZDCnDV/tTNRWu0uBgzjR2ovOmzmijzEy9V4edUeCfS8ClKKKU9H4o+zSbTLl5ZQcMRDTDru1jCjIrk4qYgPcexxRCVLCQh9Wy01JhaY/6vldQT3Kk5vkVEZzTfkeJOFcNDkNJ7xo16z0S6buOEKCq1CFaVXUJhq/bHp/G1DmLq61mOCegWQgR6wzT6YytnSnNlpbJOz07ZWd7B+8Di8VKx841YC1d2xK8Mj/FAD5qUCJaU4ARhbkrBjqvTnPImdKCczW+V1CGwRGDLwEO45Q1xhlloSKVE5HgMRKK49Q6i5he10q0ONtjY40Hlt0Z73zwLWy3YG+/Yb06QfqghG1MWC4WbLmafmU47TvszPL4+UMOj48JXpmXbDzj3g+/R2XnzKdzqsmal29c5rNvvMK9jx/y0fv3mWw5Otfj6hn9+pS6MkCtewQLtWBshTG6LtdtjxBxUtPFXoE44pkA0UErkWis7kUDvXgsUUtpWJhEg/WBv/+P/wG/8TvXOT1YsPZgqwaJXSq7p+UCQ9QybQpGUsGmcxaSvNdxznMziMAcJMi/D4AZFQ8hyT2XQB4DA0cu21mCpm4oZRnTfcRQSixYq1VtjSjLTdqEYCPWOXzv6buU/Z7AfDkDNJ9z+VQxzpSzB/QcC6lMn6QyaoPwj8qm5bt0TunfQswsS4BENDF8cBpnYLOyHGpZG4xJGcKhBFk0ICHkjNroQwk6DAqDBgryNQMwOgVF7XD+awmAYVwjn3SmD2dlCXqUE2rQe3IPh/MrMwKpPAjRI6IMWjEaPnrwlMcHhzgMPiiI0zmLhMi691iJxGj59vfv8+7Hz7DGacmUoE/v/Jq171RHEagry6deucNf++qXaJ91/Opvf4sPDw/xoUt1AiAmHauKokxJyWltTcZvVwQDYgNGNOP5pz7/WX7ui1/k2vYjFl//Jo+OD/CAlofVNTsOVozbJhh50BWGQFzSFmQ8jjnAoHO2EXVL6y/PXeUs9WxC1y7wHkjl5lSeW6IooGfqaogGayuaqiF2gcdPHrE12WM+2WXa1AVEPSwiy9nJGSenz1ivT8GsWa8iDw7PWEUd78x8MATbdJ2EqOXeeu/xAaLvMDGW9ydqIN5Hj4+CRANoicu9nTleRIOisdNV6SxSOaqu5+DJIe/ff8jjg6es2yWxajk+haOzJVd2Z8zqBlsZxBqcOKxUCcwXMUZomk8qnfiT06rEEFMCkjJiEki/WWcLAML3Hp9Lx2S5mgKQJX6Y7YkcYDSAHbMMDdeUYBQjPXOkdW8sdTPYE0U+F9kNRUXO9pAhAU5GttLoduOA5fknDkHlzCZzntVoeL/8zkUPHj1//LSND0aPy1WrRqM3+sL4XkIB+kuWeudvaTY/PPe48VPk/BfN8KgMABkE7yfc5Ny9N0FZMh6pP64jSSaNbJBsF248fHiGSd8rJYfQ89S5ismk0nM2tgqq8CS9P1+DMiiOzp1QGIbUtrZGwbaaxBCLzR1DKMCWMaiqBK8NZDY6W5gB1c50ztFMK+pabSBbOXbmU6w4jk9P+cY3v8fubs3h4QNWZyvVd6yy8OS5zmXXYhCs0RJzdVNRURFCpGq0rJCyO1Dkekx7K+/jvMed1bKhmWEq7y3f+wLWHvwBGTimsxASW6lBS33tbs9Up3cVvQ/0iYVFdTCP0BHTOWGc2p8i0PW+jC9CKsuT1ycDQMmM/QvoGOfxT6CX8V4ZWDBDYoEZyqMXJhgSQKmw7AwgJ2Ms1jm1GyvVE3zXE22ykRJ7lbHKvRF8LEw9anJJKVNazHabZWYo4JO85o1RP4GUUnGMSgZSwPQDUDttqxjL1nSYBLhTvcoaS+2S3SzKEHZ8fIARoa4dH338kOiVoTZay9HxEkOkthP6rqWVnvc+/pjjo1NCsnMsgl+dMqlqrt94GecgmI5XX77LwZNn1NUpoV/TW4+RCu+gqnX+Qow4a8FpWVldXLrPoqTEFQCnTGYld62cHDpiIV1nxaZ1YaispVt1fOtb72opLbEJ9KUJLIieY6AAPGMGnaVAKGJMj/wEIXVejuVPCitQBtflRAZJl43PlbwQslIr4x/DelcBR+EJlGy3ON07Ufefln2Wkhgw6tSwJ8qhXE7NUi7+E46JNA5jAJJ2LPhIKGbJubMsj2E6nkryAyOddOOVpfhzBt10NMRm8OUNiYEMZ9CgaGycVUnVywpuYkkqwjqN6fhRg84xrLDRuZ6uy3ZfTqhAoPeRp8+PCqsOWQcqYyFghHUrPHjyPO1fPdf0bFMO3/xsawx7O9vcuXGN/ek2vj3g6dEZXuJoohSEZEXtCUhbJNuteYCMAdS+u3b5EjevXcXGiraN+GeRdWwTa1LaZOPxZXhWkaebk1OUj4GZ8QVlJw23DHPFMA2SbCA6o3awM4g35GQ20vhnVrq6rnVPJdtaWfMCy/WSUBsmdY0z9lwP1HfUtWuCbwmhBwKLVcVp1/J0+i67Z7fLs8rYpbUZo+oWNgZi9EQJiWcprZy079QHoMNocdjaUlW69y1aZm7Rtjw7es7Bw8ccPDngyfMjjs+WeN8hBLo+sO4cbe+ZVJWeSWnaLQ5TEooF85NtTly0i3bRLtpFu2gX7aJdtIv276adoTlv/45bMB3f2/un3Fl95cf6nBwnPDo64v79+3znO9/h+Pj4XMznx9d+ZJCSkQGck70M2djPjl5jlDK8aYbSRtmdncu2ZOO/2LPp37mOudJIu2LUF6DSGKRSOpVZfXI5mM17GmsTtbct1L2Zht1aLQklyfFb146qVsYYzVQcOQ01r7/YzM66bF8OTcY/c36x2bCfh4yvIdiZ6a6LXyKPZXYTjQIwoxulFx0cjdlYz/NQGI3sEHbJDEImOzRKkEffEhnKBRT3VnauZIeNjKjPjZrYEgeHR3EgmGx0j+a8rIVxEP+TBlH/VtbbuTaem9LHjUEaj1lmlCL5RKSUUDhbLDGrQB9avAeDo64rQgz0q76UKsoey7qu8wOZzqZYo47m4ANrOvreI4ICTmJUZov0Dt4raEgZjnT+chmluq5xVYV1hrq2NK5ivrPL9nyKixD9kvl8j1mzzZPjBb/y3/wmv/jXf5pX777J5fl3WbYn1NMZoY+sFuvkCCdly2o2VoxC1VRsVxVd27J3aYdmssVi0dH2vrA7RfHKzlBXuKpSanAsTSrt5GZT+r4vTnvf9xhnNpxNVa2O/67vGTNfIYau7zlatFSVYzLdop7UuEaz0OvKAT3r9ZIYKhCHlzXBd4QQ8L2yCPXSp8UTtTRUVKdQLvHmKqfsGiEWJxpCYaJBtFRFCKl0lzUYE/B9i7U1lZsAyhxjcEgMGGDaVFo2yXusgfnOlOCzg1iDHlXtCL2ncjVt26dSdIKzDSKW0ActUdYFjFi8T5T3tUHCEICpagViRR9TCUHNaDZWS0YhDNeHkEpV5OiBrkulLI/JkQyNmzCtarZMxX69RWeXrKMHsezs7/HaS5f54P0HnHno20DfPWXWNDw7dvyrr/0AUublmYt87I9pbIX0Bhcc73//Pif3Dqm85VJlaUOksjW7lfAf/fzP8tVf/CWed0/Zv7pPt+j54Y2P+fmfDXz77a/z6PAxB7Fl9/IebrHi7GRBXdU004qu71mvI733hF5L9kVvMB725w3bs20eHZzSJ6enk8yKpWeJyUAGb7j50jUsgSu7O7zz0RM++sFTbtzcZXtbODlpExuBMsM1kwrfR2JslfUrioLIjGAFfKLWHztOVW5tHtzn5VQO1OXPcwGpcoYWQJMdBTCGMIkGoVOJQxOo6xpjLSYHMNF1XtW1lrdI/bGkcnPRYKoRu16MiEkBpnFUi3Remhxw0OzMFwLqJcCbPosKyIBMRJXOE7P5fV2q+RwQzg3bEFwzpjDnDJ/nrNuBRS8HF4ezKRbQVgY+A5BLRYyDcCPQTD5bCtuSgMklYLEb7xGSbLW2Umd3Kg8aRVSmZFnjA2ehwwnYqHs4lAADYHSc+87iewWraFDBIVRgPNYNDBVXLu/xV376y7x65w7V1QkPnqx5dPKcQ7MmmkjUwriqQRhlJbJYgrFgNShnYmI50ggUL9+9wVc+8ya3r91gf3qNo4MVv/Xd7/BcTgiCBiYSwDHrEH9sK6rPoJMM0U1Xxj2P5UaWehlfvd4kPdJVlqpyBONwRqGpIXhcZVKwWfAEGhpCr4H07d0ps62Gdd/SNIFKHJVxnNcsJAR8t6DrlsAaZ4UP7x+z6GC3iiWUMAQGU98jSNT1tG571r6l8cLS91Qx4kKk6z3r1Zo+Bvoo0PVQablH6yqmDradjslJH+jDKVW/pjt8yMOH9zg5OgFp6aJnsYDjkyWLS9vsTqfMQk0MDiFSW4P3qeSHRFzt+EluCmLOuuwAvgeSPpw/z4DCMfhkaMNnMsxTCcqeD2ENOoDO6kj2Mqy9tPHPX5yCVynpItssMujtWY931QBA9YlxzZoMfjj/AuMAGYxBPMPPjZjbCwOQwVbDzV8wGjY+K3vTyAZQabBbJN94iA+ObLax2v7HSoKs9pd/jg2iF2/wwtCcv9/omo2/yWaiyCd35Y/5q0ljXdZdftYwbmOZN/5TtrcWixYhlRVOoF4t4xVHLGDDWZjBLVnfU7AIRT773qdkmcHuzokheaUbq4Fnsp2Y+m8Tu1pVadJAVU2wWPZ3tolGWC48WMfJ2YLTlWe29RJ3b7/G2UnH48PDImv7zhMSO09MoNlcRso5BUAZ72maGusq2rYvezUmoM6wtrINCUFiKtGmpaNUdZByzpb1bPKes8keG87rGCNd13NwFDAo66tVBAh1VVE5g3MVsXZgKsASjSd6nxh2TNKlEqOIkVIGN4ZYfBubgJ4BwDPoG0PJu1zOLp93OUkFgd6Hou9YwFlbEp2sVbslMyHFKHRdn5hUlekoBP08BilMWlmPiclWHViFGezyrE8m8Iiz0EwavO9RYIsrgA2d6+Ee53dkmRcM1tXMmpqmqjC7u2nsdLS2d+bcunGZJw8fc7LuESz4oOXEBM5WvvhyYoC2Vx2ho8Ngsb2weL6gxrK9u8ty3dP5wKSuuL2/zWfe+jSzy/t46XGuYTa7zFvzKQdP7nHw/CnPnh/RVQ4XHKvlGitW7XIRuk4B9lmvNInBu6kN1y9f5fDojMWqhZgTYGIB/xQmSGDa1Ozs7TCd1Bwdn7JYdFBFptOKxaJN85aS7mzS3+3ACpZ9K8ZqibmYS3WXITcvjP+GDDfZx5bnlqIHD7rWcEW5UzLUhzubpG9FQNkfs7pWvpXva7RsYl4Lpfbv+NZCAlmMWZbSus/lDUM618+93aD4nxsDdR9w7tP0++j5+bx64cZ5zDJD4ugu4+9m+yTdd+MsLmehGcZj9LfSn+SfG++f/FmW3tlWe6HvDHJluPf4pZNmH5WH1CZ7RYwZAeqGi4yo/BBIpbUtxTBJ66Vpam7dvM7+zi5b1ZQ7NytOFgseHvV4k1l5BpUA1LdosQqOzYmjpZ+G+faMO9evsD3ZwlUNL9+6xWrZ8fQs0Cf70JSkSdmc3NGa21RMNnW6Qds7P8nlP7k7Zc51TQ/y3DlHTLZvltlRMozR0HtP3SjLUNM0zLZmbDdbyo5o87hr1+y5Toh4LTXpPRBoW89qHYizEQryE/qvNkUkmJiS/QJt7wlR91QMER80+Wqd/F4TZ6BKfW47VidHnB4dcrZcsep7CIGp89jo8b4neI+1keCh6zxd5/FNQGI1sPwnnWjQh/8Em++iXbSLdtEu2kW7aBftol20i/bjawaC+fGgo7Jv+/j4mPfff58PPviAw8NDrZj077j9yCAlEa1fPTRTaGnHgcoQIut2rZlKIaI5eiO69mRhanB07BDWbCFjU55OCYYNDloN4OdnZUNefwaJOLtp8o0BMnWjlOmx10wYn5lHjKgROm2GEiZenTZVVSGCUuMmxw4kJ7K1CeA0gHfyM0uA8o9pY1DVOEg3BjCJ6PgVv0hyNI7ekPNG7iZIa3CiBhmxIGz4gTad8MN8DEHWsZNG2V1kcHSM27hvhkT5/ifZt/bc33Jf8rUjV1py3JgULcnjblP28MC0oc+sKlecypEh+CxoaaOTY6W8VmaPGmssbdsnYIPSHutzHdam+1nDZDYlilBbZbDBClvbWyyXK3zX0/fZMW3p+5w5qe+Wg0MaQNBAVggaUHWuZjqZsD3dYtZMWJ70fPYLr7IIKz74+JhHR085OzhgYh/yb379iM+8/mluf/pzPPyD38MYYTJzWLtF33csl2tCn4JwVp3XiGArB50CiNbdCct1RwxG5zkGkIA1lq7rk/MevO/pTYtzlrpS8FIfQuq3xVUQZWC+EiNUdaVMLgmcZa3es+16Hj87UheXO6Z2GqSwBqyD+XxLPbp2iq0M9WyCmKiuQtdgraPrNMiQ+FAIQQFCuYRV9IEQdB1Yo2wy3ntlYXJ2Q16pQ0qvq2t14EMozpsYBaJn0jhcAi24qqHBIE6QoCUW1mtP2xnqaQ0hEgJEZwheaNuANSkTnUjoA13bU7saEKwztG2HSKRpFAiXmdzqumZr3nDj5hWePn1G1wYMtcqvGOn7nhcSQqPQB/1cwaUOYy3z7W3+8k+9xWJxxpuvfoV//M9+FXqLc5H9SxNeeeUmH338McRUUsTAdO7w1mPEYYzDEDCVJUbHIiqd+MTAS5cusT+bwe0Jr7/+Ft95+z3ee3SPS7sz3njtZV565Q6fuvJpEIfvI29+4S9hzZovffWL/P7v/ib/6ne+wfH6CB96JExoJlouUWLN2vf0SwvW09SOIC3BRj7zmU/x6Zc/zdd+/7s8+fhjruzu8uzkOc+7oA7EaKlCZDafMItC9B29g9BYcAJd4OmTZ1RVQ+UgRId1FWLW9F5Qt6Oh71vNlkxO5qppMKHXEnmk8hlxUxYXEFJie8sOegW+yIsxcJEizwq9voFMuU5h4hgc/j5EBM2AzGUvLUIQSUxkWlax73u6rkfiwOBX+pg8uKHPLAIaEIsSU+m2CX3rCcEn2RoHJ7AMQeENOU122mf5OZxn4zNDJJePHD4en4P5/+dLseTAh6RSNNbaUcAwPSuO2DCMDOCS7OAel49hOI/HfSif2RxQ2pxjkWHeYirlo0NjwIgyKgUtK2NQYHDMF4ohGsGkMmmk0pMmBQGjMQSjLEcuJiYkY5g0ji985nU+/fIrzCdbVNMt/vKXPsP9h/f53VXPKgaQHouhMrAzn3Bpa05tahZLz9G6Ze29ytwU1tjb3+WrX/ocL1+9zrSZM7tS8dXPf477Tw9ZPmxZhECUxB6RhMqL5zKjcRlHiQYdROMig/zNgbXCeJWCA4iksqepPGG602QyRVxFa3rdHzaD1mMq2+KYbu1w+8YNXrrzEtduX+HOS3e4tHsN6xqMrci8YU6Msh6MdlUIHX3XIbJGEJYn61RiRTCZs68Aq/Ta4KFdrfHtms4E2vWK09hjxFNbR+Ph9GxN7I9p25aPT5dcnU945XqDmzRIXTGpHbMKJgb2trQkZpgawmKL9x44nohHvMcZYb3qWJy1LFcd7Vz3tU2BfR91LYUYMEk3n/GT2TIQoERDZTPAmAPhMe2tIbKYtdaRHBkFGnNAKn+UZdGGkpkCXsMS3vy76ogqoDfKLsvA5pLZagiDQafBR2Wts1VmmhgFDRMoYZP1JwctP0FB3nzlTUU6/yjBt6yTjyN752/3IiNTHo5z4dLRX8cB2fE3hgHP9slmNPWFx6RXGLNWpSDjucv+qADzH9Vy4HnjgRvD8GIwcxzgLPOdFkxJEsmDO2I51KNYg3YlkCeppJkMIDRlXBDEBy2LnWyU8RRapyCdqq5Vl0b3LkBVVcnmVcChSeAZibHMh5gxOx2F0URkKK9mjKWpHdPasl52hK6niz1ny45154l9T2Us775zxvZ8l1hNsM7pc6yCp5yztG1XGL2sG85lm2zStuuJsRvALXFYb9bmhAy1uSUmFd8AJrOsStm3YxBonpscUA7FbtbPdYw9Cgb0hUmlTZNf13WaJ7XdXGVBQhmjUjpcko6B2jxxtHYkJkAyye7MAOcRyCw/d2y7DyXwvJ5PUQPT1mQQI0kvMViX2TFzaSeI1irQo5Si13UeQlSWqzwGUZmUMgAEo6W7EWXwEVH2TmPUhq1qx3TasF6rnaKLWM/oAsAqQCszjEsmCDSaADaZ1Lx89yYnJ8ds1/vsHG2zurYEY/C+5eT4mK7vGRQ8TZRxtbLjWKtA/KpR/ShGQzTqlLpx5RKXt7c5OD7mtc+8ie+E7//gB8TYs713ia1Ll3CzKRUzjMD1m1MwsLX9BlfPruG/8x0OTp/jvZbidtaCidAr61MIBoPDOdHPTaCa1Fy/fpVr12/w3rvvsj+fESVy78kBIYFAjBFmkylX9/c5ePaU50cnVJXFh0iQgG8jwa+U0TCzV5lYkuHGczYkcuk8mTTWyFCC7kVZN5Z3w3k0iD0zrOWkJ6enjM64BL0Zyd0sh0MMyc5LZ2kSfzGqXVHsl5R0NJxbsvFD9/Pgy0kwGaxTl2NMusr4vWRTvU5/l+Gz0t9ysr9w3BUfHsNXJK/ZjfNxUBIG2W8Guc7mGbF5JqWxG8nfrCtkJiod20FWUe652bKeM+hA+mkcl0Uj33PQM8qbGKdgaxlYHssfR/8u/zVxQ6dx1nD10h7XL+0zqWqMs8x3Zty9fo2z1ZqjeKYoQtRHsz1tuLQzY1I19F3g+GzFWRcIuSwoQlPX3L5xjf3tHSpXY6xjb2ebm1evsujWnLZLggjGRM5PejkfxzqBjHSXomykMTODzAXGS7zMYBnHdH4KAzO8jMZNMEmGUtj8t+Zzrl65xO72Lts7c26YW2ytd9DkNS2FLiZx0hvK8/JdY4z4EDD00FVI6Id1kd/53JoP3hN8ByJE3yOxp3eRWFU4gdAFzk5PaNcrzvqes+WS67s1Eta0wbNq11iEGtiaGqaTCh/Au4rd04rnp9BLTDZCpO8DvU/Jc1VIZ5lDEqWSmJQkEM+v3ot20S7aRbtoF+3fXqvbmlvv3uLdr777592Vi3bRLtpF+7G0aDya+P/nk0wcU/x4/O+HDx8SQuDhw4ccHBzw9OlTjdH9ObYfGaSUsxgzfb3EwVEGOaCnzqbgA2qxZRrcUZarzeUt1IGandwxZ0olQzIDkGDkNGZg8RmDcSA7aNXxsAm2kfI9o946xA/GvnOpvFdTEaLQrtrk6MhlfTapz/MtTaI6z/cufx8FG3K5qxyotiljbiMjVxg5RRgZz9mREjYCBGMHVXoKg7k7/G6tTYCvFAjacAgUT9JoiAYGpvIq5btj4NQGGXf6/sC2pE5sV4KLFs0kzL4FnRubMjY3HdKM7jme2w32JjS7LaZMXNh06I2Zp4S8jhRQZp3BWEEkaFZSynSO0YD45DpQ1onJpMGl/laVwwePc7A136LemrJcrsB7BE/dOBBD7Sxu0uC9Anjy+lF/dgLrpf4K6pgW77XEmKswInjf46zn6k7Do5MzPnjvh3hnOXx+xNHxCt8Lq7hi8fYJ7753DztpwBv65MioqxkT19C1a/oupKCZZTabgU17x1acLfvCyhJ9IHhdH8YObE/tOrHLYMFZJCYGINul+R1AgCUWh+DFp/WvDFJ1pcxSMeQR1roCMTo6NJjjnJY4kuWaylmqqsdFiwSLiJa6qJtanaUhJjYnCMYkn49Njk8NKmt/DCGx/1gUJKBU9ZaqqohRwYoxMasY0czz5XKl9xMFCdUTo+XjsJCcgjh1sEe8lsTyWlZufbYm+ICraqLp6Ltes8lDpKoqdVgJpWRgzogOXteLz0BVo5nWzVTBOs+ePSdGQzOZ0XUaZMnh+ywXrdG5LOMcwSfgSlNZXGXwcc3R4ogPH97HB48WvBOeP3nMbz4/YtVBFTR7uJo7cBaL0nJVlWNnd0o1dbSLnn4VCVhu3rjG/+5//3f5+r/8Paa3rvKf/Bf/Oa/81u/x9//f/y/qyZRVvUu1t0t0FUYMle3TXt3i6u1PcffuQ+bf/A7Pj1tMELZmW1S1pV213Ni/huufImvY2tmi74Tb1/YxsuS1Vz/FL/y1/5BbN1/mn//TX+F//D/6T/kH//U/5uyDJ3QYcMLEwf/2f/138YdH/L1/+Cssgmd98jHrTplarG0IvQYfqloBrNnxadPeDz4UR7YCXfvEfJAAFyKpzOAYLTaWXUNwU48EZbYyqQykH2XYgzq7hyCcnp7n/fS6f2LpZy5vl9ykxAjBq1Pa98qW5dIZGaMy7UgKgOW1k+Vnzp6MksrBZdlfAsrJCSubZ3GRz+cCKam7BSCV37UE1st1Q7B5zGYUY6Qv98nnwHDWj0HCn3Tui4AEAZvncAxIogAHZHR9CZqU75kURBicz7mvOWip72WQYLDSABWBnkgkMzsFa4CAIzHpIAiVBhskYpLSKqkEp1hPFIuJDusid29f46uf/yw3dnepbUVwlmu3rvNXvvgl7j8/4aODBRIqnIm8en2fv/rZu7x8ZYuJdTw+XPC1dx7z7uMli75FJFA5yxfefI0vvvIa89k2zlQ4U/Hyqy/x05/9LAcnz7l30uJTiYgypYMCMJS8GOlmOQg8TMVmELes1bSHbCp1KYlNw6T7RhEw+vP05JS47kEys5GlaSouXd3DiOHyzWv81Jc/zxuvfIpLu1eZ78wx1QQjU9ZLIfRLqgomzYTG1UwbhzM65lWlhoLvo5ZromN58pBufQg7t8hg8fE6B5NK8azx/gxnDLu1cHleM53X2KZmbi0NLV//+j3ef/SY1kW6O3u8fPUWt/enbF2eYxqnmekpsOXXgXbV46/OuLK7RfVIWMeo7GkB2j7Q+kDb97R9r6WBgsETSznkGITQRXb5yWyZwc2U4CCplOgALjSoXi9pp+iSSfpoDjKOACY5oJh1Lr1JNir+uACLOffruahRkkXZlikMsWm9jmWZsre6otdmcLh2PQMgsvwa9VnOa8FD90vPk5zSgOgQ+Ewvz7A52dij5VeBEd1B+TmCc2689vBkDcAVMM/ml9i0KUpocFNO5G8ZRvM79H8Yr/P9UztR0hyOA8ibXxvOqM3Zk+HMGq+VDdmU7ZPRvI7eZ5ijod8bgeK8eMWUIHk0ISWJAEYZh2yyTWxKGhCEyaTC1g7plP60sloeTG1o2QTRjOfZpH7ktRe1FJVJoF3rRuegRGoDwRnW6xViHRI90XdEoPU9PniWbad9CxkwlAKWmQkmDKDSuq4T4F/fz/tkB8QU0JRs36U9KnHE7GMgmlSAVAiE0dhS1nUGAiTcFpmtJOsq43NckMSIo/9W+9eUc8iaBPTyg+zQEtah2BQJ3zPoYvn/o7HOhk6S/oOtnM6+mAPUorF9g5axVSA12MqWdSYqMFKqBZC0AQWBiJaURoGOrqoSI1ey01BZE0PEWZcANDp2Jq9BicQwAhxlW1yExXKNMcrepAzACfyW5V9aY2V9Zf0mvbtFWXQfHj/Bh8jpyRnmlQy80uJEp2crWk9hTDGpFJEPqSJxLgE+neK9p2s9NmrpxNc/9wYTauyTbe68+jr0wvNnz1i1K04XLcv1mp35NPUkpjG3iJ1Q1VMmzUSByBhEKUWJ3rI732Z2teHB/SdAgxhhb/syV7cnuC3Hzeu3kT7y4MOPme3ssV4tMVTp3XXFvnz3Dl/+wuf57d/6Go8PjpTNJol5U6lPIYSItYM/xtjBCTL4J9JZFpWhNO+ffM6MZWpZ5+cUsMFukGSn5zUwPso04SoiDLrz6GwZyUBEUt8zl4zKbFNYTze2hb5FOd9INtBgT5B8HvmCUl5aMohJBmlaMjNG75v29dBUMVeAptk443J/y9C9MHyDbWLCuXMkX5bPp9G1A1hp0PsY7f38PpR3GA3qBojLlM823lKyRJKir1ijfq58tBjRsu55tMSMrjMxMXwNOsp5xr2yp9O1RnR+5/Mpd25eZ3e2peV3MRjnuHLlCjdPl6wfr1n1Hojszyd86sY+l6aGxgqRmmdnjg+erjhadmrnAPv7O9y8dJlpPdEkNjGYpubG9aucLBZ0zzrWmR23HPejc1+GMc++36JPpJ9SmB5Hs/tJCpRku44ybhls6r3HdH05r7K+ubOzzXTSUE0arl+/ytVLV5jWc1xVAUvafknV1XSxK8mLztbUlaW3q6QHJpammFn+PbZfsjh9RrezYPS2w9JI9vR6tWK5PGEyMdR01DbSL8447jskeJYnxzx++JwPHzxh1bXYKnLn+i43r+ywNZ8wnzrEuPSegg0R21tssMy3JjS1Y9WpNLPpfMkgRB8DNlqsaHpxHPnTJLwojy7aRbtoF+2iXbR/W81Gy+zkJzW97qJdtIt20f7s7d7W73LUfMzl7tUX/iZElu75n3iPtXuujLov1IZQm/T09PQF9qNHjx5xdHTEarXiwYMHG99frVYjH+xPRvuRQUoxKvBIg6J25FAYHB5V5agnNTEzD0Xou4zCysZ3csSZwULdyLwfAVPyNdn23AykkpzWyekwchbCEOQ0xmKT0zcH8LODpaorpcOvLH3vCYkRo7yV0Yy/kiVNcjaN+jH0FcZgmuLEyYE7kuFdAnkpgGGyq8qQnfAluyq9/Xkn+bi9mIE9ALSMAYnZkTN2eqXPhjTs8rmkCw0oKEREGUM2npPKwpkUjCmlDPQ+MTmicmBXP47n5naY3+TNTiCunMnJqL9DE9GQ1bg/hW0rOczKvMRCVK1B0Dya6VIf+uTD1zXTNDWCMmhV1RBUqGpHM60J0VNPLcZEmloz6WfTBoxhcbZK2au2ePFMYtTSTNeB0Sivga7zGCPU4gaWImtpu57nT4+4duUKQTxt6wm9AgqiiXTRE6KhlZ6qd0jITEYg4smFoiaTCuugck4zom1F3/V0XcAngGHO4EYyaEHounWaHsEZBSeF9E4ZfGZGDm0DKXyt4yXp/RQrI3RRy7PF4vwbOc0SY4+RQDOvaWrB2oirhKqqWa87BKibDEKMVJXBe5sAPwmUk9aYS1nedSo9EUJIJbWSA9WYBLhMJakKs4xL47LCGphMG0LsMU6wlR3tWbT0WFTmphiHfrXrtZbA84G6UfCPtZbKOcRa6qpGRLPku7bVfpi8pknzm9ZcYsfpuy45dh3OVTgHXdeCRJy1hCT/QmKbMMmNqQx3GvDSNG7P6ckp3/r+R+CmfPTeY3yX+xf58pfe5OnBipMPHlEbg6nUyXW26JhOana3J0Qf6c8C8609xK2xFUzdjHq2zWpS8eX/8Be5fuM2e3s3uHnzJX7+qz/H3t6cwweP8asjJs0+QqNyQ8CIUq3vXb7F1cvXMeJ5GJ9ysmxpTyPNZI+//gv/ERKX/Nq/+G2C7fBdw//il3+Z+9/7Gl/6+a9Qrzw/+Mbv8/DZKf/Pf/TPOTxYI6bCGiFEDQ5V9Yyf+8Wv8M67H/Hhg3t8+lO3+Tff+D4HZ8cYq3szhIixgrUV1jRaxjF4XK3gt8wIaETo+x7vvYIocmmXkdwtjEjl3zlYkTPvdX/mckfWGpzNct4y22rYme9weHJM2/eYzEiXxKWWYUtucxFl1bI2ZXMaLTNBAhsawRp1buczR7dddp6aJD8HWRWz/BVD3/XpzBxBpWQTJDA+W8YAjo1Afd72qSkbgwZgYzkGEhsAUoK5hoGNKt+/MOJtBLRzEC3pIzn6YvKplj63ppSHxAhGqhQs86orWKuB1Y1zVAEx+e76HAW2iRisrVLZvYHdwZp8NidQYxorZYVDwXDk41cgmhQg0c4P4IzkSjawu9PwM1/+LK/dvMmknmjwTSxNM+Gzn3uLDx4/4ej3jzheBq7uTfiFL7zMT18J7JvHGHru3Jwzn96g+8YTfvi0p4+W69ev8uXPvsn13cu4usI4ixFLM5/whc++yccP7nH8g1NO2sCQHzwCnY/0mwzuznqXKWOV9TRbxvO8XpfZbsoYpPPBuJTdjCF4r+ydMQedDfOdbb74xc+zM9/m1qt3efWll7m6e4PKbGGwtCHQBQ2YOtMxnVbIzOCtroVZlXTXWU3tKnqf93bH0cE93v7+73Pj0mWmboZuRAVwIpYuwPHxkoqW65crrl2u2b5zg1nV46YNsapprOfSzi7vf7DDtz78kFV/yvOtluP1Nt7Oca7DuhrcRKkE8VQIhpqdvRk3ru2w/VFD27UIkShaNqhrPX0faLseYxzWqJj3MRBFgYld67nFT2YbBwJzMK58TpKWziSwRSqvHEUZEmVYey+weI0jWZ8UtCoPMgVAMf6Lyf8pqqcZibksg/Q/sZRYVVnnnC2Z+EN56XRdlovFFhip5eOfoy6WHsi5j4rqnORbekbhWCivlS0LYQieZnk9PGgYM7PZF43ojS2QwSLLoJL8nbR3Edko+6Jd06tzCduNzBwz+sVoeW6JYYPpbgP8WwyrsY00vl2W+YAdSt2MpMonWRXnlooZnpHlV1oH5dVs+rvJLH4MzLqpbyXQn88rpKwd6xxasCcSu67oqHrNwCyXl/F4HIcSp8P5BAylSpP+kUtU9b3n5GzJ9nwbHwLr5bqwhGqZ9aSfSEy2UBqVaJTxIr1/3WhJ6ozmyWvc96Gw6+ZSMWMQWEzlks/3M4/F8A6SgIsFMlxWXgbJwCbI74U5E8pcOOewLgFinI6rD+qbcLVL+rkpzw6pRnZMrDek6/LZ1fe+sEkNC8Gkd4xJj9OEmEiy12Iu5VYh3iOSEriK/haVKTIO5X80eSum8rxpvmMPBi2vV4BrI/B60kVtZoodkDC6Bp3qUNGn5IZ0RkcTCsh6KIctA1imDOswFypPIqETlusAxrFuh1Kw1lkuX93j7KxjtfYKoncu2bI9zilztTVgcPg2qGywlmk9xVjHaum58tJNLt24zaSe0cee3Z19Pv2ZN1kv1hjxGAlp59oiJI0YXDVle2cfDCzOTjg8PqPvPY6Knb0rfOrVV6ndDzk5PaJtW27euMz+rOZ0ecx85vjhhx+xWresHz/VHEeTNPekAz87OMZLxRe+8Hn8N7/Ny6/c5smTp9x79JTOd6k8bfIlZT9U0pn0PEvnXbLZo1BsWJURAyh2DMJP225Deg92+JDwRxENBhFDVVuu7O+xXK04W61UhKrKme4jRZya8okCp8SMdLjMMpPXb9bbi15cPCzkxDUZTiWdoox0Gwk2MRtv9MKxvQFqzcJQKECl/LMkJKSztvjsdGEM85B01JiBeWKGQd1Y5cOTx6eHGRBaDL5InfP8RHP+0B6Ui3SG2Y0/DSew7k2bmHsLaMqASaW3Vc/OzxrDcsdnnWw+Ok8AeWygqgy3r13iys4OzlVIKgztcJjplNu3rnO8OKM/7nHOcevKLlengS2zxopHjOXmzhZd2KLtA8s+MJ1OuHntCvPprLBN5p5MphNuXr3MyeKUfuEVRFkO5OFkHjS40QCaAagkSZ8xozkbtwwSzS5qk64nnzeFxc+Ctem9E2Oqs+zu7XH96mUm0y3mO9vMmhnWNFgsfQic2CfM2xnGqM8uM4t1MfC0+YE+O58FkpLzouDpefToPu9c/h3elL9FxaTskfbsmA+PPubB/SccPjnE1YHZzDFtLM6GdB5VYCK2ga15jUFYtSvqGFmtG9Z9wyQ4jENlkMn71ODEQlOztdUwm1ScrmxiZzYpGSkSfSQ4LZmttq1N50okpBJzF+2iXbSLdtEu2r+1JuD6Px82kYt20S7aRfvzaL1d8mj2h1zqXnnB6g2m5/u7/82feI93dn8Vb9Y0sgWAxMDq4GN+/8Hvcv+jDzg6Uh/HuP2kgZD+pPYjg5RIDtbsa1dDcMgitlaz9ELok4GUMh2NpEwggzF6EJnk8BhKFKjxbOzgSB874PLzFfihxn0sZcKksBpoxm2+ZXZwC75TmvnoQ3GQVlVFVTtcchoZFKQx9i2EEAvNrUGdjWJGYRRrkq9l08mfqX8HVoeRgxlJwBdLjIYQQ8H32OL1Sc6aTN9flnCeg6F0GYwdWaaUFFL/uDo+Y3a8imbbmTRXxihLiAYJR/fSX6iaWgMK3jNe1yb1zVQVO7t7rJcL1ssFxR2Svquvk8arDGzxGmCM4HIJJNRB3/dgzJiufLMVR11y+Oh8DiWVxgFsESBqrEIdbCn4K2CsYAJMJg1dH8r0uRRYCCES8pyjFPEYw7rt8e0SCSR2JofLTEHqbQTUmaxMTtB3JUwNRksO5P45q1nWzjqtNd97Fn1gvV6z9IEQIot1z8nZkrZPJQpFkDQ3IXosVQo26M4IIlTVlLqxTLdqMAbfB1ZLBcas1y0Skt9GFJRFdqBaoxmo1mGto21bggRcdo6V/aVO2xysUVCByTdVJxKimc1GKHCxjXlKDEfGJOq5CMYzm05omkYzfFEnvmNC79XhrQ42BwHNCDSiYKyq0TJ7upk0UNAO5RN8EKzo+o8xMpk2NE3DcrnER598Oi6VsHPURPrQYaKhbpqUcd0hISI+EoMG3nCGgMH3mvFuTaXsNQbqqTqxtERDmxjoUqk8A9ZUYBUI1ceYglWSHNoWoqXrA8ZEYiVEp+CkGGLJSo0xICFgraOpHCF4vAgSNUhXVTVGIj5CtAqUUrkT8IDthXfee8B65ZX5bVoTYmC96BAj1NR0E0/tHI2tiaueJjTcvXmdK3v7fO6LX+T1O59l9+o1HV8cIRru3P0UP/s3f4bTpydUlcGkQJa1KUAXI+vnpzSx4TOf+gyXvvJF/uAP/5Cvf+t7nMmSl1/9FHdvvcbTx/e5+9Jd7n/wA17e36Y9fcS1mzdpFz1ePPvXb3B570P+s1/6ef75//dfc7xepn1gaDvH73/7A375v/xlfuEX/xo//Og+P//zX6Tt/x6/9513eX5yRj1x9F7wvYATjPHKQoSlqi37VxpCC6szX4AY08mEddumzP0sT4e1DSp3KpcdfRTHvksMSlirQcHEkqDlTg0v373Gmzeu8LvfOuXRkQKEYnImFkBsAgtq0ErPpYwVFaMBc0HliWBSkA4yiDLKSFYnb27MQELSERTiiIp+YAjIruQCNskBR/L2z3s9g4vSWS95nHLAJf8vHxax/C0/yI6CNeOSbAMweAAjF7f2KIqoYKDE6iO5LyQvdaRkGaezfFyGNR/fJpJA1enmJjM0aBhEhJRlmsqykfzfgMFiTQ5MCjbrKblUBGBM0LUgSf7IIFMRNBPZwWt3b/LWy3dxtqYNQuMsTkC6Hjt1fOmt13nno/fp+jPeeOkyr+1HLtsDZnEJEuj9mjf2X+KLL13m8ckpq1jz+c98iltXr9JJpIo6N1Eiq66j2ap569Ov887DjzlrF+iJmANJQ1CB0W8FJK6Dr6ObgGekpabZ8ToOg34wBCVK+CVGBccbLSFx+cZVzswxp4enRKPlMavplDt37/Dma2+wvXeV6XSLaGv6qKxIfRSePz/m5PSU/auXmU5rQt/RxY56usXMTnRNhICEjhCX+NABgdVixW/85m9w49o1vvTml7Gm0cCocTw/WPDuh8/4+KMHvHS94vWXr7Cz3dBUc4yJQIWyZKxx1vLy3evsfXeLk+dHnJ0uODg45vT6nPm8ZmrB2EpH1gKNUNEw24Hrl7fY3mo4OMnjaZEQ6NqOxbLDmYbleoWEU0IwtOvAeu1ZrNZ0vucLf4Of3CYKSthQLtPazyiBYc+bwsSS/z18f1A78ocakxoDK8+HssZhx9H9yEASvWm2J4ZEA10rqv8MYBDr3AjwYNSWKQZTekYCq+d7liBkDp6ZQc83sIErGnbV6EXM8G+L3qtUHZV8Ho2Hy2wMgpT/vDisGx/lgDRjkKZsft8ksGEG1G7cLuvqA2PO5pCrTLXOMtvaom/bwbDevNHm8hhuvTGmZtSnMSSsPHn8jufGWMqgDDfNAAP9mtl4Tg66F93e2cI6nO3ibKPmcy4DSjDKdljKxUouI2iS7FMAkUnndznzzOgFzGCjZMydtTYlEmnSQS8BHwJ9OCGznrZ9n9ia0m0qp3qtSedTGSy1ra1T0Lyr1e4OPg4sRIk5uZyXGzq+TWAU/WMu/zxapCOT1yQy4LQXMnCpGE/DPjw/j3pe5znR9el9TGyoLgEkBhCZJDB2gASssjibHeVDad78TIwmqwQfi0yKoiX+cll162xixozYpO9BSpCRxNyUSydZOwDF0/vFmBls0n4wlmhUD81rTRNvMlNq1gdDGW+rRgU5+GwhJUAIxqmdn/tvnWhJOjOsUX177ZAxlklTE2Og80EBf4nh0UTD3uM9mAwgmmzTBh+5d+9wGDvrCIkNN2I1ec16XGWprf5fesO1S1e4fvUy8+0dbr/8EvV0RpZ8ynZi2dq/xGw36I6MkYSvL61brelXS65eusze3jZGIt9++/scnZ4Cjsu7l3nw4T1WyzXrkzV7szk7zYT9K5epZzNstcWtl1/hwZMDXn/jJVaLjm9/711i8FiBiGOx7Olj5NrNm1x/+JQbd27jqkjr1zx8fFh8GcqQKpowkRmGpGIydWzPt3h+cJbKkguTWst8t12nYz9iystMrOovcQp8yIp+PpWyHDi3PwwwndZc3q6p44p2beiSnn/evVIAt+k+A5vNwKAeZQAQUralGa5N+z9L3bG8Vwaf0Z7Nv4/Pk7Fwl5HsFYrOPNw86ZJF398ER1qjDywsqNlmyXKq9PvcOJRVl31hpDnJO6MI/EEmF1tmgPJT+iJlHsvEyPDGuUMDsIwRG90AUBvGpNxiuHpTHR+1ka6ev5/usTWdsrezqz6mVcvWTP0+vm9Z98oQvrcz4/mZY77luDQzTO2aOrYYhCiGxrZcm2/zbOpoA+xsbzGfzVj3PdiKqamJCG3Xse46mtmE2dYMszwlSabRYX7+YD6vFw5vNDrWz81aPus3/lhk+Dghdr4zp55Hjg9PtexBAv/WTc3e/h6z6Q6XzBXmYU4nnmcc0vnA71X/gJf7v87N+FmYzYkmQFiznh2y5FjXTlTGZZGeKFrizUZhebbkwcOP6HbOqJqG2Le0z+6x+Pg9Hj54yrPnx0zrwJ2XdphvTbHGgWnI1qQ6vWA2n7GzNeX52Sl971ktW1brlq1pnRL1LJJ8ElozXFn8ptOarUmFswYfsrKmjMnrziPisFaQqAxT3mtiQN+HUmr1ol20i3bRLtpF+7fRbLC8+oev/nl346JdtIt20X5s7U53h6v+Kgu74L3JewTb8w/v/h/4H5qOzxz/Ek6a8t2nk3c4qR/8MXfTJqlKh0Qhrk45/e6vc/rtf8W9vv0Tr/33pf3IIKUxiCXKKMsKBoM9OXYl+d2SP644KNOdNpyY2YC31hKTayB75wdni5TrSmADGGfYDs5lUqYhycgfHHqMnqUsDZlpBKpKS0llWmsFACSQklBAMfqs5DiQnME1OBFk9F1rh35JfrvspA4RrEml0fQZ2cmUA9A5+GBTAFeduWNHzOYY5qFyIwe6EMv9i0M4xuRQNZAygWLKMDVxcA4vlwv9bINuG0jjVleOprGE3rL+BCdJocxPAQyTIr9Dd3XNZOO3AH3SOI2iGMM7p/87s7mmxuNxvolEnLG4qsL3gShq8ldVXZzO1lp8H2gmdXISRc1mS32JQUsf+LWCU5SpRt1RXd8Sgzr9fdDrlPnH0PcB63SbOZdL2yhLQHak1U1FXbs0B0InGsw+Wiyo64ZoDV3wqXQYOKcMJyDgbCphp/8P0ReHeTNtih8zg5P63hMD2MS3lMtJhBASe49NQC6hbVtiykjOjGJszIqAjwV4IVED3EOgapQRXRyu+rOUQGSQBb5XoE3fB0JYYa1hMm3ovSdGr8GcEOi7QNNMaGplvOm6HAzSfRuCBrarqqJy0wTKklRyLuCwuLpCJOJ9pyUfmyki0Hea1dt2fQKNVNjKEiL0vif0KSuu1/4E70upIs2ABmMjlauJMdK1LdYo6Cmk+Y0+YCtlIfMxKKsMynjljCHmvSsG71NGtURqiTg3wVgNjkQf094RsLqO7t65zXq95MHTA3WSxR6omc7ndJ3WJAgxbNDu+xh58nhFValDK4iCw/b2ZpyeBNYnLUTPbFJz++Yut1+6S2Sb//nf/WWuXN1je2ePeraVnGkqa+Oipe0jvYP7zz7mxO/x6pufK45YMMQQWS1bdi5f5a/84l/HOYhmm299/wFPuwUf/PAp/7r7TUQ6nj4+5fr0TX76jc/x+uufp96BDz58yM/83M/wzvsH7H7/O8y3Z9Rum2m1zSKuqE2gQ/jeN3+PX/1n/4wbN+/w23/4LWK9xd3XX+Hb731EPJZU7mIApVpnEDzR10wmUz73uZc5OVzzztsfYWOgcY6d+ZzQeyKZStEyZvwxRuX/dNKwWq8xCE0zwfueEHot4eHAGQdY6lrXmXWG1eKYdt0wqR1TN+MsdkRpk8NyBOwQIXivZ3MKBLp8tpXAmC2Z8lnO5cBYDn5mAFAu4YihyOoh8JiCIsk/HKOUfavZ31moD3J740xOgde8R0QUWKgl6FTuT5oJOSipzHMBoRyiKPOSlKDNwFA1tE1/93DmC6nUKiHpMnr+WTwwZpqSIvPGZ8kGWCI5+ZX1Q9+lyJ00jrl/Uk6sxE5gNs+qHIQxceAqyEGJYUwjViqit3z/vXt85/v3ePONN3njpdeZVIZ3P/yA+4cn+PaUIEvqxnD70pSrVcdE1jRRSzGIwNyc8OrVS+xMLYtV5HSx4jvfe4/tvW2+/MYX2N+acLJc8bvf/A7LrmW5XNNHBe1ohHII0JTgCueajAIiSecwhsIWkRkbBpC6KQd7DnCBniUELVfpJo5PfeY1ntePeef0AzofiNHjg+Dqmu3dbbZncxR4LRwfHXP47Ejnwqq+2rcrFiayjMLJ80MOn+/yqU+9yk4zwZ+1rFZLQljjQ48xgdDB4viE5dlDxL+JaRpl+giG9dGKd779He4/fUDttvk0QlNfxrCPMMOkEjOWiFSRazd2ubY/5/5hxWrhefZ8wfPTJft720zqGoNHasHURgFzFUy2HFcvz7m0M+H+UyCVW/JeODpp8e0pzqwVcBp6+s4TghDSmfETn/mcdLxRGDPFmTb12xJ8Koie0brLgctxyzryYECMlJaxnEpyawPxMr5PeZQuaSkhymF9p3uLKEjUaiQX42wq16jn3BhgynCX0SNHUccXmpTnlMDqOfU3JqbSYg+MQR7lOcKYgWAI6ZnN/ox0ebVvRn1k8z02+geb58HGGClQW2TQAYdocDprEPpunXQTYeNLsvk8Sr/G62fEQAQKqhhP97iN/j0eAynvkn4XkwkQR3bsAMDJrEbGkJgTht7oOeBGMs2Q83AknxGp99YYtWvTuRFlOLPHzCXD+TeAX8YABZs+t84iCfyUS9xE9Htq80hZ09YoE6chvWsO9CZQjE6Po25qTdIRKSXSFJA17NehPJ0UJikkk+0O9lkM47P7/BpNOoZO5rAN85l+zpZ4YWUksI4IOFsBiT1VBFdXJEUAgzLJBh9VF0tnfi5BOiQBCBgtSe3c6J1i8itEkGQjkt5bdUijyQoYBaykdzDGEhJrbUzMcJmVrYDZGI7RTQDWkJQTRdeQskIm+yetqwIOSzZWntOYgRbJf6HjKOTSWyURJfkmprMpIQb6xQpBmWuxlvnWLs5UZe7GMklQMEsBbaZ1vr09p1239H2kbyOIYzateOP1V1isIm98+tPsX9nDZFagwtgtEEIZo75fcXx0zPXbd2kmmxva1TWu2sHVewQise3Ymjzg6dMjQoR79x5z6/oVrlyZIV3Nreu3mE4aZruXuP/kgCu3dpDFkiDCk2fP8a1hUm3RyxrEI8bTt2d8/bd+i9deeYWz5Rk/+MEHbM0mLFc9GJNYxwf9N5ITcRTkVVcNdTXBmhXR5CQxGXxNAoX5x4yAcuUcU3lYVZpQ0/dd0fFdLtllDE2jenLfdTx7fkoUYdIoI3Qfg+omDIDEoneFUObSmpwMaMraGO/38p7FF5bvkvW9YZtvAts3D6EXzqCNls+HMqgv/p0RmCeNu7FukMlZbBSf4WY/SmlIOf/4vAmHLg/67/CdDCpTgPrwvKz9l76PxueFdxmfSRJLX4u/kXwqyejavHfPNRmfkZ/wHBHatuPDew+5Zx6zs7vH6y+9xHxSse5aPrj/mFXbslieECQwaWpmFipUH0eCyhg6ZlVgq6lgCceLJe9/+IDZtOHll15iUjVIFB4+esqjgwOMgdPFEinAyixBzr+DnPt98++5RPf4axmwlviBN3WrdKioXakfTbYm7O03rE9bfCqvGrMMNmAsfPnsS7x1+nlO10u+2X6LP5h9g7Odp3zv6j/kqX+FLTNj58ke3emKVVjgQ4t9TQh9YN22hOgTmFUTWEwPvjri1L1H87xl/eBdYrvGhkBol5ydHtI1wuWlYWduwTgEl98IPaAdVePY2Z7QHFSsu55151m1PZ33NKHCmpBAgOlMN5ro0kwc81lD5QzBZ33E0rYR8R0L05eStdl/a5Ju9u9bBvZFu2gX7aJdtJ/85vwFk9JFu2gX7S9u+zvP/g6/fPjLrOyKX9v5Nf6rq/8V70zf4e+98nd4+emXmbQz7r59F+cdrT3jKtvce+voEwIsQzuu7/OR/XVuvXOdo9/9/xBOD/6dvc+/q/anYFLKTsGRqXzOaIk+asDdqoNUA3imZHgq88BmBpdIdoS7wd1sU0m5GIlhyH6KMSptuXZGAwKiLBVDyZrB0ZGzJVPv0bIYaqwGiUQvhJiClVVMjjWLtWqEF8AMg6NAzeVcUCs9aPSjvJMlgamk+Dn0XbNjJzmlRg7XnINlrC0Oqxy7yE7KHPTL98jXFqp/OzgkS3+Ig52eHNqaQWmJ0bNRTiHfNznK8tiVz42hZPVI4OzkiK7tUp+yk34ERButnQGkNPR7I/gj43cdAi7j3xndJwZfnOx5fsrYprnU78bCJKJZtEAqJeRqN8RAjBBjoHIOa5SNalhjOl/Oan9cVVx6uhqiJYr2J0jEeC01lVlTMgBIRIFQxhr6vsdaLTvgowYfLbqHqCr6IEQ8y1WnTu4EvIsBJIbioI6VAnI0szkmZ7pjMpkSCHRdR+f75Ey0ibp+KHWWAQohgWH6OAQQrB3mtIDoRB09Nq3FGCJ9L8W5n5eMdabMwXjOx+tVjJZmq5uGiDCdTbFW56HvUxaaAVc5bO3oohBir2CrqECHuq4KO1Eut2YMTCa2BBqMS5niaS67zuOipamrtDZ0z4TYE9YBL0NZBA06OEw0+K7XsjOJlS0wBBNK5vXIYVqlUlDee3UgRwgS6NuOqq4UEFYCQQJ2yGS1zlHVBtdr4Kdp6jQflAA9RteyM+poPTx6jqsqmqpmqwLvBKkr9q7s8fzZqWZ9J3BdKcmEZ/eSBre6tYKgrJuwP91lfXpILz3eCzSOt77wJv+zv/t3WXY1L7/2upYoSveLqeyCMT3UhuPFKSdHB9y8sY9HGUsGsWSo6oord64R255QOXCwv38bszLEM7j7xVf4m//FL/HmG6/y4fv3+dX/+teY3bjOum95cO+AZ6tjOs744Xs/wOxd4/DU8tWf+XlOut/kw6f38H7JbKfj5PQR/+Sf/AqVgR/84EPe+e77VLOGk1OvIFFRdquqqjQQEg1RLD50nJ3C73/9h1gaJFYo04xw+PwYnxjmjEnEPKOzLaZSH4uwGtZ9YswKIc0vlPKnxhqm0yne9zx5smDZOvYvzfiFN27wr37nbVZ9BSIEBod1lqUxKMOglpIglcfS82/MPrJROgKbWMeG/a/7ejRHpQzCC577jQDhGKBUtr+xKfgVy3cLYCXR4Ku8SVny5+476AhSArYlqGr1zNYs9M0+DOVm0t4wuU9ZXmswxCZZGKwGL60k6qPROGUZNb7/OGCfz+gB5CtJHuYgewZpngMopADChv5khr+VgFRaF2IMfQx8990P+OjDe1TNlLWDO9euMKku4aPha7/3PT569phVe0gzi0xqQ2OyazsipkuO+wVb08tM64b+pOXr33yH93fu8Yt/7StEGxECDx884Xf+4Pt8+PQexJ513ytINK+9sepT1JFNwHSBGuXAdGIO0aCz6pGZ1QMr2ByMzPpA+ptE/VswwtbOHLO/S13XdMEgWNquY7E4o+1XsFqwXnqePj3j+HjN4cEzrl3b4ca1fWQyYW9vQt0Hjs9aXN/hzw44OayIzRaPPn6P08UhPrSID3hSoLEP7O83VFWPQRkIrBF255ZKTjg9ecajRy1HT69waWcHU3Va7pQEgqcCU7O9P+fWlX3e/qjB9x1HZytOlmuWqzWzpmIiFkONGItxuhZNBbs7Ey5tz6itw4tgxLFcBA7CgnXTU1cG4yx1PaWyNduNZeIMlbNE/xMMUvqkuNTo47RUyroZJxmQA+KGkbwZ3YBz904B31JCjEHGmI0jyZR7DCxEL8oYbSl4O1wCCaSt1/okZ03uAhu3G6npma3i/HiMQ7oy/vd5kM/QwWxoqRwaFOqN99h4RrYvPmkyTH7UeMzyGA4fq36kZc+89+QdrswZmzbQ+VbMjJH8izHA+cDrH/kKeuMNdgV4IfA5QB9HYFAotoSel2O7ZGR/ZdmV71j+IyNZrsw6CnQZdGCRDKAf2W9pzFXO5UUwsJacB/xK7lthyTUM7CqGqnJDcDWxhEYfkr2i86LMLh5SmWQNgkuxbXUYE8NdZrcd6eyQGIuNnm+ZAbjsE6HYWMM85r3wCWBiu3nOW5NnaQBMjyRBAVqN7Yk/KmiqSRpOdXdnyxqPEomdLzawjDZwLsmNTQkX6d7KdqRaQ5DI5jnO6HopNqQRCORSOnFUMj7JApuZHZOuIMO5XxhUyIxYJpWYy3NhCxAs21EFTJbZn4yumryFssvAWMOkHlh/dRzzPERC1sPMMCar9QrnHNPGManUjunFlGQYY2xGk+nsJUbL3b0pxsBq5RO5sOA7Ta4Q48l+hKauefVTr9PMdqjqKRRgUiqtmt6FytAR+fCjj7h2ZZer165TJ/YhfQGdClc7xEO78NhJo2s+WgiOG9dv8vkvf57Ll3aRCO9PP+Dw4Ii96zd49OAJy3VLNC1nJ8eYZotX3vgc88mMD97/iO+9+y7tekUzMbgKxBmenx3z+OFj1p2n2ZrSB59K/ardmfeQJB+VRCFIx9Fzz9lxSxGwxibWr1FyWtkfWZ/V331iPzNG2XCNxJSIoKzUxT+UQU4WQic8X3RUE+Gt127x0QePeb6MyrRbBm+ziahtkretMsSFUmpxvHaGuR/6XO64cUZKKU36Sc88L6PP92zjaB+f9yPRMn62SEy+wbSHRG0Psi3B8F2TgM3lPEr9KGd0Oatz/wf2qFSQOf2e9HYZxm5D8o3lBwzzlc+R0deMbF6Te5vl2SfcfWNQNr+XPs96E9D2nicHR1hjWYbI9Sv7bDUTqrrCiOHxwSmtX5HZe0qCBagflQgSwOYy3ZbVqid0x9y9fY2qcoiB1WrN08Njnh6dEGIHIhvlrs+PS2mD6oAZz1Wap2HuR/oJef2Mh1zKohnrU2LUB+Fc9gGqb7BtW7quY9bD2eMlHx7eI3jhanedzy0/z/H2M6yp2D3ZZ9JH+pXHSk1d72GPLnF0+Jx3b71Huz4hhFbL1yJaej0IQs/qwe+xOnhKjDpu1sF0YjCxZ7XynJ0uubQ3YzJtgA5SKT4tO26xrmJ7e4tJXbNuV/Q+0Haergv4yuMwmErPON1LmgzknGE6qamdY4360Pou4BBco8zgdaXlSWtX4SxUxiRmxgsmpYt20S7aRbtoF+2iXbSLdtH+xCaw/Xyb8H7g/sl9AL7Ml/nbT/42v+5/HRstt969RdVX1Os66es7vD77j/nuX/0uX/8ffJ3QhE+8dTAdj3/r/0HzrZcg/gT7+/8M7U/BpLThJh//AYCc8ZUZE7LzrHhdyg+1nHOAauwcN8ZgnCmlc4JXhoH8mCEwalIWoBpgCpZwKSianHwypi8f+jf4VfJ9NROp6zrNhBbNNCU7+LVjw7OTwTv0JTmXkyMjjQaZVWp4w7GTP5U8MqQyL1Ic5AVslDwMw3vL6J7DeI2dppkhapxplUvhDT1Qx21dK2NQlxh5rDUD41J5r9HcMXIOkILxMmTOvuAtYuj3KJ49BMnNwOBRelacV+fvQ7lPVbvi2FEnW6SqKnVGjp6R753HRAFnqXRBGvMQAxbDZFJjq4q6rlit1ClbpfIdVaXjGWMukTUEvHwCIsSoQKnZbEa77pJjVEFvVVUVgJIxgq0qXFURQsS4GlfVdH3HydkSi2PaNNRYalezWq8JUWi7vgQdsnMsx6KcUwdl3/eAKaAo7z3PD4+wlZadk+Sgq5zBx1yWbCh9trEuzzkcQcc97yktBZcmRhyeQAxDKUVrc4a5FMBUCAHv/aikwTAPbeyICM20wfuulLaIWKTX0oh922sJM4FcptD3PbaxBIn4vqeyVcrWVxm0WrYIeY0mBhU77M0YDT6CyYCvtFeC9/gY1WFuwFUqb7zvtQRWyp7Oa1eZ47Scg7U5KJOZa1wBj8UY6fo+BSWUOcoh6iizFirdX7ayRK+ljqbThqaxdG3A+4D3Q/AmhFDmO3hP1/fUNew0DV/53G0+89pNvve9D/nw8Rlnx8eIWAXF9b7ISGscxjRcv36FyaThvR8+UZYuER61J/QSFLQUHS5WTLptruzd4cbOPgYHwdB3LVQG6wSMlvi0OzO+++4HvPPhD/jKlz/P3/qlX9LxJAKuBEKQwLOPD3j28AS3PeGH7/6Q9cpw9+XP87/63/wveem1WzgDn5nPeee77/LhwUMu39lj2lyniqc8ef8+p08Df+ln/wZ/++/8T+kWaw4Xax792iG+7bh+4xInJ0e8/tXPc/boPvK9H/CDD75LnNQQI01dQa9MFCbJNB90v8cgtP2a0Humjc6pWJuy7wVlS7c44wrQbQiiDeVQssxYrlbUdY2rHJWrqFK5tyhBQYvea3lFL6wOz/ASmK7XECJBLEhydpbAxcCuENN6jSZS21rPRO9BcgnLIfBk83NLMHAsbId9GWPEMlxbZN8oeHn+9wxk1mBBDl4MDmCgBH3zGZLv3fc9VSpfZxDEbsqhPJYKPLTpzBpk1NDHHOLSVlcVxjj6ridk77YTyKU/jSWKwaYOZvm0Af41Y6d/kkMpkGSSHpMIH1N/IiWYU+To+FwbArDD+bh53qeP0LJ0ltDDIgRMt+SdDz/iL731aXZn29y6eplb+9v88OF9lYNVTx96OglEE8hlNT2xjHOIyvoQO8/+/jav3rlDXU84XQfefucjHh0+56RtkX6NSCDVvCvEBsO8UWJtZR5kHFAZBfzzO+of0r+ilsEiAwf0p0kMYyLqxJcIfdDz2trchUjbtpydndK1K2q3TeUM27OK2XSX6ze22Zk37DQTHjw+5rsfvU0Vzti9tMPVa3Ou7c3ZqnuEBc6dQjwh+JYQPMFEIpHlcs3J2SnRrLF0QIPBMZ3XXNmbYmLLwUHHk8ePuXN7n+mOAwKipziqYldMtubcuHGJrUnDUSsslmtOT1esVh39pKWxla4xLOIsJiqAtGkc+7Mpja1YLNdge+bTmku7M25f3mF/Z4vJpGZrNmVa1zhjqFIwo+8+2bD5iWmbiqn+mvV6o2Bdl/TZkIOP42Ah+ffxDYZfCiikxGLHCRIjds5xIJJiVYyCcuP1O1xfon1m45N0TymyoDDUlSjb0FF9tjASAp9gZg0BOHP+S9nGGNkoOVA39EM2Ipsb/Tz/WuOnju2e/O2RWDJp7EsSQSllZ869w4t2QP64DEWygTIQcvze5195nLCR5fHmV3UGS1jTbI5ajjhnsEp+15ATaqxFYmC4fGBZKvdO51HRlZONouBym+wOpzojJgGL8tkiCmQcsSTpuRYLC3EGH4UQBtBr6c/AJCgYfKAE3a1kBlefVjG4ShNSJERC9IRcdvDcmaRjqpslhMj5M69r+6Tn5v2pbMl5bPLZNU4SUSC0gqHHiT426S0wKjlmVDcw2MSCpX8f2xMw6Cfj5+T7G5NKqHtJ4C3KfAkjZtwYtQRXWsj6q75zZkXMpcEh4XBS8oOuj9GCGskcTYDJ+yEOz85b3BhsYt2MQVl0MrPlizpCeqcyduNzNrFZ5TUEpRRcZd0gEw0YpwqRxKAlgKzaM7HYk8O8Zf01JhvRB6Gykbu3rnL3pet8//sfcHi8xnf90B8GALkKH4vvozJvxV5LW2NYha4IWSMGCQa8oz0NzHemYJyOQ4jE6HF1XUbDVA5bNXz43n2ePT7gyz/9U0ztkH2dsR6grFTPHz4nGvDSs173VPWcNz79FleuXE46rnDz9g2Ojk+wkyk3rl4D51g+X/D88YKd+R43b91mMmnoPXx076EyC4tgRQjOcOPuTZbHx9x//ITjszXGGOqqKjpb9iFlEZwB8jHPAykxTTIzaZ4wTfQbgGlqL2b9EDKjmsoRtblzeUIFxqXVo+yKPjFJhsDb73xI6DUJYxPIaQaTLM1jTPsj+0+yvp7BaMXfNrIPogwAkbEUz/JYzovqTziAzgNmN85UM6y5Tbskf2d06yiIVQiRSQfNcLbktVpWzcae2QBAChuYWWWrS8zIOcGo0jGJfjhzSr9G50+5rzEluW7jXZO8HUyCLPd1z2fA1WbLY2HK72OA0ua5m32naQ8mP+zibMHhySn78x0m1ZSre1s8OdB9HCXivaeLNcFGKjMMiBhLiGq7iggOYT6bcPXyJSZ1gw+Gp4ennCwW+HT2mMQwO+7j5utI8fH9iU0yGHOwxUhFy4sekvWUQv2vv+fEtmShlTXvvefSx/t85qNPY7znQD5W5jtj2HNTri1fYXG85MGTA3q/ZG93yt7lbeazKZN6yv6jHdr9Fe81H4HEwsRnYtDSaYeR5sgh0mKYaM+tYTZraCpDu+o18WI9o5k4jJkgVAzQasBYprMJk0kFZ8q43XWavOd9Re0sLipAuRhtSV43ztI4lbUhCJMGtuc1+/Mp8+mUulL/Z1W5Ye+KMgdetIt20S7aRbtoF+2iXbSLdtH+mCbw6d/5ND/zT36G06NTfoVf2fjzm7z5R146WU340q99iWd3n/HuV999wR0KCn66+u7eX1iAEvwpmZRiKtdiM/hkFHCqnKWZ1EynDSEG1iul0A257nW2D0USk4KU4ICWAtNsXNc4sOpAs0FSRvvIyI/os60aX2qyZeYbC0azRMdgCL2CnK45atnwV8eoNRD7UAK3mw56U5wkOfyavpScnEN25Ive+NFdzADQKCweMoB8DPnvBiQWAEQaQnKQerjf4GQfQERq/Qs5CzRlkiUASS471nW6sLWsmVWnsxkAU2MvwRAAyY43oeuUpSczTuUAwmb/KE5tBVAxokOX0RgPzEuD01Vpl63RckigpZiiCHXdlLUVJLsl2HCyllmO4MWXUmZgUtZpzoBWxygoNb+WBgg4ZxCCOgyNgnecbXQdWUO7XNN1SnttCMqyBKnkkknvNNB2ex+IXvDeY7Ca/ZzewaBBHhuVfScGBUB5nx3dpox9mt6U6aisDercV7r/YKJmw2FZL9a4WllWjNGycSExCrWtlhrLIKU8j3WtjD0hhOTHEyQxLWVgVFU5SGAolwIkJjnljCOxqMUCHhvvqXGQIc+ZgogizlUEsjNS+2B8znzU71WVAkwSRkrZk0Ik+r44D01y5Fe1OluCl7RGsgdQHVhRFKhiDMSuIwcnndUSbTECEdykxjpHcJ7VclUAE9bm4IpmRauzU/dyTHNV2cTiZBQEFoOWjJPk7LOp/ANEjIWqqnCuQbwnhF4BUSK4qib0UQNQ2ZmZM6tTcGa57jB9x+TuNe7evc1v/OY36ZeRmsA6ZL9sdqAnAGOMfPj+Y6q6pl33OKesPSvf4ayjsg3GVLTBcLZe4UOgFoNYg1ghGlEmJ0Q3o3XcuHGHy9N9nh8/ReIO2AlDvml2tkaCEbav7dMue6pZzWufeo1LV6/T2i32r15J+xXqpuGLX/o8R6s1n/3q5yF4Xnl6k3e+/l0sO3zlC1+kqqawM+GtT3+J3/it3+H07JjH958x3d1mPr/Mf/o/+Tnu//ABT98+oV/0zGYNlbO0y1YZh2xe61me5UBBrwEuq1mMGhzyaQ8aXKX7Ia9hGPaUsouFIn+7rksySbB1jWBS0QXo+8B65YnB4mzk2UHPsycHRKkxjgKCyWxa40BtDEIQzXhdrdpUpiGd0+l8zXvQWl1vufxgkcHJOb8hOwsYZfjeeXDSuInEBHRMAYvMzCRS+p1Llhpkw+EeJRLFUJmqgHhFREt1WoskNh+TnpODPKTgZrlPovSPMYNvY9qnysoznTfcfeU2Dz56yuqs0xI2dnjH86AnrEmBvrGXNmWolkjAEDxU8WLIoLwcBMxjlQNMZhQEHY/ncI5ruVeVq4LgNGs7Rh7cf8AP7n3Ijf19dnZ2+Km37vLBw3vcf3JMaHsOTnuOrzdcqiYaqIkVwdT0Zp8nxz3LrscZuLw/5ytf/Cy3rlynMQ1vf/CQ77z/AaetZgFrFrUnIbGIkkLOKXCf12Qeg/JzHGAYA5LI8Q0Fh2vQdmAAyMEso4u6MFJIjCyWC2zXDgFr0eBrt+549vgp1Y2Ku9dv8sq1HcTURFsxnUyRrufk0QG/+e3vs7UT+YVPvclLr++xU18GM0dszZ3X1lzb3eb9aPBBMHggslisePz4CIktxnUYtOSbmzlu3NhlVhtWywVPnz7lbHGNydxhbIWhRoFqHWCwrmZ3f860qQjR0K57los1q1VLO2uYND2VsZqBbwGj5VOryrA9bZg2mvFdV8Le3oSXbu/wyrVLXJrvMGkm6czW4e59UFbGyYhp4iewDaG10Z5La0XZPl0CGgzggQykP0+0s8GKQAZR6BlujOpFysw1CmB9YhAsAZTS81XfjpvnQg6Ijt+joBA2b1rABRg979m4xSc9vuyBjZjUCICU7YDc2xKEMxkQGUfRv8y4k8/+gaXiR2kDiZCMxrgoH4NcO3du5H5Jkv0plWM0YBujBKA6UOST52W0PMZnTgl0pnsW+W34hDLVSd80RnWcYjWM7mlGoH1DAaKOJ1sksSKMwL/6zpnlUoEIerKrThxCxFrKWs7Ap6zDG+MIIQE6jEWIST8cAMnlLcqZzKYsRAgpaG5H8tRgSinqPP+FcST/J+nEkjeXmBHgQFL5QlLJLVPsmyihgNN8Kv2cWy7P9QKbKgOwOusvw5hsAiszIMFkdkhhpFuNAHIjPaU8D6isZQyBlajlMPPNRTJwTH0bWs4u/y2BnkIu1a7rQYEHozM9rcGxDCrrJH2QS69FSWVMDapPGlKChy5im5MoyvjkScrr2qZ50j5Y64g+lvWZgVUhlYKzVkHfNvsoGJIxsk6Yy8VlNupx/0OANkYODo6JMXLw/AznJmzP6uQHYCRrJOllwnrVsVr1Zb3ZlKhirSYZOWfBWjrxBOuLcitqQGNtxfDmhqqqubSzS79csX/1Ms7VZNC0QYqAEwTTVFy9ezUbybTdisOT93VllbLFhunWjFsv3Wbv+lUqCy+/epf2bI1rnvLKzWtMmgliDPOdXebTbY5OjvC+1ZLbwXBl+xKHe/s8eHaI9Z5cYq/3QcfaFqGbtljepzEl+1TDuDEAizLDbV7Pg444kndl66Yy5kb9B/nMyvtfYvYdREyEdcxgN8GWe23KyQI0zPcPkT6OZVUGNA1AnFzOsfSr7F3KvJStMfreH+MqGy7Oe9dsnCLpIfl7ZnzR6FmkfWDLw4xJ4GcJGzKw4IHOHfD59Br/O/uwMOCs4data5ydLjk9WSX2WhkA/bkvozPG2HPvkSXtcGyPpiXvAjN6ZbPxt/P3OaeAl7dQovX0rNH9g/c8PTjg6v4OV3Yq9vd3uHl1n7bvWLWB1Tqw6C071YTGgIhHjCGYLU7XhkUCxM8mE+7cvMH+zh6VqTg+WfDw2QHLboWI6tQQyWDFnNy5MRLnF8W5VxpWxOb7kexBU0Bpw3UqJyKxnC+ywSCc72PEYI8ds9/bYjVZsHt9i61mirU10TiMdVigwvL48ROen63Y32/Y221omhlGJkRT8/K917l87W3uuaesRQowKxAwH9RIA2bmgUZ7Y2G6VTOb1JwsIut1x3rdMt+Z4qzD4NI7Rt3LWKq6YtJUyZ7XBDafgFchOIwJGLFD2Tejg11VltolH2WSxdNJxXxrwnzSUFf15tkWRyx7F+2iXbSLdtEu2kW7aBftJ79pvi/8hOes/kVsOwc7/Ow/+lnmJ/P/Tte74PjKf/MV3vup94j1i1kCt39wm8lq8glX/sVpPzJIaZzdP3aU5L9Zl5kNAhCZTBpCKnWzYUhnZ3sBKahhWTU1u7s7bO9tYyrL4uyMxdmCs5OlOuuygZ7AN4ljGcQyrRv2dnfZu7SHbRxnqwUnx8eEdVtYG4IEZWIZlWihGO0hlYYbHKuGwVmjwIrkIB05R22uEsVgWJvkmC8ZszI4GDLAKN83xgQCQbMWJaJGsB2cCuO24fwZPTePZab7z1dLCZygjBhpDkVIWbtS3gmJDGxYyQmS7mvOPZvkUMsxiUz7/YkOJwOZAj6D3PRa7WvltExZVTktaZYcRZmdwloFxdR1tcHE067b5Egz+BAgksqquUJlnwctpjXgCh2+rtOoWBFs1DI3Q1mGIRgTYtTSAXicc0SjpSicrRPISZEf0UQsyflKSE4wSY5kdQ44Z1Kms1XHt+QSArEEo3NQYrFcseo7BHB2yKISKCWNRITeJ+r8BN7LFO0x9hjxgGiWn5jExOOJId1HEpAgzYnvQ2LiUFYHZWcxxQcUQ6SqXQkWGmfwvVdmk+L31y/Pt2ZEEfrel8/rui7zp/cG5yrqqkpBQNCSjDGtD6FyWhZPBGIGW4SIBHVsx6DO/qqq0/iBiI5/VVXYyiDRK2uWcbja4VyFT0GAEAOr1itoJGWbZ2kVQ6T3HuMqQqvvHlHHtxePNQoo6vtALpvoKlvKyoioU8p7m/ygKRBgEkghlRzUMRJcZdmZb9MHvbdYi8Xio45NjJ4+OaGayYRZM1HWjxA0K9AHoKG3Dd/9wSPefvcfsWgN165c5/q1Hf7g7ftF7pTtaWB7t2Z3f8bjR2eIWCpbYRCcRJpmgqdna17R9YF3PvwhH3z4Dm99fpvo1V3X1BMinmDAuApjItPphM+89hJvfOFvsn3lCimFu8gOSY5hh2O633B39w5g2D7a5srlK7z/8ICuWwM14IgGrt65yTR6TF3RVI7rL92G6Hj3YMGbX3xLwa1GmG9vMXETnBVCF/BnLd/5//23rN/9IQ8eH2kgS9YYKrouECWmIJIG96Ix6lA1AsESBYJ1yqpm9HwzKehQwBQJtKZ70xZHfpEkVoMIGZTTS6SqRqUcSDLFeIJ4BYN4EPReDoOYOCrDMmICSUBWBf5A8JEINHWNcZr1a9B9MjhmB5kuKcgzyO9NVoQsxzNAKEe988k23CjJJQuE0dkSdVyHeJakRPMXHZ9REvtaAhcgpJItw+EiEpEkciS9WwFwlu9YXFPhMAnwGYqYnDQ180ap7HOQy8SYynQl5/lGcDg931lMFFKlgk0WwDQskmTKGAiQ7zHMG+f+pkGjwkJl0uciqU/DvOTzaXGy4Bvf/i6v3L7JG7dnvP7mq3zl4ITF1zuenTzmvYdLPnNzj8u7+1hTAS0d2zxezfnuwwPOemF/d4+//Jd+ii++8RazZodnT5/z9T/4JvcOn9D2S4yEFMgJZY3mOZHRewzvOuppCj7kwK2WGNUPx0HpYf0MYAdMVqwCgYC1CuKb1BY7SXSoYojR0K46vvXNb7M4fs7f+Fu/wGz/VaZuB2O3ENuo3jWJvPT6bfa/WXN4doT4nq3aYioHMsWYiquX97lzZZ+mcrS9x4ogMbBerrl//yldt6KedYAnGoc44fLlXWbNhKPFMUfHLctFy+XQYm1LZlAq42OE2bxhvjUFW+G9BiLarqPve3zfF3YJV2mwPCZdq6kdjUtMdaIBitpNaOopTTOhqiodV5PKDqZyPukGP7HNnP+HMEQuk96RgdEZNL154WiXFeFikq7nmM9n1NMGYwx9r0GfVWwTLUqOjkl5bmalaKqanfmcrZ059XRCFwOnpyf41UoZLVGgvRdJAAa9hyGX2sysb4OMGwdps5xWPTf3xZQcig2Q/2hIiuIv+c3HkmEQ6IasDsoIRJE1WlOGa/htPA9jea5y6YXvAIXNB9VNJNskMnrXkaGSpWS2JzZiqymIyPgs+SPaEE5UkKPZGDNDUmULe2dm3MiPMvnsklhAOMYYfPDpruUNsYaS0BHDuMOAmIyBKPcbwEKDGCtnk8lVsaSc4TYBaHIyRh6yYkMm+RiCT0krJHBUmnuDArHSg0o56AIuMsmuc0n3T0xAGWwgGSg/9DsmMP1Q6TuxFIWg/ceUvijLU9a5R4sv26S5dFkuhZb/c+78UzBMgEBhFdL75PEwNE2TWC6UVSq/QwZJ5HJNG0xAGZCUAv55rmMao5xYJNEk+z+mfThOYhEwmRVqYMn0+Yw3NvVFXz7GgHjVA5x1xQbMoC+1a3K5NspZmEvcq5yLI+s/sYWJ6ifEMEDr0qYzKfhszFCGXkSKPRrz3jCGEGVkt4diq7hk8ymL0RC8t8Zi6oplF2kfH4JxiLO4ugFjix2Z4QFV5dieN8zmDU8fn2jOgjE4YxCrYHMtpR2xAovlkre/8zaz6QzXzIghUk+mOo/OgnOFCG8yqXn9jde5dPWK6phjzaMsv7QOphVIVPsQi5HAenkKcjn12+Aqx/7VfWXvFsBVTLZn7F+7zPblSxirQJMsQ5wxBBG61ZqwXvM7v/FbHJ+t8EFBF0IgiuouGSykGrwlEkeAfIOITT6WPBmDPDeiYC/Ss8tezuI/rxkGuYeAbdRPYKKoX8M6rFEblLL/7Ma62vAlpd7lqqhZVuS9LHZIOCvgwuQjGdZ5eVCSz2OJPTxnZDJs+o1keNfy3WQ2mpyoxaA7bpyv50R0Hp/irytjlkFVDOfVGFFU5ryIIRCopjWTuqJddYTCHq5+sKPnJ1rWEdmskj3ymzL2peX3Luftpr9PboC9BLJOoMYkNzeAkJuDpv0dDWa5/7lxz4/cGHYRjo5PePDsGbPpjK1mxu1bN1l2gcfPAuu248mJZ15PsM5QGU/EsvQNj49bll1kOp1y5+YNbl67xqSaslr33Hv4mKOzE3zok+4qg61mNjS481M37hzF8BhO1PSbGa7OMr6s3wz2Hms9Qi6F6IzQVJZ8nKpvBMLHgWfvHzJ/dYtqYnHNBKhwJdoj1NMpu/tbHBw9Z7VeI5mRyaQiz6Zib2fOpKpYln0sEOGZO2CxXrAz3cGYBNpCqOuKSaOJS23nWXee2Huc84hxZd+WVFQHdZ2YtINXILLXJMRcbtLkBB3r9KqUzGgNWEvauzb5cPX/UgZ3AOdnX/FFu2gX7aJdtIt20S7aRfv3oH0Z+BTwzp93R/77167eu/rfGaCUm82MqJ/QDu4cEF3EltLtf/HanwqkVAz+zAxS3GValz1oJD0xg8QR8UA2cFKGSwEoDc5RZwzTBqx4jFilvXXqfJNkZGqMe2yoqlNsvrXF9auXuXTtCtfv3mV+aY92ecj9H/6Ag6eHNFVF33ecdpGnh4eEzmMiNFXNpf1tRDzHywXLZUumus4OplJyIjmVSzkKaxWkFHP5mWRCJoO3clrX23tP9FJq2g9Og8RKZS2GCo8GBI3RnDoTc9bY4ITK1+VArzGKnCqAHpMMWDMa82Tgm1SCQKLg++ycpdBVQ3Y2Fv8BWJfGm/L+6c5kY728M8mxdm4ziZjCEuMyqmvkEIrRJ6ryPNfC2K8DGrhet10BHxkTCN5jXKK1F3VYOWepJwqE6dpOHVtDBwlBwITCBBZCTECR7MU2QxkzIKTxsNlJYrTkjERTmE8qZ5nOGrwo6EgzpnKJhcTKlFwpOascEeq6JvheMyqdUg/VkwpnAhGfHNoKbNJ1Yco4J89wWquCMSk7O7G9hBSoLFVEOkkgMK8+UaUZ0er2Rh3BucShsheNHRKpfFd6/gvZZ6JOWDFgnaFuKowYmmpCkD4xKSkrgUlOE2OVLUozRk3ql0a6QlhSTxzGGZxJDFGiThgftbyZcQoWUlAOaEUJSzNtiNEzayZU1pX1quVWenUci1Jjx7QuQ9+XfTCZNIQ0H2IgisHYqpTq8G2v6x1R51DlwFgsCrbJbFMW7S/WqHs6aNktmwIcxgj1VkUzqZT+3FRars9o+UVj9N7GVazXLX2fsryj7iHXWKqmKk6nDFQSDC4I050Kmoa//Lkv8YN33+Wjw0MeHR4QmCIYBakl8bu9vcVrr10jmo5nT5Yw0XVrsQQsbd/hHZwsV0iEH77/Mf+3/8v/nc9/6ZsYVzGZbXHnlTeYT6d85gufYb69BUbBa9E1XLn9EtuXthQsxpAJq+4wXTdOdP6IkaPnJxw+P+L04B7PHz/g6tU3QSossH9lmzkaPNRAmqVylsu7uymYGIjRcHC6JFqoqPACJ6fHfPPtb/L9997lrNVxirZi1XZM5zXTrYrorYLh0PJ+RGXt0nJZChoIRBzKeiAIRoLGB92QpatBv8TakeYHDESVURbdt820YTLfJqxbfICY2DtUXmlmdUjBDGszE57eM4rKeovg4xAsNTYFg3KgSYTK5IJtAzNCCIGYPOl6lKRSd5kVLAcsRy5gKbJX32NcSlUYBQGs0BNxovsig78gA6X0nMgsCkPTjG8ksQwadP8Dbe/p054dM66UYL8IUXIpMN0nk4nhb/0nf5Wn7z3gm9//iDZqmcUInBy3fOe7H6dAcso0fyHgPfwuEhCfOSn0rbP+IsYSMVQCViCkoJDFEA1IYrfSM1UFcg5A6RlOmp3EoJDT20sfBtAkCUwXBXoR3v3gY37rW3/I9tY2t3dv8DM//UV88PzeH0aeHR/xuz88onnjEre35kyccNpZvvHeKR8drLh8+TJf/enP81NvfY7L8z0WZx2//o1v8533P2CxWiDRg/SUGrZiSgAgh4VK2GM0jWYUcNf9MIQHMggrH++aETyEr8ZMG7rOdY85NOg2MwFXCUa8lpGxQu3h5HjBo2fPWPszbBUwrtE1KSl4bCzbl/a5fes6D//wMQ+fHvBW11NVHkzA4Gi2d7h5+zrzZsZieYwXZZ8LnXDv/kMOTw7Zml7BEDEm4IywvTVla2uGP4DnywWnJ6fE9RyqCRiHlSGQa6ynmVjmkworGkxoO896rexpk6pHJroG66pSHVCEdtWqjlSZxJKhZUuVza2n9R1eREv8mJjOIKGPgo8/uakzGSyQA2kZ0JZbBjiaFMhS0AEbemGWXyYHn0ZNmT5bfPAYqzqGguAH/bjchNSHzMZqDZ7Acr1iu6rY3tri8s6M05PnnC1WNAlU7aPh5GyhZ3eEyjl25ltgIov1mvW6TQkA+VEDKHUcpDR538NGMGgoP0cp5xNGSRSZRY7xm1iTgCtxY5+OJNePNj+Mbj1s2I0vFBa/EWg+/1HPlawjjofZDJ+N75U/Kg+VzQ9GfZD0P1vOqjSmSb82BmXMyvLk/M1FSpBaRsG4DIgpsUyX2QQMqa7oMDJJEEqKiOoz0+3jiHnD8MI5l1tMTJZGlDkpeC37WteOGIcy2rlktYJMYgG4ZFBKPpvzuZTtrMm0VpYeCWmMRjbEC7OdfwxguSyvC3MRuq6Cz4kbaQ2UUSkvvDHnkse+lAkaAXLlHAPXGABhFbCJZPBUns8BtCzZ5k2djnHQLTJYqTAqGzOsi2Q/ZbtW0n3L2IgmXglqO+VDXNeU1YSTUhaXYq+RfuZXlZz8k8bE2FHfR0BGpwqcWtYpIyoDqay1w+9p3DM4SfujCRSaQKLZW3mNZCZeW6ltqEklmcEqlUNnsOuFqOxY6f6aiKFMgJ9+/Q0+/vgjDk4XrBZrbmaNVrIOJYkBr+L0ZKUFtCpV1kMCgIXgEQNBHCFqScKP7j3g+cmC6USdefuXrzKbzrl8aZfbL93EOEvX9ZycrphtGXaNlggcIek+cX/l9bBYrQi+4+TwAC+vUGcUiYWt2XTjMhGhBqZVLlEI67ani0Gj+kb77YPn0cEzhFSK0FgkqC/IVWk8QtZp1I9koyWUbB4da5sBFNm/htoTpvhKhnvk/gwAJcq6zHtXkq4mSAHjZeEpZOawYYyK/p70uLHqaXRJKsgq+fty6UaEUjYsj5tKgEGH+6TTZuPJ6V0y2Gj4tqQzTL1MUZIeKVJs8UHuD3KvvNDo3Ux+DzPonXld5PEzGx0zxb+mY5Bkh0Su7c+5cekSP/jhx5zFBPJMdsNy2ZUztvjtNpfi0D0ZgzY3/pB0GoOpxkO9uc5HqRSDHpDPIBlk68YglN+HGcrAmbTq6PrA/UdP2JrNuHP1OluzGa+/fItJBQ+fPeP5yYrKwmpnyqwy+BA5OGk5XHjm23Nu3rjK9SuXmNVT+t7z8YPHPDo4oO06hnKdA3N4HqJh1mX422hgTBqz8ZANdsjmGI6hXgNwWwY7RBJYKB0ZjQNjBCQlK6WrvQ8sVwt86EaDOOqXtezu7lFXj1kuVdebTueIiRgiGMt0vsXWbMbx6WliIlOg6bE74X7/iOtyBYsvfjBrLM2kwRpLHzrWbUv0PcQaXKLBNjaVMg9YE5nUDofQx0AIFd5D30dqGzEE1KeZRlkM0Qe6vieafI5SzrUYFXyrbL12AzQf/oikoot20S7aRbtoF+2iXbSL9hPYJmTCzov2F6wdXT/i2d1n3Hzv5p93V35s7U/JpMTgVEzOd1P+pw69IIndJgcEyI6V0c2yJyQHSg34EDg4PMXVK4w19H1L3ysgxJCBKwZJIVdrXWJ8cZz5lg8PHnH/8Ck7H91jPpmxPTecrE847TrmTKitZXd7iwgcHx3j24CrKrbm20ynNfVyi/sPHtJ3m4AjBc9oMM1VNj1XwQld16dSbSNHeeprZvURiUgCU+SMx+xgySCibDi75HBxNmVEZiKb5EXRP48cqYwdMSaVRhrGXCQAtjjPjdNM48wWNTBUjQz44sQWRLIRu+loVwewlGtyT7Jz+XzL9x0HDWzKMs1Oplw2LhvsiCRm++TcJjuhpawHl3zHoacY40NGLP9/9v4s1rYlO8/EvmjmnGut3Zx9+ua22TdMppIiLVElWQ1ctgRbBRcgG36oMgoovfnBrwIMA1V+8KsN+EVPdsFAGQUbVQVVQY2LJUoUlaRSYrLN7mbmbc+5pz+7Xd1sImL4YUTMufa5STLFppikTyRunr3Xnms2MSNGjBjjH/+PqzRhE8fhKkjS5LHJ0m8xJobYK6uTcYDHOpvfC1SV/p5SIgx5028cKQohROraa9V8EIYw4CxUVZOlwnSMhwQSc3VlZlwJoctAA0sKgrNw99511qsV21bBU1p9q+GkmBk6ythXynwdi4LKqtkS7MvVugX4pf3hVBLGJGJMpCCQZAzKFHBYyu9Lk2J6bk0UFiDXJBNVVZ66rjDG0vVBwRd1AyKsN2uMsyqrYaaAviZbyJTU/QiOqqqKqq6om5qq9oQUkKBSiGmULrCZFUXHp83VYVGgNip7YK2CPVKEvhvGhIXzFSZLI6SUlJJftIosBg0AhVx5L1mWIOVgogb1M2227FQiJ7R/RBMpMcqYvAhJD1CQU75GtnMpRgVx5CSIMcrIBBCGRIyB+WyG8woY0+eNGfDg8M5r8sVpgDztAEjEGfrQUdVzBjdjE4QhdsRBqJoGa5wySlkIRthst3z0/hPaIdKLBqWDGCyDSofEpDJzaIXolp5fe+cdvvvgOfPZnDuv3ePux89J25bjJ8/4K3/tL+Nrx3e++z2+8evf4ejNO3z5a19gr5ozVgCOEVqjiXUypQ2Gaq/Ge6Fdr/jWu+/z5he/xCKCVAnjhDoHh0vgMcXA27evULssxdYGnj99RjCJaCzBeCIDm76nTxtUhEXncYgRSZamqRHnSDFmoJJWWSt4LWQbrIkkayxCHIPQ1mc5jQyOKfkEi8mSG8oCMGTGMclJrK7tQK1NZnVTpoMkhWlKF82StBrZj0STW1glSinsTM4oSPPgYJ/UBVZtOwbn9XuT/NzI0pPH8679L7QDxeyaMdHGzjGMcxmTmNeePoCb7SFdj4mRmHNIY34ulfc9JScvJbVf8hHGxIVclu4cz5GXLYkKetqVTzDWkvrAD3/nu7AeiFGIYnBJq1ytgZAlE/PSdfnaO8kaY8ylZAzsfF6+Y6bPR/8o+w7GTvc/BeTNlDDIDBCaspLL15ISuL+cVCrn2bQDv/ab3+Zgsc+/89U/z92jG/yNv/TnuHNtn1/77d/hyfEz/vv2BbeP9pgBF5uW8154+3Of5ae//Fk+/fodDhb7nJ93/Ktv/g6/8a1vc7q6IESVVKMAXUdweLkBA5kZbLdGObtoUyeCgvNKgqis/yUbBnoe8hhjOq4AsGMZNyiTAlVmM0pB2RisY28+I3YDTx49pevXNHMB/Ji4A6FuFty9ew/7re/w7Nkpm+2SenEF6DF4rPfcvHOd/UXNs1NNOkd0jXzy8JQHD59w7+ZrYGsse2AsfjZnMWsgRDabLevVhtAlmjkYm4BOZTiN4FOidrCoPE4MYUhsusRmM7BqOpy1tIOQxOBMiyRLaAMXqy3Pzpf0UhJYuv4OIdANkWoYsFFGm44kQtQ1MfwkJxVy0n6yQbtZp9Hp1fVYJLM/7jyP2fknf718IGgSsuslvwe5BLSYgEq7lzNj8naIgbBRMPtmtdG+dUKQSDLg7JCB63YEkCgYJNENQ/aLGrqun55VU4+T3TCTNLH6cIahHy4n6saHm/rEWgVXy04flDaBgLOcVP66zXN192y7nVh8kEsnzBuPvBPKXZymDoYMws7d//JYu5RXvfTL79Pk0j+fuF0pP07gGL1dc2l8FICPwY6JynHd2LmVsvey1uAL+CykcfwpI5b+7pw++whwyom/0l9m9AEysDTZDMwvpkj3AAUgUvZlGPLPagFD9kdVEipL05nMSmiKZLYwrXg6vm3em6i/moEcqGRXedaxl8e1BQoTkDFakKM+fhrXaKGwNJpxahbfohS+xBhf2idme7XDsluAFwogLRvLwq4peO9VptpoIUGMCtqypU+MGYFEu8NDUMk0yT5NWW+c98p+ZCdmpeI4GDPZglSYi7LcWRLBOxQ0ZoxKoMsusEHPncTkvXSWKsw2TIr6Wt57pFiARmVsxkvgjOL/UJgZyz5aiv+W35M143uKWbpNMmtOTIJN5X0WJmd950UWfWKGuuzHYUqMxU4Qggy+i0Db91SV5f2PH7HZ9goeTSUSo76x92rX+iFwcb5CU/V6TMJgM2NX2VvuTGSGFDlbLmn6wGze4LdLzs5OOTttSClx994dunbL4+fP2FssuH7vGq6asdsmS6a/aa9ajIdmVoEknhw/57ObDYfNnt6DK3u3aTERoKkti3kN6Nxdn18QQp/Xomn+h1T8zvIsOs4qX9HMa/p2oOtysZ5lLNIpFxsVvWTHN9qRJdu1deVXY3SvLJJGlmJQPzL0A9650beKIYz7iUsn3DWCwoj12l2KyzibLeY0zrNab7LNYRo3O/EcszNmL12iLFQvmX5TvpjfWrExAM3MQ1T22pQEMwyT3znaok+uOcVXfnmV2T3MwHgtYxnXxfFWdxBa5VhtlifPzzk9WRJC3q9IuZr2xShFvbuG8/K6m59h5zrjZ5dfO8wFVtO+YozBXurDSyf/Ef3xUtfvHrtjq7XQBDbbjg8ePAQsr924ycFezaffeo3D/T2eH5+w3K5ZbjdUuaDGVRW37hxx4+pVDvYWeO9p24EHj57y8Okztl2nMuTFSZOdy+b7mfYNP8o/mNiQgMvy0rvPZKY+H3v80vshr7MyvqWyJo9SkwqrpGmUMavddGw3G/bnV/Jsne7JYJjPFzRNzbpr2bYdhxIwJgBa5FY1FYtZNUkvomtJHwPvmY/4yvAZ6lGSuQJn8ZUyiccQGPpA3yfqBowVIOriMk5YlUI3xpHEEJIyf/dDwBmULXxn/5wGYYiB1bqnD3EcH7q26V4rJh3FES6tkZKZAF+1V+1Ve9VetVftVXvVXrU/Bc0A1/6kb+LPcPtxwpp/TC1WkY9+6qNXICXYDdBplGZkEsgJpSSpIByQNBD6cCn4UraLJShjClAnB+j6IRCShaCsCGasAt+F0ejvZdM+xAg2YbtI6nucs/TrjmPjwAiGhK0cGz8gISjDhNXwkIgQYuTp8xd474gSCFl2qQQDlOLdj0E/jR8Z5vMZSYS+H8YgI+RgL5lpJiUNTo5BRtnZnOumz+YEdowBEYOrLSEEfOWQTPHVj8ltMz57EjIb0BQgL0HJsRrUXJYQKBtSq6VxhBDGhHHKTEdT8FAT0DHHoXYDU7tgo5cZJ36v2Voqbku8wO4ESEqF+Ah4EwErGtSzUzDTGI3jWms4PDzk4Gifbdtx/PxM2XwwDL2yENksEQcgIRJjlvOiBKaUHcg5ZXPR6kggCjbYUWYuOQ1USg62pQhRlJHIWqcJ8Dhk+SLwTUNVe/owIMZgq4oUEzFoIF9plvU9hjhJP0QR7j98grcO75ocTMnsQpllSEFoRXIgJwaMktCUcyhmbgpmWWOomzoHGrTi1nlLLwmyrFKSpKwlMWFR+QKTx7oxTqu3o8qElcSatY7FYs7ewQzjHZIc7WZL37U0lceYiq5PhLhb2UyWhFQgjiZsoKobDAoIMxZC1EpVbzzeW6zJbEsihBhy3wgFxJVSRGKhzHZZ6qMwnOXAs/XEFBn6fux7ROdpCFm6YZAsyxUVPFMSMCkoM5NR6Tm9b0votBJYExGFhUzoQ4+rFEwkgHXKYlUCZa5y1E2Fr3R8SwJrvFYwJ024dG2r8mJociKmmGUPc+BWZAx+WWsIOdjaSyJuIn1/wj//xjcU+JIEEy2VmeNxWBPZ26sJvTAMPVSG/bnntIuaaDMKanPJ4KqI9UbnnTE0voaYSMOW5mgGtDz++F1WZxesupb59Vv8ha99ia7dcrx6RjNv2JvPKcwmk9mK+T9NjCRjsMEwrFqGvmOZ1vzGb/wL/tZf+4ts4x7NtRkQMNQgJsswGDbLDftzhzOWGAwP33mfD77/PZwZQAIpqo2O5DFtwUaDMZ6UBvpWuHZlxu07R7z7g4eEviJJoICmShJZ8X4ygjeKTbJegXLFnrosXykZ4OacZbGYc35+nu2rpQA8TVLg0xj6Lyxszo0JQmVji9n+OU0OmQnkMzJAAPP5jLc/9SZPHzxiMIIM+e95vSzH6vnjKEnETuK8mPFd0FCxVyLsyM2pfaiahjt3bvH8yQuCMww5GWXyeZ1TG6v2L10CHI1glLI+iExsSWZa+ZVZyaj02Y7fofPAjDmQUZpCYBDPdx4cU4slicVKSURm8Gh+gSObgrEKjgxhAg6Ve0mSZX2A/PwlUQvZ7clrvilsUGYKak9sEztAqhyUH5OQRTGGwnJY6pvteK+YMu6nv11ctPzzX/k1hj7xP/7qV7l37QZf+9qX+Mxbr3P/4VPee/SIi/UF0cHbr93g9bs3uXP9GnuLQ2w148nTF/zqb/w2v/Xd73G8vKCPPUKgZNCzidEEaXnYkjAYQQw7K39eY8lrDzLZxQJIHhMEOtr5RKalsFqJyvVYHKRI13WYsEFZYhIWoaot9+5eJ3YDx8/OWF6ccDC7B2Yv36yWo1tXce3aVZqq4eys5WJ1wZVrLc50CA1Yz9G1Aw73Z/qeMvhPTOLk+ZL33v+Ir/3UZ2iaCoMnUWNqqOuESYF+C8t1YLPpqBZbXC3KvJAMLgkMMPS9yu1gQSyxb1mtVhyT2KwHRBxt19PHgb6HvgusQ8/paUscAjYDuVISQhK6EPF9wDpNKlvK33U9CHE3QfmT1SZZp913P/0rSSUryf6mZMD3mHh7ORk62lA1BqnYvQJA2JHVeTlJVhJhMUZlhMRiIog1pAzMESNY0XkQbGZDS5LB3Tm5H4Vt22kFvMSR6XF8LjOBNEc56LyXSjKBNi970QXQUmCMpaiBcT4V37SATAq7gzLa6lpUCiyGEEbm14lpYOq3kjQ0L92HJqx2u02mxYKd+W0Yk9ljP+fnjiLj+X90KyCr3yMZ9pLB2WXwMDnRaowhEnfWBhn3DwXqtpu8NNayt5jTzGq6fmC1XI/rUklqqj+cwTwFdFqOkSKxlkZJsJRBwSlOLKjj2jm+L+2rlFkwYZJHHR/SKLNXjElBYTYz4I6g47xXNVZB5ZlVFWO4WLU4a/DWs5ss/0RxCnrNIv022vqdd6Lutv6sYK6dtTz3ubEZqKWOAgo8JbMH5fFqCuB68k0wZa/tsE7vfW+2RwyBrt0ixuCrLKuc5bXL0+z6QsoyVJikUH9KIAb125zN/ri14xhN2bEppqgUeQxjIYTd8X9kXMvHZ8hJ3bKHRtjxcczO8RnwpBvQ8b2lqMUG+rOMY/WSnwQjiE6lyy8DtZ2zNE2FcyYzSWWblIFMIIQhjH1b3rk1ZHnqnSkl2V8x5RP1s4Z+y3noGOMDVNTVPDMxaXGGMUBKzOqaeuY5W3fqR9o8TsViHVn8TM/vjNVCmRRBAt7N6Lst7bolIbxYbrhjjI6FbsOVa0fMmuYTNkTyfRXTIQYkGbqLlvXZkiCRdnnC6sVj9m+9iZ0103cma0DoAu12g7UKXjt9dspH771PDB1IRIt21CYkdO9tykJlFEwbY2Jv0SAp0HcWc+neLgNVd8E+JfZUGMDIY7WsEcUupjL3so2ffNiytpWSwTzL7W7xWHnmMuCLxS3zaJrnxsBs3kBfWIHNdJ+XzjQV6O0uKS+9oGmQ7djuEvMpa5HagUrZgTO78K57OBbjlHVvp19evtRLTzstSLnLL4GcZPKrywaoMLiTr5MStJnJ0kgBtYwnn+Jt2U+pamWyiynlArLyqrPRG59rpxShLEtGkM8IPGeck9Nj/OgV9BIb7MvH5evsfvZyvwhgxbJcbnnvw/uEfuC1mzdZzBfcvXuTm9evstq2bNqWJIGmqlnMZ8yqCmc9Ccf5xZqPHz/m6fEJbd8R8pwZ9wH5SiPwbucWzSd+2hmnu3/aGQu7x03gcx00O7st/UQK6NjA6xCayBAGRML4Lg3Q7HkO9+f0IbFer7l+tcfZxU6/qR113jObNVyshU3bElNPZStUol7wlWM+r0dfj+LnhcTHzWNWYcm1ZobBA4ZkEtZqbCdFwzAkhmEghg5ni59pNB6ZhL6LDKFnZGTLMekV0LX5nEGLG6MIKUKQyBByzOulNSYm0Zhktm7TqND17TLg8VV71V61V+1Ve9VetVftVfuJbR74XwC//Cd9I39G288DN3/0n6KP6tfLH5Mcm4EHX3rAz/zCz1B3fzbpsn5skFIIukFxdkpQTQnDqHlbzTnnTbVWhMlOcuBSydYYDjAZFGFwlScKWn3vzChJtbtRYtreQgpINCQsyRpiMvSi9LliZEroWqsBcgTDAGI1kWktbUdmFxq0cnMMuut/I3jGQ8jVpSGsSZJyheKUaJyAOsrSEXMipgTDLNNmtSRcC/jCO0fltIq063u8dczmM6IoY8/LrQQ7SjBJ30kOnNgsB+QdkvJ1Mp1QghG8UQAnKUW89zinCfFCkR9DLLGNMSAg47uTne/vlATzUvAHcsJkCu6CSpIVAMDOkShXlmQJpRzIsjY/myYcvPMc7O+xv7egbbspCVF6uWRWKcHxlGnCp/sVzUbha4uvPCIVISS6NleKYpWqvoQ6Mpgg9ENOPhVGkiJLosxGISid/RCTVgVjsM4DCqQpiZK6qQlRSGmgyRTPbdsTY5ZnygmJJIZYgteS3/FOQktIkKXlpjTEOErAKNAupUjfq+SJyYkP6xy+8sQQtILKgATtq6qqlKnMWkKM9G0/Jia8t8wXM1xl2bRbjLW8fu9thr2es9NTtusNzldAN45vTUqW96D3Wtc+symFnEgz1LZmCAFEiM5oNfM4NjThMWlpAUlIIWYA1U6QTi5XE2/blhijSrVgEIk6D1LM7Fv6fq3VRIeys9gxGBxjpI9RmZwqDbgVcFMBJRprqLxWznnvmc8WtG2bWY+mcW6to2lqBWBZwzDoeSSWeJzQdS0hWKz3Y4DZOqtzOoPbNBGo76qwozkEn4QUWyw11/YdbQuL/au89vansY3FbDRg5UxNkoE9V7G3V3O+6kk2YDwY02CNZa92EBPrBM5ajFiq2ZyAAsZsXWNrz15acPTaPW6+9TrWw+rkGT2wuHJFac7xOeCbNEVhLATLsOmRocfPZ2xWgafvP2a73EASHn/3XZ4/ecLbn/0yQiDGMj4TIgPGOT784H32rnjW/Yrf+bXv8w//P/8tP3z3h7RckFKkrivq2nGxXJPE4K1gkxkl01KMbLctZ2cXhJjnhmgiwFpLQNcAZw1OdpKMOfE7a2b0YaAPEW+s2nXsKG8xxMjp+dnIOqNAJZVEdUYVNa0UGwniTA6I74RsrcU6Bc2QBCuJKLrcSk5aAQxh4MmTJ2zWa5KQmRTykpzPN2S2sCKPJ3lpmaTddtexYvdLEPiybZcc+Hz06AX9MMDQs9809EYDrJLXyBhDXoeY/IGdcxTL/aOD77p2xjQlZUVSZpXYjV/vRK/1G1QpghgCFjuyEsrOcylgKyW11Yv5nNVqPc43MSazUpSEyuU+kLyeFvtfgEVT8tiM91bs9rhulNUs26lUGOsuZ1WmMWCmj0epFgEbHMuzll/+1W9y8vyUv/QzX+NTb7zF3pUFXz74FJ/77JsEUdDlzDVY67HGsVkP/OCH7/KNb32LH9y/z3K9oo+dsoxJGtfUCSqen3nMjZrR/pQeLxXPpQ9EGNfiSUpnSm+VBJ3JybLxT+VhMwjVWQuSOF9uqNqWlAYMCj+yVrhz+5Dhomd5tuTs9IS7tzrMKEVsx0TVYm/GYjbjfLXm7HzJG6kH12PoSQYO9hr2ZpWm+FJEbGYo6Swvjs/ouxWz5gDEYaTCSYslEaMldIbtxZrV2RlNZfC+JuLpOqHfDmw2Hc+enLPermkqQzNrCMHw+PkFZ+ctta+wIriUMFbtJckoY1SWQ5VUBrElRGEIKutmUsRm0Jb6ycoeGaQwLfzktTLHdkgyL/1x9PQl/5uHhNnJar38NVMMgpnApQnJTCZuTBJR3Ifiy5oJND/uaUqyMEvtChAETBRMMDnJLqjlzH4ARimsDBSAxEsPNrEwyuTTp8xCOfraLz2ZQUEvKew8tNn9q343iZCCvnNrGKEAKvuTUJIN4ZPfLAUEcqkPGTO0ZKZRO9q/ApZAio9uRltgUIksY1XeKaWSjOZlM335OU1hl9l5xrx/uvTezfT45dAR2Fr2YuP5GAE0I7hr9Av1PMVGpZjo+74MNKyxeV0sfj6X/NcdGICeJwM1rLM443SP2Q/jWL7EhJGfLaWX7eC0fui6owUOCR37Za2xGQRUesFai/WWJApmNxiGYXKVy/lSvvgnmK/yjSUEkwqIItvlaTaiYziPqyQj+KoAlKwrbFK61pX10zmX94tFdqxX1kpRUFFdVxinYHxrLJV3uPz+uralMDJJZlSb5qkZx2zZ2ylgHIz1GTQso5+e4tRnYMZ9qSkDYpS1maSlJtbE7MOkRBgGRNjZv2a7kjUpJY+XnSlUVkjt1rQDUKR8J4NF8jNaa3XfYHQN1KIYlZweJeDKe4sy7nEL0LkA2sqVYyTLm5u8L7VTrGRcp80oS50yONsKiElYMRzsNfR95ODwkDt3r2JO8tkFnNXijT4kQtsx4lAlkrK/661h5iu2fVJGYww2s9zGlAgpYWtDPauYz2c0iwZfWbxLSIq4Zn7Z8ItABg0RDaHt6VZrfFVRH+ypbLjP+6YtPHp8wp03Po1YjQEMbdAitaGlmtUsz884XZ1zO7Y8fnTCu999l6dPnyM2s5waw/5iznqzybLoWXYSlXIr81IZd3L8xGj/TyDOlMeeu/QoZS+nc2tiVNXRWPzJKWYEXGJeVcZTlaLWdUSmvpK85ma/VG2VMhOXsZ+K7cn2SZJwcb7E5WKGAhAq5ovMdqm2K39Hxqmw82y7tsZMB+SROR2l/bldd7m/hCuLBTEJq203xj0KM9gIWt51K5nWJczuWiqX/tm9nQk4pB/os11eg8f1UUyGChsMO+/P7Hw7X7fM8XLqwmBbDha5fJlyjdLX40sbl+TLPTrFhLTzJ5M+gcbMznVGG0rx4XffU+kfAbGs1x3vffQxFxcr7t25y5X9fRrvONyfcXgwx5hcOJLt3GY78OLkOY9ePOdsvVJwTcoApXxuGcej+cRruNSJuz9+4kC9612Gud0DX2ac+sRpRH0Zs4CQItsujHHacmx/a8P8pqN/GNmst6TYY23AjOFyPdJaw6yuSQm2W40LVr4EwgPWQuMLc2LugTy/Lqolq+2aa3INMS1GPDYKJgXt0wSxD2w3Ld6C84PaqwBhiPRDoO8Cy/UWDNSVxlfaNhCjULmAdxZvDN4JjXUYHAnPtg10Xdkf6eCS7ItoV8j4hiw6bkQYd1Sv2qv2qr1qr9qr9qq9aq/aT3grzv6r9sfTrvG7yuk9/dRT1lfXHJwc/IFPL+aThTi77ezOGe1++wqkNG4KL0cfgCkqYdBqDg0eTMHRaQOoVSwFoGOMBt6c81jvmO819ENgCMrYIRLpO93spkKHbwyVd8zqCustm01HSoLzKn2VSpDfG7qUMDHAMCizgdEqqFSClpmhgjGYYMYN/VjpmFlsSrC1gHrSznPvboz1X5uDoWkK7lgzBnlKlW2MKhEGKjpS2CeMNXQh0HUXU+hkJ0AxbrxLcqCAM0zJjyRspVT3MWW68cz8I5nVpqqqXHWpwJG9vTnWGtabtSbIjYJYyEHZHzEixnvQ55/YP3bHTDlScse+HJhRFimNjYycEZkFKcaAsY660UBAG3v9rgir5ZpNu2W92YIIde2o5o6+DaSk760fhLr2WVqOERgludLUZ1CRsQrIqSoFJEgs96rJKtFMho7vnAwoCekUcvLcFfYMUdYDYyBBlIhzjrr2WqE7BEr8v5lpZbtxKgFGqZgXn4OIhjhEdkQ1xgresRJfVJ6izCMFz41oF1KKtG2bq4dRKvqmnrTnncM7p5Xi3tFuOiQllV7wnqpuuHn7Ll275sMPPgARDR7ParCigKXZjM3mnKHrcE5ZLrabtY69EMagbIlpajW2U+aCEpi2Zrz3ymnldwxJZVRKImcnU1+q0ktCxDtHXVeaHDMmMwjp2A9hIAya/IjEMdBpDWOAagz7lapVAQlhlGyKIYOZUiJ1CWPBOZPtRsJ6q0A/7zFOwUrDMDAMUQGIVU3btaNdHIYBY52OmXx9lwFhAM47SpyyBAMrX6n9SqLJv5JsS4KzjhADJCHgSEawErh69RbGzHjzzRv0DKxbTwyR2dxCslwky6Oux5xsGYzHmogNYGykcYavfPaz9JuW7z95oQkVC6nRStflckmzXOGsZZYS9C1nT59gX9vn4MCCM9hmgfJzZSOU2T6kjzx69wEffe/7bC+W/Pz//H/G/OYhb33lDjd+5ZDn2+s8f37C17/7Pve+8EWqJJw9W/Pht99lby7Uc7BVzb/6lV/h1mdu8nh5yr/8hV/n13/z2wRrqBpDyAbxyqJmvVwpq4ZVthuLSro1jWO1bjk/63NCYcDXmgBSecXMsOEU2Aclzi+aiIxBZQaZZDSVrcNm1jAy2FMDf8VGJslsSyM6qbAzFLuqgClfaV/P5zNCiFgnmBjZ9ANF9tDlwG/fDTx7eqwSclYwziuwDKOMXTIl3bAq9TjKlJDZgawmyaY1UCiHFB9gd20c+oDFUlUDX3rzNv+jn/4qv/Crv87947VWFKeUEwm6QO0Gl3elYHbZk3aZmj4pNVfk1MzoW5RW1vUxWZg8oCxKmijyOdO8kxjJtjQMgbPTi/G6E5uiyXIxWQxgB6Ck7tBuhqRUVwvWeiYWpCk4rdebgtYluTBieMYEtZ0SXFKSESWhMiVflE0KVquOb/7O97j/8Blf+Mzn+OJn3uTN20cczhfMZ1fw1R6knuV6y4cPnvLtd97lBx99xPH5Cethm32swEjjMWaqyvMyJtmmd5H/bi69hNEPIacoxvc3ptqmRMOUtClzILNKMEkPGKfj6PyiZbbtR9nT0r83ru9BPeMHj59z+uKM+NkV3h/lpIKyKQmRvUXDYtbw5Hzg/GxDHAac64EVljmNh0VVAcqMl0Tl7ryJnB0vWZ5tOJhvCGyRULE9PWO7XZFsIiTDs5Ml3/1hZP/hCRbHEKDdJpXSHBKbVcf5uqMNgWHd01jPtUXNtf2Gw/2Gw70Zi8bTeEtVzzGDsN72fO/9Y56cbInGYgo7SBKGPtC5gHVAFHyWo4xBCCkR+SS4/SepfTKV9PIY4aXxcXmjNiYoy1mMrpU2Mx06Z5Qd0ll8BqlIkbkQTeEZA5X3VJlRcxgUVGOdy4wsOpitd/QxYlPKwGmVjRSxZdpyKdE3ZU13nuWT9z3mbC8lKyc7tjsPBSiKa+WragKn86esNZWxCRPYBEhFHqgAO6Y01XR7JSG6+5moj2EyY2e5fVuux64kqe5JrFMQ9cg1YXbTxTJuG8dnNmpGRnaTl2w7O3uynbOMm/cRSJR2OqhYZ1P2XnpkYaSRpAUFIkLX9fTDMEoLV5XDV07HQywMR4IYW95OZr+aGMGU1SSRkpv61trRPCpYXQsXysvLpL/Zj5RJUsnICKyTXGxjBPUXpACQzVgoQ3m+wswkFEQSInYsehj3E6aMKRnH2S4zXlmrd6edjgXJ+6gsC4vKZitAarpX6wpIrQCDMpDFOa5eu0aSyLOnT5CkMm+CftdXuh/pewX3x7x/iDFMY6PsqceFJu+rY9xZP0viNWV2scl/2F27x+ct+7383rxz2Y7o9wpDURljRWK5MKSOy2E+xpRROF6Xl3wnGf0Uiep3KXA8v44M6CKPX0HZhMbp4SySdpifjfqrBXg4FsTIVEhVfLrRVu08C8II5CtMWza/+4BRFlQSWM+Va1c5aDyrzTn7ck33lZWlbnQf2WUDNNmTPDdJHF25ytv37vD99++zDQEkElFJbxuTSmRajwlBmbFXS4Z+0CIhEzOTJEwRptwfImwvVjy+/4DNasnbX/w8jYN6bqkbw/7+gmHo+PjZCz673nC0WLBZddz/4AGpb0mp5eqNq3z0wcecLi/opWd5vuH5i1PaOHC4t2BYdRnoNuANIzPc6J/ZDIyNke02AFblRq3GBgqjcAF1TWOvzC7JBTs7PlMSPU+2iVORxI6R5tKP45pidj4v66NzbpRtslbn78x7leWK6dLJBLUXMkosZnmpH7F2FN99vLCIxkysyczrL9/kj2iSgRACziZmXvj0vRs8P71gvW0ZuXjKwCpX3PU/y7pZhrgpk3PqGLMzbqRMXvNSf5U5YnZ7EAT1wSyJNK4FaVzAx2CyUYAq5DlnputMvoHZOfOljy6dZ2Re233M8f4Zn8eM52ay7ZP3cem96RiTaejlDhAY9zhdN/Do2QtOzlccXTnkxtEhh/tzDhb7zOo9ErBpN7w4PuPp8SkXqzX90BHiUDgfc0f+iBsfH+5HfX65jUB2vbnc1TLddv7B/D7ja9x7A/KFxBCg6zNICShcYdJE0qc6qicaDxuGHl8NaLh8YoQyFprag0DXBsIQYRaBnvNbL8AGamcmEHRed6yFIfU8mj3j7vY2xvbEZIhtZL3ekIg4Z2iHwLPTJeerDd4qo7+kzKSISqJ2nRYetkMPYtifzbl6MGcxq2hqr36MtRjnILN0X1x0LDfDWGBTQOcxJUKMKmU8zi1dBGKOWbxqr9qr9qq9aq/aq/aqvWqv2v/ft//l7/6nbt5x/8v3+amv/9Qf+PT3v3Kf5H93FtOhHnjwpQd/qGv8JLcfG6QEZDrpyztBDbzlBGwSyFTRJEZZlbEG81LsWSvJmrrBV5UGM0TpbZ3VBEGpRCvBaMHgrONgfx9vhT4MeO8UpGEMzhoa56m8Z74/Z7luIfSspQVXs6gdXU5CpFiqzNMoizECinaCnGR67xEUMW78C0l2jk/IFBAnP99uMEI3gnEM/E5Vs4yAl9yj5GLMHMc2Y/B4CrTmK4x/M7k6OGUNcmFo+3F3X2RrjAxjhV5hTEoZkNK2HUIcE+0pap9bjWyOAbbybPreLycnSv+VYKwmA0oAYGK/GLulBEStmwIsOQiRUhyrb621WnWbJQdTSmw2W6qmyYl3y8HBgnrhOItLhiFXqaZEJuXBWIfDTIArSdR1BeJJybBetpk9xeCdH6X9BB3HdV0xBAX2KJuPAmgkadK5cpZZXeGsgs+UMcMRTAHFqZyQBtP1HcYhkgJ0WTZMEQ0CVFRVRZMqunbAGKcB7JTGSurC3GSMjImEYRiUrSu/JmUNUKCOy0nwMCQk9dSNG/vVJKGZ1Rhj2NtbEIaBEEJ+X47bt+7iG3j+4ilDO2CMYbVe42rLnpuzXq6pq57KV6xWK/ouJ/KMJk7FlIpdMsuXHxMPhfFAK3iV5QMhM6ckDXhFGSUMdpNVZdzVlaeZNVhnGIJKxUnMoJEMEolZPibEmNmSsk1JKu+i8gBpDNiU+TVWIqc8KfP8c9YxX8xUDi4oKExAE+iSgXBi8NYpSKXERct9DJYQ+jxHIOXq75wLo7B+ee/p+x5jDF3bYZxT9hsDknS+hn7QpKx1REnENOAGp1JF6zWfevsu6+WKD5+cc+vuWyprKI7r126y2Tyml4g1Dk+RlRRC0kDZm59+i9WLU374/JgYIilEVhfneGuxtUeicLTYY39eM6+E8+cf8+TZHZ48v6DbntOuzzBhpgMwGiSpvTh7/pjnH36bF88/4uZrt1huH9E/XfH93/o256fnXL+64OnjB/zL/+4X+Zk3P0tja/7ZL/0y3/2t32a1PuHG3UOGbuCHP3yA/U3h7deus10HLjbPuH73Htf2Z5ydvGDoW/aOrtA4Q4dQ+4q+7RmCUM1VBnEYEmEAXzkKk0OKan+QStkVitW32X6jCcqhH0A0qYWBqprR1HPWmxV90PnoawWs1ZXKpMSYQYzWkExJLGsCIBFzYmJqzju6TsG4N68e4YH22bGCifJIxqjMj7cO7z1daIk5QQcFPJoTe6IJZ+8c0cpol32l9ikSx89KcuPltWdcrSSRCISQuP/0mLb7bU6Xa2wSpsfICQVjxvE1JkEvnYsxaXwpqVHmjhRArEqW6tqXj93N+iiNSE5oJYwEXDJEV3yJnVOP0jcgI9uSGcFE1loiMkk/5Pux+dpTakLAJKXql4RJMj6QuRSw3znJzgOOia6ceTDFsdhZL6dkp75JBc9mWyVCCIZHz57x/OSEb7/zfW7euMLP/NTn+Qtf+So3TMPx6YZf+tff5LfffZfji1P6vlUWPQbGimfZqVLe6dIxiTPld/LnMg4QvVVd68r7S9mulpOoT5ETAtk/MQWAMbJv5mNFQdZDlv9cLlti3yuQU7sbSYmqgoMrC3iQOD9dEYY13g8o11JJ9kScg6Zy9F3g4mJL33VUsw6DJku9DVRWkzeCQZLRtSFGTp6d8863PmTzZMtWAtsOls83vDhdUzmDTZHjk3NIPdcOIwc5UbA38zgaUnScvthw8nxF6Ad6BqqbC167e40vvHmd60d7zGcNzleZPcMhQ0+7GXh+3KHEosqmFDM4cBgCzg6aCMUQrcVIzLINgT70/KQ385KffKmN86WACsp39LMyRcp8sMZSVZUCuA1agZKyFAY784fpXNYouBiKf24xJmWwCZnxTivSy4wXYzBOgU2F4U1ZrjLTQ5JLWL/LDAh639buJK6KBdq5v08m8szOZzAmWHf7zDCCA0piT/Jzl3n7yUTedI4R+FEmez5pYVUZZcjyuaKJ49dHgG6+jyFLZxc7klJ6aX/00uPln0sRwaXPJDO/2F0Jq8vdcemUY1dNzyGZGbHYtvLeykV0f+NyMYqhaWqVvR0YE8y6Bk6gIGczWCkVcI7N7JswBAXVGKNrsuLdMrRCEt74Uf7UYCefMfeRs5bGV9S1JQnK2oIllHXASL5+ykUvKbMVFuA84z0bpwD4JBaI4xikJHgLILfMkzyOUwYr63NMMq+6Bqc8IpNKaTuL8zb73ILk9bmqPMnJKHlkrKFpZtQzz/n5qTJNiTAMUfsIT9/2GgPwnr5XFkZjdM81vVIzSqRa55XhNPsGBWSnjEw1MIGcYoqjvFl5H/mhxrHjvdf9PjqX1e4yjmXZ6VthKk5Byp5cv1v8ujJXS0FCmXEKfp5A2WNRkCklUHn+RJP7W/+XUpoYdJLaEGWQ3pEKTmUd37UkyhQ7DIMC1mIBzWTTkfTdlTlmrNUBkiIklTVebbdgHd0ycuW8Ze5Lvziaeq7Pn3SuJTOBwco11m3L89NT+hjymFXQD0aLBmKMzOuK2WJOSj3b9RmPnjxlu1zSblu2F2ekbpOZaQ1xSLp/3y5ZnrwAafGNcHz8iOXqgnY78PjhM6wTagerk1N+8Nvv8Obrr/PR/fucnByzvLigmln8wwcsLza6zw8t+3sL+n6JsRWLWU27Vl7GWeVxAn3oaJqaNAS6fgCn9qPIkZuMKFWZKd20KTvbxH5krc0+l4zzfpQjNgZfV1w5PGK72bBut0jU/YDuY4vkfFDGqzzuJlalqSiuDPEYUwY4KiOTtcr+Ovld5P1B9tlRwGFKUd+XjOaCyVHNP2ZwaoxptOXW6B5nWtUm27Pr15cpXRy7KLAeDL/z7gO1z+M8mtolPp4d0Nboce/4ryPo6OW2Y/9eXkpH5HCx2wAkZR4TldeVYkN29iqCZMDt5T1DYThXZsNx5zb52WbnZ0D29ZckWlRlit8vE9BqtIU/yn/afUiZOlxt/Lgw5mcsnWvUduePUxK27Ya263hxcsqVgz2+8Om3suy75emTEz568oRNtyWlzJqNMKEUd/0Yme539+Xw0pvZ6cvRO8woZinfLYdK2VPsPt/uNcu40D4o63+aCSkkum7QOVvAVKJg283rS2p/NfvZPXNKAceuH5bZ60SU2agfMqM3RL9BGCjeZrEI5PV76Ad+0LzP3fs3sNYzAHEQ3eNEBVCnAezMMasa5ouauvYad8GAWIY+8uzZBcvlBlJCrKeeVRwczDjca6irKttwAygbbYqJ2YCCDaX0rdqLFBPJFgbQbDvQtSSmODLwv2qv2qv2qr1qr9qr9qq9an8K2h00HP7KhfujbQa48Xv83cKHX/2QL/3ql7DpDyb51s27331r90d0jZ/k9mODlMYA86XOMhjjx8TetO81KnczHgVKn18CbwZnPI1vODq8Qj2vwEFIyjxCVFpwW3mGPqBKZRpE1k2aggqsNzQmYa0m2VJK9KEjDUGrNzMzTWU8vq5xlWNmfQ6OKcBjiIHUqZRCCcs463JgQunnnTXUXqtk2xARlOjZOZVe6iTiTZE0y6mMIhV1qQ/tpd+0W8yUkC1SNJRqNWVlmMAZkkEsduxzDeyWKherQWNJY8JFgyYaMAgSxrBJASlhDSFFQoqaLMwBgBiHHLwqQbRdFo0S9NKAvBQ2mN0gTz5OUg6ECTk4vEOvb7SvJY8Pk4P6xhkiyvThnSXEQMwBeOeEqvbKQhUV1Oa9wXrDcrMlkoNi1mYZFKCyIJ7ZzDFrKvo2sFltcAmcqwhiqWroMuPWoqnYP1jQdoHkK1LsaSJIsAQxOFdpECEKyVsqD955DpsZN2819LFm2xqSbxhw4DzW9FQMeIEQB07OjklDpta3TgO1ogHB2vtMJG5yYFuBM9buBrpzgkgM0eQgVDSaOGJKpGjCOFP3O4srDEDG4GuPqx0SIjhLVdVYBFs7bBQkCN5aFosDrr52jb13vsP6+Iy+HxgiDOuBsM1Sa05Z0VKMNPUMP/Ocry70HmKiqjxuVpFCYL53wHq9Zgh5lEcFAjpx3Lv9Bpt2xdnylL6f5o9zXuMsGcEXM0PCbFFnySZhCPqcEkUlMtKUKdQ5KVniIMvIGUNVNfp7isTCnuEsJFA6/IhElcda7C30voeBIQiu68fkjQamc/DPaPDd5rhXiBEy6CtFQUxiHVqshfk8s3mJJnDiyASQkx1Gk1S1V1OdQk4gGJtlB8lShBocNNaoPENK9IIGsc6/jU1CszhiSNrn3lguLlYMo2SB1QBVVENonKcPkf/qH/1TrSqfNSQLQ6+MX8lVSONoV2fMbhxhG8sP3/se773/Lv/ov/untCfPWV1see/Xfpk78cs0zR7DtuX4+Zreet5/+hHnTx6xvjjlg0f3+cavf5vbd9/gd771DsfPH/Ppt2/SGPjg+z/kl/75L2OM8G+++atcnF+wXi9Z9secnlyw2vRcP9rnzvVrfO/4h4TUszev2Z/XGCNUDm5fvcrJiyVJEkdHh7x4/DwH7LQyvfK12ikEi1PGpUEYhpJo0oROsBrgN6KJ76ZpmM9ntBtlOakqw8/9/M/xqXtv8PVf+VWeHJ/Tr1ZY44huYD6fYX3FjSsLZpXn8bNTun5AYsJ5Zd9KwYAT0kZZBJxPVJUl9Lq+PT89gyj0mb1JA7e6Pnin7E0hMymMbDdjgiAD5IIGvCtfKatP0LGb8r8lIl/s/ctJysm+l/i+IUnF6RrO1qdAZphgJwHBlCgRCqg2J9VyEFSD0hPbQLmOhlhVTsnYAg7OIFnjxuuMbH1kUNFO8iMZGe91TCSKjGteSUIUAQdjsnzPyD6R12kpYfN8aslyQcbqeohhNQxcNZ6ZGLb5jDYJlCr0AhgrAGO0T8QIVorEkGS7lQPMxqqcl9IuMIKzlMIPkzR5IgZCDByfn3K+WXLt6ICvfvaz0BzQb1oePX7Gs5NT2rCB1GPF5sTJxExR7IHJHsvIlmIMyaj/ISK4vPYYoxKKYLEFGG00UW0xVOM72EnmZjlfYwxGEskoaN0KJKc2rpk1HNQzVqctIcGq3WK7Ac33BTCOFA0xOQ7mMypxnK3X9P2G2Xyd7z7mMRiJDLqu9cLFesNqtcbXnhQsQ7/k/MUJ2y6DtSVk6Z9AMInjF+e894P38dsetzdHTEMaBkxUwLRJ8IVrd/jaF9/g9mu32TvaG+eXSUIKcPLgnKdPLnjXQBuEZIRqBrM9z2JvTt3U4NT3JIC4mqpxzOoGKw5b3pFEYgr0IeBMBUalyEjKxND1PUMfaNufXLk3YCfbuWNXxqTSpawfXLJl5vIhea30tmIxX1A3FVgIKbBabpTpLoPdY+xH+wY6pp1xKgtkMrtojBn4oeuoAkQKQNVijfp7xhp8TjIXxrcQtAhCE5km++gleaz2wlg7gsZTitO+I/sxgZQlQDMM0mSfQNDzjs+u5/1EH76Uiy19eil5Zy59ZTzO5IReYaQtfsXo4O9K7JQT5MRsOcsuwHG8xA4A69IWcvxA94WFiXDn47GlFJmy5GZa38oJ8x6syGDZnPgvDDEFeJpIWdpI90/WZWBAAadbZd8skq1q3hWsVYA2gqP2jqapCEOk23bU1mtC3zjqBWy3WypjFKx4sMfFcourZpAGPJGeRKTiyF5F+qD+l3Ns3JIoA1aisiSKQ4wD65ShzzqsTXiTqKsKjHB2foZEg80SmUKEpPtU7/0I6HXj/qFkgCcQQ8rvF8yIPVXpT8Y9oL7Tnb1a/k+HgwJNJgna/LlTyWsFVVvqZoGfeXAOayIh6r40hkQalH0kmIgNOhbqusIAm7ZFd8dCXdfUs5p22+KrmoEeIiOQooyFoytX2LZb1tt1lrayYGXHzpThqYAR55UZTaVvROd2kWbbGbSjvOEuSGMEKJX+yntngCwVXPYKzluapqHr2gxWU+aVXRbHl2MuBQxZfNLR55Ed6T1jR5Cf8FLBBXkvgsFaT2FNsnkcFGBTYemdCpOMxhWA2EZCf4EXN46ZIou43mxIVwswyVC0a7PLAMBytWG92SpTnbOZpVOfJ4kCbrabNcxnbJcdQxf4+PETTIzEEFm+eMLxw5p5swcpsm17+mAYLCxXF2zOzlSe/Okxi/0D+mHgYnXO9Wt7LJqKs4uWpy+e4SvLs+PHdG1LF1qkc2zCQNcHKl9x5cohXbslxEhVNzS1G1915RxV41i2vY6THRCoz/t5k/vPklnlojBkFj/Jfu4Ixoe8VliM81gCUQRrhMPDBV/+8uf46P37xFPo244YBhIJl1mmD/aPuHvzOg8+fsJys9U9HCoBlTBYb+m2kb5rNW7mzAjMiDGxCtvLhXLZRbUWvC/FghOjaR5QGpcQmcaR2PL1ESw5qiv+HkHWss6UnzMyEsRoQc3412m9KVYoT7zRTuutqVzv7v2WeNOl3y99NgFEy7O9vLbuLDO6v9h1QqScSzJw5vLyaseby//IBFoZv/5Sr/CWAQ8hCZBonGFjGL93qVCy7Fv05DtPNHpLl34eAVTjQ5mdmzAjOHU6SAvGur4lDL2yrianLNUh5HivXtGNfkv+7tgRdvRBisRk6TaRIiuZ9z2SvzvugdQHEmNVjjTfW4E/ju+igLEMCBZXKBpNwjrHYj5H9gPxltrSPgTSzvkAYoSwH9izjm2IdH0PMoDp0CCUFjOF2BOGHokQ+sBm09J4RxLL6fEFLxYvWK42uUgjZftaGIuEjV/jfWIx9xhbEaNBusgp0IVE3Xhu3zjk6tUrVPNai+vGPZQQu8R6PWDdUtesqN4aJuWYscnsz7mDpezR7Lg2ldeURMeZCRpzjlLWQPWHY/aDX7VX7VX7CWt5Wjoc98K9S/b+iXtCb/4tipV+j3X6VXvVXrVX7VX7U9j+KrAAln/SN/JnrH0K+Jnf+5DlteVLbL9/9O1/iGv8SbUfn0lp3Lzn8ICZgsRTLlB3PGkHoKR7SN2yj1V9ooGEpplx/cYNFodzEolVt2K16gjdoBGSMQhiQBxgqXzDlcOr+MYjXlNP/bZlu9kSQyJ2gwZCZwuaRcN6syVuWq5cuYKv/SjPJBKQFDk7v0CSVrwYYzT42dTKJhMjOJWRq7zHeUvcbBTAgKOuGoILVCHiJWK9QaJhGKsyS9VT8f1Kn5WE6U5iocQ7pWzwM0CF8hljtV2pdLG2hIwls0DkZGu+P03EohWou4kGwxjI1Di0bnpNqTTOVeGlSkmDTpcngAYWSpB0et7puRMhTIGvcjzGXPKDRVQSTY+x+MrhKs8w9AqkcpqADxmQ4VxmixGZEr8WVqt1lq5zVM5mZi7HbNYQUsSaioW3XD08pJsrcO3qfIFvZpjDffZuXuHB+/e5e2XOFz/zGofXr/Fr/+Z73H39cxztG+ay4dHDM06WLdfu3CBtLqjncx6erRi2G+rY0njDetPTp8SQPMvzczCa/JrPPeIjiyuHXLl5RPeDFpdqxETaPuLmFd1yjQ2BZr6gcU6T3lXQxG0O3gQCbehI4jPkwOFThZOIISFiSHil+7c2T1mVEjBYUhTty0GoktWcqAApEDLwB2vxriI5w3x+hTc+89M8Ov6I1XKDijwIlbOEoBTXxmowdG+xzzC0XLmyTxgGZKXjcHEw49rRdT7z+U/xW7/1bZyz3Lh5jdVqTde2DEMcqbKdV4Dd0EVCHwnB5kIwrUquapVRijFR1RXGoRVsUYP/ISjoI+4E5601eK9MUWIMUQTn/Tjmk9HEhvM1LgfblIEpYKyCqHxVMZs1dF0HAiEm2rbHoAw0WhGbq9HLPIqJYehzMHFifppkJ/TeDQqSsliV0sBgHfRdgL7HO0/lG/q+J4aUpfIUtOmcJjfBsNls8pzKIUgxmMGwjR1NVXE4r8EaqqYhpZbz9YXSgEchRAVnOUOe90arWbc91hl8ZnoiCc4qQ0roPccvXpBCQLB0mw4IuNpjYkSC4fGD73N/AU01Y9Mv+fjpkvnRXaJJnC7PuH//IZu2w9QVbRp4+vwBdui4spixN2949vSCD+5/n8pGajtQ28BZGhiSp+02RIE33n4NX1UcH58DkYM9x2IO1ihw8/a1K5zdusbzjx7x+OkJKWhyb1Y55rUnirBpLW2nbCu3bl7n+dPnLNcdkgOrNttjgwO0Wr0bEjG1ZB51vLV87vWr3Ll1ndRatcOVZb3dEt2AqSxf+ukv87/9O/8+Lx484//+//ov6boTogw0dcWnXnsNqStuXL3Gv/7Gb3N2fkKV156u1WrzGBOhj2NSTMr7FpjVDSFEur7TtcJeCquPsomCBlVjSCNrH5gchNRA6q40SanehZdkfXJSbgxqZ99ALq0HZgewRD6HwnBFhMo6gsSJdemltaQsHsYYfJYALUuZEZUUNJi8xk3XKIwgpiQxppMBJifndJ2d1raSNFLGgSK9U54jH6EJjAwuLgXBkgQJCYmG07ML3nj7BjevL+gvemJURi4xBkecUh9jH5qp4lUUOGyzzqjNlckmg4aKDQMH1iIm4mQM1Y+20ovLkqMdJxfP8QlO1i144eBgTh0NRpqcHJOpi0Qrt621I0NEqcov7wJrcElwGJIFTMJJSdqCSVFlybAkKow4rI05zVmSXTmhYMqK4pR5ThL4RGXh6rUjrETOLy6Ig7BtB2wfkORKHgLCwLANsFAZ3vOLFcuLM/ZmLzCskeiJnWHbtXz48AEvzs+Jfcfpw1O+880fsL+YMcSKkBzD+YZ222LSoO8zRiASYsJXhs9+4XV+7qc/TTPfQ5hz9nzLyfMVH3z8nETg4GjG3devc+PeNUzTAHW+yQQJ5hvB781ILkuyhcQQ1E8KAZxLWDJAvtcEYj/EzH2SgEjlK2J0XKyFEDoq0yFJFDQcoiaNUiREoe9/gjctL/mBpZXtwjjjMugwO6H58x0w5XRCnHdUTT0ycYaYGeGsyWwEITPo6PHKLOJpmkblqoxePIbIMChDXgxRbet8hqscbdeT+p7ZvBllqkrSKKXEZr1GJOQ7Ura6whAiOTFpjaOuHFVds91ulHlC1OaodF/CScI6lQsNaTeJm/+/dJSMjz8lLk2xW/qHCctTNCV3+27y2cfE5M7nU7bVTilGYXxuZUTLgAkyo+54imznR2aQl9/Z5fe3e1/mEx/nPQo7hmqnSU4OJy4zaFhrM2NNZuUtj5+KTF0G6eQEc7HpQ8gsOCYXBhiDMY6qqghRJU5NBvC4ytOIoba657Kuppo31FJxZBuut4fEFghnfPGtn+L23iFfHN6iPxXarfCpvU9TIcwXCx6/OOVJ/BiqntmsYrXtiGIRV3NxsUai+ouLxZwYB86aU1ZX1yzNGReHS1as6PtIPZ+xWa+wKVHP5wgDm7bFiBYe2Dyv+hToQyJFR3+ODLQAAQAASURBVAGAWVFAbGGNKvLsiIxSOwUcXIA8ZElUzLRmRsogNFTegzEs5nvcuH2Px88eMnRBLb+1xCytCVqQIAh1VRFCoK79yOJgjRYm1FXD7ds3+fjjxwjCweEB2+1W9yQhEKOCvFerCwUBDTICj5Q9JuVr5fUnS04rcCNSSJBSBk/v7l0vA4nKxJsS7gUCUIZ7YR2eYAPkvkujDRpl13J/GFs8mAk7MLIxF5nnMpZHAKConHh2xkyOoah/ps9oMlizFGokSRprSdN+sdiCGIfJNxqnmyj7k3GTJLU1WJ/B0s4qyL+cL9vu4hsi5GIQIUZ9Rpf3+ClG+hg5jyp7FGPEG4OtrI4RBvpuzXZ1gekDQxw432yJUtPs7SNJaENktWl1vawcbdvqnjCB9xXGCOvlGcs9ZY7dO1zwuNvim5pEQLrI3sEhi70ZpyenxJRYeENTW5xT+9bUNYeHe7xYr2nbDlC5cecMs0olZqMYtq32X9M4nPWcn6/IJEMTGKzst/J46vshq0oL3joO5zNmjWe77YldwnqPAEPoSAKLwwN+9i/8Ba7vHXBx8a9ZbZ5ooY2Fw8NDMHDt2lWePHrBca97FW8boqKaMxB3x2aOA25ixJQyGezO6B0BVpMdLizCly30NOZHFtSydo3HTeuYZHs77pF3L5HvbfpMSjgrSxMqeFGSMKSJvVi/+5K3YYq8YilE0Qvore18US4/TbmN8n+7f90tithZBJkMQ96D5euP4KxxUTU7hFBlk2Po+oH1EDg4OiBVeW3Kdtns9N3us5m8X33Zb5gkVadxqI9pwDhUum4qcrP5nRjAiqWqHZtuy/HFKUY8yQoHh3vMUo1I3GFsnPp7d++oIYQ09l3udizqYTBebwdIKmkEdU2WFS7RVV56OwayDK/umfS/2mnMbPn6WuUTojAYtbsp9w2SiMNAN0SiiQxDYLVcs9ecY+0WxJAGo593LS/OLggpYDvh5NkZ3cUGW1W8uPdC4yGScDuMcmXDLQh7h3Nu3rvKrJ6DeGJy9G2ierGkRYHurnL4xqt9NTsgJcCmhKs8WKs8uCLKyp3UxjqrRThFwp0EURIhS7Abo4VNGEfbJWLocbbXMZWnRMqscEl2AIev2qv2qv3xtwhsdn5/Afym/mi/aPkLb/8FrqQr/Lvrf5er6SqNNHy1/epoRwG+03yHlV39WJd7p36H32l+Z/zemTv7xDGJxNZsX7K5r9qr9qq9aq/aT2yzKJPSq/ZH2/42cPh7HyJWECt/IBarZBOrqz/e+v1ntf3YICVrrWpbU4IaOQQhSjntnMfaEpASMDlgYRjBMgXcVKo8jNeU3ZOnz+hCTzu0bNqWynnarqdtNwwhIakkQtUzCiGQTCINURVCRPDe471lsA6TYD5vsJXXweHAV5bZTANIxjgER9/1xLNAkqABfGOyxJgGMOrKERLUrubGtSPe/PRbvPfue1ycnWulS+W5Ml+w3m7xYWBv3tCGwPFqM1YwWsz4Pyl09aWPMKOsWO0dkHDGMwRNTLks7VSCGlPGYEogX04Ws1MRZ3DGEolj8tMY8NbhnFK+J7LUTT6XzYGTWBINJdgyJqvL7zIGo3bjI7uJ7RLAsmNAVQop06WkcFbTunQPiOCyBFyUxDCorJXLSeWUElVVq4RXjIS8cU8xkYgKGnEe52uYzbU6V2BIiYuuReqa+uiQbQBSxLQr1s865ntX8Id7vFhHPnp2n7YPPH/+MXU4IPUttu2Zp4RPkYOrh9y8dYt2+yESIzePrvKpz9zh/vMzNm3k6M3P8OD+C04+epfGN3zta1/jw/vv03cDR9Hz1Tfe4is/+1Wen77g6YNjjm7d5tnzR9y8doT4mvb4jI+fPaW/dYOj/QNu37xO17ccb094+PgZx49avOlRuSVP5WYaaHcK+hpiou+DMoggeG/x1jP0WrnvakMILX0fsWRWMLSKzAF7ixnW19y98xpvfuoNvvX93yDl5HDdNKw3LTGCd3B0NKfrB/puQ0qRKtPDgzCrZtx57Q7dtmXWVBxdvcZms1bGl9ATUxzlFDabnvsffQTWqcSDBWsSVdNgvI6fIlOACCEOMChtvUrCKbBo19aQ504BZ5QKUklqMwqA0hqVqogpYIDKe4xxCmZwnhACFxfLUXauSMMZwKhaTE545JEdI2EIpJRwzmVpDksYgX2AGPpuGOdalbzaOWuofUWMgdlspsE5SXRdm+URzSjFEYOyQ+lj6nMqmMbmYOCYOszzC/qhp+s6+pQwzmCTIQWdNyJGJS5KRXr+b0BZCGa+opk1hJQIXUswlnO7pK48FYmmstR7MwBOnx5z8eI5w1t3MMOKp6cnfPRsyVF0zA8PmB9eZXYjsDw5xtdw3q8536yoY+T+0xNoKqzruP/h9zk6POCrX/tpnr94zMVv/4C3Pv8ZTk+OcQbe/vybbI6POVu12cZpNaAlERM0ixlH14/w9x8S+w5rLE3j2ascd65f4fjinK5VE1QC/AcHMzbbDkngvMfXXu2XCdgKnLWaULZqcw/3G37+536WL3/5q3z7nYdE77l67Srz/Td4+NF9lqtTuhZe+/xP83P/k3+P+7/zQ67941/i5OwMYx11PefqjVsYC9vlcgSKhq7Pzo2OOZUOLLJEapUlZ1/bVu2B5qYkj9HMyzPa3WKT3ZgcH5NhI0AoJ28z852uL1PF9I+SHI1R76kkEwtoaTp+ClR7r4xri8WC69du8PTpU6IEPWJMhMjOtRU46az6EiGEDBKaQL+lGn9MCpTPDZlFxZCiGZOJmpzYqXAu84eJlaCsW7Lz92ltY+w7C5n9CEQMj56ds793zKfffo035A4EIRmjvgiMjB3KeGEwzlFZj7MGISozWjQkowDClG2ZE13TkySiVWkQIwGRQDLgcdoHVrBB+R79zPL+/Yc8cscQDbdu7rN/1BDTQEp97q/ilHApWWrcxMJXnrs8ugVcTqok0ar/4heQ5diSKWkfUCm8nGQw5PGkz2/FksQjBISobHBJaLcDj86OWa17GALBqO8XUmLIiTwXOz5+9AwfEoMETl5c8Ovf+B2uX31AZTwkT+gM2yHwfNlzutkSTCT0ge2248rBPteuXWE+n5O6yPvvPcb90E8+bA7QhzhwcGPB4u5NrN0D5uyZLYv9A6xzhDSwHRJ9TuQbWxL6FiOGzDmBdZX2XlJZ2BCErot0rUpA2gCCxfTKcNn2IcvMCpXXpO9y3TL0A4umYl4ZGgeVUf+8sgY8JLH0/ieX29fmJK0R8lpTmAs0Qa/sL4AprJ+BMTJqpjk+rfHk9T3Sh4EkiRCVUVV9Bsl2Qw8ua26SRD8MmQmsZEpFgeFM9i1FZSgt59B/0wjKEPT8Q1SZs3FOwcjo6DKjqHeOeTPj8OoVTk+gbVtiUn+/qhz90OOSoa48QwqELk0Tr6ToCnDE7CQE8x7BYqmcJiid9ZnpQNdvSROfUlncR6BF7pOX4WO7v2ulvhmlZ6zVZGiIcbyvPDXHdGKRw/5dm0ysCp/cVLx07LjmZXtT7k2zxNPxUyZ5So7np40hjX5SWSoKkKwAUJMU9hz1OxXc4QgYxKl9iALd8wgXFfbDmi6BaYEPA61JWFNxDqw2S2Ic8HuOL/+dn+b1a3ewQ08TI/vGEOgRa5Bhg+sSr4Xb7C0aDqs5q9CTxHBw4ybtYeTk8SMq67l75x4vjp/Tdz3+mcF64eDqFS7aCzbdhjrNibOB/b0F69jxve23WZotj68/Y2h6uJLozUAfO1brDacvVjRe99KbbsBah0pUO4bQE0JS1sc8ZirvVF44Rl0fnNnxr6exmDL4KIlgbMX+/lVm85rtZp3jAlGBz0PK67HgvSZZ+7bNQJdpf+udZzabM/Q96/WKqlY53sJwOvkbhphgu9VzWJcBNCkp25NRKdDi02Ayi6nsMCjt+L9lnF4GNTMyySAySq2VIakJ3jTOE8lsSgUsOAzDmFieJA4nG1TASAXQPUomQgYhQNz1xZhiAAWQQF5vR9tTVeOcSBLHPXtKumcRGMFa03nNFNdB3229rXCtg7mCi7quo6WbwCXjxj7POtn1m7J/lW2FMy7Lbcdsa7U4rHLKFeeMgv+M9AydMgnRDHTDlnW7JaQBO6to9hquVrfw6w3bdg3W0sfAECMn5xf4usHVQtdveP4Crly9xrVbV3l2dkazWBBih6CgwyFF1m2XQTyRzXYzAk37EGiHgLMOmwYw4GtH4x1X9hYMceD0Yj1iPfo+sDdvlMkvs1X5yudxkjBO2Zkk7yFjUMmoN956jTfffIvleoCm5uBoH+s9m82WeBFJQei7hK/3GKiZzecaT8oxpSBw8/oN1qslm22b9wFC13X5zai93H2vo+2UXCCY188yZnb94fJejUELItI0XV424y8XN+QBNR6oq9AOAKXEDQugIi/wBdSz+5mymumX6rrOEpLj4B3vHZiuTVkXpjDXOPXGD0x5yvK4ZfIpC1jSdX7keZqm/s6lZdxv7DJGlYtN62P+ZEe2jgPgDYgfCi+Oz+Fgj8PFooQs8n5Cdr47ndVkxseRVUnIjOe6bzJGbX0BNKZ8nM1+WLFbJrM1FlsiwPnpkouz9VRoYrRwqYyv4l+VPeA01qJuT/INyU4f61uOl8aN7hEmX0/KHeRXaHJ/Sd5nGIFkTAaL5bW9AJkEtqmnr3vin0sICZvSKFMbx/EUWa+3fLR+jJ0vcOs5x8/PCdueuq7znisDBZOyFyWT8JVnPp9xdLRPczDj5CvPaPZuYI3l/pOT/JxjRZAyZqaIqSvEzTBUWDH4LNEmQIgwjLF29XfGcV+YH3P/mNxHRRowhKhSxQ5lMMw4w5BSZu4re/mESNQYe+WxlYItq0r3mrtMfnFco161V+1V+yNrgpqG94B3gV/Kn58A/5TJIG6B5/rj/pv7/Kf/z/+Uz77x2d/z1D/X/tyPfRt/ffPX8+0Ix+6YznSfOGZjNvzy4peJJvL1+dd57p/zwD+gNe10kPnE1/7o20vr+6v2p7cdHB8wX87H35NJ9PN/C/avV+1Ve9V+73YX+HeAf/wnfSN/htpN4H/H7wv+urhxwYvXX3Dngzv/1peIPvL4s4//QLf3Z6X9+CClDOBBsjRLbgb9fG9vj6rSDe12uyWsNmNyTZiqa42xmY1FK6/W6zVdDJrCEasSSRngMMWhS0IrKaiBxHw2UyBEEqKx2NozxES0CWssQ4A+dLR9IibHejvQdj3kav4YA+vNhs2mxYgGiJTGf2LtCSHqJtlC1w/cf/iI5WbDAARv8AhdGOiko/YVCvDpx8AA4zPn5KjkjX8JwIh+5q1l0cxxDirfsN5s6EOP9coyEWIJsJSTmkvBpRJ4MRgFHRSGJYljFZHI9A4nmmU7BpfGyqtyTnaTGROAaaKAn57tZZalqU0JUJEpeLzLMFUSlQYymMMhRgEk1mlgNXVasewrBY0Y53BVRdhucUartVOCIDmB2ydspYF0CYKbLRAJdGHQaiADs0VDHwWMVpLa5LDOcP+848HFQIgbQhholkvOVj324gQk4uoa0zZsWseTZycsz5ekQaj2Znz7/Uecr3uODq5T+Zo37t1l9egpTb3Hi5MNm21idb7m9NFTFodzvvODD+i3a9qnS8Jm4MbtfUy35uL5CcenZ2yHwJUrN+ijcBENi2v3uBUPuXPvTZ6+seZzb99gOD3jW999nySOvfk+d167yfn6jNPTJWcXW2xVsVmfsb9ocAgSAkMf6BHq+VwDljkQ0nUdbQrEaGi3HYtmn7tvfoVkEqvTp9Q2Qo6t1t5hoiAxcHGm4B1JwnwxxxmPI+KtwyIcH58QQs9v/ea3WLeJoW8ZQkcIQ/4eeFfTzGqGkLAefC3szxb0fct8b8G2HcYK6WFQpgKJMUs8KNsRKEuBIAo2KpV7KWWmIyENyrCgMbMcIK6rcXyW72iw3o5zRXaCPyEHtky2GSoVErC2GmUgJAd2vfcZmOFpg276FEhi8JmlLcaEr2q1OVnuwohkiTe1Zykp0CxmyvBiHzFkSZqoMhLW5WeZAsLWWZz3WAwEDcytVsoaonGzlINuvUrdGUOupSdJxBilSVcwWURCxBthvqho+0i72tAczBCbOF+B22YivCHw9MUxZ/2G2EdOVhvO1mtaechnbn6G+c2GL95+m4OHng8/esD5smPdD/RDz7PTF1QLg6sCDx8/4snxPvu33+LiYsX5ecsP3n3AtksMwfDt775LXG9Y9T3NrOLkbMlZ6uljIkrg8ck56z4yq2Zs2yV17Xj7tbvcubLH3sGc8+9tWa+XiNNK0pPjFXVdIbYmScI5g29U4tGYyKz2WgVuLGFQwMzB4QGf+vKX+M47D/ng4SOuvHZEZSvOzpb4qsJ7T992fPtXvsF/ff2/4LvfeY/zswuss1TRstluuQgdb7/2Gr/+4UO6qPJYXYgkBmwONk4SoiUKTA59J8ToWDY2QRJSKMn/bIspgXn9riYOShS5BPphNmvACO22z8c7YgrjeHo5SWetYbaY5+tlycUcNX95bSiVywmhbbc8e/6Mfhh0juV1KoSgoBfnM3hSzxNCwFeWKoMtRRLO+Sn8G/mRa5FzDu8cfQojm1SeZOw8/nh/Zb6PyAcDsUiTmbK2luSdIWu+5e8lTD/w/rvvcfLoY/xsRiUVkiKYOGVEFAGRQ+gGhwWTFHWPAg2M8Thp8hKaxuB0IBBJVClhlNZRWZqSQmEcRtnh8JTK3ajaa1m6RhMckhHQQk4yYcb3N7FoTcnPEbRmQRhwJlHZUuGrRw3RkUKEpJJpxoKpHLW3+GQJSdkvHQnnamIBUIsliYJxXJZT6CWOtsk7BWURewWLiEIv2z7w8cPnzI0nDAnbCQbP4eE+hwf71M0cb+ZYY3n2+JxnD56znDvefusOP/PnP8/N27eoZnsYVzFsE3dfu8/MN+r/mFLx7di2ifO1shc4ajAVzvW4DMBPCYYh0XU9qR+w3kIem5IE0ycIQBRM0v9EEiFF+hDYdl2WD8uJ6MHQxUQbEl0fabvI2fmKWWM4utpwuL/H9cM5R4s588rRVBXe+ZxcUz95GH5yQUplju1O15LEM9gMCslAh1ECNX/3pTle/pJE+3+Umk45qZVAwUTFq5VL8905y2wxU4BeAafkhE9AwVHWV0QSYlLGQrosVZRTYSnStsp0qFX8hQkg++ZWk++CgiG6EHh+fELXdVjntJhAhBgGhhRocPRRZZh308IFCFR+GdO6JvvauR+1cKTIeoCRkO2NSkuN0FQjOalXkrcv7Sl2wD4py5xeBrNmBp7yneLbG3Pp2PGed16YYTr25TEw9t8n3vR031weFvo+Yfyesxaf1w8FqiiTaAw91pDlptJYSFFYB0ZAkzGjvbSoT5daqE4a5IeJ9EGAFw4SWeo4TSzCRrCmJxkDOMRE5HTg+emKg0WLaTc5ue8IG8GaCiNbhq5DMAzWcrbtGBLM6jnD6QUShG6A6C33Hz0jxp6h74lDRzNr6B6sNHG5tqQmcXj1kOFFC9vIZ+WLtDHxpZWj63v+5Xu/wpPHD5ChxV8zHHz2KlePFvTLFfHFGWBo6obF/px+6BmGQIiCqyratMa8DVSRua/xySOZobMwVA30bPot27ZTcE40fDp9hr/p/lfcX79LbFfUTtDstsHZitAHkiSGPoy2oXYWZ5zKWxlLioGL8wtEEu22JUnZW2bWNNHh6K1VH04K+xDUdcMQeqrK0w+6lwB2fIIp6Zt2ErLFVo3jZKdAiLzvAZVTt1Ylu8v+tjBfvOQFjaCCIhdWWpkzIuDMBFTSqZUZUvK+JKSQ54sWLtgMXE65AEMEYix9qWM7xkBhY3bWZpAVk300+bmyfzOypOXjbL7OIixoYqMMJwk6ek6vnun7z4+TYgYl5PstcQiMJuOdtVpUkiLWGupG73mzVd+9qixtTJhOC60cwia1fPz8mMVqi8XQx8RyvdRinDoDXF2i3SqjWLttKQVSs5nDbQxDSpxdLEl2xrbt2W4GNt0JknpSNCyXW1KIbLpe8cRJGZKHqCanDwPbrqeqa/ptiyRhb95w6+iQqvK8OD0nxgLehjgk1tKj0UyV5U2S8Dm+oaxmWnxTimis8fRRePDwGev1ligD9d6CGKLGSbxGRtfnp3zr3/wrsDUnL052xlBiuVlTr2u26w1DpnCSpPflsyzjMLJYv2RE80tUlmBQeexdf35cdXdAJbvMQJMdttbonOuHaT8iOgsKW7dOvencznusMYQgIxH4jzq3zsNEUaJardfjMWXWJUmkpGtT2U/o5yoI7JzToseoYFbnXZa5mqhj1B/cWYdNnnljf+i/hRHrpQnPCF7M41/7YOezS72aP7TAHcF9KEjf8eIk789R6d8CetldPV9+O0UC2gkYa2lslf31BJkpKyT1M6wkjJFcOOmyLc3gepMyyFOvsX+wnwH36t8ul0v6oadAnjGTnZwAX7rvLNHKAmBSPylhbaJ2CgY2GSCTIrSDxhwEjQu7ytHUHm8sMUCfAs6Ct5lVSGQcrxHlQnaonL37WwZ3y4BYjFhsYQkr70922IOM4ETY21tw6/ZVZos51nqcqTHGEoeAdE84vTAsFg03bx1xeGUfaSqqvT3SfGC+3zOrPK68m7KHFLhwW5bzFTf6vfHtTcxYJhcyROIQ8F4roor/KlF0v5vGwT6O9ShFUm7HdxSTgVHKAh5TYeSKCpqfOfbnFfO6psr75cJ8VUC4cWc+vGqv2qv2h2gCXAC/AfwT4BvAb6PMST+GSvvywZKn95/+viClP0gzGG7EG7/r3z93/jkE4T8++49Zb9f8J//lf8I//Of/UP/4GvC3/i0udoBKEV2Fmpq5zD9xyNZs6e0EWvHi+Yvbv8jfXv1t/vMr/znfqb/ziX3gq/anp+2f7TNbz8bfh9nAx1/8+E/wjl61V+3PWPOoLNn/l5GA9Cehee957bXXaJoGUF/z0aNHrNfrP+E7+32aBf7PwOd//0OTS8Q/5oLh5fUlJ/dOuPng5h/rdf4k2o8NUoopIX0/glUuJfpSYrPZjAGuEdwDjFU7tgQ4Ilqdk+iGjtPzU0JSWR5JAZFIDGBIuiUzWtVKLuiIOZFQz2Z0KTLEiERlY3FesCHicCz2F8ysBoPa2DKfzalqh0Ernfu+VWaUWBgYdHPsvM/BfUPf94jAYBJm3jAYiN5x6+5dnjx7TuUqmr2KzWnAmJqhgiHqxr8kM5UFIlf7JA3cm3EDX1IMloRWjwdRCt/GasB7yExIU9IgBy3RLWvpF5Pv33oNXpSkrnOM1a7WOa00C4MG460CGOKgVTdVVemmOMYRbDEmxXMCQq9frNzEbqWH/IikQgY/JZNyjGInDJMTtSXw2VQ1e3szTbY3M2aLhuVyzXbV03hP09S03UDlK4a+wyI0dYWvapJ19EED10YsLnkcDmsc165cxbrE2fmSqp4xn9XsHe5zcr7SvqBi6IWmaRlMpB208jYESxKI/Sl2dYIzFa7ruXh/ja+P8FYY2gsEz8n7T0lR6C3Ufk314cfYIHTbjrqZ8/DZIwyBvu/Z9hv26Fl/CJUY2tUGK5H61h4vHj7l/HSLNA1LU/PsbK2hqE1H446J2xXOwWz/Cic//Ijts+esz1SGbdN3XHQrhhBw1rA/r3GVx7JH225JQ8BFBdccXjmk2Z9jr2j1srWw3W548viEYXB4D0d7+4Sh5dvf/DqyfMFhDZgaxHL14IBu2+MqS993bDYdQzvQOM+8qhm6jsoYjI1sVxd07cCKNRhLUzskREIoTC4Gb6CpPIICNlxtaQ6P2G5PabeRbtvRD8M4JkswXCRLecQio1Sq40UrctGFEDL7QZIxEZBS0kD5EEiCju0cVNcqcWVjoAAXUgYroKAEI4xJENCAkcvAIjCjlES5vs3Vl8Yq4M47S+W1orvOQJZ1SoQwqKRhhBR6DaxmIKH3PldUp5H1LeT5i9UgrD62Jl+d02RNXdfU9Ywi89CHlGOkO2AMq3deVxUmRUQsMerv1jntqz5iSewvZuzvz3ny5AUpCOfnAyEFBgzOLqmqGY0kvvvhIx7+17/E7WvXuHfnFidnLRcPTnjn/Y+xC8+1g33W5xc8ePSEzXpN2/bcubrHW6/f4PhkgzcNW9kiknjy8DHPHj7QyuB+gwwRi2e1annx5BlDCuz5Of1gGPpEFEuUyNPnT+mpqJuazdpirPDm7SPevHGV0/WGg/0DnFsR83tbrwZWpiXmwHZIgRAGqsoRhqSJxRCQEHDWUruK8/OeX/qlf01Dw7OzpxzcvcvNW3eYHR6xmO/x3nvvUNUzzk4f8/zRD/ngg3dYdyusBWcMMcL33vkh733/h7SbQRnEjCOKMJtVzOqas4stSMzJ4SlhljKLkK9qDo8OSKkj9AP9VkEVY6JsDIYLVa1JwQJmmzjACnggjeu3Vl7uglPNZO9l53dn8N4RQhwDmp9cExT8m0RIBoa4vRzQz6dMGSRgZSL4D1FZopx3OC+kqNIodVUxdD3DyLaS2c7GJMDENjaBcJkSI7v58+xv2Ay+ugwEnirJDZrUxigwSARMiti+w6aIWOGi74isMeIyEED/Kywyej/khKAgRghO8AhX5wu+/PkvcvvKdUxlEGOJqeLho2O+/+EHrDcrahe4ee8Kdw4OMa7i4uxcK2+HyOfevgriee/BGc9Ol7RDR0gGMgudZACIAepa5YOsnRjixnFSVXhrlPUhZDlVY/FV4o17h7x99zaL+R7WN0gfeeedB3z3/Ud0XYvQc3Cl4Ws/9VnevHmDsIJ33vuYwUZev3WNpmkIydC1G7brDacXPckZ9htPU3ucEypXIcnSLltenK/p1h1OBC8JKxZvPPdu3eRTd+9xfvIue3s1X/zSW3z6c6/j/AHYfYzMQITKPuVo7x0eryoOru1x7e5V3MEBiRlOakwd2D9cMGs0QRZFE0LOqjTN6UVPjIGqyomNGLIcmNP0Y8pA2u2AtxWmUn+XFJEhs/zESDRFQkk/C1EYQqLtegXdGUgDdDHRDYm2L8xhauPntePqQc3NoxlHi/lo3y1ulG5NSX6iQUrk+T2CbKb8IyKJoVcJ5rKWT7arMHjKNIkBMnNSbEMev2rzTK4+p7CLmMs2QEQUJNkqYDDlhEy5YIoxS30qE2kyQsj2cmQwhMw+mudWBt6oj10S9CqfagCxBuO9ggpSYu/ggNVyxayuaeYV5+crZtbja8Om3WLCbvJPz4sxCrIumJ2pJ/K1XWZCkyy/qtJVMRdKTK3sISZA0gh1MgUopu+kMGUgKQMn7bT+GKY9QgEplYRhjOM1kshEgJQ/K8/2+8aZzXSZMe85PjMlB6o+nFH/q/KauHTeUdWVMoq0A97pZyGAs04BHwaqzAoszhJiGYcGkyzuNxzmm5a6q7AJ2s7gfcW8qfGN52LTatGEdYQ+UtUKrtl2AyaPrR/88F3euH0HmwSXC3babQ9ZaldxL0JYtepvmsi27bDLM+3/zOypY1T3dUESfRvp4qDJ2KSgnbCE7WpNHBLiPbGqePeD+/zar32Tp8+eqK2Pyl5j/3XFCSti3yFDwiJsbeTcbhEyAMYYYFCp33nkrb/6On/+ra9xM1zPbKcqvQ3CafWCD/wHfGA+4mq6wafip/i8fIFrT65z9bll1T3gW/ZbrFAq69p7mqqiytJuXTcQM1tNXSnY1luVA48p0bZJgSnG0NSVAkiGUNRSdYwkBdhLBGs8lZ8TBui6kPfEO2vdCJ7YASzlVmAAZS+8yw6sALj84szEugaMe2ib2aBSYZ0yjOxSE5iJ8ZwldT8ytebT2wwktjYzMlk7+mnOTTJuBdXhnM/sPxk8FzPooMjAlzmZBJik4NJEbzzt1025tgLysgAUYHSvkuQTE7jIx1nn1BpnVk9EgV0p21RrDXVVUdeebdvinO7xNm3IDCc9xjoq60gJPn56TlNvuXq4TzKGbRdYPn5BssJiPseK0G4G2rZnGDq8NezvHSpoNXnEBLBCksBm3TEMPWnoM/ha3/t6u2WIgSrLq/VhkhDvhwHb97ofq2r6oaf2noP5DAxcvXLAct0TNi3ljF03sMtrm1ICcQqesUZjUEn7wlc1MUaePztmb94S4kB0lvneIc3c0cz3iJkdL8aeG7evc3GxYSCUkAuIJQ3C08cvdB6IZVZXbNsB5y2zpqJrQwZ+sPOuy5qr46yqa6yFMPQ7e+yyupaBq3vRlATzkv9ItntazEEe10wAnbKHGGNiZU9dWMMKDG/HQXh5oXjJd2D83riSvbRwTOuFgowyyM+RAWK6bpMU4DOuV8mM/eurikAgFZBX3rh8ApSbf98lSBrvdly3helCxd6ory5/sUeOImYQJDMkyxriDxj7DTSOV1iRRuDKGmSp/Vxbx9uffpu37txTmUZrSMlycdHyg/c/4DicIAeBfTPnraM7LOqK5WrNdtvR1oGr9yqu7x+wfgC+uYJxXhkwkwKCumtXOTs/4+T4mHa7Zb6oR4DwBPgshVlex29Q6cpSOHl4sOCt129xsLfAuhojsD7b8M4Hj1ltWpKA94Y7967xxp2reKl5/PiEk+WSo6N99pqahLJCD6FjvRpoY2I+9yxmNf51g/v3PGbuCN3A8xcXrFZrBkGLY5HMslxz89oVFrUWUcznNQdX9nB+DqYBKu1429M0M6zx4Cy+dpiqIlmVhIeEqxyuytLcSee5ze85rCFtDVIXdqSUpTLJpJAT6zfDLpgq+7NJmeYTXALHpSRazFZAhRYFPCVlf9Qiu5Rnrvp93iqbf+0d3ltcZsjUDblaruILvmqv2qv2h2gD8P8A/m/AByhD0r9lExF+4Rd+gb/8l//yH+29/dg3AF//F1/n7//9v89v//ZvXwZW/Rf/FufxwF34y/+nv8zf/Zt/ly/1X/rEIe/U7/AvFv+CX5/9Op/rP8ff2PwN/urmr7Ine/zVzV/lPzv6z/gH+/+AY3d8CUj8qr1qr9qr9qrl9n8APgfs4n+eA/+IyzmYH9WeAQU3+HuBnCxwD7gDPASevvT3O/nvLbyxeoOf/drPcuvWLSXAQde15XLJRx99xA9/+EOePXu2s5/kcqDzx2xlX7m/v89sNrv0t/V6zXa7vXyN3+X7l9pPg/yvPxnz+JNqdVszW81+/wP/FLYfG6Q0Mgy8NEq08kQrmDU+pjvnErMyu4HoEhkgIgn6Xuh69dAMTuWcHJhC22+UXWCs+kVrTc4ulpytV7oxywkFpScGkuCtZQgbErkqM8DFyTG20iCqAYbQ0fd93tSTg29WQ2JRnzRGLfQ0znB6foEXDTS2yy2NON66d4srN+d8+zsDd/avcue1Az54+JjN+qFuwFFwUtM0uLpic7FkLB8CjChoyfuK6zdvcXD1ANBrDu2G9eqCJ0+fE7uwA3zK32WaH0ZMZmbxmQ1KgzyaMA45wawbzm7otcKmdF2S8bulYtK6rOeek5ZTYKcEkXZjMLtj4bIM3RjMZTzFTpuSpOU/awyzpsE3NYKlaRpOT5eIWPYPFhir8iizZs5ydU5tLXNf4bwnVh6phSFFEItzlUplWRjaLVUNVJ6qbnjrzm1ClThdt9y6dZt65jh+esatmzfoGfjowROSBJIdCDZBchzMr7JoKqw4VJWrwRqhmh9qNeygyRkbNgyxJbVagSkpqLQOEZcCEi1iDJu2JZ0kqmpBlER/esbxvzkmtQGJwuAd4eoR26rWPu17zlkr8ZN4zMUZchFIfcI2NTbBeYiY7QbjLFYMLiak73KAu6Gyjv5iiQ2Rto2YkyXGG5CIs4JzhtpU1E1FSIHV9oR/8/V/jCMwtGsikU3X4lxF5Xuaea0gMe/xtib4AWdh0Xgqu0/oexZXZsQQ+PijE8Rbame4d+8Om7bl8ZPnDCFSOUNdGWLfcXhwyNC2zKo9vHXUvuHi4pwUIzEzBo2jpwQZJWXAgLJfvBwvHzK46RLgwFmVPjBG2YLIcm1Og7UhJMIQCEPAGGV3KMCLkiRQ4zYN7BADMkBVKfDIZQp/a61WMGe2FWMNTVPjnFYzhyDEOFDXlSYzU2IIISdaJFeTZruapZh8ZfDeaHW4DaNsXJGXK2woLicqh5wgDyIMMWUJIbBJ5S8VSGrBW5y3mWDMMgwKzOq7DmOEee05WOzTNHPOLta4quJobjm92DAkowArAxGLs5Z2MMh2YHj2jCTCaduz2rYMIVCt5mxO14S+w7qaIS4zS5YjJsPZ+QZjK4zriESC2WJ8JIYNRixgiWng9PiE04sLraLOMe8+lnFgWMwPWdQzDmZXeK/vCXGgqmfMrOPu9QO2/XXeff8J6yEhNpCMJfQxJ6A0qRCHgMMRgoLiUow4I1w/OmBWVTx5ccr9d9/j1q1bXLt3B7c3x80t3jdcvXmD2f2GoRfs9T3slT3qoyscGcvpw4/pTYdJhjp5htQTY+TLn3ubxw+f8ujkjCs3DulX2xF0VxJVE4jUgHFUzQJb1dTec9GdkcbI+DTurWaNcgIdLagdbbcGzLuuG4G6uqannLQojmSu5nZujPa3bQvyMvvFZaM/SS1o4DMVZsGSIMkOg8sMY975DOgpnofOS8FQN1UOyhvqqmbo+jFRRwaAhCHgKkddO46OrvIiHJNkwDuv9mSHbexl31cy6ECXa30ml2UsR0kDk8FQWCQmuvMlw6YDbxFnVVpVhCgBgiFZj3GWqq44ODpEYmLYtip1YwSbAKeA0ZufPeDv/kd/h6986vPYLBXZt47/5r/5RT769vc4e/Gc2WHDZ+58nr/zP/15bhw2fO9bH/Bb79yn7S94/WhGGBynteO0b9lerIlDB1HBHxGd794YZlcX3Nk/pKoqtpsNm21L3TRcObzC/t4eCJyfnWGM4crhlQxkavnrP/cl/uZf+1kO9vcx1LTnLf/V//sXeP+dD2iXS6BjcXiNv/SF1/hzn36D5fOBaruhc8Kn7l1jf97g/AzvEuvllt/57lP8gednv/YGr792m9lsH+vnEA3f+/V3+Ce//Ovcf3FKVkLEWAHnuHprwWu39vneDypEsjyjX4C7irAPOE1oz1Z4p0mGZAyYCkuFoQIcWKgaZUkS8nsVi0jL0MPJyQVd21LP8rDPgG5dk5LKMwwJ6QV8IMVW51sUff/dkNlW8gomkMQwhETX50SAE2XrCUIfhW6IKmuKAlOHoBKfJilwNSA4FNhqc7ZOk9JCkJ9ckNLkK+6yjOR5xQQI2JUEmWyZmX7N3xNSzqUU53oHVDk6ylOSUr+ltmgYAn3YibJKOWfZcRiGDBSSzEK02awzKEG/ElNUGbHpYpCfY/R/RZk1BGGzXo+yLatwDgL13FBZ9WUq7znYbxBU9nBXRspai3WOPnZjrne0vNl+Xjm6wmJ/r+CGkBjo2i0vjk/puv5SH36ii7NN9tZlhjhNojrriBlgWvYZIYbRrxpBFdbgMyC7MLiM/Z+EnUdhzDDnZGsBfmAKSOPynqdc5+X9xPja8zfKuPHe4yqvibsYGXpln5k1M6KE7CM5QhhwTiUTyzVwFltVIGDesdj/3iFRCK7DOOXkdRjmTU0wOv4We3u42rBebljM94lE2v5i3D8fn75giInDxT61z4AQq6AAA0g1UxlNQYn3YkdKAYllX6WSxILgTAY1oJvaGBN4j1hIIXBxfK7AJtHCofc+/JB/8s/+mbKn5vspGF0ZevRgC96MYxPJzItpNz5ksEvP9huBuzfu4IxBBqPPoQOca+YG1+wN/rz8HKC2qjc9T9r7WIE/Jz/L2+5z3LcPeFo/w2Bw3nLmTzlzp8xSRZCBIbWEQZmv6rqiahSgNfS6h3UY9vbmxCScny+JqHycSmPCvKnYSNJinNhjTFLGpgymuARaJhdEZSCJMsNMNqPsIWIBB+6MYZPnZHlHxdNRWya5kKrI3xXLUtiLJqAetozfDGKKMbNokP29aa6N8yLL02NyPjrHYZy7zIRUnmdkjpLJDjtvsv/kgHiJNWfaO033LaLAkZjnohks+88POHntxWUfcAc9qPKKZgROSVJ227qpIRlWG2XWbWYVfT9A8qQQJnCkLQn4yLbfwlnAVhXbYchBCcsqqDSosRbjDLFPOCpC3psIaoNDTEgKZAyjgvUyE/N6tRqfUWW6dxitAO8q9vb22d8zbCrP8+NjjUUZg7cwbxzWFLu/AyzY8TWRXGiTwQNq64Sm8uztzVivt7TbLSkkjm7ewM0brNd3XdWW+WLG6YtTIsKHDz7m8Ogar7/1Ns8/fsQ6hBxvSFTeEMRweLDHvK54+OTFCFKJIU6xqLJOyDTLlfVPi9uc94SQLtng8j1bZKFyDO7yej6N5V2g/+46Xn4c9yfGZEBtAemZiXHppfWirHmX4mrFT8h7CmN07bIZRKg2byq+EzT25Cuf78GNMYOyf9aYQJHZ1uIIcY5UkMdkn0Uu98B0b7LzxCbf3s6xOz7KOGdDZIgb+IzuaYy1GfoS4c+DiMU4ZQ+rFwvquqLbtMQQtL/XBnsBZhDMe47Zbcfrb9yjdjXmKnDL8vTkhPfP3kO6LXKYEOMxNweu31pwpdvjwcMO6sjmoKNNHW//i89in9Rs2hbJjKkGmBm4ffWI20dXOG/POHvtlNl+w1APbKqe9FBYLBYs5nO8c3RtR1hHZo9n1KEmhcgbr9/gK198izs3r3FweEQKwtnzC5r5FY7P16TU473l9t0jPn3vGjYZZqZi73yGtZGrhwdcvXaN/f19Dg/3ePb4gtPVhjfevMbtW1cxdzzvf+VjYpXYXmyI2/dZr7bKz5QXQzEG4w3zuaPyNv9NAJf3BRWjrGZmkJ0AcU5jsWKxyQMKkjWSZbjLq8/7zrgKpJXA9YjYBKjfHklZAlllilPMQKWYi3CKzGAQJKT8uyAy2fcQVYJb2f4K2yCEpCxLghbFpBSJURmrYtT4qeRTFt+3zPVdxr9X7VV71f4ATYD/FvjfA39IRat3332X7XbLfP5J9qE/ziYi/OIv/iJ/7+/9Pc7Pz/9wJwvAAzj/v5zz8z//89R1/YlDbm5v8le2f4VUpJN3Sipvx9v8veO/x394/h/yzdk3+c3Zb45/e7d+l/eq9wBoTcvKrf5w9/qq/Q/SqrbitR+8xg/+4g/+pG/lVXvV/uy0BfAfvfSZAP/HH+O7BaS0BP4ByvpXpuengK8B+8C/D7yJyst9nL+3226jbHst/Ln/65/j7qO7l/5sjOHw8JCvfOUrfPGLX+SHT3/I129/nVhFBTi9DnzzR9zfCZhfMsyWMypf8dprr2Gt5fDwkHv37gG/N0ipbVs+/PBD2rbl8ePHzOdz7ty5w8HBAa+99tonLrf53IZfrH+R/g+7iP9+TcAPvz9Mp1k3LC4Wf7z38ifUfmyQ0oRMkbznFnaDfCmjXlKSXIGRA3Q7wQxteSNFykwk5bPAJb30MXlhds4hkBMyJfi6wxA9BsmjgS70+v0Exlj67QbaEtYQQuiJUQC7E6BJ9H2b93xFoxzCRgEARnUeaLdbrHV88GGP/TiyXAXSpudsdcxy006VQzlAEkLQjaFIBgZkFqMMdmhqz83rh9y8fRPnLZXXqtWz83MuVmvabtcRzJIsJdhVErzWUDc11ldadWYMkiKr5TJXK1lESsJriol4Y6mc42B/n24IrLsOK07/XnmGdotDk8q2SFsJqMiaGaU1NAicciImB4Pyy4ljYje/kPLey3Flk58TvpWvkSScnJ5xfrFiZh1Hh3tcbNckQRmuojDfnzGrK7A1yUJIBr84xGQK8uhUrqEbOtoQGPAMrmfVrei6RDdEhm1H5SqSibTbniCZHj85kjgSUNWeG4fXWDQV69UGUxskWWbzBuuPaDeRea0SMdt2y/L8GOkDVV3RtWuSsfi6YW/RUFl9D8vNBhFLNauxSQEdMgzEytJHBYRgtR6rnnmiePouUFWCMZ4+JowYnPMEq6TWJKNB46Q01RblI4NERcJJysm0AZEIQ664N4KxSvUd+gh4ooDYhFme46JFjBBtIoaU6cAH7GarQcWEgh1EMJJYrjcaBAVaiVp1aSGmQC+GzXaLcSqv50Wp4Bd7e4AGhfcP9jCVp90uCf0aSXEE22mCILMhQa5a1nnvrDJgSana3LFT1sgIEhqTV6XSL6jtijHkgA6ELIum8i1gjAbWR4BStmkleK0ADQWHzaqGru+IGUASY5ZdRAFM1kFVQ4o5yVcCkE6l4ZwxVJnRresDadCkQRINLjlnsGhVcd8PylyHPqvzmYmDlOUwHcb5yc6KMjlZNNmilPc54WM0aRBDzMV3Wj1sKJIEiSiJLiWePX1G2/XMGses9ninTGfL1ZqYEt6oZM96u6ZLPV1l6WJkEBiSJhXWm3WusI008xnD0IM1rPvA4+MLzjcr6sYhFwmJgdRuMCYqKM47+iHSDwOPHj1FJHLlcD/b7Mj+3HNmDQFLQnjj1hG1rdmsT7h//ynrbkAqsMYR+0BAJciMWLw14A1dZq+SOCBWiCYpuGUQIDKbea4f7WOSMKsbjG2ItmHowdY92+UpvmqY7dXs7894+NFjlhcn/Ktf/Qb/m//gP+Abv/Tr/MbTJznFHpC2x3rLfFZxeOUKT58dY0TYXLSEdhiTCvk1MVLmi6622/UFQsdirtSZxmW69gLqyPa29rUG/a0gtidGHQ8jIMAUiQ4QieO6ipDlbBRIo/+q3Y4xZmajzKARd5LzKABqRAinhBUNCGMNzmjQFaO2SCvra0ZwsskAKpPZSYxW588WDbWv6LsB6yx7+3vUlWcIA+22IwZwztP1A6fn51RVDcYym1X0baeV5CZm+2EnH8KApKhrbGZBKIxS5VkKU6QxU9+ZEElDq8/ZWJKxWAxROtxgqeZznPWYGNmvPRWG02VL1/dgEjYaKiNUNVx8/IB/869+hc9/6jPs+wMcnrZfc/7ihLjZkrqWYRP47jd/k9Wj97l19YB2FThddVS14/GTE0KnUiOua6lSDynmKnF1eKxzOCyLquL6wR7zpuHj1ZZ21RK6nv29BdbCYbPAi8FVDcYbhq4l9o5u1bN8cUzabBmCYfliyWq1xkjUgLokNss1Dx8+5jM3DoCGuYV67vjM5+5x5/Zd5osr1I3j9NkJL55+g7QQvvKVz3H7zm0wh8ACRNi+6Disv8+QdD6LMMqxYRO2BuMAk5PPxgHKgmBMnJK30uFN0veAwRRWGFDgY3LY5LIvKojJ4M8gnB6f0W5aDg71HUcZlM2TQcEnYolhUKBmqDBpUF8ygETo214TXVFZhLTqW+j7xFAJViLGQbJGz5Ngu+lp+zAeHzN76LYf2PQR0w70EZXPs5nFIK95fxqSCrL7f9MvY05nVz5k568vnSPLq43POyVWyn6inL9AEKazp5HdhJ3v715FjCgLCQV4IC/fwg4ryziY9D1k5leYksAS03gyEYh9BAwnZ8rymhKEPnC2WmZA7A6bKewA48pjmdG2l8OGvmO7lrH4ovjuaUyWlqfR5LKUTi8mVxf9kQnKGmVMCkFZVidZql25GcYK/MVsgRjYtJ0WSWAw3tH3nUqfSFK5tViKIKazlGfZHb5mZzyUcVJ2QJ9gr6CwsyqTk03KOrtuO/p+oMnsPNshksTQD5r8q32VAeaOYIQhgnUV5jcS6euQYvYHDAryFkNg4GKzJiIMUdhu1rjeEGJktV5lW5XGBOKLFyekFKlqlWccepUHt1YZHIyBro3M6gpjLUOY07drJAlV5Wm3G8RYrPNUVUXTqFTxer3JTBMOEU2gG1H/OAwD2+2SX/76vyT0A/v7C5IYuran9gaso+sCXungGOKQZYNRpmLRNc7n9SxlebUXL55zfHrCtWvX0X2dMk5Zq/sQkhDDBFwohURGtA/ncY/Ppy/whe0XdDRaiCYQJIDA0i554Z5zcn7KO807rF2L6ZTDJRbWMgzL1SbnbnfkmTIQuw8RX1UYp4ypcQgjQKckYAsb0iSRPE1vk30C9X0u2yhGcPMuM6Lo/M7TSXbGqIIcXzIchk807QudR85YKufHGEIBphuLjmvvsFawjiznIxTmq5HJyRiqDEwZ9zVFkrewtyT9mzFp9ClF0IKFfE2VwwSbdtlRNCZjRXC9y+dUsKYzGTCeFNA0fiPHkgpYpe17hkFltA1CiCo15azgnWWQoJBhYwiSCP0wskqlEPQOUsrSjJkZ1JrRR06SOLtY5f2RxQYDg0AMI+DSZXmrKMKQJbfrpsIZlUWrnErOhmAZQqCpLI2vqXIB23Y7MEjAmYqUTH4PZe9k8ZWOxVjGnqhfrv1sxnt2trzzilQ79vYP2a5b4npF3VRUVc1sPsdXDiEgQVhdrPjCFz7L8nwLWRILdL8Y+3wf/z/2/izWti2978N+o5lzrrX22s1p77lt3eooFqkii6QgyZIcSrYCy0pkCYlkCHmxnJcgeTAcGIgfgjz5MfCDnYcggALYgJ3ANhQZCuAuUSRZoiiy2FSxitXfunXb0+92NbMZY3x5+MaYc+5zb1XdKhZZRfKMi3PP2XvNNZsxR/M1/+//d44uA2pCH5VxbbZujuv/bGOTFAg9SLKzHXFcdcd5XeSUo7EMYRjHeJkbI2Yo0y+N/vM4lyZGRR3bxaeefWKmYrlrU6fc+zgnVdZYz+Ao0ugmx+IoYKe8zwlKZFX6QdmP9fOqrlgsGkS0cCOUwiGB7b6l9h7nHb5S4GTf9gQp8YiZDTEugDJjVJqz0c8PLH0rUx9ElVpTQ7J0Iiwaj6urDGIJWCyVtVlJOsGBwRyANQn7Kbi/fJMHf+Yer9x7BVt5xAnbNzaE3+7hVNf0rt7wxvbbvPdehbMeWQjeV0gPIex4fPKEO+/exUrCIWojFDAYumZ1n6io/hXD4sAhu4DZGuSzkbDo6BeWarHg0K+Q5ODC8Po/+xj1xnNytOJkfYy3nv3VnhgSu22rzIyZWd+IglVv3brJqllR+wNunl3y0qs3uXPnNk1zgDGWlCK1uY95+Ig7d25x+85toELeOODtn30HWcGiWYx2/vgi8r6VEPrFAKZhHMDPLNZqOWmBwmhjIthkOH50xP7jjybTZvTTUy4QtQxtoG27zPgXMmBxkoydWOeUmdhKZhUTkKSxqZDiOI9VAVDX5iiizMNIlsDT2FkMQtsOhJjl/tD5ECURUsIGtVUCZMAgUyz8WaP3eXvenreP3iLwfwP+z/yeAUoAX//619lut3/gIKVHjx7xH/wH/8HvHaA0a9/4xjd44403+MxnPsikBLq3KF/1h3/2SniFVzav8Dc2f2P8/d7saU0LwAP/gK/WX+Vb9bf4+4d/n8fu8Yfa3s/bj79ZsTTb5sd9G8/bH0S7HnJ73v6gm4Hvsqxeby/mPwD/CipLWhgAGxSg9Gz7WP7zYW0F93/xPq++/+qH35YxVFVF/ddr4r8di0On7X/9IV8YoH5Q81f/L3+V46fH1HU9Fal+j3Z4eMjhoZLDvPbaa6SU6PteC92q6rueQy6FP/tf/1l+5W/9igKovk/bHe2+7zEf1vzgee3Lr3H24tkP9f0/Cu0jg5TKq4ol4Fx+P75DmfnZ1wPXJRhlRjRQifVJrkyaMZMwD06XoP888RIxuQJtci6nAGFxmIVS1WTQipbrAe2UIpLmx+dgcswBRaMPl0SDbGNgDTDJYlLk8iqMlZcXQ+Diiqxlf/16cValLZR1eXKO2yHwpa99G/uNN7AGrNN7CsPAbrth7Jp5nxuhcEwpFXZi3+2h7/C+wvlSsRg0CJMr9yRNQAtjFBiBcawOb3D76JD3Hz2ibTtMgvXJmqePH1EZw9B1LJcLur5j6KY0h96PyQGKKZOUuzX3aw5m2RIU1ocYx4MxHKxWHKwW1M5RG0MysNsOpN5wsFrQrJaktkMk0LWRyi04PDxhtayJYpE4sIiWxdEhrhK2XccwBKracXiy4OLqCjMYQky8++gsA9EcF+dnXFwIUQz394/ow0CUOAI2HDXrgwaMZQgWSZZhH5RFyHpsjp0dLxYs1ksurypcammqitV6xf2336UL4EzFwi25fe+2VlA+eEiIkbpuMP6AGBKrukFCYrffcRGuSN5y0NR87JOvE5Pj6ekZL714B8Hzzlvv8PKdG6SUeOf+fU6O1wiRd+4/ousSlbHcXa+ojWUXA5vdBjEB4wy2tsT8rnxlWSwX9H2ngQyXSDGodExIGvzOc9skwQlIDIg1pKhwMImZprq820HPnYzApi1hEMAQjeP9h08AlC0IkDQgssU6w3azx1QVthqQYWAIgwaNRYE7knI1bK5+NyNKUcFwmVMfxIxMLbbIMUhZfjQgHGMkhqgsFNbmRMW4aKHoqxJdmthrpnVE1wZjdUO1ouBCg3C4PmC729GHqAkzp3+8t9SNbqBDn9huOhQmFBnSkJN3hvV6ga8Mde/Zb/bstir/odlwyzAEQopjtWdKBiU9U4Ycay1RNGAV+kDMVXMpJVIIWXoiJ43GpIwmAoqUgOSEqyTJ1dyGth/Yd2cMvW7MIVgu2n2WIekYcpLAo/ei80Yr9Pug/ZFy4E1S1NizFfb7dlyTLq6u2L+x52C9YHGwwF0Y6AYqk1jUFuOgqjxDP5CSvvdF7Tg5WhPantoZVssFHmFIKu9R4zhc1rx87zZvvfWIb3/nfQ6bxPHhMRdXO7rQY1Bg32EGZzw6u9SKRAGTzOgoJ5zK5riKLiYcntt3brHZ9TR1xf2332azveLgYM3qaM2N27dwdYVxA2Yw1HbBu2+8yftvfps4BExShY4hRVLf4xvP4/MLbK2obyNeExIoGLSAlLQfmXaBNJCCZb+LusYYnQcKkNNx6ZxltVoqU5axhKshgwjzWhxzxWXIEoaj7JvumWMCO3/Wd0OW/1DgkEhmA7WMEoU5FaBV+gaCRMQpD4XzjvXBihgNQxeAkIOyIbNlaUAWjCYfciIn9AN7IFYDxliahTLArQ8OclJ2P+IFNKEvLJc1bnDcuXOT86fn9N0GJOEygkWlUPKUz89sxkSeyYkWMyVLZlXPZr73WTBekwNpMEhwrG/d5E//y7+AbCPf/PZ7xKGjcRUVlkFKci2zICK4IfDP/sF/wys3b/OpT/wMUHN1vuf+++8xdC1GEin07C4D3+l23H//HO88lffUi4XaaXkNlJR0XcoJR2vNyDrlbJGdBEukqR0v3L1DTANm6GkvL3nxY8e88vJdvG14+PiM0zZirXBxtuPb3/wOh0fHVPWK1ApeHAvUsBTrWC0r/uTP/jSf/YU/SbcxfPvNR3Dg+dSnP8XhyR0MS01Iyorj9QFbu6OumpwcWGBYIWagXi6pvdN+yvYTGIiRoVP5ypCExgImApGEjieVZ5As35lyD0cFU5UeN4lEJDlBippSEqJRecU4wNnpJZvLHbdvdiph2w6ELpCyZJSJFgZD3w44hpHCtk+RoQtc7jbsuh0hKKMHBIahY7PfIRRj3EFSBsxNF9lvOh4+vVIgRRmXwJAS/RBwnSNEVNrWPiPd+JMOUvqw+ysm+/jzNK/Gz/MvFJwznWdia51SqSWpmF2LDJCQ6XzFb3n2XuTaX+WoZ26u3MX883mCcr6QjCbI9L1yjZysjWFmy4zrbkl2T2Ub81zRXEamJKuGmDjLSfkpeUb2byLjwljuMScYS9LW5GsOoc99Nwd6pelas3srnS0YohiGpKxkxkcICq6om4oYgsqbBi1mEVtk/65378gc9ewQGZffWRI4f2Dy5mRMZmR1jtp76lolcsNW95TlakF9sGB3MUAKWeK2ZrlaY51ybMQQaJxlYVbYrxjaoad3vcpSr2psp4k+772mT0VYVspAG4PgjdoI7aBsvTZn6A3KsOczcFwTqgnrLRLUXq2to/IV1aLG7Fsk6s+uUpmckCTbIgbvKkSERZWtdGvxTU0IkcrqQhbTwG9/9XfYbDZU3rM+OCDlAocbJ8ckgfPTM24drcEYnpydsT5YEiXw9PScEMAbz8lqiQO6lNh1rTI7WktVaTFHAVoUSeKUEsmp3WnEjhKqJaRjQZm6RMF0YgxefAaJCjfjTW6FWwjwmfYz/P3D/5oLeznOoPLW267Pc0v7L8bEvu1GH5QshWzLfCpgprxW2Nk+Ppd4lWw/T8NQJr81L8QyS05PQJkcP5jP2jxfRnOI67GHMoYL85i1NrseapMcrFe0nYLslEkNjLcqf+t03MegrGtgclJaCwCs07lnHbiY6FtlZotpmm8ppWzmlOdTX0iZYiYJLYQMVgxjXGRerKaW3iy5LUyfz3ynJJmNJkE/6LmcVQB9kdkOGSBX2I9mZhci0Hch7+elP7Pxaci+kPZsSsJmu6OqHb5SxkRjEkhkUTcqASlGmfBk2i9WiwYjCghb1DU7q/M8JgUS2qpn0XiayrPbtbz/6JT1aglJJeEgZalQw/pgwWa3p+3DuB+UZzEYHbnWYKqKaAyuqaldoG13REELe4zFe0+zqFksFjjviKGn7yNPn1yxvbxUecosHSdk1l8jbHcbVqs1xlottIhp3C9t9ico/nvp5xITk1womEF569NDXDRc3r7MPoXLYFYpowQxRkH++YTXAHrXYoCMe/7I0BWVhXwEKxmDEZtB6fMb1HkSM+uicQZjLHXjqX2jhQq5QEiByFHH9XjdzJKV/fihH0jOjvYxSAYmFcbaMtXVH67rmhgidV2BiPovpqz1ZvTBpmhpjhnMHrz02eyprq1NlKFS4oJRIIKval7/6dd58fYd3nrjAaebM8buQuXLJPvwKS9XQ7fjy1/5LZ6eP8HVS5VpP7+i7fZ5ncmg6ghdH3RUGrUnMCrV1q378d4VKJglHa2hyL8ar0Wout4J6/USYy1hGJAQiDFweHjAcrmCG4bm3YbmGw2Ixiys8/iqwRpHGgyN8zhjiUYLrNbrFbfu3MS7ht12oNruODw8YrE6xJgKxOFMpK4XGTya71M8Nx7c4f1PP6Izu8zwOO91df5STPQhcnb7nKNv3GX0EfKfYmvoWJVxjcrBY33uBGP1noW5sadzQYu19m1HGCI1EQlCCpnFLhmsGIiGOAjBJKzVsaoyj4m+C+y7LvvKOu5iVHnYIUguI518mSAwBKFr+7zmJsrukwSVg8sqAiavXVPPyE+8O/G8PW8/0a0F/kPgOz+a06WUlMH8D7j9vb/393jvvfd+pOe8VnjzI2pLWbIUBXDd6G/wmf4zCMLfvvzb/Fsv/Vu8U73zI73e8/a8PW8/WLv37Xv43vPuZ979/gc/bz85bZX//LDNwMWdi+97WHTPAJS+W6uge6Xj/DPn3P383R/6tqy1H2Bb+rBmxPDJ3/4kv/VXfovNze/P0Pf2n3ybT//mp3/g+zEYXPgoKLI/uu2jMynBDBR03WGR0eEu8KV5cN584PtjdTTZmc3AJ5WUybTaz2jL5pgCUCTl0hhU1zJnjXSMlb0ZyEMOBI8tV1aN1VSQAzXTMUXbHRFSzuJL5sDVzwpzSRk8StFbbnTsj/zMhc59/ixJo335F72ydYzyHLmfUpawyMmYOf26BgSmY0EYhl6l90xxKvO1k1Y2alLHjecDTUaLgfuPHmGePqULPTEkKue4OgukISDeUarJYko5GXH9/aQMfhqDOaUvmUAuqQR287AoQY2qqjg4WNFUjkVTc+vWDawXvvHOOyzrBZ/7pZ/n+NVbnP6Pv0p6cgnGc+fFF/n0z3yaaCO9iYSHT1kOnju37mEbw8OnTzg9O8eYRN1U3OQG282W5XrBcrmicg7nK7YpYa3HG8Mmdjx48pQUChhFqGzNyeERyzRgsdiDhsQi96sFPKvVGrs8wC0aXNvTrJbUdYP4hvr4BiYJtXUsrGPoBsKQuLE6VvYU77j3sddo+57z0zOMJJobHttWtLueqmmwfklMkZQMzh/Qdh2Nt9w9OcR4z9nFFS+8cIfN/hR50GPFsVws+OSrr7F0nse7jjcf3MfaHVWCg0Wt8l+9AoicNbh6qQw6DlqyRJwYGm9po2BEEz8qX6JzL4JW+KJBeWtUyz6JVmaJlnzpuMvAOP1Tkud5bhlD16sMkRFBuk6TLRk4ZIwyA8UkmRXAZ4CN6lVN52WcdyknoDFZAiqVICgZ1KPycSkmrRrP64oxhfkoV+MbRwppHMzjGNfI3DRXS3LBQb2oWB+tiST2Zxc456kqT1V76tpQNR5rHdurge2mz8F/lVRLKWK9YX28oGoMTRdwLlE1js22y0kTDTRLZEx2kdfUvlNWFqW41zUtxpQr7CgTbwRlAVmWblrTY4wq9YIGd0sF9bj+CxwsFxyu1xwdnnB6es755QV96Ee2mb4fqCs0YJfDZbvNnj5EnDUcrGpsZdnvBwVTpMQQgyY5k8N4w+V+y67bE2Mgpshuo4FFVxn6vsuSDbqyrddL7t454eH7j3BWaJpakyUJLrc977zzkJPjGrLs3lvvP2S7v+JgtaLd7EgJFo0GnavKc/fOEfu+4/JyT8pBemNUitMaBSXYyueCqETfB4JE3n3vbbpe++Hi7JL9bke32ynLkzH0IXC57VgdniAmICh7hqTI8fGaW7dP2Oy2XJyfIhmkc3p6pp1uS6J3uP4+zLQHhDBgbIWvKmyMuugm8lwUBRQJdH1P27VI0hU6VI6Vrwltn5n49IzeVwpYMiUJOCVWC9tFjAnrnI65ymfZsD0mFXBuHmc5YeKT5bBekEzN8b0Tbt84ZLsR3n3nPsMQcsA0I7ckIaiUirMJk9ngJEEIECuDr1QebrfbsN1sdA9sgzKN7XvqpuLG4TFWIAUF1CnTgsWbCmeFOEQoYCjMaDOU5A2gaxGS16OSXJCxqn+S0BFsTPjaklLPwtd89pc+zd/+t/9ndO8E/p//5X/P/dO3Gbo+J3DBiYplhBxQpnL0T57yn/1f/+8cvfg6LNbEXjh/csFu2AIRbyoq53HOMwwD7V4ZBtx+T71csqoXOrYyC6K1Hus0sVlVFc4WGRnH5dWWZe3xFTSrBWHwdPsdm/6St997n85EPvuZn+XVj32Sr/3uG7z/4B1u3DrhZz/3M5zcvon1C2jh9MGW1a99WddoVJZoedDgDxYIlma1IFYG6xuwK4QDlUhwCesXGPqcPPJoiYbX8SkK07M56SPGlpwx+23Hdt8pUBKVqtR3PCVOIZL6jr4XRCySAhKV4siYAZMTzQe1Y+EyN09Z7pLKJV2cbzi72PJqP2BtRd917PY7QhyojcHEqGxWvuWiGkgiDIMwDJHdtufRozPONxusFRZ+iUkVT5/s2G0i3m2wkhR0qXAp2ugV3HS1pw8DklkSkmRQYxR8UDCAMxZj45gEN1Ls5J/MZr7HL0tCuwAGr7Uxp1cS3uWX+rtJrkl/LrZmqQYvwKERXKTl57PzMh4zBx5Ol59s8HHVLZnta48yAZVG+392jfK90V8ywtwbnycyP0q7zu6Uwdr5bqeVavK8YMwNz64hs08kM31kEIC5dqLZcYxJZ9C5IkT2+x37dqdAWtGEWRi6nLhVf2oI80KTWd/m93St38YrTnJTOQM8u//8NAVogYIhStFGOj2nrmpeee1V/EHD1eZbiESM8Rwdn3D33l1wyjD49Oyc0CZW1QF2ZYiVEGLU/SipfZRCwBq1n71Xm66NCe8rjAh9GtRITnbs+dAPPHn8mHu3b2DEUlVebemYsmySVfvOOoagMt1Ns0AwJHG4Zok1Bgd4M8mP1XWtoHxrODw6JIlwdXWl9r03PDl9qnuacURxRIn0/cBurwwhMQ4Moc9MnGZkxs3cv1jnODxc01QVV92Qn1NYHBxwfPNWlpgZFGAcotoZSXDJ6+/FYFKam8xUlZ/AbmayNctrnXxy4VAOtZK6vPYCeEkzkNzIBFY+K4dnAJGdgA9l3Kk8bJFqmsZgYU9inOfFny7xBJn8/PwexgS1nUAH4/g3k3TU3EeepNRM3vf0u0W22TkdO4WNuNhdCvrWogdlO7KkOIx9Z0B9BHWB8JXDVQYbNfkca0/fB5V+K2AjSmJb55gt/WIm2a3RzpmceJ1vuR8nv356TyP420zrsz6LxlGUacjSVBXL5ZKUYLPd0mZ/CDLDyIytzjmV6SwS3MtFQ7OoNAHfh7EPRUCsYKxjiMoWQlLm77ZIZIuyxxZgEyiD0+HhAe1+TxhC7n99qUlg3/Z0baDuPFESQ4o8vdhysWkVhJkBjIVls6o9B2bJMGyyRJ6+58II7HL/tV3PEOMIfkiZic9ZjYmF0GP6NK47KUVsiqzWDSnUGFdiY0JVO46OD7HG0HadsrblvoxtB0aZshAZY0TTDLi2pFJn3wgRquBYXiy5uH0BmMxwHFVmLDNti4PFao3pe9q+1/ef0VCj3ODsIs+CpMxMqtA7P0rqljmJFLZXPW69XGHEUB+suHPvhNAJjx48ZbPbIdlaT/kaBrIkqYNxTOl6EUVIVhQQYqALYfRxJEFEmQQXTU3lHXEYSCHmOAZ4p+xNhUnWjLbGtNte39bnO3OZT2XeMAJ4TRJM0jiBBW7dPuaV1+5y4+CY0weXXO6uiKH4EzPbNa+Lyeic2Tx+wjcvtvjVIRhHGjTuAFHnofN5zcnFHaLX9t4hzjGyzQEUUFIuiirxBmsdQx/ZGq0eTjFLGqaEiILr9/3ACy/e5c7NOxydnBB9pKoNt27f5ORkjbEVZNm0pq7HvoGyR+Q4hnPqxxiVfxc8xngmZl6b12v9+ezFc/rFgOz1XU8x68kuSjHR95F+fcXa38aIxUgBtOXxSgIJhEH9zCkUK3nP1PFae8fSe9wI0CT70hCGyH7XE/oBhycMibbvCLFHmbsjXdtzgcH6TtepKISUVJqtC1xu9wj6fiyOro0QO6yL2Pl8NlqIGaOydMZUqvkY70vy2kb2o8Ya3/lNP2/P2/P2w7cf4Ry6vLzkV3/1V/lbf+tv/ehO+n1aSonf/u3f/gO73o+6GQz3wj1q+aCs3Pf9rmiRajDh+x/8vD1vz9v3bc224dZ7t56DlJ6333sz6utfK5z8kCZovMnKR0E/ffdzvPGLb7A5+QgSogYev/aYbtnR7J8zxP2g7QdgUpoC2fP4wpgAmMWJi7SMyCyoXL5QAAX5XCXINFXvpZwE5FolhzqnkSglBimj31QCV2YW5Dd2FsiWHEgbPckSULwelLweOCnJkiJdJ7OEyVwwgunZZ4EBMwNoTeHMqU3BRj1Wg/tT0kDv5RkQRMlAje+hONk5mSCMQQRr7dg3I4hhVsk4SSoIyMDQafKelLApEoNhaPX4ISozxyApvx/L/GmuS2CZawkbY60yX0lJ/MyfSd19SYndvmUIni5EeoEoA2kQFgcLpG548nTLZtMSCVS+4cbNGxys16yPDzELw76Hp4+3pKpisVog52fgLMZErq4uSb2l2+8ZSOwHYb0+wMTERRuo6xUmBtrYgrgcbOkzTX7Nxz/xcQ5rw+njC+7eusFA4sG7j1kuFzSLBSmobJiJkbs3b+HunLDdtXSDcHyrIoXI0lsab0hpYHAJcQtCVNai/Wabg/X6DmOfCH3CiGW/a3n0+IwuDWyuLnjw/rtEImcX53zhKzsO10vads/p+SlBWqypgExb7w3HN49Bzokkbt+6xc0XX+Do6AjXLBEZCMOed99+W1mRItxeHbI5f0psB2LfE+OeqtJ37RuvoEJUVqAfAqoQ7ZGoMlySpSCi5FBN0KC9944YA32noAxnDYUYqK6U0SPGxJBl3SwGnMF6R4XJcm8aVJUkyhJGqYo2SNKkrLUlsSXzyBHGlcCmShmmzCqmi5XK/4SYGAatMq4rlRRLBSxBSUzO5g7TuqJBaUezbNi1Hd0w0LZtTn5YUmaKsTYnzCLsdy3jREgFiKjzP8SITSqXUDcN1niqpmEIkXa3x5pqCtqX+Ww1HKtgijI3ywqkLDySn8PkfsofU9WVBq6EMaGCNRqEE6HvezDgKw0a3jw+Zn2wxBrH8clNzrc7Yt/nxHhmRzBGA+IxEGynifYkVHXDKy+/wHJZ8eabD7i42hAlahWfEYIR2s5igsU7GJIB43n/6TnGiMof9TEzeSUMkfW6YblsSBbOry7pB2VSiymx73ouNnseXz5BYqIToY+Rx1ctF/sAfYsAB6sF282GPvRgPQcHay6vOk0S6UINaELGecd+N/B+9yQD15QlyNjE4qDWQG+MbHc7wuDoOqGuDLvU8fjBG3zhC/+EQEuyEUzCelgc1jTrmuW6IQbD2ekl1hr6oO+5ajyLZcNuo4xbRbqg7L++cixXS1brA+33IRD7QOyHcX8b+oG203cpKZZtlMOTE/7Uz/4cX/j8b3K5v+L27duklLg4v5jW8jzeqyyplqbNmOVqoWMlBDAGJ5O0kI5DQ9PUtEPL65/5OJ997WN861vv8Zf/l3+ZP/dnPsfv/sab/Of/2X/Few8faGV30qp1a1Wya33UsFzVtPsOX9fsrzZstwNhUGauEHpls8HSdT0JTRpESSwXC9ZHa/p9B+2e7WbHrt3jvGW1XLHf7wiE/IyMwIayz+bJn4O9jHaD9yqjqpIqlr4PCJGk2pYqlSGWGzcPefWVe5w/OiVeBiT2mOBJqSOlIe/9WnFrxYI4kndUCPuLRzwJgfrWPepqRdjvMCFSGcN6vWa1bogSCENESAxRsI3F5Lkeoo6TkvC1zimQyWt1ckoqAfDo0RmHRwvdi3enhD7hKoNYx+bBU1pveenjO4w7IkUAy2q95ujmberFEcksMBhWx0c4X6tUqknEENnvWxIOYzKDiJkkgNRmU4C6JhbKv+1kP0lSG8SqbI3NSaqSPNpcdVxseroh0ERDShnAJDmxRQ90DN2Otu8zaMJpEtuELMErGLHcWB+xqmtNKuQXLijA8+qi5dH9Cx4cPEZSzXvvPeXp5QXWDjjvefz0jC8PHavFEnEQxChDWEqEQWi3PZe7VpOQQ8++CnR1Q+0MlbU0zmErqzIbkuiSpZVEbxQ0NR+RMQkpGYaozBbJBt0zBQVolcTfH9JmEIrmW8GhXJ+XpcmYQ9Efi2dRRth37wS1E9K1Q2Ym/qz/ZDo/UNjpnvnGmHwcgTWjPzA/JsNVzJQSLmaKlEIHrvtbz57/w57DiHnmd1w7uCQrv2eUXMbc3+iflaPN/OvjL+eZ0GeeNRdc2OKTQAbEFp+N2cnM/ATKdPXMeYEJ+CDj1Hzmw+zTieje7yxDErrhUlmhIlhvefT0jP5xVHZKdG9Kkri8OKduarAQukAXhMpEKnEZJCFUlSHEQOwVuBgAlyxeDEkCIZIZD4SYAkZ8ZujM+4t1nNw84aVXXuLi7JKbN05Iknj65IyD1YrlapmLH8CQFKjvhLYbCFHohkC/b2nqGu+zLGRMmkBO0LUt+12f7S9l+NhcXXD//gMQwzD0XF5cMKSo9smlFql0Xc+jbsB73RMuZMjvIctgpcBFu2cJ7LqWGAPr5ZL1wRHLg0NcVeOcIaXA+dlZBvw7DtaHtJsrQtcRh0CIXZa8JjMjWkQ06WpswhmPzYweNiOakgh7d0WsA04yGNopa8SQFDg2sQMblm7BbbnFq+1rVLFmGZf8w8N/OLLiOaN7k+Q4xQRQYgYcNNPczL9n9u+RPfha8cUEAyzs0FJ8hwxcKrbCOFNGv7msBbM5KwqmDjERYp+ZkfIYL9Juou5JkuxbyTTHtP8UXNH1A7YQfUSNu/jK5/0/4pwf7zdlUFWRmXx2mpX6jMm9mgqyyn/W2NE2ZfST8nGJLBmYwYROC0fqpiJ3nu5vZS3Py0SJX4Sg86zEkSzqFzZNjXOOvt8QU5ZtV829LG1d/CF9iCBCv1PO+pjl0yW/GecNIlH93BA5v7ik6weVUhoCm90OSJjW0EeVcAoxQS6gSaIgQmvUl+uHCKgEtpSCmexPCFOsKwxZUtO4fC8qi2mrSlnIQiAMPVHpP7EWhqHla1/5Mk3TkCSO4AJB6Ice55T1JznY7/cMwzSGvXcq/zfKbo6jD2MslXcql2gtySj4cBqfeo1hGMAYvPMKPMuMRzdv3qC9vKQdehaLJUfHh5w+PVUwXdmfDVSZea0wIqkfpfMkBgWTq8xk2ccYjwNhdbjk537+Z3n83iNMVfGn/vQvUZsFv/Vrv83Xv/VG9hGzhFoeg95ZFgcNxATWgSQ2l1tlDcpAKh3nTkFIGEwubnLOqv3sPcY6UhKGoEVWTdMQQyTGbpw4hYGs3LLMAMnCtHVhGIGMdg7oIxdJRuX6PThoOFiv2JxuMZ0g0iuIxijbVAFGYrLPJloIJlb3pqHfg/f4Zpmvrfai9566WQJpkpYsYyLHO5YXq2xvlYKNPIfHeKI+S98NhDhQVZ4wBJWSRNmgBDAxkiz0IXD/5AG30y3A43yFsRViasAiTUt3s+e9kwds6g0vvXc7gwZV2rTIdCMFdCOUssiyPpQ1aL/a8+5PvaOfi8qqWWvz3MvWmCh4aLfv2dc9V0c7jWWJ4EgIQZ9bEpKCxqtEcqEVOaYUVBs2RmXXtpbxCrP4aAzCxfmWxw8v8G5H1ydOLzQWaJwW7p2eX7KrKmVlNaBFprrmxyiEkBhCzMxthkVdU1WOunJUToFj1qgvnUQLG3YG2i48Yw4KJUyrtTq5L6X4xIW3/3l73p63n5QWwh8sYObhw4d88Ytf/AO95o+6ve/f59SdfqRjV2nFJ/tP8su7X1Zm13iLf//uv09r/+AZrJ635+15e97+SDSBO+/c+ZGf9tuf+zY/9Ws/9aGfhSpwfvec7/z8d7i4fcFn//Fnufv2D8e6dH7vnF//a7/+0ViegMtblzx+9TGvfOOVH+p6f5zbDyT3dg3EMzrgMvOypzaGn821w6/FuK8DWzT6LNlRtDl4M9cE1H9mUEIB38ySE/Mg/0gtnZMdIjn0OCvNHpmGREaqyWdl4a4df+35RJO81/qoBCKZBeiYqprN/BgzOYD58TXBP2UCpgqfmZwM879L5oYxOC/Z4U45eKiVbYWa+Xp/TtXlZqTd1wSAUgpD/tnYmUN7/X2oU5s+cO7ZRSCfd5aNmUBjohXKfYgkLL0krp5csLm6xCeltf/db3yLzWbH5nKDNVo9enZ+yu988YymqRkkcrrpCHbBEBPOw9XmiqHreeneCbaCx4/OaYfAsm7w9YKzfce+7ah8g3eJhLDbdnjjWRysiKljF/c5+NgDniG0HBwtSBJ4Wkdee/mE1169i/drnFlQ5eSv1MIuRIZouNru+MaXv8ZrH/s4x3dvMux7dkOCqmLY7/nGl77CwdERB0dHnISBYWipfct7j9/j8TtPc8Dngv0+UFWGy/PHBBMZgF0Q9qfnxNizfe8yB6ANzkEbWn7n229Qv/M+QzsgfUfA0fUVZ90Fvt5TVcr04ZLFJGHZLLl15zbr2tNentF1lt0u0lSePiYGEk3T0A8dMmilb+Us4jVwq4EUybJQSjM+DBFrLctlQ9t2DP0WZ6CqHGFIVLWnWag0xxAi0usc8c6TrFYQk8epMrAbZdwZA9glSKaSEcaUQOTE9gIosMRpAjjGSBiGiY0JMzIAkWaSDKKSBK6upyCqzNeIifrbWkOKkSEGYtSkTwgBEUMIKa8vhhAN240ynoUh4qwf57kxKmcXYuDxo4vMBGKQoIxPWEupcK7LPcVEito/IZTgnMFZg7F6f1otW2Tv0gjW1EAdRInIIGA1oGms1eBk1IpQxBCDgsIUQAbnV2fYSrh960XOLk+vrZ8FJGlyoqMdciWtUYBEPwTefud9bt++gXGemFTeAdHKSH0fESuJIFmWwFu6IWgVYEg4bE5+qiThIoPDdn2iuzzDWav05QJPT58qENAbrHVEYykMAbfv3OPs0QNS25KSxdiKlCy7LhIGZfFJJpGMguo0uRwxWFZNo9JeRaaBRAgDzjutgq89zgq7zQZvjIJorOHibM/vfOENnJEsV6Fj8OqqZZBTaudp6hVDTON6DoL3nqpyWQpk0O+NSXldz8ckRtTKWIMmhMY5kWX+Dg5XeOc5f3pJGmC/2fLmd96kDwMGw+uvv852e8XlxcW1fd9mwKG1hr4bSAi+8lkmYMAZgzdWJX+mnQIRYbvdgoPXPvkqf+rP/SLn+w37bcuNFz7Bv/Qvv84//f/9KljLbndJ6DtUsjFirCawbtw4ol9EDm4cc/nkCX33hCHkZH8yiDUjs8JqtST0KhVZOU/f93TdwKI5oAsqxfXyvReQBO+931FYHDW5qHNbZRqVhS3hdI806L5fEuZGmQpDkY8tO3MUQhSObhzxp/7Mz2OC8Dv//KvcOj7i8KDh4nJFGLZEFGQVEUxKOMAklSWNlSZw9rsdfrkhLg1RMuOiAe9rmuaQIQaM6RHpSTmAHyMEdHylnMrTeT/eoa6JxpEk0bU9kURTe2IOfIMj2QG8cHy04PigIYWO7W5LP+wRlIpVrNOxaEEqh3Ve2X4kEYKw2/WaeBc7AhUgoiOkRTCk1Gli0RSmiYSI8pRZ6Yl5THtTWA6LpE3kydNLHjy9ZNcHVsnQDYEYOry9QmgxyRKGxOXFJdtuhzOGvo2cPdlw1EfEOIiWbg9PHz/VdZvMFGZ0TGEMl+c7fuPzX2f/8BL8kvNN4HwzKGhyF9n1NYmaxsNq2dDUFbWrMAL9YHj49IrT8x1d1yMETrzjxo0V924fc7RasfROGeyMQ+JASJbNpqXvet4+NXktKEAMg+bTNKELUaWJSxJbhGsMoj+p7RmMCtd+lGJMTz7DM4fLh/77+hETX9GMuejDbuUDv5br/zTTQbPc3fVD83HyXa4xHjSzpefJou/2PcmSnR/4+LvmjeaFId/t8O9xsrG4AUaAJlPCz5jZ0ZPLMnaIzP6X08PX72uWmC2/H5muZuc18szvnr3lMfk7nUxyQi7nKwkS6XuVmTMGdu0+Aw5iTkRn8M5lryybkmiHRLKeq04wp8KwUzDp8mAFFq76HTEJNZa6quhioA8Bbzy+siooOWhir6orEpYh9Xkf3LC5vKTrWvqhB4mIDDQ1HK8dzi2wRkGkxlnEKQtCEkPb9zx87wE3bt1iebgmhUQf1XaL/cCj9++zWCxolkuGEAixxy2gOaiRzQ5rHN5D7AVbeWKKav9Zg7GekJQNKbS515PKQUVJnF1dcbHJ0r6SCN1At+/YXm2xZp9laCOpV/vcOYOEQOUsuDKP1WcISfc85xSEgxEsGZhqlMHYGqv2lgj7akfnO2zUfdp7DV2EoIwRCjQDbx0/H36OP9/+eUy0hBTpTc8X+G2e2Kcqo1h8+9mYHuUFx/2xsP+UKTCBoIpMW7EXeIblZ/S7yzzPfrLN9gLOZDaZbJfNgyKjNK9euLABqXye3l8SIYWJ1UOZNQVJ+Z6YnkNy4Vfb9uO5R/n6PAlLbCA/6DPsdXnVLN1CkQibo5RKGZbkOMzEdmKM5DhBXjdnsllJ0hgH6AeVRjo6OlaAU2HIKkueZXwZ+qwyAr5EhN2uJYRAXS/y9acYyrQiKTCqBF4EUVajNAd56vesV1BATKKsw8OgwGaj8tL7ttUCLGsVlI7KsS6aBUaUiSVl+W+9kh2ZrUo/Z+9uHIfW2iwRmzDWq6R6CpOPixYIpBAY+kGl63LsrO8gxl77N3dYSsoW5Vyk8hUxykjeXUAl1tpR9un67qDrbozqyyt4JkHubyVTLgVBaic3i5qUOpXpS/DkyRNs0GeuKs9yuZzFiMYNT/3FwjIm5b0aUgx5fbYj6/h4+6DMTkZYWku9qFmsG7bbjouLPXfv3lC57dWKlAJd1zLGDfPTqaSbwdUNhsR+12YpzTzuhTGOWOTOQ4rZ38hS1yhgqR8GDtcH1HXD5mozbupj8WWeVFpEldfCsonO5mIpOhrHeP6oTDVjDbdu32B9sGR3uSN0A87nPaiPef6VrVfAZHBJBv15azFRkGEgWU9KhRVIn9tm+1Ol8ZTNBwqprbA4X06x0TI/hVkMw4zvOISEMVleNtsGOnQizsGi8nhr2C929GbNimluAoRq4OHrD/nq0dd478FDQhgIxzs+vnlxxsouGaBVbIASA446XnN/QuLR6w8JVY+iBCdQ3Ljsi87UIUQ2u44hBTbrrYIqY4QUUJlIBRoO3UA/9Ln/oG8DnWux1tFvdrRXW/abjiGEceTO46CDDZzuLzh6tKBpakKydENmSUqBqrI4X7FoPIu6wjst8nAoE9y+C8QhUljzxRiqyrFc1Cybmtq5LGWaYyXCWBip43A+FTNAM9/fXIK3xBa+q6n5vD1vz9sfixZC+LFIzP0o2/3qPmf27PseZ8Twty//Nv/e03+PGmXzu7SXvDq8yjebb/4B3Onz9rz90W822g+NAz5vf7Tb7Xdu/8jPeXnrkmExULcTU54g9Muer/75r/Lr//NfJ1bq01zcveCX/x+/zM33b45Rgo/SxAhf+uUv0R589H0w1pGnLz/l5W+8/ANd66O2ftnTHrQcXB78yM/9424/kNzb2MbAXWYvGgNY2UEdI/jXQ+6mJHzKcTmhOVZM2ywtlNKYUPgAu9EsYzHGyGafFmfr2fudAurCBw+YnWGW9B2Dcgia5JulT2R2vJkHbJgGYZGHmwOfrvvhoGfOgYniDBaPOTu2GhVRZzMxVS4xphtzgioHG7IDWgJWhmkTmMAdhW1Je7o4pTb/H1PAGh9MZJQgTpHEklmwsQS3ys9jOMOI/infxSmDVA6+9b1KGBECIWa9dG/oYsfuoqPdXWl1EhXGwna7wTjB7g3dAAMGv0pcbTuGGBlConILbFVRew/+ElN5DpoFNw4XdFeXdLHneLXg5qFnGxKn5x2NEQ5rqOoD3t1sCbHnjW+/zcpowPELX/hdHQ/J8s2vf5s3v/UGrlph/Uplw4wn+IS4mmFQjfl203LVvkPz3hO8sVTNEnEGCT1d19N2Ww5NzeESWOqrXzYOZxLG1NxcH3D7uMZ4rfwLdLRdB22ibg4ymMUSk/b+vut4cnrG1X6H2bWYBEunkjreJ4zpkNAzRBj6nm63I4ZIt2sZ+sDxjRPufPwVmuWCL33x61Srms3Txyrp0LdYZ2gWNX0bxuCpzRWZ1iqzUspyb1WlcmQK2NExV9UVVU6QVHWNqyqcdxjnwFusGEwSqlXDvm8Z9r1Wfo+ZJ8E4BWiYmIEJGSxSJljK0nDO+ywzpQE4BRNkNrBc4a+B2Ik+fqyum81xQZgnTFNhobGaSCrsRCkvDilT41vAOU9KyhA19IGUQgbwCNbpYuB8RQpBg0kRdpshnxdSiEiKmWhEK/O6bqeBM2OzzJ4KNYwyXBiMVTCJQSt0kUhKgRCG3Ac5hG8UDGaNwxpH33dj8H9eLT6uWgKucizXC672V1xtL7EGvAVxFmOVWSyUoHxOsFWVxztL33dcXO1pew2cxhnTmqRECuQ+0uf1XgFs1vhMr57p53NAcrk65O4LL1M5Qz+8OwLCjEHpH61w4+4LdENgu9nijSEANiVevHuT7flTnB9YrFa0fYf1jtt37tK1Pe70nCCixBCZQcbYzOaCG9+RSMKaRGWdMosFiDbiaoepHFe7PcuFw1rBmoiTRNcPxCEo6x5aWdl3ieQTiUDXB2DOfqWrr7Mm13OOswFDSWRFhr7TdxohDkq1X+YpouxwIURNpJArr7uO+++/QwwQYuRrX/uqStHk/UwTdClT4atcWNm7nDGE0GOdYblaqeSGDLNtNiflSDR1xTd/5xuc37/Pvk88+ie/wf3zgTu3brFptxweNEh07FNm1EkqT7e53CiArzVcDYEqBYp1oVhBq2DAEFg0C5bLBbukSahqsSAki/ULtjtNUN+5c5OPvfYSD997jCSdK94xSVEYqBrPK6+8zLDtePjoKZFcWU2RH9HkrvcOEsQ45KSYYCLg4U/+7Md58faad959yGbbs3n5HmHoSaEldDo/FJ9tiFEr0qtgSV1PEM3t2tgTry6wFtqhJ8iANQnrPc6vqBcOaxPbzSW77RYhEUMiiv492i52SiDom1PbzRnwOPZtR4wDPu/XIkIKCSuR+2+9y1fqFUfrO1xuThHTIQzjHFSWraTSoZqSw6Bz+WyzISStho+S7ysFDBEYdN7HQSuPK4NOth5j9irJFgfa7RVDH5CoYK4iy5JEeHp6yfsPz1R6o+158O37+K7F1w0ShdAmLlt4+90L9kOHc8J77z4g7loOl3WWT3IMg+Xh+2fssyyVJGU7EJOQmEhBWC09n3j5hIPlIe8/2fH+u095P0QsFbdvHvL6x27y4skxR6s1y9rpWiNC1ycWteM7988xIkSUubJpPOtlxdGqYllVYL3aRMkyBDVXV3WNEyAmzR/ldbtIPTmnjE0FUB9HSZvrIPo/DO2DQPcZSOVDfLtsKTOmyWZMDwCjXFmxf5/57jw6UtLJzx4xO9kzv56uPv/n92sf5qI+C076QMymPIR5BmYlo3vxzLknwNpYTTB+NAEcRkfHzI8rPZPK4ci1O3zm7vLnJvsxk++k3zWUgpMPi0RNLvsMj3vtMPPMv8rHpjhS2cYoPqhOlZhttjQx5VgFLEmnQF7dOHS8DMOAMUKIhpB0q7dOE61xkGzbelLe70wGsFbeUVeWXnSsVZVhURv6JOwl4oyj9moDXvYdSSKXl1tOz64wxvDo4eOxDx8/OuPpk1OsrTHOZ8kVS7KCWIeSBiVCH9j3T/FPL3UV915BHDEyDD3OCFUFlREqn+iNAsutUbBE4z2LeqF2mgiJoCD0oNJKYz/mFx5iYLffM8RIJGFEmV+sA18ZNH+fGZCjMmdKUhs4idAsFqxOjvGV5+HDJ1A5wm6b95cBY8B5P8kqW6Msf5IBLkZ4p3oHmKSJU5Y/K9J0NjOarM0hv9D/It5WWVrW4LDc5AYX9SUmhiztlfLz5dXDTrGGAmOY5tUE2BulzfLITdl21diGHpNkVrRjyInifKYR/CfjvNDvyGzomwmUY1CVKymWHjOWogKO0usphiTHI0bwSWbnHQpoiAmklPeLlBiBTiZPRDuXu0UBr3MfP2VgS7kHxriFmZ7H6L3GOElECYU16DprlLWWuqkRhO1um2MI2hsus+qkLLlWvq2Sd1aBdjHRdoEh7CdGHtGxQwZwleWiyI4p4lxGudTy7o21rFZrDg4OubhsZ8Uu+Y0ZoWpqmmbFvt1jRVliEGhqj0G42qiNbBXhQN00GBF2uz0hS7lpvd0UdSnFdBiXgUATsy0ZgCxWcJWj7yMmqeRfJGCN2nmpFIvowyvAwijYKo5jvozlaUwrcw/XWsF3SEqkjKSLIWB7x/HDE+5/6gEFwGaAtu1zgZIO39DuKfv31WZDCMM1qUMdVxBjwGcGaCNksKPuOHVdI6LAkTIvGeeJPkToA1/+4lew3jF0iS9+8avcuPuY3emp2qPiSGKJdipjjDGx3WyxYkntwGLhR0CS5A3MoPuIMbn4TARC/rfRNSeGnqHrsc5zfHxEipFN3nMNdtpSc38vD5Y0Vc3V5YYQ8xg3Jvev7iEugx+jlGfWfkkI64MFt07WdF3L5qqjXjVUeCQFjROMiGdDYVXHgESjf4xgjZCGHpwjYom5EEj9A4f1nsrqmtB3umeNwCkRxiieUSH3a/bEOJ8NMSrbtrdmXGtyXRfdvuXh+w8ZTgJ7M7A+XHISa4o03/5wz5ufe5OnPIZfVXlDY4TNyRW/+6mv8Ln1n+Dl/UKLGiiAo/JHNLaTJvafzckVpy890ouLqDReiKMM+mQkKjBvs21xApd3z2jf3HP+6Iyq2Wj/RmEIwrZN7NoO5wxd2/Ho8SlXFxXOGh4dPuLx6jF9F2n7btZ3eUYk6JuecDxwY73kZL2iGyCFKy4vVAR+UVccHS44Xi1Y1o2ymlndl6MIVevY7Hot6C0Fc9bgnaFylsrrmi1G5eqUFctSOa+A2bwXjQAzYF6oOq0D2j/poxq4z9vz9rw9bz+BbWDgV5a/8pGOvR1v83cu/g4Nk0TPKq14fXj9OUjpeXvefgSt2TW8/qXX+a2/8lskn77/F37MzQ1Oi4ib55KPP4nt/N45py+dcu/b9wD1509fOuUf/p1/yNOXnl5jPnr4iYf8N/+7/4a/+J/9RV765ksKlsvtewGJHr7+kG/90rc+PJD7Pdqbn3uTz/7jz36A9f5H0bYnW85fOP/jDlIqdL4FtJPr/Ub5LjMmlRNp1H8Hxt9rcqUEvKwGeq2boiVWlOEklurbAvLRS3wAYPMBAA3jvcxD6jmuNiVq5+F2YUzkl2PFzHxWcz2YNsmu5VueV6SMFyyQpRlYpwTIpATrZwkZU4Ka5UwyfaEkEHJCYXoGU7IHjEwumUZ8HoA11yTjyvVgombWKlbVXDdjUGOSVNGq1hKgGynbyc5sfhfGKmuKZMmWMSA6Vl0xO78Z6e9Ln5LfmgGIASMG62us88S+I4YBI46qqmjqSqt5DZggSK907we1wfuKdrBchpYUIzFC74R9DARrGXAYvyTRYmWPRai8JfXaZ1XtOTo6Yrvf5UBi4vJqQzsETRQawFpsng/JgLNXypJiLCKWaDIIK1nERrCGp2ePxypXl4ME1kSMJDYXwvvvv41FMGii/bLv6FPPIPDg8RnGOxZ1RQiJPvSkMOCTBnYxGrC3+bw69lUGQRXNHIKjk8guQi1QuRL4HXTh9soI0nU79m1D/2SvwIvkWB4ccn5+qu8gJ0VMfn7rlO1KIiTnVNYtRRyOJlPf98OglO6SMFbwTaX95SzVosbX+pl1lsYoEEtiQqzQNDUpRvpdr5IQRgPgztqcDMiVwOOYzkxs1uG8m+QYkiizRwzKPCSzALzVTEBKIVezmhzLKkH8xBTLGlMYjAExMtAJxzAErfosSQuTzy1JqfhjwDs3BvZVDk/BK4iM1PdGLKTC3JJIYjJtN8oaQwlK6/phyWDPZEhIlt7IlbCigfCU15CUlNrb4XBO32PIICqXZ2I/FMBFWedy9XpOcljjOL/YsN+rfJghM2h5ZasaQhgDWyWhosz6Dl95+j7Q9h0gNE2FJEffZnAATEHzJEjMLDVWk+8mkfcdBSOt18fs28ij81OVSnAqxxajQnnq5oCE5eVXXubxw8dcXQj7tmXfdnz5y79L1w4YHCEZBE/XBS43Gx0/Dggj9ARrBC021eRASjoHJJpJ2sOnKYFX19RNw9nTS9p9BKPyXENqGfoBJxarZD1UlcMYTTrZHNi9lrPPQBPJ62+RslAWAkPlPJWvqbxlvV5xeX5FmLH9iRit1LZF4qPCOqdsBEkTSiHTuu+2O+q6miXhlIK+rj0pCX3XAQZrHCkkogxUTZX7zOqeMW61CiIct60UaLcbjLWcPX7KV359y8c//THa7hxnHd4bZWEQlbrBeO7efonKRB49uaDd72m7lsPDNW3bsutazdH2kWq15BOf+QzHt1/iq7/zdaQfeOVnfo6bt+5w8eSCr/3W5+n6LZv9jgf3H7K9VEYMZz2VV6aKsuVaaxSMVSfWBwdstvucjFP6fAPYynHj5ITKeO4/eEwfFFkSSSwOV9y+e5P9LtIODr88YLfvubrasttviF0CcYiJIzYg583ou0j0DcZ4xHj6YAhtZN+1mii2ZLCUoaka6kr3367rtdo7GnCWum6QJAxZ2tI6NyUUzJQmrbxniAOhD5lVwyHeYJKD5GivIm9/6x2OTjZ4W2dDuwxOwcgAacARqFDDMhoIIlxttgwx4GOgDzuCcfTtQBxanczRsjk/Z7PdwjJy9vhpPn9N6qG92vHwvfcxKKhTgaAJrNqSQ0xsdnsGSWy7lqdPn1K7nuVyzcI3SIT+amDYtgxDwqaBha+4fbLm1vGCRVNnoJnnqDJ8/gsmJ3vzTBOQ/PPh8YpXX7vN0WJN7Vd8YfkQYzwGR+0c64MlR8dHrFcH1NbpvEwJ5wbWq4Hae5wxDDHS9YF9F+mGpIDNFLNUp7J0BvG0EQY00ZuNRwUnJWXQSyZiRRkeUk4mhBTz2v+TnFQotujMTi/gK7i+7jEl+q591eheOE+eT0BlPXfK67Iuk2Yassxs/JK9/kD7Lv33jA9w/QbL7HrGz8g/m/EQM318LXFcih1m55udqiRm1Tiffb/4KeNtlS/I9HxTjnf+z7wulwR8uaRRFiMpO3g5tJygFBhMJ5H5dWddOl1r8svM7HvXOqD4ODP7q/gSmHm3mHz4s77U/I7yCTOIwBYbvRRBYLKdWFhyUNst6tpfO4MVS/BCZzThmzK4YZBENIaIsi8KygRpDDhrIOqdOWcz++iQ/S2h63v2u7Z0OyO8w5Sx32d2GzPr12zfmaTvZ78bbd4CgimWQd/C5dWF7tkiXFxccH66IcZIAja7FqylcjbLRioI3ooluGKDoGvRbA8vY07EIsYQSQyiTEw233/KTJ2SgQYhDNjgibshD0dDVdW0dk8KIb8XO76w0V82YDP759frr/OF1ReobEVhPXYZYIXJEqbZp2zrlifxCYf9UWZPhSuz5X5zH4zgvFN7OklmyLP5Wa8tRdfXCVF709opBgI5JV587XFgTmCcqXgnj8S8yc8LoSbGZhiBPkZGwJPKcE1zo9xbARqVPaNcX9nBLC47OM5aRCIiE+io/BnXCyn8IzMmPjuBDqd+yHuhCCba2bDIyW6TpY2MgmLmvx+ZVjHE/CDKZFN+a1Q+Me7Zt90YKxDU1xBRVshptcgAKclyjRQ/LWW2ZS1oGEEVeTynJDk5r4y0xYUztpzX4F2FszWXF1v150xmjsogA2c9GMdiucR5R7dvGUJPlMjZ2Vnucx0JKQOP2q6jqSusM5ihDLBpnzK5YEylyfK7iGXtltEfcN7ifI2xia7tKLK4UQI2KjBt5NKyXC8io6w3s+F0bR2dCh8M6oN55zAWmrpWufY2cOPBiV4r9/18rTbW6n3LBMIz+d10fc+k2aaX1higzVKGjC8ixjiFBa1DzECeGrN7z58jxKHH2orY95w+vE9KLSZEkgys9wfcfuMm7/zUuxrXMlBXBywWFe2uJaZEu1NmrKZxdJ2yjklmsl0fHXFy6y6bqx3D2TmrG7c4Oj7GGs/j+/fprs6wDq42G5wUVmbtu5iU7Un3NX0Wa62Cr7phZLnNFTAYY6iaikW1YLfba5+RASLWsj5aAVYl+6wHY2nbnmFQ5uYR+FaAi9nWSEmISceuYEkCIQlDDKNEoKCFkg6Lz2tqDJEUJufk4oUrDh8dEWKkPNQYk8x2Q93W+ORV7jlFYrGXCpt7MqRg2F7tkeEJvqq5uHPOyw9uARCrwJuf+za7wy1cRo2Vib5nAbbVjq/8wle5lDMevvWYR29dsFx4jsIhPunmEwdl/Igpso873n3lLbb9HmktaYhcXVzp3pT90sI/VQA7/TBQWcfl4YbT+oyDraEeanwGD8chEbtcDJLXpUVdsV7V1JVnd7yivbEidImLswucnWZd8fVA2bzWR0uO1yvCAJdXfWYO06Iz7z1NU9M0Dd6q1Cki2JSQSgtkTN6kY2bvLX8MKYP2c8FIZl+N47o0rqR5L0GLMvIQKnjCEWD1k+xOPG/P2/P2vH2PJgj/4PAf8HdP/u538fevt8fuMV9qvsRL4aXxd4/8Iz6//Pzv413+8WtucN//oOftj2T7+Bc/ju/97wtw4/ejHT865tOf/zS/9m/82keW+nrePry99dm3eOXr31v+bH22xvWOWH+0gtvkEm/97FsjSKlbdQpQevnph675mxsb/tv/7X/LrXdvYaNldbniE7/9CV7/0utUffWB47tlx6/99V+jO+g+0v3M25NXnvD05afcefdHL3P3R7l9ZJBSmsfxs8NdflbQEVirAccgKVdFTqHpEgDL8XTUIbQFz5JPW4IbjGAWYZITm7cPByiV7xWn+ll5BwVVSaECRum1rdXgGpLw3pEEupykl0z7ntnLx4DjJCM1sQ6ImJxk0sBgRrkgz6xm83vUgLwGwEqFJLM7zhe7Fsy01lCY8cGMDCt6nMmBRJPBV7NA/yxAqtfObnmu+iovVgFIGYZh0D7AjcfondsxAFkewQhKgpB/iGMgdWLyKFcvtN6Fgj3OJLxiDBhjicPAPkVCHEDUGfc1xDQQQqSuHFEifTB4vyKi79D6hKsghsSTsyuwhmGwCI5diDw+vaTbt5CEy+2ekJ7QRi05DGHgydNTdv2g9OihJ2VAjGVWwWq0DwyWmAYYAz1TTN/gkGhy309BQaWyT0Bgoqc2WLRiMRqhTQGaBSfHN1gdVESxDN2WRa3glTaBa2psVSNGCEHoQ0Qyi5TYCmuDylHgaIwl9gPtEIjADsEaTeBZV2E9+X0ZNpsrRJSJQSTy9PFDrHVUdaPJgDwnvfe5gnXIzBOJ1mig3FceTI8GyBR4URhuYhw0UVTmuChDBAYN8FoYiJAD8NYbDtYHdN1ASobUq1xaYQMqGawUZQTJ2XzCFGMGhxliKBWvU7Bde77MYzMmCUtQ3TkPWGUyGt8UI/hJxZQyQMWqrJBIzBXpVhmq+l6BJ06DTs56rXx1iRSNPlPUCnWVzGOWWNXAryZsdC4KmjCzWE2IMVVMlz8xBCQnAUoiF+sydbkGsSQmsJniHa2067puDEgZtGq8zOHSJzFGzp5qwiummFMMBuOsBnz7Fmu0Yk+BBCpbEIZIDPqurHUqf2ASQ2ZDLxKTRD3GaPm/yqg4ryxYksBMXC0Afd/x3vv36dp2knkwSfMPYrB4Ntst7bt7BdHl9TKIcHaxxWCoGmXZSqJgtQePHum6biyIouYTmtiQDNixFoyzek2rEoXGCs5HlssG3yjIp+8GmrriYrMhBX2DVxd7JArr5XKs5vTO4msdq85EnCvV5LrqGmtVfswUOKeZ1mtjOVwecPeFOywPapz3mOiJ/XlOOuq6XS8a+tCpnIx1IJYiCFY7BctJ0rWzjV1OhumS7hvH+uiAGCJXFzsk5KBmijSNZ7Fo6PZ7SlweCphOE0XWGNbrA9aHa45vLEl9zwVXPHn8mP3+Cgk9B4sVaYgKeM0yo1Xjef1Tr1GFwNlmC31P1wfsqqZpPPveEKIGd++9+iL3XnuZSIMXldq5+cJd7t59jTi8i7U1brni3quv49ue04vHDJJYNQ3IgG6sChIc+sDb77zL3Tu3efm1l3nrO++x71qK7EXlPYtVTbP0yC6VHC4A1ntuHR9zebYhLYTGKVPc/nJD329IDEDEpAwqzs+bSCQLB3dv8dnP/RxVgDe/c8FuaOlSh6PT9cgqA4ZvLH/6z/8Sr9x5mS994Xf5xje+xfnmHJsGBZM6IYZEij1iyl5fVrHyjjTp6bDKXJUTnCkEZcUzBpcS5vxMWT0OT3JCfyD1O6RekIJjaHs2mz2DCMkISZSV5P7bD3n762/RJLi82NFaz9e+8C1OTu5rxXVvefLonKdXG2yX+OoXvsmNWw9Vtsg3pB42Fxvadq9SnwYd0+h6f3B4wI2TAx7e71gtF3zy06/x6U++wOLwEG8dEhz7q4H6d97ja+88RJzh5q0TXn/lNrdurnFKO4Ikj0sVR0fHOHcfM+TErDGZUUktIbyjahoWTdJEq0kMoWPTdWzagX3X45xnMB4RS4yRGBJdBLEWsZYUVNJvPwxs9gPWDDR1wlrd05T5INANA31QiQnnPHXlQSzbdqCPO2prcaLyD5EMvk06PrvhDw+T0rwQYIRnFLBKmvbqeSug4bLWFDN78iem/8++le2zsvebZz/mmstQ/pl/N+JyRkdGb7AwCWnxRd4785oN5KSemS4wNybmgAHzzD2VBGCG+3734Gr5zIzfMx92rdnhmowy17527bL5S3NY9vcK7k7risCsOCLn1Zi6TmCUMBozduWGyrb2gaTYmCi79lhzR5TxS4U9CSSD2Y2CcYbM/JLfkHMwscGorRMSWFtRrHRjFWQrSdi3atPGbKMMMbHbdyo9JELfD1ylRMhgjxQju91epVtF90q1JRUMnMYHZ9rTSaSUx77M+md86CmpPescFMEtY/+Y3NdPL87ZDz0YS9MsqGtHEqOFDs4QBKKA8TYnNVVuK6bClANiHIaEw2S2PEMKiTAEhj5M1xNBZX2ne+/7Lt+iAp73260y9Tg/Dafi/8qMgTMJO9vx683n6eOQXaXMGpGLDvSaKq1V5sCXmi+xkhWX7pL3q/tc2HP2tp36xapdEEOWO45pJnnFbAEp3nhBWM/XoQwiKWNOyrhmHL/jd5CRpcXmrPg1PzxfMsP5KX66EfVpyPYdJjM9BgUIGDuxv4IgrqyVTMxBGcw/3lt+vskOkHHMmPHGp/hJGVqFTUjnpeH4/k01CsfPdX6UvaeMhRAK22457VS8VM6ZorLbFiDfs4VgBcBSuamgTad2JIRS4JVjE0lIlswkKCPoav5YJZ4ko31KjtHk4xF2+12W0475+fTLynqpfXV2fkbTVAosyrGqIUQGCoOL2voiQtt2xBhmZS1Mb1tPmOXKp3WvAHgg4b2yjRlrtagg7zExF4aFXqleK+dHH1bXt+xLzeQL59ubtYZ0LTYzfeqsZb06wFWOuq7ouh677VltDxQbRWbSNjoXlVkojn1b3nV56DiUz8rFdR567+j2XQZVT++rriskRe1fKevjOJAQUCa7uqZZNnhvCO3Adt9z+vgJzoIRQwg1N967wf2PPaBvVK5tuV5y++SIhw+fELq9Fqlh8D6zU+XijHrZcHzzhHrZYDd7rLHUi4b10QkxgnMVYhzLwxXL5ZKr03P6GDOo0c5k0PW2t9stoWk4OjrEbvZsd/vxeYwx+MrhK10/zbj2a4c0tRYHbLZ7JFlq75AhEoaOJBpLKoWDqcQ+Re1W4x0nL9zh5GDNxdlepcII2DQwLt4GMMLRjUNee+UVrs43PHjwkO1uR4y9sqItE846nVvMCzhNjgfC6mqJHSymYroHgDnLM2CzVJoY2J1skEdaxHX6wiO2qwuVMu37LAdK9vcNbTtw+vQMd5J4XD3l0e0dv3nji1yenvGxr38MEx2hi1xeXrGn5wsv/Q59t6d65PHWY7C0u5ZhCBm4W4Cl+YmsY7VqSF0k+sj+57bcefQpFsuFAhQxpAG2lx0Xm5bt0FE1NceHS47XS3zluDo+4OB4RephtVrhcnHIfI8QQ/YtNHbixU4ymikyxKDrSUz4EBAno42SkhBiMQdK3FcZsYcQ6V3MAE7JMe8MQhItWJFc6FVi9jEm2iHQB3DGlC1N32k23j4kDP+8PW/P2x+jdn5+Pu5pf9jaxmz4T4//U4L56Cwo/8XRf8G9cI+3qrf4/OLzvF29zYW9+H28yz9+7RNf+MSP+xaetx9DazYNN+7f+J4xpZ/E9unf+DRf/Fe/SHv4h1v28sfaDOwOd9/3sFvv3aLZN+zq739sOe+j1x8RfcQGyxu/+AanL51+9zFmIFaRRx9/NP7qzc+9yc/805/hz/2//hx+mCAy/aLnn/yv/gnvf/r9H2rMDouBL/2lL/EX//O/iE3PEW4ftX1kkJLkQAyz4FqRETFGNee9d2NgahZ9HMPQWummwcixsib/bXL1j7UGnJsFxshJ7jRWs+XTlnTDtYDWvGqxsL1Mn2mgtNAgl0CiMRbrHYijqmtiSnQhaKg9y0KN1Z4wBr1NrtgrTC2YKZDUdS1Tkn8KPpUAXAkdlXstQUuXWVauV19eC+VngMKYZRgDfuW1TOChDB4Y8xY5ElGuP69gJQeREWVqiQbnIUpSbXkRnFUQVlHdGgEiY3JgCnAZU+imr7+fZ9/T/L2kNAUwFfgVCIOCXqxRIFmKkV50HHmvlcBDlsO63O6pKsNy7VkceHY7i3Ee8Z5V1WANVNbiLBwsGg2CxaCVbynRVJbKQW0t274nETUhv92S9nsF9ZR+NVMFmTW2FIllkFoJ0DmKHJfNEcgiR6LJTRmBOgaVTzA5GJNy31becdA0WOcZGodIYrFo2G/3HB6eYG2NX3hCGzGhI8jAvjN0w5ZNiry+OOZ2s+Bx13J6tUdMJJoM9inVrpCp3iXLHU0JDmMgDTmQK5aJ46wEp4Vh0PfTVA0hauXc0KscUmFUE0RBRMnQ7YcctDNcnm802O4Mzl2XVExJK7FLok4ye4cmcTWxoBXCMgvuaiInEZGBkTpe7z+/L2sVFJSvlTIteEmSSA7uq7yi1rdiSyB/GrPO+7wezEBPoqAASWG85xQFX3nq2mNdTiRbDfo0TcN+342R2yLdQF73Rlm2HOXUcTK7T5SxSSuObZb+g5RMydFpcqmux7EXY8zV89qHVWXz70N+NjeyTpT1SmU2lInKGGVwym9V7y0DEVMGqFrjkBhV9i7LD40gJHLwDLDGEQooZQbEFCnjRaujh5gyuE8r55V9Tv+E0LHdBbpWqemNMTlpqO97GHZYn9hsOmWLshbnFNhXwpPOgfcKOBCd+TTe4SsLrWZ93Li8Cb42OXmZq96d4K2OYZFElEC3bRm6wNAGuk6lsRSQArurVqUQF3l+SKIfepIpwF1NqpYKahJI1KTgtL7mPdNoyD6koABAc0CMFVV1iHMtiT6/W2G/axkkZLBWkUzRuaNV+1PVpPcWIY2g2OViQdVUeOfZ2ZZoAiKRurHcffEmBwdLzs+vuLpsc+BTB3IBEjhnWC4bhm5gf+U4XC24c+uETa+gxW4Y0xfj/Bdg6FtOT9+hjgZrE4vlAkKiOVjQ1J7ttieEgeXNNceHDd35E95+75LLy1NWL9ygriw2OYQK8TUnt17mxp2XefSNb7ILgYQG+sv4895nVDKs1itu3Fhz5+Qm26stjx4/JSRLLy3WQeUt7X7P7rIlpESRvzg+PuL20QnDpmeXDM5WtG2HM7omVd6TnEU57iJiU5beE8QJflVz88XbrN2aR1fvM1xeILHH+z2GK4xEnDd87pd+mr/5N/8qd9cv8Iuf+Rx/7+//f/itr/wOhh3NgWPY9xCVhWkCC48pqvy+DUGSJtcsVMZn6QhBbMK5QB0TBw7S5VN6GXDLBacPnvCN3/o6frFi3wq77cBXvvYOm26vYCsSJkTee+sBX/3tr3JjsebsdI87XGBtz6pesHAeu2xodxVBOo7WKz7xqZd5+eVbNOsG62tkbzg9vcCStI9jQLKsiHGOg6bixnrBRWUxJK1EP1pSHy0Ra7GpYr20HN68oF44tt2efdcyJMladw68wUSHqytcVQMKPkwapVdIcRKutnsuNnsWbqlg4LzfxCTsh8CmDVzuAkl6vAuAp49CHCKbLtINWZJDNKkbY6If9PdRFKSUl22SWLoQ6GMkSAIxxD6w3w7E2ENOUDvNcGOdo84MMAZTCDp/IltZeafEefmfzh9rbWaTgZAyinVuR+Y9QsavmZHdshi0Ju9dtkg5XV9e8kYz3tB3beN9fqhjKtePNIx2v0HUnh+z+LOknnnmkvnXRWap9JHN0i8hFAjLhzC3jicoc3s6+ehHzL/1IScoiajSUtH+mS8XI7Bh/rjP+F7zA0abJj+bndi+xjs2k6zYtfPn2ykJxA+0D3sf152kzEqS+2IsJEmjr1b8yiIJaK1KjBW7uBsCNoI3Fl9ZwqCLt1hL7bIdn9mGau907x9ZNwXvDNZo0q+PcQQpPXn0kO3HXlN/otxyfk+T71Aexcz6drJ/J+YoHS/KEDJ6xGVKgIG33npb7YZKpY8rp4xSyWvfV94z9AN1s0DlfiwpJExSOdghaGFBL4kT37Dynm3QNUulyOKYJB3fOXO7+7pvOAcc5lczTcNs92HAO8e5veCJe4rE8v70yJiPlaRSxuXsXTvwdb7JN6tvTcCUaJRYtvjJea0p9nOxN/X+iwM9/sVo6RbTfLaHjnYyCioSMzFOmHF9yYzGo4+SxnE6H8LFRyxAmTKgdd+eFnNlL1ab3JjpukbAeccwxOy7jRcsN/RMtRl5HtixD6ZCphK0KBc1U9IawYkb51YBLJT+ta74VeU8haYo96ZM10ypgC/tOGY0FDQtzCLaZVYsySkY0Eh+HzOZrHELEUMYIrObp3T+xAiibJcIed+QKf5BYhj60U8qbxCybBKJEHuSCFeX+xEgZYwy0RgRlSy0liBxPKcYm31cRl9mPo2L/y95UigzVfZbjRBiIPbKbBOzfZaybxUGtYe8dcpwJ8qypTb4bN7N1kekgJymVUPy32WXiTFQNZUyxtqaKhkW/YKUhNXlis3JRgtVrEHBgtPiXsbT5IiWtUyPca4AcibmWx0LwmrVsFotGEKgawMxWohzg0b7r6qU3XfoAs5ULBYLBX6gIMyyo1SdZ/30kNMXzxCg77dst0JKA95bkjgShmbZkKKwayPWO5YHC0wcuHz6lKvLLWLU7rZGY08Yh6sXrI9vkrqOLijoxea4mQClCFBQJtPlqmG5qHFY+n7I8YMhh0J1/u2zvGZ5e5X3HKyWODH03YB3XmW8c19bYzLjFMqqnOOphSEJZ2hWC9YnR/TBM8geJGATKDOsjtOD9YKf+ZlP8+Lde4Q2cbg65ptvvkXXb6lrS7NYUVWNMnmOcdDit+cNR4okmd67zaDFlMFGxghOIrURbOiJrbA5ELbuiifnT3in+g5X73aEENlsOnZdN0rSGUn0+44nD5/g+8j2qmMYEhA5/fhDTuKSF7/9EsF6xCbe/xPvUf2Jntu3jmmWyhxsxHL51HH/0dkYC57rQTprWNSeEKGNkfOXzuhjzzoeglMQr68sTQRfO8xW52ZICcmFVRn9g7GiseVxfZuPYAU1tv1AHyImTp9L9in6kOgHlZLX4a+MSCn7Dgp+nmxUSVnaMeqiqcWmE/xVP095zQaT1DfpJWFioNjfZiz20/6w5HXoeXvenrefmPbee++NMdo/iPYrv/IrdN0PziLxk9DeqN/ga/XXPvoXDPyPy/+Rf/byP9P18xrV6vP2o2pucDwTWfj9bQJ+8IT6uWTXj7PVbc36fI1Jhlvv3roGFPlJbsurJS9/42Xe+KU3fty38rx9SHv86mMub12yvFrypb/4JVVB+AGaWOEr//JXOHx6yOf+v59Tb9gIv/FXf4M3fvGN7xIH/gjNwLc/920++48/y513nrMpfdT2A8i9XQ/G20w96zI7SFUpI9EwhAksMP9ODrLqCzckSlIh09hTgjMKhClJ74LwKRWDxpTEmmQ99HlVYrmUyTGRWYCXEhy97lCnrGUekwY0QghjwM2ggTaDBq2Ljyaz/6eYZufW39v8nGOAjRzENHMntPSH3tPExjQFTEd5vRKUngf3Bax3mszKAYNYAvBMAW7nHZXX4IUGhSrqqmIYlH6/qmusc6o7n4IGtgah3QcOj5ZEAhcXV8ReZZQO1kv2+05p0HOgyDufg/zQx/76e0CuvZ9Jkkt/1zQVTbNgs9lijGR2nqAgEKdsFkY0YL1YNhlIAFEiOKh9zZB6jBGGPiIJnBeGKNjYsKodVeMRSXjrcFaprI3xWSZAg6xREn0IxCFwsl4SU2DT7xCUDWfolUnH5XF1PR8i2bHXRGJJNBQGBpUgKVT+dpoOFKBBSSjoOEvGYlYLmspxenHFdr/RMTkErNf5MYRENBUh7vCNY9juqUzANQ5JNbLvOcRzo65ZOR14+7YlDh3eDpkq3JTRRAEclsrSkgzRZ7P5c1AIVQ4Sm0TlnM5/a1mvD9hsdpxdXiBJq67LCE+aJcjvXas/lU5ck3fWGoK7nlUtbEnYnFCwjsWipu+7MbEEBWyoc8wafRZN8E3JHIlprIZNokAUY5T2XIuwtQptAuSUxIQG/F1OmhoYpRa8s/iqou8HhpiBTtZivM9yPLlavlRROwXIxRDpC4176rTa2FtcDmSNTzOufTPKflvAfxlMmOdRylRvkvI6JQWERg50T2Ai0pTUKeMQwFmn951ZCGKW7miaBmNUpiN1aaqaLoxOtqypjEFplc3zSttf/svBe0Dfa3nYedInB7fnzGqmSHJot+i6nwOhGNi3u5xs1KSudw4RM1KICpEQOlIKdO2gFOnkvoxCkkgIPSH2Or4NGbiVZcoo87qkjlS2MMmASUmraSUxDIH9PhBCwFVegVdRk27GQbX0hDgQkuRK75K70eBh3ylDUIyJus6sUDMmpZLsU5BWGPsKEepmyf/kL/+r/NzPfoaj49tcPT7nd7/wO/zK+SV9GHJlrWgg1RiiKDDTeUMI+QpJRoCUyftFkbBTmTjHft8hYQLIYQxNswSELrQsVgtEPCEI7X6YHadLX7Oqaaqafkjs94FmsUAqR+yh2yrblqb3c2/nZzw/vaTG0nYdxycHLFfHWG/Z73qMhfXxIfdeuIM1hrbXBMEQBqrFguXxLZZHt4jdu0iCo+ObnD294MHDp/QhYiXSxx5jLL72HB6u2G224AwnN465c+cmx6sVd+/e5PGTU92TrGG1XHK8PiQMkdNhS15eODhY8uK92/jKkzAcHa1ZNwfcv3/K47NTLq4usVIq9xMWR8gVrznXTLdtOX96QVh62uCJZomQGTwMVNbxymsv8tf+2l/mpZObOISPfeoF/twv/0u8+eAhVxePGMKgDBNiMHgMU1X3yBqXBEk2y5VoEoCowWtEMJWwRDiwCSMDPhqkA9PA0Anbq8hCIk1VUS8tC+dGZrACuDw8XPMn/uRrrKXhm995wnJd88lPvsCdV25hcUisidZy2NR4Y1jfWHJ8Z42rFyRroTIcrdc44+iDMm3EvC+kzPbhrM6RtuvZbDfEfsCEhPHKxoUnJ08TMfSEGBlCIA1RZVfRJJgJCZeT7SXnLqIAvhiFdohs9j3ruqcdEiEnCVKKed0S+iHRuoh3yvyW8noVkxDFFLwKkOUXkkrZCAqeLDbvECJhiCqDMwS2u0tkAQerJeumxsRSEGDACpV1HK8XHC0bvDGE8IcgqFaMqGwzG0vea9UeiXn/xZhpDzDzr5fEGAogn054fXthkhobr2cmgAIw+gzjzx/ijM5BRh/2+8JikClFM9BSRsO/+BWS18R82fGU5RmvM5+UD8d/XLv2aIvOjVImENjkz0wMGx/WRjaS8p1rtrtee2L3UJYoZ636D2WfsDYXZmTwgSRSVCBJs1BZ367rdE80hqr2hBBVMqXYO8VGtpJZY8beefbRxw6QLHfnsixtsa+sNcSYp4jJMlRo4rTyfpQhLQl8553aqkZyAh/MS5AeCYijymD6Agq3xmSAkB0LFEq/FRtwUat90McewbJcrnQ9eeZNmOlxss/5zCeG6+POTL8o/BQyGx9lHG0vr2j3Lc4u2XcdfehzQrOAoNUPTsaSRJ8vDgOOvH6KQ0KgwbJ0jir7rSaD/4a+V8bJ2b2OPtAoJDa/7fmDFPBdTqM6S221sKOuK+6E27wYXuR9934+zo422ORLl/lqR9CGFGlHN11q9KspDMmWk4sTTo9OryWPpy7ME2q+3ozOhoz+RJktE6hHsn2qY2ruuxe/wl7z6fOYtBP7Siz9mGMfBZAFJZZgR5m/JEIqgAZRW19Kwc/4QGl6nGv29oxBSMzEKiLjKBzPO95rXljG+Mykha1vXpRxqEg2z4FBKaUMrprk3rRgIq95zEFeXGu3Ht3kyUtPpvXz+so5Wzs/2Mq7l+JrY545cAJLppTo+3YEdU9gwuKfCiIqQV1Ajq7Ep6Ss95GYQl7Q1Re1pvCfybU1u1j4eu0wMttKigxxYpbGZL8rv0rrDE6UvXccX88889APmeWoFM3ItfGsvlq2BcsGlI+5efs2n/rkJ1iuVkiEzdkF757dR7CYkLLkm0xDfmRrmmI8o50paFFciQGYIvMmxBBGH9mQJdGcI8SAdZaqqbKNNYzjsnh21hmqyis78JBw1qiUmkAfhRBifgV2JisihD6ws8qmI86wWDUjp5agspAH6yW199nG0wI5rKFqFlSLFTEog15dN4jA1eWGftB3LmR2NwN105CisnLVdcXBasliodJhV1ee7b5FRItCmlqlh7ddpLjIzlnW6yVNfi7nHAcHS7r9wGa3Y9+1CirNRVYms8qJHa0jJArtvqNbDvQRIi5LyVvdOYyhrmo+8anXePHObbwx+KXn1ddf5vH5FU+fhBwLKfNkYkoEc22u2uBYnh6wvavy2COrU9KvOQsVCUf2N4IQG7i4ccHlYs1VtcPgaCpP78JkhJd10llObhxy6+4RfZ/YDgPHh0tu3D2kX/ccXB2Q9ob64ikXL55xrz5icVBT1ZUiAUVjGt45UkIZ01NhISwxL9QGSIm9tGyWV9y6uqlrnQWxZd4o47iyrqkEs1hRhFYUlY4VRtXdMi9zSEGLLIdIPwRs9hGetb9iQtmkcks5xjgVx01vQsj7gWiMzoyYXAV1Kghb48VhGDAmalzYVTirjN7zba/yjmXt8daM+8/z9rw9bz9Ea4C/ALz5ozvlCy+88KM72Udoz+baflTt4OCAg4OD35dzl/bq8Cq/0P4Cv7n4zQ/17T+0JbIqDFDz3b8n8NI3XuL9n/rhWDaetz/Y9onf/gTf+DPf+HHfxvMGuOCoug9Ka/2kNhMNza75cd/GH4tWdRV33rrDWz/31kf+TrfueP+n3ufkwQkXdy9+qOuKFb7+Z7/OZ//xZ/HB0y273xtAKbdhOXD60ulzkNIP0D4ySKkEFucJLueUBlqBIzICZYp8jMnO1jUGpDGYW0I1MAb59ABNTJQqIcyYtIES+PreyPHrFZzzh8hx3hI0MTZXJKqsU2FXSUld8FLFVgBFY4BnPO2MwaicNyX6qCAKI1kGykzPNsU4Zaognec9MqvLHHw1D4xOFbXXwT8aKNLfl4pyay3r9SHL5ZIh9ioXlIP41aJRiRfvZyCaxNB3BCf0QVitVyolFhNX5xusszSLmrbt8n2VpLbegPeOMGh/lfjl/BmusVzln6uqYrVa0rZ7QihJ1BzwzoEr5zw3b93k+OSQYehHloa6bui7Ht94ghEao1VOdhBsFAyR7vIJbb4Xa71KDBitJrZGAzvVYkFIiX3XEaOh7QKbdq+RCCCFqMEUkwOOLifRcuBNBEyKKp9EYQDROSDGzQK9RUCCHEgXkpRgjya1BJXY89KQUmK32XIlKgNn8hfL+c6v+hwIS5AGDCqF48VzYis+eesOdeV4+/ycs77jandBuNzgmMakMS6PvUwzbQohfU4ajkHGKYk4UWmhSUUjHB8e0iwamqYhEbm62iBRAQcpM8FYmzEqJs/9Mn4weKvJhzL3BRkr3pUu3uC9gsysMRjnSCbl4GgeT/JsAH4CWpGDTohgLSp9BhB0vjkzJSOMKVXNMgZP54nMMllDTIjJSeIMIDLGYJzFGQ04l5OmlBj6gZATYlGEg4MVXTsgoEClDPYDDWonJLNFlYC+AqlKwuJ6LtVgrMuBrUSpxC2rrAJecjIqA3r0nqcqYCkApRKIlFnCLWoA2uV+iaJc4/qZjgOV28tdZDPjk1HWqyiarjKztdnla6cMDiuJD2vNWLU+rRWaWCz9IUn/WGevPVPZp8b9RLRvNSinfdf3A96V6m49LqbAbrelAFn7fYeZvf+yHmu81DDkymXnoO86+j4x9EHnvRh8nyV+RPCVxXmL9ZaqkZG1x2SwkCvJkSD0YSBmiThrvfZtDjWPiWCXE8FlbJJYrhr+9b/6V/jX/9JfAtfw9re+Q7e94PNf+hLbfd62BJy3mdHLoAlkBXcWKviSyBCBvh90L7E6vgqwVaLkCm1dB63xdH0gJGXw6odckZ7ftSZ5ZJz3rnEQVGZm6BMxgwURRxwEV7u8z+X1UhSUiYFmscxMN8J+33J6ekkywsdff5kX796ljwKrG9yzR5w+PCUOhrYXNtsdT+6/x9BuuHzyiO7ygs1+AylhEyoRYhLrwyWrgwX73ZblwYrVeoFY6NPA8mDBcrVku+8wojZN6iOhn5IslYWXXrzFi/fucLXvwXgshj6DZqqYI8DeIGkg+B4r4HNgPO/exGBwbsFm1zMEDTDHkXUgcXiy5pf//M/x+ssvIKbSpJVPfPwT9/jcz/00X/+K5fHFIw4OG/r9HvphTKxBzGNbE3VRwCZYAF0Qekk4o4BKZy1LY2iMo0s9Zkg0PmEFbr90i5/5xU+xvrHCW0u6Gjh/fEnjKmwqC72hXlhu3j1kbVYsV82YojOuIvkKk2qqgzV1tSIMgT6IsgEYlZqz2ZZRZr1IFKPyRDlA34dEF5SJMQoEVQrVRO2ki6v2UzJYCruh2gsGqwMgmQwUM+MaWPYOyaxKQ0j0MRGSMEQFKSEKrHBW95GJoU9XIosCNWIYsrwEkNkVnbMj4N8YO9qeISZSUjaylBnOCvtoXdc03tO2O/q2VYY6A7EyHC8dB4sDau9JfwgKxUYAYwan6No2+QcjcB+4tvmWv9Wgzz/L9JnkNLaZGCOn5Isgs3OMu2SxS75HK58XBpXrD1PsJVEmwXIPzG5zBFvN9qiSrQbdu2cOgTLLhHGzL8n+nHmabkHU/C/J28lPkfzjaCVc8yeefbr5M4pcv4YxUNeNgi/Lnm0UGKT7oozgspxZVJByln72VZX9RKFre2Ub8V73ydH2ktE2tdYSTe4Po32erQjmdzZ/Z9ZZfOUZwjDZjzNfsdjsy+WSxbIhRZUTAk3+xhjVpoAMvDGYvyCY98A+EEK3J5T1Sw1FwGR24MI66XWtiEElL6MWQIDhhbt3+eQnPj72j9o8ecxnN3c0VzPKpPQteX+Y3lX5M/mDhXWFMsZlJn0nQt8N41gfL5SPNX1hnxTU6FafxIphYR3HyxXWWi66ln0MrA+P8HXFZteOY+c6AMnM7pFx3I0skOXVzMZ0eV2arPfc9Df4G+1f5x+Yf8B79t359NYCk9kcNMWh/gbYf4TKn/28IL8k4Oarg/6rDjUvf+tlLj97Sagy6OmZpWXe5v6EjMeUOTyBfQqD8fjckNmiFew6rlZlfcjvPYnK8JDt3ewcTeOgMJeMdnccx0sSlccKIYNmJamNmJ/3eqEW4xydmESmVVHKe8knH5P2431PtqJaJCPF1Gi3lWvNQY7TciMZdJJBLdZeK1qYx1nGoWEMVpRqaAQ+jZ9NACVdX9MY4xnHGOQxJzk+YcZ3LHlvEJnGaGGBEpmdgLzWiBaajCCBlJjEwKc+CiOTjyb/A1O8aBod0zNrnUlmCY4ZuJz7sLABiiS1h5xVqW4MJoMjSjFHsa9070i5+KYwB48L7ejrzJl6yzNaa7hz9w6/8As/T101tG3P/Xfe4dEbT3VYlIGLAjvVnyD3XcDE8jLzPo5MTDq5VzROon5kynaxQaXa1dZLYDLw47skRwUUOGsUbBPiuEOj0lhx3BiTL3EPfW9B9bDwldeCspRo244hBJarBTdvnOh4M55q1bDftOyHnhBRmc/Nhr7bY5xw+eQp3X6ngLDiJxplUmyamnbfYp2lXtQKrhdlLa0XNdt2zqSs/ZTiBGRbNBXHR2vEWEIG90oGwBYAjMrvCcmqj2uLvWDIvgoYHCHKyACqc0h9NWPh3r2bvPzCzcy4bMAkFsuKF1+8TQo9l5srvKuom5puGPLaEMf+nOwKQ7Wr8HldinnLtvm9O6AyVpljk+DQA3ev7PD3LHdevYnzFqKwrCreesvryBCdw9YY6qVntV7QLGrM1S7vaZZUWcR7TGVoWLJ+ekQcx4SlQGLLnC4scCkPJke5Z5WrFsngnGBVIs0W22O2/uTY2MS2b3DRjXvpaPdNU2Z810VWtTCOT0yTJgsNmDFGVr5r8z5DSpntFX2u0f60s7mer5vKup1l22TGwlUKN1MihCHHivQzZzx+UVFX7vqC9bw9b8/bD9Y88H8Cvgj8zu/9dJ/97Gf51/61f21ad/8Qt49//OO89tprv6/XuJlu8h89/I/4d1/4d/mNxW980MB/tgnw/wb+jyhA6e8A/xs0UPZMW14t+aX/7pd4+vJTuvUfTqapP07NhudyS8/bD9fEynMWrj+g5qJjfbb+gb/31s++xeZkQ3qG+OIHaeov6r/rfc29N+7xrZvf+qHPB2CSmRXLfLRW9dU8ePXHrv0ATEolmV2YkyommnD1gBJaLVSCXjDG2cbfWTsLXEoJKIFW+9tZxVkcg2YaYRCMUyBACSgB17y+Zxl7rrXskZUgU/6G+qvWaLnL6JxpkMZ7TRqVavm5j6ZVjygTQA4k1ZVnsVzQDwP73R5rJSegtNrGGpMldWaJguJwmqkKF5mexZgSSCLTTeYAQ4lOlscrQTaYBZ2g73tEhBCHEURhrcsB7/n70WulqFXNwxC4ODsjGWj3vco1xcTl5YZ+GJhmjBCjJq8LQ8AUFLz+buZB6vInxkjXt3hvGYaBvu8wRtkYhhgxxtIsFhzfOKFeeIbMeOW9xVeGrhuoajhaL3OVlDIEXZxv2F3taK1SJqeo4y05DcAUinfjHMbaSWLPVFwagxjl+upjT2y3mJDBJFhsNDkhaXHeUzlHU3vqZolxWllOSmw2VySFBCES8d5jjCHEQNf1CFoNabwmBGK0SDA463BicDHiRQNoxsq1BIUGwiNWkmaZ9bc4wEV93+ebC7bO8u7VuQZmg0p8pSyTpe9/SvoomKAEcmN+j4ZSoSc5kCKl2isHOZdNjb9RUVU1VeV5ZfEKT09Pefr0KSGkvHJk8IYzxDQFVMrYUB4J7VPjdU3RKm6Vw0miDE7kIG3KiWGtuswyY4XGOkdj5mOOAsiR3OdWwZA4i8QpCG9Mlhd0dmR0KPNdMhBG8s8pCRL02LEy2ipjjbWa8PLOUyQmU5rWEeeqQmqkCZdcoW+tJUogieCsy9W8hQXEEIc4JVNExnlrChAkR5eMUYlK6ywSi4yM1VXVyDh9k8b29B6sxUoODpcxMdsZu67TwGpTUVWWvg1jskGr7DSQZuW6A5CS5KrQaa1DtEqxMBmMFeNRxnc4BdUKW50mBJxzGnUzWvHqvSWkQAoaFC5MfNa5POaV9cs6S2WFYQgj5fl0j5GhH1DAAuy3LUlCZiOZnseIVtZst11mkUhaCRwMQ9DKX2M1yGnEMoSAEAkxS6JEMwHQckBaEMjyi6FXAJuxYExQtqy8T4UhEEOYnjEHmB2CGQIP3nmTs/uf5DLWfOEr3+A79x/pul8ONdAsKpr1IrNXBIyJGXjINemH0jUl8a3g3Qlgmb+SibEESYYhCkMfGLqQAaeZ2awEUbNN4LwnmcTQBSpXsWxq6gMHw0DbasKzwJZFNCgbQsB6rfhUOY/E+emO3bajWdX4ytIPgvgaiRHjwdaeq/Nz3n/z6zy17/Dg/rfYtxekB+fUzmKtvpuUQVjOWZbLRaazNiyWS7oh8PRiw65W6b7leoE7d7kyOhG7wG67I0aVYF1WlhuHKw6WK5JZsr/asLloGehpLRyfHLK+s2bZHHD6/gXfbt8jhh12ZNSTnIQyGAd3T455/KhFUmK5bDivdJ05vnOTn/+Zn8ZFaEVYGYvBce/uIf+Lf+Mv8S9u3eS//0f/hIuLp8QwgUELA4ZKExpSTrQuJbGyliuTuEiSZWsUnJio6FIimDpPyJomGfq4x1UD9cphqDCtySDUDKTNUrkxJp0flSAm0cfI9mpD2BziD48Qa4k2S/g4p7tzMmAsDg32x+Q0aTDbe1yemTEpcEjZ/pwy75GtzLyH2SjEkMF11ud5ahRlmFkFRVRay2QbgZLEK+M46VoUU1LwdoqUIxSIr+M7xqh7i3GkqADnIq8qI5PdlAgom0KKSSU7SmIzJ9KiFDvNkvI8U9Ylj1ibE2OaKB3SQJ8CRixip7X7J63NOWSs0X2qJI4RyapLZb+d/ImZ2anzZfQnmH1w/Srz9Kv+Nf2+7H0f1grryux04z9Gn/Fa1gkK8HpmVI8OprXKwFPG8LX+MPmesq0FjKxAMcUseVdA3hlQYCa/6tn7nhLrhTnm2b4ZH2B8sAI8mPdYOa70Q/HvUvbbDBBmUthz/JN2gbK7ppjo2hZBgYbFx+n7jhjjtWsWBrZnK/efBZDNfy5gt8LCaK3aBDFkGqWUE5EZRLRYLnDejuyZZBsrhIRz0NQ+Dw4LL0H7b/YM/2BA3tCEelXV3Lv3olayUAD9Qj8EHj9+PAKjMY4efUWLZsGf+twvsKh1jwLG9dekAsbUtcQZffdF0hER2n5PMIUxZwKEpZTtC3Q+qOSv2tsxCO+9/25O8krmGM2+ZLG/KRaOpmtLTU0Z/UYgxUjbdwzGcNkp88dLBwfZ75xe1FwSYQKRXR9719jKJF+3/CgqoWoXDmtVQu8l9yJ/s/ub/PPhn/Ob9W9qwUaazjUZxEAw8KuCPM6/eWiwySB/bmL+CdmOPzhfsbxaYAv7LZNvOgEkp7sf4xiz55i+M93GBI4pzz/FMa4DtcpzqxEuuS8n1uhpVpT7KqxKpc/KH2vdNfCOzXEN9ZXKfjMDh42MpjKuW3Og0vRCS+jkOqPzNN+uryqZLCWvrQpwG4sich+U5495Dhhr8JVX4M9YFAIFSFMYUS9vX47jKI3DRyghHRGYDb9r/uV4zvKtvLaPLC+6II19zOz9F2a4UaJulLFXNhXJ5ynjpFwjxqixljx/Ypjs2rEf8nsM+bPx/UqRbJr6oTyDFnxECNf7szxrStONFN8LtBDFzOwaBfXEzChnxjiCQcNh7W7L7uKMoVnx5HzHo9NzhqCxnqEZaNctxiobHja/z+y7ZNdEYw2zdzWBe6f7Le9sGmdlbGdZq5BtLpnub/YqwRRWJuWmc97jrMMbS9qpHxKqwOWtq3wP2fdKGuOwFCbbqEVDIvgq+96jbZiwlSW2ie3FOQ7Lxekpw7BDukDtHRAxYxGZ3mVV+dH3d15jpm2OyUnSgjeXmQhFUHDaENR+RHBGNLZUVYipSKknDpG9DLQx4irPUbWCymEGw5PzC/rYThaKzLrbQNPULBtl0fHWkgaNT1rvuH33Ngf1gpAE41Q2zjvD66/dY71c8K1vfYf0jmR5zXFFG+2osQAtGRxCA4gx7EcY8LReSTQEY0kYklgqsWwOr9gcX1JVgNMiwGIzlRFSbB5JyiiUskzjEAKx7TFZ9jHlOeOiBxPzfpGLFlBbv0iUymz8lRU7pDLHDX6oODw9gqaYnQYrunZK1LXbZKlO/dty8ugm737qgU6EUnQ5LlKMz9M13ejtjnGPcT7P5rQktenLOfLcHoGGjE7C5FKM88VQbNYxPoYZ94Miy6frm0VsLopgKjyOz9rCz9vz9rz94O1TwH8J/O+B/wGIcHh4yC/8wi9oXHPWNpsNX/7yl+n7frSVSjs+Pubf+Xf+He7evftD3cbAwGCGH+g7MUT+xa//ix/qet+vvfjii7/vYCuD4V68x3/88D/mPzn+T/i7J39XC52/W9sB/yHwlfzzvwd0wP/hg4feefsON9+/iU3PwS9/GNq7P/3uj/sWnrfctidbzu6d/bhv4yO3ftnz7p94Pn5+ktuTV58gbm5r/96aFUvd1r/n8yw2C1765ks/0Hc+9qWP8fm/+nlS9b0BV5sbm9/Lrf3Eto8OUsrAmqqqMnuSftUYpoRpKUeZBYpsrtCaO4LFgZJCr0I5ZgoKzgOZY1BCGINYKYMVxtvLAaY5i9IHjZ5yb9PvDVqBaL1jH1tiCFqhZo1K9mRpF4MhDTlRMAKYIsIUYBcSQ+g0+ZuDBIUSuPIV3qp8WTcUUvWSPsiBNjFZ6uaZ25TipssYBFRHuwQep36ZApzqhHZdR9vuNViRfydZY1xjoxoUyqVYo2yJJEMrORk3KOVyCpEuDYgU1p2pX1MS+r6fVROVwOpUZTVnUBr/baFpPHV9QNf1OTA3BXWruuLkxjF1U2G8oWoqQuhou5btdoMRYXmwYLFUuUGtcDRYEyFGTfL3ATJlp7GFIUETBKn0phT5OqegICMYPFFUskVyEFn73ShFNJFhiNimoV4u8FXFYn1AXXucQAoDm7YbAwlV7VksFrT9nq5rMUBVOZarGmM9XStstwPL5YK+79k8eIRIpSAfl4jGXRtTOc6AIWJMhbEJZwRPQzKJx90VGE+HQBDCrkViYDBR5XxmQCENKKIBFaPTcgQlSBgTGgYFUVVVRVVXeF+xqBesVmsqX+Odo/KWO3fu4rzn4cPHdF2Xg+O5ymuajTpeUk5kZbp4fcYs3WDAO4tJSQPvZDBVTli7ytE0DTFpoKrrW2ISXE72KGCFEdxIDgiVSj2lrrC5ij7k/piYYJyzCkbIiTVyYu86K5gFG0kSMWIz44+yA5SArQaL9VjvPULKVZ96n3VVZdnENN6DGEWD6Fo5m9dk4JJXqntjDCkEXYWcxViH9UA+l/Eea6scQIw5qVSSnBq4UtkSN5NXmYL/ZV1JaUbjb5XVQGVdzCjXYMs6M06yNMrjFeCDma/xMDEeSMqBN72+xvumxEgJrpk8Pp2DxaLB15au05U4qHYZVd6fric2y3NLBotOlPUpQQgqXygJBfGkSJwxVunfKqUxhEQwMoLSJAgx5LXTgM9JIK2K1YSzBvHtWNVYGKBSirna1QB27C9j9btkAEsMkf2uZbFc6M5Rgu3GMRjYhSvee/JNBrPi/ju/y+mjt7Sq2ShLREiRqnIsFhV9tKQAKTjsZp9ZpqbAZlngS3rb2sI2ZpTZg4hiPBQsWjeerh+QiAZTE1PyUjS5473XKumYSCFokN4bvHN4BwfrGrGJbt9SWCFEDMY5rHiGLtD3PdvNFV030GWpt5Mbh6xWKy63O7bdBc4kLBXeCt3mnPPvfBUGw/bsIaQOI1BVNSKG/aCpBYejWahsw37XYownJcNu1xEExDRIjDivSZluH4iDJoD6TqUJnYGT4zWvvvwCN+/e405acfH4IQAHt2/zyc99lk/cu81qsePsvfv8d//VP+K9R469qRhMBJOwSrHH9vKCb3/z63R3L+h2LWkY8L5GyON7fciNu6+xWt0iWosVCBic7bl9a8lf+Au/yJPzc/7pP/0VYiirrSAZIFOSccZajPQsTeIgBUzl2JukAJwoJOuI3lIvD6mrCpzF1yaXHLvMQOQQB3iD8RXiyQAZi2SgX8wsR3p9y8O3HmHbjld/7jPYZY1JAYOCn6MEMAkkr2morTWup3kPsCYH0mNkiCpDac3IjYRNCUJCbESCIQ0KUoo5wVEYFEzS+Z+i6HxLOQFbLLExMZKIYdA9tFdpwpABSUZUlqEfIv0wKNDYQYoZfDhE9u1AiAFJASuRIvEbk0q6OedGueGQYIjQdT1t1ytDqSSGKFrtHHpIA05yAi+JMn51A5tdR18Jxv4EUyjn5KLLSbqxQt3MmI2wTPKzz5qcmjQZ2UjLd2bLvTyz+o/Xnf8oeXmVcWufXW9iOzI54Te3eZ/9V7m/8jxhSKMNo0BjOzISYiaGJ2WRKuOxAIRz4iqFzH5W7GW9AZcBCDHmvWzujY8PYmYrOLPzTsm46RnmKajrflhJchoMMYbrMoIzu7DMlbnXNWc8CYPujSkqEEaSJgPHb2Tbpvg7sUjUFvPgu0UcytfzXThvs92WJWPFjN/11rFcLnDeKQto9uNCHBgGZbSoao/3ZgZIMNjbAv9mgt8w3Prdm/xP/+xf5vat2wWlO46NEBObzYYH99/n8uICEcOb33mTxaLhl37pT/Hqiy8yMsXMbl5EwckxQuU1mWyc2tl4+Fr9FX63/zIP5PGYBq8qj/eeEIKy24qymlSVASPEAH0b6UyPxEh/tWWEkBjRQpf8jicwcklnKjOU1u84xAjb0IOxBBRs8PprH2OS9RuH12yklcGg/lR+UAXGF/Bevr5zDudcZnXwVHWdf9aimjv2Lr/c/UXupwe8bd4Z++0DsJo3gPeeAUF9A8yfNohXm9cZhRIcPz2asa/m4ZuBgZLX1ZBBeWXOlhlkzWQ7FsCYDuW8LmVgA7PnHPtaZLLxzAzwOBsSkvtqnHwy7UV5imgPG4t1ky0IJttlbgS8XMdxzVeDad6Vd1+KqmSMJ+ima0rAAJMZmZWJVsb7msb0uPKYmQ85a5ILzq4NmLLPMq0XRbKorDH9opv8AJH5N+ddNwKPUvFhJnTSyEg0Z1oa/WiDyg3WCgxNeW1NKY0+97M7ijG56KNsJLPPU1L7xJDtizSbK/N7F2V+TCiYqSyDaWTVnuZMGTdW7DiOxnMVkEMqa3zxKczYX9f2RNHYji2VIvl3gIJHTGLTXvz/2fvTmOuW7L4P+62qvfc5z/DOd+zbfYdustkcWy2SFilTEm3RhGJLgpXYUGIbSOBYhgwECewA/mDD8PDBMPzBNgxHgBwYTj44cgJBHpIgimgOUijLMmVxEslusm/Pfe995/cZzrB3DSsfVlXtfZ73dve9JJt9m3yL7Ps+z3PO2ad27apVq/7rv/6LQUc2lxdcnj0g5onsE9ln4pAKFubN3xOzCznmgpssh+PQds/7Sh0z+58RNa30maqidW+r2CLzPiBSVPzKvqm5nmMtgVA6S6hhq+xOdsQuNt9OsDNKiuZ75VyUdlNmWA+s1ytSVsZxh2rCu872ao1MF4/ZhJH9xYacAkLFKUBT1Z+TVvI8hGjnGHFFCdTuyTtLhus6R4zS1KTMR7Q53HWO69dOOD09xnUnrLd7Uphw/cALLz7PrRs3uHbkmKYN977wDhfn5wTxZK1JnuWpJ7g4e8zaC1MQcgz43ohVoIjzrE+uMaxOyb4rZFYDL/oeXnzhFjEm3nnzgeEAVBU4LT9XzNHhnOIdDJpQJwQvTNXeYWRK6XsLyotDPIiH2GW2N7bcyMfgxcqmiVjSQduvinpQtpWlZY2EfeDx3Yesrx1TCTZo5vTxMVO6aAme9YxN7Xe1fVTMz9ZyU9+knCfM2Jk9KucGI0oxV7us2Aggyd7fSKB1L1zYIlCe3HmCbu2eJFVlpIqFmw1JKc+KkjrjvbGQ96qsdEXWjICXEZkTaBU7g+WcCbGUy0bn8m/ZFMBQK7urpaxdzkqIZUbL+8sAf9aetWftShPgu4C/Bvxl+MR/9Qn+/f/jv88nPvGJp+JV0zRx9+5dfvEXf5GvfOUrpJT42Z/9WW7cuMFf+At/gT/6R//o+/76QOCvXv+r/Mzxz/DZ4f2pQuikvDO9876/8xs15xw/+ZM/eRA7+ma2F9IL/MUnf5FfXP8iv7D+hauuiTUF/r/AkpOVgP838L8Djg/f/spnXrHEumftg98ELu/8/gzofzu17DNhCIRVYDz59lEfe/zSY6aj6VvdjWft67TxaOTua3evYLbvs13Bil/63Et85o98hjSkd3//e2wuvb99zqWqQft1msBXvvsrfNf/+F2/g559MNt7L/emJjE9DAPdUOR3XYWFc5PGTcmC1qZUk5mD+QWPEG0ZsvUwBRyU68lpESgvx+yWgVj+Ww/IB4DP4gDYHmkLci8hmhkgE7Hs4Jodp4aOz0CdGg5dD5+qSueF46OecSz9ywZIro4HIJVyNya17rwFUo46x3olcHLEw/Mt42hBWCNazYe/vIDjDVi0sUTmHK3lOddAOSMLSFUSqASHMgp93zH0HV3X0x2t6IbBsvm1gkFGzkg5EGNktw3sd4nj02O8V548eUzUIkeeDbBUamBDcTUIIMvyTTOpB0omWnFCqxy+gAV275hihTwScwQp9+2Em7dWnF73qN8b6NNnK/UesynElHJP282OjDDuJ3ISxm0khpEsHi1zUgRELdtP1Y70jkqisExJJRvAVQCeihOrFnJYYd5778mJBgh3foV0R0zZkXY7hjLP9uOIE5NTvrzYkpIDb88mZZNinwKmapEzHmXoHDlGpt1IyvuSpVmFuS3Qkxpxo2RON7CvZItV8swCuLD7rvev1ABZXWp2iQoql8BwXbtUxQMjWp2eHnP79g2OTo+NeOM7C/yXgEc3DNx54Tm6oeftt95mu9kZqJMyggEomZINroprpbUqiGzEDgPx7Zm4qnhWgyfegcuMYW8gbwF2KpnJe1cy2rUpZ3iRUkqnlkWo+lQVnLU+GBBmxKjOmypFThnvPDEGXFbUlYzrbBmcnfNGVCmqPV5yG0+zf64QNUxNShTSFHB4ahZbVdZx3tTOat9qoBvKuKjgOofvXRmXARJojMSUEO/oeo/z3jIbfSGDSRl/KEBfLtmMkEtJElu7JbCkmRwDWgBFNDFNcSY4eLWM1VRk6qEg8s54BmoqRrlghGYxMlX9qWY2WkDQiJ7iCynGW8AkxVQyxRUVh8NTa6OEOJHVtyCAgXPWn04sS1dT2V8WUv+LeE+zpNWW4rSUdyrwpRSVAvFzzCkVVYm6fArBoYYAYjcTNFULWSnPFt7WKHjxRV2slEotY0DpN1h5vRps2Y8R16UiyR8Lbilsdlv+73/lr/E3f+ZvAh2byx3n5xtCivMcBEKIjNs9iYQAnTg654kFWreiFNU2luCTdxa49TYb9yGanp+4MiZCjIEYomUCx0AsGdfIXHIkx8j5wzM2Z5dWogojPa/Xazrv2G/3tmc6V0gyhYxZSuFcXI5stka4Vcxmn56esj4aUBIikcFncBlNkb5TUtjz5N7bpAiaAoMTMoGj45NSIiPgU8INHeuTE8Z9YhqV1drKzUgWpADFw9BzegonJwPTOLLbB0J4QogRxDEcrfjw66/w+quvcO30BsfHzxFfeI77Zxds9+fc//Rn+Pzf/594fP6IJ48fcfnknK5XdKr7upbn7Rg3gS99+R289BwfX2OdV2y2e6ZxQkn0vUMFvvrkAXeuvcjgfdkHOlTg+s0jfvSHf4Avvfl5Lp88YgobQgGrVY2f2ZfVOGji+glc7wW3mbgMjo1NTlSVKQe4fsSNWy/Q47kIZ8AE6plKaRIwUtNq6Ojc2oLXauTmECbCFDimNxJy54ljYnO5xeqZKRogZC2qHZkUwfdS5FqVHCzDXaU47FnIzjJ8pxCZxmjlO4pdqIC8mxRSIO2UuB9JcSKTCqnV1NN86sniiDh2+4kxBPNXpAQg6v/lTBgDm4uJM9nx8PHIZrcjaaYHUlDOLkZyFLpupJblSKm8drbjcpxQ7+j9CsGx2UQe6p4LF0EdWZVEJCchRmWKibPNSExWXsap2epU9hPvhU6UVL2DDCFaCQn5elmC3/JWlGO8R7xrAcvirVD9ACsDNB/RRGpgjKUbbwEnraoh9m9ty0Buu5AuftV6jXc/z7Y+NVLH/JnDN9p7LLg6235YJlBoueZM1nXOyOoxphY8V4Wu91D8CyP81TFSOmeqlPSe3RSIVX1aaf0s32zxsRbUlxbMqmeN5bDY/lj93uKlt/JhQDkHdkVl0nUdrvOtPLeRAHJ5TrYfh5CNADz0iMC435V9bn6my9E+7FXdPd5lvNu7OZgfR0e9kZ92s+IUGLFxfeTpVwJie6fU7dXERUsSg6ktKkZWVhVSyKZe8sOOH/j49/NceL7NRRuzcp5xwo1rp1w//TiVcP9DP/SHC1G4a+fI+d7KnZbnLjXILh6kJyE8yQ/4ueFnuWTDdr+nBsBzgE4GcInJmc3yzuHL2kqipD4z/M9W+P9LJm2S2eT6nMu/fd+3UtXmE6dG9l7OjMUq5GMf+yhvvP764sytZYmUuVWJPVouWuZFm2WFSFJJScOq5+hobaSsRjQwdQo7RztuHt3inw7/NH81/1W+mL/YyN7VdmgA93fNaLf1JsADIILrC9HEFTyjrI163pZCtIiF3FbHR8pJ10lRryjO45JQuVS6OaAdtb/rfM+V7K1GqsiF5FpJY1rVU6WU9D1QMVqSjgyDcZQi4mrYySLs3p6yOEGlKB3q/JwN3zCnVlxRcJSy5rOQyM2mWsKAa++12yyk5zoFtFIjzAbOa3Y2vMqCvCTSzmJ1/VYCW7URihaERA+u0f5Un2FZb66lcZXz3GL8jEyW5t7UMuZlLijaiGkz8UvR7KqY+OI+bR5o+xsLIlNFOA4sGLPqXX0PDWDQPJdyt3kAWs8wUs4T7TnPvly1J9LWlLT+ae1Ym4vzGrb7MmU7V5MFxWZ8Rnn7q2/z/9te0vmOmJRxPzJ1icsbl6wuByhnthhi8RVzWbfLe682rs5K+09VDhas5HVN7qg4Ui09rkV9MuWSJLTcoRXCFNp+pdia8d1E5z2aEyEmpPd85Tu/SpJYzn3Wlxgy+/20WLumzDus+rLnJZzk0q+AczbXp/0OUiRMgc6ZP+a8neVCsAQwEeiGDhBCKKQk720MtGIchgesVj1hCqSkbLd7FDsvOyccnxxz69YNbpwc4/sj/Mkpu/3IbhqJF+fcPTvnC+OulP4d0Zp02JqNumbYXO7p+0uOV8ccrTsjYcZoRB9x+M6zmfaIF076kjVcsgLEwwsv3EKfU7phIIQ9Ucs5sEwtw33N1+hFOTpyhQQmBuvZzZvqtRdWJ8f0fkXME4yJj/7yx/jY49c5+4n7hGt2LnBO6FyHEYviotRlhJRLcpStiWkMXNtco8IuOcOtr95mfMehHyprTzCrUEpf6zwrzSZixJ0Yc4H6lGEcIJv/JRkk2ZlHQySnSCXqZi0YiGRyNCJVzJkQqw2t+Ef1GbAzRSgKXimznyYjEJUz/xQy2/3E6FLB8yoR0ebvbgokVVxnyoMpKrvJiOSWyFQwHlU0256zn5Kdr6t9LSZCpfhvWcmu7BtasKe0sGHP2rP2rP3O2hr438M/90/9c3z37rufIigBrFYrXn311VYGTVX5i3/xL1LFAn477cv9l/l37/y77Nzu/X+4A/5D4CeBr8HxWK/XB30LTR39a7ef+Imf4Cd/8ifff39+B+16vs5/cPc/4F9+8V9+99JvO+xer1Z1+kx5bUlS0vcfeH7WnrU/6G1zc8O9N+5x496Nb3VX3nObjiZ+4U//AnH1rNzbB7UN24Ef/y9+nNPHp/zU//anuLhz8f4vovDqr7+KjzM34zt/4Tv54vd+kTd/8M13B4rfQzt9fPpsr3if7b2TlISW7XjgUKk2ifcaJK6Af3lDA9RoAPzi1UKUqHKW9foV0LMvn8HIBj7qjPc0MJT29qd+bsBe6VN9xZQQAioZLWoWUoJTYYoFlExFBWW+90aqKmCPOOi9Z4oR71055Gkr/SVO8IPH9R0nuiakPRoLsFtLTiwiJvM9zcBlBdFEr6yQ8j6REqQpACNkOu84Ph44OjLlm/V6zfHxMSlGVATfOzoxYG6/35NiDwnCaMo9qkrGg5iUtS/KR1mFKZQgfQGVG2i2mB8H0v7Mr4nMsFUqGUQGkuUGsvhOWB314DP7aYvuA85Zmayuc6QyJ1OC3fmeMFlWnGZBozJ0AzkpIZlCQ9f5FjSqpKQD0PfKIdwO8DOwbhmaJfPde3ut3m/OrPqOoLnUd0+Mo5Wxc85gUyl1W6yUE3ReuXH9hJOTFeujgRgy9+4+NNKYszklhUDVxq6C5y3wJhZcKQCmkesSDVGZYWpgloWpz2n5bJbrxJVSY/OzslJaw9Bbua/VwLBeMQwrEAxIKkCwlmfbuYHbt+8wDGve+upXefzwIUkjnZtBZE3JSDc50ZXsdrKaxH7tvXd49dB78LaGtIHkFTA2IKbzroHFFQjvuo6u71C1dey7zgCpHKmKNDFW4k3NSp5VgvpVDzimKZjSmCi5lGWy62Q0Z2KxC75zBTDXkoFrcu5WhiOVuHwGbIydM5KKEhuQxSLAUEGkOVAhLTASJgPJvHg6ujKnc7GnRUkkgetcU9tIKZfsv3wgTm/liMpfmg23XnhnAfRcghq5BCXXqzUpJqYYmj3MQBJmkfcW9GRxT3YN7wvAlyzwsT4aGAZfVOpsHoYaYPBCmpJl+BWbN40BpZSbTHWtJhympgClFKAqy1oQ0gJANNDc7G4tj3CwKqjlN+znYg+WQYVMC7iYspUBjRbAmGXlTXHHtWCMeG/qeVqzLp8GAttWoGLzJ2/J2S+enP1z/uSSzcWWEOpmYhtZzqkRrsZ9YD/uSWrZxr13pTSb3cQc3JvBW+89J9dP0JSMHEpA8RYMKuD2er1GyFyMG6YxlH203ovZ2JyUcZxwweZS1/dMwcqlDTVQKpZhbGW3ih/gTP0gToEccglGwOnpEdevn3B8smJ95BkGxzjtoWQ0by87Hj+E87MtgppinYD6jpOTFdvNCJLwHobVgMNxuduiJNZHA0dHR6SciuqSrRs/9JyennBxvmWaJiPXigUcXnjpeb7rE9/F+vgave85OV3hjm6xnRwPHz7gN37zS+z3Z4wpEOOEU7OpTjxODDCXSsIR4dad27z+Ha9x4/QWTnrefusBn//CVwEh7nb86q/+It3p87z+scx3vPgKqzZXzNanLHz49dd5cO9tNvvHTMHWovduLtOH0A3CteOB692ebkqECNKtSOJI0THmzJOLc27feZ7OdZykY4LrjdxYgkiigsRM72HtrexoUiNwj2Ng2gQiE5MGVn7gudee46UXrpuQZgjE/cg0TfTdihQS43ZCsXJH8TKz2Y2kKdLNbMfmS0whcXG5JcSRnCc2Zxfc/8p9to+2dPTkBNtd4K179xinHUMP437k7QePiduId+ekJExReXD3IY/OH5dANYs1Zvb2nXfO+OVf+wLXTx6y3cD5dk/nPYMIm8db3gqRoe/A96a+iPmVOSnjPnI5ZYI6NAmbXcS5HdM+MLii/1QCxJqdZfKHaCQUrc9V5xKkXkwRMPtCGgHvTAnOrOrvLOPjm9rE7H1V/lw2s3UzWebrXKK8X5cufdsbocyRr3Gg1OLLLc8rT4f3Dj+8VB+pnZPFf82XSPXq9v6S/T6X05zPRO0eFmQXivl1bt5PpH1t9XvEyF3e0dORcqxSmPM+O28cNt4HY/T1Ww0mL73Hett97+k7b+VTu46u741MVp+p1Ez/WM5Jsewb5YyAFNERI4h33mgdsZAapJAptOzxrYTY/MDnZ9Eez0xXMpsElabRVrEIvjOCc0wTGmtiQlEOLeXGNcMU43wuUQt6eu+NUCmL88PBzJkJVvOU1uaHLIPhc5tV7ep31XOg91bK8UvDF4gSio8qjRxTLYLZwuKPDQP94Ok68y03mx28ovDjcPrzx6y7I1588QVu377d9omXXnqZa6en7asvLi64e/duu4+HDx5y9949VsPAGx/9KE4cr7/+Ot7Xu53PIk+f7Sn7tRHfD+67qCT5zhdsocN3vr2/DmJ9zk6E54cX+PPxf8nPhZ/jF/i7hFJGHUDeBP1SLTGrRQUICCAPBF4rfqhzuOi58fCmldMr62jZbDlqIxS1NVvsbysJlmsyyHxW1OJbN3W4xTPXUqIYxILs9e8sTYqWc7e9bn7WPFdKkdM2BxpxioVKEKWccrsjOVj/9W/OVftn/WhJEoXqU3GIXAjEIqnYstTsX1U/1afmwlweuxnZdh9gxMs5mcoUqQxjSTHOvrAanLFcNtXmL3Xi6tg18qBYSVvvu3YerOcxLc82x0OqppWZjwffYWcIS6SpXzTTpGbM4xDngEruPBz08m3NoLfLHDyH+qdZKVAP9qn2cx1WoZ2/pagTk69qzy1Hq54pQYmGfV1pKWXOzy4X6rY1JbGSuECzmoJquU1fzoaNyFe/p95ssVNdb0kPORuhGpGmalbttNOOnBMpjodE4yt9BCNwe++ImKKyE1NoVVX2qz35TjLcrPTTiZXktmQUCr7hWK0GhqGj7z2d9ziv7YzsRPCXEKfEPlqp8n7oiFFZrXpytIcooo18WVWaus5U8ezMV7C6Qg7qhx7f+Za0ZuNmJRDvPP8cx8eniHg67xj6I7J6xhB59PAx+2lPSsHUmTS38WsKhLXEH0rXd1y/cZ1rJ6d43xvJZTe1RX7++BFOM8PJLfyd51hJt5g/NlYn/hpHN1aM+w0xT01ArWJEiilhHclAHBwqpk6VO08Ub6SZDPtpYrWOdKsjju9e50O/9TI3d7c5unbC6a+v+OIPfamcK5TeS0s8U7XyzjGkotgVUYF+3fGyPMdHfv3DSNJyVo1oho/8yqtcfuQ+00vBSjmXsuQxFkIZOk/S8uMUAj4J6mB1f2B8MrI5Erx0UHy5y8uJcZqMbJ6U7X6kA3of2MY9jx6dM6WJ881FU3W8OounKfLgwTlhH9HsudhOoErnPDlmthc7wm4qeJjtA/VckmNmDJmkQlYrA72fzOfqXCVrVscPVA1nCiGbQjR1jjTvrpUIlWz7Wy1XuSTYP2vP2rP2u9AEXO+Q/dc4oF59uwjD8NsvOaMoP3P8M+zkt0FQArOPPwz8m/D8f/Q8d67d4ZOf/CQf+9jH2ls+9alP8dJLL7Xf33rrLX75l3+5/f5bv/Vb/Oqv/iqnp6f8xE/8BN57fvzHf5z1ev3bvKvffns5vcx/ePc/5D+99Z/yV679FWJJXEGBv86hilJtF8CvAX98/lM/9rz666/+XnT5WXvWfv804aA8/LdDu7x9yeXtZypcv+OmsN6+N5u/3qyfPkZ/jWu+8IUX+If+n/8QH/70hwH4kf/qR/jp/81Pk7v3l7B7+63bfOpvfOqAa+Gy44/9P/4Yl7cvufvG3W/cn3fr3xdfsKSHZ+09t/dFUmqgHwugtRxgspasnAW5yJVaR7oAByoABzSwTwugWNVLWtZhPTwVwFDL91byQcFN5tYAOg4/O/9TwCRpry+D/waE1LrfM6GqBoeqnHoFwg1UzgVkLqUQwoTzPYhl6kxhggyrYSA5SET84Ol7zxRMvUKLTPwShatAo1DKWyEklJoN1FSnDgAzML0dafF454T1umM46XGdQyQQtmeM2x2rkxP2AdQ5phBJMSLiccMKfGTovAWMF5PAe8eLd26yGUfuP7oE8SXri0MQbdGjGty/8mcQYZoST55cFtKEzoAzdli+vNxzuZtQdTiUYVCixhmM1RIEyh0OR+87/OCaClaKmWmqsu3SysU0IPNgXlzt6zIDnkYscM6TmtKOKVrsw0h68thUSSRzEfaM0cq7dHTMwcdMnFJRh1G2mw0hbFnteoZh4Oh4xfn53uYoBUCRGrDz1Gy1BazaVKxnxbAyS0uJGMQt7muexwdrrN5xm+PQ9z0hWMCtyrr3fY/znQGh4qlqTd73SCkBsPwuEcfNGzeNuCXw4MEDrMqjqUWJL+XrnCflSFfKmjkxUa2kVhJEXMeq70kKISeklslCSsY1c5C2lJdqKm2aSSkUkDAXYLOualrwJCtGCqNm3s42T8payuJwJTBhpAJpNsJ3HpIUG2UgboyVdDeD4ylnsiaG1YDvLPs5a2cKcmpzVZMaGac+ZVVSzO1nzbmoQ80BChM7Erx4lFRKJ2Y0gmoyJSZv8zblhObUSkVIsbGVUNTmgszXz6nYOvFMIZBStPKKxRZWNQXEggqpXksLdamijG2uVZCZkgloEHhWocbrY0xmG3JmveoZVh1kTwqBru+YQiYHy7KtNiSLlU/zWJBPMTBdpZI/SwCFuleVTO5GQj20Ykrdl6xPue5HeiUYvhi32bYcBiebPL5UMl3J427A8rz3VWBwEfqk74Wbt07YngfC3uYxYmUxn3/pJs5nNhcj02jldeIYbB6LZXquVh3demCcMgZ7CpMsgyM1WiIgvsVTur5D+o4cYbOZgICKKXzYPDTAfhh6tpdVTj8f2BsLolhgIoRY5qcpCUz7yeau96yG3gJLuFYiY7ffEYMFjsUp65OBj7z2PKc3V/RrT0p7Li6MODSse3wnuC7jvDKOESfQDw5xGXXCZnvJfr9FROk6T4qBy4tzck6cnK75yKsfYrU+4vzikm5l5Q/CtAeF4WjFMPS2t6s9oa733Lh1E9cNnEfH5Facf+UJ4+4Bm81IDoFr19dkduy3gX7oOFkdGTB9OdHyzEv2fNd51sdr/NDTH63R5LjcbgghgCrrox7fr/n8b73Fk6njznPP8UK/xsKfZrCieD7yxmvc//Ln+OLbX6juFw5FskmHiHgiHZtRIQjDUc9xnljfvMVl9Nx/tCV1idsvXmfdZYZB+e5X3+CLd98hJ2V7HjiTDV4c4WLkch8XAbpETrC5GHnrC+8wXj9mc7lDk+PRo3N6Fc4eBdT1fPXL9zjbXuDCnt/4tS9w/63HuM5KVIZt5LNfukcUwXnb82r1GVXY7vY8ObtAguPyfORzv/UW2wfnDMOAqDdlxSy8dX/D5T5ylBz3335C3I28PazwvUOyJwTHo/NLnmyDBc6gBbZqkK73Hb6UXQ3JMvXHaaIfBOnWrAbheG31K5zvi1qHI8XMVkee6A4d9yRGupMjbhytuXnaczwM9L5rpBqhJ4TIxW5i3J1zprEpJaCmOtD1vZWr0mQlKZzQDR1RbTN7OiTywWkW2GqHifb3YimLzc5t74FlIFjae6VGbNp163vLZZexldmMUsn+TRGjXnFpx5uPdRCqKwfXK2O7DDZXYtTV4T+I8xQfrHar7ZVWIkqwPSsnU83T4rPkoiiheNSZvy/eSj41Qs1TX3qlj1QN1MMXVJ/+SL3gTJAT+qLgaCWbMjnsiSHSDT0pgYorPo3dnfMdOCMIOBGm9o02Z0+O10wxEXcjVXmv+hFXCT3LLrdnUQ0blvCw30/trFh9N/O/LCg41fIlqlgMbvYFcgneaTayqHeFhFLmWRZdPK95n77iRr/nVvf9vLhetS15v0NF+a3Vp9lvd8VvzAvSSulHMv/LianWpWxlgpz3dL1nGiP+j3T8qY/8KV7yLy3886Xmzzy2p6envPzyy9WRt3FcKPqw8Hvbk1HedQyWj68RsajnKCOS21mikpKKiqOryp31wmXGCjw3PMef5p/g+KtH/Nz4c+grCdkJ+a9nUz509YxcSuBEkCegr82qEh0eT4+ZSvONaqnFJbFxLutWCTX12RdlYEfzmW1YF+MyL+7mV85kQ9rc1Or7AYfnzUKEKv5YJfa3U4HUvclmcO89zlVl4GZFaQT4xXdXgklbJ1fWUiabWqdIOXFWf1eKIq6phtRy1G0Mm91bPPiGocwTQlXmcStEqZRSI6PMPvQ8qXLdiNtYv/t8M2L7AuOpmIib1ZksQULoBk9NIqjK4DHG2Y6W94soWeaTt3VtNrZ69d9iTw7KyrVXqk1tm9E8Xu9iruf3l1Wgh1eDeY9qU25xgaYo1t6wGDiBYehwzrEr922uuiWMrI86QkjEyfCTnBK4Ov/s2fV9UbnNNXEnLe7lyqaiRjoV5+zMp1aylKL4UgnoiO0VvnPIJFdHo3W+PeOciTrffVY1opsIPpWSsm0zsPNvKgQisKPO6bU1x6dr29tcNoXOaTJV364UQCtJTFmV3js6bwQRzbmonM6lAadxAozcdv3aCUcnx4SiQuu94R9ZrY993zFNgUoYQkxJo+vNn8vqCfvM+fkZMZmiZ987Eh1pjEgWuq5HOmEcE4lKvqFdzxfVQ9d3OOmI+x2hJBc5Z2Sp3Tbw6OI+65MT7hyfNoC42qnnzz7E6k7m0cMH7ENV/yt+GCXJR4Vr79zm/se+Quccvosce0fuV2x2kSkH1kdr1uuOk4drPvW5H6Dbe/ZMpJC49oVTrt24zr2X7rEbw8InLHtwUjYXOy6eXLDbjuQQCWeJO194kd3Dib1LhCmx2W+ZYmBzb0f++Y6v/vBXTf06Z7aXE2NKxYc5XG8pKfv9yEp6xDv8ZwfuXz6mHwxjtO1Q2Ac1JaOkjPvA2ZNL9t0e7xz7ayMPHz5hnyMX+8kIcW121n3XfAsnVVFMC2nPiHfgzUZ1lgQqrqpOFxssmRQmyIkcyjxynqPBMXSezvnFvmLlSGNKXBIY94Hq1dVmOFzXVJ/MdxPz557yK5+1Z+1Z+3ZqgcBPnfzUu/pN77l1MPwfBv6jf/Q/4gdPfnBB2H/39vLLL/ODP/iD7fcmZMAsSPCtbC+nl/nXHvxrPPd3n+M/6f8Two8GuA/8KzytogSwBT7PAUkJhS6851Dqs/asPWulpf4DnEj5rH1T2+u//Pp7et9rv/oaf/9P/f2vT2hTeOnNl/jH/vN/jJPHJ+08/MYvvcHH/+7H+fQf/fR73vdWmxV/5L/9IxyfHT/12tHlEZ/86U/yU//8T6H+fXrECq/+g2dk1vfb3vPO2krbo031yFW1E7UgrkkHG+BQM7u0gHtKlQviwDGp4J339r4mA3747Q0wWnyQq4es5XWfVu85DBzPLVv2XtfhxAK79fMpFRlkZ0B7DImMNFBVSw1a50uJmgJ+O+8QMUDZSsp4UxfJWBaVt6BmcLEoHi3ASmixjCVwae9ZKkyV+1nec73SYpwt0B/QrR3Ik/OsnCOkRBpHU3/RGZgVMs5nVPekXSZqRnKgqbtk2Gw2XJSyOwU/bWPrCknMe0/fdYz7icpRO3g2RXc+RVMYSGrApeGVDifC0DtWfYf4npSF3jtSTox7U93x3hFLKQlVC9Z4B11fiEQpIx24nTRw3Dri5iDWlbkzk9cKJLj4vQL0OSs5hqa8M6VkGb3jng4j5iVRtnEkTpFVB+uhR9WAgpASsWB9l5sJNol+cKzWK4ZhTc6ZaQoIHqngDAaiV5CyBkqW4ONVk9nUqSgrRcvDWiwBfWpNGpEgpUTf96ZMVABd31n5MJvfHpEOka6sgc5gWTm8loH5wunpKa+9/jr90PPk4WPCGOi6rs1a5x0pCymDL6BIzemFogykpTRBqsE6G5tcVGyWz7LKqYtAyiZn3/ceXM80BeIU8N6jORbFlpItLKYa1HlH17tChDGymSAl885Ao7ywKTOoXlSBRLDs1Jn8mGK5V2fkv/XRipwCu81EiBHfSJsFTM+5vbf1D7O1wkIJSCFpJkluCLo4h6ZEpbSZDH85JJa1hliAmzzbkcJLatOkkgapARJRNBs5SVWIC5vtmJ+BKSvI/FxKsGa5lhqZC+jq16DEHHDO1LliyKRkQaHgxcpWDs4C8SJIKGQ0lYN7yDmXkmKLtUK578UcKUunkB4saOKAXIOHiwxeLUGSGlCcAxOL9yy+s167kZEWc9RVe6s1aKTzeDXlpSLdv/jcMAycHB0xbjJeoimsqM2ZlCLroxX9rYEwweZ8ZBttHNQpXjInp2uef/k2lRQ77hLvfPWBkRG1luhMbV2KcwxDz81bx6xWPZdnI48ePm734JxwfHzE8UnP+fklOU+FlOeohd7qjq7ZwF8LSBmBCDHQWAvZ13emROeLv9GJkZhTNtUv1wmuU1740A1efeN5kMSDR4+53E7sNxMpKZvNiHPCuDU1MZGIamflDlaObu2JRcVAfAlcCDivrNYdH/rw8zz3wk222z1dD84pYZwYx72B/c4yrW2ReESsPJxK5u17d3mRxIWcscprsq7JnfDCjWtsxw2+c7gONGW63pTpZns10yGkBkScJ2XH5dmWRw+fmFKUJs4ePuKnf+pvsTmH7+sDafoucneHrIPtwaL0654vfeULjHG/mHtVaWBWYohj5EtPLslxw81bntsi+M2O/vg6zgunz13nj/7xH+SVk1PGmHlhdZN7Z49466uP+bmf+xVefPE2kpTHD8+492jPdj+RRVGMLHh5sec33vwSL926zdkukWTk3oNLJDuGYQTpOTvbsg+ZQYQ4KWEfWA9G7u5cB5qZwlTIQ8UfzGrlP7X4mUSOj3s+8pEXeO3F2xyteyM5Jk9MPWH6Cp/WgO8HXnj+Oh95/ha3T44Yjj0dQth7vvz2Gb/+D75UbEFb4CXgCNev97zxkVtcW13jHbfly289sfXpHKena+7cOuHG8RF9NzSVoJyFKWYeiiL3isIa0KGsnGPddRwPPUPX2TMXIz+nocc54X7nTalKa/lPI/X26xXe0bKfTRnP/MzEoe36wLWFvW+Oy9L/LWeKpY85E0yXfs2Va7btxrVn2Mio8+NcfGROBviGozV/7dx3ZPmnehumyJgX31X8GTsWlb04lXksVWnH3uqKD2UETWlBz9xUH6o/UM4TxWfJ8i6Az7JzWvu3JEe9y/u/xkDUNZByQmM2QrZIU88IsRYdzO1StsEpENGotidfUU+ZpsAUwrKLCzs479fixM5YtezR8r7KPVn5ojyfocqkEDGFvs47cI5aalvVyrFYydyiAlLUZBApZYZtH8xZrdrwApN/avzq+B68UAf13c4TxS2vilmYL5dThhhRyTyYnrDvIiEncsp0UlSdymdTtlKyKkqeTOnTzkEdznWFQB5xJ4KbXPNTW8+qi/GufS7LqvigbQ0tH9byPMrV8729XgPhztHIDDXwOqt/zKpqVZ1oTrCYZ4UIrIcj/tHX/iT3/up9Pv13foM0JuTcLb63kHp0PpPa8cfOQTnX8jv1hdk3Pfy2uf9Skq5aWelSji7nVMgbgiZtY6XNF5dy76bsk1IuZa+XJkUOnssBEeXABax2Qprip4jDYf6EaiYWNY16FqvEHevzbCRrMHppT+dzsS6ed/EZ6vcxk+pNLWn++zKhhytjuTDz7b60kI4qbpQPzghtZpnllHqlg7/O399wCDVcpUyHmqzR1GBrQoXkYouthF1VJ659qt/VSGJo89frWWF+hu9iCOrYtVel/U7d9xbPZj6PLN/dvqB9ZNmkXXN+22Hgr+rJafv8bFttbQxDj2Zwkhbai1JKNtrrfWflpca98uRDT3j5/BgRxXs4OV2boqMqmmG3HQsBqHzLMiFEbA6uVp2Vac7CNE3tdRFLhFuvjKSNmr2vY1h3/ToOKWayq4mLhaDYzmbFpna2P867iWvjbbiXMqw7rt884eioZ7cf2e8mYsykmKgT0YSzbS6BkaumKaJOm1pvG3sBxHCTfui5fuuaEVAqfyvnotZZSuT5Uto+l3NhIZzvdjv63uP9hKPD5Y6IcLQe0LRnKvtiXS/e+bkUY+uI/VMxWXDEmNnu9kyTlQnVlHjrK2+To2N9ekIYbyPHA1k7s8GYrzFOe+IutLV1OJ9nB2u7Czw4m+iGzEnv8CFCN5RkkY5bz93k++58jFd+7cO8cPN5HsczLi72fPWrjzh/vCFdOL70ybtcppHNbppPkiqkBGdnl9xfr9nsIyHC83/vZbqLI7b9HhFPDLNiUM5w+vY1hrOeeDNgGkNSSrDXvf5wzdZ1f7QfeCHe4dat66xXhnWZPenYbCcePbkEMqtVx43TY06GlZXiXh9zubrD42HD9mJ/xUfUpmrnvXD92opbp0eEEcadJXlkwHe2Do5WXUlgKLglRe0xJHaFCFcJxF6gc47eF3XVWs+24ArewzSlA3+4mlXx3srFipbT+2wPM1d9mmftWXvWvp2aivLIP/odX0e84F50dPv3T8z5RqSmb0Xr6fkXX/0X+aV/5Zf42fSzMAJf+jofuHrgf9Z++015ujLMs/YHpn3uD32OO1+5863uxrP2LWjvdd2/l/ddv3+dn/jPf4LTx6cHf/fZ8/0/9/187lOfYzqevvF3JeGP/Zd/jNd+9bV3QXatvfprr3Lj/g2evPTkPfW/tmuPrvHCF194X58BOD4/5sb9Gzz60O987/52bO/Ly8iaLZMfK6HUSp6JEZdyIRJU8AMKALMAlmbkZQa6qqpE1wkxLgP/eUHQmVsL6lEu+XXmcMswqwBPOahVKW4LKBRwoSh52He4BvAZQjGDzKqUsmJFYcZ3OO+IMSCuOwDH0ZoB40hRiqJHybYqSimuBicLGtnOy7rI2q3DVzGHBQHgUP1D2xG7jsC4j8hoaiVxULZqWZK6j3T9wI2jU46Pjjg6XjEMHeMYGC/23L52nSlGtrt9C/hnzexDJBbyleZcAr1zCa+aJWuBhQr6XTmmN/DTM/RHxKzsdSr36BlOr3Ht9pEFLWMijhPeO3wHHK1JJeNoGiM5JlLOdIOnX/dtLNMCOKqkM0oYBQ6d5QpuzufwRbbscjY1cHYGpGIIOIQEVOXWnCI5RkAs+1qquk9RygGiaS7jvCNnz35SxrBvQZ/em0pTVRiDVMDSugbyDKbOkYb2HBpmZD2iKS2VF9+N1Gf3Z+B1Fqt9HaaJnIWYMhJM2j0n6PzA0K/ohw4R3+ZuBceLJSjr2HNyfMpHPvwax0fH3H37LnEKZUwSMadSBqH02zmbwzk3VSzUsLHOOTKuAP5mXyygeahu472p8zg1IDLlTN97jo5XjJhkOFpUMaZEJQDaULqS9WF2LeeMdxZETiGXyJXNEahZaI7Oe4JGC8B4wXcmmW4ZiwZwWUk4A2djIUJaSTaTdB/bXLXByA3Z1MNVrlhdNWYFOecEyUIsfRbAi7cSLJrRoqBU54cRrvyBXWmECRFTnrEJh2UZp7ZOtJHDSvDG4DO0Ipj1eVTwFdr8sJczRm2qAZcSBHBCiImQpwIm2/PLCZJknMvF3qY2HnmO2CwCXbONRCrxp2QJ1v2p9KqRl9rfDgMl9c1z0NghBaxG8oHtziWiPiubLYI1ddOiZK6X9dhsuEgL7FF71IIwyjgGHj+6YNrHFiASgRyVJ493bHeBzndoMrWiCvyDIGX/Hvd7+sHW9jC4sn6rvTCC7ZwlrvgO+j4z9Jk47cgpGtArHieOab/B+4HdZmclQ7US1MrOX/ZOVQt0NIuUbBzs2altISGhq7I/LoB2A9MtQND3DvFw9/5dXHKcX46cb/bsdxOCEZlUHWGfWoYvCjnZc3G+I2foVyvEZyNCOVMh6FcdUx750le/SIxGbtQJ4t5sFT6T8gRSyimWZ9kPDmXi/PIJR4PSrzvy6W1eev5Fbj93wms3j/jKf3OPzYNLUg54V8om9b75Im3+lvU9jjum/Q45UTabDU8ePza1Q5Swn3jzi19kEwIvPVjzxTf/AXfXt0GOuXlyHVHHvSdPODu7x9nuYg5Y1qBCWwuC+MTxcUc/XSOPe0Kn9JJgHehXnqOjE5576RY/9oe+h0ePt7z15gOmmLj38Izze/e4desGZ2895u/80q9xdHodp6nZaylR/pc+9AKv3LjJm1+5z0vPX+cPfc/rvPjyDYb1gMae3+rW/PJvfpkXn7/DH/nkG7z44jXWqyOc69hdRB7eP+OXq91AUU2IaFGYKSodDoZ1x+3bp3zkQ7c5PVqVYIRj2jsevnXGuutZrXtu3DrhQy/d4M7xkSlsaSJNjrQLrLxl9aumUhZvsRodrAfPjdOB3XGgL5V7VAWNZmv7zhRMXM3ez0Ln4bKUNKxqFEEzuxQ4Tj0+ekLxBRBFsqXxZXHgOzK+2ShErNSeRbPwzkjw4gRNqfkFi0q1H8jWiEjMPnBV49CcW8B6aZmXykqtLezl7AtL2ZaWvmexr1f2UcFIfVfZ9Et1ivkbnvpis9+LiE9VxzPTvfj7lY+1fmshWmvxncXI77XUGzr3pTh/tp+Vsn7zfXNlDA6/cM5Emh1DWXSsEUoWCiFzq4E8RwqZHG1t51Ym1aExmxJeNxjBvfN0ne3TaYwcrVZWbiTGcp4we5QKcbqOxTIpox7yKrlCpJIDrpwn6n4qdh5LSvHI7fn6YcVw1OHFiCQxJaQzElLfdRjZXUvgsvj+3iHOt/NEIyaX8c15ttvS9u3Zlz7o3dcI8F0lLSnmy9QgZpDIlLOp7lYFYXf4ubpmstoYiIA6R4wKYqWPPjx9mJfSS1TCwoHaTxml6ku0s9nyDnR+cyVttHto/3n6/udr2vW8tzKW1u+MFMzAXAaPcx3eF0yApb+4WMPlb+vVEf/kP/FP8t/+N/CbX/wtoitEt0qKKCrAeh3kDbMHy7Vfp3Ql37mSHFHv4VDRsj7jWiJc0ZLg1DlPVEsqoMzTlCoxY/6eSuLIWnGT4vuW69VxUp3nk4grZYwL0UlMRSuXM2Ttpyk5l/KEUtWpPU6EqKU8F4XYCHPfFpbQnkP9a/EVRBCVhvUADFPP9cen6JDLJrO0nXPCkzmms72+mjUv5fWcKknnimnUMteqOctt9i38dppNOFAvrbemhTQGxJDmeY6dq52Dg9KN7fkvxmZpuAXmjL3aF53PGXVyLmzs12ta3r/c42aq7uI80lSuaNvb4UWalZ9xo/JHXQzq1WRUVYqqCu0sW59lmBIbJsNyoJXTzq4S6m1emAJ3VUUzktHBoy577rLjzlm5+1Bww9niOzQnQjCSUAiBg7La5cZmXE/RtCCs5av2d+lj1OdaMZXqpJpy6TjtSTEQQmKcIlNIhm8Ve5sT5m+WPqja9PbO1MTt/G+zT8o6NffNc3F5QUqFHOKMIGPXLuuzrLj6gFzBYUKa2O42HA0d9D0nx7c4Wg28/Nx1vvLFyKO3Lyxhq9g77+ZS84sHUHyMRAxGSspZ2G93xBCabbq83LCbIjf8yOWT+zzQTMwdq37F4Ht2Y+Ta5Jj2YaG2Q+vzTOKzcmPHfiBpIKaCCJSx9L5ntV7xffvv4oUXn2e7mchiKoe77SXCdW4+PGb3PyXe+tADOvXz+ihfOqxX3Lhxyn4XuXP3Dh8Pr/Lci9dMaRnHtM08enxJzPDSnRvcvn3E0fAx7r1yH03w4P45b997Mq8brb4lzQ8D4drZdU7kiGuna47XQyklCqqeTh2D94zOMaw6Tk/WXFuZ3yOivLy9TboZWPm5HKiUM5f9vy1I7ywh06vQ+cViLfO8Jq9JVQyvavpZi9Kf2e1cMM+YEz6XMrZSTYfZaLMJzjCZhRGxlSDF+tjrNs+Lr6BX19Wz9qw9a38Q24/ufpRP7j/5re7G72rruo5/51/7d/hX/9V/lV/4hV8g6rvJKAGvcKii9Kz9jtr6cs1Ln3vpG7/xWft92WL/NdbZs/asleaSwyVHcl9DdSvD9/2t73uKoFTbna/e4aO/+FE+/Q9/+ut+j2ThE3/nE7zxK288hS8uWzd1vP6rr/NLL/3Se70FAF7+7MscXR69r88ADLuBVz7zyjOS0jdqigXsY1xK3EshpJhUdzv0XwH6KCBglWEHA98qkWW+likqVaWm+s0F+S+41wLwWmBDy9zahuMjBdyuf7ODp3POMr+wbMOqCFWzD9sVC8qTc1FywcpZWSakXTSrMk2TAYdZDdhOtNdrMD+EiOLBC1JkwpxzpJwxxZVlFtbhmCzHc4n+1PGvwYwKZkkLeiredZwcnyKdJ5BQr1bmSQUiTGPg0e4J592mZMyZysQ4Zi67yYg+4kBMOt+hpCwgHV5cQYUqGD0D9SJFNt2e/gFk4sQO3t57YszstntCtrKAToTO97z43As89/wpcRzZTwm/ykgPvd9ynBMhCttdJEXF09FVECxamamUE2OIC46ALIIKRaGEQ/lRSjDE+84IECpPHcy7rqNmPC+DWDUv1hQ/xEgnRVumZvMb4ckCn50X1Nk8cSUyYPLkjq4f8K5mTtV5YG+2/rhWSmOuN9/+AwdBpopguhloKM9qCcIfEJZK2a5A4Gg1IH3HbgpkDeRkZcdiyGg6Y+gHbj93y4B2KIS8Oh8o92BrDeD4+IRh1bPqV7zz1ttsd5sZ6C19TViJOpvOuZQyqWQL19ZOBd67rkNViTE2spIB0M4CZd6jJSOzEgL6vmskwxisJJsrcv8tqFLAWt8b8WcYenJSUyYr69V737Lxspbgkv1G1kzvOlarFbozgByXyCGh6kgRNNXgs5KikSpagGQRqKyEozl4wgEw74siTCWS5kIUyZpAM91gSi8t83lhqlXVVKXqVBEpwRoDHWcyqs3DZUnOOsdsiZWQr1owqILLLbRc1qE2ckf5DkA1kRI4dfgSGGlErUqwKwFn67+U+IjNCSljXsIH5T5mqN+JEBdlMGrhBpunDlfIAyzGYCap1iVUVrybAUSElnVYM1q1Rbo4aM02lp+d0hSnrASfgdYUoL0R/VoAMyN4NHfEOM3jooW04Qyo3E/B+IypEH8SZY55cnJsLia6Qei7TJhiCT6U8l+uK+p+2jBh52C/nRg3gcuLEU2Ck8zqyHHz1jGnJwP7MbDbJMJUxlBS23vbhtyezruBnRbAU1/H1iZnVYNJwfqpmvHSo0HYnI9oSGx2ke02Mu4ns6UOBEeONcu/+A+lHGLMiU68ZXK7gFMjAYvzxJS4uNwUgqOpH2RjlNij8BGnnhhHkEqQUUQi290ZwxrONo5wnjlJjueuPeIjN55jfbomokxxIqQJN3TgtPgfpvwH2YLMZcx22x3TuGXcXXBx9ojt9tIyux3sNztGTaxuXqfvj/nSFx8R/RnTduT66Q1Ojq/z5HxL2F+yi6MFRkuJSrNdNi4iDtcd0d84QtKEsGaHMmJ9Wh91HK2tVOy0C5w92XCx36E5cPtkzYfu3OTjr97krYst1/qek9Oece3o8AQ1xZIkkeNrK567c8J68Pi+5/h4YHVjhe/XEAdWx2tc73E+s1o7jq6t6VYrAAaxjGIVISjtHnJOqJfieya0EGmnlIgoshos6A1op8jQkXFYvN/KQkankAWvHXQOJ0oik7SWGluse4QQHdsJxqxkV2xeTkwxswkjmzAxjI6+kLirYojxbMs6ywlNiSlG9iGy2U/kDJ3PpiziHJ6MB7I6VBM5T2WNljHNEKLisTXv6qTJmMJN0ndfZh+QpuX/LMAm1VlotjvXqPXyJg5+rYGeWdGi+TC6iOEuAsa2pemVz8t8dniXIO78xSW4esWXFWikonqeqGRArZte2a/qB6qCYLWFGUoQ115LKR3sAaJaq221G0vJzg1FhMn65krpnIPw05WfFua33odbvqO+fuWMPu+pjr4fECem3FgCWaiZw5gSOewZx6nZUFVTQ5xiJUvMZzipBK2inlqfeXvP4r9triyfQL33RuxSQkhF7UZKGUTPyfEJp0cr1o9W6ChMmtje2uJ8YNBMRAkxEzTiAbSMSiGC1TIsSvURFvNqQWI5VAKu5zzf/KVGALpyhpbFmFS/DIVH7jEXXM772OLuazDa5uByaUg7myLK4Fb84ekH6egsYaKQLJpSAtLWxdLfOSQJzt+8WEHld+VqEkp7ctWXLs/PFHDNTtscBpcV5xTd7fHec3x8dOWsuzzz1vJr5qffunWb/9U/88/wt3/+b/OzP/OzjOOu3YeIwhHoP67ojTp2dt2ZwF7sgFTlCG3P68DPVSPbu6LG1QgdZX1770hoSzAxs1Nnb/WJ7B9Ty6Moudq5od7nEn/I1c+XsuOpWuKD9wStCR4UJUoKQWO2gZqzBZvnnazMrcOAfCN4LB7uknCXkymk2bPMaMq46GE1n0e4cj2Hm6/FfM6YiVhVWUcOvvjdzW85k7UL6izPCW1NHX5G5zmk9UxTDz1lDizWsrZ/tT6xhZ8030f7WYofUhfMcuFoOa9z5bP1Pwt7UbGElnT3NWzwU/yAq8ujrut6ixyu39lmLPavNvT1THflC8pGmnJJjsrz2WX+YkcMStaEd2bfZvzOFH/B5nvdW6udHHeRMKWSrGDnjNWRJU44EeKU7IxcE1gqvnTg2iz279rtxS9aCWXtlrTNRS3r22HnzThlEsn2gZCLumw5Y9n23vCT+fnZhS3xqCQcaMUR7aZDnM/jzi18s1znYk3YKMkagDhIaSImIUbHZYpoiPT9EdfXHcdHK/B2vk85NheqHrGWakrVFOWUiGEixYk4WRKE+c02FvvdDvWerh/Y7xMP0gUhBEQcJ0cnhATrMEASS0QpX1rXNVQb4Tkdb3KcbrA5vkAFRjXb6Lzg+46T/TE3H98mTJHdOJFypHPC6ckRz9064dR3vP6VD/Hg5Uf4ATzS7KliZVqPj1fcnE546TdfpX+5p19bKTvw+FhIxmJK98PQcfvsDg/9Y3Kn9L0lbiVlgUbMSaE5Kzg4eXhCSkUB0jmklChSBdd7K4VWfHAlk0u5O6fC8ZPryCt3bX4sDJbMt4KqEBLEXP+mbT5NKTGlRJ9qaXjX7IVhO3OSjBHPIOZMSKYe7J2Rpaqf65ixLdss5nlaS4nWuQc6585URdB3Nc7P2rP2B6+55HjuS8/Rjz2pSzz4yAPUlTNtl586P30Q2pv9m9zr7v2OrrHKK/75s3+egeF3qVcfjCYivPzyy/zlv/yX+c/+s/+Mv/SX/lITZGjtFvB/Al79VvTw92dzyTHsfn/NpWftWXvWfvfarXducevtWzx49cG7vn7j/g0+/j9+HPkam64gfP/f/MZqSjffucmP/Nc/8g1LdwrCa//gNX71x3/1vZcrVHjp8y/9tlTjBOHFz7/Ir/4jv/q+P/v7ob1nkpKIHUpzyRZM2UCerta6zgl1JQvY3gkUrKUcFBvC4MGJopJJOc4gmSg4LSpMrmW2VhDJlRJhhhkoWvFK6+ESV6EkMnEVoBOx+vJWXs4+qVrBPtoFa4DceSNYNBKOlsCpWhYlLZhewYYEycARLRe3ALyhSprsgO3E4TtPihkrVlIOgrL0b+3kmguwL+V0uwx2F0QC3Jx9a4dRj4jD957+qEM6j2iJWGeFlAlBCVNkkoxqwKm3z3shRNjtowXsijCGc3aYjRmDIYuENpqtREUJd6yOeo5Pjnjy5IwQsGBKGR+HEQaOj9d0g+fs8SX77a5gclZGbBg8nsDm4qxkOq/xR9foejjp1xyJMOmK8wjj/hLd7YlBGdNI760M3Pnllinu8V0mjpmsc+mrNjNUrwQVDFxcrQZiTpBrZlFFexziLZs1i5TAFItZVkAnTTYsCxA8Y2XMOu9JSRCndJ3JrIszgNylPANfRc1Eq+IXlVpRwaw6p2Xxe5npee7TnIFfgdESLDkYi3odJROxMnMekin/eD8ACYeYlHQpU7Q+Glite/q+M7KOlOysulYLIGhkQctWVzUZ69vPvUjXrfjKW1/m4uJJwfa03V2Kqcw3Wrk0LWV/VDPeu6JuVO6pZmcXwKbrHKenR+AhpgCtJJaxB1dDTwgBJ0ZOCVOkjoCWcndaMoi7tSk8TWMoc8hs03rVzVnhKUO2AEeSRIqRnIXUJTYXGyDjhp4OT0bpB1P0iCFCyDjRUpbCRsD3pZRmUV6qil45FfWgBUhYAfgaLLAAO43wVAO+ToXUNsmFqphkNFv5SuP9lL+V4KhTkJxwpURYzW4WX+1bmfu5ziltSyFTwfKaDasIlWCmLRDQcvhEW3a1UMuJJit1VEoNGq5rM9u5onoiNPt4EKIVA+dqmai6RoxUpwbuiyskH1/KkYgpdTnLdq21hnLOeKl2yta/yPxtzheiU4hmb4riUkqZzlu5mZzLqIuQsf1PnLcsXBxJMkmW2ftllOrmQCblZOX9CmmhAooOIYVECIne9+XZ1DVennqy8poxWT3oGGMJZjoLhkkBQ5t0H4Qps7kIaIbtZrS9TcTKa/Yd+zGx2QRCtPu+Es5p0QkBK12IK3O0zGE3KwooShWYMvtXsvizrXmKEt12s2ecjIi020/sd4EUi+KGAMQ2Bw11NVW7FM2e51oKwoFXUBJOHCEnUg4MvWX9arLMVCdFlc1lyJkpxuZPOO9bUGG3u2Sa9sQEjy/OmM4e8ebnP03frXj7/l3GtCenzH6KnG3P2E+pkB2l2Rt7FjCGiZQyDx8/5K133macAkhEyKSYWSmcrAZiEHZB2V9suTg/J4bEdhy5vNwRpx2ittYdSi5qfEJna0WU7DuOT6/RrzK7MTBNiRz3dIWk24mHdceTyz2PHu44302MmnnxxRu88fINbl1fcXaaeeOlG6xv3OTy/jneKy7Zs08hcbm7BP88iLKfJi7HwO0p4RWyB/EOkrANO84vN9zYHHOq4PyAx9E5K5eZpqkEY52pw4nZrJyMLJRjYJcmdjFyOkXc4MB7slSyZSIm68N+iuy7SOcVyYJmzy5oUzg0q5Ut4CpmM0KKXI57TrZrxqQlQFFKf6TMLib6KXCUPV2xDalYtzGkphqTEFJ2pCRGNnLznEcKUQIr45NSBg+n1wdOjtasV0eIDMTckZPDZSkkperxQpb8wS73Rt1L7OdEIbc2H7vY9Or3LlshbtfoWw3EADN5oLxvNj8yu2f1ZaqN0+oFHXIt6nliQZ6qe1/9h7YPQLXFB/yqYrabPeddYj25WMLyPbZVVeKAmnpDVdBUgLJfSy6lZZn3o6Qz0epg2LT9s6BEtL+ZWkT961zqo9xi3W2NxN8bIUi0Emdtz07Z1DYSClq1RTFCU4YQK5l7vi5I+90ewkwIrD91vafrO8b9aAHz5f5e3tn3Hc6Llekp4LIUf97+mQWgAAEAAElEQVR7YQjCK7/6IW7fvYnTAe06ptORwUe8g4cvXLKTRIoTGiMX1y/ZrLeIU+IqMk6RpBEnuTyVGoBfjPBTTIJy3ixE9mW/Gwen+i0yX2NWSYKtbJlkPPh7fZpGrjbygEr1P8r1ymQXhBv5Ji/Hkq3aiPrMZOSDGXk4Q1vc9Mo7Fnc9+3UtSr4ck6IUWta3JQZ0kELx90rCSufxXUfX+aJUKUXtYR7H6ms2glH5eVgd8cf/xI9z7dp1fvpnfpoHD0ogxoP+adCPM5cfLgM7r8Z6HdDF2brdttYEE2EYurIP5AY21TOLL6XIq/2yPtP8may2x6CK7ypxby67oyhdZz540kqemNeoliQeU66xdeV8ef5YkoHvXFFwyuXYORM4XFETovS3zqVKkLpqMuanWu1FwTSKbWob5JIEcjCXakJAsWIy/03AVFW8P/jMkhg1PwSpR2j7SincjsUTtOYWZ5Pik8t8T/O2UPdIBfEHZ/hm66WcVqT1rF3vQIxuMQ6z0JEeLgExIqaWknx5QX5eqmbRSHMLwoczm1uTYOy8UvYBStKTVvRMytjUpDdaSem8OE+08ViMn50v6rypzvc85ikmS7iSeQ9dtlSSAdTbeKS21uoebWem+SFCnDLqMSXsXMa4lK5VFaYpEVOeCXwLRtZ8NLEHUonDjazWiF+LBwtNSdD2Z+tjJT3GQv7XgjmGmMmxvGeBZVLOSgbc2FjbllR0aNqc03mUpRBmHeQ4rzk7Z9nTi3GhJljHgUyKgX3ZMxUhTROXZwNv3X+H3XYkpKmcGZQxjiQ3JxTZepuxw1SwgBADFxdbphDKOij3kU0R1okjRFCNVp4bIx2GnAlhpNeh3Gtdu+Ucqq6ZBOlWDMcn7E4M+0wpFF850yHcfHwL3Tn2mz1jyEwxMaw6bl1bce14jc+B5+M1Xt+/yP3Th5TKmtRHPJVErBe/9CJuFKaYSMnwIC3/ExwxJ6YwMU6B9aOB1XnP7vpUlDtN0aoBr+Wc3+ZXEK7dPyXdSuVcaKX5zDmva8rOpillYszEpFBKabvznjy5UuJ2NpczQmHXCMlUu0QdVZ+qEqUq6QiVgj0UAryYslctPap1xmXDGArMNROOisdSFdgziu+FoTP8zklJi1BLyGv2brGHLPTMnrVn7Q9sW21W/PH/8o/z+q+8jg+e7DMXdy4KlpL5wvd/gTjMCiHvfPQdLu5cEIfI7truqov8e9Ye+UdsZPM7usZr4TU+tf/U71KPPnjt+PiYf+lf+pd4/vnn+Ut/6S/x1ltv2Qtr4P8M/Fm+Zc/vWXvWnrVn7Q9akyy47N79RYVXf/1V1pfrr3uN21+9zUd+4yO8+YNvfs3rfP/f/H5W29V76tOdr9x5XyXYhr2pIf122/X71+n3PWEdvvGbf5+190FSWgQLCkik1OxSO1R5V6p9az1k2WHce0etmzGTjawtQbJWXkcq9LwgWRRoppKMagajXvEY5kxobQe9ZaC23kJTH9IGsYIz8pAWFRZVLRmqAs4AVa0YbwGz7H8WUhKnRR3KQIcYMs57jLQiliVf5H1FhK53xJBM8aEASk0hpgWl5/u2sSsksAa4aAPX7FDpWqk9yOAS4gJdn+m03LdzBFWks8N8igKaUcnl6zoq2JQr08CZAkIM0UhHkpv6g+YZKBJxXL92nUxiHKfFsXbOgnOu44UXX2R1NHBx/iYx5jI/DCC5fu0aJ8cDUTOaEiFeMk0jIjChnLkO7UD6jhvrgaOTgUlW7NTDuGV7uSGkPSIdPu0LyWXRkwUSvZwDbZ63Em91rMtvzjEMAzlZabJa8nDptYpYNrllynaISgluC11XSxmU2sxSCC1q2fOSFaeO7LEHg5EnagkmbRO4pl3NmdmtHeAI8tSfKuzfgKwr8QlpwSEDW/vewG+3N8UiCyRYMGG9XrFar/G+O/g+ClmpzmDn/QzLCEDCd8L1mzf5cO+4+3bH5vyMFCYDQrKB8DGm1kcRP4OzvmTvlbWg2bLmPA5fmItDX0t45EJ0LIBdyCbP7izDfZoivijpVMBHxBXgyeaNyx5VZ6QmfCvNollYDSu6LrPd7shJcRj5zAH7nYGArs6pAiLbGlCcS+VfI691JYPbuc4wP9GWgSmlhEOdu678XifnstSBiBwEZersdOJIFBWR0i+EMo4G+Oai5lODQlI+V68jTiAudQ7KU1nUFNBCAHHesfID4zQSIw3J1xZkqITU2c6nQvKzYEbZG7LiB0c/yKKsxVwK1BWSn5XFs/0Hp0UhR1r/jBC4GK8GZtt6kqKShkgJRtpekOum4uweaqDalTIAvoxj33fEpOQsOOno+lIGIJjSlSs2fwqxkPgssGw235a8E8HjG7hoZFpT/7H9SFoGbstSLvvcdrO3OZOU6BK993T4eY/TbCVgnP07jWolFSaLslQVsPpsa5BtmhKPn1zgcExTVceDGCPbzQ4RYZqi2TUR0uIayLx3Zc1INoLkvG/PpXx8C/YXPwFMHv8g6m7A8mazAy+QLUiSU2rqIqo2h52YioY3aQxbf2kmNNbAvOSqZuQss1YjmpIFgJKSxUrRWjwjIVlI0Wawg/YsNWNqTt6IhCGOvJ0C93BIdoQpEJKRhGJKXFxcMG5NobIS/WzZFb8lK0/OnhDGxOOzx4Q02R6NstvtyZ1yM0U+/1tv8vaX77IejtmMI7dvP8fJasAIQoGQM1l9Q/mzKq4F2xTvHC+/+hE+9vHXeevLd/ns57/IxfkjwhSIceJaDjgP69NTNruHXGwSowh3PnST7/3eN3ju+inh5T05rdmL8Pkv3EWcLzYGUlDOzkebOwkj2GmCaAEBTREJCY0QsxCTI0clTxlcRqOWLPBIKmostk4dNVO+ql10GNnPsuMdmq00aIzCGEwhyWvZ47Ktz6wg2bLnERgWZUczQM7F91NCUvYhMwbLcjYlzKKApab4lfqe4EyRyaybBYBiKqVLpQQ3SrA8lyzmVNjF6mYKqcs2Xkcnx1y/vuZkWNF1HQ4rJVqWUF0azW9UUWL+xjW4v1Vt9lfn4N/y3+L1NuJOJbUi9Sxi19GlvBA625W6HwqL122PWwpNNhUbmQnV7fNXwcjWx/nzTx+dZzUOqOp6sw9JCVJVn72GMhvPSorXWffu8qMlURRCLbOkhbT32N6YXW6KF82Gv2tsqY7/Yf5RJXFV11CKD2wfsYCmFJU8R1UgceanFKNiR7qq4lLKk8B8rtHaX28BbWafpvpp83cKw2ple1eKzKSIecBEHCcnJ3S9Z9w/autKyjiuhhVHuub2o9u4BKqBmCJ+BMWTnOPmg+e55Ry9U3qnRO+YEKLb8fmPfY4v33oHQXBVTcPuaEEKeve2nKt1vrf/imtqOq6UdDk8ixQfg8NzcdkuS0kgmeeCOGqps1x8BC/C947fS6d9CcLX7y97DVcnyPLEdvDrPO4HZ/KrbbmK5vdKWU/Ou9LvcpYVVxQvpJQH9MVXlsX30M769sjdPEDlRe87/vAP/RAf+vAr/PRP/3d8+td/jfhqQL+rzJOlKm7BA7LUsZWD51iJ89UvAfBFbZk2h8tcT9pUS0SMNF3VY2diYvEZK0HI2V+NpLRIlsqmriTOE4KRwnG2PwvSyhs3hWWhnG0rFmHEAUsKmUklUhTPqi2QMnZNzejqI1482varzrao/r3ZL1Wy5AKgycGzu0omajOmnU2uKOHQZuc8L8uXOxx4wafUqswtHcb63K7eSj3XVVKRqsENztfEq4oHzWtbnMyKqHUeq3l8Mm+2bd+d3yVtn1iqnsz2uJ6u9XD/W9xKPZdZglz5glzWS1PLy21+5oVNXZJN6zWNDDhn9NUSgnWbqvvr1fUWY0YxdeJc1ol3lvlecQdTcClKf6n6rvWrlkq0s83OCuMU7KzQSCL2T8WXapJgmx+L7jWiBvNefuVJtQGtY6EwkweXM07qvaaiDmRrKleFMxXmJDVp9lyaCjyLeTIr2zYl3tovTYUTWvYMJ4htJgjlXKLN6ym210iJIc4B7/0+MU57w4mKwrtS5qoqkdTKZ8/3N8//GAKbyw2Xmw0hWslwsPkfpol+1bPbbHlr/CpDvyLGhO8H9tsJ54VxfA6nXUlvmlWz9coDGFYrPnLnoxw//4CHD59wubkwIk9KdHvluQd36F7q2IpjmjJTAr/uuPP8DW5cPyXt9rxwJ5H2mcvhsiSfCFW5fZwSIWRuPT5mVEsmsFyMYj1K0pidO+1s5vae9dmK3fF+fsa1jOWBP1b+k6FLvqz4mXyqWVA8sVRgnVWSzN7WtTFcDDDNtvjAr8F813EIBDIxWRm4vFC6rusy50wuGLOpkxmxu55j6wqovltdd2qG7cBMokrKivOeo1XPeuhwUvdkt/BlZrVHisrgQQLAs/as/QFt682aNz77Bl00jNknz817N9vrd966c/D+1CWyy+xP9/ydP/d3vnag9APeRIU/f/HnWevXDwh/u7eu6/jzf/7P80M/9EP8x//xf8zf+Bt/g/jHIvwTHLhIrQlkl/H4d3nxWXu/LbnE5ubvjEz3dZtiSYn+XYGRZ+33sF17dO1b3YVn7QPeBOH00Sn3Xn9aBXDYD3ziv//E0zjGlebU8dFf/Cif+9TnUPf0uhcVnvvSc9/wOrWtditu3r35nklKkoV+37+n975bu3nvJsN++Lokpe31LbGLdPE903q+Ldp7L/emh4oeMxGpZslRgERt769AjbW8uNbT157JIjPoNIMX9edyGEOtnvtVSe0GGGk5mFcA/BBYNTn2Q8n95UXEz0CBFPlm56QdCH1Xa6Rru5e5LFcB2IoyxQxSlH7V0cgWBHfOwNIrEBFzJtThmF3Fw5eHz6eA3dJ31QSa6HxXJK2MbNMNybKpymHXMLeiEiLOggLZggwiHul6NCTLOsOIFvVeXJGuUmC727Mfd6Rk5YkMnCvPUgoACFxutyULbL5n7zzXjo65fnoLv+og7UkpsJ0oSgkjUROkkTTtuCRy6YTkJvwwcOQTp6cndMenxLBh8+QRm91oc6WNZQVmZlByOZZhClCziRYAgH02UQHCrvMlKF6fXgGZkiEMzjl8VeDwlZhSMmnxxJgK8CxtfXW+R/Dl/QVYrEhcXRoHWMHXdrRqoOnw3QbR1WUiJchXn4+Nk32R64TV8YrdblfK4Hm894Ws1LM+OmK9XhtZbQF6V2C05n9SQOEG8GVHdiDDwLX+Fs473v5iZnN5jmZTNJIGtDVIt4BI1reUYskutEBO7zHdHSnkLmCcJsteXKplOWcS89HmfJgmpF8tAmhKDYhotuzScR+wMiy5lCSx9TFNCYjEZCosNh8yXjxehGFtqmROhNW6I6SIipCo5SKSkTBqNmYhBxkYbep0UIMgM/BZbXAr87CwYQKmzJBze38Fl6lkmAL65hI4yQrez88HLdeuthxt62QO9JTVsTD+DbRlLmHReVMyiKEiaDZPVJR+6JrUPMzkwFYuoCg3IdB5D5JRZhJnI3Y0GHkOclZSUpv3ZW7OdrgSubCxraXatJTZcNAVskKIaTEXK1m0lugyFRTvpBBZhGxpnIgzTTITq1dWqx7vrTRhUi1EszwDpSVi4DuPF3BejciYaraytvExc78krhX1L0z2XbB9rO4J870lpjGaspRY6UaywbCVAGM4uzSwVlWZxoiolLIEJYs2w247AhY4qYG+qjLQ5sMBXp5nEFhquKAG1oS+lGdcPLlDRTCElMuaFBbA8SzVX39PLIONdV5XH8ICA74BsGZTFEEKSYayR6tACsEEC8UcTlP6KoESPChMYzLykgQjozrHuJ/K9xq4bXPR5naaImGv1OleS1BYuQAYx5EHDx4w7QPb3QVTGEkp4T2EGGCnPLx7n4d3H3C0OmU4OuL6reuMFwmnJ7z48ofZTJcFOqkZ1kYoSJUYlWEcJ7prx3zvD32KVz/8hCdPLph2Z0Ye7gb6fs3Dt8/4Bxef5/MPHpDGyJgisoIbL53Qra/z/Pd8lPXLd3j0zhNWw2D7IhjROSoX24n9fkeOkVwVBXJGNOMzECZUIyn3RqRMpQyIJtJkal5gihECRRkRUCN67/fBFAmlR4o6XqrEuwQpaiur0GtRpFMlqalXaDIC0tRK5EjxdzM5C4itqxQhlMzvMZjtr/uGpoQmbZnVQSnqc6YkM8XYSE11XudkBGX1HYlU5mL1KRRSIbzHwH4HOkbzP1Vw3VyiswUpqk+uyjh+gLMu6jpdOrQ6+8uyfF/z6efzxIKONH9WxGzFwd+vfGcxPnL15cOI7aEbTbEry4jyoo9LH3KpYtDe5+SgVFsxffM9uUoEOvTzZmIKzdDp1ajsQR9qYHTZ/yudrl/w1EAvvlObxt2VS1TbWfeAEtjCfENJmZwnNEC1sfZ1Fmy3UrzUk5WdRXJuQd7apXaUKS2EYLb5wO9d3FcJLk5FQUkX9+UQhvOX6N78oxwNK05PLskpsg+plb+xcm6JnCITmQBk6XDesXY9N3c3OXt1Q8oTYb8r505pfajJNfMZofrS1VedA+5PPYvqw7R96jBpwhdlWCjzCNfIIo1kW5KDchlLpV5WuSm3+K7pE1cCkO3b30O7MlFk7t98N3VO2YOTg0lcfhIBZ6pYIdTyRFJUk4yoZEkcFjStCjwtYL/4XnTh75ZDjpb7e+lDr/Dn/uf/C/7+q6/y3939G+y7EdE8r5vSkk+cv3DOrbdvlEvmVn3JubIm27nO7iildEBkqeORkzYSeUrZSi83/3QeqLpyUkrmf+ucyiGUcuRFAa8qo1VjYclZvo1n1xvBz1E56wpV1YwFMbKdu6Sp+FT7JPVitX/17KPz2VHKeM/BcMGnjgWVAoDsExe3Ltt8LofA9uNTKmMH+M7VGbcwgHV6Jbh97zaPX3+M81JKGDOXySznJCMT54Nr1PuaL2a+syv9quW2td37jAstA/P2Wu1ztW8L+1ye8ZUtrdn2Otc1p8U9z7a4+qmVyGSqoyUBpO4FCztRz+SV/DF/Z10n1oGmoiWFAFWuqWkefy12ucyeNn45JVPTrfMI4caDG4vPqfn+LMYl1+sdYoOzjTCbmJFmr2pCYk1AaWQnW/zUk7/5fsv9tj79cv22f9sYOmeq6e8GPjdCN8VGV9Gmdt1F16GcQ+q0rHPzcO+ve7vNn3kcpc33MsZZW3fr2j8k7NWzFoCVqneuKKWp2rw7NGmGIRTCe3tNZ+wqZ2W/HwkhMI77MtZ2ts12AGLc7wnThBPPMKyRznN6mhnHidMbN+gHK2EsbZOBec8q/kG2smMf4XWOXj0mJxj323Lm9Tz/zousL4540D3h/HxPiGY/O4ThpKM/GvBDx63VwHo65rPhi8CMXYiKJdfEiKaIVuXHagPVmV9RCD+ZSlTM3HjrJo9efFySVXJTVGo+TVGLizHRXZwisacqJlbV1OoPZqWdSdv5utpFNWXJlA/90Yq9KMbp3lzbMPnY1Pnt/XUtlYWUFXVaFCqXJCUWaqnavjfnjFYV8qUfVlZaKsrEKWZC+Zub2Y2L+SsNR8pZ+WArsz5rz9rvQfvN72T/f/1fk/fH3L79GNXMNE2klJgmSwpKi70YwEePx9M/6nn+S8/z5h9+c/aN3mVf+qC218Jr/JmLP/Nt1effbhMRvuM7voN/79/79/gTf+JP8G9/7t9mu96+63vDEPjyd3+Zj/7iR3+Pe/nt34ZxeKoEUlxF7n707jftO11yfOcvfCef+dHPfNO+41l7b+3Dn/7wt7oLz9oHvIkKH/7Mh/ncpz53iFdm+Pj/8PGnSMFfq732D17j5t2bPH758e9Kvz76ix/lc3/oSp++Rrt510hG38x2/9X7jMcj3fkfUJLSLEF/5aDiZpdFq6qSvbF9rh4gDWSpIMYVclC9xgJgaYHbdsDSRmqpmR0z+JrnYGjLoGq9p0Fuomgt37YAOOpXzEGQRVmBigqj7cd6UBUpWXgYWy+mKp1sgaiUEs5BDBaAck7I2RX1hYLCSIEpy3c4dxj0rSBkDfp6J03tZMa6apbe/HwEUxIY94lxivgu4KWn7zqOj9f0nWPoTtluR3bbyH6XyKnAJmKBUCnPyhVQTGv5oaxM02TAWzvk27hut3tijKWUFtCIMNYr33Vcv3GDy+3FEuk2YM53ON/x5GyDHzpefuEGd27dZB+UadyTdhdWViVFCKY+tNXEZZjI2zP2MZKC4L3DeWXoj3HunFJQZJ4HFVBZzMMKus1BhjYrqeCSZam7hrcZtqMUDgjihKPVUStbYLiCHfS9t0xI3zlydqQUmlpPnWu+86BK54WcEyIZcTMgKkAl5zUgbLkkpYLf870erjVpwH77SwVA2/wWwNH5jmE45vxij/c93nuc93T9wGq95ujoGO8LQUmallYDrIzwpJBM2t9Rp3whvWFqSEdHp5ycXmcYBh6fPWa/2ZDVVLxErISIiJXXyBpJFSAuikfeGXkqTBNhyvTdQDes0JxM/ciVML1aySPNyhSj4T/ZFGFs7uZWpk7IuK6WiDPQalZXq0obGd8JRyfHXF5u6YcewYBAN/Tcun2DfRgJu4lh3bP2K8Je2e8mjo49yERjWUghr+WMk2wlwHJVVrN1UUmiLbsuZyr/qgLuy9BBncuNzMIMiqoNSAPis87l/xphtIBpNbuv2rr6vivh4BmkXdjslDJ93xkxLNX32PxYH61wCJcXlwtAtQZojFggginOpYSPHV1n89MCRtVWl8A8sF4PBhqokp2UUlfaVnFd5y1YsTBAS1vbd10pXTY/HyM1FdqRl7IOrdSlM24clFKDM4XF1JCc1TJqc8aprXOrvFmem7P79gK+74z0JBAmZRytHxbAqgELmcdTMl0veN+Ts83RukdZoGUOrHrnEWd7Z9/ZFNzt9qQpz/ZBahDLAiF91xOnSJIwb5bFdElRlDKVPyNK1SCWOFeCb1qCKq7irraWqrKcQL/q6LvO+ie04HXLSC/qYFLKa9l31vmpxSbPCls1cFfXUJ0Eed5259ILWvc1gGREZZ0DLVL8Bitna4p/0tmacN6TE4QxMZFKH4otL6Ujq/1wZV50viM7JU6plFOdVbx82VzG7Z6779wzAGyMhJDI2a6TNZNSZNrtOT0+YXd5wcXlOTmP6O6SGzxP9/A+08UezXuQCUcCL3S+x4KhEScdGgNPnjxkv7/k5skRN4+P2F+/zjlbpjRxsj4lbYSHu3POd5dWHi9FJHuzIWSGk57r+YT9+YTzvc1/rYC3sN8HtmMkJOFYe4TBFIQUJHfERFFKgZg9KQshJXx2TKMyxsxq6Ll2cspuvyEkg+WdWvb9bgwM6wEtY54VpliU7IBpNDAxFnKqYmUxU06mEqCCqpW5yFVaVuo9WKRDs+JSQFIkxUiIqZT7ZC79qArJyqbiHEkTUU3JagzB3l9JhFIDGkLMWqtI2LwvCl7EQjpMkGMidw5SKeeSciljSfGvaUEszU+DpR+oJgdUhvY3oJ0daoD3IMa8aO1vdd/RqzsSdQIevr9dXJrdqH9bxh8PL3NIHmkfEW19vNqv+f7ehXy1uFBzzepxp/TJgpdmrJqdz/M+rFHbOeCAGFUDu2IXdaXMKAcjvvj5qfPS1X6WhYwFt2MwEp6IlDKYpQRw7+ncQAiREDIx1CCtXT/lZICkatvr2v1qIYFQvfN5QGOIcwmhsvdUVSHEfKT1as0Yx8WcKHuSdri/9Y9w+euf4hfWie/7nrt86OUt165vySmQ40TKyhhDkUVQdjGwD4EUJ0JKrD6/In14RPvEtcsb3Hh0w+T/32VeHCYszGeKw1bnYyVNz+eP5TXqWbPv+7mkoNrYNPsh1UdMNCJvmwbCJ8MnOcrrUg1LqWWJ5v5evY/Dmbp457vM3bq2Zp/z8D317zNR3vuBcZzLp4pzdqboevq+L6qYdQjLnCu+RvPVtD76eW3Xs7CIcHR0zCd/4A/R7zr+P+6vcxnMv2xn6EoG8vkwkEs9A9lZN6ZcznaerpLL0+yDLx9nLEQ0O1NUgv8hYbH6MTkvlJwxsjrVH3JWunCaQiPkhhhx3pRrY47kaKVvu74jRyXERD+UkrbVhDKrQUt5VHVNWF9ce1+dc414Qxn7xdyYCRrKtQfX8NEfPOyaaFPn9FV7V33RaptmX/zK2ng3Q49lLl57dI2Hrz40hUyRRQFpa1aSb2AaRyO/iFBrSdYKXcpsd6yUebWn9RxdF2F9Hh5ESxm9qyeJRberXVqs/aX1b8o6laRfx7wmt0GzaXI4aGbjFliPlFJWdsyyfd831S8p5+bqx5exKfhDXVcpzclhjYhlbv9sncRKs/uyIOt8VVV89PRTT1qnBWZQLuKLmqsm5sU8j5uIJZ0YNBC/xogWf0rmV+v6lnrfzMSu9uiKzax20ZTbXJv/dY+X+aHNZkw5uMer+9BstedxbZdR2kZu9qWeoXX5UrOHrfTc8jU3E6vAcI+cFwQaMRX0ev5Hi6Jys1kOTaXMr9byerMfoDmz2+0Am88plYSccp+qkGLE9wNoZru5pFv1eI0M6xXjfmC329KlDrM1qZDXTNlea6lBVeI00b/tWWnH0TCwHgaiOJ77wg3e+Pwb+Od7xm1gt9+jzpFzBO3n/d0J/apD84qenmoz6tNIKRNCImaw0rIlYRD73cqeVQJWIeVlRYIUUp+d61bDQAgTMcfZI8q5kJQGXPZU6cKcM0mSrcVyBkhNAUubDa1q2Yq0M87CMB8sh+QDlzfP0M11Ix3pshxumZgKmkr5cSxBI5f7SQvykCz+q2pJaM0aKe23ColUNam6nhpdUCnkz8N7e0ZSetb+QLfQwb/9bzL+3/4Z/oujHX/iT/wtPvrRz/Hccw8QmcnMoSRL5JwZx7EkWdhZ/PVfeZ2/94//PeIQee7Lz/GhL30IXv6W3M37aqLCP3v+z3Ir3/pWd+X3tB0fH/Pn/tyfw194/q38b3HpLp9+k4Ow+gAnhH2A2yuffuV3pDDy22nXH17n5c++/Iyk9AFpw35gfblmc+ubqJ71rH1bt5fefMnKnR2ZnZUsfM/Pfw8/8l//yFMkx6/VfPR04+8egacf37vdunH/Bv30zbVz03ri7e94m+/4+9/xTf2e3+v23klKlXBxQHiACmZYIfWaUUILUNmH68GpHorm3+vPucmW63wwO8B6ZrUZXA3FLw7gC5RiBh0aHGH9dNrK/cz9LZLLFdlgAVpQs+xmIMeAqxmOsrGZZY/bUbEEUOtfVK20jnNiUsTlPSajJKiY/osvYFD+GuuuZsJVYKgGYq8cUe3exJGysNsGukHIWUiYxLxgZU2GwSFEvHd4n7k83xOjZWTmlJpKUiewcoIe92wvtqX/tQzUDBRpzmgJCkuRGF/eipFOEp9/83Ps455UgASnls2TNPP2g3uos7Iv99854ge+7zt4/sUXOF2vcdevM2piipE87tjvJ7owcRz2pDiwC4kwRVLYsxv37KZUgh91bszqI/a/ihrUw/issNRiZvPAtuCAqhJGKxuRCnmk6zzDqmsEJZGSnOeKOor3FiTFWSm75egpBazviFOg6zpSAU6owPxijh0EzA6C8lxZn4eKYy1LtKmLzJ81wM9ILSKO9XrN0K/IEYa+MxUl3+N8zzCsWQ1rwC9Kai3HtUCmvpI6vIH3C5DawENF+hXXb9zCObh5+w5f/NKXePjowYECUiVjmSJJBV6s/FXOSk7gXY92RgaMIZZAvgKxAGllHRcZ9ZwMTA1VvUkqWJ9mpSw8aR8aIOh9IZckIzUNq4710cBms2UaJ05Pj9ntRjovrNcDeCGNdn2HkHNgWHlOrx0TkufyLKKUEmt+zsjTAkJqCWikOB0GwxbS5gZ214xbhxYCmNbZVZBQV4IvB2gfdh3nBYO1Et4PIAMhBBuXUpYDMOKhmPJAKzVRbVaLKtf5IKSc8M7jvDPQsJZaEiFMgfV6Zfdd4uk5G8nn9Popm+0OUeX4xGTnU870rsOhRSGrKgrZGlEU33tWvmfal6Jj9cG2eTTb8tlq1fU0B61F5nIq1bJWEqhSwPEKhNe/lvHVuq7EN7KdkQZyKTFSgXZhWA04dQXEMNKed4LvSplUFJGESNl31IBrESllUiBpDRQYearvPJaVbPMbqZQhI0t1XWfy+GorUUTpekcI837ZAtzi8IDGiJDxzlm5sFKepuucqXT1Rt65zKb8ghbFrxYosf6enh7Z+BbykvhSMkmE1arHeUecaJnyZba3wEKzyTmjUlW1CnnpSqT9ql2svkkjTi/e0+5ZxNajMU/K+NFKGeVcCKnenm+1p1OI+JJxa6oWkTDW8ILNrSTZxhJILlqgKSlVAUxK3yyKlkghmeIRJZBTFoloVe7yOC/sxh1hivjByEfdUU/eXbC9tycGOL/Yo5I4OurQbIoV+2lHTBGnltl/7wtf4Bf+5s9yZ3WT8fISLx2Ix4sSxh333rrL4Dybs52RqGIgXQYevHXBeGzEtLhLnF0GppYd70zTTpVHj5/w5XuPuIwTpzHx+PGeVX/OejWhceCdRxfs4p7TvGa72fP4Sceujwie7UXm0WZCJTF4wYtFFrNms0dZCSHQ9+BTIOwnLi52kITOWUTy4jJxdrklRNsLYobdmOj9aHtTgBTE9vQwlzSk/TQHuFNUxjGznzJT0hYstZJuyhQVn23PyppJYqXeQtBCajL1tRYQa7YSxDuzhUlJQrEbVkKyGqbqZ2UoKn5S1nHxY2qg54rS6AeyLQ8Kdf+Q6hWVIMnyEHp49Ghrq/z6rteXd3uh2gCd/dfldQ+u3OzIlS+pPjhXrtFIJotoVPmuqhyl7X08/fm6zxx8lzAX7KH5QtKIJ4tOLW5Enr67p/q/PKYd3KIcJj3UPT2GjOvMTGXNRqaFUs7USkCbUklmnOJcDkethLRg+qoegc4RWglRmV3x9kxrOLq+rsvuIAiaM48fPybmcLC3C5Bjx8Wn76CX5+i58POPb/HhV17ju7/7Ic8/94DTkx2RzDrnEnhMDClxmgIxRqYQOc7HfM9vfpyHJ4+48Vu3Wd86aiSlehaz4To46RwM9cF5eL6b+TPFp8xFWdGJKz4ZM0GpPiRqqTQjn2m5/jxfbBBfi6/zfeH7im/vOFCFWfZEDs8TV/u+/My8B8/n3MP3HM6n+oxESrlr50tZs1LqTbz5GK4z8uy808/24OCaRaVSDolCWl/Dyjiv1kf84eMfousG/iv/X7Pdbcqamcdgc2PDrS/fnMetBuzr2hI/qwUnIx5pphDm7Aarkg8N9zBlmcPzBM1fQyHHoihW/cVqx9QI7V3nW2BrGHoIFifvOg+5JA+Vdaua6bxjGHpyFqZxpO5VzMyMFviuZe+UfOWZLwYSmNV75+ch9XWtv38N67LwyesFnfcLBdD2NKl2suIwyzNx9Z2krvM2x823NGJDW3yLMr6OdqAo1+g7AwhjjPS9+W1pgcNYH2pi2hyyx1VCTZn97WC7mJ86W6irA9mGsz6OcjbWui7Ku+r9Vlyn/tXOIZWWaN9RSTRoxc0WPr44W2NlsIxIykwKvdKntsdSfU9mQyLmQ7REtDrHBfp9z3pzxLjeG15QSZD16XlFksyXWtyfq2OXK4F23i+tNLr5jlDP6eEAW1gqS3e9t/NHsRMN21AtSVViSplVdpmF738wZ3XxFJZexfyvLt5bn7+2h0vr0/L52Za1nNUs1t38La3sebFvjRBSkltES0JFTUqr20aTf9KipFQvW4msoFr/VVJRQW+fW3gfbU9RUzG1VzqkM5wmbC5I05b96Ek5WjJONlzE9q3UyFNxv+fh597mnS+8xWa8RBBuv3OHlz/9Ms7DfrfjQjPjbgLxpJiQ1DFeRra6N/OfrATzyVdvoL7tmIgIMQTONlv648fc5iWmKbHZToSYEDrGXWQfAqqJHBP70fyQ7S6w2QQud5Yw4J2p6VZ/0GaBnU39KIgm68cUGZ3HO0tITVnYjUZipvhqMRuhtBLwoiZSTOT4tK1tc0qU0AdSNMJYPR9UFWnVeS6IzpYpqz3v3Gwms4PR8Jd5DrJ4XytxXW1SWROVyN72+fJbtb3P2rP2B7rtjuBv/8OAsNsd89f/+p/i6GjLj/3Yz/OJT3ya27cfAzAMs2LCer0m50yMkRgjJ/sT/ux/82f58ke+zCd+6hM8/8PPf/BJSgo/tvsx/qmLf+rrnSZ/3zbnHH/2xp9l/2DPv/H8v9EIxst27/V7fPx//Pi3oHff3k1Ufu/nlPKeiQ3P2je/HZ8dc/PuzWckpWfta7ajiyNcnvHsN37pDX70r/0ofXjvxB/Jwhu/8gb3X7//1Gsqyr3X7/HiF1/8Xenv4cVhtVn97l/36td4ZX+6/6Z/z+91e+/l3pYAxpJchFp2LwVk0pnYgxj5Zj7h1EP64rrK4QFOWWxZMzBUD9yGzJSDuxRAQStoOQcGDPM6hBcqALRUoFmq6MwA0UFdAWYEggYM1yyvWu6uwmr10DdnN9PGxTLYyqhpBWuMwGEAlgFsRibwJVv5EABrcJVWYMruvQZ665DZP9mC0t7Te/ujE/tfypEpKRoU1LFawTB0iEtszkdysNBpLmSWo77nO994nYfbMz63/bwBREUVox6KnYA6inJELBmPc7BFxAK4XgxUDWkCsfhvV/p17fo1Tm9eI+RInCBPifv3H3Ny7QaDF2KYSL5HXEe3PuFodco6JXTacrEf0csdnR/JK8/q6Ihhf8n5mRDa/Dl0Tqo61fIZN6Bz8Wedp5EFyHNVs9GiIHI1IKjEnBHxiDMlmCkYcaISmyzMqGg20LXzRgQKBSzNCQRv2XQLRZiq4FKjE7qsJVL7fwAEL4Hh+nMBMsqclwp0FmUy52B9NBDCDpFoClfO47se33X0/UDXdw2wVShZflIIM4mkamWrSvbfgV+YtIFiKp5+dVTIKTfohhXu85779++10gi+r8QLO/A1QLms/ZxtPq7XAzEGYjSlnRTNLrlO5izEVMCjQuIQWWYvzhBmk7hWGPr+IFNXAJwwTSPDquf09JTLiy1OHKthxdB5UgymHJPV1JvSRIwTN25ep+s7Qkotk817b4CTXbioN5kdqiButW8GBM42s2VHUwLYBZBq5IzyvAUp2Zm5yLUv5kR5h3OOEKb2Ws3OtzJTVrqxBnqqPRYxdbRpCu07qxx5Der4zqTqqUoKlKxPMv3QM42x2EJTkwrTyOm1NTFOeO/oh64oXoErv6eYGqEwhmS2Jk+mguRLcLruJw30mzPMKwhYbbUv4KIpS1m2ep0Xy+BNBcLFzevRQF83kxNbMKwEB/28z7hK7qz7jXMm11X6gGiZe0Z/yFlw3pfybbl1Z858LwC/81YiouyPznlaNc0G8AvTFBo5tO9d28uc9EWpMDeb0Hth1XlSivjOSmSElHHeAtKrobNbK2UiXVUWQUoQe95TRWwd+s76Zvc+l5HtOnu2uWT5ttzOA1tme7dz0kDdBl8v7Msy8HoYhNE5yFPHZb50W0eujJX6ORDkfSnLuJgQ1ccIIZG02HuNxUeay+80EFxAvCNHK/XocFh1u2Ugyi6vqmgS80Y0FpKfBTFcCTqpyBy8ILHfXHCWA/vOcX19TIowno2s+iNu3rjO5nLLGGIhBBswHTNM2x26OeP4eM33vHqbKV9nswtstxdsNfH2gyekKbLfBLwo164NaM589vP3bc56B0nYnE1cbPemQlbXuSpvf/khv6IrsggxJL74+Ye89dUHdA7QNXfvnyF+TScdjx5sGM/3ZY+F7Sbx1XtPWB2vOD7pcA8dGs32G5nTk7Oy6nvGfeS3PvsW79y9YOjXRscWYbvPfO6dBySX6DrP+dmeL+dz1uuuBDUhBeX8wSXnYyAmI0W6shadt/vYTZlH53tC6jm/zExTovfC4DrSBBfbkXFSxIUSw0wYAUmY9pExTPgOjlYdw6o3sp5a0KOaqRpQimpE2ila5vcUEl0pXaImx2H7o3Om4ii1PGz5fJz4wLYWZIM5yDv/bv9ccbzkwAwfvPSNWgvRNN/n4MX5pfkbFn0q/vbB5/TA3lx9lXof8tRf5ybzINRgfLPpNWh55f2uvr+VHVrYN8zOukZOm88hNS4MB6auBMQOYUI7Rhz6j/ajqfC4ckaRxbhVtUWKPe66qiSnhCmiqbqKdr3ee27fusk27HnyyMB9cYfPpgbRtKhGypXxr3dcVUJyLTNa/iYIw8M3WPEC6UhMJTZlzs4in/nMa3zhc69wfPKE7/zEZzk6mnBdj/genxVSYIwJ7wM5J47OPsLLT15h6vbcvHn96imiPYvD37WN+9NknurT1UNFefZZ2/O7Ghisz4riX9Q4ds7a9oBaA7mTjh+efoi1rIlFFdjsUVF20MPr23TT97ac3nWyz/c9v7Y4e4jNh5QjSC7kpFra2Ejs0kjNstgzq1+rbTwbgVEofqou/DxAHL7rcQ4+6T/Frx9/ms/IZ9huNzQSmzj210Zq4lNVLEOLql6mJSrknFqJqerX1fNh9fXqszsgs+jh2Xe5Vo2kVct1FcUZkeZn9/1AmAKCFLKFI2tRc0Vbv1NOrNerQtpxszizW5xnkYPSQIdPeSZrtkdWz8Myz+ODebH4RYuKpYAFHBY2pvqdWZWY0lyaV43spZWoW31lKV+vaqSmmqgBjOuJRy89xuAfU6oUJ9RpX1vOuSRE5DZPBSvl2696+uJ3eu8baQdq0kGRKsGVBAg7xEixL/U8YXOt/lK/Y1Yiq6SQmfykbe26hc2fx1ubInlTU6rPpfjxTUmPd7Mnsw/bxqWSTGpSCqUcWPUzpSbRzdexeVDsRCEm1f7Wvsxqzo0ygmomRTMo4sp1tSQ7tQErRGrAl/KmKgotaYymMu3KuhYRQtvkF346895g5D9pYzvjjdKSCTLMiU0sLlInB/N4HmCRshydeWkozOTE+kBaL5/atVvf533VrlIJimXYZ/hOi6IO2shLc+fn7y07SDvXZc1WBtgJh+8uny/YbCVE1jNwnb9SOqnteUNKgXGnpMmRfceFf0K36yAp66N1IRKVBJs614t/mscRl0duHHecrk5ZccQrn79JDkoIkUdjMIX5bIpmfee43OzZ7Y2EqVjJu7uvPyJv8zxQKkxj4O69M8Ybjlv+RbaXE2GM+DKnYxT2Uem7gWlKnJ/tEJTPfeiL3L9/xtnFSBbDPNs6mJ0iVJVb927hcFycb4lTouv6UhbNzuSbzciUAq5gG5eXI9OYCmagBJ94fLllM4WZfLTAwm3vgP2U2I6RrJ4pmC3snAN1hJBRjTydTGn4VCyl6LtO6DrXlAgNo5a2JlHD6u0sMhOSUlacqwTbOv/FfL1mYxRTkn6Pzvaz9qz9fmx/74fg7UNG0W53zE/91D/Gz//8j/GhD73Fn/kz/y9u3jw7eI9zjmEYGnnpB37jB/j+3/h+Yoh8+MMf/HJHAwP/wpN/gWv52re6K9+y5nD86cs/zV+58Vf4tdWvPfX645cevyt56Vn74LWL2xd89gc/+63uxrP2rP2Bbo9ffMyHP/Pb2/8ub1++b3urTnnrO9969xcFvvh9X+S7//Z308VvTIvJkq383Htsb/zKG+/5vc/aYXvPJCVXjsRZZ9BFqm721UPvAoHRVlheroCgFXRYBijmA3c9LFVQssEKhVRiB+oZvFBdkCFyPWwts5EXAEzr9wK4lytgvy7wuvKGCorMYF8F8ixD2FHBDm0H/gpa1GzYrJXElQ/qm7t67QOCwTyWh7CDCfkuYch2M2J1h2x4FO+E9Wog5dAAoL6z7DPRIu8szjLfRLh584jV0LHZjMQnEy67Us6o59aNm+RVGedcVGwW3y/lxwa6lnuvJXhELbDvezg9OWK33yLluRlAbeMWQyI7pRNH1MS9x0+QT/8mr6x7Ho879v6Y5179CENXSDFOkW7FybVTjk4i+3HLfr8jhomYE4qbe1kUjIxYcEj+AQMthtWKy8vtDHiJ4NQO7nMWY26H9pxTUcHq6bxpZcSSPSWdAYY5pkYyCWGCUiIwi+I6A0edLyCzdbNgA3PGalUBqiBTg8W0ZPnWXHuZ888rtCHZoa7MnDJN6ryrNUQqyQXs9dX6mO1u0yTTve/ofGekt6Gz75RaIosCVheSEg6kgPtaSIFlHTlbrDaH1b6161eljKHn5NoNXn/jYwyrgbt332bcj6RYMvILYQa1oFXKic71iFjW5NB7jo8HQrDyPgZQJ1IpmWDzNKM5E0NkWK1KecVsGZdq5ZpyXYsHQcNMDCOaLHjt+45r107pes961ROmwOZyy2q95uada1xuLum6o2a9crZSdKenx6ikAnTWAIyVNdH6LLXaupkQZDYqA7kEaWcwe1bSMLDX4RsRpcZ6U1qoGpR5AiYfrlrHxpXyhLCIKszWR3Mpg2bvrt/vnIHFOeZie0r2oAohJFzn8J0jhooWFyJKyqYaVj6HQoowTYGTa0d4NzBNkQ7PsBpIMZOTPSNcUW9Qz+SmEogxG79aD5AKmUuWBD8j18QQFluXEQJzsqz0jDeySSmrWYMXNWTmCpheOywiSK7KfPacfMm+1mzlGrs292hBh5S0BFq0BRi8E6aFup8WsNrIS4v9KiUjORYblRXGfcSqJ9SApLfyb4Usk0tJQ+uPK2oNiuZkP7tUSs+5EiQoAQWxkns1sOF6K/voe19KWSlCImchlmx5V/uqpspXbbuVyTMCDzUwUeZtzBlyAK0BQNcCG+YLaIX3y7gv9tyyf1d1r4o51wBaC3yi0IhDINnK9dWQiy8Brho0reVlRYrKHblk4FcfxfYTJ0IOikikElNVjZRFngFeRZAs5JLRjBTSWlVsUEXIppqVhaS5lSPLkWYDc8rEAKpjU/XKMXB5kRm3E957HroNRkx0rI8F549ZrXo2u72VUut6tATud4/P+dyvvcn+uccMrjNb6QcLb3tPV+Y9g6IxQlbCfuJcL5kySBammLm82PHkYkeMRuBVn3BRuNzsOH9yifaOR8OARitn1qH0vuPRkz3bfeJyDFxud1yeq2Uqh8zmcuLe+RlJBOf6UsalzPNqE8tz3+0DDx/vefQkkFRK+QQhBnh0fo7rhXU/sL+Y+NL5fZsXJTCoWbg823G+2ZWSPKBi8yOXAN0UExf7SGbPxWUmJmHoB/reEVLmyfmerPtS/rRsG8nWeMwwZbhx8xrP3z7m+umRzRXMHrhiu0Hb3pNzArEysZ33dN6UR8R7FGXopKxRs1cpRytfNdq4fVBb8/mbn1j97rInLo8R7fX5A0+RaHT+8alPCTQyA1zhDR14+e1v5iNKdWzmIF/7hM7ZeHJ4lacyA6ux4eBN87cffNgM1xy4X1yrXkLmb9F6TbU+zcSOeqnlGWjRgRr8bJefz2h1BA5PHvaaE5uHSp6DxK6Q27WUIy22GhHW6w5f1JLGfZ7XhHiO1mvUw5NSFtiJtKFedreVMFuWyKk9ExAPw9ATY5hvrfgv8vA2eXKo2PrKZDa7PRIfcq3zPEpKjsd87x/atZJJKop4z+AH+mFFTIEYjKzkvMMC6/M8mJ9GfSLzPHPO4TvPNIU2prJ4tx0CoCau2P2VYLO4RliaSc/mP6VCRhIo5NV5bogIz6XneCV9GK0n/DaH32UuNH+hdqiMc4uc53le1juwBXLl/ueLz79L8we6rieGaT4bl3NfLQO7fL60ebCYf7IgF9f3lXNlG8zysnNGgvL0/Mn0Ezy++ZiH3UM2lxflLGH+aehj8Yu0jGUun7VLei/0/UDK2soRVoKQiDNB5mKvc8543zUsQRuBqgaBdb654sNkk8Mwv9BbMMt5U53KKRGmgO86jo5WjJMR9pcJBN55U1uS+VnWwTPy1GK0yhlmNgFyGDg/WFgLCyvS7gmdyeOq8/VjH1GXy348E2qWD+tw9dY/z2fqQ+U5Iw7lVO7FJ86ef1L8GRsC5xypEPmr8pzmjO/M/2rlP3Pxm7LS952psraki5JotuivJc/k1teczf+2M7kupxlQyDHMCm5azhSatSQy1IS1q4lSdX+aSfEUX/RwPDggGzXzVs975d9a5n0m5dPWaC3rVcfcvta1+7FlvjinF1seY2p2QRW8dvhovkdmHjc7JlWVM212qOyUhXxtSq5VwdoVO+qlkqZqKehqqGQmm9Wx0hnXqPco0u7K+lrzSlQL0W252VZTJiym4fwi9ZFIW7d1jJ+2PctfKuJic7F+R1O3rONTnxFzKfecFzjD0qJm269mddVK0ixLthntWUXMnlMhsrdNodxTIV/munctoa/aj5jQBckpBisv6ZxjL4GvDHcZxlMQz6CJvusIIVpCpRNKXVE0Je6md3j48B5db6TmTbfhzuktTh9ebzivicsZFmLJSZFRY1nLMLqJR5wTaxm7MpdjFPb7iYenj7h/8ojhsl+Uy4OchHFKphAcI6C89aG3+eLpV5nOApe7iZAz4nzb2+roK+CSw8eOpMp+SsQ4kXVqw5XVkn2iZk66ARJsNnsu21yC2CUenm3Y7MZDW1x92IKlh6SMpaRtTEW92EwTU0hMMaEams8mOqvKxax0nZUCPV73Vp6yWAgpYIQAulACrpOoks0roZui1GyKZr5NHTtfCVN8VtLoWfsD2hT4zY/D9G6KCKas9OabH+Pv/b0f5E/+yZ+5csZ8t08Ip6encxLkB7h91/hd/PDuh7/V3fiWtxM94V9/8K/zF17+C2zc06ov48lI9lcFDp6199vG45Hk0zd+42+zpSHx5e/98jft+s/ae2s+eFa7b77CzLP2AWwCb3/H23zf3/q+p/HSd2n3X71PGMLB73ffuMtHPv2R9/yV03ri4s7F13z9re98i3c+9g6vfOaVr9un7DK//mO/zpt/+E3eQ9fppo5hN3zjNz5r79ree4G+Bl7b4XtJomkkogJQLWDOBQjmZsdtAcAsMfIKVFRArJaGmx0+O223BLCGVLg5Qw3aYVln2YMFLLwgOVHBh/KO5YQrICwsQA3K/S06PWMQC0CgABaNnLO4jisoSj2g1oyxZdZdG+XlGLX+1p+1jbUrCjagpWxc/VwBFzHgzpUst6xKDKZskWKm6zyilqGZUsL1jqPTNftdQPdK1wshKk8eP4FVwnlTMdFCsqKCL1IViOLhuLu5R4oS4sSDRw/Z7fbtxiwQkbj/4D6KKUO53JElgc+s1h3f+8Id9rvAvctz7jz/Iv7miVXLKYShpBMOYT0cce34lKQJXfXIF94iMxrRTihjbkQ1lXxgZ+p8q8OsFQTHwDTnHQkla0SdINEhmhCX8c5IBqgwBcuokmT17VO0sizeuVbKy4ngVwOd7xCFo/UxIQRTqColHxKFaCJK9pXY5op6maDZxqqW2lJA1LXSQSoG4hpIYdlZNq+shFSdUy0vssxD73uGYcWTJ08sg6wrxISuo+t7VusVuDnTuT7tCo7bOnT1qlbqTA0IrcpjFcQTreveU9VoTq5f542jj3F0vOLzb75JijZ7us6zWvWIZmJIiPSs+o6uF4bBg2RSKiXSUrIM2n7g5OSY1WrFOO0YxxHpLQA0DD2ZKlWuTfFHwIAzVXvuIgxDx6pbsc0jWQPXbpxy7cY1VquOzcUGciDsR1bHHeuTAeev8/jBE2KMbDc2Z+4895ypQgmcnBzTdZeEKRZyorb1bdmhjhQz/eCL6lqmHwZySkz7SExaSKNGmjDQN7MaBmLO5LEofeHo+zVHx2vCFKgWSqvyy8Lu5JyNYJFzWa2KSNdUr6rtU62gtuGnOSf6zhE0I5lmbxRTucolKJCj2pqu60wsABCclCAhRXFJCdOE8+U6alL1VTWLGkDGlB36vp8z2hVWK7NRTjvimFuGYd97M1edBfxTNLKHYKioE1/IMb6Mj5GPGq21BcHm8oE1KNMIYLLINnaCx1uQRm3uawl2Fv07AxMVC/KWz5lyS1GPEClKFbPKgnQ2Tra1zuusrmEDF6X1NdVgBEbkw5XAhRgxcHCOEBIhFZtXQMssgvQe7zq7l6yFhEixuUoqaHdOFjydSyvaHHMl+Nt1vu3zdes2u5CKwmDZs1Qa6UIppQVFS4khV7JSK+GplGVUCCEUdbSiVFj+jtZrOLqSQa/Qyh/6zpGLktVqNTBNVjLF+zmoZQpcMAwOw7xt/qacbA+qwYMKcotHRFkfHxFDsD2k+AYpKd5LUQ0z2+2ythKc9kxsPGIMJE2lDCxWsrZMxJwzBEW9jXdKEecc0SW7dnm+nVuRNjveSvdZdWv2UyCTTTlESrA2ZB483hKSmqKiCMNwjOuHEvQTUozEMTLuRpATppiILrBLGReEKSV2u/1M4kJQjSTtCAphMuWzMST242glXfFEl9hvd+x2I+cb4R0PYS/sx0COiXEfuNhdWgC3FlfTxV4tlSgreNez6teIOqZSXhEUiYW8Xvb7nCColpJ6No9DzJw/2bHbT+RU1cRMaQxnhOztds/Dx0/Y9lt2u45piojLZPXkbKogNX5kAVJtwa4xJkJWPErf9xytBvZjZgyJWIjOlaiRSthzvwuEmAhj4PF+z5lQ4sxmMLpOOBp6C2qIr0IqjGNgDN8mQYVFgAhoa4lq4llojNVxrf5xOwPMF2vvXfje7bwgV96+/GO7GIvPSVvXwEI9SOZvMje+9FmaX96uVc9LzU2av695+7LoefPjWPxQv+fwTCBljS+JTnXv+XqtWuDlOLSA7JWTdxvnNiblzFd4uo20Aea3lhKLNeDsnNAPPTGY4kYt8bPf7aHLRQUmt/2q+d9VPaARdOZ7byOodmbZ7kopx8X7VDPbX/ow+uSMSiRWyeDMz3v+5NhU3T5zwnd+/Akn1+cxsGNrQhA617M6Gshk9jGwLDXWhr06bgeMs8W9tJE9pNfZs9Piv5ezhipVtaoOecrzmFcF1/b5xXPz3tE5z/eG72HVr0rpuPmMu+ybOl3+aj1TQSpppz32+vd6r4sbaHL981niYN6Ufcs5S3LY7/eFBFTLvTmcd/iuo87KxrdZ9K0Y/EM/hwZLzJ8VaWefymB4Ob3CP6Q/wv9w67+n7zxPHj8mZ5iO9zx6/QGslQ7fFB29N1/Uyu0WlbBMITYZianve7rOmypuCYI7it+GmpKNMpez0rmzdd/y3kpzxWyE82HVs1oPdJ1jGgOQLYmod3SDQ2RgtxvRnAiT0USOj44bSXnoe3Z+pAqtLu1pnXuqM/Fc0VYaLMVKAliQG8pz9d4jqpbkUP7ufUffd1a6Dri8eVlAxCWOcohnXLWv87ooFr1umsXfteQlaQlRda83kzC/Xu1D9YtEKnFI8c6R1FhNtm7moGAuPtfBPCpdXQYP63NUMYJAyg7JM7Zjyk1ayqJZedYFn6UQkGaVw6roKfOysa92VYmmEoXmvWm51pdnMLtjbX1ZWvTlm6q6S00kaskRrt6vtLcvn9/BExKh3/ecnJ+2r1EoyUWHhMX/P3t/Hnxbdt33YZ+19z73/oY39jygARAgAZKiSHEmTVuypTCMY9myZcWpuJzY/iNVKbsqVbIdxX+orHKSSllJZLrisqMqy5ZjORXJTOJJA2WTJjWRBElJJCYSYw9Ad7/ufq/fe7/p3nvO3nvlj7X2Puf+XgPoFkCiAbzNauL97j33nH32sPYavuu7DEzXyq37fYTOyC4xdLkUmMVmTwLz9WClFaWPwlLuGjhW9l+59cttBFQRNWCpJWe5LeX6U5DGTIb752YfSO2M2c1Wln6+N3uuMZ83e4LWL0ymNyBcKa1kdwMn0tdzN2V9AupyUbT59bUTo++JYsy9Tfkoqn3Ndp1p4Xds/xkDnyeONLulTbOaDVvV5rOd6RVn20G5c+VNngrPsM5HnJ9vWA2rzjoaxW1rB0ydxA33NhcMU0twibz42Cu87/UVqSYbh1IpUwFRSjmklkJWvJy9cu/mfS4OLuDUXsRSbcT+q8okmVfe9ypPfPwRQjG27aCBMlnZ5hKFW8dnvPFtb3Dnxl3ytqBF2Y47cq2sFnRqsmBAW12sODg5RI5MRqcQjYFouTN0Xo+o2Qe1qJd4h1wzF5uJ3ZTn8n19QuwmuVS22x3nFxtqDUxTK+HmGpoKliKsfZO0dV2qkqvrCmJlvFEhF6XU0rdFEzMVYw7P2db1Lts50kSzAQstoWouR239qNXYrx62h+1btv3lP/wVLhB+8ze/jx/7sY9w5co3R+kiUeGfOvunGHj7ZXW+WZsg/MD2B/iX7v1L/Ac3/4M9veP+4/f5xD/yCXZHu69fB79J2mvvf+2bsmzRw7bfju4f8fhLj3+9u/GwfZ3arQ/cYnNlw9HZ0Ve89vSRU+owA0BVlE//6Kd58vknWe3eHgDojfe+wf3H7n/J78uq8Jt/6Dd5+rNPE0t88PtYuPWBW3z0D36UL3z3FyjD2wNSXr1zlUdeeeRtXfuwPdjePkgJFplE3Xtuf7oVZA7XRRbYMkjAfM3s8DYjf77GWELUrwthaWRL/3xxu7cw8vH7umNV5t90WvJLDvxlltTe/d0J0Q14nTOZoGV8tb6GWWdZ+H5rd9o3ut3mfKc705Z93AcCXBpnpDsgZqdw6L9rjsj5b3dspIhE84rUWsmlLAL6ylANFKHAbszkgoOomoM5UqbMyf0Tbjx9gxgTmbI3HxaYNk+PSgtg7DvY5mDUHGBvgXwbK7XPUUoUombQAlV4aRq5d/8VtlEYjm/yXoWDITGWStFAVkFKhQq5FvKYzaGRF+OhcwDL5nx//bbeaalYLpos/ITC+uCAg4Njzk/PDWAQlFEsgB7DQC5w4E57oxmvaIZc8jxWISApmkPbHZ1UYyMZhshuuyVKIGttAwcSfRk4s4hWo7pzYFglmIOhGpiise0EKlKVEiJFAkGFgWVobF5vBmizZwURhrRCxJyE62GwQEJMxDQwrFak1RqRCJ6dZ6sveHB99vgGRwSog6raV9X3Qdu3MSaU4IA3CJKQEBlWax597DE2FztWq0jRSopHpCiMYwYCBwcDQmG1XnF2tkXVAREMiAjDeuDw8IAQA7vJs3MRVsNAGiKqwrjdufNHCGpglsP1QAjJgnBFkWT7KUQhSOLmY1c5OB4IKOuDgWGwcltXrx4ioTLlibQKHB4kTu5tODhec3RlTa4TWisX56OVRYxipfPcSSuxWvAiT6CRIMq1awccHq0ZhkSplZO7p9y9ew4lEsNAS4uUALvd6KWcHGRD5ObNR/i2b3s/n/3U59qOBFpJO2P0qg4q6Zu0CdZFcMDkEt3RbY4sp3sPgYPDNaIG6EOUEG1Kx7GwWtlc5TzL26qVFODo+IAUA1OefH22bG3tpTjUnaASpDu/2zUigfV6MNlRM9lRLwqs1gMIbHcjMQVSCgwyoKVS8s5lnO3bVmINFepkdeT3XP/uMK8VQvRgkLZM+Vm2t36pmkO+l65oAYFq5TFrrTTPZ8/dXgRbzElvbAyNmakxL4UozvajLSrVwREmV8Pe2dbeotSKgVPmPs+ADwt+NZaDotWcmoMgdXbQ0+WMM3kFqLmShsiwiuQpm6wSA5ARIK3M2WoscyYfV6vksr964GEOYLbsYgmwPkrEtDJHq9r163WiocdsHAeT/1M21rL1CpHgjASZrNXYO7QyjRPDMBBTYBgSkwM6Ukqs1tL7ZIxYcQ5ULeZbgKrJym3h8xodRAXOLFIYVgOrIdl41eplXA0kt9tm8mQe4qY3Nb0nhMDh0ZogFiAszs63Wq1IQ+jBKTxIEh0cENIMWOwBF62cnu0484zcMNi+tfkvxCScXpxyMZ762rPAToiR9eEBKQ5QKkIg7zInF2fcuHLAkzeuoTEiGcaSuXtywsn5qQf4zalfVdlsJ964c490sOL61SPGGJFo59aYM7ffPOFkyqRDRcvEtLEyUXkqbLc73jy5x8HRIWmaWReWMTl1hsRhNZAGISGsWWGgV+VcJiKmJzTA2wpbP2MujNPEREVDpbRyfapY6UNnHMAy38exkKhMpZBrJgVYDZGDwc4sbUG1RUCrlkohs5l2jOPEZjuyGRLjVNnuKlmLM9iZbCjOULbbZEYHUo15sgBbsVKyKpUhRQqVIcJuq5QaSEMkRjg8fpc7FvXSP5Y6mjBHLtvfzWawi3GDYv4tjcVnwZrWA6cwC3H67/ZUv35nmXvVYkPdLtB+Buil+9jX+wClZaDZLpe91+7dxwO0rQeLz5uM1XZ/aWAO7bef32/ftpnvss8YOm8c+2dPvujvKXtllJbP6Kyn3ueqiuZWjgWCy52m5xtGQ/p7mUyubHc7DoaDrv/vRciXA7A3FtAYdJef1RaUdj3FADeuO3jgN7QDssBJKXx6e0IWIa3X3L13g+s37pvepA2E5HvXyy5ayZO3Ht3ej7eYgQYM2HsLgTQMxGQMnJZAoRTnJwmYXvrF9EVf074+FmVgoZ0VTe+3tbuqAx/YfYC4snLHItIB5c2msxGcWbcaD4iK/8svsvv63hI1Bk8RAy9zqcj1Yi9IXyzSA9QGkvHAfTD9JMRAiM7c1wR6W9PLPbdYhHsWcdufbek0HTo0WLn18bn8Xj6y/hVijBweHVnANSmnz5ywWqfOpooKaTB5H1O0UoWIM1sYoD/EyNBKXZcFe5gDm1SrgXcaczN2NqcUZ71GTWcSAYIQJXBwtCatbJxSCsQQyCKs1ybHS62ECClFdruJNETSKnUA+zQVajE7v4GlbOiqg6UcpCPKau32SrRyo7vNju12RKsszjtbM7kUtw3aHAQODg65ceMGb5a7LMtGN91oya47f92kpk+WzOusfb/3J1ZiV5KfCz5eIVggvutnfv+Z4dr0UCH6QplBKEsAzCzcl6fELIWDA2mq62wtWcLKACYDRXp/Qkx+zpe+FWw9znJbHezSQayLdd72buur/6TPwd5nC3/W8gBrdoMbH3bNfDCxbLY/av+ujU8ruTnbFDIz913259H6rnu3NwAQ83+618EODivLH/W5Wzb7Kw1x7g8zUMf6SwcBdga6BvZqYyoQ/D3a/IckrFJiBrhb4gBtDFQNdO79bX68ma3dShjGlAgiDkKa1wwi1FJMrqmBybvcaiXuup5DXyNtzhr0U4Isp7OPT/JEApyhJ6rJJa2WgHhZ57DfCjFFUpNB7ncyYGboP5l9ZLHPYfMR1aFCBLIBbEreMcvl5j+oSIR7j7zJxeai3RQQ7h2dcuu7bnG4O0IQbty6Qdomaq1crM85Pz4mJPN3FQrPf+AlLrbbfo63jVNrZbPdISLcuf4mn/m9n+XxVx4nqiW7bS62vHHtPmfvO6M8fUFFKaOd47VWLnZbS9wZhu7HXRxcfQ/Z3m5sfw2Y7gxIXqLeFpR25sMmL4rCMKaZwZjFUCz+3ZJ7DCDmiT2SrLTzgvV/35ZXyErRQnaf7jQVAg2kZPrY0oVcHXA3edJNrZXibHiWPGj3Xg1KiiaTcrY1GIMY4/vD9rB9qzaVr3jJ+fkxL7zwPr7nez75u9Chd9Z++fCX3/FvrtVr/NT5Ty3sl2/tlkj82ObHDKS0aGUovPg9L761+f2wvbO2NKgftm/upl/5koftm7NNB9PbYp6rofLyh1/e/1DgMz/0Ge49eY+rd66CWkm1g/ODt7xHHjK/9od/7SvKlS9+5xf5uX/55/jwr3x4D6h074l7vPB7X+DVb3+VsvqdY3n7Ui2UwOHJIec3vgz4WZnZ/b+J2jsCKTVnyZxl5q6d5lnS2SBeZlaFEPcMrA5OcXCPfbbvzG/PWzpFmoNgeUGVxu7cnDvueGqZaov77Pe9OdQuuUVaYNQ9nnVROiu04ESP7s7vM3dpBr9c7m9jhupBNr+G5rQUy+KEORjaKI6N3SP0Me+BfH1QyrcM5Oa0ymUCrV6Dx5yOuAOnlsoYsmVF1sKUK2BOoVoqtVbGUUlVmKbM4fqI1Sqxu9iANqdrK90TrAQRS0dyc/rNGeYtS2ue82aEG6ABCaR1RKdq7Ck1sBO4IxA0EidlOt+S8xGESJJECErWTNZCDaC5Uosx23Qw2cLYN5/JImfU13CMxhikC39565u9ibvWmuO/c6x4xpU7qKKoBxRBioBaeQwDRhSy09i3gPRqWKHVxsVKSen+wlJIGqCKB2QrLRgTxZ2fYlTfiIETiihBzU3vq8r+T5hZXNr/eSDBgrpwcHDgjCI2JgZasMByGlbeNWfwasw27lA1h57DpDyqY0wgsa/tttfM99QCKXi2mlLKxLjbIgKHR4cMw4oQB6apGMOHVFQP+lrOuTJOGYkuDyoMq8SwMgaYSrEye8721VgKtBZiCqxXiV3O5sxXY7wKQVivBpKzR4kU7t47ZZomDo9WDNHGvq3p9dEBFxcjEoTtdmI3jiCFo+MV52cT6/UKVcuOzlO2QImIl24aGVJCsODV4dGaaYpcXIzEoBxfOeD4eOXzPpCnNWfnF9Tt7CA2uNrSqR5oKI4YE6thZWvbgw3LzFv1+SilNro33y8mc0opRJ/vFC0LMmdz0opEA6cMiegOPVULtNRSWa2t9Jxq7UA3k0OVGAd2YyYlKz02rAKr9aHvg+Rgxujllywj2nyJwYMuDewIKsa0lXMh52xAL7USbpatL8ZK5TK2eGB2WPmZsKBLUi1dJoSoDNHp5L30Ugcm+di18kyic/ZsbU7gRSzGZL57psXKZmrxUiJRkDiDVCwY6YdYCKizUWmwYEgDIuWcaZnimts7GDijORaXQN1StO/+WguKZaoXz6QPBESFiGXsTmMx8EUoPb4U3WFfVc1RH0CkkAZbD0IDztFLuUi0kn9abB2VWlzeQqq2VoJEj50sgklBODxak1YGmporyM5BlhAGWwelwsHMyqAIQQfKuvagQoqBfLjqKz+IgRJb+baDg5XLgbk0Svu3MTdZgDJgJeoqaiVTARkiGgQtgIozDhooBhWiJD8HnW2kRmfWcy1mEWwXEQNghmrsTUAM0ZeDB0KcRcD2gK3tEJuuFUiSTMbWSiV69rpCFcvm9oMuuENcgxrhnihaCyqwGS+oxYAIKSTW6YCT03M+/luf5aXDNeuDAw6HNRrE2JJUqRQPWng/c0FXSpkyb755wu5si4TAkBJ5zNw+OeVC4XCbuDoMrFMgBcgpcnGxYbeb2EwwaCQX1x0W5/c0ZTbbDbl62ZkgBK2kYNffPz3l3r1TwqGw3e04jNhZWYPhoEulTpVxWygtlds9/LWVhcCzl4uVbpumiSkb25vVMwpeKkNoO1cQP8otaFWLnd27MXOx3ZEnZZrUQMltNaudiaUo0zRRqFYyYxiYppESII8WoKAUtjtlksBuNFm4YjBd4d3cljrZHiJnkXTggbEe9PT/bcB8U4D6hcxnWtv9Qj8cFu2yGdf+nuM5M1ioRxCb7i8zqJtZOs+v9Rb3rcy2SNeGF7ZSD2T3R14q9dZiaJfeQ+fIewfGXbqk21m1zvJ/r4edronerwdeYO/vVoLQ52RR0qrpxEHc9sFLmnpQtPp/WgpBI7VUhpjsnBYDnPcx9/efra9FcI75nyrMMq0bHa3jDXjv5Vmd5UAUMkIRP+2KcHHquqqYthxEKNj53UtYFU+i4cE227f749JsXCW/9fz5+prnP/QywCLCWTzpFpKBlOZHiPh54UxwbQK37Hh1eJXH6uPd1vT6wPPwuv0X+s+0s4HNdlsbS/ui9nXP3o0aBGt+u9nOar9IabBkDeY1KY4yiCG6zb5IClHfw8K8h5up0ddwM9KaLWzvuWc2KZyHCz6y+ojZwQJpSH7eRfKVkXVa0aCDrYyequmWXTxVZz4yigmUOjPGytwPK6frTDLN3ocOqkheRtZ0RGPRMBbSaIyti7Ufh4RM5hBrJcpAGVaRaSzEZPeo6kFxByhpNSaNVkY3RANI1VqZJmN0Wa0Sw8oAFFGEWiLj2MApTR67NGylpBbzH/wd2pouQyt3Nsu0Jheav2e5bgysI65TWUn5xprTGFUN1DX7UYJTtwVtZXmN58Pm0kBmIUZPzjBQURDT+W1IgwfkDUCg4HM079/m2vEtYPq4BGfRstkJtOQt73uc5XQt8+dtHueTpQ2BeoLBLJ+Qfdm8LP/V2LZNhtZ5t7k87mPr+6fPlyrEmW2o+998zS7B1M2YabK6ucmqM7U0eTQzoy8khdI/M52v+QG0yxkQZ6pxfaqKM5pqv1MvhybSgULWvVYqW2kgsbaUjHHWulj9uSFYAlkDD+6Bnb3ZnrBxKX2fzsBbIZjOXpUIoF5GS2wFUDFbBluLMc2+uTac0YGCDbikyzWg9D0V3KZsvy/Oot1sxGaPN9lfe/KBj1lbqxgQqxanimV5Ltr9m72lzlw4J0XO89v8dQLzc8T8TikGkyt9vvdeqa+H7bUtJ0+d+trWvv6qVE6unXCfE7Qqrz7yCikOlvQjcLhKpBSNvVuMnag0f1c7K9s6V5vf3TTyhWuv8MUbr9pYAtvtyMVUWB0MXGNFlGBJEUEZR2OO25WC1sbMq8vlgaoy5ZbsZAtM8blS2E6ZzXZn16wTpWTb87ro2ygcvXFEfdQHp4/tLA9lilx946r7wcwPYL48ulzoIrXpv0gTXl5m1JLoppwJ2PuUWukpq76PqqozPdl9UoqU9lzfW4rZNxApxe4dtPmRHraH7WH7cq3WyMnJ9bd1bXKQ7O9W+8LwhQdtuq/QTsMpv3bwa/yRsz/yO9Opb7B2O97mz978sw9+IXD62JcuJfSwvb2mKOPB+PXuxsP2sD1s75J296m7vPR7Xnrgc43K6+9/ndff/zoofO4HP/eVb/YVzr+aKp///s/z+e///Dv+7e9kS2Pi6c8+ze333v6S16y2K5797Wd/F3v1u9PeGZMS0LzgsmfQLUhw3XAW2adO1oUDpBm9y9YcfW8NumnOkLcA5Xj5mWZkt6C6OijkMkuS6oLBZ3Hf5bNmg3WGBRkQJ86xqx7gXzpM3ZFwyZn3IEvTwqnV6fj3HVQP9M8d0LGVGQJaVuw8H7LXJcXK0dRqzkyt8/PVHTO1VoIKUKjOmiESmMYWrGv3VYZhxWq1NtaX5lsTwXKULWN6GY23bi/KG7hTOkhkKhZNl9ZRWYC3AkgVShWKBnc8iLEciLCrlfunZ1wfr0G0MakAKZAEYw+qkBWq1MU70J0rHSTWx9J6s0oDIQ3OBiXNPwEenCkZA02QSTGQfE2mlTDEyGqdmIpgkUSlZHPKJfPC2rPdqWBgIguOr9dH3UFcG6NCy0pTJYjaHHoQxVxnAjGhEhCdCHUHWgiSKAoig2UWklEtKEKVQOkOzv391ZemCIcHay42F+bUCpEQkmcNmgOprTErieABHgcdgQVzNcxruPpYm3Ou9FJwDpvCvXVOxV7JZeL8/JTdbsP55owhrQgaCFKJMZAnC3iEKNQiBpYJkTAkdrut+8UsuzA4YwdFqTGwWq+oUzaHZwysD1ZWFiBfcHh0xMXFBSEKwxC9hBykIVC1mMPbgSS7iw152pFWid2YrexVEi62o7OmCQeHh5RcsGoWhZwnppzZjaOVGZNAGgxYIAC1MgwDVw4P4OiAYdiSonQQSXPKpiE5WGYGUoQgPfg5pIiKAYmEwDSN3L13l4vzcwf2eHafM2ddBm/O8qvNscmFELByjyUTkmUXSrBs7zgEzzZUVmnlWYVCHA5IziSzWiXyNJlsGj2jr1SKwGqdWB8MHkwxivxa5jIaBlgqXgqiZa0bEKexCzWwp9H426LLHlRdrVfENAfBFRjWAwcHayvp5YGoEGbmikoEp0C3YIUJiyDiDsI5oNzkYXO2q4o5g6X0M9EAZB64RYgEl6WhHTn23GrO8GXZLhE7j4IIuZWWaLIC88U3UCvudCxSZiBwNRktDvRpbDmqSlZjKBKf88YMpITO9BWSjW8LTrXzwzItcVBak+MQDJnTA9YCDsQKNq8aCcEymCUFSpYOnlkIo37UVjXgiwXlivtwPQjY2KB8boIY+K9UA4RqVcTBn1O2tQuLLGlf7+3dmv6A31dL646CVAMDIQyx6TbWlyoOAh0sOBJo49zOwgXLUV9vHlDxUpwWHLU5FCqoA1eDEpfUERgQEGQGM6uVJMHLj6CVQLR5Zhb7Brj2TF1x1jFRoPTyMW0NUZlLXwjkOhLEyrvdO79g2O0IEkgrK12qsZKSBQIINjerIXL16hEhBaZceP30PttxJK0T169c5fjKESnv2J2c8sW7J0xVWa0TB4dHxNXA8dER55uR7WbTg920d/UDfLfN3HrtLrvNxGoYWKUVQzTmuTfunlr29K7w5uFAVFilaKVvYmIVIrtx4uL8lHHcUbRQMTYocWWmBTHBWPzOzi/YbkdiPKABgdUZVzorAlBUyVPm/HzD+WZnIO9xZJsCJdsaNLCtOpNgdSoKy9Afpx0xGmB2PQyUAiHsyCUTg7JKiRAiaVBCsn05hIFpelCXfte0Huha/O1BmAcCX7LQcy/pLi1QJv0e8+cedf2Sz9+zJZaAn+W9lkHmvUfvQ2faE6V/u/95u9cc1lN/7KX+7emqy+7K/iUP9HF+D+l9fqsEkBnEYT/rFk77dtHntw6s7oNrbK23QHV7lvYyh+pnvHo5VO+XmKyN0QEji7F6cGQvvTfzfLcztwNKFq+qPv9tOJqe3wNuvtaKKrtxcpBHmAPWoUFJjW2jChwfHxNjMra1dtM2WtL4L2abMIbopWEvz6nZqLXaCNptlNvpNqfhxILoIbIZLuiB9qrd/pRuOPm4N4Cxy/mT9Sm6mQ0xweFVDYywGFHbUw4QEyFnA2WUUrj1akRrpENQvBzc8ZXCo48WQjIJuW9PzGPSNsWQIlOevGywl3oLXp5noR+E5gegMaF4L9W4sBq4oo13C/y2Nd9WcetI0cIvHP0PvBBfYNwac+k0jZ44ZSXPTbc2PToEY8kUfxYhUJwxB5jZKYUOtIgpdnCxiLiuKGidSMPANE00sNqSrUXVwBJtjMo0Ueus61bs/JxyoR1zKZl+HKKNUq2V4nNlepOVdA8LmRBFWA0JEYihOCPRbG+DJ5IFWyVt4JdJPZ3srCqrjZWc3m43VmJXK3effHNPDpt+O3PlzFA23Wed9rHoWAbXPaKXeZYofV1EZw0NK/vOmKXms7lblIqXnXTQtkRyKV0WKQayV7WEmFamOThDqwHU3TZVXYyTdD1OcWadGPraqG3+B2foaSVjl7YVgaCVgIH8O5mRL9u+fvvxNScRmR/IZdNij3XwUfV5b5tGGgjJWb8Vk2/+uJYgt2RD0taJZlPgwEictdlZQvtYO4ipjaH0PjVZO5/dht+2/gUxxs8GPpPF89pcGCDpkv+sy9j++s5M2z6Y/YvN79iWdF9yfg7bZzYBjXlmPiXnMQ/uC1L1ceygFukJd0g7o72M9uJZDaA0b0n7bfPBLRMqwcvntYkT08sFgeggYEPm0hm5fJ5V1di0g/thlHkMmt+V+d8EA4110IvMJY7nAdP5N21ifS5r3/DqMy8+38K9J+55lrStm6b7NF9P1yNUULXkFw2Bbc7EWgjj5Ex70UBZASRol01BYEjJ/RzCdpyYpgmVObHsIAhaM+dn2fxtAYZhQCQwrAbKCHmaDBjU3q3vK1sfm82IIAwpEYMBagVhuxvZTiNTthLXQxCGFPpaNvki1KmQXUaq61kKPeNZFEKxxLFxnDxxbZ67tlyWrWJrMOfMNGaqKjkFSgl7TMPN19luoq6/lWq+r5iMHR0VJimUaoCsGEyPkNRks5dF/CbM0n7YHravV3vqqadYrd5eqZp32jKZ31r/Fq+mV/tnr8XX3vF9qlQ+s/rMQn97+00Vtlvz542j8Pf//gE5P3iPJ57IfPjDIwcH++fgu61lMn/qsT/F3zn8O7zDoXjY3qopXH3z6gMfP//7nv86dOZhe9getndje/F7XiSvvkKp4a+lPH4XynZBCDU0U+utr6nCsHuXV0/4B2hvG6QkTsHbDKZOOL9wdFU33IOzkCytK9XaHZRL59ilp+wpKTNIZ/+a+bvZedEzzZqDogf8mlG8dJ7qXh/2QUzLPs+MR7PThu7cFizA1JgzjFnHXaw9JXk2eJsBb86C5ghcvvvczwfGqNmr3Y5u2YG9t/Y7d+S41W19LNWzgL0snXhfg3QH7czIIJRpYnO+oxQ8q9Gc6GPObMex/641K5UUiG0PyazOtqCSgYx8nThIp10nIjMTiRjQonpJkyqFSiVpJFShRjPzx1ohrqBa9lEO9oyIMwKlakHd5I5wmpPEGS88GCh9cM0Rm2IipMjMPjS/41NPPwnDARcvvkYogej9DSmRhhUikePrN5gyyDay2+wssF7NOT6kyJWjKxStXGw2jKOVkzJKaWHcjZ2lRZhzl8TZeqokggQGMZaJlCLDsOLG409xvjmn1szhcMhBXHEwwLWjI0qB++fnbMaJ8zxy//yc8/NzAwotPKQhBHcimgN3tY7cP8+ezRoJcSCGyLBasVoZ00jPEm79Wzg3QeaM5za/pXRHtVYrgRdjpAVhFAOhbLbnbHen3D+9i+aRIA2YMCHgjEOVzWZnTugQiWmgVAPipTSgFII460kQxnEk4IwpACrEYNeVWomDgTGGdSKMgThEAy8lY8XYjBsLagSIyQIJuShTzYRSKLkavbtAzZlxVz2rdmUOpwhoZXOxpdTKbpzIkwUHOmsPgVwLOk2cnl8Qo5BiYLVaIUHIk1J2Vsoq58rh4RFarESDAWcSVbOt3AjDkLgoW4LA2dkJX/zCS1xsLhaBRgADRARZZqFKZ/yI7ohv2c0WVLCfpSF6aaHgpSdCd3ZPOaNVGdKAVuXgMNFKHawPV8QYSWMw9rAyWRa5BHJWxtEcZikYu04DXpVauuAtZWbRqZ6GKcHKJLVQsL2nZ0IGSDF6dmtFvXSWBAM/xsHAdiafq2fmwmqVkHVC1MBwZF+n0oKgOFuSdLaV6iCgts5KVgNHLeSfaiFEc2YKvveC389L74nL8f2MffZK2VUgpGTOa1pA2EunYUwJAVsfon5esx/Oawx/MQTCIKTBMuxXq0SIFoSL0T5v8r0Fo01uOPi3tuCCxyKSeGkHe5CqKVIiBq6xKfTgYIyQLBNdqlALMw1/OzOylbgqRT3A5zLGS8c1OdZY6KacDRznwT4rL6aIYXaY404eOHXwWwi2vpqjGX/HNifB17yVPxMHRfWKFR7EAdHi1StttHO1f/kWQ4KzAAQ8+OtjFyOquYMBYgxoAHUwkXiJTWOFsycGX7Azg6VvFNfH0Ihk8XNXHYWG/8bHtRavPRAYQqLUjIGWfF0HpZaJXZlIMbGbhClEpuL33UVWq4EaRtaHgogxDBkzYGEsW1YxUZzxgohlNufRzned0FIYC2QJ1LGgcSIUD75poZTJ5UgBraizxQWxQNXdOyecnWyAYGdViqxXAxIjB4crTk7OePELt3njzn0O1pH1sGKVVsQQjUWjg8BnZbeDNv2Mmks32nrY7UbOzs7Qyco3RQcl2JktTCpsNhs2mw3jrlC1sNsNlJXpDFHEZGctPUtcVClZyNPEZrtltY4cHCbCEEkFVBNTtrIMQwz2OyIhCcOQSGEgye8+Le3bbUuwATAr1Is4UQuCtWSHmekAZiHz1q7Ty589YNvtGxULXWbWCDHJ0Z2zy2e3Ejhv1fQtP2199vtIgyvtX73Un3tIb1FCtOmks3Uh++P21m/LvJbb7/bevn+yCGm5nbKco3k/NPnfp7Dp7t3mqt2e0VqZpmwlfxc2VynGbifLl1oE1tvH3f7S+fNlq4v+NIDgDK7yNeNsQw16HBZGnKoBlfCEgVY6stkE6Gw3NYCFYJ/PQ+gv0AxE//8xNIVpoT/5WF25egVC4vT+GVUrHzn8JT62+gQ5Gqg5SODKlQNW9RDJO2PfxPToWisxCKvVmooxrjXmWwnCC6sX+MHzHyQ2sPZSH0cxZgjTdy7OIq+9mrhzZyDEyO03b3D/tFBLYbdZEyWSIqwHY7zYjRMSM8fXR37sx+/zyCMXLBm52rpoa0PEmEa2Y10kLhkY2IBqDfTcB3ZecotVKXrp85YRxKzPLhOBihZ+c/0bfIZPM047duMWrdn3kxqDIa4zoExTdpYc0++rGgg2RGPh6oATYdaxTHGjqpd28r6EIHb2xUAuBrZJQ+hyJpfJg/e4zhEoiukUDiZvLD9aKyVrF3nz9jbwa/W91Mpozcy2pjvmUpFxMpstiI83rmOZHlxrNbuplu5jaCzJzUYPMZDHzPU3rzKOO07u3+9lcrXLKIPcNZuwzWsHSoT5syZj53Vi4yUCMVp5IaHJG7MpgjMUGWPkvLZjsJLKqtoTDkx/FitL5QxvIGgt3Q/VznAbA18XzXcSFkwxrv8tV6eEmfW0J5KZ4uc+Eoc4Lhi3BTufGzCka+MLnaPdvzMG4fPU1n71oy/Mdk6X791zQReey0QgeYv90m3BNk9hwbDWOr74dSPR671bHGGdWM+vb2vO3sds7JaIFtp+2msy37OfMT4PC+alNubi5eTFMPwLDcF8kLUnMc7v0W5fHUml4AyArpfqclybmG/rA99js67tpjtLXqGedIKt+Q7iEqGxi7Z3l7AYB5cd7R1rP0/afpr3WVur7Xzs52YTEn52SVsDav9rfp7Q73W57Z3Hfs9l4lKTg9ITSnTviEOU6WgEqVQtSHV2NE+GbGl2iskNk4WCVEs2VG1JR9IBzCEpCftcojOvaSH6nGvruMxJLGbzVooqRQWpAqUSO0bZz3pPBqTtYYVplZkOR6ZN4jSXXoK8sem1kp+5VC7OR8ZdZhjsuxSiMQIDV1+9jjzaVsK8dtsiPDg7QEahhsYOa2M9jhMR7SUG+0QIVDx5YZzIuVCBnIVSIylEBEhus3WJZYPNrmRKtkSvlFaeHGcLWIq9fOy+PZfTMZoe8ZUrczxsD9u3eFvqwV++LRPRv5Ztx44/8+if4S9d+0uchy9THuZttl88+kX+1bv/Kod6eNls5vLReutW5Nd//ZDf+i0DX/3yLx/y5puRUoTXXotvCXQ8Oqp84AMj/9a/dZvv+76dl1Z+d7VC4S9c/wv8wtEvfCmz/2F7h02q8OynHmT+qOHhQfMt0x7upYftK7Szm2ff0Otkc23D6SOn3Hjjxld1n2/7zW/jo//YR9H41vrFjddusNr+zoCev57t7TMpaTO0zJiyTHxzQPTgmhjbBmIUveJOhOZkMoYYv93SsdGcegureOlA6tlA3fk5u9KXhraVcWrZQLNjZM7aac73JRhq/nvf8d6UTXM21YVjBzGHb8+Emt9kEUXQWYNDMDBAC7SY47qxvTRHjPU3dqN5ZtRh752aqdvHQmYHhI/S/FkrA9ScMdrASNa/HkjoYxQYW1YxVv7LSkApJ+dn3L17l5qL9zn08ev05D5sywxsQfb8+bWVtFlcseyXrbFsAQENqEQLzOKAKLFSXu95z7OMu4k379028EZRChUN7qoSL13EYh5asKPPyzyuQgPNRP+0udrs/4/nFwzxgpXumCQwpTUHx49S6wqthXSQON1OqFr5vIP1iuuyZpx2XFxcMI2ZXbYM7GmaHHShrIa1gcXK7IRdRSHGgaFOxAQ1rRiu3OSRR9/De28+yvufu8nR9TXDasW1m48w3LhBObrK8fHjHBK5GgqPHFTKlLl3PrKdlNtn9/nNT32M//L/+99w+5XXfB27M9HXOSEShxUqBlRJyQAyIRpTUUypLTxjtFFA0jzf6gvTncTGfuKOPVFyyeRx9OBUYL0+sDXvQaRx3HD79i3G8QzRiRRBBgsgq6cH5pw7YMB+l43lShXVSFVlvVrZZ7W4fPLyZHEgBoUYaKxqllVmYKZaS3fqlZqpuSIhUGrpjvHozvHtOBk4Yqd9XaeU6LTd1cq+CYE4DBStfW+Vov0/VMnFGFNKsVIEYTcRUwtytFIH1Z1Ytp+HVeLoipUrmsbse9GYn4oDWWIULztWLaCgM0iix/UkzCw64uxqLsKqmqMspuSBjGQglmDvPKxWDCkgUZ0AxBzDKUSUyjga2GK1SqSQHEimltW4svJ2MR1SqtHut9JlAQezBsvqlwBkc7avVweM0675JIkxshpWFFXOzy9oWc+tfEv0bPWQYnfWhxQ4HFYGdrAUbispp5XgZeOKB4CGGG3oS5OhilRjqSvVGMqs+pYJPwkGIumOVhz0VWbHdz8jEHpliBDIDvZRbSXd3HFZC4j4Gp/PxRBCZ6hoGbzL4IbOD7PAj0afVwNLoItzT2FYJ4a1qQUpBVYr29vaUVdNxLfAjq3XJfdUbWXcsj27VDvXgrjsl+rlJMTL+JnM70CkMvS1aWgvB8HgsgW1jFY1EGqts/O3gYy0GmsXIsbopIpEYSrV2alKZ3JQEwcEaeVL5sBZTDZeKkJc6B6lFCsFEUIHHJRSbJ9TqDWzGhJOhEQulSFEY73z7FSKj1s1UFt0OTmzQNp/0VnR5tjTDLktpfaASRikL6viDu/aGZkc6OPgrBg8cCCC1kCURK07AyapIKF0Pa/UbGsx2Fw2wEhRkCKoGFCoTJld3hAFVgeWpVuqzVEIsJm2FKzEQCCyWgWGISA1M5WCBvEyD5UBK42j00T2tbA+WJs8vth4cMmCDNVLSRq7BB4CEcY8kWumiIElRSohBsZcOT0f2Y5wsK4crY0pTYIQEoTmJBOBYGvBzjpnRquVYVhz7fqKdLEzlrr7Z9wLxtyH2Fk6pNTiZQwxsV6vqVJQCufnG+qYQR3YGWwNroahM4FNUyXn7Ode8sCSjYWVrlxbf0ql1GxMgrJycoBCehc6+96qdUYAfM03e4JlAsTMWGcyC5b71G60+KfMOt3lr5f63rJJl8ntD9yGmX8sHglUaPHMHhxsD2l/6+Lfy8Btv/AtbM1mPiz/3n81D++5ntX6MY/D/h3aXmUxXv3chz07RZjV48Yeutdn/07rIvglBtxbDmILxlWvy9kBFK3EpY/xbtqx3W56IgnN7loMgO79oz1VHhjzSz+bzbdm28jSLpTFOwkxFR559IRr165TSmWzubCSktXLoCzebWE2zmN5aeSXZ67IDFjsZqXfpYwTIUwIE7909Mv8xtEniKs1VAswhhjY5QpajPEzrjmQSCnF7YdqLJGYrtDYUqIE3pR7/L0Xzrh68TjTJLzw+TUU+Lb37bh6taIhEoYDXr31GBf3rrIejkgrY0p97j2HvP/ggJrWrFZHJIS1KAfJzqrtWMgFLqYtn33xFo+e/Abf/oE784RoG2Hx8zd0vamduQb2sdJnbY01sIUBD3S2lRejq0s5gAWYSym9DFZKlkl2Jud8dP0xfi19hJOL+9Qy2jgKBlZuzEe+TptfoK3NUrLb1K4fdLYkB0ZpA5KHDhhpe9qITiy43llVtAFNXNfUGeTUwA7G6NEWLq6XNGZo+ztnBw2FOIOTHGBTG9MW+JnRQBqKFDHAlTQGFwdzM9viIQaGlet1eZaW+Hto90fYu3f2GVnsPRciD6i59GGzZ4XGUSZzXwRnmwoObNc+/ksApOoMUgpt/oReArfr3z4+DRzUwTwiiyqVlmSmqosyWkJIxoA2TtMDvqrm82pr15ajWPKKax/zVmjAdCvjWGqdQQe13bMLBmPjBdfB7PPmidgDFvkcz/JRux3h2452186ardp1yw7AaQvL91STX03San+efTKtRy6uX3DlzauzraH+ns2H1Ptk38fBE+qclfdyMmDr9HyPpWhvRscMSGpnbmjl+2hgRfF9BuJJN7VWqAFqm3O/v87j0vY+fs95ndpaaWPZ7CrzuZkeX7uh0nSRdg17PrvZrpgVhqbrIC4nZoN8nhucFbbZBD7e7cwUzyxriUPqMnKpU/URbkfeXoIZvtZmH57WBrySB+5hQzzL5qYbBVkAU2vzDfp71LIokqoYq3vXIHyY/fkCVAMyqUKZsgHQAgyDJS0RxEFKmalnhjggLgZL1qnF2bttPxpm1Py21eVsiIGElYrua63J2WFkOpyQ7XyWtUS7imJpcu6XKGZXlmqMt0OEGOeES3HgYhs/6WOIAafUxnK1WhGi6fw5F05LntcaDpD2cYpebjMpndF5s9kRcV+O2DNbWfYmh4szyrUF0U9XMXtfcBunnb8yA0WXiakP28P2sD3YhmHi/e9/8ev2/Ezmzzz6Z/hPr/+nVkXia9A+I8/zn/zN2zx757s4Pw/89b9+TCnC7//9Fzz5pMnOWuHnfu6Y3/iNA27fjr28+NtpFxeBj398zb/4Lz7Dn/gTd/gX/oUT3i2iRlFuxVv8xWt/kT93488xhoelyB62h+1r0S6uX/DGc2/w9Gef/np35W0309f4kkCRh+1hu9y2x1vOb5x/1SClUC4n9Oy3OMXO0PrN1N4+SKkWd15odwg3h9XslJpdHOYPWjoYzbA2hmlnBHAng30HS8DRZcfQZeajfWDR/CN3ZT7Q/d5Xu9CNPTfmZTb+WtkYbcEJ6DXLm3ub7lN3w7pF+KUFsf2dtTlWlcbS0cajjY/ixnMbZqduXzp8GjDCpqE5Rew99rzmCGj1cbSaPaVW6jg7TVRbCYjaHR2t/FPLKK3N0YoaGKFWqgbOdxfcuXObaTuBRDPSESItg9TerQU4rG+NsqH1YR7fDiDrTtnZmWY+EnWHUe33MYfdxMXFKXffvM21Gzd433vfw937G+7ev8t2e+H99ZC50qrZ27pQ+n3MYRDoHwvkWhEtswOmDW2B22/cYzgYyAgiicODR3jmuee4ezKxubjgieeuc/f2G2xPz4laqFVZH0wcHh6wvnETrcL5xRkXmzPLKM3mdF2tLLOyFmUYIseHR/zDP/ZjfOiDH0TPXmbFCaebiYNrj3H9qe/kCkfAljPJjCPcv585u/M6p7uXuTj9TTbnp5TtGeiFBch3O3QqXGzPuHt+l7oZSTGRy0QQJWKOEBVz+q7Wa8ZsQaUgCSQ69XZgtV7bfidYcBgh+FpVZ0Vpq7lUJdeRcdp5KbLMdnvO5vyconB4dEzlKqJCyYXdOHJ2dp+LzQmiI0Oc509koKjvG7HgdkyRnEdKdgYlEpmK1kJxJ5lSzbGFMI2FXXWAhBpbSqmFgziQc4GK3Uut78XL7mgLgqg5+hsAMBdjIWrOyarKVDJDiFAjtRrrTQyg3vdpKs5c1mSmztnMxQAZWg1QVdQOJhElihCTU3EHA02mVSIOihYPvBQhjwYmiA4wTGlgnIqxFmTbCSkKYZWYcqbiFOZigf2WZdnGDpQqShEDeSSCsWslZ7fRwlSs+KCqARe0VGqoDClZ+Stc9kdBkkB11hK1EiqkQKh2BkzTzkKZLQNXHcjSggMK0zQSowXrUowMKys/t9tNRoNeLbBnAYvQna0lF3NwOitCLpMzy5gj1RzHQkHJ3iENxu4kRQltztSY4PLk4Ao1mF+MxhojzXHqY9JqZdSy7zwuCkQDUhnjjlCnSmFZmsJAcioCZZZr7QxrYNlOdBVCdzgXrUhVo8nv8leo1YKAwYNbHlbpwe6UYgd2FWcbyFOhiJXHEJnLXNSW9a+1B9TsTDHhq+711WDrx4IilRrUGXos8FY8k9niXnPAo6qNu2g1gEqc14YEQaJnprd5qRbEq9LKnQmN6QBVUgO9IeTJnMABsSDGnMzcz8UWXLKAy6KsoL9XYWYhRIFcqVKJq0haDbbmsp2hFpRoYLLgazJbiTAVLy82sxS2s7DUbGVonEFKQ+1Z4mVytofkwRuhs481hrGilYRFZiTU/s7RSw4qlplbszNDxehlBC1oUAo9wlGcsamMxRzyDsrMeXIAk6LJz3vD65C1kLSwmwq70c9+CcSQ0LI2BrVSkRjIIRK7riTkqbr+VTkcImGduBcFprY+mmwJDEMiSmBIAzEkCtVBfXhpmMjx8QEHHuRv7GFWXlSQ6sBAP8PamprjX87+Mma2dSQMA9Gm3MBY0YLu1UFpqO1jicKQBlbrgVwquUCelPM8UXL1zwohweF6YHDGt2G15uD4AI2B6OV67PwJHKwtsDtNBWIw1i5xZpKGsnoXZ6T1IGn//9JLdXXpKZfZhubg9xIhMgMXZiNOtFkrDxptPfB5yRMqunjSJbticVXTtHuArQOVWl+7Pj/3G2aOh/Yey6fL4uo9NtelDirz7y+/VstQbffpQWq9zBBiem1YgB/2B2F+J7dwLj3H1vaSIWW2wxasJHv2Wrt30+ftgzFPXFxcUHOZn9R/twAH7dkTDfxy6f1pHzW4rMLFEdx5tP889PFrVzewU0E4Y7NZsT5Yc/3GNTbbie12S86Tv8Acmu3mnS7vM9t2fS7FWDilau9zC/ihwsXFlpgCLw0v84n1b5HSmqvXrrPdFaYpc3x9zfbinLwbEQfUx8H0qhgPXZ8cmfLoNxagEiWhf+cn+KX/7jkCidUw8N73vIdHH3uE85MTticjYy6k9REHx49x7bEByIxSKQW228p4cc5YTpl2mTzuqHkEJtebC5TKlCc204YXWPHsU4nDo4wFhN3u9SB9TAZWnQEp0gPuMcW+WHtgdG+8Z6BSVWPmyHXiJN5nlB239XVe0hdRYBhWDMMKRXk+Ps89vcd4vmOatkB134M627DZfRUFL0EeVsHAXlVRbeAA18+r+JxDq0dbsjNweA+r6zspBLep2zs1H0ZbMxbolraQfK2Xrhv6+zKDWhpRVSsP3/aV2RLN3+Jruz1X3Z7Ay8li714QRCqN5KvtvehlrFWhSIUqdvaHtsKll2Ob5Yrtq+jsJk2zkY5Y6McnzaZQtMs1KzUtc3l1t4c8H2NODlNjQm1ypMtRAYLpMX0QfG0ZuL14kkMD+M4AJqSVBS695BzQ2Vuys8FqVWcJ95nWdn8vkdzYlNBFScsmG1sSmGUe9LVQ/SxvwlFxBhhP1kIIRTpAY5bTLnOEBVjUv6lKiPP3IA6s0y5b1c+n+Xa6929pHWdxPPo+VlWyVKbBqffdnrBny95v21LEl4HZE9L70Ma0s4c34Iza3rNkkSYw27u05e0Aj6avwwwmbu+8OIsOTteEnDi/dk4785rtrYv3cLHlyY7e3TqztS3PH/XxN0BcA0T107nP1VL/aPvfkqvqntxrZ6gxBtd+TliJcXt2WDC221m7eE6TV2XeL1YmznWrRb9qtUQNnPF3WSO1FnUVRsxubO/Z+o8zUHWs6KzIhH42+zy7/2T2887v2XSUfs9SZ4Z2Mfk5lxZkBlUFAwdVhKCFaarzaS5CVAPzt2fU0Ho175nq+kkUK805NuN5qWOJASENVBc86aqx+3oCFGK28oLFLTjgUqvJuDefuENDsy80gz4X51cvmMJEzqsZlNjPCRYAX3r5yIr2UpOxKhRjjiuqZM1mF7osTDE4UMnWT4jRgKgsE2zFy326zSixn0qWMBH6/n/YHrZvyXb7MfjMd3zFy0KoHB9/9exF/6DtVw5/hf/i2n/x5QFKC0zv3mfQQjVzy5Hyf/k3+On/wz8E0z5Lw0c+cvjVd7g3YbMR/tyfu8FP/dQ5TzzxO88Cbd7VyovDi5yHc54fnufvHvzdvWsKhb959Dd5Jb3ygM35sD1sD9s/eCtDYXe0+3p34x21669fJ42J2++9/fXuysP2jdS+BmfH89/3PBq+tA5+5z132B3uSNPbh/V8I7R38DahG+3if3f/is5GbnPiz46a/QzF2RXfHGlzNmJzUNAcU7AwpNgzkmaqTFncd2kE6sLL0nomc5mXfs/5j6VT3UAF2oFT83dzQNKCjf7M7nCcjW8WhmCv/c7smOh9cGdGD4p2kFTYGwe7V6MFnkFLLUPTHBULB4CDKWgO4hAQzyhufWojA81BVDxAFogCeBYmCDln3njjNlMpTmc8lz4IIYHMGVLQnH7tiv1nzZlrNleqjWmq+4LMabZwxAhKVKMiL3nLxW5LvnOPTYL1jZu8931Pc/feXU7v3We3KZYN3YABC2eXABEDI7ibGhFjWYkpucHuAADvyhrlipdVuSMwhMSVg0d49PrjSDrjLCVu3rjC9mzHdH7CtNmSS6YUZdxmUkr+rsYeNERhlMxuHBnSQCledqwWQs2wzXz8Y5/lU89/jNN7X6TuClShphVSV2gJ7ESp1VzeuQan748oGTSjIVOJUAtBC6EqGiaOrl3l6NohF/cbECP6HjRAw+HhmmncGR10iAQZiGKgoJTMWaMISHQHsYGJzHeVEankMrHZbpjGLRdnZ9Sc0ZoJoVLKiISIMJKnM3OMKEy5kPNISg3EqLQadDENDMOKzfacXAq5ZGJIxDgAxUpdlErJmWmXYaCXYcxTZbMZmSZj2+rlsxAIkLNSxUAtjbHBstRt/zeK8VIqogE0kGu10oJESq7OFlBRFXJWCA6SUUGLPbc5U2tRsjuWGrBC0Q6mijF05o5SFMgMB4nV2sBEtUBKxkJkYIJAHSCrIlIZEub0Fwu6pFZSg0a3awGBYTV052ZvgV6Cw+RwMbBjyQzDQEpWCixIy+ibHf0AMUQLruQMGDAgBHOeTmQvlWQgqOBBGANmGvAiBmF9MBgYYCqdBa7Wihb1Eg+FnE0G5QzZS53sxsmCMYoDaebAQ5OtQYVpu+uMTloXjuIm80MgOP16HAZUlKDSM3crBnDNxfqhanJVccYxl9u9XJg7sJfnYAihZ8C3Ch0tY9bKxdXu8A+qts+qZw+3deqXxDCfn9UBOMKc3Vpq7UCbfs5Wl8Gh9vUXh7gIFjRQlTmLSzZWp+przECz7kT2vtF+h/02qDFSQSXnwrQzQFdKDujyrGoU6lQg2o7KxQFJTb9oYJLmOHfneRM8PeSiBpm1wIKBy0CpXuIlBWc5y5WYrAxczRUlQFQLjAVzTquXVCu5lf6zUrLNaS0YCMymQXvg3wKaShmV7TT2MkdgmcAhgFRzjtRcPQPXzumZAKvpABXF9nwpGa9gYKCjFDqIxhi1kssPrGyCViqWNTyEgRYPszI7zhjoOoQijGM24E4QrPwkKMWBPAMS7IxugU7rB4RSiRK9rIw6Q5uB0WtP6cUz61oJTF9304Sqsl4PaPAgdJ4oYqWOiiZjR8zFAFAJC+6hHgTBmSNMngbgYOVnqetfQXGQgJJEWK0SUzHGTTwbuQXXrFyjBXZnRcQklRDA14RWIU8zqDENA4Ho7A4edPc5naaJkpXtOFrQt9p8I6Z3NAaMqpValN0IORSGZAGFlIZeVrMHrHBGElEY/NzPJrdoQF6avvPubDP8ZV8vboHmPXDRUn1sbaGb2TULPXxpM1y+dl/5XwRkLVDeRcl+Zx9o/TEyX9ICbo1haf+HHhhqdsGluy2k2P53eunfMn/YwTo6j9jMuyH9Bz0Q7PbAjB9w+oXFSLbA4DwPzXYJtOByD6giZh8sOr20BbsNFJybtI2VNtFdubjYdB2m97cHFd0+vDwfy3Z5nGUeAV59Bu5fX4zf0g7wMVQhSkV1YsoT9UKZIqSDQx57/Cbb3Y7z01Py1JhqtHemle6RxUjuzQ0OBnN2jgWZAlGVdRCqwN87+A1yyBymqxytjyHsCCFycLAi7zJFRsrPZuphpX5IqWeFcD/AS4IcCukPJeLKAZ0lE195H/q3f5yajeFSqkJWXn/9Te7cfY3d9sSAsRU0RKzOqtlDqgbwbSB6A38YGEdF+99WNtbc/KuDFZ/53DHf93tPsRLSjT3KxntIBiiXbmfY+WYAlUYj2UDyCxscQO25Gza8qq/yfPgcn5fPcVfeZGQLQamSATunohorDrUBeAqhg7R13q8u+6dpcnvAQd8hzGVzXZ+qxcG9ncXE2DfaepghM9ZqR4zP+l4LjM927VwaGS9j1DZnVTq4pO0pbWxjTb/y/SmFrkd22aX7e7gHmHXekykFK0HMzFSEAA4W11Zaq1aiyCzPagtcz79tMiZEZ0/Z87uo+x3EdYvZjyLipYzkkhenjZvv1SCWEFM6mMjHofiarKbvd5mlUJ15lKbXinQbcR4aHzDXPaw0lu0j1JhSmz3R1kwDpO6xGtXGgkXX9eZrmhyg+8KqZSQQF2u92QiN4QvBwO4ElgBUkZmVbEZ5LBK+VGHhA8I/68AQ5n7M583MlNR+uDxB+zqV+SxpoLv2ky6fG9DI5b50pXYBmNLlPb0/1UGvONBj/nqWBc7kFfy6ki1pI/jaMtDdbM+h9rdU4for1zm9crp4ryZ7DA2nLbFPG0gSWoJDe8kGxG0+AvGyeLVq91P09+qIWH1gDLpc8BcUmeErM3hb+z5q5G2WjNWSC93GbUHlailFHdyj8z1nP5zS7IUOMlRPCgwzOLita3u2+ntZ34y5bXGENj+e78t2JprNuGBaExbnefQxcd1joTuo6zKqTcbhNkNb8/S10cBs5sdp6yujXj5UFcSZBo1Bbukz1Q6+sbPZE3Bcf66q3Hv8Lo+dPGKyRutC17NxC2IlBTUIkg2w2MqZtteqcZbLfbNIG7e2DsTBUw38HUjRdavmD6ZdV7u8qX2vmTytba+4bKtoL3tXKgwIklpp+UXSrPs87GP3cdSmo4Yujx62h+1btv3dH4QX3v8VL4ux8FZlNA8PDwkhcHFx0WX817oVCn/++p/nLJx96YsU+DeBx4F/HHgZ+Dzwt4BHgH8HuLK49pd/HP6v/7sHAEq/U+2VVxI/8zNX+Vf+lXv7auTXsJ2EE3579dv8zaO/yS8d/hIvDC9wFs7s3PkSJVAftoftYXvYQgl84O9/4CFI6WF7R+2F3/sCz376wdKW76TlIX9L6uHvDHLVA8AyO6lpNtjicFd6NsgMuJkddkswkBmws7uk36Jdaz/Y68aSUWn/+vk5c8BvdqYs813nTEAPSC5+v7zn/HdzQS+8J7gTxDN/9lfQ8t2b08OvaU6DZiPSggfS3y+E0J0ILSgArVxeYzmxrFZzkoRuxIuAaHHnS8vGES83VHvJNDyILf4ejQM9pkCIA6hlIA6DOxcVVAshWdCulupBwx4WB5mduXPcaOEOe2AuW1bcXMLGzHcrF9XmXtxZGVrgtsKwGxEGRi1s3niDYRW4cfMGj1y9yt033+T2m3esP83x5WsAbWWw6Bmdtp4Dp6dnSDTnVQzB2HtCISJcPzxk6wENApzsNrz2xhnpAGRQ7p1U7t3dMSShDhWRBDWDFDY7Y12hVmfDsRlMw8BqvWZzsWMaRySuef3khL/y13+WKUe2OlKYUCzzLcopkAhloES81JC4k89K3SmFqAEhEsJAXMF6HTlMV1gNBxSZWB+smM435BwhKiFUogoSkoGBNqfOyuDZYjEyDGtnP7Fn2rpTwEp6lZopdWSzPeHi4ozdZkOZdtQpG+glwFQyQiVo5eJi6o7PNve1Fts73UkeEIkEhcPjQzbbc3bTZPfoIBhzIk25MO4yJStCYZqKAYJyZdxNXl7NAjkhCEMcEBHG3cSQYl/FlhWcSDGSSzZa8CGhVRl3GYkzAKqUyjQaCKM50dvn5jgNXirLsyc9wJ1zccd67U4ik0XVSqapIhq8xFokDpFhsBIEtcyAxlrHDpCA3AEIWQslW3mLFCNDWhkwozmYRYgNjIFa34KBn0IM7vy3AEBs4AutjGPL9tWe4RljK9EgRCppiAZY8DIKDXAZJUAx1hWRaAQzpVBL8cw/u1cpI620g+1Nk1vNQStBjKmEQgMUGKCpOekdaBEwJjBgtVpZ4MFlVlALpBUcYNbBFopKBqkOSiozI8DKxh+tlCoGcNLFKdiCOQIpGqtLztnWtugMKmlBm36+iAcTSo9yBA8iNOBRdE+vyWuXkcEc1dFLZBggpiI0cKtlqccYrEzI3vnr/fWYYnBwmESZzxTMEdxKBwqWcVlz6aU+EOml/rKX3cgl4ygVB7yFHjiE4GxlNkcxPKgfNOBGFC9B6YGSEMwpHVtmpy+OnAstJjWXl3VHd/EyiM6CZPhEcwonSRCdUa04A1O2koZ2BkdoJVoQkIASyGOTUT5Hwfc7OrMIlIoGoWYfYISpKEkXJR6z91PASiHN+kyXiS0wUJ3NwYNWWpr+YGxJMQQvGVrmvYtnz3pQbHHq9n1l/3AQDiZv7N2bTiFMUyYYHtX2e2dAxJmKjBmiUgmEfm4UCip43y24q6ozABJlnHaMdUQwtiFUHXQXiVhfClbuyHQL64f4HmnvYfva5MN2nCh1ZBgG1kOiTJlMJgYD/RgozwPitTI64FFq7YGvrkshPZgafJztmT7fMViZtTjYfvazsgUHYhCyVi+tF1itV6Rq5SYGQ4Gz3U1sx9HLyHjQAXXgVwZayYrQY2bVwZ05N7r1BgBMpuOJkGYl+N3bHlT956BID8S26/YdiD2kttQpxa+TOSC+vK9cusfyt3uAmGUQeo4X9gDQZZukAwO6XFr0se+z5Xu2d1t+6fqpfz5/8uB7999o/9X+oKhp0h0YJOyNh73Cg9m2M+ji8tqpiwCh7F3fAA5707D4w5hSZjZVCwa3zlYInrm/7I7bOe14lMv90eXnuv8zML3gMx+Cmvy60Oe3/UTEgsxHRxcMMROLscfVUtFc+NAHv50r167y/Oc+x0tf+AIXmwta9LH1pz2/ldthMaWCsNuNe3Zd62kQZT0M3A0n3EqvgsCuZM4udoRkYNztVtlui7Eg3FHkUwH+lgUpp1w6uDggyE/avIXTR4n/zR9j2gymG4bI+W7Hpz/7GWoNZC14OBaoBEa7gxoAo5dJbIyhvvk6dEwiIVq5yRTXxDCgFD776TUf+uAFx8fi5c4s4Gvglci0GzuDZQMqNUC36b2u5wVba03+FTKfkI/ykfgr3JHbTHU3swnJLIdBmKYdmYV9TQP6aN9q4otQMHDplCcHzrdEnhksUdt5UH39l9lvULwcoLF8GiuRAW6EnE3et7XYAs+hlXlz+76d7fiYwAK0WhognN4fnIXYEbh7+lIDP7iA8oU4294tyI3qXCotusXTgv0inrJjulZpYIhg/gZ11k07C2eQcwmVPJQe4IYFiCq08tizLh8aGxMzOHfvfZw9dMavtXmRxXV9dL3sWfF1pDPzkesP6iyWjbm63aPJcunrbx47LQs9oAu+2v0ILZmsGpUjBlrA9Z3ZtyT+rGbfmG/GbaLG6rrwkDSZT583/w0zgK8vZJ3HbL/tr/02hiyu3fNtNXkIji+UnoRS62I7eWvz1zo4z4S/iX8dUmOqdP3Mn9lsiyaDgQVDKT1Q2OzUVs4PtZK4OKACX9MKBtIR9TLlOvfFQSdxF+dxmEe2z9HydLH1Y9c0eTGD/LSPv+AlwJDuF+0sgO19HIQSgvQnafuNjVJnYOs9k1kHaVeidMZl9bOzgZ67Tb9cD5eOS5MjzaY0udnWdtNXlm7YbktRexnRNq77Prx9nWL/c5l1uf4/lpwjRTsT1j5Iy+RCA7qB+/1C87HSx7WBchpQWvvc2aINEhYyQ+gs7m3Ruk3e1vdcKsGevzneUMXKtJdi+zXFCOp+V6mdDXihvXUgZBDzkdblwPi6aeMYFmvGzimZ2Z79+mW5VJos9EkNVoMcJXjJedtf05RdZjQZMvt5mmRq4+5CqoPc+tgrDvC1s+phubeH7VuyVYG/8k+8LaDO44+/weHhZu+za9eu8c//8/88R0dH/OzP/iyf/OQnf0e6+Vp6jd84+I2vfOEngL8K/B+BEWhkJgE4Av40JhNefB/8r/4zOLn+O9Hdt2yqwl/6S9f4Z/6ZM555Jn9N753J/LdX/lv+3I0/x4vDi2zD9mt6/4ftq295yIwHD0vqPWzv3nZ49rVkkHvYvumbwL0n75FTJuVvLpaj3432tkfsMqOPGcW1G5UtI7Ibkn7tWwGTlobtPnvR4jfNjpw9fV+yX0tHTXPGNJN/D8gEszOP/X40A/Gy00cbx7Qb3dXpi3FnmzYLf+83S4fF/H0LkjR2je608f+dx9XZXtxD2RyjzdHQssnMP+bOiW5cLhgZQjNaCyKxj0dzuu73kW78hlCbZ9RYPNwJECQQk1OrVyGrzqXwZM687VOssyum+z8uBYXspVoWZACKs08reNage+n894U1yrEG4m5HESWnSGDFuJu4dXaL9eGKa9ev8fSzK+6dz9lzIlCbs8JLR/VlIAIVpjF3Cvz23KrCthZeOTtDD9c2j1MmpzNu37nDM889ziOP3+SLLxgo6urVq8TjA8oE23FLLiOhVNgJU90wZctGKxWODg8JMTCOI6pKErjYjWxHo25GM6kWSoAcBapFaFUm0EJUKxWnIUKYsziCDqzjiitXr3HtkatcuXrAweqIEAJ33nyD3W7D+mhFuVAM8DMRiaThAGOVsgC3hIBEgRBJw9pK00wT67X42qqoZsZxx+bijClvubi4z263pW4nShmJKaIymPOkTlAqKQ22f2i+dXMCt3XkripCtP7lHMjTfXbjjpTc+aqClEIaHDjhTES04EG1cjit1JkFF2y/lKxoyaSVBUpqsSi6lbhrTlo6q5aVYvPNFaw00zQaAKpk6cCdKF4iwZ2I6uxibY+UXMi5Yuw7Yd4d2hxuofmrLEBS7J61WGAqSqXW4Hu6ZeBltDbZJSCR9Wpgx+glrSIxzaLeMp6DO07DzAbj5TeqWrmRIJEYE1ESOLV6zdWZD8wBXWum5Mzh8aGV3Qr2rg3oUasa05EWv5+xfeScbY6ylUQyx2Jg3GWT/QFS8lJemONvmoozp7TgqzMr1UKpmaW7vJRM1WKlFH19lVyt/JaPLeKlS6qfGVJBqoE0g7FMqRpzDdj/Ru0uxnmd4M5CrKScJGO0yyV3GSt1/+ysXl6ueXFDPzfoWfXtLG1nq7jz24IbznjlwS4DKeh8Xvh+ShoRSdbPvSPUs0mjkIa1yfg4n3EGjGly3cAvOY+sh5WNpZcMCN7xUrI5zcUDUlXNodvjKrYmrDBgnTOAMRBVC46rv6/E4NCeBeDIGYhCbdn30ksYtrlSnWjAL3EPbAjGklerZ9uyD2Cwc3leOx0AWIo7jUN31Ndq5QRFhKTG1lBy6QHKlt1rYBxx8G3wfZBtqdUZPKaNvUlb0b0ZuBZjJIixIVVVUkyoGhuYlSIpSAxE8dJ+vm9anwMmrwK2/pa1o0qppFRd1tbu9C+1gYxtr9cqiAqDBDS6vMFL2mAsR+rBmjhY31o2995ZLw1UicsCe9sKDmAy5sMogdVqhZaJXMce/KnVS/aJMXGF5Cxz0nRAA5pNtSLR5FVRKGrysLEi5HEypi5VQlWIBsgqdmAwTRO55A7KlFAJtXpgrJ15xeYmWqnTqi1QLX4OFQc9OugVz7C2uhXUElEHXsUQTZ8SY5HTYsCu1RAZogeNW8lMD360/WLscxZIih7ETcPMDBVT5N3aWhCuBVvQBoewNrMZ6Fv9fHEjNxSaIuF3b2dh1z1VF3t8YXcs+7O4dr+f+z2/fM0MmLzUN3nwI11+4jKlXdv7t/fOzfaY2S+Waut81/nt2vdekagHnaRfswy+P2iD6aKne/ds6oWPdftMXXlZziVNZRe6PKOp+C2kJ3RGFnQOws5vN6+JB6y/xf33B9mvvPcI8onfu/fbNn7SfwxIZXt2RN0eIDkbPCYIdbPlEx/9OGkY2Ow2DClx9epVci2dYXXuZgs6zvPZxrSUVuZzKQuN9fJ03CHDAc9Mz/Di8CK17rjYbLh67YjD4wNO7m0AZb1aIYcJPTAAcGWFeBJJqTcorz2B/i0b9uHVDyAnNyllB2pB+6kUcrGzE1WCHzpVhNr7ZedoaChrQ1M4f5YxhkaJrNYr1odrVqtESgOCcLE55/Qk8/O/cI0/9AfPOL5S3KawZJfG/tICsk0OxhBpJYNjcjtGDe56Uc/5lPw2n42f4bN8mt20MdZD9TM5RtMJvKRm9IB0XdZsfGAftXmp1JCpxfQ1K5FFX/xm11cvcyT98wY+UQcRdVCAqTu0kulzWVuzhpfBXdMB59/NW8Ns6X5fBxm/tU/C34X5rG1/L5el4bGl7wAD8DDbDQVfs9JlhAEEZrnRZGoKiayNdXPWSQF217Zsr29mf4LOekwrD9dYYhtgq8mgXGb25fZ5A32lMNCM9OC/a74Q1cZk6FpiZ1zVfpYADjSyZ4dgiRNtOjorTVnOT/MT1D25Yudvcd/L7Oua2dXU14Aull1LstIOFNfWJxpzS/NUuc66EGzNFlBPxqn9WmionaXPqN1FF9e1s0oX64a9+ZvXYQNNtM/3kwBtjQaXGA2YOq83mfX3GLuPpfmR5qRA7Wux1orU6kxZtcuGBhCqXRfFmYH3gWqC60J9mbY94/ZS29YRNjc2HZShrRtqY9vG3eZ9ZvCxEsxzn/v50fqwyEtsQKX27wby6DaezlC09nvz+2mfv9BKCDrAqZ2bS8BUmye8n6XMfRVfvBIsGerymdnnd6kPLPZcrsXdccFYgZj3nga1BIQSTK/t21xnM9bHqq2btsZbhYK+ThWzYZtcqrP/s+qSKWo+q1vZcVmc99IF6LznWpdQevnsGI3dGc3+O/v/RY1F1wjB5YH1fu/Re7z0oS/wxAtPUYsy7AY3183mNzntcqf1yf20IGQpnB+e94SCBhq0W2jXGxpgzEUZIczQYJSeJNT3aVtD/pyWgyI08ORyPuhrK4bQlDf/vLHH+TuVxRjT+iJe0tCSWx+2h+1brn3ug/CX/udv69JXX32a+/ev89hjd/pnJycn/Ff/1X/F0dERt27d6p/nnLtf+GvRHs+P88PbH+bnjn/u7f3gFOAmcNX+rh+G3/o++L/593/7H35b7FFf6/bKK4l/4994gp/+6dd48smvvuzb/XCfnzv+OX7+6Of5G0d/g134xiox9a3U7j11jzvvufOVL3zYHravQ6ux8vr7Xv96d+OboqUpWSznW6B94bu/wEf+yEf43l/4XlA4Ojkilrfvny+pcO/Je79zHXwXt3cM62rAhNnIx5xQDZy0cHi065dOlNkOnP++DFxpDoiwKCkji+8fALosWs+iciOt36851TsgZu9Xe8+GOVOuObjmoObyvdr3fgsHWTRDcH6MdMOv9sfN7zEHD8yHryF0w1aQhXEodPrdxe9nx5gN/jJTTZuzUApL47Q5dZbzZBmaZtAGZzNQzDjVCoVMaLXVezk83NET3ME830/6wCyVcN2fw2aZu6EcqhKjkjyTUyV05gkFkgjf9+xVfuD3vpfXcuV8M1KCENgRJBFSYDOecf/knLROBFkRJVBaH9wpVLXM76/dreQOeTf0GzgLoUpkK0qisq7KKkQm3TGO97h7G65sD2G34clHDonuBIpDYbW+wpRHdpstUYUxVAoGuBiqcLhao87us1qvQYwlpoixkYRqfZO440CSleILEZIBSA6HgbAWxrTiMK54JK5JgxCHQ9brFdcffZT1wZohRdZREJ24voIvvn6LONxgiDvIle24ZRIrl1O7U9cZNsSzZyPUmqllYrfNxJhAlCnvuDg/4ez0PrvdhnG3I0+TcXMkA7flmsnFmWI8M2yaMqoN7BBm57waTXVMBnKoqpQ8kbGguM2bb+MGbliw4ZACUy5sNjtUITswaGYJCX3ua6nUAI4rskBvMldsc9jn0QIheSrNE2QMIlPtjEhGRy7kKVOqMgyJFKI5BR38kccRirIeVgzDIRIc/DGN5GlCiOAltUoxeaJamUbYnO+oJTEMBvIQoGhjDzJKdNtXxkSUJHJwsEbXA+OkGAFW9f3cwI0mL6yMh7EIaG1l25z5CLHSbR6Ab1nPjQ1otRogKOt14uBojYgFHnKulKkwjdkBVtnY3TAnnPmRYw+0NGc6Di7TXIhh6OX5ap2zY1umdAv2VHt595eKBz8jWo1lJ0nooJs8Tr5uXB7vOSYrq4MBgs1jzbPsspI32llcaq2LAIM5Xhu7ljr4QT3NNbjTt5UJaA776NQ0c+DB16jOjlZjanEAjJ8Ji9gHGhos1INh4uA68T3sJe+0y90GAiruvHRFScSAW56ZXKZWBhMvn2ZMLqWWefyjBQQM6LTqZ+c0TaQUe4BqDhwoQWoP5ohY+as9x6rrA+bEdlCWNAYGwAOLMSQUc9LnbGCw5owOYgGDEMKiNIonvFcr4xFCA83ofL56BKMBkbV5391Zq4sgJaIQDQBnsV9jsaFgYJvGONfkkwIqTF4mUqzGCAKkXsqvgaB93NVAQmkVoQGnVAzQlOw3Kha8KlVJwe+hdGDWsoRVO0OXgVL7r6BSKbWQc3YAlbRljXiQQKu4DFULtPdxN5BnjEJUIefJr7MxIARigBiEqoGixk5X1Eo6huTMSrWgEcY8GrNDUYYYiGJMcuthzbSbiEMwNa4YqLTpmOM0WtkHjQaGKkqZphnkJ9XBgC5JVDwb20DfMQk5z/pRSsnK/OgCXKjOtKJQxxEVL3UYBI1WTlDUGeJq9TKvBrRtJWlU7WxrOlgQGJx1QARqEA5WAynAVJUiBrQLjU4APyOygaga46TJdWOUChK85Oa7tC0C4E1R3gsSzZEWlvrzl7pV+4fFbRb2AfPyb7q5Lr5r/ZDl35da7+bl78X1YA8W9actO9uu7wKsbSr7TdPP+/37Gy9v1QKBuviSWT75XypL4L3pHC2gVfYC2c0OaHaMn297L7p4Tg/GKj3YKosLe0DMgTpAA0SKX9sDjlUX91VnztlPZDCBOrOvtECl+Ngt50/mJ/cxZVohf/v3w8UVhEqPlavSmBzauwSBx44Omc5+iKn8NpXszHaFu5MxfY5T5PT0OrfffJKLbeHRG3f4ju/Y9mDiHJ5fDL3ff28gZxMEJZBRggZ+aPv7eH24xVYLJW/ZXsCQBygTVw4H5JVn0Nd/FJzBqNZHyNMxIRpTZv18oH7GepKGAY0mB6KXnqwOdOhDBBAy0Swd0xuC6eApGAA0h8ggkUNJzqI3EFNkfXhISonopXmhcJDg/vkZd+5c4Rd/MfFTP3nGwcFIEUixMVg1gIGvSxHH4xdUq8syYSc7fjv9Nn8v/Sqv5leZptEA5850KP0cacFsA1wp7oNQXZQEW+x1B3f3vZILVZrfou0vXF/xs88BPTFaEsKUTX+dSyq1JTevwgYE0uZ7E/p7Nz2gAWma3ttZLrLOYA2/ZXUGmhCDlyfCWVcd+KMGBg8hzWfUYrzaPuluCq1mW4ygQ2O6cSYSXYCUatu/0hMI0hCtJG+cwUeg3H/qLhp0lldtr/V90PwB8zkq3qdWPtHYt+yJ0Z+Rhth119LOXLcHOshFGmhmBmoqC1nZwevNpp317/Z+qsv++r+1j4pf5XPY7dPqczCXWF4CA9q/mi+lJ541e0IVgnbQAToDlvw0pJfj1a6Gus7uvpY922VxVi701n3wkq/HBcBM2+KwQUQX4KXlWdpBFW3e9w4rO1fbc7rkV3q5MJszl8Pe3xlsUxfjL91GaSXESin+2XyuzvJ+nre9923+PoXt8Zbd0biwtLS/L7V5fvxMrMxAPE+42EvkW+glfU5cvlq53aZPLGeyrS+XK7iMWqwndX20g4jU7TQaiMXmTZnZk8BBVNpKB7YzuJ2Xsrcu2jq3vRjm93HbziFm/TRT1037DhDh6t2rpN0wjxfz8PexxeUyZisVUVIM8/W+GPsWbX4I39dtv5ivptm9y3ltgDV1+dSWqZed73awTVCT8Q2s08CyVupZkOJnUfNt+NgUrbz63CtsruyIU+L43hUOzw64fvs6DRCG61W9hC2d7BRNle31jdnPfg7M4EDxEabPS61mn0hbI8tnAFpq3xM0aSfqTHFNR3afZZjfRNWAgynYeikuj0Nj7/X5qN05PTsY7Dwzf3/3Kz9sD9u3Sjs/gn/n34Q3Hn9bl4/jir/6V/9x/ugf/S+5cuW8f37r1i1UYbs94KWXPsQnP/ndqB7y6qtX+Kf/6XOG4avv6sDAv3zvX+aXDn+Ji3Dx4AUK/PoPwUf/debQ33cBz/m/V/CXD+Avf/V9+eqa8Ku/esC/9q89yU//9Gs88cQ7ByoVCqfhlL925a/xF679BT67+iz1LZiDH7avb6thnhNFef77nqfGh/P0sL07270n7nH/iftf7258U7SnPvcUh6ffGqxUGpSP/6Mf5/y5c9a7NU8+/yQ3b93kuU8+169ZVka43KbVxJ1nvzXBm++YSWmZJbMMejVDbR84M2d69UyZusw0m4OmzVnR/Q3d6N7PERZpz5sZStr1s7Nf9wz0+bvmJICll2UZU3ggW0sa6GcJCmp9gOa42gNO4Q51ZDEGi8GU+R97teMXzw8xUnO24FkwsIaxFmgHjDRzuNVl726iZeACQatnr9IyZYRW9iZ4lHXJstGMZmWyAFt3ugQPojanZnNeAOLl0R7QL2R+ORbgiD7HFoRPIXJwcMC03RClcHRgzDtjLmx3ozGUIKxT4ge+41mur7a8Fq5ysc3sLiaCWkJkiIkgkVoquWbunp4Q0ppUjX3CHHL6wMoCcwI1B3dzgoCXhjJ3OlGjBXxWEXQL2w3KBRcXA6sQyNu1lb8KkVKhjjsiwtHhEYeHlWk6Yhq3xONopahiYFd2hBA4Ojpiu92SiBwECGs4Wq+4cnSFWuGRa2uefOIxHr12g4Prj3D02BO8533PcHh8xBvn8PFf+g3+hT/8P+WJ5x5lOB6IooR4AFK67yiXiedfuscXbt/l/v3XKRcvs3ntLn/jF36dL967y/pgIOfRMhRFkJCQkIwNSQvjuGPKE5vNBaJCXCXGvOPi7D673TnTOLUUXiQF4ipBMoBLFAueE60MVp2m7lCrtfhaNRBBm4OcJ4JYOKVl4Rtriz9Dag+CoLMzNOfKOE7USmc5Egl7860eTbAstsiwSkgScrHAydYBNjW3AIjF2IaVO8Fq883OpR8sc95LHsVIzhOosBpWDOsj4lGg1oAS3Qk5WZk/DQiVGBOl5kV2rgUdJMAwJLZ5BDEQkaCeKQxaQpfHBnTKLl9Kc1W5gCmzDG3yFLw0mu/FGFlmkhd3wscU3C1qID+RaEExJpBKqZlarJSd+nwEArkYuMmYgCoy2H4vRZl8LluJJOsvBnJZyGKRFtyB1SpZeb8po6UBQJrzL/hzjd2lTkoJ9s61sFgnxk7TgCopWWCkakWqsyR5cErEaN6HGK3w0uz3NQYTL4fXZFoD2elCLncwK/Qgw+zwlv7b4M73XGcnL6JeNiMZa1TJBkiQBmJ10F2wcyPXYswHHfy3dF5b5+OQoGTfewb+s4BA7VnkjRmguOM3xLmcR4yBlJIFrrycRnsvK/8nzszkjC8SPMjgB7A6CNW9tJK8tJoHa4JEX9/Fg1QYysgd7LVWijOlhWABvOLgkg7I0uVZDlM2gI3NTSszs+xDCwoYsLHFFSIB/DxugZfq9ctCiv6ZAfPEgUxVK4PEDlaxQI2zFVEppXTAjP0XFrpUk08W8CzZg5RBqNMMIkSEMTvo073jFswz/ajUgsTBQIG+x7tzvDm+/aOUIqkmQrKAx2oYyDWgnb1szr63knJ2nyiLMkpqpXGWgYY+tkJfG4HUg4YxGfNPTMkCsg6ktBUbfMrVAJLsmMaJorkHy2KKrFYG3rx64wpXj65AjVZSs9gYKAYaamvaSmraOpzMY08MVqxudvBb0GA1RH/HOehUVQlqIKEQDeiac4WQXZdVypSt5F+pSMLKsfo8CSAeeEIcIBUCUisxePayHzaqTYcz9hUtGcmeuS0t0G1zXhFqmQgCU5mY9qNH76pm3V9o4pfjH0sh2/689D59Rha/3QsqLgK0y6DLJYV/vm07P1ugcREgWgYn6fdbvAyLUKdeepnltSxkIDpfv5c80cKCi7/2bnnpfk0Z39du5nu4/t7Yvi4nN3SGiR541PkWuJ6gOHlHe45emo79eWrWyDyeoK1ctUBjfrD9oIt59LvKJbup32P5xIX87m8r8Hd/mPDRHySuBmo2G2aIBtos1RgpG3tLCsLTj17j4mTgE7/9PRxee41r128bW5II9+49wiuvPMfZ2SFVK9vdjo+fZ158ccWP//g5V66WS/3aH5ulDtPfTppOYDLu2ek9/KO7P8jPx59nyufobmKaorFyfuEJ0v/nnyWc3LRgfjH9aBiEYTDwaM0ZWQmClVRu+vMwDAY6xcsNRWGIgdWwRlU5XCeOrxxxtD4grQ8Zjo65duMqwzBwPsLrX7zF937Hd3B8/ZCwihZADQkDkdn71Fq5e3/LycWG7e4cnU54+YVTvvPDnyXEc1JsrJ9tPIKX8mrlzjK1Fs7KGR9df5TfOvxt7nGXadwa2LWUeX6DAaJpzA5uP7a/a2Ot0sCcXDT7LAzAa/qwNM1MtJ8FbZ1V7d/SgumNXbL5KVwo0HbIvEn7zBMdZNOYc7Q0nwUzaMjt+Saf5vOZrmuYnW7Mq7Xa/IcYjVFQXH+glR9r7IjWDyuRO9vc6megCGhNZE9KmP0t9P7pQrjO+qty76m7PPriEzb/sXDvqfvst5lNBLF5S/g86HxNA52oKyKqSkqWBRA8ccLsqtrlQwe2+P7VaoDptGDybszU0OZK9+Seb0F/xzb+NrbaA/HtDBGXnzqvp6LgoKx+3vi92jHRABYs3jtI6POwLNHbrxH3h/mcoqb3m4zzBDDVxRy3d1ncg3nOpP8n+yWnVCE0oEpjdcX/PY+VAccctKIQ4z7TUj97YGY8clmute0/7f/1cfe5bkCd9g4N8N53kI/f7JNxO9DtKnHmoW5jsfAtyuJh3iubpxlUUsu89tu+MP+Uv397S/Fz0ue1Af/tvWYWsjAr7v1d23FveEpnbQogOgOU2uKuFFoWTEuIENdZqttFbY7afmhpgS2hrq3RJXPTQlNyXVK77eovYnvOmU6b7LHlpo4rdtmS6f3d050WHzd9KYTg/VJn5AmmEy/1DnGgX7ef2btjXytdf2t7rr2a9pLh2vYLLWHH34Xa+9vWKKJmG6idl0h7trjdLAyrxPtO3st3Pv/dSJaZSe+K+rnQ5qZaclox1u7iNvvJ9ftMqwnZuX7lg2rjvrDzmGV9m7Pqcs36JebnqAWtbkc3xtyl7rNY/G2tS/fftudrn/KKr8k663zdr69N3s1+ioeh44ftW6op8Gf/N/Cf/ks8YHx+ySZ8/vMf4Gd+5o/x3d/9Sb792z/Xv3n++W/jIx/5Ed7ogCfhU5+q/K2/dcGf+BN3ePbZfEn+vfP2w9sf5t9+49/mTz3+p/aBSgr83R+Ef+6/gC++/x28z9erCR/5yAF//I8/yb/77xpQ6e2Ozf1wn79w/S/wM1d/hlfSK7187MP27moalBe+9wWefPFJAMpQeOF7X3j3L82H7Vu3hVlXeti+uhZKqyTzrdG+5+Pfwz/5l//J/ZJvN+Z/tkSFcRzZ7XZWkcETN1794Ktsrm4euOe3QnsHICUvL6QLB/eeMxtzFtKMytCvm+/hxivaHXfNkQHudK6LrC53timlO6isPEBlGfSdQSXzvZRlVuLsSJhznN5a1FzOmlo6nvwl/W91pwPdiJvHxfo9O/h0DkD7p+pGqucFWRahMxTgDpUYEhH174Tq5eXMf+XMM9Cd3i3rat73zW2xDJbvOy7MXzU7LmhB9lxpWar+2hbsrNL7F5DOqNKcfSEsxrAXnWe/nrlb5X3eMIDTuN0y7kZEKuM0Wc9rdYduRIYB1onPvXrGD1y9yfueusb9zV0255U3Tu+z2WxBjpAweDYmZAauP/F+qBPj9oy7d15D89jHvztS/e/V2sooaG0AGEElIiEjFTJ4uSUlamUdBm4eFgqZXY3strC+9ghPPvYY3/aep3nqyZukdYTVwDAckLcjd998laeefZr1lWuMMfKJT32Gv/wz/yVJKleHI77vh7+X7cWGi1LI447rj15jc3fDH/iJ7+cP/OSPcP36Y4ThKtMUQSIH14/4jc+8yi/9//46Wz1DV89w796Ge7fvoKz4wAefchaGwJWrV/mBH34/Pxgj1EItJ5SLzNNP/TX+/H/+/0RWa843G2JIHvSIHYxSa+Hk9B737t1h8vmxubZAaS2VUpQYIylZOZzmsGxZYaVC2RUDH8VAisZKZA5iC9qoQkzmOJaQyKUQJTvoqnZGFMtghZACMQ7ElbHn7DY7p0E3h1AI4v1Vz1TzgIOYAzJggAuJzrhTrMSSTu5UjMlZTmoPPAcJnW2kOpNKLdUd2BZMUgdp1KJoiITVARIDedqS8w4I5rCq3Y3mzkIDNxjLTbDAMxX1ciSlFGqKvSSdZVT7mg0BkYQWIChWVs5Yt8QKD3kU3rOyY0CKmiEXQ3euaxHUS59FtTJTTCDRnZYuRqYp+/WR8SKbs85ZymoVYzTqwQWbkzwpLVofU2RYWVmHaTRHa50cUFCUGix7sNZASA7U7BmXXobPSwsMMXI4rFnHgAQl5wmRBBEvLzh4maTMdprItTnaDaRUSmaasgXSkk+Is2DFGMkKwZ3ihEAcEq00WFAru9Qc6uoBYcUyMq3s10L+qvTM+CYkO0CmFpZsfFqUIEoYIqEaKMdYm5yRyiejoqga0AsxIGrQ0FmJqgc6KjDl7IGe0oPXMbYyau4oL+qZ4u4UDm0PGztVEmO+UxHfq34OJCt50gO0IcxnbQv8CwRidxiHFjhrwZPS5iaimPPG8STGyOZjaIBeO5OjBIYhogLTdqKWxj5EL1Fo9G5zYCQ5i0+txubQ+ln8jIoxeFmO0vUV3JldqkIxMJT1KcxBwVodiFJtP9dWvsICksXPcetKpYGA55Im1daUBzWjRKyEXkBzYRwdEFMV0epBM7t+mpy1B0G0kEM25qkKjdGqmVpVg/9nQbOIAXZCtDKTVt5wzrw3AJr1cQgDQayEZVBhkISGfbY6U7Kbk7yaXGtZ1drKlFnmWxUL/g4h2DUh2n7PBaWwmwzw2UoNrtdeDiYoaTVw9fo1nn7ycdZxsCBQEbKzuI3TxFQg55GaR2PWK1aSccpQqWi1z1uhwQZgrFjpS8SZLeqIhIQSDDArPkaq1GzlKkuuBK0WWNBIVAMo5TwZS2AYEBE208b0QwJaK6sUiOtAloHsoHCVylQNIFerAa1F5hLLLfiwCglRY7Kzbfdurn+91L9nXbTplvtftYgZDziw3lKbV+3RriZu53iOy5+mMfte3vv9peCb3WcGOM3JEKZL0O/N8i4uJi4H8i5bHTL3uXd2/7kPeGcX9lJ/ZperHapjT/PgntkYYf6u20ozYH+/87Od95bvtfhsMRr2d7dL5u97kNXPxCZG27XiOngHN7T3E+3ytp3Vy3df2ln27ACf/G4DKWdj7xTXmbTZmt4BCRGNgbunI0+vDiA/yYvPX2O7ex8X49bYFFmDBiSMBgIhkg5u8PJr1/grf23L7//9r/HMU7seaNzrjXg5Ih8eC3Y3i8+D+D7W3zl9mIvtKb9y+MscJLN5yi//GOUj/whp9zjHx0fcvHaVK8cHhCQQTacrubDdnHHl6hXSak0Jwuu33+TTn/wtArCOA08++yRlyoxqIMf14ZppO/H+557mfR98loP1ERJW1Go6d1onbt054wu/9VkyI8Sr7LYTm/MNSOTmzSu95N9qdcjTz97gmbb+dIdOhdfeeIxn3/O3iSkxdTa74DZh6GUqd7st290Fv7j+RX6zfhQu2prUOVDvoKZWCZm+jjx46iypoZVibvu7ARi0yUqx87UqVn+3zUnb377Kgq2NVko35zITgLmeURqzk89tL53TGCyCs1ipdjBCg96KiGMStR3FthJcH/CcqD2gkJ0Rzt7jQJIQk71vztSSfU3bPt7fr9L3GCJotT1BbQkHc1CfJoYuBbzNHjYPSppWVvJMBFTM6ea/b4FzVXoJZBGZ2UHCDMKxaQy0klft3ew+gZrnUrfz+RC6pKltfmvTse15LcGhMQL3uVOcUcvfzMHANraz7G1JLyEIVy6OuXp+7DZIKzEH22s78vEM5s8Uip9TNVrJ56bH7bHD9OVrfW3vYHMXej8sb0/83wuJuyc/92V0uHxOMD9DaYNAB8jZErW5aPO/FLX4nOli/A08tVhVvrAMHFa9Py0RpnVjAbht56ivcby0Imrg+CXOryeoOJipg5YWZ5W2h/Q+tTdvurq/jGI64WKe7fdtH2pTDXBzpo9piJao0QCDbUztPg0w5HPlrK9NftltF6BUf25dFNrUPtZtLl2u1VbO19ZtK9fZQCeNTbi9rQ8nfXDYBySD70OdAYLivymlFbbz1dj9gf5sbSqGM4J1ULXM/lD/fQPMQ/PXOgOxQPW9Te+hs+0tl52/TB/LLrsfZPNp+1mY+9CY9qw/9kYx2KRa/xWp1dnUZ+CgJeL5KIRAGgaur65z9eYxqQSkmm/KynJ6OenqOr6zPRlgqVJq5eVnX+7Pt5e1/zVbdNbdjb26IHhymK9r8ffTXhLQ30hdz/GzrdSMuO1YtbhfzOYniIELLVAfnMXYVmCh3bf2fT/r3mrgZvYBYA/bw/Yt03KCn/mfQX2nZdOFF198Py+++D5SmpkRSonmR1203S7wV//qMX/v7x3wZ/7Ma/zIj2y/KqBSIPBHzv4Id+Id/vSjf9r2/ZTg//6/hZ/+4/Dys8wW3Lu9GVDpT/7Jx/kP/8Nbb4ttqlL592/++/xn1/+zh8xJ3wBtfbGe/1BYbVZfv878TjaFm7ducvPVmw98dfepu5zdPHvLn5WhUNPDdfywPWzf6O344pgSC6EGYtMpFkdxi5uklDg8NIapnDO5ZL74+76IRn2Lu37zt3cQxVi4vmfETjdgZsaGpaHD3nVmiZtF3jM3dAYTAZ64ZkZ38LJni8e5U8KciNXpb+es/Zm5ac6+WT6fHqzot2zOjkvBg+Xvde+rOVtLLl3X2En6iC0cBC0biuYoVG0v2/vTnBi1wpQ9YzIYq8YM/Jn70BI6l31b9qEBA/YzkpsjSmnsI0oDR80v25mnRDoooQer3X0WYjNj7TpjqqkPjHsHKCzeoTHoWMCokouXYQpzOZnqTlQQYkoECWzHysdfuc2bmzNyEl67P7HVgYuilBqQUBhWaw4PDgkakZgMZxADB0fC4WbD5vSeOUE0o9Tu6ApiAdJShYwaOAmI6iZ7KCSxTLoQE9TKEAIp2gzGmlkPiR/8vu/nn/pn/mmee+8zrK4coOwYz95kPL3H9vSCv/vrG179wsvkeBs9usKLn32JWsxD/aM/8Hv4iR//Hv7aL/wi9147596bOz7/yh2GUthuL/j7H/sYw/ERNR4znRViqVx9/DGev/smn/7sp/j3fvr/wSOPP0ZJgbt3ziAL733mMVKZQCceffI5ft+P/EP8xD/2ExxfOyKGmwzXlJ/8Z//H/J2P/Qqf+/zL5PNzA7UEZ1OK5lQ/Pb3Pyf17bLcXzvYQFhR1bc9BA8xUpDtuYoy23itMefRyNy2A46C8VerZpqUodTLGjDIVmwQPNk2TZaxpFVbpAMIAYoxPJU9Mowfqg5Wc0sbM5PusOY4RcTaYRAswF2frqd0BZywtKhZki0mMxawWhriiJT+27N0q5lw7SCvbUyFZWazojrYaiCSqWlk/RdESPcMTytiC/MkYjURRz7oVElKVKMkch+LARy17Tv5SnO0Dc0bGIRJSc1bj4IyEtkB3UCgeMLBeUoOxe6QoVHFQSEjUEqxElzPo1FqQAFUnwFhitEKIA0JlGmdWKFUlDcnBLCZ31uuVUcGrlZO0SI0FPXKpVCqr1eDACJCwlFVNtsJqSHzwfc/wne97huOjQ6aw5t6mUGpl3G0IecNKrezf6aZwustMtZUasHKL425nTkc10FOtyna7YZomWsakFpd1QXo5FcvsXDhepZVKpAcHWvmvcfR7YfgnidEXpZ+JQYjBymzWakCK4M8oeQLfS1qVopWgznDUgG4eCEEsKGaAykiQ0B3jPVNaG9hHO8CoHURz5v0cUAqqBlpLAykG0jCfu0ox1rUqnUVsmUG9LFGh80Fmz3AZIYKD6WTOcje0hQW3VGjlOksp7sD37O8QjMmvVAdLO+AZJcTYy5+BmNZTZnnSGPOqn9ExGgOCZTtXYz7rZfhmcG0HH4eACh28s1/+Y84CD8HBTGLgKEV7GUIc/NvKkdi4tN+bDqDFgUkSkRCNoSoIw5AQUXL2ILiYI9zAMBGSB10WAIsWOLJgY6B6oCEkcbmPr/EwO9Sr7ZXG2BBDsnJ7pTpYqXpwbmYCazpALa6H+HuYzuDsb1qdGchZhWIr82LrmEAP+IQQjckOoWPVKJQyce/+XVISrl+5yvUrVzk8OkRCouJArApaJqRMaMmUCtucyVkZ88hmc8ZuM3F2NpK2O0odUa2EaCWiJICK3csql7bShZ4lTqYBjoKKlcsUL/22LJPZdEiPEGlRSs4EVQ+aCdutlSoNMRJSokwmu9Szo61sxUL/BoRpDvjESKkT7+7WIoVzHrf9OeuKjW2pt8V3TXd4UAtun/tfizU/g1Ts8Z3JAZfjLPR2/81SJ96/N3OQdPF5D0oKnZFn7nc/FZif0jSTtxqhBaPDpe/2k0TmsWx6e79KW3BvP6DY9xgLmbMcL9+TlzrUf9QDg5eu2TeXdB4j6ebfYs7nH0lo2sciqKdzkG8+OWTvd+1SAJUKf+AXqL/wh9AckbvXYFqhB1v06n0bn5PryO7YdQzltdMLLvKIyh3OdoVMZHJGDWQkxMSQUgeYBgfabHaH/NzPP8L/6B+7w3PPlUszJfPZUNX5Jw2QYaxUAq38JHbP797+Hl5/4xanT7/O9uPfR/25P0gKxzz97FN853d9F9euXyGuBpRMGTeU3ZY8Trz6Sub05JQqFzCsuP/mfSvXJcqzTz/Je9/zBJ954Xm2ZxO7TSafbIhaKVPm1ddet3vKQB1Nx10fHXJ3u+HO3Tv8yi//OofHh2gQNhtjSb1+5YigFbRweOU6Tz/7Hp57/3tZHQyoHiBrpYYPsy2f5Up403Vjj1LPZiW73Y7dbstFPuf548+jFJfzzeZX36OuP3bGh4W+peolY2VvHQputzDrKKU6CN7t6eDnfUuEUYUYEkh02zg4Q5OXB2tB82bHtxWpbdatfG50gO5cyqntL5ltX/+1gTnsBlEixcsTmu6jXWykEGmyTAPEmrhycpWbr91EswXFWwD/5MY9todbtgdb6uDsUhJmdpEOHgj97OiuCRw0wizmDKBgFxydHPH4rcc6yEpq4KnPP83F919QBs92VwPFz9NhazF4Wey2aaspGQudCgeCmMOhtoC9rx8RY13ZA3eFBoaaAfLRE6fI6u86v0uplSihA5DbnFyWRQg8Pj7Cj3/xB3mkXoMQ2VWTF1oL42sbJE6gylSU3VTIvobOr52zPdqwjVvuPvYm48FIGYzRsZTSKd3ntdPWeSAEZ5WRBqCiyxIfyS6jQ2N/aseANr/KfLIoMpcWa/q4tHndZ5mqtc7+t87WM69BW8PV1207y9oUS7fHFh/Om4P5u85K6bZKK/fckg32Eun8jA6Xkh5ntsS6eNY8gYZP0xnoIn2AaED9JXtY1TkQ1FQK8xk4k3pnTGqssKH/tgGd7BFzooPi6zn0V6Gdx65w+3Ets4+M2X5sx29nDWtT19ZCmH1koSWW1Aac40u25g8sLckyNJY2+zvE2b6Zt5rJwPPDC6aYWdXU30mZAXJNf+rWcJN3Te53wJ2v5H6+t9M9dGYvYyx1W66Nb9ucCzWuJZz1vawLn7FIL5HWh6TJbnWmoWBAHmOoavuuMk4jn7n5WV575BaP7x7n5niDp954hsPNMS3J0ZJVC2gBZzstnpDy3vJeTg9OqPWCsJvM9mkgzLYWBMqg6NTmbKFbdn0Cl6ltm6nbtm2Num9E5vWjtZpPQQSNgpZK1mJyNEhn/u6gLGma5qIHLod8UvszH7aH7VuipQx/6t+GP/l/gnEFL70XTq/CjXvw7Mt2zcvPwt2bPGidAQg5v506bsKtW4k//sef5N/7917jh3/4qwcq/dG7f5Rf+eiv8LEPfYyz//f/kt2f/D/DuP7KP37XNeHv/J0jfvVXD/mJn/jKTBJn4YxfOPqFhwClt9Nc0A/bgUdfeZT3f/T9iO4vvFc/+Conj51w9sgZ48H4le85ux2+9Hf+/WNfeIwP/eqH+kcpJ77/v/9+7rznDuPh23jWN1B77AuP8VP/0U9x7c61B77bHm2Z1m/tq7vznjvce/IemysbXvo9L3F288zG5quQDw/bV9EWpsnD9tW1e0/dY3ewY739RjyX3nn71R/+VT7x3Z/gPS+/h8dff5zv/dj38sibjwCXfJrM9u0wDKQh8Z0vfyefLJ/8sqUwNSjj4cjxyfHv3Et8Hdo7YFJq/7t/+ixBQe3v2jNFHjypmrOkGavL37bft3t2MAGzYftgzEL3/mv3uPx97+ull9KWIrSk5n7gvS9/p7RI+R57U/s+7D+/tYoa80HLDAKLwTXnfHfE+EJcBJYf7JfOHoJlXy9TW7rDqb3DHKBuzj/pQf/mjJrHz7N++/cz+Mvt/O4sCNKyVOulx3uQVu2Nmwunz0kw9qJWWgmMxt4TgSyLdTJAilKZSuWlk5EXTrcEp7hfDZkQElUGwpCtrJMmIoJWCxyqCFWF4eCI7cWpBXw1WNBRupuHoJb9GmIgSUao1BDI0IPlVRWCUomcThk9zwwxcLEp1JM7/OZv/n1SDDz7zLPcOb/g9dt3eePlL3Lv9hc4P32TuycX7IqVPZAk5GlEpy26Tvz6b36KT37yt/ni/ftcbCZKMefEtStXef2isr0P5c03Obt3i4uLkZiU8lufZacbNhcjn35+w/qNN9AB8kVBp8JLrzzPzevXuXZ0heff2HHrjS3Xjo740T/4Q0hK1KCsbtzgD/zkH+Zz/9F/QndXiwWpU4x9vlsWYxkzLSutlUsIwRhUgiQCgZoruVg2e4yVgDFjlJIJsbJeD2RV0MowJKZSKHmcnYKlOptQRZNSA4yjs/U4qCatAxoSZ+fbzlKRp2zO6BSJiy0hKMWXbWNRSSkypIiHJxm8zF3098klE1Ny0EolRWc/wgIjcRUpOZNiQgwlwmpYsz5YE4dArlYWTSQhYU0MiRQTEChAipFSJnPMSTUGKnfalloJKeC0UbNjWKHk7OxTxRmAxs4SpBVyyc2zTIgrjtdHCIE8rImHBaFSWiktLUiy9d+CRLnO2cQx2kGZBi8h5ZSXWoBqIMXidR6NSYbuJBMa288BIkqpI0OIoAZYqsBul6lTJns5rZCiZTJKNPCKZ4ebnGxlHdp6NEEhGnjzzTM+Pr7AwdERq8NHWB0ccXwYeeL4kEcPj7h6FCnxiF/97S+yPT/zLPds1IrT5CwlLt/SYAJIzcOdswE+GtNdLx/hMlhEDIjhoFkR8ZJeymo9MKxW1GIU87WCenm1LkZFnaUmshoipdp4ZOZxtRInfnZEQbLaOirmlbaAhI1PSpEW4PW4UWdegcZ6186w4DLeWbRUvWzYHCgSrOygJmG1GgjRGMxAO6Ngk/fLs2IJ4g0hOrhIfM34GQB9zNwdDrTSsNUzSW3tt9KNwzDQytHZ87zkVbUARStxUquSxDJpV8NgzBoaHJxmz4+xjUslSUSSgcC0mLPbgH/FsqpD6KxYRWsvt5CiAQ3b+4UYCDrLGbuPAV0VIQ3RwXsVDUoueNBiXhctiDYHm4KVrAvCktGy1tzn0YDQXnJPogW+RJytzfQy6f9na6ExHDU1SxEPYLSz3w/5xmwhthZGmQEQVRQJFYrt/9o2qPYqfc5q1YKXPv5+P1OzBA1CybktCpM/0jLZK0phtbZSRrtd9nVsgLizi3OC/77Wys2bicPDRJRArHY/jQNoxICdMFTfQzVzdjZwmjasD0+JZxvyONKDSl7iaDhI3HzsOquYUE1QCjUrWY3laCqZmpUyFWPFqJOVh9VItV3kQTe6HLW/I5onaijUUSEEB/lWYjEGhxnQb+UQlVm3rbUy1QoaCTH20sDv2nYpIHNJld2/bPGvy7rwnnHnuvgS2LSXMNE+3wv4Pvhs9WubnrBQgN/aN7F43jII3Oas/6WXYTYtKPTgfffmTtk7K3p/F+/TmSPa/9flu18eRX+XL+Vo0f1n74M/9m+0P76XLtDlu/qvmz0l80/ad3MQdv6daRDtHFskYFx6nzaSQYT44efhQ3/e7KjbjxPGQzi+QG++aaCTNx6B//4n4dMfolblZFe4v2vASWOSEwlUiYRQoeYeJOxy10d8u1vz3/33V/nn/th9rl01/UTnl1iwSgWClA5aU8RQygH8uGPQNY996ilufvJRPv/Z38f9DahueO21W4QgXLt6jc04cX6x4fz0hO3FCeO4YbudKK0sVRBKydbnGHn1tdu88cZtTrdbplw7q8x6teJsqkw70O2GcXvqwH5FbwtZJ/JYuDNOxItziFBHC7LeP7nH4cGa9bDi3kXm/DyzGla859uettK3AMMhb97/Xg6P/pbbkPN/rdyNa7Pcjne4x1201JlFqAdOTVAacHkupdrsVPusGJA/xs66EzpgeJpLq2kLphsYuCLI1tmSopUTD8meN04ZzUoYxVhyQnFAPw03i/jUtf0bJTLkgUSEMq+BtrtNR3RWTQHJget3r5pO5/vRQNGm1zS7JYbYbZArd45ZXxyS8sDh+RWiRtdHjGcpSKCeWPLN5niLrsuer0W8HGkLQI+HIyePntDKO1+/dY24C5RaOHnkhHuP3mN7vKXWyrU713j2t5/lsB4b4zCChsjjdx8j/Vbgpe96kWk9UsSA4t1HgHYGD9GW9BKIzEAJF+yuDBv4vLlZWlmvOYhv56OVYW0lu+aSUsUUkM7CZIF5eumyLl/8N3vizvEOsUSe/PgznJ/sGIe7xOGAmNYMKbJOwvV4zMFKiGngzbOR1++fuT5XuHJ6laNyRNXKk/IEu+Mdp4+dcfLUKfeu3qNIYzvRPVm3wKkshNoSFG/6aIi21kMIjJP7hxyUM/+0AegFwVkgazE8BbNI3wOELnT3eQ86sLIDabCMTmewbL8JQgc4tbWOy8vgtnPbg8tzTz3pQgIOJpmXAYs+XtZlFO1g0e5PXJStQlppOmF1sebw/hF3n7hLAw3286O9Z1uv/v9s/c2JH7PrT6lSvYSm26Le2QakEdebFUXjDDhqpeZAevnz5ktrvskloLnZ42bDSz/TzV3ZdGmzeYKXyWtM9Lro9xKMpS07Bkwfdmbo1nNluc/mU7bJ4ul4RFOFnV/zFrpBYydb6jV9nHtP7B8mmxtLVPvQ5zd4WeM2xu3d/MMZKKfLh/R+qfelGn0TzZcZ3J8gwToQgpebz431rNlrmYvxgroubK5ueOPgDV5+7hY3zm7wgc99kKPzY4RgeFZP+AzabFV47uJZXhtvsRtuEZOdp401twGQ6qpSn8s8cucmEE3+aGXKBpIyn4gnebSVXystLWGpUdaW6KT+t89BLRX1M9cYLZfrX/v42dKbNczi4yndxn4X2xMP28P2tW4C/E9+Fv7Qz9vfn/qwAZIefwM+6GXcPvMd8L//0/BX/gkWxs8/UHv99cS//q8/wV/8i6/w7LP5K//gy7Sj8Ygf+tkf4oM/83v42b/yv+blb0iAkrVxhP/4P77OD/3QlvX6y8ugT60+xUvDS79LPZubFGG1WaFRDcxzaSmEHBi2A2Uo5PVXntt2v7fbht3AM599xiudvL329Gef5vrr11lv1ty8dROpiwQhb9/7P3wvKsq9J+6xO9p92fudPXrGFz/8xf73+z/2fg5ODwB4+Ttf5gvf9QXuPXEPQXj2U8/yo//1j3J4erh3j/d+/L38gf/XH+CX/tgvcXH14puCPSROkR/9r3+Uq3euvuX3BxcHHFwcvOV3V+9ehY+ZPvQj/+2PcP/x+7z84Zd58Xte5LVve+0bHrBUUkGDVcz4RmjXbl/jkVce4YXve+Hr3ZVv+Hby6AnTevqWASmVVDi5fsInr38Svgt+7Yd/jWdffpaf/Lmf5LHbjxEusSy2Jggf+vSHeOaVZ/jic198y2sAxoORu999lw+MH9j7POfMxcUFpWV1f4n2VqQ+74b2jupBfKmO7zEJLQA73Whvxo+4h08a5fdlZ/iDz/lSrExL8NHsANkPin65gW7BB0t2nwMAe4Cm7pyQpS3uzvTW4YVp3gKM2oz95fMdxMMcHL3kB+j37kld7rXfe5/uqNDZKPXvGoDk8qH1gDG/97k5krp6ossxdy9hf/9m3VrmDhL37mNOsSU1qj9z8diesdfAAIJTnBnNGbjzwB2rIUVqLFCsBF0tk1W2qYEs2TKRiqAaiQMcriN5GtmeTQxphcSEpEgYVoQQWK0GVqsVZTeiQRkIpCCEsIbVQDg4JjGxyoFrV48hRi52E3m8h3q2JFUJVFZBmEJgkyvn08Q2T6hmXrh1iy/+1b8OtZJWAzIMNl6a0QIXxdhUyBAmqCUjmpESONmYw/PkfAtqDo2r6yOuPnqdoJE3bt/n7t3XGLeVqoIko3YOeUtFmOKKsiuU8y06KYGB4SAwHCbikPjO736ab3/uvTzy5BXUabJFI4Os+M5v/wDXr17h3p07BMTK/QBDtLJCq2HN8fE1tpstu+nCACtOCt3Wa54KGpXJPafN/ZVzRutk14fAkKyMRh535JIJYWXU0sVKetWKg8289NXhiiSJKRdyTbYmCV6qJ5uTSFaEqCQpRJRhiAyDBaRDsOBIciaLECOrIXFwsObwcI2kwdaKBEKMpGHV99WwWhP8u+isNCkmJKhn/SkpRr+3MS1JUKPZVgNC1jxncgcRZ/iwoIgFVYMDX5agCSGk6NmgLcATncUkeEk9c6apB25qrcYENhn9vlbl8PCY9cEVtuPEdrdl3G2omillYrfbkkcLyOdxZNzu2I0j45R76aLtWNiNhV2+IEVjNStFUcmoFC83Z04ywcoIltzoz22fp1pQ8eCSBwamqfo8K3mykl5xMPYooVoJPwndeT1NxUrsYcGJJmNbZmsukbvnShonVie3CUBRAzzEOjEI5HDAyaZQcmY1BNIqMe5GptFYirQWZ9TZOUDGggni69uCZuzVi22BkxYYA6x8IFDKRPZyJzEmhmFgmgoabX5tfcwyW8SYV9brwVyQRRGJxBb8XABgcUDUMgs4ODi4OadVodRCIPZzEmfJIiWspKe9QimXz6y5pSH18VqtkwXrYlgE3WYDt41L9L3UdYIysxGpO4tjiDR2nnbk2Bmmnt0q3XHfAmkNSNUcyeLz3wAzLQgYvDTZEC0wV0rt7GXU6gxL81kX29pWK19pznk6y1kNbSybY9gmLFhtjl6G0ACM1qfkmaul2PpvQZJalwd9C3jIfF/vU56yyejYSoA0+dio/CO1FgOChmTMStHePY+ZGOYSEJcDSJ1hUTDWuWJgGREbq1JmZ0oQn+tWJlLESh54CTmtykR2xjgvU4aDa6qQUnCwV+0gLnVAmaBIDIs5bc714gEs7UE2wEByEj0oXV0mGgh8nEYqhdOLU4IDXxE4XB9ytDpACca4qIOX/rSoXazCalgTdOeYUM8iV0B8PkU4OBx49PEbXFkfAWsohZILYzaQUC6Fsiuc3b/PNG1IB4c+R4FcvQxFtUBBLpOxpbVV4Hu5TBPOg+eAhhEw5kGP9PoZMK+UqoUVXppEK1lNdrxb2xwKWWqm8uUdLtrgKh6MlJn9aAk8uvycL9uHDhyar+2ffSl7YvmsS/KyycHLQdW9fjlQZb+vSwPIx2HxvP3grnS7oPfTR0UujWFfw4sPGyB1L6ljUXLpwWj5W7zDW30rl/7+Mr9aWiNtJC6XgaEFcJd9X9hq3UxZkmmYWYckB1k+c3vPTFMV5Ok78M/+N+h//r9AX3rKStsQreQjzhyDAQlTsjJPeSxojFhZ04BEKykVY2SzGfgbf+OQH/qhjYGkBEQSY008/+KRlXepwnq9AhGmUqlly9FB5v3fNnHzRiGpsj3fUIpycX7Mm/evMWpGNXDv7IyTz3wOC1YHK1PnL64VJgfcih09xvqH6WS7qXBeRnZjbqPGKg2sDg8QAhcXW7bbc8pk6TAS7BqpxmpZJKLZWE0pIARjE00BiYHHHrvKI9evc3RlYA4MC5HI+cXj3Ll9xLVrF6b3+jQEX18hRFarNbfqrTnZAU9ocUBE9VKmvXiPbxMD87T7BaJYkkApxioanOH38OQIcrOr2/pWHrn3CEfnxxy+dsgUM6ePnFm/Q/SgrDJsBo7uHbM72HJ+7ZwYG7B71uODA2gkBNZlxc2TG6b7hWBJLUgvV9fWbYiu0xMYphUtGWAOEns5N2fiM1fFgvnlwOL1ejgHl8XPipkRQ/qW7ECcfs8ZFCMa0DcWgJYj4Ei7TpbvZfKJ6fJxjMgzkNKKlFZkZwXKJfN+vo3vefl7uHvjLmPYOntgRmsl58LJ1VPOj88N6DxBLpVpylQtyAo2V7YGVHD/SAM12GTjukIrmWf4GLystDiLlirU7MDytg6CdDAw0vRjZ79dlK43vWNmf7x69ypX71xjFGGqSpx2BEYaJ5qoEqkgkbEGci4EUWJKzi5cUGcqGsaBG2/e5Npnr/PEweO88b43eO39t9BgJZWaVDdWnKWQlC4kzf6LnphSqc0ejKY/m1Okybi+1e1vT9gJ0ZJmzJ/jcrTLRvc1+aJp/qT5pJPepTtPvsnRvWPOr513H1/Tg+czZT4v7QzdP1JaAlSIgZiafUvfI13+K73cVVj0u92XxTOaHn0pFZGQA09/7ilOHz0hx5amtPi9v/fss9PuH+zv0/ZTkM7OZPKpAUN0HtfF0RfDXJar2RPt38o8RuhsY7b92WyF/h5R/Fya79cmu4Gjl3rUvoYhvR+l+Ds3VjOdy6M1e6gWPz9dLoVogFCvqMlC82KGm84gs57IuNALWiJT649os1NDH/9lObfGSGv9XuhrOusKTVZ0Gdf1JO0yoX1ctbFUz1Nk9oMxvMkQnJVXfEwc2KeWbLcdd+haOL9ywf+fvT8L0mU7z/PAZw2Z+U/1V+2qPU9nxgxxAAlSaIqSRapFynaoW6GWLtTdttuK8FWHZbuvHLpzh+9a0Y6+coS7LYW7+0YOWWpZJEXKhChOIAlQBAQcDGce9jl7qF3TP2bmGvriWysza+8D4BwCIABxL6DOrvqHHFau4Rve730ffuIhH3nzw1y7f10cw5jHUM8CWLqK3cUed3budrHbPNdB5sikGXGrucl8voNSiUXYB3wQhsDNdkvTtLi6pW1rtIGqqDCmQCV2ZpC10TlH27ZSqBbzWJR1RcC/KYaQpdS7XuiLVftXEtjfJIDjkJ3qSXvS/rQ0BZSJ5eSTX378/Y+/CP/9fwT/3v8Mv/9pvp2X9O3au+9a/qv/6iL/yX9yzFBdcb3W/OqvTnHfBN9y6ZLn539+xQsvNGgNDx4csd20rE4u8eDe09/RNX3/m+L3fm/M5z8/4jOf2ZzLxT3avjD6wmO+9/tq4dH98pEr8Ir9d/fR4ZFEcoRbX73FhbsXuP6N6zTjhndeeOex709Pplx+4zKLgwWHNw+/7eWMViOuvXztfV++CorRavQt7+GP0/L9Hrx78O0//ArnmJGG7for1/nRX/vRjjGoWlcY/7iMokLx3B8+x41v3ODOh+68JzDq/lP3Obpx9J7n8dZzfO04yZtKi8Rc2/x9addevsb1l65/R89GoTDesH93n/27+3zstz/G8sKSF3/mRb7073zph1YS7tUfe5WLb13k8Pa3nxM/CM02lh/75z/GnQ/foR39oDPVP2k/sE3BerrmpRde4s6NO/z8v/h5fuRLP4JOpA+PtrItuXHnxrcEKe2d7vHxtz5OWZ4HtxZFwWg0YrFYsN1u+0tQUuxdVRXWWlGGIRU8ty3b7Za2/f6P8Q/ApDSs6MrB+wH7wSCYL5/PQTBZYJXKlR10yXTog5FdADK/lv49D2iRn4wIe6+E6jmmn8F1dH/IgQfHzBrypMCp7s6dg1yPnkZ31YgAmTlKHGehe5bggVL5XuRHAzFV83VONyTZpf6ezwURu8BvH4gZ5CvO9XmWBer6XuW+fyRRoQasJLGXqsotP68cRDmf3IxdQEop1TGHyABXXXK2c5IHoKyOcjsdK4MyYgyQqMu9Cx39srUWW1pMVRB9oG1aVAG6CfhoWXpHGyNtiGgVKI0mBkdTb7BodAiYwhKDyNBhCqJ3UoVYjihsyTNP3eQzf/YTXLl8hdl8j/HsMm19xuJ4wYc++SnCaM7GtWzO3uKVL3+JX/3l/4W3375PYQ0ajaWlaTwuCLuBKQuqkWZ5copycG3vJrPdPbAKaImu4cJyyma94XTboI2h3hwTowZbcOXaFV5+c4PyFUZ7TKFAa+68c5fYeCyKVjkahApbNxGnWnSMeB0JoYGNQ+uIUhZtLOV4xKZtUGxQzYaPPvc0t27dkmpfLclkrSItaxbLU3xwFLoQ0IjWSWpABqRSmsKWhCIwMhptVKrs7MEkSiLAqDR2bJFARSpVBWthe0ALiCADPrQC5z1101JVI0pboELEBddVpw+DWkobMnNEnhLdnDZGqg+TpIZNFOZGka6rD6TJWJTAfAgBYoBGQCrBB7brdZe8ijmOHYWZKyRqb+jt4JgAFSQAU/68T31I9PgY8QEKm9afHDDPgce8bqT76QKqmSpfK0xhhXUsBT+FhUk2HqstRVlgLIxGI8aTKcZarC3YGRVUoymjUUlZWLQRUI3WUFiDUiYlvzwhKlqnaZrAdlvTtmtcs8bXG7brFavVms265vh0yelqy6Le4usav90SW5dY0ALKQOMDHoVvM1AjoHyEEIVdSitMGk8xpMQEMa0laWVS8l6WE/OpqtVYQ6ElcGoIjAxcuXKNe8dLVqsVbetZB0/jl7StxxLwWLQeyVqd+rZLZiUwwDCBpJSs4WVVSkDQtQQvSaccVAcSkCpgC5Pku3KKTeSyYowSGM2DNj/bVE0g+5vtWJNijDjvBtW+/Z4Dg4pslZhalOqSTJFUrZ4TXjlonAPPHcBQ5kVO8uUdVGswylKWAlIqKitsA6RA9jBgrJRIFKbj9MnnvI/nzwrbgywTvdyr1kaSYeSAr7AvRR1J1ARy7JDmsJa5keXlQpJ96eQyVL/3x8SG5b0jEimM7fc8RTLSJIgrpGYiHdJJtmhFUZaJ0SdXCQvLj0LhY0AZTWltkpCTe/A+EJ2wJWltOtvHtZI0VkHWEaUy01UX2k/rASk5l6RPvACURBaPjnXBZuaI6NFkab2AcxFrPEYL6K0/ejYQUhIgs1S0iWUtyJpMSiYpI+NIARhFVY2o68RChhdWOjQm2YbBeVHNiUGWQSMJQh/kODHkynMB7ymjaV2LsGGlKaGThFy3/Yi0nTFaqp5T+sF5jzVCq+5jYL3ZUJaBzb37hHAPUxZcvXqZOJ2z3bQoVTKfznDe0RKoyoJClbg2YM0WhU6yjzL+8xwVELgwBZblGG0nFOmzPsq5fYB2XdOuNigc+wd7lKOKEKyAlLyH4PCtwwWfxiRsNw2b1QKd7J6AwgedAJNpPfRSiZ1lg316hjIWM0OT2JcCxvvBbp1d2/2R1vnsJww+J+28jdrl99J31LnP9cm/bE93xxqCcXLCb2Dkn5NwO9fScYd2uBpeFd2Co9K6/WhEtQcRPXpXKjsDKUGUV4Duqs6fJ/dXTsZ1r53/GZjcPH6Awe+DP1Xqg3MJq+668zM6f4S8P8vrsf8c/Xce9aO6OxzuS4j9qLu1ufdFhtf7KGFsOkt3vZ1scFqzsp+S5xdFTfjZ34N/+L9BtZoYNU0MeJI/RMQmHazgErie2Pk2ct2JOVZpXn9jzNtvz9jbnXPr1mVm0yllNeLgwpTgG+pNzcHla8SiwoVAuz3j+MFdfvWfv4Y1Z5SlxrkZ2/WcbWNwrQWEXdFaRbPdQoCd0ZxiNErPPhCjxzUlbdNSO5/kkbcyWrRhOptxdHoMUcCn2c9cLJZEHxORU8DlMefFTlHEJFfoZA1WslYrrTHWCtjBtajQcnF/l/l8V8BiJj0fFWm84zd+Q/Pn/zzs7ckDz2yEKNnLF4sl68WGycUZsRDfr6xLds52Oh84Dx6VxnfeJ2enUyarSQ+8Sf5oBgArFNVZhXcBa4rETpTBUKlV6fiL7K/28qYQYZJe3+T3xdbO47MDAOfRZ9MwTsUsOTmd71f+drJiR/BsZTzFZP3n2Mr54U72o2U+D9af9AExWQeMKnEwv85NkgGIMg6OrxObZReHoANjiOSrST4eSSK7QGth86msxtgSa6dcbS+CAqOVyFxbjR7J/hUWCeITFN6L9K33DhdrNqsFzre0TUPbOk7LBYfjY+pks61HCzbjtSTwtScUAh7wxI6NJZvSKrHAqiQf1gHRs22v6KSOVGcVydzORTUXHl7ARp0AGaAJTMcjorIs1xtC9LgghWnOi1aTysCnDEhhwEwTIzooRusR11++zum1E5qiBqR4Jo+5bHN1MazB84BeUrh7tmnvGq6f5/a+9LcUc+T9jrRuqW7tDYPP9j5CHyfLx4wo6X8VCLoHKKk8Oc9vhtAxlvb3oVSOGQngUWU5rm7sD3byLFXXAQzTnQ/ib3lvEZ8ngd3J+4F8L9Pkq2QzqQEoV6TT8yXmuFTvG3SsQPn1zgzIAJDETEt3m2QQFiT28MSyKxeTxoMZAJjSBp6fEQiQOcvKDed8L0muu2vp4qnd41f9XB7aQ3JD/fyPwsxDYofNts2QPafvX2GxO3eux1p+PuJzxRgSsCgxACnVzcmQPhgIXWGW976T7xSGuWzDyJySIRVROnZrvTyH3tbJRV3DQtEe8JXYYAdz3iS5+WHRayeLRmKlBnyIrDdblFJU4xFfefZF3rj4Bvv3LnH17BpjV6FqsTFMjiMXOX4zsKP6xZnd012qZoSZWCnUUxqsfDZEKEYj1ss127AmBs98b8ZoXAFG/AKZzAm0K0zN6/WGtvU0dQ1IMYNOe1uIdDKP2e7tSl3P2arZNpCxLMzE7/nAn7Qn7U93u3QI//nfg7/1/wH/ger+36Mp/sW/mPDrvz4592rvon4z3zTy3/63ezz3XIvWke32gNPT22y3M5pm/E2+88PT6lrz9/7ePs88c4/r1x9HannvuXv3Lu+88g57f2avkwubnky58tqVb3v8y69f5sLdC9/0fR20sA35x/tfxR7OPT2bcuHeNz/OZDHhyuvf/nr+bWxFU1A0317+UKEYL8c8/4fPv+f7H/utj50DIQ1bsIHjq+dBSidXT7j39L3u76NrR5xcPQHAle57Ky0X4fZXbmPdd7ounG/GGXYf7PLjv/zjvPqjr3J26ey7evw/qeYKJ0xK30LG6getvR8mtCftSXtfTQlY6Zd/8Zf5wx//Qz721Y/xwksvMF1NGW/G52KarvjW4+72m7fZWTzO1pb91slk0oGUiqJgZ2enJ4YZ2P7GGKy1jEYjjo+PO3n6R48Jvc/0vWwfeOXMjnlOySt1/kK7ANh7tRwrGgBVuoBLdpiVuHK6C6D01W9AquY/b7D1SezUeYPgWy9vNgjpZc57la9V9d+lf6jDax1e76NBxF4uJ3YBpu4C0r8x5jRDYmdQuruGLhhLX82Xwwu5Xil0yRYlwC8t12aNSV2XrNhcdZZARJk2XpzT/m4lHqMJXqqj+qDOMBibgWHynnRthAw0SXIsOklUASn5rCQxmY6amS9SZ6UkvUkOO52kCwo8ImmkUy2sTl1ltKKwBaHVLNo1Dk9QWqqgIygVaFpH7RwqSOWtVDC7lBAFF7bUbUPwIj2mtWZ//zL7BzdQ0XIw32U2LdF7+5Q3b1CMIkXlqOaWyY3b/PQL+1yewa//5h9BNQEK2nrD4uSIerOkrmvKcsJsd5/T/S1bF7h09Raz+ZzRpGJSVuyMR0ynBmsCZ6s1v//bX+DVV9eEEBlPLKfLM7arDbZQ7O2UbHxk03hc20ggs4z4NqBcS1QKj5WEvfDyEINHKUlUG62pxppLewd8+KPPcXDxIqPoOdk0PDw+YR49k905xmiaZsvXvvENalfT+gYbCxSWQKBpa0lSey/MO0lOx1ojzy0m1oaU8BY5aNX1ezQmVQbL8/YudpI+rVJpEUxVpRGih9q3eC3ApT7IKcBIrVNVnm4fCa5k0KEipgCzyIUJKERYkugCs7ob3xIYDDHincdoTVlWMn9UAWms53kqrBq6A0S4JN1VFAUKCVClEJlM8ww+UIZc6ey8o2kdo8KilCSie62LHPBNwcqQks5RZJbquiZElWTjUqA0BJo2EINju9lKhTSSUCiLEucfsN3WqYJZ5OVKW2BtDhZrTKEpipKqGjEqRpSFpZpUjEYl48mE8XjEdFIy3t9hPBmLNF6MaFvhMWxrR9Nuabcr6vUZ9XrNerXh5GTJ6bLh5GzBcrlgu13RbNeEtqFNLE1Bi/ydUhCcSPZppdDG4FrfASG10rjoCEnqK6+1o+mYajIlYiXwWUTsyDK2ga1yMgaLima1gtjgEvCoJGCUJPxztWCOE0dI+xEpmJuSax2oRmMIfSC5C3qabh23he0kSqKPMj9BAI0pAN/tXVFAgdqqxIjlU0xZJBECoI2V4LZv0QgzWH7+eUscViWjEnAhdqoykuwzqlsvupU6JzBi7FDVGairNShB+MkerJSwNsSYkvrp3qzpQUMuAV3ojwuZXSsnB0K3p8aYWHdM7uduh0VkvOT7Wousi/eRIrEV9AxWhjZJgxWmRGtZX3yQQLbWBlMYCm266/HeEY2AhbwXOTWb7p+cQEmV8THt9zGGzgaIJOad4Lpkj0bjY2IZQxjCeqMhZznSvkpiw4qJyYhsi/S7srFGmKXSemkLg4qyDjrnk/yHwoWAjwbnkpGAwsVezEHFfl/2Qdj4JBAfaBqHwqHopTRQiISZlcC99yI1oNuW4IWtzYeItTYlInJGQ8ZZaUva6Ijei8yLAt8KSFPGaRB5UIm1y56d5p7W0meudZ1EjMia+QTq1N0498FLAtRHFiuPWm2IXuRi0YrNcsXxbEbTBigq5rMZeEdZVVw8uMCkGqM1jKpSxl/spRHEfssLQqCwhqIsUTrdc0yJt2hQWqSScJFCaaqiZDKdEFUFyqJiQBOJzuGCJD7aNnB6coZzNWWhmM1KlClwQeGDVHNnsFsITliuUmImRPDBoWJgXFVohVRftyJR9YPcuqsb7O/vdc2PpNgefzEfpns/J6byR1N6KH1n6JDlsfrYgaCzKyL0Ehnnvtv/GwdvdTb28LMdSufbO3VdklZxbo15rA2SXcPE8vAy46Mdp84fqwOSkuecTvfb35yit5GShcejhRb5pFkuaXjSwVZ0/qz5P0EAoyokGayzXdTpBeLuKeyc9HaRDv0R+8GTjt37XefZrPqEv+r+h4CWPvES8d0/oPlXnyL4BFYYXL9LdJ453tmDTCIxuuRT+MRcpIkoRuMpo9GcGDWjckRZWgF47OxgLGgTMJWm2Nnl5sGYaaF49c13wRRYYxibFrPdUpU13nuMKSiqMfV4jAuRyWyXsiqxhaUwlrKwlIVC60jdtNx56x2OjxzElqLQ1O1WbCmjGJUGFyLOC0udUkpIIEJAJdCCpCbjwPMUgzzby9YqpqMxB5f2GU8mWCJ169lst5QEyqqSddp5Hjx8yJ134Z/90oif+znH1avSn6uTFUfHR6zXK+7fv0exLvio+gjapkKHoDDB9DGALksuT9sY0z3TPBTyTim+cOimhizficlQx8Fr9GMlFShEFFG54Yjuxg8xgyFi2hZVZyfmga3TxeS5KMAhsZVsKuJR4hB0fkD+fF8s1dtXGdQ8BDYOz5fOCIif473IUavOlejjFMN5KmAD6cwQg0iDxl4OOAPpfSrYkBiVLBza6MRcuMZ5J7atF0C0ToUqvSyuSraUSFybZHsZqylsQVFYSmuYFBMOzBxTGRjH1EcGH8BpR/AtrdvSnm5pG8dCLTmuFsIM22x5cHCfmk0CcAfW5Ya6auV5RiBEYVRN9xhC7KTJMjthth+11lSrgkv3L2GrkgyqhwBGWJdNAvUZWySwubC6BhE5J8do4mBvGe4NxmnmD+Y8mN6nA/cM4y1pXEaGhW7DdU53zyh0VTOqA2fkAd6NklwhOQBsdAWHSp5pyNLcaVx3Cs5qMNzyS6p/cbhdK937E8P5I4AaGRe5IOGcj9IBIPo5TvIPUL009bAgKDlG5+YyyFrWvaTkAutRw2s/+jrehnPPI/skvRxivyXlhaIDJQ1YkGVu9MAhY3QHSpFr8KISHqVoBJUZ19K5zTBG2hkp5+8jZvaa80yOMe2F5+KcwwNkQ6Rbe3pWZtVrj8q9JFY4kYGmA/Zmu1eYgRPDXsxxWbEPeh6lNH7ToTMYKKS4RCfHyPC6BEyj9aAQMvmJGdSWJdO6sRxJ/rVBmcSqGgUY1stLy50FTRdLCiGKDyfopW485mIeBZ2Plu34PBZznLh1Du+8+ASJlWhb17hRzUMe8urBm0yuTBm1BfOzOZPRhJtn12mKhsMrh5iV7o7freHp2S2nS7x14pcmFtqYpbahWzeJUBUlhRU2ZqUtCREs+0gMiYFWmO7W600CLjnK0shaO5oQIrRNS+vadE9pXBsBHretIxfZGa2xxoj/7J8wKT1pP+AtKGgfAUG8cx3eeApuvQU3EwuB8WC/tfTJB25/9Z/Af/rfwH/zn35XgErdNvcBvlPXihdfzNI5I2DvO7yOH6z2xS9W/J2/c5m/+3cP+fjHN4QQePDgAS+99BJHR0e89dZbzNs5f+1X/loqbBQwx/sBxjxpPzxN7Gv1nu/pVnPprUvnXrv85uVzDE+ucF3Cf3lhycMbDwGIOvLaj7x2DrR0dvGM9Xzd/R1VlLH13qd/rM0P57zwBy+8vw//MVq5Lbn9ldt8+c9/+X1f0w9akxzLD4dxsbyw5Nf/g19/wqL0pH1XW1u2vH3rbd6++Ta/8bO/wXQ15eadm2iv+ejXPspiZ8GXP/4eTI6DdvfKXeqqZlS/t3TksJh/Op1SFN98X8w+elmWj4GUjDHs7e0BsNlsaJqm+0xmZnLOnWNt+k7aHwOkBH1yKBCDlsB0iuLH7jN9cKULimR9KbqYG4N/yJWM/XliOm5yLskMBgkEMADlKJUZRbIjPDh25++qJNWSGFk6Rzid4z0W+WEQX2KKfXVZdsdhEKyJsuiqnBjMju+5TgRBcqRAjTZI2WG+8dgHSNK1aUltyV3oHlxhBreQA6pxcD/JL8em/vFKYVCoEPHKorWXJJgCEzUWI0lnY6hKw6Q0lFajrUUVI3RRoMoCS4HRFmUVykho27UNi9NjyoUEmLato2lzcI2u37W2fRWY6oMWwuIR8F5AJRLMHSbYFcFAsTPGbz3UER00ZVQUSuGNokVTxICLRu4xBWBjI0fQSoLMIUTatuXFF7/GG6/dYT6b85EPP8dHPvYcly7ucbATaQ5PidN97HjEhXGLdQs+/MJTPHXjBnVjONvW1K3GNwt8u2DdbImU1G1Jg2Jbrzh6uKBpHG7tWK8a2mXN8cay9S0n9+/w4PBdCJ4QFMW45N279/GhRRvFchtofaR1oQsauTYmAFiu5BfJNa0MmohXBlsaVPQEv6Vee95+/Q3wG8ajKRd2D7j97NPokcFFaLeOtQp84bf/Fb/xK/+csN2gnCO4GhdhvTomKoXRkkTZ1lvqdpsosyWwr7IkYNQd9b7WojPUNg6li8TUk6p8c2Arz4vQABFbFRIgaVOgVwtFvU0guBjBaklQhBRAirlKTCUa9BRwU1HAbj4l0o0RQEcOumoFKoH8IKZkb8T7XJWdquZDBOWJ0XcBWC+DmEDEJ60uD4S2r6jwiVGtq1CNKoEw5MlJxWyktqa7/sKaBBiywkxSmK7KD1WmRIYlEIUtyUi/huhSkEpAETJ3FFYbylK+V29rNpsNm3XN2dmK9XrTgay8dzRbh19HQtjgwxHEmCQVukUMpSVIWxTCyFQWFeNRxWQyZjodMZuO2dmZMp6MmE13uXRwlWpUUhUVqAIfPa1vaJoaV29Zr9ccna45Oj7l5PSU5dkpm9WKzXrBdrmi2TqaENi6NlVwRmHCsprYSr87L33cNoFaB6oiUBWKcVlSb2psWTGdC4TPKIMmsFy4JCmnaVzo5NaizrWOmSXOEgn42GJUxGpNVBrnPUpL1auxBWVpqdtWZGJUL3eW2eKMlecREvgns0ApwHRxYwGKgU/rk8ioFUViHzNG1gEDyiaJu6ixhcYFiH6wEeSEcoyoAAoNUY6dmamKVClaB98lDHxMQfyUkCtLMQ+kWjUQoyaGXuKkKAqpfM1zLSLniUJZH3OlJyElMHRiORC5RaVIshh08zv/qDgMoOdK74AtdCcd1rZehqcWhpqY5AYNmbo+dvs1MVBam+TI+gC+RuPxciyXJQ9MAs6qxIQlTH0EAR8pI1ZK9EKxH8ggrDyQhP2tS674IBT7RgmjUE5KZgr9GLr7lbULdMz2VErsBFnrQlRobZM9EMj4R6Oz5IGlbVLSUMtniSKpiFJoI4l+jUYHSUZ5F2hdIHgBWmkdUKbogJg+yPNUVmTFCJHGC5isGltKpUSms3GgRC4nKo0PEVpJHLoQ0MELQ1ti6xKGPkn4ax8EoKRB2QTyqx0mAZuUD5gQ8SoRdhgDyJqglATSY5S+VoUh4nFOKvCjixwePmR5tsT5SOMD1ahiXFWU1nBycsrObEZZjPBNYn5DwNsZjAgDkLcx2CR3FKJBaUlcqBjQMVAjzIpFYYXhKsv95AROBIxF6yj9ZTxGKazXTKeG/b0dTDWmjQmo5B1Ej0oSOj6AcwJOkzXf024a2m2DKqAsK7StCOEHu+Knt4l72/tcZcYg7zb8ztB3yBXx79VUSlJ2ebQEjswni4PPZXacmN7pkoADn6CrhH/ksvuP5cRhPC/n9miWd3hzj/0duzxjf43nWaKyW/CeHQLQJdb7Y5KZTXMfZIelk5FSHVNNZmfqr6u/j+5VJaw0+T7l954lNigBneumgvUETg+wd29ijcJqARxiLKqdol7+CAphJlVawXaMWk0JowWNeYhpGuLeQ9zzXyN84ouSYEj7nBK6n+65ZhcqS90Shb3FKHPuXiKgrIe/9FkMEH/r08SmFy82CoISC1dHsR+EoCeBgVOCWiH+RC7eefDgkNPjM6pyxMWLFzi4dIHpZMSkrNiut8Rygi4MIxswoebgYJfd+Q7eK7bOi3S1rwmhofWOiMEHg48K5xs261rApQng7RvHthQZp+1qwWq1lEQvCl0YFsuV2K4oGhc6O1elQRYTeDePlZy8BY2ssCqx88je4F3g7PQUosPagvFowt7ebpLrlAKEoFreefNN3nj5FaJz3L1j+OVf2vAjP/pvCL5mU9eSYNYK5x0+OAwaE805AAQdkCGNl9T/Wd51CEYbzsuQ7DOxs0iIi2QTKZ2YaxJT45A1CTrJNLo5GPM0kf6KsVtHzCBmoJI/kaXiMitSCKpbJ3rfvJcEygU1HQty/m6A6N1gDcxMQYN5HtVgHRB0nc8+DrmYQvouA4jyXJe5rMnAAZG+1QmEIMCXmOy+3M9KK/H5lcI7R+scbeNELtm5dCxhlmmz3w2EUMu9dv5Ev7SILybFCEYbkc0uCgHflWJbF0VBUVrGxQXs2HLdGLQyxCkCBA/CtuS9Y1s3nG1WLP2Kuq5pm5q1WfFw55CQwNGr0YbFfCGFDun5Z3YaguL6V69jNhZfRIyOGEMCLostXFQVOkqhVasVbKWgQGz/9MC655nXpQwKEnaZg3cPOL79kGgzc5s0rQT0IiCPwaNOfpgeHKeLAXUS2GEAXkl2UwaCEImBZBOqgb2dmME0qDQnUTGBbOjnlUq/x0gzbji6cUTQsbu4/Bw7eGOO/Q1uQMZgX/wg43k436SwyGcW2LR3q/gI81eer2k/yy6PTlLo5woSY8RZTyxiV/TQA2yliEinmEUIoS+MiIlxp1sPYhcizP6ETtKfCZGW5pTq1lUXfTfYsy3ZL2157qbXEoAoM5rm65RFigQio5NKl35Jh9egs26fykAmBhMtWwM9OComm6Abn3kdzGtVPnSy47McXIyyj6aaihStTZLfMRekRIKPHcuRykCt5Ffnvh7eow+Jtddm4GWy5aOMi+wLeZ9GWBSwLdAVAeU1VIW+aCWmz0bEX9NpzKpsKKhsbw1ip/QMTSC+WNC6Y3glRpq6xrctSmmcDyz0ksIW3JvcpygKXr35KoUtpY8zqzjDMSDXui1rgo3CSK4VMYNYY9oXYuz2K21sxxoowKt+LIsMrVx7ORpRb2tUlFjvqCqY7exgigofdbKNRNpefFAZUz4EtpstbSrk9K3s91pLscXQFHzSnrQ/8baawINL8Oqz8Ac/+fj7J3vwz/5dGMpIPTyAe1fg0gP5AXj+Zfj3/yn8H/4HqL5LLCqjGv7r/1IW5f/73/kuAJWetMeb4g//cMR/9p95/tbf+v+ilOPk5GQAXJY9rtpW3+IYT9qf9mZbi21lfo7WIy7euQjIXvrhz3343GfX8zX1tJecW+2uePsjveTS4mBxjqVp2Iw3/NQ/+SnGi+8dk5lC8fznn+drn/karvzBjve9V1vuL3npJ1/6oZGrayYNzeR7yLz1pP3pbgrqUU09qjk6OIIIf/Sjf9S9963a2fyMtmi/KUipZzA2j0nCfbNWVRXr9frca7PZrCsUnM1mXewT6MgNQPzkun5crrMsy47B6f20D2RJidM+YA1iqBueAg+d450c4i7Y3rP4nAte5NdywDEOPtWBgfrzdcAdCX91gRSVjp6r13LwKarzgb3skJ4P4qeAReyvrvtOckoZBIUepbgS6uKBUwwda0x3j6nPzn9/UDHUfS4FkHJwWOmu+oxIF1Tp+ib2/ZKd+1z9pVJgSSVWBKuFojtm2n5lKJQCJqiiYjIuuTQrGU2m+Mkuk/GYaREprdy/8wbnJSDuyZVLEaIHA62PjLQhjmfM9nY52W65d/ceq9MzQpDr8iEDyiSoq7VKDrOA3VyTWGlsQVRQt22KfQoDgTFG5FlMyVY7mk3LRFteuHaJNkS+erIlhBarFdNxSVlZNs6xWK5R6CQ3VqG1ZlRWXLp8wLNP3eTmrZtcu3mdG1cvMZlPsZMRYX3G6dFD3n3phMN7D1gc3uP09Ih6s+XaTKNs4O5asW5qlFH4GGm2DmMqqp0pZSmJjWIyZr43Z1yO5BkZULXjJG4ZTSesN2s2pw1+C2NbUCupaG6dwhYVhsh8NmN2sMvDhw9ptltc26IS6AEl1amuDZLqiRqjIZiWsihRIXL88CGbYkO79fzar/xzfuu3fo+dYsbTTz/LlQ8/w0tf+grXdy9QfrThC19Yy/MOgcPjBa6t0VHYPGxpCTHiQsA1ma1BdTFDZQZBx/Te4mydKrfTjEvBlIhKla0BU8hzjT7S1K1IXqVjFlWBsYbg+grpPB9Fni2vIkqStiEQ8SmAqNDWolVER6l1LYsKRcBYzWg0SpVlUi0WlEgpSdK7n5cxBe0zisJaQ1QCqhMwC0kKLiZ5othdV4iI5FPMycOIa+UeJ5MRzgWauk0yhxpbyP0KKMikoLJsCkYblNEUSgBbhbUUVlGUugM4FVVFNaqYTqaJHWTMznzGzs6Epm3ZP9jpgtMhgQObuhW6cB8kceRaghf5Re8FEOK9yHi54Nk2DavNmvsP21RkbBCwXAJIpSTDZFIxGVWMxiPG0wk78xmT6ZidnRmT0Q7P71+h+JAVaSgSSNF5zs5OWS03nBwvWa+2nB0/5OTokOVqzfF2y3q1lIBa0+LaiPItvllSN4Y6GM6AaM8IKmCNorKGkTWUocZGJ3wxviV4CYZ65/DQBXglrdcSo0ebILJ4SpPrrzIdPonRKQPwjDEydlUOQ8aUeLG4JNfkknyKRkMXUE3742AvqaqiY8jxXgBGygBZpi2koKyW5KoKaYNAAv2S/OrzQnnvjFHANTm5OmSg0EYRvIyDvI8YK8/TWitMNq1P0hbp3lKCS6XgvABD5R6EYSfgvE97nUjz9UH6VBWeGGNCgEIXmATCyUFsFRVlVaGNsPXJvpuTlWlPTHtk2oHxCUTkfc8sSJQETAgkEEfs9uXUIVJhmpKu1gqQRhDoIkep6YEC2TyQfdekxGEcJIAkcd+6lkLZtJfJwiYgwZT8MDqxKCUbJEXEAxFdSGLfO5+Y3oyMWe9E3k00+YgRAVulfpE1NCViCGhCel4am9YaY1SSMxDQXUzsB60TRgnldcdoEZwX9iythHHEQmktUStaAqEVhjMSU4E8XiOJ4cyEROyev0EJq5vkfLo11KdzR2QcZlmQmPcQnYCCSiEsGU03jrUBldg4g1dpjFpiiDSuTU87UG89bb0luMDdew8oy5JCFxAU60UtwM8kz0iXXIHgHc61RJ+YGlQhcgpB2B90UCJzGT26NOjCYnSFMQIWzWBLyVU7GXMpz6VilOrnDPAwFgMyvxJQLo/TQJIS9E4YDpc1q7MVGI8ZWdBGqs1/UFu3uaqcMXosCdnvv+rcPznBn8fIuWPmtaz7alr9OrficU+vs9zToXIisXcP5MtDZqRzl/pexx3cXmej5yPlY6ph4rC/f/X4JZ4/VfzWnxl8Mp0js0CqdD10fd77Qumz8dylP3ZfmdUlM27Ikq4gyjqho4Z2DHeeoXzpk0wWl7BHN4lmglUjSgMmgZ5FLlfWwLzn5ZQ6Y/Chwi5mROeo/EfZPvg0y5N/SfvjnyXOT3ns+RP7fkkLs/dJBrGUW/FdQDsnDSPmx/8N+oufQp+N8K2n0JqD2RQfI4dbT1QeraCwVuzsIPYaSvxMrSwRkZGbTMdc2J0z352zs7PDfDahGJWowqLamma9ZvFwy3q1plkvqesNrnXslAp0ZNkqWu/EtiUmqTWLrQqMkd4x1lKNKmyS/ESB8pEtDlsWONfS1p7goNAGn9iBQkh2pI5UZUU5rths1vjWd2uFjJHEQhqEq0FF2RMwwthHjGw2a6wu8C7yyiuv8OZbdyh1yd7eBWYX93h47z471QhzcYd3321YLOa8e3eEMQ+IwXXjUSfQMDox+/lwbgCqbnzR7Y21aju5qsxGlJ9o9olVkkAlZiB07NaHLE0tYIDBKB+GFvJozMwe3dhSIiMGKfGsJGCT7DBrrdjNg8S+0rpn6xiO1mRAKFJBRLJ3VGIr6deDeP67ab/sOikKk2CMgaIohIXTZQl6lQBIOSbQrwXDn8x0q7X4jiLxppK8n9B/F0WBsnKPZVVSVgV+5HGu6q8uBay8HzJkxmTbyf4WIx0zR5bLCiEKCK/OYPMMQkt9nmSZrDUUVoBMRWEpylLATFVBWRTsTOfs2QsCLk9ridhFLXVd02xbtuuG+nTDdrOmqWs2ztG0rfhkzhObtCqHFh8UoVW0KDabVspyFFitxM6KEd2B/yFGsbnyfWb7NSgSOhlQgdnxlOlyynJvDWTGm9iN4TzsdQalqNhvM4qe6ZMEOhzsUT3ULU8gmVNaS+FFBnMEn4qMNB0gqBtVXd93Qy4dEzY7G3zxkGHrWFHP74zn9imJH/bzPkt8hQE7kIzF5EsYARZ1DFD04zezDOVrPc+43A1FOeeg8l2eh8TdstRXD2xSiflYFoIs6djdUzdu++c0tBsyi9PQDslrSEClwgPVxS5Uenb5sZ43gfKe3D+X/EzFz0rzJIFVMlAMkAIclWUrVX/sNBeJSY4s9vHbjgEpMf1m/7aT6dY9e1cfvowJuKgxKoPidJIlzsC7fkz6EATYpIbPHTrAdJRnaVLMNyY29picg5iOI+fSva2nIzoB7KIfgNRUz6aU5473GZSX5lt+JsMFNw4Yv5C5q4L4r1KQm1jBYl6IZX1rWvF91usNZyqx50VFcBEfHAKIyv6EHCcoz8auieFCiif1c0/F9LmYFAF0TIyyBo3EgUjPI4CAxJLPmhn0M6u+sVb29eSnKm1QZPshM1qlpMRK4nXNtsEHT1FZxpPz8lNP2pP2PW91CcsZ/M5n4B/+7+ClF+DLnxC21n3kLwABAABJREFUpG+SiPum7cFl+QF48eMCZvrSn4H/4v8Gt998L7fwg7eihf/gH8Df/w/h4cXvwgGftMeb4u23r/OlL+1z48bXO9Bp965SXQK0bZ+wnTxp77+p91gEpmdTpmfT7u/9d/e59bVb3d9Bh28qw6Siwjb2PY/73WxXXr/C/jv73H/6/vf0PN+LdnTtiO10+91Zf5+0J+3ftvYB5kXQgbP5GbPl7FuuOVX1/kG81to+p4kAjKqqOpczHBZyD9t0OqVpmnN4maIo2N3dfc/Pf9NreL8fHGp794Ht96Id7oPhOagn32PwbwrKPZIViIPXc3VnrnA+lwhIQXLN4BjZ18wa5cMA5/DasuucPfd08V2FWuwra+RSe4TnMOj2aOsSGDlIFPuAQvf9QRRCKhZV13+6C7imAIYWZzIqoTsIse9XlOoDKImVoANvSURBzp20co0WUJLGoJShtJaqMBSzGQcHcw72ZujRnKIoKZUE2RqvaNuG1WbLw21L7QKu9fimxrsWH5wkB9GomNg1IAFXIqcbhy4L9uZzVHCsFlt5nnii7hmgtE5OtdJEbdLfFrC4huRQa2FQ0QqjoSwstrJURSCMApWWZKAOkf15hQklphoxme9gq5LtZo02xwQfGY1G7O9f5NKla9y8eZ1nnrrEC8/eYH5hHx80i+OHvPbKa7z+zjEPHy4ovWdxdMJyuebyfIe5vcg74R6OBrdtef3OCcumQRnFtm5oVw1N02BHFUpZZpMJTz11i/loTqtaHjx4yNGDU9arBUdnh6yXjtC0qNbTrlquXt5ntVlLsr6oqEYj9udzfvQTn2B++SL/8rOf5bCuU5B2jLYF3hqUNdjWUynFqCiYTgqc36KCorKavfmIyXTOdLYDqqZe3WftDnl4/C7jV/+Iv/AzP82tn/sU/9Mv/VNGk3eoyoq6cYx0hR0VKO1xXuigBRyQGIBQqbovhTGVAM98kreSYFICZaQAuNJ9xb1InYHSARdrCV5WAR0lCRCTXBvKoixJ+sxjtbCi+KaVa1JSNe3aNgXWWgptsGVBUU0gBoxVCXAh8hZGAWGLxhN8Te18qjqOKUktjC858KytSmtXCk62OagkyRtlDfV2K9Tiik5SwTsJDKqUUECpRJwWsaOCZrWm9nUKeGuC8omVSr6nU9JAKwGKETQbb4hBgAvWJLaetMLltUwpRWEKrC6kNloFlAqUhWZUlRS2pCwrymqUaPoKJuOKotAUVqF0hVJ9dWoIgeA9rm1pmpZtvWaz3UqgNRjaVmQJm1boxNebmuXqJMlCpcp1bYRG3GrK0jAeVYxGI0bjGdPJhNlsyu7ujPnOlAvzA64cXGE0MhSlonGOtg1sty1nZ6ecnBxxcnzK8dEZZ2drFusN282Wet3SNi0+eFx0NLWnqRULFN4FXGazQmRMohfWhUCmulfCQKQiMTowEK3GoyGxvYUgGdoINL4FFZMEpkrSYqHLvfvoKbRIIxpbsNnUifmHJKuTguuCVMAoCcjawlIUFmN0T8OuIiqxuHgXBMSCjJEQfRdwjUnOTPZDmaM6SjLNR5/eA5SWAKdKiakIbQrYO+eFCWtUdEHVDC7KgoYoCZI75zq7IKRK6JzodK0w6UhyUIL5PgVXnUtsR6pPXEUSyCrGlNcRNjS0ABt9XleizEVjBKSjlaFpHMHHc8ZVHFQ05709aUH2VbgiHIDWwkCWg/pt69K9i63hfcB7hEkHLc8xx9iTbSBB8MTQFiRhWgwkK7JUnDYGY0CriGt7O0KlsSAgTN+tG70tEXGZrl+RxogAK1EJyKhSYoy+il8pSWYSAwojVo82iQEoSnWuKVEq0kQnzEYxA368CBqp9FCtJrgIWhL/ISR2rPQZSSgIuK4sSmRCxS4x1N2L7nN3eR46FztZvqhShbtLLGpI8N77nBzobVOlojBKoQguQJCEesAlYJskNkyR5KWIIosZI+utBOatsmhrqcaG1gkrWJbJiFGAWpvlhqWpMKVHmQarDSaxW+EUvnHEEDDFCFMUFEaAWpJc0Hgt81KAdYagvCTm0BhjBWhaFARlkyQkqFT5LGaxFlYvZYhGwEyNdtRNiy08s2qMHY1FnvGHocU+iXi+9S8OzXhxCYYvDJKC5xKEMvqHyf38/UdPl+dc/lw302LPPSDXkVNv+b/nWVzyuYbuyrlfhx/ISezhBxTnPpA+lneI8y0nZdXjBzj3V+ePZV/sfNVa57pk2cncH90FpzVp8N+uH3yBWVzAvnsbvbjG5OFzjNdXUavLGG0xBOI0JilNT9O2CQjd2xMxBEL0XTISeraBkMDqtYsooxn90Z9DvXab5tOfhWt3YbSC8VpuMSg43hOwp5IkrD7aQd+/hvrIKx3zh0KjXn4BVY9QTYX52ifQ7RxbQbQpCWo0OkTGFbJvGiMMKtZIgYDaEqMAIMfjCdPpjJ35Dhd2p+zv71CNJsQIzWbD8dExJ4st602DCYFms6VpWqZVRakn1HFFwBFc4GSxpUkAzNZ5YX/xTphslchk7e3tUhUVnsB6vWazEvaDTb0WFj0fUD4QmsBsMu6AoDrJbo2rkitXLlNNp7z+2mts3ErseWNR2hAS05X2AaMUhdYUhRb7IgpAY1RZirKiKEpQHtesaMKa9XZBcXyXp2/fZP7MNb728jcwhwusNrz1+k8wmUy5dvU15ruWq1eugNJUo4pLly5BjNx/8IB79+6z2axTBZdMxqjiYJ1PYAIVu32tB0dkZolIiAJq1TYOAhCyD0WlEzgjJbWVgOx8KnIQ9kk6ybM4AKNbW6RYhdhd2vTMyUSHQmSOfAJSGSwxwduHvpLuJx7gkz6cXLtOMQDnfLcuZRmkHtykunVBabk1bTW+8QN5MykCCknGr1sO0r6idWZTUiLPHTID43C1SQAEVGJbMoM1MQpLbWII1cZgjUVrI369EaYfk9nT6Jl0ZP+WPd97GeeNaxPbZgK8pzXCh4DzLa1rWHcMlHLjEiSj8yusLRKoqqQoC0ZVSVWVlEXJeD5h34hsYQZOeBdp2obtdst2u2G7qdluGppWwEu+lWKNDEoQyVlo0lrl/WBspW7pmYLSeyH3pwB52pGnGbvB50O3arskhaW6NVv6qB/jARBpWaMMpOKRrl+7uJocXKVxBxmYnuWo6SStVAKeh7R/ZsjU+dbvpc24EWb0mCFR+bw9cDTHsYaxQ5RKIIruAjtfqQPhpNdyrCv3Zw5/hRBTsVvun5ikFQfFASSASmI8ylOrj0NGdMyShn0Bpfio2d4WJmXXsc0Ko0/wAwmzvmu6jTqDqjIJvFa6f3so15auI4ONspRcjpHKPzHZK6rrC6CLv+SYYgajKKWEhSfKMCnbgrZy/Tlj/5zU4B5yAVaMEWVMz3jFwHaI6pzdpdIzF9ZfhQoid5jtpw4MpFTnZ8XuOeS9mGTC9AWqPSh0uD7morTYAZ3yOBO/o7+qzHiaboAs5dkV0uRrVj0Ishuf+ZnEHsQscWbpzxzCDdlWSWNcZ2c/jZ0QAtumTbZSLrJQj1mLXnu+/PyXGd+p2K13sUESACbHzUIPvNJKi8+YZR1RJIda4mUppuyd7+0/pdK6LAxNuShWgRSTZBH49MzEDhD/N6R1ZTobCSP3uT3hSXvSvostAnUFb96Gz/20AJJ+5zPw8vPw1i26YtjvVvMW/h//Z/iXfwH+y/8afuxfw8VD2D9K7xt4/enzrExv3YI/+lH4d/8Z6LTXBw2/9FeExWmxI2Cqhwffvet80h5r3pf82q/9x3zyk/+ST37ys9y8OeFTn/oURVGws7PDRz7yEUIIfOUrX+GLX/wiDx8+5Ojo6Pt92U/av4VNB01Zvz9Wku9V2+xszknS/TC1aCKrC6vv92U8ad+mKa8YL8asd9ff1W34SfvutaZs+Ef/23/EX/3//VUu379MVQsY6b0AS0NcyrdqbSLT+KDfg1wIcr5VVfWBAErwAUBKGTzUBQH6KP7gn+yK9wEXeS85Rkocxnyj/THPO+39Zwc5hy6II8GHzJCUHfvz3+07IV+RvD5kHho6svFc8mCYiIiDIwwBSucqkAdNpaRtf0DOByRyYpdU35zvL7NC5WtMrwmDRgoqqlQNl/rOGJOqECWoqnK0MoGYVAq8GmOoqoLZbMr0wkWuXL7IpQsznJbks3NbtrVnvdjycLNhU7f4FpRqGVvNbDzm8v4u450dvFK0mzMePrzPu+8eslxskzyKJHOdR6iR1w0aGFeGcTWhdQYfIiZFg0zSYDdad5I1Ec14IqwLpOefHWN5Crk6S+MiknQYC3jgrgt4rdHFCBsVGEWz3tBut6A1ly9e5dLFyzz11E1u3rzK1WtXuf30LWY7Y44ePuTrX3+Du+88YLs+ZWwsF4sdbrxwneneDjevH3Dpwpyd8ZiyLDhzazaLQz7/ua9w/Lu/z2uvvcLR0THL9QYdIAZPjcfoiuNmS3AN08riaHnp5Ve5f/+Utg6AY1RWXNmbUO0ZThdLjk7XEiTQiCzEtCComtde/yq84ijbM67slrio8brAYbHaUqgxxja4EFm3nu1ihW8bootYPEdHAa3uC0MIbQIBWowqcNHz4pe+jC4Ud++d0rYOU8BoNOLKpR3qZk3jFAUlZYipGrtPfvdBt5iSTWluqcyW0jOSFFYS2cMcmEpSOEGJpJ1OldxZXq0HDurEuJHYTtBURUVbOAHCBA+V7SQOjRagh1Rpe6zWFGVBtzrETFMXsYVllGSGhGElYK0AanKVa15cVQr+RtNTk6OQKjesJEEkWol3AWsluCesaGkca4PzkgwoCsO40oklTSe1lhTU0+BCYsWJ4L0kq6wtKasJi+aMbVNjC01hbcd6ohN7mgst2pQCcgFcu0WrSGELQpDKQFvImmOSvJ4xIlNUFoKaLcsigYkqZtMJZVkwGo3YNXsZEwlEnGtwbct224jEYesT05GjdrUwVQWpZvRty3bTsFxtCeG4W1d1lISHLQ1lVTEdT9mdTdndmzCdj9nb2+Xi3gWuXrzEzevXiCiRRGwDfluz3a5YrBacnC44Pl5wfLLi7GzJdrWiqbdsNhvW9ZbGBfAp6Ksg6kzJLgCSaCRArVRKfqTAYAjClhSVAG200WkuBHICIq/TkDdqSbCkmCbWGlwMxCBVkbnCUmsjYzV6SZKalKhKLErW6pRESEIsHd+/gjxXggCVJHGjkgRbv7/lvbYjEVACcNNKQYgoG6V6PCGXQpIRVBpIbHiiZRu7Pb+TSUgTy3tJ7Bkj8nDeh5SgSuuFUpiIgDpbT1GUGCWya6ge5OuDSIARAtpGVNApiZA2DKVSwNhjMvAxy6/GkICetrM7Ipn1MbE2RAE8opCgcIhEH3CEbt0CSfxpwHlJAGttIAjTHEoRfSR4T4jyjNBKAHDZjlCxA2a6EPBpX3MxiHxlBj3GVDWsEiNZWnO00TLegiQQhH1JYwu5j6Z1CWiWK4d7FgMXpe/Q4EFk45SI+WhtZHwoRafFoqIAyMTKSHPWYdM4l6RKoA2y36JBWVkzCquJ+AQQULgI3ntCDFSllafjU+Ix+G5cdqxPJOaKIHPOO5kHIchaqguRmvDeJbvGEhP4ISeuY/QdQ0ZOxIkMiJF9zfZVAbn6PiJMdDK2SwgKvxT2QGsTg5rzOBc4OV7wb1YvMRlPGI8nTGYTdnbmzHemjEcjVB1Zbtb4IGxKwbUQtglwWnQJ5sTziUo/XaJSQaEtVVESdUmImpCq5mM0nfyFT8ndGDTRB/DgawdBWJ40lSQRf1DbIOEGpN+HL5y3rR9Nl54z7LtDqsc+lxOfUYnT0CX+HjnQue+p/rv9n9+sNuXRc8b+vAkNNfyeeuS6+2TduZRh/6FsX71H1+Qzqfe6wu4L508YQk7IKvpT5oS4PgeAkPeyzZPSx02FXu9g79+keOujlKvbzM6eZVKMCcha64PDKWHEdM7hvEhJKoTVsLCW6WiErSoi4F3Ner1iuVzTNC6BOCVxHQICVHQ1GkQurr2B/6d/k6g87J4Q984Si5NFvXujG/cRhY0aFQ38bmZ3SMAOLywHMqF0AnFHohWA5dJHglIondgGtBJ2SeeIWjGdCKh6d2/OfL4j4Oq9XWFuXW94+PCE5dkK52qs0kxMxc7+DuWoZL4zYTKqqAoB0tahpa3XvPv2AzZvv83JyTHr9YamdegoY8m5Fq0M3jtOjr2stdHz8PiY1aomONn7CmOYjgrsSLFtGjZ129kDSitMqYnKc3J8CEf3MaFmWhmRs1NGkrlKoynQhexprY+4pk3rkPC4bTYRpVZpD846OMKmGQg8uHcfpVWy70TG01qLaz/O7q7m1u0jtNHsH1xEa814PMYYw858zjPPPIP3jtPTUx4ePWS5XNK0Dacnp91IloKHzMYSu5EfEpgjxwiy/ytxgtDNhohcz3xn3s0NrQX4n4Ezm+2GxdkZ2dVXJOanQexBD1iVsi8fgyST7WB+x2SPZYYSlac2sJltqSd1j9ZN814pTXFWUG7KvFhgjVSiydWozrQ7OT2haRqKokj3LKuBDwmgnUBeOW6iEgakK6bSBmMtTe1wzneSYBkYkhcLYVYMHQNMCI6OCSrJBnUK1XncJdlYeV4y5gsrIKYsHV0UlqqqGKdTydwXYK5zidE1MW0FH/DR96D2iACxgme79QSaznYnxVSM1mirpTCjKBhVBeWooKpKJuMRo7JkMhqj9L5IInqxBb1raVwjctnbhu22Zlu3tE3TseG2bSs+2kAiqluhFSKplECT6dFyfPOIdtwmsLHqxpSAHnQab6Ffu1XfMWKqJ4ng2LMtxSCFaTFXB0DP+ILYoEqrjoVI1oQoDKQoKWJ5ZM/IYI1uDens/v4exb7u41YC2tApgCM+nfgTsvPEJDGVna8heKTbTwfb13lQSSpgzHZr94/qwG7i+5i0LqluD+2ZgGL3vZgk3XI/ZbBMjlF0hYXJh9BKd3LdHXAqg4tIfkdaGzKzLCp7JZy/3ki33xITuCb7aXkspf7s+iSvRXnMdMCyHHWNyXcITE8nPPvF53j3hXc5vnYsBY8pjohShCTD1h9WnltMflEXTO58CjChZ0CKyY+U9S/LFA6YIeltqOTdIzHNkMBb/b0GFQVkrPM9J/+3GwaZ7Sex4mmR7RQwVn6m6ZlkaeV8nSHFbgYDNwTQOvllg5iu2EAyPnumLGF2Iz2fHFvNADfy3pKGdEj+nemYfqWgiBBTPEnmrQ8R5zx34l0eXP41dptddsKcG6fXGZUjyqJAR406FR/HJJa8GF23Lseky6jyXIzQtk0aU3JtIQQBNhlDzIW9UQqe5Jn0wMCOgSv5UcH5QVxkANh40p6076RFhCXp3hX4wqfgV34BvvEh+Nc/Bk35JySXpuDf/Bn43/+/hQXpqTeEVQmErenzPwFucB3eyN9/9//a+1dRyfX+IPva/xa2up7yhS/8IvO54id+4nWcczz33HMopVLMuuQzn/kMP/VTP8V2u+Wtt97i5Zdf5t69e6xWK954441zx3sv+RsBzp9noy6K4j0TtVVVcfPmzQ4U+qiczdnZGW+//fZj3/tut5OrJyz2F+/53t79PXYOd7q/p9MpTz311GOfe/311x+T+AGo6/oR+/ZJ+0Fo3/j0N1heWH6/L+NJ+7e4XXrzEj/393+Oz/+Vz/PKj79CKMK3/9K3aTroTr3qSfsuNAUPDx7yD/6P/4CLhxe5cHyBj371o5iQ7PYIO1/aYdSMzmFuvlkLIbBanQcQNk0j/oT54/kCH0TmrfvO+/3gEKCUm1LnHe7znw/d60NqKHmv+1Q+Uo5nPJouQDxx1TmNPRgiMSYNOvsca1G2IdO15wReDsifO4/KIgMp4B/7wAWmd26H2rcdPfQ5UJEEy7LTP6ym6xzg9Heu8NJ6EPRMDmzIkbcU/JV0oUqOdwosxNgF6TpHUykgUf1qRVkVzHf3uHzlMhcvX+TqlQPKYkzd1Gy2axarDdvlmma1ZdsCxnIw3+WTH7nFtdtPcfnGDW5cucDViztMJiNMOSKogtA2HJ4e8ZWvf40/+K3f5sV//SUOH57gtaEgEjx4JyCXUoPCMZ/ZFEyRih4G/QchVcrmEFlKyiiFSgw52QmX5xC7YExA4WIOXAU0Bm80VpdYNcZO4NLlizz37AvcvHmD69cvc/3aJWazCe+8/S6//Ruf4+VX36CyYy7sXeDWrQ/x3PO3eeb2FaY7Y1Q5k4A4TpLNGGbxgHj9Nree+zF+5hd+js9/4Qv85q99lq9//eu0m4a29izbRhKJPrBZrvnqi99gNLXMdyecrBa4uKVUiguzkh/9Mx/hIx+9yv/4T/4Fdx6coYwltoHtumG7cRg09zgj4gnRJSBCP77KYofbVy9w5eqEk/UJ33j1kGbTZI55tMrjukxBSUBFCiwqbHHRc3J0JkCH4IimBlsS2zWjyYxxOaEoK4mCpbGWg/NSXKd66b4uHJfnZK50VZAqEiOxD/R1SbZ0rVrovnWiXJegT+ykJnNyszWtFEWXmjhKQRf6ikyjDTYFnDyhA0Ra3ScsSPIZznuqqDCmoG0TgwiKspSAenBtt850a56SZFau7pNkPFSjMQQorCH6iPcuVUqKLJaxBh+8VGwnkEuYVEQ3k3mQxnKIEZ+fdwKKhBDR2iJSX4HoG3QMqBDRAUIbhKVDp0rwAEYX2MTsEwk4XxNDoCgto9GIxWJJ22T5LEN0yHdlpkkAMUSMtklCw1Ik0E5VTRmNxkymFdPpiOl0RDUaM9+ZUpalJGWigBy2TSMJS+dpmrb78Y2jdS2Na2nbQOtafAjUruXseMH9B/exymC1RusSYyuKUcl0OmJnNmK+M2FvPmM+32EyGTPf3WH3wgWefsYmqTqP8y2b7ZbVZstyueHoeMHRyYLT0yPWp8esF2tWyzWbZkvdKkJwBO+ISksAXwuzgkqJj0hijTEyJXwMlHbIlJMk/iIp4CnguyxrUBSGGALOxU7uAhWFYUZnuSvZ35qmEalErbFK0SbmPJOq3WPMFbgpQRFz0iCDCWU9zoF3YTmS5yvVqFJ1WVi5prr2HXNdBGxh8TGCT5WcWY4u2QOhbYk+GS1BkmEyJxSuTfeuRXJEAIwqMWgkoI0lgXgSICQlxnz0BAI+OJnPSqFUQJc2HV8AYU3bUiIJW62kgl8pLZJc2UZILE6FtaDB+ZgkRqUqXifpA6mIDx3YwafgtyUihcUpoZK2opDmFSmBQvBkaaWQ2YqS/RPSc5PARwQNxmuCcxB0F7jvqnuVzENJSEVwoSvGz/0BKoFuRK5Qktge37Zd0jAEj8ZgdZkSVIqoBNiro07rjKzhKC2MbF6kLn1iO4lRoUuDNQrnXJdMUUGSCVL0HqAQpyN4GWNWGShKXHC41qXPij1jjMW3sq5mRquuWpyIDx5jdcdOBgLuM4nZTtbPkOQQLT3ASwL6mjyW8piXtds5j83JZR0Tc0aWt4EQBcCrdMAYUCpgS2GOSPyULFcbTs+2oI6FwcFaqmrEdDyiMiV4D7GFRctkJtKdRWnSmE87XbrfQBS2lLaR5GsQ6SXvHTEaSW6qtO1Gk2QQI1YnmRIv16pkuUbFiDVQWI02BT/YrYedA4//NkhU9k5Deq/L0jzCCkQPQujjyPm7EZIf0dkdvZmRc8r9KfL75674/Lke/0N115oZm8SUfRzkFAfIo+wz9MnXfPHn/aEO/MTAn+q+1zNRyD6gO6BP3hPyfXWuUvpenzRmkLiUgaddCfcvY176BNWbf4Ypl5moi8xmY4wucBOPcy114/Btg288rZdE3biquHJxl9nuLtP5nPl0xHRSURZW7Fwl8jDr7ZYHDx9w5823eHD3Huv1VoAd5ERskltLz7xSid1gOYXlzXOPIaqup9LzjOBst750/ZzuMg4S6J3/lbpDoYk6ye6qAm1hMp2wf+GA+XyHnZ0pOzsC3F6cLXnzjbc5Pj7FaMu4GjPfPWB/f5e93SllVYAp01joAQElY+LOLrv7V7n9/DO88+47vPHK6xw+PCQ4ke5qQmY/jLR1y+GDh9hCU1UF20bkKa1SjArD1SsXuXhpxotfe5XFqk4SPBHXelwb0EqxjDWoxFCYx2vqD2NKdmdjZrOCbbPl4fEqSbhKH+sE+BOEaj/2TbILQoxsN3WaWAGUIxpL9C22LClMSdu0HDfHHB+doBQi5ZrG3TnwQbbZywq9u9c9ozz9kzswiC2cn63Zj89MF/mxhyhAJyvazJRlxc5sxsHFi8ymU9mfvNimpMR35kMJ9KwkOs0xSZzLNUicIBclJPsOJUBflUEa/frjC0ewITsWXVyDGDHOolud5Jnk3oqyRKET6Ek+v623IimnEzAiin1z/8EDkbsj4rzj7t13E7tkwEXPkTru1kutNW0lMs/i34k9FzMlTEwANqUp1iXa6cTYFClsidGmC2LJA+wZZPrVL3bAkGxPCShObAJrC5GKLixFaSmsxdqSqkpxjTTGnPepbwX0ELxPYMjQ7aM+2XeZxaVpatabjTCPKpX60ApLWmEoS0tVFVRlKUyzpYCYppMpOzs7ZBmoQMR7YfBtWs9227DZ1my3W5p6Q7ttkoR4K9eU/YDUB8FEzq4sGAJhOokz1ceLdJJWHPZeXrV0shUzIEYn26qL04nh2TEkyWrYM1eJjywMQ0MZtpjjLvlM3X6U55usu5OzCav5qrsg1e0bErtRBmGNHBTZEZECNLLUYnq9i2XIs1V5+KDot0gZ15lRXOQL05yOfdytY2hXuV+Sf5QKSDqAVlSJ/TMDWuUnpOIRrSIqFXxooxMbGcnvSTG5PJ+hl2fOtnHaV3rgVY6fkoqRYuq3bCSk2FaMiV03X1UCI5Kk+fKCG0gxs3AOXJV9zhAjk6Mp1bLi6S8+w2Qx5p0PvUPQuYgjS6zKOtZhuQb2Qy52yPEQlGJyOMVsDNGk8s00NkJ6Vl1/pH9NllUjFT+kazQp9inzoocyqZjXQLm07OuRxp7VRlh2Q18Im2OnWW4vj+/YD9oUb+0LN2PMTHj99XUsV0kqjcEzy3uJ6o00eQwhokMuwgFUSMfJbHRZfi4m9rDY+TN5LHsfWDYblmxR6h7fuPByL7FpLBc3Bzz98Da77QzbCCtTUeiBodsbsXXT4FongOIUQw4h4JzDKtsTYXXPul9ZjNZEJYn40LpzMoJav3dl9JP2pL3vFoH1BP7NJ+Ef/TWRXLt3JTEPPeod/Qk2b+Xn6x+Rn2/XPqjU3JP2PWkxSkz4wYMHPHjwgC9/+cuAgG++3Vp1cHCe7Srn3oatl4H91p/LrzdNA8D+/j7Xr1/nQx/6EFevXqWqKtq2fSzh+71ozbihHb23zF25KSm2fUzIWstsNnskbxpZLpfCyj5oIQS++tWvUtc1IMz5X/ziFztJvYaGl3gJn6SPP0ibHc+o1u9fgggetYj/9DZXON78+Jvf1+XzO2naafbf2efw9uH3+1KetG/Rrr56lb0He/zF/+Evsv/uPn/w7/2BxCy+g3bt5WuMF+Pv0hU+aYDEk6zn3tV73Lt6j6999Gv9exGef/p5/uI//ouM+db9HkJgsVg8JpkaY8Q5975ASlpryrLs9ow/bvvAsKauami4eXfe4OBzDALdyRkjB84HTvu56qwUdJBkb2ZRGUyEDPrpruX8ZpWvKYQM+Ok/O0zedt9VOamr+svPcfrYfye3oURdTPecg20h+q5/tKJz8HJf5YqaHKQcOthdj6WTDc+TwRw5TCSMSpk+2afvIdIK2lCUJbPZDgcXL3Hj1k0uXr7IaFrStC3b1ZZ79x+yXa1wrqFVJdPxHtefnbN/+RKXrlzl1vWbfPSFp7l0aY4qyhzxl4R0CMTQstoqFstADCN2d/e4fuMik/GENija0LJYrFksa6wpsVWJNpLojRl0pIURwWiN1QqlImipeM7MVbnwMEaRQZEgQQre4tHBp7EgdMg6PY9yMuL69SvcunWDstonqsjFg12uXr3E1asXmU7GvP3mHX7tf/kdXvzSi5w+XHDr1tP8pb/yv+ajH3ua/b2ZJGpzoigFZyOZPURJdadvca7lYD7nF37+F/jZn/lZXnv7dU6Pz4jeSBXz4oTDd9/htTfv8Npbd2g3SyoLB9MJqvX4xrFcnvEbv/OH/PrvNqxWbWLZEJkFfMDHgI8qQYMk0JNZMxQSrNSxZbU44Z22ZrVZYrYeG30qgpckb/BS41xoSaTH4ImhpiAy1yIvU7eeyUSzP9tld3eXp6/M8OuWLx06pk89QzUayXPrquslABtAgDIpyKi17qWzEm14wnp09yHB6pACkykoFQVoJHPYi2zFsLLPDJiUvLBL5FVGyDZCF0QmXWXus9gFzumSJzGIdJ0qE/uL0hTaSFBO9UEZbcsUGsxjM60XGcAYIqooO3kCpRXWWAgB54wEyKzMT5MqPKXir0+MSYAvpnulq54MREJoCd6RK6ddG2m9w/uA3ZkQY4XSPgXsJfgVfJTiHiUSDh0gIEqAM3g6WSjXJMdCi7SEACz6aljvA061Av6wlm2UYKrZrjALA/ckQKaRauxRVVGNCsbjkum0ZGcyYVzNmc3G7OxOhE1La3wQVpS2aROIKbDdbmjqmrau2Wwa2rZNweVI6yJt41mvT1kuTnknV8EasEYzKgvGkwmzHUkezhOIaXfvAqPJhEsXd7h1sxK5ASKbdsO63rBdt5ydLjldLDk9PuH06Iizk1OOT1acrFe0vqUsNKFpaVGgArYQEIhIM4ishVYCcDLWEF0C3CWZPp3kvnwGyKT13UcZryomYEZ+ZilInAPZNgNaoyNEMCpVSYfYYQeVUuhgcghV9p38XiTJL6alLUsMaJNya1mSUQBPxqQ9SINSVgZMDkCnxIjMQ0lKeBeJ0XV7YEzzyRiFNmlD9HL/3gfatk2SHEXadgV4GWLEB1nYrDapMjrJVFjpA+ccLgRiTOBcbTBG9dXz5P7WHUuPcz4xOokdEnzsZEVCqmhViWnFd0Cuvqo2hj7BAYkhKLOwWUtZZqCMMInY/AwzuMikBFtiBVAolIXgAjExeiWslEiWaUOGcKio8FHWPGOzzCYSTDcaH9uuYlsrhbIC5GrbNDaTLSTLVoq65+SWUnhlJCkbJHkZfWYVo+sDAf5IwsAlNqkcbI9pPWhb1407o5RIGCX7SqFwTSt3FMEUCVyUmB6E0ESSBlH1icwO6I0cP4PKgu/BygLiTMF/JX2nIgksFVFaEjzGJNYhJcmyiATk28YTnUwqmXcCSuuB8RFjQSlDYTXWKrbbkGSUpNrY+4amXie5OgcxUBxb7h6eMp1OKKsp1UgAGrNJRVUWjKsJ2pR41+C9yCWaJLcUyAkGUtJKARofEyNMTpJrSYZ5Ip6YZPsQaVL9A1z53N1T98Ijv3/rqItgSmJak1KijUfAN5BzSTkNNcwHJnalb3J5ZNadeC5RO7z+nKBT6e+OyWkY9Bu83/lD3aX1gKn3umU5rerO1586pvvS3Sd7+6Q/ev7aMAjZYx0GAJ7Uf6HrjgRGcBX68BrlZ/99xicvMJ/tMZlNsaWsy651LFdrmdfB4zGUxZjZhYrxVCTQdnfmXDzYYzqt+vE4ZLSKniYGmiYSo4D9dnYmFLbAR/Gr6qalqR1KiaSuSLDk28y2uup8Lzq/sO+fnJR7tD/y6qJiTt6m/yS/xxaW2c6U3d05xopjP5lUzKZTZrMxRVlwdrrg1dfe5sHd+2w3Dbu7ezz7/HNcurzHeFT2TCn0fnHHpZbOF6LsJ+Oq4rlnX+Cp209zfHZMva2JQeO8xzVb1osFx6cLTk7P8K7BapgUJZsQCT7QtDWvv/Uur73laVtPiAqUl37J+1M3JvO8ANIaLftNoK23LLyncTXKR3RieYvoc2PSqJwgDxAdGqiU2BU+BIpCMS5HjEYVe9OS0AbKqNm9sIcxtntuavg0Yj9nSHMgEolTOl9d0T3SLqnfzaPhPMnvdOCCQfxiAGxybcPx0REnx0eMxxOstVzYv0BRlAxn7s7ODqOyPDcfc8xCADcpAZ2Ay5k5Nd9HHo5pmnUuZoe6Sved155gIqpSHRNITpyoFE/Idlhhp12/9P+NHOxfSARNcjL/yU+K7xcDHs+9eJ+3wtu8Hd7m1fgaS7fEaZEvzv2UE/X93FEUiwLT9IwyZVFQpICUSKt2l0EEJicTZmcz5g930I1GO4NCEaLungmuRbdb1CbFZRL7bAYn20JTFpayMBRWpAbLosCMevkjAY4L62EIqUjBOQExOYdzIt2HEhC6MDu2uE3NKhWP59iQNTrZdiVlVVKVVlhkq4qyqijLEdOp7Wz74B1NcPjWU9ctdd2wrWvqzYZ6uxUwU93QhJZLhxcptGY5W9HaVs6pdbKX6MA14kOrnugy2SPni3/6cZ/t8378dxGVczE72Xt0NzcU5wGuPciJweiXM5hoGK9GrOcr2SczuCmSQD+x2597Nq1uYU4Ulv1KmP9RyVfNxxJ/IBcAxG4/1AMfKY/LPC/6Ss3cB3Sy3tm36Z+xToUawtIVEzMViA3Z2RT5C/kaYwIjuVx0RVrD876R2c3VueeRrzkXk8hVnn92eUGwHWMb/VxAdUCaoOmYtGLHjhj7fTyqZBcHVNRcev0y928/oJnU3ck6qb+8biiSNF7s197c50qkYHXQ3Vg4B9jpxo/8ry/AjB2AS8W8KqXikQSQzdcvIMRBf4ZB/yjEN8njV6mObSpC8heEJTADxDo7+TyJUp4lHahP4q30PkTeK1R/rr7vSWtj7hc5WoeZQ6OTnHP2YUK2MXLhXfZRjfSTIaKcsG7nuHhwQeQvUSznSx58+JBPfPVj7GznlKUAN40pOnClNTqBM5H4ToqtZZ+o9R5T9HH7bC+Gwd95rOZ+Dt3O1ffjk/ak/bHacgpf/gT8538P/uAnE0PRt/bxnrQn7ds151IR+2AovR8w0PtNsr7flpO6AIvFgjfeeIPPfe5zHBwcMB6Pef7555nNZue+c/36dQG/P9KsFVbR73obp59v0ZRS73lNAD/zMz/T/R5j5Od//ue7v7ds+TJf5vf4Pb7AF/gsn+WwPWRbbL/tZe0+2GW0ev/Av0tvXOLSm5e48Y0blJvy+y639v1s2mue/dfPooLi4c2H1OOaaL5JUOsHsGmv2bu39wSk9EPSdNB84l99gq/8ua+wPPjO2LtMa9BPGAj/5JqClz/1MquDFX/9f/zrHGzeW5Y2xshqtWK7fe+1u65rkX9+D7Duo8d5FOz6x2kfAKSUwCQMHdghtW/v7AyiZYiDk52f7BCHPuCSPiP/7RNT2ZkVYEp3Bbn8JMmn9LTV0AcQdCefkr/VhWnonWk6B7mXFFPd9eaAbs/C1DMddQGGc3GXHlikc9AhAVyUygGTxHBCDlzmwLpJFM05o5KZI1LSLkSI+pyIXlQBnYJ4ylom4zEXLx5w7cZtbt6+yXQ2BiLbbc39u8ecHJ2yWW5oo2F3d5cPvfAxbj/9HNdv3ODq1T329+fsTCYURSmSClquceFb7j9c0i49y9Wa+6fHHN6/x9HhMc12iy32ee7jP4lKyfpoFG/du8fv/avPM612+Jl/53/F9edvUZQjkfUxFlsI40VhbQoECriBRCdsjZFkSmbPgQTOyjJfkUxH7IPC1Vtc7fBKsbe/w958l8PD+xwfn1LZisuXLrJ/aY937r3Db/727/KlL3yF5cMlVy5f4Rf+5i/wqZ/4JFdvXsTY0AV6Ul0wEu2QAMJqtWG5WPHw9CFvvv4q999+h2k54uKVa7zwwnN87JkPUXykRGkr4yg6go8smoaHx0e88+67fP6Pvshvf/ZfcrL4GttmReu3EAwKi4kBExtiVJg+koGxhVBHxyCAkhSYtkYz0ZrdQrFrNlQ+ErQlXijxWvrRqAJlNLULRGMoxwVtCLTrDWV0zGdjbl+4wIXRmJcfvsNP/dgzXB4bxlXB7l7B6njNu//0RSKWi/v7GG0pjKY0JaoIKFuIFJRvUN4J+IE8ZgNBKQKankY7EJCkOySGsFz5q3LFnU8AJoWKukvYmi6gKM8nsyJI4ZrCRJXklAZznNhJVmkkAR6CA99SWs2oKgnOsdk0bF2QvvWpGk5rqQuIMt6yqoUqLBiECjt4TAzg5Vm33hNUBFNIEXlwKDxOCUBDR01EpO9E0i4F2nS3DKJVYmSJJABfhbKjBFgKUEqivCwszgsz0bapuyrm0AE7FT6xEBibgqVKJIdsoUG3lBUCHMy87YDz0qe5xlCn/oce3OFjEIYeY6nKEdaUrNcbNs2KTWNRixxQF/k2jaYoDFVpmUwmTCcTJtMZs9mIyWTMZDySjY9doo8025b1qqb1jogk8NqmpW4a1k0jVcy1sC457/AusN02LNcb7j04hCjrkbWWcTllNB4xnY2Y70yZ7+0w391lZz5jZzLh0s6cGxevCrNKFMDUycmKzWbDZr3m6OiItnW8e+8+D49P2awWAhyLkcZrggrYFJhEabSxwryGSA6aJE2CIpfwY7ShjY2MERQoTUShrcbSMwWqlD5ofJCxZg34DNTI0ooJkGOStBo5AA/KRxqfpChk5yWzj2gNttSoDLByAVNYdCFJ4BBDt/90TE1eWIk0kkhxPg52VlKVfmLLsUamtg+4xCAUUvA4J4F1kp9wXoLLRAEo5gQCRvbzwkr/ta2TSva0Zlgre2dIrIJyfrrkTuu8MCINZB1kf+9lMEwCzfoY0j0butEfe1sgS5xk28EWCUAcM4Apy+OlvrU6sRwFAiGRCMrc1ZCYbyAiYE8VdCcNkolNYkp2ZkBEjDIGMruaGqwhWqnuWVprUyBG2M9yFbBOEjnWagGyRIUOGrSWud24DtAVUSIxGIAgqZ78elkVwkyFAEhVYrv0qYq7jSKZqbRIN8qzTjJlaY1HgS5kLsgz7aWAlRFAlDW6k3OIStEGDyqBSJHrj2msRi/AT50Ae8bqbi5E0toe+76POf+hRKLIJcBdTpRFosiUanndqIgygdKKLCNrhymsMFSFiK+FOUHkDgVUudmecXS8SEA6gy0MVVFQVRWT8YSqqii0wdUOZ2HrAnUbKEeK6bhCa4trUtI1yrqbGcAkc5MzMJEwvEclkkM/uG2YTu8eBOd8gf4DA1+D7v3+zzwv5bX+KIMDnPtkznr1x1aK/viR8+dVPd9Tzsvl5GUPdhgmgQdgqUdOPmRP6pJ96RznL7n3UToQw2Oxp3wfqrvknFAdgjlyXmz4GjkZmF6I6XAag1ruUXz5J5m8+0lmmxeYjy5R3hSQfus8q+WG7brGNS0exagasX/xErt7+8zmO7KnjyuRK9FGWP+SvHYdAqtNQ6iFBW+13bBerdisNyLjaMbsX7pO7uGoFWerJXfeeJfSlNx+5jY7+7uyx2otDDeJHTODBbKfln0tkR9K00SpDpelVJauEZu/TxB6ke9EMRqXjKoR6/WKzXaL1ZbpZMJ4MmKxWvDGK29z7537NJuW2XTK88+9wLXrl5ntTFD6PE9Y74fKXtI2jqZp2NQbTk6OWJ0uKa1hMt1hf/8Cl/Yuoq3p18S0tjY+sNlsWCwXvHP3Lm++/gbbw0O8bwmhJRd2qBgx+LQe5MsQfzODHYLvZ4RWUGhFpWGkWmxE9qKRJaqyS1ajteyFSqEL2R+8a7ExUJUF8/GIsS04Wi+4eXWPSaEpjGY0MjTbhq++fRHaLdOdEqUMRqn0LJGNUyEsJh3LU7/GZVsjBRX66EM3l/s/enhrtuHTPM1xgHPHSL46/WpycnImdhh0jC4PHx5xrtAoJc9HVcF8Z6djpGxbj0t9lPdnSVj3E/LiwUWMEcA+OqLRTMYj8YJjZjGRz/oQWa3WjKpCpJq7wygyCr2LaeSVoVsX5BgqsW4KLYbcz9PhKZ7maZSG2my5s77DUXHEy4tXOBw95CyecRbPkP0lxWIiuL0Wh1SOxwjOtBizFeCuz/6HnD3EyPLCkkMeYFtDuSwZn024cG8P2xZSTenSIhTFli1sgXOB1tW4kNgrt6rbz7MtJwyZhqIsKIsy/Ws7cJFOAJoYAk3jErNSgg0khhEXkn3qMpNtSHacxE82220HWtBKiw9sC2xpqcqCalRSjQS4VJUFVVExmU/IzMI+eJrGsd3WKQC4JISnWb695qxZ8nB2yGq84PTSKevJhsa2ae3oFm7ZA0J/DToXq5HmoUqggq4Arp8nmQko29fdM/M+xa7owDZDxh6dWLpy4E6KaQbxvPSUMxdOBlflQrp0aeKzdOMh/5b3rv765Vj9Pi/zOnZrtEoxshBjZwMNwSd9HBB6WdN0jEgHmiFdpxRD9sCQDEnKTDtAVyiSmdJC8iXy/Xf7fLc/92t+vv5uP06rSweATkxLGeQlYNYeRNkDKuVgogyeWKgSk5I8P9U/VFS3braFMPISI5udDa50qb+GhkTPEJRBbd350/UoEqAmGvEdzGBPynFKJYA2Ae30NkXwIbHWDkBmed3NPwgzcT5ux5wUB304uCals72Wxk/MoLp0PYlBNUv1iH89MOryApn6V3yR9HzSQ430PiNpbGc2sLx3kv3pdI6YHYp0/yEFUTq7MPmk2daUeSevWdWD1bVOjPs+dEx8Z3unfPmjL/Kxr36C0aJEqW0XHzZG1sy2bTFGCuEIMcWuwHlo2paqClRV2bFj+xAHktdybu9dt36nV3GdPN97GbVP2pP2TVpQ8PZN+Pv/IfzzvywMSov5t/3ak/akvd/25S9/gk9/+g+YTDbf70t5rMUYOTwU8MVbb7312PtVVb0nWGpvb4+rV6++7/NorfnIRz5yTrKuLEsuXrz4nsxPTdNweHjIfD5nPB53x/h2SedhU0qdu/YpU34q/S8QeBgf8oX1F3hz700+e/hZXr/8Ou+k/wE4+uT1ydWT931egLvP3YUIo9WI+eGci29d5OkvPc1oNWL/nX2MMwLq/lMgJaWD5pO/8Uk++jsfpRk1vPPCOxxfPeatj73F6eVT6kmdmHC/31f6zVsG2/8gX+Of9radbgkqoKPm+Oox9fQ7Y8d50r5PTcO7z7zLP/4b/5i//j/9deZn8y4OnVuM8ZsClAA2mw1FUTAa9cDSXDw+ZDSXgrXzcqlt235gAO4HkHsjAYwGDu25yDi9k5zaOYai/JHkNHfvd5mC2AXKs/OVg3ldHCDqrkIxV4KdV3vnnPMcB+fJycbeoU+fT8EClZzszp/sbql3js/9Tpagypv1eyQfuqCDJPhz6Cg78u9VqahzkCPmcKowcqhoMBiiTgnLECmKgp3ZlCs3r3Hz9k2u3biKLUaSZD9bcHx4zNnpihgMF3b3+dCP/AgvfOg5nn3+KS5fOWBnd0JVFVgjMgp68PRyLtmYgp3ZnDp6CjthtHOBS5evi7yAhsIK84NREW0U27Dlt3/3t/n9z/1rnAfNhD/7Ez/L/GAsyQojCXth1RkkjYdTRT0yrAb/SvA1kgEwPoCJUGhJcp6slrzxxiHtRnPt4AoXL+6ycRt+93d+h89/7o+4+/YhVy9f5a/8zb/Mpz/9IxwczDE2V00lJieVq7M8m+2G+/ce8rWvvcrXv/4SZ6dnnGyWHN2/x+Z0g1GByWzGszdu8pOf/kme++gLXLp2ielkjA+RddOwqj263OGp21OeuXWbX/jZP8vv/NZv8ev/8y/zzsvf4CI1GjhdwkU9RZFo0ZXIcs3mE4qqJKiC2gVCURKtJDvnpqSoRkzKkomCSge0FnBf1ApdFChdElRFS8HGw+HpgqPlCbYoqfb20TszLl/ZI57tM70wpW1OUY1i88YJNy/OmRXw9ukpV566JiATa5mPp4wmlkk1ZlxaiA6lIaDxUYMpRBoQjUu5Bt8mGS3fEGIQQE/wqODQUcAwSisa59jUWwn0+0BLJKAwQaFCrvQSwFML6BDRyDwzRiRxTGahUYAKxCgVFyLBUhBjchAS28u0iJQq4ImoELFRAmwk5reQgFNGa4qiRFmN84GyCEwmBkWkrgObOlK3GmUKYURpV/h6SRugdgpXt+BbNI6oI22E1ifmrAghAa2ia1CxpfGqk+uSanUJbOEjbazJYLXpaMKkmiTmmV6qznnPtm5w3hGQIKUbBFrH1YhSC4OPTiuOC/KjFfjgE4NJTEw0IgWmnaynwXkooRxV1G1L4xqibztJQqUULlgJ7m5k7TYnp2hEPsPaAmMksTAej5hMKqaTCbvzGbPJhJ2dMaORSMdFJ4w4q8bRtg2uSZILtaNpHK6taZ0T6TjnaJ2nbWG5XnG6XOAfBIjS18YaiqqSc0xn7O3N2d2bs7MzYzqbsTObsntpF43n9rWrYCwb17JZL9mszlicnXFyuuTodMHpakm7WUlCo2lxwVMWRZKeyKE+Wc+VFnCX1gqjrXSkPE5hZUlBzpyEyHTwIW/AgySBNgYfvSRo0VRFgVOt7JFaWFmiCtD0VaP5OF1STytJiCidEspZGyglteiBJSFEcXicJ6Zr1NpIlaYRsIkEZwMxpCSIElbEpmnxPnRgXGM0TeM6dqCYknnd/hM8mCypQHfcfG0mVTkZk4FA4vR6J/0SlaJ1AhQLISTGAYXzXuYZKoGMElDK5743UsGbmC2UghhEJk2yG7IJ5USRJLUjuJjk6UKX7HTRpYB7YmTTGmUMysnr3mU2JkWklyvo8x0ycrLcZTYEYwaCKd1V0Wf7xlrbJVa1USIHxtB2EYYonZIPXUprkBjRShNNlsiRpDbRJeBVlQBgEa2FvYOQZXeNAJVjwAUHCqySddTHIBViZdElCjubSiXAVxqnHcggd3l3z2kfiTKuTBozuZxZAvvp+ViFtkYmFr3NhiIlhTW+aSAGlLEiR5gkErLEndIKEqOdsYboA613KC3yML4U6TUB6SZYTUiyQAlwK48lJOCDpmkV67gFlih9gtaxAzEarSkXluP1mvl8h+l0TGHLlIiwwt5gBNgt0pAGjcI3kegg+AzIk99R33kVw/e2xX6wZ6OX/k+x9fJ7DDKC/dfP//KIs6WyDZ0TVQwml+oTS+lrXXJSnbNG++BdZ4DSyYGowXU/dm1D/+axa+a83Fvv/HSyUjHdc3eKZCfH4YUMuqW704Frdj5O1/tDKioyMDZ/xiwuUH35p5m+8rPMtVR5qpHYEJu6YbveUtcNRM2oGnNw9QoHB/tc2N9lMh1TjUqRaEwyT0N7vgOlKkNVVrgY0MZiyxGT2Y7MQ5VY5FTyNZWsoW++/SZ33r6bWMUKbl2/TTUuzidIVX+qR4Ot3yr21Y+1kHwyWa0zSHfbtpyerPGtYmc8YzIZ0YaWt99+i3feusvibM1sNuOFTzzPjetXGU9K+gJcfe5MkYBrHavVmsPDYw4fHlFva7auYbNc4uoWhch5XZjvcOPGDS5c3Ge6M6UoZF1vfaB1AWVKdnf32dvd5bmnbvH2m2/y6jdeYnl0xDgBpOsGJkqYCnPhjjaasiqEoVcZWS9ScYnVhkpptLUUxlAoKRsR5pbUUVqjlCUqQ8DQBljXNZtmK4nmaoyqRI431iOKcUnwW5yH5emGnckIt53w5ptzPnmxwRotwChbYktNYQqsUZL+VRmAqhGEr/hnPhnyAlTwEIVVV/Ze+cmXq5S83jqX1sZA2iLQmYmEPtEtrJZpTMTMrKHJhVUZPNSBI9IU325qmRuDdSUoAXCo7J8k+0UlX+X06LiPH6Tk+3Q64tKlfWbTCfP5BWHaS/ZHWa3ZrhdsVks2dU3TBsajCSp6sZ8nI3yU2EJVFuneVJKw8mRmPmG+FQBNXguJMPIVz1XP8izP8qn5TxKJLOKCFSuM0byiX2YRlmz8lpfDSzhEincRVnjEriqsFblp1a+gQ7AVJdSjmu3BlqOnHkJUjNdjcMK2NDmdsPdwD10a9NoQQ0tT1skDlMu10WJbmQ+qTevZOhV1pAIApZQUQRWGsigoy5JRKVJy1pbC+JPGQ5vYIUNixxSZ6Py3FzbjEDqmEucDrdsQt9mmSjErYyhs0bEtjUYVVVVSlCVVVTIZT8TXHI1QWmTqnRO/pam3bN9qONELzvSCw/0HnE1PWVZrat0QrSDaB3gHwfPF2BfLKU1XEJdWts7OT+Mud+IQCCSPP0nOoTr7VSfAh0+s5hKTEyD0/P4uD68cdxLE3WToJl56pSsAzDHEnpGmB29ILCev3TmMKIzMJICVTmAKGbM9k2neV1SSynMJjMQ54FG265TOwPXB+en3jyw5GX08N897Vs+Yelfs3cymGkngmbwnk4sgdAeyCdl/12mZkgN3poIUI8j6E2K265Mtn/ordv5CYtc2Gh2zPy+2ZkznXeyf4Y2HwvP2h9/GW9/5FKR7y+tctp97k6UvzMxAv+yT5pafp/SfOmdvqPwAUt8hpnS3/hFC2k50Ol22w1L/BoR5PR07AwvzWPLJp9PGdKC0dDIgs4/prvhKJ2nSHMPO/SBLeu8jZObXfKaub3R//3nOd2MjHTim9aRjDtN5pAwMsmTYKEAZkaYmiF1kjRSyZQMu5j5OE+ps74yXXvgGn/jKx9M+JL5t60TGuqlrObZKc1cpjFZsXUO1rVkuJbmglU7AbZ3Y6KRwFCB4h9EKF+lk88RPjYn5+0l70r5Ni8AbT8F/97fhv/+P4J3rfGsr/El70v547fDwIl/+8sf59Kc///2+lA/cvpkMznq95p133vlAx/r858/ff1mW7O/v89RTT3H58mWee+45dnZ2utia1po7d+6w2WxYLpc0TdMBo6bTKRcuXACE1Wk8Hn8gAJNGc0ld4hf2f4EYI3/70t8G4C53ucc9IpFf4Ve4xz22bPlVfpWGhkjkPvfFl/h2TcF2tmU723L/qfu8+DMvooJi7/4exhlhW3rrEje/epOikUKIqASs3cProWgKqs33gLXqT7jZVnyi5//weSKRn/jln+Ds4Izl/pLXP/k6D24/4OzSGfWkxpU/WHHB21+5zSs//sp3LB/2pH3v2p0P36GtWlzp+Nxf/dw3lZR80n4ImoK3nnqLX/rFX+Jv/MO/gQnngbKZ7OJbtbOzM9brdfd3CIEiFV+XZUkIgeXycaatfOwPwlL4geXecpCjrwwiBQSGAffOIwNywHDATDD4XAcqIjMn0SXUUL1TSHLA8wabWQSyNNoQkPTNgEqPbrS5cqg3oDVKhXPHCwM2ny6JkkFHyqTPhC441FEDx+z49h3Xy7jl188nGZRCEqwh0yCLdns0logRR9ZailHJzmzO9RtXufXMLQ6uXSF6xWZV8/D+Ax48PGa9bJnt7PLRT3yYj378Q3z4hee4fLDPfGdKVVmsho5DvOsQCTJ4oI2ROgZcG/DB4SvQlWbPFFxQI5QSpgiQa0SB95HDh0cc3dtycf8W+9Nd5tMxExXYG49IH3vs55Ghda6vZVx0oQsJTqQgr1GG0ugE7BLQiqbg6rWrxFijVOTVl9/h9//g93n5xa+zO9rlr/7iL/KZn/00+1dnFFqC4cMRkJPxp4sFb775Bl/96td45eXXeevNdzk9OaVptmxcQ/ANyivAcbQ64/DBEa+//S6XL+1z9eoB169dYrE45f7xCYcPlyw2Hh0jl8bw1NM3eeGF5/np/8t/wYM7X2P+4EUOX3ubf/ybX+XKaEqpolTLJokhjO6qbWNRsgmWU2dYtZqTGPBqizUtKga00YxnY+q6wZqSojKE4JjMRgQdWG62OCxu57JEOUPJg43itVcfsFsZ6qpkauaMzZhmrTm6s2ZdFCzPTqmiYqcS6bNNXbNst6BWif8qzVUlyQ9tLDoKXb4A8wKlUZSFpkyghG0biNFTGcO4LCiMJCNW25rlWrOuHY2L3Lh9i52dMb6t2WxbnAcfas5OjlieLVmuHS7kwF2A4AhKkZNESilJYCABvRw/cxn4AxQBTAwEJarKaEsMct06pgBoYXBK5AHUVhPxtG1ks0mydECMChvAFpFypBjNpxiziynnGDtCUbNanXF8dMrqbINqakrTyrWh8MoJsCSWKTCbgC4xyjz0CWjkI3XdV48EL7OnaRuMtZRFAT5SKIMuSihL0InNJK2n2miCd7hWque0kk0kIgCPlLugrgX0kzeuzFwTggSshU0ETKEpvLAatCnQD+BcOwhIC8ggT2rZIBVqqzCrXsrKKENpS0ajktlswnxnxu5sh+lsSjWp2JntYa1JzCeRelvjm5q6adk0DZumpm48TRNwrqVpG1rvO2CT857VZsNiuebd8ACjdMfyVpUlO7MJe3tz9vd3mc8mzHd3GE/HzMY7HOxeQN/UCQRVs6mXbNdrThcrTs+WnC1kA18v1qw2NVtXk2AoEsxMIEIVSaASAeVopSltSavatL+l4K9W6I4NiSTzFvKOJUFHJSjlGHsDIMYsfUiXEM/gXk/PiqW1JNO0FlBSBpAQSVIZAjTRCRgRvCMzOIUU7M7PWgKnAiLy4XxCLych8j11AN2U6fAxV2zqXnIzjQfvowBH8p6fwE8uVb8rYse+5lyLUsKQFBOzG6aXb3DOgRLmBmtNB+wY2hsCpBEASQhJfhIJiuc9PCQgiwsRFUOaVxkgSmI0EtBTSEAVAQMJ8FAB1hYp+SDseQYzSKDI9cqvKlX6eygMXWI9y7KEQOMFpBlI7FCRtCIGlLaJ8SKATdXYkbTuJLBTiNjCEjVYJQHztpWUrrUJiJryUN5H2hzA9pKELAqTmPHkvFop2cc6ZjctsnoKkcMEnHdJ91h1AfYMFMlyfXjJ6GR2Ax8iEU8wmsJYTFREF3BBZFysNTgCbbOVZ5/kXRIEjOAclgQUNBaUFgk+nRPTEHNZuBLwekjV4Coh2UP0GCtSgpl1QGuIOkG9YxBga0oY6W7t7VmQQgTvPG2ULIjI0EQOTxYURUFhDVUlhn9RSOJzMh4xG48ZjcUZMMoQ24Bva0qrGFWGUVlQlQZjf1gCw9nyy75A7F7NLXb/4VwybCjLMTzceVuyT8rK+32SipwcjIlBIoHZemCpOnfc8+dQQ8OxT0alc3R3kxbAPlk1AB6du0PV3VPKHvY+i+o/p7rj554apO9if//53tJBu/UApZP0srDVmdU+5Vd+mp1X/hy75ibjizOxMRpPvV6zXm9pG09ZVVy8dI1Llw+4eHBBmMDKQljZHr+h/s6i+BRuALaMRooaRtowVrIWZPnInPAMIbLebNgsHZPxnHExoiotBZGqsO/pP5wfSQxAWrn4Q3U9lpO1OTHbJ1FBdauFZrYzJSKsI8dHZ9y5c4ejBw8ZFRUfeeF5bj11k/Gs7OU0zz8wQozUTcPp6QmHh4ccHZ1werqk3mxF7jZ6kVNNlSGbdst6veHkbMl0OmY2m7Azm9DUW5ZbkcGtW+EcmVrY3Zuzf7DPjc98hvXikGr1gPXJGV9745CpLbBpT43Z/86LeJLZdlGz9YrGK7ZEQuPRWnxQrRW2tHjnExucJkZPUVqiijSuJaAJ1TTt1YZVqzg5XlNZjbeGUo2w2uJbxeasoTGG11474JOfPKQshZWi9Z5m6wDZu1X3NBVRJan0tM7KY5KCI6slERsBR0RFz55dil+oNB7DSVtRmgXOS7J1Z3eXsiqJk8vMdw84Tn7d4YP71FsB/4hMXkxScsm2GSw0wger0pzqE8o59W2iEvAAQb6dQBQdj3J6BuJvZqnZQNM0nJwsUUrYEA/2D7h54xaz+YxqPuFgfyp7uy4R6SpP025ZnC45PV2kIhDH2YnY9ajIdGcCUTGbzbCF6aSzchyDLCfr2jRsdZe4n4QJUz2l1AXXwzUUCq89ja6FxI/IG7xJS9uto6/71zmMhyigCQ134jtSlBJdihOEgW0Y8aUEPM/2jznjhPv+HqUZMT6c0rRblvsLAqGzecttyfhsTATKbcHug13GywmmMWivcUHGTd0q9LZfU7QSFpiitAm0VFKVlbAblgXGjLpZ630gOAHRu3M/aQ3zLrHJJvBSFLnmdutZbzYoSGAAjTHCGj0alYzHI0ZlSVkVlFWJsYZyMmM23SFGuJKl5Lct2+WWjas5Lk9Y6SUP50cs7YqzyZJWNyS1cLHB09qjUWCyv6s6efFsg+X9TZFACIMtrGOwyZ/LwBpSHCb9PlqOGC1H6Xjybkx+WJZuH8a08oKbAUq5YAKQuAaDmOG52FvPU9MdLJ7bybu9MC/iyQTvQB75Q48GRYdxyP5CUxGHz1+O5/b1DogT03Wn/aKTYEQKnsRWzTCx3Hc9KIiY+zYmYFnym1QPzMxyZUPW9gzCyzcm15q+kxag4fF85Tm69ZCTa6csD1b9Pac9ICa/0yQADyTmo/Q8YvecxNbwIQp4K4h/0/spGcBFJ0uX+1iAPboj/Awh+5yJjSj2TFIhFalIwUhMgEPd2y5KJUZilToojbsYz7FQSbFBevDZ/CHxgyW/No+5SAL1I36b1hqDEnbcBIxSqRjFe09HcTvoytRxkPenLs7LubnQBUDToOwKNUhrsZKPQGa36gs400k4Pjjijaff4MadG1Su6sam923a32PHepvH8KZuUKutsDobk+QzU7zDSLFjUViMtYnlClzr0EoK4JQYY5iOjvFJe9LeowUFb92C/+d/DP+v/xPcucF5C/1Je9K+203xB3/wk3zyk19mPP720mIfpFlaruq7nS/YUHIYLnFV30UPgTTaoq78OC985BO8+eabbDYb7ty5cy4n+ifdmqbh7t273L17F6UUo9GID33oQ/z0T/80Fy9e5OLFi1y+fFliUt6nGJy01WrFvXv3ANnz1us1m80GrTVXrlwB4MqVK48xYpgBw2JuHTgeuJ7+B/Dj/DggftSCBRLR8/wWv8WaPvn9m/wm3+AbgEjK/SF/SCB0oCY5ifwTTeT42jEAh7cO+Wr8KsW2wLaWay9fI5jAu8+9SxyAbWfHM/bf2Qdgejrl9lduc+HdC1TrCuPNDyUbU/ZLdw932T3c5cY3buAKh7eehzcestpb8faH32ZxsODo2hHNpCHo8H2Ribtw9wJ79/d+KPv5T1OrpzVf/+mv8/qPvM47H/pgAMon7QewKXj5hZf5jT//G3z69z/NbCVSpJkB6f20R6Xc6rqmrutuD3iv/a9tW7bbbcfg937a+wYpqUHAOxNCw/mAcE7gdG+cSyDELlDaBf0GNzG8sWFiYEiVm39/THZt8PqjHTPcNIffOf/+4w7hEKiUPtn1QYi+TzKo1CNdPCUmeatBda/qnencmTkZLz637hzwTG+tVKqUUppIgbJjpjsXuHL1Grefuskzz96iGFu2zYqzxZLjByccHy6I0XLr1tN88hMf5yMfeZ6bt6+yszOiKgQEcT6wn4LASBKhQRKAISVtGy0sTuNxyShLKcTEN5Tur4tBxUjtYb67w1/5xV/kF/7yLzKfjblyYcLupHwskfRewfxH/4qDXzp2EKUwKZAq7wkILigDRrM3L9hDc7qC3/3dz/G7v/WHLB6u+KlPfZqf/0t/jhs3LlPYXLGmuwCHBCw8y/WSb7z8Gl/60ot84xsv8+D+IacnJzTNFtc2eA9NcCLjFRRaCyX9Jqw4XZ/w5rsjqq+PhRlEgXM1cbOkcQ0NGh0sxe9/kd3dER999hY//Wd/hGvP/hif/9oxr201Xzk+xJAqB4NIpWltUabAjqYUZUFQAVWNKKYT2sZhqillUdG6Fl0axqMxa7+UoGwsUVozCiWgcFaqE0MK9ITthmZ5QmVGuDBm+aBmZ2JQpuVk0fLglVc5OlrBWNO0rYB2tCJGj40KtCFqg4paKMhDJERHSBTarpVKXpHLIa0PiqglMB5CQIeAQZK2MUpYP0RwQeSCXKI4d96jlWFvb5cLFyaE9gqnxwtevnvCg+MN7WpNqFeSYFGmSzNKnjiN9SR5YI0BYzrGsJgS1KVJ/RMjyhogEGKDiRIwk6SCgqBRShL4Lsi/MUR0VASt2LqazZlnqYCgQTeMKsvB/pQr165z7fYt6vWW5fEp2/WWZd2wWS1pa5FMIKjUZ55o0lphK0mcGE0IiuA9rm1oG0/berx3AhTQEL2nRYLCPqT+10aMUTJIJlJaQ2VTtf0QFBKSNF+MNHXDer3pHJos6aRS4DUAzreURmEmFYRAYYRJJ3ZrikxXAbUkZqAYid53INAQVQqKRdpWs6kbTpdw//AIjaK0FUVZCEhzOmG+O+XC7ozd+Q7TyZj53h7aWJTSNK5mu62FZamtqduGbdPSbBvquhHGpbbF+yRv5UJiKWiolxuOT4549c2AtQWlMUynJbPZlPlsxnxvl929PXZ2dpiMC6bTGbuzORcvyu7mvcM7z3bdslivOFueslmtWC6WHJ+eslhvWK83xGYlLGNBgBRWa4yKtAMa/5iClcImE3qZhzAM0oYuU5bfy1WhJIBdz1qYWINCIGIS4DN20dQwSB7lgPNgWHTyB0YbQhD5n1zF6lyiz3eeOKDu9+nhmyRBplTEGAFzFEWB1hbvPTqItKMxugteqxSkznuicwkoo9NntYA7MhDOWJv2TkX0+XugEguYMEkZAWq5gFJZnksSO7kCOksxBC0SeESEhSFJ7XkEGNhV30L6rrCBSNJGAHxaR5zLgCPVJems0n1wXgGYzrYJKQgSc5l8lJ/gI0HHbi4qlYP28jnX5sr6XFEdUKpAd5KzOQGS2CliSgqk5ISAcVJlu1JYmyQEtUIpS3AB5wIueLwVWy2D53zwnZ0mUgVKmL2EqhLvW3k/hCQFJefPCRaiBNG993jnkz1HZxM574h5z9ZSxe51wESVWBGSDGWIkixCktlAV+WebUAxsNP4SMfKoKi0QnbShSbJzfgge1Nmoskge4WwVikTiT4x0kWp5CYlrzKTCcPETWK16PNzKo11R1176hqWq2ybylyoioJRWVCUhqoaCXODsRQoTKUIKrBYnKFMZDyZ8APdhhnMrg1+/xZxC5USbSk12SUCUSSWIFJCM3kT5wzLgU9BTPKOgw90ZnoaQ6j+HJ1Vobo1NxvVKirOx1oks9gXLQyOr4bXHx651T7D2iUJsy+RztsDqVR3HLrDqvTy0KfqrymiUdpSbK4ye+lnmb/yF7hQ3MRcULReJFW3qy2bjbAmzed7XL58iUuX9pnPZ5SVFVbURx5SD5qScZ3lRlKOMUkTQVEISw/Zx3nk8eTmlFDiv/D8Czz/3AuMyoLp2FIVpv/8uZxhfKwvzj2Lc65pTH5Y+txjY1GkgceVlEDUTcNbb7/F22++S71puXH9Bs8++xTzJOt0biB0LdC0DYdHx9y7d8jDhw9ZrzbU260wWyZ2OB89KiYGviTB1saWut1yupDkYb6+EBzRNbJGImuMuXOPamS5eGHOrZtXmV24ysnhlhMH9zdrdDcG07qkZe03thApKCJYgylKKQIxwrTk05pojaUNTdpXZV83UbxJr0vpT5DErmvxXmTxApZ25ShLDcqzrQPr4xM2mwbdVpyejZnONunW0hzQisTf1O0NMQYB7isIQXXjWQF1XjxVxngFQg0aT4wej2cboUIRU2a9jAVEi/ZiQ125fAUfWqwObNY1x8stq22Lbx24BqVEgnUIfJDkskqSzKq79m5pScPAKItO80BbCbfE6MUXT4ARuU8tBRYq+d9IwcG7d+/y4PAhZVUQY2Bvd5fxaExZTbh4sM9kUrJ74QIX9g9wztFutrStsIiuVyt+//d/j81rGwgwqkbdvghgC8vBxX1h7rqwj7GWGMTmzUASE3OsJnRSbzHGzq9UCj7Eh2QPTFJfP1r8SDcdggqccEKIgZfjyyxZ0oSGF9sXaaOA3U/jGR4H0aRzgaPm9Oo2sc+Ir6ESW0xdbdnOt93zuPvcPYp1gXaa3cM5ew/2GC/HlFvxeZWYBzivaVoH2y0KAS0ZY9BGpyrAglFVMhpVHftSpQUgJ5LEYteL/eaSRJz4Ds57QhT7MCYbJAMyW+dpmprFcgFaY5SA18vSUhUiFVeNRiIZV1gKqxmPJ4zjmD3garwits4i0LaOM7Og9huWxZLD8SHbpqX1LYfzQ2oaolZsylQYoSS2I0tvD2xVg6VKqwzMPb+WxtjHzGKm50NRjxvasYAJh4zgeaNVCSyhOv8k75l57gwmyOCzoM6B17r9K/k6WX5u+H4GH2WAq07PC1RXWCD/z/et8lm7sUyKZ8X0OaU0PrhuTVe6BxV3e8cA7Jrjh8QBo09MIKL8vfRriOK/Z3csBD8oKum7JcYEOMu9puhiVcqojuUmA3NyIWcPHIJgIm994i2xNYexl3zhke6aTe7bwXMClRifevvBp+KNjPmSxx5hEF0UHyN2Y6gHx0q8M59FZeBsilGQwEvZXiDFh7oRmezvvJXLvaaCzuwj07duDMXkt2oZd509ktmZ0jgX3yQSTQKnxmSzeCkiUcnu0gx96vRcQySXU2YbMc+fvrtjYn7V2TxNvnv/TNTgeat0vaRzExXRwBtPv8np/hkf+caHGa1GhNCz/nbTtDtnuq8E0G1b180HeR6aIq2BJknuaZXYMJU857ZtWSzOqNqGJ+1Je6xFBJz03/1tASg9YU560v4E2/HxBe7evcIzz7zxXT1uQLOJ486rbbFEFJs4Flu9+6BhlPaYW7ducf/+fe7cufNdvZbvpMUY2Ww2fPGLX+RrX/saOzs7ANy6dYsLFy6ws7PDU089hVKK+XzOaDTi4OCg+y78/9n7z2BNsvS+D/wdk5mvuf6W66rq6q6u7moz0z0GbkAKIAEQZBAM0IQIkbsixZDIXSn0QYrdL/thI/RBEVqFKHFjtQYhaiXtipIiKIGiGxDEEgShATAYS4xvU22qq8u761+Xmeec/fA8J/O9PT0YgxlMD1Sno7ur7n1N5sljnvP8/8//L+pO/+V/+V9ycHAAwPr6OkVRdN9RliWXL19mOBzy9NNPd7FZVm/6Rs1iWWe9+/uf488d+/1f5i93f66pucpVIpFf49c6JaZf4VeoqYlEbnKzt5Iz0AwbmmHDWx996z2/f2e0w865He0o+NLPfInx7phiUfD4q4/zxFefYOPOBit7Kz/QRJqstHT2DSGJPf35pwE42jyiLVv2T+5z9ykhpiWTeOcD71APaqKLTDYm37Pl/HDrkKONo2Oq4o/a+6+1Zcsnf+GT8pcf3GnwqC214AK/+RO/ydtPvs2f/cd/lu2HkkP6VklK36h9M3Lu4eHhMRWmb9ZM+hbpvlsntiUpsZQgWOLcyP9hOYtHwgg4Znqpc1I/xt+tgBTJ5BwFB2yuMskVIvJa770kV7tkkHx23gwlAdUn6PPnv9efc2JZNtUeDFhWU8hXLN7fWnXdgQfHAYi+ct50iZNOTUJzDjkpI5V9Hu98J1GdwXuDVPJb6/GscOLUE/zIT/4UL/7Qh7jwxGPMFg/50r/8Ireu3uLg4T7j0YhnPvgcL770IpcuXWB7c4VBYUU6/92bq15HFlOICEFpoWCjN4YiJ2Btb39g9LXHgAUTNXmjCaucXNbEeP/eHsDIJ/IOHHgXgyknS9ok4KnI4cvvHDkZoFmeJBBPUAulZCINlreuvcMv/6N/gq0tf+pP/iRPP/MUg2GFNSoRnpYCJyOEimvXr/G7X/gSX/zS17h37wFHRwfMZxOapia2gbZtVTEkQWxo64hJLdYVVKMK7wpCiNSLmpAEyJ1M5yzmc4gNCUOIBTZB4QKjasDJzRM8/+yTPPPCU7z21hv8zm9/jr39I4yxeOskEWydqOMMxwwHI7wvMM6D95LatwXOuqxVJlVdTUNQQX5nHN4VxCiy0CEGYpto2sS8XbAyNJw7c55iOMaZgkRLjPvs7Tzk1tvXiJOa1fU1fvhHPswTF07LNTkH0SmAQE9oIJFSq0Qf3z27DFTHEDAmCGFASU0mSdKtFW8inKGr4kuA8yIfRxTAHSxlBYOBpRiOMX7IvGnZ393laH8PUlACnZqKGakIzTWh3lic8UKuiUI4jAmMscinB4KqoQQM0TiKGPFGgLeYh16QkR2ysloKqpZjiUmJJAZIkURQ4NrjXUHhDc4GynLI+sYW69sjRoOKtg3cuXuf+/fucXRwQLtYENtcmSmgSxLMB3UjIkZZJ2T9kiT5om5oNHneNK0k+XW9TIk+qWUgGVXOwShQn5VBJHHlnOsUUNq2Zd7UvSx92xLayKKpWSwW1CFoolgSd0GrIoOCS10yv22FcGJlPW+aQIpJ1JGsJSa1AjSWqhxIoaLafTZti7FWSD3WUpYlw6pidWXE+toaW1ubrK2NGQ0HlEUlpBcLdRNo65r5bMF8MaduGppFQ900alUn4E5oWxZNzWS2oG0Cbd3K3meiWKBZR1lVVNWA4aBkZWXA5sY6GxsbbKyvsbJSsb42pixK2tgK4SSK4sxkMuNwOuXwcMLDhzvsPDxgb2/CwcEBzgeKCo7mYmVnjSU6Q9MGaJeStfQVrj04kBWUejJtiAGTHPUiElsloigBJ6QWXxgGoxJs6vbPlK24AGOcJnhF8SWlRMgEqijkFSGi0SVdjTWEthVrROckx6rEHusEJCxK2Zdk+bedVQHG0UYBrryVis+YIiEGUXgKUT1u9Z7VBssaQ7NYSNLVuy7Bb+jHoLEG42SF7D7CgMn7VzIdsdIgFnIxRrx3VKUjk3GyVVlMorbgdO82QNs0YAzO53S9wXuL832lcEhGXqe34L0nW8I5DIX1GOdzGr+v5jWJpq2BiPNGbe76/SuqJUaIQpo0BgondnaDakhZDjHG46wX27VBSVGVpGRp5jOOpvu0qSbFmhhkTzNqWdY0Lc47RoMhbd0ynze0senIOjEJkevr1CrVmtMgiXnnPSGIIluhNg0YWcTSEpExx17yeVYT7JEmaFxkMigVcU6IyxZDo4oGCVHyypfinOk+y1or6mApCiGSJO9JdOudSVGmmyJJnYXDUmIfECJWnlPG0LSJ0OSx1atVyR6UgbEOolEwJ2h8mAEWoXdEHZOCLtkewDISUyek0twicYItHKV3lIVlPBywurrCcDjgf/qlf8T7sQ3/5jBHcD2C1//k6/5+DFylJwsB5PxGOvbe5U8xHYDavSojVSYrXvQgXcrExqWxvFw48c1afr6ZyL8MiC7DgFbJRDl+XiY+HSNFpX5N78PedOye5E+2I9plUmoGvyC/3+LCkNGX/zRn7/0Cp1eeYX19jaadcuf2HY52D5nPFpSFZ/vkCU6dOc3W5jrDQYl3RhWTDP1/9Z5N/xgTAowH/X5LT0bK77P6h3wb3Wd1ZMqlA1N/J/3ZUL8zf+Gxoof3OE8AnXVQBjNlOqXuEzNgDUI2NUgxQ8Swu7/PlVevYILh0qUn2NrapChcf0Np6boQ8HHvYJ/bt+9w5+59JkdT6mZB24hKYlLybgZzUcVMEEtUIbfK3ti20pMxyVrcti3ia2mIyWKSwdlI4T2jwYiT2xtsndrk4c4O19+5yXwhSnWZhC6ER4cvCrxXsqixYPV+rDwxk5+HgpxZFSgrcOU9LaWoQDO0saXyhtXVNZwvlTAQiXHBYjblYG+f1ASqquSP/fFDPvDCQX8GTPLabv50jzeDybabA3l49KrGmRCRQ+4eLF4G7mWdd3pOkljdYGQfKeSsYWxBGyLz+Yx6Me8+1CSzNK+W1h96S6RMTJC1yuCS9GHSDV+u1mZjcfKIA9kD+vEq/3ajSj9bhrb+zjosjvX1DYrCUpWeU6fOMBiOOHl6i+FgwNWrV3nt1SscTY6Yz2bEpu2II/KP5k6MksetZXV1DWsdm1ubYoe8ttrdW0xq+wydRWzO0ZjuUvtCs0zw6JVBxPK9TmL5nUhca6+xoGbOnFfiy4QUuBFuMAlT5nFxjLASO5IK3TVlxZ+kBBdvHKa1DB+OKNqC7Xtb2MYx2h1iksGngkwSBtPbmeXrs5bCe8pCFJeGA1UuLJzmahxYVYVRopLYCQaikpjaGJTQkdUf9TVBSPxGx7XR9UpiD1FPLArHYFAyGAwYDAaiplh6isLrtqXKPYmu2KJuWqb1hOl0zqRZ8HDwkIWfc3hhl72NAxbUkldSJd0Us99Yt0p286P7u0Hn7/JeBCkY3KSgHiyWnoWMyaJ06LGhI4h0RCBdz7vxl/pZZLrn2efWlq8tBo3BbC6qoFMzyiqWuaCiv4dc+JQV2JcLPNCzTezuHWOUeGdISjYz2Xs0ryvd/ejrDd1YlB/lTdDQZxyOk7VEefBd/dD1henOE7lgRNbnXgkoL9PSDaZX+cx93n2rxDZWlRPzbSZdR6SvI1lBKIdE3Y2Sz0Wyxjtr2bq1xdNfeobCl2A0v2JFoczls3uIvHH5Crcev4kUcIZu30H3sZRELdyQc1KxH2cpSe5zmUnXDYW0NDadfF7U4p0cP5n+ZYn+nunGZNJiunzuXCKBGxVQpV/PE7kYQa5/mQR+jASlY7HPa5suF5JVy45PMtNdU96jkp4Z8g4Q2qXX5pA1yXuKxvPkWxdZu7aGaWTMZbWzpGOw36v0XrsO0u8wXblnDoj0mYpCobOZUCmkzb/zd/4H3m/t24nNH7XvcluU8H/9P8Iv/ruinLScV3/UHrU/oPZzP/cr/OiPfu77fRk/kC2rtlprOXfuHN57xuMxly9f7n42HA75xCc+wac//Wlykd83go4zeck5x/nz57HW8tRTT3Hy5EnOnTtHWZbH84S/jxaJzJjpSSbyGT7DjBk77PAP+YcEAp/n8xxw0L3u22m2tRSLgtNvn6acljz1haco5yWnr57GRotr3B+6/SeRCEUgmURbttx98i7zlTlvfvRNbl+6LVZf36VbNtEw3h1ztHX0XfvMR+0Hoz39uaf52f/Pz37T1/3mX/pNvvbHvvYHcEX/K20JRtMRP/XrP8Xjv/U4ZvIHMxF/8Rd/8Vt63bdBUto6RuBZTiTkA5Ycf3JySqpkrLViv5HtglL/mnd/da5OyYcwPVotXawcupxzWFViCXqoezdZyFtz7GC6XFW8bBFnNNkKy2CWHOAEgOqVDnLCJh99lyu5ciIthKCkAQSsNCDguiTSrMt2IKKc5K3rgIWeS2RwxmFsgbFD1oen+Yk/9Wf52b/85zlzfoOqnfKpT3ySN994i7gIvPSBF/jQi89z8uwWq+MBzmia1/T9aN61OUdjCEmSplk5oEvc0xOTAKwR+Xqgew1dsvT4A+xHhSTchVbU7z/Lf1663eMfk5BEmjHd9fTvyUklSVCkFGmC4erV28QmUW4PMdZz951bxPmcZ597mq3NEXTqVsvQSf+pD/ce8D/+0t/jy19+jcODI5qmZrGYEdpGk/BRqphjy3w2E7WYakBROFI01I0otCzqlkVdd3Y2i3pBEyOEhO2sXjThTaK0BavjEafObvGhD3+U4B2/9du/xb1793HGYY2XBLLOI2PUcilKRXzUxJXLI9MZQjxuFyU2Tlp9F+VpWxxYiy8GbK8OKaohbrAiykVtw8HuDdr5hP29PUKA8XDESy88x+VnLoiSj4k4nDAY8nM3Rs+okkSyCZyTxGqIUkksybgWE4VI4Jyk60OMRLUdcgZSCkJUSfKs5OYiyRoSTg7DxhJNEtn7FIhRSGQhgTGtVL8p8BFSq6PHKNhgcWUJzmKdITRSJ7FaDfGFp25b5rM5hS/Z3NpkWMJkOuP+/oTpTEhnwRR6XUktB+mAQGuNkhn6FG+2JBTltELWLgvORgbOMx4MOXFqm+3TW4zX1qjrljt3bnPnxh32d/aZz6f6bCOxjVKJTxRwSYFM4WFErC867Mcao9+tBKWc3F40tG1LW9eErHiTkgKISZO2Ig0e9XmlFMEafFlQ6O8g0QSxhFssFlr5Cm0bO2u1pg2yXgepcpB7aEVNKyXaEAkpis1XTmRGGb9lWZGSJDNTSjTNXDcLq2CWrKmpjaQkSbXBoGBlNGRtZY3VtVU2NjdYWRmzMhKLGudlf6rrQNs0Mk+bhrlKFk5mM6azuZCUmgasoVZrqqapCU0itEpEIGGcoShKhoMBqysDtjdXWV9fZX1jXZSeVkasrIzwzmrVqqFuI/V8wWw25/DwiMlswtH8iJ3dPfYe7jCdzjiqF8zqmrhoZa6ZbItmOts+SQInrHGacJX5l2LEJEu9SIQ2dvuZAHURXzqKUoDYlElqSHUvgLM6d4OsGzEJXGixxEbIYjH1CokdkKQKNMZpwlbl9J2XfdsV0gcO041Jk+21MKAqXlVVytwMgYglNI2QHBGFqSYEvO6dQtaTawwZzEtANL0yoS4jMYnKkgAKsau+TkqIytYyOcSx3ogdoBWVn0QCa4khdQpXOb7pCLVK4LEWilIIyU0TyOpFOWmc14mExRuLV6vMZbAoJrEia9oG58AXQlDKhFPjnI4Dqd7HiBWlWDEVeOupqiEJh7Ve1HeqUkEvS13PmUz3acICVO2oBwMFarHWMBiWeOOoFwKK9VhGwhUO4ySu8k6UMFol9qYo1ePeOYIC9KXaNcm9WUIQML6LHrTzYwwktd8IOnadM53FlHMCMGONWv9lTQ7d81IQlwWdH8J1jR14YEhavU8HoFqSklaNPp8MMiuIpWt9SqJ6kvvLYLXqWSKnxUL2oIyd9PFpb8mRif/C8gAhKCWtYNddRRGXiPxc4lMxHCIpncAkdaczOFeIrU3h+fKXvsj7sQ3/k2HfL0A32d4VUy5Xlsv/VVFB99blXy2/taOCfbPzVkJVwlRNIvYx6jKU9O7PyeBU94Luu/tItwez5PcZBOyVJY7fb0dCWr682NOabJb9SZlQlbqxBhmQ1LPO8mfp+mqMhf2TDH7n53hi8q/x1PMvsLI2wMeG69feYWdnj9RGTp86yZnTJxitjkS1yLwXEHRcTTeTlPrT0bv6L/eMWfrzcn9+3adzfCgsKXl83RvSu97/HueJ9O5ff92gyfNM1pm93SNSTLih2EFO9o9IbcOJE1sMBstJ1qTXlq9L/j+bTfnayy9z9+5DFotaVC9Do3tr6q10VAWQlITw6mR/CDHI+q5EYKvPWUjeMpiyYolchsSYzljKomS8NuTMmTMkY7l2/R0mkwm5MCafhbKiG3mvoz+DdmPTiKpfJu6hYK0xiHJqV1GczxoFw8qL3bOvlBQQWMwPCU3NYj4nJih9wcd+7JCPfmRfSKqiGXv8YWVCkvazIdvW6dqZlfg66k+/9gq4LG+2S8VVyyRBUh/35H87gk3qlUTl+/vcRVrq95T73hiMc1gDQzdnnPZZNUdUTkhg+Xla6xgOB3gHsyZxfbpG3QbmsSBQdGthvhpReNHyD7WkhHye78euybXdRp7T2njMh1/6ECdObuMKR1FVPHjwkGtvv839u/c52D9gsZir2kwSG6clQD7vh84aBoOK7RMnWVkZs7m5yXAwIM/0rKQjZPCgNtChIwHkOdKvn0uKJyl/V5J919qOuHmQ9lnEmtfCa9yNd7jK2yzSgr2wp8qssY9RdHHN6k8S4ykB0PZjtZiVuMaz+XBTCgB0368OSoZ7Q8DgWq8KTHQxlRCIrNivlhVlVTGoKlU+KsQ+KReZaT+EGEVRNUhBRhOETBRDUjVQIXeHFMUyV9WrO+Uag5I/hCw1GBQMhxVVVYnSU1lSloUqz8r4C/m7myBFF/WCJtTsDHa5tXqL+5v3maUFR9VMYnQtVOmIZt2S+G5iBkvrr1xjaJfJSfqMLTifCdn9HM5ktlwI070vyczNqaQQYvd5fd6KpVxdT5SKyLkDm5UpldTSnSeW1+PUjTXntbAqW64tMf0jqVdG0/el1K9woAVVaemjdWVKMV93/n9/ju23I1WBs0aL/3StinHJIiwXV8Qlon5el+T1ztHHpcfDpf5Kc/xKnlNm6bV6PkxR1l2n1xH07Je/M58vu+drOHX3FJe+cAnvPUISkqIdKWaSnEwKiTeeVZJSWlJX1cGT6ZnOy/tSiN2zl+uWB29tf67MxSyZuAW6/uszkoIt7UMdf7l/jkVZKXXPKia677PO6P6Bnhekz3ORah/taF8srWcp9mdfa1jaM+jyL8tFrfnst6zGlCOp3uav//wcv4WQi2b7YU2CEzdPcu61cxTzcvlOuyCqIxd2Z6v+BV3/mPz3payo/iGfj521/JN/8svvPeC+j+0PG0j8A9EScO0J+A//A/jv/iq0xTd9y6P2qH2v2k//9K/zEz/x29/8vP8D0wTd2TS7nHF3OG3v/p6vXqSKK+EyKRn20gYtnq8/VX9nbXt7m1/4hV/gxIkTnZLSW2+9xZUrV9jZ2eHw8PBbUt+w1rKxscEzzzzD6dOnuXjxIuvr68BSvPZdbHkXvsUtZsz4VX6Vl3mZ3+A3OOCAW3wHtlUJbLSM98ZU04rHX378mAjE1q0tTlw/AUAxLxjvj4E/HHtUNJGH5x/y1off4tqL12iqhoPtg6Xc3Pf18h61H7D2iKT0PmsRnvv0c/zox3+U0f7oe75mfddJShtbm1grG01/UOyJMF3SPvVJFozYwhir1kQh0Osk5SvI/1mqv0v5YJiObV5Js5POa6UR2ZJ9uYJKk5nde3pZ6A6IyJ+vAGs+DKPf2h1Sgx44VanJYLtKry7h3hFBcnV9IiaDsQnvNcmqAFTUZByqOiOgAl31lihPGIzxeFtQFgNG4y0uXHien/jTP8/K+ZN4W+NnU8q25vS5Uzz+xDk2NlYZWqcH4pw4Wkpnmj75mnu6Rer4Ijnxk/BGbU2SVP04shLS8hE9f8LXH92zTZZF8eaUSKavWj7+2LsUlPTb0vXKZ5nuZ336OKc35AkbTaYFDPf3JtzZPyI6h29h0xnOP7ZB8vm7nI7XnuRkuu+K3Lp3k//n/+sXefONG7RNS9uIioqoJQRCbGjqOd46qqrCOce8bpjOptR1K1LwSpKJMeGtx1vHopnThloTnkiSxhhSdJBUetkWVEXJ9uYWz33waR47c4rP/+7vcvWta0JuMhZsCV4qOL1zmBj12cgYc87jXEU0hZBWjMN1ymARkwImU9JSgBSIBNq2ILYtUe3vjBGSQdPMNNnaYF3BsKr44HPP8vzlp0TZCLFoSyaqrYeShaKsESHJJLQmQYw6J4Rg1QjjhNJ5nFOyYRIFJZPEBikoCGmcJZLtFTURTMKakqIYQeGow5zUJMajFaxLzOZH1JMDQtPKHI6JNrUkTUy3jVzc+tYJnnr6Gc6dP0tTT5kc7nD+3Hm2tk4yD7B3MMM5y9aGZ1wGYhN4sLvgxvVbXL/6Nrcf7KgqSuwAhGRczqwCrTw7tWISslAmR+S1UgXijMMmg1fiz/r6CmfPnebMhcdZWxlzcLDPW1evcuvGLQ539qgXrapDicpIG6JWxwoZRa5BZrhXKW/jCk0Mmj5xphfQtC1N01LXDW3T0LYNTWh1zmjyL6YuiYkmhZ2zKM5FWZWUmqw0RhRL6mZB0wYhAbUts/mcpm60i8QKoQmBEAEna0UbhNiUQRLvfae20oZIbEWuxBjbqZWQoFlA08QOHHFaReqcpSg8ZVWyMh6xurrC+sYaGxvrrKyMGAyHDKqSwhpSDMwXC/YPJxweHmESLOYzkoEmZlKTkJXqumXRCDmraWu9Nnm0DoPznqosGY2GjFaGbGyssrmxxub6Gutr6wzGQwaVw+ve0UYFLWKkWSxYLGr2jg7Z3dvncP+Ag/199g4POJqIulvbNCTEmkDGn+3HnpF12BhLqKGtRakhg95l5bDeYFwCk+24ZGx2H4ElJbFYi2pRZkBUu4C6aXtiiZUqfBKqkNWTk5s24LyjrAohCuU92TisgjV5j02gZKxE4Z0CHkKoNbpfk4Rkm5LYy2SwXoAxOjCiadqOmFkUojTWBlE0y2Q5p8lp6zyJ2BGpc8LceY8rHbFpVG0g7xk5wSv9lb+rKAoF7EVpynuD8JbklSn1gEZGz5Imwp1xeKuV+hrQeGdpWiHJxRSwThLqbROkKj8GirKAZPp7V7VHSfQ7Cl8wqIYYW+Csl4r90lOUJTEZFrMph0f7NO0MY8QaUghGeV2DonJUhTyvetGoraLpuBDWiT1S1DVFCNtRFbhUkSRFrc7Ndhc9oNSRlDLIHGLX1yhYGKEjBTora4+34AoBq0IU0npSIMkg8ScmYmwGYgXccUvqRhpWSuxiwTvT3YdXS9AMKmQe3XI0lAGdQp9dSommbplNG2IE61Vxr1EFBWM6gE023NTFvMbke5SoK5KRS62Q7kQAVF8kGbyBUelYW1/BlwOaFhZ1QwwtX/jCF3k/tsF/MugBuNTfP6D9m3v4+PFk+T2xi8vf3ZZhKUM3GN71moSsKSYrntKDVsfj3KW356lrj59LuhNMJhR019sfcfL5JS39stuDl8fUEnglXWNkPV+2FUv999FF9n3/GDKIB6J44HD7pyg+/q+zPvkwF56+TLU2xpiAbRp8bBmvrbC2scqwqvB2uV+Xn8F7H1yXCx3y6/NV5dr+/Pfj54blZ/X1rR8VS8/zW2rHX//17373d/bjLWKYzmuO5jXJWmyEoYHV1cEx2YHu7rrx0n/G4dEhn/ncZ9ndORDAWe1W6IBWsee1xkoVqxHSbaNqrTGFXk1U972uCCa1ukctX7/tFwcjhNDhcMiJU1usjsfcvH2bvd19MliPEprJZKWOGCNjzRgnILSxJP3uTqkiP+kk+7RcSNQ5qcqIuVAGVGWpUdJP7BSEn36q5E/+7NtaoJO6/uzGizLfjLFL8ynpHJJrl30xaXGDxdqsELx0djSmi3swcmaR2+jHhjGiZGMdxFhDSGxXC6yJPGyGLGoh4OR+764yKRiOYXVY8LGT97mw0ZLignYxZW11jeFoTBthvmgw1jAaOAor+/7RLHJwcMitnYZrRyNuNGdoks8hbbcfaqDezaA8Asm5lu5IkTMZlhPb25w5fYb19TVWV8asra2wtrlJWRbs7e5y6/ZtvvSFL7K3syskgfzPEuEHelDfmEThPRvr65w+fZqNrW2KQhR+MvieLzzEqISl/G/orLw6YmXqx3e29c0WciAxhbNyvkgmMUkT7oa7vBJf5fXwOntxj1mYsWhrslpOp1yU9xOTFaBiF5dkUgvos9N5aTC42jM4GjA4GrB+e4PRvTG0qtBtJCbOn+HUJq4sS6qqZDgcUJUlvvD4wuN0HQ4xUDdS9JISRFWTTEYKALJqp9jIhW7+h0xc0v3FGoN1jsJ7itJTqTXdUIlLRVlpvJkL55SsBXqWb5nFOTvVLpM44e7GHXbLPQ7cIbVZLFmt0cWP3fxYXiWTUZLS0thQ9V3j9B0dMSO3vG/1e3f/e9ORxsKSwlPeB/NrnXe9NRh0RQ/Lq3ve+46TCHU9sXQK6zFfJjk21+VAleE0OFRyjRKjUVK67l9SvBM1bsjrtOnGiez5SwQrHZPWZzJmPxf6ntLrjlkhKJ+B+vU+1znmvMLXp3A1bkmqjNxZQqdeLbf7xoR1+QyWCVNLZ/7lPiWxfXubp7/4tCjwacGc0TO2VeXv0AbeuHyFm+dvkEsGcgFFJisZC16Jidn21Ng+N2yUkL1M6D6+LuW77ElqyxtiSssqtGqB3q2b/fkur7NGP0fysbpnQHcOkI9ezndHjef639mlS8jXlqArHsjjIP85X1ueL0bj+aUwWM4vSc61Td12BTcY2xWDkQyD6YBLX7jE6HC0PIyW+kP6MHLsoo/tG/mvBjlTVFWBLzwJUdKOKfLxf/xx3m/tDwMA/APVooE3L8G//j/A536Ebz0mf9Qete9NO3fuBn/9r/83WPuNz5J/0M3RUtAAcNbdxBG5Hh5nzoBvNmdGTPj5wcd5yr2JpxUc5fdoKUFAJBbvxtNcaS/zL9sfZpJWviv38swzz/Diiy92qkrGGMl1psSDBw/Y29vj137t19jZ2fmWPs8Yw2Aw4Pz583zgAx/gySefpKqEfP972cP9flsg0NDwgAe8yqv8Mr/Mr/Pr3OAGEyY0+ry+02aiwQR5tsOjIRt3N9i4u8GTX3mSs6+fxTf+u3Eb39eWSEQXaYuWB48/YD6ec/VDV9k5t8Ph9iH1oH60JTxq37Q9Iim9D1uC9Xvr/Ox//bOcuHHiexpbf6skpW95xcyJo0zIEful/Mv8H9NbB6VsGYNqnKvihbHdy3MyICfac743J6r6Q7JYgYgKkipFaFbB2T7pHTXrkJWSAHEj02RDvqAO/FLAK1dMQlYdMfncKNX4tk8UOtNXGWZSlHeuU1TAqlqLMxow5SSOHOhB7zsJkG9sElWGZHGmoLQFg2rMiROP8eJHPsSl517gYBKZzA4pHkRWt1Z47rlneOLsFmXlu8rXuAQC5Ici3ChDINFK1kISv0Ztq9B0s957lJfIs4rQmL4PTPf5aekblnL2iMVDzqhkBZm+go6lY3DXnX0yVj9wOXm8nPTPFa99pStdGtqZxKnNMdubK3Kw1+tS7QF6QOE4kNBXpxlGK6uM19aYL2bEOtI2NaEVFZUQGgpnWRmPMcayWNQcHk5YNDVtK0BsSEET9hFrIIQWY0TyMgapUI60XbIopaZPwKfIfDHn3v37zD434+Cpx/nQSy8xGAy5+ubbQi4wnmSFbHH2sdN4TajkxKUk2EswBcb2ZgIpKcmqFeJJjC337t7laP9I+kcVvro0RcxTQxODzuKwlM5hUqBtFzqeHckJ3a3IyiMkkktYKxZzoo4ihLcY0SR/xJHESi2CTUGT/kle27bMm4amTTQxMqwqRsMBbdOqEkrAmMTKeMSP/9GPsXXuMe4+vMXnf/t3Of/ERV54/lkKF3m484D5bI+3rlzl7beui2VfDBjjKUpHxDKfTrjx1lvM9h9y5rGznD1zgdHKJvNWiFOrKyMe3LvHnXd2mOzeYTE7pBytU45GFCurjNpIqFuchdjMmc+nojhkDClZMA4j7AoiGexJqtbSJ2FdXEqKEWmbloe7+zzcO+DKW9c4c/IEzz93mZ/8Yz9JEyLvvHmVV155jQf3HzCfTWmbBmfVEkQJDznxjYIDIUKsG1JaqAKJFVKEd3hvGGiiOyvLCfGppmkb6nlNs1DiUiOV/EL8ioSgSXFriWHBAknKOSWYVIOSlXGhC4tlvlgwn89ZLGpC09CEwGJRUwexCKxbIYMU3nYAhyilWExhMG3AVrbLszVtK8nVOmJ9whtEZSxmsF/Gdlg0TKcT9vb3ScbgrGdYlAyGA0bjIWsba2xtrrG2OmY0HjEcjxmNxtgEi8UcSLShFQWqumWuajKLumaxaIRs1TaEpiGEQN0KgWe6mHA0PYIHCro4z6AaMB4NWVkdsr62ytramqgtrY4Zr4wYD4eMhyt473gsBup6IWSfpuFoOmHv4ICj/QP2dna5t3fA/tEB8+kRbS3Emya0srZZJ+oxVmwUs/VGTIGmiZiYKAdeku1BFJISCjB2QIKScJ0jqfpfSgoUmGx9ZWU36fOrCjhkyyuZE86IVVVMibaJ4EUJLSeyQ9srzdnC0aqCk3VCerRAiE2//tADDEHHfd00FNbn3SzjIjkLLWtPkj3XGIN3nqT+b8YYUalrA10ldIykFhxOVNmMjLkYY69cY50oxlmJU3I/O4sCKkIcypaXOR5JeS9og1yjk3hGtqce9HDGSkV2MiwWNb7IZKkoa00QdbYYoqgYKQCSQQeUN+m14jnbO2R1DpP6z0gEGT9R91eN11JI1CHgnKOuA9jEYFhpHBfUHiNphh+9bo0ByIqXqasYz2pb1lisc1LBrsBCVGA0K1rk+MFbsa0IKZOIEjZZTEDUt0D5PDEjDYQQMFYIexlQJiZaZRMuk+2jQfpRbROMsWLP1waMxn4apnY2lRlvdbrfxqTE2GwLS/5uk5ECmQdW+krmiYJXHXihc8IYbAZw8+ebJfUJBVq8t1glalWDkpXhKs55TGp5/zZz7E/fOAWXf6txdKdElsGJJeCp/4X8J+U/mi7ukjVhGZ06fh39GrYU53ZkueOxa3+ekN8ds1VOfTV9JlLJNer5JV/3UkiaCVJdQYWq16R8Zjn2PgNqd5Lvy0AXkEckbrPGURydZPjKH+f0nT/F5umLLJpE0yxw08RoWHLixBbra0O868kguXvssWfQ/zzSX0v/877UIL/LdF1p8v+ORePH+pnjbXlMHD95/N5j5t0/z6/t/9+XO+TPXn61JTEelIwG5fH7yHvjsffo5+hZECMnpaIsKauKNrRSuBJUXSaGzp6mKktZo9rAolG7qAzmdiQYAVez+pu1hhR0X+sRRlIK3d0ZjVUmkyntzYbF5jpnzpzGF569nT3hMqkFkHOW1ZUVPeeha3cGn123ji4PUrFZDxofRCZHR9QLIQvnfStfWK/eoCQRBcCdzaBzi8Fljx1AYjgSqvCohQ66F/V2gKpwnERvTpbXnjTRrRidtZ7EHd4JqSbbHWdqXVl4PnBhjec2H8LsLrfeucX2xionT27TmsjNyZDbiw2uP2y4vzMlhqRnbqvW84ZFE7m3O2OtecjqygqrKxsU5YA2yJ5RlQXTyZT7e1Pq+YS2XeCKAc57NgYtZTrgZDvhZjzPLHgOG0/b5RrktG0UGc9qgX2eRE/DxugyYdh5+JCdhzt47/FechQnTp1kc22ND3zwBX7oh36Ix594gk/99ie5d+8+08mEpmlEYQc5t0islBUvxSL8wcNdHjzcxRcF1hi2tjY7ot2JEydEAdNaBsMBZVV1Y6cjK6lFWkfeQ+8hJVLIZyNLSIGoRUXWGIZmyEV7kcvVM8yZ05qWd+J1HrYPudK+zl7Y5WF8yCzOadpGSEBRSNcO2ykvYUxHgsiE7qxSE4qWo9ERRycOuX/+AaOHI05dPc14d4yfFd2ci6qUVNc1R5MpGNNZFBe+oBwUDIcDKX4oCrz3jMZSnZhjn5iWyEkhiJqsKqeFYwSv/t8QW9p5w2xOR3hwzos9XSX2dIOqoqpKqkGFLzxVWVCVA6w1rLLKdtyS4pa955mbBUdpwoPV+8wWM+6O77Fnj5inCbNyqkQnpUQbWR1XHq6ydnOdh6cfcrQxIRMUQ4xd4YpMQqOxd7/fLisl9Xt3Vgnr91rZK1K37Eifpy62lSKH5fNGt9l36xDQKVNhDDaJ2lTeU/vryWeFfk3PcaHU+6SlcKFXWE0geb0kFvAm0QNsORTp8oR5r1AlTyP5UIPYxfdEwP65Wuu6PJcxeT0Vwoo9HvF017u8BmdLzpRDHiXcyBoh78zFYFYVkftr7/e0rlsSnR1ZXmvyGULWov7fbD+XkOKKTPZajsNiVujVtdnp2Emq6Ezmq+lQWdqFpB+Tks6S7C+5eNTomcVov3TzfnmPzoQhvcZMWoqA1Vj93X27vNbmWC3loZYigeOt4xsp4Svvzt1ZiH4cQepUwZbjErkv+sIWcl/o9SV5PouVOddffIfLn74M7dLcyt2tD810QZjpftZ/19IeYo2KVVuKsmRg/dfFZ4/a/8paQtST/va/Df/tX4Pbj/H1Ufuj9qj9wbf0njaDy2Uzy+e17/nVcN7e4I+V/wun7D0ARmaKIXGQ1ngjPM0r7QvcCWeYMXzPa6op2YvrOBfedfJ972YMeN2BzrlbnLW3uOTf5FP1j7OXNtmLGyyoup3l2+2H119/nddff53hcIj3Huccly5dYjAY8NJLL/Hss89ijOGXfumXCOHdO+HXt5QSs9ms+9zRaIT3nkuXLnV2cc888wzjsSgRra+vMxj0hW3faXP6z3n950/wJ9hllylTPsNnuMEN/jn/nBvc4E3e5JDDpSjrm7dkE0mJcpPNCZPNCTefu8krf/QVTr91mpf+l5c4ffX0H4hSyfeqGQwuOFxwnHv9HACXvniJxXDBfDznxnM3CD5w6/ItDrcOWYwWHG4d5jf3iZgEZ984y8UvXuTNH3qTO0/debSdPGqP2vezGdg/vc9v/aXf4uf/Hz9PUX//FTK/ZSWl7ZPbQOoO4SEEAZU0mWqz9Y4VtSBj+oNPB5wrYCeHSLUxWdp0jFp/5CS9VJSlpYOWgJyJpFWmRs9bfRKtS+TqoVMWw3x4pgMB5FyZr70n6sjvDca47tBm3xUm5ANu1AO892oSH+WeoxESQOrsvQyFL1nbGBNTYD6b0zQQo1WwweBMwcCPWF/f5gMvfYQf+8mf4ImnL7K6vkpjB4zWVllb86xUMLAJn6lDemE2iU1WV/Wv1WcBSUQ0CeqYaJcIEXWChfAY9MboSszkvgVQI0miz6rKhiMnPVRZw3TdLH/XrEggJ0X6BHhMKpSh15C8xWSbPe1/o0Sf7sBMwhuj12PxRohJ3koiRxQ/JIeN60OKTJw5tivqb3JiSk2sqGPNP/xnv8p//9/8d8RJw3w+p65rCu+pBgUQqRc1s7mQEkQhIqp6QyCTIdAxnPQevbc0TSMKHvQJ/JxwExsaVYRBrH6G1YDz507xwZcu8871O7zy8lXapsHYSFkWvPShlyiLAuecBIy+wPsS5yusK8XqS9XBYgiEpqFeLGiaBW1ouXHzFvfuPWA22aetZxBDn8ghAzA6n4DhYMjWxjrPPXORpy9dIOGogxAYnAkMC6miO1rAvE1ULjJ0CWcLBuubnHv6ImtrQ/Yf3OfuO7c4OJzQtImUPEI6ysmoVq4lBEIyzOtWpPatKitF8K7g/GMn+dCLl3nm2afYncz5ypWbvP3mTaqi5MyJkzxz6XE2tlY5Wsx45cpbXHntdQ537uFlYgibPhgwDmMKnDEUzjEoKwbjdc6cP8fFp85RhBnvXH2DOw/2aZMhmQCxUswmiJZUMsTQQDsntXNK76kGnkWC/UnLfN5CyAmwXKksRCtyMg5ZLzqdgZzgtEbf46nKAdtba1y+fImnLz/NcDzi9q3bvPLVV7l29RqHB3tiJ9IGTLJEI8o8NkUKa2nbhnloSJoAJxnNHat6jpF1uyw9pRfFG6Mlm3KpWuWrRKW6brTaP4qKmCrUZDKpKEYZtTezJAve+c72yTnb5a5niwXT2YzpfMpsMe8sM/N3+NLTxiBgkM7g2IqiU92I8kBqhSASFagKbW/hVFUlqQ20bUMyVtQKmqigspE9x4s90qAqGY6Gona0vsbG+garq2OGw6pXoIqRthXVg8V8LsSrhfy9qRfyu9CIIlQbCSGxqBed8lCu3jYYvHP4oqAqhTC1tr7K1tYaW5ubbG1usrKyQjWs8N5TeieEv9TSLubEpmbaNEymMw4PD9nZ3WVv/4C9/T2mkyPm8wXzuqGezWkXgcJVNCHRhACpxrhEUXohIAUUvJEqbjDah7IQh6xUgACmTdP2B39NwFotJW30mWRwUwBWKErXgWUCxghY613ebTSpHNC9Q/YBa42CAHlcCRGmDQGrhBXrPSFG2iZ0e3pXvaoxgazLqVtvDKr6FloF5qza8Yi6RacI4aC0nhTkOxdtC0mUo/JnYPpEclJbV2OMgqyWFEOfcFcgOubfhdBZ4FTlQKpntS+89mlEFMbm9RxXaB8qEa4o1FKmFUKiV+WebBcxHo8lueAGFEWJtQKi+6KUsTlbcHS0Rx1mYKLsV00LyWqFvCXGFosQc1q93qJUgpsCjyaBK4T37pQgRFIlA40vZN1LXVyUAUmQ1+cER2exYZbiMyPqW06V9qxBbOb04BujVIM3bYvBUBSVgONEJRPJg29bseeTcdJbSnhr9LllioDEF3VdQ0oUajMcyYRDsZY0VsakiRnEEaWBTtXN6JhWokKndBBSb9+k1ejdbZt+TuTY1b5LvSdbP3jvNegLuLKgGIyoBgNKb/nEP/9feD+20d8cAT2BPXYgTI7DMzKVuvvvMLTu/8vxnO5l3XvpPj8rwOSqeLrfsgTA6XkhA1fLYKrJ8ZB+U+oBoHz+6K5H95z+xXRjfOlH72qyGsnXLyuNaORqDDYY0kJjtIGQOAeDElEjbImhT8QaYzBtiT/aZvC1n+DknT/F+e0XWN/apBxURDzFoKSqLKUDb1JnPZObur0uYZU9QJr/36alZ4EUKWRLRo4/zi431RG6eNfPNd7UHZnczcvp1Kz+sJzn0kvTBwEpq4fqM8jP17xrbGTan1i8yLmys8rrPc/ogXJzbOwsA3z9RehYSRBS4NW3XufLv/tlUiPrTQhB7c8FEA4hiJ2srgv5fJAJmP1coNuHrck2wpnElI79P1927ilrHN451tbGnDp9gv2DIx7cF+UcY8Se9PTp0536pZyfHdYJwRm1I8dkax1RyAk55ouRg8NDjiZT2npODC2keOzZ5Geer837guGg4sdfuM+f/FfeAKQoIAEFDY8VDzHGsGgtt9sTWGPwVuw6/WDA6uYm1aBg5wju77ccLUC2jeVRgRRMKXgdk+nUOTNxQPIFjo2VIS89FvihU7vEdsq9Bwfs7R7grGdlPGJ7c41qWFGHlmsPFnzl3oCbRyOxZ0tSWBCF4YoF1tyE0+4Bp4oDxqVhY23I5uYqNrXs7+5wNJ0LEdYkSE6HV1d+o/FhyywUJFtinedOPMGkdtxv1oSEn0AMquV83itaSbPdwnZ8xUkGSJbBYMgHXniOFz7wPNWwwlrL1atXufLqFR7cf8hsOqVpa82RZIs9YQ04q0UMSlLrAPS89mleZDgaUpUl49GIre0t1tfXqapK9yv5PCHqJCEt6efH1JPVu6mwNH+d1bUyx3WSbMIYeJAe8DDt8tXmq+y3B7zZvsk0TmlTSwi9dW5HVLBZvVOpwVntRQn6mZThZwXjnTEbdzbZ2NuQ1bJO2FaUFmPIRXt6LTbbYFklEBUMBwMlEFUSOy2pRkWNiUIQi1yx8lULPSUERs03pEQXK+X3deusMWpPJ7mBsixEbWk0YFgNGAwG+EJifrdscxoCMbS0SQosZszYt/tM6hl3Nm4za2eEpmXl1jqDBxVmamjLwM75PW5euE09nAER47SQQQebMTI/NI3UKcGIDVq/ry+rs+elFGRNXra56p4b8uycxtm5D+UckveQpQK8bv1J3XiR/TivsbYbf52yl5HCiW4WLYFjx8GyvH9nYlBcIsX060we0EnJKFZVPYNaF+Y52+VO8wTIw8rkGMH0+4P+ufs6049lixDYcj6VpT5PGs+IWrKc/bN6Ux5DWfFqWf1n+9Y2z3z5GVU8kOKM5TGHkXPjG8+8zs3Hb5CI3Z6xrMykHd3nk6MUoIrSfOr6UAo5NSJYus93E2+Op7H76+3GVd4a8l7ev/JY/JZz1/nv3bjSZ9grIvWxp5xZs5akWYr7TGdfKVfb5/oyUc3mtaxbM5by4XmQ6hoY8vlCs5qdZWw3JmD72jaPf+UCJpk+jlwas8fuPYe2Xb4vj9WcWxZVLes93ku+8X/+n36J91v7QQV7v29tCihmzAZQfZPXzyu4/jj8V38D/s6/AXfO8I1OMo/ao/b9aD/34X/Cv/2v/u3lLZrKzHnOv4ol0eJ4pX2eNr036HovnmInbjFlxO9nbFsCL/qv8NPlr7NqDo9dT26ypBsepm0+W/8Yr4bnmKQx6V1ncEfLY/Y2z/uXueTeZNUeMmT2np/5jVrUs+zDtM0iDWhxvNo+zywNuBouIiXjhlkaft33f6ttNBrxUz/1U3z4wx/m/v37LBYLXnnlFd58880OR2uab1+haJmMtLW1xWAwYGNjg4sXL3LhwgVWVlY64tJ3swXxBuE1XuMqV/k4H+cBD/htfpt99pFS7O+smWgY7405/dZpLn7popB8EvjaUy7K7+JdfP9bNFK4vBgt2D+xTygCVz98lbZoMdFw8csXOXXtFNWkYr4y58qPXOHLP/1ljraPvt+X/qj9AbRHSkrv4xbh+d95np/4H38CF9z35Cu+63ZvJ05tH9sMUoydhHoi9cleJwdNqwCeVFil7mB2TO42pWOf6TKQba2qFeRTZewS0c4ZsgJM55+dz+z0yTlj6cF4bAfwWJvwhRcANvaHZJPiMUs4tPKOBH6J9JQPddZarWpfUm6KWRnAiuyxVsYa4xgNx6xvj7EKaE0PFxzsTymKihhhOFrn4uXn+MiPfoyP/NBHOX1ym9FgCLYQsoKJJBtZxMRcE1gxQGqUoJSgsInFZEpopRoy5AQ20ALzlAipINmCaCzBFsTkSMl1CYO+isvgsKJekKKSgqTKKbuUWE0kGcA6sSKz9DXKLVFtCjQpYnJyM+WnSkvqVKeEBAApBLyRMWZSiw01ZQr40DKwltJA6SKFtwyGYwajNcarq9jKgRHmuYmaiNJEMKjSUWdiJ3WwUjklibRXbr7Nf/p/+Y+588Y7tG1Uy6KC+WLOfD4XRZo20DQtMYOpmlDprBbe1QonKkp10ygpT8ZPCErEUhBV8owOgYsMg2rAY4+d4PkXnuPe/V3uP9jtEhhPXHhc2exiqeS8F4KSL7G2wPjejzjEQFvXtPWCulkQQmBe1xzVcw52H7Bz9zb1bE7TBFKyVKWl8JbSO0xKzI4mjEZj1je2eO7yJT7w/BNY68EUgGV7e52P/shHGIxWuXV/n+s3bmLbCXG+x+HelPnMcvqxczz/0rNsnznBvZ09Xnn5Za69eZWjg30llRlMsgIUpUgKkYClCUkUZELDfFET28Sw2uDyc8/zwoeeY31jwP27u9y+s8902hBswLrERmXYGlpCaLhzf4fbd3ao5zXOWVoDbZiTFpBSSzSiBIORcQhQugJvLMkaQgpY6xltbAownbyMe2ewqVRJ9YC3NQPXcPrEJo9fvMhofZPrt/d56623uX71Gke7ByQCxjsSWdlGFVKQOSyT1ZGtCzACprUGWgzOlFSuZGt1zKWnn+LyC8+xffokDx4+4NWXX+bN166w+/ABiUjhnKgZkcAa9g8OWCzEfqhthFDQ24TJXIsh9ORApFu8L4RI47wmEU235sUYIEjyXJSDRGGoaRpC08rvU17BTbd+y7i1VEWBdR7rReqlbmoWtcy1pgk0i4a6rWljoG4bYkpSdYraUYVIE0QS36oKSwgt1nqZo1HUUAxSSW0A4xyLuiHUcn1RbfqiJjKtkmSd9XjnKKuK8WjE6uqYlZUVNtfXWV1dYTweUZYFmYgaQs1iIRaRbZvENk/VldpWFJfqpu0IPAJEiFVcyMQlTbwXrlArhyHjlTFr6+usra1zYnudjc0NRsMBo6qkKhzGOoJRS4m6JjQtdVMznc/YPzjg/sNddu7dZXpwQLtoOTiacXA0FQUqE3GFUQKHJr27fU7tumIkabLTGQMKnIgVWOoqicmknDbSNIGg+4kAKULgLEux3DNG7MoWdU1ZeJy3PTiUxFIhK9kXhdh9RN2rYxT7wkxejgpuOS/jKOmaHJqA+p91if0EXWySYwVjUJKSKKG0bdslaY2Vf0erQypfMT2cMp3NWbStqBNYRwytqkOIIoZUoUJRiGpRGyWBHdqWXE1bFoX0K0IwiW1LSEmeu5fkf3+NOTyztCEwnU3EilVJ0EHVjZxzhFb+bp0Qd9q2xRrDyuoKo9EYZ0sFF4yAhUVF27bMjhbsH+7SxgUhNUI6qoPa0wqxLMQWi6XwhRASomgxCkE7qdoQnWWDyfGdtWLL28rzyLHfMv0gzzkhO7VCGCoK2hi0T3ulPmuskpREqdA4B0aJP6rW16oil/TjEmRvJFpJGCUNRCW0S38KoVLWgYjtQNkMBsi9ZQBLxl81KNQmwgloY6zGlogygioVZpxE7kf6B6PErAwyKkiQLV6yismxmEzHb1DVBSFCe1GyMgnjlLRcFJASX/zc594zLvl+t9F/Ojr+gwzGyF8A+jnY9QHdGpEBlQwKLwP0Gfk0ZJvnDIL2OFWnqKEx7PFTUIcq9QlBQwfGG0XEjX6V1X08xWVCVf/nDh5VdM0as3Sf+QyjXzRNmB0FzSYJc0Xvfc8Q7+rafN5QvFAweKHEnJBra+rAYtFgrSfdOUXxm3+GzelHOLP9DGcee4yV0ZDCe1DLSlGpSbT5fJbHnfIdLFL00KqySibR5KuOyJkiJiGwiK2zJWLpSVz9+SyTxewSecgqcm1YIjfk7rb5M+jIzJEl9QNV14lK6lGYTVXO5G+KM2uf5+cXsTHIlaZEYYxE3QacA+9LfFFRlhXGG5bokkvNLv1c1jGjJJMeD008ONjjk7/1Wxzt7Ot+JeMxxwVZ+Sd0AK6epxWEz+fNtDQO8/k2xNCNYfJ4RkH3PD+yUh6iGLiyMuLkqRNMJjOm03kXY66vreOcUZKSkrat69SUspJbR6IKWkgQZd9sQqAOLfVswnRypLGf3Iu3FuuMWl8l2rrBFwWj4YD//R//DX7qxRsKpsp3DIcDzp47gysqDqdzDvYPMakmNXPqRUvTwMrqGidOb1ONVzmYtbx+t+XGTsPd2YgJI1VJUaWVvF5gNA8RVSU0ECOUvuSjp6b88LkJg4FjcjTnaDKnqSPJRLCJoTcMvSghHk2mHB7NmTeOfTa5k07yIKwTWwsEIv1eVdhAYRpOuH1OuQcMzIKKqZCEBwPZ15KQYrEGk1z3DJ0NeBMZjwZi0VYN2D9ccG/3iP29fepZzW5aI5iS+3GbOQPmjMgpE5MJAfT7bVZwi0ZIW4Uv+aGP/BCnTmyxubnJiVMnKKqKyeSI69evc+PaO1x7+yp7+3s9gU+B7fli0cWAmcjTkTPI63RW1VYSsHeUZcX2iW3OPnaWtbXVbn3u4gL9N6T8nCSmSVqw1i/UqoemRABjjYw1a3V/NrS0TNoj3gnvcLe9y9fCKzyMD9iL+7Sp7WLuPOc6VUNdq0io+q7M6xhE1cw1UiJWzUrGRyvHrO06sJ/Eyu4qg8kAayyjwxE+FjibLeKKTvVoUFUUZaHrc44BYmcfn9eIsKyopMUmISvRKIkpX0eONWXNsHrm8hRFSVmVVFXFcDhgOBxQliWFdxTad0nzNSGE7vMaVY2azedMJxMWMyEttW3kwXCHKy+9wXw4+zo1GLp1zKhqs44Po2pASjbp1kBjOiWwbhvWOKorbNPY2VolievYaTW2ck5J/jFBp8Iul2T0+nLusc9B9ottDGp5tpQPTFpYkve/ZcJQt+frjMv5SYPpyHaZIGIMWG+pypLQhK5wJRlROs2FfyzPB6OkJmt1j4ldTNqRSowUgVpVUs1z3jvXWYV2ukEGku7RTSvxfo7bM/k1nz9i6NXuU0ps3tjk2a9epqwqnHUdccdpvgFVHr3y9BVun7+B6KIqSUnnlnNyn/l7jO7jci9KbEu9jFIeCt0zg34teI+47XiOOSuC69lQ48Ac9+c9tVOjs8uxnTlmUyefrUCu6WOVrMSUn3X3nG0fI3aKgjnIXdq7TT4KJWSv7Ih3qlSl+3lUgmLMgxnTW77pR5jW8uQXnmDj9ma+uC5e7tY1s9Sveq5IS6/Lzz6v30ZJywbDx//RP+T91h6RlN6jJeA+cEX//hD4OBK2vgVkzO9HgT8D/DRwmePWCAn48kvwf/6P4JN/FPY24FFfP2rvs+Ztw3/3v/mr/OWP/I/f8WfUqWCeBrwdnuR2fIy3wiUexBPErpzlmzdL4CfLT/CvFL+NM++NB727xWSYphFvh4t8tf0Ab4RnCF9ncJOoWDA0Uy65t3jBv8y63WPT7Eo+6juYkinBjKHuXYa3w5PMGfBq+zx7cYOHaZtvZ66XZclf+2t/jbNnz+rnJxYLwZt2d3e5e/cuX/3qV3nnnXeW9snvvFVVxWg04tKlS3z4wx/mzJkzPRn7e9AaGvbY4/N8ntd4jX/AP+AqV7nJzU6o49ttJhqqqTBEVx+usn1z+xu+9sxbZ9i4s4HBsHVri2Je/KHb9xKJe0/e49f+rV/jcPvw0Vbzh7w9Iim9v5tfeH7mv/0ZLn7x4vdkrfmuk5S2T24dP/wpsJL04JMPY865zj4qV4aLnK98zjFikh6k8yU4rTwzRkCk2AGmqQOSrMuy4UuVWEbl0FPWxVlSX+oOZ3JoLEtRHehkzTVBKiQlBRuD2r1YCyoL3xGYlhIDOa1s9KCNyvjbrPwCJCzOeEbjMYOVEW1Y4AzMp3McnrXVNZwpOf/ks1x44YOsbj9GUQzxzlM6izcBZ9VCzDpqPIvkSa7CWI/BUjhHYQ2FBdvOhShks/qJJJkWbaRtE7EVcKEhCBjcSgVQUJDRGgitknCS/BwEtEgxkJKAl8Yq4JCBAwNYh3GSwEtGkuRSOeylQkoTnL5wehh3eOO7n1Wlpywc3lnKgaMsBawflZ6hdwx9weqgwntLcKJ+UhWWyjlKVTgwRquZooIGgmEuJf1dB0yBWOG5BCEl9ts5f/fv/vf807//j2nrlvlcLN8Wi5ZF02pipO0SAzlh2M2Hd08uI1WfTkH1Rb0ApHo5tlEl8hMmCaC5qFuMsWysr7IIAZMKTmxs8PwHnqVaXeP6zXssFnPOnDpF6YXwUTiL8yXWlxhXYpxXW0GZBzEGUXepFzRNTQiBJkTmbctkf4fde7eJi5oUIuPRCqurGwrWGNp2wTvX38FaRzlY48MvPs9HP/Q03gl44a3n6ctP8fxLH8ZXK0ynR8T2gMK1GAKHRzP27k9ZTGp84dk4sU3yFdN6wdU33+bzn/kUi4VUYA4GA5wrensGLEntTNomUM/mzBZTnB8wHG1SVWOG4xXWNjbxhcXElv39u0wWR5haEmdtkhSZsXD+7Fk+8PxlBqsrTCcHvPHK67xz4xqHhwtSUAJDITYUMQZSG0lJwJrCe4rK4zCc3Nzm0uWLnHjsAqbw7Dzc5d7dO0wOd6GZk0JLVQypqpKYLNN6xsODQ/YP58RYUxaG2NbMJxOc8YDFF7JmpmhkpuU10iRCHrsxYJzD2hKbwNuS1bVVnrz0BM994FkeO/sYk8mEK1de5cqrL7N77wEmipXCrKmZzGaIw1GuEharjRhDlwATKSJZl0OIol5ETvrZbp4WaiFQFgVJZdhCjNCtOYHQiD1ZXTfUi1oUbowQBIxWfXu1/jDO4LxTVR2n+4YAdfO6ZtGIgtl0OmMynzNr5sSgFagYsdGLgNEkfugrDVGVtcL5LjHYtEHVlhpJKKOiVqjsvBPrzhgT1omKlVVwt/AlZVUwGlWsrIxZGY/Z2NhgdTykLAucdaSEqk61hFaS+/PFgkZJSnXdEELLoq2FbNUK6afV6ug2ZCBQLdWcx3nPuBowXlllZWXMxsYqm1vrrGXS1HCIKxzOOoyVRH7bNNy/ewdvZa04mky4c3+H2bzm3r373Lh1nbptJCkcssKT2MbkHHAmcWFMt+cLwGxFTSnvhQoCt7Um3TFqg5I6MMGqultKENqkhBoh9KQgMUAkKtlGE6YOnJKTjDFKVlKim86bkIlFTvZy52V9jaqcgBUSVBuCkpRkTmVyjDFGwBglEontmYDdrnBsbK7Szhumh3MWtVj+Oe9wxgjZK0WKwpOSWoAZ2Ye8L2iTKHalmPS1qb8fZ3HeQytzzVlP6Qqsdfo5SnLQ4KkNgclkIvPS9rC83IOsVWLDp8TgIHv6ysoKo/EIZ0uKosQ5Q1lWFEVB0wQmhxN2dneINBgnSl2pVYBQYxrJbcv3dHFdCl01cFZbEytFJfPofM9koxjUnk4T4jFIHOG9VmFnOocxSgCExUIsVQ30oFGMHUCZVOnEFwUOeY5tE46RTnI8mJPyJs/RTBBCzsOFV5Demc4OJAupCDBiMBl2UfBSiHcy770vsGRFK1VY1Fg3KwekGEUN0gl5q41Bre6SEC3bwGS2oG6CWpjIhfcJmKSWfaYD/7zTuntrperZlThXEiN84fOffo9o/vvfRn9zCGSwT2Oz1PFbtBK8/z304KLimsfxKW0ZzIJsW6Xg0BJAKk0V1kwG17t394yQtJQnMf13KrTUnXeMyQUR+WyjcbHc4BLAlUkseX/vz0HGGNJVSL8MZrdXDgAhPXZ4nMawRVng1wvin26xHzQ0TYPFUu0+gfmlv8x6eJb1k6coRys4K2oKzlisiRIjG4jGEHCEZGWhNVZJ1xZn1IErtjK2ls4+UngStbJfritkIDflvTf2IF5WM8iEBu0beW3s9uWe0EA37ntQMIPCEqOh1rnks5me3azJ6nayrmRlXe+leMQ7R+Gk+KKwlso7BeaNqoAYVWo1xwSVuvHWYed5JPRQpTzZ/qwxjy1f/eqXeeOV12Rd0j1dVASVHtExEnN/pA6UXB5tdF3Sn8FDaPt5EXU866yIKdEqqWIwqGhjxCTHaDDgxKkT+Kri4GBC27asrIzUgjIrOShJ1joyqS23mONGJSpFVQFpY6Sez5hPjkRNKUriuiwrVYiQGGP/YB9jDCuDxH/w5/4+L1zMahNiP7q9vcmJ02ewvqRpalJYYG3EIOejxbShrWUfH4xGJONoY2B3Z493btxivx1wKzzGvj1NtKWQlGLUYgRdi5U03IYGbw0fHr7JieKIoiypBmKLRUosFkfUbY0JCtrqPxjD2uoqJ09s46qKt+cn+PyddfYODlnUbWdTlM/ISZ+xTy1rbsIFf5utYh9PZDQcsbW9wWhlA5xlNpsxPTqiXojCLTHinFeQ3dCEhtmiZr5ogYDVWG9eJ94Kz3AnPqYgs6pgkvcJfX55lKYE1rC5sc3JEyfY3NhidW2VU6dPcuLUCVZXVqmbmvv37/HVr3yFr37pSzKPjcQhddOQPyYnWrJFeDdX+qQPywphQmrwrKyMOXXqFCdPnRCVn+Hg2FwAhEypYywrd7UaS3TLuQRJLCuXZAVIkPhRmQHspwPeDtf4WvsyV9rX2W8OmMV5p+AYcvynQqCd3VJ3XXntF7MujJ4XtUiit2mUzSyf5QaTiu1rJzjz9hmc8ULuQAnaSgQv9UxVVWITl9evnCNLSySlTLIOSlhKmuvpiUz6PHKBYLf20sUTzjnKQshSVVWKPd2goqwqUWpWAlCOO1JMLOYz6npBWXjatmU6mzNf1OwO93hj7Q3urd+jLQPBNUv9dvyZdrWH3Xac+zx2Skt52Yt6DpP1zeSH0pEp8/s7e2+TlWD0+zR+zqTJvDd0qk30Cl3W6fPM54ZMIskEnhD78Ub+vm6rkrXYLOcJY0dc7oeq0XjR0ixaLbYJHVlEiCgac7NM0M45x6wk1atvdUpA0N17Vip1VixfO7J37jG9ICmiCeSwJaUcK8vemwmeMgQSWzc3ufwVISlZ47pY1KmVuZztWl596jVuPX5THhc9mbFTxqcnl/SkGP3ubk5rXGj760bzup1C0nKcn0nktien58/N15kLDfOzyFeRrwsj67zV3GWOabKSVz9s+zx2HitpqSABUKWy/Pv+3Zk4ukxzyvPEWovz+Vxq9ayYjsevpn9+6Fiwqi4cSZx+8zQXXn5cfye59CYTSvMd55wtfUyRx4UUXeTctsQC1ohq38f/0T/g/db+sIG135X2L4B/B3hj6WfvdWDKbQv4ReAvLf3sSy/BL/wSvP4MPOrjR+192tYHe/zL/8MPcWn7re/K56UENRV342k+1/wIV9rL1N9UbgwKav7S4O/ylHurW1u/ne+MWD7TfIx/Uf/0exCVulcCMGLKY+42P1Z8mifd2xSm/fa+8BtcAwh56f+3+FN8uf0Q3868f+KJJ3juued44oknWF1dZTweL+0rUnD+hS98gV/91V/tYsHvRivLktOnT/Pcc89x+fJlRqMRo9Hom7/xO2z5HHib23yKT/FxPs6/4F/wkIfMmH2vvhSQvNj6vXWe/+TzvPQbL2Hjd6Z+9X5ticT9C/d55Y+8wvUXrjMfz2mG374K16P2/m+PSErv//bSr7/EH/mf/8j3laT0jXbCr2tdZb+FEHJCVKvb9QAco6jVLIvKhCybnVJ38LUmLR0QFSTUyndjpHrNGq1wIRGjVqYYAWOMHr6zdUt/SFQyUpLXOe97UpHrq66igu9KZ1Gwy0o1Iz0hyQoK0e3TuRJWrI0y4KUHbWNgWYnJWiXxSJKpbmqqWOActHVLCFANx6xtnGZtZZVzZ0+zWnjSYkpNIqSKegGhaWhaUemoG1Eqmc1mnXJJaBpi0xAWC2JT04Y5bWho20aA8qAAYdsi6nsFyVlFIIxWXCY9kNInKqzBZvlyzNLBNWKdKo90lnMq67doaBYtoY1SoZ3UZ964LunegYXHDvCmU6By1uKdofBCVnC+oCgKikKr/wZjysGIcrTCysqIM5srXDyzwYUz24zW1qhWNxitjxkOCgoLsY7s7u4xnwWcKzhzdgvnNPkBGKO2O8kwLip+/GMf45O/+VtcvXKNxXwh6lEIeJirwkw3luW6pSrddGBMX/ElCkkomOWdIwYh0g2GA4ajIQcHh4Qk1ewAg6rk9OmT3Lhzi9lsxs6e5StffZUXXvwAT1y4wDvX3unAdQHmHVZBKKkgtZiuHEZA1awYYjRR0tSNWEFNFzSLFlu3+BAI9Q57ew/lHr2jTTCbLMCXjMaeQVnR1C2tabHW0diGN9+8ynwROH3qDCHAfL5gMj0ghAWhXhCaRu2MEteuv0OTYDqvmRwuWNs+RSwK2nrK7P4OYVGTECAf60hG5ikp4oclo6qQ8RJnpLrFlXD5yRd5+oPPUZaO/Qc3uXX7Ort3d6mBJha0FJAcK2WFSyXnT27hz2xx8exJXrl6ki9++TV27+9Sz1sIgdg4Be9EJNaElibUVI3DG7hX14QwYz5Z8OTlJ3ji3CYrZcO1t/eZTiBgqZsa64ecPPcEp1dW2J5MuH39OocPHkC7ILIg2kZU57wHY0ltQ0iZBGK7qlySUZUCA7ElxJlYlsWaxcMpB7sHXH3tbZ649AQf/diH+eEf/RFeeP55vvrlr/DyV7/KgwcPaRsozIDkEyE2vfUSBoMHIjgBO1AQ0YWEjaJGlAsFEghJo2lZzGsKJRYVXhLaBFlnweKrirIsGQ7VdlIJOrNF3YN1wuYhtRHTiOqLcwZnLEXhqAYl4+GIQTVgZZhYrDQcHB5yMD0itIF53TCrm45gmUzCO08wQsDM6j4Z68+KF4Vaedm2V7RIIdEq4coVVhV6EiZZxuMhhS+EgJNgMj3i4HAPe1/2s6oaMBoOWV1dZW1tjfW1FdZWRoxGFdYMCDGxqsBCVplaLBbU+vemFmWFJgTaIAnFts0kp6C2cTV7zZy9owOsEnGqsmA4GDIajVhbX2V1VSzq1tfXGI2HDAYD1k+covAWZxLlcIR3BePxmMWzF9nZfZoHOzvs7Oyxu7vL0eGE6XxOUzd0cvuIakuiV0HMtmkZMMGYTj2mA3GsgLzGGsqqoig8IQhBK2WrSGfwhdMoIvXJXWexNpGrffOcSLLRCpisKnJNBBPV3qxVS4w2dkl1gyEFSfJatTiMQdbwkATETcpGsJqU1ZlHCgFXFBhjxU7TtcRQE1uJTyg8viwUNLGq6iGWpAB13apen3ygxDNGFYUklkLVv2JMmBRITuSok/arMBQ0uW2MKi9lkoz0b4gJY1W5oANg0BhNuzAmkpX7iknfE2IHGMUk48xbJ5ZkXpQ0rComhTYRU8A5qZQWZZJIMHp5KPHKyv11FdEZNCoc0caOvCD7ZEtWsLOOPnmf6KyRiqLEIKoXMQba0HSgq+3GmAAjiTwOe3uNbj+2FuOQvlcQIiY6EqaoNmi8kqxYHiYQ3Mp24Jk1jqR2iCD2lk0diC4JmUrJYsYgZDkleRW+oKlriV2NdFpH9E/IPIsyWrz3aiGTevJkR9LrFZQyqJGSkhN8QQEYm4DYSX2/L1sGzBT1yXE4RuIjbA8yCuitoGLGvfPH9B+nf7cd0JRBuWy5Z7vPklf2vZNBOI4jjvnz8/VlwlPqVXGMxst2CTiSvSifb3qGQK+4kO+9v74EmJsGdtKx88YyIrUMnIYQcI3Dbis4Hiz2+vNUv/WvUTVnWV0fUzoLbUPrExZPm4LEYjEoIba3LQ0xdiB4UgJKCi1R1RazUkcHxGlcINabNk8H7dyljmDpWXR5ySUCWrdm9eBkBivbNnRKIirWQg8r9g8oj6OeTJNjczqiiJxfbEcKcFYIooUvsL5Q9aSC8bBkc1yxvjKiGFT4ckCRCQMGUkhM53PaVtaQldUhvfUL5IjCGEPpPI8/fp7r195hd2dPyLSdrWlWDpF4y5BJWnkwL5Px0lLXKszYgaiynvrC4wvPYlF3/QXgnWNlPGb/6JC2bZjNDffu3efk6VOsr6+zv79HZ6mja51R8nieC8sAZj5/Lz/j0GZlSLX9DAkbI3E2Yz6fds8/YsRG1DrqOOLtvWd5Nryq6ldCON/Z3aMNkfF4VdTo2pa6WZCSnGHljCV9t7e/T0zQhECzaBmPBoys5VS4xe7kLlebJ9hN69plS2A7Sex9ndzjq+0lnuUqZ90R2xtrbJ08iXOGxeyQw8N9ZkdzAomAIyFqIaVzWCwbo4qPrByxuTriiw+3eOfOAbPJXJVhJCeRELvagOdBWONhWGW7OeAJd4MTcZ8UW9o6sHFig43VAaUN7O8vaOqWhBDejS0Yra6zUpWM6pqjgwMW0ymElmQDmDlPFLfYC2doTQ9sd6My9eOse4oxsLtzn93dh1jnKH3J9uYJnnjiCZ64+ASPnT/D+cfPc/LESYbDIV/64heZHE2IAZzxQkxPSghORvNB0E100yuQkBI2pU4hJYTAwcEB+wcHvHX1KoOqYm1tlZMnTlBVFevr61rcJPPBGc35pERR0K1VrZL+co4ppiQFSgGMkTgw6hrgnGPLbbLhNnjRv8g8Lrje3OBmfZMvh6/yTnyHo3ZKiFHzIv2aHTt+ytLeoLke4yTXY7Llpt7ysjpMs15z54VbVKHi9J3TVGXZEXBCCNTNgtlMnlVv1SY5j0FVUpVlZ8Udk6EsVVU2ZuJjOEZaEgKLKJrGpVg9E4FiijRtoGlqJrOp9I8WlBW+6NSWyqoS4lJZUhQeV5aMVI2z0Bh1dWWFk2aLJ2bnODw4YtfucXd0l3sb99gd7tHQdqSZnAfqCCV5j9P1RRR2+uJGlOPUKRchllzee7LaU1bykng4E4/7QMFo7qrf+7sNo9tUMrElGSDmjUuLNZRs3u0uS3sR3fCWHwZC/tqOcKN8NY0T+jOUxG6hU3xKqmSXyIV0ee+XPgqZ2EreZzKJV+e2xk8p0M33zsIl9zvm2Pote2KvUpa7JKv5yT30a/2xAtNuqOsZOxPz9PNjCFI4ol1tne2U7UhobKznhnwOy/udEqRkIHRDpHt21rne7myZvKPB2vEwrj8TWWM116FZzxg7C9tMcMxKYjEGPdPmdZNj997FHiz9Pp/zdN7ZTKxDz2ccCy+Pgbi5pzNRzZjUKVl1SnZ6Tva+X+O7Yt1gWHu4ysm3T3b3na2k83m6I5Hn78v7QhdzQoz9WbuDQPOgf9R+MNpngNe/jdcvgKf0z62DX/8Z+Pf/80cEpUftfd8O5mv8s9f+JP/Oj/8X3zY56L2aMVCx4IJ7h3P2BneKM/xG/VO8FS71++l7tIaSf7j4C/zp6le47K7gTfi2vtMR+VjxKSyRTzcfY5LGgOwuASk8z3Nxypg3w9O8HZ7kCXeNjxWf4pJ7c0l5/Tu7b4ARM368+BSvtc+xYPAtv//atWtcu3aNoigYDodcvHiRj3zkI1y4cAFjDEVR8JGPfISdnR0+//nPd4UBv99W1zXXr1/n+vXrfOITn2B1dZUzZ87wzDPPsLKywpkzZxgOhx2G/fttWZbjHOf4i/xF/jx/ngkTvsSXuMIV/h5/j8/wGQ44+I5Vlt7jSwHBOPbO7PHZP/tZhodDLn/28vHY5Ae8GQyn3jnFyXdO0gwa9k/uc+O5G7z90tvcf/w+oQiPtqNH7VH7HjfbWs6+fpYPfuKD3/f15VtWUjr12MmlBHTCmVzdF7rK+raVCv8QskqCRfIYy9XEautkpcLDYPHOSxJl6VBcFuKBXS8WtEEOrb5wWJNBrKifndR3TMBI1x3BU3eAtwa8d/jCUTeZcWw0UWIkyZ6zGDH2oYD+JyZRP0CTuCn21TJWLWFy8s8AIUlyqKwGjEZjZtMZIbRUg4q19VUOD4+o68R4vMFwtIIxjsFgiHEFMUFsE00bO6ugNmTCUexsmWLKRIYooFlKmiSQC0s5u0Of9PdFgStKSu8YFg5fWtoQsbZQsCypkoyo/eREUs4VWStJSWttV8koUtqibNA0DaGtIUEbI4umlYp4PXz3svOmA1x6ywLTkclyshzt0Q6csQZjvFQiGrEwKH3BynDIYFAwGFZsbpzhySfO8cEPXODMY1vM5jVf+9rrHB0lzpw+y5//Cz/D6rpWB0dHshJGuGSJJPYW+/yt/9t/zq/8w39GbKTStnCORSOWTSmJ8pExHLeBMX3FVSbr9SGlYVCWxCjKKpKICUSTCNGQkqVpaixQeEdZOOomYQsLxjMox4wGQ5597lkwRhWZshJIgXNiw2NdSQSqQcV0XlM3DaGpaRuxemsaUaU42N1jNjliUc+1WjkKQN8lLgLG9Eppq2vrbKyt88Llp/ngC5ewqoyVK9gLX1JaCxSMN09ifQm0eFoK1+A1vR+NBJSzOlHPA1vb21z+4IusbK5z9859fvfzn+WVr3yF2dGEsipJxqjFVyJgcbag7Cx5RFVoNBhx7rFTXLr0JOubm0yJ7Dy8x6JJ1LWlLCvOPHaBqlzBuMDRzg1271zHtjOasGDeRJpFQ9vC/tGEG3fuMZs3YpdmLQmZd95UYCLRCpGusjmRW2JNJMSaqiqphkNicgyGm1y8/CwXnnqSGBfsP7jNW1fe4uHODsSaFOY4K2SAJsDOziEHBxMkLZTXrYRN0BiIOGwwmBhJZRSwJIoFlzUW7wo2t0/w7HNP89KHP8D61gY7uzt87asv88qXXmbvwS5NrAlJQEqDJQZDG9S4pbMsjMQUujUuWxmgBIyuOpSs8pIlwcXCrVBVlKIUOdJO1l2tJtokYH7TtMxnM5pFTdPUYtmVgV9dKwrvhfykRIeiLMFZIfO0rVhvTKfMZ3Pq+YImhS5xGlRpKVt2pRjkmr0TqxQl1LQhiPJLSjRto/tEQb1odH1LbKytMx4OaeuG2aJhOp+K0l+MopykcxwlMRRFwWgwYFOJQ6J2tMqgqsTSErEYC7GhaQL1oqZpW+qmYVHXNEEUZISgKntArqRuGrGzamNLExtMMhAN1sp+XJYl4/GI1bUVNtbXOXFym62tTVZWx3hvsERK77AxUrcNIQWatmY2m3B0eMjd+/vcvfeA3d09Do+OmM8Xsq6HIMlOp0SJNtA2rewDyBz11uu6JM+sVRXCqqrAQFPLPiaAk1dwWsZeaBMg60nKGoTGi3VXG1SJT/aAonBCyjCRZK0o8uiDb9vAMUUKtcpAVQWsF+Uum8T2UMAE3XOsJHQzIJJIlGUpcUcytIuG2awmpSgkqdKTs86ZWNPUQrYrVAlJ+EWxq8QVWyFVu8r7c8gV5JayKCl8qYAcWOuUUNMqsKTregi6H9IRpuX1aoGkVd+Fc6ysrDAcjrC+xDnZO4uyFEW/kJhPpuzu7xBSi7HQtguZi2o/AoYYkqpPyn0U3kn8tpSQd0oyzkCKc5ZWLenAKiCihHNrVV0t4QurNpPyT4w9yJSSUUGJRNs2tE1DTNn2zJBsUms9q89f9i2nymkpRUm2q4JWaBtikO8KbdQKarF2iyjY7x1GSZtGiWwxCVbircQJpEwUMBgr8aWxUPiytwkuxdYihcDG5gZVNcDiGJYDQhNZzBfM5wuZ843M/7YNAjzG2NmURFShRtWZMvAZ9c9G55MtReWtKhzWeJpo+PLn3592b+P/bKx/ygCjgoRquwx0xKy+Aj9Dc8uxZJ6Caq1iUCKZEu/1fCWKApY2tB2R0nbzR8HIZZaRAoTLkF5PhMoWhaZT4sqvl4823XwUo1PTvS8foTo7M72XFIF/YDBf7dejvJlFVftzzlEUpSrYRdyWo/r3SmpfEz77QxS//hcozEjGgy90XNPNzxB6slEmHPXqSBmDShnBy1erN7+EzGrMLvGfKJ96a3RvEKJn7ousJGM70LEHIzORPz/j/JWJHEtHsmVsTKmzRez7Vnt+iZzUXXNHdtK+VPTVLD9EBXlzoYy1UlBR6hrgvWcwGLO5scbJU+usrAxp28C9+zs0dWJlvMpzzz9FWeVIP5886Z75rJ3zqc98htdffUPibCNAaaeAks/Fx8YP3bpOBnUVfM3PwFvXgazoWBc1Q0lqR1VoE3VKSxvRc6rEioUv2D6xDcaI3an2Y1YCcaqWGpG1rVECkpAcWlWhk3VqMVvQNgspmon5LLr8NBQITVLMUVYVg2rAR56Z8b/92X8pZz4lEmzbXQauZWhawFIOx1L8k1P1JmKJ3RRtVXkytInhaMj2ydOUw4qjoyk3bt7lK3cMV2aPY1zRjb1IIiZZD0TtQgDqx90tLlc3WV8dsrm5wWA4pCExmx7RRgghKwCt430BJlHPDpgfHUBsmEfLIjhCiNTBcXOxxpv7Yw7aSohyxpJVRSweawKPuduc97dYtYvOMskghOA8BhMW5wdsbp9gfXODlFoW0yN2Hu4ym80QVoLkNb4SP8JO2GA6q6kX9bFxmf8UjOyrVtWns+U2ScqOvPdcuPAEF5+6xLlzj3H6zCnKQcmt27d54/U3uPLKa+w82KFuayWMRbL6kNhyZYK7RlHdGO7XojyBO3WQnAbQvw+GQ7a2Njl58gQbGxsMBwMhx3fzJXVzJOje2KhyabYok7SBzkT9/GyFi8lruCMg5J4H7QO+Vr/C7fY2rzSvsBN3iCZfd2+F1RWi6Tre5zZYivNEkQeN96Kq+VTTiqe/8jQn5yeINjC3Cxap5uH2Q6IR8rNrPOv31zEYynmFQ6ynB2XBYFBRlBWDwQBfeFWtRM9noSM9xRC7nFHbrf3H1c8AtVJD94RMONNYTPtHlHNVbWkkRRFVJXExKeGsjJtsnx2TxGp1mLNr97k+vsNhe8i99XtM7YyFXXDMBs2oKrXmt1K3xejuq+thvmbnpCCrK5JAy+WszC9D0r2tX+tzzJSSkL8hdUpMneVgXkPzeNEtb9me5HisoFk/pzmuTAxUxrKksEy31yTN2TiXlddFJTroWHX5jGP675KzS3+N3R7TzQPtp05ZlS6XJ+PQqS2b7V9vs0KSxMdtXtdJ77GXLhG9SWzf2ubZrzxLVapqt8l7pyqsJlGiv3LpNW6ev6kqkIGsIJs0zk9Ab5HYq7IvK5blc0J3LzYXrabuGruzm8lqYwnjeltUyUF0mVAl6sjnSzwt8aD0i75HY5n8TGNKui8ux4jZJk0J29hjcWrey0Why3bPZynQ6nt36QyXn3E+V+T+zeM3F9kW3lMNBoDBW89wOuCxr5xlfGtMbNQeMoSlOC929w05xoJlG19jkp5Ddf47pypvFimDMHz8H/0j3m/t+w2ivO9aC/xV4O9+G+85B/wucBL4f//v4N/7v8Oigkd9+6j9ALQfufRZ/ua/+X/C2BwPRJ5xr7NijhibCdCf37+TNk8VX2w+zK/Xf4IWzzeeF2J6/uPFp/ip8l/IWeXb/N6U4CitsFD1pjpVvNo+x8vtC9/Ahi3hCPxw8Xl+pPgsW2bn6z7z272GmAx/Z/bXuBaf/Pbe+K5WFAU//uM/zkc/+lHW1tYwRnDfq1evcv36dd58800ePHhAXde/r+/5vdr6+joXL17k8uXLnD9/npWVlaU457vbNKribd7mn/JPeYVX+BV+hWtc++4RlrSt3V/jp//bn+b026dpy5bZyoy2bLn2wWtEJ99VzkoufO0CJhnGe2Ncmy3Ff3DW9UQiusjeqT3efultFqMF73zwHaarUxbjhbzoB+d2HjVtj5SU3octwdqDNX787/84F752Ade679la8V23ezt97qQe2iQhUBQiFb2oF5rAkYS+944YAm0MXeKrKIQU0rQtxjhN2BnatoEY8daBEbuuTGByriCERBMaAeG9o6oKvBNlh/lcwVuSKiBJR7ok3gjBpM5NVhQI9DuWQHaAoIwTp0l0gyY8NCkSksEkg7OA085IuWpOQHDvBBTJFdEiQCREK2M8dd1QDTxNEnJVahPWOEiWgCSWpQLcdiBg0mxDTvL2Tykt/Ve+pzv80ldK9ohCfwCXg7fr8iCp+5RlIGbpgL2ceE9dnp+cTOisW0x+/n2f52RCB+Ek0x22M6kratLa5NvIyRyTVbP0jjOQqNlFY7IMuRyerUpaYy2FLynKivGoYmWlYjQc4IuSqlzh1NZZ/uq/8Rd59oWzKiTl1JYOrPb7jMBvfPoT/M3/8D9j//6ugEGSaWSxmBHbDCyYLnmVNJFpk1R8NqFRJQatlraO9aGAR/O2JjaSPMjJLGcti3ZOaoQs55wCO64gBMNwOKDwhuFghQsXnmC2mHPr1i0hUkQDJioBYUCMNaORZ/dozqxpcY2AGA0JQ0NKlhSDqk0Iu12S/a3YR+i4y1Xd1li2trapioKL587yoz/6EqbyFNbgcvLDFiQjYMagWMH7kmQaAgFDpMLgrIPCCbmhBT8YURVDttfWOf3Yac5cfBxXWd68coXf+c1P8urLrxKbQFl5iqpCtXLkWSclz0RD20QK7xgOB6yurDAaD9naWsMUJTFVUBSsb2xT+hFtW7O/e5eD/R1savEENtaGvPihFzj52EmOJlO+9JXX+PRnvsD+zgGFE8DAWoFFsmqAQSxBSEHURrzHklgZVayNRyRg0QKuwhUVTWiJsaau5d8QakiiCiKKH5YUkpKDAtZ4qfhDCG9RZ2NW4UomEY1UVpiOBOQwtsA5z2OnTvHiiy/wwovPMVwdcf/eQ17+8su88spXeLi3T2wC0GCCpTFREnUxQkgkTaw3scWSq1XVGjP14GHOJGfQISkSYEgKphby7ApP6T0kIZBE+sSkMZIwns1m1PVcCJlNINQBYy1l6TvrjditYUKCEnsoqTJvQ0vT1BzN5sznC+pFTd02QpAg0Ya2ByqcQ2F/uYUo67mM+ay+YWlCK9YPCdZW1hgNR4SmYTJbMJnPaHTvsh3ZsgdEMsnCYnHWUxQVo9GY1ZUVVtfGrK+tsLo6phqUskcgSm0hBBkjQVQJmsWCumnk31YUCpqmFRW9KESl2AaaRtXr2kAIqUtqO+8oB0PW1tbY2thgbW3M1tYa21vrjIdjBqMK72Qfi7GRyus20TQ18+mMncMJ9x/ssvPwPjsPdzk8nDBfzJnNF9RBLP2yYgWgSm5kpLSr7M6APilh5AvRBVMeSoR60WCMSN3HXA3eRiUcAFYU64yBQVkAIh+Md6KOk/cPkfjp+oHQWz2gYygTGjqCh/cCKCSxCowJJeAgY9B5seeKgaYWghtG9qQOHLCG0AaaeUOKQnYRa1m1FUPWUpeBMwUjSUnmRRIVsLIocNbjTG/Z6ZbUkebzOYt6oWuCKF3JjQngb3VvFXKggBerK6sMqyHGl2oxCkXhsdYTY2IxrXnw8D51mFMMPCkFjD63pA83xkRo1PrVGLCiGJVt9EJMeO+pipxxVwAwV/mnrD6Tq9p1PfMGX8kmnEGemDL4kIhNEpvamDob2qhrTLaFtF5IYSEqScnI74UQANYZUR1I+XsjoVGiIlHVTeTFztue2JhyRXMmqAtpVOa7zPtMuHaFpSgdg0ElIHXd4L1nbW1MYQ1r4xFrq2sY4yms2H20UWLOxWzOZDpnMp1xOJmymM9kTkexxBN8KQMPStwgA4uyv2diqK9KARZsgUmGf/m5z/J+bOO/Ne7XZOhUNFutrsvV60bXjZCVxZYAu34fyXuJ9EW3JtNjftY6taqSz8k2vDmGbVsBb1OHlitQQ46H3w0K9qBVjgf1dnSs6HrHMhDVA6d6iV3ETgPpbyfMA5TMoDG/Tqc8pkEKBFxhiR9KxJ8HJiP4b/4teHCyB3j1mztVz6VjnoR4qT8m6DUv34XSFug6sf9l3w82351Z/uRjL+zINt/g7+/1vn61TstfSVYB4F3fmPuX1G3l/fv00m1/eDkODubxk89KGt91Cq/WqS2Spyi9EGStF0XC4Sof+tAH2D65qkcXvX5DJybTEnn7xtt88hO/w3w617hA1pq2bWGp4CUTH7pnoXh3ttHqyUqWgde4PQZRJuy6T0ZUSC0p5HvIN63Wt74Qm1VXsra+ThsCh4cHqkiTny0YPKSALyzzuqWJEasAv6hxZnWUTB4TEgiIUksPJufnKP08HA5xznHhbOLnf/4W1qvqVQJLoLAtYzNl7Oac9ods+UMwQb7HJLzuDygpLkWwXmLfYTlgZXWFlY01rDc8fLjDl68e8uk7m0zCQNV5xTotaf8asoBoYiM95IniBtvllEFZUJSe4aDCOEfEgZWCImdLYgws5kcs5mJZbYkMq4JTp08yXhlTNw1X7tT88ttnmM1qVVhMShKg2z9KGtbtYT8yrWXVHLJdzaiKQsKYCBixU5fx0DKOu9CdNeWscCud52p4WvMIvRpmr8KxNLuOLQF5QcrkEcdwOOLDH/4wJ0+c4PSpk5w8dQJfFRweHvH2m2/zhS/+Ltdv3CA0LZiIiWKfHlFF1iVUvLfaNB2xSYZQzneo/sryeqqXNBgMeObppzlx8oTscVmxOlsxZW82bXLGbDriS1YcEfsyJRDFqDaP2d5IVaFJhBSYxSlvt+/wTnOdV8Nr3AjXmaWF5Doye5j8DOW6u7U6/yqPfZNVNuV6K0q2pycIRcvh4EgKFFLd9QEYsXFIMD4Y4xrH+u0N1h6uMZiL9bT3atNWllRVIfZwhde4JxPHhUDRZgu4IAp6WYGKlFStUVRts0JeZxcXszrqknK0c5SlqCsNqorBoGQ0GqjSUoFzeZz1imcSuzXMQs0uB+zaHW6t3mTPH3AwOKChoVHC49L2Kz3Rqez1Z808b9BcUjeK+w1LCU+iugRqD7ZEbsnPTuJrJbzHqOfYvHerUqdZIj0pSambPN28Sd0YsMZCdxTSnKCOVecy+UvIZVmVPSfYlkm0KaVOGTQTR5eJOh1BR/tp+TqiziHvnBJslBil/WTI0zPSNE1HQsJIvlP2oEzy7jftrdvbXP7KZaqilNyF1TjbZmtCOdO/9tRrXD97XQhDSubp9ki9DJmXes5A4za0CEbvzzu1dU1062bO4ebPsnmm6eN1nj5mSVlVUAlAUW3yEvK8l2I+m0lKpncOkGVMCUL58k1fxEJavpc8+XtaulGyUe70vlhXOmEpUtJQy3Tj3jp9ftaqhTpUpRKorWU4GGCt5+SNk1x4/QJ+JkTcEEJvLa/5g87OvVu2Ujcm300izc/CaA7BKMHfYPjHj0hK7/+2AD4CvPItvt4Cfw34r4EHJ+AnfxNeff57dXWP2qP2XW9nz97ib/yN/wpr+zOHp2VsJpyy99i2D7nsXuMJd+07VhuKyfBWeIp/uvg5dtL27/laS+Bp9wYfKz7FBXcd922oKr1XSwluxPP8f2f/ppxD3vtVjMyUs/bmsRXxjL3DY+7W73GtiXP2BoU5bqv1ueZH+fX6T/y+rju3zc1N/spf+Stsbm52e1xKksO9e/cun/70p3n11Ve/a+pK79WstaytrfGzP/uzXLp0ibIsv2dkpdwikQMO+Cyf5Qt8gV/hV/g8n2fK9Pf/4Ql87Tnz1hnm4zl7Z/bk/LKsNhTBt4K/nHznJOWs5OKXLnL29bOsPVyTWO8HrOV7PNw6ZO/0Hlc/fJW9k3vsnNuhLVuS/c7m96P2B9sekZTef+3ZTz3Lj/3jH2O0P/qex9XfdZLSY+dOAb0sv1TNG0JspdovaqWv96TYMm8aWgXVR6MhReGYTmfEKIBESolWK/O9kk5KbynKgkiiqQW0dc5SDSuxWYsNYGgaUeIQNR+xCwGDSUnAvWQIJuGMHMJFKlcVNPSgaJNcB9Z2ybkMjPQmKQJnW2twmK5KTNPYRD3IWzLhBvJhU4uJEcEDy2BYEq1hPl9AKxL5sXd0WgIylg5dHViiCQNNnnepFtPvRPIU+0qo/KsMnsvP7NKfczJp+X3HB6XpkN+epNSl3vRzuwN7ylLWfVIrLlfF0QNKyy0iCcIuKUTqSUrJLAEWKElp+T7k71Z/BgbrCoyRRLm1ibIsKMoBo3LE1sZ5/uIv/AX+1X/1j+ELq8QnjpGUWgP3Dh7wH/1H/zG/84lPE+oaIhSFKCFNJ0dS3aadsEQjEzs9I3YSkqQPBGqsMZSU+HKAcQkbGlbXViiHA7bHAwiw18y5dfs+zQKtUM6KX47VlSGnz5xgd+cA7wsee+w8Ow8PuHHzFiEuUN8NDAWWJKSpKDXDNhYkEwh5PBiLSaLAklKiKD3j8YgYI5PJ5FjVIIB3BWtr6zjg8ZMn+NiPvQSFJKRKV0iSyTlc6Sl9iTMOa50QCqzD2sTp7W2e/cALDNY2iNFwtL/P9tnHMEVJqFvuXbvOwcOHPH3pPMOVgnsPHvJr//y3eOPK6xACxhWYsugBtzbQhMB0OsdYy2BQaWVnQVk4VkYVLkGIliaJnLc1FbEVIlZIRirLI5Q2sb25wvapDVJqOJodcX9nl6PJHKNkIauWa66oWF3boKqGlEVJORjiPXiXZO0yDmcK5vWcm7dus39wqOC4KFOlJGkpayBmKzV5VEp4UFsflXY1iCJZbtZaqeAm0TRBE3+ZMCj2fAYo8YyKMafPnOZDP/oSz714GesNN27f5guf/SJXvvY6k+k+JkoQLRZKSRVYgs7hCJnwmeRaM0lp2erL0oP5ydAlh40Bq3ZwpfdUg0KBhbzeINZuVlX0kqgjhVYq8xeLuarGKUBnFGhe6gtrxS5MKs51fQ9y8Fm0DdPFjKPphMlsLsn5vIjZbCfVV9YmEt6rZaLMIiUEJFaGI8qiJLSR2WzOZD6V6tmkigGaZG2brCwjSUshniogovuSs6q0NByxMl5jfWOVzfVVxqMBZeEYDEpVfpJn0dQNdRNoQ6Sp5yxqUUNrQqRupHK8bQV8aBupnBbFNCFv1Y3YYJVKUBkOKjY211lfX2dra4OtzXVWV8U6syi8VN0asZFoUqIJgVAvmE6nHOwfsr+/z627d7h3/wFHB4dMpzNqJW6GGImZXBqiEHQ0qV8VXm0xlZAXooJGYj8ZQxBBQ2f7SvBWFL9SEussXzhRolKictu22KKAGGlrURexhZcdOMm+0lVbJ7HlALpkeNPIuHdFIUo70I23PD584ZBRHjW2MZRlSRtaFk0jSfBWVKaapqWtNY6wGiM5SX5HBats3iu9U3Jtv086Y/HO4V0hwCJWFin6PbVuGmbzucx9C52Ev8ZB2bbCZLTHGMbDEcNqgLEyBpyVCidrvRDj5jW7u7sswlzsVVCyImB8ruQ1hEaAJKsV696JWlQIkkC31mKVhCiWZ6bbK4MCElnhKCN5vnT4UpMumuhPVvbyJNIMWvluOlshmVP5M5JW1mfysqh4pfw7qzYxqGqa87KO6BiDtESOUiKV2uF2/apxmZBackzUgwpeSW7WQVk6BoMBKRmapmU0rNjaXOfMyRMUvqRpArFNeGtpgsH7AmcUVDNWLX2PmM5mHB1OmU7mzBd1R1ASKxclB1pL29YSk1qLLSy+LARELAfENvLp3/kU78e2+rfG5D4kgyJGydnWKl5mO8J2m9XGMEKwczLfBKi0HSiLKpIZkGfvZf0IsQf7fOGF1KRAuahPpI5ssRx351g8/3gZsE1RY60O+DE9CAc6zt/jqGeMaiWm7sxhoiH+KvD5dMxZo4OtM+YWBZj1P+ZJPw1tGeBX/jTxMz8MoT8bdADqu7/63X8z+eaW77Wfn2b5jR0DqIPg3uN7eiD49z7i5nn07ov7uivszj4dcYtu9n3dV6cMRi7h0YkeyMzfe+zQm/es5f/qHmGs7e5EYhaLdZ7SFQwGa7zwwnO88MKTanOr/WfoSEoJmNRTfvM3f4vrb98QdRUQBcYke/W7C1OWr9JkdcFMIiAIYI2QpbBgY6CsSlzhGZYeIsxDy+HRhNgaHeeZgGQoq4KV8YjZbIF1jtWVNaazOYcHh0J46Z59tjpP3VnHJCUhmeXnF7uXWWel8IFEXddL96RnNWupygpj4PzpyJ/9szcxTuaO03ObMQbjLM46vEn8UPEFRvZIz32wMhqyffIkvpJ1tp7PGa2ugnOkEJns77OYTtncWqcoLEezOR+/MubKPauHUYdxtruqpMoyTSN7S1UYTvhDTvpdtooDSu/ldclIPANY5Pk9aDdYpDK7JOMNjIYFj63M2Yur3G+G3JpUquDs+nFoDMY6qmooxGHrKAvLqp1w0j/E2ySvNpZ7zTo3DgzzeaMqfglMpKSmUxRSsL1NjiYJWG1UdborNjKpI2OhxLxM4gi6F5rurC92qKPRkFPbJ9ne2Obs2bNceOoCJ05vYyzsHxzyid/4TV756sssFnOdf1psIYedDvwmX0v3miW1tkT/99Q9lS6vgK65g+GQEye2WVtd5cSJbYajYT/PdX7mvUOI93pOCYm2qTuSi0GLqrICN3nZFmKA1RhAvj/SxIYH8SGvhFd5u32bN5q32At7PfHKoqQJ9LOX8iF2aV3QM0VWgJb8UBASQYpLW4eSbpXAKH9OFIuSc1fOs3ZvjXJekgnqVm3aykLOwcOBWFd6tUQ2maWo/ZH30hiDnIeDxD6d0p7Oh0y86IoGYq/WZK1Tco+lGihpaTBgNByITVxZyD6LUZK9kHFE9UpIZLN2wSQdcXt4h/vmAfdW7zGPcyblrCdP5AebdGxq/7pMEtZnn/f2vC+HKGVNHdlc47t+Tza9gls+ByqB2Zisbho7MvJyXJCWcyRL+bTuTGxtbzsXczGMLBDWGdCCSKdjwxohzzVBcj4xZPXOXkkpr4tZTSeZpdhCYyBMXzDSxbII0bYj3uaRmLpupVFC3/IWmXehXNSRu2D79jbPfPkZSl9Ifkdzt1JYqsWaIXHl6SvcOHcdtPAn5WRnR8Qy3bprdG0yut9mNa1MwkpZbUmVNvNjzLG5WdrPjRG7dl1ytC+gVz9LWpgk9xP17JL/brpr1HiOPM76eMjqc8vzP685Xe4sLT1zQz8uc+cutaz4hMn7f5/bwEh6WgpLrBK3YDCoWBkNqcqSlAxmZti+t83a7XXG+6sMmkrXTTl3ihVrTV031HW2Ze2Jz1GfTadGlYmq1nTnVO+l6OEf/P2/z/utPSIpvau1wL8P/BfwTcU7LPA3gP8QOGnE4u0X/12I34gI8ag9au+/9vUkpa9vBTV/ffhfcdrd+46/JyTL35v/RV4NL3xLr/c0POXe4hn/Ohfstd/ztW+GS0zSyrGfGSJPumu8HZ7gRnyct8OTvNe5/t2toOakvc9lfwVHT/x5IzzN9XCBeMy2LrFqDrHvWiwWqWTO6Jt+17fatre3uXz5MufOnePxxx9ndXW1i0lijHz84x/ny1/+8tdhUN/tZq1lfX2dZ555htOnT3Px4kU2NjYAlmKk702bMeNN3uRX+VU+x+f4JJ/kJje/p9/5Xm20P+JHfvlHuPC1C4z3RNX8B3kfbcqG2cqMm8/eZPfMLu984B3aquVw61Be8IN7a39o2yOS0vuvVZOKi1+8yJNfeZLTb59meDD8nq0L3ypJyX+rH9gfVFWNKEXaCN5ZCi+HU2csVSHVvsZA04rNSlVIBaoZlqqOJNLcxlpQcLvynrVxRTkccDib07SR0hWsjgZUw4p5vWC+gDYF2ijJRKPAYj4EdtV7RmyQvDNiFwS0rVRC5cOvACNWkpWJrnofDMkYvLEKMqr9UIRaLX6CWhRI4jIRlAiRUk6upe5SUjQkE5nPFuBFKSm0AQFRl0g4y+zupYMt+h1d8srmzIxWGJFzjpIEyfeWPyj/vEcj+vvvDqM5w0w+KPff238mXXKgJyv1EtL59cuJ9qVP0sR/tlZZ+r1JGHIl8HISSV9/7FNS9x5JeGiCIyVUG5mcQk4JQptEIaQN1HXLvLnLa199k+ZP/1HsRtVX0YIoOsWEM4btlU3++M/8MX73X36Z6U5NNFKd6VTFpW0avcdc7W5Bx4TYFoJRuzAbtbo4JkxoKX3FoHI8efYUZ594jMJEfvM3PgsrI6pRhTORyaxdSusH5vMZDx/uiAVgE7l98wanzpyiCRvcunufJhq8pM0FHDeOZBswAROd/D95YnIKJBRAJKgCzf5+DSlbBOXqQRl/MUUOjw4x1rLdrBMAbz3OFUQ81oMrIr6Q/m9TA7HBGLGUcr4gJUfdWB7bOCWqUpsnadqWFCLOw+nz2wzLlvt336R5u2U6nfHM+TEntp7h1t0J167dpV0sJJGb0MpxS1E4vDPEdsHDwz2qcoQB7qdE8iVlNcDaFu8MnlLIDGqeYgh4Y2lcxd2dwK3dAxk5KeBMwEdLWweCNQSfcCaxslLyx//oj/Hk05fwVYErRpjUQpxjEeUckiPGhp2HD/n8Z7/A1beucTSbSmI4JazaKAoZqU+cOSuJR1FREMtMSTzaPtmolgppOXlnJJEedR5Ya2liw958j4NrB9y6d5PrV6/zwx/7Ec6du8BjP3eWSxdf5VOf/RT3bt0h1kHsx0Clz7N6iJBwYq6A1Hki6mORZIUYlStvnbVd9abMVEtoE20MtKZltphhraMqBpSFp6oKrNE+MeB8QVFI4l7USEaEJjCfizpSEyIh9etMCALUN02LJakVKJRVyXg0YNWPiWmDummY1wsmkylHkwlHsymLttHSedNVDBor5EBjRAUnqVqJc0JUXdQLYoi0ocY4KCqv5AK1DEtCksjrpJBQk4CKXgGjCG2sCU3LvJ6xu7/DzduGsigZDIaMhyM2NjZYX1tnfW2F0ahiOCoZJhmzbVORMDR1KzZxdUPTNMwXC5q2lT4KYsMmymiRRb1gPq+JMVHXCyaTCbt7B5TlbcqyZDgcsra+ysbGOpubm5zY2mB9fZXBoMJ5AVOsGzAerbGxeYIUA5efe47JdMLk8JCdhzvcvH2Phw8fsru3x3Q+F2uwKNaIJgWx0gtis+KsWE6ENgMwUiUqCoq9QpbsXaLUY5IQnSXBL7ZjTRNomoBLBp/VfoDUBrxW3AZ667dkEt5ZyrIkxZamblQ9yXT7TF9pna2VfF7ateo0KowXcaXDG1Hkye81ug8btcXrQLEO1E+4QtbgRoGiHrRMoFXoJgccug7nRHK21/SF7211ln6fdA1IyL1KFa/EOJp17/ZoIc7ptRlNvLdJyeZK3iVpRbHpyYK689lsc9gBnnn/FkAsk5OMU0sQA02AJgT9zijgdARaVZxJau8QIxhRRwxWLJIyIBaTkJKyfZUx+RoTKSSSUctHs2R914QO+NBVDIzGhlYBrDYQmwwyZSu4JUuSPmAhxiBWCAqAhdhgtbotBCGgFkWFNWLNtbe3T1vXjEcrDIcrrKysiHpoI2TAaKBNDd54RoOC0XiDzbSuqmaRydGcw8mU6XTCdD4Va8umUdJEJWuQMRgn6kA+q3S935uhI+RkQNoaJZXlfUHHn4GOaO217413xxQqBLyT1zgnZxHnPXUrSl526WchilJbJleiYFeec9BdFBk0FoBQFQ4FAyKTYgwaM9k+du7q5I3pSFg9kV9VVZF10TjgT0J6COnNHOvmmD3H1Wpz9qFE+zMtlIZ05xTpCy/2w1o2o6V3L8fT+b76M0enFrF8PjiG/C8/rw4S7n+Rln++3FIH/h17/9Jbj51TQNfi4z/vFEoURTx2XD5GlMldnZY6YukW8u11mGD/fEz3wcvvWb6WbBEjZ0gXE/MQaeMRD+/vEpoLGOfe4ygv/TssBjz51BPcvn2XZhb0XNiD6jGjpryre9DYLsq4E/Vd2TNJCZMiFo/3ho3VMasbq1iTuHb1BqYUZZVoEnXTqzWBFAdNZzOyBdXh4QHj8Zi4MuRwMhFSf+rV4zKInExSS2ixt5G1HjKKn9Seb7EQi76s5rc0DUgpsahrjDXUQaw9vdeCEcQy01gB8y2JTXOfgqMOnJa1wRKCYWUwxhhLNRh1SinGwnh1iLeR6dEOTWO4ujgNK2c4X7YcThr29o+IoVWAnA6gtk6UDkNI3JgPuOMf1/tNJCvrhljDCUnJpES79ORsJlodOV6eqNFjEoUlm/RsmFVWUmJQVjz5+Dk2tjbxg4qzm3DC7zJZ+RO6p8ra90SCs/dmvPXq69y7eZN6URMizCm6sZDP8nTXYpcGkunJACiJ00A+J3fTI5NClnIDs9mUa9evce2dd/jaay9z8epFPvqRj3DuwnnW1zb4Mz/3Zzh39iyf/J1PcrC3TwpSZJFMTwqRAof+FE/qSYfd+Ei2m7M537GcyUgpMZvOeOed6xigKD1ra2ucOX2G1dU1NjfWlfSR4xOrCoSSmyoKT0pCfJezZ1jiQ2W1lYRsBakjpzhrGPiKC8V5LpjzNDGwH/a52l7li/UXudK8ziRMmadFN3MNy2p4+bMMpKjkGtPZtoYopEDrLW4JsMl7RVpa89pBw7UXr+Jrz3AyYv3uBn7uqWYVg8Mh8/kMO1Fyn/OibFkJeWigxCHnPJUS0SWPV3axVFTl09CKEnpUYk9WYcpxZtO0Yn+rf17UNZOjKdYJWaoqS6pBxXAwYDiUf4tO5QmMd3hfUqYha3GdM+kxUXy5t2DaTrjj73F99SZ7xS57/oDWi41k0rFis0KT5qIMkrswqhiU1SUzIcYYQ9Q5mMlzzjlVV0/d2hFaUbfOpPYuJkm6eGXlbJkhZIV2o/khWeNMP6SXt1El+9j82csxS5JCL4ued5be3E9hVY/UuChvrjnGj0rEwvQzpyf/5K0/D3hDX9goe4vwQ/NiIPea1eY0XBbynn5f/p7U/TfnC5HvXAo1jK5HMecV8jkkz23yfpv3e9NfS+p7IYSoilG6f6tgW35hvvXl3IrRf7q+BozRz8EurTWmO0Mti3OJErpeo5H/LysQZRIcmO7awEBIMraWz2gp0T8D7ealx5Jjy/8/e/8dq0mWpndiv2Mi4jPXZt7MrDSVWbbLtjfVU22HM8MhhwRndkUOxKXIBReUQEkrCFqAlCBosSAoCavlH9yFpD8ELCBghV1BHHKH20uOn/a2uru6u7qqy9v01+S1n4mIY/THe07Ed6vNFDnT1dWcPIWqyrz3MxEnjnnP+zzv8+TXqqhSUa2Q5ayR59w2DUch0BQNRVlRDEp279nj1qU9zMRw7pWznHjjBNqntaAqiZVlNJIh7FpPnXIHbdtIrsD5rh+F3CTX5wuPKhReuRyl3W7v9GaB/wJ4AfijP+G1fxf4p8AI+N674f/zt28TlG63n7sWgiIEjdY/WonH4LjfvMia3vu3/o4mFny9/Sgv+ne95fc4Cl7wD/Civ/+HSEBvbj4VJx9vka+2H0ukore2/ppqwPvu9DwwbLl54e8TVNH97i4s7oZm7+o1plubHQH4MK685Xv6t207Ozt87WtfQynF0tISH/3oR3nssceSQqTmr/yVv8LJkyf50pe+9FO1fwshsLu7yxNPPIFSisFgwPnz53n44Yc5deoUZ8+eXchD/9m2IUMeTf84HDe4wdf5Or/Fb/EFvsABB8yY/VS+e7FNV6d88W9+keHhkLWba1x6+hLDgyErOyusX1/HthbbvmV6wM+8FU1Bcatg5WsrRCKPfeYxmmHDzbtu8sr7XmH33C57p/doBg3H+Hm32+12u3WtHtc897HneP6jz7O0t8T7/vB9PPi1B//Ua0Ek0gybznXq36S9ZSWlu+6+sACGpTcrRZFAEaIoAYg3vCQZQ5CE37Aq0VoSMiHCrG5pvQekYskqw9JwyGigCVqxP5njA5TGMii1qI4gqiJN66kb11edoDppXmLs/66gqixVZYkojiZzmkYSU9kGxBiNLQp8CKKAkN5bDQpWl8fMZpNk/eKFsCCcK0jpbeHFyOE0K1nIoTdCBliVVBihQGlN6z2uTiQlnRJRKRl1LEn+Jg90ObsvZtpzwNLLPstrj6/A+YC8aPnwZpJS/7PFxMqbk/9q4TN6GWg5WP/o1r2+y52kxEbsgdvj9/zDQdjiz0I6JmeCWE4I5cRAfvbGikWPc6KWYJUhVhUDvcoHHvgQ/+k/+l9x7u6N7nOOWURECCryyubr/KP/7P/C09/6Lj6AciTgOTCZHqKBqqqYzWbHfOiVEisBHwJGaQoMXilM4Ti7vsJ0FqkGlpNLJe//4Lv5/gvP89RTV2iCkySfjtStkAqIKgHfirKsMGUhqk5aUw0td5y/g2s3b3Lz+i2Rh1ctxKye5AjKExHrNRVsAja8qE1Zg3cuPXOxfyOPH9UneqWPBei+/8IFfvkXP0o5qLDaoKIoTmgdpIJBiT2YqE1YQDOuKs7ccRpdDFB6AKFg7jyxaVF4GtUSfE1wNa6d4lyyD4pirdfUkemsoWk9R9MJzbxmPp2jC0vwgUJbUDERCCVZGaJDactgMKQaiOJbCGKhFJSAwhpRR7PWEo0WxTQiOkRU1MRoqF2L1rFTUSuKkrNnTvOB976PRx95hNH6mgAzrk1HCAE8FZ7gHU095+UXX+bb3/0+1zZ3mdbzJONtUjJOgJ2Y1q2IF1uroGhT0tXksY5UXHZqQMp3JKVufnhRr8qJLa0ibu4ZViucO38nH/7oB3nXg/dSLRVs3tri6e8+xYvff4GdnW1J3EdSpayA5xpSVS0pCRo62xzvknINaU9IQIkPQYAKrYRUFCMqBHz0iYAgQNNwWFGVhiKpsahkE5IrL/NnhiDrb9M6sUKrayHhuESoSmpOtpAqS7FsMhRVSZEsQDRCDJ01NQeHh8xqscxqnEiiu0ACiwMYsWhTSZ5XpTUuZgJi6whGlH0yE1UZna7ZJ4BBCxiS9wMlgJZU1UaMNnTWQknKTbAKjTEFRVExHg1ZWR6zvrbC6uoyo+GAwXDIcDCQFHMQFYbW1TRNi3NC/G2blrptaNoW1zrq2tHUDRGY1TV1XffV0kn+3egMaJQsL6+wsrrK2voqJ0+ssr62zHg8oqiqpI6TwSwBSVUU8tN8OmPvYJ/N7W22trbZurnFrf09Dg+nyTotgZxotBE7tRjE8osYsUmdTRQTsyWgdHHwAast2kpyvbO385FyYLFaFJPEclL+3jRi1yZWpPJ5RVFQlgWubXCtl+dAUtjR+jjWnuIDAOdFDU2sB2QvHy+PZP+Pisn+RBRyus1TwBLvHSH05FZj5f8hROZN06kFhhDQBgZVhUJhjRVAmn7P7tQJY2TeNkLSoycoAcmaTUCM8aACIp7IoBpRlQOULmR/1KTEgCXGSDOvOTjYo3E1JqmfOedTpXOuDhaQIFfWirqN7/aITALSnVWbACQdOcqFpFyVFQ8BFTFW5m4ugMvASYjJjkfneE3TNIG29WgtfZGloTN5i9ADGZGIsVbsA12grdsUg6kOMEIJMC1whVTgO+fpq6dzfCSAyCK4ohIgJ/YdJDsZxWBYUJWFkEk9CbgzaR1XGFsxXlpiUBWUxYCiLFhaEvRAa43BULdiV5j70fso1m8x4FzLfDbn6OiIyWRCXYu9ZRu8kFwLIeJpNL4JfPub3/qhmOqd0Nb+y5WOMNcHiAIKZ6WzXGWuyGAQYqVojawn6f1tUnkAOqJTaQsKK7H1vJW9LRcuCNlQ1hYfQmdzJd+1EHPGPtbM64FNRQ9N42Sv64DS3vJEFAl7AN5aQ1WWONekPTYm0t9i9IsQbG4o1H+rCJPQK2mka4kRGIP+expOAkcrhH/+7xNevlNiRZXBPsgFE/1n94FCJiIcB53eFI93QKHi2Mt+UltE1KEDCrvPX/jjm3/fg7Hqx7yfHwbJjt3iYhD/5qb6/y78frEE4vjvVHfbQhbQKG2EzJZjNWOxuuLsyXN88tMfYXl9dPwz4uL3wO50jy987otsXrsp54W8nhBp2xqF7F2yRpJ5P7J2pnVeK5XiRIUygaVBRduKAuSwtJw9d5qbOzvcvLkve5FWaBUXLIX6fjTGdMQqjahPLK8scXA0YXI4S32dFBaiKOfJeigkdRWz2lm2w9QdoT0Tio4/x4XzWgJ0N1aX+Bv/k03OrO9RKs+AmnWzJ8QoBQPVsKZvYVQ6eCtNYQzjpSXmapmgKmI0KeYUskdQnhA8BMfEWy67C+z5cRfXBg9t61MuocUnNcoM9Jt0ns1zO1tWoWS9tzbtHTHFhemfvE5IgcjCKT2mGC+dCXMXCAHYsDwec/Hue7j/wx9huLYm3xX6woCYCGwxBlzTcOP113nhO99hd/uW5FBUtlPKYy100yBfV4yqU+FQx87Qqj+7pgi4n1SLwL6smSoNifvvfYCHH36U83ee4+TGCUypuLl5kye//SSXX3mD7e3tThUGIATfkRWIWSGpj2nkNVnJOpLVk2K6qgykkGJPEQoO6TlILHP61CnuOHuGO86cWTi3Lq4BWZknK+0kG1rvhaCczzDS6Z0aZYRjNtM6qzjHiAuOW80eN9rrPOef54XwItthm2mYydEgPQjVKVv2czrPCYmbAqT4M+cj8nfk+xRRyV4NMC8sMUZMMBhnqI4qhodDRvtjhvsjyllJ0VRoJQrnZVUki7aKshTLSrH91d1Zygcn/ZJUlLJ6owt5/kgMBkJwbJIa6eK/QqiUc25RFAyqgZCWRgOGWfXYWDk3dSM1rcjpOlrXMg9zDtwhN0Y32VJb3Fi6yZ49wHvX9S1RyMd5ryTSqQ1qnfc9mXvdSAhZtUdit6wqI+dnsRhbJJhlW+NFWk2eN9ZKXsWnfGYmEuXYoVvMY69KlD9LqxxTSmGMTudI38i5dDE2EkXZ0BHYsgJUzn36XARFjlEj1ppEitZdTHWcAyR/yXNBurOPo+hIPaL8aYxm9coa9z/1AIW16Syku/vI1xKDKCldvXBF1hytOxWv/JwhqSupNxG7F3ODmfxDv1fm+EBByvVIzirPL6UkT9cXkfYrQFZU6klTiZhG7pP++7t8aIgd8b2/x0hwoVdjy/OVfHl9pBKzxVq3oef+7cdHOvL0lnk54EOKgG0hSliZhKaTSpfEeqJcWFibVGI1VVFy9rWznH/uHFZZOTuk68jEx5Bi5xBTsWLT0jSNqFl7z2Qw5cbdNzg4fQAVXYHc6//xa7zT2m3y1I9p3wX+IrDzpp/npfAU8GXgXcC1s/Af/HfwhU/x1gP+2+12+7NsMZ3ruxPZW27GOP7nf++/5sFzzzFUU1bUIfeYl7vfr+k97javUqg+LpVtWnErnqCJ1U/8/FthnSfax7gazv8Eu7WffRueOMmlT/4FqtW1H4mn5RZcy+G1q1z/zreY7956G6+wb8YYPv3pT/MLv/ALHSkohMD169d54oknuHnzJtvb2z9VC7g3t7Isuffee3nooYd45JFHemz5p9w8nm22eY7n+D1+jz/kD3mZl9ln/1gO5KfdbG0p5yVrN9dYv77OqTdOcfLqSZb2lhgcDqQY++dwf2iqhnpUc+XBK+xc2OHyQ5fZP70vpImfv9v5d6LdVlJ65zftNO/57Ht47H94TAoX/w1bJLJ/ep/vf/r7om5W9vvvZHXylj7jLdOjtNaE4I8lxKy1WKOPETyUVth02HIk5ZMQgYBVSiwtlENZK6BWUVAoLcoaViUFCAfKoI3Bx4hzcrhtQ+9VnrsgNyEDWVH0CJ7CmgQGi0WKT3YyBo3VUgFVlnKAa52HpJIAUBSWunWAAN7TupGqvJwYQ4EPGA3D4RBbFmID5GdiD5UPgiqCkiRySGCKazwhpAOpSWBLB7Co7l6ABLwsgAuRY6Sg4/yyxcDu+HtywjG/PqRkaezupz809x+ZEgQL5Kb82bmiWILK0CUDVAIkc7JAXq27P3cYRfI3l8v8EWoFb2o5UZrvcPGVAtSqLmE0Gg1ZW1ulKEumszl7+/s08wbVBrAztna3uHJjl/N3neqv8c3dGBVn1k/x8Y8/xg+efgZ/VBMJ+GCkGr8qBThPgJVSiqoqaZs2WQF5YuNQMRBMZFQYykqxccdJ9g4aZvMZ+5M504NDhqMSpyN4iN7jok+5DEnARgIxatrWJyJHoHUGP4Eb17e5cOkOWh/Z3Tqi0CVmUGIqi53VMJ0wDZo2KogORxQgOwRM44+lB5XOqlg62Sm5lCAXqyMTIqGZQ3AsLa+JOpHWmKLAGkOhE9FEG8qiJABbt/aZHs547fVroA06CnhvrEqiWZEGuQ6tFaGNoDxBB9KURCnNoKwoy0BZWWazGdYo6saBNkIsSc8sREXtWubzOcPxEgNt07oUITii8egg1xk0BK0IWohbJoHcIRoBH3QQqxnniS4StaaJcO3mLSaf/To7V27xkV/8KCdPnUKXo06e20QPTuGnhxhqHn7gPk6f2uDb33uWp597gVldC9RjEuHIgEpWM1r3CiYy4j3Ry2SKkc6KSare4kJVZgJTfMA3DcaK3YOxBgqYhQmvXn+FnX+1yQsv3MuHP/YBzp8/xy/+4i/y7ofezfe++12efur7TCdTvAOPIhhRNFFKQwjYJGlOTEQ3ZTtAxRhJoIfoUQRUEEKpjkEquoMQr6IPomPlA5OJZz4zaCNWilUlVlSKiDaxWye0VhSlxVoB//2wwrk2JdUc8/mcEAR0ilHWCNc6aufRusEoI0RaoxmUA6qTFT542rZhVs+ZzGqmkzlH0ylk4EJFlAliyaKENEd6NpJIT3taSnwbbdC6X0+1MGC7Q7BWYuDXNA0hBrTV4BU+rffRh8QtDXgcvqmZ1fts7yrs1YJBNWQ4GLG6uiKKRyvLrCyPGQxLyqpgNIodiNE0LXUjSit13TA5mlMXNUpDOdfUlZBfQgg454Wk5QPO1dSHU46O9rmxeQNblowHA1aWllhZW2NlfZ3V1RWWxksMhkPKQUllLWVhGZcV4/GY1ROrnL94Htd6Zkczdg4OuLW5ydbmFjd3b7F/sE8znVK3TdoMRAknEgkhrUbJKsQnxZ2gNBgBSb0n/U4At9LKPuKcQxtFURYCJEUS2SmDeIls1Ip6imtFEdHaBPAFIaiZRALK8v3e9QC6MVYUhqIobom9hiG0ganSRJVseIyA2llJaDAYSkI9zYUsmiGAV4cWHAftjm37x+MdAfoELHfeiyVeslrI4JpJkYwIVfbJ+vwxQp6WmCwkIlIGw6RiXl4oZDBPJPZE60ga9z2YEYOUNIcoxDFjDGVZpu/K9nlCytMmpvgodoASiNqgT+MRNFobUdvS2VY3ga9KbEpkjdQ9sJBUWIQ0pPv+iqKO6LXqAMjgQlo/TaeQJcoDokzhXHqW2qJ0HzPFoDooN6bkvtIWK4Ms2aIIwchqCzaFQxGxVXGBqER5wBqFSpZ44+UxS+Mx62vrDJfGuKkjKo9RYtXQtA3eq7RWGqpqmaWlMbPZnIODI6aTKYdHR9S+JsaYLKQS8fEd2o7H8PLnbH+YW+JZdKBzSAeNDGZrRVLATKQ3UvyiVKckFmLoQG5lDBEhfEFvRSnvyyBSf30qFxGkeZXjeh8yOKYSga63OwlEYhpfGWLr1iJE7co3bQeKyZzKJBSwFyz6b2vaQ0erIrpMKaHnIE4hXojoDUUMmvC1jxBevjPte5kcuAjMdUE4GZPsf6yOLzPdFae+6IC1H3pyx5E/cryS3h/pAPjFazj21ekv2R6b2AOBxF7x5fhtKN70iBYuKQOXnYnewvnix7U+1aYWfrb4e600RWEZDAZoY2ido57XQroNEXBM51MOJzNW1kbHLzGvlaktDcZcvHiBrc0tVCP6OyHqNG4sxJBsZOR2jLUE7zHGCMjoQ+onKQwyVjFeGjGrxTqpblvauqEoUpwSEDUMFd7UZ9KvPkSslnO1R2Lvw8MpK6tLhBCZTVuMMihr0FajWw9tQxsVyng2Nq6DDoxGEwaDhr2ddVAwmYw4OFihL5ZJdqd5z0j7kI6R6Dz3q+d4aLxJpR1Gkc7ESlRllAI9wGhLQ8mVyYDN2Rr1fMSUMSEWaZ7S2YglvRU5M/qYOOBxYcuS/tZGFPmcMbSNwvnQKxurfPaSIqu2dRRlQbaRJK0bKp1d6IBl1dk/qnQmiWTVkYiyJNa1PMcAHM1qdhvF1SubnLclw/FY5DvTxqFihACxbdDacOc9d7OytsYzX/saN67fSLkLksJyTP0eZR4txg0L/oN5HyQD7ot2P92+LuMtJNIJJAs0FXjx1RdxKnB0dMjGmQ3O33mW0xtn+Mt/+S9zdHDEc889xxe/8AWmk6mcIVJhg8R3/bXls3xeX/PFxXT9+T06qS9nUkBKq3TnY+cd125cZ3Nri+unbnDnnXeyurpCUZSdKkpPHsjkFC2KOdYQClEK8l6I10Lq6/NBMYjltfOhU7TVWvaljWqDk+UJHooP0fqWG+1NXnAv8nT9DK+HN5jGaa9ama26skpNd/+g8313c0byWF2JihZ1s2jyvqOIwYtNaeFxRaAZtByePIK4BRHKWUE5q9h44xRrN9aYHxoOj4RsZU1BVWabtopBVVIUEgNZW6QhtEDmCj6ptHq0aoFMFIvpfBqTklqyfQ4Sh7Rtw3w+hUMpSCnLgqqqqAbDZNNeieWtNdhM5jdgioIqDlgOy5yLZ3GtZ7IzY1ff4ubgBtfG17lV7DFjKsUAeXBDt/CGqHoltNj3badEHCPR05GbspVaVgDTSeGtI7wk67aOuBzlrElcUL/KyjqqX5O6WZgJLylXJktcXhuhSMWeoVPkkd/ndSmGrBis07xcmM8pDlGoTl6oUyVK9/1jW+qArJxFImfJOko/BsnfQeYPJftqjvVxiLG/70hnj5cLKnobvRQp5M1/4SyUrykTmUzaFxa/o7Nbywps+XbSmkHMBVTpDBiSaqVSBHzXJ5FAFv1b7DdZ25OpYhdY9SSmrkfz50I+dBGVqJoqo4WQnvqOxbHXBQp930AunEhnjRg7YqLucnT962OUdavRTbfe28IyPT2DQ7hz9wJ6LsWDKhWcSPFMWke0zLWykHnZNA1zX/P8+19kb3mXoBZyxOEnBlS32zutvRv474FbwDKilhSA/zH97DHgXqC18F/9b28TlG63t71V1ZyHHnoWYzynTm2xtrbPSy/dR4ywvX2KK1fO4/2fDFPGoPirxb/iU8PPM1JTQE64bz7ChqiYxhGv+Ht4zj3IQVxlJ5yk5ieTlACJ5d/BTVvL+Y88/icSlOS1BSt3XqJcWublP/xd3Gz6Nl1l37z3fP7znyfGyEc+8hGqqkJrzfnz5/mN3/gNvPe88sor/Mt/+S+ZzX766kIgOfpnn32Wl156ieeff57HHnuM06dPU1V/8vj40zSD4Uz655N8kn/MP+ZFXuSP+WN+h9/hG3yDW/z0yWSucrjKMV2dcu1d1xB4TbG0u8TSrSUe+spD3P29uynr8qd+LX+WraxLyrrkoa89RCTSDBr2zuxx7V3XeOORN9g9u8t8PCf+BLvI2+12+/PWgg18/9PfZ2l3ifu/dT/VpFrInP7JzZWOz/3tz3Hjnhv/1qHlW1ZSuvueOzsgPZ8GrS3Ebil4AZSjoiotVVmAgrp1RBdT8kEAJm0sdZLcDkSsNlgURUrw++CZ1w2tj0nhwUgFEXTKF977pJqjsKXNmB2FtV2ypNBZ+hmatsGFgDGaQhuxGxoUhBCYzuaizEuqpDICkBEjVVFKjY73jEYDHJ5gLR5FM50y0IrBcCh2O62jaVvKosJohXdRQGkCqIgPirr1OBdQSqTji6IkhFZktpOXUT7A5qRa/2T7BDawkPpY/Fl+Rw9OsEBOOpaz6N7RvbBLRva/7aut85/lgJ4t23KSIH1WsqqKpIQPJBuknLHvMi/5brrkaRdUdcmA9L0ditSDjFnWXaXso9KGshywsrTM8sqY4bCkKAuiUmzv3OJg/5DmyKON4eT6Jf6X/4u/x2/89Y+DSRVYi92QklQxep566Sn+j/+nf8y1F14DPKYY0rYtmkDT1HjXpuqmpJDhvFT1xYCOkUFpOH1+g4dPnaSuPS9t7WGrAUoFJocz3nXhDB95/GH+m3/xR9y8vocPLWAE0A3SZ5EWkWrQlEWRxqYkLYuyYGV1mWgjW9f2GBVLnLnjDI//wkO8+76LWF3yhW++wue/8hVubb2MC6CiIRK6/u+qNunBQGstzjUpaSLPu8Bw6ew5fvM/+HUe/fB7GQ4tyytDyrLAYtAEAXR1icKwu7/L9777NFuv38ChUbYQ6zsl5EalctIvVYtajYoqqWJADD4pYQlbyTnHrG1o6gYVofViGzGdTHGu6eZVcF7AY6OpigHDQSlko6iwlZV1ylgB9hWoqFPVq/SD9yK9ThrJQuZwKCXJQaMMGkVlC+69eJFPfOqTnLlwDlVYlClSAlGUovxshvYeHxyzds4PXnieb3zzSW7t7RHS1M5VrFKZnaq20VLZnYBNATB1l6QLoU8IO+/xQQAuoxBFDqupk/pMYax8htbgNUUxYGPjJO9/5N184GPvZ7gyoq3nvPLiS3ztS1/l+tVrzOqGoNOsTwQDleZqDD1ByjlP9LKoeO+TUk6uyO2JD9HJNZKITCEEpAN0AudICi6aKlnBiWqNRimbVK4gBodUHfeqGnXTMJvNmc9mopRHFDu61I86kSSVygocYi8iUv8C1tW1YzqbMq/nzNuWedPQtDWZuBplckg/KwGEwsLaqK3F2r7SVRYuReuSHZVR6IhYjCmdCA10CVvvfaq4TGvhAjqrlUm5UQ3KYo1hWFUsjUeisrS2wurKMsvjMWVZJUUAAS7n85r9/QPm8znWFngvtpeZLJXV/1rnaV2Lc47Q1jQ+4ryMJaMU2lTYQcVoNGZ5aZml1RVWV1dYXVliZWnM2toyg0GR7hUhXcWII0DraZuW/ckht/Z32dva4cq1m2xubTM5OmQ+r3EuJL5XlApva6ibhsY5IgqjhfwTkzpJbzEbmDdiBVEUFluK/WD0gaYNYvGkRZkohIhrnKwpqSJd5p+Q4ExSuyFmNbRESPKyfxvbq6gMR0OxtwyB2WTObCZUS2M1VkmeOkRZ34y2aK1oXdtVs8aYHiexr3BWovRSmIKyKAXgjDIYFLFLUAsRraF1jiYBJDKWk/KBEaWkQVlInymNsSWFKVFGKm6JHq2N7CVAWzccHu7jfEMIAkgprUUZ0sv2Y60QPDIhSimxWvRRQNdM3PPRdxaK1gqpt0u2I2o0Kkaa2hEDaKsoKlHgDB4ZC9nXUfUxR6eWlAEgpTDaJDJYJrplgFiAAB98stMTIttifKEQ4pkoXgooSYptQooxRCkzYq3tLFFy1JOBCpuUpxQRtJCIjLYU2S5QIaC0FxVRnyyHtQpEZG1DK6qyZFgNWBovo62lsIaT62sYbZgezZnOGmL0aB1SxbRlNm+YTWtms7nM83YKRj4vBkncPfOdp3gntvX/ciX1Ix3Kli16Ysw2HSTQckHdJIjakqzpErO6BIxGYq9YpTOwLetcVxiQ9w4ymCr7qIwzAYg60NJkYm44tv+KdWvec7MttMyPtnVdnJoVWDrwKCt8hCBWXIKMEgDfOqwCWxe433L4q4FwImDOGdQvQSxF8a0jEbx6F/6/+ZuERhQrlU7XkEiex9yfOvC2+89C+wknR/Xm3+bYPH+irMdq4e89LSLH5/3XH7uGNI8hK9NkUld62ZvPOQksPebw9qb7UW/6w+LZhTddWf+nRTJHPmMJkaUqk+pHWsdQMJ3Nqec1vpH3jYarfOiDH+TBhy92g3nxlnv1tcjNWzf5489+gcOdPXmdtsmaJnaqe3lSaCWKGx3ojahZLK2M2BiN8D5wazqXWJZI07ScXFni/J2n+N6zrzA5nBOiqMJlVdbEME1XlpQLle7moRRgVGBgcjij1CXjpSXuvLDB6ZOraGV4/eoer19+nTvu+DYXLlzu+yx9qg+G69fPcvnyndT1oAPuBVBN5wlEEWpjfcQ/+fvf4X33TLGFFCoZo3HVBlGXoARUuD5Z5vJ0ics3dpnsTURRV4s6pVKI6qCi66eY2I3HiXu9rRMprm+9S+cLhY9CjG7bNiliJhJsB6rLmChsAstJSotpz0Blc7akkJPiw16piO7aQoovskqXKUpWztzBhXvv59LddzFeWUkWxLrbr6L3xGRTHINnNj3ilae+yyvPv8BsPktLqEItDjyTSucAAQAASURBVPOFsX+s2Cj2Zz7hA8RuveqtM9P8iUkVNeQ9N92l1iyNV9jYOMW9997DpQsXxb68LPDe8Z0nn+SrX/oKR4dHNG2bDd3lmXb7NCnG7snZ+czZ5Swy/WRRySadgYQBEZO9V/rwKM9laWnM8vIyp06dkj8vjdP5VndriiKNh16Iuzvvtc7hW5/UV2LXj1mxDnpSi1L57CyX4X1k7ubccju84l/lpfAKr/iX2Yt7QggnEyV+DJkyERzyeMl5GxFyix25JavwSj4mb1Whe45pI0JFzWh/yOrWKqvbawyOhpjWoIIU5FiTcmJVmazhSqqyxBZFN06y4kpTt2LXmNa6kNQn5eyTiC75XBOSnW0IokKe4i6tRMXNFpayrCjLimpQMRiUlEUp+ZvCigU6cSFXALkYpw41R37K1miTg/kBry9dZhqm7A/28dF38aaQQHXat323LmudHlbq20xCllghdOpZ+bvzvXXzHog+qdSl8Zmfo9FCTslco84GPcf+MQqvccECrihEEdq3QtQPAaJWKZ6Jx7ZMnQjx+Rkf217fNJZEOdUkoh9dTnCR0CwEtPy8YjeuF/cwY+QcdvL6Se757n1JbTgVWnavS5Z0IfLSu17k2vkrQLZRT/tgznN28yX2aqzp7NV9cYSs9t6rR6W+z/FCuo/g85lOCOui2pzUgrIn3MJanOP3Lm5Rcv2k55P3kz5MSWpy6b3Z8u34tD2eG11UopNnsTD2WBjTx96vut+jEknfSM5JG90XtqR1ustP9NEMIOpihSoY+yVO7J1g/cYJTs7XGaoK3waaOtudSiGajCmJX9+46zKvXnqNpq2FpKRTVBNg8+/f5J3Wfh6VHd6WdhP4nwHfAR4B3gP8n4HVhddEhJz0a78Ds9Hbf42325/rplTgl37pj/n4x7/6Q79rmoLvfOf9fOUrj6fChx8/zweDOZ/7B7/OR9Y+e+znhyv34wqxMvNty7c27+AH7mGmccQ7nXT0b9OK8RIbDz7CqYcfTTjGT24xRuZ7u1x94qsc3bjene/fzqa15uzZs9x77728733vY3V19dg+/4UvfIEvf/nLb6uiUm5FUbCxscGZM2d48MEHWVtbY2Njo1drfRvanDlXuMJX+Aqf5/N8kS9ymcu0tG/L9y825RUblze487k7ufMHd7J+Y51yVqK9/rndh13haAYN1+6/Rj2qefV9r9IMG7bPbxNsuE1c+im120pKPz9NO814f8yFZy9w73fu5dTrpyjqQgqEf4zCUiTy7b/8bb71V771I+fQW1WIe8tKSoNC46LCFqXYHzmxMSmtJqJp22Sh4KVyuSgLCQFsZDQUWwvnhcgTlYB3KNWBs41rUVExqEp0jEwbR9SagOqsLvLhXmuLilAYUbCZtUJ60lpTGIV3rQgyKi1y3lGqJotCwCO0xgWxbAioJFcs5IjCSDWTimJbVVrDYDxA2wIVAqsb67SupR2WmBCoXWQwqDi5OmI6nTOpBRSJSbJdK6ngbpzHeYUiAc3jEVFDPXOdfcoCHyelclWqBE2VjKnaUKfMis4Jfsg5kC5xn0H6JFlDpwD1I/aRXDmdZZclqSkJ0kCf+DDaJICyt0hRvT29XFnMlWi+SxKLhUfOCWX0wXeJLrnnZJil6I/dKblPXNBRWmBaZXlkYwxVUhuphiVlWQhJCcVwOEIpTVs6DqdS1bd9+Tq+DthR33fH+0MSexcv3M0HPvQebr52FdcI0Byjh2T14pxLWaOkrhFLAa8KyyN3XuATH38P9z50jpef/AGD4Uniq1e5eWOTqrIoY5nXno3VNR645xyb1w+IKoHYKnncxEC25AlRJTUwjZTWKlzj2N05oHW1KHsMFdPJHt/8yne4/vINPvbYR/jN3/wN3v+Lj/H/+r//Ey6//AbRHZeTzs9Ach+5aip09ipEAaCVhtGg4p67T7O+bJlOa25cP+JwNsWiwXsigeFoTHAK7xz1zDFpWnRRYLzDJQDbtV6UJkKUanGrUWmOZxKkQmN0JAZJpvTWKqKwpqOH2EJae5qmpTCKpfEYYwKmKAhR0TQtbRCVlRiTvVtEWATGSEWzj5giAaTkRDb42BIQiyNR31B4PG2AoBQvvvY6df0FPvbxx7h0z53oKhLLAarQKFthBhWEiAmOEs8H19Y4dfos33zi67zy2uvMWs+0ETKMkBsTpJ6wJIPBhYAyFh/FSikEj4qgYxAFIefEvk6JMosnMpvVGFuCRhLhqRpPyF5TtrZqvviVXa5t3+TxT36CcxdO8eDDD7Nx+gxPfOMJvv/kU2JjiNi0mbQ+SfWy6pJpCoW2pkvG+ehTss+I1VzwoCLRIHYGIYoCRNqwYmdpGAmtxyshtNTzWhQMRkOq0mJVqrJOdoJRJxs8DbYQRbzxeEjTBGazGb5thQTbJQETmJHIM94bWpcqNK2W6t5yDR/F1mDeNjRNTVs3+MbTuJY2OmrXpsVZddWqIhnv0Uq+K1ejCgCVFFiUJiqNtrYHuDSYqGnbSAgabVX3jCKqV7YhCFEEUaFybaRupxxM9rmxtUlhKwZVxcrSkqgsnVhldXWZalBiy4Ll1WVG45HsJTGyv39IURYMypK2bahrIQM1raN1Hu8aURdsfbLVa3G+YTapmU2O2N3ZxtqCsipZGo9ZWlrm5MYJTp5YY211mdXVJcqqwBYFpQasphhEqvESGxunCXc5Hq3nTCYTdvcOuHHjJps3tznYPWD/YJ95PadtPCoqyqLodoyiLHBNQ/CRqiyFTBA8RYCBKTFW1Eqi0vg0iXQEfEBZMFYTEeVC10ZR3gryvDxeVCeMSUBQwBbynJVX+GRrZ60lSd4RXKCpPU2bKHRBEvBBJ9sbyWaLfH6Qe8iWDJFUzR8jLgrxzQ4sSguQ4FyQtUApUIaMLiiVLH+0QalEktAaY01arxIpzhqU1ngfcd4xUEUCbXN8YdIh+ziB2bnQAbzyulx5LEROsUBRoq6UEvgoARysynaIsQOC5TNz/CXgrkp9HpLSlDVlsrzL1cIJPAl9viTbcwkZo68sdzh0oUVhIERRkguimCnk8ohLwAUdAKCTUoJUtWsjfRh8X5ktGnapgjrtFUpLnBRaUe7LNgzGmA5My37LSiNz1bcp1JF1TtYLue+AIgQn66OKzJqG+XTO0dGc0gqBZXtnh/FoRFVUtI3sr9XAdjFbjA7vG9qmJkSHsQpMImzR7/HvxGaM7scFKqn2CRgGYl2aAT2615GIYEkxNQrB02SQewFt9kHWEGsMGmiQ9T6vrVnJC0jAu4BH1hqc7xVbTVJaS2F1Z+OTwU+d4+RIR2KDBEAm0nWHzyshWNmiFPuwGKhGQyEGFg7tA+4rYF+3DK2ivelor0fCpUB8KOYIGOZj2n/9a/imTKClEC2jUvg2EdDTftQdCjLpgD4Gz8UDGbLvwuBjTAf1pj+l+89/69+Uv6wjahxLWuVDAj2YKzY0fbIv97Fa+MzYnWV6gos69pr8yPtnJMejHrDL5IGF//S3111bVnfp1Y1sUYhlpBEwFgWFLVADhTeBOtnOTg8OCT6if8JpWqFYXVnj7LkzTPYOxKomEXcy+NoRnJG4QkfTEU9Praxw8eIZTpxa5ta1LYpiCHuHHB1OsFaIz85HRtWAk+vLTA7rTrXjWGelzoipzxY94oOPzGc1ITgBtgtF2865dvkGh7sTLl44zyOPPMDZu87zxmubKHW168OccNDac/78FdbXd3nmmUeYzcZ0587YjyUUnDqnKT/2G9xcK2hbR+sDjWvxxSoBC8i839+9zHR/G9dGGi8EWyUsTIiipJHVdoTQr5KKiRQuyJCTfcOr0L0uH96U1uggsS7IecAnZaWyLMgELrFN8xLTG9lzdVI2VulcGvOzywSWztavP89m+yPSWuTrObtXL+Nbh/Nw6dKdrK6vgLEoa+UYr438OUqMuDQa8vAnPs362fO8+J1vs721jQtBLOCIHTFBpTNznmFZGSkTZGLqQxWjEE18SITpbDcve7jSppvXRClEODjY4/Bwn+vXrvDM2jrvff/7efQ972F5ZcQHP/ghzp07z8svv8IzTz/D5o1NKVCIWbEqSZfk80QaQ1m5JqbrIa80Ss4yEp9EdH5/Wqc7bCU928ODQw4ODrl69RpFYRkNh5w6tcGZO+7gxPp6erFG6dgp66hERNBazvehjLhWSPC9tVRPB+jVUOjiF5LC0qgcMiovcC6e4xfCR9n3h+z5XZ71z/Kcf47NuMkkzMgErTwes2JOWDiDH1NdIcUSKb7s8zrZMlwIZbqbcxLnTNanTNamXH/XDcppiW4Nq1urVEcDVrZXMMFQ7hUobbDaiLLKoGI4HDAYVKIkprXk9ZJFbkTUSaHBGrEXdi6pLgUpvItB4r+OvJQIvt43eN9Sz+eiTJWs4cqyZDAcMBoOGQxKhoOqs0IT6zJDNGBiyTCM2fAbeON478F7mbc1t9hlU22xU+2wubzJJE5pVAOxJ/pD/+fgxPbZpHOsIeeUdBer5XxJJtMS0xw2UgYTk5JO4qZIzoCkiJSen9SmKGLC2XyMlMk+W+LwQHCJCB+TolmIC9aR6b8RUU9LYz1z9Y7nsJLyo0k5tfQ5cis5u9bv5otkTpWUYI/niOjGmffyLE0af92ndntyuiDppr4Pu2+L3XqYv5eYzsn5RlSK5BSEkOcAXSFEp6iW1o3cx1JckO2n891K/y52UFz4b74vpeS5ZTJUSsT1a3ZW58qEJwkyujHRF1PSKW4uxhqRHHdF8pEEnc/8sl/kfzsCqeqjr5jyc+nlCx+dyfDpOtI3+RDwytOoloMTh7x+4nUG8wGVrliZLTPaHxN8YHV/hWEzoGorgg7snrrF9YvX8dHJWpZixLyO3G4/J80B/0/gj9Lfvwh8Bfgk8DcWXnfrBPzH/w+YDd/mC7zdbjeIUXP9+llCUOg3AZll2fKRjzzBXXe9xj/7Z3+DnZ2NH/s5dz8a2PrNf8Lnw/axn89GF3B2DEBwjitf/wqTl1/8s7+Rd0hrJ0dcf/IJfDPnjvd96E8kKimlGKytc88v/yW2n32Gzaefws3fHtWi3EIIXL16latXr/Ltb3+b8+fP8/jjj3Px4kWUUnziE5/g4sWLvPTSS7z++utcv379hwjCP63Wti3Xr1/n+vXrfPe736UsS9bW1rjnnnt44IEHuHTp0k+drDRgwH3pn7/D32GLLa5whc/wGf41/5rneI4jjn6q15BbNJGtu7bYurTFk7/6JMu3linmRUdYuvD8BUxrGB4Oj+d/3sHNthbbWu578j4ikYe//DDBBPZP7bNzfofNuza5/PBlZssz5kvzn/Xl3m6329vegg0cnjzk2Y89y7Mfe5aVrRVsazlx/QSn3jgFEc6+dJal3SVGByOCCVx+6DJPf+rpPzXJ7y2TlE6fPsmsaXDeowICPhaW0oqUt7P5IBgZVCIXXVYWraCoxBJKyByBQinAJdBPLEaccxBE5cIUFcFoapc92IUgU5RWSEdeDtZlYWi9WPdoJWBRYTSjwRClFK1XtJO5JDi0SmCXgGVN22acWaxXEniVVZqkyqsQGf0m4KdTQKT0jYZhYfE6ErViNByiYy2y8jGCl4SRMgZPoG4DrZPKTGsMw0HFoCw5mE1SxU+WW89VOLqTQ7ZGo21JUVQYa/HeCVCZQb+UuBBv9HxwTsmJdFAW0lOqgFSpii/2gIpOv1vAGVIuLH1mSh4YY0QKHAF2TKo+U7q3zvA+iGJIrhJLYL2KoUtWZdAhJ/okSZcTb+m8HbL0fCLOZJ/iGDssSmTLxdYvE6gGVUVVCrhQN40McmsplyrMYEw7VVy+epXptGZlNPoxAYZkSZaGYx776Ef50me/wt7NPVFyieBbnxKZBc65lDgtyVVhq9UKf+0v/iV+9dd/jW8//U0aGzi49QarSwVXZ1OsWsFWJdu3Dnj6yec5sXaK1jxHdAJcdxLl9JVbJNu3XCkpD05jNYyHIwajEbooiMpw6OCFq5u89pk/YPlzX2X9jjUefPhh6qMJm9e38Un1DHJi9vjdd5X4EUnUqEhQGl1ZdvZuES5LEjwoaH3D3uERt7aOmExaTp46SVVWzCcHHOzsY42FbDkUwOFQBBytkF98wAeFasWurdWpOpSkTBMVPiTVFycJPO97wom1BlNYtBOygBAADDEIQO+8YzAYgdI4F/GuoRpUMpRIVi0mJlsCi1gg+TSPTEq8iUS8i6AISa0m0kbPGzeu4L/s+Qv2k1y46zxoIxCeFsIdOpImCAbLPZcusjYu+YM/+jzf+f5zHEwPgYCxoqAyGAwI3ksqUYkSikUql32u5NNi+6cV2JzcTuQCa4WcpXW2yuml+GNMxAQC02bK008/zc7OHh/56Id49AMPsX7qNL/yF3+Jc2fO8fUnnmD75k1862i8S5lK0holJLlc7ZvHjOlsriJGRTAqzQkj4I4PhAQEhNCTLEgkNB88ASFuuLpl3noKO6cqSwaDMqm5CBlCGSE9yRpZYE1FWcFwNMB7x3xeM583zOuG4FsgdgQUIviEcbStpA6ttWhjGJQDBoOhgLxeCEhN2zKtZ0xmE46mU+q6ISJKLDEKIdUFjzJJSS72a2lEiLs9fh67tV3Gb+cahykMwTtJUocFECQncVVPfiHBPPNmyryecnCwy9Wb16jKkvF4zMqyqCytr68zGg6oypJMgDJpP/Sto21bnPc0zot6UdPgXaBpW5wTNTNRGHDJHq6lqec09Zyjg0O02eTqtauMhkOWl8asr62yfmKNtfVVIUiNxgwGFVqXFIXCe0dRDFgZr3Lq5Bnuuutu2qZhfnTI1vYO1ze32NvZZWt7i2k96xStlscjfBgwn7ep4jPgGw+mryyXJVF3e6L3otCklMxFazURK/3pgygypHVAHMsc0StsaUQtK5F8RIEh4KzDGMV8OkcpLcSuNpHJEuhoclV7sn3JKi3Z0kTFLOEfOmxBJ3KiADgQDWhVdCprStHNlxATgKoVg0HZ2akBAtjZbEuVSTd5fxMQoLOUS5ttjL2dmzaiTCRkkQRKRlEg8t5Bip1CV20uFePyu/Q9KpGUQ0Dnqv5Uha6TOkRHPkHRNgvJ8LT3aq1QJqs/hK6CKttb+uzdo2SXjKikkEX3OmsMMQhBLIkziMJVZ6kg6lOZgBYVWCNED1l6VQKPOlyYrN6UQe7gg5BgtBUVOS3kG5sUbZQSokpQsrZ1dr7IZ/oQUKlSOcQoNmEx4luJqaezGQcHR2IXaWRvqqqS8XjIeDymdQ0henx0SbEz91nqL/POrRQcj4eiWhCj8E8S6cek/SpklApRYoVegVHWL53sWUU9iRD66rsEiBKlD7RRRO1xPgM6GXxJBLc0f0yqJs9zQCOkIp1i3hAhtK4j02WiG0C2IIRekTIrtyhFR6b32aKnbZG4Qq7FoohfV/BVOS+pNO9iBOoM6EGMCvfUI4SbG118ba3BGEvjmm5vSNOju75sEy3xeiJ65/WFdH4gnScWwEL5Xz83O3Cvm+/pV7kvYg+yHWtpL1x8m0pKPtJnPQFJyB79+ulDX/DQAZj0JLb8WqUygpehPZnDpH6T21qAaDvvnb6PBCTU6dyiU98m+/JErNRao0uDsgWhVRwcHNA2jsr2yiM/6lRR2pILFy7wxquXmU/mZD9GKWjpiUoRBIzXslZXpuKBe+/jvgfu59rmNbzepJ7tU5WGA9cSVIW2hulszuaNHUbVmKC3Je5eAEs7BdUOWKUb+zH1n1aKokjWu8YAmjpAezBh/7mXKV99g+HSgGJwH2X1DG29T9LZPPawx+MJjzzyA37wg0eYz8eLeG3qc82lh2ESFH5eoFVJ1OCsp6kbZpMj2tYzHI3Qy+scXH6DyeGRnBnyOTBKPOcVouCXQN+oVFLqhF47RXVjRs6hoevrRZA571FkaybkfCtjUfY9awvZ57z8zCaSMGmM6r5DgZ7AoqS8CNIc68/nsmce3rzO1TT279aXWF1bgZAIAzqP1fS5Qc5gF+5/Fyvra3zvK1/h9ZdfkTNvUpizxgjZJhcY5LFp8rkvLtyfQkUtxO78O0VSrCIVcvUEg071E6jbOTc2b3Dw5S+jlOauuy5x+twGZ8+f5+y5c7z70Uf46le+wfeffop6OsMn8pF0eHouaVwq1c8dpUSdrltDyVuFJub1V6ezctrkezuqrN4YaZ3j4OCQg8NDLl+9xp0X7uSeu+9KBLS81vRrm1YS1xirMIkY5r0UwuV4OD/i/vwT0nMBT7b+SoSXwnKqrDgVT3JfuJdfCb/CdX+dZ9vn+IH7AW+0b9DEtiO2ylklpD/3zyMvqzHvmd2US6QbYZKjFtWpUJlZm4qgIvWwJlaR6dIEUBivsa5gaW+J5e0VBgdDlvZH6JnB7IvikajKCWlJigRMUjR0QiJKz6PwWTlJznTO+U5ZVwg4WXEpWcOl14dWzhaz6ZTDQ1GhlPNwUncaDqgGFWVZUhRivZjVC3UwFLZkOBizGla5GC7i25bp5oRbbo+d4hbXxlc5KA44WDrEK5cUMDXehi52DOnsqtKYzHNEp5i1U+/K80grdJTcgJyx816S5k9S8snEl5jGSf4cr2TtEPJW7GL7bq+EjqnSDa+8v6X/6y4GzkOxV0kinwGUjIlcfJVjhDx+8+7QKUSF/B1p+C0ojcV8Tek9ed9YmLVEFXADh1I65bJyPK36e4ty/tJk5fKc0+rPLnn8dqVGsR//WcFZL3yufGzApzWsX0dyIJOea/p8nZTq8lms6+4URvTPW4rAQtKDW+Aj9f2XY+90HpFxpLtXKY7n2vL20BOaFgs1dHe5OXYEOiJsT5Bc6PeFWKjrjhAIC4UojW1R6oid5VvoFflwGzQDNeDEZB1vA7tLe7ShITb9vecveLuUI263P2VrgX8K/Bdv+rkHJgt/Dwr+v38TfvAwPzpivd1ut59+e+21u5jNhozHP2w5phScPr3J3/gb/5zf+q2/zs7OSX54rEY+9ldb/NIpDtWpH/s9uig5+6HHONq8SXN48Gd7E++kFiObTz+FUoo73vehtA/9+KaUQhnLqUfew9Id57j+5Dc5vHblbbrY420ymfDCCy9w69Yt/u7f/buMRiOMMdxzzz3cfffdNE3D1772Nb75zW8ynb79FnVN07C5ucnm5iZPPfUUH/rQh3j88ccpy/Jt2R8VitPpn/fzfv4B/4BneIY/5A/51/xrvsN3mPM2EGnSrR6ePATg1vlbqKCwjaWaVJx+/TQXnr/A+vV1Tr1xCtvYN+UI3pktX6PxhhM3TnDixgnu+/Z9uP/RMVmdsHNhh9cffZ390/ts3bmFL/ztrfOn2Lz2zJbfXtLk7fYTWhrrB6dl/7x1/hYvfegliEL2K6clZ149QztouX7vdXz5p1e/e8skJaVgaTTi4OiIGDyDqqAqSzk4+5ASrorCil1PXbc4HyhLi/dRpGMRe518AMzWSoW1lIXFOY82imo4JFpLvXeIc06IKElm3TsnNipW46MozFhtKbRmVIgFVVRwNJ0xmU5pfQazgCiWCQY6iepcNaWUTtXcktwzhaUNnto7NDYRBwJHh0eMqgLtHR5og0KNR7hWE5XplU6UkqRrlsMOYiNnC8toPGbezAk+YJTBB8ei1ZqoOmWFoApbDEQZRSmKatgfijOKkN+TEvKd/HeXIECSkCQJcYKQCNIBWcWcRElJB+iqxztlA+Rg3bYhWXLIc89SwelIS4gKY8tU0UQCOUSNJ/qAUr47fMfoe0/7Ph/X/UGqY2WQS1VhyiAosd/QSqO1TWoGGqs1hbFCjFGQYWCRpDYUlaEsKhoVqd3xCq83t0jAYnj0oUe564F7eGrrO+B7G5+IkCNEVQIhTMRApRTvvvc8H/rAezF6hfd9+Jc5sz7g5W8/zbW64aXrW9y8ssvh0QGFKfjSt59lvL5GpRVzL+dGJRkHCmtYXhkznc6Yz12S+pc+l/4KHXBamIKAxUeNB/At09Cye32XN954BVMZymqIrQpCm4lruauPAww5UWaUBS0AdjUoWDq5xFHbMGg8g4FG60hpSvTqMt4ZJkebvPz8i+DAJsCjLCqUlkRc6xy2MChjidFhFEmKXWG0qH3gHdbYLjFWFSVRF4RYJYJiUqLwnroqmDctyoh9llaWalhJsi1CpMX7gGvmQpTxkXnTMPZjrBVAKCe5rLa02klCX7JSvXqVMgk4UqgYRDVHRYISm4jXr13lS1/6Mr86+DQn7jhDrCUx7QmYwhC9qOEk9gInTpzhl37pFwk68tT3n8V7aFOVcetaUYowmciS2EbpEeksza0tGqh0karys3x3pCgKQnRAwLuGiEabgrxcBESRrm1rbly7wh///j5bt27y4Q9/hI2NVd7zoQ9w7q47+eaXv8qzP3iecDQRcqoWUD1GK0JUXcVh7MB/ZXuFliz1r5VGWUUkyb4jyUujhJRHqkQlqRiolLQlQl23QoxpGoqywBY22W6FlOTTCeQHpYJUEGvLQGuq4ZBR66jnc9qmpqnnQgBayDTmNVKs9cRO1BhDURhI1oCVsVSDAUujMePBlOl0yrxpO/U/F8T20TvXWXTEZHHSESl86ICErFiWCZvZgkhAjVIS0l7hvOtA21zFLYBaQIzQZM+VynggeCazhulszvbOHoW1ibC0xNraCsvLYoFRDQayPg/BeUdMAEzd1Lg2CDGraYS4VDe0TkjE3jlcIjCFgCgtecd0csRsMuHWzg7XrhWUVcV4PGJ5ZYn1tXXW1tdYXV1leWWZ4aBiWImVg9aGoiyJgwEr4zEnTm5w/7vup65rDg4O2NnbZWd7m73dPY6OjnB1S2VqGtdwNJ2hTARraEPANaKOkzeqkEAdbQ3KGpHaD0HUE6P8XGfLm0ReCd4LEBelQjx46YsQhPA01zXDwQCUxoeYSJN0RJrgEyic7EGE+JZIQyEmgDUBMzGTaYQo4BNgbdJ6pHQikvmehNQBqUmFRmVRvUQG8i4ReiIoK5u2KBjJe1WIQpqEBGj1hIIQQ1pzCnxoZd4ajQkSl2RQN99TBis1UrnvF9bN5JrQEaIUGVzJ412UCrLyTL//JMuHKOCLWIMWVFXV2Vvk//cV2LI2ZpBJayFdd6QG8vzOSnyL1cpRbHajrIcZqsiXI3Z4sSMixxgFOIwRIcsKwGWtE2BLw2hYJWUGsRlUSuGVzGOZ7wKK+GTTqTSJ7C12knVdy5hAEdC0TSNLv5EYbVpPOZoeUuyKrZxCyKsheDx9bJXFGN+pTQFlUQioHoXsZZJaTccKI80Ra1KclSxdg9hjSbyZ54b0r04gj0mED6WE3CRKM3VH9stWhz5JdnXkOSTmNUpTGENVWSLQJDvnkIDIRcAMevJbJg7le8zKXzqRjF2K37LaGHWDNQa1pQmfhdCAGkisG9cV8URA3Z+6RSvCzZOEP/40RN0BWmVZ0nqXwHzdkfIk5u+b1lqUgbQRonMeLN3V9n9aVGjtFJgWzhMxLhJTIqgFpYkFQLADD4lpPKoFsD09P4WA7vTrRcZB5XmY7ueL15hWGYmX87hZeJ/KF0u6B5V/kz+kXx+kK4SYnglTWiU7P63f9FoJpIzVGG3xyLn2JzcpXDm1cZrVk+vMJ9e7y8nvFCA0IaQJTDUazqyvcO7sGZSuuOP8PYyHht3rmxw6z63DKUcHM5qmxijD69e2KAcDjAIXUj8ukPDKSlSLvOsJOv0Y6IFfk8j22RjaR0/rPbPDGfv7u5SDwJ3nhmhz1Fn45L7Jc2NpacojjzzD008/wmzWF4QopVha09z1iKYJARsi1si40MZQDRQxKJpGYgpCZDKtaeZ1sreTs2rIxEQViIm0Lyo9SQ2ErFrZqwIZYzDKEKNJBMnY7VXGGIlzlSLSoJA4XqfxrkmqMF7O61lFM5RliuFcOlelNUCFfjqka8lAdD8+Y4f+ewUHWzewozFGKe677y6GS0tI4YUmqkyYiLLvy7Rj5eQp3vfpXyRqeOOllxPhOnYKtFortMkExLxB5HmUz/cSR1uVSbhZ2SSrRgmBY9ECPMICCRImRwe88MLzzKZTJrOLnDt/jtFwwNqJk/zKX/oV7jh3ms/90eeYTKc459OakXqiK5rpx2s3nlL+IBBRmYyU+iGGRDbXed1NuYbMWM5njEQeqOc1L7/8MtvbW1y6dIn19XWGo+HxvXKB9KAVRCW2y6XRFKXEvcG7FBfQEbryGpb/G4PHqxzXq460MDBD7jJ3c1dxF59qP8V1e51n3DM8E55lM2xSx7msCyH0647Kqi5ppsakgBNT16X4pucVZNKnApPi20xeSmthTAPIW4e3jvqOGTt3bKODppoO2LhykrVr6wxmA+p5g1ITIQ+VpVjCVSVlsoYTdSUFRRTCbhAlXTmbimKyFBuFVDyQleSSvX2k+1kIjvncUc9rjiYqnccKyrIQwtJgyGAgpKmiLFKhmqiGa61Eg60oGIQBa3Gdu8NdNPNHmRxO2d3b5cbSdW4Ndtlf3mNezLFazj/ZejcCzkvskC3E8n4tNowy3qTbleQkUlyZ109INoSkgqt01gtJwVXiSr+gDJriw5BX4nSujjn3FfrilvT88twNnQp7VoXPSmTy3TlP2BGrF/Jt+Y/dHt9t2LmwCbLya95CVZYYTWf/yMLerFLV7dohqKRAF7IKfiKAxgAp35pj5Te3EGNn7ZrX7v5aF3OGsV8PQn+eWPzEmM5kkuvR/drRkbgyCVDmfczfl89bCzFE1qEKeQ7GHG/nOUWKU3N39GS3TNTqvjvFDFkhSqFwMRWAKFnvrRFVaun3hQKUpKae44eYSH90MZZcqRDuE21K9aT0FOTRKpirmsPxoaxRXnf30D+DuNDXt9s7vj0N/GOgTn/XwEXgfcCvpZ9F4NmH4D/7R/Bj7Dput9vt7WjeG+q6+pEkJZD19cyZm/zmb/4W/+yf/SY7OydYPK+unw58+JdqfsQ28kPNVgOG6+v/bpOUAGJk69lnGJ++g6Wz59+S9ZtSitHGKS598hd5/Uuf5/Dq5Z/+df6Ytr29zZNPPsm73/1uVlZWur2zqio+9alPsba2xmc+85luj/5ZtOl0ype+9CVeeuklPvrRj3Lp0iWWl5cBfmRM82fdFIoxYz7CR/gwH+Y/4T/hBV7gf0j/PMdzTHn7iFxRR9pBSztoOTp5xCvvfwXtNSvbK7zrG+/ivifvY3l7WfBmfvr982fVFIqiKVjbWmNta417vnMP3nr2T+/z2rtfY/vObW7cc4Pp6jS/4Xb7M2rtoOXGvTd+1pdxu/1JTYErHa50vPr+V/9MP/otk5QOD6ZiodQGCmPRaJEGT9kyo8VKySZ1jaK0tK2AnNZaqZpOGZTsxd06D87jVWQ8FPszqeY0aO0xtsAkEQ+pOJJD26AU8KduW2IIWK0ZDQasrSxTDizTZkbrHG1wSMHNQikQdOAFLKiBJAsIYw3KJKA59b53XgC+dFCLCuom2eIE2NpsGFYFzoGKkcIYokZsZJK0ujaS7B6NR2A086ZBBYULCyoESEIGFEU1YLw0xtoyqUFogkpKMemUrlCopKgktxeR7GW+1cWfy2lffqLJ9T5yR+k/MX92fupCrNJGdRZ2OfHrfUTwPSeATyo3VUnunKQO0SUTVMSYxURJnylR3ReGNx3o+3uABSCBBLCkZKkxtlNPUAjIFHJ9r1KdCoJWGl1YMAVN+yeDCiYqTq1v8JGPfphnv/UMbQLKSIncbAsR2hYVAwYhAp29813ccfc9rJ+tCKpldXAXB7d2+MbnnkCZksPZhHnTEK1i29Xcmt6A6KTSMWRFBCHhTaZznEuy9/nZpOxNJrIpbXAuIA6KfX8ZPM44ptMpagorJ5eoygrlnXjNq8W+1al/I1oL0auwBbY0VFXB2voyJ8+sJUuBgPYe72oKMyL4QNvUoDzawrxuaYNnUA4EC08gYFGKBZUQk0xSuEkJppQlNlYIibKOBIwJBMAoQxENwTmapkVbBaoAI8CbMpbZZMp0NmVQlhigtAZlKgIJwG8dk6MpSmmqqiAEsTKz1nTEx0yAyWO/KkoZmVGSr8YUkBJJmSYSouPy1St87ztP8fFP/gLlcISKGltZMAaswkRNV7EbPGfGFb/263+J1bVVvvudZ5jMG2b1jDatk5UqU6VqApuNwjlRWiHERPQKoEI/QzLBIYE0CmhdJrokgIOcsBeSmfM1R0eOJ776TbavbvHpv/AXOHf3OU6fPskv/+ovs7y2xje/9W32d3dJqHD6LumfmMHi1B953mol92mMFXUwrYSoFEEROjUZUvWq1oaiszzRoDxksgOKpvXMG1GxsNZQVoWoK5mkFhV8WhOFrJjtPzSR0o6JcUzb1sxmM5qmxbvQKSvl9S9G8Imk450AOjERKkprGVVDBuWQerxMk4hTddsym0+p6znz+VwS8EjS0lqDjzH1Af26F1T3FPJa0wFukOyh8iNNa5hKgARdbpigPFplAEl+ISQtTyAwdw317pTdvR2uXrcMqwHLK8tsnNgQ0tDyMsNRRVGVFKWnKq2ok/hIU9e03lE3jjbZwdWN3HPTmI7A573HuVbs4Zyn9S31UcPh0SHb29tcsVepBhVLy8usrq6ysrLMqY1VVlaWGI2WGAwHGCsghC0jIbYMyoql0RJn7rhDvrueM5secrB/wObWDjdubnJrZ5fJ4YSJawmhFauLGPGuxVortq+xfxZRidKXsRbnmr6vo8f7HiBQMdJ4JxW1Sqe9JoASi7g2BoxaSPZ3ezYQhXSCUgQiQUUKmxQHUQtEGSFtGmupypIQfKdcFWMALWTnkADMwXCA0op5XRO9VGz74DEp4S5EqpChCBm/aX9wbZOICZ4c7mU7Ea3oyVzJLkgsVvq4Qdtks5Usy4zVKCVWna0TtZeyLDqSSEzeoHm/lUnWEzj6/V3IYWQSR35+Ps1jY8SqLe3rKEVwTkCRjiEC4MGkSn4tgI1zDu8XlW7iAqYSE/lLNDZ8AKUjxKyekgFkIT8EHwiut2US8CkSvcSOIUSapsWWooTXgcAIuQnoLEYVoo7gfBRroUQm907upwPrVFofk9VfTMR+YxOhzTuc64lQ1lRCDEsklahikmd754IKddMmYGnBoqMDvbLij4C7QKfy5b3YI3fV9wvxagghizJR2KJTKMsEfq1Np0igUhyqlUZbiX1csgHUSsjug0psJFvfEmIGeUFi6Tymjvex4Fw9bKdSLNchbdBZfMhrBdxyJz3xk5HwdZiseeynNPEc6d4TAHb1PPz2XyPOBt1cKspCbN6ckBNDyJUrPZCJkji1KAvpA0Hy0gkgx+B017vIIsph+g+fJ473w+IZRl60+LP8kZmAeVy9QMDefi9cBNlyzN+jlXSv60mIqV8X9tM354kyeLn4vBbPFx0MmdatY2QzlUnCch35+cr5SxG1eUskJYViPBxx/sI5tq9vEprA4hDOZLaQigQUcrZZXj3B0toJBssSm1Z2jWY248prV1Fay97hg5DYase8PSIzWDLInodf23pZp9+UJsz9rNPzDyFKGKZU169aRYIWIr07hL1b66yt7wpB4th5oh9XKytzPvCBZ7ly+W62tu5Aact4GT751+DU2TIRaSJKB6LzaF10a5zErHC0s8Nkd1fWiQQqK1SnBpYtsDMxpSfj0I03ncBxrbPRmOgHx9BbnGVmpxCfNG3b0raNkE0RUr5K8ycke9GmbdP8ysT5tIdkVa4F9otO6i8dsBxDdx7O654Pnp1XXyJMJ4xHAy7dfRFjCxlrSR5VoYW0mgd2jKxsWD70F3+FajDgjRdeokkE8j4uN3lJWBjTOfZNJKjYz6U8+dSb5omofiVCSM6R5EFM5JVXXuLq5Td44/IbvOfd7+bcufOcuuMURWl53/vey2g05rN//Fk2t7aIwaccQT7Pqu75dtaHOaGtMiGgT3DLOi4WvqpbW7uLx+gFcn+6hURpZH//gO9//2lsUbK8vMTGxgarq8usr69TWFEt7Ekeve1RDBFVWCgsZZBYwy1aS6c9oVvuYyKRBBAyHXJuT0TY5WqJUXEPd/m7+GX/y1wL13nOPccb7g1eda9wFCaJPB16oCnHS2kMKRYUWnKObfG+O+HJtHaphYFAty0lC0AIOjIbT7n8rilX773G8v4S6zdOsLy9QjErqI/mHE0k9iiLguFwyGAwFNJSWcp5x4AOGqwM9kzK9l5UlYIXwq73Hu9csrHqiTy9NVxM87BlNlMcHh5hjKEsS6qqoqxKRsMBw2FFUYjKkhQGmFSIECBE2c+HQ07EE9zlLtHuN0z2j7hld7k6usb14U0OzQE1rdiUpzmac4X57NyN1bQX5X1YiLKqi087QllU/fNHIYSA2JH7Qree9S0XrXQE3vTM87PLRPyOREM+1/dqk7mfJQaWoolORbQrEhCl0cWzaF7vu7OKTJrufNqRy7K6TzeG+o0sEru4Tda1RaKOxGNRNryFgoFM4k9Ec2P7PkzDVeV4ZiG2Xey5bj3qnk+K1VPsHiDlIpKiawidqlJ3D3J8Sd8n5LBe/b1Lk3brbkzPJsdKx9Yb+vVfdeeQpPaXCpi6/TWnPVBJKZdOLX8xdvFZwTZff/rY/nv7s2mfZ+XY2M1jQmndKS3GqFBe+s0YK9aoC5HsYr74dnuHt0eB/yvwXyHkpH8IfBQYAWV6zTceg7/7/xa7t9vtdvsZtvl8wKuv3sWJE7s/9jVKiaLS3/pb/y1f+tIneOqpd+O9YfWk43/9nx9y+sJbU2zYf+M1Dq787Mg3b2cLbcurn/tDTj38bu543wffElEJwA6GXPrEp3/mRKXPfvazfP3rX+cDH/gAjz/+OFVVdfHWo48+irWW3/u932MymfzJH/ZTajFGrl27xm//9m8zHo85c+YM9957LxsbG1y6dImyLP/kD/kzaArFkCHv5b28h/fwD/mHPMVT/B6/x7f5Nl/lq9zilpCb366mhLC+d8ceT/y1J/jOX/wOp18/zb1P3sv5F84z3h9j658PhaXFplBYZzl57SQnr50k6MB0Zcqtc7d445E3uPrAVQ5PHNJWLT9nt3a73W7vuPaWSUp169FerBcKWyaAS8CborCYlFBVSuGDJG2MVRhTpOSc2ARFBY1rCa1IQhNFccBonYAFqbpq5jXOuU4muXEOFUigjMYHh9URU1oKYymMJkTPdNYyb+ZoLapOYkUCKUtDyjgJOAHYwlAYQ/AkEooc0H2MBDzGaEpToKMkEG1hpYLOOyEvmYIQYVY3qCjXV1UlGMNweQkfAtNX3yB6zXA4YGl5zO7BAd4FUd9J6QGldGdZVg5GjJeXMbbAhYhOYLrukq8KvVBmlKtX5WAtwFYWOVH53vVCIiIfO1MljspHUdUnuVSyzpKEYU6upJ7MFUC8KfGv6CsYAXSqcCODg0I28d4lhZqc9M9Ei3ygFwUDoK8cTZk2rTQ5w5NBxWz71ksuhg7cU2iMWgCNCExnNZODKcTlH72JKEgoNQNT8pEPfojfOfsZrr10Lf+ySwJIssdjs0VEsUTdlGztHrJ+7gRu/4AYDPvtnJdefJUbN/ZxjaQDGyey4810houeqDUGAwm8QwnVKipJQhmjO/CuTAnBqhxIdWIQpa+UGRMDv6iwuiSqCcE0KByjqkLH3kqC9AyzNH2e30VRUZQWW2mWV4dsbKxSjQvm8xlNPaX1BVEFrGrAeMarI8pxyerhCtfe2KaZ1ngUjoiJEat7klVOeBlddkkrZTQxaLwL4B0UFmu1APdEtBHlILlWI+QbbbAaolasjJeoCsvR4aEk9LRJgKXBtw1t01C3c6xVZKUfSahKws5qk2wbsv1CHgjSp4UxOBXJ6l9G6aR6JTwkR+D5l17lzvN3cO8996C8AO3KmC7rFSJgQXSZKk6cvsAnPvUpppMZzz33KkopUW9rW+raJZWxgDGKclAl0kQiBKVEnYqyhmTAThJ7Hq1sArGleleIALnYV5KFIYbu5/PZjBdffpHpYcOnfvlj3PvIPVRLY37hE49z8swGX/rCF7j2xhUhOMQo4Fz0UmUdRVXGmFSdnizzBEAy6Ch7gkJhUv9nNZmgIkoLkYmkaKNixHm65GoeMzEl2FrncN5T17X0TVVSWIM1YgMAYslJCGhjpbKcgDEDyqrCO1FAca2jdQ11I4pbJJsCspeC0igCvmmpnSNYgy3KZClZEoZDGudwbkzT1hxNJsxmQpANKpMlpXnncK1U4Ed6NY2AJFBt6keQfQbBGLtKW2VNqkJOFakhpGfcQ7IhhkTODF1yFy37bpsUkA4OJ9y8sc2gGrKyssKJk2usr60wXhoyGlYMqwEKqKqStnUMvMOFSNu0tE2bxmaDcy7ZXzhCKGgS+OljxLViD+fbQN3Mmc8nHB7ss3njJmVZMl4asTQes7a+yur6Gsury5xcW2U8GkgMoAyqAKsUVaWIoyWWV1Y5dTpy6e6W2XzO0eERO1vbXL2xyY2bN9jfP6Cpa4IvUFrROifkvhAIzgsJMo0jm1UZg+/2EucCShuMEh/y4FUCacEYRVFVFJUQLAkeEWCRfUA4uQYfhGQZgEKLTdBgUMrrPWhtKQorxJZWlE/atiUray02KbqPiVyhGA6HokaHw+tAaATEGQwqgknk3myZpGWfFAKZxxeOaKyADwnU0mnvVQnQ0gqs0bRJ1SYmkNoY08U1si76tHZI7KQUFLYU4p8PYq2VABsB3DOwmIiKKWyx2kgVegYN0rpkbCI456S8951tawcWGoNWiuAS4K48thAydfAJ3ErJfBHMUeB64G4RSEy9IPMnvScrbwiAJmukLZJagOkVkXQiL4iaTSHKKsYISQghcsewkBZQAsoUSpQehRS2AM6lSRujSkpW8iy8EkAvpDVf5nsGLBMP1hpc23aAd2c59A5t2Ypx0bo4FzzopFag076Z+0eAL3mtJna355JiX1Yh0HnNzAoqIQgQmgjgHWAXMzFEwChRYsnqavI62WuE6Gt0b/mVMPzuTJGvNVuYxpDVuwQQEhA7dvEq6blrk4m5gfChCI9oMOCG8j0myt7AwTr2y3+dML9Aq/YBOd+UZSGWprEH6o+Bp0qLlWxVdWpRGVDrYu5FzLo7T8hEzXYy+cxA956Fv3d/XvxZ+ls3BFX3WsECe/Br4fjQtfy2Y6QiOEaEWQQSe/B48Tv761XJtlpl7670b1aZyIAh9PGwsfY44B9jvwYtnFiESOuAih/ZVPpPVFhluHDuHC8uPc/hLSHiZNQzE+Si6m2etS5x3jKZ1wxXhvh5A1Ez906Iukd1R/DyIRGVWpcIKKpTuRV8tD8B5vuUW8mWgWIbGILsEzpZLnfnw0giRUNUnoODJTY2ki0omsU9LPehUorREE6sX+HwaMq8HvPAh1e488FT2NLgXEtwLU0C70VpN1JUJSuFpWlKDq5cFovldOVS9LBQjZn3T6W7c2yn9BOEBIVJdqkJlFeahWevOiULcT7TVGWJMYq2bvpxm14htm8eH1xHZIOYVAvTWSr9P3f3sTGZ1gtR9Vw4+6bpo1TgcPM6V19dY3V1hRPra+nnOgcG/WdqOUGDYbxygvd88lM0sxnX3rgqZ/co6jUuq3ukfc8UthsHnX1SP+sWJmNSc1G5+CHvmLn/+/kZ07No25pXXnmFnZ1t7r37ft773vdw4e5zFGXJAw89yMrqCl/96ld57gfP0jZNWg9iJ/LY2x7m+4zZpbFb02SfSyQvhVi2RjFkEgJ06udEPJA57Ls+zvtuU9fsNDU7Oztoo1ldXeHixYucPrVBURTH5rkUC+RCKsAotNHYQoh1Oe5wPsUlyVo6hEzOSGPBB3yQ+SjFawatxZrv3nAPdxd34YJj1+3ybPMsz4ZnuRk32VW7nX2TQtTAOfYE6Mgi+TnFhfvvCEqks0noSTJS0LGwEaR90hvH/sk99jb2sK2lmBesba5z4tpJRvsj2rZlOptj9KEoHQ0HYglXFRSFpbC2I+d15KNIIix5UaP0rus72TMzwSYXB8VOkSmGQOMdbdswnU6lyCipLFVVJbZwVcVwWKU5LLEiWidFGkVhC8pYMYpjNuJp7pncx2wy48gfcXV4jZt6k61qm0l5hFOyRi/uQ6LgleLc1N8mrzdRZkdIlujCjexjk7x1yv4iMSt5fHfkpt7yKys9hzQvtMmW0hECneKyqLr2RKRFYlB6nOSlShHTGQiicxDFIi14L0qpOhGpOpk0OtJPqx0+emw03Z4a0zm1e3EalFqpZOnWx3FdrC+jsFs5Ynp9VKScAnjn5QynUnSRznB5L+32VXqVojcTu7rcSLr5SK96SfeyHibL5CytpCBDaiwWYpB8n53iFf08607i/XXlz8prRgwpxk0Kt7qzAYzdaxTSB1l9raMJZ9JRyOdF1Y8ndFpz8vUcj3CkA2N3LV4mV5/WzeEbyJnTKFQa4+mtx+Kz2+0d3ArgfwP8TxFS0urC7yLwxkX43/1TeO5Bbj/V2+1n3xRXrlzgAx/4TrdH/chXKThxYpdf+7Xf4ZFHnmF7+xSf/lvrPPDxO3/i+3KLMbJ/+fXjGNW/4y16z+bT32N44iRrd93zQ3nGH9fsYMjFj3+aV//495lub/6Ur/JHtxgjk8mEL3/5y7z00ks8/vjjPPzwwx3J+pFHHmFlRc4SL7/8clcU+LO61qOjI46Ojnj55ZfRWnP+/Hkee+wx7r///reNrAQSfw4Y8JH0j8dznev8AX/AZ/gMz/EcL/GSiGi8fRdFO2y5+uBVrj54leqoYng05NL3L3H/t+5n48pGb2/9c9Z00CztLbG0t8TFH1ykHtbMlmZcfvgy23duc/OumxycOsDb29Zwi60dtAQdpJjldrvdfkx7yyQlY7O8dw+ctaG3S/JOALFc+WFLi5yzpbLfGoO1lagbEQk0CcwTxRZjDGVRoPDUThKVRgNGE5RaqLSVxGpVWlQUKzm0yLIHJZWO1WCIbtsEzIaUkewz4VL1KMCc1hrnWupGKr1MImv4KEQAkywfSp1l0CPeK3SyWFDGMq9bfMwJELGzqoZLrKyd4vmXXsQHTVUUrK4u44JnXs9ThjF2h01jLINywHhpicFoiag0jfeEmGvm6F6vtBz8s6S7StU5+ZDfSRenM32MCxUzZFwlJUlTRU9MyeqF/H2XCO1BgHQVMZ/5c7AnwDshZkGlZHknpA45SffgQA8upEeyADws/ptB4JxMVkhiRim6pEROhBtrU+W97i5cx97dRqVxQwzMZw3Tw2kP1hwL3I6DFxbFPefv5NH3P8q11252yi8gybPCWkpboEKkGpSU1tDu7dAe7KHDu/BuyLe+9nX+5b/4PG+8cpUWS7QGGzVtjASSRYA3WMAUJSixrsm2a1ppPB4fIqbMqh0R3zoOZvvYosIUBhMtyuQkrSis+MbjmoC1mhg15XBEMRIQU3f9pVNSRIvtAhZrC2ypGCwVrJ5cZjAe4qNmMpmyMihYWj/JYFRR6AFaeFUyRlrPuBwwNJXQypzHN2IZpbQm0hLwYucVVK+cVGqsrbqUsPcCLBaFISLJp9a5jmDiAe9bAWYRYMcazXg0ILSB4B0+KlyMzBsvgHjQFIVGK1H/UFqSzChNVGLZoZOtYOyU0wJGG9rgk/pPBG06paJCyRhqFdw62ufp7/+AU6vrrGxsoGoPJhKNXJush3n8GIgFaydO87GPf5z9vQlXb9xERUOI4BonxDOVFH8QJQjQGCV2cNYYYcYvVFYqRSKsWWLM4FxAJXKCikIk6dTllKJVognlnOPqzSv83u/8Ph85+gXe+/73MBxUPPzwQ5w+tcEXPvdFXnz+JSZHR8TQCgFGJZudpKYWo0/KcQab1m2BflIC0cutmzR3vRJAN4aAj56AEBgMmUTSdjYFxvTVoxGF94q2DcznbbIkrKiqgajypPVPq5DyhSrZ3Cl0sizIIE/btsznSWVpVuND7EAGWTcUXgnRSKc9Lq89pTVUhWEwKBkOBl1ldd0KWTaEQF03AsinRGK26spJ+aIwhCgEKZPsTKT6NqJ0AokScGRtmrNBAERZfmXMpiyoAOTEziagQ2ZI5LoofTavJ+zc2qIoK8ajEWtrq6yfWGdtdZnRoKIoxNLV+Ii1jqp0DJzDj4SE1HqxhXOtzO8mkU99iATnRW3PO5qmwTuHdy2zact0dsTOtknWcCXD8Yj1tTVW11ZYXVllbXlFgIalEYPhUBQVywod5ToGwyVOrJ/k3Llz3P9Qw3QyYXd3j93dXW7d2mF/f5/tnVtMpzMmkyNUkP0hhCBqIkoRgkcl4oqMTzmwDauSOA3JqiGAloR+YTVrK0sYozBKMawGXLmyxWQ6T6QK2VMzg0eAKbETi+lf2WdEOdHaolOi8j5gCys2jd4jFfcGbTSj0ZCmrqm1TvGFJfpIo3vQJxPAvffoZH0RYyJndftzSjhHIchlywq6/bWvYg7puqKBwiiCz+TgyOJWLRZdqvu5zBeNSsovSoNBCLE5sR6ckBV1EqwLwWOUqFtk8mqOKV2OY8jPSQIVY1RHGIlKqo6FC6og2VuEELBFgRO2iKhSpQsXEDRfr9hRinVPQBeZ/GAIoQWkOt1YuY6iFEUa14qKgk7kGY8nOEeIiqoqMjRAQOFaR2FFjaNp286+WJtEiPey98i87y2RjRaCnLiGqBT79Gu3URrXtPgmq3EKiNdVgr+DSUqqA/B79KOvtJf9wC2Q92SfTlFgiInYKRZ5Gk1MylhZXSwXRkAUtVKV+y6RvlM8nM8TYvuc+joTl5DY0JgCpYQgmqRZF++kex4qgYohBFHqi7Gzb1wkWhmjRY0tfYKQtYxUya9qWu+7SF3W+hLzu3+davsBdqa3EHtcTTWoCDHifFYYo4v7ldZJ6aLEFqWoLWXgH0WO3TNJJY2eDrxPd5Z+lmLndKDIO3BeOVJHdeB/ws7SeZFjKLpa+HPkx43P2H3PAgekAzp7cPJ4zqd/LKp/A4s/657YsW9TC/eyuLfT/T3fTHp31z9yYa71QmaJYzoW5uK9LI6zqFhbWeH02dMc7U2IiYRPFHUNnWJ3FUnEIU2YTwn1HIIhBMu1yzs89+xrHOwe4hEVUhUlsvQLBR/Z3kaUVvoz3CKhPRP5iHLmcG0tAKrW6GQxtIhwBxdlP9CKyWQs1t5FT5Tv+61Xo8qFBeOlIwbLgXPvuouiKgkomqalsnNKM8KWBo3teDgAoWmIszmDspKzbQhEJ3NRAdFDpLe66qy1EvkjnSQT6B07Ugte4uSYCFkCXierqmQrbrSCUvbbRSJp62VOhCg2alr1ZAGlc18l4FrJs4nd3pmKIELo5lvuI0Bs2KMotG699jI3Nk4yrgZUI03UBrRZAJvT+FIgaLNitLzGQ4/9ApP9P2Bvb5+sshOSHZA8J4itS6RPhcJ0pM48K7OaCwv7ej5PZCJsXsGyfpVciyhwgGd/f5envv9dmrZm1j7KpbvuYjQecu7cOX79N/4aFy9e5Btf+wY72zuE4LoZmy3ldFKhhihKojleiXnm0a3jKsX4QsqTmCQThLv+TSSBPBeUoPvdNI0hsHtrj91be5w5c4Z3PfAuhsNhIrpkEp3KX9qtXmIvroQ3rIRYk88BrnUyfsj91mUyiCpIfic9e5WeQWENFsNpe5qN8iSPh1+gDjVvuMs8HZ/mRf8im36rX2O7tR/JA+l+fpPzQAtEi5jV79I63RE3Y78HH9dNkd+5wuGsZ7Z0nc2Lm6xfO8HFZ+/EuoIQGubzlrqec3gohKuqqhgOhgyGFWUhxYXaFlJYE0VBMZhIGcX6N8RUvJJUl7JdYUzn7pgJS8GJ6mSyfXVeLL2P9EQK1qylGlQMBwM5X1RS/GAKIfVqo0EXicgt6mqVGrAaV7nD30HbOGYHM27ZW+yZXW4ubbI92OKIKTNmxJT3DBGUMUKIQ+aJpNMURClCsVYKII+tv1rmV1EYqqrEO8egqpjNaqaTWp6JzlpvaZylNSQGRdBJiSdmBcI+b9EpFKus/rSgqKmQ80MqjujW56RSGZF+1iYRftKYMensEWLgaO0QVzoqX+WZ2e033ThGpX0w9mM0Pc9eYak/d+SQRCmJ37p9vts35fNyDJJV3/KIzvGgLEZpbOd8VJ5Xql+PgX7+p9mYiyFVnhNZwVMLOTWfTaJMshwK9eFrR5zsz0ghpBy2ysTK0O25uR+y4jKRbqzLL7JiawDTE7sikrPNe61PtoRKK9JRLNmY9rFY7B+/fG+MqLCgLJUWgo6I1rSyJiwQIruHdrv9/LRTP+JndQV/77+Gr3+U43Hq7Xa7/eza5ubphXz1T25F4bjvvpd55ANb3PuhX39LBCUAN58xufnn0DooRq596xuMT52mXFp+y28rhkPOfuBDvPq5PyK0zU/xAn9yizFy/fp1PvOZz1DXNe9///s73O/ixYucP3+ep556ii9/+cvcunXrZ3adiy2EwOXLl7ly5Qrvec97+JVf+RVGo97y/O1sBsMFLvAf8R/xd/g7zJjxJE/yz/nn/AF/wEu89PYqLAH1Uk29VLN3Zo8ffPwH3PvkvTz+3z9ONfsxhV4/R62aVVSzirUvrIkqvgnsnN9h78weVx68ws27bzJbmdEMmj/XW/CNe24wW54x3h//rC/ldnsHt7dMUiqKktY5AZOTcoxJh1xiSInCnkATg4BMwTdiw6WEeDBvGlovgKBWUBQmKZlkUpPIdFeFBTTztqVuJcGmlZKKqdJgtMK3Dmvk4KiNEgurBD4NqoraeeraUZiU7CUkwI0uGS9kEI81WiqUfKSNbarOF+BQDoGQ6iy7KrSyLMEoQnC4CD4o0BaPYuXEGpvbWxwdTjG6YHlpiaIq2b+1Q3Qhkb0URlmUshRlyXBpRDUcE6PBeScWRmQyj1xE3pwz0JDJR5JniqliK4EwKRnVAX35v10+MaYkXargiXLG10oSWQpREwDetLkeT09kdCLlEsgVTT70idn0IcevQ668S/bnA3EW5P/hliqliaioe1uGjmwTu2phHwMu+FSptlCZGaGtZ+zv7hLDpc72Y/H63nwWXxos84mPf4KvfeEb7N24RbZXUkHGi7EaEw13332B8eoag7Li0t13EQuoTi2zbRueev06Mx8JtEQ81iuC1ejgMdqidEAH0MZCFGBNRQUhJWm0pGu9k2RScEnCOkRsjFR6gG4aqsEg2YMoiIq2rikLxdraOsPRkiRTlKgBdSotiq6aMz8RW1jMoGC8OmQ0GlEOS0wUwHpzd495gFW3zMB6CiOWJN4bbl7ZYXY0w4dA4xUqBnzboJXM7Xld07QthRECxLgYUpQGk6pRrRWSTkzj2QeH0QVNLevIcDQQhZCIKJpVhSSggidETxwOmExm1K2QNbR3QjwgQPTMJjNZHxIJQwDKNLejIk05qb7OoEJK9ImJYK6ClZHaBI81FlTEe3j9+k1eevV1PnjmjFgLJosGiJ2VgRCUsnKE4uzZC3zy05/ij/7oc2zd2sVbmV/BxU4NJSpNUUqVowseFaUaThvTgQ+ZBqhNAdGIkhByLykFKXM9WVuhlMwRZVAIWNMyZ2d/l8/90RfY29zlFx7/MKunVzl1+hS/9lf/Mi88+BJf/OPPcWt7Gx8lmayiTXPPp2QfCaDVKDxRy3xW2nTgRkxgsbEy5pqmQWOEuBDTQyFibAFBKiT6NS4n1mSMxyBKTu10xmQ2pyoKRsMhg7KUvjag6JXrMgCdM6O6KinKksFwyHw+Zzad0bRzfNsK8SMnaYMmOkdWtHJAW4MxFlMYqqKiMiW+8FRFy3gwoGkaZmrKwJbMmzbNC4cPQQa56sFl029MSZlDiJ9ayfzKAJgPAWUUKiZFmbROq66TEi1FyRgTwl3s8NNqUCVLCyEotq1ja3ub7Z0dyisVS0tLrK0ss7q2zOrqCsPhkLK0FLakpCI4LxYMzlEWFu8qYozUbdOpXLnW45wQDauyIMZA2zpRsPIe3zqaekY9n3F4cMjO1g5FUTAcDBmNxyyvLLOyusra2hqrq8ssry4zGAwobdERY6w1DE3BcDDmxIkNQvTU9ZzJ0SEHhwdsbd/i+rXr3NrbZVbXzGdzvGuFMBUkWRySxVZEoTRCjNAaa+mT2hEhBjUNVWmFTKZLqbbVCcRLJDEBnJPiggs41R7bP10QpUite2sYUtzhvdi9WWtljnjZw6JRzGohvBW2wFrD6tKYup4zqxs5YObsOlHW8pz4T8BAxtZCnn8Ltm7HxpVK+2Caa9mO4DihwAvQpWWtDtF3qmykOE9IlbFT3rAJvPYpGU/slWZCFNJiCitkfVKRLBwRE/ASM9AQEiZoNTpVkwsqQ0fSVUGS/xqFdxBDUusJOY7IVS1CZlFRyIc2gc0hyNpKIj8JgVCjrRWFyCKDlolcBKIgSpQ1Ne0nsvRHCL4j5jjnyPCIqDYFdFDoEDvwTboyxXvai+NgFxLJRBYanRJVzgzkgKyh9DYW78RmtDkGQKKz+gP9PMooKomESbI51FnRJMpaEmJ+mZAGkhJT/jid1taysKIq4nuyvrG6f+bei0IgqrOIjAkJt9bgQkD7IPtaUiaNOV5OQG5IxH+te3KCT6SjXACR55jOcbiRPdMYAxpsItSKqF9B+MonGN18iMl0SpMApKos0VYzn84EyIKkqqJRSbmiKKzEVUn9hWPjoVfR6Uk7fXydkNEuFu64QanfsspCPsfkX3Sg5I8ZelnJLX1bes7HX5yfzeJwP1Z8ERd/efydMS5cxI8E1RYsYRZA1BxPyDhSPTmJft3sLDJVXuvlWoJvqefzhSuP3Xd1N0QPkFam4tKdF7ny2lXmR9P+9VkhVishM60tUw4GWGNZXVsDA3ZUMjWem3uHtDGm/V3ITxJOJBJjzMUgEqv4BaJjPqjJc5JxFr1LZGexyDVYvFLYBTueiCJ4h9GKwWBACENQq1TVLG0/fZ+pRDbNSKk2Gl1a1i7eSTUcYQqTLHBhMp/jIlSxEnXkBJjGqNi9sUV9NEkFOWksJIt0hVg0ei+2zSYRdLXRZHumHI/K4MzkFJ3iOoUpbacOKuDuAkgeI9FamsZ1xFEVAoWRdbyJAdc6XBSb+N5eMl1nVOmU3iukEHsSSf5XztxJuaaL/SJtW3PzyhXWT25wdmkpEcYWviCPtphni8zXk2fP8+AHPsj3v/ENprMZuVAxEwVCIlmAnKFFYU4saftnvQBOKzmvqESgyvFAyJWvMYJJZ4soDAGV7tmFludeeA4fI/Ws5a5Ld7K2sUZRlHz4wx/izosX+d3f+R2uvvGGxDoJNFdkxVHV9Vt+5lmpMC3Cx+a/0nn/TkSndE1doZN+03s6u8p+ysYQuXnjJgeHh5w4eYIzp8+wvrZKlZSau+5Ob09hRJr+QmLXZSkqy4VPcW8rBLiwoGgU6QgHOZ+D95LXSLaDxmisthSh4EHzAO8K97Pv9nhOP89T+mmuhCscxiNcTOqr3YWlMycL66YMAukHlftSdY+wX/Nyn8nnLK79pM/zxrFz5xZLeyPOXj2Lsabr4xihrmvm8zmHh0dS7FCVDAYVg0GVFIzFjs2k7jde1He91gQjisZC4JaCgeCzDVwkRE1R9MpVeUwH72m9p20a+W59KMrrRSGq04OKwWAgSrjp/J+LsyCpIaLRxlKVA1bjGiF42v2G6d6Uw3DI9eoGN6obHAwOOagOJCMQfGcfjMoqzGks8SaCXd5tIsdUP10uSMvDs9tAF8Z9gEjo5l2nHBTle7Tqd1ZZf2IqIFLdOMhKQzH1aT6DFIlE1roW14YsJL5ArFLoKIrXSss+kkPbTEhaLI4kxep56e1uRaIrMtm428qTzXXs3he7M00miMY8rNO9S5/I+hlC3svldWahaCuHMYvvz+M490v+c47P8tgPSIDX5xpFWT7GNHfSDcqcTt+RDl9a5bNXn2MUsn2OQSJiw5mIvLmTYh5HKdeXVA3zoOqIkj/i+hXpTKljF3/meCzP70g6K6iOLtk9pFwQ2Fl0d33F7fbz3poC/vP/A3z+0/yYAPp2u91+Jm1/f5WDgxXW1vbf0uuVMZx65L0Uw+Fb/o7p9hbN0eG/7SX+XLd2csTe669x6uFH/42IMkt3nOPkux5k6wff/5lvAm3b8vu///sopXjf+97XxW3GGN7//vdz/vx5fuu3fovt7e2f6XUuthgj3/ve97h69Sr3338/Dz30EGfOnEnY09u/BlssyyzzKT7FJ/kkW2zxO/wO/4J/wTf5Jpts8uOLx34KTYnC0nOPP8eZ187w8Fcefvu++21oOmq005x5/QxnXj/Du554F/WoZrY849r917h2/zV2z+6ye8cuwYQ/V9ty55Ryu91uP6G9ZZJSThioEIkWlDJURVJsUV6sz7BoLYniGMVyRUgARtRPYqRuWhJmSpbqz4kfESmxDIYlXlmiadmfzIgkCw4EKMo2bvkYZZRhaWlEURomhxNcG3FNi9WG1dUVVsZjFIHJbMK8cbStE0AgSKWzMQUoRdMkF251POko4AOIKlC2HhJwzBYaqwtcAB8NMWjWTp1m1tZcv34VFRVlUTIcDZnWM5pkCwcaW1jWxksMhiNMUaKKgsZJdVgvSZySzkqAuJyElyRqSpZHUMm+KywgBJL7OpYxQZKicoDtfq37lTEfeiWJ3VcX56RtTuSHxeolFnJ9OivS6C7NmS0DFm1PlBYSRb5crfI19hBCl0iH7gDeHdIXkqy9bUFKjHovKgvIcxQlgpwAjbR+xs6tPUIAs4gpHOuFvhmlefeDj/DgI+/i6zvfACcqTTkhZJRmY2nAr374Qd7zsY/x8vNHHBwFBq3n+Ref4+tf/Trzwzkuqcr4pJAl+Qotyjy2AC8qFz62SVY+5W5SNbRKaE1cAJa00iL7HTUDW1JpjdZSHVhUQx68/y5sqbl+9TrRyZiNia2glJD7IBFKOnBGoaxhuDJiMK4oygJrSkxQRGWolpegsLRe1D7aEHFtw87mPldv7jKfNR1wH4PDta2ACLoQ9alqIMSo0oCW6mXjTErCa1EUiclKwQsAboxC64g1MgasNnirk8RnpJ57NJaoFaOxQc1rptOZJIoKQ0ykNh8ChbLUdS3XYEwCOdP7Y66Y6zCjZLslSSibq2ZTUgqliUaDd6I01TqeeeVVLj76EGc2ToBN/dkRlFQ3b/PU1MZw/wP3U9cNn/3c57m116BQ1F5A68FwhDYWWxYJzI9EjKjMEYlaC/EhzSUl/lNy75I1wyNVqXkO5UpubRQ6CokphID2jhA1s8kh3/jGE9y4dpVP/+qnuXjpTkbjZR5996NsrKzy5S99mRdeeZFm5lBRU1hN1MnCKCW6dBQLDBccGKnYJvi0fkjNv0nrjUrWkMEnhaC0NgflU5WozGXnHNnWQdabTFyQKlM0zGYz5rO5JMeLkuF4gC0MVguAEIInRFmDYlqrTJpT1hpGw6EkumcT5vO5kMSi6pKrKq+hKdno0xh14oEqpFdrJClflIyqKhHFhGA2bxsm0wmz6ZymbYRcB92Ak/8GrM6S75L4zHZQnSx87MEEjRIlwUwUiQLme98nmvNabK3YMuTqeK1bGlfTupZ21jCdHbK9fVNIhOMxy8srrK6tdntpaS1FWYki1aCSdTx4mtbStB7noyjNtG2y1JNqZ2tcBwZ674+RnVrvmc1b5vMpe/u72M2ksjQcsbS8zOraKidOnGBtZZWlpTHj8YiyKjCmSPYAyXq2LBmORqyfOMmFCxd55OGHmEwP2T84ZGdrj63tbW7t7rC/t0ddN9TzGhckzaw7QFZ11i0586wVFKWQGmdNw9HkFs63FKVNRIQE0qXNxBrZq51znTyxEHgy+JLsD7UWexAfO0sM51yyjAqEei4qUDFVlbctGkVpDcSSWd0So2I4EDnh0Cn9qQ6oVTpjVnnfkDU336vs9wtV20qU5uhECTOwKeBpVVmxKW0idduSE+shKHzju8NH1JDLe6MiKW3q1F9BCIoLfZ7/DWkNTqhOl5DP1mpZzUH6VSfivGzmxmqiV4m4JXPDFJrhsIQA02mTqt3lXjNJtzAWZRS2KADwc1F2sNZ0ykSFMfhWLOCIisJorBVia4hi/ap0xDuPD57SWnnuWoiUvk3rbxRiewZ1OvUonfYGpeX3CYBDaZTysv+nuR+ikE58jLTBy76QnzN0dmbv1Jbna4wk69lM4NEkpioCKpMAt96mQwhKsgNk29A8VMjAFMkiRWlsYYhKg/PUzVw+IQ2AbMuUJeBjWl/LskQbRds0ApA6AY/F6rMAogB6LlkLKtWN4DzhvO9V7LRWxwoCpFKetJdLE2BaoQuTqugL4hc/xeA7v4rzkcNDSbAabUQlzLlURJBiQa0ZFCWFLZLVrMZ3tnNdz9PF0B0wtfhg0rUc/2v/zjf/IgGk+c9q4TWxe9PCGWTh03Jcn1+3qPYdOX4NeWfM4F5/MQkEJgOm6ZsUHbFN3plfm/6ezp/972TuZeWhxasUIqZ8pzJKuMN5UCLKHrPZvOvjN+eZ1Jt+opTi9KnTbJw6wZXpDBYtv5AxOyot950/xZk772R3p6FuI4WPbN/a4cobl3GN68DwGCIe0plE1g9lYlJeE3VLIXxAVtyhO090F9VfaxCyX6F1IprLnNLWsnTiDNoojg4ORWkjDChsC0reewxEVv1dKaNZv+tuVu44KyQiZbr42ZalxLIhqSYj1kPTyZytq9eZzOvu4cYosYZC1JnEVl7SGEprok4E3HyfWnWqsnJW6lV0lErKZzpilU5gt8Tqzvl01tUUpUalWAVFrxblskKSTvmPFHtHj2JhHOX5kIk2aQOS8KI/l+sMXuukcBwVBzvb3NzZYfX0BuPRQPbLN42uhcHajZ9L734PQWmefuIbxKNDvAIXIQaJ/7LarlJytoksgOcqFzuRDxTkyq4ca8Yc6+QhlAajykR7MmE74FzDCy88x87ONps37+XBRx7i3IWzFLbgjjvu4N//9/49/ugP/4iXX3mZ6XRK9GkeZoJyGp8xrdfEmJQR9ULiIdOqVK90lvI3vfKTTsRT1eUyQMZLJB/rYhfzTCYTptMpVy5fYXlpibNnz3Lq1CnG45Eocnb3m74j7d8RulhSiM+GEIqkrNQmMvriwFh4eCQV1BC7M2JWlbHWgDGcNCd4PHyUx/goe+zxSniVZ9wPeLF5kQN/IOeJTDLqRknK5mQiXaeUJWM4pPkbA915NV9RVpkRv/DYrXPaa5ZujUGJ2uSihWGIgdY7DpcPiToyOhxSHJXJolTIStWgoioripxr0xptQtoTYyL/JGJSSKSekFSWQiAk0mFMzzimn2dik/cO7x11M2c20+ik8FSWJeWgYjgcMqzEArwsLLawsv/qXq0628FXYcBaWON8PE9z1FDvz7ml99gudri2fI3t4RZTZr0KlJxyU1yd1iujuqehEKu/HKvMZnOCD8nGsl8r8n4n8zXHTTkOTspJaXx7+vUkW9vK/hQJWkiIzjkh36dxFaPsnxrJDTkv+4VJRM8c2+S5r7pxvbj+ZIJSzv3GY7/Lc9H23ZqKJXIeRSUbbDpFLZWmREjFYjkTeMxCMxNHkzpwVmfOYUAfP2TC3UI0023WeZ9K/aD7/Cak9UZBDD2xTymFKSQn3Sabc6DLCcjZC1C9ZVsuhslqe4pMimNBMV1UqxKNkUwgy3GuqIPm87/q7z+d4bLqXL5O4ZKp/inEfu5Kd8Q+JmVBUTDHOrp7JZmQf7v9nLamgH/8n8L/7X8PrvhZX83tdrsda5PJmOl09NZISkpx7oMf4eT9D7zlz48xsv/6q3+KK/z5b3uvvcLGAw+i7Fuf/0przn7gQ9hqwNYPvo+bz36KV/gnt7Zt+d3f/V1efvllHnvsMc6fP5+cceDUqVP85m/+Jr/927/N9va2nNfeIW17e5vt7W2+8Y1vcO7cOd797ndz3333sbKyIjnCn0FTKE5zmv+Q/5C/zd/mDd7gS3yJf8W/4vN8nm22+9zOT7kVdcGZV8782N8HHdi6c4tgAieunaCa/3wqLikUg+mAwXTA+s11Hv7Kw3jr2b1jl62LW7z+6OvcuPcG8/H8hxNJt9vt9uewveXVMQuCxJREdBGMLhiMx6A887ohuAAqJA/2kKRupTTIWkthFV55mjYIkzRGrLGE6Jk3c0l0eAHeD2dT2gBeaVEDUIrCWIIPNI3rlFlAwMOyqIDQ+XIrBGhsm4aDowOM0ZSDAVhPmEwwSgvImYhSddtKVbAV8pAtpJrex4h3jlxln0kM2opVldWWuQPvI5WtqFaWMWXJK8+/iGsjRllGS2NUoWkO26QuZLDKsjIc8cA9F9m4Y4Ot3QMOpy23DicCPCgF0ZArr3r1j3wgluciidYEMObkoKJLbvWgQiQLFHXS5dAB7Rn4lm+IXbJOks/96+TQnOWHUyJlwVFIo3v8IkAgdMC+MeAlb/ymxH1KLqpArqOk+/yE26EW8gopiZnITnKY131SI+SKMbHWiGkA6yDJjDa0bO0f0fjIYAGs6K6lu3dJ1mlg48QJfvEXP8lT332K6V7AogiSFsLYIY0q2T/UnD91H3fft8ETX/km9hXLf/db/z+e/f53Ye4g24xEhScQHehg0JWRCn7tQStJLCRSno5i+zKwJYU1FLYgGI1R4FoHQXH3fffwyHseZWPjBNWgYDSsGA8HrKyusLS+zpXNG3zhDz/Hras3MQq8imiKjoyWk/UqZc6VhuHKiOHKEFtptEFIQ0UlxIHBAF0oAUqDl7kcLPPpHN+0ROexhRELqLqmsIbRUOTXW+epYyD6yHw+x6qAq2sYKsrhQAC1tiUmG7PkA4TWCucDOs1Fn4hozktFoGvlmfno0jNPetdRCeBAxPsWazVVVWGMpWk8WnvKQZns0yBGnRKClkik9S6BHqobX1qBtUDUYq2W8uSRQBtbNg92+e73nuEvnLqDcjwgJlWGDoRI4ISArUrkvKPigUcfJKrAV774Rba2ttEjsWtBSeLKZmAjgwTJqkKl+ZqTbGJZIdaVykjS1ftEvgoRa4s+2YkSQMtHiqJMlaoOFT0uOF56/VV2/8URH3/847znPY8yWC658657+KsnT/LtJ7/FV7/0BNODmSQ7vaiCGKNRXp5dD2vIjRtjCcFJwr3bK5KKRBQA1qiiA+gFrPHduhRVJNq8LgrZQWXiphLylRAgI/W8ZT5rmNVzSYpXBYOyRGsrJBRUsvXKa2yqwFSa0mgGZYHdKHDOc+vWnhBaoiMeXyLSvkNnu9m2rfS/MZRVSTUcpjGoUEaspep2hcPDCUeHh0ynU1rX4pWsU9baBA5KC9lAIyfkvcrDMQ282K2L0ssRa0RlKepeES+mhLhSGmvKbt2VayOBC2IDEoNiOnfM6ppbu/sU1zcZDYesriyzvrbKyuoy4/GQ4XBAUQmoZgtLFSJtsn6NPhGVnBCDW+eFkOScqM6EQOkLsTd0gaap8a7FeU/bzmmaGdPJAbu3drh+rWI0HDIejVheWWF1dZXVtVVW1pZZWl7uyANaFWgU2moKC8PBmOWlVU5vOO655KmblqOjI25ubrKzs8NOOjweHh4mcjAEm2zLUsLYO4exokYipJaYyNiyx2iTCLcxb1lhYX+yHeEpRiFZRm3FBiQKcVdAIJ/Ug1LiOoiigk5sSaU1KvSgTN20QhwykgAX8Mcynze4EGRdyiRilffXPsmenzfI+33bJlBCyOSQrBeiABO+9T34FjXKRULTCpimRFnSOS/9QoBM/MiKGsROOSmmfcYkS0jvfbLHS8CnitjSdMl/pRP5KpNDk9WbVVCagqAUbXBCyPRiPZwJLdqKxWdVGFybiaWiAqG1kCtJU8i5gDbSb0HJc7dGYZUWshKy5/q0JzkFZVXgglgblqWlKA3a5MpqlexlspVQGhdyZYnMJaC7kK37qv6IqI+YpNpptIC2olkq1pDJrwSlQtqzMpiQ9od3MKrQWXCktVfURBJhgZjIqBnsBjLICmkcakj9QVbWi2ASadV5h46KkFTKmrbFxwza5PVe1Ji8P04SMcZ0ltAx7WGJA4YLnrpp5DxgRUGxbRtZU5PiHlHUtPJ9irJLr0CSzwCdpRxpXzdScNE6TwwK8+Rj2G/9CtqU7OztJBVYI2RJA75eIFygGdiCjfVVRksjprOauvXMGomlpIc6uY8+5lULRICuF9QCvrg4hlK83x0U0usVx+7j2Kh7c6KlYzD1z0HxJkWlTqXp+DkhLgD20KtO/OhcjqzT+bfHSAFEMukhH3BU92/+u+q21l7ZgbQvBLTvdZh89EzmDT6A1Qv32HXAcdBWAaPhkLvuvoubNzdpZ7FX40KhlMVhqBvF8vgEaydGXL18le1dw/efeZqtzRvg0qErdYeA+nm8KbSSAgB0Ali1JlcHZWsvUfYyRJ1IzsFDVKydWOf06dOMxkMpCiosZSH2TeVwwMHREa+/8hqzw6N0JjHpnB+7LtZ5DKX/L22cZO3sHZjSpHuVOM1YIQ4okwhIMc0jpWjnc+Z7eymXIAUG3omSU1EIATQEiY5ikPVaKyPnskIsXkWVT+L/zFmLKZ8ge04iJ2bAPgRZJ0IeI0Ic6M8T/XjIimlZjUViUSEbKx27czmwsK8nen3snx2qEw49NmxijMwnh2xdfp2V9XXuHi1hStUXT+TzRG4i8yX2f2guPfoIdlDx1Oc/J7a3hRELvPTVWvUKQ3laLJQSpe/INkUqEZpArKd6cLxTMU5jmzQU9P+fvT8Ltiy5zjPBz4c9nOlOMWdmRGbkjJmYCJACwUEcJJEqki1at6nU3eqXNj1UWT+wzPqpJJmsX8r6ocq638pkspZVVbd1FyWxSqJEQZxAAARBEsSUyERmAjlnzDfufM+w93b3fljL9z6RACmABIUEGQ4LZMS95+yzj2/35e7r/9f/G9f3bQgtt27dYPfuLi+/+io//MM/zBOPP854OmZ7e4ef/4Vf4I03X+fTn/oMr77yOilEKTrIc3ItPuR4LN2kh0QjyiUDccHkTlRyte53EkpU1H2x7lFI2n2Z3KFrSgbnj4+POTo65hvfeImdnW0eeeRhdnZ2hGBjlFy7xuDMf7NKXLJG5ltVlljnWCyWtE0rloP5u/ThaiAErFudicWpw5WlnOMSXDQXuGAu8OH4IfbLA55vnudLzZfY7Xa5wy6B2KvDrJtGSRpiiPtWz7DG0K8pOa7ksWbkq6jVWcKvPL4p5P3G9Wu68uu48ehNrj92DUyiPq0ZH03YvrVNtaiZ7E8prCgcjVRhqSgLsepWdd2ULM6pypmSPGIIZJvjGIW4H9TCL0axqHQ+jzkhNUX9fdcFuq5htVpiTx1H3lP6QWWpquuePOW9lzOU+hJbY8BbHIbCV4yZsBW3eTg+zHsO383h/iG3qtvcGd1m1+6yV+3RxlZzEroC53EY834j9euZMcO/+z1gynm5QbGzt2peI4Bap6TtmPpnmNe0ngqUEhElvaRhrUsa06RIKT9r+VMUjhhMr3jZR4r+/9ajR76uXCOGqMqO9Iqeva2gvrNXdEt6dg5hzZZwsJvrA6MZYrfJEScldCPcE4B6a731+WglHuWxnTRW9P0AMudVKSrl/ZukVgYiuhLJc7Hc8Nwk8FnLQBTTfZW3A5EOEs7IWcJZ6dsYhmeQnBTI5fOQ9VJcl4sWhWikCklpba4a+vPRoAxv+7GQlPSfOaTfpHi1tnZnMtewvrx9zxH327fREvDf/wMhKLXl9/pu7rf77c/VZg88yM7jT/V76m+nhdWS4+vX/gLv6u3f5ru3uf3sM1x47/vfgnn96c06z/n3vI96a4tXP/mbfUHX96p1Xcdzzz3H17/+dZ544gl+6qd+iq2tLYwxnD17lr//9/8+t27d4nOf+xwvvvhi7wbzdmgxRt58803efPNNqqri6tWrfPSjH+XKlSvf0TP5bjaDweG4qv/7u/xdbnGL3+a3+RV+hVd4hRd4gY7uL+weRscjxkfjb/m7aCNf/Kkv8sWf+SLJJDZvb3Lm2hmufvkqG7sbbN/cxoZ7i8u+X5pJBt96zr1xjnNvnOOpzz3FfHPOjcducOPxG9x94C53L98l+ECy9/dh99tfvfZtk5R6D3MnCjmuqLC+YNWs8F4Ov64oGI2F/HB6ckJ0Bms9sQlS3avuR10IeJMYV7UCdFJZGFW6PSJA52LVSBLQqIS2VhjGMCTMEolmtWKvaShKx2olAIKTjJOAPCmxbFsWTYONUjXpncM5Scy2nXw3byTx7JwAa76wYk/SZUl5URgoioI2tBTOYpNliaMLDeNxyWx7k5defpXl6QoXPePxiI3phGCCVl1D4Qpm9YTLF89z5aFLNKFhVHqmsxmni4bVKq0lEhyQE+ayOZAq8qzhPiSSYEgwDMnGnIiQX2SgZH097KXt+3egWdOcSoFcSXVPldRbEIKhOjuRbS7Ih2hHn4ApikJeFaNWpyqBo1eoUclhlXzv77NPfCOJml6GeZBCjmHQoc7EG6fVTGBpiQQ6Do7nNE1kNHL9AT0DTANYIv+xxlL5io9++KP81vt+iy/83pdw0QGdEEVCpGk8r90J+Ml5xhdqjtKC/+H/8f/l2q03Wa2WQjNIAaLFikmLyGdjpDrWeQxOyCLWYYuRAAOFkGrq0ZRR7ajrEZMz25zZ3mYxn3P35i4/+IEf4IMffj+m9IQIdT1lczZja3uTzgTGG1NODg/5vd/5NIvjOSbKZzpne0WHbCWYjGE0LZhtVvgaTcB7qqoELxXJoVthfSE2V6oS0TWR1bxlVI2oS7G+wawo/VgA3bZlEROL5ZJiVIuqUkoEREEnBBkLncqfWyvPzVsviWRNki6bVhJcSaxDUpJ5ldUVQuzwhSOGhpQCbRcEfEFYM2VZ4n2Bd4WqnIiVpXdOCJMxatVmwBUeG62qKFlilyBGohG1rqTWUBl4sEqIW7YNL77wEu98+l08/PhlcuDL6bk8bZI12KIkly3Xdc17PvADnB4d8elP/x5dG3C2ACO2d5JIk74QJRSLNZkcILZd1qDgp1ULMKOfbXDW9VW2eb6K7HvEGI84wkiyX6o/xUrnzu4uv/Mbn+TWtZv8yE/9NTZ3NpluzvhrH/sY29sX+IPf/xzX3nyD0AxgjDVWQLIk6lvGSHJOEoYCQrlkZNurcUOSjqqsp4lYbzxR+zoGUQhL1mBSHicSq1KXiIi9ozESBySCWWJInJ4uODk9ZVxVjMdj6nqE86K80kUdI1EWFalyNVjvqKqRJngtq2ZFs1yyapYSt2LS5LgAbr1VhSYpQ9eySgHjJIYbYym9zBlImJkVS7jlivlyxelyybJZSV/Zoeq/cIVaYQy2p0ET3dY5JXJl4NYMoHMSML8LYjUVY+jjqbW+X0skvEvlcTKxV28jRpIRa5U2NiyWpxwc7XHjVsF4PGY6mbK9tcXOzhYb0yl1XVKUljJFVUrqiLEk6tzOdm+rrhXSgFoZxiikhKJwWgkd+j8SEzqW85bVYs7BwR7F7QJfloxGI6azCZtbW2xtbrO5tcVsMmE0qqnHFUVZYozDmA7vI4Ux1COYzbY4f+EiXdvSrFYcHh5w9+5ddnfvcOv2HXbv3OV0vhCyGQmsE+AkQVCiUjKJorCUVUXbdsQgSjoo8ShoUtt73wNOuTo5E0q6LmRYmtI5sbVIOp4ZiJIyvrQCN0lM7tqOZI1YQAZZ72MMOGdwvlCiYrpnKROFgSEp3ZNAdG7FFAkpapLaKuE39tX1AhQZFssOo4xnX3i14uggdiS1m8qALgroimCg2lx2ndg6qJ2LVBILICTrhrlH/SWDA2VR6njVSv0u4azaG6CkE1W2AXqbDWMMbRdpG1Xi6a3kDN5aUTmLcVDPUxDTe0dVekhRAL48v5NaJJE0dki/dG2HMbG3NyYpWNODrLLnwQzzNN+3d172P73Sh1XQVPZQzlmCyUC63KMxCaeKXRIGra5LqV9n3q4tqq+qNbIuWuswqriagR5jLEWhdqCrhkxgF/U7IQJ0CixbY0UNS9c0yMQDJXjGKHHQCFBjzECGT2vgXDKiohLCQi1sFazSmC32mjJeulWHSarGlElXqiJh0KIOVAnToEoT9O/PKhvWWlUPM6JwagzdjXP43/84ZTVmb/+ArhULwcLJXiyRwVlR8ix9ycZ0wubGlBDFvrqoKpqDY0I3gHzZVCQDfiTWxkve4zPgUv3+PvV92jez/hu+SQnpm65h3vKG9dYDn+v3OhCY8uemPAoyYGlFjU6RONkr9h85EKoG8lSmAqHnoQGwzYendQB4/ftm8pbF9DZJUc9ay6YlhIT3WZlOXn8vUXAAaL1xXH7wQV65cJYbr98UonXWQkiRGDwHpxFbTiinnlXq+PLnvsTx6RGhyyrCa6Byr5kg99gn8JMoUhrrxZbaGbVAKim8EHnK8YhxXdO2HfOTOQ9eusADD17q96zel1RlST2qiSSKsqRZrXjj1Vfpoic/Keww98h9ChR1yc7VyxSVKksYp0Qeed4xdkqesT2IGgLM9w+xCeqq6uOzc4UUocQgisldh/VeyDQg62YmIMVctJTB6GEOBh2KXRjOl3LmlP2/KOJILLUpg9YD0VaRdVnTVRkq9nsyJYAZO9gxRVVOQcdYPzb07B11bOezbwbTSRzducntG7c4d/Y8mzubGGfvOXff0+yQrPXOc/nJJzm5c5uvfeELojrVFzTFfj7kezFmIA8YY4TovPYcRaDK9MC27IPWx/UAxAtTae03SQqVQtdy7cZ1/vAPPk9YBR55/GG2zm5TVCWPPvoo585f5Pc+81k+/0d/QLtSm+eeqJGJcHl+ZqKrGV5nEusWbinfmE4UUQlCwf7YEydyPBHbO0iqWmMYvj9q1bu7e5e9vX0eeOAS58+d4+yZMxSlFLpk9aescJPJs3lOGmPxviBGKdzrQhArOLUEzfulPoKthY8UEx0B01eFaV7MWArrOVPs8EP2o/xg8WFOulPe7K7xTPgqz8ZnObZHa4HdaLjMNMv8AdLHxmRShirJ5NekoY9NgunBFLdy4HUXqyqZAMdnjnjz8TeIVopATjdOOZ2dsvvgHWywjI7HnH/tAju3djideyXZl1SVKBzVVSV2pU7UdqMTUmDyVvfhUQlLSlRSNdt1K2HJLbqBHJ9UxVSVTLuuozEr7MJgj53EwrIQW7hqJKSlqsJ7J9ZwXvaoSS1LrfU4oKBiHCdcTBcJp4FVu+LAHrDr7nB9eoMb9Q1OzOmwN3N6xjRqtbgWn4pCzmUhRlwe031sGlTccstWx8ZI4VsfBpwQYXp7N91r5ed8Ty6tJ9XIOcOpyl3eFw2kqTjEgn6E9qt/vvQ954s+34gZxvdaUWPMsa8NfX4w6VhXCXREAU3HZw4nIGf1XCySzxlmXWFIr9XnNod7AbH6zbEv/xFBVnvPHmBQtScvtmTiUhqmk/SVxphc6JH3GznG5OIh+qsPu56Uhuec92XZyjSvsfLrtQ7U79fHvnw/+h3WiUx5D7RObEr9/aF71uHnWUErav747XyeuN/+lPbl98H//f96n6B0v72tW9P8xxV+rC+4+AMfwpXf2Vg+uXmDdjH/s97aX46WEndf+Bo7jz1BOZ19R281xjB78DI7jz/F3Re/9hd0g99Za9uW5557jslkws/8zM/0xaBVVXH58mUeeughfu/3fo/f/u3f/l7f6rdsq9WK559/npdeeokPfehDPPnkk1y+fLlXhvpetYKCh3iI/4P+75BDnuEZ/hX/il/lV3mN177rn3n+tfPUp/W3/N21J6/x+Z/9PNHLPuzu5bvcfeguL37kRYpVwc71Hd71qXdx9StXKZff32ucC47Z3ozZ3own/ugJoo0cnTvi7kN3ee3dr/HmU28y35z/yef/++1++0vWvgMlJamQygBzrmYqCktoG0KXSDhSailKx3gyZrVqey/5LnQ4I8m8wgfaRlQapJoTyqLAeWi7lqiC4pJyzEl+BeZJJCdgcj6xCjhvMDaK/Yce+gvvKF1BmxLL5Yq26fAKZiQjoH1ReqwzdI2ApCEJCJWCqD2VztHQQgx453FGLSBiJHZRq1DBFyWbZ89wa3eXvbv7mGgoXMnGbIp3TqW+O5zxTKoRly+d55HLlzDGsFwFptMNjuZz2lWDTV4BvCRKQQjpY50gZNYS9yYr9Kxl5vIBs/fCQKWhzZCYMvoeS1YUGZKVxNj3b5+Q7BOn+jE9irh+KJbkX5/HNapYoLLZzlsFZuT+cvViTiTlsZUygKDfNX+oXUsgCMBn+nuRKkgrak4p9AkDkXCKQzUbiZOTE5plQ5qprU3S5GafcRhUnUwyeFPwwPkH+N/8/M9z7dWb3L52F5SoFFJD7Jbs7d7mG899jfddfA9+Y8KNvX3mq4Uk1bSa12l/dS4Rkyc5T+kN41FBUY8oi5K6LGljoCgrRtWEc+cv8PCjV3nqicucu3CB8dYmpMQrL7/CF//oixRFSelLirqkjYbxZMZoY4PRbBODEB7e+Y6nuHXjBs99+QVio2o5CHlLVGsE6HOFYTwVBaXCW1G2sSWVrylGNWVZUjuLd4bYRZZpSUiRg11RhHGFV/slSxkKlmq9ZTA0S7HaKaLM2RShsR1lXbAILW4RpKraqOy2NRhncfqznHh0gmIq9iskilxZmcH5qvJMxpbFYsl8fsqq6YQsEmQ8YpLECgQAjd6LJ2yf+Ka3FutiwlsBNxtVKLFYBcHp80VJwWiTEvNmxd35MVdKBXC0cjoFUT4KKWqSP6Mnlgi4ouapd72Hrz73AovbdxW0z6NRvn9Q4oC1iRSkIhCD9l2OC5pgyonolOhip2oPDBwCmVWEICCKTYakY0OqxzvoAofdHn/8lS+wv9jnx3/yx3jwgYt4X/Lu976LsxfO8NnPfIavPfM87aqhC2LBl1VWsnJbfjZ9tWUSwkUyELpsbWTocrLSJCVaaRyyFmN8jzz4whG6jhCiENPI5Iaoz0UrRxWRiimxbBqWyxVFecp0OmI8qvrxJf2VVToEwOjUerMsHb4YMapKQjemaRqWywWr1VKBpQxyKEYSk659QfoB0wOHzogqnytLkvNUrqSuxkynLfPlnEWzInQdXdNKMj20PfjkcgIxZ0qRClprLM4PAGtQJapc3WwVnA9dJHQCjEj1fybxaRI/yf0lBT4BQhKFBWvEzjQs5bsfHB5w69ZtxuMpmxsbbO9ssLO9xWQ6pizFCs4a+YxCrYliEOLgqmlEPaoLxBDpWiEstaETq05NOrdtEDBhtVLiUkvTdqzaBfP5CQf7d7l14yZVPWI8HjObbTCbTZltbbKxucl0MmM8qinrkqIs8d7hCfiUqKtIHAems00eePAhmqZhPl9wdHTE3bt73Lx5kzu7dzg+PRTAk0jqFAxxjsJHnPd4awjB9iSlhBF7xSCKYRkoTQkZs0EtatSmgCR0XINTmw0zJN11vVhbAAXMdaIwKWuzqChFtZxz3lIYL3MnJQWDTf+M85gAlOAm67TYlHXgVVEsJhUpkNc7BShDEsB4Oh1BirTLVvYqquiTbVets7oWyHdxhZC6jRGFRev1M5DqZTmcy57KZJsMDbBW7auMzi+jljQhROVf65rhnCzlqrRjLHRR9nMhRIyzjMpCiGUKDBdlAV0nyhIa033hZL9qLV3bEa0qO6DWXdgekDfWUljRkJT9qiGpslRP0LJi7yqgQQTj8Fb2bYX3FGUhCjqtXLMonMaj2EMrQmKT/ZXT/atU5QtZLIFwcd8CHL0tW0ZMzABCp5SU9ByEKIChRcg7RSmKdhlMizGTUJWcFiItXV9lnwsNhEC8hlMPuzpIUcE63bvqZMsALcb0dj4g4JUrZB/dhkDqQm8XBwpQOd/HucHyWBZb55zMHyXvO43pIUYlA+rec1njPv3XqbuLnC7nLOZLseCyjqoqscbSaQW+wVD4go3phK2NKWDoQqIsK1ZdK+q2vUETPcDfqw1or9wzVgZGj7Z076sSPVFBg8dbX7oGfa2/6S3jUefxPa/pY12GQDPYv2anYlBbHqt/MuHMov6m9wKL/adnNYg1NQn9d/5+PakAepJBT5LQVxkD0eQ4LT9tmobQBajWikfM2jxcxyUTWBzT8Yx3PP0URwcnnB7NEWaErDMxBhbzU/Zv3+HC5AKuKjlZLGi7Vq+tSpjJgolEAyhB1DlD4QV0z6pgMYrCj/cF48mUre1tzpzZYDKZUNQ1JDg42OfGtZs463FGVI5CMhRFRVFVFGWlQCacO3uWk5Nj7u5dYGvrWM6ra30V9czoy4Kthx6kmk7EqgbJAXjrsYXHO4vP8yyKAlpMicXxnKNbNyQmO7EqclHsnWV/SW+bZRmU9oIVOasYI7GNg3VT/7CtujGa4fnqGdIbjc2sKYwoUO6dJRVil9S0jdi1mqwoJGteVksLXQQnY2QYWQyxXPdrBlFZMffcnw4Rs/a+puHo9k3m7ZNsOu6druleoLrfMOgwtr7ggSef4tUXXqQ7OaGnJq19bsjSN6giiO5jrRXF0j6DYIYzfwbUM7FJCAim/528fj3O9t8GYuTNN14FIkfzI554+gkuXDiPd5bZbMqPfPxjGJv48he/zPx0fm+sUiJN//XjUHSV0rBXyWMQUJU+6ZPeyghk/lpExUWv4dACh3wm0xiXVLkwx4cYE2+8+SbXr19ja3OLs2fP8eCDDzAey3lC9gBZrUs2LXnP1YVO9hiqsll6T4iB0EnBXIqZrLi+cmlMyaQ7BqKk1efg1J7RWym4mRUzHg+P86Pdx3k5vsxXwzO8Gl/hNM11iMj3zoLF+cyYPysrMOX50CvK6bjJz1dyL+Ge/E9wQa0Xh/gql010ruN465CTzWNuHU+4+OpFtm5uszppOJ3P8UcnUphVV1JwUJVCEHKiNglgQyQ63SOlrKgcetWfpOtjSANRMc/BqJbcsS/8iH2xYrNaMj89xTmPLwqqslSlJbGFq6qqV3sSMqIow6HkOO8jRVExSVMuxQd4x/E7OT2es1vtctgd8ubkTRbNguPpIcFFogkSy0n9OS0vqbbft8t86q3X+qk/7OVjlD1PvGeerClksXZuXD9P6DxNIHmNJPsfsRVT8T3dW6dkscGuKRndMzr7cdPPr5REbTvHNVUa7uNmPwahS1IU4JxYZ0p/pJ4ElGNSLjro99WIZXvMyrFrcVOKOpLYoDOox+c9Zy5uNAZMFspLA/nI2HzeMH2/5e7vQiaWCvEoPx/5XCuqbnlxWvtZX5SrzyOfvd7asu1c/22Mqvvlfsh/tJ8TQ4wzqIpgPj8keos51uZwynuU/pr5XBj7/JuQxdaewf32/dUONuGf/GN48/L3+k7ut/vtT2wpGb72tXfy8MOv8y3CIQCuqjn79DsZnzn7HV27Wy3Z+8YL9+MX0M5Pufvi81x8/4e+5brzpzXrHFuPPMreN17slQbfDu2P//iPcc7xkY98hM3NzX4dM8bwwQ9+kNu3b/PCCy+8rezf1lvbtvz+7/8+f/RHf8SVK1d4+umnede73kVd199ESv9P2fIOZIstfoQf4a/x1/iv+K/4JJ/kV/gVPsNn2GPvu/NhbzknrLe2anuC0trNye/qlluP3uL2w7f5yrWv8N7ffi9Xv3KVYln8idf7fmkGg4uO7VvbbN/a5tEvPspysuTW1Vsspgtefd+rJJO4c+UOzagh+PAtNuT32/32/d2+IzNMSQAEkhUbNVLABAcpsFwGXFmzfXYbYxKrVcPRyQEpJAos3SoROpH0dcaCgmqha3FaCRZVkX7VNjRtRw/sp9TLTHutQkpqSxIUR7eFAM1OpY+99VSFpw0dbdtQeI9LUqlprM1ZNgrjqEcTTlgQ6UTtSJW729DhU6JwWqeaIilaUWdpI7iKaCQ9e/bseU7nLddevyX3g6UaV/jSE0nMT5d0bWBUTTi7vc2Fs5vsnNngcL6kpeDo8JRbu3usGklSG62KCV0g6UG/V0RCwBbBT4RMkPT3RrlFQ/Wh6e2QMinoHqzgLZkGSQBodVdfsTN8Tk6wD4nUfDEBQ5K+Mh96vXVq9SdV8Tlpng/YXi11mmZF0zQ9SSCnNbPCXepvcgCZhKwyJA5SSr3MdIwJX2TZ8CgAqnPQChDczI9pl+2AnZj1GiuDMpfINWAGKK3nr/3gx7j2v73Dr/z//gUH1/eJHbREFqbj+q1b/E//r/8Px6u/xTde+BqxOwHEEqcAonVYW1IUiY1qTDXapp5tsLNRcGZc48oxRVkx29ji4oOPcPWxKzx69QJnzp5jPN6mLMS2ax46FqenzC8uufzwAcd39jg+nXNmXFFYR+VL6qpCMDFHVY/Y2drhHY8/wZsvv8nR4SkOj7OiVJWS2EN575htTahmI6pRxXRcszEZMZmMmc22qOqxKLqEFqey64vQsbt/yMHxisUqEsMcYxN1VbM8bTg+PJLkqdo6VIWjXTYsVx3VaIIpPNaJZYQBnJeqSu+zEo8S8DR556wR6x1NlMUAxkHTBsk0YdRmUBJ+ZSmqA8vVkhRFnUTfKZV0xmGdV+LS+uQYUkRSnRex3lHagiYEVl3Ai9gMgYR3BVbVwqLtaELHS9/4Oo8+sMPWeIdUVphKVbty1XtOqGvKz4qMB9vnzvDu976XvU9+mpNVR9s1EIPMXbWwEC01gzGpV+4wTsh5WIOzntQFMijrjKWLAgA5YzDOEEKirxwm0MVWrLKsJNe7IIQBbwyBhrhKPP/McxwdHPHjP/bjPP30E/jKcvHCRf7mz/4cO5tn+MIf/DH7R3tka6wcG/ocV45TOv9tEiKmVOGbPtmXLXgy8BWTEEKsJj67TqropUs0HkWJ7yKvFPrEen5/Qu21gOVqRde1zOee8WRCWZUq424HDCgJucFqnLMmYQpHcDIG67qm6VqapmGxmNM2bb9eGQWjJQGaBFCwScH11Fd9YCyucKIMRM2orli1Qk4KXWC1WrFarQiqdNSFVpLummqMKpEvNlIGZwd+qdOq6ORy+DcYLz8LsSFGew+xL9E7SOmaI4lqpyoB0n9R1UNU8ahrWTQLDo/2uHm7ZDwaMZvN2NraZHNTbNnqqqQoK7yCB75rqUpRMhNwJhJVrbBpRWWpDWJp5V2gC16VZmQtFKAy0raBGDqWi5bFYsHRwQG7/g5F6anGJaPxBrPJNpsbW2zubDLb3mBjOmU8rqnKUolCgcpXpBipaxhPI9s753jw8sO8q2tZLE45ONxl/+4eu3t7HB8ccnB0SNM2rObL3latLMrePirGQOk8zpWkhNpOJEIMag0ma6PzDpvEZjA2sX+mGXJPCMiaQ5OoGQnAkkG1rF5osMTU0UVRlSu8IUZDDB0YT8rs2PWWdCeRGCzX1sg2GWy01grxzup6mBLT2ZjNjQmL01O6lSQwnBeiTA9eGvo5kBA7SZOsrseSiG+VOGStwXtVo0u5MthK/E5KVlQQx/uSLjZgoPSZ0G2UwCl946yOdSvgcTQIyEKiKAwkK+M/34vPqiqitGCtgA+ZGNR2Cu/aoc8yucWabG9ksIX8NxOoSAnjRLHJOatEO1QZVIiFucUoFptZFcgaQ9t1kMRYNnNC8giRJ2/xFgVRh7guRKi394m1V/Ixw5jOG1Sx3vOMxiNArFuaZklKiLJCQkAi3dNmG80QU68qleN/p2oL/XiXT18DAgeCpsR9MP2zNT2B2ztHiEHXUKuqfcNem5SwWHxR0BhIIRPn5TkEtTexZlAVwKiVTUwkY0mrCv7Nf8b49Q/SpMDR4WlPFPSFV7XGpCTvSOELxvWI6bhmNK5Ytp2o/q0aTuYL/d6D8krSOD48A+2LtwCYgwWRLtrmLTnegYnQA6L6zrX4dW97ay1+BuKzDc7aC/szhOBnehZQkoBTYpJztp/3+Y1F7uvQqQrWmppSv78XhDQXX8g8yiDdveeJDKZKTJG+v4c7oN6voV0JSSkVfR/CEJ/X9Qryv0RN6QrH75rz7FefY3m8ICVLSInORI5PT/nKl77KU2HF3u4dUmzJeyk5fxmNnZbKW7yv8VVFXTnGhce6AuscZVUznW2xvbPJ9taU0XhMUdZ4Xa/aFOmalnbSsbG1pDldsGpbxqXHIrGrLywBnC8Y1SPO7Zzh+rVLtO0bVNVKv6vOAyvFBRfe8TSjMzv4bBlXFLI+VzXOFdKfMfSE2y5G5osld19/k9O9Q41jYgvfNbIfysRAa63M+07O7b4ohcytvzcIOJvHizwXMzw/BW/7Ypb81Iwhxk4AerIahfzcOkdBoaooA9BNyuLDcqbIYyk/diG05ecm40hUolXJL8V+zZVr2X4cJRM5Pdhjb3eX7dmYuhyBdeItmHTO9bF+mEj5LLt57jyXn3iSF7/8ZZpOrGBBiEmZhKlmUDr+FbzPan/GCGk55byArHlZMS6P86zaYrAaZwZykjGyL80a0CF1vPbGa9y6dZPXXn+NH/roD/HIIw9T1SXj8Yif/Mmf4sknnuTTn/w0r7zyck+kz/kJ289r08/VdTJhH5NNJizFvv/XlZlMn1eRPVr+3vm5y77fKglw+Bw0/IUY2dvf4+7eHq+9/hpnz+xw4eIFzpw5Q1VVqhzWRwO9h6yDLSSGpMQ57xy+LFRhtNXczxrBJkkBjDFaPmAQZVwznJPQ5+e9xwNF8pThAufjOX4wfZhb3U2+Ep7hmfgMt9NtsV1m6Jt7iEiYtVhIT0rCxH6vJDa0Mp5j6vo1eT365+sanVuZmJJM4nTzlJfe+zKTh8ds39xm69Y2xaqgOVkxn8v3yApLdV1R17WoGun8T4CNAWeFtBSTrqU6p6IqKIqNeSJG2RfIXn3IDw1FTrFfO5pmxWIuRHvnZV0vixFVVVPXNdWopKwqyqKQAjzrSBisG2ZhkSqqNGErniGZwPuO3seqWXB0eMgBh9zcvMnN2U0WxYKVXSqpWi3Ts4KRkpOc9wyksIE0FmNeo3MsQ1V+U7+YZfUwequ4XBA4zI1hLWd4Rpp7FWXf4dz5lrRhnuX9v1I+B+vPsr5bpgkrJ7Wfi95ZRrVY/aYQtADMDgHRDPNbZk7SdUDiTlaaJY8xkyQeY7SoQc8yquAX9cyQyLacSv63WQ0Nelk/bZm0l8/UyRgho7vcb+4eVc7cJXllySSqPEdSP4/Wu9H0/S/rl9yHSaZXncrbJaM2mxIX5LOsJKG0r3ORA1ogrP0XI1F3Ies7snzLVhWo+n2dGWLQ/fZ91A424f/8T+F//fnv9Z3cb/fbf6QZXnjhST72sc8wm51802+t9zz8Iz/O7MGHviNyTUqJW1/5IkdvvvHdvNnv63b4+qucf88P4Ir/uHLVW9vkwgU2Ll/h8LVX/gLu7M/WYox87nOf49lnn+X9738/P/zDP0xVVQCMx2N+8Rd/kevXr/PZz36Wr33t7aEC9a1a13W8/PLLvPzyy3zmM5/hscce48knn+TBBx9kOp1+x6Sy73azWB7iIf4ef4//nP+c53mef8G/4H/mf+Y5nnvLbuI/bUsusXtll9/5P/4Oz7zxDFe/dJVHnnmE8dGY+kQUmr7fSUs2WsbHY65+5SqJxDs++w4ATrdOOd455tX3vspr73mN+cac1Xglb/r+/sr32/327ZOUBKySk6VYBgkIs4qtAtqQ2pbd3T2MMzRtK9YNyWgixujhTBPIqsrknKN0jqLwGJdIQYCrELTa0BoBkEKg8Jay9CoNL2oshfckb6hHJVvbM07nJ5ycntI1KwFwjSoFxUChdkwhRrosER06ASytI5nQV9qNqkoVSlQJJCJ2FDEquO8o64IElOMx49mIV59/iXbVQAJfesq6JFlD03UslitKX7GzvcWli+e5eOk8TQgczJccHC85PDri5HRFNJZeaSSiib71it4MzAwJgHsOkCZJ8hSGBIVRJRZDnyoY3mcU9JanbKxVUtNQkSjVNznhaPrkSE6ODkm72B+YTZ8MAQEYtFpdPhijh2bjJOk4HtWM6pL5YknbBkWhhiQLmoiQpJ8meJ0AFU4T0mCImniQhKrXaisrIG1ymGixEZpmzmq5XIMMDKSAoJCDvHI/+hXQmI02+Pn/7OfYmk34jX/9CV575ToHJyeEtuO4O+W5G69x65//D5we7VGxxNYlxo85M7FsTmbEyTZVAWfGlu0zFzh7+SpbGzXnNjbZvvQIO+fOc+HMjNFkKlY2khImIUo7pIjrwOCp6wnnLlygXSw5Oj1ha2cTb518g6iJ2AJSKDg9XlAYx6UL51guVsQuaLLZ4UoheVy6dJF3vO8JNre3mG1sc+bMGabjktHIULoK52o6DG27JJye0nUtN+7eZn//kJP9A7rFCucsXuQraFaNJIWMIxnLwcEpGxsb+LJg5D0GqItC1BNSIAQBsqX6VFV2RMSFLnSixuVs/zwSUPgCSEQbCFiMKhSFmMlNibIesb3jODo4oW1a9vb3mU5HbGzMcL7AWbERiqnDWqcy8lGUhazBJEuILSFqohipiouh65NYEbFjcZosC7Hh5ede4KXRmPc9+U7s1hZpZ4YpnCSXMktHh1evFmbkQPbOd72D57/6HEevvkbXNJIQ1Yo9o6QcUcIRMou3HpMgRJknMQSd5/InpaiVik6IfBoHrfMYI9YQOWkVcuWzsWJthyTxHaLgdPPGdX7j3/8W88Ml7//Iu7G1ZTIe8aMf/zjnds7x6c/+LtfeuKaLRtQxnEABVoxWHSYAS+rkNbXaOXVdNyTQcgzos4Py7J21pGTVHzvDn0Zt1yLOejCy8RdRFiEGSaIWXJLq++WyZdUe4rylriom4xFVUcr7E32FrjFqp+VLjBNrkpiEVFGVUvG7WCxYzBfyXDVR3sciLMRASPQV0NIXov5gnafwDu8KIXvESOg6xnUt9gQxsFguWC6XuKal7bo+CS8qAgoqaf9aZyGJOo13ch+h63obi7btFMhXANZZSi99J7FT3iugnQBPPWhnxBYsY7HJGLoUSU1ktZK17Nat24xGYzY3N9jY2GBzY8ZsNqWuRY3NGZlLIQSSEm+6NqsUyPdtuo62DTRtoC0CXRDyVlFoojwmuq6l071G2wWadknbwnxhONw/ZtfdpqxqxtMp09kmm0qe2t7eZDqV+xmPxVrTWvAmYV1BaYTMt7mxwdmzZwkPdyxXK06PT9g/3GN/f4+7u3fZ29/n6OiQ5XIh665VtT872HpFBbKLoqCNAWOzDarGC53TIQYcouhik4KrzpJEHidztnVNV/VDBe47rWQX6zC1XDMRY1y/PsrvXa8k0ccdWfnFCqgQNTbrLG3s+rU76mszscSlIHssIliDL0uxvuxasSMxOamvYKDLq2nsY7uzhi5brzlIBAUIe1ZWr56S0rAHEJUcIV2GlPBOrhxSFFtVK2Pa24GcaBwUCooErbjXb0QXk1bqy/MKXSJaVWNLap/Xd3y2VUprai4CAknUzOpQ8rsMmIWQCWeDygJWSOjGWtqm6+3/rO6detVA3aOZNHyutx6r/RRIvZqetRYrcmg9YPL2bElB/AymSVzqlI0lJKTIXOOpxEAFX3TtzN+uV0pQu6hBbVGA0KwqN4B4hpRUlVHnigGMKnFihSw9GpWikNPGNRu9vNIMyinZhjPpnPS6PohdFGDAedfvFYQIJ58rIKHMYec8fPWDuJffT1EX7O/uEbtOsGwnyjZJ106xgnWM6hHT6YTpbEJIiVUbWDYdy+WKpg1Chx62TH9qIqnfavePKP9tDZI0GXQe/j6g8LmUIPW9lE8bZu3iqb/m2uWHXfjwbDOJDfRMtHYPayigYK8K0MviKyo9Xmwxg6oJpLd8bLbhy9czdiCd9d+5P0/kbyTfV8ahlZifDCG0hK7TV+R7jQzvurdz86mj8jVPPfUkdVXy0gvf4GD/mGXTkGKkCQ13Tg44+dKXaVZzHK3s/WzBqDRURQVFjXMwLgz1eMJ4Y5u68kyqmnq2yWg8YTLK1qfZ7E/7DeQcqYwHXxRMJlNi27FqGkajCqvKJfncZ5yFaGmbVgh57gx3dh/g8kOv9n1jVa7+zIMP8sjTT1KPRpT1iPFoTFk4igKs8bLXRoi0sRV14pP5KScHhxzeuE5oxY455x0yUVXmlmGxbKirCuscXp+lt0pUTwLeelXWk3gMKcr5McaoVllrgzAJITuZRNI9vpy9ZR+c8jz1nlE9YrUSy9rlckFRFtS+UsUMp3mE2K/Tg9KRnOlEvVY+Voab0b0serYxajMt47pdnHLz5ZfZqSounDmHrWuSLVVd8E/IRObzhHM8+r73cePVV7hz+w4xBjkLZJKHxsqsqJzVTnLMkLEa1yaP3Pg6SSDP4DzCeosofU/s548hqnqHJbFaLXnp698gtIHQJq4+eoVqUmGd4erVq5zZ2uFTn/4UX/ryl0T5eC1G9HsYowpkSX+nConOqOIuQihbv5+BkCnzdF2BaT2za5RQ1hOa+rVmIEPlZ7hcLrl27TrXb9ygHtU8fOUKVx6+QqUE9vz5cr7NxVPDGTMmSchZaym8p+s6WrVFFkVcye2g51o0notFt/49aqxU1RZjxFIUtYV+yD3Eg+lBfjR9nFfDq/xh94c8H15gGVY9IWqdnDn0A32/yDkK4ihAIfEjW97mOCFjwAzkGD2fDDTRtb42iZPNU043T7n++DWKZUk9H3Hm1hl845ntz/CrguKooKoqqqoUklBZCmFJSUQydVKvOJOto733PRmnLxhwmZgk5528NsSU+vN//tN1ka6D1aphYRa9ylJZVlR1TVXL/Yg1nPzOe4dTgodNqkpmC0yZqEc1G3GTSyHy+OJJFkdzDuwBB2afa5vX2Z3e4cScyt4ahKRCHm/0fWZ1bA77n4Fwi5V8a5+B07WxVx4fThL97/PZMefEcs6xf26G/FNykViv3pYPg/3z1R9n9dM1glGOVz3ZBilvJBOoDZIbtlat3tf2TXkL0Ocdh2INq/s6SP1ZuFdV6FdcjWKZqEU+F0Ho5Pk7lFiYNOup68mQipQzRrZbBlHsypZoKWWlx7xZkhxn/t79mTDfTc5raL/2Alprrm65KAXtx0jCaFFJv13RPTOoknKvMpefce73PC/7MDJYFmPIatxJn/mwH7rfvm9aNPDP/0/wL/8OpO+dGsf9dr99u+3gYIsvfekH+NjHPnPP3gNg9uBlppce+I6JGqujI/Zf+vp38S6//9vy8IDja2+w9cij3/F7rfM88MEfZH7nFu387WWfd3x8zKc+9SmWyyV/42/8jbX11vLQQw/xC7/wC2xtbfHFL36R5XL5Pb7bP70dHR3xxS9+kS9/+cvMZjN+6Id+iA984AMUfwZi2Xe75RLJd/JO/iH/kP+S/5LP8ln+Gf+MT/AJFiy+42vON+d0RYdvvyPdlG9qySbuPHyHO1fu8Md/64+Z7k3ZvLPJo196lOq04uJLFylX5Z/7c77XbZ1wNT2YMj2YcvHli3z41z7M0dkjjs4d8dL7X+L6k9eZb8y/WYnqfrvfvk/atz1TXeEIq7ZPzBsFO1GiiSERU8ty3kg1ozV457EqM2+so+laQkrEJLLpRWGpqpKqkCrNJgYalXCHhLOIMgRSZTYuK6qqoOkCCUtV1lphAlVdM18uOTo5ZblcYRHbAzmgSrW1V6BsZSyrRsC0YDP5Q8k1INVqudoFBapjIjUCDLdtpCg9WEPtR0y2z/Dym69zdHDcJ8yLQmxgrLUcn84JbWJnc5ML584wmY7YO5pzNF+wdzLn6HTJctH0Evk5qZqIQzIqAwaaDBA7tCFQDVXp8vss363YzZCSMDmxnzN6eSHvr9Qnm9CkLFYSOc5ZUhTQLB9wrckUBE1L9AkfkSMPmoxMxhKSyEm3IYHa/+WKJ+dgMpkym4w5nS+ZLxoaTdABGKfJ3XyoN2CsWrLo8wMHyZJMIFmDsR5jgiQvrcUSsCFiUkXsYL6YSzWTycmznIwdUvnS15BzFc5Yzk22+fmf+Vne9/S7+cM/+Dx/+Aef5/XX3uDw5ITaOU7nK0Y7m3z0kQuM6ilsX+SBB0acrSYs44SNMzMefegCZ85dZHrmApPKUztIriSZMutUfdMcjEGJazoevS/ZmM04nm2ILVKb8LUlRAE8YzQUxjE/PuLOnds0Xcdsc0pVlTSm0eSZJ9nExtYmP/k3fpqnn36Y2K04OVlyeLpk984BYXFCjIHRZEOs5KqS2cgzG00pLpbcvrHHi7xIaFti56jKMc5ZqrpSQmKLtyUhtViTaFYrrYwUskJhLauu6xOOCSeKCKogEJTEkq2jjKLaIUZskmp5Ex3eQhM7UuqkWheD8HFkphTOcrxc4X1JWVZY65V02Uq/KqDtnAjgW7XpSRGc8VIx2nYQIl3b0IbIqCqlytyJPVnEiJKaD6y6hjd37/LEowvqVYVdjfEKNOYclUWTykrmBLGS29rY5N1PP821N28QY4e1hYIdkYhUuHdKmDJOQQC1/jFRElFo/BFbjEjsDCKr47BI1aCzrgd/YkgKyg0AVmmcxBJrSQa8t8TUcnvvFp/85Kc4OD3goz/2IWbjGl8WvPsH3sHGuSmf/s3P8sorr9KEBaZLYKPEVWTexoQqnUmCrusioVN1CwNYT0hoRbsqEymw5K0lJFF4Sgl5hjH05MUYUWsm1KIq4nuFDlXCUOsdNOEXu0RKLc2qpSwKirJgMp5QFKWqnUTarsFgxWIqBUSxRkhy3guppKxKUQjqIqvFkrZt+yrwnEiMfbzMtkIQQkPbCqhSOEtReApfCHDfCdBqrWNUj4W00zWczk9ZNSuSEcA9GoS8lCujtfrUeYnRnVF1F5PoQsCorVEXW6yFqvSydsQocdtasg1nBv56QgGDdYaoyChBhESILW3TSMXw8T5lUVPXFbPZJlubW2xuTtnYmDKdjClKUbCKXUcXAkVX0YWOFMXGr2uFfNS2Lau2VcAgKxIliqroiW0hBELbEbqOpmnouobQtaxWK05Pj9nbvSMgR10znc3Y3Nxkc3OTre1ttrc3mU0qimqML6u+atnaAmyN8wlfJTZmZzh79hyL+SkhBE5OT9nbv8vtO7fFGu74hNVqyWq5JHaRSCAYiPqgnXXgsnLMvdYysqYN1b3eGiGV6fqXIuBkPZUiWktoI8KgllhZOIe3Djqx8DTWilpZjxpo4txZTLYk1JjnbYlzsreLgPVqneYs1iatzrbYJFHqdLGUeGGTkEOtIVmrFjupB/2tMb31TQLwGSzJViOy50jWDPY8CnimrLAWZVz5ssAgBLJG564rCgqLqER0QS1KdV+i49Maiy1UmdI6sGLHl3K8jOC97DdRgMRZM9jJ5T1SyspYWb1Jqsx7W8qU7XMizjsMlk73MG3bDqCOvjYadFFPEAVkCcZgjbzHOqexLZKhJZNjB0KaTz06O4DBpfdiO/Q2bVZtPXqExWR1C/qfCZky9H3mVPVDwFfp1x4Ejwlrk9ovqlpcBiz1NVllICEk11JVPYOqHTkncz4mUedru05iTtutga+mn0ZW988BQxc7QNYnsn1Q/rI6/+TtCuqnRAqy3whKoDVffwr3uz9NUY85ODpktWxkL26yfZ2A5k2zIsbEqK6YTEaUpWexali1HYumZbVGeMtzoL//NWzsLX95y4/SPT/r39bHkbf8XPsiv/UegDv1L5B/K0ImwGU+nCgQawaQc7idfLYw/dqT9yiZRCHzUUmRyLOpypJUiLVj0wWZy2vqsD2FSr+PAHQ2H7H6vZDpv4Rcv7ed0/XbJE+KMr/JFm/5Immtl8zwbfq+wDApRjz12BNcOHOea9euc+3adQ4PDlk1Dd5qMc6o5uzWFO9LGE2ZTQvGvqBLBdW4Yns2ZTyZUo4nQua3gJG9dAZz1z5UAfnhoSYF0quypKkqBfjBeENWGknJibpb03F6ekqMgaouOdi/wOWH3sDarIAH9XjEez76Q1x6+CFS7NSitWN+uiB2DaSEL8RCrvCW0ltKX7Ixsbj5HLpW1ZIN3hVkJZHemto5zT9A6DqZ906sl6wRRT1rrapkaGFNVApbys96AM7p7TtzHkB+H1RpNo/e7KaZQfFVG7DWSexQwkpUJeJMaszKacboWTyi1sVKNM4KLjFSOKeEBjOMl2gwNjI/3OdoPufMdofvOuiKwW56/cEOE62fjJONTR5993s5+N3f1bmnBPUkZ/OBZGuyiDC9EkremyirYLD+QsBQMhk5K8+t5QJS3tNozNS5SyYcGCFjvf7ma0y/ukHbNDz8xBU2NiaAZXN7k5/8mZ/k/IXz/M5v/S6L1ZyUFQrztDISg6XoZiA096pKuS+MGZTkhq4RskfKVkzrcyLIPiVloiJKetASCv2MrORilRgcgfliyYtf/wa3b+9y5cplzp49Q1VWeF/gCz16xGxjZ/SMINf3RhSOjRHlvEyWCZ2o/CRd05KOVcla3PvsxTJVYp3RPYrzHqf3O41T3mnfxRPuSV6Pr/N8fIEvhD9mr91XKw+ja5VazLK+fZQHudxZ0E5b3LGcU2StknjRla0SrOVe+zEBw3zKzynfM4nOJsJkyWracHThEBIUy4JqXrN1e4uz185SL2q88xRFSV3J2aKqC6qyEgKRbiFjCFjvByKSzrOoyoqhJyOpylJK2JRIGluyspJYxwUlSsvf27ZluVzgTmUPUZSlKCxVFfWoVtKSFJw4XwiZxIpFs02SAzAuUZQjRnHMRrvBg+FBnjp8BycHx9yqbrHrdrm5eZNVWnFankjxUEy91WjS8WKykma/WuV1Jw3zDHpl49TvsUy/XuU5ktYLFqFXohvOfroe3sNi0/lMVueR+SV53+Gj8ja1VzxSMqSJss9tu6C5EbmvHIMxw73ndTrPlRxY1u5kGGM65/NQs5hedSxbAmY1zDwIc+GQUxW5vIXOlrLrRC5RmlNFOi1aSprLiRGcWc+rqppfyrnZYRu1Hk/770y+lu1V8q2RGJPX7ZQSSdUi8xX7p5eLPNPwTGKOh8ZiNGL0z4RhbxfX9iyJ/Nl2eNz329u7JeDf/G34h/837hOU7rfvn2Z4/vmn+OhHP0dRdMNPnef8u97TFz98uy2GwJ3nvkL3Niek/CdvKXF849qfiaQEUM42uPj+D/PGZz9177nybdK+/OUv8+CDD/Ke97znHlJbWZb81E/9FA899BD/+l//a1ar1ffwLr+9FmPk8PCQ3/iN3+D555/nIx/5CI899hje+++YsPcX0QyGHXb4OX6On+an+Syf5df5df4n/ieuc/3bvs6dK3c4OnvE9o1tht2c7MdWkz/DczIQisDhhUMOLxzy+rtfhwjjozGbdza58uwVnvzDJ5kcTPrv8f3eDAbfeXZu7rBzc4eHn3mYxWzBzcdusndpj1ff+ypt1XJ4/lD2lt//X/l++yvQvm2SksFQFgUGqxWI8m9JmsThkIvYVphoKZyj8HIgajsBHZM1eO8FgOw6Gmso/IiuaVjFSNMGuiAKAFlpyWKovMcZQ9cKyNx1LUZVWEyKxGbJqm1oVx0pivpSRKwUpGpQiFJB/MQwtKLCozYRhsh0NBJhixjwhaEN0HaN+p5LQsk5sa4CQ2cMk40Ztw8OuH3zNuLKZvHWi/xzUdB2gdVixaQasb21RVGVnCxXzJdLTuYrFquOZRPWEjwZrFFQL1vesR5ThqTnuopSTlr1VcaZXRPTcMDOiUej1waSKqQMcun2W+49YsiAT8p5CXqFJT3UpyQg55CMl0RV13U9YSIETYwYcEYsK8rSU/qOyXjE+MyI+XLFweExi8VSAHWTK94lmSiS30I0iEAyCWM7LBYTHW2E5EVRxRkhdTnT4quSsp7y8JVLTGYTpGY2Ewf8kNTMMFPO+azhDBZHWYx44tGneOTKo/zkT/4U33jpRZ5//qscXjvk9n7D5uUdfuQdF3j0wnnC1oPUZ7coo6EuxtjSixKCQUGEBGop0kNDa+iQQJJiK7bqWpq2o2lbYghUvmC6MWV+fEzbdYytFduYriF1Y0IT2L9zh/nxMc1qoeocg0WWs5ZkYfPsFq+8+TovvvISy8UxTduQbCHWM0bmUFnWeF9Qlo5RXVIVBXt3j3np6y+zWrW0naoTGAOxoQsLVssTsBZfOrZ3NqgrjzMlbWjpuiWdNxhTCmHIiNWFMZEuRELsKItK+TtOyTYJYwfliFXIIIJRBCEn04NU53YdKQWct1Sjks20wWK+oGlarF1qDPBIoljUGqwVJQQjmt54PxB9nJPElC8cviopVLlHyB8WZxLOG2yUCXKwnGM3pxTbm1AVar2Vs0wZiDC9nUB+/BbHow8/woVzW7xyfclysQSbKF1BoiMYo0lA+d7ryTeQau4QI23TSvLeOiIC4pdK7HCquBR1LqIqVSkXdCPxyCajZERJ1jVNwqaO/cM7/P7vf4bjxQE/8vGPcW7nDMYZrly5wi/+nXP8/u9/ji9+4YucHp5ibCKGFRG1/VTrzWx3ZL2nazsBG12OXwLerlseZDWAGALWSAI6Gq2W1WeY5816MjPHnky8cc4JsGGsyJ8nUddrQ2C1arDWsFo0TCYTRqNKrEp8rQnGFjCE0AGqQmQ8zjgKL/ae1hjayZjFYsVivmS1WvbJfgmmuY+FZBKTKgYYQxtEgaUsSjBGVaESBTr2PCSkkrhZraTaOsm9x5SI7VAZbtWqpe8TKwCVfGaUtHZWs1GLJOfE0DNLxUuCOqqdIZo01YpOtfPqCU0M4Jwxsq4tm47las7R8Qm3bt9hVI+YbUyFILQ1Y2tzg9G4pigLirro7RZSSLRNS9kFQiipu07UllQ1qetauiBVrM45uq6DsoQEbSfkgrYVpTGxb2homwUnJ5b9/T1ulVIBPZ1O2ZjN2NzaZLq5ycbWFpPJjMlkROELjBEQ0vsCa6F0Bc7XdE3DctFSFTXvfPppjH2KxWLOweEJu3f22bu7y+HxISfzOU3bQhT7xZgG4DQgqojOO0yMEgcUeGpDB4hlGQjAQUoURba5CVgHMcqz9s5jjdU5EzDRZFeXIXmdwdoQVdY/gYWyLii8JXQrVV2UPZ7MQUMMMj5TEpJeNAFnjCqILenaSEiiGCOAj4DeiURI9CpF/YJmtNrYWU3mG/2TI4/8L6L7SWv68dXGjmQTZVkoATvifSl2d0bIzHmtFtuMAbjpVeK8fG4M2e5CSM15LxNJEofWAMGswhOj9Ik47ggha92CCASA9IUjRYMjg3tJgWEBb0MUhSdjrYg4SqQmIQQbYhj6CgEvoyokJAyrVmyOSEJaSxhROkHIVYPd5tuxqaoXg7qRs1nVc9gfppRtbtDqegAlmKWktiBGLDVT6skJxEinMT2qUkw/plGrMLIChJCZXLbzIJFCRxcDsZMYmZ0/ElEBG0HfeuBOQTqbxw6J0heAqAJmC9WQQr9OmxR7dVCONgmf/HEKM+N0ueTk9FQxRiXYWauENSFpFt5T1zXOOY2HrZJXY68cJD2l/98nJdaJGfLv9fZNth754LG2Jc1olln7tenBLXlTT4xieK3+RgmTA5lg/VbeqvBwL4Q9gGkCIpvB9iYNc0zUVR3ORiEcF56iCyxXK9o2K5kMO/3cv9nmqu8zteU1WGIUMqYl2/UJEcoZh3Mlm5szyqrse2Q4+6zDfeaevpTpKT931rOzfYatrW0effRR9vbusnv3NqujJafLSLVRc+XclO3JhFRv4Mc1LoG3RW/5Jpc293xe/vvQ/8N/E0K4FOVCAcCdc5RlSduseiJmXudTLEhdZHF6Sts0ardrOJ1PWC6nzKYn0ocWNi9e4CR0vPCNl+naRmw4jZCGLFkJ1/dqZoWe0Q9u3eHlrz4ntusZxDYGQyDGli40oDF+NKrw3mJNRYxBCe0SC3plnHvWvSRnRoazbrb9ShKACfrfYUBmEFvOBkmJbtZafOGoUyVE9BBoNb4YXedkjuf9loLPKasPyVPIBF5ZC4t+zc32kxa5nlXgeNl1UJfYuhK7tz8hxKe1/zdadHTp4atsnXmGO7dv0bWiqumMg6T2SpnQsD7XtR9E/UnXSvSMlfvUDcorA9gOmSCR7rmnPCpNf56QeNXx3HNfZbk85Xh5xFNPP8nO1g7WQV1XfOjDH2I2nfGbv/lb7N3d0+EdVE00DeNe8xIWJffkQjroSUb9JDTr97M2U1UBS0Cx9e98rxrMoAQ09IexmQgnRJi7e3vs7e0xnU44f/48F85fYGdnh6JwQqBTtUe5X+l4+bHTuKTq1BhSqQT9tqPtWrXfoh/fEk6S7iHX7jMYQkzgh54XW6hIaUoes4/xGI/xw+GH+Lz7PC92L3CTWyzSUgoGcqGYdnBvh1cmXv+B13n0C49RLat+X9OVHXcevq15IBnzmfTR23UpiWTtyeUv0t933nc1dUNTN5zsHHH7kZvM9mds3NliejCjPh5RHpeiZFbV1HVJXVei1upkv+CS60lgMYjyrE+JkO2u1Vq6V09CbOGMFn/I81SiWBjITikG2tDRGsNqtWJ+eirkqbKgKkuqWgoiyqoWW7iy7K3ZhQijxCVjKYzDhYBpVviTgivdFR4rrtKdtiy7Fbt+nzvlHfaqu+zO7rLwCylC6Mlf5p48lbXgkumJh0m/Qx6vA3VB17ScB+3X4Hx+dEqOlr1yuSyxYVgn7yH16V9Ptk+ItexRsjKv7KsttlcUknNHb0Gm87HwotLVth09aT3HUpUsTckg9m/DOFmPrzkHmjlKwyvyGqlKZjm3pvsl6zIRRxWKMJjYrYGBayT6/CO1sJSzNb0t2zBh9CbW4k3fcWv333OwjBZ16BomZ658T0qiDrkENV9O51VW0Fcyf1r75vk16xaANu9H9PvEJOubFMvmTzC6Pqa1frjf3tbt2oPwj/8JnMy+13dyv91v31G7efMiu7tnuHTpVv+zjYcuMz57/ju+1snN6+x9/YXv5u3db8iatfXwVXa/9iyLvd3v9e18U1utVvzbf/tvOTk54b3vfS+TyaRfu4wxvOMdYpP167/+65ycfLO14NuxhRB49dVXef3117lw4QJPPvkkjz32GA888IAUXL8NWknJj/FjfJyP81/wX/DP+ed8gk/wDM9wzPGf+t62avmd//3v8NP/7KeZ7Q3r1nK65Nkfefa7c4MW5ltz5ltzbjx+g6/+6Fe5+PJFLj93mQuvXmBjd+P7XmFpvRkM4+Mxj37pUa5+6Sof+MQH6IqOvQf2uHX1Fneu3OHak9dYzBYkl/7jF/wut8nBhKL505XBbj16i+XkPsn0r3L7tmdk24rfvE0ipW8UoHHO0jYNJiWxQtPkjIkRj6GNEWdVfjZJwjdEAfyF1CRWJU3bsgyJKIWFmrz0kmBKqLqDwXpJ1psETQykLuJBiR7yR6qLbA94NE0n1UeFHOhiitTeUxVWCAgx0GVLh5jwavlEUJDIGZzxWBMFrKTAGM90uoGra6699DKhE9A8GSPVcq4kRlisFqKMsrmpak8NTeg4XS5ZLTu6TmgyKUmyQCoSFRhbSzrkfwM92KBZ/kGeHTmOZhlo8sF0SBsqCQRIpgeArB6W8xXWQYdMADGa1OrBAPvN8s2A+LOTWE8yBbWeMsYMqlT6WdZEpDDScJKWOGOZTmqqwnF2e4N5XbN/eEgXktr8CRDqjFVgrr8SKTmCk/HgY8SaBuNG1MZTFDXb587w+OOP89R7nuTpxx9hOplq1yoJCqNJn0773WEUUDaaKMiSFGJJkyhLy6ULF7lw/hwf+sAPcLx/xMlJx2xnk52NAkMANyUap1Zk2RLCISCIqmmYPBXTWxJ3YufSAa2SKBqtpvQYnIGqKolhRALm8wVVTJSVgOhN27G7e4s33rjG888+x/b2GZx1tLFVtYjEeHMGRK7dvCbzywS8t5SlVNE5DL4wFEVHKdlyTk4XHKzg1W+8zt6du4SQmGxMOD4+Zu/wgOmkYn56QggdmxtnMdZRVYXOKfl+oWv7BFZCEjNS2qWWUwY602lFJviiJFs1dJ30myShJSGdwQJnLCAEhWbViu1DsMQU8D5hbGS5zGoEY5YLIZAUpROloygAb5siZVmozVsGMgzWO4gWWxQyXsJQfdapi5nVqsf5yYK2i5i6gELUlkJfvWgggFGKHF0U9ZUucHJ8SoiR8xfO8dr1WyRNhnXGrNl3BZJzmCSJ1t6GMYFpM+kxKfBBPwdjEOBUQCiZU2J/YRkAiSBxFqPADMK+1kS6qB21LJYtX/niVzg+mfMTH/84l688gLGR6eaIH/mxjzPb3Ob3PvNpTg4OJTHrLLGjT0wGTYo5teJMSdS9JDmcROXHGKz3feWrxCMvMdoYrPO90g9Igj+GgagTYiYTCeksaeWpJSffNB0nj7IHK1dNQ9t2LBclo3HNeDSSylgnCm3GyHXQdUaqewtd3wKmcHg/pq5rmmbFYrGk6Vq6NgzEOgYVrERWmLFC2AprIGES0oRTQDKEQFVUVIUQztoga6h1ltVyKZZ5KfVzJycnnRIpUurEWgxDUD+glBLeeJ2HOS4ZsFYTp7G/TkqQQlQbIt/H+xjXge6k81iedRsCXWxYNnMOTw64dfumWMJtzNja3mZzc8bGxpS6LKmqCuMS3heEriO0LWUs6EKg6gKhC7RdRxeE0NhorIvIHsB5RyzoLV1Tktd0bUsXAjG0LOctq8WC46Mjdr2nLCvq8ZjRZMzGxhZb21tMJmNGkw1mGxvUoxGT8UgUjoxHSoA9o/GU8XhKUTimkw3ObEeuXg4sF3MOT47YPz5k/2Cf48Nj9u7e5fDghC7IOmAsannrBXhKUcG+vDZHAaGdUbUYiXkOreJFCT5aPp7UgsAYRxND3x/JGLoYxQrUWgEnM1JhZZxUhWcVxXZHFJgkRglgZxmPaiGWrxqMF2udzY0ZFljQ0BohdRjSsG7qViWP25QEGM1EKOe9KvqhBDxRtHDWY3E0QZTUBMT1CuqF3rKgKDzJZDASvBXyprWyr1M8SAhTqsqTULU8I+pjUUE03cygrGUZxzbvycQOT6cFzqu6lJFvKWQ23a+ZAQjAJAUhFaQxkNarW42q9sQwAAi6t8r2Zs6JggkOrFWLGGeFgKeAKrreZLJXDJFk3r5VtFEVU00aiFXWWKxPhC6KKmFSs+Okaw6qyGUyMGN0GzzEpbwniCHQqZVaIpMWbI9YiSIB/VmBmIazC8N5QqnqZEJSQpRVXUyiyKX36YzFuwwqCVkqpkwgM8M96n3m9c1Yiwkl/OHHqPavYEvP8f4+KeTCgqwc5RBbbSE51ZWoSbSq8NB2nRI7pH/zLjUrJWSgCzJk9S1aGgC99R+um4Stk4bydfvzRRogsR58e+sH9Ffqb4q3vGj4WQ9S6o8UQBRSuNF9i35+zxfQO0yGpunWVG0t47qm9WK9nWJSMonaLRmjqjTr96hWTwiR1JoAtsAlIRXVkxE7OzucvXCWs9ublGWlr49qzZh7c+2h9Kes4fsbPQcbA84YppMpk8mYBx64yGqxomki1ahiVMmKjSnVMjbp+QHWNGrW/q0fmoYnD/0WTuwx9Y+cP+UbO+9ISazM+32E86QQaEJksTjl6PCIO3fuMKrHkDx3ds8oSSlRjUaMz53n+PRELX0Ge26r8dI5cDbqvyNN0xK6xBvPP8f8+IQUE0VVsmpWLJZLytLRqSVcXY/Bio2VSbonRdVoUiTZTAIe+jiriMV7bHecDNtejc7cM5YzEVJ7jah7DVHdSSQi1iVMSLTaT94XSmwc7ECzHleIus9Nbxn+VgoBTE9wHWZKLiCwJFbzE5rlSux9vUM7757ZnM+pRh+0ECoSbSMK1zuXLrJ7+7aM6kwosvQAdq+2kgaiI0kFkzTnMBADUg9u5/2jMlNkzTNKZlnLy/SspZRzE3mcGmLq+PpLL3L9xnVOT+e8653v5NLFC1gvhOCn3/kOtnfO8Ov//t/zxquvqXWfxPUQUr8fT32syOE2E93y2I/9XqT/nmvxHWOGNTXp3iGuzdV+vVF1u9R3U99hfY4FucbJySmnp6/w+muvc/78eR555GHO7Ozo3lmvYwcigdIDxIY7ZdJaoixEMawIBW3Xsq4GRL73tBbv9bmllNbsKIcxY5X4kIBtu81P2p/k4/5H2E13eTG+yFe6Z3iTN2liQyZv9Qo2wOn2nJc//DKTw3F/1cV0yWJrKWu7vjbfT9I+lIfVBybp16jPzQ7raL733L9NveLupYa9S3vY1jE+mrB5Z4utO1uMD8f4k4KqKKhHI1FYqkoKL/ZrYmkVSVaUd22U8190g2pSVGvYoISkTFCzSRWVXewt/2IMff8n9PUh0LQNi8UCf2xxvsCXYg1Xj6SwxBclZVVTFAVFUaiFvWxUk5H3lKWn8J6CirqcsBm3uNpeoZmvON475fb0Nje3bnJr4yYnzVz57MMY7W3dQiAzrNe2SJK/i9w7l/WP0ZjUr1/G4FQpaHwyxnW+r6/q1XnUvhiEpJa8FhjFRBf63Yjup+Wyzvs+V5MdnqUQNp81IWSNsMQwlte/Y5LzesykHySnlff5VpOZFiEj52crY18ItX38NKjiFT0pZ/3POoHbWKO2knm+r80LvU+z3oX9G/tp2ivNpqCfm+cBec+n3zcrba9FmT5voR+SXwuq3GcghSEmpPyscj5Xkx752JPV5DrJgOieang/DCqt99vbuK1K+G9/Gb78vu/1ndxv99t33EJwPP/801y8eEv2vd5z7p3v6ffG326LIXDn2WcGC+X77Z622LtLaFvcn9E+zJUlswcfeluSlACapuE3fuM3+MIXvsAv/uIv8sADg1VgJipdvHiRX/3VX+XNN9/8Ht/tt99ijNy4cYMbN27w2c9+lieffJKPfOQjPPjgg32B5Pe6WSxXuMI/4h/xy/wyX+frfIJP8K/4V3yFr7DiWygjGbj9yG1+/R/8OudfGwiJ+xf3uXPlznf/Jg2cbp/y0gdf4qUPvES5KDn7xlmuPHeFK89eYfvmNiaaHqP5fm9CuDeUq5KLr1zk4isXSSaxnCy59uQ1XnnfK7z2ntdoq/Zb5+P+AtqZa2eoFtWf+prleHnfqu6vePv2SUqNqEdUrhS1Gq1UM85oxQyk0LFqWrou4I2jiwGv6h9VPWLVir1G6lT5whi6FFmsGk0UShDO1UtdN1RwOVsQ9bAVYpDkqibyvXcKMHSSFM1ZWIQcRYQuJQrvsC4Ru0hhDOOqpK4Kls2SkxhZta0c0SOkLuFMQdOtCLGlcF6SVcnSBdiYbXDp0mW+8sLXWZ6scKbsAW5XeAWSJfkx29ikHo0EpO0Si6Zh2bRqP2AUrFDgRXSB+iSeyeU+Q6a5T9YPEtqSMDNrr1kHAgypP6hKMnE9nT3822B7aXr9DX2SKKb+QNtnDTIwoIdiZTWtJYGtJszkWeWDMsn0yddEEjCpkYSb85I4dhbqeoQdFzRNx3LV9CCTun0hQkqpVzAwiFS+xxBdQV1WbG5f4PHHL/Pupx/jwccf48K5TawtcApoGE2wmhSIyYoCU1ByjoNkNbFnLH2lEsNmZ+h/T11PqS9NOIfFJEtQ+y+XwBsBDQ2F9qwSnVgPwAJoJGzfhwEISWzzlsslTdOKWkxMxNDhvGE2nUKMLBYLWif9WNc1zahm3p5w4/Z1PvnJz/LSiy/x5BNP88BDO3hr8M4wmY3Y3NnAqtVTTkQCpNjSdivalHCrhClLcI6QIofHCxYngZPjA0pvaJeJsrDMpiXHB8ecdJCikBibJuK8JcWWuhCigS0ck8k2o7qiKKrevssggHZU0MB5i/WOrhGVHYyQ1crCi2qCkWS9ALSiLpJiICZHVVmMc4ClC63Y+iSxhlm1geVKK79TpO0CRTnVKZPASuJ22bYM+d8kcSsnupqOYi25lIGiFALBGbCO5XLJfP+Q7Z0dohPCBDHQNC0UJW5cYQtHbBpYdTi153BVwdb4PB/4wQ/x5rU73No/oAuN2BiahIuoItz6PBNAPCsRCSlHY4AVQLRtc+W4xFm08twm+X4Jkbx3zhJSxDpP0grDnkzprH5TiW9d0/DyN15mdbzkJ3/8J3j0iStQQlUXfPAHP8CZi5t86j/8LtffvCYj3AWcB2LsLX9EDcb1yVFrHMZGME6r1gtWqxUJg3dWksgJhNShUxSngL6lo5Vnpn0TQ0Dr0rUiVomTKZGMEjWTkFGHJvPgZL7gdD6nqkqm0xmj8UgThLa3eAgxgq5H1mbQXeAp7xN1LUSntutomlbm6krmsukTrDn0Kzkpyr2J7HwQUpAxWOsxSckLrpBo0nV4LxW83bhlsVyyXCw0ISvxwyiAU/kC72qatmHVNgqI2x7Is9aqpYaAphgU0Bfp+V7VRn1EnVacJ1UJyPdOXleMIRJVYjTqHITVytI0C46Pj7izu0tdj5hOpmxszDizs81sNpb44AuKsuyfWwxCUurUwieEwKoZyFpt29K0Mqe9E8BV1IAibduoHaZYSbVtq2BPQ7NccnpygnWOO8VNBTpq6umUze1ttra22N7eZjIeU5WesvRsntkR1aeYxIY2OrxLlD7SrhraZcPFM+d58tHH6LrAG29cFxuQO7vMF3OZczHQxKAqj0btJqWPjBfi7wCgyZ+U1a9kpRWVlVYs87y3jIoS28q+JYVMeMrVxbrO5CXcitql9RZfFsQu0UbZN+SK5Lqu2dze5Pj4mPFkTOhESePo+JC2DVhn8DiiFR6qiYDJREhw1mEtQi7V9drqOMkAW/6ZtR5nnXzfEHuSTjJidUGyCoCKgpDsywQULqqCvkQ6z2Ir6wjkCmX5tfUOY4TwlUHNqLaK1g4gHk6V5GwSAmsP7AUi8vqYhGQestqEMbRqxZAJN1ZjQ1bW6EJQi9CkSGcmHMn9OVVBE7s7WbxSQghuXd6nZaUOmb9CvlACVlzrhLdZC0HiklNVBtlSyv06K+SQQbFA+k76UNZ57z1d3lNGWZNAwPHUpX6+DBXgqrLXg0S23wP35F4lO3grn5WBoEwoTUavkXQ+5bU/yfpROCE5d0FsoTv9jnlLb42lix3RCCHYWAvJEn77R6n++ONMtza5tXuXbiX7GlE2yCo/gxJFVVUURSEkri7SxoE8oTCl9vIANPVjJZm1qZH/lkEp1nHJAW9bMyjJ++X180T/UWtX7UG+tc/qzxOkgQv0LVoG0PKxp/9Z/930zJLeepZBx0CiVfKz0X2cNYhEui8JRSa5o+cXIUkOH6GKBWpjJXFK1PTqesLOzgbnz+6wsbPDZFyRid6GxHovyPMQMNhmEtQ3mb1807fX/7d4V+KnBRNs329RTw2mfzqO9ed4T+Dr72f4rPyTmFKvMJgVf3Jsq8oSkqjfxhjwUVQEu9DRxYbjk2Neee0N9nf3OHPmHLONEft3z8Ijb1KNCnauXGa0MZVPSmbo2BT6mBRDEo9vBY5XTcfJ3QNO7u5ijdg0OwdV6VgtG5oliPqmVfKm5A68qj8aa6jqmsJ5nHNq2p3PofIMyMCwtaIgmoZ1x+k8TxorEmLXQxxiicsDhQFETwpohyDqzrU+gxATVVUO8SMD+CGuDWoFh/MZ+x71uwHMRwmVXbuibRva5Yp63JGMVRBGrMCMc5jCizVsCKA22SCqQPV0wqPvfS83X32d45PjPh4OYzcXKBkpKNPzeVbEMUpmz/EBY4mZHJQJKXmQkdexTPIbxl9PjFjLNeReT0ROT0/448//sRAcVh0PXX4AX4rq0IVLF/nFv/PzfPp3P80zX36Grm1lfjuJAllJNV81F2zl3IHVfatTVboYVV3PaJ9lpZb+PtXCjtivT8Y4IUr3r0OLJ+STE7lPpY+AniASU+LGjZvcvHWL8+fO8cgjj3DmzFkhZ+tnZmJXQvbsGFEvckpuNkb23L5wQoYNMle7rlOS1lqiKA15nLWHo9cXUmtfoGWkwGNkxzyYRlwyD/DX7Md41b/CZ8JneLV9heN4Mlwlydq32FwQzrSSl1Nyj8lxOWk/ZpKMfk6OjX2s1zmcSWXWGEIyulc1a2RB7WUDXdFydOaQ4zOHXH/8DerTEbP9GVu3t9k82KI8EoWlsqwYjWrqqhTCqnM4X0jkVFJSJipGJXt3IRC9EqX13BEMSsbJc0UKUgY1xkGVLoSO2IFpW1harD3Fe48vJJaWtVrCjcQizjmHd2LJN5nN9F7kmtaoyg+GsFhQp5qn26d4x92n2d8/4CX/Mi9tvsyxOyHQ6b47r/h66s05uj4cG11NzHCu0P8anTeQ1Nrc4EuHiXK+c9YOqokmqwvlrYbu5zIJxllsEoXsTPg2Evio61rOuk6et4zhth8DgCpX9zUzOobWVE2V0WmsnrdjZroNJJ48v4ciRFRRL6270PZ7gHuLLuWMazD3zCtjjORZksSLNVFsVb3TPo75mmtRyaJnmKzC1O+AyYT6ta2YnstTb82W0LxAnrOysPVExiygf+9eQN4r6nBr6lW6j+pUhnzgIWnczIFLghf329u4RQP/5B/D//P/wrfeW95v99vbvRleeOEpPvax36MaG869491Mzp37jq9ycvM6Jze/fbupv2qtOT6W/e6fkaQEcOaJp7j74vOE1dtX6eTu3bv8yq/8Cn/37/5dLly40P/cGMP29ja/9Eu/xCc/+Um+8pWvDC4M3yetbVueffZZXnzxxZ6s9HZSVgKYMuX9vJ8f4Af4ZX6ZT/Np/jv+Oz7H57jL3XtfbODu5bvcvXz3W1/sL6oZaMYN15+6zvUnr/P5v/V5tm5vcekbl7jy7BUe+PoDf6kUlnIzyTA6GfH4Fx7n0S8+ysGFA15976s8/8PPc7x9TCy+v+bD/faXs33bM09gTDms5ANnPsQWViq7G0nlSNLDQhfFh6gLibKS16SUKIoCkKr2tu36indr1w9QAmRkkKxtW6K12GgI+WAKhC7SxgJKR1FUdGFFDK0Qp7pAim0PEDjAOyfghhkSQnVZYazndLmiaQOFE9uvZavy8UmcN6IxBAzeT7h05RGm56fMv3xM6RzGWeappbBGCUeQukBV1pR1RbDC7l11HU07JIflyGkFPEgRqYiPxKw2legP4t9kxQCadLi3ikf+7fKDk0SPJrpstqmIawlZo1VFSYVslDCVE0SSqJPLSQXiIDecEwrC0bD3kFz6sZMgV5z398wAYiSEcNBGw8lyRdMFCmuoGwGffFniNGETNTGdKyid9b1strWOuhgxm044e+EhPvCBd/DOp55k++IGk9LRGUdBlMNcUHC4i6Suoz3e52T3kMPjJbv7RyxXKx5/x+NcvHKRalKT1lQT8v3LWJUvZHI6KAmYlYzUiBolGsQeXnADuGNASrkkkZs0QZowiPYL0i8Kpt968zo4y8bGBil0OAP1qBLQvu1o2wZ8ojGG5WJBWRcczu/y8isv8fLLr7JaNKzmK+rSYZLHFZbZzgxXOwVjkMy8AmjeFqKsZIU0UvlCADwb2SpHLE9vU5QlnYk0YUGBx1cFm+fOsDhpaY+XjEZjyroUdTQlDLnSMhqPGI9HeGPUgieRktU4IKBrVHKGj6K2EFOgKiv65I9uKp114AydaXHGsFq2Qg7zlnHhRK0sRaqy4ORkTlGOGCVL27UcHO0zm44wGFbLFSsTKcuKEKHMIEOuloyJpmkwxtG2HTF2YsPjhJhojBUpeWtIDoqiZtEseP2VV9msRyxCAmsZz8bYqsR6hysL8JaicJhRHl8GpyjeA/UjPHL1EQ6OvipkP9OSUbVs2wWI2grgyJYwObnpMESyJZ3BCpHJ2J5Mkq1srLNio5kTYAS5vHUEVG0pGWxOXPVViwmbIjduXucT/+E3+bHVj/Hkex/FFZHCWx65epXJ3x7zW//+k7z6ymsYckJbnrf34iMWU8Jbi7Ve7JK8h07ulZQoy5KmaXpg0jmvZCujthpDJbK1dqiCxeIKBfLjkKSPypS0qvSTbZ+cyLrQdUFmuRMLxWXb0h4ccbpYUFcF0+mEsipF/SpF2iDfyyNS/s4XgNpZkIQEEgqqqmY0EgWvxXKh1ilBIJqUyIhaEnRTgSN51CkK0SYqWawoS5wXBacUEzhPLApGVU03mdI0DYvVisVyIRzSmFgtV5iiFCtH65FsegbpZGX33lIkUaOJZLBXq8gB7zyh61QFKukzkGCfCYYCehhVUYxaDdVnUPV5RUJYsVi2qtBwwJ07Fdev10wnEzZmM7a2t9jY3GA8HlH4Cu8hFoEKBWfaVhXPRFFk1baUbVAVCAENYozEIGtbjJ6yFMAogzshiJVc18q/23bFYnGKsx7jLbdvjhhPJozHE2bTKTvbW0w3J2xublFVI7ousmpaiqJkPK4oC4fzLZPJDnVdUxQT6trx1BMbPHDpQfYO9rl96za379xib2+f4/kpMagahibZhWMYRcksKRnDWN1jydIhpDgh8kVrRMHIWapRzaJtCMko6KZWVmqxgM7naLLCQOJ0uZC57BwmdApeyH6saRvm8xPZrwQl9jhHl5La6sof4wylK2Q8p0ThnCg7qVIaSVTfstVXr7iYVPUrqe1ACkoIkf2iA1EbMjlxn7GI1BM+hPAcNfmPgAguW0TE3o6xS7G3thAkWsa+1b40RvZ6yl9VMFXViRByE0n6ISfzs71avj8BLkWhEb2O7F28rG0hyj40RRLdYN1i0CptmTMxaTwPoY9nSWOVMQZnVYUKK+thtgcW9OJt3AZUTNb+tefQk0SCbID05XkfLAVjFmOCbqFs338hRrJfqcn2gQrUrm0/FaDX/e8aYCOWbK5X/rIK+lqrhID+IjJvrH2rvQe9pUujJEoZ60lJVfl76p9XH8F+8YeYzXYoJyXtrUZUvaxRdVa9rpHY7Z3HeS82iKqiFLKSRn8+GIDfDFYNSk4ZtKZ//fqpYtjfmvUfks8BGfzr+8AMz229D77ZOu0tT3/tmm891xg7qCXkeNiTzVKe+2vnieErkz8uGbGZbLuuB3p9kHXMOo9NXa8Ak8eBAJr5bCF/vCspy4LJZINLl85y9swZRtOK0lsCFpflFCKIBZ0C382C5nTJqgnMl0vaLnDm7A7TzSmu9PJ8GO55/cg04Itm7U/fW/qagXy3/vsBxszXMmQkNoPWIYq67cnRERhDVVU678AUmbwRhVCfHAGxVnWtZdkt2D/YY3/vgNBFQtvhnSHFkqKuufCupxhtbfVnQiEm26Fvs2oVqoQEGJuorOP2nVuyjjkIqcUp+bYej+iaSFx1+KIQhY5+jMm5tig9hS/UPmggqmTlptzfMUUh5OtZ1WvOAYMSs9cIjwAm6T5C3lM4BcxTwjhP27Q4V+AL3SOullRlgQG6VggDznndr2brqNQTSoOYDouVXBJyh1Ui1bA/N2CTWCJ3HYf7B1Te0+lCU5SFEJSsKB5ipU+Eb69xSsfX1rnzXLp6lflXn5UzuSr56maiHzu5WMDo2ix2mJnso/mfrIbdT33Tz02QfUbUQNdnEqQjhfCZbdV02CbN0yRjWC0XfO1rzxE1hl5++CF87bAmsbW5xU//jZ9mNtng9z/7OZpmSdZciUmIDf1MMlIM1OcaMhEG+v1Gjos5ZmWCsmwvlOzQz6H83YQ0ksmS2e64n4f9vkb6xVqJC72iV4zcvHWL3d27nDt/jocffpid7S2quurvKav6GM0dZDJklkoyONlTOymeCSFIPi10PXEmDcGE/otj9BrouUuVxKzB2mx7KkUuLlmetE/wqL/KQXHAH4U/4oXwIte767RRCGIpRLrUyXqp59cIUiyWz6dGio/yOS+vMYm85g/EZO26Pr9E7lUzPJPUE+xkbYg+Mt88Zb455/bl28wOZmze3mJzd4vx0YTTE1EtqipRaa3rmrKUWOJ6son8CTFgg+QqQxKry2BtP0eHParE4GgDean1es5Ous8VG0rJ94XQ0jQaC09P8EVBWahVXV2LTV1VUmqOI3SBhCgBFk6K8LyvwIBzBc46znOBndUZ3nH9Hdyp7vDm+E323B6H/kgs4XJhX7/zoD/D6ZaHTIrTR0fOFaJ5u2RYi7movS59/8sVhnUnz/UuFwLp61OMmiOUh9q2zZqdmeYWUYJVSj2xNNugo2QdyV3Qk3ni2oHA5JiV5yHD/M5Ew0y0SjESNEYMysZaaGQG4tH6HDJ2+KHMa9vHuLVh2sefPs/S/3t4aVb5pM/FxP59KenWN8faHM/yF+v3ccqs0r1rlL/0+6S1bVs/vuWz47B/6u9jKNbIc/Cejcpb8rr329uoJeB3fxT++38A4S8foHq//dVpy2WNH025+hMfY3rh4p9BRam7r6L0bbVvPpd/J62cbbD96GPsfu27ZMf1F9QODw/5d//u3/HTP/3T36SotLm5yc/93M+xtbXFpz71qe87ohJ8M1npox/9KBcvXsRla+G3QTMYSkr+On+dj/Ex3uAN/in/lP/Af+BZnqXVovLveTPQVR27l3fZvbzLcx97josvX+TKs1d46GsPsX1zGxvsvfmxvwTNJsvOzR22b27z7k+9m1tXb/Hau19j79Ieh+cPmc/mRBe/qznlZHPhwl+uvrzfvrvt297Nir2G6auOui7h3ZD860IQ0FIVkZKxVHWFR6oWT04WRNRCyGbgNlfxZAUGsWfJsnUROXh5a/DWCjCauv7cZREwNcZI00JKhtgliEZsR5ICBkms6XIFvAB90IaEbTpE/ttQFl6tQjyrtmUVOgAKky1+CpyvOXvuQZ5+zw8QxgtmW1vEZeJ0MQesViAJQFX4Uu2BpLKzCZHlqpHTY0xEBbVjECBSLJsUCFH7kv6ImtK33FIMNm/rp2MhypATZDlBzJCESMlQVjWm8P11TW8TJ++TBTv1yTg5PAf9yQBYxBCHs2wyJBP7BI7R5F+6J6mxduZVYkp+oE0nqiSxMNC2uCSWL50qcUj/ilqKdyWFK/HWUY1HPHjpIk+88wl+4H2P88Clh5iOK1VZAEPEAcTE4vSYuzd2ufu1Fzi8fYg3gZk9ZWtUUtuaaj7nC1/4Kn/wid/kqfd+kB/+iR/h4qOXsKMhQSEJmyEV0ts7GDBalSTWUrlezeeUHKZXy1qfflLlng3gQhRrvrbraJYNKUS2NmZMNzcwxnDQNhBbFos5J8endF1L7AIdMpdWzYrlcsHdu3d57ZXXWMwXEANdMyeFJdbB9tktRhtjkjM4YygwGG9IOLwtqMsCY5IQYKylMJAVeJrTJYvTBSkI+WN7a4sYWro2amIJTQgW+NLRNA3eyzV94SjLQpL/RhSxisIRWrl2JGKsI1vqtaGj9AUJJwoMSSqxrRHrslYVSLouQAo69jVhT9AkbKRpBERwBdSuwrVelTNKRqNaLA1NwnonY9waYuzwBmwhz0rc5Ryl96I0hByKZIpGunbFMgRKb2EVWBWJ08WCRGS2tYmfTfHTmlRYVdbK1X2SFAtGxpWJkFYt3pVcffQRXnz+G6xCp8NPxojLCWetDHdWbM5IFu+svE4rt2PO+hqZj9k+CusonMRv4yyhzeSIROoitvREBIT3vhDVpbxRiRpwXCJ0Kzrgxu1r/Pq//21O2jnv/+BTlL7EUXDxgUv87M/9LJ/+nU/zlee+QOxCHxtIUYlSKsOvgMI9icA4JH6TsRjrFDRRglMQlb6ohKCyqghq+xO6TgEiI1CGyaoUOQ8XJfmoqk4hgYmhXy/a0GVkXKr+Vyualcyv2WyT8Wgstg3e6hqoJNQolbEZPzbG46xUXNtS1oV6VBNjZDFfMJ8vaLsOCH1CMalUfgZ0TGYrGYmTqWuxoUMImw5nBECxTlRYyqKkqmvGozFd14oqwaohhSBEROMwXvo5xI4uQTJCSrSAi7mK3NB1Ua0P1RJJE8Kh6yBbbAWNfaqyaIwkx22SOGHtAFTkam6ZV2LVEpMjxJbFcs7R0TG379xlNBoxmU7Y2tpke2uTjdmU8aimKD3eGXzhRSWpa3Gdw5ee0KriUop9hXPbBWwjcUIIJ4lCFdlSinoNsYnsuo62aem6htRBu2o4PT7BOUdReMajEePpmM3tbTY3t/FFiXNSBW3sDGMqyvGEc3UNNsr4MwZvC7a2PLONKZcuXmS5XHFycsLtvT1u3b7BwcE+88UpbdMQQqtWPJrZTgL6ZjUrh+3JiiF0vRKTxFQZe+2ygeQGcEHjC/36rkoBSZR9MJGqrCh8EnUWTZjHkDg9nUsMsFCobY1JYkcXm1aATG/AgiscKQTKwjOqSyEzBQEeGrXRjQqcWGVPGVXVidmmRsGRwtnegjNkAopRoA21rEQ1CJ3t7Tgy6CIghSq4WEvqhmsIGKuExYywkHBeVFSiKvSRhPgdlSjVV6frmxJJyfuZUJFUxULJBE4Vn7TfQ8zwnYAnMeYqc0vhPFFBqja2YK1oNkUBtI3aoVhrMLg+lmXlPFHoGZQf3pZNQUrI290oALLuI4lragBJCPXOOVFUikmKFlLqSQ8CvA0Ii9Hrxxj79STIoOur7teJrDmWWQXRROXU9uMixQxeCeiX1bcGWEzVaXS9NUZA8Ex6EStsiY29otYrj2H+l/8dY3OBsxcuEn1LWdekLtG0rY45GeeiFCkx1lhRtBP1FlWb7UFtOT/0c0DRqmEkvOUccQ/R5y3pgm9KcA3JvRz/8xsS6BlpXakp7/UHIPDej/3W4zNmyYD+JfpdMupmhre+NQnX35PGuBAz+dnImpTE5izmc07+n655Yilt8b5gNpty5twOFy/uMJtuUBauJzKAGlUlaJsVi5MF8zu7rOZLLInKtFTeiSV603Hj5m2uvfQyZy9c4vLVh5lsTzH+T0jOZHCQ/FXTN/3a5AMX+l1TynfUvys/v4zhRkThJ3QdpERdVZS1AOKrGAjJ0Lai8hmDKovofimEji445vM5B/sHQsBJkRBaUuqwhePiO97B5MxWT6y25IId6VshJSUFerXwRcHlxeEh8/19UpR3ispG6EnlGLGhc97inFqXOjnfi5WcG5TSdP2LWoiTSJnJKefVGOU520GdrOdvKCkhGe4lJZLtdwbCXwqJLoh6sy8cMWQ1Siu2RXmN0sKgHKes7sHXn6Wzg3VSJlnJutTRpSQqTmHB/GCf5uIlAMqqkmKH0isba308DbmZfoiEgLOeCw8/zBsvvMhiFXrQPKFEkTSQi3rSkd5fjsX53vo8QP4+2r/Wmp6ongkR1jAQUPQZ9Conul72+SCJpuzt3eWLX/4CMRhWbcejjz9EXZWApSwrPvbxj1GVNZ/69O8yX54gjzlfT1fllMmNWpylOZFMLurt1XQvkONaHztZV+qTfXjS4jk0v5EJRUbzKtIluQhsyN8A96w5CSnku3nzJnfu3GE6mfDII49w+fJlvHc47zAxDuMtZfvmIcZm5etMbHPOkVJJCDKP+2K4pJkkVbgcVKGM7it17Mecu9Fzoo7bIhWcc+f4W/Zv8uP+x7npb/FsfJavha9xp7sjhKWkex5rtWgEiJKL6rdrxmDkEE2Mg/KVjFHT931KeiYDVWXV++1JLXmsrxPddVzaxOGZQw52DvCdY3wyYfvmDlu3dxgdjShMQVEWVFXFqK6oa1Em9F5ighQZKWEqBimOdJEiKy2lgbgnqkk5pRcxeCW5ZXUlr4rqSlgKgZgMIQS6tmVlllhr8N6L6lNVMRqNZJ9tREEYKsk9WsNoPGFdvchiKQrLpt9iFmc8fPgwbdtyxDEHq0Nuj25zWB2wt3OXRT0fSIl5a0BSkXDtR91PkQaF00zMsdZysnNCWzT4VUnewWVSYo4P/aqfZD/inO0Lf2DY93dtJ0pLWeXMmL5IMmZCmEHjhOQ9DGIJt7ZVV0L/8NkyHEyvHMva1gGEoJS3EMMSNKy362unfH/6/GX+k+f0OjlLzjH6ez2v5TVFjjjrRZz62riuwjRcayCSD9uB9XvrVSrN0O95R3PP+0GKOIyc4WSNzFaXaegE/fiBdL62t+r3EW/j88Rf5ZaA3/lx+Hv/b9jb+V7fzf12v/25misrHv74TzC9eObPRLI4uXnjvorSf6R1qyUnN2+y9cjVP/M1jDFsPHiFuy987W1PCHv99df5lV/5FX7pl36Jhx566J7fOef42Mc+BvB9S1SCe8lK586d48Mf/jDvec973lbKSgAVFY/zOP8N/w3/Nf81z/Isv8qv8mv8Gi/x0re2g/setVAErj11jWtPXqP4mwU7N3a4+qWrPPLMI2zsbuDC26tv/7zNYCiXJZe/dpmHvibzZL4xpxk13Hj8BnsP7PHau1/jeOeY5P58+8Gbj95kMVswPh5/N279fvtL2r5tkpJ3Yk1gjcjUOiOJoxhhZQMQScZQ+ZJgE3VVMKkK4kosijqiWGm1AZsSvijlsNW1Ahh4y2K1oksicW0VzDEISCW2GxDapIoghkJl2jsSbQy0nYDc4u/WicWIHiIFXHN0qjJikiEYqWNsUxAZ9v7srlLwaUgmkgzEiunkDE8+/QEevvoEbtrxjadf4PP7f0g4TrgkVmUpJKI3RDNYt5gEsRNFhJzcXS4WdG0rSZv+kJn65N1Q4Sc/F3A3gwRpuC/yodL1h+Rsp2BwYJyCe2LlZABrvTxTY+lyhY0Z7EZIg0R7vpIgbZok6gGNfFA3Cn7Se78DGJtt4nJFo5S2J3J/m6F/QhCCjkmkaHrAIHVJAFntT2dr6hLGkxkXzl7iqcev8Og7nubpJ6+wuTWiwJOIKsUPBFnA77x5mxsvf4O7X/8GB9fusNHNOT+qObM14+ylGdUZy2K54M6NW7SHt9m9c8rhnQNO3nidH/7bf5PHPvJOXOUZEmT3dk+PnZj1hUtUJ4b3xJzS0ASJWl+olVIEmi7QdoEuRtqmIXaBuizZvnCeZOHk9Jijk326JnJysqBZSUVjNImYOlKA0C5pg2f/8IhbN/bF7sokmtWKtoPp1pjtcxskbwGPTeDoyJrgllzBpjLSXWJlJKltAhztn9B1EecdPkGThMAQusjx6QKMZTKqhfgSxHagcJa6LsQyLSYIYDx4V9B0Lck4nLFi9aXjvI0Qo6WJAZdBCSxNWBGlPE/GVNSqWMQeLrUdMRhCsjShE8u8tiVZiV/EQCAxnkwofUE9qrDeq82BqMMZa1itgiTA1MpLwEdR3CiiJRHpjINkiCFgUqT0QvIyhQNnWbSB6twZis0NsczLZIF+7AwJsj71miB1EJqGyw88wINXHmD/ha+TkqgMGaPVr6hCSYSUNFtqLNYyKNgYsXvoApAChQVnPNZ5uhAlppNIQUEH1QtPtoAkZJXCKEkVwBpiEGvMPDZynGtDx92DW/z2f/hNYljygQ+/X+wvjeXM+W1+4md+HD8t+NKXvsTy9FSB3ZzNEyJACBIzookSt6IQR+W7BFxRKrEz23MqIGOsqpH19buqUC5rlxpCCFnEe4xRwlvspI+8kYRyStiiFN8qUq8ASFSsS5O7q6ZjuXuXqjxlMhkxqiu8N1rJbSQOWION9LadASi8I8WEw5AKqbovfUFdVayahrZpWC6X9wAMA6AfsVaTsSoTElWtrW1bDGLXUpSiAkYIFNaJfZAvKV1JV4l6Yeg6YugI0as6TyGELmsovcUZidkhCLjZ2tC/j5iI1tOZQBc7Tb7KHLQ6pnvyCbFXFwTEvkxVCzD0Fcqy9kYiIvmfQksXnFrCHbC3e5vxeMJkMmVra5ONjU2mswmTsdi81KUjFUJI6spsu9Aq4SHStB2V96SUaFtZ80MMtF2rwBn4IlLXAji0rTyLro2itqR/unbB/PQIt19w5/Yu48mEalQzGk3Y2NzgYGODzY0Zk/GYuiyp6wLr5DBs8LjkMNFjXUlVT9jY3OLChQs88dgjnC5O2bt7wN29u+zv77J/tM9i2dAtWyFom4RxCiBZgzNWLSZCn7xu25bT1UrIpc6JLd/a2ou1PSAnj8r0LkQGo+vwYFGT9yQJSxcFdEhk8Cy/RhLwMUJyshfMFl3JGApnZH2KBRhHpqhXqgDWpiBxJQm5I1ej5/1DQL9vimKri1ErTxV7M0IgcUpabLtAtBmslHEYsh2tVfKmtZTe99/XGjsQPaKhKAqsVSUWawCL18pmSZ5l8BmwiRiEWCycJJkIdg0sNkqaCElIhsaJKlZksOJwNsl+UF/vvBDHfVJ1J6MKECZRKDgdukgmLfRgiRpyvl2bgMl55ygV510Q5bqQkSXku0ZEba90lqSvkX4T0ptJatFnDCaKQqsxhjZ0fbX6QOoQQnbGiXLFfu43S95HybrUEwYUhM5bceNkPkUF8wyGFBLJrVepKzGOARTK6i9pPsZ84mcpVuc4c+kSm1s7mDJx5uxdri+ukVZ5hygAWXJ5azbsl9cJAzGJ2k0MUT61R/D0LZmNwLDHGKDF/L1i/9uErlkZCcuv046T5TAqUUcViuzQJ8PYU1WktHape+5i3WjqXuBcBkeea2vvWidJ9QjbvechtH/k6ckDNqoUgtoH5rOKMQ7vDEVZMhlPObuzxfbZs5w9syGxO9v4mnxdSCFwejTnZP8u8709lsdzqtAyUVLmZFbhRmJhc3p8QlieMp83XDtd0hwe8dCTj7Pz0DmM++bStLeeLtaBwxyLhx/cg8DeexWNB2KFLvvFvKfwzjGaTkggtq/NkhASbdOpBa90ZY7xMQZC7FiuVpyeLBVAFnJ4DLB9rmLj/Ahxk9H9e78L0/OEjsOk50tRsUgQDUe37ohymCr4RAIhCFi9Uqv50vt+fJkk89U7VWhWdSOMEABDFHtfic96BjcQVVkwxEwklHUqpKxdmyBZLcjSu7c6t9UqMWTxrCjrnIR/KaIpylIKqrzvrQaF/CjjLXRrVl56nshqIjblo7c8y0xczWRHrIALXYy4yQhXVWqZtz5y0tpMyr/Sn0RZ289deoDzD1/hta9/nZTU1oek54r8fAxZkW443K4RehTojikJMV77OvRjUVT9TMr3lAmoBpuyZWGe58N+It9rJvIsFgu+/MyXCKkjpobHHr9KVYupXlF4PvLRD7OxNeM3f+u32N/bk+soVy3nb9I98SgRU14DBgKbwRDTUASS1/j8zmx/l9cQudRAvMzFFDnuoDmaRC4wsGT1ot7OKQ2PLoTA4dERX3nmGW7evMXVq1c5c2YH5/I+ug8G0p8xj2dd760hRUNyTvMkQrjsVFWpa7u+gKPvi/U1waR+nmTCQ4yBLskccd735JU6jXnYPMyVeIWfsD/BG/YNnk/P8+X4JU7iMSbFnhyY95zOOuXRKUEsQjBScJKLiFCiWMyxLQ2jF5PjoFnnj/DN8ZD+/SklOhc42jriaOuYN594g9nBjPp0xM6tHWaHG1SnpRRyVKpkVJa9wpK1quzlBnWfTOKSc5faTzshisegqqIxDHPYgnPa69kGLmaVpUhKEue6rmG1stjTBSfFCUVZ4JynqirKqhJCaVkKmSmrW9u8rwebjJ4JPEVZMUpjztZneKS7zOJ4xcneKbvVba5vX+Puxh7zck4wUfdeqS8MzUNNikjlB2JlLUpZSEogB/NhXNpcbJUJbv3xTkIPqU9wyLiX90adCFY2YwxUG9F+SjFJHq8PQXKmyPmGbL+pepzSL4gd/DAG5d5iH4vy8Jez6VCYKZ+cywUyacf0r1r7QiavD7Efe8kYVebTPWG+Xo6b5Lg5kK8k9uQ5ubbPMVlpScd4vx8y/c4+D/tBETLPiH7W6PPs36xnOn1FYiAm6To0KEOtz7F1Ktb99rZrezvwy/8t3Lz0vb6T++1++3O3c5c90/Nn37LOf3stpcTRm2+87Ukz3/OWEsvDfVJ65M9EBMttevESW1cfY/+lr38Xb+4vph0eHvIv/+W/5Jd+6ZfuUVSCgah0/vx5PvGJT3B4ePg9vNM/X2vbluvXr/Nrv/ZrfOMb3+CjH/0oDz744J/rOf9FNINhxoyP8lE+wkf4R/wj/og/4t/wb/gf+R+5w53v9S0OzUA7arn16C1uXb3F53/285x/9Txbt7Z49EuPcuGVCxSrImfS/lK0/F0mRxMmRxO2b22TSPzgv/lBbl69ycvvf5nrT1zn8Nzhn0lhqa1aor0fp++3P7192ySlsihoGpEutqXYOjVtR4wtYHGqIpG0CnU8nmBNZLVcYpxl1QRWbUdhvdhloJX1kjujXTWE2MnhL4qsmM1VPc4SFITt9PCcUhDbEWukaj9K0rRLUqXfhU4tERBA2KlSgxWQKAVwHSrTLoBp7CJtDOAcTRfJpBhrwCTLqJxx/uzDPP74u3jgoUeotxIf+ZGP8eqrrzI/eIPUJqJxREpS9MRgsEYIGauwpMmKK0YS5sZKBVFKWtGfMhCg0usKPkvmSw6ZzqDV1PSgoPx6SFjnfL11Tg7EgurJIVNVc5yX8qCgcvXqCMM6vmXSoAyFgkICVUIGLO4BXnLioU8O5ER3BhMyUp0UIKC3A5AkhNUEplwzWk+wBcZ5CmsZlQX1dMbO+Yu88/EHede7nuDSQw9y/syE0o/kMG4gJotNkdAGDvf2+cazL3Hz619j+cpN3NERG2bBUxWcqQxbZUdVGGxR4zZHkFa8+tyzNLu3uFAWHC92ufWS5XO/8Rl2HrnE2Svn7gVN3rIm3fNPkxigJs27YQTaCUOeJ+WkDtB1ka7paJpW1TwaUfSoOg729jnYX7K7e4PCR6pyTLtcEWNHQtRAQoDOiLWgnc85PjpkuZjjnKVtW1ZdR1GP2D53VmwIU8AaBzFhlLhijVggGJuthRw2Qq6wXC5XHB0dY5wjxE4qimOk60IPIpycnFCXO1SVpyNQ+5KyqnC2EHCgkJ/jZNw463F+LDLi+hydl3ltI5r4S2rR1JJMwjmDcwVRK8CTgjF1XeO9FcWbthOrCuPAlRQhMj85oW2WTKYzfFlQlSWQ8N4h1osSVzBQlhWrVQOonLZa77iiwCYjJM1GFKRC2xK7hvFsiveFgsiO45Njuq6jLB19+f16RskMP7H5Lw7spCRVltnsLB/8oQ/x5s3rHB2fkkwgISQLwd2VXGQNsZM4J6ChIUZN+kYhhloKYmjF9sIZYmjogki5R4TMKYSRiC+9AkxmLakaCWo9IISd1GfTjBHrgRSXHJ82/O7vfoZkDB/88PswRUUCNjan/OiP/TDjScnv/94fsjhdyvdJCkw42yfwMsgl80wSaN55VSkKqpIma0UyVjAABXZSFIUJ72xPHMhEg2zPIHZxEIKAKjEJmc5lopsCM9b6/nuKMhVKhpXvv1wtWbUrvHfMJiPG45qyLMk7N0l467qjc0QA3UGMqq4qnHNUdUVMibZpWCwWLBZLAZ9VXUbIneYeAqnpk5iS1O1atZ3zogBYlgWpKOhaIeN478W+UsGLrmtZrlaElCht7mf5jKCqAmKp4nAYYmd6t4ioygytrrfJGlWbH4gBRgNlykRZp4o0ZKBK4iS67mNy8hRIWQnNMl+2LJslh0cH3N69zXg0Zjadsbm5webGJrONKfV4hC1LSpLYNCYZz13bYZylKj0xiIWLxI2WLnZ0QcDZoNXRKTkK54hlSQgCIoWuo2lb2qahaZY0zYpm1XB6ckxRVfiipLpTM55MmE6nbGxsMJtO2diYMRrXjCcjqqLGe6/KEh5IvY1TURZMxlPObJ7j4csP06zmHB3vcXdvj9u399jfP+B0cUoTW5FKTWLXlqLMx5xbXq1aYjiirmuc94RuSDrfu3aZXmUqK7WIMmVQu0JP07ZKFhKiY0xKVHNWQKYMrNok+wfdm5DkOTvraLsAVsyRBBCR+ViXJYXxNKtG7cySKt/YHiqIMbHqWqwVkMwLXZn1im1rrTyrFHBWIXEj5PMMfCatgrdqPZEJJ2LrIICEkJEsRHoLB68kL1H+krmcbSFtJlxnMJSAmteQFag67WuLoQmdgLkx9Yp5he6HulIAFo/FegTcjQ7rsjWFkrGcpfKewsCkLii9pWsDWYWiJ1ClNRuyt2Fz1q0R0YRoEKKoVGCTqmbJ/VvrKApRdey6biB7KcE2q2HpIwPSPQTde6xMQNSskDUiqwVk4mnCiAJcD3imHmRbJxtZ3WuIZZLuu2NSMq1eL5OVTFJShKpfLUaY/+UX8HeuMNncYufMeWYbW/gaHrxyhYP9A9rlkRAjjGwGEqKMmEH3NorVm3xbhoA5HCPy/927STX5DcP8ySBVVhsT8piOnXVik8kdFftLA70yFUkVwbJ66T2Ji6y7YoZ77n+u/zVrKkw9I8AO349hXRlou7J2kwZ1CfrryCsyaVZIzGKRJKR5h6tKxpMp53Y2OHduh9nGjMmoxLmiR1mT9keKkcWiYe/2Hqd3d+kOjjGrFZXpOONg7Ay1E7tfYz2mKoDIwZ3bhPkpU+tYdXNO9gzXXn6d0daM8eaYezqTb/7n0CVp7XsPfZgYVGzu7fFhzxqD2GZli8DoIsv5guWyYz4/wdrUW7j2hJG0Dq4HTNvQLFdSWGONrKMx4rzn8pMFZaWUy3yY0TOEWVvUk96orPsSm9um5Wj3jqxHKao1ZibpyLVWbUPhx0Lo0b26d35QCHZKQtWBao3D2qIfv3mcmpRkj63AbiYeyEAR0m9CVMpIsg5477FW9v1BLZyE3CYFFW2zIoaOoqzUPkoG/rpNUXZPcs7pOQmy5VuMQliV6SUKhv1+OwaKssRauW5zesJqtRI1KFWyvnfYZHVq+j1aP31KC9FQVROe+NAHuXP9Gov5vCdixpiLoPRa1qqlaSYm5evrmme9WCUr+cVYIARiNPo6VcPJRChje+sOm8TeKOl3tpZeOYces5f+W6xO+epXv4RRG7bHHr9KNaoBOSO+811PM5rU/Lt/++vs3t4lKwXlVEMORGucnAG2V+W8lAJaqiF9t04YIC8sWW0m9fOtJ3Xp+BLiUiSvR6B2tDl+6R7DpHxOyetP7NeWm7ducndvj8tXLnPloQeZTic471TlT6mZLvdTT9keAq75/7P3p0GXXdd5Jvjs4Zxzp2/IOZGJxAxwAMXZEESWLUuWZJdsy2pLrg5Hu11RHRWtaEdFdHdFOaL+dFdE93/3UK6oqIiKrqiwu8tlSe4qyVZbNg2RlEhRlEiKAAGSIBIzcs5vvtM5e+gfa+1z7weAEjiISFK5EYnMb7j3nrPPHtZe77veV/ZMW9mVdWGd1MZY1JXQeEY/vSco9atzXtFGs8b4hYhqdU4nmxlEw8PmYR7mIX6CJ3k2fY1n0jO8Ed8gpIhzMl569ZryXMyKXCWpK6MpLy2K0oK1tLaXmf76Vk2GyWpvWG1wb/3N5BMHpw84OHXAzftu0swatm5scfL6STb3t6gOK+pa7eCahqZpqOoK6xzWy3rlsoz1lDKmqL5n+Tq5rDkI1xOvesXYLGcjp+MtZV1XC9EpBik2iC1d17JcOqwT5bqqkuuqm4ZGr6+qK6rKyxlPrZML0SjrecrpeXlQD9mIm5xLZ3h072GOdg95dft1Xj35Ggf1AW2W/EYuiUOZoX0/ppRYti2V91SmXjtDvKmfdYIV4jagdvNyTXLezj0wYfp4Za1oMStlUhVjZQ+ROVWUvUCVn8tCpWq9zoh6cIn1s8ZuJRdZJmrMxT6xxC0cWxysfr9fgjQmjOvqpJn+3z3RZ9UR8nYpr9YI3WustToG5LrK5yivcfX+fVyz2jcNstbEEq4lwIg65IpOKr+XTIaqKL7Ke1sszbzpc7rlMzcONxhPh3hrqLzTOI4+Bjs4fUDXhLVru9vumHb7JPxv/l/w1Q+921dyt91t35f2+BMt9eC7e23qOg7fePX7e0E/ou3wyuuc++BHvqf3sN5z7oMf5eD114jLxffpyv7s2t7eHr/6q7/K3/k7f+dtiUrvfe97mUwm/Pqv//oPNVEJJGf97LPP8uKLL/ITP/ETfPjDH2YymQBvjlfe/WYwjBnzl/nL/CQ/ya/wK/w6v84/55/zVb7KHUWQNmIJd+U9V7jy2BW+/smvs3F7g/u/dj8P/fFDnH/xPCatcl0/Sq0oLd339fu49PVLLCYLnn/ieb7x5DfYP7dP9PHb5q/uth/i9qbpZ5Jh8/YmJh1/2GdePcOJaye+7du8/t7XmW3O5Ivz7+yj3zFJKUWxTRDwN4u9SI54Z6krD1ZJEO0S6zKH5oicxDYlA10I2Gz7RFQIQRIuWgmYEHWLdimwjiSSRbI9xCj2R0aSnjEIqN1m8MZgUsbkrL7vJYmj1fSqYNGFDuOtABQ5KkAn6j05CxAWU6aLERPlkOaMo3aVEBxChUk1F849zKX7HuTk6dOMty0ff/InuL2/y2+Hf83Nl6+SugA2EVJH4xsMni5kFkGS3QUMSMZSNQOs8yornziWY6EAXZK8KpU0Fj3MqsR/f07XZFmpigRAq2IyBofk1kwG4z3JWmahBRwDX0sy2cinFoii91/X97fl1N7TlBR46X8JqeiTD5f3MkJqcjljjNh4ZeNAySoeC9YRrcM4j/OWysKkqjk1GTEZb2C3T3Pm4kXee98Z3vPgvZw4c5bRuGLoLBgPCtwnTfrO5zOmV6/y7Je+zlf/4CuMZkecyntcInCmqmiAetkxSUUNpxV573HN8OQWJ09OOL+7rwmVAZNLF3nsiR9jtCmR8zGp9D+xrW9TPYTIfN5x88ZtTmxtsrk5whgIOROiAMzz6Yz9g0MW87kAaVgChsuXXyB3lq2Jp/Y1i/lcrYpiX50lgATEEFgu5syODrHGUFWeLgYiGTeoobLM5nO1PUHtiGS8xaxkhxxVKtJqYW2mypadm3ssjxZ0iw5rLPOlWA3ZLJWBTdXQDTIhtrAEX9fEIInO7LyQRrzBVp6YOnIn4ziFJWRDR5Rxo0SRrCpF1pqehNLUFcZq8rzYOmQZdzEmIok2RroQWC5aYhuIMdK1HTkGNiYbYneoFlWSVFL1rSS2CGSj9i2S9DXOqEWdzgEd795X0n91Tds6jqZzlj5wutoiusytvR1u3bjJpXtOK9C0AhSOtTfHYQZsJSpRD1y6xPsee4Qvf/lrBCuJdBH6yb3SR6m8E+AdtWdL5CDKOcROgDqV7Mo2Yq0k6BMCgBr9uXNe1STEcsNZrwpU9OAoRshc3jus8aL+RcA7h3OexXzJZz/9u+Sc+NgTH6HxDRjDZLzBkz/x49TDAZ956neZHcxwxogFmbOaBI4CKBnbA9OVyrwTg1SsRtkncEJioZDLkGRg2bOMdwIWWyHDhRDISezOcgLnPTlHVUrS9UuTqiF0lEpIWW+NJhvdqt9ToouRTGb/4IjDwyMGzYDJZMJgOMT5ispmTApqQ6IKDppAlD3SUHmPTVafnacZDBhPWo6OpsznC7o2YJJRELEAeFn7SUEFC5lEaDtC24J1eO8VaLM0g4EAACmSTKQyBld5jHO0ocMmATAM8uyLEk6xbcsYfO2plSwWQhDLzWgJKeKtKFYlleCPMcqzNfQglUwbqzZXMu7LHCSjil1ZCJQKdEZkzw5JlJva2DFfzjg4OODmzRsMBkMmGxtsbG+zubnJaFAzGQ1pBrXMX+eo6lpUoGLS+CMTa7F7CyEQU6ALQraMPSBpCF7U3AwNTYyErqVtaxZzVbxKkeViLgpY8znTw0N2KqmCHo3Gqvg0YWNzg43JBqPhkOFggLeiVuWdE4U+I2uarzLeVYyHQ7a3Njl/5h4eur9lOp9ze3eHmzu32D/c42h6SNd2dKklmox1mpQ3Tkkc0qdJkCaJI7TquwBuvc2BEqZjili1W/BrP5dAI6+he+uVxbonKoBckuAmyzhoQ8Q4qCtHUPDAe8egroQQRNIkuqylJosajTWGkCOBjCPROE/latq4AiCM3qDEIRbnrBDTy+pq5Dp6MKvcBwKEtTmvgCZlApVK+RgiVVUJEKBgclLrrR7eUyCy2IGVNbxU/UtFN1TI+6Tcyry3NZVP+Ay+8uQaNkc1p+ohw9GQejTEDwY0GyMGG2MG4wmj4ZiN0ZgT4w22mort8ZBxXWGyoUtGQFyj1nVYuu7OrVLJahlZxlCxUbEK5GFF+TAkGRtt20osrMB2SqKGigqJ9NXqtoA+We0nCyAGKMiTcupVgowpZK7cA6K2B0xXSmGGoi4goGpUIt8qqqMnJkEhSRV7DaMgrMFeu4j99E/DN98L1rExOcHm1jbD0Zh6YLh47yXmizmX82Wme4dCEjDyPt55AYcjBLXCK+oWoGoXK6m/9d4+dqZY/5np/5eP4btrx5Bj38yKMMvoLnGwJVsjtrsYKtxqXVn7/zE8k3LS0IdTPiIXbEyvZ+01umr1n92DlKW6woDLSkZSFVBrxSqmcY6hgr1mMGK8ucnprRGntrcYjkdUlRNLuDUFskJS7rpAe3TEzas3uf76NaquZZgXbJrEyFo84EKizkY+nwg2Y2qPHwwYDhsm86WMW+OptzY4efEsdePW7uxNHfS27c3nCWldiMymc4ZNTd3UfXfGhNicdi2LZUvsRPFQCiUMu7u3ydHQ1A5nrcZFmULgKXNCeCiJGDJtu8QYVThTy0rjPThDF9SK3dKTWlaWg0oa7BU4ZDDZbLj54kssD6fEIHaWQUmzRoFd5zw+ZznrRHpLz5QS2cq/peinkJzkfWKSXEIhqRu1kywAszGGbGQdEtXe43OgV9PJuScmRC1SyLFTZSohczV1g/NeAOVc9oYy6TKFQJJ0PStqRIUgVZRFDFKEZFURMEaxn40x4QYNIXZMp0fMjqZsTY7LpL8dNaOssf0Is0B2nDpzhkuPPMLlZ76mKiFFL6RfTlZzUN/VWqf9IGTEQpAp92rX5m455fTrQA+M67NVNUdyIYqVK09CaClKTUlUOJdty9ef+zpGiUQPP/IQw+FQrss4HnzwAX7hF/8mv/kb/5Ib127262IpAOr3d40XckpY73HyIf2eQTYYm/q8UVmfyjJr9F4KoUOs7JPuZ+XD9L6L/eD67NXxUfas/mdm1Y/GGNp2yeUXX+TqlStsb29x6d57OXHiJIPBQC2ypK+wTskQpqSW+vFqjKhRY+it4Kqqous62q6Tsat7GnmdXLh22fqPJMkyKVDRQgZrVqSllBKn8in+kv1LPGF/nGftszwTv8bL+WXmeS6jsJyjWFlclT3MFfVpVQJMRubym0nEKZVxVfqN1bPRHIDEj6s+KJ9T1iJjxMJ6MZ4zf3DOjfuus3Vzm1NXTrO1s0m9aPDWUykhqBkMhCjkxerZGItzxRo20VvT6v35LOfXsv+nXAoyk8SPGSFBO4vXWCJFIS8GtbFNMQiJKQRC17FYLHBOznJNLTadhVBVVRWV96q4Jvk448USvSwq3lgMnqauGacRp+anef9rj7Pb7HLb7XBl6wq3N26xNEspICkKhprzk2mSUe6qPs/VuF0byH0fS/VQUrJR6fsSj/eLRT/O1pUhjw9Cjv1OVBKS8241Z6yo6jmn9uzl5bYQYkW5uCgiZXJ/9hJb4XI99OGSMUqkK9fb397aeaK/tqy5mHicNLcWa62fWYpKftEP7pda1vvB9G+9OmfJGmqVZJVzOexYrDPYLKrzPlac3Nviwo2zjGhwdYWzFRvzTeq6wdc13lfUVc2wbhiMKhrvGFReXQxWnymksqIcdbfdES0DX/4o/J//L/BbP8+fHjvebXfbj3bLOXP96S+zPDh4ty/lh6KFxYLYtvim+Z7ep9nc5OTDj3Dzua99n67sz7bt7+/za7/2a/zSL/3SWxSGjDHce++9/PIv/zK/9mu/9kNPVAJRo33qqaf40pe+xH333ccTTzzB2bNntfDvzts3DIbHeIz/nP+cf8A/4F/of7/H77HP/tpp9g5oBrLLHJw94Jmfeobn/r3nuPTcJR77w8e48K0LNNMGm78LmaEfgmYwDI+GfPCpD/L4Zx/n1qVb7J3b46UPv8TVh6+yHC7/RIUlG60qLd9td2oz0TA8HHLx+Ys8/OWHqZYVIM/uzKtn3kJSstF+2/GeyXz43354VQzz/3xn1/COSUpGD8CituEFnG1bCikga0LGeyEhzBdLsWbIWcFgOUR6q+oMJamuVjoZlUDWRBGgKjtgjMMYVKq+3LFUUxclAEsmxExMmkBR+xgoykOaaMsFDPNI4V9cq/hvRT5bVUgMhqy2MLkzDCeO06fu4fTZk2xsNGwNPVuTi/zCX/+bnD51nt/71Gd45Rvf4uhgTkowHA4wxtJ1LeKWVyrvDSbK195r8q7IXa8loldJndVjlqReqTp68yBgzeYtl7SAZoMEPLZFacBaTLY473CVJLDI4LJdJYxskIRUbxVjMNlinCb/rMVYT0ZICeIDqMkRrRirvBXLG+cZ1Z5hbZk0jsmwxnuLqydU402qzZMMtk5QNQMGg5pTk4ZLpwacmlS4wQQ32MQ5Q00iZ0u2qWTkBETvIke3drj6/Mtc/uo3ufXKi7z++hW6w13uP93woEncP7aM64gJ4JLFpAjtkjwLRJsxtwd08znjtiO4ms3H3svPPfmTPPbxjzA+eUJtnL63ZjAsl0I8OH3yBMu2E4OjkDg8nHJwcMT08JBlF7E50VSO7GoOF4nrtxObAzjhRX5bkh4CrotseISUensHj+Ng/4CulUq5Uqnedh3T+bQHJ7xDKswxamsiAK1RFbK2jX2V8HwZuXVzl9hlTDK42rKxMdCElqj4LNvIcDJguVjQdi0hJXwWqWkTIjF2WF8RAG/BJrG7aoYI0FTLstTFoAoaqwRkNgZnDSllrXxNxJSpqkrISSEyn4sqTBcyMUBoOwFWHAQLk41NscPKlqw2QiBknGwylRfiYIj0IKcoOcnXGUnceC8WDM5LIstkR8azbANt29J2Hd57Zu2Sa9dvcG96H7gCsR3L//f/lvxfxoREWIg3bwqiJ/DIgw/xjW+8yO7hgSQ/gyRCrTeEmEldwjuL6dU3JMlpEYDGuEwKQey7MFTGg/EYi5Ar+6vSCu9+gbG9SlMSZhBFFa2HFpKMmWwTCU+XAqYyTI8Cv/uZLxBz5i888TEaTfIOBiM+9nGxgvv0v/00y+kCp+tdTl0P3viqAkRBA+jt2HxVkZ1aJOaOXIg/BiFhKRBQiAl2LdHnK0/XKbBbZOOzqsHlpGQ9lPxQlJ3AqA2QNQoEK9HFWIszqjoGEDPT6ZzFsmUwGIjt10AImM57rEyTFfEp63qtQL0xVmxMao9zQtwYjwLzRctiPlNrlkCprFwHFUFJalYIEklVgLqu7fun9hVN05DJqh4k1frDlIQEFALtcq6WcwnnK4yxulcKyUgsCxDFCCfrvEsC1DglF89VCa4k6qMCFSnI+MoZsZZB+rqAKT3oovt/qdwvyVyUTGmyoU2RLi5ZLGccHu5x6+YNBsMRw+GAra1tTpzYZjyeMBoNqKoaX3lMlfE5kgsZSW0Yco6EhIAFIfaV566oGiC2U8EZnHdUrtbxI+MzhChKa+2CbplZHB1yuLfH3s5tBsMRo/GY8UTs6jbGEyrn6BZLyIlTF89x4sRJGR/WULlK4hAaGjugaiIbm4nTp0/zcHyQ5WLO7t4ut2/fZmd3h939fQ6PjujaQO5KZfJKAagk1gsRs3AneuDAWlKW6y9AYIihT6g7V1Qfcw/4lPnlnCXZKDa6WFXAi6I0F6JULmer6hjleUqfVd5TNzV0YvHnnFiU5KjxIJlspbJaro9+bRCFMiGwdSkIGa7M2XKUzSsQ6xi52JgeaC0KHkbjwpTUZjJD6Dqx6bNW97fj71NARbHBVQKFoY+zxH4mkWzEKsCWXWY8hBNbm1w4s8l995/n7AMXuXjpAvecOsHZzTGjwQhfj7HVAOMasA3WVKIQQoXD6X06PeglRIZQPwOHUNPvzFaU/yjKEgaSkhKLwgigQKDMyV7CXdd4Z4wCKuWcsGZpSCGWvuWDjwHC6+eJlMUezCYl96WsNj9CDF3frE0B41CdGFvWxdSflYplijEGosdcfgT+5S+Q9jdkvas0iO1uAAEAAElEQVQto+EGo/GQunEMKktTb/Cex97DaDTh1RdfYf/WDstlB1nsjVAyb7GIArlvIV653hqoJyK+6faPgWEIwTWvff2W51RYHfTHMu2H9cSeqqMoKcgUiyIlZondChSPokLO7d/HgKghGIktynM0yBhRQm8m96ppzlgqZ6i8pXaGunJCSHI1tmqwzZCqGWK9x3vHqHZsDj3DxmJ9jfEN1hixZcxmdXAu6GTKtLM5h7f32L1+i9neLgcHh8Tlgq2RY9tktitD7YTYaEvwliK5E+uvNPPErqOOkWQdzanTPHLvA5y6cJ5qOOgB9O+6KWAaY6RtW0bDgZ6tBcht247lcimWpbGQcQwYxzImjmaZxsPQyu+LHkPq45CiJpeTUXKTExWfnvgn9xxzxLhAiLG3TLRK4CtxWCqkRI2pRbHVEJctO6+/QYoSB1lnqF2xlhJEPMSMr53a08Z+3hpjaJW4aKxT2085Aztr8ZWcI6xbkWuKkg8aO5m1uUxZe3JekbBSUV1UW9oEKRSikcSEVdMIsbJk5Iyux/qeMlfXiQwy0Mpnyf4syqaiNLjaSyh2rkqaZrlgPj3iaDpjcw1Xf/OwoB/O+o+UySHIPSZZGe599DFe/9ZlprMjiupbiWfLPm2NnNswpu9DSj/b3BMXyicbY8FmclzFo7nkLFjlLMp8TqtAhBW5QV5ayD9kKTKYzqZ87dln+sPSQ488yGg40Hdz3HvpXv7W/+IX+I3/+Te5ee1mT5KW84yqeKqCdbHqAlnnV1ZH+vykA/pzJ7mc2ujXsNK36wo2hXy2ehBrROF+eTX9srcaLyibXOeWzp/5YsHi2oKbN24yHo+5dN993HPPPQwHDc6pUpmTc3oJdPqjTs8oMRqT6PpsDb6q+hg3dF1PBlpd51rgVLZqJUikKEWLxTLYGomHMaJ8PMyOj9uP8xH/UfbzPs/n53k6fpWXuhdpc0dPjk/r848+7gew3kh+wdHnxKIWLJZYvI9FU8mLlTFTBlq5h+Nn7TIQy9aWbGb3/A6753aplxVbt7Y4cf0kG/sTmj1RI628EFyHwyF1XVPVlVqGi3Ko1TFWPj+lYmEoRM+ijBZTUoL1KjYx1pCsWMjLeJPXldxDTqq01EFrDMv5HD+rhJyk1t5NXYsya5ICjGbYMN6Y4HQttarmZYzDGYexiSoPGOURF9p7eN+N93B065Br42tCWGpuc5RndCGosp08rBPXt/FLv1pfyoReiytCHSiBsORpZLCnvKZ/aIwW+JTzxGrKrAiuqY+1SlEPui8lhEy+Pt5TFoVL50WpvF/vM6qCpGcPUPvxYt+nsVCZu6bEjiu7uLUgifW9otxLabKWrIaZ0Txysa8UkqreH7LHlfGae1LY+tmCfv72n5MQEpnurdmITfRWGnN2fpL75xe5kC6wPTjJ1mNjxk3NoK4kNrKi7o31GCWTq3Y0PcmyD/QyfUK5qCHebe9+W9bwb34OfuW/gasX3u2rudvutu9fM5nJ9ndXXBUWC3Yuv/B9vqAf3bY82Gexu8Pk/PdmE2mM4dR73s/uiy8QFne+mhKIotKv/dqvva2ikjGGixcv8ku/9Es/EopKpe3v7/PMM8/wzW9+k1OnTvHEE0/w3ve+l6Zp7liy0hZb/Ef8R/w9/h6v8zq/zW/zP/I/8nv8HqHXqb9DmoFYR17+8Mu8/MGXGR2MuPSNSzzw1Qc49/I5Rvujt8nI/fA3g8EHz/mXznP+pfM89sXHmG5Pee19r/HiR17k5qWbLMaL8suat4IHn36Q4eHw275vJrMcL38g93C3adNwf7Iz4Z7L93D/M/dz8fmLDA+H3/PYNRhc/M4xiXdMUlouOzAWZ7XKPdu+AqWNktwUOwpH6DShFo9L+FsrJKcuqKJOilgKSJHVmm2VwBZSgNiDUA7tpTJKwd1sJHkRNUkh1c2ryjyvFTYGkVGvjFQjaa30CgCJmRxLuksqgEwMYssVHdZUuGxJbebk5pDtsWfgwOEZnjzP6Z/7q3z8wx/mxecvc/n5F7l65QaLWWA+b1m2rShydEu1xpGKKVGlKklhNFGseSGrh8Z14ECzjwXIPraxUqSVjVYo0icKoAB6HpzDeY+ralzVUFU1lWuoKkfloPaGQe1pKk9VWQa1Y1g5Rt7ROEtlLU6Vs1wzxPgBphpQNSNcPYDKUzUDjJMDsLeGuq7wlWdYWUa1YVjBsLLC18AI0clWZOvXEoEOS8bqob4o10guThKIKQPLyM3XXueNZ5/n5T/+Ooc3rhCnU44W++zfuMl9Y8cla9mOjjpnfGpFKcI4YjJ4AjYamAVmb1zn6VdusMuIn/7f/u+492Mfwo83sc4QbSKnqk+ivLP2NggZmeGg4f7772U4GgCZ3b0DXn/jCrPpTGTVjcH6BpNkXsUU2TmY8Y1vXefBe7Y5e9LjG0dMS3JupWpPk/+mVBcTaTvY2zsQu7K8klwfNDWT0QhjjYwLZwS8RwDnGDON9zgnth0L2+FtReU8t27fAiW3+UFD7DpNHhlCG1UdpMJbcMOKGBYkk7BqV7VMEZMCISWwluHmhLCM+Loh5YSvLDEFrNMqwJTByTi21in4m/FaJdhFUbtIaHW3FdJiCGL3t1wuFOgUgk1VKWCRkyTrEj3IKYoaci85ZbWMMH1inizKYCJ8JrYm3llCp5YI1mJtjcGzd7jHbLFga9DQkbl2c4cwa6nH1WqjNivAvtgOQUm2oXZyWSXOHffddz/v/8B7+OIffoW2FSWgyop1jRc5LLx3JJXzN8YogCNVryZLskx4OWLXYYwR2z2KRYVU6aYYdCFySiiIZRFfyZVnQ0ySRBVCiVh1CLk0s2znWFtxeHDIU5/6XUIKPPHjH2XYDLDZ0vghH/7whxhWDZ/7nc+xc3uX5XIpefpCJMgZCkE2ZyEDJEMXwLkC/FisA2KSNS6LJQdqS5dBSFZaxe6cxWHEYjR0Srp1CkhrRX1RtktGFL1QlaYsJFMhMphe6UIznWIVpGt3ypnDoyPmiyXDQcNoPGJjc6yKYKEHgHtAQccwmF4ZqfJCVKp8TV3XjIYNy+WCZSt7SbsUkEGW0mKdo2ogxhLXAfkkhNvQdjSpoaprfFVTq21fjBGfAyk6hnXDZCg2bjEFui6yzFL5GUKAqGQtg1iP6RRxVmz3rAHnDHZQ95XqbYiqbpjIMR9Le1bOKRi2AtINRuduqdJfWY2UvTBmsdjKGFLoCKGlXcw42Pfcvn2b4XDCxsYGm1tbbG5uMB6PGI2GDJsBpsq4FISAGEWBoQuR3Bi6TlQgY4x0odM1JRJDlH1Js8N1bPCVqB4IUSnRLpe07VLmTbcgdEsW8zlHB/tqLznoiVQeQ4wdR3HJYtkxnmwwGDYMmpq6GmCwONuATVgig6oipcSgHjEebXLP+UuEsOTw6Ijbt29z+/Ztbty8xf7RPsYiVmBG4qHc70HrW5LpJRads5holbSjdjtKeiixhHFOAOG0pnzjHM67XjXIOUfMQjLKa4tdzkICVSicLoo0bN1UYKTPowI5tnLkTuIysT7LdErAxUmMKAqbAmREXefk9UKMyqysfQpJaQUkrsCvYvljjdVYLPW7d+yEDOx8hXgzroDX9S2+B7xBbUOTqg8AxpIJGDJ15bh4cYu/9O99kA8/8UEeunSWMye2qepNcGPE8M1AdmAaoELUImtkI7QYipWkmDtkYyhmb6tIo/T7ndlCFNKPLKkrZYkEK2ULZM734P4aiAn0yl0xyxgxNmNUeQN0SV4D8jOqBFB6q2comRVKxko9JrNSAikqqM7QW46klHG22P5BKXkXmyYUuDOYUGGe+svw+z8OncPommWBHGFYewaVpTJgsPjhhNHDj3Dh/Hl2b++yc3uXo8MpoUs9gVI+I6iljNhDlXFbgLuVoguredyvnaXl0tFv+rHpCzveLt4tMcVqTbBY66Xgw4g1lbXi3uqtKBwIId5QOYO3UrAiSp7yPtZ5sB5cJcRYXWus9yvw2oo6iHVG3ssaKgeVXalrYByF7LR2xTIjepaWKXdPrxIoh0lmBwcc3LjN3rVbLKcH5K6j7RYspzO2asuWbRgkITjZYn1nCrFE7Ym7RHcw5cb+EXNqHvzYx9m8cB5bNQJK6xXl/sreSXvTeULBxMp7trY2xV4YmC+WHBwc0LVdT740VvYo1WFkvuy4tTPlxGTAeOhwXu23ir1qTxQs4KmoRCwWS0KvVCFjqq4c9z8acc73Fu3l70LycNje2iaYhDUOZwy3b18ndWKbZLzvVZDIRb25WPyIBW/KSqbXtVzURFM/0X1Tk2NSa9IsypXF9lEHeBknhRzZj3G16nJOYkaJybOSDjI5Cpm5kI4y8v5KCe5jgt5estibm5VdkfRAfMtzlTXQ9QqgRtcS5xx1Y1ksF3Qx4JJndrDH0WxG6iKusqv5bN6+xjSXXTgXFR/ZG06ePceFhx7g8nNfJ8Z1ayJ6a2RbrJbKjOlJLwpm90B6/1jWms7Zsq/2V7c6U/UWb6xA/xKnl9/PKfUWwbPZlGeefoYYMyFFHnn0Icajga6nlgsXLvJ3/oNf5tOf+jTPf/NbSsBRglzJRRlWZDW9sbRmcSnLqOk5Z1af3wq8L2vpisRgnRN18Rj655aRNaH0IXpOXh9zxdIqaVGdHEXXYgs5BpGSnCWeffZZXnnlFR579DHOnD1N0zR9vNFHJyXOKZ9BMVzUPcw6nJW/vXfESmweS7Fhf9ZjFf/148asbR9FLVUJeMWSzjuZv47M6XSKk/nH+Zj9KJf9ZT4XP8eVfIVZnhGDkNCTqhH16+CKR0gp25PpIPPN6ZiRYqysBLvj21tRsjze1vq+9G/fZ/K/ZdNy4+JNbl28Rb2o2Njd4MT1k2ze3qJa1EynU6parOCaRtSM6lpt17zrCUZWFo2+SCA52aOdrqPFhjOnQjbRtTlJjFfUqZIqokYtiMlaSBKjFIDYxRzrnNjL+wrvLClGFu2CmDPNYIj3nspLIaH0plNL1oTTghuXK6rUsH10kkeP3sO0mnKYDpnNp7yxcYXDcITpDPdcPq/nVtOvbSsii7T98/tA7u38dEiuH+z6MVXijjL/izJ7skYVzeR3rBE17Tc/U1FA0qN6zqpwKeeRslUUgpV1EIJuAFleG47FlJmco67XRaXe9Gedso6uL7LHChZYWbL1N505ZqNXziCl2Kfo1pd5e+x9dY0pBMNS2CNRhqynTVdx9uAkj/Mw791+lHNbp9i6MKTyUtiAFh/KMyuq6E5XBKfzxb150h3r4bUZc7e9221Zw//p/wr/9/8DdNW7fTV32932fW3ew8d+6rsDpo+uXSEs5t/nK/oRbjlz8Pqr3zNJCaDZ3GJ89jz7r778vV/XD6i9E0Wlv//3/z5PPfUUzz777Lt4pd/f1rYtV69e5Td+4zf4whe+wM/93M9x//33q2vKndkqKh7kQX6FX+E/5D/kU3yKf8Q/4it8hX323+3Le2uzMNue8c0nv8nzTzzPeG/M+RfP8+BXH+TCNy8wnA5/ZFWEbLJs7Gzwvs+9j/d+/r0cnjpkvjEnm8xLH3qJdthSz2s+8m8+8qeqTL30wZd+QFf957xlGBwNuO+5+3joKw9x9uWzjA5Hd8QYfcckpRAT1oGJ0HWBnCWZVhK+KSeMQ6vdRZ3AZJUITwnnLV2KhBRJyUKK1M7oIVxOk33VCkVaOJKzlaR8rzKhSSwFOGA9+WR6AgvGYHKisqLWkjDEKAnXHlzNki4MIdKmREuisp7aOmwbaGLGZ5GET2TScsn116+T5nMGrpHPwlDhOekdWxfu4z333MvyE3+RxbJl2UpyoWuXxNCRQkvbFqltqY5KUaqOQpRK1GIpUdSdTH+tuU9YidXB6tFZY0UC3FpEycBDzvq1JORqJ0kM4z2uqnC+VoUA1ytsiMtGxhnwzvR/WxLO5jf5t+vfSDLT6CFXnKRsT7ggp5XiW1/9U5Lza9YK0Ce0e/igkBJ6Q7mEMUmIJTFz643rvPD7X+LVp58h7N6kWrSM0ow6QcwtTV7y4OY2l7YaXHBUQ4N3CSo55tN2JCzJQGxbvvncdZ67teBD/8uf5aFPfAJTK2hC1IrztUQax3IVcnv63eOJ2sSxKqScGTQVqfHElDg4OOLV19/gYG8faw1eLQmNMxo0RJKBQKTLR0ynnpw2QO2wUDA4qkWCJPcjoQt03ZL9g0O6tpU5aKReilgqLJ3IxSOkDrE4QwhAWS0d1RrJ1575fMr06BCTBYC11BgnNhExJELXYb0AqCkGrBFloy4GwcFdkoq/ypONjlMM9bCRpFSWCsREFpU11JKpi6pUIRZm3jtRgOmSKMZEIew4L/Z/MUbqCiGQZCUadJ1I5RtJpLbdEm8ClfVUXqzKuiggejSZSpPOMo5X/WydJYROQDTQ6kkhGFqtgm6ahi27SegiR3sHtE3H61eucvvKTc7d20jSyhls5VYJOxRAQ9anbBMMG6yROZlTZpAs73/8MV54/jI3d3Z7cC9p4rNP5uYk8vJGLNLKemmSx1tLCC0QMEaq6azao6S8Io44W+wpJJHWxUjlLd55IQAp6S1qn2WRMsImcE7mKakoGy2ZTVs+89nfJxrLTzzxMcZNjcVSWc8H3v84m/UmT33qd3jtyhtE3S+MpU8QxiRkNGsgdlmtNqJWMTushU7VAoRstrJiM2pdV2ZpCLJue+/xzgvGlcC6qlcoctYIIcV5BUjEMi/EvvwXMBina6eOEYtaR2nyFCdk3ul0yXTecjidMRk2DJuaQTOUdcj7nmyRgRyzWJVoxbsrYI81+Mrh/IjBcCBqRbMFR4eHWhWe6NlCsJZoRUFbzZumRNd2hBBwlagqOecYDGpSDmqJBnYon9sFUWKYzuZMl3NSDBirpEBVcNNCdWIWALJToogFvLc09YBl1zGbL8Uaz8n89M7291bsWmJJxh4j4mYF5LP+vl27z0TMkI0FZA8lBdqwZLFYcHCwz43bNxkMhozHYza3ttje3ODE1gajUUNd1ZhKBrvXz67qSLtcEkKgrhwxJNpQrFcsNlhCbLHOUtWieuRDIAap9G27wGDYAIll24q1WBuJoaVdLDiaHuG9p3YOazKz5Zyj/Smb2yeYbI4ZTyYMB2OaylPXHuc9deXJ1un6Ad4NqMjkHBiPNjhz8gztAy1Hsym7+7vs7u9x48ZNDvaOWMw6Wo01CihaFp9Mkn3fitVjAZeNMaqkuAYg6Pclnkp4DCF1JJN1PeuhPlaqDBmnxEWMAGDGWZIRS1ETbW+NEbNUuBtnMYKAKdFIwIaEEAzLumCck2GPcIgM9HGU9VYsG7uOoqsZs9g89FiJ0dglJ7EfzJr+V0Q7K8iX85oVjs6tGFOvxFaq+q1Ry7kEmSTkZsDmCj8wPP6e8/zizz3BJ3/ix9g+s4WtxiRGYIYYalmLqZABWbNSRPJrf5TAS6HbrACS4+27q0j8QbRUYnmNV5StpFCr9F0Bi3pVF/SusyxnScHJAhY7hFCboy5GfRxmepKafHZRbEXXxLQGbMo313ST9C3kPGF1DgjRWW1rTKGIKQFPiyZkrFn8H3wC87kncaFolOk6HyLTwyNyCKJq2ENGlqE1DDa2OT3ZIly6T0jXKWmsF/VsFHuVlZQkpks5YijAcVqBaFaVFPo5X8C10kNrhBmjRCyd69Y4Cruj9JO1Tm35rChAWKeqK3oe6M8p8hkrhZ2176/1cfnsbBRQ02dR4NtVy28a5evjvjw/vs3X5XBh1l67IibMDo/Yee0K+9evk+YzbIjUdIiLZsQR2G6GbDYOmyzWIxaL1oBJQnTVd0wxcvvWlJvTwLkPPMyJS5eEsWUcchpdUzz5E5teX17/uvScjKRic5NyZrls2d8/YLlc9v2OPheTyylbRmrKLW1rIddr5xvWCJ36iVntC9vEctmqTVSx7pEXmDJ29LrktWZ1DbnEcko+8pauCxzevAGqOGLRvUXB+aLWAkaVhkWhR4hX8iy9nntzIbsB1vtelaKs49ZaLfpYrSUpgfNKxImqhGJWRQvGyl6Tc8A5uc8YZI+IMfVKKoXUn40oalqNpYstciEzppSOPfCypyZVkyvfK2TKMnecczSDmhwz7XLB4e4uB/uHzA+njDc35c2s7JkyQo6TOcuczpXX4S+xqs+G+9/7Hq6+9BLT6YxCNiiAv+lB96zrtcz7fk3JFmckNpeWNF9h+vUEjq8xekTV8SHE6FwUhAohtPx/DaSXXIu8y2Ix49mvPU02iWwMjzzyEBvDoRIc4PTJ0/z1n//r1O5TfO3Zr7Fsc5/fkOe/+hRnV8SSoqhkKOQ6tci1pr+OdWLr6vmVvIxVteWi0mW1L9dyHf0aCWLTripjvQIgiJJcUVh90ypm4OjoiK8+/TSnTp3m0n2XOH3qBPWapXN/Dux70khBXDkPmKKmpfPCqO1VFlsylgs5T5T5X8ZBvzub/jrLPptzInRiu+XUesxZp+efhE+OD5gP8L7qvdzOt/li/iLPh29xNVyjCxKf9SmjtTmAXm9cm7dFvdNjaLtAFFkdIbPpXrwi3B0n7K5bcRXiTF77flmXE5nloGV5z21un9+hWlZs3t7k5JXTbO1sM59XorCk56emaRgOainIc5KPM8lpLKlrqI2iBGdETTNGJeSnpDkeVdlRUq9Nti8UiDGpUqCQdQoZP6WIVTWspRYQWcC2li4EmsFQLOHqWpRknesJw8Wqr8S5xoK1GWcSVa7ZylvkOvHA9EEWywXz5YL5cMYsi/V4LLbLenAt27YQh0q8UB4qa/2/TlfsH5YSyLX/Sz5hXdUnv3kuZF1I9Ae67hodOGUPk3OCKj/3uUsdE2WwsNrvZAxqSMpq/8NoPlvXi/VbW49lhJSZe2s5Mn0/KedKXmf62+o/ZxWH9suFFiyp2mPOes6xjA6HfPiF9/H4qft47MGLbJ3YwFZybsBUkAsZyWjc4SgZHtltyzlivVxoPV4qT+jb/exu+4G2DPzf/o/wj/5TiO8Yurnb7rYfqrYWur7jlnNi/9VXOLaI321/apvevEEKAeu/9/Xk1GPv5eD1V1eK1z8EbW9vj1//9V/nl3/5l99WUenkyZP8jb/xNwB+pIhKIPHG9evX+Wf/7J/x2GOP8eSTT3LhwoVjufU7rRkMQ4b8Tf4mf4W/wku8xH/Nf82/49/xPM+rVMqd1bLNHJ084oWTL3D5I5fFPuubF3n0jx7l4jcv4oJ7m9ztD38r5PitW1ts3doC4J4Xv3dC5N32fW4ZTr1xip/5736GE9dO3BHEpPX2zu3ejFSZJGMJmlD0laNLmWVsJbEXNFmvlWuSYMia5JHgoalrUrYsl3NiJ7+UcsZYUWZIJtN1URh2Oav3e1b7ITSpo8A9aHWgkASMLR8qiRlJekpFbe4TgblXW4oIoFUSSt5BnRJu3jEIHdvOYb1lEQxtzlQ+sH/rBldfus79D25i6lUizhmDy1LBO2gMW02zloTuj6Frx3OO/XuVEGItSltP9uVVImD1VN7yr1UqT6t8MUIa0meo+iIi75sF2GtzwmHwa+Ddd9vKkXeVoLRv/YW3ufL+jjXJlBDSh8mQiJLw08P+0c6U5/7oGb762c8SXr9C1S7Y8B33VHBy7EkJdo8WjGzi7OaEuhLFmdpbqABfk3IkOEPMhrAQMPHa3hHzPGbz9AVMVenBHgFgKVX1f3LvlORr/zVyD4HMsmvppi0xR44WC3Z2drl65apa3lRif+ed2AJqcipkS8yBxnWcnMB4IpmLlAMptr3FWZGvNykRscRoWISWo6NWVYFyb5XTdkuW3ZLKJAhqd5McwQRJskYFppV0Mx7WkDLXr99mcbTAIAploZMkmwxtSa4tu6WomDnPfDanbRNt2zEaV7jKEkwGY/G+xtVOq+ItbZb3zIiCUYpCYGy7JU1TacU9pNixiKyB6ZYuZ1KMWu2sJMkgwMKgqeliZtlF2pCpvCEFVc0gE4k4pLIUJxaSxlhsVRH7pKzXStdMFzqsM1QW6DKdMcSsSgEGqf4LHZV1UEHMgZgzB4eHHO3vcf6hS6oyphOF/JY5YgDjy/e05l78Ijl/4X4efvgRDo++ImTHFPHW0xaWiAlgEylbnK3oYodiiVgE1LVVRdcFTM40jVBg2q7T8VpIT2KnlRVIKNel/A8AQiHEaPJOkvsZk0Ry3VSeGMvCljja2+dzn/0cqQs8+cTH2ZiMRM3KwUOPPMhwNOS3f/vf8K1vXRbLKvHmxNkMlDXc4Sux/jBqQykV7R7TdeQYwQnYmeRjsTH1NjjWWbXyU2uyytOFoHuNK1weqTG0kohMwrbFZPBeRkTKGds4jHE9qGZyIXLKv7uoqjtW1v0QM0eHHbOjKYO65sTJLcajAd6KVWbW8Y9JmOx1v1MVESPqPdaVxLf2x6jBVwJ0LWYLlotWEt8GMGI7U2DdlBFXO2t0m8zk0LHQSnUYUFcOX9XgV4nTbDKuylSVZxKGzOYzFouFKAupqphb4RV9pahPpfpcgBzvPOMBhCwgbqkQLoi1ABNCOAohStygqgUhhuNEBdRmLxdVA1l8c4bIqkI45kiMS0JcMJ8dcrBfqcLSiK2NTU5sb7K9vcXGxojBsMI3jYAjUQhqMXTEIIQuHzyxioQkdo4xRgwCAGQUiDeRuqqYW/CVZTAY0nQ1bRsU5FQicuhoQ4vq0DGbz9jfO2Bw4zqjyYTJ5jaj8YTJaMhwNGQ4HtMMBAypvMM7h7cO6x2Gihw7apeoqyHD0QZbWye40C15+P450+mM27d3ubmzy9HhAdPZlNC1FHUDYyzOidVOha5NasMgjGB9sChwmRKuljU/k4jI/Kisl/UCXQ8qVWQSPySKmoQtwWEu1fBdT+zoQakUCGRMJftdVDUdazMhBeXiJbwCiPKemZADUUkoNmWxtjOINWheKSsZtcN0FirvSCEQQqbLQkQVMDMqmJGIkSKUU5AVHdpFnUL7zERStj25y6jSm0kwNDUsDC889wquDdx3/0VOnjvPaOsEzTji/BjvRmTnsWaCyUMZ6SZis4AMBUYr1dmFHH485jD9s7pTm4GeRBkp6iuWmDMhqxJRb8GVe8BGiDP6CDJ4VawIoUOw8rKGroDKWMDLXEDoFdiVC84lF7QiHK3hV+ux6kqRyPS2HiXBkDF9PGQ0XnEvPoD5vb+A72BgJR4OOu6tTSxnUw53j9g60fSgqlGiTgHwnLM0bylyy2/6ewWWrU4WbxerfufRvcJrmLV/lZ+sRuHqpBP1NyzvPPVi1v82q++a9e/lt7v+d/Z11rPE2smk/4121nLz6g2uvfIy6eAIFzsak5g4GHo5d8yXgcrAuKlxVgo4nDMSw1kB/5KJcnbpMslkjuYtHTXNaEMsVvRkdJxQ+J2cJ1a/K/FEJHVi+duGwHw+5+joCFtAbrW2UnaFrFVkEglnIsMa6lqJmFlIbzkpWScpGSgrUcxASLHfx0RtUi4wqTJqyjpuM4hFnyqcJLM2tqFS5cHbr73G9NYtULXQFFegbplrIQU99FpCp1bFURRRrdcYT+NP62xvaxRZkVIKOJyBGANePKSkW1KSGIYCDmv8q/dWlPVE3UhU8mK2QszNWQlKue/jZFShNcsjT2Vx0cIP+VyrILcQfIxVIDplpa8pObhg1ap4Eq2cb7rlgvl8RrtcMnFloVsHd8qZem0HMGuKR5TnYzh54V7OX7qPV154XsiPWVWac8k6rArRMFaKISxKeFQyeVFWhJ50nmLs189ypihrayFflbU3Q29htLp806+hJbAsBKmcM4vlgmeefprZbEZOiYcffpDNyYRCpB5Pxvy1n/+rVLXnS1/+Cl3XYTQctTpmwMjZWFVr1oktxlpyNKxUulS5Wf8hz2y1J/XKWlZVPVOU4jEtWrCYngTX53iykJGskiSMztms45IyJrNYSMWiXmnk/a/fuMbNmzc4deoUZ8+c4cKF84zHIznHoHGAkW00u1XfyXFd+1SfCVbGnzUZQ01CYtXQBTlXm4zNhfTTb5jyvAoPAiAnUggkI2Ql7yzeWjl3YHDZcj6f42/wN5ibOc/6Z/l6+DrfCN9gERdKiLO94p2IaBaCfNmrVyQw750onGfps171WB9VVgZZIQz2RDgdfKs9c23cvQnoTCTawZJbF29x+57bDA4HnLhxku2bJxhOR1TzBu89Td0wGOifpqaqPNY7UQbKWQmMogiWkxTyOF1nU07QdaQkvyNrdVFUkxyqMWJrT+VE/T2j6jqq2BQjKUiRDQbatmM+neHrmrppqGtVTq+EXOUr3xPKrLU4I+uUMQ5SwroENuN8TV03jEdjwuY2XdexXCyZzuYslgs9CwWKkuPJqyc5OnWgY6sUNaR+zZMBuN7DSiJU28IywkoxqSxvWrSXoVc5LtHHm/JyIWneszCCdH6JEvNavNQ//JXlmpB5TR/lpDJfYBU/vGmdPcY8QgpuUpT7FKKt1TG7Ul1MqURRuVyeCkgfjwfk/F1eZihW9K51PPLVh5mkCTO/4I3XrjM7nDPe3KAZjPDNAOsqrKmlY41npcBaFDdN/3nruWizPrf7qA/e9NDuth9ky8Dv/BT8P/73dwlKd9vdttZyzuxefoGD115+ty/lh661h/uk0H3PJCVjDJN7LjI5fw+HV974Pl3dD6bt7e3xq7/6q/zUT/0UH/jAB96iKDQYDH5kiUoAXdfx7LPP8vzzz/PYY4/1fwaDwbt9aX9iGzHicR7nv+S/ZI89fp1f51/xr/i3/FumTN/ty3vbll1mtj3jW098i8sfu8z2tW0e/OqD3P/s/Zy4doJ6Ub/bl3hHtUe+9AhXH70qWODd9mfS6nnNT//3P82Jqye+g4ztD669450p9XLXkU6/rryAuqlbVR+uq3GUZIyxhqSgY4iJmKMArUkUGEJKWGdwWjHUJ90weC/Jx9CK1G/xbadPRhzLvGGdVLpQkm1azVZUhTDIYT4mxJ4oEoMmEMj4rmUUDKedZVzVHKWMxzAeeoYjA9PbfPn3vsJj77+XU5cGejaV6ljWDsvGmLWDXTny5jddrTY95L49g3ztAP6njJ/eNqNU6hpLypaQDQezjraDQeMZVjDwmb6oKK2SQOXav9f2Pb1DLpV7mrBDwM5I5OaVa/zuP/9trn7la5j5bVxqmS0XNCYxmgzZsBU3F0tu7e4SQmSUHEd7c6y11MbRAETosuHV/QXROLbHAza3G0ajirRvRK2ChEglo5DCOhj4p92d6RMbXYK4mHN4dMTO0RFH+1PeeO01YoLhaEwMkeGgUclwsc3IxpFy7Ks7UwwMfOb9j5xle2MD7zRPEw2xVcurlEgxYnNW67dIu1gwO5xiLTRNRZgHrLHUlWcwalbP24oVYDZGLDm8hwTLuJQ5kmHv1gG3b+5AopcXj11L2y5F6SVblnFJ7Rw5ZUJqWcaWmDLOaRV1QCqcnWVjMqKpHTkYYk5UlaXyjnYhdl9Bbe+cc1KpWqpgk4xP6wyxi9Rq8WOcED2cdYTFQn5Pn1PlHRsbI6IqyKQuMBkPqZtaKj+NFVUeYFDXotwm7Aucr0hYSIkQRLGoqoU0FUNHVpuTEIoCRxQrL4Ro5ytPM6jBZg4ODiTT5dbmc8l5rSdP0WT5ehJVE+R1XfP4+9/LN755mTYe4V0g5kA2CecqSXjq0phS1KR7UsKLKAEZ65WYYCBGgq7lqRATcpLxn7XClqxV46JGJ6oJBRxS4EvtIgZ1o1aWkvAmS3LQ2iRj5HDB5z/7BWII/MW/+CTj4UjWPgfnL57nr/37fxXn/h0vXL5Mu1zgsASEVEbKdDmKLVWSdSIRJAmYskjaW6MqfitgqVTe9n1ZyJi6Jzhr+4OJUVuJFCPWOyGlGVWb0sfknFPLHbH4KlRS5xz0Mv5J11WU+GQxxeYjw3y+pLuxx3hcsb21wWAwwCDKV7HrxOYKAX1CjLIaWlEBi/pcgxLxbNfirMEMGqazmQD9qVMRdwGjclY81ViKLUixlAvFYssYcnJabev7Z+6zF5DHQeMral+xbAbEEFh2LYu2hSB7bkhR5iKQsqh4hS7Sda2oDXmPy1msXZAkbspiYZAVhAkxCjlVs8hSXeyIpB6wMEo0NsaSKEooKokfE9mUqmT0fQM5iepa23XMZkcc7O9x62Yj6kqbm2xub7K5tcVoNKapaxpfU3lHDIaYHDkmUoh0XSDFyEDtHmTeGrL3Ch5kUhJSUVV5vK+oa1VxSInQBUIMdG1HjIEUpQo9LTvm8zmHh0fs7u7SDIYMB0PG4wnD8YThcMhksiF2dQO1mhg0Yr1pvRAEnZKNjcf7hkE9YnNjm3Nnz9N2S2bzGbv7++zs7LK/t8v+/j7zdo4xGe8MXSFpWiOV2gVwNqXGXACh2nkh3xaSaym8N2XnS4QoNmlW6JFCEFSCkKxPsl6KNQ9kk1bxHRmXE4WIiALHorwQCQXEQgECC8W2LSlIkVkpsRm1HyKtVDBAAO9SOVCI0CElHTcyWa2VtdRamU1BbXmdKmcIsJ50fZD5WpToTAafxW7vcAbPvXjIK9eW/N7Ttzh18jLntja49+QJTm5tQtMwOHGSMw++nwvn7uPcyTO4akByVZnFGonI+rcepolyiIwxYxwJQ8oOf+edOYDjSkqkJIUPRYUiyhgqKiimYEC6gMt6Jh0ghIJilZPpVT9s+b0CfMta11s8xdy/l9G+MzKg1jgdpgdxexKDxvj99ZAV8CzAj6qgAO6V+zG/9reo9geMDNTOscwC9tbe4iugnXP1tWucPrvFcFPtjnsb0HU1kvIgV+DR8b/X/1XOGd/u4b+zQbFSDSlAmlTgR6BthdzhvcXbssfp9RVs8C3X/j227/Jt5PmsaxeVK01MD6e8+uwLHF27Ad0ck8WO25Opak9tLLMQmS0WpJSosqFddmUW4lVkKmXDwTKQMAyqimbgqGpLXqCd0wd6qzGkV/FOzhPlNxOQOlHjnbdL2kXHwf4BGai87LfeF7s924O0uVfagpwT3sKZk2OausHpeCcJ4Uaee2GQZC0MEmXVbinWss47Yidr/3i8oGKOdSf0FnXNRom7XsDlmEN5IhztHnDjhRdIbRBCjhWb4hRjP3bFuqco+UTJG+i6IYppsu55a2hUwUSco9SG1FohQVP2KTAar4paV9bhqjmKlPDGqapLyRs4uhD69SAj8WJTVxSL3JwSdVVJ/GckxoqI7Zd3GlerdZ41rid6ZB2bTtVsUhKVFSEDlZ/rmq5nAescNie62ZFYI5N7S6Vjo8W8eQVYqafpxgkIkeSB9z/OGy+/SkxLjJHYvyfcZFbjYU3drjANJF2zUsOk2F05Q1k+impjsVRFr0/OOHqd1vTTQ0ZI1r6RuLyM3zIsjUm0ywXf/Po3aJcdKUTe895HmUzGlPV5MBzwV37mr7C5tcXv/e7vMZvP5JFLOCFwfb9X0BMkSmJExqWcEWI/J8q1274PynhckSWyEOGQuB/do4yx5KIkWWLYLETrtDbPSv5DxpL+TIni62uqyUJyu3njBrdu3uSNN67wnvc8yukzJ2mqWi04JebKGrNYa/vPkPOb7df5bLU4xVhMClTeSwFUjvo80krVRe9OrDJX5LNyhTFJARQ545y8xjqrsZ/DpMjYTHiCJ/io/Sivulf4QvoCL6eX2Ym7almu81zJvVmvNaVCHgxaeGi0yGhFxEpKMMTo/ZrSt3KhzliS5jb08HBsAhUCdZkyWc9yWJhvzZlvvcG1h64yOByxeWuLEzdOMDmaMJ+LYnnTNFJUMBBykPdObcgsORkhwGerZ0VRlYvW9ucJeR62v4660rNYb0WpNuY6tkrcm2LqFetiSHQhYJVU5FRtq6pqVVaqqCpVf/Jezn2abzXaR0bntVHrdOcSdVUzGo7Y2tokxMBy2TKbz1ksFiyXC07fPM217iqxisqH0fVUlcn6AOFYk9xNVHUxvTV9BhK/S85Wx5CegdcmhJK2En0u9U35zP7XNZYpNnAS/q3lWkzJ2crXqRTilZxMn6MpW+Ta10kKGtbvqy+uyfRrcJ97Naa3cSuFkHLLug7oZ64TmGzOnLx6gnpvxL4NzBZHXNtZMBwcMBrUbA4GTIYDrPfYuma4dYLRxim2xmIbn61fhSEaZ/YFGPp4+sFfrFKR2O9uexdaBj7zk/D3/ilcu6tEcLf96LZTJ29i598CHnrHr2kPD7jyR39ACuFP/+W77VjrZjOmN66zdd8D3/N7Wec48/4f4+ja1R8qNSUQ67ff/M3f5ODggE984hPflqh08eJFPv3pT9O27bt0pX92rZCVnnvuOS5dusTP/uzPvsUG705sBsMJTvAf8x/z9/n7fJEv8o/5x3yez/M6r6+de++gZiD5xM69O+zcu8NXf+arnLh2gnu/cS8PPP0Ap187/SOrsPROm8Hw0B8/xB/9/B8x256925fzI9se+spDnLpy6o4da++cpKSgSC5VIEYs4LooAmtCrlhJVDsjYFaIEaQgHZuNkpkS1hshDGSndR2SdMk54Zzv82ghJohRwHE9FQpwruAjWeW05VBNWhGUnHVElV9yxT7NZuKyk981hmSM2EsBrk2MU+akT5x0lmXXsWilEqYJM+qjW+RlzeWnv8aXPvcYP/W3PoQfFhAkYXqP7zennnOfFDx2EOzbnzQ4vrOBYzSBl8mE5DiYRpYx861XblINt9keGzabjtObFYNapKFr5+644WkTJCtVPzYnYhd47fnLPPWr/4r58y9xutvHseCg7ahSZEJimCPtfMH1/QOuHR3R+IadvX1e3j/AOsPHL2ziKo8ZGg6S5/W5qIGNMFTe0HhNsiYlaZiMyVYNZnqoCjiemJCv6X8jI8peR7MFe4dHLPYPyCHSGgGBra2JsaXyUpnbNB7nPNZWpATWG4zKl2MMISUqMudPb+KMI8dAiqIeFHNLymIdmBVUTlbyg4vZjOVsijOG4eYGi/YAspAsrLF91WevNqZExKSqFUKKMOQIBwdz+doZMI7pdEnqljgLvhqI/Uct1kUOz6zrmNQnCMsli/kRy+UC6xx1VVE7T25bjKtJdkAIARsiybr+OkR1w1H5uldAKwlJa42q+2S61CGqMlmAjhBpXC22VJocSzFgNeHTJSEfkUXCu3KV9FlGVC9Skf2X90MTnNY4mtrreMi0bSvJeGuZzeYs5wtGg4aqFguxpqnF3iMZUZ9LkcPDI1LMuIq1DJzpk43rLR/7ejU7rTOcPneGjc0tdvYPwCVCaFdkoWSwxhNTJBMlqamWmSZL5blDpcxjJJlEiB0piiJFSklVoSyuEpDC5gLWSALRuZWdS84J70WxqVh/yBXb3hqjvKZyolgV2wV/+IUvYq3jk598kuGwkeS3M5y95xw/+1d/Bvs7lue//s3e9qNU4+YUySHilZxWQAxS7kHqUv1dVRXE1FdgO+t68pu1OmaMxTjTW8d574majTZYBTE0qZ0lVeeNBauVj2p36JzMFVBAwAjBSJSovPSrFXWyUkkfU+BgGmhDZnMjs7kxwoROn1mWqthsRS3GGrE1yAZvKxkjavExGW/QtS3OJDYmm7RJ7FEtENolMeRVcj8pecf1aA9G91Ahy0AMEWM6qbb1Hl9VNM2QGAIpR5yFYWOhSYwZ0XaBsFyybJcs207HqSdowtmaKMlyi0jxZyG95ZwJ2WAQgmQ2qiNgRBEhqr2bQYtBWV9jdT3oE865Xxv6ivGsVeq2WHMoGEOWuCJ1hG7OdHrE7u4e9bWG8WTCZDJhc3ODE1ubjEcD6sZRN42M3RCx8yU5g3cV88WcrutomkbmSNcJaFpVWOfFNmK5xFWVfnLG+UCVEoOhEFC7rqVtA6GLhBBol3O6bslyPmPqPHtVTd0MqOshk8mE8Wgi6krDIc1oyGA0ZDgYMGwqqqoScMp4MKKKVUg/TVqwubHJmVNnaS91HE2nHBzsc/v2LfYO9jiaHjKbHUklvmkJy6VWEpeE+UqNIUa1BqHYkmZyKE8GcJYcghDIrIG0Zv3Qb5xKODPgnABRJSlvMFRe1pmUii2JAqFGwJ3Ug0sKSlhDTkYto1brqLViLZpSIrvck2Csc2Kt2Fu5FZImQjrTeLMnxilAV0gtPQCYc68kYb1WTeuqnfSWQ4osZjOmsyWHhxW7ewuuXDvgW5VjOGhomgHZerKpGEy+wD1nT3HpngucOnc/Z+65yOkTEy6dOcHG5gamGQn5VVWpSq+LNamCWGRMDsCdW5mjW2uBv4Uk8SbFg9KR1hhVVZAYpYeDFTw2VtavnNcAVO0ZWwDl/vUrdQYoahIFVM+sLIZWF9oTllRVwphCAsnkUJT6cq8+aF5+APurf4vqYMLQZobWqDWbXIcz4NoZBM/utRtcefUUD7z3HIofsQZnvfMjQB8y/Emv+c4j/dKjKVsWnZCTdvanWD9gUEPjIqPG4ZV8XewU4W2wyHeprSgbMtpyzBzc3uHF554n3N5jGBdYE1nGCClTk/DZkrrAdLnkqG3x1jFfLNhbLDHWcGGjEUDXGxbZctAJ6F9VKElG4wFdI4wigYW48FZkcNXeFA6SsqhdLtqOsFhI/IpRVWFHTAHrWFNRElC5DzMpY10AWQdMRqLeRbFhUzJQzgXoTv1l5iR2zjG0GCNk6hCWADR1wKY51pwk57LOK5mlB3bRWEPm2d6Vq1K45GS9bFs5v1iD7j8W6/SdjBW7YTeQM08nyh1GiUjWOkTqDjB+TQEqr5BkXUicKn4KSFve3/QWXLEA6ZpDyDHjjaMlqQWbEL5Mv3jl/o/sNY4+DO5/tNo/1rXHvLNEHZMxChHEGiEshBCEdO8kDvXeUanlNUaU49rlsl9D1/gUbxlAZU9923lhDNvnz7Fx6jTzN14Ho5aRa8SnQjCQdVZsk3oisHaxbOey/kr/F/UqBcGt6VWuClkp9f28vl6VfVVJBOVeCgmh71ijypXw6ssvYRA7rEcfe5TxeKS2tNAMBzz5E09SNzVPPfUUi/lizTZM8gvFJmx90V+3RizPuaz3vRx6f02r+WWgV2aCotxaSCVptSdZI+NpPV+GnLmlUG+1dpb+7xUoSyxitHRKx/Le/h5f+vJXuP+B+3nowYcYjYZ41KLUWrVwUyWmEiNllIBS1KvBVJYcJbapqhqs7cdtIXmXLwv56a3rfCESQQzyC1b70FqLdV5iq5jwxvOge4gH7YMcmAO+mp7m6/E5Xgkv08aOou6VrMahlp4IIuM+iWKVUdKz7tUpGYxJqowjn1+IKf3zWwszSj+WXE4/FlidO8q3c84kF5ltHzHbnnLtwasMpwNO3jjJiWsnmRxu4KZOVIz0z3DQ0NQ1zhu1qVQCStB11oiVfIhB8pfe9YTLVZGMkZyqLTaaSh/RXGjORVVanlPS4rWUIiF2hM6yXCyEjGQ9tdrACWFJzntOSUtFsdXotcm4szrmDORIRWI4GLG5sUnbdbRty3wxI91MXH7kMosw1ymcyTn08RewZg+HPhvp7aKgVsZWb02tBScrdcDVs+uHn1nFbm8ek8WOti/+Wjs7iEJRH7X086+st7KOlY80etZHCxh0nOiHljBSZ0F/s1nHVtmW3tzKMrgiacl6u74Wy/cN21dPEIIUmHWtZbmMTKcdzs244R3eeYx1ZGOx7gqD4YDtjQnj8RajjS1GowEbw4bxcICpaoxzeEwfx65CyRUxya5Zyd9tP6CWgU//Zfhf/b/h6l2C0t32o92Gwymmu8U7JSnlnLn1zecIi/mf7YX9CLewXPZnlO+1Te65yPjcPRxd/eFSUwIp7P/0pz8N8G2JSk8++SSj0Yjf+q3f+pEkKoHMqVdffZV/+k//KZ/85Cf58R//cckr3ynJnD+h1dR8Uv97gzf4H/gf+A1+gy/wBQJ3LokxNIGb99/k5n03efqnn2brxhYPfvVBHvrjhzj1xqk7zoLrB9WaacNHf/uj/P7f/n2ij99N+vJu+xOaiYZHvvzIHT2+vgO7t+PJ1EJaKoBBOfiVijBjk3IBshx0sgAR0SSq2mklvmGxLLLY602Tfklk86FUfKF2MAWYkMRL6qt1DN7pIdSojHvOIrmc9YCv1Yp1VQkoGqTylGWgCYaJdTSmo02BvUVHF2Gz8UyyZZBa5t0O+zde5guf+QPuf9+9PPCB02QXqVhVmDnoZfK189Z78ngGupywy+GW72UeGpVMN0QMh8vE1751FesHZNPQth2v79zk0UsnqNxAZa2PKzjdKRtRBpGcxhCXkW/80Vf4wv/0L8mvX+GB1HKyikyXkRwF2B2YjMsd0SRmoWPeRazJXDk64MbeHtu1pzv04GraZeJW9uzMA4NBoksVe7tLLl8/ZGFOEpcJk+0qQYl5UybkTddZ8ndZSHltiISQ2N8/YLnsyK4WOzeTSBYm21vMDqfEkBiPRUVJEiJC0DMGkikJrIBJidp6nJuQckuXF2JjhJARYgjEFHs1oJwlkTWdCTkopUjlPE3TAJIYzBESVqrTrI4Yq6pmRqsOrQBT8/0Z3SLT1EO15rH4qqILS1FVarwk5w2EZUuIHV1siUt5BoNBA2YoFnRdZARCPAyBLkciksAqyaAC7BjAe6+JTVVNiFEBRSF9uGxIiLpF0kS/gMWGLggxYzGbi1qSEfJHVfdIINY6IR5YB1bsKxMCOldeyD6irINUaceABQGFTCUJqpSJXUdwhs3tCTFkyI7K1SxDSzKZQGZ2NCN1CdtIoi5HepAeOHZQ6IGNQsDIEGIQss9kyPkLJ3nt9ZfIWJypRLVIs1/92kzGe0vsEiRwdUWOkbZtqbzXRLkk9wV3F2U5rFEllaQVpJYcxXIiW+n7vuqYRNd1pBipvCru6D0kkbMSWXkgZ1UtSYn5NPAHv/+HeOf48Sc/znAwUBICnLvnLH/tr/1VmuGAZ55+Br9IZIySztDEncNEAVNijJR0YM72TclLQ+iCjB+ds6Xq1HmP8VLBn43cb2zbfk6Lk4uCC1rtnzF0kV7dy5Yq+KzifgoAYK3sBj2woqpT4nuA954uB3K2JOPY3Z8ym83ZGDcMB03/nkZfX8hU1rp+PQohSlK5kp+lEDnReJLRPkmZZbtkPl+wbDty24GCRquqVvp/ZwRELwnYGKVaVYhKjVjCWYt3NSiYaaylqjN5MKTtWuaLBW3XiVpQF0lGKqGzzb1ak9W1LuifjCUB3nqcAe/lGQVd14TQJYnpmESxjFzACVUrUDIJSmZeB+0EoAl65wKCCd4hBMcYIyF0LNops8Uhu3tibzAZjdna3GRza4OTJ7ZEfa3yVM0AXw2olgtRDEhC1Ms5s7AWbx2j4ZAEzOYLOuuolCwkZDglWWchTNZ1zWiUaduOru1oly1d6EihJeeOEJYsFjOs9Rzs79DUDXU9oBmNGI7GDEZDBoMhk/GI0Vi+buoa7xx15YRAh6EqAKqJNC7h/YCN8Qb3nDnPslsym0/Z299lf3+Pvb1ddvb2WYZOwI3Y0leXr8UIKSVwqkRhk6yFRYkItSjpVfDSarylAjKat6yBZd0oNjg4h+nXnP6hqr2mqDFYBX3WFT1NToAVayBneutJUW5KqmBRFJ3olQ3ksYhlYTYFAlaFNitroFG/F1HTWAMVFVgo8bCzjtxlTEzkNqpaRiIsAjMna4L1Tmw3fIVzFYNqn53rt/nmN16hbp5h0AwYDj0nxiMm2ycZnz/LpQv38OiF85w/e5J6OKAZjRkPB1TeI2pXBsNbPMLu2FaIDH3MrDF+ZrV+lu+XrwqxSGyeDIFICKv5f/wDyrutAUr9++UebC9niZxVQaDsqwpcJn2+BTdKBaTtAeyI3T+J+bVfxO1PqA14RKluEcTKsnGGGoPPkZDmLKZ7vP7y62yd3uTEuZEoiq2dJ4pJ2DoQvmpvoSesff97bav3ThmWMXNz50jIL8YTU+Jgf8aprQHOCgnzrT1/Z5wnoBAmIIfMzStXeeMbz8PBIds5MnSZNqbe6swZ2ZWSybQp0SUhzR+2LdPlkoEzxKUF6wg+M8My75LsXViW88Du0ZLASFUR12xTyrHiuHf36jrXHmfS9SXmzHLZKkCtBTdGCHP1sKFbigJZVbveckvOyGYFnuZElkOxArY1OUcigULuFqL7itQsI0DUTtu2JQQJhAuhu5+fWQmi8k95laFX2OwJS8awODji6MZtvKvIWUyVnXO9QqR1oqaXENswSgyuxVHeO8SCWZSZK78iimp0AFmKp/JapwrR0PX7TQH1y89XrvSG3mqXrGC69EFOmdB1QrLR9UcUlAqwXYq4pPCjtwvKK7J8VjJPyWcYW1RfHIUglWIkGWiaWvc9VYkNYqM2391VYldecaXK+HrTmHozQalXztH93DU1Z+6/l5tXXlWCb8nH5H6NLc32QLvsuSlljWmKMtL6Z0kOp6jaQVE2XBEQegC+X9eLEqnOmUL+NUVtqKy/StDQgpaXXnqRhChuPvroQ4xGIyUfSCHSxz72UXzl+dSnPsX0aCrPWK+yKDsaZfxK4VvW41Q5+yshixUJXpT/VjG+KQcYI+q1oEV6a89mRfjS97auHyPlGvrP6HsReS7lma09u/X9zDoIOfDSy6+wt3/EpYsXOHf2FIOm0YKkciLSZ6l+dYVUaLKcs7yzZCek2sYaKiq5BlWl7LpOlWSFMCzdU87sphxahOyg8RhZ7HxjjBL3OYfRs4yxDovMgW1zgp90P8kn/E/wvP8mvxX/f9yKt4V0E8KKZKTn1WQK+U/nDSuispC4VO3dljWi5Ad1PBbCCrl/D7v2nlkfnnT1amIVAks5Z+Mz880pb2xOuXb/VU5cPcW5V84xnA9ZthXOOo58xaBuaJqawXBAU9dUlcM4R2UsTuNmF0WJzqryvAG8VmkEJR5hTE+SNzmTTZmxiWxdP4/EUjvJOUqLPjCRGCXAbtsFznop4vRKVCokpaqirur+a2ukOMwWhSXjsbkoXSUa66l8zWgwZHu5zX2v3ceN7evsVjvcHt5mmmcscitruc7bN+cfy5pb1AfLclLW8vKMVrv56nX9OaJPux5Xc+tt06yRN+yTzvIgtf6hf638XqZYrJWxYM3qrFE+tx9HhtXcLYNEz6qFDAirXC9lCivbMOvascoFrWKH8p7NomayMxZycRJ73RQTQe9/oTavokorxbqL2YKDvUOsu4X3NZW31JVj2AxxoyGTjQ1OTCac2Bzj6wrnK1HYUutB4Fh/320/oPbiQ/C//idw9cK7fSV32932Z9+MxEjvtLWHh+xefuHP8IJ+9Nv+qy9x8pHHvi/vZazl5MOP/lCSlEDOJ5/5zGfIOfPJT37yLUQlYwwf/OAHAX6kiUoAy+WSp556ihdffJEnn3ySBx54gLouRa93bisnnHu5l3/IP+Qf8A/41/xr/jP+M17hFfLx6OvOagZiFdm5uMPOhR2e+alneOgrD/Fjn/4xtq9t48OfL6tXmy2Pf/ZxTr1xipd/7GV2Luxw/cHrJJcIdbiT0os/lG28N+bcS+fe7cv4E9s7HvFFlcCp/HVJGDnnVOI29MC1yQLi+MqQu6gVcaJcEXPsK6G6LuhhMZGjwXmL9aJaI7Y7ohhjrBX7DCOVoF0IlMNbVBlsEEuOrOovK4lfBZJSJEZouxawGBuASA6Z1Eb8vJXqPydVS7OYOYiB2hom1jPJUpl+0B0y6yyvf+sZvvjphzhx4S8zPO0J2arNikrzrv8pGSpNQLL2s29HfPnu5l45kcu737p5i4O9XXLwPPzI/ZgqM6VhWFf9Yb4s6G9OFPSX9i5tSMkKEyAsEl/79B/yR7/1W9S3X2M7T7lYWyYOukXHpssM6optMkMLC+OxtsEzZeA8HRlnWiYOUljShkiXWpa5YpgdDRVd17KzNNxsEzPbsTxaQLRkL4m2tbr9t1xnn0RJ0IbIfLEQZRVfMRqNmAyCEFmMEMewA7pFpLZZAOrGC/lDZayz2lSlqAmmKMn5lLISKSKJREiJEAwxWURsLKlUOyRkPh7NZ7RdIEapEvNVJddRAMGYydlis9qn5ExAwJiUtKI1wY0rt7l94zZ1XTEeD4Xo4x2DzU2xw3KOLgWmbUdcRFK7JCHvVw8aBoMBi0VHyonhoKapK1LOLLpAyktJ4GgSMcaAVxudpAS03qJFx6I1hqry5BTIxguCljpAKoxBE6pYbOUYTzboFkuMG9CMLCZHTE5SJdiPbwG7i42U855s1LagA5Mj8/lMLMQGQgBIJpHSkrqy5MGA2WxOM22p64aQM+18CTGRnSXGjsODI0LXQRBwPiaptrc6GUXFSG0CehAVlZkweITY6Z3lgXvv4dmnK6bLSF01pNhKJayzur4KYSC0SuLMAvgIoSPSW345R6Xgx7oySAgJV3t85clRCCPZWFG5i5KElveRdReEGNc0NaGLShwSkoL3nmbgCV2ADDFkrLd0yxlf+PznccbwxJN/QQAZve2Tp07w0z/z07ja8rUvP818sSSkhM+GZDMxdjhnhcwRE5WvqKyXpF0Qq7YCXEny0mJMxltHF0X5aAWDFyJL1EpxIdN468gh06Uknt0m0el9CUCTgERVOdpObRycxWRR4LJqQVXUi9AEOdaKohdS6RvCHJJh2hqmhzOq2jAaDhkMBwwGjVhHaAK7AC8pREToK9OGINdoLFXlSTnjs6g9Oe9oBgPa0DGfzuiWLSF0pIgqF5Y1TKwMjbVagSwPohB4WHYY5xg0DYNBg7Ve9gcluuUUydaA91QhspwvyBbmy6XYtynZqVgLG1NIMx3LNmCt75WRRJFDVATKM2yDXJuNUYgvJBl3mqTvV2gFSLI+oxV4trKCsNqHOVklGUSyEU2DEAIpdywWM6ZHh+zu7NIMB2xOJmxtbrKxMWZzc4PJZEwzHNEMBwKIhshisZTK1aaBnDmazclJ1rzBYIgx8v5dCHIPuVQ+SyLY+4pQdTR1Tdt28pxU1SJEIX/GbkG3nAmIcVD3KlfD0YjRaMRgMKQZ69+DARsbG6K4VNfUTiujjceQ1P6hJsWOuhkx2dji1KkzpBiYTY+4tbvD7b1d9vd32dm9zXw5J+dEXXmcESAhlmjHaE5eYzJnnZBfNeYRZQR6AIke+7PHgIR+7VOgyDphO0WTwdEn8K2C9NYYce7SzxfQ0/TgvFebjBBSDx70ZJOUdQxJcqXylZDrQpA41upci0m/NkrslnG/ugcl02o/rIPAMQlBtBBwMoYuJ4gJF9QWyWaMSRgCliVH/ghbOSrvGVSepmqgHvBKVVP5Wm38hMy4sbHB5sYGp0+d5JGHH+CBhy5x5twZTmxPGNQWJ5TgO7IJ0LXeZyuFuwLkFuCzAFAprl5diBQF3Em9woOCsT1oJYBPKVoon0NWBaaePLcOspeYyPZrYQE+5XdVJSJGDKJ2iUkwG5D/1c9idke92opRG8VFSjhjqI1TfatETEu6CAc7N7jy8kmGmw/gh0KAsGYFgsMqFF+PQt8Edx3r2++5mfLZEgHPpnMWizkky4mT2xibabPrrY2OvXT9AtaJC+/SeaKQBlKXufHKG1x5/lu4+QGD3LLhDLURe5zGQuUsA5OpDHTF5iYbvLEIRT5SG7GdjEnsy2O2eORPjJF5MMxipjOR0AaRVLPrJ7sCi69IA+vdlBG1uhBlrxCFJk/tra6h5cl7iaf0O05j2syKNNIrTCa1Rlw7M5cVMeWsIsSrebWyPJLXtaFT0v4qZipgfrO5dZwoU4jPZkW0L/ZeN196len+vhDuq6oHjl1TS7ymBPkuJVEZiXLezxmqyuGdWDJDpvIe5yXekrhASM0YOS/19vOlL1KJ8cr1sFJmVUJtIRJBFlJX6SclV9SmkRjTOHylEHJWYlI5J/b5ByuqloUI0wPnSeyiU8aozTdqy+ycUcJ/wHdih2pyJnWBQvaKXUe7WMqal6AoVFHWPIp65JvIQyu0u1BTsNZw9uIFLjcNy2WLtR7U4suqelNP7lBgXB6x/pxC+kLJFbknatmeHCJjqeznhRhc3p8yZljtn6DEMj0bQdkP9JyDjNcUhCT8yssvqrVY4tHHHmU4HPZxia88H/rwhzDe8qnf/jdMj2ZCilNrzWRWeZqoZyGrsUSKRd1v7dr0zCb3nY/lcnI/tsrelFd7XTZrJJNiYbVe6Je1IActEDF9jL0i36+IM+V6CnFfPjews3OT3Z3bDOqGe+45x6VL9zIajaSowa+pWmosXMgY8k9RlyxxkaOcW5Q0q4UJIQRC19HbW6+ubm0dK4tCIWxkIkLeKvbVlfdSeGJcn2VpsuVx82NcsJf4I/clno5Pc8NcYxla2WvL+rO2fmIkqS2KUUbnlMwXp2fbfjyrjZXJ+djYKldf1G7Xsz6GEpuW+ZWOzTF5D4g+cPPSDXYv3GZ4OOTErZNsXzvBYDpUFSNPfVQLWakRlaWmEUu4xg3kE3MmBtltrHOiihtib69cVVVPlElppVhcxhsIMctai7OJlJyotek9iqpuICZDMoHQGVBii3VCUKp8RVV5XFXhvRKX6oq6rntlerGEU3VAIyrMOIdLibOz85yZnSXlyKKacxSOuLZxnVuDW+xUOxz6AyJFEc+siImlv3XI0J9RDesPu/ysxOFlTV/bhPpxaIyoZhVbybz287Kmmn4Er7V+Yuf+TNKrMZU4v4z1zNr3ZcyR0UIbZH5lmRPlMyl/l7hIYy6xln5rK++fs6wlerwCEqao1RqgqBJrRxorZymnRTTWObLzOHsoKuhO7P7qWq0Km4btrU1OntxmsjlhOGxoqj9fANm73nZOwH/6j+CNi+/2ldxtd9sPpFlr2bx0/zv63bsqSt+fFttO4re3Ocd/p80Yw+Sei/jBQBR/fwhbjJHPfOYzGGPeVlHpzxNRCeDll1/mtddeY3t7mw996EN8+MMfZjKZ3PFkpdLGjPnb/G2e4An+W/5b/jn/nG/xLSLxT3/xu9kMtMOWb3ziG7z4kRc5eeUk93/tfh746gNs3djCJrt++vmRbTZbLrxwgQsvXCDZxHRrSjtsefX9r3LjgRvsXNxh//Q+2ebvU+Lzz08z2WDSnd1p35GSkiRZklaNaLIlFZC6JPYMGEvlPHXtgJYQc1+dHjPkIESlpEkQSdhAXdU4b4mhxTkn1SERTYxJ0sQ5o5U45dBo+4FZ1kxrrRbiyCEuKYmK5CCJIkmOCecyNiRYBKqc8UmsfHI0HHSi8DIgMyTT5Mwst+y3LbNo8LtX+OYffJGHP/AIj33iQWxlSE6VPqCvRCzgaUkqrf8piUKrmcNV+vo49PCdDCFNH2OAs2e3GG+OObw95cy2YzCs2XEGlFxQEvdm7ZPXk5nfptD3O7qS43fx9neV1/5RvmszhHnm6ac+z9f+1W9yb3tA7QI2JE5aS2Mi52vDRtOwWVe0saUlM0uOYCuSNzSVo6lqTk1GnDCJWSsqBjE7bi2XXEuWSbJMBo6J8wybhtvLyIsvvcbjBwsGZ4aIqcLxIKVcbwIhCKWsRKBMVdc4Vf8BD9GJNLmz7Mzg2Vf2qULm3GaNpQSGZRxL4ivGsCIo5azvn4S0lxIhJFKw4sGcg5JKolRtOotJkTYu2T86pEuijpKj2CRa48CKXZl1YjOXU8LZTDOoabtICFIxXVU1+7sHHO4fYG0WYDVZjIm4yhJilNfnzLJtabvA7HBKZWAwavB1zWDQkDp5r2ZgaAaeuvZ0EbKFSuSaBGgwAmo0VU0KCYuQllI2NHVNLLY/1tIul5rgkeRbVVXMZlNC27FYLFi0mWQrnDVU4ldGFzuSsTSVx6raVIhLIXxYJ6SSGMXqDIO3lmXbCsCdhIyyjIGD/UPqekAyQiRzxuKNYzQUNSCj1lTeWiHyWKn4Fen1JIl0I4RMGfMKgNi3S0vJjOjmLVVeAfBnT5xjMt7mcHGbkDpyCiTjAQFCZS4bYqAH0duuI4dAzJGs6hMxyXV2MSJVd17JIYmq8pJki1p1awETZN1IiEpTXgG3KSWWXYtJkFWJLOUsRKJpK2OFiPGGmDpMhOVsyed+93OknHjyE08ybCpJ+hvD1uYGP/VTP4mvHF/+wy8R9xeiZoIQWr2CUyElvNVq/JCwRhSkxGfBEkIB6RImr1e+i+WBK33vRR2iCwlrkcSpd5Clit7r3CrAdC6guDF4HCFpRbn35CykF6nuL1LzCmJZ2ysMWE0mRq0Yzw6WbUdMiel8zmgoCjl1Jc8lxrYHOgrxBwuVSFURtfJWdmKZW9Ya6sozagRca9uW+WxGu1jKGmPymoe42nikVZJe9nZZXxYhkrqAryqME+BUeABWritCToamGlA5x6Aeslgu6doWS1ZFLQFVutjhDNQKdpb9uyjp9JXC1lKrBVy2jmIHmXJSkFhIA9YYsrX4WtakhJL+chZ1q7Wxao0VFacCxBrZ8BJJK8ozXYzE2DFvpxwdHnDr1m0Gg6EoK506webWmI3JmMlwgK8MA2CAgMSLxYw8mzIY1AyHQ7x35BQJ0RKiU+unqKpeYksrsYDFuwpjHT7WAmXnxLLrZE/oOnIOqmDQ0i0ti9mU6aGnKrZwgyHD0ZiqHjAajxmOhozGYyajIcPRkLpp8M5SGUNlPL6uFMxOuFrWumYwZuvEKS51Lcvlkt29HXb3dtjb32U2n7JYTOlyS0xLUpb4LZF7JcfyHE1CbXs0qZ4FEHQUW8+1OKAHfBRLjUJq1x/2IFq2lpzMquo5Q46JbGQvLeC5VaAw5pUCg1EVtRgzVskrxdqoECuNQawpvdj3FStIa11PcEtKCsiAsaoMigAhMaceSMNANIUYXOaUKpYIWitWeHYFluRkMa2Mo5laGmFrrC9EhQZf1bi6oqoavK0xDj7/xS+ysTHhzOmTPHDvPVw4tc1/8Pf+7tvsKXdIU4C3SFqIIkvSv1dwp1HAxzlLpySEvPaaYhu0DtIbo7ZR1pCTKO4lBYswusbk9Sr4ogJxPOLN0FsHFXA/KdhaWBkprdYR86UPwXOP4nIWexsjCjPLKJX8lclUgM+ZjsQyJLpscPNDbr3xOifOneTUpW0ZDwVspJwhCoDad9+xv3tixIqJ0P/GdxXHZ/onADCeNFRNRTvvGDVCAFwYvUKz/pnm+Jt8X9o7P0+8XTMYUpe4/tJr3PjWN9kKS5yJGDJDY/AmkR003tM4K0UtCEkpG0d2cvb0zuFqz4CsRGMZp7MQOcpQZ0PtLbU1eOdJMbO7u8+ZZcD7itXTfNM401tJOu6LoldZy4y1qAdOb2m06ODm/hKbYNJ4ASXLPmdX5+KsxKICqmdKkZHGpKmcz6FMrPIzY8V2K+bAsl0WfjqkFUng1KkdEqd7pcSMEIO8d6JwmmSfc9azmM44uH6tJz+J3mTCOKvqlMUKNxJjoltKjOArAVa9F4tO5xzegPMCvCpXUU6+utZjxOLJ6xlH+jdhklrGF3wYQwxBzxNCXHbW9mt/CJEgyQpZi/TxJVUE9IWslUTxKiVVY9HzdIHxnUUVaPTerSWkwGLRqipVUlKVwSJrPXAsNjKqTNPNp4R2ZdNg9FywPiXWk8g9aUZB99RFXDYUv7GNyTaTk6eZX72C1fgqGyVzldmWi9IcenZQIlpWWVH9JeckXjZ656XArMR0KSpp32SK6k4hPK0MhUpxWVqpN+ntpSRqPq6PpzW+j5mXX3ypJ+E98tijjMfDfo465/jgj30A7yyf/vRnuHntBkXBz1ikwMAYkhGr5KKok4q66BqZKBXCa87HiNGl/9fPckLS1y6wBmfcWv5qRXaRAap7TtlnoCdLlT2oqFD139M5X8hQkqbL5ByYLyKXX7zMlatXuHDhAvfeey+TyRiv+2nWM3bho9qiwpKz2Gvl3FuxFsKdU+Vz7xypqsgpqbpSUEJX7smLfSarZ3LI/wxy1pZiGo3Ti8WjEWIj2bCZN/nJ/JN8wnyCF/zzfNU9zeVwmaN4RMqxJ3LkMrfJfdFPIWj0pC6D9KzJmOwwJFEC6glGqV8bUz9VVoT3ntikv/NmkKbMd3lZJvrA0Ykjjk5OufLIGwz3Rpy4dpLhdMjG7gb1ouHIeeqqYjga0gwamtrT1DXWWES41mnhSBQbOGsYVFq4omSXmEShtxBLs1WL4lzIcVbPi6veiqms/UljpwRRPyN0hHbJ0mk+QC2/va9w3lPVtaosKYnJe1VYknXLGovUjimhkMwkNYzZ4MzBOeJ+YN7Nud3c5ur2FW5u3mRWHdHSyrm55JFFX0v2E6N7o6qZlpwqyPetyuCV00cJz461tIopsy49qwlTJqi+74r908/ndZXrPjIyxwlL5cxBzr1VuXwf2adS6n9u1cbd9ieJ1T2JyuxKQ/MYKcpAKsWTOp/IpafK3FndhjAPDSYYzTlovlFzXs56IcKpDaMUgBiuXrtGVVUMhgO2JmO2N8b8rV/4Re62H0DLwH/3H8Fv/ALfSxb+brvbfpjao4++gKvema1hbFv2Xn7xz/iKfvTb/PZNuukRzebW9+X9quGQyfkLP9TP5p0qKjnn+OxnP8vNmzffpSv9wbQYI7dv3+app57iy1/+Mh/5yEf42Mc+xng8frcv7R01g+ESl/gv+C/4h/xDfpvf5p/xz/gMn+E2t0VU4Q5u7bDl2sPXuPbQNb7073+J06+d5qGvPMT29W3Ov3ieel5/t1m+H6pmk2VjdwN24dSVUySbiD5y89JNXvzIi7z+3tc5OH1ArO9wAtod0rLNJHdnj/13TFJyThJWBUxNKWv1lZaJk/uqq5KgSJrYcFYrs9SKLUmGr69KKpW4KWdS1/UgFQWUQqXREVnbkrwpiYceytAqUrG6MRRp7ZSSHNidp6kds+VSki0BWAZcVOuanGlMTRsS8xgxKTOpKhqbySawDJl5B9m21OmIg2sv8ce/+2XOP3wP4zMjYqXWJwhoB6r+rX1o9Y/p/+T++4pHYACnSd4C4pRzqOl/Y3UY7191DLiQ5MCkqTEJQpO5eeM6RMO5M2epJhXJQMZqBa4lE/pPB/oTfF/1gyZ0c0kxHf/c/oEcywys1wofzxgUAIYsRIGob2U1e5Dalq/97hf54v/8m9wzv8nFJpFyxDc1m5WlSobRyDMwYFKgJZKzIyVLIBMEaSRbx9Zkg7qdK5AQcaHm1tGCHRI5wL6JVJtDbI50beDrTz/DQ3/0NB/5Kx/FNxWrqv71ikdDiJLAsxYqY7DW9xVTil8RckWKgZgtr9+6zu987itcODlm+8NnGNd1D+7kJDL+oQvEbqWglBFrsUwkhCU5q2JZzkJaCpGkYHpOSj5L0LWRw4M5KQqBar5YgHHYusZXI03eQa9UgBE7syxAc1XX2ASzgxk2i2WQ1KjK9YYUmC9bLIZ5JzYUy/mCGALD0VBGtbF0IVG7Ac4ZJpNhX7XonaWLomZmnXRi5Sochqr2tCaSglT7Ockc4owQUVJKvQWKVbAohUgbM4sQMVWNT4llG5l3LalSgNJa5tPALAcGdYMxTiwniJic8Rga74ihg5w4mgfmbYuznhRapkcHAix0kRgX+MpR156UE11MNE3DcFD3lkNNXZGczPg6WaraY5w+b2Qy2TK53ybA6Od9zngDhI4cEsY7Nidjzp8+ya39fXLu6LIhIOS+HDuK2gg502mlcamOratKKyyFLJNj1GRkpQQRq4p5XsidiCpP0vltjCU7TWgaS1U1dCH2FgylQtA4i9dEXcwQQ6BuairnWc5bUZkKSxYh8cXf/yPqeshHn/gwjZexZslsjTf4Sz/5l3Ae/vgLX2V20BFjh80Rk50m1i1Rq8yNcRjniSEoGUwIAClGvDWoRxRFLcwYBcZSoni2OU3+tV1QdSqxIumSKDSljKqrCJhgjSOaiLNC5pGEple7FNM/X+csKQVMNlQyPUhRFBMSGVsp2KXXllJi/+CA+XLBxsYG4/FAqle9xYQgqlZmVaFv1W4oAdkISBpz6G1UDFIlPqgbxsMhi8WC2XzBohWbNpBnXJKcKBhaxqbVdaprW7H1s5aFtZKktkJGqSqHt1bIYhh8UzEaDEQVrWvVmlJASJscIXRCsELsJcqumBQ8KOoH3oqFY85Vv/WkFAkpEGIiB2Hj2V6ZRxThQJV9dM/JeRU/pCIxZiVJ3a+3FLWFSEJUwtoY6ELHfDnncHrA7v4u4/GYrc0tTmxtMhkPGQwaRqOG2jusU7swTUYX64WgNnxRFTKSKuAtu0SLJSDqHCmD94liH+N8LYBE6Igx0IVWSZZRlfc6urZlMZ8JmFs1eF9RNwMGoxGjyZjBcCjqfuMx4/FEFJaahjoJYGWMx1kDRIz1iP3ogLoOjMeb3HPuAl3XMp1NOTjYYWd3l1u7t5nNZ4TYsQhz8f3OWe30VoBbAXWNESI40O83GLBegGar06VYMNps9Hvye8aq4gVFIc1g3MreTWx1ClAl4ykpMcoISoqJqd9LjIEuSewj9oUyFiJrdsW6GgvJTi3qrCPESBeDTJOEVCVYVU4weRX/mkwoc4qiHGFIBolxNQ4qKKzs47K+tElUBC0tZmlYKmhlnTwz77yAR66maSoO9xpuXrvO5edfxHt/x5KU7Fo1er8FpvKP3K891qxWUNlatB9NAW9M//qyxtkyvkpfsoZFlR/077lSfui3rv4abU9iQ881rAPKzlI5Q5eFOGWmI/iDj2AKaQlwOGISW0uyKFA6A5lESNAlwARsblke7XHtlStMTkyox0IczIV0pTexDs4VyLH/eTkJlRvocbfjMfmqmTWxpPJafadj5wl5Xe0cJkFymdn0CLJhPB7jKkdR9in9/HZknLz2/7InmmOXczwGWgfu+lOPkYsrNMFVh+inr2F9632SY+TGK6/zxje+ySTM2HBCFLTe0VgjcWdlEcptItpCKjRip6JrRzaGQd3gYkcXEx1ZBLTawJwM2bAwCVtXGDIpdty6fp0TV69z/sF7tChhTW0kUwzKeosxY4TQ8ub+IIvBabH/Opgd8fKrV9kYVQzPj6n6w2amKBkVYnwhY4CS6pCiByGIaG+nQgBcB69lXsSYaZcBVNW1K/ut8wwnBgni+6kpBIe1h+ecw2SY3t4ltZ2QIdZGZs5JyBxI8UDKidAFWc+d78dSSllUF42hVjIyZkWaKUQtY1SVDSGXRcR6DVX0KXwda1f2W2W8Z6SYKmYIWVSdHYkQspzF1OIVawidzG3ZS6wUgZCIRvYtb20fZ7RBlDgNElu0y2W/vnSdqp4U4ogqkHrvKCQL7z1ZEwteLYfKBFqb8m9pqz1MH0fWtSNHsSK0lkFTs33yJDvXr+kZc40cqTmfsvamXAhfusZZ1/d5TziiqEPpTFSQPqcyDk0Z0qAxelFJdNavzQ/TvwXap+VOo1rJeedIUcZl7AIvv3BZLZk8j7znEQaDWtSAECXVxx9/nNF4xP/0L/6/HO3NlNgvRTFJ9xEhCqbeWjrl2H+26WMLJF4o964dbAphQjcmGbmmH39iH2jlcw1y0tH9QQgZMgaMsWRlLVlVZSkFHFlJboWYYtdIQSmtSDTGSqXkYrHgxRdf5NatW9x3//2cO3eW4XCg1mtWn5neh5GdS7M/clc2Y43DkfX5F4K3xNvee2KMQlaKkRyKsvra6MxlH9MdXfun2PthDAR6Oz85mxm8cbhkeTx9gPeZ93PUHPH1/BxfSF/gVrqhSkIZk6WIZEU+F8WZMt/7tKF+rrNGbXHLTiH3ZpVkLq81/bVbJcXJ2pF0/Vojj+jzW71G+y9nooWjk4ccnjjEZku9qDn92hnOvH6WetawaJfUdUWtCplNXVN5UTJ2TtThB4MBda2KVSb3923TSgG5V3jUwrbeLp7yXHUMy2ajRMsVYSllybNJUZUhmoDpDGYpyklytlBbOP27qkRdqapEbck5JfNjlFCki46RfKNLHm9rJnmDS7cvsby9ZHeww/XNa1zZuMZ+vUfKoqKdiNrHZRit5x5zf3wzefVccwazZnmK7qs5gx4EVhtACay0j8r4FPJ7IQGuzvHl71QuQV9rWKksGS3Q6s8sRs8gfay7Wo9LPtgaSzbyzIr6oRSTFoJq2bcMYdgx3T5iMtuk7FhvinbW+gl64rGO3WQMhoiJgYihsx2lqMNYUTE31mH1fDGfTTnc2+fK90Fp4257h+3WafhvfoW339HvtrvtR7NtnVi8Y0Wf6Y3rdLPpn/EV/ei3Y+eD70Mz1tJsbX9f3/PdaO9EUekDH/gA29vb/JN/8k9+5BWVStvb2+N3fud3uHz5Mp/4xCd46KGH8N6/hbR/JzaLZcKEX+KX+EV+kWtc41/wL/iv+K/4Ft+648lKGAh1EMLSw9ewwTLZnfCeP3gP7/38exnvjfvzzJ+HZpPFtpYLly9w4fIFlsMlt+69xauPv8orH3iFvXN7wjU4noq827RNt6dcf/A69z1337t9Kd+2fQd2b4ly7lJoTxKqusF5q8Byr4pg+/RMSdzklMglP5Gz4MXQky4EeJB3DzGuJafpz5ElCSDJMz1kgyQyNcESo3yeiL9oFaeSl5KT6svQCUEldQFPUW+QKqRZiHQxMzSZ2hqcyXQ2Mmszy5TxrqViTl7s8dLXvsrlP34vj//FxwlkbDAYl7UiDUK5B00kaYEnoDL0krI8NoccAgi7XKrK3vwwjKBia69SOE6fRyIZw9G05YUXXmc5n3PmzEmq8YDLr1zj/NmTnL84wXnNcZrIt53FmXe+6K0nERTxka+O13aXqnV5tkH/ZVCBFlKMfONLX+Zz/+L/w+mDXe4ZWUbG4AaOpnLyTHLFPAYONdEXq4ouGboEc2MI1tN5x0FO5AjjqsHlADFQexi7zOnacWLkMARevnGDG/ND9jvH4a03+I1f/XWOUsf7PvYBurbj4MZtmqbi7AP3MRjVGGfwTq98TT2iT3qsfemsZ7rIGFr2br5MuzPixx6YMDo30Qcgcyu2iS5ETRqhAHYkh07+TlHmSkxqZyYEpBgCOQYhwVmxtmnbwGK6hCBVnG2OZK3inR4eMd6uxbInrywiQswIJ8XjbcPB3h77uweERYcfVPimJnlDjrCczpkvWhZtKyozxjOsB2wMRgxHA4y1xGwgr5TS2q4jJbEic1ist0pucHQxUVlH01QYIxXJEYOzFZXXRNeaHRlGiCXL1BETdDEQo8Gaii60ZBswtqNyUkEoeWWxEPSVw1QWR42zNa7OxNzhLRgizmWMMzgclakJbQdGErGLxYyUwCPJ9OFowGKxIGe5jxiTKhFB23ZkDJUVsGvRtXTLOcM0RFCoFSkD6IO8Ywo2NkMyslYdLYnzI3IM+EnNfRfO8swLL7FcysTJJmDVrjISaRpPUDDJWItNkvByWqGXYpDkWVwl9apKSCCx66gqw7IVGz3rV7YuMQWpXNdZnKIkTmMhjxndI2IQ9Z8kBCbvK1K0tDFhVHkkKflstn/EZ5/6LMbAX/j4h3C11fXDsDHc4JM/8QlMtnz1D5+lmy/pUgtGLDZxDuPFylOIEE7JqbmvIpXnIsoG2WSxoUhZrRGj2IYoUa5tWzJiEVEStyWxGFPCuorKG2LstLTc6Dw3arUX+wQ5GLG+AjAOZ4WQ5J3DEOmSXr+qhOUsJDSTkgJIhkXbstzZYTYdMBwOmWyOGVSN7Gm6p1rnIEW55pIfzfI5JemKgpDOOOrG0jQVo/GQZYgcHU2ZzmZ03ZKcVmt+7pe2kphVQhVgchJCZbvEkCS53jRUTU1yRSkoCrnUOaqmwhhD13Ys2xYfA21rxdLRCBhRlHaC9msoRDJk/xRlykLmWilR1cYDSlDSvXYwaFi2gWXo5Iot5GgwWdSmxApOxllUogFATqkHOHulJTKJlpwNqbN0+3OOjo7Y3dnj5nDEeDxme3uL7e0tJpMxw0HDYDjRKvhVpblVizqSkBBCF4VEZoUoY530R85RYyjoQqSQh53aNVapJoRAGyIxRFKIqs6UCDnSBiGQ2qmjOqqZHg5pmjF10zAaDhlvbDAcjxmOxkwmI4bNgKZuqOpKKqEVSMsOAadcxrmKph4yHm1w6sQpLt6rpK3DA3Z2bnPr1k12D/ZZLGdSvGtVJcAoQcnZPqlfwDV9mjKHtM9RsLKM24zMK0yB9w3WyXoMQkDI0KuIWSsxlSTkFSgySh6KEnVYVX4wVuZ5DEJQEpBBQYU1WyPnDFiDq6S6vOuikAuTkgyUfOa9FxvGApYokFVINbLOF9CkwJfl91eBXiErFKCiaF6ihMMUDJ0CT1L5LFaczjkhp1VN3z93Ylu3yljxwNbAG30+tk98rNkCrQNLqoDWKxmxUjNYrduqfLH++QVQ1++u1jv9LdMH6v0aaBSgL+oocp6xGGfIMcPhGHYnK4KeHo5DEjUvDytLaANdgJgz1iScCRAW7N64zs61M5y9/wzZFaD5GL7Yn4kSK7y3QNQrwlK/bCsIViL8bxPLr8Xu+fg3KbOu7SI7OwfELjAaD3HOsbt3xGQ8ZLJZK4ivoOD6x5i1t+v3k3dwpnhL7tSs4d3r1Kv1u0qr39X3SGRuX73Cq19/hlG7YKMyVAaMt6LAaLRMIyWWGUy2JAspiwJaMJCMJVnDUg6hVM6r4kwUNUADI2cZVDKu9qZTpqFlkQzL2SHffPbrtCly+sI5Uowsp3Ocs0y2t/C17NEimGL6Z7k6/JZb0tOUM7QhA5H5bI84rzi7XVONG4ROpc8gSbyyIhsVEDutSBEaLBSiTrEPyrpHinpKFoJtF0vlkdh86laGr3BV1YO1hYAk7wUgKnTzoyN2XnuN2HXYymGc6/MBoQ29GmzKal3rPNavLDtlaureZOmVfFJOWGwv5mOsXLPNQvqRUSGkNmOcEnG1P0uspMSUWPaSVNRUrPShSRgjBNj+paVQy1kF450qnzgyhdQiVtbGGJKVM0WxD7PWEkInZwcrfV3VXu3sWZFRlIAStcDDCqOHkCIpdphcsWLQvGm8HAMgcr9skiG1kdQtISdM7Th78QIvfv3rxKgTOK+IwHJOVDK/sGxWNrtlnVQyE3o+Q8ePtWJPjGWNkCLjuChQJfk4hLBT9n6JYYvSjViQ626Z1VIWK9eL6clBCcNLL7wot2sMjzz6EMNh3XeOM44H7r+fn/trP8enfvspjvaPEBWr1FuLF+WcoCq7Ze0pvVkUr4yhL0opO3kMSYmGmt3R+MdaiW/7+dYvZ0L2KwRYg/aFldjrmMVTWcXNcZs9jCh8adh87LkUokPOmYODA772ta/x6qubPHD//Zw5c4bBcEBV+TVVohXRxup6lPNKGcrqmlAmT8n7eSfqtoXEuGxbUS1XAreOQMomkPtPK3eluUBdf5yzQnqxeoaxCZMsm2zy4+ZJPmg/yFVzlT9IX+Dl+DJHaSrEGlXEdKpsVWwfZQyVHl/tl2XilP0xY3pC0uqZi7VkicdtsYMr6qsaIBSi1zFCyloMA5lkEsvRgtcfe40b913nzGtnOP36aZrFgMViyXwqakVNUzMcDKibRpV0i1WfxtNRiqtKwJHRM20pHtX7MYVUlmVsiyI15GxE0dRm3ctWCkv9c0gSx+SUlLAEXetove+Vlbz3SlIS++m6UYKVExsxialXayxWyEpkUdercs24G3PPrYu8/1bLQbPPUTrkyuQKt5vb7DX7JBukyMqsYrYy/ss2mVcDbKWSVBa8nFcxiT6SN8coxRq8yGj1xZlr8cUapX21RvUjWueMlYK/DLImpRKPar68EPD04qV4KfcEzlTWPT0DWLsem8q5N9u0uo5j/1q7qbeAz+XG18mDRvZxgxCxQQo8TVGjtXr+cboO3m0/kHb9HLx+77t9FXfb3fYDbaMzZ6knG3/q73XzOTefe+Zt1ri77U5om/fex/Wnv/JD/3yKopK1lk984hNvS8S5ePEiP//zP//nwvptvb366qu8/vrr3HfffTz55JM89NBDPX70w9Acjotc5D/hP+Hv8nf5El/iH/OP+TyfZ4edd/vy3lFLPnFw5oA//Ot/yHOffI73ff59vOcL72G8N8bFP3/xWjNvuPiti1z41gU+/lsfZ/eeXebjOa988BVu3nfz/8/en8Valp13fuBvTXuf4d4bc0RGZGQmk8kkk6QoiiwNJFWyqlWliSqj2+3q7mq/lIFuwEYZcD341YAfDRh6ccNou4Hqhy4LNtoqu9QARUpUlUtSSVWSSJHilGRSSeacGZkx3Pmcs/deQz9839r73MgkxYIlZZKMBURmxLnnnrP3XtO3vv//+//Zf2ifYTa83Zf5jmnFFpJ/Z6tOfc8oRkqajDBSrTQlwMwoi72V59YkX1ZZbKh1v2Jto8oO1kriX0FB5yQbPwwDORXAMgySsBMLLbFOIFcwSmSnxe4hk1Nh2MoJWGNAq/ycEUnkIQr5IWexvHJ60DcpQ+PoS2ZdIBZDGywBsZPpi+UgDfRYZiSCGSj9IQevv8CX/vBz3HjyEZYP7+GNeKtja3WNXEsBrCYrrZNkjNcEqrVyKK1JSacJaweEsvX71ORT0UO+vCqAS6WOyWEzFbh3cEC32fDQ5SvcfPQKbxweQSNgrdsiP0m1nqspNu1xO15TPexLImAr6NCE/XQuromrrZvWjFn9rZoImohXkvB0eh0DmRef+xa/9f/9ddo3XuOhHc88BPb7gRQHdrMjFamivNf3DKXgKSyco8TC3SHywsEhh92G+SHsDHNyawku01khcXWbUw5LYXNSeOn4Hgd9zymFwXnKkDk6vcvmmYH/+f91j71HHmK1WbM6POX8pUv8e//B/4mf+MRH0bwZE1xyH4qk9y8GXBC84eKFOY8+ssOLz9xmdbIhX13Im9QWp6QsqkjVzqiC/LUSOotdQLVDyDmSSyQOkTiI1ZQPMMSBfuhZrTcYMns7M7KB9Wagnc3wC0cSnRNKgiFGEpIAdtZhsuH49JjXXnmd09MjGBKDaRlKYjg6oiSpqC4JmqZlvemYL+d4a2haj21E/ttnS+wzxiRiNtgs5BjvW4K1WG+wJUqyqVj6IY0JLWs82YhVSx8HqbRVeXhnHSEEUoKuGxhiohtqYh9SHMgYuj6SY6bkxO7OgpwT88Uc46vtjhWCl4IexSJ6Ygr6Gq38897Sb3pC8MQYODo8IPggVfixxRjLYtHg/aS61TQtKUOMIqNuLHQpEtV6pugcKxaSpre2yYolJ2Iv1mkUh82Zzekpudsw31tAmHHj4Uc4v/tl7nQrcAmTnai0kKUCuyRRE0KSmsF7TZLpqK0griacUxKVIu+9klUGrX4WEgRFksZFwSdrPS4EIUJVJRqjCiWljOu+c1aeQYZiEyqYIypNThRb4hDpjyN/9Hv/ml3f8iMf+SAmaGVq8ezO9/ibP/M3sd7yZ3/yZ/RHiThEUWPKRlSInBWlByUl2WJoghWrEGMJ3tNHIWaVVLQavoyEFAEkpBp+sliUvcoiSlTOeaxx5FznW9BCRSF6igWKJZss/VsS1ZKwEnByFiuxoLZ6FoPxRqwBdRBPVehCWDXGsF73bDaRk9M15/d2WMxbrAcbPELMsWoFIXtIQcm+SJ+gpBxTDFYVb5wVe5rz53dZLGasVmtWpyuGThViFDitDhOSOM1TMtVYHJJk3WzEJtL7yQ4AG4gpjkpCAsRZfGjIOdF1HX3fiWoCSeMMtdIqRYmgEqbkLKpfqYjtgTUGvMN6UVpIMY+kN2MEbBYgUTLSzhiKBa92GxWcFKKzIen92WJU/UfsGvURqJ2E7LU5q5LT0NGtVxwfH3NwcMBisWQ2X7C3t8feuV12d5bM5608E+cJCPk66TqOjRATrhRmxjBEIZt6a7EGhpwxLjEMabIPyBZHwLtMaLWiOuo+kKLa1GW1182UTWIYOlbuFO8ChyEwW8yZL4SotFyqytJ8yWw2o20FIAlNkOS9EZsjH9RSCAgUmpyYL3Y5f+4SDz/0MH3XsX98yP7BXQ4PD7hz9x4npyfE1InSFQrMDgOVOGSto2QBA6vlWVGlD6tWCJQtMmea4o9qeVgBuQpWFiOQdLUNs9Zt7dEKAlIUaGS0BMQoWV2BB1PKqEiQ1WLRY7GWkdRmdZ5WRZ5UCgaxIhqUIL8NH4wxlNGVfiucqvHfWVuJ7XlXX5/ASSGHJkAA7woqi4XDBCy+01oFXCqwO4FCZoo5t8Kqajszbldj27ZYkWda8llwJ6WqaGC2iGdMZxj9PFv3RflG2ff0O+r/LFboDvpdKVdFp0J6+gns4EAtpYwTkstQhPDinZBhSpE4Y5OzELFNxpEoqWNzcsDrL77C7qU9mt12JNuNMeX9YaZBAcdJhWyMS0sd77J+VyXX+z9j+mdhix59Jq4twHqzIcbIznLBuXNLTjcbaqXJWfKTngEqg0pPL2fTe1tB8vhrb5XQLPe9683niTNv0IciAqWFbAoH9+7x7Fefxp2esNtavLWslejfOpnbpcBayddCerWUDOucOdh0bGLEb6BJgeKNqAPrGSylgQ2F2BuO+jWblOgpZGMhGTrWxLu3efpP18z+fIchDfSbntliwft/5IM8/Mh1cFN/3t+/20/F6nB11jCfBc6dazi6cyr79aKRNayUUVliIjhovFOKMhkqIKrKDWoHV8/RJekiSLVeS/SDJHdaJVUNOTGbG649sUPW3EAqqBoESq6TwRn7Da88/TQn925DyhgjJK9NEpKMXIwUG+WIAOBWAFzrrIK9RvMC1c5ITo3OeomhHArIA0WVGY1SYI3T4VVG4jNbijPOikJmikIwr3adcrRWldtKsMmFpglgMt55JRPrPNPcRJ1YQuyuhHuLqBRCjlnBaUvXdWpjbZRoa3DejaSWYhCCfdEYCCHUDn0/EmTePGM4W9yk50k0Jje5kIeeEiO+lTjt/KXLLHcWHB30QqQsCmgbBdupxV9la++Tb9yGyovOocmiSGzCcq92yAY935pRobsoqd8pyaWmN8aVo24Jup9XpTBrqrJTVenW11LkuRee48KFC7TO8/gTjxNmbtwznfF88P0fxFjLZ3/rs5wcrpSUIePfiN+bntXkPlIpavlqcM5Ma+lYwJenraISY3R8mVILbGpRgyo3mkquMpojqjZPWxaips5jjU/tFnFJl9iiMey4TtjJDux+hmsphcOjQ77y1a9ybu8cjzzyCA89dI3ZrMUaRFmppn3q/mpQkq70tdULs8ja6ZTIIjm3QtOICtgQI0M/qCratOdvUbZ1n59I2rVsT/J5kWTFftFZOctlLdCa5yXv5j28yz7OkTnkT/lTvpC+wKE9GAtF2NrB66MQ4rOqt+cyEq5qXzicKo2harg172bJSW28lZyFKVr0Yyp/c4o0t/cznS+p9qnOlX7W8eqTr/D6Y7fYu7vHlZeusXOwQzht6Dae9WqN94HQNBqbi3KRc1YLqbIOQXl+WSozZc0ArM1i+V6vCcDmkYwql6FxWJEcZYE3qyuJ1xoFI8VNORHjoCQWRxfUEi40NI3kQnwIBB/wXpS4nXfjvUt8Np0nQFTUPQ3zuOBquca77j3OOm/Y93d5Y/cNXrz8EkfuiFgGqm1aVamdyOWa78h5nLuyPk352O2YYTzj1jBlHJV6Shj7VHq1Emi3wUo9dYzRk1ipSZ/XeftW5PCMKs6a6TxidG6Nl1PkU62eweuZ5myr82r6nfos3hRTbZ8p3nRFZRwPk9Wwrr3RjgqlD9pfcSvAp/4urOdv95U8aA/aX1ubL3o+8DMX/sL35ZR46V//PievvfLXcFU/BK0U4mbzl2b3BtDs7NIsd+hPjv/SPvPtaikl/uiP/ojHH3+c69evv4moVK3fSil85jOf+aEiKuWcef7553nppZd45JFH+PjHP84TTzzxJtWpd3IzGC5zmV/kF/lZfpaXeZl/zD/mn/BPeI3X3u7L+96agdMLp3z+k5/nK3/rKzz8zMN84A8+wNUXrtJsmrFI5IelGQyhD1x94SoAjz39GEM7cO+he7z8/pf5+ie+zsmFExGB+OF6NN937d9CSakmB6fkslW55DQmX9AkIrhszxzUrZXER00UGEQpxlsnPvRWQIWUs0imWyOqMjXJQxnJGlaTIwbwXmw3YozkrACNSssXxMatWhhZU4gJBq16L0mUaVLKtMjZoMuZdSladymEpk0ydMawBrLJeFuwqWdIpxzn23zr68/wzBef4YPnP0oMlmRVOUpBMPQwXe2QnJeUQayWcFqop/lcjJHEQ/CGgP7MTMkNQyEgNiJFDWlKkYT4mJimcPXSFS5fvKyy1nB1d5crTy7BWbqYRj13m6FpAZs0n6UAuWGy/xl7fcxdc/+LpR7UzfSyXr5+4tnP0XQ7aigFBl5/43V+/f/za7zxjWd40hsOD3r2DzN3VhsYMrvBsnCwLnAQI30pmBzZVSLafs68skqcpMwbmw2Zwu4ank2JRKZFVAmGIbPrLcbKe7sMe8awXMx4degx6ZDTOx2nh7cYiODnzNoZd2+9Qew6mtCg9BpRrIA3BS8V6LFGwPa95YyP/tgTXF0suHp1l5xFRYOcxfJukERyKQIKpCh2BzEN8v8YKSkTUyTGYfwzpEQXI03jKGRi3zGsO9anKygZ56HfSEL73PkdZvNGwf4poZMpRLJYgdFyfHhCv07MZ0v8wqjtgae4IpVwznJ8cEK3XtP3HSZnZk3Aux0EDDSUSi5CSBdDTpK0cn60prPOsOl6nG8FvEsJh1FVkAIpiZ2eb1QNrTuTOHZO5r+1QnoZul7sE2ImDQNdF1mvOlaryHwxo21FpabrO1zpKEnWCRTYbWYNLjiclcRf33VAZLPesF6tiUNPCKIYk4rh6HiNtwKQNw1Kbip4lwh+Row9MRe8LfRDT+x60qYHJ8QarBWbooyoK2k20ThLmLWQJbFZ3MDs6i79iaXM52ADly9f4fEb1zneP2aVTsjboL/KLJQcx4R+rRI11I3ZqoqWKN0wJsEUhLUW6xzHqxXWexrfUooQcWyRymprpXLV6pioyc9cJjuCpgkUjKy7upZYDI1z5DJgrMcGIVXtH+zz+//yj2n9kvd+6HEIgMmY4ljOdvj4Jz6BMfD5P/wi3apggoBiOWVNjrf0fURUi6wq7IlVgbEK6GawRew6UEsuo4oYFIQsZFUdo8gYda4VUpWSUKWaOGvVu1aL5+39TkAx74MQXawVkg5lrPBNOWPUkm9UNAAlWGRV3pPVc1QaNIVNP3D7zgFt45gtWmbLOSF4ggJyKQnY6pzT/VIJqEb24RSFTJa0ctMi8vy+cTS+YTlfsDrdsFqt9MAlifhSgZg8rfGUhNTjSmI1xkxKPcMQKaMdQEMyGWPTSLIEAd5mM0sIDXEY6LuObrOGAkEt9molucQdUZPb6Gt5JMVVawljZC+JKRO3LIEm8knBGiE8W7tVbUzRynVdzUsR27oymp6MgMxo/6lrPDmTu8gwbDhdHeNd4O69GYvFgt3dXc6fP8/e3i5t0zCbNbRNg7GigBdwlNIxDy3JxRGUsqqi5GMk5EwMSe5JwRdrzGh9W8jQNKQ0MAwDQxKLvNgPSobKlJgYYiSaDWws6/UJR0eHNO2c2XzGcrFkvtihbWcChszEJm42n9EET9ME2iDV0ZMVhxcrUFMwvmXWLFnuXODalesMsePk5JTDo0P2D+9x+84bnBwfMww9NqO2EmpNkUQJziqIgZmUi6wivWLdm7SPpT8quX1sSsoyBrX2qwDhWRDKGpn3Lsi4L0ktT7bUDbbFEYsgB0BRkiNKiBILG0rth2pdYkf1h22bpfrvGhvc/9oIXW2Bk9uvbUcWE8xVQYs8XSti08E7uGCkEgbO3vNkQVt/kiqpqJK66nOrRRGM/5xAyFoRbxgJS0LUKeOzBbVsquNCP8dZVYDRsSmqCoyEnxH00p8VdB2PjvL0e4X4kEU1qWCIZAaYfg9LLJCEJkpBrCjJiWJ6+mHF/p273H3tLldn10WNrFrhTOinktEYzxZQVeaoIiZbv1LGe6vga12/x5+NT1dPPgUF1ivwBcvFgsV8MQJmi7ZlERrQc1u9PlPEYuusqtH2iN/qx+8+Ss6MkfG18p30oAoUO36yMXByesrTX/oKp3fucsnCZpNYU1iJjBWNE+vVWCppDChyHrTGsC6Z477Ql8JpihRTaCPs6xmxpuJSglZ9Z/ospR6NM4QQOMkJ8oZhFRk2JySTwXqCC6xPTkgpikKefta0opmt/05rQFUVbBvP9WsXWPrAcqeVs64SJowSj2qVUCmqjkFddyelDInX0mj9k0om5oRzFoeAAikm4iAj2Voh05YMy70ZF67NJxIUW2teLmJ7iuP47j1Wd/cJvsF6pXRbVUdSxeB+01PyIEooJROcw5hmtJ8Vwrc+EY2/qopcJbIaa5RsLqonVX0nV4WRurZ6KV4iRV0rZKBXm1ejMUOKCShSdKXk36FPDEPGN15UV20mxYhRaak60o0RYN66qkYEOUYKhRiTFmMlAfCdoxRRLhUSjE48M5F6nPWqTCnr0+pwX86LMY1nhnHPUiu0aSgZIXOXSjrJ+EVD7A2EQDGWnb3zXL1+ndXhMUPuKWayt6pkyVKLocbpa8a5Nl4r075cKplD32SsVcvfjPNO4zMjOQ9T9/ZtAoKuuvnsfmjVRq8SVmRcWsgZazLZGoah58tf+RIWh3ctjz3+MK51VDKBs473P/V+dpZLfuvTv83rr70hcaDTWLxo3qqokqOeaSTGFIWaMR6pc9NOZJU6kyvJB7b3KDvGk9t9JGMtMSmH1XkvP6t2gKONVyVGGTO+Twgn9+1VuohXchFFYpX9gwMODg85ODziicffRWg8vhFiiYQ9dpzbY6xVlbTqObJIwUIZr9XqOcdig1hGpZDoe1ETLao8NO0C2+NJYzVUMSYXUhGyd7ZWLcck+2eskkaK44K5yN/h5/lx/xN8yf4Z33DP8HJ6iT52FCWz188ducm1z8Z8VSVX1r7J9TgOMKqs1f0wk88Q6EaSuX6aMXWjNePnWDPdtZkuhBQi967f495D+8xWM87dPsf52xc4d+8crvO4jWO1Elu1dtYym81E/VfVpqwTso6tEj76XSkZcEI8q6plttgxxhnXxTomNFYuSh5MKY2qoiVXhWAZdyUJyTqZSIy9WMKpHVwlVnnv8S7gvBSWuVAVluR87pwdn92kSC4K28VmQmnZKbvcOLrJ+07fzzHH3Lpwi9d2XmXf79ObHlMi1SpS4jotQDBT703rkxnjp2mOmLHv7m/jXma25pJuF9PnIrkSa3WdmNapce7roCnjIlAV/nRcKU93VA4tZRxr5b7pcf9J4Ozfp9j5TQSlt/i9MYrePqNQb3Ia6+Wdb4Tyg9P6Bn7j/8DZuPdBe9B+sNtsx3HjvTu6D3zndnLrNY5feemv6ap+8FvJmeNXX2Z59dpf2mf62Yydh65z79nvf5ISwMnJCb/+67/O3/t7f48bN268JVHpwx/+MFevXuVTn/oUr732fUJu+UtqKSWef/55XnzxRX76p3+an/3Zn/2+IirVNmPGe3gP/yX/Jf8x/zG/xq/xKT7Fn/KnROLbfXl/cTPQLTu+/ZFv8+2PfJu923s88o1HePSrj3LzmZv44Z2rrv9X3UIXuPbCNa6+cJX3/+H7OT1/ynM/+hwvfOgFDq8ePlBYeoe2733EjslBo4WYEkjUOvGU4lhhYq0drX+AkTRTD4l5TGZaYkl4b7FWPO1TSiqHrsl5jFbyW7pe1VJGSzk0kSAkkArMQq2uyZpPkWSbgORFErBoVViWhI8zhR4rpKSSsBT6YjkGQjHEZBiKAF4lZzZxoCuF0+SJd1/la5//Ajfe9xiLKxf1qdaETgGyguNFk6palR88xoBzAp7XHJCpz1OBf/EK18S/JoEs4L0c7GMp3L1zxK2X3sDESHdygjcGP2tZpQGCo0TDMgT60xUuNGQfiF2iMYb5vOFHf+xdNDMDRROT9ULKdtJclAJGmWVN9OTtZzmlJM9YutRE75jUU4DFFVEVEVWNFb/7L3+Ppz/3Z8yOD/hmTtzOhSWZlAcohv0MA4WVs5xmQ8SSDCzaQBssyQaGRkgCnbUc7sw4HjqGlaHPYMkYU2hMobOZmctc9TOCtaRgiEPk4XnDqQsc42jmLRduPMpTf+Nv8MGP/Dg3n3g3pjVkI8n376W2yACOwm674Eff9yQP7cyZB8sQEzlFSQLEJBXMJUNOiM1LEWstI6BBrfSsFZkpRSHmxJ5CxrkAJbNZr+g3G7rNekwaZgouWHZ2d0RpRDLmgFpeeEcfBSQvOdGtN6KEkgVu8yVjradZhJE0tXt+jzgMGBNZrU4oeUHbzonHG9q2xXmLdZkQWryT34vDIElDYB0HgjVivxjFSiklg7NyvaFpMNmJpV0GH0Q+3HtLzol23lCSJG7ZrOlLhOBwJjDLkU2faFSC/Ph4TVqdin2E9aKEhEjIY4RE41V9IudI01hyirQNDMNU2ZZLwY+Vk0pkzAWKENdkzfJKsOxHawljHXHoiau1VMoVQPtbSAnbwJuMLwDjMhZHMQ3GGFHfUWuwYBquXb2Ke/Y5bN9ih0SJGRe8WnSAM15YiJodt0Yk+a0z9FFgUudUjt1KpeigakOxj2SX8aHBOIcxXpShqBLliZwFxM1Z9KCCDxQKOcYJ+DWWHAyuCQxDDzkTnFh/9V2mT5EmBFwxxJK5c3yHf/m7/wJjf473/MgT4LNWcFt2myU//fGPkzP88R98nrweIEeSCTgjVbbOWWxRAkHOQligiAiLMVhnCKqeElV1KQRHtdaUpGBSWzjVt1IripwzcUhK7hJiQ61q3j64pFStI2T/ioPubZowt1aUGsQKY1AQSq3PXJgSjiNAIftEUjWfnLIArn3PfBhYLhec29nFO491jpLFkqBxQci9iBXV0KsKkQuifiBeXPXbcCZhgqU5P2NnZ8nR8RHr1Yo0JK3wtKJUM1pcMII+Uh1eZN2Kg4C1MeFjVLtAj/NKNilZ9wMD1uG9AI8FhHBcxE7GWktOQlA22nd1/xT1oyKkrCikH+ekWr4YVZ1D7LyKLRgF0ouyc51XKkHK2OAIRoBCY6yClQVj/bguq4gCZlz1NZGranCUSE4Qk6EfTlmdHHB0OGf/zl12dnZZLJYsd3fZ2dmRimjvsLYQQgPG0XUF7ws++DH73W86AoUckhDAcqaoqk9KAjiLkg7EKKBSKAKwxtBI3+dMHAZiElJsyaK8Nww93WbF+tRzEhradkbbzpgvVFFpsaRp52I7sViwmM/0PQ3BOQUYLN5pQt5mbIGm8YRmzmx2josXr3Jz6DhdnXJyfMT+/j3u3b3D8ckR6/WKru8rvQay7EPFFlVHqPESSuKr80AIbEWBtmnela11zkwIQiW91Fik/qhMIITEkkpgsQr1VSKMmUgWORf6NJBjHt/jrMVk+bds33m0LKwgbSn3gyBlJHRMuMQEA5TxVqaYeiQ4lXLmvdVeeXoEFSDjHd3uV4wqW3+oKlmVkFa2lX3Kmc8oSijSTpa5axhjpZwn8KoCYtUWVz4DxrmMrF+mgvNbYPsENhuNBWQ9yTlj37hKuX1FlbREvE2KB9QaS6HZDnDFCLin91D0TJKA3vTk1TFvvPoau5fOEZbzN8sfacwgr1qqCsVkVcRofTWu0CUTlaQ3Kgpsgf6Ks8n5rhTWq46Tw1NMLsS+F4UN7xlKAt27GutIQ49xHpT86o0Ujlx76PxYjPGmtg2ITXjY+PpI8xAZmmmuUo+defrdqevkPpSok4vsQc8/9zy3X7mF79bcpXBaIJBHQs2ml34arGHI0i/FQHBClCx4spcxk4yhC4E+R9Ig8YTR8eJNIZmCM5ll8DhjyFZi6V1v6a2jx+K8Y757jsvXr3Pl+g32Ll4QcjSi7HkmP3/foxtXOSPqiq0PPHT5EjttIChRrNpxZbVCG9cKnSCiGlhGohL6b/RcK8C1EHOqek4cBiGWDHE89xfAOMPehaC24RrL6nndOKMxocSGR6+8okoM8plySlflHL2Gdt4KQWmQ/YpScN6Te1H3tNaAFZsva8X2NOdE0aKeHLN8rrXjnijruqq9OLGkrzZ03inhXguKvHeULP8mDuP8MsbgSiYaiZWtdXT9QB4yrW2wxapa3wQ0i/qFVUJ1ViJ1xjkpaJgIKLVnpXjGZiT2LwnXVPUnqyTrGoPJeMwpkYdtu/RC0T6bbDLr4DHjviDnb1HDqoR5q69dun6DF5/9NiYmjKpyGlXlETU2VQ40aB7AjHFuJXaO7sZ1ndTPSZoPMFSLUqfg/KQivb2vZS1YM7ZaeNV5ImQnp/1WiwaqjXVKcp/OOrr1hi999Us4L+pEj737UbWSliv0eB575FF+/hf/Dv/L//wbrI5OZE4oKb+uk5a6dk5r0LgemYl0NNqg6bOZYtXpPithrd6P5MOqOov8bq6xSJ3z22R5Y1RtebKkradHURzbso0r2/mW+um17+qaUHjppRdZn57y8CM3OX/hHG3b0oYgxSNYUPswIYdpzG/quFUCU9ECDrZiHVOkFqQR8kocBrq+E2Xe8Vr0Hrf+tj1+AF2bJAAvWeJzay3OOIrJY4x3Lp/n3+Fn+Sn7cZ7nOb7Ml/hq+iqb0lFKHUM15ijTs5m+dtzr6x6BntdrH9oaX5RcuY3j8xgtB7PBa6GKELrke8SZTWNS/dB6t7VzusWa1x9bc/vRN9jd3+XmN26yc7jDMHT0nWOzbliHhtDIH7Fa8/I8LAjJX/IX2ci5T/ZYWTNsKRQn15hzJc7IPHW6N1AYLfLk/VCy03WoKHFJFb/zFAelNDDEHmcdbuOEpKSqSmIPJ4Ql7wPBe0K1sdM8J8ZMmoumjneLsY6d0rAse1y7e52n7ryfw/aQQ7/PK3uvcOQPOfbHDGUgksaYoX5mQQp85J+q3qbPvI6BkeBrtpS+dBGo/VcjmolUP/YeI7ln3MPl++o/x+8tW91dhIhflOWXqTGnxpFFzj5Z88eZgksW12/ZqlQ5NVNjuSmIqPP97Kw6G1qU8T6n17bjsbMvPmh/5e3pD8ifB+1B+yFq5y9LQfV3azlFbj/95WlvftDekc0Yw94jj3HvW89C+cHoq4ODA/7pP/2n35WodOPGDX7hF36B//F//B9/qBSVass584d/+IfcuXOHj33sYzz88MPfl2Qlg+FdvIv/nP+cf8Q/4vf5fX6dX+ef8c844ujtvry/uOnQPLp6xNeufo2vf+LrPPSth/j4P/s4V168Mp4XfxibwbA4XrA4XnD5pct85Hc+wr0b9zi4dsC3f+zbHF455OjKkdig/YA/Jtc7Zqezt/syvmv7nklKY5V7lpNUTfzVw5RX8o1wcgRgcKpSEWMSixJX1TagpLKFIRWtntRkux5Ti/7cWzNJSWvSR4RHLLVqzzuRCc9JEmjOqOJS8BQMfddj9dDlahVNEUUJITIZjpJc+1AKDYXjbNj0mYUmqoYsihuxwFFK9DkzuA1x9Trf+vOv8a4vPcmTP/6jgibrfWEqYCTkK2e9Jv3MBKaoakZwXhN+UrVkVMlE3ivPeizT00R1MYWYIi+/9AovPfcCy9CQup7gGnwbOI09i51duq7jwEHqC7N2Dk6As3nw5AZevXOMb6woBFRpd+xoRYaCoTGlEcxJQxrtyVLJlFgwWZMhOSsgqj8z9TAuSQ9rEaWgJBW6/bDmdHPIF/70Tzg93mc2JNa5Z9daLrYNTcn0ptBnOCmieJWK4dA58mLJvVQoxQIOu9fSuIRPjvbiDq/dvcPqdC3JXyeJ9MWsITnLhZLZ29nhvLfcy4lTLO18yeLcFT74nid439/4KI+/7ynOXbyMnwUIDdbkUT1pzDbfnxSGrcSgqOU0GHbDnGF3j81mNcpmmyzzJhc0+ZhIOVLtF0wp2CLV2dU2qUpcp5jIw0BwhsZZchrYdB2boWfVrYg5szrpxuRlygXXLsRGKKvaChaK1UQjnBwdMXQ9xgpDOoRAKRZjHDENjFZXFoahZ6edQSqsNmuafsZ8vmDddZgBZq0jpVOCF4UOY8SOqGQDNoiiUc46fxPOOkpW8l3f4a2AGKPtCZk4iKJIqgC8KqKVbMhJK4aNRaQkEiUNXDg3Z2enwYcWY4OoHxQBQ4qxqvDkpKrdN5SkNlxOiBN753aYLWYMXYehcHp6yrpPlAQ785bzewtsiWACMVarooixliZ4TdwaChm8w3iPMQJcWk0lVcEyWfasgnVJx5kij0MhH55ScCQy1/f2WC4cxzFgvdXElhAagg8TecYAFoY0kPpBFZCiVDYao2p0vczdIiQWRyGnAWcMTRuwzmGbls16rYp5hr6PlCLrv1TJSoLQWyEC5ZQZug1oxaehSP9okrlYS9aqcoyHkll3x7x8Z83/+ru/TzOf8dh7boDTZGGxzJodfuqnP04uhi/9my+wOV1TciINWUEkQztricOAtZ5Iot8i2cgDFuUmg6odKagHYm1lrDyzYK2q08g8CM5Q4eWYeiarDyVFge59NcEq4Ey1RLXWSfKaIipaQOPF8kMs+sRelAJBk8spJowRyyprlHAUPBSIqbBarRm6HobMzs6O2CiCVGRXlY2cKFFl8IuT5H5VLgxqx6FKhU4tOZw3XGou0i0WMt7XG7X2E6KS7kgyx4ooMhm2Eq9Kqkp9Dz0q/++xSkrOMap1oOxpxjma2ZyZ7p1d14kqGhFPJhmRn49JrcOcGxPLzsnz996LGlvKWC/jOlMIVsh5IQRSFjWqqCoGstcJcW8Y0gjwWC/2gcYIqDkm6JmUWs6CVhq3qJJGLLJfDl3H6vRE7r9tmS+WzOdz5rMZuztLdpZzgg9k6zHAbBZEZSLJGiWqUQ4fEpUoNwxJAUBR80pRDDyzlXgnpYRVIo8p6D4cSTHSdZ0q9SVKTvR9ZBg6NpuVkEAPPbN2Tjtf0szmWr09Zzafs7Ozw3wuxKW2aWhCYDZrNdaTsea8Wl6pNYJ3jp3dlna2x97eFW7ceBer1SkHBwfs79/l8Gif1epE5xM6F6WPRfBM4jxTtLq9iKVf1L13BALrv21VQKj2CXa0ShgtVvR7qOHUCFZp3GoEgPLWK4ho1OZLlCByFtvRlGTPcs7iscSkiqKa9C/GIAIb98EFxei6sQ2anQVs63sr2eBsUsRgam1zkRhyG1MYwcl3aDNuS/GhVAWCMoJE2wQl0CXbVFBX3isELn1DGd9EVZeqIGAlzmftX1HnmtSI5G26Eys4bO2kSjp+P6qQB6qwIs0aA6slpWvG74lApyh2tRXsimFIhQbACOkRI+OqL4VYItlYhnjC/t03uPv6RS7duKbxeB0vFUzaVreYpJMqKCbXqiepbVWxUWZpC1hjHPryfEvm6PCYw/0DGucoSRTtrHcMOeFDQ0qRjRFQ2jtRHqQYshML2+NVj3Vma9xv/V+fS1XDq90nJPwyqpJJAQka05QJPC5KkhiRY7QfVS0oJVIe6GPHa6+9wtCv8bkwFCnKWHhRyoxGiBd9keKLbAqdcZSmYV1JkcZA63EmYLPFzRtO1iv6ftD5LXM4OEu2hjmWWdMws4ZVKQwYnA8sZ0uuXrzA5evXOX/5MrP5QpRvnBtXBTM+ielf261ikVWS2AGN9cyblhiH8ZlONt6jlgoCb5YzPcH9zxVde/Ws7YzEDSnpPpYGcikMfRrXqEvXE2EWVNVF5y5GyCz6JSd377A5PEBsYgum2muqDdj2mpxypnWBPosNtUsJ7wND1LjSG0oecE7Ad8haDGPAOmKKsu8oWUA7SUDoHEdlmDrvKZIzyHXs6HzVo9cWicjWQUYpiXkbaBqHtXLWGJWmk2woVu2p5KzkRoIkGhu2swafnFiwURj6gSFJIU4THKGVghOxFlZw3U6fParOoed1t71W3jd2dN08q/Si95WhbHqKnjcuXrrMbNHQHUeM1W8oVdloUikbf73IGaiSRY3GtDkXOWMZFfPCIt2uMaZTRRxjKUlyGNJHsr7X/islY7LBmmmfLkqOGMH8Sg6Rh6T2fEJKN8WwOj3mT//s8+Sc8E3Dw488hA/TOmhxPPaux/mlT/4Sv/OZz3JyeKyFJ3kUKvJeyVlFCEsxbz0EoBLsGa+rWotWUpaS9lQ5NScpvJiKHXT92+rBSpAa98e62anCj3St7pVIrCFxq0M5emeJTKbaRm19i+anDIV7+3c5ODxg7/w5Hn30ES5duMh8xmjTNeY6JAE03l/dY2X/qaTxLQJZLSosBdc2Yrvd9wyxqqZt7xP1ujOjXnqpezSaR5JCLqNkHGOnogLZVwuhBJ407+UJ9wQfd5/g6zzNV9JXuJ3vUNXAJKxTckjZIrtXYopedx2XTtNvmaJbsliHFqPKzzmPc9za2ucTIfFMvKHkk7odTvuv7gBFVNuPLx3xrY8+yxN/+h4WB8txXsU4YLs1VpWLxFZNFU+bRgmZQi4TxWOZ36nGvWjc4uR6xY5cvr8qlBk9txbty2yyWAjXdVNjkJqPqjF4yUq6ToZhUDKZlet0vlHrN69qS6K0652T4ikrtuxiVSwPq64p42aPoWXB5W7GhdPLPLr/bjZmzSmnvLb7Gq+ff41jd8QqrKgKSLrYn4mLzdbAqvvWNKvNGJuwdT4QMtpWfqaUca5KDDPNtbEvx1i2KnmZOsTG8TbuD0yxvjEGU9WZy0Th811gcXi/FZgOrLcI+ct9/ypv9abK6nrL3wHZKN6554kfqHb7Chzvvt1X8aA9aH+t7f0/0TNbvHnl2W4nt25x8kOmUvP92nauPURYzBlOT9/uS/lLa38RUQngscce45Of/CSf/vSnf2iJSl//+td59tlnec973jOSleo54Put7bLLr/Ar/BK/xH/Kf8o/5Z/y6/w6z/Ls231p33PLPvPqe1/ls//3z/IL//gXfuiJSrUZxBbu2vPXuPr8Vd77x++lW3Ssd9e88KEXeP5Dz3N86ZiTCyf1F36g2uJIiFrv5PY9k5RMUcWQvJXqlBzHSNgoeapEkSRAPgMuyNlWEopGK/hAE6VxgCIEIqvWODkmMoZsxHonbx2wpcpKEwtZ7E1E1lmTQEUkjuMwyGdoBYuTX9YMkIDCOMOgiUljHcYZki2sVEa+z4nd4AjW06VMFwcan1X9aSD2B9y5/RJf+pPPw8zS7sxGYEGsJxKpRLFIMkIKsdaRUXllBQ9GKxUUTDaopPWUAK1VsSXHMaEPmW59gumPWUVPE2YUL7Lyc58pqwPsIIo7xjpi2UDKGOc5SANH+567t26NYI1zlpgzndriSaJIAdosUvxQIEnVbQGGKAlsj8UZ6IaemCep/JSFVEIR8kITPDs7S2ywOAop9qyGE2ZtQ1i0DEdrLgbHI43nRmOxpSVZQ2fglMI8O9Z9IbVzTooje0sODd5a5t4SQiGuHW65xzljWCwjbWtpHMxcSxMCrfe00bCfB5qLSx55+BHO33yMy08+ydXr1zh3fhfXznRMCaFCho8dE9+SuMgYBOwu98XYscCmGzg9PmGzWdNtOmKENKDqKlESQRlVvxF1pUyW8a+gQYpKSqpWcEoYS1kspIJ1OOtYrVes+56T9ZpuLVLnBMvO7pK+68kx0616EgKu5pTwzkNxYsnWJw73j0hdJFgFX0pi6COpGAH340DjDLnrRSXHwGw+o53P2Ww2NFY+a76zoGkCfbdiKFJdN8QVfrZgsxowzuOMl3lAoQmWYD1pqGCGTKPgHcZZUpHks7UWm2WeJE1uigqTJB5LgXbWMmSRAR+GDkpiMd8B1A5Ck7fOi3pKO2uxpuCECYH1DUNM+MZC3BCsJTSZ2ARSHCS5drLm8PCYzWbFZmawzuHU+i3YAArKZE3iD8PAsIlnEpKWSXlh3P80oSt3KGQU4wrFWsx8httkjBdixkPc4JFrD3N09DKJDdmJNZbJqAoXBOu1Mj3inRXSmwPnhVDVKzGjpIwJYkMiNoQJbxuxNesHUurYbHq888xmM5EqrxXnzuJ8kKSiJvX6ocMaS0oZr2tlTpmYMtapVYfLNEaS/tEmXLGUlOkNvPLGK/z2Z/85v+T/No+++2GqDLDBstPs8Dc/8XGCsXzhj79EOjgSQfKSyMnQiUsZmUgsEwAtiURDVKW/YkQxoCr1lNGroUykI1UPiimC2t0Za8F66d8YBVQxRchE45jU6l9q0tpp90ofFAWAMIbQBChgrRd7E1OT3EosVLWrNoQJ2LMOZzO2BHKM3Ll7l/2DA2bzORfO79E2QcaURRSTjKgFOCNkGO8UBbEyAI2xNKr8VXRfssbiF0tC09AuNpyenLJedQqEGqoqUv27POeMmCFMlfAlF7q+Yxg6nA/44LWqdqocTTkL8ShlSko0s5kEkcPAer0iRcipaAK5UJKAr2ji1yoAb6xRTpvVKAFRa9JtzBlHo2JFzjvwVRGr2h7acS22xkwV+2PqVtSMbAV9ZCAxJtWNEgeMkmXIDLlj6DrW3Qknp0d439CEhsVszu7uDsvdHZq2wXvLfGdOEwJFrRa6vsNiCY0oSKSUCI3EAyknfBSCYExlJGoPBkyeACkKeOPFYlcJocMgINEQ5dnnNJDTQBws3WaDPz0RICE0+KahnS1EZWkxp20D8/mCxWLJYrGkaRqaJuCcIxSn5AhHLkKlSdmQMRRnMHh2zi3Y2bvEw4+8i7475fjogMPDexyfHHF0dMi6W5OVRJqLXB8VHFBswdY5ncv4WkFUzDSKYiStKFhtjQPHCNpL+DQpD1VCUqkQf6mABqIsYSbcQ5dqJQiVsbJf1qEsRD6DkD51vqRSRiu4+887E1GpQjHyjkl5dJuotIVyFKZ7rNB1eSug4R3UFBgc2zZwhN57qaASZ4rFzfaHlOn3y9bLVdnPGAHjxK6kmjjrmQPOALYVgBLsSgeUrimFontZmq6y7tF1X6pjzYiq61AAM6kbDdo/qRRaa7FYiY1LFqdXI7FWiRtWqyNef+VVjDe4xo8opjymojHnCGdPpIUR/VKFr/GRTCSJaZxVYm6R8Vr/TiEOPSb1DNninKgxFsCbAsMGkyX2FwUVPz6rTZfojGV1cqL9Ucb1P+ozHU+D9TmTR1XWem2pqvkoVJ1yOqNIksnjMcSqqkrbNmoRKX09pF6AT+/IaWBuDXvOseMMBkcxhgg0FHwxDBmy8/RYijUUK+exYA3OQR4MpmlpjcE3Ce9EucKrtayzFl8M65xw84Zze3vM9s6zuHSR5c4O7azBujD2z/0rwAQT1j68bwbrcI8p03edrPkxKYGW8Xw4dmmphE9d6yqRszAScgqTPW8lfxgd69YYuiExpMgQ1aqpFLBCWk96PkxDVOBeCUrWyq5sIMXC0RtvkIY42tcWJUTnIgqxOSecMZQkczZbcMHjQiBGIckbI0qczjmSkhuMsaQ84Jwol5psNQaQ+3LOyHqcKkite741Yuere4A1RmOuaQ3W6T2uP8778aydU8IUVUAslawB1aKsYMQuy6BnRyE3pqqklBPeqsVokr3YOoftBzabniEq2T7IGCm5jGTqcd6idq/xbLXfmRFltsfVBJKPLzrAe4zXfc3C3rkLXHvkXayefoZC1CIuUWXNqpQlalAS41XFJmPR9YzR+nFUTXLVNk7VB63EWykWhiECtTDAKVmigKpTVfU6Q1XMUzAeM64XdS1P1OI4yTHJuuqkgOZ0xRe//GfSH6Zw89HrosCrz8MZxwfe/35MgX/+2X/Bwb3DaRIZtaTV68hjvCtxw0g4qftCJYOZ7T27TGQizZEVJSvVdd24iUw99V9d8+uYnAKP+vq2XWklKVpV3JW+mUhPEhtorGBqDFv7Svr43v49Dg8OOH/+PI/cvMmFCxfEXkwV4raXLoNRApe+ZLdHoJ6Vpq+jFIPzhtbO8MnTD4OcLbeUESbb3SJnKaOxnBJDzEickfFvjCqOWzcR+Ma9xnCjPMxD+QY/6T7GV9yXeaY8w4vxBVast/KJNe6qkVShkku2/621K4hSWtV6MuNZsYCqphuNFfN4PWVrDRrvdXyUsi4ba7Zel0/v5j3f+ui3eeILT7BztCNnGlWRIw2iiKrqct57mhBo2oYQGowptE5IQDVe6IdB16aJvDSSsrNYJeZsJ9JRUUtbY8+cJyxQXFZV4EpUqipLur/o+p6QPcTaDmvV7s15UVgKcu5x3hOCFD54H7RPLa5Uko8Z552koq1aMVva4mjZ4eLRFd5/9H7WZcWd+W1uXXqNOzu3WZs10UVVlpV7yOPcnMibZ2OocUBO/VTG0TD20baiUo0Lz8xhXUO2v+NMIcKbAvVy5rNBdds0zty9s4dNdQ4wfvfZ1b+c+diy/dP7k5S1bcXWNT7beuGtLvRBe9AetAftL619Nw5DKYWjl1+k5PSd3/SgvWOaa2dcfOK9vP7lL77dl/KX2r4XRaUf/dEfpZTCZz7zmR9KohLAMAxnyEof//jHuXnz5vclUQnA4fgoH+UjfIR/xD8areA+x+c45fuAiGfg+NKxEJX+37/AlRceEJW2W30Ws9WM2WrG+dfP86F/+SH6ec+td9/iWx/9Fq++91W6RUcM8c0J/O+3VuDmMzdxwztb6ex7t3tLVeZ3StBTD6Iq/z8dfoQ0UA/vI9g7VicjiaoKpujhrVorpDRMgPL4nXr4BcSzXCqYcs6jxQIlS8JEUQHjnSAFhfFQ6Y2j2ElKHGtFSpdCRBLyszbgnRzCYz+wyQNz73CxMLOFh2eeD12+zDfvHnNnFUnJsjo95Nk//xp2PnD++kUwImfunKWQyHkQ8oN1kjA0VSmlVjiCd0HUa+IwHsS3ExxCxKrJpESOEWFWFUiJUhKxiDpO2zQ0qhDS971abCmQ5j1xiPSDAJVy4Je+EAs6IXJs+n4CyHIZE8y2VClySTqmNIhqkgGPx5ZEsqhaisG7mTzT0NDO54SdXXYu7nH58mWcK2RVu9np5iwWlmH/Dq986csMybJoG87veeZZyCSHOWIj7GdPWO5wfnePpfHS10EUQqyJrFan9BjOXbjElUfeRdu27C3nnNuZc35nzrndBef29tjZvcLu7gXO7TUslgH8DONnmLMndk2y1RfOIGUIQYmtN8urqRSOjlccHByx2axJMdIPvagdbTriIEoW2QpwWYrBJEmCZ5XRjmqblXMmRbHiijEq6UtIOzWhnzEcnazph8TJyYoYC2DxwUEasMbS9wMnx8cUb/CqnOSsw2pl2+nRCZvjNb4YjA+crE7AWWIpSlBpccWzOd1ATjibsEYs9EqG3eWCxWKObTzBSlV58KJchC2EEHAW5q0lpkTrW7LJGJfFsjEmSWQ6q4oWBt8ESWDHSEyRtpHPK1aS3CUJocSrxLkxqtSEpet7sSrzjlU/4DS5uFqtmM9mOBcYUmSz2QgZwRRNmBesLaS+Y9a0mMbRbTYEGmzbMuQE2XB8fEq7M8OEGalYrCnM5oFSnKhhJZm/bSvPNw1FKygndRyMarBsJ5u3114ldFaQMQclcrQOv5jx+GOP8twLtzjpLMYosUIrdJMSHVAiHNVaxExqIylNFiCkhHVeL8Aw5EIulm51ImPFt/jQ6I/V/qISL70lp45KbhF1ArkZW6+ZqfI3xQGj658l04QGjCX1sv51/YaXXnuB3/kX/yt/d/HLXL12WVTMjBGrxfmSj/30T2BM4d/8q8+zPo4KFBWpcMey2XRgJusg7xwlFfXtkmrmGAdG5T8yOfayR8QM1ktC1Vip/I0ZY/1oU0op5CiKRF4JbzJ+9fnnJGNsGAQ0c04s7xQcK8aSKGCdgn0W4yXpG1UJJ3hHJUGQxT4v5kLWynoDhKYhWVEf2hwes+k7zu/tsbOYS1W+EdueUqAE5SWNVZ+O4A0xRlkTEOB8Up9B9sX5DGc8s3ZgtToVRZ5SyAp2kGV/qElfdH0ScQFV9UiFIW3oB4tzAjo2TZB9Qvf4GBMpWSVjZqz3LJZL2rKg6ztSPzD0PbFkFOOR/V2RGFcsCV0bbSWNyfqdhkTMYq9nHUIOsI6MJUexfc0ZhiSgp6AOqtqCqp4pcUFsWLeT3ApxKNiLdzTBiXqDEUhUeCvSF0PXszo54ejokPl8zmw5Z7aYE0thZ2fJrA0U40hF7BWb0AgG5AV4TUlU5KyNeOcE8NXXnUMrnCc71pwtzmREVC8TmpYUs9hppsgQO1HmS0lB/kjsN/TOY41l5Y84ahra2UzsQGZL5osd5osFTduwWCyYz1radkYI4YzygjGyltvgwSWx2ilyLbvLHS5duEQcbtD1G46Ojzk4POTwaJ+D/Xt0fUffd0qElv1hVCcYSSZFlB+K9F+ijACMYVJkMM4L4TUPYApGPwslXVAEDqvqHtNirDEqRuyutgGOrOscFfDPZFUnsM7gW0eKls0gxl+JgtXvnQCRrTFaqN80htRn1ZXkjvMWCClKUzWWNAqU8s5tlSyx9e8a708w3RZKUpWnzJaKWSXmbB+1SwVnpur1kdyin19JYhOQM4FBRWPheg3WjB0g+3Ce+iQbg8dI7LaZA7YKCul8F0DeuYC1YIpcS8yZYA02y1KyGwzX5gvurHtWg4zVYdhw794bmJCZ7cypxJaqKlZtkezY31t3ZMxIjMBAUbUWwde2SUplvJlSagGEPntVPCmg1kpylkHXZ6iqTkK+zaokIcoYU+9t2+UNaUvZbey1ShvTxwyqapPV1kwIvVnJxDLvxTbUWYfzAesbmvmcxWKO0bMcOdEkj28Mab3i+NbrpGJovGXeOrySDzc5YzOsi8U2LbOmoVG7z+JkzzImMww9qRhmsznLc+fxztM2nrYJzOr/25amXdI0M2atIwQn3lc2fIfk+5tfNG96Xell+ky7fmCz2UjcW+R5l5yErFTtosfhbWQ+5ImQuU2oGS1D65pVAfuqcomhHyIpFfo+qjqLWK5S6tkvSRJW1RfFvrLaMTm61ZrTO3eFCGqtvNeIepgojjpscUKipyqk6Xwu0IRACEFI8FYUO22YlIuclTkXnOwF3jiK0ZjamNEWolo8AqLkZMR2NpcsJDYtgKjKUgLgZyWnyHwA5Eyla8GQxN5UChB6AdatqEPFGHWdEsKXhvfklAhe8g6xRFGU806KLQp03SBncOfG0hcfRE25oMTsYjBe+0iJeturoIbuZxKQ47g6u6XJHqSkoWItNnhuvPsJXvv286w3GZFRFkvnSflKPquuJ2YkiktRlzxyGYupIGozVBDfKKGukNIg/a+xMhS1x1Pg3+jeptbFpVrNFbQoYFLgqXtpJVKNY8NJfG0wnJ6e8pWvfZnZsiW0nmsPXVWFJlXvNo73f+AprIPPfOqzHB0c6fyrSqhWydxpJJNIXFvVyyoZQYtsVMmuZCGS5VImSyu1JBzjZZRQa+WcllSNXM5tRftA8l1C8oJSkp7hhJRb1Vrr2irjmRH5qxa6NW4ZSU513JQyiqUUCvfu7XNwcMi73/1url69ynzeMmtbOdtYlGgoRK1KVpvmjsQn206ledxbdD46R2MM3nmGIRLjMNo0Mvai7Jvb+1K9J4tstiUL2dFYVVeyQhrF1PyhXONO2eVj+RP8uPlJ9v1d/tR9gS/mL3KcjqUwrBQtepoijzECqSSTSpapsVYlh+qOZ62chYqv5EI5Q6TKwdo6i2w9Gr1lM57xpx1UWjff8OxHn+UDn/sAi8187KNxPmcp/onDQN91+I1aqQVPzJnYFprgqKTmqmbm6iCwSiyyhpQLxuQxvpY6GiWFVXs4NE4qFuMMxRq1sitj8WRWgpIQYjMlaRGesSSdT8Y5tX+TohXvG8kRqRWc2MXJGbyuo6XmRTW+okhxaqUcGtMwLwvOD+d5/NXHWdkVR+aI18+9zmvnXuW4PSISKTHqvjit0bWP6ho3jt1cplimnvP0PcbVwpzat6rqVep+UntxpIpX3tL4HeNZo86jat1ZPwPZ00L03HjxqhSeTVcyjqU6VabZc3/7Tq8zxeN1/G0PTsPWfTxof6Vt/8LbfQUP2oP2jmt5GDh+5aW3+zIetO+xGWO49N6nuPvn3yCu12/35fyltoODAz71qU/xD/7BP2A2e7NdkjGGD3/4wxhj+M3f/E1xivghbZWs9Pzzz/PLv/zLPPXUU+Kq8X1KVjIYrnGN/4z/jP+E/4Rv823+Mf+YX+PXuM3tt/vyvnszcHz5mM/+3z7Lv/v/+Hc5d+fc231F79hmMLjkmJ/MefzLj/OuL7+L9d6ak/MnvPChF3juw8+x/9A+2eX7DnLfH61ZN3zoX34IW+zbfSnftX3PJCXvLcE6SVrm6bAFmljORRM+eojXxH+ulgSabEk5S1I1SeIJ5zTnJxVQKcUxyYN1WCzWSWWyUSDQ6iHKli2YwQBCQZjAiCKJbVsMRoGKrG821hJaB06A6GilMscZi581kmA2MNiOvuu4lzNLk7lkHeealltHR7yy7hlosCUy5BX7J7d59daMsCfARIyqhmQK/SCklBiTVo1JNXROQu6RxJ4V1Zwc1U5pOoCWXL3f66FXgMWazKhJsnpw996NySABDqbqxkpOiDGyXm8YhkFklkOgaVusr8Cq/L6zYk1lFaiwKlNeiSRWxwYWXLYE20BjCE1D4z2zmVrEzOTPYrnDpcuXaNsZkEhGEpZpmLGzO8f91E/RFLj37At8pet44WCgtdA4QwyONNsl7Zzn0kPXuXjhPGE2l8qxRUtrLc1MyFmz0vJjP/VjzPeWONfQhJbgg5AFrMGaqAPYYouD4kQVY0zgjVm879LuTyjJm2Mu3Ds44ujgkKEfiGlgiFET2NWuTOzuikWAs1LIuY5/BU1REklOiEqMKFKllFX9xRIajzVSIXd8csLq9JR7d+6SktTu913P5nTA+ZYL3rFcznGtJHyddUIyyYYUM3kdCbbBYMnW0S52KEDjDU3bkfqe1dGKHAu7e0tJwjlHMdCvO4LzeIuoSGTLejWQSibMHdZ5+lUWZRAD1nv6bkNoW5azHUpObOIgYKAmhEPwUsGXxDYw5ULMQnwI1rJoZgzDQN9JlZwPUo23WvWsuo5u6FguZwQfoDhscDhvaXISYpuzoiJjBUA3thBcAxm62EFOlBSJXYQiJKs4RPpuoB8SGUmQ1Qpdaywmq3w6GWsC3npiL8S5g/0DUi/f7Zwdk1L3D7Pt6rw6tooxMAtiM3R8ii2OnCMPP3SZdhk4XGe8zVLKaWSs2FJI/aCJZEfuE94nyI5SnHCWvB1BlWEY6PuemLLYVSjY2TZiZbNY7tD1PdZCaDyp2EmlogL7OYOTILSZtRRNnma1PfLei41SSfRaEV+t+iCJeleuAJbllZdu8c//+e/y87/8v+PS5XMEtDodJ9Zvn/gYhcQf/8EX2Kx7SkmUKNYeTROIqVcFDEeV3HeBCeCRm1RirSWliMHhfUNOInHfDVKxX4haRa6ABFJlb3KiaCY6hCBrQOzHPgyhIaVOSKJOrf6SfJa1Ti3PLNYJYGiUkFQVLkoRtS3r1TpBk6vOih1IShFjHLPZbOzDO3fucuwDy70ddnZ38K4ll0jMcSI6FTA5EkKDtV72mSRAg1cgLSFkkpnxND4zz5nFckbXdazXa07Xa6notzVJLcpVqDWZDGjZm6SyWhLhMW4AQ4wCRHpv8aHBYum1X6pNZTEIoGcs2Yk147rbUFCLzNqVFIqRBK8oM1gwZbSCEznGRCkWnKp8yOXJHCsF6yytaxhiVCBO0r4hqJ2svs/o/db5Wi0DClIh74qVBLyzQrQ2VdHKYo2oBgxDz3pzyqZb407FDu74+JTdnV329nZpWs+QBnaWc1xoaFVRIUUhrTqbRJ3Ry37Qx0R0Ga+J81wYyV4pZgqOWJWhCmRXdDw3pBSECBoFmB4UNMopkgpipdN3bNanUgXtA027YDafTySlxYLZbC5EpabFKfgQgid4jw/6e8ERbCW1FUoacNbRtEsWy4tcvZoYhg3HJ0ccHx+yr1YkJyfHDFGsccRCREAtk0XZsoJ3Eud4SlFCha6zKSUMeVQXUOEkUWWiyAsGXftqzMRIRhtDggoymek1awzFyv5sjeHqpfN85EPvxQ6OP/ncS7xy6x4MvYApVtSWpkXfbH3m+Mq0F5TpHrbJSm8mL017SX7Tq++c5gSRFdC3ErW27qMqUbxpTzzzHPRZ6BpZQd36XoySMiam17j+1/OLKZVwPwG7AnTBqI42fhl6TWYEMzPAEDCf/0msd0p+FSWZqrZgvRtBddSacV0KgcLCGlrnOel6jockJFUyqQysuxXHJ4fYRtVpqpIXqpKYqtVVharq3xkBNJnnkyLC+Hx1YNezBGVb2apM66GeAezWc815i8wkr8qzyFmIhKpKaK0AkPX8V9tE2jBbNqjaNzovq724KWI7hqtKlVaAzBHU9ISmYb5Y4L2XezUC2vvsaRqPvXkTV2C9f8DrMXGwkTXTWcRuNjTkMGOxs8tiPsN6L+tWcDgMLohdl8fx0MMP4dsg92a9kGCthqzaCxOQbc8O4O8pk3EWRKwEpVxgs+nYbDZnihgqCC9Eo6TjT4eu9r0M36ruUEbQmFKLX8rW+BCytjFCvO66jqEfWK1WSgCRNTT2A8Z6jBVVWuNl/tZzfClCRFnfuUvpI8Z4ijG40ACiZuR8pMTE0PWUUiTGtLIuFMQO3FknBBlToKgdKwUbhByfBrWKR5WTU8R5JypHuRAR5TOMqK4668a1psZVSYm8DqMqg7pXKjDtrGMYEkMUG+6mCUKCKAb0WbniR4tgHQRqF6W29MWowlCm5KoqVDT2q2e6qWipWjjKHme0EKtgtEArp8wwDKzXG87pfBtVbL7DMCtv9S9vMTZA11NVMM9fPM/s/B6nr53ihHVGAmqBUk4CmFtE9dTYMiqhWQMoQUXWijJWEte1uxQppKJY2rYd8yFCLHFqHVimY7XGYAbAWry3QqbW8T+uTwZ9hvUBSM6p7iPGClHp609/A+8arLdcvnIR1X3EYLDG8773vR8K/Nanf5ujw9NRIZycVH1JY6squjoSDRhzLKYeDraIVFat3kSNqYy/Jyq2BePMmLMR1dWs129Gkojsd3U/2CaQScFLJeSiJA4hmmyTyCaVl0oyq8TXcbwxkftyzjz77LPcuvUaDz/8MFcuXaadtbRq8VuJ+cpL077LSvoy2geVUGtr1gsKun4Wihf76hTFqrnvVSmtjtNx+94mXutaC+N+LkrdmWzFxtla3TOqQqGSeUPxXOUav2h/iZ8wP8nn7J/wJftFDuKhCoa/WYWm1Nijji4zKcDWXJ7k3s5OL33EOOeoxNA6PJ21VIO/ei/b37wN4pRSSC6CK6pMNv2O/Ndqf0leKfWRYRASUNcNNG3DrG3wIVDProvg1RZO1yNTtAgyk43uOzmTTC1QNGMfj/uGrgtSnKNjwBS0rIac3LRPVcX7qoJIxuREioZBlYat9WoLJ8SlEOpeL+eGqppltPhVCHNWFW+n8VhJZM55Ai17+QI3Dm7ygbsf5GC2z61zr7Hv73F3eZfOdCQj12XOPFfGuV7XkykvM82hnNLouFvjoqqCNcWN+ntvMX550/+38o9q1YsRRfEn3WN85Nr7uM0pt++ewDCICqBe0zhnxtND/cqtTaGOq+14e/sdSlZ88zbyvcQvD9r/pna6gP/nP3y7r+JBe9DeUa2UwsHz36Y7Ony7L+VB+7doYbFkcfkqRy+98HZfyl96u3XrFp/+9Kf55Cc/+R2JSg8Ulaa2Xq/5jd/4DW7evMnHPvYx3vOe94xYyfdrmzHjA3yAX+VX+Yf8Q/47/jt+jV/jdV5/uy/tu7Z+3gu55kH7npvBsDhasDhacOXFK3zktz/C3Zt3hax0bZ9b77lF3/bk8P3xXK89d42Lr158uy/jL2zfM0nJWUvTNCrnKwCwJKskU2OBSoQZD0FZEkOVFCM5unzmqFOKKmM4AZBjkmRCYZLTHrvcMJFxslREe+f0cySBV6j2GEUIQJoQ896Lcg0GstzL7mKHtmnEashIBZ4tIu0fUyc2HQacF+IBah/12mBYp8J+CYAl20K2hVAK53bPceHC+VFVAyAET86JbugZUiRHSSTE2JPjwJCSELKMAM6MFa6FlAcFIypxRQ/gbOXvTAVJtYLVyQHe2ip/Lw+vJv9GYHC0MlFQYayANfclA5wmzvRntZLZVRCiArSZu6/e4fL5CywvLjHWM2sC7XyBCQ3OeZp2zny+YGd3F+eDJAaUlNOnDmsTe7vnuHLtGvduvcbR3VOWzZz5wrPYPcdsOcP7lvl8h91zl2CxZEiwd26Xvb2GmTUU5zg+WrG5e8Ajjz06VtAyQlC15spTjNj8FOtEVcHUSr6/WALtrcBBEJzg8PiUu3f3SUPPoNZ3GQHTUikUEin3pKhgqq1ED7HHE+KHAB05CgFCrN+KJIYxBN9IIsaI6sVqteLg4IBXXrnF7TfukmKSylQM4FitO0mnlYTNaOJfEpcmGY7vHgqBpvqsOUuOohBjVSnHtC2nq1OapiWT2aw3FGNp2hm+mXPSRbqhpxEECN8ECJZ+BY0NeALYQDaS8A8+gHOkXEEdsTbJIESWXOg3HY2qczjXCEkuynpTLSiMVRKAMfR9z2bT0fUDpRg2m4HZ3kwBlkjfR5wXYhcp0zhR4kpkqbAv6BpkyWQiMuaHoWNIYq/RRYtxgZ29XYYh03WRxbkFi/mCvo8jyOmDPDuKIYTA4dERuY+4WaPkNAVFv8N4Opsw038Ei9lrMMbiFue5uLPLux59hP39/a2EoawOAroIcFqyIQ6RNEQwPcYMYKwMdcU4BFQY8N6LZUARuwYDeCsqd1YVgSgCNscsZL+UJTntrJMxrKpCKRW1E9M13FlSkSptY1ROwhjikEQNhYzzhkxSi52eZ77xDLPljJ//xb/N7tLjTJZkPZ55u+Djn/gpsoEv/PFXWB91kqw2EYNYiDgXxmeS1W7EaQLdO4/1nhijAFW+wYjEDiVH+ihkQO89WV8zJZOHhK1qCbkCAdNaUysvUbvLShgVopIhmaJqRQaD2ERVlQxjLEYBImvtuPYPMWKdfo8SglAisCgpFLWjk/s9HQYOb99heXLKpXPnWM5brC0YZ/G22sQUSHFMrNYEcK1mR5cKQ9G1pqd1Ae8d89mc5XLDer1hvVozDFHq6kewfAJiqAAFTighRoCFYRhGomzbJklOe1HvGYYeEXAQqwGpirY07RwXAl3fs9qsGVI8Ay5Ya3DG46xVC5E6m+rzEUKTKDGmEey11uJDENAjZ7kO79isN9VxYlSeEPCiJuzz2N8xTdY2zhoBz1FAQueidWJDZGwhpp6YkhBZh45us+bo8JD9ewvmizmu8Wy6HpJhZ7GgCQHrPdZmXIwY55UU2eNBFKAU5M+qbpJSJgcYUsT0qpKFqPqAAmPOCMkzC2Dqh0HIwzERU1SFJVVrwtAby3p1yuqkEZuJVi3h5gtCMyO0LaGZ0c7mzBdzZu2Mpgm0bYMpDagahLVGx6OQi41uvW0zZz7f5dLFa9x8uGO1OuX4+Ij9o30ODvc5PT1h060Yhp5SIrbO7apCsL1oFiMkt6KKcWrXV0omDhnVUFO1AyWVqGqoWP+VcU2XOaJArO49lUBf47Dz55f8X/7Pv8C/98mf4wu/9yzf/Ma/4LU7a4gCTucKCo6xRAUiS90MzuwDIznk/v1hfN9EnqvrkDvzDN5ZzVhVrhvKeM3yA/2bqZCdVOtPvwiVTDQSL848qrOgtb7CFC1v/3sLCNTnOJKJBFnSH037Rv2dCSQG7l3Cvv4o7WyBc06USXXntnorotQCBrV01vW0lMJJgqEUNhqXFiNESwe0Tct83uraokQQp0UG1QJNScJVuSAX2VOrxWk9L+UzhKX67BQsq6Dq+Njqfq3EIWNUVWiLADCut2/RByNwb8Y/E0msWuCpipmqT0xnD30vhdXRKcvZnLBoALHR8l6UNY2qwnrf0DTNCOzLFSjJ38xo2xnL5ZLVyQn9uidYT2gcvmnxjcdZ/YzZHBMCKYt1XNs6vJI/um4grjfsnT9HVeia2jQ+laI63v/0vu9lLpY3/00fbdf3rNZrilo8j/vPFtFMrHUQMoKuIXVfq7yPsd8UjK8/MKhlkT73nGVf3mw6jo+PWZ2u1AoXQLxShxjHeWFLhUeFsGKy4ei11zh86cWxjzGqLlKVlY3BtI4+9jjjKRT9TAGXrfX0er/OyHM2zmKsIfWQrcSbRW1dU856D5VwXjS2lGdoK3kqJjnTGItp3Bl+ZMkSK4xKPkZJWTFpsY+oDPtWLHNLzgxZYjpT56exSn7Wda2eKTTSz4AxorSactYYGYx1StopmJRH26OJsIHG4gJAO+fouo4Ss6hDTUyHsS/e1JR8sDVgpW9aJ883zFg0DVdu3ODg1i2q0s+4XqpySf2crMVT05qtfU1Va4UYlaTinDxbPY+L1bbkImrsNI6iLVKltfVMJkSXvLXcGMP0rOveSRnXvqrqpBJflJJ4441bfOnLYpndNC3nz+9VSoHkgIzjqaeeopjCb3/mdzg+WClwn8b3gaWG95UkaqhxssFYtX/PRe4bvXYdp3JfOk+rWpdIZ+vzmfbE7TW32pllJebVvVPIU7omZB1zGmmMBIZKtNna1yTfkN60D54ZR6VwfHzMN575Bq/s7vHQ9RtcuXyJ5WJBG6ToS4a55M/ytNjI9VnZ72oeUM47W32ttrzWyHgPPhBTVIvxNK1X2xcFVNU4U+O7+mkZcok6R7Kq2sqZVdSf6l5suMAFfr78PD9uf5w/af6Eb+Zv8lq8RUxVZafGI0x2lUw5xqlI0uqUqPGlnA3qnJFCK1knvPdqHY6c8Uq1nX3TaV/6TNXvlscL5uvZpCLG9DjGPdNCMpHT+amoDxpDM7TMTuZ0ayH9WC95O1MMpWnUmtLJMVaVik2xiGWuxdb+rNa3SiyvxKNKDKxOjKOyGppH3HpvznqWTdNnyDoCmQhmIA69nAucWsD5INbgzgvpTAlLkg+SYq/Rzk7jCwyq+KeKTx5c8XgXmKclD929zpB6Vqy4N7vHrb1b3N69zUl7LARwVVUF2Oa516mhwc2ZfbYSuWuB6Tg+xvFelT+neauykoxkxq35aXTdquTtR25c439v/w6Xy2U+f/ot7u73GFPPE1sWSPXQ/hYxx5Sd2Hr7m97FqD68/Zvv3NPED1D71hPwp3+D7y1efNAetB/8VglKr3zuj97uS3nQ/i2bsZadaw/9QJKUAL7yla8A8Cu/8iu0bfumn1dFJYBPf/rTP9SKSiBx84svvsgrr7zCww8/PJKVvp+VlUCKXN/De/iv+K/4j/iP+G/5b/ktfotneGbM9b6T2uWXL3Pu9rnv+p5CIfnE/vV9ce0AlkdLlgdLJcb/8DaDwUfPteevce35a2Sb2Sw33H70Ni9+8EVefuplDq8eqqr32321b242Wt7/r9//dl/G99S+Z5JSPwwCPKcsoGvRahjJ1CEJFHcmOZEzSrjRhIrKdY+y8sYAkhjNKY2HN2MFFM9VJhiLD54So/yuVpeN5JitarWca1ICARu13C2ohZErDmNaFrNzPPzYu7jx6MNEIMWeNAzkOJDihuPjIw4OjkkGiAWXHaX0rPtTutWGZLIoB6Fy9aHh/LULPHTjKu1yIRZTRoAFUYnwnLNFD+iJGMVLPqeBPg6cHK9EyUarLeXwn8nJKMg4VQ5OldMA0zOo9nLWVcWjrSrmonLNtRqPmrcbIQlNFNXKZvWD36pUqgky4z3W+UlJyU4VZIfHPRfOz7jx2JM43zBrvBBVnBBOnA9qB9NIgsFKJWBKkVkaaILFXITdS1co811m1zM3L17j3HnP68eWvoMuRnobWHcNw8mG7t4dPvKjT7HXLnEUojMUG2mXu1Dl/7eO52bcNCwGRzGSUJRqzQpSfff2nQglBVhteu7euUvXbchpoBtEmWaIQgSwZap4i0qWoEAeVcQMOcn4F+WkQkmqGKL2flJFZnHGkPPAphu4c/cuhwdHnByf0nXDVOlpYD6fE/N6JCXkqBWQZiAAcdOxOjwVi75aTZwG9IuJ2eC8Iw+Ri+fP08fCkBOrVY/NqjASN8zbBUM2DDERXCI4p6QAIR1YkxgyzNqAbRyll6rldd6oYElmNmtxztN1ndinzVoh8kUhOBRrcFYSv9UCMpOZLedsNhtKKczmHtt4YoT9O3fx1rC3t0CILZYSMxFRIwkhQCxSwd04+kHtUYhCUukzra4hg1piWTLWGebzOc6IIpklSuW/E1KisV5tfzKNbyhkjk5OSF2Pi2pNYrbTRveNu+1/yuIoCbGYyRsD6zVgWJ+sub57jqeN42DoKWWqXGYYSClLZblzqiTT4IPFBUtOlmKiJvkM3ge1rXAkY2RsAiUNWCcEjl77IQ8is5+NFZUUIwoPzjrEDsSNpJlIJNYBKZJKtE2gmExMA2JL2IgNQhpk/SNSbJKEabJ85QtfY97s8Ld+7qdZzAWYciYAnkWzx8c+9lNgHX/0B39CfxLJMWuis6VtG9brEzBR+r94coyiW1GTjNZq1W8RICs4fBDyUk1KWi9WMVkt21IUJTTnHUYVnipekrWKW4hJhmqF4bxXyxzwviHGJL+fJBlPkHUopSyKZGQl28g+m9XexeiYzCDk3jyRHAwC3jQhUAbDetVxe7jLemfBzs6cnaCKXJSK48mei9o0qEqQtZakthKkmk91GGewplBcwTpo25bFcsFmsyEOA+vTFUOq1iBba6aCePX1UbVB97hK4mqaFu89bdsqkCJjzSWp3qcUHJ4QWpp2xsnqlCFWGzcnVoJG9t5cVBVo0Osx1apEJ1nWMZDEtkvsN5XMhBC0g/ditZLFXrNeUyUPW+OolePWTFDWuEtbUw28JKFfKsA2WXeAWmhktVnbrDg9afFNw+nxCSeHx+wud1nu7jGft8xnLd55xLVWlSlTGm3UKNVyQfb8IWbMINeXkqjSUdIoGOMUwCYliikEa3HZC7gyDEqUTaPSUk4DIDHTYC2btcW4Y5qmIYQW32yRlJYL5rMFs9mM2XzOYjajbRsare52I9HZYZUUTXZ467EuE0JL2y45d+4S19PDbLo1x6fHnJwcsb+/z717d1ivVnRdp/bAaQQ+k9qtYBitbd02TFbEslD4fqrEUgEKXYgFA1L7OKtxKzL3RR2s7s/S6f0m8vKLt3n15UO6lYfSylplDNU66Cxd//6Y4s0xSAX5gO9IWqqj7jsRqN8pLW2pAI3XW0FRxSKtWgDpiWLcA5OpAO39kIsZ/+Stz5Mt1p55JkbX+vF56hsnNTR5VciH0t/O1c+oZB21O/nzDxDyOXYvnGd3b1fF2oTQJ+ShSN93bDadwHcZAQiRc0AahGCJV0CqGIr1zJYzdnaX+NAI0KsLe43rW6PPThUKkn5fytXieYuIZJE4Te1xtolKbzXqpjOFHUGy8e+mHvO2xtkWa2A73Dbj3Lnv8xTgk/9PxRF2fF1+v+sT87ln99zFUcnVOasWVehrXhV3pu/KJSkBWT6vmS8pvsHvwt5syWxmOeklzo4pk4xjiI7cR9J6xUNXr9D6ICu2kU5zakf75ljt7BMUky4hLZa6x/yFrWz992wbYmK9WpNS1HNDUvWk6RyXR/VVlDxhxlhGLJEqUamM42JSV2I88xklcqSYWa1WbDYbUTaJZ/dy7wO5DOxcUEBeySAJUazsjo+58+yzoxJMKXlShtwiY5RcmLdzsY3NWeKarKFuQqyiKWrfmWj81jhCQf5cJH5yVvbwXIjDpDLsvZcYVElVPnjd+/TamFRmqiVVIYtqqloCeW8xriFn2KxW9AYh24Ja3SrJNWddJ5Tw5YzEvQBKQE9J9h9nhKxvVT1MchYeEzPDEOWc2m4p3ahtLKDnn0zX92LnWHzt6u8+2sp9Y7cSQKIBTaAPfeT87jm8taxjAuL0q7nGym5UjpI9W+5VbLaFNGWopBhNDijR3KjVnpB55DyWM3hjpd9USdcZUQGSNWJSd5PRLT/LFLGf17uyzorNdpbvkb5Acx8Fg9hPvX7rVb7+1ZbWz3jvU+9lb3eOFGsp2cx4nnrfU5QCv/1bv8PRwbGoHel6FbzX2GrQOMOqjfeUlKxkt/HcZtVWalTg1PXKid0gmteZlOhMDRVqZ1EJ8bJPofkAUXorFCGb6ON2WI3l3UiWwGYlx8j+WVf/arNmdf+r++e0PkDJheOjYw4Pv8ErOzu898knuXD+nMZxYbRYk/7Q69uKhesXj7vrtEXLc5djo5DbnJJ5ohBv4xB13dPHq9eVy2RzWC9UwwctJijElGR/cHb8U8mbphiKsVwul/llfpmfs3+bp+3T/GH8Q26lW2xKp8+qrlk1N5lVGW17Ok25tEwZlXoLoL6QCJFd1dWUbSfqgdtrMuO+U8c+xXDh9Qsqp1tvdbpvuYzC/o19XnrkRY7nx3J2NIama1geLLn4+iUu3rlI6Fqcdwx9zyY0NG2LD4Gg6s7GToQfawpmexCWLGQ0ZDwktVLPlQSdC9ipz42eJ+Xcp8VkpWCMqDxXVb9U9yQlCFljMRGG3tI7pyqKlaQU9HrDaAcXqvqSvreuqePYMhZMxhTJ3VAczgWaPOfccIFHbz/G+o01B/N9bp1/jbvhLgftPr3tZJzVOadj4WxGUfOnOp9RVS30GUEhpa24qcZG4wXWdaKuGUwxaA2vciHeLaR9R2+gZCGWmfHU/taxw3ZkPF1rHV/mzM/ObPBv2d7ZZ4rv+1aA3/wVOF2+3VfyoD1of63NmMLNJ+Jb/mx97y4v/et/pTnXB+37rTW7e2O+5QexfeUrX+HcuXP83M/93FsSbbaJSg8UlaSllHjxxRd5+eWXuXnzJr/8y7/M1atXp8Lu79NmsTzJk/wqv8p/wX/BP+Of8d/w3/AMz3DCydt9edIKPP5nj4vwynd8S+FbH/0WX/yFL3Lv+j2Kk9hvcbjg2nPXePzLj/PoVx9ltnqzgtgPY7PZsjhe8NjXHuPRrz1KP++5/chtnv/w89y5eYe7D9+lX7xz5v3yYMnNb9w8e3Z+h7bvmaSUsiHlqEktJSVp0qlowr5s2yPAKG1ctHIds12J7LTyVapoJnUftk5vUCWvU8yYUtV+zJg0SOPhUY51zllCIxU2JScEXi447+WAlh2GObPZJW4++hQ3n3iUMJNktFRrJuKw5u6d29y9fQ/fBGIaxDIobgh9JG4SQyokU3Am4fH4dpcrV65z6cZ1wmImylBU2yLPYrFgNvMUTTIXo9WqsafvOlK6Q7ep5AKpHkspU1LUSs44EpWy2rhsQQqS+DBWQHStNHLejVVkRRPZk2VcgTKBDsBYKV0r0a2zKpsthCtja7WzVDNVq7fqhFKA7Frm569w8fpNbGiZBS+EEWPZbDYYA207l/FjHcFLMi7lTMiZRRNIjeHuwR3u7a959dU7bO4MXLu6YB1bXr51m73lktlsycH+PTbdCe975CHOnZtTHCQsmUSXDfPZQu9NJf/VDhCltRTE1smMykpFnsKbxuDZtn1Un+S65f0xZe7t73O6OhmJaPsHR/z5nz/P88+9yKJt+eBT7+PKtfNEBXxzEWKdzIWkCZ9MTFGku5MALsYIgS+o3YB3hhwj/TBwenLKnTt3OF2dslqvNekj88QaQ2g8bWwEQO0kUYsTkkAmsz5Z4YuljwM5DaSCVjwXsrE4W7A4+l7AWGvApkKbHBfO7ZIbx+HBCevVMSZ4Fss5TevxoRWCoDHMZo1c86ZTe79CyVZtk8AbIXvEHOmHSBwSjsKsaQjWsR4i1nlKihALwVna5VLuNyWCdxQf6DadgoSSTIq5p+sMx8dC1mnbVlXWJIG72mzAQGgCJUeZF9ZibSAZmXPDZk0BhjTIsy+RbAoxCuB3enJM68/RD5FGwURRT5FxlXJhM3R0sSMPkdIP5GKgqTYRbz3ethNZQmTLEBO535CO7uGypWkD129e58q5C+y/tqE4qaz1VsgIzsr6N6SMUwuWXLSKW2eFAEeSwmqadgRxSobgPU0TyFHsA703pNiT+wG81SShZej6qgVEKQUXrPTXEPFtQx/TCFI47yTxXBhVlkoF+RXcqBY3KUWCa+m7DV/448+zM5vx0z/zE4TGUSuYLZ6dZo+f/KmfYNOv+dK/+QrdcS8/CV5IK0hS2jrHEDPtrCXqwdcHT991gFh0eiu/g5I1c05s1mu8F0A0zFqsUWUjGzCm2loYIbOoRo2nAiQQQq0kd4AbSQYhyLyXJH8YwS4zZqOVQJXyuPZsk3PzfUCjJFHF+sUBs+DIapFxdHLKSkHHneWOAMPeV6EDyiAWlEltyYyz2CjJY+88xXhRLjBCTC0545ynH3oa67E2iDVcO+dYQc4Yo4LPMi8mCyZZz0DsBISYmZUgKft60zTMZi2ztiGWQopRnoOShGql9q4qm8TY0/cdOIcFUWbQeyQbUZFSgkfdQmMpoORNqwo5UUHukiXGcdbSBs8wJF2HHY33DEMkGbXow4jVSSWzKGAiCW5Rp5PPZwSNyQJqpzxgbMHXNTerhU8f6eOaPq44OTnkIBwwmy9ZLOfs7u6yXC6Zz+c0IYAT8qEpYu+aU8Rki8fIXpKHEbCtgLC3lphV6aVoVX0Bq7uj7Pte1MKKAIIxRrp+ENsh7a+ck9joxYEce3q7QRSjPL5pmM9FQXE2W9C2QlSazWbMFgva2UzsWr3Y+Dmf8bZaZDkB2ess9w3BNwQ/Y2dxjnwp0T/ccXp6wuHBPgeHB9zb3+f49JiUB0pJ5L4TtQ+r6gejuoIsrmKJIgezUTUn1bh2AiZgyxpsa72u61TJVi0G4eR4zac//cd88ytvsNdc4uDogOANs+WcLvb00YyqHWVLFWVCtSYliQpu3J8A2baBqWtmhR2mz3tnNsFuyhSLvsVh6Qy4qf0DZ4HT2kYgijI+0wkU2gLz6jPJFVjS51v/vw1Aqc3JGEPXvtH1GOMgeswzH8L7OXvnLrN3YU8U0sbPkBh+tTpltVqLqkbOSiiK2JwpQybp/RmT1eK6ZbHcYbG7gw1Bq/S1j61YM1dLx3pPci5IQpxVxZdxLKGqHluKrGPBQqljbfuBbhNXrJJJrRK2RlMVqtUe41g1Wx9hxtfeiqjE+LpVIrth+zyCgWI8oV0w393DWLHO9F6IBDEK+dA7L99mDU6/J+OxpdBYS3aGVbdivYkcH6+IbWJnGRiK4/hkRRsavA+s12tS6rm0t0M78yOIl8nEIoQZ1dHQB2QrFDmOzem+7wMA/4JkwP0ztQKUuRTWmzX90I2qeJtNx717BxzsHxK848rlyyx2ZqPtW9H9VLon196X/tZ9RRaUaolTLeuE2JRSoh96VquVWMcOUeerAubIuSHguHRN9mqr7BijFp5Hr7yCiVnVIev8mtBZCQUsKUqsoikEXDbMZi3FGrqNKAuOZx4twLGqvBkUjC4xqtXdtE5KaZOuzUUKIXKSaNy7ona3EQ1iIKv6YhMkZsg6961ai1WVaAqpJGIC01cLdK9zUGKWISYgiS1TMZVtgDGOLL5o5BhHW0JRKVNyrKpwDEOHdzMhj9TjKboP6loR00RMFOK27JETCj0+7rccY6DrYS6UFMndWsp2nOPiQ9dYzhesDw+FIGlEFbLG6NZYsaDTAqbxc+ql6jopY8WpGsl0BWK/Lc/UWkMxmhfR4gbnDCZrjKcHxLpOkIva7I1HFhkTRYvotqo8K+lDlArltZQT1jhefeUVdpY7eO946qknmc/bradk8ASeeur9pJL57U9/ltXhSmJBV4mKqohkjDpGi/ppSkm5jEYIZGypCG3ZqknMxKgaM+bTCuOZo9rCVcspo/2ZixA5xPpLSZ/K7t0+SznrxrhCzkpmHB+GorHVtkHedj9trcX6XEyReXV6csyXv/wlHn3sMa5fv85OXjBrWlH6MlvreO2TcQ1Qko+Si2R+Tt9jVN3ZaI4xBGEuBR/oVXFVih6ntWRcLIvGZ8aMOZyCrIGxiFq0UWVTrwVyKYmib42X5sXxUfNRPmA+wC3/On9U/g1fS19lk7qRSKQdquNcrb22nlklXFcS0qS+Ks85qhV5zb2gORqUuJSUKF+LCLMx2GQ5d/u83u5UTFf3Hwocnz/h+Q++QGc2YxGaNTDMO/ZnG/av7fPayYJrL17j0uuXGVaBzm7w66DWzY0WGAj5x1TlujrWS6FkM963mNOOj0MJ/kKEllvXNdOqxaXmBmoflTLZRJq3KMKUJVVIajZZIj1VhdafUVMSopLX6/ajwpLbUmgsYwwFNU7U9QuxAQ2lYXfY4+HXb9KVjiN3yL32Hq+ef5U3dt8gloFishLC87iP6eDZihvrGr215tZ16D5YYFybpzdSSZ1ljJHlGW2+mvn8c89wYec8x8c9kAnBS6xXi1FqjDyeI6a5+9b/OhNE3/em7/Z7D9pfehsC/C//R/6iWPFBe9B+0Jqx8OSH36wyU3Lmzte/+oCg9H3cFpeuYDTv8YPaPve5z3Ht2jU++MEP/oVEpd/8zd/UgpkHrSor/ZN/8k/4mZ/5GT784Q8zn8/f8hl+PzWL5Rzn+A/5D/n3+fd5mqf5r/mv+Q1+gzXrt/XaQhd49GuPfleCyq133+L3/oPfexOx5vTCKd++8G2e+7HnuPDaBX7k936EJ77wBO2q/b4gvPx1NIOhXbfc/OZNbn7zJkMYOLpyxJ1H7vDtH/s2L7//ZZJPFPv2RdSPfP0RmnXztn3/v037nklK4/ZSAQLNgtXEIWRKmh56TVyJBZMQMGoSavy7fkq1MrDWijqBHlStfg6FsbqsHvqNMULEyHmsoi0UQnBjMg1rhBcl+vOS0LENwe5w5dpjPPzok1y6cpmmDQKWGjAm0Q+n9Nmx3LnCrG24e+8Nnv/2c9jksKbBesOsFfDt3PkdLl+5RggzfPDYeYPxAafyzzkJoOmbhuXODm0TyAViSfTDwKbb0PQdJ8cdsFHCgiaVUibFyBAjcRiUtFJJLGdBLclxTD7uY7IhiIyeJLDTSHiRBEoFBmqfookPsQqxqqpjnZ8qnStJyYnlW01iVIBnPlty48ZNLl6+jPUNs8Yxn1lMKQzDbFRnijFjrMUHQ1ApD1egMWKDdDcVSg5cuHCedm+HzgWa+ZyP3Pwgy6ZhMfPsLt9HFwfOLXeYz+djYsAZAXubJuj9eKaMLTKAsDULoH+2M7vmOx/Py/S/Ck3UFF/KhZPTNcfHx+QcGYaOV156lc/+zu/yta8+w+pkw9wHbr/4Kn/7F/8W872GIfa4orZ3iCR4JimJJoklYFYrQuvxaiFkDZATfRpYr1e8/sYbHB0fc3J6OgL8ij+Rc6LvpSLQqeR+VSwB2Kw2rE5OSV0UxzXncGqZkEshD4lg5Vru7Z9QGJgFR+kT1gROjk9wjaPx0MzntMsF3jucDdjs8LahmDgm/GeaQMI19F0itA19tyGEhmLFfillMNZjTGHQpK+3TgE4AUWsszgMwTpQwoAtiHx+kXrGJhh2dlqtaDPEVPDFELOoOTRBxrcTtgLZZ9rZTACA1FEw9LFwtF5RyITW0wZL07YCymcLvjCfNRwdndK2DTFmkSlv1WYsJoYYSbawXq+ImxWzfgFJ7PSSUaUCrUwuJeNCGAFT64xUJxqwwVMyDJtTwsU9rJ/jW8f1q+e5+fgzvHR4l0LReZ4IzmKbQMpJyApDxvmisvyW0HiplFRCW4wds3kAC6mPOGOEpOSdKA4MMkYwaj3hvNhNxaJKadUyREgNse8hF7xaUJaUREo8JrGds5JgzCXqdUcBRIyTZ1PAWi8kA5Po+1O++Mdf4Nxihw/9+AexjSRDrRjNsdMs+JmP/Tv0h4avf/nr5NLhXVGgo8UaRyoJ5wSsqJahIXgomW6zwXuvCW+D04ppIXupzUKBYg1xlLWva4qpeBfOBbUVKCNBxzkHqiKUdIzGNIj1W0o0oRElnVSwpgGbSWVQAol8pqw/FmPyuPJ450ilCOC3BVQ6JX/mUi2QwGRD2kTeWN/joD1huVxw/vw5tSdNYhdmVCmRjMsOZ4xYfuUBH1q8tTIWETWQlDPOBIw1BNdQcsYaT5jN6Pue1amQlVKKcvmm7uVlAl+MwTuxWCwKwuWcleQ00M4ajNpOVtKALwo4WZH7L0BKXp+HkHTSMDBk6QfnvQJyanKm4JbTKh8h5whwEeOggIYkuq2xFJMJ3op6kTXEJMCn92JvWG08nLXEpJXxSqbGKIilKlUpCjk7pQpCCVEw26KkX9lZshH1hxITphiG9Yb16SlHh4H92YzlYofFYilKRXOxh2sbryqFdrQDdBiaxo4khpSSErkLOclzTDkRkyWbREzSN9aojaNzCsgUcE7mkwJDFTyPMYk97WiXIEB+163o18esQ0PTzGjaObP5nHa2oJkvcCEwn89p5zNmjaieCVDitLpbrtMgQJ5FFM2Kfn/bzFnMdjm/d4mH08BqveLo+IjDo3scHR9ycHTAar0iJ+lTkqFaKkrcaATktQZTLCWLsJ5zCgGVauNWwbQyxr7ABFoomapqZp2crvnKN75FMK8xRCGQBGso1sg8olDVLeszzLkCtVOsXQGMbQJn2f4BFZysUbnRmPD759C4TcSqdkClbEE64xumFXdbCabIykEFac8q/tTPmp5JnZbyu9JqTG0rElwYQde61k74txLV7lzH3rvJcnmO3b2LLJaL0bpaLlsUKVOxNM0S7x2r1SkHB/uYbDDGgzN4Bd/aWcNyuRSypzWY4NUuZnssynubRtRIC0JQkvkbcS7R9xHUAqSO2ZInq9ORXDjav41oW+2REeCTtcSpjbSTGIVJBaGMZ5FtUHui6ZiKi4/k1m2SUlVvtWMMVD+iUPChYWdvj/lc1Gm9NUpSKqNCoTFWVQsrUcmM36+OL6zWQLHMZjN82xD1DPPQ9as0zuGDpQ2XSTnRBll/Khxcz6FSSGBAlZLO3qm577Xv3Mp3eN82p7Dik30/0He9rBMpcnx0wre+/RxvvHGX2Ee8cZwenvD4ex4jtF7IC1kioko4EAvZutakcU+yRtRv6nwhZ1IRxdeTk1O6rqMfBh1z0ykJjdNKMbz2XODJDykR18nK1683nNy9Q0pRH40dz+4FiDmLuW2G9aanIIpXJcnT7rteC2TAhYBvwmhFborEhsVktdzMomxqDMXKvu+ck7HhHBi971yvo1orZSUMZ93XZHxaPfti7UhqItc7zzhnaBunR0chHFtnxnlk7aS2UjF6KQoo5CwWTylDFwcoWYqKrKjUkus8hOA8XdcLwceA0echKpRKYqYwxJ48DPgQIKtiFqYKVKOXISQZHWRmJD0xVjinOODmLcaJzfPeouHyw9c5XJ2cmeu1H+TvRp6RrWutFEeYSjBA9kar1p4xyvN0VvZxg8QWFbwwRq7HVvWjrTmNVn0WXbdc3Y/H7ypjzGGtn3IoRQgtNd6sRRIUGGLHN7/5dYJzzEPLu9/zLsI86IyWPnc4PvDUB7hza58/+Tefo+82uPpsS819QVVnlrniRlWyIati1Pb+Zoycc+r8LDWPUPcfO17B9JmVGCX/M1hG20zMSGYSQvz2elx/JsVkeSwGLGMfFArZbu+vSrxKMi9qPs5Y/btcADFGnvvWt7n16i0efvhhrl27ymI+p521BFUxt2bUnBTylVphyr0nKE6Vwirxu2wRmNT3tziszRjrCE3DMAzEkazE9FzM1vOq40kG+XimKKkwFCHYWy+fb1WlsN5rzoW5mfM47+IxHuFL5n38gf0DbvGaWG2OJE/phzFOY+pfUxgJdOO+ixQ7mHE8MpFojIygXKplJZNSnvaTzdOt1lbnHUCzakTtVrenUqDYKYYqJrPaO+W5H/k2tx5/jYeef4iLr1zEr8UqdbNxkjsMqlSk+6DzNfc3zSPJz+r+rUUPxhhRC9O5W2qRZjFqrS0PpcBoDzrm4IxUI9fXRsKtrqvTeaKe63qiswzOK0lJLeGCqryrZbirhDRV9K7E00riqcphI+GIIvavpWGeF1xZX+Pdp+/hKByx39zjjfOvc3vnDU7CiaqPFYwpo2pyzRuMa+2Yh9sKOM/2YJ35Z2I86rqmMb8xsJ5t2D85klxxNmOxoAxxixuVR2seQAbBGG9spzrr9ZT7BtSZyzJbv/Cg/ZW3r/4IfO2Db/dVPGgP2l97ywk+98/bNxGV4mbD0SsvvU1X9cPTrP+eoeB/6xYWc5ZXrnH86st/Zd/xdreu6/jUpz4F8F2JSh/60If49re/PdrEPWjS1us1n/3sZ/nCF77AT/7kT/IjP/Ijgun+ALRddvkpfor/nv+e/4n/iV/lV/kz/uzts4Er4JL7rm/ZvbeLi9/5PcUW7j18j9//v/4+X/lbX+FDv/shnvjCEw+Uld6ihSFw6dVLXHz1Ik9+7kkOrxxy9+G7vPChF3j5fS+zOrf6aw+xjy4dkXzCx7+6df8vq33PV2gVoDJayRiVLGMMBCfgTJ8TOYnYvWQnrIBrSioaD85KXqKCMYmxQrdW2ABQxNYpo8QaPdBlBawkO19712jCTaTDQZIqzvuxot4wB2bMZhe4+a4nuPDQdZbnz9Oo3UgxBmMHNpuW0K5Z7DbgO05f73ntzgG5E+AxJkn6tD7wvvc9yeNPXibMWox34BxJE52jnLEx2NDi/Jzl7i7WO/oYWW96fNOx6Ve0i2MMfqxoNSBkjTTQ93ErMSN2caOfO5rM06SOWOQ0NLNWEvJbJKWUogKUWROAmpgdsynUrI4A9Falk8cD/vTHe0lmmlG6XKr7zl+6zPVHH+Lc3hIXLMEL8cgDtDLcCpCbbe/1kTaERZRdHrt+nRufvKqAjCY1jVRKb+VYz7RSJBFjgN3GEJpSM0cT2FXfSwW76im//sCceVeZPkLuUX9T0wriYFCgpEIXB/b3j+jXHcNwygsvv8Kn/n+/zdNffVrUenKhL55vPvMtHn/347z/x56QqrNYkxR5sh1KhWGIYxWiD56mnWFKxhqxENl0PavNhlt37nL77j5HRyea2IahTxiyJPRzYugMWD8mGr0rGFvIfWJ1uCFG6HPC5IJJBYylbVtsKQx9xwaxIDg+PmK5XJLxDGVgNvP0Q+Li8hw2WPqhx5ZCaxxgMc4o4UFEqbuUsMUQS8QTAEMcNljE2i4OPdY7JWRYgpc53206QjvT6uNCLJHcZ3xyxCEx9JlipVLZeCW4bDKmg7mfkSg0NlCcp+96IduYQnairiHS75CMYb05luffb0jJkjCsNh2mwHy2BCxDAWsD+My5xS7L2Yxbd+5wfHiCDzNC49m1ns3xQB6iPOsM9+7MOHj+W/DaHXw7w84WpPk5aDxu2eCWQqiz3ssaGwsheIxnBANoLItrF7E+UIzDkCnJcuXmI8y/+Syn6xMFnYyqH3myMWAdxkFWS7rUD+Qo5BUhL3m886QYCb7BBA/WMgw9KavimDWkEjFW3PcCRgh5XSI4WWsEgDGEbKBksjHEYumVmONyJpFxShCr11pk2BGcgwx91CS3MVIxqLZN904O+OPPfZ6dK7u869038cZV1ABPw4Vlw8/+zU/Qna751p8/S85F7BliJpaI9RYGp4Jqso8lp1ZsLmB9oO8HsfbKYErBGXluRhV6hJBR1JliEAKhC/RlUFBAkoAJQzIOVwwxGpzVhH/dA60VK0MrVdQYS4oR1yiYkQEsKRt8VQUoRimNBut0r+gHvAKOw1CTpgqiVKKSk0RmyYWYHatNR9eLDd/53R2Wi4Umo2XPtSjJt4B3DVFVdkTyvygIJ9ci+wzEIVKcEXWK6PDWMW/nrNdC3uy6jgot1D5DSRoO5B6NEZDVyuKbUuL0dK0guQDlwct9OO/xjacURzGQssd4T0piT1aaxNBHTL+h00psUY4Q1QgnizrGGELbYBWQ8y6MJKZRRUWfjVUSFM7hW7EnrPQU6UKrxL+qEjntPsYICWay7YlYJ5prkpR3FK2ir/pBwjRNFMTKJKaIiUL+WZ2cKPFnxny5ZLGzYLFYsJjPmc1bZlpp7EgUKwpLxWWxhYtJLNxslirzrKCWtXJNXu0yqs0uEps5r6TwMZkupOmYkoAHMZFjVlspUbQblMS06TbY1QnhWAhLvmkJ7UxjlYbQNGIHp2DXfDajCQ2hCQTvBeHVzPxIMlLCkag7ZkKYsbuzy0NXr9EPHcenJ+wf3uPo6IiTk2PW6xOGocNZS49jrRahYlXjRlKweGQxkoYqcCpKOkJSquBgtXsTqwslLw5WLDVyEvCoFDqNS62ZYqpgRWWrqOJEUkvgqhiWq23TVgyTt8aGxFH2DBAyAZXvzDZavighQOJkiUmtrgtJx9VoS2zMVtxawVdGQCgrACqfj6KUZykhFkMxlVxTgbLxN85aCo1nlgkEFcu/pPQVR/nm+wlll73zF5nv7BLa2WhhKSBmJqYOux4IrQMT6U8SJ6edkiDUFhuJty9dusiFi0shLVir42krUi2qo2A9xor6gdHijiFGbEpEN+DWHZS4RaxTMFoJt6MKmp5R6jyenkedX1ZtVPyonoqOrdGOe7TtmwhJI/amD66eNc7axk1/Kqg/DXEB12bzObvndmlnQa7F1nOCwShJsCDA7Hbkbrb+AJzf2WHvyeXYh1VR5DudJaZPkXnWOoN12z/5ToDjd26TysHWcWP64URUAMhCHF1velKMpDRwcHzEN7/xLW6/cZshRXkPhrt373HhwnkuP3SBUoyooFLUaqmMFl05TapbQrryen/y85iFTH+yWrFar+l6IQJYJS1T97gscxMMQ6/zRokbORWObr1B7KKolxQQQrUQvimZHCMRURftuo7QNBQcuQz4YMmp0IZWzg5qDew0P3B23htR8ymGbDIWIZHVvVNIV0mIWNbpGVked4wR5ysRTe3yUsQW+f6cZC0tAE4JxEnORt6KKrNYd2nhRE4jSQEkvgNVFEmZkhmJXRnUzg1moaEY6TOJGyKz0BC85+R0JYQtK2dt21piJ4pa1hloW9anKzYH9+BkhfUe4wIlzERpqHGYoOQWzauUrM5TlT2CwXhLszOX9aaO+WzYu3oN//zzDLGXM3QR9T+snWyqjfaLFcJSUWKF2IxJQZOQUexIvqhjrZIDRA1TYqU6IVJMEuGqsmXOQoqwVYnKyOsFic/rHm1UYUlSQEb7SdWao5KsqeuNKEc+/czXsc7TLmfcfPQGfiQjyjrT2Ia/+YlP0K87vviFLxKTxNrWWGJWxawsZxiZwHKGl/1MyERiSy4EDkNRwpCSWjSuqpZXxkp8bY0jmTTGWXVhLZqQEOuzurhPJNxctosnzLi2VDvMMq43mk/TvBymFg1WspMSppQQZ6TicMzj1WvabFY8+61nefmVV3j00Ue5ceM6i4Woe1orFoWm5vr0eqo+jxQTFT1PlOm6rMWbqniaqRanKYv6Z/KBru+JwyBz17BFqoCqDmXry/psivZPTAmzpcLuKtsDo+Rzp59i+Yj5KO/LT/FCeZ4vly/xjfQMq7QiKrFfPtuO57raRoJzKWIxruvneJ4wqEqZHfvEOjeSc+rFm9rPpRJetvbZ7f4flOjphTgj88JQLJStZwOF9c6KF37kBW49eou923tceP0Cy8NdYhzoN6KU7kMgaLFjLRrw3uGMkzFsRTVJ7j/L99WYwGhcUfODRuJeU6ZCmnE46H1jp+uzhfF98qdQ7UsndTTpR2sHTN/JOcdNlnBVBd6Hagkn/xd7WKsKb2UrPzipGEn+2GALtNZzOTdcWl/k8dW7WJsNt5e3ee3iq9xd3mXNisF2jAq9Mcmfeu6TxKTcrp0UOc/G6DWuHYePzslxsrLe25BNYuh76c+C6jXr3K2xlATROCMjblRbVqWraYhuz5epmTM/M+OL27Hxg/ZX0D71d2H9gwHMPmgP2r9dM6yO7OhzAbI27j/3LHH99iqP/KA34xx7Nx/9q/t862jPnf+BJinB90ZUcs7xyU9+kpQSTz/99F/3Jb7j2507d/jMZz7D5z73OX7mZ36GD3zgA6PLzPd7czj+Pn+fT/JJfp/f53/gf+BTfOqv3QbOFHM24HuLFrowFQ181w+D/Rv7/Ku//6/46s9+lYe/+TCP/9njXH3hKr733yFP9sPZDIKxXHj9Ahdev8C7/+zdbJYbXnvPazz7N57l1hO36BYdyae/KJX4v7ndu3GPFH7QSErW4N1kFWISBAWrrB7oSgh0KWriO4/gQSXPYMzZSiQ9hVmnSaQiSYNaMyZVc3Kwq8pM9ZCX0pTEwkwqJFKRLooezll8aCnFMcRESQ7rZly9dpNHH3+C3XMXmS/3aJtmzM+VMpAzhGbJ+UvnMa7j8ScL5y5eJQ2DAvI9cchY47hx4wZ7ly9JctBYqMkKJBmVUwZrCaHBupbZfJfQBsymo9ge17SYjaOdL3DFjkByVbNIcSD4XhIyIQrAoPYqVVY6axW/tVIJ1c5aZnMB/po2jIfnGKPYxsU0Ho6tVn1W66DpiGrGxJCxSljSP/XZWldtReR6cjZcu3aZGw9dZGem1VdkPEpc22rlvg38/uUwWItvVcpcQY6a13mrzV8SIVKhW4qjFXEdqkLR/VVMI5Byf7svSVAFlGvlV1VNquSlUqQyOA2RzWbF6vSEbljz+u07fPYzn+Wb3/gGfb8h514kr3Pm6OSI5557nsff9zDFipqGMxZjHaVkhphIKYqdBUJSmbUN7TyQsxB5+j6y6npu393n1q3XOTg45ORkRRwEmOqHfkw8xiwJE289OQ/03YY+gbOGk/0TVvdOoRj62NMGR4qiita27djXO7sLhpDYWXYKHARm7YzQNri2EBkwSarcnZPkNM6Tc6bvN4Qm0A89lETTzlhvVgwJvGvxpmogSGI7NC39IAv1uu+wJeGD2GCtuzXOOhrnWK3XDMXirWWzWUsSDEvXD8Qi1pR4Rz8M5H4g28zu+cDqZK2V1l4A+BiZz1piHii9JoqNYdbOsdaJhZtZsFlvcIjCm1QNSiK3X68Z1j2zpmGdO/okdnN+CHRDIdjAYrmAWFjimXc98zDQnWxoraHd2SPOLe7ijNwIwKSGJVPFIUpqQUG+0OhYVfKAc1y5coXd+ZIhi2VXiYn/P3t/+mtbdp73ob/RzTnX2nufc6o5p1oW+1YSKZkSGdkmRVFyHBmWdRXrIrANGHDuFzsxECC4H4z8C/fCMZL7JU4uEBsB/OFKdiA4dhR1lsROlCyKZlNFsYrF6rvT7matNefo7of3HXOufapoNiJZbM4gT5199l57rTnHHM073ud5n6cWRyqatHVq24IkC/sgMzPlREWsL3Kt2CrEmfXBSkgdNshcKIUpJZWCh2yTrM3WM9VMipFgPd6K3Q1Z1mIsjHESlwbnwagNgfNir4dYd+RS8E7swqYS6YaBGKd5DGJF0ceayEvXnud3f/8TfLT/KI+84QqOhLV+nr733nsPH/3IhzEp89Wnn1KbQkutmbzdUYCc0aSeZdxu57XQVgjBk1AQF1FJM2p55YMX8DgJeOac2JGCWAnUlIRc5ZyMg07sRHPKSu7Ncq0uYNkngEiV+dD3AFJ5z1KlLiAvSqyRJLS1VlT2aiGnLM+mATU6jq21SqwSYp6xQniyVrb/05NTdtsNBwcHrNcrVusVoeugZLwXSDinNCfJc67gFPAGsGorSutjpWl4J+tJLtjgCH3H2dkZp6enIneriWqLa1Ch2LfqZmwqy7WXTElJyFymsD2TaujDi0esw1rmowFSwltkTbGV6ivei02kMxu2M+CiSVcFyGwVCxurWXMzg8ZGAA0n728wjDnJfKiSTLfGktWupZamgqOWSC0hrxYWuYqtXc6iNpRrxLqKswiwlbMCF8zAyfxZtu3TQnDKSnSK08jZ5oTj05usbq1Y9WuG9YrVwZr1wQFDL0Qf7w3Oevk811Gc9KkrBZMitggBrIECvhZSEWITs2pQwWUBPpqtYwMMjMl46wihUJMoA+VciDlKzKHEdtS+drfbqXWDVm13HdZLFXfX9azWaw7Xh6zWohK1Xq+UrOR0j5E4yQLGenGkU9Uoqa6uBL9iGA6569LdpBTZ7Xacnh5z86ZYsp6cnpDrTUodNYEva2+z3RHsS4KPWkWxrfXDXOivwCwVVWZCQIJgxd53ShRVyqq1Ih6Xiw1Mq1CXe5LKb7zH6OulHxc7DEwjYNT5sPm9TEh67daAYgRsMfLcJNbXe7GW1CwulfTXyAFNGURi4MUGE1AAbyl2aHDLjBVViROaOoTwOMoMmst7mBlQL2oFJRbInqYQUMce+5V3cXB4gYt33UU3rPBdh5+VlETFplCxPjCsBrCZu4BhdSDrQiMr6l50dHREv15JwUWzbtrDipq6iLUOYx3OS4xGSlTjsC5DsvjQyVpm7FxtL4oohWwz2aYZFJ+BRX0VDRM3Yo3qnZ+Bvga83g4gMo9LMz+D1moD49sfFjWlZv8mCjTt9Y1EVjk8WHN0uKJ3Tem24urXTn3sddW55oycM+cr3HvRa73bbO8oI07IUbaB37ehiV/jM7/W9Z37u+5DhcxjWs5rkRRHUk6cnW144stf4dq1q+SSZlJMrZZxGrlx8yaX7j3S77Uzk1rsNOtQJaM5awVs9hLPlJLm2GSz2XJ6espuNwqZP8u8kD1M7rRUVR20hqNgeXAIbErmbJq4fu0Gr3z1q+RRzglNza9WJDYx8nuhD9hcxUZYcwHOC8BsHGQKZj77q5Wjnq1zyThnlfQjKp0xZUqJqr6i+6ZB11VPzhJhpCQEJuuENBBzVJKClaIQJWenFOdnnNW2Thcfea8sgG8XHDFHyYlYNyv9GFWmrLminvN4FzBGiBauC6SU1D5L1xokKMlR7HiDc6LAWhLVWmJ2ZIS84n3AhY5gLD4XvCvkcYcbjBREBINdeVHGpa2DTePvNUak3T+BC8h91/3304cgJBCrJN6q1qYNxLcK7lchmBsdH42o21Tamspqy0XMxBydANY6ySFUUcZOlJlEbqyVWKjFUkbULpsq0lzsZK2SUIpaAsq9NNKNWK4Z/TwllpRKThOPPvZ5ji4dYULgoYfuw9mqvSXvPfQ9P/uRn6Hmwmc/+9lZoZRqlJBQhLCh5INZocuYebztd3fRs3lbO6wTO+dZ0bsuakfVlHMEhqqFbPtKM3J29vNzlvzE0rf6qXvXsORV5J+Sm2gqhrmt7zpfTVGSTdXftGpX10aMgd1uy+OPf5lr167yxje+kbvvukTXdWK/FRxG82LW6P5ZZQ+flxaa6ksjsiqpoyykHufFWtE4Oc+m4KXwYU+lfe7VCs1er91os/wS68tC69iYq5yfgqdz3awyLWMM1vaA9/Ae3lneyfP2eT5mP86j6Yuc1rOZRL7MLN0LG2HkNlBAwsU6f/asTjXHN1qeoOd2qBzeOCKMQeZh3Sea1Pl80IoCmo2n/FjGaLs25UzJZ5nK7mjH9nDLy298mW7Tc+9zl7n7hbsZtgNmcvjR6/4vRKXQiTWcEH2W5yTWlpVqiq4RRcZtkXlu60IGzaWR6JYzUjuLndsHlURmdV1tsUp7j6r7Rq5S4JdzxphJbRBFKdFYq2qQEr90ndpK6/24dpaYY5GF7LevXtbiOVs9vvYcnB3wyMkjbMOWjTvjpaOXuHZwjZvrG5z60zlfIpLDdbG1a2NzPmssc7BWNB5tcX2LNfTnXWE6GhkmtXDUM6Y+zHnsZ9NI4W3vFBKeaTFz68s6//Zyn/uByX77fjtefL+10wP4jb/KNx5J3ml32g9We+hgxV+8L3B1N/L8ySkvvvwKVx+7Q+T4bjRzLv7/9rcLDz3M1Uc//x39jO+FNo4j/+bf/BuuXLnC5cuXXxOrHIaBX/zFXwS4Q1R6jVZr5ZVXXuHXf/3X+cIXvsCHPvQhHnzwwdfsy++3ZjBc5CK/yC/yC/wC/55/zz/hn3xXyUr3f+V+1sfrb+t7NmWl6w9e5wsf+gIXrl7gHZ9+B2/992/lwrULUgB9J7Y512yxrE/WvOUzb+Etn3kLZxfPOLvrjGfe/QwvvvVFXnnkFXYHO3nxt7nr4hC5eeUm9z1137f3jb8D7RsmKdUiVRs5i/1IcJau63HOELxjO+4ERNyr2miVWa2HmyR6Sxw5K9VKsj8WxSGqVtsarQQFqtEDKHQqwz/VCGjli1Hrnqpy68ZBliRIzkhyDEfOhoP1RR5581u59777GdZHrNYXCJ3HegGUqJHNZsPh4SUOji6BSTzcX+C+KxEoUJJU82PIxtD5QOgGDI5qRAbe1ArWzKCSWMo4fFhhbMCFgYAjWw8pUqh0/QqTjMq/qxQ6mZyiAtpelXXEVibXrIfZBhKAtWL1NvQDw9CzWg34rpsTgzZGnI1kl2dgvAFk7TC8PHAwxs2HXJHfFxUJZ40mHBX01743VO6/7zIXj3p6K6BzU0c6V4Wz/1Ff4/CrBXt7l2S+9ovbe+qhe5dhNyUu9u5bmtz7tfftq6agNOORRSofs473XAu7szPG3Qk3j2/y6T/6Ex77wpdIccSYTKmS0MvVsksTL778EpuzM/qDgZIgIqSGKU6kWMk54pyl84Fh6Bn6jhAcMRWmMTONkatXr/PsM89x/foNTo5PiVMEDJvtjmlKGKwoM+SCtZKOCM6AKXjf47EEHAerAWMtsXghQBirdmPt2akVTa0cXbzAzVvHXLtxky547h3WeG+JMTL0nQIaEEul5AnvHF0XcAY6Z7GhY7dTazcxl8KHwFRGUs44Z5jGkVIkYWStJceILZm4E2UocmE3jeSYybUypYmcIilnagYKWC/ksZoz027LZrOFJNCwKClFVus1Ke+4eHjI+vCAXCZRLtKEecXjA3TekIKh5h0Q52BJrAoqKRfwnmm7wzgPCs7EmLQqszDFqCBsxvlMJdKFDrvqMfceEYZeqp+rJKQpmqw0CwBrMFQjlhcinC+AS62ObCwXL13kYOg4mTwn4xlkpL+MzMWSgVyZciIEK5ZkSe2yvCHnkZSM2lyJ6gmlEpynUoVkpgnwLgSyG5mmERdWdF0POeKMpfNWyF/WQLa6rhchKNWqRBOp+nQWnSO9gNUpEVYrTBLrGgEkkiQRNclcEEDtxaee5d/95u/zC/+3v8qVuy7MYKz0VeWBB+/j537+o/zG//lbPPfSS8QUKSmrVUQVValcZgJuUQvEWX1CQclawflACD05TVqpr6QCZ5FKXyHUWgydF7Kh0b2MWsm6bkteVaxKDQLKKIortp4mE6xXQEWNErIknXOUvaJZ4lgrFhqlCvzk3J60PEgFtFmISvItVX+iQM0CGFiYYmZz9TouOC5cOOK+K5fpvdN1uGCcgMMxFlLOYk/kNTFdq4CmCmhYrO5Rqpyl1mOUCusVQ99zttmw3Zxp9X2ZCZWlilpBVTsWoxiDs0vCWEhshZgKp2cbUi4E7/GhU+uEKusAUo1sjGEwls571sOKKUXiNEGWe8FaslZyG4yQ7IyAkaUUUWqoQqRodisC3sozDy6gEm9z8lfAGEez8TLGUALUYufnU6m65oklTEvYC+lGLSAUkFjso1pCu4ARCkQpYArUOrGJO8azM9xxIAwD/WrNsDpgfXDI0XqgHwQ06oKosJSQqSmqpZqQY2sRYkwqGZPB24GmmJJzJmn9brPGmAnPQLFKxtGcR86ZrnSkmFSRKan1Q9KfG9I4MnmnYKRayYZA6FccDytWqzXDsGK1XtMPA10vsc3Q92orKsqOrinNISp+YmdUcSbjnaeGytAdcOHwLq7c+wDjtOPs7ISrV69y/eZ1zs7O2Gw3xGmiRK2SN0Ur0ds9qgXqHMdasa2URUfi10b4thXXyZwcY6Jx81tkI2Msz7YeKRnZX5zYFzYyjlR/C9BYigA0zSZnscox89ibY5fvceJSLQ2UFODSq8KZtUYIlQ29nMGr24K5Juj1SwABAABJREFU+X51PdybI/O6xEKQ0cVRAFntm2b90ayqWx6kKClqsY2rlGJE+aypvj7xFvxLb+HiA3exOjhUe5ReiMBNaaxmYoyz2hlU3FHP4YGqJWgM36gEslZ6midTGy/7CjIGJUxZLyCh82pTlaGInoxzXtZOa9X+TPq6lDwTPszeelVqA7D3VZGE1Oi8FJn44AXw1v4wpWCyKHsuT6jNwb0gX4dhI86wR1hqRDWjf+9bnRgKh4cHDJ3DKat0P9Vx7u31eGBePUr24qfli6ac8DXb3punUkmpMLhZ2+6bbPXcJ83nmrr8u+3bjRRdaiXGiZQmduOO555/gasvXxW7WXmSyPgQIunp6RlxivjgBchFxm5WclIpstc75/BKPLPOqq20kKw3my3Hx8fstjvGcZrVLmKS4pg2RoWQKuB9Hwwrbxmq5dqTT3LzmeewJeE6T66tAMYLgUd7z9Rl7vd9z24c2e52WOtY+6Ckkoz3QnxuIHzRuNopcdkpaTs161J9+mL3JiRgo8T2qoNkJsmUSi5JFE5q0QKkIvt8yUqYEeUho+BxqWqNGsWCHe1nIRkWQrCUkkTJOHSiAJ2FFCbzS1RbnXMUZ5SgL/0qBAU5x2eNkcVyVsmUet1oPJaVoGKMxJ4gfWC8w6x6XFjURc9nYRSWNsssEkK20ecj11mAw0t30Q8rxhSZphGqKlg3/kOpMxhfbSMDtXjTiLVsqUCznW3zV9aImWig+Yf2+zEmtZWUGFoIqUWXSTuTPIwxe3PaLIS/Kn0jxCexbzLW6hiWAVXKEssZA2Pc8bn/8FmcDXRd4PKVe/DnpnpltRr4uZ//KCUXvvDFRxknVbUy8yXoKiukgCYWMy9Kui62GMEqGb9ksQFsQJE5t7AtsW+tSiLStWJRsJb3bcpSbc+oVUh5dlac1BGg67sQU5eddbammuMTJ/fUbMfmnzHbZM2vbf2aE9euXeX09IQ3venN3HPPPbOFaa/FGm2hlvde9lrhUrWxWubnaXUOzISWtp/rZ7phRcqJaZrkPEGdr7myxwDZW9T3FQbnNaZUYkp7+7Ddi8Plsq1xPGzewK/wf+cF8xyfcB/n8/ULjEnmh6iaowrjLH1l98KPWlQ0aumHlsMTlVqnz75q7FPZHm7JfcJNXse3VWWc5f7iEMlWLFyNlcK6mWxrlkHY+nC5eaTw42DLs+94hhfe+hwXX77I/U/ez+HxITl64jQyOo8LHu/lDNF3ncTfTq1gnQer47QUuRed47NiYzvL7D3TkrXAQ/4j39fXlPY9s1x7LQXXbGtV4a+pF8tekTE5kexEUzKz1mKdZxrFGs6HoH9LbN2Ulqx1agJgzxEd98nXUhgh1na+BA7SEffurpBejpyFU266mzx34TluhVscr46Z6jiT4mTu67jcW5vbOiQ5u/mgMMcKxkD2mfFoZH3zYM4tn48s2usXEluhzPHWTMSyC1V1if90rNWyLED11e99p32H2m//HPzRT73eV3Gn3WmvWzsYLPcMHQcU/vT/+gO+/KUvzfmNO+37uw133YNfrUnbzet9Kd/xtt1u+fVf/3X+i//iv+Do6Og1X3OHqPT1W0qJL33pS7z44ov8lb/yV3j7299O13Wv92V925rHzzZwf8Kf8E/4J/wav8bE9B393Bv332B7tOXg1sHXfM3mwoYU0jf/5gaKL9y8/yaf/sVP85n/9DM88oVHeO/vvJfLT1/+ujZzP4ytnQEObx1yeOuQ+756H9llTu454dblW3zlx7/CrftucfWhq6Q+Ue2fPxKPQ+TWlVs/aCSlSlRgSUgqTurMqsh8W6wosKBJBa00s8aqgk/ck11eQBUQ4EsO61qBU8ysaIDRahsj4PmUEs4aTcbqgdc4siYqZ1/vonZpBUp1ONvh3cBdd13hoUfeyProkGE1EFRhwAargBNMU+biXZc4ODycgcTKAgrZdljWhKg1AqyVIglLkbiW5CnGzKSjzncYLyocoQ+Y4LHjSCmiAuJ9UBKQVSDZSeV+1apqmykFXFOj0qRNq3IVaeOA73vCsML3Pd4HOeDmWRgYY5aE3UxS2vvTpKHnhOJcMSX3KspXWhWpSRdNJ3H3PZfog8NjwIiPfMMs9tv8/L9mzn9JrS4Jlf8IQFBBkquFXS4k68CoMsa3BCzsyY7u/b4Uv0uCJGkiu1CJceTk9JjddMbjTz7Opz75aTanG+kDI4QAUUMx5Bo5OTnh9PiMftVTSibGjM2emETK2TlLFwJ9Hxj6ji4EjKmQM3E3cev6TZ5/5nluXL/Jya1TdruJlArb3ZbtbjvnF5rdYC6VYCpd5+m8JTjH7niDB3zvKLXQ2Y5msdiHjt12i3FWOHlVFVyMwRaw1bI52XLmTzg4XMk9eiQhbDp2Y6Kkic5LMquaCs6IJYvxTJPYCdWaqLsJi1RE55xFpcyLFLcPnloN27ORXFClnUocJyE6msputwNn2E2JccxavVeYUmG33TJNozh7RYj2lFoEVJgy9ENPHwubazdZH3R4Ezg729F1gZgSUxJrlK7rwAa220g6myi1qkpMJpbCdjuSxkjNmdXqgD4M5Cq2jyUnnO0oqRAL0A3QDcSx4hMwJkwfBABommLK6bD4vdFXzyWOWgKr6lhdrVfcdfFuvvrCVWrplPDgKDkSkyQNu04s74xzTLpGe7WdMlaIAmhy2xhDsJ44RpFRN16TtZJxbXYh3svf2Iq3lmkaMdZSMKIKU1Hijkwgo7ZZuVR812GdoRTJ1qZUON1sBYwpWYHnQpwmTRoajPeUnIj5lGee/Aof+61P8tf/2kfxBz1akjmTU+57+D4++lc+wm/9X7/F889tOKtQrBAyGqgQU6K6itf9J6YohNzU7AB0vdIDc61i9VSLrFJiRSFktKwgog+S7BSFAiHrGOOxFqY0SSLVFrwTm6qcVZVIQetSquwFVEqNGAzBByGOGFmPWyWwJFdFkQNNUNdSwJvZFqpVki9oSVVbCx1uwVGQg8H1m7eIMXL3hQscrFf4IGRiZxzVGrIVK0ljrJCBlaBkrFXLFQQErwIYUaqAiM7hu4FiDf3Qkw7WbDcbzs42ooRQpZLclGZlJYCcVJK3RPFe8tZKVb+AE9LPxhhC6PGdJxch1BiRVMAbIXwMiG9ymibOzs7Y5iR9XrPY4WlCvcykMrV68UYsZGIm50oIDucNDgPOKogq8UirXhdwQtZ+W51aaywKJsyWdUb3l6zkRBZiEsvvWJ1Py55a1RrEYJCkfUmJmAzjtGG3OeMsHHPa9xyvxQru4OBAVbPWWl3cQ5A5VYoT4mWK2OSw2c+KFa2y2Tkh4WUdp8u1VXJSkNWZ86/1QQk5iVxljqUUF0uzpMog1pEwsDPY7YZtCGz6ntAN9MOKYbUmqMrSMAwMXUevdnGhszKfrJBdimFW4TBWzYBMIaeECZ4urDhcX+Deu66w3W44255y6+YNrt+4wenJGdvdhimNYpOb0/wsKCxxqlq+yf0vgLLRNdxQcd6AQ6z11K5MABchS87wcZWxgiozCk6zqOZYBcyC93i1K6yzsmaZgYvvh1Z1bkMDIhswAs2+uJG3lL2i8G+z/1kO0DMppgEzpZEo7EyGMCx6IvoxM1BuTFMCkJ83NZAG7M2xVK1gxCbOGo95/D2sugscXbxE6HucAl7GGlWAURA2Fx2fkmBxpcxkDwH+9b51vGKMAugoEUGuvZGUrJGo1lk3W545JfmhihICzLkZoGp7nfRTljXLKDm0it3kPrgt/SpjzzmH9R7r/Lyu1RbzN2x1+aVl/O/H6zNJZPnbzHOTc79Tq+zNpRpWqwFnmwLMMrb3I/q9VfLVA83s//z23/7a54JFSQ9ShaIyT+bPcZ5o79f6DJRgUOq8hijETsmZaRxJKXL9xnWeffY5YtRCGRogq2O8FsZJlI+cF5WFnEXZR+IROZM7K+ujb7Z9ALWSY2a33XF864TtZmTcqWVnqbpOpxnjFwC5Hc0rP/IjQoJ75rlneen5FzC14L2sg9bIWLEIATEmUXktNAVFeTjCPzPEMRLtSNcF+WYB4xzGqKJayVQrRTxVH0NTF8256l6bSLXdsxB7Sm5EF1XDRGxpS12UhEtqcZXYm2IMKRdSKiqPLkUpMYmCo4ayFCaa8leuiCVSrpylHaFzOCzTJMUKstbIa52T82lKmRLFPlLsfOtMlmgE7hAC3gYlnsl4MaaBy4DzolqbwBaoOWP8okL86sH99cdvBbrVwHp9wPUbt6hqfyWEoyyq11VtmtTGMSvxwmp/zHFqW5dzwVk/E7bO0w33SItWlbNqI7KUee2qOjEb6R79TMkdVVV6ownvgZGc0WyxVauqEOV5PFsnZ5ObN67z5Fe+zDAMrLqeuy4dzZenISTDeuDn/tOfY0oTX3r0URkDRtR+Gl+EquRzjSUpUMiqztjUWkxLb82P5JyIyvwgqqpomnms5tqI8FZ7Rfd+k2cygqwtRYurFqJ7IyhUteNrr9snOVtjpYBD44mFz6a5uNbxBi2YMfOzarZn0xT50p99iYODQ+6++y4efOgh7rp4gS6IEmZFyDvWIMWIexZ1swp720v292VUoQo5WxvrwElxXwiBFCNxikKkV3KLqFLtj2z5e/9cXdsN0FTjKlWJcs22kKpFAVScdbzBPMKvmAd5J+/ij8Mf81J5kU08Y0pJe6nMn7EojrKQS+ZcpZ4vrBDSDLLH16bmaS3pMPHcjz7Pmz7/JsjSX1YHZq1QbOHFN79I8hEKi7KtKuHtV6EvuVcldp9bDirZJ64/eI3j+25x8eVL3P/kfRzcPMCUREqWaCec80zBz1ZwoZMcVbNYE3JlphYh2LX41BS7FKtq7tI4w5zLrO1rTXWUFncpscYaIURWS1FCVCNZl7IQ/muVQpVmNVoAbCRFO6tDWu9V4b6puYaFxOuFnN0ISzP52hjN07TxDpCp1dJVT5d7LqW7efiFNzDWHZt6xkvrl3j50ssc98ecDWck0mxd10akmVM7be42ItlyPjAGOVPon1oWMp7Ze93++lFBci7GLPuHafnchbzUlEnZi03neSgdyp32HWrFiNVb/MEBYO+0O+2bac7BL/2SrDuf+tSneOzRR1/vS7rTvo3N9z3Wf+9bC3272nPPPccf/uEf8rM/+7Nf065sGAb++l//62y3W5588snv8hV+/7Rbt27xL//lv+Shhx7i7W9/O+9973u5cOHCuZj2+7l5PB/gA/wz/hl/lb/K/8T/xOf43HdMWenknhM+8Z9/gp/5Fz9D2IVX5QiST3z25z7LeDD++T7ICBnmifc/wdM/8vRMVrry1JU7ykpfp7nsuPTyJS69fIk3fuGNxBDZHe54/h3P89X3fpUb99/g5pWbQlj6Ae/Gb5ykxOIjXqvYbGzLRK0FrwoOOWWMk2SWMQZnJDE6qwvMyQhJOdQslYECaDXZbpVTnzGHvcRII9EgCVCrB7UyH6AkmS0CDvo5CpY74wnhgEuXLnPXPZfpVoMoCnhRS6lOFBpSzpRUObx4KMoMGLpOSCZyEW65BitKMC1ZLCB1ksSqWkK0RCimMnQdvrPgKp23mFQp1bHdSGJynrR7SZWqqilYL5QlW6nFSfJJE3RLNb0l+EDwndi6GLdHPlL5cq2OE1CoLAdVu/T//uF4BhvM3qHc7B2EZ/BBfnjx4oFKpbcM8l4i8utNpnnT2fvsb6LVKupbzrSEtQS9xi4H+G/8vXTM6/G/5DpXu7WEi1juiOz/brfhdLvhZHPGo198VKqea8IgSSJnjVhCVUOlMO5GTo9PuXTPBaAKcQZVF1MyST8MdN7ThYA1oigzbiM3rt/imaef5cb1G9y6ecxms2OcIrudVCQLSOdmApskbiVp7UOglsLm1glnN08FJA9CsTjoRWVkTBMxJ3yQCuhgDHGacCEIOchDKpEpJzbjln7wpFKwJuCNIfQdxiRcsIy7aa7+ThbW6xWb7Y6Kp6h94hQLXWdJVtaWs5MNoQt0Q8dmK5YTNUmCfHO2YbUa6PtOQG4MNij5LxlMLcRx0meX2eUdhUjnOyYL2+mMNE703YBxA5vtSEoFZwtnG7E6SzHT9x21SnVnpdAFLwBEZ9kcn5BLxVaZZ8ZZXOfovGfcbUklcnJ6igsd4y4xhA5bDdMU2Zxt2JycYSeLsYF4fB1jCy7fg733CAaPUbuOOs/H8wmslhFuxpgG1aTqApcfuEL48hPk6ikmkdJWgPCy2GiF4MHC0PWMY4KScHaQ8WGEUBKniimQSppBHIzBO/nM3TgSvFR15pIUtC8kInFKItFuHc570jjinKNzXkE/ISp547GI+1FK4olRq9yVsw58k8sXEl+xYIwTsgyFbAu1Tjzx2GN8+vCIn/7ITzGsexrqWzXB++Aj9/Of/KWf5Pf+3Qm7F18hFzsrXLWVwRiL80EUdqqAHN6KHV3Dz70XklaJUh0vQF6SFcKKNU41UHOZgWRrK4MPnJyeCWlV98KmtpFTwnsHFIKq01kFJlJOC4hulXCkCeYGVjQQqBEkpOq3Ve1bKFkIIKp2VxFbSaN95I0k+5NacHSho9TC2XbHNE4c9ANHF444PFgpFubpTKWkSWwpo6gVebV2hLwQlUqek6c1i5pNMVLl7kOgD56hDxwcrDk53XC62aiV5B7ZwtQZ2DV7z7WwZ19o5Z7jdivENz/p9Xo6KzaztQjZsCaxIKsGwrDi0AX8NHK6OWOcEjZoUr0WIc9V2Ym81bGvAGGpourQe48zhpxQVaM6gxo55dkqzBlJlVtNalsjxOfgVBlC7WdS1N93TW1rb09SlQOoC5HJChDRvMeqsIZlTJQigE3cMe0cm80JJ6EXEG6tRKWDA1bDwDB0dD7gOrVWcA5cwWYh9ZQiiXWvdhu1JGKz9q1QsiiUZVOIJp8j45Qi65jES7Ivee9JOeh7F4raw802tkZsSuO0Y9yeCfk69PRdj+8H2Ru7ntB19N3AsFoxDB3DaqDv+gU8CX4GGaqRDrPOYKqCrrXgrIDAq37FpaO7eOD+id04cuv4FscnN7l1fJOz01PGcadELatWWWI7Y4yTcV7VDkXjI2sNxllVqxMVPGw5/0T3lJCk7dMxKilVMFkV9ATEslZsga3G107XHWqzdsqzLfD3bNM1TsJCo0pgAg5ajd2aKsdMQkJJPApizeQlXffammEamrO8hPNSntr2ALoGPFGF9Ne+q0sO+9+pGNge4J5+B/1wwLA+ECs0a+e5K/GyEF1rgW7oZ4JPU7U8FzsjQBz6ee2M0cB+aCoXS5jsZ0KUxvMGHIYUX11hv9yDLhq6p8yqbip9VucXSgxvG+g4g1pz5ylwp4QRBcP3yUamfd7eX63bX4soUfd+3uKdfujmbpmZAnvj4Vx71bf2zxPfStMxh4KCy9N/7c//Rpp2bzubQAOwFcjVa00pzrH41auvsDnb6Nm57g9bHa+yRk/jxLAe9EPkXGjb/qPkpEZWEpJEIaXMbjdy69Yxu+2WcRyJUZSTUlLFoBZ7tmuen4NhGMR27flnnmXc7qCqc5iBzvdiSVoyORVRhDEGh1+KeXJWQr4QbGNKOO/mGKYDbOehFlVYy7N6SDFC4IkxUnHKGirkUkVVssiZME5RlD68KNEu4K4hxkhQQHpeixv5ryBFGnp+KRRSzVTE1rQaiEXUOb0TK7umdmxNJUaZJSUXtdZre0NVa09RD4qjFD0Y52Wu674RrJ33RyH+ezIZb/1cHBanRBzFatsYRx4l3rdlhVn34BsxXcfvPHaUDDD/V9ehuox5vOeuB+7n+edf0LM11BLlV8syQ5q9sBSZSDGENapsVSve2yV3pH+3cd7yQzknKdGwXtXEslpbitLKfNXWYozsbd57mJUcqxapyVVltSKrWiS15EFkXa65FUlpbAIUU3nm2aew1rPuerp3vpX10Zr9LAbA+mDFX/7QX+T4+DrPPvc8MZWZ/GNnGye04EPzM2WxNm1Pwxmn6qNKwGiks1Ln9RxjMVmUW60V5TPvRVU7z6SMuqf6MrMdMEaJrMj21+YYLO+/r6pT5/FgaGu5CDftWcHNiqHltj1lWeD2bSZPTk44PT3hpZdf5q1veQv3X7kihN0QCMHpuctQcp1zeXKekTcsGlOhucNGNW57ZCOJWyzGCwkzBOmfaZpILQbaJ1u1M8n8X+bB3FTcMU1RTdahoOd/y559ai0YE/jx8uP8GD/Gy/YVHu+/zB+6T/NKusoUR1pxhdyCxjtFxuRs52zQYhIlBes4qRhK0cIcazh+5BaPH32Z+756HxeuXqRqnm0KkRfe9AJXH3xZiZ9NpavlEdU2sKlTzcy4NveXucy890pF9I0HrnPryk3Wt9bc/cLdXLh6kX7TU7InJcs0SYGmPM9ujru993i3nGtkfBaMrWIdWMQSsimDtVjY6FyuVc4y1hSKEhDnQa1NOHYLaToXIey29X0mm7W71NjYpEhS0n90I857UW9VxVL5I2cH5yWnaqyqm2rc3fIyckl6ljCyNxoDIVh8cazKikvbu3jr2dvZ5R03+us8d/k5Xrr0IhMTiTiPAYn32lqs54DbyUG+uQVIX1iz/5rlrLzf5vdpz1b7WK59yd0ao2VyknAA14jyEoeW26/lTvv2tOt3w7/7yOt9FXfanfa6toMDiDHy+c//4NuC/bA14xxHDz7MtS/98KgGffKTn8Q5x4c//OGvSVRarVZ89KMf5V/+y3/JjRs3vstX+P3TSik888wzPPPMM/zpn/4pH/3oR3n3u9+9FKv8ALRA4O/yd/nb/G2+wBf4t/xb/in/lKd46tX5vD9PM/D4Tz7O8b3HvPd338vDjz48/2h7YctnP/pZvvTTX/r2fR5KVvoLT/DUjz7F5acv85bPvIU3PPoGjq4f4eMPD3nxW20hBsKNwDv/8J28/dNvJ4fM1Tdc5Usf/BJffe9XmYaJ3OWv/0Z7LXspjvteJ4t9U0pKcr6pQIGcUVhZQCgFSpcERaZiFDxoVd7MByxr99K96mvevnZOkyet8yp406xA9P1yXRQFNDFClWpHSWrrT1RtqRSLIbBaXcS6jtANSuaRg14phdOzW4xnI70f6LtB7teojQhZLBVcwAUnKhi+KSMIQavUSm8HldEv4i0Fwn5yhr5zQuBxFedRELIwjiNTnAgVKEVpLVXt9fKslISSF3Bg9yptmiVNUy6YK+SKWDKAVDGiyg2vVW1f996vJXEaWNCGcFH7nloEMBcLpqWayVBZrTpsS2Key+7Vc4fneu4rpQrcjquYV7/6VQdws3yvaoXioa0UtQr45udf1f/X+cqmqMlATSBY7YuFqJTZnJ1yttvy0rVX+PKXHyfuJqwVAlMDrzKa3KMQY2Sz2TIrtGhiM3iPtVUsAzqPs07mSqlMMXP1+k2+8uTTvPjyVa7duMlmt1U5/sh2Ny7Xqe9XVfGhWqm2Dz5AhbOTU50bel0YxmnCGMPQ9YDApVYlt4e+V+AtYMwR3jluHZ+yPhoornDr5IQbN465++gS7uZNcIb1Skg8qRTiNJKqJyMKVNM0YYwkpTwBbzzVZZzvqcXgvRB/vLHkmFmvV8QpM02R0Ae8t6zNCmsMu93ELk4YJ/frGIhZqjkvHAaCsTKXjCPFwrQdwVRWByvEQqQSrKHvVkwxkktlNaxkrlZDzBFvlehnDJcuXcCoQpxJlRAswYAplRBWgGM7jpxtTiFnduzw3nLx0t0cPnCF1VseoTdHnG12ZAdH91zCHA0Y76AuZEFJ72WajUWr4q9aoSkj0QAZVwvVGd7yzrfx7z/zecYbt+gChJWhpMRZzpLUtFIB3fsga441FGuJk4znrtPqQQXFxRbNMsYJawxD6MEYxhHSVKkWUhqhivqDDQ6bwdigxKNECJKMzyninWMIPbsYSTFBFssjr0p0pRa8glkC8IglhnWGXEWtJZWRYD24QMqRs+01PvEnn6a7q+enPvB+gl+swdBE6Fvf/TYmG/nt3/hdbl69NYMzzjkFBaQ80QWxx6xTFOWB0FNrJqVMniKJJIQV66neqHoPak1a8SGQSVrBWhWMKziP/EyJMuNui/Feqop1fTcGVSUSm5ZUkigI5Ex1i3VojFGBPAV5WhmmFWDEGafqL1LN7YKhZK1wTrK7tKr+grxH8EL6JRcSApjnCidnW05Pt1y864h7Ll2S5+uBXIkpy7i0jmwNpRohJJZCp4nqUsSaT9ZqQzF1tk5wweJdJ0lhHxjWa45PThi3O3JKoMn7RkgQNSgzAyTGGwUVND6pEmPEOLHZVLHI9AGrKiPVWgqWUiKppBkMXA0rvHNsfScV9koMKDUL+bIosVfVloqxFC+2dtZahs5TgoNoZ4KAdVKx27bAUjLOgAuGbA0uWaq3lNpUfyquWGoR0pV1YudIbolkZoBJcsp2JnzPtiFzVW0D+rWKuEZSTtgSidOW3dZzenLMrZWqEQ2iqrReDRwcrJScakUZJlRqUTKRqgkJEOyxagmXVSGhOgUbXSKqQhLlvP2GUZJJcAIIZO+FNBZEnTCnNFuLLuB9JuZCmiLTdovzDhe8KGaFnhB6un5F6Dv6oWe1Wok93DAwrAa6rtPx3YiDRoEGxHaiZHDgjMGFDt8NrA7gwsW7yHliu9twenLM8a1b3Dq+xWaz4Wy7EZWREjUGkXm1WBozz9cZILXMqhzNvmu/Gkie30IsMkq2NtXOzzKnRDaGmpoSgZIRZzteK2Ra+J4mKc2wiqIquSyqA62avgFuKHizAOrL2NgHn2cgeybKyH/mONZoTNQAzgbM74/P+eLMHAfuP6MWD9cXHsTcvIdwpccYqwqoXhXN5NlP00ieklimWQXtjZlVz4Tk4zBOYgsBEoX8NsfUxot1XLODkRsEgxAdTAVbdV2U9TJnUdVrRTZzLNvmVFnsRG5XKW1gufbc0r8I6aPo+lPbOeL2s0RV9Yr277lDl8NABQEjDQqcmnM/nfmpVJm3+kv7sf6rDgL7bVYnq696ZesPbvve+XtYTiUAQYH6b60twGF7z3zbGayNlwYG1lqJ00RMibPNhuvXrpNTlmetzap9VaVilOAUm+1krXOPCzEIteWx83pUgZQL2+2O6zducna2YbsbmVIUUpGSlBbU0yzvLVjsTMY9PTnl1q1bNM5HO/rllHWcCkFH5rMo5HjvBbo3lpXpsVYKGkIvlkHjdmK3G1l1A3bcUY2Rwh5rKVWIQ170vyi1zkQiA1jEKrNaJYIgZCDrZM4XjU9yrqrArMRPPT+mpDFLj56jPLkKEbdPDqGkVokDchW7TwOhC5r00b3EeSU66LlOuzBrHGN0UA9DL/tBlnkpSsqS33DOU/WapjhBLSQSzlspsjpaE+66gDO9EKQsdOsBer+wxTg/t+v5iXTbHGXuR6zh/re8hSe+8EXONjucrVjf7KbK/NamCumq5CwUamN0jJd5v21nzVoyznlRp66F4AJNkbmdXWVNkEE220FiybXFwEKsr0VUMp2Toq2Uk67py97R9thZSYmF/Co/E/XlVhhRqTz11OMyXwbP297+Voah25v98h6X77vML/3NX+b/+Nf/B088/uSi2Devo3pmMxJj1io5GutkP2oEmDrHc6pmkoqes40WuBmMErtna8acMUaIeLNqucZMztlzRI4ln6HFVXOuZlnfZwIZGp81MgMoeYFZlc3QCiJkDOXc1vH2WWa+H++WAsXdbsejjz3G9es3eOiBB7l06aLEms7PqrdZi/qMMXqeQgleZbbfakV5UqZg5+vWI4IQMLUvvQ+M00SMkVKbTeb53NM84udxwnw/tba+K6QUQRXQbDuf6hpTKpgCV8x93Md9vNe9j8/Yz/Ap+ylu5Bvsx3SzFRtiuy1KorJeVFrBoBbnFC3Y1L3SGMPunh3P3P20FDnpfRZTiC7ia1Mtq3K2QVReqyyzkrvTwbDk+rQf9ofMTFrTa3aF03tOObn7BB8961sHXHzlIvc8dy/dFMgxEqcR5wPOe4IPeN8Rglio+SBpZmudEhGXuH4en1VzE3vnOCm2MEruKvO1z8/r3PU2u3NLMRVcxZY6K/rPSlbz5yVqkQKCFCcpeLFCyLZOVCO991jnFtLV3p99ZTNZn3TgNAJ6sWCdvGf1eCp9HTgqF3jo5YfYvLThVneTl45e4uqlV7g1nJBy1PNu1linFXsyL82nd59y79P30qhv52KtNmaXf5x7ji14baQ5OZjqnND3KTNpSdYCqyr68r//SMx1p33r7U/+Ajz55tf7Ku60O+11by+88MIdssYPYDPGcPENj3Dtzx6D+r2bl/p2tlIKH/vYx1itVnzwgx88l0fabw899BB/7+/9PX7t136Np5566rt8ld9/7fr16/yrf/WveOKJJ/jgBz/IlStXvmbffr81gyEQ+HF+nPfxPv4uf5f/lf+V/5n/mad5+lW5qz/HB/Hym1/mdx75Hfqzfv529plp/R2ymzOQ+sQLb3+BF972At224/LTl3njF97I2z/9dlYnK77XCTPfC81Wi50sDzzxAPd95T4++Osf5PqD13n6R57m6fc8zY37b3xDCksvvO0F3vXJd313LvrP0b5hkpJBiEJJq52LqkIYa6iaKJmBnyqTrVXzlCLWIJJ0cpiKqMqgSYVSJYll9w6SM0ABHjuDMc5achHZ56LVlaZKxWguqnZTEK9x77XCzVGLo2axqZviyDhNrIBkJOE6TpHTk5E0jvh+oDozy44ba7CIOpLzTggUHnyHVv1BSkJ2ctaAq6J2lFFlA+Ephd6AUfsPvcVcC2dnJ0y7Hc54IT9YSTw325+skvV1zyPdGgULNAFrYPYcB5RAk6hI4qKUTMmZrIoICxJQ5TyNU5UIfdgUlWpGElKmAaN6ELby73OghoHeO32DMk+Sc3OlJR/Oja5Xs2FbsncPuoDbvnfbL2AwZFPJY6FzXpLO9VtZ9Op836lUNVio8zVNqYiNU0zkNBHTxOb0FrvdCU898RWuv3iNqgw1i5J99iqWqqmkmpimJMnFkjXBI0mergt0fY93BmpmyhNpSly7eo2vPP44L770Elev3+B0s2W7m4gxicVbWZLEaPLeVoMtgZIrwRs6b9ic7pimjMlSjU9xFCvi5KZaghPlppoLUcmA/RDYjSPizGjpg8cbR02ZKU2YNOGdZYobSIaDowMwjl2tOBMxncGtJOnW+4Cl0Hcr0iiVzP3gSVimXabvBsLgmHKm9x6j1bXWebFMMYmAJktNxncOVyxdsuSaZ6lzG+Cgv4QHjrdndBWMD/ijNZtxYjdGyJHL91wEKt4FVquOKRYMnmHw5BzxpWMVOsK6Z7Pb4HcR46Vyehw3oiTTeXbbiWB6nCv0A4TTwrST6ZEzUAL4wPqRN7K+cDergiTag1fRsTZWl79nGe+9YSwqIHvfMk1RyXDhrru4dM89XL95TJ6SzIkkEunFtASYIU8Jayy5Wgyi5jPFJFZNJQvJpVa19YSqFaYxTrNyS6pZATZJLmI9MQo2Ym3BeiM2XsbTD440JaZcIIr9lfdGwTa5x2rk87CiAGedZeUHxvFMAQ1LLpkpZqx3eAM+WKYpc7o55VOf/GPuue8B3vqWhwim6uwr+l6Bt7/jHWw2Wz72ux/j7ETmQNc7rK+kVCg5EUJHilErvAspC/ghV5gIXtbAXRS1KOMqJSUFk8RGxDpPilHk740lpYnVakXKVRN9ETcYdjETU8UFASFIqhaA7EnBB7wpYs9nIWvC2ZZKcIGoQI/DzNLsSRdWZz22Ghl4mmzMueAUXKTqM9J1tWhCtFpR0LIU2T+dVMHfOj5hmiKr1cB63dN3gWAKxcn+b4oYgngbhETrPTWlmbwqajrtmYjCUo5ZyDhq+bMaHM470mFit9txtjlTixu9RsQWoSIgvquSOG3YrVR+yz9yyWzHkSlGJUF5tWYVoCjYIKu6Jm5DWLEaVqQUieOOlBK5yPprbJnBRnB4Y/DBUp30+zilOVYQRWMFbmoDoMBkpRzWQjFIUhwjNpClMJW0l2AW0pzY3uW25ct9G4R0VaEUowCH7svNPkvjsEKziNL9rBQykGsi5ondtGNzGgjhmH4YWK1WrNZrsVjqOi4crhm6IAl7a6F6TBXFtJwTNjtcEWJSU1JzyeKtwzu1Qs2ZmAwlx2V9E7a6ADXWYckzsFCcFyKYWu3EHOUeaoYk61lMFjNZrN0Jcd0HnO/wnVRzd11PN4gFXD8MrIYVq2Et+2rX0fViOWIaeI0C1F6sNR2OMResyXjf0Xdrjg4ucuXeB4QAtz3jxo0bXL9xnZvHN9hNO1KMlJSoVaj7xjTAoCpoWkkKijbowCgJVuaGYsoKpqBAcPsaVcCkTSNV2MxksskQIdmFtCRWFd+7VUZmj6gl85DGAVebtFZ4sPyObWS9RvKYyUksBD39nXOA1vKp597HKMmr1NkUZwbdm2Jd0QuzqnamJxv40jupWeZ8yarOBrOlRk6FaUyiouXE4pk5PpdRhpEzhqxJqtpYGzirAJg1M1hHWe7FGHm9AMjtnqUOYZomUbVVOdGigBewR4ZZ3mgPAzsfZ5gGZrYCBTA6VhdCTSMUSE/P4baixmZvTTv/LPQlBYwpApLt/W4bC85pf72WEtbXbK8V89fbvv9a72de9a9Cs6mynLu1b+Jq5Hdk3yq1fQ2NrJhLmZUfxLImE+NIShO3rt9gc7rVDlkIqi3N2yLEUouMQR2zTfHBqNKa81LsQLPpzIXtZsuN69c5Oz1js90yxSjqkFnsOM8Xs+zPIqtzAkqOXLt6nRSLzhsLzixLFAanir5Vz7MAwTmJq7TAyVtLNAZKJZcIanuaSyQXQ9d1VCVOWwrGgfWyTsizUUvZJDGFc1YJexVvHS6I+p1XMnojKjoXAImDGnBvncFWgysC6jfSY7aO0Es8PKaIqxW8xfYrYhIiO7WwWg8I2cjhgxMrOuysKNT2Uxe82MclIdKbYIQMYeTclmLGWrG39k7A/ZKUjFgMVAfGES5dwncrgsYAYmlX984TQGNqvubIvf17y78P776Hg4uX2G5fnMksRRWSZRyL7VSd1Y5k1sjZQnIAuUjFXslNRbvO+QRRTtS9UtVeDHXOJ+XS1CeLWGcXITW6IGvxohho5vVcbJB1ntrl3E2FELwQrmsW20CksK1Ug1OyTK2Vrz79FBcuXWK1PuCRNz1M525bG4zl4qVLfORnP8LNmze5fu0mJUmmwDvdU5SQ1VS76mzR1+aB5q+MFGCYKnFhVTKSNVLsJvNd3sM5R0pJ9iIlyckcM8QsMaoIvch+YTS/1exobW3K3y2qli/suXXe7D1do0NJc3et2FDVbYxZ7Ehri6No772s/U1p8uWXX+L6tas89NDDXL58L5cuXqTrO1HdacQZ3SON9oFslRrL7NlkyXhWxRmRiqJYlOAksV0/iKpmyokUF+vKdo1NHWZWYWR/z9I1TEPoRixbLAkXEp0oP0kfXjQX+Ag/w0+69/OZ8hk+XT7N9XxVPqtIf0h6r81HI4JnIosj8Y2OWWORZzYfcuT38yqf34iU6Ouc7vm1zgWU86/pGjCfJ9rPmnSl9kMDCvYtXOUvQwyJW/fe4ta9t3jpjS9x5akr3P3C3YSxJ08ZEy2TbepKXmzUug5rrahja8GIMVZypRpfNRKf2FjaJfYtLde5kNbmGEbvqz3PFl+Zdu22Uq2d7SeF71bUbrRK7gXEqrEYskk0C1ohKwnp31lVWfKqpu0DwQcplnBC/nWqTtwI3XI9jcQkVmu1VKwrODyh9hylizx47WGmaxM3uhu8cPE5rnc3uDXcJNpIMlH6QR+xn5wQlOalfRk/8zxbDovzc5uLJuY5o/+qS17J6N4w5991zW2kpWYLd6d9B9q/+WuQX1tp40670344WmWz2fDss89+TxdX3Wnfelvdc5nu8JDp5Pj1vpTvWiul8IlPfIIHH3yQN7zhDa9JpjHGcHR0xM/93M/xL/7Fv2C73b4OV/r91XLOfOYzn+Gxxx7jp3/6p3n729/OlStXfqCUlQyGh3iI/47/jr/H3+Of8c/4p/xTvspXv22fUVxhe+F1GG8GpvXEc+96jufe+Ryf+5nP8SN/8CO87Y/fxsGtA2z5wXmO38lmq2V1uuKhP3uIB//sQX7y3/wkVx+6ypPve5LrD13n2oPXiEMkDvHc7/WnPe/++Ltfp6v+5to3TlKydgYUWiKn6qG70JJXBcqSBKEqwUaloptffUUW7/ngWZdDqFVFhpbtdtbShzAfAEWiXhQmjLV4a+mCVLqlkklZkl3eq0WBs1jjqdmxXh+yGjpKGjk7PiaEoLLXHu8cRxcOuf7yyHq9EhUEI7L4zjqVokbfv4gM/B4wYrUar+8kSZtLJaclQ+CtgvdOLNskcSlJmO3Zlmk70gdDNZmqYBVK7ir62dUUeRNNYCxpcwEvi5GFrbTSrgQmSzVjaZV7mhBvSW85p4oaR2nEJ62koaoUlDFK9hHJe1taFbpKgitwY2zFOJCqp8Ki/CKA2nJ+fu2NurXXkiCb/70PXJlzL6DWSiqFW6cbLl86kgS+4TU+7Wu3lqqq+ghEcnuxKMxTnBOjKU7knIjTyG63Y7s55fEvf4VxO2FMBoE/aZYd1kqSXZTGCuM0CQktZ3wQ1Y++6wh9r5utVIHFmLl27TpPPvEVXnjxRa5fv85mu2McR1JKbLdbUfVh6Zo2TwsyLnwtHByuwVq2p1u8C2LHZAwhBHItWE26TGnCW0uJ8vz70JNjXOZgKQTvuHB4wM1bp1RnuXj3vRyue7ohUGpiCAFMj3UdzhZqKnTegeukOs4nuvWayhnOGxKJkoEsfT/uEsZ50lS5cLRmjBPZSB5P+ibjHBQ8uU6kXDHWEzo/V4z6zpOnyLZK1WUInn69kgRv8NgQSZuNgPymVXJWfBiECFQM3gvLuNbKZrsBa+lXa7JWCQ/DmlpFacsScLYj5pGUKuu1ow+VKUU2u5F89Sp3X1gzjiNrx2wLKXPFzuvg+fnwGqP3tm9J3km+GULgyv338uRXHodaSVNWmwBZs6qRKtWxEZKMxVsIoSdlsSXy1oB3AhxqEs5aR1GyTjFFVJFCj3NGVKw0MdbUbqCopZqnmlYJLrYcq37FnFArWSrGgyPuJqqC8a0CehcjFUtMCVOksjx4R8oFTKKSWQ0rajYcv3yV3/vN3+PSL/817rt8US0/dQ03hd4HfuJ97yNvE5/82KdxOGJMxFo0kSrvWypKbi2EzmOyqmZp8rIA3ltSikIIUFvQnLNamFb60GFMFYqJWsOJCp0QooyxHByuRLUAIZqUnKAWcB79TTIFcprBWoMADU1Vp1ZRZqAarRiV5HyqYl1o1Uo15UR1Bq/2V2VUUK+kObFbap7l+Y2R+ZJSElDfWnZpYjweGaeBi0dHXLhwKES9WChKIAElnhiIDchua1HJWOfoQxACUxHSkdiUKnHKWUoIDKuB9cGKs7Mzzk7PNI5YSA0NlJI9us5WhsYoWGZ1P0hJ7iEmqYINYp8pAJko4VWjSnbO0NmeEDwlZ8Zpwk5ifWmiKJhhRRGrlEomLgCZM3gncYKtRj83S5K8ERR0g8mqQFXbmBGsRcBW9W23xuC0SrrWPNt21KoV/2XpV7NPtNB9ptY6gy3zumLanqDqXyRizKQ0Mk5btttTupOebugJoWNzeMDBwZphWNMPK7G7MFaUIK0ToDhnnAvUKsSlYhM5WzxhVnSR5yLPpz2TWoV0JiCz2B3O1ifVYX3Bewg1kFWNqzRVyVKparVajIBPxo6YndpluIDverq+p+s7hmFF36/o+qayNDD0PcF7utDhg8M28rhCDKatfbqHWxPwrtJ1iWE44OjwLq5cfoCz7Rm3To85vnWD0+NjzrYbpjRKLITGcKotIlaMC8BglCJoVfnznMVhVTIACyEkzyRyna8N0NMgp+aqz9boevW9CyoYHaPQ4voW9y1Yep3n+tKKglQLANOAquW9GvljVraoe3COMWIRuQfslNJImgKGOlXhLLUK+daYGUzGGEzx1M2R2ptYSs1M44h1lt70ShQz9H3HNm1kD7FLDGz3rr0qmGiqmf/dzkIGcApe1lr3LLBnztOiJEc7FhhSjOQkCk77v0NVqv05klKza2sxv37dfqyxcNvb5zFV6znAcH591f+0M2I7S7D/LBernfMqSst/ZQ62cF8UZ2fSxW3XyGv88/w3Kufv6bXPILe3BmKPU2I9dF/rg77Btne+0Q6V8CfPpLtc8kwATSkR48j16zdUkUjv3yxAcps3aLyUlNwgCjYNQHVqg7WMuTwTlG5wcnLKdrdlimmPoCSk02WOtIHR5qnBVCF8fPHRL+L9dYnJS9G54qi1gJImsxKOqtqsio1uU1dECRSGvuvYjRPVwLBa06ndTqWpazqM8VgjZ1ghCDglo4iFbEILp4woyFIQtc8oZ+ecK30XlDijS6euGVbJDbXmJQasEg81lZqSM1GfnrUW34kSEFZyDSWKbRmaL6m54tQWvhVptRajEHd98PP6470XkLhWDA5rnJAjKnTBUqyQJWJKbDYbtrsdKWX8IM/J4qi3jfd59H0j+8G87krzfcdd91/h6osvzAQKM+9Ver63og7ViEZSrGXnvU7sg4ycMZXo6bwXqz8Ao2rQLb4uSVcLJd8rCW22IaKpRlZyLvjQLQQXvYl9+1NnlrNVUjJpbevZnkJPUatca0Sl6Yuf+xzeelarFQ/cfy/K7Z/nhcXw4IMP8qEPfYjf/e1/x+nxKaXF90oOnEkwel3WGaToS+a80UI+Zxe7QavKY23jqnrv1jQFFO1//dP6wjspystKpJHzj67F2s+SEBAVVXkrIQeVXOZ1pdSCbbmPqjk5fe6NCCJHDp2D1ihZam/Uaf/PFnFVCDS1StHHU099lWefe5Z7772HNz7yRu66dIlhNYiyb0WvZ3nDlvvbL2+TrpUxZZGj01wU2AoxEHUY5xydWkNO00TKcu7c27l0xJlz00QFiJhVy6vEnmj+0Vm10tR5vShpVo64wIfch/kJ+xN8xv0Jf1z+iKvpmpJEcyspwHpz2++aOeaYr0wJNu35L2mwhfxpWJ5jU6dqZ4EWM8qpVlUc7V6udi/+bPndNm7Nbd9rbVqPPPfuZ3nxbS9w8eVL3PvcZdY3DvDZq5Kvw9mJcdwJwWf0qmrqZc7q3GvnEltRktKeqqDmm1q8WFVB0Lfnb8yc15z3xrbXGZ2rOq6Fi2WVwFXm+EU3esl/IrnTkjMkM+et5VzhFrKSC1qw2shYXl6j877FLrOqJ0bXllbYKWp51Xp8DQxxxZWX7mMsI7u85Za/xbG7yY2Dmxyvj/Gj476nrnB082C2yjR6hlziK/3eftJzPxbei5taDLI/NnQUzP9tL2xj7g514DvQooeXr/Ctx5V32p32/d9qLfzqr/7/uPfeZ17vS7nTvkPNDwOH993P9R8ikhLAyckJv/Zrv8av/Mqv8PDDD3/NvNzDDz/MBz7wAf7gD/7gDlHvG2zb7Zbf+Z3f4ROf+ATvfve7f+CUlUBiugd5kH/EP5qVlf4X/pdvvw3c69UMnNx7wqd+6VN85j/9DG/8/Bt556feyZWnrhB2YS8Pdaf9x5rBEMbAA195gAe+8gDJJ3LI3Lxyk1tXbvHym17m+oPXGU4Gfuzf/Rj3f+X+74u+/YZJSjnnOUEBemg1rT5074jTKmD03yJNbWmVULWKgZHbYzzO9mQtaaNqTdQqZCF17xGJcYtznoKCMEYAbIsk+JzkJcm6yDtjMM7S9SsODg/oVx0glaqb0xMoGd8HusEwbXeUnESmWko2xQpuBhJFVhzryAVqkkO1na+vkpPkk0tZ7qtJc0s1pB4nnagx9Dlwzz13c/LKVXJU3+9i5gNlNQac0by/qjtZo2ojdj7btGSgtQJuyt9N7rkCTpQXJKM9P0M5SLeqMNMyErr0tWdk9l5vME7k1J21Kt/clJwKwWlSykil3/4a+prJ09fYTBb4aO+zYRlXt/+O/rAaAezPNjvuvevotrH5H2/7CZiMKJJkUPsfeX+xvJF/V60OTTmyG3dMU+TmrRs8/9xLlFrohp6hGzC1MMVJSQXMAEIphe04SpLae5wV8NwHp+Nfki/b3cS1q9f48pef4KXnX+Da9ZucbbdstzumGNlut0zTq+X5hEwkSZ1YE10/cHDhiM1uIsWCNZKIbJLiGEOcIrmO5JTJ1hNjJPQeFyxpEpJGjAI877YbTIWjo57+YMXBao33jtVqoPOeXCLOB0yRimnr1XbNd+SS6PH4ooo6tuN03OGtIZUR30vVMUaqgje7aSYvDb2lZhiz2F9kKjmVc0nelCWp76qlYplqoetWTNNIHRMOIVV01tB3Pd44pmrYTYlcM30XsUa+tt7ifAcVYkm4EDBdwORKSpOCJZ6cIp3vqbXiXYf3Tiw61oGURra7CYfl7rvv5fjmxMX7tEK4yNpYjYAWXde96ll+M817z4+99z382Zce4+T4hFrkeQ19oKLVt1RRgcmJWrJW+WWcEdjcOUcxhuIcPgjRy1SgwOlWQFenSiRxEhWhUsGFjmAgR5HY9z5gvVg7pFgZx0glLUBNLXivyd+iMvgWtbiUZHPwAYzBVZQkKio8MSa8X+NdJwpwVJIpPPPM03zyd/+Qn/voX+Lw3hXVNihFKIOd7/gLP/F+xtPEf/jTz7LZ7tjliZgyoTN0XSBOhpgi1hkwjloTIQTZB4zDUKg1KVFJVQAVg/U+CJhVCt4FqjW4jBBGiqFfd2x3hphGnAdTxT7EW0/OVtYYKqHrBGxwhpos1ESaMpm8APW6/goxyswEhpasN1aUD61hVuwoRSxhluJZo8SsBTRpCemkYKW1shFaKrVYNtuJ7fYquxi596676JwnWask5QI1Q6744KkVUorkXBfgcwY+HE22v/WZq7J3VSphNbDqO1Z9z62TU3a7ERC1iWah6WAGbYyCEZIQVmvSKp+bcibmRMhBlDFUWUlUrIx2hhPwpjqKE+Loal3Z7baMu6auJJ9vbMUap0onzBX7tQqJJiiJpyiIJIC9BArNGiRrgtwaO1tPee9pVfSWSnBuBorsPmnFGqh2Jhy3/WshQNQZoGjkAtPAGwVBpVJWt7eSqeNEHLfsdgHnHJuzU4ZhxbBasT64QD8M9L2oaK36IHYjXvbIWjI2O2qz+CgCRk1jJASDDxofZSVNlkIuhYySsmc32opUhVusB48XBa0i5PSqdokyNpudg1oiJpQMssPtNmydJ3QBH3ohWYUw388wDPRdzzCsCCEQOlEw9N6JBXCz3FBArk0Yh1V1i4C1HV2/5vDwEpfvvsJmc8bx6Qknp7cYt2dM05ZpN1Gcw5rdHCuKdVsDTpe45nxYcx4p249/ZuuzmpbKodkmdHnN93IrpfC1QrOZg6S48/6tFCVqLZC0Err27v1cTDn3r7zOmkZQWgDtBUiS3y2l2RRZjGvkIQXArKGLB/Dc2wmd7POyJglZnVo1ZjDkGCU+0DV54di01IJCQg30zctr5HkriScjfzfsyVS1G1m6sBhZI7yzrFYrxrMNNddzfTfftb5RA50FR27jZw+2NU0BdO9rlji+zpuIztmlExewd77n5Yw442rtWem/2/svfVD3qvdlB0fvf26vGuZf+zyx/y9z7pdf+zzRXjHFyHroXuP08h9rezoijRswr2/yk9IKRvYGeamFpFatu3HH8cmpxJRe1ClMRdRwqaqsVZXgVjU2ElsdUapo6klV44JKSpnNZsP16zc4PTlhu9spQUk+s/3d7qB1RRsaospVcN5x6e6EsbfIqdkPy71UZacIYJ6FjKyqOdZZii2qqrOA6ilKpVfXuYVIbC3B+zk2EAKrIavFl8VQnRCiHFZsxzBY45hSEuWhmnEmYJzegLFC5lJlR6+kkVzEQqvS1hgzuxI0q3rpBFEIclas3EiL8o8z7bosuSohphack2KQQlNhcToWshQqaEzZVIWaglDLkQjp26gariWXRC7gvGG9WjPuEsNB1bXOzBNIrOy+eYWG/fXTWsubfuRHeO6Jx9ltNqDxhG/ve444I0pSsoUbVUBSXRG9LOucPHNVCJripJ9jZrJMu2cwEkMrqaOpN8ve12wtC5goxO3a4hxZj0DigUZAavGhEB50hLc4qIjioVc1RWphN+74zGc/w2q14sC/l4v3HM0qYXOGxFh+7Ed/jDQWfv/3fp/tZkPNMs9zzUpesWp9XfU8kW/bc9QOTm095eije4bG442x02JjNHZ03lNsIaVpTrk4VVOstilV1Zkoj5Fno6wXGcOgNp7aZ7URoPU69ONkxigBTPeESpmVXdo+3M4nLQZtv1nKIgUohLHEiy+9xPXrN3jDGx7hjY+8gcPDAznzOeb30ISL7EFOCfpKMpF4b59yKtdrbFODUmqwgYrFOSlC2O1GsUdUsj+mlbPsTwTNjSFjBZb9T+z3EqVaanVYW+czwNwvul9d5BI/Uz/CX7Dv53P+8zyWH+WJ+ASxTDTlu6WQQIsudCO0ugALqcjOSnRyhjAa+7fhoAUaVe+lzb/bYiNRDtU7avuzvnbez5cueNXvL2R6+ZP7zLU3XOP6w9fpznouvXyJiy9f5PD4AD8FTLKYKOSdaZrwqojtQ4dXEq33Tgpq9N7QNbXaPCu6F1UA3I/32vmx6nXNmpgtptp7ahgtctPfm8/RWki7FN4KjUs+1Czj1VgtMhX1Vusc3jn8vh2c8zjnZzU/N6vxt1zkHgEIVVk1qkBmHLZ4OjtwWC5w3/Y+xuOJcRqJcaKkRLIRUwvZAKbMceLyQJYYZf4cI3O67j/HvRh0fq2SwvbJ43O8+D1+nvh+bauzy0y//1HV3b/T7rQfznb58iscHj5/h5zxA9yMMdz7rh/h5lNPUmL8+r/wA9SOj4/51V/9Vf7W3/pb3H///a/5GmMMH/rQh6i18rGPfezOXPgm2m634zOf+Qx/9md/xoc+9CHe//734/03TG/4vmj7ykr/Jf8l/4J/wb/mX/NxPs7Ed8ii7bvZLIwHI3/2gT/jyz/1ZS5cvcAjn3+EN37+jVx+5jLD2fB6X+H3VfPJ45Pnvqfu476n7uPtf/T2cz//fiAowTdBUrpdkabuHayX6pX9fzfiiyazSgNBNWmk/u5N7t7oZ8gZWVQXnLGQBdw2xmhCSpKKAtxBLBFrDH2QasWcpULSaEW9a387rd7pDKkmSp6I045NzbAz+A3sznaUVDnubxH6TlU7RI1CqiElmV9qpRZDtZKGkASCE/n7CkYVlApiUeSdwTiWJOhe0s57y+XL90JK7DaNcGIIPhBCwIWgVhOSqBRVE4sPamVnmJMj3lqsX6q+vW2wJiJhr0C10eSHtXY+xFsRgNqDEswsEz4f9Jc815y0tigRTDJ7BFXRkM6Sd1IYlP3kR/uUUs8nRObxtZfkv/1n7cAsY6bOnyMAuCWp7LrBamX3a4znvffZ/15BCEoJSU7HGKlZk+pFbQ6NAI25JFJO7HZbYhx56cWrHB+fEjqpvuyCJ8eIKwVbKiBEH6okXGKMmpzUhIZzOAulJqZxJOXMSy+/xBNPfIXnn3uR69dusNvt2O0mYkpzVWDrk2a1USuYWmlaDcZahqMBrOHWjWNqhoNVj1FAvxap4sZALYl1v2a3i0xjVPn3ymacqBXilLh565i+77h04ZALhyu8k8Sadw5vPDVBNY6uX5G3QmIhC4EDZzigw1oEdLaGjMV3B+S4w3Yy5ue1oVrOxhGHo+scCQ1ug6PaiqsGbyQLk6k4pxZtweOzgc7jbWA82zCOE5vtSLDggqEbVvSHa3Y54TohOPrqGTrPbrsjTpnDoyNqLUwpz4NkN00E55SwUOnDSohcOVKzkHByigq8VQ4PBo4O19RSGfqeadQ0t8mkKeFCh/WGvl+8YfcrAr9e239dqYW77r2HN7/9bXzm3/8pOYmanfdOCEsVYq5S9I7ImWNbtbIAJ7lUISkhJNEx7ahZEutd1+GDrO3Beopz4IyoMBlLMLJG4oLMpRjBwGpY0XU9U0wC5FpZx4P3oh6ge4DYeWZUm51p3NGS0M7I3pHSTn4neigBo5WoqWacmfj8o58ndJ6f/c8+xHrVksa6RhjL6uCAn/zAT7I9O+NLj32JPGWx20qRKSaMVq9jnKjzpUwXBOCQxK4VEp4SPiqyR3TdmhhH3QMz2zjO+x0ZbK2ELhCzJ5OJKdJ1vZD/JgEHDYZgoZaoa7fBdwGLw5HYjBMpJc62W0IIrPoeHzyYSkwJTBXSkhJdsEIiEVBEVGrEXkTAdYyHItYUGLHu6rpeLYyy2KtVIVdYIyRQUf0q3Lx5kzRODP2AHzr6YcCHgFGLjpxl7DWCjPOOitjSgJ0t5tB1XGzMlNhslVBV4eDgAOM82+2Ws7NTttsoQBQFUKu89j51UXGUeERJvUWVaFJT3rH0Q88wCGhhrNiySNK/qBJAVeDRshoGdrsdm+0WGcKa0K4KrFlNjucia5JzBO/ZTZMklfV1bfwYENCtomAbSyW9kosaScarkmRW5ScUFLJK6G5JeyExS19Ws1CCvXNKvKhzbFCVPCXzUJUuaxUVgymSrSOlid32FHfs6Ydb9MNalIhWaw4P5OsQ/LJ3eU8pDqooHNTR4IPBeQGZcsnkbCjFkpOQ7YoC0KVaIcupnYts6UJidQrO2U7u12QB8ksupKzWq0mAq5btzSmRzUSKFmM2jJszXAhs+4G+F5JS6AL9sCZ0Mg76vhPCUujpvRKWFDyxmumXiK9iXcAbSzEGb4S45P1ANxxydHiRadyw255xenrG6emWWm6xPduKRaySUZYkxD5soaSDve/PiiksoNLt6/5SHND2jfOKAN/LrV03DRx5jaDNtNjT7N1X3YOLa53nQFMlke/rVwr8ouA2pilk7kGQRlRmjEHXdoMrlhVr3mjexI+YH8UZR2fu4l+bI8pMYipqUZiIVEhi35amSC2IkoBzekZo5CJ7DhOcQ+X5r6Z0MPeSAK5mr5iA/ZGDjE9rODhYQyk61sR+sFX5i02QAJ6NGGlsOzPogqRjxxqzAK8sNnnyPBZS7L7qUevIdkY4d56Y72Lv6TZgfH5dnUFl0LPF/JP9V972PrQooZ7vmNvmwLnPn1/z2gCcbCNGeLftul79lufeff5q7zKK/qlULXhp+0ydC0YElBWrt0YUOjvdMI2TKHUoqVZI5WL3aVQ1TTgLdVblM5b5nGeUkJCTxHVnZ6fcuHGD4+PTWYG1kZFzyTNB6Xw3yrycIV8Dvg+s11viJFZ0QZWL2y+1ogwhogdylLXaKbki6rWWnNmNI847Vl1Pp6pjMt5U5SYDRtR3SipC1q2y/xULPW5ZT40ReoALlJKkyEnPzG2MTClLkY0TpUIqQj4xYKqSU6tA/k3Z2VtR+sBZemNVrUwsv+UsLdfnQiDVgnGyjtlq8c6RlBDhOk8j+rS+Sqo01cgK1nYa/xQaOWOO4Uyl7yReWa06nPdISCAzrOSiKtDmnILWn6cd3X0P973pzTz5xS/O6iPGaR9VOUtIDGZ1TVgYmS1/AEokACE2xKR5CFlD23rhvaNWB0bIOtIvhqaYJWstOOfovVciWIv1NM5sRKg5hkL7UZSw2kqxbCNZCS9O7dWkwKvUyjhu+eKjX+Bgtebd/bs4urCmqRA1aoxznp/4iR8nThOf+PjHydutzMlSyDUhdPOqBKRGmGrqSVWfNfq+y57mglvmktFCwdoYB1BLlWIeqo6DhKMR/hd7vaYy1dYkIYQ5arFC+M6izFVrnUmBFjurtco0FpKHse1Za/xRm72enfdtY+xMNCmlCGnDOI3z9uiquqRMY+QrT3yF7WbDm9/0Ro6OjoQAoqqvBqQHK8uzpqlSVZ0bqtw1j9oKVnNCSmyWZyAEu2EYcC6KxWWMLNqFS+wh3dwCL5gXV41XqvZLqomapN990OIH42fyUDuHXKgX+Ev8JT5oP8Dj7st8vHycL8fHJZbdWw/m31NSlylNWdVJkYoynoWoxPyMq67NYh2qz01fO++iphUraN+1z2rnJtNmxp4i0d6+ZvQ9lpiL2aYOKuPBjpfe/CIvv/ElVtuBw6uH3PXC3RzePKJGKeaKxjKNslZ6L3+6oPlO73TvslhvKcWA07GbC7UknBdydHuejdxXa1Frt7rkwHT9WWKDRS3LWFGdE9JimYtJSlkITDMJqkJF1HyNiZLfsY7kHC6GeX92Tq3hnFdisf6xUvww2wQaFqUnWg5WnqHwCdVyzneEMJBTJOdInCamKQIj1Ch7finMhLW9sWra1/Nd78UnphXC7p00zu0Ve0/9NhLUnfattYGBe7iHD/Nh/nP+cwKBgfv5e/UKL7zeF3en3WmvY7vnnmuE8MNFXPlhbKu77+HCw49w88knXu9L+a634+Njfu/3fo9f+qVfYhhem3DhnOPDH/4wwB2i0rfQzs7O+I3f+A2uXbvGT//0T3Pp0qVvyxn4e6kZDA/wAP8t/y3/gH/Ab/Kb/Pf89/wev3cuVv++bUYwjFtXbvG5j36OL3z4C1y4eoEHv/wgb/nMW7j/K/fjJz/HznfaN9a+X/vrGycp6SGN2iSqWSwbaktYyOHQOTdLRLdKvmYDZOweMcVoEksVFqx3UlGvh/NaK1OO6nkgAIJVGfF2TXIQM8SaqUGqFL33GOsxxunHSFLGhw7rHYVCKomURiBhsqUW2J6dkVPF+iqVMtbSBS+HZz18htBRkljH4A3OIjZU1qpaBaL6YZDkWxbVg5ok9eSclXonIxL0pljWwwEPPPgwMcW5otRaR9f1aqui4EKtkixViwfr9LCrndFAyqY8RZUklpxZW3Woql+1RAVGwVjwRokAVW5gryhzSd/o5xnJAeHmQ7AkKQuQ5kTbPjTRbOH2xhSCKVa9vrmSGjlUS/WxSkHrO9b5p/pcNXne0nspV8ZJVI4aiNU+62s2zbHk2sAEGWtFk9AlZXKzM9JkTCpJEi5xYqskpZdffpmcKsOqpxZDnDLTOAkoXw3WSSLR6PNKUyTFTOibekkmZSglsd2OvHL1Ok8++QQvvPAS167dYLeL7MaRmCO1ZqDQdwGos9pJm2u1iny1dx2HhwdcuvcuaoVgPP1hR7BWSHbWYzGErifXjKkB7wKGyOHRESF4Yp7oVmt225HtbkM1nmF9Qe6lGmzoyaVibWBSyfzgAqenI84aUhSFgTxm+sMDbpxupdKsWQDEHdZLgqrzQapOaxFSUsl456lZSBfjTqoPfd8xjQmvNhElZ6lAl9QVjoL3XisdK9FZjg4PuHnjJnFKGHqizdQYMb7Z46AVr6ISMpbEOI5gCkPXMXQdeM9mmnQ8SL87Z5kmSR763jOEwHbTnnshhI6cM9uzHU88/jh/6UN/GbDUYnGBWYltf3J8y4GVMbgQeM/7fozHvvQ4u+MzaipMecTUirEe70Rhp+QiSj9NCckFvO9JKRL6HozF4rDeq6ScVM2uup4YhRxaq9hX5ST2cTb4eaFYFD8q4zSKxeAM0Mhcn8ZJbTuMKNBNUTebQk0oWahgjVhohhDouo6uk5dJ4ltXmFpwGFLa8IUvPcrFB+/hp97/I/ShVZMv0MSFuy7wl3/2Q+ymyBcf+zJkqfKPU8RYtUDMmXE3UkthImOp5CpmH947xFJFQI5cISZJGvZ9ECJGSZr8LBhVhNlsN6Img8U4RyqVYC3GiD1eqwVtidpaRImoqpWpDwEXPMbImJ2miewEIHDOifIb4Ly8J1TNIVe8DxTjxXbFFlKqOtcU0HQCZDcgqlmeoEnpWfVBrfxKgbPNjtOzLd3Qc6gWcJ3zYmRlKpSganRCeMs1U6Ko4LSEtHOO6kDs8ArWOLG/Mxb1AMA42Xu7rsPam2w2Z7Kua1n3nJylkT8acIUmpQ3eytdi8xYp20xKkaHv6fphnnMtCW91DFvjsN5xcNjRr1ZsNmei6hQTWV+fk6oklIWQJYqPMhemmCBGddtologSN1gglQZGLoQ9qwSrWoR0JPeG3reuEfqZQjiDrIAWRsdQe7ZI8j3XonZUFqnoF3Uy0aSSPsu1Kqm2kHMlRss0btmcdpx2g5B6VivW6zUHBwccrNf0Qy9WB0qoKjViQ6D3sh6UFCklKxBeqF7HWM6zTVGe/xbSbK61FfzLutaiDGexzlNrIeRKzAmbGqkuU3OeybWlGKzJjCliRse4PWMXeradEpL6ga5b0a/WdJ3YAQ79mqEbZru40DmcMzhnyCw2bbkKGC4WN1o5bzzOBrow0HdrVquLXLgYuXTxjNPTU85OTthutux2O1UYK3uJCCUczADR+QRFKwRowNds5YHGZfU8kLcQXL73Wt37j8Q+CrDtT+S6jPN2723ezKpvy7vN5Lu5T5psaV36LC+HBpqi1QzUmCU+PSoXeCtv5QPmA1y0FzkyF2cSxohUx1vnZxJqnVUp6hwspxjFztIyK9k1olBTu7FO1luJ35jj+cW+sqpFi8T2APNl0yyqpMtqFpJF8IHDows0i2fpG1HW2Vd7gIV41AhgC89H191z8f8So59/jgpg7xETjEFtEvU50palph7Fq2Me/fl8CXt/y/susX+97XXtvfQ4urzn3j8q5z/S7P+gfc8sb1Zp6o3fWKLw9um27ELQlBvOWW7v/Wb7Wcl65iiJ09MzSpZYoyJFOjk1kpOSymozDWrWcaIq2jq4KjEgxcRmu+XGjeucnp6x3YpNWFKyaNWrFYvepuqxPE+5n4ozjtAF1kcdDz30uJB4vcfNAKuSmKxTQoIQjbIpdF2Hc5as6kYpJWISMrgPveYFpOBH5r2d56u1jmkSMk9WoknJFe8CuynOBTtCVK2z0qJtZJ/CTDyxwrSQGCrKe1mvBBWM2lKJImQpdh5zUtSzKLd1XWDc7mSv8V5BdIQcofOulAJOSN4pi6IjaEGHE2nlmPOe3aRZ9nxESVNITmoLaCSOqrWyu3XCje46jzzyhnlO2LnS6Bsvcvh6zXrHA298hGcff5w0RkqJNIVho9aWuRWh0cB/ISAJ0UBiUu8kzi/a322yOtOendH1Qc4mpVSKM3sTa1FxaWp3LbdR56+Rc+weeQ+qKplWja+V3FfaOFHFMdqZpVkbyf1cvfoSj37pUVYXD3nb297Eagjsp/wqQij6qf/kA8QY+djHP8k4jvNn5KKkNSvk6cViq8zkQGMMtrb+QYkSQryQYj+xuRKVE71bPQNUtfqVfl/2UJnDLQ/SijygZOmFrOSe4D3WynuVWqhJFV5m1U1m1b5GfJBpKeTXomcCsDOJHh3LTWW7FZ0txJd2acs6+MILL3D16lXuv/8+HnroYQ6PDlmtpAhK7kd+x9RmPwdYo0qeS0GC1e9jUDWqtq9UKcYxiLKNWnNN1jKOdV5/2n7VApJ5jwOoqgbbzhX6sxa3llrwzmsOcokt2vVXwNfAu8y7eYt/K59yn+JP0p/wUnyJWKKSpNXOsE3l1peuFRWqWmlVxbuW+2v9a5Vkw7L3sPc+MhU05tFncPu+vB9r7k2/edQvz7TOZwz5gRKDbGV7uGV7sOHlh1/m8NYh93/1AQ5vHNDtOskdxUlVhxyjF6JP6DpVFA9K6FbiY5U57Fp+oQo5rRojxCRbqdXq9+W65AzQ9l61l67t+ep40luzxmNt0ZyCzFkhFcoB5HxMLesdJpOTwcYoZCVrsUpQcprPEvs3L2Qs57DOLUQsK0VsLdHarNcsUoBXi+TITJDYrWSPdx1dl+l7OfvH9kdV3ss5J4Nl2J5brNrz2/ue0Xiv/dK5l7ex8u3ZTn7o2iM8wkf5KP81/zUP8iAP8MA8j25yLgS+0+60H7B2+wL06hbCxAc/+OnzHMk77bvWailsr1+jv3DxO/5ZxlqGi5e+45/zvdoee+wxLl++zM/+7M9+zfNZIyrFGPnkJz/5Xb7C7/9Wa+WP/uiP+OIXv8iP//iP8/73v/8HkqwEsGLF3+Bv8FE+yv/A/8D/xv/G4zxO5AeH8Fl84eb9N7l5300e/YuPcuWpK7z3d97L/U/cz8Gtg72T+J32g9i+YZJSOzi3g3ADUkxtSaS9irlaFUxbgBKp7BPJ8+WgpAfe2fptASesEzshUyUxV2pLoCI2I9bM1g3eaqVKCJLgMwaDmxOVIFXMPnSSwK2VmhLFTlQ81cpGneKOWgxTrJgsyipxtDjX4Z0H41RJRJRerDNAFj9yI9WNpRS8dVQvyTvfDoBe0gDWOCWTZEpJmOJAkxtCnEo4Y6nGMOUJrJ0VKCwVb8QbpahFl9XEq1FQsvXbebC6JfWWRIRT8LllMpwzdJ1XJZPFmsdpYrY9NKvEEmrBgZJkAGfEAq9UrB62q2nJXblGb1uCo6pMN7NInVS8zVyIGU3IVSWaDfiWZNtLDjlrlkWqwi5nTrYjWSsn3SxbfBuEUF/9dQWy5LjJSRL7cZqEpJSzJDMxpBzJWv2WYyTHjAW2mxO87XC2MMXIbkpCCEATyMZhbZnt/HJKCsrLuE45Y0phHHe8+MIrfPWpp3nppZe4cf0G0xjZbLakHEXS3VuCXy3qWl4rD4U1IePTi4VZ16/wxlByJvgOV6XaNpZKzpHeBUlUVkMcE+M0iVWRLbghsNlGtmdbaizsthsOL9wl0tYUUd+IGesCOVVqzqwPVhhjmaYt/dpTKYQQwDimzchqNTBOE7kY+n5NzTrunah3SOWjo8aExROMZzJJxmXtqCRcNbh+Tc5RksoVMlUksYsQzHZEHUCWKSYGH7j38j1M2x0nZ2ecbk4I1nPp7oukqeJMoLM9cYw4b+lXAcjklInG4HU9GoaBabPFVbVOSxPegut6QFRErPOEPlCyYTcmnHV0YUXcbeckd6VibUsOLYlnsz8+v87+e+5lVUG5Wjg6OuTee+7h2ZsnOCph6NjtBJRaDYHOi2LRNE1SUVvrbCmVY8Gogsg4juRc6LpAzRFyocSIxYjlWtdLdaqRuS/KSVL5bJ0DBWWoQgyZQaNqBZSwViulDTYIUCSJfCGmeO/IOWoSVgC4EAasq0wpYowoNklHFEpyWArbzSmf/uQfce+FI971zjer3YehSQJWKhfuvsAHf+YvcvNsw7NPf5Xgpe+dDxQr9h9Up6S/Quh7bI6UJIotuWRRuLNCUkml4EwlOAvFUpLBB0fKoiADhoJWPtZm42EX0NjIGmGcpeZMjBFUNbAYQ1gP0u/TxOH6gJQTKQuQlVNUQrCMVyEKWyUFFyHAtoy9s8t+YdS6zwA2441lGieMNbLn2UbYkarrahoNsMyAN4iK080bt5h2IwcHA+thYBh6hlXPNEVq0JXfVmwnFQ8GCF7GXi5W93mxkqlV+oKqJBoTCEGAWe89BweHTNPEOI7y/lWJb0aVgXTeWCTpbI3EBWJPasmKAKSU2BVISSzgvLeE4AnBz6SPUlQZqGSc86xWB4TQM02jkFBrJpakli+iKjemCV8laawCDwIyVLErtNbIPl+FrFVT1TmxVw3bWiOJVdQOroEMRedPVWUsqdZH7dQaqNCULUUJSP59njzu5s/AaDKfQjEKdJZMzaLilGJku9uw3ZxyetwxDCsODg9ZH6xF2evwgL4fZJ52HhqQ4qyogNRCSjIHKJVUMk4VREpWAKWoalTJ5FQoqjJV1SqtqL2jMY5qMt5anEerivNsyyoKIS0eFSsaWw05J6ZpK3Gj93jfE7qebgh0XS+KUcMBXd8T+p7QBUIQO7igqhxzFbasGGBEfQHjaVXQ3gW6PtPFyDCsuHTpko7ZHZuzDduzM87OzthstsQYpV+M2tdVAVT2SUjQAKmFNNGISjNQtUcs+F63fJvRwAWJe9V2Z85thvvfN/M55PYJcz4ZUfdez/x555QK9b0slnu4mw+Yn+K99sc5sIcyR0EJSo3QI183ohHIuKxZyfFG7X6yEEBznjDFUgzk9ntWzi7WScxttICDqmRHrTaoVdTcqm3XqPdkjM4BjeNRJbEqtldNlSWXokoahWz1Xvfi8KYas+DeZiYbyH5k5v4Cbvu3dKhhec+9yxMir1mAUGp73R5oipAS5HeqEmzk92dO7BwbKWCux5Z9AlV7trfbZii+uVyaXpvZ+/39GKrZareWS2FSC9bzBKpvbG4pN2JWZ2hEoloasGwoNcv42SMyGSDFScdYVWKtgqW1quWSmQFzWfu1iEjnQiNq5pw4OT3j5s1jzs6EoJSTxBellvlMfzBUrhxe5crRVS4MZzxz/GZeOHmIXNxMostZlFHuvfsqR0e3ZltSowrDuVY8Fmf0urMqJ6q6n/GWEkVFkiIW2qEf9H2EzNwIB7UKoSJ0QfojZ0xQ5Ri1A8tRzt9ZraOdC7L2laz2SHkez8LflZgn16Y2Imdro4TTWrLMjKokMyV5VQqJPA+8rOf89cGaFEWRZYqi/jysekoGY0Q9QwjMRq0hldCI2lDpnp5jXAh1RaysbYtB1LrXOyFvpSTztsRISVHfdyEJzDNmf23987RauXD5CgfrA27tbmCQuZ2SWr8Fj1W7NSGpyDxtam1F538rXBN1TYs1bcwKwTcXIb+bed1ZChpkjW45C3mezcZ2mZGNigLQSJ1KYtF8lW3njVpn+zhrhEiQS6YqAbWtE1UHwjNPP8X66JChC7z1zY+IylH7HP105y0/8VPv58VXrvLYo4/qfUmRmnFqKahI/2xfqPGqFOctalDGMPeNFCUIyait0VnTaLPadSPHtX5q/qKSgNHPzChvQ9YzJ0pFVfvR6hzWQah3Z2cVr/l6QftKY4y2J7ZcxhyHyLgXRaclBpc3NmohvihTgyHGyDPPPsvLr7zCW978Vq5cucxqNRC8EMiDD/M6CVJIF/CkSQhWdo5599bpttjXpsylRWPGgTf01qoSlcSOqY1h2Btve/uWrgG2vTdGycKNrCSkKTvHiuZcvq0izzrUjg+ZD/MB90GesE/w8fxxvpqeJNao54Y6X3qhUHNt05FmpTcr1qHkSxaCaQFV5WwZKDPvzY3quxDdzTJm5qb3rAtJ3b//+ed7s2Aujtz7kTFUWzi+dMLpT5wRpsDlZy9z4aULHN48pMYCyRKjWDa6cZwLkZyqaXlVkzfWaXmA5hlnNSgl/Wq/GKsqanvxsxD+mgo+e+esOhffGOP0WVf8HFcrWUnJxaW2z1EClM7fUhIJg41KenRecnKqriTWdl6VWd1c3OacnRVzW6edz9N6jK6PQmovuFpwPtP1ncQFqqqeoiotxSRnoD01qPbcFmKSjpP2vTbc2zNrj68thPuP/U77us1ieRtv4+/z9/nb/G3u4R78Nw633Gl32vdxq6zDhh+9//O868pjPHDhBX7/Kx/mj5/9SWLuXvXat73tCR566LnX5UrvNKBWdjdvfNc+7sIb3siLn/2T8wfzH6L2h3/4h9x99928733v+48SlT74wQ/yzDPP8Oyzz36Xr/AHo52dnfHxj3+cz33uc/z8z/8873jHO865lfwgtUMO+Uf8I/4b/ht+m9/mH/OP+SSf/MGwgWvNQHWVl97yEr/1xt9ifbzmnZ96J4988RGufPUKLn/z1vZ32vd++8aVlNohEPTcb/YOd1oBVlvSSA9betBryaS5INW0Qz0I0UQqmgwQU56VHzDMFW69JuxaEtcaq/7fDYy1c+JfPwKweB9YrQ/p+kP6VQeI5HctYs9QrChwpJTIaYTqSLFibKYaAWdTyiQXJIlTEj55DFrlogoYWKegEgI4OAGtam4IpcUZKyA0UGuSRKrqC+WcyCVRihBeREHJSWLXNRKBVsOVLLkdrcpuVazeBbGpadW6oIkrFNAQoooxFh+Cko3qbC+yWg10fSfJHCvqHLVmfX5NiakQNdnVWccYmKXyc0Gs0YpY+dUqfeCDJZNwItSPcwrYYoia+lDnGpxRW79SJfEp6Ui8NWS3JDzNXiW5k5dgKsSYiTmRjZC1aqtEryi4LiNEqF7MdngFAThSFcBaLBcSRb8GiHGEKmB6zVkIMSlCyTgfyNOE95CK2OYYk6Vus7S0actFyLyZqyS1X3PMxDjx3PPP8dTTz/Lyy1c5PjlmSpndNFFrUWUvj3NGKs+Cp+s6QtfTr3v6EOj7jtXhilwzzzz7Ap3r2Z7cwlupNJtyxJsgdorWkimM08iqX2FWQeZDNqRS2W1HfDXYWsgkaklsN2d0XcD3gd04sXIDpSS6g4BBAPdYJ0LXyXUOK5kbxUBKeJMw1hEpTCVijSXGKjLWVokT1uKCJq9MxJtKjSOlQhe8vE/nSMmSBBGg6wZSjpSkSbWcZ1sC7yzGodZYh3S1YPvE5njkxs2bHF44IAwDnXWYaqkmK1HBABPFGXalYBMYm8WKoFqqUftGIO52BN+x2034zjPGwriNpCnSr3oGGzC1crzd8EBLctaWJSozEAYNhdvPKp1bjfeANTPbZDbVMmcsF9drHrhyL8995RmtFAZrq8jm5yQVp0bmUUpZyIg5MeWMdV4UjrzY1lhn6YeBcStzL5ZEHxy1ZmLcUqlYJ8CsD0GSq07Wr5gTQW0NfOgouRA6qQTPKZ1LlHvnwFUmAylmrDOkAhhHSllsq2TlJcVJbC5MlnWyVkLnKamSjMHmyLWXX+F3/6/f5zCsePjN9ylRyQpYql18/4P38HN/9UP81m/suP7KNUlUl4mYRDWgZCE3GGvZTVHsP4OTn5WsycpC8EbvwTONkVzBd52AtcYQc9K1QIhA1kDvZe/KReyCfCegd8WQU6XgNckvyn1NP67vVkxxIjiPq0Uqx51YLHS+wwQhlU1TJFVRn6pUUimylganagIWaxGCkEXUmtSqw6o9EQr8pJSkulRHX0tsC0nSCMiUCzePTxhjZDeM3H3pAl04pA8dcUpMMWpiWED+XDK2KNCqfSDAlhKXapktzkQJxGI7L/ug96xKIcaJzWbDZrPVxGzV9y8z4D6jf3vXPNvOanV9jJOQUp0hhcCw6nFBpfqLwZLISrALIeCdJ3SB1ZAZxy0n2zOmnEVZMUNMhWkSsMJ5t8xag6zZTkKvFKMAfc5gEeWlpFY4M+5IA+etgtpCVDFGrGMEGxDgz9hlPapaPdySAWYGkBZVSmtVMWvZnCS5P3+8glAWakkCThVDSSNxcmx3p5xtTuiHga4b6Ncr1utD1us1q2EgBId3Fhc6NLuP92mOv2yx5OLUBslp9bLswTkXsi1KCBZ1i6q2IU1RxBozg43eWWpxZGcpWZT0cs6iepgFEK0ZIQpiKagChxsxW4vfeILv6PueblgxDCtCL8pRXdcLQb2BZSGIhZYTy0wzq0Bohb4PeI3FrHP0XSCmRJ8zq3TA4cVLpGkkTZHtdsPZ2ZaT42M2eypL+4qi8vyU8TBHLfvjuj1EhXGajdH3aqvnv25klhlMa30JtJ1tXynpHFmkkTW0zSA3i+JGbWiMvqyR9Nr73WPu4YPmg7zPvI9De6jkDzO/3/y+1tL1Hf3QkbPqeyqYLDEOi5KBEh5kTSqzvVqpBVuU2Far2MaxF6dbnXCwkGqaTeNsXaPr2Ayfajw5z/0yE19kaqsqG6iNXCtsWEDupuLSgGin19XOaXUeY3u4ry4eM1mOBZ9sFiit7wxVSPszCUreNytJyhlRpm3XWUFtXLRPGpnZNSJqK/zQazaLQsT+dTbVonZf8jvLvxfCWlXbS2ZsOzdFE8xcHKGX/Wpwj+VrIQJwXhVF/zSS5Qy0t/vUsy21qD2SWImVBopqrxSqCueZvXmz7C9GQX8hd2aOj0+4dXzM2dmG3ThSSlP0kWe86iLvuf8xfvpNf8yVo+usOokBq/0sX919kNN7fkFiKyqf+cwJmzPPfZdfaALHos6Hgq2IUk4qmeA8xqvqclHiXsy0USXjs5DiNKtM5JzxVs76xiNKuUXV/dS+zIcwL3kU+WxjLBmJGQyaa8hCbLWILafzovRiTcYZiXfaOKcUrLOkOa8hNl7tLI2OdRlWi42YsQbfdaKw5ypxTOx2Ozq1i3dmvltVaFL6hzViC1cN5OVcKgCxjPWcxDo6RlH5FEUsIfR671nr3jClqEvbeRJBMXUOffaG6t44nVfG235w/tXWGNYHay7edYnj6zdBlY+MaVZLCyncGGZyRa1iw4quW7FEtZ0XIo21i5JVpdmUNR3mRkZsxCIhAaWU5+u2VtaWpvgzEymbgp5peQw515vWt/OahpJmpL/nwjqNgY01Mm6p1JJ49AtfIFjPyvc89Ib7sb7tJ0vO6+BwxV/9hZ8nl4knn/gKOSWgkFQJuJEMjTEktRa1MzFT4ktTVf2UhURScp3POfJ41C6xtJhWLQeVPF2oc1xkjFWVSrUYnYnp0gduVkMyut7IeBQel/R/U9CLuUi8b6T4ohHfjUpqO8Ser/Vz0X2jkadq2wP3SB9G8zOSS5TLGseRxx57jGefe5b3vOc9HB0e0peCW/Xzcy9ZCST6S7JXtMFu5nnb7JVFmbvM664Qv9pYlnxKCarwFidyago6t5/B6zI9avvpshY3FZ+SdI+yFmZyipFY0WoBRK0MduA99T28zb6NJ9wTfKJ8jC/HxxnLRDuoCv9038JwIQ01ElTbl4rOR3mdnQvl2gWbORZqJFczk56oy4qg3TiPhSXc3Fdp075nUVRqqq9LgcR8kCEOE8+/7XleetOLXHjlAleevMLq+IAQgxSr5YkYHdPU1OsdoesIvtO8l5sV+Rtl2xZRBp7jnWr0a3kgkpNVsmddil7nZ+sW9fH2HGUtsxjEErTlKBohquVOW/zY1m/p+wwpYqMl2maFLbZ2zksh4WwN1xT/Wh7bmPnPEkzJ/TrjoFrZb62cdUqplBAIXS/5iFx0/EbGprIUJa+8WAq2oHIZw5iF3rl8kzmOmn/vTvu67W28jf+K/4q/w9/hClde78u50+6071o76o/55R/9V/zDv/z/4V2XH+NoOAXgdDzgN1/++zz1pv8XbeH5zd+E55+HD37w3+P97eUld9oPausODugOj5hOjl/vS3ld2jRN/Nt/+29ZrVa84x3v+JpEpYsXL/I3/+bf5Fd/9Vd57rk7JL5vtR0fH/O//+//Ow8//DC//Mu/zMWLF79mn38/N4vlgAP+Bn+Dn+fn+S1+i3/MP+bjfJxEer0v79vaqquc3XXGn/zCn/AfPvofePixh/mxf/dj3PvMvfSb/lw++E77/m7fBEmp2QYYVZWxizQ8e7ZcLcFV1TJLpXdBgAGjJ+lmf0ADd0pRid0yW6VYlYyvKbci2pmU5L1IKi82V2YBOUxL6kqicb0+oBvW4mVOkeRZHnEOSBljK7lE4rQDHDauwBZyVTszE6kua3I/krMHHM7Iz603FKNJnWoxql5kaUkTrbwvRQA7syQcihKHSk40WxynlW/WuNluRwBcrdavRa7T7lfaSzVgs92zqPVLA8oaIKBAuvVO31eVn6rYFQ1xUOKPJJii2s8ZK0QVDExZklyjsQTnsEGkrSuSCBBQWehXYIQY4sQqKphWlavy2laJRM6oilMmxwQZIWhZSYZmA8b5vXGGJMYKeItYXZgiCki1kiRzIgf+Ku9VgFwrDiE2VdDKaSFYxVxJCixnPdRnVWSAqiQlJ4nvnMkpkqYJayq+6xjHiLFi15BzwdRMbVQo/Zwmjd/ymvJYCrvNGbVknn/heZ594XleuXqN41snQlDajkxJCBKH67UQlTpP33cKmK04ODjk4GDFelhx4dIRYd3x4ssvsT5Yc3r9hGeOTxTkZq7M9FrxVb0kY3KBahtxzWJIpDThjaNzQiq6eM8lzraR6zeus+0Cq/UBUx0Zgqcy4kNH7zq6CttxR61C+smx0HUDoT/Arnp22w3eO4a+4+R0QyyNrNgpQc1QnSMYQxqTjkGQ3Gphs91xFrd41+GHTlSLUsVWR54mMBkbpZJ78B3bhCj1TAVnPOvVilIzR4d3cXpyzGZzKqCE9QJWpEgjYlpg8IGE2gaME9O4FYsDxBpsmnZMuw3OBlHTSpkx7ShT4db1Y3CiePWON7+Jey/fjalZVNQMVJIIjhipjHRata65I12A5//M67Ayk/a+rcBJBav2GsNqzWYzMm4jRQkraZIqdqnODmxj1FyoANwNB9/Fkd56XHUQxYYtG5hiVOKFKJllmoJNYtxsocLB0SE+OMheiZpWk62i8lNBLOdqomYr1h3BE6dpJlAIKUEqUluSO5ZCoJCrkOicq5QcEXUYjzGFYoqSMeH5l5/ntz/2CX7xvl/g6GjA0wo+NaluLA+94QE+/HMf4Td/43eZrl1n2m0oOdP1nhyTkm89jYzrvRebFEUig+8EhXNqz5arWuQ1kt0CpqKWDE7l4WJOsm84S0kZYwrWaMUwlmmaRGVAFZVmpbQQVHnNYBDlrhwlgeqb8p632AregcFTxigJ/lLIKKBRi+xB896eVOJeFBJySnjjZmuGUssMcouSjyoTIiCfNZUpTuQ4KRGlsBoGrDOETtZ3awz9KlBxC4heLTVmAeyKaPmICuACw4uVjSX4gZyLWEEqYWQYBjZnQlZKZQ+spyXdl7hA5s5SsS/3I6BlipWUEzElXPB0IRCsAgxG9knnlCxRZN0cKhQsNkwEa4m7kVLUEtIo2O8MFCHY9d7hrZV5ihCzSxZLEF+hJImZqgJKDdQyblHkEDsOtWrMUFS1SZD1OgOtbXFoVk5tPamqVuS8rEuyPwlhTsC5Vg2/SP8LUUAT/U0RKcmhe7fbilLliafvVgyrNQfrA9brgfVaCT9OSHfWW0zNFG+xWeK+kjMoeJ6VFOiyIcZRyXLMCiSFigtOCAS5qSsq+uuE6FeMxqje4YtVJSwhZMrXau1QE6ZkqoUYLaMZ2W42OH+s5KQB7zuG1YquH6Qi2ju6vhOlpdDhvKcLnapAMMcd1Yi9lgOKcXRWVLBcyYRSqMMKSuEwHnFXSuzGkd12x9nZGce3jtlsNkJYilEJkRpLtier6gNtbM8EJVCrs+9dUGGxvGEPHGpAffse50CSZkPZ8LJGilhAF7PXNwuANIOsjUhTFLw3hnvMvfyU+Unea97HkTtPToKGE9X5PQVQCoQuUEfp+0pRtQmJL00RJZecI2AxNoBRMr7eU7Wtkr3FAWYG5lvRgGzvCsjl9qQVuVJSRrPXamAc7WyxZ1FijJ3HZOunmeRj5C6NqhyJWoM8i6z9a2hAsixYM8kIZpUXq35AAqKqHaISBRtgWmqdFV7N3rhNqiCSjZmJ821Nbuu+oa1HYHNThRPiZtEgvs7jADCq3FGVDCTMkMUmD5kjbQaZdhCozBZ1Rs8zahA1j4kWclU9k1peA8ZWALrkOu+btRYFyaUPSs7sHQIEBM1ZrsdbcpLKizKD+WV5/jo6ZyLubXMra7x2cnrC8YmQH0UVs0rRTck4Y+g7z3/y5j/hF97z23I29U6V5Tq64HngrQ/Rv+UeXHCcnp3xl/9y4PorN/iD3zuhofLtjGqrkbVaVbVKVcB6YQ6Q9XO9sWRb6dcDMWY2uw3BOULoSGSxo55EqbK3YqGeSiJXJe8VFOjtMMGr6pSoFY1j1HOi3Rv7Mu+cc6rs0r4nYyXFJLah1kncZJzEyM5QkwFTMEbjK+tIRs7jlIrBChG8FvpuEIXFOAkpQ4HnooTFtp96HXsAJsta0eymrBX1UIkf5FpsrUrWrYzbnawXh7e4+NBDrNcrOZfsjYtGHhSAvqkk3jZGOT9u9n7wqtc67+hWK3wIotQRNUazQjAuhjlGz6WoDbyuWPp+sn9LzL2/N6UqNs1W17OiD6xmtaTOQl731oJtNkzLWAfUrmyRYM5aKFX28hEtGmzEFQkZGv3QLWRtCQZlTBslPtZKTpEvP/5nHB4dMlxYc/e9F2UN2us4g+Ho6JD/7K/9Z/wf//rf8uRXvkpJkxC3rKx3OWf1T5PYthXsNVIyGpdWK/uU2PyZea6f3xrNfM9iR6hqL+0+kPXHGUtxEv+0z61t7oLmWaySPCozSVbP4u2z7Z4Kq1iK6UpeFoLHUlujKjO1rdVK1KTtKsswMLd9DUImOT455k8/+6e8+U1v5oH7rgCVLnRyHZJGkuev/17IFWCKmUlhjZ9s7d7T0g/01lE111iKEAK9c8QkStq3233uk1P3P2+5q4WwJHuP7MfGiRq3t8t51tQiZDIMfe15F+/mbbyVT4RP8nvmDzgzpxIXq5q3LmM6p9W+0kq+TorxRCWq6upijZH9sa0HLGeDpkRZ9x6EEJUa4bjMt3i7ZVwbgPv5iXYtTVVq7qY2r2j7PhS3WDgMpwP3PnMvF16+yHC6mnNuzkn+040j3geCl7greCkQsVq40opTm/KoqZW69+zb/MUYTClkMk7jxvazuT9LnevCatVcyjkCtihDmWLme5b1qM1LtVvTNd9gSMZi7KTkJC+KUV4t4awoJ4uq0lJ065yqLDdCOXt9Pl+HxdiKrdKfVQmOoRb6XFhpP8aUmMaRcZxUKSxpPl/JVefG8zKuF9rS+bPjnfbqZjC8nbfzD/gH/G3+Npe5vDyzO+1O+yFo1mT+Hx/4//L//sX/J86e3zMP+zN++e/cBz/JfGT/h/8QXn75Ff75P3+OcXx9rvlO++431w8/1CQlkJzp7/7u73L58mXuvvvur/m6ixcv8iu/8iv82q/92h1FpT9HK6Xw9NNP88//+T/nIx/5CO9+97vF3eUHtK1Z84v8In+Fv8L/yP/IP+Gf8AIvvN6X9R1pqU989b1f5akffYpLL1/iXZ94F2949A3c9cJd2Gq//hvcad/T7ZvQH10qYlpi3LBIeM+qME7Ub0pKGD00tWQRpWiywGBMna1KitGKSQR0s8aI/LUSjXzoqEhib6nM1aQKpilTtxyzHP6ROptpjNy8foth7blw1JJmQgrKxSMVzogFSIpYUwlZrjvnIsodxlCdAKITEZMC1noShc45uVa9HlPAFFHKEIKDmZWeCpWaDdkIIFoVqC4pq594ViUlTV5ZizNBEmmaUJWzcdG+cjNw55wnmkkOk1UsIlLJqkwjyf8yAzwVp5W5xsBkIgZLyUmTvapoVFXRyFhNSLYkGIDFOk9ylo5OFK8McyJV+t8oeBJYHawwFKZxxJig/RFpSlLFGnBW1aSK9JNa/xgjxCPrrL4m463BVy+qRiBRr4NdyoypMMZC8V5ISLWq3HqR5IVBAN8siQVrhDiUk9gU1lwkQapqSjnLc8k5i/UNi5VCjAL851DZbLN8ltrUmAZMFEkczfZILaGl2RBr4frxMS+/fJVXrr7CtetXuXXrhBgT4xSZpgmMpeuUlNQFhqFjGAaGYcX6cM3R4RFHh0esDlb/f/b+LNi25DrPQ7+RmXPOtXZzujrVt6hCoSfBHgRBAiRAiqSoxjZDumbY1+FwhJtw2C+O0Mt13PDDjfvgJzsUflTYDl7phhUKKcIibcmUKJqiQNAECYIACRT6pjpUe5q991przpmZ4z6MkXOtQ1IkeEUCReAkWThV+6y95pw5sxk5/n/8P8cnx1ycnbOSjre986382i//Kl0aSJ0p+YSQ/PqWBJ2nmdStKBIYtxubA9GqmVfdQBKh6yO5Fk5q5ehoJldP4oTAZnvGuFUuXbpGiJFcR+o0obUy9JfJWgm9UJmZ58rF7sIr2Qe3vyhYutik5bsonJweM05bypzpY28J3lAYayV1gRTX7KbM8dEKDcJum03VXhMpKWVS5smS59tphtix22SiVmodIcDxySWmuUCM6ATb22esTy4zpI7txQ6dJ5sXVKYxEVKiix3zbqTUjMZASj3zVJimHUWtUnxXNgyrjpx31LlQysQ8KathYDzPvP7FV7m6vsRYCn03oEnQuVrVbqloH5F1R+jiMl+llfe3maWgPn4Ok0dqCwAiwtHxCX0fuX07GxECA1mjqx2B2QYeHw/UeUIw4gJOPsyzGKkrJba7rSepE32KbC+2RhbtrTow50xKPWMZIcJUJna3twyrNRpMXqbm0azciqkZJV+nbZ2K7ObJ7f7a9WfKfnn3pFxgmydbV1BiMLDPgB2b0yEFUhfd8rHy7AvP8pu/9XHe84Pfw+nRelkTDKkOJIE3PfY4P/K+9/EvfulX0LkwlS257IiDoHOk7we7n9nW1i71EHUholQMoJvmyRSlAC2FUjJp6Dk6PmI3TXTBEqWqylSNxBv8+/oYyNNM1mbNkI1Iq9BIqWABd6lGask570EImvw9aDELNomRUrEqzslAkBQSUzXbELOZqJbwDwEkoTTLE+v5SrW9QAwUDiHQpUPFPiU5cSdF16irysV2x2a74/T4mKvXLnN8vGaVepfbN4KUgTNQiiklaFXm0YixSY242p6tmjQEqAFdIQhD6hhDNFW5vqfve3abLbtpdHKuwUiqLeVuSWQ9UClrZIBma1BVmaeZOVfmqdAnU09JyRSUFm5EMQLqVJXUVU76nj5GdFiz227I80wuxch47PcpkWBEJCd79ymQxcCcpA02s/Fu/WPvYw+WGABgZGYDJmxLNssqqpMH6x542IME9r9FnPBU3P6uKXWIIMUrzZfc/p6AsJAAqif3MWWiac5G+JmEcbdlc3HOeT+wXq85OjIS7dH6iNVqRd93RrYTQVIlqSJJTVmpFAcpigOIHao2CYw0rBQHmkop5Oik4qLU4ESQhuRU2+NCDYRo8yIkIwKUkl29yUkMxdaTIpVSM6FEpmlkGzZIG1+dKRb2w8BqvaIf1gy9EZWMtNSRklkKiytYWtW/KVbpolzpcyd2oJWUOmotDOs1x8eFS5cvc+2e6+x2Ozbn52w2G7YX52y2OyMA5rqA0KBGgHfC0mFa/I0MKuzvTZb/bWqfTamtKfugLGQ9YCGfsABHLODdIeGpfbbBOg2c60PP/TzAd8h38O7wbo443t+F7O/p4G5pfVtyZZpHxm0rjmAhoQQ1RRbctrJVrqtbalXdA13igF7RRoCINusXNQO7rm37/l5bn4jNOv+rvfKsd6yRTOueVLoAW07a8LtowK36OUBcCXZRVVieXV15VKGw3MNyyerfoYAoBVdPobqi6IFmy37Y7t+1X0eDqRZEosXGslc4aG8RBaIpwVpRQkaIEBxUdZVEkVY40izSvNBDzY6z0mIA+0wQ2e+vDTEPkGslVzVCepCDe98rjtg4a8NzrwzShqz6WtmUktTPy1XrUnwjHs/UUhbrvzk31Ytm9aMHxAM5INn4e/BxImJKJBcXGzabCzbb7WLbW0pTJjSSz4NXXuODb/l1+i4uhT9d3zP0Pf3RJdJD30G/XjNNE1ECp1dO+L8+/BE7bsVo93dAnAQrDAgxoZidqrBX6UjRbNRDDESN9ApzV2giDyLCnEeKwjCsMLvaYlaKqnSxM2A5Wh+WqsxbUxzpJDoJos2zRlIU+qEjlwy1ulWckUZKA9b7jlxMqVYF8uzjVgUTWrLnUrB9OETyXP39mJJR3w9kt2FHYZ4mun4gpmgFLg5aK0rJFsvGECi5EYwbQcmINVUVqZWslaRuXVeN5FYV8jhTxsLmxoZVGkxtKHrhQ+Pr1GpFKCkgLn3V+uYPrm0cvEP7/wP0WoTTe+8nfP6L6LgvPhMxhZ9DkkMfkgP0Frs39RfF1W2ix7cO7KcQyHN2jnH0NVBtTQx44YYwjjuLP5PZSBsZ02KjcrAuVVf8bGuwLspkdbFnCk6CbCpNtWQUPSiys7NBOycFJ3JfXNzms599hqv33kO36jg5Od7vP/YNCHD59BI//qEP8Q9f/0e8/tprqGTUC80kOkFF9gV/VmQWPF+yVwCqWm2MNoJSrdTgqj9Osmh7Q2kLstpan5LFgmVRAqvL+tXyZG08mD2wLOTKRgBuijTa1mKx2DQ5MbUWizWryqIys6yDAnh/7EkQuv9e2n4GInu7YnsP++TyOO747Gef4eWXXuKRRx/h+rVrHB8f0Q9GWIG2/8VlHzTxQicqu7p3cDJLs3BdYlrvwyhO+tdKkbAo3szT5NbBPhZ879Rlquj+P5YmB33QLM5N3UyDLEQUcSWn5V6Ajp736Q/zWPcEvym/yfM8y+vxVbsHrUsc0c5ngjhhxs42MZilocW2bnuGLrnXpozU9vpDpUhTetyvoD71CbInBi6fPfjMMo60kXwXutYd+76dte7spt3pjufe/hzxqRe59MplrnztKsc3jhmmAanBiDXzzBQiabSilK7r6DtTNrWi1mBRihP7WjFOi4WssKLFhk1FsxJ8f97HnIfqSE4ObKy00I4+gSi6xDxalXCg0LUniLMo2YraGMjz7AW64UCJ1WztU9ctxbmmvrQvPF1iuGDnWXsHFgsIaoQ8nzNBKxqVVKudiUthtVq5xevE7LZweZ6Z3X4Wj+GWyNPBnWUHUN7YB4pvUuvpeTfv5uf4Of49/r0/NTmpxT132932F7sp73rg9/h//sT/6w8RlAAYLsPjP3GwhiibzRm/9Ev/O+O4+4be6d32h1ve7e6IBf6825XH38T5i9/e6kAvvfQS//yf/3P+nX/n3yGlPxqKFxGuXLnCT//0T/PzP//zjHfZfP9G7caNG/zCL/wCn/jEJ3jve9/L448/7nH4t15sIwhr1vwt/hY/yo/y3/Pf82E+zLM8u2TdvmWagEblxoM3+MjPfoSPXXyMRz/1KE9+/Enu/9L9HN06uktY+gvavm6S0pL0b773QRzYFEz228hJ6hWuMQZnKsoCqi4gHdihSFsyW8wqBVMpKF4Rd1h5oo3gsb+jP3SPDVArbilggEFhmqDqDs8EuMx7pZQZ8eRVVStVtkRLtsN1bd7yEQKujuOWKiUTgjJrpFUoIcEoN171TAOPxavcJJoEu+wTDCoOsqtVSqIGEcfggC3+LMKiGlXVEnolN2glgFfnavAqudCqfPx8mYx0UtQqUqNXZ5pCQwIMTAUDhk0q2quxHLCooQEcgDoYLR3zPCFqFccqnmCqZpXQxYTmAlWpdWaeR0sOxkBIhVAz4InCYEmbuSr4z4scSJ+rQA3UnIkpUSgm8e8JE6mVeTRrmFoDOXuCRXH1quCgwT6h0iw6SnVQoSo1F1QNLC0OaDaikpbqlnr28zzNpCFxtrnF+fnkieRC0OAVyZFcMttx9PEQqcFs/kwpbGK7U774xWd59bVX2W7POTu/YJ4Lu3FimiYH8Sez28mF46M1ISRWq0Tfm73O8XrN6eqEfrViypUXX36Vp970MLdfv8VuW1mtBmxkBVQD4zxTcyUwmuJNEELXc3K0pl+tKDmzQumCvctcC31nBJD1qXB+sSMFt2jshZs3b/Pqa6/Tdx1nRwMnl08oZaLstuRp5NKlniEKKXSm0pGMKDXmmdVqhejEPFUjSPUR6QNBjfQRA0Z4FCHSIxqJEfo+oMUsEJIkolTmXDkdenLXsQ1231RlO03kXEmrSKIHLWb4M2ZSSPSXjtGsC0EhpYR00RRtgtCvOlNdExiOV67ABkhgngtDn9iOE7duXTCkjqP1it2uMGkhrhO7i5HzaeQrL77I//d//l946oknOFlHvu9tT3P1yiVW6yNunp8jBOJqYHXvFdK1S2hM9Ksekq0BLbRQYan4EweuDpNIIpH77rvONI+W7C6VjKKjqSYNwwqAzcXWkmOehAZXKaPS9wmJwcgW2ZLpgUpKkdALuZhFX3Iyp4HxySyaqr1rKtToRFZPECqyWDQYIVXphkTsIuJgbwqReZ48Iaxu8QKroTdbQBGywsVmpO8ssRdESMPAarVinka6mMh5Il+c87F/+VFO44r3/NB3QRc5hPQDQh8Db3vqTbz2thf52Md+lyIFVRubKdm8TQEutjvmDEmMjFAUxjnT9/0CAu4tiUwdKpeCC9exWq/Iu52BE9oqlw0g7bvB5doLq9VAHSuRYMRKV0Nu1pNVK/NoqkQxuP0cYu8Yoe97Aw+1qUGYzVgpFQ2BFCCrQIg0l2ZT1kmIOGlQTXWwaHAijBFVm+1QlIAGoWIKgBKMGCzSCEjCXAo3bt/mbHPBPVevcuXKFY7WZp2Vs1nAxZhIfUfIph4QU2dKZqENeFcZcfWBBVgI9nxddOut1DGkjnp8xPl2y8XFhmmcFoDYt39/rjZdZLEpkAauaQsVXBUvY1ZdvY2tFgOlFE2ZLwZ66Ryisr326OiYcRzRaSSXzDSNzNlUJMZpRorPGJ8X2ZPZKSabWzVTo6nJabUxpCUvkc9in+H9riqkFBBJVAqh+qa2fNbgs0bW0mIkbI0+C0o1orVX+DfiVq0V9XJ1hUWNxrrOfh4NC8MMU6HkQpkn5mlkGrdcnCduD7fNAm59xPr4yAm2A12KpNSZikIISCikpIRgZGUDGQ3QLDmTAtRkfV1KITpJz+wIfRz7eqQO/FQxa51AoIZKjYFYw2Kx1FQTmxVTbeCGQg3FAGcRdsFAg67rzIKiHxiGI4ZhxbDqrcq7WzGsjsymoosOMgRiiIRgFpkBcfsJV7RJHaqFpJVhZWOtn2bWRzOXL1+m5sw0ma3h+cU552dnXFxcGPHA1Te1HIBFDZAJb/xD2UKea2Clh5iheUn5vmZ2F0bKUwdnwedCC0ldzQHxWB1MqdOQV07DKW8Pb+dd4Tt4XB4nkvYgjN+I3rmNYucXBSfAIMoXvqDcvNlx9Zrfn1bwNbLNsX0SoAHeOADdlI284t439QXwZz/XWr/QzhPteXHyFk5mdBR4uaKamkAj0tu+K6jURREXHPBqc4Sm7OQEHycq7i/cnsv6J/qLsi432yppAKRbzzRFj2Zzt5ChGijaet8DmUaiLoeqUfuctp0bJNBsxpvSKeBruFv7Ndttu5iThUxBhLr/TjuCGaNDQ3DDXe9fv6ARAg2ER/djLcjhu9v/08DZQxDYQNB9XFB1/+/qcW3VRroxO6VxHpmmfACii4OXRijNuSzvaulNEVQLc4YbN26x2WyY88Q0zaY8mIvZdaqt/9fWX+MvP/2PiHpGKT0pBWLsTB1uOCHe9z10lx6mVOX8YsOVyyd88pO/x2uv3iBFU2tstkHZrZcEm7sWWiT6lIgpOSHLyUpuu2MKg4FOYZqzExOUFGHcjWy2O+IYGLvIMAxWxJNnaims+kgMECWSRRZFmOxKwaLFiM+uOChRTNG1FE96uHqY2/+GANFJDkYct+IYqtm1qgZmjLBNNUvWWtX2XOIC8NZSDIAeTBHWrLqKq6NaEReYMhEeI8YuWZ/4mDK14565FMbdRAyRLiVyMQJg6AJ5KpzdvMHNszM++fHf49qVK/RJeOj6PazXAzF1jNMECCFF0vGasLaYMKR4KP9zx9pxZ9v/VBAu33PNC8cCWrMRLlzdJbp97TxnV67b70PipDArZDI1ykaKad+dUkDVidWanUDjq52YylFATDnNlYXUiUS21ckCsqgrs5nda0arWSVpLb5e7kH/6ERw9fsxOzlcjZRFtbuRPbVWXn3lZT75sY/TEXnr295MXHeo3yvtrkW4/97rfPBHP8Av/ZNf4ubZbVtjneCvXpygvoaZAJkr0Pn9h2D/vqgnaSPyV1PHwWJPAbOfb1yZdq4JEbA1xeakeqAWW8C2rEE2h30tFe9nVXSJMYMXnTnVv5rSN6FYfwZBihgB52DRVsQJXtXX8Lq/ri0dNFXgllf0CPWOfUKrcuPG69y4eYMrV67w9NNPc/nSJY5cWdpAHlOJs/mVCK6ITYiIJXeWOXY4upV2hra/CRIgus1dCHQpUXJmnGfynPeLu/9CW+/vyE9qI1MfqgpZX+dqe2+tRlAPnrMzC0SlenHGYzzKYzzCBRd8Iv4un5HP8MX8RSadjaB/oPBk+wQ0xatFU0yEFKOToe1O1M+d9eBdtDG7zHffr6Mr5VawHF57T7I/Py97ne+tSzxiG/Yd8ZS064ks99e+JHeZ1x96jdcffp1u13Fy44Srr1zl9JVLpF2HlH0h5RQjY+rNervrzAouJVIM+6IMMXW/EMIdCrTt3iz3pzTsotZKaPuy6qIUpi2PKo086dNHg5GaxL5rUVxqKtBt//cOaqGH1rooF89e9BPd7jQlIyoZ+aoRmTov1nTVW9/r235pC6AuhOd2X1S1nHoyRbqSCv3Qu2Jj9fO35RincSJ7nrMFNQdDfJnNd5u1+7mfv8Zf42/wN3g/76enX+bDn6Z95CPwyit/Djd4t91t38D29PXP8f/5uf87V9c3/tDfzd0lytP/LsP1dy0zpNbKP/2n/5SvfOUr39gbvdv+yHb2wnMWy/9ryDJ/lk1EWF25YvbF5dvb5u+ZZ57hV3/1V/ngBz/4xxJlHnzwQf7KX/kr/OIv/uJdotK/Ycs584UvfIEvf/nLvOlNb+KnfuqnuHbt2rckUQksTv8BfoC/y9/la3yNv8ff45/wT/gwH2Zi+mbf3p9LG49HPv99n+fz3/d5jm8e88AXH+DxTz7OI888wtHto/+/YrW77ZvTvn67t5Zcd/AnhuCHXjuIOnp4oA5jsulNgheRJSnTksz280ClHCSzPIEUzYvclJU4RDOW01NLQh9aO4hYktEUOYQYBzT2dogUcHaUVWZGq1pEKsUB0hCSVelVs0sTvIq2WDI9xuCJavEEs1X+Fa+eaSCudVpTfwqmWiERCXGRpV4OsF7tV0tZDvoEpXqVXzvkxiiUKOQyL4dU8UOu1RNa9TAKScSsGVAj4OSMBKE08BEjKwQCloeo+wN4IxDEg4r0EBycNRAShFATnWXV7PDtCYqi1QlFdnCWWrk4uyAmNUUXnehIFM1otiSspbYiihEI0OyJr2YvVMlSiKZZbqQyEhqE7Im2gLK92FBzXeToRQKxvXYcwFSFaESulgbTCnme0VIp84ySmWcjHeWcqaUuSh5BlVwK0zha5XPsuHnjBrutHfRzycTUc3pyDFJJq2PCxTnnty7cisuqMmMK3D4/46tffYFPfepL7MYL+sHGyna7NeDVkwk2ViKlbBmnmc125Pb5ltOzDfdPE939kRhHTtYrLnY7rt1znRQjn/id32fcFErdETth1R+bso0MhGTPcnq0MmJKMIimTJmiECTTDWvmSSlaGGJHzZlLJyf0sWecR0/iVaQUXn3lJpvxnEvH98JuuwD6JUZit6aKMoVAXHUEFfJ2oo6Zoe+JCkRLrkiAXZ7JpRL6nrkW1kNn97IrjDWTpJClQuyXare5lKVi2Kwkg1taGTFxWA0Mq0DJloTZ7TZITZyuj8m6YawzUgt9l1gfHzGVAgGuX7vCpdMTG691RlTYbnZOIstm3YVVG56crCnzzG67QauyWh9RU2J1eglKYLrYcKPe5pF3P8WlVPnKVz5LHR/i6v3XObp+hXnKbG6dsRrX5IsN/aXLnjAKS/Vm8KxoaSQBUaRVcHtZpmrgvvuvceWeS7z+2uuIKH0yu6V5nJlHIy+JKpTZyRaJ4knz9dCRIqhXHea5EEPn6j2TrQNqSgYxQAhpSdR3sUdQ1usjtruROecFOFBHR1SEUipdikQJNue0kEIkYlLnGqIBONEUm3bbHeIExr5bEUPHpBOVQDccEQOM08TmYsOcMykWcpmZa2Y7Kr/+4d/k+n1XePNbnwAJRIy8Ycm3SnfU8X0/8h4uyswnPvH7lsAbIQQldYJqJOXOSF9q1dcEJSSxKn1VhmHwddUTvcEArbZm1lLphxVnN2+7RZAgTh662G6Zp9H2G2GRfzcyhVpFfddZXwmmxKdqVc3YPooYyJVzoU8dms2NOOdC7KL1uypQiJ2QQqRMM+ryciIYiOWkzRBMBVGEpcpc1UHplow1CNbsXnzrC8HImSlFaoVpKrz0yi1u3tpx/folrl27zND1DEO/PFt0MjAVNNicRU1pECw+SK4eaGCguAxT9XkQSEOP9B2hNxvMzcUFu93O1OhKIwaEZf+1r2iJ97CAQRZf2NioKszz7JWoMzFGVquB1CVSElIajLTqSgdmRZOs6jwEmGej78hMmQ1gWHf9ktSeZksOF1dciWLAorhKZWnEhVKXmIcF7La+bhCZd5/tz/7ZxRqyBSUNTLaVgma5W90WRYKRPxcwwfdLA8kM9G9V5Y5W0EI0U+crDgBUpnEmT4Fp3LHdbui6nmE1sFqvOT4+ZrVacbT2qvgYCF1PLUbOiw7cq1skmQKgKSg1tZfFhsRjpZzr8rNSHLwBYrU1p717ic36qxJd1YvKst82AoS6HWMjZ+RsROuwCw4mnNF3A8Oqp18NpM4VllZmmWQKTAN93xFdIaXZHje1l0PCA2qk8Rg7au8EpGpKm6eXTrkyXmYcR1NZctLSdnNhscc8u4WUK+LdiUS/cZs4YQZYwMkGkixjy4kIun+ni/0NOODfQBrfJ8WUxR7gAb43fB9vjk9zT7hmxARZLn3Hn3uykjrwiANWthaJwG4XKY0UpgdgbyP7sFdSEgkLQbIu91gwq0jsTCWusNKAQycJOr3oIHmiHvMLFAPokbbm6v52FoCsLh1Sl9hg31/hQK2orRN7sNIpRL52qCyUIgNbZT/PfBWxPhRXf2ovUA40W4L19J6o5PtvswrSCiSLARus6xdtahGEihRlGtUVboxYFAiYHZevYYsJm6tmuDpJI1Dtx8ydakuILERYwWzATI2j6dfiIGUbo04gCEsHLECsKbVxUBTTlHAaScnOXBH2602tkBK77Y48l4WoKSHS9z0iSheFcZ6Yd7MVzbSxHALjNHHz1hmvvHKDkmdiMuJHO8PYGCvcd99LfODJf8WV1dfYTIFNOEW7e9DhcdKVR+nveYx4+hAPT4VVgH615uUbt/jU7z9Dns2m1yy6k73jEE3tFGXoXKk1WJ/a8wLiCn+uapXcAn3oB2KIZl8bjFspVdlsdsy5MvTHkL1wALGx2JSaRAi9KaSUuSBqFnGito+2dWIurlwVTWEzBSOQlqJ+djfgGFdnFtkrTC57LoLgSkVqdrSpE2oBwXIIooG+66k6mzqhmr1413VkVRDleL2mH7plbxNgnloxjO/xmPly3ydT4PAzYEqdkcx7IfZrVJSdjly6/ypDhFs3X0PLKavjI7ojs8WddxMpd9RJiMPKB/+dWkptBWlE6/2Ebp8QLl+/xtHpEduLC3+XbmWXC5Xiy4uCq70EzxdVt/gzgp0uRT5GttyrFVVVtwPGihL8uo2AZO9/v/+39QaayktTR9qP+eDrWghCVVNNxeOrZp/ViDcxJLITohFTjC3t/N/WSLXCl6989ctcuXIPR0dr3vTmRy0GE1l61fJi8Ja3v4W5FP6P/+OfcXFx4QVRlstpCtvtfbT4r+WHiqtYhy7SFncJwdS0m2JRdZvsbGeMtk+KiN+3kelqxmOPtKzFpsYa0CJL7qq99uDvyPYiV3xF/DzgatoCIUaPNUyZrJHBLMy0/cVUxdtcDEtc6Qs7+53Ot432V40RysFer8qNGzf5nY/9Dm9605Pcf/8DrtS5ou86mx/KQqZpClhIi1kP1ntp6nmyqB7aQGz7pls1Bxu7ISVymu0s4Ao0Sxjs78d3MnShJh3EK+rqPD7ktJo6U/CYsMWFMQUvYLH7vKyn/Ij8CO8J7+HzfJFP10/zMX6Hc84XNVs8z2i37+T7Rj7icA3b32dTEJIWZHnMscQU/noWssod8UFrB++oPevh3+vyN0s8cPDh5btqi4H9j3k9c2N9g1sP3STuIievnXLtxWuc3DilH3tKCUaymcw6zeJsU1hKKZG65OqIwWPI6gpank/FlPGafW0bk/u92f9bsTNd3I8/i52q52P2ewy0WAaaynUjvWr1vKPuCezWr5VazWZdRJjD5HZw/k9MhGjPZESmAwUmj2WMbB6WMbb41YamQNnyanH/HjymHcpAdgu4PBtpaZ4n8pSXdbYR4PZv+tuzRSLv5t38J/wnfIgP8SRPmnLxv0G7fRvm+c/oBu+2u+0b3pR3v/sT/D8++P/mnQ8/Q5We7dHDbI4e4ebV7+L2lXdwdvo0u0tP8c7NxMPHkblWfu/zX+Rzn/vcN/vm77alfWNX99WVa8R+IG8339DrvtGaqvLbv/3bvPnNb+bxxx//135ORHjnO98JwD/+x/+Y+e6m8W/cSil8/vOf53/6n/4nPvShD/GOd7zDcyzyJ//yX8AWCDzEQ/wt/hb/Bf8F/5J/yS/wC/w9/h43ufnNvr0/++av8eLqBV/43i/wxe/6IquLFQ997iGe+thTPPCFB+4Slv4CtK+fNtusRVADERcbGiwh7FLPS1VUsqpG3Z/3EW3nf7ca8M/Glnh0ydvkVSWmthH2yYo7Dr+e2PLDX6t8aYnYdvhuB33BpXy9Sr56ZWkIYAVnjSRkykZCZa5W4aYIWuzAaMBDdpKQIMGSV3NxcEFkScaDyZAHT9AEMZWKRsSwymPdA5zaqn08YVVMpUIwAHaeFbKDD97vBtwZmcIScValSnSrGK0ECRSXmKbKASAkzJoJ2asfWwpFxJNP+4SEVfEYcHrIfi4qqCeMzRXGLGTwarAmcV5qIczBAdeRIBkppr1QSsYUQu19G/pgvxdRx6CtJ4pES+oX6wcNrogAFCrzNDtQLKDBKqEdAJIgVLdNWMB0bBw3WfhcZvszT65+YeB0s89AzfJjN41M47Qc5F998WXKbIoHpVROLvUEEY5PT7nvkfv4ynPPsj3fwWzENQnKWCZ+//c/zxe++GXOzs5RKt2UFgUnMFDUkuWmKFOpZM3sSiBvL9jlidub2zz/8iucnp5y5dIVrl65zDu/4+3ceu01tpsdtY6EYIoOQaAfOhCz/QpBYZ4dJKjW712kH3pqrsxTXuwuNruRFBO3zi6IKdAFQWNglxNzhcv3XOZ8M/Lia7c4OVpxvetZd4WuE/phzTxlQq1mhTbaHCIELqYRFVOeWHWJ0HXMxa2IsLkSPGF8dNyx3RREAkfrns3Z1m0CElMBrbNJb08TEoSpVuZx5Ph4zXroGDcXdMkAg1yy2f7VDAjr1ZElI6MnV4sB7ee3zii7iaNLa4YhETXAKpG6me3WCBBJI33fMeXCXDLj+Y7tZuTycIl7r5+S54rOyqZUfviHfpDv++63snn1JX77S19mNxzTX7/OcP81jvuB41sbNjduErY7ukuntg7Vjpbd1JrJ25k49NTO1xxXuxKJTp4JdKnjsUcf4mvPf41pp1aBP5ptR2qVnMGUUC5dusRunCnjBBqs+ruL7MaZuU5oEIZVYt137HbKXAuJSNcFoliyO6aePFW0zMSUmDUzUxbCjQFlZpsZgiXC51ogBuZpJmogJbNuyTW73WQldondlKkKc66krnf0uNJ1yRLQZWaaMlPOhAJEoWgGqb6XVG5vb/HrH/0Y1x++n6snx7avuM2oQ8usLx3xQz/6Xi7mDZ/65OfRqgzrDij2bDUjMVnC2xV4oiSzc0Lt/tWAni51Zhcz5+aOxW43sep7s8rEQBQNZnknuRogobjmmZF8QxBCVMpUmedpqYJOMZqdSjCrBQmmQFWLrRmze35kAkSziwsSULfSqqgRAQUWNRDbXH3tVqvGFpv/Q985mFqXwM7IG5FWeWv7kVcgiwEhIQh0iZILZxfnjPOG880F991znUunp6QU3ObGkvNJIlGEad4ZkS0GSpnJU6YbVnRdR3XwX5O9PfUKfjDFkBBtDev7jpILm83GbLO228ViY092YAEMWzu0i6qwWBpN42jgaJ6NbLMa6PqOVRzQWhywsf2pHzpWdUXOmdNyRJ5nxu3EPI42PnojKoXdCNPOFPzA4iAJCwlQq5OXnKC1j4VsnTJQx0lJDehSJ8NKAx8PQye3cBVLagcNFBWaDajFNcXfqe/d3rfBZO2oHtOYekZTRrMYYFE6UfV5UZ1wOzONge02kc56zlYrhmHFar3m6PiIYRhYr1am5BEjKR6QKMpsYYEqEvKyP5rySiFGA7mDVCco1WUM5yBmI2dvBoh7clo0QqcxyyBG6+e9imJZAKkGQFRXnSrBFLJ2siFt9gpLqR/ohzV935vdwrBymzuzDIwpgSsDpRT9MOXzDWw96ZKp5+FxqVa60tH3Pat15jhnLmdX6JpnttstF2dnbC82bLc7tuN0R6X9G7I1AssBfmV/NvKLrbGqRiqrbj3jv7wMbFuD2hj38UjgarjK++IP893yXaxkdQdQJwf3sIBrsAfwljOFg8F7yHEB79p/N8KJ1sP5qPv1xElDtkZjz1QV0UAIZbkP+ysjHi1WjWJxX7taRdmH74dWLQ5QCYvdiAFyDcdfbmz53lKaulwjTxlRsz3g8j7YLzft+5qak/297F9HtVOihAY6O7nHrbAbYLlYmLR3rZWAKY3hinkHmKphbuJFFgJCpNZWAOPk0HZ/qqB2btoTE+uikFf9fbpupNMWKxRZnhHMmqfF920Bdb6ZkTGdTAZ7lYTWj+1XrJhir/rULLs4/E6165RWjICyOT839QM/F/a9EVH7vuf40jG3bt8iT9mOfg4qF828/Mrr3Lhxk3GcACWUA9UMhVoLJye3ectbPsd07+N85f7vQtMK7Y/R/oQQIkkD3S3ot6/y6u1zLh8fce+91/nKF77MtBvtTOdWvQaqu3WnK+hQip1FvXCJaMB7U++zWMgKVkIQduNkQH2w8V8xxd9hPTDPhfPNjr5LHMVIErP+iqlztS8jC9XcVFICcykogRjF1Zqig81WnrNXbFG6LpDnChLokjBP2deT4LkKtwpy8ltRUzzu+mRxSZ5JMVA1kGsDvW3ep+RnLhNrIvh4ncaRmgvdkEyJSQU6s5eSea9mEWNPqZYfyHMhT4UhJY7XgyludT1DSjz26CM89OB15s0FL964SU4d6eiIeLKmi4l+nJi3I5ILYXAAfllHdVEPDin5gdgmgS6kDiOrxK7j3ocf4vZrN8h+/q5OjGnKSUEMIx+GwZR5iqmqLqQEhTlPHisK66FzqzfLK4kkRDxmxAh4tWQnJCl5sZkzwpCRmizOCaGRTezZSraiFbD3VtXi1hiC9at6DuZgPITQ1kmzlp1LcZWrttbYv+ea+eKXP8+Vey5z6Z4rXL/nCqEtlr4YqnMH3v6ut/Pyay/zG7/xUebdTNdFs58tul9sFsnrpqqzv5927ehEqLnsCeqqRszG2UBt/7T+bEQdOSDT+HdFm2fV16JWhLgoHR2QVaQRZhBcZwX1d27d1ZRWjYTWFPXUfwb7zX1fWGikEZwYsqT2vP/kQBmLZa3ZP/ecM5/57Gd59rnneMtbnuaee65yfHTMerUyFSxfkF3bnBis+OvQ/rTUgrjCpURZVAbNnnwfZ6vvGxIC3WDqPaUUpmlino0IdqeqsfXg8m6XEckd5ybbT8pi79isy1I0FR2hqRvbYIoaeWd6O2+vb+Vd9Z38Wv2XfKl8mSmPcEB2KrXCnI3c3shaHp8v+5mPrUNu1h25et3fqyw3LEvBaCOH72OnPbEpwJ6kQyNZV48pXJnS/x2PE0wF6I8ASkWZh9kUlh58nWE7cN+z93H92et0Y29q5nm24jdXIDLLUicrRVNYWsiKgsdFdSkW1GbVpmblfqikJKqoxOVnFuNY/G/76h032yrIaPJMQa14rYoQ1M5Eh3PO4kfvKzFCZ0YI+VBhKS0FSyE6KSvaWGmEJTwma8SlNqFsSQpLvsV+ZtcPGomxEFOir5UyVNYHZ55pmu6wheONfp74c2qBwOM8zn/Ff8V/wH/AKad3ga277W4DHn74eX7mr/wTLt76AT78zv+Aub/M1F9l6q/ZBw4wu0+8fosvnl1AVT7+kY8sqvB327dfi33PyQMPcfNLn/9m38o3vW23W37lV36Fv/k3/yZHR0f/2s+JCO94xzv4whe+wMc//vFv3A1+i7eLiwt+4Rd+gY9+9KP89E//NA8//PASK32rtjVrfpKf5C/xl/ir/FX+W/5b/hX/iplvXfKbRmV7acsXvucLfOF7vsDpa6e841+9g7f9xttY317fjeneoO1PZfe2SAq3BIInFfVAkloxQk3wqpVcC7VYEjwGTxa4rUZKdqjuWsVI11lFkVdrtYSGHb6Ew0xGLYU5z65wUy0h5gfGQ/nkQ1DBFNcFLdUAIAc9anYpaHSpdBVMmUdroUi05I4ToqQVYgfx6k+v1i3qigleIaiWrDcvRAXJbqXmxCVPLJRaXMJ/XtICImF5HvFEkP+VJQ0dXDf/X0sCZgcHqKYisNgdiBBrpHqCNlZTfqqePEohIBhoWWohpL3sfYzJk1ouM17xhJoaMaJA7B0DKeoohTipJxoEUAWpVgVYqimviCYnl/l7QUCLS6KLq0ZEknbEZNkPS/q7lUsIkO3+WkKsBE8s4BVR2ZIIKdi7C1UWmxCNXh2t7MHHapXYjZiUswEHtRQHPizJPufCNI3kPFEVtuOW5599niCuNhYssTzVmUvBEiSpi6aENXkWJyjPPvcsuVQ2mw21mr1RKU2o20g0tWZPokZCcHWrYFXKGipFCnM1os/uduZiu+Xi5i22Z7e5ffuC3W5CJdOl9ZKkmccRCQkkUINYQkXNKkjVbLK6rqdQGHc7VBKESCmZVYiuyhKQCJvNhpCVk/WKo/VAlAsuzm7w2o1zun7F0dGKVDM6bV1Ku9LrEeM4QwoGyAPjbiZ0Zi8GwaretJIw0t2425ktW1C6WsgVxnnDEKLbAxbW/ZrtuLXktQrHqyPG2+cEErvdRJlH+hBMZYxIl3pIkXE3sR6OLGknylxGqzQdlTpXtmViPhEKwriyBFGeTEEnxI553lmCMAXWQyTWSJKOeVJu374wq4o5s7s4I4TAo08/xem99/OZT3+FZ778MiGseeDBB1jVnloj8fgS9eYZUgrzdmKIHWU7MY8zq3XHdH7GOGZO7rlmNhbR5nmItiYErW5RGXjyycf53d/5JNvtjpASoVar2B6LrTditgLroxVKQdCl2jxKBCkMqUNzpUwjk9j6sIoDjDMl25ozz5NZUk0z02ZL6nviKhNj5OT4mFqEzeaCuWQ0zxQx4lnqjLmutTIMA+M0WdJVAl2KqMA8zWRg6Dojny22HEZE6FIiiLp6kCV4p7KjSwkksh0r1JlOO1788vN89MMf4wM/+l7WqwASzVkSm1tB4eqlU37kR3+IWzc2vPjs86DKOE0E6RES85TNXkDVrBKxyvy5Fra7jVUcKzDY/ifoUrk/zzN5mokpMvT2HF2ysZJiNNAnBoIaWVZLNQs8zIotzwZmhGjssmbZCUaKCSGy22WWKnUxqwu0Umumi4GhT0yzSdcrMyqVvu8InvwvpaISF9BRnKzawKCK7ZHBVQdoICgYEZjq1kd75Y8GOpsTaOXm7dvsdjsjKl069ephtYRqhD5FAj2zZESFgpKCWeEUbdCHQDSLUJwsU8V+HoJVPosqJRjItV6t2Gy3nJ+fM47jkszVBi7p3gbOABJXvKkt8exgcy0OLhTmeWK9WsP6iKFLC7HGwACLAUqJlJIoXc/crZh2owGVtZJrNuJo30EQur7naLWmzJnz84uFaCMNSPL4SsUUIJrlnd2+xTFRjOgXBL+GW8H6/due26wDdHl+Wz1k/76WaKvFEvZ+xVGFlmQX2SsaFVU3TXILFg++VG3dEQJSZvI8MY87tl1HOu/pb6+c9HXE0dExw9CzGnq6PnkVe28xnCqao9nBRVM4CMnsLEMQarSYonhcaJYawdTMipKlLKqXQfYggxEeICTZA+4xEktdSEqlqRI0EoiTQSv2bPM0kaadVz/fJnWmphS73u3tTGWpa2SlGBmGnhitCt4sVhrZy8nk2uKZjITOLCE69Zg3M+QVpRZOL12iXL/OPI5sNzsuNhdcXGy/jsj+m9QaiMJeVaHVfS8xWovb/Qxg5CGfow1cduJKrUasXIcVb5O38e7wbh4Lj7MKawejdLmmXX6vDNRaUyVQGjjon20zw3/9wQeV9frg6+qCzO15QMucPCQ5NbUlB+BVF9ILogvwtVeS8s9K6y8nDSwT0+L54P25KMM50aUuQOvyP/tjeGN1LaBd+3HrEaF5my06SQ6EtQITKbL8vKkywF4pFAyMNisuOzs0C8+9Mob1TVtbVbwrD/qxDYbFVqhJSjrYHfxwZx9XHy8u7lv9PNHIlBysS3ZXKO380dQC/d5CI3T4rfi7DA64H6pttT1DHfS0e66+7975z2K5p3aesfOag91qCjC3b5/tFdZ8rS0OrDbQuREZ2mdu3b6NVrVzsRp5pOaFMYBq4dKV13nr257l2pOPsrp6jZ2Tl019pe3dMJVMHitzzoy7kVdeeIFXPvdZO2dLNQUlnxNtXQ8JysJmc4JsLUS3u6yYZacpgJllWJDO8gNt35xnpCp9l+i6yHY7M007NtuJEBOn3RFQ0Ty3AUJUU6KkPYc6aclVUMTHpPWfzYCSC0GUmNTA42qKl1F8/dFKSok5W+xQVYx0Pk4IgZzN1rtpAAOLmk7OhRQ73zNNHUiAmhWtsK2FfrA9NhcDo2tpdleRMuclLk8pUFUIEqlZmXYTKSYolVy3iCiXrl2lPz7h1Vdv8crNc0QSJyenrhAoSDeg2wmpRiqKfUTnYoqFKVKnkZwr/ZF7Ei9FVm3183yECA8+/gRf/tQz1i/BVKXV96Jaajv6k7rk8aX6fPN4TfAxbH2c8+zK3AkJspxJ2lyJITCPE41cQxCL8YPF0ob3u0ppxfZttzlrBJ/spC+RprJUXRlOfBm0eLIpnZiiTVPKNuswUz3F81C239y++TrPfeUrXDo55WgYODlZt6nmuRM/j4XA+374h9hsR37ntz4OqCurWuxaihPsG0mpkSlEFjI26kooy31Z/NZUWsDusykiLfkzXyGCr7eN9JJrcRWnFv+164ZlzW3rQik4O1OWf4KvbwqkGJy05lcTdRUbfG9uOSonPbV31WJK3yeWIJSWk3HyC65QqHtF12blu9le8IlPfoLr1+/hsUcf5fo91zk+tmIjaeoy/mwpRnsW8za3s25j/CrL9aPvUTgxy5laCymrqWqtQqDrCuM0mdKZKxrZuJdlXzvcedvevkQenn8qzdK4FGpX6dSKNc1WEyeVmBJxrZV36Nt4c32Sz8XP8eH4Yb48f4lZ/eyGEmIgij1qlzqCCNNkZ72WjrT72YcXf0gFyXOn+PrZ5nAjuXAQq+37ua3Kbe3gjjhriTP84vt45OBD6PLuFN2TjwWmo5Hn3vocrzz6CievnnD1xauc3Dw1pbhSKHlmCpE4xYWg1HW9k5fMLtX2zrDsBVobEbAucczSF8uervt/xNb8WtRtddXf+WHzBxKxQpAWn/m/14Pva9egzQGUUkyJsZRCDJk5uN1riEi0XELqnKwUE+L7eHRi00IC54BkJ+3UHNCFNGbq/qpKPIhVUGW1WhlpKhfmaWaavzWtQf6oJgiXuMTP8DP8+/z7/CA/yCUuYSWyf3bte78Xrl2D11//M/3au+1u+3Nuypve9CV+5t/6V7z5x97LlSee5MafYBVWFG5NmZtf/iJnzz/7DbrPu+2N2CQErjz+xF2SkrevfOUr/NZv/RY//MM//McSZEII/NRP/RSlFD75yU9+A+/wW7upKi+++CJ/9+/+Xd761rfynve8hwceeMAI4N/CTRB+kp/k/byfX+KX+O/47/h1fv1bmqzUDh1n18/4v/7a/8Wn3/dpHvzcgzz1O0/xwBcfoN/1B0Vcd9s3u339dm/gUrOW+AuBRWa25IwWWU6gepBkKrMdvJKTkUIIbOdCEmEYBpet9SoPT4S1ZHMDEoKrBImIAU3FqvKzS1w3QKFVd0JLOrckCJZEddKRtOS3qqkCKahUSpmhBEo/mFRuLQYeBKuoESfAhGAgoUaBiAGIDghYosaqvpqKUA3RpXYzuNpRcHuzEpuKj6K5sCgZLYdLB0c88W8K6tWlNoKrB7islXhVXes7MfKRBLGSHk8ilbAHOkIIKEYGqJ5MNEWpwlyV5NLdJUMQS6qpJ3s1WIKXjFsetaR98cN7IWgEEhJnQvXKZImgphKlcyYmKzVVRyhSateoVBVqdnhBASdaFZpihVX1VjX5+DpPBvBXu3ZuIFAppIgnUgNZWiKsgSwVLdkSuTWTq0mcazECTLNryMWUREqeqXkiV+Hixg2ee/ElVApCZEiRk+NTttvR8g5lT9zLatZX81wYxxteuamAVZJLMMA0N0s7l4SXlnyIgZQSIUVismphs5qwRG3RbADl+cY+E4QQe3KZ6FMHoTMFiQrTOFn1LkIaTEp6ygpk5t2FJ0OtgkuqMKx6Ix4YukIVoZaEhEo/9KS+4+rVyK2zLa++dpPXX7+B7jIPPXAfZSiELiAkLjYjJSsxVYZuYLPdEeaCpEpWWMVoQIulUjgaBqoENuc7JJrqkUhAolDEVHR6Ebo+ogwknaFEzm/dpIwT/fElFMjbLaUTttPExXZD6nv6PtGlRK2mqCa1IjWQ55nN2Y7jkyO6o1MkBHJRJBuYoSIwG8i0G03t4uqVtROglLDqWJ0c8forr/HKy6/TrwcuznecrE5sjifhqe/+Dp574SU+/8yneNs738HRbktKxwYsxJ7h0gnd8QmSAqEq3dDBqmfoLzM4kL7IKjSiHwoOIGlQ7rl2L9euXONiMxMSZiVURhsuoy0oKoHb51uGIdF3NsfnbMBM6jpEINfJ5gOJOZtSlbplQy5CSp2tweuOOSuh75hzZp0iMcA0Z1LfGUiQJ0t2FkWNS0WXAnma0GIVw3PJ1CB0Mdr0mCu5jgTNlGlGQqJUJ4NUWA89wavLY9ehs61hFKELkWHVo7Mw7S74vY9/kqtXr/C93/92UgyuDhMQFsSY+67dxwfe90P8yr/4P7lx8xWUyDxlEJfmD4EUEsfHa6o6YDbbulqyEXPnXAlRSDGQYk8piqREFBinHUkSse/oUqLM00KaRN1aE5iniRDMBnMIiRKrEb3EiZwKKSZXmTGS43pYg5qq01ysj6oAKTBrdRKV+h7es9sVaoqsu0QMwm6nqAYHzaoLmge7f1VSSBQnvkQ5ILpUU3qz/tyDuUEMWLY5a98VgjBNmRe/9grnF1vuuXaZ9WpN1xkoEUNAkqkgNfqCASh1Aaxa9T6l0qdkhNQYnQ5gCmlW5Vzp+8FIj11ivV5zdvuMcbtlnM3q0AAdB2q1VR/b0hyDV/96JNSgn5wnVAtalHma6buOoR9IffJcv4GLBEEkEkIhBCPfhthRamEcR6acMecBsyBMMVKyqQOlACHZehSISEw0pcWCgQe1ZCfjRO93UyTJbmcSHOYxUN/jK1G3wzHAKHjsZiRbi5bE+bIi/r3B7SPMb8TebxQOoAYWVc2FwGTxkUEnirBXAFCtlJrJ08i027K76LjozjkbBlNVOlo7uWdgWK1IXVqS8CEGarE4oZZihIKuUrLt2zlUr7qv1BoIOVCjkorZEJaaUTULGAMemrUuB7ZUtia0cUeNvj8cJvMt6Kti8Y7MZhFXFQjbpQp603X0Q0/XrxiGI/phRd93DKuBlDpS1xGjqTGlEP3aDmjUuiiSxZjQYOqjUROpGjhDNXWHsl6zPslcK1fe8JLQh2o60pAycGtebRjlAtKpqhNFXF0uBGIIXC2XuSrXeGd8J2+Vt3BZLjvBFtqJ1L9q+VED51D2dk8e8y1IGvsPNXsyUI6PoUt7paDWFHXBgD1Rk4UY76uSE5lEqyskWT+oP79hxA28as/ensEt1rzP2kM1qyNxedamCqV1mcB7kN/7uP4BMFKqnduUspAubGjXBcBtADMOZiuHqm66fAa/Z13eXVOSwizmsPjcbEj26GQQO8O0s0lt6JpbdAuCVCOxi1T7bK1WKKPYf5dqNqit38TXPyc4qAqltncnIK60GuweSgOrtdozNIKJViO/LNtANdUFV4VookF++jNYvfo7dLskbefONg78n6au0OyDpt2Ws7MLVJpKnVm9zXPxo4LvT2KEXRWl5ErOO+//Nq7286cfNjz44PM8+fYzrj3xKGk1LEQnI2Q6AWyZh/Yuap25/crrnL/wwqJOKmJqHckLCtoUaIR1ATSKqxAWoFBzUzS2WCtgJHVZ5kV757YHJ7fDWq0D45TZbEy1lKycnByh0YlNCPNs5FEJGBkqz0itEE0NKYXg4L1dpotmezs3Ndc2biX6mC9E8bNxTES3Z5x2O1MC7Qcbz3lGI8zFbGDtvJVsbqjHDxVEzeZ3nmYjgzsxv6rNu9rA6WpzPxuzg9Uq+VwUJAVi3zFtZi4uNsSUiOsjaNaVAtceuI/bZ+e89uorXL/vXro8E0JvXRsiceiXa4OpIkoKxLgy6DU4+cTXvT0JrhFo4PL1ezk5vcQ03/D4sS72XoXsymXCOJnCVFzUO5zq6DGgKS47cTEG5lz365YvAClZgjj42cKUjxrgb+f4lJIpx4rFaIs6txf8tP5XMdve6LFlaeSeYOtkDYGmuKyl0EXLqQRwBWlcBc0GUZcSosKXv/QlVqs1w7DizW95gmHoQFgI4C00GvqBH3v/B5i3E8888ylUw0HRm6k9GVnZipksNqogzd5Y96o4AiHGpR5MgseAara3KSVTYG45KSxXZ+p52X9gOZUomG26v2BdFHmCr9N2HiMYqUPZW2IRlp3OiReVGAM52zqWUiKoMuvejs/yN430YpuCrRN7YuvCkfM48XDTlhZT2jctZ4xXX3mFG6/f4P77H+Ctb3kLx8dHDH1vY9w/H1x1e19QsWxWtLi+PbNZJQe/rhF0gr989TGk4mo3KTFPE/M0e8HhQfzA0t37OFlo/F/0YIy0fSLPto9lL9jcq216/7gK6iAD75R38mZ5ms/K5/hI/Qgv1Oc5y7eXuRQw4oqFAbbWm3C8jeVFqQtXKfU5ULWpmbWxIks8IR7hWNfvCb8LqXZ5avvvdrbC4yPaKiP42t9yYIdx1v55hcNxYN89Hu3YPrrl1UdeZdj2XH7lKldeusLxrRO6uaMWobhK1hQnYop0rrJkNt3JFZYbOc8InRY/WbwSZb8/6x/6x3oh6N7aFz/h6KEVrD9D020UFA1OE2qxpsdYe/VQe8YKhFrsHFOEIpksTrAKwZSUYiTFjpg6Wz+SnZGCF+/EGF1Fqtks7se4yD4Gt+ESCKHZ0rGMg9RVhtWwJ1d/izZBeBNv4ime4q/z1/lpfprHeIz0pzCc+NO2++6D1erP7evvtrvtz7gpV67c5Pu+77f50L/1PE++/z30p5cO9tJ/fat55vZzz/Lixz5Kvaui9IZq62vXPQ79xrWje++jOzpm3lx8Q6/7Rm2/9mu/xtWrV3nXu971x86nYRj4mZ/5GYC7RKU/4zZNE5/85Cf5zGc+w3d/93fz4z/+41aQ/i3e1qz56/x1foKf4J/xz/jb/G0+zsd5nW9x9nSA2/fe5va9t/nsD36WkxsnPPb7j/HEJ57g3q/ey+p8dQe+cbd949ufgqRkCRMjRMiS5AmxEVagFPYWap7wjDE48GNJhpgSR11nSgfBlQpaJf7BARns0N7ke3PO5JyZ57IQOBZbt8Pv8MN5q0k5rOypGJCkUpfKLLAPFq+gqXWm6Ax+CBVVNLtVQNgf/O2AHRxYCFTzH1sGdFVdKt6QigSvKA4OYojLLediIJN6+qOa5UvGKw4xQKZItetVqJoJ1dQjFDtMi4gRYIrLr3t2uiVRcjWY0NSM/LHFksJ5zmb1IrJUhDdwRv39ohAwW6el5l0q6Eyv1ZWarFK05OxS95VCJYRKJJLbOxN1Sf+MFLXENEbOiSlSpNneNUDTlTE8WdQkoxvjOARLLEhVSp6gVvI8EjGLLI2WgJtrpZaZkAy0FPEkqB/Sa4U8F3snefLqZkvI5WwKS7lmasXA1TKTi/Lyy69wdvPck0FCPwxcuXpqqhIiEKKTt/aATEuEGIpQPOtmVVdNucGGlz+7TSqrmkrRK59l+XuiyT6LKplq1bl5RLpAPwzU7M+okZQCZR7RYgmsPgSSKrnMxM5AXMGA9piiga8hWqKn65GYqUUJCJdOT8g6s9ldcOvGTS6vT7h+5ZSiM0kicym8+MprPDjcz1E3WNV1nSlzQUskxMo0zihmaVFLRclElGkajRglwjxOFDWbvSF29K7mNqlZiUFlN45oiFyMI1OZmVXRENmeny0kI0U5XnUcdQMV4fbN2wiBoe/ph4Gziw1IYrMbkQ5ipwzdyirKi6KTjWlRhWx2YlMeGbqOnDP9MNAHoYwzUgrXrl4m18JungnrFQ899BAPP/ggWQLppOeFr73I733mWWL6P/mxH/l+nnzqKUqq9MOaOByTx0K5dcFw6cjmZi5ojEb2OAhkW3J+SbSJ2Rutjy/x2EOP8upLrzKXTAT6YUVQIZfM7GtUVbP26/vOAUQDUkWtsl+dDDjtZvrVwHbaIEA/9Mv6Os2WDOzXg20TTsy5efM2sV8xDAMX47gU5abO7K524wbRCkQa2JqSrUelEQeiuP2KcjSsqCowzYgEI8wEYVgdMeXKtBvp+h5CZR4zMShBKjNQpbKdz/idT/wuDzxyP488fD9BnHjX1nOtJFHe/ObHuH323fz6r/8GF+cbxnkD0fa3Oc/Mmsk107lVB65603UdBLNoKihH6yPmqTDlbJWQrTpZYC4zUyiE2FFztvkVjHRZg5iqHQZoTSUvlmgtWV9drWEeqyciG0HY9qMo6nYPAYLto7YPZ+Y8Q3XrlCpMBZBAjJ1ZfTpuEFMgAbkYQdBIT5ZcVTFwOQQjDVYnp6aUCMHINaYQsd/f8b42gKmw2ZxT5pHj0xOuXr3Ger0iqFlSdJ1VsVfpyKUuVfGpsz2jlGLEu2DqBsXVAYKYGliWiiazBOyGHkHYnF3QhcR0dMTZxTkXmw05lyXuaKjfEh60NVbNUkdViU4iqaUy62yqSnlmN470fUdKHV2XFrBHgpBCMhVBEVKrencQJU+jxTW5sNnsrFq36+irXSdLIM8WG8zzvABApRjpWtzqJATImCJhIwkEcaLrQYK6gY6NmCU4UODPHEOz18JJVt4HZU+qXizgbCAa/uCfq7XSZnQDQBaLCLHorFWkVxGkzuQ8IuOWcddx0XX0F0ZWWq3XDKsV66M1fT+QYjIAKnS+YmQkVCNFS6VURaIpH5UqSLEEdCmuPBOEUg38UxwAFFPTqB4nLYCpYyaCq3R430QnWVGNjNCIRLnWBYDQIohb6c5TYLeNXtk90HUr+qFncBu4ru/p+oG+H+g7s4RrgEOzXxj6jhQEZ/oh1QiTNdq9m6JIQTu7ryHvbXnfaK2Bc8Er5o2cWfeEJXzc1Oqxvf2kVYdfkau8RZ7iXfIdPNQ9wiAD0RVP2/ta+CSqjUHiBRZGSCtOSmoKNkstvINth0fTZbq0Jg2uVCcbtU80oKpdt6Ie3+n+hliOE2L6heJfWuv+HLPH5VrM6PfYSErSziHt3LFXA2innoXwhJMOHIRugKR9b/XKIV3AKgS3jTNSaAOFm9pGlWZTB4vskYhZemtTqJDlHLHvtz3BSv3csvSckw+i2p7VXttizSK4GmyzZdKln5Y5q6Y40e5rsT7C5qPjo0bo8jOSSFOe9fcufuHailiUWjKB6AuqxfmFfSGKVO+lBUH3eLu4OpeWvQ3fHaSkvRVg1UKtsLnYMO4mA33Vzsyr1YDqaFD6gcruHuAGZ5ot/W0CJsrlSzd529s+xep45sqjbyWthj05xwsgljXO308jG91+9quMr99wvoUS1BVbXJFPnXCsPoeCGjEl4EB3bGONZf6pWnCxFF44MBoQs5RVs93eXewYup71qve13ci55xdbTuOJEZL9nFiL3VsN6hbfRlRp40ewdynJVCaqk59zzUSJZjmPLsRfUFeNEiMReyyHBOZp8rlmFI0+RYgJVRi3I4IQk6n8znm238m5CUgRQzKFxQptFQHMTkdMQcNUcqrZ/GDFSKLK0Xrl6oiV1ckpp5cucXpyYnZCfeTs7JyXX71NCF/mTY89xJVr14zUmjokdmiplF0mDh00kl3Yr7mHY4oDXoCd2aE/PuH6Aw9xduOmWdIjfv7axwWtb4orIbV1SRrZV5visc2PGGwX11q8aC0ssVhVJaS45DpErLiGEEipt7ijjU0nrZbqBQrL/HYgXg5iEexM0ci/KSUmV7BqxIQuJXI2q1qC2eHW4go8zjLJNfPV577EfQ/ex+nLJzz80INY8e2dEzSgnJ6s+cAHfoRXXn2F1159lTlnV9tWmm1bqZVYZYmt2r6S2pzzIgDxAjVVpYumBmtbqDJN80JIsRyQLPkl8TOKDb3qubP9fbZYsJamKirL+zLFq0ATGpIQl3gpOAeluEKTVsupiTg5qLS13veQKMvZRS2wdnKq70uyL1JsBBWzaGYZd/twVWnqWy+88AIi8OannmJ29cphGJwY5WrD1Yi+oYoX3jQVM3wNk0VhqTj5JIqVZ1XdW0WHEEhdYt5NBDGltXmeGefJi2eWme3r88GI8H2Ptj41co7qvu9rNWJKiU48Ca5Ctl9LRQIrGXinvIO369t4pb7Ch/kwnyi/y3k5t7V0NsVPkYAdR9RUumgKZHWJa5e1etmj21JwYKcqLPchAnUvYr+M+WXbb/fq31cPFpW9YuT+HS/7EH9YpWlR/PIx0eKacT3y8mMv8fKjLzNsBu597l4uv3qZ9e0jQglInglzYHbLtEZSSl3nBT5hWXdEMBtebXu15V2rEwrtIVq81FQ9w6KORLu36nEg9n5bBx32UwMiF9WoNqC15aI9NsDjZVVakWatVhwWJDCHydVb42IZGFy5OXpeMMQ9uUmAXIxQGNt+fxC7SrAXb3OhGoG7nXe+xZogPMZj/Dg/zt/gb/AD/AAnnNDRfbNv7W67295gTXnssa/ysz/7j7h6fcfj7/0rDJcuf12/WXPm2Y/8K2588fMHB+G77Y3SVleufsNJSt3RMUf33setr3zpG3rdN2rLOfORj3yEp59+mtWfwFwdhoEPfehDPPfcc9y4ceMbdIffPm2aJn7zN38TVeXHfuzH/Awhf/Iv/gVvRxzx1/hr/GX+Mp/n8/wP/A/8L/wv3/pkJUCDcnbPGb///t/nU+/7FJdeu8TbP/x2HnnmEe55/h7jXNxt3/D2dZOUYhctiefAdbPIChI8Zxs8GewVIxKQYOoAIUT6lExJKQavttu3hXDRgCs/jMZoB6hxHJmmyRRsSvOv3yc+W274ju+kqRfYAVL8AK7ua18xCx3HCZbkSdWMagY1UkNkz9upWiEoWu3eTCWnuI2VAYZWe++HuSbhLgbuxU7ItZhkNNWUCQLkPC/2Vo18Vf17AgIx+AHdVJEqtRXfeOKnek5Bl8NsBS89TODKG/uqvVaRdyC7XrJVFqklwGou9i5dYqY4+SnW6IkLWUhUJYcFdKpuq1KLV+Ql8QS9JYFKqZbsU1MtMcA0+ysPhCrMsyU0g4hV52IH/RrEHqkBDOR9AlItcVjniSAG1rEktRQ0ohQqhVSN7BBSS+DJHcBklyI5G0Gt5HlJ0hkQ7cSl6knuPPLCc19jnoonZoShXzEcDRxNR/7cCXEaRPOsX5IanpAQrLoNzP5PpAFqe4A4RKt4DuFASSBGuhiJXSIRiE3cAasCLW7FGLvkpDxTAapBWElkSImihblOxBQ4Pj1lHGfmyQDxiNtgxcRcJgiZ1Cd0qkSBOU9kzayGNWev3eJ2vuD49IR7rl7mhedf4ujoEhoD23nm4rVz1qseiYm+WxNDxzRmA71CJcaeWo04o8WsuyQmxpxJXUev4laBoFrMbi1XdhVyqGy2O0QTjBOjZnZjJYmQQqXrhXk7MhXoSmAaZ8acKeAKFxEthaPVCbGLxE4ZdxM3XrvJ0G2NHBYE7TokiVkCjoXUdagq22milomLswsun5wgWjkaOmKyded8u+PsYserL73GZ3/386y6I8ay4dVXv8bNfMav/fZv8tJzz/J/+6t/lTe96XH6KydUzUgXmS09Std3BmRUkPSHAybFFrN9FWUgdoH7HnqA1adXTJtzS1hhijNH6yMuthskmrpMnkezNCoGCu62W0K0RHSejVhWFbpxpOvSAXgvWEX9RNcnuhiZponoa8y8G8lztj3BrY1qVeaSGVxJKYVE363YjKZ+Y8teQgLM40Q/DCCQhp5aCuM8OXAglFzYjiN911nxa1XylC3Rh5JiYhwnRDonvsDF7dv86r/4CD/1lz/IvddPbQ0lsWSOgdAL7/jOt/Pya6/xe7/7e/SrzpTdNDOXmSCJ6MnIaZro+o6UEmUuzKMBW6b2sEUkMM8zGpUUB4b1mrlkilu99KuVKfOpUt1iRKoyxM4qzefZVPO8Ulq10neJmuzvUjdAiEhV8liYiyVZV4MRkwwwigTFkpDByEi5ZJqCQK6uGOiJTImBMhvZI/q9GSHSsCYbG8UsQkOrsHZwydfLZlFWa1n2WBxgaGuYiM2nV159jYvNjiuXT7ly6RJHRyu6LjFnLKGugeAqKkq2a4Vg6jlu9xJc/kjF90QH7EUsWbteHVHmalaDq57uaEV/fs7mYsNuuzUw8TBxzr4633ApB/br3squgc5lMlBzzpmYJvq+p+87U0/wNVzCnmCg1dSu+q4nz5NJ69fKPBfmUhbwMMVAjYkdkyfFxZU9WN5JiGLqgU0ZzHLpy75tyWk167ziz9WsPnElFW2KR7Z6WHG7ehU+RIkUdVKUA4Ahmv3KPGVbm2J7xwfg4BKkQavUbghGA6xRcXJkodaMzK6ulDo25z39sGIYVkbqWR+xXq1ZDT19F0kOTgYx28dQCrG6rWUp1BAoYipWiwWcus1uzWhoBKVm02dgSnHwZg8o6TJe7YnUyJU+VnLOZCfuLbFTbaoIUBDmOTDudsRwQew6HyOm/jYMa4Z+oB9WdENPTImUOgLCbho5OV6jToCz+ZMMzKuVEAp4vGuqZkINb1xQQWIDrfaAIzhIKqbyUORAxQezrXxEHuU7+U7eHt7OlXB5KX6447sX0AUaIaiRY5r9zwIi7plAi7rBH3PXtGIIH/7AIRFogSQXQL1o04P0GHW5s70t4p6m037XY/jaKt8beNXu4QBw9rh7X6zhKkXioJNb8tDOOOB2c/szj8W+tAOFvRNtT9EAsgXCajjaAu4e9rvaogulEV3aet9UnQwsawUcEvbrg9Nm0GAgHLC8o9LOLAFMAc36oXrcT3Vila9hzpi082ZtwDfLudU8TNtR8/AZ7nzj1pcO7Ddb6FI8nrcII7gK7N5OpZEL9mdkUxTSA8XdvYKSPWPbN83qbbHqQ0gxkbpIKp2/Iyd+CEaQ0wVTvuO6SOXhh17gkUe/yrAaObrnfrqjo+VM2vYiGzf7+dFsnvLZGeONG8v5hPbelaVAhDb+BJIEUjBbcStsCPR97+f2/X0tRMGaQV3RpzjputrZPMbEWHaMdaIfetargfOzC7puQIMw18K0GUnJVIpjTIiYAmF71yFEs/10gDU6IavU6pa6QmgArL97qUr2pMA8m7UbpZLVVPqsAMgA3ikXJzs2Iqmt/eKgMFrpUudEMLP42m53pDg76U4s+G0WZMVsmhV1AorZ7Axdh2Bqo41gGHImbzdcnG947aXXSbGj1Mxme86ujnz1hee5uH2bd77lLVy5cpm46pe9vBVwhRiQpvAlB0QA1f36cTAXrGAqcu2Rh3n285+jzOMd46dLHVO2woGuMwK6YkQUaNZltgaYOpATKnM2Yj/7uRhCJOfs591I9cKd4AU/1eNmG09hIamIrzPB7ZHU1UVtDNvaU10FNMSEBiE2EplPJPEzeKiyqJk1O0FTKxInDNl82Wwu+PKXvkjfrei7gfvvv2b78sGa3uKfa9ev8MPv/2H+9//tn9g4dJJMcZaRKc35PbZ5SlOIdPJdNDK6kWtd7Sil/Xqi1eaExwJN0Q1MgRGfu63ooK1bprjiuRNctRF1xSdcwc3mafG8Fz6W2r0u+Yxm8Vf3c94WKZsrIbScjVNSwsEO2JTFfL3e50f2alt12VPbuG1rmPLiCy9wfnabBx94kPvuf4Djk2NWbh8cnBBXvH+RRkpsalK2ltWFML3frffLunq/2drc+AwhQugiYY7M82zKSgdnoBbk3DmnDvKYPsdarFm1OoG/UkIg1Ka0FZY4VCS4Daq904fqQ/xb4d/mh8p7eaY+w+/ycb5WXjZCtgAEguz7vcUkTRVU/P3F0EhBLPt4OxPZewvLet2eSzwv2IhMbV29g4AUmqIa+z15iQHbHu8k3NpyyfviU9lfqG09+zkmyu54y7Nve5YX84tcffEK933pfo7OjqlVkFLIQZhnt0tLpnIaU2cKps0ObsmNgohZoVlxUHFS2/5+8HEJltqrjdwkiqqtE9Vz4Sx9ZzHMcrZsZyNtsaB/NphFqfrPVfff0c4klYJIMZtMn/NGSjogKbm1tDkhmLJSLoVQA30ytS7vWHvXfv8igmjYx4/fQuSCROKH+CH+Xf5d/ip/lYd5+GC9vtvutrvtsIVQ+P7v/yjve9+vc+nyOdfe/E7WV6993b9//tKL3PzSF5e94m57Y7XNq6+YanD4xtlbiQiXH3uCW1/98t1x4e1rX/sav/Irv8JP/MRP/IkKPpcuXeLHf/zH+Uf/6B/tbaHvtj+zpqp89KMf5Stf+Qrvec97ePvb3/5tQVYShI6Ot/N2/jZ/m/+c/5xf5Bf5eX6eT/PpP5AV+NZsGpVb993iN/7t36Df9rzp42/iO3/lO7nn+XvuWsF9g9vXTVJKnaswtFyjH7xFTQEHdRsctyNp1nAxpKXCLbRyKxqI5f8qLmXth7p2EC7FFCEM8DwgP4nekVxuf7bKExGT7rZrJpPyPUi4qxOtalMRwRWWtAFbM1qjJwzED4pG+hC8kriK57TsYFe9YtrUc/ZgnKgRmiB7klPJalWW1ZM+eZ7R0OS1s1f62ffHYNYtVrmVMEJNtWSsiCVbwSsWqyeecCKHEj1hb30gSKlLcqOSLZknLZEbTKWlmN2YiEBUNBgA1yqNqh+YRYUYIjkIUfzIXPK+ilgExUgJhATFgOtalOioiCVPLLlkqg4GXldmVAJo8oQ2Zr3WAEDwBJO43LIlxsZppFZX+ipG8splAsxWsGphLDNCJFb7maJL1XTXBYSOUnt2m4vFF95IAtmSDsWUZWopzPPICy+85MpAVsl8enpqNjXrwrSrqApBEuujNXmeDdC1t+2kq5bMMXs7xRPqLYkWmpqSJ4wOCEoilkzsJNKpUHNGpRLTQEzJ1Id2MykKXedELfVqaISpzIQgdF1PSIHJE2tzMTsHq1IVpnlCVZnqhPQ2FnOejQiWhTpDjCvGkulypouRvo/cOruBpCtEuUQQYTWsiH1PpGPczgQtMM8Mq55pNxG7xDTtKDVzenJCoTKVwjAcEzKse6uqnVEyFlQfr4+oZWKeKiI9sUusmAh6gVRh1ZldRh96zjcX1FxJQ0+JgS5EM4LMNv5SVCPbxMSsE0O/5mK34fjSZYZugC4aoQCbe8P6CNLE66+/jvYrTtYrtnVmWK046Y4YukaYE+aauXnzNv+fv//3eeCf/TNCLLzwyovUOME486WvfZV/8ZGP8DNJOLl5ztWnHqX2kTLNlG1H2Y6sTtdGfqkGWPzB1tY5KW7+FuDqA/cQVh11aypnXYwkwSzkQmSuym63IwZhzmYdRFA0CCVASGYDVmMmhbAHKmtlt9tRa6XrjIixvbig7zqMBBGpxe4o60ydKylGI7bWvJCf2t5glYAwjpkuJiOHVltjyjQxFyOrmYWhEZ2aclGXklkRJtAQmCZTLVrFRMHmVQxQc6WMmY7Mc19+lo98+Df4yb/0AVarfsl4KqAODqzWHT/wvu9jyju++JnPMu5gntXXYVv/+67nbDdRS6brjVQQQiWlwYh0AVN0Skb2PNtcuMoOrI/W7HZbqhaaLU5uMaBn7jUbAaQpaaSY0OKKLqFHq9L1HdvdZNXLwRKLRvmIptonloBOKXhl+EDVzGY7EoJwdLQ28MFEBG0NCdFBZVtnCThQFFgNCXVArwaDZpulzZ6wtAexl8S07G0XdLGHmF0NKHB+ccFmc87FxQX333udo6MjQuzoQiS6SoIBONHVCk1taq++2MB0AxUkBkKFWpQ8zpzPZzZDXD2iT4nTmFivj9htNlxstmy3W5uzWt2CpXpymL36Ivvku2oLiwzgm+tMyZk8z0xTYrVacXR05OCfzScRUxHoMLUlZTBVl1KYppnd1ojZOVdXfTAQuBpaSc5mK9alaGMpmQWfkRZs36tVqcHUCVWVMle6mIhi5CgRYXKlgKae1oCYVsUu7flUMas9r6LWA/sAk/xwNQwcyG1AaDQVCLkzsX+oWCDVfg/dg/WmPpOpeabME9Nuxy4mUtfTDStW6zWr9Zp+NbBeGdGnX3Vmq9oFolshRklkMuLAX6mFoBa/aXHwbAE9W0V9IGpT7zQlsKpQDyspGsAmFuMZgSkS1N5BjRajmdKSKX3YPCgG0kpmzhPjuLXq7hhJaaDrelarFWnoScOKoTNL5O24Yxw3nJ4es1oZwVeC9X+McgAqOewVAxLfuDLFsakwtDGx/Lm3jwoidHHgGtd4OjzNO+QdPCgP0kt/ACAejKmD/9oTa/bgSqnF1BSr0qzE7gAIF0LdnbckB3+/XFeXq+zBx2Y31A5JPp6bYpj40afNpwbqtTmGAsEIwrV9f9XmWrYH/9r91XrHWUhdGcPONfY7y7oIRggxZo8Db3FZs5ptWVOQaM/RALj2JRrE1wGv/pc9YKsLiN2IW3tFkKbWoMF+p1Z7ztBiCe9ns6+kmXPvSUW25bKA6m39qEY+aLhm61f71rBYIhnxStCD+KW97EOlH/WXoU5YMJBZFqspaddwhNQKFbyoItwxesBVWoRAdXunphRcSvH9y4lk/mepmfOzCycv2Tf1Q09KiS7ZmRg/43ZdZ5ZZC6Fpnz4KofLEE1/mkUeeRUKlP73C6cMPL6Bo24uRg3G9WN8YULu7fRuK7T0hxOVdmVqyF+o4WSC0mEMN/DeFJCPfVH9maQpQghNYQHNBopGIGzGDip1ZQ6JUIzg1JZHdtGUV1jQyY5cSEiNCpMzF7rAUUop23o6BUjJaC/0woH7m7NNAKIXOi41cUw8kuHWsrdkipnyZKExq9pkpOPgr0c5FVY2wLUJy8N8GTBuXhehEtRQTU870g32HhuCqP/YeUkoQAtvtFo1W3JW1ElOi79NCPGEUcp3YzTs+8Xu/z8kXvogE5eziDJVC1cKNs1t86dlneUsQunFiHS6j0RUXs8WBaUi+9vxxEK3u/17g8gP3E4YOnUe3TDOlTdtvjcjT8geLaqMD8kWNACGERcHYGRyAnU9aXC1egNCsGJviSPvKXC3GD40MqZgFcsDzRPaPkY331mBCQLWQmyJW3Cu6+bR3MouFNurbvqrbuKlZx9k9QZkLLzz3PHW2+XN0NHDp9PiOxbo9pgg8/dY389P8FL/yy7/MrZu30Gpqem3PiiGSiynqhLDPeYWm9hJw23r7/mmelvxA10XUiUCKk5SWlUGWB2mqLTa3QZbcS1jWWgHmuSyERPue9txNpal9nxE65mwqQk1F1N6/F9LR1h7708TwbB2NIdp+VSvlQFnm8AzRlGr2236LwdpjVT9bVG7dus3t22c8+/wLPPnkm7j3+j2UkxNWq5UTYaKvfb5X+XMt15P9fnuoOog00ozt99M4GuEkGCkxhEQvpl7elJXmOft5ou10bQ/ZxyZ7AlO79j62sH2t5UFNbazvzMquDdjQ+ohKJ4mH48M8xMP8YH0vn6yf5JnyDJ+dP8tYxyUmsIyhnU9FwqI0akSXsOynjQBtoYK//yCWx5Pgcag4gRK3WdwXm/6htaT1Na5aRaP17q+1jE85JHZDU8H8o9oS+6mSY+aVR17l9ftvcO1r17j88mVOXzulmztT0s/Fcw9G6JmaslJKTlYy5fBolbYW41eIwanJ2hSN6jI/alWCF3e0dc9ymzb2mx2l5XP358Y2nJd4sD3HMnfsU0sRUJu/Pj5qI0TWShFcJd7GeAh7dSWJaVGOamSquurpUkdoFtMeDwRpb2Q/Edr6+xe1HXHEUzzFT/KT/Cw/y7t5Nyvu2nncbXfbH9diLHzgA/8n73vfrxNj5fTBR3joe3/g61beUVVuP/fsEufebW+8Nt6+aef3b/ASf/LAQ8Suo0zTN/bCb9DWiDEAP/7jP74Ub/xRTUR461vfys/93M/xi7/4i9y8efMbdJffPk1Veemll/jH//gf8xu/8Rv8pb/0l3jiiSeI8RtH5vtmtkjknbyTd/AO/mP+Y/4B/4D/jf+NX+aX2bD5Zt/eN6RN64nP/OBn+OJ3fZEnP/4kT3zyCR783IOsLu7Gjt+I9nWjGHkuSxI+BSMB1VIosxKCgV6piwRPdFgha7Dkg2dE7Whs1Rni5BDVSmiJAa3Ums16xUq3lkQFtCSV+8W3ZIeXPx/m0lt1ZmvtYy3xq54ERdRO6qKgxSqMqmIqyGWRwrdkeaGKEDVa0rlUoBA1LmQqLV617IQbLe0wapYAoSXzPcGN7glXpVZ/fkuK4yAmQSHJoh5jyjwGEVQHDqtWAoGijShjh95msUIQgqhL2uMy3QamSYwU8X+vEEiEmKAU7AllscIJ1apfm5WDVCAmq3ZMNh5mt2ACA0gSHZBMFcYVoGrN+8SSH4RrLUZ8KTNdMLuhmmeCFLpkNoNW3RMIaiYyqmanVqvZ2xCEMo/EuDIQALObafccCUzTBApdErJasr0pJtRS0BpI/rNcK1OeKfPsFoPVyUzVPqvKdtxw48YtU8GYrFJURCizMnQ90/aC89u3EYTj0xPOzy+sV8UAmaUysO6rB1viNTRVipY4CHEh/+2t7iwhkVTIO0tWJjFJ9hBNdWUu2efM3mKhFqgpWFX4XNA64l5EXpkcSL2BIEbQUmKInB6viaFycT5yfLqmX6147fUbnJ+fM06jjeOtME8TZ+dbUt+z6hOX1iv6viMrJAK7cSTnmSEGuhiQUhl3I10p9DEgg9mxDcOaOM10qScnzGIvF6ZS0FCJqSdvR5h2DESmqmiKXDq9xDxP7HYTIx0524bbHx0z5xnJlUggdg7ui9ANK5SZ3ZjJWZjnmTJnrl29xLA+oosGiGgfgUqIiSAdcYRycsT2YkJXyjwrpY7Eo0ipmXkcmbczMVekbNDjjlfHmzxwesr3PP44qeso05bNPHJyecVufp14Xjl+bc2ts1vc+9SbCV1nietavPo2QucWjQ0zFYw8ILokvCvClauXefD+67z66mvM84x0gbzbGGFp6BCFuRSmXBCx5Nw8zaQY6WLH+njNbrMhVEVFyKUyztlWk1pIKZDiQKiV2A0cHx1x6+wMMCJZ6js6NfJlzZnYD5B8DyiehJTAdrcjl5Z8K0zjRBWTJF/1RvbKc0X65ElTq6ZuBE+i0HcdfZ9Myl+x6uecUTUyTMnq6kVnqCQ+95nP8qbHHuE7v/OdtljAHoB1qPSe0xN+6D0/wObWBV/54leM/DSsmGYjWpVcPFkboCplnqm52R5Eqq+htiXKYs9llfLTvqLck/gNjChaSX3PuNtSpOyl6SUgyfagliTVkglayaUiMdI5Iao4Stt3A64PY0lZQ4JZrVYEnGeCVZeXmomu1JVSR8RIvKUcJJ0lYLZdBk4YMClmi+Prf9bsQJQl5LuUaKpEFSMeq0Yfw6bsMCQDFW/dvMV2s+HylaucnpxwenJM6gKZmTkb5EEDjgVC7JjzzDRNqFb6flj2/hjTAogYocTW+9SqkVNHJ4EUzRpztV6z3Wys3+dshB+tS2K3AQLq6zK6T1o3mXyzvy0O2BXmOZsFnNvAdX1aAK/gAJlGqL62d8nsI3MtTNPEuNuhVU2e33M9BhSbymUIgZLFbF1FLA6oBhiUqpak9nEtUn1/CSSaXaj1SUGZqyl5BQRRI9IuYJSP0y5Gqlh/lJr30IOHNk3Rak/s8L9sMZDqQt5oe7ndW4Mq1N+v7d9BIiVE5nlkHDdsNz2pH+iGwSw91j3r9RHrYcVq1du7DYmAEDUgwdQPo5OISlYDiXVvrxqjUt0Gbq6VLgVKaSoZzR7MgIK9cooNMrEXQqgWW1VRJ5grtRpBvZSyEETw2JcKJcNMIMSRIJHtpiN2HWkYGLqeruvNMnQXKGVktTqi79c2roORFVKUxUrSCAP72OKN2BYSo48HwQsUfHxdDpd4PD7GD/IeHpAH6RnAgeZD4qOdJ9oeqAtNoxGJtL0zoLE+Wq800D00mEjESYiy/yZHjxba3cLuOMActf36ApPZu23o0yEaBW6bYj9rZxlbEyG29cPXmoUphRyMO78V9v1gpQpebe9/2iV0eYaFLOVWXlrr8j1yAEiZEoABy3uHD4fKajt7mWKNcZScgENTJvXParMCin5Oad/kzyvFSQqtPwWCLutDm5vLu7RvM+C+Wdqpq16wdKPF8igi1YVgD21QTQHPWZE0iLQu7/oQmJVl7WkEI+9lD7tcHUZNRaP6szQlEK3VCNUOapvqTqHZsS5AbN2/75xntrudrRtlbxNTK07otf0AoO97pmmGpozn/SSh8PhjjaCkdOsjLj/yyFJkIs6WWMDIg7HUzuqUytZl5IPs550VjDSlrj2pqVZMpUgrUivMLEFFI4uE2BSp2nsQur5DUObZrIZDimy3O8ZpIhfPA4gVTkzTbET2GBhSWoB0wayLq1aiGGETNfn8UIORYpKRcWJKCMVIkpFFWS9XU72UGMm5ICWTELJa8UvfD0ZyzIVMWMhxsTdlTypOTjfCtIqRkaF4foAlXluve4urJCwsGJsnAkSkzGjfMU8ZjaaGW2ebb6ER3OaKpIDoDDGxKTtOYs+Dl68Ygb/M5FroV4lct8iolE3HOO04unYP4iqYxvipQEDjH0AoFjJIYyiAirA+WnP58iUuzs6W4rGpZrNuS9Hn5J7g2JSQUNsTu2RFDNM4LXM2Fz+D10IM4u/JCMPDMFicjM/1IERp+0VdCOfEtq4pIZlaTrNVb2eVXHWJoSt1URpuuaX2eVUQt+LtkhWsNaIxwpILs/lvSqpffe7LhE64fPmEozc/RdfFpSOX9RXoY+Btb3mazdk5v/LLv8JUJlI0Ql4jMYqyxNFUWwukqQ/pAUGz7YfS1okDS8llXQjLGttIHjXPNAvgpgiKrzm2doNF2fZdbd43W0bLQTQlTN9b0H3hVMtPSFjema8Gll9Cl/0Hz1EtG7N/MohQ214nexLu8qlGNvIXVrxYzf8SBbbbDZ/+9Kd56eoVnnzTk1y+coVhGBj6brGJN6Uot6Jru4yTqJfY0HOBoE5ib/m3to94/MCeCBs7j7GdrJTz7PMA3+/afr1/f0uMcMdE1CWnp1UXe2GzKIsLqUjaXnPw/CdyzHvCe/je8D18NT7L5/TzfKz8NjfKDTufacu/1cWauil1K1bcoU2dWcEK6exkLDh5lxYWWf9FV8tvy0d1NUfBCMxVl7TFAfFMlhimHihpLd0i+/GxL07dE7TbGGjP3jqspMyrj77Mqw+/Qjd2XH71EldfvMbxrRO6uUdrRkog58A8RUJMrmAaSV78lJL1cVuPFJuDontyY1Nyb//eCinNglQIqlRX4a8H87fF6KrtbLSckkD0IB5UJAZUwxIr1H1A5YqK/swt0y62T+fsCkpu/RZj9DhFUS2ULpOiE5XCfm7vz27t8/yFbA/xED/ED/Ff8l/ybt7NJS4t8c7ddrfdbf/6FmPm/e//lwtBabh8hYd/4L0e2359rc4zZy889+d4l3fbX9QWYiT2w12S0kFrRKXVasWP/uiPLvHOH9VijDz55JN88IMf5H/9X//Xu4pKf47t5Zdf5u///b/P008/zYc+9CGuXr36x76bb6UmCNe4xn/Kf8p/yH/Ib/Kb/FP+KT/Pz/M8zy9512/ZJjCvZz7z3s/wuR/4HEe3jnjkmUd48nee5P4v389wMdyNKf+c2tcdaZQ5L0n1Gj2x26q5PFHZxYRilT6oGtGkyfov4IKBhEFlsZEKQVxhZl6ShndknDEloEVZRtzziYY72OE4iFi9lrh3e2gHaUugNOnrlgA2xwnxamBLXitmMWYJ1WqqQeLVVA1YCLIcEDWaHUADn/a2D7qoLqg/TxUnG2H9klJnagdecWt5Dkvklpztqfww2oAUASMpVANCqdafuVr1ZC0HyS01cFmcwERTQioms2/VPtET1l71XSpB8lLBPedMcNWntFgnKDF0IGLAvxZUTEXI1AjscNwA2iARlWxqHnjFURHPhVc02PVrya5WoPt+kWAZ+iBINLJV1eKJGruXUgtFLYG23VxwvF4x7TaWDKmVghKiAR7zVEEDXTRAJCYD+lJKprQQIiFahdw0Z6Y5ozkbEFtMsl9pJKXKPI2M40RwULqUzKuvvkJMwsnpif/3q/RDsvFlUhMLINL6w/PEtERFK7tvwECz8YnNaz61ZKD7zePAcBSvFjQC3DAkYrZkU4oJrYFarGI3hYjEnmmeyKXSAf2wYjtPHJ8OdEPHdrOzPqjQ9cmS5dH6/+Jiw/nZGZvtlovtSEiBy0cnqERenwtI4srlKxwNK7QUxtEqRnMoVAmEVSINPdNuS/DkdaqVVdcRh4FdUS5u79BpIpZA6laEGLjY3gYC087s50g9fYpQC+c3b5O6ju1GyeOO1PeUGslTJtSZWSvTPJOnzPHJMQCrvqNqYbPbmFUhQtd19EPPpiohDcxFLRk+Fdryk8tI0IlV3xGO15TdzLTbUkJgN2YuzrakqIy7kbkouQgP3fsQ3/Hd72JThTdfu8x33nuNMmU2tzdUjcTVwMkAEoVXX/wK59sLTq5fp5eOWmZCnpmnHd3pCTGlZR3cJz5tDJnvn61n667n/nuu8mkJlGgEJMGsoaaSoSqx2RGCK58YEDNOE7mamljOmdSbRZgqnJ4cU/Pk1pfZyHsKu80WqoEoXUicHB2zu7jNNDflNgNqUTP7SalDXYVNJCFS6YYODYK6baSIWdRlAnk28kuXkqsmWTW7dImYKvM8gUQoha7riFGYxgzBgdTUoVGpZeT8rPDR3/wY916/l4ceuc/Bbodks4N4IXDf9Xt5zw+8l935yIsvveAAhKVVq1tzBE+Ydl20yv0uMdfKPBrItloNlkgVOFqvmHe2xhjw7LLrVe17CKbEEq1alRTJ88wQeoIIKUaKKppns9Kr1YE7W1NDNEqqlsx6tUKLUjVQqgECyXACw3dUjFSF7cmIkjqzvCylmiqLmpqB2deZHYRWIy/Tdai6NSmmxhaC2JpcXT2rKQCwBzBqacn2BHiCvZrNY5HAbpyYXnmdW7fOuH7PVe65epWUrFpbMJVGdVuZuRiZqEsJLYWgRphSUVJKZLdzCIIn89NCAhBJFEyRK4RISInV0DONa3bbDeNuYppGS0yHRjSGVknbsvHNnmkv2W9AWq5KyVtCGOn7gb7vGGpPSoG+SySJC0BVTPLK3l8KdAhdb+o68zQyjxO55IU47J5vC2iBmIntXDK5ZlMwVCWIKe/gROclAEymilRD9diiGrHN46GgZuGk0hSsHEyQvc3BwsEIBpTs7UVksXUyzpLFYwZ2KNAs6OoCRC2KS+KkBAUwgNMImmL5/zwS5h1p27HrelKXWA1HDMPA0dGK1ZGRYrvUGylQzPoyYOCseLVzVTXL3gbA1Wqk5aKgYU9amjPmiKELWO3wisd4usSb9n+FZkGViORQSWqqIE0dVOteYapqoeaKUCh5RqZA2G3YRbOhIAghBco8sV7t6PoVXb8yhZWucwJcs68wm9TcQIw3YNurv7DEQTYfhWvhGj8nP8fD8iDAUqG/xwQd5XKSU3XQaK864eQDJwk6E+aO6+8h04bf7gk/rQXMUqsROhYsuKE1jdDT7r16HO178kJmbFw8mqrF/t+XGNfBTgOhWUA3+30faY4eHxyLlr2q6AEpTg8VnezPdlYzgG3/Nw0Ma2Qmu4SRSO28tAcFoYFxdh5qz8eBpVzbBdrziRa0NOITpjrke0FYyIsNKHdQVGeiH00XgI49aNq0BcxSCX9mf1ITmcSRu6XHrdCkqWS0B/XrH1g22jWrg6dKnia6LlHybNes6sUSjeBil4r+vRKjAf9NLdBjl1LMcrX4vG/nULMzqss7LqW4ZVkjHFQ2mw0hCH3fo7WyubgwMkjrPDmgQQTl8ce/wqOPPouIrUknDzxIWq8bkryQk5pNlpGXgp+tbY8r5xvqNILHWe1aKQVKtTFpRRY2N6N/h4TgFmuVUI1skksxUm6K5DmTmxpUDEamFeuHaZrQSU19JFshx3rVgwRyHUECq9XK7qdWi398/CJiVsLJbcKcKCGqpBAJKTJXLA4sBamm3CkhMs1me1WKW5ZKWpTp5t2IhOhkcrNEr24hJmr30CyS+773Pop2NsxTG1pGPE+BOisSko2bKEYwE5tzpVr1VIoB6RI123lSseKMeZoJYuSrokqoK06OTrn/oQeYFa6tB+4/WlOLMk8TqoGQIr2FV2zObzHNE/3RsdHvfT8tJROHwUgYbUr/QUR6v1DS9wNX77nO1557wazDc7GxH0x1mmV9svfS8jmK5ULmed6D7NI+U+j7gahhyRO0ODNP83I/i4KwVvJclzhsWZurLuNZS14IC1bcI0j2QqIgSJUll6MUmh3vsndgBMeS60KmFIXURVSzb0EKIZoCG4Xnnv0qjzz0MJdOLvHQQ/ebrWlb85WFUNulxHd+x7v52vMv8Xu//0m3Y7Y9rVmc2RoZlvNPDEZqy25VKuBqRUYOC1g+xtRunEStNrYaWajFqCG0QruWU7O1oao6kaY6WT55sZudSapacY60JdafR0L0vEUjDkFjo0hoFmOBnBuBQvbkMnTJ9ZnybiPb2O+UkpdxWasuhJHD/UjE3mcjnC17ltp55fXXXmez2fLEE2/i+vV7Wa16jo+ObG3XNlRlr5rjw99skm19FY/xw0KO9OdVNdXv5X6C5YhCIIlZSoYY6EpyhdVsiucHBGDvlCX+WMjF7PfIwz2t5OJ7eiWlSK3BbeBMOZV6EJdopZOON4UneULfxA/EH+C36m/x2+m3uFFeR2ul1KZ0qvs7Uhv/puyuLJbdfs4TfzY9qBBt+4n63tzUAvGYRA6ex0tNbH30sddiaj3ok4OlhKYWKm0M+XvQAxJT+5dD8p5GZTyaeOXRV3nl0VdZna+4/8v3c8+L9xCn5LFbQHImzpE5hsUSzmJs279ijPsYf7HB28c3tsY18pLNm2CvgIDlOlXd7rLlsPFz9r4Xvb8AJ26Juw0gHpeqFQerthjpgKDXxr1awYrFmAWyzcVWOKwCpWZKzqRoed59EWTcq9QFV9184x4n/rXtKZ7iH/APeDfvXt7b3Xa33W1/cguh8IEP/OpCUJIYeeDd38Nw+cqf6nu2r7/KePvWn89N3m1/oVscBo7uvZ/p/OybfStvqKaqfOxjH+O7vuu7uHr16h/7WRHhHe94B1/4whf43d/93W/QHX57tnme+dSnPsXrr7/Oj/3Yj/H0009/2xCVWhsY+BF+hB/mh/nP+M/4O/wd/kf+R57j24OIWmPl/No5z7z3GZ557zNceekK7/rVd/H0bz3N6mL1zb69b7n29dOhsx26Wm4tBLO5wROdZmdkicVIIyTVhdyzBylBscrLgCUWSnaLNVgS/6EdRl1tqPGbgrQKHaGgdxxmLVGh7nsuliSJ0PeRYdUqWq3iqmBV7EGCHS49oWIgVKuqFFNV8kOhBKFi1XhGfgrkkunFAeEl8eZJb6+8E08yLeW6y2EbpLoSUOXg4G0VLn76Bk0UMSJADEJwyWUtRsBB8Sq7Jk1d/VktudZUl0pteWpd5JhLDQtoYEoN7skeoyXP/TqWIBCyVzlVz0OpQNSOMJu6SVEjtAQ1affgFmhaKzE1SfXqKlNGAkNacskTBbQKRbVrs0+E2Ws1uWZph/NSmLMptbz+6g2u3yPwnFVp52wWCmAJpskTpFY4WZcqtNUwMPQDq35gWHfMOjNOmdltdcjV1RSyAS9Ofjo7u82827LgXAG248iNGzdZry2hPu62pNAxj7Mlh1Wh9bkauUxaZjawzKlGngohISmiS+WcJUhiSnShJ3qSlQBd6jwxlOlTROeZLgg1OZCvkY5ArTMlqVWwihGQhqH3/oLz2+d0fce0vWBwVYdcJrajAhO7zcRuN5LLzDiPrIarXL50TNdXbp/P7LY7TtYr7rlymVIyZ5sd3XpAJJHnHVKUEHpGEnFYEyaz/VKB2TG7cTdx+/yMPkTStGUljSRWkFqM9BJB60xYD/QpcuV0TZFAjMLxlRVTVW7d3FJ1ZjttmbKtSbHzimeNBkbnzLwdmXKhPzlmnHccHZ+ShgHNmd3mgnNVVsPKql5zsfuthe04UeYZTZAkkpIwT8q0m5DjjomAhkreTZydjzzxxFNcf+RBThVOge2LLzJLInQDQSr9+pQbty+4dOke+m7Fzeef56pGuv4YrabpML12ThzWkIQqpgoFQpkLcymEJHS9rYfjdmLMgVnNnjDVxMTEkDqoMO12DLFDSyajpG4gT5MBNRK42O5svJbMKgn9kOhTDwqp6ymijOPEKnVmLZYiUgJ9TAZcjhMhdKQUmEuxavWSGbqOOVemedzvC8UAx81uJoREFyvHq8EAoiCEomRbuhnzRJdM+axqZjtXCkbgCWRSikx5JiQldQoa0ASFQoo9GiPznHn9tVf49V/7CB/80Ae4ev0KBF2qeCu2R4QIT735UUr5Qf7pP/9lbr56k0hEoinPxCiglZInS2Y72NgU/WIIRAEJkIuRUNWJCSCoFGJIlKrkOqNltirvnalRxChoSJb79/SueEJ6KjAjRG3WK5FKoIuRUmZCiORaSCEtpN6qUOpM6juEwKyzW3VVhIgWr5ymMBUIKCmKywEnpnneA56qpE4YpxklGlAbKqFYstMS3NUBBvF91vZPxEDP2ghrwdQLQgx0fUfJysVmw+iE0XuuXiIFabIVZHGSgoMsRu6JdJKYwQg91UAXyZUaIyphIU/bvVQDKjB1rxQDXRpYrQaOjo/Z7nZsLjZsNxdm7+B7tDiw4RRomg2QkQ/2MQlqNjilGJHPiK2Jru84Wq1YDf2ijqdqyk9VlS4YQBajrflGVOkYsq2vU8lLBKSloCFQ6mxxUjJFPREoU4FsAIOpyig1K+KAv0MwKOJkMxZwQDAFyIpQJRKiqzaWSpTosVqEaMoEygGhYAHEMHKuWyZYaGdxXW04gjZlQYC9KhXsgfxmsahYjFW1UJnIs5Fcp+2Wrus4v+gZVivW6yOGYWV2SV1i1ffLXhrBrG+dXEQxwtRcTNpIpLqlXWIuhagWLGtVI/k6ccZAPSjiCgyCKRKqWJxgEIxVl6upu8De6kxdia3Z3FUM+CYLUgpFZqZW1RxNsWHXbei6gdj1dP1AP6zou4Hktn9d1xloGN7AksSOyRiAb/Oojx3v4F28X97PfXL/UnHfrIbaHFsAQhYqDGYZ3UBeI0mwgF4sBQMie5jiD5KT2j8L9CUsv9NAO3B7vcQycI3SEwh33Nge7GvKOq0tgLX4MzWyH7aHyB3Pu1BsWAaYg8FN3cARfROAbZX36MIrsOdq5AHbhOyUUP0MxnIm2ZMT7BeX70HYn9/sz0NhvQZwSjtkaHsisbl0oBraiBkL6QxMKXUBIIOp8YC/R/y81chX1r/Nmq6BdMv7rrL0fyuMaUpPHPRZI+a0edjuWZ2oqWqE6/WRwG2/n9qUm+zdlFLY99je9ia59XmK0WPNsqjaaVVoqr5OwGzvbJpGL1DxbhQjpWx3OzsLuD1qkLiQmWiPJMrjj3+JRx/9ihFSEVZXrrC6etXfgyzFO/g+3M5b0sgEIVB3O24/91XbR4Lb/riaiJZiKjZOSBENRCwGtUIN9TkSHTy3eG6eJkqOlDyRQjDFRjX7RbSQPW419ZJMSiuGoSdGZZwqec70KbFeDWhVxjkTO1PbqdUAf5FAFvtuqtvLoQsYXEpmHC2uDXW2/YeKis250s65UpFgRKWh70wVRKBfdRRVdrsZpZLLbIQtTOWi+lzBQeky25k0dB2lZLpuIESzAJ3z7HFdWghtttYpueDkLSePBCsIy7mQ+kDxOVBrYZwyV65c5ejSKb0qvUA+O6e2OEyUmHp242yqtDGyu32blQoxdiiWTyib0exBmzgg7Rqewwks6r05FzT1C0ErqBVBxRCgCqXMHhs0Zemwz+sEYZ7LQvg162YYhqZ86UScnI2cz55Q1OaWB1e2x+leea2pfxTVhdzVlk2zHbTiNbNHDUY0aos+Zi3XCEGIetyodMnWk5YryqXanqWuRO0LQIqJOU8888ynOVqvGfqee65f3ed/5E5y5/qo50c/+H5evfEKzz//guWjQqCRN2xxc0t43P5NIntCoiwCRFqNDVFr02vaq/vUWhdFTF3WRFe9832u/bzlqRbNQd3vfyFGn2eyvCvxPJJ4UYLdU1zUYaVZUSHLO2/rsCm4OqW7ssTxUm2PNfviRqC0F9nW7OU5VSGIx+TSVmHPw7GoqhFgs93wzDOf5t57X+Ohhx8mX62cHK/pYmyOxb4vags9FzJVdBu8Zl+5XLuqWTb6ftCs4Cos/y1q6kJditSuI/dlKcrMebbrtuvRtqc9wbat74cxCaquoK7MWig5uGqTJeaawrb9livQAyrK5XKZD4UP8j3y3Xw0/BYfr7/DrXzDCpYO3k/Lhyrqqlk+3orSWMEtHkObXXKLNcQ3MF2eqT3dPnaTZY1rRGQUj3/ElId8ftd9Jyy5thYl7TfgO79/+fRC+Nn33fZ4y1ff8RVefuxl7v3qvZy+fon1+drUH2tGilBCJM9GTBpTXJRwY4oLWdKIgz7q/DyAKNLiW8+7WnBoMWIjY0Vf700laU9qaiFKi/0Ob77VpLU88ULcohWCHJyX9m9zr/pVK1XKsh6Vkilx9n3IlaQ8djHL1uDkTZ+Hf0FaIvE3+Zv81/zXvJ23L/vZ3Xa33W1/cvuDCkoAlx97gitPPPl1g/KqynR2m+c/+hvLeexuu9sOm4jQHx9/s2/jDdnOz8/5xV/8RX72Z3+Wo6OjP/azMUY++MEP8tWvfpUbroB8t/35ta997Wv8w3/4D3n3u9/N93//93PPPfcs5+NvlyYIj/Io/w3/Df8R/xF/h7/D/8z//O2hrATLWezmAzf58N/4ML///t/nnf/ynTz82Ye58rUrBP32Gg9/Xu3rJynhYK1XWbQDoVXUGNCvYtVGpRhcZclcV+hoykOtwqOhVfZT9koM+4N6s0drErTt83WZAofJ+FYR11QObOFeDSuG9ZrY7G9KXmxwTG3BksdBDCwqpTAzAcltleyyMSVPwOqSBLDqFZgyVtnpEv4L6ckzFe3QbQBBOzSLA31evaetMgqanO9ia6FebatKzmb5gok3UbwaP5D29m/FbNAaKLBUMpYCUpekXgyBIHYor8WqFlsxTojRSGBeMSt+EEcr6sm+qtghNibybNVueZ5ooFJxYCAlVxFS6yPPAVqyLu4TP0vaYbFDqFDr3g4Hr9Lzg7u087uaYlOpcPPmLY5OTig37F3UggMe9pxznlCvSipzplWateccuoFLVy5z6fIxEio1N9WKpoCQ0TJTq1KkcvP8jN0804fOlCZ8XJ6dnbO52C1j0Sp7I8dHR4zbyfranzE4OceASE+AhGBkC6+OM9Uxk2PGQYbQrBRz9bkmSHE1rBhRhElB52LjtyrbzZYhzqagEQP90BsYs8vkUphzoUs9t2+dceX0GKlwfvuCohs2uy3HJyeImqWShmokqRhIq0hm5vTomBs3z1h3maCBs/ObrI/W3NpuOH/hVY6P1vQniahCDDO7eeTo5JiSM0MpTDlztD7iaBUgWHVyUpg1E+rEuk8MQUlJ0NgZ6amY+tlYt0gRtlmpdSaLsL3YMndCH2GQyGbc0R0NS//sdjObugURhm6g7yDGjjmbvYRqZdpeMO0ylcDQHyGSiF1CMZWWXZkgRkqGmjNDWrEa1ux0g0qh1sLl08v0lyPb85l5B29/8nFC6PjSx55hnio3zm5R6bh8tGKXC9dOrzIcHaESOB+3nL32EifrK3zt5Zt0l9Zce/A65fUNSuCizPRDYrjqgWwtxDjY2IggXeSBRx/i8tVrvPLaK9RcicOa1HXoXMgRI17WDtGKRFNu62K0xGQajKyDqRIpMzFUahFEOlIIlGDgetXCUYoMYYVia9xms0MFUhTQwjRtbb6t1mgdmUaz8QCIXWBIHdNoQEfvRCYhkLNNphDNXsZsBxIh2j6wm61KNRLINVNioVQlVKvkRUFisnVfFcHIKGMe+fyXvkD4tZ4P/eT7OT7pSZiN5R37XxSeePr/x96f/dqW3fd96Oc3mjnXWrs5TZ1qTlWxGjYSqYbqKNKUZMnSNeUG8L2WDV8gAQIDaRAkL3nJS4AgSPIHGAbykDf7IbCD2Ing60SWZUmOZKuxOpqyKIlUicWm+u6cs8/ee6015xzNffj9xpxrH9ISfa/JosQziOI+e+215hpzzNH8mu/v+32Oj979Hn71V3+d++fnBOfpfU/NWRNPovsXXhinEbIyRSGaKHVBT7lxnJQZy6jXQ6dAqIqQ9ti+IFRUKsxJxDmnCRKTVUlTxjlNjujBKXgXtFLSEq0hO1LOlkxVlgIfAhLEwDiBcVSGAO+ElJRVDTGpHVrBs+5JlUKqyv4htTI56ILHB7FzX4iuw/nCOOYlsd2CsRSkMLM4iNj5ZAl4QaVBnAWFQwCXPOM4cffePUpOrPsOEELQ+dGSfCBGia/JM6h0xi4jAtkXJjv7GzDAiVhFeZP/EjvflRXQe8fRRuiD52jVc7ndcrndKQNWCwQfZNtrS3S3YHVtTBXYGZxIRZNw4zQxjYldF0ymsNOKXae8ZqVUXHTEqkluCY6SKiVZwn9wiy1UFdSm1e56liPKkqCJxmRzzRg6UEkR79x85mPjlkuZGaM0+G5gI8TkVY0+pJ1ZVJzX5ExjjkAM0GbML9CSDU36o0mXLM7MDBxDFsBPbfZPS5iZ1I5TgK/CxvU+0zQxjgE3eC4vAzF2dP1KAUubNevVmi5GZVeLAREFGQbvEadg4SAKDi9ZJRybZJ/rOgMWKNuVM3mQkitZKr5kxtSkYjQh1OSO2i3OVea14pzaJODJXtkClI1HbcpmJ6dSISsAQbIwpcQoO7yLKksRVfKu63pi7Ahdp4kUH4yh7Bu3tWe9lg1P8AQf42O8Xz5ApFuSChWDyjPb+rS5Q0vmNLv80DGeM1fzJ+fd3ObtvGYf6Nch0K7NRTHARggBJMzPsTRGT1eUTcGev9j6VTA78x6w5NPcvC5wjfVC18ry/CtXkoZ16W0tMo/F3MEZmLN8fk50zalPGy+zm5tkULvzYsgwze3aJ0uZ1+s8fpjUz8EIz8xKUuYkcoNnibS9qgGX5sVt/UoH+4abWdpKybbVyCwb4w/Ad4d9WIbjAJyGzGtp3m/aXgyLPM7hNeyeS4XdfiB0PXVfl32+PZdaZpu/HACdGqBM7DzuVz39qkOkKKOhAUXnfhWTBZfKftTz15ssU3tu4zAy9cmer+6fzjli15HSHgFu3XqT97znizhne7P3HD/2hPoJNPYkPXNndmMDKyGoH5oy9158kbS9NH9VmVXaHFEXuMyA0pQmZUW188IHfTYppRmY7Jxn2I/0nUoLD+NErRNTSsY+lOfzUn3SoKxDFPoY2e8vCU7n4DgMxC4wpMx4vqWLEd81oJUjlUzsOqqx1eVSVGIVtQe891a0U8g1E7wjmEuFGBNhMQbEmpUxNUE1EZ00JYoS1uLFMeUJH/28n6SUmWxOBh+s5sTrOZy1D3maVOoW9TVEnJ3OsWUAAQAASURBVEoNG9AmGetxY9wLLqhkVJp03pWqklXrNbhASXDrxjVEPPdee5uSK7thT8Wz6jwpF9bN3scx5olxd0EMKy4v97hVZH28oe4mKsJUVfrJr4wxpxizYwM9OOHm00+z+t1Pc7ndUmtRu1ppPCku2lpTELNubYKvbc93iuO151HyhHMmZVkdiDfGZJ3HBWU8bsn9ZFLr2h0tHKIquFucqHSEnS0iEGIw5jLwQe1WZWxTP8C5RcpIrEgL59Sfsf2dWikkY1qy+VKvsvYoiDJw5+4dPvf5Fwldj4ueazdO8La7OHfVpzi5fsKP/Lkf5mf/2c/x5htv6b06ZWhVyfqDs0gqU9KiA2UrX+JEjbGzbWQKLGhxscUuFbMJldHWpN8aiKI2IJkzZmeZ15VDC9Qa25Pu72W23RvY0Ts3M7o476CWea632BnSzgo9Z3KzxRGSjZF3ghatgDiPcxpPrC2m1mJs5te1fbzNiWYfNGA7tc4M42+8+SZvvvUWTz/9NO99/jmO1muTcjNpP1vLM1jf4mW1NCCcSd1Z34utyeXwaH20PVYaS7vaccEr817wnpQC4ziRUmI5tZpN0/7NfF636+pjtmeRK0WKFnwa6F2lvYw1x/b8BoBxQZnub9ab/Lj7cT5avp9/w2/zaT7NS/VlMk1OrBnzzcRohY+6Vps8GzT2Rprxb59Re7jUq2PTwHOt+PAKa1tbHtLsm7o8bw5fW+LE88ce/H5Y2Ozb1GtvqVqCuT3e8sVv/yI+BW68fpMbb17n+O4xcYjmj2RydjAJzo344Ale/YcuaFGAN6bzJqvoVM99Xp/N5xLMxitFz+TZRmtRawXaN5bFfBBPPDBbOLRJdahakafeYXVV/TC79jL+C+tT2wsohZITIgp8FudmNtYmJ+i8X8DN3+DtBjf4MB/mv+K/4i/wF9jwRyd3H7aH7WF7sFU+9KHP8EM/9MszQMmFyKPf9p3/TntA2u/5wi/8PLs7b3+tOvqw/SloJ089zZuf/u13uxvfkO3FF1/kk5/8JD/wAz/wx4JgTk5O+MQnPsHP/MzPcHZ29nXq4TdvG8eR3/iN3+DTn/40H/3oR/nYxz5mKjbfXIBoh+NZnuV/5H/kP+M/43/jf+Mf8Y/4dX6dRHq3u/d1adVV7t6+yy/9v3+Jbtfx3k+9l2d/51ke//zjbO6rDfoQKP//W/uqsxgatxFjdjmo0nH+SqAGYWYaUPkWdRBTk3Fr1MDS2JUKXkxWZ3aIq7IdwCzPQgskWSSizpVSfg42IeqUhxjpu6jV5d5YCsQYi3IiTyPZCz7EOTiaampfzjjuqTXMQXexfrYyw+qKxXVVDkRlPhTQonIPLQFnFV8FTZS7VgHnryQthMa8kZb7r1pN5yq4UJSEwAJCwXuVX7GgTa0FZaSo1JQV7CUa1M9Gb36YEFz0xrVP63XHdrvTZHbJCkazZGBjVmha5imN9jpWsSOE2NH3q5k6X+z9zUH23tHUCXK2wBpWoeOrSd3I8pmSKFkZkpwwJ7WdV+maSgWj3K5UPEIeJ/b7PaVUpjxSBgWYkKuxHUzUkhjGgZRgmjKURJpGUpoY9wPjqCxQ3keunZ7yzHse5+bNGxRRtpQqBXKZE5cTE3fOzplypg8rQOeY+v6ZO3fuErvAatUpM0YX6VcrBYCltNBku4Nn4mSu0Goa8gsFs0q+iP0evKeOLdgdENFUj2BB+ClRayGnpEER58m5cL7fsuoiXe/pOs80TYxjJhn7B+mS/TAxDXuyCJfDQAyOvlvRb1ZIDaSSiKHiciSPAy4AUhinxO0nH2OzeZazswucC/R95Hy7Rarj9NoJ4zTgvSMNEzJkJh+5GAZKGuhCR06a/HDeEUNkv9vjqbjicUW43I5InuiONmSBkgqFwn4/IKmSJPDO2X1dSzb/V84jITJVz/buOau+I8bI7uJSadLFQb9mTIkpF5xgTEJw/+KCYZg4Wh/h3QWj0yC+i2viaoOrjpIz425iHXtqTpxf7BjGkeurE5wrpHGgOo8Xx9uvvETefQT/yAmPv/+9bL/o2WzW3D+75J0799iEDaUIzz95ncvzPfd2Z8TBETnnkVvCKJX9+Tm9d/iTI476DWDVziEQOj9LzgCs1ive997n+MDTTzPs9gz7C/bFMUxCrB5XtbrYeSEag1sXtKq65EpOGmj2IdKtOoLrCM5xcTkoONGCyoJWhg/DQMVxud/jROdX1wfGYVLmOAouaKVs3wfylKE6VqtILglfBYylhaJsaC3x6Lxj3XmGnUppaEC8Ir7S+ahA0zSZnFPW6k6EYlIszjk6H3EWnMu5sB/2lLrlMy98hhtP3uRjH/seBVQ9kL6saJLjO77923jzzbf5/c++QJmSyk6USuh6QheQXNnvFPi2HwZlFgyBkhPeRarL7MYRJ24G00hSVoBsQA2Nees8q0WZWRA3p85LgVpQqRLJdFGrl0sthBjZ9D37Yc9+2BN8oOt6xmFQaYiqe6YYGNKLsmwhDh97qiRKSbgi9F2vCZNqFe1UcLrepFa6rtd55x0+hCXZ6CPOQ5omqzZtDIX6XIITvMnyNGlV7NzzXpk+WrI9BAWmppy5d3bJubuk6yObzVqTJlilZyl4ifodxobVEgalQMHkm6hAIcaozDhS8Q6TG22MPcIc0s4VV4UuRPzxKX2/0j1hv9dzus5TZAYKQAMHLD9FlDUGG8+cMkMZmNLE4EdiN7LqOrouqsyA92iiTatxXfXQe9LoCD6w6gvjNLIbBhK2X1eVFGhVzU4cPgpUr0BXHL4qy0EDJjtRFoFSq4FfndkJxgznPJPJQiIKkBOnQMZi4GwqFqi3pIQxiDXGIGf2oxjjW2OOOKwMbtJwYhmVloisLIkMMVmZBk7QSntdo7XaXlUcIiPjsGPYbdnGjovzntVqpcndfkW3UvBSjFGZQUUQCQrOVOTfzIS58l7ZzZImR11RFrBaIVPwrjKmQsDP9psygiz9rnXpo/7u1J4oFYkqU9Q+lwwsfwiCsUcDeSJVIUuiDoLzO/w2EGJHiFFl4GJH8HEBL34Dtg/xIXrp+Xb37dziFjflJp5Ak2ubF5Qc/HMeQ6BioJVlvc3V5cxwHJjXoP1FGqvFwf4uLUl9WBig3yVWmOG9N9lKTzKp4pLLDFRxRfS8nBkGzLajzs9yzk/PE/8gud32iOoo1jcFB9U5SToDhaTdq2DUFpa7Wpxg7Vc5+P0ANGTru5iPoiD5BWBHRZlbLTHbHkf7vV3PnoaN6dKHGPTMLy0hJgsoEetHKzwpNjY2/FRLdPsQDHRifpA9o4VBpAGuFikmZ2CbxhogrgG/ykEykCWB7JyxoNgYS/unFq+klGZ/ZEp5zvLqDy0wyFlZYdTOKPMZklK2e1MwQL/quXZ6zHq9QktOygxman5SobDbDwou1hN69ndqrex3e2PLUOaOBppTic3C40+8pgxKNr9X168TjzYHyfLG0CrzeB0ClRzC+euvM+228xnQWEMqzOy7pbEUmR8+5ongHT44fLUzITfmFoE66r6cEkVgMsYaZZkK5kcX8BUpXotpPAh6neOTI2K8zn4YEXEE7ximCcHR953KBBvbELmQJ2esTAnvvLFfKdDKe5WcaxKRucI4KTOr7zrza63IKumZV3DsBmP7tDUVRJl8ShWm3UAIKo/TJNlEBIKCpGYZWFuf+3Egp6IAaxnJNqfFR1wIirsoah9EF6ilMIwKbHKhQ5xKo+eUcFQu79+npoJbdxzfvMF4JoQYGYeR7W6v0skVrp+smcaJ/WXGJ8Exsj4SMpDGQeMwfUe0PoiAeB3veR9Bi45u3rjOI6fXyFNSYHsVcgZfNRbSZLJcbUxHRcfLigtSbjKwDu9U+lbPvaV4Te0lZwxCjmHU56/zz2SPDiTLqlOwlHde5c2DZ6ZKEpn3hVobUFubD2Y7Z7fsRSygy3kfNim4Jqeme4YVC+kCMbBQ5g8++xkqEFeR92/ex9GqP4ROzMACqDz/3HP82I/+KP/nT/0TdtvdzNKMaLzNO8c0KPCq5oTQQC8NrCiMKdvVbZ8z+arG4jcz4ogxYtWr58UMYCjVbBoxEAWIV5CYFGEa9Xu8N5Y0s9mUhXXZg7Nusxq3wFlBlvrU3opMqu3h3i9MOQq+0kI/jQc1IJYBpTBZahGyAcrneFlD4pit2fZr9VsOvDk7n7/0pS9w7+49vu3bPsRmsyEEb+Atmc9IsfuqCNXXxaQwVqgFVGPFfCLz/KwsQJ86X20+kFHJ8oj3WoShLN9t/h/2+HD1XQ10K8u8zGd3TlnXQc4Ws8uz3LZYHFTngwGQxPNIeYQfcT/Cx/3H+Uz+LP+y/Eu+mL5IarLEcghI1rGR2s4U7Y87BNzY3G620MwKZc/FiZvfS7N87Dnp+lzW9MwaduAPtrGYbSAbkitAMbtmtef3oDffHmO7RI6Jt55+k3eeeptuiJzcOeHmazc5vnNCSHZG5UROjuQm3OgZTQpOWQOjycGFWca2jY/KwC8AJe+9jVdWX/MASCSlUp3594qEnG3TUuoD97+wUzZ5uWbbVGmfrXrNBpiijWG7brMNC8bFqfc3LQAljUf6b1iQ0k/wExxxxF/nr/MBPsD7eT89/bvdrYftYfsT2UQq3/Vdn5oBSgCn73mGzSO3vupr1FJ463f/zUOA0sP2x7bGaH8YO33YlvaLv/iLhBD46Ec/+kcClUSED37wg5ycnPD3/t7fY7/ffx17+c3bdrsd/+Jf/AtefPFFfuInfoLr169/0wGVQG31Z3iG/5r/mv+S/5J/wj/hb/G3+DV+7Uqc9k91Exg3I5/5gc/w2Y99lqOzI27/4W3e98n3cftzt+m23UOGpX/H9lVnMbq+Q3BWXeGYJRDMR3RzcmuRBpumYuxFi3PlYGaoWCh+LRgyB25kTky1pd6CIaXFBeYgvV7XO0+0anLVEncEFzQx5jQpkNJImvbUnbJ5xKC3r9+oTvswjez3e5xoEFUDZR6qzJXx3nt19ks1Vhtz/mvGoRTVS5KiBZSVHcF5R79StpR2X9M4LZIPtVUOY4mNSojKxJGSBmhC8MYkoDT4zXlNOWvSyxzWUhsbhkDV5+ItYCPOK2DGKZV2KplUM8M0kg1o1PK5AkbRr4HpyQLx1ZimutJrRan3mtSokI34qmDVoc7kXRpTAAoGqrVowBIF5VRjKypFafGltsojBSWVrAHOqRZSKVqxOyXSOLLfbnnksSe48+Y7lJqUXWE/Mo2JcRrI48AwDAxjYpwqmcQ47pnSpOCGKStDUqo48Tz+6C0+8r3fyZNP3UKCBtxLSTOVfGbi4uxSgRQGdtJnorTs5/fvc+uxR6xibmJ9tMEPI04g2fMQYWGtcA2M5JSqf/5PA6GhMZkFx7rr6V3Hfr+bgyEhRg2ql8wwDpSkVbgxarLbOWG1WRPEse4jKsMBR5sN/UpIGXbjJamMxACuJNZHG5VRu37Myck1vPfkcSSlRKojq2sn7MeJzgc6HCsfWa0DU45cP3XklBgS9K7DXxM2mzXH7ogxDZQu0ksEidQQ2W5hHQOxE/Yp0efA8fWOW7euc3F+Rh3hcrujOM+q69kOE0Uy66iAxOgjaRip056+ZjbrjtivuXPvkrNhpKuJ6At+5Q2U4+iPjklZZeOKT5xf3Ofo6JRUK916Q54mrl0/ZbcbKCkxjjvW68h6s2Y3orJXToixY73eIAas67rIfhw4O7vPul/RdR2XF+cwVv7whRf4wu9+jqc++Dyy8vijFU/cfC/h7jtcrgJn97b8wadf5u3LM56+/QR33jjjseNTfBDWjzzGUQm8+tKXOLl+hI8gKw1mi0CVxjchV9ZwjB2n1x6hC6+Q/IAMiWnc296QcTGwWa3wHoY0gVemsu24QyqEKgQEKZVpygxlmqU6vAghKKubFwV+xOAJKOhm1fWE3pGAmprUmTCmiegUcJFLpV+vETLTPpHJTGkgEzTQK0LXd8qQlA9k1LzuX7Vkoj9gDPAwpUmBVT6S8mQEZI6akjK/eBjHwvnFaFKXgd/5V7/D7Ru3+ZZvfcYCwBUMfCCAx3FycsIP/8gPI3g+9/svsM0DzovS9+dMELF7yqy6jloL06hyKHokOJwLKCCnsflp5Dsb652zgHkpmRBVWs9ZVeyULCno/VxtPSeEDQgcgJXzZB8MFOuVeaWd2WJJiJyJzlN8k67R5EYIQc/Homf4OGVlXwpC5zzbnMgmAeO8MiwUhOp0HpA0QRFjp/MrBLBxF2R+pqUF03E6himRayV2wZKdS1DWGzgz5cz+4pJhmqBWjo+PlF2wsf/NgVqhseQp/lIBEEEcPgZjXswGrvFM07gkoaqe2SEo08HEiJSMq0WrabvIbr/j8uKSYRh13G1Dr7a3YyCAWsqcoFkAS8a6UvQcKwYQTtNIPymAsu86ZVpwxjqoWUMIEVeFGCB0KicUoydEYbcf2A1plhDrOgW/RC/E3oCsOVOKoxhjiXiZ5YH0vHczQ2NwyjxBqnPSRRC879RuyHlmfNAEWbE1swTQm2OtQNpErQrS0nE4BO7o9VuC8wqAqS4AEpVMMOCCaEW02mOFYqAAgJIVeMY0MgwD+92WGDti19H3a7pVz2q1pu97uuiJIRC8M1nZiviCL4FcCyRAGkuXAYmqMl2VlHWuz+D9aoxIykyYcgOALPcDUKrTCngqIsq1UFxFJOF9NlvJmAiUQmCWv2p2sib/J9I0qFSD2+JD1Grvb2CQ0n8Y/kMao0777zCJiNhebadZYwWaZfKqJf7nZJZ9dv6GNqcOXzz4ZfYz6jzPDj/dJI+99zQwf0tCtuR1KUXB7xSVOHKmgbwY8DZXkvlIlvhsAQz72a7Z+tokbcSeeeun9nv5TEuE+RBmQJKyh15lsHtwTLyxFs6MF2abt/XXkmK5HCS9OKz6bwHFOicARQQfowUcDXRTKyknS/K38a3zGd3OoXzwTEEo3ivTrbFVSVUFt/l+RCgt8XzwuVnea/59YVEy9Mn87JfEro5DAZPEznpeJGVm2xwfK3DAAAg5K+NtY8bJOZGysVlQFua6UowRFgNkOo6PNtx+4nFOTtdKtMABMwUK3h2HSf2ncsDMW9WHG4aBzdFawV0lE2M03wm6fsfp6fnyLLqek9tPzr56AyM1QFIDerV/Bx+QXNjfedsS/TIDBpofWVPCYawRNn99jLgoysxqCynGiA+6R09p0mITB0KmCx3eOVarjr7vNdE6s/0VwrpTJilReVyVT3aUqj5PqQr+DBJwvRBjpOsiqWSqN6CoOPCeaYLo1K5IuRIEQvSsNyumYaBmBXlXcYTomZIx/3qHd4EiyupITngKMQR8iGx3I/tc8BS8VEJwM0tV6Dpy0SKHKoVhGui6XotUYqTkzGq1Ik3J5tNECN6epQIfMeBLDOrPOQNspJwZhoFgMoLTNDIOe+7ceYd7b97l9NZ1CA4XAyerG2z3W8bgGHYT77z5Dttx4PTkmN3lwJGBy+P6iFgd52dndKsOXDV/0x0cwPMGMv+zPz5hc3odf+++2XvKUDmvLy8KdrK9I5VECIFxPzKrHzXwgPkU2c5Joc62kk1FqJXgdAycKKi3SaG1+IdUZVlSGe6COEfXedKUjTkpz+NbqRbXaUCbBqKWGWCiAJrGfOj07EXjQtQG+pHZ9nNO7ZpxyuRU+OxnPsv10xscr0947vmnCaHFqxabx6EA/ve9/3380A/+IL/0i7/Efr83RtZETkVtBNvbgqHcc87m7y0ARLW9rJBuZrFZAB/eBUrJBhLS8Xdmr5aSlaVaqzvmY6whbKRWggjFG5OlOJwrM7han6XFakwWrxjTOFjxlfWxnTMF9cE8TWrX5PaUwmj2EWqtCozHZPrs2cznqdmtzM9NDChoYJhckOCvjEubzffP7/Op3/5tHn30UZ555j1AZdX3M4tSlQOZURuPFpts9r7KuS0AdSzOV0s92MPb2wUnAS2sNAA/gls5QgyMFltZiiXQdSjMZ/8CvuHgOxsQx8BBNsdyOfCxDGQ9uxLtjBSdgytZ8V3+w7wvv5dfcr/Mb7hf5266a4DPaqxjzGe3824uGKgNbFMaG2qrUzjsc3s2Kg85970uz7JKnW28ZcdZzuv5yUkD3dZlfO1vdf7U1fZg2mi2GbULxn5aGdYD41MD7zz5Dt2u4/qbN3j05UdZna9wRc9essOlRHJaRNjYh8IMXHIPMCxZVLsxcB6wgpVacQ2oZOBAap79mAbO8m6RTTcX9UoyTFjAfs0H02ddKGUBRS5gpwWstIxVNbbHrGs8OZJzOPF/LJPDu9V+kp98t7vwsD1sf2ratWtnPP30K/Pv8eiY29/zkX9nFqU7n3vha9G9h+1r0EpWkgUXvv4xo/XNW3THJ4zn97/u3/0noaWU+Pmf/3lu377NM88880cCYESEp556ih/8wR/k53/+57+OvfzmbrVWXnrpJf7u3/27fO/3fi8/8AM/QGzxsG+yJghHHPE3+Bv8GD/G3+Zv83f4O7zKq+92176urfrKxc0LXvjoC7zwkRc4Ojvi+d9+ng/+6ge58doNfLJCxIftj2xf9YnkQzcHQOfAJ4BvFU+aWchZ6cynpAGWFtRuFZyNMaYlGZrDzRxsZg60tNaC5rBUlsygDu+0atycQ5EGpBJjBAJcpdbEMFxydqagIm9J2DhL5ShYpFJJ06AMEHPlqVb/iz9gQ0KDUw1YAkYBzmFAAu1z1Z8ijfp+mL+v5MQwDBYsWxIKrdpNZWc0eJMsmd31vSW3J9I42WcskJwLhSa1ZlF4u07FqLRxuAAdGoQZpwnxDu+ErlYGC5JklOFJgFwdvoam/UOIgWFKjOPEkDK4PdGo88WAUqWoBBQFfHGAskVpEsGREaWenyZywoBWiZQGrWSeEtXuqYGZcimkrAGtFsgXtKLXVeH1N+/hQ0epSWXsisrBlKK/15Jn2QipRqlfLdkwJXJuEhiei4st2+2W7/nuD/L8c0/joydZQK9SGaYd9+9eqNyaT/MzKLnQRYihYxx3pGnHI7duKEBMmFklaks40abgQSDBkio1gxSBqBT4DtEa65wZdpdM44iXgCuVKWnVXAieIo7kKs5VVl3HlJN9d8UHAQpdpxJ1YhXtpSprzdn5lr7rWB8fQQysVpHVegNSqeLwXUeIHZUVp6en3L/cMe33WgmeRpJoAldqRbpI7YTVesXl9i7BQ+xWGsgPjs1qwzgm1l5Yra5xGiMXw5YsjpUEOu9wDrpVJEdwvbDbjkwlETZrlVdbRS4u94j0VITN0YrV6hbDdof3lXUfKMGzjqLB8m5NFyIlV5gS0QU2XWTc77lx/ZTN6gicZxgTJ0dHhFi57DznFxe4EOmOTrmYMpVCcJWuj0BhE9ZcnJ0xXe4ZE6w3gS44jtYbnOvpVwP7YcfZ5cCdL77ESR45/tbnOH36NqFb8/jjj3L96Sf4tZ//WV548Q/417/7O3zHt30rN06Pud5lYn+iY3Xa88gzt+lWR9x/5S5Hzz2h7AuuIK6YM2l7aMttekc4OWY7bJkEah3xmIyH8xSBy2GHUzQF+3HCVU3YK7OBBuxVckEoeOJKgZfRKzg1D5qQdRVlhauFzmvALo9VJf6iJo1yrUxjRaLKJrousB0H/VxWSvzoPFOeLJEWjO2hkLMl1QyoWUs1unwxWYyEN1BPq1LMtZBT5fpmxf5yS3YKUPGucvPGdSwSz/nFGb/yS7/GtWtHPP7EDQUrzCdR0b3NO27cOOVjH/sI9+/e40uvvaryXKlSpkxxjs55atF5P44juVRCF+nWa8p+pKqGkwKCvO4FgidNKufQ+Y7Ta9fY7beM+0EZ7kqhjwG3isr6ZkHNLnSaWxCIEvDFUZPKz9HksUSTMq5oInUCondarR8DoahsVWPPa9KjIsrO5auQqjLNheiUCc2SzyJOz5AGVst6XipFvCZwc2mSc8Z+iAVfkTmwrTkJoSAMwzg/PwUrtAr6PCct98PI62++w+Zyy/Ub17hx/RreB3a73RzMdbREjn5fFE8yydeZucfmUWNMycUAW7VQigLKfNcTKTjvmFKCcU/oIqvVivP7F1ycn5NzPjj4F0DEnD6olckSSb6BL+yn4osLJenaiTEyDCMxRkLw9F1AfAAq3gXEGwAY6Hpj34ue2K3oh0kZOXKiVGV3VFbLYkmXYgkHZ8mVQjbAlCJl0GRvZUb9N+kTMVtsTiQYqEmoM0C6gYb0zwerpwG50HEP3s9sODU3ub1mA9roNVvP+4V58GDslnyTgiNElKekheBVjkkBYDk5pmnA7z37cEmIHV23UjmmfsVq3bNa9YQY1a50KmM4G3Re6cukVAqjgcx0HsWuo8kOSi0GXHEGwhhYmG8W+9dVtYFKq1KvCkzxLtgtiVVpKxNYrZmcp5mZpzFSUqsyc+VMkgkZB2Yp2G/Q5izZOgMosOctHARDBSzR11gbNBkly/xoP63NCarDDFUV5jxmAyfNH2rgoAUs1YDiC8DDHST1UDuoFnIe2e9R9jFjcVU5nwbAWUBDKil9wHg0f99hPxeJmLY/tnuRg/7OP0X9EJ/SLBdcizLWNJ9q/tQBIKqxTrRklTcZ4WpgyTnZd5AsLJZkbAtuZq2SxubhaCJsubGkiBDwpNoSic0fhHIwrhVNeOasNn4qBSQZw66NC0vhha4T/f7GLltNfizXBeygACS172tL7rX31wbKqiqb3diWDpiiHMLF5XDA9GcJduTgd/sudC3OSfhalu80f6exZdx+/BY3bpyq3Y2+rwK5JGOIrGDgxdanJvusIKjEZrOamQ1FwLuKbwy/4jh+4jahW9ncaTab7d+14vFU13YkoBR2d+4w7Xf6XNA9X2WqtTilSfeFBlSwFSfGOuktMd/mYTXpmmGY1C/pOsQ5YvDEGObV6rxJ9tZK36/MH0zUoswph/LuOEf1QoiBadrhXMX5SJkq1SkzSc6FWCGsenrvGdNEdYIXr3MKZcQsDmIITKPJAkdlLQpBGYEbOD10geN4RJomRCoxOP0ur3u3s4S05paL3p+x5a5XvYKNROd313U4V5m8KDOQ8/jYM5oklkjFB5UCCi4yDnvKWMgFYtQ50AWVuc5pYNpeMhydsLt3RlcT3SM36E9PcD5wdLyhH4955fMv8s7dt3ntrTd4/NYt9edcwftOx6oPbK6f4EPHcL6nu3687I+ygINBFtySd8TTE8Y02mlbcCiQBGOgHQ2ciaitMg2T7qFOEAnz2sdsBfH6fNRPtbluAIRaktmCNh9t7XrnUCmwqsyqtSqLrNWV7cZJ7RKMsaeqJHWzLXXqF5N8ZY5HKbBd5bxLbVJuC5ub+ujK3KlblLIfCZUuRqTXveAPXvgM165dZ7NZ8cTtRzG8QtthbY9W0NX3fs93c+/OXT75rz+lMQZpzKoqLYj5NHosJpDGOCcYDbKCR4Ba1QesJinvndeCAUyKkaz+uVO24hlMY+ATjU/Y+hRnjGJLjK6dIQtrTpnZizT2BsxMTsuzAQODVY9U3R9DsHiX5DbLDGDFcp42QIY0hqelSM7NYBg72w8K9doEzMa41abyIePROA689NKXuHvvLk89+RSPPfYom82a1XpFF+MMGlrsXez81rEuNLBNna/dACCHzIzt+0TUr3ayCKalnJRdNigb2zAMxoLOci8HrdnGTRBstofavILZXm+xMp+z+fPKZiUNBCwqh26zmiN/zCfkE3zEfR+/4X+D38yf5E66a/6b2cDtHlt8YQaR6fxsZ9pBd3TtV1nW0TyeD7L6mL3WYsSz3dy+0p5zQybZ62KDIIfXeXDM2iyxPeTBvx0YOACM65G3nn2Dt595k/X9DdfeuMbpW9dYX2zwOVBKQrLDyWSg9sas1EBLHh/8FYC7CCoXrQbiDEoWmx+lFAM3Wa9KNZbOYnNB/fDFpmtjp+xydpJcGYcG6MLshRZTbwDFOcZel2GoklXkNNuc/Qb2Jx62h+1h+/fTnCuEYNLSzvHEd38f3cnpV/35WisXb7xG2m2/Vl182P49t+nygu07b3P61NNf9+92IbC6dv0hSOmPaCklfvqnf5q/+Tf/Juv1+o98r4jw0Y9+lDt37vCpT33qAPD9sH2t2/n5Ob/4i7/Iiy++yJ/5M3+G97///SZp/83ZHuER/gf+B/5T/lP+jv3vZV5+t7v19W8OLm9c8ukf+TS/90O/xyMvP8Jzv/Mc7/n993DjtRt0wzfvHPnj2lcNUmpSW2KBmxgCMXgN7FVhvx/Y7QfGcdLqddCgCi3Q31gpFt+wJU9bAFKdVw0itoSXZRBoCQu9lkq6xb5Tx9CCJYfIxRY8118quSR2u0tKnVQSKUb62DP5oIEdAzxVkwmaxj1D1iCYJi68AZKgkk2qQJO0XqkO1PFdPEC7J5XqUXkzC8hb9U3sA9RCyRqYLlap24JxGiDyxC5YQq+qjEAphOhVWmBSFibnVYaFdp1qLEO5VSlrstaLVv1URvZTYbVaaxUPVrVdC8WqX4dpYhpHpNo9ildWgKJVoMOU2O0GUi4LXbFASQu702RJj5oVKEbVgLAG/oRcJ6s2XkIIpWYFXVTloaIukgMPovnFtNIrmmS/vz3Do4AGsQq0BtZqAX8NOBVKyqQ0aeKvpCt00SKObRr50qsDKWlC8smnH4XgjUmpcn55ycXF/qB6TANhJRdcB6u1yg6u1ysLYhejRYdW1S0iJs/nD+aYaDVr0NewYP9UsgYRS6GGSnSB5DRQPubEUX/EZrNmnAa6viMYZ3/sI53rGcZJQWpeAxY616BQGMeR80uVGzs5uc7Na8fEVa/VzD5yujkl1YnL3cRmo2IUrgplX+hwZCekooCdsWTEqWRinQzUF9f04YgiKncAwtHRiQIKc+IkRvZpoFDo+zU3To8IuVBz4e7dS6pAH1XqoHqVDfAok4iCGKBfBSgTALFfMyTHfn9B6D3rVJU9yvVKVZ+LBYMCU54Yp0yNK/q1o0yZo/WKGCdcEcJqRcyVYxEuLi6ZxomuWzMMg0oRVmHcD1oJitBvIjJUpc9Olf12IK4VRBljRwiV7fkd3OV17n3hLfz7NsQjlePrNqc8+b5nef71t9nfP+fRk54bNzeE2LMdheNQyKlw/Ojj7O9eEE97JFS8VKrTClZpwT/RQH2TMXn2yRs8dhJ56yJRHJrg9mFO/qVhJNIkBlQKI4agSTJji7q8vKDvV/RHPfs04BDGQRPnqUIhExBONht2+/3MLtb3PWksTLmC96xXK4b9HopWuHd9IGVIU2EVI0ebjmkccdlzsd1T66hMa1Ul5cZh0MSc94SogfoiGnTv+o6URpxTNr99GZTlwQnDOFGdJq4agLOSiF2n69IX3nz7NX7rNz/Fn//ED9Gt3Lyli12/WqDv1hM3+b4f/n7Of+4XuH/nDB8CKSloNFVNqGUbu4qyahQseSOOWjMhOqRW9tuRWqsFNaNW7G93er/GlOGAdd+DaIB+TFrJLK5CyQTx5FrZ5QlMXiW1xL4l372BGMcxUYAYooJBqzL9lJLtzMOAFnY6O6H3HWUaGEvS+eA9uSQkFby0e690PlBQJo4mGRFDBCwZLCafYIC3nBUoGby+npICeRrLSUal6HTbTGQrIw0+UAqcn18yDHvSNPHIzZs4hKlgoGOxJI3ee81ZzxoRSwLlOcobY4dzmih3TpnWcAripVRla7KzwfseIUOsXLt2QvCey+0lwzjaWcNsfxj5DbVWMqCqEcXOpjIv1JorxYmBUSrOJcZpIgZPSREXOmLsiTEgXlkZxGlgWjqP+EAMiT4mVv1KmZnSSCkKJs41I7g5UV3N5gouGBuAsY5YknAcRoa8x0UdZ0TwIpSk4OMGrtGklLfnac9uttUam4kmD5uMx5x7sNyaDwsz2DS1hOTCBOCdW5JBsgBADJ0Blvw0s1M/18zGrJKKll8h40iTxw2ewe/ZbgMh9sS+Y71RSbhu1bOKHauuV3CfD4hJ7DrRcwOrLu+6bn6+uIqgwK9gjJupqiSknr0RkUX2FipVVRbUzkJBekgwgJUlCrXMe/69JWlqVimjahfRa+bFBv8GbdKMYeoMCPKihQCgklAp5ZkRzD51BZykCak2Hsx2d/Mo9Nhrya3DZDvzdzewkDLNKZNEk2Wb5yno++YP6p4ypUllL6UVSwRN6EpdADg2T0tWhrjml8zsmQfJuMOCDkB9ivmZtm5IGwm9P1lYNbz3KPvIAmJbWKdk/lRLUFJNarkY0KRUS2qr9EqpzW62vWtO1C4jrIAClR5KueJDtGfSmBOqspe0IgPzB1p/FICgwKFUMtO0yL81AGdjosPOlPlZV/NXqAqIAWbQ0EGGtPWk+RHL3GCeTFfmkbHIZCp12iPJ1l3zX+dL1znRWilWFJFn/2KZj3pmTClz/74WSgCcnG4UdFNUznsYJ8bR7BI5AFrWqrZuUHBwNHuHOYkLIU5zQrc7OmJ94xGV5REbayeWjF5mcTabQhC8wHh2b96vc1E5shijFskEP+eDffAE0aKZmVlMGoMHyiBi/uNut6fvVqxWHT4EZRN2ni4qK9KUMjE4GrtWTUX3QNFkq3fewB8TFQ9FpYrER7zTfTcl3fu6GGfGm855UlE/zYfAqu/w5v/t9iNVhGCMfbhqbF9iLFHqewYrSgGLfxQhp1FlkV1jWm4+vgHojJ0wlwI+EIL6bjEGnC8m3x7JFTo7Y3MpeB+Uca1qIj+npGxiCC4qVWWlggHyXWhMHR7nYRp3yLhiuHeJuxlxnTJ4hNhzcuMaNy62pGFg03vW66h+T4HO5ES7zRFpP+L7YGcYs110oBx9Bdz52O1Heen3PduhmLy0QGMxrJWSdK0H12TX2t8FqsoSp2miAl3XkUqe13tKDZymz6zvlKFVJelVxs87BX5VUAarbOzLNGZvIY+698WgDDIpZ0rSOEoDgyogSuMfWkDkqfh55wghkK1YArQPzthQS1HW5Fx0f9DpouvSOcd2t+WFz32W1XrFyckRxyfrZSzmMdZ9v+sDP/DDP8Abd97ilS+9RKli4FEFCInIzCApIhrvMSBT28taAVSuBjhtsS3ndE62M6idcaLM3CRd8wZ7nM+iWlXSVkHsKm1ZDIgUDCCl46OxBOdMBu4KGKIVZem+3phgnGvM2Sah6KwIptRZUqwYuNew2PP540QgePuszHO1nUwNhK9ADHvVYkpUqNLurxpIo3J+/z6fPb/k5Zdf4bnnnuGJ209wfITFbgz44dp5bXYDQLaz6uDMVJvN5qAO2mwXlKrFda7qPtdAJA6hispQOxHGcWJK01dMMs0Rxmo2zEHMcTnclvfllJWRyxWyE0JxFocMBvTTOdxG0TnhprvFJ9xf4Pv9R/l9/xk+XX6XV+vL7MqWJvNcD7/LbHMvjmL+WvMznMk05pQpfnkm4gRseOztzAWwV2+UZm80ibT5dzEJU5sf7fvaa9lAOAt7kLGwHvR57n+Vg6WpN6esYJWL6xdcXL/gtfe+Tn+54vpb17j10i1WuxW1OnJRCU6x8XTBz8WzIXiTDA4Gfm9shFhcUGNYGmtx8/5QK4i3ZyLGvqUlUVAbC2bzsZhjnPN92u7iDtairku7t7rM5/Z7AyTONjJi/sXD9rA9bH/a22azm3N1R489zo3n3/fvDFC894UXvxZde9i+pu3L7YyvRxPnOHrsCe6//KV35fv/pLQ333yTn/u5n+Mv/sW/SIzxj3xv13V84hOf4NVXX+WNN974OvXwYWvtpZde4pVXXuGpp57ih3/4h3nf+/7d99A/Lc3heJZn+e/57/mP+Y/5KX6K/53/nU/ySc44e7e79/VtAiUU3nruLd567i0+9YlPcf2N67zn997DB//VBzl9+9RcuG/OufKV2lcNUooBVPAHo1jXpG5Oid1uZL8bSDM7QUskiSUb0d+9vTYDj5grYkErNYslyg4DKbUoAEiCI3hH7Dqi0cZrsN/PlSdzospoptXxK1An9vmCi60GR3qThmua4s5ZsttrAG2aEuf3z9XhdULw0RIQmqx2zipWcrs5dW6dVSq1SqLZIawVb3kZMa3vftVrnq4kSk6klBgNIOQtoOxYpCcaYwi035UuvpSiARILIrXq7TQlctHAfjIWBe2tVn2KSai1AOssPdCq6hRJtCTT5gjlUhldcrag/gEjwEEqoFpCptbJhqgFB6xCzxWbAxoQcyKNrIkqGlRr7FsaJGqJOvueFtBwTSKjUslzkqBVYoMxDaREShPTlEwWI8+gjtqSVliyQ2BIhdfefJ3f+I3MM68/yXoVGdPEME28dedt3nnjbZXfs6S3CKxXkdPjNatVx/FmRd/1+NipHISxWCDOKpALeGeU0c7YwSwpavJGwWmQw3lPFxQgpIEETwg9sXMIjtBFCuBDgCp0XacsBFIJDvouME15fn4pF1zQarDghVVUaZ/9+Tk7jyUqOm7cXBM6R02eo7XDu6rVY17YDyNjHjTA6QKlFtadylOdT3tqmej7NeN2jxdlgdpud5RcSRIpQRNbMThC3LBLmTRV6j4hXWCXJgRPcJFhO5DqiHMdvhPEazAluUq3CkiBa0dHuJXj/N4ZvmR8F8lScV7ogqcUZR9LKRN8oO87QnGWiNFEOEEJ6NexI6XM+uRUg7RVuHaqAJlAxEWVB3Louu/EsU+J1fGa/hjSlLnzzh36YACYooHim6ueNA588fXXeN8zz9GHnu2XXgfnGXdbrm1u8j0f/BCvfvFL3H37Dh2OW6ePcnd3TimB0+6Ivb/ArQLxqNcgs62ppQJ62bsF8BRu3rzJtUef4J37LxJCp2O6u0DEsVqtGKnstzv8SmXzwDGmQt8ryC6NI65oUsjlhExFJbaKSjeSJ3ZDNsaXTNdHfOzIBqRsoJRSKpf3zwlAv1njpc4SA5ujnpwyUxEkrJiGS0SiBvZV2wHqpOvAKvqd7QPrTU+twjBMTGPWsyIGppSIIgRxjONO1xuCd5EQPeM4UqZsZ1OiW0Ve/MwLfPbx23zH93yAGluy0apxba/yzvGB559n/7FL/uUv/AqyvaRSSaWqVN2UGabI0WZN6Dq80ypZL5UqE30X5qrzuBaCeNKUbN9UqcqcKv3RhtD5mR0peo+rute11HPJlRg9NXiVgnGesWQgIFRcbckbPRuC4m8Yp8kCrJnOK8PRmBT84sXReQWdgrK67CcDEdm+Hl3UxIhUxEWg0gU9A7f7xDBN5KT97GNPEU1ApZw1V5OVBWMqFlw2hpUxFWJ0dEHvu9jfxbt5Xw9eKDicj4z7kTdee4v9buLoaMO610p9DFSmtoYFf8Xpvpeyjg3V5Oo0ARuDJ2dNKlMdnVfQq2tJXxR47CQwiSe7jD/t6NYbtrst28tL0ji21Pj8/YqbMbvBWXLKknqugVXtuCo1A4U62VmeMj5mupzpSjdLeTmna60WrZJ2QauZfQgq4ZqjSXyMDMOoc92SAt4LMXRE56hpTyrZgAh6Bg5JbRLJKglXpRgLpSaQcmnyb5h94xX4lZSVryUxqtNEpbISWBKJYqx+enbGqHLCQ52U0asWlJ3BzTiktt45GNM54eTMHqh6pkpR8JsXsbyoyZ+YfI4ybSVympDJI36H3wf2246+W9GtVqz6Fev1SmWEO91vlKXAI1JwkoldmBmU5iSr2RslFcDR14qIyoB69NFn0fuerJq+iMm4NRvNgSvGMCEGuqoCNYIl1x0KbEvVHTB/LSCNb2Q3p7EfCG4GEGruWoELaVokBOEqm0f7/6/k8+tcbMmlpWJfOByPNsYLcNOJN2YavXBLQi72YFvN9u+qdso46hr2IRiTUvNJnDHQgNqeCgRvSWJnNnNLVM0J3eYbzYDIwwRTvXoX0l5Tu3GxA8o8F+aiB8w/sQ82prOW5G1sDdUANlfAhXXxKYrZyU1S7XA8se9Y2DZ0IjY5MzP8v2LSdfYpStsbl5Dp7CGafSOW2GvPCpbk5qFvcJjw1GKYOl9vLmKZh1OWmSUHPzVrN/tJM0jOfKZSTP7tEJg054nrcjljjEulcn55wSuvVq5fHBOCV3bYktnutuwud7Ov06ZBDI6+U1uli8FYJE3+2gbp5s27OK9zsb9+Y5aLXeayFdKIMQxbctObdFvaD4yXl5a4NnYsswfE9puF+a7txw0koPfcQDrKSihE59gDaRxJltz3zrPqlLWXquAROwoXtmBjuxUDvsbgqVXB3bWq3d4kyR1iNgzKDuWL3oMTOt8xZZPVSepnpZIBh8cbODtb/MAb47LGIFxQZ33VdYiHcRjUhvLK6ijF5FtroZockmu+m2tM0UIR22dYxiv0PQ122fdicniO6PzMtiaizE85F0KnPl8thd12h5hkE0W/fx0CJSfOLi64ce063nnSvXOqOHKaWMU1Tzxyi4uzM3bbHR5hc/2I3TRSi6M3mWzxDtcp+OfB9fdgE+DaY4+zPj5lt38H5xSgmaYRRKXeMpCmiSItAZ9nG881cF7RAy6XbECOxmynafuU07z/OAfRKbONHOwzCEzTBLmozR8iuSQcyhosOHKtBJNYnsG+IpDVRvFuYXZr6zcEb0eJ2TnV9nX77iA6n5LZhlTB+6v7JjXz5uuv8dqNm5weHfPe9z9D10dbQ22EF+bAk+Nj/uKP/zj/+B/9Y958403tou3LJSUF14VgxUu6X+pcU4nEJufoDBznUNZaRKVvS84KTPF+BufUbAxYtkk7FmBs8MFYpNoebd9jZ/X8syrbWwP914LZXWLMejqmThwNtS/OwIjFZOraeyzG44NQiu4V3qm9OaUys2t5i5tUO18BxNiVqmj8whsorhgIP3hndkad97HWnD38y/Nzfv93f580JZ64fZvVakUMXuXL5Gr8yerA2v9BLRbhWpigVPrLpGphHr/DGKez4oGKI6PAN+cDPkemcZwZyOf+Hp6hZptUab2y2XTFQGoAlEK2ojdxFV8qxXuTT1/ibFDs3hw33U0+Lh/no/WjvFHe4F/Vf8Wny6e5SBcLq2crYjDwoNTmS+j8zJXlnCyN7RkFREqD9aPfS7NfxeKay/lb5hidmBTjfHc6d812aPJkTaau2YDz5nXFpjx4vS4mWDMymzUyE82GzO76JbvrW958z5scnx3z+Bce5+SdE2rOSHFkcUh2pEnB6z4EvA8mGRqMrcwA8Rb/FMoc61QG1nLQOXNQi6Bqk3nush6leo1DprMr94V9T9syrThYihbm6mv2Nc7YYOd97CvZaw/bw/aw/Wls73vfH+K9nuOn73n231kCbDy/z+Ubr3+Nevew/WlsJ08+xeu/rUWkD9tXbrVWPvWpT/H888/z7d/+7X8s6GW1WvETP/ET/IN/8A+4c+fO16mXD1trpRReeuklfvInf5K/8lf+Ch/4wAcI74Kc4jdKE4RneZb/gv+C/5z/nN/ld/mf+J/4h/zDbz6wkrVpNfHWs2/x1jNv8Xs/9Hs89sXH+M5f+E6efOFJwvTNO1cO21c9CteuXQOEPGWmaeLy8tKC4JMlFLBAIw9EtTTooUE3Nydclip7TMZDPUN11C0xgFaOdSHQ9z0+erxVWrfEhvMWqjSnt7Eb1cNAP5VcM7vdjvMLpbOPsbfKYw3CtsBtkwzJubDf7c3RZk4ggjn/AkhRjZ3m0Zrc25IQOQi2tyTe/F433yUHzqBWkhUbM2UmEdfqphuV9ULdW1twvwXdMJBYseBsCxBiTn8LWGs2QR3yluDDEvHWF+3hgTSfXae6paK9uoqG0drYwBJ0O3CGW1CiWjCoBWjm4NRCJzxTZItfAloitCrNhYJegVOlVMQqGPU9RjFeM2nUavwpTaQ0WXJSAyvFnos9NiuiOqiOlgRS2I+JV998lTfvvKHyRVWf7TiOpDQS4kaDXqUQgkqHrddrjo5PWPUrqHB5uWc/7Nhv9zYj2/gs0iIa5A64oJVYYsA758WYJhx911FSJVglfBcD6y4ooChEYzBRyZgCTK2a2HX0sWMTNbA3jHu8D3SrnikJZ2fn7IeRlPYMk3DzkeucnB4TQsfFfqS/Bl3o2F9sKTgkRkAUeFVGguvIY8H1jloEF3qQka7zrDtHTpUxZap0+ki9Y6IQLZZyfztyfLTWQK9SaBC6juHikkCi90LtHHkCqlbDdlhQvPP0MYLv2KcBnzO5CGlSGZ79bgc4lQDzgVwSXdeTklbklpxZxxXDkKiWaLi4HCwpnklvv0XXdVw7OWaYRnCei90OpsrRZq2BvzSRc2EVV6ziipHMen3M5cWO/TSxWqtknYQN9y7OOLt/j2//4Hdw4+nHoSby5X1IntdffZs798956523oVtzfzrjkRJ55MYtlTBwke7WCWl3RoieXJMlrkXXBQcbsCwBy4oQVhtu3HiULr7EWCZqzgTnmCrs98oIVsWzHzOlOoLTxNM4JVwWTcx7pwCEqeByIsaO0QdCrJzGI+SeI9VCIuCDY7rcI0VIopJEsVfZqmmQGfBUPYyDVrd365Um71OCqiwRyi7UITUzDttlrwfGnMDWyTBoQmOaFFwiEmgJqZwKiUyIyrylYMFCJmuiEaGmSgyB7XaLY+RXf+03Ob11wjPvvY1IQKo/SKLonhmc51u/5QO89vJrfPp3fo9prxXiEqDkHTVnpmFUeRMLmseu42LckzN0caWARBJpzPgQGMcREc/ResV2OzAOe06O14wopfw4TeyGPdXY1xoYogE/C8XkswJVdI8opZCouKBgAHLFx8C4283J3BgjQTzDONo5kMmpcLRaMSZluRAXDcwF0UFKkyYPnbIB5ClTxWkVfLGEYacJFR8CXVTWRe8cNRcDUYqBWvT9IqJAOOcgeJvH9Upc3h8E1nMV4krBbffu3+fi8pJrJxuOjzd0TW7FEl1ZKrGLlKTPvzohukAdJ6ZaTcrLktGWYPQ40kHQnFqU0Q1NlHjvCDGA7dPrVc9+u2O326lsTdU9uTE2aPW2nmMzs0XV9dGSTAuAQM9TletRxrJxHOl7kyXDaWLMubnSvUm3khXUW0uhCz3rdWa/37Pb7RhNWjGJID4YIyVQisnkqk01DOMCFrFqcKSxTNkiLCyV9CapUu0cb0xI7T4XKEClUoghUkphGqf5LNekUm25bxrLiXNaQVztby2rIAfvaRJYWMC/JSeqfaNCDjQB05iaas5QEik5pmFgCHvCNhK7jr5f03Ud/VrZQJQ9QBkwlQkt4kOgFgWC1ibzlLOyIYpQZcVYbN8qCoaM3muvc4Wg67RaImLKmVr1tQaGaPdYnLfZIMa6VAji8b4YSF3/q/nL5S6+kVrf95qWMdaV0UB9TaaxJUbEEm+tHSaa5GDtyPJmZmPuSm5lscWdqLzODDqUBt5YbNIZpFPK1UymXaXWyjRNDGMyG03Pldbpea84eH8yhtGrd6S/zUlg/W1ePzParM33lsFrf5/P+mZz1+VHbf7B4bgtsjeL3LCumzaW7Rr6lTa2tS1GWfbhOSm63M1VP6D1wV5rWWHrkBy8/wo6oJbl9wNPqgGwF0DS1fE7nAMyj6na2EtCuh5ctr3h4OtsDEQdVb3fdmc2H8rBf03erc5j98B91fZU7adoccD5xX222wtjCNEO5axrt+vi3A8njhgUbN3Fjhgilco0JpXGnqYr49Adn3D06GPz3HAH4KQFeKfTxTlNKg9n97l8/VVKysb24GZAUfMvnYGiss0PhycYE4cCEZL6L8FTMgzDyJSzAkELrKSn6zuc84w5K/BAPHVQ4AUmAdsAgF70OhIMbOY8kAleCEFBoblUavM1nZAp+KIybnlKKrt18ECc9+RxQsgaN/CiKlkG1HAoYAjv1L9yCkJx1Vh/TZJ0SiaFUfV8LbUY26WCYktVSduczScXYZiyAQMLZXuJ956+60g5M6VkbI2NcbLM88z7QPBR7y12jGMi5UwIER883TqyH/bsh57Hbj3O+vQIaqFMAxTH5fmW7TCy3W4hBIYsrKtnvd6Ym+7xm54yDXZ2G9DOHWTqD9bawQ5LWG3YHJ9ydveeSlNVY/tA5QmUpcSRs9k1FZzHZHHVbm2XLkWQkg0spgCavgv40TGmRKkqhZWnBgQ2+TCnTEDF5LwqakdmA0TgHA0Xk3KeC6kU6CPKlCXtXDBggFS8OGMoWqQLlf3ECq+oTCmpfWg3UUqBoNLpDZwTgzJk/d7v/x6CZ3O85sn3PG6xpzkCNI+rAI89eosf+3/8KD/9Uz/NO+/cpVYFCKbGlJ0zLgRjHC9qS+RkQPVg4AdlcARBSiUnXQ8FHQfvtfCpgXWmadISjCZbOO+xejbUUk2yiplpNTewiZ0pzpiQGtudb6A72wObbaRs3p4xq0S3WGGCE7VVi/lmzgBFxfyaBsxw3s+s6s0mbJOyHIAz7PRb4oxVgYrQjqHlrFwKHI09qhY++wd/wOtvvsl73vMeHrv1CKu+I0S1lduZV2isT8x2svceSjkAx9R5H9JvEC1Ose+dmRSt396pbS1F3+e9J09Jn1HOy3lS6/z5eniu1QVYPd8szYfSgJ+6H+onllJwxRlzpJuBMhqbNdtbBKrwhNzm/1n/X3yf+wi/EP5vvpi+yEW6XGJrORvz3YH9U+UgvqoxFWwvNOpn9SlEyNXZUatxV39I1WRvVabH5TnqAq7z7YuxNqkdqd9fG53tcjWLVcsBg3r7rnrw74O978CmaX9P/cS9x+5x/9Z9Tt455rEvPs7R3SPi2EExEF5KyKS++mRFsT4EQgwGEnZzP7wXk+AWA9i1eGSlip7DUhVINIPWbN/FGGy1CMrY6yrGbMa82xzaJoex33Z7DgFjBGxyjYvU98P2sD1sf5pbi30dP/Ektz74bV/152qtnL/6Cq//698g7Xdfwx4+bH/aWtwcEfoV0/by3e7KN3QrpfBP/sk/IcbIt3zLt/yRQCUR4bHHHuNv/I2/wT/4B/+Au3fvfh17+rC1ttvt+Mmf/Emef/55Pv7xj/Pss89aIcY3Z9PYtefDfJj/mf+Z/4T/hP+O/45f59e/acFKCOxP9nzpO77EK9/6Crf/8Dbf8YvfweOff5z1+fobOpb/tW5fNUhJcCrfM06klJYKmpoPpL5M2ql9pgVFWSinG626yLJIiwXCls9pkiD4QNdF+n6lbDVeFjCHqDOn/qIBXKpWKdUD51INrgpkUtozDjtwQZkc3JJUoLYAbrEEVDGpNCzhfTBJLNgtRtutt98kcrSqTSngLbZfW0BFx6nUFgxqlbkyJ1FbkkADYtXYhGRJWDToULWAWVWgTm3B7lpxUln8+pbksmDTAc3vDLaa+6MsSiJzmmSO3h8QXiHi5+fcKNMbkEoOPOAmZWN1ufPYVThgR2ovXvWAS8XAa9rFVgk3hxOMrYqDAEOrHmosTzmNpGm0xFCd77v9bMkt+9Qc/Fzoj/X6VWCfEuSlvw4oKUMtSM5Q9HmUokHnlAvjmDg7e4ft5Zbdbseqj4Teo1XgDmlVZM5bdWlLnCkwSSWHtDJXHHRd0Gr2VCkiysRSM8M0En0306y3UFgeJ043G6acDBCQKE5BG1U8/WplUnY6Dy8v9wTX88yzj3F6uqLvFeix308M+0qMWhHXx6hsOBf3qUTEeWMm8oTYITEwTJMCCykEJ6SateLZCa4LOIQYtYp8SoVgQf3gnTGD6c/j42PGYcd23BNdpHPC5cUFfb8BEU6OjklpgCKIL0wV3JS53O3xnSNT6fsVVTLDdm9yU7rr1Cps93uCd6RaGXKiFMhDovMRqrIr7Ic9SGW/2zFNGec8q26NdFC9sE+Dzj0n+D6wT4mpZkKNuLFo4t97To7XXNwb6NcrnnnmOTYnJwquefMeR+sNU3Uc9Y5rT9xgvU7sSybvRyQIX3j5i5xeu46LiXWB1c2bAJzfvSBPlc3NY2PEirrmHjBeqwVGH7t+3SS4lNmh1sqYdZ3GEPFB16lWzWdLXCQQTSjXIlrhWYUudpQqlOyYSiH5QDw5pl5eMgyZ46OeuC5c7AbyOOEFXJpYdZHV6Qnbiy27YU8MCi5FhDRmUip41xJmgguBKY2WnNc1o4AWR+g7ZcwoWs1ZLRvpvJ8D7oVqCTinTEXTRCNscH2cpSqqaBIupYTzlTtn7/Crv/ZJTm/9Oa6fnuJwJp9WDWSgZ8tms+IHfuj7udzt+YPfe5GSBqqH0PWUnEzmqurc8YGSC6kUphF8hPV6Rc57UtFAr4IOAhlRmToqHkuG1Mo+TYwG7A2ljUelpgmyVtxmNM8Uo8q0ppQgeEKITKUi0SsY0jtq0fN0vxtYxci6i+yGPbZKFJRqUlxzItb2Kcl63ip4w6scZmGuqHZ2vuWUGEcFu5UmO+G1Kt3Z+eO9Y5oSIpXVKpp0RKHkZOAd7LDSc0kTSg4JOtdjiMYgOPHO3TN2+4HT0xOOj470nDJJRK+QNJWpcBCkJWuUVWkGKzhNOJL1YEi5IEUr7L2oxMUSwK+s+54YI6XLrPsVm82G3XbL5XarsqwWTG7J2LJM2HnNNunQw4pmBexUcrFEM2KSk8qo1K8iMep8DxijRbHz0RJHKlGnbCvr9Yo0jex2O/b7gWGaQHSu+BhYdWu6GNntBmq9ryxzThhG61FVFqIWNK+WLMy1PiCZqgCvBlhTEJanyWsZCgKqGODdmCxyNoaA+SjTPUyU6SrnaoxqlmBpJrxUW9fOqqiLBf+LsY4pqKdJZLRzX8/8TK0mZ5cn0hQYx4H9bjfLdK5WPd16RYwrY4AquChU5wkuKFOXKGpLiuBdoYqjcwI7YcyZoz4iucwJAucdrlYsT6e2nlNp35pt3ErrabGEXpnZSBvLyTKuDvAHElnfmE0Q8yOWhLyaZnWxBa8cYQvrGDCvg9pSvbbPLIxHdf4e+4CugeBVhs8SrS05NhdNHPbxwCeZrcxmEkul1ETJkyberiQEmROfi91Z50TaIilyYGdfSY4d3LwVI7R3HtrKB181/zIP2ZyQq/OW2X6X1ofDp9H6VJeRmz/7wHWbFd5Ui+oDYz3/f0ueLl/DfMGDMT1kp2jjoj/d/JG5R3L1W+ZLSANeHfzFbrp9zxVGgLr8pbbxqYdAWGEGS5lfVouy/LTP1mVArrTDMa/Ll+kImX+XaiFVFEjaPlfKLMVJ26+qrn9N/hf2l1umaSJNk7Gr6v673R2zvvkop0/exrnwZaCkxqrUCkQQTYanYc+9L75IndQ+oipo0Lsm37ncQcmZVQwmX6QFNNUZEFYE74NJa2qbpoSTwMm1DX0fCV7X4DRmctIzo4CBomAcBzRrqgwYynSm51oqKm2r57PaaTkrO3BjFvI2FqU0WSXMD1+YwWIXySkx5UlZjxGmNOB9hyD0TTas6oorgJTKOE04r2tQk8iVPCVKRheCgWSmlAwoDsmYBEvRopJqBTkpZ/05pVliK/ioNHvt77ZOnNd7z7Uok1M228k5+j6qXFcMXLt2ndB1ahdd7ohmm0cv3DheEUMhUaiTsmTeu3+Pvl8jvhAqhPUKENJ+oBaI607HrZ3TXyFG5rvIjUce5bUvfZFKJSUFzGU7m1RGagE1is0pJcox3pSirDFSq8rCIdQq5AwlC4SAF/W1awj44JmyMuoo0FjjI10XyakwjaMWwbUYB9XWbFVwi803tWGu7iXFbFLAQBy6lmtt7D5tJ2yFQM7smmUbmLFdLMATlRYfeOFzf8CNWzdZn6y5efOGsmOJjYFbyuBE4LnnnuFjH/8YP/9z/4JhtzP5Mq/xIFuRDbzsrO+5FEKphOAQ55kmlQyUWpeCPHE4zxKrEWWxSm2vs8KVUjWWUHOa980Ks21czA9SYK6zfcAjtTHwyOzTxaCFFSpXVWcJ8iYr1+65Ha61MsuhNru4yfrpe9WWb32YATowr9FajQWqGMuZbyO1xJWuHrVtntaZaAuBe/fucu/eXZ568kmeffZZjo+PNK7RWMjt84Z3mYsspArOlbm/Avh6IKNV9DxSWecWDzVQk60Z73X9lFKp3hNjnPf+xjC22AZ63UP5stmesXmyEKEboC+bz0FGsiP7jBMtBPXB2f2YbWNryYQ5eYb38B/Jf8Sb8Q3+TfgdPlM+w1vpTXZpZ7acGCu62uKtGEGGiWky1q28nMntOco8XlbGcCDfqtNB5vNRWdgWO659trVF+rXO5lVzOeZHJ2KAsWos7PqGZobMtsfhdduYHvpyLnP26H3u37pPt+24+cojXHvzOpuLNT4FpBSKpAXM65R9U8/waKybFcTPRbOz/dhYpMXOMQRXCtM0qQyrFfW1PafZQi0mLsLCFt9smWa72R6w+KHtDg0AaIFfJw/Ycg/bw/aw/alsb7/zGNff+yGe/N7vngHEX00bL8750i/9Amm3/Rr27mH7mjSLmb9bLazXHD9xm7sv/uG71oc/KW232/HP//k/5/bt25yenv6R7xURHn/8cf7sn/2z/NRP/ZTFrB+2r3dLKfHCCy/w+c9/no997GN8/OMf5+jo6N3u1rveAoGP8TH+Kf+UT/Np/lf+V/5P/k9e5EV2fHMCXXPMvPzBl3n5gy9z+vYpH/iND/Ds7zzLjddv0A3du929r3v7qkFKd+7c1UTnoVNZF6eoXvECtV11GFsA2MA8czT48PdqzpvKyUUf6LrugGXG/muOmHPUwiy3IQffpd5ZAw4VRAqlJlKeZiCNVGfxcQ1gyBy4LubI1/nzNPahg6RCc1btW2fgj2hhjLI6tYQnxp7Qwkq1Bb+x71nG0hQYAMFZZdGh06j32ao5sWC2udZVNOkrrZrKgm0HWYYlMKBBq1Z5ZKNijmkLcLQ+Lz8UeyQzFbomAluC4MDBNyd5Bl/JMlazXMQMwGqB5BawYAYRLc+0jXtZghR2yVIwsEG1JKdWJbsHEgXLnKxLIPNg/i2P9LACsJrMhAoeNvmKWrKmUaoG5GuuRB85uXbM8ckp987OOD+/VGBEKbh1Z8FBMaCSzPr0LRjXEo3ixIL0Wikag8fbODQWJQHEGUCkFpUdQ+i7FSXXGXCCiFYrR091juwcRTz3zi8JrrJedaz7nlUMTLvEat1rhe9+ou8jq6NIGi4JrsdHx7DbkietVj452eCD5+7ZGS4I22HLsd/QucKYRsZcSAmcBNbrFT7AOFZWXacBT+9wMeKrYywqQ3V8ssE7x+X5JaHrceLZjYkcKqfXjtmPIyIVaqZKxK/XlKkynF9wsd3hNyuVwJPCOCTWmyNSGZjGyqrbMIwjqVZW/QqhGmNSQjpYd5GaVOLJi8OHjjHDNA3E2BNj5ez+GcfHp5ArR0cbdtsd+0GT2SUlYuyZxomzy7vs057jk1PSNHDv7o7Ls3Nu3jrmfd/yIcrRhpQreczsx4n93Xe4ddxzd7vl0cee4EuvvsaNk1Nu3DilkjnbXnK8EvyUkLCmRs/unQvGywG3WdGvImSVDnImNTOzk6GSBrduXLfgLSph5wLR67wPwbe0DH3f47yyKNUiBO8Yhj21ZtYrIYRCGicEWEcF4Oz2A30fcd5zuRvYlYL3mRgC0ziZvJbn4uIc7yMlV5Oo0STCql8xTMkq142av2aG3ch+HDnebAg+aChTIDhH6HumaUI8xsqhANNcEjlr9XXXR8bdHmpRebeUFIAqwph0DfWxY9hPTNNoY5aodeSlL77Er/zLT/FjP/ZxNus4gwIOmwhcv3GNH/6xH6EWePGF3yMhTElwPlJQ2TMFxe0IMdCt1uRU2e0GrbCcEqUU1ZrOykYkIRK9V8aEXMhJK6Vj15PbPpsLUgurVUdJif24twSDSm4UnAKcjPreV0F85GK3J2SHd4Fgwe9ahSmZLJVXxoZchV3S/VYTHSpxo4eAxznou0jXR/b7gWmcONpsSFVPgmLV8a2SfhhGai3K9EOTTS2QE1Rv0qYqXyWUJZjKkshoc3qWkRCZJUpEKi50pArb/URKZ+x3e2IXWW82dOvVzLZ4KLHmvEMM4FVMtguj4y9ZE7AhOgV6tqB9S27YueK9x9dKtj3We68sPKsVl5eX7Pd7lW1oLAm6oyu41NgBHwQqHcoUtQppapNOqDiZlO2tUxmB4D1SCs4pW0CxJJomBzXN4J3QhcB6tSalxH4cGceJvlNJ22EYudxdMCWdZX3fLdI+terzcpApRB9x0bFn1L2CQpNNEQMIOWO1UVB4mY0R7wILYF2Tl85k4VLKVEuEI7pH1wYwaod6XfY3J05l3w7syNZaMo9qoLMD+7OxesICAyklIzVTykRKnmnyDMOe/T4QLzuTf4vap5LIfSGEaJXRXplLgtp3jooUlRc+315QfU8XAnlI+t3z83IGLlcWxVwKWe9ex75mBQliMonVbG6xeVia7aiJ/frllKbfUG232y8250ESdF5YVxBWCzvp1VcBGjhlSTBd/SEGgPSWNPcLQF7UvtJlPFuuV77gAKowf2OMlfe8p/LWW1WTwIAU5nnUvnexKRe7V5OFlat3c1hW8eAdHgCOm0F+5VdLLFU5+ESdLy/IwfdpEn3+bbaFFb53Jeva7rnZ9LNR/xVa8wHqgYTKV0DIXX3l4Fq13We71vLmL/tMPRytenCJMo+DHLx9dknnz32FvmN/a32uC+vafG1jyVi8h6t3cZgo/0q/H7zavgLqTL57pS9tf6+l4p2j75WFaL8fGMaRkqv6Swfuew3XOX26J8Sr7GBw1QZEFvCIALu336KanKueecYaRMPMtGKggz3V/H1lUTHfAsd+HHEC0fyVYCxDKvNZFCgeHKHzlDTiorHZTJPu9bnQ91ELA/aDyuPmic5FvKhfl6vJ7ohTNhyvoJjgVYq+OlG7pOrrTtBrijCOk7KFiIHNqfR9NNCQjmnF4aIy46VRz7S+MV5IJaesQOSaKVmBEA1EFkLQZ2oFQ+IN0FTqzCLtnDfpo2yy3o5hP9B1PVToOgMipDQXdTkfoFT2w55UEl2v4PcpO4oLOBw3H7lF7SK1VJ07uZB3Oza9ZzdOHB0dce/8wiRMOyqVIY3Eisq59j3VCVMZSFNCogKCdBrPAYkrMR0R4ebtJ/C/7SHZTid6jh0mySkKSvBBWWuzzeti4+Y8KJa+GFtVoDqYUlKbRoSpQhomnKvz3FVGFkzCPaOFPxYjqCYthsxxGI0RKbhlnJIWQTSQtd2hnrX1IK6hxVFNbriIFnM0SU1n4HkFQinbFgg+BMSANLZkuLw854UXXmC9OaILPddONUj9lXwK7z3f/T3fzThmfulf/CLDOBioWm0llS3UeyppQpwym5VcGceE93UBP3mzbwwI4W0fnaU+vcd725tKNUYXZQtKOc32KIjJq7X4ko5TcJ4xT1ZgoAUuYOyaVLPTLSgmrQDtwN6d2Y903ngn814z5EnXtjEptVhaO48UvHRQGNm0UZsdX5nXUQOctS33YCbTQIyHv8/zt1ZeeeVVLi53vP+97+X69Wsze2qI0TAkVogobR8VrXecQZOLXaD91334y22Ew/XV9nItLlQfw5FCYJpG8xnzEgc7OJwesKjmWFyzEg4tD6kGOK3qh5Qi1BqUJcwKQivVmK6qAf011vSEe4In6hP8qPsRXvWv8QfdZ/mD/AKv5FepFLx35FJJ4zQz8zjvZtmLYjJ9VfXLde04TyaT2rNttlyzCxt4h7bWG1B9sb+WMWzAsUW+7MpbD4e9Xv2cIBRpvp5+4IqNgxwAm3Q0C5X9Zs+rH3iV19/3OpvzNadvnXLrpUfp9z2SCzmrz+NSYnIO7+1cckKJQVnLfJnj3oLMErgNcORD0GIr2nozv9w5Ldize1TAHFaY1s5OG7dSyaiM5eFdfDk7g5h9/LD9+26bDXz84/B//B/vdk8etodNW928l6c+dp3Yf/UrvtbKO5/9/YcApT+hrTs+Yf3Io+/a94sI159770OQ0lfZ3nzzTX75l3+ZH//xH7eimX97ExG+67u+i91ux8///M8f5Hoftq93Synxy7/8y7z++uv8+T//53n88ce/gr31zdXE/vdhPsx38p38t/y3/Ba/xU/z0/wz/hn/hn9DMrzDN02zKXH/0fv81l/6LT715z/Fzddu8vTvP82HfuVDHN89xud3D1T69WxfNUipJVHnet4rQdAl6XP4evsdLFCg3rICDHCzM62SV0LwQhd7QuwMjGTJhZm1wnTTDaSBJd9a9ZGW0avznEsx5745v9pKrZoQBQMAtSViwJOWLIQDEBaojJqBaOagXQs8HNy7UUYXq/JpFdTaLGggB0G/NoDIlTFsV63NoawHyTYcs5C4fX4JstSZbnn5+5UfV1pjHfqyN7M80xbgWPpnQcDZtW1VULIQG1mysknYObtOow/W2GU5SCro61RlBSlzQKUcZlVQcI4FderynRVotXZaKacVhAWM13mZp1c11o1JoQU2D8eFulSYI1CLUaJrMHKqGSeOkUq0Tx4fH/Poo4/inLDdbdmsO0ajuHfBwEcWPPDemfyS/lu8M3r6A/k3ccQQWPU9eTsaRb6CKkIIBnaq+BA1kSAQBAUjAUPVYGbwkYCzil8Yc+Zyu2O96qj7Pef3z5imHb5OjPsJCPTVsVpDPF1zebmHXDhdH3HJlrPdJZ33HMfA5W6LB3a7C6QKj55eN9awwmUacT5yuR042XR03oNXaaPzs/tsVivW64BEYbU+xZVM8C2w5BiGQQEX/ZqUBvZ7HW3fdQSp+Aq4wHa4YBwGnMDFMOoMSYWSKjkVQujpu0pcrUBMXoyqCYecWK+PyBlcFQpCqcJUCsFVxAckK0hh1QWcd5zfv49zEbZ7EAix4+7du8TYcc3B7uKc7XbP5uhoZjyZ9numJIQsvPPKazz6Le+nXOx45+49ynaLGwfeDpc8863vJ5XK/WHHZ9++S7l3xjNPPMpLb7xNfwPK7oLx7Yl4esrjj9xkOLvP2Uuv8ujzT1OiX6rxsWTSHCDNnNy6xsnJdd45P7fAsaOSDdinrBapZA0IOxDx9N0KkUr0jiLVWDo6xpKRMhJdpetUQm3TBy6mkdh7m5+VPOyIwRt1fcAFZfrwQOwjJQtjUomGLmrFZTbJHx+8VukXXXvrVW+V1zAmBT4N+5EYggU29V6oCxvbZtUxeceUExvfEUXYkmCWNjAWHS/kqeA9dDGqtMK054Xf/0OeeOIW3/29HySIvxLQ1H1X9+tbj1znz/zg93G5vcvbb58hJEoadL32K/a7gVph3O3pusCqXzOMAylpcL+PkeADk4EX+r5nv99ydLSmjMqoIwh97LU62DkckKeJGBxDLqqO5oMCYEplGkd8r6BDEcewH1n3K/rYIVItwCkzq1atkIxtrCI4F+cge0sixxA1meA9qWRNjOwHSprwTqulxTlCdAQXSSWBOAuGogwkpShjA07BaeNISsWSe47OviNPmkAt1cAuOHLVE64CXho70XKGOWMUwtj27t+/IJXM6fUb3PIdXQi4IIpszYWMnlFNxqJkk3uy/yHM4GmpQs7GioQmb1t1SpPEaSkvZ+CIEAKx7xmGge3FBbvdDisjVntEFlaBw4TyvIwt8eLmQLWdjFkZFkopuNGAVCGaPFA0YIYnegUrOUtEtQQ4KJCp71fknJSlrxiDT9XnjyWFqIXNutc9pULXd4xpVPaDUqnJWH+qgiLEEk0ll1miYpF5FYL3eLwCeCtz0kKTU44QWlKhIF5tm5SVeUdQVoRcVQrX+0OpWDvLm6yWaMKw2S8tsdbO/lk+whJotYEtUFbJQqYU7dM0CeOwx7VxjoE07un7HbHr6dY9MXaELqoUkqgUnyuVvltxsb0k5UzXe+KqU1BX1qy2eDdLajjQ8YwOF6ysvzpy8uQ64rIDWWRvNDl7kL8Rk338Bo5FKJi0rWKakc1XToXovFnMwIN3VQN8HDr6dfEpvPMKkrR516r7W6J1yVgdAOPnrJhebAEc2Tr0lZMT+6qqawN3mDiDBh5q5++DySyWdx4kDA/Tpst7Zmaow0TaAz7FFev+KySZZqk0xJKSD/bhwc8s0somgHnwXUuydcn6HqZF5aB/V9tVU37peysYaO84LFBoz0bmy9aDUVn6UGwyiPW7fWEDlS63cDUzuTx9mkIKV0a3Hr7CwfguNtbhn+uVv37lMVj+aGxvVUE1Iiqe7e2TXddzdLQBAT9NxODJolLesy+B8PgzBR8bEEAWX/Twd3Hz/A/eM55fsH3rLbXFjF1MfR4DuVtCV48dBYEmG2snDoebxz6XwjQlBbqnxDgM5DwhVcHViFeAUhRc702St9KHyJhhSKOCZ51jShMOmNIIVdh0K5xURqrKfTmVXOuCV3ZJ6/cwTHQhEIMCM0Lo9F6EGQiSkkpMOR+oJZNSBjHwYpM2FMeURu03MNpPZcTRs8U5jw9VAUQ5zyyTCuhS0OqhD1vRogBnexNSVfLO9v1hGBDxjJPOC+cd+90e5z29QDJQQuy6GWhVqphMmrC9f87RrZuUMbHb76nThOTM5TRy7ZGblAqrnHhnt6fuB64dH3F2cYlfQ00jeVtwfcfRZk3ejwxn52xunM6+81dqQuH40Vusj0/Y3hmYZdhrs2WMbdtYPnJRybtZ+okKviXIVbZXWSAnghey/hnnHJOg/jOVnCYcema2Qp9qxlIrfEmTgoCDb36xRnia7GwD3DuvRUICs9+QkxWoOWUZ0i1gKUrT9eKMNcukW2udGcEXMESL3eh8kSq8/urLPPLIo2zWG1YfeIauiwvmYt5adD8IwfO93/ddvPb6y7zwwh+SJpOmRYFcpVZKrlQDc4TYQSvgqgdruqg9ryyuSe2lKpSkLOhO3Czt6Lyj5mxxrIKYBJUTjZVpDNDN52FOBRf088X2DWWczTN4pNSFJVFjQu2c1Z/eYmbO7PWSxeQcs+09+l0KTFyYORuseAaQWeWNggWrMTRqUGeRw5r5M2c7oQGJdPxlfh6HcSIR4ezsHr/z6d/hPU8/za1bt1ht1hwdOZWVbIVjlfl+l2tZpOwQCCUGonMKtmtAK2fFJPBA0aLJsGH2hIKklDV2mqZZbvnwLFvOymXFtn5YF+bzqdmStRaUoFzPpSbZtzB6Gzuqa0zy+jlXVzzPczxXn+PP+R/lM/Uz/Gr5FV6tryIUJrewfokVaHo7hxSUo/JkpSir9mhFj42VSVnHnc3tZissBZG6r/j5mSuD22Hhn1yZd8giz9cYwaroc9NjU/cngZkNr82Dg4U621OHNt18/vvC5fVLLq9f8vYzb3N074jTN65z7a3r9PuekrRvOU+I6FrNyZNTsvMlmCzxwrCOzSlf9dnoPXhlXhdjOTRfpsWxWxGossy2Z1+VfT+hQKz22mwaCTOSWv5tdvnD9v9v6zp46ql3uxcP28O2tO/8+ETovvr1Xmtlf/cOdz73B1/DXj1sX8vWbI13sx099jhxc/RQ8u2rbL/1W7/F+9//ft7//vf/sc/OOcdHPvIRXnzxRT73uc99nXr4sP3b2uc+9zlef/11fvAHf5APf/jDbDabd339fSM0QTjiiB/mh/mz/Fn+G/4b/i/+L/42f5vf4re0QPqbrQnkLvPWs2/x1jNv8Zkf+AyPffExnv30s7zn997DyTsn9rY/nfPnqwYpNYYK839mR9FbteSXA5MWB8fNf7OQ3WFwWkQTZV1P3wd1FtFqcOedVSBayN5ASrWag9+CUi2x5ISSkzlo1YIiWHVhVY3wUiglk3Oj2F5AI7Pz3pIYdWE4ak6xiXjPQXaRasESu6dSldb9IAGjjBBNZuTA2WzBeQ21XQmKVLsuNubAHPiotcxpg6X/LfhdDiLtYkEYsdeX5zk768DCbw0tQaDut/6sLZijH1zGqRwAjg4CI64F9Fqit2rQvTESVZYAUDVa/Sa+gqDViDIPsj2HuTdzcGQeFPtgPkhgYM9PfzXpIbfMwTpL7Wg/C1Zlrg8eDEhWrdrNVdEgihSC7xAyeSqId+RcEUsctMRwJnHj2gmPXD+iAvcvLtjudxwydIk/qPx0aDDQewsIaeV/9JpkHrc7RFV56DtP7DwhBnKBVfWK8SqFKoX9kKnikaCB0VIqfd9RUlYmj2nQKr6cmCav1PkhMgGra6es+gA14DY9qQ/UqVKSI1U4my4Z855xGJEYuXd5zvluR62eVEHwXEyFe2dvq8xBCEzpAlc9lxdbpuRZH60pyYJEuXB5cc7meE3de9bB03eBSSCuesiZYUoEpxXa1AzFMw6F7tgzDhObrifnxMU0waTyKyE4pv3I8fExNSfGomPFsEdKofOBVYwaGMLRxZ6TY89ut6XrgoJFpkmTMjUToicEHavtdo+PK/bDSJEJH5SKvV9v2G53HE8F8ZFhvCDGwnY4p1bo8UxTYXNyStcH3OUl4wg3H7nOcLpidzEwpoG37u1ZdT1ldczvvvQSN53w9FNPcvu553j2/U/RrY+gONLZOQ5PGXaEVJAhI96k0ZxWerLsTFQcHG0IqyOVzusrqaqMk/fBgD+jggpEKNXhHez3W7rgOD5eMwwjuyEhU2FKE6cnGwMCbUjTSEoTNQRWfWC73SMI0XkSFeVZgT72jMOe6FHAB+CiJ0tlmJSNx7lgwf0l4F5rZRhGsu0npUCZTI6gAkV0qVsCoyVHtpdbJChoYBgTwfbxnFQGxQfHOI4EH5EglJzZDxO9j3SrwpDv86u/8a955PajPPfUoybpcNUkqBUciceeeIxn3vdtvPP2J6l5AIHYdcqyMmXGcZqDfsN+T3XM0oZOoKSJnAt5GLmclE1oXwtBAuujI4bdnnE/WPJVq/FrKUyjysR166BJvFETZ02WbrVeszf5h1G0+lnE2GImZYoQp8n0JuGl8hdaoT2NI7lJy2U9GxyCuECasslNQOx6TJ1MVVBSIvYBfFGAZVZWtVozpSSQOstZ5awSq50lfZSdLivYyOaxc45iYKZiiY1ix1tuUnwx2NkEoohHht3AvXvnlAJH6xUn6xWxs2phUQYk8WKSmYVhHDXpUws5T0xposMZQ5FJ4RSrzvcH9o2gYCYyWmmPjrMlQvsYWRmz0jiOClZqE6idwweJ/yIy59uvMgPqXgsqMVMzwIhznq6LdF1m1UWiSQrUIjM4OiEUaSARPWODi0iMChDGMZWqLF1F2bCCd6xWa9I0sd+PbLc7Si0kJqu+LypRgAa9q7RkQlnmktNzzxmAJxuASWzcDpP/mlxLmrivDWCiSR1p4+MVaO68zOD0WoqtjcWZaXaTc54gQs5plomdYfdtXGW2MvQ+TC6FmqnAVASyJyVlWRrHPTFuCUEZs/p+Rdev6PqO2EWCsVv1XU8XImkaqatI6CLOB7Y7AymijAZiiYEgHkxuWMFLCiINwZGrp+RC8EHZTaUaKMlSXZYIbKC2b8TWbMx5Lh/YjF8GcDl03lvir+2+s927BNm81+SXtwT08jkxGQ2YHzrNpLUE4AOO3lIYcGA+V2b2gmpzrTGaLq7ODONZfCOzLZdEotnRc8Lry5l65rc1k9gykWq/trE58D84GL5lo7iSq9RLaucbKK8e3Lt258GLNF+mFWo88IwOv+zwGdq/5+88uJL2tbHVLh1fZobZ/+0bDgbngVuak87LX5bPzaytB+3q5+uV16F5P8s+PH+mmm/W5mBL1D4wHs2N0Ed0eEcyX6t9rjEB6zvcDFjC1nDz+VarnvVK6Z6HcWSamY3NF7Q5bpNx8b3N5xRjxfAi7M/vc/a5z1OmUZOhxlJ86Fs3Hy1lY1pqzElV7XoFtRsYQXTvzVnUznYqeRZWHSFoUY1ET/HKflyzFpcMeSJXlY/HOfbTqLLQNLk2YSyVYb+dx6qUERDGaaIUR+iCMfnqfj1NIxFl3AxOZU4L4IIyEuWSDdxkK7GIAsM6ZXCMToFGYy6YnpvKHk+Z2HV6nqnSt0ol1aqyawaGrLR/O9I0Kmhc3My4BMrAI16llMYp41xgMrvb2VnlY2SaEp3J1+Vc8K6ySyNU6FdrcqnEviMEj4wTOe1UzrWLJieX2e6TggFCx5tnZ6xFOD054eT6da7dPMXHCFUow6jrOyVcrZAKRGfSymJxkcM90iGrnrg5xt25o+w9tYHtnK2XfMAmJFRnTMQl03WR6iJTygxTJuek8sRWnKbkKoUijtApe9GU68xAk6v1RryusaIAnmKxIKpK7mUDhHsfZsZKwGyQTGNmFgzwYjYwxnw9s/5YDCPnpCzcdubmWmzdWqzDmEC9DzNQIKWMF4+TwosvfoaTaydsTo94+qnHCU0r7MHdqFb6VeSHfvhHOLu35dWXX9ZxNFZxKSyAeecUZF7rAdsRGhMohSLCNKhkdrGNNISIWLFANUSdsoYb05cTBVt7XYslm7SuAR0LQs1Ji+JEwSu1FnJNM3tVmyre2LorGHPxwjLV9nnjdVLbawZVeBA3x7tKUYYy57XIMRtYUw+HbLElvVKpBigU3Y+UXbvFmfQca/OkVmXWPTxb2rVEnIFrKtM08eIXPs9Lr7zC44/f5umnn+bkeEMXojL/ms0xE7TbA01JJavF+pVzobplf3czuO0gHmk7e/PLGlBGWZKLMj07ZSUax4mUJnuP2gYzg2Lzj6nWp+X3Lz+09P1Grkcma7FFKSqT6xVgGA6O28b8Xo1wvq89H5YP80H5IC/zMv86f4pP1d9mXwfmwlEqMeh+Odnab3HhahLAy5m2nOb6TOpB/NLiqPP4Nf/pwBajrfn2VJk/o7vYgY/Q/Pp27QOz5kqBo/nwTZJ8sV0esEvtUlM/cfexe9x99B5h8hzfO+GRlx7h2tvXcCkgUnBFGb1T0viHynNHO5+XM9qJFjKGEBjGPaXqXuOdgyyUokjXVjALWnx3QGKr89D2dY+olLiNWanF7AZj1Zrv4mF72B62b4b21ebLG0DpC7/wc6TdN6c8z8P276e52NGdnD4EKX2VLefMz/zMz3D79m2Oj4//2Pd3Xcdf/at/lZ/8yZ/k85///Nehhw/bH9UuLy/52Z/9WX7zN3+Tj3zkIw/BSg80QTjllP+A/4C/wl/hX/Gv+F/4X/iH/EP27N/t7r07TWB3uuOL3/lFvvjtX6Tf9Tz++cf54K9+kKd//2m6ffdlMew/6e2rBim1hO9h9atiVArOP+AkNhCLoWcUtHNwLXP+vPd0vSZwg3M4qyZBWuWOJhhasFITXMyOlAbBZJb40D5aMKSAQyucczFJlWr0003OY3YoG5hHnew5eWCVqnWOa6jT10LerULlyp4i7uB+r1YD6/iBOD+/3hzt2fHmwECcYzx1vkSL/1er1L4CkMISHS0nMr/cnNWvlDg4cP4fcEcbcKi2BIzR2B9+QZOnaZXXc5zjYEho4KSWkFhuZ543Zf7bgywONo4HAMpZZq71XywgxdWqaItozHeTsz1TLPlUl8RJSx20jzTmB01QauBOAxIWlSkg2cBVNt8QMXIO7cEwJa4drbl9+zH208AXvvQSd+/e13nn7N6LJuEPK76cZ15TIpCGgTwmHC25W0m7gWEoSocPBCfgNWA7pUQIDlcrvirYI41JASfjnhAjNWWOjjZ0sePu/TOVxQodTlSyzEshDQNbYH9xV5919IgPpGlHLZUpwSiVbtVRkkMkcnp8ylQL/bVjGArXj1ZIKVzuMlUq0zSwFmHIe62KdJV115OmhGNgNwrerQirFcO4Q6JnfbQi70ZKGuk2J4xlIiDE2HO+v4DdJTmNKovXdxwfbdjvLvCiFci73YCPPdM0crTpESrb3Y40TgTvWR+viKsO10XEV/aXW2WIsTWgz9lTPFA0gC99x8Z7hv2Wznc4vMoAlEvu3jkjdB0np6es+479lHj77buc7RO+Vs7TQOo7fufTn+Gpp57liecf5+azT1Gr59EAZbvnnS+8QgR+4q//Zcaz+1xMcFQLwzt3ub+/x+mtmwzne4Zd4saTp4z7zCuf+Ry3v/V5cBXpenJbw1VwBlh0xqzinMPXQMoDtWQyni4GehRA1EAzOSecRGK3ZkwjKY1o9N7hxZiLEiRf8OLZjwP7/YSrCgZwLhA6TyctWBysmr1g0XnEeVLac7JeM+wHarC1JEJKmRAj0VVlDDJZs2maFDTjnFYTlzqzklErnQG09NhKGtjzjkymW6/xQ6bWBNQ5SO+kWHV7ULnDmqkJfBTO3n6LX/mFX+GRv/xjXLt+RK0GVrXEom6rni4Evu97v5u0H/it3/pNduOksiGjMhklCl0XCSFSp0y2ivroPDkngvPsp4mSVOItdpEyFWJUyacx6X1PU1KATtVn4LOy20xFq60LFR89kifEO06vX6fcP2M/jhSnFeopF4Zxr+CNTiuhscrpWsTAoZoggqrV6aWwihGMjj9XSFUAj+s8eG/MRk4lrXIlTSrzUgXWfafsPwQFBdVMLglBpf+yyWeIKFPflBNlKmRRabaSNdjfdu2a7cznMEjNHAhvMlhdF8ipsL04Z7g4Z7dasdqsObl2wqqLJjvHwkzkvVbUek/ue4qblMCwKmDV48gWxBcEFzy5luW4cYKrniYv0IlK6BAcsYus+p7tbstut1e2uKIsRnoAlVl2DlGmBBFpqrSW9BZahX5LKJdSSSRyTgoqW/XEGFn3HavYWbWyEILO+ZwrOZtdJHVOIKksp2e/9ww7GAcFxJSsrFm5aIJQq5MrtWZjt2rnq57EtSURLXk1Tdnm1kRxRUGFVW26lkyf7QXdIcxu0/XrmoSgPdvGxmCF2ZrcsZO8JTKbpAwiVKdgnpZgV4kYXQvtzG+JeKlLAqPZJbmaXekKpRYyjpKFNI042TPud+yCysH16zXdqqfre/qgMnDBR13bRShRx2W1WitLaa0EM/4cIC4gTpObpWRN8ntPbwyL417Bcs1+Cs6TS6ZM02zuHWK5v+FaW5/t1/aSrf2vYMQeOO8P/qzz3xt7hCb/DqvPl6RUnTO4h9esh92xa5q9P/s17S/V5qiB9GuxRHb72IFD0L7H/q+tDsynWaxTs3fr4XX0Lw+yHC3cI+2nW8z7w7e2RORBf4R/y6T4Mpt7GdcH33d4X1f/tnzXg/b//Orshiz3+2XXqu3u/m2tXrndq+9bkpGHedgZ9CRXn3P9Cp/k4Apf/j31y6dKu42DV2cQk/1tVuVb3szMwtiSyMUKMBobgtkvSjgr5JzpY+T4ZEMumXv3ztjtBxtOOyOoTTWHOREriy+LwHBxwZ3PvaCgFFEQRiqJnAriPK75PrYOWzKTakBQlIVFRPcn5x2UStdFnPPsh0ElFp1HxJgyjK1zGlVGDTC/RxOztVayg0wiRPWzPI6u69WWWXWQKqtOWVKmVGdfPojKbTmzC7xXuUxnNooTZe/MWYHYIUZKSgr6jB05Zj3TvWdMGUnTDNLwIdLFyJRGXe0lqySu8wpo6gKCgheKFT7FqN+nS8/+ZmU8cji/7ayXWlXa1zlymhSsKnqGjbXMjEpd12mhRjb/JVc248RYMiV43njzbU5PrnF845j19ROowpGHMmZ2Z/fxFT70oQ+Qh4GxQEcl7/YM9/f0mzV5TOSpsDrtyalw/s5dTh65oWtGvPa/HvjXgHOB1cmp+q44tSVsfjvn1S+181znfqFWoes6ZZwpBa0sKDgDBRccKRVlRy1F5QAz1Cb/6x3OVwMaN3BQS6yjcwqVc3M2vyssdgKoLdT8elHZMGUhUYBeTmVmL6mUmdm37f36VWrXVG/3ngwkVTSGoT5UW5cKvEmlst1t+cMXPkuMkeNVzyO3rh3EHw72PgNG3XrkEf7CX/xx/vH/5x/zxpuva//GYuxHKAujM3YkY/z2os+iyeopQ27Ci4IEl+O1GnO1MjJ5b/eUK+ICVSyeYeeaE72v9dERKavdN+/5lZlRTKwAsEniCSzr0xmoDAXlONHnoYxCzRZQAAhi4EiqMXxWaiq6vjAmLBtbcVELFahWbCHzmTZbDM0mnPftMgPJlnNnKYpYnoYcxK8qwzDwhS98njdef42nn3qSJ28/yXqzVnB6jFaYaTZsLXYPuqYRLeRrzOyL3dpOyTqz2s34IpgBVfr5Br42llcfmCZv0ofJgDPtuGo2R/NPLK4p8yXssgvDuy5VBR1qAYpJVBdP9Y7gVapTv1/PiMY41M7NTnrex/t43r+XD7gP8C/dL/FyeolxGm18ZAYFKvO82N0rd6PGMq9Cm3VZiK2vxjZl4C57Rrqml/P30BCoNucbjreNQLVFsVgvVw0psfXYQFCHtqqyDjbGxgNQtT3j2e6rFaSSu8zZY/e498g9ul3Htbeuc/ONmxydHxFToGRBJJOdMsI5Y+OdwUrBinftf7UAQees93rOLWC8dicO51nAgTY+rhVKpmUuUA2obLbtgRH1sD1sD9vDBuj+tr+nAKXh/tm73Z2H7U94c95z/PgTXL7x2rvdlT8x7Z133uFnf/Zn+ct/+S/T9/0f+/7j42P+2l/7a/z9v//3ee21h+P8brdaK3fu3OGf/bN/xm/+5m/y/d///Xznd37nQ7DSQROEE074BJ/gR/lR/hJ/ib/F3+KTfPKbk1mpNQfD0cCXvuNLvPyhlzm+c8wzv/sMz3/qeW69fIt+28/5kD/J7asGKUGe/9UCreqTVWr17dUZZASY8+8Wb9hei6EjeA1i+qhsBuK9gneaDvfhNVqgx4InGPWvtASdOeCC6p+Po0qIqNyDUEWTcuM0amDKGBdmriOR+f6kLjS/ZAt4VR7YMFrqDXNuD/40O9XqhB8GvsXeO7MSLX+hXURoFUQtuL0kSfxBH5bY/pdlJeZxO5SuWBI09Sv8ewnIgDJkzBGOOUSDBtGptEr9w+8yKgeNtdvHl5CPsV00YNGVAH5zhFnASxZUaIkCB5psdo7MIQMSUC3QjwZ+WkCiilz5/mpSOlKXQMOcbHDLN82Vzi4YjXqBWgi9yrvkXElJg7ntibXkWMmVKSWmMVPJjGPmlbM3ceK4ees6m9Wat9I9SjW5FgfeGaWzJTK9cwqUcMa0nwvjfiS6AKLVw9OYCC6wWnlwBRcVZJBTIifwriMX7YMPWtWZpspuuyXnwmbjwFdKGsnTyLAdFPiwzxzdioyx4+ydM/z5QOwCIQirPmq1cIysjwK1JGrRqq61BMJxr+AHEpLAx8hQdoy7LauuA1E5R6keinD9+k22F5eMe5XPUVkvDUQWPON+wlcYt3uKc8rc5CsuZcb9lhJ77pwnlY2QRHSR2DmOjzbs9pfEvkd84N7d+8rgk0amPJJSxAevQAeLVKVUufPWHa4dn+BUz4/Yr8iXWzrncJ1XBg2pRA+PPnKNXdaA7GbtWYXI2fmlVqmWRA2RKpWjk2P64CnnF9y+dZ3tboBx4vGb1zg6PuL2Y7e4FgvDa6/g+yPC8TWcB7rArWcfZ5s915+4iXOVdLFn2t3jrS+9wud+70s8+/hj3Lh2nVA6dq+/wQufeYFUhZObxxzfepx0ORLCyvL+xgwCrLzjiceu8aWXHJf3ExOTJpRiYD/sCWggrYpjKgXvRecK2ZIwkbLfErzgfceUtEL5/uUF3gkiyh5TqrNqY2XI8TGQy0gfPN0qcLmtZPEITkE2MTLuB2TKRAmMJVGdruP9XiswpRSGQQO/q/WKcZzmRI/zyvqkCQcNXHZ9x26nCbGUJ0R0De32A1K1wn6aRmLXqxyCaLVt7CPdqqNWYRwnAg4pI6996Uv85id/hx/8kY/hnTIXtaCmAjOVpeD6cc9HP/Y93Dl7h8985rNUk3NzHlZ9pwC/caKIEILHi2Mc91oZXotJXNiJ5DXh0EdL+MRIwVHK3irudSxqKqRajV2tIKUQuw6y53I/ML5zh5RUFqDkSmhB89DR991Mk59MBs87IY8T1fZ17xWA6Zyn1ox3Cm5JBWIXAE2EBKfVqKUoqLGWiTQmUjapBgNBefFUhHHa4y25WgV8NAr7agBMr8nATFWGr1rIaZFTcOKpJtFYjZEiTZPOWxToBNBHR/UesSD6dhg53+8Zc+LG9VNWq34+e1LJWjVsErLBKzi0gRHsKFwkAGaVHQFLnopz83chQpBgMjraX4eCZdarFfv9yOX2UlnC7N4q2RLbmmQrTQ51ljbTOVeqgt8czoBOKqmSa2W3zYwhkKdE6RN9HzXAHQMhBNKkUnfZtWRVYxSo9F0guDV9DOy2UUFPSSUlul5ldKgVKRmJEZ8jKRnIC0341VI1WUY9OGMNXJ6t+j4GZdGxBL33HrwwpTxLdbQzVmbrpI3rbIAsSSazSZ3IwoJjrxXrm4JYPN7r+LU3SWWWf2s2j+bHlAVOU6IYKD7bdfUauQppmnBuwPsdu90lIXYKUup7OmPgGMfEfj/ivSeapEPsVpQykW2/1aSe7mdeHMNQlP3D2OS8OGrKpJxmO897TX75nOfkZpuf35jtat+WZNzC7gVc8SXshS+7kj+Qw2g/F3BSY6s8aE6WeVGaTS5L5rZ1yGzWnIv5E0vS7PqNxgTRbMmWmjO7er6Q3svC0rDY0zObKIsH8CAwBpg/ewW4JaJrEEymxPaELxujr8DO1Pp4AKA69EQ4eP/8u1x9Jgdqaleu8QAG6Mvb4XNuycP65c/08AP1Sg+v9vfLvuvLQEiHPSwzSKHOPt2DHEiH83D5gsMuzq/LYd/r1Sk7J0YPQGbzaybValI3pSznSnP+nDiylAPp20LOlfP9BSLCerNSsM12ABGOr+lcbHJuYlLRrfChTe+82/HOH75AHZWNKGe9rjf7HCkGehCzCVCgUa00KgaV9awGrixEog2vMuMlY7fMudL1juwcl7sBN6bZTgtebT/nPaFzNPCKQwg4XPTKMtmAod6RaiJPk0nUMgNAKMJqvWYaRgPGOwObVgV4obJUQiUnPR9TyohocjynieoC28HkocjKUuKF2HWkpGxT4ir73WByUwrQ8FnZLdpDFzRZvbvcs+q7mWHN+UApE14E8Y25QoH7R5sVqSprRQyO6Bz7cdIpU6uyD6HnbnCOWgdONiuKC/R94Hi9IsbIydGG3lfSxTniI65T+1+CsLl2zFSF1dFa73tM5DSwPbvPnbfOuH58xLpf4apnurjgnbfuUBH6VUc8OqJM2WI7h/Na6wweeeJRXv1Dx7hLZDHmKedIORl8vzEN2bpq9l7Rs7gmEJN8KkWB0qlk8pgt3mB7YDv7Z99doCqAP2e1yVSCV8F2RY00ZQqpC+gh5xbYbMCmMksqNXkphPncaDJb3qsMuMritnND/RuRBjpZ4mBN+k7MrsXmYS3w5huv00ctqNkcr+lXvfoID5xvghAc3L79GD/wQx/np3/6n7LbbfV97dwHA6Xo3FLmxQa6sv1Gl4muKdH4gneoXGAwVkss3ubU9s1N9lGY4yfeefI0sd3tzI4rM8OqAm1N4nYGRzljntMOlJxxvs77kdi5ImbfNrCKN7ZSoRGeCcVq/3LWdSxO5vFyxhJXp2neG8rMclpnEIoPAV8VlNVAJbUsEEInh2V/BzGqg7lvWzTOC9M48IXPf5633nqLb/nWD3Jycsxms6aLYQFX2XzVZ6X2TZNCb+DmJSS1FBnOMTyLA4qdOaXa/LLjR+Nr+rkQAjllxmk6ACvVgzNMZnt4BkjNtnWdv7dZBmrj6LPPVX2w4j3FV2IwRi/H7Ns5loLBFmdzInyY7+SD8Vt52b3Mb7jf5HfTp9mXHQ2QRSs8Mf9DTPau2J4xPyuz/t0c1ziw8dHYqugmrGP9/2XvT55tye77PvSzusy992luU32HagCQhEQJIBqBDSBSpES+cPhRIWmiiCePHOEXHlge+S/wRB7K8kATm7I9U1B6pN6LsEg/iHimSKIhQYDoWERTqEJ1t27V7c7Ze2fman5v8Fsrc59bRbLArgrCXYWLe88+uTNXrly51q/5/r5fWyW8hQPmrsWUstjKhLYwKN0NCm+2V2NwFZjXMh1DobEwXWRwXYykxQppRZIgVhg3I9efvMbrT15ntVtx6cYpRzePOXn9VKuiTcYkq76FcxojrLHCJg2oxR8OV4sUnfMIqdo6yxjo/Na4Qs754J0FXJVCneceGCxipcqW/kmg8Xvtz9Pe976L5vW9dq+9U8064eH35D/9QGC8c5vv/MY9gNK99hfXTh59nNe+8qVZlvde+9PbH/zBH3BycsLP/dzPvS1gy/HxMX/n7/wdfvmXf1nZ/O+1d0W7ceMGv/Zrv8aXv/xl/sE/+Afcd99994BKdzWP5x/zj/nP+c/5PX6P/4X/hV/hVzjj7J3u2jvaiivceeAOX/npr/DVT36VS9cv8dgfPcZDzz3EY88+xtGtoxnb8P3WvgeQ0sUmpv5p4fVDSY45wCMHQRt1sLz3hBDmY41dpN3mAKtR53ipflYvrwXGrdFuK/GDJrcMmiBbkld6cMqa4NkP+yqNwYV+teoYDRhaaEk0UKdY2h3WgAVL4H4+8sDhX4JnzInr+VtmSaK1a9fe3D26tCBgqzRqwc9Dd3cBKrWf5cLPegtvTj9ckJWbA+cHSZF2DUOtzKtMIe3eamXiWzpWIsvLMDv1Ml+nVUHdlQK50K+WCDJQ2RPaOQ4yBuYgKVDLmvTjWo0sghihmFZ1pgfrvFpO04bbzN+tgLh6j9Tgg7OW4C3OFqxxjMO03Lto1Z61Khu12+2wTukVh/2O555/hYwhxgSiki7WadJeKZzdEoCwnq4lCVoVrXiK6GfOOHJJ5BIpxbHC0XtlrdmPA/shA55hGHC2Jh6k0Hcdq/UK74UxThANvbdMMpFJOOvYXLnE8XqNZOHoeEO38qy7juBXdCtlWgnhmODBG+H46ITXb7zOMCVONxoAmYYIzpKTAiGGadBkhlUaOpMhTwUJCiYJvlegQ+ggTmCEaZywLui7kkqtnDXgAtM0sfYr/KrTKtsxsp8SZYp4I5AzU8lMOeK9Y7Va444scRgITsBknA+E0CNZsD5QyAz7yLTfc7Re0YeABVzwKl82RDbHpwzjSLc50crB8z3jsOXS6RGnR8fsdiNjnui8Z3W0ISZh2Cf6455+tWbYn9NvAuMYsWPieNUTLvWsTUa6NW7VYS71+N4SzwQmx/HxMcOtPdth4NVvvsD7f/QZIj1DKnz563/E/fef8J73/zU2K8cuJx5+4nHuvHGT9fqqJjD7DrPyYBoQQZ3Qqw9cohQYU2SSyOnJyfwyZ8lgawIJYdU5jCnkaaTEgrcehycXgw+ebrWiSKagTEBHqx5jHcOY9Jq1en2KGYMC+azVe7t9+5wyagnf0ekxOUdM8CovYsDVRchUGY1UVAbE2gp8cr6ugQ3kWFj1a3JKGAvTONXXXt//IhEjDmP8zBLV1ps4TeSc8RgmIialSmOvwXasMJXIl7/6hzz+xHt473sfm4OXF1dX/ejS6TE/9ZMfZ9qNvPTCiyCRXCLWa8Wz854pZ8ZpUvk2o5J7xTr6YDBWmCQTViumYSTFXNdjvVJXpQp1ZSxMJWIxhL6npJGcEqNAHBNZQEqs+4NG+lNKM8gnR2WG89aRKBjrCV4lVKYYKTGxXvU4I2Asw7CnZNGKaKSCbyy5ojysU/BJyQVve3LSyljjHEmS7tVJZTMBJCeMd8Q4zSwoVaFDQaFZqsSDq7JWZd6jpCYZRFSiIhcNohvfE2wDtDADUzTBWgjOUmLkfLtXOYtSWK1WOOtIROIUcb1+v7OWJDUZ4xxFpMo3VHBQrkwq1uKd9mlOPDcbRlQiR9d1tSisVUaBEBJdv2K321YZuFGZrGgg7JZQNxf263b/zi2JB/2dAralCGmK7FImjROrlafrA6t1T98FvBVCr3KwuSiQWxOwGuxPPiuA1nqmcSCnqGt5KThrawKpI3SecYgMYyaWVNnIWlV3Vma/Niai33PeU4oyGRnRRFYRWZJFzuAxSKsYr0k5TQzWeVxt0Bl0XRlHSikLI5IxWFOlRAw1KaUAMFuBPSpNYqtE4AKI1/ftMHHULBtNqOva0xibNLltiiFlR0wj1nmGIShYqbKnKZtnBgp9JzjbgbHK6JFVti+EOk+yXiv4UPutgDnjDFOKjPsJoVSggAJvNbmnycRDO+9d35qZLDV7ycLkwvLXcrhpzIC2Jv/M/I5ohb9ZQAxctC0PLGFa2mi+fDuOxbbVR6/HNmau++/fv2l83zTeB4mt9h4fvrvLrZuWOzw47q4j5cBebgmyC7+rnsbd43TBuzBctP0X76Sd/a08kfavmSNN/vjjDm3qJesn8+dtxA8PuQgkWj5d+nMwIvJW14DDsbl4Tg4PquvNxWetv1hAZncN/IUk6N03faEvb9Etc3hsO1f1fZ1RdjdjLCnF5cvNHzHKnhSjMh45Z0kRbt4601U+KzDBWcMDj5bZBzEHzKzGVL/a6P3eeeVl0n7AGjf74KXkykRY8Fi80URzzFmloLHVXmBmCGm+vEX7CNoPZdRrjEI9wXsQ6DoFyAan+4nzlQnQBZzVNboLyi6YcqYPKsrbZOAUIG1IOVXwhYI+EJRJs4FUjKeI2jIUlcvVhGxFOBQFDBproMp9eauFC0UESZmYVYa6jZkyieRZYsdaQ46pghYr2NZV5qTK4JdSIqdICL7aSWaW9ZUohL4npYQLne43FTTU9x1dCEwpkaOybPoQKAVSLLje41yowCmD5AI503mHXTkCgjiPDQ6z8hgHMoFQ6EJHGiNTSmzfuMPVh65QcKQivHb9Ddabjkv3PUjnLFEKJ6enDPsBH9a6xriF/fQwmX106bjaEJlErhW9+t7P/FFmYdNxFihJ7aOiLK+lzn3vFfDW5qXB0HWBKWrirDF3KUC39qUIfd+zH0ZinJBc6FZ9DSAwvytu3kvMYmPCLLWln7uZoUWk7rdGgU8ihZLbOqjvQSmCs35ed4oUnPV1n6i2iTFITMgcs9F385VXX+HRN57g+KVTnn7qcS1QueBPLOuWNYYf+eEf4tVXX+ULn/+CAusqV257zzEa75pyntcZlURW5qJSqx8MhpJUkk2BMQpoVJk4vfdcVF7W1HhcqoCyaUoVlNTiKItd2gDoiKEkBYA1HhZnPVILGUou+h55N4NHclF9MZXZa+vksv435itjKzuWPrgKakLnpxicC0idN8YoSEvZ2vQ8IgdsP/XZWFocUTs7y441IFPtSxvHZUorUKiIcL7d8gdf/gMeeOBBnnrqSS6dnui77/TdL5Wh1dX1eGYPt0BlINO+HBTRNZtmNkZknj/Uv219B9rGZq3T4k/niSmqZH2TgRO7GDUcwE7q3nQY0JuZf5gPn99nSRWslJ0WPXhlYbYADhzq4zTAXzuNZ817zXt50jzJj9sf5zP5t/la+RpDGXRc62VUdlS0iKImK0NlbS1VrlOav9P624DozU6yB6xHdQydrX2ZbcLl3uapPP/azLbYBTODZkO2/h6Ck3VfWWxIO5/vEJAu83gudq1QGI52jMcDvOc1wi5w+tpl7n/pfo5vHVOKxeREsg6bogLznZtt08nq2mnrPVrrAAUTm2YTA5TG/KRFKbONbC0JXb+kAoZNYyOl1Hl2r/1ltB/7sS3WbsjZ/OkH32v32l9i8wF++MN/OnBBRHj961+5B1D6T6SVnMkxqiT2O9j8avWOXv/7tX3xi1/kx37sx7h69erbAra8973v5UMf+hCf//znv7/ihD8A7eWXX+Zf/at/xQc/+EE++tGPcvny5XtgpYPWmJV+hp/hp/gp/hv+G/4F/+IeWAnUbXHCrYdvcevhW3z1k1/l+MYxT371SX7osz/Eg88/qMocfP/Mp+9pRzp8UZQGOCv7UQ2SGM1aMXv79TveB0Lo5gDfYYKhSRDNVa1zgKA6U5iqP18D1DWoIlJUBqNKuhVR+Q6VMCmIZFLK9TgNVC7yXUsFDA2YAoiUQ9f9IOkHF9zUg3FQh+6AkWhBrtRkZBuHxZmdP5tDUYdVKnIhgH6YlLy4lSy/n5Nqh+kXWSr7/rgFrn3v7t/fDWySRgPdznmYtDPQmJAOne42TLNM4Hy9BXR191gejoBYiwVsBaIVBC6gq0WfpQFT4QwFEGuUdYk6rkbnwuFYzAEOanBvjjoBUmqQsjITVGrlo/WKvvNkyWx3o1ZMmQNK8DoOKSX2ux1dH+i6nqOjDS+/dJ0Xv/sKx5e6WkEs+E5lfzQwyBz0atV1LiibUEqZEjM5DVq5Zi0uaNIgJMsEOAeZQowRkULMEeMEjKVgsdYzpsyd6zewXgONFssjD96HDYH1xnDUrfCV1SJ0Ad8pkHBtOoKxnF66xG6acO4IcqTvHOd39hwfHXPGlmmK2GKw2SAS6XxHf3KMNRv22z3DlCjF0IdAiiNntyNhvaK3gW69JuZEnjK5DLhQGZVMJgdDcZZgAzJlgnfc2Q3I7oxgHGMcERvAW0yAO3FLwiHTxDQZxnFCEJxYLAXfWw0Y5oSxbqYo98FjxRCl4IMn9D1jTkxDZOUDcRgRhGFMytQSAn2/YUqF892IWM/Z+V6BFMUTDIQQiCUqyCWs8CLsu8TLd7Y899zzHPeene956D2PwKZTVI4Ff3KEhECJsL12nUmE1ekp4gy9heP1mkEsXdeBU7YOmzO3X3qNB49OGK69TH/pGEsH1pFrSL0pWa5OruC6Y45OE3bfgq/6Tq2PTpR5KxfGcaCIsFn3pGSYYmKYIt56QFnDZBzpVx0xZ4L3TFPi8pVTxumsghk0KbXqDDmJVjoniw2aULfGsdvtyGdnOCB4T28DyWjVufUKNpimqBJpCMHr3IwxzkuCcyqHth+VIcBUic+UNLlxcrrGWGF/PmlwnlzZxjRAv1qtdB/QxXdhppFCskkTMEnn+Jc++yWuHh3xwCOXVNqzruSHK5mzhicee4Sf/elP8un/7/+P629cZzcOszOYRMCpdIn1fpEgMA5nDeTE2gXiPuLE1n6IsiGVGvy30Dm/JCVRdsK+W5GLrmk+eJyoZIXGIi0pZlJlEwwhEHNj71NJKlvACfTeQ8rkcSIZo+xaOWF9gFSqzJ6yZFlrcTaQYqQkYXO0IrsIzjFJRICEVuMqOV0hZ5UOdJVVoRRlZDJGK7mnOGnao4I2AVLSNdZaBXkK0K9UbjGXooH5rJIH1nmtFp/3QAUSBecRY7Hek3NmGCZiTBwfJ46PjrEuIEarSkPXK7+eTTinSRupUohgVJIkZ8aoSR/vnLId1aRpqdkr5yyIneUxbPAEpwneYKzKynSB1arn/Pyc3W6v1e05VdtBLgBs1YZqzAB1F5ptBk0sG2Mo6PemEslF+5lSJvUdfRfogsV6h8sCwdXkiY6ZqxI41miVbsmBHDPTNJIk4lxgvVkTvOe2nBPjQJaMBUIF3iRfMNFW5iVNFuZcahLJzFJsbd9v7DTBe3rvME4ZGHKWur8JvtotUoEFjRHvAnOQtCp8rfS+UAXNRYCCqcmuQ9bOdq5StBJcjFFQQE1SLWaLPhuVopHKHlcZSHIkpYlpGhkHh/eaqI/RUnKiWyWCX4EYQqcg5SkmTCr0IVSpYoMNls55pknXY2ctznus0wRzm2cheGWMyE0K7/ugzVmag8QhdwOU2mDrM2nyJu0eF1v0IGHbvnH4nA+e78KVpSdYKvUbK94iXdP+lAaGLJlXXvkWITzONPk5mTVb9IdzY/l0/rndyeHn7a9DS/9usP+BA3HRLWm/PkgyvlVrkIGLybG3OuVFaNPdB8qBjuCbnN03nbCtSbV4wSyjYA4PMSxXrXZ9/auyqFx8ty+M38F15n8dfsW0GzazXNVhHxZWqIUdlYM0JHPfD4FmjY3rrnGqk6fJux08VJ17zmDru+qtoWCJlXloyZYud1Ky2vWuFjGELnB2tuP2nTP6fmFTsE5tJWsOfMk2bmIwzjKdn7O78YbO6ypnZmyV68masLSp3oLRRDRUhj0r85gYY8mlMO72Feyh6/nx0Ub31y5UMNIicWQrA6DH4Yyh71dMOWNtB5LxzjKNUQE6VHYaAVMMkHHW4bsOYwJxipXdzOCd2mnjuMf5gDO2skkKkgulgqJB70msJl+tsZB03MYxkaYRaxT8IlbZ/IyFqUxkLOQMuVRAls4Hg4ATbN0DjGngHV1/DXUfdSpfb0TtE2+dys0BKYvu8c7hXKg2TAYs4xSrbJbFmmrjliqnZr0CqqaRsyFy89ZtemeJznF86QS8p5FY2z6As0iG6UwZO91K2UOdUcB7ogKtjFO7vAjD2ZajriNtz3B9h3AgeXaw1vl+g/U9YZUwkXlvB2VZbT53TLEqxynYPEVhzLnaKvoqpZRU4rhIZTZVALH3WuTT9gdloqkLNbbKsFpwyhQyjmMF56l8s2+FVtWnyHmRh4Mmk5RZLATtU8pLfETtEwFRWbR+FRjHabbLpMppiWjBQZsn83pbFJBTjMYO4n7PH37tq1w+PuWN9YYHH75aKzPeHBMxRllYf+aTn4RY+NKXvkRMSUGBVc6tMfcs+5/aR8qKlvFWpeLbWqgkO5X9F7UVXWUkWrZGBTx7WyqoRgul2vkbKKJUf4Jqc+oaraAjKwf7tlVQf8m5LpUtNuR0KW3AfruAxXNWYJqt0oHN1NXSwiovJ4JUyeEGvFD5wTJfO+c825tmjl3VfZ5qo1egj17LVACV+oGmGI0v1TW9bTG2gqRLKbzyysvcvHmTp59+iocffoijzWZmdhME4zTmSYu71aHORp+FMiQ5UmW2xVSGX6Pr2fxcbN2n65wzRtcYmUE5thbCeaboahFOqcV3OsdbeHOB57YCw7YPz/9X57CdbaQiECWTS8HX+ecrE3jrhwJloLHWlxlkZnnSvIfH7aO8Iq/w2/m3+Wr5CpOZ9F0NXuNeeVqknTFgrQJDSy1EaOeuPru0nrdQnrqaCnqzCvKdbRChxolLXWdk2d8P5uViei1xYoQZwDq/rbMNuMQ523s727NtzGnxwrvsmjofpAjjeuS191zj9ceuc3R2xJVXr3Dptcv0+x4XPbnFz62d154UCt5W2TpjKvNqqWuYrt2lFhpZr3takxSnsQ+WZRyVqQykNJv8zevSvfbnayklvvKVT7PZfJKzs9N3ujv32r32ttp4+xY3v/2td7ob99pfUIvbLfsbrxMee+Id7YexFuPcPSal77Ftt1v+/b//9/zjf/yP1Y/7U5q1lr/7d/8uIsLv/u7v3gMqvcvadrvlt3/7t/na177Gz/zMz/AjP/Ijb0vO7wetBQIf42P8Er/Ef8t/yz/nn98DKx02A+f3nfPVT36VZz/+LPe9dB/PfPEZ3vOV93D6xik+vrOg1LfT3n4PjWme1UFgWZMFrdpqOVSDE2GmpdUA64XqzrnaWQMqGmRhDrB479WpKmVOXFGDIbQkUk3YlKLSFwpSYq4eWhIXrYKvBmD0iovDSHXKzFL1c3gvFxh+RA5+vriRLsCiFtg6CF7Km8/XfgaZ+zVLyDRQzV3nboGbFpi4eD650P/DZ3L4/Tf394/ZoOr1Z/mT+T6atr2dv9/GuYGq5vuuz22pSWJ29EVjgTQwWGP6ECrjkYAtogVgCE4KtlRAnGSVAmj3U531yo2CbbmBWvIp0vq3jF+rhJUamRDJC3OVUYr2Vd/TecOq72aZohu3zmriW4NNpQa/mnSdoAHZkgvrdU/oPLfu3KbfXEYRVAVjvFboptbjUuW0NOA6jIUSC844Qu8oXlit1mCEk9NjTZQDve/ouo4iGetVLnGYJjbHG7bne9Kk4L1piuynkbzX8/RdYJgim9URfbem946cJvrVCr/ucWOi8xuSZKwtpDSxWa/Y7ye8gykOxDQhvsf1K0Iw5P3AarUiRsN+P4KxDOO+StN1Kp/oLY7CFCes6Tg+3jDlQoppTkI7B5tVR84TxRoyQnAKztoNA1kSOU+c7/Yka+jXR6xXKx64eonbt8+4vd1R6rozTcqKsp8y3juOuqAMOqJB15hg1a/BwKrrgUJOmWwTKxeIRYOYiQlrHDFGZQuZCuM4YSxsz/ZMpXDz9h2V4egSR0cb+o3j0vGKcTchWQN3vQsM08Tr21u85wMf5s6tTLYd1gc8kM/2lBKwAuPtM05Cx81rr3P14csUIi999xVW3vDUe5/g+PKGzZUrZCJc2XDr1sjz332Fq1dPeOy+U5z3SGKOphqnwcKj4yv0/YrtNmEx7PYDm82avu8RINfE/FG/pvcd036i69f4zhJzRpzRYJYI0zBQkgKKJAlFDDdu3qrJGU8XHPv9lmB6ZSyx2qGUlG2rlELKkWGMrLqeru8YxpFSEs5rkLVfbyqjQJ6TNNZq0sI5la5qocxY5ba8d4ikym5jmKYR5yw+OKZxqgxmllw4mHcObz3eh5qgXtjRaq6BIQ98+4Vv437L8ff+s0+wOdrgWFhbDpsFHn/iEX7iJ/8W//G3Pst47TViHOv5I9aADwGcI04RbxxTSoSTDXkcKDEypUJEWQJXweGdxxohpkhKhc4HrDGs1xumKTJUmv++X+lclUgfArkoMNJarwAeowxVApq0cpakdbKkFEnG462lOEtGGGLSyKzTJEMfVkRR5iNvFbxZkjIciBWmlCtQrGC80+RUynUyFvq+myemMUKc0ixpBbr/KzgVSjZITlDlXFMq9P0CUhARUlF6e2ctGEehJh+KJhtztRtsSyK3hIBR2YWUMmfbPbkY1usV6/UaVwPR2aByD9T7KYXOOoYUKeIqy54CupSBoUrbgbJYGZCalFH2BrTy11uMEbx1iK1SX87iukC/WrHb7hiGQRkgWWyKujXP+3EDCZei+6EUZUC0RpMqLRkUo4IPU8yMY2Sz7ln1+ixss8WMUWasmhzxwVZpOpVCLLnQT4Epj+QC0xiZaqKu6zxEUXsspTnZFKoUqrGaHPIhkGKCohJsWRrbRX1/SrX1pDFVWE1A1YSE1cyQArBEkxW5JW9hThA3Y8OIgtObDAUwJ/UObafFVqzPOmdcffFb0L7JwR2YSDMAQ2jAqWo7iSY0yZkcLclOGGfpeq9MGLuJ4HuVfAuefr3CYDk/35HWKwVjUhMRztL7I2IFjjZgv7OenOKctHHWVvDluzzocLhWSkvYVPvf3PV7U30Ks8i6mYP19u5/6zkXm3XxA6r9fmCH6rNs9myTCSwXQEm5yvu071+/fp39/hqXL11it72yZCtFKptn+6DanuZtPIu3sMH/uGd4ARh04ZAD+/rwHEtXZkDOgRN34UoK7L/4nT+x23f18W6WpMMuzn05OHpxBkDe4oLtXbr7Htv5DodWltu5+IEsz2BmgTLt/awA45axnYE4+lMxy70YqWNzcI8HnVxup4Ea6lxTsJWCBTSRq+AaYwzOwH5YKpcXH2KRx2oJcAUVe5y1jMOIDysa15v6L6Ig4PYkRGbpp5QKt19+CbICglRaVdmKur6bx9hXX73JI3UVuBO6jhgjOandp0D2jCTBO/XzU84E3+n9WYNkZS21wWFzwZlAoVCM7hFd8MSUZ1bLUiqLZ2McjAnfqQRYjGo75Jzq/urUlTINFKqSW10FuJRcZvlSb6ockVClEWWWXUspoWx0WUGg9ZmE4NmsV4zDyDAlpAKbcs4VPKwAp1DZkRBlDcm5xi7qvieI7n2m4I1Ve0CEVGVZSxaV1UpCyhkK2o8i7MdRWfVcqUxUKrudYoaivvV6vSKVzC4OXLr/EcZREONqkY9QpoyIxQqkcaS3lv12z/q4BzJ3bp8TDFy5ckpYdYT1CiEj68AwJG7dPme97jlZ95Xlps6t9jIB6+NLrE9OGK+fYVCp1i74BaBUXxJvHcF79ZetsimmBrxoSf8ixHGqtpL6+vthmpP9vjIw1ulZ39ZCEVOlE3V+xhix1tB3fV2/lYnUWqs2N1aL2CorELAwglUbtElL5fqs20JgK+AkRgXL5/pu2ibxW6UZ1ZZY4l5ZcmVqUgktAd64+QZf/6OvIxjCJnD5yjFGrY43+RMiwmrd88m//QlSTnz5K18jj5XtyDKDjBR0DdRYR7Z+tvulCElSXeOU7djUIr/SgIvG4K2nGGViyVFZq5w9ZGDVkffBEyeNYWghQY1H1Weaq42Wk0ooizVViasoi5bTawfnq3+4xKlarM9YN7O+NCBUA301liJnFbTRYjelMqZKna3GKBNrpcetBY51fOo6udgQzPHFdl9SbcBSDsC2psXH2pag/uI4jjz77LO8+NKLvO997+Ohhx6i67o5xleh0FQKJ/U9UXm9Zks6q6zurcjPWhBnL7B8zXO07XmtQM/qGial2j2V2TTGSIqp+rZtl7i4+1czhkOGoHbvchhvgzpnKpArFXJQhiwvzPNoWS3qXmTUUjYGHJYny3t4zD3KT+af4HfkM3xdvs44qT9hrcWJFsOWak+rLLuZ50Bj2JPSWK/MXGRxaN9U2n8KjTG//b4uY3N8eynInOOvLbDZ4qF8b+3QJp2bMK9pRi5aUQsItFBc5uzKGWeXz3Dve4mjO0dceu0y9710P92oLHzKPKVFudGmGWTnvdcYR9ax8d7P92MA6/0C+Krz31qr4N4m/W3M/Pzutb/YVkrh61//Om+88SUef/wZvv71eyCle+3d36QUrn/9q+RpfKe7cq/9J9a64xPWV+9ne+2Vd7or33ft29/+Nr/5m7/JJz/5ybcFVAoh8Pf+3t8D4POf//xfdvfutT9Du3XrFv/u3/07PvvZz/LTP/3T/NAP/dA9sPhbNIfjI3yE/5n/mX/KP+V/5H+8B1Y6bAZSn7j2zDWuPX2N3/3PfpcHXniA93z1PfzQZ3+IzZ3Nxbjyu6i9bZDSnBCkxheKJuPcQdIAtNrPd4HgvVaxX0goGMBeqLDBLFUploNKF5ZKZledRg0Uawdab3LOpJLm4OEwVOYSoVaWmQpEqRWQNSj+ZoahwyqXu6iOacHj5bM3g4PaucyF79y9oLSK7cPvv9Vxd19/ASc1YJR5y+Peun9vfd4LzFgHTmjLG+gxMFd9SUvYMQe52nFL5dHBZ3ddXwNDNchQ5VJkBmUtUnV6fa2e0iBnwVIIUjiyjt4IHqWVxhiiCFNOTAX21hDrc5+TEwfB/hYYaHNAZkrqOq4zaElDlKSMcZ5S59p+P7LbjSotQAt6a0VZKgWHVmlOU+LoSJ9r1zmGvZATldYcSq6SVd7OTCLOebxzeGvIUyasHc5YVn2n4+SDJiBboNAFCkpH7ywYv0Iw9MbixNC5gAnKJHX16glHRx273Z7Q9XSuY5gmxjcSRYTHH3uQ+69cIUbYbweCcxwfrdilWIOyljiNIBbvnPbD6D30fQcp4sUSnGHIlm6zJuaIoBWNfecZxwzeY4qwOV5pBVsd48457PGRgraKYMga2OyU5t3ajmQit87O67UFu+k57lZsViskF65de50+9LiUWa/XWCx5N3B0dMTYFYY04YNWlVrj8N2aroKhbA2gOizjMGDyQYBUlC6+s5bz7Y7V8QZbCjKD0wqvvXadIpmTkyNWx4HQWWzOyJC4tD4hiuVse8bloyPu25zQ9T1ZLI/99fdh1z2CIe23nL/8Ovu9SihYJ7jTI04mwV+6RFh3DNJj8sT6yimnj9xHiYlwfMTf+oWf4aU//Bbf+PwfsZ8yjzxlSbcTtnPQGYpV2TVJlisnax55YM3rrwvUgFYIAYOw3Q1VuiKrxNUkOOOIMZHTRCmRVXfCNA6MVZ4L48lowkUlSRIxTTjb1Rx9YtoVvDFkMjmP7MeJmLUS1geL9z3GGvbjSJk0KWNrJXgpuSafNICoIFBfgUia8NIgugOv7EHWQkpoBaapCeesFOhYZYUyNentnK1JsoLxVhmijEqMrfoOyZZhGiugyjKw49lvfZOrX3qIj33sg2z8sna1RGvb7YwzPP3+Jznbb9n+1u+wPS8M01BZfqrsghS8tVpEbQ0pRoLzDLWS3olRKbYYwahsR2cNXgoWgVxIovIsY1ZGn1IDxdaClEyMI0ksIUCrEDbUhFqtUrZWuSSOTo6qVIoaf2RHjFmTOKVgBWKe8E5lIIY4IaLHe+dxQBmVPcnM0lUZkxPB25pYtOSkSQlrLdZ5MJqktEaBUiqzaWag4jhlcgHf9TMzg0GrepssgDVmTgY6q6DNLJU1ywpeHKayTDlnyAe7nmRh2A/EaaKkxGa90uvXpIUBnDEUoxWmXR/0aecqlWeUuaHkjLdeg+gpkyRDrQbXPa9VFaNrnQjOazDZhY0CFn2g7zt2+4Hddsc4DGTSHDzGSE32LHusyhLayqyzAInFNiCHMlCmLOShEJMyo62nni6oxJ+tYN9mxlgjBG8wUhOU3uGthQlKlYnTpKomWLyxJCMVrKP7q56uJRKyAohFk3/tv1albGtFvTKgFUw2cxX8vF/nUuV9BJzB+ZrQqXbjzNZYx6f1rVRWhpaLkJopaAkVoTKSWDDJQqmgI2GWgl2MotZk/shi63ya01AzUElAJRuKwdhCzgYpI851OB/w3jEOI13XU4wwjSN9vyKEQKi/x4DvOuIUtSLdenKaCL6CDEpLdik7Qnsn3u1tSbctRQWHoCNbWVla4vairbwwJ81gEv1Yjzu0cYs+hwscU9ISQmonFikzSKmBF9u/z+6c8eJLL3HjxhuIFK5evcHLr1xpk65deU76mdaju83wea+QudOH3oO0pNpbfOfimF38l5GD69+dVzr894XfvUWCTGpi8Y/p95vOd/c9Hfx6GZW7e3+QPKQN31vci7zFvVzs7ZxD1I8WSbq7m5FlfI0IDqEzphFYzlOlICp/KRDren/g6LzlfV/83Vs9ndpUk0zXA1HAqDIpUeeB0FjZijTZTk2kd50eZJ2CsXUraFK3VDYZM4NBTS3KMcB4tqWcb+l8ULAAwMzcWirwwOpbWPcKnGpl+To/nalMNTmxWvWE4CvLk8daBSml/YCIcOnkiM16XUHgCWcMXe+ZSmW1xdRiAb2fknX9LlIZTUrR52KMsvwEX6UyddCdU2lacQoMCV2nth7qXztrMC4gxVX/WplIrLMqPWscYjLDNOn7jtoqnfNVok7Ynu8UFF4KLuheX0yi66rUdMlVarV6Oc5rYUDJlcVI7YSU0jxBdQ9WJkyLZYyR0AUtuJmfpcpHIULfd/jOYV1NZsdM7zuKKNPkqgscbVYqfYzh9IGrGO/AGAW5n22JydD1na6rq46+gF2tsMGRcWTJ+NWK1claZdH6jsff+xR3Xr/BjZffIGXh5IqhjAXjDDhDMaJxm2JZ9YGTo45brwlS99cW44kxglHAFEb9dOWGMhQyUoE73ilzFG2eGQVkKAOlstkgBqk/p9xYZwSxQowTMbd4SiF0voL2ClIl2pwzFfySKyuVqaAmfVMbOHnZ0zVeFYLTz4y+K7YWxmkMQ8HLuUoEKlDlYmxG6nqCUTvPCdWXyJQMzz33HAZLd7SiWz3NZuWYoV0H+1eL6WyO1/zkT/041167xrVXrylYkArOFpXuMHX8LQo6MF7lERvDm63xpJQzwXlcjdXZupiWXOo6WOZlztVzKnun+kiSmO9VBJ2ntc/W6L2HTiXYrLUK/Ha+ArsgFdV1zqlK/xq15TVcp8UottmO1V4zlVldpKCPzNZnsiyztkpRq21ZnxcVoGLA1DiN+kluXvubjVzDdAtIo4JTGzirKB0sDcJBBanNO78IZ3fO+epXvsb52TlPPvkk69UK5xrgqX7HLMAg29ZldP9TJtRSjdVWCKpAqVJBW3WC6ZpW2kagz7dYgzNeJc4r+DT5RIzKBt1salj6c7iXHkrdibTRrPstSwxTRP3APAkpF4J3+GqzNVauBnTRteHAwTAGazueME/waHmMl3mVX8n/L16UF/X5GvQ9MxftFGPMwtLetmZZ3uW2FdSZiFQf8dA/uMDCVE9SqPLZ1be8YH7MZksds8b61TqlE2a2PU01ONTPa7aotP/N37tgIxzYkZhFnk+A5DN3rt7hzpU7vPaeazzw/IPc/9L9dLGr95gxJs1sVTklnFegaEpaEOmcnwF9CmCrjH+1QDInjaXovctsPxQuxr/vtT97yznz8ssv89nPfpY/+qM/IsbI+973Tb7+9Q+801271+61P7FJKWxfe5Vbz91jUbrX/hJaBVXfa997K6Xwm7/5mzjn+MQnPvG2wCwhBD75yU/yne98h+vXr/8V9PJe+16bMrS+wq/8yq/wiU98go997GOqonKvvakFAh/lo/wSv8Q/5Z/yX/Jf8gf8wTvdrXdXMxBXkZd/6GVefv/LfPWTX+Wv/+Zf54c/88NszjbvdO/e1N42SGl20qiJT2ksBjWRYJ0G1EKYqYgXHWtDC97MVeoVdFQOZMqkBhhbgFbPr4FsWx28lBIyFagyHho4UcmTYZxq4KfgrK9gilTp6OcbAJbqqPka9femBnJakqnR8M8VxhcGpPZaWqD8za7nIYNRmRMA3PUdeRODkrDQVs+JjOawv3XEfm5L4c5bgZ8OQU5zSGRO0s0+vrD8XPtr2/M5OFcDlc2uumnBiLvYoyhYDoNBBgV2LZWWc//RxEGrZDKiAYO1MTy1DjzoYGMNviZqJwxnqfB6gmsxcqtkkmkBn4syeMszqYFrWrDB1uSYrYE2O1ddWqvAhZwzt+9sNSDJEqCRyvzgvSNPmd1uh/dOg5dFZQlLEVJkZpjwvsMHRwhaIVtE6EPHpl9RpkzMqjvfOU9JSaUeQiCXGnwwhj50ZDEa+EfptiUXOtfhnKPrhM3aIqIVV65Wlp6cHGOtsN9PXL9+zu3b56z6Fd54utM1aYDN5pgpZy6vVkQKwXoNKCLs9yMWg/NrUppIaUsu0FvL2e074D2bzUalbdKW0AWcUYaSMU446znanGBSJscJKwoC6FaOKKCUS7A5PmLMA2IMd4aRrgJijIPNesXxyRGd78lxZJwmdmcTxVhOr1wmRQ2+np6esB8Hjo42MO6gUlpjMs4bxjhCKfRdj/WO7fZcK9JEsMCUJqaYcd4xMdCvOo5Wjs4Ech6IRbh16w4Gw2ZzzPHxhuPNhjQlhl1iPEus1krnruwmgj9e8cyHP0S/OiblETs5tmc7jjZBkwv7idHtOXnwBH9pg3Qdoe/Y3brJ2e0b3LpxBxcu8WQOHK0sl07vp/PCetWxOdpwdNTx+isvcdlb1vernFMONQEFrDrD/fedYJ0nlhFrtcpyGgakZLrVGmcNw7BTGYSYiSXjTMGKMO33iFHmoQrlwxpDCJ7gHCaDoGCNlFRakAoESJMG7EO3Io0TkoST4yNKyfh+RUyZyUZ86BDJIAVvDSH0WuHnA1MclPnFOk10IXhv5z3CO4vkhDdmZkkqYikWco44B9YFTUBZQYpK1ZUKqHLe0697pmFkGvY4bzjarNjt9kgxOFNI48AXPvtlrl6+wo/+yHuWdawFFc0S6LTe8MMfeC/XX3uFP3r2W7oiWUhxzzgNGN/jnSHHiVwKITlM0D7ElAmitdXncVSZOB1wsEpTX3JRgExJ9JuNMoTtFWi46npyynTdCpwG5kPXgdFgWU6JvlP2g2Hck7MQjCE4Q8mJvlsx7CemojKIUJBUZY/qOuocOBdUQqYmGWJOKi1R7FzZ65xK6+UiSKn7g4BCyWpC4qDqV6TgjSPUCmjvDqK7Ihq7F2XRcUFNGXMATskl4ypiQaQmcWpiFilksgKZ255bgaZxVBadaZrou45+taILLTGiVoINCjKTUpjShHGOzntMcDTgjcpHGJgKxZrKGFE0cYRR2TJ7sDs5j7FeEwrW0jlH1/Ws12v22z273ZZpHBVQN4Nql4RYQbAtoXEgN9MkNOYcbv3alDKpDHWtdHRdRwiO4C0h+Go7VDAbKCtT1ZDpgVTAieC8w/mO/X4gjRMGBQNZ74jjSE4ZayyFcsB6puOIsVhTwYdF5j01l4J1ah/GqJkwb53+riYohAV44IwDWxN/9R0pldVAiihDlauyimWxi6zU/d/q1uC9ApxTBaos6ZULJsqSWLIWquQINSndQFFCq9Cn9icjWRAy/aonZYhxwPvEZGDYD3jfzQnWwe9Yr1d0/Yqu6ypDhybDc9bEeE6aFHIWppjq+6USDro2vltbG1VzYK8uv2tyFS2ZAtxlyy6ApguJqjcBSi7a4e25NbNan1Ve7Nh6DZUKTWy3O27evMkbr7/B+fk5sbKaAZye3sG5REoHSbd5far+TLWND212I8zHHzLzzCe4MNkOzlt/PDxXewcOPz/Io+m1W6ZtTqgeDD/U3hkOjjg4e7tuO8rcnVU7+Oswoc7FdrfLYlphx8WXyhz8vp2nrVfzAMwHL71tz215Yw8uddg9qYAkIIhwyVuOLHRGZdiEKhdVhF2BbSkMIuSDcy5P7K4044W5eAC2q4nuxlRgjYKEi0iVixLEHDybejpbpZFiTDVwa2ZQvAhI1r22X0PX25mJryWznXME59ldv87Zd74Dov5yY6mwlTGpVFZWZVCiSsUuUk7WaNJTnOCDAalrZH1H+67DWGU72m1HhjESvDKPut5TIoS+J4uw9p5c7635ojHmKqnqkZJIlSnHGUMeR7BWQfRiKCWqbI9RaeBUwQ9d6DC1cMCIAdH9txz4saELKrcKjCkr+yfLubq+q+OjgOyYJwRDv15RirLa0isYPHQ9pKm+Fzpf1d9T6T5vA8aqTLGOr6DgcC1oMcYykvDeEbyCCUpJFIH9NGLQwoEQAl3wlCykmMkUVQmu8YhSBNt5rjzyMM4ro67Jet0uaGyEmMkm0h11uD4oENw74rBnHPcMuwnrtlwSS/CG1WqDtagt0GnBxe7sDr29RFj3ykBoW7QEvDdsNj2Yyl5aQSEpRZUD9k5BVCXPwIecE67aRCUXMgtgo73stslHWVNl8dSXNnJRzjQlUalDKxUgbum6QCoZ7wPTFDUeVcFFtsoii4Ni7bxPugqGhioPVeXRbMUKGJR1VNmPDYnGtdTAz02SrEpIVcSHwFxkUXL1aaq9WrJAKbz04ne5cvUBVv2GZ55+lC64C/4EcABYEq5cvcxP/uTH+fVf+z853+5rPE4ZjxsAzogWRRljSaVoTKLax7bGzFLJ5AbVt8veJ2gMrtlNjYHHe1eLsyzOV4Yj63DVVmuAx+ADKS0Fg95ZTCkVgGbISW2U9r61RVXBLzX2VRfsxuJTmlSdVBAIlTlKlv3/YHGe99621qjdV2UEbZXJnBfdZag1JFnB6m0DEua43OHmZuyyHx6C4EsFDMVp4hvf+AZvvP4GTz/9FA888ICyDXl3iEFRaS2rfpDGl/R9sN7PY2CqtLhSsR7GD2sxDi2uqbu5rSA722yQOt7eB5L3lXE+zezEh/G+ec4Ji1pqs1kugFUObBtB7e8iZFvmAiDbpNbq+6DPt9n/YAqVad/yhDzO/8P+Ez5nP8fvpd/jdro9x+kaU1ZJqdpren/GqBx023fr/5b5cNhno/GHGYBjDp67LHHLBtottcBpecYyLwauyesd2Gaz7WUO5xAzAPfiQfPXql0q6rfJ8iSW/sl8XmNgXA+8+MPf5fpj13niDx/nyu2rWFGQkbVCqfa/qVKxGJVb995pUYRz1VZohbz6d3MrrauMb1ZmEO89kNKfvZVSuHHjBs8//zxf//rXeeGFFxTAiz7Pxx57ib4fGMfVO9zTe+0HuZ1cLvTrt37PRYSb3/4GL37mtyjp3RxbuNf+LO3dwtCyyBXfa99rK6Xwuc99jmeeeYbHHnvsbX3n+PiYn/u5n+OXf/mXK2v/vfZubMMw8KlPfYpvfetb/MRP/ATvfe97L/jB99rSGrPSr/Ar/Ev+Jf8b/xuv8uo73a13XzNwdv8Zn/n7n+HZH3+Wn/i3P8Fjzz6GT+8eGbi33ROD00DcgVNPDQA45+m6jq7ra5VMc9YX7XpTnTpjtYLLVp1rLJXxaEkamOrE2YMEIsaqPJZklQEKvQYDcmLaRYb9WB17q9X1ToM2iMx03woEalVX5cD5W6q4Nfo7RyVq/6sDh1RmHnOX414WB5k3V5ws0m3qZS6/vos9aP6CXkO/o1TmSKtQqxVcZkneXGRHuvjUlt9flGQzZkkQSQ22zWOAOtW0qrODGHxL5szQnzofGqW2mZ9hCw5pp8S4OTnQnG0tKtaz5uYdS6mSKiAOnSvJAg4rmavO8kTvWTVGomLIxrINcBpgHXqe30feyJlkTI043b2Ql4OxU2mFxhZljK0MYJYQuvlecypst3uGMc4AO9OeE3odyXmuTgvBK6tMjlrpWAoxTrXKEax3c+WjoMkF7yy2UtY7qwkDsQ5rHDlnXCr0mzWpRIKxlZGiEKei4EDn6YMyATnbYXtlAqEUZQLqLCFYVisFMZVUwGWOTlfsd+fcvh24XGUNSk5MURhsrnJFCecDIXi8XTONE/tpwAXHuI1YAXfc0buOLvQM25GUwYujxEI2DkyhTAkXOsqUcTmx2nQUr7J+2VqsFzIqgRHshDWZLBkZM0N2dCFgrONodQTZk8gqb2Ac69WKcZgYjCaCkmiVciyaeDnujoglavA1OK0ys4bTkyPifkIk0TkPSQPi58MAZIYx0tGxWvUc9R4rwpAygmG32zOmxH43EFzAG8/R+oib4y36Vc/16zcYM/SrXuUhup73v+cZHn74MWwIpGJwvsPLnv3ZlvXlS7z66nfothPHuWfaD9hVzzTt+caz3+Dr3/oGt26eM44T53eu8/CDDyIv3SKZPcch8tQjD/LgIw9yYx+5dv06Tz64QYzDiYI66TKIY33pAYJd4UOmkCug1BK8ZRonTo6PWXcbrAP6npgSu90O4wMxC5vjTQV17TBF6IJKcu1jxIWOzeYSKSnwKU0R41R6ygdHKgURQ/AdUaBfbbBkhimq/ECn7CE5OySrnNS41/mkSRtFkRdRViQMZMl01mFDY4LRtSdKpFHiD3EkWLCikb7VSsFBVLAOIqScVDLFGuI4ISlTiiOVSEKwVrDBI2I5u/U6v/vbn+XBK8c8/OgDF3OVB2uwtZbN0YoPffgjXH/9jN3uJUpMCtQxWlfed2uyHSjDVKUblHlqs16xPd8TixBCIDXGNqvyAVMuTDmz6Ts2vSemqM8xBDprGPYK8vMhYMTiagKpsw4XVPpwihMSArgAJTFOE9kp+5EPPUJBSoKiLIgJlSbZjxmM4Do4CmuyFKZpouuU0a2YWh1dASXFKDNZ12nyFWOIccKWBAa6zs+2gAsdJVWAsUDnO4wYnE0ztb81DuP0eaotoJ+XXDCVMaEUBSAYgTIpE0AjKSlJ5TpMk0Sre25MSUV0rGc37uj3E6cnHZtVj2JMHc4oYxPB0yDQ3qNMU85VcKogXveJkl1N1mgg31QGM4vM91OxOppctiuS9Vg7ErrAerVic7RhP+zZbbcMw14TPXMSR+YK/kXSqKXr5cAGWFBRIsroN5bIJJFxSoTO03eOVVZWCGX5a+lI3TutBR+cSrECMbcEnSP1HfthrwHYyrZZyDhrkaxyRD502KxsJgp7smALsSj4qtR32xSVJWosS945MiqhZ5wyoTRwGWgSIxiD5LhIdolgLAqeNI5EnuVZrTPMmItSQXLGzCBkYz3UZ9MYE5Y0oUVsZSYwUoUS6z2JqNShMTNoRoHMptqjiVy8AgKyyhSpbRqxdsKNVR7Zqqxq36+V/bDrlAnFdyCWVAxTzhgPwQfGcZxtqZIPWTffje2QEaklZBbWVVclpGb7uNqJS5MLDFiNHa0e3C4xA81m+7ddr7HI1IR0k+WRkkmxsNvteeGFF7j22jXGaTqQg6lFFKUQwkgImWkM+nk79+wL6ORSIJJ+bmAGpMzfuBsMt4zQhbThRderJvzm4bjoSMz32cYBuFAOcOiD8BbfOWzzhZfxb8nki4fLwfXNwd9SfYALJzzATR6eyMznmdkX2m0sk+HgfmaHRv2/u+9i9ufqqY1gyrJObqzhkrd4pVbTfQtD7wq9NYRiuJUKO5G6zh9wJR4WrbQ1lQblmiFd87xT0Grzc4UpRmLKtS/zTdbno+tak1YLLlQZpwbClCpnKlx+oLA50e82wFpjRSnDwPkrryxjUn0bXV8FH7zaw/W7AhV4oP67c8rsqPKwtQCpgXW9IVhNfFpTizWs0PWeGCeG0bIy1ccrRUEdLQBdFEjrnMGajpxUst1aZeK0gAlOk+rWKUCnSi1JBXWBsiNhtTiDGUgtCmgyzBJIKWWcyWAqsjkVkqjPRfP1pMrI13c3eE9K6kcaDNkoA0+uhSmd69Q30WFVf9dA3+n9UGWoKLr+N9nWmAreqS0cvCalU9H5EmMkV/lra9XO6HzHkAacd+y2e3zRghi/6lkdnXDfpSscH5+olBjVPpFEGif8esX5+U3clOnWjhQTJjhKitx4/Qav37jBMEzknBjHLSebI26fDRQinS1cOj7i+OSIXSxst1subQJgsA1d7XSsjx9+DPeH38ZWydMKy1OJrTqXvQ/V/9WXZYoRMbaGWgz9aqW2aAWPOGpRj7V43yFOAUIl57pu1zWkyptZ45Rhtxb0lEnH3Tu1vazzFaCu4JEWD3L187moyyi421ELHqjMQ0UlcFPJFYhSKuhlYS4LfrnfZjcUkTkGUGrBXExZYw9GgSUxJ779rW9wenLMyabjkUcfor0qF/2JlsQpvO/97+fmzTv85v/1W8Q4zbEWRPvpgmUas8Yp6vrova/FCZkGBC51/bR1T0wVxN2HUIHVpR6rrG5TLpUxTMHhDRQTbAVDpFSZlozG7UpBiZFylZwyB7E1tQBLtVkAsPrMrLGkKVYmRVdjNXWtbICh6l/R7P+c53O7+uwwGmO0dd2VysLlHRSTZ7ufumZKZROdmTtrV+fiRZF5X2/fa2u/xpGWTaE9/9ffeJ3bZ2c89thjPPbYY1y+dEwfvB5TNP7TmMNxdX2ua2o7n7I+VQhas1vrPbX9stkoSGVarXuKrxKQOSes0zU7hEBMqcrAxQWs1OwmM1sxtKl12Jq03gU7pxiKKcSiBYzO2TpvVF5dJZPNfN42rgpS1d31PrnKL/ALfNR8lM+5z/Hb+bcZ0zhLO9cNTvfYIgq6dM1On0MCVfatSTDLYiNV26Xty7l2ZrHAFlvNWaP7Qn2XG/DczfFNmeXUqPvAoU00W5zCDHib2eYvjKdZfm6PkMVmMwfzfR5/hOFozzc//A0u3b7MldevcPLKKav9evY1oD7z6lfnYnE5k6p97eq7pWB2U+Vi276lvio0/+QtbMN77U9sIsJ2u+U//sf/yJe//GV2u91bHnd6eof1en8PpHSvvaPtyR+JXHnwreMG09kdXv3iF+4BlP4TbN3xMev7HninuwHApSef5uzlF9/pbnzftvPzcz796U/zj/7RP2K1+tP3E2MM73//+/n5n/95fv3Xf/0eUOld3ESE5557jhdeeIGPfvSjfOxjH+Pq1avvGoDhu6kZDE/zNP+Mf8Z/xX/Fv+Rf8j/xPzEwvNNde/c1Czcfucm//3/+ex79xqM8+eUnefIrT3LyxsnMan938edfVfue4FLq2FHp3W2ljm1UwlYDNlYBJUuFhnpcLaEwV5i1gKXV+tVSciWHUI+xmAYk0UrnmAolCcZ6QtdjjGEcJ3b7LWmKei3VtsFVtoaUa5VQq3CyBu+FGFtioLl9zTE1OAErorXS1SfLkjUJZdUxdA04xSKp1sZG77mNmLzp7yURsziuS1yh9UkZJVpgwGFq8NHMLAwNtKSXtDPQihowa8Eq/XWTSFKn9bAfIsqVoOe++L0liiA18KUflPm69Z6qg21rcN57Mwfx5hOZSsbfgi41yKBnKIBW9EoxVXrBYGqgpfnbTdYN65iKEEshiaFg2WMYSwKBTbBsRaugS+3T3RGW+fkBtLnW/HpjMFVyKKU4S0G1qtjDqu1SNKCckkoilVqxGLqAMcJU5ZysN8QUKYU5cNOuaY1KqAUXmMZISYLzQYNnNdFprAa/Sy4E5+fAaE4R553G4lOGTt/HlEsN+kPnA1mUvaZbBbrOsR/2TKXw0IOXODvbsjsb6L2wv3NGNo40RTabnjd256xDz/roRMcgDnR9jxhwTsjjnr7vVR7KmJkhZRgmyIbT4w27/Zb9NGgyoQA2sd/vyTkxlISZE8ii0koxU6aI6x0uGHrbQSns80S/8nTBEYeJOO0pVmrioDAOkZyF/RhrJayy+1jvmIaB0Hd468B6TWg5lRmIw0iKA9MY6bs1pUzEFJnGPWHVszrpOF0f4TEM53usL+zGxJg0YXR66YhVHwjOcevGTfKUuHr/fbx6/XWyc2QLvrP0oaMznhWOcjZgjxyu6xERVhvP9ZdexR5f5j1//Rlu3biOvXRMxlJSpDsKvO/HfpSz/Rnb6zc4Pb4CZeDo9IhXXr1J1xVSN3AWtzzgn+T0gSuU4Yw7z7/M5R9+GlPfxWJBjOXhRx7i9HjDnTs7UirkuK8Fgsp6tttvAejsSkEgUuhs0HWgM6SUcAY2mw3TUOXLnGU83+G8ykAVIPQr1puTWlk9UXIipURXxx7x7LZbuuAxqIxJThnvFNiVk2XY72og3THFxDp0uFWgmMIwjBpMGyLpSOX60jjo2l8lJX1wFIF139F5Txz3CCo9MMSCqXJrNdZNTBHrqyxIBbtYtMqRKtHYdT277cir117lc5/7Aj//83+H1aqjLpTzmq+rjAbiH3jwfn78xz/Gb+y2XLv2GkNS8J5IYTduKUVlHI3zTClSGAg5YI3KVuAsR+s1+3FUGbNxIuVUK3MtpQKMjPN457Vy1gViPW+cxsp2ZZXu32gi0HpDCB0uC9sqPWNdqJIiShG/6lcq/5eisu44R/aFmLQaN0ZlP8himFLGWj8ncFzd+3PSpCq51GRIoRiIuVSWBCFXecnDTTVJZuU6OuuxSYEd4xQpCJ2zyuIkMKQJpSZS1p4WOPbBq7xISqQ4zQBaDRqrHIgUmSURcjG67u/UbkjOkNKeaXNE6FasN73Kx5HxrmO17mtCQ0gx1oS0q/tdromaTEqZYi0xZXKJBO/xB5XPKSmzkxVNQnhvsb7TJJfL2Mrw1a9X7M7PGXZ7xnGs1fLLfq5Vu+WgIrgmdKVW/WsWjgaerpAsUipMJTJGy350dF2g88qONsttzZIWLQmk891ai7We0Dn6Vc80TYzjyH63pzEjNVvCoCDexgiiDFOVuaMogx1WmScVHFJlTER/9sHN9lasyRUL5KjJs+AdMWoCymJprI3OWWwBa0q1C/V+jNF7auCTw2Rl+3yWj6uvtqmJIKyClWj2lxzYeajddRjbl5pYyUmT0FQGNGUd0z4XZ4nVLpymiWmcCKHHh0Df9YTQY42r38vEKPR9QIwyPpasjArv5qSCqbZjSzIu7+ShRDSzrbVUzrfvLyCnma1GJyiNeQFZGGxaQq09S03IacLXOlfXJ10/33j9db797efY7XYKkm/v1YEMHMYQQubq1dtst/fPz33Oc1Uwi4EFNNieh7RUmCz3Nv/UvnuXY/gm/TKZ7fMLzuNBrktm55IFUGTaHr8UFsx+Qv3yIThqOffh2Le7u6sPZul9+2xJCx4mPC/yNolZvjOfrfkY1WWZR2i+h+pPtCRxPVE7bn5ObegOEn+tZZpMqMqJFqq/gSGyFE4EawgFppoofFN+UQd79p0McvAcDuCdpcx/Gvjogq8lyxqU5+OYGSmMkSqTVCprT559xBloa6gsk+pr3772KnEY5kR+A8gZ1OdQRokK7TIK0jOmsfCVKhWkjERZCqYoK0oRwVq1O1oxRpbC0dGKaZqIY8JZSOOoYt25EIJjHyeCc1pkVIQcE9YJGMEaoeRYQSV1fyr6PFLS9brvQpX20n2hrdXKCFJIUiqLoK2MMNUPzRnjLM4alSsV3YeddzirtolKzqmddyj1mFKuTKDKtmPq8a4CKeZ3oK5hDUij0lYBoczMQs7XPTIE9d+mSLaelBR8Lgj9KlRmUMuwHyi5sN5sON/tkAqEMk6B6M55PBbGhHRqOwrgOsvuzkAvKy49eJVhv4VVp5ZsLvjOcfWRBxnTRNzu6Ps1lERYdZyd7xXAYRNTmRB7mX7jkTQy3j5jfd/leY1TQm3Dyekl+hAYJ30OURT036Z3LgWJE8ZYHA7lJlOgt1TWlZjiDKJBUKaeSffPUhRMKga69Urfk5ZAT1HX8crwLaK+elv3c5UyssZgQiDHqO+90f05lAoKdpaYVW5csoLqgle2zFz3C6HGQeo88t5BY2+kAQfLLJNE3XNyzvM6NUceWhBIoAue23du8tJL32W1CpycnnBycnRX7OJw9VKmrQ9/5MPcvn2H3//CF5hioSreKUNSTHqtWiyWUpWVrO9MLgXfBUoqNd5V+wkHUtqFLGVmjWnsMrM9KVIZKmtsxyuDpjGG4BxxjBVEY6rNAsYoOFIZVesa6xzF6rqSSqrf0Z2isTW1mJGtNsIM7m/b6gHAxqLANZEyj5+gcR21IyuzqqUydFXWUQPO6/qX6+eYxm7eNkoFFUlbo1nieIexvLnoDcgFpnHkO9/5Di+//DJ//a/9CA8+cD9d1+OcSkNn0WIh65zG+USLImc5TsxsAxdMtWHUTi55KQyc42qNbbT2zeoCBsZWNjeD9Q4fPHFSOfG2jpYDG6S1GYhz8LHGyy7avlLjpwajtmgxpKwM5a6yxLZY4gI8Zt7zm913v7mPX7C/wI+6H+Vr4Wv8Xvo9bsVbFNNYTpnfIfU/ZGYJ1PE/KAI9iNnendBpMWdj9B5VGrDa7tU+RcqFmPC8uxuLMbkCd4XGDt9e1wsFqwe2Vh22Odxq6ljOX2+v/QHb5AJ4OrBADBQj3LrvFmcPnmHeZ9jcPsIUQ9h2XHr9Esd3junGDlMsJhuyy1ib9FlUoJIxjmbd5MYEa8xS7FHe7UUP776Wc+bb3/42n/rUp7h27dqfeOx6veepp57ni1+88lfUu3vtXnv7TUR4/Q+/xnR+9k535V77S2imMuu+080Ygwvhne7G93375je/yRe/+EU+/vGPv8neeatmreUjH/kIZ2dn/OZv/uZfQQ/vtT9Pyznz2c9+lq985Sv84i/+Iu9973uVMfNee1MzGN7Le/ln/DP+Af+AX+VX7zEr/TGt+MKLH3iRF3/4RT73f/8cD7zwALZYTm6c8PgfPs6D33mQo1tHuPxXN9feNkipybBoQtTPIItZd1wUotKqgWbeILNIvMEiEaMVkQBLFcphtbqBGsDQQECc9I91jpQzMU4zLbKyI5maRFCd+RjLEjiwvsaHBOsyaIySWrKv9yeZHkNv3VylVIxqcQ8FUmMeqo643lO7t0NmHg1MaJP52MWnrmH0gyCGaYnK5nw2YIqAplupgZnKCSRCaYFlPekFZqcFRCNz8NkqX8GFfsxV6DWL0vrdwhxywXNu1xEcHETpm7POhfu3dgkCtWvZGsSxxlYmCXWOjYWYJ3b7HcNuQvIc6TkYRWHC8OIQydYgKTJKoYgGPJM1DKYw5kK2HV1QQIPq1i/O9Zy4qP/fEgreKxOExigLcYwXkpbKbCR3nWPJfmhAXANizjvW616VxYoG551ZaZJahOAcwbuaT7dV1q0jTgmy0Hc9WIsLSsltqFXRKSNWASC26zTxWtku2lgNw4CxjhgTYlRCzmBIOdH5wDSMjNuiLBHi2fQe2Rj2u8i16zfonGdzfMKUE4IG550kspzjOqUKN8ZQYsFaTyGBJE6vnOJt4PbNyPn5wJSyMhvZCCtTqecF1/f0647OBbYTDDHT2Z5xN+F6R5RMHCdMLjiEcSq4zhNjxnmPd+CCZZwSxluC00T1OE2kOGKd0sx3XY8zWqU8xghGwScqOaWBmf0wELqgwLcSiVNmd36Lcdqz3vRcunzKOAolDoSVaALz7DZZHF1YEZzn6GitwI+rHWMceOnl17j54qvshsilq5cUIOE00ROC5VLfcbwOQAIHxmmQCWNZh2NIhfXpivWlx5B+hRfBiSPbwubY85EP/k3uvPIaN2/c4oH77uPW+RZbzrDRct8DVyniGaeR23de4/GHH+TsVqSkggkaIC84rAgPXD7m9LjjjVsW63tMSeQ0AlXuwwdSSqRhV4PcKqk1jROuGLz17PZ7+q5XWZxS8N7ie4e1Qox7Yhw1IMmKlLVyOudE13cVNFnpxyvtfRaIMZFjwplJ2WrqnhNr9W/wQdf8klVmzGi1n7WeqQidZKwIQiaLVqFjoA+OPnRIyZWBJs/BVCvKRiRAygXfqeyHcfV9z1mp02uCahwGlYiwlpQT3/jmt3jyqSf40b/xAa28nLOhS6pZkwWGp9/7JMP44/z6r/060+2k8iRWKDnhK+BBSkFyYcqJnDJ932MQypTYJ61G7q1ndBlPqWCRorIs1kGVYkgxEUskp0jjvhuGEe89eJW26HzgZHNMwDDJxN4wr8uh08BlEV3TTEKTT0XBIAaDtQGXlXXJGYsLHUkKqSTW6w7vLWmaalW4rpMGP1dya/LPIqrah8NUuRlmyTIzx32XIG1jZURUtgK0ar8IOIFUA6quSmCKXfZFV2VukILB1crvgvNFn2vdI+OoyZKuD0hxwIAZImOKrFfKqLYGOreaE+bOKvhNsm6grjLI4b3ur1ZZJ/b7PTlOi0NuaqW6CEhR1oiWxCoFg9B5S7FVytN74nrDbrdlt9+pbFBufD6LNAAcJBcaKKCCohBqhW7R5FlO5KIJ5SlmZVZynr7TpKlW01ebBU0KOK/JOjszVKr8njEdzlq89QQ3ME4DIkLwQZMiKSHitUKZKoVmDc76ugZpUk+TLku/pShIHKhyHbWqvI5bSQnrPF3nMK0iSKTek8qhWWs0sWsPJ1cbMLVVFzCLvouH2QW1M81s1xhnMKIyeIsMH/Px88NodpZo1b/3RuUmRYGSakPYefkw1pCzJr3jNGGtYwgdIXTKLCGVoTGpJFRLLhRpLA7v7qSCJpaWP9ASVTVpxGKnHebLFpD/gTwHzQSqqUTR8V4CNJXppVqTpWgFvKkJu2maODs746WXXuLGG29oEnuW/BNyWbow2/cWLl8648UX79c9vJ0eteWVbe0QqKMJxVz3nUOE0AJGuvBTuyBzdpt6z4e/Yj5NHarmex18eDCMavO7NioX1tb5km30D7olF34rmEOGUnPxn3Jwe/P7O/98eA24wNTWZN7a9Q6TlyhYv93job+zMMvqe11KZYhI5cJzaZcRUcbOOylTjL7TWarHJIVsFbiUilAa611lTJD2Es/PpHZUlnuwbV8rzOtISgfAqQZ8a77wwbi0NaOd2lpTGUg08dxkU5sMjakJ2jZW1ihj4rTbs3/jhoJ+jFGwUU3AqipVmZOcrrHN2CYB04CzqTLV6BrovM6bUnTtzzkrO49Rpzp4B0H97+12hzOW0PVkKfM+YzAUmSpoaJFHMrPnWejXK6yxjPvMNEVSKQTvyaaAN5VtVzBOGVGdsWQgFcFbS4wZU2W0S1J2FYOCYY2zi+Sd0fFNRlk5XQVv5Jwq648WQDjxM/a8VCBHrlJzOi8tKWWsawDJQs6FaRrIORKCY7XuyQmkKFNUyon9OFKY8FZlxb0PyqqyVqn6s7Mt+zvnxFRYrfsZ0GkqEG3VOTpfgxlLgACDIbgOKULoHcf9qVI9VjCtGAid5dGHH2Q827LfDxytNwzThBUtMFlv1ghq447DOacnR4xDrnGatujqrD29fMpq3bMb9mrjiEqbVf5pXSsaiBZZmGKgMoWp3dFAJ6UUJkOVla4MYqlQclJGmLqWp5Tmd7/5FLbGkBR4omATBBJJZZ1tA440uXq1ua2rcq11vxaUWcSWOncoOkdtlVUEvLXKCFVBik3iLR/GtIzaplIUQCeVWasZt0JhmpQF8dvPfRPnHaeXTnnmmadUdvdwXThYZQXo+46f+sRPcO3aqzz/wnchNSZyBRvOAJ2ZWVJBgMYaKKIst8YqcM8YlU+c9yVlGCwV5NUAS0Uau5Kt540Y4ygUTCnKIm01JpFglqq0dgGDYyzOZHJ9jxsQ1RmLobEzycyGpO+rroPSgJrOzCxPpdEG1b1y2R/bOtt+thf2gRmQO+8ptj6busO5w4LEMu9FDVzVtkjTDJC2RtSiLWMWlnURBWXmnPnyl7/M4489xpNPPs1qs6bvfL1fBXhpweVi/zTbZYaYWgO4Gv2EWAoyg1ZbTM4sMbQDsIwUqfHCFpfTP8F7YkzEOFWwku5zUkNxc4xvPtEhyPlg3543M6lK07rvmGywVll6fJXCboCk+T/b7k0wzmDF8aS8h8fL43zEf4TPmc/xBfsFbqVbyxpe48tSfRN9n3UssC3uKfV6Zr6P2S4Q3a8bQ3r1OhVw1IBrVXJ8HkuRWbZz9gPeNP+WQWvgwAagXjb8xaedf67reLPVFmPqoM1rlJ5LCuCghMzZfXfUh7gqvP7EdfzkOb51zMPPPcTxzVMkWYrJZGPn+KN1ru7L+m7l3Nbni//da396G4aBa9eu8fnPf55vfOMbTNP0p37HGHjiie/yxS9+kLtt8XvtXnsnm4gw3rnNzW9/453uyr32A9BWly9jQ0eJf/q6ea/98e03fuM3WK1WfPCDH3zbQKWPf/zjPPfcc7z44j0mq++Htt1u+Tf/5t/woQ99iE984hMcHx+/rWf9g9gcjp/kJ/kJfmJmVvrf+d+5xp8MIP+BbBbiOvLyD788f/T1n/w6q/MVDz33EB/81Ad55FuPYMphKepfTnvbIKX1el2pYRcWGM0xtlRCC2pXYEoLPZslOdik3NR5rkCYSoutgaU3U/tLDeDGmMhZqznHSQOm+h2NEhRaRbpWUFvr5oDeoYNujcV7T8qCmJp5KJkOYeMdPcqk1DTEs7EUU0gimlBtgWlzeG/LPer9Vfm6FqCyWtXZAmgtATZX7GPAHmQVYQZ72Ra4nR15vYZ7y4lRnXuaD6t9bVVLeo7GEtASPTVIYHWcG/gKDOL0AHNwr946vK2UyqbJ6tXfW6cJbWdnn9ra5Z5nxqp5EbWa7HOCEFitA9uwZ7cdiNNUg0tGk3EIEcNrCXb7jLdWnWwsplCTP0bZU0oio5W5zjSZhiXx0aQ7NAjlEUm0asdxjBpElAV4tgQsLqZqWiuVyr+UZf62pAIFvPPKDFFGsmiQHAPGKTDKGsO425NiYtOv0UcgSIpYKaxWa0osxJLZ9Gu9B+c1SGPsHDDbbNaklJhSJnQd3hucFSRlgtPADSiVurcdrhcFsFjL6dVTzm9uyRUAIM6wmwY2fc92GFmJYd13KsHgLCYVXBfwwbE72zKcD+ynO2QRuuAIWWnxO1Y88vBDbLc7UhKwjlIyd/Z7CobLp8fEFDG2cLI5YkoR6Xp2Z1tiLvg+EFYdmD0mQxxHBZoUq5Wukuh7TymRkhVUsTraYE2gD444DVpFjdEAYRKsSYS+x1kFcpSUGPc7zs/3gMN7R8qw3Z9TkiYLpnQbnMOvT1i5wLrrIe9IJTIlRyqJVEEfZ3lgGEdO48hRcNjQEVYb7rt0it/vCVbBHPgOrMNRiLEgEjg7u016w3By6QplmrDeQKeSVq9fe4PXn3+Vhx64n/c98Rhpf5OTRx9ic/UBXnnpdT771T/iRz/w13jg0inWC6+++jp+c0raJnLJhBOH7QSMI6zWXLpyGfPiq1AUFBH6I1JOMI04oyGplCLWdzi/ApNw3pJjJtTkzH7Y4+p6VwoEo++jSbDu1qQc2e52KBjRzO+GiFRmkI40jQzDxJQL4zix7jsscOfWbWKKHB1vVMqjJtm2EvFSGVhSYYjC0cklQvCUYcQ6y6pbq4RGrvJaIkw5M02pght0LQzBY4yvjCy6NuWUcNayCoHz8zO89wTjSKlQjO49xii/XcyZO7fv8JnP/y6X77/KY48+VBPTLTJeA9512bMO3vf+p7l+/cf48h88y40bN5jiFmMSvtM5GejIYyS2am9riDGTKVg0mZhSqvufSlzkmMAGQugBZaPKUrBOq3iXimcNbofgMSL0xjOe7xlKZqrAEIEq29bpnuBqUkcU9NGqqlNKNUiacUaBM7kUctJA9DhOTNHQdV3dy5UVcZxUCsI6h6nsSl3Xk6IilZRFyDNNI7noPjCmhJEKSrH1XBrWrzoImgzxRhNavlhl5ymNCcEeBMA14ZFTqexZbk7aNiCaxeKMgqRTZaeJsWC9Y5wGplXHlUuX8L7HSJVpmWK1jxxiYJqU4ahU4Ij3XrETWPzRmpY9MdbWBHmVFal7Ua7zljpfEYN3mlByGEKV2T06Pma33bHdbpVZqSZRzbLB19FX22YGOYjMMj9z3L7ouBbRCvNoMjFlgrcVMKgMmhbR9aAsdpZW5Rp8fQ5TtVicc/SpY5omUklYFNgkIVBQRi1bPGKXhInNB4mtUlTKo0qhmir7kWsVu6sJe2s8DZhiLNiyJD8iahu2injvnQL5SiHnWnFe/2tJBB0XTdRYzGJHCRVYZGf7SG0gtWlyTRxYFIjf7LGFWbItC4tkRKlJQyrIXqRAqcwcOSFZk7xTnHDOE3yn66kpmGwYjM6jVCU7FBQR32SrvFtaCOFCwn0xUdsYmzlpM7NaHSTWDu2wQ0t4tqvtxYxaA7Soz6HsGlKZq+7cusN3vvMct27emhMxM2tSA0wesM0cXI3LV27T9ZlhaNLG+r46A8GAN+g73B4v7V18i/433+iCjXngBFbj37DY5bNRa5Y5LPNJzV3nmVNiy2fNb2l+zYVvLD7MkiBt47Gc6UL/BJqUtEAtOllYYQ+/a2AGirShbb5Te5dm38Jowu5Nz/9wPZv7oalb7x1xisSp+oXUJbf6gxnYFoipnsOYmdpYqvxWqSBR7f9cenNwrXbPzbewdaXV913nWRuzOWe8+H0HY92aIBUkt3w2swu2f5s21y+Oq6kJ2hvPf4fh1i1sUelTEEQUrBOCn6VRvfe1/8pAdviMvfeV1UlmP85akKz7p2ZGK4uFUVlQqlzaatUxDrFKFFmyhZgV9BpTVrkz7zSJXJ+n9Q4jljhG0hSJuRWIWJwtVYLLcnp8SpxivZSu12NMiIFV11FEZWj70CmzjdN5kItew3sLWdRvrGxJIq2URZkyRRSgAAqsbUCOnBMN5FuKIJIAizPMYC4pymQ3Tfo7TYAbpiEiRRPBuQxgDDZ0eOMIzoNEZeypxxQRnHGMkqpcWKZzakQ637FZb+Z9yVQmIKm2Z8mCiCXGkbKHvl8jkwLOjFNA7f58x+72lqOjNVdPTylpoDs5ImyOOL+z5aXrN3jw/gc46nuMgfPzvSYPJpXMs73F1IqlbrNhfbTB3LwFonPLeQVgq3xAs2HqvmYcs4NsFGTS2JSsXeS2kLq+VBvI+Y4Yo877+k40QGCzQUy9Zi6FlBXg7SrD1TgMlT1rAcDHEnXMqi0ac8E6TwgBJFeglMPg6rg25hqY8lTBTsv7Z52ttspybyZlBdmliJSyyKzRgBwF5zwpRr75zW9w+coVNsdHPPrIQ+pvL4sDF5ZqI5ycHPPJv/0Jtv/H/8mNG7dIcVysY2dxxmkBSE66Nnpf7c1l9W42j7MLE2GRCmLwS8xq9mfaKljl3lx9p5yxSCpEyRXQVGaQCrh5HWugJ2BmnWqsRDSw2UHcsAHRY0wza2cDXKpdxyzplkuNYdT3uYjgnR5firJ0NZCbQWUCK0+OflI30LaPtdGewSul2ncVdFXDaTQMdLVc65qrp6gW4nx/05R47jvP88q16zz66CM88fhjnJ4cq11nVBpZ2T4bcImZGQ4USDev91LoggIQdb+uz5CLNm1jxaGymTd/A6Pw0Fwlm0MXSDESYyTGNBfqHWxQ8z41zx8O7Zj5TvWzFu9E2a3KAePRzGiFVdtd0Hl38D5hFFT7gLmf/xu/wN8yH+P33Bf4o/wsL5WX9NkZM68bOveXd2a2QOpc1Eegc22RTm19PLBnDmzP2Tarz72IMly12Jsx1AKhOrcOB0TU5zwcwHZ/y0cX7RmdM/X3lgWE10a1rY/LJ7S9uL1Xrcg0dZGbD97g1n23uPz6Ja6+cpXTG6f45DHJk03GZltZAXUCp6gyi43tlupT3Gt/fBMRXn75ZT796U/zrW996+I78zbaU099h/V6z36/+Uvq4b12r31vLU8TL//eZzl76UXScE8m5177y2/d8Qku+HsgpT9nm6aJ//Af/gNPPPEE991339v6ztHRET/7sz/Lv/23/5bz8/O/5B7ea38RbZomPve5z/Hss8/y4Q9/mA996EOcnJxctC/vtbkZlFnpf+B/4L/mv+aX+CV+jV/j9/l9EvekDv/YZmA4GXj+bzzPix94kce//jjv+7338dizj9ENHWH6y2HAe9sgJV+ZABpQSb0wAWNnx29OArSfZie6Bj1KUT6fFuCUJRjXWpEEmJqAMTNwRKVQ1Fl33lCyXq8FX2OKlCxYq8wbLTGnzj1zgEUl3wI25lrtJjM4x5paOTKzJmmowTWPvgYwWoC5OSHWmgtB5Dn+LEuAfa4QN0vCRJ1gu1TRVMd0DtTXAOQSPD4Iblv7pnHWCskleNGC2c5ZTZaQabJ7Bk0S60k0ODEHOFrkpVWcGlOBO3puZ0oNPLSbrUH96sTnnLkgjYGZATxNbqZIY9DSRPBSASr0nUPEkqaWKNKAYDaGHcp20qHJeyOi8nxFyDX1o3GYOq9q0GMJOFwEreVMBe/oUGiQ+WIiBkSlmGp1G/UalfegBoBkPkdOpVKFGyS3wEupIAiHcQ4xyhJjnaNEZQ/qfI+xjmGMrFcrvLcq91IrlUupVMylkFFZgjRpZWSuAcj1Zo1s93PAPHjP6mhNLrAbRvq+I+dELhEpEeM8DkdvhHKy5s6tM67feIP1ZsPR6UYp91NBjMW5ji507HY7gnHKhqJvLSZY4l7ou5WCddYbSpy4dLQhT5EYJ0LomMY92Rn6dQ9JKCkRjMGEwDCMWO9wxrDqAgbBBEtJiWlSFirjA34ViNs9MSdW/apWiGsiBaMsUpsuMGzPKZJJpeCCJxej0ncpc77d4boaRJ8Sw5hJUjR5GjzjlHnjjTP2+z333X+Zxy4/QCqFqWRMLvg8MNmMFIcvhhKjsjHcOaeQGKc9RU4I/THb7Z4ihlsWjqbEjdfeYHv9FmtWZBfxnUHKwOZyR9kX9jf2fO33n6PbbHj0mUd49D1XQRylCC+8eA2ycOnK02weeRLx8PDV+zi6/37C8Yb7Hn2CUuD16+f0pyv2KXHjK9/kwdPL9Jc6Th49gX6N6VZceuBBxHwNjII0yJGjvucsZ4Ypz0lWV4OmoQus1h1n+ZwxjvgQ8OJYdf2cmBj2E8ECxVASBL+i+AnnrL4TdR4779kcHbPue4a9ZxjTHMid2YiswXhbq74D1hriNBG8I4SgkknOkPLEtN9hSw+mMBVNhIioAWedpxhIdR5POWONsKpSHylrkFPXRV2fckrcHvbEccQ5x9HREcaYyhIToFhyibgqUXXnxm1+73Nf4MrP/W0uXTpui/ncZsktMn0f+MhHP8TZ+Rl3bt/Guw0lj+QImYzYqGuL0e/FYaSBPY43R8qQlPXd6zcbpjThxZAT5DzRhZqEMQFjOsAtwVRrCH3H5ZMjbt++TYyJJIUpKQjK2wVgO47KrNWvVF7DOEeOURdNBOv9bAukaVK5Sw1941xHzronb7cjXejI2VKy4IJHirBe9eTsSHHUJFwdr2maamJGCF2nwWCrEhym6B5hraOgLEqmym1lEUyT63KWznvSFOm7jilOqPLakoguNVlhvcPkZh/YRsJCFzziPZmWDFbGmpKt2gZ2Ty6G1apXpqHgadJhOWdNXlmVVCjovlhKwYiCZKQmsVPOCzOiMbUKvSXaBGc9beux9XdNHsk5fReCD2w2G87OztlutzWRN2cTluB827c0e4Cgic0GIm6B+Ja4EmCaCilpkjYERxeUUcNaC1mTvA1sA2oPBV9ZtiyU4Egl4DvPuN8zVQCyMia0ymLISfdw55q1o3ZjrixqLZHQQMktAZakKIuU6JrR+foAqXPG2gpOswvbECh6ryVTpIIKypIBnBMk1tTTySwT4yqbAtTXvJJZtAr3BhTDtCTgAehZ9a0QKRWEVDBWlFWvLCxXUmROnUlNvEvOlJQoMVaKbu3HUM+lFpUeL7x7kwoLQGkBtB94DgfIC+Z1dAbGzHb73XbaMmcrGgVZHmb1BZptpsmXl158iRdf+i7jMDL7ExzI/tFs+6U/y3slbDZ7Hnn4Db7z/ENa9CDzYUt/mz/B3JUlEToffTAEZvmuuWsfmY9u/kTLimLmay6W6OHYmIPTLONr7vq5dWDxUZb+zGClmjSc14t6jK1rn6H5ffVm22O1h4xBC8DG1LE8HKUFLCaLfS3L2MvF/7vws4KZloSu81VSvBaw6LsIYgwRyCJ4vTNaoYwYBZLNTAUcXPvu3NM8HZSdabnyAnLT31+cpwcjvMzZNl7LKSormo6OzEtW/cyYmRGuvUt3vvsC59deVVa6yjzsZ7ahXAFb1ddtfh1oMvSANSV0EIKHqD558w9DBS/HlGZWQhH1+Uxl1cNA1wnjMLHd7/Ah0PVB/ZKasG6MpjFGrKl7OboxGGdU9tp6ihRcCEjJ9F2HZJXfclb9nmLABQUrN6kt71xl2dF0dWhMbdVeU9YeBex4b8lVpsx3yhDZ3n0qADY4S4xT9XsLpvrL1uo+Pk0RU+nWJRdyqkAdZ9RPy4XdfiSlxHrds1kdUZrNIqJMprZoPEUUaKaxjxGhkHNEpMO6rjL3RIZxZIqJYbtj2g4EPMUWdFtKhJVDzoS0T1x/5RVcCJxcOeHk0gqDSvjdunMORegfuEw4vgQWjjeFsF5ju471ySkisN+NuN4Ti7B/7SZH/QrfW7qTHrzHho7j+x9AXnppiWGUjPcBXJW4pcw2rdQ4inMeI8r0aytrqrXKBCYoKCWlrGNS7Tpn3bzmNHklEfURQggYabJlNV5jl/VsXletpcFYKIL3YZ6/rtR9Ik0KbmprB8xgR5WA0u8XlInJG6ljz/JuNtABwhQnckrzZ40VXLvkZrayOE18+xvf5MrlSxyt11y9enlZKMyFv2jAzaeffoq/87Of5P/z//4/lJXVKVOq4ngU7NKK3Q4lbX1lRG12kfe+yjxWUEm1kVyVCZvZgVQHbR7LrusoKRGj+nGpSoa1fRdpcpe52oo1FlPHSsoB0KSOxQzyQu1XgwLTSyqYGudSgJeycdtq5zU2tAoFmW1IU/co3Ly7MAN70HVUWpzPUJneyww0clZBm237zpWJ7gBCpr6ta+zoZQactL0l+IU9FGC/3/Gtb32TV195haeefJKnn36Grg8zs5V1DZDa9oG6FzcwSl2/rWH+bDn/EntsJ5GZ/efAjjCGQpmJRR22FnMGvNe4hkoFXtz4ZjuVBhSuA3WwA7bdnIO/S1YgpjGVHcuBtQfMjKUssqTVYDBGCzQs8IC9n1+Qv8cn3Sf4avoqv5V+i5fLywf2QY37lcXuVoDx8vvmdzTf43B/pwK/GjjHtqJLsxw/21pG91BzYBfO72a14Q/t0zbm7aLS7KDG9Hu3rdfWqzbY87llOXSOR7fj1P9pBTLzd2zh5oO3uPXgbVx0rLdrVucr2rrY4sUWw9XrV3HFc+vhWyRfZTXf5cys72RLKfHZz36Wz3zmM3/m5O7Vqzf40R/9Cp///Md400S41+61v+ImIrz8e5/ljWe//k535V77AWrGedb3PUDcPf9Od+X7vp2dnfGpT32Kf/gP/6Hmxd9Ge+qpp/jFX/xF/vW//te1wORe+35ot2/f5jd+4zf4whe+wMc+9jE+/vGPv+1n/oPYLJZneIb/nv+e/47/jl/lV/nn/HN+n9+fi1butbdoBnLIPP83n+eFH32Bftdz+dXLXL52+U2H2mJ56g+eIoyB5z74HNPqeweevu0ZrOCkJtHV3PSyBBwwNUi9JA8WuQmZY+C5FK3CL9RgoP5eg9DqSBeNzJKzUr1rpVSTC6vJKQwlZ0rOZNEAhHNe+4ed6cTb9VtwXUSTvV3XMQ57BSoVpaUeUsKbhSUI1EmuLuAcnG4OrTI+OPq+m4Nr+qUCB861UuHDAlpq/bGAjpk1UuVtTI2RHCTADgMN1OBJDS4IC1OSSAMKsQRHDiiqkSoZ0AIepYYTJGJMnplEqAHBQpmd4QVw1Magjkc9tgXz56RBi//VIH1LMizSeMuzb+ebAUuqkbAkL6TMwZUElX3LIJWiWMFuGZFEwVLQ4KUG9BUYMAdQzHzJ2pZKdetMC93DgZSF1IxqC1637+lf+g0FBAUtFC2ZszvnOOuIU6IUZXMpFchlvddnXQMveYr0odfEe1GWliKatPW+VxCF1bEdxrGyTcCqC1hRABQ10ZxSVHp8FBRlXCBmYbvbaWIgGQqZYYx04jFGGPYjIpbdds/2bMfm6Ijj9Zr7r1whlszpqmcYVOLIG+HmbkfoenzxTMPEarXC2Q5kh/WO0Fn6LnDjjYnrd841oREnjo6F40vHMGZ9ZnGP7z1GMi4YXr99jhQ4Wq+wIoRgVcLNGq6sN+yyIVLYDxNpyjhx9KsjpmHQMRKDyjcVbuctnddAm5OsQKtciEYBXykXxv0AotWfRYTT02NS1srF3TDgfeCBB9ZcvnzC5dMTbt8+I0lhO+7Zl4wphZI9eVXoVp6zWzt81/HkQ/crq0kR4vmOsztncGPiZLPi0c0xL7z4HA89+R6eOD6mw3Dnxk3C5RO6y2ukCGfnZxytHZcunWCjIBPYYLn/sfv4+N/9BGcvX6eEgvhKmd5Z+pPMD//oM/hwRBkix1dOyNvbPPTIe7jht7x67QWefOivadJszBiBR6/eTy8W23WMcWSYJoZxC0YZa9zKYUxPivpODmPBWWWqsUErU4P1lKQU9qIRTlxwTPtJ5dn6I466tcpblcQw7LHO4YJhu9uz3WqSZIoa4Ha2gvesgSisV2t88CAa4A59IMWkyUDfaYLfeTrnsFklIAVDcOEAiCGIaOA6FhBjsV5lYcSACwpmEaP7UwiBgiasuj4QY2TKGYwG461xGugV9P0VyGPk5ede4Ctf+gof+/iH6fruYI0pNBmptp4fnxzxNz74N7h27RbXrr1CzpO+u1bZAq23hMr0JQLOOPpVj61n6p1nyomYMrYmnFoQO+fCynvGVBDxeNsRy4ixsFp1OAtTjohrCRhhvV4To64d3ikAMWVNTu52uzmYH7qgDDRJ6fSzaJVyt/IKqJwmjHNY0b0x5ohxhpgnTUp5OzM45JRY9x3RwvluwFXJzRYkbkx9SZTtxgqaDMmFqSZ7xDOv6d54pFBBXAnntILbOUdY9RWw5lQqR1QCLosyqjinci5ZasWolJnF0BplVSgiuluLKHC6bNmPE95bTk+OOD45JtcEj3M6x6x1WAdYQ4qZ4Bw5Ja2oFygzEMYrsKwlsESlNYdpUiYrpxIJgkGSKFuXUTCUtaon3/crum7FarXm/Pyc/X5Xn5Pu9UsgvUGF695KrYwXwVBme05tDX13RIScEilZcsr4Thkpg3cY4+fjTcsRCDgLJuiMVRI9UyUcPfthREStnzglHZOYKCWTrYLinVe7SZkiPMYoGMlUWZZcwcspKcDNWId17ZmWC+BxBTBVWUF7kKRpkhXNCinNZjlItBgzM1wJzaZrtgMXkhotkd/YxsQIkmQ2PZq9YerYOu/1ehaMKBjKSJOVqvXg1Y5DcrWSMkjGiqWIxRaLlDyzgImp53sXx7lnueQ6/6n22cXqn8WufbPhJvPv2ty9kLo9yIvNQBNpQEFNUj3/wvO8+OJ3a3LYzMnSJturleV2OdFdA9oAfY899iovv/Ig40hlWdAVP5WyKIC96a7qWQ+6bVCQm3O+JsYu+i/zDDoE/tDmYvu9jtOSnKxnNszgzMOEtxFzYVTn818Y5XadBVh08ZdSfYplfTF3fVfac2ifVttfLpxn/rg+M+ZrXhgvlt8zp38P20ESuv2Zk3qHvqmpvkI9r13GSD8rzXM8dG0OfJU//gUzUKVMpUqZ1Wdgmi/FLDGj570wK9QnbIBUEcZh1KRjla7SJKvaL3ORkIESJ4abNyrzS/VXauFJQbQooklNiZCyAnlM3T9Nkzeqv29rbPPrVR5RFATb5gTKVmirVGWqoKYYE9MUCSHQec9mvaZIoXdeJb68pveHytpgbd1bnMcYB5IwzuBQMNOwz+yGSUc/Z0IH/aqrVJEgOatdJwoW2Q0RRMHGyqZjyCVhjWHlA1FU0i+mrMUkWJzTIgbFdOv7VIowVEB6k/lqLGuNxaNIQaIyS1oUPNH33Txm0zSprPcmsF51rPqecRwpRYgpEaUV/li8F6y3TMOE9Z5Lx73K24uwnyLTOILsKBRSnLh15xZHly9x2nU4Yxh2e9yqw61UGnmcRjpv6FcdtohSiDnD0emGx595D9PZFtFqLJ1GxuH7wP0PXsHYACkT1j0yjRyfnLI3kfPtLS4fP6DrQdIX4/6HHuFb/AHGKaNfzgpeV1COzn3Xd7XArIJWKmiQOscMpkqDV2AcHADLMsYqGClVn6NU4Hfoupl9EoSUy1ws5ayv8RDBhSptVME6rsaviogyQSv1Fw5lnSxZ7SdT94NilqK6ZlfpK+bqPdR4jDWY0myUWlBmDKFTMFRjYlFgTYtjqESoAK9fv853v/MCm1WvoLbN+sL6sFgT+rO1lmfe+wx/42/+Tb7whd8np6nGEhpTk4LlRR0FjKBA87qXOAylAqatXXhwNNZW758qe2pdZWkpKv9o1CcUg8pVC/o+o8c0G6wBvJR5WoOVtvbrsMgLwHqvYL+clI3NtfhfGwFdf1uBQouxGVFgpcTKnFZtIqp91va2xgrjjMV4ZWMqjfay7qdNTroxZ4nNdTtRu01yqu+LnecDhoV5rjEMQ41fNaDnQT9qv3a7PX/47DfYjxNPPfUk69WK1arHOfVbnVlALPag0KLNgFKLBUQ3dUDZ5Js/ATLPX7WV7cJyKFLjurX+BHBO46Te+8pqO9VYbIXhyrKXHQJ0GpW4bs3LrtzmU/tMBCi6N0oRfb5Vus0djN38UtWxtVZBNAXLUTniI+Yj/DX7Ab6Svspv59/hZV5hStPMaKfs/To/7Fz8UOVO67PB1HO2OFppdj6z/TezftWxb2sCYsAufv3Bq1l/lLcYh+X5XzBbD55n22NaUzZ6M499G49mOxhMZRRuLHT6LOb3RQ66ZiB1ibPujLPLd1qHZlvcGMNrT1zX79qDm3mTpXivgQKUPv3pT/M7v/M7fy62KWPgox/9Xb70pQ8yTf1fYA/vtXvte2/jnTvc/Pa33ulu3Gs/YM06x+njT3Dnu8+/0135T6L94R/+IV/60pf48Ic/fFd87a2bFj08zcc+9jE+85nPXLBD7rV3f7t9+zaf+tSn2O12fOITn2C9Xv/pX/oBb6ec8k/4J/x9/j6/yq/yL/gXfIEvkMnvdNfe1U2sMBwPvPq+V3n1fa++xQHwtU987WJ4+ntsb59JqSYP7aE2CJa5CmmO4qozpcVu+pka7pqsUl9nSTAoQEC/o9XxlYUgp1rNlucKKSo7T05aIdZkHawNFxJHCyNQoWjkXyucapTYO8F0Qska9BVj0DxSlUQpZk4GqXa7yqu0hJ52PmNdoPMdzigzRJFMqyCe6Z5NdYUNIPaCs6fVPbVCrwZ9ljzLItlijTn0fQ+CzMwAJKnjuUBs9PMLlTRzwKIFymu1zUES5GJyoVazXchMLM+vOfS5JXkqC9HCnnXwh1yPqTOngnQU5FOBSYBIXuiKReZgfBsv7RUkwIgm6zRYrPcgLNTU7f7aGOtnTU7iINNSK+ALprJ8adpWg6f2IJGyMIMt4UGVZ3HisbVSuZTEMGw5uw3GGWXgiQoa8h58DTZ5ZzE547BglH3BW0GKISUwIdA5S+hdDaB0BOcpOWvALheOjtbkrJIMJRdySmyO1phgcT4w7EZiKkxxYrsb2Ww2rNee4AJ5KsiQMFLY7gdu3Twnx8K66xFnMLmwCl6HpxjObt9h3TmcCF2n8l1xmym7gSyG9arn6uUNN15/g1vnO5zV6u3zYUfnA7ZAmRJxiAzDoBTl00jOiZQUcNHRg0Ru7/Z4a+iDZdWv2e9HdmOmW6+Y9hOaXHbcunGHrnMcHW0opRCj4G3HflQJMYMwxVzDOBoUy0mTlWmKOGsZcsQYITqVlQxdx52bN+lsYH20psTM9Tdu6btkDEerFVISZ+c7XADbO4aU2O8HcsyM/YgtMO7OWW2OWXUOYYWYwPl+JMbCC9/8DpvNKY88+iAlwOryCTmdcfzQKVeOT8jjxO7WHjCkreAva5Ll+HTFreuWRMBLQnAY61gfb6AIr796k5eee4Hbr17nwePLhJMtd85us0vw7Ne+wQ994Ck6G3n1pVexOdJ1HTfunCMkUooKtqTKeohlP064+u6lbBhG5RfYrDTRNE5DTSJkFHJgGEWBXqVkhmHk6n1XMcFXxpyRadwholXWzjtlSCl17oswpczResXp8Ubndtbqc2NQQFBWaQZj4Wi9RvqeOI7EqWCcYxW8Jmdi1ORDjmQM636FiZoU8l4BLykJfhUQkzk5PVaJq3FU+TRDBSv1hNDp2p91j8iSMU4lzbIYOjFsz+Hzv/v7nD54Hx94/zNzYFnjyZXJCK0CtwYef/xRfvrv/hSf/g//Fy+99Cqd77B5IhXBe61ynmLU5HVwRMlYGwirFdvdHuNVss1WyTdDrEw0Ki9JiqQSCX1XQRmGK8en7Ic9+/2ILUblvwCsEFYKOBMB7wLGotIpVVITyWw2HThLLkFlAmOaExvrPuCMMCVlagOLFAid3rMCapSlqmSNmu6ygiu80aryVAp919VK6jpqziNVVkPQ5EpnDXGKeBdqIqNF163KcGXdN4sYxiniu0Dwvu7hBesMnVUZGCmCqew7mgDVZJGyOYK3Znl6xtdArsVSyHEkRcM4jcRSuP/+qyp7FydMpu5HmnyVxqZX7QFNDlfQnxWs1YB2SpFpnGoSzWCkHMjzuJmxxbkAVfbTgyaNnCEEy2oVuHPbc77bMkUFeptmvcyypXbeNesOOwN01IKpTIBG5rWv5EKWhBNLyELMmVWBLiiISpMbtuHNlSnBKjuEMQ5vPJ0LYKy+hylpwsxavDXkMvMb1ASRMidSBGdVoq3JCaeYNMlT3zFjskp3iO5Xzlm6mpQ3pZCafVaTEGUGDLSki61go4KtSaDGmNDsrEADnDcoQU0RGKcsaNVYOKyAzs5hmq9TWuJAbRsrVXow67NvMr8zeEJ5GhRQWc3DxoSg0h0FQpvzKgtqnP77z+IQ/FU1HTOWhOAMVKq2VTOxqt1VTfeDgMnd9uhdleQ1mdPYYtqY5VI4PzvjxRdf5I033pg/L01eq0poLlmn1qXGDNT+XX8wlq4rBG9IUVRilANxj4P4TgPpmOod5HaOBuwxrQhE59zF2NDB/c6JwAY0PLiYOTxE5s8P/YcZ5FTH9zCFdsi3pCC75XnNycmLt7X8XH/5pkd00L8ZXHQ4N+8ao9mVFLnY8zbn5zs6+G5L4s4fLj5AAyQh1U9oc4qlv8Wg70z9/SGg6u5rNT9kmQOoXww0tqSaI6yXOvTBDm98HtUL999OYFriFN0TxoGZiShXv6gx0xhj6JxluHEHcsGga1mbS6XoGmusJQRTpdKCgiJqohkRuuBnsHOTugshgFMWvxR1H8slM8VcWfwqE2+1y0BB5/thQorMctemiDKEiII7xnHEV2Buk5CPRYiSEFQObt0H9vs9KUaapFeMCvixggIZYiYlZY+JFbTS/jjjETJjVJlR59DCjZiJWRmacsyzLz0MI97ZCiZRADfWkbIy+kAFntR3L+VW8KM+hTUKkgWhZKcAAyuM+wFnLcGskFzY7oY2SwjeQbVTjEXtq6ysjZJF94+iEjw+UMHKalsNw0hZb7h94zYh9ByfHCMO/LpH8kR3tGLddZSUiaPakiVW5hILXe8Ztpr0tw3JbCy+C2qfne85u3Wb4XzLUbfCTpFxGojF8PprN7jvgcs44zi/c07Xr/DOsxtHhFwlnWrxmlTm36QxgkZElDMKJPIasSglo0VF86tILoIRBVWknAmhI3Qdrii7YEqJFOMBy3f1/VHZzZzVJg6h2aEqgdgFBVeXutZQQS1d15Fi1NgQanfoHt0A30IxGWcVPC6VAckHj2QBX0HQ3tCvVsQ4IbkClkHHt1a4trWySFnYZiuw4lvf/CYnpyf4Vc8zTz+l8YK6dLV1YmafAfqu52//zCcoFH7/C19UP452Pi2ISpVJzXuv+5SonGGsxRDNtqo7qq5IFYtBBYo5FNyUi9B5jb1NMYIxuGpbZqTK3imgw2LVLpSFodCg4CPvXd0LqcWJCvRXoK6fwWaF2hGja1m7L30musZngVJ0h7XS5qCep1Qp3Bl8lAvFQqgMaJR5S1hYYwxVOnaG9ZMFqOedNyuzyA5LjXcaU23Mdt4KlNM1vJ5b2r6l4/biC89z6+YNnnnve7nvvqscHx/P7GCFVJmTlviaqZtMA6Y0QJ+G1tr+Vkg5VTatttEo0/fCAN/A9ZW5SpbiRGPAOwWKqpx0Qs3VBQTT1jKZfQvqDBKaYdZCnzIfr/thKgUjBmd1XRJn8VIZTK0s7zToeSqtbPNpj+0JH+EjfMB8gK+Vr/MFvsDz+Xn2Zk+xDXRr5m7NYweVla3a96UVZy4g6wN+fKhrAXVvbAUri5V1YAcdPN8ZcF37P5/RqP+9jMZBqw+02RgN5Cm1qEIW2q9mkrIAiQ9sMJqVUe2V9hAa4LxduxRK83Wsme0Zyt2FA/daazlnXnrpJT7zmc/w7LPP/oXI4a3XA9beq+L/QW7G6P5finuHrg8rZzl79aV7kls/IK2kTJ5G7LuEeeXogYeU1f6exOifu4kIn/70p3nyySe5//7739Z3vPf87M/+LCLCZz7zmb/kHt5rf9FNRPid3/kdnn/+eX7+53+exx57DOfemf3k+6UZDKec8l/wX8xgpf+V/5XP8lnOuSd9+Gdq5q6//wzt7e9IMx1tS74sgfrDqtbmKKkD3BxZdTjn6k9pWBBNCJUajE45a1X8gfa6rRXpKtOgQQZ1UO0Bc9FBxXwpNQBQa61qEMAZDYt0VquczMqxPu5548ZN9mcjRQx5ZjhqQfzGelSduRa8roEJ7XOaq03nB1GWgMTCJmVo0m5tHFsQYA5g3NXMwVi3gExrUhM2tl64Ja9aNVj79CIK9mICon10GCSZExeixvKFYzlw8M1y7pyV4aCxJt19fHOKL3S+Xru56EvPyl19bo55G4NlThk5YEmYgxDLue4e0/pI70r+LMkIuEi5LGKWZFrNkmnFVftOiwxpwGsGfUkhpsRu2CubhzGVelpwweK8JXiHFUceJ5WkEXV6vfcKKhAoqeB7ixUFLGTjNTGbixbDOkMxjlEyJieMGPy6I2w2uFRYGUsuliEbLl25jF/vIAmIUTkFEwnBc3ae2J3v2e/3GgDDEpxnt90xxEh2gRBWlcp9xerohGG/Z71eEbwlxcw0DHQnR2zv7Llze6/gvSAq82Yt6/UaMcJ2t6XkTEwDxq3oXEcuMOZE7y0yZTLKgnP15IjtMCIuEGUkUZh2O1KKrPs12+2A9XB8fEVZ0VJh3O0QYIh5ZuRRaQcN7mOUFUVZgwb6EFh3Ha5zCEKMW1ad58qlY006UoOmSZjGUeWepsi6cwTvCcHTecd+e04fHAnRwGfXV9DUwCr0WOO0cjwlfV5kTq/ej3ngQa48er9iSm5MlFXAHh1zfuNV9mPkfDdwZxp58uqjgEqXPPnMw6QoSFHgaJoioVNmim61wvVr8rrn9KmHsc6xHiysNgz7M/Z3btE/+DCb4xOuvfQcFsNUEn3vII8YFBg6jZk1a+4/OSEX4fbZ2ZwEyNHgDIRVzxArHDJlTAHjdJ3r+xUigfMzZZLqVmvW/Yp8dML52ZYYCyIKBEopt9eL9XrDOCbGONGHgBSVEGyAh5ILoQvEoQHgztKDAAEAAElEQVRIVQJimjSx1blAjgkBAh7TOXKaCM7WtVIZzyxFpQZ9z+nREaTEuN2y3mwgeOI4auDZObrglV2oAqhSVjDcetVjnYLeFB6ZOTsb+PxnvswjDz3G5ctrrClYnMp6pUTfGJZEgTBPvecxPvLBv8n5rTsM44gPnrjfMWUFQnX9ipQL+ynSdYFpShhTZja2EiM5K2PAkrBUNrlu1ZOHSIxxTqyltk43cEbdL/OgADWVZSvKCERd14pgfSCnwvn5Vo/rVnTWYVeBW/v9/5+9Pwu2JTnv+9BfTlW1hj2coU/PaDS6QXGAiJEESQAEzQGhK/uKEi3ZDofkuPKTnxxhR0j2i1/sdzvCfrEddtgaIuQIh66sK8UlRRgkL0VwAEG20JwA9ASg5+4z7WmtqsrpPnyZVWvvcxpsSA2iAZ4kG2fvvVZVZWVlZX7D//v/GYPHakUlH8mF9cZYXRhJ5PlqrbFOY5Wmda2wLYQChKpyIDXIW+wAkcWShJ8PHrIwMdlG5gNaqoZDsS8EvJVomgaFZjsMpCzATmekalu2I4UzAjCeGEUUGCuV5YoiLWpskUk1hVkIhCxUJG9izhAVR7eOyTFxsL9mf71CoYvMhKJxDd6PApxSArQy1hJi5Pbt24A837q/CUNlCWRrTQiRFFKR3ygJnjKe2lgZWxAWsCJb2bQd3dmSzXbL2dmG5MeJGUDyLMW2KcDc3WQ55HOY6WmfU8L0lbysE0ZDdIHYJrq2RaQ3ikxPlZ4twDGjNEkrotVQZH76ccRYR0yhsA3KezKMIz4GlNE400hioCSAavLfGI1RRmQHUyj3hiS+rcjmpZQJ0UvgHYNpdUk+QtbgRz/Ln+S5entKLExJEXkmGsp+kgtrTpJ5UZOGO8+PaYyLrcBcoa2Nmmzl2iaprgqQS9UQk/lJSUKdYwMQtAtKzXMmFTDgLuDkXddqZoVdO22WHZxsK6apx679Wu24KSnD/N3JBynrW/3e8fExL770Ejdv3iQW+ZJ5/PVMmkR5wyrYfidlO/dUT4mj5SLy+OMD33jxgNPTLT7HKU8VOQ/8mbNC9W8zDEf6nAowcGes6qTZSULN43Xn2Fwc5ukUdeDqQE2/z37cHSClC9c7l9m6YExPVrS646rMdvacxKyH7l6jPqsKHCTnO85yl5TeuT7MvEqy35/7/MKh+ZzPIIUlxkSc8295jf39I7qugEwKg8fe3glaJ46ODrh56xJnp+vi46mLtz3dzTSEu50v/85zu8gVpYQKQZLQdZwo77wfCbeu88i1+/ny62+UdUnmvzBziW2YsjDw6SxJ/jwl1csYW0VWmpACKiUBOViDaSwqyrE5Q0iatlug7TjNZUnIC3BjHAVgI4xKTP65977Iumq0caQUwFps0wrIyJopThBCoGkcfgyMvS+MhCK7bbQSthRg9GOJIURiNhhlpj3KGEUOiZwNCli0Dh8iaENCgNKx7Im2ADWUgsYJ8DmnVBgPJZGuy7pc56dWFRyrCdkTYsBqgzVGgKJkUvRYo+m6RoDGlRkszfKvKUZckTHTRsC6/ViYIEmF7VPslhhjAVUodI6EcUvIh0CiXSxRqyWLvSVKQdhGsjUo1xC2p4SQGFPAxMhhtyczXisOL6+F3aigUVKKE4uhtRZtHNla2sM1SilcUGAtIYz4oceu1ri2YdiCXSyI/bYcH4vfXmRuyQJqax3bvieTC9ulALGta4ipMFaWSS7rsDCAGeMYh4FhHHCuEfbIpiWnEoOYxVGpsQzrbGEyDrjyHhhtd953CjhIQMPFRZyKr5x15BxJQV5iaywhBym5K4AQXd7zHAUU6KzF5MzYDySlscbi4yi2i1aYwhaTc5WBZ5I209pMMaN+7HnmmWdx3ZLDwytcvXoojNvyxhGCsITWtVMBi67jJ378x3j1pVd49fXXMcrggzBUhij3IHZnKtJoIo+eERCiSAsWVE1mKpAjgzZSrFelUmUa5zm0U+IiNZ4nrGgSGE9pZ41Psm5mJSwkAiQy2DL/gcIQW26qsFhXppsKytTFFqpATGss5MJgONnJdbzm9TVPCCF5l33wKFRhq2F6TnUNRkusqRYMxh0pZa3OLewCyKvSYmW/VEUuWCnBlJMpkuYKzO5WLEm527du86+e+ldcvXqVJ558gvuuXqFrW6yxpCkmN0t4T/E+bUArARL5UFhji41VvlR9CkpMdZIjq3aEquydeYp95axJJokco5PCGe9DGYdZDo+yJ03myLTly/nzbiy1jlox5idbIwnILBsB0lGerd6RBVaqyPbV+ZkSSjl03OOj8aN8UH+Ql+0r/GH6A/4w/xE3880ivx3LmqfPX5PZBhF736CyLqya0ky1p8t6Nj1vM5+LEvtLVZa6Ppj6etR5uGPcTTLZu/3R5+3i2WYpI1eBaReGeNeWuyPOWR5KBSqp6QHMfsdkC+d6rMS/z5mK9xoxRl566SV+53d+h2effRbv39pW/Fbb3t6Wj3/8NX7zNx/nHTztvfZtbW/tj7TtwGKxfcvPH3nkZS5dunnubw8++BrOeb7xjffwzDNP8vrr95OzfoszvLNtOD7m5Ct/zA//0PfzzFfvybz9eWl+c8b21k3ccvWd7goA7f4B3eEltjdvfKe78j3RTk9P+exnP8vP//zPs1wu39Yx1lo++clP8rWvfY3XXrsLS8q99q5uOWdefvll/uE//Ic88cQTfPKTn+Shhx66Bzp/G60yK/2H/If8Pr/P/8n/yT/mH/M8z3+nu/bnrr1tkJKqEhklIDPr2hedel0Zk2rsOp0zrCpYpQKbYk04KQVaWGDCKBTVuSYrigNXwUmpUGfr6uCrO6s8ylXIuTrlpXJZSSWedYZLlw65ct8ltIOXX3mF115+newTMXr8ODCMQY6ZfLZE3klEiVNZKz4pgaIZtKNrkqsGzTKFFnwG+Nx9kMX5loozvuliki9+VBzdlIu02U4CRvorY5brd3eaUGLPyY6aHKga7BdBSXeCiOqz30li7KY7ynxgChftOsO747EL6tpNTewmNGo/MznvULHtyDTcOW5TyEiCKLsSHrsJxJRRRvqYEueCBNLPVMB1uZxPTYmamTFqTpCFFOc5mjNoCTajRaot9BGdTZH3yMSgWXQrlBbJhBADm03PomtQSgAzmSJJ1TSkrOh7T4wBoyEZS8yZWzduk3tP1xlQLYtmSWaE4EFJNVzyIo+XjcG4Dt0EurUEmLuVJurIrc1IjIn9gwbtN9IH3Uh1m3GcHPeklInZ41MknsQS6Fe4tmHsN2Bg3S3p2oakFcO45ejoGKsdremwSWG1oWmsgGH6DadDpLWGGOHo6JRDGvbWS0J/ykm/YbHe42SzIeSICfDKK69JkLK8332/LYHLSD8ETk63WNfQNQ2j72maBmM1e4f7UKpscwr0Y09McP3mEX0/0BiRq1qu99nGyDCMnG62xOBZLVpUiTheuXKZ5WLJwf4BoEkaGms4OzsDYN2tpNo3w0lIHPvIg9//OIsHL3Hj5CaXLx9IEBcr7DY2k4ncPL3N/Y++h9dffpXoH8A0DpImjZEbr95kfXnNem8tc1bi76wPFjzywDVeefYF9q9eYbnfcnB5wZd//0/4xtdfYrG3x961zKtvXmexPgTXcnTzNvsHS6yVKvCtDygNi5wxOnNytmEYIqhRqsFdIyxVyk+JcTQ0iwYdE/04sq2JelXY1oYBP0TGYRDJLhQxBvw4AIq9vT28H9hutzRNSwyRPiVSFOp/ay0xKYYhMPoBq+SG+62wzgRfklw541ZLzjYbTEgi21BAGKebDT4krHE4rQljpFmItJkKGRUlsRCzVFO2TUuKgRwjaE3wviSuBJgwFiYupTJj6MnaorLl+iuv8Ud/9FU+/uN/kbYwCgpTgDu37ijAac0PfP/7uf7mmzz19B8yjgHnOkIQ+TmREU2cbTd4L5JhKSW0sXTdQqpyoyTDtLFTwqRrF4zjQM4jKCUydVpz49YtYXxLcQI0xQJqMSiIkhAdgkfHiEVkMEJKONuQUhB2Ih8ZcoCc0M5J5X+pVHauIZHJhinoOo5jAVI4kehQGZ9HSZYYQ9s19H0g60zcYdOLMRXmK4dzDcvOMY6jJLKMhiQsCiKpsROIR4A9FCk0EBkIo42wClSJwrpnJ6mEjipiSmI3BQFO6yBAG8kBmDn1rUQSwahSZR8CZ8en9Gcbtvt7rNcrvPcCSNWVOUaeRUaVpKRhtVox9H7aqpxzaK0ZhkGkDYMAcGJM+DGjtUUbCoivsBgqhTKzjWJcQ6utSCG2Hd1iSX96wmazEaBXyiL9kEGOKgkENYOn85y5kJ+npIhUgmdVq7oD3p/hfaBrG7pFS1PsmMqQY4pWRyznbFV5LsagbdnDKiNCTSIgEnNKG4wR9gGjNTqL3FBld9IqoxPEqEkx0liDc47RR9mXkjAqGG3ouoax7/FB5PyctYUBMs1B+DonKtsjO7ZATexkOV9MUcBEE5OKnCKEIKBOpcmqgjA1MVf5GD0lBmrCLacKXEpTMiHnhEFPgLIJWKaqTI78W0HQWvQwLlTJv/ua0jXVKu0cQ9K5vF+ekol3tp0xz7tZF/ksx0jKmb4fePa557h18yYxzeygFwsGYE7YzJeYrH6qbVz9IK0VBwf7vP/JJ/l//pVHeeHrml/+7Alf/uNTohdm1VjeW3IFrBQPZUrqzf9mEgRmGZaa8Ds3IPM9XxwStfON2fZWU6Ly/LheOGi6XvVdmDqXd8Y2n+/GxR+nJFwFcJ07hnq+yWw+d/Tu9+7wMS50G5Uxd6k4z0DX9SwXlalmt8PTU2a1OmV//+SO40ESC8vlWycWlErC+DA5I/PIX75yg/dEy6uvPMBzzz8x+RpTom+3N9VX2hmH6XnfZaBjTpis57MoUEaxt36V41fe4A9eepkYRLpHF5k5Zx0opoS096EUSKSJMSnnXIqBinRmSgVoLGDn7aaHkDBWobBY48hEiu64MBnGhFTnFNCsFrncFALWyZzajpLcb9sWlaRCOytDKmvjOAibi4AREnlMk1/pCjshWtFYizWWrCGGQN8PBeRg0Vl8/Zr87aPHb0eRKc7QDwMdhrZxpJAZgsc1DWNh5dMoTk7OBNygBMxVZW9BZO3GMQhgw4gtUaXq2q6d2Hgqe0nKsNkW0IDWpBwFlJUSIUa5bopEa6nMNYvFAuesjBOKrCUu4EtVe2OFaTJmGFNmTIm9q5dwewu2w5Zu0RVWGAHVSj4/sR171gcHnB6fkNJa9t8MKQhjUrNoaNpG9l+Qse4s++slxzdv0S2X2MbQLRzXX73O0e1jXNPSrsRHcN2S7tIVhldeoe3cFDMIEwg402pFiF4YlcSblWeJAIYrYCKTRY4MNTFr5yzgrJwFKJxTKoydAkYSFiKx6axt0FoxjjI3QADnOUu8xmixF1NM+BiR0hxNTpmhF6lqis1jnLBV5hBRqYJkZC7EAkySe1WgIiZKnICUha1HFXYWrSdQBaVKvMZOal8odqLIaiWu33iDF7/2NS4dXmJvf0XXVvg85wBKUAHQisP9PX7uZ3+af/JP/z8cH5+UmNlsH+gCTpwYqwtox7gqi8cE8qnAB5GPBCaJM4W1jbB/MduLujJPo87bcVmAQybP7N0qK7SxU6GEj4kcUpEim1mJphjjtBaqKS5orTwbrQScXZdMa41IKNZY2E4sTgBhRVrMSLSuypULr3cuS1uBOGV2bJACikLuw5Sihzqe9TvkiTceSBP7T8oZlYrDXIDl50HMapIKfvPNNzg9OeHRRx/lscfew2q1ou5puzHHKp1bn51zDeQZ4aB06eeOBKIUqEicSpUiEgHi6HnPqXubEqC+KUFCrQ3Wypo1jmN5N+sMrHtb+Wky5/Ico5um7MUYXzlDhJQCISactVhrsHZHGjhzjvEraYVWBqu0zBWteU96D4/kR/jx8BN8na/xBX6X53meMY2FyU1P76OCSRouV9slZ7Iu4DqESSqXNUSI7Ovzt1DWclkyC0itFrzWeCo78cJzdz2brlPccmdYprhnYc+fmfpTsVt32Jbq+SZfbrpCNaOnePjOJ5B3ikTPsUTOMrLyxbeOR/95aDlnbt++zWc/+9l3HJyktebBBx/kx37sx/jP//NH+dzn4L/77+C3f5t7YKVve8tvWZRwcHDElSvfHChx//1v8PDDL9/1s/394296vDERY+7OFvPkk8/yiU98nqee+jC//Ms/92cCVHrkvqd47rd+m6//7m8TQvi2X+9eu9fu1pQx7D/62D2Q0jvYvvrVr/LFL36RT37yk287NrhcLvmFX/gF/t7f+3tTPute++5q3nu+/OUv8/LLL/Pxj3+cH/mRH6Fpmu90t971TaEwGH6EH+FjfIz/jP+MX+fX+V/4X/h1fp2ReyyDfxbt7YOUVHWi5krC6TNqRUicArcVyHT+HBX0UYIP5e/jME5MD5B3gidSVS/01G6iyJ6lISjnYwK3TEECpCJIK0nWGGtZLFZcfeB+7r92H02rSXmgaRxXL13GaEVIgVdffY0Xnv8Gvp8lP4SmOyAUzmoCKeWcSvJ1TmSpkjTbHaNaeVZ6y26oujqd9WcJNpRKoSkIcafzmnK9JjNwZxqHXUezJl5qv5nGuZ4u1mqqu7Tdc1z4ZAIEzXMhT4kOqAEQNX1SAUxTIiQDlbZY1RusbTc5qC6M39y389evz2D3/neYkOrxpRqtBtDqp7neEzPLwSwjyJQUPD8euQTWAyFojDXTtVORmNEqE1XCOI1uLG0r9N2GDNqgVMaWytOcglS1krHOkZUCa9CNI/oBrTWdbQk+TCPdaoV2jiF5zk5GrJbK3ePB44rcXNMq2mYh88Uljo7PsNbQ957NxpN8YGEdoQVtGoyxRM5IKE5OBlKM7K0bSCM339wUxpNI23YiaWAiYxim53pzOMNoy3K9YBh6ei+AKD8OnJ0MNDZh4ik3h4Gr911iGAOv37hBzmBVZovmbAicHB9zdLTh4HCP080GZQxkw7jZsO17hlGo9JvW0S0aDtcHDJszrNZsNmeEKDT6VSbDpIyNmePj22gjTCZWW6nqTAmdE/3pKdthJHYLWm1o/UBSUrW3v7ciZ5HBG4eAc1JpbIxF2wZTZLLaUhndF0YekeCRNWnsR0afGI+PWKhIOhs53UT29taY7MlEjLPcf/kKlw7W9EcHxKDQVqH6QH/9hC5bnNagE0obkk6olIkhg7Zcvf8RTk8GFquGfsxcfvh+3qMMSS0Zbm944PAqMY1cWrdsz87I2dM0FuucVNwazWb0hKMjUja4tiP4LSrDOASss+iMXDMFlsslwY9EnxjGgaRGrHGTLADZ0ywcuRf5zq5tGIaMMQqtLFob9tb7hVJ+lIp6MhhZl5fN8hxj25hGuqbDDyOhVEnGECAH0JHoB2F7MUrAVzHTdB2MHpCElXWOYfTcuHkLVRIKRilM69DRSjBSF4at4CEnGgONbUl5Zq+zTtMPIl+ls8dj+Mof/zGPPHCF9z3+MFlLwkv8gh1NASVU88tVx8d/7Ee4vTnlmT95TgBUIZBCxDrAqIlprQKDdU7EMJILYEMbuYCzUiXuvefsbFs+07h2SbfoUH3P2ekZKWVc0+CcwWlLLNXENZCulcboTA6ehKL3I9FaTEl4YjJNK+wAYTsQU5zX4pJ0hEjTNDSuQSklABSliQqUsgyjx4eAax2Ns2gnc8UX0JF2hhjKGp8SMUeGIU2yb5Sq9FgAaxqRAgSRRYsFpCDvvgA5/DgUJSwBHuXCkGCUKSx5UZ5rTFNSKwEpRRQJqzLWuGlfscXZc85JkilFQs7cPjphs+k5ONhj9J4UA23XYF1D1ULLWkFSdIuFJFaNJAtiCmQSTeuwxhBCENkUHYgxo40q4LidxJOe952QRCdPZWisnSRMlo1jvV5zdnbG6eaM7L2wD037+O6+W9iGdhLoc6v7ayH7KfZaZXpAKcbR03QtprDN6aJ0q62GREnsmsLUoAnBYrTMD3IWeYlBM/Q9OYsssICUzAQUijmRlADdtTEig5NE4q0CT5RSNI2T56eUVKRr2G4GxiA2pzG2JFl2rA/FzKyTZ9ncubp8rkTPWq5jag6lfj+WhJuaMjWT7ZqyrLHzkM/AjkkSZbKd5O8pSQL/PFPN+VblTerP796mJpv13F8r/kJVFiOAPI15bed/lv+px8YgQLAYE9/4xjd45dVX6fte7OmUCsPM/M7MFuqcBs3TiXf6y2zjd23HE08+yeNPPMHBwT7GKD50OfJ936f5kz/u+PVfV7zyauLk5JTbt44KEwdzBi9Xc362xcnCnlfVoac5PA3TbNfeFbN1t1FWEM/ZwOcTg7uP4Hyqq/5l58pv45pT0uub+hPSH2MCbTvc5TuUzyNXrlw/B3aqP2sTuHz5ZpEl2QFWobA24qz/Jh2+05eZPrmLP/FWbQa05XPjaE3goYde5Y03r3F6csD5Ub44FuV4dd7HSTmhUjwnX0WeQYoZ2Qdcm7h69VjkgIofpyjsHVTAo1y+gnXRWva+GKVwwpgCSpDvidSpIeZIGCMaAf+PIaJ1JJVryz4ImEwfR2FLChE/JkgJqw3ZgMgYaqqQzjgGUs60jYEc8ZsNwhYnDIk5ZZSGmOI0JtutAFicdiLVHLegNTEGxjFgdEYlxTZuWS4XhJg4227JWaT4PIoxJsZ+pO89XdeKlK5SqKyIPuBjKLKsZf9xBtM4oh8LSCjs+LQlWZ4zJme2fT/Lyhe2q5RlRQnjKKw31oFSmBSF5Vkp2tZBtsLmE1LZ17WweWhTgLLyTLRqBTBVsQPl/2IBy4RhwJLIY2QMqQQiBTymjWa1kGKR0HQCwtBASITtiKUwjRbKFwFRZlGdV5rlep9hiFhnCBEWeysOUGQssQ+suxU5Bw6uXCKEQO4jxuiStFdlbma240AFsqUUJP5QJH/r5VOK2EYkm3Nh0I45obXs11pr+Y6t9PV5orJXJRtfpdgWiwXDMNQBm94tW4DPMc5geGWKnVnBQ0SIGacqc2LC54AutqVxTXnmadrbMyJjqNUMpNHWzMUcyHimsg8pwFnDxPdTAExKaWHVS4Gvf+05rl27xsHBmkcfeXCK2p0DIdQ1BFBa8eijj/DJT32C//tzv4rvB5QW5kqjRVYrILZbjLLZaBAmqMI8LMDFEs9CCk18isKOpmQtMeW+BKgia1VWFAlvAcPsrnx1TMjCUgWF0S0nkao1utiCcQJl1NCQLuuj1hR7bYetBvE3UqxAk3oukXuW56MKIxJQ5NKE5DKKbZWzMLiqykBZ9pWyeFZGKZHQrPZgAdCl6s+VvpSHI9ywdd/PE5C8PltQxf/Q0/ovsb4CYk8ZPw48//xz3Lx5kx/8wR9gb29PAFij+MjGWipwp8wKYc5r6jq6E8vSCltl71JGUVjnYWalKnZQBT5VG6wSgmolLKXaGJIxOGeFDdeP8t7XLyoZ5zo75wAlF/62O4eL/1m+V+PJdS0VUJkR0BXInqGE5cpkhaJI+0UpglUxcmgOOeSDIgWn/5hf8r/EjXRjmlMCEpu88jKEZdyypih+Y3SJY1DZk6SPWgvLOT4XRuUSu9Viq5/b9dWFYdgBF9XfJ0anwuxb6qvKFJrBRFmpHTnZYr2qHTbMOv6TrVlOctGeKSfPFayVZx9mAjWpO+2iP0+txlh+8zd/k6eeeorj4+N39Pzr9ZpPfepTfPCDH6RtWwD+2l+Dz3wGPvtZ+K//a3jqqXf0ku+S9s7Np6YZ2d9/6+fStgPf931fRes7r9k0I08++exdZfb+tIKFb2dTCrpu4KMf/T3+8A8/wMsvP/xtvV7b9jz+uDBF3AMo3WvfyaaUYu+hR3jzj54m3ZuL71j7jd/4Dd73vvfx8MMPf9PYRm1KKa5cucLP/MzP8Iu/+IvvKDD3XvuzbScnJ/zKr/wKzz77LH/1r/5V9vf339YcuNfESn+QB/n3+ff5K/wV/hn/jP+S/5IXeOE73bXv+fa2QUopVpYkVQL8pdIpRzJakrY1y1ISLbPE212SCyVQEUKcA28UuYoklNOZIg9j3aT/Xq9PjgWoI45ZylXqprAwZabq+26x4PDyFa5cuYrtFtimQxmpdFrvOVaLfWL2nG1O6W4f4azIS0XSFKeX4GSaEqYyFsWBTnPgUiupfKQmsebI1I5JPo9BbVNSptxjJE4LSEp3LiR552w7bi5zymVuhXh+6stuMiLDVFm0e46LgfrzDurMinQesFYTRXU8yuDlKfU53ffsbM9B9PMLppqHSFGCBjOQLe98/+K/u/2e5oO6c1zmQO/cBOu2kxbKF8amxhLrPRTnPmWR/tNmBrLllETqLSeUVbimoW1bnLb47SjybKbQmONwjUPrTAoJYx3KlApOtMgONa0kI0ImjB5lQRlhIdpue7SGxaIlo1jv77GP5uz0jLZrWe8vOT3d0p+c0ViFRbE53XL76JjbR8dIwC3RtR2bsy06KPqTSD+M3PfQPt2iwQ8n+D4SlGYYB3LM2MGzXnW0TUvXNfgQGIYBqQyF7baXwDMaYx3GGbzfEoYtzipuHd/m5tkJCTg+usl62bG/WqLIbIce7wPbs57bJ8dklWjblu3ZlkXb4vueo5NTll0rCY8QMcrQuEbo+BcdIQQ2vS8Jm0jvB077M0IKrFdL8EHkxFLEBs8YMtsQSUoLu4zRjDEI80gSCvs4enxjWB5cZn2wz3q1oB96YohoJRWLw5gn2neRPBC2GrWyHFy5wqJdc/rGCZfvP0Qly3p/AUtNOD3FeIdqDC5pzo5v0y06khbpB20zzbU1x6/cZOk04+YMvMEdLIk5EnvPen/JD//4BwojU8LsrTlYtxz7DavFAdkann/+j7h6dZ8P/vBf4OlnnyWrhCaxOd1glEUlxagCYyiscrpQx2tNay2Hly5xcnZCSCI5kHwg+UAIUpUfQ8BHz956JdXnwaOcxriW7VYAAtaKDJRUk2uGfiAjIKSsFW3TijwImWGUuRAKE8nYe1LI+DgQU0ZjUCoxOouNFm0FXGR1SUxHiF6kQpRSxFDkHJwrMhFSIev9yHboyUrRKkXrGlSObLcbSeiBAHuck0ptn+lHj1YOUiJlT8iR115+lV//ld+i+blP89Bj9xWZhhK0zLrMi0xEAq57Byt+9OMf4/b127z2ymvEmItUQoYozyDnOUCqSTgl0mHJCuCj7TphToiRECVJlIyiaRtiDJydnU1rIipjjcYZkViISphHYohEL+xGSmt8SXhaJ4CzhbOEwZMTtAnQllNE/sJaSR7EJOCzpukgQwgJkjxP70diytjWkJKXBBYSmG6ajpihT9tJesVohW6ssFcxy57mLIAkZ528+0gSER3JRFLK+HEkkbFtK3tHlkphjQSSY/ToDDpltMmgCuNVrluzIuaMDlGAKFnhQfpWklxGS2JpqqguiWSDIsUBYzSNszgnFdO6oF8SU5xbJD73pCpZW43FzYkhE1Em0ClIMRTpDpkbIjuWStX9LH9hSgJQEiUF7GWt3LcxtG3LYrHg5OSE7bYnRD/tyzNrSt1/LwbuShD8XMxb9ssYEz2eeLoRu60faRphVnKNmxiiakDdWouKkc41jGksdFa5SAJamqbBd7KGxxBnW0xy4DsgM0n0OSvrVoyJ0QdylvGWxLcpjDaJS4f7qHxCPhsZQwFGlfVCpHvlvZttMiYbQmth6ogkAUXWZFYSQJIpdrHaARfU960+oyzZnhm8VMZeF9BpjBVorSabI1c7Zue5VECTMbMZXwHtdc95t7YqpVHXo/P27/y9WTKjApVmH+K8vZcn2ZzRj9y6dZuXXnqJo6OjWfaN2X+ZWI2qzwJz0oc5OTolAHOVVtQcHh7y4Q9/hCtX70M7h9ZWnpeC1XrBRz/W8vgTiX/0j0b+5E+EySMSdk6+A6pRO/dDsetzvW6ekkcwv5u5fn7HoO6MW/lYpkDeeU93fy/JRzUfbEycbHiA/f0TrA21Z1gTue++68X3qf3+1gMdSoG1viQAzvsuuzdyt8TBzlmYMmt3vcZFv0Wd+2c3sXu3hMnbCuLd5bRkGcf7rl7n5PjgjtNPzKqKC3NanRuJSeK7Jgun72XQoI3l4KBnvRyEDRK18+w0xpQnk7NIbipdpJjEX6nAjpxk7TaiYYUxurATZlwpDGqaFt0II6JxlqZ1+MHjxxGrBSDsx0A/DPS9gEJSTiJ15QMqQxiFcWK1t0djNTGOImFKYStKGR+igOWNMGjElApThzDVhBAIIGt7SVinGEhRbLttv2U7iv8xDFucM3ROqgZDiBJz8F78FwQU5X0QKaXgGQYv4BejIQmzkjEC/FZW5EN9ENaMnBMhRcYgzI6NdcUWsBL/KICXUJhyarFELKCWXIBlOUaxxdqOpmtpGlcS/olcwApiIe2u/8IkaZ2mXS6xtsGfDSxWHWSNay1YRRoDKgkozbjMOPQYa4vdJWAws2wYTrY4o4ijhyRA/YT4oq51PPDINYoGG7pxdI1hSB5nO7JW3Lp1neWy5eH3PMyXD/ZIwaNUFnakLKyROSY8ipwjRst+rozYwl3TIsUA4kNX5qVQ4k5aKZHlK9K7wXsyMod9lGIxrYXxJScIOU5MtzVOobUpy3kmplhsJ/lOiglfABYxRSqjTCyABdmbKxteYRALsTATFZ8ipVKkJHO/3of3o8SntEYZgzNGWE7JBQQhRXRKKdCG0UtBHBhyioQc+eM//iMWiyVOWx546D60PR9RmgIT5WdlNX/xhz/A2dmWz//L32D0UpxR41fTN+thOQsjpRJ5epTGGAGFK+Y9ShdGTK0UfvQz8ELOji3PU1kzAeCn2KHWAvxSwnyTcwHlJYkT6iwyy9UfUEoL41SxCyTuWJi0UsYUkHFMsQCOFTVClHKxx5QhF/uxMrcbo0mx2rklGqY0KYExFHamus9WsH4ucck4AeyVgkJow1x4l+cnoXb23Z1HJfZhmZMKQpaiDHn+qsQ5meZtzoobN2/x+7//FI899h4eeeRhAf4XpptqI0k/5ffGOWH3UfM+KP6T2Dxi4hYGqAJ8V7kqDO+AZUo/VN1HVQWuIcUeSnwK58R/GUdf/JFdXqXSduyr2cDanb/nW2UkH71HR01lrrJlHTZmBppLjFDmninPIKRc1ixNpxd8KH+IJ8wT/H78fb6Yv8jNdHMGQZW4n1JyTVuZlqysv5NyALMNGUuRQtO1KGDMsRTYSGy57rey38+2ft4ZCBljPfnNZAq2q9q4u3HZHUup2BRqfvl2xnBnDlXg0q5Zya4NUjuVd66rpvjtn+ckVs6ZYRh4/vnn+e3f/m1efPHFd/T8SimuXbvGL/zCL3DffffdMdarFfz8z8MP/zD8B/8B/O7vvqOX/za3TNsO1IJhEGmzxWIz/d40nh/4gT/BmHi3E3xLbbHYcvXq9bf8XFi8d9iSv4uaczJO326Q0v33v86VKzf/9C/ea/fan0Fr9w9QxsI9kNI71rz3/OIv/iJ/62/9Lbque1vHaK350Ic+BMAv/dIvMY73GGS+W1tKia997Wv8g3/wD/jRH/3Rc8Doe+3ttQUL/gZ/g0/xKf4B/4D/mf+Z53l+junea+9oe/tMShQwTmWA3QGG1FxLhuLoVoBHpbPelYITsEkMMytGLgnYmMJE765KUrwGIsTpKknbtFuhoiZnbdItLwGhtmu47777uHL1PtrFEp8izhiccRijSMoIwwKJOG64efN1brx5hJKMJJNEWb4QhldqChxWh3Bi9UGVYsQ6IruAmp1+n8tBnQ+mVwBMZqf6bBq7XG55DjTN8YNSXbNjiU8BJlX+q9feCYfPwfzzCaKJ+ndK2O0eNycoagWfnu557k9N8k1BmBrV2TnvlPiEmQUg79wXuwGN4vBf6Mdu201O3K365w7Hu9xXfQ5TIv/CsTmnCYyXdxz8+ihrIEsXKvcEpaIZrGlYLBa0bUcYPRqZy7ZQyaMsbdeQcyQpqWR1zkC2qAiNdaRU5AZ6D5RqW2NRxrC3XhBDYkwR4xzDWc9y4dhfrfBDJPYDOUiwdPSJFCJDHzDGCbjIe4yy7K1bjM1kNbJYO1Z7Hft7S4wxLBzCgDNGxrDA2pbT4zOcK2w1PuLHSJA4NyEGbJKgbxhFXmqMAT+OPHj/NdbrhkV3mVtHJ2jXsl5coVks0FmzbiwjkeWiY+gDbevolpbT0zNygr29FYERr1Z0zrDoLM4Y0rbHYRjiSOskMR6zwjUtMXi6gzWZzObohNAPdN0C5xyL5Yp+e4bxniv2MkM/cOONG+SsWK32UDnRDwMpQ+MsITmWh0COCAImECP43mNbR8yJ0Xua1tHahn7TS8CezPLgKreOjrl1/YST41OuHl5mcXmfxu2TlSWeJPYOrsJlqdLMo1Q1bl/fcHrjiIOHrrBe7+FaR/aJW28esQRyCGifMJcacotUiPdZpAW3mS44llazPNjjBz72Aa6//BrjmHjskUd5+dVv4MeRRWeJQXF6coKLDY1rUTqD9YxRYZwDkxnCFkg0xrDdjvgUhC2qgEkb5/BjIsQZiLLZDljnsK5lHAYJkqqEHyO9Cmij6FqHMYYYJUExjh5jNIuFRimD0RI4CtETw4hrHBhQWSQIlbFo3RD8AEUOwWgjAA1EBkUZxWnfEwm4xgpbzTiKXJxShD6QMZAUfvAsu5auXbDpN4SQ2AxnLJYL9vZWkESOzBSJv5QN7d4CnRQvvvQN/n+/8Zv85Us/y+Fh1fpWRfqTkmhgWkcefvABPvXJH+eXf+lXefPmkTD5pBKYdU72yBzIKaC1w5KJCBNQzJnNMKD7gVXboZSaEo1N6/Ah4EMsibqINQoVPSYZnDUEZYlKCTA3CYtQImKsYb23xzh4QkkE2day6Ue872mcZdFahnEkBKnYrpkP55rC6LSBnNlbr7HGshk2Iq0ahTHM2RatNSF4oh+xxuKsHKsLYsgaUwLlYk+QpQJ/9B6yYvQjGTBGYa0jDH4CEdVEZAyya9quYdF1jMNAv9kIoCdmtFWQtbAxJQQglxJjCLi2kUTZJBUlMhEpCRAuhCRBZq2pUnNWw2az5TSJDJrWmkXbASKxZ6wTAHLOwhBX6IZyVlhjZS8fRjIenSPOWKyN+CDyJLKVSoItEqjCbVqbkqCR5xCyAJayc2iriaNntVrRNA3bTc/Z2SnbvhcpslylMUoCp2y1U9LiQmJs3iLluzFlCBGtBIDufRBWpbah7Vqati1sX8WGKraOMQZzDlQjUiDGukn61Hsvx8RaBQ+1Kl4pTaNF8mXwmZwsxmoB+OVEYx3RypyxWrPsFoSRwhqXZzmFAqyf5YznSnQoFl+5Zz3RQ8k43x2sIX2rch85a2pINqXC8kdJGM9LwWRLZjKRjLUOSJNETF02JiuoAlgw5+zRd2ubknrf7Dvnc3sA5+y6iz8Pfc8rr7zKa6+9Tj8MhYllTvZMgKjZ9N2xhUtyZrLFVfn/ynCl2Nvf4/3vfz/vfe97WSyXkpRWhdVMKwEUlOdweOj5t//tkeef6+e+l2c8aTXvPp7iPE1eQ00yzWipcq873995P2XyZLqux1ph77x69fqFBMDMCnqxScI/cfnSLWBm63IuoNWO31LGRI7Y8SHOPaPy150/7g75hcHfdYUuDMqdfd4t+jh34nq+C8m7c8UJFydT9VvzhZ693fdG3fHDuT445ykO2YW7nW5mkg292Lc5xZtRWT7PzD6c0QbrLJcvbyAHVGGkNVaXohkBG0Gm4ky1LvJfGcxuQVABALMjl9M2qkg5i7Rs9AFtNW3jiDGTQyAXpqNYCpFCEFYQSSInVNa0jUVp2VNsY2iUo2mE3c9qkWUKMZOSsGmOg7BCVkaXGDNFLZGc4pRET1H6HIuk4t56TdMYrF0Ke6m2OLsQCausim2WcNYIY5E1WCcsMGRhNMoqEEEAQ0VeKAdhkopZwPjayB5gjNyjbRtAZIJTCLhSUCW2z4hKkYVeEH1ku9mQs8i9kkVKNmdhk0lZ47ric2axwXIGH0dhumJm5THaEHwgZZHede2Svh/pNyPDMLJsF7hFi1q3wmQ0Zpp2CZ28szkWu+DUM2572r0lbdsUpq3MdjPgAJKws+quFUYsFCkIMCgHsEnTaIXrWu576Bqbk1OSarl67QFuvPYSMQasEd/FjyLP6pwr71csoG6DNmKjaJTI8kUIY5xAGzkLOEaApiWWVEBB8izsJL1GVgW8TQEXCSiljnUFrIpclkbpjCi2Fjmy+ve6DigBQpTIhfjzWQrg6nuttcYXWU9h7dbEAg7VCnLMTKGkIrPbuIbRj0WiLqBTpusaUKrIMIqdgtIoqxnDwHPPP0vTNLiF4+rVSzvrVx2j8yupc5Yf+dhH6Ddbfuu3vkAtABEZ3owpMoBVLk18pMInqBQhCojLKI1zluwTFRRtjNxzTuVdVKCUFCMYawsQQgu0Lhd7PQWyylJEpDRjkYrTVkvsIEWiygVsrycwHwXkUUFK4yigo8ZZTAGXp5xKsRdF9lrA8LEU2dQCiirrqyqAk5mVMCP3gprni9Izi1MuErq1ICGXdU+VYkiFJIFSDAJAAlB6eqVzkdgkJXTWKGvK+172NV3A92WzqGxLNWZ6dnbGV77yFd58803e8+gjXLt2jaU1mB0wjISt5CTW2h1JZClYiFGKSslR7q2wv03g18J+JXEsWScosVWmOKAUYFX7NxcW/K7TEyjVB5nbuzHDeYubBnzGyMgGt2M0VHbJ8m+Ue0pJ1kFj5NlbW+VN5xhcfXel/4XBTIHOhgN9yKf1T/Hh9BGeSk/xhfS73M63yts92wI5yz6gs8KnRE56OmfO4nNrY6f3R5h0hbFZAHaVKex8oYO0Hds3z2OjgHojF0Kpd7TdAofZJKzFn7u2zI7NqOZrK6VQRokkZZkjFy85g+fV+UfzPd5yzpycnPDUU0/xpS99SQod3uGCjytXrvCjP/qjfOADH2C5XL7l95SC970P/o//A37mZ+BrX3tHu/EWTVgPDw9v03U9Wie+//u/TNO8fRYN5zzve9/z5/yPxWKLtf/mgKQ/b00pWC43KJX49km+ZR555CWcuwcI+fPYlDZo677T3TjXjHMsLl3m9LVXvtNd+Z5qr776Kp///Of56Z/+6bcd61BK8cEPfnACOd1r393txo0b/OIv/iLPPvssP/7jP85jjz32tiUA7zWxiR/kQf4Of4e/xd/i7/P3+R/5H/k6X/9T49r32rfWvgW5NwnQzdUZAuQp0QkqNXdtlZY+xcJAknLRQC91UsUnjoWOPmVhP6gyDBOoJadyLUUF5uQSPBJHWgK2Gfm3Ouf7e2uuXrvG4eEhrm0lkJAzzjSkCH7woIR1YbvpOb51i+uv38QPQZKbRhO8VN5TwSulHzujIv3Ks/MOu0H6HVBRLkH9GhWfAuk7QfTp4DxVVGXusnCUY9XFY8vYzGwITI5p8ZKLM1oDH/WSuxUGagecJYGm2RkuAfdSITanKcTFztMxc6ChjkMFI83JM1UC6zU9V1IdJahRE3Y1f5DTnLTJzOebe33nczj3jFCg0rkxU4UOuT4XtduTAryiAI/qeOU0U3JfTATmGrgCFFpk23LCOEO7aFgtW0yKxIQk0kNAZ4MzUvVqjCEOmabtJAmbMovlghgC0Xu0K9TwRmOcQbeWcegJQXH5cB9sRPtM9BFnDaf9hjBk9pslOsC4HdicbskxsFg0PPDQVW6fnJCzZzSKy1cO2eta1ut9kVIg4kNiveyISRUZkhLkywZnHZcurXEKxpSJwePI9MHjFksamwmDB2NoO3kUB6YlA6tyX0oZrl29irKWps1s+kh/OhC8p3MNbtGwWKUpcKqsxmZhtFktl7TtQtg0rKbf9pyd3iRiwIms0HLZsli0aOuIKOzCklSmdS0pZHLMhRreMITI5mxD11jaRcNJazk67gnhiMXS0S0dMWQaZ+m6hsZafN9z8+yMpBTaOnz0ONMKq8imx20Nm9MeP0rQbtt7Dvff5OGDfa52jq999XWu49i7fJnLj14jGwcelodrzNIRNcL+Nmpe+MrX+MqzL/LItQPe89gDtOoKpms4fPA+xn5EZ4VeWrKVtSqDsOKkiHWOh9/7mOTMjGHvyiHr9YrjP/gKcegZQkleqJ5+zJxse1yKLLtM17WECMPoBXQWIyobdNZYK0AitMGZIm2ZEsvFgpQGhIxOpBRSyvghiNxb1xKCxzqDjxmLMP4oFQWo0rbCijEmnI2cHh2zHTzaGE5u32YYNxweHNIuFpAh+JFcZL/iKAFYowxt09B7j2k0i65j2G5JUQKbIXqSH3GpIcdMMmAaw2G7YjNEEO4qhhhL6F4JqEEr+n7AWIvRlqYGwBHgbewHsrb4OPDlrzzDffdf46d/6uNYZ0gqFYYtVVaJskopgzXwfX/hSTYnPf/yN7/I8ekx6BJ8z6nICDr6bcJHOBtGkajQYLXFD8JYFUePj4EQE+u9BaOPhNETcwKtaFYLbBaZw9O+x3iPNQ6jDSkrtLWkcQQUKSk2Z1tyEqa4MCQBfRkrVdGmVB1rSXBJ2khkX4TdTaENkDT9ZkvbyniFYSxBlyiANRSuscVuyEUOU/bymDPj4CcpgcoCYY2CENgMQ6k+F+YHmw3KQNM4YpZEBSqhnUIlSN5jugUaScoa68hJmAustfJ8rEaTMSSGGNFxxNlG2CGzSElIP4FcmCVzSY6pVN4+LcH6lBhjxMeMVg5nTJG5EzYxYxQhRrSxjKOXd8iWIuCUipRPKvJgwn7lowcLNqliKggwYdqPFcSy3wtuqFT9o7CNKmuvksr+RUO72XJ2thGwmfeoymhWTJaaAJnAQdW0mBIXxZ7IWQBT5Voh5MJsFOmHQNN4lovFBN6tAJMpwaTn6nDJ80VhvczgrLApqFbsxZgiWWliiPQ+MGZPBrxk7HDO4UzDMPSkAiZBR/pxEHYHhH0pEUU60GqUsiJZFGKR8hBrROnCgjXfePnHzGOT0vRftXsyMufEbi1zG1XGUZI9WVfgmzyzXBMb7DJTJlxrCL6A9CgSh5PkxY6sh1JFzuNd3CY7lB0bdZ5nUJIkeXb5arKHnEsityayEtev3+CFF17g9PSUzDyvKnPZrk26C+KvkiE1MSXuTE1Sy1xs2oYnn3ySJ598kvV6T9gyarJaGQFOhIjICGe8Dwx9T+O2fOyjJ/zydQie6V7UeZ0OKmCrJqoqY0rtz86QlXEo94FIiy2XGy5fusmVKzdZLPrCfFTubRq9Ytnu+Ct3PhPOOROqJrVm5wQmm3nnu+riwXfaxfON7Pz9jr/s/vXOT+7e2epjlL7e9bAK/jr/wdTjCmi6GFyYMocXL60ufOmuZ+Xy5Vs46/G+YX6yULOm1QdRSpEqB8iO7wjV76nzs6wJWmGsoW0MVy5dn+ZqJkEW8A+F/SXHhLZ2eobW2YkZoiapsxYbWBlNDIGUYNF1aC17QIrCeDIGT4qZ1jSoJLKKfhQZXGsNe3sCEMqFZW6xXNBYIwywSoCYKSVa5yYGL1XXuCxsnV0n+5nIiEaMyoWhxqGMsLMkBc7Ku9lp8SecE0lPUCwXS2EOMuBDIoyBFKPYLc6QmhmIobRGZdnHnW0wRtYcpRXBB/y4laiDVmAqi6aReAgK5SR5L5J5zGtIYUzyPuC0Frk8Y+gHT+oHnDNYqwu4RIBdRsv4b73sY8oYUopiMxYZXBM0XomNoF1DnzRHJ2fsdw0La7h945QNhrZbsDhYiU2cwHUt2mmRrbYOHeDWjdvcuHnM/qrl4HCNYYm2hm69JEVJJiqrQQvoLWeJ55icpDDm8LC8+pp20dE0DcMb10WyqwC9BYyEsKUWHUtTANkhZSBgssEzorGTLZRKCET2tYRStthcFDtQ3sMUCzDOmLmILithyNQKbTQphgKoEGaonIVNq9o3MQT6YYu1RnyQEgOpYL8UC+ORUjhtZI/OArAjF3+oWkMpomItFpP3sG0dJiRi6XYsErG52AFi5iUGH3DWFjbGLOtsBqL099VXXpb9p3GslktWy05simk/0dNyVfePxXLBxz/+I7zxxnVe+No3UMSyCklnqr0VY5J9KYkEpNgQ8vdExAePD1HmvhYQvthsGW0NCpE5jFHkDU0ByleZsVzifxQAvyrM3mMUwE4FSYC8k6nIBu/GckIQdlgKkElAabnI9kUqGjOniI+xsFrLnK3gZFWATlKsUeJYhV3IVEabmPBF9tFoTdZK1kqjUNlMdgkadK6s2VnsglztBylynJ6IBpJGk4hKZF1dYfqsgLrJdi97gq6AtZ14WEqJN958kzdvXOd9j7+Pv/B976dri11cmB4rqKruUzEUCWBV5MKLtZGL7VFjaanIpc2Amtl+2LUksqrzRcYMI/tXzgqc+I8mWJGA86XwtD6bcoK6/p6LIBZETbWboQLIqm0kIxGDIiVhbAreTAytSsEcg612QQVuUQCPGZRmT+/zKT7FB/kQL+UX+S3zW3wtvYDPoawJWWRmstjtqcwday0xhDKvRc4ypijFOfV9KjFNpWYQWJWQzPVVReKo51p9B1T1HfJkx97RxHiYf65TJ2eUmb9fl8qprnOyCfMkz1iLfspsYMY/7cZK/3ykXlJKfPWrX+Vzn/sc16+/NTPPv27ruo5PfOITfOQjH2GxWLztJPHjj2f+0//0Tf6r/2rJ2dmKb24b/+u1phm47743eeKJ53j/+5/l8uWbLBYidVZj/vfad6Y98cRzdF3PdvvWgLZ/k6Z14v3vf/bbcu577d3f3GrF8srV73Q3zjVtLc3eHrz2ne7J91bLOfN7v/d7PPbYYzzxxBNvew/SWvPDP/zDPPvsszzzzDPf5l7ea38W7ZlnnuGFF17g05/+ND/xEz9xD6j0LbYKVvq7/F3+I/4jvsAX+B/4H/gNfoOB4Tvdve+J9rZBSrEwxFQ5iZRnB1KqG2dVbykWSsWJDCVwp2bt9pLME9BHATYpCfqoHbdYHLQ0JTTkZwAzO4laTwE0bS3L1ZL77rvGpauXWS1XhZFJqk7FxU2EkPB9JGfPyckxL7/8Kkc3b9L3mylR6Zwj+jC76AW0Uimjp3jyBadYkk3iMFc6/ZgSWc0ArpkautxnOU0NRNTz7G4e84/zdWqG5+IecxHAs5s0mMBJO2xEU+7tLa4nmKUCilKze1SDAtNx+fw1c3V8d5NOXDgGCUoDUxJ6l+K4ApVUHbea3II7zlUT/+fvvwKUzrvYqt7vuXxDLonYne+WCEcNosjczlIdnJnmdr33GCKUSmCUBLaarmG1XpWAWEIroXzPKTLGyJ7rMEaqTWOCHD1t04JWDL7HaI1pRV5oHKMEZazMIZGfsVw/OmO9anHGMUaZGymBj5mRSBg8N4+O8D6zaBzb7YBOsYB1EkvXcv/lqyWoJBXZoFmtO7wfyErjGkv0vjB4RLpG5NVOTnvGGIXVSYk01KJtCEW2cbVcYo0E0ZRPNNYQcqBdtkLnnxPEwJ5b0raK69qQkyLEQMoDKinCELBth20W+KHn9nZL70c6Z4kh0tqWrusY1EgKmX7wLKzj0sFlbh7fZogindBh2W7PsEqhG0eOAa0iJgWu7O2zuX3MkCLdasmVq5e5fMnjXEPTGrqm4803jhjHTD9Gbh4fsV51AnDJCocwaA0nZ7TdAlOo+/t+YOx7cvAoHIscWO857nvgKo/94CXGs40kSdYNyyuHmKzwG0+zaDAHC1TToLPiofc9wGp/TdqesVgviArG4FksWzq3EKr+wiqkgDiM+FvHKNfSXtrDWgHDDSljtaWPnq5Z0rUt0Wf8JtCtDNpkmuWC4Ec2mzOszbjOYXQijiPJIzJSaEwC4wzBJ7S2NM7SbweiD4QQaErwTqQuDOMwolUmjGFK0uWsUM4QgRwSjbbcd/kKb1x/E9LI9nTgZIycbbYs1x05JtbrFd2ypWkEtBF8ZvAZjAQRF6uWxjiGfhT5uRjoFh3kzNlmI7JOWhNyIo+emDONsbTOCIiv0Yw+klIijB5nDVZbVCeVtCEGxn4gZzFEVAnukjPDtse6pqyVka989cs88eR7ed/jDwuDgVLnGAkntgRkD/zhD/8QJ5uBL/2rp9FpYBwjTdNgrMH7kbZpiDEREZmMppUKGJNGktXYxtKPAzZmrHEi29aPhBTJAcCglWbrgwTzcxIAU85F+sQUBrKEj5FhGFAobGOJQCoBq7btGEZf1rIszyGME0hg3EaskwRcDMIcgE+0RuTZQvKgFNoatDGEmDDGCRlXLAF+VSUkRGpGqr5VsRUSCYNNllyYg1QW4GE2CmMcDmHPoVZ/jyMpwq2bt2WdcyI7R0lKxdhTpS5QibZ1BTCcSiBak3wgRwECWGXIWRJ6zih8DKSYscaScyTFSEgRpQy997z65hss25a26diOI23jWK0XAlDNEaVzkc9JkvBSGWOACoQrhoKWLBfaWFSjiDEQY5CkCkCRv8hKYzAwjlOQXBlJiJISKsh7oJTGuobtdsvm7Ixx6Cf7okzsHZCuLhqyMwOi2EN5SrRXqdP6YYgj3nvGwbPZiuSMc1ZkFSZbYd7TU5L5HUIQsFCpylbGAImmbURW03tJjAVJRKccUVYAbIqE0ZbFalmA74qcfZE2MlPiKSWRDWzahmEYyUmebS7GTs5Vvk0SWDWxM7Eg7gATlFJYYyYAjUIAdzMD5mwXkQuwXxXZpWJv5CIHItfRU4BYa7lmCJ4UZxBLTQBqqydbqcrlvFvbLlh99+G/FQNmZcBIhWFEKWE122w2vPzyS7z22mtljtQUUD7vcE/nq3bz/Lc8TVM127lI4vDg4ICPfvSj3HftGk3bTs++yvkJk1kmROnfOA4cHZ1w68Z13njjdVJ6kY9+FJ5++klu3VzcOdfZeYdKYnuXl6h+V6nZPq++g9aJJ594lmvX3rxDMuFOiNoOa+ldY1JzcvQiW5E694hkhqn6wfwndt+D3fbWQbBzd1rOd24hmPogv5Zr38XdqHNiF2hUWRVqv6ovcb4HF3/Ld/lQ3eVvd/vDzvEKmnbggQdf4+WXHyZFM/ssO0flad04f79iE1DTydNYq+InN03D4cER69UJCmGgiWmWWNOaec1MIpOFkn1CKwEkyXdyYQIr/VKglGHTj8J4pAypSBnmJEnPSCKFzLbvSUkYJ0KIAiw2lhwzzlhWiyWpvJPyvojkdUyBTJFdSnJSpTLW5LLPR2JOxQ9UKC0SPxXM2jg3gTNJuTARRVmPq1OWEk3jMNayVQpykdXOAVXYdrSxwhIVAkPwhBgL2CVhtcFaS1ARlcR2ccaw6BZsh2GScOsKEFmjUNaIf0dC5cSi7fDDQEhgG8di2dEtGow2GCvAms3ZQCjrx3YQZkqyjLMpL14YvEjeo4kxEbIwyTilRSqORNMaVuslh01H9CKxphuDW3QoFMlHjDPY1oqflmHv0pqmbcjBC0BciXSWdUYk7pSa18YMOURSL2yZZtFOdkDMeWJzsdrRdAuREPRiu2gjbEAqK3wIQMLYBqUkthC8B2yJisxysDlLQYgva2tlO6wsOUYbsWlzKuyKeY4lyIYpcSsUrWtBZfy4IcVIP0RhKiVjrcEaeaeMKWDmLGw6qcwxZbRIH04JfbEJbJF3TYWhJyvEp0i5SLtZuV+tUSnPDDwImITCNIWCHCM+VXCtFqAWMlcD4i995atfZrlecvXqJR599KGJqeqiP0GNSwAHhwf85Kc/xdHR/5ezkyNyDlPfcxZgozKqSNKJVFgucZ+YsxQtlDic1gImTDFNEqrkhNUaUWyUdzQrUCFOxYpalSKsVCX2mBiTpKwhY6wVGb5pDORehDlLC8tRFiCaMvJ7TAmrNIYdpu9c9v4s+6A2RbKuFpsxF4mJbVf2dCWFc5lUAE4CdpsAPaoCgARcrkohYUqpABp9mZ9qGhuRqkRkyZTck9JWfJJqR2QBzlV/eLKlC/NdTHGKcQKkFMkJXnjhBTLw2KOPsOgWco2AyGVWFiUqM1UFu+RiT+rpGVNsDgXTOg2FVYpcANnFVivHAZM/opSMsZxPi8yiknMZIwyowYuPJRNz3jdn++ZOe2X3x1yBeHUMYi0eFAlRVeaX1ruxwZ1TFN8nledViwn31B7fz/fzPv0+/kD9Ab+WfpXr8eb0vUkKT5c4ZRaJUHFN5f2pgDstwyNYdVSRfpQ5MG/ypWOq2rAzCE3rXeulHLIzNhMo/4KdUn+r55lDxDWeWV252R8rpu4Ua52UMXfG7ps9ku+lVufx9evX+cIXvsCXvvQlwrdBYujy5cv8wi/8Ag8++ODbSgZWP/j69es8++yz5PwF/vbfdvzjf/wLvPrqg9zFGP3XblpH/tJf+hd84AN/+C0xJt1rfzZtb++ED33oX/HFL36sFD28ky3znvd8gwceuIcG+fPa3GJxlwX/O99st/hOd+F7sm23W/7JP/kn/M2/+Td58MEH3/ZxXdfx6U9/mldffZXT09NvYw/vtT+rFkLg137t10gp8dGPfpTlcvm2gWv3mrQKVvp5fp7P8Bn+Ef+I/4b/5h6z0jvQ3jZIyRgBCZUCO3FMlQBwoFb+Vt32LJXupeKEkrxPxXkVxgkJyJoSQBCjvVTj5EwuFUoza01NBik0M1iFwoawXK24fOUKV65eZbVeY5pGArMUuR+lSSkS8VLhGEZuXH+T62+8ydHtI8ahF4cUJSAS5/B2LCCrKfUjSaQLYJuLTmRKczC9VkTlPCcX6vhNbTfZd/GzHemFi2CfP63dySpEYX5gBv/sBAwuXn+uupbvTGdS5/tcHeM58ZR3zjMzO93tWvWZTkxTk8t99/EQoJSakj3nx1+dO2c5GKUiNQxzIddy/j6L46h3WCEuPuvz93L+RDnnUvXq0UoC0c3CsX+wZr1ek5Ona1pykKo+rdVUXerHQB8Cy+UKp6DTGk9CGwmUKQXbfiSExLpbgpYKRqszp2cbeg9hDKw7i2latv2ILbnk47MzNttj+u1I0ywZY+Tk9jFJi4xMzEiCetOz6Ue0gf3DA2LWdI2jXQit/xg8Y9Ikn9CuJSWRdMMY1m3L4CXR7xqpYDXWoL3HWSsVoo3lpD+WhLF1ZGPoFku2p2d0TcfZ6cjlKwc0l1uOtx4fRta6ReeE2dMkLIucODvOJO+xytKt1wxDZH+xJOeIcWfksw2ZRqoOX3+DPniyMZyebLi+HUugUJ6Zj569gxXLJSw6x+GlNRkH2rBqNE5nfJTqs2W3IF1W3D7riVkq7fptT/CBbT/SGMe6a0XmaOPR2jAMPWMY2foexsiqXfHQ5TUf+YEfFKkIldF7S1JI6Gv3w6rBoGlGJIBtgQjKwN6ywfuBG7ePsA/fR7NegisBWJVJVsAuCkVSCd1Zlg9dQSUBrG3DyGKxwt/aEG5vIAUurzt+8Mn38JVnnuHNWyd0XrNaLbh2ZcnpmVw7+ljkOTRRebR1bPot4zjSdbbIbNqSQJYKx0EbUJptCORSsSfV6oacgszns4F+04NpaJxh7Hv8OLBNib4fGf3A7dMTxtCjlcO2FtsanF5gLTityGFkb/8SjVvzxpsnAhbrGlTObDdbrDGMJeB0fHwCBTyrShIja4PSAjALIbLtBRQRspddrSRf0I2w/qkoVeo0+FFAPjEJW0+zWAj7k/dSpWs01iROjm7xO7/7e1y5esilvZWswReWwZoITmR0q/jBH3qS1155leuvvYo1Hb3f4AdfKmYBhOVlHP3EtGRKBW/KwoSjEcAUShNSwpXAfBxGqdLPJcGDLfeZWCwWUJJ0o5fEXQYJ5GupJA9BpDskeE5J1Evyr3UO7yXRUAuzs5KETdu2xBTY+IDPAW1FOyUlkbYIPhQGAgnypwIS1lYYY7SWoKr3Hu+FhUhZRWta8uBptC3yeyM+ZkyjWTUt22HDEKUqNiHvkvIFNJ0yjXWSgPUCYJGaYkleucahsmb0I/0g96uVyCWYAn6TBIjcjwAEMznHwu6QUFmAUhL4jvTbLavFEpSmdyIZ0LYNrnEFmFSYmchidyFV5NqYCRDuvQdyCcxLJbo2dvqbKkw7PgrQrnGO7KOwh5X9yyqRScC4KQnjnKPrOk5PT9lsNoTgybHun9VuyFOuoUpRnN8Td+2O2SZIOZOLpB9KWLIaJ8xSVUpB61rNHghpx55MNQwPKGGyUirRaAG5ZWcLoCnI+q4k2RhJaDTD2JMTNIUJAIUw4/UZSqV9LPLDknagJOZT6dss5VWTYbMEQJ4sjok1poKNdmwYSaoI6Gi2U5hsh/o9Pdk0xaaOJWGUZV/VJZGUi/ac0iVxVWyy2o93VqDgnW16ksGY54n8b57kqWA3uVSl7qQA4ubNm7z00kucnp7iQ2VZ22HiKsmX+qx2ODKpiUx2/lYsdioIabXe4/H3vY8nnngfe3t7qPqeFf9DKVUSspFEIsXA8ckxL379Gzz//AscHx8Rgsi7rlaZH/qhZ/jCF36QcTA7N1f+KSCQ3STcbptN+NrfTFZgTOTKlVt3ASid//ZbgZJ2/ZbddrcAxd1t9/liu2mzbx7gmHv3Ft2aN8P5D9Mx0t/af/lbvut35ee88/PsFZzr7V36dvHv042VI3fWunzun50+yc9PPPECy2XP88+/Fz827M7z6ap5Pt850Br1PZ4BAsYamrbl6tWeH/qhL9N1kJM5vzbDJJfrnEMrsEo4VET2R1ookuvOuZKglizrWIolUkw0TqOMwftYmG1g8CPeDwSfBFiQE0MvYG1tCoegEUkyHwR423YdImNqMFZhSuxASDYkcV/fc7Si0Y5QmG6MkcR/0hpVAKZay7WGbS/vujZkJYxFfhgxxuGHyGLZYheGPsg76pRF2GCFlTDmzEgu67zBOgGAt85JAjp4/OgxCFPP2elGgDFapOI2p1XqCgQIFWlah3MCJuu6hlzY9hrTogsrB2ScceRO0Rc7J6ckYNuU8D5itBaWzpRIPhYGm0BKER8D7vASKWf2Fw0PXL1vYrShFXtGLVeophR+xTJ/DVMGunWGFAPbvkftLaWQy+gZQ6B23iYFymnc3qIUFkBIUfzHPpB6ASEsWssj732Ur//JH9H3g7B/dpZF60gkoo+QpZhniiEpsQ2CH/Cx7n8CTO9TItQ9XQsrVC62UQxl7HVl8s4MPpDRYkvFiA8BRWYcA1YrhlGkogVUYAVEbywifyaAEaXEB9puR4YxYq3sucGH8h2ZlyEEkqrybHkqVFCmymkJGxeFQTzvrEl1DclZCoKckWKblDMRYRjXSk+yhzlktDH4ceCF557h8PCQ9d6aq5cP5vVid8lSU5gGVObhRx7ggx/8AL/zW78ttnlME+iHwqQtoAyDD8IiqxCbv4LwVRljP44Ty5SiHidzqjJiVrBPZReq4J6U02ynlBdHKUhBgH1ycF3DIs7WaxRboYADUVJgkHMm5AJeLuyGlS1oit8o+Xua5OOqiVaeRzm+svEYawpwSk33FwuIqLXCGDsEL+csMT+lVWHpUmgrMoIqp+JPiH2mtKx/lNhSBdpUC6SYfPJdJQUXM/A2TzZofa7eB5577lleefll3vPoozz6yKNoI3HUVFlha7xql5Fdq5n9S1GY9fK5MaDck+Bp9BQvqfaXLu9BBatR4rEGRPZWZWGaahqR2zZG9pUowLDJTL6wz94NrKSmYOW8w88mQpJxR9hijdYCCKygsx0bYWLfzHOstr6TTjd8JH+E96v385T+V/xm+jwn6aQ8n2pX7xTQJvHlqpxkzlIkYAE/7eFqer7zfl/jh3oOU1bw0a4dNtkad2sXjI56yM4RuzbdbPPsxCmFqrA8bzW/C+fskj/Nlvvub+M48txzz/GFL3yB1157jb7v//SDvsW2v7/Phz/8YT7ykY+IL/E2xnQYBr785S/zxS9+kTfeeENkaYErV+Cv/bX/i//tf/t/vaOsOk0z8v73P3MPoPQubVpnfu7n/m+uXr3Br/zKTxc2rXemPfzwy/y7/+7/m6575+f+vfbd0fYeemTKf72b2v4j7+GNP/hX3+lufE+2zWbD5z73Of7G3/gbtG37to976KGH+LEf+zF+5Vd+5R2XQb3XvjMtxsiv/uqv8qUvfYmPfexjfOxjH8O5d5f843dLW7Dgb/O3+cv8Zf4+f5//lv+W13n9O92t79r2tkFKMCcMqmMzJW2KkyqBm8joJQltjCGGWQKjAlFylopLrSUAUYP/tcVUq39UYSOSYCbMVcw5l6Rp03JwcMj999/PcrUWYISxaAzRC4sBMFHuer/h5vWb3Lxxk9OTY8ahFzmYEhSqiQ1jNE3rSDkRgwQ3dh1JCSjUrMJuxbb0szrClPurAK56m7tJqepY3s13qUmXXZDMrnRFlaTYPefu7+fZkdSOI3u+ovriuS/SDE9JihJgqs9x6l9N1L1l4oOdOVP7ri78rHc+Vzuf77rrdczVhXPM1XDnUg0loiGBjhncJJn+NA36dOxO8irDlDBM55577TNTcEaq00RuUBthM+m6ltX+kvV6VaQLFK1rRM4lZaw28o54qZPUxpC9AGpCAYYkI9WncRjJxkllp1E0bceYPN4PWKvoklT57R0eMIwDKiLMNZueMUWUtbSdyCkdHR+hyezv7aGMZrlasFi0KKNYL1bEfsQGaJ0m+oFglsQIy27FdnuLYLKwnOgGZxMqZXLUNCbhGlCm42izYW+9hyrvljMt4yBSP40V5pWFsULL3zgSij5kjk962kajthscDtU6fN4SUiQGGAorSSbinEUlhTYOXxK2WSkabYllZYvBs79Y4NoWmzOnWioThSHG01hHCplx69me9izaBcuuw4cRZVuSUtiUiD5wejYSQ0TnSNd28l6nREyRZtHhh5HtOEiltY/oDI1zjDFgrGa5v6KzDd5vufnq6zSm5eDKAUE70nJJ2zWo7Mgxo1pJ8mikUjcrzSYMrB44oLt6iFstS4WorINRI8HmrCRwrkQoMrUaFRVsA8vDFVkl3Mpy87XXOHvjBmc+8tIbtzk+PeNoc8omJM62W/b2D0Alok+EITDcOGGxathbL7CuoR+EBjpGaBYNZydbwnhGxrNcLWgL+C2TOTk+JgFd07C+eokUPWebLaenp9w6PqZpO64crAADCrquZW9vwbiBrBRjcpAzbbOQhIK2GJ3RWqrOz84G9F5DTPJsM5CjsJ4kLYxIWitIgySCChBkuVgybLZkq0UeShtJCEqmQaQ2kgBnfIq0XUfKkXHwLFxT5O40RAEmCqA1yTwk0biWHAPZR156/hv83he/xE984qO0jcZgp3VmTpKXYGjWXL3vEj/y4x/hc5/9dY5u3ppkKpqmISYJJFlrCSGSM7SNgyxVpTlmrDGsVy0hZU7OzoAStC63Z60kBkUKrCQ0jVTghiI5pnSpkM2SwDEKUmEUCAUUkWNijEmSjNRK+J3EUoJGt6QUIGsMmhiLlKOx5BDZpkCIkbZtGb2XsygBIqcQSEpPzAoCJIEKYM5IIkprqXTPKZKyAM/axmFVhhyxpe8pJ5wTlqSaVBl9RJNRqvydTEqK9d4BpEwYNuXaWZIjGozKMvap7pUBm/MkORtjmBIh1swyEhFwWk8V5ypGxmFkc3aGdY62bYTFwDkBWWsNGFIUhrhxFBm/nKLI3V3Ya7WWNUGSOokYBHjlkyQlkmJKViuUSIcq6KwpjEUCrnLO0bYtm82Gfrsp0gdlv91Jhte9c7Idct05y2wue2clR8wlSZWSJDtCmJm7rNXoLKBzbQ02JMaSJMiIPSnHy3m11cKSmQQwapOTcU+ZFAUkn5TCKnDWEnwk+IjVipgjWkkSOfXSjypvkksF+Rykr0lTkbmZGR/VzKLA/L3JVimJFDU9G31u3Hbtjonhstgc5JnVURJvJTlk1HRdYbWSy1Xg1S4U461SHO+mVse4JmzlbzWBO9vt9e83btzgxW+8yNHR0WSjTnaarjJtarLXpzEs15ufwXm7sY7hYrHkvY+9lyff/yTrvb2JqVXke+WdCsyJrhS9sDm99DJf/epXOLp9RCqV81MCLidWqy1PPvkif/Inj8v82XlP5u7UeTMhVpjZyeaJpJQkCBvn0frOINFsvb4VQOnC96f3946nc+E53e3YO7/7rbYp4ZjP2/OVUeWO792l/+f7PGX/Lnx+IYu/++O5/GAdwbsAqdS5mTM/vukZVn9iPuTBB1/l8PA2r7z8ILduXWKzWZGymq9ZQYs7SVtVTlLXhgr6b9qG1VLx2GPP0zYjVjeTxLct4NYcEzHnIrNU9jk1+ysCDsoC0i5AAWNMSfaHwkYh/Wi6VvaFIgEVfRAZUW2wTthexqGHDG3XghImVWdlDxb7OqITBXARUFpAsc46et+TdBlpVYCAOkNSmLLXKmfp/SiycVYMGK0NsQCsKnDEFpCCsiL/HlJmGAPGKFSxpTG6sEYKm4ZIolZmHl0U7PUkzQWIDJSWGZFSpHVO2B/JjPgiY5eJKRTJKJFYCmPAWieSoimCtlO0IMXI6AuwNIttpop8WMoZ64RtJcRY2BmFEUgX5h5tFG3bCbtt8vQnpxhtaRetSO9a6aMUiFHklgtnTQFx+BRwex12ucA4VyRaZY7k3fVoN/lthPmUkHCdgO6M02xPT/BnW8aUOD4bGEbPMI6gMyEJG611wlKVI4TtiDKaxhnarsUHWcdSzJhGJAmHwrqKynRtJ2uQVng/EgqjZtd1OGvph54YEqdnG7KCRWixRpOywpSxMiTa7GTexoDRFmPFDhcgMii0sH76NK3xMZWiuyLBVvejWAD89XdrBFCWC0tOKXlC4MIFalIBCYitKDKBIumnynqtlQCTSFU+WVoF9t66eYtvvPA1VssVXdewWnUyb5mlcus16mpijeFjP/IRTk7PePpLT5OTJ6VYQO7CDKsLC2cIEWsNWqnCbJQm+1przegDGQGEAEWSUljWRSRZQDDGSHEgqsQId+0opSbgkoAMS+wlU4pIJCaYSuFZBXklSpGAEltSK02KsjY5Y1EpE0mEEl/JqgAyavypMBzt7iMp7exvama+UVpPEnCmFAKIJKOXEoBc7l3XtVz2g5giqhQ8VoqrlIWp1zUNfhjFnpjAOjNgrWDGyKSJaaoWAsSYp9irMCyJHb3dbHjuuee4ffuIx9/3OJftISmODMOItXaSyDOlICcj73cqIKMQKxPQbNfO8cldGTU1geGrHCRQGFOrbyDPyxhhx00FOKS1xlhbCkxGOb4+hLvaKGraVKuNOEf9ztvXmSJrFqPEY5Ssk8bMYCWm9ypPZzgfq5Tv7esDfpKf5Mn0BM+mZ/hi/j1u51tU+cfKeyRzXZ5/VKnY7EneZ4R5L1XwV84XDJd5f52mTm017jrFIXeMk4sG0E78dD6+frQTa63+xI73oWBa31QpBJ7s5PIYd797h5H0XdxyFubdZ599lt/+7d/mpZdeeseTrVpr1us1H/rQh/jwhz/MwcHBBTv17i2lxLPPPsuv/dqv8frrr9/RL6Xgvvve5Kd+6tf4xV/8f/AWL8+33Fars1km+l57VzatMx/+8FO8971f44tf/CjPP/8+3njjGjn/64NL2rbnp37q19jbu8eK8ue61X3yXdYmm+Jujv+99m/cXnjhBZ566ik+/vGPv+3nr5Ti4x//OMMw8PnPf/4eUOl7qN28eZPPfvazPP/88/zsz/4s165de1euC+/2plA8wAP8Hf4OP8PP8C/4F/yv/K+8wAt35ADutW/e3jZIKdXAJlLBXVLBYvDHWJiKSpK0BB5CTFPiCwrlszIos8N+gzjbcszsmFXHNMY0UY5LIkKc38Y69g8PuXTlKgcHh7RtW8BA4jBqJQm5nKSacxg9m+2WW29e5/joNtvNmdAz54AqlXwkCSmJ96uw1tE0EoiMIV7wBfOO2yZV7tNnJatUYlXTvd4NwJPJU+D73GKwE/Dm4mfn/ja77kLpLMddZFG689p3vigVTHUeQDX3lJ1ERT3/RPdcjIlzrngJJM0VTewk5Haqh3d+nkFX5X5gCuLXAMU0S3aTo5N3zRTsm6royjmnYNJOv86NhSoBsJLkJVVKcjWrxZXgba0s00oBwhRjtBGAkrM0rWO5WrC/v2bRtAybnm6xgKwIIQojRgwslBIUcxK66NQPeGeEASIm2m6FshbjI8Y5hnErQIic8WNAA8tFh1eJfhw4Oj1iuVjhGsfx0W3CViRw2mXD7c0x4+BpG8Ni2aBVZu/ggKQUzmq6xrJeLxmOe1rlcJ3lbBw525yxaBpaLI88cJmXXn+TrhEprfXhGh8CN7c9fui5crAkjqOw9/jIpcNDfIi0rkEbh4oB1zb4occqg7MtKcLRpqddOI76gSaI3JvWmqbtyClxdnyGVpKUVVqxWK7wMZGTIsfIkL0AL7KhaRZQqj+Hs1OaYFgvFziVWSw0i9WaYRgJYyQMIj+1XC65dXzC2XZLjiOLVsBkPmR0Ce73YyrSQhnnJPAbcqS1jqsHh3gfMGQG7zk53fDmjRts4khrHQ8eXqVtLFf3Vjz+2EO4VcNwdEbQ+5yOI/uXr6LIxFIFnlXGNVK1aRpE4uzwAKOApNBNQ0yx6ELoEjEVinvlJQCYrcXEDD6S6twfAyYpbNuQneLBxx6BKyue/uM/5PrxEUorDg/32W7GKZkT/MAYBs5unjL6A9rtKGAALRX2223PydEJYYjYVom83XIhwCTbcHxyQlYKe3DIdtujkD3BOsvBek0g0q0ajGsYhwA5slw59vc74o0TbFA46zBqIXJLJtE4I0C5rDk9G/HhhBASWkPTOGKQZIFVhq5tSyJa2HjSMDCMgeA9BtljjCoJGifBbodh228Bqap3zsn6qAxjGOmHUWQLtAEjczWEQFaZruuwzrHdSvLO6cywOeHpp/6AR97zME8+8RAXU6A1KSlJK2EOevSxB/nAR/4iX/yd3yNEYZnqx5GcE8Y6MuCcxftQ3muLtY5hGElKMY5eJD6MFvkzDc2yw/sE2TCOPcrIumW05uBgwTAEcgER+lEAQ9ZacRJjRiNsO0oZvB9k31M1uSJMRRiLbQozYpJguNaazekJVgvwJsaESl7Gxxgysg76cRQ2hpIYyVrP0rBlv3GuLUH7hG0cTgkgebc6VrbGiHatSN4BWUv1spIcK6owBJXdD2MtWYUCktacnW7ltksyCnIBMxUpDqXAKIzShKjJSpMK+DVVOYfp3AqSAJWIUawHpUlJ2I9SzOTNwHpvzf5eYalLGWUVyjislcCq2FAK0zQ0jaVphDFuHD0+io1SbRhTAGaKSBSOLpzVmGIjiS1XZQ1KUsckQtkbrbUsFgvOzhq2mw3jMIgdtDN3ZzbJwu5DSaRQgVJZrpznwLwpiaqUAj5CCJrRe5yTpJ0kViShYp1F6YQKcdqztZYx11qSLTknmScpEaMRYFaKjEMo4CxYtA1N01CmBWSFz5FYgHY1OZbLs89xJ6BfkreqJr1Umu47J0moV2kNAdVnKgC67tXV7Kq5LK3PA9kFeBSpDKITUE/y7/Je5Twn/7QixFQSC6okaXIZ38rW8+51LieA0Y7ssPx9ThpVYH+MkVu3bvHSiy9y++iosABIq3bndDxMrEqzgV4/n8Hm8ls5VmkODw94//d9H/ff/wD7+wcCGqjm4o79WkFpIUa8D5ydnvInf/RHvPTSi1LtXPyYmvApljlKZR588E1u397n1VevlEr22uOdISj25dzv2U+qFFPyDmSuXr2Jc2Eaq4vtDpdhx9y96E/8aYGIt/r4rdztb8bS9LaYYIsdP11nWmf+9EOrka/O+VB3SYheSPgpzvs0512weZ5WcNL0SZ7dP1WfH/MqqZRiuex54snnSdFy48ZVTk/X3LhxhW3fnUsyVFCkTE1JEGsjErPOOd7//ob3PX6CyjcnpuBUE+8poRVTolShyCGQtBFAbJb1FK3RZZ0LMVCTtqkwv1lnSEFYUodxwNkGYzJDP5BC2Sucph/FBjJG4xph8Wm7jgSYwhrStJbYB0xhlh1jlLVea4zV7K8XHJ+diS0dIovOEVOm98KKt2jtxNJIFNsqpoQ1Bq0SpIS2RoBQSmO0IScYQsA4wxAiJuopnmCsgwxjAQrU5LWzblbyyrLmCFir7N1lrsRxxCSFUxZD8QNcU+IcInVnCiNhPwz4EMgpCoOoKn5lzkCRE8sCNDBZFYkvYZVsuo4UE4pME4Wd82yzhRSw2rC3WHN47T4O1ksOD/bQjSEMI063jDHSdktQmRyiyNSWeSS+q9xo03UUxSrZ28o+Ndc9lQWwzC9V5k2uxVY5QwE/a2PJGvYO9nmoeS/7lw/ZDGI/NY1DKY0fgsy0nIg5EIdIiFLMkJLMoxBkb63SsEYrlFETGETrwtAVA8415JwFDFVmcdvKs1AGmq4hROmjVpRCHEvvB5SzaGUBQ0oBWxhy6vk3/ViAk8IiXuNeCi190gL6MqKZKIVEUQqRBABYxk5LTEGk+iIhBWxhQzRK4gZJCwC+AgprwijnVGQJNc66KZamlebrX3uBw0uXWK2XPP6+RzH6/MKo6v/WOEiGbtHw45/4MW7cusXXX3geHar0mjz0uuZlCtOVEdZJec0E5KAKeEanWkRYCg2VLWuJyCJrrWgbWZ9CkL/FKTYocz3v7JFVfm0GZ4BWVbK4SBKXdzCljLXib8UcJtBSSnHa24wujEhRmA6FOU3mcJ2/uey/FWCVy/5qjIy1bMNlElABHFnYLOtxda1XlHjVHMNUWgvestitKWWGwc8yalXCrEoc1t3FqOnaE49Smtmu6kajdZXXE9/g9Tfe4PbREU888T4efuihArBLdF1XwI3lORt5j0iRXPw2lMhjC7BH5mq8AyAhfi6p2NtFAtvUfVEp8iQrJ3aYsWpn75Y9wVqDH72wtKZ0zh6YR0/G4pwZVIZrF3tTRgxTbK7KXCRA3PIMyn+qrmHVRqtMp2rep2XJyzyiHuUR9TAfzR/jqfT7fCF9gTfzm5OEqtFK/OBaKFKGKuU423ZZGJeme8mVQay85lAUAWb7pt7fzIBV7dvZfpEYwTxedezl951ncRe/YxrnMvdTFkywVopEnuZcZfur78dbW3rfPa3uK88999y3DZwE8MADD/CpT32KRx99lPV6/baTfN57fvmXf5mnn356Yk66W1MKPvjBp3nxxffwh3/4Q/yb+XkZYxLf933P3GPS+S5oWmeuXLnJZz7zWYah5Stf+Qu8/vr9fPWr7+fmzcukdL7g/5u1T3wi88lPvkrXPf/t7fS99q5uyhj2H3nPd7obd23dpUu0+wcMR7e/0135nmwpJX7jN36Dxx9/nPvvv/9tH2et5dOf/jRvvPEGX/nKV76NPbzX/qxbzplnn32WV199lZ/8yZ/kYx/72NuSp73X7mwKxUf5KB/hI/zH/Mf8Pf4e/xP/Ey/wwne6a9817VsCKc0FHsV50eKIBi8I/JxzzVkWWnKpPAQJ1BhjJzpmyabNVM4JhaneqBIWhZosVAhDgNYW5yzr9Zpr919j79JlXLuYKrz0FGTJZCVyNDEFjo9u8/ob1zk9OSUOPSl5cvSTZ6m0wmQKS4MEELQRZoimaaR6bPRFw36HYSgzg2F2EwV5+mAKjoqzeZ6dqHqqNX03BfBrfEvvgGOmQy4aoHm63Pz57NReZGCqzqracY6nM1XAz11+rt3dPXcNppWhQO18NgOz7pxLF5MUu1IqyhSA2m4gQs1B4t3rz8fVE9U+z32QRNP5IASlekihp+SgfE9PHa7a9jWIUZNVu32u19DagJYASE2wLlcd6/WS9XJFHD2da+lcJxJgKSDSOg120UgAfghSzeg0TePQ1KBhxgJ20TEOI1aJdEOjDdE5Qu/RSjOkAZ89K7Pi+HjL0J/h48h29Iz9wFot6fbWLPcUrVWsVgsUsFjvYduO/uyM1lj6k5FFs2D0PaenPa7r2NtraJuObBRhjDRZs16tMW6QytUs1OhN03Ky8ViraVoBNox+ZEyJYfSs12v2lktuHB3TdQtGMtt+EPYPZVFZsexaYhSwyXLZSJBft4z+hNYlSWysDghDIPSDBOvGUXA6MWO0VF0LwKmhbSytc/RhZPAj2hjWiz10OsPnRB8GzrZbotY0XYsfRkI2eBzD6YbRD4QYOT0baNoWayWRHkbP9uwMrRLWaIbTs5KQjyUw6Ng7WNP3I8QsknYHezx4sMcD+5e5dHCFE+043npWl+7DaM1ws6c5WKKcZjwZJDCdI7aDnA397RFLxC0cyjqSTyVQDEZylcScuP61Vzl54zZXrt1PjpFx6Ln00DV88LDtef6Zr/Paa6/z6Pse5PDSGnTkfY9c47jf0o89kOlag7aNyHJ4jTJrzrY9xjQoEk2r2Q6B7TaS8sjoexQGP8raH/wIWrNVtrB8ZDb9lpACi67BOUvbyfvrx4hSmb31CrvfcnTrFttRYawmZIXWlkW3xzAE0JCzyNelLFWaSUEfPKaxLBYO2zSo3oMR2v20w+ZnrZ4AGCiN7swk22WMxqSIMpqx9/gUMcXnl0SgVPiG4CHVcHTCGjuBBjJMwVKtFcPgOc1nOGs5vn2T3/2XX+T+S5/h0pV1Of5cdrosLgmVNc4afvhD38cQzvjS7/8hHJ+w3ZySs0KXrGhMcYrrn23PpDJca4ZxpA+edrXA2YaYAlZb9vb3uHnrGJLCWoVrLFo3wpAwjsQgmZW2dYScGMdRkp4pMfoRoww6WcYQGIYRlaBtZA1TGgwabS0pewiFzWA74BqDsRalHbq1WKXZnp0BYLNIygQ/YA1kDf0wonLGOccQfJF9VQgPQZ7WXcGAiM3gvUepLBJtVuyJo21PjBKAVShSqHJ4Ga1iYQ+waAVd5xiDMNdNYNIqZaAVbWHRiUkgP6pIvmlDSUDGknfIoG1he4gUegapaE4ZlUUecIyJ0WtCdFhd2KnOTukWLYuumxIrOYnEi1aZRevwPkxgi8pm2DTCFBdiENajskfJf+XaqCK3mIQlLEPSgm1ROYosnxW2K2st0Qe8lnkoYKUztqdneO9LEqeGxFORClLT/K92GAWwRKmEr4BmlVXJ7AtbgEjcZEKoFePlfSyV/o1T52RFdK5JEcgFIGWUSD0kY1DGyn4+imSvJKUTjXUoNCnNIJjWNQKuTxmMSBWNYyCNI1llrNbTfh9TxFhhp4iFSQtmUPSu/SbMPnmSk8slGSu58ZIQSfNzrP9Oo1cTeoZzdqDsj9W+UjvXn6UsTWE7e7e2KTmQxT4T+woqEAsENHbz1i1efPEljo6OCnvUbBjqmggu61+1/M6tqGr3GrMMR5UUss7xwAP388Mf/CAHh4cY43YkMBS1+lzmdSLlRD/0nJ6ecXT7iK+/8DyvvfZK6XOeEmqaGfAi96axNvIDP/AcoHj99cuEsPNQ8/xvvvDHmrjTOnJwcMR9991gudyyv390flDLDd81RK12PvmmMey77Ee7Nv+30HZ9D7jouxSPYcdv+WYVRm8n0XO+aONcvpvz3smuXZ/n3y9e55wuay2kmH+fflZ5Op+q171wLlXG35jEAw++QeYNHn/i65yc7HP9+hWGodsZD8PR8b4kHJTYFl2rODzs+YmfOGN79gKbU40zIqkbQkCAIqaw54AKYh/pwoZYGXLk7KCtLdKYsqMKW5CAfZRSxBxIRJRyDIMnhpGYoxQehUhWDts2OBRWK2E1VSIbra0j+FEkXIcoMrMxMI4BbS1tYwpLoEjKmawEQBqCMClmGQdjDGMQQK0xksiPMRCzrA1N09I6x6YfhHkoZ3wBK4EWUNYE1NU4Z4gpkZUhxowxAgRtu5YUEmMo4MeUy5orSf1QgDjGGowR2eOQIiElUJrGtfjs0TkTUmAMQYpWrLAhJTQRTRw9MYUCKo4YK89WFfkl70d5z5Uijr7sr5V52tC2TbFNIIwjWmnWbcNeu2TRLRnUwOAjrlvJOTcB0zXy8xAKK2ZCW2FDCn1Ak9FOC0ipMs6keQ3JObO5fcpw1rNcrWR9DoFuT9iBCYFbN444PT3l4NIe3aIhq8TlgzWb073C1jLKPHNSxJNjoGutgGwLLscWpioBR0RiEDnbuk8XVPgktam1ACk22x5rtDD/GIOlSlmBtboA3wdSzvgkLFo5K5wVgFJl7ansJVnJLhGLzKtrrMh3UeISRglTWcwTqwyUvV4LKMJYQy2Q0iXWUhkBq7Sn7A3Sl5zyDLzNCmUqe80MOqgyaoDIMKfAs898hb31msO9fa5eu1TsjhkUMa9TuaxNiv39Ff/Wz3yK/+uf3OT41jF+7MXekgBIAUnIuh2TxLsEwCbSSNroUrAha0rjGgLC7lmZf3T5fiq2SM5Z3nfF5LNOAMkk9lVMUuxIZVEX4TDZTnUteMhS9JCEzVAhtlpG1p/gRfpa5woiExtVl59TikUqUhhUdZHnm9f33QK6AuDPFRwnNqAvDDm5olJztXcF+KJyLusPxeZmkq3MZd2qe7FIphWWqCx7kSm+glIU0KSAbsQHmaUGUbmwA0sfxJaNnG02fPnLX+b27ds8/vjjNG0zsSlVORfpi4DnTY3BTnFN2SVNAdLFIgsmhSYyr3Sh79RZ7zBllbVKFaYmQfSV8VQTwDEV8Ke1Fu8tvtjnEziYMufP7bU74b+LU3va1oTZKOU8vzMFLJRTFrY+tcO4WaQK5TUt8cRyymnf1pr9vM+n1E/yQf1BfpFf4o/iH7MNW1LKBO+xBchXA6siASf2Y7XFdfXjQn2fZknnlGepvFzmyRSkZQYNTX/iQiw0lyKQHbPlfHx1nqs1TqyUOk/+P4HIdm2XOk+EDepuLLDfLS3nzDiOPP/8899WcJK1lieffJLPfOYzHB4evm1wUpWv/vznP8+XvvSlO+Ljd2tdN/Dv/Dv/HMj88R//ICmZP/WY3ebcyHve8w1+4Ae+zNWr13nkkZfuGqu/196dTSmZAx/84NPkDD/1U7/GK688xJe//P3cvn0wfS8lw4svPsI4NsQoBXFNM3Llyk3+k//kOicnv8Ebb3x3vtf32jvXzLtU2kkb+66UofteamdnZ3zuc5/jr//1v07TNG/7OK01n/nMZ3jllVc4OTn5NvbwXvtOtLOzMz772c/y8ssv87M/+7PfEuD6XjvfKrPS3+Xv8jf5m/wX/Bf8U/4pp9xjMPzT2tuXe1N6Sm4Zp0Fp/OgnfXr5jjiEIQRhSqAkyqos0RTyr9VBFTijJidJKT0lIozWaGMxWmGMZbFccfXqfRxeOmC5WpDQ9NstXhusdVJhZSRZ6mPEjwM3r1/nxvXrHB8fSXVYTigt1aKVylpiGQWgJJEh8eGyLtX84tQ2riFGkaaJolcyJ5eY6axrgglmh7cGMmqbkIm7yYOd78/VMurc32sgvlbdT3TGJRBVJUByvgDiUdxxngmINMUE5n7UQEsuCZ56Dam8rOcoX65OcPmfc9IRO4Gf3evfeU91Al0Yj5L1UaYEL4q0itGm3FSaD90BTdUKpMkVLQ76Lv9VmXBSaVr6MQOZ5Oanv+n52UqgpgReavDISOBFaYW1hm7Z0i1aUkz02xGrHSHB0G/whWre6o4QIYcoVP7GsehajLYiQ5UjBoUzhsZo+hQhCQik73upFvOJbt9xy99GpUwYRvwY2Gy2xOhpnKPRC9bLZUkYZ7q2hSxB+zAGNBGnG4Z+QKHY5oGowS5XrNd7nJ6dcKsfWNgW1UeyWXE6DmgCXec4GwIZYaPJRmPbloW1nG1OCL1GmwarNZ1t6H0gpxGFY7Pd0m9HGtdKID1oVvsLuq7j+htvMvY9qm3ROFQ2jGMSmYDUkGMm1AC3NSwWHdvNQEwJYy2uJLgXqwW+7+nHAKal7RrG0VMrCi/fdwU/bnnz+g0u7R1ycGXJ9dePMSmyf7imW+zz2iu3OD3ZohWs1x1de4DGcro5IwbPOPZshi2LxRIfEj5mjNUcLNZ0eqDfnEnFbAj0mwG/jTBmDg8vsR0zp9eP6U8HVNIcoojO8+ozL7K/v8fqyhqwRJ+5/epN7LBl78ol8nKkWXaM40DsR1xM2L01dunonOb2dsPtF1/lJHqu3H8/fohcf/01utaiF5Yrj1xj/9o1FA0HV69x9eH3sHrlRpE8G4lRsWgc47DFth0+BBZdhzEN2+2G0Vc5s5GME2nAqEqSKbLaWxG8pz8bce1CwDMqEseM7hZ0iwWbk1OM1ew1K6xyJJ/xOqKM4+SkB1XkQmJi3PaMY0AZRdd0jMOA0ppo4pTksW1LzIo4eIiRsR/RGoKfA6ZaW1IS1hZtFNSqUR/wWqFiJAFjiBhrUBpCyNjOTnILxmh8CpIcLMmJmMKUfBiHHq06rFbgLGNOqMbisualF1/k87/5RX76p3+CbtWW6uCMmqKG83qtUSwbx49+9MOkIfH0U0/Tb3sSFQAsQcyYIstmRcpB5AiNJGgims3ZBmcd1jo8iaPbpwz9ABlsoxgHL8tdkUzwIQqQMgtblR93gtRlHR+HUd47I2CkGD05SVTTqYa2bXEpkZSmqJ+RieRsaJxDawEpjVkzDANBQbvoRC4jiJxM4wS0aK1muXJ47zHWsdkOjD7I2p5Kpbk2GDRZZUJKhN7TNIZsDFlpskpoZcpYG0IUya/GOtkzi8xLzGqSaQFJ3DpjRA6uETYKck18aGIUeb8cgzjTzLZLSpGxJEWmjRRJNqYg+4ot83YcM6lIbsSYODo5I4TEarVE60iOIvWnEGC4ay3DMJZ1TCaLNaZIURQp3bKPGaMLC4HMqVQTEdpQJSRyDVxLClBsNhS2MjBEW/ZIYZyorEqhgpV29u65SfCcVAHBakq6JlK5jqroD7E5cialwBBDAVaJ/GDXmXnvTVnAbuXnXSkwuQ+DQtM4jTOOhR8Z+oEQBWTufY81DucaRPomCPuhksRkrZCnsaQEox+IIWFbQQqlDMZYQq2YvmDTzEnBmSUgqXr/8lGOkgzVSlFHzxhTzif/VXtRV/vnnA1FSaBKdXy9fGVhSiXJ/q5uJQkoNmWxkQvzat8PvPbaa7z++mts+35iuJLDih1WEzY7QJLKKrVzkR3gClCA37okSa/d/wDf//3fz7Vr12jahozYVhMAMueJZSAVANh2c8bN6zd4/oXnee3V1wSMqyozVkmkwpR8rLZ1hcJYm/jBH3yW++8/4MaNy9y4ccBm084AtwwVTlXuAG0ily/f4NFHXmJ//4SZcXaH9eccuOa8DS39uTPxVx6DfOdcEcDc8h1/ufgYd5K6OZ8f/bvY+jsdPGfl1yTxvIbsPLcLXdtNpt15/t1xUBf/Mo+LkhOrvHPtcy2D1ti2K6fSdAeHZAX90ZH4ITvddYslbrE4d4bQ9/jthhQDyQtjkZruXcDlly4fcd8DvbCWqApS0oy+pR/3CeYR4uYW9x28znIJN64Lw6EubH41Ma+UxihZs+rgGG2KPK7ItOUcsbYUDGlF8HWvErnLlEWKy7aGPgoLZCpsKwKMjWhjMMrSODuNr7DQFCagWNhWEGYkAE8QmSbnaJuW0Y9sQ8RpAyGBdowhoEjCshHSlJxFKbS12CLz5aOSvVxVsFCiZup9CIQge64kgDNt02CNZbM5E/CusVTWvxgz3kcUpgAS5Ja0EZYM78MkZWW0Ksn1VgDdMYISVpAYiyOiYbFc0KTA2dmGxWpBu3BsznpS1rRdg7UNp6fFllWZpnFY26EotnMSmVIfvMQ0pvVc0zrxo/zoBZybEsFHkaOP0HULQswMm4E4CtC6QyRdT28c03YNblH2vaTpT7boGGiWHTgBTcUUST4K22LboJ3BakXvPf3xKWNKLNYrUkhszk6xRqOsZrG/plmtAEu3XLG+dAX3xk1hstGSfDfaQI4kqoSwKoDfREgJo4yAqHPCOJEirqBwYwX8M/Zenr8W2zInAZob60gpkKOA1K0x5EiRSxOwxWYzYHSRdY5J4lkUid5cGL2FTlv2G10khwtIKqUCSi6gEokp6AkoPsmfFfAzKk9AhFjkyLWaWb0EGJam/VxA2Amriz1T5mMqACZhxhSpYLTm9tFtnvnqV+kWS9quZe9gNYPk36JpBQ/efx8//W/9FJ/9F5/jyHuoHColdpOhzHdD8FLMV1mTYkwMSYqAlDbC2hpTKSiUdTOECFlNEokZVeTkZom3XBBR4veXYoHyDuWUSOUZ5CzFjdoYeT+NsAiKOVUBTwajtIABYyBkeYcbU+SbK2DMWlRZr4QpzRBiZX+Xvlbp3hqrFGCksNCZEgur5I8Su9TkHIutoAWopNQE1iGLpFpFmRitJsY22e8SqtiuUKXiVFlby78liBVD3CnWmMElWYnNoMtc897zyiuvcOPGDZ544gkeePBBMiI9b40h74DroDCslXGowJoKJBOxwsKYNW2R0u9q4Ob6HpDnZ1vvr8y5rIT5KSoEBKlkTGQv8qWoNU7FsGqHmX4n0Fh2hV2b7ny8cWJLn2Kb4iOoJPeVtMZO8Tt55yb7qcZyix0mrpIUMx6oS/x77t/jZfMyn9ef54X0ArfzLXyxF42x0rNynup3YWa7JGthJ8wxgy3x7ukaipBjnRjFVz1/n0xPfsd4qj5FmX8XmZTmcau2lGKWF2TnuxQwX71KidPPqKnvupZz5uTkhKeeeoqnn36a27dvf9ukaZ588kk+8YlP8OijjxY23bfXv5s3b/K7v/u7PP3002y322/pml038Ff+yj/jAx/4I5555v08//zj3Lp1ibe22DPOed7//mf4sR/7HR5++GWMuSfV82fRlNY0e/tl39fsP/oYSimOXvy6yMPutMWVq3SHl879rb99i+2N64R+S+jPM14pBU3jee97v877f+jGOcBJyoqTkz1u3nqAjf0429ef4eFLv81iseG554Zv3w3fa/faO9RM036nu/A935599lk+97nP8Zf+0l+6Syzk7k0pxaVLl/i5n/s5/vk//+fflP3vXvvubCEEnn76aV588UU+85nP8OSTT0qB/732r9UUiod5mP+d/53f4/f47/nv+Zf8S17kxe9019617W3Ptpwp0guSlEyRifpWgB2p/C7OjbVmqhSqQBXJKVQqWWmpBAHJ4sBqmJIWSplCGd9y6fIVrt53jdXefmHDEIe4WywAVRgVAqlUuN++fYvrb7zJ6ckx49ATvafCiUhIVVtOGLmQSEflCs4pwYpCAx1zwtpCh68VxlrGUSR1cioJlJkjnUL3cS5ZIIGo84jg3cqt82NdoDR1bOXb03OQ5IumVtHXqr1KRT056OwcfyFxce6zguA5159cAw71GhcTDdNh5diSRMypOMJqqmq6I4nCnBS52M/pnnYyE9Ux1yqTSnJvvq8aPJGg4pTaKcFAPXWSKeajcpVDOP8cZI6WpAXznEXV6rEKpJPqZMozNdZgnVTZSqWhpetaVAY/BBTC2uJDoGkbjDXEDCFEYpAgs2ssRilUMmyHkQi4tkE1wki0OTtFKcVqvc92s2W72UiAMyZOtj3aGM7OTgkhMW5H+u3AtQeuslgt2G625V4ye3srnGvZbAds2+J9JISINppub83mZMPJ2Rac4dCuODvakm2LypHxbMt+tyCT2W63tF3L5YMDjl96mfVyDw3E7EkxE3OmXXT0Y0DnBEESfHa1YnmwR4oK13VstgPbMQlbU2dQMbM97YUpiIz1Ad8HGmfZbs8Y+pGTpBFynkSKmdXBitX+HqMHkidEj9aZGDx+LIC2pHBNh2k0x6cnOG0xSqqbtc64pkPrFqMcy0VHvx144/UN63XH0AcW7QKtDGFMjERyjrRNi1m2jIPFOke/HQle6PmXXUsMkRQCJyEQukzTLVg1Cy4ZhX/jVVK7YKsaXnrjNg8/cpWDwyvk7YC/dUobA7e+/gLXXzGsr+6xsAusVqS1Y0ye2197nTEEnvv6N3jg4cd44PIKlxIH6pB2sce19z5CCol9a7FNS3dpyX3dg1hn2X/kfkbvWe2tReKKzJUHHmK5fJbWOpouc+vWCT5EEooUI1lpFosOlMgw9eOIU4Zm3ZFiYNv3kqexDm1aXGvwwxZ0ZjtsWegFl68cksYIMbE5OZUEjbMopbCuxUcB62UUXedQOmEUtG6Fj56QRYIhhSrVIUHzqVJU/f/Z+7NnW5Lrvg//rByq9nCGO/SIHjA0AJIYKAICRJCSCDH4C01WKIIhUW/2f+AHP3h4cNgRfnfYrw47wpLs0AslWdZASqIomKRg0gJBAQQxNBogep7vcIY9VOX0e1iZVfvcBsSGRLCbxE0E+tyzz961s7KqMleu73d9v5bdPuCtoXMe3wvDMDDGSN/3rNdrtrsdMWnSUlsm1QRpykpgyUkBE6yCGykURkb8wlEKxJTUNqAmjJ3v6E0PRQm6IYY6V+ic5a1j0S1giIQS+OrT3+D6tVM++emP0/X1jA/WhvbvUsBiWXeWj/3oj/Dycy+y22zYDYWYQ7WXsEp2qMoCTe2PkvFdj5FMJhNTpF8sSTFiq41hRRGUpFUgDaoEJFbX0H2KTWaBFEdstcESdJ3sVyuWnWc/7NiGSBwiOUHOmrTtvcVbwxgGQiyMY2Qfd4hVUnGqQAzGKGjHvpJEciWDOaxTazBfK1a974i5kEtWxaQspDCqipPv1C5RtKp6HEaW6xXOKRnTioGupwAhjCwXHQiqYCTCsBsr6FewFrqFV9BACjkmBTdMAywNVT9S45lcSVyobYe15kAtJl9Zr8W5CdgqKBgzjnuNQUxEjFMCeIwcr5eTQqS1Gnd47/HeKThaFGQQMQdV1Vmt53ImlUxOUS31RJPQExDhHBYl0WAyBplAgooh4X2HMQVjPEYcfd+zXC4Iw8h2u2W33RHCOJ3HzB+RCTBTy78aWzUyhshEsna2VmIXBYhKyYSQCSHRdXM8CWo92Duv2E1WS9RSCknUui1XRS9TLCIZazT5PiZPDIEYlFxYGBXccm4GDdE+K/HKKMAP5BI1EeiVCIaoJcxUkVzKZPcwkToqyNLIzNTxQcwU2bSYK1drw0NCjRK4WuzViFhM9ko5x2mOafNYixGbzV5TW3p3NgGawp2ChDllXnr5ZV544QWGYT8Td0Rq9fnB+EqDqmS6VzVunFs5+C+oCoc1luOTY5764Ad53/s+wGq1UhKd6D3qvEwAVYt/S07shj3nZ+d8+1vP8GLt3/xFM8Dbrkc6sGZrfz8kwT/00B0eeOA2IVhef/1B7tw5Ikbh7p2TCZy+du0M5yKPPPIaxydnB9Xycs/P7xKb3zPS98JMbyXWXa2kr4PcuDxX3j8rUl091vSecvX1w6bbl3nfcWX/c+VzB8eqpKwre4K3cWvLwX+/66tyAHvWfogxuMWS/viI/tp1/HI196c+n0cPP3p4KBrx6Or1YLovcxjVArl2Omw3uMUCU+ex9u+2RzOmWfKoEiTpmMvn3oAwkmK9k0VjE+sspihhSZXGdAtmrM4fYoUY1K7UOItY3WuHUcl1ne9UaS40e6vCGJR8PQ5agJSi7hHW6yW+U8JwuwB97zHWEUJS27WmPiLgOk8YgxYIGMPCesYhUsQiRcnAC+d0PY5BFfv6BcNwQeeqNSepEv/Uqi5GBfWlgvG2U0WnknVfHmIkpkLXG5zVNTFktSbOpWByIidV4IxRbdyH6W7W57TrPV3fqVqOZKSo0m5OhUSaVGeMdRgrDOOgll7SQG8qkVbJVL5aWW0uA12v5+AqqVmPqeu4tRbjLcmqGk2MSQnNtfBFlWRUEUbcEtf3dNaxFEiXF4jzBLGcX+45OVnRL5eUmMj7EVsSu7t32J4bunWHE6/xSmdIJTHc3RBT5s7ZGUcnpxwtOkwpLFjgfMf6+gklF/padOaWnpU/xhhDf3pESglfVacLcO09j+N//zmSBLquZz/s1YK5VE5y0fuxkUGpQHnnhYKS5iQXsqjql9MEjMZiZPKYODk9opCxGMIw4JxarduiRBT9njxZ8zpvq/Wep5TMGCM5aaysIL2ZCGEau9tajIaqKVpHzokQSwUGK7E1qDJnqjFdLhoDalylexRTn+sClFSqGlBUtdgxH0x/Otd476vCs6gNWn2DEaCoUqJBeOXVVzi5eYPFoucDT72XxbJXEsLhXHeYQypqB/vhpz7I2Z8549f+n19XhcCUJpLJZMUmFlsVxZsNrq3WZCVnpKq2NZnHiaxS1+088Vh0foxJ41HrXCVWzioxghY9eOcoleCfYr12WeMhY5TElnNWMl2SSak0t4LBukTkrPZJtuVwisZerXBP4zhR5c1GKkO08KKqhBqrf1PVz6J27s7inVPrZQSxliKoAq1osUAjzqdKhNO6hoL3tq6xra/aB7FSw8iZGDWlrWo8P+fmQKT9vV7fah2sI13jjxjZjIEvf/l3uXX7Dk899QGOj4/pO6/zYr3f02TXaLAUWgrskDDc8pGtKCZnJW+Lkek6NzXVQ7WnGhrXYKpGa0ZtDpUoYzBW91W52ufGEJTIcyUn2u6TaZa+Eis0gt2cJ6y3ev1u7btq6ZoCkLAtP1vvgdZvfXYLrSChPZOiszlP2id5TB7lLF/wpfwlnk5P83x+npRqwdJBDFRTbhPxTwtTqvUqSgRseYzZxu8gXpuGoExxWN18c9jsPBzT98+qWPP4TUc7OG5N9U7tMK6SgwKApgD1x6XlnPnCF77Ab/7mb3J2dvYD+Q4R4cEHH+RTn/oUH//4x1ksFm/7s/v9ns9//vP8zu/8Dtvt9j+4D10X+NEffZoPf/ib7PcLvvrVj/LCC48Tgue5595LzgZrE+9973MsFnt+4ie+zOOPv6hEz/vtB9rEOhanpxy/53FOn3wfyxs3pwes5QQe+vhPvPVzMucMWmu2mGFzyVgVyAG2b7xGf3KKrcUUi9Nr2P67kzrE7AjbG3zrlyPj5X2C0v2mzS+XmHepkhIinD7xXjavvfJO9+RPdCul8OUvf5n3v//9/MiP/Mi/N5902ESEj33sY5RS+Cf/5J/Me5X77U9Uu3PnDr/4i7/IJz7xCf7sn/2zXL9+/Z3u0h/r5nD8JD/J3+Hv8Dqv83/wf/DP+ef8Jr/JwP21+bC9bZLSOOwVyJ1Y37VqQ2ZZ6FITAc55dNvU5GqhVXjLgbrPBNQdJPfbLtmggOSN6ze48dADnF67jnUdikBpEtcLSv4YIzHr5nYYArfefJM33niN/War1TkpTptAUyXmRdSLu9SEEmUmSBU0yWGmTbhWUpVc5t8xVd5aKGYmZ5W2sSvztnCudr7HnoyZrNM2sc0u5N5qoXvff5jgPyQbtYSC3HvM1q0r79fvOSxams9v/nwDw6bkSvvsIXBRkU2p4JEYg9RK8nY+9352PvaVMzw4t3nTLDUxpjYamrhRla4qESFXJY/1pQprmPnYExAoNUEwjYcCYXrOrX/QtAyMVZWJST3J2glIcN5jDFWSv8c7izcOyeCsYdE5rFFJehFDDArMxbQnhcxisaDrPFJgGAdiLviFxzhDEcMQAykWjNdKOesdpmTCWLDOk7CEXHB9RxiVYOKMyrO7vsP3CkQcHa25dv0a2+2eru8pBbz3bC63qnRDx/pkje8cl7stl5fnWAyro2NWxiI9bLYXmuTrerYxM94+R4qjpMz57pJF5+jcAtd1jBnWqx5vwKZMqhuv4/UxZ2eXmvR0Dm883ggyRjYpsR1GQgz0i46V7+mtw7meEHYYC7YDpNpMWkMsiTEMiMCi8wxjxprMOESGMWhiSAQrFskgRdjtB/q+g5woMWARwnZPCZHOW6R03N2PvPbKHZzVcV6tVuSS2O0HxlGVjE66NYvVihQGJEdMSSyWC/qVZwyWuLnEWsewHbjLOZvVEauFMIwb7HJNMnBsHOnN27z8yqtcf+AB7rx6izc3Z6QsvPd97yftItgN/aJn/fAjpN3AcPc23sKjp0tu3lxycr2nWy1J+xG3WGLWtZI3K9EnmUR/bVWvMywahFsTy48/8ig3T0+5ewmrpWEzaMLQJourCbyQEvtxxDrD2i6wYtlcXmAFll1HyrBPSattd4mCpUhiP+wZY8R3wnp9RIwjZkx0iwWd77FA16s9UcpKMopR1XK2+4HQdazWC66f9pydn5NLwXVOLQJiUsn1DON+0GrAmNiOI0ID6tVOIY4ByYXOWMiqSOAXC61ENVrBn7OSQShNNUnT8mMYdcEQCCHhvMroGxFygt5ahnGPWDepAVgDzqiV3H67Zd0tSKUwDFt+93d/lwcfvMkHP/QkYvLB3HQA0B7M/w8+dJM/85lPcufuHfZDhJIwJuE6qyBYCORq06EE0WoxUTKLRaf37bDj9OSEtbHcvX1ByZmu7wljrNWuqgq0Pjpiu9tRYiXglsJisWTZ92w3GyWv5YLJhsvNJcapMqEpaqe2vdxiROi8YchqTVasJVrwrsdSav8VqCpocngcB06O10Bh2OwYUsCYnm6xYLfdksaRjJkIISKC91LX4ppoHmY4O4SE2e913m1rWwVjbOdIE2BAvVdATGGx7FThqFqOWG/IIVJiViKsVWDYoOQmZ6Um8LMSTd1cSdnsY0UqOFPJJLk0W0AlN1nnyURCjGy3l6Q4Mg4D5MTx8RExBPq+V2CsKba0uALTVshqXRhIIVTbmaIEH9vuDSYrQmVZmZnkUS1fVJWoAbEH1lci5GwJ1laAweF9z2a7YRj2ajVXwQKpcYiZ1v2Z6KyKPzrvUJLGH0YqmalcGbsQwkTi0QpVgylBn71mK5Iz1qiUeUkVIMppIj0Z5/HVrsM6R45qzRVjUtudaklnxdJUw0QSzkLf9cSo/Vx0C2IqxJTrOFfLvMRMoCgKopZKesqVZGHF1JLyhgrMapsTwHYl9jDVfrhUNY+DaaHGTDnPcdJEqqnHTkkB0HdrSzFO8WQpCig+++yzvPrqq1WBpWmuHqh6KmJX8a7293tI/oeAbP3ZCGjWOp764FP82Ec+wtHR8RQ7NqtCW4kmOu56/4SU2W43vPrKK3z961/n4vziQImgzAAoUrHadifMcThy+AzMiklQ8C7w6KMv8cgjdRxGV0GjQteFerx7ywsO2x+cTCoHP+9995Vq+4ONwFuBsoO9w8GB7t1P3NulKwQkuff737oneIvVRb0m7Xv/ICuM75VcOwTmpgPnq6Ce7Tquve/9+NUaMZZmA1MPXD8q1a6xXpmDB/MQcAemognrFvjlYvpLf3p6UIij9960H6oEWOU36JxnOxi6hSooNfs2aWq8oiTbnMlF12trvcYwKKE6l1LtfqoyTM51Lz4Tsyg6dxpjyGJIRQlQORZ2O42rUkqYbCcbs77rWCxUZVNVXlShYhybPavTogxrGGNkHAdMMbheFYFECmMcFNC2lpgLl7tKGSqFIY44qwpRxmphh+8sFl1fsug+u/c9w9AUzdSCyOoESchZ45WSlWBgLE6M7qVyVFKt1dUz5bY2q6qIgMaiSa2cUs6kMU/X3Ejb5yuRxDbllqxk+xQjZIO1AliGmNhc7BEpqIWpKiXFqHZZzltVfvIdOUUoGVMK1mtMmXIhj2q/hfWEkHSP50QLM7ynCPRiKNsdF5eXLFcr9pdbtuNABk6vXSOHDGbEOYdfH1FiZLPbYo1wvFDL5H5hsd6To8Yt4uuzU3QtylKwCz/Nza4+Gm2eOzk6ZrVYsBvAWqHrewZGwGBLVX3JuqdAqDGaquqUlFXtqCpj5sJEyG72hikVttud7uGkVDXLqpBYqtWWqPqRqdcrJS1qiWGk6zx9t0DGUZVypFnIhemaznZNWlHaEhIicywposZkIhoPlGnJ1e/MTZ6LOc8lVibVQKSq54idbLSmPUBdJoz1lYBY40vRe8YYR5HEM998muunp6xWS5587+N6v8nBUjj1Z27WWf7Un/o4L774Al/72tM0hnuz4mp5szav0UKXOudZr6pb1li9x3bDZJ1nqnJWG3/v1WJ3HEdUUljnI+s9JeVJRcc6xxhU/VaJfpYS1V4yoaSOMei6jBiSFMTZSuKvucYaYxWoqsqqdjaG2UbWezepkDVynKYuG8Fdx8oYW62TqyJWLlBjE31HjdvqXIoRLbyoj4oRSKiqsr7tQNUJVAWsAdJlPodGZmuLViOblzI/X5ARsVO+salotnVO9ETIOfPC889zfn7Gxz/2ca5dO9FiI5R06azuv0orTjj8vro+mbpPyilP9ndzUY3M43AYaGgnar+v5jjnVK8WnuRspnXQWIuEUPezucZ8TS2KK7bHcxDCwfEPI6YyZaF10iqTWn6uhCJrDZrNrUWpArnGHEZ0X9rup0pZx4jl1FzjZ+Rn+En5DL9Xfo//p3yOO+WOqmbJ7BjQii6gYKRAtdPWecngvJKNm2rngRDidGItJzzNCXJArJYpwz7vQSgHx7ga4xz+nLIMpakoZQ7nicP7rdko/nFol5eX/Nqv/Rpf+tKXfmCgqTGGT3/603z2s59leY+C5r+vlVJ46aWX+OVf/mVeeeWVPzCeffv9KaxWOz796d/m05/+bXIWttsVpSpnrVbb+8SkP8LmV2ue/PN/gdXNB7H/HgsleZuqW1JtOfuTU/qT0+n140ff8331yy0W+PWa8fK+PdP9pq0/vY5bvP057I+yTUIB99sPvA3DwC//8i/zyCOPcHp6+n0RlT7ykY/wrW99i6985Ss/4F7eb+9UyznzxS9+kRdffJFf+IVf4MaNG2/7HrnfvntzON7De/iv+a/5z/nP+UV+kf+e/57neO6d7tq7pr1tklJKsW6o66a+bvga+UcqCNSSMbpRyhOIMqknVXnjWVlgtj4TqdXOzrNcrnnwoYe5+cADLJbLar3jpu8S0xSPIjlHzu7e5c7t22wuL9hcXhDHkZxi3XznaQOXU1XiqZuymXQFiDCTmZokfJpAolL08znXDXZN7Lfk0gQ6TYCTXPl5uNrOz/ZMTGoJsFyRPvVNv1odPm84G0AwV+DrsBeaqlNLeen76zFN2zi3xMFMFGvHt9bWBFmttJm+W1UtDvvy3eSAdS97FXyYNtU18zZXhjU4pEk2a9KDavvXyEgUMJgKKFH3622jri80HKFhCVcUkmhVYvXDVYFpsqiQVumo4zFnUtQ6wFglJ5maSDHW1qSWVvAaq/YD3jl668khIlXZwpmC77QCcBwCYYwUUzBWsMZhnSq4lJwxohYGS7MgDQMXFxuM9yxXKxYLT6jJeDGGLIX9botzgsuw20eGYaRbeq5dv4bxjt1+wBjo+46UMnfvnisIKJbQSBhVyrspoUkBJ9onYy3bzYbiCst+QayDP44DDz78AGOI5K2wG3YYb9mPA9Z0hHHPotd+55LpinB3c04ZB+JugV9YrF9xs1uy6h1nt2+zT4WLYUPvO7zpGTLEccCVraqmGPCdI4SA8x5ne62My8J+P7Lf7/CdA+PIKSK5AfCGWAakROI2seqXLB844nJziRXYXAR2mwtOrz3GkAKWwtJ6OHK8Pl6yPjoiRhjDnhAD6/WaYZ8YN3tG67l+7YRtTIh3LJxl4TzDZmCMqY6hYdl1vOc9D/PURz/CnQLHtmPlC6drMHcjF5eXhLDDLy1uOOe6K+z9MSfX1yyOl8QhIrbj4tnX2G03FAqL4+vcePwYe7xWxbnVGo4MxRtOpJ9Bg22t8nNGE7emzSs1O2vUVqx3lt1+hxFP1/X6rGSrJK+Ysa7g+wXWCmEcFQwaHWQlJqVcCEPg7GKj1nCiIFmRAiaTh4GzIWD7Bb0zbC4HnIe+M4hkjNeNuHdWxy5Gus6RS2IY9qzWPatVz2YzYq0lhD1WFNgIYyALrNcrnTMqUJ9yqsojif2octpd1xFCoGRYr1bE2KnUdtHJKwaV1Y854b2CbK7YOk9GOqegEZJVxtl1xDTiek9MSuzIteK/lEgYB4z0DMOeJGqGcvvWLb70O1/hwQducO3m0Tx/N8DzSuxXsFZ473uf4KMf+yif/80vMm5VSaWkQkYBwxjHmpQTShZySaSSGGNhuVxRhsDduxt8JVi1CuTFqmcMaoEYTSaIEnnWqzXWGiXNSCQMg9pSFVW5yVktO2LMWqkuhl0ZESusfEcsI3WWVrJWjJQxIN4pQBXTZK2iFb0qhy9i6LqeXNR2jyESs64VDUi0xk2AjQjshxFjXR0rg/cLBapaCreCXSKw8J6Qk97DRm1qLIJ4tWlr63dKUUmoFKj9FLGEMbIfBzAF4wwp6vs65/WeSzPpRIluUgktGYyqBzQSitp85YkY7JzaBsQQiUGtyIoIfdczgfWIzocx1Xglz5v5+qPkmsg2swpNqipKaqWmCgY5JjKlggVKwJkSp1IwpYFoRsGrdADKG4txnm65ZBh2XF5esN+PFVzIOjeLxiRi2joPDfSBWrlc44G6XB6s2xq7paT9boSvUglCznX1fbVCvd5DucZ7pT5Iekxb1T0TyVQNLAkgzU5PYw0FMdRCsnOmqj+p4kWOGsimMWCL0HmvwBwJnKNVHus10zNNuQI7pZ33rLrTyEnmANg8JMY3wFKoIZEVUlWAU8JWi5ta3K02kMZUItq7OLvTVCJyKZyfnfHss89x+/btg1izkuquEFnqDXWIh8nVWPst/0ZBwOOjEz7+4z/O4088Ttf3k3LVZJls2v2o99ww7NntdlxeXPD8c8/x3LPPEmOAPINBLZY1TN3Sgoe5I1fiaqFZCs2V8bkBpPXB7boGqrSHh3vD6yvnOY/N4bUuBwtImdC7Kb4uhUNwpO1t7h07ZYMegIpXAKzCYXz9vYoX7lVsKvMfaGvDva2U2b7lu50zcvVTM1Hq4JyvHlGLY67YMx48WwK26zh93wfojo7qcSoBcP7m6fDTVFv3NYX5PGUeyOnzctjfKjXXwNp2f7b5u5El2rhaYyjjyHi5gVSPbYsquRYF3lMqNGspY7V4poGroHta7x05RsYUEGNxncc7o1ZLtY8FGENgIQrUj0HJOtZbFosFYo2u2VLtKUthPwzVplI/b9p5yQFoXpSsmqrSXhwDxajCZC76uZQS6/WKlDMxiNroGNH42VlCinirBVCFokUFoxIjUrRYZzDWs7KqFDLsdsRSGGPQPU6xxAI5RQy670Gqek61frJ1HQElGIUUsUWVLppCcLu2uVrz5KCqSMvlijGMCEqODuPI0cnJFNd4Y6EzxDTSdR05a6yTc6LrOiXeBEiSWCx7QtbY0nVqI5ZCrIQdnd+9dxwdH3HjoQfZF+is1X1eB7LPDONIzgEzCiYOLEwh2p7FosN2Tgu1jGM42xBHVUJ0fc+yP0E6rwQ577G9gBF66euzBsQabxip6okH81RNP3ReC3NSTpRR1y4lzuXpftAUi9FinEr4UdURo+o+lTgxDGoj4KxawSmJukDJhGGgiFXbuZjJJeKsoZSM99XGvaoSxqyKWKYSnawVvKtqOVXNpM3Lqi7aCN6mJVzIec4XpbpGt1iqGFUh8r1nGNRSWYvgoIheO0TVdqQWuElRArOS7CGXNKlmaa5D5y0lWunYaXwFuZrF7naJr3/ta6yXa06Oj7n5wLU2zU9z173zqQgslwt++qd/mpdffp03b91SMkXRNcxWomSoipFNzaygJA/rOkxWu7S8q/bRVhWSrG2FB5rPKNXCzVhD7zpCGMgx1bhZn8OcMyW276pxs3HEGsn5Gtu3/ITmIWu/ZLZfhkpuOlijU1WBaoWVMdY4sl7rFn/aqvRpDISgBSttLdK9hBZf1gxcjRV1DhFabFaQVtgmTGq8c36wXss6v5tq85sr8VkO5m5b5/hD8tH8oGlcrscx3LsGN1pNIxxdXlzwxS9+kSeffIIPfOD9LFcrnDlYu4zugWbCvO6tpi3pFbvdeS2czqneLzkdxt1K0MkHOcIW87XvNcisvlq/01pH6jrCqNberYh0ipveMhIHv7fYsPa91Pl8ttSr8XedbyhF19Os5LpmBTqFCNM+rqmdHcYBloUs+ET+BB/iQ3yp/Dv+LV/gTr6tfS1tfHRekbrXzKUSmSrvsiTNFRhjlHx7sCearo8cnl+L6TQn+hYCfMuFtmN8lxxtiwl1PDKlzPfQYV62tH1L4Z578N3XYoy8+OKL/Nqv/RrPPvvsD+x7Tk9P+Yt/8S/y4Q9/+G1bn5QyW899/vOfVzXKH2AzpnB0tPmD33i//aE3v1rz3s/+HOuHHr5n//POt+H8jO2bb77T3bjf7re33Yy9by/1R9XOz8/5F//iX/A3/+bffNu2paB565/92Z/lhRde4O7duz+4Dt5v73h77bXX+Lt/9+/yp//0n+bTn/7090XSvt++d1ux4j/jP+Mv8hf5u/xd/hf+F57l2cOs6Q9l+75m/5JLrfpgInc47w82NjqYs3pA++QBgCYyVVq1inFrG3CnMunXrt3g4UcfY7Fe47qOYhTAsi3BlFXTXkphHHZcnF/w2qsvc3bnLjEoMGqlkIsmCNWyrZ4DpVqgMO26WoJ7ttWolVNNsSAXYq2quXq7NHJV28TW46lE05UE/KwM9FY1Janklwn0kAauCge7TZXYnpLfMu07rx5Ppo1xIyvNAGY73kFSvQE0B8malpQ6HIuW2J+q2qexm0lSrRJnBoAOanvqOTQlrcbLUoDOTGMvQq2s0grMyTbFGoxUmfAK6hVpiTytYm/j1ar9jJgKN5QqwNV+R5N/qG1AI1CZailU8xR6fUUB3TZ01rpZ1aFWPeu/VcbaW6eVglpfqQntnNlX5R59v2GxXjAMO/puQQiq9JWrdLktQhwD3juVvs6FOAYGalVhytjO47PDlEIYdpyfb9ntRwqZxdJx49oJ2/1AqpWMfd9DUYu5YRjoumVVSck4r3L6IWUutjtsgcV6BWIYtwPWO5Ynx6T9HvKWo/WK/TiwuXWHxfqYkhMpBiyqMBKGEeMt3cqz3Wzo1yfcvrgkhUznYCyJhVtiUsHkwjCMJCdshh1GLK44fOfZxgHrvN4DVoi5aEUtQongjSOFkcvtJdIZrHFIrXzOMbMfAqVAf7rCOK/ERRGs93ReAe7Lywu22z3FWu6cX+K92u2ZZFitDddPj1idnDAMkc73QMKKkMeBW3c2dN6zXywgGxZuQb9YcOuNW+RSCCmSQ6S3jscefhgnsD+7w35zndXyCJsiJnmOrx+xOulx/YISR1ZGuHbUE2SFPTrCPnSKLZYXnn6R137/WT74wfdw7YHHGLPn+JFHYAn7y5Gy9NCw691AGAL2dA1HXvOMAiFlBbjaDGaFlArHJ8esVit6v2AcBox3eOsJKSPiMKaCLd7R956t2VKKcHwq7LYbMoIt0C86rNe5btE5kAWIUWpjjuw3A9f8Ec5a7pxd0veB3hv23uA6x/HJCTkL+53atK2X+sym/UihYJxTYkS3IIWoFck1ae+9Ppslq0S/IOSka4GxghQFhLqFJ+ZYlaAuMSKsFwvOzy+n1LaIBt5d19F5z2ZzScqZhXe6HuXE+mhF13VcXgwKdHpVjsoxIaLPs/OqftOUV2Iu1R5l5JlnnuGRRx/kp//cp9Vm6Hu0Nlf3ywWf/NRP8Nrrt3j66W8Sglp1jSmp3Lwwza0xRnIRnPOEMeJMqOBBZowjvXM6r6SIcUIpCWs8ve3wYsnGMQwDrvPEui44q5X+xlpcKrUy2lJSYSRpMJGVEJckEkVY9CvCENRKyTrGYagAjK0V7AbfeTqx1d7BEEOqMYEQYmI/BKrbVwUlA37RIy3xLxbrZpC6lKy2MGJwVU0mkZRgUudTg4JDOSl4Yn0FQSRolXq9/qVW32eBYgydcSSigkAV5ExJ7XC89ajFiwJkSqxJ05rIQdK5FFUPsMaQKOQ0r09tjRyGgf12Rym5Sskfs+z7yWrBOovJCjTHCmrq0mbBaGLcOAVwG+BX6vErk0n7fxD3GFPjvKLPUCMHlRyxxlTwymLsAmvUoiG7TNc5+r7j4mLDZrMhjAeSpaLg1kQmaCA2TCB/md4qNIXNe1vOWdXzkhLkUprf573DVbvVkCIkKskZBXompQA7nWvXCdlVy7EYSbHUuaSo5aM1CkZT1GooqQVJmzeNKBDru05tCY0eN6Wk5KQGJjYQrFmWZSWipwbNVGJCzhUGnICRefy4h4xzSKYvpRLbawzUZpLW13djOzs7I6XESy+/zO1btyvZi7fI3DegdwKGDv8mLeY7+FvdU5h6ny2XK97//vfz1Ic+zProqKqdNMCrXbNMyRoZphgZhoHbt27x3LPP8uKLLzLs9xNIzWRRU3+WoiS/Fi/DTEqZruP8t+mc6h159Zza/cDB51Rx5ru370UQmo+o/ZlupPam9gVzEr1ayMyEnwPAswFVB3uGMh17gnsPjnUFIZ+Od7hnqb2f1qy39v/e1+afBa7MJfeO27wHmudamJVxpcb2poK0iHD86Hvojo4OQAWBw/6JTNe11PjgClXqAIyY+tuICAd9BJlfp+6fDt9X9y3UPaERw+Wbb9b7y04XJMWoCjeiig/Oe2KKOOuqlbmqY9TykImIkysrrsRErISPnAtS505BlR+HIRCqaohzhuWyJwYl2hqrhNX22aYiVIrGmNaaaiVUGEJQx1jvcaLkW7EW33WUGCkl0HWemBLjbo/3XT2uqhFJUetZsYL1thYo9OyqFZ0zWhTkjapplhojFKPqbCKCKbpuKflU1fKYYqV6c2QwYsk5EsKoe7uqfpczkNT2roBa0Rkl+BaqVZK1SBBCGAghUYyw249K6E8Jyar6uFx0+L4nxjyREIwIJSW2+1FJ0VGVPJ3Vfdl2s9N1pWRKylgxHB8dqcLPfk9cLtWWtWSkWLqlx/cWsceQE06ERWdJ4pGuw6x7DIbzW+dc3rnDjRvHLFbHJKyS9DzEIVG8nW/roDZ5suiga8p2Ovb2YAJu89HxAw/SLXrcfk+OoaodWiXU1fu+ZLVqdt6Rre5rfW+QqPeJweC8pjGazakRC9JNtmzjoMUSXdex2w+I6P1qDcSoa7ORGqMFJZObGg+NY5iscq21k2poy1uY6bk8iNuynrkVQyOHe2erVXU97n5QS7AQSY34VOcDtSxTW0ItoLC4mkcyRlj2S2LIxJKUvAVVEbrQZCobQbBQakGb4c033+Q73/kOfd9zdLxmseyYmAzTz3uaCI88+gg//Wd/in/5L34F5VVltc2NeU4X1e9KVWkN5CBG18KXSYG8FLXSrl9rxapFnCipJsZ4QEY3kwJb2w9QSRZKfEzzs0qu8XZV3Kp9SVHtucXKtE4ZU+f2uq4rCUiLF1LWHIi1el1ztVBssXdbp5Q4aioxtKmsMZFxSo0FMmUiJpvW76qUJkYglYn81dad0uRGW2FnVlv1Qp0L6j2oRSBaYDMR4cocNRykBqd1Z/78fNXbOrnb7XjmmWe4e/cuH/zgUzz44IN09TMy3e9mnn+nWMzUa6DkfbF1Ha/jXRfDSrJC5+FGpKnnlCvhuRUeXlmTEVUmFyWyNkKbtQbrIuMwfA9FnPYdei/LQZcmMtEcROs4XSFy1YLSWkilsUGZ+mWM7nlz9VAthan4Y8psij7TJ+WEPy9/np+Qn+DflS/x9fxVXi6vkNNso0ph+p42timlaQ2aXAXq98/EpEZc0kFvt4BRltJkn1mzvq1bB609GwdKSdJGYP77vfuuMp/iwTHefe25555jHEe++MUv8u1vf/sHpp50enrKJz7xCT7xiU9wfHx8ECt+71ZK4fLyki996Ut88Ytf/IFZz91v75ImwiM/8cl3JUGplMLtbz1NSfctme63Pz7t+LHHMd6Tf8DEzvtN2zPPPMOXv/xlPvGJT3xfc9i1a9f42Z/9Wf7xP/7HV8U/7rc/ce38/JzPfe5zfPvb3+bnfu7neOKJJ951690fxyYIj/Io/xX/Ff8p/yl/h7/D/8X/xZf4EoEfzvnvbZOU2qa5bYhk2tyauik/BE+qvLy0ypya3KgAcqmWWZooVvn4vu85Pjnm5OSU4+NT+sUSYyzOeqRWRkkphBAYxoECXJ6fc3b7NufnZ2x3GyUoVdWjnDXBIVKlk6VZFegGW8HsPDmBzRsy3eSnnGqyQq3nsmgyo212hblavsENmjSQCTgx0gg5c+JL4CDhcE9FM60atSbxCgeA1SFZiCs5p8PE+iH5a0rqlzIdr1WOm2rc3ireDo/ZEvlSyVKtfmkGFQ7BL6nJ70irQrpi51KB5AYaQVWpalkU5k2wfncb3waA1GsokGtCRL9Gq4m1arhW8BYoZvakt5V8pVLqV0GUTMt/VaWkmpAWY5TQUBNKYmxNTLUEoQIDLUHXCFnGGHqv6h5hGFn6FWOIiFVZbiOWnJiS+9TzSimpGkvXMez3FFQdZQwj/WJF33eEQQH2cRgJIdJ1HeN+IOVAyZmzyy3b/Z7tdk8MIyWt2W+2quiC4J2DUvDeEULi5OSEHAvjmFgtl+SikubWGFYLz7H19IsF+5zYGiGMEdmNECMqThLJMRGdIwsYJ6QEXhzFwm6/47Q/UtWoFDHiMNZh8hJrIY4jm7vnCryIYX28ZL1YISLsLraEMZByxluhM44saqWVs4LR3lmGIarNnRRKVblaeMfSOzbjwHbcs9lcsOgXDHvwfcd6dYyIY7ffcPfuba0YdYbTGzdYLD2XFwkhqJ2PwJiEo6PrHB+v2HeRcQxY57l54xqpJC6GQLfoGIaB3jtyLFzePVeCWd9zcXHJbrvHGsMLL7+GF+FTTzzBI6fXOH3ycYiJF198g/H8LqdHx/hlz+L6MWGE5XqFTY43X36e69372F/s2N19g9NrJ+Rksd2KtBvZby5YrlesTlY6fySQVEj7WOfnXOc/g0Hoq/d0mzFKzpALi2tHPPTEe7h9seHO2Zs1QWoZMgyVRGfFICngjGG9PGK73WtFrR0Qk/DO03eGxXqFSKFzjjAGxlABgeUSa3ucBbEF64RCYrsbOLs7gBguL0eOV0tSKnS+YxyCJjXRyu8SIikXdpstgqHrHLthbNM62/2W9XJB1y+UYJJ3hJxY9gsoWns8jpGT41POzs4rwGYVTHNmIieUHOn6harOGF3rQsyM1WrBe6sqYtkwhkDMStho0veCkEXYx0CzhAwUBZJyJpZAQfjK732Nx598D+97/+NVjvsqQNvWpjYnnhyv+Kk//ynONhe8+NxLlKT2CMZ6Uhxnwq+xjEHtWV21ACtFbaiMNcSm+ANsd3sESAF65xjTqKCmNQzjSMGQgirOOLGkkuu5WurqqGQYQMgkUeJY53t61xN3gRCDkmqKKj8tfE+MOheG/VgtGDRJnWLRsZCa9BbBWiFLxmYFUklqd7Ef1eYu5UpqFVXgwRhdoyuU7JwnJSUT6D1f7V2N2sykMaiynfOaMAecQI4RdXlTYKaYTDHQdZbMTMwVhBRaAj7RVTWCGJttoEPEaAWlqFpYyY2MbAh5tiZUJSCh6/pqd5YIY0KwSrozQtc5VY1DEFcVy4qSi1JMSjrzRpPiuWDFElPQuKCNE6aCNJlMwYooAVPUBqEUIWOBAKJzokhRZTUcIqrIl1IA1PbOWc9yueTi4oJhu53IUdKS4jVoOlSbNDWCarGXrcQCqSpTh8BMQa14x7EgEifSr62qhAbovFfVhXpuKaEqFDkjNQ4sOVUrNosxWWNS59RCKCaUVlVJRchUVT+khHGqqmXqOJYMMUedD0pW8LoomJCrdRhG8L6qZFV1DSlMake53pOlyn01MEyf/zyBCIfKNTnn+rzrmMAMUEl594IKAF/60pcq+KK/z2ozcwwMGn3q7y0+1Febos40N1Zyi9R4dL1e8773v5f3vvd9HB+fVOU4VcaaQDb0+sSkZIyxkgJfeeVlnnnmGc7O7jLxo6pViwLWhwQa7bM0VZGDc5yg4QYc1t8Fqp3iAU1JDqGvGTw6/DmRfe65rodKqPc2Ofjv4ZGvEJTueU/7/SoIKvf+lYa9tfFv758IQle+dFbzuLen7XPtyKap9b7llGQan0N1ATHCvTyuw3O799+HJCuAxbVrLG/enMhCjZAwn/ysDkTdazDdr3qihwSsds2R+fto98nB7wLVxqG+fkBeQhQgLcPA9s03MMaq6tF0nKqw0qyB6jXJFUS11hLb3jErcdI6oxZu1Tqr2Rpa6+qaoXPtOKpVqJIsEn32apVbx7EpB1ur8VLf9/U7Ct75g/2w0DlLLxbrtT9Rqo1WrMqxBkCtrIox1XoXJIMVVREMMbCwHbHatiVRJWWL071+Soz7YbqnfefxzoOIKmzWtdEYmY6p4HAlVDVrTRElI9fchrMGbwxjivr/ccA5T4wB6wy+63U+j4H9fkdTQumXS5w3jENGqNZ6AqkIXbek6zzWVnKFEVarJZmMjQnr9Drbmp8YdwM5qRXWsB+V5CXC+cUl3dkFj52ccLRY0J+eQC5cnG9Iw17J5M7hl70qP3ceVwzbizMW9hpxDIT9hsViQckGUy3BYxhVZav3M45dIEdV/5gs1Ot9qgozB02TFvhlz/rkmP0wMuwhpPn+yaVM1lcmC3GMdH1Hybp+GuMAVfF1Zi6Es0aLmXJClbasoe+rWm7ReFXv60gYlcjsfGC56Ov1V1JYrAShgsOiJJsqbqLFBNVaTcRUFUktnjP1vEO1GW/zbohaCBRTIoaghXTVym2eN1RVyFSCuDVCipBSoZSm6mKIUdejlBMp5GnWa3OhcmayKjzpw62xSop859nf58bN61y7fsoTT7ynEvcP9xT3zuE6l33s4z/GrTu3+a3f/LekWuQn9f5ruSJN15RaYKA3Rp6UfPT4bT8Rc1srleiTy0xQV4WselY5kyrxpSn4iKiaTMsf6v2SaKRiZ7VwIOZMi55KzQupKmmqZKdKQqrEEqb3FeXcVFs4ESYFm0YASUWfWXOwqOiazbSWq50aSM6T/SzUnJ/oGBik7rf0WjVqn1pD6yVphApjai61PUM1l5dTVeIyTfH8YH1tY1sJe2bqWyVW0mJqHQ+N6Qu33nyDy8tLPvThD/PkE0/S1QIN76t9Oc2ZuKoR5ap8WUXl2rWdYs22bgoTY6bkOl/USNpUuaTSfNtynmI8Y/Xel0r8y7XP6qBncNYyhkAYB1275snmyrxzmKeciMUHF/BKQcRhcFH0HtN5utl5mqmgwbS9ZCWmNTWvphA1j7HhmFN+Rj7LT8tP8e3ybT7P/8t3+H0Saf5uaSTqZg+oqlk6RC2uKtM8dJgnbnbcunhVxcUyzw9St1jlMMApMzG7fv0cL07xXX1CypzL12drjrHfre1v/+2//QM9/unpKZ/85Cf5xCc+wdEVIvu/v5VSeOaZZ/jc5z7Hq6+++gPt4/327minT76P6099+G3fI3+Ubbw45863n3mnu3G/3W/fVxMzqQbcb38ELaXEb/zGb/DEE0/w4IMPvu3PiQgf/ehHuXXrFr/+67/+A+zh/fZuac8//zx//+//fT772c/yEz/xE9+X+tb99r2bILyH9/Df8N/wX/Bf8K/4V/zP/M/8Br/ByPhOd++PtL1tklKIiVrKpGSOMsset01h+3+rXm0bsZbISrmBLLroGKMVmUdHJzz8yCMcXT9BxOCMx1ivgEJLzNddd0mJnCJ3z+7y6suvsN9sSEnVD1JM0+5ssu6gVX81mWztb2N6plKleGlklykvNyWq50oXCzXpCICkWondqnSgJRc0JTIDdEpe0tdnSeW5zdXGM0xxuDkVqo1IG9eDpHnbdJYyW+e1DeesWAATDCRzH6f8VT1QG58GAlWe0ZykutLtw0pumeSM4WATXK+zNbWaStCqVlryqG6FD+6LRuLRa2DmBENRtYgiqiIhFelrFcdTwqDGNCJNdruRtmbAQiiV0FQl4ev3mEZSMjVRUWXGmyS1maqXq8ISzJV7WWX2TdGKX+Ms1husczhRlaZCphhVISlZKEbUfiqpOoexQvEWUxPDpcCYIy4ZxhQYByXRDOMOZ1XmfgyRs4sLwj7Qe8/q+JggmRwD1nhN5GclFuSUcHYBBUJJbLdbTk6Pa0WpJcfI2W5PvNzSrxaM40hMBfJWrbdMxzYWXLcklsLF/pLj66fsd3u255cKiC8cSVT9KceAlC3d6pjNMJCSZeU7cBmcZwyRi90lnfV417HLF7jeE0rGuZ4xDlxcXJCzPpt+2bFc9ko+GQe88xwdrdntLilFVaIwsFg4cuhwDpwzlFSIJZPLDu8s3jpSiuQc6JcLYtwTx5Fuabl2/Qhy5s7dc5y/xsXdHbsx0q9WFIFbdy7JxbA0Fg/EMHIxbMEIwzAyxIF9HLSy3TnGIbAnYPsVb9w943yzwV+OON8z7gdsZ7lzuSFfRB6wR6yPT+gWK85fv83+bMvTX/gmRyvDEz/yMP5oiXFr3HKN2ezIIWONWnFkol5DKZRVh3hV+DIxg61JxAkorAk2q5LroRQwHnKm6zv2w0iMSqCzzuOcxxlDGEfGITDsR0rRquWbNx/g7O45JRUMwrKzWCsslz277Qgy4jolGvXW0fWOSCUeIYh3XKbI3ctL7ty9y2qxYrFcsuw7rDe4ztdk6FBtwKTKwKfJarG3Hf2iY7ffUUTYDQNxTApkdPqcilictQzDiJFQQaXCYuEpWeeymBJSauVqinRdTwoRMrWS3iAWJbIYpxXxzhHHrESYMBJj4PjkFIxlv9+RQyRGVRiyvgJiMZHjwBtvvMZvfP63WB39HA8/eK0q4MiUcE1ZvaK73mvy0GSeeOxhfvLTn2R7seXy8i4pjJo0roqBzX7FWAXQFkutuh9DVPJX58hFiYDWKdlSVZEKIcSqOqVzj9peSCXVZEKMYNQiI4aRYizeGQwK+IdSMMZREuAMm8stMWVCTsQx4byvM76qAxVAilow5LoGa+I+sVz3hKCJYQWMdH631kJO7Ic9schEdCiViElJRGW9UHKh855Y1HYtpqija9SyM5dMDIFS1whrBVPB2pKrOpVRxSNn1W4uE6cK5857sqHGH5Gc1W6iEZia/UVbK0pWgnIMcVJPbBa0zllijNVagwoK6n0X054QI8OwZr1aM44jXWfpu14Vv6xWoseotoe5VCKW0T4XEWKNOyyWXGKtcAZTCdhiHKpCFWolr9H7vQL1LT7Q82pKINRzU0CG3uG7Dt91bLxnu1XSqVbxNvvNlnA4qA5mnpsmu1tk6mMuucZYum7nFGmE8AYWps5XVUMlE0+APPrctu9U6yMl0KqVr6qIIJl+YQgxqupes3v0njCOqi7gDWIN4pSsl0OsVpe5BUk1fjJkspLwS5nihVKK2q2WShTPZQI7Sq34V0J2A9oOiA4HLedmpZxphPSZxKJE8e8pwPMuaKlaeEyB1QGGOmN+NYadfq9/n2LMxgVp0a2Sxz7wgaf40Ic/zPHpSY3V7BUyCDWWpaAgUE7s93tef/11nnv2WV595WWNzyoY1ECtScnAtKD4EAdqdiA1Xj+whmqIYdsjlCvnUWrMXX8e7CMmu5XJeuO7X9Dv9foc27f3cfWF7/L+e1OB83331s/J9FMOjv/WN03kOoSm2NSOee9+oh1HY//Dbzl8x3yvT/ugt/SwTPfFdFUqWNfoYoWC7Xqt1KwKW+1z03dPx5+/Sw7H5bB7V57TegxpRRP1Hp32MxVEPdiXmOk9+nvc77l46SVyjHUeVoJdU7yYxpOqyMA8HzdbKhFBXB2fqhSTctZYIanduc2QUtB9lNH4ZBhGJTgbi+/7STGkWRuVXEjoOulFVNEhZkIMVTFW908lZ/YxUsYR6121PS2QgoLmYokJrPVkCkMc6Za9EmYGjdGMq8B/0meVErC+Y4wJawRnHGIzxaiN2RhHjFissYQyYJytNmk6LsMwTHOHdRbnHaWEST2k67ySiUvWvY+IxqHZYY0STEqmqtmkifykahcJ650SblLEOqOqNqWw2w0Y2zPuAyFljYUEtruBUgQngoVKtBgBqYSVSBxV0VCqPV2MmYJhMwwMY8COqpQVo8Zv+zFQhsLSqOqodY5hsycOgVsv3aLzwukDR5jOIabDOI9Kc4IRp1ZuEwBfwFfbM6EWl3yXZ709I0ZqPFVtoq0l5jhZWxoxWmBU578UImO1dKMo6U0t2ZoStj4jzqkN/TBGvFHruGKykpotdMaoQnaNRXb7PZeXSjx13uOc04IDW1UtY9IYp2i2oaQ8KS43G/SmVmSAoRL1nJ/TZrbFXSHVGbyoqiKi6rKiBBxXCddWmppMJSLU7xQBMVYJZVU9r0C1Uw5Y6/BdT4hB1YMagciayQ5ru9vyzDPPsFqv6ZcLHn7oZiUBzgQO0OdI+64k9r53/OSf+dO88tIrPP/8c5SSVBLNzKTnOr1poYAYtWiuz7KI5j9CirSCr1yULJTbmtbukBrvSFUuyiUjRYmWk8WtqYZpuebKjKnTXJ2zYqRAtYsTjHV13C2m7uMmFc1KjKJkTLG6T5mIPHWtFrUbz/V8SotTZe5nKzxpBXcy5Zs0bpzWtwKxKkm1/JVp8XhLpNVY2orO30qOKbrOSyuoqMqv0+Az3YuN0NrWi1LjGFq+sva3kUlb7q6uSpSS2e12/N5XvsIbr7/BU089xbXTU3JOOOdqDsxORJk8rZ9M/VeiYZmunxzkfqnxTFtCc1XsnojkwmTDRu3rPC5z/CxFC06M0RyarfvURqhtAzPnWA9I5KX9XuNE2rAfxn86JmV6TePyNkZQJgXcaX1uz0QjpBem80qVTAfgpeNH+FE+4J7iW+bb/Hb6As/mZ9nLbiZCpmbTLRMrP5VaNFKuxpdKYNMTqf/iCoGw7jtap8o0ri3CZDrY4V7hyrNZ7g3EZ1LqNIY/RM17z2c+8xk+9alPvW3lJNB57NatW3zhC1/gy1/+suZW7rc/8c2v1rznUz95Ran+3dBKKYwX57z65d8h7vfvdHfut/vt+2xvzX/dbz/YdvfuXX7913+dv/7X/zq+Fra/nWat5dOf/jTPPvsszz///A+wh/fbu6VdXFzwS7/0S3zrW9/ip37qp3jsscfuk5X+kJogLFjw1/hr/Bw/x6/yq/xv/G98ns/zJj8ctq3fh92bnZLerXiuAYwtmdUsK6gJgkQjpFQ5a83EYI3FOctqtebmzQc5Pr3GYrmeFAEyWs2P0YRdDCr5m2Ji2O64e+c2t2/fYj/soGRyipNs7kRIqmCYmAbYtQ2nre+tW+8KChXNqc7qCDUB2Ug+qVnYmba5E6TMsuf6s71ewQwqsEZT29F3NZJSq9RpO8VS39+qYArgbKtYahLJtTKrbsIPkairYBVTgnGG5/L8ne0z7W+FauUik02J1OvXyF1Xv2c+glbdMW2422dylTo3opVdU4K/HqMYTQipb31CSBPo2JKHk3x1HXtjK0hotOpqSnS0sylgmr9627QfWCq0t1moYFOt3J8Uk6hS39V2z0ARM42NGIeRZj1IlXDXai+J9RFJhW7VcXS0pjjLfrNjHAOL1UqreMcCGIx3WGdwvWV/vsMZT+c9vu80EUlhu0tqjZBgtw+kDBITRoqCv96S0ohYYblacfPkiA996H1kC7thIO0ji8WC87sXGGvour7aFSRiSmyGxGaz52jVsR23WNNp4q1EUhjoFpYyZMDSOY8rnlH0PjpddJxfnpFC0KSqZIpklssVsRT6RU8aLGPMhO0GbMF3BtcJw5iRMmKTSsDb9YJCYXlywjCO2FJYLDtSEOzWsFh0UDQBsN2MpGLIJIwpxGGLBfbDHut6nPdcu3YNitoFxBCQJByteoZxy/Vrp0iB/TgyhqDJ0iSq7mMM16/f5PzsDGt7dpsLWDrGnFhYg3eW3cUGYiKbzPl2x+npKZ3ROUqMYbFcaMIzZ7rOslp0rPo1C+M5uXbK4uY11g8/hO17Hk2XmM7zwndeohTP8cMPk7JlGyI4y3s/9mM8+52XMcMlvT/BrVZIv2S4CFjfYxaAUausYsCoYISqith6v7uabEcwLaFHAxdb9slwtLqB94Z4OZKC2m2YAoSgFl45KVhUCr2zOCNcbi8Zxp3OB6YmZasM/36IxAJYURAqBrzvWPSecQy4tdWK2GGPO11i1sLF7UuGYUByx3hxQYh7VsfH9Isly9UCY9QaCxGGGPAUVqulWqrlgl2sSUJ9X8JIpnOWMI7EBHu0ynkIEecFkYS3hsv9jlQqkJcziUJKe3rfk7ICZR5LLtB3C8Zhj2gemf0YJ4U0cRaSsLm8VIKDMcRSKFLwfYcYS9xsVdkDIZfAd154kaef/g43r/04ttO5r1FLi4DxChoJghVdhz/6Yx9md7njS1/6EpvNhsuLc4oFj1VyVgVhje0IgybzU53od5dbVSpKaqOy7lZQdF1pKm7kwnK9JsfI+WZDZx3WeAUEjJCDVp+GEPHdSi0ipOB9PyX7Y06QkhKDnNUK6JRV5aqUab1uVnhGFJjwneAMmJLVCnAIBNR2sBigpEkBQsQQqq2V76zatJme7W7PECPeWOIYGZKq7nhriaZMII8TV8m/upZYILS113f43pB2gZQjne+wxjHkzJhHvNc4RqxAjiQnSk4QtXhR0lJGYqSrG70c41RJ3XV9XXtEn6362YL+rkDGvEqHMXAeLhh3I4tFTy4J7zpOTo5ZLHpE1HolS1JyIgZJGruMpAnMKGMm1fGwzuGtIxZVdUgRYgFXq4rb/JBymeyBKAoIKdiTaxW4A+uQrPOeS4n18TG+79ntdkomr+DS9J9GwqAoUJVLlbeq5JuilnNSVAFLEMQyWbK14KUUVdhMKeK9wzpHSQVcC2/1u8Qw2X9gDE4cRRJSLWiyoIRH47HGVYUotaTxnc5ZJgZCjIz7gBS1fdQx0T41IrWOrYJdMQjWgHcaH+dqo1lKmgFAGom0xkxVuSkXJSw1BSjTVETsHK8gFVh1TM+VRr/3qFy8q1qDWmYAqVFH9MUK+jGTVjRqEubgs8aTdbyvX7vOj/+pP8WDDz6E77oJoGxaZ4rBaHV6rEouMUTO7t7l6W9+g1defokQwly9Tpn7MIGONUCvyFgDtErtaPtMkXZnlwk0OwihKxHxACSSmVQ2Acqt+KGNTGmgqlRwjAoCHlrAzMm8Qj54Ru4FpWb4C6kQ2MQYmv92VYWonfp8Mt8teTifklx5oe2PFDg93E/I1U+3AIUZULtSsDEFMG2zdHgMmfdKUt7SFzn8jLOcPv44frGogzkDdKUcHLPU/crUP6Z7cAZloflQa9fMvN8xh+9tp1hNsioILtLGu+4/SuHs2WcJF5eUDM5buq4Do1ZYKWYlW0or5wCpFkPGmmpZqipzxtkJtA9JicklQ0ip7tt036mETrVJx4A3nmXfcfPmNY37YiSngnOWYT+q5ahRMpCQyS4TUiGMkc5bQgp1v6ljpqTyqvZZLdgMhiQFxNA7yzDsFbwFiuh97ZxXu3drKVHVFnMIiFE1XWtRMlFJSC1OMt5RAN8tlHhebcBK1uvhzLyHDqOqJquaIKQYEEolrGscvegWGiMZPQ8pht5bYsosFwuASQFHKDTOgIiwWCwZhgFjNA7FKaGJaikUhzBZeQ0hsOgXUGNoyYJzTm3VSlYlGWdZLnoWndp4u9UCv14jznFcAmIN53fOKRj69RGlCCFplcfpgw9wdvcCSSPW9BjvwTnSkJRc7uozVPMiVCVLVV+sD5OZ99xXn/62nxCM96yvP0h/6w6Xm30lyM37ea06qapKmupRO66UGfY7qMQXKjmEUtS+tOZjpKmvFFXXzTljHOR6fZACRz2yV6WmmBMlwpB0L9P1Pc47FkYVUlVBRm1etXjOTmpW2c1zSy7gKtFyUuErEEqsOQK1zM2p1EI4LV6KNfYSmfcK1tlq+eZqnisosa6Sp0y1skf0eS6FmseoFofOItaqBS4Zg+HNN1/nxZdeZHV0zPXTE/qFq/sJaASWNh/BlJnj2skpf/Wv/iX+2T/9JV5/43WG3b4S+wRiIzk1BR2Z8hMFUavcdnzR4qIsQjJK6EkpVbUfi/eW/TAAev6laO4lpVjzcZksBiOOVPKVXFeR+vdKuhejSkK2rv+52VuKAdNyWC3vpucqRlWfdX6007zfYm9jzKS+ZK0qflurpKEQ07Tk5KLn74wWh+jpa47KGzepk097bB14VbXNlahuVC2OqjyLVGU39HtzSbOSZ31m9GfBFKPKcwdKO8bYiTCjKlAtP6Y5vWnpqk9tSplXXn6FN994k4cfeojHn3hccxldR991euuhRQy5fbYqdMai+5OiydHJjsxW+8Q6qnr/TzFumckuhaotBGWyEaxxq6Cxq4CpCkYlaYGLMbp/16KBeOV4cOUf0+sTganMrx8S79pzcfh5LSYok0VjI/BOhGUa4XmOy5pCfLNZLQKueH7U/Cg/Ih/m9fwGXy2/xzflaW752wx2mK2hq7rhdB+1PtUT1NBCkJovbfenrpNWc2/tpA5ipxZ7Smm3YbOInM+/kf6bkm97zo2pefRDxc8fkvbwww/zV/7KX+GJJ544KPz997dSChcXF/zGb/wGv/d7v8f+PiHkh6YZ73nPp36S7uj4ne7KW1qOked+/V+zffONd7or99v99n03v1yyfuhhzl+8T3r5o2xf+9rX+NCHPsTHP/7x74sktl6v+Rt/42/wD/7BP7hPVPohaTlnvvGNb/Dtb3+bp556is985jM8/vjjBzHz/fYf25Ys+U/q/57maX6RX+T/5v/mG3yDDZt3uns/sPZ9kJS0XVVJ0o3NYRAvyFRtYhphRrSa2dTq9sVixY0bN7h+4zrL1RpxXgFD15LvWsUTYiCGwBBGdpsNt968xebykjiOjONArBY2h4+AVqZVUpBVtZ0Ygia7KgGHUqoVW64Vg1SLFZishSokols2VQiZ/OilVq+JnSr8ZwWptgGs6YCG3pdyYA9H2x1O/Z7sIKTKMmepSa025m1X2ca6VdHMwEIjCMwVTQfXrCWY6mhJ6wMtoV4T8WVOsB8CEdPYcRVUkEpM+26gQ7svWpVPk9hOZZbSPrSGMBySrJTsVKp9EqIVc8bZShYqep9UUOiQPGZcVS0qerZim+KC0BSb1CZOiFVa31o/Sy4bAxlcY4OaptYAUmW1G2ioQIQhDVnR3ZTprAeE3X7QpONuwAjEMFCM4LwSgaxzehwMne/w1iPGMAxBlUyMXqMUYwVtEw5D7xwxjcSUGJNaJ/UPLJWcszpGsiGVyGq5ZihjJWAUfBHGzcgbwx1WS6/XwRi1d3D67IQUiLuRRWcYh1EBDtORcuZyf8nCOyRD6WBzecnSGobdBbEoiBBiYdwnUsmsFkvoLGVQYMP1HSUEsEI2WnXdeU8M7dkDxOJdj7eW3cWWfbUMogPXKXlrsVjgreXW7TeJuRDGkc6pEhMTcGvp+2NS2GGJYBKXm0uWxyt2Y2DcD6rI5btqodfr856FN167w37Y4r0jjQO7fWSzD4QhcOPaKSlFzs43ZBI3bz5QK5VVXcRGVdoZxwFbBFsKMe3YXZ5xcv0G73/PI1xbrrl87Rb7kEibLW6x5JFHH6Pvj5Bg2F5ckMYt65MTTN9xcfecm8Yi5wMJR+kSOYD0HWbhIEKJCl7ZRcYuamnuJDCvc4vRia4meNtkJBXoyjjJYBzeLpA+EfOINZYUImEcEGNx3mP7HikJMZbV6pihktTCMFBMRmyHGMe+2jgcrxaasC8L0hiqbR8c9QtCzoxbIYTAzdWS4+Uxu82OYT+yWC9IybPZ7dnnDMfH7C+2U4K3W/T0nadQiTVRrReMV6Kic4ZUEpttRCZVNCBFimRCzGodOEas94y7YSLLqGVA5s75Gc57Um72E1YTxAVVGctawS9FSVEpJ8jo2oQqe6ia1jhVMJeY8UYVX6Tr6Izw9a9+lSfe+yjve/KRBpMCYEVUvU3TodM17XvDRz72Yc4uL3j+2RcYh4GQg9qvdD2dGM53l+AaQFGty1KbwxXgcL1alqSYcM6DUZu+FCJWFCDrvJkt78aAX3Q0q8sG+pe2hklTFBFSGCgxTiRg51W1wBqn9jEATd1HBKylmIwXT1eZ0KJcrqoeEAkhIkDnXAWUoHNelU9SJqRIRFVruroOjo1wJwZxBlsgDgMWwVtbk7ZWCaQxkaISdooa2dF7S0pUtSPHmCMPXH+YT/7pn6Cznq98+Wu8/NLLpHEkA733lBgoqeCtU9vDGLTiPqt6haDKAJ21WGeJWc9B12oF46xz+Kp4oWCOroup6NwJhRQHhv1A33ccHx+xWHi8mEpK0uR3qZOrGKWu6bXzCvbkTCpKIo77gZAUAFF721gBSosVBYcVMIIQKmm7xic5Z7zzWvmfkoIc6JrgvWfZL9hudmy3W0qOcEDuOCQSqO0PtKr1CXSqcUBpKks1RimlkMkKnFW1PJcSxjr8ZIeklepSk/StSrqUjDVKbFMVI1FrkRrTOa/goY61gm0KHCtYY0Qt5nJOJIEiSlpKJZNjUxWwtTpdzzGnqnxU45YWr+WsQKmxGtNkUYUtqYAFpcWoBTHVzlB0XW2KKs7pOKXUSCRzTPaubIeb1wPU6F7SyhVIfAJX1KbJOccDDzzAE08+yZNPPMliudT4TZqlcVX5KlWhJKsFZgiBi/NzXnrxJV54/nnOL86rRbTeX1M1fkO5GoFEZlJQ00Ga/z33Nk9Dn6c4tPW/7RHsFMvPINmkHFXffnW8OCDoMO0nKlLFoWrq4ZVvKg/lYMincF2uvm++HHPsX668eVZnfcsB9AMHIKDc+6fv+l3tO1rcPylYtX3Elb8z3wpyuFJOHZ96NSln1VfEXN2frW4+yPLGA+3yUmVxD8hEbW9xVe3rCuGJw7lIyQOmfkb3CfOJN5XZdo+3PVnbLk5dzYXzF15gvLhUQLqqJsWoltq5roGNyGqM3uPGzntDtTHTvVKKup9tdkWTtVLJCGZSBcyVCOKsY71yGGNZ+h6yUCTjfUckMcZIBlyBFBKbtMM7M+1f9RmrQG9K5JBxTkgV9EUspWTGGHHVostYGMeEN4YYh6rwp1ZcKer+0i2dWtwkVS8yzkFSVSidv1VNKB+CzqJEKlNVQGOIeo9YdK7Npc7Pwna7JRd0DIzBGHfw7BslX6SAkEE05nSdEk5TjGrtZKolq7X1XobtZl/VcFQFKcSsJOaUWC4W5JLZDyOFzGq1xlqHMYWhiK41AiUljQNbHBdHjBSuHR+zcJ5xsyXmQh5HjPOsj09wtkOyqHJUCnT9AnGWYT+wEgNjJGPA5ap8aae9r1o8ZYwTcAfKYvODRlOOufqYy5TfsKZ9Tve3YwwYsUreLlmJxKJ25KXo3Ot9p9feWFVLpFSilCoWCao8rLZLSnBoaoid03k/JUMcYWE9znrSIqllOQXXL9gPAyGMuErwyVHNmKSqaInUwrZUqprsHDfloqqfFJnyTKVoPJfrz1jVo8jV2hCpORJI1Rq6jZFmD5olmu6/s8xGxaoOrvNaSgnDXAQSY9Jimazxs6pDG1544XkeeuAhXn292r4dzrvTPHQlE4QIPPDADf7Cz/4F/uW//Ffcim9S4jipp3XWEcI4vRdEx548KRMZEbXBs5Y4RM2biFDE6OazlJprqfNsjQFb7JPFzPuHVux4yA/IlUBZd7T6jFmsdZUYUu/MooQPa4wSiarSpxGNBZ23ldyT1U6t5SorIcY2a7JqXRZDgFqoBrMKlqm5Q2Nb4WOZ3jMTxJXs0ib3girrWVtzR5Wkao3w8KMPc3x0xNndc269eVvJmDVXaURtDEWqDWjdb+YaE7c12jVbQmv1/qD5vuncbA6k4kV0P5lS4rU3XufW7Te5cf0mjz+uZKW+7+k6N9mbtrinjUu7e0SY4ljthsZOaVKknfcIhVKLGtq1KtPzMc0r09pYFepyBmuntdlYJcamGBnHMBcKMMct7b6eiD5XnoDpLzXn1P50NZ5oyoO5KtKaUrhaoNnePTGANEZs6luVI9aU5h8yD/Fg+Qv8dPlpXkmv8MXyRb6Zv8l5OUfKYaQrB7FdfUamGLI+v7ZM+yU9q0pIknqcg3xyS+VmCk2Vsw6M3svkKaZrVm9tb2es6Ppf/hjsJ/4jm/eeJ598ko985CN85CMfoe/7e/Yi372VUtjv93z1q1/l3/7bf8sbb9wng/ywtRtPfYhr73/qbd0vf5Qtp8TLX/it+wSl++17NnmbJMx3qokxute73/5IW86Zf/2v/zVPPPEE169ff9ufExFOTk74+Z//ef723/7bnJ2d/QB7eb+9m1oIgW984xt861vf4kMf+hCf+cxn7isr/SG2tkf4UX6U/5b/lv+S/5Iv8kX+V/5XfoVf4WVefod7+Iff/gNm/jL5nUMDkw6qV+sgWluremqSUKxjtVpx7dp1rt98gKP1Guc7TURXeWFndQOds1bOUDLDsOeNN97g7M4ddtutWszUqp3SNqeim7L2WcMs668VKmVSeWoVRUpSMXWjn+sGzVRLLt14pKSbPmMtpDwRm4woiKfjMEMCLdldsp4/1bdd94RSZZ9ncsthUyuQutGckZgpOS/SxrjUpAFXjvNWclEDVQ5ISyKTp3ueEirzjX9PJv7KnlRaMrwlqOoOvG2CD4lqh+c4VUHXTubSACY7S2BTXzMz8EguZFGw2DgFkI21k8qRGKnJS4WhjLEV3GSqrD+4SfWUjH6vguvUBJydj2sMWmArB2pNgFG7gWYrJ7YpLVVp85hJYyLHTGcdRYxK0ouCv67zFUCEi8sN1noF01LBeYdBiUvNeodSKNlASnhTMNaQhgIpYk1HGPdYCyfHJ8QwajLdQWcNy27B5TDivGDGiK3jdHS8puw1cZgKFOOIIWh1mgh973FASSP7YqvFjiOnxKMPHHMxRM4vE8fHJ+y3O8QI28sd4i0PPnSTV2/doiAcHZ+w22zx1lKGUYGQlBi3AVMKYRhJu5Gud5wu1yQyZpFZeiVJuQJjihUIyHRHPUsRVfYRQ3GG3X5ktKp0stnuEBGGEHBiWC47xv3I62eX9G5ByoGT0yNCidw92zAWWPU9uVr0pJrgc53Drzy+63njjdcxVnAWxBtC1qT5frNha+p9myzXTq9zul6QcmEYAmlMpLDHxsy11TEXaUcp0J90XJ6dge9Z3Xicb79yxpPvWZMv7vLmay9x89qj+EcfIDhLubulZHjkAx/Q++X8jHG8hBsn7NM5diO46HGrJW7lyYLK0lvoFh3GajVxrnONrWimGCGNCgQYZ+ZnIgOp4Lyw7g2b3Y5hH/ALBSuodlphHFmtjxBryTlqkjREuuWSoVaYSlX5CCnhux7JGWscC9+TfWIYRtYnK3bbS9ZHR9VSo7A4OsLFVKu3VR1vvfBY7xjGQLdacXm55YWXXiIMI1aE6zduYLwj7wecc6r0FPT8eiMYUcuRGFSZT6RUey4HOFIOWOM4Pj5le7kjl6yKZeOAM5ZcAjkVhnEkl8JipRZ0u+2O7TjQakVNbgSIQklKerCuJtxhslEzIpRYSQZFyTFjVNu8JCPDfs9v/uYXeOjmX+ToaFmnxYxgFfYpoOWQDahNnJ6u+bEf/VFefOF1xPWcLJZcnt9hP24ZimOMmc5q1fh+t8cYJcWEGNSuLheG/UjIAzllhu1eE8PO4qxjs7mkxKQWV7QkfuDy4gJxSr7A6HmnXEglYe0CESHEUQlEvtnUGdRsQSYC6aLva7I9M+z3iDU47+j6BSkFnLV4ayEEtmMghFytxhIFixTBVYs2UfQFb3v2+wFrSz1XVf+y1S5Hl39hvTqarGNT0mp2stq4tDhmGCP7kpWqZCyxFKjElv0u8PLzr3L9+DqudNjk6E0hUzClkBs4apWMqsAwOCv0y17nwZRJ1k62Fq0avK6iWNPilApk5ayEJSsgSa1nnNO1NAY2F2eEoSrx1Sp0qda8vtrlWe8ULKtKb8YYMqpOJCL0Xo8nZFKqVnq29suoklfJmRyr8lQl2raYrClUYMEuDKmoypGIA/GIdex2W0IYFD6p8UBLmkudtxqxWf+dqzJFntZjmZL/bY2v1fBFSWmERLCxWryYagvSPqeKVwoGGCXdCmRJSFHbBjFxUhJQQtdMcle7EgULJsWJBnYZW4HuqJXvZHxV/MrV8sJavQ+zIvlzPDt9XwXDsip5KojZnn2pVhMK4Cn4WYE+o8+kSJ7snv44tCsE9wrs3wuHTER6GjhsuHbtGh/72Md45NFH6fr+QLVFagV8BWvqXFoopBjZbDa8/tprfP3rX+Pi/IKmmkT92arOgQkcmvkjB+QdmEhz1Dj4EDBUcLsqhrZ+lBorN6vjMhc3TMqfDZASaECSAl9l3u/AwTOg53wFitMJkSssgmlvwBxnz4e7Z7wPz7r9fvCz/neK7Q/+Nu89rqo/NT2O9vfv2uTg7/XAVxSU5i9vU8YE9jcydnvvfA712moQjyD0p9c4eezxmazd4iFp6kfmYNjmfcxh/6SOu2n3wrTvqfswI/P7255qug4H93Tdz1VNJYaLczZvvElOuQLmSvy0WESyzmO13+M4IsbinVOrrqquYNo8rAOoI58LVvSCl1jqfVbISW1N+15VEKUqyFqpcUpK1ekrT3vPrvMQs8afAMYoAdMaLIKrFrClZGKp46PSyBwd9QxJrbG7Xq3dEI0xxRrWqxWXux2ZQtf1hDHoXrXZuWeN3QW1Qs1R59Teeb0dnMFbfRYzRS3dSwEpuM4iuNku0wghxsmOcww6FrESJ7xzxJi43A+qYpQz3aIjk9nvAyrYV9fwkvWxLkULarzuLbebLe12aPsvwRDHkYAW4lCERb+g73R9jjFXAk4ECgvfM4xRz6HvWVy/Acbil8fcvthzetxRxj27ywuWiyPs8YpsRPd8BY5uXIeihKWUAix7Yh4wQTBFQQDj7Qx0m3peGrIdaLLMD2pJ9R4yhgNORs23CJ1Tq7KUVHHRVjVWkEq40Ni0Pd9ZLxHWeXJuKtYyEQmaZaeqCCppz3hfP59xzhJCxLqmHqRxUqGwXPgpn7K0S2LM7Pc7tpsNOWcWfa/3YkqQqo1btV+1tPyEzFZMNR9jq5VormT9rl9QstomtzyE1HMrSdfqGNUa2vuOnHPd77a5sWCykva0SK3GLEYVVEu99zUUnSbI+ryrQuDlxQXf+PpX6ZcLjo+PuHHjtKrI1LzQPDEcXNGCEXjssUf5wAc+yBtv3FKr6zgQQiDHmg8zhc55Ss0jqfpqqvORxvX7Ya/PQypaeFCUKBRTVPvrojaLuvaI5vSkErap1tG5kZcMzaYxl1wJR7OqZJtzc10jrbF1jCIx1vnIGqi5NWO04GNMGku3+Km0fFWdnlu+zblZed0YtY2fYoA6klKosb6bro9O8Wbmx9Q5eAxR54FS1KK9lCkm3VxsMcVANqo0h5mK+Vqc3HJfUvT5MwLi7VR8mXNGrJ0KHGcLrzpmphVYaqysFpKNLFa4dfsNzi/u8tCDD/He976Xkpc4ZyeCq150Xas0LmkFjM2KrnW3zLGOaCyWp70VNfRppJ9CqsqhmoOVms+drzMlI9XWL5eD4gUxk4pqLonG7mkKVvPZz9dh/nEQd7Yc8kFgMlnSFSUmNuu59kw3VbOJPtSW+Cq7acyBlXMtfkWgk473lid5Up7khfICn8uf45s8M8c8rQi2HVma2rzmGXLdQ7TYT/OvVf0uv5XwPik5thOXFhfP/Z5J4DMJD2Taj8z5/T+Z7aGHHuIv/+W/zJNPPvl9AWo5Z1544QV+6Zd+iTfeeOPqnvR++6FoJ48/waOf/DMH+593RyulsHn9VW5/+5vvdFfut3dxu/be97/TXbjf3qXt7OyMX/3VX+Xnf/7nv2+iyenpKZ/85Cf53Oc+9wPq3f32bm0xRr7+9a/zrW99i49//ON89rOf/b4sc++3P7gJagX3Z/mz/DQ/zRf4Av8D/wP/jH/2TnftD7V9XySlt1bVNpXycmUDI5hqxSJgDMvlipPTUx548CGOjk9w3oM0IslBgqsmHWKKbDaXnN25y+3bt7g4u0MYtaorJU3aHd7srdI2N3JSTb62SjdqVWMDmDS5Xsk6dSNva6KbKelelXdslfmXq0pCCmbmqS9tg9fIQA3QasnzqUKlbo5LTU7MakMHfvNi1KYu19TgBIBIzXvrBvOweqhJ9s72bzXTyFUQ4lBpqSVicjkEAGbi0zzGFSiRQ9JUI6GhqkbtO4tMiYCWFNHq2jp2NRFRSqahQQpSmoM+F4ytai8CRUpVRzrYVLfPojLtpm3Uy5WURO2jmZIdSgarlZKixCfTCFL1+2awSyvvqFVv1ijgmYsCBZ3vWTjP5dkFGAc2UYwQc8I6x34Ycd6yWHQkCiUmnHMcrVUStuSMKYJgcd4wxkisicbOd9iapH3goRvcevUNFt7z2mtvsj5Z8vDDN0nB1PvUslwvOFouCINa/fSuw5XCELcYCouFx3YLhjGyHSIh6f/dYqkqGTFycuMGFxd3QQKr9YLtJrJcrkkUnCsspLA/v2AfBvpqfWR9j8FTkiaNR5RAZaze3ykmEgp8xHFgLCpvfZR7lqZj0a24GBOb7Z4shtXxCbthwGYlEa66jnEc6HzHPows+iUhZbxx6olT7zmpMu27/UBKkd2wByKLxZKLix1u4XGuUxsYq0BAiJHtbse6X5Gzgumb7YauF6wVFr7nzp093XJFIdD7FUMIbHZbzi/3DMOKa6dLFn1Hjo7eefrTJcvOc3mxJwx7CoYshs4teODaNS72l7zvA0/hDOz3atGFdxw/8CB3NzvOX3uda6fH7G+dMw57fu8rX2d185TTh26yPT/XebPvWVoHXdTp01hs58gmk4wylCQkVQ5xmrzNY2ZzvmPRe6xvZENNnkkGE4Xjped4vWa/24PR6xRj0mQzwna7o0uZ09MjOm+5e/uMzWaj8v0l442CX9YbSg4YMuNuj6SC7QVKZn28JOWBnIUwGlWFKYVVvyanxC4Elqs1hEC3XOD7QgwJsnB3PCfkwkhknSOb3Y7Od2oDgU4hq2VPt+gIo6r6KGhX8J3DWE+Oia7riIrdqH2iMeSQJyuukCIl1+fSKrHkaL2oSXJDioGUE85qpa410C/U1iqGrCo/TbHP6lqoBCZDrFWoYwwA9NZxdLIixcybr77OV77yDT756R/XqnBy/b+ZAHAxZZrnpQiPvechPvHjH+Xz/+YOu80lYVRLtZJHMplUMgkF1hTUsYgXYhLwljwMFKdJ/IyCHTEnOutZeM9+tyMkteK0Vit1Y9bkvTEWSYVxtyPXdco2hSNRgkoxliwFYkaatWpRK7jL7YZSCn3Xszo5IgRV2Imp4G1PiAErwhgziEeMrv3eaXVvCEouUtKl1IR/mSpZu64nMxAGJSoZowBXDiMGIYkwhDglqHNUwCjnXAkmNcE9KbJYckiUpOo6v/+tF+j6N0ljQryDlMgpkJKq8GgiObHd79QCzRpcKZBUCSPmQhoi3uk9ZoxWNWulsZ3BDPS82vFEqMCJqOUlCmDshsBuHJCd4PqO9XqNr2Q0Bd31jBoYNIP/qnKlBOxGMLAV0J9B9AYapZgQaeunTGQnqfYkYgyukhKcqCKi4GpcaOh7z3a3YbfbzdXZqSEYM+lDhZvKZGkxK6cU1HpHZrB5IvFoS6kp5kS8tVhrFaAWqcoZGhulCqzEChQ3RY5cItYaJdIBYYxVZc0STKz2JJksCmCklDVOkUpGn0OuClBXEM9CCqpsYsSoClRVqFKQSZc1YwTrPSFEYmpEmRlenMCqChClVKZ4samzNDDt3d8mdOYKCQfay7PiQNtPtIrn1XqtRQQ0kLHGjPW4hWpLOQb2ux13797lO9/5Ns8/91y1ockHXzXHziIzUW7qpcz9Aa4QdKZYvL5xAvQb2NZeF5m/5ypiN/9+cP5Kymr9k4ORmr7symtyT9+amlARqoXIQXx/Baz+LlelnbDM3311MK4CX4cFCdLGRA77N+8nuOffh3uo6U+KANYhn/ckV/ah9/wujcjbxkZmMLUBev74mJPHHtfqzOm7tC/3wM9v6eP0nfWnkbmo5fA82r0o0sZK5uPV+VQVMqTuW3VtkpS4/crLEyit86DO2aGuDc41woK+3vluuuZS2r7LqqJbUaDU1fm5AOv1ku3lBpcSl5stXedZHy0pWaZz8N7jvaoCNQKPlKquR8E7g1hHTFmVhCpJx4nTPVnO9MulWiBLwnlHGDPO+7pfKzgKcRiUgGVtLSCxiJiq5FNIRBTnLlMMVOo1zimSSiGWQmdU5dIZRxoyYVRlI9/3DHFfbYoEbx05xcliVgkxWrAz76frXhcIUcm8MamFmHdObT+r3aaqNWvRUsqRGCK+2rPllMlhxDrUts04JVB7B2Sc9cSq1DcMkRQ9y4VXpRRjyMZie4+zRtefGPV+AJzrWC2WjDFw7cZ1rMBuO+g22hq61Yp9iAybDYtFR9yOpBR5/bU38Muefr0kDoPei9bi15UEZgRE1aiLNEAbpK1RbU9eYByC2qJNuev69JQCGU5u3GDROfajI6WRVjSm5Ei9r8cx4J1jsVgyjqMSYoqSfG1VfVGH43ptciYO4DolZnSLjlJUbSsnIVfVD+u8xnilYK3DFiZFJs2zBI3140AphZATJidK0OcyZ50NrDVKqEFJ3hgwlfDSdb3G1EZt59KVOUMLwgrVXom6NtW8krUGZ4VQqCo5WdVE0bnaWlvvu1hVfuY53Vb1sXY9lLen+RQjhq7rOL+84OzOXV59+VVWqyWLRcdM45zVVQ8LH0RUTeRTn/oEL7/4Ai+9+IKOay7o2ek90PIfkxudd0qcEqlkvRpvpmYJpq9Zq+QzqiVwESVCtjydkoxUnW2ymBLNA0k+IC/LbHlVSiGJvl9t1DSe73w3FR/GpNZ4qVrzpWkdNEgrhDOmEh/NnMISDghpjXCj+7/WlHBcrdREiDnr/KYB8zQHl0qS1EdDc14ZgymlxiCGy4stu+2ofysFrKmFmBkRW1U2VY21pExTr2pq8lpsUKoFnp5fKan2sxF/5zV/Ulaqv+e6TxhD5KWXX+GNN2/x+GOP8Z7HHsV6p6rA1k25Pt021ZjTzPlTvWy6N5C6trZc5xy/ihawVaK/1VE5yOHN66ZaKNZcnAjS8qLMpP8YDWMISvyv+zmN39qKPkc5jYTz1jBz7v/E7ZKZgJynHG0d36JrqhFBjJ2+45A8SHtua77TVYJlK5h9kif5Bflb/Gr+Vf5d+R0GGXQPcpjHlMOdzWEkISrS38iiLd7JTT2XKU4QpCqL1cI82tSuvW7XqR05H6plSc3Tf4848Y9zW61WE4i2WCwOct7//lZK4fz8nN/+7d/mt37rt4gx/oB7er+9G9vRo4/xyCc+he26d7orb2lxt+XVf/dFLfi/3+6379GMc2973nun2snjT3L32d9/p7vxQ9m++c1v8vzzz/O+973v+7pPRITPfOYz/P7v/z7PPffcD7CH99u7tYUQ+J3f+R2+9a1v8VM/9VN88pOfVCXk++0PtQnCn+HP8H/yf/Lf8d/xv/O/c8nlO92tP5T2tklKrVr0MAkOVbnItNdrEkYs1jhc5zk6PeHmAw+xWh+xXC5rlZtMOXlTCSApJ8ZhJITI5cU5r736Kud37zCOgTju60ZdN066l5yT/4281EBFK7phlJI1oWKajZnMyXVRFaVSE0jN833emNUKEmGyZ5k2z6WqENVN61TNVZPG8/gcJtbhEGhriewGTB6+1r6nHWtOfGt1vSakrp5TaYn5UpP85TBxP1+zdnxT7UK0zX2aSEVNvromcw/73aqJNGmWp0QUhZpsvqoARU1KN6itqVppcsNoYrlZIR18zlhLMdUioAGgAjV3X/9fyUciszS4aIJmVlMydTwth9XLUmQCVyclJXPw+YMv0qRcVVBC8N5hKOw3WwgJW60Jmoe9oMmLzho6r4SlcT9SYiH1mkC31rAfRhjAekPXd8SUiJKRkhniyG4bMWgCfL/b0/U9p6cnpKJkpNXxEXFMlCzsxkiMgXG3gXyMPV6z7JaYnSONkVTAeouJatlgjLDf71g4z+nRMbvdwPn5ntWq4+RoSQqXOO+4e7FhN+5I+0gnHttZYgkUMWzHgXjrNgWh7zoMkHIgA2POZCMY37HwHWEMEBMr33H9eIV3jvPtQJCOIQeWXc/mck8ZMkNS66qwD6SS6JcdUBiGHWC43O6wzrBaLTThk5RQU0rGOMditWS57lgt15zdOaPkAVNBx3EY8F1XE06GxUqJRts7tzHG4FxH33WqdhILNiZOT5Y632THdren84aQIq+/cYfFoodi2O8HYhlw166xj5F9GDFiuNwMeCyvvfwmX/vd3+PjH36K3dk55xcJUo8Uw51X3uDOZsN2t+XaqmM8u8Pdcc/Z+W2eePxBuiGSiuPN89t0zrF0QtgMmEUP3YIxb3ELh1t2xGEkbQeKFRbXThToEcNy2WOdqqJYq5WsVRmf7cXA8ugIQUmiN6+dsOgVZNpcXrLfJ8QqgHFxcYmvz5a1Qr/wmpDOhZQLq+VS52Mp7NOoFnBiGPZ7Xn7pVbVOE8GiawRZ1XgMcO3kRIlNYilYQlAbr957Tk6OWB2vSVkT98O45+Ligr5bsFwuOVr3mBzYXCZyEXKJrPoFxlliSoSQKrmBSQllv9vhjMNay37c10pd1FIJwYkSas/PLwFDbw2dMdA7jpYrLrc7TFVFikWT1TFGvLM4X18PA4JBilaqhxCIpioMlpH9oBL9l+dn/H//3+9wfHLCR37sAzRyyJT9rElene11nu464aN/6oPs44bf/s3fYTsEeu9JJHKMkFRtwRuDr6SO46NjwDDEoPPQsmfpOu7euUO/6BU4jYmYE+ujFfuoVodGVHHHWp1zvXOkEpXIWwnAYyUTNxCjUEgpksaAx2F9p+ShpGt2DJF93uP7joICFMtlTyqZYQysu56+W5DilqP1mhAHjNV+7HYjOY8467XCGVR5oGRyNoSS9DlPaoMhVu/BGCMmRqQpERnBIIw5Qq6KO6VMFi7QgKBC5w3r5ZphLGzHyH4813vZF7x3hG0gpkQJBWtVMUCJRWaqADZSCT3VSiSmpNXl07qa6zVXkIWcKaaAGJXflwJYYlLLjZwT3nslbKWoz+EY8XakX60Qo+QxZy2pXqeSqhpaqvZz9VrFFFWVUGRKtjvvMaYQsyBZVR5yDtr3XGOLunZnyqRWkisJpOs6KM3iTvDe0PWeRb9ks90wjgOpxlIKLly1m20JddNIxDKrUl5t5S3WD6UkYgMYqPel1ZhjjtdUTSQXBaKtNzgWFNQOhEo4MKLxSNcLJRtijErY6gwxUqu5Z/tC4xwUcLZZRFRLFKPAa7MXk6lyuj7ujVRtDM7puaRULWJyATNbKbcpwtAUrirgj5mBvndhO6R/HL5yiJs2wlGL8frFgsefeIIPfuhDnJ6e1vvSTEC6HqYeuag9Tk6JcRg4vzjnpRdf5JlvPsNuu6lg7fztEz2ldiBXC0vtWQPg2lfIRMyZPncQt7fvb1hVI+dcUdxhJvFMx6SpMM3n0P5epv/Mag/TceSAQHRvP+p3tmOZg9dpfai9LBMVqa4ydS8xgW/TRw/6V4/Vennw2Or3tf3JQYHH1TaTer5bFXqzTbu6l5mBxytjB9O62EC6ac9a+7K4cYPjJ56c5OPbtrU9n+148353PhdpHyhXz01g+s7DIpVp7W7zRx3MUj873d9Ua6IQuPvtbxMuLjBSCzsmdVw9tjVq9xNjUvJ2KWTbQHKjFj+CzvnWVv0wnVdjTsSgqkI5Z2KIOOtYLKqajRh8300WoTHpfJpSoJSOvu9UXTSaSlzPun/PdS4TLVRwxtB3PTEkVZR1lr5z5BQwxjKMgRADJValFGtq0QiElMjbHQWmWCwXJTSkXMiC2g5bq4A0BW8ti67DGsMQI1mUoOWMZRyjxgZB5+Ycdf1zVTUoVSvPsZKVvXe6blS7s1IBcucd3qt16bAfdE2vO9pY59z2vDjvcc6y3e2medxaS67WXJIKfe8VQM+GeBGxVsglc7ndq3okoiqQJWKWC0LWPSCYar8c2FxseeO113jogeuE/Z5hKFAsFGF/uWU3jsQQWHpLGnbsU2QYdpyerLAxU4phO+wwNTZMIepzYVVp1DiD8bXfQVV43aKfSHXOu4lU0PI/jXAbQqRfr/BdR0oXGGPou47RjFrMktXaViiknNjt9tNzpKpdSorLlKrKrc9nyLGSp5QgsdlsaAVhTdVIEMiqduhr3JMrsSxEjXesMXhnMXYJ1PuXwm63U0Kzc3jvsKYQQ6RUSzYjQldJOSGEKe9B7WeMsRIC7FSIMBEsis5PtuZ89nudLy2ihUV9p2tW0dimFXblGk9YYyky2761NTJXFRyNZTKxFlt89fd+l1IKXd/zvvc9gfempYa4Orm1eVdj9mvXjvjZ/99n+ef/7F/wyquv1Ro/nUdyzDMhqs6X1ipRMhVVQC8ls1guGbY7EMFX1aSUtUjLFEuMgUJT3dZ5shUKZkmoglb9rto9N7HhyoG6ka3jImotje6/bAXeckh1XNp8qmTBIkXVPq2loHF4GrIWmJV5RFqxidD2PkqGTLkqIeVcSfuAVNKMUTJ8VkaUjpUc2GyapsCkf+s6T8kQklpINmKycUKJurUmJawRCnlWQmLOqTVySotNUq62aofrZUHzdTXGKHIYOrU9DqrgaQx5GPn27/8+r7/5Bu993/t48IGbuHpuIs1e1E4kLC2crHF3jQVyVQOb1dSZyPVGH+KZxAPkXF+ra+1Eea4cmaYkL1bnubYvaIq1YQzEFKfYeo5bDu/1MsWV7RFof230p+kGOCQLoeNXiqjaFbluxawm0utgGqP3Wqn/E6M5aeoeq+W+G6loZVb8NfOf8OH8If5N/jc8Z54DSZrrbW+mFroWmciBNYNa5+A2fi1+PIys55ikzRE5zzn0Fqe0nGobY10Hdb9xD0X9j31brVZ89KMf5dOf/jQ3b948yBX/wS2EwNNPP82v/MqvcH5+/gPs5f32bm7XP/BBHv/Mn3tXEpTCdstzv/6v2bz+6jvdlfvtfvuPbm65eqe78EPbQgj8o3/0j/iFX/gFHn/88e/rs957/tJf+kv8/b//97l9+/YPqIf327u9nZ+f8yu/8it8/etf52d+5mf4wAc+8F1ygffbf2y7xjX+J/4n/hJ/if+R/5F/w78hEP7gD76L29tXUiqtGqcmFGkbPOGQTGPEYZ1nvVrx4MMPc3rzBl2/qBYddbNkhBSVlJSzbrpjjOx2Oy7Oz7k4P2O7uSTFsVqcNMKMbshiJRdp5agmsnTzX3eyov07zHnnnKbEwGT3lVrifE6eS/VA1/1bq4TLmAoQUBMnE0BUN39NZUAldHVjDocgwKzwkGpyVf+eDzaPTT3pKkGplALGQJVAbwnBVoF2WMVbmiQ/rfprTqarSoOpFaAGa0QTbZlpE9uACgXT3mqbJhxUgtfx0mGvCZMyj8lbJqEyj3Oz29MsQ61Kqomp6TutWr0pOUK/2zbAb3Zj0CRm7V8jljU45hC4MKaeX61gVpKSrfdke0+9p8Via6JJjOCs06q3WmWacyaFSNoOkFSBZLnosdaq/PQYFGy0UGJif7klBiVbpKIqHc53xHHEGaMKHSbhjLBLCb9cs78IjOOeuxeRYbPHFLh54wbHJ8d0vXB2tiWkUPtuCfuA6wxd11cLLAtOiOcjKQQKEdtpsn25PmLY7khFuH7jJpCJw4jDkKMoeQjLuN2TU2TRLQk50otjvexJJvDmrduslytcZ7FopV0KkZQc4zhQEpjOIzmplZwx5DGSiiHsI/2qxxXDmKoyhXfsxx37NCIULvdbFl3HYrEkYeg7V60ehDHuMdlgRcfSGFWsijGSU6AzDm8XDEPigYducO3agmeffYVYQYndTi3rlqsl+2GPmKJkI3E1CQyd16T7+e0zVqubhHGE4igZ1kcLFosFYxI2d7d03hBD4ux8w7DXxHtImZs3r+G7Pedv3iVIwJJ485vPYSVy+9ZrHK1O+Mp3vo33ngcfukkOkctbt1j0ltfeeI3TtSNvLjkfIxhPigPXj68Rz2+zuvkAIQLVIoIhkfcbMBl7ukQWniKGGAJd5/BUi6H6nJaslcdYQ8qGbnVE3/WICHdu36Hve6hWcsv1EmsNq6MjUihcnp0hBrqFZ+V6Sshst1uKyex2e5x1qiZiIBGQZEmpEGPAGOhWHVYKJQVMEYzP9IuezXaD5IITRzGWhYd92HK0XND3XoGbHCgIxjsuN1u1LIt7BIczlsvLgfXpKYKrLCyrajqgBKocUcs6Ba3GMmCs00T7ZP9ZWPYd1ltiiISgyin7msX0RZW7FrbDdZ5t3uG818RsbJYshuVyyX63w2AnIKtfCCHEqpFUATEK+/2e3ZD5ype/yhOPPcLJ6fIqOI7O75WxVF/JLBeej//4R3npOy+y2V5y7eSI7W7LuB8Z8lCL3zO977nc7bh76zbGOIqAdxabEoFAKZk47Lh+4wbjfk/Yjgz7gDidI8cxYKSwWi/Z7/bkmDTHaa3Oazkrcamuz51zLBYdm/2WMcY6tpE+Jby1xHHUCvSU2F5u1LKJzLDbV5uQqISCateSY6TkQipNAcsryJilgiZzNWvOhSEm/KRCkrRa3VuyoVp9KtFKKEqgFKn2l6oA1BcFLSiFmAopjkQKwVRCTU5a1WuK2mEUrbL3xpOygjCmFMRYrNUEesJqBbUVXGncWyGWRExZAcpSrTKKgqNtnU2VNNxsrBrxQAw4r2lkdaC1lJTZnl9S9gGk0C971kdrilH1Mk2QG2JUsNCKEsVTzIhRoqcpkGNkN46qKFDVBEpOmqxPba03EwG4VZE3InSLZ9SGDApKpApjxBq119ztN2w3G4YhHdgjzKqPqkhZplip5EyeVEga2YLpczpe9R+VLJJjJGVRlTcKKekYGGsnyw/rqkVvylCMko5aRXFRUroRje2MtXTWEWwkpoQTIVQSINVaUqRampRCDqpS4ZzHWqaKbxGDM0KWqhxVr6mzfgIfnFMgMIZEqiCXsVL9g2r8WlXX9L7JeO//GGwCpRIZuULIaeQNACOWrut5/PHH+NCHP8z1mzenQoemTNHi77YvoN4zIQbGYWS32/D0N77Biy++qPdOs9KoRBK1yChzrD6LONT+zHAgAOXA9q1iQlIOq89n8grt3Gjg3cztqYjQ9JEWxLZ7HJG3jM18yANlsdaX+l4Bmm319GVNieoAoJ7grIkANE2WTMhxLUKQ9kwfEHOaIoQw76FyBefqVZz2XHJA5rnnFpjXtwMyjj5z83sP/6bDcfAtbSymoa+fb+Nbv3tx8yanT74X4+z03VqIwJX3NzuXQlVnnUd37ou0M5z/pK/P5AGpA9POu+2dDNXChnncS8lcvPoK2zt36jWsim9tTGvc1giNYQyqQFEJEKWAczpnmUZ6FN3HxZIxfkEcEilF9mMmjarmt1wu6foO60Tty3KaQM0clZhuO1v7q+BwHlIldVRVGGPwXU8MuuYtFytECjGmet8IQ7XdTUFJxM46JRKJUeVJSWx3ey3+sB5flYr0eTWkHHVNsHUeBooYSJFShGwyzltMEd1f5USxhhgDsShxK4QRZx3WORRbdtP6EFPUebXdvaJrb8tPWDEY44hR45++d5zdvZhs50IMNAWqmCIiRde8Sm4RlNBPGRh2ezq/qnkAfU67zuGcI2VNClurSjzDEKrqZyYVVQqNzhBzIkvCSGF76y6Gwm53Sed7Xr97B3thWK1Xaie23WKd4XJzSe8NJYwMqYAYco6suyV52OHtSq+/rfNAKpQ06vSx8IgzSgZJqnRs23rVHoCGpxslZPv1MevrN+CNW5WUo5a+iFrJSVWi8t6z3+7JOWFcVS5ykEKk5FRJ1GYiKRe0CKEU1IKs1GtvgJJp3FzrO0oMs+oMMpHbrIDt+2qdlgGNX2xVrco5kbPgjGU/KkGr6ztSCNN5NtLKNO81u6Wa5zC1kK2RNowxuKbMXQtqSqnEiKquIhg6a1Qtp2S9xyvbtSn+AJOKGiJ1X6HnLWae8jfbLU8//U2OT065ceM6N26c6Dx9kBebLtyV+a3w+OPv4bOf/Rn+yT/5p8QYECDGQJCqGFJUJbaUwrAfMCbW56Yp20S10I0Bt+hxxrIbkh6r5lpyLkR0z1BQFaSmTGethSy1mGa2+PLeVlKWQCrkkkjZzDbDdf2LY8A6jZVLToQxTQT+bNJkpddWkZwqWbykK4rppiq0Utf3ubBvJtYYp0V3puafZjWbtpZofD2R+Ov5lFpEOYk5llLjXP2+FPXmsKiqmeYYdcFpSlu55iXbPFxoBJNKXGvrbY099D11ba6LnPZRSUZCoRimQp6SC2fn53z9G99g98QTPPHYY/XZFbqu00LCMt/zuZKo2prW1MTauJArwawpGzLHX62feq/P5NyZ4Dc3MQbnav6iEfdE7f5CjIQwEmOYruV8b7e4p+4zWh+KvnZvxHwl13nwpOSsBKWm7n61KLPtA5RUXEpVaS3QlOvb79BiKstHzI/ywfwUz+Rv8dX8VZ6Wb3CZL3XOu5Jzb2PGpOSUpjiqxtQ1lpnGbiI7N/WpWc2pjcscmx0EZSVTkhLypnvpj3FbrVZ87GMfm8hJ3+8eKYTAv/yX/5IvfvGLB7n9++2HrV3/wAd5/Kf+HNa/+whKJWfe+NpXuHz1lXe6K/fb/faH0rr1mtUDD7F98/V3uis/lO38/Jxf/dVf5W/9rb/Fcrl8258TER555BF+4Rd+gb/39/4eFxcXP8Be3m/v5pZz5vnnn+cf/sN/yGc/+1k+8YlP4L1/p7v1J65ZLH+Vv8rP8XP8Cr/CP+Af8E/5p9zi1jvdtf+g9rZJSmJagl03dkWYqlzF6CbcGItzS1ZHpzz40EPcuHkdrFGrHRH1bndeE58ugEQuz7fcvXPO5mJLGPbs91tSDOQ0UlLU3WMlGOViJtISgFTJcABnnW4Apz625G8hpHmj2qSzQStTSiXmlDRbiuSsMt/6toJlNkagqiBoMgMaWKx7wbmy+dC+jZp4yHkGKUzNFklVcWjbZvWTLxV41eSkIt8VjrNKoDmoiZ76Zq1KSGNE+1xBBWukesoXtFrOoiCN4lxqlaPJZMUp9IhNAt/YZu1WEzNZanJEpZq9MViviZ6YZpJVKWUimJlaHanAnCZEDFV1qID3muzIRVMFYsE6g3FCLa1ERM/RNDJVBQsa+C8I1tmJdNUqPhtoqtdalLxjTAVPTCW3MRG4mvJETnEGF0omVzJTkWoZF9T+BS84bxFxYISF64lB/aRChv3FFkToVz2d9xTAiyNsB4SCred+cbkhVXuB86Skj+1mQ4ye9XLJ6WrFxTZowi0mDKLWXTmzWHit2rOG45NreOu52O2wxhHGEdNZll3PrTtnXLt+DW8s4nowljFndsMOyRHjhP2YiN7Qr3q25xs667l+vOY8XtJ7x8m1NcZp9asxjoVf0vWGnCK3z/e4ruPoaE0cQZwn50AWtbta9iucUWLS7c2eYRyRnLDeVlKMJn/TsFH7BhGkaLV05x373YCg5Aqk0HkNmHor7IeIeAHjGGLi/GyrCkI2s7p5jdOjNbfP9uQYOTo9ZrfZsVj27PcDKRVW6xVhSNiSGfYjXe9IYjnbDYzPvspy2XF0fIzr9d7uOk8IhTQkXNfjfcflfuD8/ILVssdZj+BqVTs89eBDfOjxRzi9fo1l57kwwqo/4sEb13n95Tc4dZ7zeIttTJRyxEPXT7h9fsbFds/RIzc43+3VwmK94tadu9jNniTC8Y0VRIMpEDYb9uNAL/2UYA1jUEKG12RqiUXBGAFxmpA8XvekYnjfex/l1VffZAgbxmHEeX1+YlBbs3Gn6jfr9YqQAiVnTo9vsLncwm6gZBhi0KR+11FEakLWpcNGqAABAABJREFU4LuOxdLQLxyPvec9vP76G1yenZOLYR8Lw2UlthlLjhEjFt87hr1lF3T+dCL0qyXOWPrjNcu+I+5HJZ4gxGQIIbI5v+TkqCekkcvLS4wYVoue1dKRs+XOnR3WNVKSjsd6eYTLju1upxLpRRh2gTEkTMrYzpJKrWjMhWG7ZxwDZaeSuUZ0zoqlkFELuTJGnO1U2SkrYGuNUWJYnT+32w2lgX228K3vPMeXv/Y0f/pTH2PVuYPVx1yZ9zWZaDAUTo5WfPKnPsk2jNx+9Ra7TWSMEess/RJyMuySMGYlaJBGjHN46UipYG1hsVqw2wy88eY5uai9QwFMLKyWC2JMDMOecYgVCKpWVVJY9J5hFzFJk7ClEjb2uz05ZAQHtiAlsa3XQ8kEaZp/VY2rru2opH4cR8RanPPklBhCIEa1mzs+XTPuBgWzEEJVP5Hy/2fvz2Jty877PvQ3ujnnWmvvfbpqyCr2FEVJtmhKVC9ZImLTuohswZCf7gX8YOcpAQIkDwGSvOU1D0GCwEEeLmC/GTFiWDBiWyBl2VBLSqRkipTYlMiqYpGs5tRp9t6rmXOO7j5835hrHVryJQ1TVRTPKFTVOXuvZs4xR/ON7////n/ZB6iITYuVXrMWuqGnGri+3OKswxrPHGcq4B2UqnuJNVwMPSUnDlOi84Z5GgUYMIbNuseaWRV6MnNOAvIbGafBd3hbhPRjpGo/l0zNVdWPNGYwrQI2461nvVoT08xhjqRixFrEyDU5A65Z3aiqX62JkgvzCM6I/Q6uYubInEWFzllDijPGilKGsx6pehaiTibjXaAzHWOagUpwAoRkKzYKKVdiiQpOiS6IgGxF901HykIASW2/V5A+pwxFQMaCKl0atVl1snd2XWC3dWKZmDIYqYxupBIZbzInqzVUc4QPjMZgjWjS8s4O+f5aiyg1ZVRNo1K8VOFbq2QhC07JBdWK3UtRQKM0EotpAJCqjGSJV6y1+M4SiiflSEqJSUkyFRZCgkRdmVQLReOQLkh8hjGqSCZKVSlFrPMMrpf+A6JNTHGmqZ40UomhYozGPWoxYkw8kjHerE3VNQVbUb0i09Sh5Fxxfn6TD3zggzz11FOsNishXjTARAE21Mqk5sKcItM4MU+RnCKvv/46X/nKi9x7/a5apzRwSlqtdfkZmMW++lSdpyI2Wi2uP4HUHlmNj+CQgvdKkGlgpXxho9W1PjgCcbWRchRsOg5ws/z4EaAMHvk5+rZ2wjHIOtx4rVVf3Yg9y+sXQtKR1AONoOOWzzr9uXxU+1a79Nnxm5eLWS5yIRrZ47hVrQHqyX1bBfhLrYuaW3vvokZxAgjKdzS7EzlNLQppeo2rO7e52QhKp+Q+HW91AQCbhVtdxuDCdzzt5OW2jgUZDahtz2C5RtPOQ2V5NgvpTcHaebtj9+qrC9GpFQRhDF4JK7XK+ExTlHNPUOIzssbkmPTe5ZwzzXEhYNYyEmMkzpFSLCF4hhCYoxAbi54vrbOYIvZIwj8x9P2ANWJHbauowBhn8c5xGEeGYcAaUSjBGDKVGJPY+ViIueCsw3VSSCHngI6xzHjnRInTeaKSFLwTq9RSC4dJrNm60En8ZB1VYxNrWMicuRQOUZTtUDuqprwiioFxUcI1teKME/vdRflGz5I2ABVvDSkXBaEtqQphyGIIttKtBvqu4zCJPWw39MQ5ippiSpQCXQhChi1HtaViDFPK5MstwTshZjsZO6JarIQWtSidU2aaJ1H9abY7RoDoW+sNty/OGIaB4ByzERu4zbBid71jsJaxzMylEujYrHrGaWSaE2fnK6YoijWuC6L6NCdqB/35Wu2OocwzqSTds2X1acqL7YwvuQlRCjFyxKcLjhDOeeu738lXn3+ROYrdnDdKhChChqFU5jGKxZ23Egc5Ucc5JCHCZbVYamopbS4YI2caaw1nZ2tqhd12B0oEmGNW8omSE0qzX3YyTkRaRvtW7FVzLWSfFquwLBx1Uow4K0VMh3lC7HulKKLrAvtDku9aCAqioOh9kEKwXDSNI/F3yUXse9sqUkV5spTKfLK+uUaSwRxVbpB5AFqIpotZVt5jTomscfTV9SUvvPACFzcvGNYD61V3ms2inSF45CcWZyrveu87+eCHPsgffPLfMR5Gue4KXdeUcURNuGqcbZQwBbJGeO+JpTKOCWOSqiYZvXeHc4YUT4gkSuKoRQjjRpNlp6TeFPPSX1XX7hwj1ahyTmkUlCPJopE1GnmnFrMQUXMW+zSDKoM5OXu270xZ/rAUEda67GUGIR46H5jmWch7xgnBrR4JQm0P8l4KA1MSVeuqCtClVoIPWIpY+9qq9pLNek5zW84JaaR9tjVKSq96m41E1Yhx4H3AWENMkVxkE7PtM0/Iw1UTbJWyKCJjNT4yMO9HvvC5z7PbbXnf93yPnGGB0HXLnms0fhK7v7qofUk8qiRNa6iZhaRFPZmfLQ4zEgMo35ylOEG3+ipB+RK3QytUtBgj50nnLDFaKRjMUkyzFH4WKaVo9qi1hT7L+D/GW02tsrXTrGupiIV5qYvie+sLDMvzP5Lh0DmrEeQSq8mYKhVscbzfvJ/vte/jLq/xr+y/4vnyPLGm5T6OhO32fDRO1bjJ6rmrXUgtqCqbFrno9Vhb5ci9KHO1GOhkDtV2BjopHv0ObU899RS/9Eu/xJNPPvkt30sphRdffJGPf/zjPPfcc48JSt/FbVFQehMSlAB2d1/l7uc++0ZfxuP2uP0na8PNW1y8/Z2PSUpvYHvhhRf41Kc+xU//9E9/S+ReYwxPP/00P/VTP8XHPvaxf484/rh9d7X9fs+v/MqvcO/ePf76X//rj4lK34ZmMAwM/C3+Fv85/zmf5bP8t/y335HKSt80SWmRFT5R7/He460VkknXc3HjJjduP8GwOaNf9digic7aDnwWk8HULAnMnCFH4rjj6uE9UZcoAqqBJhdPktIlFz38aXLMmIVIU5Vw0sro5H2aLPBOkyeSlypZDsditXas9LGIqoMoJR1JKyKPqwc3rVBqFYRLhRCnyQSplDdOT756ACxVrt0GRy1Hr/ha6knFGBSVM2+WA9L/en9UjNPD44nVHMhm4FpSvCk5FfF6rwqO13pMBpRisFaqRVtCwbZDqpHOOt2MGgiAylybVl1rGpAnigkgh+Jm8SCgpvSBSPurR3IjiNGIWuCCp5iK9UIUM84u1czS1033GZoVQq1aZVkF424VhsYoCUkTXfIWuwB8xlZNXEtfee8fAUCsEyUWSTwo+KTXWmPClEIfOpz3dENHjBlnHdTMahiYp0TKhVoyq9UgimHzTHCO0DvmVCiz4TDOeGdxTubXYUzsdzv22y1nZxvObmzohk7AVQNzinhbMGprOKbMeHnJ+apj3Q/Mh5HqItN2JJuKc9D7QN8NDMPErbMztpdXzMmwOoOaRjpjCavAHDyDDczjxHy9h1o4xIl6maBabMnce/CQ1SpgbUcxhgcPr/BApoD3TFPElMCw6djtJ8Dgzlb4YKBOWq0LNlTKPNJ3QezRDiPzfst4eYW3UGNhMpV+s2Y9dJQa8V4S/utNIISOcUyAJP7GaSIMHmccwVlimqhUXnu443L6Gmf9gNWk97g/kPPMPDlqNaRp5pAm+m6N9Y7rHHn44JJiKzdvnatCTOGQM+c3zpnHkWmcKMWy3+2I08iN83P64Bncmps3zrjc7Rmvt6Qy0YVOlLbUyijlzDN3nibcOGfz9JNcuMJrX3+F84szyjRhhzU3n7rFK5ef48tffpGcMtlY3vKOdxCLoR9W7KaJzcWGPEdct5Lk4HnPygRM5zBWBv2wFoUvLPjea3JMK0ebjYGTtfSpp29TKcSSsaWSYyHGhPUB6z2xJiEn4RinEWuN9FOShJ+VRY2L8wtyqUzzThL+VkhoMc7MY+XVl+8zzzNzFjJBLaKuc3bzjMO4g2oISPVutZWYMiF4jDeY4Mmlst2NYB39asWcEuMc8cazOVuz3W/Z7TI3n7hgypX9bs/F+Yrt9oppjGADQ9cLSJIi3nup/i1VQA4K25Rkb3NKXLAWRxZlpWIoti6qS2kWwkboHKYasrBlZF00htWwkqr2OZFTEZU6Tc764HGdEKZMzcTxms/+u8/wxBM3+d73vWtZyy38KYcDs5Be3/XOdzD92Mxv/cbvkGsiXc0EF9isB0oxzHOhUoSUUyKVDFUUDffbJOutdUzzJElltaAIfS9WYbs9zntSTgtZNM5R1fhEwS/FiOjsGOYsxETrFUApUn1vFMgcZyH5dE6sqlJOTNNETAkfgqgSxAilMJesyl09LhapTJ6jkI9CYJpmXd+F5GuMEzJskQrUfhhkP8CQ5oQ1QtTJOSuhtAjRrQqQmXJmmpUYZGHoOkrfcbm9Zp4SeSoKmgpQKnYNorwUY2KOhVUv4FfMhTylpWK+kbOcs7JfOmCW+GGKE847QnDyHnEoFAKcaZX5RUAEBcI73XNjnACL14rqUjJZ983dOHF4/R7n52ecn11IRFGLgNFFyMXeerXdK5SSBOzKVdUGFICroqDkvMeHQLMEyGkmpRPrOKMJe2MW0lE1BefAOlmjrbHYLPajVDBnhmFYMU0T0zRjT0DmGE/sQSrLni2xTFlAGbHDOAKoi6WDxjxCaCqiwEAl50YkqDjrCEGAx7lkrTpXQkgti61FA+PErkdAkJjzAjRIvKUgSxESm8STAuAZBNDovGXwYmOalHhUC1gjYGXJCMHfelVGkSr4mGYNCpXAIREvGmUv4NspmeLN2QQYW6gu5litvdmc8e53v5t3vvs9rM/OBLQ8ARaqEloEKFKwq8ranePM5cMHfPWrX+Oll76yEIaaQkE7OyxAg2FhoIh6Vfvxo/E3i11LOxcowqV7gKJGGvI3hSf9znIE49oNNGLOkfZkjtXqen0Nb2rkuzYej/81R2U1/V4BZE+UlE7fd3qN7e8ttj35jOUJnZwtlutu/WOsTquqqgyPnhdOnvKf+fyFCKTHNmtO7ldfYY/zvF2fVWJPW/8qx6TXUTlAiDrWGYZbt7jxzneIKutCbkLHXuvHevJ5ur7U1n3meBMN1K1KY5KHqueN42sbwenYxUIGWL5HQUCjg2D36ivUJGQea0VNJjcljFro+iAFDBVMLXR6VilZCiWct6KEV6CkrEQvuaaYKjHOxGmm6wLd0Gkxh4yDXMqyNwKkWojjRB9kPcwxiQLfHIlGyL7eWpzzeB9YdR3TOFMK+M5Sc8IBNlhyFjWaHDN5ikCVtXIcZY0shf04LkUe1cBhnFBxXlCykMfigyNGUXKxXdCzqqinGVvBVfluK6SiFJPsS6PEM7VUMlXs2IKQnayVXEHoJEcQUxHCSBH7aOvF5tthKCQKlt04M6YrOu8X0Dw11Z9koRpKycSapXjKWkqJjHECA8Oqx6n9ayqFru8pScittRrmeSanxNB3EiPYwNB3QtCeJkoVwpMPHqOeTbkUzlZnuKGjO9vQ28r2ekvfd9SUMD6w2gxsx8j1g8slLj27cUNtwAMxi513yRnrNHHYe7xpasYydpvNG6bNxeO6vIxrJRrcfMtThM5zmA5SYJZkzMrcEWJTLmpxtqgayfm2tjSEEdu2rhOSlcQ2dSkkqhUO+3nJQ5QC1smeHYLHWEjzjNQWSAy8FDDZJhsj9noYpCirOiF2ZCF61ByZp4nVeqDrLLvdAe8qlcJut6VWUUkE+Y62frQiLQxEVdsGITC1eLARsaXo7mjxVmvFVl1jln1LckShSYSWojZmJ2u1FSKWiHpXXnzhSzz55B3Ozze84+3PLDka6dt/f3Vuua2u6/ixH/tRXn3lNb7y4ovUSWzl233WKut/NkbVNXWfLZmUEhHpy0KBRhazTmJHL0QxY4+2tPbENnqaZyko1Putxoh9dZV8Uit+sTSSqZBhcslCPkdyX1nnMTqGhPgqpHVjhAzoG9OlSCzpnF3iXmMtlKMqedX92jm3EBuFnCbxbdGcpSg/tV1WiWbNisuAN6LaOs6y/s5zXOINIU265XNa/G1LJXgZN6ICX5e9pZ1zJK8FVs8+uUhOqllq1lKE5F/VDk4e5EI6a/urkO2O5B5j5Dq/+tWvYZzjnW9/OymL+mvf94/E2+3P1Qjx3qktW05abLooTrYhLEUN7XtaH9aqZClavsJAU7pv+7Yqm1tVLTcWzAkG5qyTM95SLCkEuqzWgMd46mT8n1xb+9ufHsMcn2cr3mxxUIsHmoV3qSzr4iOf3EhQGodZK/1OhSfqk/y/+f/wJ/VP+I36G3yZF07iIC2WWmIY+bt1QYiNur4DC4mp6BhxqoDWyI+gKmhLPKv3dhoeV5Z87ndau3nzJh/60If44Ac/yGaz+ZYA1lorDx8+5FOf+hSf+MQnSCl9G6/0cXuztzezghJIHvXuH31GlVcft8ftL067eNvbefUPf//x2H4D22/8xm/wnve8h2eeeeZbep8xhh/+4R/mj//4j3nppZe+TVf3uH2ntForv/d7v0etlZ/7uZ9js9m80Zf0F7Y5HB/gA/wL/gW/yq/yP/M/85v85ht9Wd90++ZJSk0utlVraELdOcdmc84TTz4tCi6rQUgpXiyobG2JZ7EC2R8O5HkkpZmrq4fcv3eX3XZLnGeS4iwGI+C0El2WqmQ9jNZ2OEcSE6JIJKoUkrSXxFPJ+cTeQZMv1dC825fkkDFLNU0DoKpWLB0JUAoF6QG7IteDbUlts3xHKQpkcCQ6pZxBq+mcNWT9wpKVKEM7nCtYoeSnBjhVTeKJ3Zldrnv5t6kAGUmwLr9XYpJVqfCmdGSsVGW151lLq0qSCsKWKK+VpdIWwDunlZ8C8Drn0ZpjnDeLXDrLZxw/pxatDtSkTUvktCooMQQoYh/WaZJfwU5LAyZbckL7pxGOTg+ees5eyEpYgrcL8FOXBL49fr4mVAxFlabk4G9UQtq0pJj1BCMVWsF6NqsV+8OBeZJ+cp28Xir5i1bIVchZJdAticL50EOUfk2zJJLGeabkggXuXV1xGA8UZzi/ecb5esNrr91bgCtrLaYaeh9IxYAJnJ+fayI4YQ2M44jvAn3n8M5wfb3DGsPl5QMeXG7pN2f0NjAddng8t27c4rWHV+LwUeD2jVtMeeRqPzLFyGa14urqkvVqwKgCRjGG6gtpH5lSwtYJhwPT43rPuQtstzsOKdI5RyqFHDMXFzeYU2LViw1FmhKxqySTqQ5iNZxtVkQFay8vt6Q0YYwAFevNiouLDaWO7HY7yjxTEBuoi7MzHJn8MFGdJ80H4nbH1SgVl16tDotp1LlKqhHnAnOO7Pc7DvsDOSc2qxWWgvedECAMdN7ia2U7Ra62VxymCUMvVZG5EAzELJLjcTdRa+HWjZv4EMihZ3jbHbEAev1A2h+4fvUBc/Wcv/3dvPTZP+Hdd26wubVi9cRNbr7tGb7+2l0ubg0U6yjxQH/2FHbdCQGBTNrv8cMAhuPhuVaZz+ZIIvStMlNBPVMlMW6sEfIPgLOkksTWCaMguxBR05woVSrHIxkQGfPgHcYbco6UKNXw0ziTNZkWOk/NApSVLBDB9npHShO7w0jNhW4I3L55ARRc1xNzpTpHjhM2eHpTl30kpkpOiVQzfQhsNmfYnCj1wH6/p9903Lh5zryb2e8n+q6jFnmGIQTG8ZKcIofDYQFWm42DMYazzYY5zswVVj5Q51GqQQuszlZMh4k0J7zvCT4Q80ye5eA0z0JsssbRdwHjIMaEdzNepd8LkrykHK0jg4IjaZ4xFO7du8vHf/v3ePKpJ7l1c42r7j/IOTAImep7vvc9fPXlV/jMpz5NH3pyyRz2s1iduUCzo7FqbYUzUMUCbDrMrNcrztYDcY6YUrFZ7EL2ugeJmoyQZZx3hPWKcRQLhlbJmVIEY8kYqdbN8ryqMaRaWXVB9hHvqA3EUfJLRciiXgFAY60AFs4zhI6uWpIVINXWCogCkRsGppxISTKr8zTr9nwkC7jgpXI2Z7wP5JqZo/S3tWKntlinWkOrFE85U3cHqjP4LnDRr9nu9hxSFPsIVRAqRcBhUXEScrQ3VuZMlT3XAMXI3pxzJtdEb0V1bY6RmIqqJRoGL1XZDQRcDQOUwmGasRVyzWoTUpYYpCIEplqF0DpNE8as6Yc1OSeur3eAWLQG7wldR0gCjCYy1UJwns5a5nkWRa2cSSmrRZ7EFOQE2MV2IudCzUUtL5rqgihVJH32xla8DycVxo24o9YI3uOcI4SOrhfQNsW4gOdV52epVZ+9jv1GPtFIpFI1biwaWzWr16ZweYztxI5HAUErgHdwTqaJUXUUJ8RDq+C14TT+shjr5XtLFdvaCtZVXEXg0BPifM6ZXITg1hQeqYhahJVYpaoRZEqJrHY7Lb7xzgvIWsoCXLYKemuETNk696SL3nzNNDIHC9BirWG9WvPOd76Ld7/nvZyfX8ictSdEkGrUZkPi5RQTNWdKSUzTyHZ7zZe/9GVeeuklxklUwU7tV5Y+kYqBI0nFSLzXACqz9N9RbeDoyqKEpQbtKAHpCCTr65Z7NMtrFeWU73jkG/XXJ2Qg0whFtfXRyXqmYGs7s7R1q9QT4HmZF3BK1lNRsuPP+QYArZ0p4Bu+6wiYG3PyO3PsP3m7gl2Gk5+xKMY0cgzLdQkBouh+2O63qfSWLHum0b8LKcscX4dRy28FM+1RWa0723DzXe/CBqdnxiNJqRGK6tJnJ6SjNgZOHtajBKRvUB85Hc/YpX+OY2s5uSyWeSgBIe92zA8vcdbS+bCQI2qp4LyoJCUhLjrbCibamUyu0QUn9lyxLiSJnNJikzROoqSEhY6eLnTsdnsatbMpxnrrZG2yjq7roIrKnzEQkxBr5QxqFFhHbWpnfOhwxpKTrNmrYcU2TZiSMbUy9CtyTUxR9tQu9EzTKJamySyga7Vij5mKnA/l9Oew3tIZUfaLSiJtgHbX9xS1kSu5UlImOznNSsxr6IJDhUeUVCXqhzkXQhfoeymEiHOUuESnUOgChkoZhSiac6bMkSlJ7qGB/adn0ILsPbkUUbDSfEbQuEYUe9XayhqxkU2ZaZ5F3cl7mnWl5AaEcJBVobcLnZBorcOfr2Rs7RMlRqbtQeyxb9zk8tX73FoPdEPArweGG+dc73YMKy/KcCXhug2mOtpoKjFi1Wa2EYUfQepVYaXNmUUVjJN5pUd113WYRg7R9Sm3fVzVu2rJqnKsxAtEkbRWUVZqVlkpxmWuCtlA7LswhjiLxd4cRT3MpEjfd1IQZgy4VjDXYg0HqnTdCFKlyp469L2MQ2NIs9j4dX1HmkVF1gZH33UYI8pVOVdykvN9m0dVLckkR2ZxxjElLWIqaVmARVXVk6LYvzmndmY5C4nvhGzsNP+VqhD6g3OardEFlrYGCwHdWUdWwvkLLzzP+fk5Z2cbnnjilsZgf/aBogKWyvnZhh/7iR/jtddeE0v6ylHNqMlm6fe39bki+1hOCUsV9egsuTxboWZReW3E8uUzUItEYxclKGERVt23dCetdbEIy1X2RLHRO9oLA7rns8Ssbb8ruVCtEJRsUz+tdSGNYIRE1va3wlGpaLncKiPVGim6a3nHrPbQom51jBO1k4TUVYRQLYUilaHvRQUyxoXYjmm5xmMhY8vhafghe5CuD+2/rXjQGav5EHmx5B3VBpT2uQ6v1nzLYqe/W+xsjVlyoRhDyomXXnqJhw8e8Mxbn+HJJ58A1L4Ro+QtR0pq3WxlTDgr7KGk5Kqq863tqaVaTMmLwpUQqo4k7dOiBCmIlOfsnDnOOURh6zgkxc7ZOofT2LsRe79xrD9CFlr69N9/zTFmPVKOF+X+eiSSN6WnWitOi1maVV+bH1XV2gzHWLPFue3TPYH32+/jmfosnzSf4pPmk1xySa5Zx4F+Z4srbdXYqJGo23lCfpZTITePYv1ua91CjnwkPl2uV2NovrPazZs3+eEf/mE++MEPcnZ29miO+P9Pa4Uxv/M7v8OnPvWpxzY1jxubp9/6plZQAtjdfY2rr331jb6Mx+1x+0/ewmqNHwbibvdGX8p3bZvnmY9//OP84i/+4lLs8M22ruv4uZ/7Of7pP/2ngr08bt/VrdbKJz/5Sb785S8vJPJvxUrwcfvmm8GwYsXf4m/x4/w4/1/956t89U2vrPQt2L2pzZiRikPvPath4PzmDS5u3GI1bATQjgmHl4O9k4qhXArOZmKauXf/Hg/vPWQaD4zjjhSnRR65AUutwhKOSft2bEMxgEXmVu1GBCQ8SjpjBFzyThK8RkGgwjEJ7b0/ITCdEHuMUSsQu1gbpJTF97xVUBshbrXDfLvG0z87lb+HupCVjpX4/gREakkDSXKcVss0IEwSOGphUBrRyJ5c7zFBU2pdKnhASU48WumENSrpbiklHYEiJxWmpTYwQitvyun9GU0mlSV5YIzRBDrLvXjvFwUCY473L/ctiaNex9IUkyQ1g6EbHDglTxi5RjQJJF/WKjXl5+UEPLCaFEFxklrFBqd1da1FAHJrT/pWvsd7UToAuyTqrTmqUgXnsDh8gWG9IU6TyOQbSSj0XYdznnkeZS6UKlLkFOJcMM7SqXVCSYUaK0/evslhv6dWOIyGq+s9V5dKfFHlqN12pKQHzDFhcdScqNazWZ0x9I7d7iHdaqDmwjgeqLVgfE+yFa8gUtRk/fnmHNdZnrlxk8O052p7IHTynF55+QHGGXbzHorVSZdZhY5oHClKZXFMM3XMeGeIGbFr6JyojjgBcY0P5ASOgneF3e6a2m8YQs9qkMrrOIsd1TxPDM4w73c4Z7m4ecE4ZjoLdYxM+1EAbN8xTxFrPCUbDruJFGecNUwxUnSMj+PEbtqxHyeMsZQ4snK9JIqsZb0Kmmg1gAAtm80ZxsI8RQ6Hib7vWNkVLjimeaakyGYTMM7RDQPjnHAZbHCUmrnabtnvDhRT8dZiry0xz3QESgbnAk/feQKyYXrtdabDBAeI8x6zuuLG255iOlRcNVxe3ud8/QTTa/fZ3b/krB/oq2GeJ8ap8NrXX2Z9diHrm7XEdMDXHdZ7WIudZskFPwRqEGW2aYpQvShSYBV8quSYBOByYu0Shg1dP4hNlYftdhZ1NqQKer0ZKNVwvT3gbUctme32ICSmnAghMM+iBGa0mnfd95hauXq4pe9XlJLoh57DoeLjDKZwtu7wpjLuR5JxpFjJcaZkI3KQtkoFhYKWm9UK6w196Fj1A7vxQLjpmYcDu2nG2A4/BLbbERfkST98uGU1rKmayCw1UZIAGzjL2ntCCPgQKLUSxz3WOqJx4By9tWJ1VishGJwrVOPwpielWSttJQnbdUHmobViVRITxamKCrKe1lKlKt57ri+vRZVQk8sljnztxa/zh3/0eX7mJz6AM4D5D9k3VawRm5Z3vOMdPPdHf8Luck8sUYBAbzk77zRJLwoOTgku3lmyEdBMVJ0C4zTptUpCWFQalJjUd1i1eE3zjPeOeSqkmgmhEpxnmhK2Vow3TQaI3gdR55pn/HpNHzqmOtGHDg/EGGUN8V6UGBUIpVacFbB2ijOlGAUvJDnurcEILZF5npU0ID+zSrbJOdMNvYB8pRD6HgeYmgkKEuVUoBaCs5q0N2A8NgRIhVQSIKSddR9U9WFmjolFYdGpfQhW1QEtIfRKNBb7t1IEPLCurVcRbxwpG6hiQ+KMWRSDRLGkCFlL9/ekio84eW5Z5fhzlnVeHE1FbWMeR/ABGzzWC+nLAMknnJMQ0Dmptm7gYrPmOMYyss8WVczKVCFolaSAmiTLnXe6n7plj3feazW4EGhLqUpYFmK5RcF5qqq6CYHOe89shPScUiaVtJAVxBqrJehP+BBGiRyVo/WWPsplptR27UK0TK2SX0Gc4gPWKcBhZc45I1aZaGwhMRSQT6wcVP7DWkvoemJMxBhJatFWq9jPhNCBV3uXLLGRYEcC/sWYxCbIHMkOAurKM3fGqeWw9heWapSUin1E9fNN2xR4MgqkdH3He979bt75rndxfnGBd5IILqXgsFRB/RQ8qgt54nDYy56RIg8fPuCLX/g8l5eXSuJSjSLF3h6J1E2j1rcmv1Us7mjror9rRByjRQ6NRHQEWZVkpgPtVPnnlPDT4uWmkkD7HVoosZBt9GL0+w3HeHc5F5wSZaw9uV6W7z21pViUxU4+A3MCsjXCEKjdSps8dRmLfMNnHsk4is7ZR8E3a83y+XJfCmQ/gngp+egUPFPAezkbtfvV80P73lpZiGHtDGJVPcF3HRdvezu+84tKUwPz2/N4dDy2p338uV0KINqcOrlfBcyb7Xl7lvphSgRQuL8eQb92VjFW1AB3X/8anXPkmokp6jhTCxsrZKM2Ltq4zlXslaz30g+5QkZsWaMkHVKSeHacJlJOtFN0jLKnijKxEeJGtYTQ4bXIxHnp65jEct04jrYyKPkHSTxaZzgfBlKKTDEp0Fy53h6EzJSj7qUGTBEiFFaVSmRdS1UIsCWj8ajFUpDjtlEytxAnrKnEeab6QLBOVB6TEGWtFZKUt4YSZ4wx9ENPyqq+GEU50RpRjWzrbC1CJm+2XEnJwbVWUsrEPIvSDkLsCVZIb8YavLdiuyQzW8DlEDBGrE5jSnjnMN5jnBXCby0EK9aDzgexlnMoyUOUZJp6oDUGMxtyyXik6MhYx2a9hmrIu4MQZCLkHCHMDBdrchKlmXE60AVD2h2Ih5HeexyowsjI/triu0HGkTGUkrBEmW9B0fVSMV72vIrkFBxqS3i65jWyrc4R1w0M5zewDx7K2THPek9HknDf93o+UcWWVJhrXPItAq5ntSwSxZ2uCxz2ackrYKuQo3PCIoUowVtKyiS0qKqkJaay1lLJul5J3qjvekqtDH2ndlueLjjGcZTCAu9ERXWKOGfIqTIe5uO+YsRKLOva7r3BhqDESodJCbMQsgzOKidAp6HUVEmfWCXhWiMxVyuUqlRVa5aCmEYdMPW4HlFFvTLpXKTCy6++zO1bd1ifnXF+44xV8P/B80RbAY2BZ599hg996Ef47d/4LaYYybOsAl0ne1ICJdHIPHB6NqjG4IyV4osiZJ9G+xSCkfzJu6D3L5bxbY8qtWJO4lqjZBtjDEXzMs5asWcrZSHMi/WkEzXzJd/mVKmpalyAEoxU8VvPE1bHrtU1PMfI0fKr2ZCKla+rWryWsqi1qySgUau62AoC23rfetYKoUfyckaKJqyjesecCyXlZY8tmjvEqTJs1bGkfSih7Gms0c4AQrgrworCLbalZnnAorSqpJ/aCE6AFoJizGK3iqkYZxa7z+ura57b/gmv37vHu9/9Lm7dvLkMmDZWW7zQYoy29y1bJGY5qy2Eb70OideOeb6mWij7rcb1et9C5DtRDtX43CAqbadk4VJ03hiJx5ua4bLHPxqYPBJPPdLqN/yyEe6a4irHc0o1FVvtcV00ZhmXLUJvsYmpRwWkFk/UWrlhb/Kf1f+MH8k/ylfKi3yxfIE/qn/EoezF2tQHjoqh0BTzqynHe6bFKIZGbFqKHo09xnXN3/b0YS03/eZvwzDwUz/1U/9R5CSQfnnllVf4V//qX/HVr371kXj3cfvubGFzxjM/8uO47s1JUKq1Endbvv7JT1DzY7Wvx+0vXvOrFatbtx+TlN7g9tnPfpbv+Z7v4Qd/8Ae/5b31Pe95D3/7b/9tfvmXf/kxUelxo9bKvXv3+OhHP8pzzz3Hhz/8Yd7+9rd/y+Pqcfvm21M8xf/A/8B/wX/BJ/gE/4J/wf/N/8197r/Rl/antm+apBRcwDqpchqGgdu373Dr9i369QrnO6yRSrXOe4IPFGuExJMLxcxQM3EeOeyv2e+vmcaJGCdqyUpkEYBQAAKpdFnOBgoG5CIqN5Krr8vhvCXBRV2magWqHDpbtd6iMtTYNvo+56Xqx9qjKkCrahEfbqcA4/Gg0pQCcksg6EFZiC5+kevFtIO1HpBrZTFRV4BN1H5QwExed1REykraYiFNiU2MVLser0Xt1hSYM87TDvzWGpwmPo112JaMKJJM8N5RqhJQjMUHSyny+aVIhViFpSKqqgqAc5IsaTZ6glFIMnEBUKxdDsTeWXKseh+iqGOsw1lLTIlCJgyefhWwXpMZxiyVnK1STb9KE39aqYZZ+rWRyqSyWpK5Wo8l96pJC2uPRDT9RB1zAngUwFtNblkryesKJmdMMcSciblVe2VWXU8IgZwL3ntykoo613m6Pqiyh3yO8448Z6bDzOQd8zgqcFvY7XdspwPkSsBgiiQccjWcn50TrEMer2WcI4bCxdkZqUJMidXZmSTAvWWzAVcquYiNIs5LhRuw7h2hFjorgHBYBaZDpk4TpUjl6Op8w4P79zjbDHhvGMeJ8xtnxGmmJFG/ma4ih30S0LpCmUVta3t9zTQ61r1lHkc6PHmM5MEqQOgxRiyKbLDcurHm6uqACx39psN3k1g/xYxzBh8sKU5YZ+i6wLDqyCVSS2UYBmqKzFkq/XbxQC4eZzOuwJQ9E5ZNrty4OGc475n3ibLdE4Jh6Hteu3sfZwNzmrneHRg2PWebM1zw+JjpugApY4wlzWLjsBogpYE09Yz7mb7rSaUwzxObvmdYDRx2B+ZSqCmR5ondfk+5vKJcHbg+JC76QF8n9l99hXsPZ5j3GAPXr12zjXe5+8progY1ZSgGho60nXi4fY2nnnkaY+X+5+tr5pw5f+ZpMEKRqLlgnMHEgi+SFDVIZWqtFestvgtAlddm2HQbzrqB6XpL7zuSD9SaMK6QCri+F8Incp39IBXF42EU0mE/AJH9OAqg5DwxZmyt9H0vyf2SmeYRrGW9OSNPIz70VONJcyRVmbuHFOU7UGBBQZIxjmppBTUXDrsDhUrXBzY3evavvk6cEnmc8Mbx9FNPME0ju91ETDObsw3juMM5TyTjDYvdZk6JyUhi0TkDQcC7nEW5aVaAYlgPGGcJfhAwrkIXPNbCPEexyHOGYEX5qxYBq4JWFacUBXR2BlsEQPNWCECHGMUyoU588fPP8QPvfy9P3brgP0xRkv3JG8P73vUOHv7IX+F3Pv4JHjy4pESWNcB7r3YWFR86IddUWZOMgZoyY9yzGgZijGrhVlBjE0rKmIDYs9UqNi65SIV8ybha6ftATpWUoypwOG5uzsUmxGR2W1mXg7ekKPYszlhiUnsUTZJ6H4hKJrTGQsyUlHG+AyuqYN3QYStM44TB0IUgylTqc+ycZbXuyUltHxBg1ysRKaMkXgU/gnf6HIXssR9HYoU+BFGiwrKfJnove2c/dMxzEjDXZiwVxXelctdC8J2sGznqni9kBaNEmJgTMQkJrOaCs6IolDSmKOpfEJMQgkQ5z4DTJHcVILxZCjRuAbXiNLkfk9jm9UMPxgl5KVammOmC13s2Wu4r4JIxhqTgj9gQCCnbekcF+q6jpMycj+CR0fcLNqKqjE4UC62VineDJTWFTEQFKASPDwKAUA3JZXJJeCe2ntfXW/a7nYCHzV6rtcaPkImwxFFUJUVzBA0aYaTl3XM5xnbN6jerYqX3Ae9ZqsMrhty+u2oVs/cCoNe6kFeyVmqbrsP7QOmCEK1ypNnoOd9hfaCoCkNFCHdozOado9KsjqGR6Bclz7pERQLQLhiQAdTaYok133xN4lYZYzdv3OT7f+D7edvb3oYLYfmd9IXEiFXBs6MlUKGoWuFuv+PrX/sqX/7yl0WBdQHtjiQfDemlGWjV5qfA2QKfNkZb+7m+rgE7wCM2ZKc15k3ZzNimqFGX7224VgOx2lcc1XsatUevX4kubby1a22El3oK+p0QdzBqOXQyJvTIczwrLWcTAXXLQtxREpVed5XDE+hd2pN+kRswy0FNlAtUAUXXrkdJSnXpBxqIqcCaUYU/czJm5RG2mzALiaJ1l1gjCuh77C9R0MUabr3nPaxu3KBxu05JWO15tptpfbcA0u3cZtsgOCWkmeW7amMY6Gf/aQollarXrWc7fYh5mrh8/nnybqfnKl2nSsV3Au4XBf+rno2ts1hn1VbTaN81e7IkKr05LYDlnGbmFDE6l+RBiHpM1/VyDtKzVsoCDvddt6jLhK6Tc7IzhKAgqgKxqK0MgHdCIHKqTuu8J8UCWRQfhNwcOOwPdJ3HOkOKia7vhKypBOg8ZWIsy7zJqrA0zTMuGYK35Jgkvk2F4i3WybnaGCGeGgfDIAUNxjp8EEvRnBPFtrOfkEQF/3eq9ivrpvdi852LzKMYoyh9GAG0c7EkLJ2VvvKdJ8fMNEts6J1jtxuXoqN5jvggqoWihlNE1VSVn0sW1SXvoOs8JTuJuZwj637SGY/vvBCXqp59c5a/TxN1EmWn3lk8iXi14zBmyBFjKvNuYs579tud2M8lndzek+dMmrecnZ9hjCgs5nkil0p33uxxdJOtMj5tRe3mlS5Rm2JNO0eDKWCL5ez8nNc19RGsEFaMEWUcrBW1vFnW7VZc1eyYmpVTLvNCCAQhf7mmRlWPatnBB0q2SvhRyyxVHBOFyaLKzbLWOGuZU1xyCxLvJiWRSzyZU2aKGYOosKw3G5w3TJMQqbqg+a4qKpiGijcSM+WccTgSSdZCA9Zp0VRRW9dSCMHhnBSvpVSFcGckZ5Fz0oIGGZvtz5IPkz00K7mnLfQtzmljqNbCl7/8J9y6c4eHD56if/I27oQU+qc3GZ/rvucDH/jL3Hv9df7wM58R0mSVuRaCkCTRfIwQWyTHZlWNKM3Sv1Yrr2vWnBzqgKZrvCifN6XLI4nCq6pWVhJ3LVIw5n3AWkjWLARFo6rkRn2/TpPd1thFxZQqXIySM61QrVoZb945tYBW5TolNFtllQUXFqKe7BFCUhUlS3Mkf5rjGGvqoUmVNKuOc1FEraDPr43NJS5tKo26fxZV+rbOan6u6h4vxKJ2jaJUhJKMKs64Za1eVJcwCyGqxRLt3NBi+Pa9GjJJP2pck3Li/v37HA4j733ve3niiTtYq0pOzp7E2W2vV+KdrdSqeVMje39Vu+VGXKpo/Kp7U3tvIy41Qo9TxVMNvfX79L3eYIusXUULWouVnK51Yt+49HNte7tOIY3QHpkdGhPUb/htixcacWqZPS03rXlnV5sVn+RHzRKjKgleL8Op6ltT9jpV879hbvCX61/m+/P38VPlp/lE/TifLZ9htFKQVxGLPOnnRiyHaputoj5bHo0H0Riz3ddJmCTXdezcN3V7+umn+fCHP8z73//+/yhy0n6/59Of/jS//uu/zjRN36arfNy+k5pxjnf8zIdZP/HkG30pf2aLuy0v/Nt/zf71197oS3ncvoOacR6/Wr/Rl/FNt+7s4o2+hO/6VmvlV3/1V3n729/OrVu3vqX3GmN43/vex4/+6I/yG7/xG48JwI/b0p5//nnu3r3LRz7yEX7gB37gW1bqety++WYwPM3T/CK/yC/wC/w3/Df8H/wf/GP+Mfe490Zf3iPtmx4F3nlcCJyfX/DU02/hxsUNATs1WSC2MaK2JJUghRgPpFgoNbO9vuTVl1/m6sEDISep/LMA5FkTVJrkzgoslUY+0sOgbQK7nIBCHBP0HFVvWnV8sx1YFHxUecnUphEhUvneapUV6gmu4F7Oj1ajNwJRO0QaUHufBmyYk8OiJMQWgKQBG0gCrwEuLngFq9JCmmmqTk1CXH52BAJawrtVDdeaJQltBdwy1uKMJKlKTsu1tCSBc16TjFCMwYduAQtMuylVcWh+9kvCoVqs9ZoIlPvKJ1kCYy3GOZxX4FNt3KpVYlSQisdcKqlUqjUMq4F+3YmiiwHXDsSL5Ruq6NSq3NAkklflBSOVawo22IokQrRCqAGw1sgnW3t8ls65Bfyz1oFxtEqy02p5C1gdDylnqrPMccZVVHXBMM+ZrvM45xnHCWsM02EUyWnvmedEMTCnSHGG1x9eSbVeKVgHFxcrQmfJBeYpcb3f4bxnNfTMMVJdocyROVeogbLu6VwlYzg7OwdNpDvgiVs3uHfvPinD0HdMJXG92+GtZ7O6Rbda4X2ht47DPLE7HDjs9zgT2KxWTLsdJcHlwyusg9VqjTMwxkwtlv12olaxRrxxsRFFoesDzjtKmsA5ojFkPIMfGONEcZXDQZJrrs44X3GhI0axL+r6HpMzdzZnfH23J/jA5nxNxZKLVIjkUtjv9uQUscYR4yzS95qYqVNhHg8UV8nOEm2ms45YM9f7PfsY2fRrSi3stpE8Z7Gi3B+4f/91DruRd5w9Q42ROU045/FdzzQn4iGy3nhKiqR5ZDN0XFNBpcsvbpwT44BJlfXQieUXga5U1l3PX/ngB1j1mThG9g8v2e8jb71xh1RF7ufpJ29w7mC83uNK5MbgMetzzs/OmFNlb+HWxYa79+7z2te+ytnTb+Hi5g1MqXSDp6ZImRFrKZWzL6YQhoDxQDHEMQqI2jmRBzdQp0K+numSYfCWOR2oCVwngM1qFbjeTlw+uFoS/3NKdEEIFdY7pmkmX23xwbNer8i1UirsdxOmgPeQstjA1aw2cIJusD0cGLrumAAsFe8dm80KV2F3GJlzwiR0TbZM40jxgXmK4D3TNBNchzGO6bBj3h8YVh3TOIny36oRQSsgqoB97x9Za2OMeO+4c/MGDx9axmnGlhlKJZplCWeaC8YUZrMXUmBwpDnivJAbchKyA1FsCLFOlIFyIc0z1hn6s4Gk6jKddXhvmaPY061cINbC1f0H/Oqv/S5/4yM/xVO3zo9Au9wJxx+IrLul0nnDh37kLxHOHL/5b3+Xy3uXUCemeaJi8d5ycbYWMKpUpmnmsD8I6FpENcl5jwueeZzwLhBzEoCoFJISPataAsq6Kmtr6IPEBTbhEEA2p8LhMLG2hotb5+RqePjwWoEmAVEO04FaheQccyTuDoQu03cDNhVSzpgqRC9jPJ1xmNAxxyI2FFmAU6nKn6T63FusgfWwIqXEOEUgkUsmxoTJmZolVjDWkqtU5lcra1FWAMFUiRRKqWL7Z6Tq2jUSawBKpvMd1LyASEKULcRpJISA86LygKkEZym6z3pjSaYuFiTeqpUmRffoo6VERTcvg5IZwCJ2faWIApNDYxMlozUQIxdRaMhFwOSUMuN0yfmmZ9UHVl0vYztFknEMfUdXChGEpJejJOqN2kgoEGdMApqi5RHElh21EdArFNk3BTA0ixKkM0r2NkJOyalgEPAv2ypxhALJ+/2eOEe1JyhLJbZVFSGJzY5qlAIStLnCAuy3OAxjsUp4pyrxXclKpQhAHELAhKAV4koYqFBtJSk5olVAG40Rc84yRryhOoOznkpHKbLG5JSJRfqk5iIAnCn0XaDznoQoP5SaFxBW+AUGo4TmRQFH40BKI9Y3dUvetM0pofXOE0/wQz/0w1xcXCwgp8Rg0GLwts7lHJfxNc8TD+7f56UXX+Sll15iv98tVf+1HpWOzAmR4ggtmePS2QBA2nhZxLL0TKEqVu38AApWtb8cK/vb5yzKOiBgYSMf6ed8I/Al11yX84T8+HieaNdZFDTWb11ARemhRmxC1+n2Xe318lkCbEJtZKATcs2i7lOafaRdlEaaMoKojWUlJdhFcU3mhQJfSDx82r/HQ5BZ3oepyx0tCk8KQFa1Xlr6wgqx1Zr2OXKvFot1Tb1EyVXOcuPZZ9ncvqXFKvoc27PTbrWNiNTGg36XVTLUI5Y3oKSvk6en992Wl8XGsik9oOcphBR0bPKsty9/nbTdYtDzrBXyha1gjFpI1iIkPWRdA8h6JpR1RkaFAN+G/TipEoUQ5fouKFFM4qY5SezhvVdLJUuqQpagOqoqolag63tRgdDHuF717PcHSpVzZapiUWSNJWw8znis1f0siypUjBFjLMEH0ixFBdM4gYEQAtZAKqLkFOek91kZukChiCKjVbVf69Vk2OKdF/KGrcxRFUuqkI6MdWL5VsW6k1pZdR3Xu4jY2AmBOdajjXqNZSl4aTZdVUkGNRVRazEICcEKqTxXxHouF4ILUMXut1p5vtMcORz2pJi50XWQJXYSqzdRF8yp0Bkre1bOdM4xyYIAiPVYLhmKqGR6Z3Hdin61IljH0295muCEPB7HkRgLZ/2aioyVs01PZxDbMjK9txA6uq6T87eBVd+xPxzYXV/Rbc7ohh6TxXKNIjausu8Lsbq2WEXX0BzLiSWnDvFcKFOm5Mz5zduiuGhEeUmUP2R+xZjYRyHVlVIoxuCcEFxyTMSoBC7vWZRjSmXSAgZT0/LzZfFWNaM5RppKi6ky/4NaDaeYSGQlyBXQYjRAYqlaMcWSY6ZWS61RrEVrEUWmEghBCuasM+LgxtEKUdQR1V6qZFb9QHWBcZ5k/lY1t9NuawTFnOV+rK7DOWncbWUvyTkf1zAreYqmsBg6r99bNDfi9N5gcIGSE88//ydc3LiJdZ6n7twUK/o/oy1rM5UbFxs+/Nf/KmMcee4LXyKnGYxRu2TwwdP3vRCNMEzjpIpPSqayBh/Cou7ULM0MHPNkte1rTeXQqKKlXRSS2g6eUsGYTAgdzjl2+4OsKyB5hyyEfus8IIpwuRRROFOVpeXZG/BapFiBOUrsJqQ4h6v1aD9nWArX5ip2mllJlpVCLc2KzVDRuFfzgW1vbATqWoVEpHwdnBGqEc6RdF/1qibY3gui8mabzaR+hnFt/6wL6djqXrTsr07j9mV5UWUrjbGO5JxHFQobUbp9TtV+oGouZr/nj//4j3n22Wd59tlnWa9XdN4RvBfVVY2BWvGFoS5Kkm1LXeIGWcARRVm536Lq+nLFGt/pJSyqoYuQkp6SNA9YlcBsRC4JhyhSNcJyU9k9Kmy1Pb99w3E2tD47nTHLK1o8eHK+WH5Viqq6FondnRMDU10PK2pfbaC0vHRlIZkLqbguc6YVyb61voVf5Bf5yfITfLx8gj/Mn2VX90K+q5Jb9lpwg+ZiqhZZLMTxk85fYlBjQNXhT9VAHw1c31xtvV7z7LPP8jf/5t/k4uJbA7IbOekzn/kMn/zkJ7l3780F0jxub1wz1vL0B36Is6ff8i2T3v68Wi2Fr3/qdx8TlB63b7n5YWB16/YbfRnfVDPGcPbWZ3j983/0Rl/Kd327vr7mYx/7GL/0S7/0LZNJjDH8zM/8DPfv3+ezn/3st+kKH7fvxLbdbvnlX/5lXn31VX7yJ3+SzWbzpt13/6I0h+P7+X7+N/43/kv+S/4B/4D/i//rTUNW+qZXl/Nbt9hszrl58xZnZ+e4EBY5+iZRnlNmP4rVlfWi3jAeRh7ev8+D+/c4jHtSihStDDOmHX6MeIurBQ5Vfu69VozSEsrtkGYpVSxVWpVczWURKZJDnx56tWqlSNaYYINW2x79y9rnpiKJDIN6qKM5BmPEPkWVD9rB2GpWviX3SzUiz+ydylDnhWDV5NFb5U5LMkMVqfgiCXeoyz0BhK6TZGYVlQzvPdUYSb5yBFO8d3RdT6GQYlJvdkm0FuvIGaoqRnmnSlDqNS/VpKJw4JwlJUM1RVQAGoHMOEIX5PqzVP4b16p9peqTapaEh3WO4MNy0A7eEc2s1XeiQjHGKDLUnccNQnRr1ZItSVW00tsqMGxsS6sZCi05XdVcx6ncvIKz7QE6izVO+liBYUnPGOmnavFWAVQdK0YTV60CyxXwxZFjYc6Z6gyURGcNFktwXsGbTIqoLHwS1RkH0zRxGGdiTGL1lhKb1UAskVoLvQu44Fj1PflCFDimOfHaq/cZDyPXbkvoPd2NCw77KBZDZSRNB564cwvXS+IsTontfqTUxKoLGGfZXJyT58jKdazWHbv9gddefZ07T9yi7xydDxwmUWXCwo3Vik3v2cWZEJr0faSUmc6cMVrDGGdJtNfEuu/p+56xRIZ1xaoCWd87xllUYYZNx52LW1hneOXuJRRDcAO993Rdz7i9xhvHzbM1+92Oh/evcUUrZ7OhkLi4ccG4H+l9xzjP7A97rKncOLvBs29/itfvXXHYj1xND5lLxDlRa1pvVuQ5kYA0jdT9xN4esK4S5wQlEqxhm2ZVRBHiBki+DFvJZHznmfeROE7M08RqGPChw7oHbG50ohTkA5hMP/Rcb69xLvPUnSfZ3d3x2sMdL796F/+2J/A31oxf/xpxP/Hkzdvcv3rIC6++ytO3n+L6vMfbSg+c9z0v3LtLqJU+dFAT1zEyXm25Puz48suv8b1T5K1PPknxHfUwUUPAd73OFVGhamV61RlwkGJB6ZPUWqQCMxhu3Fnz5FMXfOllz/Zqy2a9xliP8wPOJ9IUj6CEc+znRE8lBEfNnlJFZSzXQvCeYehIKYFxxBJBNRustVgqffDsU8R4J/NKbVqsNZQpkQ4R06lKjHFsztbM84TtPZvhTKrUqyelxFwSMUX63mPsirOzFde7K772+n2euX2LzdmamBOYDjNXgirT+eCwLhwB8MPItQ+i8JcSw2rFPM2YXAiq9nI4HAhdL5XvJZOSkAPmVBaAtSJk0KEPauGURUGuk2Tt+dkF0zhyHbfEkjAYppyJKVNcwnUBkwrPf/E5fvdixYf/6o9wvlrLU7NmWeOqLrINkDZWSIkfeP/7ufzaQ/7g8EdMMzhTiLkwxsTDqy2bbsDbwOEwcTiM9MEzeM+OTCqZi9WaWjJnZ+ccdmKrNMYRq8n+/TRClb2n1ootEKfMVJJWggt40dTwpmnmwf3rI6FVJPmErGEN3kq1tPeekrMozITC0HfMcRKrrL4TNbgIvgpfR4i8VkDNWYGDmhnsQCyVh1fXpHRUSBQQDPbjKP1mPVSxICk5kpKl63oqhRA6fb5ZbQVEISr7QHCOVJNagcB66EhZxqCpFmMcFAFUqIVSBERNGaqV/ULih8oqeIqCnKkU8lgUYGGJM6wxxAX3MDTyLkb2cMoRgC+5YqtRq40iACNCDox5Jqlajy2ZcZ+Is6OeVVarFSF0xCQqS8Z4IAs52DhiKfgifR/Hg+zNDlB1B1vUPq1W2f+NzI9qhQgWY5S+LFKR7rynFlE4FJDQYKwApKJu2YCVyvnZGX0QQHW/35Fyo38IiGFaLKdxUWEJoyQOqTpXmm2I/lppBEom0WS9ksgXdaUsKl8+WIJ3ok5ZKq5WigKDKScFOiyuOLUAqmJV0uLJ4nAuiHVPStRUSEaISnOc8c7Q9z2h86TkiHPU/Vcu2CnYIV9VSbnZV7AQro1tdn3/wZD+DW0//hM/yebsnJs3b9L3w0IYF2IMAqooiE+tyz2llNheX/P881/mxRdfYK8qNEe6iz7yRVUVqGbpn6rKqor9KKBlOJayn8SNDYlrn/kNJBU5XwgRshGhlmZaEcIJyNM+x5wAh6fWZyfgW/v8RnqSx67P1DTiULM/OypnyMdUuWf9lPbxBpZChUbOsU7GpTMNjtazjRIwK81OZYH/1Oa6HM9wjbnbPrcRdtTepJZCMRWLX4iDVsdqqVXkNPS+GoHJLvdml/PVqZKqtaIwVzR2MdbLWdHC+sknufH2ty3n0oVIpJ3a7HyqPosjUCo9pSUqLEpYHPsWBNizy1hrvzEnoL7M1fbe9l/bwGog7bbEy0soantk5Pm7No+bSlMV5dqSlaAgHqWUUohJyYtlEgvTEBRMF4KCtQY/OAbkrJtyZbc9kGJiNhPWW1w/kGLRQpdEyY71ahCbVmOoqTIpOcN7maMh9NScCcZCkDVqt92zWq/wDpwVFUAULB5CoPOWWUkDorRSqDVjTYfBkEqSIpQq5HTnPbVmfJBx5ZzFOVV7ouCDY30mFmXb/QQVnA1C0nWePM9i4dUH4hwZD5PYzxpRUCxU+qEnzglvHalkkhKu+q7n/MYZh/1IjJkpHUSZTHMVIQRViIY5JSiZaCLGouRUsakrpZBrASPrlvNe16Eq5C8nhRdZYx3vnar7erpBi3yM1bO4F7tXU9n0jpgLu2nmerfHnq8xQyBdJ3LMbIbKYRp5uN2yWZ3RdULu80DnHZeHHQ81NqUWvBLnpxiJ1zvuPFE426wF4E9yJnbOq9Wb0ZxGXeaCsWoh7NuKqcRNjTFu3D7HDwO73Y7gvRAnrFP7rnKy7xtVlSl4d5zvojIseSAfAjlnlJcmaoZUWvLHW0u2hVytEA1177TOYhKUVETBCajViL2xl/kZQidWiAApi/ppEZXRLniqd6LUezgw9LAegq6fBlOM3I+uu947YpK1rZaiSsqSn3C2qR9lrJ6FUkpgrSb8j4VytUJNZVnJLcd4e7EMRUih3gsBa5wmiac0Hiy5gJN16f7r93nl6y/jvWMInpsXZ/I9jYNQWfIjx+BJ8iY3zy/4mR//Ce6/dp979+9jjey7qRQlc0EwQl5MKWEQVS6sqI53xsg89pIrimppSBUielSySNsXJR8I8yTx4qJoZNUCsBSmKS57a8sdLQ5l7kjEbXZWolR6zLNZJUelImq/zRJuWbtVoatonG6NYZpVSeq4cS+2nFLwctynGonJqy2nQZZwFuKTqBkd6WBFLY3VNt5aVQ+tUvRhjMSTRpXOT625dM8xSMFnK7JslpVNhay9RebqMf5YiDlG/9zUJnW6N0s/IQotty7n5FL4yktf4cH9+/zA938fm40UgXVKCpM+rkoybgqnZpnD1pql0MTIYWzpr3Yul8JLQ0WKacQCtCzzwBj5/fLzFhthlnuzVooSso4ZZx0pReYYyTnpub31zzGmq3DyN/29vvYYNbV+bIqDWiAhN0E5GafV2qOalhI3TW0aV5IbqXrf8swqVZPax2+z2Gp5i3krf8v+Ij9ZfpKPl0/wB+X3GeskFu05EXzQOWPI2ejeVfXpG419JG9R2jPXortjjPrmPU/8vb/39zg7O+PmzZvfMqA1TRO///u/zyc/+Unu339z2l08bm9cu/Xe7+XpH/zg8YzzJmz71+9y9dKLb/RlPG6P27e9hfUG6z0lPbY0fKPbc889x1e+8hXe8573fMvvDSHwsz/7s3zta1/jwYMH34are9y+U1utld/+7d/my1/+Mr/0S7/EE0888Zio9OfQLJYf4Af43/nf+a/5r/kH/AP+If+QHW+sveY3TVJ6+zvfQwiBLvSEICCy8x7jYI4T03hgvxuZDjPBe0ot3Lt/j/12R5wn5mkUgKgWBW8KrSodc6xSlvof/bMxBOfJSlSpLedgraggIAPa6mupKKlEDtNOk+mn/uRVE5TWe61OLwrmawU06luuiglWq6u89+Qcl0S2d+5otaKKEp33jwAChUyzgDMmKVjZrBbkVca0pIpZkt8ih8zSx04TEk5rWqsmUwQokCTKQnjSw7wAEqK40OzhnGl2BM0+rhJzliOx5vlaZbTDKjDgj/2ph38XnBK3PLWYBZAJLuB7VbLKWb6/CgBXSqXvBypFFIa8Y7UeCIMhm0pRMpcVPXQBIUrF4JRkdkzSNWUk05J4WLXec/J+DNhFhEkBWrNYXFjXLDTkOWe1vlus5YzY0lhEoaDmTImRmBIpRrU5KMzzzNAP+DCw3Y845xgPM8Yg8v/TxDzLuNkd9kQFK4cuQC6seq8KFgPBevZZqrr6oaeaTDGGm7dvYHGarK68evcuDx9e0Xc9q9WK/fWO7X7P5uKMGDN5nJlVht0Wy+0nbzObRKmQxpnziw2pTpQCMc3s95Hz83NwWqGFZ5wj6eoKv+rpVytsmSlREuXjJFXQuWRclkrbQuX6aivPxxguLi7YbbeUuWKrKGftDweKhc1qxWbw7LcHvOsgFa7GS1JJbIYLXr97n349sMuZzcW5JJSrpRwi/aonusx2mnXOW27fvkHfBx6+fg+PyHtbC6YTUKOkSOcsdIGUEmEYGA+RlCPBWmKOdKETlYxauDg/I84ToEoszuHDIGBEzWx3O5Hhd4bL6x39IPL/lcpmsxY1C+NE0aUkrq62vPzKJeeuw/Wez33pBZ776sv8wNvucG9/4PW7D3jm9g0uhp5bF2vWa0+msJsTdy7OqLZwy9xgnEeCd6yd4+5rr2JWa1zfc2czsHvtVR74wO13vA2GgO0HSJW4P+D8SqsppcpTkk6O7eUlxhbCqtOklIE+YL3jLc+8jdUffomH1/eIKTEMncrgd5jecUgjuWb61YD3PevB46ik6ZpcBXQopeKohM2K9WpgfxixGLFv8k4B54jtLNkIeTQEhyVhbceUMr63zNPM4TCDcXTdQLBObKdiJnQ9OU10XQ/GMISe7faaeUz03cDFjQviPDFtR+Z5wmzB9x37HDm7c0FIhevLK+ZpwlpJGDsnFeKlETg10Ru6jjLNxChV5cYKYJFGIWPVKoSO3geMMYzjiKxMoo4gW5+AL13Xk1NmPkSC8XSuo+aMMxZnK9Z3VGfIBeLhQEyZF55/gXt/+X2sV73uHUo8k51U1s4GnBqgOoZhzQd+4of46oPXefG5F6hJ7UWiYcqJMh+oZU81kkyd5whUhtWK1WqlxN7Mfr8jl8ohR6aSIFmCddhSBMDMFusdnVrDxDipVYVd1lOxoyiMU2WcIk1tJ88R6wTMqEUUZWwDqwvstlu6znN+vmK9XrPdbnnw4Apx1LJYk6mNrOok0e2cIzgxqJvUbianRE2iShOCh87L+CmFmqXTnO/EgqNV1Kp/WAOsaXuPEZu6ktV+wcte0Wy7gusIThTeMkXITDmLgoARQHaekyaHxW5wjFljAVGVsApGN/DNGCd2JQpgCfgmcQg0BUBNcmuMElPEI1ZluQgospALAJwlBEeuhjjNVLbMKRFCj3GeUhbtpkVJMSiQLFW2hWqdWAg2C7lpWkAH76za37oFyEgYuq5biBfeOqqpFOfwCJgrNjwNoCwaP/UCQvhA33d0nWO33zNPE6IwYpb5Cs1aV2MsRVVa1XCrGccYjScaMV1en2tRNU8WG6UFFMRRS6ZTy0DrvMQm1ogCSatYdpXsyhKrNJCnFIs3hVzURtYWrC2QjmpZOWcFt9Ki7iHElgaVVCGQ10KpabGXswp6GL2Wfx9WefO0t7/zXYiVm1gGN2swjChIpZRE7SKKrU+tlf1hz/XVFV/60p/w8te/roSPE7DQHAlqon7GKc9oIdQ0/pFRRk2z+eL47uN8b/9tCqMNH5KJhsTcR+D0tMeNQZSIypFI1KT4mjrEKSmotgNObT/Tc4l8GpVmVdzAudp4IMsXLpf1DT9r190sQGqpy0lLSDo605vChc6VpbJeXyN/kM+wC/gnZK1sjspmC2in87AVTbS+Xiwva8E4vU4lkLT32aZIZcyjShqqAOucx+qaYazFB89w85yLd7wd0xSUVKpkecZ6b00f1ywd1g4L2tcLuHkCTiyqFCxjZCG/0ShlamnTgPH2SrVlkmKbwu6Vu+RZyLyNlJdyVlt1xxzlnlLMGKNEyZSVNCmKglmvUQpEpFAkeCmYEEKp7HfeBdnjyQyrHoNdbnW72zFOE956QvAcppE5RkLfkbOoymVVc8oRVpsNWYH0kgpdHyjBKOc4k2KWOKCpVSAge5mK2KwGr8ov8nxzSgu4XlW9BN1HKtI1/dAzz7OKa8iZNEZRNhJ7eSuWUlWUW6Y0CUDuew67ERc8sVSxlsMI+J7kHJutFJ0YfU7DMOC9Zdrv5YzRtmCnz7kI0co5JwowwZOi7KsWVMFRzmuGwtB1uj5XVXmSPaOp9szzvJD6pjnifRVLYCXNGColGVGOqlI8sd2OXCAE5NfvP+T+1TVPXqw5xMR+N3K+Gui9Y+gDIUjRzVwK674DUxnMQMqiaNNZw263hdBhnWPVeebdltFahpsX4BymWYzNGdt7rfRpa4/kLeZppjOiSr1svd5RTOXiySdZDWdcP7xizFljFpR45gBD0oIur4B6Fyw1T4tlbFViMbWoCtQENLUZ+by2ZzblRO9EKdYaRy4ouJGZp1m5GFbUhlTdsSlpQ1WyryGlmZQS1liGYSDlyDRFas7EqIQ4KnjL4DviOFNyUVu+pjwn+0xRy8ZSJaaxVYgIokop60xMSRSIdGWWNVCK20ouqnRXl33CVNSqEHKueCSmako8eje671XmGPnCFz7P+cUZDy9vcX6+VtJZI2u2Aq4j6bet/RbDW9/+LD/8Yz/Mr/3rf0uepoW9kWuFmEk1H6OUKpZg1jm60GnBkdjdouqfqcVeReZPLEWv+KgWnjRuF7Wl44ZXSqZYI/OvkYmUqGpNy60VVd6WPSCmhDWG0DlWqxW1Vg6HkRSzWrXlYyzQ9r0qcfbyHJSMW5U81PY1q2N5yUuqMmQjK7lG9qDFFcd+rrUg4pvtubU1VfIc3h5tDZ1pxCIlc9VC1n23TT7Jncnna5gj54PaVFg5xitVYvmk373YrC3Pv7bhtqhitfkiZ0T9fSlcX13y7z7973j3u9/NW9/6VkqpGr9LX7S+Wca3aUpnLLGc1dybMUKoWaxOjaqpV1QJUq7fGosLx7OmkJqhGiVIq1LycjYyaq2M9G1bh+Z5kvNHU+E/jn6WwEQmyRJf1m/4vaknuexl/rFY5cm4LUs/yPORHJdYrx6LMKuty3M+tcxdYsm2ZtWCrYanzNP8gvkFvtd+Lx/NH+MV87LGemWJodo8Wea2xj+LelIj6FVkbBkZLIvt7ZuwveMd7/iW31Nr5eHDh/ybf/Nv+MxnPvNtuKrH7Tu9bZ56mrd88ENvaoJSLYW7f/yZx6SNx+27og03b+H6gZK2b/SlfNe3lBIf/ehH+bt/9++y2Wy+5fc/+eST/PRP/zS/8iu/IkUaj9vjdtJeeeUV/tE/+kd85CMf4QMf+MCCCTxu395msXwf38f/yv/Kz/Pz/I/8j3yWz/JodvvPr33TJKUuSNVi1/V66JTqrWozPhhq9RgGailcXV3x8MF99tfbpZpYZKxVVr5ZgCzytZqwN1CqJPxMFdsVyeqc2mnNAjgiAZpUTkr1bV3OXZKUiDnhkMOZ0+RgUtCyFFFeCj4I2FYEcPRKXmoHSesaOUcSWRgh+5ScMU4rY9WupN2HVYn5NqlcUz2qiXagbQd9o4mPmNNSbeU0sdVk/ftVR6mZNEWMEdKMqJJIEqfzUkVMFSWEou+1oIkxrd6rR8ChHXR98HLobtYNteKdgPBFk3Xt9dSKpTKsBknuJU0yGalaxByVkKxzxJxpNhHUQi5SkWl9pZiC7ztMyEBe7IL0RKzWf/I8W7KhJU6c/A+n9jBNMaFJQguQcARFDEpMc3YBQ4zWS7dETDUC/DVNhaaARc7UOVNiloSpAWfBFeiMp7cdpsL2ar88/xRljM5x1qSCANn90HF2fk7fOXofWK8GkimkKHZGWUEs7zqKyZyfCwFqPEwYoOs6wrCiGEhzEnC8eIzz3H9wxeEwMXSW84sNxlqmlLn/4JJYE0MX6HtHyTMU6HzPPCamQ8LWkZRHTKmserGZcMGTpkQ6HCi2sFkP5CLVeHMRkKIWQ++lEnqcJzarDSknDJbNsOFyt8P7wDxNHK4PhP3ENBx4y5O36c4N12Ok33TkXSEeEleHA2dnHbHMxApjNoQK8zhScma83gOFOEfWq4GLixtgHKY6Drs9cc6Mc6brelJKHHY7bt+8IUosKVNt5cmnnuLe6/eZxj3GG1xwbA8TphZWQ8fgBq4eRLyDYejY7w7EMWGdJDhrSri+Yxh6YhQbNB82XF0d2F0fGILFd579tOPGzQ2hC4zbieocq1sX/NQP/xUMlnk8cGdYMW5e5prKMxe3+b63PkNxlvV6w92vv8JTT92mq4WHuz226xljYr7eYbzl7sNrbvVrbp+vWV/cYZsmbuZIGM5IRmTjjYK/tcqciiVhiyRwg/eYqZBrZNxH1uteQHLTUV3HOI8CtnjLHCN+9kKgxDD0HcVUSeySuL4cxWJKLdqMNQoiVa6vd8wpk6PYJlkMNVdKTpSU2cdCxYI9WvkRMtRMrYY5Z6Y5EnylL4miZNeUMtN0TcmFORVSjNTs8C7Q9QPjPLObZ7IP9BvLdh4ZY+E9d57kRvCcnW24unePaegpc13IlrWKhYcLnls3blJyZrvb0w8DORem/UToBBhrpFBLxXvDatVx8/yC/X6PqZmcRQEgpiwWAUZA1xwjMSa2dSd2LM6SamEqsq/FFKlVrDZLFhW+u6++zG/++u/w4b/+szx95xamFnANxrOknERenwaKCvni1o1zPvhDH+TBg2sevPqaWJfkDLUQrexRhRO1jmqIc8SaUbAoa0V9qkrfHvKBlDL7MkllqxNlqWrEGrDrBrG/yBmvAB5GZPZbtaZxhlW/lkrqWVSZqKIokXKh1FnUCioC9pA4p2e9Gjjs9/QhiG1mjrjgdNwksbFcr7DOMk0jOReG0AGGQ87U4DA4DIZ5igx9j6VZvRWqA287SVbPkVyLENiMwahFSc4GZwPzPMtaZ4WcFLwnJtk3Si6QBMxIMZEri2JJNUI8TlPEIAqDwTtqkr3aWVE3yDnKfq2qFE1lxjsLvpCzgJpzSWK3W1tq2yz4glXCnXNmqczNpoIz9NZDybIuahwxx8Ic9/R9ous6+q5XlRJDCH4hLByr+BUYKqI0Z62jGrF+dN5RFDjLWSwES66UAlaBI2Mg5QYKmCV+c6rOWKoAHEJicdRqqHXGesvZ2Yau65imif1+L2Bvi0WEpdLgoiNQoIl+U6vMn4WUcBo3CvmiWnO0rKtVlUaE6JWdIyexZnNeyUGowkaVCv+swIjYWQqISBEQLRshPWOE3OetqHLkJKDDnCJHS4YjIFnVUq8imKZHFcwMStTS9yiZ7c1cfeKsxrrOLTGmUWtg6wyuGkQZszDNI4f9gXuvv87nPvc5Dof9op60gH7t2YISfhqwJv1mqkGInRyBRWvF8uUErGsxI9QF7G6tWbWJc4iCaIuVHLLOte+uspZaK/ZIpcjnNaL8EajTv5eGJFaaWkkrvGjX056n1TixgXeVI1moAbO1HNf0pri0WNt4OZ8UtU2t9TiXjQJlDcySghOUyMdCUDy1tz4lM9lGDloUoppq7ImqkWn8LpmfPgiIWdWiS0ThzNKvRj8vN1UBI79p9r7N9sh1gfNnn8H1YenXFuPLc9VntVwAyk1S4phB4/9Hn7s+JT07yPMvNF6BWUDfR0DdBewVAHrhOpXC4e7rjA/vi/KqUS4sBm+cntNgmqMC1Uc7p6MylyjVeCUGOycgdgiBgpAe2nm6YjDWY0yhc17OwFFiLec8zsuYELKU7HMYy+EwEmMieEPXBzBGiMrjSK5iV+qcUTVAUaTIKZNj0dgtK7ivZAOncy3JWasLXuIBY8X+V7vNK7CfciYoERMMwQWmGGlWmjHOuJjIwXO2Hkg9TEkUluosBKopRbrOkWuiUElFSKk5iZJzmoSUXdTSs+/7huYTp0jOEo845ylWzh2rYcB7p2dBw3q95rA/kFJc1pQ5ZgxynvcGxnFUAo4TRc1UdO3IksPwbsk7iJoSTFMizhGvKhsxz/Sq3FNxVGfwq563v/VpqIacIivvSd01M5XzfsUT5+eiuhwCu+stm80ap2qTOIkr8jxjjGE3zaycZ9UFQr9mLpmhFGzfoaHxEbRWoF4sUpsyqsEoaTtHUSetegYBJ3amGmdWVZaieskpGEsXjCjL1EqKUcaJkoack0IBg+zDUWPYJVei61PL61SdxxQriohW4wsdZ0n3juAMpLisCTHGhRQsSi0STYUg5Ps5JYnfukA2lXGeOVt3bIYBF/xCwLHVPULGyKVCTvR9z0rtiI2ReDJOUca9P8mz6PwGWK8kpzbHuBRinVpsonFdaSSmk98tcRWi8NWWve32ij957ous1wN93/HEE7eF1GygaPwjpFAWkk3LWzlr+MEf/EEur7b83id+lzTFhSxbbKYVGR5jD+n3HJOSS5WwVSRepEqskxYLS9lTs+bRrHMEzbc1IrAIr1rdV2W19kGKEpKS/Y2uu7VWkhYqyr4m8YArEnuL4qvmEJXMYZTQAaoGaoVgVjQOD86J+plaFgMLgczZI5GqAN6ZhVxkKqIiXyVG0cen1+r0Gan9lxFlvkZIy1WeXykSS4jSkHKSjMUYmRPuhNgr+6UqPdYMSogtR3aN5i2rxrhKYrEnBFyOhQpt82tEoKLKk9WodVmV8bsfRz7/hed4eHnJ97z3e+i6Hucl99eU9w1gq1viliVmQu6pkbMrhmokB4sR0hbo/laP99LGfdXclAb6J4SeYwFm6x8JOyVWCsFjrdG9JS6FCW0MnwQCj+71S9x5JBQdo5Zjt7V50FqtaveYpRixlCpFD/ZICJIcpGMh8KJkp2Z9p/dYio7XWnDW8X31+3grz/D75VP8Qf0DHpYHJBInX//I2aLFU9ZYNLKhbcjyFWaZt38RWimFr371q/yzf/bPePjw4Rt9OY/bm7AZ53jLD/0IYb1+oy/lz2y1Vu5/6TkuX/rKG30pj9vj9rh9F7bXXnuN3/zN3+QjH/nIfxSJ5Id+6IcopfDRj370MVHpcfv32n6/51/+y3/JCy+8wM///M+zWq3e6Ev6rmkOxy/wC3yID/GP+Ef8Q/4hL/IiM/Of63V80ySlEAJd1zGsBj0cq5WZcRgTyCay22752te+zm57RZpmcsqL7URLtFonwExNqlakhTgnZ6/lELxUJ7ckpjUYJ2CnWaSD9Ua8X+w6WtWYMYbcFAtM1Wo8SZ43qe1a3ZKUsNjlIOtVFUlUmFr1rz1WxpW8/KxV6rREckqSULAn9yOVl5J8AQh9hzFGwFakerJ53TvniFFATOc8IQRSrlRnqVkklFfrgWmagKNCkLNi5RZrJnQdKUVIDcSRhE1JR+UlHzxd10m2vVaxUTJWiU6ZVKqCDZqc8Z6sCgtgcMbhrSghVSvVqF3oSJpslZsHasUhSe4kkk6SgOosxQDImDCasDTWauLbCDhpmhWbUYCEpfq+9e+iYFCPv2uWFSVJlZxRuwWBqYVMkctpckFBM2MoRtQJ5v1E3M4EJ4AZFbICCHFKTPtRri3IeBn3h0WGe71Z41xQiXaLDzJ/1kOHrYXBe5Iz7JJYJG5Wa8S0SBKlT9x6gsvrayhCDtlsVlQK1MR2u2Ucd4SuZwiWmgxD51ltOpwXaWfjDdVkei82YdVUdocJ5ztizQLueJGdjrMAxhWDDU4sbGoi5Zm+D6zXK+69fo/ZGPCeihBRvFbL9sMKU6US9mq/Y931DH2HsZ5pmvBdACpzyVzutqJIRSDtI/MhUrKBmnj6ybdyvX3IdifqT1GBh3CxYs4zuVTOwoqbF+fstjvGKWGdZ8ZxtR+pJcEE4zRhjZOEvHXgHMOw4up6h3OWvtdq5R5KBnLBWk8uWZLm3UDf9ey3Bw7X15zfOMObSlgPAix7K8lpVxgPE9dX1xwOkfUq8MzbnyIUYKo8udlwjWG7S/zWH3yRcT/y//rpH+HJdz/LO594ghuffg6zu+Jzz7/Cu559kptvfRuxJG7evoP1K2osZJe58bZnueM884OH7E1kuL7iq899hTu8hd729BcDV6+/zrm3hJu3Kd7ie0tNBZMRJGyXyWWkO+9Zn/WyBkfYvX5F9/RN0m6LtYHru/dw3nDn9k361YrLq2sZ45q8GjpPMIZx3mFadWfXH9dYazk7P+fWzTX3Xr8EMgWptq25UopYAeRcKBWcq9gqoMWcKsElbt68wTxVaszkJOpd1UFCSBm5VKwXe7DqjFgCZFEDi3Ois56uOs7cwN3dQ7pB1tvL7UOCD1w/uCRlsZnLSRJzba1frzas1wOliK1bRcgJQqjIxFjobCD0gZxlb5wixJTZjxOzWmQYqgKoWeX2jVTfW8vQdzz5xG0qlQcPL9XOolVdZ1znTpLOUOPE8196AeMCf+Ov/Ry3LjZiaQF0Qdc8HoVWDYbOOv7y+95DnRK/9q//Ddf7KyEFRQGNpjiLGkHoyFGIOd4EnPXUIqBM1/fsr2WNWoUO3wdCPzAeDojVmMF3gZQzcb9j1QVW3VqeeZrRFK7Y1hTZG72z2D4oSFGwwdL5FcF7xvEgIIBadRgcV5cjcX5dgQTLsB7ENqzKfk+BKSZSkedFyWLBmUStoiQhFbvgxYLTSGIateIQUEL2DWcsQ9+L+lbXYdQKtOqeFELAGCFQYSRRLjaxCqA4xzhPVLLYocaEF5kd5phxXvbdeZoXOwY1xyFnybwXcbXB+CKkJgXmck5YJ2Qmb0VlciEeF7XFKkXGn7WIeZFapioBwRoril81sJ1GcgO6KKIStR8xQN+JaiYUOtNJTOMsOUufzVHW4wYs1VIxzmvs5cQ+N0UoldiA80Ye0ACp5EK1lqUKXPdz7wXAzLruOGuo3stBOIuKmXPSj957ttvtouJUG05AI30IqENBlSe1urw2u7iW9FfrKOpCeJafnxBecmXOheJk3fPOKWnRQ3UC1niLK2UZMzRwqVldGos3HrJYB9sq5LbsxLay5roQwRrhwTlBl2wjRtQq1qIYqhcllVKKEhSWl7xpm7Vi+xLUz75qXFcV7CpGChKur6+5d+8eX3nxRe6+9pruQ/KsqEoUMUdblkYGk8+U1sgqR3KQPpQWpCvI9cj1Obu8v8XHtap1zjeQXKhaDMDp95yQ1GgWSXotGhOfKgsdccBHx91xHOjafvK6U1UN54XgL8UKat9sjiSlpsRq9HxRShbwqUghQgiOlJrRGYslkbFW10u32FNyQrJqVfqmVuwJ4QxY1u/gJdZqZ8FmHeJcKwgxqnpqdAy0/mFRzzgqGkmHW4QkUVRhxTjL+ok7+M05KEiN3s2R5GUbs+gRtQQZBmYB5HUFOD5icyx4aLY0rcikXVEDdUttACALKa0pYkFle/c1Hnz5+fYNGLRgBsipkmYlbaoKbUxxGWsheLHJQs9GTsgtQc9OYk8NsQggGULQtUzuZb1eM06zrn2Grgt6XbKepxRxTs50FFXCC+2cZRZlQa9qelhRfrFW1GSMsWJJI4IpShgxR8BdCVcuOEII7Pd7ME3JWBQ4jfU6noPmAJyS1MUi3GBJZB1nlVwLU4yqhuOkmCTpulsLm/UZ8zwRo9xpLlVs2/uwKCuHPrDqO+Y5kpKSlo1lSrOsMxlRwzRCltFJhe96pjkuBCS5bh3fqhzWlFGcc3jniXMiTTPd0GENdMFrXgGC77CmMKoKb0qF4C1nF2fCR8+w7joyhlLhpZfvkebE97zjGTa3Lri5XnPvlXuYOPP6wy03z9f05xfkWlit1lgbRPnWVlYXF6ytIR8mIhk3T1zfu2SFx1uH6zzTfkdnwQ0rilWlmFKPOHYUYNx2jq4TtaVa5MzszgYhQFVDPEy4YaAbOrpO7MOjxppt7ZX1J5KrkAPMSXFUU6nZbAbiHJnn1DB0KvpMlOHQ4hHTVLsr1FwYVj0WxzTNUiDRyDJKnKLKfJWlvlIMopplLaZIXGR1PB5yBbU+jCliZ5hGJcXoWD8l1XjnFiJmSkmUyWhEbL32LGRNaiPZyvyJmrivoOuXrDUt59T6yOqZous6DuMI+YSgUQrGuyUP5Izh1Ve+zstP3BH1aeN48s5N3T8K1jdlbl3hTvYkawxnq4Gf+Ymf4MHr9/jic1+U9SnJ/G+qjl4L9SSv1tZWQ65CKCqzkPW8EkyDKo6VLPk6o6SUOUac5p6Mqiod7bWUJFyr5sqUxKQkHmssnVO7ZiUjU6VYLcXKdnvQ+xQioHVmUe5CY9o5Re0FiaENlpLyooLYVNplybZK1oxH4rNmm0SJyZCLkIhKY50gZ1aloNCIIU1dqO0/tbKon7U3NpXfipBEa1FVycbSMfK8G5FH8qxHy7ZS6kJeM1aLRfM3FDKiauUVtU+Vz267XytCtMYQrBMiXxVVwK9//RX2h5F3v/vd3L55U+aQFmI2Rcc2ntt5r+VHKy3UUDKeaXtykXF1ku9baEHG6DJwJPmdjmEPJxZ9Znn2onaZl3XGOoeZZyFLNtUyjt9TT6dEPfnfEt+AMScKVu0aTt9fjz0p8YLEVtYWLYw9qrobY8CdKDAt5xstRrBqn2saYbNyw9zgw/bD/Hj+Cb5SXuQLfJ7neZ7X6msUU7SwQQj0Lb8tOWSn+fdj3FDaIeZUDuo7sNVaefnll/n4xz/OF77wBeb5zxdsedy+c9qt97yPzVNveeQ89mZqtVYefOk5vvaJ36bmx+D+4/bd0axzbJ56mofPP1ZSejO0Wit/8Ad/wHvf+17e+973fsvrpbWWD33oQ7z00kuPFQ0ftz+1xRj59Kc/zcOHD/lrf+2v8eyzzz5WVfpzagbDW3kr/z3/Pf8V/xUf5+P8P/w//Bq/xuf5vGqqf3vbN09S6jpNtMgB0Cqgl1Jhv9vz8stf5/W7d9ltd6Q4SYWIHsTaQc+aY1XOaXK+qvx18+cq+SiHKwlcIQ85Y/DBkbMkDbAnSZEuyEFeqyStNRQ9iDaFouYEJlV8zetc5MBd0EoqrZby3uO8VDelJMkBrxLvDcwS5/AjsNCFIMm3nIQG48XOohRIKUpqXYkyKR+r3IZhoO/7YwVPLgxdT7byOV3X4YrDGy+VdxhqTnjnlkPusFoR55l5njXho4dMBTK6LuCsZZ7iknR21i2JtGme8N6Lh7xeow92AQkbYOEsVFUwMhb6TiqxW0omeE8ZZ1F3AO3DhDeOOUUKha7zuM5QjADOtR4rqGW8FKjN7q2KRYYekAuo01FV4KgebY5Ubav5uNdql+pIh9jhCBgricCUJIEj48CQTLPRMXTB4zGMlyP7ywPOVJwznK3WdKuOq+01k1wm3VlPFwI1S6XhMPT0QwBTpdquQu+9gCcIeJNrpTeWcX8gHSK2iqKW9RZvIOXK9mpLzYXzzQZrHPN84HDYYWvmfL0mxZkUZx5ur7lxdi4S+VSmccbaympYseoCxggAX3EUV7l15wJvDdvrA95ZnE10vRPbsurJGLw1HGLBB0+wjquHV0LcCZ5YK9564jgxpZn1cIZ1jv3+wPmNGxymUcDvFHHW0a166j6LAlZNTEkIcKF3bHd7pilBlgrIV195HefBAa5GUk7ceeIOF7cueOlrX2MVOla+5/b5DebDAX8eyCQOccINjjwlUVmwYgFofGC3n+iHgbPNmuvtFu9l8U1JEnahC+RZxvl2t6MA19fXXF5tJaGeEgMr1puBvh9EJSzOGETRx/vAajUwxcQ4zxzGkfP1ioeX15jZ433P0Ge6rpBXG75yFTl71xmdH7hY3yLcus1rV1dclx1f/fRnefItb2EY4OphxHnPS3dfJZ9tuDWsub7cMdw64+kbt7m+dcXd65F+mOlNoXpRR8mHkRS8gBKxUKPIsud9wa2dKMacdaQxYQ6VTgGm1Y1z9g+vefLpOzz51ifYX19z2O9wBuYkijBCqoisVyv6fiDnKGSynBfQdJ5njLNcb/fkUui6HmMi4ygVxC1BGfqOMUVJbFJxRW03sqNMhTRGjIHzi42o0WhCe85ZASbZi1KOdEMATbKmObIeBsb9ge3lJRYYfCDVStcHehe4e72lkLmxlvuYpolaMrmCMUGVmia1bah0wyB2IUZUAeeamCcBy27dvkW9vOb66hprZE3NReZ5ahWfCgpLpawk6veHLVXJrT50zDEqoVGsB60q4OUolijTuOMrz7/ACy++k9sf/EuEBUgo+BNbmtOKTah4b/n+73sv916/y+c+9zmm6cDV5Y5pnkS1IiWxbzHgh547F7eZpoldzAw2QBLwJ9eCHYQ8ZVPFValKb+4AwQVyznjXyetzUTsLUT4QlQAhGc+zAIClKPHGiKIQRRKuqYJ1YgOSMtRiSOlARZO4xjDnyDRGgvdCUs6JnKooznkhfKRayFRCH4SoVETJqQthIU6PaaaUSmct0yjkouw81jqMzXhvMK7ZSqj1qnOEzlFUKSjlogGb7IR+6EnzSM5Zia9NCTILyG1EIaDtdd4rQRqjwDRYL++xzki1bIVUMjVnghOrEVMlwW+twZlW4Szz1FaDMYVUKxSxZXFKQpAY6FiRHIsQvvq+xxrYjxO1wjTNrFYDw6oXVQxrhAhqHdZ3SwWzNaIqdqyArprwFmsbZ4SclVW5INeCrRYXggIQYn0jRCe7qCjIFTdrOCHUWu9xOWFzZp5HhtVKiGGHA+Nh1uRzo30ZBWvqEsfUqtyURi6pR2CmxaqP2EPo/2sDsIBYhXDurditlU6UAbwX2yRjBJiqVRTCXFOhyKiNrihFppyhWqqzFJul4jyrsmgpajPcCP7Sr2JFJ+C/73sFEwSc9wrclPIoEePN1hohXx/PkYRSKnGObLfXPHz4kJe+8hIvvPA8cZ4fWddMg4wE8WFRIwIFe0Td05jjM636D1XGmzUndjwgALN+h+w1LPNj0ZNYADbTRpfO4SOpyJwQ7Vk+76i02tQ6jKohtc9tn9nGbbNXTgrCNvuzdl1L59HuUd7ng1MCkNrg1Ip3nmoKS9xvLGUx7kLPTLZ133LWKVmIlo1IiQKBUghwQtpa7kEuI7U1ybqF1NXOGu0JogBkK0rBiOobCpC1cZJiwihoZ62qnBgrpCkq1jvWTzzB2bNvW1SVFL6jrcft+Qjz81HksNYjMerY/+1cdwRsocU/YNrHtPcIF2A5t1Y9v1CigMjOQYo8fOErjDtRKbRGiEQhOMZ5FhK3EXVP59xyqT54JcHUJj6MU+C2Pbumi5BioqSyENCME+JXKYjNVa30oRNCQYqiAFSr7ocTpWTGeWboOlEB0Xs2gPdB9gCQcyWictGtOqwxxDkpKUvOSkJwFTtza3WM6d49jZMoOVlRwrWdIUeJ64Ja5s4x0Q+iijqnRLP8c8GT4yznvqp7r8YLU4xCWimiIrLbHrBOzpFGFcOG1Yp+6Lm6vsJZR7CeVTeQY8L2Ep/EnFQRUtcNJTNiLTFmvJf3TfO8EEcbccQ5R80yXuZ5hgrTPC82tzkXPLJPOOdVHSphEIKFtQ4fAinPxJxJOdKHwGGcwRhckGdjXaGGwOWU6W52OOsZwgq7WrGbRqY6c/XKa6zPzvAeplHUXq52O2oIDCEwjzNu1XHWr5hXE/s54nyHp1KtKrDFRHEWYxpJSYkUsWKDkNeMc5AKJlUUXicMPXmMOG+59eQdxst7pChKvo2YUJuathPSYq1NsfCoZpx1rZvneFSz8Z6YElEVeAxtX5V8Q62GZo9JrZgMqUjM470TMrUkApbPL0osLZrfKUXWcSGmFazzjPsDNYv6p0HIrN57pikxx0TXB7oQGJvSX5HCq6Ym3tRqrBX7shKKEmOqKJYCq36NsZb9bk+NSe3xlNiSpb+a6nUjecjekpnidCQw6d7WiDQgY6sWUQ/7/Of+mPXmjM1mza2b50K2No7jzsayQJ6eKKCyOVvx4Q//LPv9lrt37zLXaSEQm1p1bTbgLH0/4K3jMI9CBs312N9e/l6VzCSqarrfLVbHgBKgmlJkI3BbK+tLLZVMOv6+NtJXPS71BqqRc4zBEFUJ2GgcUBBrX4OQwps6jjHI/qnPqSgJxlW7WMZap6TEKrkdicmd5DJLXpTgRT1K1o+UGrFa9rN2vVVzUs0eUEh7TQmqKK9GFQ+1MKgVixTdC5pakUGJV7VqgYKSjXQcLTnW0oiUbsnbKhfzuHcW6T+ZsrLHmUaaqq2QQ/fuWom1cu/eA3bbHW9727O8593vptZGivZHkhDovmxplr/mZNy10PAYM1UlDrJ8V4uJmmKW3HdW61W7hIrt+9p/nZKNq5KxpWJNVMutquSKqtKj47/FFAsriUZSbjFo+59RK7sjTWn50/Khup6Wiq0GWwrVyTlYcq5WlbP0fHcSn7SiHaMEqYVkVw0Uw8aseH99P+8r7+NQD/ye/V1+rfyb41zRfm59Yp3DVlVoa/lVPVN84yrwndS22y2f/vSn+a3f+i0Oh8MbfTmP25u43f6e9/Psj/2k2ne+OVsaR175d5+iaD7lcXvcvhuasZZuc/ZGX8bjdtKmaeKf//N/zt//+3+fmzdvfsvvt9by8z//81xdXfHiiy/+p7/Ax+0vRHvxxRf5x//4H/PjP/7j/MzP/MwjBZGP27e3GQw3uMHP8/P8Df4GD3jA/8n/yf/E//RtV1b6pklKRQ+hLngcItE+jSMP7t3n7qtf5/r6IdM4kWOkaLJlAXhasgbkoGuPyg81Fx1sZqnQEylsR4pi4WGtVFG1qlmrFUuiZHBMxsip+5i0NVVBiJMktHOWLgTmqjLfWaqljhiv2rXYQolyoPTGSlJWD+umKQDoPw1wKVmSH33fA2IL1w6A3ntKFeUe3yxqGoCpificMuSKDUKI6oJWPiatMjWOvpODcBc65pjIenPTLBW3rY+plc1mI9Y1URJG1lp6BbXK0l9VwG4fhMyFUdUPq4CsDNDQdXShIxMXa7dUxL5u6DXBq89OKurUmsBIQt05x7pzmFDBI+pLRg7aXoEka8wiaywnftR73ix4TEtctRxYI5o559SySW0mtKJRoBtPSkCu5DjjvZdqtiLqGo04YfV5pVKwxtHpmDTeEZzhbOg4u7jB2cVAvx7Y7yMWw1NP3uK1e/c57CaCsay7nvOzM8ZpLySsUrg4v2CchcQSiyRBjA/M5UA2Mi7KPGNdTy4Q50zKoyTRtLw8zhFnPcWIfc7FxS3GOfLgEJlSZt15wjDQ4disBmKF/ZRwNYv1QOfwxjHtZuy6x3tL36+kmnKKYqO26ZnGmd47wvmGWA3zditWDcYQzJpS8zJnUhRiX62As4zTRB86SaTkIoBqAOMN3hhcLwBJ7wJ98NB1lBQZ54nV5gZX+4NY01mPM5Xt4cC9uw8YfI8vjlggjiPb668zTSP9xUCtmbKfJUFdK4fDiHOW27fvcJhGIcftIY13wRmSk4xVruCCAGNjjswx0w8irVRyEdLRfqILHc44UT0rk1QluyCViAWmccQ6uHPnnDgnpt3ImQ+cn69IM5Q5szKWn/hL7+KvfeQnsKy4fPl16m6m7K/Y7go/+IEPUqdr/vi53+aFu6/xUz/6g1ycrZnGzLve8iy3z26RcuT5u3d5i62ch547d54G5/nDz3+Op2/cJufEE7sdT77tHQzn55R5AutJh4QbOrFtsoF6PVOdxdqMDYazJ29iEPLS6tY57+/fyde+8hLP5xexFu7dv8QaIfxZK/Zl4xTVtgIqllyh7wM2V2wXGNaDKNQglejUQt/5tsBLktKIGsDEiDGVbjUIKSEV5py53m8JFm6fX4DzbHcT+3HEekutlhQjXXDYajjbbLh/eU1MWYgQRipP93kmWFF6oFimQ2Qb9yQszlQOux3eOqKRZHHKRdRskCS3taIIY73lrNtQrirD2TnOWi4vryix8uD1h3pbAr55J+B7CE7sulISpaKUF1uVnGG7i/j1AC6IzQqVPEfOhoFpnpimCIhNlnMWrGW3veITn/wUt9/yFO985i34R7CEuuRNj+AqVDLdKvCDf+UH+epLr3B174qcKkM/sB7O2V9f6p5nIGWm6y3W+cXWJkapCl93HX1v2e8m5jhTqHRDB8gccC5gsGzjDqgMgwCwwXhKSdRaCN4xJxjnROc93hgMmThFknHkMmODAKgVw7AaBDCPiTTPxJRYrddQDA6PNwlLpXOGznWiBKSkg1IlgUutanEnz3W93ojV4H6k1krMRea4d2QqVCE4ppQWAKJZRaxWsrdP0yQVyhic8UQEgOqcx1sh8FofxNqraHW9YSFMgwDUsSWZVC2vVFU+cgasVA43e5jgLSk72csaKm4EeDcoiFELUVUhpZrdqNWu2AI6wRQpiLKP8w5XKzEVplEsbvrOU4thnwqHMbIfR87zGetVz9D3gMXYQGfluQIYK4TcYoT0XWslxaJEL4ctVshVfacWeYlaxOI1Z4k3Ot8J0FCVMGIM1EyDMqw1qq4n0nDeG0oROz9jDd4FVkNWlcGRXKQS+rS456iw0ubLkalgG7FEHojEUuY0Nd9UKdVmAogVtXfLSuwQkOOobunwFrG6q2WJdUoj7ButDs+GgsVUKyo+SorKOYvFcRb7S2OQ+ZElJixZiODOBU5tIEou5PTmBRUqRgF5FuJLSonxcGC7veKVV17mi1/4Itvra0rJyzNYSCS1fYpRINGCLVDqYsGyqLSaEwuXqjZonNhvKPGo5LzEnrXhtPX4rUZ/B4sBipIS7ElhBQLQngy6BUhTyxd3QkZqa4hY0snrbVP9bGcHPYzbdj2VRZ1GcHarZKyjLWRRe0VqA++PxKkG4hpjEcELiZ9zzsu4Tq2vFpAS2cNykrODAqVHxZMj3GgVwG3KhKWRimpTJ2o2f/ZYiaPkgIoAwkJGQMlLJwUtus9aK/PEuIpbDdx8x9sxoR1nzZGkpHvYUhTTAFD93VGFDhZ7GNBCjaPSlVnuziwgoNjW5qX/l89v/yLrWCOfTg8ekichcDsjdkN9PxB6hwueGDMGw2a9Yrc/iHKGMQTr6btATImWlum7jqTk2FxFrcXYZm0mY6uWjLdig5SLkE0qRZ+pURUNBSQp9P1AypkxCrk6OCWEIqSQAkS1lBLFX9lzcszY4LEWiQGMkGNzzqKQkzPeWFzXCdFdCcqi2hqoCFEDHcOUSjUVLKqYJ8QzFCiXrUxVr7yQ4DxyPaY45lJETTh4phjx1QpJ2FQOMbPfjdIvRZSnxpSY52tSSvjeCw0hHvsmJXkOq/WamJIQ5CPktJd5Z9s8RxVJhGBFVUXhKmfAXApzTPpM2hk544NaFtaWZxHixHrdyTo/Z6p19L0X0lSWfeRtT93kPe95G4bAeL1XW/KJFCtPP/0Wapq5e+8lHu52vP3Zp+k7T0qVm2fnDL2oJT/Y7zkzlc55VusNxjhee/11NsOKUgrrObK5uIHvO2rOYCwliRWXMcheP2UtMJP1vNsMsr4ag+k9Z/2Gt9y+zX0f8Naw2x9kUTkhlSbd0xsroRRwXsg1plSc2s2WRoKg2SHJmb1dj8xQIaxbL/F7TaLkOudETZlh8Ko0LSpcC52xImQZYwjOk2pmjmkhaBYqU45gKqZmMI6SYRwnUZ02SGGOC7I+q0qSjJd6VH82sj71vdgzulIJXWCaJrGUHidcK6wrMr8bAVRsyYR8KESvtOw1MUrch67zxkIukWBlrRXy9lEhLk8TX/ziF1itB75+44xnn3mGsBBCls3ryPBZmvzsyaee4Ic++CH+9cc+pmcmy2oIlBRFzUz36Rwj1oq6GC3XUeVeuk7ORzlJ4sdai3FGyCGxxWSVHLPYFmuuLeem1KcFZ6WIUiAGZyqpSMFZotDsX0s55upMFbvTnI8EIlly2t4h6zOYZU+Q/V13bt3TAT0nWiGIZlGzrMYcLZ41eZVrVUtnq4Qlg1mKWvJCwNPtUPYktPjAmEVFT8QLjypgrVRFSD+NpCJ75zFOkRi9GlECbPOnVunLZQK0nKUBo/MxL6QlUes5xmNmiUWgkZg1vqlQkpC+DqXwwgsvUEvhXe96j6ixlkIIokAqc0L2cyFpqeViuxe1n1uKXa0SdHWfOH2+7ZorqCr7cb9f+mLZ4yXIyxLqcFQ8bH1mCb4SYyLGmaPd6je0FsvXNk+a0hfLtZiW71xy0cdrOaVGl4ooUusea9tap3NH8qWnuWiNq4zEdSjZTli7QNU11BjOOONn68/R5Y7fLL/FJQ8R4pdcS9HCohZftWCzDYmmVvqd1EopfOlLX+JjH/sYd+/efaMv53F7k7f+4oK3fujHpHjqTdpERemLzNvrN/pSHrfH7XF73Li+vuajH/0of+fv/J3/KPLIZrPhwx/+MP/kn/yTxyTix+3PbIfDgV//9V+n1spf/at/9TFR6Q1oBsNtbvPf8d+xZs3/wv/CS7z0bfu+b5qktFqvaAySOUYuHz7k1dde4/LePeZ5DxQ9xEhixmBU3lhPgAqgtmSz8wHnAwlJNOhJaqlk8s4KEadGrHFqpyBVJSUXBTgk8W60UsYYkcGnGrWRMKScCCEwq3SvSQJWCtgmh7FxGgGpIim5aDI2E7wXcFiTYzHGxbveeYvHk009AhLGELpwrF4z/z/2/uRZtuy6zwS/3Z1z3P02r40WLUkAFE0iKbARCFaSFCmTpck0KplV5ShNOchp5jj/gjTLUc40yUHmIAeSyZQDmpFlJUupsgiWBIoCVcEOBIgmgOjei9fczv00u6vBWvv4DYqkQJSYEYTeBsLixbt+3Y+fZu+11/qt7yeJkGZ/AgXnzbrp82pfUnLBWS1SWisdacnQh4D3DmftSnPqhg3LMmlnlHxuqtrBpsmQSqXvOpzzJKLYKVkrNmBZXrluuKuQNkCS0KYlcKp0JbkuYK10ZuecVqx96HrmKN2woQtM4yTCsiVp0txgqyE4x3Y7MC4LJoDfeDJZBFx63UuVpJswjTXJUSrVookZ7QoGTebKfWaMUke0mIAWY6T42boLy5qUi3nRY+84WmFoZ50mSXzxDBh2oSPvJ3pT6TY9Q3BshoGYCzeHmRTBYjnZbPBaZKvWcHK24+G9O5pM6pX4Ih2Ci/hRUYGuG5inWR7CrmMeJ1wplJg1QW/wvQMscYlU7Uw3zuLdQJoXkhb6H9y/x/X+mv3hwGsnpwTnuXt6wvObieSELLTUSjCZrbXsrw+UGMk1s+l3LGlhmmeMMexv9lxfHxi6jvN7d5lvbpSOYliSkGaWlPAusBsC+2ViSpGA1eLKHlMq2al11nZLv+mJ3nMy9BymEdMF8pKYpolxGQl9wFpDTCMUz7DZCnWHRDWWy8PM8tZ7mJI5LAvGS/HdUWB2iuXOlFK5f/8OOU70wa80mr53xFiY0sym35ByZnAdLELqiSWS8kLwjrsP7jIdRunUO0ySUEtgrOfO2Y4nj57CUji/e8Lzw54UpWvy/p1TQh+4uDwwzQsRy73TU26u9lTriaPhO28942tvfJ2ryysevf2Un/0bf4NPfPbTvPXsOU+fXvHaaw+497GXef+dR6RxYVoil89vOPeed58852I/UeeFi8O7LMPA0zhTlF50cX3B0AXGJ095OldOz87JJLanZyzXC347sNmdcPPoCfvrSzZnp4RtYHh4F2qhXh0wpx2YhfHywHi9Jy2ZWi02BMiwCVCxxJrELqRvhTPt+Mti29GHjof3HnB5ccVVvKTUQh8cMSaGzVaIQbWSUyLnyq7r6QdHdY5xUipFXDDBESlcLwudq+QU6bvAEpEEZakcDhNd17FXSpOpGQq8/+gxKSc2G7GZKE5EK1eXN2RT2Ww3nA4bxmliVPGVdx5rs9LVCofDgWZLdNiPQvvLhcP1gZwzMcrzS6lU59hut5Az8zRrV62hD1KQzDWLFcNhZBon2Ag5wFhHF9SigUythXGeJMGqePxsxBK0Ilj6d999zFd+56u88vBlbCfPmdHCQaEi5VUr5lLmKOx8cO+cn/u5n+Ff7Pcs771PjguzWfBdJ+tulg72m2XE20BKIly0Rqgc3josns3Wc7M/kJdCwOJ9IHkpFKUl4o1ltxnoOschij3fyempXFMLKFJ+03fMhz1DP3AzT6sdg8PRdz0xSQHYB4dDhMGmGOa44HJR+wG1BjMQvNyPOWeSaniC0gynOK52e9M4rwUKHwL9ZpBCWYzaxVwwVmw5utCzO92xv7kmLRlMwnktCKvQRkg3YlcgRiQitJMCihZz1aq12Vs55yVZvUgB0ygtxztLLhJztAR1ynmNj1aRtpGCRE5J1oQQKLFRBY6JZgFKBBFvJY0TlApINatdk3MO76UgF1MkJREX+1CIanuT0wZTZb3ywZGXSI3yvFRkXbDOEnzr9DbEpOIayqruccZinSdTMFXtdbRSUouIhI1xSgGxapurFizUVSRtjYh9qwEyOAN4oRaFTmwD52VeBeVtGI1SWyDWXAzWLmgtIlglHzZBU8MvrUn7W8KJGIXq4JNYO3YhqHDAEILEcGS0gCji6KoqwFKloGu1m9sUFdaVVgw2QvRbFiFu1CJCuFZAUkWNUUGEFBaqFmE+miNo0RlE5DVPE/v9nuvLS775rW/w7jtvawd7s+RrxZ1jcRCORUO5392RDKThZVVSmXVq/SsVo1XE0oR9TWAitFe5Ada4sgqBogmBrNI3xNZJyWnOrQKmlNNaGFppsrWu5KZ2gKXktcBm1E5orXPpv4W8UI+iFzSeVQGF1TkBmlhJ6ExW5/6qn03JOOtkf2QMJSWJMZ1fCRVyPhqlieNB6PdrsTVSU5RjaoTTdl2qEG1QK1LW49bvoM0ARsX7TguDznlySVK0dRIryOfJFbV6Pa2xhOCJWcT71lv681Ncr0WFJkaSb7Puk25bcMn5by9XQVo7vlYkxgghBilWHq8nSnFlFWs1qz35f70lVpJ9qQe8MVy+/z4OIT95Z0X4UwoxStOFqVbsv/QAq4Gu79huBjmHrt6idumzbwAkTkhqDWVV1CsvKhQjr7Pe6n2nNGC9F5x1lITuQx3bzYY5Liwxctr1WGvZ9B3jkoR+i8yfzhQCYntd1boq+E6scZOsWcsSWZYF7zzDRizASrO3VCJPVmFh5xxLNqRacLXSeS+NSF7EXtIso4TjJLTbmNLawJRSUgKSJZggAlpj8SaQYxJbU2OYY+Li6lqobVn2ZHIWK6Tbe+PMZjNQ8h6vYgljKs7bVYzggxfxqRX7LlNlP1mqxC6b7UasrasUu5sA0hjD0Hcc9gfIlX4ITJqjqKWyHTqcc4zzosRfIxa08yKWtcZxdTXy9NFT5nlhf3XgtZdf4vz+Xa4OE4fDwunZls35CfvrG3JKxJyZx4XeWW4OE1OM1CSitOw9o4oPaq1M84R3ljQeOORK3w8UCqHrKUumBLGhX/YjyzwR+h4XLHY3yH5iydjey59LEWviUsVOyilNxqmYQZ9XZ61SbhqtW2MjY9gOA6VUxjySTRMuN5KLruNF8kLOWiV/O2KqVGNX4VdxhlgrpETJVa232lou+SehnrWciswVy7KQDiJW6/ogeipjhH5tAGvZdIFai9BXqatVZVsDhPDESryZ5wVKleaFlPXnFazawDr5HnFZ1uui8EEaLcdWaXCriACixEQXglJkROyRc8LYoHOxEMVb7PLk6VO++9ZbdMOOu3fvc6oCs7YEtdjoKN1hXYuMtfy1v/ZZ3n33Hb7ylX9HipEUkwhwvFMbPqF/Fn3WSyocrTvlGLwPVDIpJqDijMbGVudYFWF2XmwlSxV7OJuirFe6HobgKSmKMKUcqUy1KtGPRiHiFpHHrHOHCFP1+9njWlDKbXGcwVu7NhdUI1aQxRSlCsp6UPS+r0jatJjWMgddP2i+YgayxiryWSK2gUaxaUIUk0VIKpZkbU8ngrOq9KAm9E05YzV+NCqIWgmheq/Lkifrwm1RbbOxa3ZjdY13awtvaHaq7dpoSIVlhWTRcqtyDgrLUvjGN7/FOC186lOfpFYRSd6OLRo9tOp1y0qHbGKvo92mHk9bCKsKpcxxHW+0N7l+t9d3jjGA3tXteKtR4qHuM5wqippVdkpCupd4cQ0h2tPI8QTfem+NXm9r/W7HQ+0x0A89HnOtlCrkXyG2OhFlG1bCUhu6u5L8p9wQ2uAie8hawTTb3Gr4eX6eT9sf4v+d/w++Vb7Fdb1ev+Pt2K/tc+TP7Qv81Ri1Vg6HA7/xG7/Bv/23/3aNjV6MF+PPGyevvk7YbD7sw/hzR0mJp1//ow/7MF6MF+NDGZv7Dz64OL0YH4nxta99jTfeeIOf/MmfvBVjfe/jk5/8JD/1Uz/Fb/7mb/7pYvAX48VA9ii/8Ru/wfX1Nb/wC7/A2dnZ93W/vRj//41A4L/lv+WX+CX+e/57fpPf5G3e/o/+Od+zSCnFiRQT8zRzdXnJs2dPubm5Zplncomywc2J5psNbeOoXuLIxsF594HEv1O4Rq3NG12SWQ1t23zQW8EoxXR7d7iKUUA2n857nC0UhErgg183r0HJRLYlzo0gtitiJdL10rk4L4uIk4whV0no1gI+dLRNZ3BimWBr0a5kwzAMLDGS5kXtXDyxLFqo9JiSRNwzz9RapMCmyf1WEKlVNuW+E/siISSJ3701ulGOGeta54sWGIxh2PQUTXjklCg50/cDMce1GNB5r134WW0n5H28D6ufvA+ewWuC0Ugn7DyNkigaNtJxXpQ0UA0xLtrVLEVPFzxd54jTIoQoU/FbjwlQbJHuQee15ie2NOKtLjZyORcVnRm14JAEftvzlwrGiV2ObV1Y1klyqDSCQ7OuaAU7S+g93gVJoCW1AAC1iRM6V6kVVw3TuGCqYbM7Iyl9qesGyrJQlkJa5DNOTk8YpxtqEeFW8Z5DLSzTjObo2Az92u0Mct9bY8jWsOnknuk3PYMPnJ+fM6WFlCIPH95hmhPPnl/hh0paFnrv6bueZUo8v7zEBifiMFuoS6EcInEL7z59BtniNw7fOVL2+C7QVbC+56WXznlyecWzZ9fknBi6LSe7LVPcs9l4ui5wfX3FMi30XaCWTBd6DIWz3UCcC2UpbMNA9jC4wGboSMtETYlgB2JaSDFiKMS4cJnE+sJWSTrHpRDTgTRO2FKxvuBdz2G/h1S4d+eUvkbef3LJ5V6IOKkUXI4YJwnhcVwkYWTEKuDq4hpnDK++dp/r60SdJQlqqFhT2XSWGA3zJJ9x0m3ou8DZ7j7jnABHrZZ5lPnu7OyUw2FiXhLX+wPWG/qhV3uLiZtDpMTMpu8wRooQnfdcXV+x7PecnuzwfQ8p0ZXK6yd32BTwLxXScuDJ48fcOzth+/ABLhi++HM/xdvf/C5npyeUNPP03Ue8//xK6ET9jhQXvvr4XTb9wMnJlnsP73F2+pDDxQUUxxgTh5un4ODhw5fxzjDOVxyunuLPTsSuY5nxcUt+ljhEy804Ew97zu6eMC8Tl5cHTILri2vGnJlLosZKcDJnUgu2FoiZzluWJTEvC3OxuE0gOMN+nqnOktTCTSwcsiT1WyLbOqwRoci9szs8vXhGmRYIjpNhkIRc19H5QJ7ELiNsBjCFUpJ2pAYRx+SMDRabwWUj4oRa2WnBs84T1nhyNtjO0xlLXqLYw+XEttvQOelopQg9j+qIORH6jn6rwjlj6IfA5dWlilg6IRKghAC17chZLCamJNaDpRYIUgBJJZPSgnOePgSxRisyL/Zdj7GGaRFbzloKnXNi/WUs3limOfLtr36ddz73GX7o069hXEssGkmSZsTarPO3gjcRjn7mRz7JzfXn+Rf/x/+H58+es5+ikoIczim5pWaKB4xYbARvwEihKRZZo713DN0JOWemJQrdz3stKonIdzkkijWkPNGFTgRuWaxbaipCjjNCE+i8FwtUAzf7PVYLTaVklkkIctZ7vBYpaiNMeav0AbHxKFogzClhKkzTJFQQU+msFHL300hwngqkuBA6EWSlkshZkubGGKxUUJmXRIpAMcQlq3hKuqCxFWcc5KMwxAXPeBjJJQldwjpMEkFAFzzTPMv9G4RcWGoraMk1DKGXDXhM2O4o0rUNpVLMLUKQkXtYKRzSwV6oxkhxqErRMwSPM9Ldbr3FN0s1I4UFS6XrvBabq4qFEmlOIhrIiTnOLDFycnLCdrtVwYOlVLHkM66JurWYby2mFBa1xuw6LwIGo5ZVuaxFAJHXaaUDo6SYugpIaq3YINdstc5SIXXnPcmADUbJnOCCoxs6pnFiHCexiilNSK8xp9HOeS0+tUKUqUdBSIsh4Fh/aEVVNE6ttZLVm6kixcGSi9o0STFMOsb1vVoRx4ExjlJFsFRswZaCVTpkygZKkYJrrXjrmJdZYzsRQnjnpHdAv1e7d6sKnD6qo+QkBKqUmOeZ6+tr3nn7bd5889tc31zTAr1aj4We4za0FYBuF6fk780a95WmMFmTWXLa5fXCH2iij7WypjU4s+4xJG4+FtNbwQzqGlNbjvf0bfs2552IFnJehaIiMpLCkV2febUpQegILZ53Log9XBbbImuMrCtW/lwo0oigdiRrV1E9nilA6S5HsVs7PouINhuB6Visl3sreH+r0CfPjnMeY0rTSKktkhbDyget43Kz5HF2JWKgxU1pujB4L/ZDGsTJY1VEgGSsiHdk/2QoSZ6rGiouiAUK3rB58EDpWHKGq14LWfvaPNeKiLcKg604aKoWL9vvNHKFFK3ramlnpOKseyzrjVB+jVHiLDqHNZqSlTkCGC+viPNC6KRxwSpdtqasRCa55l3fEeMihXXnqdYSqWLJqqRhoRq1JpVWYJa9kneeXDIuOLx19H2v1ziz3Q2kXBjHGestJWW8s3jrCa5IfOMM1gSyQSioMVMC3IwTtYjQSexHRXjrqjwvu93AYZoZp5laxF4whEDKkeClwCqkGBHLUYsWwit9JyKpmoXoU6rsx4N3QmAsBWfV9tIonSZn5mZnWTkKGEpc4zFjhMIco9jcbYYeXwv7w8S05FXgYLMIJwpC9BHyiYj95mnBGjg53apVq9BEjJNZyDu59ilFTCl4F3DW0e8CUS3dwQhlpRSGvidGoS4uUQQVLSeScyTGQsmV4KyIeI2Q2qZFKNVdF4QG4yyuwFk3cKgGuyvUnDjs92y7Dr/bYp3h4x97lavnl0JQLonD9Z79zSw5BheoOfNkfyOxSR/YbDd0/ZY4zbK3z4W4jGCk29VaSHkmzwds30kclDO2FMpYWPIs1nwx0g+dnMMl4bzQlsd5JlFEiIGS8IxSdkrGqTCllso0yXHiDHNq9vZ1FQzXUlbaTC2NNioP4mbYUHJiyWITajuP0znSOompUppUHOyU/i3vsdpSGp3f1IIuxsiwGWRtTlkaqyoYI40IIixu4hBZm1OWOLTld1KV+yuEsAoCnJNYJi+Sr6oqKpX8U5Q5TUUmOeY1p1aKNLdh27pjCI1eV5VObc1xjdC53IKSW8Xu6p3vvsXLD17hyXvvs/vk6zTNJcdlUZrbbBPE6kxnhCz6C//Zz3M4jPz+H/yBULuL6P6MEmxLLqKb0Fip1qIiICERN6u0oCQ8oU5qnsRVnX9FBF9N09ZkDHre1EKRojlEmrBHpu2k4jCn5ybncmwCcccYo1adN2yjVR3tT1scajBqT85KXxJhpIiYZY20Kn7LSvcxak2puTnN2QkpHIndde2plePaqudZbCf1nrNNfKwxgjbtpZzVLrEt+ioSavenPFi0Zj5ZE3UN0cB2ZfrovSN52mNMI89ey6lpDNKek7b+GqW0W9a4qMUEtRbeeuu7XF9f8UM//EPcvXtX7OBDoOt7EcloP0ZW0vtxXW9fq9n+yXk2SlWq7bNrXUW+x19SVlqLv9HvoCJdqlKlVPS0xio6qqqknXe4lEQMm9IxPm3PySpAMqt4axWCtdfU9RUffL50LhThlVnnORHOSYxqlU5ZrMHRYhWO76fxrtWHpInRRChmVsG3cY7X6+v83+z/nct0ye+Ur/CV8m+5Mtfr/uuD4n8lN5mPPkmp1so8z/zhH/4hX/7yl3n06NGHfUgvxl+RYUPg/mf/2od9GP/BcXjymOX6BUXpxfhPcwx37q55txfjozNyzvyrf/Wv+NznPicN23/BYYzhF3/xF4kx8uUvf/kv4QhfjB+UUUrhK1/5Co8fP+ZXfuVX+OQnP/lCqPQhDIPhJ/lJ/lf+Vx7xiP+F/4X/if+Jt3n7P5oN3PcsUrp+/pzLiwsunl8wz7NQFlIkxUguWUQArfuo6ua2UZVWak0THWkCwBqsWpd430uhB0lqJE3MS6ey2LZELTw2gpD3XjqydeOcUtLuHLMiiq1V25ZW6HN23Txao4lutZ4TNoEksoZOBEk1F0k0WSnkLoskPI1ukL1x9KGjlsIcFy0YHMVDtaIClw5XvST/Q1gTAIK5t5RaSTUTukAIQe3LpGPMBc8yL+sxBx/wXbhFRjCayJfvkbJ2ZxmhXhWqUo4iuczHJIO1+m8vPvEtsQ6kJLQj5w04w1IF9T5NM7kUrPNrcrUUseyzRkhWCekazWprkkqhO/FgCsXYdYNtaLYVmkixTrbqta42CbWRkPSeMtbgrVrwND/5dk+o+43TIqbcWSKMyrHQaQezdDcKwcB6S9Drl5NgkuMcCYg3ewhek2SWJUWmOAqJyUvhJ9cC1jGcbKkZ0pKIcwLrcFrISrli4sIQBuwgQqh5HMk5kWORzuHgcd4zjiOFymm/4V53wpOr53QZMoUUM4MPuAzn2x2Hw4FipRvdYRkPe8xdERZkA70N+E4KtXaG6B3JVDoczy9uuD5MZC0i9dayC54pCTUtp0SKC9ZBtYVc4M7pKffOelKauEoLV9cHtmc7lpgorpBtYSGLSIzKdifdr3OciXOUZFTomOeFmrPQOpwlRREDmmrJKTNOE8F7rqeJJS70wUKNpFqo1outTs3Ske4Dh/1EjollmVkohM7x9PkVKTksaiuSZk52O1wtHOaFRCWT6SnswoDrB67GS8brPTVl5iTii+nZc7bDBmMMS8x0w4YEXI8z3nUEDxG4Hg/0ZcAUz8Z3TOPMWCOx3LDdFMph5OT0lHsfe5XzfIdXp5ncbbn36muUp8+YLkd2rz7A2YnXX3sFtz1jyXv49tt8+533mJ5P3N0NTHPl0fOnTNbxxZ/6CT7++kuYbsPvPHrEYb/n7vkpjDB0O55++03uPLhDHyz764mLt56AdfT9lscXl6RpYbM7YXYVtzNs7JbS7/j9P/5dDjcHbqaJbKGkyLJA9ZZukPO/nyaC9Zxtd2AyMc146zk9OcV4i+/E3swYwyaIgCsXEZDEHHF4LJVaIKdCrhnjoJhCsIH9fhSR0TBQ9FqkarHVUsuiFApB7Ce1XLFWaDX7/Q1LXNjudmy3WzabIGLUYvA+SMJ7iUSD0FmqUHQaOB8rllLGGmqqlJQJxpJUHLnbBebFc9iL90itQuCZ5gI106tVxjxN1ApDv9WucDDe0ZkeA5zsziiliti3RHZnO7zXItfmhHmamA8jwQdMtSxpptiADZ79dMNX3vhdzu+fcf/eCY2n1PKg1ZUPJHfbfs55yw/90Kf4469/kzyOzAtMcSIhBSLnnHbuF4bNhlQSS5rYbgagMh0OVIRgk5LYG5gqlmfLuJBrEaGwD5hSxSLEQYyRmIQIhdouLFm65oPaeqguGFkmhfaRkliGVZto3elWjLGkyN0FUiosc+R6OaxJ1eBESBWTWMmd7HaC+S+V3IpG2mEcYxYinxHrx2EYKCWRstAHGEcolb7vOSwzy7wQOk8IvRbUitrZmpUKJISnQM5SNLVWRVEpMS+RAviSNXmvjohV7U61CJ5rZZlmtT0DqgieOufIRehcxqgFRK7rdS6qwGmChKqiLu/FxknuBYk5cilk5H1DEDKAw2C8HEvKeRXu5VxIuZL0+g2ho3qHy5VqRBgVvMyTRcVsxiIUtSTiNI/QXJx1ONcJIShlJcYULV4LU0YonGWVp9Rmc6Id1lUFkI3aBFJ8s3iCtbjQ4V1H322YppHDOLIsi9hxrVqhY7Ljtj2xUVGKaQgXLRrUVnSpzWpMj0W9ikWXYSgpk0siJYd3iey9FgyFqiSUA8T6GEs1iC2gtfiVJiWF8lqhFBGhWeeF6hDTKsRrMbXQbMRaKQT/gef/ozbmaWKaJvY3N7z33nt897vf4erqSmLXVegD/Cnfov19Kzy1Co1o3USQ0igWNCuQejT/pUphvOZ6fL96tLCSgowUgctaoJNRa+s2bwXFJl65ReKxjcDVYtxjbC7HcrQyazQBU6V4aI3BW7VLLGIjKMXvsopvnJHCczMnWe2yUQqSFrFlvyP3WxNeOecwrhX6VGzTuvS16cHovkC+25GsVI1RMig444QGkZqNJkebPWOPxCQtzhYV6xzJTwWDEwpFrevr5RxrAVi0Inr/N8KCijq9IEU2Dx/S7XbHe+DWHdPs7Yqta+GwUU1aqdCYqmSN2/yQ4/6kCataAmQt2N2y7Wm6Q3mpnM9VWFBFgDRfXGJKE6bJvZJLEStZ51YyVZEvT1DLTTnHck2NFXHdbbqI0f1sjpFay0r9sLo/FXFCpfOBjes4zCOuyD5XislSaB9CR1qEAGOU6pvigtlsdD2Ta269xFwmQbaWYqrsPaaFOaaVeuWMobOWXMQOqahQStIDVeOink3nKDUxl8w8R4Lt9B6rFFPFIimLFWLovOwJtcmGKlbpOWWWUo+FdcPa6FRLIWYRtC9RrNqcNUDRArsKClr+wiqZJhex0kKog+M0U9SS1VgReHV9wFRZIyVzUXFVBKnWeeY0k2a5LqlWUiqkPIkYw6hYwgWxIosZa4TkCZk5JVwVkm4wYq0eaxY6jAvEGAl9x+bslL5sOM0nFBfYnJxSx5E0R7qTLcbA2ekJJvTkGjHPr3l+c02eEkMQG/SbaSQZwydOX+b8dIdxnnf3e+JS2PQdWPAuMF5cMmwHvDUsOTFeiZ25d4H9NEmc3HUkUzHBEEzA9xsunz9iP01U54nlgBCm5Zm0TvaAOcv+exh6rEetTgud2sM651ZBgrMisk7rPl7nVI2fxE45y9yhSoCSReDodF3MOQvByztdY8uqZ23U6vZQ5yR2T9YK/azrZA/RbNesFXF8SrkZVMnvqcWwsWYVIaJiAbH9tBSSEK4xLIvmzpD5JZdMQSnPXm3RclI7OSFeg6x1VLlGzjvikljSIhRu72iWu8ZAnIXKZFXgE1OijBOPHj/i/N5dIUE/uKt6h1tr759BZTQGdic7/ubf/Anee+cdLi6eE3Nan/Vj813BuIAzhiUueCQeyjmTUly/Q1sfrbErhRyjTYrG0NSgpVaZG1VVY4zan2qThJNpG9XktEVebelY6XLrPN/mfKVxx5iJSzrO+zr/GmOZY17juFoKbhW1y+fkIuIfp3GA1dxYzkli6iikRefEnl5s1PU6mqMdm1GRT61NIO3WOd7oORExu9iIt2ZJ1dpwW2zS1seVyiqnTYT6utCWemwObNeiLYFNXLzygaqSIfUFhiZiqutxWGuEvFhvCb5K5fLqkt9943f57Oc+y8svv6xEQkPfdRjnMCWvltTOKU2x6DXUPVrJsn5aXbdX0ZnuG3Q3oM+1+cDxrcKgW/eIJqxpxKjV5lXPjbVHUqVTsnyMcW32XCPEFgusuevjqOu9uv4NTeP0J18DjfAq++Ws97Z1FpMNVe+pNVZrYqj1SFp0WKkaTxZnVwpka8a46+/xS/mX+WnzM/xh+UN+rfw60UQNaesaszprgY9u0wNIQ9JXv/rVVZz0ooj9YvxFxr0f+Sybu/c+7MP4c0etlavvfkdyGC/Gi/Gf4AibLd3JKfPV5Yd9KC/GnxhPnjzh93//9/npn/7p70s04r3ni1/8It/61rd4/PjxX8IRvhg/SOOtt97iH//jf8zf//t/nx/7sR97IVT6kIbH8zqv89/x3/Ff81/zq/wq/w3/DXv2/xHe+3scb333TcbDxKL2GSlFUhUfdWBNaMuQ5K+5vUluo7YinPyTNQEeS8F4J52gCClDkhhagMl5Tbo3NLCg8tNaHPDekdIH6UK1SPLmuJEUGpEzkuhyrSs5Z90PVoLzcpyl4tUzvXXvSA1Ckv65Fryx1Jwp2iHad45kovrLWy1+2lYekW7KYcMyL5Ks8YLBj3ER6lOF3gcpwJPxnfx5WZYV2dzKH5vNZj22rusASXzElFYhVIwRoR1JQdMH6ehv1IDQdZJoTRkXwrHLC7QjTDbs3slnplRwXVjPZbumVpNlRZNSFOk4ch58b0G7r53VLlytPhi1s6gYRUUbxcEbakkYLWrWerszkLWTy1grCUAsDq1qOMEfC+JdXhf6TpL6VEk+1WNBoxS5j00ukIuQsJBC+1IWrHdsNj01ZzZui/OetJ9wLgAW5wM2z+Qq972v0gk7bLccxplxWeicpwuBmzgzp0SaJjrnxPKvCn3DehHBdX1PMYb3nj7jZr9nWhasB4MD44i1UFPCe0/MMyUu7PrA7v5dYp7oNxtSysR5pEsdzgSu93vmPOM6Q2c9XXGMy0Kt0m095cKT6xtc75nGhRKzWBxYWJYkNIfOcTkeCMFyWGa6TU8fAjeHA5iO3vX0uy2bQayF7t854+LZ1dqF7ZxnjpFhCIzjnpwtu5OerlNbh1LIKdOHQD/0OGvZ9gPeZKYuMKfIUqSA7TEMwTMtI6VEDJndpsMqAebicpaOZ2PIo3SuP3r3fWqt7M7OODs94/r6mpspMsaJviuCVF8WEXnlhKmVs92pCNBqxuJISyGWhLNqtaLWgxXHMi/UbEi+ZYsM05LIaU/aT7zz5BlPLq7oh57La8PHf+xThMGyLyNnd+5inOUbv/d1rt5/zsc+/mn6EPnYS6fcv//jislPvP3oinuvP+B6HImxMu4zbh6lm9YvvPryjvfefcrV9SX9bsvb3/42u5Md9+/dwU2OaT/hthtiWXj3yRPOu8jrL73KK68+pJgB2w389M/9OG++/SZvHi55/OQRJY3kapiTEGE2oaO4zLIknl1cy7wcYNt11P3ElCPLfhRbjpiYS8U5sXlqdiliM+WFXhQjTy4uxJINQ5wnaqkspZLLJUPXsdsOuBBIJTOrADLXTKrSvY6RYlun817OmcPhwE3X4e0pKQt9JNsk1ljGSNeyETFJKVXEI1r4sBhqNut7PXv/icyX3mlh2bLdCRa6zKwFMYBpnrE+4EMglUQxC67Kd3cESk5YDIfpoJ23YgdjVEw75gVXDWiXsCHTVYurhjglhm1PiZFvfe2bvPbKK/zcF34SYyvUooQ2wBYhbeBpBfyWEA1Dx9n9B3TvvUcsM746liUDXgUxstaWmHjpwQPGaSTFSEyLzMdqi1qzFAw7Y4hUkhVxxxIXzs7PcNlwfXNJdoaYItY6Nr6XZyxlEaipIKSJU0qWAkAIgWmcyVnWkZZM996v4hfrHEtMxJjJWYoWzpm14O29p2KxauPmsPQuUA3MWexwOuflvtTCUU2FHCN95yGI2PBwPdGHXq02HTk76Wx2Se2HAsZ7pnkiqUXd0Ae22y3XN5dalBC7wmLMSrjR5Y5aYEkLwXlZ61py2ln5XrVovCLFb7GbFavYZZrXgpIUIAzeOLVWSWuHsxAoC60b2jtDTIWYJRbIJklhQGMM19D/pWKrCHpTzaQsz6YzsNtshXgRPD5IgcVaw7wsxFzp/bAKnZ0Vmx2xgBX6WS1aYKlV7UytxgJSWOg6iYdSymoHV9QKTWgTqLjBByl4ia1VWbvgS6nY0K2indB1jOPINI3kFFcR+SpZuL3BaeKj2ooYMtZCOByLGLfETY0kalTIkG0mWUsOBe/knnSN3OiUIGncGkeDFPGtE9vfVpwpxSIEm4xzkDtHjG4tUFm1q22t6KUkPWcfzfHkyWOur2741je/yZOnT7TgWNfYs4l86mqf8afJldrfHl9QQeKIqgVHY2lELtPEO60gRdXi1loWIueyCh2OdsH1A6K0lbShH1pKVtGkFoyURoYWxVaKkhKGjuSL1gFvVoFKI3tVLXQa5ykcBUVCUjiyAmqVPUpKGsNaISBJAa8chUlIlCKWIWqbosI6ra6uVs7HotSR2NTmrLaPKlnst5u4pon1rHMqFtCGkKLnu7BSIJyBYpoA6lYBs13NJp4yKiazsiaJkASsl78P2w2nr7xKIwmh57K92fESyRzYgEpyHZE9ais+w7qPlDq4xBNGf1i59ewbpQAr8iKv+zI9nY26UUVsMT57zv79x2Jxq9fIK3UwhIBRAY0zIjUW28e0ArEsVebR4IkxCzVDya9LERFpSXmlCpsm+rJWRQ0ikL0ZR5YlSgMQTUBgtRkki7VxydSc6LwlbAcR9eixlhypxWGwQgyuSWwUjcVVtSmvYvWUChyWqKKmvN7PGIQk5WTOnlLEOSNCoiAkviUu4MBZob82i7rt0DOOEzElFSFZyFnFyAulqB1cthQV09VS8dau+/jgPMZXUlFhjJ5kRxPLxPXZDF7EYxiYppZngJpkLri5PgBC0O2HjmVZWLIIz5yT4nLNsnbVIoLsvuvwXUfDqJRcV2GF6GGb3Emf0VrkWVlFBoVlicxz5PowsZ9mvPdMM5w/vIPzhqVG+mGDMZZnj58x7yfOzu/gXeZs17HZviLnj8zVfmaTt8wpkQvEWLE5yefZzMlJx8212Ka64Lm6uKDrApvNgE1W8i9BLNxvDgd6lzk7PeXkdEvFY53lwcM7bE8D77/1gMv9NSVHFX9aarF4rOZ6YFriOp8HL7a5uSbSIvmRRnFGRb5W5yt0jnZWAqppWXBe6GIlZ0w1xFKUaJwJ3tP3HaUicdltoUWbR3TutkrMSzkzTbOIT8wxVqpWRYemaPOazB1ZBSFF15Tba8YyzyrGkbUdwxobtKa6VcRQhYRirIgwsGUVKImmQcQ72STykgE5D4aKKYWkZCqnYqEmoLDGkJMQXN9889vcu3+fPnTcOT+j75rNqK4zFiBLDmJdd48x7OnZGZ/9az/KV377t8lViGO16BpaJS4tOdMPPSH41SJZcmp2FU6UUnBtbVPFR8sRdiEQl4VUs4j6W36uVHJNSo8SMlMqH4zNvJdYutakjQBGz5PT9beJsgyL0tpzabbJbe21WOOwNutaJYwk66wS1+vaPLGuP7VQc9bcpiOpHaBYHsu67HSdFOG6XeOIkhERqxWRTAgdJQuNWIM8is4LTazSrozQ+o7iWoyhmrJaXjdh/0pvMmJDWpJeE70GZY1f9BnT711qOdrvAupQLY2JtSpZ9rgO39LlQJXG0a9+9Y8Yx4nXP/a6/Fw/yzn9BxEFp3pcM5w1mGqVKplV0KznjKOIWmK7JohW2Y6x4I/n+rY8qO3dW9zRqPDyeFWErCf7IkujOzohQ6t4sNm8rkKj2xuHW+fq35fO3NpPrGdeX1vbaaurVd9K3Fd7t5YHbTGQXfOl66VHLLeVHGok8jRFaGjWGs7LGT9Tfpqh9PxG+RLv8R7VHoOoRkD7KI6bmxueP3/Ob/zGb/D1r3/9wz6cF+Ov4Bju3uPlH//8B2wUP2qj1sr129/l2Te+9mEfyovxYnxow/U93ekLkdJHcdRa+Zf/8l/yyU9+kpdeeun7eo/T01N++Zd/mX/2z/6ZQEFejBfjzxnTNPGrv/qrXF1d8fnPf56+7z/sQ/pPdhgMD3nIP+QfsmXL/8D/wBu8gezYv7/xPYuULq8uV2R5rVIgrhTtEpNiym2LraodI02QdCs/syZvc2m9HproNFb+TjtvQghYrHraF4xx2uEmG+1moSUFrU6TiNLNZ5rwxEgHk11tMKqIWXSj3HWdFCScw3eBvEhB7zbhp++dIvgr3neKKpeEfUas8Lz19H3PnMSmJ3SddNQWsXLo+55F7fCWZQZEZOSc0pmaeksLZ8uyrN3gcYna7ezJKRH6Xju+JUnjfSDGZRXkOOfVlgH6rhN0+iwWAkY7hxqq2VmntnA93dBzOByISTpPay3Mc1Jrn56UK7vTE4yz7A83UCsxCRbeByfXCEsXAqkUetexORnwgwFfNZng1k6yakSYVI1dLWwqIgCQBIF017WUybE4qEj4KtZhJUOuidoseDRp47TDsaRypC61xB9H+5xaMqZWOu/YDlv26QZTJNmUa6VQmKZJLFSsJS4TphqWceamVoY+0GfPmDOh7+l8h7OQSmXKGT/0BOcZ55lcEq5CNY6uGzjZ7kglk5HO3TjPDH0vv1szV/MixZKU6bpBkurOEEtms9tx7k959+n7xCqY58dPLjgvlWHYEEvi4slzsJ5iodZMFwY2m61Y41XHsp/JecSHQUhlTgg4KYrN4MnZKd4Xzk+3bPoNb777nO22Z54zziR8zpyo5ZXPsBkG5v1C3/XUwwRLYgg9OC9d37USfE/p4fr6AMVJQjctFCoxLwQXWOLENFXOTk+IOeO7ns2w5cnlNb4LlCUz3ozMRZLWcV7oQocrMgeVUtkfrrm+OgCGBw/ukEsip4yfJwwGl+XeiKVgnYjivLXsk9gxDkNH1zs2W3mGri5u2HQDwTvG/UTOCyWJGCr4AFW6rk3nuJyucVFoW3NOZCrfee8JX3njq7x854QH914lvv+MQ5rorePi7ffpzwqkzHtPL7jK32KDdFDvY2RrPc7P+JrY9R2v3j3HELi4uubs7jmf/eFPcTPOvPaxVzh/eJ9vv/MeL92/Sznd8dajd6mv3OXu2RnLNDDfzLicGLYbHj58hZw8+0cHtg96rJt45aX7bO6d8fXvPmKaDhgCh7hQE+wPE85aNrsdxS2c3jnj+uIS8iLkIO/pNwOHeSIftCNSk6KmCYl8hw+BmBIxiyjEejjdnUISko8xYIsIdOZpElS9dWIrobQIKVoeO1pTTmz6Ae89p6dnxBjZ7/f0Xc/JdksyUSzEVEAac8ZWy9q9rKU7B+SUsF66t533YtFZCjVWcjH0w8ASD2I5aQ3BB4oWpETvKqKb0PVsNluWcRZKSElsNx3GwPVhwmIIQYSs3oCrBZsy1co6tN0M+BBE3NcPLMvI9f5GEuOp8sbv/QE/8tlP8/DBCc5UKJZcpODTOQuB48Kra/Kw6fjZX/gpXnrtHv/mN7/Mo/feI8ao3c9CubFWqGbLNAthqgqtx9hW7JCO1Wan6Z3BVUOulpwSyzLR+QC1EIrD9wPFyDrP0JFnEc/mJESYLgRqLkrgMcSUpYM/SJd5Ka2gakRIRMWYgu+8FiscXb9BbGMLwXUcDiO1VLXkU9ulWgidxxa5H52xmAIlJQgW50VEd7rdkUvlyfQMTMH3nRRzU8JpEptayTlREGGV94EctYhmxNLKGStzH7DMs/hgWLGBslZjHhKlZrHSMSJ+DiFQLOQIpsq8Wa0Wo4qQv2Spq2shwTopbKoBlVqMKZHQGCpWu6IdtVhSqqtdgzFWCiRK7ylqS7AKgWulRinUxcWw34tCfuh7nHd4FWTnWgmhA1vogoOsVgXW4UyilkxcJJZbqYf9sBbQbNFCmtpDCJXFULOIZY0xWsSSgr+3Blulw9lojJj1PndyqkX4EcVK0XvPMHQs88zhcMMSM83a5wMaJSPC5xaXfcCOgbU8uAoSjmUF1jgl56IFIbl+WW1EQhDCp6tOKUhCS3LOrUIdZ6So0kRc1la5N22FGihFCIG5HIVRtWRSbIUMxN74Izq+9KUvKQUvaSG2rue4NKu2VbVCA2muxfoPVL60KNTichFlSgGxFTsb4UboReXfu1btOjZRkxM/JxoRwNQjqaWWemzKqO1pYyWKNhtBax3NltLoGmMMeCskNGrFqqVaIx9VlORhZN1JutbZJrjSIpXzsrdo1kOANiCYtTh+PHlKF1CyUCu+GiPiE+ftWtBte7hmg2eUHtAEJt4HuZdT+cAlaCSLRv9yzuGCWq2WYyE6q1Wm3OvQhQ6sWEYD0iwCOudo0VDtkLwVG2zjwXjL+esfX9fzNhpDQZ4HPcCqe7kPrPPt5pI/rgImvbVyFVqfOX7B1YKylls2VUaf/Mp6TzTBljOWMk0c3v6uzk2WRnNIKdEUkFUtoeQ6LnjnVNRcldihIrOix+WlWBtzWsUVRvd9XZDrU7QgmXPGOyEQpVKZs+y9hGboRRKjX9qHjt4absb9ShvcjyN9lRgk10Q+jDJf6nlp654I9ww5JkpMWOvlHi9NMCuF/a7vsBb6LhB84PJ6JHRe7bcjthSxfCtie+m8Jy0Zbz01JkwueOvAq82Pri3eBRUey3Nfilib5pJw1pFKoqbK0PVqk+UJ3nCYxNq95EJa0io2yDnjdb5o13RZFpY5gjFsN4Osk6Vgs8UsCDmyFPJa/C9YA0sR4Yj3Mmf74KBa5mnBa+E9xkwteSXmOX1WjZVnYZqyOJkZQ0wyb17dHHj30RNOho7t5pRyGBlzwhvLfLXH9VKp3o8jS5VkT6my3/HGYK3EQ51znG56wDHNM8PQc//uHZaUOT07YdhtuLjas9tuqH3H1c01m5MNQ98TkicvCVvE3nS3PaEUy3ITCVtPzZGhD3Tbe7z2w5/h8TvvQLUsWfaXMYql3vZkSykQhl5iBKXtLkgDD8A4TqvFVl01AEaILl7E+Cv1LUX6boPxllitzrsyQ0gOZrlFt2vzh9G8gKz7TVQkBCURVuecmedFcje2rALT45xztM609haNRef2JjIVQbPMG6VozspUmcHMURRTG6WryhrirVo/Y4gx6ZwNLgRiTCrUl+a7Nc+jRNusdPKu647EPCWN50PiD/7gD+i6jvtP7vPqq/exasMn9ECd8/wtwUmbQa3hzv1zfvaLP8thvOEPfu8PKHnSuKbQxK4gdnXWqZFZFZKucc0qVUk8Rs6dK6yxWcmZEoqKNcROsqjAAgPWeBVCVt0DGF3rRcyYs8YXq12a7PUw7TXaDHBLqNuIWeh6llNhyVFFa6iI8EiQFz2jUZFuUbG5o+aC14a0qcwU5BxYJ81cpso5FD2NUKvF7tQoOVgpX0pwlDyfCFDba9tCZa1VMXS7d1X8bJUan5PE/+0B0uRsaXRSmkyv7debQJt1D9/itErL78q5LO19mugLo6Fae0d5SqyKhnNKfOOP/5jnz5/z2c/8CPfu3RVqsNLSjS7IYlenYiRjjte3kUaLxMhGFXNCdW/z9tFiUHmKtEtfBMOm66f+t6msQjxV6Iltq+QwRKynsZeR+MU5RyliKypr+KosOorE2vn+9xRK9YNh7J8QJ4Hs3VoOvZGh5NkxVFd1P1luifLbxx1znkZjUgMrfQxrsEpqxTpMMfxE+Qk+x+f4g/qH/Dt+h7fL28xlXu+lj+L4R//oHwmpOcYP+1BejL+CwzjHaz/9twibzYd9KH/uuH7nLd78jf8XeZ4/7EN5MX5ARs2ZvCw4hRz8VRl3Pvlprt9+68M+jBfjTxnjOPJrv/Zr/IN/8A84PT39C/++MYbPfOYz/PiP/zi//du//ZdwhC/GD9qY55l//s//Od/4xjf4lV/5FV555ZVj7P1i/J8+LJb/gv+C/5z/nH/GP+N/5n/mK3zl+yIrfc8ipWWepElbN51FO7ZrOXYCGtu6kiUBKl1ignkvVCXiVPyxdVUFR9KN6rQzTVD12omGeLIba8WOi2ZpcLT1asmNWgtd11FrJuas220pcrXurdy6UN1R8FTQjh1N3PjgyVkLDkh3n7EtsS2iKRCBlPWeWBexoprnNRFLNaSUqalQbGaeheaz5LzaAVgDSe3jqNK93DqWndqpzfOydgtVpFPJGCFZVS0IhhAkGaFFutB3kgiPC70PUjA3BhST3ihQRbtyvZWk7jQdqBS6LqxkiZyrJgPEKmhe5pU2tenVFicVfO9IMVJzYVkmXKhsTjfYzlJslqIPrVNYxUNVbNRap+za8VzqWmhthQOOeRhAEhFGCRiVKsUT6ipkqxV8ux9dIC3Sfeu8dKXVNXdQMVUKpkREnJMrS4xEDFULKmNa6EPAhoB30m0XXE9FbPpylYRl5x2pRLK1VByuC2yHYbUDrEmtgaxjmha8cWy2G+bxRq2GOuI4gyvEKlZWQdHNcY54a+n6DdM4kZdEnjJDt8GYzHuP3yMuM3SebBy73UBdFmIpRBJxLIS+4+zEc7rbirgnJqy3XB9m7j64R4kL1UCqYlEUUyalmZRmarok18LV82viUshlYTSwPT3hZLvFWFksYk5UZ7maInPJTPPCbnuCMVKoL6HXLrTMPAqZbbvZcnOzpzOBkgBnxQZhEgJFrZWw8+w2HbvdlmfPrxmXRcWHjiUVpuVAiZIQ3J1tMC5TawL0GQhCo6AmljiR5oXgxeZimSdMRa4xcHJ2Rhc8plbifsL5QJwScb7CmsrhkBq0iwcP7uC6wOXlDeN+okwixOqCFJhyzbih44c/9TFC57l+vofynD/82tf53F//MayD3/rSv+bVu3f52Gv3OHORm2ePOb3zEnleZD4cOvrtjnpzyeXza5YEjgO7fuBwYRls5e72hGfvXRCDxVXHrt8wpshJCHQ1sOwr3ekpQxALtYvDnjLNXF68D+d32dy/y+GQuHrrgqks3AmWTecZl8Bm27ELnso1tVYOVzcUYPCeGALZVhyOoonE02HL5dUlOMuSMxnBkwfn2Q4dKRdqjHSbHrrAJniWMZLmDN6SSuTs7IwQPO+//z7PDwfOdidC/TqIJaLRteBkM2CBi4trxnFkiZHtbkvOmctnF7zzznu88uAB3aaj2xg23cCsApKhG8TCEu3Kzbo+OUnmeS1MiFjDaYGukkoS66sslaQ5SnExDB0mF1IpnO62WAzzHFlShlLxBrFRcfZYPJYMMHPKLFUIQ8EFocGkTFYyxVwWjBOrDGcs3hfef/KY3/43b/AL/5ef5eykZ1oSz6cIzrELcBLssfdZhbfeWe5tNux+6Ie5fvsp09VEiTDHmVQyXSdzacmFy6sbTfwK4S7nQo1CObTOgpM5llKkQ7kWOu+JyyLnzTl617GkiA2e7XaDcYb4/JIShQojtj8J7zuMrasYOGcpKnTeYY1lXpIQQ7QQNfQd26EXMZYxbLc7xmkkLlEsR4wUYYA1eS52WYKz77pBaDW2slCxMdOFQM6Ji+srnA8QPMEJTcSHQE5pTVBLg60U8TFCQHLWk3OU+GNehE6QMkPX4fteBddZRbDggqNU6fQXwoUUuCpi87PEqMV/g8kZ57VIV/QfIFe1w0AKNKlktXg6Cg6MFiuqWqCkmoWCUa0k/Tlaa9TKatmgLlRKFdHikRcboevrG+KSscaxQagQU0oiuLMG9LtKbaWqNZFatGQRqVGsiCS0GFCMWr5aTaxbR62WrnNrEtpUEQsLLakgmgwjxReEtJKqxnkhiCAseuZlIeWEc5auC1hn2e+FDio2II04JkKvJnAQ7zeVNRhVzKhIodSVvSAiiFqo9iiOoUJBhdLGrPZ23nmhbKpw2xiJNazajTShkdDFmpWHCNEoFWMytRowQsyxBop2mAuJ4dg08FEc0ziqYA7V0WhxWQVLHxB9mFsFshbr6/sYFSC10LA0IUmVgtNaKGpFPn1f6So36zWC4+vWGpOKRKQQ1jrv5Rlp16g02oIx6/5Hb5TVTsq4qkJdEVyKHYlZGzhasbrZsuUsdIuq4qNWTM9aVMumQEJIhbms5AaDUDvQc9hs16Q4LnulZgHZPl8sAuVZrbDuQVoTgzEy79cq64HTYqrUj1XApf9dcznabFHV+lrtOrXqVovsoUCuaSqJmmVe8c6va6LzQroRQVTCOIQq6ww4OHv94/SnZ/JNVETZKnvHIp0UKVuFtNm7wW3LFRkrvaLtQddnpxVDGwnI4ExREpUWpQ0iIJUTL+e9SvPO1Xe/S4lRCErIBtpY2Rs6J6IVjNhRWesBaYpoc7FTgVY7YOOckH4R4Y8I1eQ4cspkI/vXFBfZ9zpZW2l7rkboqmJja4MTQmVKIohIsneHys31jXyGjVQjFnSoaLJQKFFFVJ1VcVQR4psVy8/NdliL9VkL20UFSyUnxjJRqMzjote6kFLCd+EDRMxSxcJ9Tklt0zIhdBiLkD+cl7UjF7JSloIPLEuUfWezCsIcSWml4ryj847QBcZJCKpWxY05JyHsFMlbhD5IbIIKN1CrL10wc04rTTnnxJyEnuiswwKh72VNBIo2HeVUKHkGKinKfGWBzXbAOsc0zWI9V1nvldWaLkfu3j3DOcs8Ragj7z99yoOXHmIsvP3mW5xuBs5ON3S2sIw3dMNOqC7GYLzHhY5qZqZxJlQwJILzLJMhWBh8x3g9UZSi3LlALJneioguLxXXdyIYKYUpirBong7QbwjbDQUYryaJK51n0wfGKWNdoA8eaxdSLMQlklOkr500Y7mkc5Ccs6ANWmhsUovM9cZUggrzGqXMOodFRCs5lXUtts6wGSRGnOcZVxF7uVyQO7SqeNww9B3zNIsdWRZRiXeBeZo5HEZKLgx9jw3STFd0zpb1Quc108h6YIKsy00oKmQjXecbsQ+0QUPn3pJFNKPiD+ssneaxkhIjva5xmQRGRT4qzjQYpY6p2E3jpao2dCJmrVQr4pfrqwu+851vc3bnDifbLWfnO2qtjEsiY/DW0ldpUviTo/OObrfjiz/7Ba6eXvGd736HmLTxQWPkUgtLiphkNJ9jqaasa6jRNVRswio0wY2SfCT+qyJSrMf12TnHEhfyklSYZdccoaw9ZSV2G2T5Cc5Jfg4lxGic4PU5q0Xuq6LzTV7FN4ZGu6kaM6wEKBUclypWlbUUpXuL3XWuQj6y3iudp1GXGmXLaK6v0VSPya9Si67dZhWZWOdXcbV2icrcZjUyKiJ4qqh4DpTMWpti6GiF1+KuFv7cEt8VFeyiwqkmpl5jN442qpKn/CBxx2icUTW+uhUiQYWLi+e88btv8IlPfIJPfOKTDIAhYC1rI4zMy2UVHaHX0bTvV8stpbHi79r1AQx2/W9A17hmh61CcGeO1pEYjf11rte3dFiMA1sqJicVfxtqtSpWi7pHbWKl473SzsXxJLe/1L3HrVc2IRhNUGTM8WdVbfeqHq9txDdDsa2Zsz1jZj0HtHhOf1fiIHm22u2GNWzqlp8yn+fz/CRvmbf4TX6Tr9Wviw3cR3AcDocP+xBejL+iwzjH6z/zBU5fe/3DPpQ/d+Rl4d2v/DZ5nj7sQ3kxfoBGmkYOT9+nOzn5sA/lex7GGPrzu1jvpbn0xfjIjTfffJPf+q3f4m//7b/9feUhrbX88i//Ms+fP+cb3/jGX8IRvhg/aKPWyje+8Q3ee+89vvjFL/KFL3zhI50D/09h3OEO/xX/Ff8l/yX/hn/D/8j/yK/xa9xw8z2/x/csUsrxaHtA27TpRss1f2xjyFVtG1QM1BIna2dYyZLQq+rV7hzOatKzbZqMIcVFNvlGOnKNFcsxa4VqZLQG0T6/JTowgkQXMYwV1L12PGbF3BcVq3S9eKDnsayFHR86piQJSmpdO4lE0CRWakU3/GKt4IgLa/eltWLLEmMixihCJisJg7iIDVxLbhTdfLpbCYFaRSDjnKMkof5QpfhYquCMpRNUEq0pRqyzknC1gXmOpCWKdUOtzPNEcI7gPTFJp6lznhQLXQjancTate2tdIc57+mCFHSHYcM4zdrpWelCoOs83nvAscTDeh1imrHB0G8DfnCSjLFmTRQaYxWPLoVJimzObbPxMVY3+UpK0m65ZvFDlU61DxbylEhQW5LLrcQv2ZJLl28BSVo3QIImfUwBWwzXF1cMrqPvO4z11JJZUiKmTLAea/2Ksq6lglO8PJJo3HaBEKQDf3+9p0ua/5lnoor5UhHbKd/1DJ1nmme97w2nZ2dM48Tl5bV0aVrpLK/esD3ZMU1iyZPGmTIvlJQZlwVDYdpP1JoZTgaMgfHmmryM9MHjh4F75+fcXO6pxrK/GZmuRsE550KlcL4bcCkyx0mIYiXT9UGIUNkwVxi6jsEULi8viUW61kstuJjgcJBiu/PYEFhiZNd59mUmpsSTZ8/ohw5jDYfDnkSm6x3eI1YPphMke8pstoFXXnuZd997ineezsPzixvmNOGswdVKcE6L8PKZh/nAeHMgLgvOOqp7wNn5Dioc9jPzMmKsFCVSLhiTiVSWZSKpCNF6R15mcgXf9+QixeVQKjXN1Jy5GUf6oSPXzG7YYClcXl7TDVuMcbhgGC8nXNdjBs/2/IT99XMenp+w2zr+9W//G54/25ODJ1P5/37jWwwerg+XPDvc57uX78Ny4NWTOxTznMEWivPcHA7cXDri4YqLmxHrHcPQE1PikBJ5mXnp5UK3HXjybM/Fe4+51w08eHAPd+ccEw88u9jjpo5PfPx17qTE/ft38c4zvXSPKcHjtx9xPc5cXV/zyuvn/NAnX+H3v/HHpAylRLbeMGw6Sq50Fq4u94w31/jOsxkG4mGGJXO42SPOiQVM5fzOHYJ17A97liTd6kJ8qUyHETDEtLA72eGCY5wXnCkshwPJB5zrgMR+EorT0AfmmEg6DwZnZY4LMocNu+3aKRr6wOHmwOOL5zz0dzl1O0zNIrQJQbD3zop41XuCd+RlwRuZa73rSMbgu0BaFuY5YkxlnA+AUgQMdN5jKJCFHmWL/Lnrew7jgUolxySFZ2vAadHaqt2NFoeN0oWWJQodymSczfShJ2WxV+mcUOKMKZiS+N03fp/Nbssv/PzfZOgdDwdZ1l1LPrZRjwnMOUXCEPgbn/8x3r98n8s/vCTPItSKtygPqC2m0PksdrBMs1D7chGb0+1mQ9d1jPMEKeGriG/HacIYyzQnoilsqNxRqkNwHlsRO8RaKBixmACmccHEhHeB/bjnME703tJ1PcYbxkNUUqElLovM8Maxv7qWdTeL2EvuDa9WABljDWfnp0Dl8vJGLAtqpQteSsO1UJ3QQjBGqAlFLPc6G+j7Xgh6VJLS93ItGG/p+p64LFAc1hlZL8mEriflwhwz3hu6XuzH4rSQUmIq6RjIqOiJIgIKjKNT8oN0wDuCt0RbSLGScpKrXDMpiy2bM55ii5IzitK7Ktu+p3OGaZ5JaYHq8c6KsEAVDpUKSjICjkUFK4KIQibHJAI0a6klMo4z4zRx7/ycvutIGLwXElAr8KUMuSS13GKNkVJScU3JJBViNQtcseGQOMlasZURMY84mmFYLUtWegxi3VG1ONXEG1SJG4MXDECtlpwNu+0JzvXs93umaaSoZUMjTqIxi8BsbCtzrHGFCFHkXLUu5fbE/UnrsiZYkfi3EG1a7V2cc9pZ7zA4BOLTigxORdVHgQ621aSM2IHlBDWLkEpvpZyLCq8+mmMtdJUjdRXkcq02HYb1O5fKasvVCnqN/lNL0Z/bI+GI28U2sQuhCTQETyLd+Ubm/qoqNKPFuFKPx9QKcMYosatFs2qLogeNcyIKKlHEDaaITVpZSbAczZysFDtzKSrcAXTP0mxMmh2b03i2qCDJaFFRhB3tAI7fu4mmWmGqKPmpiTupdbVqKShJVH83r+QmIfvlfOtzEcGQtUKBKE305RxkIXisxWYjxcpjQ4ZVO62yrjHN1k5oQXZ9bVLhjbVG5lkrpFaxb4KTV15lc/+Bzk+NeMsq1kF/t1Xeamll0yM1wbSfa7W1nVNjWiHTtJN53JvBrWdcbV2sXa8TKq5rL7569D77yytplvD2SA8uzWbQKC3q1r56/VhDp3tHDCzzgq/t85s1ohSQa5H9kzNWzqvO533fyxozzVgt4K5xUdetFI8SVaBUhFhiqKs9qA8eTCUuMzVbuU7B0/U98xypxhDnRJri0f6nVPrOidWUUoxdETshY+R0ZcB7h6cyTZMKc1UcmyuRuAo4jHPkUuicJWpDSJzGlaIcY1RLQnOrWUcIM7XK2nVyuuPm5qD0QsM4iyDb6jriTCOsiKAhZtlHl5wxxrI1W/peuo3jksglqu2QiC+MbAvJKYlQUNe5orSrlZKXpWGoFBGKzLpXL0pPNAj12Pkga46VOMQ4D97ih444T2yHjs4b3nrnHcZxoSql9tHzC7ypLHFmTFsu5wOkyGk3UM2Eo1Ks2PUt1pDjwrxEJis5hCEUUsnsc2a3k3j8MEammz0bJyJzuxmgJKZpwWTH+dkZm9zLz4wl7TakDPurG1IpzHPE+srDVx9weu8u+7fe0eK6UJpLQZrIYiTFiPOOfuihFogSY04xqSC4ELpA3/WrED5q7mZdKzReql7W1RxFZFqrIc6LxANG7qkYxW6wFJ0MjBAYvbNEFT9aZG2pVYRtS4yMy4yxhk0YxHqt5Ym8/I5RcrP3ntKIR0bFtComsQbiEqFkUo7U2mh/jRrDSmYyQC0ZZzqhRqtdVYp5FaYc594Wt1kVKEicW7TJb6npSGcDpS5Jru6dd97i/v2XCD7wuc/9ENs+sOm90lyaHdUHx/GxLzx46T4//bN/k6cXT3j27EIFI6wWk1VXT6dibG+9WHRpHCDPkiVoo1zOGafnNsVIBTJ2zZ11eq5MFUFmyhJnNl2id0IMFeqmJVehgaYU8c7L80trjAg0O1NjDClGIVVmobZXU1erP6oI6b339F1gmmYVGyvp0Dmy6lzWuT4XzWtp3sqpJSetIVPXAsT6T4RDsobKd5D7z2oDZxO0r0L2nEXIpxfErNenWZChe0xZt60zqwi7ZNacmZDMq4qordCp0OYCjUOckqGyCnWEWKex0Rp2Vo2U4NZfSjxgrVgx1qINkhN//PU/5uLiks/8yGc4PT0RCjwt7lLSZJX87Som0i/prF0tZCXelhxwa2Js9rWA0v9bDAlrQhAVbclkoufs348D2ocIKbPNO2BM0Hg9rmTiJrg/ipBYg/QWc9w+NWs4twqU1sP54FmsGkdWqFVI7EKqL6vgGqt7FnPcmwgd64PUWJXs0whdVfPNplperx/j/8o/4G3e5qJc8GK8GD9I4+W/8ZPc/9xfo1lofxRHrZWrt95kfPbkwz6UF+MHcdT6H37NR2xsHzzk5NXXufrumx/2obwYf8b48pe/zI/8yI/wiU984oOx0/c4NpsNv/RLv8Tjx4+5vr7+SzjCF+MHcez3e/7Fv/gXPHr0iL/zd/7O90XzejH+4w2DweP5OX6On+Kn+Apf4U2+93n7excp6QbVGNnMeNestERE4r0idkuFAqWICMeZIpYn1WGrgYaXLrKBd16KBaVK15v30m2fVUAClRqP3VgpLR/EMpcqqF/dcC4pqs2G/F1OeS14yOYYMJIwjDnjjSS0+66XzZ23MOsmLkvSqe89XRNuEJinSIl5LbR2zpGqEARaN7QkkaWFraI2LKl1xKj1gjVrd3LfizXHsiwrJrxkSbh1XgpXkiRw2pEt3U1OKi3SXVkLrrPYDDmKhY7vgxRJpxmLYegHqIbN6QlzHCklYZ0npnIsHlv5faROqMIzKUJ0QSxqvPN0Xcf1fq8dZJZpngh9YHPeU33G2HxrE14AoTbIDrsgEpO2ebbanVxX+wZbq2Cf5S6Q7skqNixFqRMVFJGPWAHVrGhyaKj1XMSe0Fs5ibnZQFhFdJfCfJikOOyl+CtuPkULT46+C3Q+MM4LSQV4KRW8N3IvdANXlwf63nN+9w4pH6AUTrcB4zx5TnTW4jrLtEiSJuaI9YYlzhhrub7aS3LKGOZpxAfP+dkOKIzjTEliCTdsBh4+uMvjR+8zTgvjeJBE/MmWzW5LToUUM0ssjIcD/ZjorSUYwWjvl4l5ilhEqHZnc8LufEvwHX4W4UueRhxyb9N1jGkh9I68RGJMzIrrxzimOmGGwDSODNsTuu2O/eFALYFSC5th4PL5FVNK+BB45+IKFwJDP4j1XS5cXFwwp8jp9pzt0OFqxKZE321wLhOcZZoKKWWurh4DVWx7lolchHSzTDPOG7anG0IfKMVy9949zs4XOX/FEnqxN7QVjPWMcZIu2eCoxjBPCykm9lcHqFKssdbgMJSa6Xuxbhp8B7kSi1r6pCjFh5jogyUhCrX99Z7DfmFvI1/79pu89/gZ22HLneGEe7sNd3eRB3fucb133MSZm1i5YwOX1xfsb6545f49pmnk9M49Tu6fwbzhtbRgiyEbx8v3X8ZvN3zza18jFMurr7zO+d2Frx5GrlLmtfv3OX39ZUqMbO8s7KeJ955eUHPh7knP5TyxPb/L/tEFNS68/OCc+y/d4d5r97nYX7E9+Xfs43N6H+BobIMPiq+fI6G33B02PN+PFDJjXKjFYh2YXMmHEeeC2J9QVEiSGLwllYpxniVm6s2IAbpeishhs8FaxzhOdM5iveXkdMsyQpqcFDCIjClKJ3zJWO/YhC3Xzy/xznJytqNY6F3g7PyE4EWwuMxgZul6dMFjqAQjlLWbNBG8JG9TTORq6TeB0Fex2ljEMsUPTgWsQUiAzsl8ai0nJzvmJTJHIZKdbXtGdxDaQZG5DFvp+w4fGsUBUoprx7gPHU4tu+YYBTpXqlpJVOa5cLKtxGnP7/zOv+OTn36dH/rEKwQ0wapkumMF95jEtVbILecv3eNv/Wc/x5PLS6bvvEPNQhPIWpzDiGXKkjKeTuzuUlYBhfwj9DkRZQVrcZ0Xex4n9hRCDICUC4dR7ESs2pwa49AaD7WInWjK0uFzsh04YEhVuthzqQRv2Zz0hNBjMMzLLIh9BZ2UmqlGil7GGgpib0EplLTgqpAMg/NELV6VmgnBgpJorLUsSyTnqhYfUgiOc5TrjySoyZEuOHzfixjaCSHCVEkO55zwBLquo2QR9/S2E1s37wjOimCvFII9Xh+5dhUfHDkaqpFzKQQMg6OCM5R6TLynRYhLzlkczaZUCiTWQ4kRUx2oHYgPYhli9T6RQokItexazIbOB2wVEblzFl+DEpwqWEdcEjGJpeZm6MmlsukDQx/0ttOCPnYlklEKSeOCXBIhdMQk64k1BmphWRLVOEpZVOjRjktek6OIBb2zakGXcF4K0k1SYLVIUTBiKWst3nhijFjbYXvABrVJ6hjHPcuyIPUiJaX8CQF5VaqhfgSNCtOKDyJqqh/4vSZeqKYJciQ+zLXgs9O404llaIbaieAbhJxkESHOap8iFS51B5aiktj9BYxNYheWEjl/NDufQR/X2mg00CxwVGmyFlpykTixioJBfraKJw0YEZEVLdh4tNt/tW/T6FGFQAUwRcUgRogX1LqS7Zrop8WWWQtNeljaoHCrgGQa4QmNO9v+SJotjDWkWwRah4hine6fnHekmNVORObrVnSEo2CriVja815r1f1EO466/n0rkrZ91Cq20kKw0+OSPcORUGXa82fMWgCTvYjEaE6FdKXUdV8lxVShxIp1Xz6SQaoUozEihmwVuEY9anNtEyJ655iXRbufhDzivMP3XmgfRpontncfrM847bxoUba0c9Q0Q/X4M2g0JNYiXysI1nos6q6kBv37asoH9hNtb9eoKKt9CromUknTwuHxe1R9ztssIV9Nrr+3Yjlbs75vUWFNFkrGPEWct/TDQKmRlCt9kP1eTXodnV3tLaVJQIVdiLDJWLmnklp4yz5T4tqiIjEfYLcd2O8PSk6NGGsJXaeUmkLJsm+KMeKTCG0aG3cpiRxlJ+ecY9MHwtAJRSh5EeklabBwSqlMRUh+TRyVS7vfrdiBV6H1SQwUWOICQeKt4DxTnEm5YJ3lepolhvderD1LJU6z7NfDQPAWS1GLO4exSrVTqu0871dhQM5RhAGINaGxEDqP07hxM2zo+6yUMLParhu912PKSvMRSYfEPkUEz7q3XUUnSLMUiAWkqXW9t6zavlUV4hddj+Is+6+YMk8uLrg5THQuMLjApgsMIbMdNsyLZSmJJVcG65gWIQaebDfklOg3g1BMc9C9NBQsu80O1wWePXmKrYaT0zOGTeb9GJlL5XSzoTs9gZIJg1iE3xxGaq1svGdOiTAMYmlfCruhp+sC3W4g9J6Tew8x77yLRwU0pc1rMhdWFZHs+l7E1EYELrmosKEgdr81rmJCsR4WwRkVsFbEnwmZj63QsZxz2OAwi4pEjAizeu8odZF1pCQKQs/ORc6674LYz5VC8J4yiMVk1we64DBOLedLZZkXESFZoZU5K8I6nU1ARVTWObyFovELSkqSkFu+VwPDCDHbU0plWhZEWN+RbVLhi3Blq35eu6fanNLsc22jNqqQr4lvNYQQcimJb379j9judpydn/DJT7wutrm31p51P3F7tHyKMXzmRz/L86sr/vf//V+KCEv9+RrJTtalijFensFa17m1zbM5iW2yNRxJfvoadK9QK6SYcVYaEZLSAMGuMZeQ6qxYLevauihxq2psEIJYjzrvdH+mREB9RkVUbFcrLfmzoZaMpWJrXfe2snbIvOQbgdw24qesGVXJOY0MnyWoFUKmksCcPdL7WnNfLgnbKKJGhU0FjJI4nXNi86nCOt38reugdVb3WXp/Krmt6MdXDRQcx2ZIoVsd10uD1aaPuhK5mqjOWItptnF637bz2BbkVXwnmxw5piL/XSi8994j9vsDn/mRz/Dyyw/l/Dmr+eX1KdJ7kJUM2Ohhss2tGrvp/YM2+3FLQHhrjVdNl8y7eg5yE0q74565xRAiqDW6BxaRciMpQVFxqZDlU0rayHC0GF73ee2N6+3IbpUyHV+j+8H1kq4PrcS/jYoksapZ9x/WVTBW9ngaj1JVvHgrblof4FvnxTR0lJHv88nyST5eP86L8WL8oAw/DNz7zOc+0gIlgJISj3//9/79NffFeDH+Ex3WOYY7d16IlD7CI8bIr//6r/MP/+E/ZBiG7+s9Xn/9df7u3/27/G//2/92bLJ7MV6M/8DIOfPGG29wcXHBL/7iL/LpT3/6+xLKvRj/cUdHxxf0f9/r+J5FSs4cLQ4AzSvVo891kQ24tw7nLUssx809FmkcVAKRMdr1aI9dXzjdVEmRylpJbDtrtJtJrWGMdMFZHDlHSq3aUSmdqtLlq6X0It2VkvgSsUEfPCVLx5p3QQpWRiyeai5gCt46arMb0ETYMkfxmA9CdknFkLJ081jrCZ0nxob4tvgQRLxTJIkUvGeO0kVvTcWWSs1p9bFvXVzGWIIWMaSIa6BIAtV4h3eFmhNzhn7oJTHacMVWzsm8REmaoskODMa0P1dSjpgiiZ+u61lmKdT0ncdYiIsIXHJdZH+cCsF3GCQZgzFimYMk4iwQpwkXLMNJjwuGjGx0rVGhmNNtflErBSNIfUlSinCr8QikjtkSOOC0CIQR6lTJaumhBZVi5RyumHC1+mkJEWuOlhOpik1X1WTFphtIY6SkwvnpCV3nGacJ6wKuVIbgKUYs/JZpwhnpNF2WGayneIvFMY0H4rxgjeGwn3E2SIG/FuIYWZaIsYlNPxBMZU5xLciUIl20aYnUnNk4xxwkObYJAectl/Ea4+QeG/cjcZk5TDMJOLtzxp3zU5xzXF5dEmtl2+94dnnJs+eXbEJPbz3WefbpmmoLXeiY50ruLeMUgZndJrMsmdOzUw7XV1xdXmOdEK5yrSQfcVg670VMZyAE2G0DIXhubg7sr/bMU2GKE3EecSlzut1BzUxLoY6RYjO9taS48PTmigKkavDBYqeFJS8clpFxyRi/4ApMSs454teTUHL2M88uLpimiRA6Hr50j9B1bLpOkmcVnO/InYjY+u1Amme9JosIlqwlakK8pETnLIbINM9UY8kLYptoWtGyCGY8GbWlEou5u3fPePPqkpIzqUJK14DDh56LqwP3T3f89R/9NK/cv4dZFl7anfCjH/8U/mTgy//29/CbDUtZeO2VB4w3l+zcDhsMD+7eYwg9n3rtZW4ub3j8/JKryxtefu0hvQu8+dZ75M0Jr372Mwx3T5iePefjP/JpXvnEJwjDQC7gTgPbu+CubzgNjmfPnzE5z71PfwKL5X6/JcWZx4/e48GdB4RuYGsK9+7d49H7T1lyZTNsca6SUmWO0pFta2XaHxi7QOgGrC9cXu1xVihFzglJZy6ZWLNS0eQZD50nHSZKMQTvCY32UKXzdX9zI/NyWhhCwFvHeDWSyCIktFIcOIwjgSBduTkxznuuri6hwnCyZdMNYmkZM0M3MGy2jNMTqql0nWd7ciJd4RjmeUEKBJWuH8jamJqXJPaZwXPndEdMCdt3YgVaDZ31QuQyItxwTrpNkya9p3mWYq0p5JoxRsRHORdC6NhuNszTQpyTrKgWNpue0HVM08zQD8zLhLcW7wP90HNzIwQYFwK2Rv7gd3+f11+6z2Zwqyi3JWFvt07WWulcS5QaXnv5Fb7wM3+Lef+bPL98AqZis1mLV84FMhXX98yHSQgtpUjhzxgmC9ZowtqIbZrkRXucrQzbIMUVDNMoFhpD1zHtRxH1OitF0JwZx3G1Goox0nWBzfkZZ2c75psD11fXK3mq7zqolWCEPDLOEzihXnXWU7WAU+bI6ekJcTZMYyKjdmxGErayJhu60Ek8UCvOOGKWrntjpXt+nheJW5xlM3SQO+YlYawXG4VcyalqwdURHASDFI5xFCcWJNMkyG5rLZ0PpCjHY6xQU3wTs6gSrFaJgUQoIcXSJvhpHdjNojbmhA9eigT6s4IU0+M0q4C6EJdFhBSlcluEs1qNuBabqaCmyBE5r9YmVekhRuh3h/0odhzWkLLH+hMtbmmB0FpsF5Qi0qw9xI5k0cJbrSI6Ep17EVudqnZPqgvxzlOrFoDValFiUhGeO73rY0qY2qyaspAlESGgU6EFGIK1mOBxdksXAofDyDgeSGX5AHlmtY24da649d+taGBodgoc7cqQEkWTlK3nuYhtpAEockzFFlwjtFmLNUIMdKZCdVq0MOQq8ZU8aXKveKfn2jiy95QS/sOB/Yc0BIp5u1h0W0xytPRwaq8pVKhGmtF4sCmHjN5nt0SY63y3Fq7kI4y+92plps+Y0TkfLQjqVcSiRUXbrLJUbqJ7GREvsBbvxL7TrXQNikp7W4Fdj1+sduQaSsOHvFwKxSLIFSKLfEFrLbY7WltbnbdKKxIi+yajcbJVCogxxyLikdAkx+utWBbWKrYw3jvUVEVeo5SYnKXZwNTjc9uaVajSxGCq7C2ck3mIKufGGCipkPRYpe5VlejAuv/L2nTQVqmc00pQajUEo3sc06gIWsE7zlPlA1Aj9P1bkbb9+XiftGupd+Ct4uGqZapHekgT/EhBVwrhRQUI8nMkBlkSl299B5clRk0pYYzD6rxakTkop4Sl6jnWhpZG2EpRBWZGhPJ6EgqVkpr4rBCcxyFF1ZTTOk+1621LFZKTfs+g9I4pz4itmdi3NiJNRQhMw9BhjGWeZ3IxdF1gmibGacJboTYZa4llFsKIcyiol5gKdUp0Xr5X1/fEeWGepBkDFcUVK/ebWKRl/TOEIKSuuESWecFGmSdzTthS6UPAUEhZBCvVFLyVeGVUy/Wi+8FoEqUYYhZ7XmOlQSEp0aSizUC1rBbU4ziJ0NNadidbrJI60elGSK1Qq9yfOWeK7u2pUqBva0cTGYFa0WGoBd2LqwhCBRWpiEBBtvMi+r2cJ6WGVMqyABZrPdOc2NTKyw/ucLLZQM7sQseD8zvYzvPWu4/Fxq9mTk82xGWmMx3GGba7Aeccd05PWOaFwzgzzwu7kw3eOi4ub6ih4/TBPcLQkcaR83t3OTk/F6uqKsKRMFTsstA5yzSOJGvZ3DnHGMPWBUrJzIvEe7tOKLr3X3uNb/3+77PEGe/Ess/aKmKVJgPQpirnHT44FiURGURoUWplWclKSrmuSMyiz1IjzKDXGSNCvZZzsEhOpaZCrCoUQXICOecP2CLmFFkWsd5b6YcaUxkVrpUi9qXWQOiCXmchdDehgXVW5pwsk71QkKDvAk732FgRzznnhHKpc9dq64kIM6LaCWLMaq5l9X6iCsHJWCOiKZ3zjDH0fUdMCe+82ocVnO4pkloWXl5d8Oa3/pizsx0P79/l9HTLUTjxp+wnkIayNq8GH/iJH/9xnjx+yhu/+7tCHVNardF1pVa1J6vaEFcRgatRQrOtK2AUUzQv5FSfbbAqxii1Ms8zXRdY4y8V4ADEmETEA7KeWkPfyf7JGsO4P4gYTCmIPhhMTGJJrYQuY+2RPFWEhhaC2HHnksWGWhvsWqBx26auluMaUppAqlY9NvmKznuc5spaY2MT+rbY39nWRAG1GKqi4lJOa/xpVSjW1vp2z7g1HDKrVXotR1Hv7QJQqWUlgZVcpLl0XVTVTlabChu1L98SLLWboslqGjmKtp+hzb0qhlGlVFuHLy4ueeONN3j99dd4/WMfY7vdUFFKueZI0TVujbsN695lnXtrpdConCosNkbpZLfu5jVGQOdkeZoagcxqDro2y962z1VVZFHrbpBzj5V8hrMtjxtF/Fj/tCLbGmi0/9JzhJ7PD4qWbj9zZt0l1vabEvOpPWqhYk3FtblTc7f6Ees92X5bwtW6no9mcS/0+4J9IZJ4MX6QhrFY/9HdIwPkGHn7t/4V49P3P+xDeTFejI/UOP/Ep3j8e2+8EO99hMejR4/49V//df7e3/t79H3/F/59Yww/+qM/yhe/+EW+9KUv/SUc4Yvxgzy+853v8E//6T/lJ37iJ/iZn/kZ7t69+0Ks9FdsfM8iJci6KdNNGgiOt6IbYinOGU2oCxEJnDeSbFgLYJJ4dcauNjs1qQlCPWL5vYprVmuEIlhg57wmoqsmDooWpyp916ktiMVqJ7XRpIHVAmDJ0nkiXT5Zu7RFjLSkSGcDm65nWRZAil0lS0eO77wkOmrFGsgGUq0E63G2CRig5Cob61q5udnjnWd3sqPcHMh5VpGWpe87csmkKMnVXi1sqJIIaVZEIQS869jPI13vsT4Qp4WYItkqDj9lYpVEnHQKSWIhxcScJAlta1VxmOMwjSKgSplhGJjmmZwLQ9dTClSzkLIleI+1Qa9PYVJMNohSNoTArMc1nPcUX8gmr4mditViRCumaQe185QihIiiBVDJNcq5lb27FjdbV/rqNZ+1y1DvsZaERwuDWrAwVe4f6eZ2QlDSooZp1zAmaqoMXc+dO2fkNBOjZVkW+tARfMB4y7hMpFrYbTZYLx3j85Kxg9wToUDYDsxLZp4WTs92TOOey/1EN2zJThLXnkoiY7wjz5WuC5J4TVkR3o7sDLZId1xKibhUdmFgYiZGGGNRmzboOsPQCyr/+uqKy6tr5jmSU2FZFmJcSClTL8TyYOMkUDAFgnc4TWZdpoUnF5E4L7y0POTm5iDF6CSWQabCzeWVYNqNo6aCCYYlJco4UsfKzWGiZE+Ol3jrCMGx7R3T8pRYMvtxJkfFp5dKGDq8M5zstljruH/nLodx5vJ6pLpT+n7gcLghdI5+6NgYKQLurw+kKXFzM3FxccXN1Q21Zk7u3GWzGdhsNvRdxzRN0oGLofOBRW37+m3gOu/FGmK/Z94fuHMmdg77POH7QCHTbQLGeOYlUzF0faBWC9WspCrjJJlzsx8pGZzvySZxfbmHPLEbdmy2A94XPvXwJT73iVfwG0/N8HBzl9PNPR5PlyRn8cA2bLC5cP/shDvbe/SbE0YjRYEynGCKY7y8gWHg/GMvc74Z6B7uGI3l5LWH2CFwNnh2D++wOT/F6POMdl/2W4v1BnfiOdwcsH0HFe5+7CHVVk5fvUe9HsEZQuh59bVX+erXv0UthXnOWCx5yUQDU4p0tTB4tZmsYo01DANZxTve93T9hmUUO0BnLbVIUtz5DuuyJOcNpJxIMREGDWaV9lA9FAf7ZaELndCESuX8/JTr62uWaSblhcE7gjOE7UC5d87Tp8/JOXOy2+KdY9huSaVydX0jljPzQpwXRisFhhzFeowKQ7eRQmJeROzhPQo/EjFRSnRYXJH1z287YlWRSq4c9ge6Poj4MDUah5ILXFi7eGNMpHQgxkxJRTH0ItKwFkqWQp10gluGvlvXBiMTK4YCceHbX/smf/TKa/z4j/8oMkXXNSn5J4eIXY7Uj89+9od55913+fpXE9dXl2yHE8ZpT81JbLmqgTmxCR0LYstVjBRqcs7a6a0iZC2q1ZJIptJ3W7yTOXuJM3OcyHkQu42cCH0nG5ha5J50Xmw1UgLncFR2Q89gPYebkWma5TxasVkrPq9d8qlI8b+A0GlsIC6RZ5cXhOAJLjBOM3gpZjhN6C8xkZMk9ce4yDpehfponJVCrzXEHPHWknKicx2FzDQvYrkDdKGTgnyZxW7OCn2kmszgAhYp3DVRdYkJcd1spCQpZrXiQ5FKAyDdzU0oY6xdrR2qCo1iihwOI9uTEzovSfZj4l4y8DVlsU5yWihCrPKOAm+ZY5uIo1GMjFpWOOPIFCVgHAmWQsfM2K6j1AhX15zstgTvoCSqU+u6fCwi5tzsnkR01ERjpYgoKTiHK7dszjQGqSjRRePFilGbVymGWOMxQSx325oPhS54UjJqYVqFwGiEhOBrIHQ9znt88EzzyDzPpBRXxULr9L891m5zFdysIoFbtYV2zeS5O4qa1oKIuVXQNCJSaudcbBbF9sk5S0HoQqYIdaRVVmq5pdlR8ehHezNWbxVk5D6S+561mHNbCNaKQE34pWWcdS+CMav4vJF6jqUblILQlCvIz1vxVmtvjVDayjbeHq8DWmgToUvRP9u1uGX0Pa0eUzUoJVVi6JwzxdQjpcGgFIG6XrgmvDKNNqD3kpA0JAZfloi1YodTl0hppFhrVMAnnxHT0X6N2khSZhVCijA74VRkn2tWapUU2cQirt4SSsk5btQbKeIDwWCxLGqPTSliHa02k847BPjWyFZS9GoV6FTyKjLIRQmlOeOdxfUenDa7tGdM56Hbo93zVUkUawHUqpDp6OZCs6LTarnYna3zi7yZVWFYe+/b10ZPg8yra8FebytTKSlx9d3vEC8v2A4DtWZKljXGWydNHtbI3I5cV2OFyJFzUVu4iqvQqfA0pSLighiZYxShaPtMoDRL7YySgozaW8kLShOFqjCy5ETnPDFnsoGYK81vzTlk714KS5yZ5oWcMuJeK/vInCt1snSdNCe0irS1BlulmDsvM+OUyamwy4U5inVqExYYhDpjtVgq1w61WI6QYImJWi0lzyJ4t5bg5dzlKvd4UcHHVKd1nuxCEJHPZiDGxLREeitUyhgXnBMStPHyLC9LpERYFrHGW+YFqAzDQPAOH8Jq4b5CeK3TvIDFBcdcpKGoLIUSI0MfcN4RS8LqWmy90qCzzHjeSY6DKuIHocvItVyWpEJXBwiJqdZE5wKhE4LPne0J989OcEFyMlu/oQ8b9mlWey7YOI8psO07hrDB+46o62z1HaYa4rRQvaM/O2EIDrcLJAzdyRbjnVjtbgf80GGc/4DQzwWh/9ggojLjRUg7nO/AVIayI4/SAGKc5eT8jNB3LFFJlfrcliJCoUomWCeE7Fx0TnAyX5SCDV6olbVCFtGX0GYc3nlKzmA0LqplbZ4zTQxghExprCEqrYos81zXBQysuRCPwTmZczabgX05kEuhD0LW8sFjnZNmFj0npWS1kHOrtZeIFyD4TvcCRzvdtieI2g1h8SLEULvbnBsxKCktzK1CCfmOSttpAsuKnNtSZK+m1oOSR5N/l5KF5GqEvtMkudYYks5nj997l2/vTjg/OePTn/4E/fBnpwplKmpiCfmL3W7LT//MT/H48WMevfeuxo4qnpEEEzWJ9Sdq51jFX4ySqwpj5Bq2tbtWiXWddSq4ELJkbGIZvWeM1e9lLClFqtLLGqlRfm7ofEecFxHJaxwXnAPvhJTaiOY679c1RhGildXPWZsVnVhcgtqvkVfhcltfSq0YFdKulqmmUdcdGEsqRd5Hc1zOmaPw14glVxEUNAYh6HDrXmqCk4pRSpKsZ80KscWzVecdo41Djd54eyxxwTqxQZdbrGp+Tc9JabnVJvg9xp1G1+BG+WrrbxMWreuxrmFHy1PDsix8+9vf5v0nT/nUpz/Fq6++DMg8LLFdkQY67NHesbI+Fy1CaKGCiI1UhL0KspqAsQmZjNoEHmP5du6ca7ljuR+cxn+NalXbHssquciCrUpJNZaUhQy4WsC1M2DMB1RCHyy3mlv/vkV6bMd46xXtO66v1/my6PsaKsWUDxxzIyqt85R+p3VPcXyc/8w8wovxYrwYfzmjpMTbv/WvePb1r37Yh/Ji/KAOY7Hhoy3U+7OG9UHygComfzE+muONN97g4cOH/PzP//z3lZP03vOFL3yBb37zm7zzzjt/CUf4Yvwgj3Ec+df/+l/z9a9/nV/4hV/gr//1v6609hfjr8L4C4iUbiVc7DFRXNcNvGxqxN/eyL+toOdrbcht6SK01mGdJmFK6zo69nVI9wYUI1g/KWilY+dHzmpnAJRjN/A8z+TUsNmSrPTeU9cuyUiMVQkwHuvEaqtiMM6Dl8R91s2ubzYomuhalogPnuAc1WZqydQq3Xveefx2YBwXxCZoZlkkQVKd4bC/oZaqNkJSxMgGTOelIJkytS6g1lWts9N6S46FaTlgg2PYbKg1w7SIaKYb1o6rUsSWxjknxTYVcVnthPF9h/eBYMC7yrzMYuFgRaxUE0Sb8cHTdY44RqoxxEXQ+YJGMOQqr8dZuj6wPd3ge0vpMsWohYeVTq+KEcS6dhzXWnDWr8WCXJqtkNxl7R6wtnUeyn1krQixSq3UtctOrpGpijzWAlZuSP1WfKhSAJVtvtAGjEE6QK/2MEuy7HAYKWmi9x3OSuF8PBwIwdEHweLHWboxnYXOWF59cI+b/YESI8sYKTXhvGFJC6kk+s2WMAQOyyiEhOCppnJxcUMIgd1uRymJZAxU6fgNXcfMTB8CWE+MM8lUcoVpHhm2O7o+MI43gGPJmZgr+3kmW8tSCvvDXjp3ayF4sWNMKTJPhbPzO5zuTrm+vuQwJ2YLYdfRhR5T4dmzZ4zLwtD30hGmXd/ed9zsb4RQkiq70DP0GzabHmOh6zqsDczTzM31NXOqDCcnOOuI1zM5ZS72B8qc6UOHt4bt3VPG8YD3nv3NNaETG6fpMJFdoqaFl19+meeXVxxuZim+5EjNieeX1+z3e7w1nN+9i7WeeZmEImAq+3HCGsNuu8VZ8KkyHSZqrUK90YRYzJEnF5d03UDJlU2GSuHs7Fxs6YZKyiKoO92dU0vh4vKa0Ms9OI0L47jgXMf5nQcs6Yabww034x5XYRgCYei52R9gjjx4+BB8T+cH3nx6yXeffZdIwpWF0J3znUdP+Ikf/hQvv/Ix3MkZ7737PjnD0+fXnG0Cn/j4ywzdwNnDlzHGcNptuHu6xZxsqNbT+548TtQINihhLGboPWx7ai30Zyd0p6eUqUCR5HpaIj4bxkPE+I7N3S0vv/wSmy6wP8zs9xMxLZQS6YaBwXekaSEVEXguWUhC1liMC+QquPPzOxsomTjJZsIHSTqXRoAzVhL9Klqo1ktBPi344Nlutgy7HRcXl6RUyFGoM9M4UYvB4NmPe+JgeHh6TkmJ0+2WHBOhC/hOjEkKBlwgxRnfBcWiw7xEckwiIgxi61hTktdXwEgnf6pIklQDnJIrJWVKySKcoep6U8k5rsWKzoeV0oEpJKRQKDlN6eBtdB2HASsC2pv9Hq+dXqUWYswiBAFwYhFV1K7s5uaGUhZ++yu/y72X7vH66y8LRe7PXM8NGF2LqPTbnp/9wueZDnu+/kcz0zQLMWteqMUwdD1xnpgXKYC54Lhz7y7zNHO4OShRQkU9QdagWe1mpimSoohj+iGwP8j7FIQsMS+LnAtE+OqrUD2q1eKMmdlf37AcZkwpBCfExpIT8zSvxImu6+Q4o6xbuRQpnFmxVlgOE5tebVP1eHLOWtiSudcUXUdVuFxBKDagto8i8NlsNpRU6IfAHLMKXm51CWvyN6aMyYWK02S4o+83sl6npE4YFV9VwN0ECoB3UsAuWviVdV1iIeeP75dSIuVECIHtrlH7j0ltsQOpQvy/VRRthbsKK3mgGoQGqQWfuEjcVeuxc7nRHw1V7OWcxBpC48jkaplNxpgJC0L76DzWWDol3KWU1aJBEvNWLVNKOQqcGz2kESUbmaXWSjFadKtShAvB4gxKJ4pKfJDr5tTmomi39jGXLzGDcx5jLCW1wr6h6zvmeeJwOJCSzGPtuWlWDyhJrKLFJ3Mrl6///SeLDq0eUSoaK5nmhkIteX3WU8oaJ2eC93SdxxonRQd7q3hxqwO+avGmNnuZj3Bh4XY5xt6K/9oZu33epH6kIoumxqIVk7TYou/RqCRNgNJoE+t7NauWRgKjFT5b97oKgyhCR2vWfUooEMsUpRWUJiq1GC/Hl0oj64iwPteKUftOa1R0q4KhrHZVzYLs9jFZK0L+pJSJUrIWeOW+j1FEQc0WBlSY6ZQK1cgOrSConf/N6idFLeb6IAo3FdLaoM/NLeFOa6poezTT3s8LnbUVt9o8bAxqT2jJRvZjrhhKKlCL2CrVY7G0qLiJKuSB0HmsN1Qrz7l+wPp6ESS2nULV66+FWL3e7aet+NeERWtxz9wqQN/ae7T5sRVjK82S6nh32nqsgkp4oDZ9Bq6fPGL/6NGtAnleCRhCG4rYarVhJokwWeMQh+Fks2WJUjTPMSPW4EeCp/cB652sVWhxuGamKeKsCIdKrRR9NrLuI5NanYFZbawqQqnzSmuNMQJ2tccW2qBQcZe0rPeUtRJTlpJJqdL3A33oWZaJJRWsybjOSUNRFTpiKhmvNkYWneu8Enm1SGrbvtUL0dcpITmnzDwv5JKFvoOKgUphWsRq1jmPNQbfiXWoWLZa2WsicUS1hVoyJ7sTxnkmLmo1pev9PM5EFR8MQy+CgdzIJrAkOeddp7ZyRmg4QmNSuayRZ/UwyTHVUvF6P/X9oA1cVa39DF03iOhhmnHiYC85iJiw1tEPW0pZWOLCMi+kWqlmQzg5lUaqnNnutmA9znouDhOX4xWZgq0Za3ou9wdeuXfO7uQM2/XkmwO1wDjN9N5xfr7DW0+/2wGG3qldaxeoKOktZsUa67xbiuQDgrALne1wfU9NVdezos97Fft5MrYPnN+/z+70lHE/qtVXEhsrKwKcFItaoWZQC3q7CgtF4OyDXeMNY27R9fR/xjqZL1tuyanwW/3TvPf4EEg5k2Kj4LCKNJqd/FQim9CLoC3D0PeyR9DYS4TVVqfYZrclf45RiE1VhYiUQs1tbZL1pc2B1R4tA2sWGpzQ18wqQMoqMMlFxLNg9NyovrDKfqqJyUup5BpXg+6WY4JZ1rgWo+r5tdUq4VpeG1Pk61//Bmd37rE73fHqay8JPe3PDSlW6TAYeOXVl/i5L/4t/p//j3/OzY1YKqZmb2mlKWeeJtkHGCGDG2NZ5kW/izawlYz3XnJUQMpmTTj64CkIRU5oiio6LRlnG9VU91kqUDEUoVbHTFUiaYvLYkpK802raN+UdmexxvkYRCRZKwanc3g5Cjz0HYVWdcydtrjH6pWxGnd4L/OUBVzRvBiaR2sWaijRtGYVpUl8LPPssQnGYpT+0whUhkYEAo3xlSbU6PjGGiwyAUnThMQDIkJtud7juqlh8q08cFtAm3jGaLOhaadkpRyt0as+Qy1GM/qmkkOW87Pf7/nqV79KipGPf/xjZHds3qxkbaI0q2VcW5VvW0GuBEaju5Z63M+1g2n34BrzWL1GhqOwS6+CFDiOBLzjhkJf1p4TFdp5ZH/jvVhNC6ktH595PWPt2Wuj3UOr0OpPeeLaaf/Tfl5VnCSf04TehWKl4anR/Fhzo0jOtB0PTdZfVej0YrwYL8b/GaPWysWb3+LZH//Rh30oL8YP8AjbDbuHL3/Yh/F9jeH8Dv35HcanTz7sQ3kx/gPjS1/6Ep/+9Kd5/fXXv6/f3263/Mqv/Ar/5J/8E2a1bn4xXoy/yHj69Cm/+qu/yjiOfP7zn9fGzxfjoz6+d5GSFRRxrQaHxTkkuVNFIGO0w0g28lrkE+qsFNRA/dOtdnhlsLI5n7MklJyRzh+UZkFVPHIVhLSzVnD32VDI5CSJz6A2LdO8UIrBG8sQOoaNFOSTFglMtRhNepciQotqwFo5DU7Rw+JfXgnWklLGeb/6nteqhVNrCZ0hp+aLfnQdtxVyXMQ2zoA3Dmsq3kOMkhhzVvHxxootnNqQ5VJxVjqvc0zYokkwKlTLOE6a6JckKJpw8M7RdR10hTklKSBgBc0fwNqFLgTpDrOOuExQK5suaBeYWO7EZaFqwso4KZgbCsE7uqFnSUkTO5JASTUxDB01FIrVBEQV2wPBsWfduVua30UpDcnsqLUVh/RlVclHWrxvpQM5BxajePKKoTW95yREhJYsbIm6qgdTWpKpVQ1rVdqWZRMGinYIl1rpug3eetK0gDVsdluWaWTjA+M0cR0PAOxswFbD+OyaaZ4Im45YM9VUpnli152w3Z5gcYyHPaREFwahhuXKdrOR75cTNmc2XcccM50PmFqZjWGcZyE+ec8hRZ49eU7JiY9//DWokU13xrRklnGklIw3TuwlxoXFWvzQcXq+w9WKB9I8YtyGznmWedTOTA8lsx02DF3PAcNhf2DoO7pe7JQchmHTE/ogwr55xpvA+b0dpnrmUcRuJJjiRC6Zfiufkyssh4ndMLDddDx4+Zzr6wMeT1kiJc/0g8M6z3vvP1YMvdiGdF6Tb2/CfpxY5shu23F+dsrNzYHD4UBcFk52G+l0zoWrqz2WjtD1WGOZ54g1MxahZV1cX7PMM2SxDNue7ugf3JPCEDAdZlLNbPoOQ4EUcSGAddKpGSvzNAnhwsLN9V7oP51j2PZkoLMdQwjUzZaz0zOGk4HgPA8e3OFkt2W+HHn5E/d4+dUHfPM77/LxzUtcXu0wNRGLY7sduL/bMmwGYl6YxxvO7t7j/PyEk01PrIXuZAfdQK0eZke8yri64E48acks14sU+zooJlPmWSb7zlJzswgwzNczphicN8T9QtyPnN47+f+x92fPtmRZeSf6m527r7V2c7rIviGTBIlGYKArIUCFlSFLM5nJDANe9d/pCTPUvEhWumqQSSpucYsrcauABLKDbCIyozvn7GYtd59tPYwxfe2TyO5NUqDMKM4Mi4hz9l6N+/TZjDm+b3wf5nJPs5YPf/gjPH3yhNP8FihIHIawkfeMcTTnOC0rpUS6LH8rFWMblMJ7772HaRYUWNhNAzGviPOHJBDznEVG3wVZ6pT8s6bEMi/EJTF4z+H6wPvvP6fUTImNVhrrupDTwjTt5fmsheO6kjEchiCWMcazronaTrp+yhpQkVyiAINKcHWBdV1Jy7olDkUppjFOk9gMpkLJWcYoYk2GAWsazcj+kUtlnmemcRSgIQm5NqeICipwuDhgnCTml/kERtR3wjASY6GUiPdeiBKlYO3A/nCBDx5vBu5e3rImaGQg8mff+Dq/+1+/wLMPPWMMoirz32pbQlNzo97A08eP+Omf/lu8994N33r7PVKKRAXCo5KschNsilJJ88LoAyUE1hgprci6njPOiwpEzYWcC4PzzEvCM2KdJcZVLWNgHPwGKl1eXrKuK+uatqRxSom7u3uCEVUB7y2lZdoqtpVGY44YI8MwbBL7wgQpUGCwnlgTKcZNKyXmgjOqUFOKklmU2OLFHnNZVwUAqlT6NyEC11ywxjKNE2GQZLoFrf4XwNh6R1ZCpHcSB1VjCGEgx7iBaDFGtZYQJROrVrO1glV1sBQTGCtKCJ1QYAMpF+YlYkzj8nKvyntJ4yurj7ieSRiwAb8gwEHwVlQdOuGlVoTIK3Oz5U6cbrKHA2LN0TSZb5iCJ2eoChrHKtYhwXsihZCFtHfY77AKrhgLtkpgWKuQEEqqlCp2JD6owk4HRmqjWQERG51AUDdyh1FbhtKJJRKNAk6eC+dqfOgWaUoCVNAmaKyXsiEEzziOnE4nllns7Gp9qNDZiTLniuzevw1RgbC2g0QdZkKsQh+k/JsqoomiS8FUjbtMw6plITRa6CSWM/DYAaPa78myWcieQZsfvCbgj8biG1TVSTUdwJLWf143h8GHDJEz+IhBlXhUhaCDpkpE2f6MEKOMku6qaUoeUmUUJ0oIUmAh488bUc7oagQGVKkTJaM1tQyS57/dJB34EjCY2pWS+vNumwKQc2JHKKQatXZDoU1Vz2tKCDK0zapSwCi7kWxMn1j6Hc6ebVRt67G0tJzTFhNv9oRqVeOc7Nl5UyNhs/kypipByej3yBkreKeAn9jb1SKHwA7saocIKVJV2torhCWxZmyuybzQ59zHg58mOcP0G1CAvuma1deCrr6EgvB9TJ1R9vP8E8LJg8/rn7W9xDx8+ZnouP2sKXEmsbz9Nt44qp6LhTxjSUqE9SEIMchaUoG1JABR3KuQl5WcMy44PT+JwqR1Az4MQoRLZ2JOUwWk4P12v6ZWghWykbVuG/M5Z4x3atNWmE8LrVauri4AIeHn0igpncFu7ym6/tvgGMaAberQU8Tq1FtLUcU5URoRe3NvPaklYko4o6QlXQOt96osZPTzLf020o8AAQAASURBVNNuAKycr5uc73Ip1FbxwYtlYmOLu0JwHA4j6yoEhVYr1CLqYNZyPJ62eWSM2n/RaO2oYHElBMc0DsSYVN2nqBKTVSuprmLptmtNSYwCvXMsMUp+oUps4IeAP+yVnCC5AtljpWCo6ZnfKhO5lUbOSX7mIK5JFJqcxQcpxLLG452jhcA4jlgH5MT+sGMMgbxmLq52HC73vLi54zocWNcga1uTfWwXgii61UJOK+NuJ2c878XKdwjgPDQ5H7RFSE5mUCvemIVEVpUMlM9k+YcuRlntio2FGgtpjYxjIOwGjLWEYeDq+prn77y7qWo564SU0VSbzMg+XmvR9dls89xaw7quov7YBEg3tpNnhNhiET6VEPp7cVxThc9K0ZjUGsNuHMVWMInKiWmqFlfSpoZYciPmQtY8ixTgOWpFbdzlPdZYdZvsBNaiKkCyVixxpZN4WtW12bltHcwxEZySLtrZkvSsItkkbrNC6KulbntPJxt5J4VQWYmocl1C+q+1beRnUVRSgvcwYq2QKDalNCqJmS9/5UtcP37M1aNHXBwGXFdS///NVlIiieNHPvfDvPi7L/lff/t/E2VjXTctRuzbe6IPI0UlYcB7R9Jr7/FN54MUjYec9mvLWdaFkjfbu74v1SLkJlDbNz1P2CqKhMF73SfkfSULMbArKnbFna721XTflzhBxmmrTXJ3BkqW33fuS9+DNqKMc7pfd/UkfW6qYuRVCc4HxxrjWQFqUzyV+8pF3u+soZqGt15JgXIuSLVsaqhYPY/3fkQVI3tfbIQ+3fN0vymlMAxBxo2qpm7klaZ9ZjoRxr4aV+uZqo/bLb4AJSM9OH/2xaP198rn+k2ZqVBz4ctf+hLPnz/nR37kRzjs99jaMGox52wnCp77/QFfSc7NxmCs9KHReb1ZuRqZsz1/KwUcTZ9vL0A4E/i2NOLDS0fDge3zJdq32v9yHLNKVM6y/+RMJwt2WvUr54ntQ+UPXYHtO+few7h2S8DSY0+NrvV80os3z5+qz4Qt5c5GqGuAOavDvhI4vm6v2we87Z48xfq/QJ3+/8CWjvd867/876/n3Ov2V9rKGlluXnJ440Pf70v5ntoPciHe63Zu67ryO7/zO/zqr/6qFkv9xZoxhs985jP8o3/0j/iX//Jfbk5Hr9vr9hdpOWf+7b/9t3z1q1/l85//PE+fPn29hvyAt+86Qms09ZCXB9qr4KVwxGwJVdurv5ooTYQQaNYQ1eLEGFHEEeEbrcxXAlTWBJHfEgXtgRy13SSqp91uS65731V5jKorCSCRkshnGyOJ+FLqVqWLMYRxkN+dCjWLck9tYkMl8seWakUxQqwoHCXmDaBwzotFQpaqpmVeqMZQisEOlhBGYsr0au8xDCKtn04E57BYBus57A8sy0INg5AffBDSktGkK40xiD2QsZZmDDmLclOvjBUClZCxvKoG5FwIXhKzWdUJWms445jndcsSnJaFWhvBDzQryhClVpZYsYPbPO4NhrxGVY9SxZFpIEwOExrZiO2ENw5nHD4MxLhqohxK6SQxQy6iTtWw1Gq35EItRZIDVeyOBAQV4MYYSbI5YwjWEdUyrJOXVNRgq0zDnAFnkXfv41j+axrkWHBVEns9ObekhEOsOY6nE6NK/Zecub444O7v5Vk0yLVylzJLqdjjggFCGMA5YswkMl7H4uXlJeuyMM+VYfQMo2UKE6TEOIyEaSTle07rzKjKUw5Da4W8RtK8YFvjQx/+CFjPOkdoUFMGxFZjMHA6zqzrTK2ZJ4+f8OnPfJxcEsuciDlhjOeUVg77PYdpwLqKxxGjYY2Zkiv7ywuW4yzPQglxu/HA/vIgicJxgOoIwbPEzOF6TyuFVFbG0TNdXBOmwIDl5uU9x9rYXR2AzH4KPH1yhbee29tb3vjIR3j33fdZjys5F27v78mpULIkgbzzfOtb7wvRsVVuvOW9d18Qy8qynrSSURLXc5T5WJKh5kzOhVwqwTmWeeb99Jy0RqZpEiuI+cjF5RXz6Z7RemIqjH5gGEf8FDC7gVZgCCOnZWU5LeQ5kkqiKWgZvOOwv+Ly6prTvHJa7xlsEIu/5pj2E9Y0rg97nlwfmNPCixR5tETit9/n45fXXL/xjPV+5s133+Htm3s+/OgR+zDw7ee3vLy948XdDZ/61Ce5dJ5iHOHxE+w40nLGDoaSLRRdB1zFjYbd5UT1FkZVaggDzUnlLzRqrqynGW8NLUXc9YEWHOP1DjMVGAXovb6+4tmzx3zrnbcZxpFxFyg5qk1npvZku/d4J0n7nDMGsTAcrNgXNJpUPrfGskTCMJKTALQ5r1Dld5aGaVrpbw05ddLrwhg8wRisraLOtUZyatAKu92AGQIFwxoLccnUJio5wzjgw8SaJZFbiySjjTWM+x0lJakUb/16EniDR9b+ElcFMEQdwQXPbjcJya4WwhiEtBMTzQqo1lRaHWtZYiQMQaw/Bk+wQUgkpbAss9jbmco4DbI21SJzu2olsLW4wVMXAVhijCwpilJIlWdpvQEKthbefvNbvPn1t/jcZz8mq91/M9FRN1C7kzst8EOf/hQ/+RM/xsuXv0tJK3ac1PolCejqg3BfWmONAqh562AciSlRjVjY3d/PGAQsbxQFJxzWDjiTwSS8s/gQCOPA6ThznE+ynyIVzdY5piHQWmVeItGAtY1hHGhJvpsiYCoK9MzrwjTt1IZ0ISt43hoY6zZwsSF2aR3udlaupbWKHYUIJH2i+7A1BC/V96UUYsxiFxFXcpXnYqwoLOWUqLapkmQj10qrSaq0TWXKo6pJtM2Wzkv0pCoVnloFNCsxq4KRZV2SkLesqrAoIUXAAlmnvbOisoUCwUbWwtaqqDBsY8F0XEAS5tXinVTpi21KVY6XgCcS8wn5qqotk3UGEKK6deCNZSiS7K9I1XmMov5hchO7RxrDMOJ6hbbtZBIhV/jBU7LY9qWURMWhCtFBrF2kL1BbDdutbRUUNJwBe7HJUCKIdZhmVHlAiFxOgT40ZkXBFdMqhCCWfmbAWccYRub5JOTFlM42GQpmWK1Krq1tIIAx3WfKbMAIRi6/z7kOCpiqKgjWiIRoFQuMWoWsWUuhZC92H86BVoaLamCn3Z3JWpYHpLMfwCYxWmcOKaDXcRbTqQy6QpnedQLOggDQPcCvpekfH5CGlJhelRBjFAbq1fQGu323917VxpS81MGczSKOLb4WAFpJgmrFgp49MIZa02a/KAARGzjUY3gB8a1Y9rZ2HtfUbU3IKSuQyEZgqEWVEfTcUxG1M6vrlDVW7CZzoikY1pX6ug0diLLYdjhCFNysqhegfdRapVQt3FBA2+mYO5O+JPbKqatHQcpJaIHW0UwT67CGWCu5c6xvgKY24TRVW/KiHCvhfFPA124Ek6x2kqKo1T/HigiTAmu1mY3o0M9PHSfdxla//qZEHCekiDO4eSZySf7iYRLjfO5Fz7n9t8d33qWuSUFntdksTYjLiDpJV4hrtTKFQCShWCCFxlqqEltFuc12ckypYgFrBKgfx0HAztzV7MTuj06k8J4liiW4c1LcsalHVSmAMa1xuLgAJa22hii5oCoTuA1MpVV2047rR5eq9FYlhjGWqMSewToBggmUIkVMtYmNVk6ZTTKuNvw4MIxKEHUO02Q/ybkyTAFqo1ZRpR2HHc5bHIZ1EeK0HwegErxltxuxxrGuK4eLC46nEyUKYTpmUaXqAmfGWMz9rHuqEO1Ox5nSiswbXc9LyaSiKktFxtJGqjGWJQthtWQhQgTviLkyjiMpRbyRvcdZJxZdXmykaGK3mHORuaLKLU3XcmsNu93AME6knEV5y1icD7RmVJWn4GnsRokpcy5MeU+5P3E5TEz7AyUmbk9H7tfIxShFEvfzyrxGlrhyfX3NYB3NWNw0YrwXEoYzQv6pTh3jG8YbfBOS2KakZB2tk0WVrJGzjH1yFhtpa0SRyVXw0Izkc5597ON880+/SqsGb4RgYbLYLUOP1eRcXksWAoUxGxHXWYk7GhqvNykkMziaxk1NSZkCwKsiiFHeemu0nGnGkq1Y+1kn65ooawoRXlILMjeKKp5VUzA4UXLSpbBktY2zSm63Ep8opUXISq4rQltZ92rdVDT72qqSW7LGO7spRyvtQtZOVbLudXw0Jb9r7JOL2BO3KqR7XNuUyhqqJonkwowSKaVAS1V/JHDT7aHx3jvv8NY3v8lHP/Ih9uOHccHo+vidZ4qNwrL9twHTNPHTP/W3+MY33uJLX/4SwXndW2ROGiV1CH9XlViRc7+oIMk1xpjOJFPTJD8kHaKxVy+ck32k1saaEiWXjQTW4yVrpBgwJlFT7qrsYql2VuHZFOxom8WgrHlN1pMtTmAjNfYNYYs1jMEatyk6PbQls9aJ+mdTC2TNWYnKqMQCwyD9RVNLt06mUXJqbaLm6K0973PWYho4c1bW6ntIt4M1RsbCukbOCrBVzxNngovbbO9gK1qQAGsjtZzvS84wcl4vcj7hHFfImZbtOdRWtnjCmHN/ne101W5R96T333+Pu7tbfvzHf4KnT59gSiNLMnazctvIyciE77GfjP26WQL3QLE/6y3Ywsh+vTHj2kZ664Q2UcK3D67dnJX+e8GEEn+6Kj62E5clJ+6sJVmnBFddrzhfw4PQmPNMexCHmPNre7Tcf/2Q4GQ2LeXzuDOmFzfYLbeLktDPiqXnp/vnY6DX7XX74Lfx8mo7T/4gtdYa73/xj0mn4/f7Ul63/5u3mhPpeA8fRJKSMVx94lOc3nv3+30lr9t30b7whS/wuc99jp/6qZ/6noghxhh+4id+gj/90z/l937v9/4KrvB1++vQSil88Ytf5M033+TXfu3X+OxnP/uaqPQD3L57Grk5H+5pTZWGG3R1o1oELHBeiSUKzkVJQLeqChNNQMhWRXHIGSOHYD0nWivKQs6IjHivuLIWAWttP3BKxXyJUo3ivdPqnYIxkuJOKQqpR8Fxby3TOBDGkTVGliXq4VQsx4L3UApVEzemqW2CkQSH2AZJNducEuKLLgnnZkQhodTMmjPYAMZjrIDlcwTnrZACMDRTSSWznGb6AdDaICClb5gsQESulVNMDGGQ6iFnmPYTyzJTUoFm8N4yDJr4TJmaC24YBBjXSj/XiThJgNlxDMxz1kSy9OHohy0RYwCKVEbvDhNgaUUSHGuK+J3H7ixtgGgyXZ65NiEgxSK2WkZVqlrrQKOoU6HPt1dLn7FTKyopevh3TZOmpm3gTq469oz+vwpcItWuWiHY2ABogaQkuWetwzQHSVUcGuAdIezEnqkZLq4uaKZyvDvSUsEESTAc746sa2QcBlWiMNQqCbBCZT8dCNYxDAGcJSYBpx9dHYg10WzDAdaIV3y1YpkXm6Hklf1hpFlLGCylVQY3kFJW66WV66s9Plju7u8YrafkyjSN1Dbw4vlzjHXc3N6RcmWcdgzjSMFxuNwxtIX95YH3b+6JSyRgqbURS9Gkr2FZZrx1BOfIwXPY7cglcpoTqRhubo4C/FVJyNoQGIxTCybHYZoIweHDyLgfmLWS+SMffoMhON597zm3eWU3DuyuJrwX4o8FnDM8utrz6OkFh/2eb3zzHW5fnJjTTCpSWW2qAGzWG6xtlJxwfmDY73GuYkuj5szt/T2lFbwLWFsp9wmaqG+sNWNrYb27k3795rcFoG4N4xxXj69JacFZx+W0Y42RXJMQaWxjLUnBocSFu+BDH/6wELOmPdOy8qiJBcR8OjIET0yZq+mC/dUF98vM0HZ8+qMfYbm9453jgtlH8IFQKnFZeHy9Y5oCKew53i6stfDpz30GY+Hl6Z4nb/wQdtpTrZEq5QHcpWfY7WjNUGzDBIsNkoAqCvZJvaPFZnU9oFIshCFQTYbR4VyVZKd3YjnWYDxMfOxjn+CLX/0Gc0p4xKJiHAZqyizrysubW0yD3W5itx9kxhnHOi9CXouJEJwCBNCIUi27RgXyKtY5sXH0TsgMzmG9KOxYZxhV1as5uLw8cPvynlIbp/t7bk8nrq4uuBwGdpNlOcLl5Y5KYJkTra7sdt3qRKyxBOd3+NbYT56WhLgSl0RTwsmgfZi8lZ3Ie5aU4bjgrcEPXixA7cDVfsfx9siqQIp3lsPFHmrjdFo25Zq4roDBh5HaCjkVxqFyeXEg5sq6yFjre5rVfdJWCJKFF5Ug63BGgA8/eEYfuJ9nalx4++03+Q//+f/F/vAP+PhHn1FMk3VU91JvOykDNrkITRSHwfMjP/Gj/Nlb3+IbX07Md5k2GIzPzMtMykkq4p0jU2VMNQGTvXNUW6nVklLGmYozDhWPw7RGiYnDFCCM8tXO02xgmCzLWsitYJ0j7IKozmlC2YeBWqXCN6VKKUJEiC0Sc2K6OPDs8RNub27IUVSvnLcYtX61BOY5knLBVyE7WCNVtvMqtoJhGmlFLWhQclyFqlGSzULQba2xxEQskli2TUDMNYk62G6/Z1kX1iSASwiizCJWIFBKBETRotaCC45BVSWaKp3UKpa0pQkpitZkXUhpq+wuOWOC47AbySVt1c7WeayR+7+42OOM4/nzl8R5xRpI3ZpG191cjCpWGEywOEShrDUhysSUkCLuJvuWEcAxa6U3GFYlUIQQSDnSUbTSICcJNU1teN8IRsaCNYbSLLlmvDWqpFnACfBeShWCY6sUDDUlfHEEHzQ2sBhblcCsZIqSBLBCQtRmlDzSmpKpBNAoVcZGjrogOrupQxrrcdp/tEbODWPkfWEILKvYIXZQq23aXP2gc07ud8DVbCAIqpzEZll7fkvbgBD5mYKzBWKt1FJF+cs7XAgPiFGVRlZSjdrWNIm1fnBbr95+yCCR/8mUb5s6RSd1yfguDwAxtupy4Y6cLUaq2giegclOGNPP78+6r4NKaKpVFGC7pRWb1YqcCYQIU/Xo0/BB7LdyFmW988V0RaszOCy8CIl5TTNK8jP6nUVVktAxpYBgFUUnb2R/wlYFc4uC3uizFpWQnNLWl9aIbbaArWdrl1wkDlYYHu8DOaeNBCCYnHx3qQKYWuewThVwlWwlxA1VdXBi1SRW2V3VqpMbFa5vQtoIg5A1OmiWS8EEsczDQ6FuSQMZCzL2O2Grq7LKOUrtcEy3elPATveNDri1dp5XTYle3QqnnrG+7fFBJyH2MfYwiWG2+xGg0lCXyPLe+/Rinq5mZgA/BKAJibmKzV7Tv2dVA26qItOVtappDC5s6gsYJVLVwjQGISoY9DzRdE2Wfi8YWs2ixGNknHXAuZQmNnK1ME1y3owxihpFVbtaHPM8Y4xhXaMUh7igSoBiKefIhP2e0yoEb6dzsigpi4aS5Dr5xhKCxHMpCwF2WZIC3WKdZqzHeQWGjVErH7l/F5wStwwXhwPOGbGNrYXgHGGU9TknsVA1FsYxMO0Hgg/c3h7FdrZksZLS5ywKG0qSqAVjHS7I/mmUDLLEVQhiVhTM1lZkLjax07OtssRCzpnb2/ttpBhjGXYjtWasMQxeyOlVVfYMUuhS9d9hGDgcDjjvhPikhO1SZF5b3ROHUYjdMWdc8zy6vCDHyDFZCEViQ40PdqOooRTriWumUHn05BHGwBIju0fXGC9FULVmnJMiKxtE0bR2Xkg/x+t/hI5ghKOsv2kISaR5C52UIwsRDzqFq8ePGMcdaZ5lzFn5viEEcs7ElIhLFpvYYHFBiAalyDpQSt4sQmuTce/auR+7AlG3AVXBJdnPqaCKqc7I+jyOgbZUkq53y7zggmccB0IQFTTvHYOSy9aYaU3iStmX6rYO+NYYnAFvqFpY1ZoQcmyPcawRio1zFFU32nJJOq+HELBGSHtF1wYfRFErpaTxjPR6yZ3Y5Kg5iSJtEOWyGIUYX1vB0NXEJBaxnZxSK61ZJW0ghHxV/Uk58cUv/gnXjx/hg+cTH/2QHEjo+448++08sQ0SNgLHxdUFf+fv/R3efe9dbp8/pwA2OCHtl6J7qd3sULtFnTVCnhA7UETBSIvwmhInahGiYScaizWjxXqLy2IDVxBFUhACeWuIwpwSc0o5Kx5VGq0UsIb9tKeWSkxRCHQWnJd7tl7VObPappkHRCtVUQtBbISLEo5A93+UTv5wzadtdpLyfKDVQkpN1D69WuW1qsqIGncaECVS2cSaBpY+KJmfc4zRbWv7HLFd/V7JLq1b6zmLNWopqJ9rNUfrvWUIE+u6sqxJ9k6rykM8sFmjCbfIsu0HfZ8utStDsfGDhERTN5Kw8s6FoG37HtxI68oX/vAP+Imf+EkeP36kxaeiiOWMzKs/R2bsa1gnMzeN2KuorPc50dVXZSxYvSa19DPyrB5aAzaNz8+vP8eptkcaOjCMQVXIZGr0E4q1Yu2X1G5efv+dxQVn0pFOOyme2X6/HSZeeZ1c6IPgRkmbPe5qus+CwTpVpNvGQ9fa7v358INft9ftdfuraul05PmXv/j9vozX7XX7gW7GGPy0+35fxuv2XbZaK//hP/wHPvnJT/LkyZPv6TOstfzyL/8yX/va13j+/Plf8hW+bn+d2vF45F/8i3/Br//6r/OZz3zmNVHpB7R91yQla+TM23KlaXVurVXUPJQEQ6uaVG8qNWypRqrEnRV/m1KKVrN0qWTFbvRw6r3HWa8S/VW8tJvYHUiSL7MsixBdkASXJNikOksqXDzeG5y1rEmrI9EDmoF5nslaVdStw6wRFYGmiY85LmAKIXj8MGjeQG0pmqj+7PeT2NVFAZ6ddQQn0slZq3+MtVt1WNFqGWsNNgjQVnLBD4Fu6eG8Y46SIHbG0mpmHAeMsaS44nE445nGkWxVxtggCkqlYpzeQxWyUdOMTt0ABUngrusqYBYCZpTcSAj5orR6BklpUuWKpQVLjSs+OPwgCcRqegW6VHLXJkBBVasBq1VdgyalehWztQJYiIJV2QA3qSCXCkuBGY1WmGklMFoJ2YwCoZIudVrV2SsKN5niDfRBknR4UXXIGXIV64VhYH95kKT88cTx7k4GfWugQFLJGWMcYdzLr6yAgWmNGOfYDSODc6SUBSCuHlMaw8WOMDjmG7Fkw3q8F5uewXvcYFnmzDQeBGyfAjc3L5gOO4x35BgxrfD00RVrzqQ14UMgm0SpK7Z4VZywXFxe8ta33iKXzNXVFY+uH3F1uKaUldv7hXmJlIZY+1kBgL0xjGHAOEdWYs8wTcRcMN7x7OkbvPvuS07LyuPLC7y13LaZ5iS7lNaFtTQupz0Yx30ssM48No4xTNS9p2Sp6l1ipDmpGI8vIa2RMAYuLw7kYeKNp0+5O96xG0bqhx5xsfcsOZFbI80rthmGMOK8inO3RhgvSLEwr4mUMrFEQpg47EdsCNgAy7ww3x4xtZFKJJfCbpww1nJ7dwfGIHCaYYlR1DbWgmtWEmw1k9aVcX/Bu+8/3xLrl1eX7KYJWuXm+Q27aY/3npfzc2yLXOxHcjbUCM/fvuPRh3Y8++gzPvJ4oiXPsw99lFNqvP1n3yCXhNlfMk2jVEZfXvCJp4/Z7y9oKVOdZbGIIhIGvGO6upDEqYXmLKaASRkbpMp5k/Y2sg6ZWihJwKHdNHB1scOkBrsLmrNKFhWA1/bx3xpPnzxhHAZSqUqy6ZX5MIyBZx9+xu3NHakW4nHF+YFp3IExm3T8HBeME1CslEirUZ/fKDYgubHGVVSqWiOYAZNF5cTpGpJTIc4Lh13AW2jeEkaPL4GLR1cYZ7k7HslVSE4lFUqpnOoi632t+GHQfSxjvWdNEdMkUZgNVCvJ8GEnFm13x3taaUzjKInyUqgGSjVYh5I/K6f7kxBidb8xiIJfqwio0tVtFDW2NHzwlCJ/T6UR1ySAIbDbSyX9PK/kJAo5KtpBViWEqmQUA3hNdteSmecj33zrm3zhj77EG288gWCF0NQQqwod6w9x2XUVxQXvHW88ueZ/+sW/w7+7v+cby0JpkTF4ah1Y51n3G8e021NzZs3yzGoVaX4wjEPAObVzXeNGGKi1MEdZe6yCr62IVZsNom60xoWr6yvIEl+0WrG2EbynFgdYyqqEgSBKTSlHYhSv6qxJX4/jyaNrVVRr1J1hXRfWdcHVsCkvOu/YH3YMgyfFQs6qvmINpghhZnCiq5VjYppG5jWSY2XUdcRVR8mJu7sjPrgtsWuNKicgaorD4PE4liWxrqvMIXdWBEopb7EN2meyxkBKUYkGlaCKP7aJFSvVMoZASjLfRCWocHtzwzTuMDhNsMue56zZqgidU9vVVgUwU2cDIRwLQco01N6RbfScgX9DyQo8KBGYJrGezLtEyrLH53yiNTjsdxhTMMZv+7vYmYhyWKOp+oaMyVIrNWeSqVuC3RidE9aofW5js/fV+/LGqiJU1mpnj3NeFKesEkVat/yTvq/NqjKZVce8JgXSrWKMgN7BB+Z5EZvIDnzp82oPyUemkzTMxus/n4XOViAyf84V5f3Z91ZrI9VMNYZUC1afsbOWTUVUSRlscQ8/sE2xEWo5W2504FVIA2arWt+UcszZdqKD31UldVrrehlncgsak3b1ImnnKnkBqSu55o3YLni62cZYV/iyek2l1nO/6vVkBY2bkh46gC9KevI58h1ih/Xfqt6ttRGCxwYl8aOf9cD6ByXW1K4zpD9DiVhCuKmqHNHtRiy5qCoP599L9X9XUBJSRO2kQ6MWNNWoAulDO5d+wXpN2rp1ifShVUWos/pMAz1ryXnEIHbSsjcatVntz7BDqx36ZJvvYdoL4Net4rZXGNnbjNleK/1aRWXVum1sWM5j5SHp4lwooaA/Te/5AQC/jSJ5ocXScuH2zW+Sl3kjdIVhkKKQmEjrq9LkRkFjMDgftvHamgLkRkgC1lpVz0IV1oTw5Jwhryo1ahzGuu2MbZ0lp4pzg5DbvBOF3iHIebysQGU3DZSqCh7ObkRHisRCzhjCMHJ3d0+plWEcGMcdYxhpVYgaSdWXjIVmVIkDUcDBGCX2iKpTqWIZuN9PHI8LOWemYRD7LlU9pkmsRG1YHwBLLA1TMpMRslIIZ9XgUrKcw4C8RrFgdVYI9KVy2O2koMZ5Lg8TQ7CkruqZhBDgnDsr4rWGdQOlCNGgFiGtOOcZgpd1xMkZNcUoKpatstYqtlLGbLkAXd7IVb6nBSEmCglRVP9cGMTit8rzHcZBCqWAdV6FjGstpUYMmSF42YeKYT5G8jXsL/ccJg/Vsj9ckmrj+PJWSFBhUPJGww8jVzuxW2tFiqqyQRSRdC3144iy97bnYUrdFND6vOxrH032xZxlnI1D0AoIsZU/r7hme29rjd3lJdM4cVpXSs5qY2y2NWIcB5z3QuorBUrGe83B6FpYSpK1WYljUVVZuq1WrRVTJbfQVKWQojkce7aQrbVSVYXWGjDOYZwlDAE/DKSUyLWTU9U6vlYiUbtB1y1dJ6oWYbUq9p89/2CMwXoniqRd/U4L5OSzZR6hBISkdse1KcHFCCmiVrOp/pntn/4+hPSvq1zORYnUMj6NlfhSiEEGp3taA2oV9dtOkq3mTAQ+Hu/4oz/+AtePrnj65BHjbtSzzKtr4kNuRM8/ST7P8kOf+gS/8PM/x7/7N/+eEpfNmi53wozmECVGLBtxByX4OCXU+OBlr9n2hE6G7FuhqgapEqGojor99ODDWa2LKraiWjlQSqNVQ3OSvypNCE59zMpzb0xjkHi+FPCWRqZkIT46tdEzxuC8kDKFtKLPx0oBXlcnd9ZRsxD0K2xxu6jIi+pxTlL8Keur7h6mK92JJaSoshoZW0rW6apSPe+35c9az7upstI2kpRE3Tp5yKja3DlvaZDvqJq37fmFvu+/aoEsc00IZu28l2uMDgiBtq8j8oMHS4vG+DoG+/5XWmNZVn7/9/+AT//Qp/n4xz5Ga0JI7fvoZpX7gHwlCnFtG0sWNjvfV8awEio39acqha8afj4gT7eNVOW04OVBWCif01D1Kn2f1Ty65uDQSLETeXOSAio5iz0M3r8jmNe+feW6H1zXNhM1Jv3O2KX300a+1nXG2Acqoj3mMQ8I2X/+Y1631+0D26bHj7/fl/DnWomRb/2X//21itLr9rp9F228uhLMs5T//y9+3b7v7ebmht/6rd/iV3/1Vzcr5r9oOxwO/MN/+A/5jd/4Dbol8+v2un0v7Xg88s//+T/nl37pl/jZn/3Z73lMvm5/de27fiLT4FnXhFUbE1CrEa2O6UCJVMwIucc6S+o2MVpNaegJDCEVbd7z1WBUDr2Wihu8VBDVSi5RKgl7EtMgCgkKbBkrif8GG/lIEg8iQx+GQRI1xpKiAMbWWpIqUgxa4bmuAjiJihL44Lm8uiLXzLwsAgIUSVh45/HGYowofSxzBi8nUO8DPZkgSTMh79Qoik5yqJXEVC6ipOC0CjytCzUVxhCoqYiVTq3g4OrRFTUnUIn4qlZz1hoKWimr1m4WOfimFqkxk4pAG2uMIo1uFIjVpEUNiIJRLfgQ8E7e770nJxGZLjlTSsQOBuNBiEBCaLBWrSGqACji8tToKlXGGYQXIzZ01hpCcLSSVWGikrJIuzsT1JZK7mNLNsAZOGoPUsF6hm+avDKSbaFqwg0k6WZxtCXjm8FYR7WN3TSyLgtldlzsD8x39yxaWUxppBqZdhPVQZgmSIWaM8MwYq0lKqnq8dMnkiRa100eO8bIFAeWlEnVyj0ZzxzFBmJMjULCWseyrBznE9ZYUeZYE7c3N9zc33F1uGCYRtKx4RqYnMXWqlZ2oxHSRG688+7bpHXFYRmHwMXhgtNx5rScOC0r3lvG3cDgLd4I4BFjZp1nfBi4PlxydX3Fi5vn5CLj6f7uTqp8x5EYI8clkg2MfmQ5zgJK2ZHSwIWAKYbghGzQjGNZF7V1GjjsKmEItJax1nO4fMTlxZ7b2ztKFuAuF8uaYDddQGt84vKK29OR29t7WioMYcAHmRPTbiTVzF3KFAuX08Tw+IDFyrxRNZvgHK3IfLywe5Z1xZpGsI5UxKJvGgdRyIgr47hjLY13X76UitIYRXXpvRccLi54/MYT9oc9l5eXW3ISLC9f3vHy5UviemLnPTVDXIUEsx9HgnMMzvHyFHl29UQsPm5fUkrhsLvgLkae37/ghz/1KVxpxHkl7S7ZPX5KxsDxhHGjJtI1tZgrpmglo5VEuIDUKk9OwxSdN85iR8sUnCbjqqh6ZENZIn5QchMWkswfay0f/+hHeXR1xbqstOCZ0yLJ7CJqcN57SSa2RsOJfUaWCsdqpFq8WVF8Kylz2I0cDjshRGl1r512mPu7LTHmrYPcyLUQhiAVxzSosLxcsApg5SxqPd4YHj96DGTe+fZzUomq2iR2aHNbietKuxPSVTOVlCK1JWYMtWSMafjgCH4Uqf1pJE2FdVlZcmEaHIf9hG2y71lrWGLCVLE+KbIkUmrFj56SRBWoA2BNyZXeGQat7B3CjnldSXkW5YpcaNZwmme1cbGqciDkDR+8JOC7wo6u/c0gClq6fthc+MoXv8SnPv1pPvyJD+HHgDVViBTtv6Ww0tQu1OFM5RMffYMf/fG/wbfffZ92qqzLiVoru2mi0hhUst6FQZSSSsIZJySlJv0IUvU7eU9pjZSrVNj7AVMN65oYrWNe74k54YaAc14l8CvjEFiyKMSUmNhfXch7hh21QkorYQiMgxDKhOyUCMOAaYa4rpxmURaROKSyGzyWSquSkLVGwASaKA+kGCm5MF4M8r6clAzixFqkFEhR9iUr5JczqVoUiXJRmyXnxMKIhlVwiyRqBusi6lr70eNbJReJB6paMZRasdZjmxCZu91Jzlnse2yv5FclEmNJSSxLaRVrPMaIetm6ylwI3tOU+A1tA8q7CkCrqPKkWBdWlGTlzqCGVclLQ69APo8fIUmIalBthtqsxCQK8gjBPBHjynya2e/3OFfEqsiidlIC0Eif9+tU1Se18vDOCpCchATonCX4UfZ7I9/ZlDDfFXSctWLBVCrOin1HLnkDP5qun61KP9QiKlMdUBnGQAiGnOy2toUwMC8LyzqTUlQwUntjwxB6/CJxkQEBq0HUFBRQeWgDAmyAknru0K0kqmlqhVQ3O6+uJNDJJ0JY6uSNH8zmVZXHAF3w6dVKFlUy0nXTCaL66phFCeygzxtK68R8FGBRANmZbSxs9nkbkNVfywYydiWccz/aDeDr/WuNWL91S5XWMpsCkhIRNrBMgalxGEXxqIgqTFMrnq4kgYKFOXeFKPmddskGSzedF52wJeND93mr88XI+tRUbaLW9oqi1DgNsiapfV3bznId7DMbOaw/nw7Sd3u0UssGZgqwJd/RXFNCQVegMQ/6FbF0rY3WilhIycZ0JkGa8z2h5yg3jEyPrvvj2gB1UT/jPF4AjBKkqiit6Ye8IjjA1hPfMecUjuuqF4bzeNrepWtmjYX7b3yd+PKFkIu8WLi0bBjCwDGutNrO55gGNEezEi8XJU87tajsSlW7/U7/XDaQsZSCL45cmihWiTkuWS0tXYGKWLDlXMTeWboVcmHNK2tcGQYhgZSYhZxfKtUKAOydWgpVOJ6OYo2rhIJRbdti7qRTo+rAQrq21pE31R+xyBynkWWdVY3CEvWMLcSlQoyiFuS831SQmvFUlLjWVCGjiMZKKVnOt9YTfAd7hYRih0lihnUV8LkK0a7Q8EH288txYE2JuEQFrN02brx31NZYa6IZGL3D7gKmmU3xOQyBbmdvgMGaB6RYu50HvBMiQypS+FFa47isooJSRHWpnmaGYWB32OGHwDgM2/oDhnlZxQo+JynGAiUDq8W3FTWgNRd2ww4a1GWR81oYiFoc8Pj6GttEAboGg9/tqM1ASqKQZMy2BlM5z5EOtvc9rc+MDlgbg3HgrVfSqXZKRc4lrr9X19Yic3V/dc319RUv727BWrHL1b2gq6D0/hWeSmMtq+RVDEqAVJuuKutLJ5E17bvgvRLZipLQVE1ZSXnGGCEfGcuyZqhCCkk5bnmqwXuGccfxOKt6Ud36IRcZtzkuTNMkCj9UcsoUvfCq48tp4tNgpECJJHFarYQQhESh62OpZbMNq30t0jVO4rNOFniVxOCdkLSDlzmY1Aa+aX9mVQbva3DvY+e6TZnEnk6Vi7IWtFlVgXz+7rt882tf540nz/jwxz8s/a0Dxfy5AaJDqXY1lsYQHH/jb/4oX/7qn/KlP/kitSTZO5zFITmbHmtu6zYIWQrJMRl7juVaU8O/VsXG2Wk+z4iqaUr5FUU7dB+qSqCpVWz75DMlHxVbBNMIYcCq/VrWz/TekWIkpQLBioooDWdEFapoQY1pCOlWY5VWu92fxK6bipCq9zRQ+7WzfVh7oKTTaBKn6obX7epq309K1c9oam0n/Sn9U1+x7erfKwpCfU9Rlfptvz0rkUt8odudZVuXusKsVRL2w/F43j81iNjusehe3O397Eb+6gGHebi/9h9vHWG2PaQ1WGPkS1/8Mu+++y6f+9wPc3V5KTZqzkmOmgYPyOCiguSkqLKdqVlGFTON5os7UVvO7ZJH6ba/Tcl023zFbOcMo4UWsiyeCzj6nxsS93dyUbf1ls+rWI3NbJH4IZd8XmfpZU/nOd9/sv10I1s9fJ2qPj2I4fozkdDJqJK92ewxzxaFnQCqZHnzHUSp1+11+wC38eqaRz/02e/3ZbzSas5883d+mxdf/fL3+1Jet9ftA9Gmx0+w3qvK9ev2QWh/8id/wh/+4R/+d9m+ffazn+Vv/+2/ze/+7u/+FVzh6/bXqR2PR/71v/7XfOUrX+Hzn/88T58+/Z7G5ev2V9O+a5JSivks+79J/fdDDVulkYB+A+NuUAsSy+BHVbgxWm1UxCZG3gh0mzejfvICkqUmCYnSKrVVYo4CogYv1nNFAGqRAC/QMsGKhUrOmnBRMMJYyzgFxjEQl5X1dNqSW/v9npQTx9NJSE6AGwLDbsJ5R1zTljwxBqZhwGAYxxEbDMvtrSTIWmMYAtaLLQtIYjnnvFUXGWuxXtRvxmGiWSdgoLU4F6hRDslLitgW2I8jUCWJOQ2spyJg1ZYYVZlrLOsaccFjLOzGHdNu0sotSEWq12wHWJwjrhFnYBxHSmuU5kTu3TpqhcNhT02Z++MJMIy7wLDfYcaG8Uaqk/QAbxvkkuSwrBXNvQDTWAHpvLdbcsTaRmtSXY7tMshWrVyCAIX1bPdjkERqPyZb51QJSgE+FIDZ0MGuWqUAiXW02Ij3J0nQWqlY3B32ZO+IOTGUjONciW0nJ8pSTghYp7sjIUgy+Zz3qYxh4P7uTsBxIMcITUDVQuN0PBGsxRvP7nLPzct7Sk68vMs44/GucXGx49HFjmWJJG9wg6HcJ+occaMhLQI8YwzjfsIEx/piYXIe1yzhIjCvkd31BdYYwhgoNTPHRKqFYT9yfXXJbifVriWLjc8ckwBooonO3e0tDphCEEDXKSGxNu5O9zL+xx01Zrw3BL/j0ZNn3Ny/oHQ7sOCouTGGwBAEIIo5cXF9LcnWkplPK61l7k9Hnn3kGcuame8jl9NAvL8nLpVgLzBmYNg1hrWy5BMVC3aQRJ4bqbnihx1XhwtcM+Ary3HmuESslQrwmjOX+z3eW3a7QEqR02kmpcI0XeGc5XBxyWmeubm9x3uHCZrI9Y7CIHaRKTN6T2iGR7sLjHUsSyQc9oTdxLfff8HL4z2UgvdCeqqlcDUcePbokmdPLvncRz+Cw/CVN1/ytfqcR4MjNfDTwGEwfPyTH+bq6pqG47C/YHj2BHOxY/KBN+IFZjLkuFCXxribMF7JmjS1EZIq3DB46OTIJXH73kuunj4h7AzOVU3mSrLTeoPLCnwiFd8YSepXrZJ+fHXJy+cvqaZgqtN1OWMbzKeVFBMlZ8I4MI4jp9OJabfHBTlAOK/A9FpopbCcVvy0wznLOq+iwLcKwcSPA3FZoVTWuGglt2WYRq6urplv77m7vaNSOB1PzKly8/KecZzw3snz8wHrAt4FjstMWsXqaq2Vl3d37HYjB2+xeLwfGfY7Wm6ktGqVPbRS2I8TUxhVkaFx2I8cjzO1VbwJDM4zR7EALMDgglTDNzYgbhgHDocL5tNCqWILdEpi4ZljEcCvZ5YxtGJENcUL8OJ9oGrSshNke7LYGINHE/3GYr3MPSw8f/GC//W3f4ef+8W/y9/87CcwCnA8tL4BCfpD6J5mkjB23vJjP/FjfONb7/L1L3+JepsEyANiWlnmmVwrzljyGjFGrRgHsQytkuWmFiEsm1xpHtaUWG4jNgQ8lpa7FZGnZQFmpnGilkasiRSFdFuBNYoV693xToixRkkzVRL9OWeccczHGWcsu/1eVH2MxZQKqkoRfCBFIVNZIwCkN5ZWBZytrbGuEe+92My1xrKKVU+zlqLzY/COWppWUgvQv9/tVKFCgf9SVSFE46gmVc1rKxQaxQmq17Cb4ohxYqFnEPtSIe9memXsWVHQIqJFAm61WgUnVMIRRgh6omykQIPsikqgQBVY2MgIRYkYVonU3nVbDPm3VMU0O2FEk9qdHFOV7GVwEgcI90eUz1plWTIpV+LtieMpcXHYM02e6pXgZMS6wTqxTe0Kkyg5yzm3KRaVpiqd3tGK2rxgMbbbSmruvvb4Smxba+vKRgbjLKUVVX4UJc+s4J4AOKKyJIidEIFKLmCiEsWEIBTXhbiuQqJ/ABJsYG4nQvSwgTPoIzEMG+jXW6/W3qq6jVHsR5+HxkjNgTFlm8tnVR1+YNtm3/VA/aZ32wbMaNzXFd6Kkoacc/Sb63ZeAqqcSSoGBViVyNdJpF1B4yHB5uEcMHTwTIFNBWdqLZsSWe1zwMk8KSWTYpafadFDqVVI6w/mtAtiX1VKt6xT8o11un56rINZLUEFZ3OqpiLnp6q2Rr2fuq1RVcUXlLQlP3e0LP2UFZQNCtxZ3wsQJP5rqhbSY+mu8tot6YLz+ODFNqh1cpbZ7sNaIcsYI5YwnSDsjd9eMwwSU/bCFR/EttA4XSR0mnUbxF6Q0AHL8eoS65UQgQKGD/lD7aw2Ia+QfaUDmxuA2v+/7YH9PmRd6C/581TeM4GkLzKn99/n+M7bG9HQqw1jqRVbdX8CVW2TIhJRuRQlUeuE9LZNfSXkxXWVca5zhT52aWJLbewW569LkiIbXSusgWHwTIMXNRUEOK+x0FLBekPJZ7UpHwI4Q5lngpE9xaoCsB/lrGuVwJOL5AGcd0zjqLZCQhzJtarVkcFUALkPA6JSXOu2B7XaWJVE5Z0XdRkrc2DcHVijkLZtE7IoVc9TOldzqQzTqPO2yn5uJUdwuNiTSyPFzLCbqDFRUsWZAYPDeXBe7fcwYEQBBeupJWFdEHVZDMY2UWjNBWMb1gtZWUjaBh+cWtBKv3gvqsfDKCo8UthlNtmZpmQj08DWIgR9YOcDQi5LhBCw3rPMC0tKUCtGydutNQYb2O9GdruBJ5cXGODF7cJNm5mcrPvWOYI1XF4dGKcRsAx+wO0nGALeWg5lEFuykmlZ4tWHkiBddajmTuzRPTVX1tPCuN9hvdXzPXTbSWMNppONtqnTydCyNl1cXTP4bxNbw2LlTN7EVklstIoQSTRnkUshxagE9Coqt1buVcj9YqPogxcFU3hAHpMcyRYjit6X2BYPI95asXZHiNRx1fXJx77lqvqKKIOXIpZ0Ruf1mhK+WkY7YEzDGqdzV6yst/XayF4zhoHmRfXZO0+haC4LvLUkVUAShaGurHMmMmOMkF0fqGWnlLTwTSwX6QwvmY2iWNjzGlYK+lqr2yu8dRS1D+u6g2JJ6jay7le++hUeP3lKtYZPfPwjOG+2Z3zWzdLlzhq1O+tX0Li4vODv/NzPcXN7y7vfektJ8PL8as4yNxpSfKcxkbNus39r2p/eeS2O7FaIkVIlxrVVLOMwWhBZeh8aHVNnS7FcRFUw50ynDImFoWwqXW2tqdqi1/27k4VqKaKwqOOCTkxBCTycFRkfksq7LSYtb8QXId3pWqqbWidFd+JVlR+eCSfovSIE04LEQb04ryvySCygcxCj4/wM6rXGVjTZSTm1q5T3/UtE+0S874GFmJCJ9SUP8sGb8mXfao3d4rGNDt56uu6s0rONJsNmF1lrVzLStdMq6cjC8+fP+b3fu+OjH/0on/zEJ9nt9gzDAwKdcXpW0v5FyU+1bkQcq/ybHl8JMa89iC2M8qZe1S+y1lBqj+zPiqDSp/r9tpOZOiH+TFADUfGlWcjdjk/WCJul0G87/+jzPre2/bc/gQdPRf5vzgSl9vBtpseObGOp0cdM/3nbYmWrBLlXv/91e90+uO3iox/DDeP3+zK21lrj9s1v8uJPv/L9vpTX7XX7wDTrA+PVNad33/l+X8rr9l22nDP/8T/+x/8u2zfnHH//7/993n77bb7+9a//JV/h6/bXrbXW+OIXv8hbb73Fz/zMz/DzP//zTNP0mqz0A9C+a5JSzg3rvCgYWUstgCY5emUbVZLKw6CJFU1UVgR8dApuCYHDaZJJEjjOO7w1xLRq0vts32GNxXm7WVuEECQZaiX5UqpUNY3jCLURYxYAQYHiLkncWiOvkbhK1bv3nmGaWHIkpyjgtjGkLDYjqVSWGCX57D3rsgqBp0hCrNRGWgvOBnCVYQibJcKoCj25JLFjAWo+W3t472m1UIzB+pGGKD/4aeTiYsfxfsbg8OOAaxDGwP39ifl4YnQePw7UKkot1hikcMxzcXkldnapcJPutAIKhmEgjKPY7HhP0grZ4BzOSXXVtNuxLDOn00xwkmyttYJtxJIZrMcOnmYVENTEo4CiFYOQCayRZ94TUDTLQ3sKY61WvVdqEdUCSWx4uu2M1XHVQYpGxVSt6LHy3k1uvOdRNAG6JUW2w7nDFkjzKslTK/Y0xRrWXAhuIMbI6XiiIQkfYypXl1eSoMqRFCOSYFCQEghq2TeMAzFncqnU0tjvDyzLwnR5YH8InPKRXCv7wRNMYecqhIElg7Ge60c7xsHh3UCJUsVb1sijx9essXBcFrwPNNtozbIsiUNwPH50zcvn98z3J5E0x/Dpj30SPw2knKjO4q1hCBOrj4zec70/cLMspFXUaAbnyVmqDNcY8bby5Olj5pOql9mmSiOW3f6Sy6uJHMX2a38xQTWUuspYzlkqsG8L4ziRc+Lp0yvu7mdSLSzrTHABFzw+GBwGVxyn92exDDAN4+FYV1Ya3g2Y4Hi0uybOC66NGK12raUyJK82Rx5jCtNux8c+/gbf/tbbpDXz4uYeDIzTBNXhnaw/3g9MO/A+sdvttIq3cjlNBIQ00axlWVYMhqEkmqnU0XGzzJxi4TgnDtPEMHrmuyMpV9bTicM00VoBK0mxEAI5Z+5u77h78pgXS+F4M3NzuufZ9QXVG4yZIFjsDAcvpKriLOPuQLmLmAj2ccB4sXuwqdFyoYYGoxAFrQxcKA1XDMRK8w2sw7mBYdgJGdCClDpLcqwnFKuSG6ia8nLQYqWexNbgYr+j5MiaIiVmUc6yDms9uIybJlpcqDUxjXvGcSSuK6EGUU+rjjAGzN4IeJNm4t2JIXjGaaC2ypwisVbcmsAJ2WB3ecE4iLVSW6HGlafXO0o6cb/M+NFjKawl89677wlJdhq4enyJs6PY9E0j8zJzf3+PU9UBTMMGsakZ/ECOQi4wqMpeyaSU2B8OrPMse1utlFQZhpH74xFixGKlqtqA030M08g5EckYTT73hGxOdVu0ShMiBIikv6ZeVUVOSUhN9sjWECl4PCEEdiFsVnp+GPDWE5OoALVcKWskrpk/+8qXCWPghz7yBoeLsCX/t6VTn39P4Er+Xgh6F4eJn/2ZnySebvnTWe43BE+MC7VUjscTwQUBOxXVbQpkjuMOmmddV6KpeOfwIdAw7EIQ0E8twZom30Upx+u6Ln0jcYVQTu+Px00t5tGjK0KwrMfI7e09sVSqKwIiAqllvPGkuAqIUCupNhwCujV6NTWyP1Wj9cu6N5WK90aIdbmqDH/blGtaE0WEqrn+1oTQ6Zwm+RX034DtZqgFBh/E6kX3sVbBDp6cz/tdLWq71kShsFYB7nzwjMFDK5TahLyHELBRwoXsV237+zAMG8hkjMVZISZsFb767JsR+5Fe0d0B8lL6a+WZ1FYJ3mNRpUJ9VqJmKZYq1TSMBW9U+eIBYXgYBqlyN7Asqw7CHbVZTkvE2cC0n/CqBlia2uUWAXZLt6RqBuc9rWUlgTdyqUpGsrSialRO5pG1krRvGLWgqAoeyU04a8HUTbVGiEidPGS3f1ut4C2hgXF5m0jeWYYQZLzHuIFAQpxCOSdV1dbkO1+FPM7WeQIgqt3FeVbSlZW6vVwHQkSNpdDtdXshwQ/y+apWGdzWSMzW1NJN7v18bw0hiBslC3XyTlVAcata70Sjri5kZZ2opQOeskZ10Olsa3FWk6it97usBN6LhV4pVdU5BXzcQLgmQHNRe0ZrPc6rhU3pFsaqPGDkvJCVoGStgqOqKCD32uScZRxYWTNlrxLbTCEpCIgGbFY1jfN5qZqGs3KsK6Vgg2MYPDFmJZt4bBMS4BolxnNGlWi3+YUqCpzna62NZV03gMu5MxDfQc1OXuz96n0gF7Hh3ZQj9BlURT2NMzwU9utzo6ObgqNZ3DRy8cZH9Hdmw063VzU2yz3Zw0yf8B3P3oBGReToN9MBulfaxtWQL3oI6BmEhJNj4vTOt+mKEMZ0BTwhrmQtVJGx2sQOq3lVlejjUtW0kOfe195Su9JU0/OuWF6FwZKq2AsGp7axVuI8EfOQYhyvasFNCU61FKZppJRK7GC5ESA758LgPLtpZJmjqOgpAfr68mpTAGn6bAfvyU1UO8YwsOasxFSzKXYZI6qC1jR2+x3JFiX6SYGKwqQMk6eVRs5FiPUNWpNx3hWWY8xC4GuV/X5kjRnTVFXQWiH1OrGaM9USZy2oAkQUNIttuXF4a9mFQE0ZM0gBRa1iz1WdbBJe91XvPZdXB+7vjpRSt/3KeS9zyXSw3BG8PPvgvZJgm9h59/3GSD8bwDVVMHWWNWdyacRUGbycxfMqluslRiW8d/UVgzFCGlnXSMyZJVfikllS5DANqnjhRbEyNwbnhVytBLoaK6ZkzG7Q4qCGqbpuWnlrg43sTG1CoCtN5qmSH4UQac4Ta5snel5vKEpuHv6aliSW3V1eYpqozGy29BojSOJGyRtK+g3BE9eohPC2cRqtxlMpZ2rLsK4EL8TOrHtw0fGIBRuCxuP63SmxP0yUwbHmKMQIb6kG1nUlRVFWCmNgGEdyqtSahJicIt3WFwX2t726kwuUaFJqkYIFXdNbVwrqRCW1IXfWncnq2n1OSardkunhctWV+Pp61dcSfQBynuC85Iny0DlhUjTuFsKt1b1OYquNYFUrrRmOd3f80Rf+ED8EHl1d8OTR5au8hVfijQcKgPpLa+BjH/0wP/d3/w7/5v/5r0nHeSN0tsZmz23NKxvCpsbnrahfJl1r5Jq18M6YBypcvXN4EAc1tbTc0lByTurKOcGzG0RBd12iKJ0ZpyRl2a9MM5gmZ8AeR4pim8S3nfxstZpu21GUPGabEFvkvWVbJzFiBdz04jbijm6FXaH04R4lhBqZY9ZaClk/u9F9A7sFoYS7Ogqqjv3Wbek8Rvtm2zN1Hrd+plObROr5nCi8u6a20v18cX5sYhfbtoLFbXy071CK0nPJFlPR712JShjoNoRKBBOmlHygV+XCr3/9G7z/3nM+9yOf4403nhG8I9ZMa0Iu60RwH3R/6h/Vmiia6ndajfGrOeemzRZvdXUz/Vef3RY/tB7Rn2MgjFisl3q+596/W5xjYHOj7ecpIzaJpRSKEoO3p78xic5xo6y1525+8EXnP78S45gHsdDDX8sPqu7DGEOz9ny9r9vr9gFv49U1b/z43/qBAiBbKbz7hd/vh7rX7XV73b6L5sJrktIHsb148YL/9J/+E7/yK7/yHeeE775dXV3x+c9/nn/yT/7JJgryur1u/z3t/v6e//yf/zNf/epX+fznP8+nPvWpH6g44a9j+65JSqVLbBs5JFpEEjbrzzc1GyvJybr05JNIlDdVXZCKPLslB7YiDcTioNWm1ekOZ4160r8KXJgKHotphUzFeZF/t96JnZsfBOjUg51zlpQyp3nepLzHcRRSUxOZ5OAcwXvmeSW3M5Ch52wAwhAE39fE8RITtaIVx1LN1rDsp3FLGIyqvJNiYqkR1TwRBZ0glaBxSdhWMbVxcXVJKpGliYF5qtJ3bekVchZjPWEI5NwwSZNXrTEOEzFnSpbKTj9KVa83DhcEAI4qB98ryC8uLjBW7iHGxLxEcqw0k3n54iW7w8Tl1QWpJMzoWavI/JdSIavkei5icaQJj364lcowqQJkEzmymGo0yWI2gN8Yp89YH7Z1YjfVZRFgI7vZJtWnkrepmtA726YYHWfdwsJYiy0VYuLx40fEmDjdHSm1ClBjDHGN+CKJo2ka2V/ssFQqheAszUqF2rKukhSrTSz0SuHm9o4hBEYXKBhsNQQvVg7H+xO1OvJaMUmITH6aaLngyDhTpNo5W07Hl+Sy4oLYJO6CJzjHnCKJyuA8WEcqmZIq82nh/v7EixcvKSlx2O/ZDQtPL68J+0teno5YPzD5wNXlgbYk5vtZko85M+x32DGw3t1BFRJaCIHW4LQslJw5XExY7yWB6iQ5+eJmhlpZ1oWYLLk1ylrBWMZdoBVJCD968ohnTy54/kdfprRKMJaWxb5xN0kS5vbFzF2ZubzeY2jMcyUXj3WNcfTUXIgrjOOwVYI+eXbNe++/z8vbe9KaKaUyDBZjtSLdWvaPdsxxZvSO+bSoNLwT5a8G1o2MXhL1Hot1npIL0zgKabFBM4ZljRjEtuvR9ZXMj1w4poX3X77g6vqCq6sLbm5vWOPCOI34wVNSAjQZbSotrjwOA7cv7/iDr36Dz3zkCZ99csntfBLAJFfIhrfffM7h0SXPPnwg3t6wFMvu8gJ/uSevVdRrrFhplNgwVpKDLRZKFJKGDU4AqNxoOUGzomrku0S8EwWbecGNTgDdhFQKZ1FksbtAKw3XpPrxyeMnqiiz0pqo0xUFY50zOGR9SbkQ1wV03a0qvV9joZlArhlnlWzYunZTJexGmrekNRFjxDGw3+0ZBy9ECWsYpoGbu3vubqA1i7UD41iJdaHWyP0cCT7gBk9OEecHLsadEOhKZrefyPEo4LCbuDjsiLERxoE4L1zuRm7vTqQqyhmpNuo4cP3oilltMuuaWOZF9sNSVI1F7yWLV8blxQUvbl6QcmYaBpY1Uso9Octc3+y6nMdRycuK82INVgoKxESp1vdOVHQU6ZH3O5G2b5YUI60IMaoVseSsagfjraWayJ9+5Sv81//yf/Dzv/CzuKDWRLDlWR+2jbyEYXLwI5/+KL79XW5vbnjzzW8RY8L7QGlna5rmHLUWSk7QKsEHWhErlzUm2fFaZRwGBbFhsE4UQ9QitOREMYZxHHBBAXwrtoalFvEdb0bsU6yoJbXRk1ZR8Eq1IJuzVNgKWXllmAIxRXKS5H8sAmwOYyCnFdOQyvUq1m6lyHj0xjCOgVqh5YhpQnhxmnQWgAdNZItlgMREjWYFuLRObDWDt+QCMRXSWjCm4jWJL4DxsFXFbwpMPeFtLMaJ5Y21jjCoUpaCIaUkgoMxjCzLStKq41KFCgBVwSYZp0aJN916obW6xXA0IYQ0vRZj2AJ0Y7o2oZIuFOwqJW+HTAE6nO7lDVreSOnqIIExDmsLlSr2aTlxd1cYJ48zFh8g1EDOosRYjai+DAxiDdSg14A3BW8aleAMQQHcpv1obCf8dGDKbJXs1olVTm3QilhsGQUmhBxSN9XH1rQi30mvNyNkMuc80ySktZwsXuflsi6cTrPYdPCgzrmveR1fUNJEB2h6XzdFKBXTwZgz8PYQZ+j2HFtsVDIUi6tiZ/eDfLiS4dnVcLrdDWcQSG+tq0OklLe5JuQNBMzWOL09DNS1xze7NmPOYKUilB1Yajo+rRIKhVxvEb69pRZVIgM22ooCeCmnDbxxThX86EQVIWwkJW4bfZ8QVqQ5tehpoGohetZRxZmiRMeg6g0ggLJ3ThQkWpE52eN5p9+fxVbaNClOKHpew5wJr01JkAIA2i2mrR3k1uvr6lWlFFFNMd0eRewmz2Q+JbAMw0YWE5WLSikSBy3zgh884xgoraqKWSfiNlFrkDeLKq/2e6My7q+wYaIVWYfYXOsE9NWppeOHDWzd7Pp0z9vmGB3QPu+BBtT+pH9uf27n80U/a5hWWV+8wNUC3hNjUqWhorZSRdVixUYsDEHmsVqgogUXWa08G2IJWlujrlGVhd2mamJ1rZY10FKzKDvWBtYLEcVosU6tjVRFFbLWjHXynLye+XKW+M1bOWPWJsUVOWXWKPGNWIZ5gvPsxwkbLEtKStJ1jH6gpUKOSYkSalnnLGWNgJz3nRJ+chbiUxjkNVWf724cmJcEtpFLohRRTWylARYX7AbATruJ/TQwv/ech9Y7rRWCl5VWVKUS4zTo9zZqFbUfr/ZgJSuZXMfDMIycTjPrEoUYXcX2zuxsD7sYJk8uCW8NOWUqdlNFAiHueFU9sXoGFRs/oJZN2U9st9SibBwlV1IaqSTmZWYcB8ZpEHvpUvAGOcs+2IyMaZAzO+tY5si7L254dLHj8TSy5CSqaLVBMdzfzgzTwO4QyKvkNsIwYkZRKRTCjzzTWh4ooRSJZ401qmTaNJyQGMv7cOYfdYvUlLc1gqLrZAZKASdjDVXb3j9+hHeeXE5K2NP1N8scE4vjomNFlBmN5lREOahgBktFVKqNfUAW0TyUH4eNRGqawasanKFRc1GSc+Pm9qRKZg7nKt7JPpBLAsS2sbUqqrLWiR1hVXvAUsmp0JoqB+lYaFVitqZKmBglxdgsa+RgSLngVdF6I1gqAUdYFLIX+HGEBLEkfJPza4wR6DG4nN2wospXUpR1SwkipXRFRi2O0z0AXaf7mmeNVbtUXVuVTFV1A7Ot8s7b3+btb32Ly4sLduNn2O2HbU9/lef552MPa+AwBX7sb/4If/rVr/B//J9/oERGjcs0wmydGNQqZFW8wajCllqYtYpVIjDGbDFb1liCKoqZFlE77IQMSSdJrqJp3GWb7JnZ6PtUxao2jYFV+a5WUXXFaP6rCbEKdD3RfUv2y6oxWdm6wzq1P84FQ9sI2rZvXpyJtsYI0aeTWFACjbNGxW6F+FJESkw/z+i+e1bB6dfTNlJNX6/Uysta2emqxEKdqBJUIa7ksq1xmz0bTa0He9yqy8IW4rZN4alHv12Z6XyeOJM3+333+OxMxul7b7fXbFtfyl6Pxo1S2Hh/vOOP/ugL1Po3efbsCV4LWmpz2FqlqMIKwbkrsZ/VRo2Sdvtf20ZYYutHGT8PuFTb/aF92c8baNyO0fjO9sIV/a56vvfORusE5U6ur7p/luJIKVFK3npVTw48ZBmJVSrbz4x+9vmezuNsIzI+PHNs/d7YOHHbeJSisdftdfugt6tPfIrp+tH3+zK21lWUju98+/t9Ka/b6/aBa/tnH+LFV770/b6M1+0v2P74j/+Yn/7pn+Yzn/nM9/wZH/3oR/mRH/kRvvCFL/wlXtnr9te9vfnmm/yzf/bP+JVf+RU+85nPbEXbr9v/+PYXIClJcq01qV7yIdAstCU/OFRbrJKYeoW6V9uQVAupaKWvE+JKP5i6oMnocpZJpoNKWrmTYzonXZooDaSctKJKVHPymqk5q/e4EqZqxluvCbW2Vf/KOVKS7WDIFfKaSSXjvAABtRY8nsuLvSgWea+WHk4TeQI2+nFgnALH44w1DtsqKWamIcgx0htJ7BEEhKyNYdyx3++5vbtT4pch5szt/Qnxr8mYZkmnLInFEAhDwO8kWb2uYiXhvAXjiEsiJ7GFccawv7zAj577+UTNBUyllEyuld00EmNSYFbIIOt8JLdKawU7dNntSkkFQ2F3sWOpWSu6rD7zLndswHoaTirz9JmVJtXBzUjy32oSwjkrIH/rIJNlq5ZCkrBiJ6EJT3sGnKwRgtK5PNq8oqAEHVBtmrwzTN5jWuKUCve3J6yBR5cT2XjujidKE+UrAdElWduSfEZMoqLkrahODWFkHAeWRYDIVhvBC1g+V8Qybwenu1ns+UIDa6lxhjBAsZggFfchF3b7HeuaOc0nqX52Yom3O1wIO9hAzYm0rAzWcDqeOB5nbt9/wd39PcsilgBdDcdazzi+ZLebqChxzmZaDRgKx2PBhgHnPdf7K+oAxVZOL4+E6QDe8/6LG47zTDUwmT37MXB7vMdaQ1wLNRfWNeNJ7KY9YRwxrbEbA8E71rXw3vGO++PKercwnyKHx3v2446X799iTaA1j/GNRGN3uODx0yvee+99YsxMw0QtmcEFpmmkukrZ7WhVEsbXhwuW+xNjGHh5+5K7u8x6TFh35Gtfe4v9YeJqt8M8vWZZM8M08f77N4QwcHW1V/l/AfwMFRs8uVRKM2RN3gZrmS4vBeApiWVeaQWCsTjfhHQ1OWopxHkRpSfbuLrcE1MFZ/C2kOaGC55nl3s+cX3gjavAG08PXO13DMFz+/6RUixP33jM1998h+P9HRcfeoIbrBCC7MB02NGcwTrPzncgvlHXjMHjJkvNmeUUsbvA/jBJ8iwrialZclppi8EfxI6rLJk8Z0yReSMEBoMZLBRDi406F4w3lArXj58wTBN+noUYUB4kP2vFq/Wj9xOliBXgs2dv4Jzj69/4OnFN3B+PjPuR66fXPH//PVqDXBrrzS2PzDWTV4uEWhm942o3ENPK1WHHPY3TSZTs1phxprEsK6d5lTW/NMK4Y5wC1jji3FjNLc4KEOhD4MLLWgBgnOXm/sQQRlXkSSzRYEPgdJoxrXKx25OSgILBBHIsBD9Q6wwNdtOEoRGPs/ShFfDgfj5RMXhroBacFYJrlaw2uRQGOxDjKiC8knhqzmKLagWEFNsJQ3CBqGuBs5VWDPNyTppbBYhyV3PT/sNqojsnvvCFL/LDP/rDfOQjjwUMMJJgbR3M5VVYQf7ecNbw6U9/kv/Hz/0sp//0v7G8uKeRoDQC/XmJhZ/bCMiFXMXSsbaiykOZkiAje0HwAsDkktXuQ+pZc0yQiygJeOlU0wqDFUJJjJlGZV5WJS8UIYYaQ6xi9xZcwFoBGZyxuDEw14XWGuPgGayl4ZhVCMc6UVto+s8wyDrmrRFCqNq1lpQxXhQah3EilcZSF4ytXFxMeOupqTDHzLomIRR4T2tCsnQuC7k1Q8HiBiFihyBg9NIkDkg5KbGgbKQNq5apOUv1dicVFMTOxFmHs4lCxjgAARdqBedCL64WBUFV19jvBowx3B1nUQ/E0GoWpSQrChPWWYJzVAwxC4m32/pa4eSpgICQvUUIRavWVYnRGCO2vJ0IpaotzUjVfC6FOleGELC2kJaEqY3Bi3WWc0JYrtVQjZE124hlkVMrSGvVFlhtXURd0wgw7xDgtiFk1NpEycVJ8h3HRpYRFa1Eax0ckzFSqLQmXkVyv0pMsxY7ahm0yWAdk7NYH1jmhRTjRjbpyGBrHZSoClbYzsvBKNGugwfyTLoWVTvzcDiTSdDQR8ZK0aKAoiaQP5itKXOsKjhjrd5zt4Gj2860M6kIsykZiYIqm/UfHZwxYm1FQ21LX/1eY1W1SQmWHeYpCk5iuvOY3YorjCrLYdhUHVBAy1p7BhL1zAISntYiIKKxRghxtUp8phaoRivlWzW9U+Sxq2VpjImuAFWrANoGaFbOE9bbTTnDeSGYrzEqgd+Qa2FVhUB0fS2q5OeURGlDt8NTNQQlIJVSMPX8LMYh4Lwl5kQtqo+rBRtOlYNUdAPvLDmvCrhWPcP1+VWpGMLg5bzxYA/SLqCpQmtToNVay/TosRLOOlLWtmfbiWwP4Lrzn/SPfX/ZJktrGzHwjOs1BfXaZh3YP6+fJ0xTS6b7O26+/jUhXQDT4GnGbqRc550+LwUJq8zYUiq1ZFFsMZ3cJhZVKelZ2qqaXstqx4sUnXhH7cfjIvZ9VAWcjcGZhg+eopZ63QKxVfDDsCkHttLtlTwpFlG2NJY1rkKkVqLrpr6nBTzQKJ3UUEV5LsaM0TP+GEaaEyW9tCSxFrSW07wSU6aZhmcgOMNao4D9uW2EtkYlKFmb1ghe1/XSOMWVGDN5TaRUGCZP8IHltGJwuicKj8YPA9NOiEcliz1Uq3Uj+DULDinGEML/QPJi6b6sCzlm1lQwNnJzc0cIntEH2AkJzfnAaV7kvWOQ59XMZg1pTJ+XhqJrlzWG3TgqEbOQk+5H6HW3KvO5NUrK1JywBsYxkKsoE1oaNcuasx8Dl9PAYbIc90HmpzOsc6Q2w34/cXN3EqL2QWzZcs5gHH7wGvNbIarpvkdWfTqvFldZ4p0w6KCr/bwuNtAUc7YOy1X+7WtuP4tbaN1MKwqxo1kYL66YdhPm/l7Uqfs1SNQic9XILtAVt/e7HeM0cjqeOJUTKScwlv1hR6mZNGesFcJgaG1TOi5NiKZj8DSqxkuGdRXF7KpEj4d5lVYL1nlcEMXvVgxrTVibt5gm+CDKYYMUsSTNPY3eqPqlfEZRRoWzZzsvi8O08oBkIWMkBE/MWVRxlfARU9R4XPdDGqZbQTY2pT4h5vT1rqnCtZKeEIJJTuVMVKoavDVR3VNnUBnHquTWSaqGpurhhT/7s6/y5MkTnj99wkenN0Slctv5vmPD/Y5mgN008vO/+PO88/57vPPWO5hWoeVNqa0r2NCkz8TitKii6au2q30Nr7aTaFQXRz9D1GhlXDVh5UDP+hlRN2xIvinpVlk1FhaakSo+K7mdBj54Ws2aT7TKv7PELHsiVuLFPpq3OFFji1Q72bpKXF+lKBNjVWW04r0leL8Rh0tJEmsrndpY8N5IrrVJbIwSmJxRshqiOC5reaVTW3qUIpyVKrGl0WirKWnMCBm/IOS2Pu6a9p7ECWhsInupc3LNMSUlM6kquu5PZ7uzTizXfbvq9WiMfL42ybPoYHh45bqv63pLV2tqxBj5g9//fT75qU/w6U//EOM4UHOh6Pzyei3GWh3v5hx3ddKRqqaipJ8+B+SYc35tbWcr5labbIk9ntA/Nz0vNaq+7xxz9sT5Of6QPcQ6S+6njiZ25MZaUrabZWHvk/NCy4PrezAHW9t66ZUXbj2nP+0x0faX/naN4UyTipHX7XX7IDdjePRDn/l+X8XWWmsc33mbN//fv/3gvPG6vW6v23fb9k+fvkLAfd0+GG1dV/7dv/t3/ON//I/Z7/ff02c45/ilX/olvv3tb/P8+fO/5Ct83f46t7u7O37jN36DX/iFX+AXf/EXRdTmdfsf3r5rklJXqDHdzkutC2rNGCNgZcmVZhAFCOeIKUPNVC25qzRJrurBrNYmKhRIpW5wXgoAqyQgrJV0lSRh2A6juWSwQpSSCqvMvMxQkSQkFR8GhkHIJCWXjeCCQROfhTtNkFmLWlB5JcdA8CNpzYQgVkQxF2pMmkCxxHWRhMs4SbVyV+HZjQxD4BA867xQW2E4TNzf31NKwlapGCs5kVLEWrGXK7VSWmONGWsFdGhVE7fjiLGGeT5tiWORLe7WJxYfPN440f6pWYgCzSlgUKm54gfP5eXllhRvrbKskahS48YZqdRyjpx6pbP0QTFqYYVIvVejsuG9qgyjlhNabSaSU3qQN5uSkmlodZkc7g0il9DBkC4zYKiiWoEmjTTBbrp/nZWApFcay78iQW+cjDXXDIMx2FJJa6S1xrxExtGz2x9o1nJ3d0vwAxe7Ha0VSQjWRikrvgZ8CMQm6lw0w+XFhSTn14Z3orW0mwZ88CwpYVRZK7eGS5XRWCYfuJ1W7lPkwnjW4x3BBqZxAmMpTYhWuRSCsUxDYAwDeRUAv1XL8+e33N7ccXN7T8qFSqEaqTTdX04sx1VUf8zMs2fPcJMnDI7j2y+o1jPgccHy9OlThjByvLnh9njP03DB0CAGlc2fV27v7kSRpxnykjgtd1hnuNjtyDGxLiuPdjtoO1Ekm0ZezAs5S7XyaV6YpktOy8rty1vCELjeXxCXlaurS2iV0iypRC4v9wx+IoSBNSdKFaWYaTcRU2ReGzEnISk2w+H6wOidgEK5cnV5wTQdeP/d56qe1lhOkTUKacK6wNWjCxowzws+WLXjaFu1OMZAFoWw4EZaM7QshKhhdMxzZa6Nu9s7SXxbAc72jx5RU+bm7o5pGLi62HN9uOCd5zdMlwdsWTGlYYPncHGJNZ6nz57yN8KesmaWy4lDe8bL5wvZTwyPL/jwpz7Cs49+AjMM7KJlfxhgGqnGkGLGWHjx7rvYlLHGc/3hN7C+YS8cF4cLmRFViCDGW/CSrB7HSdYLK3PITh7vpPJbkniZYCwmWPBQjhECuN3AhQl84rOf4JOf/Djv3x3JUVRKnO0VmZIAdS4oQWkntkdr5PLyiquLa5ZxZV0zwXmu9ntqvOKtb77DsDsQU+XF8xtaLVrdDcY64JIcC3WE3bRjno+ktOq6I9XnWMPV1RUXY8CUSjRVbSI0wQq0knDBMUw7ElbWvFQJU8CPA8sSac1xnFewUjE4r4kSZ6694/7mllNKNGB0nloaMSW8FaLSBpI2oBaOd0eMl7W3VrGH8z4QY9SEvqXQKDlhq9hiGRxZSUeDF1uSpMSjM7CKqlgYUq5474RAl6JaYILxgZIiOI/zXgg2tfD8/ff4//6X/5P/+X/+BQ67QSw3e2JzW41Vil+TtQ3Z40uq/Pjn/gZ/+uVv8tXjn5GyxdqGtwXvLffHWe6rV+Y7y7SfKLWyrBljK94IqClAfmGYdoy7geP9onECYBrjGGi5EnMFk7m8usTURlyT7jG6/KsaQ62ZQsYFy2AD4zCSUyZVQ1wrMZ3Y7yYcjYurg1iy5sL9/cI0ib1DiivWCxhrdEzHNXM0q4DFFKqpYtkRC2uMGGas82AazkHOYgmxzJGUBLBfU6ICQ3DsQ6A5y5ry1kc5i0WnpZNoRPnIO7s9D3gAbmHISYhLIYjd0mBl71zXlYYhhAHnzUaGBkcFtZopDMOItY6UVlEjQEhOm2yQ7rcheHJVWMM0sX/CyHVulb88qDbWuIaqQICQZnvpsXCBjCo8mU3JsRQlX1hDjCu1ZHJM5GmUmMaFzYbLeU9TVQKjZJQOmGyAWic3AL2k2TkLzlKSrC8dCLBOyEVC0sgbSalb32xKN1o9HjsBwTgh49UitjrWMU07UorEHLFNVJaGEFiXlXmZSSnSbdrYQBWjGMlZbanbBT8IvDVOUhKpgjcyP+vGrZDbbVucK8BI4Qe29Xi+U5EU9GndAmUDgURVQyyCVd3g3FtKPpEPfGg50sktHXTscXMH7OhxozlbcVgn11Kb2AfRzwyIPZpzTmx0N/KOfrOOvzUluiKU7XZb7RwbtyIqiAKKiuKXjAcntogGvPNqv9xVYIW0MVhL6XZvIZCIdJsfFJwtGiNXulUY28/OtnJdZQs9A6jNSbd+Mh1Y7XbJbQOqGmcr51qFfDQMg67FYm+Uc1E7s6bESAHexHLJbmtfNfL6bq+63QtmIxQZ3TP8bkc4HDqSJkQiJQwZZN85zxP7IFe5wYGYpsoVD+5nA0bPKOE2JlBAmE6AM2rXYwz5/o7nX/kyJUYaFu8sYRhowBpXnHUMIUicW4uozChZVyyVDNbIMxiGAYyIzXTCspBErcQDqjIlpLeGx4B1rKEQSyFgyXEVFTrvN5JVQ+aPa6Jo652TPVXH7LxE1jWyrFGtZBRItVYIZFEUSteY2e8Nxlu8t8T7mWaaqCJbK3urE4XemCI7N+AbVCW/lFxY11XI1A1qLqQipN/hgVrH5AMQ8DreS8qaA7CkFPF+IOXCuixYtZkrpTBOo54zZd4KWcerCpiqEmKUvFXINLHsKqLgNYwDzlqCs6RaGMeA90JU10WGnAr3pYPtjnE30BCFHOsE1LZV1hWxDUXpDWqb2owSokQZI+dGJrOu61ah15VCW20sayQ4z6jnwOOy4odBlKObKAM7a7EYdvsdz2yg5koeA0PbsyyZagNuGnh8fWB/eYVxjlAMJjjwXlQIi4DPy+mIKWLXPl7shewwyPnnIahtuscaEjMo51bmqrdnK7La6QRN7J6sEbs4LQhxDq7eeMYbH/8Y7724kaKOpuQFK0Qiy3k/68SVUgo0QwiBcZq2vIOzlmmYiPOq9p6GdU2kmDQmheoawygqZiUXhjGQUhX1uiZKirXIPJC4Y2SwYvvcFRm7TZQMTIMfA7XI6SdlUfs0QQhXEptCrkm5t03zVhabCnFNkiNQ5aQ+B4MTwnrpa1iTAj022zJZU8Uiruhf5RfyvXmzQe2rmpBC7KbSWTQHBz2ukHvrNs9FCx1qa2DdpuJlnaeWwv3tHX/yR3/E5eUllxcHri4PG1H4YfRy3qXbRhiWM0XlQ8+e8fN/9+/xv/wv/4a4rnKmbkWIsErgMxjdvwzWy1m1NFFM7YTATtQwFkZVr04py+hrPZaWHFVtoiQ1hLDlBPvHWI3HhLQjiSpnpZ8BzRdAzVmJJlIgOA5S9JPV0tRYK/t61bhTzxNd/avYbjun5KgisUBMeZs/yhGT36l6VKuyr7cice/gPM7IupdUnXeL/2wnaek8NKqQSlPSitnGkuxNQrZxtts89zHQNE6XOEBiZy1gVMKxc7Lv9LElFotKcupDWMlmqK1u/5n+YRsvDejqrn3dVt3EbU9u25/bdu7uv+8Krq01vvnNN7m5ueHHfuzHOOz2VOfABLF96+qdxmJaJ/urQpVeA5iN4IWSCDvxTcabwfazgVF1SdsLLoUcV1U+tsc2XW2yx2FnYmYnaAnBV/YNrwUcop4kOaeR4sRGNpdCaw/j+1epSCjBSjmInGfmeV3ooc3D/u/P5nydOodf47+v2/8N2nT9iN2Tp9/vy9ja6d13+Np//Pek0/H7fSmv21/Tltflz5NbP0BtevyU8eqa9ebl9/tSXre/YHvrrbf4V//qX/Hrv/7r37NazYc+9CE+//nP80//6T/dzkSv2+v2l9FKKfz2b/82X/va1/i1X/s1rq+vP7Dr5Ae1/QVISiCHlUpKPTkgykTWuVcOnbVKQleqZsF7j/dOrUiEzNQBl57IryWTkQO9U/AoZ6niKWqDIOr/RoGjXiklh/BpmkSuvVa8D0I00EuKa8RrxWpP0Kdux9Qk+eBapZSE906AMVGaJteGrWLVkhUYbk0siwbviSmyliRSvs1Qc+b+mBhVYjqMA8SCqY3Re6mO1UEe1xUQlQWx7Sm0mjdwz2DFHmEamZeT+q83nAtYU0klKYghVd8xR/a7HdYOqrAEKUVKledyOV1imuF0OhFjxNBY1xMUScYE56imMAbPSgJfGS4GzGRJRkATWxumFZWq1gpJKwBOznlL+PX7M9ZK1SCWLoedklTNlVKJs9gTgQCHm2x3TgT1ki9ZEsRhGLYkvNFqdgOYqqBdl7Buat+RC94N2FwhVQWhLWEamWvBlMioKhYpCSGs1CpqG2NgnlfmU6E2S0wNqBznBecNh+tHHK4Nx+M9l5d7bGn4ElhPmfn+SEyZmgowUGoiqYXDOA4UDzlWxt1BgAiEuFUopJh4fPEG437inRfvcYwzp3giLYncRKlidzHivGG3H9gf9ljbuH15x3wSAO3dd99jyVdcXl1QYsY4y/Fu5umzxzy+fMLtzS25GFKB5y/vMTjGYc8yn0hNlGmcMdhmuL+5pZiKt4G03OEmT2mFcYSYG0tcOZiRy4sLYorcHo8sccXTiDWDExjy5uUdxcDh4pJHFxNvv3WLHxxh8qxr5ublPbtxzzhKIq0/fx8C1jlujivOeG5fnkjjyuFiT5klieSc5dGjS9Ky6thwArB7SxgdN/d3gGFwA/Nxxg8DGCcqK9ZhnOX66oK7+yNYTy4DRa2FxNYn4EIgpkWqj70npYiZI7VU1phIRNzgGVPCYKm5IfGS2NDdLok3b+7ZvX9LI/Cxj32M1cHL00suLi8I455PfmQS27PdgeYGqilMh4nmnFgIKkgYvIMmfWmcJOqMJslKapgCqUTc4PBBSJumGamE60CdV5W5KeCax1UHzmxrvdsFyXA5MM0yXU189tMf5/f/5Ku67suaQmubcoVUCHfyqWeJmfz8hlbAec/VsKOskfe+9Q7OWy72O9YqSetSssx9BY1vj/eYd6QitKJ7RC3UnBmnSSw+vcciimvjtJc1cY2EwRPCyO1xwQYLMWNaI8XCmiq1KeBdYJoO5CXREMKNHxwxrpg2UkvlNM+aoG14Y5itqMW1WgWkWqPan4zEdSWlLAQmKoRJx2Ij3p+2RKrpYEwTkMvpXiE2kaKu47p0fKkYK5nGYB3OCSm3VIOzgWGYaCkT00otTWw9m4FcyWQhwJ5mwpD5gy/8MfvDBb/48z/DOOl2je6p+v+mpIFN6aNVTsfI6Ef+3s/9DNjIl7/yNUoym5pJcBanlfrzum5y+s0KUD1MWtFeipD8AGuaAIpXokDYkDkWQiAtkZYy890J26RifVlXrVo2jOPIEAZRSqgZ4w3DbuTRxSVUOJ5myAXaIKCUKpqkXLEWliVRlIjjjNgd1NZwtmGqo2GULG0FRneZMAxM08g8rw9UQzI08G5iORWW9SR2ToKGizuKgWEcmYaB+TSTFcAbg2dQtZRliaJyYQzDoIC/8dv+WksBBQeKEXW8WiPDIJaZy7qSUlIbQK+Vr5ZiBGSopW7klqY2S7YGwKgVyRnU6hXJuRMxTFc6kf3PaQW12F3p362nNqlGx3RihuCZ1SgOodXjFkQpjDMwZhUcWZsQsJYUlbAK+bLKOLEG572AqjES/AMLjyaWlT6IlZGxEk9UVTDaOAxGiR4IgdmDWLMoeUiAxaJrpFbcG0uzqOUim6oDRq0ZRLZmA0+tF/JSyZlqLd46ITrHhWVZthipTz6j5BpR5lGgTOPoDUHr87O1s50VHfw4A5T9PppRwPIHHFno4MmZmNU2hZkGik+1rQc2u2dVLkDBvs6vM9s4bgJmqn2YkJXMVoHe1YcsVokuZxWe1kRNySvBs6vq6FYHiBpZt6jphQ+qEfcK0FN1HgpIKeOwKmBbiloXGyGbWb2nUjOlGQXqRNEkxUq1AjI65zBqQdJVJnpFfM1qPeOcdN4G9sn3oNfsvCPntBGOzKZOVQREt0bncyV4z6Z0BRvxgwaDHzEYtSIpgFokNURRVklO3mnRgmv4QSw8q+kgmqwr8ulycLCqoFq103fXj5TQmDdy39kaUQiUndzUlXlkPNjNMqeT362pemZUQFYByDNor+MQdC/sHCajig+N+zffpKyrnl0N1ntSE8ttZ/uaLSBxt4USckoRZUaskjVRcjyEcSKMci4dhyCkqmrJSWKaWqsocBixqSlqE+e9E6C5NFwI27m4KemhlsI0HPDBc5xPpKIxQSnbOhYGj7EQgpc/G8RuLMl57Xg6kesk9qdFilPSmtjtJ3bjjnVZZW9qQn4Cg/OBnBKm5a3fQM6EYqnoKFnIwY0q6qQVUskE/Fb4s8aoFnqiCoLuP+sq6jJhcExD4HgXpcgmOHKurEuUPIBH100h1TnnoFbWuIBxrGui5ixKl6np+DOi4KpERWOdCtvIGXWJK2Dwxou9vOYrbJ8nxjKOo1hyqYJaK9sihbFOSPg6njtZl6TWilWLv5zBVa/PEwW05fNv33/O7Scj/rQCjourS7KBJS8Mw4DzgavgcMGDH2hWzgFuCKJY08C2cw6Ghlo19vO1XGtTtcSiqoqmS/md+X9oQCdxh7dy1uC8N2mnYke/bWVucHzoUx/nT7/0Fda4bgJpTdeC7Tp0jhvRbmNZVlonjFmLxYqFvbMMPpBKlSKeUmhK6G+mkUrmdJrx3kuRSpV1o9U+j8LZVhghYfngKEnWkRA8a9JYSUkerZxzUyjRyFknxRqpntcftVMzVUh7S1W7XM5K1D1mSlqU0MkxOQupvebMMPT+s6qyp+QGgyq/abd3shhKJjSqqNYeEDhNU8Ucs+1VBrFgdN6IdXPVtVk4FmobLGSfb7/9Ld58803GceKzn/kUFxcTf76pynbfYSs0JduaZvjRz32O2//pJb/927/DchLlz1L7XqXLY+5xJRurwtiudF63Pd+AxpEDYFVlVgruaE3syWOklhUzDuRctn4QNTtZ23JV+1JnmIYRbx05d0JI2/bB2uT516bqpLWT7CzVGFrJ254rhJem9sLyGlpl9IMUgWS5v65sZbC0aliSKqqaHqEIidVbr+pwZbsPq2euUqoSsurWJ9CjSKtzuj14Po1WO1G7xxRtA3u6lTOc98iHbSN6GSHoVCVX64HjFQLd+Tt7aHsmifX5c+6z3h9spCQd7Q+++8FawYP4UMf13d0df/iHf8hnP/MZHj1+LKpZesY+q1sZUjnno/ua09dlUX8VJdsHdRz6XZZGUbVNsNVuxZP9XjdVsB5JmB7nVY3xH/Sj7fkZ7SNr8MbRmsZ525y12CKFqJ0ctj1kzMOPPcej3/Hcep82fQ70mPuV++v9YV6xkXvdXrcParv65Kcx7ruGvf5KW82Zb/3e774mKL1u39d28/Wv8fRHf+z7fRnfc7Pec/3JT/POa5LSB7J98Ytf5Otf//r3bPtmjOFHf/RH+Qf/4B/w7//9v39NVHrd/lJbrZWvf/3r/OZv/ia//Mu/zGc/+9nXRKX/ge27JympAofknjoIJCBY0CrFplLL1mqVueam+0HKOPmz5MIFcLXWIdq4Ah6ZphXNRkBPqxVkzbQNHA6a9I2rVK1iDTFGchGCgKmFvFbWdVELGkPJmeADORWGwbHb7ZhPC60ZhiGQsxCNfAjQpIrU2EopkbjI0drZTpASyeywm8inGWpl8GohpZYIaVlx3hFzZrBStZ9LEsWYdWVZlo14YxHLE6e2CClHDIZhmPBukKSmkQShrQKmOycJdAyEcWQuM7U11rhKRa0LmjBzCjgb1hjF/svUrXLPeicWT02SVReXF+zHwN18ZLwayKZSrcjEWyzeeWotBO9x1nOaF4ZxpLZCI2GdYRoHrVC0zMuKwzH4kUrRRKA8j1or1otyltFETCpFqn+aEIdSq1oR2TB2wTjD7rBjd9iDUa/7LqXsKqY2pmFHMJ675UizXpSikISVa0aeR7PENONHD0UUkay37PcD07jj/vaWlOsGLC1xZTeN5BjJsVFzY7ff8/jqmidPrnnx/CXL3ZHTIiC2s1L9tyJjanQ7lnlhF0YuH13zrbfe5u7uhlwKKWZKTEzTCNaQYuXFy2+z3J0o68pu9Fxd7nDesswLg/M8vrpiWWdMKiRTuXz6iItHjeVu5sXdkXwnrORSK8Y3xjCwxMz9/Ym744mXL28oc2K6HDmtC2SDC55EgdoYnGecJp7fvuTi6sB+F7g9Faara0ajRDUK1lpevLyl0Jh2AV8gBLCmYEePIUDMLGvGDoG8JF7mzJIKjsr88og1I2nK+GBoRdSR5nnGGFEPak3sDkuppBqZ7J7TWmhGVENarYz7kdYyd6d7dk3G9ePrD+Gs4b2TWM7l1BgGKPMKxnLY7SgpM9iRJ0+eYp3n7rRSU8IYsUPB9Cp3kWSf55lxHMVq0hSxWRkH4rpyvJ+Z/A6Au/sTUBjDDmMtt2viay9umN57n2nYkWOmWsfSCh/90CMohTrPFCcJTFMqPsicb6lgrCflhK2G6488kyypNecKWwOtwLLO7HbjVqEvKS9NfjkFAQwYZ/C7QDNnGXJ4gCv4M4HF6Fc9utwzDo60inpAgw3sBEPMq+a1K34aBUyaZ9K6Mh52HHY7ltbIKXJaokj0lyy2HlqZL0l5URCIqWBMxbqgQKcQS1KMlBYwLjBYIXPMa6bawikmDocD1okdzvXTR5xubjnezdQW8UFsWKw1zKeZF+8+xxlDUuLDOHhahZyykDaTCK8PztO8ZV5kT6k1U2pjXqXquzZRCMitYCzkksU2pVaCH2QealVjigljREXHDQM4IUjs9xP7YWBeFkoRgNgOlqzJ2GBFPch6jy2Z1sSiwDvwxokVSl6ptbLEgq+S4DRATJV1XfnCF77I5374U3z8kx8WoAIBT2pt5AbNsiXaKQVvxa7zmCJPnj3hx//Gj/Lu2ze8dTOzloRLkcE7pmnixcuXG4E0l0YIA4MPQjZ0jnVZsc7SCqSlUpKMl1YLzjtMrqQcSbFgjadWuLm7ZxxHnLGEYBkGUXxb2yrqg8ZyeTjQamVZEjkVljliqAzBMU6j2uuNLDFRm9jHVBo1RapzotCTiijtUMVqrlRMjuz2ewY3siwzIQxQIaakFgCyLtTSQAlZxojykEVAwBYTixVVMWMdzboNNBrCIJXQZcV5SXgbC0PwShzwLOu6AelFVVmcD0LermJ7Oy8LKSX2ux3Bo2C4WKEMo9pMOVHvsM4oKbDbQPR47lxB2+2tOvBi60YT0YrtM+haFMjaKocdmyVrKWL5ZlUF5yFRqls+WJFMEGs568XWwoha5svbG0rJHPY7pmkgtLMCgJBHZb1otSvSKOFPQRbhPzQl7BS1yqtC4AYlx5+VA7q6U1dmyalsIIlUSTdQ4olgDlq5rITrHg87L3YNVfdHrBBbQxCLx0WfV1Pgm17Nbc5rbodk5Jko+YjtgW2EJXlSbOAGtI7nnJGKH8DWccimYPYZK5E4TdRTteqfTuRC42+otm7Ank6LByQl6ABcfz9WSSa2f7GCs4gygVMCW/8MISIqu602oAhJpoOUOl66opAQlwVgdvrzWuR3plvmGFnrRCWjscF/qj7qgqfpuBCwkO0sVWKUdVmBPFElKlocUMSaSfvOKOj98FpL69X57txPBkztdjQGvFMihqMquaSTVbF2A7wzTftIFGBFbUmJieI3swHmwzQQnIUc8aMXNQhFvYUOa6EqcdJaJVt6BU+FGLF/8kgLH4RUaazFIYorfV0pHfg3QkqQHq4PgEVVW2vyXGSsiTKlVyttdH3aWHE677zzOORcF49Hlrs7nWPdXkfW+lyTxqM69qwQF73TmKWvuci5JThPK4VchFgVQmAaR3bTxLzMup8LSUHIJKLuYJT4mLMQu8dp5O7uKAQgHXe1FFVWEuB6uT1KzJkz3luGUSw9c8qiRDOOQkwojUJj3E0Mk1igLzHRVlWIUBDXOUculRgTa0ws60pNBT94UslQlRzImVDnvWdeF4ZxIHjLmip+HPFGZqtFlPDmZaEBXq1VnRNlXaN5gVaqFDA5scVdaiKViqWRlwh4qpc9j1qlCChLHCdEPtknOrHWK7kFI6TTpsSy3CprikpmNUzjhDGGU8qillgk9spN1HCsF5VN52C/24k6YCqb+qBRNZOuFicWPlmupVaMUUUT5yg5E2PGW0m4xhiR/VfG6VoqL5cVf5qlqKpI32Uql/uDzMecaKpoZaoWExiJ95oR5SnXHNNhzzboN46AzOGcMz44ybN8x35iHgLXxmCD3N/2/lde/Of3gP3FhcY6ArzLGq15CWtV7UavzIILgZqz5Hm04IfayNWqXXfV75c4xarCHRpz1CYFEQ6z5Rv6Gp6zkAeddfq+ypohlYr3RklRot7tbGA5LnIdupZ6tXtbTgshCEnZGqOqi6Le5DYC95msnVsnfcqamFWoslvAVSXNSoxUleCh8csDS7gzQVWUYOV4aBhDoFvgWkTxqhNG3Eb+sFi1nhUlITk71VyV6K0kEy0mMw1ySnz9a1/jyeNnvH/1gt3+I3QLMKNrf6XbR+n62wquiZrcusq4+umf+inub0/87v/nv4raZJbrlJxc3u6/L8nDMGJoZ/WertBXGrlVMN2eTrstd0UbA4gyVl3V6t0YwqaUlLW/RXXNWT0nlEJOWfcWdE3tqqBqd2nOij6oSpWzblNcbGolWIqogQ7DKOqt1uI1aqtKnDbGQe0KPT1UkQ6Vs0ahlcpcRYW9YuhVgdaJZVxRm9hOBLJOesMap2qjDdqrKkRdmapUUSzrRQ8yT2T8NtisW0HVFi26/7MRZP9bc13CKPnejZdEj9naVmzaYCNRdaJ2V88VcjmvxHgS7/b7kP3G0AlMhru7e/7wC1/gs5/9LM+evSHje5AzqW1WScU6rvvZQtcLo2RpYx4Q3Dt5p0Kj6LqtsbfR+VPPCnCdNN/f2wnS/d47SVI+pG3PTEJ9pZZZI4qKKGPUgLFBc7uitlxKeYUz2nPpD57AK8+jqzmdWUwP+/H82r4OPXxmr9vr9kFsxjmuPvHJHwiAsbXG/bff4vj2t7/fl/K6vW4f6GaMYXr0eMuLvW4frJZz5nd+53f4xCc+QQjhe/oMay0/93M/R2uN3/qt33pNVHrd/tLbW2+9xW/+5m/y+c9/np/8yZ98bf/2P6h91ySlDcDRw5dUg3A+yDaR8ffGbaA5xgmYqzLaBqnWFTcNVQbQKv9p2ito9H+x92fftmzXWS/4G1VEzGKtXZ1COios2xLCNpavBQZjTLuYm2S2vOBG442/jjfeeCBbQqNokGADV1Q2CeaCjSTLR+eoONXeexVzRsQo86H3EXMdm5sIV5JhD5pt9tlrzzVnzIhR9O/Xv09tvSla9GiYVrdDI0BWYUCKOllcS7RrGOoGN4HALgI5iaBesXhnMLVJN34TQYIKu3EvXaI5EQbtYCmZVkR4GIJEpznnpGjVNHptP4gY3Rq2ye8vOTMYKbSuKdGyRMpVuoWyAEyjc4QQxBIf6ajsxbU1Jmo15Cxdc853x6JEq1b/r8JbrWmkmkTjxSTFPIocoEVQn3HWb5FC1YtY6ZzHNKvXuXGKZ+xoqE7ioSzaJegcwXtKlkJgzpHgLd42mnatNRqlRaDivWV/mC6HAmuwQYAr7/0GMo07OSxLZ7lGdBTpaKM19kf5nWL3H1nuz9AaQTs/jWlgxB2hWUPMWYSbJcOyYsiaOtMYvGdZF05z43A1cTzsmE+L2kBDyo11uWc+C0Q2DAEfPLlm1jnSSmW/30vRuMFqDWldOMdMSpUweAY74mksOVJjxQyeMA3ElLk/n7l9+ZycCjs/UdJKcAPneOKUxYXlvfdfsq4ra1zY7ycOh53EGpjMoC7eEWDYY4xnyAmaFKAe7wOHw4Hj1QFTG5gJ67Q4Vy0fPX+P3WGHGRpDc+wPA3ZviHNmnResdRx2Oynctsr+eFBPicqj45H9uGO9u6Fay3E/cT5HXtyeqa1xPltaSWDgOA7sponnd3fkmBj8wG7acXN3R455e96XZWU3Obyb8NaxrInT3YlxGqgF5tMd027i6rhnXhPGOWoTZ7P99ZHg4PnNLZPzPLq65oP3PuDFzUuCCzy6upbiWGnUlsk1s7M7Us6kFJnCSI6JUuDb33oP40XglkJg47C/JpeVcRhIcSVZFCSU+9UboBQm/ayn08wHtzfs96MU9prBlsyI524+862YCXnF2MCTq8dcP7rmZ/7XP8frn3iDPJ9J5x3Zj+xef0LD0GoiW4tzBhMsQ5hEcPAWbKUg842pIKBnY7cft3nAYjb4SCbluoUs9o70rTfx0sq8/fwWq6OWMN6NXB8OlLySS8aogEeTKCSrbmypZHbTjiEE7lrBeyl0Lcsieq/zWuVrlJIYB88YBqZxINVCzJFlifL3rTIvJ4neC45xnDidFyoWZ5wATtbSKuztSLUV77xE3DnH2Cxl2HFTTwLJJMM0jgzOMoVAsBYfHDHOnM4zyzJjrFdQRYrR8yJw5JOnj/Eh4K3BGhWMGrSciEsk5iJznLHqllEJQyCllZLL5prRxZ9iIDhHcAOtFub5rG5RstbNy4I1lt1+4ng8qLjqiGnlsAss9ysxrthp4PGTx9ze3osrjzUs88L5FGmpCazqLfG8Es8z/+yf/B/8xf/tf+XJa4+Z5wVT4X5euZnPfOKNp+wPE7lUvNxVpNJ4+933OZ9X4t2JH/2RL3Bzd8fNd28hZeYiIt22Lvqga7xjGIPEd5WKNZ51icRUNNZFRP0eTWCtrMW5ZLz3XF/vZH1H4ORe5I0xMUwjYRxIC5zvFyn2OiexL6lSWiZW+bfOilPiaMEhMJbzAZNlb5JzEZGniWOOC44QHLRKjiulGdZlZTUCHhvQ9S9jnByqckkCD3svLnpo9EsxxHUltor3g87JTdwol0hvqK26lxBx2yt0kAUsCDK3p3mmNYG0q/wjaqtbhFvvgJYufEsqhTUmEcucZxq93nsRDBe3j9yFMO3Y1qlgHCeNFsiba8iakgBYGrcnU4eAObaJyOFthxgFyKj9Q6KCyNadLYBKq1xey1iFAGUfuKYVuwrAgVVnpGY25yllOunRIFkFAosh6Ov06CwRJEVMKaVicLTuBtnq5rjUaFCKwkiy9zFcIjN657aRLY1gMC6QxR+KHjUWJrdBHimJYOHU0XOeZ4mP6+IH4lhV2+8UYR4WXjbXnK3TWf7rpXu6x3pdBJUfxLEJOK3//y+Q0mW72F0STF+yqEX3urXvd9v27y7CjoqJdHepLhoputT/rMBSq43m5AJ2Ibg2FVibukwo8GP6eQK9r1VE6pEmrQNVQND4rVIl6qtZ9F4SUdA4q2KkwBddjXdexGyn360AgA2nLgtbzI/rTkjqoljqFtlSSncRk/fY6M0ibG5h1lq8EyG8VnX/UfiNDlXpua2DfDS533vclVGx11pPs3UTx/sX2prEshon8FAX7XrcinNWI07Emc4pDGgMeKOxjMGBxrgGjeftCFpzes80qLU/y3rfP7gvuqOBXAkn5yZ1NslR3Z90bu9QgBFdW+PHKyVlbt/9FiVm3U+J84hAoZkwivNnjlmhRjGQW7M0h1hjtxhAcX0qMp8rgE9L9Iaa3MFJp3AYTaDnImck6yXOLMVEnGdxbLJGYU9LjQL0l1o5nZZtXQ1Bzpvei9uW87ImFAAfAIevBZrMnVMYGUJgGINeTxHCRYA3nM/3hCFgEjhvGQZxps1JIs0NVt39BAwOQ0C9YxiHkcEH8rqCwrkpFc6LNCyllOUCGgjeErxnjhLB6owl+MAa1UFSwbacpYnHWo3LqRKt5XVvn1LGB88wBInoUsfKUsT1WJwWV4VgRs73J2koMpZpGDcohKZuJVah9lLwVs6JrTZub+/l+W46vzQYg5d7XKO67IPtOa3P7G1zfU4xc15XQhB3nwZQC94Z1hS5uz/hijQQ7caJcRx563Of4XA8UnOiRi9R34dJnuImIJMxBuPAWS3/dNckfdYvZwZkH7TBSJczgfyYroJ9MYTtM3xsru//5eFfVZiun7K7umY43V+KyupsWTS2zXkFuBSkizR9rnr8G/qZNJpVXZ69DxoTasi1qoOhfHe5SNS9sxKP2//OYDSST+YH2yxBG8RAQFYHBOtZrCWvHRyTaGdvLVinc704zOWctBEPbTbQeO1SGHejwixli8yUs0wRVx+tm1mFQyXKVebVPhf3ea5DFAbw1mGQ6K0VdetrSJ0oJolLHEetM6Ggj+yTUpL60zSNeC/PArp2xHWV9arJ2vGtd77J9dU13lmmYeDpa08Fxsmyhp7nBT8EjvtJHWnYtjPnZWV+kclx5ot/7Md48fKG//Aff00c4qpGiXk5T3SnMvS8WWtVN3ar8Ll8f85f5n3otaQeg2rEeVQMzy+xslya5MQVXpyR5HSNQpG6JppGIwvUawQ0sxprbNTFu9aiLl3yO6uCs5c1sZKiODB3QBTYQJ2m83epsoZ4L/u5UmTOdEZcokqTfUO/L4yBshZd//RR6o+msRp72PcrWrNVuOWyF7vspXwID/ZNRqL+FLQypm3up9YYjV3ckDSBrHSn+tCJ0lm37T9k6lDH3gd76ktkr7zPfi5w1mGQ/cXDGDL5nObBn/v+4jJPlVL56le/yosXL/jiF79Ij/T2RqHIbZ+lzxcdzmmbQymwPXut1W1C67+6toqp+h33usmDPVS/NP1ZhA7SXfa3/TNYYwQirZdoOOgOmQ2K1HL699abu7LuJ2iXl2sP/vdl/M5zwcfOCo3NYck8+CyvxqvxR3kYaxmOV9/vtwFIDeL9//M/XMDOV+PVeDV+1+P6Mz/E9PgJy4vn3++38mr8LsZXv/pV/t2/+3f8zM/8zO8aIrXW8rM/+7N89NFH/Oqv/urv8zt8NV4NWNeVv/N3/g5vv/02f/kv/+VXoNIfwvjefS+bFmqsCHEAZOma7xEW3nucMVsHMa1AVSckzfc21hCs04OyvnSVg5wPnlrF2j74wBA8Oa2b45LxXjs4C2uKkkbkvRS2exd0005+e7HrtU5iw3IuIui3RilZikcGSpaIs2kSl6PBe7U/VgGxGqbdiB888e7EukasDRqJYhiwDNNAzYkUM95aWpDP14rY9FtjMLUSY8Q7ib+RDs5MOUs35eFwJMYVTCOWSlwTpSy0ZBnCgGkWa5CuaOsI006F/MZakgBFVlyZYk5MwTP4QEwSlRPU7SloN1jOhdIqrkqhxjn5HG2wVKN/p7FYl9iMBtZIIapoUbNWvBXhMrcuSDaBlqroSd5arL1km5cicRtNIzlKKdgm3V4i+MhBHO2WDjuHr4FhGolrYpln1vOM944haKHdecJukO7m2mgpsuRVYLTOljSJIjROOiIlBktcgFJaOZ/OpCLF7v1ksa7hvaUmJyKGcyTpaSLVBjkRBokzzN5R0iLOIYPHlYLzlv1uIqXIaD1JC5vGe25u78i5sCx3vHx5R20Gay9W+2HwUhgpUObI9eMDvjmM8+ymkVQLYdiR10hcF5wT8T0UCylTjWUaAzZ48rww+oEpeFpMmFQ5HK94dn3Fex++j/UDxhf2++MGA5QkkWu7aSSumcE17uePyE1ipZ4eH3F3Xrg67vBh5PnzjwRaDJ4XpzPJFp49esxpnokxY2tjFzzJOgZn2O/3eNN48xPPmO8zL29O4uiSM/k+Ya3HGEdcM9WBd47dceB0e6Kkyvl+YRphDIMULZHIgkMDYx0vXt6Ioxto7Soxr2Bd4MXtHfenM1fHAwfj4LzSjHQDGyvONOuysCwnrDFcHQ9YK8/MSQG2tTRohUmLm953hzDPOB1Y4oJzhsE0lpxZnIP9RAgH5uD5zGvPCMXw3Xc/4OnrT2EYeXk+s9d70vQoTdtotuKDWJPbBiap+0EDSoUBiddqgMajtV5EU5FhK4Zp3Iw1Rp5hY8GhzhU8ECIRpyWgzo3d8RnjuCfm90mlbF3CGEi1knPk+nhgH0ZsbcRloSSJgMo5sxaBIwwWbwO7/YBTEdo0xEXNGfaHA84FcizsDhMxrtRaSFkiN6sRXWXwHm8a4xhIpVFNYzoMxJTIuZFL5jvvfYS1jSePrrmzd6xZ4jaH3R6bV6ZdENBv3Ikoot2JLQlAtVZxqjO2UVPBGKeCV+V8nmnAbgg8ffKY5zc3jONEWiJxXck0Hl8fSTlzLovU2UvDYfB+oFFY5oW4RrI6BdRqGIcBFwZCrgroNHEIWlZu7lZqy1xfjxrxWal5Zj0tEnOyRilGdxFNI/xybbi28uL2ff79r8FHz8/88Z/+cdzO8hNf+FGevv6IJ+Za4i+NYXAy/zYqr712xdNnB+aYeOfd7/Da668x7h2/9Ev/nNvnLzmvkRc3t0y7gTCIa9QaMwU2h50uOuAM3sgzNowDAOscRRxBhADrpOvaYhiCJ5ZCypk1Qs6VXDKpVY5XR0bvWOazFPAtBOdJrUFztCrisQ1e9gvyBUgMiPXiOEGPxclgDdN+lGc2DLQqrle5XsSi1mBZI4WKdyKShEEhXwyjHanA2jKpCKhkrWFoBofsgZYYBWaz4jgk4qy4SlVjNjch7xW8KJWaE940iX9sTaFT8M2ri0hTWFcjWqyErHZng9YKcRVRXRwFZY0VKFzFCe3+NpKzJVBcaSICD1ZBcQHerBbfu1go6ZoWa+Q1ekwCChCZDmgoeFAfRiwYcQhpGseQm8zZ3nt2uwMpZe7PC+MwbHuyECyGwtV+jx+CfAad32oW5yTvHNYonN5dFtRRp9Wmjmwi9jjdk4HEL4nDkkJiRlxjZA4VOL9UAbgD6gBXJP6xtULw6lZjRbgsH4OwxF1lGAaWJbKuCzklSkldIn6w526Y1i7ij+7DxH3IbqKf/F0XjNtFq/kB6Bj9vxxNBB2rDq1deO5d6x36+Vj8kAIw8rEfCD9Onr0NVEIBMmu1eaHKPW+l6UCWOwGDjLpmCCQiz421slevVWNSzQOoiqYxQ+JEoHyliENGhMpSq4IGcubw1snz0CWjBj54dZSIKhQ2bAf5kHt/g+kUQpJ/q6KoikilqLOXXodSK1WjhoYwkEsGFUClKUDAQaeOS329t05AI7l+jVwU6jKoOFnwXcBvErFqVXzs0KGwiHL1mzo9eu9oTuBciXKym2C7xbiYyzMpu4OLo5tRVzkBZGyXID8GtukNtb0fo6/Xv7eGxM89VMmtl7nXeQG6ck6Qk8QcO4EKjLG44OQebZDu7zm/eE6P8+zPm8xvej+pABkUFEsxiZNbbVgvoJ2zBqqlWvnsXd4VAbbgdE4pxkLNCjY5bG00K+e3UiveWBWIAWtZNBZOzhSRfjN15+PtOalQU2Gchi0u13uJsXXOU3OPe9V4wGagSDSMc14cr6rAz8GJsxG1MQwDu3HkdD4RrMQcBz9s4nMtCpp5r0BdY53PG/6yCxNryoyDxzrHeZ7lXrGWJUaqqezGSePq5JzZn60OsFkax+OeHCvzmuS61qqunN1VudKsuGj4wWmcHnJ2d11MvzhGBb0X5mWlO4bJ91+QdC7HskZiTIzDQBgsLRdQCAojrjUlC7QiwETAGHC1kpLULkoDHkANVtfM1gzODwoLi3tXq1Wg2OBxbiBby/V+h2uG+9sTu8OO5h1zTATMxXnVmD71Suxi1XNBvQB9QhR06qgXadg+90O5unNH+hhrtJ9s0NuDv//Ya9BoBawbOTx+SvvOt7Teop8NOfnnIs6SXiMnS8oXSLWhonyPZxJoTRxwpN5Sm5yHetxiXCXWDy4gjdRbDFiB64yxAvspdGL12Y76HOecWRHXVTsEYs7yOZ2jszRSx6o417aL1LLEwhWNWHShz7XoOVfcJMWZFnbThElJwSRxmKu5boBhTGmLuQQBqI2VaOC4RhriltX0mRb4CrLOVx3SXFZpIPDB4NWptdbG+TQL2NQdBelzu+6hkEjVr37917m6vibHyhufPBEOA1fHA0+ur7gevLoUGmT2lUXcB8drz66prXJ/P9IM/MX/21/g9u6Gd95+h7isrDFJ05+XumN/3jsAXssFMDRO52Er9cmcZS8pkZgdYml6LRwFOY+UWiD1LZNESXpnyLUpBG8xtknkeZUbs9Qqe1ytZ27+NXq/tNq2aKzatKFRXc87eNg/h07O4i6vcFJfkJ3CSRb5bxX5vuSetPooy59zLVQun9NZu313xhhyvjSBdAKlnxGHIHtVWaO6Wx6gZzbMJQZM3M46RNQ29zYBiuzl3FDld3QXnr4W13rZG/RIwn4NOrgrv7/pa132XBeYqE9LvbnlAo3T90Vc3KngAvq8//77tNb40c9/gaOe5S6uRvI/3sk8IkeXC0jUHZOslf3P5vzUGzsq2xmj0fe0dpsXt+ui710eqe4gz+YSZQ00e2nckMjgh+9T3ata06YKqSM753CuaFJB3pp6LrP0b5uLL1eS/+pftn4VX41X43+M4adp29t/P0drjfn5R69clF6NV+P3afhxZHr0+BWk9Ed0tNb4pV/6JT73uc/xxhtv/K5fx1rLL/zCL/DixQu+8Y1v/D6+w1fj1biMX/u1X+P29pa/9Jf+Em+99dbvGqx7Nf7b43uGlLpNbVNhq4uPEnEgDiPducNqMbsm6SZyXuJf5BDmtZukxyVIcdpayElEsF7IHMMAPZPdwLxGrHN45ykYpjHgvWWJKyXDOEpXnAjjfrOvdiHoYT1rESbpoa4XsNUZKmd1LTLqDCKCnvFShBw7E9AazsDoPM2IkFproTbpFLWuYbOBWnHBsxvDJrRb50gp4rxnGkeJX1BRdo0rKUaGMXB13HPX7jHNiUC9rizLyjAMDEOQQ6gx5Fq2Tl+nAlZwjlalcJNzxhpxQHLesa6JFMX1YTdNpFKwwFoixVhiy3ItWqE0I7b9zmmhRIrotQsR7eIasFmtW6vFM0fJIo6bXohXcQ8x9heBAyNxOc1o0aPqQdxuwkK3qa+2gS1MPjCMDsqlWyulzLpEjsVgfaG2zOjhtCZKKxgn9vEFw9X1I5Y14pthPS/EHqVRikS86L2VS8XETE4ZmgoQvhHzSjCeNM8YC/dxlm5sI53YcYmkaslrZppG5vnMPM9a4ECKVLVxOi/c3t1yXmZqARo8enLFeAyEMIg4UKu6OQ0sSVyKdruB3XHAnGaohXAY8QHeeOs1qrW89/Z3OV4/IcZIwxBrE1DOB6q1nOeZZh3VGm7uZ+alUHMipgTtJF3Eu4maq0QSYWnGkYq6Oz1+wvl04p1vf0AAgjNgK9N+YgiBaTdxH07sdgM5ZhG/TOG8zAQnsNoSVyyFJ/sjhzBwbpHSMiEYBj8wn8+E0TPtd7x4fou1lpgj7ZSJKZIblATGefJSyCkRU2RZxEbdjk5iwxRKHEeP9weFdizTbtCYGCvOLcUSwigOL0aen3VZJCZyHKWb2lkG5zjPq0Q7IQJNL2CVUok5wlLAerwRMSKticEEPvnsGT/7pR/HHK54Phc+9+m3ODy94rd+47f4z//5G/zwD32aN7/4Gbw1LHeJQmV/Le5kpjWaEyt6kxstiYucseLysrvawyAFux4rVmjSLdhUE9aiVaFHrSDF1aqFsqyiXxaRopQMYxMDk2K4enzF9XGPcZ4whE38oVScD9TaWJaZYRgpRQrg1lr2+4nT+Yz1TgrotdFKphQp3FrjKKmwLivGGa7HiRZgOZ+4OuzIk+fubmG3C6yLuPbktHI8HrAU6aTexGlDTuI0J5FBssjVVnn06Mjt6UQq0sm7mzzeWe7vZyyO5RxprnL16JrT+Zb72xOlVHbjwOGwZ7ERg2UtGe8DtUVySgqfJtY10qrl7uaO+/t7sHCeV6bDgVgy0+gZnGE+R2pzGNMIzmC8wxtLTAlnvIoEJ5bzggkiUJzPsyzY3tNw3J/OWGT9NGPgtCwS57I5E4qDXdHoknEcefT4ivv7M6fziW9/+G2+dPgJ/tgXP8ej445JBdZGd91oGKfuLwZCM/jdyOc++xYuOL785S/x3nvv8xv/+b/Qaiauq4BvOZNiJuWKCU4BWXECKKquHw57aikEvWdAurWrivFioCeQmTgQBuzOYxtS/HaBRmOZZ625ty2Oo6klvgXCMFBbZY4JrAqHrUjkWS3a+aoFcCrWOsYxYECF1MY5zWANj55cY43hfD7jg2f0ninI9qm79C3zyvm8UK0hDEHiVVvhejrgMeQYKQ4GE7T7X4rikn+nQrYVEd97ATdWFaOctYQwiBBrDKZI7BvVcDrNZGtJRUStioTn9Jqz946G3Av9+/Ddzcw5anUSD0fFeJ3XaoUqnbk9JqVHxMp9KlCTdVbd5aCWrJCxcJMN2deIaB/k3jJdeH0QC6NAViuNTBORScW883lGHDtWpmFg0O90dbDbBXJrBGO3yat1MUHjfBqGgtEvydBKEXE7OFFpSyWXImsF2rFtoNQiQlwtG/DeWtUueYVmUGCkNQEwLHgbBHKRO0Ni/QYRP/vn7o4JxojLSIyRdV0l7qTK+9sE4wtKgr7kxwTji6fMg5/f9OUf3INT00Wpf7YO2nUlyqig3sUSawylFRW0zOZ49NC1BxVlu/7XRSpjBEhw1um1BTC693X0OELvrToSiegnMUxNu1270Ik4GxpxxGhAytqEYNv23XXoqjt+5dJFT3X3KAUHG6TijYjE6O/te2uJLdLnqSHgm7OXCG1jNoHTewmPkcsm82epEgk3jAFWcf8UJ4pC0bi4LoiK80O7fA96/7gHli8dJOvwZc4aa6cwgZwTm7qKiSgvIqjZ9vvijiX3gGJDl3u6SeRNUzhvPBww3gOG8kCY62DEBkXpn/t5oIuhG5Ch88zm2qD7JKzEp4klm944TZwrSs2ENmBMJd3fcP/u2+JyogJsVfhtGCTe2iKQeimFpO9jc4JQ16yikded9hCnFwGTSs5gIOYsbldqaVdyoVoBxYL35CQxcB3eagpepZS2SO+qF3bajbhBzuOmyWfz6nhY1FHLBUcYHCZJs5EbPLYYDld7iXp9eWIYJ/n5JqlPpTUGK+t6KmmDX5aYSB0SqAVa0vndy1l8Wwfkvi0lE6aJFBM3dyeBxHTaChq75EIgahxvh1sBPdsa3XtnLJVdGBmsI1G0xiDOMiklXLD4ybMs8TLHpyoOVc1QqojApaijcy3kIrC0cT26ji2S3lqBZgU6sVD1nNoqVs/N1hqJfW1GoBqFtXMWCMwZT8oaK6rOGU2fjR5HR6404xRwk/O1xXK13/PpN1/HDCNzbjy+uiJMIy8/esGHH7zk8eNrDq9dY4CSBBwOozjMKQMgYIT0Am2QQClFYJ4Hel531vj4JM72/Cq38GDd4vKX9TI3i2uT/H7rHE8/+Ql+89f/E8a1DbLp4JR1Vh0Piwr+Vd1JpbaTFaDpdZ4mpQWcl+aoVsWtZrSDrusCreymkdNp2aLrW5Pfa700G6HOiboSba5FD+erWsUl1ViIWeIHvReH6pKTwhkQc2QYB4y1rMsi95PR2GKgR+06ZzHGUUqkWaORz0Uigqs0M9QqzpjDOIIVQH4Knpyq1A903+E0vlPqQmBt01qdxhR7T8rdHRNdT7I4CLcL3Fty2Vz1nHMXeM9IM8cwDBhr+OrXvob/sYnr169589lr7MYR71DA9+NztVHIziDQy9VxT6VyddjxF//iL/D/+tv/b16+eC7RlepO0ygKHJnLTWV07jdsjj4g95TRdbl/fwLPyZso6szmgtxD0njQaDi599D5FDYwuJ+KjDMYLPmB+0XT9dC0zYfs8pw0qV153R93mLjWig9eostTxvZr6p00eeq6klOiaDylseLcLntHw+g9rUiMn9N5uBl1n6QDv9vBX539zLb2S9OhU8hFgFrrxS0spUJqTet9VeY1/WwCCNvt83dI1jq7gUfWPtifWLOtyd3FEjqIdNlT5ZLpsLp8hh6N2Pcl8l3284gzsq/rUNAWVQa6zsuSXjs8pH//4YcfcT4tfOELX+Dx48cMw7CdRQTUtpfX0Xtfnok+N+v5astSa9JQ1q9vQ12rGta0LZq3/1tah5j652Hbs/ZtbL/OIGDZQ3dRTIeoDcbULd66bdC/nMdKFudE2m+Duy7v+sGf/uujz+vbXPgDfJ54NV6N/9bYPX0NN07f1/fQY97e/co/f+Wi9Gq8Gr+P49EP/TAvf+s3v99v49X4XY7z+cw/+Af/gL/21/4ax+Pxd/06x+ORX/zFX+Rv/I2/ITrMq/Fq/AGMt99+m7/1t/4Wf/Wv/lU+85nPqNPpq/H7Pb5nSMnoIa2UtsW3yQH/0tGaU6bHwqUklvX9LGcNVNx2yO4iRM3iaBSCHLqzForXOQpgIO0rImpqXqXYJMtBLaWMtx5GEfBjjKwtqv2yYctAb9ppa0WIkmiGS274si7EJAc8ieSQKl6tYkdsnacksSkehwEfAtVAzRlTBrE4Lo1iqhTi9DBaaQTnaWHYOnGijQxDoBQpPu2PewGvSs9B96zLClW64AoqEDYRc+IaRVxFC/ZVum18kC7X4BxUiV3KrTIOI7RKKWKLfjiMWDIpN3LMBG8Io2c8ThR1i6lVii4WsF4EzVK7E5J2fKntM9YxhJE1rZRSNQ5OCmBVYalKhSZCaRcR24PXlP26o3e7tqqOF8Zcij9aVG3NYILZ7l5jHMN+YoiJ5eVMwfDkek9rRURJa1nOq3Z6O+rLFxjX8CYThoFhHIg5kXMhloy3RoqDxbAsCe8Mh8OBcdqRUsTvR1LKnJcT1/sj037kxfx86x6fDnv84LnJL3l5e7sJlqlETvdnSpT4vnEaGMbAMMoH8dZLd7OzTH5iCgO7aWA47LhfV5Z1oWZDCyPjbk9NhnHaM0yBOK+E5tjtdpyuHpGWhLeGw9UVzTTyPLOcz0zjwBQC+90E1rLf7TnHmZIysWVWYO8cNWZ2u4nRSyHXBE8umevrR1wd95AEShjHgWHwzKVxPB5oMTLfn6itkNYowEpM2CrxVmnNjOPEbj+RUuKUMvX5PSkmgbF84zBOeOe4P82QIilHUom6CEiPXc6Z/TDhm2MtiVQq87oSY+TqeGQcJ5wFj2ddZsIkMSGtZDAyP5Ui8I90JjfG3YDxFme8gGOmEVOhtBUfHNYIFGKdZTfttEhusEaeZecDb772jJxmnr84sfOW3W5HLIbBWu7vT6xL4dNvXpFZaNXx4vktMS58+P57vPX6E0yprDcnvPPi0OKbFAkTEk1km7iCOXEuaa0xDB5yobmG8a7r/qIx9AIY6ppkVbBbC2J/1iSGoErk39Acda00V0hxZbwaSasIebvR8vr1gcO0Z3cceXHzkrRmBhcERnASQRnXld1eIkIM4rJ2td9xd56lcmihKXjhgmVdE6XKc76cZqYQMD5gveP27obgvRS1FQgoJSt0d83gR+K8QoFU01aMtFbiNVoT17M1CVxRUsOYQIoZQyVF6cpPuZAQNzdTDdfHA2ldZb4tiTLfM9aB/W7i9nYWx7IQGHcj0xDIKRFaoLTCeJgYduLK56yR5x14NO345OtP+ea33+PF3YJF9JtKYRgCu92OJgloUArOyb0uMTnS1Xt1vaOWyrwYpklddVJiCAGvziPWiGteygKIeCeREnc3d7SqsSNl4eV3v8vjL/1xxr5WGhR5AOvNJnjbJnO9A67GgYZheHTFn/0zf4q7uxsaifu7mVYSOWWMgSG4zQ1PCrFW1E0K67ySc+HcVgZ1oStFBJHdOGFq434+URG40hXD4D20Ik4ozmOwmAxuku75qtAuzuKbugRWWU9zzRx2I8PeiXNJE5e4pm5iJQv82UrldCcw2DRVdVpU0TrL8xKGgPeyF2g5S1F6u2qNgkAswXkGFYNiqcRcBIJVAbBDL6P3WDw5FVKKep11P9QkgScRRQRwjpgk7k3i20ZaamSfBZYsGWrjtM54FxiGSUCJHq1YiwJoRfZPer/0aKyYE5uwofFnzluFdfImPtZSybUyDHZzFWsdEkE8U3LfD9WsokWWbm2ZkvBO9halQyW1bHu0EGQ+keJ7pVXZ48zzzDyfBSabBkBdZJq6wCBwmszFfnMSkG7ni8smtgPz/f2rUKAiHVbEhr7vqU1Ey969XZvME17jF2ot0KoK7EaFfLkrbHMilNQurisMY3RuqoVxnKTLPnlSiro2FRWD5IrK6B3lHSDpz+wDd6GLNPc7ReUfoHGJ4ZJdMip+1f7+m9xnAiEJNCmCaYdOAHoEDptAVlqPJ7Hb2gdG4HMv/3+Q33txAOrRL71jXmLQrHXSBJAv0TBdp+libXfnEmCkqUBmSLlgjQBz3YXUqMjWFJxqVZ0+FBoRsa3iNFKn1T73XyJCGk3PPnqdjAiCHYLJuc8vZhP7uwuJAEB2e/9N19OmkESHDJre73ZbTwzNiNNBVcGa1qhVXjsMHkOVWF2F+py3uMGLvlnqFk+IRSNu2gY59Pu4tQuc5vTah+Mjei2/nwNavThYqJkCW1xNf12dl7t4vcXPbMKcircdquguE3LFsAFcqeQlsd7ds773LmUVJx1j3BYxJK4Ui6yTyLzsnLx3AXUElBH3DTT2VABa7wK1itNfKZVUImMY8YNjOYsrGwZ8CCI8Lgvzum73fm2JuCa2OEp1jLFuBD2fiwsNeCPrrPcOH4K6EyYRN63HeU8tEvPjvKUkgXOCD6Qxb+40Qd0PS0qUFMFJBLkP4gwUfBBYtlRKktCkYCTCKniJyhXxWkCI0Y+MQ4Aia6nXOLzcmpz3SyXHqLUHccdrpWJ0X1eKxPv6IO5SqRTaHKn6TFh1nrLGEFOmGYHEahVICG0OKbUwOI2qq21zzSml4MKAV3e8DqI5f4kJxUAtQYV0tnqD907nhkGbuRq5VmpGQVazneGDDyqmi0AvUXKOw35HrZlljngrrhmlNtKyMJ9O5Nx4dBypyMZxmVdKyZzP91wdZC9VtFnAWqu1Cf3c6vwjDzsKU6kTi9C327zaxX99mOQ/bJZuyN5OJ+amewiplxhs1TCoWjAKX7cqz9ijR1cSJ2g9uRbmrHGyRuzLasviaOg9ViP9rBHH2ws0gILtVesol71fyYVkMsMQNvAjPqglGhTmaQ3TKj5MpHWlx2p2sOAS2SUXoDZDSh3ikWuwxS1VWV9yzQo0NcYQSD4pxNaIOVJaBxwzLYlL2fYMd6hLSlhM+4mSs9xbUsggOMv14UBKiZv7eTv79LrWOA6bU7XUsbi4i3eQwwswta5tu0fEWRDwl1tEQBiNHVN4J+WEaYa0vuA7336HN958gquVUV36+rUy/QZSJ7wHMzDegoQwGz732c/yc3/uz/LPfvmXubszCk3JZ5W1iAuc1BesBrUJXCSQf1GwQ37GWkNwnphk39+b5YLTf69Oy8YIZGicxreasoEZ8v7b5gDUoZVhGMTdyyDv9YHjVP8uSpJ50DpLdf3xkb/vzU3D4AUc0v/WECC731q1CgDrZDNBa5CyrC8ShdghelnGvBP4qSB7V4dRd3nd76gbUo9hq/ocS4OWpeZGs27ba+Yia533ge7CZazZnIN047LBw33NLbqn33AeIea2WnLrEyZs10IcHj8+moJMTfe/cg9cnO77q7j+ujoXyH7mAqL1nzzPZ/7Dr/0an3rrLd566y3GcZQUAAwpyfPSwa9eX0X3bNu+pXWXJ9iYLXPZb/SI68tU2efS9rH/3u8X9Hd1kKx/8g62oWeUvtd5GL8mt4Xu63qjy2CxRaMBNzc0c7lYD84Kl3PCpWnA6HP28ARhPvanV+PV+KM1Hn3mh7Zn9vsxOqD09i//f8jz/H17H6/Gq/FwLC8+Is9nwv7w/X4rv6cxXl1jvafm/P1+K6/G73L85m/+Jv/6X/9r/sJf+AvbfvV3Mx4/fswv/uIv8rf/9t9mfjXXvhp/QOPly5f8zb/5N/kzf+bP8DM/8zNcX19/X/cY/yOO7xlScs5oBIZEBkgTpwp5yIHUqhU8aFRIQ4CAIh3QDw97zokAmIs4GzjvqEAwhpQzNVcp6Foj+ezOEUIglyydiEkcVZx1aq/dcM7gnCcEOeR1EKim3nUsBf7aGjkJyOS9p5aC946r4xVrlMivEALTNOG8Z16WywHbGKZhkhJJypRauZtPm+g1jSMxJxFcahFop0W5cYuIrt2BqtZK1tigITiGcYcNbhPdptGxrAtJbd6dkwgInBcBIGdMqZKLaA1zjBLZ0qR+eLy65jwvLGnFtkapYG2g1YEwTtyfXsp31SBME9VaUsmYqp1KvZAqSjkOq4KfdPVikAg0pFvUIYVGw8UNw9KEGEC6ij8Gj22ddnJg7t1IXSyRIWKLiIdyGLcPoi964Th4RzBQQ6Kule9+50OcgXWdWWKBJjFK1oJzA8fdgTAETuczIQzkGPU+1diMUsTBw8IYAtZ57s8zFthliOdITJH784ngBV4pMWOCZVlXhiwuK2vKlJTIOXN/OhHXlSmMHK/2hMmxdwKv5VwYxpH9/sD93UzMBUNmGAZGOzAdd4RPeL7x9nfk9xSLseKqNQyN0xm+/d0bhuGO05IZrJPuZWO4efmSw+EgziDzinUQRs/Tp894efMSo8LT5OW+GkJgN01M48TpdOZ0PrPb70Xs0OflsNtzuj9z9fSa1gp33/2I4Dy5FPAO2ywxV7yr2FYJw8Capeh7mEamqx3vf/ARazrh3F5traWofOJMToV1zUx7j3eNuBZsszTrCGGgNjif7znFhHPiiJNVRNrtd/gQyGumuop1hlYN19dHaq2czjP73UStjbgqoGAsy7JIJKILeAw778jes8bMMHgMjmmUmKjznDjsx61YuN/vSLny2rPXSG3hdP4OaVm3GCJ/GAnjxFIcj6+u8MOOJ8/eIMWFP/aFH+GP/YkvEIrlu1//Nj44PvP5z1KXTBtQ8MhonFuDDOSKCVagjMGpwC/CuPbpY7V6b7dimnY6pspyd2Y87ClV5qFhmpiapywJ00RgDEcBOHySAnWcM9ZMLKdIPJ8prWKLOACJNTkMYdo6mI314ghmDMZKnOTBTwLnpMzhsGOaRt57/0M+uHkJxjAddqy5cNjvOLodaZ0pORH8xDjuSekkUVUuQK4UpJjbI1VyzmAMu90g32tVGcNapmHP+ZQoNeNDZZ4jwQd2u0mK9VMQ8bgUak1Mu0DOlYPfyXyjMOig4pNtFW89rRS8MwzDpG58hnHcUesEpXJeVox1xFr46O4WGzxhlI7r3MA0S8yFXCIlSlyUDx6j3anjOFJKltdeJRpk9IM+g/dYDFf7A8uyakFZBD0DeG/FiQ6JzxA3t8yaCv/xP/4XfuyP/xhf+PwPbYICFGyHOUDnexV8dT42gDfwQ59+iz/9U/8L/2rOfDe/z7ycqSXS1P3wUmzV7nwv7jHzsoAKoM45dvuJ5x+92Dr5AQWELKmstFJww8A4TeSUyKVQqkSXVYV/rMKsJUq8knMCM7emcFBMTHuNhm0G4z3VSHd51vW/W/C31liWqPBOdx6RLv4YI1ZjIayxpDXTmkAR027CO88yLyIkROmcLyr80apAFDVrDElgLQVvPMZ6rC0qrjRKruQsn3G/22GtIUaJrytZYhHn852Iqrq/2k2TxH1EAVp7FIAUqculS1jXeRQKcFYiRI0Ws62TfU5SUcxYo3EXMpc4P6grRBORptUNGq9afu+AUY+tsUKpK9BUoTmstzQxYqMLSuK24Bh0XVxWiduzTvYMtVZSzZhscA7mecYYyzTtGIcB0yqxKeGBugoEJzC0gRgz3vmL4FwqTshNeseykawFrHP63qyiV3LtBqdRvu0Cj9NUzFNBZHPkKTIbW+NoCptLjJw4E8izLfOH9yJaxhiZ50VFugdiQpc1fqeKQ/sdAkL9r/zgD87YYveanCP69ewiidxTl3i7TZQxF9C9i5UXAVldCNRJolVtjtgcrOTfdcGow41G3WGjgmHWaWxYnwetk3VUnSSaujhta2uTyJUN6NH3MAyDuOqkdHE6slbgkNqU/hRRUT80rQpM28U+p7FhIl7JdcgaYyNiXL9H9DMqtCqx3EEcYHQ/7bzRBgSNHJLcEAFge2xXE8ASa9TdwHUciGEYSTnJ3r9Ba1kivWrDeU+MyyamOXWZrRrdaFW03pYZVBLTuBRxVrgInDQYdgem66d0RyHTwSpVvTetWl/t4+MCnvHbno0OJcr7kXm8OyP0+8/Z7vazcvPO26z39xK1nROp9O/NYRiwxuGHAevVDdEKFFwfRM4JFCdApLMCvMck8LJ3CtWWSkwRa0eBX4vcwKUUcXDqrrml0mphVacN7xzDEHBezo0GmSedk71yjEliLWvFNZl3di5wPO548fJenG+bNLCI4xjEBnd3K95FYi7qnCVgzrLO4gRT5X1jwPnGbrdjWVZMY3P8sgrgBR9UPBfHU7817ch8GUKQRoVppFGJ9zPOWI3HsrqfaFRtAPLOKVwirst+9OIoWJPWJtSBo0LMiVqaxlpZrBGQGCQG3DqPpRBThFI3N8M+/3aouJa6gW2tKQTS5HkNwcu5O/d4aXFuFodHiRb01lCMU6hQ3MEEkm2kVAjBba49IQRsbRz2e0orpHRHyQ9EfytzU9ZzrXGe3f5ALZlnz57y7I1nuGq4f3GHtYZHTx/TSgOvD5DTx0oBAyrixOPM5RlVt8CHEvbHHrV+rqiQ14TrDs+t4YLHN5l7aq7Y4DCDpdUMxWCKzvFhj3ED8/2tXNsmdaLc5zUjLjnCHIhoL44+cp6oNDl/a/z0tJtY1pX700zO4phtnKXUxjAGUpTGBIwVJyV6dJNRV+fenKYAlDo1OY2ck/lDrohznpZlTnChnxvEhTN4Jw0h1sk+qWSJ7zUWrzCCROM1XYcUajZ2c7wNeu7LuWCdZVQHqVIKWRui5lXi6pwX16lWKxVdp0rRxgAjzXfeYXVuNlZgO1rb3MmGYaBm2a9677G1ar2v6ZqhLjfGPFh/ZXzz3d/itTde49nTZxx+5IBzD+fjHpt1uXnab/uzAcYh8FM/8RPcPn/Br/7qv2NZFlozG/gqMWLyuZvesz54co66Lsg+LgzivCZNk56OhPSYOPR7HXwAmjpOqcOiAkb99WrR926dfL8PgI+mDZettq3pcYu3Rs8nCqeXXC7LUJNzaZ+TZK1SgKy07d/0hkmJZFb3ep2Dqrpm9UjDpvv77piKxo3BwzNY1XvBSz23StSzXF+0qfSBW5FzGH2GY4qUjDwH8LGznQBL7QK7bPfIBabp7kobVbzNKVrrM04hpMbmSdU3Ob1GqHvh/j1vdogPfy/9x8yDf250TyjXoH/md959h/c/eJ8333yTT771FsfDXqBGEi1IrcsZAaI3ZyqMOGlWef1c+r310DFK5mbzcLpsl/1I30/1V+wwOPR7T/e1F2Ro+xebUyiXZ7Coe7JBHRsVNpXrL/Nlyln3wZWH+yGDukpuj6o+mb/tOPFKd3k1/iiP3dNnPPrs576v7yEvC+9+5Z+9ApRejR+okdf1fwiwZ3r8BL/bE+9uv99v5dX4PYyvfOUrfP7zn+ezn/3s7/o1jDF84Qtf4Od//uf5R//oH33srPJqvBq/nyPnzL/4F/+CX/u1X+PLX/4yP/3TP83V1dUrWOn3afx3xL1VtC6C0fivXpDuRcgOj4QwYEqGItEvvTus57Fn7XTDqI2xFvScsVsBwqhFsvNBus56N2WtWhywEiGgQlPOYldttMLmgsc5T4pJC7ZWuuu1Q6gLkK213ghHTIk1qnV9a8QYqXGlH+HWVaNratkEPClIec7zTKJQmrwXq8WAKjUFXLBaEBPL/kePr5mXGeZVLJ5zYalnjYGRmKjaKuM4AUY6U0sX/cRe2nuH8Z5hN1JSJmg3VbfyFkBKO46siMzGIJ+rJHaHPWEcqSaTTCW2RDXiCOCcxQW3uSzUWqgFhjDK9+KMfFcGMBXnBIoIxuFcIOe0CQEiLEkhvDYRfE0TV6tmuEBR/diuYkzvDurijFUh1Bov8SxaoBBLfcvkD+RhlVhAYwjB4f3EMMl7uNofKbmRM9zdR6ZaWaM4KOWcpThi5T7x3oO1zHEV4RGBmAzw8uWNdvBeCkijD8ypYmojrivJStRFaZW70z1xmbHec7w+cJgmhnHg6vrANIwSW4ThcLxijZHdfseTp0+hFtb5zIuXLzkcrzkvq0Bw80paV6YxUHPk/rZAdSxLZJkTh+OOGCO3dyvndZXicMnE08r+cMBPAo7cvLhjXhLkRqoFaz378SDPem6c8on785lUCj5GHj1+zFoz97dnTKmYXElLIpZMLZBN4/DoSMyFUg1nIudYGIyntoY34EbL3Zwxg8WaUQuRhf3xijTPeDeR60qzjd1hYjcNPHp05PnNHTXLfbnfj4TgeP78JS9joqZIiY05Jfa7HSUmFdQDDYlYNFgeP3rM/WlmnhPTJAJxXCI3N3c0m6hLJhrD7rCHXNiNI7lWTvPK+Tyz203s9kdyqdzdzdAGdtPEukpsSkwi8r3+9BnpPvLt777H3d0dx3HHJ6+vePP6SE6R5gZe2x9IL8+89+J9Hr35Om9+6i1qKtzdnPngvQ948vozBuMgD9iDx04W2xotNuYPT0wHscMsi3Yej3K/klRb6FWrhrgm1UYLDmqh3icGAsRGwErd8H6lLQnOCWsDJjtqTWAqp5cz3333A6bXr3jy9Jqrqx0v7m7BO5wdcaVyOp9pNLzttcWiIqtnGAcp/lpLLIW8Lux2I9RKypnd4YA/nbm7uxN3sTBgW2O3nziVQi6NWDIv7+9VOPY0Yym5Uk1l2A3YXDGrirVAbRlvA8MwCNRQG7UlnK8spxWMpeZCXCOH/cTj/UEiR04zV08e04oAsGtMGGuJMVKqRICM44D3AzkniXtTN5ZgAt5PYAopVek8DQ1XGof9EWPgfJL1xRoDIWAykLUgbsRKviACchfE13UVocuJU2BK4gB3uj9t8Ya7q/22DrbacMGJ6NSMxKZ4KVSmXEALti+ev+Cf/fK/4rVnT3n29FrmWs34sLooqgZPyoVljRz3OzWdaAzB88e++AW+8c1v8/z+TLWWuJzIad3imbo4X3IixlULu3lzxxjwTNPIfr/jvMwC3NQqsCAiOKzrSooq/tIjQw3GItE3KRHCSEPmcTvI3gAMzjZSyZzPJ10zAylGjSNQQd07gW2bUfeFS4G56XoOUdZzuXyyF2lSTk+5UFPE2JGrwx5rxIHPOU9LWeMQPV0Gn6ZRXqM0WjUbnFWpeNOj+izrGqkxE4KAEzlJh3utFaMOEDYEjG0CWhuLNZXr4xUxC+jgnMQ6lCKfrcfzbl0qHQqvlUbvcpZSeghei+ganVurAhPgfRfyqnQrW3XHqJc9IQqeYBq5JAGdnQjhm86JxlNsMlbb4HZD2/ZzGBFDBFBvm2CTWmMxC0Xdinpchvwe2VF4LK2JS6JxViPa0DiipqKKdMNbpxC9xmuIy1fFuUEFgvwxOEb2RwJ71NooKvAIOKTXwlgVBh+IAwYGjSGWeCYFOxvY0WKtI8VIjOt2TZWM2e6/2vNtfhugYUzfP/EDO8RRqC9Tfa26qDoCjhm9h724+Cj030WdLrh018/WXwt1VegwC1wEdY3P6XEk/X8usS9sDgVdRBbQRB1eNBKruyP1s4LDPhBu5f6QvWHZPnMphVYyXYLKpUfutM0Nx7ruRJsoKvCLgI2+R71ED0QtZy3jNMp6ZArdsSlrPHAHkhpNwRo999TLvd/30WBwwWuklFy77rRQ9Tt7+L0ZUCG7EkKQZhMj0VKlCZRuYXPPtfo+mgrOPV7Rcvm+QcS2wxtv4oJni/drF4hpcw1p/I7YhGaaOvi2i2i5jQeCZ4eYNjCgbSCEweKN48X736Gs8yYi2yFIPA9GopAVzo6x4FtTMLEL1TJndSAOY0ixKlja4wgby1I0HuYCd3prVcCWIsgFSpPIzpJkLhvGwODFvWmYAt7KWgueoDF0PohLI61SUmJeFoYwkrLACDVnai54LzGfcZV5peQizRODuNPEXEi5SEpmq5RUCGHAeokiW+ZILurw0QRrDi5IhGBtxBr1vm7YUpimkdIqcZH9uqlNYwjVNZjGMI1kbXhKSKyWNT12yuK8IaaCcYGLw1UjjAMtSXR5bQWMrGcSfTuwLFFcZqzsj3bWsCwL8yxQtLheyVm95UJ1GkNI3Zp3pmkixoTRa+e8o2SJLa61O5IZ/BAwWnOoDdKcZQ/nHcGP1NpY14RBYtlz6Q5fMufLmSZzd39iXSOjD1xNA1f7UaAF69jbgTon7pcT4+HA8eooEZZr4nx/ZtpHgWOqwwSH8fr6pZHOiTAMMmdlCYs1XpqldPrb5mWZyHQtkoWIFgsOiV+3GOEiYhF31yzneaP7ADSy7XxzplhDc/D42WPOp1vhpHqMVSkCnD4Q42srCnpKQ5R1Day4dDl9xnLO2qgWNL68MdoBmkbrei/nBmCJUeeT7ooi4I5x6qhTIadG66479PlLgRkqxlZAI7SsQPLWWHbDwKDnBxQWTNFgkjheVXVoLL021V2Ca1FnqO6+Z/FeYNqqsFFt4qLkfdDYQGn8kiYvJ5Bgk++hm5G3B19gLhnbxLW60VijxIAmkzbIJoQBiYmLF7ceddCzRuBDcVYq297k7bff5vVnb/Do+po33ni2waQym3x8M9KANSZxObOXs8bx6sCP//hP8F++9pvk2jQ6r4MtCryo42JF1rgtopSm+zcFrhSYKwphGWOkRqbwVVEYqHXARt+HzLcaK1sU7u9xpUZcmkoprGtjCMMW77UBNvq7+nraY8yMfu9Na6BgtrVpa+rQ91OquHUG73HBI9ZngLpL2SZRks12mEndzxDHZOFM2gZLOWfJuWnUm+wfSmnbmtL6l7K5Qir4ontg5ya9XhewtI8eX7z9uV+LBp2EfHgm2CaSDr8h59G2rdn9GiLn9Ha5phtDIws/3Xn94fp+uVP42L+5xAvXbT6LKfL2N9/mO9/9Lj/yw5/jrU9+kr5nbA1qf2OmN+40Pb+zRQfqR7kARg8hPnW87w0Y4mTGNuf0e3R7Qs3FFYu+H90ArQef8gEEtt37Clr2/aT8X8AZgpF7WVzmymUP2K8Nlz3Vw+vXxyuR79X4ozqMc7z+E1/CahLH92O0VvnOr/xr1ttXAMWr8Wr8gQxjGK+uX0FKf8RHzpmvfOUrfOpTn/o9RWgZY/ipn/opfuVXfoXnz5//Pr7DV+PV+J3j9vaWf/pP/ym/+qu/ys/93M/x0z/90wzD8P1+W3/kx/cMKfWCm7W94A3owViESAGX4poodd3cG7YuZ/pBDRGz9JAegsSneO8oKbOuKyWL2NSoxCTuEP215NyqdtilkE3F9oKgkQJ8rY2SKpmMs0EAHbWkzyWT9dDrfRDRwUgXUVtXKXAOA2zisNm6QftRcl1W+SxAC9CcIYwBrwUbP47aOdWoVeCX2kScC8FjgWkMeC/X1SJF8vvTmVIr4zSBHtRzynL9nNVIPBELBzsw7Cdu7+95fntDwDH6QNHiKsYQ4ypi8jDQtb5aEdt7HNPO4XeOQmVZ5TuTaKVemBCxfxNlgiOMnhQXETMRF4JSEjGpZbqzNAohiLiZc6a0ipfsKQXdDKhduuUiCltnqYWts1cO2gqrOadOMA+tjhtFgazzmpij3BPBQzhIF/vgd+ys1w6qwpoiSQuZ1Uwq5sjr7PZ7vF6r3X5HzokyBFppWlwXQG6mUHJhsOK2dV7E9SDsJub7O1Iq7K72rHcLt7c3BG+5eu0J4zhy9eiatC7qnBFozeL9wDBM0CzBDQQP1jTuT/fQKhUr33FwfPbzn+Q773yAtyPn+4XzXcKOHudXWkvsDzs+/yOf5mu/+U3OuTA6xxAC5/szpTVSzjzZPeH25gXnecYGT9X/F4aRbBrn8wmA3BrNWHbTgVgzaxLQ4Mnjx5ukfH8/czotLDmxs4Z2nmm5EobAYDLDtKNVWOLCW59+nVIjty8WLI1Hx4nbnDnsJvxgoQ4MfqQ0S2sJ7wdOdzNht4dgN1FyOc+cS+J0e2JeFqb9SEyZnCtUQ1o1OmLwDE6iHtZ55dvf+i7We+1GL0zjtEVIlgI4w5Mn1/zQD7/J21//JhXPbn8FH93ibGCaAiVFzvcnco6si2UcrzCmcX9/olTD3d0d+/1AcJbdfsJhOA4Tbwwjn9nteAPD+19/l/00YZvjtdceY5dCfvcjIPP65PjwNPNv/sm/5DA43Djy5LXXee0Tr3GcRvIyU+dI2kdwHhMLJmfq9UQ9DNjmyGuipMz4+ACl0p7fkXLCjQGHgTlStfhnqSxxxRoYrcEuIqbOcWXygVQKp1r46Pl3+NHPHPnxT/ww3/jWN/n//vpvsL864K3l5uULRi9uJd4PDMGxLgulwZqyAJ2l4qaB1197jefPP2I9nTGlUedIAaZhwFwfKTWxZsv88sR+GmnVYr2jtMycItM0MY47rHHQCrsxSJSBQbuvqxZZN10aGhwOO15//Yrf+q0z96dMI2hEQOX27pZaE7lU1pzh5S3WNCxO5mgElk2lYH3Ae7lndof9Bq5aI1AoMrVRWlEh0TAdRqbBU7NAWfvDHrTIGY06U3jL4DzrLABNNGxzvzUNvHbilyLvoxZilgitFCPPnz/fgKCUBBBtpan7ocRldKc657Rjn8w3fvO3+NV/+x/5C3/xT+O9Y06FGBPX+x0Pm6G7UFw7TqKC8vWjIz//Z/80Ny9v+a23vwnGg8la0HabuNzj6pp+V84ZKeC2ysubG3FHsY4wDJjauL29xXrLbr8nxcSyrjRnOR4OrDFRSiLXLLFr6vbU56SUE81anDU8enzEneC8RGISOOpht3OuhSEEAbucEVdHK+CONeJsU1Q4LllcUWo1hCCRLN4NEoGBwMG3d/eUBj4MjEwS71KLRN44S7ICHYRxpFLITWJ3MJVxCByPB6ZJ3HSCL1Qr7mDeSGyPsRdoAWPIrVBNo+gC34EPrzGd4vbTRbWMd3YTFUyHxJshtrw5XXov0Xzd4aQ7uVy6op0AwpQt6spa5DnULn5xhKhbtAMYdagpKjwaamETSmSPKX5FpYg47tXRRtw069a9LZ3pmYWCV/c+n7JcsyEwBEelMTh1Rquyf7BVY9TsJYZWUQ/Vaws0cUHpIoWp8hOl5E0M6SJNa+iz1N0tTCeTNpHAGLPFCznXBRUVRVUUc95jW48XtOSSGfQ59SGwLAspxS0KTb96jYu8OAD0/04X3X6gR0d1VGwxTd2VLkINRsGe3LZIjS7OdKGt0QGaBirsyv8o2F8F2rQK9YgbTdlea5s46MJXoZpLjBwdhqoiiorbgZ5BrMwBbEKbvYhDKkR2yIomsSno+3+o2RYVRbdvTL/7i/DqNqCl9XutiSjtnMi/wTsk4U4FvWaJMVEREAWZbjdR0BiNctRoOW8sLnjWGJnXBYvBqytrU3GyC9L+QeGoNY11MZbgDNaLkNefM6tAYt/jN/p6oEKuuqD0A4q1Br/bcXzzEwzXj+hOCU5dVMsmBF9+f9PvsdbLPYVhc9MSt4kH54bWtuaYpn/ufjHdJSvlzPN3v8X80Yc4C25wetb1eI3qq+3icGGspRmBlU3rQr9ETIFEtvU5oLWmLj0y9yQ9Vzjr8Hh156zYEEhxpZaGHyVSdtVz2rDfKXAz6txkMUZAB2O9RvIZhTfk3BxjlHsIwxwXrLU8fnrk7vaMtdLQk2LFOIu1Rc5xg+fpk0c8f3FDqpWg5/+UepRVZRcmlmUh56RxSArPOZmHY0rb89X03F2aRIaWXNjtpk0IjlEAnlzF3ZAoexlnHQ5xt6XJ93N1vae1yjonDI0xeNZSGYII+HiLs57W5EzqrCOuWcQq1x/9Rk5J4awoa21w+r3KnFKKxukpDGAM5FS4u73fHOE6GNudpTukddgPPHp85OWLG8DihwHmFaNRo7UWUozUWtSBc8BQiTHRGqxrxAeJYZLagSE4x946HnnPwcDp+a2e2y37/YTJlXo7A5W9t5xT4tu/9S5Bna12hz27w4HBO2pOtFwoUWLRTZZ1u40BgoDbAt0VvDpHMa9yz3snDRGp0CNvDTLvGQMOg6lgqoDiGINtYgR7Pt3jDwNPnjzhM5/7HB9859sS/zeOrMsic24zYGVeatrYVpvALU7n6HG/g9Y4n0607jSl68MwDrRaxF20Ntq56NzgMEbuv6bzXp+jrREXtd6U9xD27fvLDqscrw6s65llFZDHIeBOzol5FQAuF43xKj1uTZzpbDMUI5CMdb35ymgNRGCs8gC+bKBuahLraI04laWa5fkOHtfEZa/DDd5LDHhtAk/T2NbCgoI7dJekCzBRa2VZls01qYNcsq9pVAq29fjaDrw3Xjz/iA8+eJ/D4cDV9ZHdbqA2wxoz4xCkwZEH17Kv33S0WOb/T3/mLf7Un/wy//SXflmAIespJbPBI/0Mcrkysr7pi3eHOnR/G7zsoao6OjfkbJVykibA1igtYWqHawSAlD2A2QDiBoTgCMayrFHXCekWaK3vl+t23WgomKvAi7rbgdnW0loEtzIIMGaNRkSKZZx8Ftn4S/Nca9t+wRqLGh3J/O9QaLZs790HcdtuWovEqSOdgpAVObNukbdNmjabQjbdKdLoegqXPUSPW7Yfuw90T6AOUcI9Ce7cYbN+Ru9ITN/Pba+7Xb8He1jdU33sv/d9VNNzzwYKPfhn+i5Krg9guAuo3PcE67LwG7/xG7z/3nt8+jOf5vXX36CoQ5Y0rgicdon91ffYn9HtXm4Pfq88c5XtP/Mwpq6Phw5tHWz7WAGj9T3fwz19d/tSmOvBAyCucH3DjFjVWra5xmiMaY8q7b+vA13twe/4ryNLr8ar8UdgGMPh9Td4/cd/kkef/dxvgxn/8EarlW//yr/mxTe+/n35/a/Gq/E/w7DOcXjjTe6+/e73+628Gr/H8fWvf51vfetbfOYzn/k9zduHw4Gf+7mf4+/9vb/3sYbBV+PV+IMat7e3/MN/+A/5T//pP/GzP/uzfP7zn9905lfjv398z5BStyJuamHfu1mailgPhawqDu0imtpGe+gApA4/cpiXA7uzYiFsjRS1aA0fAtYYja+RQ601YsFfi1jd16qCmeVySAWMQj85SWEsjAPjOGxddlJ4LBtgJT8jXZi1wjgMpBTx1THtd/ghENfIukbtrhTwYz6tpBKxI+JO4QNhDMSYyFGcOKza0kv3VGXyA5TCcl6IaaGVyjkuIjjWinMigrcGOSYVldWBwHsRa5sWv2LCO8+6RGKTCAnvnXRoukCzgBY5SkwMYxAop1QoYHKE3MA2KY5qt7NxUoiuJUtEgPf0TvJGpVk5kFuMXkOJRSmtgRFba+s9rULJaiNt1TFC9bNWEReJIjF81kknfNEoHyrqjNW0QHDpYJPijxy6B+8xSYrd3jiacYxXjzHWMJ/PeOtZcsU4GEbYH/e8+PCGu5t7Skocro6sRYtaSCfkbrcjp0wuSbszC8M4UHKmGsO4nzjPMy0b0hopSYqL5/NCjAu3tyfShx9QSuFw3HN9PHDY76U70xim3Z6SG8uSSFaEC1sqOUV2u4nmDHfrQnaGq8MVpojr0XG/x5wlui9MA2Y9Y6cKNtGo4gBUHO+/95LdfqKZyNXxwMubG2oz7I9HnDPcn+84rTOxJB4fD5zyCdcEFDmvkavHjzjd3ePWyDAE9kPgfi3cn874BvG0MO0nMpXb04nlPINzWDsxDBPneGbvRgYfiEkKItbBNASurh5x//wdTre3BGvYOQ8pc06RXCrDtePJoyM3L+9Zl5UlJurNiTqLpfs5Z/bHAy9uF27u73l8tef60YF33/02FIlD2r3+FOlaLMxLVuGo0FbDgLi2LfPC849e0lrjeHUkZ5nXHl1dE6qn5UYsidPpzDgEDocDDkdaC6VkhiCiQIyJnIoCEBZrPPenyJrkfoTKEAJPDgee7A48dYF8e8f9zYdcHa7wFpa7E+/nxuAb027gk6aR8wlXDYMt1Pff4733P2T2A4MTh7ASAndxxeM4DAN2njC7iYrHBEe7O1PvZylO39xJXMfgaEmcw9ZS8YDxhqFK53RzlZIda46clxP+6op5XvjOhx/y9LVrHh2ucOOBT3zys/hf/zr3L++ZppGaJUYSU3n65BFPH1/z/gfvc3eaxS0OKYKGbnmfK9YG7pPEYnX441Of+ATD4Hn/ux+wpMLdaYZqOT468PjJFafTypMnj3DecPvinjEMAknWTE4ZZxxDEAgzpyzzT5GoqPm08NLCujSWpXJezhz2E8erI7tp5LScsT2ukCjiiLMyJ+XCfpoYnRMZJkt37WF34Pp4zd3d3RbhlHOmqBAevMMbx2QHlvsTzUr1N84LVI1wGANu3LHbj6z3K2lp+OAI40g0RoTlBrlWcm1bNGNWlwCnrhsSESRF1TAEvHOsq3T051whZpyz+BC2kmNtmfP5nq9+9Wt88cd+lE996g28s5ghII3YWxkZby2PjgdAXCo23YLGs08+4Sf/1J/gWx+9z5JWxmnPMs8SJ9Aqp3nGK7AaBkewnmVZ6WJ2SplSpMObJqJnrY2WC3FZRcRuEi0TU8I5C0hHqveDwEqtsBsGQnCcl1kiYIwlLolpODAMe86nWcBdhW+MqgfdmTHmLJGhTcCCnCX6rEcu1KqRHRhyaXgXKEXAszB4WqvMa9qu2QbBtMqaIrSKdZ5WLPEcRUj3lskP1JooyYobRcwiCqoD5bqKhb/z8nola3SUdsQuKdNKIZYqDiKmYewFbuhRiM4ahhCoVfYAqUgXfunzl0ZsWePw2kUuwr+KLKVtnfxGi+Id2Mn6TBjaFvlSATSqpKHPohWRolVDxWg0bftYd7bRTuLWt5pGo6mQn/WlkXVOwYtgHWNhWSLDOLCbBo77ScXlBvTXFlcXZwAv6o72eVNkElPh4gJViP6l0R1dOKVDYBfgo3fje+do1m4Co8BYVaEudWMxjt7RXVtTV0hx4vBNxA0RhRzeB5yT52VdF0rJmpjRn+Iuqul13brFjXbW/2AOAUkv751mHsxLVdwAYIOQjAoy1iDCkO2g0gWK6F6c9kI06fel7jjGbM6ilyiNDtrkzVml60P6KKET3QbJWe8kbkobDJphc8+SRg62qBeagmwaSekVXClZxPNSq4IkTubBVjZtyFi7xb3RikKFZruXa5XIMdSFqxR1qs3draNpQ0eP/xEx2up1s9YK2IuK2P0MVwUWzPocWGfFTdSg7j4yNziNquoCbK5luzedRhX1dcIacTwBtmg+o84EzYBxjmHasX/9DaZHjzS2WoEJwBlH0yioun3Xcr/377DVi4ApZhAXB6bWOjhyERov4nLXO8V1jlI5f/Qhy4cfYCqMg8RppyixfQLUovOpYz4vxHWlFnGN7M9+QxouQgiyfii0WXNTQEXemx8CKWcocubpUFjS73RdI2U+0aqI7OMQ1IVN3rgP0khRUqFadZeoAgR7H8BCLJliJRqMCusSGbyHJBCFdRaTG8bJGa4hEWxUw+l+wQdHM+L+JmdQAXGthZhWUkmUWpmGQElV40wFuBqnkbhGqOIQFZxEQceYBFqJSSLbmzhbpJS3+7O7IVtdCy9QGATnGIaJON8QV3FvDNZCbaR1lXV8tEzTwLoIgJRLoS1NgRYj4NUQWFJiiZFpDIxT4PbmnqZON/txt81FKatDlkwaWOzmgjdrzOs4DNvaNQ4jtlmoEgkZdR82hIDBbq5bAhuazeGlRzMZY0ixSOSpTkrOOnbDwOQDe+OocSWuZ4kznyHHyKkK2Oe942gatSZxdDaBejpxup/JzuGMQrfOshYBiAfnIHmMF8dSrKWtiRYFimdZN4ewpvBwbk1igq3B0dRyuyFxXZBzVHdsy/3pDDSOuwnnPE8++WnGYeLu7o7Y1OFKJkCG4Lk6Hsk5cp7XLSpT29ZgXhXkd+QmUWWtCsgxDIGr4yNOpzNxTVs0t/Mw7QNO5+vdfpKYQuTaonudDmQWddWrVAWwDAbLcl7JpVKyNP+EIPFj4zDIOl10D1QKVfcTfT/grGMaBrqrXF/vp90kjXqlbCuUwOZtmzs9AsPGIi7fRUEZdJ9krMEP2rCXM9bIs9g/g6yDjR4R2tfQvhbJ76wUnSutMeooWbY9RdaGDGke62tC5mtf+yqPHj3mo49e8MlPvoHVGNs+Hz4cQ/C/7T/K53XB8pP/y5/ga29/g6/+xldlz9wEMIZGShcHQoxAuOK8JRN93yPV2iimbC5O/b7oQ5Y8Aeqsukr1dVuAIXHKjEmaCLyzeo0c0yhNbB0K659P9vtNHdyqQu5WIVa9H7Z1XPaFRvfBHa7t8V0Yo/MAWKu1Sp1YZO3QKGHrqFm/SysO6LLHFhgprpnuHiTrjsZdGnAeXbOdrI363VOrNHTQGyIexpW17T6QZlS9fzT6UyClyz1r9J4UXqZDOnVzcrzAN0ZZG7O5I27glP5M3eC4yz6oX3NZyx9GnV1An23N119lzWW/SUO+m1p5efOS27tbXn/tQz77Qz/E8eoK72Qe6v/GfOx3t8s+h+6ehbqcXiAjzIMdp76t7aM3tgai/l4fuhpdmiIegEStXn7mgcMmHQbrezwUnK7twesLhCwNN/Vy0PoYBPXg4nzsM78ar8YP9rBhYPfkKa//+J/g+tOfkSj77xOgBPD861/lw1//PyV+9dV4NV6NP7Bx9alP895/+He/w1351fijNVJK/ON//I/563/9r4sL9O9h/NRP/RRf+9rX+PVf//Xfp3f3arwa//9HrZVvfvObvPPOO3zpS1/iz//5P8+zZ8++32/rj+T473BS6gcisxU1jLFiuY0Ie14dh6TAU9XSWg9WFXHZaVKQ6QXQUjLns7gNue111fpYASLnHU5Fzt7paq0exJtEoMgwm6uTVYgFI9EZAvAIDLWULhBcIomkoCpATy4FmmGcdhwOB+Z1ISfpig7eq3AYaUgRFbVTbk3ir3JJWOcF9KmFw2FHa42780qMCW8M83lhGAPFZnIR8XKYdhgg50TNIt4edjsOuz3D4EUEMCLWhmBpaq8enKPUQmwFZzzTOAEST1eSCCHei6tArRIdYL1jOuyoNmMVEqM1ahHyP1OwrTGMg3ZpiSiXUxG39yKdq9ZaYhG3pdIaVrvZ0yrF1rhGEViddBBKbVc7l5vBbAUIBccAtPDbNnRIhKZaRKTvXaqmIdnwFY7ThKWS80gtYtU+homUE4ODYRiZ54WbF3ecz1Fj6qTAV1WMPs8zQQtiLhqOxx3TfuR8XlTYzVjvmfxIzAvTMHA6z9AcaV24eXFDpbAuiZoS++ORcRJwx/sB6wy73Y4UM8YW3OipFK6uHkGr3KU71iXjB09wlmnYY4oRN5pW+fDunlNcaNbSTmdqMzx5diVdpq1xul8oa+H2Foa9ZwoOUwqUyugGDn4kjI77+cw47Ah+pKSK9QOlyj379HrE4jiXW3FSorCe7uR7dQ6cIyt40GplFwL+CnH1qY0yr1jjSFjuXtxJJKGpDIPn7sN77j86Y32AqVJdYD8F7l/eMYwjUHjy5BpjBGy6P51IuUphuki3uvcSRZJixeF59vgJ0+S5fnQFITKFHXGeMc6DlQLdGrPcqzSaEVEsxsSaoghQxmBtZc0Lb7/zbb79Tc85zuAa8/ms0RjSbeysYRyCxEDURlxWGhbvPLvjkWnck2Nhvz9w8/KGnBP3ZuXlHPmpn/ocJjfsyxe87gzjulLjR5yXW3GeCSMh79i3ypsjnJfMcL7jeGUpPpDuX3JXG1WjcPy4EwcuCjcfvORcDeP+wKM3XsNRKfd3JFNJ8cT+cIAg80QxlTI0XAUzepkfQ2COZ8b9wOgn4snBk6e0wxnXzrz25huMh2vK6Lm6mhiGwN3tPc2LIOhHS2yNmCLPn78gx8x+mtiPe25v7rCjkzi1mzustYQw4p10Tac1kWLidH/iyac/yfH6SC73pGUm58QaF3Y5MIaB6/2R6+PA+vIOkwvj/kBMhazABs0KmBgj59NCzo1mKqbe8/77cDovLDExDOC16HteZgbjuBqPfLi8BO84TCOlCli6psRSVg7HHRaJVcyt8PLuluPhSBgHWButGqwNWySJwVGb47QkgUSMxbjA0hrTbkeOK4dpYtoNvPmJN/nooxfEOUr0ZWsE78gxiYtHrViHRBSuUeZQ7Yo2xuBCEBHYqFNS63DKxY7fGod3AtOMQR0bDLzzrXf5p7/8f/C//+//G0+fXDFYJx22WpIVzKMjAA/3BFLb9LbypZ/447x8ccsv/5N/TlxnjLOMfiBliBqliRZYZb3NXF9dMU0jN3f3mwuGuFBJR31MEYBpGmnFyFywJrw1+DBinGVdokbaBRFxvWcMnuNxYvAjdy9nckwSXeqsRMMosGCtwQ1h654GJIrUW9acKLmyxASmKZQo4lXVtavWJJ3RRvYh+/1EzuKg5a3DOMNQMq5acqs4J9EWpllKuXx3xsLgRlKrKtBKfE6KiXC1Y8BSUsM4+dxrFAEr50JOKpI8LGIDzkrkSUpFIgmNiLc5Z3X8MuoG2bSgzQZyCFwm34c1hqpQd8kF50cpqOsaXIqI/CU3nG30WApjjLodSAHeGoswaFXcj/Te67+/tu404DFNOtTXlMk54TV21pgmUTNG4zHUjYOqe5aqnemlUGJimsYNsJY9pJNny1iy3srGdGdHgTFoIqSkLM9ScE4BrR4ZItelqlsloPEzduse78BD37tYI0BWU1iswxldmBIHJRExhhAkli8nFYDB4DBG9lrrOlNSVjGoPRBb2gYn0boo8/0rzP63xuU8ofqI/GkTcrvQ151K+r/ZYCT9jB0wcepg0moVJzmF6NmuzmXusur+1SER+c6sPsf6c11xtMhc/oDMlGveNJIOue9q2e7l7uZUa92epwZ4HxgUSNmAJ2s/5ixrdG3vrrMCCl7mrEYT5zcaMUlziDWGlPLm8lJrAQsuBEF5uqNakcir4ANOI4QabHAiej85dVks2hwSnEQ+i0gtUViXyL2ioqsCsFaEXj9NWI1BTfNJhNfW5LxkkNg9wO327B49YjhcMex2ClaKi03TL9daQ8lypuwRaPId6LlAhb7+lQEadXRZvz6mhhtZyy7anP5LA6YiZ6/nH+EdVONRPR/vxN3E6fkpp8I5rjKXye17iToz6oJr7SZCDqPHO08y4g4k0JLsV4pCqSlJLGaplXVZxFlOnZXCIK7Dso5ITF7wAspWUyWujcY4TrQmsdOlFGwTJwjv+plbzgvnuJJqAoy66xp2+1HmHSBFAS3WNeMGAZWN0F4ChFuH84Y1JX1PTZ3QHM1Ip9JuFCAztR6P2sgxavS4ADC1NXVm0jhCITbkPJrl3q8Y4hxV7BZYdj1H4jlhrAMPzYq7TFwlmpVa2U3jtj7HKPuwUgtUkAYYccUqReaA/TThvWWcBnAO78IW/9QBgpIFKqo0AXJga9Tq9zetkWvm5e0ddzdnUklgpXGqO1m2ImuFd46Grj1Z1k9nxWHX+0At8syvi5xDo8ksqbB7/ASGgJkX9hZ8LrRyJqWVhjhT1hIINI4eUqrYFBkGQ7ONEhdKbVRdx6wPjM7TqMTzQmrg/MB02GNp1DVSTKOWRHDdjapSzcXpwzgLxoGzpCJgVNgN1AiEQEUiaUMpjLsDOM+wnxh3Ezd3t8SStnm/u1Uv60ot4iq6G3dSU1BQQ1y6mjS6GXWxKplaGinKvT2OI63BskSBMWuhFnGmscZzvd/TUiKuGeeD7nzNttb0nW+MSRqodL6YZ/0+YgZTxT3aiAunAUYfyE3qMsHLfV31+UlFmsYknlFqZbFkWCPWOmzrzpR2iwPu61QqlxnNWktB5lXTKk7d9Q77g9Q34q2AOE2cCqkCOHQY2ztxp845fxwa5gLuGNMdctQrpl0qMx2ccU5gtLu7W95++xvsD3uGceD1154QnP34/HvBNT6+1m5/27g67vl//j/+7yynmXffeYeLu6KltX6euMzn1lochv1uJ6Bjv2bm4xB8axpxqaBOyQWvEcS2Q5DNbI1xrVWZk2xjHEcBBtPFFdOY7map8cTWaY2yw0fS1CHwKRJfp/PXhWFpG6zSAXUB5OTMUXJREE9jAfXvmzqY6qNHa5s5p+4p1V0Y2R/lJLU/5wVsxqh7eZN5W2ILHzr9XPZOhv55rYJeitl3h0e9v1rr54nLF9odWc2Db76fTw2ok1h3WWofux7Wtg02enjPPLyXt3g0+rPZ13R9fjtMWRR02/ZoZmu6Nc1s75Na+c53vsPNzS2f/aHP8tZbn9SIQDlD9P2ONT2S0fy2uxuJnd7uZo2n5mEMdrt8nod/NrKnkc/XPva6l2ene4ldIOvLZ9af6c+w7We67jaqOyLdZ5actsbP/rsv3xofe2y/n6DHq/E/4dD6yPT4CW4cabUxP/+QqmvVx37OWvbPXuPRZ3+Yq7c+xXj9COu/Z3nrD2zkZeH9//jvXwFKr8ar8Ycwwv6AGyfyfP5+v5VX4/c43nnnHf7Nv/k3/Lk/9+d+T7Fv3nv+yl/5K6SU+PrXX7nZvRp/eKO1xr//9/+ed999l5//+Z/nS1/60uY4+2p8b+N73sV5L8XamsomMIkVrnQBOQxh0Oidcsl8750utQHaIboNhW6sl0Jmq9KJZuzlgNU0CcCqY0QphRACpopNspyt5OdzzQx+YJhGapXYGqtdPDllKRTZy+vVJvbxwVpSEocFiVkwxFwozWDOCzlHKcRYCxbmGKE2hjAChmHyhMFzfz9TahbXkDBIF3Ra6F3vIThxIxiCfGZrySkSvBNpzzScaVgaxRvWBPMamXaTiJFyrmSYBqYxkLWAixMng7hmcrOcUiZ4u3VBOecwzrMmKZR67xgOAwmxQTelqpW9Y01RnW8MY/CUaiSmoBkVvQ2tSRxMMlVijVoViMRIhrs1ItTGLEUPYz2hOYHbVByQYkzT+0i995vGwDTAighUcqH3JFknNsZFv/fgBnZ+4P58y9qiRFbtd5zuT6R5lQKKlbiV+cMb1iWyrDMG2E2TuFs4o4XgSkM6BQ3QqufmxYl6Da0VlnXFGEeOkQ9engmDZ3w0Emvm+Ys7bl6+lMg8a7ENhmkk7CSPcphGmjFYFzifzuS1gHXsDhPOOKoKTFdXVyxr5bQs7BVKW2Kk1MKgcVq7/Y64rpzu70BcnDFBb4wGsSzYYtgxcrg6Qqs8cdekpZFNpkQBHPa7iZQSuUnnbWuNaRhZ4syLFy81wsZIDIiX+00KfAFU4MoxQZPoJjH+N6RSeOMTr/PRRzekdcWakTc/8RrTbuK99z6gFMPjRwcIlloMOYrlug8DpSXSmiU6cXTsy8R5nYmrkWJ6ioTguZtvWZeFadpTqzwn++mKWk547zmdzioIOq6OO/LLe25uT4zBUhgI48jh8YE39s843Z1YFgGrnLUsceEURbysrYibl5f7LbdMKYbD1SP2O3EbySnz0d3MOkdsg+cffMC6LFxd71hj5jRHltNz3nn2Jr/1/I6n444rN3G3nNkdoJG2YuV3PrphGO751KNr9i7wUY28++KG/c0dx8ORp9NATonoPaeUMWuiDQu3ruGvRsLumqWuuLsbrnY7wvWBuMy4/SP848eY3YhrFSgcdgPp9owtDTtNmN0emyWerKXCfk4M+x3h8RM+zJGbWrkuFVsqn3r8iCdXV6w205xj+ehGIiynkf2016gKEX9SWqW700BsjTXKM5IVuhingTWeWePK/enMe9/9EOcdJSXymlVcc+yGHY8ePWM+r+Icl6HkhVQrS9R4P2/JpZBjYllWcetxEmeVs8Q15iIizaPjnrREhjBgguO423EMIze3juvHTzjuB168vKUUOIx7jk8OPHvyiBfvP2dt4jBnmpHv3VasRSIAmrgDhsGLuKjis/OOXAq2SuG0LAK45SVzf+uY77O69niJO2kZF8SJL2URnaxxNO387e4vFY10MWCHQK7icFGzuChUb8hJXB+wvVAsgCu1sdsPVBpf++rX+Tf/5g1+7me/zPEwSUSqQgOlqwgPFu/SBGSRIqhnCvAnfvzH+Nqv/ybvvv0NUo+8cZ6gAHBqlSXK9Rh2E+M4iPCJrjFW55CcMc1sbjUNhx0GzLqyzgvZa7xslp+trYnrX7uIhfP9yvB4z7AbOd/fy56kVbwCvKZWqu5jSod81Ba/IGuaD17cDb2AXcE7wm7ifF5VZBdh2Yf9BhYHzbQ4nc8SLxG8uGU1ePzsGaYVzjdnljlSSyFrIT21pmuEYRgcY9jx/OaW8yygVs0FMszngg+Bw3FiXSCnKK4epsr3XsTtIZeGOBlILCJNIJ5SOxxUmXaTwNWlEaO4RNZS6NG2oHEPFaytFCsCpTOynzBNBV9rwUHaYnHcdu8YY8k1aSSehWap1eB8kPcFGoki4EKHpVE3idbQSCpxfbLOAlWA2NJIMQv8hxwIcm3kc2axjmXNjNNIGIK4TnqNPlLQyDq/7R+9NwpGgzUBUiGXQtFoL4EQjO4fL0KOCFIFY2Rv2SigsU9NnWBqUVGGqnsYBf0VbMrqhOCdhVZoWIkZzHLd+gJhzIj3sg9O6jjStbq2CZnozz4ULX7wRoc3am0KxKGiDxoJbC9xZAg41ra78rfFd/VpqWp8hekCo9x/XtQfuR+3dA6zOZxaayWiq0Mt5vJ7HG5zJpC9rKE1Iw0CVg1DHoBVTsWvWuQ77QKv7KcqpKxxxioGmy4QoxFdso5ZZ4lR3M1akz2yseJWoeZQ4j5aRWg02tBRde/eRSy5HAIitCLwnYDebZvSvXUyd6ijRzMyP8rzZ4hFxO/G5TrSwSqj7ilBYqOvPvkppqvH+HEUkKcU0jKT7u84f/fbVAREPH7yU4TjFXaQMxRN9pviVNNhNDbwp9Uqe0CF/JrtDlz9m5LRTIcOuVyBBt0Joilk0Pr90BRIMHLPBe95+Z33WE8Seey9J8Yoa4WKpa1V0lnihUsR5zzvxM0DazbwpYKs14BplnWOtFHer5zd5Ps6LeIO6EdHaYV5jqzLonCMVShHnHShyXqkAqmciSUuyA8S1V3VsW4cR3JuxJwIzlGbzGlyn8rz4X2glKzR4Poo9Zu6icOYseDbwDCMQGW3GykZqhHQpjUIQSK1G+oi0dSFpmTmOcp3ioCr1joFcxT06xF4uSoo1x3uZE4+HA6cZ3GR83j2xz0+OO5PZ1qFaRzAGXXOkghQq66XpVQ9/0pcWsri2lip4oTkrETU50zwgdoMuUDwI61GrBMHLWMd3hnGwTOXxLJGiU5Fnp1hGjiEvQDkpaioLw1FqUoTDwragZV7rkkz1DCOhKBn31KZYyYnuW/m05mcM+MYKEXAxJxmbg6RDz56ztPX32SwHnJCkvDUzaTC3bzibOR6GvHGcm6Z83llWFeGMDB5cQkq1hBrxZQKLrMasKPD+pHSCjEujCFgp0BJCRsm7DRigjT0WASorzFKvJv3EAJDlRhD4xxuTepoACU4bm/uxMWqNXbTxNMnT3nx8iUmGNKSxG3VS1SX3QALaWqrulYYNNoede82sr43a1hrxmG4vz8TvNuAN1rDBnFCOuyPpFg4nVdSrpRaxH20SSNVn9d7LSulLKAB3QGyKixS2I2jQAWlYQanzSwDrawEbzkcNLZY3a9N8FxdHykxMeeV2mRfIvBaVUavbSCpAFuyZrFBNwqkYrR2oW6rxpLTvdTSdHHMRWAOrKXpHGBtd53ReVZhCqPro7V2c14S2NpinLwHoyskusZ2qMRYw7vvvsvV9SOJ5h5Grq/24nyIzremIzyXtbvPG1LLs1jTePb0CX/qT/0MH773PuflvEHZQR38sjp9ppQJIeCdwkW6nuhqpZGsF0cacWJzsuaXQlLQpfbrrXWu7vrekH1DdrL3zlnc3XvMp7ESrlVL3cCSpkAITRujFPhF359RICR4r+5wbPU9192ctLnE9ZhvhSWdOpM6jXLLaxSgVOf+7lrekLOINeKAB0hUuAKycl6S9zsMARD3dGlq6VGoPUKuSX2OCybTGlvDQ0PWFK/56NXI8/SwuVVAJhQONsjJUt1JjcDfRc8EAqPJ/fwwPs/1z1ar3kNWwVg5F3Tgp++v5DIrKNbhp+2OE1ZH7uHuCNm2e/I8n/iN//JfyKXwiTffZAgKCXuHKd3t1G7nCdPBaYM+Lx3ecnovyf6lx+P1Pcj2DOr90g2m5H/pnnbb7wrs1ppiXQ/2nwJ5qQuapgQY3UtZ6zBcrhsVjJNmmO7WWbsTpu6cPgaCvBqvxh/yeOtP/mmuP/1ZwuEgja2tEe/vuH33m3z73/4raXja7fjET32Z4yc/xXC82mKcfxBGa40X3/ga6+3N9/utvBqvxv/laLVy+uB9hqvrH5hn53c7wv7A7slT7l5BSn/kR2uNX/qlX+LNN9/ki1/84u/ptQ6HA7/wC7/AO++8o7H3r8ar8Yc3PvroI/7u3/27pJT40pe+xDiO3++39EdmfM+QUikF7wJhdMSY5IDmLkVgq65BIhLmrbtUOnvl4OfVpSZnwU6sEbBpGkYqlZJEIHNeYnNyKloIMNSStu5jEIHAKIbjNjtoOWj26IMQJCojxkjOiZQd3stBMjjPMOxwTiKbMHJALzlKYdiAMQJC1drwQ5BCfqubrXFpGWc8YwiEwbP6yDgGllV+n3WGcZqIuZBTYxg8h0d7rHHiIFIKV4+ugcb5PLPGxDCMBB+4uz9jjCUMnnmNrEm6RMPgRZQrFlrFDYbRBNJNYjfsCNNELKt0jznLaEdyrVJcaoYwBYl9cpVmmhSyCqBW5q0VwiAFceekI7K2SklJvoeq198ZKoVmVJgJgZKLdr6LINxaxTiL91YFUyl0SByHdsFb5F7ohf3WFHfhUjBzUtypVsQhg6XmSlxm7u9eSGersVLctgEXRpaUOAwjg7XcnO5Y00o1sDvuKTmxpJXDuOe1J9c0U3n+wS15NaxpxdjGbrcjhAFo7HYjcUk8fnJk3Hu+9c57rHHlg/c/5DTP3N1JtFEYAsfDAa9uXsM0YptEyCWkeznlFWMsu2kCC+O4Y50T1jVOy4mcpcBRqoBAwzgSl4VxkJ831rLGwrImhsGxpsxxOhKTgEaPHj1mGAfO5zPeeV577Ypi99x8cM85zdKZXzLPP5rZhNraKLXx8u5OP/uAdZD0ubEERu8Yx5F5jsQ5Ukpi8iMuBFKRqLacm8RWJbn3D9d7TqdZnFL0e1znmY9eJAriPDMGddmIkdoM9+eZejpz9fgp07gwzHc8f3HPEEaJfqoZHxx2MCQySyk4GqUZ/DBgMEy7HdUYKtKdOkyBRuG4HykFicsYB0Kw3JVCjpFhmLi+OjIMAy+evyTlisVRjXYklkI8z7TaeP21Z/zoD32CeT5ze3fHXTas68rzmxfSvWsQt6IqEVJrjvznb3yT+9PKm4+esLOGcrrly5/5DI/3O37z+fu8//LEd57fgLf8zI98lp/41CeY20IbPIdPf4KWM989z3z7+Qc4N7GbRs7rLadh5Mnrz/j0G28wPnnC8OQI1ZLPiUSDkhlsIM6ZeYkc3njCcDXSvCXsD1txucZKMtLVf46JfJ+5efEcEBjwtbfewO4kgrNmKQDuh0EKsLuB+7sZf4YX8YZSIdOoRgqrtRQO1nLYD+QSiWumuoZrjmEImCaucTc3J+m4roX70x0FOByvyKlyul8I7sTt3YlSCtM0slKYlzN3p4WcYQhOYJEmsWBriVicFqgN3kjEQBdVkymkVhhwnJbIfIqspXLz8g7XjhKJWStjCAw2sJ4Tc8zEFHFOSrXdAcP2ImQrDMOAsRU7OImILFL4lkgPERZSrtitQF24n89ixU+lNCg541XEsz7gaqUZy3mNWCOuFaVmBu+3NXMcBpZlITjL1ZMnPH/+Ugrw3mh0J6SapKs2qyi9LAqNVX71V34NWy0/+Sd/nKdPDgJFWbMVVY2qCuJSYhW+NSr0Vh69ds2f/YWf4Zf/0Ylvfet9Wkq0VqhVC98GnLOEyfPas2ec7++5ub0jpSJF6QpRYx1bq9o5bLBWRVoLOBFyCxIf5KxhDI5h8Ex+4O72xJwSzTTKza0Uqr2lqKjgQmCaRvISmdOZVhvjNIExzPdyb3XHRxCXAx88Ja5YA4f9RM2ZXBrTsOe8zDqvS/RDB62iFrFdFfeEhuHu+Uv2ux1UJ8KoKdhq8FZcOTKNcfAYa+W5yQLvVCrVCACaUsIlidYp+UGsoB2kqz8L2FdrJUWJK+0xSz0myWuHoYjCbGJF37B572hFXApM7+C2AsN6aySq0AesD6Q5sa5RHEGMVec8FaNUKKkVmrkIYiK0qaMNiIOmFtNLFZco5yzDOADiwGK1UL/BKw1ayxs4V1SwMs6pc2ZlWRbmdeF4dVSHIiOuG1RoFoNAGxInZzYYSbrJq7oMaHSHAvdYIx3sIFG5TWKHmhHBdxNQHnzWCmAhKJDn1CkrNwE1q0YGGiOgktFudOnWV2HbC+TsvbhKhRCIMYq7Q7l039MuzpQ/yAWnqrEpEqHS3be6dCR/kP2gXs/eVb6Jml1kFXcz+SujDiT9PFA3V46LO49GJvbu8Qe/r7/yFo+mXeoyf2skk8I5tVZsNVs8nNP70liNaFG4ptZLbI+ISIJr2O46i0QfAtveV2KiLdaKw1FRAd2hc1GttCriUhiDCOlJmiOGacQAURs6nDq6rnrGcU5AXhRk2Rwhmqxnxhp8sMSlEGzAqvuiOGqYLS5Gjn0G5w3WS5SNMZDPJ+q0I6qbS1oW0vmesixyrYyh5MzdB99lT2N6/FSFXkWNROMTF1qFgugiqb4Hq1F/HU3qMTmXr7FDal2sBLVe0Z+Rn2+mC6ZAEeh3Od/x8lvfokRxQ7HGSgxsrQxOzl5LWjdXWx8kQruUTHCBwzTSTGM+rQLhl0w0TWMbpRvQe4n7m3YTPjhub+8pJXM6yT5ojUnuBe8YwrBFpbvezFPU59D1CCSNVDICHeVUaA1SiQpvdPHyIkj67mhlDKUINOW8lchlP6irbWOcRgWnpeFnv5fPt5wTqSR1ISzMc9LrblXfbKzrKu8pOKxx23NjrFNBO0isdsqbw55x0jzUnSL9IPefsYZhCLKvi5FmBowxpJKYl7q5G7rugFLkGsRkaTEx7nZ4F3B5ZZ4jznqJhWoCjuIMharztbpHqqtTj8gVMLzivGUwTtxUWxOHPgVgW2t6fQ3TII1K87LorXdxhau1iiNeg/1+x9NHV+ScWNaVWCHnzLwucqY2AnZUddgqrfDB85f86j//Ck9fe4PjkydQMz/0iU+ymyZezGdOa+RuXjEG3nrymNevj2QyOEu4PtJq5T5l7ucTxnYn6Uh04rB8fTjgdzvcFKAZapL4L5zT5qFGzivhsMMNHpzBDmHbT7TaKHq+zA1ybpRZ9poxR47XV/gpiDOWJnA5bUjAF2I2AoXWRCRRW78GRRq9mroAGce6JgwFY8Wt0mzOWQ3DSgRKyaScpcmmKTy2JlLKLItAQd3FLcZEym2bZ0oRACRXqWlVBaQEKDESde6gNUOh4RWaOq+rgDSgjp9glfwILtByJeeqoFVnEpo2Zckepyio0h3EGm1zEzcKZPaoNmusAraNVLK6oQrMUDXqTaI2Zb7FdOipaiSvzrEq9DpnpTmtCtCeUiJmcQntkEttRfdHMsfYUsit8c23f4snT57hXeBTn/4kV48ODE7gPB6uiAq4mNadm3Q+1r3R57/4I/zkt3+SX/m3v0rJlVZlz9dByO54NO1GTGsKM0qUIwZaqQibJs+dOJka3dc2gRtpF0DKNLy1WKcO5dmwxggY1phwrsq6YdQNHENQh3aB8Yus7U7OfkXjATEfd4c0RhySwjhiTVEnRGnKKFmi6/p8Y40h93g1racapLmsO5rWgjYMIBG0Dxz93BC2/RBF7gOMRP4JmKKuggrNGmu0cbBprJ84p9YiZ7i+N0JBJam7ua0Ga3Qv0/dXfc2WzyXfvoELsK/on0TtFdLmKinz+bbt2353f2m5/vKasgeWNVtdg7hcK6lXW23AuERnos8Qlo+B/vKcyaL59a99jRcfPeeHf/iH2e13DEPQ9dxsgB+65xZ4rccLo7CVwkkd0DJgekxt/1L7n1pnhBWGb2xnI6P7lYY0d1pQV9uLu6eASxZa1j325T2aJs++NCs1HHY7K0r9wm7nqAcXgu2LfDVejT/Ecf/d7zBeP2a9uwUg3t1y951vc/7wgy3OKS8LH/76fwJjefqjxx+oM29eZnlvr2C/V+MHebTGu//yX3Dz9jd4/LkfwQ0j+9ffwA3DD9Tz9Gr8zzdqrXzlK1/hc5/73O8Z7PjEJz7Bl7/8Zf7lv/yXv0/v7tV4Nb73kXPm7//9v8/XvvY1fuEXfoE33njjlavS9zC+Z0jJ4LTb/ZJPX3LRgyXEGAmDw9qmRQ+BgbodL1ViOKRZRA+51orNe2tgKgZHSgUTBTAKQezvi0b5iOhTaEh+unN264wWu3k5ANcsFs3eWnJJ1JaZpgmQTvi4REYfcPqz1jpCcCIGlKLRIrI456ydy4h4UFLGG4vxIhrWViX6rVVqESG0lqYW8plhmKS7qUm3Ui3ijrMsqwiwTrpddtOO2iQaZ12kCG6duEMZ5xjHnRQkGpSUOa+rFPMZqCnhkMLJ6f6WNS4E7xj9oOfeRsoRNznGw4gZLAUpCAbnt4gMawzOe3wYpCNYS0mD95uAIMWTomJY1S6nKoUd68jlIh1YKwX+3hW1RR9gtuJB379f/pUWDfSQ3u3/ezdfs42aM/FuJp5naqoqpkvMT4orqRZ2w0CrlbVkrh8dwcD5vDJNIymt3N9JlNiLj265ut5RyNyuZ72mlmWFXDKtFe7u7knaATkvkJLE9uWcmJcVH0Z2uz3DFKQLHhjDyDhO2sFkWWKEZjns9yK4G0tcFs5LZjfuuTpeSydekM5TGBh3E7Ut3BVx2zpeDdzdRYU0JN4oxkhOibRGiR9LkVQLa074ZeZ0H5hz5ubujmdvPibOK0tdKXUFoJom0YQuqPuKk+dlGHnt6WO++933SblgveP+/gRcuhiXtkBaMd3xoFneeON1clkZx8BuGliXSKswhBFrZsYxYENgub1n8J79Tq7HaV5IS+T+/kQYdtzdntkFx36c+LDeYqwlhEBOdesMd86RS2aNhd1+0qKxpXqJiHPGM4wjq5O5KfiB0CS6quXKsJ/+f+2d2a8s13Xef3uoqh7OcM8lL0lZlEzHihPZSQAFMJw4iOMEth+EIG/+D/3otyAK8hYgCZK8eJAtK5ZtSaQp8pJ3OkN317CnPKy1q68Ew/EgWoyxf4JE6g59uqur9rS+9X34zp8P1WNmuNiQc2Y8HdluBy4vtsxzYDyNcjAfMn/+g2c82u24u3vJ8ThzP0/kFLi82jFOEeMyMS6kHOi7QnKG++me73+68MmrTzlNCzlnvvXxU3a+Z8yZJUTmMpO95e7PCnOAL765Y0mR0Xoury/46OUDxfcinNluSZuBOWduQ+J6zLhHGzb9ngx0fs/x5QuG/Zbp7kgYA2w3dLYjJSnmlpiY7g+k48T46oEQC5vLC8p+oGwdp3Tk8INnpJh4+803sNcOOth/8W0u3nqLT/7snpIn+k3HRt2FsoXjYaQU8K5w2XfEJa2FNorRxKZMDoUbu+Ni2PHgJu4eTtw/HOk6jzOFru9U5GC5uz8yLcsqqipI5992v2dJmfn+wLJIAaQbOvaXex75a+K8MKdI3/fshl464aeFlKF0IvqjWOaQOJxOXOz2pJS5PY7ajZrxDqYQmJbIkqUz1jkpsMeYydmJKLfUw0U5aK6HnrWDVxzbIsOm1/jSRFb3NYkTKlro0G5eFTA5ZzU6tBbOixZPO8hi3++9FPC6vmeeA/HFLSkmiXMpIiR12oGcgnSfl5IJKhjJaaI8/5RvfetbfOEr7/DmmzsV6UoHplCzBXRNoMVPipGoBWf5p//oZ3Eh8R+/8V+5e/WCsCRMMfT9gHOBZZ6Zp5H7V7dMUyDkQmc6YolyYJ4yIUUS0p3vbE9OUVzZvGUzbEg5MQwiypmX6pAViM7SDT0+SmEiL4Fh6Njtt0ynE6bIIbwz0G0lNkSE1RLBstkM5FLwnRT+q7uQ6z2uHzgcDizqepNiWouxxYDtvIhvU14Fyr6TI/gUpWgWwol5mglTZIkR44oUx40hF8u8LKTFsu077aiVghRGu14Bl2XSnObIEhdIGb/f4IrB4kmmYL2IeENI4mKgjhbOOznMzknu3RCx0RDV+dLYcwHdaBGqoB3uzmCRWFujQnBnxPnL6zrPaWxDKecYuaLFHymqyTpAhB15FTvUrn0R+eVzkcNIl5esNWTsyEWLtrVT2JhzRzv5HEela5eYEqfTiTQMGLMBCsPQ4a0UknzvNWpII92sI+eINQVjztEn3smzs2gcTza1K7sQVQRZBTNianMWVXRer4cWVqtQPxZxjRE3Lu2e12I7uVDKOR7ZennOTLIaVeFwztN1kWVZmOdpLeDw+hr7c4rRsaQWWnMtcFVBRUkUdxajmNcLOfqPWvCvBSK0gBdDpFagot4v1rq1ICMH3GYVEtXKenWWKLVQi9afci3c1oi4oiIPKWqmkNZ1alEnC/lZIpIR9y9d95az2MpYA6/FPiYV9VWBCEUiaXIVn+UsbiScXZtK0UK3iu3UuIlOi/FpLXqq02kR54Ku6+TzFXlG55gwFDrErc8i+wkRqsdVQFBvqRQT1ht834nQDpnn4vGB+8P9aw0lGudSi4HI5y7LwvHjD3Hesrm5Wb/Hus6XuqHOeecJ57V4lfOzqQPNene8Hr5SS+LFFIrVcaEW7XQ/UXIhLoEwjtx+77ssp4MIgZ3VaLRM57Rom6M49wAhRHX7SzqXFMbTTD9IZNYUg+xnELFS1ud9XhbdO1tClCigqAKeGCV+e+jEbdfqe3b6vFuNaYlJInc6nXeMir9CzHjXMfQDZRZVhFwnEbgVIvMkYtqudyyLFCV957RZQdz06vwma5AgDo0xEhZLyCJA2u43UohfIBSJlCpWnSOKvJ5RdzjnPbvdhofDUcbZQWLZ6poil0JMAZJBK+GAZb/fS2OCsxh15ipFncVUNGesI84zzjq5HtaKSC8mlmXBuY55WuicOGWdioinajT9uZgrDTk5isMJqAjEiJDSGKc/L2G9FRcovb/IBac/2+jYlEuRvXOW6DGvYmpxRdHIvwT3Dye2fcc0jYSQmGOk5EQ/eKKTuOwa2ehUDDPHmZf3L3k43BH+VM5V/my75+LRY5LGViUS/c0jRnXYudr1slYyIgB+GO8o1mGLRGAVdeudU2EJBbtxeNeLYMsawngSJ5l5IcUAXsRnuYAVg1bivJBDJI7i2Oucw2568JaUI/N0Yj6c2JsrzH4HzmA2HZtH1/CBiLcBusFLTK03hCVq4VzcLA0S5WjM+SxBXOXEMWfje2azMOXIw+GkQvfXBAUYYsw8HA/ybBQZN62R/UA/9IQ0iri6yHrfO0fX95gsYiWMOPp0Gq0sjjtGXe7k/OI0zyJIdtJMtApyVB8xqcA4GzCl4FXoAWZ1kaxDXBU+y9pfBS9OxkJJTfSAIauw/EepQqAq3rDmLICoA6cITTIWEeOuLjjWMp6kqWkVa3N2Q3x9Hq6xti9evOSPvvWHOPNP2V5suHy0ozqKa1AYP7qfqON1KTL2u1K4vtjxq7/yr3j68af84AcfERZ1wzIW11lpSsmZZZqgGEJSYTIqximypkxF51nqmlyUcb7zdWrBOSdrQT1ndOpO6Jwnpny+BztxrJNoRlnL+q5bz//q3spai9G9hHWWnLLGs0rsdiZxPI04FWoXPRsrOkdWMU/WGGHrVBxfWF0/Z71PUjyvGapbTlZxt7OGiLo5asybnM+pK7ot6pYk76/zVuPK9QxQBTc1zljGzRrzquJmFdJkdemqQher67YqKqh7iupob4w5z/NZ3KacFade+9p9vLpoFr1HdBKv+wz5vbL+2usRcOf7XF0yy1mUVcXv9XVXxyf92VV0+vz5c+7ubnn8+A2+9OUvcXV9TY+I05yra3K5VnWfXptC5LXLep+Z+i/1upTXRFc/og86vy/Wz7Ne0yKi9rrPWiP0jJGGYOphialpevV/qJHT9TmuZ6xWXbyizk/r4/n53Uo0/p5y/+EH3H/4wV/+h0phun3FD/73/8B6z80/+MrnQlgRxpEP/tt/Zb67/Um/lUbj/0kOC3cffJ+7D74PGPqLPZdf/DK+CkOM4fpLP81w/Qj7Wn200fisef/99/nGN77B17/+9b+VUMk5xy//8i/zve99j08++eTH+A4bjb8aOWe+853v8P777/PVr36VX/qlX+Ltt99u4+lfwl9ZpFTyufPmvPGDEAI5m/VwLqeM7TxD12ssRcAZKx2+RkQUBbHTBlhz3ZN0C0sevNVfQw/qI1aLbd547fQHjCFH7c400mEuOeMJY7u1OObVbSKEgCly4JtLBuPIKTLOAbPIkUCv3Y8AzlusE+cosbUXh51gF+lIygVrJDohhExK9ZAXnPUSozLNeOfpNp7O90zzJAcCGqdgnSNrZI3RuJ/9bg8mk8jMU8T7Xpyg5pmhc+z2W6zxTOMsHawZhn5DzIkYC7vdVrtJxd0nZnGb2V9ucZ3BOLNGpJgixcmuc2vHl5rH4Ix0EdYiQ8pavMRIkR+DKyImikaLblpYqfeHMRIjl5FrkqJYYld74rpvrofOMQYgU/TQuB7cUOT9FCCricd+GNg/2nI8zWAdu32P9Z74cGSwjs3lnikHLgaPyeJo5IzBdj3mQrs8UybkwsXlHmehRCkrLDFIBGCBWQVKn3z6jM1uELtzK7Ec+93Ao0ePJEqm65ingDeW/W7D1dUldw9HPeiy9N5xc32JKYaHw4nTJJ/1MC+8PN1zcbHjZ37myxzuj7y8PRHCQs4LlxcXIsTKmWHwzItjtxuYx4klJ/ww0O933L+6le7iaYaUeFgeSFPAbXtSgTAXckgcR4k27GoMwrYnA9M4EyPEMNN7x+H+QIlgUuH25YMMGN6zu9hgXCLFSO8HYhLnsqHfE8OMMSIEuLt/wHvP0G24fXXLOB7FJSBHttbz6OaGYS+isT46xmNkDAvzJNE++3eeiJV3QQ8KA9aIq0mZE3bwdE6K+kXvx2WatePPUEyic57DcWSz3zMMPce7B5ac1S1A4gmsc8QMz28feHl7z3Qa2fQ91xeXxDRhnWWn0X3zHNkMnne/8Bb//J/9HPMY+MMPvsuffv8pzhjIBxKW3bAjDrNGCcjzlEzkFOVAe0mJDw4v6TovzwMJSNjZ8idT4PbuwJsXO2YK7o8+4J2rK2xJvHnZ8ebNBYew8GI88ebNDc53TCnx7OULTjny4vaOm5vHDBaKs/gn15hjIFtLmAMpRTabARMy5iGw3I7YkHl0vcP0lu5qjxl6rt+84mlI/O7v/gG7m8d8ZbgmMNNfbvjZL/4U7//xdzlFmMYJaw2PHl+zzCJKMdZyOt6TcmK32zGHyLQEMobeD5QSiCnx6bPnEiFlC30nB2bbvcRT5JC3RJFhAAAfMElEQVTwFMI8My8Lzl/J2AYyHtgebzseP7rm+uqCw3HicDzivGW/2UqByPdM6ubUG4/LDlfEbaNDDo49HuMtoyl4K8WCeV4QK/rMmCRqq+iB49D3dM6x3+14OBwJIZ47ZGtHZjlbrxvnyBSWZZZI1CJFj7xIoXK73bAsszpmSAymCHQsy7JgraPvOqZ5wnpP7zu1c1fHmzmxJDm8lMJBZp7V2SDLwaMtGodShbREttstm82AtY77+yMhB56/fMHv/+4f8O47b3F1satlBNaT4NcwBcYQiMBF51UoY3nv3S/y3pe/xLcPDxJBsUzS/W493kUwluk0k7JEXhU9sPbOElLEeQsk+qFju9lobGAk6cHpbhjk+pE4hhFjIWRDWmac9XTdQImBEhN4L0LJYjTuwzKOM/vtnt1+L/Eh2pVd9DPlLOLr6sgS5kDf9zL2JBi6nm6Qgo/zHkrGAYPrCLM4iFxdX7DZbTg8jMw5EHKiWIg5kUg4D8OmhyId/dZahs6RU+Z4kthK7z1zFrcHYsRiGLy4esjhfkcsQYp4XrrQsykMXQ+doZRxjW7I2YiIkIK3hk3nSAZxF1DxQUqJbLOIONUpK6ZzOUAERVBSlhheLwUcX0VIepCdc+Z1AUGNIDJaPFjvH1PFOxJxsP5d9VI0RsUhGpVhjIgCJULBrPemU4GIrEVrQfd8v4qAcCZFiXzbbQf2+y2d7QCnonSNls3qyuhYXSGtEfeYGKM+T/LelxLlec1gjDgKVKGQ9yJctMbgpAKo4pssBa8fEWSs16OgBaB6PfTZK7KOsqaoqE6vvXdrATYEcfNanZz+gmf284KMjWWNVtNfXd1Q5dpoIcba1eUiaaSg97JGT7k2Pvzo60tBrmC0az3r/alunfYsjrOaMZe1uFgLMtZpN3wRtwL5d1Zni+pgZdeCrlkF3PXSizDQroWzGjMn1iAiJhJXp0JOUhYUDdW5cEiNMykS+yjNBFL8lugZFa/mLIJHFbvVz+c7R6dOpinqfJSzuPU5EX93Ghkdgsxdznmyfh9d58/CQFcL2YZ+6KRgZiXu+/VxojpcAKsoyMLatY+Rcfb+z9/H9QN+t6PGydSi4vqfKkKrz0yNAzf27AKx/iB0nKquhflcyNTnU/Y9Zi0YythVCK9e0qcInQjQuk6dfWbZN/h+IJZM70XYUNRZwljL0Pfr62ekIcVoLb6gLsNZ1hFVoHQ4nkQcVIWIVn7mZrNZ5/IaHdZ3nmHoV1cPcbezEjOFCGqDCmiXlBjDTD903Dy6ZpkXximow0hm6Af9tsS5LTlD18m9lFLBehFJzdMEQI4RUwpzmsXdzzsdp4BcWGIU4YDmHzovjikxRGxiFVov8wLyFplGabKxttD1HkwtqKtQKGdpmKixicA8z/q5HdMoMezGWExJeGMlvrQTNw6XLXGJxBRIUdQe/cVuHSek0J5VeJggFqxHxWk6nyHuHyVXN66MNZ3MI12P944wL6Qi32eKWRu5LBnDaVwYx5kYIt5bNn1PzrL+6bzcnzGJYPjy4oJ33n6TFBKf3r3i5e1B3T5mShExYEmRJYCam1BMJqjwJOfMi+Mtt+ODjlciKDAfOZ7vLnnx+AlvfOEL0HWYZ3dcDAOmZHaDY7fpMSlxioHddiOir1I4jSOhZE7TzHa7xcnWGLPf4JZE0fOXkg3GO0wusGTSFDA5sx06ihHXUtP39LuBOPY83D8wvbxjv7/ELBk6w/XlhThhHhdQUVY/9Oq+LQ91SkHW8V2HLbKWilnj/BBhwzTPyGq7yH7eI06TTvbP8jWKGDBnx2Y7iFud3gtWY1uvry4IIbIskVQSnTpL2wIuy/jpsOpaI2sGrLqTZnEPC0bWPp01RF17yfssRALGiMDJaSxT14mDWQhyj5z1Tq+5xxQVaGkEmPMSESpibbm3vQqnymv/tVYaU7K6/Dmds0oy4nRdxTFYPb9JVAcca6w0y1GbzGT8NqUKcSEjz0DXSRxWWCJPn34kZ3abjsdvPOLm+mqd1//C/QTy2aaUGLyXOaUUri4u+dV/8yt84z//F54/f7bG1YnAWUR8KeqeS19pFXMZDQUzZR1fRZwqjoIli5u4RaIowyqWFhGqzPtV4CxCoKzzPhhtRsxYm19rbjw3k1SXv3OMsgh8inXqQCWRj951ugIquo4Up0lyIZHpvdyrMWWJdsvV+UrmOEyNW3Mq0q4RgbJu1ZsE4yypFG1CkHNAcYUCV+R6l1xI2v1ZBYrWOiCpM1Rdu+d14eVeWxMV3ShU98oaLYqxq+DaqGhGJV3yferYaXQ9oW9ZhV9mvbayFqjhvPUUUUds/dfX12Pnu6tGyFYnNHN+rgzrd7VGp+kzW9f0y7Lw9OlTnr14zjtvv81XvvIV+t6rgLGjMwB2XXe97ixVBV3ndbmu0+pa17CKjKpIqj4pdQ0s95VZP3PRe7BGAhfqe+d8HfQa1HWPXn7qZq46Y9V9ovQTayOONkmdBUpNqdT4fFJy5sP/9d8Zrq7ZP3nrJ/5enn/7D3n46MOf6PtoNP5mFJbDgRd//Ec/9Kuf/sHvsbl5zNUXv8QbP/eP6fafL+eyxt9fvvnNbwL8rYVKFxcX/OZv/ia//du/zdOnT39cb6/R+GsxzzO/93u/x7e//W1+4Rd+gV//9V9XI53Gj/JXFinFlDFkif0wcgiDdcSYMRoVYorYzcvh9tlVqOvkILyUxGA6rE2EKJbYYr+coSQ9ADHrpk06eDl3qaDduiFrd2qWs37ddBsrHdgxBeksoSdG2ViXrqyHxsZaUs6ErHFEOUmnaqcRDFrksVbtszNs+y0ZcRyKIeKdbE6t7ZBolVmK8CXisBjjMcVJ55eHYXAcTycRbVnoeoOhZ55mOeTyTjt8ZHP46NGe03TiFBdSHPVAI1KcU0cRcV9JKbPdDvi+J08jg/NcXl2xBOnWHTY9D6cHNvsNbmMxDtAc97WQYNCO4LwWhKTwk/RgTb7ftBYEpJBeo2AsIlqqXUM5JY0EtBijh13OrfEX9Wzj3C1mqT07UZ0TjNp118Mzq11tUCjRsHUDw9bjekOfM50d2Pa92PFnEaB43+M6wzzO6lwlIql5meR9+8J+P7DZb4jzIoesRqMxlszpNHN7P5KiFD36XrLlt3spch5PB5zzXF5esMyJ7WZL10V65yAWUhBh1nGa6fueL/zUu4Sw8PL5C5wrdJ1IU3CGORSGYHn68Uum8ci0JGyB3W7Dm0/e4vbhjpQyw9bBeOR4PLEdNjhnKDFxPB5JMWCcCPV2+ytO48QcF7pQGPyGh7sj3iRCWhg2PcZYQljojaG3jpBncghc7rd0rmOeF5aY2Gx39INXNzDPkyc3HMeBF89fsdlssZ10uxo6QohcX+8J4cC8JMAxhwWDuss4y1QCu27LfDwR5pmr6z1LLqsNe4iRTOHpJ5/ibORyv+fm8Q0fffSUh3GkWKPRiFs6K53JuRSWJRKjuFnkNDMeZw7HBePBODjcHwgxsh0GTDE8f/GSXDIhZnJZMM5yGsf1cOo4TZQSwRo6JyI5f7HhyeMnXFxe886Tn8LPgcvO8/z5gfvDUQ6rsHK67AybweOsjEfUezgULdgbsGfb+GS8VH7CyCcp8nKZwDu6zcSJmS994Q3CzY5PQ+D44VMeykwIM++9/WW+/Sff5dO7mSfvvMU/+dpX2d5s2O4G/KbHGUO+XAA59HTeIVmDlv7mGmd6loc7Xn7yKdubx/R+w+H4knE6kU8Tw6bje3/6Ha5zx6kUbr74mMfOQ0rM00RMCYvhloO4bjmHNyIynDQ6ISHju7eGiLjmDc7wcJyYxgnvpBDnnSfHwikt4gqRZqxxDNtBhAExyKF5lA7Bw/EV3hu63hNixiAivdkYppM8z8XIQV6cJrzv5JAuRTnws57oMjEsYA1TCHReox2KvN52u6XrB+4eHigl03lDyIXb2wcKSRxgjGG33zBsBk6nCWs88zyKyCVGvIqOrJXO/8PxRA4ZY1XYqn9uXiL9tmPYDBStRoUYccZpRElARL5JBD3WAYYwL3SdY7PZaDSKx/ueaZ5XJ5AUoxxYm6IiUNh0Xl1rCksO5OnId//P9/ifj36ff/EvvsbNfkOpba+vyR7qsXDvPbbI2iAbR8Zy8eiKf/cb/5pSAn/6x3/CQ1iwKuo0RcbSEAspiQsSHpzTbmAjRZbe+rXIbKyj7wdmPcRNBZZx0q5ded5TAmcKyQQ9JJeCVAziIjIMA/t9x2mamKeFeYwiEDQ1Oraw2QwsMYqzUJZ7ejtsmOeZ5TiSg8YwBCkOud5zoUKnh7t7ZptFNI1hngK7iz39sCEs0DuH76XoOpZJihAevO0wOeOGgRQSYVm0k7uQQyQhDifVPcV4Ee/YzuA6TyZrvG2NhYFpniXWxJj1Hq6CoIv9HrJEfspZtRST5euVZ8p1HeM4sgS516TI16mgRIsuRKZFoiGo7ia5aJSFyIdqJITF1GRAvXmqM4hbHVdClPfjnKdkdW+Sx3ctzFnA+nNBUVYGGjlhLb33KtTOusaQsVXEvlKxjEGcGI0xbDZgnRRr+q7He08KQV0aRDBedI2UZing1wJbLSKkmDRGQjvBrV+Hee89MWRCjrK2sK8XT6RQ6pxbhS9oAUy67cWRpGQRvRQtUFgdV6vIBgrOeYbB4lwnkSzLsq5hP6/Uwo8VxYiu7zRWT77W9boU/Y5rh7qzGumHFIeNKee1qT7L1cWuFojQYpc15ziNWtQ6u3rWrvoiUTDUAk7SQp47X1dbhQtStK2d7En3PdaqS6o5F4m07galyPNU46U0qscau37eGgNUncgsllI0Ss5anBNRWo2TsfrcxSgRUkaFFiJegs2mJ6Qg+5Gsrh5FIkRjjipSlM/QeYf1jhIi3lr6YZCYYBWOzGHB9R7jVXlUP9haIDPr5z6LirSoWWNydN9WUmJ88Yyr3Zeh7gfqNYP1z4mLg4x9tShPOY8T51KkOq6uY6beT6s2UhVTryuUSsEskXh7i/EWVxxOXXOy7kVyVAGnFdFjjFEFLkUjuQzOFmwnjkVZnYgwRuP1LCkEpjkgRixG42JEINT1nkXdbIe+JyUpeoswUXJiSgJjxO3DOsfF5ZU02ZxGjJHoqawfL2XIyXB4GIkx6P4dOu/ZbnfM8ywF5M5ChCVEOqdOeykTUtLxTIrPne8JMcq8mGWcXqYFY+T5cF6EoillvO4Lc5GCTd9JTF6MEnntvVv3u95ZdvsNS3CMp0kK/VaEfAYR7Q6bjpwXWfNhVmflnAvGQsyZznriEkhRnCo1AVLFGyJkPByPWCPxvZvdVhxyg/xeTOJSJLHjUgBP6RwRWVIihsgSJFLJmKDuWSpOAE6nk67NznGfYRURWkJ1OzGIaMIYetux2+0YhoHL3SUmJgZnOZ0WiZeyThVJUKyXNZQ6mpzVrTK3iAPxeT+RZdAjHe54ejzw6sUzHv+jr+KHnkDi+mJL3nQcU2aZDiwazfto73n28hXHKbK/2PPWF57QbbzE9mnkIH2SdVY5O3HgDH4zSHz3PHM6HEVU7zrSfGIJgRwCw9Dz8tUt989f4lyHGTq6WOitWUXjMnVFFhPXMd8g++V5ka6PWvCX8UWaC2JMjIu4MUnEswqYVdiihmhYJ86iSb/rXHTuXTR21Tsdc5DIMJNWZxqjUZTislZ0nVUwKo421hCKfNeJIgJ1XYvI/kuci2NMxBTXuXyaFvn+igr2nGW7GWR9ZtTVLUdpyMl5jRZ2zhFiUnGRCluR+S6mrM+vPIN1/lpj5F6bk1IVvxuJgMRA7yTq0Bpp7Eja5LCO0SoCrZpwr+LxaESM9eHHP+DRzQ1Xl1eY9xw3VxdyTc1rewlzFpMYJGbN6NxURL3JP/jZ9/jVf/srfOM//ifGcZRGJN37UCxgV8FuNFmFMWcxeGe9DPVZFh3WOZxeo1JE4JZidUtaNcRYk3XeqpMFa6Rb1/ekEIk5M0/LKr6VBFj5/kDPzThH3BqMrDM10jLktK4XnHd0Xcc0juL2pO9DXEZl3E1W7pHOyV4qEkhIfJqxcj/IFCeCJTkXVRf2nNfvqsYKyxdRpDlExfopplWwU5Nxq7alTrYF9BxUIqWL3hdJI0jr6xrj5VxW1/gGce16vb5Z9Mz4/J6MzHnrnF3XjHpukjmPgeaHz43rn8vqarm+TpHxse6l5L3p2Io811VgJusWFYbrGqpeuLAsfPiDD9nvd7z77rvqdIWOOUX/KWtUa/LqXmZM3RtVt1AVWr0mSiqlCsyph6RrIVicr2rUYXWoPf/srCJMo9dOlU/rM3oWR5X1Z5yj3H94zSbJBOW1CLi8fv5G4/NIDoGXf/LHP3GR0nx/x7M/+oOf6HtoNH7clJwZXzxnfPGc2/e/xz/8+n/AD62w3vi74Zvf/CbvvfceX/va1/7Gr2GM4Y033uDXfu3X+K3f+q0f47trNP76zPPM7/zO7/DOO+/wi7/4iz/pt/O55K8e92Y0Xo3IdrvBdV4chhAXI5DNXDWRPTscmdXG3qhttnGOlBdANvTeO/rOkrIcFs4a8eatla5SZ4nasSSW9PK63nmMLYSo9sal0HdeD071ECnVyB3JNw9LkggIZ8jIIYj3Hd3gqRbNS1iocS/OO5YQxVHGFoyTrri+s4QYWKYT1hWyKVo88GwHB8WTk2NZCt2wBWuYJ3GZ2V/uKSUxnkRs5JzFmcKw6ZlOgZAC42GSYkVIOAv9pqN0hu1uy8M4ApaQEp2BwRtiXDhOCwaDXxaKhSnNUpQYHAyG4iEhhxXSdSaH2t5Kl/6yyOcuKUuciW6BcxQxWM5ioW2THIoaZ+QQqUhXWkhiUz9PgbhIbJ7zXr8HiUkpSTfXBim66alHiBJfUP+stxI9V12cjLPrn1+WQAqZvtPCKJYQEjGMsunvenaXF+QUyUsg5IB1HuMKMc0Ua3HdAM6z2WzZdo7jkhiGgSePL3j+4hXzIIKAlOCUArkklpiws+Hiagum0PcD++0e73uWZSLEwhIyUwgUFRx0w4A1DucHYoHjNBOwxGlkYx3dfs/+es9HHz5jOhzJ0wjOsaSACYXODCxzIqbM4f6EnQ3byy3hGMjJk3LkMJ6Yl5n9diOF+TEwn05SINhYYir0ZGxXmOfI0A1shg2boefV7S3b7Y77hwNLyjgKl1d75uOMyQVTCrvdgPeWZZ65vtphiNgCaYbJBp7c3DCOgWXOvLp7ACSOaE6F3js9II4qFoESRSQxhoVua1ly4TTOLDFiTSZmuT+iHqhdbbccH+7oho4yW8Ylclwmwl0mZjnIL8by6u6enEX8Nmw89B2hZAaNSuodWNMTMyzjSOccnetZFilkb3tL7zbiJmA7DpM4VhgM2WS2nScb2GwuidHz7fc/5e5u5NnHH/Pq7kCXA67vGPYDh9uZnC2+8/RbQ5oD4ylTNL4lmkwH9N4xoYdz1hKNxU9ywBRKxMTMzeWWf/8b/5J//tX32N7ccP/JPeXwwKGzvPz4jj9/OvIsRh7SxIvvfoev/vx73Fy/Tdl5SnLkkLD7QQ6+s2V+GJkfRobNhjAtHG+fMd5PPH124vlHByjf46dvrtjsC3YM+Dlxexz5zp99h5/+mXdJ08wnz++IxrDtHSHBGDJLCGDE8j1h2ex6Uu5ZQqJ3jrAUfGdxIWqsQ+Tqasd2cGz7nnGaWFLhFDMkS9dZHj+6Ik6RFDIuw3KaKX4gpShxEMCQe8ISOM2jOoxIMSWaImNBL6KLksH4ju3QSzEgSyTW/mpHnC0lSocqxtFt5DBvHmdCKRAWprBQwkIZOozxlGLoOqiHnRLxlKBkja0y6qIhk2J1gMhF4r2KhYLMR8kUmYv6AdN55iDuAFg5aB7nBec9MRZCnCm20A+DHg6Ls0ZWYa2xhnkSBzBMFiGQFjiME3ePFBZxwDLiypSydJ5jF8J45Pvff5+v/pOv8PhCFH5lDdB6bU0AeGPoMFAi0Uh8gCuZdx5f8s9+4ef5+M8/5HD/oPNwdS6ASCESgYTbDGw2ntPDRF7AqktUDJFgogiOihRO5hiZlkXcRIw41EWNpykqnnWDl/gW58gRTuNCsZYOdbNBosVCmOh7R9c75mWS2C3vKNaSZplL53km5YWCpThDDEkccnLARUfRaNkcM6FkLQxa4sPCGF+w6TfirOgMcZZICqOxOiEW+l3P4ydXTPPIkhJLTjp39pANG+uwnWNcJpIxeBVtD526nYSMtyIAn5OsV8hFXCOtXTvmTckiDMuFoeuYdH6qlQIRate1mjhJ9b3Eq6EOjesh+1qYy+papwWRGM9FL3lVEQC42rWfySaLeMOKsGc9gDdWIoyKIUQRP5lScEYE5XLQn/TveT3ET2vRrRS578laxNCCeXUVSjHKPeMs47xgT6MIjoeNCN9jJKWZ3slrp1zIMeGsOGUuIYkQ20JRAVupYhONOsKI8yS6CpbiDGQtyJlStONfCwm6NiYX7bT3UAzeixto7bwvMVJMWYsl9XuoQhzvRWyHcRjjMDjmedJi0ecXo9klXl2B6hrx3EFey1Nm/Z4NrE4rRgv9xluyCu0MMs56LUrmXIhJ4hZrnHEV7K1xPvksprHVHULegQqNVCSlIkmo34EUhlJJKrCRe985qxFvZS3aGV3bVrcBcliLgDkXnDeAOBkZq0U1I4VL77Swla0WSD1YQwwBkPhCSlbBhdz/hqIiOXHwiYtZr4cx4lpnraXrJSa0XmNrwGs3/ZKS6B/0ewlZCuF4ESQUu14mzt9ULRaa9fukINE7SPG3tv1XEZW41bBqh0AcxFLJ6+9njfEpNWKorC8ge4n6DoqU4+rrVZGJLWhknxZPpZK8fi91b2lUdJVyIU9RinlakM5Z5tFcqninnGNvnKxBvfd4awlGrv9u23MaR2KylKKi2izNH+SMiYF+8GBEnNt1nbjyZClKpwQlSZRu6oruh7Tpo0CIImM1URxcbd/RbXoO90fislCiiOyTXFAsjhwLqYhDIAl870khk7OM00ldLnuNPMspEYO4GDov+2yXi+ynYlJHN2namVQIPi8LUc8DhqEXd48iY6BEsokgZRg6jTE35AjRZHYXW0wU8fc4z2BEtJdKdVo6u6RRENGGMRKV5718tqAud6hLnzHrs7vpxPHQOSdzesosKZImjRtVUfY4abywEYE16ohZhZHeQlI3nCXIeF0FHjkncde1XgUflkXFbGBwBqyTWrt3PTlbnt0dmabA6eHANC/YLGII1zuWKYrLtLPyHaREDDIuyfNVcLBGO1WBXDFFXKKAGBd1KLL83M++yxeePKLbbJkOM4SZxRrGw8zdIXBKmSVHxlcvePPJIzbDHjpLKRZSgd6Jg2AxpCWQ5yii6ZhYxhNxCRxOgSnOpNsTW2u42A+YFGEW9+eXr15xud9xtX3E8TSxRHHc8qWw5OoQIx8mFzlzGLqBeV40llZ+31s9o0iJrrNY20sBvsASEwkRshtTGAZp2kgh4aiCvDrmpFX8E4uIRDM10l5EC9mA7zpslnUgxqlbntwnSaPRvZf5OS0i5rJOxp24SANOVGe1EAPeyrhWECcT6nBqCtJVV91kWAWYVV2y6iwxq4i8RpsVI2OedVadKgvGOFKR8dQVI3uRmCnmvHfIuoZao+GsxKoldS8vNdK3lPXvFeT6LyFhTFG3z4IxmRhFsHZ/OPDoaqcf8Oyo+ToG6IxB7uhMKRJx1jnDT739Fvv9nmmaVLBbzvOFzgO6QMIPnhSLPHuVUlYhR3WskWYAmUdtFbwVzutKnaOtZY3XizFpW51fxS+5SOyrtWC8iu9LkeZMskbiyXNbYz8xcv5WSpZzC/1eSGU95yz1WqXC8TiJGLTU9UBSwUr9bLJv2mw36pSYsEZEtcZZDBZbdM+kc1Cdq8WFycqA5OSuSlmaRqwx6sBVHZWqckqFMd7J+JvPAsmisc0yl8r6x1kngrYiscysEb5m/UcuVYwsv5TSWRBXBUjVMUzWALJvNrofrC8kazxxBFpFOevzUtbYW1SUV93B6n5h3dOrc9EPjUOwurHVWLclhFUMaK1Gw6ro2MpTrH9X/396TRCn9wDU6GOqclCuVamxedr8AetCqZQq1uQs9itVaCV/3tRGYM7r1rp8OrventVnVfQufRVyLWNM6mrYaHx+yRrj+ZOk5PxDwsVG4+8baZ7QToJG4++MEMKP5XU6Kdw0Gp8Lflz39d9HTPk8t1s3Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqN/+/5i9uZGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRuPHRBMpNRqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajc+UJlJqNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQanylNpNRoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQ+U5pIqdFoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaHymNJFSo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPR+ExpIqVGo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPxmdJESo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRuMzpYmUGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNxmfK/wVA9bs+UHyl5wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -54,7 +62,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAAH/CAYAAACxPcr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edRvS1Eejj/V+73MgqiAisjggMFhRSAaFSdEb0RUTNRolHDBAWdYv0AW8RsFlCVqgsGFisQYcYoDOM9TcDZxxQGNxqUoGGPiAAIOIPLurt8fVU9V9f6859zD9Z57D1AP3PO+7+ezd+/u6t7d1VVPV4mqKhqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUbjKmHc2hVoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQab9xoklKj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9G4qmiSUqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0biqaJJSo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRuKpoklKj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9G4qmiSUqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0biqaJJSo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRuKpoklKj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9G4qmiSUqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0biqaJJSo9FoXEU89alPhYjcpHuf97znQUTw0pe+9OatVMFLX/pSiAie97znXbVnNBqNRqPRaDQajZsX97nPfXDDDTfE3z/90z8NEcFP//RP32p1OuJYx0aj0Wg0Go1Go3Hro/cSjUaj0bi10SSlRqPRuAC/9Vu/hU/+5E/GPe95T9z2trfF277t2+KTPumT8Fu/9Vu3dtVuFXCj8oIXvODWrkqj0Wg0Go1Go3GrgocJ+N/tbnc7vPM7vzM+53M+B3/6p396a1fv9cIP//AP46lPfeqtWgcRwed8zufcqnVoNBqNRqPRaDRuCfRe4uZF7yUajUbjDRNNUmo0Go0Dvvu7vxsPfOAD8VM/9VN4zGMeg6/5mq/Bp3zKp+CFL3whHvjAB+J7vud7rrisf/tv/y1e85rX3KR6POpRj8JrXvMa3Pve975J9zcajUaj0Wg0Go2rhy/6oi/CN3/zN+Orvuqr8L7v+754znOeg/d5n/fBq1/96lu8Lh/wAR+A17zmNfiAD/iA1+u+H/7hH8bTnva0q1SrRqPRaDQajUajcRF6L9FoNBqNN2Wc3doVaDQajWsJv//7v49HPepRuN/97oef/dmfxd3udrf47vGPfzze//3fH4961KPwG7/xG7jf/e53yXL+5m/+Bne84x1xdnaGs7ObNtVu24Zt227SvY1Go9FoNBqNRuPq4sM//MPx4Ac/GADwqZ/6qXjLt3xLfMVXfAW+7/u+D5/4iZ944T3cJ9zcGGPgdre73c1ebqPRaDQajUaj0bj50XuJRqPRaLwpoyMpNRqNRsG/+3f/Dq9+9avxH//jf1wISgDwVm/1Vnjuc5+Lv/mbv8GXf/mXx+dPfepTISL47d/+bfyLf/EvcNe73hUPechDlu8qXvOa1+DzPu/z8FZv9VZ4szd7M3zUR30U/viP/xgisoRHZejXl770pfHZfe5zHzziEY/Az//8z+O93uu9cLvb3Q73u9/98E3f9E3LM/7iL/4CT3ziE/Hu7/7uuNOd7oQ73/nO+PAP/3C86EUvupkklW373d/9XXzyJ38y7nKXu+Bud7sbvuALvgCqij/6oz/CR3/0R+POd74z3vqt3xrPfOYzl/v/7u/+Dl/4hV+IBz3oQbjLXe6CO97xjnj/939/vPCFLzx51stf/nI86lGPwp3vfGe8+Zu/OR796EfjRS96EUQEz3ve85Zrf+d3fgcf+7Efi7d4i7fA7W53Ozz4wQ/G93//999s7W40Go1Go9FoNC7CQx/6UADAS17yEgDADTfcgDvd6U74/d//fTz84Q/Hm73Zm+GTPumTAABzTjzrWc/Cu77ru+J2t7sd7nGPe+Bxj3scXvGKVyxlqiqe/vSn4+3e7u1whzvcAR/8wR98YQpqpmf+6Z/+6eXz//7f/zse/vCH4653vSvueMc74j3e4z3wlV/5lVG/r/7qrwaAJeUEcXPX8UrBtnznd34nnva0p+Ge97wn3uzN3gwf+7Efi1e96lV47Wtfiyc84Qm4+93vjjvd6U54zGMeg9e+9rVLGd/wDd+Ahz70obj73e+O2972tnjAAx6A5zznOSfPmnPiqU99Kt72bd826v7bv/3buM997oMbbrhhufaVr3wlnvCEJ+Be97oXbnvb2+Id3/Ed8WVf9mWYc97ktjYajUaj0Wg0GkDvJXov0Wg0Gm9a6EhKjUajUfADP/ADuM997oP3f//3v/D7D/iAD8B97nMf/NAP/dDJdx/3cR+Hd3qnd8KXfMmXQFUv+YwbbrgB3/md34lHPepR+Mf/+B/jZ37mZ/ARH/ERV1zHF7/4xfjYj/1YfMqnfAoe/ehH4z//5/+MG264AQ960IPwru/6rgCAP/iDP8D3fu/34uM+7uNw3/veF3/6p3+K5z73ufjAD/xA/PZv/zbe9m3f9oqfd2P45//8n+Mf/IN/gC/90i/FD/3QD+HpT3863uIt3gLPfe5z8dCHPhRf9mVfhm/91m/FE5/4RPyjf/SPImzsX/7lX+I//af/hE/8xE/Ep33ap+Gv/uqv8PVf//W4/vrr8cu//Mv4h//wHwIwZf8jP/Ij8cu//Mv4zM/8TLzLu7wLvu/7vg+PfvSjT+ryW7/1W3i/93s/3POe98STn/xk3PGOd8R3fud34pGPfCS+67u+Cx/zMR9zs7W70Wg0Go1Go9Go+P3f/30AwFu+5VvGZ+fn57j++uvxkIc8BP/+3/973OEOdwAAPO5xj8Pznvc8POYxj8Hnfd7n4SUveQm+6qu+Cr/2a7+GX/iFX8B1110HAPjCL/xCPP3pT8fDH/5wPPzhD8ev/uqv4sM+7MPwd3/3dzdan5/4iZ/AIx7xCLzN27wNHv/4x+Ot3/qt8b/+1//CD/7gD+Lxj388Hve4x+H//t//i5/4iZ/AN3/zN5/cf0vU8XJ4xjOegdvf/vZ48pOfjBe/+MV49rOfjeuuuw5jDLziFa/AU5/6VPy3//bf8LznPQ/3ve998YVf+IVx73Oe8xy867u+Kz7qoz4KZ2dn+IEf+AF81md9Fuac+OzP/uy47t/8m3+DL//yL8dHfuRH4vrrr8eLXvQiXH/99fjbv/3bpS6vfvWr8YEf+IH44z/+YzzucY/D27/92+MXf/EX8W/+zb/B//t//w/Petaz/l5tbTQajUaj0Wi8aaP3Er2XaDQajTcpaKPRaDRUVfWVr3ylAtCP/uiPvux1H/VRH6UA9C//8i9VVfUpT3mKAtBP/MRPPLmW3xG/8iu/ogD0CU94wnLdDTfcoAD0KU95Snz2Dd/wDQpAX/KSl8Rn9773vRWA/uzP/mx89md/9md629veVv/Vv/pX8dnf/u3f6r7vyzNe8pKX6G1ve1v9oi/6ouUzAPoN3/ANl23zC1/4QgWgz3/+80/a9umf/unx2fn5ub7d272dioh+6Zd+aXz+ile8Qm9/+9vrox/96OXa1772tctzXvGKV+g97nEPfexjHxuffdd3fZcC0Gc961nx2b7v+tCHPvSk7h/yIR+i7/7u765/+7d/G5/NOfV93/d99Z3e6Z0u28ZGo9FoNBqNRuNKQD39J3/yJ/XP//zP9Y/+6I/027/92/Ut3/It9fa3v73+n//zf1RV9dGPfrQC0Cc/+cnL/T/3cz+nAPRbv/Vbl89/9Ed/dPn8z/7sz/Q2t7mNfsRHfITOOeO6z//8z1cAi25Nff2FL3yhqpqufd/73lfvfe976yte8YrlObWsz/7sz9aLTENXo46XAgD97M/+7JO2vNu7vZv+3d/9XXz+iZ/4iSoi+uEf/uHL/e/zPu+j9773vZfPXv3qV5885/rrr9f73e9+8fef/Mmf6NnZmT7ykY9crnvqU596Uvcv/uIv1jve8Y76u7/7u8u1T37yk3XbNv3f//t/32g7G41Go9FoNBqN3kv0XoLovUSj0XhTRqd7azQaDcdf/dVfAQDe7M3e7LLX8fu//Mu/XD7/jM/4jBt9xo/+6I8CAD7rsz5r+fxzP/dzr7ieD3jAA5ZIT3e7291w//vfH3/wB38Qn932trfFGDbF7/uOl7/85bjTne6E+9///vjVX/3VK37WleBTP/VT4/dt2/DgBz8YqopP+ZRPic/f/M3f/KSO27bhNre5DQCLlvQXf/EXOD8/x4Mf/OCljj/6oz+K6667Dp/2aZ8Wn40xllMLgKW4+6//9b/i4z/+4/FXf/VXeNnLXoaXvexlePnLX47rr78ev/d7v4c//uM/vlnb3mg0Go1Go9F408XDHvYw3O1ud8O97nUvfMInfALudKc74Xu+53twz3vec7nuMz/zM5e/n//85+Mud7kLPvRDPzR01pe97GV40IMehDvd6U6R/vgnf/In8Xd/93f43M/93CV1whOe8IQbrduv/dqv4SUveQme8IQn4M3f/M2X747pqC/CLVHHG8O//Jf/Mk5YA8B7v/d7Q1Xx2Mc+drnuvd/7vfFHf/RHOD8/j89uf/vbx++vetWr8LKXvQwf+IEfiD/4gz/Aq171KgDAT/3UT+H8/PyK9mbPf/7z8f7v//64613vusjjYQ97GPZ9x8/+7M/+vdvbaDQajUaj0XjTQe8lei/Re4lGo/GmjE731mg0Gg6Sj0hWuhQuRWa6733ve6PP+MM//EOMMU6ufcd3fMcrrufbv/3bn3x217vedcnnPOfEV37lV+JrvuZr8JKXvAT7vsd3NWTszYFjfe5yl7vgdre7Hd7qrd7q5POXv/zly2ff+I3fiGc+85n4nd/5Hbzuda+Lz6t8/vAP/xBv8zZvE+FsiaPMXvziF0NV8QVf8AX4gi/4ggvr+md/9mcnG71Go9FoNBqNRuOm4Ku/+qvxzu/8zjg7O8M97nEP3P/+94+DAsTZ2Rne7u3ebvns937v9/CqV70Kd7/73S8s98/+7M8AmB4MAO/0Tu+0fH+3u90Nd73rXS9bN6aLeLd3e7crb9AtXMcbw0X7DAC4173udfL5nBOvetWrYq/zC7/wC3jKU56CX/qlX8KrX/3q5fpXvepVuMtd7hJ1P+4r3uIt3uKk7r/3e7+H3/iN38Dd7na3C+tKeTQajUaj0Wg0GleC3kv0XoLovUSj0XhTRJOUGo1Gw3GXu9wFb/M2b4Pf+I3fuOx1v/Ebv4F73vOeuPOd77x8Xhn2VxPbtl34uarG71/yJV+CL/iCL8BjH/tYfPEXfzHe4i3eAmMMPOEJT8Cc86rX50rq+C3f8i244YYb8MhHPhJPetKTcPe73x3btuEZz3hGbIReH7BdT3ziE3H99ddfeM3rQwZrNBqNRqPRaDQuh/d6r/fCgx/84MteUyOcEnNO3P3ud8e3fuu3XnjPpYzXtySuhTpeak9xY3uN3//938eHfMiH4F3e5V3wFV/xFbjXve6F29zmNvjhH/5h/If/8B9u0n5ozokP/dAPxb/+1//6wu/f+Z3f+fUus9FoNBqNRqPxpoveS1xd9F6i0Wg0rm00SanRaDQKHvGIR+Drvu7r8PM///N4yEMecvL9z/3cz+GlL30pHve4x92k8u9973tjzomXvOQlywmBF7/4xTe5zhfhBS94AT74gz8YX//1X798/spXvvIkwtGthRe84AW43/3uh+/+7u9ewrk+5SlPWa67973vjRe+8IV49atfvURTOsrsfve7HwDguuuuw8Me9rCrWPNGo9FoNBqNRuOm4x3e4R3wkz/5k3i/93u/yx50uPe97w3ATt5S1wWAP//zP1+iqF7qGQDwP//n/7ysbnypdA23RB2vFn7gB34Ar33ta/H93//9ywlqppUgWPcXv/jFSyTXl7/85Sd1f4d3eAf89V//de8zGo1Go9FoNBq3KnovcXXRe4lGo9G4ZTBu/JJGo9F408GTnvQk3P72t8fjHve4k9Rkf/EXf4HP+IzPwB3ucAc86UlPuknlM8LP13zN1yyfP/vZz75pFb4Etm1bohYBlvv4j//4j2/W5/x9wFMLtZ7//b//d/zSL/3Sct3111+P173udfi6r/u6+GzOia/+6q9errv73e+OD/qgD8Jzn/tc/L//9/9Onvfnf/7nN2f1G41Go9FoNBqNm4SP//iPx77v+OIv/uKT787Pz/HKV74SAPCwhz0M1113HZ797GcvOvOznvWsG33GAx/4QNz3vvfFs571rCiPqGXd8Y53BICTa26JOl4tXLTPeNWrXoVv+IZvWK77kA/5EJydneE5z3nO8vlXfdVXnZT58R//8filX/ol/NiP/djJd6985Stxfn5+c1S90Wg0Go1Go9G4LHovcXXRe4lGo9G4ZdCRlBqNRqPgnd7pnfCN3/iN+KRP+iS8+7u/Oz7lUz4F973vffHSl74UX//1X4+Xvexl+LZv+7Y4TfD64kEPehD+2T/7Z3jWs56Fl7/85fjH//gf42d+5mfwu7/7uwAuffrg9cUjHvEIfNEXfREe85jH4H3f933xm7/5m/jWb/3W5UTCrY1HPOIR+O7v/m58zMd8DD7iIz4CL3nJS/C1X/u1eMADHoC//uu/juse+chH4r3e673wr/7Vv8KLX/xivMu7vAu+//u/H3/xF38BYJXZV3/1V+MhD3kI3v3d3x2f9mmfhvvd73740z/9U/zSL/0S/s//+T940YtedIu3s9FoNBqNRqPRqPjAD/xAPO5xj8MznvEM/Pqv/zo+7MM+DNdddx1+7/d+D89//vPxlV/5lfjYj/1Y3O1ud8MTn/hEPOMZz8AjHvEIPPzhD8ev/dqv4Ud+5EduNDrqGAPPec5z8JEf+ZH4h//wH+Ixj3kM3uZt3ga/8zu/g9/6rd8KA/mDHvQgAMDnfd7n4frrr8e2bfiET/iEW6SOVwsf9mEfhtvc5jb4yI/8SDzucY/DX//1X+Prvu7rcPe73305zHCPe9wDj3/84/HMZz4TH/VRH4V/8k/+CV70ohdF3es+40lPehK+//u/H494xCNwww034EEPehD+5m/+Br/5m7+JF7zgBXjpS196zUSsbTQajUaj0Wi88aL3ElcXvZdoNBqNWwZNUmo0Go0DPu7jPg7v8i7vgmc84xlBTHrLt3xLfPAHfzA+//M/H+/2bu/29yr/m77pm/DWb/3W+LZv+zZ8z/d8Dx72sIfhO77jO3D/+98ft7vd7W6WNnz+538+/uZv/gb/5b/8F3zHd3wHHvjAB+KHfuiH8OQnP/lmKf/mwA033IA/+ZM/wXOf+1z82I/9GB7wgAfgW77lW/D85z8fP/3TPx3XbduGH/qhH8LjH/94fOM3fiPGGPiYj/kYPOUpT8H7vd/7LTJ7wAMegP/xP/4Hnva0p+F5z3seXv7yl+Pud7873vM93xNf+IVfeCu0stFoNBqNRqPROMXXfu3X4kEPehCe+9zn4vM///NxdnaG+9znPvjkT/5kvN/7vV9c9/SnPx23u93t8LVf+7V44QtfiPd+7/fGj//4j+MjPuIjbvQZ119/PV74whfiaU97Gp75zGdizol3eId3wKd92qfFNf/0n/5TfO7nfi6+/du/Hd/yLd8CVcUnfMIn3GJ1vBq4//3vjxe84AX4t//23+KJT3wi3vqt3xqf+Zmfibvd7W547GMfu1z7ZV/2ZbjDHe6Ar/u6r8NP/uRP4n3e533w4z/+43jIQx6y7DPucIc74Gd+5mfwJV/yJXj+85+Pb/qmb8Kd73xnvPM7vzOe9rSn4S53ucst3cxGo9FoNBqNxpsoei9x9dB7iUaj0bhlIHrMB9RoNBqNWxy//uu/jvd8z/fEt3zLt+CTPumTbu3qvEHge7/3e/ExH/Mx+Pmf//llY9NoNBqNRqPRaDQaNxWvfOUrcde73hVPf/rT8f/9f//frV2dRqPRaDQajUaj8QaC3ks0Go3GlWHc2hVoNBqNNzW85jWvOfnsWc96FsYY+IAP+IBboUbXPo4y2/cdz372s3HnO98ZD3zgA2+lWjUajUaj0Wg0Go03ZFxqbwYAH/RBH3TLVqbRaDQajUaj0Wi8waD3Eo1Go3HT0eneGo1G4xbGl3/5l+NXfuVX8MEf/ME4OzvDj/zIj+BHfuRH8Omf/um4173udWtX75rE537u5+I1r3kN3ud93gevfe1r8d3f/d34xV/8RXzJl3wJbn/729/a1Ws0Go1Go9FoNBpvgPiO7/gOPO95z8PDH/5w3OlOd8LP//zP49u+7dvwYR/2YR2ttdFoNBqNRqPRaFwSvZdoNBqNm44mKTUajcYtjPd93/fFT/zET+CLv/iL8dd//dd4+7d/ezz1qU/t8J+XwUMf+lA885nPxA/+4A/ib//2b/GO7/iOePazn43P+ZzPubWr1mg0Go1Go9FoNN5A8R7v8R44OzvDl3/5l+Mv//IvcY973AOPf/zj8fSnP/3Wrlqj0Wg0Go1Go9G4htF7iUaj0bjpEFXVW7sSjUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1G440X49auQKPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0XjjRpOUGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNxlVFk5QajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go3GVcXZlV74J3+6YwgAAVQmoIohAkxgB4AxjPKkE9vYAACvmwrZBrADYwJTFDoUULtpE8E2Nuz7DgggQ3CuChEBAIgoRBUQhWJAFQAE8/x1GALsqhhjw5BplVSBwJ6t2DEnMHVinzsUgjGuw+v2c2zCsidENqgIxhDMOaGq1kiI10NxJvb7NgaAAR2CbRNsQ7GrYKr6HcB1Q6AysW0DIoCqYgyBQDE2wbZZGwYU3kxAFQKBWMWhAuSXVu4tDVUFKApYH++q9tEumApMVShsDAxV7KqYEMwJjCE4P98hIhgyMfdz60MMTC9U2X9zQnRiDoWKYNMBKCCbyV8xoBOQM4HIDlFgkw0KgUKh2KEDADacQbFtYuMJgIhAhsbvqsAQYEABb54Ci5C9909lYpXO60S8FJcLZPk+7jMRgSIF7FXh3aKAjAGFQk5vj2ddsq/q72oSifpLvUAgAnunrNDl+ss940qgB9lY3cpnpd+rzC8l70aj0bgUljXK5znO6hPALLOPKCATOJ+K8x3AtLlvyoTC1qrN75gqmPu0+X1O7HNAODfrBATYsWNzXUFFsE+N9X6qYp8TU4ExNui+AzoxdWJCTI/CjjnPMSBQAXYdwBzQOXG2WTnn54DsExM7dPjaMid0ACoKTIXgutB5dt29tRMydsy5Y+A2EFWI7DifAoh4Kwd0mnTOxsDcXwedOwZlpwoZwD532AMVc57DVk7BlB3XYcM+FeeqGDKAOSEyTOfaJ0QUqhMKk/FUtbnf2yETwAAU054BART+HAAbgImoJ2D63LZN6NwgOMOcOxS76YhTXA4KFWAooLoDGNjV6iNQ6JzQCcw5TecDoCqQIX49ILphFwFcL9xkQM93W6VEIKKmtyLX3KnUCRQDA1D7fcoOncPlew5AIXIdzqdgyjQ9QBU6bYypj7tNFBMT59M0Jp0mOy7Tc9fQKSYUc5oeLBOY08bm/+/zHvv3e8muEn7kxa+rry1AfVhNK1JxHULVdTkbt/aS2fucOoQC074SSOohA65Ph6Iduk98poDqXNSkEV+5Vq7+vinfb3uYYGCqSZ9PEEjo7ur9CsmzIGyziGR9xeYEb9qiQm5+q/BG/q625aJs2ByJVsiqGMqFv95iWNRisXclPtLUjVXtbwHfK9PZReCyZpdPqErpW7tehkA4X4j1s7BM7l994Fi32LWch20N8TEnYnq6i5L9RSVdXNpWrH92CR36ok8v6h49/LzcfVr+kBAaYo5yoZSHXNme8hJbkPWa3ELEnkXjveF++GbaT9yITC+qb+8mGo3G64s65Sx2Faz2m5h7ZlnLZto7dqV90WxlWtauOe36UR44oW6TdP1PNdY9XfSO4Wuj2WDVJ30R02fFFzpbN8Vti/yeDZmYbh/Tqb5O+hqinLlNjw+I3awqptv6LkLDpgO3J3FNMN2felquWXXhn7EWq7ddfC91XD3mnFQKXMa69Idq0e1cc2Pd4HsOGalf5H6R8hHbP4jLNht+sKlp0dFKy7y/ol60Iwv1S4EKrY4aeiX4LCnrHXWQI1R8PJk9Owad7Sptj1XvqwLyv6lHxciZ/kBJ2YSEy5hV75MnPfLBp/W6lfGlv/a6W7sKjUaj0Wg0Go1G40bw5Pe87oquu2KS0sQOncAYI/Y+Zmw3B56538wgrPsODHPk6FRsMrBt5rCxjeIACR2qirENdzgqNhEndNSNnG/0hm3yZJjlfhvwTfhww7LVxH71z4ZtLUUBzB2bCFQnBh2Mvl3b3SkJWBvp8AHr4oYDyIRgsw2xG4SHb86h5owjGWZOby+MqKQCnE9gG4oJYKMQudHPX68NlLpobMKtniQozd36aRZHA9Q2tZuPlTkVAxt232RvSKOLOTEVEIXImcn+fGLE/t8dnQrbj4s5iOiw4C5cVIwnp2IGEsAcFlBMd2CliQDYoR5GLJ1VN032aU5Ik02VoRPUvPomy3yWhCEjDSzQSzs7bgx09JXqxQ85NDJJRTf/oKuEJTp4FhJTVq3RaDRuGmhs1+N8ojHHjOVyWycm4CQfQJ0kKyMNx2OIG2bdeWCrHEBnQXiDEauKct5WI8IgjLxejgLiJCcM8wxwTZhTg6hwvp878WAYIdwd5mE0FgkHguo5hi2Mvu4pFNOej0KgTmu+V9sIRbY+OzFHNluTXXo6AUyShxSV5Mu1eQzBcOO+kEgFNQKF628aHh7/jg6EYXrdVGu7umMj+pW6g4xwwgwRGHvJjPUy1HljJKdnWSJGWp/qJIQgxw7TE0WwbWfYnfwDtT5RkpzExsaZs0KMKLZ7PSWf4R6tjQMxPUuUJKCzkNKHO5BmkPCzX7xv3CEEbxfHMyDhWOLndKKwf9PRdi0pkyuOBIR0uoAslGUPoCSYKfcdychQSPKAFE42o/z9fYTp6cHdmBok8zgUcVE94e+fv6sq1LG8T0uV43FAjgOprq2jDBDzV316kGI0i6nXA0ZQ0kOFJca31G1F6lpXT927cZyqpCmRsneoan0dE8p3GL4XxEjZKXVvBZ2YRkgaRrr0+cX6iA7MdCrydXVPLaT2SBmmHKmpNqdA2TVrP6ej9cZE//psP9ifEk9b78zxd/lnXq78KIe/szg5ve7W2rP2/qHRaNysWHT6+vtquzAydPlAc+5XJwYVhS/nVM1DmGmbmWUdy6fIBSfWSMSJFUpzDQjS7HJw0ipH0joJPmyF2d2QujHy6F/qHXqw55R6lUU8VrvQR418VO2GrqCgEqysXVnekNwXBcGIF5jafCzQ7095cw1cSFHUuYWySgVM/UDBupSl/rFQpjTX4FD3+dRFKaMe6gRo7gFD3iTmz9h30B4Y+7lULGCkrjjqB5LCAJLSDjpIyCflrEv92Pfcrxz0xJBhHsZsNBqNRqPRaDQajauJKycpqZ0mBwAeSbUTL7sTcUhGEWxim8HNnQVi7CZswvM3ftp8iO+N1E66K4lCwxwKAETsOLToDoTTkMZkczbQ8TTjVAkwz8Us+SJGatrNgL0Nbu8l7qMryfZ9wx1ltiEbvgOdsVkWnAX5huKQEMtUxUaDO3KLaOf57Y8JOFEHcUUxG1idi1HgUidJryqKgYUnxeikZJQIbpCnArr79+78yWO10+TkBLPpzluRasCnd0ehuwl1bNFD9lXZ2AOK3YUrY1i0ioi2YBUbTmSrzrCTDbiA5hgANnajiNdnQ67WpxZpjB4Pfnc0bvG5cas5XUofjwv6uzqoj1jMDjRURJ9lJSPSU8iitLLaYHRt+6Wcncc6VUf66cU38pmsz41ITJdpd6PReNNFnSNWp4L9RVILiQ7TFwCdiEg6gGLuOwSFmKx0cqvpH+pRguAxgUQssk4Qlta6CJzo7BGUoLa22PJghmeLguMnY6ctINPJKSJiUXp0YtfzID7Z2qFxenuQPAOLcASPGiICj2hIZwmwT3UytTscxKIGUf8SN6JTz5kqEbHF+B5pVLc1ZmCfdrIblIw1DAuh2Reiue9J4IJF/RGSOHRkFEs6caK/cg0wg/0wvXOaLOix0FkiNUU9va/9My16HNQdN6E/mrzUdcCJCZniUagkojOB2msQqkbodEIdsTh1ZKQuN11eVp8JEpfUydqm5Pg4UGDO4eFyhkfdckI82NZc560Mj/YlrhcvJ8KvLagT/zgWqZr4t0UvyRPsEW3UYc6scA9ZecXhJpr3x4GHICZ58V6y+etcoOXEe2iHizKVTp2F4OT/cA7gWK6zE8d26v6pN2mUJ2D4n4WoQ18Tx1tKE/6a+5/qR0a87j4vXGuoeuri4PN337638ZFOQe8Zn0uW6ErpvgOFREnwmxr9qJL7qA9HRNGDvI5EsUuqo6WvlktqvS8hi5NCVs1++SyGgs9Jsdm8qJjL1ONyWnW6Ni9yfsZQBPev665pGZ0n5V6EY6szUu1lroz9Xf1UlqtqmRdJttFoNIDTeeJoBwobTpn9oIhIM9SpUe6vc6e4/iax/pOYQgKuohaQxBPOaxqVo84Ra5kpsnmtcr/CsjzOTtwz4xn2U0IfjbrGs1Y9ZsZamXserWSbeGYh9S72tdI4rh5qdmbafDUUJV1kynLhK3vuDzT1J6VOgdwLlHuLqrnoWHUBT81yreMqtIzwaFWtxCLqjxJtKc312ysxinrrKusaMZgEsvVzO7Sy6sccj/AooB6tVqy9GSVJ3G5d7hO5pvcOjUaj0Wg0Go1G440XV0xSwmaOkTl3I/3IMKLJAHZM0DumgJ9cN2LQcKLQhDvqFE5esmIVZjAd24icWMNPp5OMtCswzs4s8oFkuGTBtPt8MzYglnpObINtaUvKaec4Ycw8EHACjmYUBbtyMULTWLrrxMCIzaFxb3yjDjOYb14/iD2GbeB2dcAjLLmFQZTfpwHEaxcOp1sP5dyVGBlp3yd3/euV7hhLogp7CIAIdt9ez/CmOOltSjpE3alqJ+Ht1BBgjj5zzlp6FuPKTQ87PVKebvSgoYcOPREjEM0JT7eHKDtrakh3yOWRpBk6g0opq+087yk/p9fBomeQUIWo/5WSci5FCsrDenTyWV/Q/GPfrd/f2DNurE4X1iUc06cGwCtpR6PRaNwYwold/j6jnqH1OjHSdBjmM0IQ+RKbE5XDcOssXTPib7aWT3VHbxJ/SNKlzmFr2m66QnEKW2pZjwBpC6SvT+fuqLA1wYjcTAPqRmfY2igqSJLTDsAiDgXhVT2Cn6crA8yQzShDlIXCSDFD0zDN1UEVQWxi5emcMAcIMHdGnWI6hlnm8rx3jJHkK6wO6IWcOowqvE+m1PJUGBBPg2GCjVRN7nVhZEcdjLJo8p2Rb6IqnPYfTy3z1LnVy0nr7MMgo7gzwv/W0GPUIzl55CtM7NOp+G79Nw2VJCwxKprulj54IbkN5+FnNKk5FVMAsh6M5J2yEye0D0WMjXDgXMPE3uoAM4FK9EdoJyT+wRw3fiMAlP2E8MxEDAfq+anl2F9SyrMxC0jNGyf5ToRj0cdb6JV08EmVb3jk/DnZzpW2kafdq464TFohj1Uv5dzE5xfxxIUX6lUpmlt3K7Gg9E549Fz+oQOzWySvc1KjvYbUXoGYqzw6XUwLhSTGd1xh+4lwgGq6EbknizkOVF8VOku0LqL2wQUj7uaQ0uFxJ59dTqe+KXi9y7FX9/W692S4/z3rovyH7waKU/sangMbjcYbAFw/kMP8TjKOaP22RGsMIk0Wo/GPwxeVyXDfqPcaeLiCkemXasW6mPoFWD9k9EnOjBFLSQ+2OurDZT3WCcRJBSoYwnLh+wV/khadXqg7LZWBOvkeUW9et5LPYx9Cm95JZ6TutXxddKDQuyT+We1q3E9VFY79XNPRSraPC0yQ0JeOyErUqE/LKlcXqlpLPV42c9TULsnWA0WfKeZW9m6pDilSJCMdCVpzGR+UzTpmby7totFoNBqNRqPRaDQujysmKSksegA2c04tTh8AJC1hTncgbBmFSDzyjYiF358W0Uj3tMRPd7LwNIiRUQSKYUZjOh74uwig5uThCSFVI7EMy/uVDiIZ0AF4/CJ3PgG7U2e2QUefhIMQ8PZ4AyfUQ+XAU6nAcoyr/c3N7lQSlyRSDNCIMcrvNO5yk8pn0fR+3N/emqAUBszZOgFgDMgk4cqvONR3YsbJMdXdC3NDzzTC0tCkzYginKrTz4orBkQmpu6AWvSuDaM4KXfs06JlMRWHwGw/OrWMJ3dIXWDmF+R1p0aRgyBQzU5rKfVTKX1LJCEIy7/HNGg3h3OxuGQydDYOdRKk82+p+2UiIrGc18dwka/R5UqMi69l52qj0bi2EGmbqmEfuc4CSWyGIIjDQQTw6DYRtTGMuiQyuMGcUXmcoIOIBmT02+k6jsDIOEZ0sXVx+gPpNBgyLKokib1ONIIo5g4jQ01Lmzt2tXl6DCOEQyyVKqMxYQun/oTpPapGjTk/f507N2w9hqeyNR1qc1ITABgBPaMtuV4Da7yKkV8irYCWSEf7bvUmiSes7iQumbx3T3Vn0S+dOKAkmTtZh30Ku34bA0yzN+TM2uf6npFaBqbu2NVITLZ+wvkHJDpXEpJ9SUfDRE0lIeEwiZPuklGLTEb82AhpGB4NCQO7Tk+rYWVxDBkRYvd11UlFQcT2+2ORNk0xHGKasUfnNAIUU9tB7TNGscoUxeJj/to9Dc0UfCT4A64fhUPOHGXUx2rEoupToZ61+rM0nU9F+eA+wt7fdCauZCMbX+kBKvOGFZ3zBzhfYHEScZ8SNQh2S0ZTmz62gCQ1LhTyogJRn40SlKR8FKJSphSJlhSyVpXTrYFTFZDEIPF50y7Q+ipq7e96+h9A7A/WqA22b4rZAXVXNV12li7R5k5Vj3A7KB8tsry4PhxrF+0C8t/D95fRaS/6Rg6/587hAmhec+GXF9SjDO9L1uG0QpzLDrUMGR0iQCz1v7hmV7Q1uLgyfOiyZ7uxMd47i0ajcUnU+R7r/BRzcJkD9TCBJglJ4kNF6mW2Lmekz6pfHGdCPcxmERkV3EmkvStv0jIn+sLABdZ/iNeEhP8gQIeeS8Uo9c+QjWoQuxmdlK1U/yw/1KgTy2XEH7avmpHsftPKqQdmH5Q6cEWPvUb+azrAiE+kfAsUHYFfUs/X/EBZN1CEGT2VilglUFGnHLA9VtaIMrfDueoKW8gJ8JS+VH7Kquz7piUq1WG91XLscDjxOnSm6BeJ4oqkY3xwT0edVbm506rDlrY0Go1Go9FoNBqNxlXE65HujaeXAW7hZAzITuqPbWqGbE7O8c2RKCAzIhWJGH/INnSeJmRXyAYINvvbDc9143m+K67bhqXkYihedzrMeW6bbxk4kzMjPA3FEI/oJBZhyZxGdlJf5+6b2R373IvDYrhTgQ5KwRgWkcldHe7ks2hS5+5clCEROclO9SKceQDS8cX9KPi83ECWwMCLcf64GebvtwT4lAGPaOXtm9y8i6fVGUxhw804oHNidxkICUsM5+zRF0SmC2ocnEASKeXm+TnGppg6ykZdI3pT7unduUAHzkgZCcutB9ZKG7zI1WherovrLyF2Wf4VnJy2Ak1UaReR4kypj7kcav8fHQKrwd9MGAqE4zTSJIZRaim4jMmLG6knAuKTLlPzxbG0fIRM5eItYFSx6gFy54geymg0Gm/iqA7TQjwimDJoOpnWyNXArgpL07UZEUfX2TOI0BHy/9yIPrR9q3r6N1vkp04j6Lhhee6uE0ia2ZkWjpGM5pyYu5Fotm1DjWFE/cMXOJC2cr7vHikIOPPUtmbI9oqN9ElMXzxtjWHyp2ybtZnpHvaINDLnDHKSDHjKukzrsAMZucc/G27wnkytJGtEH8AIR6pc652goIqpO4aTboxYPGN9GOp6mq9fU86dfLTDohBaVCsM8ZQGrljpuRvdxaJLsR98QRzCtAfT9DqSUiA2LkAyyRrtyVoy3BlgZHid52W8KOlDUJWI0rkvxK1M00eddFBOKovMIAoZCpnTOfcapKc5LbKkoOrKJy/IhZ9eCzjReug8c50bLjumo4hLRRdnT9WrqdOEBIWRBTJKTu1PRmzleFNN/d10Q4kxQPLRKcEx68p2KUr6XklaOruWJDQbs+K6rF21RvVKfTHTtemiu1V9L/Q6Op0ukHv9rF5ztXWrY10EGvNzJenldsf7uaQ+Wd4i9qumDmn3zXJB7p1I4IpIdLVOku93zpEDJCsFCXapf90LKE50VO/aZDmVMV89sxfq2icuxdOOCynq4cpCTDvcVplVWaasnx1wPIzA5c+qnlGo8n4p/XNhc07bdqnPDs9eNmqXKPfk2Zd5Tu8nGo1Gxel6uO4rUn9Y0xFH1G+IR/4sJerB9gNgjVqa1+Vn5RtXSMT3F1GluJ7keUY0qs+hUnCBlUm1TranQii6Fy8lWedImV1WQNpwtN6bB015sDHSrvk6FNFJZyk0yi7fO5mHkS79nAi4gocFVefK+wkRaMom1AQFGCW/NE1Cd/eVTvMptfGn0ihrVPx6UNTrYIs9VtYvC5b4NYhd5cCloChQ+Um0dRlj5ae6KO3AyTx8V3+uY7fRaDQajUaj0Wg0rhaumKR0BjhByNKh2MlTbsmBIdwgT+g0464HMo5t46Qh3cu0Ytxk75vDqW6c92hEc2ekI3coiTnP1I3AGwQYW2ylLG3c7mGRjUgEJLnKSDUaUYwGzsA4B9Mty6wjz+tDhzmW4l41b8qYvmEe7qCy6ELY3NmgAE/RQNRT0Vl7zMAu2NwQUM/AX3vGUzdEzzQ0nLn8pld4TmvzNgC481VkhANTMSxqxLRdsfjRZaZpwbSfOw0uwhPqFpFiTieYiTvmVJ1wJOGU3SCY4pGsIB6lAjaWRjXpm8Nod0HnOfc0qAxZje153ujGe0fTepT+RthQYehuGl7C8aVGqkvzRrm51O/4MY0M9cpqWBgsn2VE1cyUNopBI+xZx/ZcUauLY4SO8Au+V8xwyNVnmzOKRpe83v6+0ho0Go03SRSHZp0tJnyJ3myOnTvXdPicMwCZEDfwTycvbLC1Sz3ixnQnBKOekHCjUzHOBua5GbzN+eCpGXYjbQM2r+66W0Q/tf+oU6juYHQgaEmx5pF3dqhFo5wTmANDLSXZpPEdCuiE6AiylPiiICr2ORCpapcTsprySGfLiIVCPFqkEbF2lxfTJVn6OAyPDqWjdMOI9ZQkWSMUS5QJT7vH09e6I0gHjEpFAoe6V0iUxBHB1D0iJlqKvh2q57BeHfDYmFZ3T683J08Pl8hQEO9/dV11eu0RjpQ8cez6TKTa86hYLkeREWu86cQk3Q+/x8aITpediEeTSh1wQmMcTa+T9euIMaeq0OFyYd0VKSucrr/XEizpnUUspf6lQBl3iE+VenRsHNJpYhGZloJDq5DYT5QC+X65BgTuN8qzZIzod9O5GOHJdRTXaUfUI51J5jAqbizl59lI9ToGmU/YW5SJ72XonGKUn9qh9HcpQm88uiIlL70Qt9r48AfT/yYa27Qg1jOUkQxAZqaRYbQ8lXTceTe6ji3rY+gMVXHCZs53tp+w9yc0T3fohrPX68qouCz3qCfz+UyAc0tqq+GIxcV9fql+vil1tHF7cYnKtcg79mbX2i/YoNRIEKzhpXdQjUaj8XoidAFqf1zDPQUwWUFUp30OquScMi3mviP+jlJjcUk9A+B+IhZBn9iGzkiFPOD3hZqTUYqM3MRo8+V7rgwehZSE4EwJnc+0uuui31BXib2K7wl4Rzn2FtdR7ykrfdHNNPUdEoiivt4+yrjY2EgQI6l5MZRptoHk54Sv+pprdzX6CbKeQVAqepeJp5Co+SgtJHGFRc46yGRdt/iZxJNTNCNXM+HTVm2PZC1Ifrqu0MqrsFQMVS4o32t2Pcf8kTDcaDQajUaj0Wg0GlcBV0xSEt+giQw3mvvmfPNz8MMcJYwyxE2lRS7awVMkUxVnIp6mAuCuScYIh4H4pi6iE8DC2QIIAsRwB81UhWwbwPImQ9bCTtorT1ErxtgwhjkpJo/x8h7QIecbaUWk5KBDQr09VtoE5g7grBgfWH8P/+tOLBXFJjQApEtFRIp9Q3PbWfaDdICYLT2/WPKrXw3QGcDWKjA2Sx0mOw0uftLYvSQWPcoiDOys75wYQyyiEiMYqObJnSHYXAiWesVPmceGHRDZ3MFKw0FxErIekw5lu2vbtjQB0EkxJMZxtV6nMbucHFsvScfXQUwhhyKt9UskYUcZEprPkeVaXT5KQ8VidShGKOh6OasQpi1/RS8eJZb2RwU4i1P/6xXZGo9UcWzXIkT7fvJdWaRa6uRGkXTwpQzDmBSVv7DijUajgYxSsq6NNcsV7dlBTiGBY868zkkrmRXB9YAhtu5MKc9Iy7kAwBCcn+9QVWzbtuhAti6KE1hmzJFSdABGaJRh0YkMu9uJp6WsFUuZiw0e5ciebjoLXDkwx4atvefm3Hfnw5wz5lca+ZlW1VLXOkkmCDzWRiNUkXhDS3ZGHgxjt8CJM/Y9STrUp7Ij6GRIoz4A6HCiTiEEMVxMPXEe+g4JO7AUdQo4KT0dADsm5hwR0dLWRQ39Yw/5SdSdqQ5Uk8ROeZhuIlkYx5nISZ2t3goLC+RpqbS0NwhN9mE4T0RB4patiQPQPVIE1/GLgegTceIS5TO9o6/ltKmyaA9FuRnpuDF/ib+v0R53FXo3xFAkOyQfUDgNGe1lqUNhoVBTCRp7PekfGkw6quIOyX1DTkHx4IRXRmrFmZ+4KG9BhaNjtIRFiKwg5Q5+vaqT6w1r6ruL1aqjvntzQQ+/HXXTuV6EKg27rkRd8PmlOn3LWx9zfdUtc/5JwRkpaiwyziihOV9VfTwiZVygiwOMr3aIL6HU/UsDYw24WNrL1IqL+rbq02XscjwBh/FR3zJez83qUtVLotaFLtOLBswy/HMSOzwdRyktWPcKbANOxr0ud/BDEqOKhLSUcUG7rt0ZstFo3NKQ4wROVWPRH3NeqQvasv7zolgwYkYGyT62nhWyjn9tZZkdjR9Wc4jyeWWyTN0g9cmF6A1fS+FaTjlEpocZN8k61D+YcpgUmRqNNdtffvjvRSZOsqLZVV3YseTK6X1yXA04l8NtsVrrXtsqRbej7UpLGcU6JbTxcr/B64pOgNRDFxn7foHt5trDgy1JAvOnH8i9p2tP0VHW3sBCRBLJ55+UwoMmVW55ncY/Uv8ofXuUuz2n18lGo9FoNBqNRqNxS+DKSUojt8h04sxpadxULc2FAJYCYyCIP0xRsQG++RLMHVDuxIBw9MQmbJgDZ/M94F6MyQJA9xnODBmCOZMEBQBjbF5Pbng9NQd3kjAn3b5PjzhQzK/CitiFZ5ufdlYFsDmxyOI/QXcjOw2PJ7XvwHaG4ZEDdicq0Vahe26at00wRSOlHFM1TBoHQl44MdBeTejh37rRthRtxYhgnWJ54HzTzBP+c+7u2FMwywvozMGM01I6J6YIxtgs7PD5uclIp0dEclvABnMmAthpgFEAsLEwxogNPGRi38+tTLF0fVDQXwgJg0s2OrbwcvEJ4Bt1+GmVWWKABg4+SiNKQ4xRFOMYH360vdChc6jbiVNDNd6tGoa8Oi2rocIiUtBhZNGoSqOyMsf68PuDIyJlsBII+P6OqNtiRqHoT50KIZ9qQGk0Go0Cnzymck41IrLpB/4Z/QE6I92reMovcRJRzEkyoCLYZ55itjRBNgsZAfocALBBcQ4jJwH2bJ2MtMRYk7D1b+6YMjNVRJ30TlYPxYgUbm5Aj+g5bLKn/uLtTANHwoo7GAb1NRhBdt/ViT0C1R2oZCbQcE9xTSe7ekiXmSnlSORWNRK4eqq7+h/JNenYYBuZbs7XJcrPr5mMaETSEDvRnQoKEoU0HQFwg7t6mt9p/WIizrS+AIzE5foHe37A0syZbqYQVxo2iBPhU69ke2SMsrbuXnN1wsSwtZUkLvasqumxbJ8PThtjG3TCSlGvZ6yXAsW0vouUDwNBftFpEcDqAnstwof9EpVFNSLRjPRklcBeSeKRUkZEsUJpcvmFpJWqj9CJJYDL0qvFU/xxfeorONyfPiyNd9HKKPsZlkO9k+pYcQ4BdAYiVa7FCShJ1Cj7A3V+oRZ5ldtTDAc1jc632Oqg3HAz4jj8lr+Ljyz07aNOyM+EPe9vPef4Qlpkv/GAQ75X1N0rybAqoP5elu+EAiykMqaDgX8VfVvnk6WFWbf88ya8kFyTvHoDpd3LdesfvMd+HIhSsDWq4kp6/+Jrcl67mJen+SyNO04L9DG6rodZTv6uyz2Ay6TsQeJ1lnqfd/HhvWs0Go0j6toU89apeu6L1xJPp8z5XDsYNanoBUFWNf039ZnpGl3OdV6K35L6cGofeZ0t7El0Jlb7kng1WYckga8p0Jh+1ssv614eNNAk+vNv27Gs07haPRdyUxFTpn7LQ6W1VanZUy8ua4gq9NAxunSg/Z5RDqV8leXryecSMg97YRkT1vX8oOgc7CZGnj/IDKCMNNtdEUU6caimBozC+XcooSH7+pzT9TJlX6OFxuGUWBZr3DD287GijUaj0Wg0Go1Go3Hz4opJSmPboDtP0XiKAV03L0JHF+DpshTAxCZbbFIVkqfS6RzyTS4AiJ8kRzEsG7HBHjjEz6wqIqJT3YDHCVnfkNHmadENbCO5DYsMwINKZ9vAroUQo9Y+JqqL6D5hCrWyhrdLRMypCY3nyLBoTyRp2QZ+YN8VMmwzyBQCAs10cmVP6dtekydy83w1DKxH20vWIaPizCAb1dPsmVINu0BcJtF/sGtULV2NCCNm5b2qirnv9rmHaxZRbGL9tpFlhHR2IjbjlmZvNbrA6+up9TT9eaMMlpAjjS90JMXG/MYlvRKQ4COeW//Dcy4j8+MXdMYdDe3ESYnxyIzOxWtM1kmWizIO5MBog5bw1HzmwcAflCEvYDF4lSLN6KXpdHOiobgxrUY94Zg4tq7pSY1G4yIc51+ScDgJzV193UqyAtTWhXOPvjOGQKZABhO/2hw2ZGBsCpnq+oKRX+acluJLRkQEZKTEWeZD0wuQBm2R8h9TonqkJU8BIeKGbSh013KOdiDYvmp6UkSsE7heZTzpWDdkYO6mj+znRg7m/D734pwAjFTsNmquyZQlgxSZA2VA992jSgL7vrtc7HcpDgQRxVQjLZlu6NE4AdcFTDnjOkGXCwmzgs2zLajLcKbOAMVk5AxNvSQpLJ4GlnWxDsU+z70ztvycMgyd0eulqb+QBkTdlbovYO22dXcs+qgq25G6QDjLRTBwXegwBpKWZrTD0ngAc98tOpSmA4srJUuPtiI68cZfoFsJMsai7FJny99zHKKMxYhog4wkxjR6wKIGFX9M6VPXHansL6lwpehdcXspqOwnYt8jGTmVkVGBMk58r4Kygwj9h5MU9WlWPCawurHxOnH8+KWLvy8UvpRz6GFH+Wt+djX0quPzTp5fPltIP8DSr2w3+4nvo81Lvp/gXWXfQXFGH8TuqdBzLhDzonIHmYuyL1GcjAMZXba0Ty8jU7m8HnvRG3vh3uxKXm1vz+KolOMFCNHVtlacjp8ib+Q6csGjfV7Wk5TUFzXBLi1zQrnmdFdwvCqvaGdqo9G4qdDDTzdVxGc0aQDr3Be6hMAjoA6fmVInNbOnH2KAItOQUs2VXFewzpELeWeZENcZOokqiyJl5ZW1SpCRTsU3KgMSEX/qAQ+ue5XQS7Kzqoadk7WutKFLRSFno6tdKKI+lhRuXEdCH6SOreu6w/ulflJkK+yHC9lmI36LX3xxFxJ4tESSCqkr1hrAr191lqprRf/lI1K2wEmbOG4iquhSb/veum9JfGzfFJl5SV7j1IeWi2u5Wvqj19RGo9FoNBqNRqNxC+CKSUoQgWyMI2A7qm0MM8b7ZpbBloY7o8YYUNkgKhgi2GEngDZP3cX0XEZoEg+Zn46CqVbG0NxoWlU8/L+n27CoBgDEiDCjGA72uWM4Q8VOpJyB4XDtBDwATIujNIY50iYdmgJVcUOCXaM6zcECxZxueBgDqtNPM/u2cpjTcLqjKyLUBInDdtOamVjKJhVOoErT+g6L9XR1qRq6bKC5eRaI7X/L5zKLAzZ+ZkNELToSdMfExLaJB3hYyTKa2/BMQeNRBfbdHmjRqswzYKKPgeCOCHcmKM0Q4jKUMLyL4MR4fTyVT4QDrDzjSpDGiGqcyLLM2JKOLIG7JQUHmaQBSDJXx+KD0ovGAg05YHl0ruSNxca0VHx6/011Bzwy4lOtW33m0ccTv2kah4YLnmYRjq8gQp3a0Zb2HB0n4fxYq99oNN6EUZ0HnA8G5x1f/yP6j18/tuH2aicqDcG5AqLDyUM2Lw3ZILJ7ZKU9opbY8j8gOs0w7ZP8rk7EBuc1I58Y5cR1F7+Wp20jmQLJTQz7JJ6WczrZQSX0LLjuxHRyQzZfp6m7wEnBGk4RRr5kyjmuJfaHYIrpKpbEd7oDgvO0hJAtWqWEDGkMz/RcAFhncJ3PDmLfWPjE6RGHuN7MWP8AjyKFqGK6CVx+vIdr9dQJTKbsU6jui15jTZje/onBWFcCiDdWinKjyghK01PvMYXbelJZ6ChQW/VFLXKV0ssS9c/ISKpGpEtdY3hkL83/RQRId2gVYi+jY504jGDEs2sWrojEen5Y/DN7GwkOdiWjqVLVViBS+oWexc+LTsGDC6PogeyHcNjwpSz9pZacN6utcyFUQYv7h4Od6o+XY3Xhu099qkYusDE3vRFME0mnZEqiqOD8ZRRx1voUpcgltwgoSIFH5fcq4IJYASGz2O9RnF7HkoEluiPIWfB5udy/6r6h1fu76/sOzhWSMl/SsVUnXSW0+fvFlOO5j5B49rJ/WMR588qWw/VYakR6KM/M1hT5H+p68UOqPChHzbESAyx3O7Vvop6szUFEetFFl60W3/m8QeMn3117p3KvciitRGJNR3OZfw710PJ7o9F4U4Ne+OtxapnzOFPQniRlOSk0dc15yNTFclBLcq6NmZdq6FKN0DgQhxzi2ljk/crUwXlPRDZFnZO5NvJ5uaYuT02WdlGTykHVKkIp3y+zf+qrFmlIQ0ce644k65vNjvm5km8Ysd4ewQOpIfQos0aAiuakpKx2fJjqsq5p/O3lFUaUtUddFqWn1A6YRJFVlhesZ6dCRMiLexItROyqY1JyNRpWtSmC+0o9PI/PL3Kq+kRG9DrV4xqNRqPRaDQajUbj5sQVk5To2NJ9N+fcVNBbIrAUXDzlPRSWRkMBjM1P2VgKjSkWdQCS0QlEcnPMDeicdlJ+Tr+eIW/rqZ3Fsp0bxR3qDgqrYxgFxFK8bZtANiMWMWzyED+JrrQYbAif07QNeRCXpp+q14npTqkhkunPBNin+qkeJ2idM0Wd/W/ufmppWrqWbRvVhxBpTOJU1ZUYl28mhONgsdOkg0WBcLLSmH+ubK9iY3qSCUxlhIEZztfpIRsGT2pNixhhRgQjKY1xBjp+pqpFhBgwwprADQQDjBA0wiE5MHePaDD8VJj457M4qWQ1myztL34qqQydG5HZsSzKipAyvu0DhnMGeB6csqZTyYaU+KfHZ1YTOw1c/qf5aVdD1HSHXty1Ep2mWrq3cHji+IpJKYxO5owaYM5we7cHhVEGr0W28L7ygufMKGJJ1jo1EGZdT00lF5lObjQ9X6PReKOBwnQQAMYeKlFaSJC21Umwq8LIIEa2mZN3kpwiHk3RSM/7znXYzNhhHB8b5j6xiaWNC6M2mcdhMM65a8DTwEaURVvLJBwDE5PpUwEjusw9yT7DU9pJ0RXcoD7n68I5YiegnQSuijPXKeauCzFjzj1IXFxP9jnjXLGV4YQfqBGhZEL13PWXiVgIIEZ0nYBgWAoIZX32C9ZTJ+XInuuieno2zCTggOQt00n8W+yMvjmnp10QWCo0ZESOuZvTAghSubXLIjwNMZmTt6A+Lhg9SlyvnaKWUlb36KsxnEDmeufUvSxGik0UU89hyZCpU6jXX6wOkw4P3jjtc7EVPxxQ0OKAcOJTOEum62feX/HZtetUSNUgT6YnL42RR2dEGz2SmOIa6gXVSbY4jvJ6+LRA912tC8p9onxHOCbWcZjaliSZO/Ql19VEsm611mWvA0XsGeJ5/l2eiXc9SfPPkIcgIo+GrqleaZIR+czS3lPNSMu/p9++XppUqefysZ6Wcxyfy19CndOcc6LiZEU66PL32p+cmjPCQRWs5Q00EfHuuZKfUA4ouFCZgpvlKXVzn7/pM1xVzlOJxzMl42hdIKp42Am5CCmTul+2Qnw+54iL8XEQ6jLXlPF4qHWUkT9iP5IyF5fn6d6EVT7uM2qb9SCFo8SsqZJjHqusONQvRtZdymPWyBG+7i2krDrXyCIb1qvRaLxh48Y0I1W3bmq5OObkOpf5Oi9lLgryMcLOtJAjFUFw0UnF08gnCiPfxrypiGitdcZM3QnrJEdFql4fqYTZCEYIZXu8nKUMWxtRPy8GrWgvdSUvMIj7PIQQ8tTl+xrFdRGek4rt+S5nX6BDv1mQhzu4yswqA7YxSESF9JQLmqdnDsUxpBx7PeXhx5MBERXjHmlZl6Pfo8SQhwzxfUsVapEZ6t6KjZ9g+sBVLxYw0iy/XAlZ2dO5LiPHYKkvdOa+Y2Zbr+X9RKPRaDQajUaj0XjjwJWne1PbvKSTzlNRwMkHMOfSmQimmEHYOEI1n5OlLDmf0zZo3MzTEA8nLbmjcPPTr0rPQrFI0kBpzic6CAVzN+eMjC0cSBatya7fxmaf7Wo2awEwBGPaJm9sTFc2oNOTv2zm3djVLNZM6wGIRzxi2gEzCGg4HQQYURwEE0PtoXPCnaWADMHuaU0sjRzsvqlObMp0b2mkoIGimE1l+XFFOBpoeb+C0XW8//2/6Sf5tRhdAMHZJth3q/P0PhWX+/TruSseQTrjA9wBoeeAGNloV4sdNVg3tbYyqgPT4DAlHGtpkQsUm3iawLnjXMyQMcRIOiTGrcSgEzGC5vUqk9Nriizrv2rmkzgdn0ea8odocOIU5mQfo7hJ/JbpERkQRUTcDb+yntQLUUWdda5tNVnPiEowwxBiJEIa1dKwBWSKm2w/jUYRAeMgFY4hRiWZM8lJ5qwFGAWL9Z5qjjdGEYjICVrbdImIYjmVxLhuslKj8YaPU5IC/F13wjCM/MpoQzTexyFltbVZdHrkFVvTZxCK7BkRXUkE+7kTWcYAhmDqbunjfF0T9TOyagZuI1BPj1pkxKNNLArhrtMcH5rrtukuNP57pCOoEZzhUSBpW3dyC6MwmWrg6RqUadwQc6DNexMiiqG2Rk6PCjREoSCxhSSbEXW25XlaWxRQ3X3NBlRKqoVVE4GZ1d0zbvnkzEGiJdUe+0XrZG3yMWKRG8iduDr3dNDMaOfAxLRITVBALWLQnOspcatjUMuszS6jAYXO6Q4QCRnYOkRBqi/DTvqRLddeBRidp2hMpU2UsXeMFpKRx4AZHqmKtCVVichac7K96iR5d2oBEJmmI4f+u4NpQ1LNGMW5de1hUHmoDpzQI5CfKzCFOjdAx1yQ95EplatOYj8y6hLKT1dasDrY6kn81Hts0MMilEUkUBe8TFfsXccbPvbh+lOqt6CSw19zO+MXFDVckHMSkDr4ovMM4fl8AK6re7OC9KTx2EVhrX9WvermwAWztNc93iirfvniZAuiKWdGN6DM7F0ULAQXDgj1d9OFq3xBYDMTJVgjJFm/c0yxPH+upMyHCBjElW85favjUO8qiYv2FxfJ7Ch/Pfw8ESTllUPZZKT53NrvfLNqeXy/6tbkwvoeNz/xfH9T1fcuy/u7FnC59l/cRDaOj8x5IqqhKQOABMSDNOVi+bKectkPLgbr0DuLRuONE8f56qgn2PzKaEROuhFGVpIkoLhCbbofco0YjKYpQdqx/YQ93S6t9lEn6/IvSWJ6Tto+GWqNyoosi59BMoUZ4OspCqFVo5xYV+BroSShnPrLkLQE8n7uEWinyhmcOpIiqTa5XoUNiTpSrOteV4bl4xbB9fAL1z7vm1Ag+OtSK/+7MsdrqNLo99I+7j9iYBT5FJWkilOQ18WH1DuWurncJOWYe99coKR+xswA/DOebgd9aVGMclSXulWpQOvzUHhTRT9uNBqNRqPRaDQajauEK0/35k60TYDdHQM0Bk/fGI0xfIsni8VZ4KeEpp8+Nw+FE2/SishoPdtIB4x6mi/AHFZ5+sZPsXs5szqnIDifFvlpjA2Yu594HRibEV9EEOnrdBrJSNSMCzp5OlQ88oxCtuERgNy9pDPSi8Edk2P4trs4TViGyAjDvALptJN0iAy32JPYASd3bL5RnQrISIJK3fKu5uG/p/lUAPHT+nwKnZeD7RK4YyyjJmHAHaGehmZOgE5hnEE9mgKNBkYuGh5VYo+ISzTaWItszMgs9ynMIeSb+I11AKCYOPNUNEFuk+HOIk3jxrHJizHb5XsZgkvIJYh2h3vDXC42fNWJQkzPoUbe4piQkrLkaOxnNcI5QsfJwSTPlBTlcJ7bXMxFE++V2Du6SVLfWG6mIJEw8NdM9xKGumKSqsYLyc94Ok297UP8fZpR4zCCaTwoPSYLwajIpJ7KXnqIr5Qc66fxeaPReCOBG1jDxCpIMrECZ9twIlLOhc7FsbV6s4iG4vOgMPrMsDlmO9ugOrHBnLCiAmyWlhTTIhRhMC2aRU+cUzC2M5vvJ12tRnYysjPJSU7atIfBIvaYnmQqha8hJCsDvgAMn6erQZ6nkj0yoThhhfMkcycNwZkbwM+np8bFGi0iSDOSp6uNiGVEWaYS44qxB6tJna9hvw9P5buJ1dsDQxpZCqY7Ds7/Gv4fWDq7gX0aAUSGk5CdTWFL+gbTFHaXG6MGbSZLIfnKruW3Ft3PiGwDw6IZwUnATl6n82AsSoKXNxl5y64TGZjULVXzfnCt2Zw94tFFxXXmabpjrLOe6DjIYgLAozItxBSPECWDfW+RvOiVUcDGhUevvJz+cmuD9O+IqBiyl0jHlcS2OkbTmTTpzJF0dPHbCkY3iotch8QF11IhidRRsC6yjz0OajiQJPRhlLrmYxjVZq0L90Msmzpj3Kk5vhTqunct91A+BBvfV28CeTjHHcFCqqnNLtesn+LCb14f5H7F61y7AnphfWqFJuj0tHEh4nrqROrpWslu+WQrKrXGSsqJDkbq3KtOb/IfTpCLtJd8bfmEC1lecvrXlewnyu+6Si5FUodzGXbVX41SpYM4cr4tdUynp90oxZGZbxyW+izjep2pDqVf1N6T2sWTZnnOkXREe4H4d5SHXtCmWs8cF3LaDTF+fI1Pz+zfc+Q3Go1rDSf6Qf2sEjj4tx5nlnK9f8h1XJhu+TBxUJ3MZNMz5mjZJKK1xyog5XAm4rheMbb41TyoELUqc7pIzHs6aVfzNpHsE+UAVeFR31vZVJjlcC5NfaiSlqwew4n/hc1VFrac+deolMu0G3u7IpH4XJBRroK8qqUNxzWg6AdJfj7AI6rW+yQXSl9jJqCkkUn9KvqFZLDQN8oqGu1jZb2qubaSdJZ7ifXgX7VrSehCzBXA6F0aEltTFUcXSIliVZUKHjwJ1vNBRNfwfqLRaDQajUaj0Wi8ceDKSUp+klhhRB7wBL5vqDeYc8lOFGnmCHeH0e4bLjuNaikSwo/iG9whkgQSMefR2CzKkDmqcnOsM9O/6RBzOnk+LxHBmCQVKWQ7i82ZTAuzq0CkvxpumDzbNjOgDyc9bSTLCPZ99/skIyW4gxGwqAZC2ohaChiIE1NcTBPmIDjbfAs5AVVPGSFpBK9Rd8zAYNF/GA0nJbnavW/SFjL2yrrsS+sGXMp1A+L7dLt+DEZK8oaOiXk+rf+FkQQsOpQOTwHjbYUbWCyqj//ECEMAoOG8YoQB5hHjofWhCHKP0NshFhKZW3RxudPBxAPwU/h5mI08MQtW9wCNGodN+oljh3WCRPo6RqAyQ4qC6W/o6KpOGzM0pKwrWM7y/NWvkC8Ta+/GNYWNn2oAGkaJM8KQwt9FOgBy/NXGkvhU07FR9oz8NegESK+ARQOhoOohNfcUTkYoKGl6WOdTpOGm2qPS0CXxM0KPNxqNN1isJztl+TzJqfDUCLY2kvTJNJQkHwMSRKDhFy02dJIHdMa8vfM5Yk4B6IBiDzuzhuGbZBpAMKDDibjCM8Ni10zFcCIJCTRG0OYp7QlTttyRQSKz6yJcQzSIva6cYWJsWAkYvs5Opf6kyPQPTvL1dWdqkpPC5U+Dugh2nRQChpjzXvwhQbLZzbVf1zQ+a8Lb4BF/5j6XSbwSA5SRncTrsjhidsx9d7Ktuk+osHxB4/0s+qLTzrnuHhwEuGiMiZGyJoykvk9LxSfeXwi9RV1uTixRWKROtl+dkLZRezNtw8hz7tAZ2YdKElQZkwqSlsBBFyR9hvmxyFqmjE3sl36hrgX4WOT4lPK5wN6zqndWRYsnw6G17ySuWdw6ITB/niShfUEdX3SyCY8qAIy2FZFFyTbnwQWh3pX6/lF3XhklFi1JQIIWcnw6+R9R4lpbls9PR41ucCrp8DnFtoIBoKLti7BOZHhy2QXfHW9U1MqUcot+x+8iSsLyrOM85NJ00fHNDekUYrr6vi90YR1LWTHPUlH1sUiJZ734Zx4PUJR+1fzlSJzPvQOLO907HFHU2XxAWZt4U3XmLnuAQ8foBdfXJkot9BJ1qd/m3IMihKXIZcm45CAS1N3VcmHMx6UN4msqD0Udy9NysTVJ1rrJ8Yalh5Zrtci8/BN1i0qdFtxoNN4QcDCcXDwDhiofl558X3SJoAuLLHNn8D20zOXqNgy3jSYLmuuglaBIPf2kvoc8lBaQWor+jpiLTR/m/K1Rb2BtuwInejuQc7XWgsuikuSnch/XYi12WiDS08YzfbGQcmsudFjSdq9zfyHv+lrD1Nopd5ezrsXqsdWKZY95srayvbzXNh6gJar28yIx5TWSBdfxFnpHLftUF1rr4tfOjJJllZhFD4paYe2LQ5mLjqK+Bzw+WfL+S74pjUaj0Wg0Go1Go3Hz4IpJSmYXVmAqVEduvTzbwYbhm3pz1k0adSPFkxmj9/Pd061wy+Ob1HAimpOHp8XntE36GBb1AKoRqWjSuwhz62GMsBtOTFj4HXPmbNsGuKNMdcZJnDMd2CzxhjkPIUm0cCemwAgTIQOv+WRqLgXyBI3vVD3yQJjgp5GpAGCoBulkL9ZeEpQyjYg9zgLg2GnyfTE4xD/h1NDy2RGXOwmjy4a6hJH2jT5dXoMnzMXqdb7DU5N4GdPSiGECg84BVU9JYhGrNOqqxaBcjCeakQWYwi835xMyFHMCG9M+DIGl5wPGZn2gMrFPwdgsJc+cSag6O5Ol3Smx3NjrhaJazkUVwcbXbpyQOJilUO+zdLoCZgwYI25bHEwywXwoy3OKqQoKc9Cmo8sjXcwSNYKGk2IjYecpLOoHLzjfEaTBiGSlGtHPLJVMlBxjwAhnCkxP4zdzLE2+DkqfhhnR9rlbmdEH3vc+dpaxrED6A31W4ftQeqx2Q6PReOPEkXRIEq/NTFxHT6MI5Rxja8Dmp5eHz6F0WnO9UmXEHWDqMELRnEY+4Vrn6xqJ2UDa1cXnxXlYU9XXBiNOWf12ncaYDVKlE7YHyUXD51NrixFO7Xn7VJ83AdChoYx4RMe9AE7isay9iolhOpZOnDPCIeUrgO57EjGUEStHuOuNsGFOFIuOhFR9vG+Ynq06u7lmWcTE6eqf1XOftqpZPezqndEzBw36FvGK61Tof+qGe5eMDDfWi6+JTo6uhKdJ5wo09MyqI7GfoDx5rrHuuLTdseBp8YoHwvxOJK1wwFjtdCh0313hG0bynoqBHdAZERK5+u/T0sFRuFUPpTyhNe1tjuFrH0kmFlds5aTaqRzlW+aIaAOFZB96NHLgHdS10CGCnMIv6WRc9WoKv45lAEZQjDucfBhXa0ldi3gRpDyH/8Tcg/CBLc/KXUJ+of576EDHyrGOZS9RuVgT4XtLZ1towrI6aYsM9QKh3ty6V/SdenQb8G1w/fwwtmsqk1VQKzmfByOoHCv3HnE9CakSe6+TZ7AfD40+znVVN7W/T3X6K0W9Y67ZAE9JSChRn+rvhwpmfS6uM9fCWmOOz2hTuaFyd7geLAS5VXyXxdKNHIfcDyxtKO2QiyWrta8UQIk6Fp+VOkletkbMajQabxJYSCFS5kQ9XpOTBHWJwYMRcign9Ac50U+iqCwdeWdeP8tnofMc6qTL52s5VGltXZz5PYmbjPCJtAX5rgbV0qKHOZNliq/NXHNy7s/4PqaCe6T7WLuqzVOzjkWIoVOFJJH7lWxYaUf8FfJPYrzrnCxt6atVT8oPy0IXz9VyWflXC4kKRcfU1G+Xz6l9lYXuqHtV9SPrqL6eHfQhKMwGXcdcrf70so56qPdd6Ee1nTe2ajcajUaj0Wg0Go3G3w9XTFIyLolgjIHdNzSKgeB7KIAhbtS1DdHuTpMBpjNQbGcjDICQGRvWbTPiEzdeNUXT5pvIsQ1MsWdMniQh88TTXNFBsY2J83OAUQgGN1jD06t4eJep6qd7xSIoudNDo0mypG+b0zZ+Y9vMqSZidfdNdzgtxB61wwhWYXQNBxnSuqxpHIhUBsFasd8n4NlMTODViRFJuy6yNJc/F8P+BYSlxRTthpkhTO13DG+MqOMY5gi0QBJbHGIOpyKfNQT7ruGU4sbX6ubtUiO5YRZZhFE6nQlG6PJoQIJwBluZE2OcZSdKNpfReSzSAttTTp9VHD+oVuxLXMLvRZNcduEl5eR3OJgoV/9pw8MNH6qeRpH9nZZ3u2JwuLgcaIzIU3BhiPFn7U76WU6JFUOIKiBDMMWibUi11i2eBkG8fFGcYPOPxwYGBQHgEdfKaLuIOzeq0cgH9zgIPsxmrHMxGlHGjUbjDRtS57kT57T9t9OZKsPJyxIpDiCM4JhpJ3U3Az3TL8HXmvN9j3WfhmbZbF4ZQqOtWiQfANtmRCKme51zRvpRK9uIPkM2zHkO9dRkTFdq0SMHZpnPqrEeMPItox8JPJqPyCKKOT1t0tRcW4SycxKPqLeb6a7c8eERnQYAndOjCZbIjQr7lsxk8F6TL6NFMW3eNMYQbCW2yFYLOYjEcxrCParMcGLRZGoK73sSlpPwXuQjdH1Q9/TnTCNV6VQMLQH8ilPB1leLfrWQs9lupA5EN00Smaoel0XnOfqiV0iuTaZLWZo6FcpJYZrijPurEyid8K5PhEKky3hZogdGXa5NUNeI6I3er5HxlWIU7hWoBsiiGzAqqqwl+9hZ9R0qGrzD9g9y0BtM3yf5W8v8YOkZF8UnlTfqmOGgW/Wl0OmiOtTjmdYu9f9xrPeBKcGxK/WSVbjL39U5JeWakz2Ccp+3NG7561Ij6vg5217f+1rX7N7iXitKeDg4PVpt7ofWOWDOw5Nl6fDQf2OMFWV7dWwKjvpi1a4X8iIOOqvIUVTrdzeCdFaub2yN5lrHHaMEsjIcK3V7wq0l59CLek6jXIDEHdH10iXqhq73Hp2m9TuUOhw/z3tyHjspoIyDbJPbEUrb0jle6iFrXReCUn1arB9rrZb6cL2oBKjeVzQab7AgIThx+tdUV3V9irI1pKwV4Bolse6zbGhdow76pvr8HeuKluuSBH0kzPtjzZaqRccHifJxCYKMBNoV8xADryIRKOvOZxfCTtUXIKV2Kamogyu5y7rEidzX8XU9HViluZZnf6bCo/E/+7wSfFS5hkqmKRWPnqumM9o+JHWDXB9iJUH2Sq57Zj/OheyQJW8hYmnRy0394X05BuIeeMR1RvtnHWK8MaLvqttGjf1LBSIiuSxXKI7PPZK2VrVA4OGhwl5P9fWw5W40Go1Go9FoNBqNq4Yrj6Q0/YT3TAO8CCAMlzLMOTgkCUGbG4QF7hj0jaI6uUTGCGcVT4fa5xIbv+mn48cY2Cc8ZYZtHoUn5f2+MZwkNC3d2DYEQ7bYxDGzhgiCeAR4RKZzxdjMLTe5kdZyugcABrANpg+wU7hbODNg0YIYfSBarsBUbFumNTCfXgb5lUgVYaeXwxklCHmHUcGdMjSicJ8ZJ78XSzBPydSzRAejctkE52bWKkEbjQjizNWmWE+YiqXjsyg5CMaU7hN0UwrcSaoeDUKHR3+wFCg89RSbfex8MnZPQSMiGOqGjunjrdSBBgErZ0JUsUkmb1OkQWgurQW4Qa8pGw4iOpGZGXPSGWJjgKe+00DiPQyeSIvI3gB0uow9vaA5yleDPEu3MVtrXEw7WutYDEWLNQUeqQLhfB5uLQnjiUczY9m0r9TT5AzWMMEoI7C+LLILZ5uHCwtHER2SxWA1nIRmUS2G3eNjhY5+M9QUy9lJ4rv0G1RyY6PReMMH17DlbyLsx+IpJ80AzohyMkZEM5k07gNBDIjoRMLIGRucDppZR6GATsgANqhHZlRg11jXaKweY2DuM9akUYgjAsHZMELQpPF+uhFdZxKCD04Ia75HkfNILbbYJtFqiECnYBsb0sRtRFRAUwcCHfsCS7OlwGSqsN31mgG4E2HO3aNQZto7ahIkd7DtJnOSvlme9V3qHnQSmDIm1BFELCpUrBW2rqjLSicdNAe7OhAEJkY7SlKERffMiDFrpCEIsm8k1yWrC0lh7nQaw1LLitWXpGrrX2vL8H5y7S3GkWkz6ik5EP6DDZZCTgCLSDpNt5yuBFTCkWnV09dXdyfpDpEt2ggfH9SzV6Xl2kI6yI5/+weSOk36+/guFMegKXbhuAndhcUcZJDkvSSYrboJclwdHEWDpPiSRje0kYVVhIVQt3CMFLG/UElNJqIweFniZQQJL3TjTJ9L8anr46GNUnFPUcZ7m443XDg+jnuEi4dQ0vpfr6hAknocZXeoqssiv1w+j7tcX67sGfNGRmER1Uy8tsrPWY6nPC4smNCDWYb/FJ9XpOztwonN8qoe7Xu3o2QuJ6tLdEcdUQvpJxzJyPHF8VtJPBeC7Yq5uES5QI7r40aofm/3rc+6sP5lDB7HFtgv5fOjQ7TuC3P/XCKPST7jOKcA69yxvM+Se4vlpYeNnXFsfKPReKPA8c2+6E1fCJbCOUPWG+ICm1CO86PEv4zYSb0h5z0ebKicJq7pdofreqW8WJ/g+qckkR/K+VCXuTT15lxDAXV9sT7FnsTDpii6joDZ1zKN8jKHc/k9kj+FbfL6SZbJ+1JGB6HHX7lWBUGpyCjWKxGI8iBGrvsu9fhpkSLl+BiQGJwRkqq8vO6l38Oup6fX8pqQeqon0cQgj3k5MWZUPeJ8ULOWso8H9NhDzGZg3WdtNP2wPLz0lz07jj2WRZ4DJmt8DW8nGo1Go9FoNBqNxhsJrpikRPIMUDahqqCDifuZunE6STfBTeOIbSJs023kiCkedQgAIxcNWNSi2KiFA8kNnzSwDvET/UZMMYfdGXh61oydasQWJ0aJojgF7dS9Apb2ChpOw3P1Nk6rr0Vo8PQykg5Fq/kOGWeLsVREgN0iK7nEoBM4M4+EtVVy02jklaSopPHVHHmUsWyXMntz46zLJxYtIYlLaUTxerDKkpED7IpiiS77ZUZ/Uv/dnK+WGG444cUciBMZRlrKsxGkJauvpYCZYk8+E3P87Z5OZgxgjM1S53l0hiAowS8Qd9GpjSdGV+KmXUEHhzurYRv4SsxJORwNAW6o4dg9ONROLfsa5BtLT1icCC5cnlweEJyrpzVUOq8qEakYMaJfeWIujSBM90NR04DPXPMi4lGe3KkajhgkE628mwrFvmtEoArfkJCglAY6Eeur4RPFvlvaRSMijjC10Vhjjv8RYhPAo4TYB+FYUhICmQoy23xMx7FE2qh9UfuwCUyNxjWPan9dZ1UtxuQ8FV1TXCk8xSsAdTIRr5mMtiFmhNdYUzWjMLlX1QiYw6LOKSxSoLNeZDPiydz3IC7EROblBcE4TOOI+VIPjnaeXuV8xygk1K+MKD4g6jl2MYuD2lyrcydZZzohNmXCuTTM6dNy3ylT07phfNecS2UM7ECknTPyUXYIowPFysnJfJbPAJvr3VFsag/Xlz3aNlmsTiO8R00NVdsh6SucR26En5rkItVzkDLPfiApTeCnmJEO+umRoXQCcP2F5Hr2IRdaYRq+o47rY4bj1J4d4s/IL2rp7UgusWudJK9qfUJnTowBjvVcy+MvTQdL6J3XsFshIkb50fRILwvKHDnGlruqrlzL82urDjDyXupxo+wHwg93nF9KfYw4XjpQsj9J1lcfq3w+NbVwAgl13oNTLIYTNX2J933WdsQYQQYKKj9JfN9Kdy+qeoyHGimgfMfXh31BuSyS55uSumYKBTGnrVgFm468Uubxe63X2jxOZTw+0yTFR1myyjJaq3yiZkQ0yq5GXVIp7yJLSJ0XQvKfpL58lOFJu7P/jqjPufiSRXtdZBQOb9Fohq63hn5u9crxyf6lTDLqRr3Zr+FYrS9RGbskyskFX588q9TxmK6uvCInsozDIJKHh0hAi71ULeiQp3tWeZW68JBFOo5zri4refZLOI1Pce3Oso1GgzjOp0cd4uTz8j3jCNGGlKnCeKnrM5pzcqwPAJJFPKNcDV2SM7HvO2hv9PVyStpxUHVRrv9lzo6Jkfq3T5BBpFUtV0qk5eT6pvGM1Jn4GR+S9sicM2PfFXpJ2hPjGRjRkKyzR0qclIlGG+Gk4CTrF3Jq7RMYcVtLuUzzXZ9FPbOSiajrKXUMr5V4Orgl2jnSjpao+kwtO/VZ6g+Hxdf3rrGTXeXtMq2yrd+NKCa/m5oamtaxIcXmtsieEZM0xi3XRyzyYJN6pWs0Go1Go9FoNBpXF68HSWmHYvipdKMcMFWFEXxslzlF7MSpkyUwRpxkFzcgSmwMNU40CllQYcTX3NOphtFeYKnhzucEVNJ5k3toMyaKOYS2YWXTKSLcqEue/J/irqyZGzrl8XSPnDTpeGIoGZJj3IBqpCYvF0nUoCGeJCNuMqdOTLWz+4wkRQfHcObKJuJpbBBkK0bV2ZARcQilcFE3pMk9UdhzRTKWTdmG5t7Uu05h0XcihLUbNWi4nlM9dQvJSj4eppO/pkdfADBU41SPuOF5Vxqc0/02FZg6MLBDdMfABsEGHeZEmfM8TjQP2dJgAzUSCyx1jjHC1HhLHqFnigb5Z98tulVEMDIbSBDJ1sFfIwsd0o6F4NNQlYYdj46F3OOrwoh17nEREejuVgcRnE/rf1HxrjSLfqa883eE8nLmE9PXTc2+AoC9GCdEPPqWZl+rDUuTJ9+hcOiaC2JXZTWQ76Vg32HOXNFwvsrIURXJHv1dG4xoQjlBcL6TmOgml2FRRegwH3BDTTEkTfcwiCp0d5uc5SrCJlsaytjuQ3d2tKVG49rGSrB102t8lMZk/jsGbI5CIWDOCR3DSUnwKES+3goiAuCZWNS3CUB0OAm6GJXnDhrOZQJDBVMFMoDXzfPQP0QGduweKZIGYGB34q4MAXZfr+bEBiMU7ToBma6PuLN8KjYMnOtuTl2MIC5NZEqoyHakwNCZZCK/luu4+LozxOZKnTNs6RaV0lWHITifCugwfcXJUFR11GVjatB0H4i6UwCAMF3bDL1OfZ0fIhhzT2cCnRAkl4tguqwtSqSt4eLpKqZHHRKf40lGHkOgMrEzVV84qv2Uua+3dm8hN1Fwiox8U5zhRnw/j3QRquk4sPG0+yl213/mpKChM4nCw3UMRjIUYQQlJ2bziUo9QeJZdso+tTnxMWPipnvdvrGoXnteyT65FuEdoMqoZkrVxtrjwgvCELE4yU517NST87OVhOTKbTzIdKKaNUwGX5q8P+4tdUm9Skqdl0aGLhXjynUnpjgMst1SItus+ZNz3SVUlmgvTttc9T8SQaSIwObMVU8q4mXLY3zqKk2//qB0ocpcymflXt5yEFsSlYryWpyO4XitX0dbMlpULUuijGFR48A9hwLuKI0oCeGYVKrzAFwnH0sVuP3LsXZo8alUSn+UOl8pki/HWp1i2QtfUIF6jx7kz3FjbVm/VO4t2Gb/2odybE8Y3aiOLz2UX1+luOYgw5AN9x2879DG2hhFjcghPl+UkSiyEPSW1KhA7o38IZUIeqleOvZ5o9G4thE2xkDOUsK/qJaIfcoDeYi/+c4XomedL5aC4oK4Osgikjec6GyS96H8WBhWh7nQLrcFkkSnvEbKfCUI+1ItU1iXXGOSLCPx+JiW2U5nI8W6WOo9i01Kw0Yp0IwJtDyv/h2tOllIq3KmsX6HHhB2PV8Tjrqbz/Gpb9Qv8/lxgCPqfBg3qbTmp7yeNm2UtQZ5eDLIZiw31j/vqVKpGC+Hfoj+S0mdKAYcY6lvKnTpRKdJ1cWZbYoQsI1Go9FoNBqNRqNxdXHlJKWySxm+sRnD8quY08QiHgFmIB4y/KS4Ak5OkDHA07qA/Q3ATgqNYU40dxYyMo9stlka/r04YeNsjNj7b049mZ5CjFu4sQm5KohoQFM9LZzGhm1TDeKURQ6Y0GFpzDCnkSucsCEeqSkcGdWwKvb5GQDVaXUWl5daO7mnPWPqCPHPvSASeNLK4RtIb0Nsrv27tBGYQzE20hrNxa4eZAiybNQX63H5nZeM8ocK07rVawSMeKXTxwCjRc0dEMEmw1PZAOfnO4ZsAJhmx9LnmLF4CyfkEMW2nUF3jXHC1CnhTAAjWTnBTSeGTBe2QOc5xthwNjY/VOZ9PDwNGcTGgju0UUSxCqa0ucrj4JBiHwDISB3+Y8LJWi7+4Y5N2ie8+jgzv7B9J7RtZX9pMShQ5gKLLFbTy9FooWy3WGSriYwYsg2LJCFDMoCSD8i5K8bGaB8+nngkWdIRICNPFzMa2nDSUpzMqo6AIZ4S0o1JYQDUCC8++R4iU+ANy4e3WuGmp1pkVCVVwAlqFzny0kDUaDTesKBlfuJn9odoiYggGWkFvgZCgbF5lES1eRDT7tucHLmrE5VFPJKbk5993bdpXH19ByAex0+H6UBzYmxnmHP3KXR1PmzjOgCKuU+oTCcIadRZMDAwoSKWdNTzmM45sQmJtB5lZ05sYnM/XMdgtIkwhFc3RBjiJ4acGQHLF+nFeev6TMiFuVtJNJq7uxScXIMdUPWoP+bkn3MPIjrg5ZcIU9Wxbh8bGXVggCm8NnjcDyUxKtc1ps6bOmPOr9GGmI5LoB5tMUcKr4nVXgFLCygxhgBbCzdIJH9ViKWknTxVrTEOtdRnmILlz6GexgE7lhPYJLQZ6cuf4euh8WcyimcQhl1vBdSJXByjHlXUXwLqIAOXjvxxTcBZDrWGRryT5RLvXdM7KHq/RIriFsQDKfem/8e+C526qNDwHpKoAHhB1CXKlPwdB2eQWJ8GwaW0Tcs7SZ2I+iEjVnI7UQtPQkWSmdg2aKYxtHSW+W5R76y6ejRL4M5WCbKJvzFYfzuF8r9L6FjciyyQtcwjQZ4+ypRLneZzr2h9p5HKhnqj5xP2+7h/gumx/PxATKyafe3HlFfdZ7Fuptsu/R4yFjtYojWy55W9e1WlDWjWDXK619Dj9ZKtqpG2Mh3dev3yTNWlpgvBjbIXr014c0/HFOeymBvLM6jzx7hhMQzOx2eP8txSOB3t7PIaYeyo71eCUpLHco1Qzf24Fbe2SQ7CqO9kRNLKZjYajTcwXByjDsjZPO1q6zSecxhJmnXtiDlB4nyjk4JTTxWQHCKp36gWu6Vf55E8w2aToZRsnfMonhk56HSWL5pUrCM2j9tew3RMX5811+/UJA4L80GKJPfGn/Fc6smp1JitmPoL9da6SmT91Q+fggdCQ4Er9WLLfVE3/qxHhOWewes9vCNOWqHskYPoYunx+i56yQWyYKcXXQGSusKypADQi+TqOkuks6sDqpLxeX+tC/XIOIyzStatjVHNFLVpTDW6bESCqgv15dreaDQajUaj0Wg0GjcjrpikpLHBtGg2Y9hGmdvIsZkDxfY2HiuFG7XhgWJIDvEN89SMoqLCE82rhV3E86PnQX3M3cgoZ1shYwBghJ04ARkGhUJWEgkn1/APY+NYtpNzn+68qvGKwuqJTA9AB6o6AcYJHdzWibgdXo0s5KQYbma57ZNSlgxYii2YP3FODVlGBAW3jNQ0E6wjfSskKKmCPr8gytSNebWr10Mz3jMmG6VDjobcPD2uM9N0zX0HdAQBbZ+7yWMAZ2fDoy/t7nQYEOwYY3hUJa9M7LJHPCOGhDvtePLb/hNLA7elfdsclpb+RoaPLWghCGn2bDG2uzRjHEBzc37ZyDvFGiH5y+pgrU4DN5Zb4AgthhVAxCKARIQjL5MGpc2t7znGx+rgobF9clzBSUbWlq0Q7KojIiNuWYQitpkEIpZBQpQ66QiqRmyC2ZWsrImNxjvZwjayz4lt80hYYwAeAUPcaEbDk/iz/VX3aBbuKJA0wNWoSCe2tDKWLzKwdESlRuPahpbfmJaVi9fi9Czrh81/RmxURXjzp8xYv8TnLRmCKTm3RHQIVUuFNqdFo5NhhnWGHFKaiz1CkADnKpgYGKIl5RcvtQpOkl3K7+kEnv7sXPOMYGRRPyKq3JwAjBhDR3w8p0xllmY1J/kJQLYzqLd2jAFVplvbIcMiE5qjOyPXSSlBnPC0DUvnKU5kYvQki24oYdinFHY1AhdTjHLuHUOgu+lkoeeIADIiSiDgeoaSbMBkPS4LEU9j67II+ZUUQSEcI2jY6XKXqpR1whUli25ppCZGiKSyQLLb3KcTyKIHUMQNgadERRKceKrdeGdGiped0aXqOpXRJUGZBOrvmnqGFveFTlzTq1rRuRh1izLI9T1pbYwgyl4sfKFFz6LvhzpQdXPFPf6qgXpS3EsdCfEgkvzoemP51IMkyHCxYYEPLeTQOExQgiAJURZVO1FWIMgVtXzKKK9dCErl0pRgRnMKfseol9ZZtuwPDt8qGJkBMIKZxrujmvLjfceoAxaclvXJ59X2K+e/yTaVCEp8r/05dHYq6r7Ey68vofAWiY+0XAu4jlkIbJXhFjJhimhJ+VNWZbou9UC0VZY+qbK/cZQheuF9hxEYF4VMyrpQn31YLpaxXR/IUVC4QSf3HtceFLks/R1rirtDa/dqmf+87jrVsoHHS8kffDd8XCNlbOROgJGLdXoEXV93cpYs84YgxzbW/gJQyF8+Lo8sLeD17tdGo3HLQI8fLHNcsRL4e17npcrIXEiWixKzFmu6n/0Whw6p+3GTQvtfLkiLbY4EZC3zDpBrYOi58TmizFiDIsr5QRJqa2tpOWpBWojPYe/j4hxa2Sq7ekBi4d9Qpsi2uYRiTU8RZwQhhUUvrPpdbYVCF3J3aI2auspyT11D/P6g5iw65HqgTZd7itK2lL1eo7Wcw1hLohpc1gjZVf1/fQSFeGiU20rTbC55r9TbsrdMzJL3ebkq2be57yzPP3mJGo1Go9FoNBqNRuPmxZWTlMCNVH4w58wtlWY6NrPk5ibNM1ktht09vIVmRNy2gTh5L5bOLCytw87w83TJ2XXunBNLvWVprmwzuXmkhDGqYVTtxLyzUgRi1wGo5BvVTKE24Kebp2IO33QylZVH4KHBYuqOQYKSTijTrTiThgbTIYpM87DKY3hkmyQCSTgVBgbGloZQbugvMobSnrH7HyRMOU9oMQhfyM04MVBb22s6jMkk80pHqxtC5oS6PMKo4dt6Swc2w7Cyz+mO3x1iwSjs1JiEoM0J5M+3QFY8SW0RmoY7KcSdkTNSoABnY4PHu8AG+io4Jmh8ORXARQ6FKzI6S/mpaaAa+Tg3vMjiCBbAxrfC0w4awYrlkWi2FQ9CNWLRSB9jVxmJzPpH4BFCSps5zhiZonr/+HnaKvTgBOCpfkD36V1FL4KXzRcenqZxPwdkC8f9uTLtnpcj5qzV6cRFuDNrG2G48USCnkrCSUwKv1KS7KhG7BsXDu5Go/GGCJt/0rOuPsdSL6GdP0jT6uuHMiVmrhM2n1ohRmW1iXLXaZH/aOdV8bnlLKIf7ZwPlWu205vc0C5TYh7lGmBO9xnReLjuAa5DCSDCqETqZbIS9vs+d6juoXcoXAaRojZTQ8G/ixPJmGH011lObIuvB+q6iopFhXJC7aRTl45ZNf2FTo8wrs8JgXpEQI20dFxalliFHlmRlSQ5WcUjBxVCx/F0uNR1ytOlgdE8XSEyXWVywXf5z3BoxOFsABDNdHBAECOM3OvEmaW/NIhUUzWIbbbeT2h4OiqxXUOGCidnK50pmc5NXZc2LYnN5ppWxpHCy58ReTI6nLd5QbMqbdcYqh4bHxQnEzt6ISOh/E7FzL8/ZFRZyUd+TXALpfwHHpQoPeZ/LIT94puScu8h2NLSPr7CSwSk8l2k2mIbJdte9xehswvbYl9UlRPIKC98li7PzoqSeK5r8Ws7l8YsrjN/Oj8pgokfqUTL4fsge5V3sY6BxQfHd6DMP9HfJ/ODgum+eOsEnZCy1IfzH/dlsgihzJ/+N6Mz1CvWsUIdmY7RwybqZoOE7Gu0BIDOXM6PxdmONaIS6xzvVenGkCbfG87Dpc0x9MtnHLPL/Hx8dxZxpCM96jRZhldGsj9zfLD1tnese6DaTqu5xLgNjlOpN6PUxWesL8d6Ya7Wd3+54RI4vhmNRuPagSy/pM5BcgvgtkI9xBWMfQEQ8x1SB68Rdy56qKrrdmKLP6maqowAmGtdpfdy1o9onCKpq4LzcyGUuG6KaE+SgLRczcMPEbkaXFNTP821LPUxPiMJSXlPBKMUKjjelmiXPemo269EKpev1zRUC9VFP8m1x+Ub10rqWIVos+ibR8R6VXW1XH9IaGKZ62LAPVmtDC1XvjZH/+Yz6kqRun22FdFHEtrd0o/sg1LmjGhSuo5nPi3+kVUex0U6fs0DHVdHp2k0Go1Go9FoNBqNxBWTlHbf/Azf2ewT2MawNCFhzKMB2jdxwlDFQLUEqwCyjTAqXnc2wuwehuVqQRUAGyO6eGQceFqSiQgbP1Q8wo7dP91RyDQNEwoMOihBuzZ2r7uxe8xpRAeFDLE0VayNGhGK5TN93RhMnzCCNAVMnG1GpqFpXGlo3T0dHFJ+I8gg6VCAAttZGgfojKQbrF5PozrTOUAAuKOWBhK3p6dsuaG/YP+p8V+6RcTrMCfbY1GUrCSJdC9TPV0NU/opDQaefixOXQ13Nvvpf92wyWZPHgrMdCoMZ5mJDjcozzAOTDeMhAw9nLQ5e8xgEmlTNln25NXQwS/kAnlcHhkFiLJgmWmwp4XBUtMU+0uQiuAOM3jaoc0NV/aV+MAqrgI6X9yYYYE+ynvj8omTWmyzSJiBwoijwNnIlEd23cEop0bgU1UMGvY8MpkRBdPy8bqZ5KohRlDLiBfq/7cy5wRk+pzh7990Y9CuM6JIRbqQQ7qSWaJGjWJkq6keFlJasdDkSfR2KzQatzYuTsu4rokixk/Zy9zENVtHTLOmG7hXVmJCZKRHT5kgttScef6G4almZ6xQGmUg1mv1eph+EM+BzaO2VhnB6NxJNPaROknHr/V5+XzOWB7OxsDU3dYrkHhl8/U+JzZPYWpLQRKA0plvkYYiKpETeXdV8PQyCV9GkLGyFYJt2yC6Y2KPMgC1CIk02IdRfAZ5JwhLfL5ErWARlmwNpt5g6eXorDAS+tgK4WkM7OdJQvOGAQA2lUipR/0k2+J9O5J85BpCrBlqCxEAIzDvSqO9OX/MaRMUJEBHrOEW8UqcUAYEOUHCHRSpgeEn1W0cUU4WalCcrKU+VszpbiQm9bRhTOUGMDKI12igpNUTT3fI8ZP1YPrlaxGsJyWVvpPilIkx5PpzMG8k9xXAEglrITVxifcHKRD8MYlrJf6mgy10XfG3rrCL6szE34McofDIqRpTRKqZSYSqBKGi/vtYz/oC/noX/bRG8TE55s0+FeXlUr6nvBSZVuvw1frvRVuC3JetxJ4Vx/1Ejt3Sbi1tBVAdoh5Qzu51HdHdfYfUzPmQ0N10gBse0xfF7orFYa24tWf4dOAEyzIOKsmq0JuyrWxHzIH+e62VvJ46ZpFXDBKXXGjrks2pe8ileL4y5fesz/qerPKIx+U4rmO2vLhJhsqxU0l0UUdZil1IVsuQL8SkdLDalZZCiWSAsv7C366SKhK69ke8f5z/kWUcv1/IfgeRnuBCVl+j0bhWcNE6Zp+HxmaflsmR8wQPcmkpLGYc/5CpLIF1CpKYCS+qw8y5GWU+Qu4J8mPOg3ZNTR2ca1opQSwyKdfXYy2C2i7i+miZl8Ne4i1YiFPlsaGS62EKLGsjbXGghp/kWc7PcW1JC821lPoG76l1ga6RmzJ1sGa/lkUny0kbppTCB+vEGtT1ku3KpTfXq1hPCkmXdSr7lqPNNWRXxhG/49hTV7KiybUIaOg5F6KQiriOLoStkxHJ8bbq1gA85XlZxBuNRqPRaDQajUbjKuH1SPfGTaFFLRmeW2vO3RwsIw2T4cxDnnAcbsmXQdddGtUxFdsmkAmclw3lhGJsI/ZbMqpREuDGsASesY3lhnA2bSJheOaJFvKqFAodgnMnSIgCZ5tFUqChfJM8zc22p4G1RGTyT8YoTgsRbP43t4yz3Ds2N7j6ftEiONhGV6dCNso+N65s/yj7xdi4F6uz0KhfNvn1npoyC8hISasDhE7H+CDqBt8fz2kEkrjQP1exCARhsHZvy3RyFsCELXQsTpO1wlhjG8llZihipIKzsZlD2J2vU2BlCyCY7pSw9lv0KQF08/Zb2j8PrBHjxhzIEikgcnt/tPlXY9EKOrRjZLkRZmzW+ZnKBoj0bKyL3xfVlWIcV0A2CRnnaax0kjKFDt8pnCPIgwLkqbtBA0Q1jJDEpm5wSQPKYDpF66WIymU+9pVMNKfiHE5c5Fghi0hmzBMKGIFMAXrLpMTaXk4NqqcDYmoWzi9ueGNahzSUOXlwTmt/wUnUrGp4PPRzo9G45bEY5h11Ls5TqYaRCzPEggVhk4zKp0MwfI5U2Dx4JgLFwLkTVaZIzB9bmNPrfG1zkwxzUu9qhJcxjDBEbikjJ0Uqhn1PIgsQDgGJsgHMiakTu1q5ln7NSTpWC0R6O3GCswjO993+XuZ3I/FOalfqBG5hqhsjVEuZ46daOjtr57DP1V32YtEurW0ZLYosD1VL1znnefSQyJbriJR10AlY4nqhQKJThwyLqujXjmiP6QmKuUYEcoEOJ/KkzG0MbBDA15m8XoPswUhSXGlkkkBmdcvx4IQA9XFXRiIjXbE9tr4ZsSpTySlIDjP9J8dz/BT2AwrZIIn19vwJrsKpZtlazEMDdKYtzqs3CEj5zd89TxebDjzE2k4nSr31eJ3pc7Ed4asDwP02pQOOKgF1sXAoud7M7qzPk/L8pSVMkVKuFyn69QX38GcEl6WOz+/5C7xdpZ0pluLQq58fwfmy7AtCA6WcLrrvgLiVOln5vP6s8/fx/tAn+bpo6s2V7BMRlCRLJHXlGEEuCydRFKXzUk/mO206aZJ/SIVKp2JxdsqqJ7IvySVcSGEx5g4HHsofldhzkXzqz+NYhpb7SvMvq9OWummUIasuLKU4tqGM5SPYJ0mQBXhwp9Yl0/HVykisnyg9IPAoieK9zPci9jyaFVTFkTFn70aOkVo/6gLZsLVRdUyFHArL6lSmtVw9fN+7ikbj1kKdae1Nv/T7KHVy9Ln/uE4rVoJxjbQYxw44JZUygz6jubZHuZr1A5CHwo7rIYy0vhJ7cs5lKafp31DmyCT/5LWyrFlcFwjuVdIGWIW2ruxG5josgOWT+Gse7+Oa7s9cv3Rh0D7n69VxoT0qNkr5aHQYiedxIJArD3WIoqgl4QgA7a+pgWe7ysLJfudnVDdL4Pl4ng2z1DmKQpXNZgmHOvOutf32O9c+lG/jVinfcZ/GkpzARPsi17KpteJoNBqNRqPRaDQajauKKyYpiWyAGmtGZWLqOYZcB52bpakqBuDNEqgsm/I13K/9vvGvYZvOCTthz3380JE7vawJaKGdyNPOG8TTfPgmy3+K79I2Twd1NiQIJXQOkYikg9ET1Ak9EkSqGhmHEaLEyRpjG9gGT/ka+yWIQX5in/KAwHN6ubx23w6WPTYEkC03xmNUA/0qiQXV4Ct0c1IGdMKYrBhBCqyXF8jqlb29kVB2T3WixjKbE9idoDTnHlGuVNzppzBjPxCh/E2em9sdzKwzp/eTijv5gIk9okUoFGcQnBlDDXO4A1rVIxAo1J2qdFLRwbfD+xYwPowq9p3juaTAc0GNAUw6Jycg5uGO6F4molNTdO2LICtR/lqMWe4M3enUoL1AYNE/wPRDZoo4ZwQKSETBGuWJ6vcOt0CEI2Arp6ZEIBtlnGMwjGFTIZsJb4KJZNyI5dFBhhPFdg8hTXJQ1IXGoOGpD73MgRkOHPUXgE44cw7xRQd07mAkrjDDTPEUSUb2mkrHkkR0ERsjE5ANm49pc1DWk9E+NhExGlhxG5MUSvsUGo1bD8XYvmgKseRnBLyIvFHm0CjCX/wNgGxGfIbPqwPAua+pE5laUoMtavPLNsQiu7kBm1EZMRkXR4HNDcC7rbO70pFgesj0FHG2+EyQabqNM5zPc0BmOB6GDOhua+fuZJ3pJCOLAOiKgTJCE9cUP5G9T5zrHkQMIV1JjXhjBmePsASbp+moEBkWsVCBc0yc64TocOLV7jIw3W/n4qUTHhwISgM9heHPZf8o09xi83K98jJMDtBIBUoWyOSiPHdrZ6SRA6aS0uKRmYTEqd0dJdQBbW0QVQjvpw9jUmcUTAjORCBM3bcJ5mSULY21KT1QTiIrzn3VDaIbhH0KXj5Ng1BYH+pmw1PhMjeCNvUWqZ4Ohes2Lh/2tVIttjpMnd62oF64HnztehWEuZcBPzE+4W+sy2515ADlcANw4tRxtTz0QE4N1OMXokr4aY7RFf2nrhGJDuqC91XqddSTeZiCLWPaQyvC9ceDmlFJT6O8AqMQk9ZG5jMvUln43OU64CQikz2nNEywfumfF7FFbDEpV+XVjHaU97ISchiHfP/CiQogUkbDoztwJ1PeBR5MiJYd+4/vowsnH1sJK3bPKH9zrFi/BjWsDKiyR2KbBcWBLNmPfrFdw4hA6xBimy9HCot1LppTBqTmD/OrHtzv7CDNZ0AyCOs6ZjRu4W9aPleI74PWytGxavU7fH9ocOmGeHe4T8dyf/brEK4BIQBELDIt0T2k7syKAERXcZEQWpzQ2c4ipHDepg6ytOP4XqHRaFzruOg9Xe0A/lu82Fy7yuciRsDEOqdxHs4v6syS5QRhHdRjlQUD0CV1rMb8WGfYOvPwedMOJ6hfJRr64aL/UXlmecEEKhpMib4jqiWCq5afvENivRWu2UUxSQJOmd+V+jB1oXGqoxZ5n+g2Wsry9dfabvojJA88Hu+NmKSaeyct/9F2pnWdXZ6FqJAK65KLaa2vjQe/SdMWm0RZPbRTjMyMYifmg5bar4po6k8al+WalxRo2sC1luHyk/jI2+0PZ4ThZP6X5zQajUaj0Wg0Go3GVcIVk5Su285yIwcYmQgoJ1E9tRZIDoqzruFQ3IZg7sYG2YY54cYAIBZVKCImoWz6xE70g8Zq0MDIqCr8zKOuuFVYWEcvhIbRue8Ym23qNzdGKjwqAaPpTH+wWv0E8JQawNhsIzvANGfDNphOghoenodRHuoeLw/8+vbR5UT/Y7ZQI/LUpXA0ojIUco1GUSMomzzcRel1UDjxqBjZWQcRT5Wgds+cEzJ50r04bUuN4AaIzeunuoOnkidGRLdStUg3jGogY1i5NAQBgE6Tb/HqTFXInC5j7zNJUo/yNJRfu9F5Wc3gZYzBu2IN75/9fkkT9NHpUq+kHR3pK5hQbOU5S6Qkx/C+EcDkNPxdojymZqoD2jpGVoWEvCD4DYmUQIxeRiPENK+4jdfBtD80mtGoIYCn6zMunhGoZm1kOWK3uVFtKMciYBHAkixEh7gRy2zsca4I6Uv213IycPL+6lKw51u0pR2QzZ7j88UUQCbAuBpa009mCRf1YqPRuJVQCcFc9rlsVidCOjk5l/lFsxj8y3wEEZyrYg5bn8/gUWtgRGPeZMRbW9sjLZnrCJCRKYfU2LqiFsVIPVqRZz/FNgT7buuizWYTuu/QoYUE4VEPdbc1VwQyi/Heoy8dnfPqbaQBms5aW8c9pRvMqUKHhYnAojWBTgXebw2y8mnsV0YBkXTID/HoS0Z2krCUa5IMfIE1Ao7V19SZGc8DTMac6Rm1at9nrAe7lyMQTGeE7NMWZ/H1CMPaG+3zUIk1BUPopL7whrubawVMFzWxqddvxHqDMYJUoQAG09FS89Vpuob3i/WD6bpBLq8KQnFcpDxs7d08CtTcjZzFSEnLwiWmVVg0QXPl7wqMsXGUIdTYaxTbSLKaUnlB0ZFFFpGZTr2WwSiOjFCp/lmIKV/URW/IYGzlmXwOliFqH0+etM/b2B2hd5UiqkMr5576xGxL5dhg5P1VX5UyfmI4FeW+6pIRfQamfy3fL/J7/XQdrf9qkr8q1YN1zzaVhqzNNDeiZlsZNWKpmpJyZ+3IiJladMv8XLOKXo5EcUeyWOx13NGJRcb2e+jenEdlLFLjuKvPVFCfXZ93oSAqou2rRpr1z6/4e73yuAdhFFoWzb2BLtes1apty/GXRDU9fE/OmML3vxwXrKdPW7FNiPcdnIEPz15lFgcKhPNy6SOy7kImVl5Ez2CZwrGTV4VMqzCKfOM1r+0ubcoOKbuGWnCj0bjVUWfh/Pd0Jj4uGVyPSFoJNZkFUBX3z3iAbNEjRJY5RusD/AOp8wd17GCaUJ9nhEzq5lwrs9SIVFrKqa1KM02RiNT5D75UZ/Qopa0p2lAP6tnf0zYEpQza9+BkIE72nJvL+qsUZIWUdmhUsP5rv6UdR7EXXcyeRbtQrvxS+rU2uexVyiMylXSJoCqUEWVXJnrqaEWBtC6QKGddGJLkG/dHmE9NWbNNqQGVck5HcepAq04I15Ox3K1JpHK5RGR7Dk6OhdMwiI1Go9FoNBqNRqNxVXDFJKUzY/RgQrH7PnrCIqbQERjGPWSKt9xkmdOGbixuerhxnRPQoWtZvuk9G0zBkayM9QSlbd/GsHLCaVc24jSW4jojMpDsMaenDBGWBY/s4kSRkQYIAbANblIVcibFYIBIscUHHvwaEdXoDPmsyWchI0hF2wTp5EDuE41Lsp6eXR22/Mx+m6q4bhuH61eaE6M2bCSfgUQwIwFtY3i/C/aplnIm2qbhZBBIEGyiDqIQtZR++9zB00wU0M6UM7WNdYxgwshONtYsKtaABVBSDBKh2OHiKQm3YdGuaAwalu5NvOpTEdGD6EyUsmlPo7WsRooqR6wgmS2+l7y/Op90KvZC4KFBaNJhDD7Pe2nIWin/njaiLVIDslb+dmylPmLRPugQtuhlE8MNJOLkHn4nMEfiPqelNXTnwvDxP90LsYUFKPKy+fs0MD3lzRgDc7foIXMyhklNq+FjRnPcpnOWw8Vjlc005Fhd6DSXxWAX/x0coBSRSnnujWAJod0Gm0bjqqJGYIw3r86rSt3B5shMV6ox19KPOeBRjgSYPo/qbtH6/CZyMkNfIYsoZoixWUQdP/1r0Y1mpiLdlQXYKWSPKDSEEQdtzto2I/ySADS8ndMJOra2pZ4UUQklnfiMWrnP1D0sVaqlHVOx9XKLec91nGlrKR0AXPOM4DlcxIrhZCOmEBPxqFBARDwKkkHV8UQBFeznE6NEBrR5ltQEI2PRCTJKP08azuHkXFGTq8Cd4E6qpSMEdIDwP0bWQ5azn3vqudQ1EU6LCYzppDDJAVNSNCmMTM2ka4MkrTIGzQlCWad7INPBiUfJmqEbp+NDw8kxFNi9D8OZ4JGsBseoKxGK1JHsRLdGhEkoI9Jc/h27NSFARLcMnQipt/MaAEGwCB+OfxbkIX6sKKfc12eFRkSdvChy8b0sfiMrVxEHMuLvqJc/rJZ5uC7KLQXXdtWfrFIZQikXFD10kdfx2bqWgyQSrS07XE/ZhYJk76ByjC6y1LUuLnzKF6iRbnBphD6mMQ5IetTDdabfleMGFC7fU87bkvKijsg+yNrDIykVza/MlcPLma7nxn61DKRQxf2zMjRTpquA1vagRqa4WEjZb0mtyraUUoteu+xPYi7Mv6XWXbFUPOQvVcct/ehjhE7QfHbWbmrW9vDKRsVqOrWD4Ox7KdO65DxXaul9UAm4VhD3y7n31ryuyCbTwaWMtayzTE3Ne5dxrGsfaJHTcYt2KVzujWw0GjcvlneM9oXD9Mz3f1lafAKNNUpybpmlYB7isnIl9REts47kc2z+ygqE/UwsxTH3Euo3BJk/6qahF/J+zstD/DBZhksK0lVslMoElOt2LvW5hlDHvmCV8sWkHJ+oSnFZNOyBS3RKsP2U9ACJO4pyLyjonKepCcQ8XIi0SedZlaucp3PB9lujtfZrWdts8Snrl9kHLVCuxDrGOV9dkUqiPNekst4URTAP0mhpu7cr7G0ny2PpHY2W5gHC5WvIYU2mJNjiKtqjlrd21qIGNhqNRqPRaDQajcZVwRWTlIbnmtK5G3HH03+MYWnbFO48mwinQpymATeTYieofUM3pwaRaROBTruWKbLGKIbMKMPTcjHrCI2QIzeNsq27YaZOkGGn80Wc6KKMeKQRSrg6sfhoO0WLJPAIoMOiMgCebks1CTHDU5HhdJMZ20rfydLQQVtvtcUyQ8OJ0VNqef7TjcsTTHflp/Br+3mtJPmIBneevlJlaGJro0VMsudMEeyqnjYmHajmLHGDigAW0cYNJ96IMGCILA0a24AMDcdtRpBKp+DS9EHHqRkKtmHOPfGQV+ZIthRtcyqGApunM4vHCk9or8aoOD2nOdbSWINLotaw2lYwsqxZ7h8CYBNm/wmjVXzPNlpVC6lrhIwniV16HKuIUOFj8+fOkpptDOxzRq5DgclqOJEojPlp5YeMgQxVbs7m6Q1TqEUsCmOejYcJiXEIKPb5OnNK+kCvkS5mRCrwcFoeHWJIGQv79L5nMzxtUZqjcL6fh8PgujMaj0YEDWFuP6UQVeJdaDQaty4uRf6rUyojKlSnPzTXuAi6CNcxfG7aRHAOjXl1OOF5G4J9WjouKKP40NBtD9lncWWWCf4MW6SkCfJPeTagnqYLhTzCxdQdDtOUBkt7aiTrue+AnxAWeHpQZ81wWhYVwNcJc3BY1B5zUDhpRj36j0c0EhlG8FQNsk2u+zT602LtxE+RhdS6rA9Qj0Tk6/a0vrEoOTsGTA9Sb4NUvWe31ST1RPt+lufr9DUgHMqua6jN+zNIP74OlT5Sd+BMsehCkKArwKJWZUTHTehwkqyTy3J3RVNcb9G5e39TZ7J6i6zkpakakUL5vX23e+QWb3fNwYqst49mULG2fiQhCfSfhM4yqEt4TicFsNXT3tcYwrmEjHZlX+T7S1kuL3Rdq6tOh+IIknIvn+WvXYzBRWmL18sLOnlMlLeor1LPtvs+otyzVF1WJw/LKeo+dJR6sIo+FsWfRy0souSsVc15qvyuqGmCj3esOq4ergqZId99js94hlcn4w5o/FQOVL+OOi/fVT9TEvPiSTeI6XAUfhBLDvo4yaPiv3OPYjJOKYtHYQvplQ2XzXcsL+9jX8YhjHJNFFHqE7Kr5C5Zv9TTBuAEZVxeqp8B32JxvGleG45TrDeK/4zpoda/jvvjL/U9qO2EHgLzFbLh8flLf+S7w/1rlFn2ElGmX13TAQKc79dG6tIfvtcJh7X4WKvzAPczVr84KOHP3pD2BeB0KjrFtTv3NhpvKrjSt/BknvR5SpHzHVBmHf9sKmeMdU6rJF3Ow3VOOZS2zJcK8RTJ/h2jjpcyeKuli5ack6nzQ6BKC6ICnnJ4UUy0NKTqG2UNqQLURVBsS5YX7Y666bIIrXNmUcpCvxDkPsr/Uj8sMTX2JjY/12ocernO/fWhZQ05uVxhMnICUn6TOofJQ/KeOiq8kEpcMtHQolxly7GRsqmHQpf1mDoVu3FRp/LCaMMS/moc9AwvhHtD1j8UgryyrvN1rW80Go1Go9FoNBqNq4krJiltm1nQZQwM5clztVRK6ieAfP8zBXEqnlGIuD++CEFE8U04IxhNRjPynRJP9esEzrzMvRiS6+7OnHBuJKCFXjxqjv83xCIZQSQIQUaeIuGK5CcjuowNEDfGTi93QIycNMtpdyczDd907sitJKspKnECSSQJSTTeD+RnxNHmy02ten1wKONoCo6/vF8iTztKVAVV7PSouNNOAZzvO+YcWT/vzOgTliuCbfOx4NEUVKc50QDM8x2qRojZ544S9wmWtsVT53h529gyZQ+v9UhN2/DzQ/58CLBtWzoS6PCjQ9XL4aZ8OwzIfbdIF+bsBRihJ4wCYSBYrf9L5OewAdimn2nQZjn1L06yM3kVY1T0gZtG+A5Aot6MxuXCjXvSKaHxHlkwD38HVbOPoJDdnTKUvJOeaMgyx4N5WcNJ4x6mGulo14nrxuZhz9XT8MCjjIxwBsPHmE5g4MwNUBYZY4yBOWe2De5Adlnz/ddp19NxQMcMSYKI9H4ljPhil9GIkBL9FfNHm2AajWsNNbVrkAsLjLiRc7vASCwbMlKeFOP+EARHYarCFmcj2Ziu4dER50SsOFKcmkCmjQQiZekURNQ8FSMbWWS3sjDDHmdpONUiH+mE6oDoZoRN3U2HmmpR8M7TFD1I+HXyN+3RFqVuXyLcWSSjgTnPk5Qz6KQvDhNFEo3HQGlZ6F+MomTyc/lgDzmG02AaiVV0htOZhDI7oT5CERzDCWOqsYAmcdXbG7OzuhPFSd1z93WCcz4QkfRirbGGcc1h31iklLFE6xABRHeLuMT8HWVNVjWys+KY4hY5Xpwkps40FyjG0GwTjOQ+tci4rk2T+hjjxXj+Oa6HYNl0hPhA8u8YAZI6mEUrvHbBNM/2jlTHSwH3E/7FQhrxrmcEII6rIJCEZuN/j3QQVT2aw4hED5TveF+9OIkp9svGr/xzZu1gO0jKiWdKlkv3V213VUOqP3GVyxpRp94oWolSdFhRk+KgroXlH3oY27PKr/wbn4YckEQqrc84kkeKvqt5IALQIBpS91VBRKaQEHzueRiFC0wTzffAF4qVIMN3Y4QuLSj9LTav1fMQ7KuI8IrTvsjn2YcRIY3vMNOZH+5fNhSXwNGRWe+PctYbfPxr9oOsz7uQtMTaLSy9MiZ8r3Pht14ROXyea+N6j3Kup9wPlaF/mxH8OO8fhGY9HYczjNxb39pMfV7bF6OgyMHXpOW9970H3yfAI/GR8Fbas9S+viEX9M8BvdtoNK4uLqn/xFrJa/JwmgbDGUs6ZYBz2Dp9i+ZBSs1LsZBZEdPxSppB+TWmO/tFkXqN6lpuXQdyf5KtzSdQb1xiHRV7U67jy/wqqYvH9Zz7RDCdqM+GM8p3SCnuL20sfybZyv5LFauQsKM87u3yfh4oyKqzz/KwA2UYpGakrnLUC3KtlKU/ImouNJ9fiGbRv4tOWLUkJx15R1Jvj76p4j/BSoil/S8iZh3WxNAti5LCsabc6NRxnAti7gVZ31IMTqTYaDQajUaj0Wg0GlcPV0xSEgGwAWMKMKVsmn1zx530NmLTp4CdVB9GAJGtGP7UiT9l82n8AXcYij004hmok5lULYoAN84CLNYAf7DtzzIyDy8ZuUWLz+m4VPV0WHarEZTEjJRxmNdtmkMVZ8jUALpJGBYyPVxu8xQWcWrQ8IpCmKI1wslSAoRcjsbMU+NmpiJRmBN0qNerGHiTFIPl+dxsk2i075SFhI9MproxJqM2WDQdI/F43jUIDQ67uuHCCUfOwtJ9eoodjxiwbZYaZ+7eT8PaPa1cElKGOwq2sUWkBRFA3Flpzlc7cTVorPeLmIHPnLQuQ0bdKuNCXSAq5uA2OfFLNxgUQ8SxP2YYvTneiqAFnuaHhi27rzo8PaBGOJpZxnKqS7P/Cu/OPqjGLj5f69/A3O3GcP6E8ckjO3jkKQwxchVMnlMnVMyxmyGhxMfQAGYxKO0TMgY2E5s7nwRQc1APGeFAta52pzKQkclEANk8gpdiQxqRaEiqDjxM69Ook4xwNKRtqRiN2IKlKw/GwwOaxNRoXF1c0giqpxeEXb4Y2lUVZ1xKAUCSbzLEyRDUHwAnE5mjctD8747VAftOp0K2Uci40wi+06jHqhO77hbRyNfcfcLDPdLAa87jyYhNcAO4R8qZUiIswSIXjrF5etzS/LIOKReTMvG7KRwKjyhFHYpG8rkvDoMwfrv85lRYNDufs0ECjtUdmnN1OmtqhCWmufP1H8D5nIBsobvNKWA0PsDrM0ka0EifZ8Z1iZPNGU0QoTgNbBmxyKOgSNEh990jG4lFC9x8bY0ITMNukDmhmL60bQA2KKxPh0joCzYWfFwcDPysXBBo/JmqCplOYJrT0v8B5f50jpBUl44qGz8jQhDOcNgox9Kg3qlOUEkH/V5ZAtcY6Pg6xCJafqabqfhfJN9tAUz11PJ3lE+doazrVdfD8fpDBf0hxfW27Bl4kVA3KQWkzoF0hGqmaYxnlrK9Kcvzq2sx9lj1khO1T5d6avm+aD2Hhp7OujH6cmoNPfMYiYDPoNPsUnM4SSExobluF3MRe5udG7UlAdCkM5w1FmPDdeZMFakpV+p/WXA+k3NnVa9JE/Q6LP0BJ01Ggcl3rxyZRTpS+g56IvnLIgbp6bji27JI2yflRf562ttVjY1rC6GJErzovgv9zmx3DJJ8yRSaB0w05TfjCYIcQIh9sHo4RJLZht9/HB+r4z/fAX5pZgKJvbjyplj3SjnL/FEjo3BOn/F7vBCL97xOQnXmajQa1x6qFuDzc+gjyAnuoFdQTwtiSikq9fSDbhH/5nyXK/8M4ond6/Y1n/siJZxIKbeSqoouTuIPv4s1odpBOJcX8g+rxQn9IltHKc/WYu5lkoifbbS2ca2NCKZgfbg28LfTXqEsiuRCBvxbJCPqp/6V9uKyKB3qlrKgbCMyJZvht9doRxklKhd8a2MOgIw4rkUiEvIQlLXoONZK/bmuVftfpMQ9ubW0mY0IXahA1jbb7zycOI9PX/S+055qNBqNRqPRaDQajZsfV0xS2lWBHR6GXTMdhtqp/c0dSoDizMkws2yAzzZutldjp+3FbQc8nB2yTzgZqITrL/tmGjm3MBR6wdyDutMsCEqwaCvm1DkaD30bKeV7tZPoPA01yuNVPYqSCDZkmwTAuZNzyKHai/GT21RGA2DVw0Abpux1E3qxnbNsuN0Qv7vlZCtXCUhEsjrtALZSJ5oOxA0WYL/BjLKqYtF41E627jrTKCLD01MEdcQNOIxkkOkXtrFhn+cYmxkDLIWcP100T02rG6pVIeMsxsnrMLGNAejE2Ta8zucetWpgYGJ4njt14Q2BjUMgHEMbMpIFINaPRaQCkpwQ8qBNIk09DMksy5Z9lC39SffRoEDj0MFIwVNS1kQzBYwgGbmhQgT7YjgQZi+Lx5I/FMaMWn8TskfqMOOYtdlcMbs7xOcAztzBHn063cTkHn+2AzBDzg6LgnS+z4xONS3ahrpTyaKEeIQIQUS3GC4NRu3g+Mp0RTsmgG2cpcwUTpCzES4eQcmiN0n2rVpEjUjVoymjleRV7DqNRuOagh7/KEbdiHYoNNZyTTYy0hAj30x/uXnyeYcG8WiqZmoxGKFaVSBioROTiCIRHULdQi4isBXJJkdb16ZHpgPU05EOVUymyXRHhGWC8+fvr4toiMDAPlmW+knYnHMh9jSxsEJWFxnYw/VhhKKM8OP6jNpNU9LsPIBI56o49+nV9LE5LR1ZpOKJaEFG7HJqDxTqKfMU0OEpfH0dEq+jE8Qy8hXpOFwTJPpXqB/4+s3IR9NDY6qMTGtG47rrkBEdMNrvZQLO/LZ1dc5pZHgdmBhQsaiMNbaNDI/M5cNNRSzKpPe1ML8xdRmoO+Kzn02H5VrKSJTT9SSkI4VyZ//5b0HuhSIpa9TsJkSn9YTXgeubuA50rSKdKpIRA5Ctk/jHOWmS35t+dLqPoL7CsqgnMQVkKTIQU4lkmaETQJcy671LMbrOUfWgQj3kv7TtiHwoeG69+thmjA379+DmurBAOfn28gOifhtTTb6WsYfh39SJFfbOhj/1UC/2GbgHU9+TaBKKlJuo0lfxbRFYOu40HazgXOh1Eo9RFRss34+wDD6A7ysUIu6s80cN+FwluV+izqisUoRjS+Fp6bt4TIyk2oenctcLPmMnxNwQY41rQhFPHZ+hp5evtNT92JYDjv2XH4jv4eBrAidYzscapCTA1t3YP3MLoT6ODg8JKXm0rUjfiJRjVMYrnfsAWQsDu0ZjvJWR6FHzsm+5XovlsvfHZAUzVVydi/KZ+W2j0bjWoRf8Fn/GXO5/lGk+prpyZ2iEPgce53ObIiUW//V7X6vKPmM54AYj1XPeW4PG+QrpBHUFgtRE/ZfM/SQ0+fVsky3eMTdz/bVfC5EFSH06Hp9Kwok8K7nHrw1SU6k9sJJQeQcP8IUtiM8vd9aum65cBNFMWIV6qGJCfMUXoOyDvH9ALf54mK0QgkuZ8YHXAOUzxocarkDOKDMWTu8X7jWLbhCNc92F7QMPxeYA1FK3Spga5Z683OlSPg6YoTsN0SyUUcwVwIj9X5NuG41Go9FoNBqNxtXGFZOU8hCJbZJWA6w51cRPdQ/frI9CRjFHmabBVQHZEKWYIV/d6KyRPo1RXxZvAh0RYYT0FFAz07Zww+pVRFQdNIbmbj/OPXqUmakeIQbA5s4LGiZjm1b3dP7r5u2nIZZC29xpl8bP9YR2xbH8agjhxj82m0IHQd3c8j6PyCAIR2ycJj40xE54C3Ytz2KdFeAXGdqaIYQtndeYnpxkqqcF3FzemdBiDicXCXDdNswJMK3oM4+0sJ97TwxYWkFWpqT8EzczbNsANsHuBKahnlZPTN5MLxdOhtJ/NDSv6fQ0nNQUgrpwFwM1LgESopZOKC4dVgAZBjyeV6IT0Z5Fw06N4BNRloT9TwM7jSYkJRXvxFJHwFLupPNH58QYG7ZhxohdMm0b4O9ktIEn2c3sMqenFSrjfIi966N6SP0zKCOQAEM20Hpkc8awMVtPUXufiAzsuzmoGdli7uoEATduKXz+caOiMK2Rz1CSpLTF2XSp/mw0Grcoju/iYg/3t3UioxdKGGmrE5Spg+wazRySS7kCOPHVnkzVwirCtDmellQ10kHJ2LDPPe6bc/fIb0ba0ZHR6HalmVgt8hGQ6aMmqShc23Z38JbkBy4ARqCweS4dBVPMAK0zn0NiDMQj4KnrRKC8aByHzfFuRB9c/wuxB7CoFqa77fH8bWw2T/t1thbxdLURmHitsB6uAxpRdI/+tvmZ0aZotB/eDo+oKIIZIWjU0r35zM8oe7lWJ2E7oq64MV4pm8OII7HJfjdBCyNJ+t9BeGDaVoFHRpIgJJm+mieSN9e99mkpbqn/ZSo8i1C1yYb0SxUHCdkUrkfLAKTIHTJgaffUiV1ed4hHM7yGIykdVt+qq4cuS53toM6kHs9/Yhj7eEPK06+N6KaFSZM6uGtu64QTBJCVA3FlrhobNj5KFX5KgjrxBfsINoVR1fxJ1oTq2MuDBxc8FRzvEn/XwteP7HPK46AvsozaTYqlHkeyy9IXUQjbXa7RLJZtjDaL+Fj221PxX9qkPihse1CJbmxP1T8t0uvgJM8+RUbZyTTQfGYWI9EMzfEknE/4xmY0uVgrqsjrGL6QpVbGtF9T/17/yjtYVI6pC6In8Hc9iAVc+U7rszy7Os21xlpgvUqUiJAn70jCKoAlPdL63JjU/KGa74pQskh5Cw89gJN/tH4Zf0v7slOSAJWkthp5S6MxKcDyGhzkWL9ZP2k0GrcOLnoH61rDv+u6knaiYntRzuc+iXPtcJ0h+EflicscmWpcIdzk3Bv2UN6ruS6GPigoxHfBQmiiTVCAI9HJbDmH+Zw15QGEZcHIiD1WFxJHL5KYxCeRgrjqb+CBhEr6SbnFnM3fLyCFhuFZyt2aUWSFcvF7lgMlsWSVOgeZlldhucf2TlXGVCzSxobomfx3Xe1LxD3/SIrNtyxxRlCKepRikJ9DMiKhKO3Luu5NuHYdZRqLvkYdqlxYq9SLcy03blyu8ic6YqPRaDQajUaj0WjczLhikpJtdoZveMvGKhw8vqkebpz3TdLwTXSkOoidu5qTUBipxZxLAsGZx9EfNM2WvdFgyi7/fMgI8oFKIYAUkgQN0rGBLxvKOP2OZX8I2bx8XDr1GlPJpCHBrhjcjjqJItKqLfU5ke7BGMyKaDoHdL1eUfbw1fghuQmfU31jns41GrzpCBg0l0ipK1OLDTr4TBAD5nSbqhhjRFo8UcXZ2KK+cKKKeB2Ysk0xzFE7zyEDuI2nbAHg6QA9NYs3xqsQ5Q13LKsblodsADwdzybYvApMxQD/e3FshbzLvlskrlnEX3r92G21vKVjjpA0gHEswh3fgJ/W5rgWTxMDpjdEOOmGG86rASzy3Jc+B7BEEXNRRj+riJ/eEuOTFSPPgED3NFINsYhh6hE79p2OT/U608CfUQcyGyPLdQKUG1M2iBOcGG3LIpTIZtEswChcklHHZIxwTAwVbNt10TASp+jeUwVGifAlw8+5Sc4n5pC4wCjWaDSuOQgk3uGwGwPQYc5nCaN4pv6hcT0M0tRB1FKvGgHTSTECYO6AjIxoN3efd7eMfINcj4DNSSrncRo4kwTttmb5/FbJCftu0XeEOWR9rrOoTzN1LBGIkpJAAhAiBRrJPqGFlHl8OgEGsPVXoRhjMwfEzFPbttYroDOiKrE+ptOMSL82xO4nGSb0Ehr3sUHEyjdy0QiDtwzTE0UsghFTfvLudLAwRayllBXxaE3hOCh96WsfCa0hA01yFYTRPTzCxxSXwyikqEoGNmrJBmDKgIpGtI6BAQvZqKF3qbetpn0TyciQ1JvZL6LT9RaxNHeDJ72twFjLnCk2PVqXAiZX+Ml6J4gbQZ/kKz8FLpsP/Gt5TTvoVXqxPkWyTz1prvW6orOl7m8/U4epTyyn8EPpz9PmUQfJ+/JeyfvjE8kGsIw6RuMxeZ3Uyl4OnOpK3XLngtS3dL2HWGpaxrceL0Sq7SlbSQHqUTinujBQ+2TVRZeqSbYrNLCYI3mdhK6bEz1KpE2NtM4kks2QbXFUck9Uqk4yEfx56wGE1WFoQXXE50NvY5VB1Le8++XnIqNwblNW1el5kN/xPj53vRwHr2ZcQJLqUmjde7hMY19ci7zw8Rm9CoKM8OU/wyF6eIFXp315UVVifsvrcw6OtdzLn+Eg5ujlvM2n+DiITR+OnR4yiPWKbS9jJUQlWfNwVJfy+F5n0Rw9jUbjWsSFc2v57sLVsbz6Oa3UtS0XaCmF1XlB4l+7jvNJnZoEsEivvqZBMyFmzs88fMH5V/xZtHkwHSUnZJuo7LCZRUWH32ZklbReLpMZ17RCVArJRNuyHYhnH9SEmmo4K+36ukvF7VA8dhl6cCWGFoUvSNuVoDS5B6DNlc2q+rj4/WVxCMWq9sRF8/hFI8cWQRsjZV3jHQfd0roihVu1hSEpZ65JMkp74t5yd9FZbAjmAqcn7S/f1cG59C+jR43Yh+giIwSZqtFoNBqNRqPRaDSuJl6PSEoCTDcY+sapUgOCJKGwU67wvaUbgnf4Rlzc+O+OLiVZQxBpQhZ7LPfRNEZ7TOIRp2YkT5KEc0IxS/oWC6ag5cRTYpSNI+3ig3Uom984tRL3mwHArqMRwg0OLLs8r/oklu1//Vz95BPc9MpICf795IY3/s5TRGHURTEWiBlIhh/tpXF5usFhqkeYYV+p3xsRr+zzGfYTM4BsWzBqPJVNbUymXxEMc0bqxAYLo7+rj4ltYPeUenQoDh9Hoijp9krofTEXg4wR7RsKeLYvi1yA/M9SyXGcIUhCHHPpOErjd9Rd0pDEvqVtqPZXtPxyTqeloDS+R8Fwop5YuzEyPDTHNDuCfu00mFufzAgfcIrqhI2xMdIgUQeMKDC2EVG1+N30sQmtzjt/vxSIaBTTUikxapbSiCeeFGnfo+6R8cb7eO4zjX7iRhVxp/KejvVZ5Q6PdgaJyEk2yDXIUjUSCWIcrLEIVkd1o9G4NZHOw/Kh/26RDl2FUAuXb6RPiXc+1jLk3A9w/rffmRpyVxJpBPu+O6ky14ckN1uhmxN4gmijNrfpPI96bttmJCdoRDqakwk7S9QWX4umABIR8abPoNMIVFCL3iQWfVCclEs5DfG6KI38GilN7fn+TJkWZcid7zqNGL4B7rSgPBWquxutk0zElXVnNJ+6rtGJEGvKdG3AIwyJyZanwYsAoNhhaQX8Cd5mRlCkQ1uVa8WWzo0w4Lvjxa/Jqtlv1BdDt+R9MkobIpefjY8xLJGpDxqdE5t46uMyII3Aa5+rKwn73C1N3bS1dpYUb+kfMTlEvwERHURIngKgc3pqQo8uBTHi1uR4dT3GMuJi1z0kck2DQwFF55dci/ndqPlVRspPD2UtvxzWct5zXOLdtwd2R5RAvXIpVcu4KmPgAnWebaqvCOeeRf07CiTKOexLalsON69/r19Wx+Ki3xQnGMq8Gfutpa2n7Vjbuo6zSoCsYDoZ7is4bOvhDO57ThzBtXUexdXqolFWvu9ZdshgqYxHcwDlLOWbQ93qhiuej4txHFus6sVfXxbHa+XwWzoR12t0uTrX0NqPtjcq+4gLEHvqY5sOy/Ky1/T5qkZPjnodqlT3W/w3xo2m/DlY7ABSbWxxavON9AEWex2P7lzbRGKaRTYs+4xYL22+iflIs7bwfQS/rCNHKITSzN5NNBrXIE7UorKSaa7ToafxWz25cZlLI6K53yfDo8fXdZ2H7MJY6gfSJCNyWrmy2h7L86mjh2ZeWDGp43rEoXh8rsmczZKgvxLjgxRf52pFkIvq6s7rwgQaegU/zDkdrrPyztyf1ViRpxJmymqU+wbtYF63NQ1qIfjEZ3U2tj1jVDH2AF5f2rJLO2Nvc1jHQrsKGeSaubRIvYxlUBWC1aKjrC1ZIiAdxFTH5DFCGJs9tbaefZl1ANdELZG1qDMc5N5oNBqNRqPRaDQaVxNXTFLiKZ5ZLJ7KCD3xPydLDBqRM8zvnAiSUGwj3Wg4naQiTOvFjbJvTo0E4c9XxTbMsVhPOtvmSnwD65s65GZM1crZnNDCDS6JTIvR9GCRtxQzWPe5+WTAo9Lw+6E0ylbTcGKxLev6AfehG04/O9/t4nTQYtlQH50GTJGyozh1SyW20pezkDR4InVqcXaKydvS4Xn/CLCJALsZQ6aYnAWeLk8ntrOB6bIHgO1sMwOxirXEU4TRiUjZvc77bFfFpkacUdBxNDHjGf7gMFrTyDQtypZmur5o+omXBxnu+KLvKzTH8UXgZj++975dzAfhAEE4RGikGMMjI4waMUnC27HvaRHKfhccT8tRDunMtodNj3Ihoubg9FqNMbzfzXnNk3AT9u7vcwKy+fuiUDXHaTWcmUXExs8Y7vqe0x1ICqGD350Ac+6Lc8ne7eHGEk/vBvHIH0xdRM+hzyuwyEqcT+BRQ8D2FLFvPg6ai9RovGEgDLWQDNIXX+bCpxNhtI/1m6SRaqLVNKQr/6GBmCdYZ6ZJsPnGdJE594hsA8BSop7nKWKby00XON93c5KC66iRdhjsQcPobSRdVTWSJmApxYa1Xj39kwIe3Sl1I5uHSWRxKYmTU3xu1jCET+yAW/OZTg2uUzlN2duVBHCNtgMIAleuZ6YRLgqML1WMesJ62FojGDpDb5nlGSQl2xo/obsC6mnQGEUqyGPD9FAAkN3lb1rHxHk4t31VBFRTx3RCFytLgoRwzaV1X4Zf5yQyuC+jyF3Z8UL9U43cOxU7JNOwcnx5P1lNjciUfeASdR2KC3ZEwaS4SzpAgOuhYkJCrpbGY2YW2WsQVUdZnB/KfsrrqCuF3h4flDd7uQhwFSDGQTzzUI9lPkFxtqFML8e68hr//ahOLPp93L86eY7PXdpy/E0KUf8yKFSKS9aFQvRhWubSi2Wz/F4+CL20tKVSAxmllQqu1AK4xyt3DCklqpR5Mg9tqJJ0MqLuIhbqNbteYvyY49jI6jOqxjVi5JgpY+lIKtLyO8ePZCNQB9iFsQa4KbkAPrtCL77T65kyvhzY/uPjuBaK1P5yWZ+8D9kHPGh0cXviFYtW8IOgfrEPwHcpn0SCrL3bsVgv7YwIq4qcDwTh9CchgHYHu1eXeznO6jt7MpApfaYGjSEqpUQsc1KdF2Is9J6i0XiDw6XnXcTUrpLrgtbPcJhOxNe9mIck7gH8UCA8Yo1P1DFzlWmUOnc848BOqSQq4TOlEGWU+mh5ONaKKhvPOkadyz0xz+UcbbbYdb49RvFm2VXv4oe6KFEa7QDJohesdBfZ4+ZMu3PKMe5YJ+lo2EAcZpBcdU91pKw45ShsZ9G941mLjLJE2swzOpSi7rsoxbCPHetxlOlSV1n6KZa3Uj2ziV08wmlPJ117yTIgqZNEFZqh1Gg0Go1Go9FoNG4BXDlJaTOCxBCBugMNwpRUtqHZRHC22a6ZqawqSaQEGPbUXU5EGr7djDRv3D8PczLRSI+yuSrGW/4+Z5I7FMW8zc1/MZqmgfTShkbuLeO6asivBsp6Q9QTIZeLsGxpS7lMyRVt8587I+UowiG6a24mg9Q0aNBne80pKMNO9dNgHc4fYbo9OdomMt2eX7t5+jaZAM6Yls0iG001AhujI4kLW+jhA6NWSRBfMMpW2Dfxczdy0fCWbSIA7DPxdG/s46FJOpv2AItoIICoRZAavlEnCUjGapyIrruEheBS8Qgut2VfTr6F0fto1ljLWEhUThSCpOxJ3htbjovlmXFCL8uaALSkQFBVT6kG6FScbZtH4NDybpgTXkpkJnt3mF7GnLxjWB+pv8M6NdIcigqGnGHX3UhXU0OKNu7UUwRanXad2GQLApwZeEZESuHAHMNPUzupzSKBDU/JaIOamZsgFnWKRj77uhrIGo3GtYo0oua6B3ECsM9nmWINJRWQ/8313+dQlTSWTy0O1AnonJ7KzKivJNuS4KLixvVt5H0+j8g2LGLS1IxON2yNtNRnu5My3SRdIgSSbGSRDUdZm5nwUwHMWA8GLA2aiHrUHicAKeB0zlhPtyHYJ9wonhrFGMPSv5U14cjapFxncWaIf57KkxNQndjFiCSqXBPyFLgZyzMtMMmzggEjA+3e5yTgeCrZcWb6C4ysNWC6kvWSsjNBgq7KgIhFsNqGOIl2rvqiE12NrLSu4mMMzH33tofIPBKfeLpShINjKNu5u8bjjm54VEiuceGAMFKuTER0qySH21VTUz8xNZsn7XM9jFQd1ZFf9FxVJ9hd2at2q2DRgfwP66Ici1Le2dCjbOj57+k0WkawXPB7WfbpnDnR4lJVgmmdF5SzlF30I/aaKRzl8/W3Gr3zWLxe9AV1KshKjj864ZZbqGvJwUelsXfga2yHCnK2oZhc3Yx5GEhSS92XpJcx22mphAspS23Ecp9jByY8pRujaUbq4GyCellVdmzuVgUX7ZQ1Cq6UAzAkxUgktw4ZVfJRqMvHn+VxVZ752WV0ykv291rS5bRS9kdcezIei6P2wPxLtVfX/j1BHaene5x4DWv5hdVn+/kkuOYW4rAPVs7HOSdHijXxPYh9YX3l+bCZ5vR085U6Aufa+Ka8C15k+SyvE383eBCHUfqWx0k2PQlKyAmpTjDlz0ajcetiUQOCVHOcSCz9Vg1KfeRmLHOG1GhuiLU25qlYD+Fzx6izdOxP8jnUjWc8SxfDlO9HaK9R2KGsosOn5pELRFhEc9H2eofWDkBD36G+kXNfXS+1TLeLJoD1UhKrqyzLH5EuLb9jDSTaHk0oJNdykBWciyX05NR6tfSVt4ikoUOdj9O0qqXcntw0Fp3OSqu04lK2livc5pRdVwivVCxCLjP0P/HyQ62Kg4cScs0juNl2lGdHo3Tto7oP5LNyC8TKpjZrslXW6LiKNxqNRqPRaDQajcbNjismKYGbLm4Fh2Arm1iBQGg5Tm8JAHN2beIG4KlGbALsBKwbmMUdW+EgmwrZbAsdqa/8Hm5Ua97usRnpiSdsR0njMZ3wQcJRJWXQeA5hWN1ocBpOC6pteLFfHKwZdct3srWT2EECh2uO1+98jkimVRsmRxrnZWqcptoE5ZSqXaxAZjLxf7jvDseukKyEMIDQwD8AYAjOnBAkll8L1wmfYGncdjVHJglKYZzZgLMJj7zFqFMDczdjwJANPM0zjUmEoRMDA5sz3OwENdO0WX+dDYlnlwx0YeWwbs8+9CJWv47/IRecFEpHee0UWb6/HBZjuTDCBZYxFleJEdGGd1zYHdxQn6S8bM/yeO/TSAdnIkqymqQBf/pzREq5qv5u0lkui/PAUhe6o8rLUo/4MeeOTYZfbw+c83Ve3gZAICqR8mZgByNfQC19oO4Tc7hzXgc2JxhNNeMa54WU67Q2qEWG2ueOsXnqQnWSm8Kjs0neF3NYGvXa9NJoXKugkpGm5Zj3fM7jfMb1XNUI00NQ0lb6Oqfm4I60oyLmPJi+9ihgkTwEOqhf2LzE+Vl8Us3w/0wd4/P2JD0611dgw87oSk5OssfZojtgayKjFkVkOv/d6jhjXg4nhVikwm0YsVTnRKRDKkQmE6UaIcjbCE2HrEnaPmOyucJkCmM3nbn7zNWV67HOibF55Duo63fbogvC+0+s4yBwYpH66qQ8cQ5g3y0CCgSiI/uHa73TqKaXX1PfJiGeETIsSt/uMhRlv1LGNo4UsqYWiqhG8PHEhdlJcV42fGwtJFs1hxMJadB0LyT3wqllw9dTOmE4FOmSmDsmdaFJ8lMqejKx8kVQ07JeoxBkRJSjYk39VcvnSL1o+MsV95bvqesTR9WObpcgO11wnQwfObp+X6oXz854CIh+i/e/3HdTu6NonJfVV6r7alFxvXaVoMTPQyeagCZHMNrDlNPZQEOk0AbWNHn87fAgiXv8I/ZRBMYU36l4CTntL+UchgN8CgTfx/qF9Y/ps5F6W1wXLzph6rer0HJIZqEXyn9V49d94Vpk+e6mu/xY80s9J8Svh/fqWFnWqdS9jt+1ztWpXEd8Ro6Nvlk3PktJcqj94sBmkUvF4WudE1ljlDACxMQQrnHudPc1UsscnhGySpQln8fF55JBZzf3GlLSudZxdfpyNRqNN0isL7CteUX1RU5HMT9WXYN6hBRdwW0mDNhJoibnzUVfQOpA1OtjaipzrV2TZfDkxfT9A5TaYv23zt6HNbm0uN5p7Sjay8x5lPq5Rl1dEK63lil2kS/T2Nnl87AvQuwpki3M+qekaO8V/566N/tjiVyv3GOhCBMIIyioeLhOJJS7ryxq+wfwmbWIsl8wQrMrTcc+rHWs9qcMj+Xt1liHUFoc9ugge1P5IZFLsv3165JX9bg0ZUtGro/s9lwqfbz5YInTPY1Go9FoNBqNRqNx9XHFJKVMI8I0Cmqb2aGRpi03WGYk3Lb/P3t/t2NZ0mMJYovcnl9VV1f3DDASBAiQ7gS9gfT+D6BHmCthIEDQaEYjTKur0o3UBblI2j7HIzwyIzI8PI2JDD9nn/1jf9uMP8sWBZ4pTCyDe/edSARCMHW7OcEPbeSFweiQlemi0A4ABiQYqAxWFVTQSVk2OhBoGKZz/NUjoHnVr3S9ytiJLg9/POtZ30eEgwHTmTugwFFAeT3K8J7tnH/pDndHpraTSjlnHqnaXDKg55JpDbJPBLVFJhwKAtP0ARAIgwjUMlgQTA1Jp59GtpA5KeskAph2Go1rOFSU9Mm9/QpAGPsrMoWFzetWzmCRYL6JVDgROLjwAluO3/SqtH1yaQHbRHq3K5/NtrpuEQIZH6p3b06a4Xvej4tuv/8hGYO9/EjzmQUQapYxUovzL51eda3cylrOIrruySgS7xD7lPWXTL1nEm0OLQ/PvvMLaIYzOMQ9GdEEJsDK3WaeKDpLwJPBoexTvnsJUHNnWkFk+kCBLS8GNDqwRCTS2sEh6snGZIi3NP4zc1xX1J+pRcxfw2kkV+0Amy8t3+sKTcv2ih45cuQDCpczTnX1FwAUUGsWpYDHBHOGC1PAjbUil35FzksgMCXWhkzmBaacdDdcyMUzIxHB+MZ0WjmPebL50OnvCNCOCl4dMBNAXuCSus3ra1TOOS9a6SgGh0nqOAQXe2hCxYKUukOsnVecllSJyxLWLQLuxKbOFClVvRtPcq72Dla4WYCBx7pp7vAVQJ9I0xmO7gJuJWBo5c5urhfuC8hUfCJXrnkGxwrWw7VwaaR9deos7sViBS3ke/0xWN47gFKxbkotsLVjekQpYhd79KE5dQ5kA1+xxvhK9iVUWjrufndbDSBDP6ufmeMmd+K7rQaAZarSSqHqDRhhwAAMshRqPvsCWQYxIMG9niAuMgkF+yFqbRdRGNbOBPQhxSugdzv0qHh1PKXXcqmfAB/AMqCAazJ1zbnWZ39RX5rHgQTszzJ4/86ugox+HLpw6Wzjsnmj+570m9p1+/6U86nG+F0emJo2pbNZk9pyaduIoHY2/x3oRZ2JN3gG/qpn8JwH9tbtyRmz44OaJQFZnhzY9Uzaia1Et50kKFW21gkVqdgk66Nt2DVoqv4dQeEH5V+2j5vuOIK2d5ti9vafsyeeHBuGwYMtM+p2L0uB+bZ77U273Yvnc126Pb9Yvmp9nvPxOMZrtvYdfTxuW4AyPl7uvcR5knVJcFJNDg2k9W6AWjtnv4w71WCvQPyz+YgHHBXE/1N9e+TIkb9Mek6cE8P9tyFjnX+YI3PuUee8NJi9jXaH8yjKTwaET3Q8jww81GlCd6U+27sIY27qjZi0OcC1t0rSn2vG3FXXXgx8nsmK+ig/CtDJ62KqnNBozs5eU3qu0LU4b/dD2nY5TxPkv20XHTYMxPc5vqbheBj1ehlrPDfn9brgVe2+82yUMRbmGjV9tUP/8nqGP44P59NRetHURbtP8tNYvAuiVevV7K+pXXr35X4U3Bix6cpZzm3cZRWpZwMNDGvd++GtOHLkyJEjR44cOXLkyJHvKu8GKU0K4gjoYLPvHZZ073nokmQwaqeoJlsSmZEC68Kd4pmiQrlbeNAFp/FWLEvuDcJgoMYbAEFntzItHegkl2mPY1LM88xphjHAyVQjeeen7fOMVedb98rS2O3rA/zjdN57AH7C+Z62alJFXGmwe7IsOaRSF4ShyR2vkQaGRjz7MViTRkG0QUg6DdrNqd+fLzBYiBnPzTgjabHjf1sRAVKVDlJ4jx2yCUm16zTKa7/TCDA0289je1Z10jnk5Xze6vAzdgvlWKRrR4WgsA5CAgTrvc2MEGM43608VxLgpSowI3NHOhw0wWGZeggu+U43M4Hl+wSJ85C764LZKN5eecmIhUntPha90tE0djqronxKJuW0MXjlgrSk/xJoMZqJKpj6YdsdOGIdkbYngW+QZqJi3MObDUqqvUdDjmDKkSNHPpp4zR0A33n07tmRl0skAgUGf5zPJaYagkFlBaPSq+eamQtXsBE1oCTmlQDziFqm6opFWDUZe0wAvSL9lzlcyPagsNQiuABSB6pS56JouYBZztORhjPq1SqBFhCDYN+Yrx3BCmSgi5/ruUiyJdXia5EalAuyOITBD0cGQhoI6srAAYLtB6vLndWSZAsKRULquNmCisIk0+gN57qnshBMSAtkyAjWIep3WsGH7OLUAduhH22rWU9O51wEQy/tFTbWPvPVoKJUVMySDWvGKoBKh8rfi60pdaoogKbu6bkOh4LlQDJn+bbMcN3iOhcAtA5GUe8xs2TGinbSDDhM0DJgCbCPtdTXAplD3D42TKkAK28swfM4dZIJ0p6XVMho008JcNifU0N/RJQmHmHON3WvqQMPvW1LwTZlq8/YIX/7+S2tU3C7xRfO3e/bwazH63eAkiBtqSdl0tnOtzrWPbzblHMcmc34ilY7ymC/YoNWLRmi7FI0a0QDyqtfZj9Bip2u2ujWeGT4ZblnX2PcW8VrfMyxsLduXuLv68O3ZB+730O82oMjfh/982neD5W9lvJ4Zn3puSmfWO+mJDiT86fUcVAHH+fXYBnjBkzB6gSU7uOyjrnXfW+afB7q0V88f5xHtk5/fM+RcwLf8ZmSbrummm2O1ftZ99Y8cuTIh5Ax+Q5s6bZ2UjjVbD63WoMmpIfKHfq198GQWXpJ+z9qHUzdfLJajxMArtHJtFoM8jcY+qbfYM6t1FvIeJRrbvmXes7USrnMcoyyJFiI57Q+3xtBx5O39HLtB841aSopuZh6rgHCSoy+muuHQJolb7YXht4wwEaxXoQe3fZE97R4rzbO82kLjEWwzsh1SksR6ZWKK2+3xeMqMAFrXGe6XF3uWrLmeMi22R5bGl2OxAKU5UD1vmOP9wkwG0oa+6YWx27Ls5odOXLkyJEjR44cOXLkR8v7072lgRRBJABgSAyABRAFkGBRsTaWlJa9OJZPuncAZfhLRRAZwJmPfcl0LEAE8VSD2aAdprIbvWnn6Q3VEUCpcF/6uH9dNhwMFQzNzwaCRNpyHWZwXjONw6/I8I5MW3iatXxcOdZHWSK4IG2I6nBTpzN2oR3EACKYSmfCeKhbBoA8+o++XDITSdYpihzG+/WkitOBzQPBetRtDAhMrzKEbTpnrO1wBkaq7J4sWlfXgedqGtoMjsyd0rWTTUarTpv8nbI5Qr4joIn9TpYs3p/jbjrRngLhtmhae1QIGirgl2q+l1oDS0QhpCGqSJNhrQgQA3yXkUHCYGKis4furJfrBQ6CmTLVoghMLK8PR4eKxv98X4SAgnCBMO1PNYwIVF8QTBH5/segQaU9QgCsgLEzOgeSXooOiuVPs6mOHDnySwkBpp3WlcfR8wiGQ1tlf9eZUkubLYVgRi6MKh3w9QRlRi6vBMkksxtTqfUalnOu5fXXhfWaXDf2Wo5rBlrJiAMJrDHBnch6Bd2/hKbF4G05sjXPI2ORwUQD5CSoObGd6sPZjV7PuNZywZlA74TtBABIJPUEr/PJrhntRBB71jdZjpYJgBe4GO5BGCEADA4yBPW8TvasBotRH9C8h4w1zuY8X2kdWrdQ7zV25arLFLnF1ZH934Ftrl0jeZzEegQNpSmAMxdC2zKISwDG3SHQAMDBgqkywf2qXnqZZDvDAMmUxa0VovTtYMAa7Q+uwQn2l9alWu8mC9XHE/IJtW6DgpMNNXwDwWS10WG0Fqo+G7hm/oYxJ/Cdz/tNlXA+s47d9dFhM8RjW+96VCrvJd3r9/yM5+d/7by3ro0P+x3q/Z//5weXe/gTHT9D2yVTv2Qbp7r4UMe4Lhv+4fjb+thsb0CKeWI7Z9h5WxB5lrH6r9uhMCg3FZpndBv4w6d7uX6GRBk4W9xDjeMc3MdPj9ptoD/rhDFO5iGRtlN4wm7b++18zrH97teYGoUke1YF0+fLLBzG2X8Q0A/AU5qnTOpF3saoTJuAjCRzxu3B4kAFzGuu+iMv4ZEjRz6U1Awij/PbXSqdW55Xc0fOTzrWvJrDeI2PabUYgRKodAMBEYSZB+qmG1iIP9Xk+azkTrX/tg7kvyo7G15NwlLz+PRubpxMTnuin8HjccW+JjxcO0rit9+rhDXRcu5N3bauAd5UGMZaXOuO+wBisQ+9UugV01Jez7TSMf9nC0y9hrZI/laMprOL2L2zlbP+0/baVQc2qNS9MfWdCYYq5ZVN4WFjyHj2VHxwL8/sqaE9lAI+WAnHFUeOHDly5MiRI0eOHDnyI+XdIKVXM7yIJjMLKnjSuxoBMvXQoadXGr3aTkCeT5IjSUvQVxpKNLJAdp89BYBeSqs1HevpUIx8J7i03dA+ysV0ZRWUQ/unqyxoI1hlN+PaGB8nD/Hb36ehChrM8yid6XmNpaOgbFCPdG9uKEPb4ViF6AlHy+8Z4ZEVZX9NlhzPvnLfafrFPVPqDQcF6++Ol5d06ZfRSzBJ+wdmQPGhvnmgKbB7DJDIIYJFkk5jgV1xjOm//NaockkFFliuKgdmqp7BPOWGS3UrXxv9Twr+A+UOMhr+gCzPoNaucd+Ori39APAs3oPJNFTXAg3syePqms/vnVKVnibHi0ozgeTrFYAwFjqDCcrPnoF2DxYOaAKWGDy1DFQvL6Ynd4P4lQF4K6BSgw3y3b0uuAvWWpBLq27FKCIJOoBDrwBExdgfY282v3d/uPyFg+DIkSPfLA22lFozN199nlOsGkrgbc8lwecT/y8PkLWKQi3YhkwU8FXzH4MJy5tBZ61XiChMpFKnRgq2mJtCEcm0XmY1v3I3b+kHIplCbEXdzKFk5Cn/fABYRC+s1aAoOo+Fc26mgDMkUBcJtDKD+YKLYJlnCjYpdqBt3vMIn0Bjzl1IJqfBIGRrwSFwubKNrNPMJpNGLD9eQPXFYMaFAfa5OeoraEOmS22gF2MnydZkyRgFAMssksy5I9KmMYUbq+TVjx0Q8lor+LxYb9hvUuvKBCZHWR2Q1DKyH1QJrI16ao6LSClsWz2DjYl6qEVf61iHzOCeaWZvOhaDLZpt2gGVuKeBZf5LVZo/LDN4t4GHOlpUdSn1aKg2gvnDfk11t4zNBTQIhr3yrJ22+QRtB0wtttWwunGWv4NX0w4oDWTYHV9tnyfH5Cu/86xd296vjHkifprxUAIk07TaruKxYYZ1sBCP8/DTUgnb4aYDD5DJ6Ppi5HE+LPveb40ns6Qe+l51c9ku9XPookS5Vaf4uI9vw2QLMtczkLrvFyr8F8sGbZTZyqMBOHjHuYLHPikZ898wUW5gnYIbjnHQ9gvt5ZrDnrzzD3YeugOL4SLn8QKWjcB9pIe/35fMwTdII+1VkW1czKmk+7tHxRz7cRvOwFtLx2/Hnjhy5MPKjtedM3/P/+NgrwXzWM1Mec9xywl0jUvmJKfBUp3pkcPn04ubSjPFhy6a50no+eFfob65g0gwf6uKjt8gVYn2/fQc3XXp+9q4v6BtD8t7lm+W5z+sicGGTYUhauvD7wQkbzifPLQt1Lox29O3BWPqYH1W2RW0P0QS6JTANB9PSv1iXw/GJg/c9Ii00RxI+4fNzn6cvEx7mfdn+b7GgTan416nYknCXo7WTxwQ56jqHmO/y2SwzHvnmMttMOGLZdvTNipL44vq3ZEjR44cOXLkyJEjR458F3k3SEmgEBGsFcEWVQVUCijRLDgEJISxTdAQDSKaWpbGEVTKYcjc2y9Bd4T0BSeQiXTvAb5hWieCIhg00JsNFud0UMFu6b4EqJ3o7r3bntdyl9QzK43ujfuu5BkmeNKQ4MmbUSz7LmSgDW0etEzTphLMC2z7YhDKdCOvANwlAUDIoFmG4JItCRDYYiGYGi77S8JEb/aoUXRpx/aD0UpfxUMgoStNEA3t6ksihZ1IsjNpZYxpl4XSYN7LQvYFpv6jb1hHX10dHXmrR94lPyod3C3+kW2czghkCqPNsd/Opvsoo3OHTjFHjynNdlgMlBblQAYTsoEIhKv0GRmRMA/2kXCSdGe4BGBOXNMnpsW+dN3ZMfjOKYJliXWlz204owJ4lEAqMyDZTZDOpovlU2SAQgBcOQ6cPpuKOLDpTvzgyJFfSfL9rSUkHMSDLA8rfwuQQ8xrXPPhkgDfvIcGkKd8tOmsXgWK0Zw7ezGL+SxALAXszblJXMBUZYDnGuwJ7hw7o90At17jRzAhlr0An8icrzJ3pyPBvo4CMcXSnmnaEDoRwUqXJrNRru2W/0umajOmfGPdss2CfclgWJ3izbPujgS5Zl2NkOBMh4ZkYeLijQDQMDjgi4DzDLyoY9lqUE1FmeMf0WyyoSQlEWSCoQTLE7TmUv2+AYsS8BPdaCNlG+vhDcytoRb9S7BXFDC1Oqd+CwQjoaeDf5WyGiAqbyyMIAH0vfCstaLthOyDPQ6ivy3Hb67jTH8nMU7iHejgFlN2ea3V7Lf5lnw0ifawbFMlgJpg+9ta7UgbQ/let/7M3zcdT1CsK2QDk9sN+c5ORqe7Tivj5Add+OH8B424z5U2Ib6mgpT+X/PDl6+4sxHwHu6Px9i2/KnAcPMktm8e2tiRvO2cfnd587pr13Xo+n5/FmgrTXviWV3lyacnZ93KLfP4qJ6Pvp4gdjw5v3E1cfOBcftKab4sP0oNvdsTcXAYRMK5YReud7Q/tjlp3K/0aB4bnVpTdT6vU/t0gzsIak22pFmWPM1GJ/pmv3kwKlP35wXJIuzjHn67p0rPhfVeDbunmkdm9fO3LsKt/9/3Ph85cuRjie9T4vZ3zmU7IBP1wpcLpByUraMHqyVPnTeYrJ2ouWXqMiQB3Rh+3HvOuhWH3ydjel99r1Q+o3R7hC7Je1QFew50DL3Hu8Gc9sAGGGr0b82LtMHyOZI6GcovxPuR2Y9zuSfmZ7I+9cJDnXF2y9wQMloAZMvKVame3QAxwqaigJJt9XRen0AetliNBR1KF3+XcWY/n52/6xKjJyTLNtbHbXtrdi4BSp0C0G9loE0wmMZZHicL7hv6LDuwxt9Z6Y4cOXLkyJEjR44cOfJj5f3p3hxYr2EYahpHbsFIoIkKESABJblfxmP3z8vFHSDNcoDcgQJJp6S2K3hZsN9c99wN3oxIBNVsDgbvI8O+AkEflGnc3o3+unZzddNoHWcOJ8Z+/W7M3Z2wdPLS6GtQCR4MwdhxNUqSNBBmyRiQQUlVjTR2zl1Y49lp8/oAvqAAZUzoAlim93o1x4vS+RycBZdIOesfjFXu2nXf24G+5Jv1K9i/AxFUnR3ZQDGtgKFNZ3X5jufuoGgvxS2kc0v591HlztoA3NtqMCGxf9FpE+jM6iA3AwQ9LgLEp3yVsMwiKI8ITSPpolU1HEsWrBVOJ5xccItAN1PaaAahLVGKLigA1OZg47sLwcquVNVgBEM68yTKqaJgKiF3UlhLv+2x3TCeo1K7wCqlBN9qCTBjwAt2p9aRI0d+EZF9d/OcF1e+7+aOa3NNJ6jXpZzjyxCMPnD8pgJYzB2vcCyhw9ZrrhENNjYIgw25zlgzAi2zTEUbwV83D1BlsvqoBDCarnc60G2wKvHWBPAQ8KMEa5tDVLHWyvk7ZzTvHcl0aEsGTSJVHAEYkpCpThPruQh4RlVEJvNTlPZKdjs6s5E7niV3R4tEAIEMSqoKN6bCS0BXAryUgNMEZ5GN02GZBi2Ox9rOeT/AY5BIg+ZEMw9gknklDx3sGHH/0rEKmJ4MewwquMClU8MRjGZbaogZVMheNId4g9kyU3HvOs91rNigUtF1C1056rsadDyV0Ix01VjMJ1uukwsYAZ4sM8dnqXsOwYWZ4uLDiTeQkD3I9Fwb98nQmaNdU6XrJb71fO/zS1+lAiQ7MyXnkdKfhh6fcZ98X+JY7aufz8izyy7wUe4psxt4juyH56lbOfZLH2Qeu9syvL6Yk+73YNtlJamDTt5R3y7iPPO8EPtbIlt/ybSfaDO8MTxvJkMXXthjfNazFpEAivJGW5/0GGD7s8ytXfKuziu2e0+T5iPLQ8s8HZhAGQjbuf5wTqfo3E+Z/bil7s5/6/d6idvejXeO9+1yTFsm3uF84Fj4Zx9Y3ldrI1OXy29zaQ2jfJG33pVcK7hOPznPx1+5XX/kyJGPJ/epr99l3w/OteK2mG5fh8pGcAjdTJJrHjT0dj5nAnoc9JH0KlbzVJWKeuBt6pP5fAJ5UOdtdRYy/gxwJ/WOWqyHllBzNEpH3lWXtC1EcHlvFiggOLgpY6zOjlmjAMh6zvdgeQRz0t6f/UyraV+Oj/K2bZDrDPU8rgPcyDA0B0m7IPpOn9S72Rx9LHqjqepAMF6N84DRHqP0nmtatYtXGltuRtj0rA2oNNbOrRBjjRofuMYWFrucw3FNW6GznHMgzdY4q92RI0eOHDly5MiRI0d+rLwbpOQWBjTBMNv2Who8ac94BpQuUbgCr0jwgySgSWTsku/AVDm7pc1T0QguQoBLx87wNGgFZM6J3ZmvK8zlFyH3Acq2ykQadKED3rTFWkCZdltv1duOPqf6bxd61uPm7G3zvQMB0916QTrYlWUjewAUePVgkBEEgOuVjowMNIhKpldrYxdgWpQAp1zSpmb4BQRww4JArnTmOqDp1BBBBM7ohHnTUJUy9u/Hw9HcdML3ppuBAzow5ikqDVyabfhFEcBd9p5Mh8gzQNCHEpFiSui+Ev4U3zFHYX4bAYJI/9LvEIO2fOciUJrvok//DtPZ2IjiaDrcCCiK/5dF6r5gAbEY0xJ9nYMc6hmchWbw3fAKg2qORc8AukRQ33Pwu1g7gyRSFIloBZlFk9kNZONwvFyaaSAjKG62YBaMTGRQeTl+liNHPrS0M7gdtQES8JrbSNvP11lVIRbMOsuDEdAXQbgSC6lHOi0Zc6ki5toLwOUBDlpu8JzTgGCdMwuA56sFy9DlhuWxtqoCV6lDVwUuVgJ8NBA5sT4jmHSYzsi4izfytgG2ojwSOVGDpSfS1hCOKioBpDFLRqUEVV0BELIVUZJgkDGoA7858OoSupUk2w+oI2TKsGRYCvAP8JoQ6QsCF20HeaZcc1cE6ivaULPtClrtmrqYwqSBNkHmF2uPXprrAxBKoVSaJnWHi8JcEBqMQAywK26vfkU6OUlmoaTacReI5q5qX7FOisA97qVcEMXJd4UIfARYKkBHDs0Uu8tzTaOzH4BIALEI8gKyXcwSS6EQaDJ0BaBL1AFphiu2v2XUwbMOrf14BdcVmn3NwJRDYMWe6UZAU7BmffSAQg7/CupN1THV/QIx8afSAanXYKgoQFWZsRhB6kvUi3zomn16PaNiPnnjeZ9h5mw6+12ZrWuedkFpc09CS8/Oku075ry4nS/j8yjZpEx6uPewaxIMYvPEoWQ3zisaisxdvHY2UOmjBJjQHpFZttRtfa/LVqsnTSwPP49g4/bDeNJ87miLh3Hjd7uC2vUTW0HkWfF+CZn9L8AWAK1GuUmDOsep0vHLSMWpZX/ErcaTfNrCt1EwrqkxNkajz84XMuZ1gTj9li3k49534x1eHe7gHKoNiKp5Yt+Ks7HBcmKoezzKx555jxz5e8sEWN7XpjkFUnWYwBW/3egZwzb3SnEOtPK7DI3FPUExoR/G7TqttBb4Z6y7uG1AxEhKRltFxpxJgIyHXcTp0NwyLfGsdJSrdaAGA+/+sh08vwGjCsjamwXiit464vC9TavhvYFGec0o0Shot0cDlFpflvl3LlIiQ8dkHW59N5XAqcixPQRb3VH1DFu0mnyUt+o32uPOkCQ+Txr+yey/yQ7F9HCtf937Z1/PJ2hsAq2iywfPl7NkXBlR47vH7pEjR44cOXLkyJEjR478WHk/SCkN+YVgCmAwC8hgAlABBFgEVVSYWiRYWS5NEIE0Y0HdvxyPyKBgBJAiXdxgZzKHXsnS5D5t0Li2dkznMxLXZGX83QyuKnjep5yQd3cqXQztuS/7+omj4nkjPsQXnjrjNWNoMC8mCEcyDo3nBaFAtG23Ud/XyYbjEYCECFxp5IeD1mwBMFzMsyZhqr4ig0KerAwOECM2HTpbPR4CIjen9TCo32qz2lnL626nVXzTK9RRzxYZZXI6oZF99bGN7AkwYiByBtpubnPg3rZvSDsl4n3TS7CWZb/33r1mMxj3zUAyU7WZINMNhrOEkMFgHZF2gCWTklu+Mfk+B3DIIBLTzrJm1Kj3VRSiVzh9hGmGlE8Z/pYAWqlrBwWHIzB8R5osb/2aP237r/TNkSNHfrzc46O185jvd4I3e8brtKRMD0W9oJAuTrBKgJyZXsq449YJXubiJoBb6RAx/1lwCIkmi4sAq8EnBJcAngxJufKIQPQCDFjr99p5TBCuVJDBig2ifnfvNVtyJ/RQTMwA6BVAGRnBBEkAtASQycjmg2DwWcaACNv15qxnewE5Z9N/bbC8B1zgrw5glfN+6kL3QEoUuRn1ClpgjuUrj8lYpzl/x/GLrnMh+DZzwSHSpgWzpI6gxFzzAlXPFSQARxYgWAcm25Dnd6YZLbAV1xYPCFC0qcL9yr5gOlLWsWMQAo5Hq4BCrIGyj/EKLGXTJEKHMCohAyLIpOVZdpY0zzerYP8e4PmY4s5xO/WZnguayYwHOjAz00jh6dXotvDHtph9tD+0v3exqHt0IGc+Z/tWaprMasVPrcI86B1f+/5M3jpngjvEQ58kCmnq1j4KX8FDR7/3szplPtWkMIJ9zQQR1/hWf87RMT99Wx0fjaY/KDe77onJUnMO0Pr3ryjTUgBQjGL25Lc+f7RIvVs9XzNFEs/S6lupIHn/OvRujonyF3TDFkDAaW+wPDrmrwyc0tGQ73MAeWd/7c6AmlfoE3A+KO2cHMfT9irNoqPn4z2Z7/Nj6x05cuRjyaNNEX8FfgPO8jj/9ZozuEa2n4FrJH0e4+L7miG0UshQigLZ8Mb1O/VVONxXlpf64ZwbBRBP/yc3Goz5alQ6nte6ZflG5+/1mbaJ12/x2PTBIjcasNypF7fek+tAKRVs72ax2xr6Bn6ZKeEaKBp15X1i6Xi8Zn6nDk6bsdaDpJAXpC6SY8C5frnXXN/9mx3le1vtlZmwodkXDSqLstE+4YEAN7Gm1OeZQlsGK1NfVsZV/Sks1QQ3zUdNRlVheVHjsUvc6zfXu73eH9+eOHLkyJEjR44cOXLkyK8t7wcpMdXG2IkBdCqBMPw8U4nFbnhXGugRXOEO+nBw0hmITOkxXKSOBBdkcMHLVIx7G6BXGs+CYdi2o9PDth0pJbwMz313C4q5qbzSw9FAQEzJE8fGt8iDU8Tb+dukyVE4yWDopUxZlTfQaGtFtJ2I4JJIoyVBJoBX8wZ2qUC5K8ccJgE0U3kJ4Eqhohx6XYBnWpHsp7nhioGGewBjq9MbQaFvbqubTQ/sqUC24Gr2k4zvJcOR8m5A2U8T38ZfpD/rwHaesQV6nokAtVOKXgz2i2Qwk6nfwl/UTAzuESS9Lq3rPWm+6YgSv4WaBEAClDxZldwC9wZRGBZ+wxVAgbynAHhRshzFbuyYQoIxrN55ZOojaDEqAUzhFnUgGIkOn7UWVCMdUYGm8l3r130Pnhw5cuQDyJj3d8dwz4A8XvDT+U5z17Bn6so10rcg1saVi5pWODTA0yISrDUDrEMgbDAUUdHI9SYZ24Ixx4nsDQe0K3zlSppAzAjWMwiSAQVXNPE+A77pJBcEC6JESk7J50eqtXhOzLmIVLDLCowVU+9LFEcdYgFGNeTOandE2rjhVjcGGRiQ8V57MjAS+pAloIfrtDXgZC5gqdewPSO4HDqHWbBRxWmCSxWzhx0GrQCPdcpazzR4YoBYgmbjOst0pHO3tQAJLOqUD+B6k+3ZZZdMe4fy4mdv5WAkcyX7KiFmtiotaUUO8tkqrDs2cA0DKkYAU0W7tIC9XNvMLNkQNdcyqTHN+0iOOZHQFvVrSsLPlIrYdWgEQIII4/PU0zdATfxaY7zmghGAycvyUb7dC32LKkq0pW8/+ZxYMMqA1h1mpuK6chgyZZNsZzxc8T75g3rK1Ik7oDVu6f13u2DaPmWjdD9wHrtv/pipuzACorxf2zfd9k+65c3v3yLPqoVnx6QZCtr2GwMkz+H3X8eeCJnvyfy+d/L4pYLjj7KtyfOz9HsBEDx0f/H2gDWDxb2JheOBunmb5RxLFbAG3yXO0zdQINdFTjXS714Bpqqce7/Prp/dP/GUhYliW8l+nyNHjnwc8fus/2xyu/3gt8PEe9xVq56XmBS5z/WxwNZKlz4Y6vvCG6TOzTmOc+IEwXhRIOV9skpym7M39rrhSONGAjItcnOD5KbGDfTkXhyusWZrlbHU/FrvJXVqr1PqTvUlJ83641lfx85GFJ9trCc+yn7XOyTbN35ieRM2nWUrPZFAptF3cY8+XptPSofLu/kd5pv9SmAQfWyj/UcVqj3Ynns6OOogjtj0UDXAlAlIuutzBTziP7Wetp2zA22ll/u5Po52iy7bwWBHjhw5cuTIkSNHjhw58iPk3SAlBSpFRhlAQoaeOCcCfAgAxKV4XW0RVbKSNLhdpQ256YnMe61FRpbeDU8j1B0Qk2Q12OzvkHKESwaIMAzNkfZNes8QnZgP0t7ovOrbpZkTeAC7E3hzQkR6FYKtrAKZpPxFGcFABLCEjAnlV0jDOQ16YRnK29s0vu2QyPJYhEIzDljsTfz9GtEeBm0ed5++7bz/mlP/IaAzAnrdfPKQyuJb+uWjBxZmIIF9DqACRF9jTooNWzJ8cXwv05E/dikXoxJ3mGWwgEFspr+RzPPo1sF1zUC5CJ1JETC3VytA06WKhQATVRAiX8gAH0WZX4TpIlk+q2ABywzsY43MSrM/ozyRvpF06tEu1UJPA4dHjhz5eNLLk5cTtZzNCFCDJbhDRWDLgEvrhTemEpPQKV6Zei3vQ0Dk9RKp22JqsgqlilB3ie9mmZLBCjYMX+3MjnRxwZYTrDkrnsQ5GbFTtnUmHQAfBjs0HOZu7agWAKoBEhIJFglzOFYAeQR4tRUp0aJlUh8bjm8AojF3m1mkxLOm9ucCU+sNHe+eCSlE4LZKF6F3u9iZWvGq6zxTuNEhX8HhbJ9IYxZtsNheKgnODdAqzCBKHYD9krvNORCcDEK7rrAxSCYrJcyrXWJneKYaHf1gTGE32i6qu3LnfPY3DALqxR14it/XCNjs9e/At8R11MW2gAbXLh/rcxzlehtdFCD0SBUX9zNbHxykxL/Zusq1fdeL96MoGwJUb3Y1sIIt4B8ZxzGOj2Py8GUHzdRz0e0/780LGSbbbpXH/jAw6Y1r/HZ8a4N7o7DsUq/iBrgCRnBLerqtINV8/nb9FhEDMANZU29v20+5y0Bi7la+r4I/1EZ/9JzdqvnaDfZa3a/5VTTJrkYZBvnt7RqwvvO9okTKvtG/T0bifBnnuKxbjTmxL+31vJ+U7xFt4Nr85AV0uotz/niYB/kmv2Hz17W9lug4cYKWHi46dsWRIx9PNv/RF07DWAtvP0iuWQhVDwU8p4dlKgdjHR13rqfXusi/kqmpfTDEgxu1vOwf5miLn2UU1sfiJDWv2jZxe+lLzR7nrUNKpAqu9K/lH8x2KzV4zPNyn/NDz+4iUVkjYAi9FkCq7FL2kW9z7x0Yakxr108b7Rnf5yZJK4UxO22rV4OS20bqI/WEYX92b47fR5sX6IpnDT0qznUMiFn2B3uZ7dFnNMBp2CE3nbbHmAA3v+hsm1sVqjxT323QlA89TwC3+22PHDly5MiRI0eOHDly5LvLu0FKa70i4mRt6AEGlTC6zAyqsTM9mFo8A0sGsQDbRLAwLPiIHc1d+x28CXwDnZtkU0JZqoIIFF7gLhN5CFBVWCANM6lyh5GrCPDFymcyjZg+CSjEM79dNtDO7be3HN18NtMtaHgLgikJu2HqCIYZ8WSsSWcJ7UzVAHLRsRKpUjJwiHAaSNujKNM7GRq80nRJtV8FJ7bS/niZjmyCTAqo9Ib1/Azg9OElc85/MRhSfv8njFXD3z+bphiEmMFGIl2jXBHsnr6mCk7TeeLt54F3rzOVIySDvh4PUr2AejcDgORkJ8nymBuudEBBNMBFOpx9mDvSAHkhyK4dW3TUlcOJAz+D0WYLIoq1AnSgl2BylR05cuTjSLzr/W5OroQ5QXEeXKk+EGhU6U8duNJpvOCV6nXl/BGOYzrEAzC9NuCN5DoTKdO2gL2EXiMC2KvVXESaQ8cVAQKXWsMJesnVuTPRWaaHE435+FKstYIBwlbMhWYQzlvqgBmY4i3AmFe0lWf6GzLZpS5kphmssMrPQ2a+zlORjD0bFSEAy/k50S6W4B4VwfJgMAoQawRDqCtki2C41TtMYlaMEzH1Z/o4hM546RV6DVDHSVdDVs0IpYw7GxDBm0z9idzZPNKhdVCo181lZAeVThHorZMCCTYLZSpBTLk+54IoCOCuJnDXoZXOqFK1QYcuKBVXElEsX707nEAmJLDL2YoxVvIDIMmexfELtguqrtXnH1SKDWAwplLFj1fKOzLVpgAK1DB+rnvyesaEniinA1vH2Fl917p2tze2B0BowqB7Z+rvQ+fabuGYBbq/F98qD8GmuqeXzXM/+Rm44kF9lHmtbOcQMN6MQxFcnSnfnOmpKyI27AwEuybJGP4q2+FLUjE91i3fJ3nSSNMm/ZXkTTvi2XEGJetirx9rPPPdKYMBvRFH2n6Z8+jdnrmv5rw3y1DBaQAiVx5/1Ns9A7Nch3K0xS+Ch+cWSo8sS7PuuQTMt1SqQFXKsqtijd/L9GuNjCNHPrdMm2KbC0pZ2s8vtfEGnuzVOxQPpm6eAOS7O0qQa51NRrdOkwb0fFk+janH8S60PZDzHUFMIjUvll8QGAyQoc9yXuYztvtv4PecM1PXFqDZ4TztFu6EZLkRD+SGUre68zYZ0kxCrRM6+iV0602/YFvOenlvvJyMfXMNoXD90KydD6UofEzpA+V636tGD4TRhuyzhxXIuQZhT8mdvzUIqLSz0m1pz0CYjLpKX//2+Zh3mL9u1wC9AXUWpH/1WldZPhf0JpCx7sa4Ggv+Y+2PHDly5MiRI0eOHDly5LvKu0FKrxbBlBdcaZBFsOTlUmgGTuiovJIlKQAymY4DBtULIsAriQQkd+/sacyxgtwFl6RxLWH8ugdDShnneQlTujHmtO3yZfAhzURNJgGgAxO7XRl10Hl4Gn1PHNTfwzH5bBcxd/cwIEVHPx0Oyh34/E+SVcKB69IyNhWeQdhoz99XOlSSOUBdMy4bBm4FGi0CuOWjNa+UON+39t8mbbzH92cm9HRO/UriAGw6HPKT3E/Kg7MvOlg0nE75Lgp/0xwHHsFUVYVLpGeLVGqSKdS8nDJSu99HaiE+RIyRhAYpyUs+w8vZR4CAZUddeuHSK9lAoqwRJNcCI6lc6QTydtTJABlJMozkHUQyfRwEqh1QSJqGTP32pM35otRtnzi9vtpzR44c+TOys+X1mtiBBTp2ew6qwGg6ca9LIdaOVlWFrXT+k8bDpEEw0kGJSzWYhYRppzz1Gjpve2exZ3pUstd4BQGQjHWaLEoXgipfoGIQW8NhD0AzsGozGCGRz9YNktxIrK1IzJ3uwJJIBVsAD9VMnRv3onteEExC9HTbItMdwFRzSPKpYh7K+5V3XJpBrwIs2fav7gl6Hb3F9r8Ua3nGdrSuMTr82aa5JhVDX6Jpo1+5Izz1lmSJykrV+tAYAsnnE1AiUF9RN+i4Z4wVSf00QFhcIAzbQseAAq6up69kgkqAUra5giD+PUXCHLMMXAjT2W1aTKfYiHSCDQirO1Q6uNRYkxWUbF2RFe7jrloM8mmOrRpjHO0yxjyDQLfj1AfceV4djjNu6t/EmDxohuNY4aMG0CZu7WUbzEASfxu3AtnPtrDWvF0WrlJN70X5Zmn75K3rdw25Qk/y+PM27BNL1qAR34wu8eQa4xx0R3/h/qAuQafbfbR//kqZLfOlUvx61sSjzCn6Gdbq3g6c27axczP/2h7LMTHel3oXMGwS1Ntb+bslbc9ms+CDuP6AC3XOB3PGDFuBm6NYsC4mbdid6ynG9DhvvDtyv8eYB2It6/E7ppztPXycI7ZmO3LkyA+UZ/N1pxa9rdzz5FyvShsf6KPt+tRV5wTwgKMcU5n7mJGo7tN3MYpww5e03mic+wjl6fm0bzzrctM/BcEmKn0qCyMC+BpMn0BsQBt67cP8LXyCdZlVAEO0GZIdu/SonlEnK+oEx7DUO1B4X5X6+WOt2dSsBqjWv55rhtNeyDM3EA7bv0HXvAX7fG/env/hKDuSdtxMFx7NYGNFmUoW5oC4tVHff5zSzVFttg+8KIqUbt3t3SDyAuBiZ6/a9dOs2Dh25MiRI0eOHDly5MiRIz9K3g1SEryEOTo2Z6sKfBlUrgC8rDBwXmWBUa8IqDENRZpJgkylEVbXdUmwImSmjNgYH0wEmob1SkSROYoy11SgNKBuznn3uM9yw4t06ClCcoNyN1mKkggBi9fX+UiABw303hWzuyD/mAw78clvgtxDCvUMjgS5AkxZtmhXowOCxqgDvfMfCciKgJf4BTIqcfewatLiu8M9k8Zo71qnw8YM0MurP8t6/gkib/yNL3eL/teQ4Bzi5yHTEcZDb9Uvu+RC912Gl6pdInht8AWIaoaEh+MuwUVzB1mlnBEAsEjlZhnYVo8gM6PdyONZXslg+sWRJDrKxpiW5nurcARIUeHQK5i8Ih1QjHOypySaAKJaZea+NKs5JoGK+Z7VbkYMZ43vY3hr2580vo8c+TsKA4AxX2HbVSvl+GbA1XNuAV7R4GLJgII5ItWXAWoBRDKxAk7yXEDwaoCblSM/wEkO9XDWusZco0YSIo10c54sTQ6sxRRiK2OswacjorCVhEtOWDFAXhIVgVuwy5kbHAqD4go0FX7TwVZ0KcyAFzLGyULOaiOdQLCcGIKRKdpU4DDIFc9dMCwYrqx/Ji4DLJiY6NyeuINliXCG49UkgzkNlg5Ny7ACqQVflsCjVHNS4ald0Ua+ISQQx6CZstM80qgRHBLLyUir4ZOrSOG28nsjUd082F4KmR7ML4HlCSCSWZTH/DXXOAVsVYo7I4peQqeawYkuXd7erYIkBP5Gej9JlTifb8FcRcYnVskgwZ4leU2uyWav0OsKAD8ctiwDClmWVvtAlqyPDNKWzMHkfLHzjZi75Vl9slw1YL/TLz1jkix1moGj/DxxM/clPx8R84dkYEl8+33ORR2qvO+S700RSBtkD4O17bCHxr6XyFN1hXGw+JI2xSg3f7+H0KqwebTsCaCAeZyXAR/t7WP4ytN7zXJ+T5vqm2To1KUf30/5xUHr8uQTMNtc+hunyVaQ5wUNVtv6DiAotl6UeWdP21m4wcUrZeO9nPV+cSzy8c5gds8RtXbSAVABVl5I23d/GO0aq1uPdmhjueYPXslNUCj9YJTvKwPi487ER458bmlgEcU330MeqXmQ81Cwq3uzSPPSnBMEHhsFOdeUblCPKD0AIp12soCMXnZM6dmc1dxrKorPwR7K7yxBayJjCqLeQnp475me67MKwu9pvcms53Tq/2MOrSbop7Xej2SmC/uk9KdRn6jnrd0zpXU0iWUb9kTa2KawW+bjVcaaVW2w62sFJM1nFyiMPk1udhlrTdkG1Ye2n5B1dhmLYT264FV5Xa9Zqeh2O9YYGGUs/XIfmTF8dr2x/207qtigxoDwMXa39YpPKZA/GqA0dQEayPMdOHLkyJEjR44cOXLkyJEfJN+Q7m1F+jCdgQTHModpGGN6XR2Yoo8zrfDr6qAEgzgAIsAIAOIwz/RiOnYvWRiIM91YUcvn/0mutDkJckMPrku5WRPuwEVDTtAGNhBRx6vZZGp3PL0II6RIeeJn/UMiZQS3PNI+t5HJNDLpWyhjXuC4lAxW4VxZyZaEbNv435KRCghk2JUMTJE+Jto/6s7PyM8sUAdw/uI90PegwrNTngUVfiGgydOSzvepwl3tuLjvUIvgL4qBIRwd0WpkpVBpB5JmVEARwXAGHMiq5NJsG8jxtDzAhVLviozA6S1gBcn0bsPR42TqyjnAIphPh50DlRokCxz9vjqQyfoz0GCIIL/keCeAoX1KcwcZha062/DIkSM/U2aQMuYH7MACtC7gjmJ31HImN+uaQgrwwwCo4DYXoScUpjg1d4iF/iO5rrotmK1ggHQvVqVlMbfG2mvptA/2nvBCk6cx522Rmm/dgxWp1J5Mz8Z5iQx3cb+ogCsCQO3BGOWewHGXTHXZ+hpMYn4FSvcKJsZcSQkUkUhxt7JOgdyQBOfETOlrpQ6XTHcd7QUEtb5MVgv21zIHw8MB6DEEw9IAeyQYbAakkf217BWSaQg6gBOfzT1T8UUqN4UCyvVOu+1zcaFeGEMrUpeaWaTUG579TmGU66d1wN3MYGAgJMsgKD2yglfZNrWySLMnmU8K0MHWRQCIBDg80pb24FcJQJibVf+5ryipcVx+TOE4Vq2uRloGKO1uACUY+OLhBx3pidLEjHkD61Wq/DydbJNAvEv8jTpm2QvoZ7MfqIGVLnYvRxbg4fD3VkfHg5/ZJVHm57q6oAEbW50RzJMMfDEExwAW592uY+tNBTTLmxKwqSMY+lFV8qlP/kp2w5QvarA3G+oZC8PDfbK/az3me1XT5Bh/tEfHazzZlABJ4O580AC/zTdwvKuxsaHnhbY7sNeCPgUPe6KCtbXu323q+ZAeu2Vz0aSZb8Z8gd8aIlwHf9ExdOTIryw9vz0/Xp+dx7zmp5pVbLzeeVjzYi3wE9kf9xtXimi9PzcmpALN0P64gSmfz+JOjE05Y2pV5g/5/+aDbQdSXw+A4CSPCvWcOcA1BBxxTnc6gXzM1R5zYoOb+kGcT0M37jmUIKZOSTdq6Ugf8F0b69/Z6EYbIduTDKr0e+l234bkNojppptnuajrNItpgoxYh0b3jGWp27nLt6cKiKKO82ad6tje93eXVNVfpGwO1p4gt+ob2awrXhjlrgW99eseW7sudPxiR44cOXLkyJEjR44c+dHybpDSM4+yI0AA4YC+AhThgEJzd2OmvxDtnZNpWE1D2dpLkOCZDNilyUUAhXnuANLN1Cqz3jWzEKADC5W2zVEgi+ks5cmqwSJwZbAoyh01MJZjuDCA3XD9M87sGYjr5pb+bTa/3Ors0QcKYLkUGEMsWKEuCdYaptvSBIGoBGOAY6WPNkO73GWtgF4RRBKJEF87nbus04id5f4r5DH3+i8cVLjVY3OiYfrQO2Aq23jcRbiDbgRbGCyQBKhV8NTb6Q8gUwjJ5hhh2sXYtQVGHuJ9dTIsxQvHlHC/IVItta+EO6nj/whRD+YEBUQFV+4Ma1aDcPTXlRo7Ai1Txb1ckbrOJd+TSp3U80GMbYxYsG/lubfzrXfe/OXIkSN/Xub89zCnA9g2rnruK/ZkU0tR4fonMM5P1nMfQOd06COXZlpLDWAOcl20pGoiK5uKJGucJVNhOIUvuWASu2pj/ksGnUxbiVybHZKAHQ+H+dXKj3hy2NGTbsEjp6pYHr+LaIIIFC+//Rb1sAVVhUqkKKOz/RWGtQARxYsCZpLMTO1EZwoGccWLpA6AYPVxAFcy9rhbInk6oHJBYFCYcNduh4EuFSwbrHtDaSFgFAloL1Y+J8uTh37XRHyd4g1ZFniw6+V9F9evWIjgbqWjXBkcMOXzrXRBMvxxMeDzRBDjhiEEp8MfmQKQiVhv6+oYswWoGn+pc3r2Q+m/vD8VVDblg34FqL5kWQY7IQCmd6M+/SI5TiX68cOKTO2FenQDXaI+DDiVtovkuZo3AneZs+k2vUXL5Bg6FIpVsbD6qJhSPYujr8Nqst+jnjo1iPnNa6yyj7CdtUu8g+gx8kbT/VGpElZbNKwo8Js+hl9aBN7nu49yDZ2uyBhGUMzJNoPWuXrDw7C/8Kwd9jL/VdIj8TPLDFnf5q4nZ9ebF+r/0xPmdRt4qQK3FQeuzzoixyN+2+8Rg9MDNSi3ubGez7nWb29gD8eqy7w8bAX+gGZozO8Tu9SbK25FuNX/mAlHjvx8+fIcPtdW3z7Jdg4Vw2e/378MG6WWfNkK4uNx1BthveaKaAL+PddQTkieajgB82gQSa2xUk6OqbcQZFTrPfX2/K5NmVo3I6trVTILXmmUBRt4K37mEzQn6gGcLx1Nnpzf8P9WtIbeL4+69QQozeOcmHs7wgAiYfi7WI4Cv4/2mn2eCwB9sGEHxHrk5l3mvI46zzb2BJlqruu3790I4Nbua6PfivVrDZRrEMtf61+1deuPm1TBhgabHTn1uWHOzSrk8DiL25EjR44cOXLkyJEjR36svBuk5OCO9TblIkjoWLaCRQlAGT/TkKXPkQ5BbYaT6QCXzAsSDABhbFb6FgCiu9OfDtcOJEndrxhhbk5E4isw/gbjDHCNg7tZuAcnnu1LeQY0+h5yv+fdoTyprK80bld6PSKwFmw3ywBVb0+tZ8BULuC6sFaw5kSQNU65MoJTjpB8sKDv8ZHlVzaq6VOIAKdvY7BkRlf3HwK4ZvtxuX3oAEJSbaMBRvttBdfVjp1ytJinf4sOmkjPE++YglluameyMugV97oguMZOOZOZS7I8NSBTRjuwpM6RLIOIwLkBUKWGOQCI1ibBDbDQbS0VIHyQX3cIHTnyaUTq/QXKfTsC+YGPHC8rndveqWXkGuwezimmUyDA59zXLnhRiRRwSS5UqyF1DVW4vSJgziMtgQYYyswCMP2iwXCDBEXncUDgZHFUhSYzjuSzV2+bjQCvZNo6BBOTm3WaBRHoJbAVKcFKe0lmJjP0/JxzLAPDmvdbnmySufibJaOeGSqF7HCQE/Q8AwNsv7WswFtmw6me5xbITHIXNgTwlVk8ozOClUhTD/EBpoj1g/xUSLCWOJJJUJgNdARUGhTL/8mMVAyfqsBYE9mnwdzR0Rlex/EnmCyjDb7Kyo+4+x4Ym8Gv0HM108TleN/a2yEeTJ/FAObc/W6bPvqRdz53bGdnjooAjYHpYAEPgPKI/tnoz9AO0KlUhjwEjMD2xJOI4+O5M5Yk2PuIIaH9Nmn3lJot4059pmB/NO+3F/KPy5eu/uKdOZ86rT0GCZtVwB39Ts0GAVq3G+9EB2XxWGnguc71QeVTqoL+hLE3j9/H4bNh2V0cn0a8dD8h/24gtXnMeR8ydQ2mpXvQdHuv9zVfx7kO9Jw7nsH13+fxW3ULqOS0h6XL+KX3c9g33bBv2WlHjhz5KVITlxRIZOoUD+dNHaWcYHF8Swcn4w485tQPez4C4jrnvOKCfaKbvIU9WZH52oHe2OD3qcbLrqh7Oe95e8rUVfiMbJcGByEBVGufQPNfo31V13RjsN4E5vRaEd9K957ApHymb424g3M292O1Kdcylnv0KO8lKH9Xlchr1enbUd/OfnH2yKwe9rrWc7Z1xkHA2bRhCZiqYTTqQ9tmDiL6rqqVKgXbbXG8fZ/jYmNXAgJoJVm7bfwNpnLvYx/YnDhy5MiRI0eOHDly5MgnkW8AKXEnOY2x8N5d+auvBWgwC4g73LUMKXeDeiVkh0BgI12Yjd33NA4tqFIiaEfnYKWGQ5nvvaNoBgDaYToDDA5gPYCJpie9P9Kz8BigGEkN6KD4A/JHATQTlFTinTqknSkAY6rRdoArko7K63cg2CeuSzOWlrxRG7tOpg7j+aCTeYyFP1GnPyO/MhDpy9IpSB7CI852l83xAXB8RH8wLSCdJqTFno4SkRGkzzGv8eoNJ8keLQiGAAASAXQPbFIBgJwpBmdt6DRTAoLyXLPeLC2o1DlVl3y8JY0a2VLoyGL/l79OEmw4zuHmxHhEp9CZaSu7nHd2rs86vo4c+fhyX+sefLLpb1aNd9/XcOh7BwZUyY4o6TRP57EgF8p04LoHk1EqD+bS6TETPGIebEIN2on0b06mpQw6uAUzj0OSRST1EufzQnvqdF9abD0xN7bz3F0gqpBc1X0LKGgyEGWaMvctlRlyDnSme0XOm1lmSDv3HZYpG2xbM8y8QF9kBHIwjYHDrAEOEEWTFWVFkOrgDHK4JyNTprxLIFSz0rRjnE52z7pFl1nu+n4NNhcJwJYjmLTcUUB5hWDZ73APaJdlatF4hmddMghjY6AJwUb2sC6oao2N0GOjnpbUMlkDVLBmdAiDOWJsy04/Z8sqBeAWLEg2KRvlkNy+T6aubrdfIKhAXT+Hf4FbiA4gUA4dUCm9aNTNgd4AUbfe9WEeM9/B3i5tU8x7bnYEnh+/FWM/iX+yE3ozvTyc2iNI9mu/Qf6olrK1Bf9ubSE1P/i9bAIwKsf5iIcrBXeeao4ApA/7ZN7mo2hZXbePUqI/L1sfe3+/p3mrc3Abu3kT8Q6S83iN3Zsdci/AzJAzbf0HXZtjj2slUCBMlmsGp/f3J+q0Mcy6P7zBI8lNB+lnveva0VbWlfNR0aejxAc7Cp7Y698gxxI5cuTbpd7bbaHhDIFdf5hrHbxPzd8M2BgO5+/0XZTmdZtPtjLlwaGltU4gXEqt9NFKReYyyjw2UkDGTCat8/BcGWm/iq2HYGMpf01VdFYkdVar9d3H88Ymza0dPfXrrFvppe3f6TJ4PZPsoAAB6ntxbkrc0Bee9OUon9+u8SqwjPbq5uKVrAsLzPVqrg9bfamnzvUSXNvY4XcYlN+OYfc9sZ3uei4Qtsp2L+DWEZjCtHdRDJtXjfV8V8hi6Nko0732R44cOXLkyJEjR44cOfL95d0gpXbOhzHF9Ghwx0umeoMDHjmbwF3pksE55ruu9HDunaud3uzp5Ezn4lppHCnv339ZJu5SITiho0HxVxE0x/Bmimm2+Wnmz/pKBY4ef/250gbm43EGCKK9BK/ueLkEr+lkXbARjLiGQet40WBPsnSfLEMmgYsgcHML3AIt0jTDH6eVfl15CBy5ZzCtqbwBACO9oQ7wXfWDAGIdkJ+gn7q/s/8IXLNO7Sfx/jE46IgUOiyPiI8AewRpL+W5wJII9qsgWJUQbB0GlAPNYcClKDamdJ7N1IxsFQZeeU/L2mrOHzodUxzvjmBYykBJpJDreSzawDPgcQso/IHB/LNSHx458ivLs9SddOQDAGww14gUOCl0CjpgewdxBA/GukQgLdmSVLAQc4xisDDlXMK1lABqY8K16wrQ9FowrAgm0CHtACP5mvcvSERVTXq+FYfoBbEIgqoH+49eVwBdtMvB64Khzoq5yKbTvTWiBriwDhlkDv1AIArYQuwiz/tcqsBaVX53h1l879S2VJ4ETMFWKbkqAt7znpsBbrguzbRzUm001ysGQxi4Jj+S5arR9eNwSLaXkYItwOxeACUAmXhYYGsl8CfXK9UIoIxd1dMhT/AUYBtIiKCtrt+dTSfL54OhxFcGXwSeqUiZtoxpC0UDYBVraqtlHfjpqBjHZaQppEYw+yTb9gMvP6leRDskooWBq5kmsCAHUmrGfp98Qeawo07z+FDZhuh2So2X1p+mnl12x/gtPvPtHCc/e/T9vOenbcX5Wd13e4XLnMqpJxla4xh1yzhB+ApX+wZZ2w0MLnvbPkts98wmO/IHZDTk3V68n0Lpsf14Jn+bfVi/cQngs/zJfWTY1LQrpu1CW4UFK4BShvT53LFG30eLc8BmQTlHUEe415XlrVnnPsfkwbJHBCzNmzLH92cCvB058ivLhuVICiCpFMMNeuFcBqDARTx2X5smaPKuI/D41Bk2r4Z0Kum2X9BzV5/Y5QZTmjkEmj+FPtggl9wIlhOu0wHidA0+grMLhDTqwTIidWskYD/O4aa0BkLxYpZcMw0zC04vVldz971INWjrS7tPRoCp4xbQR1I31tF+3QH9zLnJdHQyyzOrgcHyud1wv8783rcyzpQCCfEk2Z7Zg2cHKN3Ft+M+9P6hVoWtcxuYtTGx+s+3a0K3HcDd/EFmmbiOHjly5MiRI0eOHDly5MgPlHeDlP5xhYNaRSBypYG4wF3wgEKvlzTyHRpogLw6AnZ6Qa7FOQABAABJREFUdaCBYKXAPDg02QBsBiq003KoABfZEoaxRgAFkOah4GYGT4pcXjNzoM+UcLtJfLfJvvb9ZwmDPfAAajGoIlf8aA68SATl5FJYUhGoAL6ira9Lgmkp218lACXu0W/sV7JB7MTBR76XzDa9M1RV0D1PSk6NCkbzep0OH+0AvNc74BtbhEqOl0QNev3vxbDF+6nq9gKqXP1bvqDXxSCt9zunI4CQACUVBfRqJ07nh4N7v7eZBbJ3/uU9NQtfbz/ngnKwdNAR5pG+8Enb7uxkw1GIj/OOHznyd5QCFSGnHY91jarFkkjxohLnNutiXKAecw/TPbrn/JlLvWqvgZAkGpTWAlTINNfcRJcnW44KIAqsBEpWEL+ZiQzxfO5YveQKl7kEy9JaAdJca0FFcSGfp8H2o75AAkTRmDeXAXKRnSdSpi1P371mSQ1YZrAEk18iMEaI3VGbl2UwI0KBCzBfwbqUwYdgogJUNEFLAWSOhUECQAYGCOrGcUe94KxToskYdIZk+yZyhGAdpE4oEitZMPtFHy2z1AUFhlg7bFnqOb6NEyB3ZrsDsEhZV059S9BUprLL6JNk3YTBipRYdzMVcepI5oZLop8y+hAMoBBcGe0yH1A1AnARwKPoU8XlHintst0YqNFaGxsIJc4sqwOoh2COQgYfaj2cC9kHEy1qghTvTQ1whrlaT9cCIgKgPpIDdyzrPUcg37sCII9rUy+gJhuHG9DYobTHVFj3z09P2H7/uH3wtsj+aYD+CJKjqSCDTUzyd0DS/mM/TfbVuA0Deq2bHl3re8qbbTkCszIP4RavHZ3VPRTfCoSEEdSF13s3L6dFXVfLeNcYKJXmJou5OO4n+YIXBm4Er/nH+JnvfI1VBobJxjRsJJ6b186ybU01fk/Cupb796dynxzOCD9y5K+Usu1T+S89IH6kuyu+ovY23d7UmORifkLNawAmxr1uydf9TZWAN0iy+U1hHWDe9m3SG5OX5RQe8H3muBcAhtwjFr681LUBT+BK3EvKxxfHVq0HDmpe1JPYYJw9DbEJgHZWMyrdGmLckZvJWEuCocoPiwb1U1Owce/HBhxMTvmcJ8rFPq97rAFA22YAKm1y6TnU/ZzjYdgUtVbE1gnaTNFEeSUXCz6CC40/to7nMxXU66mrpi4/ri1zy0cfscWSJWtuYdzAeENx7rXb+955FcHCrEf31yzwkSNHjhw5cuTIkSNHjvw4eTdI6dUswQ8C9wVxrR35ngagVUqGDG5l0MQ1jMgIyoStY6vcnMmekkaUh6MSANaK3eex4V1iR1Bu4SWTQBh67Vy46q5txAZds2xOUwqDIAAiuDgMZ95n7kKpa27O0p8hcv80rUlPB3LWmcARINlwEMawaLqMPazXSHOjmfIld/j7vP0BKP0IeS/rzvRbJFlWOXemg2wfGzP0lo4uBcykcq2U0344YzrVDMppFcwY/S6oZMDaDWS8WCuDzcm6JLmbTiqQHEHyCAZnNMus6hLtgbFrMcane16j9ElFjcjoBg/GNE/Hj3LLtrRrKk717W832IhY4D1BiEc57ElHjvwxmWDBAi56TSP1e2/MbSp++B5INOuUbXAUOw0dscGQJBXY5NrI5xKLGWWQSGGLTF9gXvOiM+OZBKRC1QOo5MyXGTOrJ/sRdQcBIKwYAvwpHmXODd4QzdRmmUZunu+eQCk6ky2iHlnK0I9U8eoOkUCYx/zdbEIVsvAV12alzCwaLME3BL16Pa/BPSq5c7fmas6rrS24W6Z/o05owdSUqdlWpkfjehO6XawZkY4uORw9gLBuK/THDCqw0y3BV2RtaeZBBkC8AUXgGpNriDsuaSAaCZdiXMU5yxwXySezHxZPZJrc1BcvdDDJMsUc6+fVRpHabUs74QTw9jPA4AT/r8CI9RDLNuwIxZbw78MJAXDcVLCxU1VQaWeHHNHF0kciNIdOAYs+pXeboyMu+Ye7398dgfH9IwN5D6v9lv95sxQentKzw8eQt8oRc2x8KMAIRkCX774AsCd6qDxpZgbj7s/5LjU5UvKlBr2hbubXRwtvdCKD/TL61/nedi9OG0RG4JZMRx08Dp297Yq0EQDAteaBR6a1KnoWa647Y1EadnuNU5ANbLI4zXsOoyfTzD+CF/rxgsf5SlifMea/Vc77cOTIHxe//a3P450c7ow+Z1MHfD+HqnHfYvgqnryzdfFYGGk/uGBDo9QcNh6GZi8aGg1LNvaCTqfJeBYGpEUE5mvMec2OV+plAVn3mnD+I1i0puzhV+K3fnJ6XsJ5A7IxFWtTzv98VOmC+2S8tWzrdV7zbtV3NMHep1NRScBUO8/Cd72fXW0SG9mGPcozWPa77ui1eo11dG4gwKhHborgLcfgdB/8T7kuynbOvm51k017AuM672tz0M60yLWGjXvIXNPPYnTkyJEjR44cOXLkyJEfLO8GKa10Qqp7BNQEGawKK88zlziQqURulLzIYFTsok+2FzofPfamwNqYAnL3v3mAnAC8vhquK9NDAIBHagwlm4pzZ6VsTnQHdnaUmw3OcOXXbLDphPzYUsk/cOVuLXdArgiy/nZpprqJ71fa78i0MJrbscws+kDooMjGHIzKv0JrfBap9m5/zHtG7d3dhZkikTQExWLh5ZfffF10gAR9dztBzDLlj8RYKp+G0WGUQW+gg9BABeNtxZwAFWgFJPJZMt7NZClBBvIZKDb3Sh9Rr+ZqfgSmdyR4suoqsr/PYzBXi54BfuTIXyb77tj+QHAivJ21ypRj5oXP4CXLvVO/5p97mi5ORGRncyId8jlmPS9ILnrtHL9wwSI1ZlK8LGPpFcBCJyyLeVVTRzIZE6sE81CQB0kCcspbnKAZw3VdCSoNHetyFHOSqmJtrHMerEwOQCK5ZuhmwdJUwJ4R7jCCv9yDmQkMWASARq6rvP6Wjm7VSElXgWNI9V40s233UGgyGVFrtABIO9PYSbHvVVmyhM6xke1GUFSks3C4S6Tjq/GRXWdSa1CnLvBN7wzwayi3DZbRCpwT7MQRZh79UMAt3l80dpl7QogkQE2W1J8Or/FT6S+G7OkOe52q32vYJigYEdwq8AjvvwXqP65wb75m27WeMQJOGIGZVObn2uxogFJdDzwEHhkcmnp/jzEpJibqLts0gQ4ZbkDnaU/wmePNeqY27LPbL6hYCO02ABJsueaegMPH4BnSZuyxO/TK7KgIWva7Ph515EfJExv2qR1xH6p75L7Huo/vBX59dqN5r/FuFfKt2fD4khZLxBxWPCdfaPoduE70ho0xnh4L1f6KUcq2sQaI13j3nUWqq5cgK3zdR3DG9ZEjP0Hu7z91gVzvJ/iWQl2AfsSH2wz9og61+t73GnMD5m/S4EfNHYXmkql/WxdqF8VtHnWUNi2pD8ZPQ9NI5cjTb4L033Z5uGmD95+6I/2ora+WhlN/5LbGc+sH9XiUfQDxwRxFH1A1Rj1hAqfms3qG3ng289K+T0+/3d5x373jyjfck34AsJxs2r3pFsDGXNo36z7ZxgHb8fZM6p3x/MEIVUCg9s0xS8FDew5bpsv3Hm3/UTMN5lhe3lac5AI9LZA3ma2OHDly5MiRI0eOHDly5DvJu0FKlXYlef4j+D/Zk4bhhAlAyvQAlwCmiV2IwJIKHZFpgskwtzxAShUhABmW0lByOjdpVOXHBNgEK0EbWbz/NTyRFfx84qKlgey/oF1G/ywpmSX9F64CsWC6gSQrzZVMApIMNQKYRGo9TfgH08d0cAegc2M+88iPly+GuL4yVuNV6oBAXNLvk3u9jMFEMli06hF5TjivOjAfOwINLqvGCWYwGO3A1xyQCodrv8ENFsyxJSjnmXsE+QlOEIkybpFIjEAkUACEeNd3OvIKLFc9nwcXzrg+cuTnSTnxb+8m3/9rsCRYe5sjiB4R0EhTeyVYkYyBl46Ml536gFGGmgozQMm1kcEDd8ChWOaRDxUXbEWaNNEAX5Ctxen0lgRq4yrdR1XhWDGXqQcTXNZPPFjoAIx5OPUpB15lBGzTYS3S81ilYcpJ0AHgEkQuCCswqebKEORJOWdLzI8Kg62VQJJO7Rvto0Ay5BFkVKXZnp3tlv9dSmYr7zUHKPDpBBG5aIF6qE8ujzJrVDLPT53GEkTvu6N9goRkWzMk6iksT9SnwLiCAI8BuMgIyIGZ61B27dAZLXfa07FPvdWqfvtYvq9LUnX2GRUf45tpPOJeK1LQAeNfxUeWIhxKHb521m/CsJngvjarDjYDvq+ooZRX1897YDEP1GaHcVYHI7+08rdiLeMpfE7PSHs5sP3+68herxFOFNR7avWj1G/ASMUno97VZD/HuPqiDn3kG2SkWn4ic8w0QK0V9BpXuwqPYUDAi9Ku58a6MX0AggIqPqSSG2XgGLzbI3OCmGNiTlEFfMJ2ep/gT3/p348cOfLThXqCY7C7DQk9MGeR3VXSfon48sV15P7KT5VPxxQmEhsUBA61OOAiEL0CHORo/ZelGDe76xOSNy1AVP7bONCYLL38p3HP2GvhY9NZXEd9GO6Vtu2xkqMUtKcwWEML7N86fJ42fD89N3O+Le/UsH3isXOjnPf068Of1YUsoOveFw8tB9pW/Hky+8Zzsw7uGBxH416tr/axfYNeldf7ehllIchLkKnCs+33duj7Tb9W+77GJsQ2HvLfvX18u25cu53Bxj3r2JEjR44cOXLkyJEjR36svBukpNBM1RZmzlrWFk4GYcJYNDguiEZejAri0DFoNI4dblIpmdp50E6CBQS7S57gBDiMgAYN7d096OU0F+x55tup2ibiXXx6OH9REaB2tUrWxxCADHHBq1tEFgRJnRShPEju5JLhPM5AoKtCtdvyr5KNUeBv5PCdlNx1bHyYY3emNnHpd+ar96udWzKc7Xs7z+BuJt6BObDWim8usGW4FABWeuHyvj52vDHwIAJJBJ1kOclmIUrHTBzvHWm2B4QzyMiUOtPxFaAGHc6XSE20pQDirkPRoi9/1lZHjhz5q6RXcb6nEdyMF9+9wdHAABnk0sUUsJdK6hsOWwaIZoo4Twd36htKnaDv48BIH5lrnUilpnQNEMylGuCWFe7qBS+9xe13GAQqCa40z2ADAnRjBhcPtiPEMZGVAYp0JIc3fFNset5WiBheVIJRyT3TFSSrnOT6LgRLeYOOHMX4E073TNIpZBJSmK8InKgkmijaxM0hclVXuXFOFpYqWJ0epk4FknUF4sGaKdJp+24A0djZbfUbQweSv71IMDtFeaaHnSkovNYL49rCMxi8EUmQFeC2hrO+78UUG7M84lFPEWCZBZOMaLJKIc+PPrPx3BlcmqxJ/Bwp4eJCheA1621mNUYto+yh03oPfLB/bAR9mNruo0qnegMSvJdKJ7s0cFgzWJPvo48u56uSn7dgEXUDft7OCwB0BOc6WNf2QXz37Tvv359mmK5/fVt3+FUTJW/2FW2rUelgg7v9Pr43w0626ASI/CR51Po+t9zH6lu/36X7fR/79fs8frM5pk4en2ekFb0u1jydQdm8ph0H+Yc2QZ2aH0aBJrPajKPP/n7Golq3yPJsSAOJfzqNz61tZhvdLr2315EjR36uELiSrzWPImyE9k0UmMnpkni+0k8XQk0d1DPGeTJ+L+2Nc48orguV7tlXrJcCrXmwnp8XckNoatX5E5nk4kYOVArdWWFutuiy9cY0snKS7cjqzlPDGhqS9/dt7qt7AZGO2mpNsC5QlVcG8FuKIbYq3CCmAv10A/p4XpehmfhK76Z+WVfLeMqA8Uww2AYMY7vGjQVI+wpdiE0jnCyq8569TvSlYSP1aRwM/eRnC/h+/qh3lrQvJAiJmu6uBe3gtn25fltzOHLkyJEjR44cOXLkyJHvI+8GKTGtUgW4PJl2PFh3ml3Aky0gAAoqTAfQOyLNYkN/2dGIDxcyvZsjUoFIOD153zA2JzNLOMfnfYafcwQmMhBXpplsRirw3PwaMY9fSu479fNoMNcAkTJPFL8vr91CpIMWkQSjoQgAuItUJJwdloG0n+F4/XVS7n0/YR9VAIB/ZD9nl5v7Yf58c9K006rfIzJLtDOunVfNgkFn39pBTYtPj/+7z2JAWY410BkoghfVCtDfhy8DGKQpX6vZOypQXRFDeTL+bzsLK5AwWuBvNqaOHPlosukDGOsOULtYMabAmBOH392aYcU9dyirjnRwUsxpdP/zeQQvkHERKsUgyHlweTuwVa9IjaYCgwKvK3WXBbkU6opXM8AsneMyADWvEH9FgJI00pJ5aChkXWJQQUeFJYGXtiQDFx0kEFnwZbVOR2qFYIgiuBy2apLXAsnEb4Z8rjlggFgEFBYwUg7I2F1smGl33STxTAlGyGs6zV60qyQQK9KrCdxX9ESCfYBIp8Y2J1uLrV5LNFvFJfs6yx0gK2mQkkakJ8p7QXykJgX7dQ8oRBcRbuG51tTXEeTIv+YdoEhA0QyW1GDlLWaQQqzBWLkuAgF+cvcK4nDtdzNAd+CMMc9WvCTRf9k/H3lNY/sBIxVjIRn2wGAFlzx1zgriNMgg9y7kGIjDHVDD7OJ6/s6khBjHUqdg67jbsbi31ymyRzt7fnpy7f3o/Ukfrde+FKeqNt5JbqtP5hD0VPk4D8yKPrbVXyM/67k/U8Z0tsnDGPxCw/j8VMNabr89PteH7bHZ7H1GrmsNVpwBWMm5v2z7bRz1y8j3fr5x87TNXgF2Uq98Pm/idd5W6+cyB9QHnn+PHPnsUnrStCnkybSW7+w2BdQ81XqI+0j3eFPtSv/w56+9C1Olej2rAPgedoqk/XFlSl91hSWAnsxEDzDJUqNsFLxtljkHRrlnwZNByZGAoLkyxOQXmx9me3De7XulJYWcOMuGieeTFyjncukitC3R8/7sL59FKQtu1F180w3h/QwCnmYnU2dsfX5vi16GopAPQNXbSiBP+ro3H4w+GY+Zem9timC9Rxlm+26bJ8Za+FCuGzPYTC/IMm9shD7vwHsgUyt3QXZmpSNHjhw5cuTIkSNHjhz5cfJukBLEOxUIPCJfYdEgAlZ5CBqBlBXAIE1wAnd+S/4r06EpyGBiGGqV2sUAuToRhNYu6wZglB1581XSPOb9p4Ee4KaZqGGXux34zED7pdh9yqswnLXaToLomkztpjyXAZvd80KHyV9Z48k88HeV8NO8vx18/E/HXL8DvZPK0Dv97kG9ybxkRERl9NzTeeW2oHrFuyqZMsgcqheCC63BRUAyGonXO8zUb+4RcPUMVpNBLZxkguuapNg9f8goNIFU/G0Zd+b1O1/gK2HAE3jwNB05cuQvl2ZPykAlnbkYwUoGJz3+9xF99JoH4hzzfZ2a6WgJltGXONkz91tMR0L8ZJwjAW4qx7cqrkux1hoppxyiydxknTJMEaDswTMCgfQc5wiQS86HrglLqvk15kTJ9LgMAIRf20s3imVBMzWZQOXCqy8+vIBCtZaqFsOTiQZICch5O/Q1ps+TAeZIaBFcHDAvwDJUIQYk30+1sUjswi6drqPL+VvuEk8QTqwPBBoBl77AkaxIxsQYK0sRDaEQuKL0R9bXLdoNZrUWiZDRCaPjc/S5h5/fHQs21toxsASVxo/p7ZYPVtFx61pL0esd+43PvGtSIsmK5N1XFcySThnB3eLFDMVyVvxm1u3jiWTaaAaN6jXmiw3qLZlikIA70Q5eYddL9wd0P1Wb9MfH4JNvP1bIaOudAhmibYp+3P3xD2XyJ+f90jIqI56ZJEFGturd/fS7riUzbcpfI8/65u8o39oOXxrvPIHhatzfHW9bnyZlx2u9AqExr2k/KyfEXoN6ziwbv8DDZBB5rGfMjV46xEPsWbC9oNQxpp+hbjOuqcv2iaL+PePsyJGfK1+ct8Y6JWOOqr/+7Ny+EV1jmz9iPHVf8307x334IGom5G+OUKhzoqTaIQpCjwjIESAYq2Wfewu0j1s9WlvseRlkAvKsZ9xctrOtU0jP+dBlsHczjZ4n+6wAuT2Ss6Jo22JaT0iWa0enOJ4+GurTLJtkumfacmUbeiqXuWmhdEDqznlvH5xJMtP2pu4sjtlk9Qwf5+RTgGYjZyq/WpHqJnOz3uiHTecc/do9VHYanoytuo3P8t71VqT/Lq+jXVAN6n3NbcGK4ZA++L+5D/bIkSNHjhw5cuTIkSM/Xr4JpEQ2okiVEUaivrxkuoxIXyKqWIl6oMFoyIBhOiKFqT/SIFYwNVNHE9w9gAnmFayAD+ABDVdBWf2V7gRtpsntM/L0djY8usjnbqlfMajwAJqShw8AmqWh8Cd1hu8BhRGQkfr/r22ZDw8E+4vkve3Qrh8pB8aE5dFxZcL+z/RD0p3t4/0y40udwVtvZjRfI2iq6fBxQOXK22Uql44uwtOxNQFSDWZiXQG92onCVI8FVKxIguzvcR3qXXN0Mkk+UGSr6je17ZEjR36cbO9hLUGyrdt0/lq6vwN8YglEjHmCbD6Sk4Kk8kFfdVyT99d8Sk6cGj55urpjXiOICckql9uQfS0QqL3UcUnugHbHdV2QnHRelxVYMubSmE8VHRgweAJMImXlYlCAAdl0wFuyVSId42axG9st05TlGm4SicKC7S7nO03WJnHgAhQGN4N5gH+QQNIILwggV+8QHp76hQQ1WR1KvTBDJFwTJBg1A3ASdWf5CxSG6CMfoCrR0P8CfBRpOCKI4f0cPrwAOQYRRdFAItL/ua90/stNt8vgQIG2OMK4ZkqmvFjJBhrXBojLahGJpVMDEFU7oGWrDwMQlcVv25nvyYLExWmk4AWfpcxFWONBRRPciwrwx/rrD6mXPpR4v+cOKZYd4db+XsQ7yNRhpWzv0A0I9psq6Qyv9QV4DDp2nGpMLpxfWn9gAKk2afAG8raNcD/e4IqHWNCb13wEuQe8nhwtG0F8b3vOUV+7+19d74/Yzj9DvtYOM/BZC+e80OcfcmrMtEB5+nz3cq4CRkpMH3aojxQ9bdCjdH/s4M5i6sAeVN3rNm3a29sn5YoAGUjKvzDHstzrf2PbeDLOzzg7cuRnijxffrzt/21J8z7GOeGGTd7vnvOTwbHPLATroHVNqjXPblTXMo0Yeg6knuRT348Ceh4nWHO7E3Wm8rs0yL3mTwlwlsGGbpSc85Izrdu4Xz7B0f6kUfGpl0U1RllKRx8seRj3KWWKN/Tt9s061PP7wG8V0HVraPdaV6p/ve/L9qau3623WwGtJ6bdJs32Wv2XHTvXBOr2ocdOJTPXOXhumB0bGeTJZkTWe6SCm0vw1Es9lbF5C/5aY3neflZ4DHbWp5fMD2xPHDly5MiRI0eOHDly5FPIu0FKmkGhdkYCYZAJBFcdk2TkcYRxuJwxl9xZ75FmIeKFYf3QLroUWMxeIVLsS5peRM+gRQUf31n2eZ5Mj8MXrnjwR7515i8MbJBqy/z+9pnH2fqLyD2nfAGURgdOpwzTb3RgmfeJv+bAa6XaMdhK5iTXjOcWz1k4WQaI0MwSeKR5XgcSAucUAcZy2rlvDhqyIIFB/bo20/5cCjfAbOHl5UJtOHsyWPk+V+qi4XA7cuTIR5AGFAE9B/GdVrRTmgxKkaYANe9oAhYEwCWRzsASieSCSmXq1o76UgdGsFIMWK+RMmxpAEQcMacZg5czxYATOBSFFVWItdMZHnOsKfBqr7jGRBv1ybnXIxXbgie4GxlEyJaQDoyaB/ukiOCSC+YB0Ik6W/r8pebbawsCG2rOHoGEuF8AxM0CVMT0a50qINLusO06mONQifuZZ2oyz/RsCXINJijufrZkmhqRBqYpE2DZAgrAnqAc1ViHmCat1gqFKHf7sryASOqmMx/V7pWvQ+4WwK0ccJLRjbVG0FwC9LSK1amDHTbTvWXjcDyHnpzjWzOUb+wnyXoyXZsDbntgK8eG1Jqb1+baumtoUYpi+fqAUgyHW3QLYERJRsCqQy+9Yz6XcJ7ZYIa8mkFINmcDkns3ewAGZzDm3mDPFYovacMzcPTF+n/l+68oo/sAyMcGyR35Bmm7YK7Nz8asjP/nwWlXkOGs1hReMYK+ZVe7N16T82i9v3tQOa7L81DTB+YUkyHc/r5d3PpEjGWpOb/uUXM6b506gHyOd/jIkc8qg28NqM/xb+E2pFl1nq3RDVp+dv8x3VCv57Xjy25veOkfNSGNm0v5RajLO6ga8XmWtgKGL8/GwzTnsZ4Vg9ko9KLchkF/yNDnt/rkh6nfzr+TJcgTNE+9vWbKzf7oO3R1H3XYaQ+CqelqDdp7oeyEuVbV9dQ2dx9T3Lbb9bnK8uzgrukV0xI/V/nSgANXnu7ntm+zL0CA2gC8bWOGz5rl5FXdJp5HZz0ngO1uo3T5h7I8n3PUuCNHjhw5cuTIkSNHjvxF8n6QUga0jMZVgo3UCUpoA5NBOe4Yp6F5dTgngEoMVgGVc0ok2JKA2PB/pfGkVwTk1Al2QmWcm+J4NHUfRL4UZnif/MrgpPfK56/h5xU6Psqjtb0ZHR4U9HsaB8LjzqAsgIjkZbTPkUCfvLeKADJpvSOtDnfNkU3EPF7wtTq4CJ8sE8j7sHzpkJI9qMjzO6DbDExzQ/NMl6Pb3KTj3myrM9aPHPnZsocOds9ozVX5u0uAMBSouYi7UUm7DyCBS6le9DTTT/H+C7RT3Ryhc4BMPoQJDedv/i+ecxIElyqWvSajnEI80qYpIpBpFqnByCRJF/OrR0ozEGwFAmE0necVdogrRAKYAwKjAiC0bDAKVZhEECAry7QMnJt7jm6wT8y5GMCkOE5GKMBdAwwlguUW57NNGbBV5Ybj6AvRAPEIgKxL9Zdn+l230C8LuINmXGKtzCBu1W4NngpQU4PQJUFXjynPKo0akvMj+8Wd0DDUGsgcgqHSRqnNUt+1DMZ0uPoeQbi1rxQ4ZxFENlIQufNxXqn9ZpnrXoi+b4apGJlzZ7eMtGkfVQpwuEXldh0AaJCAbEfnZ7YttiO8lsAIVfbV3k193bz7+9ruLb3h765PCNApYMaxI59D+pVp5o+QDjw/vE1++779Rta9PreDpHMejKd7zcldnvmZi3qwD44HjXf9xom2Tdtz/pgVngCl/QOv++vTFx45cuRR7vNPTwP+8Pt9cuLcwvdd5aYR1A2bOfr+3Acfg/Tx7XwCXFI1n1NO8qDm9c0i3dftaboa+DL+tf62gYnmpDlQpyK9gaPBTvGPlNuGG8i82O4f0iPvrQEMYA51YR6j7vwAPEJq1kIdj30npSvf+3Vrd4J2ho1iZmkfDqYpoZ7OspIRcB8td4DVvb4+2pF1bjHMxUi44aSR3T1QnqifXA/jfw6YCTpKnd/ZFvNZbOvdtr6v07PcPZbaBjpy5MiRI0eOHDly5MiRHynvBinVjuQMfTEoF1Z17yLRSyuNmDjwotrpORSDFSCkrtN4hgsAMi3lOeUoUClHZu4hp+lYAY8vGVJ/B2DRt8ppk88lBP1VsBgVtnw8N/+aA6Lz3W43hvHFQgZy0S6ZBgIgs7/twQTVC9sBaYChw5P1JIPMqsPxnw4p7OOTH3eGiHaGbUNZ6pHDaZjPHFc9d9IcOXLkZ8hwq26O5nlCp4PZafpFCWggQFGGU9cgl/aOZh/MTPQre+gYZF4yiZRmkgBtgOw1UiDrcmSb5w5iBxJYJKqho4hAccF//z1A1yJw13LwMwUZAw6WjuuudjDOGQC3lexDVk76mFcdSwxQztde2FKzmF9VgNe18hKmX3ic/cwsyx0p515fFyILV7AaQVZqfgyWBLuREImFZshwAMs9M5VZMfbNlBDwgAYVGxXTfpLtKgPYmemsQPAMVMegiLJOoBpBPBNsdReXVUEcjh1PZ36zfDBwE88370B06MGKTjeH7N8EUo341QRUhc68sr1XtCFmuEMDNDXKTgat6N4eyJ5t0QC76PtHZqCPJfPdHciCUT8k2K83QXCIcW2P4cEAUt+53n8ZTJK3uBkPzTAa+7j6YkYAb3L0hkeRNz4f+TWFYVBO15v2LG1ZMF3jW28KGV3n+2Y+EtQwaDwCwDP9ez+J8/GwC+pvrzkV9J6lkHF2vvx3oFNPIo8gpvt47ro8luXIkSMfTfi2DiDJ1M+A3HCwA134264pvP0ETmFzLiAWxW8nzfmODKLcAGE+ZszUQwQa4BagUwuLIthDx/WzRIJ6Ts+bfW4z+Ox127mgcqNFWSsydOy8o4zp8y5ZcRXPlM+39qQt86wtqw2p19Hy2Htle5yPx45CCJXHmttz4Rp1oD1Rd5798Oyu1Onh1Tdk9iU7kdc9b3UcjebDacWUzZ3AzrGBmeYY4jl+++mhnHdAMcCUfrON5r/T1jiu4iNHjhw5cuTIkSNHjvxoeTdIqXZTpMXrmYXdAKilkZTWkUoE8QpEpFKIIlFAPYJ4tG9rtzOfxeAQQRGX9A4gdxik0rbQ0UgbkCZXpYv4SpzmZs4fOfI5JH0vz8Z0BViRrhcdroktOM5309sZJo5XW5AMfAOOIIUQmAGBS+p3VZXB1+HIF4+gLn+/ez8qMEgnUX8sPw74/jPaABCcIOi5pFM6+Xavu5vsvPxHjvw8qffzPhfs8YT4XwKLQ4Y0pjyLeSEd0I4AR6d+oNAKojYbQ88l5l6oy2JuSWcxQT1MXxmOeaaSS2c/NQ8RACvnGKk0ua+2cKkGKEkVlikRCM65EKxN5UB3xyUKgWKVZsOJkDuK03nsTO3F8IHhKn0odg1LK0jDeZ7p3vwxxaYzdR2QwE5JAFembUs9i6kkgJjSLcE8Gp0a/QOHLYAp4hiwxnwuG140WTstUgPjgiMATiIC1+E+H9feAzPBjCQPAKUGCrE9839Pdk5IBc9FtIIN+UsBwzwaJsqgAn8NnRgcS7XTOZ9wW4vNOqCuRQmaYKwEa7F2nv0yNOQtIMGAVp3nwUa1p0D7WMId3RX+ce+d/cmWGt879fJkMWGPCrobGFfieJiqgXR35PNvISdhSwOz3/hBwD74Sr3G56NSHPlM8naC5Nbu6xXmuX4/M1cyzo+CCDrbYDzN9x7weLfn9WmPcAeGjPedZxLE+vwF3I2bx6AtraMuSro8Hm653f4YEkeOfBh5NlO13jCAH0JdQGJz5Rd8hlM7aFXAN72j7972CoCRsrJPitSVDS5p30RMbA20JgNpe26oa5Jx02suHd4WR/lWPDcIUOfsBGEYBWi9iED9tI66nLMOzvm4bS6Amx/mbfcLpf7pI8EOm6nXeA3tg2yTLjk7ifWkHjlSlpUiOG0fH0/rvpvp/zDXg/o46zfuz6vlxtY6nsn6lP/M76eyBPsPDVCbg4OlZr9sj3yoWy3BPtZjPBRhPzL6rForx9UTUtojR44cOXLkyJEjR44c+a7yDSClTqsEZMjGDCoCE8N1vZTz0M1hmkZnMi6ZJ+MSgCvtK88IogtqI7otSzamCGox1UfZTtKGvQvvNZwOGUC70GZcmZQjEHpciUc+s4jP9wHlUIofR9DO6YbCYDkKcbdkQYv3UxhmTg/YWq8AAL1iGimgwHy/0sHBXYJkq4AHO8gMVkgFCDJgOyuDDh5s/CkVQMaoIMufu9msn/9me50Z4ciRnyJvsdw8nFcO6vzO1GjcgWwxp0AI/sGDO7fB0BEUtZwcRZKpCOj7AbeYZgByqAeRyUevCy/uwXwzctBJRjbNIiirqriyvpLIirUsWZhWlo3sT+mQz7RdM6jgI/WmJ7gGWTaR2PFsEgw9NcknaKN3P1MJmyCeDDBMwBh3WgvrK4Bo7oj2bEeFi8LWgkuC0yWoMW2kTwPnYmjpe54L0+zZZqTqYArZi6KNvNsHiHbGCCRXWwywCe8pmb202JOkrg1wTIYVRACXANFyV7tLsfi4GVwsAUUdwC92q3wm16TJGmgMHlWH5u7wW7Aqgi9kdpqBhBkkyX7Kfe421nP/yEEF6u2S/Vd9BvB9xPjOANh9mS6yldEc81RPPaMeicc4JNknSxVh2bbA1qNs9/i22h858svJfZUOttb5fux6e71GHfnegqUMpEvOqzO16IgxNziwprvbPDCOz2myvBUPk8Oow1fqyINffL+f/HjmgyNHPpbcYRpU1eR+whNXQWujfd1dk5jqVnsyfFz/qDNsv4rUXEi9M+YectMTBE9dJf0tWZZQV8jqOjd9kvW+9en8oUsyP7NEmY5MJTczEKSfJ7TftkHzZLnlBo++ddpUngCrOxNeOXUn06jNSXy02N6TMttZ0LYGFWBpdtVqo7EeNJ9fp5FG/d1KiVIQ3ao196WI9dzbsxe71vt9/DZBtua384a+P3qnQPiT8ar7ts2IyRxG1qfdnmABvdjXJ2tTMceeRe3IkSNHjhw5cuTIkSM/WN4NUnq5Mjd6GaBp22iac75wQSCWQRUT4ErTMRkIYIBrGFWqcS5EsDzuc6UBpZsxNFK/ee+2YSqTsNU7SEU2BdnucOTI30N21ogIInCnYLky/Ob7ccfFYC2DdHmNeAIM3bAxXwgiBZFrOWau2m53gYBEANBLRpwgX1pViArWItOHj/eXBZuFbOnEcL23jvMEnVE6PY3St7i5jo4cOfJhZU+3wveeTnoRedyhXF/TQZ6IJfFMa0nHrgtey0fcrI8MQFRiSxWIAW6xE3kh9A2mJaPDW0SCKckNywRQhfsrzCXSGyjv6XiRACi5Oy6NFGxrATAFGX1UAKjF3IsEjxLMwUK6FZNRzMvJzuSC3w1wXDABXAxulqCiaBszQrU6Sc4VTZVgrXRvixRQdUZr4/IMn3DnNBwiGu3Mtk6whxDsSl1NrIMSrnnPVSCzWnLII5XBl+ksr+BCOt1NUOxHZImyjJIUe5I341Dcv1qk/PKeqdY4NiKdHQACmLByHAXblMHhGvcTiwIpAgTn8GDNynao9TN12WCskgJzbcxSI8hi5rkTPtq3WLdu4CWfyKR3MP/8LFHpgJlotk0nEIz3awvJ8BODNVIbFRo4nWflacJ7o5tqkrXEuTnSZTynAHJ5j29ox4/b4keOfLv4O36rNXpMRyOW3e8W7ZACxk7mC25aIGtyzOXA2GQw7reXY2oJvUbw/X364pfIfuz27vuzS7bLH389c8CRIz9XduDILv1O7xw6G5jxyf2I5SAQvK7h5PYgvqtn40YFjko7ZoLut7TAitBnC7CCMakauFECacM4wowIQ6A9KaGRxvldkLYpJOtA0yLO8KqDObmbEswCrzTJdR/+LoC7lY+pakYmKOln5x6zfV9EVnS26NSLk9O0NrxFdbKtqfy5j416POQD359tfJutya61LWR++72ETLulKaI6935+luW+NpTPCv07AWjzKdiunaCw25PquA/f316sDSjstAFnOee5ti+GR44cOXLkyJEjR44cOfID5d0gJYEDZhkYjHDh6zIsBAMBzDOrW1o56pES6sqAg3sE7syxBLg80lww+FbpHTTSbVTaCnSgwBFMS7iuMMjdIig2nJijtGVpfclpeByKv47cGTe+JXj0dxQ6PMiOpPLoZ/D0XrTjKNg3PBnRHIJl7ThbxmAzMh2RA/KaT/sNqlelqtH0OJHhpHZwqSQQMecSIpP8z3lBCAIovxSZmaTBVU+DCmccHTny02RjvOG/b0wFHRDNYCdxHEhnax4gq8L0rxpiLhxTRKYlQznK11oBqPa5o9UTE5Qgl0wvZW4BrBGB+MJ1Aa/FRJSpu8wSOKOAv2YdvIAZF17AaMRCpNG8XhSCC7+vALiUs380iriXThYVQyKHIrUa6Dx3uqADqIQxF5Zz3RcIEjUYVlD9jLju7vBnijhJJ/gG/MlzmjEPgCcIJ8vHFBWQ0BmTigiXZJo2QeYC5riwak8AkVYOZEaK/jEGPNALnhV4CiPtRaxp3DHtTv6sDsg0Ax+BS6tAXTpAMgRZRS67iF5JMkkFY1Lqockg1cGnAP5yo7i7xf0ZXKpdzFLjEuCOZqv2Rpbfs608gWs1Sj50foZd7whVQQpc0Fu6URiDYrGafZSxuAL24QaQAO+336tOzD6aqXFHuK2uqUgPGDQ68ivLW5rm6dm3Zb5LMd/HOlBrtjxp1RHcZqDa6l0cwXiQBSnnb0jP1GkfyLhn6+x+29UkzzvxC/r/W5XtQO37x8UZP0eOfByZM1L7AJ6dMWyQcRqZPqcusOkJ1HHHfee5M40yL5oAE7Il+VRQkDq3pE9DEw7jGD5RKf2F96c+rCJwE3hucuCmUrNmrt7rMNqpADMsi9e8PFmhxqy/P7/Oa9BM2QdbA+6AKLacz2c82BO8V+rvtG9Eah2qVJ/wLuS0+Qqs1D7m0p3nGEhLQQmIqs7Ddk4VzmlPdP1Hk2btRqux78dYnH0cO3oly0Dw2nz21IP53cs+qQ0AbPINgCd1ft0xy0IQ28625Ld+OnLkyJEjR44cOXLkyJEfI+8GKQFh2mgGXKCRCgOaBlDt9KaBiQ4OqXa6DiAYCMqWdLwojab2IQoKahTUx4jnXLiyNI5LlbGhuKb8AI6FZkfwcU+ecdyJv460w+R23HcH0meWB2fXOyTeoQQRusNMeHBzXs3ANRDvqhuDC7mrWRVrWTKGIEFMca9gP9PcFeeQS7GxmQnfzRmQ8DzegdhZs3Iivbd9psPoSRhx24n95PiRI0d+tmyu37fngFQkwok/nbMATJKRAeHQ97F/VZCMNDFDKAj86DQxE9goBCd5piiDZaqwmG8KA0KGHwiulwvQcPoqBCbAWp4p4q6CObCi1GvUDS8CONmRDLhwRSnNAXN4MjUFOBsJ0JLRHqGb6RXPLCYjalIiT9v00gTkOCAqUGVatnhIc+LFMRupAAgeL6UvuZiafYhtrTAYxHMB4i7wCl4PB7oFE6dnkCIYNaz6U6GAa+qY2b+SbTLSplWailyo4n6Zqo8MgblTeGMgymA6UwkGq088aeVYEGMiYgES2CsQrPWKIMpyAC+5RtpYXzlS8j/PcIJG+SDJSIhIBch+ZRNvURegWEbY8lxbt5SrH1K6HUY8BwCKgWrfQZ6gRJEGKOb5HHrZ1BDt4AykmZaIoZjhGiX9gOzBxzHCnxw78iuLP3ySLxz5nPJH60l7ut+l8fLe3mNnVBgj4JnAVPcOEBPQyrVEUodXkfste02bxgXad/BVdf4rYKUZGK+7VzB7XHeitkeOfEKJyU3qm2yL/8RhivjTeXSfi3ZNwub182ff7gCCcESUGm7eMzZlmlvYBsLCTa0GgDo01URBz2PiAwhDf+uYywrMb0h7wRogNNpk1nyya2/HqFeppo3EMrYmq7mgNIcmdf5ZrO4AltdLv51a2w4IKrY+tA3INYmsqpIHm2l81LLNxu3YXZefWJ/x56lsbaB9L8+dL13lrrPNti59efoDyZh0qyNGGz8tS9fX4WmbdV26DTHAX0eOHDly5MiRI0eOHDny4+TdICVfDtULYaj1znCBh6MfDo3kGmGCeRhUa0VKE1WtgJWbQ15iR6U6ahcznZI0qi/VvQxApInLsyQPXmmFVTqXKbvddT905BeS54EiH/7j07O7DMdOOvY7SC27n90jpQz8QjueVl3v5sl8lmFeUajkGy/hCAkwYbJjwCCuyaDEWaHcZeGG2xxR0+Hy6A2Zfbv9LticK18bAWeEHDnysaUCBAOc4bffJ41/AyLT0UzHvEvoJoZwkl8ROTBjoDSYcdy9gE0i7YgmEMI9dA69kvTHHZcE4KixLeHEFQVUDVc60zWVlHgW2ZmuBDh1zfRF8BsEbpE218wD7AKHva44zw2vdLeLwGoOb5YKCFOVNcCKWhTBHUZGzAxCWIKE3KJsbGNFBC16h7TUdUmBmTN6KF4CYDFN1zaHZ8o6uWqdyU3QUXvptHnxJI0Uc8NJXkEPc/htNMQwUcgtJSl11SvZOSudm/UY2QG6fU93MgF69mOkJa4dyopkFeSYM6hcATaCA3oFEAqeqe8iuIQ8l71fwYaqo6CZozItH4Mfo42y+eN57skQNtZO31vpownHIBFGe3CGQMIOkBjZVXKDRL+ncVkFzp7gCeK+CUgCg4jNC3CPv1RaSXiNbcpb0K9jW/x6crcnOpQpD7/9XeTLc8YIhA+sTm8OQgXFKzX8tkYNIGgGhkG8kQAyEjnzg9A5wCCsPPbL7Kv7Rqe3+vHZMb994fqA+ZfXPwFQvVfOXPH3ldP3P08m+1qrfM9mk/HNnx4GqH/dfRi8Y/42dZQnambMlcmEGTrdnFek5qFgVpL0gWpNttzs5QT/o9npRK8AbVPBMa/0cW6ZDswsde1Oow2gU0pzNvdmVJp19fG8qGP/Xlw+vI2nTfNMP2O7YTA5VUPfOmA28OjL2aeVDrkrsz1r7//J39R2kozz5vll/rCG6R9zDJs12+uZS7LAu06brZtpntMjYaxB1pCrZzjZZ2vSzog0WrbG7y0NXTZXp2J9/qwjR44cOXLkyJEjR44c+d7ybpDSwu/AEqhckOtC8ARcgP0eRlsaXQwYupKvALWrm4GVYjpABMFeDbgk/qfD0t0qqmDu0Gs4GJB2XRqLNNgYWLNhct0Z6CtQNXeIHPng4g9+Bh8f2kG9d/Zn6ttiDyiQ0ajvrOfYWVV+kMG2QMoB7ugrhjMGgX3xRgFMUs20RkAHKGKXs7iWv0iS1SzjxQCk5gKCpMoVFPQnFSBmwBHp7NEbOPGL7eI9I3ypt58FFd47OrY0S59oTB35spx+/2tlvsF3iMXupx6O5QS8xMbfAD47AvxsHuloCnZjwOLuWkd5XoM5KIPUk6WFTDqOSJXmmV4LCECMhcbh6PRj9pop15JNSaB4eQlQkjlTnQlUFMsMTDd2KWAeOtOLXnAzyAq2IUuwy3r9Pa6Xfe7nukCAh5llyk3BMoKQon5MW8a/jmRQkguu2TbJGCXl1PZoI+c8G8fcDaIajFEeKdeoYDFlr2fqT67fPtLhkS3HSMmXzyFDlWcqPav6NVtS9SH4bo6+ERQgqEeP16JnZI3KdSl8/8LmjCvcckxxHHHkacYWvMuSIDaztQUEgIVOn9pt6W4B6BUWywHpneY++rFqkPclKyLbmXqvOQFePKjb9R9PkvFKMuAmV41RghEmmIiMBqIjVcmW6tE70JO6z33GHhkENwYBjr77Tn9CJnxc18GxI59RqnfHGkD5TL0+R/pjCPcuM4Tbcw6D8Dw2sKHbyfWV73Od2+8SA+ll26OZLDinPy/VW4W/1eoZG9IXLpdnJ3xlAHzr+Dgzyd9XTt//NdJewyHbxLH3giB0x9pEdbtuXvEAFBk/PgV1DJ1kT7kcF4cLJmY/AtK589LglQ1Y0GyThXApuiMBxFDaoGj7fpRAmkhjTJB9A1J61iwQPLx1e9lZmFj+nV2I64rUXE9mqkcfVitqsht4pdNJgbbG/Tfw1PyNbRqft/UDzR5e9+MaP64VIDdrDEAPnVzef70fRGtoPBsJGuuyVDklz/VRo3Ju9sHSRae9mpsXOhVyj6HaiJi3I6PsTOw3U9rNa+ub9y9zo8ezTYNHjhw5cuTIkSNHjhw58iPk/UxKvgCPHc3++gq5fuPGHKxXj5QhRBok2ABw6HXBliWjQO7Cd48A33ACLE9DVdoTsIDN0CwDEBap3vh7Gl/FGIBpfI46fFPTHPmIEk6WAcTB39PZ96bjoIKVdD40OMeYlijfU7MGCEXsONjQkMHli8xpUECSzUPDo2Qgq1nEGUkpLaIZjAcgHf5jaj6Kaqd22DFW396bHz2xza8ld5egjH//vnJn75of/u5t82flXU7QEQQNqv78DIHZAhmAlnHOSZ3BHCYCnY71nB01HcHlhAfvn8AYKiIJGhFBOeSpj1iCWQJMZLgQ4BMzS7YmR/BKJKIi2Ypi7tNg6DEDBLhE67gDuH6LbcfLXwELncctGJRUQg+y1MsKQGUrYxYKMl26ZzpOWAUK2BKsK8Fd9H0TKDKBQe4NJoVzd7UN0M/Q79DtZGYBTE/QDHU2EQ8gkjX4xN2SEQnwRJjz/OJQ4gvHJrVXrjKZGkEqyOBmFfS2qoNk23krliMmQOBYsE5l4CjPLSBRpp8TR4LVskA1TjMtX3ToAFZ5/R/rZLeVmUFzR3zsap+sXgKDZZoPQOWqe5rZQ5szVeGHFffUTeK/yLoWsOZnwRR2fAQRLd7du+6Q53jOD1sGlREgRA9Rfm3QxTj+NhfVLN+RX1Uee/Boks/kFj9uu937vRl/MnyMjLl6xc/vmw/qlrVZAQlO8nrGjGVzhhjFqPVgvtucof+oyHbDI39OnsEATvMCj5ZWyJmD/qx825vf4JLSATZquOdXDLfjhn0szXrH4NSk6E86t1TmUG5ax80bB4vnYBUdI4cbK0Dgj4TiQ29o3LZZJgWoHLcKpE4eOjE3WuztEvOy8h7UL6vMo9Jg+jSWrWpYpYUMHbpcQv2srV3GPWK9mX01bJhxLb1fdVvpu/SzvPvEewMk24pKfK0jUyf0cW+WZTZBnn8HbjG9nHHnA8/jMwoV1jfrZt37hG23tZHzPmOGHZfduJKGLx1Z3gHKG/25y0c2KI4cOXLkyJEjR44cOfIZ5P0gpdcLohfMHct/x+WAIlNDCbDEAbctV7hkIMXdg1lJBARNqDleknrFJenhJQxyBg3EuYM/rKcCQ7jiKgMXvVMITFCVqUIk2QueOMYOM8avJdMZzo/Vhcd23qQcRfESARcACxaParN819wypZtqBGQ1GA30JZ1bDog5Xi4ttga9rgiMSu+Io49NBLg21qIGI9UR7XL6+Esny1aPP9sW3+E9//vNFey9v1u93yMJRIBGMA3Aaac/L8/C/ltcVEIfgAaAw+C4am650FNd3MV4vUgETIMSJ5mRcrYRwFWKaSiQl+FQTjI4GCyBOZlqysP9LyLwywNdnZOtppdX5AWvDiw3XJJOcQmWJDODS4BRJNmbcL1ArNnvDA6TDEAA0JcL7o4LVwYNFIYFyMpK5s5pEUAVCoObBTALjt5XLVEOX7lGRJ0uCYD5snbgs00iZUQHL+6BhHDSawURyvmdqcoECsXI8cA2IEjFA8CEZEEiZMQJdHXEOSLFdhSphPp+TFsHRMoMo1PeGXSItMMRvAES4ZWglHiuqhbYR4TgroSW5dgTz37JvgnAkAKSgCeJ1hZJ4BCBWR79pKnYLnMg0+LVDvZk1+LIj/QeQKV4kwg8aY4Zz4DSWM6jHty9zqDSBxUzgeiFCLjEOzG3GZDnS6aej8GQNVK3ecbmwpzw0n28juGhnYD9vrQg2n7pFhyaS7WpbMeP/EoiTz6V/opeN/YzPp/Ik893jWYL3AIbo+20yVpF7rQ3pfd76/yMghKQVOekHSHz/nx3K94qTSLBfzeEwJgP9xhtlvV5b37VjJT9vPt13yqfaUxtOtpPK8WvIv7862m47yZvazze//J9nkCN6oN9guOeyfu9aytE6nVOVKYUz2j5T1yC2bWLwnmOwPwBIWEe6tRdXcZ86mGb9PyooDZYVSi9WGs+ZP2oa2qgjiAen412Bchu2kAkNgxB+dWOTi9r6ueYjUnfkoEAfx/lKI5tmfpVrjTZEJbrBHut+mhzEXXaM6+q5wJRhsjo99Fn3S7RTi6zU1miKNPY31L38rpPtz1tID5JVBME1v07S8N25maMt/5loe+bDqaeWkc8R8RtYi7+KKdNUaVEGln9zGrjKGFh9j6uOXHkyJEjR44cOXLkyJFPIu8GKb3CIW4Ql/h/eYQSVPfd50iGFVGIrAx8Me1TBoJUYXlPTVflJYCbwXI3vkob5jNQwJQpwHMH2f3v9KIeX9CvKc97broqeiR8ZkDJBvThOxAvX38fv9NxQkcIHRRboI5pfMTznUU5NbhDj7sMtYKHwMtLBBjpzOBOLAYHKpAg2NgJHus0Ps/ww4yAvNEOz9JxfSlF1+cdGe+X96UwmyPkCKVThLYf9AvD9MhX5NlYpNO+AwN06O6sKVMHoEM9gEzpzM+5jn3jyXpDp6uviC4QRC3pVDYGJjLlQ3m1Z/owGaw8ekHdK5WAuUV6TZYtwVFxmUIlwEvMPcW5MYsTyePcYAIsC3ypQuCqEIk0YYtgKZeMGqeHPdstAFKxLhgAF802CUAIvOvTgY1g9XHoaP8A5miip7wiAg5bwf4kmbaOTFReKQm80sBxUdg2Co+1pccDou7sd+91iH1p5kCyREUAgauNIhPbFZsSa2Fk15J+UHL2FJuSS66FmWJP+Ux4swwKAVI5Jhz1zHhQA81qzNU4TWiRWQWyKhjiVs/idbyW6ztrJLnjmsxL0bzjXXDs135QcWVwK8a3ZApYUcmAGLods6/mPFvtPAJTlqdIdTX7IwbdtlM8A2REMs1g4dxoga2nZgXG5zP///Iib3z+u0u1Rc1Zt4BrvQe5nonEOjPvMBjxOMs1M0fdHmUBPNNLacbfe+fpubKV82l93vjN33HekW+RY0tQ9vfl9sMZcH9avjbK3mx/AK0x7P6LmLMauPG0++qCBijxJmUHtHoXcxh18Xw02TLjq4Ig9Li/bc+qoWLU85A6YjPN9TzbgPtSvms+HjVKE4LAKt4vdOOx+SDvb6wtyzb0zlb2qYXvLXe3y7IBUqVuP07ci1ssUICxrQ96CSl2J7dx/3FC41k7pTc3N+znDF2c98B+v/szS1j9utm4mhv6BuqpnsSTPGosIsUUO28c+mk/w3dF+FaHPv42S9WtX8rSQNkduJ135MiRI0eOHDly5MiRIz9K3g1SwtWGrZLDwAFwp4hKGermmik7EnCUO9ftNQI0MAcuwasbFMALNBybjLdpBO1ih3QELPSSCjIagN5ZVJdA6v+yUEMyuNa+hOMR+kzymYFJ3yqzLQpUwe9IB0YG5+MFE2SuFahWzK6CEpbnX9wuuEaKOMf22dsLhO3BN0/ODKJuwKtZEQYV7/e81fXB+fLkvPcBcz6XvKddnksH/h0ApIFobz3j87ZpOJLLEQw6GeVPLyF/xzH5RbnteC1n6QCGmY90L+llHdndKmUZ2RYUEmAdJEOjdruraukr4Qv38ILntBiObskvq5zaIoLXFexzZjGPXkrHfTLv+ALTqC3GISJ/V6TL9Zmy6gofuQpeX/8dlwCRSg0Ihqi4TkSgl2K543q58PoagG6/LqzXlSAhwyJLUf0fvu5IJbaCwSdBVdSWmIqOKTk9G1wkmPbMOy1cgI8cqtEffA67sNlneL0F85UHqMlXtKUqd3oTiB4d2pAf30An7gG8CrAQyxsp1SDtXA+QGMB0bxwrTFVR7EVOMJLC4Vi26jd3r/yl7h1mWO4dNzDqmV6sU5rsapbshKj29ByfDIx4lR/wCoQRKMPx0eCsEUTBCB7FYg4gUgbO1Z6p9T6qSC7wd+B1cX4RLY3uA019oyI1FYcJpikCySRBT049JgM/KgkKdI5QlF7RfAQokEWVYJufh361fTty5PNLp7vcXwsy18VJrTFWGrdhkteGBkgFlCtoOo0VYLyHtzftDsB80KGe2Avjsj+jck2b5O/w/n85PD1/fWIj1PG377K7aT6/TdH/druIy58alF/uhc8jc6x803VPhp8/+8aJrQAmbW9MkMzUS+9Yn4lUeWCz9D1tWtkxfLyX5Z1+Gi/wNIvnaJW39EH6Y4X7H5IXaaCjBFIMSk7961KoO9YKFnwyUHKTRm1qGHp5Hd8aNn069/YUraLxfEkbertjrQHjDgMkU5tUPK6w8dyh5pdeOY9vzT+O9+++Lw59JqpBRgvwWQ+p+2ow7OXa7jttEvZDPoOpoTXrxzq3jTUBX3NOHYB7tD9uarUNXALGCKtj/a+M85H6s89Tjxw5cuTIkSNHjhw5cuSHybtBStzRLyKAajgaIXBfgDkuzWCJDwMLwajkRgdMgh24i3k4K1XSC6AERyQ4STKjunmkMlFp00ummRb/Trdhm1xfdpIdOfJZZYMAyXT+SgAL6yepoLCOVCqigkuYZpGMSZ2mQYZzR7b7Y3qm9jIxiDHP/UGv6Edmk/hR8qzOfnPAPb9u//6WI/jv2KZzx+pk/TnytvwRINa4Iq/TOn6/x/QJu2Vq2Dx+CWCSjA3p5BcB1CVBN+2o10Q1WUFQRkSCukc6vpdn6jaJZ4pqMCMJUzgwfVmnnEWC2sIXvVLHESwg0m06YB5MTkAAlMhGqd47qvVKePjriuACrtS1HJcJlr1WijcCsAJAYzBfGXCwAhAhgUcE53SQgcFjh2fKNjPAs462LFPeaQUritlHLFJvxWIDlavbDT3vW4KlcsWJdmFIqOMCxXTUa4zALHeNM7IBZN0iDbBjpAWrHh0BpwyKkGEpmkxGPCLAVasQZuM+nmMy661XALmm07/SvWEEWgY4zsw6nV6OqwpGgIEGqeslX4BI/RHAKvNg1SKoqVN/RFvoO9+3nyWa9kCMuQZ9Rl1n/YHoUS0bgkeaXY2Bnx4PBFrn7aJ/fddRZgv57e/Hbr0jR36u3NV1qX/23/t9y/lPppUe9v4Mu+43/Ib38DvppF973t9P8/0WubeOPPbL20bF36pt5cmnI++Xh/nie4nsEA7aAfRTFhCGP3OIt1ulbMSNQ2j6Qsr+aH2T+l9t3gJ/9L63D++moK6JckhyDrWtQp9P22HFSTnqSr1IUp+03AQa4P1MogwCnuLOvt33meuG11AnfbOvsgHd93MEqLTcLLtzQeET+SfLYv68LKhSxJ1ne9TvzOs8j8/2HpWYOmLrp/m/3zbOjfyo1NXviqfU4hn3EKDSmN7BRV2Q9rntdXqyFJadQXBZF4J9P9Ma8r6zbgL5QiceOXLkyJEjR44cOXLkyPeRd4OUXkQj4CQCE4doMB8pXmIXWKaxuCSCJAKFarAEcHe+ZnBPNXb3vzC9FBAxCETQzNNgljTYLtUCTgCoXTjTEUpzOWw2BgmH/E12PR75nPLWDtP3Bv95Wr6mWxCUTrNIK9RhQJEKG9d7Repw/kbwwO64G/d+oy4bk9Jw8N3f0q/V7lt23H7e3bnfIgOIgemIemwbBoK3Y94Ot8/cnj12AxRRQXQhZ992dp37rfJZ2/D+7j8bL5MJbTrOy0dczcr1fg9kbZAFOs2Vc1GM3MALCZY5XiJfFz2z4YgXYK0FRQAn/EKAj0SwbKHfAE9WpgCGiAdzjduCIFOBVV36+eIJJJFmE+K2aQMgCqg3GCWS6GZaXPkdwZQDuEqWK55wQXHJC35fv0O4PdqAZcn0VfeMsr6oYLnEb5IgJHTbGzxZqYKCpogxs82svOkNjmEvCKaulUFnQwU2zC3T+iLYn3zUP0+mn96z3Gx7FY1d3Y4GJkELIObJZgXJNENcz7I0hu7BncmI6UxRQKJK0+fBjsT4AlMTFdjNVwdybEVAwQHzV9znUnemMEO2eY/xGP/WMSXv8sw2DjalTKucOvIe2PJ6WdySMWgAAz6iEMQW0gE1QG/A53rDex6YAcE8J+yLvr/JCPvk0OWYlnkP3nuE1UBtRm42xF6BY08c+SXlMaD8/PPX5NkME1MTNynxhrcU0+PTTHx5X9vjgzx9zvbMJ+VuSOr8d3/v/7D8HUHqXwSBpf71pl789Iqnx8p/84kkTKw5+okI8N3mzYXqPnbfI5+rxZ7Ll1iVgX0O2SwFv5/1oKXt9/AB0hiORoJzgOdAkPotTwjdLxhDyzLwfkY90cmH1OOiNgzQFqJ1kPQ9TntDUmVHtw3ZIt2RbJKamz4H7aygMrURiBLpmUOPThQ/FGSonTqt1Xv6wNdZz+Vm1Z6B55zOvQf83bkJ6N4Xfdtqt/KFhZIGH/owr5uNN5lH6W6aYKG4Z5ZSBksU8lnbGBhl89Hujq1juxbxQ9l+W/+zPMnQOnR2yXL3mJBuB9nr1Q0m4/tgxC57p+vbJe/zurxZTul2r4IfOXLkyJEjR44cOXLkyA+Ud4OUKtDiDiB248MMrldGAiXCaSK4JDKhWzkoE9SgDBpIGYvIwOJrGl/xe7AoySWR4gEAMlAlKrSfI+hAZ0I+yyG1C6WEzp/b8c8aIP7sUr1YTiv+memBfv2+/RIjTu90os/u6/UVMGgP8F2J1y8D6iOFT7ENpIPDXXcnEMvzDWXnU/Mt7eunP/H+jE/Qj3+l7Dvquh+33ZScK52Am+mNlYfrPna4+8/L28xQPfbM4r24VMuBuLftrZVuPr8exu0M/dXke6Soeys4VXMCHb/pmK3dwsP/us19+a9kqko3D3abFdcZFY10qAsSdJIpZwkigTnW7wa8aKZGE1RGTOMO5dhd7JniFh7sQVdOnp6p1ggo0cizBgiwxGAwXC7wlddrgknMcMEzxe0FE4O5QazTw5HBjoCe2OUsAfqBFwBG5QKhMoDB7bWCFQ6FC1mNQixZgAqExMiMB5tTqmKxU9tWAUiWp1pFRiFBsQNFCwdTkSNASgUrJ5BojCH3FVckwKjc9B6p08S1OttsVVDBDJmWgoxPHKPRZgFKShCVxX2DsSqZnLLd4vWdDn7WJX/LciGDHAbHq+SYdauUxBWeyPkgyJSybBJjlO3N+zYQSQazk2FlWjz+vmxlwD4CTpJjj3O18C916Gz7DyszYCKocRXjNNahfG0ZnssLvcZjR1LmedjmCsoMxIzN7f17TdSci3j8ru90APn+jF9vRj8CzKEwQ5C7fIa+fVsnT9l07y/UWO4vmG9/JkDpfloHX6WCrbfHv0/2iOteknnse3fcV4ASn02+xJrK9a5AAfd5VZ4cu99v/P5ZWnQf82+0HwEA9erEIiaNCtgvrcZ5XHVmE/9Kbfi0en/iHs9+fFzqn1+R6kdu4MpjG0jj+eV3PcF9niapn8YP0z+12TTUh0Hbx8o3w40XsTGCp6Yui7BT9nJ51VvkUbedtmqB5BGjyGDpf4njno3Q8O1Mr4zBZs97Tr8Dy1D6fWpLnCgICMprmX6ubbr7ZDJSvRUT0Gzr8Wyfrf/YZ7VRgLpg6dj8PkFKXSawL7IplbYBZH9ffdx/XlxtjwREDd0f3DrGdvSn8+l97BTD1a3tOI7nNQDZZZ1ndQs5gZHzPrMu7GMcOXLkyJEjR44cOXLkyA+Vd4OUwmxJ41kuCDyCc8hgCWL38osqFAsmWpEDFcclYWhew7kngky9EtaYwoMxAAFOUr+dQzal4QhIGz7Sj0zgA9rG+5UcN0feKe6bzUxHx2cU80ixAziu62pnFoAvje5njEblhMuIvXm/VkAzj3g6WcoJl86p+R7SB103fofsDAq4BRTOm/o9pZhqvP2UkaKJc247qaZHr7vBUMwxW998XhalchvSsZrOWlGBLAFcsNwgfAdkewtqwXF0AKKdlNM57OP6v4fQudpT19AFxmpdn/lzOtvdkyXG+zrlbwQQIYA1ZEYqhqOa5xKsRHADgLUSFnF1MMAIigbSiZssjx7pzCBSKc/MMzXYeI75wnKODc6lsRNaVANU4rF7GXLFTltYMvMAF14AXyBTToBukCyWweBjMKheMBOsTCMHCXCULzLxDKCXV2kiCCGSuT0datHyK53nmuApAeBMeQEFzJPJx4oKyhIww3BGrc1K8FAyE6WeWDqZWzjOK1gi+eo18GZlwKDXobhOkW2QaeLcI2jjWc5oL0NuM++xxYAPUAEkl17ryKpkxvHKXd8+GIwSFJRBm2WtwzI4Y8b3PIMJPmIsOSYVlkPDat4JZiXplHB5vIIGzEnHGAjnc5cRgJkhpI8qfMcFBeqTDvTVK05mAM2Rm+doBmmeTZ8RoMsxU83VoCfGlu7CZbBn9Ef21b/PbP33EL99/jv0r3mmuvS0Jxg8/krtaw5+cqy++H5su0ZqFt7isA/P/Uon3Mvx7HlHvrNMZDgPjX+fXoJ3xLW3wSRv//TVAn5M2ceoVxu6cHWRWucL9uq14r9xn+fP+OyysSriy/XeeRF3mddvc4fsYzZ0w/5dx13ldvHEbUqmlNbUu3lPMq3SB2KpaxNgXqMkdeqqiSeEyB1JOZ/PubWNe917S2mWunkrQ6Vt5rwcPh1hyrMaf7I9i6CcVnX39qX9FcAmB8Ev86SdczvaKtTsaRkk81OdvQNv+jXx+bU+xeaBWTL6PqSvGvbQFPMVTWDzztO+L/7wvQNAsFW2XT3fS/cvBdPRx/LeijoQRLuDVYkXdf3ZKuO+m2X17A0ZNsOYbxqUJLVhoJmq2tYQ1uvIkSNHjhw5cuTIkSNHfqB8A0hJi3EFSWEsYoBJpEnJCIPDcInGLnyRChReVwKU5OGucHidF7vcJ/AobbAKyrQpRru+EvDc7j03tcTvj2xKR34teei/7PMeE5/PkH59Xfhf/9f/Al+Of/mXf8Y//fM/2lHyDpEvjHvR3ckjiHcQGRg0C/YYmM/o3e6jeQK6+GI/fAGg8b177zOOh2+V8m25Q0SftMmTsE85Bfcdk8/n2bfn1F+z/XNwLzLBODSD5E6gCtNw0WkpWs5CB1D08eVkHQ7TT7AGfS3d3/03gj+Ax3dcxqcNUIl2p4rw93EN/xFEqi/sKZ+A4baV6omc16wUikhz4Jg0/0AEclUJtg7PtVgGA5TviBTIxdORrAlSiXHzEgVItv9VpXCQ3SkCGEBoMsEepBLOerhBJNK5RVo5hV/Ab/JbxB8IEGIOXRhEDCrAAqDyAkMAhQQL8Bm+6T5RaVa9boVmemIQhOm4FBZMmRkY0Wx4Z4Aj3xnPNoJFeZDXFOBMgmmpdiGrFjuSAAHCYqcXaLaBQ4wWse+6nEMf8N41Hjul/RZf8BooTIMnyVrkGUhiPRjuUYlOc5Fm/xs7xzn6NI8RasV2hq/slw4EdHHmityArbjFDEb0GI/lmSx4ewDkY8pgU6UwsDP09e4LyfTSUq+jVj2xB9N4SND3yu+Td2LGgoo9AQ1MurdeB+X6nLfmtCO/mtxSLH1iELGZ4b/8T/8vuPyGf/lP/wm//SPcAO+tadnklDGXFoPDOLeu4Q+y/1aslHs8++GZT4/JI6PZl675s/K18fCj5oOfNs/M+t6ASo8W6M7q8z6g7HM79n7l/P7R38jN3sIEE+Tx/Oe+eSiumU0+au1P6v3RG+Irso+VPvaW7JCNt07iJPLWGp06BT8/8SfNuYp2R5y6T1Cz7KHWDgZqkLlm3DjTEhs7s1wqsvX7BjSaDSKtT5etIrStvObC4tdJfcp7BMZfR9ovBDUlu2yyrFKJKpC9+NhgEgUvvf6tN7WaagCVqHAV4um2EIx7qDTbT4N8uie7pnjsw3r8+Pepzd318g0ZP9u8ryUbVIOQgNqQ8awN0GNmjimyvd6vqJZ62q43M4EmC9P/0QZK+8B9VvnxXhyvXTL2kcwqY1b1C2/dkSNH/qby7//j/4DrP/wnXP/yn392UY4cOXLkyJEjn0TeDVIyuQBfeBEA8MxTHoaqaqRIgUSwShkIzx01QqsnDX7DDGB1YEwQNlYEHyIAJBG3m76HYfA5LjzfTf01+YzO5yOfU2wt/C//n/8v/v2/LPyH/+M/1y6+PzWEK5q/O8O4s61ip4JkydjPFe/ggOD7vE9/9Tv5o9I/fo+0WN9LKmhfTscdXLK7w9LhReclg97pqYpxxxxYn2f+3BjHnCCjppUXAGsFe4vAk0EmGZUk02LFDQJMoEC4DQM+6/j54+B7yJfAjnfZzro7am/Hbw+JPrjlfSzHaeodnJvkQusHzpRXyRZRfucEIZnk3GWjILyp3YCWodcAwV5kyaAkiZg26+vnLmoH8GoLIopLJdl8ehe1CrDcMowQ48mt96hGWjCB+QqXtVIBmjuxY4K+RGH2e+1CjllaIbLgWBB1LBcspoJTYJlHCjdS/A+WpumcZijHzINVSlYFHAReARhR5HfLdBEKW8msmexS227d5QWkMWunvOc9/NWSoCnWIe4292gAcPd3dHd+twQ5VS7T6M9on7jecsDMtq6B48DyLB/f00wrh3yO1th1LLMGDTl31uevTiDjHPN5NcspsSffMmrBgNZMqUBwFLIPwIBXoXB6Z7VbMFWJdBoOgRRA6iOKiwK+YqpUBqICFEcGAiDfB/RyMwMmlmmjGWqJCwZ4qdas6maM/Drjnety3fb5b2X+uK155HuIj3+Bfb36bH3///t//t9h+i/41//2v7398keM6fHZsb1Beag/8N38Cxp0mxe+833x5N7+xudn537t3vOaDxMa5lo3D83vFbDPN8efnPOlXplOnk8iPfYn0MNrfdJam8ai5QnkSEW2GGAG8KZv/ou32bQB3qiD/9FxIY/jMH8AcNPRbi91fXeUjjyLun1nSmY0MGmm5mqgU4P4rIDyrbPNN4M6JPUbAo5Ybv6vsy6z7Fuz0m7zwuE8li83G8DHRgoepS0cY9KmC8C7bKGuTgNitnicbFs7Dm1uHCsQlucmAG99X4ZeXCu2z81TU0NEbXhgQ25rfLUBz6edwb7gppgoS9w+Xlgbz5gLnOdDHFv17ydWexSblT+yRbGGkxWray59DWSME68739t1K84Ye102Ge1714ceWUWPHDny9xZ3x3/57/9vePlv/nf41//z//VnF+fIkSNHjhw58knk3SAlV4WvBUOkedNL4XIV1iEYBwhYyMAtraw8aOidO22QhaGlGowGigh8vTrKuNycYt5sBTp+C4pf2YKa/fmYV59F7inMGkQRY+UzplH67bff8M///B8grwv/9E+/3Xy8f6yeTx3f+c65e9JdS8TIb235o96nr7Gz/Jn7As99nHfHIOW95fhIgKRnYmbpyNzLCqTzcjsyHYBob2dN5ACdrdv3TyAbe4lFGqeaYxJA4NLsO2tZ4mk8gB9X0PIrEJmwvJl1RH/c2P4r5T5+3hr7bwGZbn7aOne7toI0+/nuSIBJg5BcALEODCgDQI5yJhcF/8rj6vlTAMrKqTuAJQRgA3l9oXgEIgqD4xWOK1MkRHq45h9q/IoFS9Ar65UOeKY9E+vggwEOjilrII/zuHQ5EAyUuC64L7yuf6+5LQClFn8Z3GIzGkFDmTLOF9wMEMWVQHPuwHZh+rB83z3fCRGsrAefYfm+AMECZVmfAHaFx19FM9hhmSotgxYgaCrad+V93CRBSa3zMSJC4Fm1rwcgsH35BqZphLNv9z6uANBgV2I6RngApjRe3AD7xADMwZ4fa+yyzAGqqjGewUiXBjzFmFtdnxrzzkej5uFamJLRSnyk1ot3ThGMpl49vb9bH1WqD5FpEEVHCpw9WEOq1KpNBf3y2GZP9GfRSBkNiVTU21o/7n9P8zZDQruuI+PfI59Behh02HAe/4xyqQL/9X/By3/+z8WAt0Ni/njtN1VxfuT896WnfIdGn/f/ozKv/XKR7k/5fKOmuvOb1pKvnLt1/nDYbOCDbsvbkPolZFpHXJtLn/VMbzv8FUwDy6vjXCnfRukyACBkF/xkkqAU4Mtv0ga2AMEjj/d6dvjxDmPY9WUP+sQEjZAISGgaF1Aoj4/7E6BkqTvyURuWZ/qt8oG87V4e2uN74dkGDXJve582anN5Ck2ZKgB9aC7ItOZddrcGNtWdS032LiCCFbVbPYD5NfZHmbtdW2OVra6+f2b9WUeMOcE7/Zpg2G7zBcwy8T4AAf1sv1E7pz6+NeWYkvrsCQCqO/jNBqgzyMGK3vDAwTTPo/7PMm8/px1G/4vwnLBhmjPr2fP3Z8jt142BVcZJfQBHjhw5sovjv/4//nv863/+3/7sghw5cuTIkSNHPpG8P90bPfgarATQMIYMwCXBOKB36xsoi1TSAI6f2iLVpEZK4qVMopMG+dhFXUxLiGANi7N5E4C23fAcNPCrB4qPpKShrp1r5acW50eKquDf/u3f8F//Pdgxwl+iQO1w+3rd7yCCzZkvdJbluWBKlf2aeZ8/8x49u/bPBFTfCxRqRx/QlX4elPgz4YefOcfc2W6Uqfqw9105NIfjbQcD8C8nVBkOtS+3zq88x5KJB3TmotcZ19xXagZGztlm6zWYWyAEgVxwEzgM6t0mvxpY6U3A0R+sxz3wv4FORVAAJaoRkiw3Hl+Mn5XlQAJl4npn2XJic4vUbCoRDICkExkAPEAo0AAs6XXB3fG6bLAWhX6zNN2/krtfC6y2ICK4ECDsNaMK6LmUr9sEWhE4U+9Wea476CDaIB4RiSIvL6YlE0DkgkimedNYG357eakgwkrQnDJvLpUsF6hcEAQAfbjGYQiAqnmz6FG5mk7wGQixBDzBOmhARs0CMuX5IsCrrwAIGc9DMWx2cCIeZJbBCB63Tu/W4KQOCs1ADdJ9zznPGHXKfvJqd7BTao6UBLuBDnw4hHg0npNfa1whQEWWYLFgFs06jVQX7GOmj9yCYvAAiXGXfuZlFQ+mUve490xjWFVHBzc/qkgtKxLgsGSfGyMn7Yl9dbl/rjgPh2eOrd3+8HEtZx/vn2/37gAYb47tyq0e31DnIx9fqo8/ecf+/vsrrtffx8sDvNeWwO2syU03kvvMJePhtven/Jnm/l5d9a2z5b3lgGEn7f+8257o2err5/4MqbK80a9TuCbVPI239EbaIm/f7CO1wbfKPkZS/4OU7U2A0p4aqzc5gKCKod/8qu1RY/uOWvkLdJUyMcbj5xgenoHHa3ncy0Tp67yZlKjTUM8NO7Ltheq/skN86K28F9+RobsMP2oDoQi0kYF8aenXKQsNjqmpG0d5ipU0G0lES7ePlNaZ+hio1NqgXlr2EDVPbb16tC03BczVooA10x2RV2x6PdA2Vfkv2g6JDR3NZMQ2jvI2WxWlmGC3MvSxHqf5to3+YdnrjR7I3Bojo5zNmEUzL84fqmm1UbdM/jtYuubcsE8qtyTGoy2rDN18/SJk21QDzjbfXoI5do8cOXLkyJEjR44cOXLkx8m7QUq6VqWPiKCh41IHEMarqkIFEO7ykjAEryuDSI5mJZA9FYUK4OZYCrzk8ZkCTiEFLgjTXVBWl8x9NNMleCyqzy5f6uFfDQzwJXEAr+sV+qKALohfeHSP/7G68n0qB8d4t2Yb/ui2/EOAh3c4Nh/ZX8ZnpOOn0sZ0/d9bmo8wxt7NHkZvoIx50pF0EwBgMAIGGGCIfE6329wZJvC+539wYSoocZRj2R24vJljTAIYwKpqMtIAK3ahusFhCUjQTBnWTuFfuY2+dT64A+a2FXoAC5COcBvvZmaPrdltAZ0K1vnuAjIu4vC2DAxo3Z5eXsMyy1QLWk5cMtMwNUAHFKL8CwEGWma4ILgA/JYP2+qoOY8MkM4lyQ4k0mXMT1UHD+UodKbIpSBZ7mUj/UH1QzSG2YK747qubLQELSHeWYMF9oPt7JogICtwFZGpIpIZRjpAYpmWbvdcB5uPQGACaL0nAXgiSEsSfFO9M54Fvl9g4K0iAAUkYtCkAihj7CkBYjmXqQpsebV9qIrBDBUpGQv6jmY+6vleVBJ4lEAoCfB94c1y7AnrBQHBUsigizOYgwB2wXtcLKa182DAivmB87Zn13Gnda7Gkn8zCAGCoTLVZOQ5TOYts0p7GG1n+fsHFlsjgMWxl7/d11+5fR7nzjjcuDzSMXIy78vq3zp3m8fY4Xdb4sjfSW6xQwC/skU5R/046g69dIRjJ//Hc/3ufULdyCswPYOmzy/5UpLFP1qKPyATuVBTwX00yHbu/MW3FkTOSfRRzHlHtvb43nX/s/LUonwLSPK0Y/vghJ3GbW4nz+at9pft519F7kyGefD5XwBwz+V8jo/QTwhQZ/ql+FXzjH38fCT0wH0sP189nxxt1H6oOxij5kvgtQEQ8fHEDfCFocu5b8OthrX073PUbbYG0vadGyncB3OOtK5edsB4BwgEySOWOp0ibYChcfiYi0Injmu15qOsH20kH8fqNfJtSsPWJl2rfq09dS+FqsFqd8h8bzvNcFDSouf7wUQ6z2tQFO/geZ1k+rfup2pL7xKzaN1v2VbSn71vXuNmZ3pinVtqhnKMvqlboximBlpqY0Tjfcom9frOMvEZkkYC+6pMMvh2ro+bV1mkj8+uKqxSNofvjXR7H1BjdnTlrVW4eaZtzb7FndXpyJEjR44cOXLkyJEjR76/vBukZGtFMAjBEsGASe1MEs9UcGEBWaaLMkZ7LskdY8P96ZZGUwSRHIJXj3u4B1Apgo6OB1b68aX/PVbU30tkcyh8Dtmd3w5gwQF/xT//4z8Aru2iGt7kb3FT3sEDeYstMDEdQrUbazgL38te9KOlGFhwdyg9P5dgx6bXnw5xOtl2B2e5BQfQYHOGvhck9BfIvfpdZyk2mgJMFKAgjncwH0/7vH7L0dLMS7+mECRAByWE6bIEyHRu8abF72aAXO1ojPeuPJRwWXg1gyQrCMTScRv3+Qjj4y7+7Nt9DOHr88t9PqAL/Nn1xBVxhytqXHZ6Nq73DBLUvx7sVGbYHPY819yx8tCrO+AG8WChiZRqXmC02Y/mcZzcdPV85DVu4TD3ZllyEbgGW5Mb4KuBRpGATLBQPvt2hBMMlb5gyzHUu6S7Lhw+toq+p+MAyDRta0WbJNLDIcCVaRt8hU6mDrdg4IF76HJZ38xdBiSLkUBgHP8jiOPuAfIytoplXwoqhQks9DcQhNTgoWjjOH159GUHhywZymIMkMCGaTIKAGTOqE4FgQrAk0AfcwRwR/K6BI3ZCBpFmrvBAZJlFMl+VM0aRmNXGrrssQ6KRE0tAWJJMTpGfzr9hTvqo0GZcpDBiYob5JjtwDbXJGSyvH5H5viU1LdZGcsx+1Gl0muNNbnAwtQ5uFSxvkPFZxNPYFPtWhcypzUDK8bfmjHemtSe6FMfb+Y+8iPkU/dzzuUGh6rhHy+KQauHP1r7aXn3Oybb3Co3xfSPP+2vka18vv/yrOx+b4BnP76jwn77/LPb6E1r6osFS4/MBCbff/bH87eH/uyK/1mpdaorQwaaSvEWR3d1oVJmhe7USbpuG4nCTH1Y2z6szPf/obDPR9njnMJbeR2/X8ljfvteekTqDMR6I/8SeL/5QG4GTPVdPWT6DrKcc9OExzwIoT1BwFn0pvrWozA6VMGyhuLD3wRaoJ7y16TOY6WPdmXbdtoSge0NVA8DkAxIwucKq6M9LlM3U/cCcBLMA+R4HWYZ7YmwgazaUaQZpiZQpy6kPs6CVrtI4rVoBOW1kGpb1qnuN6bffv/IuitZN++6jH73mcKONpz7fo82yKp+t9bt/gQQaZvHOK4u7wf7uO6hr9D1qaNljnj90Lg/L/2YbVVzURSnh82mYD+px5EjR44cOXLkyJEjR478QHk3SMnlSoc/zbIEK6WxiQwqQGTaa8mulMYs0rBWRAAl07CIJuNAXhVsAHR0oa7VYQFOB02f98u4bI78SXkIIn1AAMAfk+leizfOAPz2IvhP//IPCC5ERJKurRnifL+81V4fCXDzHpmACIdD6ewa80Hsfuxzy42V9CweN+qg9thu9kYr1X0mOONnMeU8ZYO4/cbdghGc7+NNKw8AO6X3Y122GXcAmb5HLX6eVDCfgAN3qEQ6RYNh+RZyA1Eb7g6r3aoE5AJiGWwXH4QmI1jxURtsDJ2NNSmP9bsW79m8bHeY+vabeaS8ygxd0KQ4IkCpXfWogKZoAFIKZ+HUN+JUzWNzZyid+heCvSZQ1Ons9uZajHss1G5r8wQ/sX8cAoP7gq1I9ybezEx0sr/aAkQTUBH3AcFMUFiy+dDxr5JBADh8raz1VS5pK/RWALHoRA/ffqZVsEyJZjmw/DXbRoJhL8ei+4KrQFzwogosYF0S6HELBg1Xi/HqL8Ga5JnGsJzxi7eLR2Xbd/CCrELo4ED+7nm+e+qHtuK90eQxykFjbtH+mExR+b6NpdDNE7iFwXzVgCgBGYvyIlJuGaKtCZ7PccNIBIFCTAHn6cSHZfo6ZJOsZnOKkTV2is+gRgKlpOYShhmjSGZWgQ5qxe4y5mmrMlX1JY9XQNPGnBvgUkEDuqily9Wg0w8nAwTb9ZR9rCHXWI67uOxxTea5KrXsy5MT4rc9aHW/0bNjRz6/fEnT+TQyAqtrGX77bc4Pf852/lL7Ub+eQAXhsY8ouTbd9Rr+NE6pyPcWN+emAPQNagZqxPIPrcIflWl9xoExWco4YV7AiXkDomwV/8KTxjnz3v5x2+j9kmB0gkoCrY0NOjzAJV5N2L3QoHXatFpr4wde3Xe5ARQ3O2N8n2m13jj94XgPk7ZzCciQ2zs88XIy5sKpU0z/Rw39vB/1/noISgMuzZHviFup4vmPpX44rZ3W+Xrj0NNaojdDEVzTLD1tQVnq47YBVNo+uremdCFLt5dIJZ1+AVHdwFK0hHvDVqcfDjbW1uecwP58LvujSlFz5wTg9R8Zc0pxGNE/w/+5IYIDwf3xHWrrpKo9G9qZ132Areq3G7iusVGdajl+oz3R7Uymq60va8ByU4qMdYOPyQeNotQccJOHQ3WNbO3Q9sRtDc5jwp9kjv2sg3d/Hzly5MiRI0eOHDly5MiPlPeDlBABlper06uZA3qlsSphp71moO0FwG8axrlG9D/MIwVMYqf6JQQxxf07Pcu+vxN4DB/QoXFMpyOfSx49wWaO//H//T/jv/nX/4hIfJS07+X0eeZO/4NPpxMohYHEt5wUP9t5UeUb9Z+BT+Du/NzDJysZNcKfFOmQngZCx7M+kjyCyui0zKiCo+ZryB64/hJb0heeiNk6dJ5tztuP1USbPDr6GH0hoMUSGCP1C4ExAgC2kpklDphnqqYECtT54lBcmcpL2jf5pBwfbUwBj2Njd6TKcMC/LbV23+pn9ngugTblM0/HqCgfHjdcZsG8IhqgHgIdvAEgxZ6TwENYB3n676rdyQ7FWgbX6EGVYKGxFU7/13TAhw7UwCh3BRLcZLYikZevKKcbtOgfHcsjNZtLgIG82jHStpEZj8wy3J3bQK5kxpEIGoiSsUcR7DyhSIkGC5JqAKKWZXpClczqGKng1lrQ6yXazBW6AJNgzAQ86iJjnLpU3RkImb8RTWbId2hz9NsYRw3ccWSwiG1B4E4FhFBBB+50h6+65lKy8eRzJcE9Tv3Uc0wAyUe4BaWs3vUMxIjBvAODBBpxrWUZrVLwMYKgAf5E6rD5XEiw1zmd/mPqmTu342/O1QxEMTiToFJyjWpep5lOzpMNion1CPASMEj0MYVl0z1CmO9gCPvWAVwS/+8/xl9D2xGcgzH+9uS937uDdNtPR458GvHtQ6/l//Zv/47mDay3Yczb3++FmJrp80JyHv3rXsLdPngUYbNsoILtDAAOv08tTlDKHhqXGaF/UoaPJn7/9pbC92e7zL8w3n6RuXkP+3sd6DfL0QgZAdNwzfVpvqf7iIu/WvpeL33TEvvaeP4ZEjiH56Pc+U8WtsB9cyp49r7cKrdjhny7brbTLMrECTpax51tuvtABA3UoH5WVlDoefBM2YvUB6mTDduYAJrbpiKWwbdG8f7fCcJJLZDzS7bZZCCKDQR+K38/Z0xp6I0BqTHSWKJ+vA3BsCHcVl2RLTH6KcpdQB9J9lIfrKzjplXnh77Ogz6Yx9IWoU0g2e4N6B+MpHNMjf7stNIou2ocmJWldo7iveIY8WkPNE+nZN0826r0+r7lmBdus+u0o+rXsV54QbRm0+w3RdepgXNshJnSb7+Gsp//TJ68kEeOHDly5MiRI0eOHDnyneUb0r39npvTBaoKgUXQK1M0iDsuCUN+uUMVEE32AElGmLFdRPE8oHDfHab8ldan+3b+kSOfSZ4GFQAsE+hLsmnUL+lU+s5vwwwofw1A8VcAdx5S092edwfq9K4xaScmz8X0EdLZR464SM8Vc5w8jZnQYVbz1ghW//S0d9uBHBfFIONV8Y0l5xsBSrWDczxuC8BIj85fSQgQAZKExYKS3WCbU1tBx3iwzjR7CZ2BC2axuzSIc2It7P75gG1zGzt3cBI8w5kOcJenJxBIBAXG4Y7b8XLEH675mg50Orjz3jJYjPjernL4xkECL1QUkWYs2G/EHWt1ai++j+ZIoFN7wd0YRCCwKLSQmGpjzjBbESuxlXUOvUU1qmNm1T7mCQ1xhVS5FOKhG9lawbaUu6h7p2871pfR1R/naIKvLFmMZAybZRblgMIyWOAZAGgWoWDWuSSAU6LJAhWNnynJBATOuSNYjmAQBllqksxyJvWRJfCrmQG4y9qbOQgd+GGwQh3btRUkQAMB3YGVgRj2YQeVPJ9vuJSBjywTAhA2U3SKRNuzfqIy0ivE2IWTkUlrjMcd8x45bASClWmJq70wQXEMZowxn+8HkKvzeDby/BhL873ru5jtoEYyPRGLpoi2isDPYP4bujGxfR9WnGxYEfyqNdWb7ZCgo47V5LzEdulYGAD22ZNgisw/sn3/wLPykSM/RgSAKPSiPXHnj/hRz93fsp8V9nz/M79QQtoYrNIw3HoGc+wejVpUvvjEDyNvLSBvqfh3Y+tLsqFL/GEifsZp9+HlSd1b70+wdcIf4Ajw+EAwPDDKoJuZwOhKAiu/TgvNt2EerGHkrQMC+xK+mRP8fttINQ3Sbu7e8NAAE9yu6S+T8WqXPsLNKSLoGdPHRgJvEBHr4QBIsTv1mLhPg2yabd5TseHGMEExEiXjqNPugOzs8p7pl2clNh169kEC5ZRtn+Py3o4YPoJkCaUbVkv3DevMUv9yUgq75zkydH7q0eOFZ3vMAvrQqnOu4O8qkpsAdJs2qAYX1m0q0VnH+xuaLd1lY0+NEzeAUB2RW1tK3V+e+J1w+/zMHzDBZnO8xL2yjNuL9GS+qXq8NQ9zo8lsgLa1tjlIgPLvv3G3I0eOHDly5MiRI0eOHPme8m6QkmJBIVAnpe+K4IKTASB37IvgJQNJr/AI9gOAct9OBK0EsTOaQTjuAGJgaJMPyDRx5MgPF0bh4IC84OX6bfd1TKfGD3hFPiLDy12eljEZLJJoJcSHG0rDmagq8JVzTrHdXOVASj9Y3HLe/tbYP7OdpsP2Tu0um3dJtmveutdb0jsIM1JOsAN+zen5wdENCZdvOkcrBRRBBUhHoSLxXwF0ifGyICK4VGGLqeLa0TwBNM/K8VfJW+xNb8WceDQIfJIbYDhfm/J/DzLNtIrzr1cOBLZR79alk5kzWhDRRB/ptmM2ncaJYiigzPMKR6q5sQvdfcGXYL0CIi95v5V9eOWzVjC8pJNbUnMxMmhViKABbOaKF30BkOAYM5hkEIOAQQRQqth9vMIjFZwwd6y1ynlsy4odSSTb3xZENJ9rBRRinzgy3Z3HmCZIzhFgIhHOb4YXUZgGO5ggQVLZbjaCLWSt6sBDlr+c5w63VyAZxWquzQ42SAaOgq1uZbo7nrZW6pNmVTZPcByZ8iQDTgLqigEg2rucu86RwQCDGUMRTO/H3eacx3KMpWPeHSP9G89l29g23mutYPui042y/QoA5T1H13j2ycpEYKw3gxi6/Xhdh7ykx3hMMiDsy/Gx12/h/7ciTjYtSM+fcM800KhJxfP6fFVy3ffHyewxHlSHP24LHTnyY8TdIdc/h+7Cg3/Bi/DsEaFG/rVv4Yzzbnq97AysYxXra/z2awEMthv1WsN1KC8Q6U0mHxFm0vX0t+fH+8G37IkvPMfrOn8yEX+8dnlL3oICAOxfbf0uDuI26tgYAXwYg1Npk6Z9Lwl409neIm+O5x8tX6r7lIcyvXHhrMfjKfGr5Iu017kHUM9ncYwqGDN6zYYKmyTOjXdV6gfafBycXR6vPqnZwZO5FZopwAyOBPTMCda7nBtACSxI63vxDK1rZ323FnEvFk8gATxD39zA8IXeYY+wbk+YidIY2zYMOMsRbLPBMxtp0aO0qavmPMp5BJBmOUVPF3FP2+ddgvxHb4pT38X4TRK4t9vy82907ei5G0iprVc+TZ7q9qBeX/fptttHSn4fgKp98A/7NduuP+/n8fky+7PK7fsdn71PY9zV9hXanGXaFuSx2zfHN27ndnsdOXLkCEWg//Qvf7kOf+TIkSNHjhz53PJ+kJJcAMIQC2aBF7waYve9AKJIo1Ug5pHWjXxJHmwJhvhbO6QdZbSJ9K4gfn/q1DzK0JFPLY8RtgjU/gOqv91+f6+b8NeWr4FqNufTCNYzfSQD8JJOYDrglq10yOiIduZ5HoHySzRT6uzOxa+V7edJOmYzaP2wqxNvBIu+oR4xP+v4/hHb4cuy71oEAKY3U8AiHRcdiSJkzPFkOamBkg5EhboACwGagWZ76AM46REc9XPkcWftftzYNo6ksTfIdYXjEv3OuTuUblMPxh76cLmO907hdHGzPYRO0NEPAqzVQA6OMhvnFfdDxAfgYDqwTrfFFGNuFvfDFbtvy8EMMFXCsoXr0lJIGBAwRLo0ZVoEgnTYThblWBYBiVdbcBiY+M/rMgfMsMYzX5dFyjYVvK7XCBgvq/ObHWcEqa6rHeAW7R8p5pB1b/d1pc6zhUuuAB0FtVSBmi6JYMO/u8BFAU/WJ2H/Tu+0NXDLm8mHYyFS8CWj0kCHMpBQdcobCtj2OR40WcniNjwDkvdQiZ3bMWc7PJ33xczkzjBfdVXHnPrZTDPGIee2wFQsDgLpO42cI+sDSeBWj4XJoFfOfIKbHMHclUHJ+fyH178iOjHmPBoA5BejnlzlrLExxmu9Y14BiI+b7A1g8LaihZI78T1sB45fQ2xq8DmHjrtUP2OGm/iEd8ivtWwdOfKNcg9vxwvzj//N/wG//et/N0LLfy/52mv/TEcT1BQMeM4vM0DOhTj1Egw9pwLfmJ/H5PXOcv0ceQyhv1nOrM+fqod85RkfVcbYmDgGqfXN976nrYZ5XRxQSGI/qNHEzQugdNtk8NNlgkGAAr3MY/ODm6PQ7myW0hPbnpxre57yZGzcmSd52PfveQNBgL4bII7StWkVDVW19P6uQ+p4W0eH4uqw0nlBXb3OTv1yjIMNFulAM3tiXpFF8DHGfGNNmr8RPgSfdWedBkN0+gi4kcDTT8tuITjfeY0Abii/SrQjxzFtMgJ6BMAafVdQmfpefUhbY7T1qBhqQhh9WfecJkr1HgrsR7tw2hNz/FS75jWNS5pv3WDbzXYuoFJtkqjGH+VycF9O8Vl798MEL/p2Hco2nmNoG4Nsgx5K6E/TDugGmj4Pz7K094MLF0ZL5TUuINPwkSNHjkz5j/+n/wv+8d/97392MY4cOXLkyJEjn0jeDVKCXL0zHILX5Xi5rjBHJQNluZNZtVOJiKMdAUCAmZwGkkMvLWIOTS+gTHsP6N0wv1gg/MiRb5bpURPAXaAeoEDRl9z9TGdDO/P+rvKUwnsLDngxvgGRtskyNZKVk9IrUDrTFF2XYrIT8Xn35/9MNpzH70A7qcrjFr8P1+63lnnuqOt7foax5+WojHGQIA2CTOjck17TeqdkuPMu1ZHlbrCY3ABKwOP4+avk2bgFxho7g0sjWBDvD+tt9F7njmHHcoelY5u7PmWMtAIzjd2+vizXcn1wpNsycG+pOCBMSbPS6aqA5nWi+/i3dNwTeLJ8Ad7gFiDf98wF5/Ja5VqvFmnrMvWc+cJyy3RdBDc1uCbqJlB5QZU48sThdUX6MTJxRQqz2PFsyLGUqQrcMgGIjR246GCMXmSTYeLbSP+gLIsGNEnhWK+vmVYtd+i6J2gOWT4EiIzt73E/zQiEkaNHDO4BuBJogG0ynUEBtNJhz24ly1SnoiCAr9u70t5BY8c3PPswYyWGkRotattgOClQKcFJPbuNcdBKYwSL0CxHcI8UeGyTXBM6RSCfFW+xrUeQUY1r8Uo7wXdDgJozALJeWfZdMlM5mZb4vuWzydIlDMDkO1PzOXfr8yoWJMpo4/eIOznkXSidnyMFMOb2bjPodeWvHLvzbdiFsSueQoCT6D1ITl2gA0IfkcHkyJEfIx3F5OhXd+j1AvnHP8WRoS4fCeH6y8/PTijNg4wUejtz3mAAWL7U0H+1Vr3phTeUh9yUfpatyif1zzeXmaCCfVUdZfjl5KZ/5BfqGE50W653wnRkoJkaa//Ej8RfMpjKh1q39mr647FxvK9o+IMMPQdofEqdSd2ZmxtlZxOi/qalz4eOmCpU3NMT9O3jVcwx22D2Ya8I7zte19JHvU+AVtq+ekWox5QdgATKdJ/ZbKGqTOjz/a71IGggG9MZI6dzMos2aKbeKOqLk4V71L02FrAQ1eZpT5DxiC962STUW6MH2a7VK1l8obE4ZjJyS/Fz/Nx6GfuMgBiOlMlE+ji2ug3nfBR2K+3uMXdVW6eOv/1MBiXvPmDrjUG5l+E+5huYFG0tPe5iQFezcMPYxvI0x6U/Ppf2W7SFVAaCukONQfT12SdlQoBtPZih8gZl54wZebK7/tXr0pEjRz6+iAjkeoH+03/82UU5cuTIkSNHjnwi+QYmJQFUoC8CswX1SNdGK0dFIBocAkxNcV00nLnrnilF2mEjNOR9fE9Jc+x71PPIkV9H0jlg6Ti4FvDbP/4pmEzQQbZf1p/7nWVrBmkHE79ylx4BFNBw8qgGM8mlVzh/6MCpwDR5NT5WtHdPEbRLj4k7g82fl3CKSu7O291WfzVY688L0QQZNIBDNJhzAhAQgI5wOscyaZLcgFewlLgbrmxfUQTjlioAjbVQUCxcs6d+ditt48aT/agCUyjgRXo7hw/ccaUT3USw3JP9MFKiRVa1CfpjkAWx/dYM6lrOZPNgIAq+xUiDFhSM7c0NfIvgJZ3jsQNbKzBoWZ8LAfwxD+CUALjkJQCJApj8HnUZTmy3AJYoAtxgCbgql7gAV7VTAFvI6hMAGA0gVAYY1qsnKdsVgB869P2CwiCy8lQbO8WvcMyXg986xaRK6U3XACCyjV0irdvK+S36cVWQwGC5hgCmDphAoyRwVcAlxzsDOcEaR6AWZz7PayCGZStjsfGe0IEdDv2YRyMlWjKOjQiRIAMYxrJZgnOizzVfybxzAp5i/Ky8gyDGj2RfmlsAd7UyxUV3GYLpisEtvwFfrItGziEXwBeTPmiO7QzMCBmsAILAjEEaZ1AqdygTbSU5BoxhJe9AWJc0yqVdRoh0Zg4w7cucbwcAVbNdcmwQHGkfnEfp/8/enz9ZdiVngtjnfu6LiFyxJrZCAbWzyObaC8kh2duMpltqacZMY63FbEz6x/SzTGaa6bGRZGOtmelp9cpms8kmi0Wyiqwq1oJCFZZEAoncYrnHXT/4cvy+eJlIoBJAROJ6VSIi3rvL2Y8v3/ncxg2NlDYZNPL91wGeNXhZDy9UYEWsT8lotXVRfobRgtu/r7LKZ0ZUMV24DG5h/q9WdshYYXfZFbpYj+pNVFKHjuD88jkR1s7WpuV1n6Tsft/2p8u/d9lZpz7/KJKNeo5H4dh08r9Dj6TTIyKGSwU1xKO0PgmoIJrxPl30wfbXn4Ysx/kY+4PxZZnWSuHM6siZ5c8ZgPiouC42cL+WYtiMwwMOq4i3Ft3T36mj7QeL0rLMoTpEOeI5AeaPeWw6bwDOxlyJIi71vK2yaNhKkvpp2DQBaKtg/brwpIa6YxKHrWllcNs07qW4AgMk7pVVGbw+MhoWtWUGIEoHqIqK7eJ20bjN24XCRjSJM2NKyEMiOkq9NRKyJxMwlmPIkUZhq8bBDMD1fwzbO3xAWd+KiBu9st1jtWETGJRX6alLbByrjnrn4Q1agN9Grcoziw2OreIt5rZu371jrMf43bFnLfm9RnuPJSX05tSuEfNtlVVWWaXKdOUZ0LT5tIuxyiqrrLLKKqs8RvLwTEqIIAqBqfkpcTdcPF1Sc5BSWkRiX4EJ7IE3Jg9K0kj7FrcohwPPAuHxO7DaR6t81kTzv6IdzMZQtpR1VlRgzIJVaNdv1dMbfk6KU4m0ozmHs3A7ZdcnJfdj3hlAh6Xbd1nf00w+H10onYH3k3MHVApnokcFDBDDIGIwCUT7aGMFwM4mqAGdCAetOpOJPbY1SiAuCRy8VIBKdDbCgjVdYog5yAehf558xWDJEQWCZQdw9iIQpHszBcNR0Eu5t16VMKez2tzh3QEcTJzO+WhzVXFQkH8PNWAhilPVmWkMpNINlKQEEKefPcrn3l2AdKTtSlCj9aulTxsOb1IDJRmrEo2Utg6IinIYc40xJkmeJDamoZ6NpghFKNooAh3sqQGZ2cdKnqPOoAaI0MX1MDFmngTGGFGUsRERCsDSbm7kJ7kdlEYEzD0cz+zAQ+t7u0cSvGlBiVHWrsO5nQ2gAxDE3DAnI1ZZLyTmDrLMqhG00FyDCc5+xCgp+ky6SoQ+DOgGAmRAmASaNRioljq+yx4RcRb1E/c+DlQBQU+AmI3U+hzJdHfJlBCn2n0vseAA2xiONow+T3CVFSIOny/2skBcUS3b+KxGJeKunM8iIF4GBM+aRD+ECVFqsQzMbG1vdcurW03+rjvuw+n19iy3zSqrfJyiqthcvGKHHgqof50TQxZr8fg096/60dadD/hry3aIgDp9ctrg/Zk8i65WPwJyjHyUMtbHbd+/0Ml2XHCfj8+WnGrPAgrQ2q+hE6LoDZyIhG1G3AF4gLEDbtu5RAuG8U+tjRI4M9SSsZOHmrIcPwnGCLsCYS+4Pu8XSuqK3h4OoK98L3Kq+U1PH+m1RmE0dbbRnoEtrH5IGHHRUn8ldvtQ/buhcAwdt2rsmTBrC3+nOeTrnZFiXvOZGApqPrvMJ7c5ou+rqjv0wThk46WpeuMYOggVewlk8cu01CzHbTapH/Qo9koW2dtg+zAVAU4MhVToohMXKKAdqcji/tIINFrLK0GlrWnRaoNdSPLVWr4b2rT691tsZ3ltaaXUw4ONqVRBMml6aYPQ5Ue5xngY12p5ZoyNupaMIVXfudzF62GbeEHtj+imvJ1qG4znf5DfZ5VVVvnsyprqbZVVVllllVVWedTy0CAlEUuDI/MMJmOKABt7QRhKvXc0DpYCZywAkockjEL1YJSqYnKjidNZWp2AZyGUu8onLfdzpJ4rAMRHlYiwVWe4zDjgZdqxVU7LLtAFgMV6Uj8Npxtt3bMNSPq0UrzdL0WXlWu7PHDgkvHS/Kzvu3+asuIwPM+iuqiFKpw9ydi1wACpp82SYI1hNAogROSCC8aq5ntkAYaJ2h4pYnuh742fZETwQWNo+3cKh3H6Ux2gIeKBE07WHg+xYMyjIPQXzDPQPK0iZLAGKTNmVbAqSBQKQ9aoU/ybk97APj1ANq4zBORGxNmr3Gkr3cBTBlNRKBnIDGqsWKqajHTqQQaoMUVV0Eiutyr5OwmgDqTqFh+BQHGiiqac6eWC+kji3oiBSKwvnL5sXqxRNrYmJjRqiEqpigemYGnu4nrvL2bFLM5YVLrX0qCJ6VdeL3UAj6qCZDjde6SZ8/9GmcMhTRr1iT4AVJx1S7q1p5TgmnegpevzvvAkD8RWjwAjiY65w8RQmfOOeKYCDgjzcRjljbUOCiFK0GCLQIls1V/VMVSSe2v2OeD0S359CRrZGPDQhEcdRSzNnno/Z4qxMpfE07vZT29PKoEQ7yNgWZbFXBxdCiJju4p0fxHJ0ihjnr6PYJuHGUQxtbPFALhTxE8yRN+k/l/33QjIkv+flgGtEmjZPoW+vU2vKtRnT+6nrXy2xkJN8dIxLezsVT660PhxPwAQbdlzn5LcH6AEbM+GCJFXVICtpx+yFgVIU9XenSUJ/c+vP4+yXUeq+1iYBdiyMXNfixspPx9pshZNmTpS6tb5rI9f7jeKKhjn9FAbOgo0lMpI5aZLoF4FeqSd5rqxg2IAAETO+hPqgOT4sXWuMvnUx5oyH8ATDfCGf27vLYcY/DmRitjxHuk7oMUzxr2LNoibyjtD/85m08Vl9nq/Js5QaRhKfrhqtHcAgkzvDFb78LNaQUNXHLqtgXrCttDS3hilC+OldE6kZgv/yADVYDGWJVIQL9osalUqGfMk1proNhlrT2rolMNhUabor8pittSr3X6K37X0IaVqnc+utuHp4bzspUU7LS5WbM+FOMyQtlbx9+X6V+yGrL2W+4vOm++m0+/L7+rcPFWPLZ8O1fLFUrz64ldZZZVVVllllVVWWWWVj18eGqSkjEUO7QjaitMV15M8Sp7+jfLSxe9gM4mY7dRUpWBeZZXPtLijFhRMJcDh3TvYiCQxySqPTkbapZoebfndWZHTICx3g6dzsrjtfkYg1YJ6/NSgi1R454w5aUuS+cSdlZbezetGBbLAvmkRpdOViQ2s5OABIl6cvKztzxGg2T4NjU9+jFWaf5HKzuZOyQBzOMCHOdL7sadjE1CzDV1FDUTDCk4GIQfXwBmJBGAPRoAZAgOBcQFrEPFwzkfqV3+UioC5gRUOylHMZHpDMC4xMeZ5Tie8yEgjF05mSwtHlqI2ghZKDpixIIB0BwepQpVd6fFgRTiqVZPpCETGspTHua0tRQTMFnxhApQspSSpMzIlcEv9OrvGxMceKWYRqMR1cSqa0LtA0S244/3kPYg4Bp7Ab+IE+MSp6+4BlWC+VOnoXUBkZSZY1btSOtAV4rpagKZiRI1gAFG8wxzlrEDPAM6iiTwgMAKgouPErvnaDRCUICIy4BrpCOxErdnrCPUUcLVNiG3M0jh5Dh2n9AcCy14TY4c0gk/i+itl+jdfDbzMS1BN9GvUMcbDgpEt4AJFn479R7IvR6Ak2jeAV5xpAWkEfTLIR1mGUywDZ0gC+MXZXgF2tH811QsAS9Ea945PR0Ntfwb4ujU+OL871SqrfFTZCkACOLx3iJMbP4Fe/Qpos6Zp+CBZrBtVhzt1YblyGeFdOkge9PxPUipTS92fP459Y/s9O184UuGdx7U6GI5q1/s2Nz4o+oJ/WGAqvg+a0ggAll65PDvuWZgNdUx9kvZE1V8wMBp2UKOAJTQULG+f/MzrBi92pu+KA1nOIxMgmgq+CEXB7a+01dz/OB5HqTAEIw1TeYZ/KRoHTOK6CpIW1wdp1LGKH4rQ8N1k/wxwi2q00qIBE7AzlgnKbNfDJoqWWC4nkWZOJK/0TNiDmSo7B+PQQQ63XJPi+Wq2RwGuhAo2xrTVlWo/kmnEpoqR2QrFrlrMfXMkj75etM+ybYJZd3ve1IMRBeLlzxltUQFXBPUDBqFfF5aiRWMj+ySU0QHEWvZgLbuWT6isq3qfZyJw+cG2Frfk/EGxLbLxtl4efVTSDW63oy5/r5ZTUpZtv6N8vtjSsMoqq6wyRFVx7wffwMHnfg68d+HTLs4qq6yyyiqrrPKYyEODlJjN2N9MEawMp4OOAA7cQAZZ0M0NLy62pp1+CnPIzL78vvwL61wDRPCz13WVcyi7mGw+G2Kh2A7CWzfewXR0DlgRzog8CPixzRb0IPagj/L8T0J2sxzRA6/5sDLYmR5UBiq/nzMplSNmtPiTDN5CDgoRGUAaS0el6QCOPU8NveGAH/usS4B53I1YHOOfdnvVtFSANYVIgEzgDWGgFUWwGlkdmAncCF2cYYaBcEYbgCTStBlLEtNkIC1nn2kkEHLACBie/DVBNNBy+jbbTHDiAI3GDhbrYpnTKNz3nt5NBKSWqiyCHwTTQUT8D7QBCtKRWlYLg5PqcNKr6y0TFyc3ceom6m0qEgApe0ZjAk1cnkVQsQAIU5x0Lo50su/8CDEirRz5d9VxHTEGdf3JfN+eco0IQuGUZw/QWDkNqNNA8FR6IIgSyAFJBr6xAMg4yDuc/hZnYgtFRCAiyuIgmzGuGKxicyECQQBEA9DXy/0GePeQkX0mFgARNU6mSvIFBUiKvggaadEo1MeSXi3CCHEyO54VQSl3zjM3A9+5fptMTFzfNfpcFZZyL+McIyBTAyHjhH5+beO+BJhi7hlb1UhzVxny8v02Rf1FkfKDSpmQgKezKERWXs492INtFN8Biz2txE64sCjFuK4r6lZsrj7i1DWrfLZk13h5rKUsOKq2ZNx+/x0cvfYtPPX882jTU1uNUQK+pz75EK/9Ge49L7IVNl7+/TA63ietB+56H23Xwj8u/73vvQ+QU+0QOkResGtvqo6i8ycB3Ej93hca28rCfh9ghwH0AKpHLFqKxoND4UiF9tNcw3aPGJQCjXpQuaPqk1E7RlTP/jfsSnVATOidRfljKut4aTPXTRefBmhMMQD4CZCJ1M0UynHqYBWQpGEbed2yn7PfkGPW0k8Hr2sc5rGamt04yhWgmRwHceAFsBThirQ/2d/LRMkMi0hsRwAlr21l/fGDDdt/pX41+ip1JvVyZR8XWyz10dHlA0Bk+n1UL+yK8YTySw56zXvh9kP0aZRPwq4ZLbN8FgYgK+y9+CVAYwkDLGuQLmqHfHqq4jHlCIsWVY02i09Hiw8wYg6jHFsLwJGXUfPXqHXYnqVsu9bJbIZxsAOwvsvSVlBj/Cj9N8ZcWatKPZdLcPTj2bUnVllllU9WVBXze2/ivf/wP+Dpgys4ePHLn3aRVllllVVWWWWVx0QenklJBY3DVDQrbO6z0QpHJBBxAgkAGcNAazQOPKkFC8OYzFNzGobp+XROrfJoZBcYaekgeHzGyG4HRMwHdecI4fbRMV67/jae3rviDB0jVDoopgnDA7IMD+xsrfJe3dGej0cLP5zcL0Xc2ZfRSwNs9dF6blfdByPIVrgpHIJqrCtnfbQsarYAW4RzlOsKA0DBzQAbqkBjTsCWAVncKettLklXIp7HgReBCktjYOANJvpY1q8HAe2iH2sXUzruixPf/3Qin3TSa3hqfdkRMXYZJYIIgcEGchEAYAN4EDmAAlDqEGYDPGkHIh0YsQOYo52C7t4d96zO9MSeZozS3W7MQMY0xGpBh4BJqyGlINKHQ9nXUlJKoEMEGQIkIeqQGREQteGE9sACMwMy0tIGnMbGBufeFMEn9kBKrOXQOKHMaK2lMx8BzKHmzn1YQ6MZK5CD31TFWZME2o0pSEUtqEDsqej8JLXxRpmT3vLR2XdEYI7Ah7W2iEAylx2BMIEwgwBnxxrp0wYucRmYkT7SkamDisjbLt4f4JsuDmSCWpYvtXFTmZQElg6QYGC4OQMlEYDq9jyPTNh40gQ5eeF8/I7Ak6qlTovB3IMF1G+SBAMZc1T3OhormGQgi7istwTMIliIM355CGy0dfaHlSnDljXQEGs5jTuJmpfP5lakvMigTIndGCsZJQjozIpGYAbIxcVGqX3t/8mqlXjLdvwlA2zl8Tb+aPnhKp8p2aXR6dbPx2V4nA65AovaKaDacf2Hf4nv/N4/xyVmXLt9E5euPIkEUMbkAm3fuuuJOy/YJmc4+xrio5Wo6yn77j5r8SfeNgkEiALUFdQvCU3rQacUHviKrXsCdRpgE/vw9H0YTEpnWXauK9WmLr4s9U26tnewQSL2sXJt7HeGUw8mmrg17P64mLZABo+4fg+wK3aOi7AjyrBRHeAkDaVFx7CrOqpdEzbauN++HQ9V17cU6mxCKG2oCTAZLpGw15DtaT8DjBO6uWZaWeuLYOE0nXaw1ZgOGTaEjtd4LV1fjyKn0gK/r6T02t3yQ6cJ8BOX8RTXaoyV8BtFG8dLqw+oDKRoPT39D97WDGe/DX1YS7/4uEtmfUWCcDSf6+/MMT1s5thean9kxaL4VQEEyvu1NOVog9F+urg+1juzs0p/5+MHIxSNv3ypGu8vTZ5vIlQG2LIHj2IUwFHhS4v5T8tyxvSI+2LVqM9NQN2yWOVKKnUubV5WVw6go+YAGs+g7RV4sEOfaXtilVVW+cRE5xPc/s7v4/0//mfot29gvvkWsIKUVllllVVWWWWVRyQfAqTkmTfEjHciAxxZPLKD0NzOGtGDDNL5/U58YIEyi1AOY/yz5s1c5YESPo7y4/GS9DYVJxxGvUkbTiD4vf/wu/h//ff/I1555gVcufQEvvL1lwGyaUvoABrGjdsOC9zXOb4dPRjnwh7L1v6Z5FNLAZfMGOMU3q73b4P3PsxSunCubz0Hzk1izsQBn3Bqma10YedE1H2bGlPQaf6ZEMAZC5cPZ2rQt4dD2NpAc88ydppIfWrtyRZlgFru08W8yjn+cVTvVB8u3jpmubPgiJAz1Fh92J3xAaqCCNjT3wE8ADlgEDqM681SAIgKeqbpgrenQnX29YU9m5yBkGx8d3Meiw8rc6M6cKg7Ww5lOUesIkByCtVmZeBuqb6iL3gArWSOIIQtiXGK2d6Dkm6t+fiI9HEMciCSoBvAhhkjTGE/mwcfmBk0WZ/Ps1XKghzdxgJZCrkKlFMRKDVPC+inr8lSpYGNFQlQzKqWWk7Fx5xVrnm/2hg2JiBqE6RboIS4Ado9qNLQlKD9xAFUDBkcRNbPpFD2NWcW7xFYMCkCEqLgBPJM9p1PCCUHsjloyHB9nobOU88pAHLmKQO8KSLNItTAcEKxLxkLVzAyqfZk58pT1MlIpCAd6TcQ5UaEbUZAhnw8CICgX5JukKheUmOM/dTqJ718EREVr75grNURmhBP1UoUbaMG6vN4g6+yxiumgJA4m5MxCRDb6fkMNnjF2MMqpBZMG4AsGcGkMyojeAdkqIgitaQLjQAJ4LYD1Z4Ya2isDfyAwPrZbY1VVvlZZdeYLyx9IBy++X189/f+R3znz7+Ly/sX8PRX38EXX3y1XB8Azgc8fpf++UEfPMYT78NUbQETOBUMPjuSoAdg5yGWB4lu/V6BItvXbMX/x/t3XnG2ZZFyCRn7zz7X5cVmD2w11vABaF4XhsLCpgedmoePFI/7IYBptaeSv0gr8APLdtEBFRk5r5wxCQPKQaHHJLRivMkAXkUDV7uWmCvKA5oN5/aqlyeBSAC09AOR+ysDIELDFkoQFJzhyXVholq/gLkUEEyCSjTfN3jnRzlqW8YfBKAFEI1RADoBVKfS8QVElQ/TYZ/Gt1t+AomyFX0xQXR5rdl7AdRaAOldP2URY04icntisO1nvyZQ0dtK7eBA1neRas6s8IV4PULHy2FKy3rb+DD7e4ycALNFs7hloaf19RTX72OuaumleOVgZyrP0fqU0btZdUSX5QBC2N/2sYMTpYwsP5yQoKdMIV3uybGXUD9/ps8qXdSgLs5mC3k9yW04v2msYQ+/LKyyyiqPsdz6s3+J9/7gnwIyf9pFWWWVVVZZZZVVHkN5aJASiOwEPpMzQoSbQS1dm3Y0amkmMSw1TGOCskKZktoZ7gCg8eidzs/15MZnS2r6rYVD97GUcOAY+EOoOhHM2SU648ev/QBvv/EW5N1j/OTHN/CVn3t1+N3UQpzVPbmcMXTqk3hzPqS0d377GM+7+60pu9IKLsbjp9gmCYx5wPfxc5z2/NneGUCU8bDqWHVAgb116+fZFs3yAyBPN+TfmT/YndKgsj9tzSMKth8jxucAnCxYBWHP8HupbHb0iFe2hxujw+GcAC0lYyqCGihCOkCE3gUgNoYYFUwTF3ex3WNpzWKYie/nYvs+AeAADkR6V3POm8/UACDkKGdycFikCsvykbHdTK5XGFBIkyWmoUHRrTxqYzK6ismgOwoDLrQIDJGgSzfmpsaABCipe9pZd26TlU+U0dzh3pithmQ1EXcmm8OYMTVTp5TUnPTcEGnaiBSZwYvqnDHWJUMBWf1FIlBDoNYA6c6aBG8YzvIlG5GOlGrcrPFVyYOM4R1v1jaN0CDQ2YFeEezwsRQ7gqhCuTmDE6BgcCNo7wA6QJKxpoK5RSNPW5dBKIU4yJGnlsEW9VPqEJ9DiLQRCpClYARhtBtkEY0jD4iQJ7KA+m6qChVP8RcFkyXYUz3YsTiZneMZztA1Qg803Phg8vJ3A2kyjZR0y5Xa3+n9FmpuTcsQ71B4ykUbsL5K+XBUzXpEOj/oWJEBRdeRDiTfhTMs3macwCSqX/lciDlrX0e8Lv8GEthIxZ5YZRXg9JzeJcuRd44l1D6fDxn+LoaU9BMc3bsL6R3z8Yzea3ic8DBIh51t+YB7Hou2/Qhia9Oy9nXv/7TaRanE9LfK8si00gQ77HriA+qv6mxeoS+fj9lZQ/8BPtOtKyjnZBHa/Tst2mj42pb3jms+jlYy9fuDn5oAhvJJ3CUaoPLSQqp2aIPib9pqhgAhASB1tbgAJVzPUzIW13FgYegDNWWcmxED+FH8G1G90PLCFiTXh8WtnrALNG5H0cPI9Nglm22ApbZRKflCL7PVXUoZy0PyHQE7IVAyKpmKxFkgw7tYvV19zuuIeKTzjpZMfRtQJWeq1VHMRNS43un+21NTOgen/9T6nlEn05EBXTAzxX5jdsjyMcOPsT0+ADhD8dZnoSNr9PxogzpH6no3dGycFtWtd+fHi1+iR6KPEiK0NTGpNv0YfOMZZWypr4XZFaV8ARSLGxdpBxdCmcEwdOZgKs7CUQDylseoNMtln1a+6VVWWeWzLXJ8uAKUVllllVVWWWWVj00enkkJ6kExSlBRBrQ0HKLmAGiNM+Dm4ba0EkVhAYVw5oSBDWwZSqt8FmUJVDoNHDkLoJGfWRTmBCtVEB3pX/IUX++YDw/RxM7ebfY3MBYOgNAATDYPFy6ZeAHSwffggqwC7G6nbZahkE9u7J0u04Pe/aA6PAw46xRjlI6AhjGQOPW9yPC3aqToGR65MzU3dwHPAJCnIU0Qh10MJGRgqy7Fp0iAndoFDHDASy/nB7NaPbr22cWcdL85r+mRRXqDM6UEglnJXeIS7DqE7vcpPAWYBAjC+p1InG0oXe4IqLJIt+oyA7oca8bOxWMMEgDtAHiwy5CNMVKAp3FCm0NXoOZxD4IqQ7ta31Kz9JjR2mKOWeYGZkv7ZSAeBauzJQHQPoBNFtDT1FdUnelGFEwMi0UYIIlAA1zip1ob4IAlgLkBROjp2CkudiIQq7NMNTTa2HNJINoB7WD1tGzeX9xGgCZOvap0u8/jMBHkCEDZgPOIAX9EDZzFBi9TteAKgwCy9yX0xlkvRTqg4kENc113Z0NSZQMGSc8gyAjSjOCKlcXGlmr13GPolIb+GoGCiCgQbHyI5In4nAf5e+iVEQzRDKCAon2qblHP8GP0PxyoJRb1kUgPR54WpLxDRLOO47mRDnCkzxAJCLKnioiyOwJH1FIYAjb+ArDGkS85nsw0DpqT6QwVrHqGVuDdQqWcuX5Zxy1iOL68RueUuFkGlyr7Ur3XL1lllQfK7j36/MnCFi8ygquCPs++JxL08OYITOfKfJ+AbXyrWibnB9sP27DNz4qEnpKyC7AUX30SBarvKiCCXUH4kCxjtYM+AGRVtellVP70gy3YXvbLsg9UeMBZHz/mxxoGwkh5qPl9/WRpHwwGldp6y33x/m3wcVnwOdfre3bMe11eUFS+AMC4ZqVbbeSL1QBgUepkCfMqlQv1b9gJSF03RsuybQcQHg7Wj0MFYx2D606jInFIIAHS0RphD4c5SG47uW4m0IXOaUOfvEmqfelw99Q/I20aD79PtqDfW3TYsLCsDAxFX+ibUYfIJ61ilQzbLABVpGZLBIolVOm0KbT0XfbF2CkJip7toZn2LA8COCgJTJ6SL5hLddFPwYa6GOm5PgSjluvxRKO8WwPwlA+s/BGHXwJ4Fc2VmdrLeMzbt2yLWM+zpXVcl8BgxaL/xrPKHhylDbaxWOmWKKR8Z6Rrr8/afnbaTnX/LmuQFyvHJzB2+wQt5fXOzlp06gev+KussspnXY7e/D4u/dxvni3f7yqrrLLKKquscm7loUFKzOXcdhinFOE5O8E9KzAxRSwIUA9Z+ql2kOYJmEoXHG6GVb1ZBcBDOefOvShgpwgFpN1BDx5S98D2LB337t5FMHvs7ft0JUApwCHOU6LDlbB0Et/n9VIcE5+F9j6nsuWjemi5f9qvhxF3g+pwrZlzS4rzbpz0PI9hvmBQAeCAjnDgebuJp25aeKV3sHXk17vrv/3pR+zOD5QHgdHEmX6ghVkmHbaaICtVNRYlwAE8w2kv0h2kbKnVBgAZUG0GkFGBsjun1YAkEgGK3kEeMCBP92oMRAAKmKknmwynjqDJkiIYTEvqTnogGJTYKZzIHeTU2N5hr/C0X2QgIO7GqATJ+0l8ILiDtosHOHwcdOmItTYc+DFGVP16mANfenedycAtw1Hu/cHkbE+RDu7YwU+AyAgywAExqsZ0pWL9pc6CMYA48LIZSCiZ0EpgRkSgDEjvXnZrM0KkCyNADXzXBAB3oFtwSUXAEIin4BAAKoQuEQyy/pql27scOEVU0hAIMjgjMgIxSEc/nMUr2II8DVy0agDjRTJwY8+TBByKBz0sBiMJYGMidA02KxsH5psf7ReBAVVjdjJwvSdw0wgCCHrvAMbJ+/D4x5pbf8b8ElVnWwIiDcVC4/XxdIrJCiPVXtY1riAGR0rFokFHAOJjWWgeoWT9C/ChhCiRSxNGfaK9eRmXK89cZZXPoHgQEipGPdcaKmejwvank5NjB5krcHzHGOY4Qt9Bibe0B05pd7vASfH+LdlmSVvl05ZH0xcP6tVlQB7Lv7QEwLd0l+3/nnnZiRjYVQ9d/FWFtv8Is/x+QMAd+v3HZVOckgRDjBemrgPNNNoBzBlsOA4jWgAxRmLcANWMoUDDNsFovWqzpa0GSnCN6fE8bDkdICjAGUvT6MuCRoEQAI3IGseu18f35L7NqOTAXAU7UBytKHakDtYoVcnUw/HGAWiSUQq3NWs715FE5d6sPNWrrIwGqueij2IwTXn7LUqzYxDFHjKAU7oYb9bOVSclbwsCkdsUpMkeGlD7kbrY60Nuc2qtF5zNarue5U9aFj2rsD3c/MNkTnVGqtGfpytvdk0B2WV/UbZIgnyifXTZjmPMbj9/rHuaRzbKtwVUFWUJQBiivfxgRJzzWHC1bT3wfmNpTKgYe2PuroCDVVZZ5WHk5MZPAelAe/jkLKusssoqq6yyyir3k4fWKAjIE+F5qtsDhUxm2A+GhRH0JY77inGnyNRvzkeBCFGcGwfVKh+bLB13p9mUHgsh4ISAo1t38P5bb+GFL7xiTjQKtwXheO64efsW7h3fQ798jOP5Ng6PZ3CbwM3nmoMJwgNh8ynDsNUXMhwRGPMwTqoNp9tnc/7dj41mnPj7dMbgfWKxH3z9jvrscjqdrtf429zIcdpZEgxgYzRXesTYOevTNJxyw7EuYOb8fnFqkSnTKQUgZ7uS4+Tv8u/t78ez/fNHUZf7NPapfla4oxp+dNRZddSCCuRgLNU4aTwCChwgF400WhEIgJ+i5eX4VAryG2eWEQuIWsEAYj8vzP55RwCPbGEScDAjAaDWQCqeEooMvOL1i78nZpADaQKcFJ7rWM6yf5qBQLuDZEY6CvteXJ8BGKrGBqQS54/FwFIOCiGxoC5HoCNSgFl0A8TsZYl7om8aWmsAiQOKPF1nBGqgGCAp059imgmFk97bDOP0uQHRqASxojxxctpZlMTStKkCjScwdcxqgQBmRpee6QOYLF2vdAOXKxjq6BD1zGuAgDnAbZwhmhgUg2Co9AnGZ4aL8qBMAHHgKe8kQDtUTqmP+7fTPIiIA8JGoE9VIDLSofkw9oJZYGkRP1D7LNMbOpA+AlBEYz2IoEVorYwYAB6cKc/sKgbS4gG2oii7B1+ILBWfAbhs7Y2UdFGnWKOGLl1AXHVN+Kjo1k9I2Mev2QFxmnustxEsCdUmW5MMuMT+ewRfAohH5TmrrAI8eL89uzPkw4hNEAFwePcQt965gWsvvYA2tXoF5qNDHB4d46SfYNYTvPPGD/Dk6z/AxWufx94ehyYHrcldtxpvZ1v6RX02YK6qMx1GtP8zOB1j/3kcZNGFp/aY09eekrIVae7bWu7xAw9+MdXF/hzI0HfG/rX4dgd6b7QALZqxpggcOsxQeu7XIo/EpnjI66i6FdL3UJgoUwdP9ET6GE6BKRLcYbUIGy3WooS/JKBNF0MQiDXLJPTgounlAY0AdCwYJ7MuIz8abTcEwVEhdV6P9GgDmhR+FBrlDX1EnUEz9Vj7PNKymQ5DqbZVsLYNoTIuAsQVfwerb20bisMH0QtSgCo6WoeijaINil+oNIDmC6Mf/GiDaurFIDb7UcV6hBz0Wt5pv6UVAGLJvq/fDN1vB5s6zJ4hBPhpjEki91vEsEPol25/Rd2llinml7e1ls+12DPZ9oqCNcOC8X0slGXhLAxMMcB0fJ89nX2vcWWWgZYPH+twBW5h2BNpUhcdGRhs7Vraq1Rk+A+qHZn1xiqrrPIZFxVBv3dr8dnxjddx+JPv4ODlr6/gxlVWWWWVVVZZ5WeWhwYpbaYNCEBzq1q1g2gD9eAXE6E1DzpALJDQCGgEJsWGw1RGOlsyFcsqqxTZDuyfb6W3ODkWfgxBPznBD7/zA9z56XVcvPgELl7aABvg4MIlKBruHZ/g5q07OJyP8e7td/FP/rv/Fv/+D/8jXn71i/jil1/EwWYPG2oZvG5kAEIiO/XXWrCewH5nYxkhZggI7914F3vTBsdHh3jqiSfx/PPPG0vHKWDFcLF8VmR7zH2aY/B+b679NH5fxhEqaOXhTsctIvaI5ER2HyNYZYK1Jt657Ww/S7LTt6ZA47ZjZA934O6Ay4MZ/3YBlT4JqQwuQHG0avyzXxoBoj2DACBKdh4EAAfG+gJVNK9vnJY2AIeAqCVTTYApBN2YdYjNKS4l2BmnmI0mCUTNnfWSLIvmvHWgkrcytwbAQDIMoMHLCTJdoltQItJzWVouHc5YCiCPnWIWdGsOCnYpwtQmqChmOsEIjxA2bYJA0bUbgIkJSgb6aUzWZD4n4OVRqAVrY+8CFX8yDVAcARA1JiMiiNUMgIJY0bsDptQAQCIdQgA1AokzBPGUHcyNIV1GQIMIiSQSCx5LH0Abbg0kVmoCgVuDQkBiTijxQIQBhJqHONhZgWZLMUfwtG8CYvGAASHTQtb1Rm1/QnS1t5XCAFaNhrPfQEoOnCLKcZbXI5zmwezmQROFldGZCEkVzRlA+2xjnpmt/TLoUuZrBI68gyKU4+EdA3oxIK7zgjKLIPK8uUa6PPucfUFuDiZWUM6tCDwxAUQGmvNag4nBDqCSnD++hjMt1/xojxjz8VkBYJ41MT1luZYOXFWkURl7Sug03rTj810Pr0i2VT7z8iDt9XyNkGXAdPsPmTtuvHkdBzTh5O4RZhaAgYOLl9Hv3MS9Gz/F0ckMUcXde3fxzT/5Jr7z/dfx3C/9Nq69+go20wbcZ8h8jH73PWyuPGMHIjb7tk+F/UAE5jaAw0TQPuPo/XeBezdBmz089bmv4Jlr15Agi9wPa8HPV+s/brLd+gt7Ynxa49Wnrt/ed/KiHQNV4x7XO4NhMXXRLNQZHxe6qCmArRIv9p/720UPY4lt7+0fq9zv4AMK4GOB66h/VH1qAC1SP9M4emVtAi1sk9DFmDvFROnjpK5+OUx0ADoG6CL6J9gwy/qTSkYwvgcoI0wkHW1Ooz6pxmptDWemdYXWHk05lkW7U8i7RmPNMJ6T82qAzvP+yiyF8XuA1pftEIdGSznzVlkYs4QA7ju0ihyWKnZAJeud07is1aXsad3Q+D5Tp9MAasWjkqU053k0OMOMjspCOto5R/6yg3OsZRmj+Rx9E2UkjUM3Q6OnRXt4mfKdWuro+mbtB5T5qFrKVRvd2wODRbY+ofYrjRJg+1NkecdfOdJ1CWKLMTJ8MTp6z9tqAKQW3TkaIspdxlGW6aF8R6usssrjLKqK47d/hHvf/5PlF9Jx41//P/D03/mvcfDiVwBmyNFdyOFtHL31A+y/8GVw24AvXv3AdUSO7uL43Z/i6Kffw3TlGVz80q+CuD3wnlVWWWWVVVZZ5fGSD8HNSGgTmzHTJVNohHVmQCWA2Q12JqARqFlwB2xmErsBlMYaDeNrmKT3df+ssso5kuFYSweDO6qUCNwJ8yz44te/iosXD3Dvzi2c9CNsXrwIsOLo+Ah37pyAoLj5/i3cuP5t/OW3f4xnn/kzvPDSFezzBiwAdEafCNwBpg2UGY0scO1UZhZU4AaAPdgOPHH5Mj7/yku4dLnhzo238NSTT2D/wsVR+tUx8SkLpTP2Qb2wOGmoQKbuANJZ6H/c576lY04zbRWg6FDnvwEYTDpObp63seFOyOrINqkO7O1PT/++uKaAgh6Ucu2TkOrYj7kbKdbCIdzFgBDBIgQ1xh+dHcAC9ZRe1kISQAsBCAxiAVih6LD0MDZKBEAnShp6Y8URWPowcr1AIV1BbOmyFEAjBYndL+QgHhEYWCkgzwb86BJBDnWnshjLkzvFRSR1EvKTzwEx6aLoEgxChEbFAe/grMlBECqM7o77no5pzoArqwE/yQFdwfQjOid7RPqt1VPEwYMmNGWgRtBBrLDcgnYfU6y71g8BxJmdqQhkXFg2R2covP/gz4GC1NmZFAbKIqCreLoLgngKBiPKIjBNYAJ6n72+hO4ufSIGMwC1FHZW7xFw0UYQ4VyjGimEHECmNXykEDKGLQEBYm3XVBFgKoVxa1mSBwH7uApgjxXZTp932GlmZgZmC3Io+5oWL9fYgQlozcYegn2oOPG9OcaJa87xBURgx67v6uMO6mn4KL8fJ+V9DngbBrAoBj1RpF30NIMKS99HMPCXl1FoBHhivhg7Io8x5UEd6GDXUgog19kFKcHbCt5eNvUo7QEDbpVYFsV4tLtjfm1LCant+PT0N6us8jiIgtCIcGUf2L98CdN+Q58VJ4d3cfLOazi5/mMc3rmFk+MZBDUwsTDk8B4Ov/MHuHPndbS2gdy9g/nwlgGRQSDex/TMy2gXr2bQni896Xumr9n3buHej7+NdnIH1649hbYBbp7cw5Wrv4X9gwufbsOsslM+0J4oC22CPbZPQHyghINnBOoDbhKA5ljzgXNoT2DAJOpf2PnXh3ne1p7/CbTLg3qVFJm2OfAwRRsB4KDysVmbPha6CZwRSUOfiecOMMbCT5LgJeS+b/aHvzNSiIV+6OyuoRMEE6iGLQAg0qnF59nOFXCCGPuu87keGX4bjKe5DWXXm3UcQCt/TuovAUqJtFzDThyNHt7P0Em9jsFolybP1mEkU/K8RENbdu0vrNq0e82eE0Qpg+1zYGak2BPI8gTYKNsnVoSkoYoJPOqahwuyX81/EOAZUkJ3BlcoFkxI1gWcunBYEFL6NuqQVquMa5HvBBR17Rl1zc8UOXai1Sj6qYzLHCJhN8ahmLIexsGHHIduTzh9nF0xCuC/l5HvNk6dV6Pd87alHpyfa+rONLp8fObXxDtzXFBAosYYz0pEHeLZ5295XmWVVT6C6HyCw59+F5unXwTvmQ4vR3dx5y//PW5/+3chx3dP3dPv3MT1/+n/hr3nvwCe9nDy/nX02zegfQa1DXjvAi597dexd+1VAAAxY++5L4BKiriTGz/Be7///8HR2z8E+gy0Cf3uTVz5xb+7ApVWWWWVVVZZ5TMkDw1SmpjBYfBMbKAkDKMoqIq5ue3T3KAWgvIwAJmK+RW2LYpzBsNEW8pqIX1W5Dw6K3fKztiYM0UA0Ilx7Wuv4qdvXsfrP/wh5uMTHB0fgn74QzAIr737Fu68fxsTNfC0watf/iJ+7Vd+Fb/0C1/D5195BlOb0A/v4d233saFJy6DG+P4joJoD7yxFEUizYLtXSBi87D3jrnPuPnedbz4yjW8/sZrOHrvHt544y288oVXMti5yqcr9+uBB6ee0/DyLa5dnHg+dX84aD3BW4CV3OlpHuJY2OnU8866RDAfiHJr+e7R1ePTAvXVYEDdR+HOVDg4xLFGtg7kidUZI0ig6VhVUoiU0+6qYJ4gMvZravEOoM+zRTDSCToc43F6F2ShT1b1dHC215MC4qxW1leS/SSiaNyMMQlWnQiIpPNaDegU1VUF5m4BAhCgItnjUXZ2LWOWAGSJBxQ8tRaxsy0RRCgd9doF6iww0fZxgjhPACfwgkpbkAO7rX0SeKECIQVRR6RKALGxGXV1pz4h0sxJt4BMI0D6DNA0AjuwIARDMnUaRT9HWdWcQwRC7x3QNkB7GjoaoxFbAIDUmLccOCbiDFkKbxsDpHH2sT1KdLQ9e19JnqZ2J7pYXZgIoEgB6Oka3DkuGs7xaG8ZbUEWnLCAiOZzF6kXFBY8EVoqrKFpipRA00i/p55SL4OF3o4i/jvEAwrBHBbBnAg2DZaAKEsCCIGMyoyZMkanDdvB4OQFQDTDOGk+5nqMRyaydqnBsDMonPUYAKUYp4tUbj5hc1mNRQJYBBuzBXOibwXg8rbtNjk/+9gqH00emx7WEmilxccQKG6+9QP86Bv/BnduH0NnS1cq0qHHd0FQ3Dm+h5PDYzQyFqTnrj2Hl156CdeeeRqXr15AmyZoP8Y7b76Fq088iWl/H0d3jzHtXcDBlQtQAnjvIjZPvZQBYAA4efcNnFz9Cm7ffAeznuDN69fR3vsjHDz1El76SqR/UDxGPXEu5b72RF6wDLp/8AN3e2pCBxyAhqGZqmqmBIwSUfn+PAnV32j3N+dKtpEP9SvAWJYDsFDADouUzoAD87cetTiRGDaqFjB7sSkDzVTAFMG4VcfNAlOhWsZxPIYigZl/PJi7FogLQurLcd9Yr+wzWeiUw14K3TbmjumgMtrH02ibPhgmdNjYS1111EfL32XdpO155DOHQi8u5UTRPaNOrmjmE0kXB5IA09fNtgoQ/FLXrPpWtmrq59lLo2P8e86yDUbetI62xtu2+j7evf3JKFGAtoZ5X/p6UcH4mhYlzmfo8v6sl25NDyr3+HOHvTDASEstfejuxaRZVrpcq8s/8/eFi6HmXoz61QphjOLliguMPsSoRK5lZXXL7Aln155YZZVVHo2oKu5+/xt451/+38EXLieISOcTyFaat1P39hMc/eQ7pz+fj9HnY9z+1r8F/8BYmKYrT+PS0V2gHKa694M/wcl7bxpACQD6jPf+4H/A3rMv4+Clrz2iGq6yyiqrrLLKKmddHhqk1NJA02HEMIxZI4JcBHR3QiVwCf4d2J2pIwiRX+nS8gpDdw0qrHLehTzNS4gSQRR45/ZN/O4f/B7+/e99E3pL8ZWXXsRzzz2Jaf8APDUwCe7cvAfuhMaMK3uX8aUXXwCh44c/eA137t7FMy+/gKeubvCt730Xzz39El792tdxIrfx5JXLeP6LL4JaOMKoeCiGu+LevTv4D3/yH/HP/tUf46AL5qMDvPS5F7HZ22A5z9Y5d15k25G0AM2UoPsuCTYa+No9Dp+OlB3nCJu0kNOpC3d992je8UmDleLkZzhHRSTZrkQ8kAAFdDaQSTrNBQSByJzrRFdP1aYKssRV+WzR2bdr29cnAUQ6eDJ2NoiBmUQVYEV3r7zCQS4O5BAJZ76mf0JV0Yih4txF3EzFcM+x+WIHfb10T6nGnt6NAGJC78YA0T1IRl6GLt3SxQXTkYYz3kA4BpqyE74SadJgqcjSsRvBFAwwnyr7iWEDYakau1Rr7M75SGs3TnTHiVZiQHrM2aFX2Z9s7xHXntiDHM4mpRop9iQDChlUyECGudq9hQFqzq5nzwezk2z1dLJPraHPPXUwAUZOM3/OkhWIvE2DQYmhKmjMHvBAsls1SAaUFjQ6AiiJpb8rgCYQjaBJ7l3s9aIEulTPPfk4qKkbRJ3TSGOOjoAZE6NrH+9hD144ACsiS21U2dbGPuZ5BF0inYnNGmMCq2Atj8RZQAyjGKLGmkRAMjrB64gMati4ZB/vA+TvgNKsmwPw7hdAPiOS9V98kNlRSqAxgnFbwZmI4tVDD9h+6FJ2vG61LlY5R7I9p0cw8+03f4I//v/+E7x//Qau7F/C5154HlefuAieGkDXAFK8e+smrr/9DuaTGZf3L+GFZ5+FSMePf/w6lAibCwe4cuUAN2/cxPXrt/Di51/B3lMv4PIXfgGXnnk2iPy2o6TQF16GHh/i0k++g7/449/Fd777Y0wiOPj8T/HCl76K1hrqDF1n2fmS7K1ED1DuiztxAxHe9z2ItlAHosO3M1IZnQ6hn0UJgIP9oTu+3N6nPqIUwFjBRDxSMV36foX2d1fwgpZDB6ggtNiD7VoidWYb0/HGtcjn2PYtbluOcUKqEHZdZpmpDAWqZPr7FtBtlNWuJWoVhgHQkv191C907pHuLDJgV3tZXJ8eKewwOibaRrcBKmGXjXRmAcIakP1SFX+suj0SbRZpNlM9SqCTA99d/4uDA+PC0oClHUGomb8QbGljGGj5t1tbMj0Z+T0TR20BP2wRencFJdm5iwGkrweH1FMq2yNMr5f6Ph06YpS7lwuyP6MhMcbrdmOMrrXP84BB1EljHFXGr3HzriYO3X0xJ/xCgY4uLffF22MMIWyKsBPzEdV20VInf16Mu8X7T0O7oq9HWjn7NJVyxSB/WvftVVb5TEm/9Q7e+/3/N6ACufv+I3vuxS/+Kp74m/8I05Wn7QPiU+xIF7/0q5hv38D7f/Q/485f/j4ABfoMOT58ZOVYZZVVVllllVXOvnyIdG8CUs5ACjuLAjNBpaO15kaVswUsggtbxuGWeRSOKlkYfjuCLMMTcereVVY5i1Jcc/n3LB2/+2/+AH/6J3+JL197Gb/5D/8avvCFl3Hh6h4UDFaGNMG3f/RX+He/9+9x73Afr770Cv7xP/6vMF05wM0b7+DNN97F7//eN3B46yZO7t3DO28c4Utf+2t49auvYDMxqLF7LXTL/zicYgcX99DR8a1v/xX27h3j5179OoZjap1bZ10qKGb7s+pczDGYqCOUoLYunIVxyllhwX5jShFLF+hO0Pu/82zJbkDWMsB2Vsu+LYuAwvZ3DqaQOMFMlKd5VY2W3xzf4mmonHzf02MxCH02pqRknIJCdYYqG17IASFdCaAGETH2GhV0UXCnoEsEVKAUznxJ4E+Ao1o66x3/AoHOCmoeGCAgHsbaAFiarR4pJfykb1eA1QIMQgIGWUoyMBicgDsRTzvA7E5uH9eqyQoEb98u4qxTIymbAYUciARzKPdMJ+dsPypQdJtDPq+IOME1eXpWpb7O+9WAqwZeYcBPRY/0CTqCG7BAiNWNgZzDAulelzKmE3iI8TyG6WrTtLF+7MAsJ1bb3vN0tY0rST1OZvFTtdavqhjrRZ+9zBFhwKIMVt+hBxIROpZB72RPilPtDk4iwgAMwUA47O1AiDFu6SOinZr3cZRXtA8GhwjQlPmkpb0p54+AkmNJM3Bo13A2swU2OOO2NspHQCqCH70AzqAE9lP2uSprlNfTJsYcimcm+Coarqy9GgFBymAF81lO92aRkLr81h2rhOOy6R8qhL047LAch/Xr3SvpKqucL1EYM+oPv/GHOJANnvn8F/Dq55/H3t4GaEDvAnSAN4x7cgxlQmsTLl+6hC99+YuYLu5B5hMcH854591beOeN63j//bu4sNlgb/8AL/7Kr4P3DvCg1JFEDNq/iAuvfB37f/VnOD46gtIe9i8/88D7VjlbEnuxbn+4neen6qE7FlItP+12qlH8xXePhXwMFdnZF5+EBDBKsQWEcIZJJU/DFZfr0G2BgXxRgqEaCdCeDDLQngyIAWILJMeCtRJI/TrAPP5tvChBHeFvDI09wB1QGYB68ieUrHTiZTcwjY/JgUKxQxahp4BS39yhVrjuF8CSAT1RoOhwnqIuvncbjcjbdDRGsfdKWrWCeFmkatf4rYDBNIBX8TRN/2nopiNVMLItQzle3JaHm6ofd/wda3xNd9w1dGVNJttkFo1y0NDzFmnsItVddt1I2RbNMlKbL8eEhr9LBzOnjtNWWV8t9wwgTjYkojD5/Him25GLuaGjTgEQWj7fm1VGq1XZZrsed1LxeRfdXzUMmMX6TFv3LgB62WtlFp0qiJdzTOZFeR6jFXuVVVbZIaqCW9/6XfS7Nx/pc/ngMp78T/4rTJeeeOB1xA2bq9fw1G/+73F8/TWc3PgJ2qUnsXftlUdanlVWWWWVVVZZ5WzLhwApeSoMDqPSPlMPBMUJFlY7LUK8DEB4DMgDWcsv0uw1H8KgXnYbjf1+aDXDVlnlbMvSERDeEcXR8RHee+cmfvNv/DamTcPXf/kXMDFDALz5+k9x/c138NJXPo/r79zC8bGgtQmXDvbx1FNP4OKzV/HCC0/i6z/X8OtHgp++/lP8u9//j/irP/8Ovv2tv8TvfO430fbNyUMYaYnS/7IAOhAubA5wgRsmbnjmmafQ2jaL0ipnTe4HrKEIottfy74O76r/MYADKA5IuG+Q854IdIez7ryAerZlWe5HX4ePv11OuT39Y+u7TFPlnnYDLDEIDXOfjR0IyPRb0O4OZAMWqzJULMWZPVYSVKIOgAiHdJyKFfHUW5GaDMbyou58JgePZLotuBMaHayA0gRRsdNUItAuEIaxP3harY5Ix8aYxZ5tFEQGUmktntsxz8aA1IgAnR3YQPZ8Z7STcJrrSBsX6SnUdRf2dVoBL58z+vh8mlXBMUfSswt36KtDRTypp4xAjsa8Ux0BEjX2psiUZq/29ZsV1h3kn3sKMu/rAHjBP7O5Wud1t5R9zuhDRGjEJXCsaAxAGI2nTH3XEYEFgXjKR4WCGjsobKTIizGXYSodp4WJOcFsAzspnvqBEKfot0/xV3ANBzuQ64lEDSQKhliwoIv1q5+854YEWbGnJ2EiO1WvroAu+mQ47beXS/L6RIhspBQZILYe36vCgnLOvqVwNiMLRqXy6+MuklFYnaKO0c/q7e7gtgU4Kpp5nMw3IJcFBJO94tMIcH4YqQEZHWtalj3GUPzbWl6zf7wNdeu7eK7CUvTFFAWcyTXu3rJRVlnlrEqO8a2BOh/dwfHbr+Hy5cvYbDbY7B/k2vD+u+/jxjvv4alrT+H62zcgs200jY2xohFj2tvD3mYfl65cxksvXsP1G+/i+9/5Pl67fgfP08ZTtEfAfFmgGrJG28OVa1/E5YP/gM2Va7jy9FMGEngcgSmPkdyvT3Idva/bZadGWlQiX2PTWQTbo7Dcax+mLGdNCNi9KX0c7/nYRO/zO8rcHiAS01iMiTQPRGjx60FdtyrgDrhuGPpujgos9vgFEClsUtehUrvUsEHgbKwxlsT17WBOcjCJepprdj4ZvyeZZPPJbuM4qoc52EatzFz0LMB0rd3AqXxzVGK04DCvUScAEQYzZnlWgHUq3435UF1njf5J9PYAKCVAHtEv22Cb2tGRwo9Pz0kC4LyggzF0lA00WFJr+VWNVUnikEW8M/0TUTbG0FJHOjyMHke2mlYb28ciBaMsXJdWs/OiHVPn43wn/NAOLd4ch0iGkrjQKbeU1GRb0goEotLfo+z5bdkoNd8xbMe0/fLz+oBgsi7rZn1efFf7NtbfeGY1HopsHxg+JTF4z8vCvMoqq3xkmW/dwJ3v/P4jf+7BS19Fu3D5oa+nvQNc/OKv4OaNn9q9F68+8jKtssoqq6yyyipnVx4epNQs6Cgiw7lAwBzkBrB/bJEbNF6moCBoBpqkWH9LimEzwk5O1AM1FoeaGqNFark0qdwU1YVVttpSq5wduY9zvjHjpB/hm9/8Q3z9a7+A3gnaGEwnYAYOT07wxutv4F//z/8S891je9SkID6xIDFtgEY4uNDw6ldexguvPod//s+u4s++9T38xt/+DUwOUorUOLvKJKpQNHz1i1/HP/r7fxdHN9/HX/vVn9sKdC+puNfZdbblQancjL8+ryxrOAEBZkuHojPMtAGqGBgED9CfA7DSeSjjLlmwVMWmpoBDeLH0pGo6KuOfZEoxwURwEI45epnYwEPpFCbMYsw9sx4D2mBsOJa2zBzLxvgC7WBGOu1tL4+UagQhA22Yw9XAN+wBBekDEESY0dBA0u01asFSc2izH9q25xhghkAwQFR3EIx0ASsBJAZUYku0pd2AVELdmMAQDDe6ZM9xEIeqekq8SJ+GdH4r1AFK2z1EJfXDDGoToOoMPwRmApOCAXTp5rSHOe2BZs0rM5g84NMFRAZoYmKIP9/6y1iKIngiAigZGEZVk5afW7Nyqqf7Ulv/KfQw17+IGOwU2wFEIlIwsTMNMUhsPyIF0P3ENTPYyyT+uTnP2bBCUEAFFCxUZMEjbs2AXiAwD0CPlYkh+RwFN08XoWIAMvUgiAdFIk0gPEhEEaggT8XB5ICUSJdgfcU+jgzMFeGlsasxk6WMUHfaK6FFMA7L6+OUf5TT3uOp4jJgQD6uy3pMNo7UU3EogE5BPTbiVgmqioBcBBEqixKifdXTCo4xqqFzWGTp9OJyViQCPhlEwQjCjNhNBhsZZMRhGVTJaNYi5rYMHo/AmrGhaQbWMk11nkIvTAL3K+sifES7Loki3e9Jq6zy0aVs+xWC2G++jaPD23jn5i1ce/o5HB4+hc3BBsyKK1cvY+9gD3M/wfU33wS6g5QZADvYFTFlFG2v4bkXnsEsghuHrgMMxXEZPM6Y8SjL81/+a/jb/+X/Ee3Kc3ju5edLAHSdIedNHmBNPFAWercH2cOGWITvPT1UjYOf9ZFxVsu13L0GUCP0iioJ0KByn5bnVGCD6yQDdFSVYdP700YMmwKabEuDqaisAzp0ndDhFiAYxLAZdka1e7Swatp/PUV5AjlMn43XhT0SuaVFx51anheHKy1t79Y4JkAK808d11UnGIyxW23v5cqri65TUx5SeZZ/mYD4APgkIH4LeFLLa3pstFl9aviGMPxTWcba0rm4I/Tz0Se2LTDFdd5/roRSFt2YmXsf4yGV3wVraTwnDnIABiyKVNuc+u42+N7SYNMoPpX+SN9zVGWpjyN0QwqtUsswsw4qKiKGshkVtC/VB7TWz8st2Tep41amJd0CEBXLpPwoKm2RapuO/skOGi1q7au1bPb5KdM224ZGXc/qorfKKqs8Urn3wz+F3Lv1yJ/L+xdPpXZ7kBARLn75r4M2+7j8td/Aysi6yiqrrLLKKp8teWiQEjl9LmUgaQRbVGCnU9QDN6KYOqNtCJsJaOF1GL4MiJ+AIX92mHjsQYTuQb9ZLOhqgT9Cozg5vvSRMqsH+UqZ433xR61P+f2sO8ZWOd+STjJ3YAg8aNpmfPc7P8DeHuHzX3kez1x7Fk88dw2/8sJTuPn+Dbz44tN4980n8P6du6ANgzYMTV+HM1xwA00bvPD5z+GN196wACc27rDZVRCbFBaQFzz99FX81//XfwydOzYXL5ztwOYqDyXbZ+MC6JJgjGS5ixOETl+uI+JLPFh1ylPKmltcs+uY+dASjuzTk7Q6KGsagPG1OaDtNLOxIUX6Mme4EYHAWHg6nRgXERnwjOFpsDzZlhXDnMhC3cAhYmw7KgZgyZOfas9u04S6oQvM0WvQkQ4FwKIQJfTe3dkbzm2rtwSwwwNVymN0iQrixKvAWHdIga4ds8wAABIGyFJjAkhnrTE3iL8DgNeTYB+LqgUbEvRiQQXmKOtwE4s7sSWd44rm6bgEAd4pqSukW7mdUapHKjk1RiiAoTIP1ht3xIPU2YUsqZzdQ36NgJjREKxOyBPH5Sx5/oyhEyeLVS1NHjMbCxFsHFBeSeCm/mwDKFVgFhFZmjxYEIA9TkUNgHKCZ4gbRK2MrVnKOvV2amzjhVQxBRhNbOyiMVQJ5OxcI+0kOcOUF4QjbaEHzsSC50rWd00FRozFEEj2Z574Bnv6DtcvUZiLSDO1JWkZ09YCHniKrTEYxgDVAYYa6fhcD2YLBhGzlVUxGCUiIJPMSTYvx3MQvefzRpy5a3mi2k6is2/r7H081no+y+tytGeJ+UUgyj4YJ+ttfgLcCI2BVtPNYAQ183H+BxEcyKg5JwQGpBSNeav+czwx+jo+p0ACrrLKGZBTQ3H/IpgZTz31BI6OO370g9dwcJFx4fJVHFy4gL09hs6Ea889A5kF9w4PQZPtn8nm4IHTrsDh8RGOjk7AvD9YSB6iTATC/qWrePXXfvNBkdVVHhMJSAUVPbZqtNtMrrbdlZVabf1dx8ejkwozAWofjI12AIjKN27/VcaZsFHGnhwAi7gpdNp4pyCYbIzpxn6qjPIQJO0Jgh1+MN1G8zNVhVCkV6tlGmCpXJN8/BgAOSgTaZGSLhUmt3OM6cm0hq596O/BGpRjeYA6qD6H/I3+CtGquwy7LvhGs918TQwdFnB7Je1wIJjGsi3ElG4NcE7Yha6kqKe0pjHBYOAes9s02jC7IIBEQ98kDj00ZuZSvzJzhLIeqbsV8GqCxnK4SdpSROQHJ6K/tu6FM/TKYKuyajK6SAJ8so0X4KMB2NdcS0Ij9DKFLpd+kPH7AD/Bx274RjQZNyXeWZiTBtun6+g+JkhH3wQYLg4vmD0WrZur5Gi3MbHGmB+XjPFYmY3zGtpKNFDH/9YTNYfKcm/3sWe2iNuf69K8yiqfGdk88dynXYSU6eo1XPnFv7f6l1dZZZVVVlnlMygPz6RUDEwFJQ1z70b7bHTKsJQsqphF0JQgSjiYPMiGYjBSUBkPYypUkTYB6GaIiRK6KKQDKME1buYwIJAH342hZm9DzvZQDOZFJeLXhfdhlVUeuSx8BgAiADZrR2sNn//ci3jiygv4/EvP4Cffew1//EffweaAcO2pAxA6ps0+rj75JE6U0KnhvbvHuMt3IWCQKubDe3jvxg187wev4Uff/wkOZHKnF9J5t1PB988amgVwDy6Ur3ZNiHWSnB+h+wSnzStlTFmDkSeZslQdBGAi7ty0rm8eOKfiZFzHxM8u221pQCMD6DCk90w9IFCIdETmFZWeYAx156Y44CbTgqnYKVb46WAmiM5gnqDSPXjg/ntJL6mnRDOADJO/l5sF+RWQPvseHundGLN2GBRFnHWJM8UcgSMTlj1HkMApQMDcHIylmerVnKiWslJ6hyij9xMobO3kZiATw/vEmhdjWdDK+FS4o18B7fD1cziamT11Wp5CdfYnAMTGwxPATgMtKAyjw+7Yd2exp5WTLhZUyGLxCNykzhMgjAG8EcD7XxKEZBGgwXqlGKxGpD6XY0yoAuRsSyOikeUWiKV783FmACwAzqYUClMDgxujOyBM89nWLlMzhz2TFU9EoOzPIjImJhmn+cUd/42bAaD6YBDqvfDTqIGpzJlvjF/KjN5t7LKh4Y19yREuPPkYEMBnhKX1UHUQz3DucwR3AD9pb8CpOYBQCFYw7xOK62mAVtjYn4ZuaW0xGM98tmW3jJBEAsnUAUri/UkOzNvaryNQYIVnT5HooLyiRzMIUtJ1MLGB+U/pv2dHaogmipnzQUcQMOrUxf9uADVjx7LUKR5mGVQQyD892ES89bmOubdYggNMWeZNawaOK48oW99qT6zyyUkdWrG2KiLIStjfTLj89FU8f+1p3L5zD++9fwfvvPMOSGYcHx/i/TuHtibShKPjjrfeeRdts2dsgwLIfILje3dx8/1bYGq48MxTyyAm7jO8t/RNjbXwftevk+QcSayvW7asVjBDWLpLlutt4GcuyYsvx1hZLYuPLgvIQ9H9ACToVreuC2B16IriNiCWtxfR3K8TVEHGkklkNkSy0cQuWp+jpvMnwMY/7g7SLneVIpiNkCmnd6XqArlOVdtiVFo9LbWtTIVd0XUx0yHClvDX1DVNB7Ru0ATFV6G/85gFNPTMGN92ENN1vKxXASQRtryh9mEA6UXHOymvV3+8fUE62k9LT6vr+OPh0TfR15RlWKg0Wm/R3GeUkO2YJlfYNDFCXHVNOws8bIRaZx3PANOiDgCBG4p9Ezmx3fcbp1V9MDYeTFa1fpRoePVnDhYn+PsjJTC7/8z0T/UDPYWZzMeFOjvs6MnSgBqgs9Rssz6jvbbWQjl1Zc6f+pbB0hUDdbsfh2awZMPKQvoYD3YuLNf22lSjp06NjVVWWeUxlDOkfK3gpFVWWWWVVVb57MrDg5TIE18we9oKdx+IWVzSPehJzWwZ8QAQGmYo/CC4Mx0sHpz+BMDtIKYBMhIAnTDPAlJJQFKwgoShRURoTSEzo03AZhNpV/w1YbAWB0O+f5VVPiY5bdsLVGZA7ATfxScmvPTlz+HaK8/j5vvv4/pb1/HmG2/gz//0G/iL7/0IV68+jaOTjrffegf/7J/+T7hw6RLAF8DTBezv7+PifsN7b72DX/3Fr+CN77/l4726ee5frg+IJKxyzmUR8FZNB1z2flkbg+EmAwxxlTPVUEZ618Hy6CRbuZzCBYR8n2rBdODOdFUL1vs/gQK9Wwq3oP8HDFgjwbQGQNn2yy4eJDDwEVih3Zh1LLuVnfSM08wghWjHYN1yh7k485CceC0m95Wqs5d47dSpDWmwKLESiDbJkJMAHwiIGpz4ZARO0K1BABh4q4GpoTU21kVnWEkHuoixPUZaGxBUuwGqpNszuwM4yglaYzJq6fjnFgEMYIJ7ygloTM5qpJgRp8/tPUTO0iNioBMyFsnwI5urHtmXIPa0ccYIBFaQ0QEFx5KDVwxUxTDQdqQVMB87O+DIgGWDbWmcSiYiMOUTM4BCTECXBLU1ZjCac081Y9SS2VP8RsoHTx0obOAPUlALRp8G1m4gHmF0CQUz1hCvOjGoz9jQhEaC3ruxSHXNPrMuZ2O6abHmNAfTCbTFOuUAPGqWChWmJ9r48wAJqZ/IBtrUPPWgBRMssyCDRAyIEm0WY5jIS68QEQeHLcEsOb5llIlgDGAofSCu6IqMAEcEwAJUZSwC7GM9AinjmQGciu/IGaeYOINjcUr+TK/UHmQLoGDMdxVrC2Mhc1YveJCPDNzVgTxMTg9CYkUjlMZQtaUxUryog8Py1HsUz/urdwMqGVgpAm+jZSn/c+ZbfJXHRHTrL4UYaFkYx9Jx9+QEyoKDiwxqF3B4eITbd97D9es3ME0bzH0GA3jv+ju4cOEA07SHtneA/b19XLp0EV0EV69cxD1ffwGgLGUPVbaYduusONtSx9IH9VP9XnPhq/vwroePRXjYnLTjuvHxOmY+muh9fh8gBM3DhbHpJlgXDoTR2OOA4CJNncIBJKHvps3iupRhRwrz0cL7Yb8H2D2YVa2zA5ChrstxAWeYfuwFsR95mCZG1AAqpc5bK19AQ8PMcqSIsh+KsLTFQNjFxQ52uzmYfip4Gq4PDNapuJ9SHws7gv2wQsyBmEJ1rYQGvGTocnaZ6eDB/DjqrlmVikmxIyZWGGsds9+l6sagBHorNHWsZNGKoqcyjCFho1b6nuzXaCADWam/IxiFKIFxMV5cl01H8FhNwi0RB18A47uq+rfZJgISSxueDLkFWq4AooNjBbIxbs8JG/KUuH241KjNdhtAoDHi1Q3YYGRV+NSozybyv6OOow2yrG6fhozxcXojTnVURzmya+Ar7+KewYodzOyIPsixy1vY4zqXV1lllVVWWWWVVVZZZZVVPh55aJCSgjIIY8arBbf63KFdMM+zHfpvDQBhCoNwBg6FMDk4adprmOySEhIYksaTBxOkC+YTRT85Qe8z4IHUk+5BPwLixJEeK5gZ+3sNe8qYpoZNM+cDe7mrwyLet8oqH7tksEyhMuNkvoO33j7E62/fwg9/8BMc3r2Fw/kQJ9qg2nGowLF2vPbTH0H6jBevPoMNGM9evYrnX3wO1158HheuPoFjBebf6zi4uAE3SkfbgySD1GUu0Pa8WE8xnEl5NH1E6WyNv6sTKqnnNQIG7oir/sh1eDwyUT+lCoSz1sAmLT3iYinc1ABCvUsGFyw1lwDaLYAQjm2Fp32TeIQ9n9VZmHgBjHK0jKV7AwHg3ONba0v2GLUUYsHIZcwmDqYIkImOdFpdO7oai5eowmgRfVw5ICPSm6kg6xk6gqhkwITAIGU0ZkwMBxJ0T3Np6diIGJ29LhonYjsiFRYFOKJbgEW0Bl4MjN0mzjazyWKgqAjBxGniSFeiqp5KzoIT5J5m/9YYr7ztDCRDALrpORpOdZhz2JmbyFA2UA2AkmabifYREIC1X1dx57L6vwiuiIMxIihlwKeIkqiPFSWCsrWxSARZvN3gaSWirciCN0wG2pqlAypgIYABSbYngNEAtRR/VssO9vHQO5JVKIIlY40xvhz2dBSkAVDx4EoEvCINQ1znOfEMV2kPaxzBi0hv4fckCCn6wYJg8GuH01+dnSu0Vh1OfvGeJgPWxNilEkwTHdou0QhgKYI9LNi24ukeqipzKoN8/gxOBgALKiSy3+85yyEFL+YA+WVbiIPiYqxaezQawDVVKqxmlgJuyBb3S1mzYs0UUT9UIRmpiVSAtY9iLW3KaGpMYHbwwUFiJVAWL6HFU1ZZ5VHK9oz24KkK5n6M6zdvo7/5Hq7/5C201kCbBpomMAP7Fy9i2ruFO7fvACrY7BPu3rmLuQsuXgSuXtzHpYsNaBu0zb4xCzrA2N708KXa9f06Ix5XqT2rOz7b2oe2Ltl1xyqPQBIt49ZbUd6DJaYCpAfDjaZ/z/4qQAnXjTX0dbhqXBA7GgButy0C+DRoHUO/qygKRbVrM6VtPtX0gArqkQWAo+g8GkCZ8Xcy66CuVfabHfCgtAlsOR0gcPZ3p94vA7gVo7bwLGVbayiG1gqut4fRTYv6md4f/TTsbQBD59+eU6qearmAdTDqmjY8AgymCDYlV09HV7h1tU2ipdHBnnJ8sIUi9bWFhI6Vz/anu44lvleNrgtQGS3Gqx0YwWJMIOwqHzcFzmMHM0j9cAb5z8iLHexVYePFljaYhqzN0+go7RJl9DZ0gJhqAL+sTjFurK5RvsLmFN0nbi9EemfN123No2i76J2wa9TvH/dkM+Tvu1bUwRy1XGeHEyhYxIIVrTTUeOa6SK+yyiqrrLLKKqusssoqH7M8PEhJCEps6d385IpqN7ak3i2wIH4CGoCQBeaOTxr2NnvQzQaNCSdHCt2DG53AhoydYBDqwk/i2x+kxtLU+2zpR9wBoJ6O5Vi6n4JidyAQ5t5wfELY7G0wtYapMfYmxtR2pUKqtLirrPIo5XRQAQDmecbt23fwk7/4Kb74yhfw8hdexVNf+Sr2rl7C5uACpqZ479YN/Df/7X+PP/+Tb4HR8NQTz+DJJy/j7ffex3deewMsM555+klce/FzuH37BJcu7EOI/KSkn9T6gGF9yjG4yrmUhwEr7b4m0r5FlLd4vdyhWv1gNUC+ys8m6fjcFvM9u8PXHMvkLEiqBlTqXYbDVQSkCnbntDgrDgnQpbsDX+DoE2NhwnCpizufRSwAIRpOSmOeUQFmkZEeS9yh6W57JaDPM4jYU9IBABuLDHSkYxPxNF9WSQMMGUCp9yhQBDXIT72aY5+MXgXTxGBq7ig39hySEdRgP6Hau6B7LWWe0xEcAIV0+7OfFhVLK2dAHHfke3vYncak1D1NFDXKOvGWU1u8rexja0DrFwBsYBX76exOWs78uuOfnCmra/f0XnafKjD3GQEPC3adALmF8733PkAW8KksFhwgJhAaCK7LEewdrDnfhUx/UxrsVHDAhp049iBAYWWK4EueOSYCc3OkuYLYWZJELGjhgBpuwdYR7+rJ+GYBBwaTgVfUmZbiZHIw8XTpYBhwy1KfbZ2cR6S8M70VZKAgCfBW1qHcUKekqjfPCACISAKBFA6Cg51YZyYPJtjcszkVARLK/qprQc73PH3vsQ0e97EzpGkEbBycZKfVR7t7FG/H4nJ2RD3KIt7+GhEueHv678GYGoBMEkZrE8CExg5qRATUgEY62FO9TcTtCJseI3ho5XA2JW+unkDAuMABiAJ08lSLBEyN0ZrHcTTAivHWVVb55OTo/XdwfHSC+fAIn//c5/Dyyy+hHeyBWjPQKivuHt7Fnbv3cHjnHogann76WXzlK1/AcVfcunMPb77xNl4/fh3UNlCeQE9cgl4Y82SBGDgly7Gvi0/ue9MqZ0AGHGL52cPc9+GeTKdu1EAzbNkT62j5KLIEJYT9FjrBgE1o6h/j38CIBLAi4TdFNwrATwBLqro0DkdQwO39UCMHcseL6Z8nUCQ/jte4Dhx7ekBdeAG8oQKwyPtLueqzBtByHM4hwA2tOiDHr6Ke0lldH4mX6LhwwHRGOqylbUwJ9rI2ksV3obRUJhyqbZXFKqnFvDqD2QpFZxz3ceqZMsBHCW4Jm0XT5jCzi0a6tQRtk+N8/G89NdIKiMpanMMPpQasEfX03oAfIAjwVtiaahZQ1dmjr5OxaLxtvNU+5Th0ELYvkiMKoJZjk1znzHd6FgCOrog+C4Ou6O2INtJa+yhNsJdqtl9NE73oT7e3c4wuu23ZsOUdCHsSI1V2MeQR4MClwyYeQDHdwqT2X7bXBsq/Y87E+AKQ7b3KKqs8nnL89o8+7SKsssoqq6yyyiqrfBgmJUWXji4WUey9myEoZnyLWMqOXtKxtamBnMmokYA3zczHDsxxWqoRJtWMSXaxAIWdore/NVKKeDqTAESNE0Id0juIzZExzwoVxslsQYXGjIO9CfubCZt9Cy60UTGkNbcG31d55DK8+zbUCHfv3MHhrXv4xa9/Fb/+638dv/hrv4x5QoIL0E7AN0/Ae4q9CWg04fmXX8Jv/ad/G9PBPg4Pj/H+e+/h+9//Ef7DH/8R3njzHbz84jW8+MSTICpOjAdGFsJpVJzF7mxaQShnV7YZrx5eTo8F63sqv2M4WyNgXhyEdvrvbAe/z6MsgAsOyqHCBCT+nXSH3qRD3JzpQWofLvPeDbSholBWGPgmHJg8+hnkDDrmABVnKImUqmCAuUG6MSdNJXeZ+3DzpK929dxmnnqGGBCgKUO7YgpAjgo4gEsYzDbBzsPkqc3YU3sRgXiycpWASWNnYAJBKE43W1U7DFDAxCBuxopDri8wwGrpJLiZFkDuvbe2HTT3zeeHxTIYqgbEgsBT0loQIPrEwDWWak6Tlj9SrZlOpMoO8gKkG7iLAQOb+TWRkgHkqXU1To4bKAwiqR+J9EXwwz5vOSKMWc/HVwCXPPUdkfUFa6QVFEsViO5Pa+jUDMRE9inDU9Axxolzd5wrAKGR4oFgelsCkuDp+Xyr6eJOfe2g5mCoNkFldqe/jwlYGgplY+xkbZ66L2sNw34R0NrYv1TthRonoMUDKBa4aAxQI/Q+Oy7OQUDqQK0EC3mghICuxgZFbLW29BVk4Llk+wo2JQJRG0GZCvLMIIwBBTM4SASQBXo45nrOXZsXsJgMmNjYfYggxD5+DDgWoKyzKgbscniRVqapkkKjgIdELVVk9HWwP7C3n0RwiK232Jlbw0QYQSF10jYfX9nHOoKX8ZnPF/HT8Z0MMGrAOMXUGW0iI48te2fK2W3+VR4DiTDy0fvvos8znn/+Gp589kkcXL3kYxYABEqCmTpmNcAug9A2E/avXMGlzYQnnzWb+s6de3jjjbfx49d+gnfeJnzxrz0FkO54665AbS3T8rtVzrZ8tD7aYU8svtXl56deEkyPW18UYM0qH062t5/4zDc4a9sCBKnAll2H97Tsgdmfia0Zm2rhpMEA9gfXDDkr5RIcsVxFtODE0zhJ3SffH8CXU3WtT6vjcqQ450zaq667NwyGJS+pj0dJRYDyWQHcGaw59TMkoIVIodJTt4NbZ6bCDfac7BkdAJK0tWmorqHs1TR5KK0d6b+Igh2r6CGp9w42pkzjlj2l2abjb/fNJiCt6sC77P8YU2ZPRPuE6jpayw66ileS1MBL9mfoX5pYsMpgFSU0HJy1SQDVWqbLntwedmbS8Gv5z0htFqOVWKEk5rMOey2Hj9ssROX9lH0TfTbGyWh7BUGoe5tEG5GzLCH7Idu8vDf6dHmIqY5tH0/ltVUYcXCiFtBBWgFWyiFElpaOxnqbLK8xH1TLmFlllVUeZzl+5/VPuwirrLLKKqusssoqDw9SmvsJutgpfhU7DdXcImU2JiOZT8yEIrZ0NW4VWqoaO7nOzJBOmEXR+4zZY1j7+xu0iSxoA0C7BSFmEQ/QWcDHTr9ImmINhNnZEuAsCb0DnY3yIUBK80nH0XSCvXnChYM97G/IgpDF0A9Jx87WJ6ucD9FTv512qn+y5UA6J+BjTnQG7QF3cYx3bt9EB3DcT9DlEHePZ/zorTdx4/YhOhmw760bN/GHf/5dXLq0D+kdswB9fx/XPvc8vve91/AHv/dN/KO//9vpgKlelN3AkuGsxLjUPxupglY5e/Io+kYXHY/h0ANAmT4nuVpyfFCmiVpll5xmmxpu8JAIiNd7iEagXt3h3NXAuPA9UDxoT85qFCARhRowxp2wBrZwR7PPf2YZpaFglAHipLL7tJGB+wKGi6BRT9BAeGNHoMnAFb5HOwqFmC21mVPuKwmYzdGq6entVhdlNLJ0lUzNnKcTj+AEReoFOBaEMVLBAdTIWZzIwTiE7sCfTHtGxohCcDAUSZKqMJOzRboTO73ryQ1kAQVqBkwSSaah6OcADsHB0szkIO4Mg3hwx5lhFK7LRMUylmTzzL+zk8g0QDNkzzcHvwLBeOQnp9WZXcY4q27rODNr92U6C/U2lY4JDGJLgdXaxliVFLDcbOHkF++TsXEwkbNESTrDI0UBxNJqNGLTBV3tUunY8/5KIJawA4LsIYb3Uah2NFbMXUDcDAzn0RwVhYpdl6xD6qefs4+bMS5BMOvsYxSWLs5jMxr7tLe1xBxTBTkwBmRArbzW18f4W2K+KyWzWQQ7FgxK2XT2i6UEtGcxk6cWs6AOMVugzdml1BmDgpEsns8cDFHex2dU1AFKAcAs8Zccn3lCPRco5Pypm1Cww4kIxMjB0CZP8+xrosQ1qn7AoWiJJXAEf84A8NoDegI9/Zw+EYQFrIyNTpgYaFyDQ0Nq+pb4ZJXzIx80iz4Ve8LfK/C9Szveu/UeNhcnzJjNdu4dXU5wdDzj5q07uH3rntnHqrh+411845vfxv7+ZONbbW06Pj5C74qT4xNA2VNpLsOkuwu2e3xr+XMd9Y+vLIYALX8uVr/8ZddoOLv71aclp2ZV6OTbNuDCxvcdtIBV7IcMwIEaq+hIFha3DXvw1LQu/oRkbCw3596n5a8E8eiwLfyn1jsDNOH7bVbJ91x1kDuKThvAcfvTwRjZUKbXUQIwQgN3xld1wE3s/XAAEQZraDIolXYIfS4BXIDr2wO0FMUJdlQait6WXVhSLifzDy3aPA6uRLXCNxnvh+umwYYUwKQ06ML28f9QjovQdypCpipa2U1ehuDqDKFxASjbUkcvWvtJLbmVxw6Ter9rHN4bYC97Z7SXa+xun0Qfq5chQP12EMVKxvEcqvV23S7mgr/bRoS3SaZtDhs4xnHYuFHBrCiChyjO9aiPAyUaB2lHZ5YWjDkZY3/ru7LvLoBa8cA0O2JcU3nmVjfVtXZxeIHGIZYFwn77gAMhUt2tssoqq6yyyiqrrLLKKqt8nPLwTEqzRfd6F3SxExukFiYTsXQXrZkxN8/m5J/njj1uiNMxxM5E0D0thxKOjrpd20/QmLCZJiiA49nSu/Uu6LNasNNPz0fqE+nGJCBiaVqIGErNDF4RSBqXhIka+tRwIoLeCX1vwsULjOYMTl5L/1kdCatpdl5Fd/z2yVMW1/dZYBlNcTwf4Q++8Q381Wvfx4VLFzGL4mQ+xsl8iHv3jvDee4c4PjyBygmOZsGf/9k38cPXf4Cnn76K/YN9tOkC2rSBzIfYTA0vPPss9vcuAICnD4pUQKdLFI6NJbMDxnCPoOwKVHrMpa53svXd0km1pD2PE5aMVYbsBAOWJlZoOYBsEy5Yi+Leudsp3GQM7AZUmnvHSK8lxpQEQBAgiJZAJjvNO9v8lxHcsPi+PYMmhnRLjZasRtoRDEDi+VZJOR3HMSYEzmwIcseuM/AooYux0Jinec71xwBWHaIdwARuE0g9jVyHMzw0Y9nxmhFNEHF2RraUW+YSbhAQWBWNDDyiXTFHc8tIvyRqYGWVYGkK5ibBLAa6kRJAYMsl5kxDxsqjZPUkpgQn2YlsHmnUqGVqKvH4DfxEtT2/+dIqzhZJkC4gGODa0qcFY5KXWwIcYf3YxdJgjODHCCCIAt298qwChqU1g6fEYuUM9LAHMroAnZAp62YHONkYIChmaFOIdqtDID40AhYONlJB1xlMweCjEOPrgKrpd8rGRNVVoOzlB4FIQNrQAUtrCKC5ztggmLulLOweAWEiTJl22IIWgm5jvvmwk3GCnMlYtVKT87ozNQgUXWYosT0lU/zFKLcAQnATiqOY6jXI0Fm+AF2DOYBj6qOmVxmgOQ/keOq/PL2Mkh6DyQ8DWDAlUryph9ACR2OsXhQPBbdFBPHMSQTWQpdnW3TG93CwpRp7FZGzs2YEDqmn+K8gkK9ngJx0Y6MKFjC3EwLoZ4cdSl8gAnKCSIETQTUbOzoCe0RoZKBGUgPISWvY22Mv36nafkytuMpnS5ZzOoKtEUx/57338faNdx2o6KumdjskNI/wrori1nvv4vDwDg4u7GFvbw/TtI9pmqA6Y2/DaNMBptYMiFuLUObFclwvB37GXlcT4jGV0bHL1c3WydrvH7T6hT4c4PB1yNxfHq4tgdMpTQ3sDY19LoAturgx+iKYh8IOyBsDJuP6WwBbEvgSypIp4vlQLWUaPVyA22FfDlSJ7b0BPlHT9BZ+iqgbYCAKjTXOv95O5wZfL+N+GZigOEDApX4D8DF0jFhzrW1Kq3s7SG0jDFBStjOhgJxKvaLOGGtndk3oOAUAZYAvsyfiw2DGir7ReJh3QOo43u/5/dZyHp/HAZf8jur4GiORMJ4R7UM5xkb/xtjS0G69voHhCuak0eIDdFb7FjAbbtilSHZMRhwm8DJ5wSiWpZI+OMaVpe6uFQjAGBwsNRom2kKwbLPU22XbjxL9WWdujBHN/h0jBvld8biM8eJtUR9le/TSz1iBbVkXDHBhZQQL4P24boy1vP3Ufr/KKqusssoqq6yyyiqrrPLo5UOle5MI0KRRGU4DBfPkdpEirP90GPhpF4VkXvC4T0TQGuPk+ASdGSfHMwBLL9P7iaeVa5kawgI2LlQCHQKABAILPLIbX2nF8gwRwqQbD/zuAzzh4sG0CHwsTT069dkqqzy8DLdWSAb7NxPePzrGa9/6LvqJMXMwCYi6p9UiA+dJh4piM+2h6wmO772PCxf2cXDhCi5fuYL9DUGP70B1g2kCwCOFirlGlmwfw2FFg5HDA3bswc9w3CxYH1bA0jmXElTQ4QxbAo6q82w76BQOrrGm0hqF+kApM3/LuUjp5bRZaoCWRgqSZmlOhSBCIFUH9YZzkZKBxHyoAqFwZoaTlNJhbhifYBsZqarAZKnPXBjh1LdrI2UcwknKDZRl0OEYb3abiLPTAAaskmBeGnVlahChcYqbxAHMBIEAnnIOROhi4I1I2dDInhupnCz7XMPs6bpEMgybjm+rr4G5uiC83TbaI20sLA1BlAPa4WerATiAhABgALqM5Yg9PRos3Z2736ObVa2NLc1bd8YeB8XEMg21cnC0qYDV3i4+gMTXbU4Hv+Zp5HhPpu5gS39Hnv4rgBcRMLKmGyexBVY2A4+FkLPxRIDK06Rx7TeCdhtvRMbmEXtEay0BRyBLqcc8RU6u/EeNfYx3T+1nQDL1v2OM1oCItbO9o6lAVNCFEhhkw83mSCxXRDLWOXfIq0iuaSriKegMOG9MOhE28HZ1AFGwmdmJ5NEHqUL6FApWK+ufAU6qQSt7DFlKQnUQHQB1hlLihjj5zNx83Q4wE2BsW3AAT/fvAG5soK0zHFOIvqqBmAhR2djkEaAiDzrxsCfiJHwNVsL7OPrUUvbNqdNo5E6MOUxbJSIdcyZK5f2tNXiuglhKGA1zBPxOFHubtgAqbYWOTn22yvmSwWnw6fZiDRnG+nI8n+Do8NDZC2NNhq9TBnoWX4NbmyBHxzg5OXbWtoa9vT3sbSbILGibfdjysz1T86WLjxZh16pfogTXgdPB01UeD3nYzSbBKBndXwTE13HxQVJt+QddM5g042DEAPSG4hjz1hSlClhSkjLFA8BAp7o5wdQxrx3IbsAJZ3zVARbJV2u9j3w79j2dg+3Hr9GxxqVPQ8O3YeWPPZsCrJT367J+NOwLx2sgOJpCd+CwCYqdO4arl6GUL1vcwUHi7xkMis7MmB7F8MkMD+MAqhi7ZyCgFs3tek/o+2HrSNhYsc56+6uWY0QJ4spHjXlXmJ7Ky0bdQ1ciznU/x1DdiDDUK/XDFZlmDuPlme6YvJr1EEE+I2xGT2HGsfeGjcqpG4Y+HgqjymByBRyg5P/b3n+inSIVmhKg6vtlFpmKryP6Nq2NBPyEr2305W4J4Ftck+nncowu25T8/QPAtdWWGN/Zh8E4FSNwPH/BfJwtUfo6m2g8j8PGPcsGxSqrrLLKKqusssoqq6zyWMhDg5S6ijkktJx65mE2kRuOqh2tMWQWcGN0CEQ7elcQibEPgDHPFtDc21iARog8MGvpYbQ7KMniMhmgUOnI084wBiX1oFkGFQB0kLEOlMAQVKHzjFkJ95ghfgLlwl4zFqgMHFVjeJXzKtWPNA4CDUfFJ/H++kcESg/vHeH2zffBOgNyhOPDu2ho4GkDahtIm6B6jGMc42R2xogm0MNjzMdHuP3+bYjewN5mDxf293D16hN47vlnsL+/Aam482npPMTCqQKMFD+Dvl1hNCjk6YpGM9EpB8UKWno8hLYH6eJnvY52/r7Kbjnl0Fv8TSMSLuJAEQcyqAJiwfQuMzzRlzHCqAKCcdqXI8BDEO3mlPa5W3MnmX/ZmJaUtDh0ATAleGpqk7ErqTHiaFlH6j5PQIJVAuiCAGEonPXQ9mVmAxhHICHo/8X1geaAI0u1RkAAP9RYashTNjGZL51ag7oTliN2AqARY4al/2rEnk6KMDUDblguJs30XazGpqOTtyv7qW0xsKb5ZQcjDjc7JR5BHebJAToEYnWHdjjkfe8hdXA15d6jIPReT2nbPV1mEMj0nQi+eDAgyR5JANZ0Josf5yWwpdLzIIbjpUbwxdsqIVT5XutHsKeOc0BRpARhZ4dqPDkIxjFDGTwYwswZhGpMaM10MVPHmjnO2caBxS9svxGy1HKcLGFqY4AB6bPXiWGZ8wQSbJxqgDaKf0QZuDJAFaDa7O/GRruZgS6fepVtwOdotHsG36IFgwUgBt3W5+Na65NGlm5w0T7xLp+zOSwiiOO/MwjU2MBeqb+qs5UxVD30Q9YLeVocHmRrrYDMzqbUYEwwMoyeiaCPjZGoVwTpRHqm7YugSzRpc/YqZc7UHjZcImgGlBBVsSVs7MV/M5wYxdQxj8kDkOQAOpuLipPZx/fkDK1lqi3fu8p5lU+zB0+HkW2UnhwbOGl/miAT47if2J7lu4f4WBURdA+kkzrloaoTFHfMJx33QA5W2rd1dBZQI4Da7son8GG5LuYsigDy1vUL7YhonRmPjYSvBSPqvePr05+tY+CDpE6lADqYLD4E0p7wa1KfDv/YadskARwaLDyxJ/rzx6MdjMGp79YuBwwcGX/EvmwmQmyIcegh9tNxLdNSP0pFOYu8BPosUlLHRTSuzU+1sM2Q+/gCfJ5lH/t5gFIUAdZyvd6BWpTvGWOcI91zuA6LvmlsPdaBZqcNYFXYGFGn0hAIIHbUYdEUpdET9B6955WItNKRmo4KUsmKvxwLCRDKdo53B9jHbM5gnlqWhrJv4+/sS41RRaXZog/9O6o6dw4VgAx0n8uJDjZRt0ZLW5sNmW2Aqs8VYJC3hxJZOuvSmKewONGX3rGL7Qy66Mf4LH/WuaHb7Vo6or5T688yQYAci6fvC31VESzC2RwEELPbEtEv0c+0eOYCuwSYbZWvWVfoVVZZZZVVVllllVVWWeXjlYcGKWUQpLgu+iyeTsWMUCZLq6CqaK15KhDF3GcAFmCZI7BChNY4T7CAGSdiJ5SNqt4kTqQHk5J6yoZgJ3CbFdK723QW1OgqmGhCF8WmbcDMaG0CkaXI6L3j+JhxyJYWYo/YAU3YtgtXOWdSbXfa8emnmcqMlNBPZuBkxsXNAeZLT0KOHXjAjJPe0Y+PAOqQfgIVQUNDnxVonsJQAWobzCK4decIt+5ex73bR/gbv/xrOL51CN4TTAcXDMQA5Emv6jizwDaGI0dLUEEkQYHFjYbamito6fzKNkuWgS22U7eNVEa7n/HxlO3TlIdlDlueAh6y3a7+IdxDHx5gd/QbGDeAEoahcGeudEiANtwD2ktQv3dj4zHkxjila3ukBdOjHO6utX01HNdAgnEMZEOQuUN6dxAP+d5tzkuRbkwiasAOKo5zJoJKzwGhfvyU/Rm990VbxX7uYX5rC1G0Zi8MFhsm9uGnAKmns1KIGm0TkTHLGBOT1dfKIj6emzMzWVszOTMTRvo6O7kt7gBndO0GLPLXQsOx7+AvOKMLcdlfgiVn6C1MDFHJlLYB4mKN+rt7nS1lnoozTGqk//NAkaoHPgizCpgiGGIYcaE6Bt0BHgWTkiohyumg7AiQiMoC1GbvjrZhD2hF8CQf68AOIE4Oh1jfNUSaNSI2ViBnDSNmG68BmFP/rEfKCvHUwT4OEGPJ4zYeDJDCVyUayTKMIYyEDVAVTILu6E+Qi+uJ4aDvOlJPONzdYvdRpBFn8IDEmPun0rdFkKtchwDvlbUhT/bD50I54RxdydzyPeRpzyyUY88RLFmxMl7o42h7vz5rwhxMb66PwedP2BMo66mW3xMUKVCJtdW+N6Ac8t7olREojXQszqIVASYN0OByT/Rf8rsYQ8zNxprNcBs7YnPFDmPYCy3TXEk18rG3qhf5A74/u6PibArd5y/d+vkpWRTYu3AZB3t7uHN8D63tgbmybAh0FsQqGdAClY6ODglAATOoW5qnfnhkKUJ540yKAkyM2AwpKz2CoWFd1WCvzc34xhanpT0Wlw1QYHy1jtHzI6ZnxIjzTfo+PZh7aSAOqr587jt9ufIuqvaAut2PdyU/jQcR3X9tN/QGBnsjpdkBDBLLoRc5MB1IMK9tkfEc16nys1qX6Guf2eopoEPP8dIHAHggNVxB8Y8CSDX2x9ixMcbGVoW1tEVco/G331wgxqkzYKGDFaBI1J3YlysrY5Q79PCiBJbC+DvCGAp/iuvZArNPoqGqahZEo9FW5QGlD+sY2mK6yn7SfEbqPM5GSqrOFGsPi+MTAy60rEwwdHoxlgM4f69gp7B3hm23vHzYE6PPkACZAfAZY6JK8djB9i47yFIfl2uPLtsnSmo6pWZ7LR8+2KuCaTbb1Z8b41/jNW63jIcgx7SxaIXNaTeoSG6VWt5fts/8OUB8y8fnnXqqibKRcgTR1nenBm5lhSoPQIXmux+imiSLe1ZZZZXHUaZLT348Dz7lX15llVVWWWWVVVa5vzw0SKmeDFcFVAi9R+DTUrBInlYfDgfiOP0sOHZGBaCDmRcBSQtAdnP2qwIkmHu3IGd3p4gboeKpQFTcbFJ3wio8pYr9BAN7m33s7e1h2uz56fIZrdmpUnTB8WEHgdAF2GwYm5akC3ki5aMaZw8Kei+CXePTLY93eAtO3/9R5X4B9l3fned0X2lsV194+f7TACoRbKy//MLn8Lf+5l/HP//n/wpzF3DbA2TGST/ONCJ9JoAmbCaAlTB3Qb93aMwjYKDNmGmD/ekCLuzv4eLBJVy4dBn7Fy/BaEDIHWHepzqCgBZEn6GgBBLaWBdnpfDgOS1T1AzPymlv0oPG1SpnR5Zzuq5zO/oVu9eCx0Wq4zId77o8oXtaSpDyPtfU1E7La9xpbOhACxiqWPov1QSAQGFsOGCQGBvhLAJFNwYEVXRn9iAxthpLFybDieondjXScMV3IrYYNEakewwghcoIQMbWFyBkS6k6j9qzsQ11CUd4BWc4YMjbSzUAVBbMZ3ZglAq0G9vSic5oLZhsmjE8oaMrQLA2MOBTt3q7Y1Xi3UnxP8AjERCI08nN69tVMTuIh8j5hjw4oEACrVSRrHLG4OjPh6buIaoQB2KJGhskJSBCsl2gQO8KsNU3g70QiBJYHdQVKam0O5uV6VDswAdRcSe5wLErEV5I9kmog14LAEcBiJC3YQHRbIHabNzaAFBxfco6fAA33LGdYBsdp4mJ4rwxY+JW0rB537pypd36MYIIVu5uADyfBwpNnFqUlrlhInLwW3X7F2Aes88zq0eCdDGeE+ORHI0nHogK0Mr2fLbmjNPcEfxw/c1BW5HWOAImmVrB980MePgmT4h7RtCQC1ie4/QzbE+2QBvnBI2y2H7d7HnBOHqGWZRCqATYxIEKwdKV+n4GZlyXi/bXCJf5aHQmNCD6RH3Ni9iYrUEBjKqhGajPAo3ga4zHuHL009QmTNMEYvaAlPWVigEEuwPuRDkZxXiphmL7r4eVnfGrHd/t/oYe8MlHlwc9a7u8Dyr/Kh9FLKHStS/+Ir7689/Bn/zhH9qhhtYA6QlkVDCk277VGmy8izrSdeh4TIRGDfubPVy5fBUXX3wVbTPB1v5Y22K3GWtlroHwVS6C+lu6JmxprLHXqMbyA0WuA+s4OdvywDld99FtX8rjaE/c99Md4KJFw20pJwl63v28ipmJv1WDcTPe5Z/73jTAY8jyGPhC8vUdwXSpg5kcoQ8FYkFLGX09UEVucrXLMT4bS0IF1mi5heywIVBSncXP8bpR7fEdMNhjRLXgoAb7jmnMA2yvsW/ne4JpinLrr2kIU2tQTQZFA/urA+VDVyGwjtayUmjF+Hg5wxeK1C3LKxBavXqZwi7L8pp6P3S+AFm5/RDMtembSf1+tCvlu+LVMtbd0VBb/VraPQ6rqC6fkz6DHMpbnbfUsRfX1zawTvBr2PVgB6l7mawOtGiTZMdUBRBprMscIC+7j09mZ8lVGx89yrbt0wp9HxXkNuqjfkDWyq6LtttqvlEELeM8L49eLuxyi35afpaAumi82q9mZACgZHO1p3I2doLWFgt4jAP7PWycVVZZ5fGVy7/wO7j7w2+i3373kT2T2gYXv/xrj+x5q6yyyiqrrLLK4y8PD1JycISxF3hajWlyx74FlCKAaKxJZuCQG/AiEdjzYGFjiFQKZQVpBJ4UXYCTebZg1FbgWNWDGU55EBTWFlxkP+m8QWsTLhxcwP6FfRATTvoMaDNj3FNGgICTkxmzKKY+4WCPcLBHaBEACkcL7mNYl/8+yKV6P/tOT/0MdwgtnSRbwZV8X6VrTv8RLe6pl49L04Nx+rulF+w+z9rhbNzyeqQh/4gczucXCBO9Zmfvr16+ir/z238Hb/7kOv70z/8CT144wIYZtw8PcefwEPPJCY6PugUtpw7tiqlNIPF0JmwsGptpDxM1vPDEk/i5r34Fr3zpFeiGAbRkGUgHSDj+BFBWKDosTtyKI0IzZU4EQ7PfBRipV0rqGiz7I3xA51+2Z+z5qNXC9/1B1+r238N5aQv449Ob2zIASgvP932dqnEPUSbfKtct22jBGhTO60qNr/EdAWiWHo1GeZTFQBwDZWMMP9rB4YCGgVWahhO6UPuHU9yDh8ZcaMFyiT4Nx70a8093VkJ2mp6eey1sX6fBSuO1RIKSIhWS1z0AH9Ath7f/3kkNrAOCdrW0TWhQHWmxunSQEnhiaBdLzcbhvhU0Eoh0dLRM9xVOZFFxsAZ7qjjzXidQQTqEAQWhwZl/hMA0+clXMRamBoDEieXImZ0cwRzt7qd4hzPYPjfWH/vbGF7UsaMKUDMdSgTSxQBWwWJEDEW3QIfPwwDUqES7soOWxFUgd1I7u4vFXGz+xvlYQgNRAFfKuk7kqe1yt0Zrw2EvDk5XSES8wWDPHqKugth4adwsHR3IdCtY2jNxtpkMNBGDVEz/0w6R2cs0g1gdbAXMomihO7AxhxEJWjcglWi39MEqBiaT4eCH1yGCR+JBAyLyMWAphUntfazRBh6y0grQjZPU1Vk/dB31YIpEChEfj5xzwnVUD7TUPIX5qAAjsaUWNIBL8zHNyFR8MCYsoHuAhTOwFoGKCFieZZgSg6DcAAdticIPNJhYO/u4h7ONUWk3FYtlqqd9VN4KsoRoXqfO1BVssLFGxkNP7wla2t8YlKY2oU2e+koI48S5z0F/zjwLhC2VyTQRGkZfj5k2ZNdnD5IPui52pWJBuK0WXwxLY1GAHXKqbGXtWFpA2w/RUg7a+ga7G+B+UkwS/eAiP5R8sNV2FmXZqwCwd+kJvPorv4O777+PH3z/B9gjxoWLF3Dz9h3cuXsXIjP6SbdwLYkRI7XJLHUf/7Oz6jUAT1y+hC/+0q/h+S9+ZTDh5X42GMiW1uvQg4i2y7gwPP2bAXil+9ih8eTz1T/3k8+APZFXLcfD4kH3e8j5aI6d8uC1eMeA3v5DqXyiC5fOqZu3v3N93/Y591fFNWy6mSYzkMYbXC+U1IlGSVPx9OcHg03dUzLxlV2b39FiXY+dIbwFGjZB2Jdap31cfTolV9oX7qeo+08xZ7woYdsMeyBTe1U7xWtQ93trD0IFh+S9/nyknkZZh2A4HeDN8e4KPAnQfYJ3nME1zYgC9tHQJUBIWs8ovZcBzXXL7LnBSDl00x0DJv67AJ8VG1XLVX6YQv07itu8PyhosBYD035PNdfbbcG0VHoifgTplJlrlEVLwL8rbdk33gfJ2hs2j0SPFTpUAMmMW/vWU80ZyKubfk1U5oi3R47zGLeadVtgmnI+ml4oC52Ssj6LttLRztYUg8F32PQ0+iJfZG1iNkDenD9jbw+25MUbqFxcdFJgCcKqvcX3X5hWWWWVx0CmJ57DE7/2D3Hj3/438DzQP7NcePUXsf/cFx7Js1ZZZZVVVllllc+GPHy6NyVw26CpgD39mjKbA4SapVtTBbR78HC24FwnYyaConcLygkDJBzuSYgquDV7noOV1GiaILMFsEDALADzZCacG6KRSmU4AiyIxGSBHmoAteGQAQDihonZWCVgDAjzScfJiQAzg/qEvX1G86AibZlswNLQTKf58liSfZe/htNg+5LKBhAG6mln1HAQjb+Bempsd9mwuN5EIGDdqpVWFxadev+pFtj1jgKkykvOkPPx0wE3Ra+Ndzfe4OXPv4J//H/6P+D5f/EvceuN6/ji17+Kn7z7Hv7sT/4Uly5OuPXee/jhT6/jZD5GwwZPPvsEJja2hKP5EO/fu4cmjCf2L+Pv/PZv4u/+538PT7/0HCJobhg+P12pDiN0FhWFjVXmNk6saQdE0H3eSJ8tGKrsLAcd6ZNUBw0oAxyMFQuX02MiH+RZP0+yy8E0xuaSeePU4rUFfDy/7bFcG4eDNh2v40ps19OaQPIZWp3gvpcY4sMgAuaHLnwflpfU2JNUkyWInK0o1v4A3YLEmGgii5tEgAFobMCiDvJ3jhIbMISMHYQAYnfYEgPkoA51liT19Fa2Q4JUMmBgdW5WLgd2hJOcBZA+p9OUWksHrPmOZexXAc6w2uaha1J/PhFAlsYNNDkII1KozQYe8hoSzAktYing7Mmc65jFB2w8EwobTWvG4gTFhiawOINQntoOh78gnPEIcFLxADNNkN5BOhv4On30ngKOxNJlgtDaCGgoHEThYCnEmlr6oPfZhhDcgR6gpPDPF+BVjBFWJBuRMdHYcBAikAqagxGMFU/yejuRHCPd2prBiNR4UDbmTPZxgWYEXBF0IQ+GOBgJHLEUT8aW0QwrENslMVSh6sybmSrBwzLeoEQOyIX1s7E7sc0qJkCbXYfZyksWXCAYY5Uq0EnBEGcADXYiK6eNuUhlZ/MjUqWxBwA0W6cGGnQsBo4HYwftJhAKA6CUgY1gz5IBuLf0GgRLZ0j+j8GtOViPClAqHjf6Cgp0nxNTAfhYKuWGtkNHOyuiMW981eNYij2wJ3HSWyTZ0hL0GIxHYoFZ9cWEgNRjqWVoFAFQMhYrHfMp13zr17AhooAJxPB0qDbuvSzOpKUaa9CwQAzYaeysEIKqHcpoDZnaZjRE+bFzW32wDlKth7Qd/C9dPLw875TNoIu22Nr1vGy7x9JiN10YNyPNi566Mt69XSfd+VdYKmdtNH96WlAEH+0vVeDK576Mn/vNv48rl38fN95+B3v7+768BlkAAQAASURBVHjmxefx1ltv4fKlfRwfHeG119/E8fGMRhOeeupJtM0Gvc+4c/cOcHwMEsITl67il37jd/CF3/rP0Q72F0vecmyE3l8tXBtYYZPHKFtamj75Yjw5Yx+TJ6Lzx1GxKVY5i1Jt/d3zcwsGufyNdiyC+fs56/ctp076P7av2RrPy5mzvSiPgwa5R6U6WJ6jMQ+R+nc+PTKNaewGoSf6s9RmtHjRCJH6bSwsCf5X708K8Mno3QCRiDOlJ7io6NaxLw6At+mwVsWxIZNr4AHAAKo/akv/Ks0Vez/ld8Y6ac/n0mKSdkI+z/fxYGMiHc+PVHijPZx5B2bNKLmdUbpZy+/BPpdr52Ko06in212jxeqhkGCYJddLlzpB2GAAzA718RBgncoEtDDfHaTDiEMvtWzet9mcYxdOu26xOWjWpa78XrjFmNW4FqnyeZ8MGCxxVmPoahTX13sHcIfJGIgN5BTzZIxnyg6Iw0iDTQuA6egy/CAB7EkW8lFxH46n160Ky5YCOsu2WYDHdHF7GXYYwN1YUEbb2t88Gi4/Q14f43FXGuTTK1QAhZF2D5XnrdvwKqt8NoSIcOlrv46Tm2/j1p/8Lz/z8w4+/wt46rf+McjT16+yyiqrrLLKKqs8jDw0SKmLneg3g9GsR/Kokzn+GTw1SFf03qEqkBPB1CbzC6igzx2iYgDtbs/iYlRpF3MUSEfvJ+izoHdJp4eEAwNI9oR0vPi/uNbieezpWCxwyCDM4mnhIuguFsSaMcKoAsWMCQd7jE3bcrCm82gY0Fu25inZ/dkw6uPRWh/mTq0RSFz4rwyIxUgHk56+6pQpOnxZ9t98Hy3rGIZ1HGYKZ9Vp07beFe6A4RA5b77Gj0+2gwoW1P/cSy/hf/df/G/x2o/fwHe/+z1cvXSAX/7rXwNYMLWGm//L7+Hm9Vu4fOEy/uH/5h/gyeeexw9++CP86R//CfbvHOLidIDf+lu/hX/wj/4erl67CgmHkCiECIB4IJksGJCU5ual69IhHiy2E3GWiklnY/1QRTIYaLJhsI8HycB0OlY8oJ+Ox3MsW/G2x0R04aSqgKNgCRlSnVnl0+oY82c+PhM99hD73YRgLEUSf5XgaziECeLABxIFyFhAlApYwYPuqt2YQ/wNFEDZbkwHGvsVSnoipUwTZ+kM/FRjH4H02AcJxnwjROYYSK+575EiIPa9tM9oCDYTMfAU4KdSLQ2dpUhV3yctTSsB6L3DYVD2324LAXOkHVAAPQEZcAYqdUIeEne1+x7X2JhKRtwgTt42+4gGoxChWfo1BogUIjOC4SpTfsFSZ6UTXAwI0hEAJnLcl7UvQR1IYvWNtFAgRdcOkmZAakeMGSDG0u4xwdiZugGPpsaYJgOa9Awisaeytc1apCdom4jADnYIJ3SPcRgAidQP2PvagkJMbKANVWfjibFLHpwRKMgBcRGqWox4WLqEANcFcxJBNeobc8L0swRa5FriCQQmQuThDTYfbgzlmEnkbWXtz9wgYoA76Zp9xeRpBD1wZOC5AA/FdLK+le66DGCpDWEsmJaGcE5diYgSSC8+F0R6puSzOmsmh4ggT4wn8YBP6plDYUN0jieiAMiZmACAGAFQI2Jo0ywPaJxopnhOY9QT+Oxgm1xzKKdz3mPBOPVAjTsDdZT9LEoGnlB0VxrjP3RUIYKSZF9wYXiMNblHANh/BKhyxIt8PXZQE7bfi+yBxWehx1jolErb26BiX0NqANoASpKacFdyRdquaUaqttChT/3uDbNMBf3wUvX05e487KeYM1h8P+4b5XnA/r4YXzV4un3H8rtd70LOl91l2vXgn1XzeFy0FgAAES5ceQrPPXcNTzz5FG7cuIGb793ApcsHuH33LgACtwkNgs1ew8uvvoSDS5fw9lvX0bvg8v4lXH3mOXztb/0dfO7nfwnTwX7pMc1xaSN78WkCtCPtjuTe5Wlf6zjJORm/0FiruF4z1teRAvL89tlyppwf+TBlzfUr1uJa6w9lRJ1jm0KxtdLdx1YKHUC3VkYdQNcKDEmFYNvrQqFPSnZAAA5GCtuwNkoZ/b3hC0j/TdoTsc0lxCOfv13eKNZIhxs3u54d8zj++f45mEhNd826F9CSAYLGLhm/BZAo7B9K/WGALAxkgtyflwdsNH8SteI/9PqHnrBYe2hUAmM3jedqaddoLwJDnKVWS1slo5Qq4iCktZWMPnW9hZnQEnQdoDIHumvRoyT0z+ixWq5op/Huqn8tockD7lztiSh63Lvw8dR9WU3XFV/Sh67n6cXT0lEswM9Z7uLDVeShjADABeMmhdpVlOM6VkcaNPH2HN0Z6UvTXxlzjamwkA8djBqN9o0uRPR3HGMY7J8JbqPR9tuyXBkKW9SiJ8o+W/Ti7JEdOmIFGNmQXXCD+ZQbilb0z8KPt1WKc7oar7LKKh9WiLH39Is/w/2EzRPP4/Iv/A4ufuVvoO1ffHRlW2WVVVZZZZVVPhPy0CAlSYeIOT4Ecbo43AKWRsXSgih0tgDufEJIKggadMTi1luwPcxiJzyJLHiaJ5L9NJY4yII9tYeltJLw6jtFbwk2pJPGQFThrJg4gqYW+O29pxPFAkIW0DvpismyicDSdZAHQJYuNDNOzdHDaWPa32k81kiEf0/AtpWKgJEQkOnmujsUiPJgGgjwYN94BHnd0xDf4T9QKQCSLOtwPlSnhZSykdJgjKi+FQzDlmvbl8/jtM+I5310c/ej3HvaNYBRUarjZVz5cQFsFs56UZAqLhxcxBe/8Hk888wT+O73/hLf+vZ1/MV3/gpvv30D9+4eQUVx1I/wnR++hgtvv4UbP30bn3viWfz83/oqvvS1L+DLX/siLl65PE7n+zgK5gBRcYAZYe7m8BIfODZz2cddMDRYwNaRDO5PU0A7oGxMHeFMQ4expFgyk5oi5/ym5qtSZ/r5kFra7SD16Ipw3o27bEnMpDRb31fR8m9roTkjcr/g/OmxaPsWds59r6OSM8QsvbDhVDR2nlgzFS0ZAsgdiIpMj0gEooZZFLN0MFOytyTTBylUe84j8jkcJ5xFfMXqCohYujJ37M/qKbJ8IwpHeznznPsgEfmhYoNlkAqkdwgoAUrqdM8BSo5UbHka1NcMAYHE9IHYW0UEjWsARodzXBTUOFmPiC2FVbDEhLM2gEoGKDkxDEfz+oIwi4KpA0ro/QQAobUNCFLYVsT7ye4S38hEdZwaD3AVRaADzr5jgQKeWvYhkYAnAmMyJiA5cV3CHNSNCdM0oTVnhYQ75YNtRyylbQQ8iFveq+qEWb0b2yH5yuoAGsUADRkjlbFQaWHiCYAEu25m2fs8DBHzm7xfZYBqDMRj84Ejta/1LBq3DJ6MIExL0rDeO5aLhQWXpmapd5UVKqE/qaf3Mv2rIYAoZDqUp29jUhBzjocAy5ENxOQqIxWgjbYLQBq1SJPgIDfM7oy3thbxlH7q/9xxr94gS9e/s5xtxVQ4mT9tPnX1U/a+NI7gGo/1QAp4jpfPimXDAjRkei5ZwCf029Rro98ygBGsTHEqevcaeFZkJF5BBpSSS05D97e5AtdnSEMvjboVhTXuC9C0OsOVIucWsGwWdQ0ogLsZmARcZ9KiAsQaGgAyu56p8B8oFkwGoXeplzseX5kQ6m9V/z5V2HLfIr1usQmyHOXqRYa3ej2Nwxb5fQa1x3Qe9kwtCS0+o2yfYegsU7uM7+pVunyafeeA0QXbVFy01RZ23ycbQNs9q0pNdsy7j82e2Pr7+N03ANjBmqefvIILBxPeePNt3H7/Lt6/eTuLdjx3fOe7P8JmajjY28cXvvpLePnnfwVPfv4LOLh0EcTNgaGl18KuqO8PFSn/wFZPYwT/OQ43jJutDw1kq2TrqAJDj0DoAmVArvKpyS69ejn365o+/DD50YOf/oFXfJpyak1eADSofFdXtvs9JLcs0wO0rnc23hPcE8AW/y6zpSWoJ4CByGt1TMqct7m+l/3T5qY9vbJAkhcDrjcPsBSQdDK5P/izi48twD4B4JCYv2WvKv8p68dyP7fnIp9FNNYfDd2HQlsrUCYaKZ6HTqSpvwIOlA9bI9vDDzC4nmbNnEl7sxfE08ZlO7s9sVgb44pYFzXuNX0jdGwKgFIB9sW9+f7Ffi+lPDFWHIZSx8TiZwDCxnqqEu0RVRvtF/tvAoxwSr13RTgYfP0uHe8JDW+sGeF33RrPCSSKceUHgnLMxHhyptTw81I+IjUzUJhwYd/FdXZxZLWOQwCjGDa+qz2Y9bRvsuKRCo7UGWMR80jG/MvxHwVc6kZR8JwvCAvDZ6+Ow7ZxZY57RDPVViz1zyrR+BltEL/H+Ctj0tpuy2edv4yRscoqqzz+cvf73/jwN7UJFz73dVz80q/i4PO/gHZw6dEXbJVVVllllVVW+UzIw4OUCE7nr269uukkM9AFMndIny3ZhxjQKBiUzFnvdMYi5gzocaLeA5NsFqYCIw2bdHOyaAQvzZGShmukf/BgrwV1zRZrsHQh4QBSIkgXbNjSviRDhJeJicFqdSRRB2iMwNAw37G0O2FtkUEyII3cSKsSxn5IBDnC/EsnfdxX6qYAtKs7Xca7hdI/AukWFEw/UDiXq1MoDFtd2P+ZlmWYyEgwUpSVKbMNAVgeeAV2m6753XagJQLkn6jooqyjbPWbT1iIcfu4493rN3D4/rt47713cGnT8OXPvYKf/ORtvP2T69iA0Td7mGXCd7/5Q3zplZfw23/zN/GLv/x1PPfiNUybPUzgcAd5Khn2QHec+rI0CjYWmwXrxUAF6nM5xoeqONOIDgdqIN5UITo7sMLYMQxAMQLURBS5ikY9yzxZumjOg/gc1GWVzqcMh2nMgurAG+nc6j0PU+nz47zaDrKYw1e2L6o/TAjo3dNgOTsQAHecTg5cMLCDqg6gQiye5dEBulUA8zyjhUPcHfEiwR4YTkPKNbNLAJUEyjbfWzomA8DhTtRc1w1sEvUXZ1KiACCqOoOTYNZu18e+iJHaIT3Dak56d6dmoN5o8RXI9cBPlSpAzDmHwmkqkXaSBBNNlkaMxIEpw8FNpV2CeYfIAh9dDBTWeFwrMpujmQ3koaQ47j3rQK4H9NyHbPzO3dLKiqeSi/5FadtGlsKNiSCdQGCAJigs9S1PxqBEHEAL9T4QyOzAUHVwGgA0wvGJAbKF4NSI1rYN9h4DEgX7o4Ni2Meb9wEF87/vAUZsGUqKw5sKSxVHWIMCeCMG7AlNJZhnQt+LAAEapLMFnNn0MyVF8/Rk0p0pCi0wOd5XyLY2vB+jTQBRQ59ne5csOToaMyQjcprpzyJ4FMEM08PY2wy2rzm4LtNwkac/JNNhxPe+CD917yeIohF7GrqYpaFUjbHCsSgoMpuHqWsFxKcj8EIRPAEwOe05EXk64fFE9SAI2EFtHlAgtmexJleT6amhPZKz/ERwIwD1XFBQZ05GYGsRnHL7wf7Z2B8hHgNwAtE0msD7fExodLoED8X6mhdn4FVzXuY5/BFhGn1Hbg9EMJLGOks6goEREIoEl/G+ceofC+BQaEUL0JZLssZGi42GyDbcpb0unqPDJogvHZO3sBEk22jrvq0Hq7cxik4U93gXxLDNB1TAUd1OBuiqltn3BR13aLmRtmp4FjSPYXPttiU+dg2JCP3eHbz39k/x3vXr6CcnuHfnLg72J1zcu4gnnngK0gVH944cLMfYaMMrr3wZX/pP/jM8+dLLmDYTiNhTfmLoQWEDI0B0lDZjrtcyBk0cUAjbKsa1OntegJhzLsRTNHYqxCAbK27Ox8XEOYf2BMa8onNU5p0yxkfI6foUn8R5ly3bIcbo+Dv+c//aDj/SeBxRfQ6Nf+rfxWJ4ygAd78n1V8f8ib1MdPi5AjCrfu1y1Y0S+IwM8MQCDVJgitVOKow0UccuAY4JHak8L4E2WxWIkvheW0cXlbYdDOoBQoo71VuPRspkSOpXoYtlWwU1ItuzzQyLNSb8IGWPcqVW0m8Yh7KyIRb1CDsudJy0gaKPKGynUD8VCQ0ipN4Xuv0C8BMHzdTeEZiTTvaZJsiF0gcX63C2c60voh/rfkWLvhng9zLrc/hGv9mhN6gxqca6Psa9t5k3qh3D2BIiND8AYBWTRdOmKzT6CARioClDIHZ4sxw48Raz67M/YiwCoX0RlvMibeiYqwiAOkbqt/qv6ILeOeO+++hqTujkf9TxvaXtVL8pjf6py0Laldkj8RT2tt65QqM89vSSVubDY7KSr7LKKg+Q+eZbOHrzrz7UPdPVZ/H03/4/Y/+FLwFbwNpVVllllVVWWWWVDysPDVKCO/HVU9AoecBVOuZZMB93nPQZ4VpnMDoEs5+GZvKc4bMFCM2m0wzPQNyh4Ladwk7K5wn6EuwlAkS7s1AIuJmDVQFwa5ZOBla2PjPAimnTME2tGOnuZ2JGc2M1gEDmTCBMbThKB+01/ES3ekp5ygCUqP1rgKc4MaO2uwGbgRSm4bAY7M7wA1oIRqTtE2jRVCPYTejBcOBlDOeMhFEeQXG1lDoRQFBYuVQsyBm+AAVGEMWN4d7H64XUT4GNNkS2UTRQ1OM+Q6k6pWiX6fzxiWo4syidMXEibgA1ihPjEUp9/iwzvvdXf4G33r6FgwtX8JMfH+Irr76IZ59/Hn/77z2Jay/8R/zpH/0pDu8JLu5dxW/9jV/Fb//d/wTPvvw8pv0JTQCGYPbxQkJZp9nZQxDpatgC78ZGUMY4YNeEA6krhCNFg6dyEgGEvc8jGCfoJx08EToRlGxtIAAkZFmTfIykMyfavzhYzrLUANxpRqKzXfZwiAKa/1s6oIrjOTvnYcf89vdnpS2K09z/HkF7eUC9KNf7BfuDWhuOOL87Q4vjs756rGLunG7NgR8K8NhzmAlztyfY3mb3c6QmjdQpYkBDkF9Xu8pTn4VzGpGeK3ZVHfuqwFKd2nMGywo5AMZYDY3ZSUGA2FzuhdmJs21p7J8RjCQyxCwThMRBTeZ67qIl/ZskoMXyRJo7vhFhIoDJU83JDOJmgYaFQ5mhHeh9Bjf2lF3wNpvTwcxsOkBrI6xBTNYn2Y1WJ0mGFYX2eH9PkEo61D29XiMFwxjmuljaPmY2cDEpuDnzDySDsdAALDnbjwpInUlHjdlx7uptpODQfXxs9AisOICj7LwOhlO/hpwZy8BcGXAQmxRKAhJCgsfgIJ4A3Pkz5z47CIqi+B7kMFYkbqE/CBq3oRsRGfsW99T5PNJic0A1WZKIFRtqUCIcq0AxQWdj5VNVtDZ5kMMBt5GGUoPfyZ5HCPA2YVZLV0gSwDyfJz7BAmQdeorKmDGVGSzmcgTkF9uXK0SqI+wFIiiPk9ujTa3fGJzpKbiAhiyFx4CqRwksDuZBBTKwC8P2bFID3oMAIgfTu3RfwzIgUYBsZ1EUmsGzBC6EbqsBFpTsEzj4SiL9IKw9VBxkCQsmcXaYLtLGaI7w5btjmCbISA3oXYGoSlFOgYqzvjCjseW7DRaDiG/lOlMCPAHaW26XuvgzA9eLK4qO6h8E62XaEzRATj7yxvVRh2jneEzZxGQ0TLIPJECKhpYQwbR6WKFuqzmPttQKrTf7r75NRFelfURblU/gV/ygqGe0SrTQkE/UnijtPPpqlCMYP4Zt9OjsnaFxKI5vvI7333kDIoSDy1dweAw88dSTmPY2uHrtGbz55gF+9Fc/xsmJ4OL+RfzCz/8cXvmd/zX2nn7O1g0/9TKT7TEcrIfwQzMIlrMBIK42cYpoLdiiMwLUnOsrUbInjT0EbmDbvaTwtK6+d92n9U7D186W1CbB1u9ntczAcnyPvxV0eqRjOfrLfH+oGtJ9fv80Rbf6q9YJ2Gqa+s2ppknADiH1g3r9EvA5AORhx5RCgBan3nSs0VrX+AAbDdtGZLvAZe3SAL3fr7dOj9wAdCSuI3XdAaauTqEAb6QFpct9Ku1Un/vqm2kejtS6Y1LZa0epmdyP5+1moBTxNLFDyPVGVS1rlu+TstSbgqXUXCoab0+dbfTPYGxMPVIkv48+iv5i2m5tr7/7WtL1p6N8YefkaHTAlh0QceA98TgMowE80vR9DS2BYOxUW3UK3SL21wUQK/qfgEwP7/eHqpZrMUFGAmUEgD7/9peFbhT3ivdHgojUWW8V6VeK/zpBnzeP92koWhTjP3QgZ0yqYzOVLh+b3jeScyl6eczb2PsU8PE1HhOtme14as6dlqrTaOnrqqQt7LQFqmh8TtnG0a51baHxs466Mq6AAciKUUPl+w+uySqrrHLe5e73vwE5vPPQ19PeAZ75+/8X7F179Rz4xldZZZVVVllllfMgDw1S6jIDylAxkNHUGpgYHRO6nmDWkcJD4nQzsaUCYQsIsjJECMfanS0I2GRqGoG0jmAlggeazOiTAcIQhYTxxQGWEgvakAcN1JmG+gl406Dd2COmvZYGvGgAMSx41LudPqJGoInBDRaMcAM3GJHCWGtEZn5LBLPdABYLjmgP+9oNbib0bsZtA6dBb2lL3NBOgxroQD4/DNDwP4kI2Kl54wxQPzGwkjmw0n2Sjqs43T81Ru+aTiDzRRhLB5OnxeFwDkUg2cYAhdddzBk0qwfxw873X5Xi7cFmYCIY7AWfnOw+wTS+BYASiArnDcIZhI9F8SZV9Lt30I6OQHsT9vdmXHlqD89cew7PyRXcOnoDf/Gt70PmGc8//zz+3n/6m3j2xWeBqYF6A5TRYaCiSex5QjDGMHdWNQAzZoTPLZhNmIxZwvo7v7TgHDyFFZEF4lXRGqHPCmoEoKNbRkeoNMMbkDn2JvcYmZOPhqNp0dawdQQfX9s+ajkPZTQZY12djPz4+BgnJ0e4ePGiBbj922UgYHuGfNigwtmQPMGIMXeTYSdSqKE6xsM1CKA7kCnTIdpeEtHgBGaq86h4NJzY028powvQScHNHczBZuZBb5UOlQ5izRRRxkpke4OVpVnfheNT4QDcSE0V99jq2tX2Inj6VYUF/mJZ9oxHDqIY5SLW3KsBghpVIhK6GQAkVdhORN4mDjYBhmdZDKwYDk/OoOZkQX3A2sSd7ywjwN0AkLorm5uVsUfKOgcJMXmKMNsLe599j7JUrrGPx4hsraUDXrqxvTGx9Yf0pLf3zRSZjk8w0g0Fm1JrYDD2GjvRke0QrRFE7LngCAw4yElt7mXZ/US1qALsLENeN6aWgDJWoGtf7JcGIFAPvoTDuegEPqZHOjYDVEUaQkt5EfMiAE92swFXh/M6xrViPEuVxkF+6WjN2aLITkCL2Kn5cLD3BuismHv3FCTWrwGQBtspaekdXQXcGNo7iE2fVJkxMSMSCc+iI2jUbT8KZkeG6TvqjGIR3JDu+yABQt1PV0uyOFkxDLg2++c2i11PjWBBzaEaCBqU4ImvLxGQMCpODwNE+hPfk4N9KkAKBoTxXhF4ajfNQRyhhNA9rehsAH910D7RQme0ImtZL3BmxQ47hE5ra4oFkgyoFqk3AiwaOkUCqj1oCdCYb0CO1+wzRD/6oKei1yGYJcpJfXId0ANikqkjbW7HWmT9GBMDI1AGm/O5xrjujxIjjZBPCTv5s7y40acYOv9WzCpid8s2jWtT9y6fjyG7iIFpvYDiTir1MeF6PeB9tJ3e0J9frkP5jsrfAMZalKXyt/v9FSCVt2rRcnyuoVz/qQmVXypYCxjlA0w/foRApSp70x7mw0PcOb6Bk8ND3L6juERXsLchbPY2AFuKzr2DAzz96pdxcPVZIA83xP4f00YTqJbACTdSI4U0NADwrnf4+EmgRIxnH+uxf0djBQBNXQeKBhuQwgAR+C2kO8YMTg+scsnDtfP99V/d+enjLnrqV/PCCO7duYPDO7fxxDPXMLU2WEZo677F7aM3TrdhgUgsEB6jo+uY+aREl/85NZ5GqYN7aPy0C8p6DsCYx+uTsHiiXe76N2nOCfG24IXOEfv9AMBvP3ekRR176G4QRO2bCvmsQKnRKhXwWgGDA+jt1+W4KTWNPTPWcEfDDoBK6fHYtn2dyTXK68+Upcw1Kw4Mqkgqyxr7WmmPZGKK0oZ/zNFf5J/FT61prtV/BnAnDoLVpQhVP4H3o/te2NbbxpypmGP/jCFP5fm2/BWA2WIa6GiLfLG9N6ejlnrmRzraL6ZaWVdz3JUXDhZKGQ9P+/B0nVOPojxWgGQpKikDiUz3Y0/tbIzfYzTYe83ulO4HVoncV+X96aa6SFBEut6M6E/N9GYKyvTZNh96VmMAn+ugHVXM9iv/CyUv9sOu4XnBct+PB2RDn17bcvWLm2tuad3qercfFnoH+eil8dFyYG7bE8uDWZWVbLScv36x766yyiqPq6jMH+r6Cy//PPaefeUc+clXOQuifUa/dxvt0tXhg11llVVWWWUVl4cGKR3PM7QbOIZgKTKoTUBj6OxAIjeSVC0AJWGUejSia3eGoJ6gnNmPtxMFaxLcOTKD0YzyOE3DBiAYEDzA5sYtkzEFiTvcmxrDQp9PQGjoTcGzgMjeLR5Y4wgaEjnihtHI/imQKdiAYqSGIRdGL0WQCwCTn2r3eyKtjkRQjdLJIaLo4ZhVg2Up2fOYDGiiHm22lDyaTohgcjrpCm4KqGBCy3ZlomQOCO+HKtDnYe1qpteztuhhRIt6Cj2zSiVOJLEzY5OXBxYQDKBVTR0WJ7LjpBHc8bDbRffxSpQpTweVt4Zbgty4j4BU9yAj85bz8VGViSe88NxL+Nxzinduv4PXf3CIb37zzzG1P8cLzz0JOXRDgTrAjEPdALoPmhncPHjG5qjpXexv4nQm2NjyceaOmEDvxRjrqlBSzPOMSOvGcOeoA5QAAG60yKwgbu7kYpDMth6ItY343IQyGoKhjJ1xLJTQ8HYU51dtl4cydJbO1UVQYdvp8jMJYTzi7BpgFZxjpzkZnRTv3XkHf/Dv/gg33rmJ3/zt38DnX3weU5vSuTfacXigxrPKHMlGiHXY2zzWo0UXpNv446zyQioTSjiWYyEc6UccdOMO9LgmgDtQoMuJseYgHNywNF0A7DQu2VpIvjY6AEQhEJV07JqvVMPX7nNunMBEV0+3ZiAVUUXX2fc+ztO6dg9AaL4uWZCu+aZA5ABS32cp0iXB1mcmY9QRJ1Oy1Acty6/k4BkRax9vFyU7eRxAm7mrn0T2NF/wwIjvF0oOEqIGVfJUpApVSzHWmCwtpQJgdoe9pdaajZsf1BpI1dYMAiytkwMmmZ0xEBlwQSeEO7hFH5PrHjNZhZkxd0/FFkAEDwDFvq1sHRYsiPad5cNrbCd1OVLHaUfv3XUAY3BhwNLuOUBT1FPJygA4q48VFTEupIlNh6E4IUwISFIGFAj2dB2p6sAKRQfaOC0b45ngjEMEA5y5/jWCFb5HwAM0cT+NAJeBWxuEONMOGojKxjwagSdGaw2tGYuSiKB58cQDyo0bppMTHJ+ceBDC50MEnH2ORG2JGVMj9FlAbbL0dQw0NV1EZxvjGvMP6umDNAMuGt97O0El97COABI6wIfYx3gAhgCKAAiQ7ZPPxjgd3ciA+hoBAe+sGLsqPn+4prHwu70ZWQ1ArA704in2GXZd2EF9IGPnKsEFSw052D+DXYtVIEzoARhQ/tDOxk9SZuk2R1zfRwQDY+sIJrCYkwGIiLkO+LSQ1IkR/ZTPxOg5HTpI8lb5Nhd7gUaCQNdb7R0l6KM27pTZg2mAcZ25nh/BM7J0jYEeM7B/1X1jnCH/C5RdmMqnW7+PqNFoqkUQrahTMbOVNPBzw4bJPbAE55ScVMKuMgavqluNP0+lhy1qxKK8UVZKEyC6avRhrOugwQ5GQ7XIVqLl3wOwtNQ1qkb5sWshkXK8jJF4ca619eOPrUCECwcHePLKZRz1Y7z++rs4Oha899rraA24e3yYrMR97jjZfwbih2Uo8vLEOhqd6OtL6EK5Z+hYEclB2zmPoAbmI06b1kzKMdqpMOOFfW1zW3wvK8xf3r8WcqYcLzEYcn+Lpyx0Vb/uDMl5iOPo4jebl1063vnpX+Hb//Zf4M6Nt/Fzv/2/wue//qvYbDa+BtFD1e3+vaIP8fen13hpV7hui9hjMNbPtCt8XM5zN58JMyztLRnbpdsCVMbrqf0KW2CHYhOQ8tA9/P2D1Yx9zUntqqyZMberfRZ7gD0pWIgAwrCjojdCN7ffA8ybzyn7WkKYtIA+yl4W6zcS9BQMiaEL23eIlNepD4R1SfnQqFd+PtQtUOoMI0X1IhVsHVcF0JNl9H7vfUawtdcqxwGAxee+l2aabX8Sc6gE9kmw9UTfireHqT/xmWY/aCkqNOxJjPSbqmPPjzcXtNhC5/A24EWfjHbg0QtFB9BcwNLeGMVBqLCLqatApKmOTdCWb7MlicjsKzLfKCdrZegJChYCa2Hgd5/wAE7FgYtRZmYCuqQOluqYAsqxn0V9xtgNoezT4n/WCk5yv6dWXc7WQEZh0AqdaDFPsNBv6pyJP3IcL9q9vmnMbUJ0C43+Cf1DR89mU1CUdfg+xrByu3WhsFD6lVdZZZVVqlz4wi+f8dTyq5wl0T7j6I3v4f1v/gscv/VDPPkb/yUufe3XV6DSKqusssoqC3lokNLJ0TH63MFqThduDcdtdgMzToWrG/QWEBvOjnGqu/du1pmMIBp5cIkbF2YXmIHk6cgAgoqlIhHp5rK0o0gAiTsFCM1P5Acoo88B9ghj68QNN8Y0bdJqawSAyVPNuAEqZtyyn+AcNmPxtLsxWc+yVedQnNJRD7aK57E35iavV9qmlrZEFWge9BI3PCPQaSU3F4J4uhloBOw8HYUXqysgHqgfJ4kGfX94nqNu5iwyFgtSM/QFxfFmVAQOkHIwlQdZlQDtbuhnfM5dSRTMB9VYHwZydQw98hRrGE7wfJOm3yKv8osWd4afYLjtHp0ILPXR009exv4Tl/DWWzOefOYJ/PB7r+Hb330Tf/H9v8DtOyeY5obDm3fx+vd/guefexbTxgB8MW6lhwdEIf1ktJ8GF4Na4BTWj4PJKnvcA/PWaaQxcwdbhwUd3BUr5vgZjB8MqLMfSLhOIkUjD6AaFNxaOgpVdZH+ZsijbumPKmehDB9G0v2IGR03b72Lf/Yv/xX+/f/v93Hv3iHevv4W/ot/9A/w6iuv+pq9ff9wlW3XPQAg5YPxznSC+venHlwn1cfbplR+Rmw5AtzDkU8xXdx56Kc8547b927h0pXLIAQ7hzMMhYdOFVqYWAgW8Bt7g6J3Y8pTYnR0RGoxAy5Y+qoFu1g4EZ12X9KpK9klsSdmucLZSxxnVG1dF7F1ngCFAXtYxh6rEkwxgETaL0eR2rvLfpAgYwDU3KFu9QkGqATpRmpHARit+ErHqhvrrnRfXcjBUQ58IunGYtSa72Wxdyq6GItU7hPqgA21VlHv0wTGakcXAbdm+6c/g3KM27rp3Dqw7GQedPG8p1ObnCXQgFzGKicYkXYfYGzMUDKLp8iDrbeRqooAAnv5rDVOTrqNHe9v25MN2D3qWOYYDGgGFbSpGSMjAGbrL47G1aF3ZMCFkKfVSYfLHRInkoMdqr7WTqC3ZixdbAMe1OzEc4CUBJZaL1hVSAWY1dnCGNhM2f4aAXCxE9HHJ7MDtWw+NXYAN3GClFgNNGt6k0CKvsTsgKQO33tMwzDdMMb2OA+ezGIlWB6LhQXGbW8UH3NjQZG8JtsN4fbXLLsFi/ybXA+G9mHtT2AHGDVmdNcxQJEKjgaDlyO+VSPIaWN+aiWVR7zFdVsiMrY8ZWc7ObtOH2M10wwUSeqx0WaFRakEWmrAroLJ4AG6RbAlDgTk4JY0K1L3tE4FYIHkVJ7VpzjZOguq46wGJUeiteZRSIWnnfPAmy+Fpr478VpIjqJSTACL8bnUS6N+aR6ljbHr8vHsaLMxKu2Gofta0HKskTnKtICsqnqgSFOI8mXjIlvufJ0py1rq1Dp+VvbVBROTz4/QRe/bIKVN8o9av0cko7/0VDuTvy8DfChtnUytH4M9obFL2P7JtI/9g31cuHQAog3mfoy779/GPAOsjNb2oZuLGZDsAah1FjN7ppR+zQ4aY1ljjw5WpdEOMQeipjXgbLpDAPxoDALEukuLrqtlMPZEszez0rURt9t+MSg/TGvXnn1UvXT27YlTs0ptTPV+jDe++a/xR7/7r3H9p29DZMadf/pPwHsX8MpXfwFtAchdSl3fAL3/fNTtP3Zdt13CT7ZNT+Hf8o9YnWwWRlV7P7GDduG/IT8glABX5DoSc7E4SLZ0QE62TJAsF5Jy1YBWlL9Cp4OM+bdVg+iaKMuo9PjFtspMBJq65GLPLU+OPdJXgUXVYn833ahWxD0PVJ/pTH5ILiX7raw5YSuoGx/kjOZMlFt0tEUClBbtW/dByr4IvZWUTD/g2Ac198zQI8Zzx7NNf3Dwius4qdvEKhlshN4WBNNTwx7LMeJtuBiGhGFrZF9HG+3eJ+Nb278HANVVFn9ftDTKmqo55hYzVJc/K1Plskymt6cPigb4nnls9NX2Kzubp0S3j8IiVggi/XawAoeknR0gpShibgl+ffoufP+RAggLHfUBbRnfRYtvH7w7rSnUNhs2Qyn4Yl/MloyGWaCFfGwR5ayPMVfuTBsh1gLafnaMRf8im6Q23CPWpVZZZZXzLe3iVew//8VPuxirnBPph3fw7r/5f+Luj/4U6Babffff/XfYe+Zz2Hv2859y6VZZZZVVVjlL8tAgJeqKBsLcZ8y9A90odCZqaWSLaLIhJZOAAxa62Ml2MwIB7cMTaaloxAEvg9K3O7DH6I/ZnKh9BBrMgWHBGIalDZFizJIaKCpANiKW9g3MaMx28h4A1AAjkZZhsNMwNiC0iZyVBnmak9zAB5B5FQiWZs5S0yE/tLRa9meUy8AdaqlZUB06YVQyuqfWi4AsESxViuTb0CLfFiyQFfTg9jwZhqUb20L/f/b+rNvS5MgSw7a5n3sjIucEUEBV19zV81DNRYqSFjXwXWvxB/Qv4x/Qs170InFpkU2uFklJXVKz5xk1A4kh54yMiPu5mR5sbzP/TgSQWVUoIBt1HMi4957zDT6Ym5ubbd+WgZR0hNAxjc3xVM5j4OBJpHbDGcbJnxTFPmHIgAxj1JUaT86vUSeO23HR0Jg/v7I7DApspTpAlcyy7/3LsahRKQrqn1S9DA8eWDZxeDInPH58h1/51d/AX3vrt/D47Xv89z/8hxjh+NYvfB2/+Zu/WgA9WDq2zMUIlmNQbWS1zZJlwAIlvwsLAyuDuzk7EQyiJ214spWFLyholakZ6YAcfOZI1ofDF4BkXpEjZdhEUKpS3PJaP/JknxyOmaYxHYkZB9ydvX/aoMJfjHLtCKvP3RB4gX/yj/8R/q//l/8GP/ij72GMB/zge9/B63cDf//v/328/sZbr7oTAErXvARMerkC24TpQO1GQXF67p9nQEFObgVF9dr9LGTrnb2dC3nCGQCSKdBXrjlhch57BVlT4yYAwqP4J6iDvdNSmSd4EAGbXgw3RxzwJda61O0IAL7IOECQhOd6YZoOELikHbkVqKfXNcD6osEwqauZVkmLFKeWRySoSAECS3a2xP1yDUcCkAv8RCd1n+pm9UzOba4FuVwXUDmByxyDmWAAgcbCgkCwBBgfsQqUsYN+zPgTfCF0ch0JoNHzZFaMbIfNSad7AEtjwRRjtU722junYYwLmQQBRK7D5R+25HQIrt2D/W4WiCPXXPcjU3OtKD0ccqBzzFf4lvUgKkhV4pvRgQq86GTvWkGwTgYnMrDEeVeiv2o9SCatZA8y3jNsYmHxfq1zDQ+hUMKQdpJZwEaUnaOAjDGd71oJaDuOI1PgAWTeiu2EM9lwluNYR6XNg3M++QKAZCCy7hMg0+wlqDWBUdAp5RwxBFkFsRz7SWfbOrQBdzx579Gp+djHdfKd8jJqvHLwhw0+r4Nxmf6LthVqauaaFqBNmeNjYyRQac5+3klXYkt9QYuLP53slpqDybI0Ww/AEzBAGxqwYmr6SpaScwJ/mKojwZ9W9oH2A4ouye6vAB5t1VNsl8+1qNBd6QfUOtCByBqDbe3asDv5DGFGI/cFAzxkIdt/S50RYEBSAU6zYm6dADCvLBZVAQy+bSbQHquy+ueqG19hCuyrbui3Vj/1nbqg++nqZqD2AKcvNj21x/i27QN/b3s/0P1/en50PdQHpltfMhtiu9Wuvokf8fn2cFzZ/696BV7uUvsRn+uL0zOu7aZ9z/Rj6vmnL/mcOjxCpsU5Bt5++y08fjIwLgc++/hj4Ai88e67+Nq3vtWB4JILAZMk/FGp6UJzQnOqhjK2+Yl8/3mVRknDJsiyW6r2pjbk6NeeFz1W0vk1r9DrJPh9Bfltm+Nb2cfvx/X+K6bUz3X5ce19+PA9fOdf/xN89w+/i88/e4o5AsfDC/zeP/0d/KVf/yuYjx/jR/Vmz719BrU+OS9/+yTZdPUrnvvnt5v4orIB7PRJNOin7GA4Yh1wGxhj+77Wb3B+te5F9HqBkm9Zf16Yip6D0XMC53Wvaqfna2HZp2Gg5lJdVzb0ef9XrDDbaOQWkO+u+6nn9bOsMQ2pbKh+VltUV7CaSHDQvkjth0+KU0mfbbdWcliqJtvWqTM74JWtGD2G+/cAzuCu7Xq1V3WJjTLQTKyY0vsDYk/awSQAfWto1hsxlFeqt9p3Wfdh1UE9zTedWI5iv73e99JnFpXhvPtpHyu+S31W81hXBAFNXANi78wNiKO0nfzblWrc5EPmvkeHNuR7glXf5Z4iag4E+x9a05QCUanWa4zQf8t2hF0JSO57ew917if5R0pG2PbY5aFNpFPZ7Ryr+m79BzuN18lc2mQFpkOI159hu5frcKWGO8HTz74Dax9Jj7H0s/ZHt3Irt3IrXcaTNzFfe5U/+VZu5eXy/Dv/Dk+//Y9Pn8XDczz99j+5gZR+RJE9Yz/mMMit3Mqt3MrPY/nSIKWFTGOy3LEY4AMAz3wzGVBYGVRYK1lWwg1heZ97pjPJjabVBhNBpogx4IeemxtI91Xb7jzlvLix3zbMpgAUd9d+ACsZHQzINBxzksEhM4GYB3wGjghcLpfc5I5RDAjzcsmqLWAN4AGZ8iwppwOXsGSRMII/dLrKUOArjwR49CnTTr9WB+KsN91yKUym+/HIDXYyQPR32tmvyICycWPrYKq7PRiv3z1qw7s8ECNjQnc5cnBj4BY8pUoHQuQRnWzPcoxBiurNQTMEYlIf5KM6iLhtwvcNt1LNiWFpL3KWqSiYXH+/Qj7bvWU/8ro+WfWyU6tuqLpSxkzOFztl/vgzFzJ/jcsAnh2YNvBo3uG1r9/hna/f4ff/6A6XSyCOicdvvYnHb73OvmTg33MQY3Pol5Pekm56FUiAgYsIDCMQg+mbbFg6ckJjaMmEYTz1V47M8ii1S3RzsCaQaWxBbzoKyZayn0YLirGcI0o3lUHX3Zl9NSj6RL6Us0dzu17ffwHQ5uekKCCTCvEF3n/vO/jhH34HLz55CosH3M2UlQ9+8EM8/fRTvP7GG9hghCeH5v5M/sZrNH6b05JOLulrRWx7XM5j8pMeipeAWuXcS52aqovAHaJ+5CQ0dEArADx/9hQfffQxfBjefv11wMgeEXlSM5D9FNPIUmJQUOGITCU1hiFWXhxOJjHp3fACbJyC2erHAUQshE2EM51i5gmCC3whoIsFRKFv4OFmAloG046BDt9RmpH6GpaAVY6bQLxiNhKNRYIiLgVwSQYRl9sy38MTvEYnczqi842LjmPjCVkHU2VFz9AMpo5iVlixmHKVOtdmPU8MNr3IzHbqEkSlIGtEwBbTYi6voNKgHgsPTLtUQCGXsgEjU9HdXbaNBE5ICkGns1dMPpn7dJreP4ALEAeBXmSdhDU7TvDEb4InEmxkEfDjCkhtVmlSK0XVZkekXgtU0IOGUAZ0NA7VWdmbvoAhG0TjyBR0RtSEr0qlkMyLAY+Vp58JxPK18Hw5xuoT2GulzefuCHNM9rVHpvP1lYA8gV2j5hMd+y5geqf7ovVwAovUT7NMO+oBDIfFzPyGyLo60ysupnDzlXPPIusvMKGlEVYn0U82RhqwDBaNTjXB4EVAQL+2zzqdGLZgedsupuAH12wbVvU4BRxoc8w5Sscq7axrjisyZyMBkZaApQE5NazAbF/FssIpX9oH0GYwyQX1KKICtakGZPvnz75dWo4BK82fCq7ESffA0IwW1D9aznh7BRZDjKXSfUDN19x2EPRmCQDkYxq8M9ouWmGIhT1OmivxVueW/64PYgOMUKBqTlzb1zT2M32jXV2rmdU39P39eUTb1AJ7lZ0f6jMxQpi6tOf01p9GWe3URijQltrLXDfUyS+3aw/YVd+cSpz+/SK7L37st6++/vTEq4Dfn6a8uh1/ilIPIbgxFqaNPEB0Z7i7jFovgIFxuYPNoQEr3fvSHII1q1XtSbcXRu6HS3dXdVqv8TJUj+9mI9IOO/VD3cPUpDLQDAitfXxIXI9iVSvqUbVveUVHn63T3W7dr+/a/cTG6yte9h2XHw/44Xvv4dMPPoJ54P4u7aphA8fDA54/e4b7R4/Oe/truzw/5Y/zfm4fw2ITurplG6H+6mp+/yTG5VTrONcr3yElFC+18VqG48ULfPLdP8DdN34Zb7z2hHuBBgCd9fvVsyJODyyAhZEpzECfD2odO00q9H1OW6BsjG2OxNbMHdC9+xO6bPYnVwPTXgR2pTs2XcwuE3t3AeNPvaZ1uN7UCt9yffGrhXGDC51Y+gD2BxdwkqFrJav7rd6lb2PT6VEP1npb9/cgnZ7be8k+FGNMZzaHZGZ/+ivmiDXgaq+nCOPVl0H6xALHx8aQZcg9qEZpH5cayW5H2xLVktbX7MbgaZDzHAfHBkhflj6PtmNyME6+zmoa+8s906QrM5v2N0pNWv3JN3iAjMDq662etNX2Hi7bHNQZbNtZC/EKdXzN8bY91LYCT3Hy7CD6htntN+nz9rFI1uWj3evp25xre27/Az1/NmNWe4qtNd2mEvurFUzp5O0M5g0gGW3la6yXvUqv38qt3Mqt3MqtfInyiljDj/38VuAvPseL7/0eHv/K3/gLEc+6lVu5lVtR+dIgpc9fPMuN1YrM9R0JwlkecE92JTODr1XODBiDtlDwDQQ64ZSzOx0iDisa7EDEAjAImECCHSwdPWb5nwI0ZoaYk84Qx1oH7pAAGqUK0akkwMmSYLCZKVpgwIOCAMMyndowJMxjYMWETWPgOxeJwQ30igB8sLncYHMj3EAsBabYLxCjUm76VvqRmJbLC/iTG1vfNsnAw3LAuSEdQbDPyD61DMQNJAgs328bYwYfssAgRv69EMBIdpBwz/Qlw8rBMwuoFAz0JiDNbOR1gWQgt3awJTjMemte++VoPwA41vzyi5bfczjkVd+//M01g4ocfHLC9IWov+P63j+HzfmwwLS7HJ94wJ1NTJuYl4DbxPJkzZgxcH+5T0AanQ1CVruchptPpNiJJJuaT37AkKA6Q8DJjKEAoDENiYJTRucSgqmRmN5tGoEJkTl5bA4EwDRS6Yhzd4w5cKwXMIyXHIJKeYghEF9sn18HmH5837dj+1Wj//NbXt1HgaeffYx/+b/8U/z7f/lvYbHw2ut3mJdLgh/XwmeffYqv+8Kcl1PXNqjx7PRLByyD5aagPNlIwivQDp70dQQBcD3vXpqDOPnc8JMZNzkQ5SRPPTykl8E1h2+LANwCw4c8v/jh93+It955uwBGCW5Ypa8MKdvO+TcY2BtkFVuHQwmmzJCMg44EG1BGDblG1hrhOkHKdGFABbrTSa25sc13so64J1vCGMk6BHRquFHgG52U9mSpYbqiXA8JfJAu3NaZgAA+1P2+MEYy5LS0Gdcb3U7wTTjMAiMIfLVMGeYrwci5EHTKtezD/GpV0NSw4iAwaFTA0cgMNKTbLEGVi3pgwAAbCYShHoLp9DJTDYzB64J2TDIUXubE5TIhEM9+sju2VDingG4AZjPBXjAkpIXyXqotx+9YjuUPdJhn3W0LMC0GF7zmV4mBJBwR6+RsVgoQQ9RJ7xgoG63tqwA84InqLr+3ngmk7eN+JJOY5q3mThjWiwOBtFfG4moewHEc5bwX2uJwxwrDsfJvBVkS4NMp1BAJAAlPIBHc8+S5ATEMsVb2/jAs77QGHgkO8tDcOJ8cd0/gSKaBSLTZWs7UgUAxn236SfrL0pDklI3TGKxYUOCkigBJmhVlY+jr1KHnz0YFDvsagT4EPmRaYyMgivcJMJeyZTUnzZh6jxX+Kp99PpSGmfOjgn5Gy1nAvj3gyXlh++fu9Qhdtf0KBVRrFGnfKHCba11PtJwylHkjkwPOrI+1jnm/wUYyZXksvpj7Cc5NlN1kiDGbgamrWnWLDcHEruk/6ouXbWalO4nt0gJyWveF+hG5jCFb3CBPzeu9ftq6uEfPmX1jglwP1G4tKfpHMeZ94W/wWV+sE/vX/VJ/W30EractHT+m/ISce62Lv7iUrEI2yLbO/iRN1Qghldl/tNG4Xw1r/TvMcBlasbsdxdZRdc8qbhyZW5tbKJtdxGudLX24pWbb920CSGiXm+NvL41RySjvXzzwoMuqbzeBsS2FtGRuk7jTj1fJRMnVj7nmz6O8Sp5+mruZH/Uu94Xj4cDDixcwS+CsjdSDd/f3+fePrGiDUc5j8Iobym7vAWv762q9pR4/pz36Mq35kqUV7rafSDkcp8ukd3rdli6FBZ794A9x97VfrvWq9GM9TTpNa4rsS86TLQ3voA1wPtS16d9tjRAEPWjklR2jCRNRPrcGZIgttIE6+95tdx+Bra4+4r4dgWIF33pJ23v4NvbFJHR6Fuc6611rCJQGO06gEd0pGEur19iAS9RH1cdWpDknXV7/qD9aZg3b4avY9pN7f5Xo5kqqFGYnlt9tPHElz9f74QLCUPsa26EnaB/qsU7pUXuPrWdETZdq7OldsfcggLgaPz3OCty/myOB7eV6vAacfoO9L2UfaE+S25Lt0ADbVszgkgDOQy+J0f5D8yZKdRhTd4f6Q0uLdIbex39q/kbUQdUdLCQbrPZRalO0bOf+y1G6jnuIsil16G/vQNlkFvtHp1+qjtuYyZ7YQYfXtuCrdSznhkBOnA87qBebJHSKuK2Pb+VWbuXntkREpeG6lVv5aRWbXzoU/RevhOPpt/8xHv/KX8dPd1d4K7dyK7fysy1femV4eP48tygOHmeJCvQFHRUdKGLwswK8GdyF2IygjWiUkwYrnTjuvRlSiq3wDPJc6HkZcijUCR+eho/BlFWBhQU3wx0Mbjyp754OdA+MaXSqHgCMgJ8BGxfAD8RMVoDDB+7sHvc2Mc3IrpHMSlnH0Q4LAPBO7QbzCnokWRRdKgMMoAWSSUI+Wm4PPcFHXi4fss04si9gQDh8LjJBGFApaOQo3jbpngF5bWgzeE/2JWdKHDlXRvZfsltZ3ltBGQaZQbAWGTkUjA2iAuTcUrtUDO1gE4yhnEr74huv2LSXu+r8+em0n+lZ5zv30s6SKycVsIVo+t/Y3msKPL3yyX+y4uE4DseKwVNkC74O3N0/QQB48fAChgQ43N/P/F6pFOVghHFuZYC8wSDNKBLIFEZh6bpMcNxIJrDliIFMdQgOtyXjiSH/WK73AJU6CAyWDyuGMjONdVT7fAFmE5eRqRrdV8/pCBAfSOfjKKfcDmBrr9qre72C40AFg/X8/fReP/P6Obvj5cuN7KtPCreT7addOkBrePLam/g7v/338PHHH+Cf//vvwJ8/wCxTJr377jv4xi98vVg5Xp4BgCCOQJSTCsBJ12bqSCebW5/SBQzwBWcQPcdSAKdKhgRgC4J+yT677vPr+zpeqnHnHCHyTvcLsLqWwwdwFwY3w+Cp2TmTWW+t1NPOZkU4GWBGp11iv63jIHsLdYjFCcyzXMAdyLObjH4IPHjAJteTmLAgUwvr2Q74dHKaCX4a1e4K7fL5tuUfDTUAgeVHOu8FNItcF3gwN+f/4pzS3CEIyLZgQ9Yc9feybVxXp8eDeXlZg30+7e4lB+mwgPLbCbwl2VEgJWZ6avX3qhPZ5TJPxqvI4MBlDgJZEpSS/uKJy6TOjFy3ho0EiM6JMRi8cWA9kF2HOtTGALY1dIyRs8RAEGcLYV6f71i+GFxyHH5Qljj3YnOQU3dGOMENoxzqQ+2kHZVjpcBYymY6rPcAAN3N0euAhefcpT3lcXBt6Lm1B4CH7ocl+4tnSsBApu8D7bW02RLQl4xcWQFnQDlgZJVCnfZW0MWm0glS7k1UjGlbKe2eiI49dDo+UwjHIktnMX4taL3YzUQdrle/Wf2vx6BS+hIIVUF+bzCEYuBKPVjWhg0EWaeaJYmgmqG1icEy6okL7VaDlY11AoYVuDw1spnAgvv6htIrOR3FneZAfHWdjeGrgj4yG6RFaj2irpFdd05hguq7BL5HzaM+d9/2G59U86gDpHsAba+gjHJUoCvVcB4AKFtQ+4CMtrWNXayxDE4Z51kAMMMMwzQ9vz6ud7JJ2BqydVCPe6/9KHkX6H9vSzaHD1TwUr2yTxT1Ne+zsErPKxUn4Fb041V5ae5+vwZX6331ce5h9KtsbqnGrnv/vXcFcPWK0y/n20/1esWjX23N/ahn7R9cfXKKJPLNu3DF+WuD9P4X7FW+qE7hePjoPerhwaVUNlwqrMXAg5lhPnpMU0F1kiBpRohZNyva5Ka51xy2t+tlUJnMATFoJcMqivmjxoHsjxY9QnsnGdd7oz5WnY30lNeMLajv2b/7Xu0VNruepy7YP3O+3/aHv6KN52/7u5dedyWk9opnvvqGuLrGTvd+OSn5onJ+3v7X3f0j/OKv/ho+/MVv4o+//yH8QXN24LVf+GXcPbqvZ+zgyuun9ifXk7vl8GzLAOQybf3L+vXtWvy+YA6/dPt1n766wqc/r8Ao+VGDk3oPSvk5HoCHZ3WIo/S0teYMrTGn9sl+2mtBcEag1vydmaXbt+nkK71yDZDMb2QrxNY17FPrg227nii7Qy/mfNP3ZhsglXZT2TanWkb3JdcP+W5EhrPPsUwDm31dbOsRQIyyK2tdBCDkTrPynWXvzObUPa3ZWap8q2PZ4eot2uk63JUAd9V1NKN4yD+5PdD26vRnwbqW/pB+0j7WpZ8aSNUmQ7zUx2Z6ettR+1y49o/s+vCkgU5jGBSTmrTVSZy2LO2XkdyoPoCxLV4vku+3AbNKOx4gpa0Gt8at9tTbuObXDQpqkJT1NWpTrT1qaf++P3r3JfWTNIxcvapx7W/Y14Ge5md/52nV29aOk86yV9lVdrI5zn5UjRF6fm0LXY1mo3FP79VtAaSdezJGb+VWbuXnscQ68Pnv//Mvff18/AZ+MjborfxFKHb/BBgzHc0qY+LJr/+dn12lvuLFn3+O9dlHP+tq3Mqt3Mqt/NTLl4evrkwT5WTQAZ30Ot0FZOqTwQ20I+q0O7ihXRaZOmOtZFzSRrtSvAw0jwAKuGBuffLY6p/eTgYyRc4I+Fjc5d0Vi5IzHYyNgTEGwRXp2JhzkrmCp/txwH3iYS1gOMZlIo4LYMZTgzpvnHXIFDkZVKtD+vJS5vFleDgielMehxgqyAgg0EBmFsIIwE3sAOm0mxF02IoVIpmnwGBo8IR/pgwCYAJDGUbM7P9YW4BudDo3bez5IwNzyQmxO/gyWEmgV3qxyGChgPbWbAVgPPtrjNEOE9MJ3XZ81Mm3ch1dn57cN/M/4rQXh4Xuqt0dc77myjGF7K7Tm3a3xe4WVuqLvvTsbPiisjs6FoygOGDOfFsyfzgeHp6nA2cMzMsFsNksI+h+cE+QXQYulTaHY7o7kkygMUEfxIpiOb8scJkGYCRYzyzT5ci5FUD4A+S6iJBDxiDw0hgGj4VJdiWYnMyesmh+cuQY+3POWe1Stqru2pd7tfswijHGEZW+RYGZYLS+UpScn7L9pDxnBO48mucfV/fES9/UyGzvO+NpfhIbur0xu9cqMOcjfO1bv4h3vv4uxpwwqnhfBxSg7VrLWdznc0u91vdKu0Ndxs1FOasZ/bchAAnn8zZ2QSDOq/prD7Lu3rq83epd1+0+B1lTxn2tnv+D85ZNlLMuU3EReBdgGizOG7XVFBBLJ+kKgijMq0sAw+ErNalbpYMCAoeChJasOmI3igBTsCVgda1gMNFqKPZuiBw4jDExKdfLHyCgH0lVMp0pFFDmmhLbadxtvcy81oZkEgEMCXyy0DMJnDA5fBusMxg0qqGgnnFvAFqdJBZDEjI9SCyBYXPs3ASkFGtR9o1AxAYQXAzMoSE2AI55MepDY1LXwdOzqFRYEYHLnAmYG7xmGC5jwpAAJodjTsMFg/clcDTBMpIbw7Rkqxo8DRtQugGCrV1zhOBMpbxzx6L+W0w716dtJ8F+SGtJDD1bystR6c+YXjai0L3Bp6xYDLh4XROA8AbZ17IbtvlmlnDETPfWcpeBKdp4JUsTK8TmY8AYuTa4Y/liYDHIkqmUYwuwSbY8Ppc6QWt71nTA5iWZLeMgM9LKdIe0H5PhaXBOB8ytUsYJOJYxHGebV817jUuCRHJcXOndLPvYV0KvJPvtplcK3dSNTnmGAuVo4Ek2bXRgHgK25d85D9KeGnO0zWqGZP4iO1oEQBAZVsCVKoQ23RwC78XWXmvYYiLAUi9tKZi+coWABaUukVpxa+tuMjhSMVL+UxaYgPiuoNB+oZX9V6FFyp+wOpLNfTVNXcfHG1BIasLkio1P42zSmUCY0nSaHgajDlscl2Sz4zq4DU9tGa6Wul4WrL4UQB0kS1M0KiXFS/8ZU/4JBJJrXL57pHGupaAZcUL9rzZwv1OLkt7TAdvsCo2j1veqdc31ge6X/DVt0Rpf9n/rhgYaak5pjK3+BvcjO/PFlyuvsCz/hE+4vv0UwsbeE/HqO15tQn7Z1129GwwCDzTAQGtOMv2lbDx651sA04qrrrnede2VkhQA04iiQD8pq1vQk3az8W/tJ5TulHnJ4ZbXQak3Bepr0YbSapes699ASYbGuqFnbTjmrN8m1quGdFuHTv3HGyqwW31w4s+5AiGd5b0ftX/+JQd4H1Dr/eufUjz+7MUAxMD9W9/AfPxajS9gzfIT1y2UtO9jspf8XvsJgc5Kp9ZkMYhxsR+w648fOaNw6shNj740UiUbmwLa38E1xagYBYqv6lBnisGuwBixcHz6Afx4kfoztK+lHKsfrZQzEsxD25A61Ks2VjoyzYAWatlAUHU1NzZQieZKgf74ealT6ddhlVJaU3BQp5xA1NCthgI/9HJxAheVTVKAVLG47jISXFdUp6g27+2pVktpmG2joW+9ZKvqpqUJuT4aLM/MsP/kAjvNc+6PyjcGIEHzWZdhI+1HWOvFEIutAOnJDOvwk05LkKdRR9MOKrkvOLCW2/xZhwX5PddyZ6dnpmeuhy1kpxlo7Lsarm0e6WCKyq5TEei5LyOl9pTcS5emjiYMstbH16k/nfuoHCp9593Gmls9C0pY2b/N4Nvfp5zogBTQjEw1W9r2MGS6aKcfO7gOashj6xuNCasgua6DImq76QU9j64cWrUnF3CwALi8zWwH8vZ4VEpV68dpTLuRancD1ACuq8HxD1TfI5TKWIWzRGv31vs/w5XoVm7lVn4qJRB/Aialx7/6t0pP3MqtfFF59M1fx3zyJtZnH54+t3n3s6nQfwTl+Xv/Af786c+6GrdyK7dyKz/18qVBSutY6ehcSMf7IkhpZvawYZliyj1T2Tjk2Ixy7DtEUcygkNFpTqe7UkopwJmnGScGRqaZG7khdG0OlTKOW7FJgFOyy2Qw6ShQhyUOyQzzcoHYndwdwxbmuAAEUYQdmGPARro0hh257TXbw7Tt7Nn27e7tjAJAJ1UGJReBAr4SmAEEwhzrCGAYRoysr1m1Te6qMZjCyw+4gpcBxBGArXSMBPrUczhZOQCA6U8MGGNmnXlayTPPHEZSe0DcAuUZASoNnjbJTgYlh8PmwASKCSrc64zfiLxvOCpoSnIm9t81DAlsbbTDqhwsVv0hf8nJ57B/VN3/6uux/ZryYQkCSE/Pxl/V46sX7BTo5yftNXl1uT6JNccFlwlYHJlmKBwvnj/DMzN89vShAo93l0sGhBcZPMp5ApSvwb0AJMZrGJvHqKByBgfKNVhOjQQ8JAAxEjFlA3ZhuOjhaGesAbCB5ZEgOTK7qLfT4bYSDDGQTklfdEoBjlmnsmZWHLFSLmFBME0zTrzKgaLGNzvOIkPHaLBJ16gckXtEZHfhpcMvHVseOvGXnRexi2FN6v5ZlPljG9/Nawvphg5+lgz8GTZ3/axdG3EOsz4IsVWkbvC1NsDM5gKPHJmT/Ga+rLyfYDaBviR/wwbBoUiWvOre7od06M5NWK8D56+YlHKYntqovt4/ymt863YbSj+R8qC6ruV94lXpBsMSZOHAw4PD/UC44/CFEQz0hQExWX0rp6faWcBRsQIgwSCLzEAGx+TiIOYNR+BhHequYjaa1jpOoKcM5q3SayMMR4iVj3CgoNxSxwcZZXKqWnWXjQl3yQZ5+gIEiGRlFscbBMgmc6DmLjC8A930zHPNIcEinMCWSB1AYK5kstbHSt3gCeqCweZkkCSZDouFSHaB3SEdqEfKnN2jFl8IRGy1Fo3LxBwXuCdgKdO8JatbsvMYuimZbi0IXlqxMtianQ7ELK9w6loBIb3kfNG5uzzglVos0ihYRzuIyRYwMHMdjUWbKAWL3Vpsh1opI5SyEwQe5diOMYrFRWmpktkoas7GSMCU1kSlSetplOkaMQyDacMCB2xMxMNDjp1SgngCXo/1wGcxPRdtsrTPLBm43GBTuh4npz6AZLx0ntSN7G+n7SFbRsisGJzLLwKHwNJzYFDPueZjpK7wyDHwiAKyOOeimLT42nbIsy9lC0WA9kDW2iG9kH0l9W8Q29HAIBjfbHZwb1gHF2lzZOrDgm5QEHkNQUsRq4IOqcd4ZQW4DhgMy41ovlUsVesrHFSQzChA1+usKdZCuzkB0TsgRjZt2jDbSr7ZeClnfuqBqAcAAk9X4IZ6JIPQCgZFp4Uhw5nAQICCPsAOiogCzSllp5FZASDmH5BVYrMs4LTXBO49W5WnCSPbONB1Zt+56iw7DRDGuG20SGBsAXzCq5fi6h0mwyeks7ODF+t0Wl+0PmqdrsFomS674GSU2zaGvh1YUYCvqgC0YV/90nZVGwaSn737tkddPUIjcj6IkL+c++Ulc60Gq5+4P9uuP7gqUdfsL3jpCV9cbGC+9g6G/aD0wpgDax14eHogpuHZsyPnkeXaqv0h0PsxjUXNw2uDtZrc4eEO5NKa2ZrgFgQ75WqXazMDvoayKWv+eSSQKRqOVAF4yqLAsKdgO3tT++8xKN8mUDDnvOx6GVPon3pX/thgejvAYntXfkUdvH0GtAqv4HmljWwb/XwHruoE7PmoahgoUGc57i//LNr+5brohRpn6ZteCx8+fr/tHzSYpA4fXStfAhOiLV8AKDvlxHyF/RDEGVBW+hdRfd0ve9WEC16/f72N/0kUovbFfacGonW1DmWpzYB0IMfn/k0EmH41PNkrtdZounNPtOvW9vmkbpOelJbSmijVXH1Y+2HNScl6UOT6sESuCd1o9acOXzQjYe/5c+yt2nzuWc2Znj+1dIT6Pttn1929yW3V31Bt4IjUm8RkrhXitKZo7DRH+C7t+6QPem1LneTcV4q1ElxTSl/UgGyfAeUPE6hWuiUk69UOgm3UNKSNIVZR2UCm8S0bR9+lDQStwwGg0tw2aGls/ORBWWoA70uLF3peo56leVfjq/luqPTIGjylGLfT/SWy7WMsVDhyLnsNWH0u+73eHAKyoXwV7Xs7+7BKlrcx3tRsy0iU+Vd72uon2elmJThqTU2jiNN//WZrvVbfFYSsO/LUXj09Wids60ZbTz3n9jaP0xj1oZJ9mLcptM0h7B8CBqy16E/Y32Gty7Z+u5VbuZWf32Ljgkff+k0cH//gS95gp/XiVm7lT1zc8fy7/wF37/7iz7omX8ly//Vfwbh//LOuxq3cyq3cyk+9fGmQkscBpfix0KlyQ6xO0/RAkM/QWalYODZHp4tJSBvAaMeR80T+QDLMaJObaaoOjGF4OF7eRF8XgWGcToc5JrESMzeNYwscmZFJyRCDzBdjAINpQwbDD4MbzmG4XC7QrnXSwaA0bkpVMwhYMG6qJ4P8B50cQwApbsqdp0t1ys0dUKq3EZGnt1ayxiznGCBP6jsSgDRhuIzBtEPcfdKR8GD5fY7KKNrqDNAZhq1qk0dgjEv6QRiBM1PQnafElMEpwDQtGRgZ6EBL0OFcDBccHwUF6+/T4OmH1fN3d5qul9t7/+z8x8su3Ho821lOADogFqnJ2ylwPs0kZ8ZOXd1V3rwBX7KER7mUzAJ3j+7w+fNnWJ8/x/rsgs8+XQifwDTMu4DbgYs9IrAuoHRa7ikX+8HSdDoQoOGAXSblmI4mDAaa6FCmA0JAIQFPRgBB5rF1BNwmWS7SkbIOR2BhMIXSWu2EJXwCjmi2LRjBdtlXy3LeTwPWShkt2nYY5rwUC5ockJr6Sn2HEMNH6pZiYopOPzko52I92B26BmBEYDkQljrCYOwLL+aZHQxZgsb5gtIBL8uAJGNzq/2JZeXl0vJ9ehfruOJIQGlEO/4imXuy3wQGJRjByTbDCRGLeigI/hozR1Op/py6bkam0IydkWJz7A7Ok2LNIVjsFb107pWosTVLxhYnW0uBCei0XR7AmKmHMKn41R/gGC0IWBdkqysmOg+4jZTvMLzwB4wFBCZ14MDiKd+EHxHIEo4YqSGOdZQDOxlx0oEdiAYOssfLVangRQQGj1CWwxoBo151M8SSu1P0+TNTikbQoa45RzCRB4zAsApMVPA/26JwkSRTOj7HchQIJoYh1hbAHaN0zfIDootPYCGd/g7YHDBwbQXZfnxlvTkX91SSEcB6SPDRQtbD5XDGyGdH9uVgOtJhnpObfWA2W/aMY4yZAFCONRgkXc7ghQDUDoBt9pXMExapqxI4YwT1iE0rVyH1k1igfK2K+hqF0J0gGWT6N5AhoBzHJsDfnoYJlT4NaCCe99cVIFzryHWWa/RRDJacxwjECqZnHFBalnK2DznLZ6b7s9QRsAE/FhBpayC24AeMEeF2qAfbtI51ttHc4WQpysA0+0c/sbe5T1gflFFHBvmOdcDXASBPsgteIRC12nU67U/9FjUXGqAo0K46VddEUK8hODwdPHHTcz1tLViCwRGwaawTg2BkBANTwKVNE7QZxSKzOH9pGJlCXtLRtUpV6GKtA5cp6wEVuIrj4N85x9YeJPnKlQ7SgAGgnLO0wYI2l9nWD16sFQA6cKTnyfbXYqMZFgQw13v5XIF5Sg4VDN+5UrNOw5zMRL0nQEQCeHcQA2NFtU6ZIQbf7ZQlW8AaWEwVI32o9ozROhFlh9bqCsBqrsEy+K1gnZHRCdpYqbfrWakrNXe8+o911Z4GlEeou7cxASptYjJO7J242znd9/mxAERtT2k/pCB4aQ0qiVPKIdrm+loMLLIYUb/X7d1+2/RMN/hkSRVwa5vv1895ZdkBElvXB05V7sv76pcf9SVe96oy7p9s93uytSFwd3efdgoBcbKB216J3UjtPog4/Z7PvjqgU+CRc++nem250GGUHLNt7a/gbGw/o9LpBg8VdUd5/VryMPYRzDoU+Mmj6ie7dA90n4rqgP6KapR/+PasTcbK1uAd289Q/7hYEa2ADae3b0J2CpZTJ3axks043WsolPmfqvyo+6grT6wnXZP1/PMat4bR9NzcBqu6Rs/RdfGKtktmCrwTAq1FgRhfPXt+RNNOY5O/+6azbfs367EBNPfPeZ1kgls/aFxE7xgG2N09nPZhgghmrXXSq2pV6m/1sXwzDR4qtlFTM6LsBLCfdqCU1s9r5SW7yENsQ9xzwMi0QnkTSySidGzb6Zs/xlA6RS/X2lD1vHp3rWuxfV5iLiZocE7tOl++mU1WTaNyBVisNTG25+gG+XFG/Q4DwU98N7RvzXlVeo8vGNYAyn28uj6bAinZi7LLNF8C2qux77Y0qlrPd5lVP5Xvbtc3kM+w+6F0CPq5ukDzdjeAes3jHpTv0Pt6/CjrXbP+fetzgbdjq2M9h3fuwKaX1snNJtqUyXkqV19va4xeoPtqOAQw6k6Ibb+xz5lmfuo65toV+5DqpvO7ofYLvLTVtdp/fg+o2bMfZHdFgt6hOQoueddGxfbHPj/5rKy/l2z3etis6ldPyZpvY1MA9Fu5lVv5uS02BuabX/tZV+NW/kKVwPHJD3/WlfjKlvn62zemqVu5lVv5C1m+NEgp96Qjg4hrT3kSmJFMNAsNuNG2uE/2WwWBMm7amzv9pQ1WIDAwgRWICcA8T4pXOier/zKodMBsYK3AZSqlGzezseDcXAI8reOjgm6IQBTDAgEVQDnsLQJxHFgwHEeyi4xhGFOAinaCiCUo9EdR4mcLbWyOBTrn5aBScGt3qCg3eyzHpDNnORA8kh0IBsDoNCDQwkNx+mifE6JTmZDFyYyMHHIUWbPBzDlgopiWw5kOXhv6PdBMIvmeKQcz+1BOpXLwyp+F9gvko9spK7kyVKaA3rh3d+IsPNtX5VRQT27+mPqinRsdjCSfzOYDiCDwCtan0uxcl92B8+VLBn4DyCDzCNzNC7729a/huCw8eTQwRgYzL5d7IC7IFD1RSI8MaHUFdqdOApVmjiMSTLa7JDwcNvP3MQ3bqGGMmWn92hMDh2NMAzAhlp1p1vw7ZEgpJhsnYGNYOTZzXDJ4krKffbp0MlpH9GGwMWuuSy5O/smRAfRkgRknB2IOJFMQIeXS6ICKzJvFudZikE6ZBaXKGjBy9PuPGNh8qNJk8Qg3rh3b++X9S97TcvMnEpyTY38vChplmkBgXmYHkgxAiMpB45qBykXmnLE59ihpWcj0M+SwCzq/nGxLjgSzbfPbnUAJnfADGmx2ms1nB6k+yRP4XoAprIVFHW4MXo1xOYFSxpzlKG6HPjBt8ETwwIEEFIUnA0mMBEH4eoHPPvuEOJZBlpR07I0gGIEBaTkjnaxxyYDk5fTLDKCpTRIEYihEBqz6xkbWy5PL/+RcrkC3WaVAymYmyCQZ8RzJRaN+4+pjgFjA5AiOMNhMmGrq8JEgW52OjWRY8BUAFlM/Uu8SZDtqTiZTUAFSo0FtESPHgXeH9ByDjwn4yQBkMrytClTMsQXhYnPvepSuyrGdGGSsEeBHa77SukYExkzw2jBDNpYwszi67lzDdqdzeDONOAJjRaZEm2So8oBhdtCHjIxmYMLahLiFL0SskvEIZyrV1GkHjkr5oBQ9+ZzB9JlKf0vQWGSwcxHMnV0j57bWs9RLSiUW7jl/zQpUfZJD6R7JbGyBtcHgKhdl96MAEFrfZStBBESbbSZ7b2BgQbqSczgKEszARgAmtrOUBycoRWtMpmNUOuFmsDIz2nhWKX6HDWCCjFdKLZR6+pq14eSc55zTekXLteR30MgzMiCZDYwyJRqMmyudnjd6XlM2tQxUCFD9TBkXM2kCYC56GoCFaYN6QJczhQrXypdZKb56xaWqCIjU/kBLiCy0PVDHJbwCnRUw1SURW8oM8JDD9lKu1XkNgUhbKqs6JU8dmqpbADPJbTAlJXiNA2QMzVewLbLngQKKGvNWhjvBn46Ys8ep6sE/DTkfre3fYpfaZCV4cYFQCH5VJ1bwO1D2rllDsjIAtofTGGyGQEuqS6+rpWeingCQjc1ODer7s27B9ZO2NDTYVimRNIeqD6B1CGeb//SuV5WtRZSRncfRrlps9c7rh0p/6322fVomB6rDIQvv/Nnpqer/2D6Ps7x+0fytrtgUWctbYNrA40d3WOOAWa5DuYyRmU5MGAq6FwWQar+vKyj5TNuEaS+BlgFrO9yqPUotyL9L4vQ+K+Yqq8u2cGi0DAG99+rv1bf94ppv3dXQpu7Ha8WozpS8abg1l6P+6XEtaY4GjmBba08qCEFWJU3y8/t7a8rnxNX3PalfqnevJfr8y60A8UUXsP92W7vyIr3qSZYg+Nyaaqxb3mpTFruENUhkX5eblaRtqGaw2V8dVx39ilYZaNv1s3c5kp+qdE4BsF8GLUqkyqKpOUBQ+MPnePH8KdZKkPfJD7Tp+LbRUf6sPsmxy9j5/tYw/X3382Zn1Ze2DY+VqLc+S9sJ+9rRrTvVtbtba0mOUHVcAAJzDFixBJZWMdBGogVYPgzV8brNtvWZwFqSdbW3wWsnoB82UN/mR9h1OUe95Rtar/IZxVpTtkD3db6xOVDLDmEzBPrd62rIAyE20m+WezDuRzi3T3t8zSGy1FZXlzHEvpGPU/VrA7H6sf7cnt/fNtNo2Q36UwtoPZeAnU1XyX7KdV4P3eWRh2eqj6LHy/a1V/26j6PGdhflXQ9ubdSc2vRh15MAr42JVrYktvf59rv2FJLDEVEpsvdhat2N09Ss+ka3Y5fnvZKVphV7se6f7ZsT49Uu55JpfrCvZbFVsLq99gpW/bTL90lv3Mqt3Mqt3Mqt3MpPpaynnyD8y6dgvJVbuZVb+XkpXxqkdBwZnBVzTqX/8APTJlZkwDdWJCuNoZyQy8GAnTaICtT2xnDQgX1wuzUY0HNhBLT5lbMM6A2xWTFWrLyUDDNWbEoCn8AmgMUAEoPXEVjxAIyRjEt0IAy7ZIokJGvUsokRA+OSp+IUOG0HaoIAFhKQlEANrw1pgprEViGHGE8/rwQ5BJ1EsTHlBK9droQtWR+ITcYSMOZGkFhkY2OtOn8/LL8PXzjCMflud51O1EY4nQprBS6WDm2l6MmUJXnZsAzYyZni5bzOTfEkukgjbLAziwo30BWA5N+L1O+DAJ5y4u1UQSqvcAjo4wYXdRHTlW7pqtjuByhnqeTy/MqzE+HkaPiC0g72BGC4BWIkSGdayvzFHIe/wHp4AYvAtIX7O+AyAwrXymkkJo0MtA0oDYMYTeQA6lR87FdfyJQfbKcmWWT6GTky3CNZYuAYcIQvQleCY5un7cSQVgwsMOyJipI1DJjzwrRbwdRT4HNS5i9M1yT5Onl5tgEW20UQmLeYEmDMdLKWg4WOvwyUc7BcqVwmA4wZ9NZ1Kadki9mchWcxoIOH94mdavPiQU7T3Y20O1DlqGrH0NbUlyXnx4kVH+dI0BH13hipN8jKIF+0e8AXCHrUvBpQKrMKCoQ30Ij1rWAU0wfCIwE6ap2cqZuzEkrp2TNm9xDzI7ocdQ8dmOGOWJ20KAQ0AOCLjFAFFjBiAXpNyTpnalJjUHWYF3vE4dlnD1h49vAUT599hoeHB8TdPRYcFp4AhEh3+lqeqcei5d+Rc0pMHcG+k2PZqnktY/KHGlMeeUQGDskWJX9wqF0mZhyOq+d8uMwBX45jLeywsjDA/QATsKZjFUzRyBSMKQ6p9IZ1cOIyW0+37JN9xzrNnEUUO2HaBOD7Ceaih97JWCWHvzEVVmCfxx18GyPBi2JaUMo998CcXFA8l/ExjJm5BD5KeRxmmTouUoYW2zAESEq6EdohCwamoeU6t1a5+XMeACmHFRDItJiLDFpJ0uQEq60CbAINUrLBk8kLgNLxWejwfaW0y3WLfeeea7uvXtMpM3PI/oqN/YR6GAkcbLYABR2yOFkbM/AQGxNL6jEFqVTHtGO2uQsyA+yBjvrdKkXnyT6LBqNJP0Q0GCgg24ggD+ca6RoDsUwmG9VaR7M4sm86ljQQcQABskd2HSV3XW+nftzAtAwaIQQK0TMBXwpaOeU1ACerKATalSHUQa3STArYRTC1IUo/6z/y/+UYEZSoGdLMfqP61+N8Srrsg90o+ooVtX234VK0yLbFThED2X6x0g3r41OQScFOFr2mUnhhtVnRkRvaZAyb0lbqvt0C2GgdiNhsOgJn0xSRkuq9SqVkHIFgukTQdpxjIHJDgushq9ggFxIBjjSHXtGztEn2PqOdHpIL9a3zikJc6XKk9kKtzfreyu6x1hliAoR0UbcbQAUzZZdZ1cq2sdA+4Nre3vYH6rLoOdPlmrXg5ev35103Lb97RX9aX7e/L7brs23XtUHNyXqn7d/2c0/VOIvvlyy7rSzzSnZI2ml+NOAyDz9wv4oOrJdhct2a2reosQKbab7oQsqC2alPxEsmm126XvJUMirbp6LKgbAt4alkk3pa87RBd1YDHmiAYTZBwfBNP7NV0vERUe0KPQ9XOz6Tb2EbOE7Qnj7Rg7mBeUw1q/7S9/xL9i8CZ6HZJuWVLtx7r5+z2dpd7X1AX/rrZcmP/i/6yu6TqL7bcTVxqoe0aq992S1xfuwmH15zW2CU1h+lO2p/vtf8un/615Sr3qvxUZS1qtzW5Zv8GzYZRetW6j72QrPzRuBYD/j8j/8tPv/0Azz/7GO8/vqTekYC9poRrOwL0IcTUYcwqquu9Py+h+z9Wlx9Lzsg56RsQetOLbndwTOs3lYv7qH1vfSD0b45acKzyBo7b2oObnK3A5zqXvU791LaZ6mtxUJWdem2ShbPSj0IHB+1XspHJ53xaoVLkGzNR7QO5DviJCNR3/V+JtfZPaWt0qDKl6WDDapu68ZO+yaAvOpcepF1KpuV30ntCCrdQoFTX/aKG4CAfyEzI7obr+wqzeW2P9QvXo+OMm5kG7SEFBPtVrHTnjcC+x5kU9NV3wKmWf9edpKq3FZ/2R6Sj6oJ9+I6TNH+P7yiGHSo66r6V++PvsL6++rC0xAIKFQTRgOwreH9nLP90GMkfdnLxiafYkUTOF2ynQshIkQKuvuvdvj29v5Xd8yt3Mqt3Mqt3Mqt/ARLRADrwCf/9L/DwwffxXr6MS6vv/Ozrtat3Mqt3MpPrXx5JiVuUI7jKIdf0AF6cPM0uBEPBXQYRG4HTm4KxaS0XAHodG7DgTUS3jC9T8wb6BxXOhc6N/LUz+Dp9gwWv3h4KPaEOTPlzZhOhgU6VcwYOM2A6rQJHwGbA3Mk4GYCyd4BwBZwjIVxOB7dLzzBI4zLhRvB3pSaAuD01GQAtJ0Mcn5k3zENkIGsEMagwRYwKJegAo4CVTiS0SYdAcnIY3gAEA+ZXzy7OAOnhsAKIOYlWZZCNUm2hLU8U7zJQ4jsrwMZUBboxRB5Oh2o9FByWyoFHElIas+tjbV4AJyfBTLdV8kXbzBYnUqvjXm0U4s9vfkudDJ1e5adT2TqUWIcMSh5SpSTwug0UJ31ht03EEgmq2qPod/zanTJjyxmADE1WCvdB4e/yP9w4OFh0dncQV/gUgxgmQYtg93jMioorVNpCpoDSLmqgC5dFAKa4MAcFyx3jAWMmfcnSIQBcncgFhDO4JqRASbK4SEnnNnCGNl/F1wYaLcCMgj8so6FOSdBHjnIRxguc6QTbx0wM8xpp6CX+8qUSgDiyBSRCjrE8gY1ksHHfWEdC5cx0unJOq+6kGCUShFGR2YdCm/H1u5iBTKt3mT6KwW7K9+cNWNHO1Wt5LjLwu6N65RF53edZWdzmKqO/G+t4xxvyp5JVg5fGeRf6bwdAFYcKWOwmkcOJ/PJ7mCLBh669LiTQQmYzpr6KmDCIhgywQ5iWtJYtqNWzlVDgo88krXL/YAvJyCDKebIXpXOWAYcnMAyHdKUR7DmdYJ1jjjwEAufPn2K588XLvcXPP30Y/zgww/hn32Mf/ftb+MXf/XXYN/6BsZ8jEd3F0yCSuW0XkHmJCfIEIEHplc8jYm3tjEbTDPIfuNXAvWEB9YkoMIzjZRSnc0tT2am50uZGZasR8GA2YqAclHJ0YxiusuOyWnmZEmbpfcSuAOm0Mo11YxMGlwTHA0K820NGLhoJBu8RWd8pQVFBkzXsRCRaeKADhwli0+CbgSqLUctyCg4AKNsDbvkM32l2zUnHhr04rXQVNo694yfjnTU+koGqwTidZo853vXOhJUYAYMAmpevKjAs3MeGAwLDFet7O+UYTnrtd7zp3mOGwKD6fXCLddN6VzNjo2pMOUIDHqknssUuWTaotwF7YSolKBgIFE2ipzqUfNN63EsL1BNRCT7FCMeArwNpG5bLt2fdlkF2JSegPXRvDAQ9MTxdN/WDqagxADTrxEkKQQXg+2HL8Qqi6PARpWijY79MQzDJhzSRZ2SK/UI17UUG4K2UhZHEOhOfar/TbM6ZS5GrB3AHFwXbWT/OdLerXWPFzXT02z5xBUol7Io/QEEMJjyBbJjW74TD5trbI1pBKYU4lew7Guj+lnrQNquUeyHKKBXzyc+pdc6oJ5V0ZpIWx6GWjP0HDEohdYUNJhCgAgBoYzI/CEgqvSCIVn3kHNNNqwYiGwk45VRdkxsp+A7qW9wmRg2EavtyWrhZgOfAoG0V6M6YLcp9jWW+yXYFlgV0HLTG3Vn/+FELw6CzxNgx+siAJsVvB66OTRWVv86x9pNULtqBgwBseXsZQ/eVp9se4qyF7Yx3duPqoV1ajzV88eVU0ecn9gbgTKs9i0KtJ/Y791r9fKjm423nrHtPb58yfEnwW2C9pH2g2NhcZ3zSEswAaYCUG7vYiVOawDnH2IL2IdD7HBla1kfApEdubS+U6jqedEseCmLDfDJB3V9doYvAWMDZPjjHE2zJir4r7kpeQmtYaPbUOMWW72Ugt1s0z0QXhUN/Nr2A5orGnit2ZCNnrr+PKJnqVAX84bzT9uuwy5r2P7dnwf00R/gnLLxR5fqp6t61jp0pSBME1Jdp2cIDMOOq327eTfraqrmR713jahsmnm3g+uq9HHXuB4ihsfo+laXsr4CTWU9BfCwbk81u0Egtjdf8i2dEoYVC0+fPsUnH3+CGQfW04/wnX/7T3F8+AO8/4P38Pnd/4j7/81/CczHePLkCS7cl7ZsZv1DL7Be36JfmnOm9oaD6W1pywayr7fUbMEHaEzUTgFoei0FBL7Qq/JQQ6+hPZmin2t7/eKk9+u3AllsoFWNUbEnxWkkITY2ygKXlB7QbRJ4yZ9v/ad22/bkWjB7DUEzPOV6yYMaXFnG5oMKscOPCQFApHtaRgSYLBGCwHHBNqfdsANQVO/ufM1Dtaf1k/p7A71Tnj02We+mtgxpzkTXz2rApYdbr7nYJetFelcPTc+87WVbvbLshz3Auc45XGt+Xuvc57AG7E/UvG492cCdrEfrlX2Oak8LPYJyfupv2mMG7REEmLpWUpLqZiKu91Sfd4rgYs+KXstLB7H9LdOyzzT6oNyzgaP7r9fB7uOeh0ClMNw6PJ/eC2qo7VaOsqv9xK5Trdjw8p4vtJ5u5VZu5VZu5VZu5U9RIhzx4jkePvoeHj78Lj77t/8Iz7/zb4EIfPz//b/jnf/1fwW7f9L29K3cyq3cys9x+ROkewvtW5CbQDIEmE7Jzwz4uSOUCk0bdW0asZ28G2Qd8oOBRwBhFfxK8JAcK7mpjYhMdaK0QZHOr/BBZ1YHJJfJoZOnPpdn0GMa0llPR1cecHb4UHqNQVYL1RsEUgDDM0g5huF+AOF5CnowxVWdsioPVAOOgnU5VtONKy3b4gbdLJkMHAqidFo6pR6qjT1fMWzSGZ2gsAzfGgKORYhXYgtG9iFA5hjLNEgRCEymQxm1reWR6fqvlsTtFHn27+awMAG/UIEFg/F9UTVjC/Kek+Po/Ly6botYyO20c9cEeEKRv1c3sdAlfvo0g0YA3CuNiwFYiiK9wgjYfaPlE9ucb69yBO9tsc1JlAAyAB54+vlz+MrTzQuBYzleHDkuZncwu0NAADeDIYF5az2gWU7a6S/nZHYEmVrUQ2YEH6UzyiwZZQwjXRlisNCjliPWAQyDMkMl+VjWJ51W7dTJsc+6OBbMrZjAzBQ8z8otgjuCc3rYPDmi3D2BhrBy0kR0ENZ9ITwje2Neak5ZRKUuAgbGbAeXRiVP9A32T/4upjAPyVMGwisdHgMYAm6IEUNPVZoNBTkEDrNyvidgpBz8koaXnIebYw/Zn/vfL0tY/qegfXB8dheZqKEElAkwCEm5NFgCPS0d73KguSv4z749OcFQMrfIunQZ7URUnw32gZee6/ms9AtihIG0xAaEUZ1r3m2pIoq1gsDN1MFW9dIJQwewAvjOd9/D//z//h18+OlT/OZv/WX83r//d/j27/0BPv/gfXz+2cd489238M4fvIlf/OW/jF//1V/GnV3orJMDMBmJ9tPQRkYfdUuCjTItE8wqzU+DtLx0h+ak+4IyPhXAQ7IWCtRRt5naDoSNOjVb6wb/7mCg19wxaRK+x8bAZArGQGCMmXNGoMaiLzigwMFgitEETIhpr9cNrXWdGqzlV+0RoCUfGdVmXyhdlnGZ6BSOCBjBHdl3KU+D6+S2NAIRyawmKJja4x1gyQAcg53hBb5S8Ceu5l0/P1OfAWlbOBpAVwA+zsFizWGwIkFoQfBOjpXzhoX8aSDWUf3ICiTL4NpOtXckomMOqX8W7aFexKOd64q61iyk/ZRQtLTDImBlvjRLU5jGL9PzJairg9alXGIPaqMC387gQYLeNC/4DCEOZHqYEUgb1CcJxDmYEk+sUtK7sgm1TuXUGrRLErDjpE1upoD8p9J2sjec9k+mcrPSTWOIDYHjkxQ4ydKFINiOuqeGJ2quNShE66XsWrJe7vYUraVhSADmSJvtMmYFxo4YLSO0fXN+qh5fzZIiooA2ICMw1y4BmPart0Aur9dc3U2vCpBtxlo+mro3e7R0QIF19OSOaAFBHcw/BXiswFIAnYyQzElQ8DQtqlEKm/aE7GKZ0WaZktBSdw608VxrXmwBpWj5GHzXPso6BKG5btLfWgv1eSjgVpbbSb/VelCsBlpv1Ndjv6v6O/tQVrrWu7ZrjHZFF6vLddf2VY8r+hnV4l4WTjIAXN23fb7BN/rzV02Tk37sz2L/KvbvtgD+NvdfesbVZ8Nefr3WH5x0wctVLSBdfRPwtfDixUPqbB6aca5tqQv5H/Zn57uUEjO2t+3MK0bBrQApr1NKQD1RqQ6bzRXct6BAtvmcsk63msSp3SlCxv2E12ESPaNBJLRfR89NY5patZXb85RH9V3STjbLRunqWYDTXMsaiFR78h6xavk+HMUiCM1rlJ5+SVYl/4FtTkbLArZxoFDvqc+uS8s9defpfXq6ne846dtoNRiq5VmKAwJ2Niig9M7eMICA7x6HlyaE1EKtmbSR6W+I6s9Nvah1uzBHnL7TS+WTsTEqTbWAAJqrkj3VowAYsgFCYNRu1+cff4h/9T//A7z3u/8G93cXWBz46MOP8PnTp1jPP8dnnz/Dwyc/wJNf+DX8+t/5T/Dkja/B5oW+rU2fywnCdsY2HqfRYwf0mIC2h/6uReM8j9hO+VvyUVY/tcfL7ssJondYKO0v17sNvVJDTEbexFRQv2gfrrVCYyu9sMmU7bICK1hFt1+6Jur1vVT33DrpXgqaaw51w5kqulbFbIvG3bS/AE6dGNHMW5uCr/GrP/hEgez1pqE+2+oC6chdqviuTfaaYwlUuA1Y1hwXIBBAgza3NSqrrf2IPot6hDTlLm8R2mMb20+9Hv0ZVCf1I8c1dxT7+tR6rPusITR6liHHuews9ZRtGm177E4cF+j9bX+22Q5aBPTkVqt7FapfOZt0jEU1qfbIhu05fKX/tE6UjrGXFnPNy2vFKBkMYAMSnWV+X8jbTsTJDt7lQvfZkIznT/m7ti3b1p9IRu59EbmVW7mVW7mVW7mVP3OJCKxP3scn//If4ul/+P/Bnz9FPDw/XfPpv/6f8Px7v4snv/a38eQ3fhv3X/sl2Lz7GdX4Vm7lVm7lz798aZDSQyxupFadMjQwsIYMvpXzgMCB3NCL1j2BQg4wKCkmoQz+5unywXzfciwMYmWsAgpAMv+ckKTR52lNJ9fpVNlZliySnSMYOLY61T4yXd0yGMjuNAZiPaQj1QzhDxiXdGhGAOtw2OwzaRmAZftNToOJSrmD3D9eRrM75Cm4gRWByzBYAcEyuDpEFS82CD1Lp4RE0TwGLBbmACxmAb8uSs0DFFPSZWzOvi3NGzEMZJxiGh9LJ3r6ZKNYB7SpHsbNOxvXQXeNC908m6/PYBhRrrQ+mW29Ma6/DRv9O11d27OOal2yH8hdK6fWUuAOmzMq2rnlckptToVBFrCSrs0JYAAuBizRdfM5A50Wrk84bfKp7ihvkOFYL/DZ04/h/gw/eO/7gAcu03EZd3g+nuF48TxZrGLicpmYTM9WAwVgjFnBvHRCLADJPCNHpjOCIGfDGAM+CQ6xo9yBhoE5LggLxDKEE1QUdDS5QSnSNKcyQJhsXBEJRmLNADjcMvCcjEmZci0BHPLnCJwYmYVlOMIyECs/qy+lP8r/wpnKyNMBKEakGFHt9i2oXsMwDA/HKiaLBlYZAhMrGJAeQMRCmGGEAIfG78ptqWPj0GlcBfI8APOUoTnF3oTyKVWYzLZgopyJVdnrAC3QKRz2QhBKsfbQxRj5UwxtOb8TzBIDMGQKyxmjnFMBByYqWKNJYJaOWYfqmNUVc4JNOjLJghORp/QHBiadYZrMg/Vy9b0fsBU1ZiimpmSgszkQM+DHwTWknWo2FXQNmC062APwlB0F6IPzBDiwfOK9P3oP/+6f/1u89/HH+J3f+V9wZyl3P/yDPwSOB/zzf/Fv8GTc4a/+J477J8B6PvDuO2/h7SdvkjkoTzQHwQ8RyagV5ewD5xbnoFEPBWA2AbIjKQVB0szn3HR3MjQBFjkPgjN0WKp7iG1IfTky2JdrXgIYzZMZ7wim6zLNSiNx10CYJ9gBzZI3yIIoAIrRCbsikCxOHRAzru25LiQ7Vx6CVkDCsHBwTLK9kncBpTLtmjzEdO6y33LyJ0uM2UibYlyQTu2VDIFG0MgAJgG27oEYVgxUGpd2Uue8EcBNrBPwlFmla4oRlSLSwgoM4LRVtDAZrwmQtQXJBLciA3fu2Q4FYRSUzvEbcCxgBIzjHiMwPJJNCwq6csyAtFMg/3cwdSeDoZ7pCMcUSJLruRkW2504xlz3i/0hMvC6ApViLiqVgjSNmI0ULEl7RWu70xKcZNdMvTaKFafS/WIDneeXCCwggoGwBskmx5Vv4EvqzMiRgPQSDPCVjFaRQfkFZ7pIBYDEBCbVJgDjAGLVOrQyItegZ+lhqvEhGRYrZ0jKaANw7alxA1L3VUyBaw7nsZfM53iOneuFjxiXtFXnZVCvXvI6s2IvM2df2ZFrBevxVS1ikAoI7NPBxwB1+WZ39Vod3Hsw2Fbf9TWQjBkaICyDglfsAK6ODXWgKCBgwlYHfV3UBVZtAEHRYbIFpZO7HVoXkiUkwc8FPy0bXx3UqrEDbpv9wfburITqsijplu2R9RnYT9LLou5AakD62erZZqj0RrKVAZDJIwPkBQCrPrmyhfU8YGtMtyHiCtSjNu/jcv5arYC2Hy9/ewq14seVXXoqMBpt+tsrrutA7facl+qq8YrT3y9VlQ/dYuhfotaUO5ZjHfjks0/w2WfAxx9+RH0KvHh2YI2Fh4cH9hWZWW3r2sixmcUGidovBHaAQnVSrwOS9Y3xopuledd7kLyVa441WFT1UKvKSghJM6puw2wblw64nwO0kjnKOhfd9CE0yKjTMWlmbPo5Rk3A4MtlZ2q9taojW24AORFrBPM3Pg+oNIvaM1fDJAdsw6ZdUHO9G3ua++eygaC2PcVen5dKDW73he5XS7QP3zVyttrpbxlV77aWpDi291pUSj87PbGD8tDeqG/i+mm9P9/0Vq0LqXQbh62xCa4zgyA87UEkS6efkmXqZKZKqlS0bOFaL/DJv/7/4JNv/0s8//hTfO/TTxHL8eS1R/CHBzx/+gyvvfY6fviHf4D4oz+Cf/AHePzN38Abv/Hb+Ma77+Duck/bv2h7a+x3XdB+g/whoLj2EEhTS8NXMhW0QQuMpJcISGG57+u5JZDpSczquT0U7VORXGrVlP2PWgd7fdVhAzEwixntJKvSK/vStWlg9c2mEXp8obkv+xNVJCMb3mZbb9nf8ovx1hMoZl+D1Y3Y+mRbHWq4Yl9v+5Ls9ejfAtXhpbmuDM/ckitFs3Q37c4aP/VjH2LYWX3y0AnHacinutc+SjdJr2k8as7vtE3ScrFLA/tOzyy52YRqa5v8K3potWWzsYK2YuoQgaxynwDYltpW72uBNa4rO/RqH/Ndbgqwtf+9/9z+0zUpa62d9n4paFB9fxrSc7FNHpU+17o/e5/c11MZ1BsFdJIeq64uo40/bAMnmeX+WocdWmNTZrxl6Mp8uZVbuZVbuZVbuZU/W/HnT/G9/9t/jeOj7//oiyLw8P4f4+H9P8bH/+S/xZt/57/EO//5f8U47q3cyq3cys9f+fJMSgzEihraxYBhTL2kAHJtDjvgB3dYpOPOvZ0I2vzV39zRyTVXG3hEbUR1It3JvBERDKiCDpKVzApkF0qf5EBgJauJHCMGONM1xRBjEWEey3G5TMAjARZj5Gk1XzAP3DE9iZG5Iwr0sDkdXeAFOolGsmXsLtwgWmOEwZh9xJmWZloGXpdOIIoZhgCApb7g5nbaLGohY9B6HUAS0UQ6LkYyR1VqBjCIWSffGGBkYDMiU++576weaMdlqEr5XB00cmGoJAsD5SQoBzJ9PQ4rp0o6rjje2UPoWJ9AN6jgEV0RMNOpcm3KWf/N8UdfBXbHKIB0rnIDvlC/duDqvL+HJFSyPMsZtjnLq537Tbou++H9jz7Dv/zXv483XrvDD977Ie4umVLjw08cz+M5PvrwMyw/EDgw5gTiUsZIpnqbGCPlz11eNzlaCD4byXAzbODgPDKXU1LnGLtfMwKAApGEEt84HfHFxJ7Bc190QnO+m03KNIFxoTEcnPdk8TEHbMJs4ljNPgQ7YDayztnSZAQZF6YIymuXL0Qs0a4gkKxMHmIowdWJP+kNyrBnQKZSIFGSvGR/YB05eczYzgCmMS0eDEKOaJjFOBQIhGUwci3HHGR+2eTwSjDaNVaOqP3KwA4O2YvzRHCd5mNlsn+85bL0LAE1ZHgSq0DO7bzP6fx2WAInNmefUSepvoOO/7USYIGRYVCrNENk34JjIvvD5sAKB5BpBJOVhCAQHVSMSBYXd/jIYe4Adq4FAzNBYJtjz+iU9xVASg6MzCsrHuAOXKYlCOTZc/zR7/4+fuHrX8drbzyGvzgQWPjLv/6r+L1/9238P/+7/wnvv/c9fPLxU/z23/tt/Kd/7+/i/u5RAq+sHaVKZSqmAAxlMnAC6AYA9ocnSGIM5Pp05DW5jiUYIzQeQX4opSAg9T3hZJBbUvGuBs2lTBQrkFs5N5OpZZS+zEBsdEaQwbRwBNLOAjEx2IFcEySfNiaGQLNktdnlUHUrabYgkxAZdSDwDvU+bYLFnJq70xQ2K52VATiW4e6SJ9KHFFMF2EH9rDUlvb2Vuk6BycV6hlYnjgGvrzqyDR6ZwlDe/SCzQ6xIOfWU3Uz3lnbBQMBcAdog+EzOcS5YsYBoZhKxiOWBaS1IkgM51R01YcROwbkqIjTNdwEhF8faGWzTCfyLMW1YOahTvtexn2eXvaGxyudMrp8mFjbKsp3mtYIfkgunbsjxkE3ga3F9pu7YbKq1VgcIau5RzpmSdNVnuS6tcK6h+/9SL46ZjAqOXu/GtmY3G0jWRSDUGJvOEdAwGJYmo1QDqdijtq/bo/qhAiyD+tS29E8mMAEt2zEwbGKOQUCegMjZ1pHGFBACRi4yFnxFSzHnYQsEsd8rqNrfZwBcqTb267cxC2lFfcCephxtIaiSuaDtUboLUcFVC32fYGMdPqg0f6NHMrjODRtkKFQQmSBJ7lEiHEH7GmIE8wzyix1LtuSJpVP7IKBsSQXZVAvtlVKvC1iS86UC2rqfPRyxHTbYTFbbot69xkqUo/qtGSe4Bo4tJqZ1pd7VzWmzuduiP9WWwuOL0Q7n56rKLeXaOe6f28mO30uoyXs3a/7p4+g6nR4TXaea0ds70s7dX2r1/Uuxxv1W2z/tL16q/tUlnz19jo8+/BxvvPkEMS64u7tkSst5B1/AcQSShY970MrLnU/YA/IAZd9Am6or7eEFEgK0ju1tsu4e3td7IUcDMLhP0Fp4rau0lm8DZFsnW1aGde7P/NRRXM9IMOHejMVpG2UlpX/aAM0GLD/rIvkodgaavIU2lth/kGPfW12r9MD7QYQBHcbKtolhRgJcdnvJkWw56ZJX9BukAzehPv+y9TF64qF1yTkIj822iJ6YsQX3OZFilyPZxRy4jnFH6WTbq6G6hHUdtj1zzb2Il1pS60DVT2tKv7Ee79jkkc8ru6bXWwEEELKXtj6MZPWCDVwePS5AchwHLpdL7asdwGuvPcZbb72Bb3/7D/FwLNx/54f41qNv4a03XsecCTa2YhzNUuBx9ZNtdUXUORelHtzH2leDCgpYQHlyu+o7jTftw/LNRMtFbHNCHgPZ0T167bexfQXmWm1D9TGKsJXM7PZ6Aq97zXECaMsb1Mt3KWfNkZ5re93UTCnefQ3JuVRsNTyMWPD007XnLqvvSzfvcxbVttItlOVeq3sUOp1ivNTOmv/Rto72bM1Uj5ozfbOjWep0oEVjxRoUy6oa08BJhGz0vaqbntgW3qjXn2Vr9z+c++6sW/ZVNWvea69AVeVj0rtP90d9fxoPtb5pmnps0H7o2PpW9lSDs3ptqP+J1Vk1tu2HhZaA6y5rwQlQzqSXUu74MdeB7IAzE2rr/HOLeg7VE+10W/WxgEkw0B7VAZ6ev9VvqiznqL9Un1u5lVu5lVu5lVv5sxa73GG+9s6PByntxRc+/71/hnf+V/8nfIkk9rdyK7dyK/9Rli8NUvLlFSRcPBWfAT0v1gJDB1kCySYyRgaPfT3wZHw6+zOuFOUkUCxODiGzTjuUzsB0GGaaLq9NJpDsAgokMP6e4BFPwBJCKTqc0dlkAahNbQRiLVxmBtPmHJmWzfKE6uVyn2wuBC+8ePEMgTvc4QK73CEIjGhwj05ryiURDMownZ0HQCYpF4DLLlgj0pEJ8i+tg86aDDxhGOIBTG/DjfnK4PCcE76S3Wkqzc1yzMwpls6BySBvkD0KnixM7Pxx6RN95oGwUScSAwTkBFkocN6M+8r6jBpPurREU1w+RCschhnKmWt0MOn3vIXjXUFm7vE9Uze5HJLIQOvQTj/6+XpSB+zkYM70OTDDntKjglSbc/0l/7k2/N1dJ3+EHDi2/b5/5Qg8/fQzrBfPcfe1N3D/5rt4443XcZkv8Bu/+Sv45OnH+Gf/4p8gwuFhCGTKKQU59xO0WdV07ZgNOpdGpeEJX3AFkixd4xiGi3XqmRRPSzCSy1mZICBfdC5uTrEMAEc54LtfABQTy4WDIPBPMpnR24+IZtQZOuHsdwRVAEk3M+GLAWoAax3Vg2Dao/IWljOvB37Q+ZJAISdAIp0z7hnQnmQRCWc6CQeAlUBIsvwYDHPM6psVYllphzyADsQPMZIItGgYBHphR72bkaWKRAybH6sl6tWBHDmPK0XHFpzXacg6eUnHsJg+1E8JNpsJlIlI1i0zHGynKPGVGiEDqnE6nelH6skVwRRVnE9mZLxj4F7pYsJhIwjoyO+WC1CqOnX0N4Ek6pEoB6vS5MwppyoYFki2OYFLsI4ENRkwA3h0N1MPXgyvv/kET958DPcX8Al8/vkDPvjgIzx7OPCd73wfd5eBy+Uez18sLD/gcZfpb+CZcpCyXwwVhlyD0nNM/eYbKDRBRe6By2S/k0FnrVVyq0DDkiOZgUHNYVHoF2iUjsTQ3DBAZ3WpqejgpBwNq/gPVR2BvCiWsYxFDa1EqbeRY1zrthkBksbg/GoA0DY/MqiToDEFuKYZPDrNpuatc/5U8DNUz1y7hhynNhAYUP4kF+CJ8lNwpaBDuhaPWly2uZRzJtuZbQ0wnWQoZVPqVF+rQTcWTFdoCAwyZgVlY3N4++o0ZzH65K8FQunHkN7pCmRQt8nZn4DnrrM7AaSxzXO2S65rObFXELCn9K6au9QHK45y1MM9ybYUtOMzfAvY1u+RUEDb6uQGprMzAttpo4Q3a0aAgbm0IRd1mdiLMi1qrn0aA4GoDgKZIhKAW2xeQQGn/ArUxNbUfJSuzLlJnW35dg9ea8i1quwR2kcKbI0tWE27I8FC1TgsRIKJotmdxL5RQFql/aPJojSjHUAYuMyZa+cAZbrTZYZtgS1Qx42JFQ63iWMPun/Fys6g0AFttiUavJjXnbkHkiXMt5yI0SBrazB865U9wKVrGFCVDZEvPtm1mkdUsLU+VyBNbGpaV4HSlbAgTxFHLXr+DiRTqc0Eda91gPxbNA+s6lTB8qrQlf6yBsyWHQSmH932ZZSY6pMzgI0yz6ZGKM0bCErS8ZMtYK7K8bnDtLeTvcK5pmGh/VKEkJttXkGyVmH99cvN3frj6uS/ne+vezZGi9g+34sOOOj5L7n9AmQqjP0jaRaU4t365xqspfdDumOv4+k61HV7MfzoMgy4vwOO4zkejtSVYwTeeOMeLzwwLmQuRqaKLvZOpUEFdb7kmGmVmh2qZ8O+EBUrr6kf8qrUdZpfkksFeCmR1s/Q0hywAn2pb4PrvRYP+RVqjmADRiD9CxFI0EPobcYrsQWlve5XKu54VcdvY2KqL+eJ3iuWwSEZ55qQfYnyQ/R4Jwhj/5uLWE/zEHgaW93q4fV5CU6pKrY1Glj5xYV6sfYTm5zv3bGN2TbaBezOvlW7KePS7z3k1Y/q1NLzEacXBTVjvW9bN3rSa28R1W9q094OkxKv60Gdtu+PtQa11ItxqG2MfMawicujJ5lW2IBxybV3rQcEFh584b3v/RCffPIUn3/+HE/eeBPHi+fA8aJAAQX4qHe2rs5+Ru8vq8+85CX2PgtJzys+k6z2cgbN0wJLoMfB9PJNAMRcUyxF54Wp9rp2UmbW+wEE7SpVosEQ0gdSF/kn6xatH1IPR8lYiz77Y5PLqt5JsW5KOQKmNo1dxnTfJgvbWhfACQ2Z/Xs9Z7J9UZ3Nuc25kDYkn++b/a5JRD+K1pWXni19deq0fk+N0/XY7c/pXtl04i6M3f84XRunB0hnnIv2Jn3p+RrZElbymWUDwOIM+tnr1jK16RRjX+4NtPO9tR5tS7bmdrNVx7nv1KU1VV/W4zDQv0W/stY03XMSrGg9bVcyvAlvbOxosO7D2GsQ2IyVnrdnf1H/vgPmi1GJ60XrztYJO/PvrdzKrdzKrdzKrfxky7jc4/LGO3j+xZdW8edPsT77CJe3vvHnVq9buZVbuZWfZfnyTEqRQKP6mywbFgPHkSlr6kBPjNpIeXimcDsWjMwk8gDZkNM8HZqV1omOmXIMIYN4hnQGmtO54gIf5RWuNFEIHErXQrYDp0NsRgaPwuVsDLLyGJZZnmqvtGs8gewrw962cOAB0wLwA+H3iMh0VnNeul2bE1PB1WQwCAZXvfoQTvCEOQwKRvHUjgWD05mWJiIqzY0BGJMbS9fmM5kwgg6ecZloOvFOwzPGwJwzt6ZbkEy75QThZMBEKWdyG5sBtjCmLwm1SywAgPa7CiDANn/OvtnG2beyOzSGEYRUuWTyZzHdAFguViVL2dOjgoFTBg+HdfBz99UmXk2OiHa6TTufWNJmXX2KaIdencLje8uRJsdId2kV/fn222/gr/61XwWG4cP3P8HzT1/gvfe/h+PZCxyXZ/j82YeIeIDhBTBeIE/p36X8xDo/0zhDQkCRTAxohkyZFXJ05XWDzC5KwRRhmDODmueggiqsQETWfs6JOl0LfT5Qaac8YDapE/Ik5WVMJLMGkkHHlHJiFW7HYLjMUUCsdnh3sLLlxjARWJpnOs0a7WAKOeoAMJkTMOfGyoRkKDMU8CAiMGYGFUte+VInY5A4TyIWTsFQpsJLAJYjgqdkEcWC1cA3OWc5Bz2dzzkPFVze6v9KJ2DUc/S72HjkR27PWqenGOMCjEsCRRdZjRj0ceXiCzk6E8g0x8bEgAadrZX6y8i+k4CdlLEG+/EE/hjsl35+ABW0X4usfAJ5eIC0MwAy2D9s4O4yYUx1KOefHJ42JlP6AXWy3SRFwJNH9xgz2UiePz/w3ns/wC987QnGDDx9+gL/7X/z/4JZ4Bd+9Rfx9W9+E88+/xyPH9/BLNe4xblhZBLLwRlAHNnVluOfgNpMJSXgECIZvMxmAeDAwKACNAGucVSkpjxRu1LB1TqyOW8LQEevogGlv11px8xqfMwMQYBSEOy7r8GCRJlpKByXi6GcyynAuWYwbVYQDCMnqCPZbAr4MpnuNNrZakxtp6aWjkW+s0IPMTKN4QDu5kwdrrU6e5r1J5sOWYysAiKjdJQTOLM7yvU/9WuEUsL1YhdM9xbW4ApfUSClYnigCtG46r0AMi2b9JTlYtqBJwIm0f0gFogKfCKd4cnOeC5Gr/J+gnyYJXMLRbH0CedQrLXFb3Kcdkd962SCeFfWp4HCGfT1SGd9rIbJgWMgQIj0pREUlnadAr5pfVRgcwOtCwidADKBV3LsYQOxFjiBShcOmwSn+ta21qlzNrjMRoJGkilEjv5NV1vWroBEloyF4XFKu6gxSDMogXhOm9WYllB9fwLVjlGAxkrVidQZ6v9msmIb9hQthtZ5rQK+kiUDUFwbFX3ML2quGBQwr29rvvGP+ikbTcE7cA5A9lvZK9ayuAXRpV8H9Aytt21bpm5KPaAAvOJDmlOSmQ6idQot6W3VO9djAhHCETGT6ZT2uZqx/+x1vayvGu9zH3ntC2RFqS9Kt2suA/W56liBq7JX9nkwqr9Klwym6dXYjb3PWt+0fld7NtiPoQLRCp4DULYwmPQp+p+Ko3cnK/68yQBJxrD10yZTo2/dY6VVRBzSPRX123l0TrdtxX7k960Ltg9PAdiXBny72aohd3d3+NrX38Xd3QVzfIw5L/joo4/xne/+EM9fPMWzz5/B44DHA54//7z2pqU8sNkRepEJgN0vHtJZXVkofdpuowgIXZfsNgzlqvT36OC5sV0CflfaJzE6wgqwma+1AgqnjBHwmvk7aW9tMo+c0bo+amGOUzef7e3uZ8i+U6MkpxvxiNa3budm5wTysBGiDm2kleWn8a35ORiULkw8n1P2eNdLeqAeitJ+57ZsczG2pp0D+V2PM8ajZUNsLjka8lo4dtDYCSRU9kXb/KqlDiYYuHdipVp7beBctSwIXqXer3EyQAx11U72ldiqatwtQXHXKROk14zp3zs1ZpwYdC+PnpSMDQDPHgJ3M1N9zzHw/PMXub2aA6+/8Tqef/4UwxukhMDG+Ky1jb1Zg97/7euL+lLzWCDRCGzj0e2UPalUvtXSTRfmOzivuFeTzUErf5u7u2y8rPlUj/o2OA9K5Wk94TwqpUd0RhA8aPXnK0rbc9kxGvNdVrar+S71SUSUrhhmldqyAEYnO6CBNzV+Ghe+KQ8jnNfYqkO0TR48rLgvN70Oai+4DYyeU32xA2k2HU3bpfQNyKAV2PTAZgNtvRR8welgIL/eXtX6jLePbezVjuincow0KpsS2L9X3yJODJuqhKZ4nDoqqs5A62/tX/c2ddE9mw4o2Tr3yQn8Xe0T0NWvPtN8bJCtnpNAH/antQ2291nZF9XvPLCjqV/riJb9XeZ7eT2PM2ruSkfrN4F8e/7usp5X1W44Xv72Vm7lVm7lVm7lVn4yZb7+9p/oen/2KY5PfngDKd3KrdzKz2350iCl5QewBXoUDA+dILJFOvNLOYV0+l1Oo7WSAWOO6A07U0FlajHn6XIjU0CWMDnqFOyLTomjYBcGKrhfvorcXTvZUnS6cw3HZcx0APJke8Ar/QffCjPgMqJYjA4G0WGBO09WpONw3N8/xqNHCuQz0VCkE+IyFZhKZ9uxyMLBza9S2wAJ5LoQaHTMbPNEtJOcm+XFwCZdRmzbIPhCG1s5+gxjXgAw4B2eQemNTSfIcl4noUOZABLsMqw3tWFMoxN023kg5EjVVrYcORms3B1QuyOhNuXd5ZmwLyo0DkQUO5dHZJB10FHtxkx2bPOQs+LsGHO0vMjv0Y6EdlQHFMzl43i6TnU7OUJU5Bc9+x1eKnvYy5BMQ+++8y7efvtNvHjhePudd/D999+G+wN+5x/9I7z//c/hC3h4sfCHv/sd/I2//tfx+HJPeTm/6eSosQSWNDDs7GSZY1aXu1BllsC1yyVl2j0d8dVEpmmyyFPYdQKLjRZILfthSCrz9eYYk3N2DFK6A1bhvXSpmQ1gOGyC7F8ECCAhV0oZJ+de+aWLCUMB3AxmD1HMe59INOR8X+6ItSroJeDCZJA6luPwTJNkY3Dus4/H5kA0yrgRWBKRfmwE01HKaS+GsQRVmWUQsk4gKlAn4NaPdLCpiO0mmV0AEBzF09x7SqJsOgIdqFvHwrhkGrqAY9rG2qPAcfnHGqDmdE4PfhaW47mOFzleZFUKBHAR8EBBTWCtqICjpmwFD+ozznkCataifGxOtuCcFxgKdMSJYWM5iiEAAGKMAu88ur+DMWXSG6+/ibfefAtYn+HRoyd4962F3/67fxOffvIR5ptvYwzgcrng8eMEo0YBXizXQ3WvByyODFZgZl9HpDxvzmYx0wTbt7jGbP5lzsdR7WFjGfRlIIfthAOHe9UrxE6DDM5dxsi+QMqG4jCBwOELFxuZ9qoc9vnsZmRLmZiTqVsxE1hson5vMPIwELi1AOvUrj3HUMxPNZbGwCNBjZUigPN1ECgzGHxYyzpVUkoyYMnYFr4ow4NpGsXeI51EkKHSSVHfry2F1PLVaWyD4CSt095zToMlPWBk/HEEzNsJLQBUp7glIFisQMdSU+FwTGudl2vnyjRQlO+Um1V2DFcp2jsBgVeNqXcVyIileqJOxqoYgBcPK1OKym6RzG3aJ6JTG8rpfSzaS9RtySZhlUpiKTjmYjSito983rQopiGDWDStfoolqcBim61UaQfDM4WRdxrKXN+N7ICt+AxWP9OGHCVzCrgmU1qQTUog3vxdoOQMsjIdG9MiwVeC5CkbYmzKVzoD8c0QlykVc85k4KH1agUFaddtmjjTE0OAzh7MQNT8crbxXvX5Chb3dZItBagUfKmUTGReyHnC1fpkv5BQqUBI49QnWlv6p2SrWV/zfeA8BPYZ0rE0ysFQQCrrJdsiGWPrru39nAtLY8rDHdJ3ns8bwTSkIzJlEIGYCoqlfQGY5XonQ1bsgxUQLRBjykaCkExNzqfpczauUgxWzdX2nGcZqPK20ySPWusls7qvh+CsQ7bfpYfUQ5nGugNitT9A2wobeW49axvCfmGcx1TLas2G7Z7Colu/R/sGVaD+RpStZhrf2K7hZdEXlN5OvaEPryvyso1nL/1y/j2uvhow3M8L7u8f4dH9PR6//gT3j+9wfz/xh3/4R0gS0gnExPEQxXa3s9v1s7s1cfU+ge8KcCKQP4zrOIrNRM+Xvofu1+9o21Bgi0BfO+pZJVlZOw6W1tk5R1dy05VZlwZStN1ip7oU8JZ7dqnVAsVkvvPqp13kZMudek1rDduY7M9VNe5fjOum5rKmY9dN8i39qGfnVbSVqM6uDzHUoZqt37ZKn7tr+zxOdVHpvZ5tOqPmr0cyO+93RGtJd+31NTJ6n+SKgX0TCAZALM5fvUUBc9oU2KXzvD6kIvfW05yUkq20V62fs03alpW8Tzbk3rF6bwRw//Y3MeZEsI/efvdtrOefIwDcXe7wi9/6Bbzz9uv44+9+H/d3hudPgfv7Cxp82wcU9jGKnT2VMiSFdq0tlIJq0/ytL/fBZDtzSSCYRbop2obQPi92sA2k463rsW1ePIJM1tF2k2T7St/tYIn6MoJ9u13HMXIxk1MG9hUY0i2SrXp3vqFQjpIb07tVI+0uAUD7BfRcCOSCNgTaki3e18SACGL5Kh6M5IJ1Bv+xz6P3x7W2VLus5pceuoONrT9muWJuRXlEOce6V3fQYdmode82IpR9qFYam02XtxzS7uckF4t020F93Q7s7bU7tr7rvkD1Aetn1hk5tVlVX1S7dG+rA0G09bCzTm0Z1hRLVu39O603QLOKn3VqAY8oi62nwb7rg2dags5gJdMiWO8dGhfdV6OhOXWFBIfpLOq2CqIOk9Yhoa5mvc7FynzVH6qgIRrAdyu3ciu3ciu3cis/sfL4V/4mPv7H/4+fdTVu5VZu5Va+MuVLg5QejhcFCBkMlGTqDQJYwhPAEi+AmLXZVJByWhIru6/a4EXwFBxPqQUyPZArNRK0+ZwnB5MBcEvHYLul0uE/Mh8NlH7D5uz0ODypnqwHznREAmQ4QGaUCkyNrJeHw2bAhmPFwuGG4zIw7cDlLgBMXC6XjBcagBHlqFTwwMMzkLlWBg3plNIJfzESrAc6Si4OzIEjG5dpP6wdvxZArKCTmEEEMwwBLeJI38q8qw3pwMCyDMBNOu8Gu9+z2pkyZKYzgOzFGAFMAEckgGhxl610Fu4MgDJnlQAuGTfqzfUYBl+54RXzSrmtuNlerNOcVqfoppzXMBybDBgMg2kJJgN7Hu1MhmUAy8lwkOCqKGBJYDslTafh4Rk4vVDG95Pysf3+RUWn6pFdcPbVIVme7sdgsPMeTx69gW+8HfjWL72Bu/sH/P4ffBsfvPcUr7/+Nn7rt/4K7u4vBPOhHDTNCDHbKVcOmg5M74E7j/20IFpOGZAfQ+A/uTiiUuKUi5BO/ctlYme7yAAqXX6xOUJgZLTKU313d3qnVQ+bTSS8L98t77scuYFkKnFfiEXGIs+0Ppm+wgg8mmxXzgXQcYlY7QVbCR4xCcDogLVSVKgflNIJCNhgSkV6s+RYB+uSrGTJsJP15udwHEc6nRMpEsVqpLlxPsnbWq3kNc5O4Z0pJQP4dM5hwNdxktMxJvzhwPIgkCOaFt2iGZA0SZTOi4F46XAzw1o5N8C5KQzA8I1xLYA4Vj4b7UzM52jcJcY5tmJSsaAsQicW08Mmp2HqpQaeOvVOsE3uZLTxdgZnMw1wx7xc4Dbw3Bcur10wHk18/MFz+LjHa6+9gd/+T38bv/tv/hXs0Rv4/Nlz3F/uC6R0UJcLWNPDFakNyQioNEzhZIUT0x1lOANbVHRkAzRAvt4KAsADFo6YxnQ0C/BMbWmewDKBFcpxbgRoOB3HXJQMA+GZUk7sNcF1IwLI7GHGedDapNYoG4hIVsGgy9UpA9Kl6SQdFeRIYSBwrqJemd4vCBYyZCrAlFMy85QDm3JAB7WJAQzG1K4LB5hOLzSfAotzVmt4Mc9FYGGlP9gThFQ+72MhgqncyEazNMaBCt4IDBGRrGqIKMd5Th8vveACi+rEtJFlgMxjgZxui32R7TD2L9NFhWOEgAGBAogLgCM9wbRosGYYjE1EC/xHloJcFqa+rHQ1AVQqCukFMFClE9YHWZdC+stX6sRwMokxIChgejiGGBYIOkn2yEAFehSwMQZoGPBOXapxyBRvCZSzWrugta7AW2SIC2CEkW0PtLUEZs0BSwbLBr4ZaLeYnfWtOorzs4JbI3XWNDCtMVNXdoSkSBgABQpybR3DKgXOHCPtGIiR0ghUmSl/K4DLZoeEI2xCLCY15haYI9v9VQ4pFLOV1jd0QGaYnfSAEQxZY6Fxzysy5WStlbQbAHRgaTt6oPWgAjG91p5L7MswNPcqILaxP4K6XjIIprWqbHQAxOSWtjvlzzKV8wgji0MGegWOFriyrKQKKg6ALHDhrStl3shiAoC1FAyzjZUPxaJXAEit/8AW7EMF69V+24KPvUJs3WenX2F77M72u3o8NLbrahiaUeFHDNFuDtl2ySsM9R2gtNfDt0v3eo29idE/FSDvvuZX1p/Zdq9AbHP/kLKtvnppP2EvfXLaf1TZOsZfPIM2PgHDtAsu5njtyT2+8c138N3v/jGeHo77+3u8+7V3EpAvWwQ7iKoBKadAKyj3mnn7mr81ZA+CB2U5v9ZusfX1Dvho2dp6xM467LSeCTCB4P5tlK6oPpR9XHXnQJnWt15/XHZGpTbehmkfj5pCtFmuRylQ/ePUIV2LfQJwnRLQUh1e60v3bWwNp0VUAHDoAFRdYzXnXlU2UWY1WobOQLLt6n1OBn0OrncGhNAInC+veb/XjaaM5km41vzWWs5Jqj1PrsmrlIkOq50OYrC61zrQ6u/u++5T9kSxipguKF1bth2fWONbDU3b9MWLF3BL+/Lp82c8SDUw5wU2Lnj86Ekm9JwX3D96DK1AhgZNACi7BOi1pidg/sNE1gV0bqCLxnHrf94nnd6XWV2r62pOqPfU/yc9HNuzrzQSleb+jOqnXdGVrPDNm9w1g15U21sLtJIvfW3WY1WftX1wnnNdD7Vi1KEqzUXn/dH9ZKjDQIbW6apzpiTf9ZPVs6IEUkAc7ctkc9eAVJ9TuFu+KAfq776l+7nnu7XMbGIRvF66YogFVW3Yh3KTqV3z1BzYerfN3M3u2gTmJANqgemdLRQe7Q9pXX3VXr0paH2X6Gj/UA3Nd2+Krseh67zrzV0U1c4NTlnv3e4s/bcfZAwigqwoAO3UTslni6VBJ8ICsvP0hqt+O2lW/mbS91YPlx1q1aPbbNC1AQhQqM9rPtd8ZZ3Jxv+j1pRbuZVb+fko4Y716Yc/62rcyq3cyhcUu3uE8ej1n3U1buVWbuVW/tzKlwYpKehjAA5/yIAQA1vuZyflKCaXYHqRgWOAAbLB1BfIIO5YHVgIgiAyYgogN40eUYwPvQEPBqh5MsRzi9c5yQM2L5kWDAQI+KrgwgoxkOQpOHggpgJzwIjADIfHwOUyMNaB4Su3rncXvDgyNYPbA8wGLpeJR5dHCTpZTNcxR7ItRQKd/HAGGRxhRwbUuTP2SGaM5ZF+kuUYM1MX2QAezBM8hInLvFT/Zo9aBRPMAEzDwF2CDKzTIsUA/45yZJoBi79o70z3CgOUChj1RhwM1jg37pPHoiMCfuU4NKTzR8An08lPeSvkjBwKMSMDmS7HGU5IoYEtJRt39GpHABtbSN6sk+AZpMnvxubAEQgC/F2MK255nc7wOZ0WL7sJ2sHxo0qdsN+uUWqYww8czx/S8xV3WBi4PLrAJjCm4dHje7z21hOIcSydJQIHXtK/cckAF/ElCSDSvCBr15gTh6dDNcZMsAGn0hgMYMFQoMOLI3zA3GFDp1LbqW5TqX4CEzOrbylvksNkDBgZcKOrcfCzMSZ8eP4UCCgGwoADKFYIRL4r1sJ6eF7BDA+xyBzwMFwG0EE38WQtzu8DFg4w9eRd4hgrFRDgCVqsk4PJeJayxrRlWFigfEQzFRmBHgnawAm8IaVoZoBnOkqDYczBA56OBGft0uTb79cBCq/xNxd4Ktsih1KmCQKmXWpueSxMCwz35PkxT/CMHITIDpEe8dI1CzESOFiALgN8KDiaQI8xJwM9YOqNlLk5ZzuQI+uWQpcgjVVsfA3USdYRkJ1KJ3c1Z6i3mOYy5ajZS/p0tyPIOAPLgF2mJj3gY+CTDz7C9957D5iG9z/4AJ99/DHefuct2Ocf41/9m9/FR+8/w2/81l/Cxx/9AV578x73KVyIWJghprF8b7LfJHvQIuAtOA7mTAOlcUEDR2xLbSrdb5mQkLKaKb9A96BFSFFjIZlpPJyMFE7H5OTS6JhQuqDVzmXTKxkAt4EjXCiqkyzDADcxKEXp20rRxDopvZ9ALRgDQ85tC+pxvdjy1DFZe5LVI+dZBgUN0ybXprze5WY1IwjOmU7M8MIdGEwrWc5Yh8Xi6X2OwTqgY8UeBNg4QS5kjVIA1pm+UMBfmOHBJYJih6R28cBaD5gaI85Xh2HRhgkoxWLqLPLfYJCZzbj+07XM8dFKMxiQIwgPDdjJ/u1T0BolC8oKkt0pCDgaGBjuG6gsAXDG73Sy25B2WeSExbGlY3OlePOWJ1c7K7CAstHCFxArbSsCiIJaZ7mCCGkI5ngvBgVH9bWuGTFSjyEwMLHMcURK/sIWFFC9LBlrwqLsB/X1oKWTr7ICZcZUKsA9vWACxBWMMPafAskTBFOp70ypijj2RkPGBuenYVzIGiPwjSHBdGSlNMPG2BP83ghoNq7ng2Co1K2TT3Ta3wPYgIFfvXKS42JDRNn1AKQUct2r76k5ND/BQwZlg50NsQr8Xb+ba1EHIzknNpDm/ijpow7k5z+xzUHpMLEN5bosEAXDXsXA5Uz3lGuJU4/CEwSYQe4L10za6gpKV0BO8kGAoeZdYGtzH5SwMB4wCcTsts2hlEYmiSvm0VxnDTzWcJWmCTUnTsCIk9gZdSlO+4vYv8a5bENd86O+i9qCvPyqU722h+3Dv92gQxgK3Ekiza5uUx2vXrbXYb92Eyko2Cl7cG/bdYVe/u7HtG/7PTxwfPJ+7cl9LYJqDQ8rcCzHog6ac2SacESNrzpUK+j1S3VZpRgLQMya6giBdwtsJHADb06NTtAdO/MUkN/7oVIitsQUiJRshKqDgrz9vWQ/6pnFAFgpcqg7ihka5WfQWpY2/iZHVR2BvGPrizJvTs+Q7BbAl3srow4D12HNO0C6ifaMkY1Qr99kNd8hwKtMrai01yUkJ51o2P9qMIh8O2e4A7ADGUffH0E7q0eoDgNh100cZ+kHO8NaSm+zLgJK7qAYA9kuu0al4+oduhDqf/kyzkrilBZuUxDDev97Zk4e0GGQ6pmR67vDYH7AZqbNfvrpZ1ix8OlnP8BxPODxo8eI9YD3P/wQL44Fu9zj4cUB3N3j7o23cmjC0cH/DVQuG7P2sWctoUMAXsBnlBSVvoyaOaBRVuuDQLIiLm2PWR7A0O+jwMGo+Ybt2hpfUC876sBB1kvvBnqJlj8GECCoG673xDZeajzvZj1y+DVXAHDfq4MpNSdLhruHJOMCbun9TgB9zss8mGEImFKoF6tgbG2IWoZDdRNgijaF9kzSffKblZ0YBNirdwWU3Ptrm3utD7nGtPh33+8f1q8t22Vb1li1XfEqSMx53m41YkNr7eRg2+kurTVsS2zvcAlqr787IGsHo0uGa38TQLFIVbtse22cxOusfWrWbfph09tcV/TgXZfH3tlRM4Dfcz2K3OvWV9Ft322lE5P2dZ0CohM89aXq36DiXhccODEeBfVbbJ9oPrXO2+w9vVaHFTdOqa/wduJWbuVWfgIl/MDz7/77L339TSXcyq38ZIpd7oF5AdbxxRcDmK+9jbt3v/XnXKtbuZVbuZWfXfmTgZT2Ys7gF/ZdYLJZGJ1ljOgsRAYrPVPOOK/V5rWdWtymajPKFBt5Yjg3nyZnmhggdv8GA6zDMumO4yEdDWNuDhlnOjkGptaCbYAFOY8yIGsYM+sflkH4OS5YR2CMAEYCJFYMvJjPYAO4u09wwLDAGnSMlOONnhwG8bGxsmwQHShtSjplkpVqMrXIAINVYslgmQQKpP+Np2OQVPhjyClDUNHFMC3ZbQxG545Oku5jrGG1AmDYsAx/MxWFaPDNCGZAs2wo7cyQU0UeTW6mnYEasYwUW8zm9B1EFAXfLcdo8V7Lacvr5UhoxoIMrwTkKMvPlDpCacr8SAGZDASeNuS87yrWdXIUXflDXyrXny9fsEsGeddx4HhY+Ojjz3CM5/jee5/g+XMgYjINGwBbgI/yrw6ehB6Xi8h5ut0KJgAcn5HBMUSCryrVTLJUDfZ5Ojkcdfswfg+yGHm/o4LLgJGhbGD0OGMLzqRnDmOm09cjZdxOiDIN6MCxDii2nCn+FjwOjokXGCVTgmWfrOU5BxaZTgyUU75jGppQJegoPFKyGHSX/Dt1SwxDLCcoLtsbUPB8yiWXEs851v4kzl93gmpmdrgFYh2lHzssuDuieC/TfqnOSunk4cBxdMAOqDSZFhkYF3DBmFKr6P1TeMhWQSepOdwPLCDTPpHhY9pkQGJUQHXAmBaTOli6bJtziGTbO6X7Mqs1IwFoZITxSLYQkxv35EZOh6fSpCFT8k0bsHnpYBj10xjJrKX5gUgGn9QZTt15h4tdgGX45NPP8ezFM7z9+iMcnz/HWgvPjxf4wUcf45vPn+P9Dz/GozfexOUyYb5gmOyX1HLOE93LPfVsBetAhyrIrJLpqEAdXcG1SLadCgwairVMOnQawAgjYi1gGHzrJ+mvIJNTMuqhA7DlINa0DAhQ5CbgJvVdUX/IQZnsY4Or6bFWpaBY7hBYsNzpvC8gZ3oCzkZIyoNta72CGGTA8qrkUP/s2jOFHBGBI0DdMTI+jyNBteNCRgJCSm3y2QmkUewzAUqpR8YYmeaNwQ0xKQURtTYGDneY5xrsbPcKMVCMAlnK0czR6mAp9VOuQQpKKSAUuJjmvIJHvdAk85bCF7KzokC+y5v9Ecg5NSwBSmJrArjWUi8HwUomNjaCsXKabgE+29NAkrFqeaeu4diLfY4GFvUggQkbq2KlpiqlJuC5wFqa9alDXEE8swYc7Q59ysMOMg5VwTLEtijDalVYPzdtillp9rS+TbtwDYi2PxRcoI5zjkN+GAmkjQThpt5TLQfbO6G0v4PrqgfTcig9J4PtAhcZx2NeZq/r45L6h7bwPg4rVrEQDvRzvorlxESnpW8LUOdFzRhi28WnFFX6RcH8ayNt21MUUwbnZXAO1TwAOsDIiuhdxnkDUPfUlieKeWzf02SQZ7frVR2rfUYBDjxS11gChIcZVuaXxbzMYj3a0213h1QYmswC28n+tFZOOlrMJW1qCKy529C0nTebWkXbOqmsoB2pyzYVUOuApgm2e+qCXvpUHV1Wew4ocBh2vnH/aPv8JbFXPa/aYtv9Vaf9760utn259+7p1dj6mS/MsTu9tvcNuwyZLObztadyVce9ONeZZAPNlOLPnr3Aigc8/ex5MSXavODura8V44PmXLOyWgWs62/o75BS2vovG6e9mfqfvVBrvuo/zIBplZa8mQmJVRybnlVvmJVcx9bHWQ/N421+n8aopjvf1/O0x5r1DK87JS9KLQ2ASKsNZAVd42RNipZVdN2ibDAerKoniv1F/3Jti71v2KdqcyoXrivZDvky1E+QXtnmeMvnJkrVFUZAsSzvHntozdbhFAJ3bFcCW4Ab9fxmXhSRrwLhZym3TWdsuhqt422b077JpQZKNkCOde4JTyqG4567CDv3QRU7zQGZM2pLpTNXx7HG48lbeO3tr+HR3T2ePn+Oy3yEt994HZ9/9hTPD8ejJ4/wyWef4vGTJ3h4fsDvXqvU3wJLtwwE/x/UwVE6XeNS8mRRctT6O8ek90+U9x0cFnyXTtVoDqnfa/g3m71Ga6ufek2KGkAe1rBeG2p081Y3IHylvRPb+6pq+fKXDnVVn0fbCtju1by3nXEw+gFVF7Ul6pFqS2Yoa1BYkKk97U/pcwqy5mWtZfkCJ5u5ZCY0dmVvbGAkgvT1vfpfC4/YwvSsmqwCcMVWp6seFCC6KrmNV63HVx2seak61DdX462pq0MdqSKi7Ie9xnsp06tASSiGtdx+NBhLMihQj2ZtaPbW+J6aVm29ti/Oi3qPo9amEsGzyNRetg5parq49iwbKFMvs01X78+9tju233vN0TNqCnZ9yhYpzVidalx/NT1yKRinZw72gwCn5R8dA6WRratq7K+BUfN0a8Kt3Mqt/AUvdrnHo1/8rZ91NW7lVn4uyv3X/hLu3voGHj747s+6KrdyK7dyK1+J8qVBSmutKwd4lth3dkBdwz0+YjuZPJFOpNiO4C2mK5hjcvOfz2sGh9ywO08L6x2AZaogX3l6nalL6tTiiGRm8cVUZAwWbZt/gxWQJkbS0Iw5yXRi8BhI7oP06cyZQU9zYM6AzTxR52PixfMX0MmxuFwwLwYrSvYM+o87Qxyg45Nn6IhHUsBihRgyDH6sbMc04VNwIBlCLhw6mxPzbnRwcShAonQ6RjBKOkfDUPWUQyfHKXtFHFYCNmXbo4a40hfMduhNPsabSkbEFQx+pzdnLS+nSrL3TAJsOmBUPh85I7nzTt9Q/i5XspxocmZmii9UIL2uOnsEGEyUA6LFd1iy/WjDXrfs/oaTw4GOGnR9A3Jy7o6d3UmifgzcXybCDIcfCABPnjzBO++8ju+9/5jpP4xp/i5wpm9Re3X608x4Et5xAeU8Oq0XCuRlGHMm2A0JGJpyQJBZxYPBfEugVo5XXuvumIPpe/zAQoL67u4vMESCDtgDMQYOBrO3w4mb7IGOJoLYGLwV+GISTTDJOJCnGrMt7u2UH3TM9nDISc95btGgAj8AGAEmC4tBaJ3MLMdYyGmZjqjMtBSZdmtl/S7zgrUeAJt0NKZOSJYCg/vINITmZEIY8JgIW4xz0Mk1JtxSZjfvMMvZ+dh5B8R6AqZ42hydMQg+UXrJzS9HHzbGBAjIdBD0RiDQ8jyFbwSSDk5GOehP8kwWFtKuUMSpt9k+mBWgzCxZlwRU0AIgcEBNMzKITDNMy7GugLYhARY+MKl0jHI0jOlH6di3pJyAGbDWkTxYy/H40WP8jb/+1/De99/DkzffxdfefRvvvHbgH/4P/wjx5ILf/93fxXvf/wBzAOv5A549f+Dakmm3lhzZkYCdBE+k3i7gABJ8tBSAA9cvjv0YkzqGp6EZCG9mrHZKr4dksxJIroGKea/ATPlsBbEDjgPDJtNmWctXCIibz3TSJuV8Sl0gjOzyZAyYw4qhcEEOZQ1YKuQKpkR/PMiglsCxdqJOU/tTv4cZU+RpOYpygms++/Jk7ENitmKJhWwBphR0CexLBrxA4OBEYfrGlXNE83xPfRZIWVtLwTqyxy1Poik672UHnZYUpiGDEby2otatVGVROnlcrGyUIQAh57O7NzOk9BCCTnzNtUIB5fxZi22w6rvlXiChmmvlcBf4ZrAPr1gc+B3A08CgsHBgOzhhBBkTQO16jWQxA30rckzA+8TKlj3kzQ7oDtuiUwmS6DRftaZR75ctyvkjtowE06quqPU5AbMENHLkjCxKGIY4FoxptADaP9Fy7SZw1Q78Cga3Iu1c11qiNZXXkYUi9QgDLWRk2NNuseO49pOBcEyYTYxpmPOCOS9boBdk/cq1YMxB/HtUmrivalGqk91Wqvl+ml1Ra5jsVC3xCqRI9tu+Uyi6b9xP2JdM8x27qRZX10g7+Gg7zwRC097GN6AQ61Lp7AzFJBkAQIDgqCCS5G1QZ4Lp6yhLI5XIYKq2XZcbT7tX/2idjuuBj+pHJnBMNttBEDVTFmo9rUMNNIatGwfGuspOLuNr2xYWgYDsv21EtTaUWa5/tn3lPnK6YXt8rSVl60E/dluwu0QPVZ100Y7XuoKSVSU6OGddsVcUgbN3u98MDfSCYWcpuQ5kbtX6U03bCDTYkWvPa689wetvPcKDf84UmQneHpcniCDEwbRXjJLJlIFR9kgD+KLaqfUd9T6r76yEJq162yqpvt7wAPV5AkS5P7HujZBe0FIWCtPyvVnr6tWag5qRfNTgGhDijjGrdIk5rwY2kWp9EZSPoG0Lrn2nJkTZNx1w74e0zcv0rkCh+TJFbu6N9/0sTDaQflf/03aH9GbrvIKu7BOmxgObbuC90UzJ+1qrNuffYkskEEOHOtiH5UOo+rQy1usMAjOMk3qSONX0KvtUgI4GZO9NoFRsz1L/WsmTHroD7lJv6BAYNpmVPpOdamUfmmQuerzFIg4YvvXrv4Xv/+Hv4YNPPsO4e4SvvfUIf/R7v4+nz4APPvgQL569QARwZ4a7N9/BvNxDNm7WcVvg0DaX5NyoyIoBE5udzXZGhNwsZZ+qTbtOygM6aN1GgPpJp2rcOM+lT8TqiQBZWOLsQEGDNmTKvXxwAdv4tD+pletmc6IfnfiroUW/5poOntW/sg05/K0p9ufJrohaxEq2wcrHflc+xa1TxsvfVuvM1r/a9yLAtNOUZS7USmd+TrfWc7mazxfsukVrWvd6bHOr/Rjdheex3z8xZP329T16ZpdelD7Y51KN9dWaB45Bv3RXPfIf72/RUtF9Xp9pVd4+9+1dVq3fdez5+ry8TzSmbO7Xow70VN/WoTWJy7Vdure1D1DtQK0+PKH18OW+KJtk6wfNE82b07tKB1q/bzPABBZPXdn6rX1c1nOdtqVASr1cid0adT9q3Xmp+bdyK7fyF7WMifHkjZ91LW7lVn4+yhi4/+ZvfGmQ0v03fx2w+cUX3sqt3Mqt/EdavjyT0u6wlANlJPH1yQkEOczoAMPKFEnlCPFiVym6WTCQSa+dy3GCYHCQzqv9+bU3taqfHDRGx4XSQYyIZEwaEw6HeZQTdFLJmxwI4YiYyTYyMli54gGXccc6sB6WiUfCDHEcuDPDWAfwYFgO3CMDUHMOMNFPpumxBHH4cmByg+vKx84UScU4AKzRp/gSYKVgnteJtDlGE8ZwRItNiRveuXs4Tg7MPpEH6xRn9KPAHbgozQRvz12sVYAxGMBZTDGgk+ZZy5QDODKePPtZsLzH5G3iZ2bAIijHsQGKCFJSW+vEtmXApQBGV7KrNl13gQAjZpZBqGFMfyOpLJfb6Vn7Xv3kUNNnLwWJtiKnbAyMeVftmdPwxhuP8c47r+HJ6wM2HmBwzDGTycQNS86UAMwc95dLBohHMsSstWqeJuvHgjwtYyooPpI+n6fJ5siAaESCnQaZQRIIJEolsrMwmGFMD2ZyuBnvpV/mCM8AB0E+FgHegjEz6ArQAcYA3yBLSbKcMXAGnNMxDtBhbieq+gzoop4ppgJ3zxRZxSjiWMeRTiOPcukbkvEmnTNe45vABUfgIHAqXU6OABYQM533AnQlkGtuTmI64zxgc9DRu5qOOzxZXagXrwGgJynLBuW8W8H0MIOMRnSoLdV6sf/JLBSZ5q3di5ZjEFm3AQW0B9lhADjTjdko3Vun7N3rd4ED5JPzcEwFb+mwDfZXMV/VLGVAn87kKGfY5nijY3QtT/Aog2rBQHE55XvQag6KkSLT7zke1sLlcsF/9p//XXz2+fv499/5GI+fPME3XnvAo7s7PF2OD77/Pbz12hv4m3/lN/C7/+H38Y1338Xd5R6OZPAJpqwadBMH+0BOzoGRynNKBqyBS2SQejgcd5eZqeEI/hmUXayFi9XTscD1EEwtFVFjN9VnETiosBWMRASOtcgwNTAt2X+U4isBFxoLBcYCYjqrdTSQ6WMMHUxTf1eKyHaka93i7M0n0wk9Rutbs4E5DH4cHGml1lilcSPOyvZhPQDbc3MucZUxADbga+HwlWwNAAa96wKTGJxsM/nWdWT/H2txPnrNX4fYGnkKP5rxyalDjZ8D2U/ZEus+4rxLgKDVvMzuTgB0BcpOQYAuztQq0rnZ0XRUD4HasL3P+6Q2h0mBjHom5zCnaAUkMnChORlMWRCJco52WrsvBoU436zlD+wzGBLcSfWFIRaJlNnJNi/3XL+H5oirlRUEqaBGxKbzFERsvWlG9svjAKQDlNqXNB3F6GC2AVkJzJozWTCpvwbHeg+wKFmbAF6qVwXJZWAovY9YmzampFyzZPPkPJKdNy1BAmNeABswsWFaBveHDaZzcoD2d+pEnNaRH2eGfCXKJu9B3ZO/X6+F6uUNlKMHIKg3xEgBXhcVeeq1uG9pWzagQDRCgX5gixJu46sRls5XOsLocUfrg0oxs5Jp0QhCyJdLD1q1y2FlE0wzwBdwgGmN06bfme80D4C2hctAZf2FIejAcKjja51dW94gQ4LpxCA26t3XQydrurppHxEoMGeqyqbIZe7rtoLsRNvpsG6T9hwhPaVnhGwQ1ICegr0mhowyRfr5shOw1XFbbqTbJE/djr25r7DXdA/tI73ruv9OkCjbP//TFdl0gQQrzDlSx45e94y2qtlWA04KtW2Mc4WqP0amfu7+7TRVL123f0OWMR1QsTQStqDvBm7SPldqkZ3ZgJANxGNtS8A2wJULFLWBdWqy65kE1QbXrbJf7PRe1Iwpo/K8hkZwTT6D6CBfAtB7gZNvpJ8RsNwDBxCWLKAhgQ2yD7XE9zoztufVIqx+KaHYmrELoUL7LQMaDS9jZRuIwDZeQOw0xtD1rfuSuHWrc/WPgCFcR60PJWmMGqjafadLfFcO2nOcnn4u0tcRyFSZAuzDyj4ZfF+4t2MBOOmRqgP3lgIYyE5++9f/Gn7p2/8c64/fw4uYmJe7POxmhjkm7i8Dv/xL38SLz5/j8a/8Jh49egSY9lr5btloZenIZrKNtbEU0KaosAG2rcd0n8G2dUzQ9hcYrPRT9D0FPNGYmGxZqzEZVJZBmawHEeyqNde3URGICldz4rqft6pvcw9lJ2G7V+v6zvh2AlpZy1yBfUztkOBv31dNIvXKbn+W/beBJmtOWL0z5IvcdF3QbtWjdzBejXyoXd1mfd97tg08U43s33fg7ra6tb1Luyjq2ah2aGwkA2pnrd+nR/d7Xzq4uvVL7zGM8gDqJSs106CylvuTXuPiK5BO9clJsHud19oAyYT0RTdje27+VwAyVkBt31u2y6dsO/6xrXlnHVcyVO1GHxyqZ21yYPWUer7VQtb9XSusofrFtnrs88sM9P3l3NQeqAbLpB/lVGNfbGNcU/xWbuVWbuVWbuVWfqLFbODNv/V/wNN//zuI4+ELLh548qt/q7OR3Mqt3Mqt/ByWLw1SOjkLwE2VOwM4iyADMbkAyqvOg+5ws6T9DoIfRpCCPgootDs0DEjnPtk0doYBs2bf2B3/RXGLKMf7IEOM2YAxNQpGBvnH0EkdZ9qNfL6vxdR0gymqDOEHbAzMkUAi53G0tZLJA8MwHkZtMh8egMvIVFHlAfJIMgw6PALBZyZTFUDmEJPvJIBYIK0FzC5wD7x4/hwx7zDGwN0AgElmIuAyrjaTuwNhd/6ermkni0UGwxXrEE5lzyBW3veRIBPfNt0ZRMtqmyWTwhiG4QDGKIebL6YdM2SMmVXyFfW7nCpVFwVIj/wMwwqAIqfH7jB23mtAAZ52D14CvHiBW7KzxHYO9OSs2J98dp7qsfvf7TE593OVMcrAGAO4u8u0QkD2TawMsN7dTVzuALOFRE13PdZyGMFqa61irdHLpg0E06Mp+GYggImBwMF0iHJ6jEm2pDAkEifgKzLVlJHxjGkQdXI7WZhy8FckS1F24gRiVWqJSkFjPVcXPW6u8bV00eSpYaWiG7CYTDE1s9/cM2XeGAVoyvmTdXdzYhcCI5LVInwhVoMBxMiR4D8CE7wZWTIlVDJIiQHIkSA7Ur0xyJ7vTrKcTAUHJGvI4OdjEFxFT9mFwDAEA2mcc+WQ0wm3KkG9liAOz2pTb4CAUPn5CCIwpSuyptj3HQDg8FiIlSxT5eRypnozZ8AE5dwKegP1FDnuAWzAiKDe12loMGiRsiW2r3SCEQilADXbk2x4luC8yDSFOVYLFoZlDxi4JEDR+jS4HLA2kt1mkW3KLcGyx/GA1964xxuv3+PJa/e4v7/DEQ9wAHdz4t2338a7776Fv/k3/jreeu0t/Npv/WXcX55koM0CpjkKEOAgd2Jk+zT33WFcV4o9jkwrSc6VA19+YQXqJBCQ41JOcsqFGXD0qdnwXKty3LX+nfVNsvEQnKRx4/hbKB0VQXaWQUaLBP+FGcEQVswKFYBVQMIIEqaT09DsiWOg1m4g06Q627lWdKo389JrOhWczwRsThy+CIgMtmikriZroMOZ2i8BIX4sqvUGmxrX4tLjkevXWs4hSyaxTEcZBHMyyKo+3swgjwOwZBxTis1wJzCMbRHDEue9nOaBxCB0wJLzTwx2lIthZEairpD9E0HWMgWnRKu1jXvOOKvUEScA1EvBjEDEgALJwXEIGPVwzqsVeZp8zsFUdK1LvQIgW5uATDHaPnuEg+xcyOu5xjpTVopxrdZcBi+mAt4bQ5lR34RHg73105SKcVKnS3wZ+A0ggukhL5Qj6pGxBZcENlKLFFwR44iLVY7TuALiAuMSCCz9akb2KeM1lrpzjgmjXTrGKKYSIDgvAT8OpgwUm0cgyOKmQI2CLi/ZeV+hsqcy6j0FIPRAB7q4slcQySqO0in1+lQ/gE6BucV9SkfHHrDjbDSxKHAuKQjWla26hkWzD7AipyCS7e2QHHQKQCNQTrboMNnWvulNT6YjM+hQhO4fYo8D+gAHUPsg26JJOrix26vS/4jU37m25D5rjIFhFy71KUzWLeMv/aTTx5slfLZaUNuFACpgvj+FxymY+pSqSc2wfrJ0ieqk7DtWz5Ge4ziIdO6qyqeYqpY0VEXqvcGL9fz9/v3vvQ9s66Nz/Xs+ajSKLYFjVtK+9dEuWi9N560hoXdzbR7SiyE2ypToPNAiuR8nY0FBdLH7Vd9aB2w112BK9SrG3m7rPh9ybhFYWbZMFKNVx3JHzT/p5wA6zRjTnbf8biCwEr049QnUB+iDJ7HJZ0DrZz7Py0bo7yU8tXdkOtW8gGAEiw48K8jPcd5BTQqUn1miss6Sp7bz9H3WvEAOlKKxPVcHNVLtCPwTPVY11ltdEGU3yDbQWq4u3Q+k9UE0sA5Geyf6XZV+9TzRav9sqT+v9arJhuS+sQEgey8JkJ8pyRv8jx43tcOumqq+VxuhOdhgcw8v5th9ou12k6MB/IgGnYxHTzBfewPAd2A2cBwHHlYCiKcNvP7mm3j99Sf45l/6dbz2V/82Ht0/hsWotkrnyf+VerLnWIGf+X3J1O6rQHQqrRrBvRUF0+3OCa6o2gdbr8uGaLCcXsI6WTTI3bCvyv34nPcBi2RR7cNV1v1fy2rbVvq7QESqX1e4SurhHQDXshPYU69p/LvNjv6dU6HthYiSRe1xdoHSPQW0PS0oe7f33GmwPaottRayj3XYRY+sOaYO3faDLwGDsHVN7RHEqq51hf3ZksB2RNdDzzFsLHM4Xd+v6Xrt9Wkdu9lE6PZT5eV6vsn8/tM2Bv7deik7IhemtK02KqSuRvpvCjyGvD6fHd0nlnpLD+6l5NSjtVb3IZtu20mOeZA0Uni4J+JFEt8ruypK72zrKxrU14d+uhQbEp+n9S2/bOba/XBZ+Xe4tvSBkw0gfJKPa7m/lVu5lVu5lVu5lT+Pcnn7F3D3tV/Gi+/97o+97v7rv4wnv/a3fjqVupVbuZVb+RmVP0G6t4dy3g+MDiLiyM0nDzsyuwqd7nnq3CxZXRadFDqdJHplnb5f2lSBDnlYbRYjmjFgjDwdX+4JBRX4M8jIAgB16s8U+I+NVkcB2ISwKAarwL67nDsGzAELBnAHYB64cCPv4YjlWA8HLsOAy4FYDo8Jn6iN4QjDdDpWzBDDEOugY8gR4acAZaZgyqCgjTvE4Uz/EDjWA+7mfYKokO2Zox3+L28p5YHZfq/Pt7+2zXo5xhRUufLFDANiAsHIwRrpbJwAc/sBM9Ip4OlZzYDmtHKoGYwB4AYkGShHYACJY5wB1wy8rnBgbg46M9i0U8t350o5Bfj8YUawGr+Y7byUDOrmawdBO/sE/dn28mfPQzuHXuHImjMdrlMgm3DEWnh48QCwnRebyc5CZqluyYAbsOj9sw1FZmY41pEO9ZHOjLBkKjrcMWcC47Kvycg1Lhv9uMGQLE3HkewlCSRM8MtAVHrFdj4bHsLL4ZJO82yzQBmZqsvIpoSSdRsMLw3AfcF94W7OdBb6AVgQJKU5noAptU3yHmJCKRkI5i/MQLS5M82bEZBhPAmdcu9AzjcA7kf2tA0sNyxfmYoFi8wGAfhg2qSFeRnlNA0AR+Q9yRgD3DsdpyMBXUvpyMLy/jkyWklmofQbjmLuwYj0PVnqiEw7pePgdIAJAFn/S72SbQeBDAnkGgzKZL8vUpwn8MCwncKXA20FAE+ZtWSmiWJ2aedbwDOtFeVd7xhuFSA46LhuJ/Smw03TJxmHACtHX0Qk0HReikVEp7iXUldF9g0s14HD01G+zOFgqrsAHl4c+PzTz/D+0x/i6ac/xGfPn2EejhVv4u13XseTtx7jL/+VX8G3fumbuB/3MGMaTrL4HGqMsV8t1xJnAwZ1sZN9J52yoxy6nggV+k1HOgq5bq5IPRrO9ItMDbU4o8TEtdYBFxsPGEDnWpw6fCTYwq36DyCgYubLG4QWCAscSCanEci1aU4GKbkS2gZWAtOV8RFhCiiQZci8UuogEtiiYIG7t+hGzt064RyBZQIGWq6tUscVOHMMmzgOh40EoziO1JNUCQGk01hBkIqMSmLJFBJkE6l5lME2JxOVI+fNNCsbxCOZxuSsHmt3FCu4JNapYOo70HGdeqWDwpYMV+Vsji14tShHUUF36TtnP4AO6MBKkBb7FJb6LFNOGpZ5sTwVg4sZIg6I1W4MBYe34KUpaOBkFgo8hCcbJAbtsfSmd3IfBaJH6YhcHEb2J4FhCp4HMr3Q8j59TzgKquxBTaa+K5ZFKIiOAi6q32HARU56MwKhGWxjSCHHWfPEi+1xUI4FrASAha6HyhjiyxTgVgCA1G+y08YYmFvwAPpvAgPJvmCzQUo13xQgpF2qsTHaRR2olVLa7JSvYHHOY4B6sdYRBUnbSg3Zgmh7tJ5hHaxWe7cYbP29x5T6Gtratc/oogCXlSJhjUJvutp7FNvEVu/dhiz9m/MEZLQJtmNQLwmIKYavYSCDJMGDqovsrFofq+alQ2lJb3GmnjeST4EOYpMWLW0Fk37ZdP2RJbbf2jLb+t7OF9eflnuF2K7RvSL3iSDYkXXcH2Xn4auLmvERrfptu1+2VhuNGwjx6nl6N17dJcM6CL23u9tyXcl+ktbX/Zv6uY0fkOtY3VnyBQJ2G6SiddUJ/MYmz6efhmps1J/8u0C2Co7nc4LtCad9YtLX+SzF1HfZy3HwHmTOwR28VQm3ZRPKOC9zSz2r9TD3kwKq9+pz7msFYQNRTgqpSwFYh12NgOyBCjrTfrka0zIFq8ENrGhWl2Z4yikeJHQK1MJO/R60M3edIRssn6B+JfiI7wnaEnUAZaDq8vK60P82gKJD+lbNj20MeU029qRoq1dsu2frq5C+0Q2yQ0bXrfXjNoZSu+pHTtZieDGNwlmGrAWhJnpoTK8AFUF9mF2az5edtx/CAJo9qZ1IhhgXXJ68gXU4Pv74A/zg+Wf49LPP4OvA58+e4f7uNRy+YPf3eP2tNzM1um2staB+Oimj7tf66qTPo96fXxcUH4Jy7Icb+BYIMDasdf5+YKfYVKpYpb/SW1p/ePep3A8aD3Zz7fGi12wxqLcOizqYILnYZ++ZHahPtJVch/qvhzynop8+U0cKtH+SAfn6SseBNrDVgtBAdDEhX2sZ9U09tewXtaPlZ69Y/uLnXoEA7bsNtDUEu4hn0za5VgpaHXjBVhE9Z5ejkM8AqP2Badb0IYsailC3eHd4sfWkTATt/dZjus6q3ca+dc1nSIepatcAtV4vex8Txayt22T/xNZfe4cb15Wz3efb+KlnNr2idTKABnFvhxZYPUc/t/wcgX6a9TuqVpI7QwHjNP7bal+lxqeuu/J9jvy8+A7NuCfHeSzEbVvjkW/ybSxUv1u5lVu5lVu5lVv58ynj7hHma2994XXztbdgl0c/hRrdyq3cyq387MqXBykVjTrTbSw6L+XQQjsSwh0HHWUTjuF0uvO6aZfNkZ6pVnKzp82p2HOYpsxQzpN0PoxyxkLBPCx4sbWMYhnIk1WOMa3YEeZIoNXhnmALBgaGJStKYPQJZ1caEgboI2DHwhgTD5koCXMyXYwF4sERw3G53Cer0TgQkwwyI1lgBhFdvpKpZjE4l+kL6MxZST9uNphqx3EZicpxfqYwQkQzq4xyLGRpp+CrC11+5dqyq6t1f0JU2okrX4TDoBjTpFNUG2Ol9QPI+mLNrKU9b7FOeMqUjYFxMay1b/JVWce4WEUcxjQMi2QlYF13/hmdJVUZqpMcF+orOt3c8qR2BTf2Ttg26YYGXChzkAM8kSSHQwZHR5BFvpzU6VwYZmSKAS4YOHDgIQ48uOPF8Tznik3YmCk3HJ1MAUNXDFM5BJ83R6a3SrDLQAx+N+ZpVH3x1OicZKIKAAnkcQdiBDBXpRhKf0+eNs0Uh5SZkWnygExPYhDAJhKEM0amP/OVgJ0YCaSZSEftNNjycoQpuHu50MUnXwoFW6d2gcjUXxgIF9AwhWoMwINprhi4yACfRs7QVOv0sUVkGkKCXgwBLLXVYDggJ1kgEAfSWT6csqKUQTMDyEMAItQ961gYc5YzK8KxHNmGcGToO8Fac16o1wjSQAI1klkm6HjMtkw5pyzBP05UiBdIjEHuoWmq64Np2YzgJgIkhxx/k7o4AVTprBVjVvbt4aiAuVIXSI+o7fpF1xVYZrDd3s621lmzJ7ERmBZaWwJrBMwNsXJdWQ4c6+jAmCoZQaDSwd8PLLzAfDTw63/5r+Cf/YvfxX/41/8cnz79BC9evMCc93j2/Dk++vBj/N4ffBdff/druNzfI2YUC1JY6voEmrbjGuWEXzn3XA5SA3zBzRCSF7Y5EBiW81nyUo5tT9asaQNDbB0EgXislO0ViR1jOpfUY8nQtq+v+QU1PZ2hthKQlgE+6gQGzjPdIlmUPNc6rcd9uh6Fr9A6Nji3Au3g1jwbAm3w9HeCtMh6FIaIAUHaat5YzpMcOzCYxMe4MXhvBNBl3xsGHtaWpgjGeaegFkXLvQB0Ao8paBaRwNljrQQ/uYIxm9NaNgqd8w5gXnqVtBXFQjUsgYgZCB2bnADDZgUvADDtLXq9UdCTopRTwvBwrAQ5p+pO4LSlDlvRTAeAWMaUxo5y5nRhTz5dIMJTEMUrNVqQQSwF1zneI+VRJE6UrSjdSsaZ2JnVJirlKOXJK/gxUcBLABGLsj3yOywgtv4p3/8gsyKBJZ6g3WFbmlIELvPC6zmWHrm+BhIQaA2gz2WN9tWW1lBMFYagfWa40OIR2MZCzJ8KuitIYJVyLgPUW2fBYEabbzBNMFPQVXZCzn+DAvIpzF66g3XwDtl+VcuZicE3FgjqB9nvOdgVxMxUQqnPZLsOpdPD+dq29VKfNoMJUAHwmif6QnYn5zaC+lQfSkfv84SCaLRAIzqVCVskLjmDTsgnwC8I6wsYlhvTYpPJIQKHO+KYNOny+kwXaGXsaq53qsrroB+238XgJf1sG4iTAS81SWCYal7335+2aEiuu15/1/fbslpAaTE+1PqCWi80R8q0DwCTId/Rz6sx4Z7FNhnRNC/TA/37uTRwQFdcbSu08m02zauewoaGIAbn786B4X7q+aq2bHNE07b3hNNjOfBAsG0AqV/mrNZVyklWXDUpOTBQXwmF0IHhE3sG10Yj/YP6J9TOspWR6cGD2zgyyqS63Vqn/ZfmuvrAcn3e2USSMdeu/AFqh6Yt53XIDLFad6WHel+nft0AC9G73yi5qS+xgwtAVtMCXLITJL0FjtzSzu6jqXWxF3yBKDbZoI0moas1t1Im+fb8bVccLZvSEdrLSg4Ng/4ar3p76WbDzhInHWymb7sP3aPScNd7ZX8aEFd624DGPGzjReE69X2bRxqtvuZk6BnXEaWfqy43KCVdMS95tO0Mrqtl9liPow5IeDJLvvjsAzy5AL/wja/h448+wPNnT7WRxt3dIzy6v8fnnz1D/OB7ePfFc8Rrb2T7eD7Ot7FVh59neo7TwqbrKTYlq2K0qmFuabPtGXtH5jzIvlsu2eaktfNhuQZBsfv2vzgXdCDBoLWzx0O+oODfhv77PGxaOHfYWb9RPj15dmQL9QRrmU/bvA9OyRasbo4GhkhYcm5tfpy9LeqaOpwQmw7YwED6RX9wjD3ST+Blu6pl0li9CqgrSqddo3BL7o1jHi33exW2cbD9i6uVqaaZqQ9QtZG3gUOGtp2i5mb+iHq0dE+DNPMLtWPD/VVdtJIVuK7qqL+2Tj3tbcAp0HpbH2octRZUr1cOXekZ+VpQMtiqyyBDJNepfP8Akh0+ei5USwp3H9VVRkr402yPWmJr8ux2al60gdXUMmv51ys1hlURHg4dXL9Ns6b057iSAvWjKkypjNY7t3Irt3Irt3Irt/KTLRGBhx/+EV784A+/8NoX738H6+nHuLz+9k+hZrdyK7dyKz+b8qVBSg/HYnatdnZpk26W6abmHIhYcE82DTn3c/8VuTE1Q1ie7NQJcARxFdbOl7w2ystSjooAjOCiPC0kBwiDQnRW7owHY+g97WRZa2FcJpuia+UAS8f9Wg4bDjO1ZaUzaCTDUbEGWCDMgTUyUPbcMR8SbBAw+MVwd7nLKo5kVPLl8OPAcRx0YjiOIwokYDODeewowIDlB+a8Y080SGEayDoD+NjcN+VUYTV/RJBhg+Pwupev2YMJtVU10CGe9wxsEAWr7AmnhxrIqsS/k2Ung3bjbhYI4m50sMq3rfSkgxsQIEsOnr0lvZk+/2Z9KpsfycnT5yLT1aIg2SjnHso9m0GSlM0TuYUx/VYYApLxZBCxkS5ZMwZF4x5mj3D4UyACL44X+PjpAfvgGT768CmOwxGWgK3L/SXvo3dX6RpyXIKpYrIKlzlzPlxm0mCHJ9DAJgOk7RSJaPDAWosBejlMwJRhyf6QKaNQTm0Y2SFsVvAgGXgYGLaAYzFwHsiUXgz2HUeyqm2uRpgxUNwS60gA5HI5VhhAHoOBukHHDB3OdOaNYVhHpmKaFVyxbaAGIpFGFSx190xltNp1k+AEr1RHDgZ3LGAxkpFDLGwl8wJ6LM7fdFaHZ+o0wklyDEcGleR4XWtVusxVqaCYBjICx7Ey9Z4b0yYMgPVfvvCwjgKKgHrQbCB8kb0p2YCc/WSWKeAWnYprpY4PPxjEmWR+ymuDAJOQo5V9hEHdNKwY0VpnKxCimZmBVOkGgSrLMcjUejkuruhIn2KlwzCZpALzcqGeM6yHFz0R6W1zsmdZONbDwh9853t49vAcv/CLX8ff+Vu/jh/+4Pfx1ptP8N57H+Lu8Rv4L/73/zv8yre+ht//w+/io/c/xjfeeRfjmxc8ub9DYGypFpygNq2BnuwYAAIr+9Mj00nKIU3wSFA+MkaxILYr0cOPIJCB4JdYKwEvObEyuCY9FgPhB9qVbA2cgoIWAhCtcjx2CoJVTE9BRb7kfK9UmiDQbdZCkPPOue5kP1xGAuIclqyDo9fWSEWSzno/WC+d7AbMZgUb1srglvEdZWfQVshn8llkBtEqYQi+AwXcCR7LzQAaxyOcTtxM7dUObAX5M9Xjw8OLsiUUHDmtoyVqShOZdWimEgGqs+vEciB5WFinR+UvCggYAoOsjGKgYGCPqTyLrYupc8VDo5UwU8sGAaexpUgaNa4SFyfIodsXABxJxCG76iBzi8BVDNihAWlex6DBNZa6Al4pqJIpZjVQRQtyViRbMa3qlnEdq1SfZskkWGxw7BMFA8xzzUmw+UybUfcIPAUkOAsKIAzqRYLtQrxWZPzcjkzXGJp1KjauaQNKz6Ygj4IMHSzuGRpl58VIqOrk3AffUWOqZwZBVMh1K0GFDBuGoFJ78uSvXinmj9OHgKAF59Pe+bMD0la2vIB5AHAyeEueet3vGItARAQsc62s4OdmV+7GomKhL9vHZ9BEoM0Y2ZT13nDGNTewdD3HmfYoDzKEp72wOKcy0DQRYyTA/PTOfLavZsIQY0SaZ+J5ky4DbY+JHZRSGQa1BrD5oZtsH7NX7yde7p2tkde3VNeow4LXbjZu/XoO1snmV4BUd8l+3bWY/j6BmTZb+FXVetX8+XEttle9tHRf6g/phP2yzbIpXQbWy/O0whZotQJ5nF83kMDy5Hl7OA48ffaAh4eFz58+p1wI7IaS84D29OqgFlyjTQ/JK1DzsIOjdupztTkiqgPVC7sIlBVh57GsNMdRj9+WEgEMtNJbHaQoxsatNEhpVP+B9kGqkJ4/AkDWPK+aAplm2+s6VPujPivwtmsnqbVMFkWvcblWJEC2rSkAYfDRY6o6bFql2xgBhBfYKu3FbfyQ4OEdZJV1dVYreODhpKhOQi/bDPt4Q2NJBunSyz0xeymPAnxk4eEZ2n1AT3cx6wXiNFa1Xko3b+MjUIXGTDpMYriDWkp5n0aWLw/btoje68jOuBPSp1v9wvH9P/h9/MHv/Pd44zFgdmCa4e233sSzZw94/rDwS7/8l/DLv/QNfPzBR3j/O3+Mx//6n+KX/vZ/hjdffwNjjgIYZ3u8qqgq7GPS8hr1t9i92Ns176QjYpOHvk9X5+cnGdQ91cl5X3EOSueUzYw6tASwj0xPzSs8Nl9QDY7ev2s8lL1ffkO1S4A3tdVSn4b6Ye+Tza6onlE/xNYnWtt28AX7RjZsQeDUXlPdN41dKLdWQt3Msy70YiDdisnvsoPLuVK45F9V7nWiGfP0GDu1xViJa/177of+otb9TSJUE7VJ/dViaNUvBa4MtenlFTT2/t/GrGQxvJ5voM9pVyyl47DpEclBM9tub6wfuT2wrSP2+lm16WRn8roEOluvuVawrV6P93kKtB0ZhgT9mRDq9eS2B+rBp2f3GrbPh/xWe4BT36i+Wz+EOp7+p73PtC+Vbunx6bur219JV3krt3Irt3Irt3Irf9oS7njx/d/DD//B/xnr0/e/8Pr16fv4/Nv/GG/87f/jK2yeW7mVW7mVn4/ypUFKGWDrE9C9kewgwXFk6jITkGR1ird8RhDwsLjpUQoMK8dhueS4l1wA8ljPwO6JTPYG0KkJbvwGxLLUjobev3UwAgXI8JWOeqvNq5xt2nEyQMh3J/vNwmXMDCQwIG3IYKgf6VBx+o6evwBgd4BNslIYU18FDl8JaqEjOl+XQcVxIRCDTCvBtDXaWGboK1mh5rD8O4zBDOvTpbX939oEbAvb5lSpsW6nhAJlfSOfV6CD3uprn+7b350C5/yZb5vzwTaNSLBNbE+c5VPoOgkod67Bqxdqe+m3sxNJZWwOm1C6JQV9I8EGDuAgFdTu168nW8uBguMxDA8PC2MCcxiIi0MIfLIcx3K8eP4Mz55+hoEHPHv6gHV4BjunAmkjDx2PTAWDkmGHjQS0CZCTaZfSeeaOZAPaojOBAPgc0by3fKTXItPOzC1VRFTQ34KBX0yCakzHoulk0rMOMnakY8VF9XUcMA/MOemDC3iQVcAB2EBmOQzAF59JUN4Yp34nRwfCLIGLBOGMy13VKYFwGe71csgMIBwRC3Xqkv2zYpV7EuApSDcMu+SntthndyX8YxiCaY8GnTmDuinqVPMgqCfYngkjmEn6CMhUhqLzHiPrkrpslNyGZbuPyMyKxXPH4IV+11g7Euy11sJxJNjRqVcOgo6S0SzP6wYOAOxTrNL7uQasZOxi62It6skEgUSg022GUlSKKaudmdPEMJFyl6nR2HewPKzsyVoU6Hm/jqP6FotgUW/ndID3eTqIlwPTAh9/8hH+h3/wP+K77/0Av/arb+E//Jt/h88/f8C7X3sbawXG49dw9/ojjMsFLz79DO/90Xfw7OOP8Z/9F/9b/OZv/Boud3NDJSLZBJmfslh/5MRmANp5WjocyMxsi5dQbjlnBsfbD8eYDfRQgG1FJKOaHMmGWjO1bgXfm2xiXB+4BqQe4HUIrPWQuv1YyaYEglDoZI5wMh5mSkmLZiwTa8FaCxaU10hmrXpDeIKNalkVWAiVliW4tuqUe4Tj8JXzYMlJvXo5pk7OyyPZiBgYzFhNAl8Ag2NheAY9E8yc/bC8He9hTqAlndwgOC4yzZKeHUenkNyDmrAEQYYnsxV8UR6YwtQMc0+LwrZvkcb6fJiCHenI3oNLCTZN3RF1MnzBmD5VjHy9CoY80xCQaNrAZVwAIxcPwQmgLaLD/JXWLAAzMU0IXNZMVk5DxNfCQK5VCdQSaKDng2TdfdXJ4+zEUDXbcU6GpQQNZRqhTAuaunqPB8EGAXmRdgnnyojAvBOIgx1MIFGChsFUHpTnoYBuMtkFWRBS9wXBBSnZbp3QbowpqBdTmHItjXyP0getUOqdfMaYYCpHVPBAvwKRrJwxMOesAI6RDiaXzwUFaNVvi8xkAoG7UrF8RUvKyBZwxsaOQFBwsA2vCpDXH5sNJxOnwnIBnPKAbbbs/5+9f2u2NEmuA7HlEd8+JzMr69JV1V1oNBtoEGiSAEhwbMbGaOSIY5T0wNGLRtLITGYjk+lNP0D/RS/SHxjTPOhlNMbR8CKJ1JAm0UASJAgSIBvoRjf6WveszDxnf+GuB1/LI76d1UA1L12Fwo6yynPO3t8lLh4eHu4rlhvmeiubyPjsEk/Ov9XGPRh8fGb+kP5F6ce6T/a0TLBF/sF6SI5mwDXngpN1TwdEhtLxDAKVK8okQMvSN+rR0PyQFmQvmphM1nerntxnqY/Xn0tX1Kv0xaLb6tIfI4Yfa7XHvNwOf8+rD92/Nnf9fPlpyxPtog25n7moxWVTXigv7ioub7eLv7XuxsWzi7VAT6sA5dwf6RINi9b9ZE/lO8JhpCcKTxvw9mS4uTF0pmZOe8K0kOWei2xw1eam75g29TCPlnWGz9DcUV3touMEeJiHh4ZEc/Z7BFnj7DgWMaVIa9UqddqfhedamClVJd3aZTLwSrZkpUcFBDZegD9i1YD8G2Syg/YLXBenpliXdn1S4JAp/+tuQo+hnbi8NxGKRzvjEKS+mFuqp66hgZT6U9rLxChTEJ9ZYbMX3iOGvpn6G4f5ol9lqwgk27hRD9lMq0xXHbU3nWtdjbNP4NK0jZcXWsFX50QwHNtzFI+yF6utC9hPyqz26UYZ9Koyx/qwMlDHEzz69H187x/9bXznG7+H1h1bB54+f46b2w03txvCgI8+eoK33+k4P3uGcX+PP/iX/xTbm1/Fg59/gJt+c6FS9Z7lr2Uc1r+1bpTlegAWYOrNYmkKTXtA46yBuFyX6u0Xvp91beILgvpKKfHmM1ebZtr8tjxTY9Hq2iOwOqrCHPfA4fsJ8NK8k6059ZJAuwcgUQCxbuS0wdC8DQGANDjq4+WGRb7mmp22uFn2i2jD1zXomM2PffkxfrmpQmPKCEEyqnLpj0OfaVx9PtvkBcShHeu6nQdOoGm1zAE1dOq3WdcllfPyW+0rYpGH2eylHqtOjGPb/PJtbNtS7+P9XsNS76uGSsYWzb3IzqFobVhkoMlosPUJU9VUyl3plrp8XSmO603Zu3ORgPbgWkNXX4mB67HWDq3N9dy1P+YcnL5wTNmczVzaf1zLgLknLPbBF6TtWq7lWq7lWq7lWv5tyvmdP8AP/7v/M/zu6Se+5+k3/yke//J/AvRPHMa/lmu5lmv5Y1U+OUjJlU5mnrgHMFNtGebJuiW1wliC6/IFeG2T5FhodMLlMwTC8GbpeEU6xAym4+rlvHAFtejkLMppOvXWmKAcTFubebjTDxLFygJMdpCtdwQYnA2bgXFtSh0YOzf41qquSbXuMBtwb7g/n/Nd6gR3xMj0SjEczAIFBIEmcNhwtO70W9PR2lvR94YD5+G423f0003Wn+3OTHwzCJMpZ5gSpcbhwmWgDlk/Qzo71g3qjPmsjmiUgyBDf9zcY7q6dM+6sV8fNZ3bcQAurHfFj3lWfro6d+Y3GvcXa/1i6chg0GDbFfTX24runbt3M2PKNW7i1RHp7c1+HobdHRiO09bQLIE5YRlU8JEglQ7gi6+/gsevPMI3vnkD6wG4oZMByXqmE9r6iWwzKfetnRCW87AxiOkR8JbzyN0LTGCWAeKcp15t7FtHNzqcRwJ5knUi2cCSEUkMUJFpcmyOjTHgISBLjXCc+Q5KQQQZcM45R5DsK4YEcO2esuZDDszsI9HNu/tM60CnTGtMl1fpAcWznQCEjtRdMML6qJsCmfoxwZDJ/IaYqWM07o1p7mA9U9Y16iGjM56Mb+7TYZzj0qeMUHjdAwPUJT0D7C0MYZmaI4NOnfThZByJKYv5vMlCBMtg/k4AAco5mfO0t16ORrFYjeHwMeA8xZ0gBgGhctwQQOsd0QcGvGQKYYnDYIPcxZon4I1BEyIo/wLO+cGhm/VzOk+N6T+NIDPGVFNeyyGYzERmmKxKlFk5yht1XckLEuBm3oAWaDYQ+1O8/f3v4O3vfwPPnj3FOXbc7Xc5ZfeB3/yNf44ffuEVPP3gQ9zdnfHee+/h7nwux2YTWBYK+hJwSRn3sQTWTWsH+xXSy2OZf9QnjfiWIAAXwXQeOZ6Dsj/lN2W00iiUz51gkMyLhNUVKzaOiICPTPXWOutsub6tp1Z9ZAos97lOB4JU9noP6hq0NlOgLXo6Vw+yK4JBCjqvE/yS13qMSgMHBeNjkRsCg9JpKxAYg5VFsuCz7x20F7i+R1TKRCtGiSjgS8SypniyT22tY7dpZ9RKGGA6PM7bPpkcR7GesK4MJgSZD+AxwUCaDBGJxbaG8EbZCawni+dJ1qBco3RZkuZNpzxCNSXz3GIbQSMyGNiW3iI7Emo8vOSlusVz7XA4GrVlBCG3fnS+k7Oh3hdG9rsQyBMFlCxZIbhP8GrpQLFucRJVCl5jWjUEU6xJN0Dja2Xn6YR/d4I2U5mQeclKRszyALvSxCSedUxALqZ92UzA0cZ0ian7NumGAAxij/AKpBt1n4cu4poSIBtZ2gXBQEJ4pmNM8JFAqFp38/egHBkNwfFZDirEiwH+Fy7BIocLIOJgF66BurmtmPG80Bp8DNIu8VYoqFPZkZbH6beyTz8mGFzBp4v6F1hq+UTBdlzcIdvRR6C1gNsE2AlcMBnAgtlKlnC7K4AeBXiNEGYy+65RT6D2PbZ0WdoRbSTofdnqHPdQ7LvVzD60ew0cGl7ok6p10SPZMqLH3oqL/w2xBMxQlTqY/KVKCt6DF8bmx/xhyy8vjtCxXn9YmS3jVkD3HeR9eeciwFxO5xpzcYfMCa1hboZx9xQ+7hEb7TSyNZy2jpubDa3JLm3oZD41C1jv6EopvoCitYVJMUq90mjnC2RqS91kR2p9FmOrgDolayGbJtdEX6bHKgO1zur9ZS5EzRPtJ/LZZPQrzHimAU/c+jzgoHu1R9R+omoQlMbGBSAOtaHunnNV+mA2Izi/Z9tli0gACswI2TSrBHpNmrWdudZM+7FkLBbQcxoI9XmOpWZXCo7qU+MVyPUvovrEuLcsWTb5a+a7Z22nzhFrG7DqctnFlLEWgA0t11Pia0LTDooFKHKpfIzctYcgPLu+pT3Y0GkrWclNClEjiynbG9I9QQCT5t6036fslaRnX4TBP3ofPc5A7Hj+9DnO53sMBHZvwEgm7qdPn8Iwkg01gLh/NhWDpD5mf6G+Osr5VHLqmzkOhyVJ7ELUlZIugXjWmZYyqLmuz/SadW0SAOk41wuotNRhzq2YPrgXKjmHG4t81Tg1vv+gF+24oHBur48ufSPZBmYdD32kHloatfR/PUtjVB8vNoghgTTTQE1gvWRLtpzGj7fIRq10veuImCmr2DJWy1q09Lkm+grMXkF+U+6XMVW7Ig7Pn62PAipdflPP47P0Pi/2J/VP1AI4fbCqxJzL65gd5kHUqEE502QvTDlb54OqOAVDYPELdXUxl3UtuGbZC/cc7bejv1Hz0jgOWidtDsjyI9ejGjqzyXZczEqt+lX+NJSva75jNS4E/NOHJU8lH8cuSlt5zv05CdefqLb9+H67lmu5ls9j2T94G+P5R592Na7lWv5Elbsf/N5PBFACgPHR+7i01K7lWq7lWj5P5RODlHyMYoiZJTIlGv0HQQCRR7l56NBIZ1Uzy4C4GVmFMv/ZGNqwhbhCgEjAQDksyIIyHYWT0SkvH+Vsmc4ObuEYtNaGOOgEaE2BRUCMBHkD21z7bUePGaxtaIhmcAvoxJL3dHZF7LBo6D0dnXZ2dG8JDPAJOkIgUzdFppyR8xYObK2h8+TmiASytH5afFkJBBrnHad9xz46Tq0ve305+ORAanBnKofAcqp/8f+RpnsmJNEIy8l+uUk/PqOtf+s+1kNEUXWabHnC5T7a5JjFsVSqk/rm+PPy+uO9f9i385oAEjhCx1neRtYienq6RVHsh6eDt5gvKPspY04CsDYDvZFBXjfg6d1T3NwDz+6e4TwGnt89xwM7wX3Dfn8Hd8eGjpvtNgFI3XDaNmxbBhaUimaVcwoXzAIb08XopHSejk3GqK1txbTVLIEKAFk0GlPyALBwOPPIxXAAnSkCRs2l4U4wTBTzfJ409YV5bcu+8ZEy0JLBDDGAERkoiZTbTEPAdI4VVLAao3KuCbSB7OPGOR9B5iQGj3szDJMDrqG3TPMUAvItshEARiyBGtUHyWDQWmMKyGAKP18ccEZwIGCe9RzDcTolqKzJuSnAlgNK/xMAT7kZmWCAytVg28KilCxMFl6gg9UBqSDI4OlmF20MMgg13DH2BAWcz2eEdc7v6Wj1YWh9Q1iD44zz/Rk+Altr2HqHIdPceeyLbidYSzq2tQRhAXTaJlvTqq/Zmvy+kSmPMoQRCDJLhVJ1xLr2BBmr5sAJFNUIbHICgRKg6WjRceo3uN02dOx4/8MP8Oz+jH57i6fP7vDhk4+A7RnGeIZn77+D20ePsBEcuN1QvpHrzhiDDkOfOpZOdGmuTJNHZqhwtBaLPC8O5MixHe6VsC0IhkMBVBrCjGAwq74EAIuGqe/p0KWW9Er3k3UTIKJAQkjQWqaCAwKtgA7NtCaw3R5orfP08gT8GFO8NduYws4JtI0S4dSlmiuR7yk9uQalqAM8mWRmahWChKyXDZKArQRuyH7wZf4X4IfyNmJgJKIYmobb1tECwJZshQJMOQFKYrLJvvQKgMh2CK3lHlWP2d/sYvUh53+BBOp5Xoun+pnoIwL0EkiU83xxKIeCbXLyy5EsBzdYBzqlPUGZU9PxeuQY+kiQ7gzoTR/2BIIlo5EZ0HNRSKBn0EWeFEH1nkBMVkHKmA+vOTLI0qd0gbKBBOASUJMKMecykk2s5T/EUxnZBI0A7mR2iEABbkNpXKgnyuHP301sI6F0olSJjfoTDPJv+dy2GFG9d7TeCPLj8BB83GKyMYrNrtMOW4MQCQ5L8NW2bQAaeUBmcSf8O1TVme4ClPlMPWkE0C5sAZ+xUswL/Jva4BAWqmBoMJCu9aUiaTFBmoegn5VhaSj+weXZM+Ji9UXeUCA72X9LYA6B+n4FLCpwVvsHvsfmw6dcVL04bzleFXA3KxCI9GPacakWQNBFpWaEXjTb5LX7mif1G9MBuhgHCTbpFX0y6sBkb6pU06r3MnZl8kBzSfsuUB9N3bGO8bz30oavzjp+E3N/oLFbNOACVl6GyNbdg5651n59zwqNu9jT4MeXP3o3Id261IvrwQtvUX8dVXvdUPWjrTBB8uCQB/bnT/H86QcYW8Pd83s8f/YcEQOnU4dhYL/fqdINp5e/gO3mAaw39Kb9AbiHuARlyL60ub/T78tFAk2XuNelttgl87OaRdzXa23Ldmea6wm1QK27B+BPri65Nss2wxL8X/puMlweK2nrgPA+QWQ1RzWPWxzvSVtjtmdZqGa/1c8poNNfgdIvshlWu7DmE6LmO7Du59iLEn4SyIDfafpqfaj1j7px7UOB0EZE1W+2QyAk5zoNVM/E1CdjJEuidOEBHGJ6juPu2VPc3++4ub3Fadt4iAGL7bqMdU34yFTK8psEam2c9Z0soGlJt7JjUPI32X7mfsL4TRBKDMhIK5sUc60N2qNmhnbzCFu/IcBhYB8D1jrGPnC+u8cIx3g6cCa70u3NA8ACbbNFv2W/rKuTpPww+TmGIT3AB0w5WuQt1tmDWkvS2NV1Vqn4sl1TviOWBy4aMrgXRsShtqt6LSbMtT6Lxl/ly5b5YLVmL2uz5ZpklB9IJg4NlsxQl2qslzoVO6xuXdZVWz/3FZw2AUgrAKj0mcuGmX1hENPzovNkTyOZcMIa/XBRc2tNtzmZhzTmU+Op39d2r2NTB0AkF+zZ9drc+825dhyTOa+PQ7+sQ8a3LP0sWat1WjptnUcXdZ0/l7roWWVzzTkQmHPksFayoZKV0htYZLrqpM/URxqX/Gxd96Y9sviYF1VPote5pIBzCmvdpz5tsMl8CVRvyXYCrN5vxv3F6pvSiwJzPmg8o75aq8638CBFW/WJRpVjuzJvr3IVS/sCuJS5a7mWa/l8lfHRuwmk/gTl9ks/j/7g8b/nGl3LtbxYIiLltHW00+2nXZ1/67I9/gIyhcL4oy++lmu5lmv5E1J+gnRvYzpPoBP1mabE6FgPbvABnn5eHG4AsGujT4569wwm62/jCfeNDiQfI5lGxEIBpLPMEmzhC6goA4cMCitYJV9PLM6AZnXqz7hhB+jUkzONu7Nxjgy4twxitiCIp2/wMBhT97gj00G1BkSmwcnUR3kycuyG3bZymplOr2oDPsTicwLMMr1Oy6C0u6MjA2j3+44bA7bW60Srj4Gx79g2OpciAxICKGQQL0EXu3umO4kZhBPxjMOEx4FBZ5gAjxwTV8oc3rP13GKL2UUbWf0eEFPK3Mxn2q3KkFTbbDm59U+5FlbPxsELx18O36t87IcvlHW7fen4ma5LOa2m02ewOyMMLcA0XdP5IBIQOSyaZco2oMMiU7k8P9/jO9/6Dr69P8dHT57g/R++i1defYSXHj3E9ugBvv8H78EHQUYdOJ029NMJvSXTVj6PNYxjCEaO8/LvmILt00cp2mf7mC40Y/obGDC8ZB/WYB5wT3BKNGCMc4IvoICeV/BMqUdyDq7B8UDjHM2TzMBO8ECgsd6DbE+AWcd04EQ5LeVkCqVI8ARHhCUQsDuDchE8PWtMG6R6KSDn9dzwQOu3mMHfImIhUIDgFJ/OsWx7QyxBguybBFrt+54grGYAHZQRAIbDttRH1sTepGBrtq9zkiopS9ARH57sV2Pfs46e7EiEhmEnICnBHkvPC6jkI/VoC/pQd9QpbnSMSBDTN7/9Xfz273wD5+fP8bWf+1n84i/8HF569JjpoYJvm0CXchi7YxCo1eT87bYQ7Fs5hhtQjDzNItMgRQDeLoJI0vV8TjjOY6C1BA/kqe4JhFqBL2K4C+u4uXmUc3HriLt7wB0ffPAuPvjgCXDa8MH7Gx6eNnz1aw+Anqmhts0Ac/ieafHcs73NAsEx8jFyKSEnu4djwBEup78DrJ8TvJiBnwRnhE15NneCSRlIaIbBedTomE0QXqu5p/lSDtVie0uHelNgS4EJgADDVn50p85t9JRG85K53piqxSKZgmAQENCK3YWna8m2Ez4BeIEETZgWTNCmUH1LRp3Px1J/sWsle481QwxX/Cn7n7q1BSaItNK9BPZ95xqGmovDA1vrGCOKOceMwMYRCb7sBP6NUcDOlOA89dx6g+/n6bRn4GN6lXNMnDKh4GyCTKlcAjh7pmRLcUrQn0PsWZPFUvMrQuPvFfwuua8gJtdz1Ses0qpkOr9cv/fYEQlRmid8K71jlI7UE8dggl8uQ4EgIIa6P8SYNXWwtJDY0BpTAodH2RoKMO0M/uRHStvjvK+jYc+n1/qCQl5rfLMetH+40DltDaXUKeY4BS34b8p0FBueI5B5lRr6oo/E5KZgvGJnI7zeV5ZAS/tWAS5wXq3MGM2MQNCotEu1HigtKYMKFTymjV1B85jBoRU4/lkrtZ4DFZirQLWCW7Wm8G8usgq65jqAxYhhYL9SQOePySDGZ89tQ+mPydoxv6sgk1kFACeozJcxvzi8YfN9hwBc1TWf1mpyShfkhcbng30jnVrnGIaM99mXtjDBCkRSLC65LanUYgIgJYg3D0UU8yr1ttJWVkAupF9YQ3Ue16kMXOIQnC5ciAHSSDQLUeC6SJu5twmsKgAXyqSCAo4AuFau46T+niyPP74cv5vMsP/u9hMf/0W88KSSDupRW+4R4E1BUq0tamzjnHF33N/f4e2330tQve/Yn99j3084bTf46Okdnjy5y/4zoJ1OaJ3srNXjS2uXMcNi02H5czJwzckya7t0G9cMPWvOHytdf7BZxILZqI1LJxw7eAbY82dBmqR3Q4DBVnJR8yna0j69e4KcSveU0sh6GOeoV0qq5TBUrVWLTuZ8EENzajOBBifIJJ+PUk0ShpzedmA4LvCu9KAOWbH2Jr0joIlhSeFkJUtWLZ7tsGawmNyHBYiF0rhq4uouq7Gr9X7kATSiZVdpwIh7fPd3/jn+5d//O3h+Drzx9f8AP//1r+OLX/xiHXIJ9aE6IxaQ0HpAjnaYX85ZMQsi0n4hgF7SGjXwrBvHIrgWrWt5SYT02ToPOHL90avoNw9yj6rUmeHwAdzd32c7bODege30mHKUtnTQVqqn+sX4OcCTLDVuazK0CZaSeMw1dE7I5fkRaXdifj7XJs3TVmyYeQxuAWhIWopOulblw/eoNU11ali1xcrKNcERmFcsz5V+0ASp/XGbc7GOhUQs7Z9VmeDGnFfFzRNp4+USuYCqVjnU/OYc1H1TJhYQeGslY16EaHYYvwD3dGJnDtZI9kOgzJPZDMk8Sn8KqK31OOtvcy2pdthxb3BQohfyvOxXbHlO1unCvtEaHQtP6oXc5b+LvlmAolPnT2lcgeXVAUoNepBj6em1e9g2O94+fTSGeYPmdNTYXKgQRPCArF6xzCWtw5LNtVuqlrkhnzaVeuNyHbwAQs3DeMs9UOpN+df14mM7D8OztFeAVmDaFLJ51zWn1kGbc0AvMExdfC3Xci3XAgDt9hHsmmrqWn7KJSLw7Pd+A+/+g/8btlfexBf+0v8Cpze+cmGj/PEqN29+Fe10+xOzKV3LtVzLtXyey09kYZgYELRbC8eIxQEELA4KBtO5YQsoeDYBNGYOWOf36QDpZhgxGDyNPNXbYjqOuOktv/48Mlhpa8Q8UcCkCAINUO8pp35MB3r617yuSwdGIGJkCFbgkxZY6dMbAUfJDqWA1XTmRFiyOOjUrAG9n/L5OsE6Ip+7NZxut2XzKWcDT2nBgNaxbR3RDWZOoFLL1FxkRPJIR1duPiezgYOpcSqipjRJCSRAAL0beg4bYiQDw/BAeAJzTifAW0eX05pPTwmZhsJMvJXfZ19NJ4gt975oXhy8EPXZ3HLHxfU/qYFydGaVvw7pSBueweq1dqMuTPAQoL1+tiuzIFmxZORpqOlICCQo4cmTj/DN7/wIt1vHbQs8fPQIr3zhC3j9jTdxevgAD37vezAGjdvWcPPgFjf9ZnFMyfklp+E8AZ0ZjgId02GrYNoaQJqBrI/pR9Pp6F5yso999gSBGOGeDCUefI7SPeZzChjByiUTBg66YmfA1XoGhZv1dOSxz5KthTLqGcRI1jQ5VToygOsFekoATTJuDLFCUTJzNglkYWQR4UxmqkWwb7JfBwPy1CvwkttM8WhQijOAzscRZBLKNFPuA8OBtp0AtGQ9k5NMvrAwBOUFJlCIA7HD0DCCzEitITLPR8paOcaoa9hPvlD0IzD73XcymCRIQyeSNa4WwIgzfvTD7+H/+l/91/jt3/ldnM/3+PIXX8d/+V/+r/Dnf/VX0bAhkCev5SjOPgyy8pBFpyWoz2DoXDsEIABS92W81ZmKJqA7EDtO2wYBK6z1YuYJgicagCbFTKd+AtKYQopA2YQ4OGzr6Lc3CfD0wHkfOJ2C6bU6Tt0wsCMEKILh5nQqViHbOhm80tVYwXBkW+tdEcqYNft2AeYFGmzMNcTFnCRHJFBAuGwWGQIsWfcQi1MRQLRcowCr4JrWPjnaXcuRFUYon+ejXNPuZ6Y3RDHRCBDlZPGoE6tgPUBdwRdkQIsywQEzMgFkarSOlo0j64FW0WTb2h3JjNS0tk4gBuBMEWMV/Mv5ne/P9GUt+yxSrpztl7PeuObalinQhgAxhgTttEaGw6z7aTvBYwDN0JjaTak2K/AvW6KpH5CdXMH7TPMohptktZqO6hyzTFnZbBQwNMgqoblVjmytJUG5QixsegpepT5K/3o+35DO9xGjGJ6EOm6tkeVIvmmxGDltmGyXwOh1yrxSCUXN1axFAucURasAIL8Ui9JkkRnT61/O+4AAwq0UpS8sRgRVWcvvuS6oRqZnUMKMQFTVIZmPgrFAg4KCnYxQBdJQ6k7YwryXctvJ4ARTYFfjAwZJZxBZc1Rry7RYpgUl9k6d7pYdnerda8EQ2DAnSqAzvREYZPysBxXWoNhM9xczJniw58Q6RnuHt0ZF9HDsc60v/EcaptL86AF6v2EGLJcoYe4BBFDii2KRJ0mXzWdB9dQcXF9V71YbrH7Vv7L36/1I/VvyoGCkAlfsukN6Nu65YJkOt/fGoOzSZ0ZWFhhAmwumfVYyfrVlTZKdq76Z9rJSbS7zwo5Bt8SEsq4uvYzqh26yyC5tURwcj1b/rKO3zqNl3Ouvn1Ipm5Z/RklMzevj4QxMWdc9GmKg9qv5vyWIFoACpGIiAxJQK/y9jbQ5t9MNXnv9C9huN3z47BkqENoattOJOi0ugLfgHJhiyzMAPCaDYwMMS98f23/5QYqc8RBHQ/CADwgKUZ9FaB1HdUbtMet9wf390o/LM6r/jWAeAyIme6Pm2EEHaYLQXtH+XYyfofovsr/u8fM9U4+DzNEwBXmP60bV6zDWuWZLZ63tOQSyY9XxnLuHtXPC/XRqyIACC+ezvPZlsJaHkRYGndmfa7XtEECn04NrvlEnz7lZch2B/emH+N2//zfx7X/9Ddzd3+OH3/oGev9f47UvvAY7GRA6aDDX56jx5/paB1R0UAHLntbZb7IoG9dIgdy89qOlewzVpyGZYSOM7StgivqbdXRrcBjaaSsmzPBA9MZh6Ni2tDH28552LNL+7QJUi+FbDLlsm96ntUx1k8xYtXeyR2EZlwJxlK2YX7rWSZvjXO2PI4BukWQN4pS90Hv0juVaE8MnhWFhr5ogK5v1q5V1VaB2ePU0D3ImHg9iqLK+rKVT7mimQkCOqGpynVr6SnD5CaCNsh00BnPtRY2X9FpJIsevYfFbahSo7yxQByrnJMOhDfVpxPK7DmcsNQvBfDg+Vm+rgyG2jDnUH0tfGSz3KCXrxrpqPs61dbUFGp+noZgKgCceQ/0896yzdZLvRe8skoCLRwakn6dezC61WjvmXdLP0kNWz84/23IloNTyAHdN7C+lsy7NKfsjQP/nBIslW5LWEgPIglt6vcSVMr6sF0rRO/F9MgbioEvX9skGXPdMuOgD9fg6hqn68mWxrEu1MmV+63qO5vklUPNaruVaruVaruWnWfYP38Y7f/e/gt89xXjyLn7w3/6f8NZ//n/E6dUvftpV+zcvZlfA37Vcy7Vcy0X55FqxNujcPBUAgc6NZbMjv0Wm2mm1/cmYZfAEfG5OW2eAWymRmpcjIFl3GtPcAA09t+LdcrPO/GQt7JDxKmsh9giBY3QSfjoHawPGzX1uPOmoaLn5HWMv50yzDYZkDkHwRJwF3DwZU3oCGTpP3DNjz+JwJJCiNQTOgAE94SSsxQkbAUJhhhGt2CsAkEVnQ9tO6L1hOzW0ZgQZNVgYtma1d5X/xgQygs/AajCAaQFvubFunn0zPDKdnQL/nimOIpLdqvcT9tAp1XkirNLfzF6FQQw+chwsg1TOg+PY/fhi+Aku/sNLoJzPQPlS6NCyCuQ3BFktUgZyzOsRAIB9T+fptmWf9NaK0l3XjEoX2HC73eIXvvozuD0Z3vvB9/H2BwPvffAcP/u1x3jw+IR+k7I/fMd2c4vtdDMdqZjM/tkLkp3ZLXIgXboUysFS7ojLE3LplpmOGwHuMmVdt5zbPtL51dAxlJ6IfhJDR7EMMC1ZIMEVnaxIYi1JB1cyQznZY3zsWbu2cfKMdF5bB9iH6ZylAwij2p8gyhxMb+ly7JZjOSJS1zjQ3DKdHLItRi9Q+vfp2I6WKWbq5KMla4rvyahmht5PNSYhvx7kpOapSvaognm9b+iGXmimAAEAAElEQVS9w2Mno0umUEOMpIHvncAMx6DuEmBghAORtAgJhEnAFqgvAtPxeaAQh+c8Hw4/nzHOZ8B6OtQaYDFTKRrS+bs/v8eT997D3dMnOHvgybsf4MMPP8L9OONE8FoGCujMVdDIwYhpgixycDrOnnq/BR2R4clG15IRBpZjBDr5JoBEp1MnKFQBrHDAjaeqx4AhQbPD8/kWjg5gh8NtwGHYbjYyN+R6EC3Qe0fvDa++8hhPnz5Hs4bWHGgbWj9h631KmDVEYzImIxiUYLEIJyhwwwx25EnuQdBKcPzQ6LxWioIlUO90Isq57m0n8xKDOC3ngoBNxvU3AgeAC6wVe1A6I6lDDFDaq8FAjgLSGYxoF7qRktFaMl0BlN10vhYAhJMgEBg+sm7I9d1I5xGRTIHAKNuhN6YoDGSwFQnaTT+31Tpl3WquJqNdS3AvAzVb28phPWIBJ1r2R++G1rYEmLLfxQqFYkpr2VdtAm6bGTamd0tdTud3HQ5O4A9d0eXU1dqpdS7MmMqPTJIRSNQVCrRUukT0g50eepHAMcVd2MAIwZBSR6W9lDKnyjYyIZa3HwY4KoCqoGYMp4PcyHyVui7hngrw5vgJMGcCkGGy2uT78rNOPZS38j0VRJa053VN6QiobwVcFFtC2nBcoCvyOtmCDDO4tq6PW08QvIm9CAmGi2Mlct54oG0dZg0NW6UzzOEkO6eCCaXjJzuUmcE89egoVkGUfjMGKp3PK9Yq5NqSApR6YR+DNqsB7I8MSK6BusXoDTCFSCvb+0UL4LNWKizC+Zg6aKYr0zUKtgisJbsnKkZToS3qzNyfTMiakgzOOIvkCNOsrCosQSkEQUyr/TQBCfOk+gwG2zIuZQ/LZlyDaxw3gc8UfLOlDyYrZtRhCNVf60GCun22mQCllEnZ+frHqp4p9znfrSXgTn0xAUZq3ewj0K6ZTAWYomb1dCi6mCai9iUToCpll4dK2lzPNCjzSQs4Yg7YizsA+0P++jHlE130yUrp7oNcovpM3+sjdeplnF9Mv21hCq7fQx9ZAdG33vH6K4/x8OEJH334BE8+uoOj4Z723vl8BxlnrffqTDuMrdX80vOPXbTo7mWEDjrGDj9wGdicMDTNT0zQUjiKGVKddehZe4H5tWCoCwNw2bwR6R/QXNb7gAJPy3ZdVY0hZrpFAitSzn1pQ2CCjHljaD3QVJMsW6WjU5+XbjHLtdrSPmpKl2bLOJtyg0p2VqDytPPXEyiyj9NpIr1HL0xM8PDHBp35jgmRXOwZSM9Sp0YgyPbcCEqQfQYggTdsTIwdfr5L8LYBMXaMfS+26COEIGYNKuDPty9V1leqmddQTkHUfDyOg73Ql2zksX9jASktAIs8POBA33B65c3lYNp8e2tGu6ZhKEWfUQ4FTqrBXtaQmPX3CyBZrg9edTjcT7u7UgFmpWdH6TOg1gp9J5ldmaqmfCzCiHnYQR0c0JqFZQxnKazF4dPpS7T1ulp7jWN3rP8cP1l4fL/ojpd6yUbyGutpF2Dp8fnibL8v7zOup6rxdH2qTziWy8LoxWCLOiiZH7TZEQSu5DZATDlL/aopMkimfjswRdXQ6L4Jqpr1Yz8tcqXv1oMuB/ar6ltpqlg+X8vHjLX6S4D92Z1L/ZbxmF8VrgkhfUW2ctW49MA6vydIqOqBw03l16s7OV6S+Zr+WqGW71HXsK9qsUb16aonipmfe+MCvmJZi1Y9A1Om1eovj4t+jcA8kDbfj5rrSx/rKYsukh6VbGRLYs59LYMGXLx6GZ8f88W1XMu1XMu1XMtPqcQ4516Cxc93iHH+FGv0b1/ag8e4/fIv4em//vVPuyrXci3Xci2fmfLJQUp1ClmbaTn/uMNrSjlBhx3y/zF2BsREtGwAU3dU4AUGeINbq5RUOnkvNpWuABEDpaEgmysZSJ4SbdEYPJyOHTPAOnPCY55MdjBtDwhomsehkA9mcHXZnIuZyKwj2Qx2Ok8d7o2Oh41ggdwOisVkbmp1IrCRJcOAppRvHYhkuEjG+p5BzXLGeb6faeh6bwt7iScbS8wTQGPPPk9Qg1+0Q8FGBRMzyN9aMlEle9IOj8DZBzAyKczdGUAM+Knh5tQOG/fpHlmKHX9Z3V6fXpnOp+EoOvkcXgb2HdhJre8Uc/dA3xoqBhhADKdj23QQNgPqgWS/QSQDSxjGvsMi8OqDW/zMz7yB798aTo+f4ubhLX70o7fR33O8+87b8P2Mm21LNhm+qjUFIPMDZoQBbBJpGBZSDQDHNBnlfznM5ReASjFlYjpeDTBD78mqksBBy06C12l69zMAR4uGYhqKFajWcK55iwREeCqQJOXgqcBQSq2GfewYGAB6OZdhSGyUkTkqgGiRwB4PNIxkLGstGX80gBp195LGbi1TToYjLLCPoN6w6qhGOMDWc36uAcSieudxwqLy98igUDOepDdESwai9GcFYgyAOqRSv4VhDDLKSKeagFyp59yDvPJCL0SyK7lOHOdgp05OkMZwJ1vNAJpADQR6QKDS1M/jfIb7SADZEqDYd0drZK4y6r3hBDVSv9NZN09rMm2YO6wTeAkALvp9g2PPYCsdsw7gfgwkU1aO2qb0S7tgEA6jEDRLwI3zfznVRngBVsZwbNuW6fcUwIqcV71lnkYD5jUwbNtWfTRAxqNIh3VUe5P9T45xwGEEmAKjUgyIsSud8wTQ6rS0HOOwCkZMR3WC9xJI1wAfCaYtj65OQlPHW64v7gNj8Jl8lmM6K2eQbc75BBRGMRgJfOGkVFCSMQSBQDHgdWrdKnBtSABXgsumQzT7aGCyEDCNXCiFoFVwJjznv4CSaWRAsbdsj6WO01zM8XdK1TwZ3ZS2taYLQSRu8N3RegaVnHqmMZ2q3LpywK9sRtJVxZYTYtFiH1CfKaCs9HdjT6CXGIESqAcgBmC9AHlAw9i9PMeSi0G2xATudK7zO3V0XlPgghiQiVVsLGLdwQRBpsO+E5DMsWFwY9CmCzKV5a0TNCvmPDFmpqNfTJjsf757tmxhRqC86OSzx86nBCFwrKtsE63HpV+0rilYwFBqIFPQBOcqg9NiO8sUoQS+I9nDsi6tmAa1ZASjKGaB3lutDfkx15OS/ShQIWDYZQrW6W3VOqrdWovCR1qMqqdy1KuzYdVPAEGpCjvEatd9tgMLFlorWUfZj5w3Sum16sW0o6MMSH0DtnmGwEyqJedf6aVSdtOWJjhuBbaViSEWU75GQOYKNS3Ah8VAzzUaVq/DooeyilbvWYPs+V4/tCMZYCZ4eHkNAFvYjmLKiAB/6togMINdIHNdOjQncEcgcl05BOlLMjmf6y9UIDys2phdP+0P7cXmvIzS9TkOBE/vAYwzHr30Eg+KzC69lGL7mL8/dUkv4QmJY8kR+DOHfw2oEqgYq6yg5ERgRkwztOaDdLZTrzVr2Potttt7PIBhO22Icc7Uv+f71HW9Z2o/SLsvLCXSRXznggs5fL/2s57xk/bT3G+CDRvVJwLB1L5Fc9tMcOjlUZzF7FfjZ3puLHU/zPBFr2hNV/sQZL2qO9XuJaBb1+X+eW7uNVfs0FdzjcpDTdpbBAQOt7q4UnEjbXmptwnb4bMXHaJvpB8r1W9y/RRTsgAUCNkAc/2UPE19q67Pd/YHL1W/y8ZNEIj8Clatl/Dnx1lD7UNguSeT3pt+kcmzo3R2XmMymSttqUMBpyFbdQpt2aHVtVzLadOmqrKap7Hcl3NA/c45Nltf/ZJLequ9wtyb2rKX4YEWzrtkxM59jFhuJPOrXEpXotrfSmdegtZYK7Ww2nmYnTHn1hxDpF0dHKf1eeteFlH9IT0mA1eAyhWNpPV2gjusbpxzP+p10juym9XxH6fTA0gz2dY0wvMelE9C4zpTPtc8LLvOpt1oBtMcuHhjrXMXfpICKwlIFDpUM+WxdO16axzHoH63fMZk7kF1emkv6SD1kUU5hCbodAUyan2xY7umwp3zbPZIpaNb9Y/ZvK/aVOO0rGs2xzTn5vQ7AhMsGMuzAFts2UVPS5FY+jX1DrV0ytoUgbJayr45DNtcJxaZDLx47TpfVGRHHbqQ73b6rAQE0nO1268Oq3un/TgZ8my9bLbGolL66X3QOlH3z/qW1Sa5rzm3+mVmO16QxUM9r+Va/viUiEDs92in20+7KtdyLdeyFGsbTq99CeOj9z7tqnymSrJx9j/6wmu5lmu5lj9B5ScCKQEMzgq4YA0WZOkIr6AcyCZSzoIIwHR6XcxKOGx6FfIaSaWA3nttPoF0hrhFBtJqp8oQtynljByHnikObJ6gwxiI1tBPjeAOblXNYKJd5uetNbjLCTOWk07J1lCnK5EOYo8zrG/cKDOtkRgzbAYUs1/SsRlOBhQyEGXXOc77GWIxyIBAMrrAA21zboZ3+ADOcDTcAJ3MDO44E9ig7fGITL6TAdmdbD4dhs5YhsMFpmrZnz4m6EnOzN0dYHqv58/v8J3v/hDv/eg9/Ed/8dfw1pfemF5dTEfHC/vbZcd7CYz56Zejo6gRSCIPpQKaZwZtE3CTabfO+8C2dQa9M4hslerGyJhC2W05dgqY5fMdwzrucIP7OKFvN3j84Bavv/oS2inw+NEDGAJbbzhtabgMd0Tk++WY7a1ha5l6rqoOOoaATFuwtFjfXzrbPrZ36Lxp1jKQ21En9wGg9Y2sYJNNAnRImVGm1FzLIH3vPeXe6QAq32WCEHaf9Nj7SBBU2AxqVYibjloLsqsF4K0RSMnAF0/sCvgAiBWNtPBLoExBAoEhTp1zFXRQB5hmLerUbIRIg4zpETMtk7WG4fm+upeAxgw8Z0ors8DGOgffvY+RKbHoXDrvXuOnoC0wEGOQsQfI1HdKDZdBbowgGMPmnKODaniClURVnqiPTmBIAltgjh0DsExbt3XUOIfLab2yWaXuGQSdFsV5RuYZrMgT0+cYi4Nc7GJKDydQzFb6oVkA1mDDmW7R4JIJDKZQoWPVSbXvOoWc+isIOPUInHrH1nvqWKa32qwlm89IoEfvPYFrALbtlPIfAMj2E/A8WE+nqZzgDmcmRK/goSHgbQaJCPGB7ZnaS1mu6hQ95pB5OJzjm/ORaaiCDFIMUI9Ke0CZredY+ezl2K4gf4tKQQM0ZidjEM1HOZZ775xLvIaaJCLI+gKAbF6pCoPsCMkhJvCU/ncGqjB8OlnzIfUeCzZCVIRNqUjmutEqOJAyHCtqVCDoYknKYEti+oxyl0xO9FMn8E1BLQu4t8NYpG7LdyerYOrYlHsGBkPBFqb7tGQWKl1jmpJzzsAsQWdkQwkftdaszABrUGcNVDjtqoxbLeAmT+ifiuZZtSdmbylQk6kW51gFbSrdpBRDBsOoVYZzOYJMPmKZ0HJnVTdryaaXehgisypZs5UFEjHZoVqnnaW3HoOGBiBGjrsYLpplHccYJWNpYwUDc4P6nnZPnYDm9CDIKkVVoPQEsq2MHrWEzHBUApTGKP0rBqW0EyrsQF0RtfasQQTQzovATNnBCirYLNa0AqUC9R7gRfDxZ6lozgewBJJln6A+ODAeFLh/XjPBG7b8PvcWawB7BrJr9Jb3UJLWZ1J2Q9fOyNfct1jug6DIHJagk1qw7C20ztYjmXLwGJTSffMzUI+Z6lD1PAbq1vYFHJlVkbpl0aFWtlq+38cgVint2joggimvAMgemPUNpcpEh0GwQtnVUya1Lsye1FqYa+azZ0/xrd/4/+L9734Hv/xX/jP8zM/9HFongMeONuxa1gDapy/qJSUcB0ztuwh32YTQWhEQk6HSsxaj3cXTa+i19noUqMUNGGYY3oDYsFnHS49uYT1wOp3yfQIIIPW1i52B9nBrkxVE7zsGolXrpfzYjo8XPjG2KjFt7aDbBApuIBMkUHqMCxQEPZDaTPvAlmcvK1qg9nNmNtnF+Iypfy7qSQB5+TjA/pbdJLZWswnKLXtr6jMBz0qV0TYL6n+Y9IJs5dmddUCE10kv6V7T2sT7F/dFjXPVZ4yavQVsoMFQszGi2JrB9nixmOb72oOXp+2hK0PzWoaT7MvG500AWO1JzVJmqS8jtP851r/uq+e3GosJ/ZhpZFdgyEFHW5SOk09EfdHYD17t0fU5eafNAM4BAi7W9Yl7h5r9lJ+cywSc0p4zoA6X6f5Y/jM9Yp3s9flc13H412af0OYtQcIyPrI/a8zV5nlYp1LHL4tiwSjWRYv1tmXugQD2aa9qHKL+n+O69CsElKes84sDw5V03jJVdd0Kt6i5qHsuQL12uFmPW+b5hXwctN5qpCzfR8zDj7NhpaWqPwVgmv1xfNYEJnHNlTwvNavaSRQ+5jmg7pl6UgBCakg+c4Wc1v4SSzvUo6HesakC13romkVEpnWVFa1Wx3z+CsarPqp3s16LzJbOv3z2qutk5y19P1u5rLs2mWH9og/1otL7atfHDJ36SxLUdNhEfWCA0gcXmIjtmAx4hyZnT8TFZ4u+We1O1dOQsr4eTlwfEIiZvS2W59vFdTH7sqpW777op2u5ls9gif2MD/7J38Lz7/4OXv8f/W+wvfrFz/Q++Fqu5U9Sse2E0+tfwfPv/PanXZVruZZruZZr+YyXTwxSKlfXcS+edLzBlB0G1MlfA6LR0UUbUcHe0Kmww8aPYCI6y/Z9L9CMArgCH5S/IKLScShFTqsTNwQ8tb5sCLmd5GlhBfp6p+PIMkANLPT6w6DcX4fTZ1BV4/BcU0qryFPJvfNU/FgYEcxgyLQieSpfzuGBfQ/2IVOFWAZ9G5+xbQmG2eMM29NRum0bNjLuiGEAvHcg2USs0o8EgJ5O6gzjZSoM8wRmgensYHCyg2RamgDgOI9n+Ke//Vv42//938PTDxx/8I0f4j//n/91fPHLr8w+Y7ncGsSP+f1T2UJYym0zbe5nQMrXMXWDNTkPdgZN03OhdC0NSBYcA9Mg5e3NDCMAZ+pA8lXADfCWjmEfHW3cwEbHtt3CbhREzXFs1nhCC9PBJGcw35Xx/ChXVLlK7EXnzgvdUBu4+JjP8ve2beitYwylNcxAluaoj4HGgOo6zwZGyiES/DDc81yvHLY8BSgWknIjWyQzTTBdWyTzTpic52qrASMDx3skYKpH6iqM5FfLPL9tBnlxdMTJRVaBEp4QnnpA/d7pq0t9UQ4/S3lorSXIBg19OxWjS4SCya2Cf9mvrZ7fTOnEMlgoh2ACZ6JSTgYCfeuZhikcAwkcTMauoclfjucGgyj1GwOkHpnyI0/pS1c4GnVpOQZHoNlklOm9sU8amd0MyiMlV9g8584gi0mG2c8cgIiL2c/pFkLBhAIvOUcSWOYEdAWGGcFnY2HHCQjsloxFIIMSnbR+hgdwe9qwdckox71nX219w3k4tu2EAuhtp+xHyl4wyOKQc58yzLXDEPDdkyWKekWO0HLSh/TEPPWv2IJSiZpo0qzVJB6egIvNFBKep6BD9bEGi57d5YMUZpMBo5mxTwiaI0NibydEAO5KW8rgJ4NAyQjXKlCYTnUn498Mms21R3N6enhjBc1VWrqo9X9N/wDLugpQrGC5094wpTiCxhEVx0n9qRPJKd8J9so6uFLJhZh+EszWiu2R/UN9nSC60PQq5/8EFweZkhQAyHJI4yCnutYHee2r3novX4IEFag9zmeobTNtYiwypc5rsBk5XYLTPvts+V5lgpCSBUuRBUdMZrnq0wUAomBA1WEGeTP4bdU/l87uRtss+0igc6MOoHZ23kvGOsLHYM0IAjtCKSTTxZYXUcxNKXrJhqe5If2UvzOcY1asdWCQWwBVCDipetDxH4wWu8bZAbiDZmwygpINUfqqZI5gPMAQux/6zw6BnskIsu87asAgGTJKAMpu/SyWeXpfADLpCYbQrGb2vKnmJ219BoeDQTk9AUBOo4VxagbnlhVLSmMpK+OATYGuZxSbUoEMZLMs7xGDpNliE+td7RgYC9Q7VoasCVaY7zdMwNMMAMqesIv/eVUkUCmnEhlJwpa+jwrmZlcMCLBSehtz1oot16iPQnsgrHqBn6lPZCfUPAVtbcfZ7/Gv/9H/C7/19/4OYmx49uE9/vL/8n+H17/0WtkPnyTI8KnvJ/jeNqWHbGxY0vIQCKweom202qZW//Dv5Yv6VXaD2IunuZ86hTaV44JBQzq85soE/Kx9XPOI6/IFB8ccX8zpY6zsZd/nXv04z8zIWhgJlLKmgzhpk8wDH7MuUTK2mAucj2LZUGMSjGsv3llLXsjsLBv+UGdIPy19wjU2jPakzQGZoA5bdG7O3UrcqHGwxv6cc37qkZhrjxnQpQ+NZsF8jwBMU16o900ylv2ugxjqnnnAStVMewJ13TKPuZ4F5/IKACpQDF/tXGNTHfghPSYA0V1BYA+jbpy2iWzEOX8kU2KCkW0g8OLH6wZOOJs1lR2jdmg8ZddMeLtkJApAXXONSqtsrbJ9lDp6wklW3a3907rvawRNBW0Hjd+0pSZwSzrwAEQ6LHRQry/fzb5Z9TPClgNzsdwru25VPFNHwWSzzPGeen52e9WGa2D+Ljmw+r3GmM+TLbCuHxNwEnXd4d5FRmKVl3pOTc6j7sRRLufzPv5ngbzWPqx6Zr+NYk3Hsf7VLyVAa4+hQI0Xb57vmn1s1dBlfVWrNd7VpxegJkxbWl0T6wtNBwl4DOygHgQ4W/oEWhXW/Z002FTFh94sET3WbTIAHdcVHO4nqxp1h8az9k2Lzljl7fg0k9FReyno/Uu9LkZgrhm+fBvH32stmNWop1jNt1mvnJe+6C+uCNUV8yDi4XW2tkq/yd6U/0PVmnplHZSDFEaO+GVvl8QHSidIL13LtXxWS0Tg/X/03+GDf/I3gQi88//5r/Gl/+z/APTTp121a7mWa8Gl/XYt13It13It1/LjyycGKe1IB6wBgGdaJaARnKGNV1z8LtakQG8dxjQW98UihApGZJqD4yYrhsNaxxDLAQObg8HAjPeNCji2ZghvZP1I4t0xeNKuGazn5w4GJCN9Z448Od8ENLHV4ZFBYh8CS9Epym+zyBk0wQvJtLOePrIExGTNYUZwg2Wakeylkam0xsgAS0TVyyOdm+f7gdgyn31rhn1PEMO+b5XSBkCmfQODgyOZMZwMH4gzfEQSMJlSMSVzSp46Nd675/h5oIdhxD2enj/Cv/jt38Jv/YvfwuYvAx85/uKv/DJee+NXcXODI6PShQPx+PfR2fRTLxyXzvdLFgHQOZz+5rYRWDfWNBzJYtQ5biPdLWh9BqXo00Rvho5kxRjWktmhNXR0nLBlxpFmCAycY8DccH/OdDcZiNMJ0mTKkTOknLUhENXsQ5uT6ODcG2JkCCxBqKVDsDhlL4rSEqTDqi/3ph7oICgiDIZTBk8a6rS9JH8sKQdai5r3Wc+U8UyHZIgxWWimr0Uy6hCoIX3pCRD0cIyxZ792YOw7Ag0dCTYIXU9vVptdVXPdess5bmRICkcMBrdNTp2cl8k2ZABp/8PTSd4BdOvz2cxjKda2TK0InDrvI5DKW4Ofd/jYFeMuwz4A7HsyEsEHGgLDdwymBNr3AeuG3Qb2GMV6ICAA6NAcEfAYE0TjO3oEEB3mQNjAGEzhFw3NnH5sgoQoi+lPm0H9BqDbxnQZBqVPy5RFHPdmyYwSMxDgETlPJOuVmibnhQu0wBsGhXr3M4AGnV4eTAvRCO4IGxPs5jv2CGw9dfz9+R4emfrutm0FwjILGMFGgKGfNiAM5z1XQOs5xgJ3dQWdsrORoUEC7uRE1VfSH0FWH7L7zBPGE/iQjFA6nRzFliLnIZCAprBeTlKB4uTcDzjXUAGdJsBBv2aa08DwMxrX6AjjGsv12QKIVOw7QcLWAIwEvw4kI0elKVMKCMmJB8AUqyME6PAl/s9g+eJFzeC552udLnEj+0JrBNJmn4VzXYMVfUUFMOv31EIJNvKchzFBvQkEbZr2SMZGZ4Cd6QLp6K+0U+VCz3kdg0FWpHPfh2PXuImpJ9oE/IAMJgB2JB1ek27jfJUNJQa9THrHcGAF3izd+BGw1ulQn4CjtIFaAs3LHtGqFyWDOXRR3+Q7nMyAKXhRQOfQwlKgXoNjd60fbHdDgZ1Tf2hMphxXMA4xg6gGNB8QGM/KlgpEEDJvyf0k8KLGeoLlgvrHqfe5Hi6B5NWRr9Q4wAJYZ+DZjfLWWgbWpVd9gs/DJMcSjQR3JlQyr6uAZTPaw0dmmgkgidk/SBCq+ugie0bZmS4blO9YTLHPXJkSrrmJEkxZWWt0Zlpe/NcmJNZlzFHvpo7UvUdjxurdyWm3XsUZOa0i6iHTXEQjOFWB5ARtFrucZlREgpggeZSY6UnzuWvtZpBJa4fWheO+KEELBHNBWqE0+2JnJ/tmrT2RIGojQDVTT0UxyOVtZOfyNvvYpm0ERLEp6iAFaBccbSk/zC2NTg12ABEDu5/x/g++jWfPnsL8Bu9955v46J238errrwILg2N23+V+4uNGeOnPZczXa/697DZqrlq9RPLa1gBhN66JqL1SUJeYIVkDCeqaY7LUXXr60BYCegWc1PrP9Wsf44X7wXUYy5hprG15Lm+qRq5OZqe9tQaFf5JiSMB3E2Ke60kg8nCAQLPSibasu6UwVn041zNV27hmaQAC4N7alrZHrb1TBzSqfl/s0Xl9YKYqXfX9yuwBriW1PzPpDYFQ5lqY9W1Vb5QfZb6gFfAjKzNBDqx1xATM8H4Lp300av1dAVsuBCP71WMkay9mevjYdzx/7wdQKlv5SMbdM9pOmV5edoAHWYpiysQgyBthSypa2l5ilITGtDq0dC8VK2UAE1gJHHxOONgVVgeJBOII7SOAaotkSWmG9U5BMFrJTkApzhpZG9vNAzQz7Dv3YZb+AgGRwN/1Hh1OcA/AvA44ZR21tkydtQK7g5021wUgKZ+mXXCwewvDr37TtVopseip2W8kAK/31gQz1FzSWqNy6HNL3S6gbu6FJiCyRpmgkwlAmeDX6qPlLZr7EzSzrLcay6VCtcKWTTblp4Bui8yt9VO6O/5V76i/U4Dq/VMJaF7Ow1fZDfPgWSz1WN8CjYl0iWRufe5hLVS7rR40gS0223p4/mKj0s5ox6EsO+XYZj1BnwNiY1u7fQUqYZ2TNd7ru+dkPQJHF3XgSDC5U2YNOIznHO6PKbP30vaRPGmtkVzqukX3SA7iUqcvP4Hlb85aq4FQV2I5NlhzYemOErzCQQUbXu2qyvAtBsdFP8p+0CNMzVj1KGrsqw7L7yqrD3C2sdTUtVzLZ7bcff93Sxncfe8bOH/wI9x84cufcq2u5VquBQDi/BzPv/s7L3y+f/Russj/CU55tr38xqddhWu5lmu5ls9U+cQgJR/poJmn6QxhVmmelPYnfE/HzuIwTUBEBoDCJj3y3NxN1gEfc6PuBFTAkoVmp8PQCMQZMWAY3AIaxhDLTQOi54YxMtg0PICdm0tL0I1Oq2cqnj0DeQMMVud3zazSOlWwwtaNof7PYPzYDXZCAiVA9ihFYy3QWke3jQ6SkY5eORvpSPLa5Sd7xn5/noF9a3AP9JYBsPAMpI0x0MywtS2DZdaZEmAgfAfofMx0UqLaz3HbB9OkyGnuZAEycv8MBndxxvP7Ozx7fpeOAj/Dx47wgefP7uHecLrd0JUSa3GKXBb6BRdHzI8plxvjuPz8GJSy5ZIlXvDxTozQeGbnW12UP1seS83NfksmHQW18yQo3T43BEpcOAooQTm28sOSSePm1LCd0kmPvmUqMY7/PgjccUzQmQfBHnl/730G1D+mm2Z3LQFcR6UsO7jgLjvn0IkXX1lLcBGAm5sThgMYI+VoD/gIOjQ2spyNYtGQs0lnpH0fyEAaAGvojZkLBbaAwc8MkqdPKR207mguhy+7xANhI3UEU5fsAiiiZdiB/S/nuJgWZpARScdvcvQ3CHTC3Dzl7EnnkE74Nn7eodPTYGolawaMgDnT9zQ9l2NjDdbpxOwtAW0AfJwTYJV+5clulgMGEFjy/ofv4e333sPz+zvsY2DsO8wDv/et7+Dp82fFDAUzDHfsY+DufMbtdksncGBYVMoqo4ycPZnXMkXTNscjgkEMpMxHAozkYXO+y3l/Th7pAzl/QQfmBFZkWibQUZ/zybP2QLMCYmWouGH3vdiUBBoSu1FDYyoUnvUMhxH0pYD+PkalUjMDrDcCOBNQKzdk37ac90w3BeSYhmfqKaUdTNlOAIXSusEE6mmsaxTzlVnDsEFHqQAYYjcah0x9NSkNM0huVuDIANlaKCHHFBjOdG/LqeOQJNt0JBOIEwJSmgB8lGMMmKV8O3K+WTFjBIMuU9fn8iUQ1mQ3DCdgI6MTWRdOboERPZzrrleKOUMCsoAZvMjGZPDNOT9qboeYzIJz0eteR1TQzqxVUMYROVebwTAQgfkMJDiuMT2Tu6MpGERp6Za6aRDUqHEAiiSnmNJyjZwDPMj+tfuOrTVmugug+YEQZ0TqUV9YSdqy6DjnkcalUgEuqdKU6jHIUFdgbnCeWSPLTNo0kh84JsNFjGyn9bnOjihwtJz/GAEopUg55EsF5Ny0CSByptDBCHTaS6q3glp6gII8weBW1BybMlBO+eqRlMtiq5DMkH0pWQnzlwq6MnVowCsVLiI4RwXYSPYpMWxRsGe0ZUGCaDiDjFhao4txpIAIfIaCcGyr1lggAbJzHWIKTmRQWHbyZ7GYwJnAGtNBjZRP+chLtCZHyieFTvbPC/aKELDLY8MUmlVYajlYQT3KCQXJhVXQyUoGcxxSPyX7ImBMnWZqzwIIFehNbTMcGUBsGXb9DwgElIBEAdka00MrwNpMYCLZHeoK9k8q+9JRYjNq1iYBjRFwZ0rhOtvdxPylAwwR9Qzp8wKLlZ3JOVfptcD+nXrbuebs+yjdY6b0sYF93xHRsG1tBr7xMfsJBRBrnI+SZLQZgSgWkR9j2r5YFl1TA/uioL1w2xrCtzheadr09PwkaB+tj9FBh2UELwLwYBpcK526tYbOswMCJRdYmes9aDdobxlSjABab4f9xMfuKDR8FcGUbMz2feK+5QMNVuyZnSBkj7Tv3YAJkOD+quYFOM8M2lGUvUlb6bBkzMqXLGr9WNV1TnUDwsuu1Boz78UM5C521QoZKtBFqwlNvTH7CgqAl2zx/bDDYSbpHflLUq6oSy7sxFian/O3J3NveKa0Xcf+MF554OHd997B2z/4Pu6ffYQxHHfvfBfj6Yd47zvfwP39XfV1BHD/3vdx9+Q9bDe3OHXugfjgQbsLQfuCa3MCI6dWACZviBbqVTf62jigwCO1rHJstDZKVhCTjVX97MtaC9OarzXSqzNcOk4+KdM6oY+i7JXtlTcScMwDYgKnSjZzueLajEDbTulLkqxBOpRSejRxSjD1p9LQR301gQuhPoRsHvV1LMD3pS9Ny2RoiZtdMcUWAtbNnbLmzaLdYx5kqXGNCSrxiGKgLlku+Sf7ZK1Ry3NMbZRtr3pZrYkactUqYn5vvF/29wuADPZxARtrnZp7Bo15vt9rIteYlO067f0Fas4hGTWca72XHuZcmV8pHbAOURyqrrYhUs6WO0sX0R7NvVwK1mSXpH6SLuDtKTPzSXNKrWu/7q/K8NoJieHEZH9NuZvXRF2jZxzux9R3a7sO6XcPP9euubhC7cIEosp+r2Xh2LXLPIqaZ5KD2eJZ5FGzRV4Qi24zK2BlPWPRTzU2odkLHNKvYc7efPyLq+0qj5oL67cHMO/y9ZxvKJkSYHkKBxCH513LtXzWS+CoNK/ljyzX7rqWfwdF68n46D343VMgHE+/+c9wfve7OL/9nReuf/bN38T5nT/AzZtf/WlX9TNTbn/268Cv/41PfH27fYSP3adfy7Vcy7V8TsonBimdCLYY5U0HN9UKOCoQ7YtjgF5TOvjFhJEb5laOnAwGBSJ2BodyM5qEPgxS0AlkABpTtCQwKBB9S4deA8EQTBcFbZAjA6wwOAasA44dSb1ueTqebENt68jwUDI/JBsOQQUG0rA4uqFQv+mY8Gr/PgzdgGaDzp58f+Zty3a0bYMTSDUiA0ruQ+5TglKYsiYCvTs639F7R0cn+IMAqp6b7vuhlES9AnyY+2CeyJdTV18Exzbr2mBkjpGNbzjHQLjj7rzjfow83VrIG8fYB/besG05bq0CFHOjPVNVrJv8KNfXQL5btPHOv+3CcF58BeVSqu/oydBGni466OpDsctfL582vyQpTjEvqQpyEKYcXD58Ohc6U/ZZb+injoc3t3jw4Aank6VsnjJQsGNnED8dzK0bKZ0ygqAzWdvW8xTy6uP+MRsM90CMAKLB6YRfAQiX9b2I7ZUzSWwlvW9AiLUFSOhEx9aAERlEa3SMRTP42Dln5Zg5wyyKLUgpECKAfWSAtRHEAou814ChQGUAQMPwnoFHpgQL5Pz3MOyRTEMYnt/3joiGplRANVgZ5O0K6IBzmf8lKUlAaCHrPQFYQIL4WgLNttZT33XDcMDbgI+UYMdeQYsGFJuWWcOITAnYMGDDYN3QbzZ039B2TzBOnRqe89Ux8OTpB/h//u2/ib//938dH330Efaz4zwGYjjGcPRmuHnQycTW8fT5c/z+d76L52fHW2++gdu+ZXAVhj0MsAReiAWo9RQ73we8b+xbMueEZaAZvXSEIbAz+CidIgdq4pii9FXohLo1wAdi7Ah0ylOCd1LcHLEPBuwbWuvY/R5AMg4MAtrCR4E9oysdnRy5YoNx2KmjbTd48OAR7s/3OG0PEeOMdtqA6NiQLHhnB7YeOG2ZiqTRaz98wNyZAs6w07M8g+lWY+Uj2esUvJI+72A6MoB15vfSxTrxHJiBfD4943kObwlSEgvDcGQaOzqlE6jLpZrfJ9NeprrqWrcLqJHzu1mCuyAoUawny5U3qNV7DXKgGwwb5MPP65KZKrhOuzOFHrV7Ap4I0jKBAIIpZL3Sx8IMaBsUoBwuGoqWbCgh+yFKxrzqFQWM07o6IorRyRI9iM0aYEp3INlFgZ/MjKnhYgasIHBNkEUMmQ4mFNQJ6li6fcs+2nLNZ+qY9OOf8x1GuwdWIALZTCFQHUBGnwS8BZnK8m0zcOwxVmwEP/Tqm2SRJEhPjmrq3HABmdMmWNPv5NiT48gY6CMbhnpapps1gURH2SJAsp1l1Rx7Gh7FY+Rk3hph2AiYDgKCM+BF0Cr7ubnWqpgnjEtuc77U6WmudMUUEFFzmUlFYfAJRi6QMBjs4Zhaps5Le7hNHVjjNM1kUK4VZDfLoG0HZc4rLMB+O54Y9ylK1Sa12MdM89jE0hIJ5tl94LNa2kGvzdiNApD1eQVSDj0E2SoV98lFnbo3v9aMqBeFbDbea2KpnCt/XrfYc/UcfRdwpuBsLp0FzlVFgRLcHGG00WgH2gJgUAsYbBJIqCxRW9oOBptlcAYbzYuURjaYkraYSVR3zm+Bkt0tcVMum7xVfVYAviESPGnIeUDA1BEotAS/Y85JgRyL/FN1ZvuVNi4PiNC24tNnGJP9sYj8C/b5MrzVp8vvETgwZr1QLgKaxx2CHS57wbw//G2Hj3/s+5ZrARRY4fDdaoAvzS+pN+oBrgv+5Ec4bRtOTGUbrSFT+yUzjkeu22aoPbQeKJbNYhGur+JQz0ObjIeWOL5NDGAX9dZN1fuaTxprfbz4E6o7LJk1XZ9VcDntZQsFXaWzuW6vA5AmYOmICsSKIah0iVos8IdYZqL0rkMpQ2Opjx3SddnyvJnGJ5bnHXW33qtDVmta4AIfGlkzdDAA055Rf9XemkAcRCR7FyKZS3umlfeRa1aBvCHdktbeR+98D//87/w3+N3f+i3cP/8IKTYzLdHN6YTTTdpdAeDZR0/wu//w7+Ktv/if4ktfehNb39gS2nSIGufqHbNqS1RbaIuFwKKruExdf5jbodqj7imQw2Jbty5dzNSClbKN+9FF46S9w3ctNpwZmRynCM9fqBtb69hOJ6BtZEDlQQVHpXiNCNy+9tYBPFwtK3mNWgZemE5VJ8nrurRpYln9TJvOcew53T6vq1pItkvXWX1tmDZOgeUW/aFUrPPZap1Rz2jEsRwG45zMCVUrcNrQumCmcjRYjcMKSMu75Iuaa5NS6RaAafFBzXR0c/9V83UpKzhFa5YuURMDSqc222PlD6wBwuqLW0a1/HECPopb2smWCMMFW5z+Xdanw2/Z/9ai6sAunqLGPpl2j81x46Sdz1zqZZrfqw6abfd12agx1OGbtaJzTShzBpg6NI7zWt+o1RHzwA4O3y7Xl5217AVKD2G5frFJ1v6oHsJxHxzLeM0VCykjsx2xME2VnNUUXcbJ5vyNwIv4o8PfhNEtAPDqzUW+D61Y+i+wgK3i+BrJvw6OGo4D+XGHTa/lWq7l81Oefes3P+0qXMvnoNz/4PfwwT/5W7j7wTfhz5/khwcK8GOJ83O89w//W7z5P/nfo908+CnV8o93efjVX8kgzbVcy7Vcy+e0fGKQErbcsDRu6MScYTxJX45+y8Ck+3QYattUQT5DBe0DmUZtd8fu83pRXweSoQBOeu3GgJd7OUjcnGlScsM3bMBsg2iQd3cCbtJx5O5kS0rQw7b1DMkGsFmCRtCQJ+CaYVOaGZ1UZj1qO2pA762el22YTmTd21rD1js2svKgpfMLZMgJMbfQaZsbzEypg2jlLBQbhVLK9GikeufmsjV0OY2YaiUjtxn4dR+ZMia8KNzFdKUgUR1QpXNJDCRAYIzBA5U6ORRg/jm0low4cxMc5dQrn4V27gxs8moATDPE9n88QCkw6b6Pm/PVXeBhIr/h6caP2/kv/rT6yI6Xre9Zng/DUjerL44pKeaJR/1lZth6x81Nx+k2T4rfnm6w33+EZ++9g4/GU3z05AP4fg87DdycNnSC+8IMm9JSNWMagYsmxWV/GHrrOI8d4Xs6mtqGsIQKrBTO02k72yHmhjxlTdp6KDWjAWMAMRKEdWqwxrQDvTPNHQFGY2T6Njjnbjo+E4hA2WrlxszggkB0nHPlMJVjkEw7ZhOygBh5MlWBCDqfjGwYq3s4QYbpnGst2dMGRs0z47OjEagCptWQs4lAEFgCb7oC0VuDu8Es0zfu7gRBJGNJYp4i0wWS4aw1g/kZ/dRx++iE2wcPMM7O63eMJaVRTp2Bp8+f4Rvf+D1885vfwXm/BwYwMOivNTx+/BJOng5kjx3f+9738Df+738Tf+bPfB1//a//Fdw8eoyILaUklO6AfTbSOe/uGGNQRwR0it2HY6OeHEoBhikzxlOzcj0rK1Io7QP7cB/71JulpzPAq8kjJ2sCaQbXF+d6krIzdof7nmMZG7atM/2eGHQyULH1jUGFDTenB7B2wpMPP4THGdE6Wu+IGDif79FAQJ6ljhsgqIogHVdYSRVUbSP7LuUQWV9NUbMF/MN+EsAjnBG11OHBz+XABcj0AoKzWs83erLqCc1gkSfnS/8GmTMQAAZmejmpPI2VHLuFTuW4zpPM7kEjAMWkWCqEa7YTqaT1OSgfibOUrGVtvHRJL+DLmsqg9bQbLFrJVFfaVc0FJ9Of0r5F9vFY0tzMoFMyVRVjDxVfIAFAIxx968U6aAKUSRajT/CuAGh0tI+xMCdI/xwcz7IfXN3FOdMSZNczFVOyAilFYpuxJAhYpQCg0osSPBgKu5LNyZPlrNKJMTgn13qmQbNKpRZis+LcV/e4QDMlH/lFF8i7cgsY1wb2M4Cu/sbqoJCemHZSMdVEJGBUgetEnheoKGQfEKyWTaMd4vPdqS/IEMlPipWB/ZcmUWCrwH0+233WNsaoGte6YKDdBGR6FwF4PeXIahkmy5yWiWkbJlBTQQsm7ErFAKXc0+8zgCJxnX2ZtlWrANeqjOzQ55+tEmKLUWAlANJOUJTUDpuyz3uLhSIEAJz7iRr7Zd3IF8ZBzwEoVgpegNKyBW6dX4VZXZrMXYC3BA/l2pbzWHpOwMkWfQbhJM801IyNWZmwwOtewDOkAFZ6NiDtnQKpA2WGpp5cv+D1bZXB+S8iCmqkHgwXkF1rc8Ca1zgFxMpiWJlMatSW7szDIQFiMlN30V7QXJpXqsGz2NHYvvi2OgcfV0r38tKoufFxzzpArsoW1nPUv9W+xe4P/JhnXo7jZbG17vbCd3Z5/eXtADDOeYiC62tvHWPfcff0Kc5xj/u75wlkpZ0pHSEQTKMQvVjV2aqpueacrMCqG9DboQ9o3h1bpc84F2cQn1+YFSOepkNzyo7xIEGAIGSCabmm6UUWc/6vfVQx9dobrRoZ5ZeoQG+JXD6/YcpAraW27CekX9Z1snwcswNqf1h23Qwey8aCbCyonxpBgrJheIiiTeC0fCPSiWKhNuR+sfcNsQHn8xmAABeYaxWA5z/6Np58//fh93cE1gQCaVcGUIxAGrInHz3FN/7pbyC+8Kfxxuuv4tQbInq1RoAfg+qZa5eC9ag9hRQ6aky5+5qyuOxpJ52KsW5R/T5B5FY2Tkmzxm2RzJlSGXnALfQcMSolmLyhFQPxrL7mUE+bYWSawrvzGT7Oadk1QxuB+zvkQTTkGieA1lHPZzsuYznTHGB/Lnqs+kctKkFXCzW1jr4ITYgVhBMHXdTqOUdmlnrAwSa61BW1ymoseMhDM97WflwqG0tjdD+AYlf9WKDEoc/m+Ob0U5rsCSieezTpvaM9KtBR7Rki2xOLTsNlPdSP1CFaI+Sf0C1l8yJm3eRrWWQ5stHLemkXr43DT43jakdowNUP0rHrd/p3pn01qa1FrnQKYOrIoz6dbV4/i0O/Yn3gHLilSgcYEisw58fcR+UIO9bVcV17juCmUg2H9ehSjsQSpTsKoKj2ZA1KVm2dj5IplEpDHZRUfWtaTkA2W5WHQtW3XBe8HjTb5hHHOcBpt64pyxanyERDwljtvrSyJpBv2ktzrhsbYZfO2Gu5lmv5XJXx/MNPuwrX8jkoH/2rf4hn3/ynP9E9d9/9V/DnT/7NQEqfi6Xpj9rtX14+bcdruZZruZbPY/nEICVtrA15yo90B5BDB4g6TaxTmXJSuafzJlPm+MHBkw/3SvVSAR+fG0Bww5un1wNW780gYoPDmd3Ny1G4A2iVrkCpE9pygipTV3XsO4DGNGgOBikamjcYWTnKmcM0To2B7gpOcZPbe8/XM9js4wyzDdY7uhksHBE7TKeeRdUcyMAgHTmZrsjQrC8OCrIrmTbQjf2bfb4b0NqGFgxcj3OmhENgHzvEKtGQwdgxBmBWgW+xqlhP0Nhkhk6QUqaKi0xDRRdrQGmkdrTRMEae2pTz3XNbjgrKm86N5ua5CPoNRce+i20FdJ7UxpvjAAbx6aRUSr7h6Uwux6vzTLuR2Wn1zwDF2FQOu0Xep/MAL9ynPz7OPPhDTxtNzwRuTq1AVDenDS1OePjohim+BgbTSbVmZL9KATdjYGr1/IMu7hW8FfNnBZlbAGNgvw+0G1tOeC6OSM03F9V5eVemw4PvbM1mikHNa3rzW+vZf0WB3hDYNUnL+edkNmnWkv2M8ysQJOQx7JYBe2MyNDNgIBnDMviS7DcJmEpq926dQes80QbDBYU9543mqwhbCEBJh1xKeWeqxzzhLGCI00GeQe19jGSK2dIZ3Xsi3LsFsJ3QYDidNuxj4LwP7MOTladlirdBdp7NUke1bnj46BH24TgPh4+BMYJjz1OW0eGj4dHDlwA8QIxk4RojgWDbtqG1m3SKu+P995/g/Xef441X3oDfOfDAMKLnfQw8NuQ4jDGYciVKXytt39jT0bbbgEXqWUMDKaE4dnLC5sglqUf2VQZ2Uy7G4gx0C5hbOVQbQVIh8JcZQUopggl80/MDgwLP35LahulBFRjp/YT7u3s8+fBD3N09x93ueP78jP3+OQF2jidPP8Krr7yEl156nDrHDDtTMyH5i1K2G/tmAepMinbKIlByqJmjeeZKwRAGa3RAWmQ0Ga2cgnWKns92OjPFoGO2FShYJ28l5Ea2lnrz6viGUofyfdJwYQWOKOczFUWsQGPVx/O9LbSeFMk9mYiyMmPk+riLlWxG+BDF+qO+Eoip3L8ztdD0vNba4p6pgybJgJGlKfKZPk+/pm2ia4P6JNsdCPi+L6A6shuKoQoC7+V6Vm7tYICI7Coz+ED3thkCZPsiSCpBn9nKBBzPAKreC4Br74xc1e820z96AGit2gukLMMb9WjUCe1S5gzQpBwxzaQZMBy9gXMtg6QzICfntcKrVs8wyR/S3vLI9GiXHoTVNkyZAsSYKRd6BOetD4KoUu6aCUwpJjamoBwOJQGTfCrQ1CgzZlaoXCfAyT2YktGABqbws7pfekq2kJMRMWi0JJMVZRIMauod+QLKDvtQ8pviVm1SEGQtl5ZErM/Xmi2biXZxY1c2sql8VssLttPFB2tg0Urf5XeBKOYv2QrTTomy13kxBCqqKKLNnhbYQFXIdZ7gsADAOSpwbgU0zWA+50CKItnhKJeM++QVRvuM4IVpR9VH1Qlr8Kt+sp6ZorTXd6mf54GOkEzq2RXJygMQ7eI9ZT1am0BAgg7dKFOtQcyGWhNW5oginNFPkHlQsqp31rozbXloT1P3CnTK+b+Mo368aGFr3qOCgqV1uK/Q/mIVs1Uzac+wPlz31X5CbdUwQi9dq/hxM/lY16rYGvQL4JKX4aI6810XjsntlS+hf/ebtDV4WOB0wsOHD3Hvz8moS9mw3MeZUJFmJdMfX13pqtmuScTjlAWba0OpQtV1sXnqPgFSX3xdgqb61G1Gvb7sgevBJtmb871Ai9Wb+deUo9z75rvmiEkyJZNdAxxzbhrIJL12DzS/j58WzIZfWMxAd6vnauIH18EcjwDTLsZcb8UklWy8+c7GU7SD65/7CsrOdWtj68wM22nj3DoToOtTjhHYHrwMRspLHsv+K13VS7/u5x04PQLQACdYM1+OWJg6y2+heU75OL//w9LPycTpNSeNQPkJyI7a+wNaCxa9X+hC2q4XOnT1N8m2NQ3u4pNSOjmB2NV62eoaaw13f/gq2u0jslQFzvf3uafdBXpw4G4HHt3i9uYG2+kGAqOtQAfprpKqZa7k+6esrmDro/5ZHxJTvqRvlrVRdtJEaKkSE6w0QVTLM6eFt8hayGira7X2VXp1vKDudDMO+kCvKmWtcZ8sZnq+7Cn5jeYUtJJbA8iunp+r7fnqC7D30rcls7OiEFCp2rzYxCUrK7FgzJ4qMXVAelN9664bVPVA2Q31yMVfyjaufRgx2wfMYbf1udC8YGrY2ZOQdKcttYxpyQ1m+2A1JqusrvJ3bPthRVaVgaVN85tlNVqae5gnem3p7zneddHy3JL1pZulp2RlatzrAAfnQqvXXaxZcWzRBPvVNDr4mtQ/x+Vj2l/5pwBKvCum/jnoNv0d85qj/rjs7aVemCA0xHz3xfKF1OC01SKO31/LtVzL57I8+vm/gGe/+08+7Wpcyx/zcnrtrZ/4nv7Sa7Cbhz/5y3zg2e//Jm7e+Nmf/N7PULl5/cvYXnkT+wc/+kTX23b691yja7mWa7mWT7d8YpBSUZLrhD8ZU2bwnpv1tmyPWjpBxHwB4GKjnaUCUJHOmCiATJ6sdASBBovDw7JOvTbj+c6ttQnIgGMwDV2SAnW4b2itYYyRAJ6YgajpHGg8Oaew13QUrqfpxxgLoxIYiJLfy5m2JdA3gxicBp1/2oymIx7FptHYHxlkSoBEOVDoBHQ6VyoQYBkALodS5Om/4YnbABi2V0CvTjUuTg2e8AkDA45MrdXoOCRbldqd4AGHcqrrnjEiUwt1PlXOIkaklbrE6MOMNh1fWZXsj/OYwfFy1ELONWP6igR2OB0WFegwBnzBgIcpzcESBEYQfLLIoM1nqy/k5Wht8T/JwURnzkzV8fHl0kXjYyRDgzv2+wHcNqCf8ODlRzjfD6B1OFqmFWkdewAtSOG/OP8Pv8Tl+6OcV7snixZ8J0ghx8l9J9sJygGcDg8xk2WHttYJGlNgXYG7ZJoxNIyRLCHdNoW7C9AgdrU86ZvgIrEkpax3Om5HycBM0eDlYJonuXjSkY7wmrsKCBjv41wJeWXCMQylq06bZDwdtfMcndLV5XM6Gh2+SgnlTDOnoELD7sBmmeswU/sB1hNgmKkZA9vphNve4QHcn8/46OlT3N/f47wnSOvUDTGMoMMNp5sNDx8+wD4yzeK+53hltoAzws/AOOPJ+x/gfL6DudKtZVVfaTfAg8Z0b4HHLz3A17728/j6138evZ9w3oFo++xPdzhP+Y4xKqAwHeRGsEemmQy+R2NjQKUjM3rBhDflbVM6Oab5vQLC1HchGeyl63rvmMF+BmMoG+5kqMJA650BzkjApIGAz2zB7e1DfPGtL2GE4f0P38Eeju8/f4oAGOgJPHiw4UtffAuvvf4FvP76mynvEPgmeOo0Weys2QyYI/XHWgYi2XnalnqDgZAU81byJj3cWiNLi9fczHXPud5si17kd/xD65H0nP5jh+e84DqaKbpybUuAR7ITmDUGHXNgq6/l2uUakN2/nLDV8EYwHdsF60KifxNHCMM8DV8+8GIW8vAC3MjJHgQKsEPK+e1kWDwzxaGTMQ2Y7APDAzES7qS5D0zgkeQ8lsB4BvMSZNUIJEpTIG0CgYxK4YyRa1oz7D4yrV3vtU6Ypx2TaQ8TdKr11wwFesr6cU3kOq4gxrQDjiewp3qTI7/QHMlyFtNuyDvy/rTfiMZiQhvJofvIeivbhgJ8Yp9prVK1WMQEElEOIQkoPUCbhqBuxgLz2WJ7qqmz2BQwDM/vmbhlMhzQOV/pMH2uBXKrr2AIy6bnM5RyRuxRRB9EizoBPxleyBKSS8h03ls7BAJWeTLOWYfAh5wg4QSD5Tw4BDCAQzANoD5YAGqBaQNM9iQ+nLLekWkp2xoV/IyVVpI44y2rTgM/L6ASpizKboBNHbMWtbqwmUs3GMTkt1wrmx1iqVvqsdJaKFC36LaIhnVfkAcyZlq01F96uC3PUAvVXD1DbJWay/P1OoyQQtyA5skY2mQZL3riQGMrEAnT2x308rSpqic5ZwNz75bdsUhr1Vl1jPqpNqbuk/0/54Us8NJhekiBkacOG3VYQ3dNexqYgcPad0XNhjnsMYE1Uf09x14/IpaDC4tIxWKjRKqJCXKonkOBjFdbv94h2Wbl17pW3YG1ccfBv9xfrO3pG1kEE/i+Scatlf1VwF+b+8k/FJwEdcJcpNVHyWw4e1j7rATBzWfmejDXeVue28TKYyYRxZH9yzhlOGfCqz+sWbL9sT2qm3qk1mXK5NLtpUs0xkHFLtktOS87J7hOL8xhHLTJapYzvXXNucnXqqats7PAist85XDNeunOsNyn2nyuURG21njIIdf589mw7+dMJ22GTfutmHNNLJEY5wIpJeZ1YHvtS+i3j7Dffw9j7HmYwDTvHdvGOdIAa4FXXn6Er/2FX8OXf+lrtM+BsFFjJ5/OHBnqAY3FOOe6XiyEU0pi2evlGMSctx41FvUw6rKQbcHbW60n857JRGLTLtCf9Zy5xlY9quLGVE6B3k9448tfwdMP38fd3XNYD7zz9rt4NnYYWeh6P+GVl1/Bw5dewut/6pfyAItN3SUJKl/MopguV/CovrEpUyF9O9fNw2xb1qeLJy1/r7NzXUdWUZ3gqoMiNj17saW1Zw/VVUpv6vZZP9UolmqtwMO8qJ4JlE0Xy0NmG7nmrN+TKdhki6nPX+jhCYZy1lU6RGvzmvYZQf8PleMcGdWb4xPUyRpjrZc2P8s6Tx2YLF8TOGTNau4fx0r9MvcTR9maQ35gy2LD4sUuWL5mD/nUmwdAePX2Ooa61pa1dJk/wIUsgrZ0LLKs+lKe1JJVdmLVoAt4rvQ2Fl1KfaTfD/N6ap7gmJuUQbVXQpC/VlpGyWnonXP26PeZ3HJ2g+bCOhxZiSjbAJg6b9YV0/bC3B/Ple1gusx3lT6jfgss71ler968+HIZumu5lmv5nJb24KVPuwrX8jkoj37xP8SHv/n/xv7+D49fkBn948rptbfQbh/9G73P757+G933WSp2usX28uufCKRk2ynTvV3LtVzLtXyOyycGKW092VLEcCPQSjeDGH0iAr11bqqjNnzhdOA2A6kvAHCDbcp1n2nNjGnKCiyDdJRp05YBBCsA0QjAIsEqCT7KtGq2bizpEHVPHgwAFUgQIMiQ6UsaLAOaLYNjOlgoZ0Bvk1mpVYwyt6J6nk5uKZDpw+FxzpOP1hBusLYDW4dFR6a9auXIUHDTWidTBIO+jSCB0CaSjlsHAg7rDWPsGUBne8KQJ0fppDTu2ivADAUYgdYbim6dIClrmYImHZo5cBmEzP5NZ6hhP9/j/v4E2AnNDaeW75YzwJBEKxGoNEiN7BEAyFxAqYgMdFtbnb2L44eyNcZs1+IFzpRS6qdydMwAreAtOxlrlJZIDrIMVqS8IEB2mFnSYTT/FptHWzb2qzMW6i05TSo1UTJQeQwkOc0J5xE4n8d0yvA5DkdvPYPDttRjcT4cKhiB4QMjAA8DfADhyU4DBaGDc0vOwCiHSmtGBgqClZrmHd1Pi7Mpn2kMEge6NQw/Ay342aIfeodAKOXAigTU5dSfjqF0VikYbYiWp4aVdrE1Q7IKcAybwdivFUxuOad9jJSxZghr2CxTIsrR79WTAJwpl5g+yMMz7RedpWJbQGcgpSXHE6rv8vfeExAZPeeXGMY6gNve0LeOu+fP8fTp00zbeEow13TaOno3nE69+n2MQfCYo9kJb77xFn7mrXcQw9HthOiB1hz3+3Oc98E5DJx6w5e/9Bb++v/sr+HNN38GfTsxzZwjmJoskOnXvM3gROsbmk9HdwxHpgxL9iSzBmc0ONlwGmKMYnYZBGcIcCLXujXgPPZkfQowuGtwM/TeJqCNsqlAfWP/O5l3whxoyQq2oXEaR6WuVF86BgwND196Cb/8K78MtI5Xnj8CxsD7P3oPEYFXHj/Ao0eP8cYXv4Q3XnsFNw9u8PLjl6djOCgLXAM0N1ZQbc3NVETUgQKIMJhFvRhGLC31l0A1uRbZ7HOuZVtv8BgIGCwamhGcugEzwDv1obsXKEcsRHIGNyoNMVwNzamD85KKLvacdyEimqAOTuXa0OCWzDlgMDyd5Ru1mBdwJcjeILBkOt6t9Lo8t5kWUONIFo+MejBoninfBgTuyN8dkXPJAhtlIYO3TBdrS/Ci1ts22TzCZ9o4RUQAwBoaU7AkIHjOmWR0WGweo2OaYL2CogU5Tyq9mPp48kXlYqMAlmwppwwHsIAiZN8UCwqBn46ZLlGB82CK10q3UqouV5e0QWTsRM6vZf1d2ZSkn1eQg04ejwC00jbaGamfc91Tyh4Bk3SGW+vdKgsCA0rw3L3AXrBcb/dBMBVT4vgytqkxCWriuFdgRbZITPBTtsNgAl9BwarpVOm10DYcgxdxYDgqgJ2nLbkGA6r/mR4wUCYqBJMwADuDzZM5S/+EknBRJmbwRTZ1gXM/o0VgwM6+MUVslikXtHMrmKhOtGlfFeig9ANBowt7nHpcLHKob9ZxqXCfDMC1tvmN7NOW9ggg8N1Mh6w5kUO1GGqcC0rpAQBFmmfz3gMVg+oe66PUak+km7Vck2X/MPWfrG73TCtbT6tgchz7mb/EMm8MyfJgGhQGUIt1YHlPgQbVk9VOzSXVT/0hm2ECBjXnDAkO3W1H60kbs/VW3bKEAWvJ0KBWQHe1v0P6atlDLMOj+zONNi6ANvMG3VefLetkGJlceUhGLZdU0cyVel2rfCgV776QAq1ZhqMuAVCA/2O/ppbwsIXNEGhdW37utW3avSUH9e75ItliNW9qPkp25zowZWiuDwroArZMrQkqYCNrDueeVm+bfTXBjAk6aEqh5QpKU3ojFjlByYYpRRysmBQFNZ1MxsvYVLQcZfvnd6v2keqySom2iqVJL0jegWp3siVNedFcaZonKZGpkgRSOEhGlt4a2u0NTttGNh9Hb8Z7NMa5h2/1OQCmRAUM281L+Pn/6H+MB699BfuHb6Pbhu21N3F69U28981/hre//XvshqzH7YMHeOsX/xxefuVlzIMlE8wGjn/QLtNoan5x2ayW6wDMhCLOtTwfxr1wPZuWBsEASu+q+Q7Zjc3Kx+PLJNYcm/KvdwZabzV3dd0RmMh/W8OrX/kF/PBb38D5fI+Htzd4enqKu7bj5qbj5ccv4cGjl7D1jvbgJdw+ely2VAvaSrY8sYR1fY/kcQIYStea7IE2wXPLnNYN7eBLQfkrJGFY/pZtN+fsWpGjZsp3reuJlLSVzB/WVd0TXkx1Wmu0TmZCdfoApSOiRuGiV/jXIXXrUlPKQdSIzXoGpMPnoQCnvHKpn6LHtUnKRNcug3aoVq1NLMWaC+qJRe9NwPW6Dzq0bkmzNng/1xGBmmzqWp0GipIFI+utUe6XOaC1crWtNH6F5o5SgVWrmOyNc47YovSo96CZnONTLKSXZbFHVPf1sEHN1ZjzsF61PJMrUt5n87u5w5jvW98zxXyua4tI5r0xxzXmoMwxPNRUmsQuGMQu+rJepXVrXveCvcJ/tI7o/bF0jnEcqp2HuTMPlxXIc+mTqe2gQSsdEJF7u2u5lmu5FgCw0+2nXYVr+YyWdvsSvvCX/ws8/d1/jOd/8Nswa3jwp34ZD3/uV/DBP/lbuPvuv3rhnodf+7Va8/5EFmt4+LVfw/Pv/PYfeWl//Drag8c/hUpdy7Vcy7V8euUTg5TQBabJ4FMxKpk2enLu5jXOsH+gMZBMZ6IClPQCJFsGd0O+Y/iOsMAYwcDUDPzJIbqe5GlNzgiQaYSACOSmqzFwhEaQw8iTfmIfag2VziA3ZukUdM9T8CBYh/ClPBnflYLNDpu9oBMhWVam02vQgdL6BvQtT+G4AT7Q+obeeoYJm8AcciwGwhrQNvieIBMt4T4GnQB0lgSDmXnMEb3xxGQDmS0CW0XCrAJ2aRPQWc04QCb/CezlE5ob8TEy4BvhgCk4FvCx4/ndc+wxcN4bHtxs6Kf835Cn05PFic4aD3S32nQ3Aqoicgh8AMb0N+CpRWOqlXJCusMVmAcQbTKz6NRaQ6aua4uDUcF0x0DzTrBLPqMTJLeQF4BR57wXM7AGiB1oAjHEZmG9LY6b1UlmxfiRAcaBZsl0FGTuGHuyLBkYVGcQzANkwRrVV8a+0wn0aqPvGD7gMAwnu4rnyfuct15OqjyhnwHe3T3Bag6yuWR/tFBbFFiuzkk56DlO7lGMMzUOCKY/y8FVW2I4U/VRj0xiFspXOtXHvsP6DVk8dNqZAeNyZiVozfgsXSdPU2+GHplaziLZSQqgqLlGZpNmVqekPWa6wkylw1PkvG7wd+sMsNmARatAgxz6lw7U1gw3NyfcnDY8eHAL33f0xpPNQOpBpgvoveHmZsP93V06d30grOPm9hZ/7X/6n+I//kt/Ca0FtrYxUOD4nX/9O/jbf+fv4dndOScGGnp7gN4fwtoNPBJk5PtAxODJwAQG7COD/ykblOKWqTA9Aj0CBrEaqUWpE+7PmdKqM+2Nu9KwOWKIoS3Hd1ykfwgXSCmDPeaceu51OlxBaNCJ3loCVbtZvTMAtE4dR7ALNsqlNbz2+qs4n+/x+PHLuG0dGzbc3AJvvvk6fv5rX8NLr34B7/3gbTx89Bi9b5nijum3kgzFyXSnNYM6MAgOoZNdJHtiWlIAU25Ew9TB5TiMBMLKabmHAuCtmEE8GLDimmsRKZdcP5Q2LFMZxnx3q3AcQmBhy5QhKaMZShJjxDrFB0+oN64diqtoeUggiGnqZZBR6eqATJNohn3spb8tozS8HwlSbglqFKjEY6BbhxKByIHunuv9HjsirIIABRBkIGSMlJ0VLNcgNqLU3QOD86YxJckEBpl1GLbSXdMd3zGDRnT2E3AgHTmo32AJTDQkaK9CmLoHe8lSFDtixyCACAJ2hfQ25YvvGiMBC5me1KEwRNlKBClpMLUWSYu3JnB2kFVBHmoFVsTgMAEzLbR2U1dHYI9kY5JdpDqUE5z6cP2eyuCoq2sVo2s9UGxfYicqxSGgoM01TAGzZhmgdwBBALoBaYyAQVro1LYl0M0DHUDHHFdfAgbJeDXTZWjdFQhRaWgQ7LWWwMIE01vNR3D+WlgyJGqmMDVn1X8NprBflL6umLFMQzVP3Qcwo7mfwTJTHabJWsCuspsJbNM4BVL3W64TFZtrC7NAxFyTDBDT3nDpm7l3CF7PoZraZYkoiZmr1htAsZ6ym4t5Q5sQKOC07Als2kET1jMD7hNOswSNKJuy8RzSCwbDYF80oAl8mnMhsUqcPwzMhwDgajd/ccx7Y5EVHYqA9KVJBwTXn9QPfQW4aFxx/CXq16DMzmUz/56B4bXtZR+wPmMQvFx2pNYNsR6ggCJ6jsRGQ40FpDYrirmGUye5hIKyF9XmZTtUcqoxzm9ddkrpl1oS6l0TTIBaN0pP2tJfWIPH+nSRX/7td8+y3paHD2pUIpIdM5TuNHD6ws9QThtJ7VI/qj9M8wz6GbTNyVoJ5CGbopVCrU1znJEgbI6txkdpCYcZeqTuFBuf2l1SaLOvl7B69VMeShCoe4GO1LumHrG5InI+OExpm8kIK6AQ+L5D4P5gDE3ZMiz6GQqNrwHiKSNi65Oo2aG/Zj/O1mYfa29rxyevSqLqZ0jAdX94m3PexEybbxXjhw6bmGHucy0PKf2pP/er+MrXfwUI2dtpI/3+zT0++P63cb/TfoOhnR6hv/RFRLTJiBe2tCBqDJTubS2BPEDVAsn6V+zTS9PEwF2t0J4ENV8lNWVTLD9XGz3mpWSR1ERebRMUkGLBkZStgEVXyb66feNn8dKrr+Gjjz7Eg4cPcu1vhm0zPHz4AI9feYynHz3DS1/+RWy3D/MZ2dzSBYUKigmKUpsm6Ii6jSjH0nECoizyVlWnnmmmAw9qTynhQ2BI816VEPBEtm5daxfyGFM3HXSVJuzSKA/59GL5Oqqv9aSQbjm0x+t9K/u5xvHwokU2qJLrerFRLaqy0oxytix9z5TBmP4Sr76c/gH1RzFzHvpu0SfgeOnFmtsxxyUklNUXywKxtDGO/7At+f5i1lrG5gCsX/p6GcR8H/dHl/I+75lzW9Vx2T81cebfNUwqi37Xw2uqLoCz+Y45Bybg+Ci7czCz0fJX2SIbcbyyKhCHCtrF3+pTtUO2+EwlPVkA5xjPx0cx5B+eV1eu0McFtBpxeF7J2CrHWK89dqrW3tXsWUvpS5syssqCXOcv9O+1XMu1fC7L/uTdT3zto6/9xX+PNbmWP87FzPDwq7+MB1/5s4hxzs+2G5gZnn/nt18AKbUHj/Hgy7/4aVT1M1PMDI++9mv44Df+DsaHb/+h1778K3/135h16lqu5Vqu5Y9L+QmYlJYTfOboliw4FdBTABlKrWXy6SDI+d2Y2qyfZiBQII7cKTXso8P2Ha2NDC6K+yjSkd7oKIAngGdwH1cnYLW5VFqEyNN5eV+rk/kWXlTgbgaLZGaagBMA4aQiT4YhpWYLetrFh1D+CBNQIRlqhgf24dhaT8DV2DHaQN+SKam3DX0MWMvrrZOZKkayLPU+mQOW/OMNBjDG7ASGdAZTfARgo9K1COgFthFBlh45P12b04HmyS6Tji/w0zyJ7eaAE6S0ezGGNHNYZ/+Hw8fAfWTagdO+42bckCUqN+Jj5L0JTsmUThtTx8R6ytUSVNPCEuTQE9iVLEBy4BgwHI3OCnMjQ0ljuipHg2MAZOWIyXIlB5QNeEsZSYaUdCgIMDYiAQAwI/tDylsrV0WCpJpYNRYXNpB92D3gPVM/RQRPNhvO4Xh+9wTurwEwtBjwseO83ycoIgDrPR23SXSC+3EuQFACBhoGnU5NgT9Lxp0xgkw1O3pPxiO6LzB2YKMAlNOFjroYIwFrFogWGJZy1VsnUELgNodh51BsM4WDp1smrAM4M5CbwV0B9AzgqWMCK7DnXHVAqcOkMxTFmT5jQjw850VYwAi6MjrEG4F3CXLMOg13RKeTvqejcATQ6WhqNoEMI3xxkDecfc8TyJa6p5mx3xMY0KJh6x1b65WiolSbXJJyqJXzKcftdHMCTie4n4EY8Mi0XTvBnB2A+Y4GZzo3sm2E4ZVXXsMrrwQdinSgjh2Pf/AYW79Bb2eYURf0DbuzT2zgZIAz4J7jn23eYTjvmV4ugT4DHo49zrjfB251UhMOtM626hRoOu8cPgOQATS3DBbbgFI/hTfOhZTZMKCjYeyWAYtYUgNiBVBY9jM6wPp7eOprBmYtHBbGYE2mfhNw8dXHL+MXvvoV/O43v4l3nz/DjoFTM5ifk/UKA7cvPcSbX3wz55/okCLBbnJSy1Fv1uHFEIQLB2v2hgBurfUK4KnNAME/sFwrCcqsL3EUm5M1Br4z7aCARmLCyfSFRwcnrMGH1Z+qWYH6kEDJmX4HS6CRgFQTEDBnYCNoJYDZH6bAZIIzpheV2jAUyOscmwQWNbEAi61RdWFle+ca4bnejRjYfYePlN5BYKS55lqAIjFPj1pg90HGIeo3ADaoUSo1CtP7jR2wgdGy7h0CNpLFAVYAtNEYdHIBqQKuk/+LW3u4ZIbDEmmXIByd45jAqb0c4apr9p+nriMjI9TfOUOWIAsQvqOYES2BaTNOGEzNm3XI3hspJ2gFOJOkuDlBcaC9x6f4AjIwW4hgDLsABEiQ2lR/qR/MJDcc/EF2NCjQKeAfLRTZdoHU6QwMNEsGzX2ci5koIvs9UwVTt9W8y/ol/pJsnJaLrBGgMdSvkQBID83kCQhJsLLDRqYH9jGyn2RXZk63XCfiCHYCQOYnn7HUiGqr2ZQlXaP1yBXMrIgjwbsCC1iQWeSzG1RILOHCfKd0gQ5FTBhzsbIfgBxX63MMBRlbwysVp+HaYU2AWZ+sVNV3y+/1ayBc6V7nU6e+1CGCLFpXDJyXi9peQ/YVVaJqn7Jg0PQBUMG6/MPnUyLXfAHHKxVNUvNlKlgAzrRyaaeAtrdlWt2Ya6iCW+sqk+/hdk59GIFkwI1ZObMC8wTXEKMNGTb/FmCqArgaa46xdDqWttcryMIrNlB3RydTrsZeoAgtWwZUetv6EKCeBI+aTFnCx/XHGgwEINY8XRn8pwKPkjPpeYLSGzsxYrIzBW1NBSYpbpSOEvqyNw5AAF7fFDDlZ/fv/SD1jAfO4x4jHuU6lUojQe2g7AhcnV3CtZ11WAEdJkBlvlV2nJMtFRD4PvuiQG422xT6n2kKtd4CNg/uzHyiYL7XaccICBFBdmDLtY89UWNZvoeUiUUBTD2iKch5oEYLamFYgsAaV8QCWMkrxbhY1xD8p+u81sioPi5rS8FsCFw3+1xgCNXdLTLN9DL+2m8eRaKER/9k21owTSx1lg5hgVUWC/Mikwig2QZsAeDENua+P3VV48ELtq13RD9xbQU69UzMmkHAmHG+h4dYbpUSjiyXZK6e+0oOj6Ve05q4zlsLm88vqdIeBNwTWlVkeBQbWenWslvyeWIO1hVKuUyxKbbUVK3cVwLopwd46+t/Hh/86Pv4wQ/exvPzfQG/z/sZ+37G6aWX8erP/SK20wbtEwL0I2gt17xkSmFUexe7veyXBYTBfb2+y2N2EySZ81c0brMD1HOTwPjYl+vEOTCeCaC+duZRTWniYzJ+50WH+lM/FFi2bp3jJK0ZywtjecX8VoCa3P9UWi8+eQVvCfC3PidieXLVaX4pe3gCvaZuj4t6sXl1/ewTjZEva8Iyfw2539aYAYBj+hMCs18ipp7hPJnjbbUWAigm0NSNc65Xpaqnp76UZrg8TFA20DIyl4+J9eXQs2yuLzj213pVXso5bzJ/omx349oouxCXfQyUj/eYVtCWNTOm7MRSf0ybzKrf4vCeapv2VGp4PXvqHJMgBLi/ql6G5kIs11SqwqCMcl9WAnVRd8nObP3Ulba2L2rKHp6jH7VU1tjMef9Z3kNcy7Vcy7+7EhF4/u1/8YmvP2a6uJZrebFYa7D2RzNu2XbziZmB4v45gM/nutQfvYrHf+4v4/3/33/zY6/ZXvsZPPrF//DgS7yWa7mWa/k8lk8MUjrddCio4L5D6Y7GmJs3pZppJsdxI5BpoHVt5MTuMDeQjakzwhxtNLRm2PeG3jv2fccYg8EFOnybNoLTS2JimjC6WkagdW6FyXARmEeKFZBHA8Ib2ka2BGOaLwMwMhWSWQinRIYG470ZqJJTNUAGqZiH2AOT6tkSvYERO8wMp+4IdHjvZL1ggDky6LqFJatNOUWMKajyyXLyAXKqZCDeEXVy1oLgMqYEaMjTi2HpnLJAnkwHMsBnSp/F02IGBBsfY/C02XSstCbwjiP2PceEfernHeN+x+l0grUNYEoWhNLHAWGDKY8A9HT2J+goW9joCE/g0U42Fm310wGW11mmx2OQbgb8lDbKp5OhGXZ3dPmIGkEuTK/XuqEvqcfcE5yQYkCuiPLp0InXFMhYnBQARgz0aMBIFhV3x/39HcKTMelu33E3Bu7vn8GfGfYnT7DfnRMoFcCpb2joDJCnDIczQGXppu+9MXBFhy8Dx2MJVIqJQewhgBMEE8j0MAqmTHlFJPuGYUvQ0z5w2m5mP0JMZDz91RLoFTCMkXXsW4czPWBobqElq9iwYjZr1hBK6VNpKDI43LYTwFRecoIZGZBaGFNRsZ1LgCOfl6AfaA63GRg475kaMVowJYPYSMgSYCk7PjIInCdfWzK7BAAjWxznHBjE6JzLdK0uTm55wnAYF3fH+XyGxcDWMwVWjCiciVLqKRijwE+OAxm76AD1kanzxEIg/2aqvQxYnfd7pjl0jFgoFmzk/QBiOPYxcH8+I3xHxAOM4Tjf7zDbEMgUEzb0DrrAzKmvA61tAAz7PnWUj0wd1i2Z+Swy0C/QXTRgj8F1RaorU6wNRM5LyyCOBRJ0wkAqRRnVycsPOQ09HP204et/5hfxr77xu/iXv/27uBsDL93e4vnzM37w/e/hZ/uGN7/4Jl599TFOW4OFM5VLfzEowmcHZn0h/VDrnGRkMEi8BJ2ZarChkX2wTScwATxaW2fazpTL1i9SPDDdXmudNZQMJCC04iAROQ9AkEXM05YKUkPtKSc/Ur95AmrrZDbAIFY7tBshxkV2jgCerRV4AzCgtdIfzQxwtre8r630/HQkg6fvkxHgfoz6Pgggy6CFVknOwwCUGqTSAVVXEwgxvNb3IKsiIlMsWtdpdTDtLZ3/MaZ+BcFbBBImmxISgIy0Err6qpiZggDdZLoT6DvECkPBEpAFZhX81HqWDIVe7YXaT6CYgrd5G4VUan4uWRBANJ3kabMUI5YCNgr4ECyhiab0K1FPi9INkuM6BR0K/nZMkaEOjZkaUcGGhgWss060CipGzTPZYtk+Qcnz3WtgO8ITlC3Ztqh+HZSVklOuRUqXw2mUOtcSAJB6OoFmwx0t1tDqjDUoCCEGTIN+KnChQIUAYKinzPZj6ct6KAGdE9j/WS2999KdxenFNfuwn8gvoB/ByF2ZgBybGYScjpsAmRhHBks7GVBlM085Xp09ek79Om2ONfAmXYrlc83VGLBGppayUVFrkKoey8+p29TiQ8tLj2ORf8KE0kxLAwxhgeZMoxlpDw2LDPaFF4jvUGqtWoJw4DpVQcooeaqgb8z6K1BbATjXIYBF37LTMhNzgmLH3VOMZ0/mqOWyl/LO/ZkBgCdIBR5prxEcXSwNZVsFwZsEv0dpg+p7fZKgOK/xW9dydh7Heq7ha7Be+gicp2J5Lb3M/XDuq3BQtKrLgumcsltyJ5D1FAKtMxKecf8c90/ewfCBvu+Ikcyj5/s7PLd7PH/+BOO8g7ixPGiwzJLSsdKdxvM9y5ArMD+ZHeb4a0GUzoqhtTTfV2wMCp7afHeszDmSn8hDEQIKr6mi1f9z/s7ZWkANMdmazTbBJngV67MldPMe9cfULRwH5PoABZKhPSoKrFaAPz2H/6qbtCeoVEk1jydofdqUUYdp+owwV1n1++W/PgbGSB9DL/bkWHQH0FpHa15Acolc0FawpU0e2vNPXdvMYKdbBPJAzEzbu2q3qVPO7/5gsnpFlP3o3KMOAtYnw9SUmdm3HGcXOzXq+9TDuZ/IezV3Y7IVxRztmnPSx1Y1PvTFgJh1V3GPul/XPnrzZ/HaG6/j+z/4EZ4/v0PfNuwj8PTZczx8+RW89cv/MR6+9BinbbKbgmAkPVcyeCmTVd+DjSOboKB5WXc7AnCACfpTf0z/CWfEss7O9wB52kjzxOp9BWDQnID6cNELgWxfKO1sKdbFptW4BJFzNvu2ZtBhGa5bQB2jVIX5aFs7ElOS8yFt6ZfVnpr6l/oFyRxd63LMvl77TUCQuVLPNW7uiblWfCxo/CiQpr6Vrlzaoe5bdczslxWQJ910XCdWm7HW8XXhow277v/EWKadzarHJUexjGuBkFTl1YarcaHlsoz/uhqt+4v8aEq/ZLxAW7rEVl26lMvldBE57YOrTzC/q2uQEnSozqURKJlYBHXq+WW9ZEXmJ3nl+u56BP+ZMmRz3JaxnDeoZ/zY2MAyRrGMX3X1C+1Wj0VVZJ2Tl/J7Ldfy2SnjyTs4v/u9T7saf2yLP3+C+x/9/qddjWv5E1i2x1+ovd4fVZ59658tFLCfv/LwK38OH/yj/x6x373wnfUNr/+V/+LKonQt13ItfyLKJwYp3dzeJJjFA+gZ0AsHtq2RrWVulFcHTrIiIINfdD4CgDNliVmmlsq0PWfkBqkzxXwGKJt1jLFnmiws9P5NAb18pxgFejk81s1Xo3NSJ6R4jQNoDkOyDAyxJrER1gKA8ySewSKZUnTyPkKn3vKhmwLE64lten3LWSYWKExWoQbgFAmBOVugo8P3ZDBJxHorL1kgH7mTLcjM6MQn84ickZEph7QhT7CFVeDLkXVRmhSHw3tHb72cD9Y6U5MNtEjgggtBsIxnbn7J1EAnlLVOFoGB7dQyyAtSanMD3xqww9Fax3CCcLgZ1insiEj2Jp2gCrkSjd0ZZBfIPlf6EGABsET2Fwx5KBxRwLYATxo2w7b1ch7KsWIWdaKy8HFAOnVUxzFlzmJu8oc3HhB2RBvY/Yxn98/x5N138eH9Hd579z1s7RYfPfkQzz+4wdtP3sbzp8/hTBV0s50qhWEG8tPxV07YBp6UXj7j6fQInqA2QziZLXimy5VqaaRjrLVkEpJzJNwTyMCgZ0Myo9zf37MuVgHA1oHWAuYdW8cCkpopeOaYM4A2khHE0Gt8PAbFfCTApbxJDb1t1Ck6jZugMjOeRpXTWyfDLfsFLdmY3MnSQWCWwCZ6VoILWukp6bExpiwemAMiYO4EFSaw6xwDW+9obSToMOSeWgIzWN4f6eC/u7vD/f0Zp95gNyc06r7pxDdsN7c43Z9xHgSiBVOpufy8ZEEaqTOGM5BHkF5vhvCRKbLOO3p03JsjolMXkvnGAzuSJU+dYNJfSvnhSGc40xd1pc3ygd3H4mSegM67/R6QLvJMH2am9IqGjoYYPPXfAhGtYtfpJJ1pFs1IzT/EABUoFpl9FONVs0wBN5i6IqjrDIGXXn4Ff+brfxr/8p//Nj7c7/D0WWDfT/jK11/Hl976Cl577TFefeUVbEy/BOqZoCM85/lkbpK/0hadISdna6cDmLSzXwf1jFlnULdlSksKcKWYMQXhCOJrho5e3+WauQTeLWr+rmsTLIE2yTTGILp8n5xno9KCzQ2jC8xY36SHM3V7sv+Ba/kEE/Pkupz28ooSnFJAYy5tCYJ1MlXlui7mxVS6cvrmc5oZTluD74EbJNALANwc57GT1UhrCUPBnqDGGezIOvetM2hGtp3BtIsEpSV4mK5g2jnO/oXWjiVA40B9Nm0FOtg7kExIDGG4F3hxtaGUgnH1mjsSXJb9mLLv4NzHfIecyoGYDBdhCFuZomaqHAMqRWAGakDJNernnUBTcM4zcOwgwFnMimvwg6yQSB04widrBhaNuLRRAAkF7luoqfl5IztXqKUxf2bdWwYvFbBg3ycDJwNmEDOlgH06ZT4ZoTRvpesFYF0DFFo/5PgHuEZQl9JAyKCrkWllRkJL/5thsntajteIUnzVJ1H34VAKNEm9WEH8FwJin63Seq/2Cey2BogKLKNlSPGvTt2LdYwxg14ct/WzmUaZgGoonfOyb6HMKICD+eqLgKPV//oNy6tzfPN5hVk3ztuDFaAGtbS7DrJVISyyt2rwM/ZUQKM1YIYZTHOCkrrawfZJH9QJ2OrvKN2mzyfoW5dF6Yuaf5h9pi5QXfNvpUVFreWNQKoQh+PYMc73h/Uz9DquYzmGuQYm1irQLQG9M6haNYBS4wkM3Jahk72g7dkcPwGOVvCqU5Zskc1ca4+BTfZIkRIF+8Tq+bJbpFtWkcHs9lVE6h7pwJRpMrwACEt76dnzO7z/zvuwreODDz/Es/s82PP8+QnP7p9h30c9WyxUWW/tDWdlAqiUpOtYV6uE1tCQFgsWFz7aLSbdNpuTdSbwrPbnPuasssk2N/0FUX2xBtpn/68NQB0yKBu9pojsMu4hVxYo7oet9rRsccTyZDVYazBHchk7rR3O9XmyCC5zRkqhlr+U49mM2e+VhlvphaHv9S/qswIUuWOn32Br6U+oPSDfn2pHQMZMiSpwd2K9tdDEIbXVEdwC9JdeQwTZtVQPCRFseY5h+JjP0Foa6v9Fm5qeYtxT+Bw3ow/HHIFM4SuGsgIAsnqrn6A0VSyg6hIMm0yUZBuSzUpTutJYtXa0ATiAMDP0h6/gtTffwqsvfxfPnj7D/TjDveHl117FF3/x1/DKW1/FwwcPUv8dUmvqXZSgQDF8r4DRtRSTnu7HEYhUAlnNtCmXS5ngDly0a1FCB/1KsCVmXx/ZX7Bcm29NAroFacn3ERNOWeA41H18Qz1b82o2Lm1nm+sFoupijTCRpW3SCaa5R706px1liSLSuL9K/4oXg5rYdWrBWpi3NJYJhgZtgFa6e+3XdtHdR1BLdVP9Iv09bXS2VejT5TkHpVtFturyidrCvfxhHyNwC+uwPjKBhG32ae1Zpo27yonNO1F6odque212KybIpw6RICdGpUyues85UHVQe5e+y8csWupSltZ+WtfDmLJd+im0smu1Vzcal8G5p1gHouR00f8TLGu1H8BBVlD2oJ5Y6+rSBv1QWyQvoL2im+q+gxxMO+PYExqemMv8tVzLZ7T4fg+/f/ZpV+OPb0lj7tOuxbX8CSy3b/0CbDt9omtX+/nzWLYvvIX+6GXsH7wIUnr8K38Vt1/+xRf3IddyLddyLZ/D8snTvW0bEB0+HGYbAJ+U1W3ZEMqp3OUUM7idYMgT6L11WMuT5kmNrpNVDmBDRGDb6JAWgKZNxgKLVoGYzPgxCfwzzU3PFE6Lh9QwT04ajIE1QzQF6zIVTm7ALdl9jEExPrvxBOqI3Ga2RnrpFkAnqwgUSIty/jY6Fpw/O6nm5XCD2aQyBjfFLYNt6Qu12go3hq/HyNRTcsZFkihggGnZAIg9qDEorBQMcr759NVgH3udTEyHaDLfZHqAdLYGU4oM9wQwyHnQs4/GGIzN5MnM3jp6D1gLbD2Yyi6w19FhlINy9wGMAfLSoGsPT/YUOULznlE013lKkin4MGCwmTaEzxaDw77vlA8Ui1MCgRow5snOofRTHthOW8px73TEplMqPNmLqkqhgOp0bibwJZ3uewxscPi+434YvvXtd/Ab/+y38eDll9DijCdPf4Dz+Yznb7yGH777FM/u7jDgOPue4KtyeK0phlImfJD1AUwDiPT+KYBhjcBCaxBAIGV6wLxXypl9PycIBI46lTyAvdK5qX8EYhDQILBhoyPO4TvoLE/ACjDHSr8T8wGzlmw+rmChAuNWsjF9ydmbJpBBOdFmYKDeY00ZcGBkPNsUqLTUBwneSZalcmjzXb31cgy5U9/sY6aVM6vgm4ATAkixxTgZ0NwSMafrOE4ejrHv8Ajc39/j7jmN0WYYu5MxJ9u0nwUyS+acm5sT/O4ed/cD+z6q79LBl6C0BCpNQ166yNAw9sj/Y2CDQA4EmAikFMDdvqdTkDpr23oFc40gqgycBJlPGkYY9t3Qe8PN1rH1jTo3GZuGD2xihBKTSptg0gbDHoOOestgKh12SiUYgQIZKojkJLxRINRjoJuhM7UCvFffl3O3A3/q538Bb775s/jo/BwfPvkIj196GX/267+Ar375K7h9+ABb3yYTEBJwte4NPPTO4DjP1Fu2jLm7wQj81CnyYrEDgPBizcreSrDc4fSrxnK+ftmoNOq5ZFLKacf0aDAwqoZisPFM38VY2nyqJVvTIbALngJm4LIirXRqstmcT9kIBXIFqgl3NM9VONMY7gxAZmtzDRNDXqM9QbCF1r/FgW9LZLB3g3W23wHvgT46zudMT1ipbmDYTBDlQFiyV51ubnDaNrgPzknJWp/93nwhURBwFhj7zvGZ/ZSEbQROt5wnYhkwsSVlhOUgK6srX/1rnvWMchw5fE+joikta9iS0oyBbHeuEWQtQP4ugJvxb70z11amUAqOM1O3uM2gptY3hJGdZjLIjbGnnYQZiBUQTdI7YgKyND9css+rUp8ZU7WhmBFzWdOcmOwaMDvougpMVduc4AHKT5M1mJVwADE8Gdy49jcCE80IIO+ddl3WrVsvGd96myfOzdA89UKrtJcEQ7OJh4BzKGgcDDBZAjnTWGRwjA2zi/bZXHMUQNF3TtujrcrqM1bSpmicV9Jz+Z0CbQJc6voUE0Omkc05neuEZIPPlh0UCVRWcFlB/FQ8AfgEzTlfYktFFFDPNGGqtN6R/04bJdeHuU5J9qlvYupUSescQ02r1NGN6YelCMQwUnQ4qJdyHzGvg2ldYJ/yXQXcMO7RdA/WOqmCxh9U8lgCqALQXbxjJXuZa3MgRr5Tbxtii+H6VrbfIhiyH3NZMZrjhtZy7vee88vMEYf9xHz3MuO1VSkb8lLW5naEtnNcQsvzhuCYzaD30g0x31tjoeBuIG2mrvHB8lxcBAmnfFVcH5Iv9Tc1SwTQb2Fv/Qre/e4/gD39CKd+Az/z8MrpBrHf5+GecOxjx/n5k+Ul1TOzjbJ15sjW/xP8yhqqD2nAmVgPQWapoExLF8+FMnt93Rcw4Cz5TdtEBlZMXfeCTpPwksFwRQ3p3RqXGgwB4RSsJizoYlzUFtXV9EnpgwnkrtA554fW2GxLW8aQX1LvGw9lVABdE0n94nmgJA9I2ZS3Zeyk1yJo+/sAQocqJhBBe698fR6Cyb0OePjIax8lKYiSN9S/s8VWWeM0z9N6EEUj7wyjv2cKuEBSc8bM/+fbgSCwqHG/IaZusw02BtnLpA95jzbIQE3QAosXuMMOrEuSB87qfOSiu6Xv85ETtGic69GA25dfw8uvfgHvvPcB9uc5Bq+98UV86Rd/BadHL6HAuB8z1isLzRzeKZBztOnvOeh6VH+v8nhYAxYwzVqstcN96/30fEGAMdBmu9TVkK1z0IFzzSlQyPqemOu8LfJ+YPcJ9ZZ0eUwBCYHqcy1XSyfgWLZ1o3gs4MXSPYcGl54wBEwM5pE+vSGfo6OeV/KxrL+yFxEgWNyP+h4a10WfQOtWtqFsB9UnJsjJljE3smdr6Fcfw9pVKyBH/inpM8m91mj1wQTRH+exUjsWCKxsmsAyjIe1c92/Soag8eSHl4DQOVaq5FTPWvIVrKx61jp1fI6Mx1j21PUdvy8ZL7nX4+LQFix9qSkqBkXj+rMyUkl+tZ7LXlsPYK6ztcT/4t7glzoot2pKDYOpXpIDvtSozwIo840GUX1Q9lCN6dR99Y5LOb6Wa7mWz01pD1/GG3/tf4v3f/1v4O4H3wR8/KHXn9/7AR585c/+lGp3LdfyJ6OYNWyvvIn9gx8dPu+PXsXLv/pXefj8Wq7lWq7l818+MUhJDsM8JZSQGfl42rqZqZNvZCWwxgB3AnkAoDXHCYZ9zI1wBtHyefuuFFAMhDGo0DempfI8oZRpzdIR1+T9JZtDRKD1Nh2ntbmUc4fgFu35YOnYi3yO8+S/TkFpM+kkrBH7SrbVoACHfm/B4K42kpasHq1t6H1LJ4dS+ZAR6hwZzM1TvYbBPaScLdqcm81FKnwUjXX62D0BRfxg7OfcaG/JNmFKj8WNsjNYqtQFBmCMgdZa0dgnaMUx4h7n/b5ACdkfmd7pvN9nH/RMueZjkEmnAzjhxhtsy9Qua7qNfShIOYr638EUeq6UZhVWhE5HlxOl3E5MJYcc1IaUGwHdTjcngoroeTqc0KSDqen/ht4VBA4GF+hEZyV9JKjFPGvWDMVilQCwVg48hxcIrJnhT335Z3F/b3j29H20+AD3H36Eu2fPMeIBtttkJjufd3z0/CN8+OQjnPeRp2LDeUo8x9Y5dzxmvxgSAGNEPSRGp5MNReMJtOh0mAAgKAkXgYA88R6wzCeC1WkxHbXGZzOlmk6Z23T61KljTMeknDoZNE4WHckaRiTqC3SRNksGDZ2cLW9OgInkWBem1KNsNFjqHM7fZg3R24z1ARhOcBuUZrDPObvKC/LU/+m0IcIZpG90toNOTwH18nTytsmRRBSNnJkch/18xv3dXaZLgOE+duyWjE+gA/+8j3q/GIJuTh33d4Exdn5PPxxTvJXzDoujLwc09Uox4xjfo5OiDnNgmGHfd7Jx0YnXqO/pXBMBDpoxzSJgI5nREDnn+pYye7rZsN2c4PuObtk3rW0YAey+16naQGCzTP9V6S8NxVYkcETqbMfwZG5T8MJ6QFFLW+qaowumJhQrWeDxK6/gjTdex48++B4+evoMDx49wquvvoZHjx6htQRYjWKpEbAtwTeVRCpQaQFTfvsijwZjWjswKGQ8mZvt42doDHplKjVJnOZZaw0+Rl7X52nw6UjO9cDdIJabnKtev8MITmKP7GPUHPBlnkpiLlMiyflrlmtTPobAlqmSFp2QYDuBaZsFgb4JalbKrCT0cc5rnrwW6wxSBzmcaUDVz1mfYipQuknaCH1r6DZwZw4/Zzt6pf0yoG2wlmnxrDV0swTuoSFir/kEXc/1qFkG9yaRHU/FR8qJwAzZnpS7vjHsIYex5RyMEtUKm+ihZW983FqH+m5wHiTgmUfWEaRW031Odqjp7E6AInQf514FI5zwoDASAlnpFdBuoDgVY6NOmYdlH6ZMRwVOVnBfsOG5vGc90k6g3TMi55OlPhgxFraEtKm6zUAEu3+mFQLtldJdCihlk7YtAUdJJJhsYGYN5/2MAnto3MwKnNnMEN4qPWmtfxaVopciTGY/VJAhlD6V8znIdNTMMDT/KggQxVwmAFJwrk1QUgau3MmQxwDPCgb+zJ+0UiCxAsfADFmDZrrNdYpcaQkupM3WrJ6zMdWvFGdoT9A69V7eb2R27NbrcEUOI2XqkF/Llh+BCQiirU3kosYZANN+zb9Lj0PBx4VtYDGPVtBqghd52IPpECv2yj5ImbdiGFI/roHDgcgAp4i1FNNsrSpmx17n5/lJytJkNp1AJSxsTlNXqS/K8uA6zZ0RfxdrVtpL7mPaiZjBUae9bD5t0xECsqcesrYlyCP0vBfXK4mQITtRunAGCcuyrf7gxRX4tOosgdIs0xXzPnPZx9m3epcCyiuwScxfB+Hg7+uUXS+ZMqS53mb/GPAzv/BLeO2tr+DZj76Nu3e/hSd/8C28984HeOedH+GjZx/ifD4nY+f9Hd75zu/hS3/mz2PrBFouulWyeWRcCYLajjJYemmZw9V31Peyc+tpRh0f+RO0+ZYLSu9B+06Z0EuwdQ6oKjEBXJL96jHTPmyOSd439ym6dgVFzh6YjVYgXmrnEkgCaO7O5mqNUF1nd9MAIICp7GybTZsDk/v0bWG3XNsq+RpjJPtyIZGayK1mG8kuKf1pnim7wfXKl32x9Gn4wHj6/lKbmuFZdw8Cg/Qu6dUJ7tG4af85+2jqSS6/TG3dYB7oPe3YCczI3VTfeHCiZDXfMXyyq6rp1VbZizZ/X/WGB0HNEJtpVP9iqbPUIIACfbe24eblN/DgwQ1uThvu7g1Ax6MvfRX94WMealvms+S5nrksBnzZCvjR2mfZAGrLta8lilN6JtAIh/EpPaL99mqbLbKV4Dx+t8yDAshpXtQ1L+peDe5i5c4bPqbUaNZE0TgE5Wfq8lWPqu3lHsDU73qqwLGALwRwCyiFfWjLgws03AJ5PiuW5813Kv08ZGvKZub1MnMuunjpjqxxpd1e5sqcVsvcsVlvC+qdi7SQEQLmsUfiouuX56/AnHpMNmSRw+Wapc8OQFNIj2leAXV6aNmbLg3H5IHNd9SBRD5z3jn31UvmVD5qshvqX1vvCeksvZcP0L6HvXzwl7ywTmueGftu+g21v5L9GLV/zgcdbQHaEGSvKum0+bKaywGEgGhsUzHyH0q8+Neic2ftZ9dr7OdwxFy3q6+PXXEt13Itn89iZnjwlT+Lmy99Dc//4Lfx7Fu/iaff+MeIH8NOdff9b+DlX/2rP+VaXssf5+L7Gfc//NanXY3PdLG+4fZLX8Pzb/+Lw+cPf+5X0R+//inV6lqu5Vqu5adfPjFIyccZvZ/oYJkOJYRYiuiE7Z2BmD032grydDKvBE9Atw3bqSUVPVMXITq6AW1rGSRXYLBlSpZAOpF0+jYi4Pue6VmQ29KAoW/pjW+toTOA2wwJ4GlpjAWsUg/klmxwk60gcLImZWiam8UIoNFR2XoFitCMJxQNIMOAXHgJxCCTRbNKv9bqJCGdlQbs4egB9D2BLueRgdkmRyscnSAsBadyv+zlYIMNUlJbsfk0GGLkyeSwlhTWAQTylzCv7atHBuBNgR3LrbtjIPyM+/M99vN+cM4KtAFLbEk60hpi3+HdMQwYZIFpvWeKt31AAcxMw0JmCevTud2SgaqBzFgW3KCnvE3QW8v+bw0Nken+CDgLA/u9M1XEDnjLoJTnOM5Tlln51nsCk5CMYPIdiPXAmoIcsTigUXPAI0omx+7ZF6MDlmxSX37rNbz1xVcQ93cYdo+nT+7xve//CN/4g9/FP/gf/i6+//3vw/aOd8/v4Nd//dfxC1//Kl5+6REdU+BzOorKjGkxIuQFm45OwAlUmuCM7KcEgwQjWNYbYgR8EBTB504nT4JY0mEeQPCEIgZ8dzprMlVeEjc1WLSiSjcKRvhAhIK9el6mgLBIQIczLREav3PWwQl0MDmkR6ZPov4xn6fs3JhSLMhy5RmQztP4Vs4mzdMxHOg9ZZ0ADjMywgXnKBI81qyjkeXLItAc6M0KLJH6jPNzehhrXKw1nE4njH1krGZ4pn70ZFlL4A8IFPICzW3dEFtDkInmkiHCkB3gBHy1xjkTQWaSHRH5TGfw0CAHX/ZHpqtr6K0hfCyO6CgwkFvAOvKEt6XTf2sbej/hxlOfN+q21hPUddo2bA9vMn1aAOfhuN8H2h4pDzGdYqeto/UEm2y94bRtDMIEU0w5zuOMu/t7przkSWsGfFrXAgUkOYoo+jWnG7becXN7g5ceP8LWOrbW8PDRQ9w+eIC+pcwM6iW0dY0zQLJkbQK0MFViOBA6idsAmKNFMsQ5AuiGQYYAYzBCoIbVYUxSjpQBKGytAMzikBUNkwXTYemagRnHJ9CT60TMLsr5IvjS4iTXu+rEu4BFqeCnLlgcr3CmVG0dXSkEeE80Ov0l52ZMP0RHcekUYy+Q88057uYFEq0QAdnxwp3sh5yLNx2wG8Aa7s8J2mwW2HpH7x2tbzCy44Br19bX9CiAeQJoBsdcgCT6fhNMxXmdAdrU+b01AmukPwcUfHLSfvmIAmAqcNsq0JFtSJY8nRjPx60pGfQKF2rKkoFEsgrMgIvYAxvkGI/Zj2EABohKKiAbQkHZGXRMhiuxM12yg/O9BEwluJRzIlLPGJ+Z4ISUVYHNy6Jg0N+5NonFMMF8ZHwDZvo4iwSXY2HaoCM/MNkse98KdLRF9uFOIJD1ZGbINqRd2HvKeFMAXu+cIZMKVmjepl3M6IxsAq2jvqw9AHyMgoBkLIesYuHU2077iDKkeV1BhJwXHjPMk2PO2v0hwcBPuziD4xrZCr6gZhP/0EaDQRQ0MvzR2jcABLI348EAzQe3So9WNiUB9qt+0zhmf7YZYGJt8sfC3KBq8SrZ+zMQlboqdaWA87LHFvnEC79C9pa0ykxHOMsKVVCwqZ4jtWM6dR80iuzA8Do1LCVSOqVq4QXqDyyTnPrZNceX6OsMVl7IXdQLS26lF90MsZwMVL0KvCIZbkZAAtNc+mLj1Hq3vsOrD6XX1lDkOh4O7Unz7WLDTRPaCiQZRJPZYbGPGZwNtsCWMdW62GSnsk6yd0z66TjG+iNTJc9+mO3knhLAqRu2lx/i8Uu/hPj5X8L+S+/hvX/xP+Dtd76H7/2z7+DZ02cwdNz7HX74gx/gT9/dwW5v557dBFiVPsOSwmvuHfLNk0lLwFBBJirIuoIY2N5prUxpr6Ar5voAQx2KmJpSa1H+9KWe2pNVatdlj1RABb0rxMzHa5aqguti2TiwAg1azSVMm14iRB1frE0VnKeuKs0813GBoQJcQMmqPGWWtmWJmNqOZS6t65yVze5tpmGKRcbMkjG59CFFuHPfJzDGBO1MgHu4w++eatiX0Vv+i+AsmlLcCJ40GDalcqhpPYP8ZYsuc8Aikp3aOO9KybUCjPfemdKSdtoIsqXkPZK5yXDTyObNA01MfRe0McbYMXh/AhEEuqiqT4kVu6PmQjPcfOFLOD14SHs492wvfelPpT0KwT1j7cSlT2hfcFIV2HReUnNFuqAeQ5sxGfkCEBD0MBq4kCdAjMkoGbHqjznG9dKS29JzWOT54h1ax3RlRD3t4rr6RMsI5UCHEGgfFDA9SnYO17FOdQ1fMvXTXOedk7esphI69cUUxKkDDULz5QGB4J4i502r77jm0ufXWrLTyorJdL6U0Yu0JYe/tKcCSm8c+kx9UPtmwxSZSxvlwr6qgZGtSZmbdLE4sjmt1ZLupAxqPvO50gFe+g+1FEgQTAKBGuwaV829w3sPsqM+Rt0n/aoxvkxNlqyoVnVWu9YVJhDHewBcPkjtlogUQMmmTdZla7QGjHlARFS8NT7LHM8UpTW7j+8zFMs7Ajhst2oY4iD3ArxO/R9Vbw2E9nLzRdXRs2sv6/IZ3k9cy7W00wO025fgzz74tKvyx7q00y0e/fxfwMOf+/N4+c/9J/jh/+P/UiD1tcR+Tt3a2sc85Vqu5WOK79g/fPvf6hFtu/l3VJnPbnnw1V/G+//4bwKeh2Zhhoe/8B9M/+a1XMu1XMufgPKJQUp58DFgbQYdm230fxsgQItZnWB25AbYmk6yAZ0ng2FbemdbwxhnOowyDJXOsy2dRj4q5Uk6x3064TwwuiMIXNIpQI9IJgyeap1xDquAFSBnnU4nTXaHDIf1Sq2lTXzrDVtr5cyuMH9k0C0D6WLJQDlUu50AJHhj+HSuskrp7KLjzT0A5zuW1BR5EtsTIIA8MWh0lARAoFGCDcYCTqqNLe9z2xdHwKhT2bWJ5an/IPDHW/bvZo7hZ4z9zKBYBtI6+0KnbT3ooLPsoYzPpgNw38840Z5tnU5hz8D6CKWocjR0OjLI4OTG1HwJSAqkA7S3BOq01uEt6vPGoPqJqaUMzmAw4N4BX1LRlC82N++9k62kzeABADjr3ZW6h5NADmmnw/O8jwQ3pBcKYk7IWFGC4xJL4rBtg/kNHj0+4ys3A+/vP8DTJ09xvtvRW8O9n/Gdb38bH777AR4/fLAEsVMmWsvTpnnK0Wo8jLJmAJJox5De3Kg67wQ4KQURAgy6t2IACwYDADo/5Z8MObNHMsPIdRsDCaXocDIADYEKlQ7AA+Fn6GEZANqYziShM25IgAydzjnOrLdSQJC1yZvBRk3vlCHNT08WgQo4Wcqb9Y5oWFKlEQQBOo1apmZRWh8BrZSeJgFBLUF0YwAC9UQ6yJqBwIsEVWTwIwFccv9YM5xuNjzYb9EAglYExMm+H/dpoLoNAAQPbRtOMNycdiS+IrDvI4ED9JZ1JEuWDxCIx8ATgMEAYrONRDgJGG2cW5L5DUVmRaBYpptrveHUe+nWMRyIgd4Cp9MJ/faGaRQXpgUYtm642RIgEgFgjAwI4IThA51OSwPQW/p4T6eG7bRh61syiREkct4DdiaAYL/LVcM2YIxkhiJbUYLz0qksr1tDMtoBDdZOON3eYnjDwwcbvvTGy3j08Aa9d/gQy12fOgICarVyDJfDj+wzRsDA8Fici+k0LFBFrSmWBGTFHKPT/ag0JAosNxg6ALcE7YgRqlF3GVAsg1m3rKNrEOXepMM3YgbscnmYDv4MaCcoT5ouNUcr0GBrC0hAMm0drZ8ABKINwDpOkU5iZ0Ah08AoEIpi9Up9v89NmKe2HD7Smar0JZhO9W5kqFrYEgXQBZLBMSufAMtOhq6tnzLtrAUG16tt6zi5Yx8dAjkYgP28424MnPed2Jm0GXrLtHxiLeitMaUdl3QLbD3BsGJF45IA8VmNCJjnGtVYz2WQYBzzQCTmYgmwME8MGmawGExFVmk3aKMFdatBoKLsT6WlSHYyz2vKKOHaYEFLJwCfAWD3kSBgyJbIao8CSUWCfppsNZAJa4IUcphHOdZXfZs2Tc4NmCWAtkBIjXpJayxxGASKHySef3TqLEBO/9R3N2CwypT6JgATLIPzW0Bq6VgoTRVt3iAgi6JnTBeH8EyPTCNP9qErDSrtATFFjJg2LjD7ybg2QzYMgjKddZwpk7OxCvCMP4Ku/dMsRjsobXPqPDLewdagUcHD0gZhH8CUXpkBH9pFjXZgylAnqxEQQRZWAfiLpeoiwOPSj3FIJ6KgocZxtmP+uzJ+rWwdKHax5S6CZBTkUhu0/yggAwFGh2gZ54DkvKZT6fr822TTQ+yRwdSDUdeA/Z9MDLPvDymT+Pyq51KPAnArsPuxAcasZAQKwCT2Xd/P6ey2bK+Cia59EshYqREKI3OLY/gOWK89ZrjSSard7D8yEQBc54BilS1zGgIj0b43UNdb3avxXVRkjY8C6pMRhe3U+NqUZNmZy6P53BmArX2F+k0fmtW4ZjvSxtUwIQzt0cvor7yOp9/+V/joydPsy5aAzB/9/jfwwY/ewZe+8mWCoE3W+wTz1dDN9V3siQpsmlYx2RNQf0WNf9kwvEJArrDgoSHpQMoHdV3YBN+vcuS0j47pPTUIs3/B9Jpigi1ZKBtzprDK1KtzPUo5rZGoQzEalJqbJQI5lg6tR1H1mj072wuOkdbNvHbaNQVIKjmhPC4PyPGc7MIKQrfesEWvd8rGky4TUNN3R3SCkiwPl2w9AIy511ELySycsq2pvgC9DPRdCFS1BOUxwRU3r31xYR9dbIBm6Ga1NosVCJZw8d47QLuhANf6Pci0bOmbSYns0y7gXGw5waEDOhDzptZTUYH2Wb9GW0TDP+ss8NtkOUyWxQDaCQLM9N7x0qMHePj4MVrvUNo6W+Qj7UbZ3foJmbIcWq6EpnfVdIAAvuBYGxagSvl11omSgGl9j0P7AIEobL1F4xRzzarZF0HgS9RSsk7Z2Qg7rCdzJVR/z7nEx1Umxcka7pnWVQfrMEFQ0FpeWob2RO21UP62wZcVSHmpe9lpwP+fvX9rtjVLrsOwkXN+39rnUtXV9zv6AjQIgKBImAJEMWhZsuig6KAUDDssO8IMh/Xg24Mj/OgH/wL71WGHIxyhFzsc1oMcdthBWbApyZTFiwmCJNQAgW50A2j0vbqq63rO2Wt9M9MPOUbOuXYVhAIvXdWoPYGuc87ea33fvOTMzJk55sjao5PnBvQRUwfK5KVtWsHL+UzjRaMs/dulJnL+g/FKoJjas795pgDl28S8SJ1ZcSfuLY3BY9o3gV109pTNri2pZhOgtIxwrj+/Z9ZKh0zQ2JSfkrESTltswuI/aHYXmZG83BWZq39XKWWkf9904QjLu+48AHN957xEfcV4EaUewQskBX662iPXfQrw4qoAmDbBsOnz5Rc8krVVc4Eaq6Rs6SwA6GLeXB517mr/zz2mVZugXbH71suQY4mrSaV8UH5E3LayUElPzy6mHbpmWLxv9+291eI4/4GsP/ftj97MDPtHP4sHn/1ZvPmVv/uW399+7+vwp6+jP37hXejdfXu/toef/1N49R/+Mv6wcoQ/zq3dPKqQSjZDf/DoXezRfbtv9+2+/ejbOwYpGaySxIz45AHewMD/PNgFE7ndiPRg4M1CiVomlcKwtYat7zgOw5oUhTW0vmEHAIssYQWyiyhw24Gtz6REsrPMA5fxxvUfNJ4MJCTddSboex08mzU0OCBwgYI6BjJiANZ63anPecmb765AKJ8L8FYg363EZmAJbrtjxAGzjmBgoIUBSoRyGK3NGvfzpmgw0MSyKyoXwkQ4sAT4EAyeEFoiNikFrDyydM1QSrgxMFan/wRmYAYzho+8pSkgGoFExgCmh+OIgctxye7wNiMa0IPBGN56n/OYwZzeN7hYBdiNrW9ojWUE0ckYgwr81u3MYv7gOgUwYEDrWYorUCwdCVJjErOj5lgjN7LHKBCovszAgvEW/wzEBQ/2AkqEGc7usKP4fuAYOJ/fxLe//S38g3/wn+N7330ZfgzENhAI/N7vfh2/+eXfwic/+VFsN8k0NMgYNBxokQFTWAavk1VjoJIPjFAcwwmWciZ+dYsyASjGIFlES8CMLUkFJDtVwr1aBS8DeXu1tYZwBucMyaIGyzIBTD5UgCOCKiGBPrPMIMElQSYea2TbcES0GSyrfuWfPjLRn0CfkQgXMeYgwWh12xop98aSZ8O9kpxYEwwOoLVKMDfbkhmBwMFMlKjsWI7Nj5EsckiAZbdeoJRch0Y58ArItmbY9w1AhtePMQCWcRJb2jgOnMeBIxq2bct5duDmdIOA4UyAUt3SboZjJAudFy3ODLT1reN0OgGtJasbxBLE5Ix5Mpe1lrqMt/idgMnWG/aWDEIDCcRoZBZrzfJ2c+8VaL0cFzTLffbscmB3YNu3efM78WfwcTDwqwQVS9B5IBrBXwGW2evYthNaM2Qc0NDbzpuLwGUcleRs1sk2krdf3QNxGbkfR+C0AR2G5x49wkc/+kGc9huYbbCe4Cjd7ncPbNsGNLH4tZr3AMEuupkoWfMEswQVpccSoA8T4QyT7+s6DViIKS4Y5BcQtpeeUuB7/ldgCiCZcXRDUy1LMgo0AsnnGoAmAMYqvhtIwI7V82qNXKUGaWcZJI0YZKKzYoAS4KhbgmPTpBGAgiidYmIsQupWwmOK1UMWb9oKrmlg6n1H9oHj2Lee/W4zmRCee4TovAQDGW+1ImXGAti2jYmKjqOoFVJfDkhl0I8gOFXgGrOG1gWYEPjGliQgQ+MeBXJMmWUfCVrRuDKJ1DFCz08bUjIXlui+ld4o5OvMMks+yDhjC5sapUj7Rqs/yFrUGR3XtGu5R+lNlW2dAe0Gm7eRCWwOX5LPnKfwyDJvfe5/QEF3VGYgAeyyv0FbksnJ9N+SdSTHll+Vnuk9QZkC+rZuBbC2dgeQSVDbcPq5kbbYKkN4lYKZyVnJMmXJrHE5cge4s7Su1kuzTH0fMcEhUb8Ex2nX5YM5h172RfNaK7n08L3b6tZ3/qN+piS4UZ5S/KWDgv/GdZ4H1K8qYWOLP2aNPsyGZBwTS9e04ysgJSLtDoBa03rn2vfqF+bf65929bvqJN+j30xWTqP+WQGl6ttqG3Wxgr2LBFALn8ndA8wZxJQLVEmq+lyBdeZZQYmwkI873bdlrvlck49ly9vmeUJvzz8n2EsPrHOlAbbfANupzjJVkphycnWO8YAQOlZMoQKupj6s9y4g7mXmOP9Z+pNHQa7bMmNaqLdZyqBOqGWudy6p+FUGDLh7JJX7eSXMyzM0l7KV4AxA9j7mkwKBy+UWP/jBi/jOd7+P22eXlA/PuX/zjdfxgxd/gI9+6hMJUuUaXGO5pm5JWxpzgPy7U+5SFgli4Z5a5yOBrMvPONgsiT3Bu3lUUdJbTmuAGXq++gpyJNGrPRGYQJz6VJ3HFhnkGaieoTEbFrCebKvkqrTLW/qSl060MayAKCadwn959bfN/bGANwqYGHkikEw3EwsmQSi8iPJ2zeijB5Dr4Zpb9mE4nEyvAsABZINxL5sl2Q8AbpYXaqhTU+7yXb13bL0j2UYFHrIah+a29z3ll8MVq2CWQJ7lF8v+Sx9RTsru0ycKzmcMXi5b2KE0/8UEJ0CFyz5H7VtSBsOaoUeDWZ7HBD6J0EWbsbBmYcokZom88MBp69i2hu3o2E9b+vBEApTfjphnNumcuiQwxb90YsSVJFHMps7Q1pS+nst05RNMnX+9H6z0il5Yb4EZijUvZVQ2FgDZYPWwt/Zxyn5bddfqpujLM6j1NuOM5d8CWl37kU7WyamHY+qW6v4E1Ux/YwHyhOJo6hfHsPhsWscwx7Tvd3wvW2ea3bH53mJGatOeaf5tbpr5nXI8Ft940XNab/kFV9O7zq3sSA3vrkG702cq5qljcefzmH3B3O+l28qXWJ4J6d/5riupKRuwnGFk/2G5h+vfUm5z7FcvKtGyZW4WENuyxisQvcA7scpf/qBKy5PlrfRVLX3u8S49hxmv0t4ssOyVM7kug7yQpb9cnmUnQMDJcs8CoKHHlPU761nTrr1Y3kWtny9I5TL9ZSvu2317b7YIsf1n649fQH/w3LvYoz8GLaLifG/5lf94xBju23uoWcsz/j9N6/0P/8x9u2/37b7dtx/79s7LvTGAFRWEm4kUlSSqIJGosHtH3TpzstAAcF79b5EBmLyMmkkj6xnw1ndb74AFhhLfreE4llsnHVcH4UwEOUYENt2Y40Ev7pQo0HtnUAFofavTmm6w6HA/g4s9AUwIdDOMwxEMOGRgV4xNbR5EI0jwwkiw5a36AJMU5nUgFCsTAgiyg+S7skxWtGT8yRwzQSIB9NZZymcmQotCPuaNQkQCXAbLcDU9h4d9JTEQwOEHGaY8y3B5gjws2hrygMdIsEhLYnM4WNYqA5iHB2w43AZaazjg2Fi6q2XUkrJglfg0AxwjnRIlskijvu8nlu/JG/Z3EwEA07eGOsS3BmxrksfAsTPQhCWegxnnmEHEGcSq5E3JU/69M0msMkeZaHdEHJmYZzLSSP1wIPDGk6f4nd/9fXzrm9/BszefIo4L2nAENrz+7DV84/e+gWfPfhFogd42eABH8JYegCweZTgOsYroF/khBVXcD85rrtxxHJyuqJI2A9lfj4GNQVUl8nrr+VuyDRQjxGAkTbLGxHPOw5gBfPBG8c6ANxxF4kTmiSXmWoGSEQNmApQR5BOBvmXi1sKhEmm5Fgww+wzY6FlZim8Uewaogwx5u9/M+Kx5w3XSaoHJZ94NDyWuszRKDwKrPIEN3vP3rW+YLEoVMUUly91gnv1vnXu2AcOAW+rO8MDtszNBYam2xxhZuq/3mhcBYaQfSo/BsPUdNzcPcHNzg75tWYIvGA+0gYgOC8+kRN9q7VXKYus9QUk97UA3sZrl+xyR7AZXwBirEn1ZqjNgnoxWe2vwlrrOsSUYi0CO1gzjSH1pAKwz4RSkWO8Eg205j9u2wxy4HAfi7IjoxS4VraO5zcT0GGi9ozfDxz7yAh7c7Li9vQUsQXdjDIDsOq11wIHz+ZL6oud4xiAoxAyBhuYjwVBjsiGJTcMYAHdbguLU2dK1bRiD7QOBluUtqT8ywdoQKruiIK/0nOe8BAxhrUoNuTviyFvmKHn1GWSVzSOouMHQQmXlWBKJgVDpwbrxDgCtVwnTCZ5IBjV3z5KUNgE2jbegk6OJyfXSo0q2tgrM6pZxgsCiwLItgmDBhoNaOnUT6nkxdNW5FfterkmWdDQTM1P6Gxd3svmhQE8xvECJKf9K7GVplgZgsxyLbjNrd7dI1rdNtoKy75VwFfNk9mWMLFeXgL3gTfLrREhjRmsypIQcLrJVpd1tFmSfnIFqI5hH/kG01POIuGY40GPJPjjUz5wpBOXMLFnkSrNHliSE/BjaVHfeonexXbQqPacytUrQCWR+lRCh4GVBLyvZSwYIlebKkou+fCciS9kIONk6wef0I0s7bR2bWMdcypC2SyxIEZUcBdIHyxKz9HtJkJa+sBIHMZk8mDFMOZmAXYPjGLkHGgF0rtLF2nvct13gB5s+Gqh7vcrEcVwm8M2S6HmPNZ0nZpkp1PgQS7qTe14aKFWJLf/CTOqWDuJXDZN6Ajm/8tVUQtlaliou/CHlTYlYrafLdyl/njov5nligiP0oPzTAMAm0CngBIMq0UQ9LO2hhJzRKw2bz6tHS4bUp6iEbNTvlSScvmilqmcWuwZ95UKbTZ0RC5CU8qi+K4mbtozypiTyshh5BskEmC39E0BJIIx28xC27fPZfIZ63lr6Zy6AksvfHNTzc2/Lg3dOjEcAg4DNNelrNsvTtjkPBSbS/KK6Ax0Nr+dMkra+fX5AcwDZt0p+Tpldk62aOTO6xtIHiGKurTnmw0cEzrfP8OSl78HQMMaBoL8T0WBxxvn2Ni/7QCDPCXXNtcixXoGql4ssCAEA7gDRVn0TywUaTACRtqoqC5Ul8ylbNW/aY+qDQMAIrN3qfZZG08fzkkvUz2L5M/viNQZ9SAy8EfRC2vSxCsobmqMlSazBAGWEeEUEy3+u3WJ2tZLnMcekvVx+0TBEy8tECWyYjKxaA7VyCylnzRaAS8tLKIggg6WToI8ywD1XjC2cmtZ3nD74sevOI4FSvXf0bTKrhibQAAHa8yFiNZ7zoL02gT+AzvnSH2OMRQYX/W9W8xeIYlHsTf5DztEYZJltPPvxsoVkXMAjzU+jFs54Vqt9llp7yqLOuGWr2d/TvuFm3/D0ae6HGU9JIGnX+oVYfFlyL5ZtTP0sAIJsvVayACkAQW7qloB3y54pg7BqxkWXVf/VvPoyxcjKF0nC2HVPTj29givks2phQz/Tc65EaX6/fADTHpuQbgvpk9VXyL7Wp2LaqfyRlZ6M0CrVb2v9bE4TBLxc44rrZTSsfoCto+RIyZ4cpWPYb18m9u534s7PFrsp1SBG6DlOnSfmnM5zmDYZ5jtXXca9ZqV/llmRX2Ipw3X/hE2rP3Wx1cNVRn7tPzuUvdOr9V36EtIdU37n2zTs6X+sPVn+qGda/XttNcbFryiwlFys2hiLz2MytNJXWNjZ7hh9S92gbRnLOMvX0fekN9ivCbRe5zlKJqecLL4Y/yvZ1meu/I5lGqIujdQwlz1ptc/uyqP6cN/u249L2x5/CO3h8+92N36sm5+f4vbbX3m3u3Hf/pg02054+NmfxeuvfO/d7sp9u2/37b7dt/d4e8cgpeEOMyYV3ZEMRX0yJUVUmbMMuLW8LVmBLyRQAoEqdhGOzRqaOS66YW+AdSUUWt2Q329ukgWlNxhLlq03mXvvBDKMunFelSHMMjnqPHCTQSkpl2fZLB0Y+9YRoVqgPGCK7p5BGiMYZxxeiRbjZwSAqLCGTr8x2Xo8RiUslbDN23UMpCGToT2CpBhGBgUDtp6J6G3D1jtGsFRK55woeBrLTSYTLXD2KchUAweOGGjWMBhIsd4ItgqgN8QIDAy45XhjOET/ba3PxJs7gs/SEdmVfA2DHyMBEIFcjx71b2fgNFqw9BWTxcPRshtZUgf5WfdBEEYjUCSDQxStJQgXuIyRyUojEK4uoeZp3JZAMsCg13VcJxmmVH6PQZgEU2UZrBjJXHIcydgyRrImHH4AQRYjycTwSsBf4oLbyxM8fu55fPGLP4Uv/+pv4ewD+9ZhB7D3Ez7xiY9heODpswOdABk3FGCwwTEC8GgiBsk+Dy+QUohdIzK5bDEqP6VbnSp3cWAkWMK9ghTJqjMqiZDzlGBADyRwDUDEYHC6AX7krV0yOzWjXhgrqGxmGzIQ5/AxZXeuU7IzVZkd5E3a1jOYXHeeKyEnGn7HDOjNW216tSjPDcgbI9aTaYlgE2uN+bx8xjgGGThA5ikFd/K2bTPDOC5oG+Deci+QliUxMjN5nKXvMtGfwAgHzNFYOsiHA9YBdFzOlxz/CDQbBJIFeue1Z15/DiTo4HRiCT2BFRmY3LYN+85SmC1ZVaJl+FslFC8RQO/YTiecTieEHwk0qkCk9oSXHg3O/XE5KonQeeOhwHwNEBBI8NXTlqUJDxhGB45xYVA5cLlcEghghhhZOqu1BNP0nkK+tQ3WswyeqrqdqEs76XEcBLlQf+gmxhiO5x6dsDXgyTFKLtJ2ZEmz3g1ogB2BwCCOzioQayq71STDxjlPW6YSnkGh1J3cTCf0CUjlTlMJvoicp0CW8aB5Sh2kfroz+ZL7U2ssQJgBsMaEHIEf4QkqQmQJwgy4JrOawbBZllt0jjKGZ6KTK586g5+3HE/uK9n+UUBOd4c33rcuwAcIUkKVjqOyyveJDYdKvDGq28gxkuxsKXeVBODebSoJCE1/zD282MEASz0iGbDcadMgkBIBXioHyb3qIVtNfTJyUVzsT8ExmeEwR19u/boPjGD5Teq6ypUDcDdsZEAwBooT4MbQs0xbsaYtYGsmrBoBGAJWKIECoy6JCYAxiOFngjUBgxdoROuR/zSuRQIRWvkuwEy2hxkrLipJoKSydJ4hVGM9FWiRPrU18QoF6MVWlp9JoJrVmGL5ZAXTCa7olNfVgtSN6hIQK/CTNcOwBG9PW5GfTD1mucdcoHAyq7EXWd0zaJdS36S8Jvh6JMoAYjrLORszweVBJsRkrQqyLkmPHKovsvg2iOnTKdnk/HkmGtbU0nuvrQmcAs3AKhlpKh+iz5c/zx9QNnWZgFYZuiShmSrQGx/XlGmSMqJeWpkZBAiMlvLd1/dm5yt5trL7sAdXCZ0EPC8OZeBOS1nMBKcAhTPRtP5dD1n7or1e5w3NbQAtbx6kr1TnHGlzzsUCFpjnlqj5rXdoDky9imWcNtdymXt9STpTNXBURlLnFQ5ygg8gXedkUTOIVbZK6RWzWJ4ofUl4VlfsOiGPSNC3LtVo3d1HgTUWbVJ2W/suMHUrMMtG15TwW1PL8DlXe1EgFHCOY/Zf7495BpoXTlT+TXuGzyhZDLg5Dj9j33d8+EMfwXe//X0c53P6bw48uHmED334g/QlM6kMYAHaTAWT3VlAmDETxFGCBqh0oloxdVGn51e9dN0qE+u0rUl97iLMxKyV/1SJVMjXWUGNy0bgIMLnOqwrBOpqhIDCUaw+03DMPq4giwmmwhWLSX0WtUS1xgXuw7yZHnWmxFsUXPAWipOlMAJ5xl38xVUmdM4LSBd56cUCSWgVQjENfp97MeX5umRQQ8/yuJpPTH1ktjAE8V06Na7MlbCMFRTLahXGtXpVLO8EeC4Fyl8qMCiw+D+cAwh+uYBmMJmsU7emH2z1Qp17MfexzsHlZ1ixXK7MLQKMtFROtW2ypLD2CwoARTVbIIfEKVEGeckg50+jSEky9k1zvl40k46bdi64rlGfsVJMmmfFhCRyQVVPKVk+f1eNA5YXWyS71A9zh8g3nXakSZ65LU3+dukSdXJ6ald7Xs9e5KN80tVALeObP5PulY5d9mxxoNMvW4AyusCwMt4tXggmaHgZ+XJ2LEZtvTNwNd4JfJo2JWXK5ysCQonO5Y5AGM9B1JWKdUrPKPImwGHzEi2tYL7PlrmTnorlZfyszqLrcqzzLl+j5OFtmOtrlgLsaUx9WvOh/YfF914uK9TsRumg+dLZHNdjnbK8yP1qw6i3V7dMJuTKpmB+boLX8s+m+DY4/zE122oZtUaLEaS8xZ1fcG6XoUkuCwgcyz6RLiggsT5XUMya5ymDuBq0/Iecw/XiSk3UlY2/b/ftvr0fmvJR9+2+/dM3XSK/b/ftvt23+3bf/rD2zpmUWAZDN06DTELmvYI4GeQie5Ch6l0ryOJ19MvATh4Gg7fpk4Wmbo0xceECvTSWj2NQzD3IWqFAWYJPOlrdjE4Aw3qIzuR443tGJdEANIKY2jyc5evEfa5AkMq5zdaszVvW4ei8IT6DQQJMZRBxxIC1THzlRAAqqRMjEASQNN3I4UnRg+WV0LC1zvdY3aYHg/dNwAEFL4EM0FU0IkEVinwKVHRNl82kIG+4DtN8AfAgGMYyiBqOy/Bks3AHjlug7zDbiyY9yy45xvmCgQNmwBhk4rBWgUElTq9AQk72D0YgfAS8GXrbEijEA75FAg8UQ8ngrTOuy2RuxjUpk/M25gz0zWClymcwv1hl7C5Hln85xOyjhLbnrfxxHIBlQkWl8/KhkWCmyNJHCGA0x+Vyxr6d8KUv/TR+8qe/gN/7+jfQW8O2d/zkZ76IL/7U5/M53lJ2KK8gm0MmzlWWJhlGnNQSCtSM2gMESZjwAXnbNCKZcnKgGeQQ20BETOQThcOR5RU1h4gE4wiklBM3CFLy2jdb7zhGVLK3tV59M58BKCVodds0ZcJwYdnHLMXF/dfvBCszApZABh6wBKRpNgP6k0UNUJIwBhlBlFj0AZgYmSh/xQSSCXGVGggPeBadgw0AR6BFR7dAFyxnDIwjGYOakh6xAN7aDDImAC+y5KEnk1RrKufFsnlmieCT0kKWUGxIvjd9VvUOe7Mqjyi9qQSLoeffWyYUgvunQDTWUHwP0i1XesZqL83kXd4i7luCYLIMFODc8wL/6Ubovm/IcmBK5CQY5Xy5ZBm6vqMjATKNIEXAMMaBhrypfNo6AjvGmMFfg1hmWgVCPTxLO/acx9Y7rM3gXokeEjyaOsTgR+q6fdvIquQ43AsYtG2tkl0NBm8+GZYYZM8SCncO/6ZldDSbJfMQCc5DSxvQrOcc9w6Q6UbLLKBSa53gOOk3KwauNDcHYJHJJ9qrBKpF7qeWALvwwDgaLkcywUlesCaYqwxmynBuEoKTCLYoNikEAVOcT4JqUja8khiKoCoZZLaVPObNZyc4MkFIgZbgy0o/LAFx1lmRKc99LZuaoMhxDFRhujGTkGPQHnmwdCVKnyg5GgOIMZN8YwygAcMS8CXw7giW6MxIN3ykPQei7BOceMPa47TrS9kcBOes0ZhxpGW6CQbXnkwygKigfLoBTBMaSpclzkoR7+XWPvVjOnSTWSpt8rTV5c8Q0FpwNBMTlsA+gNLjptoySF/LY0KPKkNjU2+s4AwPLwZAM6CnIKZNikBrneydBBVTPvZ9w8YycAJ8IQT4NbhZ4hgF2DDpEQGcfcovGQCrvB3nuIFAVzFIcd4b5VyZhcBkeAuBXcrnk0qfSa+VQaKadK+XwqL/+N5NK6ROTj1WyVXMJBAA1A+gP69/IN9fv69EK39QIIllrnJfN9rABK43MV4F6qa5LlYoEYX1XepPXCet2pIIqhxguSZKu1n1Ve+Iq4diJrb10yXJy0FAJdpSFqbvb/XBFayzdEQyvTQl6YtRRK/BnAcxS66+Mu78zRCs9GRXv7l63pIocw0lFhACfYQs68r+eDIbNl1GiPk8lZ6u8dscR2D+J5a1yuksDZPKNto8NyhxH6hzVcyHLWVBBfBH7ct1He/O8bp8+g6QjHv58zWBTVkSUJa+0tz7KQNR4Ef1LRAj/ZwPffiD+MSnPo7vfvt7sEif+ZOf/ARe+OAHELR9q5xV5yC5AgwDNmwyttC3rvLNoO4p1Tf3QCNTpwzy9HfXXUpZCCZdYXUumWwb+qS/9bsNaL6yAGHpm8azgBSXc4IHWdQAnkXm2aGA9W+jQ+9K9+xPu/q55mPVHSuYiYrmrT9bn8zxDndiIxaWZuR+UhlRmsrSZfp3vjf99/SbVZ4vUl4CQBjPhNN3n/tM/kUCdXOf537PUs/yQPKFCRTKs4I60hgbcTEImca6rM3deaPu1YUeazneZoD1PD/40sf1u7oYYJwE7Z06lbyNPa3flfKOckE6yzuV+iP7Y6MeBwDvM66lywbWonS38KF2tc8554aKGwFkDQYmWJ3nb02TSggXkDVk2+aizyk1rsv8yapnrmQ8qMkl5IuBmh+jvK/JptUPlf3EBG+gTftUZW/HBF/q/+a7JIMT+kuzd4fBau7Feob6HkBBh2ssjN4pmLTMR0hd0RfT/EptFNinBEGvmv2ZfoRfyZQ6qVin3ul33l8DEtBJb+AZRqOcA19s56qzTO+L6XNUKdL1+xrOMp5VwdH2GFZgy6pfscjVNVi0xrSok3p0yRXHJDkM6Rm9QL9fXsg/QzFT/bJsqi19lCyvemYOsNYX103rXPojBORm/yRglKsCThsKXLROE4yMw5Sjt75txgLu2ri5FHG1TtfLOO1kcD7nNMTVHEr96hw3Z3YuluxJLO95qyW8b/ftvt23+3bf7tt9u2/37b7dt3+27Z0zKREs5GJiADJAqmDMTNEASIADyHiiwHkgb51sAVJGI4NjAHaWKkM4Dh8MDpEu2/cKnDWBlfJpOI4xEwp85t4wD+Yq0xTG8j/5mST1GBUocT9g1uvAl8whWWINZHZS8gssewcAdevZmPRrTEwiMkm+5W0mInXg1uAxYExEN8tAc4JKDJm3EVtBVAmURqYoBc2MycCMDZFdRkE3M/RtI9W/L4GGLCeSgUmfR+M1aJajQgRZOzRyS/aey3GwjJZKmhmO4TifL9g6Yw+KTVpPFhAfM8mvxIMZzEcyQLUGb41gFmQ5KB6fe+uVGHdz7K1nKSSCAjBmkLEhZWcNchhlMxwsu4YCUwWskjN1W1MTDAAqfZvXAWt+jiMZpYBMRPolwUjhDh9HsSYl0wb3D1m8wgciCGWJBELFYYA3fPSTL+BLP/NFfOv3vw244/Hj5/Bnf/HP4mOf+GiCXw7H3hpakKzFlAywZFqILNlHgiwGRAE0K5DOTL7lGgyWNhpjFLW9kkzNMtka7jj4wPzuDDQPdwwH6Udynb3YCTKQmn3LW6YRgT1EKc/yWgpm8dZ4W5LHVcqGc30cSqwEtq0zENohGp0JPJrB/9YNLYCxyEQFfAjwEVCiZGkEdCt3vX2aAchYblvnD3OaVY6LSYUxEpBD/Wech/BINi0yGLgPMmhYBQx73+Dh6P1A7AnmG8eAk0reRzLVBVgOoRJzyUjWeocjwRthAw25t077hq237JOBZUCSscCiwTxRFMl+xlJ9zvv2loxVNgKsr4AEjWQQjxF3BDxZSUbgwb7jtCWgxxE4j2TEOh9e2yq/P+qCRWNJw0wi9ARZWAIQrHfeLh9IvhSWkmwJ7pQV2nSDOgItGlp0Ev8ZGf0yWOjc37X7W5Ypc/QsiXkmExx66RBEMlj1nqwnyZ4FmM853fcN0HpTe4jdJLeLF0OC9LMCnr1vZPwj6x4BW0NgRzJEHWMU8EY621imLXyUjYqYQFCBzlROVUndLFvV03Z22pC2JfCuO/o2cBwjgZdjsO+0nQMIOEvUEdAzUqcq4E2MXIJnPEGrh18mS4RlaTAocMq5mDaXIGlLnZlsa4BAcApQW5DxKPLdrfXqZ4tKGQCBBH4yWSKWOGVUPRKkOzxgMWqdQr8bo9jjIH/GHBcCV1tYMXZZM3TbE4TZWBIUjjiSZa/i9SEwqRLyWW4tFWqj/yQGKwJdOUeSYEQCQK5BdtRrlH1bwCyyBcUSUT4Ef077kqAzKzZAZ8ZNnt9afkwylj4XfbDgxfBQ4l/ynXZEwBwz0UsxQVQsAvpPKx3fGoqVUXhFK5nJpN9ms6xf43c7GsEp9NVki3wmjehqlV+UZQKZYGgAlVICwrmfxc51hBOwmu+VHRFz52ozgoCl3BdRc675dJ+lHa+ASZh2DABGGr+0nzCIQe692uRtzjND7t3c+jMhpE+rTFaWqiWwDzbLRoUAMrlu/W4Ce83qYCaQMgGstJMh+vKxJdtkvEygvRolr/l5a1bMk8oXmsUyQsq0WSWetT+vwU/XSfsrZqOVEmFalTmb+mIBD9ZPEBDHRGov0LnAMOyvGf3kmOWyTHbFaySaw7vggKs/59ICYDJe3eZwBNDLftCnEOutdJ1x31lDC7GUWT3YuDGN9k9Jcs2tsDLqitEOmZ7JRc2+sCxpOmo5a3EHEBdi2ojyNXVZYpVbm51bZwPrcoNykqyJKBYO6QYBf3VRQoDJ/KtAO0r2q9sJit73hocPb6ZPuW34yKc/i5tHj2gj6A+FLiwQeNEa/RzJxzp/9J1lWZTMjzme+p4YJHNZ6+yX4Jgpl6usePmTdf2B45rvLJZF7jMRm0juJmiWexS0NfRNpT+uAGF8z7pbC9ax6Fki7KFFmAAF+oYUgALtQ34fwZiYspTjoo8mxsBFT5m1q6S2e6S/NwK9TWCSQNcr2+LUb9J1PFsYSxoiwXjSY/ln2nklqyeAx+kz0w4BHIsYyVZlLUbe3EvrXghMIIJkSgn1eRlCayJghOxgEGjXsG176S9d6KrLLIvezLLcXEdeTLOqgR3ISyC8PGI+55zgrQwLlHM297+BLJlTPgBelll8Ifmu+ds+x1GBHD3b67mSkdYM4fSlIBuVwxsC3a/GiJdv6iyxNFtl8ko2g/vKppwY11/yAF0+mXIp6E4dgQ3Femg191bjaLbMFViKnJegihlWZyUy39EUUJYm6GyCWQjAp4ysNunKzmN+FvStS5OIAe6OfdCZZTL9rM+2azuoMxZ7UMCcVRdpmeQTrvsWqHFF4Ko6Gwy8eMa5uFpTlriMqIuVKObX0kr1nlpv6clFRxoHF7XWWqnFnss38/pG/vYq1iKlviifqz5fuy81r7ILd/zbuSDLei6lCwPXv1M/ppxO2Z0AqOv1jZh7+MoNW3yf5Y8lys05alPW5dPMSw2xziLHvOzRQK2LrRuQ/XOIJW8pTUp7zQG8Zc5W26xy6nd/P/ukbq8fkl1Dqcm7YKb7dt/u2/ukvY1KVts/+Am008MfXV/u2327b/ftvt23+/a+aX8EJqVMZOdBSyileSMvk8QKnBnMvRJtcKtDdoYIvG4sZ8kqHdCiDmyOBO40stcMd/TWsO+7TvyAGfrW68CbwZEMWvQ2sw2BTGo2ZjQy6csg25YBy+Y7QTko2mUFhxCGbr0OoWFW/W8K0iog2TpU3kRMSEAyQrlPoFFE4DIuaObovaFSWspbI6p0DBBMtmYg9PCRDCbIeTjGSMYiB0CAh9hrMnkCMnks5XEi5jg5d3XLcQGJHOOSCW44hjmO4ckgxMi2gfV8PHDEkdUc3NBGAOhwC9gA+rZV8MqQNxMRkWXrbLJvNWtkxgGD3J5l6GDYrFdAKjxwe74AdmDbOnrPsnW5VhlNiWICGmTVIYihgwmAhr51bM3Q+t1j+B/knVuBLYaDILK81SUa80x8HxWQLMYNBigcGSB1T+ajJ09fx0vf+zYuuMXTJ0/z5z54gdzgsLoxPtBZqo/Bi8hyNKLrVzBMAUKxmVQUkmudeWNHZyCk5ATBcmzABYEeCZKIBvTeMFgWSwz1I1IPJItJymNgMpCs7CM+DOMIjG7o3RCXXMsRmWTtDLp4JODBeOsxKPsBBtgNsBZkVepo/UiGMZYFyfJvvCnJxK2SUrXH3WFIYFvuR4E8Ah1ZzmqWAJilDloYwhrGGOiJtqxkzLDs7946PzNBKOaj2FcAyo1l+UEfumEMtC1lfAyfa0dGEmtBgF7qzGQUajjEPBO5L90IagglZRhE5ObPckUMYloCRJN9LkEQyf51lH4dR5Y5uxwj/04lljpjwKwlyw4Db0pS7NsJNw9v8Ojhg9QPw4HhTOoHjjESQNaMzEMM1BpwaqdkNzLDcbmgNcNp35Pti0Ahdwf8gmhKDuS8DoFcLa2OmcP2ecs94a1ZXssHg8cR3GdAdFoqB/qWW6dFAyxZseAjy80ZmYAAbFvHEQQaRCY2G5lhKnDPxEMPJeNSR3eVFqowPgOHmgyT/TQMHxjjwtvwyUCVJWFohy2TrBExAT0BhDnccsxKhCQ4qUOMIwaHWUe3nmCwRSdnabgDx+VCGwuMg+CKpTTivLkscJESkxoY2YtAoBESLFTMdRUQVVAXQCdLnMCrBHcmmFG+RNpj1z6gHzGGwItyGTSTkXLkSpClXYcnMOmo0pYzYZ/AJyJwR2DEKFaoiPzOQf1yEguiEURphrYZTpGyEhEFbkn9NFLOQICVk7FMEePI/rQ2KqicwfVO3WbozLiMmElrJQ+UlLb6ngL3LNeJIBPlBLslwY0DzrUxq6TLrD+ztgTHZUkmJlgj9duIgIBm6QeQNUnvZqdK7hmsj0g3s1nquwYxPqE+A4GTWFYUITugREYCZCfTTBAciwSKBsj4VSYSHZPVERE4wDkQax6mTKjcTkTqtEDKBsAkBp9pzWBuVZZhAhVnsrhK93EdnH609rMBtZaRWSwoWWdMOBxBoJLfXZ/3ThMwFgK4yqZo0ZecTU7eBANwl0Mb2+8m1UoHTGC2fCMxlhkvUqisG+pVfGl+mHI5E9QJhsdM9qgcIxZ/O6L030y+TRCC/N1iKavPsB9lu3IsSuRX0pyr7wXWyk8qud6WkQh8UkpYY1LyN2Zyu0AgBNmlm2qlh5TES8DMBBBoumbyds4VuGa597IssRGA4CAwkL6k6Xf5MOpeUK/nX8T0olJS6lOew6RLJE9UVdZqbKA+KT/F08Yq2R0AWp1dFz2LlTGOey6d7ToDIhK02Ns6x394Sz/aC6AkOZ/MHMtcB4pVI6TcMGUwIvDmS9/BS9/7NrbTjtdffT3PuwEcx8CtN1wcaGIjsQQPzWcRFD2PCyWkBVpBzH1J+5JDnWwQKdsCmuRHh899GxDIKH85AYWSMV8+iQlmxuyT84xa811zZxiYZXhSZai0ppVfYwBLrtp8B+VKQJ4JTJHw22J/5RPkyAWQlLMT3L2GWUo7H9Xq+6hP5a8booAAg2wvuisjmxNIEPjKviLm2bb4I7k8rWRI66W9JZsLrRPjIwUu41trJwV9JSxyLb8vpo5oIOBcZzDMC0K1puy7Dy9wV5TPOAWhWe6pjAs0bFtPplLQ38X0IyS3dW5rExgDkKmIdt0ZTzJE+TIB5Dm7QBPGy0wr3HfKg0l+tcalZ+fapH1YASVkygx+w5CXQ6izJoPRwvYchhZkwKW8BRST4/fcixmtQXtV+leQlWt/ILua61S6jWKSFwamjASk12P2gTq0zpcInhM0R4IzTZsm29xgiLYAHk3+jnQCL3otMp5qx6qTKxhjquapb7IL8gmmPjFr05/HMuG4XtMVnCHZjppPW+Zz1fPao0AZeO7HVYreAsiJ1HmjHjd9S3BNQ+c0AZTA/cG4Wl5+EajFF79GYMP13bTvNgHxJfP8R9rXZT5rzpd4Vq0tah4149lvW75vtQ7LsK/WcvaYs172bvUrUPNbPFv0ZyboaK6KzcfO9TP5D7KdU2gU951rJEDeHJnp+aUr5p6YPt/8c9p0LxmLOdFcnNxbYpOVDM6ZmvMtey2fv2QsvD5PVV/vN06e7HfNS4DMeOq/gFD8pV2P5b7dt/v2/mi33/s6/PbJ2/5ue/7DaPvNj7hH9+2+3bf7dt/u2317P7R3DlLyAOJIoMgIROuw1mbAngfGjlaBZQXGBhMsASAak2IMEAUp0pPVYNTtE4t5IHUGxpKG29C7QAueSWNrCM9kYG/I4EjWMADc8yatwBPOxOA4sPU8qXkkO06zTBSaaGhgaL2htw0I3sg1/g9G5g8dED2T3B55q12Hec+UQTcgzBFDgSodTjM47TESjOOtgqRABgB7awnqiGQnSTakc5aza0rgzoSfDuIKTvoYLOnlk52DQROBFzKweDBZ7MnP4lkqbcDR4TjijOM4MqnQMtDUsoAeSLaQLBtMmI5xwM+Bbd8w/IzWOraWZYyiDf7pLNeDKo8EJmgr+MWkztZPuuOMQCbmHQH3M/aeAb4EkYCBNM8EJoMjYyRYJLxlUhgbemtoW7sOSAO4DjyBspiH9L53jNtbnC85BgvdhA7efAtMIIWSzrgKOAwmncMH3njzFt/55nfw21//Fv7xV76C29tnaGF4c7yJr37lt/HTP/clPP+RF7ARnORksckgUxD4YjNoyV8OR80tFJjIDQVvACCGqwxKxpKYHhE4ItAVnOHmUdmaGhdQ7FGNZR8dgzck82uHqMuDJfO84XJEfgcZ4TqICGk9QYS9NWwCaFmWhWu94eYm18k9cFwOUaLxRtsscSO4hMoY5RRkEHcgcACwEegKDrXUW437KTvfAU8dYAzCRowMFvaOwEjt5QlecALj2sixWwug5X49D6QMMNGvYKL3BvhAEJR0MCAnZpcYKUsRI/vmhmYb0AcZypItRoG3EQOdYAPzAPwArDPZOMtnttbhOLLUizUcYSx90bL8GUFgl/Mt3I+Fov9gMmOrUijGW/dta3j8+CEe3Zywn3a0bUPfGrqxpOCg/hmB43LBGAd6JBCq9576hAw/Y3iWM3MA3hE+Ug6powYZ4QAkg1HrOJzWxHKNh3uWgFMQ2pj0t2lfjkuy3ij50mzjzdSUld4S/IZtQ8SGvQMbw5UDZAnjDutbstttfcPNtkOA2eE7Dh+4HAfrvhgakx9JsJeJcpdeY6JEJQe158zYFzjZt8QytiXjD6T/Z9lSBbvBYPaILAdolrbFrCXIMQK9WyX8TKAf2pFMFiHL4wWY/ELKPmX28GMGbCMAlvhEJTFynp0sdpZDIVOFUnVeQXPdHTaBi0Kf4H41oAUK5OwM4BcAguCaTKbkg8TD1nRl2akXiGJyd9pSnz240ikM5DIgHEgw5RjOsoVkjLNM+nWkLdR6NDN00f63VnbBIB1mXDOfbHmlJwmytGSbMDeYJYjXWstAc2Si4TohIhGdfRAwT7SYKf8B0SCm3iQ4Eos9RkAlM2aSotGuKBGZDFDZF36TZkndyIS6kX2O/Wqt9BjU3ZiAvwKCdxQYEASGJPiE5VIi57g1+gTWkMUMY+4QJj3CJ+AxmP1TgjdZNp17k7srJDfJUzcGy77K5wvtQ5lczqtPPzGZEL1AzcU8hZnIcCYLZtJiwNBhSjqrJBU9ol5sL9wrPvXSe7XNEnkCwDS53QDA0wGg9JSSf5kQMv4mWyVulu+uSfz5FMxpoQhVeSOgyg7zSjy3xx3gixI9QCXMfDAxCImH1nWegwK5Nn2V8zWDZhPIXqAqrKu4pPKoJ/L/gzZEZ6ZKuwEEBAkYmMBUKz/J+fnhR9mIeou9VYKk22cyDNWHqDnVekatkdd+RbEQORKMX3unEvUCl0y7rIkNdzhBpq3WKW2x/L9Y5toAqLSPcd6Mpd0mCwx0qMg5qbEZ/UXMDc2+BIK6A0UTaJUw/sPPEhwOADFwJqtvAuqk++eKT7vK7xZrhvqcA9B5b+87LufAkzefYRxizR148403cDlfcOJFFO2n6qndXfglUS0FA2026tP1+5qbRXLDpzWqSmIRmBAGVLI8uMaSh8kMsYxd8xBcY9IyCaSh/gV9BERg3zrLycsGsRwvQeDBc1UCYt66bAlIeusaNgIp5nzNvVN/UX9Xhuf5SShpvK4Bu11sYwKCRZONWi5hyN8CiqkFpSs19/MMFuvexexTTbDZ7E5Id1zr23XIxr2kCxEpM1Zsi+A85xn8wPBjJuqh/rQpR3QSmhn2fcfptGHvfV6eol99RIKSCmRUbDxtKb80far0AzNmkfe5qrfFzlUJf1tXyDCZiqY81GwQvRJAst3ycoq1jFU1q48UqCSFLMEmnb8s5pRF6yaDtiWjNJ/TqHbEaBqc787Yyh0BvLIZkgWB9cRQWONev7voMM2hUSZjDhuImPN99fnrrpSEVhcncDd/ltSYVqC16z1fu4ZzXTb0zvZbZbc06Cpa4XMvcjbmV+a/at/c+b3kZNWLxXYp8poav0+GzDkjSyn6CWaWxJXfvCocnR9qh139B0JI6px0Z+qvdOZql2P+EC72MvY/oJL0mo8J2qpnsOwkqM+zc3Y1j3OGp08zexfTbyv61mUy5BdUX1Frrs+uoMkJ7g7qsTsyj+vPy25rLkrPlW8233XNFlZCeL3eMWVilcmV9S5qrhZ5Di8WrStQ8iK4BQyjL5J+GGrP32VOmlMYWDygei6Jfddt9TZfvv7WfbtvPz5t+qj37Z+s+e1T4I6/+H5tOpsrh3bf7tt9u2/37b7dt39+7R2DlJr1DL4rWMGAlAfTJO4ZSFHYh2epZAMKjJZB8gwkKhHmedhjciLZfvRGq9vvK8BDh3cFzooJwgzW8pZdM8D6PASaElFA3dgdY+Rt+pEgoW5HJv2bVZIyz4N5U9MDWYbHbAIgGEDMQLuCJcH7/jmGDOYIYMXbZh4w66j7vTyAKsDewFIl2wnNQKagDGgdNnC+HLhcLrDRMjClRCYDgxVkKAYlJS104y7q7C0a9WAZDVNQwJ3MOgDgWZoHB/w4gBiMuAHowBGO4Qmi6KrZ5I44vNgk2maZmBgJvpi058EL3nnF0CN4ATPBWdE7zAPRegXCjGsYLC3mHjh4+3lYg+ioGgIYKakCSXQLDORnt71j2/vbJBX+4GZcm249ASARBAxoXxiDBZZgIAYtdBO4/szIBTwCp5sbfPZzPwF78Agvvf4SXvz+i0A4Ht7s+PznfgLPPXyUJBQtD13GoHoucyMrEkFjFYgEwTAqJ7QEjZiwQiWTnACGTKhmUjXnKBPHGWgzBlwDwLYB5+OAD4IlLIGGhw/UjWpneIoJfOPf22jwDlxiJIU/AyFnd7z20uswAz7/2U/i0YMHcA/cDrJetY6+BwwdYxj27cib630m4kJBS/cJJqSeEKNbzkMCfFiQCR458qYAUeOeagYTYwoswSojwRjWGhmA8ok+8hAzxoFmO/UME5fOAHOXbiCAZRylF4IBJ0fqJSnDKgHCTIcCu611tOEJ/jGVKGlwMoQpaKmEgCOw73vKfKPq58Gr7R2+kT1kSzaz47jgfHuL8IHx6FiO/AnytCbWp4FmHft2wsNHD/D44U2WO+MN6G6Gp5czmgdaJHvYae+4+EhwabRcG5JaZPIggQV969jbjmYnbL0jSH8vYI3KGGKo7B2DjY3gKZZhSv05k3JZninw4ksv4/ZyJADudMLDBze4OSXoBw5svad8WdqZLAfHkhBOZi3m1FrraK1h6zusNWwbAbUBHJcDl0vD+Ri4DGfyIhMzg8wnCnwGyDSnhGWgEhCppzqyPF+CVoHA1pMFCiHQhhiNiEPJLGBGJRtLymHa1WRmWmAcazJ6uQFrLNGQNiWTCr1v/B1LRgpgjCVovMqwrpxS3i1CeGLqUQFk8vMtLAF/6ieTpcHkSOtt2R9R+z73DYEoLdcSMQEp4cRyqJCCpx02AzbrM+kp28AyOhHJ5rF5TwseWYaoVzYmZ3FrqbMUBFeJlwQXJlAwClvQuEQCruQEak+IcSdLSA0EGiLaLJHFm/RZ2mixAwrAy0KEGI4EyESyoSFlIgbD2aa1SFa5NAm0IdauQv6VZMBMf6R+NLSW62IxWM5yW5JSFAWlESKKgQkItCCTppJppsTKvD1et6IN2Ix9bRNcIgBi/itnYkT6aJkQi8nSwU4NFysg/UCOWe8T8s0jn5UAgQkacPdiBSxgHXWV5EflYaEke90WX5JFlcQzhLcszdqUwJt5hDV5WkZe++Q926z6T9cYVQ4JAMiiWolEyfkia7oFL5mAbGh+Y+qa+UosabjlcyiwtOkzxhKZxYqDq8RZrtN8brJCdOocwDCuvxSLrgUQTLjPJNDkGIirXXQnTSRdxMdKr8wNBVRivvqann2elSarGAxAsThmH31JCF65xGUP5AXo8Zxn+UBBzaCEIs8T2cUFdCI95wThyit79jouT15D3z+Y/lJ1Iv2xZG3xeYll/S/HLrtj7A+VFgFo+f3UWxqjAEzlDkHltwJW4E8ACVDjZQEEc8e8/JElU2vU66r9AU0+PCbrj/ayaS4lxxO4tm7rNZkp/9HM0Pcdp8cnPHr9MV5//Q1YOPat4yMf+TBu9hO0Nd7aR5v7celjM+Esp32oEjrLQ6Rj8wjJ867lfKq0dtoDnkE0/sXn0A7w5d/lfLJLOv+kPQfoQuaasBfnyxnf/9pvwN/8IX7qz/1XcTrdIAAcY66OKUsr5lSTP7+AZWPuB0139j3l0BoIJF8ADtqHq67xfF9dJNLg+ez8n67hsA9cV821T/Ra6UvZd0D+TO6pVVd6SIa5V8Sui/kZs4ZWgFs9NUfQFlkRy3IgaONlG6euM0OWDS4Fn4Cay4UgJbHoxLT9AlIm+2XAtq0AyKkqBQTscDLLNs5Pgrd6lWycqnle3Cl90kEffYJCDcZLAX6V+Bcz1VWjTGp1xTwVAJ4+vcXt7RkRge30EPvNA+z7BjEt9zbLURbb0VpWdFFEAlmVDrT07fee549uwPAsI5uXyjDZhyCbJj2s/841nQDBZcPzu1Z9mvpX3y05uKs9bHne8mescicg2ZUOI7C05lyg+EirGKh/XbnYwFvXhj9Tz8SsWp+VfZgkX9PmQxb7elzag77oHQNmuWLIpmlnS2Y4y1xvl3GxCZhd+99sYT2TvMbqD+icNuc/9Ptgvw28mLaAYha/qLRF4Ooiw7Sk5eRwnbwMhexB+cHVf1tV1tx7ZR9WObhep5pLXoSA9kQs/aFcos1ia8GzSLGLzSEwljmtV359GYPkcxm6fIb5o0XShVpVP8oezPFXzOEtgxR41sqeLxMw+8g+FFB36dg6T2UK+fPcTut3lu+VjlpnQw/KxfJ1nPXVu2AyNnvLT+7bfXvPtvNL38bl5e/g9JHPvNtduW8/5i3C8eZX/x5uv/Pb+PBf+G/Dtv3d7tL7tsXl/G534Ufe+sPn0R489253477dt/t2336k7R2DlPJQth6QARSddyYTjPGWCMfBG+g6WMfIQ2bik8hcUN9n4vAqIBcI563Gip/kYezwkSCe3hkkJECpbeiGLBdmUdTZCqJNeuf8eW8B3zqOw7FtbQkGIxOSHhmca0gKidaSiSMS3DCMgXbLGztZlgMZLeWBrvetbhHGwQBvs0pmeCSDRSPNPJDP7i2pzU9br1JkgUxSbr1lmS2gbis6WY/QdGs52ZWKRYnfr4RErWsGLhpP+SMcrWfGeISxdIwDkeCm4zKSDYrPGxi4PQ70o6MjMvnOYK9HfjZv/TegkzUpZtAkemcJByAag6tNCftMYngz2OY4X87Ytz0T/xYwJgvzFmwkZ0oLgm0ofMMRbSPLigKsCXLoXcwkM+jwTvdCAR2GQ2Usxki2F/fBDFaQgnt+R2xWk0WBAU7rePjwOdw8esyAOdC3jsfPPwfrHeHGebE76ydQWi5mlVvk4qZ8Yt6eZ5LhOBJM1HS7mOMx0j4rmQUFzTw3QnB/VRCMIJBB0EbKaP4cYwas4IHhA2EdMQ4gGnihvQK83//+9/Gf/qd/G7sZ/ht/9S/jhc9/PoO0Q8wdStS3LJHIRIdNBTHnxtYn53esMVkH3lCNSIBhkH6e85PjCqAp4ZE32wcn2loCKAOopFkGdxzBeRpj4DhGBaPNssRdggitEuODrEugPBQT1hKENcSSVGAppQowJ4gxM5wMCkLAO01F9rFAJymVLCEYgLdkHbNA6x1HZDLhcr7glVdegwF47uFTvPLK67h8+sDNflPvdc/ygJ069vZ8wdYBjwOt79j7DrPU0wngIRpl22AHR8GSUF1Bdcpeg6H3Rv0oYGtjeTECPiqgn3PoRqCHKxmm+RuISBCkyoiex8Crr76O29tzgfkenHbsWyegILBZsgX2Jv2YLGjuYmrqGNxzmcgJBBkBhydL1NazpOTeDdsx8PR8wWHAuBy4uIB9gdPesW9NcdAlIaMfYAaBKfvbBhx+4b4l2MsMjpGJT8kn5V9625k07MWkky84BtmdQiC6sQSAg0C8SdSSwfrOslQ9eWNigjsCZFFU3xVcpbhW2buB0pWgmvIgO1t+cAaJoXnOEnZrclDsgCqxOXxkfNu6yGwIENVTUEC3NdFYJAAg0DpSp5kpMM5ymu7F7JTEfUGGSbL/CGgClQMFVEbDwMS2NRSQhuWPnJtbycYEGEubKgkxy7cat47YkaqEg9YXgWRg8mKhWbIJOS8uYCR1EBM6g86Ge4LrxJKg/JVAqtyKxRplrVHHRu1/yVoxN0lVY7VrbeqvJZmXcj0TGKVb+cwEkzvQ+kwIMJkxhBJl0H4MrmWx30ymjJnYcc6/IVm4AlDSLHL/q5zpeiMdTkC8wPEBHGPgIPOBB5OwsCqVWO8kkKLAUIa0lWBamIyFtW6yGwLahbyO93Z7e39r+v8pz0o+TV8+fy5Bw0xqzZ1Qz+cTUXCoBUien0nwM+jeqDymyge+pX/UgfnaCSHSe42+Ufr0G1bwmECaM+FOH5lsPKnrxYqpsi62PMNoF8mKGF7PnPo5P1dXJBINlTawJfBYdhrag8b9WrpZgL64LitWZ6NZsnam0mLRz6mDiihWn+E+0FoJ8PTslReTQYj77XJ+ild//7fQHvxCXtLordbCEbxwwsscbQEOai1s6sOSBkOeBwGEyjk1wzgM6BtYuRW6mKL1Mg5CcyzW4AjJVZ6dzFqWkmpvk9h7B02+xKGyqbgL0Jk6b1kKrRLEvrTKwOl0ws2jx9hPpxwv9fn2wsfIIodaF/3LDMtc1ivn3NYLorqlWdacMGdcOk0vWgFKkumIRccv75SPNsFvtMuh3cexR65KgpOUjkXJykvf+h38xt/8f6L3jo/+iV/Ag089znNNX79PG9IMiK3W+6qvEGg3rsZcZcrp41D4p26rNco/rfaSzjOa2qkLZ4I+ap3NVtv89rppBfvUEi1yQ4/p+t8am96rsTQrRpj5Hqs5K5hnrfOgHvX57lkvCBGB25e/l2Vfx8Cz2zPag4433ngT58vBM4JxL8nXz3OLj8BhWdbbnOBjYkN0IS4aQYP1vekTSqZVdhVXY5rrUwDjVeaXPSg1HOGzpB5ZgfSV9Pn5v+FopwfYbh4SHEldgQlaseXdUesl2zSxEYD0LoF9FjzPZ6zFhsEs/YoRgXEcuIwDe2843ew1T9nyDB9+vT7SIzU27ilFE1Q+TBfp6pxaPczJuy6TpS3gU75lrzD91SugSy4QwaDsr/5P61fSSFlDLMeDaV/k3+szs0PrA6aPXzaGa7X6EKnKFojJla6cgFeBUVZw5RUQT/5irXspQX7eZqdgPNdNUP46gBlHi3IVASt7XgOuoS9jWlQ5ak2XfvI8kXoBV2ujucz5zstgbxc7m8DI5Xe2qInFB5x+TFzZcEg2Vp0XMdkv17kr/bQMTXNSauyOraOuyMdev2OCB9fplB2Srrb6XOjQWOOZc+Vz0NOGLG7sNTipnlL/KrWuz612EovtL9mrb96ZC8okrPq+mOn5HX7myif4J3Fu7tt9+xG12+98TShtAEBcnuH1L/8n+NBf+Ldh9DHu2z+79uDTP/1ud+FH0iICz771Ffzwb/37sO0EvzxDvwcpvWvt6Te+jLyR+/5p/fEH0R+/8G53477dt/t2336k7R2DlIZf0Nue/ElGsA6AQEvWosgDqyMPZM6gb7cGH3mLPnxAkVznIS0TUBlkzWRy1G1UEPzRkDfHBg4EkrEpWCbEYOgM2rgP6HaRNSAaACfLSNPN1FYBLACZOO4dHplUMIIpxpEBgo1glmBwZ5hXBrNZMq9UiRmoBIzKBDXspz3LAAE4LgPHceAyRgXStm3HaWM5Nyals4Jdw+m047QrqeC4HJc8rPdAj74Et3IsxxjwIxNgRMZA4BNXoHM5RCsQO0YGlzsPpcMzGX/A4XFwbYCn5wu+/Z0X8ez2FoiAjwu+++K38Xd/5Vfw6U98DJ//ic/h0XOPYFuyIGWuzGHR4MOwbb1YL8zUf91CSsAB878JhBmDa2cwd5g34IYAo5bB0RSjTJ4HDG3bAZDdaDjZinhzGkCzDad9x37qsO2atrPiRf8FzcNxe7nFk6dP8cbTW0QEmilwkKAw48MUSACsQHgeo4JNAsi4H3j0eMfzL9zg9LDBm6E74TG94RJZtsqHw3xkGqqC2hV+nv0PgW5aJXXDWLYCLKMVmcDPQhmZRFZZgdZyrcwsy3K5A57B40aGFwNvf6MBw3FcDhxDCdSUvyqdomQyA1zOuM7mLefOgLMf+OZ3fh+//ZWv4+G+4+WXX8YXvvBTABxby1vLwwPJqAQkE9LOoFmCPGYQju+pkhg5V41sXFlmhixfaFmyK7AAApgQHwMDQLcohhcFhIKBMx8DzZLmPyDfeUClE/O9jWCwIGggb78CqD42ykiJnzUy7GTvW+/FynQQOFJgAMQSsErdpMDXGAdiKHmU/74cZxgBC6xKmKUoKStPjguePb0A1lIfGXAcB7797Rfxc3/iZ/HwJln1xjHQe8eDmxOUODwuA7ctAN+SjWoP3Gx7liNCA9oGbIBfHNYbk4YJzCyOKU/wibUJw5gBvJnAWhOew48EiVCnuSmgJ7aDwEH2p8FSS+6Bvu24vVzSVvA7veWt1oNy0PpM0CQohRvP11vLwGaWQEvTZ2eAr7eGbd8LwHn0A2cLvPHyG/jq734d59tb/MRPfAqf+fQncdpPSLakBCyNMTB8XJXPUMjcYDj1LWVqIBM1NgOSmxkC20ymaH8Ek6MY3PfKsAbictQ+DspWluHMEpKrzQGwJKQYMDalFeYapA7kvCDZ9wrAIn0JlmaUmbIJIiqAaSD1vgLjYXDLJI72p9bHBcgxAY1sfod2Q2tKyeL3KiJMAFOCXofLv5mgxjAj8R8BR5SZjTfmNYeyxUE/yczRbOece97i1438GnegMXHunCto5cPRinlmBryVHKn19FFl1EDwXOni4BwSsDWTCmIgke6cidfADIIHfR8lDArgoOQD190MudcrZJ4+ZLI2RZXRM/l0YlkwaXWUHGpdrpJIAcDSj9HcOMus2YLXCSbzZX+1Pk6Q2uFzXFMxopIUuhGttRRACWYEsC0APcq1jwQylc4J6Z5BlqdlXJITzVIBMAJYiC8qobowQAWuE4Hr79+LTeWRxcAxeQywJIH42UqaBMtTWPn5Mpj8MaoEy7pwTPjBWOKC/067MWYpQcf0X8io0ZQDMyUooy5OUOyqaX3EJqp+u+f+Nu63Yq0rHTaTqpLJ3OUgOEJjS1uUCe4Ob6iygfIbsqSy5RmK/pmxc6mjZsJuJKIXAgdIiQRt7CidE3MvLGtSQEj+22Lqh5w7+n+1ntLTuTqXceCl730X5/OZnxl49bUf4st/5/+DD339t/HFf/G/ghc+9RNQadIWqYn1zHVttaeH1sVos7hIZnO+k5mtwaSHidrROae2fRAMUHuevp+NEjizBH61viKUAsXmYsuP77byyUaCwo+D/sqalJxrK3DY1Mm0WfVanTEOWHOgDcBYTk8+w82jZDUldeG8GqNV1N+Wpq8vu9Ts+pdKzg9M0J3KwKrElXzS1UcvRi+uYQIFqcMpe9qCse6NYhyaFkIFQSMCx3HGS1//NTx94w3c7DuO136A9pnPAwh0TNBDQRZlsyDxmuBi/rrGW5/D+meuOXh+zTlYS8TpkkWbyX/qIKOcitnKLJl/5aep5KGZ5j/oy4C2ctGRMW01an9K90WVjc31QT1/FdICzEoGS/OBe9unbxNiyV31NKYdC+AYjjffeBODDKI3pxv03nB7vmSZdIM4nCcIN/T81EXHSP+gBbADJU9TnzIeQOXchLKQn7D4InM8sYwXJWvSYbU2mgvZGs/58lEbo/zI1huqZJuB68hLMvz+lZ2OyWgzYUvaCyiSz+p7jcPKH9Yz3QxPv/O7+Obv/DZee/NNfPBTn8Onv/iTePzoMcx6DUAl41e2uPXdAlVFgJduAEMv38nukDQW6NCm73F3z6wWnUt7pWs1x4pfTMvi1w8rWdfeCNrm6TfVfC0+YgGUG+pSli1zGlcDWlmG7ry3/I1aqepfyX2deda5SBsqJkJbnnnl12PqBpm5st8mxaL3zA7nPLB47iqs6kWtzSrj+VuV217eBpUnK6C4caxcsLyoMEGJ9TojwOzK6i0rc2VYyoxy/HOZp32x6+fXJ5cx3T1rvPULy6NikbsSPmn5OadVTnl2ueR8eWD6PXrutKFTh5ZCnMNfzy2rnr169vWcXQPmomS41l7/ox1eZmn2v6ZtVfYoJ3bdAtWH1Qa8d48T9+2+4Xj9ZdxVMG9+9VdwvPYDvPCLfwUPPvWld6djf0zb9vxH3u0u/GiaD7z+a/8R4nKLOM64/c7X8Ognf+Hd7tX7skVE5gzu2z/39ubXfhXHK98HesfDz/089g987J5B7L7dt/v2I21/BCalgWMkuKRZrxuTWV3LCBPIA5JDQCMGjgC4kTHAkqVBp3TXbV0E1htXZlYBGoNlkstUfiZ/eoyBvW35/RgZoHYSNkWDDx12k6UjgCzVZG0G0MEgaiXGvA776kcCNjoCur3iGJFMGwqGbCw51bZkowgAvVsmvPms0ymT1McF/E7Had+x9QbrQBhLWrWGCk2TNcasw80wcAE8/92bAZGl1m7PWfIsWMMmCJZR0EO3deGZRG+V8A0yEhkPsQYfZAKITCDCgBEDl3HGSy+/jKdPnyLOB2wDvveD7+Ab3/omPvToA/gv/8t/Dn/2l34BDRuig2xaLW8/87pylrrLm39mVoCLxmDDiAAsEEcCxMwajIxZW2PC1gcsMtGXopQjPcaB3TMR03veOHSwpKADG29N9wYCPHhtfjnOrwf1t795kSHz4zhwjAM+vG7Am4GgFQI2dEue33SulSm4Epm0TIaFgA+HHyPLXKGh2QZ34OIDncFcinOWZ1tKWenmlgLefUnKbL0BrSHAJCkCnfKs5GmCCR1hDRv3hEosnfYdjGyjn7acp5GleTaWs8qkdgIestxiXxILBvSeJboY0K4gbOS6PT0/xetvvIKGwGbAzc2GmwenXONx4DiyhI7KAXYmvXPfZgBviAYBALwXY1WtpeeffWss05WZ39a2nPuROm4mJMGAUO6zmcxoZB9CAjSRIBmP7EuuNZLxwSxLKIwscdC2bfYJCXIKDxzIkJfmpsprwcjwlImZcfD2roHlpaIAN77c/l+ifJW0CK51eCAscBzz78MPXMYFb7z+Jn7n97+J3/jPfwNjXPCBF56DBdA3w7bvsJ6MNL3tGH6kTFAGMpmYid/LkfN8+EAPoCNZZbae0i1w6eVABUMVAcxpIzCUMUjnDeYEipClrxlAoEMmySYwMzgPPhy+lBFSsG94lilsW7KunE4nXC4XPH32FKf9UTFPKDGEQLIBAhArw0bmFtmT1m0BjnXADO4GbMli1C3BUw/M4FsyYrz80kv49V/7Mp48eQPHeIZPfuqjeHx6hN52INKW9G64HCxticbEF4PuEXXLtlVSrMHRMMaRzHV1zdgQNkEUW9fYEuSQpmNkco0ASqm8g+X0CghoVvZaQFP3WcqT08S9EIhIwJlHTCYH3YaNNstqNEZqZQe0HwggUKJPJS4jlj0JIMBkNpMQ+f3cTRYoPR3F3KjE+UwkRJXoGpXAKxAqx5CotsCa3FRg2qBbxBPQAIGNUjEgg8nj6pa9bsinjU7ojsCpw/PGcuow9YU6JIBoOVdVGoRrVzd0I8rnEZNYJQUqpp+9D2SSpoXC8ExKLOMTQDWD19Rz1qFIdltYN2fKwGqPA6nD69+mdY4rALua1ZPAkrxkLuS+EwjYlIUCkwTUnTklmkMlDqdMasqUbJTf2pnFWmVE8qFxxRjUybOXStgNRK3BZGIRw1KWiZUPbEp40DWN4DwaEvBZzkksrF/i+oti8ah1vxOwfS+1BATKdrf6KVTuj2IFnRWUkNVexJQPqz0YxcSmn8sOmp5hgKHJjas9qySmvCilhATcE8gFQK6/EjvyupRArL/rs1FnC6MPJdYQALM0ZQSZt7J/yaya75CuEwuTzl5ZhjT3cQNY+rZN4EfZhVb+PGhbcz4aAqP0Z35lBW2KwUV6Ir8fJdOg7ZhMMnVuAkGQlELZUCWGxSzQGksxHwPbtuHgBYAnr72Bhy98Eh/42KdhW5bpHFxPC4MXZc/cKznvPkv+ahX5uQmab7AWhYVNmzCZfJX0FGhfVSQRjRdhct1Uog2YQkcNNecipty85TTB+Ug9CM6zL4w9nF8Ndc1mSlpLgfMnQXC0/hdixcgCuvpelbyTDUOqTY15NisZBOi3S8aw2Hqb5UNlb7JvbZ4BjIB9rkOAoH0KR8uH5PMaip1VY5sXMxZrsoC4uPzJKHN5hrh9nedyR4PnZSH5KW4FiEAQnEg7nL22AuoGZSfkoyytUZcU0Cfou3I/Tx2UOib3Dm2+ksmyf5Ihrqn8JjNcrRNXC4DBXGBjTL8JArTF3BMlhPkynZsFiChgU/lEmHb5LdKg/b0msRO0o7PJ8AO3t7d49uwpXnnpJfzOr/5dPHnyhKyoO5ol+2rvW/kOLlk1K9bPtlweMILfR7CUphH8FrnGhgY3L19vLfsmhS9zUoYW5SlQP+OqlKB2Gg1HsdddTUy9ZNqbbctyyoNn+9awsFrqNHK1c5djGz9h049amYsmaJX7kf7wMMP55e/g5a/+I7z6+mt4+vu/iY9+7L+D5x4/xxKfLRl3eoK3MxKw9snqHFYAnq41zksmAmVU3+m+BSaAeIJkKA8CUC97ZwJE1jWaP8txLiAYzsEK1tC7rnQg5UHL06jLS+5B8OHCmiOwvfZvaQHGcUB50X6ZW61+uYx7/R+u9tG64vMTBgFiIlbNtragj8CLX9pkWKaUukzmq7wRE8em1bkHiAIfKXYmVVj2WnJoAnGqWxOEY3KisHRCvkJdcFjGOrdHfrpNUFZ+vC22fK5DLGUt55f1+DJMWCC0NQ8lUgCuzhMRy3cx+035SLmdAFkNJNZORFT/pVh8+ez6Ocmy2QJlWs4d0JxThwt0Nmd87rN1yatf9cm5rlcahvtAOi63wNLJO7JXb4n5+2vLd9/u249BC8ftd7+O2+9+/R6kdN/+idp49gYuP/xu/iMCfrz/yo29F1q44/LkNdx+57ff7a68L9qTr/19PP29LwMAXvsH/yE+/lf+p7j5+Bfe3U7dt/t2395X7R2DlBScRbMMsjUefnmgyqpFwUMl0DzzjUbmiBEBwIER6IrGENzRWEIEUUfgeUhtSobxCKYEXTjQgBEGDN7ot8k6YGNUwLO3lgAdBlIVeFRwXrXgbZ53ZwCoicafJQwi5yATHckoYkEgCBO81jZ4JOOTgreASm51nLYsB5Ml3bZZBqVNtpoGMim0THa3rePUssTV8IGt7TALwBxtZKfNGs6Xc86VO8aRIAJ3JVZzfGNkIH/eWOQaM6ISDM604NxbBjZuTht+4ic+id/89X+My+WC07YlY9Fx4Mkbz/DS91/CcbngZu9Z8iwS1IaeZaGO46gSDQlSyvlRYtq9VcDGAYSP/Jw7+gZcjoF+PiNioLeYJQQABkAsmSMIiIOhbgyq9E6AZeNaMEgy0HnLUDd5FU25G5AGMhn0YN/x+NFDnM8HbseoQJlYdcIDxwiWgWIAioxOCv6swbWkwT9wOW7h41LBymRMaizxwbJeLI3lI2/6JzNXTltrCQQSM4r1zmRWx9Z6JkUJZtk24LRv+YzLwBhZ0mzbO4PHHb0Bp21PRpsg8AM5h9u+ZUkuJf46sDkBOGJHsQS2jALHeJaZYwA9mYKyzJXtD/DZT38C/+jBhgZg3xpa0w14AqpGwHBQT7QE6S1xprq2zIBX0z5WwqEzSJPClYmX3hDcc1nKyyrJpcS8j5FB5pixMQXpJthBrBjZAbFkKCkmJhf4WU8gx8EMOSk+KzYIgInaSl4w0B2WLFyuhHqCrSroxxJaM9moKOm8RQmytngAhw9893vfw2/843+M3/vd38Pv/v438OrLL+HhqWPfBEBynPYdDx7ueHjzAA0dHjuMrEOZPDX0jQkdZBJ+eOAyDnhLcGvvCdgZONCiofc9QVZjsMQXNz9iBm9ZMivLRvoMXg8GiiMQ44DKeUonKNmg/7bWyLhGkAYDlQ8enLK05umEvoudCyxNyRvHkbs/imEl9WQmhHMvDieDXLQCK7k7LpeBRGqlDupKwrQdCOC4JBPZ5XyuQHXvhoaeDFqe8nc+eKM+kMkr6ReONfO2OT8ZM+3FriX5VGrWkMlMgWMyoTmSbYrbyt1rHEpIBSOcKd8EHLYEp9y13eqX5gvUCWtZkEywzJvcmQwOsgp5rZuMc4GRmLQCjPZ7ljGthLWpnJcVm2BjogZYkwpkoHDJTFRCslgfCK6tJIGnnJZfAFwlMSvhHWLgyTolypnABAhrFTxOIFGW+nSNIQYCo8ZRjEsFyIwK1gf/rjIarbUE2QAL8E9lCY0l8eYOyc9NAEJwrAp6996TKQMAsQtce9lOAJ3gz2utlj3l1Cm5mJ9ri84LDbESY6CMV4rCEow6AUFBhj2WjPUEdiES7BSmvUudQABeJwPFIJucvFcLA6hXYZI3/nsp06O1prjSDyZoi3Jz5T1EFBA55zSqZF4ATBpR3xE8LQYXIF1Z1z9VnnCVM0spTtuk0p7v3bSCSolpDEpACp7L40GBF6321TT4WY5vScZE/Qolecro6ufyF4Ga29DZhL4BYXiA1iY7PLNe3LNyBgR2UNIogcXz37H8WftNTh5/KXYngazb+m32v0FALQG8Dd2Abd+mz9gaCjw43SMyQrXpr7Us8byxBGqB4SI49Pn+0NToMkPpxTmNHnM9+a05xbKn2oP87tYbXvjQBxOoJFvKtbZ+wvahT9RemIwEqPkQoGYyxxjHLL+n0X9A7TcxrNCS44iAE4xcJbf5rtz6AwvNIgD5eCo96YiBusxhELDA6t8FEsfbt94aHj24gcFwvlxoL1KPyP4On/ZN/ZO+lBWbghb0/waBMov8maHzTGlcZ51NSm9xnK2lPyM90lrnXmX59KrNSnki65Rb6mQY5hmBv7OFldJUwhcOsw3ZLY6GtaCjTyA2zNDbVgDz9H+nPEYk8OVmO+F0s+HDH/8kvvm1303JU8ljCJBEgJUrZpAMVjPJvPgsmHpH5ZfEkCv9OxltJtjJZRxWo6/xYspDrV1E2veIqloiOZCy0d9SrcXU+doac6VrD6+sJus2UswjSua91n7Ka8z/i2AifZHDVe/SN3F3vPi9F/Frf/c/w+98+Vfw0je+ik9+7EN47vGjAssY0rfcNsNp27FZL52lkQiX05bOh6ftHxyfAKICkfXeq1SxAJbphHn5jjDZn2UfAaVjGtK3LTad4Eov+0hzrXgXAMAPBNmEO8iwtrOEIBZwT73v2mdblqk+VwyhMWUvPM8bdSHljm2U7+R+TMCV9GubtiUv9ixjoz5JMFNpFWi/Sqbk5097q89amUmBkCewfdqMCTaMuT8wfyZbtszEnYmZP5PsrwAinfnnQglYo6mwq28XcETPpW2t7a/5NZ23VsdgrqempBhudFRc+l/PNI1h2bG2PIufEatkeTCadl6O0XFEuqj+bXNlzHSZIKSx5rpxAj3WvTfFarooaUgT9EQdLndoWc8ZF8l5l+wnW+Z1TG2CZjUmAbGnfNanNQ/rfMTV7E1huPrOAjqP+dl1u02duPx3ecnVvl+Vdo1trk+EGKmnXM7+6GKJdI38l6n+be2fzhB6QayP4hnN5z6UPomrjs53F5CewrbKfMWqFmnVfpprdOeZ9+2+vYdau3n4B/z8MR594U//iHtz3/64tP7oBWwvfAzjyavvdlfel21czvidX/3/4st/4/+C73757+Av/oV/CTenP96MPn77dD1+vustjgPvqQ7dt/t2394X7Y8AUiI7ywiAt9XcAi14w7UZNjPsw/LWt+XdtmNElThqMdBbw2ErY1LPMlY2gwLWLBOAkTe+wg5Yb7zRjAzcKG/pBzx6BuyUMEB+JoEwgdhymK21LHHFgGmDoS/lVOp2YJUIQwat3BAtWWYE5GkI9M6kQl5TLirpZIpIQAlGHu5azwTDZhv6lsCnltefEZ7AA9NJNQK9dew7j7iWFP6BwL41dFGfd6sgliFLvflmiNbg6PNWKxIwYIoJoWXCjEfPpsOwSl0gg+PNswRKoKGhY2+ORw8f4MHpBuaG1nd84OHziIeOm/0xPvPFz6PvHcnKERCJeydjjQcSXAFgI6tOTkEmkDu2ZBZogYMJhc14AzgcBxzP/ILL0bHvJ2w9AS3NgG5A34ly947WkvHHR+AynOs28ODBCb03HM8uOfaWjFadrECHZ3By23vdYswz/Uxqb93w0Q8+j8cPH+K1N5/gh6+8ggbDaXuAm9OOcTheffV1nI8EJY1xZIAowFI+lqVljIGIAwhzDCSIJyKDsI5km9iswfqGwIAhg/bDycAUGQzrAHpPcM/hOfN96wCf4RE4XxJQtRMY11uDjQHbslxF33Y86Cp5YijgSzhSyDtsOIZdknHJ8nayw5C1RwCPjr0ZTltHbxvCOo7jjOM443IJxDAcOOAjcHPa8fzjB+g7EDvw8kvP5Tx4gx8NB8sbJm1QBuT8kknm5ocK+qAbS3cAMEeVKXEMdGOi0wPDwPlDJZet2wzQNkPHhoDBD8cgCMFwAG3PcnmBBCNCpe1aBo1HJh+UYPcDEPuRtwRkKaieoSomTBZQXN4mTtr+DCoh5zamPgsAzlvgGUOjwjMljwLDWQLLCJSLLJvpnkxexaxDPRke+M3f/Br++v/tl/HyKz/E+dnrePj4BqePvIA9OpmAcs8+eLDh+YePkpnOwKS/GD0EymPi5Mhk0hEN3gO9bkRKtjp5QPL/HGSAi8j5ZQmVsGTyaWDZJCVDXSU+Ug8fceRtU4VRGfz2iGQr8EBvmSJK5hHHs2e36FvDbqnPhwHHcWHCsld8UMCNgaU0JjIxUmA1M4wj1egYFwJaGxocHg0jWBLQAz6AcRDINVLnJMNKo51J05IBzNS1nfPTY8yAsILRZNpR4iRzegaVBfE4kGHhoGZxxGhk31JCp08gJZNNAvvkjxywPtfagIihlDiUzKJAFstCWxgQZVbNUN8yazCP+k60gDcmzBzJnBFihAiCkjjuGARAz0ROMmlF6QMYdQQNYCbSZGpz3+aa5KbwKn8iZgjUHlRg2o17roK/che0sZIHKYrpa9SaePTlWc4APpIJMni3PQYTqOxLBbPJ5lRSr8TAjGM7ZSaD+JZgTvgd4MTIvYsABkEAbbIRRVgCwCPIAtYYOOeebDkWC+keeg7G5IVyBsF9HWJfSv05JFcxwdFzEglKihVow2S15liJ/CUXFSOZKwb3TwHftYgGygpLXSGq1Fsl4nOzwCLBCGcyKiEq58LV5Eqkokm55v7WTkiguQCM9EHCANdaZinklVlvJpscCSqJWnuV6nPqbfUm+G/pYcQ1iOQ92Srxk0kTN/lDzHJaMsOl/mK6RD5YgVlQ+1FJIkCgFT5/SfxwE6fdJXOKOiKQXYCgHLAsbz0IgBghmnxuYDKQCPxHm8qE/poECgO6SkKt66Nzj/FCA88TpU2l4/WV4XlRwgQQJuDEUD6/hpbgRNpYJaHoC2jKlPhrsDwbBQFvtKViJIWYDWFLyapVpwR1BOd7AYdZzU3+RInh/YMfx76dgDjDWscHHj+PBzc3ePz5P42Pf/6LCbTXPE+n5S2AgWYELcHQ2vRvQAa/iOnDG88FzPLBoyUAJzJtajZZkrzYcFr5AQmKzBdsWwL6VYrXkLancUGczEgCZ8905uy7wXDaN2zbhstx4M0nT4AAWXYTpPzs6TMc8hOGmAKFy7dpJ4K2zZIpRfqt5qmp/B/qQkEEWYskb7K10na0W/qZzuACgWQ5XP6PfnjvDeiGTX5I9SHqf/K7w/IigI0zbDvNsqlcot5owwTozftAtCtk0YvAzemE02kD4IhOW0u7kSyRfmVHs0SW4Gp50QqIAtlPlREETccs/xgTIHS3VfnK0FlKNrk+AMiHCe0h6m6+B7W/5ncq4U5GofB5IaByzNrQ/Kt8i3pMbaHFY6OPKNnUs6T/xCIoPabxVIlp+lD6XWuGX//P/l/4D/8P/3s8ffoEFo4PP//ziMcPpZDoHyQr175v2FrHtGVzf1eHQButeIfpQhGtJi8sOYFoeb5o0GaQn4KabRRz3ZWlXPy5BKNNIF6qtTmbOrpp5i6vvIjL+TZ16WI6VF48Ac6E09AuCK62iFXZB0N2v+lykOQWuTZjLTEr35kAdu37FehRwLrFZhl0CWMBRGi8mDI4bceVNNX851cXQKnlZ9VnPbveXXIl8IpTLMqKTBu59HvuF9RaC4Qi76nGiDkG2VGd58DvtyvdRJMQK4hwenSgCNXeWOZBXbsC71499/rn0iu2/FQeXb2k2pwLFVa88j2krziAvICQdn+Wl5Pvswis9gHuvi8Xf/pQ+Y9VPuvTVwowao71vVgmPOo/WC5UERC5zql+tp4L5D8s8z1BN1NmFsO/fnr2UP2J+Y0rmKcGCNRli/lJzE7E1NGUjGKv03em70m5pl4ruxE11cW8qjms+dPbY87HBOVe25SyG9KB6jDHbKjivzVH65rM56zvX6bz7Yzdfbtv75H28HM/j1f//n+QzuHSXvgX/zK2D37iXerVfftRtwhHHGfYdnPHTt+3H7cW7viP/93/Jf6Tf/d/hXG5xb7vOP/in/5jD1J69vv/mEmk90hrSljft/t23+7bj669c5DScFjLoGBrANyzjEHj4SqW221bHmh7y5RoAlbyCD6OIRbbZAliMmClJc/cRFQAAQ3ophIIxvJsGZwfyGQeGPDK8jYAPJMbzQyXyzmDvWMkGKY1DMsEMyyBS5Vc82AZqDyXqUwcgoFUy9IDzkREHdxdycOAssXOQ+M4DvRIMMy2Zb9T5xsuHlljlUEFa0hmKXey2VgGZAffV+fgTGi3nmwnYwzsEbADGMfAwSTscRwJpmo92UpGBmYyLMsAdFOJjXx4bwluMQN63+AYDCJlMOTm5gZxBPZ+wk9+4Uv4M7/w82jbjo98+CNoe0MsZZDm+deXBPUMUGxhwMbEPoEwSsbljUYwiO7A+QzsCVLJBcrbimEB9M7k88hsL5zlBxIEEJFjPD874+bhDXoOEeMYeXBncnuMLBvoAWxbylnwBpoDCaxgWZ5HDztubnZ0HLh96nju8WOcTh2Xyxm9G548fYrby8DRGi63ZwZZGcTwBNoNd1xG4HwE2sVxORg4tQyI35x29K3hPC44xoFxTkaiERmkV1CFODccrHFo1tC7IfxAwBIIcQwo0edu6G4MRiW72bY17JtKOdhViSFEYBwXMmIEXnv1VYzbZ/jwhz+Mm5ubhD044CP4DIeHoYVh3zZkQchMhlwOoO8bnnv+eZxOHY4LWjdcjlE3+sIdY4zMSIygbLQsKcRxHUfKgW68q5xkJqVTZoeBGaw1kKVgn6HBebubkDqCyBL1ljKWSeYps0p6dze0RsBHzNIXK6MLzCcJgzOwVqVOVAojEA0JJIRBgV5rKKBN3V/13PdKeCWgwJk0nOAlI0WH3u2ewL9xsMxbXLDtG/YHN8DWAHO8+srLeOP1VxHHGaebBFhEt9Lv1jv6vmE7ZYlKIJP+tQ4ADoIyFEE7DkcbA/vmuMQxmeJag8NxqWB6JqpNZGpj4EBQj5MJh3PsNcYZOxtkNDOixNyz1JLRbqCAWVaB3HG54OmTpwmGpG2J4RhMileJJx8MmvrcP7RJCfbMIftIYFXKbQbdYwhQlHsB1GnHMTBGlsYbg2uC3Isg/C7GyHmnBu1ZWzVLq0YmI3K7ZEJGpSNhqYPVfwF7lFiaN8hZGoMypRv8zkRj0M613qkbg/0jWNLYXwE9XNeoZzJLTGPDZ0qvt06mH9rz4rXADPxyrdxQpa202Jk4ynccfiCBOHkTv5KBtGcmWEsFgR2DCcYAyFKV7/EKpjNpooCzkiuca7BPjkggGcjUhyxrOHxU4tTI/mUty56KASXZwZzVCg1gwdwEJMtmMnhfdQCUPE27Z1AigrokgvpC/bHFt+JoirmJ/oaBa09ZoM8l1sdjjOqHmJ/ELiSgQSXKQgF5ipiSlksiFT7LZuJOckLyfM08YrVnI4LgoCU5wTHn+ig4PxN0UsQppo7LOIpBUgm0dY0H+yvwV7hX8siqX7IFg79L4ztCYOhsZx+Y1+lpI5Dg2VFsRwSiweq7ycI593oBatYkB8fc6Jl4OBNT0y99L7eVvUh7U3sruIEjEmybchxTZiqLIuBW/QpY5qb2jPYv35U6ZAJ31rRW0QbJVsBm37Lj8JH7w8sQ5a/qksRVQuc6UYelr2KngFJREZMZymoiysdTMjKAAlqjzXfV0SB8EkjRLwDnsLe5F9duIchZZGQjIehpjINglPRLBi+UtA4CFLh+0u4GFGMJu13nOCNLGjQH9MF6Qz86unU8/9wH8LkvfQnP/cyfxf7o8ZIQnmups1nNGSyZewCW+hTj3ZybKxY8Mku4Sg8viUmVHxsI2KC+FVjT5izrQosu2OR5dC5CcN1diT53WLRZ4VSvlMPGv572DfboAS5nx9Z7lf17+PAGl+PA5TLglqVceVen5kG6Mxw4nwcODFwO2nrOQe/pe13GkTbZJyDkChTDf4uxRUxTAtinb6kyTouPSAeOGp1+6irnElJ9P/Xyi7/9G3j63a/jJ/6lv4TTw0dTnl3Mel77sGkv0LZZM2w9QV7B/uaUR01sATfMSNwryI+lPCxMUrJv1VWtfdDW6mc1U1MJ6Eyt9dTctjZ1CaHF/B391UjwuMQhQUhlnSDQhORKtm1UYtzqnRkaYJJcPoGUhpDs2vyrDoD8G9nE9Bqu9eP8ktOmJpi9Jyu0Gd587WV88zf+Hs63T3EcZzSgYg/YO99rtW9aM1iVPIypIIDaP0ZZAICDbNxOn9Fs8a2hy1er/5GyFjzDFeCGz3NM26M1FkAAtBHQPC9zv4gy/+G4XM5QrERA6+CZpT62zD1s9tPnY8oGGAQoXb+T66gyovmdlCEBwt2TQaI/fJ6ym+dnTEkBLP1VF9OQQBkRAJlmZ1+mnlgsCud7Sg9PTpD5pctXtmHOFy1GAFcgOMxhLi+suVf/yoaxH2V7+H/L6l3pNeP39Z0rQHN96+qt/L0V9i9NwjVIWt+s78snXge++iTqd4G1rmdA86tbT4HpG2v+c6sue1pjkI6J66ei5kZXHJZmc69H7QXUwpU8QyZL+k6zqp/J8VjWEeA5JPukC6BTu63dsPn95SxkVx+aPpMuddwFldWgCszP99XQ+LNYV23KmJ60MgzNH+oZXkzF9f5FgFdpmmxwtDM6J9dnuXt4VpGtKDm3WNjfpi5abcJc+6jva4xa7YyJWDG3KoayTl2aEO33ZT6nmN63+/bea28DSNk+8FE8+MzP3INV/knbj9m0RQTe/Mr/D2/85t/Gx/7S/wD94fPvdpfu2z9Fe+mbX8ff/vf+txiX23e7Kz/SFu8xY7u/8DHsH/rUu92N+3bf7tv7rL1jkBIcODwTPGJY0G2tZE/PJNloDc2DNPEDuvsOazgYFFZAScEXBQXzpn+rgG4wAAkAcQzs207gSSb/Iphg1H00t2SMCAbKPQ9brbHcHANjAnREa0yCIKlo+HuViqqhL6AlmQ4zUfy3DAgCGJGsKll2jiWk3HmLthXDQB5us1Sd+zyAK0BxYVm04Y69k90CUWCiTKYng4W1TND2brA9cGnABbew2GbfOR8XAp8sM12V4AhGYkTNLxCYksFggjmc1P29obUNHTs+8PA5fOrjH0d70GHWi8FHQKMxJjG7RlgJXJA9Yhg2I8tHC6icQFOwhiXM3LM0WesJZovI28ZuCc5pQyd+QwXkWoVJEB64XHItT6cd25bsSUrkDve8UWzJ3DLcZ7IXSDYvLr4Z05MN+PCHP4jLU94qNoc34PGjBEK1J2ccfWDvDcflyCRlBNoRODyBFfCGN14/48l4E8+ejkp8ZDIo98b5fMbt+ZJrGSgQgoGJFXiuk+W/+9aw94ZoHVs3WDSMNirRkoHUjn3fM5lCoJ+PUQFoY3kiCmedV548fYb/6G/8TVyePsNf+jf+a/joxz+EjaUI3TK5nwmBBCvFkQHq43JBM8Nzzz3Cvuf8Xy5n7A82DD/y3RzP5XLgfL7AAeyWt2xZlAm6d5x7J0uKSR94BcyiwpMKtnQFeJfMXkQgjgnsMlJmVynByLJbKkkGfnMwKdyW5NXwgasgPudNlPtZboz7sRm6V2oPKv7WuMDK4fpVcLC0KQOb3P8KSHFPbX1L5hhJrgfQoso+7vuG3k84nbJU09NjoPdkdxnHBRgXBvUdsTGo1RIQubUdrQeTCoYe4FoQMNMTxBlDwfIMnJvPMm2tKakXcNoRWIKijEsUCMQ4KuGsW8K6Oar9oUQgmKhoKtPTAogExGomkiXI0FqHH47j9hZvvPFGJnoIrI0R8O7JGHiVAY4KPA444Ow/AYPdsoSKD9oxm+kSj0DbNkQ0HASiiekLYNwSVsnrhmCJwURSbnx2Nxb+sg3HGDig2+VIcJcTVBkpt4DlPHgkA04whSCgijkcjhZkdluD2wqkUl/Tci9JhZTTBC3OpJ6Syl6fE4sAQ+AshdOgYGwsMfwQnpB6LUO/zTJYX6UraIUdyeRmBeRSskIB44XdAkoNAK0F1zdLDhXYoylpkcxOrlKe1nkrn2MkEkrJi+RTY8kRBalVTob2Wo6DU++28n+sdM4MMM+b7smulkwcB0v3GJLVUnMd9VzOPTLhL82SCfperABVVsmYdDaxHHXKrrGcLGWa/p4tN2myLF1L4Jz0aATgRyYjhlepoEoB0M6otJSYT+4GwpQ8AlgSFkvAP6QfJzsdKkhvV0mnYouJSIYlOEEXU3dcMwNwHHzfTFpblYwyCOAiNr5ggtsqkT7WZB8CFln61pf/5VwcSyJBIKNW81TlJKnboRv+wTSTCdg0MyPz9vcy/vdiixVgtP5JO1y7Vm36jwBq7Pm9CXTSKs20Ev/FKaKKg3mWUl4TadorUdlPQ1K5TrOuzKQPKoCirwv2g99tSjQyQac3LIkjaaaJ4dFeUAKdQDSb485H65yyjDnRjFBZlWazryt7gPvUUSuIL2RDwqqESJbn2jBwQGj1yQaQ/TWWai4RXFZA+kgAoQLw6WwgBhfT6Bv2vuP5z/w0bp77QP6s+mk1lrlj596XfyqTkkc2niepK1Nu8t/6zmTXORAE4wooUsuxrLPVa7nXeeYIgi167+pq7fPypxdQYyV6IwokLwuVLLHa8wkcbsYLGVuW625tY8nnnPgEzTnGALbnPoy+37D039xfkp/hg2edWQpO8jEZVmoY9fMEm7Wqdti7AHXZB2tK/OuSyrTZssCTuYTn/gjcvvk6fvNv/Q2MZ0/xkZ/789gfPMhnhXx0x2JF6gLD8GQz3bZTsc2A9jt4SUF22j0voKQPwufa7Fl+lfMt/6b+azCCBLTnam5qX04ZFMhb8xilN/jqojOa4IxVt+WfXnOm78tH0pzIVsznlotSCivthfwg6psoNbOsDX9g8mMkMzkGnYNrvHxv71km2VimNgK4ffIEGAKwTZ8GiIrdmBnG+Ukx/wSB3I1jGuVjcb1cdj+nLc+Zs+9jAcKAI5fPPviIVfeuwFV9R1I/t8TUG4Wu5FxrXW3dWB44395iDM/9C62JStDO7yPm7wtCwj56LH0JQOWuF0FFQICPuXQajx49bp9gPHsTiBdozubICiwKVFlrXY6Zfugc3+zu7Hf+PAH3czd4fT5qvEYbQ5sFnm9DuwTLezHBpJqragJu6FtW62ey2ephPWP6zKiz4/Is+RCYoCMxaCNqmEubby+dufZwsS0LIPiCgQABAABJREFUdGV+k/ZznlGm3tCApwamPlme7T5l4eq9oC9fB5DF9mMC65beLzpfsn7tN9VMN8GAahWgC4vFjKa9pZXRfzjWBoKU1gFhqsLVT5Bey3PZqiOpwSQDUvnV36sJufsXBNbywOryuj5RczJ/VuZt+oXL+0puFx8NLrDe9GEd18+d/dU7r/cC9GyNl/upLuzcfX89f/59tVMh/bDMS+qv+b5lSu8at7eb4ft2397jzfCBP/MXsb3w8Xe7Iz+27eYTP4l28wh+++Td7so7auPNV/Dqr/x1+O0T+PnZPUjpx7w9fe2HuH3jtT/0c8drL2a+oL/zlPZ9e+fteP1lHK++iNNHPvNud+W+3bf79j5q71yj80Qjyu0K55Dafuu9brRDgTFj0F610z2TkGNh47RmQAVhgiCfBNI4g8MWoql3BK8PZ95SN9rzWfPGWYKV6gbuyIJlRrYD6yxdYlZ07OaNN+iTXl5n42FjBh506LQM+OQt9pEJC2QQRlS7YbzNzAO+ygH5GHOeWgZ9ExSESgSKfQIIjIvel6UIKvAdQAwgbOB8ueTc9obTtmUv/QL3wLZl4Fq3+wDOWwwy8aD63VomJXUr2Jd+6AJPJshyjre+4dRP2K2hM6jR8toiNta+6GhFVSwwQx2yA0BLNpLLZaDZSGaavqEzgQT2wyNvLY9xoA2D2cDlOHDetgRX9VyN1rLUQESCjyBmF2x1Az4wcBwX9N7w6OFDbFtSOWXwPmXaCa5CJPNHawYTI87eGHDpSGaxjocPM0J7GYFxm2CnpGrPckc7v6NAeW/53ac4sG+Bj3/sA3jwwgfxGw97RmEZqDmOgWe3Z4xwtK2jM/iaDAzG+TZsbcPeO4jnQU/JqitcvQP7qXGdnbflJ7hEJCijGLMYYGPiAQ6WxAg8ffIM3/i9b2E8O+OVV17Dhz7yPDLD3xiUTSaZ4YExLjg/u8U4HNY7bk5zvcbljAc3O2PQcRUsGe44355hW86HmbH0xwp08wRPRtJiqixM3kaLKke2stHk9I1UZwpCF5gSUAknEASWVPiWpU9UxgVZumzEkXsHkTfbIxiMzretYwqtGXJ9GhKw1BQcNDI5EYyhNSjViyUAKD4RS/CjdFjpH72ztlomPVsDHj9+gOeee4Qs2+U43x7wI/Dcow9g6ztLMEaWTAHZU8JwCeC73/o2vv3738L++c/gwc1DbP0Es06gQuqF3sAEbibh/RiUBwbbFBBG2gKV7hLLz1pqQfYiINaDVr8PM7TeqZNzdrro0aBEgG4OM/jdcr6c7AGX21s8efqE6zSSaW84b39nWTPAKFfUfxQTx4B7Y/mopEI1AvxgqYvT3hDIMxwHgow0sSQH06aKBc5HJg8brJLovjA5GZINwwQm8gEBKiYY1KqM1sBA5/yNgQTUkjlJGZ9Ay1vmZODgNgFCALIERSRgb8LqBkHHnWwnYqxSiRuxkLEIT8q9JaBSwdGIoO3LJJf7wNaAZnuudQfBLo4xlNCizyDQc0s5cO4bj2Sna9B+cCQBYhRww1x2NBPZgVSCUck1ymBcl72rCQqAkLgs7aGkCkCwbc7UGEfKojus9WLlmQnIuNqzb0mL2LxRm/9k6Tos4AZDyUOUr7QkFSrAPhMRSm4rYZXJSSBBZFkKNJ+z4bAx92YkaKxvHVvbpq8wHJfjgq1lGdeQXwVMvafdSDBtlaKw5YZ/oOQr7BpoU4ChRa86WeRAcHEloK8SkUH9kuPz8Nw32ruaLfmgusG9JguUGAn6p/QN8j+t/JOUoyh9TweLIGsyisVaxk5jU7JgpA3NzqL1VsAj2SqlZwGWYC5f+dqGyi68l5v8y5kIsWJ+yykWqxXyPKE518UG/lv+eSb5lnRKZEJXey4A+nHppwaTYtb4qZq/heGAZ5eZc6dPrj1WqBYUyEP6Q3Zdv1cCqO79BwE/tt7Gj/psMpwZlKB/C0sU2WcBx1QI7BL7Ij0HaD8ZGQenHgLPFOVXAcVW23ovG1SXVLgeKscHiNlk7r9KuMqGqxzimmjj0itB2bcT9uc/miWozaHyhXNMmpipx0omuBb5+Fk+iBBSJhID4bOPwxPo7Uh7In1WLHFN58xVoyqhnzbvGAGMnK89Aq13grKWtSxAJUp3Sz4S70bwFD/VmVlXGTbpL5Verr55DZvseo7ttOPhgxOsG7amuZm2TCDK1lvJfCZDrfrVrFXJO2BqyVo/Q4GSqrRVLCyAAt661o6jv6v3AJyfvIFnb7yOcOD29gz3keyKYlVGlP+YZ8Bk92s8lzWO0T1LWSfLidXzZUPHGGmDpSqm1EybEunJ5pTNPaqzaIiiTCrLtIemvwCedfOH17/TrrWS/wUiFLzkYNM+iOVL+2TV71XijwN1PRvphxkEIOEc1Pem9pjf537lWk3mJ6/9pPOE8dtmwLYlO3Tuh1yb5z/yKTz/4Y/T16OvZgSx0RfyAF76xtfw1X/4q/iZX/gFPP/88+ixQSB2WwdW/wOBeWtZ1SlJqWsmMEwsYBrtoiLmPPLXCVJZlczyLM1p0Y5YPUdgWae9P47LBCGHp0/gTvZXq30x35t9zO9Pe6J9to5wZbNJeZ79v26UqzEQ44BKOl9d7PDrGTQz9MZwiR5qi+2o/bRc/vH1ffPvJa+L3yTgW+hCEQSEs2uZnhbpaqw1DwUyEchCaxLr24GYDH6hGCTmWRtAlSrM7/GSTW0pW3SExmGMwXlJZ/pc1/tyKgb/A36uXt6FfRisLuLMZ2cMNWWnSbjnYFHnPyOYXrej1t0hfTJRKlxjgJzls4v5QdjSx1YisejVeKtOv963XAM+qzWrzxRDGp8pP8MYg43QBScr3bQOex1T/VlbfcqrrV8ol33Kfm2fWJ4pH3L53tvZreB6TiCRJFNF1aLkR++e6jau3ju/oT2x9KteFtV/5y/Xc846OddztL5Zz86fq4x96hxHrfoytqk3V9m5b/ftvd3azSM8+PSfuJfbf4rWbh6iSp/8GLTj9ZcwnrwK63+8y4H9uLY1FvFO2id/+k/ho5//E/je1379v/Bzz775Wzi/+A2cPvHF+/3+z6HFcUEc53e7G/ftvt2391n7I4CURAHreWNOh2neEh+e7BphCh5Y3i5lMiBLiCXttYITABAxE8+tWTJZYFSgKAOOHZsD4ReM1pL1AwlGaQM8wM+yQXXLB7MMyqFSQ7Aso6PgK5NxwWorG2/zdQbq3CxvGJPeOYPFWbSjbv7kQKCE6KHAbGsQG4ExqlzAIATMDY6BrW9kzMnnJMgo+3+pcgIJaklmqJbMGAAulwNKcu62o3UFbx29z8CEjwFrTC7wFqaCYJojpqsxPMv5DJYEyGDLgeGXSlDkuZ0BdE82DiVUxDCyb3sFuvQOcG1Uvz3P0K3WOiJZV4As9ZGBUd6G1jtj3ga+XC4snZdy0buStJm4TozYgMGBSLnxS75b7DH7vmPfdyg0BgZCzRpL3hzJUmL51OEHSyAlq083IHomHsZwsn5kUn+MkeADF9NFJuB6U2D3Bvu2wX1DRyuGD245OLJMl1lHawHxY+hmpsBpN/ueJasoRpzRGRhUwqn1uol/XI4KUDgAHwcTNXkjXLTQGZ1i4NUHjnFkMPYYePONN/Hs6RM8eHADUZQJIDguBy7HGe6Gbb+BQljdWIZw6wSaMBXpBBG0DPBejiP3oW0M2o8lgZTjmsAFJm9sAiRFqW2Y8q3yZYFMNsOVSMnZtiDQzpdgtk2ACCxYbi8QPirhUcxh4egKsi9BtPAEVBlL98RQANMAa2gxGGTTAjbKFgFxBOwosBo+4I3BQ3SWJcz3X44LLheyIQWliMnE1ih71vDs2S08gJubGwzP9TjdnIAB9L4DvaNbAlWe3h74j3/5/43bV17Ev/M//u/h5sM3QEtQG8heZCxZ1an73RqG3yZ7CRPCTj1JDGOWIVMpMMoow6JAJIvEkl5hQjmTMBcf6H2/ToDx+60ZjDpdL8vyo5mIvfiB8+UW5/MtjuPA2DKJ5cfA0Y8CrOrmajPLcmd9JnLCvQAymUj0xS6CpVpyiY8YQiySpUosUgMAEy8j4CNwHIF9s5kYIOhnBqFzPrqlfdL7M5HCMo0EhhrSXgkwBN5czxJkQR0isOLA2XOOxTEigM4gyi2CVRABeDECYPEJUIlQsTopoJqB9EBgJAiVeijXpbGMJvWiGbr1BJzCYU4gHAPw7geTEW0+HwmQlDzlgTgZvHQ7O82Zgro5/uGD48n9vOb+pBokly7Qo9lM8CqhQLtf/y5VnnZycI8Ha40LQzI87bES8LJz+bsZp14BCmvSBlx3JRTlqwlApWd1+VTu9ax850JDEFEApa039AbgGDg4L4FMYPeev28t58ENQHQcx8Gb+bTxvIYs3WVQ8oFzFU6Qg02/giNcq2kJqGxN8p+/8eFVenK9GS+AuoUSBArw2yzz4mlT2sqsh2BSi+qkZEsJ3/SPMqngtdYjIn1fD+rdtEcBEKwrhgGv0pSNOmu4bAz7X8mRRuYpJRdBINSSUhLWkP0v1iub+uO92GLZNyWLmuPAYsODTn2pd+5HMgnWEJkOWs4WtvzcEQVkMzKlBkbObdO71+Q4n2rQhub7WwXadOnh6iY6n6/H5HPzT+nv3Goa50xyAUokQ4s6fZDyQ5YzB7juEtRKCKvcJxOcOeG5r/Qe6lOqjmKPKFAC904BNpVIpN4O9+kbaqYjwZ7NGn35oL2ltMp3wdTLwUsLeXYI2MPngP0BvIZMcJhPEPLKCMCVKVunpagLKqsOrmSm1Xmizpkh/3ayPVprM4lKfZNzNcftRG4YbfnlEmhj0H9egvs8K6R/glrbFikLRv2b6ioQvLTiJfTS/xQNsgRJ6Bp9gN57gUMMM7E7/8L3X7Efcmz6iZHtkrI4vS+vfaDEM5ZpFgBOwpnA8vS/ZV5mX/IiBtxxvPkqgaOByxuv4HL5SJ7HCEgQaG6wdC54Lptzm3a6961Km6Xpj1p3AUka9TRCrD7zMdrLU0apF6iraEqqlKkDdQlE5c31O81vMra1YmMG5nxq7le9P5PC0x4JeLRCGiTv0nFX3xO4Cgl8mSotSg8JZDh9Bjk6utgyQW3H5RbnV75fPS9gyxTA9KNG+sPbns9q3ch0qW+2Kd8wvP7KD/H3/oP/Kz71k1/A8889h8kORz1LFruGRkZQr98HAeqTN3DOmP5rMPosUzes4O5ct6jzg8q+mRa1/CPkRq3aTClDVcaSMjZcICXqthXgxfEjNG/rxlokYulc2YVAno3mwLjUs08qDSjWbfWJLnAyhkvxhPay/EZtmNX/4mc137J/dyWAcohlL+mdYt7z0muyP9Jr+VmKG/14W34WJZvy31b/cLXUFOcF9NKWz1B/LropKAeynxpD8GdlT/R/tedjLlmJwwSPzD+t1v2KrTO0C1FnirJZXP8VGAL4rFhWZ4qY64YodqA1vqYn3vUAJyjrjl4P9YffDKu1orqci4sJCCzdwb6ve1BNn50AMckc+2gJYMxLS/pZ6gAjg/ra98X5ecsaGFDnsDvdgBhQS4ZiwqpjGc+EwaH21LX9klxcax7NT+2t+vj8bGFGr3aaqgHwffWcRZ7quZg+gHRR+QJRczu3uuwHGH9Zzgd6luY2AJjONLb0HNe+xH27bz8Gbf/QJ9Gf/8i73Y379iNsl5e/DQCIGLi88l3sL3zsXe7RfVtbHGc8+9ZvvuPPt75ldQZ9PwKXy+UtnxvnZ/itX/4/4ef/u/9z9O0eoHbf7tt9u29/HNo7BikNBbnNMVwldDJJnUHjyEvgFmhhGJa3y9uSzKsjsJiKeKA28scP4Crwc/gBNMtyBzYwLMuzuHdgnAlM2eooXowkTNAEokqLBQwbD4PzOAvgOJJJh6fXiAQpDTPAM1DdGbszAk8UsHTLG3I9M2cAxxuNpcNGgmPCGtrWWbJI7yebBBqOCIQLRNKKjcgZCPUxErjDIN6+b8mYZGm0GxrGYDmlkeCTBMdkSYt9b3A74zIG6YJ7puVMt5TzYDvGwIiYAbbhCE/a/AKFXJIdZYwDvgW8AWd3jGPemgbL5oQfvBGfiemKInF9K+Cn5BECbg4B3yoYA5+3rMiE4B6Z5fUBHIFt2/JG8sibzAJi9WY47XpXAkXC8qB++MC4fYbL5cLyY6e6SQ1kcGLw1rQRcOdMyhYz1Ri4+MClN7SeCfMKojUBZPK2dQYCMnjdrCULGR2w1gKBCwIXZIkRBYlalflT0KvCGw4Yet3EjNo7IFjQAQyuZ4O1DjiBdscSSLFAtLzp3luDK1hEsJD7kWsktqlxTpCABfa943w+sxzFnjLiB8ZIANnpwY6+Z6mrjkYmtYHWN/RtR8DgfuCILH+XQZbcjIFMyh7mGbUcSmgj9UlgJg2vIlIJ5gtPXeTUUQOk0m95iHEbgCe4J/dp6qjdtkr2VjAYM5GE1hEL01YCMfgZ3upWMDGT06Q7j7ytr4Cnbs8rMBRAlnFkiT+xY9StfiXSGJTyy0iRZhJwDMBHgvb201b7OhOH+QKD4Tgcx3AAG/a9YeCA9QGzgWBgGdYwAhhHls/0CDx59Q288crrCWLbe5XkSICRAZFlslK/D7StI84NimMGn2MLWOgw3mBtLdmlHJlMTu0Ng2NnOYK85JulQCt5gAMVjDXpH7El5fwdnnLdqGvEanK5nHE5DgIeQVl3BAYON0BwM4JDHUDz4O39JRwbQAKNAhNYFICnvUEzmHWuLwFJHnCWB3U/4J6AUB9I1jHkXugF4iJISG/li5s1HOHcOzMkmf9GsZAEpC/JMMSyjAhLtoa6bT2DuSnHM6zrYi4in5IAAUc4+pjfUWJzCCyEDMs3QzJtCdR2BXJKPZ+AIYe1DR4Dhx8TdGJIkNcgcKN1HE7d6GkzksEwCDZK0G2CZoM6FVk2zQR8EYAryjNw7s1gEL0pobsE2D2/lmK/lPdSQhTyQaQPLPV3+kIpl5XwsJSvKj5F/ZA5FQEsc35mpsgwL0wzmZA1a/O7ZGSTXmqcP+kKiB1K1orJvN43TNBEAtK3rSPGBKltvWPbOnoTiNIS0NQbjqPjOAaOY9D2SDeN2qcCd1dJIMqyDyU/ZrC+9B53IPF1lYQC5awAWMvtdQOg0gteIwXMerFuhQvE1kpXhil5kWvVmTQRA4lBCTWBk1BJcIQn8DAcjkF5sOqTc5+qfFCRLVXvUsc1S90hP0dmz4ECKVqbfYqYiQcl+ooJ6D3YgrqngEpYRDlmmidVKn0b/QDAkm2k374mHac3sCakVZYPNpktopG9QCxjdj2P8kR0+99scLslw9PKEab+tFlfZia+7oB9bBnLct8ehsn7VH1oi+0EGTeKPbEyeJUkHDFSb5uAJnw+58qFxOT8tNZElQMlCGXz4ckqOli+tcBKRoBsoVgSlFpjCsoq13ImwqecBwLHs6dMsM95HAgCGrOkqnxeMQhNcNsiB7Dlc3NecpuyDPIiDKa5XYEalY3N85j2ZIF4tG6tvNN6lhit3PKSRZb53krvmuaAdkTPXLgLaI/pM/ZW4wsmItfkc8QEUBd9kZSnpY8ScSBi+gVY5viavSS/KytSYAOUaSmZ4Oxw/tv8WQFHaTsImhOTTSzvnfOd+vF484eAj+z+5Un+7HLhOQ7lrwFA33rJ3GQFnOfDmi/gqsR7zbfzDKV+aauWTGqx5uwIXEhlRHlGnpuWY9QE/Bjq0hRtK4BZNmi+qSa3gHe+rDnyPKEZXNfcaoFQWkjnlTkmvUe2EaUrkWJcZxFNQcCBYrpOWcjy0fO7M8Gd9vG4HAhrdRENFvjwZz+fPvtIsO5xjAQB8dwWFricz/j6r/8Kjqdv5Jln2c+xPF96v85Lpd9zntHmus+VlNByXFHQHUGQaj4A8OxMPziFKy8pcE+tprT2sScr6MpmkkDMaaamP7Ladyt9rR+3RTclZnmORRdeyo+39H+unl8bDAWS1r4RWClZJ7V2cVcgF50ghpXUwZTi0iIUhBrKVLylICDADBZw1NQBU1av5kEyBwEK9eioF2kf2OzJtFv6O8cmnVusoeyj0aaW4mNrrdWlAIAAVK1caHzBKUtdMEFGwbWblxDntpqCFriOcZY4+FzbRcAhwNKcHpvPkg9zNYr55PpZLJbD7nyyznp8Bz84AXs6Dy2/rP7U6sxnLWspAOAEoTnjjoYWLS98MKY3QbFaR7KrWoOZMx4zGcDuTMqiz6c8resy54U9X5RkeV7lowssNccpWRVYJ0VnMRTL9i4Zifk+/Vg+2jxj5ZcZgbrSYbX2VCj1f9oXQR+tZHPquSnrWN5x55mcuxX8VXty/nrp//Vc3rf79l5q481Xp+G9b+/Ldn7xG/kXd1x+8C3g8//Cu9uh+3bdwuHnZ+/44611/NQv/qv47ld+Lb8ebw9SevLkCf76v/+/w2f/4l/Dhz/zxX9m3b1v9+2+3bf79u61PwJI6QKLjrzFGEALJvsyiJHMCekjnpvB+jxAJ4CiJRsQ2Uoq8IIGWM9jWlNSlPHWiAyY2chgUeu4IGA+MijZM+Cpw21LhBImgwQBNmQj8ZE3yvIQp9tTQByZyMzvN4S1fK2Rwag1VEpMwVwF+9wQBLY0sp8EGPj3gYgs7+UwuGefdJuv8bmXcWB4jmHbOrrYVJB55aHyIWNknhlAQH1MVpTWsvTQ5XLgfLngclxgEWSsiEz0b3sFn8Lz3SpRkvTLybg0gqV8AoTogOCTwOXI+Wy82dfDMGIAhzGwtpTS6gESjQBgab0lyGgsm9IsEytDZRjsgiGAgM2SBApkBrI8R4XwzIoNR/MEEDxmwCUaYAcMhk1sJuYs8Qfc4sDhwMkD25Y3kdsSrHcc6NYB6xgHMFomT8zOOS9HoEXDFmQOOQbLKyX4x7YENxyXBGplcGEwqBPYN6D3E6KjGHNybiNZe/wAHNjblkHJhrxV3gFjQKWbwQ+CvXrO8xG8Va8ghgX3BzLwEwxdBBIABBSwyg/PIBJi3moPh8eRwLWRK9QJhnny5Cn2U950vtxecPvsjNPNCa3tlVDrQII03PHg5pQBq4VF4jJyP2VZrg2IBJskC5qhsSRLQ0NQZgKe684EvoXxExOcdIDAHgMQLUEgNpM/IHuVsyzB4cmiZQH0rWWCXjfQmmUgM1i+wwTkon7wIItBZi8y2ZbrnqQBCdLhb68O1RaGrXVeGKaObAG3A2NElTQMMY2F43zOsoXbacd+s2PrJ8ADfduYPAcT+oaIhttnB15//TU8ePw8tm1H+BkHHPtNlno7H45+OMYxABxo7QH19TO0ALYHj7KsoCK3jgSxQcxgWeIPPuDHkRE/N4TtCBuwkbYARpATWpWScRDsSh0fANAMFwK7NgKZGOlFwDGOC3VIw2BCoWoXmv4pBgCy/h1iPOqZgGnc80GmuxHoCBbVmzmFCsgGCkHhI9l1VM5ARiKD41nm7nCg9UAQqJjrawl088i9dgSOMTB8AEwyXMaBw7iISMBN/lVJSoJJQX1NFiSDyu4RahFisUvghFKiIvmPBhwO9GhohOoIAKPUTm8Cyk2fYLJ/sExam8DkbsZSeJmkmPp0Bf0kM5sH0E3JdgJm/ZKBajKHNIy6kQ2xmkEJZoNuLhu4byOBIqg9lp9JjeFo3IsewTlP8FQrhkGvJI1YW+DLDejG+UfAlMzwZGdrQRZAOOUbTHpxLemfJPMISgcE58c1PtrkiGQUS99h7mkB4iY72Uw3KBGY659j9wLsxJKzMbIgMnBuyZSFGMDhUMHCjo4jRjLx9Z56OAgui2DZrAQrJWMNmVFkpQ0FHDSVVKJPEekk1rhbkBGAvmWjrCWjnNfY8muemF4G+bOMVRDYlD4GRYXzTOD6wgiZP7uQ2SxqTCnb5IerZF+ulVnaJvcAtUaCkkaQ/iplwsW6F1ZsB/UMJ9gNIBiDNoZ7LMGEMylXCQ9+gLDNSjo0pl+lT9/LzUOlvJA+ncZZ5VymohHAbP1NgopaJb5zYwACaeZ5ArXmk1VKiSwgrMGo6GaZL/1vYSGoBF1MkIDYP1FCVKWZrhha+MA0SQJMtDtJ6OpZMnDq/QsTjxEUpUSgzO9MHM8EciDybMCEXTFLGa7moUAuwZKkegL7nO/wuriQT8/PdDOg8+KFpYZQIr38cihhf518y+nM311e+0HpVABzrwegEjxa3gTSouzImiEXeKIAFFgAmcZzatnHfL+ppK/mptZyMqkA8h8kE5aOrDGJy5/pksXEHfAspEsNksd6rlFWlHT22tcByzOuGe2hk6EtSJw3k8Y1N9oulrYiy6/rfJSfaVDyNue3Wy/WOMl7Pm8mm2ci3HivyJb10+fm2Ws6TJRF9ivPZ/LBtYfpRz94jrbWMPyCAM+ZI9fbx8Cbr7+Jm5sbPH7uudpTaaZUTNbKZgKy7ZiN56B0p4K+kgA8eU5UeU75PBpLaC/F1N9K9gJWDJJqAi1DfpTNeZpAvty5AuHlx43z6OpB+oyrEUUUW6cAgFMf6FvZL4POf/Q3SlF5nekkj4HpT27bhm3f8uxtViXnFdtATJ/4crngOO3YTzc8x+XYP/WlP4nTzUM8efMpYIZT3/Ic0Q0tOmAHTvuGz/3JP41HH/hQ9iGpPqHLOWrJPJg2O8hI2KwTb0qd03If6kIPtEZch+kTLZg+xYxKRnQmjPKRpc9CdkF2OMR+MnUcItm8Oi+aCWAeAHq9ewGFLHJT+4Q+H6ir9X0BPeb7xlVf5jCzH7wzN3VvONzbdOCl6kpnz7GX7NOPi/W5oObi+GUb5/lItrUmtX4/geWx6Pw5/+nbau9M9F+Rga37uZ6sNdEkcv2Ws1j1S4xWEen/r9ZXPkEIBGIl54KV6PlVghGak3UzoS4GFEu8lB2insVZqb6X3ag9PPtfsJZY7EstY9SSLsaH+1Wf0Ttj7SYEsp1zMJ9Zcg+pnahnTjAoan30ff3Mll+4ARa+nB0b9XeUvNz1Vq8BPIutXfeLNrTO+rHMoWS/tNZazGz2V3+a4QpwXnv66oVTD+aPvBZDQKLywUKQouX7Ma1LjfFqPayekzqHz11w6LUqganDtRHWzgNzQhajO0FtNp9ly3PX7wP0x+P69/ftvr0H27NvfQVXaOL79r5rp4/+BN786t8DAPjl2Tyj3Lcfy2at4ef+1X8Tv/r/+D/i6Ws/RGsNjx49esvnHj16hH/5v/5v44WPf/Zd6OV9u2/37b7dt38e7Y8AUgIAJo97II4A0HnbzBnw5SFmMAnUMAFEzTDGkQGC5WDqyDIz6D0DObi+jVNxz5ZJMRt5Y3cLoEVgtABaljty80zUEOWxBu3rxl3kTeeoQGXLZK55lnazSYebwXrH1nuWfiPd+FWM3Enh3SuUgY3MH40AokxIHzDr6gKZjpzJEatb0pfhOEzltlCHUY8BHwyu+IVgFt426lnqzHoHWF5HN+hgQZaBSMDFkSVnWuuA582mQfYWcwIveOgO6M8Z6DEGyfOSo25aoRhydHPUYAjPBCgY6FFpvVxXAhKsJQuGAX4AMEPrYhEAkuTKMOp6JxlsjCUqFL1D5HNgWQrLM1HTmhEk0GFoOKyhtQRwNJUPI+DqEvmMzpJ/WhtrKocUmeg9BgLJPJNUGQ3tcFhk0maMBBiMcVQJKQVNPLgeDEY4GYz21tBOW/JF2Azi7a1jY1Kr9wa0DjQUSAxMEvWWPBxugHVycngCYnAnOVq3yAIVcMsx5noPgrxgg0lfJocRWU7snGXiRgy89MOXMPwZNjuh9YYXPvg8nj59E//o7/9DfPGzX8BP/dyfyDKQQJYLHIHT6UTZYkB6YQpIxhjFSGOOM5zgswxwJcdVQuiyVAQTSSw1VKw5JcdOuVbKczaV6Kngqhlay8TQMTIwpj0UKi8JK5CCwE6uILsradaq5IUCoAATcQoaWb5fzB1KzvWeTCUJ2EC9z8eBGAcGA4D73vHw4SOcbm4SUOmBiwAeqHhl7pyRN9RvTjt6Z+DSGrYwfOjRYzz/4AbPn07opw0P9xM2dO6bwDY69gcbPvGpj6NvG44xeOPaEKSByjUbGMfAcdziuBxwd/SNJWIiWdfAgCMiZTrLYQzqmgS7au6Kor2SxvpZR+8bAXzJspIgFiV4EiyjUlBjOKJlIl8y3lrD6eYG2+UZrGUJwstx4LTtqc8rhkgWISaY6j0jyPSXN3BxxToUBR6EsQwkdZZKguTWS2BjsmAl2Gh4JPAiKWMScOEBGwKnZbB1EATryEResA9iryG2KQF7nklQ9dADZIkzwBr2fcsyZIeRtY8AGgaGXfFaY+lQm/tSrHJeya58zyjgDJMTkYF7iLOoElMzeC6GIkAg4wxQN7NkvYGYEjmHZHZU0NrqAbkX8xeZaBkecGs5VwrkxwS0NAaxmwXZS4yB5xms7leMO2A5rqB+FGBnAkMFmVCyycJo963Y2mTjDROEqxIMlZgIMqyIIcln4Di0DtDt4wR/BYEN6QY0qMRGJWOQQL1QsimM5eGc8tpSz1AvRkt/Lcs0JTjbydil0qaDvl9rlqwXBFz60G3nmdxoxXgmkJeSCQlwcp+ATiXWjcmNKhnHZx0jmRpab8WgRQEtPZiy6QVaBOc8EPSxcq58sBfs6FqSB9DeHdTJ6gshjXp0pF2f9kegkDn+0s7l7qYu1W3tlTfR670CqfhVfzKZ4DOR8R4Pzgl8l8mlmUwpW2kzOZLEkkqY6ab9BPOtyT7tBxOaf3nj+rcEOaXvJEatAj+QEUTvu/Z9Z0ZuTfYUMxGmL5Pd5KdM46V+oQu4HHUWG8dNykerlFcCJvU657Ns8UFiAmmobwb7rXKSAoPJ/miLXOKY5wkjkLBJz8qWRPmexeAkI8lDkZFFddl6c+xzpNmfEJvsBAHFsqIJOtUZ0AiW1jN1UWBm6GKxzfnvmdQkIh9oUfJz7QvO+V7zkhMMNOfLQ2cG/h9tZSMzhCFxTGJWTABny/KzhgJSyO6oHwV8B/vNeU7dQb1Fe6uNLtlPHUL//fwsgeKdujTEDJFg442XN1Ke+fdmS7J7ymLcmZBVjg24I3dY5lCXBOT3GsD1hvZ+pA5vN8/Td3R897d/HU/6Yzz6wEdw8+CEx889xu2zZ3jxxRfxsY98DM8991w5CB4HdEGnAAcl1HPdqv/cv7b+LniWXRKzpY6A2ksS51WOr/+O5fvTVpQAC1RU5ThpF6M6NuV2kTf5RhHSRRTnRZ+p2fJfzbmAV62ln4dlPdIejgI9td7R2oZt26pcoUeyWrabR3dfBCB1wb5vUp2poyLw2S/8DH7ul/4V/Nbf+5tocDz/geex9w0JwGHJ823Dn/zFfwWPHj1e9oHYnadPGAQwO9mhreXLGgIs5F6y2njumqDI1H8qSatSt1eLzSVuvMAEL47L/H+e0XJLWsn2nOspCzmH08ctIAIxV5OFavZDzJ1ySs3yLCDrkntDtmQC3SpWVvIiyabOdpWdC4IhczD6lA+BXub+Ll9FMrywQEriVllPc03w++Ird5Zxd6GwS3BMx+f6+bqPdDYue774SuUPzB18hcOIuWQLsGMFhUyHwGvuCV2x/E4xGrNP10CS+bP6H1aAFK76WGpn8RtkKmWD1vmTPpTt1GfzrVZdWGA2V++ck2UzV9/0hPmt1YaqT6h5itIRE/Cr5+vbU+fZuo7yNbihpBPmokBciFBsEop9Bqr8da0R9aX0YF0iLZ14Le9lwut117q5xrH4XlqGkneOR0ypc06n7SsQ451zQa2YdIYAPgsb3Lqo67wWcF5bIeL697j+2bQP8/fLNQaUjS0dYvVqfb/+XOxljUK/N+nAdR/ct/t2394PbTx5DTGOd7sb77jtH/lM/f3J138Vz/3sn8f2wsff07GQ91VrHf3xBzHefOUdf+Unf/Ffw5/7b/2P8Lf+z/8bxOX27R/bGn7pr/730bZ3nNK+b/ftvt23+/Yeb+9Yo+etjZGB/ZFgjW492Y+g81eQHDoPRpkYzoBNcyUCGyBmkcgk1ECgA8lmoOB+q6N0HhiHgpwMElWiKQNeAvzo6FcU/bxZrxJdzVjfdDlhW7BshpICrTEIbkDLQEYz3Uy0CoIpkW2xlFWIAMbB97UKImXSMCrRnV0IAnvA8icxgTFMbgdL5ujWjJIFPs4MJJI6GcmtdJAFJYNUgQMJpIkxZmCaQ48K9tkyf3mg7UhmgIaWiVk3bDiAGAhR8zMKcfgBOIFZ0PAM4wBaiGWqJ2Chc30t59VhGCwn1toGMRRkX1jSpgV678kQgAxuZOImwT/W+gz+lC+agcZjRCLsWoLGNuuADaAZegN6a8AYxYQSbohtQ+/A8EGgmVVgFGgJ4rFgiaFM2PfWGFgMJnHz9mdnYAWRQCkF7lXuZgzH+XLBa2+8BjzpeHr7hCChXItt67g5nTJBbfkMgVhyvA1oYl8yJpMTrGLu6DYTVUAm6ocY0JZkRG6XTKQO3k7zMdBJRpKRG2SiOgyHJ2DxV//hP8IPvvdtfPJjn8SXvvRFfO4Ln8MPXnwZP3jpNXzpp2/QuqF57q9j3GLfHyEMOHxga1sGXoJAAZ+Ah6uEIEEAGW9zHHFUpC/cyQaW32s+A19LvKd0iZIkAMFYYWS4YfKnE4TQZqDbLIuKNd3S1byHgrxKMAFjHDOJY0kjptheluXLuWzSFR7oBGIlgCEBcBV5illC8DgOjOPAqXfspxO2fcO+79j3Gxg6Wtsx4kDrKPaqGVhNkODDhw/x4OEJtnUgNoQ3wB2f/uQn8Zf/rX8j5wOOb3zru/jKV76KcVzQmmFrOz7zuU/hT/2Zn8W2nzg+S4EQ+84IBBzHOHC5XArsliVPIm/3tiyBMjxtQm8CrCSduwKSen6BO7SCLZleBCjI8lQHhkBs/I4hCFwNAmzTKrlATtxL+76Xzbh5cIPTvqNtHQaVl0y705bAukANgUBXybZIvbmW94mWQeetd0QkODEIjEy7ZiyfeMA9S5sN9u8Yo56XYA4XeiJ/3jrL+jhLi050zxBoCApG0i5yM1QfgQSJbVu+YwAHBi6HVUm+Wg/9twLPAw2pR8LEXEbNy71a9P12DR6D+hUyw2Qbkp1z7UeGVpvRumVSABVL1v8x4TZGgmwGYC3lIYPWXmyEYVFBcQXmW1Px2s493gAbCWYy+iyGSsIEjEyDMUumUFHMZALBKEagUsy1CCaOC9gVmdxTwiSD/WnTtyXwnmue4IQwq7JfZdA5ViWorDWoBKiY3e4Gmq0S6zWLjKfPMhnJCEZNZiwPaQazrZJBY6TMHiPBx7017KeONjIR6uhwt9IJOXba36CtVVlH+i6BRUYAJu0z6J/PZEJyAeEeR+rfXro6gW7NVGIyKKMjmVWqnN58Rs5X1bxZkhBKDkwZds+ikGKhSB0o2dS85xqPuyX2FhawtW6Q09bLjoSr1N11ogRtAgSq1NDS7v77vdQKJKfkGAFyNW4o8SIfZQHjALnJ9Tvua/6g5KZmOuZ5Yk1Y8YRQSZzSc1yXxVUvdq0JuLkaDP8yE5ZTz9HXri2a9kjgxLUcW32+JYBKe7XAqpXepGcTGgXq505fSu/Mfufz3KOc5JmXUmLakl2UfqQFEtzO/2nWVLK65n6dB7lrXKsEYmZXE0jiNd86yxUbAWQbmNg2W8aPGpvYwuZlkumjlamqParzF+rPvFQju4T63Zr4nXM610Ctyquwj13ZbTOyucx9m+MzAhv4szDApw+AkqeoP0veh9fPpUcIo80zUFvLMs21PL/+Mt54/VVgN1wu55JnIMEDAo3PeVkBjXnmrXyxbFpQEXNXTonVXn7rXF59pmRW8xrlJ7l8EwRe++EP8I1f/vfwZtzg5sFDfOlnfhaPP/ZZvPnqG/j4xz9W+d68sJDnIOkFE8BFzyfoVbtmCgjmnGHurxqLfA+tLa7Tv5zqK7ma38OUQWmwwNRPenedQ2af7p5PTHuB9n2W3p2flS0ohqYIMpTmZzWW/BV9B/5dFwC21mAE18yLRBOA1/qG7bkPLfMlGAnlSezEAtha4AMffAH/zf/J/wxP/9q/g1e/+XX4K9/G73z1q3jjjTcRlnP6/Ic+gi/+qX8B+ynLfhfAUtaTZxGdk8tmpATkOEylnxd/QcyXVzO8JPXnSlScBQDLPFkeMgrcM3WA4jsqJ6wj1lT/lgy2fF+zho2+NWyZU1yDlQt0IxtRBIlRsidbCERdyAEwdT0mUCjXliApEPgSC3hfOod7JNh3vdW1d1ZfQ+5lzL10NZ3se7IgM36GhJ8OgafZTw08uEAVN1v05vyl/IGoeVptcJKP3d2dc25l18tmr2OB+rQMhnsFZnXpyEIyuYBDYz6r/s5P6QKHWOYpXfWe0rWx2C75GZhnXvUPtRf0zgWcVbIzx1WTvRpnA/fn9GHyPMwHXc35nOt6th5TZlnzMN9T39CaUg9P+z5bvjJq4A7axkCBf9wnG54wlhmrnCA2p9zkZRiOp+RD8r6ArFejJG2zdjOWHoY0kd43+7vaPv0ZsZZT1P6dL6jnLHOSz+K/Y5lr6ugyl9IFZWDuvAOALrYk0NOXn8/F8XWQlLMp33P9at8VuBH37b7dt/dZO7/4+4jLOy/P9V5q481X8d3/+/8a3zzf4OVXXsNP//yfxhd+6V8HzLC/8DFY39/tLr7vWttOuPnEF3H+/u++4++YGf71/+H/Av+lv/LX8LW//ct4+OT3gLgGzvVHL+DBp760nGPv2327b/ftvv24t3cMUroct5lERmQSMDranuAQJ5AmD0ONgdsMHrkfMGsJZIER+MKIhmXAFmYYx7EEJ4CrwzeDZR4HATn6bR6gjoPMQPx8J/MRltBOJQBtOTAyEKGgUsZ/om6ttZYsP2ZiWcikmlufz2b/WrRkispOoFneRAwF1CwDPyrBEOxrnhkTzBLLAVK3vlrLz2+WCcpMtFqyNRS4hqW5BsvuEEACHxgjKmndyOqkPiggZE3BfN7kNGTJMCauzeeNPY9RwYFZRingI9d3CFHBA7Xou3sPsmmF4vkZPGAC3YfDRgZ2kjWoVzCltZzbDPY39NbRVaZA5V1aSxAY0VxXybzIJH+ybvH3W0NCsXK9bs9n9JaMVGM4+tYw6eAtGRoCUGEMrVFEYOtGRokLZWoURf1wK4aTxr0RHmTzyORamGE/ndAfbBmMGYHWkrXj5sEN9gc36FyrBE2MZJgYmbZvLZMlFkiQDQNSuok9Y2K8sQnHCEe3noXRjCAnJnxVHqj1jm5A6w3HcalAeyaIHftmeOGDj/F7X38df/u3fwe/9mtfxqc/82nsfYcPx+tvvI5nlzM8zrjc3uLxwx0WAwdZZYJrFe4YcWT5q0gWpEyQDZCsBroN2pA3qFWGAu4sVReMAweZTFTmcSZwIzzZqJBJ9YgEFSVmkvtPQBvdeG5Ghq4Ep107wUpALVFuJt0qZBlTz1hjINnzxq2CZmbJSdd6gjWOkWt2jAPHJZPb+5ZlBPYHD9DN0PeG3g2dLGr7RuBQ2wFTaUV2K8gsEpm0RCRAy0dA0fZPfPzj+Df/6r+FOAaeXS74O7/yD/D1r/0exuUCILD1E37pz/8SfuJzn8X5PNA7meJ4WIhIO3AZt7g9nzGOo4CPgyUuj0vg2TFw2loCPJfSFgJsIAhAck85ARlXQoBX6gtPBr6NjA9GUINzjUx2iew5MCuGN+mu3juBg6g+tNYJZGXCJJiw61lOUzo9GbI6sowTyCwHCERz+JHlSoxASer5TSUrA/BoGHEkC4sRmIYBjwGGuTGG4//P3p/H2ppd94HYb+39fefc6d031Xv1an5VZBVnUhIlDrIGS5atxHYPUSdBu9M2gnQCBLA7sJO/giBA0EEDHSNAggxAI510kna6O2hLlu243ZKstmRraFGiKFIkxaHmV/WqXr35vTudc76918ofa9j73CqKJZJFlsS7pWLVvfec79vD2mutvdZv/1atsPJUpk8pATK5hDVWPUootVhZmBZ0rMYw5zqRq4Cy3oDPOSlbVkqapBZPLkskFUTE2IoUHKpl3ZTRjhKQ8gAuxnCXQtnEOjV2DQkAStge8xXEmapibT3RLsa0p1FqEeg6WMCXRbSMqwjEmJeETX9YeT8P/kbwP4AkrCCk7ElbtxtWXsSvVndB87XEvAebRedJQcZdQN9tvPsebCXbEhpbnbc0IFtyw9NL2p9k4E0zmM4c5ykK8jepxFaG6lEycEvna3jR2kie+FqRPcjKoDmAyoG4IkDKDma10niJUMy7ITI5ZfUgMqUoy+RABZVPZQm0vIEBvBHjYA/KW4o8GUMeGdiAzK+wIp9Y8zFY4rd+e1/nyQF7PocIQJEwWxlBlx8DEbGYDfVpaaxF8fwQAd1PXkqEWcBkIDZYHwKQ0cmh9U2sbJkDHUSSJj/ZQWKuOhzA24FPFYVo2ESJ/orp+f7777ZW62Rrjkg6DZlAuUsqBgAAerog92FaEkrCtrV96mW8GO080QO8XBe6jlKfrvFxKP4kOQ4l/nEforHJdH6DvgX9lLcEFlriT/wtlj5NFHKpgJuEJAxlnJN4rjLywE9ZuuYhhh0oyt7r+4q9hLIzaBizUwoQts2jz6048KcBX8j+cbnXpLcnIoFI9sXIG9hCgTQ+NpurPokq0nrvesETZKCmO2M8HUDKdTZs6eIMCsvGdYB3s6dspXxd16s+V1QO9YwHx86PIS+xj7XDmuQVs4n2LBEDzJKyzQniAojrS8/2KhttJycwMhe0NRC0ufcl888G+5SVxxUAlBK2NrdAs4QhD05YoWVTczYQts6L26h1loh1G9fy171t9ym3sznUH4xLD4Alm31n+XlTRZC9nC983TTRPN+YYe/lm/i93/19CANfunAe733P0zh1ahenz5zCfHPLXizYmM/s0oevkQNsne2vRknPHkTUwgwdQAwAhKKsm+0a657vawpfvt+bTa+b3EZyl9Y+g/AdOtBQm8mYz34zuexK/7nQY81vDUC3fT7mG0n9S9u/nvQfx9HiNO09RG1fKROOgSZIzznSyWQ3O+aDcjDxJiLMxxEXLj4IXLiI+tgTePX3fgX5hRfhoCACsHPqFM6eP69HuKKl7AlmGylBzXpFqUUvopgsOtZSquDgcIE8ZMxno5HHkk+K6hZfX/PfJGSacEzDwjRbWyN0PoHJUDV2R4Tdaj6yr1DoxV4/EqEvy6b7tukXlQdC6EibpJBE4WDhamV0XYf5IPwygOo+d057kGIPavYXtxXtJoOaVnebEvMUSrZ9Xt3zZCy47UysU+XAG1krYet2KubXn9rNd9NE1GyF+TzuQzpjnX/UAelNwfTgDn1nYyJrfYtpVHcOHjth7jktfc6wzoi7Nn0dEMjdjLByFDrIu+gg4DXwc+dT4Lidk7YOAZyh9hwAGguTHqzoz+ptK0KewF2nEK+MLvQAGz2reylofZZbsSYxCGPl71mzMe6/EHSyjdE+Lmd2Nq7tBd9jDTTax7YQf3V/w5/hv+vsJtYkOOZV9TvHernP5vHh4/oAsX7S1gIIv6BJjZ3DOobctsLS5tqfG75jB1iTFi/um3T/4293WXE5XZ+j9nPExP1J9rLGLiid3TppJ+2knbR3byO9oRs68vbrV/Ar//AfYrFY4LlLl/AX/uJfxO7ps7j0r/1tzM6flAb709LG+QYuPvl+PPDoZbz+8/8B6v6d9Q9QAuUTFqWTdtJO2kn7s9TePkjp6AiUCaUyVouCRAPSKWXYcHARRdAZiJvO0INZHIyDe77dYklGR1DjsKbPS6k7sCW9WcpWKqFWP/hZNowNxGGsE6VIMAD4LcP+9qgzFzB3N9g9CGRBiWTBymRJLohAUgKRBlinCgxp1EN4ygpkgQF4LOmst6IRpdM14MMtYEaIm8mwv2kfjYHIgvvDIPY5Aihp4lk6tgormZakASX8eFxZAC6a+ksG/rGopKAFyCgpIwZ50AOauAYzpCZlRbJaXImSBr2JMGZnU7EAWhfg8DktpUQgNBGh+CHcgxds4KWkATY2ZoVgtoDKAzlLkJWJglEqexJv8ISzJQ4AGMORylIpFUSMzFnZcXzOWTCkhEEEnBOCE8zkh9iSE0ig5DdmLcwpU5Nvu/kJS2xWJpD4szKy4SxYBJUrKGUQZexsn0LeGTGmMYJvlAjDOCCPBl4iGChH+ThgtxZhASMvk+eJT0oJLRbJCiZgYBiUwYWMXYdgpRmRMCQCio4lkQV+BQAxiFjlgUTBh2kAhHDz5i3cvHkLd+7cw7U33gAh4fTOaTAXXL16DQ9cPIvzFx5AungRK14ikTGWJFFWHK6Y6oQyTRrusn0sBjypXvhGEogsuUukeV3xEgpefFIAsXJO6G7rAy3gKA4ScH3gz0i2QQkpwxKIFnBktmS0BkiTAQo8+eAJw5wGCASlS6alRHbz2xON/rMH+ATZ1q0aOGc1FY3dDQPGYcBsNgvdxNByIg4u9FJefrN3HAfMhsEjrQbYBBjV9J3OrTMzDUPGbNDvMCVMrGiDnMzxT5pw29jaQcoDVqsKkiVyrjF3QEZlwWo6QiktKQICYGwqr155Hc+/8CI++KFncOHieVAeWwkkhiVRKjJ5GaUWmM9Jkwowva8/GEOdlZziWpWhKTV2FNW9CixKpEAH6UpOql7JugeMVUUDfGL7Vm2S354WB+9Y9K/ac6gDNrHUGA+RoJIBPYhQRaKMH1cFM7Lpa+aKUiZMZWmMXG4HDAQZ5lHntelNCiBfpgQQtxuyHqAnnS9NQBEwJKTkDIC6Z1TXmT4kuy0OBcSyVAXBejILHauEOEOGANwFyy347wBkLzkjIGO6kSgzk4dswC/bL0yI8nQpYTJRimSNaejqAB4GrP5gJLSUaQbGRGN9rg2wRQacCdAIKUBBgVVmM+JNaou9hEY1kGnIUR/Qjbm20LVYYtOMbQ+YIPu+cEFlQjamMbbnVS4WYFfWOXt0Axq7/MHY7SiF7YmkAAyk7UHrPvhufWcRBFOXOHC5WuIgW4Df7IKXBmWVHQd0OLBCAdnaH9enHsZPKRnzV4WW6tHyQ0xAYTHGBNObSKHbQA1sii4J5nMiBuwR26Nse6SBgnSPVgccGdCrGrgpwvtsOkLaGrScgaUZuhIUIgqMdhtTWVCl3QAPoBz8Z1sBgfmUtm8sQQsRKNbdmW/Wk4G+h33dQgbD53EgiHvY7852S17EnHcwll3USZDTgLyZYZYt5ByA7lHAbny3hDAAs8ctQYn+e7b37CHdH0wuSRlhU/IzgDvp6oM2JgRPcHfvRUv+rCetund0HXI7ByBYWQWCwCrG32B9lmBE8aSzEqG0sbqecR++jVm6qZO1Prpta/3VB7nulfDfvT++f9QWcb+fnP2LWsLT+9LPNpF7Od0Ud6wlPkr3+7KxfOpsJler64m9jjnMgYWAnSfW3t7beSuzZnZFbVky+5eCjTS+YwOhGITLhu1BSAAmbEMbiwtc0cJ9UOOKCOYPV8aqzixF7iwMyRkRjoMJ/PUOMErhn2tffA3tLEf5TdvCQfXe/7g4A8T8exLZZ9FOw+1cRwZ2jXN6LFZ7n88lKYB8TRtF0l0gxMhbO0jzTWB1hDJVXLnyKg4Pj0AEvHb1Km5cv4mnLj+J1cYv440P3cOZB87i9JkzOHX6NGazEUMaYq8kk2+uBVymeF8eZ3Dd4ewb6ge4orad1AkwuaPnrpQvapckbnreF1xiH/h+6pYbAU4Ml6H5Da0jLoOAA+qO6zy3S33mPUAvrjzZywc7oDzZ5ZvGMNbAJ+QCq5coiEE5hey7zmpyDUhZtpgEHIDgEBrlPBPXocYyHHvAZkIB/4JaqsV21O+DPUdZltk3YfRZBDg6XOClF1/Czs4WHnn0IYw0GvGHrZmtdbv8Jt2+1n5wSgZOpPAX2l5ruq69HUDHcqrAsBTf8/f1jCpNJwu83NoaqI385NDeqWfRtgl933Mnez4lPbbSL2b4s2up6Ev66XKmblw+31h7Lvm5IGxxA90cb3qZBzEO00YxjwQHlzVIC+z3x2U7mABlfc0I/Vy0vRbf9DmMMWLt8/3lIt8y/pgGEun64qBe/zmA6+t+gHQdUDGj9gdS/6O56u1vvt98FL2crT+86YVm1TqQ4vHvdN9wHdFsP9m7O/BXr7PjW+0f/Xv3Cfctmppy3PO6rTnun/qXIK6l23NAUICp7YWwjb6IDYiqzyWb154tyOfBYnZoDH2yJncS8uDfEdfz/oRwDrA2Bv9jrJUJWTxHfDw+ez4jFGMNPYn2EbcDDdzVHub/2c7zbyUnrV/+fPcNO0eqe/6ahKzNS/9MfSyt//e7sF3Z+gx2yoM4s3pMfaI3SfRJO2kn7fuhjecexnD6AZS71yEi+PKXv4zFQpmgrl27hl/8hV/Apz71Kcwv/zoe+NF/HWm+/U31mtSplRlLSc8qJ+072uryoLuoetJO2kk7aSftpP0JQEo3rl0DUkKpBOaM7a1tnNqG3rKLs7ceMpVBg+xGkx6NkiVU4/ALaTfsRZlP+qgLCQVIQYEz7ZZ9ZQM2sZbsqlz05hD5TUe7dQpALDGfrZZ5lla6QcTpgxG3zv2gxpZIc/abZLeL2RLiolfGtNxHYgiKMTjlduAlCwiRJh9SX0/d5lVYE2VFNKjogKpsZfQokRaIcep6m0eWVsIk2c0+nSudp8piJWGgM5hE2ayqghRgAWk9yK/fckpA3HIiSkgDAcTIGEA5RwCPQBiHAfNhhpwFhYGJlcnJ2QcCrOC0+ca20M7wGmhnFuQMlKogIgfYtASwgQgAW2st3ZYla9DC2FZqbcAtsRtRiWrEST3YVydWIAr5DWALZpCCQAoUGAGIAaxaAFdLHBIgg8pEFjgTOK8lFcSSnia52RIHBNCQkUST7KvlhKmsMNYRq1UBE8Beeq0ywBUpZRQwpBYFz0kCKFuJiRwMOfCSBx5AkRaUYwteppSNXQdwRgcFEWgSJ1vSx+W1EoFytnhHgUCZcRII9+8eYO/+AmVilLLEYrkAGDg6OMSNWzfw7LNX8IEPXcY4zvHQQ4/hvc88gQcvPIit7S0M4wjkhDQASRzgp/KbB2V3KWWCl8jTEVWQJXEM0gBAWaUqnJHM2XlSkwPmYMcQIFgSEiWk7OAM3Y9eSgjGZwNRBrAgZuHaAFYJmoihbIlIxNxbWA1SGUkYiuVRMEbyoLh+AtNUMJUlVlXBfPP5BoY8Aw36IQURcOi2lBMGJAAZwoRpVTDO/TYxg3nS4LAoS5nrFRZlaqqkYAEkAUtBrR68VqxCLVbugIEhqzxXJtSaIBWYeMJEE/KgAX6CGPORYBh0LlKy/cE69ldefQ1f+tzncfHCLi6c34WW8MqAKANc5WosbvQm/SGiOpgwIG50ZkvmsUS5N9+rIqKfJ5PUlHSfCzQJCGC5XKKUEkLBVdlVpmlyAwNC0nJOnriAJnySsXUJoIxlFqCWKlb+M2upuTpBoGVGq+gtc7FAbBVCLQyw/ntaTVguVhjTSu1OGgAD2ipYQ/cE+01JMSAZCSg7IAtW/lR763sYZIxcBgxxUIQIg4uEfBG8FKEDKU1RM5CTzZMnhF1/VFYAoctpJAWa7jNj50pf1ye1ZJn21RjH7Pspa+ZDoPpBgWKuhwuCtcz7GAF42Hg7gImpRlgS228QCzxHY4kVe5aWOdJ+FqkGNqYuEaNj9yQA+XMFECmIkLCofxPzAncPGjuPs2EQKJJ+WqrQP2cJEG7gAE8iO2gAZKVRRVxrNTYeExY2OXR7r/NovlG1pJK4rVBQarzH9CWYkFIFhMFJ9VhKGaAcgEJwSKgB+0yvi+rWKhzsPy2k7ECfYwlCGxMsUakMgrruKZvuIZcNl0Wzv0bVVKuYf9F8nAak80Szg8u6JIKNW/Vm57k6Y4ED5gSAKKthYYSPx8ZMtQ6ScMeHoqxKSg4sU2BMCnFWqegw7A1gIIJWkq5LwPk+kLVfv+var8/+zxh5CzvyKJ6afhwPyjOd20xridOWZLT9Yv/rJQw9+asauAW5xD/sjALSfGh9LgwgEh+EKwTdZy1B5uW6tC921gDgXkj0U5qP0cCh2hsHKnmZJcD9tOgMRGrzw3KfcJGW0IIljJL7eE3HtsS6z4fP6fp/KKMQWfK4mjve0sf+omqaUcfUP80S8j735Pp3bYWwLoaWQCS9vc9IIcv+rTwMxqKKOMccTxQeT9L1DBLaHf/ZZMTYPXze3dd3mQo7ZgbUk6P9e5r06VUMjnny9ZawEU024ku6HmTnBMibdM3avNkv/H3NRiHm0wkVkwPzyXwOLji4cwv7t++CBsJysYrkemXGYrFQtl1jnhVhZS4FwZyCpmPQdSRMinms3m+fIkHzy9bFJKQqmY1iiKHxsKZrFeBNOFxy83nBKOUQX/nqH+HKq6/gvS88i49+6lN4jWYYZ1u4ePkpnD1zFlvb25jNZ5htbCENCVgdoi721VcaZhh3z0dswBO+aoIEwZRk51HYmYFMrNH30eVcmg+0JsO29i4vrg8ac4v5F2YX9Wu2j/yL8P2EY3qcGzASWjyxvcifLiCu5k/rM1NKyHlAMHih6YkQU3uRnplSnFH0UrqWJHZgr58pp/s31Z5Xu6DEYv3yuVDbytIAKg0gZsB+sfMbC2ClkN13jDn3S2ZoYxRmHN26isP79zEkGBBnCN3d+w/9ZbcGsJRgTxNbKMVGdnuysl1Ya2sXYBk/AwDWbz1PlWkKZhWY7qqVA/ADih3b9kj7ybYytfUMfW8XwVgvQVDoKkHrEsUZ3/30WhmlsJ2F3DNs8TGi3MmB27VO24Ux8+72fWu+tne2j2/5xbOmDhwk6LbJbBpLPwMKCPLPh66UtWlS/27NvGroo2nIKGNlUwN0fQ/QrH2xL+VmTmf7b/HtaM+2vztZ2jooogGAwi6gsQT3/UenN5o+ad93XaL+jXPr9X33MUn0XWye4jwBNGMBtM8GO1zbz02Zt7H2U9G63vrcLgsgfFZ/TS83HgdWf0vB+bpGzR4D7tKYLfL5IHQgsdZnH7HHjI6vQ4DG3fSGvxgfWVsDlzOXcZf9zgPrdIj/pt8nzSZKPM/nldr37avrfozpe2Na8k0csVI03dU6g6b/Y5u2vwcLJTo5ij8e38fHwP9rzX3sb/Dn73H7D5/5SWyXC3j08OP4set/G0/t/wT6c8BJ+/5sNJyU8/p2mohgunvte92NP1HzS98AkOab2FutK63Dw0P82q/9Gr70pS/jh37sV/C+T/8Mth+8jDTfxPzhpxFnMALSxg4oZUx3rmF1+zV75jbmDz75XR3T90NbXP0apE6gNP+Wvk/D2BncP1mTOuHo5S9j49H3I802vqVnnLSTdtJO2kn7zre3DVI6PDxSkAcSzu6ew+7ONlIeIJws+WeBDztIsR2SBH7zG1a2JRk4yU6cGREQ9KC+MzwAAMHKX1jQrqeS1pIddiPOmItElKWlrJVmIWVVIIZQtcRtAyZ54r/WoodWULAvVNKEWyY7ZpIdNlkZBvQ2nkAkYWRYMsOcnKRJBxENFKZB4LfuIn9hwANPMIqx/ijTQAtCpgxlEzEqSwZrupzaXCVKKFLAdoMLzgxj66J5Pj+uCqRUEFKjzvaAiq15SkkZiwgAKlIBiNuNp0SEYSAMg5ZcGjOAqqAwJWCqkK48n8Yf/DDsQcsKYQ2wVwsIUgKSxMrFOiXYHCRSZi0AVZQZg2vVQCjpXRplCNJwYJWqiT4L0jo1PQspkCIRiIqV9sqoBL2dDw6WKwfiFVtjledJYwvkcJZ2eyulHEwymZKVUAMyNHGiALEE1ANcv3UXV69cwdF0H6+9+pqCQKTi/r37+PqXv4JHHr2AYWOmgaWq5ZskKYvNLM2shJnKJumkwkPFxW6ian9tJcT2igdlkiblCzSwrcAdgpd3tPqOoKSMLjrXFTllPHLpEi4//jheWD6PxXKJwloqaZpWKFWT9U8+/SS+8Pkv4NmvPYfP/u4WHnn0YTz22KN46r1P4ZHHHsbOziaG2QwYAIaxriQt61czg0tjoyDoHqmiiRYv7QIoGKjqkCzBX1UCqs4Ge+EJUqYWBa4AYkBADUCx4gpAgLGqZEpxK9kDs7XWoFRXaa7wW/l2fxq8XCKVCTQMmFgwUUI1BjDxPVm11N7MGMN83AogK6gTGRCg3ZTTchliQDItjQgukJWg8gqHR/fAh/eQp0Mbtd485Mo4XCxw9+gAszwG8kBSBtdJy/oBmMTkRzToziIYZ0MEMpmLlScjlWEow5UuUVIZcRYVwILnKzArQ9BUVlr2EQCTv8PLtBFWRUEQUlvZRMkJBVlHY8DPPCjrApvOmSYtJailford/ta9kaxMpJdrIyKsFksslwsDUSkgp05Fg9spwyOoBSn2NCzgTFQtEJsUpCQAhFGlGlBVFQMzsJom5KxgEAdvqD1L4MKNNUcEq6litapISeXCYTpRPSQYPQyUxBygJDGFWavptpyV7cLWLZOWShNOpgM0KcQenxdBTp4Q6YOmEv9WwJ5+z3UpUh+E15J2Xs6Fu8SWp/MFAjE2OekSEn10N5n9rB5wT7Db+LBybgZ79UA56VoImv8RIENiONscMkxniIHP9N0qAw4A6eL1Dk6Om7x6U71KNaAhBRMWQdaTr5ZkJQMJe4LJI8oiChxTn8Hk0oAsiY0Fw9+Psp6MhwInHRxQqbZgNbeylAIKO5Q80WK+GleTq+oC0D4L4UhuI27hN5kTJAwGdmLLuIqxUxLrs2Fz6XbRy9WCdd1z9mf6nkpIVKMsbHWd4rmG5H4Zo0/IRXKCTRdTN//iIGlni7GPCsPLSrrtdGZE1/Guo23hjanE7YSBm4zdgKOftv7M8SxYAqCUzs8FlCFQ1HdxKwJnCbR3mxsSKgNiNo7IAE6Ag3XIbJaO712aUbAmECzTARbzrwGbh3j08BkDcZGLNEwZ6OfNt4vEmO05ZytwaffkmycVycEh5HLiYDRvDmDq+mbOubKYUdjr8KWNQSz85o75x8dGJgOqNmJAzZf1HJEnraBnHSSYDUkKuLPkInm5OP2K6gwHB/nQTc8H24NoytP1TZtXCgCGccTBrQqoT2s55EDCZq7PU0v4RWIeNt9AA6jamUnfaeOxpysLX3vs7OyDBmLSfjh43FxV9WW4B2u4epCwV56g9f44wId8KqT1wM9PqoMQOrex79lMSGcb2gy0TsDOXEjrvRIDSbue946w63XraZ8gdj++mxd/d4AdbFyhIB0cQ0A5uIdVESyPDnB0eASY/1tWE+5efRmXnnxvAw8wuYcICLQEtOkUfafPnwMQHDweggjfHM4ipQnPBqAl/52NKHh3bY8GmIQSHn36I/jR8Qz+5S/8Pezv3cdqWoWeP9jfx0vPfgWXLmwh54z9+0d49Q9mmG9sYGtrEw9cfACXnnwaDzzzA8DRbQPfiYtgK4FcS5xBYcMI39rLgbsNNJvLrjdEGc3Ebemb9hUZ2MVlTQws634BYr39/1o/VF81kA+FjoAIpoP72HvtRQgEKwbS9lnMdnaxd/uNKB8+2zqFcxcfwubGBlJ2+6s+gZd+VZ3WKUFbKxaGVpc3L62usNw/wLQ8BA7vI9elrxwAoCwPce/GaxASbM43kVM220XBfiQACthYq00nsd4yG7Z3zSnxk5n6KxBjN+vE2+XE90/dv4uDFz6Lo5sr7Jz5ePN/pbFdOjBljfnQwMCKP3U/2MAw3ACGfjmisu/j5ifE3vRLMACIGLUUPcuwgoIYQK2MgVkZpexsWDy2EYAgsjK4opd1fK/HjnFfBJDVEqvVEfLGtsU4ALeRhgZfkystbW22ipzx1OYCBKK+7LB0MpLCbka8ytYWoQM7P1t0l/gfBX5RxHVqO/Mq8Nf2T3yllcRFv/aQYIuLGJlLi6DZ/qT2sAFTdFP6aHS+rV/Wd4LrKAeat5nwPcAxW4ADf/0sHgAd30rSzS77PqFYO+0XQgl0rmWMP0HtUPgQvXF0u25yo+ecBt5zxlKGgfDU6WnnpO6lXho57FH4Ck0WWuckZMN92Rh3Z5yD7YglgHg+T6HnfI1I+6RPqmojze73728mzuPI7d2ut5stWpcdB/b5e2wU9neXiwbYa/q5+VQ+9ceZjFzcexaOsGU21504ofPE2sJ38xv7u/+G+EC76Y7fx4D6t7dxAN25qn2syYq0Z9BxEC1sC9FaX2VtRO+eJsTYH9/AV0//U9yevYS/9bXfxihb3+tunbTvcdu6/LHvdRf+1LfVGy99w78tXnsOG4+877vXmT9h23ziI/iBf+M9eP3/+L/EtDwCK0U1RATXr7+BX/mH/wW+/Hu/hZ/+6Z/GfGMTaVSADCW9eDe/9B6c/vh/G0cvf1Fv7kajt3jbn65WphVe+eLvBtvs6UuPYffCw3jta59HXSlr1OkHH8UDTzz9HX2vXhCsb/o9H+1juvM65hcvf0vPnT3w6Ldc7m116ypu/tp/gp0P/Dmc/fTPrdn0P8utHt4Hr44wnnnwe92Vk3bSTtpJe8v2trV6yoMGHdIAqQW1rABsajDSgj8tkGoHaA8s+bFPIhwUjDNc7Sa5BbfXDrSwgxL1RyyyA5SxUthpkaABIeGKRFmTkeTBXEKFRFCerEwW5RSHXmFWavSuv8IVsPJxeS2YrYGCbIw/pQLMGcJDsD94qZpsbBGlMFA1M+BGMCcvGWUBPeEogxZsAKAIjFWycj6WjG23qY39SKzUj2hQLCW7JccenGqMIBF8SDBQkyB1ZWg0EJOQaYRkWzwD7QjrjXUSTSJYOgHiiduUDdyUMRUAqSr7g73Xb/Vq4MFu+MW8kF8QV0AWABIFJTCS3hyWpOVk4DJgLApRE80CTzCnyJ7jSUpy0IcnU0CQWsGi4RLAgrYWQUspR4K1io47bsmLAmKMZMRDf6jwRDErWxBlSLGbY6kFAsac8NDFB/Hw+Qewkj3cuPIq9u4dIhNha3MTjz/2KIYMiBRYVSa0EhCMCSujutGb94mSx/10L0DL6LTSMSrfYoCKTACxfqda4hakIQsmij3DVpoukzNcEXIa8YEPfACPP/EQvvalr+DZZ5/FlVdfwe07eyAMSDXh/OmzePyxS/jCH3wWV6++BiTClStX8Zn8OVx4+AKefu978MEPPo2HnnwU1964hbISYJOQKWE2G5CRsVwKysoSC9zmGL53RAALgjuorMJ0hAd5qN0qDFahIpDUQD8atOSWQfTgnOkGNvYMly32pIKtfTJwhUCQFxNe/+JvYvPoDRAEz766j68fjpiGEQwDszEw5AGf/NSP4AMfeR8oKaMOS8VUockl0UPTYExWziaGKqiToKaCcajISbB39xZe+uy/wNbqHuTuPs6VPVzHKsoy3r13Db/8X/4idndP4cd+9Cdw6eFHwClDCiNBcHhwgHuH+zhcLPHGnZuYalUg0Eh2HZkhqArYEL11zZOCNZ3Ji6WBPjX53m5mVwOu6F7W0oFSBbWuAIiypHiQnbVMmJd7KlxQ64DRS3QRgYqXcNP9v5yKJSQYEuwQGYAy+2ng3ZOkhKPDQxwdHYKrssLoTegCUAYYSFl1JbPqzpyt/FnS/mdJVsIt0ivKgiIw/aY6azFVbKasDAamf4TIPmsBW+rkjNmCi8Y0w5roEihwVe2lvkhtkgEyCcaOoPLOpcIJ1oIBEAlEg0mRAgJrYABV5+WcLRkMS8b5jXJVZw4+dluvY3Xbz4jSePaP32ANu0YCHYp9FynKoqZEZuNUxY15RPUyfsLGLOepA0u2EQC7ya6XhlUpO6BXLOEy5KxAF9/aIGRBA3FKC4KLJS/Qle/xtyqrgAdtjalKROW0eGoCTU/Y7Vj3LxRTSoAoq5EQtB/omBpFFKibLOhNrYQbAHAxJgLrHFkyQmrVHonOSQt8u0/GEWwPAqrQfRLvYKkdECBbAJyRM9n6qi/oY9UJqWozhCIJH4wGhMaOVl1Hq/wqRIcsqdCV0YuwuGckzIYT1tYpU7byt+qDUud76lZI8NKRzjoJswWedKeU4CB094E8KeD9VnOuPpDqfJMXEcPM+J62ZJP93RNy9vVgnFK/pbaEgMlM7iivHdjgCSZPirq9qtV9ZfUNo9xOWk+SvNuaj3+et/DEwY9CCiBDu+nu8x3/Bsx3RKyNyhxFIlVbA1f0SSv3AVQm3b73SaYuCdabf0CZu5yIwKUi9gbs3IKOqtzsoNmx+JY9u8ll2z26ZKq/dKhspaW75K2IyUZL5tpRZP1ZXcKp+YptPP5uIgfJdJISSB7/TOtv7xP5Wex44sr1iCfeYtxAXKYwBHbTDZ4wFChjp/fI19mSsppzFIAaiEGnv+kytwu9nUc7Fti//YM+lw3MQcF25J1vA4uEKPkatSnzpL6LnCeBhbVktpYvdgBoigVxWffWNN96cykSA7QmshKiaGU8fbynzlzAVj0C02ns372L1eouEhHm8xnO7mxEWeh+P/maVGip2gbeSgagcJ1ITabWJrXty5A+Yxo0xdn9t0+e6kmEfk3YHAQ//ld/Dh/5kU/jtZefx/N/9AXcvnkXt195EVwqTp3aQd7cwgvPPYdXn38FVQoSZWxsbuHBSxfx5O0jPC6nMV/dwvVrt1BWDGySgdSdmUztoOtulzG3hdE/aftc0GIcLhwUwyGz8zp4ruvp/r60UNtPveybpZO20m4xyPyvYSq4/oe/jWd/6f+OslzhytX7uFo2IZvbOLx/J4C4Fy8/g//ev/u/wmNPPR5l+NhtAre18UtAsHeg6sUnwYBkPvfR/l3svfI1HL78B7j1lS/gDEYcCqOaz3W4dwdf+N3fwdaFR/HBD30E5x4413wrAfb397G3f4Dl3l1cf/UKlqslkBDxnmn/NnhagTfmbQ0YOpOh09p8wVWP/44F9eig6QazlSLV9lrT836miPlmvdjmZbv797ltqXZ5Ib7TbX4iBRn3erfWiuVqGWBm9y307G16vLNVHt9Q1WdnVdex3T5xm+97issKCTud3rSLRr3HFI9i26/q8VOwq/RjCWsKL4UZoQIgPtvbRmdq1V80rhb3V/zSgvp4trQxfxavcV3s6+teUm+oYt2p+xV1vbLfMaBxi3Yu8fiYl/n2iWmXGAzME8rW9gLpjtZZQ3umT6z5CmQM3NE6EI2Yngi/Eb2eN/B0zAfbMB0w42OVkN2Qsg6I5V0Pf8iNVthBhO+53vrn2nqwADg+nmaj1tajrTwANLbWrq+uB3o/HabLHBQu8Q4HypIyhHfzvNbrtbOZzVDna0DauvV29fjo+3mQY2NyO9TARuu2121YD9yN6UITXaz9tukUf5eXZl0fmwsKQt5dRtSvahPbv6bJVb+XaG1sbcRdj8Ket/3U+tqNJQ6CvXC8+9qsbuPHr/8dDHLChnHSADh75En7ltt4/mEs33jhLf9W9m5+l3vzzZvUEiCYcucafvhf+3fxnk/8FG689DW8/IXfQVke4Wu/+UuWvwT2K/Abn/l97N16Q1n1AZw5cwaXn3wSH3vwPRh2zkLqm0E1f9rbK1/8DP6ff+tfwbQ4BABsn30Am7vncPvqiwFceu+nfgZ/4//wDzDOvzP6tJYJn/v//Sd49V/8An7og+9d25tSVqiHe9/0GWXvNni1eNPvl2+8CCkTaJbf4lvfpDEDXFHuvvEn/+6f4sbTAvVo7wSkdNJO2kl717a3DVKabcwwrQrm803s7OxiY2NDAxKWPIsgkB97vRQLOW0v7BApEdTww1UkbUiQLADA/WFW+qC0BkJEyJLlDHiSHAKWjGB9IA+lkwW6k4IXmJGSlqhRym4HZdit+whgqNPD4oEPK09DdluSvGSWYFUqKhdktpJv1tecM7K922+CKxEQoYqxUCVRtgLrN9cWvCZKWiYoa7C4ijEzwG45e9DExhmMKySQJIAzBcDKsvjYQMraYPMPEVRBUP/rrUe9ZaiMIEWT+A70sfVUdhJCYQlmFrJDPEFLNA0pWwmL7kBvNz9BDE06ZIgo6xBsHB4oTlZOSZOumuBnq93GTgstgCQNs2ZjyCHyEhscSQxYcJ/JSvhlY62SCG1AWDAMI5i8dJ5n8S24ZUF6Xx8QoXKNALSzEUUQiwiz+aBltniy2/2s5Z5AGAiYDYJxnGG2OSJnBSLMN0bs7G4DpOw1fttJ1ytrMJYYLBMGSkicIeMIJihV/dTdYPUFs0RahrIDKU1+ASihijKO+G3KSOqSJuqSB7w8GIaE+TDigccew+XHH8aPLz+J69du4JWXriNhBiFgY2MT43wDe/tLTCtGlSMcLQ5AdcD+/n1cffE1vPbCFVx4+AE8/+IVHN5b4vy2YDaOxhCk8wLWPgiqJaVtbaoF3Fj75IlhlY2qwAIhlVNB7I+kmgZcjY4fVobkWJA0kYMSbU+JJ63t9mWy5HoVsAWuhQrmi308VK/imfcuUSfB137tC/iXX7yLWzRCSMuYpJSxubGJ2WwT5x7YxTibW7BQn+nsBCr61OmehGHISGPGYZ5hzBmL1RLXX/4KLi6+io/+wCYOX13gxd8Hrt4H9kZCzYT79/bxa7/yGxjHOc6eeQQYkpbLFEEtwOc++3l84Q+/jGkqWB4tUKYVkFiBqVxx/fp1vHb1Kh595GEMeVB9nQZLCpgGIktitVoWtlcIwrrPU3ZQigKyuBYNvndxOTEbIiJWTkKTCpwc4qWBaL9NLFx1jzDgoEVhQq0TQGzgUYRNyTljsTxCKZOrGYhowLWazojshfeHBTXe7cknY2jJBLBEIpahspEk2/xZWUuRACFUqRasZ2zMZxgTYXl0hK1xbmU1K4gVtKMgJTQQolh5NFHwUrt5LpEMYW4AYL/dLW7XyGOOHExKzNVYxNBsABGq2UAk1RkK6jC9DTLwnoPC9OEtQN0SfZFwEUGZSvTfb3inYVC5tjkneDk4BblUY0OinC3ICytv15g6Eik7TUgeKVxEfYQcCQzfy96SsfR4KTvm+qaos4JrPHFoSShPdpp8xKc92UkWODahTgaYcbYJAcyaG9ipY/DwxKjrfAe9tpvtnkLxAD/Mvtmr3VaQMuApKLv5DN7nwcbpQ/WEp7puEoHyZKVBfG+WWnQ/Wy/0ManpxlgDmw8r6RK3nTkpayFgJVHgEmS5L2qlbMXBbuvzrF/pfMOQgxTMDWS+gDMQAeq3JSJUSortNkCXr5mCALglu6CJJUoZU8h2C/gTEOvs/7CLQge80p/ZklQGQLS+hz+hg/Q8AgDdJwkN4G5ipevuepP6tAd3//3ua4/Qh1Er49LiI7jMP4LZxggydo8G5ml6t29i/7RSIz0ooF1c0L3Vfa9LGK6BnO1ZHE6if0LiXeqf+7kEoftc52mXG/is77/7jgCFbMSvfbeTEnskAzSInQOCKZW0R4WrrbnKT0yIMTutg0AQ56x1IIwBTpLPnY+7yaLPEIWuMJYD6cFj3axHojtmDOin09fVzlciDcwK+Dmt9SJy2P137TyXDLQUWoDIzi1o3yD1OVLfRyv71NsL1aMIn7GXJGVIlXhWgMXMIXAZFHH95zxOnmwWiCh7MDo5UQi9m5fWb0+Aev9Cn8R6qJxQEuQhh31gW3/X+2nzFJbLBWoqxtzn4yfw4j64LJG8FIaPnW22WVCTMr5CSMlmAANnOrjG17VdKnI9qEyDDIQ+7eVdOvk0RkyI3uhcHALjHDRN2EwZ20++Fw9dvoyP/ehPYnW0Qi3KBEREmHiJ8bd+G4f1l3Dljz4D5or9vT3cunkDi9kDOPvMx7FaLXDjjZuoE4N3FHhNiQz4q+fgAF77XMO3qoR8R/lu67/7N+RyQL72Kr1elOm4+Wuy2WkVAwG0Emhuz8gnPc7y5eg+bn3513DhokBkhmtXl7h5/Q6OkMNvTSnh6Nmv4PmvfxXzrRmy3SxuuxmukOIsAfNjE6lPnikjEWGqE47u38Lmvedw9+qvYhyBM/Uh3FwARybhUgWvf/2PsLUacObsRaymJbLZTa6M1167hts3b+L+C3+Ievea+uDGKkUCHB4c4JVXX8Xly5exsbGh8xil14/Li4MGPL7kbkk6Bg51/0j9M9fHTRYRPgyEFEDYrZfbe/9+pzbbd113+ryarNS6bufdlzmmBgN/0WxDExSVsOa/xvfsIWSxpHbW8j1IoVMBwTAMmM9GHFy/ilPnHsIwDmGGAhy1JqWmw93m9nIPIACxMF+p83kQOkqC+Uef4TqR0OIrzR4pyWGn/9D0KRxYRQJy3eRy0OtfnzdZ77Pur65cqn9wbSVsZ0TMrANi+jjMiPu+DLvnv7OXy7GzQpxbOn+wf63b+G7pY87W7KfPzPrXfSrasExu4g+gEDSSNgeuT9rwpet3CKUxjXXnhN5OWj+FOh9szVq31rMfhW6DzR/1F0a0tYsE7Zcxzv65/r2QPTR/Cw6I64ZpX6ImEbFX+ultzGgNDBY2To7JDnUjNrlJtodjTbo16seZYr6on+aQq/WZ7GWFYs2aD2Z7x/aiym9jNQTsK37u8s4cVy69pqLOZnR7793Y3n/vrwAAPnL35/CDt/8HOCn1dtJO2rffiAizBx7/hn9f3XwFdXGAvLH9XezVH9+m26+h3L8BAKiH9yCrIzzw+NN44PGn8YGf+KsQYfylv/nvrdne/Vtv4Df/0/8TPvPz/zcIV9y5cwcvX7kCevIT+KmfHjDsnME3sm9/GtvR/Tv45//Rvx8AJQA4uHMTB3fWQWdX/+j3cff1l3Hh8rfPliUiePH3fwP/+O/+Hexub+Fj73sSw7Cefr715d9CeuAJbOzsxnekTmF3pE64/7lfhqyO3uIF33YXIzd20t6qCRZXv35S6vCknbST9l1tbxukdP6Bc1YhJmE228Dm9hYo2c0p0sRnFU8kSQQf+rsmycriELS0DSywRhbY8psq/jnAQTBiAUpApLbka+2CWqRBWA+ikB0w9Zao39JXgE8ijZVnEXCygDK1vCIsBOOH8sa0YIdtIlDWQEbKGc6uJKLgg5xqJNCZGYWMHcJvcoqOB5ktaERa/oQMtNQF2hQQQSjSEtHJD8yktx/Zbr5mWp+7nnEDRPDCCprobjd5vGyNsI/bghukbCga0K1Bu+8BfUD/u1QrseDBPYZS7VtwXwC76eaJDGipLRAEBR7MS+gBJl2ojgBnjWClIoi1SHF7UufLqmSAjcFFP+c39JUNxW8tMQQ8TVrHGAIII0lCSiNQJi2VlJJWGRJBtvJ9vg6axMzIw6CJc67KFsOCwhVAwmAymTYJO5tbWK1WmKZJSxIWBUTVVcXR4h6W4xKr1WTMor5mYsAwBSWkJFbOSftQawUb+4hAUMuEAgAr64ftwOwAF09yw4MbxtoCA/1VS3pbAKbWavtBVBbIQCXMIFJuq4w5UiLsbI7YubyD9zx+GZqqUYaXu/t38OTjj+HGKzdwf48x1RWIgdViAV4Jzp3bxfs/9B48+/zzODrcB3PBMBswDAOScpXbWCZUGJCQPJClDD1ekohdP8ABHAxC1jp9wuDs4VTVBQzTWV3Qh6glM3Wde13WBcJZFOjodPRFy9ulTFjIEikz5uc3UCfBYqgouUJ4ULYkaBBotVzi688+i7PntjGbzQEo6E1vPjsYAR4d1jVMCZkGzMYRA41AZqxWCxzduoJzT66wdfE00nICzQoSGCQZlQmFgFIYZbnAH3z2D3H75i2MKYMFmKaKZ7/2LK5efRWrssLW9ibmW6PpLAEq46tf/hK2ZoQLZ88Cm5umY7x0IUWZFon5tMC0MJgnME82FgOqlKL6Pg8qtx7kFyuLZYHqygxKGaUUVGiZKAcQJCuP5cmeYPMDodQJzBrUY5G4USus4xHW0mQTWAPV1jdnv4MFq52xT0EktiZJmdzyQKG/IMZmwoIkYixdyZj99Ca/J05YlFWHRZMG26dPY1qtcPXVq9h8zyZmG3OIkDLHweXAmIdK1SQl+y1WgkiJAKvPrwisNFECKEfSRf9WQVGi1fVyRWGg2M0hSglgaqU0mPWSe9ywNfBQZdsdGgLm6gHSltTkamwS6MAwlcM+M4DEBC4WG0fubIxabkpZQUgkMXYtG6Zjq9VYDDz4jjAf8ICx23MEWJGaDUc1Wa0GQraSamj2xQG4ri90HhMcmAVb12T+gwIgDcxWDXhi/4DUNEmtygqY9DmdZoZNj/aBOdj9IMnoq80WuYaStp4RaBfV9sXenzo5JLNjraRk03sQ86+S37b1zlvvmLGaBOM4RBaDuXqVkBbc7wB0fdLXswrVNTJLN8/QYLPAdDnH973EpuKZzXcw+kUJoIn5fyYKvT+nAuVJBbJhtVJvPhbxz4mXr2C1kb1vaJ9xMBl8RYgiWa8JldrkJ4S6mg9kPhHp3vJkQyv7Zu8lgET9Clgy1X2kAIkEqKT5q+/G9smj/yEcqEfJ96CvnP6vlz0xBw/UzdU3amEvYfLWs7OaDnUgbc/U4WsK92Phz2nl1loiluBA9R4k5muJDswSHm+su+8D+8FHnAhUuSsh1MBA4sk1Y0ZxH33tJqKNTajpqChT59rBdZb1SRlfIu2P8HB0EOpbR6KK3P3wbRvJILdnZMk5AjkFhX0zeqlv8X3j+tjnxdeMOyClhDTHe31Kfe83EI99rku+se1zB6VGSq8D0dQoZ3ksFC0KPG8YSHtwsJK20QUzWoBJTYclUqYn96MNZAxxsFQ7h7UEuTE8eV/Nt1FboDLAmTHORmVftNLgkvxChYKwkVUqIQhdUpdHWO3fRd4+p2fGbHAvaXMEARJlOEMym/8HYyQGEKzCBJcpn1mJuQsRV2qm5kPA9pNUCBh1WkKsDGpZHmK1fxez+cOAZAwDYdwd7Vk6U1PdxPs/+lFsbJ3CdHQfb7z09WCYvfIHv4XHLp3Fj/3VfxU3v76DW9dvQ4yZJ1mZYJWLfv+jrWsHOvbl9XWJpe/kw/d7JLwJDUQr6+eI4y12nH9XgNBy7qdYH+7eeA0vP/ccLp0ncGHsrRhpyBhkUOA7NO7BqxVuv/I8lu99EjnlOCdN966v3wjv+0V6WWucb2J+9pKKTGXs37yBz//SL+Ch8wXlYMJyugumU8Yiouv5+te/DHrtOp567HHc3XsDKBNW966jloLb129g7/49LPfvKQBqzF4NFwRlpDw82EeZVpDZLPa56hnzwY/ZsMbOJQAJxjMX42/qP5Da3ERRBto9URijZwM/ifqg1PZvD6p480T1awzT6RJ6xGMERK4Tm88YwEPdjKFIY4/YedUrLbf3IVhbvDsOyvLy4mufNtuTcwaBcP/WDZxZLrA1bMOBdDE864OzUzroPZR8HDx97gWw0tc9u5PKbYv7SdyAsPNyj0RFBwQyu6sP7PSG2weq0LOgX8LzPptYdPpZEKewsAfil8vIX+5wXD8LYK2fQLe/3TZxg62SyWacS6y/3YTG/xI19vYeYBumRLjTEQ0Q458N5ig5NibfPTFd7e89RP1NwCax87g9220lO/2bPd2L1PUyvc4K1dm71pv2dy93je4sTm2tycdHPmMUOjbOrOA1cLEtdbCmewfDH+i3q7T9KF2/hOJt/jHEFPkaxOqp7DsTnS9vZ91sCB1QOtaigSgbwNsH0XZTyEG3ryHHftfL2Zpjsu73eU/Q/bmXhc6DQ/jTx19KbR39C76GhiZcn+d3UfsbL/yD+O9+3CftpJ20d66V/TtY3byCjUfev3YW/V62ujwIvVkP72N57QUM7/mh+DtRwmxzHVQ139rBX/47/ztcf+GP8MJn/wUAzXv9+v/rf4/7t97AT/x3/x27oPlng1Hp6lf+AM//3q9/088d3b+DZ3/7l3HmzJn4nXDF0ctfghgT1TdqaWMbm49+IM7JN155AT//v/kfoywXuDut8Prrr+Oxxx5b+87v/uO/B/6d38G/8j/732L56lfAy0McvfJHECvTB66oB3f/JEN9W42GEZTHk/KQ36SV/Tvf6y6ctJN20r7P2tsGKW1t7yBbdk1AyENGTpbYgiWfCittuDNpWDAg6IDhZ2SKA1u1QFIkEghWJkiDoMwOcNXDlR/6iaixi0jV/04AQUuoaHylMaRoUidbIt36wZoczcMQh3phsdJAftDX39faBbggyJLBRMjcElbV2DeGrEfYnHI8CymBUl4LaBITkDR5nSlhGEeIALWu4tBerQyZfoMVYOQMR1S1DBnrumSyIAG8fFo7KAsRKEvMh8ZnNMmfKNktR53m5LTGAECE4kwnLCi1oloAVZmVKqZpBUX/VF1vzQErMw8ZcIFt8b3cTrUwZzLAQYKBPiwAI2zJWQ1mp6xsJAKAfP3JgWUqh/qzBgEdzKYBQg+qeHIKFiBUmVA2g4I0ELKMAFdLtAsoZVShYBGqMiFnZ29SUJRMEkkV/7/KynpVirGnLBbIQ8YwZJtkYGM24GhxCIwZZ3YfxDSbMM43VH7hDE2M5XLC/t4+iIEHLuzCg1lsZZcAQcpANTkvlYFJg6+TM47khDGPABhSjW2E9Ha0B0tdJmplCyZ54BZAUjmcZMJytUSpEw4PD/DSKy/iyfFJbGxu2JplTbKIIBvV/Pb2afy3/tWfxeWnn8Czz13Fay++grvX7yIl3QOPXbqIH/zoR3D9+g38i1/9bdAALKeVglNgpdk6YJpY0kZZoKrqiwioasDT2f6V0E2MJaoqkYcxivgt81IrCJ6s17+hC7KJKBCisibno1Sh6a9aHbTEOr9CmJDx+s0NyGcL6qLi3uwRPP3BR3BEMwuE6lrNxjk+8ckfxoc++gyGYbSyQ6mVJVqLsep3EmXk2QzbG9vY3NgCRoVbHdy+hpd+8+/jq//1Endu7ePZu4yV1ibDIBmzYcQH3/dB7Ozs4md+9i/h0qMXMU0rlFKxmlbY3BkxzgSHhwcorCW2GAr6yDnj6Wfei/e/7xkF21hJslIKiJIyxiEBuQWDPQBYawFjBRjjjzibAgiCpMF8ynETOVgt/CY0qy4XsCX7jImoKlBOTM9o8NmTxqLgwepMQR5AbHYjJ03STVV1wTRNLaBMGVVa6S0AYC62DAleMkiZkPxmswX2EoFMB3qFuUyEnO17MDCN2YMyVSwWSxAK9vb3jSWMAErIaTBADlvZRTMGRQErRKQse5Y4JcpagpBbUp0y4EwQqMZ6JBVE1eTbbIUxPXlJQSnV2AY8IQkF1Ui1UnhsVQAFLCoHaotgZcFg82d7tqq96vUnAHBhIDU2HYVk+n72kjyq8xRgzMGkJgxQ8TJiVYGcaGUaIA28VvskHUNl2Gyg60G4fbCIbPJklwGvuLZkQiTsyb5nNkJENJlr4/ZEIVnJRDaWSQdoO8jJ/SAt92dgWEooLFbm1L5rJTkiqrzGNEPrifX2a5OPdeASbFewsIF1Wxjdk4SNHaYluDwQr3q5WAk74++xxI6DpAXqo7SUhkTuyFkc2fQmQF3SrCVHnL2uH06TCQNw+N6WNieeSomkgoGdkv2lFQ50X6k9F4Dt5YQoYbk2156kbokYBgLL4AH+AIELB4tW+EX2pBQAFNMvFPEdlZEAnmmv44/i/0ld/9tY3q0tD6PzQQCmGz1h5fvL5cR1sucDPYkTI+ySYP3eBCloba2srwAOzoSDsX2+/PVWOtM/4z+4XuhBQgIKEKGWeHO5t2brQ+5jhQ/j+skAFKy20Mu7eXJQYHaECIltjY2NROBCYjaBmk8fI0lazhNocu3nD4HtA7G5skSzmA8eSSrzrXqRUvlcT4yqDekYCy0tFv52t59h58IAwKIlp539TUwniLS5bysAdH9o80oKDoxeHZMXgWjJoyTQstlNl8T5AbZnvSpbzJ2tg4/HdLj6z36eMNA0eQlu8/d7m2G90/K3DhY1YBqSgdV8uJboF9e3pjHKBLLSWcnqKeWUUaoAKWGYz5EyBzuZTwDXgsPXXkB6eAMkCad2t2KixOeLBUWqXmww2wBbJ7elesZL62vn4GVGnPPI1muN5KS9DZUZB9dfQa0Vh4eHePnllyGnzuGB0xfC5Q1Z9jNbGvDwIw/jzNnT2KC/ht/7x/8Z9u/uKwNtnmF7npFR8OAjD2P/3j5SznpuNRYyL6crb/GPyxJhnY3DbZIbwAAlodlaL2El3PQVSZPNbvAKoons9zFd5x/r3oFhjq3HP4Z7d14DKuP0k6fxQSaUYMXROdo+fQ7v+9AHcP7Mjp4lbH/Qmcu9GJgvoD8RCDQMGIcZxnEGygQiwe5shbtP/hAOrj6Lg/19rHIGzzS+kpCwMZvhhz/9o9h6+Ek88/TjyIvbKNMK/OAZTId72NnK2Lu/hdXRGSyWC+zt7WnZe5OMnZ0dPPHEE9jYaOUkPM5ApJeptJSmy1lrNN9Cmm8irYbYiy7pHDbDwNX9WqHpXtcpbRk6wBG5vXApdpvqC+sdcf1vvgd6v6p9LOCq7neFPvH4lOtMiXfFzwRlcfT/Jo07aLzLdTXg4GUwsFguARmwIcrYS3aecBYl92d8DL28ERC6OuYhLur4BSHfw26Um01Ru9YgEe2yGNDYqeTYWsj6vIfibd1Udh+3o/5LB/I1X6r3GViK2UmE/g6nLfrQy0ATkogzkq9HjM4E7bhS8/E2QLI/2NWY4379QmDTPc2nE16TmGaD2gi7pVsHylCI0HH/r9MxkI4VyCfZ46/tfd2wmhy7b2WjCvvvc+X7B20Pwv7lpQB9ktf63Y3K7X/fcxKAqfXZRa77TXzY5audN/p3+mfa+Rhrz7XPxT5FZ4vjCa1f/mib/Pbf6wNbA5+tTf3aTL9JvbQXqPD4fCuYWeIs586rX7ZwaU0uRRZDT3a2X9tn/UYLPXRs/kH9r95V7QSYdNJO2veg1YK9L/1LbDz8vjV9/b1sRy998djPf4jtDqT0jdowm+MH/vK/hRd+/1+GTh7mG7hz9SW88fJzOLuxjXp4/x3p83e7jRtbePwjn8Ibz3/5j/3cmYcex86Z86hH+2u/n198Yt1svUUjItTFQfw8HdzDQ+/7GI727iJLXY+RWHvoyWdAT/wQZHmAsncLMi0xO/cwyv5tTF6KTROFb2+gb7ONZx/CcPoCaJy/6+NmJ+2knbST9v3U3jZIaZjNMAohE0GSglq0lA2AJGBWYIUmjQGIJk6FW0KIxAFLEofAOGAkZ43QQB+THqSJEpi1RqrHy/WgnBUQBYCgbEuUBMozpEezlCyQLkBKGSnpzavBSsOJJDDB2CxachNVbxS1W0V6KK5c7N2eoM3gWqy8GEU5tykCuMoekbMBLaoFpBNFUjSnBBpHIAHTNGmyfyBI0VtplAAuHgIXK2ukyC2GzgtXZbwQVHj0ym+6esAcKSExI8NYK5JS+QODGn0ZLKip7yQRsCe7LalQApBhd7OtfAJz0TXlAhGdxcLVygsZcMBvXUfgT0//zAALgSzgI+xJUTKAhBjLVQHREBKjK+8gHSAhI4myLXky0At+ZA8eUoKQ3q7TviUL+lkApQrInhw3fUXlRDF4BUKMUmokgpRJxo74XvZIdEwsOtbCjKPlApQE46BlzMY0YhgHzGiG2TCAhpmVIGRj8QAABamtpiX29vcxlDnqWQcdePUlglRgWVYYrAY3c4FYqTu/8VlN/gR+G1vAZAniKgrcCcaMFJenCKwAPQumTcy4d38PR0cLHN7Zwy/+/D/EJz71STz9/vdha3uOjdmAPI5IQ8YcGWCAc8KZU+fxIz/4w/jQhz+MaXGE/Vv3MQwzFBacu3AWaWsT22d2sL27gzTMsFgVHC2OMOaMWkuAGftEQtz6Ft1PDI4EcalVt4IlhYtUKL9WQiqiEsQKbkwW9CJyxjA2cIaFZwRWcqxL4XO73R5BcehzUwWIZnjoB38Mi7oPqowfefrT+BhlVFIGnCgHmBI25nPM5nPbs5pYyKTB3WA/S1D2MUpIacAwm2NjPsfmxoA0AmkgnD71GC6c/Rug/bt4/fmX8Ab/Eooc6JoL4eK5s/i5f/O/g4cfexAbsw3kYcBiUVGXFYvVIT7xyY/hox96D5arCV/8ylfwhc9/GatJubgoZZy/eBEXLl2ApJZI1DWpFtjU8mQCZY0T0QQrk0Cq71MCRGEo45Cxmqw8iAhmsxnqNFltcInSj2SHkpwIlSUo4ZMF3snAss6ypn3xQLEy7SUy1j4HA5gNGHPC0tZ5Y2MeAJo+QaWJkmzsfKQlydKggyNjSiJBHrPJoSBxMo3HGAZgGEw1w/eY6oaUBiwWK9y4fRdPPHYJjzzyKDY3tzGMxqREWRl+qgWXvbydap8WGKVks2vznrKVLGO1GQS9CcSqdwWiNsOD4wIkMaAIGejYnu0lPpNYUJrE2MAsmZQc2AdAVDmJg4i6m9fMNUBGas8N2CFAEgWrlVo9K2/a2/wIKPiELQotHkgXGMBF1hh8Um4sW6XUpi+6gKwzEKrc6N7NxrDktsFBMHHbnrpEsZJLaALT7Ba5nbYxB+DAIt1EhCFlY5lr+oTRSgV6WRo2tiLXcxFAj+SUgSkjEm4aSERZFHRBwhdgm48oseHPDLnUOWjgb7X1tVYdVbduiUgZC0XtrQkYhNRWZtLvKQsTmz20uawcfYukoFRlCxILXki7JR/MXJGBse9ZUqiaQ0LWR4H7l3abnqhxKRqAiteSE+5T9sk6xM8KVrA9QvY+XyeCAvNIgMpozAZWxE9MPkxXwBNSIMhwjCVA1HOtUN2fgoEKoccYNcZPoNCDEr6Wy2EDz7wbW0pJ2T+Abh1sP/i0+170/I6dH6TLGonLH1xjRGovEmad1KCVUfWzBOI5nuqKJ3hG0diwGkgJYaftxaDQw12ZQHuMJwadEcne2PnBWDtr+P7yJBYnKPAUZCCkTk7j3eI5LpXTRJbsNyY0vwigW9w+2wCL2hPX4anpBpsDWhuj/pPMefY1E9izoWchZ3LSv/c621bDgYe+pjFkB4b5HHX2Jd5F/Y8xbj9X9LnAkBP7b9VBOjbqJCQS0LaXqPqTLZHcHh97LGyZrSkbyNXllY49l02nBhufl9vxZDgETmgCaecbvxwUQKpaMU12bs0ZQ85IJJgNCcOQsLJgrp8hAygmgmn/NuhoH8OwqzKS2zzqvnFmY4qZCXlzWRZjHkSbZ+n0VVxy8L/6hMCAojaXLOpbl1IxlRWuvvoaaOcCytnXMZuPmI0D8jhDHgaMxrYGIaQ0YGdrF+//2I/g/nN/gLpc4vxj78XTn/qL2Dl3HpiNuPHy15BHPdeWynq+dp1yDGAQ68uyRhphI2pyKy5/HH61f4pMOJxFp5/zeL7PV22gUt9r4Zl07/e5Pf3QZXz6r/9tlMUeIKJlSh28I00e0zjDbGMT1AHnw8+gtil8zxLphYicBuRhxDjoxSokwQO75/FTTzyDe6+9iCu/+2t49itfx+FiAb+CMNvaxid/7q/j7EMPa/JbHkepGvOZVkfYee8RpFYsb76Km8/9IZ5/7nmUutDZJPVRh3FoTF3kOlmVFPv+aco3VkWgsYO6fxcwnyvnhChdLNCfiVBLCTsb+tL6oIxLBvZvB++mULj5Gw7e9OY6MZAh9rPiFrXEdMrrbEfRe0ph32D6npKVUTMfP/ZVGEAtYcKH9zHunNHjh01aKwer/tPR0RLCBU+cPoONzU3kPJroEtz1ETSfBy7ftFb8LuxVsCwFkBXomdf8825Pg43Q+y8NCNTk3YFXbY+A7KKQyZizaXqNajUHFLarn6O2E1vfPQrkf3AsVK/TmkVetyP6e3Pyyc9eFBd02ndcPjrgkf3RgYBY29/xhzgf9HPna2HuBI4NrPuM9TPp+rTvU7eCbT3Y7Vg3F665QD6ObvXt72q7vHSq7yMH1tp4uj4DaNvVfZQ2Dfa5bqUCaNn0oOvPWDsyH8bmIj7jc+v61j4fgNm1dfB5dtlqa973Zw0oCnQXHo7rZ/0PE02sfSj60D07nBKXLdf/sv5nXw+x87nJuy1E94J2ucG/H2vbBhNyRNQ+6zaje3387PF6EK3N6wkY6KSdtJPWt9WNK6j7tzHsPvC97oo2ebNf/3YaEeHpT/4FbO2exfJgD+/95F/AX/6f/12cffgyhtkc1//L/8ufGZDSEx/7FP5H/9d/gqO9e3/s52Zb29g8deY7886H3oN/+4d/Ble//Hu4/l//v3FhZ7b29zTfwsf/nf8F5hceBwBsPvr++BtPS7CVeDt49rO49/v/9M2sVt+OaTIDt7r+Mrae+sHvG6DS6sYrKHs3sfHQe7/XXTlpJ+2knbS3bG8bpJSgwatEsFtW0g7QAABSxggkiAFfkkBvhYoluuyQ6bdn/TYI0A6gyvBAceCK0kvSkhbKPFC6A6iChvSClwZqNNnDersyOLQJsFv9OSUrPUKgVCGkDATirE6RiLISNRAN9lcDJjBbclUDnjlnCxpBgRkilmxVEItWTfMoXAuw8KRJyGHIYGEMoqwSQgJksnJS+i5mDToLC6oUA+4QyA7RhZ0dxhJkniTVmKMl8MiYqZJS5FdbiVoxjGMLnIm+U30+BSJoiaJqgR+9UVm5olSOhBDDyoeJ2E1wsSRf1VvWVcvBJHjy0gJlFgD0m7+N6t6YVpQyA558i5v2sICYMArZTWRYItmDyeLJPDGWB2lBZNKgW04JlQngCkGxw7+Nh/V5HhRUual2i9lvfHrwztlfFDTgJRhyFSxXwGq1wnw2R0oJgyQMs4RhNqICKDYfKZLQyhZUK2OaVuCasCpsZDV6O5lZS7mxAFMpFhTkuAWupWPIIF3WuoCtsjEpE08SYzMI0EFLIteqgaAqwHy+ARAwn81w4cJ5bM5HXHvlZXAtGs8Z5hg3N3D+9Da2tmaYb25inG8hpzlSEmxuDjj/1EXkQSn+x5RwxBUsCXmYIWVl1VksFuDBylSxJrgLt2SssAKsxMGQKaJgVkLRyiUZ24tAILVaSRQPcCGCprB9zhZEa0wdyQAQlqAUTdB3Ec1IErjDyymDtmZYySZQBQOyMhCRgqacQUUsWFTsdmoyVptCUKYpY0UTAVChAJk8KEsbAUMCZnlEpQqRAXn3QazGHRxuH2ExbmJK+4AU1ATUNGC+vYvdnbPIkrGciiYnNhmSBZQzxryJjdWEzfk1QEYDIMKS4CovpTQafQ+S1TpZFRQF7AjpBFXSPVGrlgkkAnJKGDJhYzZgNhCmUde7MmMFNlCaJieygSaEGTRoMkXLkRGGcehK2ggyVcAYfKapGLhOA9XJgrQBHCFlC6CkjA0+z30ip4886p9SYzSoFTmN8NvJzvYX4D5SUCDXisXhIcadLeTBYbADgKJgjqzJilIL5lubOPfABYyzOUDGusei77BSjxAOWXWGqGSMTE2uYHJvCRILDFNSFr5gKHPGPDFGRA+MVo+b68wO0CRIFXGTpskdxcoqGMVklOA2XpnXyG0NV2MVVJY5wG2A6XuQMvmIB9gZGcow6IDhltRJxpZhts2S2OLMV35bFArWzclK2JmdgN/WN5/Ayan8pjoc9CitrKMHt4NBRbyUVDKWFEu6kCUuw0a1Ay+LloIUwNjIdG94nJmh4CJxJhFjexLx/ddspQMIWjLHvBsHMAsbeDpFosTH4mUTPGEedtQZJEWMQcqY9mxsAk0swj4T+RNmLTFqoOFEhOo6la1fpkuVPYUNaNGi+wIGsYM1yN0BY1oy0Ic48A2R3ONgTSEEqNi9S1E9Xy0xQxbkJwMduY8X1Ui8b32y0oL1Dq5kFmS/zU/G+pUEYAXGaWligXC7p+z+SnOX9YUVWhbS920D3XbJQ2PO8vxEMua5ZInMBN3jPVTCddZ6Yvfd1TzBtZbMShL7JvIxgOoqiO0t078Onqe2rvZh9DfEjyecRCo8++U+Vhww7ENiQDAHjsD0SgAJzX4YtQO8FJ/3xRPAPpY+EUnUkpVEfUyVIqkFMWAS2tmnZZpaQtQcXHCXBNfcXIVIAgvZRY1+1hGzo0m+Bh6y6YR7ihL+H4x5wUEP5gP5BRD4QhKCpYoaKJHJgR/eTz2vxR5v2lcTwF5zJ4B3x6XbdZ7Oq8TIJBLFcJ0eWc1uviLBzP6a5svFPLtq8sRze28Aqsi1ooMNdfz6qmQ6U2UnEn82z9VtCbus6OjcvjYAVRtyw7QIgKQ2FmafKSFlIBh7VTLD54+VF0FdLUGLQ9D2JgrP2/rZoTvOYGYfBO28oA+mWDXYf5EzS/pqVAkGMB9HACPgMQBdr3HrFPKQMBtnePDBB3DhkQexub2BaarYP1hgKofgusI8E8YxK/CjFsxOnQNmG7j0vh/C5sYWLv/gjyENGZkIEzNYkvqjoCiLJ+JnG5OdsNGm35uBCV9Kt7L7SmJ+hI1dWtm4pt27z3ZrGPNg+2jtj+bLmPvRMSF6Bwhptqm+oQAjuZ9k8t71wXPRUb7dPknk+zgWw3zeZMBk07HJoNZCQJ5h+9KT2H78NdSvPWeleHXt8pkHQZu7INE5drbplAnjfI40zFBrRXp4E8O11wB5MeZNCMinzkUsKcrANjUOgV16opAq38KGjq7gxZ6dw9XXG8YMjECtWRlvUVETQYrNKzvIFMHa7ExNzmwZCyXiRJ7K3lmdWdWn23QbAAijHB3E2TF0dre2YXO8dbKnJcrFnaWmg8R1sJ4llrev4ehgH7L7MLa3N7Q8KLRcsV7PA5CAISdQ1thCTrnpDFet5JcopJ310exK2GfoPogxodNTJnfVmL3D7vZDhNu4mAAbWotJBNsLSEHpcTWH4vMCCWZs4vV95+x3oaREorwXOv8c/jG3x9TkrRlA3/N6LvQ/wWxuItWvGkdA6JAwIeF59HZXH+0xraZz3LiavXoT/WmnO9ZdlDZfDiI2+8Pm88ZaUbORPjc+oFjOjjmx9cD9FrfMtladnnF56YbZnSfampDhvNDNgX+/2WeErdDn+NkkjF7zj2K9XNfamTPAzWhOvZ8XrQPm+YD8T7Fe3chNNPoYo69X+zTF50In2Zd7m+0qBKGvvRH6ifMLNuLLYfFJ8nLRruejL+hktethMxeISwvdt/wkJ9SNrDPuAUqMx/are9JO2kk7aa3x4gD1aO9dA1IaTl/8pp/h1QJS9YK/TEtM929idv5R7Jy/iE/99/+nGOeb+LF/+28jj7O1XOCfpTbb2sFsa+e7+s48DHjso5/CqcNr2PvSr6/9bfPyxzA7/+hbfi+Nc6RxDgA49eGfxOLVr2D5+nNrn9l4+BnQMHurr7/tNt15/dv6/neqCVeU+zff0XdwWWnZvroy/+nNzFYn7aSdtJP2vW5vG6REFlgVMgIJEhQqyn0krSSMwJksABC0FI2XcUl6YHKGDLGAKKWkZXz85kmXOFBwjAWS4gK+3lgXY4VA3OhMkQj1QLuXEmPRkh0JDCagcIVAk3hDsoCpnRQJBBgDFCWBJETCMpINyZgWfBzSlZaDAaXIEkh+MLcErKQWyBEGpOi4kwgqK6gpWBXQDqIsYiAp/yfD2Xs8YcoQCJe4RZ1IE6LMZIdaQa4AoEwuyUrSCTOKga0y2i0mXZKKioJK2oeKqskyaH9qqUhJgQlMziCk40ueXJQKKfrODIIkY81CBZDjQI9ExuygYDK2IIQkBIAMlpj0Q7zetBbQYKUsGBY8sptXpInf6gxYlHV+pCJlTbQXHkDIqLzSQC15ElmfWSwxOEQgTkuxJbLAJbEBY7xPCgQQD3KmAbVop3MZsFgskQcLJA5zDFSwZEbxxFuArTQ4Ok0TmAhHiwVSAXIeADHGrGzBOiuXxczIwe7kAQ9qQB2daACapmHb07M82NjJc04qg4kgRVC5aNk0MDbmM1zcPY+f+Us/idNnT0NAmErFNBUsVwscHR5guTjA3r37WE6EAgJjhZRW2Nncwrkz57G7exqbu5sgSSg8KXjCgmplWqFMk5X3srlkTTiTUVexyaxYJFSYMORkAc1q46WYF5MqK1+hgTAydpFGf28yZEGwRBTgTICsNKCBDIxJLIkYuwpZUEn7VCgBNIIyKdjC+uNBdX2i3g6vbMAcQEFiMIBS6NZkgEkN7KUhA8l2pgFLWCa9Nc6EiXRnVbTb3iyM1WqpAB4Ay6kiZwtoz0akNIAkQ9Jhkx2wlTpUxqNaKrzMIPsehHTBy56qnSKAJ74ns5bOS4MCazY355jziFIqFqsVVqsJxdbZqf2dfY6L2OM1UJyGAYCC9DRoPJiO0NulrBsOEAGxJiCYKxITVqsjrBYTVqsJYIYUVpAdBEpVZv03gCPEgBbIyvwmbCVXKpiUrQ3QPVa5QFDBhbGaCl564WU8eGEX586exsbWKQxDwjAAmASEipQJ83EEZ+r2qyZDxdgLc1ZQTgCUnI0AZElyguYo434yWAilVOQEDCkp+A8EkRJlH1RJmzZg3WkK5jLWKVJ2tywJEzSBldh9AU+gqD4Rht3qNTYbKJOM62LN9YuyCJEnyT1Qrfo/m151IC5MJ2USBeASIJQhUAaGFN91ZJUGs7MpXkoJ2YAd1cqsReKdVAdUKGtPsj3PFQYOakkp1R0c7CECB1griERL+Rm/QiQ5UuhRZavL9kxS5gARCFdIVtYLfb0nRwgJA0DF5pJbUoVJv0cSbBcK7FZwT6YETgqCAaD2Fm4X2RgfTZ+RoIjpQlureJ4lr/T/yXjo2EoGiOfvtC9wj6takN0TBq4A3BZx6FiDntnfJLIDbEkFgZbh9DKyDt5iT5D0SR+xJJ8okLbvfzBx2X4RY6fSxJX2wVIquh2SJdC4S0CTpTYSAEnIlo4X83mpoVPgIhBph5wMLCxrLDgDwZIpvl/1vwcIjGDGVrCxJ/l6eKIvkjld0sF35LsYowQHGLXSp2LrC6BbjeNMB9H6BE84K2I+Lpkw+i1w6rMucABCPCeyUm/uZ5/ASd2HRNx7AjxRBjsDRTKJpAU5xcF3PVilTzxJ9NMBDnHz3exfD8Tx7xzvsibFUghPtVK2oWP7+RNYxRoHVSCe7ebP3xJlCu1Z6ntTbG2YXlxjcBXRcprUptc8EYhdZojS1z4n/i5FEQT4zkXffg2/fOCXMdayuGGX9Mm+xm+aN2n/buMyGwzpRMaNRvucT1KAKu3RDsxRbaFOWJ8w9HX3yxnhN4nvdNNpPYieOt3l/rnZXCIypjuV4TSQgaYTIF5y1c6kNvfMAt67jbx9Tsv1JrP39rxkCd4AczmDRS8/XZ97MK64nSQOsJT3f20q7XsigrxzBokSNjY3ceHBB7G9s4PNnZ0mEXXC3nO/j2nvDo4mwbSqWC6PcLg4BDZ2cOryhzHbPY979/Zx6swOkBQ4kbdP6x6EX/bw0vJNwO1EBN9XLN1amz/Sl96D+ZBtvFhb1+NsfMcnLdRJd8DWcEcywW77oAcfWQ91zZ35MN7pZ07Ed0Q4kt1CTcvEZ9DkuNl7sRKETReFbjWfIUIzRBhPX0RlvbhEUGC0nx0Tkfo11tONS09C8NlO9zFoGNXnrOrvBnupqW/Xrej65xcJpEzgwqjLA9TVUXdepQBG5pTscoTZe2ku1PE1WgN6db8XiJ0jQ/OHKACwM0oCr5ZY3rmBaVUgVUszq21mX+aw0w0cz/G6RACLlSMMAI7KCAujHt3H4urXsLrzBu7eP8DB1kXUc2exsb2N+WxD5zukogNcDTPExb5eBnp7+BaJOAfA+HPCXltMJDnbJgAgt7WRBigWv3CgQUJ3WuLvWUhZQX1yQ283ZRPWKL7r4zTZ7v/eyYoDq/xzBAO8k7Fn+87nEGgzmX4RyYW9n7Bmw8hKnjdBaH1vOqWBu3qdF4Pr/937H8f0SIuHIj7bVC6ZHbMHuLzB/d/2PTKWbEPGrq222zzXTWTMfc1zpjjfpPBTJCak3xMCRMk6GEC5OQCy/jkY8NznvJsj1W9eAlw/pI+h9mVfX2rv66dYd4TzVOovSTpdE/3wd8dqNsC5nxX8L91gxVmJEYPAsa3UrZ3Jp8tF9/eABEpb1h7Y3S7vSOjfEPtONgiCdrmqaYR+uyN+lvZTGCaz+/6r+Hb710k7aSftpGkTLK+9gPmDT37nn9ydy95um196au3n49/lssKtX/97WF6/AviFxbJCGjew8cj78JN/7W9i2DlrseX15x4Hxpy0P3lrzKP9LxM2n/hQlIr/41oaRpz68E9iee0FdzL09xvbb+v7b9VkWkLKCtO9G6iH95C3Tv+JZO473YQrVtdffmeeLYJy7zru/t4/wdHLX0SabaEe3Mewc+abfjdvfndBbSftpJ20k/a2QUoKyOgDcJowUlKL9ZvLJFi7ra5nd4ddtCC+s4kAsKAqm6HRYH7UqffPot0MIUp6g9gDy6TvTMnDUHo887IMIrx22NTEQkVKGVphxk6FPsbKyGZQK1qyIScDd4jfqtL+MmtAx3hSdPzBrqOHWUCjUSLcHRr1FlSC3hCrdbLAvo6hShBWx/k+gvvGMiAWpKAkEfFxoEplQa1Fb9xnA74AllQTpCwYIiBB4FTAWfuEpMGnBIYQo5aCMlUr+2PBX6kopSijCTEqGJSGiPPqjWELQjKgTCvOIAObP+76DRC0ZBBXvwnMWiImpWBoSGTzDw0EpuzAFXOEjPlID/VsN9PNSEuBl6BLFrcCGEReNhBwUEwEb2BsHHYrUQF2SUFFIhaYT2uynVKCFELOhAlWCiIlcFloSSsSjJujsjNsjBhkDtAAEUUNaJBQA+wEMsYVBVUQFWTS8m45pxZMsX/iprL1SxiQqsnOWitAis6qDCwWK2xuzJHnVZPt1MpGOX2+79ueiD6ljNl8A5QzCMA8EzbmGbs0Qs7voEqCcMZymvDSyy/i85/9A9x47Tq2d8/j9JnzeOjCBfzoj/8waHuGSSYDE1VAKrhOWK2WCqLLmhjIduO1likiLlUEtU4gAXLOoS9AeqMX0DKKfkmxsjGNWcAVXdkHDz4FtT3pGogoPCEiY6Yjkr3fg2TJ9q0Y4w5ZAFSBk3rTXWoNkJKYHkspIUtGTQoCCoASMnIi5Jz1FqMBTQB1ZCsDR0vgYLFCIsJsNlo/EOViRKD6xEt15YRKup9TApIlGSoX2zsInaw3ZO0houCR1aogDUWZ56rqMy9to1aghD73PZJy1vJgNaGUits372lZN0mokyaPamWsSsVyuVQ9w1ZCztaxTrpOboOyCByY4mFUJgVt1cpabjJnlKrgxMpVbzRWgXDCYrHA/v4R9vePMAyWDuGilHeVUV3mqZW8dPshrOOr04RVqajiwAorC1mWkLrCtFqgTgVXXrmK/bvXcG17A09/4MPY3Vbd6jFuB4u63TOKFgCqw5RBycphefKhqp1lC5Im6E2VcXDZ1jvKwWZgyaOBMoacgq0i1bZf2JLOVAFwY5vLpltHItVLBQATaEh2UNQShi2wqeVYYMxsnlwL/wB6tZYIGAYr4WnAPFv2YNxhOOhM2k122yEQBfWK7Ycc4D5WfUct6atA3GY7OVgTKJ7p5RAUwGr6xRmYTK8woOCgBCRJqFXlnXJWsFsHbEWzBrau7X0wvSIGaEzwDtdIurPpByIde0op1hWkyWiJ0rHN7ria8tJDnoRqiRIdj7OCVZPrYEWBApYs3wSzshAS1FJM2tpQgtVIuLEdRbLENDKv98E7SceC+imxAUkBiBh4LrwA1QlWUlH83dqJYA3p7SDgyXaVQWXlU2F1T7CyMYFZf6uBmKJkl+0Pv61uPTcstCBTBkihU17yNxI3sdb6k5cyUd0IAxjb3HCTMgVJ2dfhAEkJ8+OJRzH/0n0hn/GUqGPjePc1WZtL1wdiIG/EuJr/bx69+WNkv/T9Bft3mxvE73ytIynvzjcBXmMjcsKml/yrx4NVbukQCdLmH2ry1nWQhP1C+Kz6BGf0W+u6PbvPk3e5JvsAd+uP0Osub803sf5w10dj/Kj9ZoukoO8jWRtXu5Zvj/R14W7+YxjGzEcN0O2Tzd4n86tc4zKrXx9y6r6rsCbljHUqmCRbl6OvqncaaCrS9H7hxXwwn57+nNp0gI/BfR3EmdKTwX6i9L0ckLE+4SmApG7OXP+T/5d0a0lRMtf1kCce9af2juifCSmbP+kaL5GWlwWALKmVJvbLQP5uaslcWR0aM2Fjy/PykBKAgKZf2Rn1AjxlCX7/jNmso1vXsFwVnH7wEaRBDIyf9Jno5AJ+xm1nJggwnDqP+SNPd58kpDzD7lM/AF4tMN27jqP7t3D7ua/i+o1bqLMJW/k6tnYnnDt9GtvbW+Axmy/hwGVd1wZ+Q1tj2JR3mW2WdgmmEZ1RMBDqI3tWFJ+rZnt64DX1+8F+GWtuzxaX+W6tY/1TDzZrwEvTRG+yU7ovM6S7IKWfsxKbwT6KuCwhzEAilArwVNU3y1kZQvvx2NPI5iDlBC9HlCQBXJXdVlgZM03kaTYPHRVlyuCXcIwtsNuMwbCy9rPp0ZxRDu+jLA7BywWuff43cHZ7hguX3wOpWira/bjqpbttnxIQJZ9bLInaHFjffMm410lkdt9kSs93Ej7DVCtWU0FluyQRF9sa7xhZKUowdzKgrF8CYCoTSlH7bx4DuBYcPPs5HN18FVwrDvYOMJu/DOGKU8wYTg922Ub3ZZM0MmaBpqt8/GQgtsZj1Mq8uWZ0EGWoJQISWfwjPufnA9V55PECMniIul3hEzqo1E3vuv1LiO3Z2X5fE9VX/ecpfCn3EVNO4T8TtbKVDezsoJ+2d8P2uV7rzvQKsOn0Njj80GTyoPJhtkU6UA+OPV9iYGt2B+brOLCo1x/+WfdZ27bobFdXcrJ9qY03vocG9HP7ImtznNDOChIMQLT2LrRSau7DdTbLzxa+fA60cRsfwGxDLrFdMnNfti1uc4R6/Rz8fX5uC/vkX3Gp9Of4/0jIQA/80uVta7Kmz7v3ur4IM05ioC+J9ejte7+GUWoy+nOsi4Lmd5qsORCsXyMdSvKZDp84+goHCnayI7EyZsyofb+bl7WOUf+T/dz5JiftpJ20k+ZtunfjHXnu4tWvgIbZt1yOauOR9+H0j/yVtd9RHnH20/8GysEdHL30RaxuXUW5+wbSfBN5+wzSOHsTQAkA3lRe7KR9Z9ux8tt/XNPLJ985ezTduYZy/xYAwc1/9v/A7g/8RWxd/uh35uHvtiaMO//NL2Lx6lcAALw6xOLVr2Dn/Z/+Jl8kbD7+oXe+fyftpJ20k9a1tw1SciCMl95SdgtA2A7kBPjNsYb1sSA6eWBEA5Jr5dQiWNACnVF+ww5kKaLyLXicKGl5DTtEiR3Q1m8gdQEPO1hzHMrWD6SecIqAokgkCb1sDSWgGHtDQjYmCTZ6dGN5gSX6PNFlzBb6jBzxjihhYQGAqRa0RCOU9YEUZBQlxPygLNKeb8GN6kwVYuVKZN2vqsKayCUtxQIDWKVKCuBxMBcRwAb2yGKBUwU1TFMBV0uUWECFmVFqAXEyNicCl3Wggq+vCKwskgEkUgIVIGmeWtehaqDLl0HjeRaIKBaisDF4aTkwIxVyXuUof6T01FgLiopQlC5jnuxGoAO3StCl41jAL2UFbFUydockIE4tMA1ASx21YDYRIeUBsLJDQlCwTapgu+FepODw4AhHhxMOsY/VqkSwUedIBSanhMFLn7k8wBLakNhHLWijQcgqFSTVEtkepGFLfAOvvPoarl65ho9+5AOYXziDlEZoMlfnJSVY4CmFXDnoaUjZyo6RMT+kiMMRQZkiBsbt+3fxy7/6y3jh61eAFUD0OnY2t7D9qU8hA1oCEFYOUlRPSJUAFUylwGpJxi1TtjKSCsJQ1pdk5Y0EgjQYmLBWC+xxBMQEVW/AipXMAmxstm6plXwM+fGAv+kisjETCDl1QVCxxIzH2IxtwR3qlLMBEk1mLElNVtILQ4oPj8OAgYA85NC9Q862xyZlBCFGMVYWMGMcs9309vfrnmCxW/8EjCljTAOWuaAsVyhcwMxYrKYW+CXdn8OQMXg5M1F9NNUCT7JJ1cQ/JWONsUSQ730QIQ1J2d0gWCwZn/3cH2Hn9DYeunQR87wZAjOVilILgsBFtFiKJz0gmgTNOaOUAhHWADlZSU9jHXOdICBj5HFaEorgdBVgxcp0hCEjYUIhxkTQvcLKuJZSS5Y7OJdFkzn7+4e4v7/AbL5pgXh737TCtDzAG9euAqVi/94+Tm9s4+hwgYOjBebjHBhmoFohbIk08WAyIRmANMNk2wK62RiEtFThoOmNqsPKOWHILeHkbAtpyBAiTFxRIRhI2cYigQJqYAizq0QCnkRtCVrSRiwonygDWW1xguna2vR8Stm+kVqSjLLZi4Kp2F43wJ2WvEuWnNY+lM5+hK8hBqHhZgeFWQFoyW8Oi66b2xNmveEPwpAS2IA+Ai2P6uA9taEGyoMntLpAuX3HA/zG7Wa7jHQPmu5rsjm2ILNYCTbbNw6GzQYEJrONUf7UEjha3qs25jXTP9qXVuoQaP6SEzyh+6uIOG0NqpV49TJoRuaj+tDL9IjuA0oOALB5Y00o+s8hOKRy5yCtxowgrdyHvdtZ/dxuuc+mYMwOYMSt7+LyJ2qe3Y/qk1YOvDN1r+VewhbDdIj1Be4bduVjzf88DsjvWRxIxPakuRuiAf+UVL4jyQMEwyER1phoopxVajIWYH77gicJYWWdGpirK31jYIX4mkLREaVMuZucd2ELxkIYWA0wG9zFn1yGAAAUpahAngo0YY1/d60DCrRfmcftCaoue+R6Zv0RbX38Wa6PvV9r54g1dgV/sjZl+DKfmNr5x9cSWE/YOcuUl29R0TWfXHqftv03dTKMmCoKZoPoqyt0NL3t80iEOOe15G6fIPa56JNvzX558tnPepFwTdzPmulmWVsH9cmMNdAOAX5VoSXkXGHpWniVX53LTn/6QNfAVu4v23j8i2iABLLfkS1QUmpXBcyiYz+K+ec4B3g5rb5UXD9nZIN1XR3gHRI3sGigs8722joS6cUKDkY7gFExiKASIEhYrSYcHRxgwmQlb209fFo6XyMEy3UUAWJ+fpw1YTqNGljJdYuviP6q4NqzX8Ld2/fwzI/9LE6fOdUspHRzQMa0Iza2aQk942RsnH8Ew3zHdIA9FwANWxiGLeTtMyin97B3s+JgdRbXn/0j3P3c5/DkRz+F05/4czpGZgCMsn/X5tSBvOYmiwJyMtb3tQu4l9Kk5KXivS/r+9r9CJdb6eY2hitYK+Nk2zPmtzH+dTLazasAeiZCp4tCGaDbOC4jTW58LL6+OSmnYkoNjBCJdK4KJEYrAZtEAPcp49Zy84eng3t6RmKBkYAas5JenirF4kQETHevw89G6l+0eYp1tnlosaHmf62DNgSVJ7Aog+PdN67hq7/1q1giY/fMRcxnI1RvSJz5uqm1n1vpWFf5bGDlAH2Z3Hj/Yo3t5o7qbZv7Whpbl6jGqssDlOUh8mzTgBB0bA/qWMj6WivjYP8Im9vbGJKD+qEX285cwPLGK8ouzBXl/g3MnngKVTR2lDBCpgWmw3udXXWd4RfFCE3AyEo0mpxETK6BIvwcG+AuF2qT2fBDIOaf++NDK3T21aSyfWjNPvkP4Xet/0/oYgfe9iUpmWl9/3U2JxEgmSDcxQatX1FiUKTb/2Ly1mSNQO1nkQDKJDTd7H9rgKEepOTv6TwDcSgPxe/1Xdq5fg2F9aJa0luYEetZm0T/qbMnzfL4nDtAyX/bfAEf//p6tb7Gf0afu7FRNwehH/R9bGebeIKHRqTTkf7N2BNoYxQEGNb7TD7XcRaydzHM9/W5cN117Nk2T+2pNsZu7L1PB3SA+r6M3Frrv9ytg+uzQGkd/4r2XWPI3X7Cm+BJ5lPZM+GyhuaHUb/GEq5NPJdiyjq5pebPHrMd7b+/gVyctJN20r7v2zvBOiPMOHzxC5BaML/0nrf9jnpwzzuFzSc/hnH3wtrfiQjDqXMYTp3DxqX3QMoEqQWLg/v4wj/7B3j5H/0t/Oi/+Tfx+Ec/tfa95TvEbHPSAAhjdeMKtp782Nv6+NHLX3oHQGNqDVc3ruDuZ/4R5g8+9T1jDuLlIaRMa78re7dQ7t/CePrCN/jW22yUML/0VICUIIKjl7+E7Wc+ucZEVY/2MN1+d5S/O2kn7aR9/7a3z6RUC4ofZOGMRX4Ypwh6eZ0KD5anrIw07VbWenAM8AOnHdS9fEV3UGJLQq4fIpVRIG52vkUjtCCTv7dPgnlAvP9G3PQRPTimxLCYJ0BWCoTImDw02FerjcvYFYS0zAElUsYLEgAZxO3mngN6KCUtkaZRunb4JafW1qSHl48TcUYJiT4q9bRgZSAiikCjU9u3AGO1efGSUjlnZOurgwu87BaJ0lpoPEiBDA7q8CR3rQXLaYWcBsuLkiXUNMHpce6g4OYat/60DKAg2e1CDQ6mSDI4GKXJSgcastugiYNTAQlZx5OzzqslJZ3hSERQuOpNRVbmg2ACI240/tLAMMkARl4WL2JAHpTrAq0EC1x1QTJi1vKGMmKAMh/VUpBAKNMEZEEpBdtbIyrNG8ApKWiFuVrwsyDnUQMgAf7iYCARZtRa7OZ4UiAWKXgtyvzYWpIoE9WKV3ju2a/ipa+/hkcfPI8Hzu1qosNKEhEpSIoIGDJBqgMJxJiLBmyMc8zyBiTr3Hp5OmHWu5nMIM44s3MJ584scLR/TwE2ZYHZfFDGtJUGtmuRKHPDDAs+MiYuyCnrLV2nbBcDr0DZn3Ii5JSRB53jwnqjNhFZmQdlaaloyTeI6K1XCpotlfHCAQpIEORMkNJ0StNZ5JujS/go8xhRUiAjSBP7FlMSp3gRXScxIjF/enKgHZkcW+mslAelKfcSRxCIFBRWyScRLElAmEFLetQW5DPWu8IVPE2YDg6ANEOljFWtBj5UVqCBGoDFARGVi4FX2i1JNmAToDf3yfEKonuTa40b26UWgCpKWWEqK9x+7Q7+/t9/FY8+9Ch++s//BM6c3VV9IIJa7L3BTGesOKzgPBbBwGJ7w8pYwkyDl2UwQBo7UIELwAAnqN4zgOdyucRitUQFIc1HEBOwEmAmdpOZIbXZDge+OptVHhJOn9nG1tYWnENPWCA8x7TMqId3Ma1WeD0zxlEZpVZlwrKudD5LxVRKu00KLTxFVJESQGk01e1sgCp9mdRmgADKA6qUEEW2gHZOybmLTOYNQCoSzDlualKyEmtk4AiXM2MbIk5mO1qZwkQESYTBALpDNh+AnSVQWvCf/Ba0Jw6UzU4Z+BqgLZGWMRTxwKkHi8X2s4GOnDnI7ceQguFQxHRQIqCWSAIqu5kmguKmtG4kXelgRvAybxQscs6wIcyxVZVRqQV//ba+An201F+e5VbqCwAkKbsAelDpWl5H5boLqltIPYCHjanF18wC56aXw9KTA6dd93c3yc1vU5BS77v5+E1nZdJ9TQCkxnsD8GkHeyYEUxIxaWI85lLlrqJ2SUcyRjsF35L7B4Dtnw4QJhK2vpo8BBOWj1Vagr2BqBvQwn3WiNijrZvLp89/7PPuvz3pRb4aXbIrZd3zySaC/fOxphJ+lQK47P3uj4raCgfFCdo7PengPrTOf465aQ5xAziRjU3B1u/ezELtS3H6PorzBNrahM9HmnjjPmHjthfx3ZYFanPd55N0HzQgy3qibL31lyniXBDP1X930LJjia31uXdgFFkJSVjizpP4xH0SudsrbTThw1LMk3RJ35ZI6pl9YOeAltiy1FQid3kiieZASb81X70k5ZvG1lJn3O0PHw/b2qgIN3Cl5+n08YxexwkL2IDgpfgZQf8aDD/2aeOUsPF2yUZfIxLfqOqTk6+TM0i0qQk/PREcSCumm4iSsZS2kkcdXE5trTjrn66L2zhxPzPW2hOPfj7wc836WThk0vSug5ScFQSkl1Cyl6i077IIqGpp8zTfwub2DkZZRNLfmXlct+XdBxBJdbNF5OcZaT5yABdCpPqEvku5zmmtE+68/iLu3ryP5f4eZHfHxs22Fr7v1sFbDmChlDA/fQFDVuBzZfXbhWtjwxPBOGzgsceewq2vfwl3vv67KGXC8uYjOHX6lD6RjUk2fGWzEfYfbIwubk9UIH2vS5R3VkBaCvsO89UTUbAwrq0z1P+yIdreEbUPzvDMgtruIRxrzQ71MkHSZCT0jeseWwcFN3uspa2VG63kUByClWXLa36txwn6EEQhIJtudWZeGyUECeXovgLyVytUyhBS/4bNV/JnJzv3e2Nm01udj9fo1OJ3wbCnvzAdozEBPc9VlDJhNS3x2pUXcX/+e3j6I5/Aww9fDF3as8nF083XgdnaCgp96PrYP9z8iGM+gbAXo4Uw4+j6y5gWRyhcsZwm1EnA0wqLV76K+VM/BMw321ilg434FiQ9T5w6vW3Mu77OBCCB5yPGMWNxVCFlwuLeDSwPj5DGOcAMRoGUCWV5FH11GfAIRe9/xXyIl+p2Pe5+tDFDsq9FJ4P92rlGbTcL25y5/ALhh7HLM9RHhYHowg6aXXZ+J7Vxra9CWAM6hU6F2o5qfcidD9VsQljwOOOG/PuZHBKxMNWXehLUUNKbwXLujzZbZvPh5wl0fwtbq+/q7UkIROeTNP+lscBTP6/Snu+uQ/iXNg/+kzgw3t9l8xn2zz7vZxJfK92a2ufYR+EXt5/dn+m8oaaj0PlgDhLutAnsHOL6SgBIbUZ/HWTU/OR2eJIOyOR2PcWnzckJfxpo/oqvedvb/dwg5qKVNsdaX2Lujiv0tbE3n0HWxt0tkbV1kKTri/6xb9Jm67POYqBYk7FuH+n6eod9HdoI1n1WmxM0QDcdH+NJO2kn7c90G09fAA0zSFl9w89svgOsM1InLF57FqgFfLSPvHXqbX3PwReUBmw8/Mw3/TwNI2gY8Vv/8d/FP/+P/n0AwM75B98EUjpp72yb7lyD1ALK3zwlLfWdZbUq+3ewunEFm49/8B19z1s14Yr9r/wW6uG9td/zYh93P/OPcPbTP4e8c/ZN8aG32zTnnNd+N927DqkrUNpo/Sgr1KO9b+kdJ+2knbST9p1qbxuktFotoQcfTYAQtYOfXpR3QEptQI2UjYdXA3sZBCa2gFB/V6QFwZjjFNWC1CJApoitkAUVQR5cBgCJcij9oRAiyJY8ZUgrzwT7XZyF7cY6jFUFeigt1QPfZMFKHRsnAVkyIaUMShpEVkCLJpNQtQRCSgRIVVYlT3ZZ4hak7AXkNx5FWsLTx0VkLBk9qEq/P46DgaGUzYGEuxI4+n1A0Nd7F1BQ+hdhZHhJKtIEvOi8DlnnMCegoCgVea3wmKKIoNSC1WoCkQIIkj/LgwcCBWxBy5LlnCJm4IusfUlWBkuQuNrtaQ+w27MoIVMCQZCHEbPZDACjrJa6zsOAYRxtXlviVYEz0sBuSVDKBBLlw2ABqij7hQa3LZBra5JSwmwYLYDCCpjxoEdqN9MU1ORJiBQH/CEpM1W1Z6ZYFgGnilomjHmOagAKD9aJKFNJIk1S11LBFiS3KDm4Fi0DBQsC1gpBQmVSdhe29TJ5rx60pIRSJyynQ0zThGm1wmTgKQ3wqLxpksaCGVxRuGC1WuotVtE9Nc4UFJbKhFqK9UmwkgKSiu35DH/lZ/88Dg8OcHRwH8vlEpCMRx97HEVWOCqMFU8o06TBUTL6/GlSoBszSgAElMXECiRaANTLHwIZVj7Kki3cgZD0Zm1R4IolyaoiL5GgYLAApzl4AqJAIAcXwUsk2K1jIALcDibJLBjSYDgKBRQSsgZGrZSS6sUMVAMKphw3g1W9aSB8GG1fQplGpmnSRJ4FATVAquA0WgmYlKXr6OhQgQ1Gq6KgwIr9/T3sH21jTBWVRpRSGmuMKKCoorGlgRJQS4CEamVIsiSHs7sIIokklqCwsLEmLayvy8UCB/v72D+4h6mswFPC3v4Btk9t6nxKS/54gJghWnoTsGS+PrMyIye9RRvqWShAcmx6jqvOuQI+CVNZQQqwnJY4WCyxYsHevX2U7U0syoTD6Qiz0FdjlxC1PS0EEWXx29nZgBCDsLJ+KJCRKwHDiIMV4+Ybt3H39h0QL7C9uYuHHllCtiZjc8sGWqEuKacsXyFTHlj1NQpdo3sYZCWxpKDWbAAe1evkAXIPzguDycAppoMU0KdgKUoG9qm6P9jWu8ZbR0u+me0CkNLQSrTauxLpvCvDkYNKIt1qSV9lCCrMSA6KNSCTh7A9eaUATFtXtvKVxgZH4FaCQiQY46qBW7PJaIWC9ipX1VE2Jjb92ALWOm5lDQLESptGMgJAQ6h6+bkUwJwGFDAWRFTDVDIgBqojDuapnIYYp5d4bYFhC953QOq1pGL8rLaXmFGtn+wgF9ayqOysWESWoCHrp5dna/4BexLFAYBdEstvRgMU5Zi8e2o7HVAla8+EJ6C6dwHGZpUGJBCkOAOYvl9LqLZEU0tstlB9dX8EHqp3sIBtG+sXPCHjPmQkCJIlTe2BpIH+mlpw3sF/+mlPDgGUE5AThqSJnCoKzq0+Xk9UdPvNO64+KBs4gxHQiS5x5etCZIkHVxW2l990W9sE0O3eu7n1fqyXDrIfu0SKz5N9zvSd63v1BM3XpJbYFVv4AFTAnxWvQCJp5wmbewfsvWX8p1sX6qRtrY+9DMETZ2TJLl1Hd8l7WewBwaCuBJN0gIfQnWj9FvZjkI6XPPlmPo/32xP1cX5qSeCWeaNgowxgpwhEHCDS+trmo/1O/RazxdbPBiTSd+dkfiip/BauARp1xhoHIKJK29e23rqudqHBSgMpA0FbMOnXEW0+fOutJWXdrkPHraBwY5URvyjQwB393mU2QJCYxuEaPqKaYAN42VnHk6uwPrhdEghSL3C9jkKbT7fhTa9KyB0RAE6QlKBXA8zXZz3TmCNhj1cmG0nZfCOsJf0VpNW64+vMcRzjJocxLm21LMA8AXapotp52u2+oF1uUpl1H6PAC3iynQd1jhSkD9GzE9tkpiR4+NJ5bPzUT+Ghsxtgrrhw+f144OJ5VAcpCxvbqvpBLKzl32wvcmXbA3YeDlnw8wSglL4U6+YsgXai1n+cRcv9j85uKluPgcO5k9HqOqO3ryYzvp79zBEaWMovLcEuqqDXPcpy6IyyDA7wiJcnypmaPUcDKbEzrcWaC6babNrCzxO+k0Qw7d/F4eEBtjY3kJNoyTIXeJtniF5emfZuuYC3GAgamMUvQfi7XdOuJeW7eeaqNnmairGRMuTowM7K3JV0i52OboQBjFZd3ekwgfnWbc80XYiwrzZNWN67hf1Xvo7V7dewXCwxTRVcgRUXrKaCu9dexHLvDsbzj2L7ofdi3NwGxM7wAeD0f0MvjAUgguBxtXzqPJA3cLi4i4PlBF6usHdvH+P2aWV+hJ41nejMO8h2QSd3ejjW0OW9aUf0+sVjce67BDCkLUf8V/y32ZrlSpOawzggh3z3dh+hm3NIg9qwZLpdoL4mGVVe+ELo9an90/kGrkd6xjvvYc/uGWyevZ2C29uOdb2TaQp9YHrRzrvs/TF/PPw9k+Ye8OkOc5s/n2MF74nJba9bLbyhdsn3rtlD/bXEZdD4G62/pdu68fvwzdHiGQFCM7ajJvv+NYrnrdukts7rUkHxHun86P5zvj+b2+rzIGt9IiB8qGNuWMwTCAGEi63cyUDvAxyDS7U5iYE4gLP5kmLyQ9S60VQqxfzGbIhPvb9/7fG65n5eM//Tw+su922Omo5em2wgzjANRNj06drYekDomzrzVnPaxnDSTtpJ+/5pNNv08hff6BNIs40/5u/fWuPFAaSsILVA5J0FpQDAez7xU7j27BchInjwPSdlrd6pJiJvyYK0uv2aEhh8E5ASlwnLa8+/U92zl1RMd69910FKyxtXsPeH/xyHL/3hW/796OUvYnXjCraf+SROfejHkbd2v6X3zB96D2iYQ8oSgLIm1f27SGcvfct9P2kn7aSdtHeivX0mJS+5JJqaIzsse713D96I/40IlNgOX2zsDxb0TRQHxb6sRjvMowVIREuyMGtSzBNLfjsqGR15NtaNPqAIGEAJMAAJANKb/gQY244YG5MdXlkiEOjJABHWoHLqbpQKI4uxCGQNmmtJL2qBRHImFT/81egHgcDGtARQK5HDdiPMSpVQJmNK6koqAfDbvaBkJZAI4yhWskYT+UJigVrpWEY8uKLBn1RbaZ2cElJli/kQhLWvhQQVBatiQBJFpVlCQYL2ntkToZYEAkMkKbgoe6ky0uuZPg7WORNKINbVSxCdV1HQlIN2kq1TIu3rkDUYuzEqCEhAIQ8eSAcArhU1MYqikQDKKAyUZQWXCYUFbMFtY6qHgIMJKqWkrB+kgLxsQQvYeqecNWEBsmArQCkbPXcLcg0WOMlE4KQ3tisRVosFVssRh3IA5tISIyA4g1YtBTlZEqRWDWz6nmGO2+ZEmjAvVvovk90KJmcoICvhl8AEDWSTBjh1jCa3Viahsr6HqIJqxUoKVquVsQNpMH9VBClZsnnQvblYLFE5gwsgzNjaHLG9fRqEM7pp8oiUBpSqsl7Z2H+IwVIUDFWWxrJiiSwPqlvAXnWHMURZaTyZioUtNfnh8qnJMLtZyy6bCoYSL9FidEmayCeg6H7hpN/JlG3ZPVykezTZXlGdkpEJmJIyPvkBi1ANHKBrosWiqsUCEyBWJiA+kyFDxjBq6YJSVm1tS7V0BkcCXsAoy4JVSTg6OMBXv/o1LJZHaFFJxsHeHr7wxS/h1Kkt7GwRWIoBUgDIhKkypOrca8kqK501AsOQkLIlBvOAIY+6XypDvEyiJ1EiBtZuMgvrLe35fAtPP3wBs1nCmd1z2Dm1aYkl+7wogCXZvpWWazXWNwvgigRrkOsrWJIkboNT0pJLLEACKhdcufIa9m/fRU6Mqy+/jrpgzPIcVASvvfgScilA2kCRhMuXL2P31Cko0FAZupylTceobFkAB2TOg7XDMMfW1mkc8S2s0hyHPMPWxilwnmHJMJY6McCVyWipWC6PUDa3AGKAvcyXmD6lJrOwxK4xP3CU99GgKxeBVsDrSv+ZXdbbyIRi7A9vXL+F5166gksPXcCjly5itIMiQ1BNxhIlcJ1AYiwOtsaFBBmDltiEJQO9K7BEgdtN9wvcD5DGDBTJPUsuWY8RiUxjv0uerDVWAwUaTrrXYGwTxjCUDSTtLDRCFEAnT05I6B6PwlYtjeq2ShqLEQhqq4wRJ5GxTbGVUIV13xg22jq5vFZLmjkoQcFTGgC2cj1mVzwoHmBq8ymSlba02YnErevi2Guk7IzEpKBDkAFUYQBJ88GsnKvPd04K+GID7BK0LKIG0tEBHKy0J3kSQ0w2NUkTYfkuHg40v0/nUxCsSiG7Ds6Dsp4RRbkRWwArzaqPDGB6rIm5Wl0QvwfsiIG1kukntiS+J/xbOSNPYVDHTtWenVK2hJomFSEGsDBd5WXx9NkN4CohZ40hxsu/tWSABEOWSFW2JvGk+noeoSW6EWugP1O8893YnHGkXSiwZnpiLRlsybZgJAt/hhowxj4fDAjH5G/tJr5QV2bLno0UyRstObk+dxJrZu+LOj+AA6QCuGGAAEoOlG+rhT5l1Gd9pM2BsKjfiD4hqsAj7nJMQmy+nG8fPRO9FYgqkohk5x5nfEmw8soNGGVQiSjBmUy3MLekrcTc+jlNmk6B++veH7QNaxOswErXxcdYDbr94Oqwraj1TZ08BaxbYt/1A8wvE7hM+AxRrJ9QmyVPQsL049CdIdCJQTBdEYMog0wva+lLQi3G9Bf6sOnFBqCzsx85gKp7vycpQQFS9jLRhGTj1DVjZ0iFgfWIzZdkrO7fBlYrTDIhyoeupSoJ3cYAd7Lrv9Plolhb6X5PbtOa5EFAqIf7kGkJh5mo/XDAuj/a5IDUprjv74srogBjXyeA7GKL+e/w8mUV5x65jHOPPIkAcVkZ6pB5eyuLAkcLF+u/9scvLPl3Xa6d1SURjLVYR7gG5OX1n5sPI22lg52x3/+qH8QvT8T6qB1ubDcufyrrTD0bmn3AMtk9GE9vpqi/3/a97oGcEgh6wUbHZX5Jb3fs2QKJsqdHh/u48tUvYpqm2EcAsFws8eorV7G1tY2N+aa+P0AoBtYVgdSCulqFjSUrKaxgKj0zJ8o+y/AznQN3yWQvKmnZzxBgHEecOnUBpx84h933fxq7Z3c729EBObo93u/DBoxCp9dsL/pXbO10mZIhLASQgrvPfgG3XruCMVWUApRVwZATKA3g1RJH9+5jOlrh8OrruChzXLj8dJTbg+n0phrNmgd7VEw1hu0zOHXpcRweHGDiCmyfw/b5B7G5va06UNYZn9R/1FhBrVbGLiHKUYa89MYoRM/WrU2D6X2K/XS8EdRPK2mJZ+U3cP+VDZyuj+KxRy5icz43WUfna7X3ty7oGYfJ2WoNUF8bs3MDbsL0ne1Xsblcm0eJD7qv4SzfvofdbseIBHZZyGUGbQ/BdYQxzKK7TIF+3o/vKVduNrudL4KQcO/5epwufisOvo8NYJ+htk4ByDPQlDS962PzZ/ocUKKuHJusfT50qMTXO1tm+yaEl5ocC8Lu94yfDpBhu7jUWeBYNUGz/b6E0q1j59abyLZ1ag4UzMfoPutSQeSqI8bgH6Duf8T7aPsU7i+I6LkTnX7p+vJmsJZ9Ujp56meZaK3rBHQsfLz22V6O1tYVvqdCrbQ3H39fbz98gjtf1+dT+9x9k5ruOGkn7aR9f7TVjSuQ1eK7/97br4GP9hQk9V1oT338J/DUx3/iu/Ku7+cmZYmjV7/6bTxAAlzzTrW0sYPNJz78jr7jeONpgTu/9fNY3Xj5j/1cPbyH+5//FcwuPI6tyx/5lt41e+AxbD7xYRw+//sAgK0nPoLhzMVv6VnvZFuk+/idC/8hntr7STx2+An36k/aSTtp30ftbYOUpmLMBR24iGD04oCViNGSIGIHZmK/GajMQ0KwiLgEEEOf59S8Ch7SC4B6k97ibS05RwSgItNgICgLTrDeyBJRAIefPSs0oErGfpMgoKwJVZCm2gQaNMyJrFyIB/4yWDRRK5SUqSVbco41QBC3IFkZbJy+WoghSQMQWlEsAah2w5E81o1EmngsheE39z2AkOwAW5ghWTDQoOxJ0ER+/K22pGMeBlAFBEaVL9AyWmAFMLUYB1BbsJxTQrUSY8mCtAoeMkCEVJS6Qp30dqyGnjVpwrVAKCuVvQiSTpUFOSxhycoiRMgoFnwiSsiSAWENssMD8l5uLkEKG6jJGIlIMAwZtUwoGZiNgwbfQBBko5W3EETKyGlAHhISMRInjOOgbDS14nBiZUwAwEUD4FWUsYiEweSsURnFgUOpC1ZYiTGkhMHLjeWElIHEAqEBRIw0JDAAvcir/eRUAaooBEzTCovlCgtaodiecdYdB62QBUpUNhhEFrQXnS9kgjPRsBhA0JY66czoPTnKYFhAs+rek6TB+FIqkiIY4LmEzGQAN0YSxsQVq1oiGFemJco0U3YTMCTZTb8kICUP0cButRJtAs+yABAkFsBu1eutRC1jtFwxFqsJiRg5qdyvmKP83zBoIl5EQZM5EXIGatUDVSuTqMCFaSrKpiWMWoqKP3OU2tJbz31JAmiimnQsmryrCtwzusyKqskUY+RShcIYkt8TXE8MKcDG2NuSzn2C7kPx0ojO+pF0r9aisus3jpkJpapS9MQNO5MKMfanJW7cuInnvvY8jhZHdgM+I4GwXKxw841bWOwvMKYtABWotp+loFhSQUuktWBrShlEChAa84CsEwyRavpOwCVbbjCBrHSiM8BoUpUxG0ecP3caP/CD78elSxeRhxHDMEJEg8uUGiON6ioGuCWdg72r1hZk9aSolYdRqnNlr8vJwHimnwHCVEekMeP8uV3cvLmHcUyYbQzYPTXHhfPnceHiw7i7t8DB3hLLxQp1a4U8DKgCZMkKeoJYuUwP2ipYwcGagDIGPPnkI9g6vQFZHeDs2dN4z9OXsbG1oXbTLY9AEzaUIUwopeBotcQcYsDOBozzIK0IW/m0Ak8aM+v+zDnHbWo2dT8Zs5SCPBVOlYRRQDjcO8B/89t/iM9++Xk8/d5L+Et//odxbvc0Eg1a7is5KEWD2WTML5kSkhBKqQDlCApPK7YybsmAg+TGQAE8pIBfolHLigKWqNKEprC/TSLQ7fNcS1WGKK9LZBtVhFB5UnsszpgHgCoqjElPACJjwOsSeMxeGlD772Xu1pIJHlwXDa2rNtXxWfYeQmoTGVq+TLgGU4XLt+oqZZVKyKpauLbEBMyvIEsisc6/l68xZb5e/gKaeKnOIGkBaMsbKD6PksqcaJkW9x1EYnMqJgKtLF8ykJOznTTwj+Gqu+8Sef+kk1W0pIgzX6Xgb7E/K7AsfmfgKnWPErIlWdR/UnAtCbX3A5HeYQev2fdDBU9Vk+HOAGJB+WBSEId7enJIPRtPsKyBTASowRKpIHVidIxjLalAaEAc2J71v7TkuQJv3Vn1W+YuDZHeqQJlkBHfGfZv95117si/azY22HTehY27s4H9RycbsetNnG3c4vIGk2Po57pzSfu+fts/ErNqc03kZwnAAfAQ+D2Mzm6vSWhjHbRkVmAp/H+NJtP9+B4s5n6z+yVr43d59h+l6T5fUjFmFxb7nDPQEQXLQg9mffM+1L5X1jNStmS5+/vejVZyWxSQ68i7kNv2uehgvEfi7MAxt22+nK0BsPNi1f0lfQIxAKL+bE8GN9lg0pJwiQEklydqLLg9I68nTGGnEVt7Z2nzErCoUHa0DsDUUTuoXjJAC0FBH5m0PPZoyUtfYfcrFUBZw3/Uh6a1yz19c9ZPZeRNENM3noRWebZzZ2zvBEqiuqwChQukrlCpGovlOmBH/J+YU7Gf/TzRgZRcdnCsSfuDSoaXJEIAV5kF5ExO5M/29ykDpDJjOvuxlg9nLhBjoo3X9e9OgFMge05YQT+uN/tyTvohrmK+ZQP6OjOSAjhs39hDlbyljbqBfRxwbGXgRVmbIL1+CWvSvs/NjDQmC7NJLvse/4hEt/0+ZMRT46472sy4PjO1YCqn6cxkc169pLn11QH/CFlAW0dh3D88xPVXXsK9mzfN74bFGhQgvLm5pef+UrX/4TOx88wClDHsXkAk8cnPwT5KaTqH2vs7yjidLQk6rxj/MA7Y3t3Fg898DNsPPWK+DR3T8bK2HrGGZut79u3WbG8aiMn1LLp5rUf74MUBhnGGjZmezfKQIASM4wyb29s4ffY8kBKKHNkZRWelmu1XgHOy9W87zUR5Te63Hn4K5+69gSqM4dH34/z5Mxhmg5290WSmbTR9F1dI1fOLXw7o9Y7bGlD7vvs9zrDdAz5FNM7TIOUUe+7K+Dn81r2/j9eXC3zo3r+OzfkncOniAxiGjLhYF98QZeEFIyGZ72ly7n0yPeLUNc2mSawHEZQF1sbS7I3ALwW01ulTmH6Ov5ttBoX+WJ8ft94I3U0+XybDPndtD8X/dJLVngt7ow+k7X+3+eazmv0wFyDmvbEfJWNhCi0WUh/vlAaM7UH88emQGwlbvtbiR7OP3m34nvX92n1KoGcW+z/uAVTUzUOIfi/00vSNPdF94Dd5e+7vk+vw9ry2us0v7LSoPrdj8vSxxVt6X401zqJz3YP1ejnrtI3Pc/dn6n7h5XKT7QXvetiveI56j/H0Y7oBcN/UP+tP6uai8wPWdoX1oVMbnbFqs3f8fSftpJ20k3bSTtrbaSKCO1dfwtG92xi/xWfQMGLj0Q9guv36d7Rv3tLmKex+5Kcw7F54R57/jdp09zqmO+/MmI43ShmnPvyTOLryJUAYOx/68beIFRJwrCzcd7MJGH9w7v+DX37of43dBx7GX3vp7+GJgz93zPM7aSftpP1Zb2+fSanWKAWQjIGoEdZ7UkyPPsVLstQuEUGCnNtBOOcUiQoRgJIGz3NkCSzQGCUTEii391ssVxlHwGDSMmWJyJLZfrD0ZKQF6yLJZAFnY3VyxhXqAiEEArEgSWPIEYHRJYiWHksUt6YYoodYcXxDC/ZBKkBaKizYI6DBQyKOw6gf5gMMJggQgoAwDhnZ/k6kyXwiL3siAGUwCdhKhLDRBji5gbMOoHsHfO0s8OhJi0xkNzgTxJhtaqn2/RrB7soKMiF7bkotGBlSInoQ5wokaTfDmIy5ydiZ9LzM8NuWFqnRoH4SVCJUYYyijA8alPVAGsPBKcrAY6C1pGuj5SwIwIBN2QCYsJomgGBsJoKpFKVtXynVKCy5KmQBdMOxaDAsYYKWSSo5YcgZechIFcosZEGtyoQhMXL2pPyA7GAHTliuFlisMqa8itu9HgRbTSssVyOmaUIeKyoXTUobQ1atyuhBxYNWZHtEWoDSAlwuiyyCwhOmcoRSSzD4TIVBYreNSVlpiu1xQJBEbyNPVZP6LBWL1RHSkpDTqKAhaCBHKgeTiPYrob81r0xME4gVxrfiCaUo+CkBkMrgUhU0RoyUcwTTU0paItETdtDtVavvbSvXYGA3XdcafW7gpBaMLVUBH1q20W9KW7ASRZnauIEXXaeJBVCTl8ijghJxVA+sGncaGf+I6Z1hGCBiN12Tf64FsSoSpEwW3IeuOchARJowYAvGEwEHhwf4jd/8HTz/3Eu4d/d2K60xECgDO1vb+PCHPoTZMKCuVmBKFgAFmCcDe6UIyuaUUCq1NRM2xp/StL7rxAjMWZkxS1r5zWPiBEoJw6DlwXIekPMIgq+rjiN3LAae5HRgXjW6Gpd9fysRAbWoU+03a8n1DpQNSJQxK1OF5BnGcQtpIBAVjHkLw7iJ3fMPYvvMaRxOFeNiUgYTKBDUQYsDlCGLoDKQDKjpgb4WsBUUYSyWE8ZhxJlzu9jYmKn8GHuMsrZViGi5Ew8UTqsVIEDOA4bcQoMaI2ULJqaQK4goVa7pRmfwUzuooMupFmQyWJyBBCcWfP3Zl/GVr76M/XuH+PrXX8QTjz2Ij35gxOZ8hjFvIuVBw8pMUW5rqhUlKeBTgb0ThmT7ngsSqYxUTxbYEJKXz0lqI4ec4aUkPXDt49PptJKZiTAOAq6qQ0otytAmsCSxgrAUFCToqJwsoKtymNKgkixt/8e/RRmtnL3G1zFSXOTAA/+NMiGSsNl7Yy6CgIKdDfa3CkhaSxCI6SUmUWCVMEAOnjYbwF56yW+SU+wBABHk9wSDiJiPpsDB8NegSfiaGtNT7M0uoB4QIlK2NOGiRIDm+FRnpHJWIAflEOKWrZje8PItSczLMb3cElteRonaPHesaQpi9mSW6p52+5+C/c79NzenEYSnpADwwVgWiyVNRZ9VBFouC9Te20f+yfQ3yDMW5t8h/CYvzSrSSgSysXu5DLpPycZeBbTfCRv4PZLEptMI6wmy+J4Y+5LDLYDgABAHFlj3nR3wXdp8XP2/15SFtH9Xs69ic6ssMzWAqS1Zvz5nnoSOlI3LhyXrnJFMzzMVIApgnCZlKeY0ck0k7fd2bnHQUgO3eWmmdt5p/rzErXqX7bbtyORO4peuC2NqugQo0Jg49CfztgyoBNszAWpBmyc/e2W0xLEn9eI95ruxlZ7RSwvS8tuWaGyAIJdjO8u43Dp4Aogko/oStWNedJ/B9lE36ev9689mrCCe2uRGqKeSp7VnxPzCd5AD+znATbpG3bmoWz+DInu+L+aTSG0ZRkLm6hrIfDZlKK21BogppWxnjhosfz4mMRYPtw8pm0wlA8KTMbbCylpBz0UkpGe8BC3xVBiVOhZB620tehkB1UFKje0nQD09o48OvslY9zxbNi2hWgsO9u6284YxJDnrqNu+Pq3rdtdZicT88Fwmtf0muy6T0smkuN+DpitZavgoVZyhSUIO3CZXKANZn4ht5djI/Ky2vuv/S/Z5P312f29CsQaAijKxMQa2OEUDQHopSxFPVlP4k9zZNt0CTdGT6xayEoIkYJTumSZXZjurAQ5lbT6lMUDpxgWR+qGf+Wf/FJ/5r34RuxsZl598whjM7PwyDjhz+rSeGZjb2poM9ToAOM6s0mwem//qPk7z7B0sjk5ypMkjEYbNU9h+36cxe/AR9KAyb3phxsEfLivtn6ZLu+XzDS5QXxXtuc6wIgDKwT1IXYG4QnhU3QW9pJJTQhpG5FFLagsXTHu3IHgy+skQJPGLdr7e6oyw2XNYOWsASJu74K2z4OEQ4/YuTI00vyfPkLZ2bVxtX2vsi+HMtnp+6QAPMa3JZwxGJx37rZ3DbM2qgvlTrCewn2/gc+Wf4NqNOzjgJT6/9V9g5+4c2zs/it3tOXIetbwxOAi3vIyt+vDJzn+i70cHoIPYZYAOhIK3sL+p29dmpMOGtl+pz5iSrqXpCvcXYECyYIwK+xSTbc9yu9rtp85vE7geYDQfxycbuh7xAomfj0uxgj3Nvye/yGd9Cl3Q+hc60d6h/oA9X9qVCDL7F7K9Zod8kOu2M5ksQGA+U9fjfupDr9mY3L5yB8YJAj17b+gjdLNgEDny85M0v+l4M/8g4oaxdog10T5183TMlrm9XyP0jV4gYhQKru7WOQCmuo97q9H1wPpB8EkIu2DDDZsOn8v1gcjak80WduBNaV9c+1RscznWM/epQnb7ywC9JMqbh3PSTtpJO2nf4SbCOLhzM+JCJ+1PfxNmfP6/+v/i1/7j/wCXHziFj3/848fsy9trPTPjd7oNZy7hws/+TzCcOv8t9e3baasbVyBl9fY/f/1FbD7x4W+5n7MHHsXmYx9C2buF8S1YlPL2GcwvPoHFt8N69W206xtfxa8+9O8BJLg/u4r//PJfx7/10n+GJw4+/T3pz0k7aSfte9P+RCAlZXCwOisRzFhPjkxlwuFigTGPIFEw0zgbkJIzEaiJKcUZb1rgo8p6SQs/BBI0wU2SDHxih10LJokAKTUQlTZLtlM7cIlo0kqTWsYaBAU9Jfjhsr9VJsiZkG2aUrJbjdQO3SyC7EAcC9Z7KQE2Vh8PGvjvxIItGmSA9c8O8ZZ0SMZqBBJNhLMGmBMpW5JfqdJnGuCCNaxX2W47G5CCklG9G5MPR2IBFiC2dUlk1OA6/37LTSw4P9VJg+2iQS9hRpkKFouVlRDS4JXSmQNek0EDtQlJEsjAbskYWLIBKTRZmez9oixI0PJttdj6JX12qRWVM2Y8WtDAWLJSK6+lLEcCogoaLFEDnRwt30fY2trAOGVNUqQBIsA0TTjMA6b5DFwmgCtyHlHBWE4rlKkos0RSOnKNnQkAZc7IxuKRUlYKewIGycq6k8jK6jEyD+BKkGHCwdESoBEHONJSXlwhpAn5xXKFYTUq+CCx3jKWBlJiS3wAAqIcAeRkkW0WCx77DU4wrr1xHTevX0ceEu7f28NqNeH+vQMcHS0wzucARNmASEOZfmsyiwIvnG2MIZjKhOVyhZzZbj8nTWwzR+mfSPRZAIStpGAtjCQK3KkiKMUTVMoMMpWCTKTsKTZOTcQDbEw2HmxUYRa0G7xeIhFdok+T52uBRBFIrbovBJBqiRNxkhQvQ9f6LSiaBE86Ti3tontCA3rtJjdAoKRsOAlAylbewEpY5OzgQrHShrrviROmqSiYs9qeZrsBT8bSwrrmugeU4WljvoGrr17F4ugA58+fVn0HBdWknLExn+mtaq4K3jFwI0GQhiHipWzJJp8nmJ6ZpglKmqYltlxVctzQlqZDqCWYNKCJAHtUY4OqcDCFyigRLNCsOpwrW2kKD7wr4C2AHKLWQgQGVGogWrCoroABClcTytFdHO0vcbS1iaOjPYxZcHZnpvM0ZBRm7N25i/v39nBwegenTp1CwgAQwCQoUjQYXovqgJTBhf1ivyW/lV2NiZDGOTY2tjCM2mdi1b9cC4RdOBWoxMy2B2wviDJ3aVOAHYW6dBBmH4U1tZuLJXLa+nFVOc5201wIuHH9Hj73+WdxZ/8A58+dwr39+/jCl17Agw+dx0Pnd5HzzGyPzmMw7IloyUkABGWyK6WonJGuLbPA1DJYgFIZIpOC05Lr7JYo0SQxm6xYEl1acBwAxnEAG5vhcrXCVKqWFIEmtCjp3irCoR9b6TEgUWlAF/je7iOvglIneHlX1RvKaKcsTNl8HpVlrrReFsoS3nW5AtcJeUgYxsGe5UBktUXVWNv02dAkXTzK9IzjWqw8UkJu5dXgSq2XOwVywxg+EpEyBkUQ3BIdWdmemFWvhI/k/pMFAshyNAmWaBVnbAEIFcEs4J83+aCkfTHOLpAAhWydu0wGmRz60hMZkyVauS0H6wJWJiLYrCygz63Em4Ma44Y9CDQQBgwotYJrCc9VWY4sKdixSSgItc2Vy7uXt3OfEzYngIO2Tdd7giT8O+rGgJBHsc804G5LKnqS6LidUhDiOrjHbaKNdi3BQL1ov8saG8CrDzqtd1d/qlX9Ll2pZIwJ2UqstksO/p3jScKW6uqbQeWUosvOMMoAWI0ewEtruY8dNgYdSAeAJ5WDMcjSc3YSiLWPdYGxy6Elgdz39n43gK2s6T/f8+39/od2jvD58GSsvkda/0hleX06mo1xm7qezPJxiSbUk45b/PPJ5VrnyPsZabVGUtASgjCAaJSH0u/UypiKlXAFOnlG528o0FeZDRBARYhEGTib/TjntPUxs2N6guBnC9cdHInb5M8ww5o8IZt8leGnYIgIck7BfJfMfuTwRxxYruvLwkhMqIVDRppK7+y2l+VjAxYQ/v/s/XnwZUl234d9Tua9773fUr/auqu6p3t6evYBMABmMABBcBFNgtRGUpsdIUu2bOkPShGS7fDyhyNkWQ5JliKsCMshKSjLYsi2ZNMmKVmkKJEUIYKAABAYYIAZYjD71nt3dVXX9tvee/fezPQf55zM+6p6MD17Y1g501X1+7377s2befLkyXO+53tUX5mechCM242lKAPp9nTDwLbtg2aTTikRUqIzNa9AZhvnaicXA2D6mbTpxLZIbX2WzOs3bvCbf/Mvc/u5z3Hl0hF9v89rL77A/sWrLFdLHUtp38o0Ziv/n0lXZaULNt/OguXlPD3g7xLlSQYmaSr7szO3/89Lk7ucFAfrWHB5zmwmIezc05+lIAZ/fV9LbR7w84Tfb66nS4PvV6BL8f0BMPsFD8x4Kbh5H4qNlB+ohGqTeXKFSANoOzAF8XP+HGBQ6r5VJFempxACznocgiDnt8mbY+6cZ9717DspEkz22/rRs6WzV+c6B3ruMXa30vwMFJcAPTc4s23t+IP6zeVOZkkAdr6SfoEs98zOLAZSa6C6ukZn8lecOUlc5qvxvqNzSy42hOaDgabfgJwmxs2aaVhDTkYomjlYrYix0yQHgc35hs36nHj3pvpHpKvzUnxFlDkgzdaEyyRia0GI+xdYHhwR+74iKVRHOvtdA6EUdgGA2camZlrZVWLv7vrJ9ScFxPEP1dRrCWY79xR4sXyal269zOn5huUygmz55Olf5+m7H2C5us7KZEfXY5vh+siSNYktBtMBbZ/Sa9reWgHAZcY6R9nBzJhJNzsnljbX9nMIQkH9JiWlug7UrxBxsHNKDVA638vnvs+qHpvKwNmwpfbe90fvx2xXnJUlbe+tZ600afJY13d1DP0lHTTt1+vXbe27fNRDwK6/1s3x+XnC9XG1o51xcf4FijF4+f4gO2vD71Ht3rrC/eyu+4vOmdQ1KjWhgQbmnp9JfBxLqUTX4mt1bqu1N6y60oSsrhNfM6UOpb6X36O+ha9TafpTMJ26o5uZfbM9vErtTCfNt9LmJvF9/wGGppl90Pr54Mvt/qb+e3ZeeLOfH+qtLxoe/s7unR+1R+1Re9S+s23cbvj5/9u/we/8jT/P7//YR3js+pPceflrXPvgT3y/u/aofRstp4nP/sJf4dZzX0DOrvETP/ETs3Pc26N1Bxe/LwAljUGN39R3xrs3vq1nSoh0lx6nlEzoV2/yeUDiW4YHfEdbofD5i/815/FO/d1x/wp/88n/Pf/sV/8qi7L/fenXo/aoPWrf+/bWQUrTRAkCXaSxFFEdc9kyx7fbgbv37jFuJ1b9ioPDA3LJLJeLqvxzPcm3QKIHa9QR5E5MaZlDGQMdBLouguQaHNeyOFbGwAELxUqM+OHYDrrBDvHJAnldjFbiwQJB5uzyw7FIoQRjOMBYgvQBO4EJfcjMwQVEuuZMEz2uBsQyhkTHEyBr+Rzvp1NsK1MTNWASQqxMU+qUSwYeM6CMObo60Xea8qgBczvoFjpyMNaI5BnBpTqqnQ1A/enqKFanWQYyKWlGsAY4EzkmNsPIerPVwIU5I0naj2CsKCFGQo61xF8IweZMxyEEICpDTMrFQDYqDykrAEDEStMhxC5WBqtp0mzsgFQmjexgFtFAqnTNRRQtMzkncyYHIZRA36mTNUhPCFEZjdKgwBeEYdoSOxhiMB+NKPtSUkdHiFKDys4w5a4ppcKnOrNDzIQp0UVlGztfr9luRs7KCeN21DkIOh/bYSBuey0lVDKbYVt9WqVQywNlmyNMdjRg35gzsjmqNuOGT//OZ/iNX/0ksQvkMsEY+Tvrj7O6cMCz73kPnZXlSTmTSiG5I1AKBGkBMdEg95R07CUKodMgVpoSOXuWFzVDUkFutn5g5kl0jaAyp9CAUgNRJdtvcmKaFCQWnAVNXK6MnYRCLlP9jn4aLQBVbC05sNCzM4UQISUFRqVcmDKUEpDs5cdKldlcJpXvYuWUSqEC5NxJXIoGG5KCHJIUOom1ZFNjblMdUIyZIIsC8hLuVwzG7qRA0VRGROvoEYI7nQJ9F/nIj3+YzfqMj3/815BoemOmW3JOpJwIkpmS6d2iAbgyBVs/qWbEQ3OKpZTYbDZMYTAgCQbwCwa+i5r5L0JOBh6rWampAp88ez6TlAGARAxYViwV5JgrMEt1lMpPhhLbQUJU1rG1qM41FEcSvISEQMlsNxu2Z8dsNxPrzSnTsObihQOuPXbEFDtCzIzbLfdu32M7nHJ+fo8gT2g4NkEJyvymOj8oMMucwMkc/0IgdLY2ijKxxSgGnoqQIJvOykn1VwWB2fupXGRyERJjA2FUZ2VBI+wOwgk18BpEakmAaOCvnEsFmgzTiISOzbDhs5/9Ci+8covEyMWjyGboeenVm3zhKy9w4eCDhLKmiwtKEGU0w+6NMhgVK3E1BojJArPZwCIh6vjY87Nl6pc0kbOByEqqe0HOFhhFmSBU3oxRr4iVhDFZi1EZaGQkWZlUCVaK1ccyD8pgUYqBs1TXzIOHzVndbI6cUy3VU53TyIxhSVTXFwckuhPbdFqBaRzYbres9hbEGJlKombYFg/0GBCpZHOFl5pJXFm1KHQ4MNsZR8y+mDHlzEErIsHsFQsIUPDIS5ROZcSA3pMFt2qZsqI2hLOOqV6IlKAADgWKqG7rbByrjjaLrUiuAfoKMtsB5pjtkjPB7BT9nQWhaUHfOXDIg5AOXsvJ9n1RmzHUYK+OSRCpDBT+Pg5YSB4szV4CUcFnHnwjCDJjMPBOi3hZPNtvyyzS4HuZ72e2F+H2ZP14lxnJ10cLmuzq3MY26vP7YPCAnZ/nIQv/7tuxZWMPrEkHzII1RcGDErT85XajDJ5d7FksenJOdF1ne7i/8WwMZkGcNq8Au8Hrgu3DAQtBt3hQ/Zwml3Vu631ENxqafeol1LwvOsFuy2BrBusNDZzklJDeUw+IzVqogbPGJuABO9UX7cVkdg/va5Uf1IarAMtiNuRsjfgQ1tONKOtCkIgHwalMFOBB9gqgtH9nQzVWGfVhNNYkB5mUoqxykzEP4WevQg3yKcOq1GBh1b8zpijf7n08fP+XuVzUmKHrmkAF++Rc2TmS6cTiNnTVt3ZPP7vYgyvgxku0QQV+FukqCKAUrOSenUtLkwEPvjegNroflJl8FAfcUMdJjO1Qma1S3U+w57nZ4GWdJZvNMtH2lTo+FuSdgYj9rGvbaJWBKU989dO/ycf/xl+lFEvEIHJ7G7n27vezWC4qCN31X6my2ebLg8CaXORgzKyAWvvc9+tS3x3Pz6hN6ppo6rnUVTOb/tJsdAcvOZhIZsA2f24DO7e7eEi8LTqTTfvuvE/OeFKy6ok61nN9n20P9dVddkLtNg8GxsH8AL62/R6iOq3qHmmAtno/70uZs2nZGkip2sshdvz+P/VPsXd0ha/+1i9VllPX03H/kp7Xiha6VVLZBpIqxgqSxfwK3lMbI096cHnenJ9z/MbrHF65Rtf3xK5nuejNj9DWQ1trrj9MrnIDgovNh89C1Q/z8XZ7q7QytA1MoQPp4+jl6e3xSCkMd2+oXywnppy0CLAElstOfR5BKDkxjCMlTaQ0AJqE5euyAkKsvy0Ro1R2K18r2ey+UvecNi7Z7peNDdT76fthKa5fWhKayo/vKc1XVtdOac92v1a1s2wt6plOmJj4wvbXuXP3hJQT/ULBNHe7l/jC8W9x6cIfI15QP52z6xQKvhkGk0kRL82r/27zbuAmn+My279LMRnUu8YQK/ung6nmYyG2xqrpIHo265D2bNPhpRRCNiZtUgV9UeWEJu+7i7U2Z8D0RIF6ifXP9xu33lRf2PgXql5yO7k12bmX37vUwaHdpLTvBJvPeithp/zaHExVy9gXX1dza0uMmRc7Z9q3bM+se8qO6WT79o4P2bSen8uEutbm+161zXybsrXp82u00g+Pg79Pmc+XMYv5PpCb/tTvNLiV2051H5nbErNr676E99cBgHavGZhsPnvOuN8m86F/1PnwMZvvhfV3uV5R37eOw/w+D5wx5n2pe8Ps2Q/qzkftUXvUHrXvRvvCL/01fuk//XcoOfFzP3eTGCN/IDzOn/jARx86Dz9qv3da7Bf8Y//yn+X6e3+E7Rd+5aG5XF5713cMFFNKYXt2zM3nvsgT7/swse8JsXv7yk8prJ/79Pe7F2+blmXksxf/yty8BYEXDz7OVy78bX7o+E8+cPZ+1B61R+0Htb3lXWEaB0IM5qzZPQhO45Zpmuj6nnFMDMPANCb62JNzZrvdIGT6vrfDjwcX9B55liXp93QQwZQLQSzIJaGWsSiCsjFIwIN6GkSaOWUskKTlT9yRbUAO0eDfsu8pURlvNDgZcNCVBAPYBO1rkEBHVw+acyrjOYtT/ZzZgc+c4EFEy51ZsEJLSBlAJswOl3YQDf6ZOYnzLDiZUmIcx+rI1xIn5lgqyp4UEdDwMiVAMidnrKVtMqBBTQUvWcZYULahsUzqNE4K+PAyb6BO7u0wcH6+hajMH147JVrApusiEpKOnQWWcsjGtiKkrOAQJihW+kmiMfiAjR92z0C0bOGAMAFCJKowIERjktLSbORRnesxEENnIBaViyidguUkW5A8IShNO53QmdOl5EI21heh0HW9OmOSunBSSkxp0mBF0Yw8ZTuy0m4hWEkkZZopaPmoGBJlEqapkMrA4d6SaeqUhcgcJ+OUOD/fQBfYbAZCXDNO2k8PsNSgvXlXypQbcKTu48F8Neos3qw3nByfk/Oo6yHBYxcvsFot1bEctS5QKB6cR0vjSLGs+QasEFHHowZiJ0LsW/CwYMxXIyV5YFF0PIs6t1XySgtYWauByuIZewZKFAM8pExKDQTl6zGb49kz0MEyMr1kEu6hzcyBSg7QwwIWMQQkFIJEsiw1kxEvTZC1HF32rHjAmCHM44Z77oKD2igzI9mDEWj5PvR9NAtamW5GNNjkAe4gCsJ0MKhIJIZorF4CaCmr5bLjYz/1EUKEz37uCwzDUB2LFBimUYEqCVKJyiIlxUpCCl0QxjwyTqOW05lgtbei5ImzszPOz8+IEnjjzh2+9tUXGIaBEAKLxYInn3yS97znGRbLpQHUnB5e17CPb862/otUPV1zqT0YZpQIDl51R3oN6JU2njWAH8TYr/TaSFSAo4HVUi5sh8RmmhhSYrMZKWRKSCA95MI4TgzjZOUrEilvlSXLZStbuRUDhyUqMlEBRkyEnBDLBt6e3WezPmGajvAwc84TCQ9WagmOlPT7KU/GShXqPqbBwUQ2wEo2EKQ68XUtpVTqxuNsXsGc79l0SsnKpDCNiZdeusnnvvQCJ+fnXLrUc+niHtth4sUbd/jc517gne94ksX1yCKjbFEhqzPVyRxCrKUBswhJrAyre3lL0XKNLsPBSrsVGHNmGkGxaIkYVe6dHdFZyFQHUIMKIVipQ5P/EIveU9A9IzsLQ6QLHUkmK+1IDWJ44EF1zQy8lzSQkFMhpUKJVjpUpL5TZVmwvXYeuM0YyKpYmb5O9U3yLGrbu0sJiKQaEKpBJBpwyYdQg9vS9DelBmLmVS0cbKAsRR5IMMCfBEoELbcaa1C9FOglEgNMkhCylboyQJvo02I3d7ZjmMvcxiTr3AUDcju8PFe7By3JVDAGt6avc56xEInrAmNbEv2+MkUYWK3uDak60ZPLjOlmBb0ZqM3soJQdXqA6qP5UijEWJiqXxyxgG0RMLxpdk5XjsNBu1anz2FMp/i6l6qUgkVpyxa+pNqoCOere5YErmd1vJidelsp1ZAUx0ezmFoB/G4OUDATnQF1MH6oendiGU91vKdzce46hrHnn9BPEbsWOveDBswfGy8cXqVNjusV2XguYFQyUYONZA0AWcHoQFFZbPU+UenNl5CnVjq/7ltt0UqreEOtPUAqfumYdEMLsDg+23VDhLjNCC8y5TOXKSFCyMvs0EJHNhbT9LVvSg35fSy7vBLCoWrP222VPkzz8y3Z+caCwnX0yXhJRwck6Pjo2pWSG0/sMY9L9Ok0k3dBJmzWr/QMWq70KTg++p9Sou+m/AAaV1fVZE0tmL42z0CjQqIgCY4jKBKp7WahMaDk5wN1G38FHuKzE+QRVu6UCqcCYbVUIo+0lIQbHcEJ0fWBAEfuml2j2PSFI08lmNSm4HS3JOebEMA6MeWisp0VLqa03W7WJ7OyoySrB3knqmDjA1XUVZnv7vikzEXz9uS8wTSOUzFRUk6bjNzjc36syip9XZtSmhVzBcW2CWvNzuILdUVnH7QMagGmme/VJc0jS7H4GBJRK3dcmrBRm5+HZemJ2GBffnt0ebeASPzfoOnPwj8mGJX0EgRyEKF29xuemgqbtGY3pb6ZfaECq3fMETdfVOlozMIbPggNr8S7PIDnSygyp+tJ56vdWfPSP/ymuPfkkz/3mf8ewHWxNQVjukYuW/9URMfYnKbMhUxDd5MDznOm6SBBPZFHZfuPl5/n5v/Afc+uVF9k7usxiueK9H/vD/OQf/fvZ32+ZsyJVWikF8rghT0NN1tF39fXygC6VpgfayIrZAWor+Hqt8uPmrN3Z75fWJ0xn9xmmxNlmoF8FSKMl9mgiRTH/wTQlttuRflR7NBrY3fWm2P4/cxzp5zW5SJCg8zqNW8btmjhN5Kw2dC7J1kQrLejP9jWkNy34IFVITB0Tf0kHVMxWUBNB0z0m5ya3uWS+kn+Tr937EpthIHaBlSUlnq23fHH4Zd77xsfYWy6QHkSMCXw2F7koWKdYlkMFs/maKijYN2fDorjON3BW0b1NBEtW88mr0t/24flc2hrF7F0x38UOQBHMt5arXdzYM2f6a36+L22MycXwh036XJe1P0zv2v7ia7zpEFvHpdTv7LwLrdWZ877Xx6pOyPOdo4BI1XJtTqTZGWK/cNYi72u9Qtz21H1DgUZlBuhv41ltJmeQqvaVbSiS50/dsd9KlVFp5o/9TvAzmM3LbIykXlZqf6m2W9kZxzrf1F1rV1eWud6cf6fdoyUdzJ45Y2vDfQbW8oOj73rL9gRX+c3nNpdr/8ouEK+N6+5K8Gvnz5r3ZW4fPXT9m3z2dm+Fwml3kyRaSueFg19jE+/z0bv/NIt88H3u3aP23Wzj3deqze4tjQMnt2+yd3SJ5f7h97F3vzeadH1TQN+D9rlf/KtW+lfZ2adp4ou/8t/ws//Cv6oVRB6137Pt8Mrj/Ow//69w51N/i/NP/Q3m+1d34aoRKnx7rZTCy5/5BH/53/qXeP2rn+Oxd76X5cERP/M//Bf5yD/0T+3oggfbdHaPPKyJy+8tU89473WG2y9/U98pSROgkW9/zN5u7bcv/SVu7H3mod+nMPBrj/9ZPnT8DyH84L33o/aoPWoPt7e864/jqAgXO7ympAZEyZlxuyH2Hf1iQUqFvusJ0rFYLej66O4YpmkAA+i0c5YdqLI7LosBePS0qAwQFjiC5hxBHRPqhPdglmfz2PEzGysFAsUcq36AVeof0pTpghC6gNPbl2LBLM/oDZEoGsDPOStjA874oU44DSCZ08f8n344dwcMYX4e1AN1zoVpVBBPNGd6iAJZHVl91H4V+2IUoVjZuZQ1KzbVEil6D3XK+0G+VAdpcxTbwVsyyiKQ66E9506dW1kZaPrQoxidju2ozBjTNNUs92FUQMOw3XDjxg3u3D0hhsiy67l86RKPX73C/v4+fR+YSEjItTyDliwKFVgmZbKSHtQMbT+wl1LoQ4ReRTaHiaEkKB2y0ACp6MtVcEUaRy3/M0EMmS5GYzkpNp7uipj0X9lK2FgfqqNOtIxQ33WaBZtBeittlBPT5N7RiIILOmPk0NI6QYCoDhzlO9KAOwVKGrh35x6vv3iT+9v7nJ6cklNmkwfu3bvHiy+9xDueeYo0DoQoTGMixgUC9H20rLiOzoK4k0wGbNMxTe6YN9CSOvkSuWwpRZmxDlcX+NhPfIRr1x7Ta0qipEwMkS52CJq9WawUw2SAHZXiBCRln0qJcTvqHJWgYK3knEgwManT1li8Mp65n1sAxANds4BX7KIB+rRck4SZA9jKlc2p2H2tqDholrlnrHvGnq5JB0LorKhDMROLlZd0106IxF6zYoOxS/l6aQ42qoOxQHV2Nhkz/ZbRjMySXQVBBTIo8LBli3pQQd9B7xNUxgRGKxkVROi6RNcp40nf97zzmWf56tdeYhgmahZ4KQyDluMUSRQD+Ikoo0iWQhJITKSSSZOyGgxbARL9ome5XBIksFlveP65l1lvzisjyjgWnnjHNQgdhUBnuiqaTmzBtmJMKrn6G7X8m9TSYUFrytj28IALtiQLLrbynylnohjTXfaZ84DeyPr8nJPzc772wmusx4n72y3PP/8K164fcjZMZDLjUFjuZe4dn/Daaze5fP1phuROVS1N59MgokxFBRSX6VMVArkkQiqkcTQ2tkRKWsItWNb1VAolGegG1YMaKNP1pfrMygQGQYqVlMttbauzPM3cocbKkh0gqTo2O22+7Un3jtd89jPP8frteyxWHZcuHtF3Cw73F3QBXr9xjy9/5WWuXtyj21uY7zgj2UvzKYNGtuzxaJnAwfYgd+4LBvopRblqxFm0dAzjItLFaCAid2SD8ppkcpYKHhVBgYEl6b6B73HqEMfkREIgTQo87WLHlHUcUnK5SxUgW0vHGFgOodohzspX/TMCMaITHTpEIhVMYvtUybnKuWbPOti5gT0LpR2vjKXPQ6oNr5PbOKLlNktpAQWZjZXrTA3YBwUQFLRUqpetEWMfLJYXHcyRLhaQtwBEMLunSCvvJijo1oTTMvlRwLitUQ0u2btq/aUZMK4FAhxE44wtXg7UwQsVEGL2oIaxXY6p65ziQAcPyLXgoqtaoJaRA7ULlAxPL0i5lY7Vu/h8Fp2IYsyNojpJsoE4qn6X+n6CKBjcAnb6GeYgNTCD92lWJnjOcpAsWIuaCjuBhB3gjYFri+miebATMN3R9pW3a3PmuQJMsuFeeInb4QVOuxvkmDjdu0HpJ0qBsQwgsDzb4+nhx4lESs5ql9r777ieHDRA862WupCZXe9BtlnAyO0lu2KnxBPzubB/V7YHu7ezIwYHRJt2Nt2ulLDGchmcHUBqABE/G8msb16qmBZ8EsGrn9mj56C3XN8N8XuYJZKdmUabg1JchrIHxgsguZ5pPDDpgcLWnzbkO9fg689KZNq4RgmqR4syObYx1nNePr9HDML6/JSvfOZTfO3Tv0Xabjm59RqPPflO3v3DH+WH/sAfo18u8ZKBNZjtM5t9wLVfkmewlVKnhIIQYgQao6WCsowhyu1GG585M1nwvdAHUlLbg0oDwzKTr53gZp1X1S8OPsw50zA5fkYxBmB/P3GwT916ZqWREt3BZY63E2dnx4yDsl6WlNhstpydnRD6wGKalOE1YEk4Qmf6HH+qlVtroEr72+cXGDbnHN96FVVGCnDbW+5x9bHLLJYLW4OFKpFiZfSk1DHNvvH5M/w9i+r2VOasvwU3Lhw4pok+mB1gwIlxQ1qfNhEtDhg19jZR26kuIpyBlRmbmOuLtqmYuNV3KVDB9rUEMQ00UIqVZfYFYXabr29907af+/cqs5P/bOJQmOsnX/Mmlw7Yo8yAiW1fafd3q6PpwbmWS0BwcJhofw+vvZMQOmCoz6UYM1dyG3QGXnYAvdQdCgcMZNtznUUzhsjzn/oV7t54mc16w2b9KiCsT4750E/8FMvlSm0VX7embksp5O05edrSrIU2bs0H0tZJ9TfNDQWoLCyuG72vIUTdY+druRTOb73Myf37nJ6ece/uMXsXEsd370LJnK17ZUte7JNyIXaBe/fPkOVdxs2a2C8VsG17vz/fydMKTZ/WmfYzMX7ud5srVVvNAUP+PZdhB/sbZfhsfKzY4awfqncagKaCHmwdJftApULvc7+8wW+u/xp3T48JMbBc9iCqG2MI3JNXefn4Oa5cOmB56cjw3lLP994fTywKZtc3QAuzvczYeUupqY7ecT0rBbMf3Z6sC0rHwXrv+7ev1V2Yj6957ZuXhFagvJ7F3Z4oMzGqMuKyJiaFdX9t72FKW/2C7Zc++/qjs8/67jXbf30vq/MgrR9zgFXVUf5iYrNX7Rc1YVwPtHURqux55z1RoJgo+WcyWzfNUhHbG61UonVGh6gllzmo0u38moRE229mTlMb71yv2WW7M3tc/GvtzOX7sUutFNoY+bP8/nUoxXS61CmptqXYHpZnfZXatTpPvo7rSW+HTWleLrHtOQ6T9KlwTd18TTO9NR+XnZ9zfbev/x3Xzw/cZ2a7NL3X/v12bYXCJtznlYPf4sX93+DG3qcpwEsHv84mHgMwhnMKmVh6PnL3nyKWBbsj8Kj9oLTh5gsAnN19g6/95i/y2b/9X7I+uceLn/44197zIX7oj/xp/vA/878idv33uadv37Z68n2E1SF5ffJdf9b58V1e+cKnHvp9eRPd9b1s6ewe0/2b39c+/KC0ECNH7/5Rzv/uf/PwpvWdaKXw83/u3+S1L/42ADef+wIA9//dl3jPx/4+Ll5/+ut+dTq5TV6ffE9BSqUUNi9+ljIN39T3tjdfYDq9S3/02Lf8XPLbbz9/Y/EVfvGJf5spbN7081f3P8Ubyy9zbfuh73HPHrVH7VH7frS3DFLapi1lKmyHkZwSwzCyXq9hygQKXd8R+w4JHQVhsViQ08jZ2aSZc5Z56swj0Z3wBrgpOCjBHCyimVFZoJhTvzopzKlWswZFg/bK8qKO9YACS7QkgTkC/QheqBHBKQ9MQJi0b6ECGAJTVjYEykhEyDFSFpk0AylpyQqpwJsoEc8SUrCRbgbB6t5rcLo5aN3J58GKEAKicSZiCKSsjhGr+6Z0+tHKMmXNYkypMdssYtRSWOJZsU6H7ZmepR56wQAd5vVzWv4seeZAKcpPlDsKWgoti0AqxDBx6cKKK5cPON4UvrI+4cYrL0ECCT23lvvcuXKFD/zQ+7l09ZKWvLCgXjAGA5FEsiC1Z82GrIxHGjDSsGCUCJYt3AswKStERpmJQiwUtIRINDDZmBMlDUgJ9F0ihwCjaDQ2jAS0RJUkBzO4UyHPnAPacgFnwg8hark6NBgdZFHLvmmAV+iilQi0Ejs6D1kfnZWhhwBdXPK+97yTcRi4cXvJay89zzSMNs+Rw6MVQRLj9owcgb1IKhN97IhBtJQUExAJsWfZrUh5opB1fIMxQZVpFvgtEAqLTkjjgiuXjrhwtGfZ4Qos8CCsoEAvf69kwDrN0FZGoZKLrhUD2Q3TpMw/ZL3OnhuN0WRKkzoYLQs0eEAiuSNWA/ld19H3BpSSjmk0sJLoOp+miTxlhu0IBaZJZUUlQde3UCp4RQMMmgmqGX9Tdcp49i9ZM/g1eGQBNmfxEFEq8qjyW7KypjgTmsaz1FNVaE44DaRFagAlTeY0NqesBxElaomqnGtWcFAqj+b0R5kRsqoDDfhkmFKkm0R1IMrggriLUypNfUqJbSp0IZs+jMYkkQhBSyHlkhSLEYUFkZwmgqBAOAlIDIRgkpQhywgIyTLzJyvBlbtCKYmSgwFGdUVNRbONiwUngwTEyj+GGPDqml4m0QZQwTZFwU0FZyvR+QtWTi1aGcDsJZ0KbLcjLz33Crduvcq4WXN6sub1G69w7/Y9NuOG19+4x9GVqzz59DNkCnurjvWUON9uef3m6zx2/QlWFNKUjYlF+xyKlTOjaKAxRGJWgMUkhSkVusUe3TJCzpQ0kghk6bT8Q56Y8mCOSpWLqs8xZi1zGGugRCiS2vqrzlWpbGNeUo9SyJOLQGIyvZUH4WtffYWvvnCDzZg46DtOt+eMwz5pUEDQdjPwxS8/x7ufvcrh03t0IQKRYoxSMer75GQgyA4tXWlr34M7IUY1MGrWh+3bZAiFZMBhsaC1lq2zTFp3OBu7TyoFaoktDyDXrdYtgqprckleYc2AbApsDOIlCqQG7xoDG0TRUoIapA7GUmTzGzuVVQQpiSkb8FViLRFTDHBpy1uBP8kdvslKB4XKBuBjpcBVLGYaFHAs0gL6RfdqJZJSoJqXw6g4HDCQVSIHBW4jaB+j6RFdcXTRy04FA4QbMCrrPCrzRjbbwTbAnMgi9m4GZjL7pgYOjMUMsz/IqgOT7ZU5Jy21alnxpRjnia1ZnVsD4ViQIZSIs/f5uCrgowUWrOCrjkbpKmMlQcuURiB5YLxYQDpNM/e06jK3R6nBF71PlkIqyQI6FuSuYms2o+8llkmd3a6yMqMziNMscGx98f2CQvE6dbNgoMWs9LdFJccICeu4uT5wgPXbGaR0Gm4yloFXw2d5rf+MZjvnBFlLPDFCGYyFRDSY/dnVX+X57le5Nn2QZTnk6vBeBVKUQi9LVvlCCzIDuhO2EkUtOOSMBbZpG0OWZLugtIsdFODrVQOFQmUY8kCoB7csKGw1iuuZQxkM/F9UVtUYcy1R7YCYxsSEBQb1LmEeiCQYUM+DR7pWvDyqB6CcZc37qsDgNi4JaWAnHMTugqagIhE/PzVd6f2tgSsLDLbQdRtrN45EfEQNRFvnwEpzCyyXPfurjvXJls/90n/FG6/esMBjZHNyyvmd27z3J/4Ay73VTvBS8ACfByb1Z3//+Thp+R0tE1yMCa6y+BnjorOeSe23MfjY+aWYLhO3CcUARw+CS2Zj5IE+D3x70Hrn+iBICZUZxs+rGhQWyizTpRgzYb2HQEfkyuOPsfehD3HnxS9ydnqqbJcSWS4XHF44oAtCyRNSsgJPRJlDNaGibqgqezY3mM1N8XOZ697MNG4r0CqGyHKxqAA8XxM+ACXnui/NS6A2xotSg82Ih2tzXQNu07kibOAU93lbADlNlHGsshFsXcVOy7xrX5xhViqTas7KNFlBxS4zdYFjwL0HZNzkvPicz7WQjVtlLPGyYf6udd6pIPDZkOma8eD7TC7EjJ8WbAdnqBEbW9cHdsTyVK86iA7A8VJUuo5EAeKhnaJSmpUind+jFHIRSwYplOIl0WwN+YRVFivqPNsjmcaB4fxE7ZkiQKZIZlifMW02eDl3f0Vns6XMwAnF90GpDLm7a6oBPuZz5rusj7P3VwFt6msKwa/Vz8s0cPLyVzk/OSbaGe7eG7fZDluCBG7dukfX9xB7XevThARYb8544Xc+wTt+9Kc5Ojw0ZqAKh3HuN+2ngXSiJSogqpvH+7erviwpQRftbOnlMzOp2Ly5TJtexMoO1zJqCF4KzM8g+v+2P9TknWIF4TJImczmVPvud8rP8+LxVxkmLSW3GRL7e5GSVFcMsuZL8is8efspDg9W7C010aYuItOxwfYzZ4Ju629mi9n5tgE+zXaXbIAr22H1ELFT5rOCBX2M61nCgb+70jHb1HFAk946uIVqQ9gAh7Mv2/1FDwGznVHA6AiFtiJnumD2HvUt3c6wOfDSbHX9Z9m5v6hCrrKseksquMjLNNsQ1DtV0A/O1lqsnCq1hFsQqWPs41n7KvamvrmZHLlJmskzfd/2aqAmhrSht588mCYOmipVZ82B/v4iuU5bnZHZO6qOENxesXmpOtJ1EG2P07eu41vsfXxP8DGsexjM7t9+73sDVX71fz6+rqSLJfNIcYBn+7vufyYvsvPA+rZVv1b9Nv/4gT7OPytQ/YRti/NZefAOb492e/FVhnDO5y/+1/zO5f+cG6vP4DbM12v/1dP/a379sT/HB4//QQ6mx3n/8R+v89vnfS5MT9RrH4GY3v6tlEKZtm/62endW/zlf/NfYn18t/7uxU//OndffZGf/u//GfaOLn+vuvl7roXVIfvP/hinn/873/Vn5Wlke3r8XX/ON9vyuCFtzr7f3XjU3kLbrk8taWa3nd27zfbsuw+0+2ZbGTecfvHj39L3zr/6SY4+8id2/AdvuaWJ9Uufo/sWQU7fjVYo/J1r/x63ll/4utecxzt8/PH/K3/q5X9HY+qP2qP2qP1At7cMUkrThmEYuXfvPpvNhr7rQSLjdqTrIptxyzhaAa7YE7tWFq3vu5o1JxYEXC2XrJYLQozkouwkASGGiJ9+YzQHkTlRvaxajPPSaqE6MGpGjwhi17i/KpjDxx13zRllYKEMhaSHu9lhV0vVwFQK0xQYUiR20RyynYJiYqigjhAinm8UojlfJEA2kIcFoT1Al9JEttJRWqLLnGMiTPY+GgAP1XEkUazsTyFNyZhd1CehrEGW8WZO+hqwiKEGyxxY4WPTyvhBLWXhAZeSdhyLzgwRQ2C5XLBcdvSpA7SkgEzq8BmJHKyWXLlykYODPYiB5nTCgC7MnPGlUuNnK3+kzBdGny/KrjFNCRgJQUsqDUHQAlkOVjBmDmyus5Zkc0c8omMYiUySrD9Sy0h4Rt88wOBZ1MECGYAx8TR3dCkO8tASXMFcGxl3WOmBNwSd44SClQ4O9in7S4Y8sVrtMw2JRbfk8OCAo6MLLBY9WwqLRc9ytaRIxyJ2xIDRgHvpiQIkWwfRAgXKkJNLMscU9b9SYLFcapnGITENEywsqE/LRBTLtI50xGJObB8zAUq2EkCBUJQFpQR1hYWojhUNfijYxlmkXObEnFoqplpyr+u1NFyMgX4R6fqOMi0MjCgmFxMpLTk/3zANE2GcyCkxThPFgH8BFCwljSUBgaDcLjVopJOTa4YdmFtaBCE1h5gxQIjJcNdFuq7HWUK0nJ2Bd4wVp5XqaFmgHlBJk80XUEoysF7B3XXRwRg7jA4KQKmS5xn3kjg+OWWzGbl/9x7jMNp7FVtw6tguScFDzR+nGdPTNOp8lVmgs3iwzoELSbVQ9v54Bq+yk+QpkadEjOI+cTRYoc8lKSMPuZCylqqMscMDxWSnjbdRFi/dJ9WJKrSSOdmQg/2iV5CFy1EQY33JFCYKA0dHS97x1OO8/ttf4vjeMYXM2dk56/OOzIJP/MZvsb+3T8yFcTjhV37xl9jfX/JH/ugf5ofe9z6kBNXVpTDlQjSGHwXOFfpOkE7HrAR1xOccyVlUJktWOU5FGZGSNPCWyVbOyRhmPNMfRitsiY9JAS9ppyC4aIGtVOdJdZ+z4Izk0BNK4o037vO5Lz7P/dMTxrFwcnrG4aVDhrTldLthSIWEcPPWMZ/7/Is8dvkSV48CMfQQ2l4bQlCgUimmj2lHBltPIQQCgS50KhclV/bDPCUby1x1bzDnarYgZXVaiwNCJgt8WOmdYIGDQi2IlpI/w9Z/iNtYS4kAAQAASURBVBUoGDrtj8ejalEIA5mUKamOsn0kF927xakRi7+aO8VhSgUpk/UhqBzErjJslDIDDBrTUa66zspnABKj6RtjhQSzXTQIHowdUctMKohYAUvqrE851cxeXcMKIAvRgobZymZWh/8sRmTBj5btPH+/ZCBXdZqnYqAlA3iqGmsMSZVtpOq0YgHGYqV9StUtpQbogFkQVJn7VG+Vovq7BqVELObjbnNz4gedI42fK9sVeHDVA5z6tzJ5WTa3e+itIzmZLeUaSIRkVWw1furlhy1gUXStajm7llHuQJBSFKw7C7FX3eUBYguFtncx28P3jXmgQ9AAbQsqFCojVzGbxQLs4W1MBf2rV/4D0jRxvj1jnCYte0YD9LkewN4JCYiccZfbvCJfQhBiv6jBsv1wgUs8RQiBPu9xdfN+tUcMELCXL3OYrxBCpGOxc15wcBAFSpgokg05J3QsFNQYAmEeV8XBKA18Yx1vQSufUdN5YH/bPSoTbPAECWM5yruL08yvxkDrMlakrrm5ndrWkZj9YreSYGVnfCXo/qrlhkL9vjex/rqOcp1VPxdfVy0A6+x0s5WNSzul1PifzvXEeO9mGztRXSwhcHj5cZ750Z/m1mv/pa11TT555gM/zMVLl+j7fhaEkhpx2w2jzSwmt6vq+DRggjJlWDngLDZG2l8H//jLVzveznVi1+plc3mgygezde99qXanblL1GpcT7JFevtjv5IHjnbec2fOIgrWXj72T+MrX9LwsjbEmGPAoDxv9XQwUk702P2ZjkOur+zosogkM/nm/2uPSE++kfO5zxhyr7JDnZ2vGYURWKttVTmbyW9nv/O3FAXOlyWiZy01LtPFB1tv5DmPrEoiLPcLqEOG22hfuMyhA0D1SQmfrCihuO3aMwc/kmZQTaVLQvp9//RjhgfLWk9ZMIzd5tD1WZSDVazxK7CVOq22FAzRVnxMNQFiBPxgYtckmlGr7+b5QA/fZZL11xlql/qhnEttlyGNSf896y/ruLaZxrPPie1fOmohSdYHJj4+PzPpVbP71N2LyXuj7nn61X7vloKvs/odcKMED7Q1U4glgYu9Zkq8hK61uwyI6wCazrvswu9KALDN7BVrZQz0CtaQdLwlY8kC/iIS44nS90YQ9bP3mQJ4yx3fvMW22LPoFXYTj23e4+8avcDZmfuSn/hDL1b7ZOrPSpSZGxfS97jl+XgyEvYuk9Ru1lNYcMFfLwM+m18cSs1NUIs1+sXet1871UgVU77YGrghIEW6UL/KZs19hvR3q+MTQMU3qM5rMVnl18RleOv5pLt+/SH+1Y9H1uud8nQBL9rJvIq2LJsvOnpvz7tj52hCobOIuM+T2fvWZ5qupTKptxNojs/9kY4MlWdiDgp1H5+eJqpuspKNi7xrcxNcY/mdxXVB3AfxMr+9iPrEdexBbizL7HvV95+Bm75IDcGz321lvbX7bjXxcG1ukrR51siKI6UKpoKlZBfIqP2oPldrvnFuHPfHA3opS5uNTZucVe/6sf1L8zDKT8YdFqb7Y7C2tL2VHttq6URnxGXK9mNulPqpm51c1PnucPc+H0F5L6njWV6w713y8qkk5s2v8urb/N0+Vt2rtyVy+bD+djUGxeQt+l7Lbh7rv+0/lYfj526X9uz/0ExQKk2we3Ia/bhviKS8ffIKXDz6BlEBXlvWz/ekqT6w/rP9OV/mhe396592vDO/m6va9CIE+77/puGh/1mTzL4OCnx4FVr87rUwDm5c+/6afPf6uD/AH/+n/OT//H/0fmZebf9dHfobFo5Jvv2uTEDh4/09x+oVf482TngrT6R2W19/9bT/r4PLjPPvRP8inf+4/+7bv9Z1s3cFl+kvXGe88DH551L65VkohjW8OJvxOtOX+BQ6vXPuu3f873UrO5G9xPI4//fN0Fx9n/90fabHbt9pCZPHYO8nD+lt69nejfe3wF/nty3/xd9/DBX778l/kp9/4F7i++eHvWd8etUftUfv+tLcMUjo9OWV9vub09JRxHNia4zElP/DXEy+FTXP80xyozqQkIvSxo+97YmfAIcvyj6EjBGXNWS4XrFZLur4BkzQ7toGC3DGckqZhxRhZLpbsrfbYWy2QqBSDSoet7DQx+kGhwAycowc3cyqUgqRSg8bqJMjkKVupCqEPWvotBaksMiIT0Z1jMdSs6GCsLCkZe9KkgWfP5qJoMA4a0XKIURmNojleJNrfpdZvze4IES1PUsgk2S1RUR09afa7ClTSAGqZXSsWeQ9gkWcFb0zG+kRyJ44XobL3d1BLKQQyF48Oed8H3sPB4b4x/oBEnW8RoXSWISkmJO64NJarnDH2kgIlKfuDOcmSMYbkrOOkDApFE9gb7VZlmZKkWeEOepMgBPFyWZYnbw5iL4/lY+FOgWhlAoLJQjH5aI4iddB7lnQGoqRWtYHmBihWGqGYc8t9riB0tcyaMI0TaZHVKShRAQxkhjTSRSGVaPctgIJMFGTmZT3M4WWOpSklHbuUmXIh54Fbt27zGx//LQ4vXuKpZ5/GS4+4c2XKaeZo0fFX8J6VSQzKsqPDpOUX1cHorqpc130uKFjRJD2IEEthSmMNJBXEyhfpuh6GEYLQm+wgaIChj+SU6EPU68aR7XZgs9nAxtZGVtadXDxAnprDC+rcZgN4+EQ56EpC0PcJJqc500mgi6EFEYqC8kJQYGUMC4TANI3Vee9U8e7sVL96rvKjrGrZ2Jk0sz9ZJuw8aO0/FzwYXWrQ7Xx9wsd/7Td45eUbUODwcJ8Qi2Voq9yN48g4DJTQ1SUnEomdBgdzUd00JS2BpgGpFrwqOWupJ5f5ovLo7+PsUKrzFQhFiOZgzDWwQFYdplORyEl1RwILnJlTVkoL2pj8OQtFAQOGxZnD2xldtBSFsq5o32PfcenyBd77vnchXx25c/cuMQirRU/II4erjieeuEQfIpcv7/PFLz7P8d1jvvT5z3Hp4iWuXLpS9UKokqKZyUGi9cdkSAIpFc7PNmy3utaVURAFN1kgZNlrSZRgOjAXB2cWKMHANtmcys1J7WwWKgm5louZa3jAgr4LIgvSduBrz73Ia7fuMkwKFuuWkZB6Xn7tLv1qZaXlYNoWvvzlV3n23e/gcL/nYBFsviyYaaCSYoGzYRgs6BnbXiSWxW0A5TwVY+nSEgBSIE+2V4VAjc1XuVLHcE4JKYWcleGsFAefOtBXWcCKoV2V7S0hokCdTK5sh/pcBdSIybX7wUMIFnALNRCr49hAoDWIb0BNLTzXspwrE0I2JqJUKF7eNLhutkBI8DIIWYE1bZtQJ+eMjrdmg9talxLBdEp1ttvfXrJJSiaaU7SLUfVJcnaRGdCGxmrksuVAKgdQi1+Dg+A8I5oWrMylBvQUXGhlPR3MYXrOS53ZC7VJtxHIyfSa5DquDQyc6QQDXUWbK9djgoOvpykh9n19H6n7a9vTZ4FHfF/TNTMHQklwhFIDlcHMaW9sLDouvr200ite8s7tsFYeWPurYmH2RoFUki8CK4uieiGKAqsyyrQnBWPTqKY2HlRpMvn2bCen95imycCbHhiFClZlJ360E6z09xLZqk0vwkbOuCuvt4EIv4zLnIjQyYplv88q7PN4el8FL/leAroO7nYvMoRTC4LDY9P7OCpP8I7xR7jSP1HtR2XJkp1kDG91nmeiXeBNykhZHCrpJhWD2xTgAXRonBbVHgVEmv3i628+VnOmAg/Ui9Qf2v3A7L1Z32bvo6xyba9rv9cfy85ntkeRH7pHKY08wgOyFdSo2zwuuw7+ePrDP8kXfv1XOLt9CwEODw94/Ml3ELpowWXwkpM7/fL+zMZeULuisaz4GWY3sOkBXoozvdjb2wvXQH6hBqD87OAdCWYA7YpFqWPhLYiByHzuRG2oeeBZdXLRdSFuY83e163K0gBxhUxYXUCMtt6D3GA2UQyU4zvkJ98DqVAUxm9lW2utOR0jY3BSvWnjU6VFWsDWbNo8TZyNiVdefo2zk1MWy6tVjvUrvi9InSwH81UdXnVB0wTik1tmwCDtkJUB84QJOwvFCCFWO6JtN8WYKqEzo9i0hNr4pSB9R+kwgFLQZKFpBgb0uYEZYHS+nz2wjkoDAFeQTtvolVXawHnODOcsMAgKsDLbYs4ebZH5+vTqS5A5eNGHvVSbp457mY+LzcTMrkwpce/OHf7uL/5NTl/9Cu9719N6jp/Jn4KUrGxenVJlQ52XNvUSry14byWzvN/4ci1N5m2OawKRKdUqO7O17uNT71J230/KbKRE7xNmP/utGvDU13PG/VONEUXIiepPunz5CBHh5Pg+22Fkb7Wki4G9/RVHRwcsFj0hXOD2G3c5OV1z8uVP8vKFCzzxgR9jtVjMnudg9Jl861HCYHiBEvo6r87kTXHW8EJn9vccVLADmCg+xj7mze6rrdoxUtd7HWkBiR1BIgNn/Pb2b3D7/A0mky31BXScnmyJfaTvO8ZxYJJzvhx/mWu3n+LwcEkXhBB7vXduoJF2np3ZRD4OOAC0gYvngM0dvemsSZU1qqoL9TXO1o7vEHrOKtVe8y/Mz9hVz0rb56uM6WjWRCcTM0sOq9IGzpxTmp5o92g6XWh/tPJyrkfamDgQyvdjfVBum+FM9v37O9NdnyYGgqXqEW9eZlPtytASiXyNiesef56vPbes232L6Wi3l10wWx8BA5y1/jb7ZOf4UprszN9o/o5NZz/8/tqXXNd1k7dSx9fvMe+Ln4/8v/n9fMCLNP3Ttoe2L8z3uubL3tlNdqZhvja8zd6E+T45h8Q1jtbddT4f7zncyXuxY0vNhfRt1sbw7QVai2RGafe4v3iZ+4uX68+fuvLnd65fpiP20iVW6Yj3H/8JmoW+2547/CVO+tf9Ibz/5Ge5tvkQHzz+hyvICZqMPWrfTiuUNwXRaPznZ/7Jf5FP/9x/xs2vNSDThatPPCr19hZaf/UpBencfe1NP9+88mUO3vuxb/s5IqLxobdZk35J+B6WAPtBbdOw5df+4n/AjU/8TX7qwx+ofpe3V3s79unNWxk23PnlvwjwTQOVJATiwdHbAqRUKJx1b/C3nvzXWXd3v+H1590dfvna/4V/9KV/j77sfQ96+Kg9ao/a96u9ZZDSSy++zDQlC/6FFtCXYI4MZieg2UEPc/DUBHvN7BzrNfOgRKjOF9CszBiCBnejBoFySgY6mhmlflAsEEOk7xbs7+3zxBOPsVx2TCUzjAWy8NjjlxT0pDXh6hdz1mCQBAWapJwZxolxnBhHBTbE4GV3lAniYLVk72Bf3yOogyKlTGdOiBA7JM4OvjiFdWoOT2PjmB9uk/0tWZ8boh2hJdbMOYcHzY6ateScvpKzUpmzxIK0XnKCAqE451PacXD4ZheLWIUdK+lVlNVIH6j3SZOyxUzTSElJS5kVnbunnnoHB0cXWA9bojkQJWhWeowWCDDvofddRNmRROx9LWijJdYKlEwq4KUIQMdHEIIDzuwZjg5KSevnTVnZXB50DnhGtIOV/MDTAhpC7CLZmK6kWKDVrhWkskI4PMyzOiem+iwPQlIskBtAcjFnXCHlSR1a7ozOWmJqHLVk1nZIBEZKGZEiLJc9MYNncwXJSMJk1UEoxeROg5sasM11TY5pZEoTZNjf2wMC04Syddn8CKWBu8wB7kH2EDokKFhIxzJWRqoSSmPwqGtUi9sUG49irEHJQDrZSoGNeWIqmUWIFBHGYST0Ol8xRjWyJCjb2kIZPvo+0nf6X9dtGbZDBXwo2EEokwLucp6arNu86NoRC/JbaCZnZWOaFLWnJYSg73riYlHlk+pQDcSuI4qwXEZqAFaUBcX/natTSr1t2+3AOI4aJJfAOE2M4wimb1PKjJP2OeWsLEXF3X+6irt+wTufeZqXX3qFs7Mz9lY9IfRV72QKwzSx2Y50wYAbsRCDgmBi7Kvu9nWgrDZJHfOlsQ60IIDJkq0hZZaKdF2nWcB2v5Rzdbr3fcdqf4UH9vOUmUhMVjIxTVMNHGj5pWIMaeqU7kJv/snmXK1MJCUrIAEDE4mQc2C7nQgxErqe1d6So6MLTNPApUtHvOP6VZBI1y1Y9MJyIUg8ZLVaIouem6+9wS/84q/yJ/7438fB/r6CI2KwdzRHkwHWorPnWWDw4GDFYtHR9bFm80vRcgESDLhkcuhMeiYigLHcZbFgujlFczapUQd1EIXzuF5TEK6+e+gCi+U+nQS++uXbPPfC6wzjmtUiQCpcuLBkOh+5c7zm4FLh8uECmTbkXDi5f8ZnPv8cTzx2gf5SR2fccNl0aEqqrxQ4JzUAWPsRVBdLNjad7MxPzalXcnP4YmNSdUxRsFGx/cYzyt1XqqUjcwVdWi3GVorS2IUctOplwhzgVfdCmjPYwc+GerJnWXmYCnBUnRUMrEhRR5jGNDLDOJCt1ptkjL3JikSIaDlVf393DzsDSQ0QOGCz4PmuvkNXphIDn1YwggUODPNASZmUIEXIvZU/Q5jyBGJZyZ6JLmrXJA9y2trWz4xZL6jO8nKDDgwUnIGltHewf3tgVJAKrA6IleP04W/zkGsZl1lws5Zf0PEaJGsJNqzs4ixopc8s9Z6l6D29pO68SXHGuraTt2hmAy+U3NZWXZgObJKZHpZAK8tJLW3Rgvq+T/teqlfqunYHQ6nv74JZSpvznMuMDUdtvIDKi1+nQIOHAxpvp3Z6dl4DTMHl2SN31h7svq9R33s8kuLBJW0NXM1MbgYG1iiV/OvhuZ0A506wcw1NHoU3eI0ggUX461znWfbCAVfWHyAlXZdPLN/FQbhs9i14lrwC7UyXFU1MuBNeZl2O7bsGWrTHdWnJdXkP+6sDojE9jbJRZtICC/b0PCGt/JAzw1RJrfGv0s5nOEijjZfLnQd9a6Bw9ncLUrVxdaugLoPZmYHiV/hczsdRQSktR0J7nGa62I8/XgI7p0TXL7l07WnODaS0Wq1YXbxcywnrImhrU3z8i9t1VLugue8awwpNPJr82PioTViqjvN1LxKqfqlBdX+snUf9PZsT1gPbrRfBEx7EAL0PBVkfDCiWhqa1TgtSA5BzYJyHI1t42OfP7lVQ2yu3MpPaNNnDgV8BKoAzOBuSr7/5/3wcbF0KgcuXL3N44ZDi4w01wNyWpr2nyyZuR4U6lvXs5JIlVcJmQeLG3ldHqzT2Hh+NVDJdiHa+sncXbF828HhQJq1cipUP1rNqjKmyovp7plwsAlxqmdqKxLP5Kb5NQ5VREQfg+/oTK3PcmSz7e9uZwmzJEAJYUootbSqDUZ1hXXOTrSHTcHrmS8nYRalg+GqBuD0/kzqRwKJsufmF39DEhmfegbqMmsaYUmZMqZY9QyAEHZcGHgt2Tmp6OhchLPZ0zRcHMM1kHdi/dJW9C0fGSG1loc0UKqGmfFDGNV3fEbto+72xrzoD42wvlNnceElCP7d5B3Y1IW/6XbWR9LfDMDJsB0II7K0WPPbYJboY2Q6JcZiUVTZrghoCaRp54bd/g4N3vJvV1asmF1LnelfuqfJQCiwWWgI9RjFbtc08du5wFigRjJlbmJcQLITKTstMnudWqcplO0P52T8IhLiAbuQ3wn/GV29/hmlK7K28bDh0URg2mW3OHOwv2FtECsKt7tP85mbFpfv/Y5Z9z8J8X+5Laqw4Pg+lgrB1nUrVxf617OdKaw7WrQAroe7JrsvYkbP2XZ/ravvWWfdkQmd2tRE3/TPbfvXveZkw3zt2HuPvZM+f7ZVeCjP6uwI5K8PyfD92veHP8LUwfw/vvY6Dg1Gov/czRT1P2JjOrTBfIxXoI1RgZqD5gypICQctSe3H3EeB+0Now+Ilveu+bcOh/Xb29TZXDwKNZpbzA79pP+3spQZw9v3MUoBspkOV+zrvD9xpvtfttFL/qEldXlrRTdtCe/96V9sQ6/1mdlWz1dprzZYMVtGaypxVHHQ/349pm1B9hrR/10743We8rv4ebzKuf6+2bTxmG/UscWPvM2/5e59Y/t+hCP/tk/86Tx7/OPvlMj988o8SbE9/YvOjXBre+Zbu9cr+JznpbrzpZ/vpKs+c/T5iWbDMFyhkNlGZwwFW6Yjw1kM/PxBt7+gy7/rxn2kgJRGuvvO9399O/R5pEhTw/6g9at9Oe/HTH+fn/uy/ytHhAT/5w+/TRJLvSBP6o8d/1ysef/aDHF1/6ne/TclMJ2/QX/o9xMQ0rDn+7b/F/rM/Bm9j5vTfrW3DMX/pXf8czx+89ZKSn7zy/2KRD/mTL//bRB4BTR+1R+0Htb1lS/X8fK0HoFr2wL1kFkgrpbLYZrCSTrmesmr2l0SKKdN6WAvY6dcO3ea8l0kfQdg92LnDpvkk/RintPVrBtbrDZv1Kau9BVPJnK+3BDpu395juVqwWPTNPwBsNwMpaSB7nCY2w5bNdss4KNW7aGqgvoM5Ex67eolLly8hArHrGKeJk5MTmDLLvT329/fZ299juVxpNp3EGoSOXqYLdUy5k6AyGtQgIVaDXojmp+6ClhXToS07DoTqeCOQxUvpUFnd0dg0goKQqrMizB0VHoQuWubEnjHmkZSTBmCBVArjNLHdDgzDQElJ3SbWr7v37/PyK69x8eolVqsleFDT3t8dMu4UUwYtBR4phmkCK5lSKNVRo9falO84qG0s7TBeKHQx0MWFMRw19g+hBUmmPOEgATwAIaKgHxOyDkghE0WzKFNpjCpVbqvD2OYyJRyE0jI0bRocfKVIJSApa4qoIzN2moW4WPT0/YKySlriwg8LpdTnBVEnt7JmWGkjsVI/EqyEjdRyZ6VmBGfyJBzuH/KjH/kwF69c0vJjXspJzOceCqkIIQdKMGdUdoaeSAhdvZ+zRBSnKw8OdCuVLSijDDtZbJ4rK4oHxaurhxDEMp4VpOHMa5RCFyIxCMlKTOQusLdYMCyXrFYLhmFUZ30uDFNiHEbypGUJc0611BZWGszLgcQu0hWM6S1YGUUFzmjZyEAfO7p+QYgKooyxBVZcG/ULfZY71ULf0cVILuqw9sz+UgrL5dIAVeoIzVnBDmmcGIaR7XY08FeswSoFjaqLraC/fvKpd/DRn/wIn/2dzyBe2tCApJnCOCWGcYSuzBh9oObqBmHRL1Xuuk5BDrY+Y4gIYkw1zVHYnGy0sjY5E2OswcSCBe2NnanvO+KiZ5oKo2jpxpAUBKlMdRbIFeiCAt+6TgE7GpxvpSNVXhLF3sfXVzFa+b4PdIvA6zffoOsDd24fM6wnFjGyv+q5cuWIzRbuvnFOGu9yeNiTw5JxHBjTlkRH7k+YykS36OhDb9i/zth51BlZfF0amigAy17oOmpg2YkZYgyUoKxi3ldBZbrvO4L0tfTUlJMykHkJu6ysdqkUSlH5jMGdoWKMTcpe1Hc9/WLF6f0TPvOFr/LGvXOuXj7ksSsXuHHjNhePVjAU7hwnFn3kQh9Y9Hvs7fXcfP02Lz7/Gl995jqHq332imiZRGNqSzlVB3TL8Mf2eSEJFC9Tag7cbIx3wE5mve8Fbls4w4aXD5o7h+uubcEnX7caWDTvs+v6oiw3AlYqzgMijb2iBf4xJjqqTaIOdAWVBS8Pg+qbgLLrRWnruBQh5UDsArFILV9VmbeikIMCqUpRNjEnbSqlWJmxGUuKFEpJO8xdFGMM9DCKvYP6kx2g4oVNVO+PY1LGBgKpZAqJYJ95CKCysdheRrUxfE/RHqgW6GqAT4GDPmdBQa/WPOAsIbRgQBDsBapuCMZqUYLuYRoEVnDuOIw14AzU0mvBIMG6N6muSDtB97lPvgVIxUDBpQZ6dH90Bstoe6wHNx1wCFriFpEKTkolK4AerGSh3kPLBRrzZSkK/goKIFx0PV2nV+ZkY2P2SZomcorVNqnBptLKifizKRAl2hpxvRLb+nowiPI2amoboXYJHhrRVgNW9efW6isZ46IHoHaC6zQWKY8bebBHL3442LITN5pFiBQIkknjKa/80ufoho7nfvhTDE+PEGGV9+nKguA2oH3V7U1dH5r0sJ3OSWVqD6xVY4QoPYfdEQdc4tLwNES41X2FTTqHDI+n97HXX2DRL3gifZCL4TqH0zWiASk8oFRB17MYlAPganCN0vrgB6lSGnCkuD7StVKjebaGqh52NWyjXk8xO5+V+gsvN+L2eXIdXee2VKZZt9WH7RrMdrl3/5g3bt3h2nrDcrmo8+Ov4vawz2U7ozrLzuzQWGZBbKCyhxaH/85s+dL+VhCw7tdlFvzWN50xLYkfJVyQ/Xl+HoYipbKiVZGjvVOLCc732FLHu3ZdBAdnBQl1HOpYC7VkeN93hK4j9spk7KAI0O8Wsxc9CO5nM/H+iNQjVwXgVxnQQ+hyteTK1UsGGpmVEd+RjVLtVv9jDtbwc6yX+Mn+vn4A9PNxbiNSsutxPaO0UdCmZ876GsZcVndVK8MtVrrTeyjkHJm6RM59tTeSgenchnH7JBsQxcHXytijE9CZrddKEe++cwxR7ckgNJtnFkQXYYalqcAfB1bUMyxmX5a+ggQcQF5KZrLEItULUdktRexMRF2TBbh07Uk+9NGf4tWvfF4Ti6rWhTwNeAJTCZ60ItXHESypK0TsjCSkJG28hnW9pvjc2nIpwPr+XdanJxxdukIIeoKR0s4TOs6JdHYXMMZVEZhaWfEKSq9BerSfIk2UcpNgXQcP7Dw7ekP/6heR4+NjYtcrqx6BPkamPCqQxxLtTk/WrM/POTi6wHbUZK5YhG6vw8/wMTozrdTnzKFnZa5/yHZem3+ua7RMI2U40zVa/RwmT0HLs1X9X5kbm63gZcaVmUnH19dcDKGWMw8hcEdu8IX7n+T4fEPfd1w62uf8bEOWzHLZcX6utvSyj5Bhtb/PNGx4NX+K5+79FJcPjggHalc3fdvOysz/bX8ZIS4KKJvt/DM7p41VA4bU2ZxfJ7Pfze41U0jNjjJ9gvesNDXWADQzCXpAxvxcVj+va77ZJXXfwAFmpuN87fv3ZPdBrgNybn0RpOGz7X12TcH2LnV87WLffeoe0l7dxt5tAGasUejeJG6nUkH8c32vtyj13DAbDlqypvv4pH0jM/P9aSKZj0fBj2rNlmlAoN215HaL2xft+VL/rvvc3MDZGbf5fhFqckb95dwOFDTxdWY31ec006SOZwVUSoWf1dLfUvcEvfccnKelXMXW/ay3ppvn5+O5bTa3Tfx6XVv6rmU+Juyun0ftW2xSGMZTXvi3/g7cgs//D/5r+OPAEpb5iD6/NWaITbzHFN68TFDMC/bSZS6MT/DM2e8ny8hXLvxtxrBGCLzn5I+wShcBeP/Jz3J1+z4e33wQsSQ0eUjufzDa2b03dn4O8e8toNaj9qh9P9vjz36QZ378Z9i++pXdMyGQt+dt//mmW2E8vvW7XnHn5ec4feN1VgdHb/Jt70Rm+/pz7L3z91YZsbjc52Fb5dtraXPGeO/md/SeX6/d2PssXzv8hW/qFYpkfuvKf8JH7/zTvPP8p757nXvUHrVH7fva3rKVlnOyv0t1PIYQjBmmZeODKn2LM7eDVdYMyyCiIAXAgQxKc1Lct2AOBvuee6Noh+XqjC/N4ajH84lsAKgyTXRjJnRKKz5OW7abE9Znx/iNGxuOZRrmVPtcAS3FO+GZc/pjjD1nZye8/Oqr1SGXUmIcJy13Fjv6xYLlYsn+wT4XLhzQdwsO9/c4PDykkOm7nuVyiRQNalKdjHaotZIhU5nUAR0DobSApztRS2kH1GDVD0puzl4vuyWipXBC1HmTIEqoYOOv49gcvn7u98xSZ5jS4L8efMdpIlm2NwLZQGukxCuv3GC7HvmhH/thuj7iWf7KUK5B7Cwt60+fn0A6+mgO5VCq09Ydf16ipyjnOiRlPZrmcumOIAuSB5FKJZpTcve7vrw7lJAavHTHkXcsZc2cncgkCsW8xV2IRMQc7rmWutGSd3avYlmUNfhQkJSgBBbR3iuCiC5HZTzSwONytWSxWkFKWjavjwam0jFJAsUYsaIH40tCSNWRE4IG2roY6XKnfRUhRljIgssXL3F06YDYx8p2Ic5m5oBE+/2YGptWFB23rgt03UIdxsnBPxpAEAIYw4cG5jXrTp2oMCUF3SFaOsn/64Kw6npiEciJrgv00Zz0FGIXiUaDn0shBqEPESHQhUDfB/L+no29sqGNaWIaUmWEKyU1oE9Bg+sW5AlBS3H1i07BRKKloKBl98XYKZNTaI6onLVMkwNkvHyLoM5oBf4YWEcclBHo+746gXLRYPVq2ZOyZuOu11uGQVGb4zSQU9Gym9uBlCFlEIl0Xc+73v0sMQReeO55xnFUWXB9KdDHSB96lquefrGnDGUUlos9A2skfS9R9gPPxosh0Hc9qUDouurb9ZBGyc4gkSlF9SGWGe8sZQHL/CsZsXkuVsav76IxnnTuIgMMNCDqoM95IqeJJM5cFCtLWynUElMU1XVSRMGhMfLaa7d49j3PcHh4yLQ95exE2TySkcogmTfeeAPKEWPMnJ1nQkzs7e/x1OPXWMUlXQhEm89Ug2Rzt2+w0nca8Bm3W6ZhyzRO5FwswDDpHlkgl2QMfFoGLXaRGDukRCSKlQN0p3mu7EQIlClpH4rutyKCRN0Puq6jix19t6BMI88//zJfe+EmCeHyhUPSWBhzolv0rDcbkoGdFssFx0Pm6qU9rqUjnn/1Pl/44gs8845rLHqblxJR0KjuB57tXCyU6E5oEdWtuQRj8VE2shaMsDErQjZgl5awMoe9yVYta2GymFMrlRmK0CHkGHFQL2pCGEhTRy8ac4SuO52HXIM4ui77KORp0t/XwH9EijLkeKmTVDIpBQMqOYPU1GykaaKMAyLBZLftbyGarIZotpS+XzbHeEkNoFRLGvp+be5DzzivoJig+lxLBFopMN8zowGtciIbjCCREDLFAL0e4KiMQQa4Uvar4lQ/upcQMJVuwdFse4WVpSRALX1oDHrZWR6Zgdlbpm6eBWbEFm8ALUeaEoOxaFbGJ3xbtjEqale0gKMGUKq9iJbUUSYzLSOrQVzdxz2oEbD+iYA0RgNlJzC7S1qQKiUN6vncRVFAbdcFYhftnmqsTF42WGC56InBSobNDuY5KUPnOGXGSUvr1nEz5e2MEsUCLRkDmpmduhtaefsGFRyMrMAVD8nM3OMWrAEPgs3iKV7izn+swcUWLvT4Szs+tO+8WbClBr6YnSdsvsggPx/gtwRihk+DPFUY/8GJs0v3sRepwX2dLe+T2+jtmbuzpL9PTNzNG+4Nt3iFL8MEbPzdCvflNmEMhBT4TPh5FnHJhXSNw+4ST6UP0+c9Hi/v5aA7IoqW0da16McyD5S20o5qX1vJSPFjjspkkJkepy7/eh8fywyVwc333ToXMsvihxb4NN2BsUHioIU29TgzUJoGY5YtbDYb7r7+quqgeqHLgdQDYrHgXrVNCnjUXeb9dyYr67ev6zrvPpuuv11Oa2zPbCpPssGBXhU6VWWweH/te6Xqp1LBNZRSy7YW/6bY+a0CRu2ebrPQgOF63rFToUhz+JYmmyKtPG7XR2NIDfVmu8AhW5HOIFLfpgWy58HkIBC6nuViQeiE0MUK7HV5mcujyqIBam1M6znPxqPs/EcdkyZ82p+2vtpZV+zjgJ4PorHugbOelipDen42Fk57X58LKWKMSqaPatC3q6yC2RweuWv7joMs3F/hQA8JBrKflVilvnsDKFUwgO2h0MBK/o7Byn2JJYTVz50JcibcXafgur4rTFPXQIJ2rk9TqEkdCgoIrA6P+H3/2P+E21/8JLe+/DuWrGFJTCe3CcCi74khGluolfKWQpQOV6DzpcYD7xtiR4x+bXERU+DDTG9mtx1EGO/drDqnBtJtMHfABlbyr35/VmKnssCak2MO8nqzdVt1QynEqOCkTgJ9F1guIkLHep3IWc8epSREEsvFUs8jE3Sxp190PPXhn+To8Ehti/o8Z4B6eN9yUHKaEtvtlrgdSFMi9G0tpWlg2p639UIx0Fukeo2knU31XKcg/qq87XvZEEESHLDkCzeQy8SX+EXu3L/PlAqLPjJsRjbDSNdHNtuJlHX9TqkwpkIZtuz1EeknXlx/lvccf4j9vUVL3rB39rJirc02dts3Cs6w1Ay8MrtI6mi27zd1/pCl0XSLqYIgAU++9ImoACAJxqIqdc/Q33vffO8y5vWiGlVqVt18d8Ds30LxkpD237y8YM6ZYqxo0c7K/hwH4wR16DW7qtogjTHLfz/fv5vp1CwXzBfWpuFB9qPS9kqbDx/O5hOgzk1NKt15+9YXKVQ/WS2FPZt6RKy0c5uLupe0yZ/Jg7GG1ffVPmcwZu+W9Niaro0qFTNQo4tNs+6onwVLNi2zvrY7tj1zBzRV9fSs2/b+2QbKxyvI3L9EPac4q7UDXWO1rdr+TIhacl0KWaSeoer+YsaT2nqFkoPNqYPCZmvM9oNH7dtsCfjfAf+u/fv/A/xh4D+C7XsbQ9O39YgwcBpe57R/ndf2f/uhz3/7yl+o//6Nx/4cXd7j2vaDHEyP8aH7f5KD6THeffqHWKXL9GX1bffn7dLGzay0USncev6L37/OPGqP2t9j7fDqdf5H/6f/L7c//lcoL31657P1K1/k0jQi/fK78uw0DeRZ8uTOs19862x4b7sWIoc/8kd27I7vRCvjhnR27zt6zzdriZFfffzPkmT8pr87xFO+fOG/5enzn9yx5x+1R+1R+8Fpbx1KbqXHoIF1ctbDEbSjf3UV+vlsRlEvs8O3n/TcoaInM1M0oTmfCij1D9QgVTtoz5x53gkPfi96QlhUauJFFAYmNsNQXRSpOB16mNEpUx049fjePPQ1eJrTxJQiMuweWv3dJU0M48D5+Tn3j+/x+uvGwNL3LFcrELh86RJHhxeQIFy8dES/WCAx1kCUBjQTx/ePSWPmwoUjlsuesWRStuxEMXaXrrOx8cOnZ9g5/a9mnym5jtRswVK9DW3OfMacHQIKqSTyVstBZVJlzdKyZVJZW7Id/mOBUhKPP/4YVy5dpOuDuh68vw6oMTBS5wAilLkiWuBDs13V4SrBnTPmyC+lZQdBdWLkXKzim76zCHSizCW5ZHV4FA2iJwPOOC16QVkPxJ5T7NTuZRHcoSXGKKQypDT02cpwibGIRXMWa+C9sdm4wzkITCUTSiCUbE5ZtARcyCQaOErlMyN0ULxsX0GIzWEhOuZdNMeROdP1yRoMmJICc8ggObBcLomLwFQmQtex6BczJ5j6urWikZBTYqpeKJsp8WxQddIqQClVZwegwfCU9H37wtn5wHbYUtLEMi7ol4KURE4TeZoIpdB3HV3f0YegshuVtUJmTCg5BMhR2b1yMkehQBZKzDWrN4RIWESW9EwLBfckA9eVBbV0U4shqcz1XaSLkUUX6ReBNE6Mo4IeRQoSlRmpZmcHC6ajDBk5KRglhGhOa53fPnYsOmM5KRY8N4aTnBOLLrB3eEDOiWmcmDJsD/YYh0lZdXJm2Eycrzd03cDk7EhSKHQslj1PPvUUN157nSllHEDQx8iVi0c8cf1xuthVh6f6TwtBOi3rOHmJPF0b7p8OUej6SB+ERd/Tglde6ibT9RqU0mxFyDEikshlUlkuQZ34U6GUCSTit4hBkBCNpcDkx2hTBAORYSwm4qx++uxgTjUHVbmjTsdwCwT6fkGmsFoWrl+/wOkyc3Iy8vrrd5hKpkyZ609c5OrFy9w5nVjGjkuXH+eZZ5/mIx/7CEeXLrKIWp4tZw3u5GQQLcGALdl0SyDliVQGXr91mxQWvOPJq8S+I0qElMmYXKjWQShWzqFXkC8COSBTpkyz8h1SKhgQL5doZVD70BvIRHWHTMoQePf2Pc42G7bjxGuv3WbKhc048fJLt0kTTJNw640zTk+2nI+ZzXROj7Lp3b59n+OTU65dOUI6Z0YSJAvirGizzFSfk4RQUgLL1C/F3c+NscKp6Q1lp3uLNCYFZyRQsKIqlRDESoKqTMa+q6wWgrFc5AYYbcZIIBsrURdjLZs3WZBYQT1aDibYPuyB45xVf+UaNTR7p+TdEmU5k4aRPCW6XoF3qk89oCumC0qVZe2F6h+JLZjhoJjG0tQASgr2sfE0/GsooepGG4waVKOovZOLlaoLovuMv7sFGoLpdmgg51waUFiKVB3srm6rUYkmU+dqv3igJERbF9JYCjQ8ZhwRpZW/9HfOFiwJIbJaqU5IZjvm4oyRuYIpwBz0xtIUaOjBWsIHYznzIIgIFYzULFcEZffxLGaLdjSggt0z5NzG2wCEYiD5XAygFAJdJ0jSu5ZSSGMhB1QnFi9XpYBfgtD3UQMmNrQ6Lx6osMAVtq8Boxod1d5zm/ftnPk85x2qQJUaCLX2QPfL7I8ClQXCOcOqjnF5YBZoqgw5dhMP3Flv3ObZea6ZlnILuk+pYZwmtTPi85D+SmH6JxMsW1h0FsZq/Z4xLD70cjUAnpknZ/hdXGeKZGURFBgRtrLmlPvIKHw1fJIgkYP+iCvpnSzTIU8OP8SBXCF0VmIxKJNLIXN+dk6aEvv7+yyWPSXD3vYafVzQR92flOFN6riKMa2Krx28NDdtLZkOqaCkMpsD8eCcDqoGz9zmzwY+sNELUmum6XTbWSAGji5eYLVaEqIvb6nBPAc2uZ6pgBukdc/6UYcf6phrXHKu22aJBfUdxfYKfUZlaaHMfm7BziJNHlUhNylp50t/irhk04D87Vwq7S61z/Pnl9DAvwUtdyozMSt2vWTVV8pmpiXBq+RK22sc1KbYHH2O9tWKZJbC5vyM+zdfbd/pdJ9ZrzfklJUxbnZADiI07FSu+6Kf46XOaphd5wBVkCIN0CuZKWduvPACN174EheuXufqE89w4cKKVJQtKBljWwyR2HV17OpYiL9XqTKiJY4zk7PyFUHZnFUypOreQomQo4Lyc2rr3GWs+LuI1HN3Z2zUDgaay5eXHvchq/qk+k6oIGL3RYhQgfq6L0jVhTlnYggsjdU1J/UdTJOWV9a9S8Ek0zTRJT2HTilVuVgseuS9P8Lt574AnmBhc3mwv+LCBc3kzcZGq6BFgwUYADqlBjar+6/df1yfsDm+bT/7mKt8iD0rGwuUZXUwbs40waQIISf6tNWzqbguzxUM4MKvc2Jr2mTaA/UFn9+8o7/Eba7ZekhpZL0+o+87kp079w96Sha225G7d+5DFLquZ7WI7O2viF1PFM0Uv3T9KZ7+wAfZO1gq4ymzcbGDcylmy5giVIaTTNncJY1rtmdnDMOWIpEYevWt5WTgIus4xRhVQ93L6t6Y3V4tOHNlnq0z709w1nNfh2S2csyt8BxjSuSS2Q7K9qtAt8wgE15i/d6xMrAzjpwHyFPh5dUnOUk/SylXqr0rZgd6cp7rB18XrhvLzvs1SdLrm1+rKjzXXSKVHdXfx20AZ77VO/pZtomJqnRnOTLro+pV+1aQOkbJ2EnrPa3/ztZabZji4CRnT68f1r+dfbrkukmo7esWhz1j7q+shpLZk6aQqk6ZYWqrH8m33+reqWcm+88ueNCkdIZTMVDPHASzM0b2cGcU8nWnPTXbx/drW4I7urH4am0z3hIK3BbYnZPKltg2WO2DJ3dUfdT07OwyELcAmrXqclMM1T2TptkXfbcr7Z3mZWh3ZriNA2632L7k8+UM6DtzV9+VHdlp5VsbEC+4jyfXIzTVjrHz1EO26c4zHliPj9q33j4P/Me0msAj8LeBfwb4G8DF7213imTGeMYr+58E4EtHP0coHct0xNPnP8GF8Qnef/L3c3H4BqWSrAU6njz/cSIdUrqWUPCoPWrfoK2P73HjS7/zfXt+KYVbz32BFz79cZ7+4Y/xxPt/dEdfP2rfXhMR9i9dJX7sT/D6y5+B+X7yln1Vszjt/N722fmd17n9wpff/Pkzj8DOHTen9d/7krgs5xyXlfG0f/dawRLF3qRPb7Utrz3L6qkPzIDHb/HZaWJ4/Xm1H9OIxO9PybTT/ibPH/7ygy6zt9x+8+r/k5+8/c9xND35ne3Yo/aoPWpvi/bN8V2W5s4sRTPHi7PWSHMI+wG5HW5mDrWSTflr4EuzemeHVxEwNg4/1EL1J1Qgyq7zWP8Q+7OTwKLTshdnZ+f0XSTEQN9Hhu1W8VaI0u3bTXcBVu3w+tAQ1OAgSEk1E1n7GFqwNs8ZJahBqO12y8nZORICJyenFeTVOQX/cgkCy75nf38fkcKt199g2k5cvXqFw6ND1sOa8/XA4d4eBwf7rFYrDg4OiF3P3jLS9T0h9tTjtdXtyiURi1BSO+hqLfPQ5jVjzlKAZBljllkaNMMsl2zU4aU6Xx18ZkQ5BClcunTI0aUDlsuObqnl9bIAWYPEURQB05nzNmcF5oQQzXHRMpp1/rMGKN3ha4HWENVhrDw3Xpc1N0e0gahCgICWP8spVZabUtQxlgWKpimpA8fLEc38XaK+CSIKLgkxKsAFDShM2QBPscejDyGg4AvJyqiQNICgy0AnI+dEnkZjHKP2PadEGkc263PWq0i3KDhTBRS60Nl6FJI4IMB9c0IxJ5WW5hvZbjdM00gqCSGwTufcup35zV/7FI9fvsZT735W3zV4trc554Iy2pSwMHCLyWyMzfkmjQ4+5YkiCtCa0ED1Mi5Yn53ySz//C9x66RVKTjz5rmf5Y3//H6QQGYaJcUqIBFbLPZbLpeV/aulCn1N3aKZUyHkkGfCqOepEGcfEymlJR98pC0zsoV8EyMZegzLihBBNFyU7WAd7N1hEzeILfaDr9fnZAsHBCkMEUXCEyjRIF4FYabmLrZcyKftK7NSkzEQrSdgz5cQ0TSyjcPFwn9Bp4H9KhfV64PR8zWbQEgurZWFvf8FoDD3TNKoD3dhtNCjTU0qgeIAxFA4P97hwYY9hTNy/c5eUM4uulf0oWRlCtmtla7J4FiUUttsN6/UZMQrjOKisOZAJIeeRYXNGFGEaEzEGYywRUkkMw8iQJk7X59w9PiaGzoAfSZN5gznhzMGNCKFo4F8MwFIEhnFQYGMIjDOnp5hz1cEMYhHUk/sn3L33BpcuH3FyfEzIiUW/YLFYcvvuTV6+8TqLvX2uXb1Ct1xwdOmI9eYmKR2TEK48fkgIa4b1PVLojC0KW7ca6HEAhAe9QuwM2DKy7IVhc8rzz73EsuuIsWe1DJS45Pj+iTLRmS9nHAZy3KgeLgb+yRmxgIA/e3R5dwd7TkZ2FshJgQuCMIkwDoXtRjPk+0Vg72DJdhiIXa/75SIo6DIGtqMysK23iZOtri2Kytk4Tsq0lhXoWbKW5Eo18Gp7qYEay1QqSKaBznTt5qRWgHSipQFKqSxLYcevpeDITtQ5H9E9NUcFdriLvZWJU4BcEDdtijl61dGfUiHGoOxtQRinRCCTUmG0YEABYpmIUeUzpUSaJkSwwJ4GIrBdJxjbTbFyXZMBynKM5KJlD0vW0qjQQDXufNagnlPFmDMbqXtdppUqrQxBpdSSo9XykZaTb0OndpUFdDJCSlq2UvE1BmwxnRoKXoEKgqj+roEHvXcyHUMJFlAoti8XK1dqc5+myp6WRShlUnvRGOkkBhLZyhyCiJU4A6gMSfZ+WZRBrGiJwejBpTnAyMcO3cM1eOsZ2QLR5GwGUNDSFO6KqGEfA6FSmTeyvZ9DNJx5QYM5FrTNysJRdyCziYMkRofRFNVtqXbAWBkLuu+IWAlBE92gtnA2gNa89IIGqKy0kJWvq+WWg8liefPMsbdD2wnIzQOL9nOV4pk4F7umzG5SfMyFapfXC2qpMurhoQajSm738SBbtfL8+7aynguEUdd6sjKmEiDeCKRfS6S/L8+6+cA9Zv3eedf5qz101vA7VaVZbVC9ha93s/BTQmRinN7gPlrS4IvyK7p/JrOgRBRADAxlSxFYpAVx0NKTi+ESfeh4LL+HQ7nKNd7PHhfZW/YcxCsaCHeWSdQILlLQ6sT1YMauhLbx0KlItYwWBfKwpuTJ3s/0Yg1cFkrK5EllOAjsrZbkPFFKQkJfg3ge/HMGiwounAUFPVDoZ9cHOlnXVsUG1Fv79xtLn5ewBWo5Y73eEmZsnXuQWCyK6KAcigPPpJ4pgrO5OsBDXC94cFxqsLfa9hSoIFk7k5ERAx7tRB/t5bRcbGYctozTSCgFL4eq7+Zndx+nQg4OBTPWFRSMlVJm2G5Zn9yrwfIhDUyniZdfeI3Te8dcubbAanNWIESACjCv9jxYYo6e1edTpHuggXTtb2UngfOT+/wX//6/xr2XX2ax2ueP//P/Wz76M7/PwK6RmhhjoGM9v9khDvASwY2tyfbZWRk3EVESyEBlRAkOhilFmWpKpES7p505q9+jrgx7btBZIoix8GJ7ic1naZMmduAUk+vWJxMcl0nN49FSrGLBbhGyiLHT6nmVECkEUp8ZhpFxmsglswjQdWLgFXBASkp6ph0WS5Vw23eL/S/YOXycEpvzc45koHd/jDT5PRlOzbZqfd7Pay5PdznsJj6z6ipzku9rkLle7vJ0PsSRW772Xsrn3M56/njHUc+16RbJdJQKiOukUtd1EdXzQpu7KpcG5qK087fM5qWUwiSRNQuW6ZwbZVSbJCtTLxlK0rPk+WYLCKs9YdF3ei4mE0NmzInl4R6BgdXmNn2I7DMQHDwFdS3VdYsC3UrJnI9n5NN7XL56zPHrr2nZcAl0qwWLWLh/fJ9hGOq6yvdvki9foZVx0n0yFJXByWijFZjXEv6UBUrtD7WrpwpEubV4kRPuVXbDxTISBcZpIqBMYdOUlG03Kytk6DyZqLCWe7y++DTv2j5NydBJpgf2ZTQwuuq5s9JXpu2ezJKJ89wpA2XdT03+S2Yvb7UcvO03KmrF9OtsXzLgZ3TWLLvOptv0TGBd1Iem5wnBnZClFBaSWJSJXOCsLJRtFV/Dc0Ce5liWGUOznuvMUvSxZ24iNFCtJqBpYpL7S33jazpKX6JkX5OO7tQ/ontcZ/uh27pxx0TScUlEyzuwfc79sn6+s+/OfbxeJlBvJMYgJcwXU7OwqWPh+3F13cx1oc9KM4PqfPlgeSJJu24OHBJc3bgpWI8J1edb6tVNoJrB2Xy73jG7NriwzO5RfFxM7lwezE4LoQGHWrLuzO4pM/3ud9g1ikhYSUZ7d3+2M0jP/fO+X3hl7RYS1mu8HPF84K0bM+a7XVvgUfs2288D99/k978B/J+Bf40Hjw/f85ZlYt3d4ctHfwuAT175f7/lTgUiV7fvJZSOd5/+YS4P7+LZ0z/E0fgkQuDC+CSh+ui/c206uUsZNl/385wmpuHNy+M9am+PNm7PuX/zle/b89fHd/lP/pf/OHde/hr7F6/yP/vzv8bldzz7fevPD2qT8I3DzkLhKTlmIWnn94HCK3LCg3xzT8oJ7w03uXj5Pn/t+hXuvPr8Q9/7WPcqz3YPl9P8NTnlFD2T/sF3X+JafIkz+u8qSGldem6Xfa4s7vGrly5wY33yLd1ncXCBg054TO6zkIlrckb/wJi9WSsh88v9wCuvvMrT25c53X+SYaaXRx70HRYWd1/g4PpTbzouE4HxW9Drr+59ipPuxjf9PW93Fy/wuct/id9/638BwILEionHwvms53ArH5j3Sc8ZF2XDrbzP9CZ97kk73/9227ZE7pT9r/v5gQwcyZaJwK38u5fuGwlv2ufvTSssSVai+61cDQOR/Aio/Kh9G+0tg5RS0kCjH/h9GfnBtmbkS8tmdhKlOUgJ9MAOLSunOmPF6K7FAT6zA6w1MedV+9mzOzXDLgDdIhK7wDgNmh1omfyLRcfYR87HQZ2t5ojTgFs7cHuf5894sEl1WjQq/Jw1COkvVZ2PEhCxnCXRQJyIkKahZQOhpVfU4VnMYasBsjQmIHB+vtYSQCWRssbdNFMusliuiLHj4tE+B4eHrPYOWK2WLBYLVosVq70l9MCY1UllhkIXOz3MBlHnEILYXAcrGZaSlh5JWbMZi5VRUrr63GiH/RxrTtq9/T3uH99ls32cvaWWZVLnsgZlc8mQOyZaJewYlHK+CpgFQeb0w5mEJLsXGgDNlvZYavDJwRORFLSvjRkBzaotmZAFJRaybC4TcgVnpfpcwUsOFUIn9L2WbIm1BF2mEFjkaKAK0BINGnwoWR0TkiGQmXKpNO9++I+WJaq8GvreQQpRCsNmzZT2KUa3H4IGbktWsFWmQIYYPWRNXWNFFKQ0ZS1HOG0HSJDKpCCo88x2U4iLjmkalEmEjlKyAnhKZLGyHOLSgg2IspiERQcp45mG6pyKpKyySp2bxHZc8/LLX2T94k2CdFy8dInDvT1KF1mtDojdEomdMVNNyqqW1c2e3OFoWaU5jcZKIhVMo3OrDl2CAcnMfROjAn6CBCQ2xpeQ1JEUgpXMM6p7zaSbNKO6aCay1LIuASmZIQ+VDSeGqM8aDdBVcgtMIRY0F3MaeQCjUFJgzBMl6JpPOXF8ekbXBRtTZRbbWy0pFLbDwKLXMgN50ZuuLZxvznn++Ve4c++EO3fusNmsKWVEs+WlZj3mkjk/P+fWrZsozGrm9DJdvT6/r6ABYwWiKAPD/Xv3iEE4OzlV5qs0KTuNCNM4cH56TJkSIpEchUmgEBjTyDick/OGzeaUk9OOIJ2aW+Jru7FdZFvLXqrRRszALqovvOTUXOe6Y9TZbSQEjo/vs9ms9aqEsgWdHTMMGyY0mLVdDxzfP+PV1wJ7ixWSE4tlhChIFzk5PmMVJjJazs03wx0nsQdHSuvvdrMlTYWbr97gi7/+Kd57EHn1fOTdH/txrjz5Du7cuc12q6wDw2bL3Tv3mPa3eCa+xxmrE73oMNV9UjnsNQBQJsZxW8uUuC05DIH1eiSngnSZhZWmGMaJCkDsAvsHB5ycrJlKoltGzqZRSwlOE6fHp9y+dYeu66pMUrQEqA9HjQy4i1VU8rJl54s7qksx0I+C2FoZ2GzrUJpDHrUtOgMhze0OlXsv8am2xzhqaVQtd0QNeBVnYMsOrA217JCWb2lBSg9GhKj3VLCeBrE8oJBqia3dEiFpSqRpJKWJriTGNFoAQbQ0XtvWNPgRlIVubtPoBdKCnfPf14CG7tdBHrRb1C6oZSbdCW5BBQ9yaNdDtYOkOOOi2lKuAnNKGkyNxlo2t+2KgwM9aOqZurqDeSBGhJ1SA2maCFED6cH3DAsoFwsGiL2MM9wF8ZJvLbu+OuFzthKvBdDyklCsBI+lZe8wVKid6LZrCKHKirJGqU3VS1B7JCfGScEROi6h2qzOsKXiLxTx52HrN1OkGGg01DJNKSVjpKKxGoiybE2h6TUfj2xgZh0PDVgRtK+dlxW0e6kuELry9j0czogBaiCoRZBoMuuWzCyYNretFXgyC1TNQlR40AgLDtXYU9lZU+K/qV9q8xeSEL+q+snLHev5JxAlEL8UyL9voqxk985vco73AGYL9LU3bCcMf9FS+059B/wARDs/NX2we0yxcbB9RARl3pidp1JKOHDnrGg24S15ARGhk4WCu8eeq5tn6bsV++EiT0wfMjZYZQHJKXM0Xmch+5QCi25BF5TV1fMWiwELJWjAdkoT0zQxntwlD1vq0DML7ha4d+NFc1rbOAjcfuUFhs2G0HXGptYyK/V7gSRlVtSpsZHNh6epTBvnLFU/5Jk+a/u7f0ke+J1Jl33Bk3AyBs415g/dZxswNUiTMQk0pjrr004pSztrKu7Czp0ZS7LR/WkYsiYNWHlRJBJX+1XX+zjFqLYk3XL3XCtq+z4gPqZXfWmIgVhLFdpuseTw8jWkvIADWyDw7g9/lIOLF3R/RpDi523a+vK17v+T9n6+Jnw8VO+J2dMzm49MSmuYBtK6kKeRPkayiCUZaKJEmQZ8bRUzWFy34kNqTEA6aE07tUDufKW6YVaqr2I+eM4GE6XdR+di5vfAdY/2R4qCUXPx+WrgsQfZSfwDD1S3X6v+mkgGtlWw83YcYFIgsn2REIQuRiY7/0Q6PUdb39abNS+9+Aonp+es77/BMGyhgmWlXleAaRiJ914l5rPWG1+XwPrkNlMazVdjYzluCcc32QTh7PSccRxdumztZMazY7bHd22/N7tWhLPj+5yfnZLzxJRGTk+PtYyh7QXzYfc23wt8Rts/FMS9oyR8nMQY0nJmD5WT1WqlPpFUGLZbzs9OKUWTkGIMVup54HiaGMaJiwcrJATSNHH9woprmxv0lnyRSuVLarJVwQu+q1lZWtTGvTAdM75+i/3NKavlgs3BRQ6uXObGNDJNdi4L0J/e4vHtpXoumvvSJgJDiW2Sqr2B7VOFkoUzWdX9+lAGUj4jd9lKE5cqq66TlJwrKy68MmLryGeb26vThqvDLboUWUkiSjFGqTZPh2JjYvucCFyo9kCZmwfVhvX4jDSrYlcWfG3ZzzIbjzoMNtIH4oBTZ7vc2UFsrcFBVZY2Z74v22APRMZ5mcH6mQP5qPvyhp4B9zUIfUnsly2lZDa5Z8w9jHDI6FZ6bW5vh+AIGn3lFePu3jcfl5kucj22Lp2uhTrEZrP4oPl4izOguvg0veDNbZZS4KQs7HxQ6vmkTstsHmQ+rw9PDtXm8d55sofZ9QtJ7EnzxfrXTssCtwx2bjmzyYDm8xPYY2IhzpCXd+xMEeGMBcmY8qp+8bEqbV+bpFfWM5FaYjuXlkTZ9qNmwVYwZR3LdoGeW9raLaYv1Y+NsdQWnyry7C51wOsY+/yqdAY701bwrjH+vXWehkftTdsG+Gtf57ME/BfA/4bvOZvSN2wzW+0btczErZWWUXt977NQoCt7xNIRSse7zn6GWJZcGK/zoeN/ePfLBd6x/girdGSPjcSyeEinPNhKKUz3XicP66/7+fOf+ju8/JlP7Pz+xd/5dbbnpyz3D9/Su/2924Tu4BLj7Zff9NPu4NJ35Cl7R5d56kMf5auf+IWd37/3J/97DXj7XWw5TWxOFf4yrE+ZhuGha0qayJtT4urgu96fH9j2DRj5hMIHwxu8J9yZgWVbu/smpcH2ZOTZeI8SCnt7b16i8oCBI3l4TvvKViosFgtE1L76brYjGbjOGUR41zPv5MZrr35L9/nYM1f4QPe8AtG/me05wrXHrnLj1Vd4f7zDqht57cYNrl+7TgiBk+6YF8k7UKUnNi/z0e553sw42xA5Kb97qb6M8Fq+QDKN/kQ4Zb8k/mJZspVvDUAaEH5E1vxkfJUCXJINPYnI3C8EKbxBs6wKgcIHwvw8P29l5/vfbsuF3xWoI2iMV/v59fqk7Yye8/LWWK/ulj1OyqL+vMfE4+EMgHtlj+OyQIDrcvoQGPDN+wmXZE33Fm2BAtwvq3r2+U61gvBaPmT6HoCf9mXkMdkFrBWEG/nwm36vy7LmwpvoH2+v50O2bwGAdlYWbB6A7ngC9Q9ie8sgpXpYtR/8+KcgFV1YGt+zgw3iVUAeuos72Ft8tx2mmh+/UZrPv1+KBbaC1J9BrIyXlj1bLXu6LjANylqTc6YPPV0MpFXPsB0Zk5eksmD2zAk0fxZQnX3aVz/j7YpEKfmB97GMXguuUeygZ/fxvLnq+LBnpDSpU0eEabQgsDmQpsmcGuZpHe07IQjn63NC7Lh37y5BIqGLdJ3QdR2r5ZILl47olz3DekMMkS50pFS4du0xLhzu0e0tka5nmibWx6cc7C3plj3DsOX+vfvcvXOX5WrF+v6a4JlsUirLw7AdSZMxq9jY3b59ByFwdrZhcbBvfc/VceGHa5IFVm370PJuzMAJfk4qZDHQR0rEEBX4YZH7EIIyI4hl6RZ17ulzslUsNCBS8YN+IBR1NC4WvWakJg1A9V0kl8QwDPR9MDAQGteVbKWrEkGc9as5oryWfBBlc8migIsYejZl5NVXbnLt2nUuHF2A0FFk5Gx7XpkoclbGj729JV3Xa7ZkjJrFLx0hQBcDgUiWrM5nicQo9J06GUoWxqyMK10fEVkw5gVikdKS9V0PD1Z89Cd/lEuPX2WGNLNkMQvCZw2U5mSgNHek+o18bRSVbi9tCJkkQEkImaML+1x/8hrPvXCDaZoIIiwWPWOMSLQbSCBIT5CFjV9BJBOkYxgGpAvEaLIhQikBiMrMUSYt/ZYLEJnyZGV4CjlR15MfetQJqQ4evFyQWDCmUlPofb1MX7FAAAgpw2jfn4rKl7MnhZkzKMxBA6BMTxSkZKJEsiTNgY+RiGbkbsZMcFYvQGKk7zp1flmpoSKlMpCMw8Sv/9on+Pznv0rOE5cvHxBi1vkmKjg0dITQc36+5ZOf/G2O7xvVqTv5gljQLEBoDGEFeO5rL/Di8y8iCOebNZthsrnSG7xx+x6/9ZufpesWBoBwL6dQSIyjgv4++9kvK7td6JA83wdm+tSMtuosM52L62hbv+rkN/dgaPOapqTjVApTGtkOE+M2MaWJO7ducnqmmQv7hyuevH4VSuHsdM2Xv/Q1bt+8zd5iwel65GRzzG994jOsFkt66cli4Epb7zsBLHEWoGD7V1Yn/9k56+M7XDm/w888dZW//tqrfOVLexzeucv52TnDuEGA4+P7fO6zn1dmK3FnfNtT8TKdvkfaDhSi1PXoTAzB9GkumZQCd+8dI3lDnuD8bK1sS+PIYrFQZrWcWMuanCaETCzQByEJSM7cfuMWeXuiYBVzrlentE2gPxsbkWzsEKEymjhgJrfJNnXjznuJCoiTwI4+FS8JJk2/iq1Tl1+lrvX9hap76x47syWyuMCpY1up8A0sJ5g+sCA31OzrwgNnbH9uccYFYxoE2DTANebwreMzs22Clwm0z7LbI7lQQnWJ75qgMmebKPVvDwKW+XvrTeu7iMxtGgXGUrNq7fLsIt0AHLp3mk00c6Xrxe0a33d1HnSCU43eBM3+t5I3pm4pBM2Ql2ZbVfU561dl4/AyFva7OUhJVWbesSupa7WBknwaa1krClPKSIj0fceyi/Rdr8EnDPgoxUBlCgzuXWdLqPLke0yMXkpJAQQVVAhM02SyouUWxnHU945SAcAmNYCW9lW2Pl0XGp/Q58UY6aOxFuQRKaECed+uzS07DRK1Oda9VX9XYEfeqh04+7sGW2yfYX7f+rHZ3TtniXoDvZsLm9/MLg0nge5GtEAS9R4etOzuRtKXM9OHU7tbmff04UcxOwc0m2l2zWxc2mFr9+zkd5/xb7TXMwUozMBgZR4c1c9TlY+2AYuNY2YNImyTcCqfhkH7+ln5W4RRiKVTezgl9spFYlGw9KXV4zzBB+gXPSF2XFw/w7geOTl8kRAC0zSyXq/ZbrZcfD7Tn28rK2uhMDFwv7zOnRs3+O2/+Z+Tp1Htfgqnp2fw0gvcfPE5nv6hD+MR4VzZ2BzEMB8tqe9VfFTEx0wMlOHaoAV3XVeX2Vyb4mzjnf0amxNj56NAmjJ9p3Y6BWVwEShByw13WnfbnzYLus/sCV/9xtIxp3R32zQEmMbE/Xv3ODq6yPLCUu8ricXla8xFS0TBprHrCJeuqb0nwewYe0+zY+zupqOlnsmqrW82RtnbY1WDPILQcXjhkPd/5KOVuWv+/Cr0c+bdvQt1P3E2IcocnKv/ihKQ0FkwV/uxWi44ODjgrjGIKgA5qq10cKTaN4/k8xPk0mM+rLjlMAyTgbvCrAy6GADMzo3OUmEsxAqGaXJWF51ODE1/NFiMl0EXUQcpVeZp721ng1p2y+yIWuJ1JrtVJk0Z6Nl2zhRUmuzS/Ab17ObrwgCuDv4NoQX9uxgZx5HXXnqJW5/7OFcWztZJlU9NwonENLB+4xVe26ybbWC2mgS4feeelh8226oUWG+23Hz9FgA3Xr/FZjvoW5r+mlLmjTfuUUpnz3JZEF5++Qa3b9+n6zpOjs8ZtlOVwHqe8LF9SBUbSMl0ztzn48CLpsI9EUqN7rpe6Tg5OWe9WZOnScuXZz1nX7l8xKrvGKfE7dv3ON9sOD3poQh7+wdszie+9pUXrJSanyeB2fqrZcnCTG8Br7zyCufnazbbDZt7d/niJ36JZ599lu6ZD3L/7JRbN2+x3qxt/BKb9YYXn3t+NhptRe2ARGa/3PHZeZ9QoOD9omfxZ1ZP81q+yZpzpiFTJDAlYxkUXTfDoIxSlEKect2LL6fLPHXnOmcnLyEinNB0g8t0073Uf5e6dmeAmaIjuNPnhrSq+tT1W9P8zd5w2JqzlvnNSt3v257v36znBPcDihj2UmZ3n49h23dbL0odH3+nw7r/mJr0PggcvplZMVPwX8+9Xd3irpZmct262NZN3LlXG0Pvv9+oQv1EZvJkzvI3sbUuP9h9t4XqDzNTxy2b2a0aC1SZvbbs/Gt+rIT5HgKXq420K+POdjTXC3N/b6lsSWX2jnr1xQfesY2SJ2do/7NoGXHdZ/Tgsy0d2xI5lxWjLEC0LFsIep5w/e3lJv0lCw6imhk6mUanJxCKsvpLLTHYAHE+Z5YCN7OHmuz7mnDg7ptZzo/aN9leBH79d/n888BfBv7Z70lvvjdNYJJ1DXZ/4eJf138U+Phj/+FDlx+NT9EXBRkcjtd578kfxdfle0/+KLEs+dLR3+RBibz+qVMuPXCvMay5vfwy9772Mv+//8M/z7jdBTHdev6LvPjpj/O+n/7ZXV/Jo7bbRFg99UHWL37m4Y9iz967PvwdeUy/3OPwsev15xAC/WqPD/zBf6Ay/X/Dezz2NHz5E9/4wm+yLa4+zfa1r1CGNdubL9Bfuv6Nv/SoPdTO79/hK3/t/8HF/PVBNUey4dlw700BSj+I7YMf/CCf+cxnODs7+6a+d/XqVd77nnfTybfu53vyySfZ39/n3t3b/Ov/6r/CP/KP/CP86T/9p9lf9hwdHXHnzp167Tvf+U66Gh/cbYdkDt8EPDZvpcA74i5j1JOb9/Jnbv0Z/tKVv8TN/uY33f9nt8/yDx//MS6G0697jQgGrNnt95v97rvRgvBQQsGbta/Xz3m7yJaLbxHQ9UR5eEx8zT342Xdr+3sQ4POdaKXAkw/I0XezPTg2387zf7dxfkK+vgzP20B8CKB1vyw5LitezwecsfiBYq96yyClaKchpamVdpBvbjaUvGQX0NP+Lppp5U4ZoDLOmJNW/7OTVPDCI8UASB6wtOB8VqecuggqnILFckHfdYjMn+9HrsJisWC5mhjPNtUxPGMGp8zKapRcGoNxmSEzvSfZEbjm8CrU+ucKllFwxPyMOb9Pdk+YNEp7v9CDD5XeXqSOjd9DKcD1EB1CJKdRA3PSMQ0wDHqPUwK379xVh7zRg/s9X3nlVRZ9ZLm3T1wsGIeB7XrDatkTloFhO3B+ckZKiT4EYuzouo5UlLr87v173Lr7Bjdef5033nhDxw8Y08Tx8RkhLDk53dDtn9H1AXLi/PwMKcKFw0NC3xNjYPJjv3LqG2jJM4xt7mNXM3o0FpDMmeiOnUwpgRhNLmtmsAMtSnVylWxMGTFCDEgMLPpey3BllL5bCpnAMA10i44QOkoqpKKsJAV18GZMBE0ui0VeRYTERCfGDFQ00Hn79m2ef+55Soaji0c6t6JUzik/vEVlAygoIETBI5a4qE5vfzYKWHDnM6FUAIlQ6BYd46QljKJAiYHYL7l49SL7B8o8ks05Xgzv7IwmY1K1p6xaE16+LE8TzjTVsrX0Hk793gVBiOrQRhinws2zDSKRZ40RopC0lAeJxMCUt6Sk1O6l2GdFuPHabR577BqHhwcWVEikPFLKpD6abHOQhWEY1TEUA12IiJX7UaCQKMOayU9GKOTqoM6iwR8tPWRgzGSB/qLl+pJ5ElPOTOMERehix5BHhnEgjROr5bKWPevCgkWnLAN5AjHg2pAmfYZAHjMJBVgU8cBCMjCdzbcEiF6uToPgCFy+fMgf+AMf49bNm9y4cZOcsoK5SkRKjxgDUYyRnArHx+fcu39iQXHTk6LZ9geH+6yWPTFgpT0Km/WWZOUhppyZsvu1VaFttgO37tzTUmClgDjwQgP4q+WKru84OTkj50GxDW68VSc9aEhSrHyJS2+ZOaTnGY3OalOqg7EyVvi6FyW8HzYDqUyUaVT2thI4unDEe9/zNH0n3Hj1Njfv3OeNu8fEztnEhNPTk/oOszoCdW9BqHufMoa5G1odwQf7K8b1Kflsw3N31txej7z4lefhpZeJXc9ytaLreo7vn/L6azfr2mqBA3sd2088g1cXfNNxSHuuMk0pbX+RQh8XLPvMUGBzvgUUBDwOWwVh5Mz6fGM6rLAZdT/vYiAPiS99/ksGqnNnsDmApc2NBwLqtmb7nDPw2IhRatZHc9d7q4FmZmULEGPtSOpcnYOPRBTYBBY0tv/EwJVFqnNY586e7XoUA5QiNsWtLEMLdoUGWBT3AwdCKCaHzXHfrAOp7zF3wgca+4eDud2b3QzYanSYDqDOafvc7+G2luDWlewEv6lyGNwh7d+zv7OPtzhLiNRSndGv9/vlJmeCxeSzP1eMAc11iWdL6ziFWo4u1HlqImAMZRbQcXuslp2o8g/ILMDiSxKXN3t3m2u9wIL89pkHhFvwl8qGlDFwfdDSOTEaw2WMRNHgdOg6+sWS/YMlq9WCEFbkWjqvkJKV4ExT7WAyZg1nImwZytp3L72gpWtboET3vmw2T0A6l00HSoqCkUsmTwYEfRMb4u3WHoIgzIE9pmNrsMjPE7NLdoJgM92ys0JKu7/b5c1+lpns+ArdDX4JEJ+PhJGZkNkf1pcgQnw9MH04PfwebzILLnven51YXnuN9otSd7+dvu2wp+2qUNXFs+/MbzsfdXnojan6opUAU8uoFKmsftMEMqWq9we5VfXGvXSDF8NniGOnYBFjKZV1gUFZ9aZxRCJcuXCFD2w/QLSyX7kUbqav8bn41zm5e8L5rbO6r+eSmVJmu9nwhb/733Lx/U/ShyWUzDAMhBLYX1xQFtC5d9Pkp7KW1nOr7gs+jqqmGiug2xLi4216rOrZ4hrRx7Vo8oY/LyhjUas+JU28Y4AY8BLB2ZMGaEDK+ZmxbgfM+6At58J6s+Hs7Jyu79k/OECClYTpFLD0oBjKcl+BQcXHh/p+Lvci7QxlJjIVDOB7SrBxNdAnAfb2D3ny6ac4vPKYi69+z8rReRm0bPtdpiDLQxNUtbOdhehBea0SXfefQk6Z7TBxPk7ETsuBmqOBuDrE7eNcRnIeZmXYFDRxenrG4cEFwtJC86K2vdsomnSwy6hSrJyy+FoW348bo6KrgdZr1dm5GEC6tL3ZwffO4lTsvUA0WakkUtJ9oOu6WhYwSrQSZU1mxPbjIO1ezo6hO6I+zyoh7+4jxZhxTNf1i46nnnqCT//Sf8Pzv/ObXP6Jj9hLBZg7wURYkFiXWQILzSbRfTzjey3ic1Cq7a6srW3cfE2lnJVZua4AHecpTQp27nQfnTwpQVdFWzRVdqpk7/6+6ru24ObgMVfQ8/MFxuolEjRpxmUyCF3Xs1ot2F8uGKeJe/ciQ8qMSZlDH3vsMXKeWG/STMIftIHx44vJK/WaszNlnJqmxBe//FW+9uUXGOKK9zzxHnIplaVOS30X1utNtXvaH7Okhjqu7a+v50kNZtsX4APh/VxYXuDv7n2G13mdUUYEIaeJ5XrFZn8ik6p9mpN+MYhwOR/BWeZeOWky0d6+6rmZIPhHdfud7+/62cPj6MCM2a3dcp75+4zJZmaxS3izHvk6NymascmLl8iEma+Raq82ff1gZ9ruwaxPD7zE7LsP2xNzgB0PXuEmizR7QaCW3p4/T2Y/uP1ebzI7V87HvK6m2SC7fBScmdXlra2+h53+bm/M+jibzvk+OE848XdvZ8aHR2f+187NbJG5Hfgm33r4J9kVRH+juS3gD2nvKdXGr4+yP0IIrIClCHfkiPP+kNh3dBgTpYCUUkt9z+fFZdS3be+B487dpqhnpvlrI/Yq2v/ge/3sXTUfT/V5BW0+at9e+1vwUJ2iecvAbwL/Ux6SyR+49nXe73jRyn3dXn6VFw5/VX8o8IvX/20AkgwPren3fPQ9/AO/9Q/s3OuV/U/y1z70b5JfzqSbDzMYDOen/I0//y/zz/6hv8IiNzYlIbDIBzPd+vd2ExHiwUUIUdHws9ZdfJz+8hPfsWfFrjF/XLx4kWfe+36uv+eH3/L3F1ef/o71JU0KuhARFo995+7792orpfBbf/U/4Tf+/H/IP/FP/OOWxPfQVVxg+LaAN7/X2v7+PhcuXPimQEoiwo/92I+xWCy+8cW/S/PkyV/4hV/g4x//OM888wx/6k/9KZbL5UMgpW+3vdmxoqfnz9z6M3z0/KP8hSt/gd/Z+x1O4gmjjEx54uiNI+4/fr+WUn+wPTM8w5Ex7z1qu+3rHOO+4Wdv9/b97vt36/lv9b5LEkt29+EDGXmynPL+cJsv5Md4MV+q5Q1/r7e3DFJa9oHY9WyGLSmZM7cEwwdZrfWg2Xd931sJJMsAD0JKmWk7ab36rA6axWIxYzRJDOPIOOg1XRfpeg3STKMG5N8sQ0fEM7SUaWbRa/aqZ7cizckjaEx3uVhwvp7IqSE/58wGHsSoVOo1YDRz6oFl4RZj7Snt4FeU3ceDf3NnuPZ5/g5BMwtnAuoOhCDCrhPCnX96j1KSXasu+C5EYsRAG3oAraCyyUvjwIRUJ9h2u9WyYXfv13d3R7gGIUr1UUwxslyKlt+SwjBu+epzX2OcRk7PNqRxUAe09TeVkfP1GZ/93GdYvbiyUmSZk5MTBOHihUtcuHTEhcNDpGS208iVq1cNULBROnGBIJF+sSB2HSklVssFFw73WfSChI4QOwiBcRpZ9CudgjrYPt6llhPyF8o5G5OBMOVMyhMkLYuWbf7GKXG22XA8jASJrKIQemEzTJycWLmxNBCkEKRjOwzsrVY8fvUy+/tLYshsU0FCIRFYrzc89/wL3Lr5Bl3suf7EdRZ7+2QZGbejOuhLseBkYjuOROmg67QcjKD9dCd/ygS0bBMS1YkdhS70Si9Ppqc5JtRRepXr169yuj4nRC0TePfOKdthS7dc6b1TsqAppCL2M0wZzYr0Un8GHNCgfVcdYhqIGAghkKZMFM0Su3vvmOdefI2TVOh7GMrI/dM3eOXlV7l76yalZO7eu8snPvFxLl46hFA4Pd9wcnzK0cFF0gjhQz3LZc9mWHPn9jG379zizp1bLBZLHn/scZ64/gSxD8RO8ctBIIe5k9WCye4VLwWCBuvHNGnptPWWzfk5CJxvR05PNgzDwJXLh/SLjttv3OXOnZusz87ZnK85PzsDEfb29lhvNty/e8x2s+XS0UW6LrBYLHj8ySf44Q//kJU9DOztLyBExhE6Y8ORnJGsbB2x7whRwRlBAjEa+CRoeahS1JmUTLckMu/9wLP8Q3/yj/NzP/ffsVmvKWRlm8Jd066VtGyiBmMm02m2cIoQSFB6LQsZbW24XvXAiqLBmK02CpM5wD0kYuBKERIdUTKFSYNGpQEVHDiofVVwUw3gV+dlsIBHjSZodx8om1T7YqXIcpkYp0TJiRAyYRG5eOUyd27fp1t0rSxg3yFdVD2WNOM9hB4vX1VIRgwzAz/SggpZtLeaiN6ciSkLY5l4cT3wl77wMpuSkb1ehTJrGc2OToENUya5Bp2/C2jJFDGnue9VKVSV5juEgIGJJitPlZlYG0DPg5bOdBNZrfYUmLTdkkoilE6ZviQT+wA5Mw2J2AWmYWxlW1W5GsjN+iQ2TzOntNNJtNeZ91T7srs/qgy0qFuppX08EOClyXTLFRxYrAE5GxCxUnLBQU06Pw6qdGdzCPNAwRxkvWs1eqb0jn/MQT1onx0u7b9tSAnvo70bDkKro2RrwdaV/aaOb2mOabIBE2ffb+ubOk5mqtT14XuhO7yLrXXjPrRSMMYgIbZflBZ03BkLNKi5U25O/F7NQa9/FSTb2HnQmwrtqqt7Duzyf6o+aPPh4A5ltinsmFIegRHRZ1J0rdq13teCUCz4Jxijnc9lCDiAywoGkkUDo9HZ0URYHax49r1Pcf2xx0hjQcKyzUH2Mog6I1HEdKwzR80DPmJTqhOSZ7qwBY0KJSuDmxI2+RwWcPm261JWQOnb3cUTo+5jk+23qt9s+mwOBQxkHC2Ab6B1Y/tIxpqWbeRjjDNruWgpWy+7ZOCVYsyffr/WfB2qfOhZIcyAdWV2XTtQigjxuUgYE6lv5RwfDpopwNQZYvx95/etIPoy145V2ZpO9Iz4B85BtHXkgl14sOe+HltQq2m+2T0NGAUYyKbpgBqETD5SzI7LmrghYmU38bMUMPrYtuBiMjYd399Tmji+f8Ld4zsMj43kawVeQUETRedunEa+ev5pXhv/jQoa3A5b+rzHk8MPsVquWCwWXB6eoR8vsLe3RxEtMensk8oopMwGkgMXeJzlojfGzYCEqIHcnM2mpe1F1V6xcZE226kUsHNqKplUhDAL8hUUkDSME0xqs3cGZJpS4X66wYiV1MJAL2PkgjzG/v4eiy7qOSL5/ArbtOWVs69wf7zPZn1IN40chmuUPDEN21pespBNPyTKsCGsj+GC8nbkrMAUfSdlPNUWbA2IAZFURp1UzFm3nnr/D/OV3/w1tuPAteuP8/TT7ySNhSklosSqZ0UKzMDcgoIzp+PbVUq19KqB22fPpEAqqZ4vxNbTG6+9zJ3bdxjR89zrL3yRzfjTnNy7z8nNlyilsFlveOGlL7Po7lGkMI4T2+3AcrGiJHhs8TgX9i6w2B6xPh843dzlzvAqXew43Dvi8b1nVDZiqKCGIrM16y9Y5rSgGnP0EqXjlJhGDa6NU2IYFGSzWmmSzvp8w+nmHsf5JtM4Mo4jdxfPk5Zrxmliu9kyTROr5YpeFjwx/gjX9p7l+uPXq47q+wgSSJmWhWz7ShAFwDoYKc/skTkwbmeNkzk8OuDSsnB4dFjtjzL70688lC33iq9vG49q1zQLSWVK/Trz7y+XywqEa3ZkwUZR72OKUUv+aRnVQtISq9XymPerNe95M0GrpYwp193vPXAbcb1qf5eSuXLlEsfHd4HC/v4+w3acbQy6NkJUNtqcYdEHLhxZUtIDfatbQVMxdQz8/KG3Nt9ASXz+K1/m1ftn3P7Cl3nixz/Gqu+YaepqN9Xf1c2pWQeGD6nP3t0X2vzptabHRN/n+vpx/sTmj7EJazKJe/E+N89vkr6UmZ6dOHzi0ECDqg+fW32NQOCnzn8cTSqSCtIUPLlhDpwts/FXtKcDjOob1M3Nr9212eetjcj8pXw4pJ6htPLBAyAkV/oOJE3U+dBrBEe37h4bHCSy2y+RWdfftK++sZiun+3JD9wdZnOuf0mTI/E15c81+8P35SrXzO7jnWvPm//4wG/bT7Mf/Zm7+6RUm+fhd7dzxFxv1XVSdq+0cXc7se1Fdu1cDvxwPgOxtW7OQHry9SAJu8/2b80wxyqXM6BU1SpuM0g7a9T5ML1bbd5wh+nwOuXoKhQ7skibB197/gDJUudX5u9Z5cbWva0t1ZsPrivtSZ5NrgOhfN91QPHuuD1q31L7xhVV4OeAE+BR3HW3iYGTvs5nJTwsnYXMGDbw+4EfA/7uw1997Ym/y7//wZ8m0kro7KVLvPfkZ1W/AO8+/cNcHp79hl3syoKr2/fNdw6+nlb5TrRde2e33V08zzbsgh6W+ZDLw7vetF+FQpKB28uvaJwE6MuSK9v3wjhZKb2H3yWdH7N9/TmWT7xHk1K+zfaen/wjfPK/+k8BePe7381P/fTvZ29/7y19t+TE5pUvfcvPfv2r/3/2/jTWtiS77wN/EbH3OffeN+fLeWJVZpLFmsgiJRUHmaRISS1KbcsSJMvSlzYMoQ0Iko1GN2DALcMG2rDs7gZaRtuyDMPttg011GrI1kBLFAdJpIpDkSwWWVVk1pjz+PLN707nnL0jVn9Ya0XEue9lVWZlqjJJvki8vPees4cYVqxYsdY//utpNsfaZ/NmzZc+9b/ywFMfgXlm9epX63Wr6TL7O1940+ckGbi4fopIYh33ub54EYBRdrhn/QTOYffNlq837l428Yhri+fq38+c+WfcHF+57bpFOcVHb/5J7lt9mEEW/MuW2a9++mcrucOblQe/DivOWynnzp17R/d/q0sIgQ996ENcunTpNr/Om5WdnR0ee+yx23zU32z5mZ/5GQB++Zd/mYODA86cOfOuPPetlEjkk4ef5A8c/gGupWts4oYXFi/whTe+wP7f3efwXznk8U8+Xq9fxRX//Mw/Z2Dg37n873zL6nm33C3v5xKCkgl9JF5mJQOvye8OI/Itg5Rq4CdQGX+C5azXgLkGDv00Vy56cl7EU29F4qApoFLOlCLGeGROBwnkPFGUqZ0haWzTsq7Yu5wG3k+VUNMCeRAiRgPmWMDauBL05GZUZ0eoqUF0o+jn7MVpIgBELJ2YtttP/BUa0EFjiQpq0ScEkMYSoZAcDZY0x6oZGd3aIlIsUGpO8uDvknpas93fNvN6alHBH8Wc46WoM2tI6kyZ58Z8EzpHRz3hVjLq8xZjLmlBxlBP9uqpn+VyQRqSGrEWEItFWSr2dhaspJA3UzPRo1CYuLV/nRuHaFsqsCpx8+YB4+uJISVLhQenTp9mmmemjTLT2FDYmEUgs7ccLQ1aZFwsWCz3WO4sWa9XPPDAA5Wx5fTpM+D0+gjH6xW39vfZ2dklpcQmC1MuzLOmMVuOiaOjA6ajI/I0s9lsmLKw3szMszpP93YVOLJ/eMT1G4dM6wnIxBAYFztsNjOLceQ7vv3befKJb+P+B89xcHhAKRO5wMH+Ppdef5XV8RE3rl3n85//LQqBKW+IAeb1Bg/LzlJYTTOUNbeOD1lfWrMYd3nt0hWmORNC5ObNm8zrY6bNmuVyhzOnT3HffRc5d+4MpcByOTKmSEwLdndPIynxvd//fTzxnR/i+eee5enPPQ2rzM2rt1gfHzMsF8ahZA7hSdPmWJYx1rOw2WiQL5fMarMh5EJMA4FMLnrafb1asRxHlru7xDHhaX9WmzVndgdS1OjJ1ev7/NpnvsKrL77CjRv7jOPAtavX+YVP/Qr3XLzIrYMDrly7zuHRIYs0cM/5e3jxpVd4+PEHeenlF3n+2ZcUQLRWtqFz5/d48qkPcOr0HhcunAcC9993P08++QS7u2P1z6jjWB3beZ4RCpevXOP5F17m8OCYl19+metXriIlc3S85vgok/PMhfOnGBcjly9f52h9pGxGSpGFn8qrbCKCzmeBEAPnLpzjq88+w9HhITvjLk99xxPMuXBz/4gnv/1Jci68/srrXL38Bo8//hgf/fhH2NldUGYFiC2GBSklFsOImFNP03kp2C5LgSg8/uQT/PAfEn75l36Jo6NbKLvPRJHZ5HrNlDfV8RUNuBLMEasOYT0xXkJL5UcQJDrgQIPvRdzhaVubOmfNVdc7Hev2ytaNEmqGFfHnANCY3vT0ekMEt0CKLwDNMSvB4ZFiqZnMQUpBMy9ZuqagmnkcIkdHK778tecZUuL4aMOc/ShiIQyJmNwBrWwAqhhLZQJop1RbQKAumdYPWaCQOE6JIwnEMLOjvVxTexSxOgPRPuufWIMW7sR3J7QzC5rSbuAPa3+FjOoYRzxqWfN5af7lFNhIJuc1yKzrXDBPfAmkMbBYJMps9fR0LO4h9iXN/vZhLwjtjGy/AQtbv/teaxvI1P0wYFioF5iT1iKmvrZFA6SIB3WENlaxkx3sFK1QQSnUQIP1vI9762xlnRKvpwMOWruylArE2Tq9LL0j3ANPUBkJvLJmu7jjWXxsEQ2e1CCYP8NAgO53tvHVYJI5uStgptR51vvenQmp2ABkr5eIAaJaC6PeQG4TuxvP/lS81M/8W2X+69qDn9h1GfBnNGlpp5CD9RsVsMbWu0wMK6OR96wGFArZUi4545/VTzowHXTfuNxKA6e5fRRhd95htbrAZl4Rh4WCE4xdQ6rM6H3FwBjeDy3tUd9NBprNoVYihHZNqQBMAddzvr6ESKDU+VfX7vd9VEFq23UOSrXvEQfKU0+Se4cEm6seeI8GRo3O3OXPLEVT8QYFgvR6yaSpSae4zFWB8/hS7fdxGCttc60O6Lx0/RdCZc3Z6n5bzxwQWfcQ0s8aqaCSXiAr7iH4mr89sD63tl7m63Donn1Sp56Yrf1aU9CUL75PiJbKs5Rc07/2Gtxr1A5rdH3sa5P9FGODTENqwAebNzfuu0GIgfF0Yv5Xhfm/F8tXI7ovIrN+6pjV0fHJzuEKL5OOA3Edqx4fN6OurbMGy9uaZXs/iVyQhxjXA0MceXD6GGPaZRgSMgUeW3yUIS2IMbBYLM2k0Z6b5on1ZmOnESNZNHhfSuHW8BrzeMA0bcjThGRNPT4z8erwNLPMqEwp2+h6M3F1fpVNOba2QkwDcRo5nx/jI+t/hSf3vodzp86xnlZk1ry2/C1eWvwmz+x8jtW5NTs7O5zJFzh7+BCPffZh0o01ZZ5wCGuWwpwFVkccf+mX2Gy+i+G++zg4PGY/XuZouMZ6tabkiZwzQxpYLEbO7J3lofAdIJFl3GMIiRAS47hgvTqCwyt8x8e+k1s3b3DP+YtEYH28Ic8TcYg4WFPxtwrEjFHl+OjVZzh65RkLhmY2R/uMi121+UQBn5t8zCYfM6TETjyjTFQBkMKl57/MELIxBwnPTZ/h164/zPzbV1m9/JICgI6P+c2n/xEvPfgy682ao+MVm2kihcje7g7nFxc4xzny1SW3rh9wOB2wz2XCzcDe9T0e+/3fwf3pCe4bvo171k9yfvde7rlwQZmBxeaer6uofZTDxP7xLV45eIab5TJXDl7j5fw5RIRpnpknBUvu7C5IMXJ0uOK4HLKf3qAaGH64xvQZBMLKAJQk7t08zkXu48L+kyzDHvdcvEARYbWeeOTck+xNFzm4dcDR0SHnzp3l/vvvZzedstS1oYIwU0xb89cZn1xfnLvnAh/44AdYLpdM8wY/9IOlwss5I2XutABUMKXPtzpVTXPYXslBfh//2Md4/rnnOT4+JsTAcrHkAx/4AGdOu7M8mMnav6P9Lvan72G2lJLpcA+91+d1+qt97DZIZ2fj9ltn0wXh4sXzvHF5h+OjY4L5xgJw89YBBwdqA26mXOt65sxplsux6sbt/vKVKGx9vmUPd+pbCKznzHFIpLlQj4rUdUWaMXN7a+05nQ1sOq0PUJ28R/ujt/cgCuzlHRA4PZ/i7NFpntk8y4PXHuGDZz/AnKc6Lp84/BgEDUpAIaak0LIsW3291QN1nW2BLV9Pmu7vqxTqfV1DmqlhY7v1vYADiLdWxF6OguCb1Z5hz6+TaneFLdtAbz9pG3sb2irar0t1nvi8r+P+Zgad9V81HHr56Q3B5jv1OvRyKJWBTHpxq32wPdvaY+W2i7t5YrWWmgZz+94GvNt6Fd6SN2tvK60FPr5VqYReXciJO7vBDWHrmu22nJwPblf1/d3GJmxLxm2l/7y+NaCHd5drpMykOOiewdJBtgd1Y2M2b9tKnNzBbIOPbqtDp9/pf/oBARdts3cKW+r2bnmHZW9vj1IKq9Vq+4sjThrzd8s3WV742Av6y1ngbwD/G6DH7QTg34CD8dKWsrnJy7y+21Kb/eL9/+XWuvhmZSg7PHj8cQKRoSz52M0/xVAUYLMou3zw4EeI8vaBPK/ufY6b48u3fT7HFb997u8rEOtEubzzJVbp5tZnO/kcjx7+AT5+48/w1P6PsZPPUcLMFI/5/IX/H58//3d5fffzFEXpMpY9Hrv+Pfzof/8HGV64cUcFUFYHXP4n/w3n/9CfI377kwBcWX6Vyzt3BguNZZcnDn6YKAM75SxJlAlGRDi4eolf/4f/IwApJT7wgQ+QLEb4jYqUzK3f/Blufe5n7XmFef8q47n7tq6bwjGbeEggsZvP13EVEb7yiz/F3KUE/I3l32bv4r2c//QRO199pn7+zOX/iZ/40P/a2NVPlFQWPLj6OFEGVum69sWzsPjsKR74wx/lA5t/hYeOP8637/8RdvM931C2NuGIKR7xxs4Xubp8lsPhMl8694/e1BoA2MR9Lu18sS6AhbxtO9eOg59/4P/Og8cfZ1nO8NEbf4pFObV1yb3rp7hv9aGtzwLR+u/ts3UkOyzxpt+/QwX4F/7CX+AXf/EXuXXrFiklzpw5w4/8yI/w8MMPv6Pn/ssqIQSeeuopfuu3fourV6++pXseeughTp069Y0vfAtFRDg60rRcq9XqhG/1W1cCgYv5ImR4aHqIR649wk8c/gQf/sqH+eNP/vFWX4S/ePkvApBIb0k33y13y++V4mCl3y3lLYOUplLYrLIFwvvzO+r60eCVBvxnd9qHgJTMvNFTjhICuWRS0NOZ03pt7D668Z/nCYtCkeeJzSQGrtGNWUuV0TmNtnxS6iCMMVJEmTNyZarQE/IeDEljgJiIRJKn8gHCoEGuebNhuViyu7sEhNVqxfHxmlw0LZfktuF0978DjTTAojXyFALg9VTnYO8scKCWtqvU1gAtZlrcuWJ9EWmONPykjVHqBwUpAcwCIUSGFEmhsVHMhfq7P8lfG6xOIHUTHIF5s0FyJg4DMQbmaUOeBUJBT0bOjIOm0RqGUZ2hSZjyGslBwUizAtQkqkOkzBMrsUBgjKxWK4qIpbbS08meYsZT8BwdKmuUB3GtE4kx8sLzL4Ao7fru3i4ikzKihMhmM3F0vGIYRgPbBQOfBcbFgpj0ZL+C4Sx9hzFuSMnM86TpKuaZadoYrb4KYAwwbI6Z58KKyOd/47O8+sILPPrEI7z2+itsVseMKXJqd5fN4ZpAYT0d89IrL3J4vCHPykqzGGC5GEECV29e41c/85t6QlvWvPLCqwQS+/tHSm8fI3MuiGzQIGViiAOnT51iZ2epKfoWyq61s9zjwj33c+6eM+zuDaQIDzxwH1ceuI9rr9/k/AMXiMuRw2nDejOTQuDWzRusDvYZYiAOgRsHx7x26SqXXrlEzoWrN7R+q/XMhXsuIBSuXbvOtSvXONzfZ1yMnDl3nlNnzjAMiUDma1/5Mq+89JrS+5eZ5595loNbN7jvvgsKbpxm1sfHhAjrzS5HqwMOD2+xWm1YE5hz5sr1q/Drelp/Pa2hiMl74ODwBq++dokQhMUwEAjcd+99/OE/+qN81yc+wmJ3JOeZF154iZdefI3j1cT+wQExFr72la9y+Y19cs6EODPPG3KeiSgYJxfhyrU3cABPCOocjslOm6NzSh3W5lTHg++BK5evcuP6dWXpCYmvfPkZRGAuM7/+q58BiZpSrRSe/u0v88Wnv8qpM+eZ50yMcP78eR5//GEeefQhlsslm2nNrZu3ePXV1zk4XBFi4Pw957hw/iynzpxiuVxwfKh5BoOl3NpMM6vNhsPDQ1W1dmrOCSMcRBliJEsmz5khjZRcLEgQkaAO5nGEXDyYGzR9YlR9QHFHpYN5ooIFS2g6sfqTpSoedQVrIDMEDBTSORhD36eqF0Lp7jMnXktHBmTTewXCkJizcGv/gIBwsH/ItasbNK2Hgl0Xww5piFU3q0OwdPqArWBzHxjRVlq9VHNo2kNiTb0nEix43E6xg+tjCxcEPfFewV/eA9K0dYXIeACru85BZb4M1c8lVNCFAgLMk2sA3YixdJlcYM70lAYDz+haqQDaYqt/sGXPFyttg/uKszTgSU3d1Tlc/aPq/Bdfk1qYxN3nDkLwFIWVEcoeJEHX+OjBl8qo4w5Yas91ImjvFSBR00H167jXWHzdVjnuht5qUeoa2uS6Cvptz/J0sFvhgtBOsRJK1R96VelsBLUXakyz9r2CkipQobIu2eljt588EOrg5WDSJwFP/YKvsA6QqbMg1vntxouemHa2ktohdV4jPl+aDEfxNzRnfLF+b0GU7llIY4bqv/LndEGdErov7XxgkITQMd5I7FrVXiRB0272TFU6AIKUqODuPDPnzBwmTQ1ZSgW1uKyG0ABGMW6D1zw9oc5XHxfq38UCqwrS6cIhHhW38ffUwinAEBWoI7kO//uyaArR3HRXl7US2nyUUpirlafjW3Jj0ys2V0OAkue6LwA9HODPklKMcbAa2vV9bgW3Me76+kEhjCCTsLe3yzgsuHr1KiLJMAQmxwlNG+z/BZVHnwclZ1JKjMMAQZimzDzPFvyREwIoprvCHfVQV01bs0Nrz9aX3HkSWSA09PMshK32+32+qqTu+xA6QJg03e3B49C9u65VW4rW+jbPlJztAILK+Sodk+dJ9c8jhfgHIX3KD7oA9wvlAzNia3Uppau31XFu79nM61oPaAds9HJtwCrsE4qO23PhCxoPnzS94u7qNLpnS4ybAWUa0n7JlsbJ+0JooMsyzsha9zpq70gbsKx9U0qhbJSVNOey3edBiFkZxI64wRvHT/PZcpH748NcP7rMJh+T0zHjODBNExJmprLh2sEbXJpe41Au8eCVB0jGbowEjtcrXnn1NQteznya/45L8QrrzcQka3KcDDSdUcsgEI8Ti6MFu/EMIsI9+XF2OEWSkd3PneLo+VeZDm8SgnDu3Fku3HOeMsFiJ0IKbIoyBq2GGxxurjNvNpa5OnBt/wXmT7/M4c0DbefxIZ996Se4TmZ3ZweAo9Ux19evcq28xBh3eDB8J3vjee6fvp3Liy/xxV/4OW7dOqhrz8tnv8K1a3+DJ8IHeVAeoORiPokNU16zmVesp2PmeWZG03EfHB/y8qsvk51NVyDOAX42sP7CEde/dhW+75cZziROzffyIf4QP7D+Ezx6/+OkUWXwxs2bvH7wEgdynZfj5zkcL/Hyza9w62ifmTUKbM+N9RM1H+Sg6SFf2yqbo2zPw95fkMm8vnmGS1efBfk0gchwKVXfyHJ/lyRL5kl17HAjcY9c5AE+jOTIjpzhkfARzp07y8N7TzDEBZOsuDa/wtXDS7wWv8iynOWx+HHOPf4hRsncvHyJeZ4qCEN9OxvIE0wrm+fbLuM27/WXbEF4fF9vVz/40EP8iT/xx7l27RrL5ZKHH3nYDhvZARezQ72z3F7BUiNvKad+EfH1pVdAW7pSbr/P5l8FVfbXV0cNpJi4//4HeOH5F9isVWflXDg8LDV9qwgMcSANkQcffEhZq9F69bV486BNp09pgOo8K6tciihTt9sofTNoa9ttX9Set/6p35+0jPs+otq21bDbepj510BBP34Q0J6busMmziKjz2tgf1/nw9Zze6uZtq/p3ttX87Z6Sxv75jPzv6XZp96mEIxBtK2LoXvmbX3VgZLDbf3dyVvoPvN1KGC2vh/yafZzBSvduXG1zs0+79qw9epunKSvn1+/PR/uFKPahiVLV7fQMeu2G30nUj/p6yedNMrJ/toyEWgCdwd5PPG8266S26++rR/l9va32rdx0t8CjiCpdXc9bZ2g43j7oZwTs/32VojaP6EUspR6mGg7VV9raD8eYu9v41aqPtkSPf+2G7sqh31dfZ9m6047+HO3vKPyPcAucAz33Xcf58+f53Of+9x7XavfteXo7FFTCJ8E/o/Af9Jd8J3AH+bE/uj2IiG/JdnfpANePP3L9e9nzv6z+nuQyN58kXCnl7kKehO8xyrdYr4DEOntlqPhKl8590/4ytmfYi/fw9npYVbpJlM44nC42tlXWtbpFl+75+e576kN3/38d9+57kDJE/9i+I/5zQ8rsGsTD9mkO6eu6vvh8cMf4PR8P6yA/0J45n/+51x94VkAlsslp0+fhlLIxwfE3dO1f64tn+M4Xd967tVbn+HCb36VYAc9pcx8bv1f8dpj2226tniW13e/wFj2eHL/R9nLF/nQrR/n6TP/kM89/f9tFw7wxo88zd97/C/x3V/+bn5AfqC2X0QPIbyZ3JQ089KpX+k6Hvi/wOpv3+SFf/+XeOHf/SXCByL3r76T77/yl/iu63+OvXxBn436764vnufG4kV++/w/4PWdL3B558us4wFTOrrzS7/ZEpSh7JVTvw7As2d+7rZLxrzHskuHCJBkyVP7P0aSBWenh/mOW3+UIIn7jZFpE4+4vPNl9ofX+cq5f8LZzSN8+Ob/lk/+2b/ItV/8B7fbu2WmbFbsjolTb8aY9laaEwLf/d3fzV//63+d559/nrNnz/L7f//v58yZMyyXy2/6uf+yy3K55GMf+xg///M//w2vTSnx4Q9/+C2B995KWa/XHB8ff+ML3yclEDQl7t1yt9wtv+vLW57p8zx3wTsawCX4Zt5SvIRgzAV26rfm0y4Qop4oPbHh9Z+6OQsKErAgjVKXi6WXcoAS1QEkRGUSsqDH8XpF3KiDZJ6VJrvIzPFaT/oFycxZAUxSCsVYOypcRzRImUshThMkmPNGT5iWQgqRQaBE3TAWsfNVIkAmRmUG8hR3klE6KHd+RAU11ADfbZvvboPoG1Lxk4/2d0EBAdr9FjQIhKDhSAUCFU17F5SlaTEm5mnStosoaMCAPtruYOwj5tAz54xvkDWNA6RoYWEx4I59DhBIjMuBxZBIITJNk54IsvFEIBuiW7Ly9fj5uBAjZS6WbkWq86DUZ7cTZiULc1YGAa0jNU3LZuV9GuD6NXWWiRBiIgYLasihMd9gToagiH0Hds0zIYrdG9G0QVAkK4MRaqjGGJpDGYGQNR3DPLEqa964suLKzTdUnkvRU717O6SUmPPEZj6mhEBKkXFIiu3IG2CglMz+zX1eef0S45B47OH7uXblJpMhAJXyPtcxliyEMFDiyM1bhRu39pklI0EYCIwh8dILrxJjIA2asm7vzB7TeiKWxJe/+jWuH95iLnDpjcuklLh58yaHB/ukIRKlsJkzq83MYhjZXSz44pe+yhd++0ssxgWLcdQgXQxM64mDg0PmEDRdWFFGsHmz4vjwgKPjQ0qBGDLrzTFHx/vkcsrmj5AGB9NliqXSU8yIIDIxbQqbzUwpzjYG43JXg1zrtTGMFVYIkcTx8Yqf+ImfZP/omA8+9QGOjvb56Z/8J7zy8usa8MyFLJn1ZkMpgTRASjNFc5qo4zVGPIjfgtCRISq3QskW1Bd30GLzplNxMbCZA56UZrU+rk7Qo6PjOudDgM3miC984RbB0memNDIMI1/4winuuXgPy50lq9UR+7f2WR2vKFl0rIfE3u4e9997keOjFQ6UKFJYr9d89SvPcHi0Zv/WLQ1GBQVbgaa3UWaOQMnZ0kcOpoNU5ouxxsUIcYwMRBzgIl3g2YPyiAXpS2EcCinpfIzmcPOgvtFNmcM3gp3MdoBTT1XuoIvqmIwOvmi6NHS6K8RIFKGEoCwQpbDc2eXo4ICUgqZIjJHVas1isagO9oCmhZk7R6r0DnLpnH+hGDCmd3oGQmwB+DkX08sCYawBBw+ya/TuDs/u2uT93AefWwC7cxI7sMX7wAPTwf82jqPYwFAxqAtWQnOS61Pci2/6Tgyc6RxJwdeo5piOtU6db76CZjwQECphD1vPaU5cdxdH1+O2Dujj1WkcbO3T+RdrWkeCO3Y15Frsnpoeq/aqXh9P9LcPRD0F3PVwXb8F+s1iMBnTcZXO/9s7lfs2uie9d2g3PXAyPYIE72Gpz7rdlvJSat968LLNN//c5p7bdNLqE4J0J4bBAVgN1OHzMNQabY+cXXuiWq1OHcDEgRgCLQdCV0dpbeyDtd4HGqQ2aQ2hgdqsZhXgrRxhbWp0zJd3Ymeqv0v7vZgenOfCPGUmmRnixtL6+jhhIt0CFrOn9Q0owNkDrB586NJIErx/ovdiCwCiung72KHtnywQnstt3f6+Ks4a54PeMhw22WljRmUE8hPkzqzkgArow4NSr2kiJdXOd9Bis2/7iW8hSJPJ+Z6ZcBHkJanpltSmNZsLTSNcQYX2rNq86HZ0UdRcVrsizyfZVb3Ibf+PKdT9lKcD9j5xW73F2IMrTRowpjbNXmFMY36oAtc3oeoGXz6cKVEk6/KMECKk6OmSHVyja0noXqXTPLTUJSq4tQ5S56ONs7NCFkcdR9IPRNLlQHw+qm3xfQK77Z6qC7sf+v5Yg3fak29+OlOKq5s21yCQCcxcbxeuIbwgyHUIrwbCQUC+F+RJ0zFdX8dse6tAtZnaWBic2vaZVRkFtwe0xgHTwaUw5cyN40vc3FxWXWmpNsdxVPbgkslF002FCNefvMKDr10krCIYcHq1PubWwYEy39478vzFZzk6WjVpy74n0hQvgUgJqu+ORW3Jq7xBDIFEJD4eCOcD4SsQJHDf8j7Obe4hlMCvfe5vsZmE8igcHB6yHm5xON1ks16b3EE6TDxy9Bj33LzAmAbeuHaVp1efYnVtRUqxLoIlFzabDQV4OTzv6pGSZ6Y3NkzHG+2+JMznJ6YpcuPea9wf7tNHRJCU0VS8mRDcflG5LiKUXAxgZnPuCyPyBSFPM/LPQb5SyH8C1g+/xK+Gv82rl36LH5//EqfuXXCV5/mVSz/JK8dfZcOx6geKsnKqmiJG1xFux7X50Nh5QgW5bwMXu3B/m/42QavGYc5TXW+meaqXBEA2gf0r13gxfE3Z50IixsRyXnLvrUcZhyXrfMT1/BrzNOu8Bsaw4MPxx3l45xzTNHc2ZGBaHfHqK18kp29jd31seqXZJlU3eStED2eE0PRjf5Dh0cce5dFHH9nSWa7z3EZ1xVKKjpkMwnp1zHh6sC6tq6H2RWi6k/qZdkzw9wftv65Xqw+mavQtsJLp7BC5cOEeXnv1NaZpVha1PHcpSs2ujoH7H7ifs+fO1sMiW3ahr3lbdmIDpm6DFPTzW7duce3aNU3vWnqwvB8a4S2XahNulTezHu7wYLf1zWbcrnNblvpHB7PJY+h8QN3PHkjkY7kdRO0NLToC1N4WrkZeVxMHZJVq956sXMvuJrWucFImGtjp9uBt6L45aV90dbeHNontvpeu796k3AkctPX8N7l5u39P3i8nruw/E6/ybddvf3TieSfr4fa9v7nbj9yhFSf2FF+vR9qdX/8q6d7ZPbq/v85NrcF2K3sfQKeXu3ef7OPbate9s7o/pKgfJ/nBg+4VLnfi9fF5ptcUOSEP0oDZ1b9d5bofomYj931SZd3uLe/z/cTviPJx4BOA4VjuGDTf5U3BKnfLOygD8JeBzwA/i8r5/wG4+K15vYTC4Xi5+wD4eeBZ4NeAV4H/PfDjvJ38Jt9cCcLRcJWj4S2wtkT47R/6bb7jV76Dvf29O15ydPaIz//gZzgYb33Dx/X98PT5f2AfAn8F+NeBvwds4D65j72yh8xrfvbTf4Xnvv91+IN6+fXF8xynG1vPPXX9FD/8nT/E408/TpBAHjK//Pv/AW/c+8ab1uUzy/83CHzq/v+HHkzv+30Avl1/femjL/F9//D7SFlZsObF/A3buVX+R+BvoSbmfwr8DMjfKFz6/U/zDx7993j63D/kX3/p/8nhcIWX9z7Dl879Y17Z+w2O0zWkGfjvWZnS0R3BUb9+8X/UXwT+6YP/CYHIfavvrCClK8uv0tIww889+H/lx0//NZ48/6PMn/ns1rPy0S1uXv8cw7knWfI2+/dEiTHyyU9+kk9+8pNv675SCjdu3ODChQvv6P3fbHnyySf5jd/4DW7d+vrz6KMf/SiPPfbYu/bel156ia997Wvv2vPulrvlbnlvSwrSNg6/w8vbAimFzuFTA232WfE0J/0GNRjjApauwdhpGhsBNUglImQLqoX6TN3MKrDE0yzcHlDAnjnnTFkd2c5KN5bjuCQXZUKa5o3RYOl3c85QPDivm7I8aTqyXPS02mpe13RtKUZzngKlMBd3xvkzlOFnZ2+PxWJktVqR51mp5WMkGs1hjJFps6FkPdFfUzUBISRLc5dbH9k79DM/XR/MqYk5OoEUKGIOxgylBOUPCIHjnJnmSYNj1u8pjS3Aa07bGpifc9c+B04JMQwkAxKlZAwzuTBNGUTT7ShTjDKQDMNgJ3nV0RqHpE7GaVaGo5TqmOdSSEFIQyIXBVol1J+Rkp7mnouQZ6EEDTaWUoz5KJq86FhIsdMPQSiCsScF8mwnZdEUZSiBEdO81kD1YFSUWaDMtklXMFSIzWEZg6XACBqwieaMxBh2NBA+qeOfSIjCMAY285qRhJ6sLdzc3+f4eMNiWLAYEqf2lizGEZFIPpo5PLjFqcWS1a2bbKYDBe2hgfBSChIDcRgNHDIzMxPiMWKO8lACcdxlcWYgDQUJkVwChwdH3Do8ZDmM7C1P8dLLL/GVZ7+sEhANLCIGDnSGCKBIYbF3CimJ1WrNJm9YT8ea9ixElrtK/b7OKxBhFpCsrAZ52jDNm+pwDlFlKs8z165dJ4TIcrkki7BereDadY6Oj8jzbKwIQpABKRlF/wkUT39SGMcEjMSorFnzvAEyc95w5eoVfuan/ymnfvkshMKVNy6xWa9IKehpVDIBPZmabF5JCUxTJsRCFAXcDCkRNHdY1RkxJqZpUr3SBVEbA5B5e4oBJUwHiAWaRKiBm2xzPAY0QC1QZgV7pXFkmo+4fuMyRdzJXozrSx2vMUbWR0fcun6N5XLBMDT9ulqt+K0vPM0Xv/gVxlFPM+/sDIAGpUDnToyD6TMNZIgIwxAJYSTM7rRV2WipjBSglHPuThE7aImqx0FZJ0rWti8XSwMV+IIaICQb322d7/2qzG19UDiovreAqdBSBGnNdJKXISqoUuD02VOkkFksFspKFiKLxcJ0mzoJlSFB+6A6Bs2j18AXtp54EMW8e805LxX8JcWD80Ia9H3OIqGgLhgXY03vpwl32Hqur3VtBaT2Te/EFQNAOKvX1n3RgL+W/sqBSzEoY1p10Ir3rtYtRNXD1fcf7NSo1A/6WEAXd2l1bwGYFpQRl19/zAnDqrL6xECwtHUVHGrv8yC7g6WjZ4ShpbFwKYr+RvPWioiBtRzs1NUR/Uxqz1oruoDIVgaS0D6owffQBzXayXgPCGtQUm2QSAdGiP24VX4k7Y9ATWnbxps296DrJ5q91kmL1iFYSre2tml/tEtd7l2quy7SuWVpYWuXnJCfbth1PELrF1w+Og96rCfT3f5o8tDbjf6B17vTEnXMYTtgVueHp9SrDuEGMuiDxn0R1/lAmWduXb9FLIG93RW7O3ukpLoipkHX0Po+A+xbushi7Y3SxiUQLFjesaBZhzrYMxdhnmYFihuLDGhAlEhdq33yZY8Evw9LBcTXNbKVKhZ9//t1vvZ0+tf11ZYe6cYdkfasqrvltndKLyGigZlpmOBfA/4x7G72uHjxPmJKvPb666zzEeEp4AdBBjsJ73rRX5d93YJSZnIOBgAQW1/anCxNuKtYxhgZxpEUleWzlKLsQ8F1t9nOOVNTe/brk8//UurcqeuTdOAHU9ah62v9uIErnJ3L26JgIp9bUteyChfr9LIeCNlepcSZ+HzvYSBd8cC7QNgJyJ8JxBdUJ8Zv1xRVPuLBgFZSiu2TnANIr1A7M1Y2xNqsbi+roB8U7O92hcuZNP0JIA+g8e0YFUt9n1QZrpx+0vZv2qZmq2mtFahQ1y/Xr3adp9ZTXSiUoHs2Qu4AsBg4qdFGidnN05xZhRUHYZ/zclZtGgLrIkybNSENXD17naPlQVXDfbu1v3xGzeSaz8xYPuJAXETivQL3gnwwMM0TB5cP2fz6xJhG3jj/Eq+kV5DXqaMB1NSiAZAILz3xPOevnUYkMpWZVVyxntbIWvVDGgeCKANPm84GXMmZ8p0ZXhRNuXgfhNN6SOp4c8w8TYxxRATeuPcyx6tjPTiTSx2LQKzAvyDSWCY+IqRVgFci4cNR96Nns83TzMv5t/jbN//PDKuREjYcrQ7scJXaSUH0QJTLms8HycVYQo2RUweyk0u1+3Mu23JX9V03Pe37SCejlXUobvW3b+BEoMiMHlKK5LLhxfUXt6d8Xd+FOaz5/PD3ee7cGT4yfaeyTtsYrOIxPz38t+zc2OFP3/qT7OEMpK2ubiM602xvU8WoB3Rc87qeaXpdWUUup8s8vfM0JRS+Y/UdPLh+UA+AmcweHh5x5sxpRJTdKDow1DqpQUU6FpRuzlSboO9Yl1eROj9K3W9onyYppDSyt7ervp6cQdR/UGxfGoBhGHj44YcYLS1k7/+qYKp+NZLbfql9GVMixMjp06c5e/YcVy5fZWdnh5jUDkgx1j4GY/mNNiZV195etmwe8RlqYrO1UMod7qbqOAfUVhssNjvfm+T7fgXB29+c6PvOz1fTRW9VvTei3d7r69p/f/I+8aWxzoveLj9p//sX0V/gj/Y+atYztZHd99ufVwO51qE3g+9c29s/ByoQvn9mqLaPS76OabG19mQveHdt72fZ0rWtgnZv2AbsNbDXnYp+78tcG572WbP1A40z9w5D9+Yv6b4/cVPYFtk69/2yLXne7sf28R3m5h2qsj2yb1K3Owyog+HOzLe4ebTL4WaPYVhoWhyC2Rpx6zFuv9bq+D6oqws4GNTtC/vV5FrQ/QaYv9YHyFIjNzZsf8cdmnW3vPVyDvj/AH8ZHj58mA89oSmUvvjFL7Kf9xWg8n8CTn+dZ9wt33x5APi7wM+hauaPcWfF+q0q32vvX6Bz7ntwl9/7quzfs8/h+cM3BSm99JGXuHXvNwYovWkJwAfs3w/pR/IFgb+pv9/8gy/xyo994es+4uCefX71X/tVHvraQyzWCwiw2nsL7FMB3RdG4M8AvwGsgQ8DD1pdTujzZz/x7Ftrl5c/C1wFfhP4k+gYP+rvF7565mf4r77z+8jM7z5T0reiWB8KhUtdmsSTZQrH/ONH/n3u/9EH+ZOf/ROE0ibf8elj/u4f+N9x6vwZvu/5v8l9831v+pxvtmQyX9r5Ev/Lhf+FTdzwJ2/8ST5x+In6vYjwxhtv8MEPfvBdf/dbKYvFgrNnz35dkNLOzg4f+9jH6kHbd6M88MADPPbYYzz33HNcuHBB/Yl3y91yt/yOLU/Gq9yUJTdkh/fSyMlMll3jTmV8S894yyClxqjTpQ6JzWEloAwRnSPEN56aGqNtPrU4s4P66PoNkAeY9Tmx/u4BOH9Hf0pdA+KlMZowqDNbzMGU9fSyO4OLOSb9vhp4NweNH1gOuSb8IpfC0TxZO0I9yZpLNpBKJMXAZr1mdWxAkVJYjAPDMKh7OkVNUzBLDShJEQNCAaGYo0nb5R3jGU5iTF3gsVRwlA2KVpgMJHIWc0pKc0JLgZTwE/oxBlK0jbBaGwyLkRhnUvE+tbNuEmuAxb1Cucwa5LdnSxYmmY3ZCUIuzHNGiAyLBWkYLMWDhxDVyZ4t4FpE2bZAQVDado2OaNqgRBpSBa7l4nXL5gBEacWTOgmnWZOF5DlrYC8XUqDKroIsLLDbBSaktHaLiHqoRM8kO9AMA6QUKTYuQrSAd0qRgKaD0PYpK9Du7pJhGFlvNMBICZS5MJcZmTOn9naVnUcCSFEgF4LkmRAKMahjPQQ70T5EQjIi6mLBpNLcT0ECY0rce+89LHYiR6sV0wSro33KPCuvxE5hkg3H6xVBks0bG1M7dSwhKNBOCshECQMzM+v1SkFDFuheHR0ZME3lS9OEqWO/xIzEQhpc9rWdUxauXr3F3u4uSFRw4Gri4OAYYiBn9WzqqWcN1rqDbxgtLVcKLHdGFovEzs4u+wfHHB9bsMjk7ObNK9y8dQXnmR8WC3b3ThFTYLM60rQbRedPCIMF0aDMQgkaGExEYmrO8BA92GV6Svn3DbDj1O0dZbcUUgwm20kDDDGoTGfIWQF2kAlR53EIEJOAbCoIKs8a9E5JdWCK0YLXCZHCNAuLZUBkUF0YIyIz0zxxvDpmSCpDyqakfenyMw4LFouWK9z17jRNrDYrS9cRzVdWqhPUAQjRjNx5nnXehWgBfJOJUpgtjd62a0/TqkiZbYwclmFz0HRzYy/TIK6yLyioqZ281mu1/plcZg0mmtd9s9moPAeYpol5zjWYqRM9mM61dFrmPA0GBvF4hYOBxNjWUrQcyQEDoDmwVBiSgs0kFJyxqqn4gLPbhbQNLFH5KWw7h6l94HqvrgGdLohRtvrKdVkMGiz1LvFgCrlUxoySM0NKpJjMIS7s7i7ZTBNzyaSYNO1m5xRXGdcgnFgbKpjM20Ln9y4Oygh1PZb2Z2t7ZUyK9fPKQKXdV4MZUh3jocqbQAWReGjBAxHKdqKME76uep01dazU+sR4AqTNCR926By7HQOT6mdjr6qpAdzN3Ml1G0Idxy6gFSRX+6u3XzQo7gE4DbQ6YDpFT0/otWgyVH96ChqvNk3WWkBNKigh4HpG13W6oJh/35dtR3cTOAdcawZhPzHf5CjWAG3/eDH2yHCH55v92esMxIzkuNWmer/JXuja34Im9qfdF00WIzBPE2+8eolrb1xlsViyu3uKMS1YLpcMi4V1eGgADbE1L4SaqnCIodVFhGmamJxhJwTGcbBAhY5hLoV5nkhRU+fmuaXKCjGYHtNTaOO4eNOA5PumSB8koxt7/9zS8vWT3G30Rn/THtB+3B5LKif3H634O0L/DHGWRoGzwL8RWP7qDsOtgYceeoidh3f4yke+Qn5wMjY4n4/WrjvUS8BJB9VuLNmY61xqWypoaKlY85yZZcYPaqQY63XBAC2eUtDfJm4juTKtbe32FLaHqdEr742+u/H9VKi6YCuASVujdCqJYSubTkjJQBe+VvqBE1zzeYv1u1IasksESgR5wmDYwfQQamfUNa2+zditeh1s+r8F4uzNAhiboO8TxVLRNkIvt7e1rjIW5HFvnoOjTGrr+uzAyVYr1Z3ebtv3Uaouc4ZCATsU0Nk4NBB7KVl1SC5ICQzjYDaQr3e2n8T3XcHap7tl/1fIOGijyn5oBy+MHtjGuwMAitoRe3u7pCEwzcogM08b9k/fYr1YMeaBLJkpT9q/quyp/CJBpSrGyOnru8QZZNCU4fM8MW02VTfM06TA+WBQDjXGbI4V5PsLYQPyq0L4oyBLXTOPjtd6wCBpyrypZA4Pj23dsZlgolDBekGZgoVIWMLwo4kkkWEc2Gwmpokmu6FwsLlOmExuUftiGEdCDORpIokD5fWgSn2vMb2GENQWw2WAthaZD9pt5Lp+1PHs4IVma/qkdfYeyzRo9pOYUDs4Su1rHWPTH7S56/XRAwQbNhzpw0w4QgiUoXC02OdWvsZPLv8xf2T/D7Obd6rYe9/GEJjzXPVQv/7m3Bi6w9YiDFfSNT57+rM8t3iOTdB0al8av8xjy8d4YHiAFNyZLlX/KXG1awK3E3omlM76rH3Yg3daHbcATJZyXsRBm0UZgkPg7JmzHB0doQfZlEF7nhtAbW9vj+ViWe0o7xdTGrUOzYS3epkO8DTW2kfa5uVyyaOPPMq1a9d45JFHWIyLpm/EbWdYHa84dep0/3Sq7Vtbt21PBbNdvB/cP7dl87rg2R/+abKDeND2GxKaHQ+6R/LRSEn3rXPJdf3bKtKt2m3YWl1DN9beHqun9Bf3jdXaWb17m6AHKrU2bafNlbpWNFBu1xfYM4P2cLNnqqRtj4SNWc+MeZv9vPWHDWwnS97/LuMnWqT9bHVxXd7ul9qm9ndbx1zdal0DyebT9nzZ3k9Udiurm8jJAwBh+3o0faz+XU8Cdo3f6oHbi3dHd099hPePrc29WaZm98k+v71uPcjUD5XcyZbcmh+Bhhelr59fs/2NIOTjI4bNs/zq3gvEUVmsU0zcl59iwemtd7p+ur58gXU8aO/s6lNKqamiRUR9kqEDMYrvjaUePAW4ObzM8XAdBNXbojpB95J/5uuPxd3y9csHgL8P5/7Lc+w+s8v3fu/38vAPPcxP/fmf4vgTxwpguPM25W55N8oe8Cfe60qgY3wW+JH3uiLvvJT07rP9vPGBNzg8f8jpG28dsXf/8/czrt9a4PO2ElBmrRXwN4D/Gzo+dyh5yG+vvfcBf/XEu068e5XeAcjrd1DJcWK9OEROrOnTcuL6hTe4vHiVv/roX+WvvfTXuDffe9v9Yn6yt1u+tvwa/919/x0/d+bnOIyaivAnz/0kP3DwA3x056PfXGPe5RJC4LHHHuPll19+02sefPBBzp07966+9+zZs3zyk5/kueee4/f9vt/H3t6dwYhXr17lwQcffFfffbfcLXfLu192mfnQ+BX+i/P/jDWuLwNPHfwop+bb9SrAM6d/noPh0rtaj+dP/yLXF8/f8bv/kKff0jPeMkjpduSmb8b6FVeBJaFzfIegWQ6GIVWnkd9RipxwrndPss1sCC0weDLoopsyc0h3jsZgzmWlSiwEMkMMxMWIb8RTtAB4cCeltacL4BVRVhXfSgrUgKf760IQxsEDznZSthirUAiEIaBMUjOIpqCbEWajBSco8GWw/tBnaiqxlo5h28MSAoidrt1yNHeOTsxhBhbodGwZsT47JouliQakY9TUR+OYCNHSqs3ChAaHlUVKg9stLinEoIFtBN0EEygezI++eS8EyYgxLil7jQGEHBxQ+96c8vZ8d0NpEKlURo88F0bzU6pjLWr6PatcKRlKIFJI0dIxWYAvBmVvSTFQgjGL5GxMSJGSJ20X0aiXkzmQdbPvdO4KclNmnxBHclHWn5xDDUaAMvuIQEyJnR2dBzEIKQpDskxPweZZUKdNCsEAISDRmLzMYT/PszqVk83BGAFjPUqBmAYFhBVhsUyUklkfZ27dOGTKBUkQw2Agm0IiMIaIhJmcizqPNZLAOC4JUYOmNXUfmoKpyAZK1hPCFjzIm8AcEyGNisq2YJv3ew4KYFEAUWCeJnIWlotsjD6BmCKhBE3TNw7aJ9GAFEGIWWV9HJS5YpomNtPEenXMZlqzmWbmvGaes1FhexDc9YQQ4sBm0hRflY1ITCeVmZJ1LK1KpJQsiCaq1MYFYxxwx1Oec2UXyluBf3faosxNSed4zgpCGtNo83SGADlvjJlKqvPTHbjLxQ6CBqxLmRFPURgwMKTqtXEYCdEDE6ZFAszTis1mg4yLptXCtg4upbCbd4km4/6ZYGmOigL+vGYO5KgAgBgM2KGgIwcpueM4Zx2JLMJmtTJgqTlBU+pOSZde67VgpJ0CH8eBEDLTNNsp9gaqTDFRgHnOxsqWWcRISIlFGhiHJeTMqb0dVscr1rmQ1xPF9DbGmhdj0lPSllIBW7NqqhurtwNDUkxIKSRL01dKZnd3yTxtSMaOMktgtZ6YNjMpDZxKpwgENpsNN6/fqAFWb+8wDNaX2hM5F2O8ikzTpqbOSENkMQ6uLU18fOXyMVK9OowJB52eOb2HiHBwsG9BUGW9UACrBsPHcUlAUzkS1Xk5y8QqY8AKE/Y6YB7AMF0xpLYxNSdy9DSalZFLnxGTsg5mB8dCba8UnX8hBoZkLGC2/jszhRAZEgyWyk/wza0CRls8wE/yh5oWRB25HkQKNKBR75wXHBAHEN3jrZ9acMaBYhYmCA2kssXiUcET205xBR50qa2s48QZ5KDKoeuYUrRjPTtlkaygs+AsS/6YxuzjbdV6GshLWgpXEbZTcVWWtIwzOrWIfmhAQFz3NZDVllxs/VQZdbAObDv8PWi3FSCjBR5q+j5nM6uaSetT6l2t3+tpf2ec8KChv7sG6loQRwF+bvuoHM2bTN4csjpaEcJQddhWtIv2XOt++12BNgFNrzkXTT3kiPSUkulNDS4QFBCNscbE0EB5bvO6vg4hcnsN3kelFzDaiNU+9/HpAqb9bZ7qt0ltqHqA9pRaalipCxCFLmDWP5tOT9WSQJYa7F+fWvHyd7+EnMkG6Jbu8lDltbXLVaOzZjW7QLp7A8ouoeLlPdJSNjYgQvuszCoBFexppT/4oSxHDbxXg5wnBMTt7PpH6D6Xru72n/dnAzT0wyrVnq02rYim1y16obfH92Fu7/ueiK4ffBXbJvLwvdbtY+f1xJvatWULQBYam1PXKuui2Okd8e0dwWxfDUYbS0xwIIGNMy0o7xvG4BUVwWlZA24nmSyIVGBqslRrYv3Wmh3q2hiC2tV1r2SHCrw7tw/11GVP392tRcXS7mm1+sR3UtsXLJA5DNqGPBfWq42CYSLIKJBUf8UQSEFZKds6py9vjMKhHbIJKNiPAjLXNacgSIaiedK3QHUxBMI4IN+Xyd+RkQdsXcwtbaBElyOqX8KxLWqvBeZATZvm8ppNH+d5JhfdExUDCTebvq3LADkEcp6Jw1DZGjGbuAQPGPegbQii9rqIH3KKVU8Us4MLHTirSrH+qKAyHPwXjPmTKn9ScmVqxk61hWztr+mcjenPfAahYLZRA7JTZbtVo+SZOcy8kF7gp0/9ND9260fZK3tbunMuhWvXrjV9FDqwotghgqjz+CgecX24zvPL53lpfJlb8eaWzi4x88LyBeIi8lB4CIBbt/a59957CSFoOvvSXh5iO6gmNIDySZeTHzxSdjJnlrU9TQcO871JEdUOymgoxKhguHEYgNnSv+k7T585yzwbQCcl2/u204UNDN5WDf+t6Xy9d9psmDYTJWc+9rGP8LWvfYUzZ87ofnMzK1NYEYzsl+vXr3Pq1Kna562tba311yqY1NN1B4KxWm9bXSprtjq3MbXDOpqGXdvmoOma9hiV12w+BO8zLOV0LkLIQVNedTaXv1+6aujBqa0qVR3nOrR+QTA7opt7NOCny4u3AXHdR7MubP8V66EkQXLhBIKp2fZ+d+iBTycXXdfNpRt7t2q6v0xptwMDBtjsJ1m1K9pnsvW1KrnbbfLb5dAnr1/TqSs7NtTZ927H1Gd2L90yo9pBDxvaukb7Ct/evW29NfnbrtdWuaOx29/TZL8HK4XtV7U7u3kXtn45OX5u64Q6Tv3X9T3db16k/8be99L4Nb60+88srbyu62lYGHtkX1nbwzE3P4mtEQ5Gc9uhztFsjP9mtwSCpvPG9xzaBll53UN9dugbc7d88yUACyhnFBx28/6b/MJf/AWOHzu+2793y91iZV7MCn56GyXQ7XG/mTIAfwn4V4Hv5t2dj3fn9lsrAX751C/zHzz2H/Cfvvyfct9839aYzvPMiy+++Ka3C8ImbCgULo+XeXb5LP/8zD/nV07/Cq+Mr2yNwzqs+bmzPwe78GE+DMBrr71Gzvk9YRN6K4cKn3zyyX8p7/3zf/7P81M/9VM8+OCDb1qPN954g49+9P0B6Lpb7pa75euUIPzyuZ/mHz38H5GDE7nAP5VdzQp0hzLFFRLyHb97L8vbYlLyxaIClkQMTGIOUHd8RneQqgMymhPSN7gxuAMi1OCkCJaX290f6hRSR4YCW5Ta3ztY0zQRAqE6pYxhxt43JA1WxiikAaL7FKR6RLuDO8kcpNIxMoCjkUTE9vOp/u119JONMejJ3lzblDucgRpcQ7ITK5ZGqABhSPrGmqLHAtLukJVuA2n9XlBGFt+UFtuUFmMlcIdNGhJ+8tH7LRsNPUHTNoRiLDlR65znTXWKLhcjy8UCB21J0PRsziKsKYIiKURSgCFBEQUp6V44Mo7NKekU6Fob9QynFCygr2nvpIiCpMxZHSwg6E5k9dgH7UtzcoQUKsAgkCllZkjCYhzM8aiAqCE6q4SQcIelsuIsRMwJWUhjZDCHVC4wFyEOoTJZSckGOomagi0GChmiMKRk4xSqIywOo8p+lJryLM8gMrGzTOQijGnQFBIiIDMxBnZ2dljuLFjsLlguB80NX5rDJ2dhHGEcI4GFsU7BkAbGYbD+ntnfv856o0CebIxXKQyQBvVPRGW6KghJBCRXoEka7ASWiAUYEp4GY7FU2Ygl1MBCPbcaU2VUisaElHMghyWLcVGdxjFFUlGQRUrKqhVTYBEHc5BHA0slFosRYmZWPA9jGvSNoixmOzs7QGaxCMRhYJ4jxVMcWyBa+07nb4qRZAG1xc6COVuKN6IBnDxAEJBogTfz2M9zMcBRJIZECIU4RCKZ1DmH3Ok7pMBiqQxFuRSGIVFmlbcYBhaLgZwnA1GkvifBWJPSEJinzGIYKBLrHJKigRkMEOROKH2/s3PoXFP2KQVI6ZzUoLcCNFqQowWEbbaWBhrKRdOhqQpyJocAUpinrExERdNpZlTOiwFM9B/GeBQgqMZtABD7FzzI05yiGszLFqQrlsZRL/XAVAgK0hNLvagsPEKWGZkmIiPzvG5rV0qMg6r6IUZNG5qlMhTkrKCsmJKxINmY+dgaq02M0QLfyiA2IwzjCCjoLg0JyYUhJoY0mhyJ6dFIct2aS50b3u/DMJAMzDYMqQadh2E0OS1cuOc8999/b3U2xxBrCpqchctXrrC/f0iIEcVc6fqRLKWfiIK6YtI1rRRPW1OIcSQSmaaJNOgpTwrMMhsgVbQexdJbWiDIwaZD0D4oJjc+d2LUFJ7+Lo9XDkFBbLoECyGrjgNlpRtiMpBYaO8NDo6LyBAJYVAWDRFiHMgme3kuNZAcB0vDavJeJFQAq9sl0RdLsSCG5umqKTcx20VzgGqKjQoEyqhdYQFknU/xdtuHbfYMD0M4gEvtJgxYJNWvvK1j7I9o2UqzVNC1E3lo8C1WJ7Y+K3TBAw2KOt2/trsPPJQtIAI1AGU2h2ApXEsFH1bbpY929P526YIVdwgaiH+OMxn1Dn/VE1LEHPtmd/QBlqpbuueJ24mhvtevEGn3eXDFjS8NZBnctejcGYakLKIWAJ7nFn4J7YX67ODPb4G4UqTOeWslBMizM9AFEGUmK6BMZYTaVbXeeHDR17ffAaXrf1f5nqqojnKoYZLu+sa/4ylTE6H2LUAfQKz3uqzYy9puw99NDdhUmTDZufnIDe67fpEXP/YCx+ePiAZ89u8j/UMMtHIi5rYVWKyC3Y1UoNMBqitcz/mYtoBjqEC1aHaI2Jv7AGGw+ff1BEK1QpMoDzrWoKjd24LbbYRqmwIt4FuDdsX0lJhdGiuwOqZY+871T8DUaIwKHK8HLahz21PvOoimmwDajj6Q3MmDVGBpaLImpizEGUNb/cX2ZNhhCrX3U51fIqKsrEFlVG3V4JJAItUU1CQ7cIACmovtZ/1QhxhIKCYF9tT3W19UHel7bWME1P2CM0gCUhgOA6yNp9MUkO8rh0EPL5xan2IRRnJ01mLbdxQI0ff1qQ5MNJZHB1euN8cG5Cl1bFW5teVC2b50jxY7mXQwQBA4fetUtUPcBo3jUBkrm5QB7ktAbA9igJEziXRaQdCil5FS6OSAym7rfUhQUMqQIjIJwfeXwUHKBj4bFO2RhkAokVIcTNZN6u7XGIKy6aJ2WinB0hq4jewp7a0/ujXf0w7qGFsatKjHZFxmu6WEEDX9tN8bQ6oson6oSNkOIZbmmPLZ4GCVUgz07joLlW8F3zQgb1tXdZBd/lIIEAovLV7i753/e3xw/UGSJE5zmkc3jxqzV/MfeXl1fI3nT72ASOHl8RWO0zFT2LBO6+15W9ra6LLmh9tEhOPVijkX3XeLVWrLiJD6950ASj4/chabu6q7fLz8Pgcz6oqhfVDsAETJM1WphGAHWpSJdGe5rHpHxG0wKptzkMZS6WODNFvG667M2DYeAS5evIePfOTDfOADHzCWk5ZSW+vcAbS6Rvt+1A+OVJAg7m/T/h6GgbPnzmhbHGDfjeFmM3F4eNQJlQGQTFZ9nHx/hvep67GQyKUQyvYhBEF1SBEHspnw0dZGCWK6kuoLccC6aqgG7HOG6yq6dSJ1PrXWzWyDKqljpaAOm/92ox8AdJC763B/oPtEqfavi4nppa0xbs+qn3f3I3RpONt4VlDUVtv8O2tne4M+3+2SerHvsxsQqv5uQ+6+uzovXdd3/davxfWauka73rQvfOC8eVXhdy/F7Zdw25hsD1D3+23z+/bi60Rf5Ttdc/LRb+GpVQ7qp7cpHDc+6rQDYBMmfn38LLMzzQc9/FM4ftNX1XpWe4gql7cpugBSXId1Nmp/QX1w/3P7fXfLOy/PfeI5PvCFD/ALf+4XuPLYlbt9e7e8f0qvNl4EjlCGoTcpF16/wLAemJfzm1/0L7sI3PvSnRki3la5aP/ulveuBPj0qU/zbz3xb/FHbv4RFrLg3vlevv/g+5nDzCS3Myl9du+z/Pr9vw7Ar576Va6MVziMh1xP1+sz30q5desWm82Gnd2drjrfGuV8u52wXVJKnD59esuX+W6VD37wg/zpP/2n+eEf/mEA3dvP7+F8BtbrNWAZOd4j4Njd8s0X+QaG+LdqXv1eLIfxkL918W81gBJAgDncYS/xPi9vnUmJ5vBLIUIwZ1u0TbQ7QkSgRISim3UD8ejGWJ2f0ZzpGtPTDXYpxd5hQYeiiCIBxnFQp0136t03/9URDfV3Ty0ULDCqmzjbTXuUCHU+K/WO/qp7t+6EUta/dSPpIAV1rNsZQ91z+yMtQJmiduu83lTnsKCOFREFQSWU4UEDG91kFgd1Sd0j9qfiizlbBveuBAzAE4gO0krtZK6neenXteipqWJEQkSisRG4o97T7UlkOS5ZLEbWmxWbTa7cQEEg4kHwQPDUBWLU/NEdJxag9ZQYFqRWh5WlqTL2ihACMqNp1+xEcAlBh6lkd5sQQmJMkb2904QYmeYVm82aaZrN0a2ONmVCsf4LgNEfF3OQpKRBz2D93oMCEA0tO6AuAEMYiAFL3ZYJISlYLFCdL5JnSowWXBKmjQbehxQYLQ1aDFiQX1gOmgqwSCSmgRBHdRvEwrAYGBcK5plLZrlYkLPSXY5jYMoOLhFrp6YjE8kMYULmNUMcIEY2U2Z2pqg6f4wBCj21PUZlMgpJT9gGS7cXo6akyzmThoGY1BE/RohLcxRa6jp3RmngUGn+UzBwCYEchZwghlFZrOpJvmTgGk2/ES2dnaY0U4GLCCkmdpcDeVCHZorRZKNQyoYxJZsXiQUBllofTWlgQKhoAIECmpqtULIwjolhGFgsEpvNTNw05zQBTdMWowEiIjEJpWgagnFQ5pwQFChUXT8ma1W+szn/kwJMEJUxBW8kwgLK7ohkdfy7UzLUeRwZhmg6IjLnDXkuxBQYhwQpoqxlk6mQoabKAGGxiKS0YJJM3hQkzAQKQxioJ14l4CwCqQs0zRkDVdk8Cc7QgLXLAAwCZLG0izDnTC4apNHTeZmSp6rfNahkwKgIQ2gO95wzhUJMieViCQTmac1m8nR6xugimZSwNHrKViVzISWVEUJkM03IDCUUxkXk8GBms3/IejMhJVBkomwKWZQ9jRyqPvQUTZgM7Cx3AeHw6NhATIGdnZFh9MBPYJ4K87xhHBNC1Olh45RStBRzEBJkKcxF2bNaOrDmlM/zxIbCcrmo3lUF/RhAFUjjyGJnh9XqmFwyy50lO4uF6qIMt/b3OTg4RrIHCmaGlNjb3aEU4QbBDtJratMGKI0aaAqWSiwLKQSGwebeZGxyOJuHP19ldhgUKDrEQDaP6jAEG7tgAUUh51BtiRiUfSnPmVwKEnS8ldHNAnDGWJVisn4olhrS+jWqM75kqfO92ElxXcY12DTGVIHVeGqW4kAvW1djY9VQZj1bmwkV0+BseArk8TS1tr6YRojGipMtEFEsAG6z24kMrC8jhaxBTzvxGnAaf72qMTK1v1Wllu40uYE3agBIGaUKAqWxltT3dsF9BW7XkIWuB4TGViChpgLE2VsMKNuC/FKBClU/9KUGcIR4Ik+Wg8qV6UnX5dyDVkCBaDZhJLiNZw8GnD2sj0gEqGmUNChPNQnzrP2rj3BAkAVFs68JVkcRBtOPznJVT/RtIUOkynbJCsZWVjoP8jcAioIdsQBzQSTWgKNfo2Al1w8OzilIUFnIudzez++j0sehHNDiwazQi4C04JkHs1rAi6pj6nyMzY7zV+jQd6GYoaWMvL2IMjuwzTwRQoBFYXNqw/49+165Nrri75Mqa1vDX5tglTYx1b1BoF1qewp7moIAjDEuO9uoXumx+NjJQO0f7xfp+rOzU/06sf1ErD3mDVKZD+iXjYGsn3ne4lB/9zMkWw6IqiswgGtSxpkT3RMsNVjPHhKsl10vSl8nMfBS952CaUIdt5wdlOJti1alUqscJBBiZBxGA1drmloHWXraohjbPsUUzrashbafqIBZWsBQ94ptP9EAMXYww55bQ8oCSDH95XreQNhB6zWURHge4tcivCYMORIvR2QdyB+c4V5LM2ZB/ZSUiXRxsGRkROJkIJWABzVVF5pUVhkrejDD9r85zx1A1+aJM+PaHI5bDCqxzu0KFMzCqcO9akOmAOMQycZuiM9RaYOsdrL1eGjj72Avn5eLRTIQHPW9MTYQk3kdCCEwpoj4ftnGkIS1tyqpmjrVJ6+YvqlkavZwT8WaoqevCsZO6zrHQBrR07I54EdtY5e1hYMdHJghbU5ga5Cv0ykEwoH1wVnXTQGCgmid0VG2HmI2R8euUSQj2eweAxHWvhKfP003JN3ckW1tvJlu8Jt7n7UDDIEgkZRHPh6/m9P5lOlSBeK9Plzi2d1n6lz0ddX9E7pf2C7OXFSCp74NHKR9/tcz/5A4qqw/OD/IxXIPvi44uNP7qhgIcBEXPDQ/QpGZl+PLBhxUj8b90/0sWZiOxHxWyojlc/xSeoPz6wvcuHmdmAJlhvVmqmxOgjBPG1555RU++MQTyojqqfr8RI8xYQ1DIoaBaXZWWNtvjrGOd87Ceq1MuCtZsUkb7vvh+1mWBXOcKcfCwcEBMQWbG0XnsevHbu0oUtiUNbtpt4J8fY9pmk3ZZI3Fdc6ZIUXGYTA/XKhrqLNOQeb6taukFFmv19wsN3lt51Wti81Lt9xCUH/InAsPTPezG/Zsr1mYJbeDGv0C0cmA20mI7TWSylpEWZeT16sanMaaXYL6gepcCDhYT8dZ76nj7baZL6Sq0Kt6RhzU437C7vCiV7geBGh2aw8crla6g55txvU2Ab0N5At91X1m/9WVWLr721pd162qr3VcNmHDjXiDm+kWl4ZLXBuu+vK2ZYzdN93HfdN9PDQ9xCADo4xeu/aze7b/Emof+Z7A/5AT7faPT6z/Dujs3uX9X+2dvhK9UWb2itsu7f5Q69vevK1tdA9rvSp1JLau6Esdd1ufqn1ZD4f0jaq9AQJTnPjUqV/g8vCGW0HVNvNnt8aeqKro/go7BOr3uY3dGMa2ZiC9ELkVs9UDltrSbY/KqHu3vOOy2dmwf3GfV7/91ZNid7fcLd/6IjCsBuZfmeEfA79hn38e5JZw44dvcO8T995xz3z+0nmGzXsLUgoSuPjyXXTRu1IK8Aqqlx6m8UJ8K0uAlxcv8z/c9z/onxIYZWRcj/zp8U9zhjNbl39u73N8+v5Pf1OvykM22ynw2uI1/tJjf4nxtNo2nzj6BE+sn/iGz1iUBd979L3MYeY39n6jggMCgY8ffZyz+eyb3isIX9z9Ik8dPcULL7/w5vXMmc9+9rPcc8897O7uvs1WbpdSCvv7+xweHXKj3KAsCh/9Dz/K3nqPfdkn72cuXXprqZ8ymeN4zF7ZI76LwvLcc88B8Pql13lh8wJffeCrlPD1jZDvOvqur9vXb7WMMrIjO9/4wrullkLhMB7y4uJFXly+yBd2v8BXd756x2s/evxRPnr8Ub7n8HvYkZ13XXZ+L5fDeMh/9tB/xpd2vvReV+VdKW8ZpKSn+RVAYB412onddqotJU0j46ccpUgTPtsgt9iZpcfxl3hwMgBD2qJhriey9BOcmUghMNI2YNUh2VHJAzXdirvjzZnqjmffWku/l/QNngUcJQRzqOkzc/UEeABLCBIYRm2sB0mdoamdYIr1+e7gsObXDWeI2neBVj8/wdUzjsjWnt8CoU5b7ff4dwFCSPhJUu9JBYVAMHap4hS/IRii1k+BOuCqBaOHIdmGOtP5uOqz3fFL7Jzszi5kqct8i6zjD8GAPLlALhowTzHUuoYAQ1QmpTQMlBkSnnbPaL1t/FUuLcVcipXZo3cveLv8d3V+FSRAFg2kh9hkvwYSgwUYzJNZHQQ5U5jZbDRNQEoRGQaGmFjsjJw7e04BSdWBox5CIXJ0tGKz2rDcGdld7pKnzGaz5vBgg0hkmtYGwErEQZ0ZKUCRWccPBRzFgJJ+WcBhDIG0SJTBQ9LqdND+yKQhIKVnIpjIs/bFnMWYtgqaJyDXOehYOjzoI0BwNpWozFWow98Bf6HYc4gEsp7erI7AwpwnNpsNizEY6CRT5kxII8vxNDvjktVqwzxNhCjMxkwVwAJixdoWW5WC0IB0dk45YkAnTfvgAJEghXEROMWCaU7G7EUFRChdvxCSMpFEc2YNgzMQBQVWFGGzmdQBPSQN7ieIo4IyBnOgZ2YWDDr3UNkuPsWTzZfmaYYkBEupsRzQNBs5QSzqqA9jxzZSIKTKwiExkOcZJBvLnLHeQA2oQCaGicCosuI61f7lCnZQoJ4yCs0G9LD0j8AwDhACoyhwLA2BEArj6PqphSn7dKIe7IskRBTsF5Oy9wSEcRwZZ2Uf09O3Qgj6nRQHiGRSABmj+ZQDwyJADowj7O4M3Lh2wDRP7CwXFDJpGAlF2Mwwlw1xsHlkjuxidPkpRhaLyGIxIszMOdhnAzG5A1mZv+a5sBg1KLsYI7lkYiqEODEugqZTiKqjUhL2To3kCWPGozqWPWiUBuubmFguF2w2UGRS2S0T+7eucXhwQCmFebNi2t0lxdHm2EyRDX5KXyejC1phsUiAMhTNcyEXPclZT+uXwjxPMAws04K9U3sUKUx5YkyBEIYafOkDIpq+VHVOSmLzLNqa7oxVVKBQDFFBd4sRkYH1ag2+Vpt8xCC6ThjzXEL1VxkcnKzMZgRlQQA9nRqTqqoawARCLLizVtcMra+vZxoUaCwcQ1Q2J1/jh+TML83+CEGBg2FogU0ptLRLxh7lmBofB2cUE3RcVY9vM2KU7KDHtoaF0NLQ1KCJO5c9GFCbbGwdZm80UIC+N9egkwYMHEBUA+nWbn9aQZpz3nSEjqOui7khOEwPb9smatNYXWIwBhUH+hZyob0/elqv0tzs9kwJ/Tpu/wstTEOFWLsuc51PDfCEqOxaBLU7tHpu7yio3QO6IUBKowWpG9tDA0qoPIgHW4OYXVxqWlAcAOm2m+kZB2WU4vZntDnQwChqByWKNJ0cQiSNiTGOSN4OoryfijuF6EJxve3osuEAHDdye1utwnuaGAHbhyLqnqEGYkxmXP91NfJvXd7brsDsY5fT0IKBW/PNru1DQdunidoV/m6/92Twyz/XlMSlzp3We90+yp7qctz3oU4rlXMXf9f4td9O9oLrbp+zVY9vz9uwNWyh3h+672rrhLqP8rRXXu8WURNj1FAlveUPr5W2ZwdnOrKDI/biHuSp79TvQ1C9X3DWme7RwQGLOm+nbHZMt4+qQDrp5CIG289tCVLTJaExibTxthHqdK7+ub1Pw+zwqnuFmmoqBGMAJfLErzzBpc9cQjZSnyYIjIFLr79BiiMXLtzDOOphCCmFOc9M6wwS6ljEGMwuUFkXY+9r3W9rm63jbo+UOuJqzccYICvoMzoRE0DHYtXYfnVddfvD51yTJFyRV13ha4vPgQq86dindFwEB+Yr2H2mHdpxlqDIkBYQB2PPNMbN0vRxMBAEbouBHaKhu8Z1vdlmvjgHTAPoe8dFomRnrzCQUuj31kJLz1xMbl3HaFsqq6enC7SqhK9A/EldA+XPFMKjbltLlf1+3XafQvXh2HinFXBTdCLdK3ZQJXYALRuW4ESLth7TDsq0h2tbc5w4OrfP6et7bWR7/4OPpjS9ibgtRB3nBk4JHDx2i/j6IxAKV7/tMpfOvVbnxmvyCg4sNRMA1wfUORwY4sBu2YUgHMiBtUPrtVuWDBhzmLfF1mkHgaziMct5h8dfeJz7NxcpeWa1njQdvO3Z4jBweHTAZ1e/RnmkENPQWJdoa1JKkcUwMs2aIo3Q2K3rNMwKwpqWM5+75zfZsOaQQ3ZkhzGMPHbrMU4Np4lhqPJyZfcyr154CT/A5/0+hQ2vLV7j8fw4SZS115mVNhvdTw/DwKmdU+R5ZpaZNCQeig/xQH6AGBObOLE/7HM93uD14XW1R4bEHqeYw4Z/cuEnuTJeVhmoKZ1VH6cYGcaRaZrYLbss0lL3YaWw2WzqgZemP3y9awd+ttVu4Fw+y73TvdV+lmq/qSwET+U4z5Ul2tdi13U17aa/tdrObjeGKqPu9wkS+eDmgyxsv7wFso3NPmmqsn0vuF6xFIP9mnxijfK2n5TjClI6sV6cWJa0T6w9Ly5eYBVXTGHixfFFjlmxiRvqbDR5aXB84eXFyyCwV3YZZOSx9aMkEoHAB1YfZCwjTVfXYan6gR6M1Bsg/eK+9anrUJosmI7QaSnslB1Oy+muM/uGu6FsngaXi25P1N7p68VW1e0X69Pu09B/YtU/HA6sD/0yqWMzlIEz05lOBIRM5ka6waXxdZ5fvsCLixfNhnHIeNNZzdhq/ee95mkzexnY7me3MWhjWvWvrRHeVJsTxZ9h8yyOiRPdc7e8wyLVeXq33C3vbYkl8kN//Yf41H/+Keb928FGv/AvfoEgQVkbzU64W34XFgF+Avh30UXzbwPfz9vTU75FvoqCnRbAhwBPsy1vX3YkKJh6HmeuPHaFM9fOfOOb3mJ57hPP8dFPfRRBePoPPs1nH/hsbe+nT7814FOUyMX5IoJwdbhaGZkRuJAvsJDFm94rCDfTTc5tzvFDix/ifu5/02tffPlF/uvL/zX5k+8sLZPMwnA4cLA44L954r9hXs5cHa5yPp9nWZb84Ms/yH1sp9r7/N7n+bUHf+22Zx2kAz6z9xl+4OAHWMryLdfh21ffzodXH9767IXFC3xu73MALJd6kOooHPFXvu2v8NJ9L319OXwLff1Wy6ObR/nI8Ufe8XPebhlk4Ef3f1T3pb9Dyr848y+4kW5wHI/5pdO/xM10k8N0+HXv+fTpTyuwdL7IbtnlBw9+kIUsiET+0K0/xOly+ltU+1bOz+e5f37zufetLK+Pr3Mr3brjd7tll8c2j219tgkbXli8wOf3Ps/Pnf05PnX6U00H/Q4vbwOkZEH+csJhXSl4bbsTjD2g23d6eqpozqtcNCe9M9644gkBS6dFTaUy55beQwOaTtsO7iwFpWH2uFDsAmbVmdFt/uu+z2odsJModXMuzclVBMHTPrUn3Im+XK/MSMnNmW3PqfS7tnlNKZHFcrAQmzNGsCCLsj4EhGBBYukuEmegkeY8KV29vUPrptXGKSV3ajSHRuzTDkhzUMxM9bOcZ6XmjsmCP+YwjupIFXEwip5SczaJmNRTXVOHmYHrYKCIVKBOyUZNDzh7lI95H2x0yv95VtpHyeoYHodQN+hhjHWz35wP2w5al2tlr0IJICRbvc1BLJ7eT9NXaeYxdXg5s0Jf2inuSBqkAltSbKeRhjgQ01CdY+60nuaZkmeODg45PIhkZjabFSkm8jyQ58I0ZURmS72QEXKV5zjUmVIdvkJRdqWaekcvllKU+jlZv9ipyxSksjEMBsRSh36oYEFEttNi1BQfpcrazEywKMVcVH5akEsBPOKMa1FAInEYEQsS5FIoRennxRiwUhQCiTwXDg+PyfPMcjlq8KYUItHS3ZU6xppao1SWs5hCFzgKEMRACIFcZlo6BlgsR8ZF25A5w5gHCNKQ8JSW7jTCnOpjVEexAuOi6TaUQSXCTgycHoVcMgebQi4zs52+1ThKNFmXbu4H984Rwsw4B87tJM6fCxyuIq9dP1b9GjI5DowLC4gbk4izsOVcCCGziMLecsFijKxyYZr0JLFEBYfVVJam84YYLI1WqHotxWSykepcUyAkRsfvM1pT+RGEYUz1enBgiPUv9u6QUL6QjvWt6GRLrhMq4DS2gGzRZ3mqCgEKCnRKou1ZjJHTezs8/MB9vHH1ChSQEnjo0QeJMnHl+k3Wk6c3iCwXCwKafqymnQwzQ0yc2h3IJPONql7WeZLVEb8cNE3kHIzFQIFb6oQXc2p7G4XlzkDYiXaS2PrfT2G2iDsIpFjY2UmktCCXzGY6It9cGdNO4ebNDbduXQciwzCS58Lu7qLOQT/NT1RQxDgmskSiQEwjuTiQSFM+xhDJZSJGkJCZy4Y0oHWGCnZ1edV7nVGoO9Pr66CkysSoqQJ1PkXRYFscqKejS6f3lbUJYkrEoCl3ICgbnQWWdTmvWh5IBghz2kS3Ydz73d1rc60GqIoGJIYKelbQJgtdN20hoaam6CIMsXrYTTeazMZKXes7el97W2ClSDTd2gIHpRQ9NV6dzNqXyioW8BPbYnqmtoPmgKZb470OLX0KpODp7zT434BnDeSzFWBw3WJrbwqBgZaKanabwKyt2sfVHnK5cBEP9dFCZDDnu76yWL30/gpyDoHsc8RrJ/0zLRBRF3/Tq0Vt1tqaEBjGQBggV2ZADJxksgM4W56z/elnYu9s6UKkq1NNS+ygPW++AZ9iaEATByKo6aN6Re2ZUt9TijBLNvENLJc77J06xc7ODiKajuX9Wur8DPaTNmcdQFRtI1+C/N7i+kTHUhq/Z7VFvXigyw9M6D6m7Sd0/WkPF9reps0x30xQ39MHubZ2AfWaVg//WYEoNWULXbu7B7moA1gK5O3STr57/UJgq063BZRMLoPJitarBdFq3ft9Umj9VwFXVrcGAnOQs3/Xxi7UfhI8vaX2nYNwDbji4PXQ/mH2vxgTqwfXQgjGoGRzpqbhEZxLxwOZjS3J2PGUnszeFWqjXb5KUeC86xXH8goNsBRM30gVh6YjfBzDyQ+83n69D4m33feaJhv9OLetnI2T6O8OVjx64wg2ZkNU3al9k+eZZ575GothwfkL5zl34ZzaMiHW1J/GKWL9UVzk9J11L2Njbno+2HrWC4zLhAd0/fNqv+LgTh2fEALDPDJsBrPdQqt/nQs+gYqxFWo63ULHshO68TZ50VRxpcpi29MKNVBe1xO1T6aNMkOlIVYWHAXfg6P7qjWhuQc7W6PTBXUeWh3q5LdUhycOEOkeQetxcp9bb6zj31LY9ePCMzD8BCzW2jfTPxPKnyuU5Ukl4DLb9Iavq+FLhfgrsHMQ2TmKbAgc/OAM3z9QYuH0pTM2Lu2ZHgrXNpoNSSLlQF7oPi4QkCRszq6J102XWB8FUNafDBJ68Ekwt4at7SY3bk8AhIUCe8pQuP7IdWNFtnvsXkEa26Afquv6FApH4UDrAcriaJH8TVwxdTpVZaLJpPuLjhdH3HroOg+9dC+nT58COVSWxLmw3Nlhb3fgpYsv87UPPcMcM36IymdOA2sam6w0fV8tGTdRCdz71L2cvX6ew519SsmMRHKYmGXD86ee5WPDx2iHjYVru1d58fzzZvPVrqxL7xfDb9dejkH32znPlW0qxggLkKFQ9Vi0lOAj5B1LuWjsok8sn+BU2ENSYT2udL8terAjlrZuRmMRSymyDsdMacMmDJAgLzJNbzbbTU6Ic9Oz2pgVh1zafY3q8JOtq8Dao34mqd+d9PlVYGC7ja3F0Z/bHYJ8mi90az9VT/scrWZOd397+JbB0q2b3UB1WqHdIkj3+Z1KA9WG7u+O2cp8cwBDSPVacXuBBuzxtWjNirWs+NLyi/U9T5/5rWbOWb2r5q9y1/pmC0QTul/MYO/tCbdv3LsleJ0Du2WXs+Vs7Ssf1S2d7OPc25B1be4Mr2obOjgytKGyX75ej99Kt1iF1da7vd2jjFyYL2y1O4eZa8NVfHfk4LYWXLC5D80wEKoAeM178Lod0bTL+rWkk+/6bJPP0tZJBEtpqP6bYRyNITzWfffdcrfcLb/LisDVp6+SD+48x1erFT/7sz/LxYsX+bZv+zaeeOIJ7r33XUiv9i6V5eGSncO7zCfvuPwT4N8GrtvffxX4n4ELb/F+Af4+8F8Dz9u/BfDXgL8CJHjs6ce20k+/aTkG1sA56hJdhsKN+2+8xcq8tTIvFJQ3LSee+X3P8KYL/NcpJRQuj5dv/yLA9eH67Z/fobyxfINnPv4M9z9zZ6CEBOHL3/dlPvWHP/XOWcsEPvRjH+LhrzzMa6dfqx9fG64B8NNnf5p/M/ybjDhbpvCl01/iF+79hTd95EvLl95WFZQs4MThF6SyJf3RxR/lKZ4ip8y18do3Hpe30dffqFwaL/Hrp379XXnW2yoC/9O9/9O3/r3voGTyNzVnJAhXxisA/J3l37EP4W9d/FvvYu3eerk4X+ThzcPvybtPlpcWL3FjuHHH706VUzyx2mZ3W8UVX1t+jRzy7xpwkpe3DFLqHeBOOe+fO+AkBHUMO9V3dfC4M1u2n+OOgT5PvYJBROnRS9GAugSjxtdtWXIwhtVBt9adA9kjU/hWruW71wZs1wFzCpTS56KXdiinbuBCpT50Nhv9w24xR7c/wjfCwTwtvrUMETLCXIEjpXocRUqlBq6BvK1xsD7uAqYA2CkxZw/ytGZiDttSivVNxx7VBRCysVpIRxmciwbjRRREIcSOwt+CB0YHUUomizoOEezkqvaR1ydVRg51QkULhmqfREvNo2nJkgSKKEzB01+4XyGEdu62IGQw0M7UjZf9LNqnwZzKQpPdnMW+81OpftLWaOxDqAAZfbBu1Itt7ksRgtXTQVutpsawIR6YjeQszNPMZr1hbxzBxtBPM0+bDZJnRGY94SuBIjMyF4Y0WnDAHe7FTip7AAjEaOJrQM7maQoeMGr9pl0QCVmZwXIpmuIiNEaI3rmf52IOk1ADD6UI07TBQQeDn0IMyuxAVjBSnnOd69HSs4noc4pkZIYYRxKRIhEk6mnQos7eWTy1RCbPyqyhwJRIKTBNDvgQ5mliSMqMNM+z6p0YFcAVYDa9UpmX8KA+da74ybRxMVYASWWGM0fOmIY6v/OcG0gAgdjYNqIxxZWigKR5zuyMAyPC/eeWZBEOrx8Sh5Fpk5mDM4QkxBk1gqWUMv0ZgZ1RSKVwfGPi3r1TrPaPyasNu8sF62lCkqZzShaYQzSEV+ZCmTMxZNIwkya45/QprhxsOD445My5c6xJFHFHJTVQmFJozB7uQA7OshVrX7rOUxlU0GqLdFH1eXV8dikh1ZmbTcP4GKEMSRINgNNAkrmo7mnBTfvMg92mM5or0v8f2NlZshwH8izGGhYIRVORzeIpMly/KxAyDW1dy2UiDRjIycElng7Dm5tN/ktLjWrBGK2Ts79FfZ95s52dJWc94R4tFYL4aVuBVZ6oJ9djYC6ZKc/VoaqMWNpX87wBzduj/WXOyCGNjItBWQB7/TcElmFhDmpN7RZTIsQlSgOfWa0ObdxsXhQ0pZ0xV0QEBX1afdxR7YExk21PZaYBOgfzhNp2TXtYlLlQ6NbowtynUQgtbaCvYfqKgEgm5qLMf9EAaDFoSkITwWx6nOCueRNb6+JiILka4C6FmNzRbwFxVOf3IGVfJ/WTuTqL6/fS1h7BGTP0FT1jUUDTRKbKQFaqo3mU2AGNerbIgLMh1f6w/2sT/F2NAavZLRioy2wKqaEO66P2XA+aS9BUoBgQXe01BT55WpEKuPRWWaAk2vudtaamq+vkxgMWDlQKdYw5oYNs6ksLOmx/Z/rIAsPF2C69Xc7wJd5eAywkf4fbqlXFWP9W27PTn9bUYABY6fRRTLGeto9dipDgbIjWJwRNCenrirNv+VQPQZjzmmnSIOM8zVv98L4rIhqYtp8u8GLf+Vp65xObbQwFHza3WfoATgMA6dygAzco2KVPcVPlrD69K/bHuB7YOVpyuDfrOnWyi7u/e8B/fYTvA2oTvN7bb6zrHk0XbL2kIhRMvuKJlCJ1pkqtVAXwdw7CHpTtNqKvow40gqZPW10ddljqdR5Y9P2SZl0UfF/j9ic0gFIL+lVjQ2tdPN2yjWetp7FjekQULGWwUNOB07fHnhW7IHfoh0ltIwcqmvWiOtoQycH6uNd3vna1mWzP73RIBWwJFfDT2uhrSpNHl3sPDjsA1edEBbx6zQtsNhvmeWaxWGzNFRE9GCA5c7g+4Hh1xNHxIY9/22O2LjcAlB9oCF0VwdMleZ3brKpTRixlqNU/tKZRCnXPSfce7ycRYedwyXA40Kc2zzkbS2FjNQn4YRIFZOpaakHXHnTk+l2MDQlb+7AJIg2YRVHJUzC4jnmvK3Tmqa3kDKL9ISAfz+xApDpxqPZm7TOT8xTbAZ3eNwKa2svvLSaz+mdbu9xu9IeLCGUjDD8fiAdwam+kULjxzEy4Gcn39MF6A8e019QpFw5g+EcQbwhTmdg7MzIfz5SfySw+kshnC3HlbGUu7yahDvwMhYgQf0XY/eKCoz83My0nxnFE7Ai1Hjno9whUlmVcpqCm3MLGBWnzoAdvCHB07pD17toUedsv+EwmOFhJtp13rm/FNJlQ9yzbesnGxN/pU55W5aPzR5SXC2NKuuc34HMIynr0yodfQZL6CoI6yepDUuenqn4K8zv0neKvPbhwwGZnNrvaxsLelZczqzMrTt9cVrvvxoPXXTs1vWyj521x2yUTKDl3a1Q7EFDF22zKnOeqDVxzisDBPQfE65Gji0fMuxNMposFZRWtKlNBSp6KELCDTHVwqoyb4OsMFdfFffdI/wdV6gP1Hn9e79/zvvD5KWL6pLc7bb5Xe94VpRRCMb9VbLPMD9f5/OrHrz3Uaimtbr2Zo+9rsH59rdlDdPd6f9AxbJ40l2KzQxzM67MXkwk7kuAD00yLri/6FGy1N30d65rVdLxs9WObMqFbNxuAyVZde66D/l1yXYfSbF9rwyodseKo62+rm/9hP5zQqrcBtuZxM7jogZHfCAS2ZUmIaUVfyu07CcKGNW+k17t6tr5Lbseb/SX9c7eMR/+onx/btfC9kXT9qZ+H1s66PrV54l9WmbO0lqXMzLPZz1v25d3yTsverT3OXT7HtYevvddVuVvuFlar1df1GYgIV65c4cqVK1y9epU/9sf+2BYD/ntZzlw7w5mr7x67zu/Jcgz85zSAEsAvAq/x1kFKrwL/HvBy99kM/EfAvwY8AbsHb4ElRoC/Cfy/gJ8EHn+L738H5fLjl7l18c7sJd+SEuDyt11mHmaG+fbQ/PHpYz79pz797qRVDPD6E69zdPbojl+vTq+4/uB17n/x/nr9s5949p2/tytibJJvVl576jWe/OyTXHriEkfn7lzP33Ul8HX75Hd9eQ/b/8b4Bm+Mb7wn73475Va6xW+e+s33uhrfsvKWQUoAvWOtnaDtiu91bYtU9590zhHf0fpn0gLKIoFsJztz7k6i22Zag0mehqPRiwsd05PYJs2fayCRXDztiGz7NYqCfgoYLbw6QvWEPhU8U12GNeWJbqaVEcZOhgVNo1IsuO0OETfkoh3NLCjwJRuIpIFPOpYXC04EB+rQNt5iG+nGZuMOYWpfzFnBUg6C0dq7U7ELHLvDMAaKOYl8wx4DCvQwiqp2gtaZF7y/FKRRirBcLGyDq4xZdv5O223gEB07S6miOXCQIkxzC8jM81RTsyUd6JrKKWCAqqCpC1Ri9P8xRaPQ186YiwbqNeDYZNBPZYpYsDMowMqD3GJtVKeNCrYDVTyYmMwRqH0UlTXHWMQUwGSbe70aDzAulost55fL087OkvVqxfF6RRyTOWcGUgrEJEx50naqYAAwDIMBYApFMglt/+QB0SIY1UiV1xCipTrLVJxd6ca0ZJ9u3mPqA7Y5lY15peRSwXAxwlwC8zyhqZx05DUtRDL5do9RtOoHD3kogxruJDQnKjp+NdBEYZ42ymhDRtC0VCJ2TdBnFwTJ2l8xJU0btrKAfNCglrN1eVqLFpgpJmcBZG59IKELghUEMxTF9YbLrjAMDXyW0kBM0Vi/BEpgiJndnYFbNw6YZc0gKrfXVxs2yvtDSiOCpstTZil7XVHNOpbA2XuWXLp0wGs3Bq7eXHPm/A47Q+bm8UxmofIbpSrhQGDOhXkWUsicPr1gOtiwOgjsXz/k9O6CM4vI6ljIGYYRm+OqN+dSdDxsbINY8CZRT7crWNCp+u3Eo883G8d5UtAOFjjwgGNjZWspYRxQqZO1C9jas2ej7sfmn+rVjqVBhVvxpREFUDCw3kxcu3yt040zm2lDKJnNRsczxqG1w0AmadB5GUJrs5+yroBbX9eyzY3ggQSXoXYSNMSIZsVTL+o8Z8ROMs82v2IIjQK+Bjib7gg1Zar3m6r1GANDx5xXmRIMeOkyL0VlbJ6Kvp8MnlIyRu1PAgnIcwbJLRDgC5ItRMV0dIxRg7y+kHRrPhLM4al6LFb6aAseirXPbYkiFQwSNKlMq39QsKmv0KX4eInpldicsfPENM3G1CU6lklTXeBBTRtvgukuHJTX2z9ar7puu1O+KBiqBSCkvh/MzigK9gtOpGT6utgaVHJhniydZjBATuzXK7UTqmO/Y+Jw57j+LLVPVG+YXRMTHmQXWzd1DFxOoAKlRWrAoD+Bq2wOHpQPmlasyrnKqzKlWXDE5zAOSpQaMbBH1DVQWeTUJujDA7U9ij7QAF3AgoouGz7m27anG6YOFKufdsxfwVK6VkvPIiEOwvY1vwZixH6WZnPZFKjjL6KAM2fdDMayJmYfmLBRA0OuR2zOFKSBHw0w5frUx2RrvEvhcN7XJ0gDmLxvSxckbLkIrR9pdmizkbx3XBI7dhZ/JB0AwKMxPlboQ2sX2u+ejsTBaV6DFqhuuituIsNqQPY6UIqX0LeptyEbI4H/3NadLWJWn9nvC7w+vYwJdU65necn4m97HtT56kAbQvd6Ttah9XW//m1VeWsYK8QDwRhJ8Dnb9Q3Udb0iWkTaONGtm54CaxjqO8X2eNt1tTlvwuKhXREoua1RMueqI12XNTlo7S/GwONBfZ/PweqnYEqpgUDs/hAU4NyUsDGT4Cy41j4bwHpgx/Qj9j5E1wAJzvAlHX9bZ0MbOGBnZ4fNuN4aD58TwzAwz5k5z4xpZLmzpIKio7FsVuYjB2c2/eTyr4DRZt8Ws1V6cE6gAXWlB7hDY3EN23X0a4oNQQWu+VooemilZzcEsxO9L8L2gx0cVlkSYUsXFmfmskEpti768Q1NcesHMnSsNO23VHaZEKKZKrYGWX19bp1kY3SgVfYUhtYvoSk4Mt38MuCPXmQ2hLXXDycV3+BuIFyLjDGyXm8okk0+A8dzruAaZRX1VH5tvUIg3IJ0E5bLxOHhhoNV5Gg1s3hkYNgR1qVw494bPPZKMbYhqetjKW1OLHYS+Qsz8+WJzfWJxSOJnUViNUt3cKvN25xy1QeC1DQQCsB11rtKZ+YzwMax6Y5i6VMr6ATpWODa+3xMGpBD+kcrkMn2wbofcRvA3yNNf9LGfHG4IEjg+OiYyXwBYAe3CszdwbOqucw+ED+4UPVfXbJqHd30EYS5zBDWZDuQ1KwyyKGwXqzpifJzcB+N2LibT8rnx0lljtvevb3eVsIY2zv1vcrkjNnjhzuHqsOD1JTnDgAPYH2jfUo0+6baqm0V2V4We7CyyokEO3Amvma6dEhLqeyfdGqirc3UtVfnZAN8l+6irTXWbdw6OrpfcRs9hNY//k73OWm/UnVs0+VtHvna5Ix/bZ6267ff7zLp8Dy3iFpfiZgfslANqt7H12wl6/2qz7ZtR7cD6rjX9djtr1YnXzsrM1C9wf+yNoU2tj4HfCVq67q/f4sjCD+QWuve2zTWB7r3YEt+T9qKW/ZjN9a1JkG2b2o9Uq/tTEvrQ+/npt87eBnuPzhRnda/nU5qfeB6rNtrdA+Q1v1dP0g1bXSZDp2v4sR9tzVN5W2e9GBlb3ffLe9OWRwv2L21C++Pw/t3y+/xcv7ceTtEXL7htefOnbttjbhbfoeXDfDcO3zGDeBOcf4HAMOQvfCxF/iuf/ZdNSvPHYsAfxf4CnCNrwtSEqSyIb2TUlJB4p0WxG9dOXvlLDHfGfgnUcjDuwfgKLHoAY87lGln4vD8IbzYPsvjtxY8cuOBG/relN/zcblb7pa75b0pbwuktG2U2KbFnDnuAFb6feqGu3cuOBOBeBoR+1zwDS81NdyQNG2PwwI83RTi6eJASiCmWMEk/h51Mqa6HRb8JDA0pz9Ugg9zdonRk4cYaOehOseyOaDdyZBLbv6VEhGyOtdoJ4AR3ygGO73ZB4k9yKyn8/1zZUSyDbI5A9Rx3BiUWmoZd3KoMyqWTCBUsJU7+bQP3A1kTCTmTNN+UOiFpxwJWFA1a9AhJgfpaMjNWRGKOcCUVWdCioE0YvNJFClIVkCMB9Q8oE9Qp3zOwmajacxAT9WlGBmGaCfsojICWTrBGCDPa4Wb2IkforFQBHOCiXmcItXJaK7azjOp1zo1fbDgNKW6NRRAI4rwjJbKqjqcYmRICWy8ArGe2spZmLIFrbHAfDCq9CKtj9w5YmNQLN2RSFDARBBOn95ltT4mpcAwjgQ/NSoq74Olv3JXgiT1mM3G4qJgLWXTyUWdDjEkTZ3ojq5S2Exq7A2DblY0kBusj2ZCHCz4VIBMybk6k4togD3aqfUIpGFQ8B6ZYOxUuVhKBksfWHWJCB4scGe7BoCEgcAQoeSVntLOK32vBDvJWCxoYMxaIZDGQYPCpbDZKAvTMGqbY7Kw8YnTYe5IdT2WYlRna3dBFz9oQTc8tVtiMQxIgSlPYAH8JBESzJsMecNiMXLt6sQ6rzl7+hRBFEuWDIQXo46w66Uyex2MrYORIMUc6yoHmmJsyZgE8RMuNSigTt2cDdgVdGxzzhysNqwmOHtmJJIr+5iUXNMwiOmnrDRWVk/tkJKznih3Pd45/WKXLs4nXZ5n9FS8BuMInhYukwat9zyLgT9NB5dsIChjkDPmNx+/PGdKng20EOoJ9xBVP4SoqenIqnOOjo+IQ+DCqbPcvHnE5mDF1Ws32Vko0E5ENywKWkwm7eq4yzkjARJJ9ZudnEaEklXP3IltUNeO5nwWUGYf04lFFCREgTkr014gEFJkM3fgMBuTUsTAK7mCPv1dIlBqkDTU+rjed1avlApHR2vTuZl5yjXoo+DORC6ZuAjEDPNmQ6zBOixgaKKGUDIoA5gGxnysqltVVN/74qBBBV8Hdb6JAYdxZ7oYSM90nesaP4Vfg6U0YLAzp6QotgbpuKc4aJrLGNr6FhpYsiCGHckqLzGAMVphusGVQYpiwCSx+SHdGmuguNQlKZiLMUJi9o+0ddTSjFqEDhGV6eDpbUNtYtNFHigIPi8s1eGWi9vrF60duY6VB2PjCTutMd6107gevO9tQNWVgUCqY2DhY/OsxxpE0vSoHiCz30NobRIP9gTtU7cLXcuExnQhoSCeDtbWj8acZTCFLhITaIwPnlKyBopqMCLW9RRbg6nP6a1LA413AS5/CyHWgIIHBaKnbDMboD4rYAQioapHZQuUqg8V7Bfqez0Q6/NC539Lp+jyr3Wrya/ev6VGStp6Wjs0tN8DHlg+0R4RY8Bx0IlsSb5fAy09Vu37NnB1HliluiCVf6QVPHP1LAKcuXqG6xeu1/W4vSu0T6SFJ1tgsja3C5T7GhEaG1tlLZAmocHv1LFtG6i2f/KgYYDKTtVAE/VNJ9rYbK+TfVfXZ9chLmfSWt0DpxrIsa2HFTwJFYDqOqbVoAEsK8gWS/c9z7el4/N1oAJ3vadDq1NjxQ3VxleVpPq8rqP2vGA6Xwzkiusn10C2pgbx4XH9pDoPobah9cu2jhDpZdneWwGcNnIhtNRtwXcO1NRj2duEtmn31B6H6aAyMrUxlPqfb4VSGsjOcLSbKTFb36a6ZvngNnKbUO047RZ7ZunG1vaE6aScirMFW3peoba1At9qPynQzT+PlubWQc8uwMkPR0mzLV2HN9uzzoK29jrblrXSTAcovn+d2/wJ3eh289THqgHpqODeSDfIXRDZ1yKXtVDrW8Vjixmm12HuVxkMWFzUMIIQbN8D5VAIUyalyPGxMh4v9hZWJ9MD4QToQKRjxfDJ3Na/KsPnhXg6EDfRUnC1vqijbM8qoflvNlNmfhaWj9l6WG1SqUF/iXD9/hvduq0CX7vQmSeNWbbagvRzSLbGw6VfXEeZ3e++BrfNqs+nynCoe+AK2qh6QDVAtaurfDfmw2FOeshqmtndXTJnYdpkVuuJtHIWapPjaPZPgdgdGtC9SqDXoWo6N4BMANa7a9Y7a6tjkxUfi5LbJ7p3LPg0K3a9guJRRlXv0dBsGp+o3sc6Ra1fjE286n3To2r/ZtPZ6gfwg089C18sbZ84xGSHHmxednLaT6VqGwYDiXWUbW1svOZie8NQ1/lA60fXC01PN30KtLnva2unz0XaXK1ru7HGY9/5oSe160Ndzr0NjRlQqN3dRKrNwa2PpenOE20KHSNevSH4oU17ptfDgach0p2d6F9f9YKv5y5JVq3b9QhdO8Sfb+uqLYj+u3gn1dtPWhz986v2pMK6g4OPunH0Pgth63lbz64GSN/hVFumW5jqvsHtFG2b0HdxlYBOrqtNFTD/jF1Xq9FkiU7GvX+3QLh37I/2few/O9FdvZ1cweD9E31s8KbLiV6p37Rn3KHv7pZ3Vh75yiP15yvf+cp7XJu75W6Bi/dfZBgGNpvNN7x2uVxW3XR8+pgyfGNg093yPi/XgNW/pGc/BVh2wNWpEylR36wIkIF/AXzizS8rqfD8dz3/Tmv4vijLoyVRvjXsZPv37HNw4eBb8q53UoKEu+bH3XK3/B4tbxmktE17DDhHjmDgB9386iY6VoUidq06F4IxQyh7ggf31NUQLRtN20SZfw1SbBu7SHMuxX4DrVrMz0nGUogoIMGdoLhjUsxp4Q4D22An26D2gZ8iUtMJxKDONX2lOiY1f6Y6burpR0DcCVCgBE2Fpe8teHo1fVdzD2djF1EnItBvMkvra9+QOoDBmQhyFjth1xw3eoJSlE6+2Imt2AGucOdzaUFljHHFgskhDNVBoYw3YifZYC4KZmjMWoVs7ArVmZKdaUY9PMrUADEJELWPxWVCgU/KNFBIQ1IAkRRCUqaVEAOxCIFMCsJc1Hkm2UAEeODZgEAhWvBcuzIUc3TEyDxNdPFMO2mo4Lfgp+Cr3AdiGlA2I3WkhxRI0UBZPv6i1P4xCSErKEcdhdGYOQSCna4MkeAnJTtWiKPDI0SCpocrmaPjNblMNnYO/DIWkRCQ4ExOOusWMSkYyNONbRTgNg4DU54R0RQ8NfCRzJldAQgmn/VkhQEzomaRLaInRsflYKch/QTziFjGqSHBkOzEY+eYSUnZWWY/LR805Y06scTS08E4BDSnXUCyOnsPj4/0pGO0dHE5G6CrORIDQMcgk6UwjJHFcrA+agMuKRjo0YMfChhMKVJyZoiJkLW/A4E865yJg8pyNAYfEWFIg7bHnDrjkLZ04lRmzU2ZBg4P1pzeGRnKxNEms7dcsLM7aLhILD1CgEgkRRhiZC4KZIlRQYPXDteEOHDx3JKBwqUbG8Jyl7iIjNHAKCHpqfygWlZTKGaGEDg8zsQBzp3bZbUR9g/WsFxA0lQCxdg5gsmJOrbN4ZrcUeyORJWTpFgZQlL94E7zFA3kGF2H2snagjm9dQ5rJkixNIqFaWqsXgE9wT7bifQBDT6rMzyDdOCFkKg0J6j+HWJCQoag6QbPnz/HmdO7rI8nTu3tkIZIkdmc5ZGYhHFM6Dn3UHWtVPGxNTCqIV1KaalQgumQEAxcFGtd59mBQAKJGrxS53aklA15U5izsFgmUgzkyUAJxopWbO475GRceBpGTcmnk03Q9HzNaevp8koF6Bamea5O2RB0/s0lMOVC8lSWov9kLsylQAwoDlIsbZODSCyIGYP1iel201shRAWZ2FwtpRCK6uo0RJLVtWTV98p0FwjBga3KNpWLjm0aGqhYTxpTgyYaoO0CH0FTMwSXxRKZ80xKSdeRrG2JgwJfFFQqtV2Ig70MXBZ1fUkhVeYhT1Hj4JQYPfBqAO7UA2Sw8TaeKokQiqXA0GflygjlgYlm62iAJnTpYTIeXGpBJNVHKpeuY6smtiCTM5/p3HXWwZisjgRyMbmyddOZ0IIUS6Vr9ojrVa+nOcGz3atmmDu0zLYRYzRyYIOlUctB6rzwIB01GmQvoQV9a8DKAvbJ7EkPklWQj7UKgsd8QbL2rQeE3Ap1exFjuzJd5QBBn9NqjwbVQW6LbgURXZeqHRzQa1u6MUt3V+27oOlEvP7BwSpuWAs+lD7ewVqVpQFk3rfltsha/cL0YdOLHuvxwFTbW7hcqB2ld3dBfrC+tufW9DjbwZ/2bKok+UuciSSEwPJwSUB/tmZ4wMqfZXXEAHuhr3doa6ZVWaxxwca86ptwYgRdbO2PyhxknxXxulhIzwNo0vWF9V3onlnTkHlfdC9VvKfUf33sLfgepAbXQh2aaoPVjxvDoPZZdPHdYlvw8cymY/G1oL43VAYiBwZ7uySIOveC9Yl4B0tN4VQwOI49o2Yq8H2mz0/7sAaSpWOwCP7dttSKDWJL++pfdDJH31/Wno4hIkBLCevPtFSbdZ8YfGzVjjp69IhzL5zl+o3rtr+qk2OrTJuJaZqUpUkKt85fZ0oejPADKE1OPUjtj6uh4uTX60GhFFNlmXTGYNWTwcbHAQbe5FAB2i4Lyl6mBklKUVNmofenkHQvTLD1NNTn+NhFGnBUvPM7Ifc/Y/SKlArE38wTHljXundMS9aPtt2w9VPvCykwptiNl41Z0L508EYFLBsw19f7CqyyA1b9PHQbz8EP3v8VTGzvK1LgNYHjyIbMYojMEplzYQyJYUyVsdZ6os6rfhziAsIYONroYaDd5UBEOCATykBIoYKxFCLeuli0NxmAzSyEHdhZDuTNxHqTISXdx1R2mAZ0LHXf1tYw11FVY/nck/ZZPXDmI2ULn+uemtrJ5qnbbogzmDbwta/TTe6bj6uCHHt5q3JrvhjssIQIwziyt7fLarVhGmYSkWlYV91AbHacmE3RkSk2gcP1q9RMiMVlPfqBDtk63FbT1Pm+yltoMijFbGo7AFfcx1T7resHtvVQ3/cCFjQQ07U9E7FdLoXllV3G1cCU1rVp2fZPVY59KSxSiX6i61EbGzm59kAdHwhNh2NgTHFJt3mfnLmpdM+ttxNoexQfJp+LbdZgetclrs13v9CHsKZpjL52dUBU8c50ucQfWv06OjcjwX1iTUy39HEFVFbXqANqve5NqILtyW2Jq0WBSp1NUtskTZe2XvcXt77ZnhI0a727niaLde+Mz8XQ+tf9R+5nq/2NKQeavdF/B82G714b6qLeXdfVZ7tN1vqt53btr+xDfeu27asqPNLbAr0d3guJ/lKHouoc96G7LG7Xs+37pOqHNjdb8cOt/Rj4n2Hr01oze37rg255tbaG28b7bvnmy9krZwkEzl45+15X5W65WyipcPn7LvPoo4/y7LPPvuX7BOGlj7zEZucbA5vulvd5+Qxw+R0+YwSWKCtTX76ZTHxn0MXqyje+tKTf/SC5aTG9u2tw3LJy3rflgeceYO/mHkfnf4+kfLtb7pa7pZa3DFLqacbbyW1XcPq3MwD55s0DDE6lLN3Gy58R8BNenbPOA03mCXMQgzscC+qsbvtCd9C0E4uCpb6J0vaqvhOtG2VrW6hbZXDHEbTgFgCaxs3ztLtDtzJ71BQ0beMbQrCgpIOTBMRPyXp0OlTHmb4+UkQxI+aeMVYfdbiXknFHtdOPB5R5yJlvvO88XZo6NPVdTgRRA6mxnbLKkomi76r3i59CN5anYhmk7HkhKHtRSDCOygqS7XQqIRhNnwfbjHkKqVt0BTVZarsQqxMXLB2PKMOHBnJHTeeGBwmx03vuh5Tq0PbhDEGQkhnHhTJnyMxcsvZnEUtTl4kpKgDH+sOp/d3xoOwoAiFXB0HOmRTU+RaJejLRUw1mPd0aDBwWHJjnjj3ZZkDoSy6ZaZ4IFqCYpjU3b84sd0aVw0LtoxiTOiVC1tQFYzKxEgMVJYTAYqEesDQkC9ILMSQqO5Y50zQVHcpoE4KOrcmQs4kUKZDF0hcouNBPTcYYYXRGJ2Uo6E+s6rMcoIU9L29Rf2rfCzEOEJ3FJNh3JtspME2FOLRUCMEd9wRSULaVlJK2GXWOKgDAAzLqdJ/nTEzGtFOdgUGBLWkglYE5ZzbriTyXyvZTsgKGhhiVFUqKBfQLedZ+izEwzZPJUWAxDJQSODpe8/hDZ9gVePm1Y1YpMywGchZSUrWcpSmoOCZLuyUV/HA4T+yeOsXBHGG5Q9wNHM2ZYbFkiKP5w6Q5zhBt0xgZU2CdhdM7u0gaOXXmFNduHXBwvCGnxCDqhI/mCBedFISgaUSGpP2Ya4rI2Jy7PvdihJIN+NDAGcMYQVLzmqbAPDV2HilSWbRiRNOOBRtThPWk7AopxsrON8SISKpMDNHAjOM4ICUxpEgMiXl2wFyAkMgZpmlm2qyJcQHJT/eDWLq1YGOK6Z1AqLrCwQqIXh9CICUFCOZSGIcBDOjnqRkFDJij17rMpZQsaKdzAhFiLBAiaYiMlkKrFMieshB30urYaMpKd6QqaEyDfwPBAYciuv4QGIaKuiUNiQVJg4OjpuD0dHsxJdVHi5GcJ9KQSBHKnLV9uZ1412BYc7qrvs4G0FTwSAEntDBHezRQXyBGBVcWMdYlC16OMRnASxmKEAyErOsTYqx3vsYX1W0hCOMwkKIyqznjFNZ3xdbCEC1AKdja2OaNGxEpaGBSWZKSssWFSAnG/pBiZSSsnmHRsRmHAUqhhShjBQSlrRRLbiM5qNuBR8XAWOD2Rg0MG8C1t8tcJjRgqkByDUw24E4MoYKcYwyVpIUOSOQsJNFSadZQTwgNfIhY3ypg0XWPtB6s4ID+ZLKDigiNqcnXPTFQptttdT0VD2ZQ21pDD8H0OC1QVU/xO5tO6GxZOtaQaGliLRjR3+sp2+xVJh8GmsbsDjkBUMB1L8p4Z/MVX/cN7OXA1hYEg8aoYDZooI5lrQSCp/vzvtR5F+8QZHp/FW/LVuoKoEaZodlfHqRxK12aDduK925/PS0Y2np/y+baDsS2u+uzTYlVORUY1gMxR3J0dhGXlfpXsz89qOUToK+dzfm+GW571HeK20n+U/uk7g36NrUtzYnS+sb3SlWOHBhQ26xgrqZP2t1uG3t7fL7Vd4TWDxUMKHXLVQOU7RCF0DfP+1vEQb2NuUavayCwYDfVtFW1bTSZMr3mtrKn7WyAKdvnhK4vrd2tT7D1uAWrEdlmcbJ+831Cz5qhoCfvV22/y1dbW3wcapdVO8jbXw9eeEDT2PPKonDqjIGUvL/bbKp1PLW7x+nTpwFhlpnXLrzW5NHljG5fb/spLLWa76k85XEiVZlwgKBf6TIdQsSzqfYApoorCC7/ArZXt81LHQPfQ/sI0+nkHszV5ol9n5vuba+ztb+0tdbHOZjcbbMzNTk3qIeu65YjO/j6V1+k7c+Fxi7t4x4CSDQmRd2b5JwpWVM9O6BX5bFf43S8nSmLECqITwTSYxF5MDC9NLN3ZskocPORGU6XrfXOp5i3azQGagkQ7ofw/TC9WBhfXzANAR4cCD8OU9F9q4+fi4LvKyLaBzFGZhEWf2pEbiXGBwJz2LCeZkjRuqfZNv2kD7GxOrvu0CpHS+MU2jzB+sYesd5Za/9GB/7qGFWGXH+dCDEYGNBs7FCZhW3P4EDwgs4v6dL8mm7r00+nGGnpuFxn67tzVj/NzYs3NUVDQXVL7MDWdQ3QusTQNJz6S1xvbe91Umy+A9cvDtFNBsrR6Rq7ayx9tvVjwFlcT/Z53796bUxNfhx4155r9wKSIrubHZXhHOyAjXl6QiC6vR9C0x1mL1cdIZ7GOVS70wESvo74vLTdcGdvdTJl9fM+jbFP2awPSpVOqBsHfD3o7CnXqLHpyxiDzeWuUnT2mtfZ6uR7Cuoc9HFobetZzAluz/Y6zLWQ3u9sz76W1LUV6XRxb+P4QRb/TMwE2V7XHRjbvbZb76vF0bYK9afZFVvvwCSpdFlV9fv+gKY9uq7rUud91xd+Uf9en+fSfedj2j6ipm821j+vX1NH0tJNnri36i1bd/3lJw+bVNuq03G+3gehO4jXtdtVW/A6+Rddg1o16lzb6jjvd7r1tOvV3k7cHi/9vjatjtvWa+s8fzPr8m755svurV3SlL7lqXTulrtlqwSYT808/PDD3xCk9NBDD/H4448DIFF49nuePamqfleVWL41zDbvefkk8PuAX+8++3HgsbfxjCeBvwz8CvBr6JLxUeCvvc26BOBvAl8EfuBt3vtNlv179r81L/omy8vf+fLvKTDgmWuKbBs2w5umwLtb7pa75Xd3eRtMSs0xrM6a5jBte1F1AJXiDBbbIAzdlOout0ghNnelbuaMuaCeQqxOLdl6VowRcXpvcSd/9Z7p87Mo84M5DPQSP7HVgA3igb7QnMMVNFTfHdCNO3hqOXcAat+E6rjw0/gtx7yejGkOEr3fN37uMFend8RPyfjJMg/4ars1+Cal4FsakdJYPJzRB2rf+gGYkkt1poaAskXYOAjB2JAUcJPMWZyc4l+K1bPUdDrNA6zME1UEQtvkRgNoNT92JM8OYFIQTBFlf6iBwoABSSxNWS4USg3868m/wCwQjdWlsruEYACejOTCuBgqwMqdhrXvS2CeZ2OqCCYj2t5s6Y4UNEClMA8hEIqmDKtsJSZz3jc94CdLbifXPLjap/ADRHKrkztBXDZRpoXFctB0exUYFCyNmwI+lMVBSMOgAfwYTsibO87UKd4cUu50K9W5G4eo4DCo7QE0lZ/APBfGpO/KORvzjMpmc4JrqsHBHJC5AiNs3ljINzmbmsuu1VMBHpZOUYqmOssaUB4Xixp4mqeJcTHa+3XsypwZ0kDJM+NiAUFBbrko2KNUR5I66TfrueqigjLcOGDN/Wm5WOq+WSmiYhq1XtNMHAZkdjCA9kCxlEoEBSht5mxB7UQIE2sJyLjkjaMNeS4w7rAukIMCH9yRm8SAiEkZT2IKlHlW5psUCGnBUYlsbhViyuRFIoRRKeCFehKzna6FYQgsFDZCiZFViVy+pad9096CTEAYqm5yoEYIwrhIlqpTgR8pJYahpRQMJnfRHOqlzDZDFBRWJDOEwVI4FgXvDUkdvjFqGrVSGJdDdb4CCnbKrt+iAtOC+zsjyRzDyVIRTvNk9TCmHVmQ86w6QALTpnB4cIObN44YUzKgYmGaNowo6Gy2+imbVoSgrGvZ6lFsLalzyHtY0PSZRIYYGeJACjDPE0ghRT2BPwcM9GVgR3NgpxRIYWAvar3SaDo0eQoBZS0rDojwtISpOetVtk33hFjXKwgMtkDo6edCMPYvEU3xGNNQowEqN2JBpAGRSAxD1d0pBE3dZ4BPQSwtpD0iOfNQhJQ6eyESx+31swJ7EH2PpVksBiiKKLA1JlgOSfVNLo1RpGLLtJ0a10yVSWoctlNnecDa65BSJNnaTQg1zWVb25XRqQJTTP50npXKsISloYsWEFWWB1FgdZDKBKlBlmygoVKfF2tw0wBxos90B3i0qG/OuTtFHu13Z8SoVoa7rX2lUn0QxBg/pAYIxdYwWxmoXel9Iu0Z/uQeIBM8wIzX1/VGB0owVkdf/zCbT8HVDpp2gI1Q8xSZF10BgyqTJfhYdO78GjxqcqBj5+tdqDISbIw1pVULMtA56k2ydP6ENm7OCtaD3drc074qNk9rQEEa+02Vc7MrqYEtX5lPRgnoGmnzqb4z1O8rOM+Y3X4nlAAVJLc1ll3Qpos5VRvd5bAPWtUwjP8hrZe7R9aHtcBQqJ9t/wwVXCbdV3s3T2lgYZFrfeoexD5o4ZwusFOv0z/6fUvP4OH31fGtM7iXnbrVafJRt0CN00C6/jnZEaG7sUEPdc5JL0/9rXZ/PVhi7Q0xdO0zXSLdjbXuNB0lTbf72qnX9ftCr7tUud+eEA1MVdvej3NnG4LUejd7G7P7pdp7VedZX2djd/QDEoKBo0KrpdvLvu/DNJW2Vwzw63+bza1anhRiZaCrF9ABuexKP8zRBkL/2L+1bzq/l5/6NRfvucBjjz9m9hHM5zYcnztuejg0wGZKyUWgCyK7EKlcuZwUkYZl7d6HCGmygwop1nnWB489tbnuy0IFUM+z2v4VqOcPFrZY7FRvSNUZQqfDRbhw+YLqwND22MqWYrJpzH8OahZbXxyQ4SpB1yZjQar7QdtDSJs3bq/Olg7ZAR4FBx5tg0n1IIvW3PWPMpFGO5TUxtjZuZyJuhgrTAwROZ+Z/yykvz9w9PpM2RP4sUQe3c6xOdzpiHqYIMUKBJYfg5Aj035glkLcFWRX7V6pq25rp8MGYlI7UOsH8/nA0flsGsUYKWsK223dPOaBlEKVi5q+t/gBLGnLP6GOrev5Ego3Hryu86qo8vF1PdmY5uoXMf1kwHtvQ3Q7oJs7nmLa9XIppR6OqfZMEWNDhaMzx6w2x5QpMdVUKWJjlastKD63bT+hKax9DYkUT1VLP62aXnRQux7AyXUxSSFQoo+LynUFHaL6bxhStZf8kFKwvRzWt9F1PtDAm/aZ2zSuC0IDXZqk6by7fr7pihCMuVioE9XmhQKoVJsa5s/e4/IQIDYAleB63N61xQBI3d+0xaBWs8q8QGOrdnA50mRYWlsayLutlf5UEQU49UCtVtra6e9WGXaGX+vTDhRV69kmfdOVns7Nux0HKoW+mXXh6o4QmA7qwbGdESVtHbTTfr6U03SS/n6iS+vnqFibj1GqQdLWP59HJ5+xbef0lkgFddf2tnXN/9/8t7om+Gt8bawHIbxBVZn3r+5nfPut2qF1zjU7qI7NVvq3/reuzVVP+OGdYHUSbhvnsCVdt9fLDRNpPdKX7XtDvbVfb29L+3biHaEXsq3n25zo+uRueffKfS/dx87hDofnD9/rqtwtv8eLILzyytdPPfjUU0/xIz/yIywWCwBuPHCDK4++Baqbd1AWx4tmN74H5QOf/8DvDZDEtwF/B/i3gV8GHgD+Y94eC1JCAUkb4FV03M4D97zNugQU8PTkW7hUAovV4m2+YLuUVHjuu597z2TMy9WHr5KHTJrTbd9J72P9PVAe/eKjnW1zt9wtd8vvxfK2mJQciAMWTI0t6A+2YS2372TCiR2uoCAO30g157yz6zQHgDsIKxW9XtCcMHWX2t4h2UFCurOSYM7GYG6J4g6eBgBqJ+LaD5GsQXHboHmwUsx5aWzZ1uZ+s6cpbTwAGW372lKLtLa6w006t9RJR1WRUlOK2Rk0AqE5XXOxlC7qFMpS6sl8Byvou9qpMj9h5gMXjJkiuGO8iKblKeawiupUqmkPjCfcx8kDiDFGY1mRyq7jjrIY0lYqPaCeLK3BfmMjyfaTzhmU86yMOxkcDNQcG8254Iw/1j3qmJ8NpBSVZrrkwrTRz6KdKi0lV/nOuSjgp3NgI4EwBHK2dDc05xfZWZncsV1sfBQgkIZYnTjOpFTcUUg7gd1OeWs/K4AjEaKzOSl4Sq9XUFa0oOQ8z+Y8M9CYiDn6NEzeA7pE/GSoAmAoCq7JlnYhFwddKYjCgwN5zpreaJpYr9fmMAdCZBz15LQ7IKdi4KIaHBCGlMgUO81sqZNiqt+7JlCgS2Mgm6ZZnTlR78l5BjTFoTqsg6aEy0I03ZBiZMqZaTMDCugSPD3YzDxnpk0mhYGQkiEdsECEMsTkMnG8mhBUJnfGUZlgJFRAkbPsKLNOrg7gXKS+T4oQkmifBJhjIk8jm40yuCwMHKJYg0Ces2tKdRDj7DIKbMgSmDfaN0McFdDEBDkzTQpgSHGHFF1bhNon45AQCUgIbCQwl0hMymiUSyR4DgCTIXV6a7+PY2KzmZmLMMZRfW8pVBCZnhIXa3shxcQYU0ut6Tre+iwlBSnlKZMt9Zanu4B+Y6gMdAQdx/8/e38Wc1uSnYeB34qIvc/wj3fKm/PEmicWTYo0SwJtaAAludXraEGSAAEAAElEQVQC5AcBlt2Cu/3SQMNvfmnABgz0awOGH9wvAgShje4Hodt+ENBqt0mQggSSIkscai5W5Zx55/vP55y9d0SsflhrRcT5b1blUFmVyeKNqsz8//Pvs3fsiBUrVqz1rW8VcKeTbOuUEthNcM7Dw5W1GDcRjqQkpacKNB2GESlFzGdzLVmSMI6Tyq7IgNN5GPKoQQnx6Zvml2znCmolkqB2zlnKhjnRWaz6jGHMN+IUz3WIMY4jmAWkRY7Q9Q4h6zyoXpNMb3luVHa5LgQB9MRYxsM5Ke+ZkzrMjR0g1+CSBYAkSAMgs+zp2VensCrUEshhAB5IjfvZ634ID2VmY1DUIFrnJHiEysQ4pZoNXsA9zpUSj8YEAwIcvOoJ2RUdQ/ZuBxgznWUf5+zKnu+86BMCSkDOmy0AAxLLuGYrxecF2Js0ACi60QIIFdgFcNGLRL4ErJRQTv3JshcIS5FNoABuyfY+jVbkFhikskmqBzjpatEAFBwK0xHp3lt2ihLcQdFB7flO3rmE2JtgQuMSZ6AClQToXYHi1kvomOgAosQIZJ6p2htZy9sYuK4G0cxBj2IL2CPsHQysJ/epwSp7GlWElmaNq8WkgQkDx7XOdyKUuQM0E95V+4ZtM23e1oD11k8LlD5i5ZYoi8q79ZTL9qj3M7tX/2alX/Ud7bkWvCilSTVIIbo46ViTipZZonXstzK6P4HN7CoLoBnwqx0zWxPv3gQkJ1dZa65n/VczJwDqHJZgosqVXm/B1q3FY+cU/d/lfrWlYoBGTtvxp3ZO2mCQMm+ajdS8l3bYviz6ARXUoG+MEtHb+rm9wgKmNdxXAUhqOwNaqkoFU8eiBLR1Xur76UvBkjFsf7dzVeVZaO1ZLsNiAArSvQ0locKmgJgBZayw79r3K/jRbQVAqV0vpc9U9Zr+mSC61qrWFmBkO0dbeqcZ3uZMJeApBufKtmiyhabMsZ1zS8BfGWWNzGNLo9iZo3l+BbHVvYkh4OfxYqN6oYxymfmdnR08+9xzCrIVUOrpk6fgwEWu20C77GXS56wgagNQ66oBtv7JZYwLWzAIh3cO8faLbwjDoHflfFPsfP26sAIJsOdk7xQrv0ZWVs0WcGq2FisamXVyS98ZiJDSwI4cwhiKHKthof2UZ9tcGeOssdSwMV02c2blQ53uK0ltGOd92RuyglZyYrGflSGx4DOUOTYhY9LzlJyHxL+QYSCrytpVzvgq1+ajYFWSTIxMDBwA+T9l5DsOeQ7gep0z0amVTazKJqtdYeczErtuL8NRgHOaoJIYlBK6mLRklpWIrXtqZVgjJIaUhCvESxWktKUPGDi4c4DTwyM9k1qpZgIcgQqYRGwo1hJ5BLUlPeHi8Byn107rfcFlz2e102zsiip2xfCR79ivW8uPyvo0hiZSo7GWgDMrhrDe2WDKCTyJHISmbH1KsQLCVVZijA1gzlYSl37k8rvZrCibIrP5lQS8VvRdseyha7cmTImsUi0pSKggGWdWqzA4O7OFzF4j3Y8I8AbyJlsfKOurDm8DNqbqN7TnFntIlXDVfyYtKP0hRUkZSaXIGZV1b2uitSHFHVE3hCKf9hFt23co7E72TwXCVgC6K9cXuW8kmkup+wp8tfPjJRVU5MvWoo1jBbVv2wzFFuDt5wMK5KtDiwJQao2T1lY1vUvyfS7PqHMK7ZVNbVlZZSzKrco8wfZOso5eskF08FvAbXnFZu/5ccD6alnoONgbXLLVWvtieyipYQqT81DzInVCt8agjmO79z4SOGvsPUswoTrZrWqpBg7sKyIjBehVB6YYRHbK4/LeRXLqc7iOvPSmsUW0jyajl0e5zG35F4Nbm5IaG+hxe9wet5/Ltl6vce/ej673dfPmzS2AEgC89uXXEPv4U+3Xi994Ef/ub/87sH//Ouj+s/c/GuAfA7PV7FGd//PaXgbwLyGl324A+NyHuAdBSr699BH268c9LhNe+MYLuP0Ltz/U97PLuPPSHbzzmXc+4p598Hb01BGSf3eQ0uP2uD1uj9tftvb+QUpenIQOpGWA5PhjAaKtgxmqI1j+JQEjK08m/lvhUzFHKdDUX9fjVgaDzLnM1cFdACJafk2CcnpoYw1qZUhdeKoODNai9eZUq87qpI7yCqApZ1fzImw9n0vmaaIK+hHHgQJVtEQVESrFd3GSigNJACjquWEqLE/igDLQhobfGKAsjA9c3kXuQcEV54gMuWVc1gwYciS08lo+xg7WFuQwx2dxhtipnaG0/xokvwQoZx0Py2A0EExugC0MVkp4GcCt0oEAcoqaVVodGcxS3glQpxmERYmRkTMhsZQBizGh86E4iJyVNAIQU5TAsYITJPCRZWwzCSjBEVyu3/GeIKWQAOZUnE3yrIycW2YScRiavMUogWjrh9xD5mCaIrzrMOuMCYWRyRjEa9Df2BmYzblaSy4lAzCRgDtyBnLMyI4V2JGRdW4t6M+UC0gmJ0acJsRJspc9dej6gK6T95tiFFlLk7B/ZN5ybptsjeOIzIwY1Z3KQMwTcvJSXosjHHkYK5r5XiTTOIKJkaIEbGezDiAnZdQ6c4kBMaUSyIwpCXMGCMM4qmNP+pTs3jmWwPTEGcEDm82AzTAI44/3MgfcI8WMcRx0fYpsTFMUoIKnksnNSViYrMRUICkbxiliSkobnrmJa2uZP+cQAukYxVr6LTNm/RxAh8QTWEGewnKW0DllXXMBrGxIDGCcRiyXcyyWS5ydZsRhDXIecRTmJz+fIWWHmBg5TaqHMxbzfVB3ySmrHmRHBvpxAALIA1McQQokNGATM5QtR7J+bU6FyaVmyQuzlo5blpJ1rE5+I1g3XZuSAM4c6rqMMSFlYXoyvcB6L4YG91WfSeJndU4zoCUzYtE7KTFiZGGqQoKDOuAREFNEThk7ix3s7e+LvqOIOA0AGOMUi0M/MSOq8z7HrKXohKHCrrEAlJR7FL1lpTaHabKRBEHkSfYey8pWgCSjAkSTAEmIpFyjMDaJriMihKCMCFMsDA3TKGxhfR/Q9x6zzgOqI8BQkJT8bEGI4kTPKHsAQfZVAx/bOvPK8GOgjcRAilnKvUHLrjnVNcggLSVJtnnp5um9k/drAg02h6YrAWUsJA0A2NZGUn4xKqNEZoCdAmGCKw57qRwiv2RlycrO1/sCCpK24IWAceG03CgrIM3sEkcC1kXd+4WRru65BrJoy7wIO5QyuGWCgEs0kKasizmJPWD78RbzkO4TVmZCSRbK94vzX9+Lje1Q93ViCVbaO3Gxjapzm2HyJntJ3Xs06MFSMtB0cesmkn0xlSgHZyBTwwHQvEsB38omp89RGwkQe02ZMZwGp4puIZkPsatULtC+h4D3WPWL7Esa4LGAkAqRsWOhMIPqOJjBxxU4ZiANkRsNUFqgRy82gBPIgmhWzG/b0W+go8xZWB4y0PIleE/CGpaBxKnaMqAC/G8DfkVGsoU0UefHytngE9yozm8bOLEAHqEBrrXfKTd41GFZp7AGXagJnHFzkQWFLb7UtmyKslzOFvlp+l77QRB5AmzdVMDII69N9Z7bscRiJAHNu9t1VnZ0q6vlrGLy3pxXtkJZl8A29TGFkaJd90RUAUN6F1vDbaDVzknuXQayGcL2kzKUjuq81zFBKbVtL2T9rgDMOs7t/oH2nJbr9Y9KCZXPyRhus40RawlfK4PEqAkUXM5gJRKod8rK+JaNFciC1c042Rgb+1xlpxVWy1JyjqiwWliSR7tX2p6akthwp6dn6Md6jGfwlpwcHh4oQEnfnRjD/kYfUwO/pDRFmRmUuLDLiD1Q1yWbPOmWFfU9ACAkUoZjKENeEva82MpgZYsxCTXg6OgmJJKS4GwluL3YKqSLvwUR1hmuSUnBe7jssXdnO/3X9j2ZxxrAjUmYbIteoOZ6ziA4ZBKwaowJMUZJXHJUWTUzIycL1Ii9nVIqe1mRRYYwFxkjXzOnpTwZUz036flSmBlF04g9Y7orI/gAJgcOGXjRgaOCU7IBs1EXsjJK55QQuoCu6zDwgJiiJM2o/eCC2F1J54GIxNZs9mSTBDvfbelyBZkb8KsCO6q9zCjUl2VsjA2a0T4HRXYr2yGw2lvhzst3kXxEKTfbJDXkLIkS9RwupcEqsEFVdmNztvqxyLsmrsjcNesR+g9JQkTKMheL+QzOOcQUMQ4JeSZ/szMMmx3RmCUyNdr/or9R7KUCsiJNsNHNhVDPR6XPZovpvf3ot3S/2aaMCnIx8AZnRkKCAfOEhYq0hHTDclkA8bbPNjtdsw2YuVdUc7vnqcom20zNPtXSe0SlaHCxnWx/atsW6KL9exnfxtZtbDy7hEqZQVY1UP2FLRCvFca29CLbBrK1Lqo+oeYdtjQz16tFtux3uzfKnJfVQ3Ietd+ZuZ6tiRq9XCegBTWxjUEzRsVEbvrGzdjZd7h5n7Lf2t8aewvYBsqzvWBjg5nZYWvb9hSzM9r2yC6u72Mgv3pVY0SUL1/eDVX2ibeSCFrBagHV9ntunlNBQVWItvze20Zq04/afzNJy/joIGxfc9n+tX+XFI/yCdXJEF8tGv1pctboOdtq2lcxW6gOSu1PsQvxuD1uj9vPa7tz+w5Wq9WP/PuLL76IruvK75kyjp48+qkrhg/DCj0sho+khGIYA57/1vM/8X3+wjQCsATwGx93R95/kySCDy+ED555gD/763+GOPvpgu3ed3uXV2EwNjubn31fagcwv5h/fM9/3B63x+0vZXvfICU2hzCgbA1Qx4Icklzjua9ZJIB5DsyplRkWaSvOkmKDUD2YmWejApu2HUi1zIo4z4rj0TLwQMrS4cp3Wkd6ccaDNXNv+zAOGPhI+mKU/5bLUpw9yloE6IE2JwlIAupQJqWdZw1eOzAnOHLwXrNFvZfAeDJHLpWAmDnzkYXe3BgEnAXDWEpvkTpYYtbAvH7XWeYgAcZcQxBnvAVUDfzCOjcGcoA6Ui37vy3/JXcTAIk4cyEMR8TgBMl8LE4OdUyyOJ6d9whenWIplxJwpQSPTn9kKc8E0vI9BM1ilezKnDSoh5r1V1xfZKxfUmonm0MS4hCSAH+GcwE5ZqScNGtc3t17L4AldfwYNXqcGM5lBCuXp07rxIQxJn0XgMjYr1wJrkZEzLskZaVmHYCaKcuAZFiqB2HWz8HISGkUFiULKDhCUucvmIVJKDOIvMg7AdSA09KUEXMWsEzS65k0cz3BexltKZ8WZV1BmV9Ygq4F5LfleJOFGidh9pFybQI2yikjxklZnZwtNliOqAsOmS2rNMm7JaBrfEyZgZgyUpwqYCQroxqzAq20PAVYy11p4JYYOQkILTG0rJzDNIyIq5UyZAF9J0wo0xjBkaU8YCaYsAkITN4v+A7eMWKcEHxBC+gY5G02pZQAOCR1eHnvgZThQ8Czzz+Hvb1dvPb6WzhbnSOzlLfIMYKdXDNGAV12nmrZDS1jJj4whymZAzADmDBNwDQJmxnIl3IHNXAtQhanhGGY4LS8EhwheAJSQEpO12UuAIBS4pHaICXB+04BibIerVxbilJ+0nkv8ZqcgJQg5QAV6MOp6vTM8M4D0IBUplIi0DLApQyGV30kJdyygu4sm9bKaMUpCaAwCbuSMLJ5eBIWG+SMxFGZ1VhBidCydQJuyqwlFHJG0szlnBisIKGkoI6kIIu29IsjAnmHELwCkqQECOm6dJqZnVISuZSachBQD7T8BgMkAYIYE6J9ZvuO88pYJyUX05iR2SFlh6QkgQKqYEQNbtuaYgVJeEiQM5lwFFmR/XiKsQQWiDOCzrEoUpGRlARsmMGYOZE5Ipbyn+Qk8MIo+0zNMq7Bc+lXBQanKBq7BiZqmQkDXmbClmx7Y1Qq4yNO15xF3rcAIaJEQQYchujpTBkRQAG0miLSfd7eue5los/IAKQqG945RUnlklVu5S9NbRJEljgreIxR9lsbG42nwgqnOU9gRyCSUosgBXWT6apaPqaWAtRgK3Fh4bN/ChC7BGfMfmHpiu3dxAhO9osK9rUgKwqDVA2caYCbNOSSUhlMKowKFXCTstoijUc+S3E83TZk4IgFdOVIwNzJBiipPiKRXQsucwmmlJCO/O41VGKZ6+bMT7nIlAQDpTOkQUUDEhYHvgVniOA9q12l+ypnDW5WVrZaood0X2iCUKY7nARQwL7KdxN4qaV22yCKDZuCiiHlaqjIzie0tYGdMgY1mNKGfWRhbH0FQBujUhlpbBT7Ji79Vr9ioJytSFD5/uWAJjd6bFyMyF7RnxrgATV9bYa9ZuDXAJewjdWb86XAY9uy7oNg05dUXtxkzuJi1dTyIrNmTFuXqslSbTmu3wdVphLY2Yyr3JWzSBnOmnxR7EQYwKMZPzVGbT6snJucJer7MhrwMdD0vzmflHHV57fgWbsu13VcumDvrFFZtzUOrLaG9oHNpm4EwIKGOs/Fajc1pHrcnpOZizxWMFXbdwdwUsZaBpdyRFltGmVzbUFZ+r6VDTVjtVrDxSV8sKJ5FUyaOePWrdsAHK5cuQogY/Ijzq6fVpuwzIP+nGX/d1yZBMu5SXVK5ibxwQiqSAHBsmng+Pqx2EcRsLKm9u42DiknJE5wuWaN5sLIqefrXAETZntC7QxZWgZUJz2jamLFdAkcxAZUEoCIiI/sAaI75QxbgAmu+idsTFOU9wsgGChtmuzsKeWtAQESMUt5QLZ9Bwb0M8CKhyNWEJArOsz6m4x9h6gwd5r8my+DPGH/YB99P8PxyQmGaQTYwHRiszvnoJjdUm7RFm3Oqdg2dc0ygISUFBDILCCovK3XbGXknJGUwQo6ZuKiEGC2sdi4VMfg8ryUd0LVHQU0Z88lS6wQmyEh4eETD4Ekcm72JHE9UztlZjLdYewiZv+YPrK1WYBi5e1U/2ao/WRJO2qbKNAq+YyzvTMcHl2Rzx3BsdihRzeOdGpNn9bkvJJhAwCZkChX9W5TZTZjk/TUAjSKzNq4svVR3v3w9iGObjy89E7WBx0nOFjJbQHgK9NXRmXF0vWTi4w0iQUQeFiRry37RJSilczTJSvM31JDt8hCSS5kOc/J380O1OS9Ml+0rUxKo2Y/BZhJfHcFznMJcKO2RZYXLINu71L2Rb2hAUflaw38hfTFGn1vduzWfgG7rtoKjSkgVxVfpe3ncq2Z+9kGTO9VrmdbU41dUQcClshpOskSDtlsbAO42La2ZevarNY3qWeBZg/f0hHmz7Q/2Pzp69v+zPX6bdvPBhfNfBqYRnvUPM/GqeyZrc13ycYBUBjyJBlDeycbZz0XtHO01ReuT7DN0QysMqfbOlNcRm0CTH331u9MWlL8sr1m81L8XGUdciltR7b0Lg2inffasa7VCWoiUDOTpfvUvtPj9pG28yvnmPrp4+7G4/a44eTkpM2beqT9yZ/8CW7cuIHnnnsOADDNJ7z92R9fHu6jaG988Q0pdfVjWnYZ2We4+NGWZSMmhOl9h0kft592Y3zkLEOpS1Lq7RPQVvsr3H3hLp793rNbn7NjvP7l1z+mXkl74RsvfOx9eNwet8ftL1d7/0xKehiCOkdz6zRTu8AOVJ7aMjVcDjlShoslaF+yf+2gR+o/tuw3VwJOUkbJyqVRyQwlBW503pdDdY6Szeqcgw/VeV2dzk2ftM/eEWLOCv7YDm4VcIsFtB0hJlZQlrAxpJT0YExbh07rqzhRa7azc74AlABGygC5AKtyFGNC1HIxzjn0ncMwRCQGiDM8MTrvFCSUC/CLmYWdhMQp4jXDn4Bm/OwwbYdPcXDklEtg0bFm+jMjO4eg5YCgmf7gmsXPOSmgwSGlKM5ktncGzPHgHFBo3TMQsx6ao0QGvJOyT1MUNDOrUy+Qh/MifVGZTMy/4ciBQqUnDxocr85HFIdvTmZ9q9NZvGTiK1Rgm1dBdiqLOeYtAJ0z8EFm5CnC0GneE6YUMY0jcgFdoARMogakHQnIJcYI3wWAK+gs63U5WUbmHClHrDeTOMdzUllVZx1rNhplOC8gLgcAGZhSRCRxHXJmDGNUNqDW+SJz3ecMKBAlxgxOrAFgUrYP1jETxiAf5N1SkqC4lYtyWlqNAMRRmGqSk6xapuoIJiINgMj6HmOCYwGhkHPwTlhbODPGaRIgmcq6rLEs7FEaweJsmcaVnStnYatx3sM7D84ZY8wFpBVTFL2gzGRWHjDGhBCcsNdwUpYT6WvKCay6AixACSIFael4BWU0m2Iq5b6cAtUiA2HeAwEY0wgfAtbrEc6z6CnnARLgXY4SlkC2LP6k/ZNACYGE1YsZPnQg70CJEZwX/ecYvg8gJ+NFqr0zC4hn2EQQGD44mc8QxfnJEeQJcWJwD13vVNhxYkxIaULOScFhVuIjgbMrbCOcGcGLXGoNUHEEMyBMaDXY7omQasUBedPEZb+YNIM7q9OaPZAjlbVVvGsZSFF0hLFfxZh1/qClK1U2WGR8mCZh7HIOMQkozrKcszKulTWjWcVZxzEneZ6+huoj0SGyloSBaooJIAevqjbmqsNAJIEOJ2srp1yZaVRvEROisrgBWRiDEEtpEJCU6QCkzIQF7AYNnk0xCaAPtncSXM7onJP9kwCnpR0EHCfgLWN8MqctBwGR5ZhkDoGy9nJWkF6UfS50oYAxopbZszJ4EgBGsQ8SW1kuYV6yIFC2zHdzgmfGpDqpQHeyBISETUrAimANXJv+ZZknA83Ks8z7KvthpFyYxZy75JGGyjBIgSz1bxKMygoOksHKjkEabHIGzsoGZmrA2okbm4GbQLGFNSrg0lpN2GaAcilVZkw7xfbQZyQD12YB61kAKKckDD1sQZDqiM7NdeYGz6RMWQa20qc4DcZl1aUAROc0IFkLahSAkt7XAl8GJmYNUMFRZfKCyo6OSylHZb+3gAbkEjzPFpXQuXON495lV1gQ5e9eLFs2kBJtrXuRM2MIUzVVAgQoTDQELQeUqu4A0hZwwzmA7b0BKWXcOAVrQKQBwRc5rqA8k+0qJ2Vo5S6sjIqf4NbGUkqwxdhQya6xzHsqdiw334WOh5WyAup5og22mD6w4JAFIIskEbU3bUr8ydwTRLk7vc+95+8hhaidsaDZNthMQBy2YLcdrCbDVsrP9EANJDXBvcvjVqOOsEExRpZyvgEAcgWII7omleCpdwZCFzl3aMpY27ObeSqgCIuYg7f0wCMzq523EGAbQLW9zeJ6Yl5SOSuWawlbjEiXQ2hWTc7+XkAwuYLPzB7U6Slj3jJrXD4LlnJRXM9PZRxAZcwug8naEZPSPXWuSrCU7bJqX5sdXECRgCYiCFMs2JI3VB+ZjQU718me6dhVWwim5zOmacLt27dxeHiIEDw2nZR0zgqcdq086X5YbHXtc2Jj7FAgccp6RmjfviaCABlTP8o1ptf10NayR6x213j133sVfvKgySE605cMuDp32QBguk+167aIpO6tiTNI7UObS6cvYiWUC+uI6lqzI3X7kedwTULKRV8TgjJrVeZCA70AkW0/NjCMMHaQJz33cpEH8aFs6ysxM3NZf8bOnGy+SWUGyuLkA9gREkdhVp0ySG1JYeXROTHAP9X9JSGVdyBQZXcq7KjC7GN+C+ddWaMiMiI3KTGiCraU51NZhSU0OdDksHdnX2WsBtizyngBDaktYyxLVReq7DmoLWb2TlI7wz6jssYrAKLqKpu3nMXeExutqHHVP3X/LUA8s10zVxuMUMBCDGDysTAq2b6ede2Y7F4GWrY2UtWFXPoutovT60SnpGxnGirPztkSylDGTNSsguLKQ+uYtgxt2wD+ukbJ1T0lad9s/Cr4Vmw+BqksctlD5Fwgc2MALZiKgJyLuACIgFancmaRV5UZ0UdVJ9S55QZc1NoS9RqgjjFt/Vy/V/cr0YGVHrm+p413YSuyhzR7POm8bbMwtRtqo295+51he1P7jqT9JLt38yzdS9u1Use36tnyPVsntmay7rs6R+IvsD0b5Tl1BOsWY/a6zdvl/XBrj23OJ6z2HRPVLun95dWo4LfMfi+gKWy34mHk7WGl8go6d2h/tz2ksTlMn5X3qB2rdve2DJgFyWWvaLpsf+M6lNtmTGNjMdfvXvq7zdsjQLCix6uYmg4rN2pEzjpsetvesdULwKXrm7Y1Ro/bR9YYjG/9xrcwLsePuyuP2+P2nm0YBvzRH/0Rrl69ip2dHQzLASn85GxF79XWu+v3VD1HTx/hf/3f/6+YrWYIQ8A0/4iAf5c3ncftY20/FWarT9C2lkPGsBje9W+tL/hn3Qj0oRjNHrfH7XF73H6S9v6ZlBSkAqAc1M0ZYNntVprNkS/ON1igBwJ0ygAyCb19oZE3Gm/I71KWDAJ2yRoQ2j7RarDSKVtQzTKD93ogk8Cn0KU7OOeRKYHYEFUAaWBTGH58CSQWbw80yzJKv3wI4jRyToPz8hy46iwmeBAAx6y08OJNz7m4RySIwRmCiapHVE8QGnYPECJSZoQO8D5jNiOMieA90AcrCQJ5NmspJha2pj54ZarJynADYTcyB6OmcqcsAAYHKuPGkj4nZVs0u3dKURyQYHBAc+CFMmpEkA/q9DPnrjgqM6OU2zIHlzE+lOxYApgSWEFHpDJUHFAaJHbwyBBHs1MATHFOUBD2FqAwM6UkcmPOQ0ADD8pe5TxDygVKWZwu+BJYNnkS5iYJ/PnewwUn9weK7E+chd1DGcac7zTDFAjEcI4LIw45YcGJFxt18KkzkRWopECF84szBdKwBuzFeZYbRyoICL2MU0wZkjJL6vwSQGBOwlZlgVv5ugDJUk6IuQY/2XnkHJGRtYSNAR9QvFOOHMZpUpCSlWFgJK4sUCklda66sjYN9CBluRjJJXUWOjAcZn2P2WyBruuxXAiz0OnpoHKaCpuSlI1MBfyTciqZ7zBHKAsrEnkngRpla8rJ3lNkIKkTV9iEAlili5hBzqPzhHEYBbQDFkrRziMxa0k4YMrKuOYcctErMlfeC2gjZwYcsN4MeOWHbwhoaoyYYoYPCjJwUaBEKWnGqUMEwEzwwYOYCkuV8w5egUvOE/quQ3AZcQQQHOA8XBdAjtAFj77vMU2TBK41cMGlbIQHe0BK9DGmaQShB0AKmlEdzjKH0yTl2hxScTTCnOG5cSJzhsvy/lImkjBNxpxQ11giIIuC1RJWNeM9Z8Y0CsAvK5gLqX5frkslMJK0jFhMAvKMKZe1wrYnOAEPZTDWmw3OL1bo+x5jjBgVCGTZlqbfHQgueHCK4lQkY0fLhUVMVJATZz2zAJSmCGYCOQ1C6hqqmfMSdPBOxlB8zjXYmLT/AhyRdewygTiBnIJuHIFcB+QMogxyoWT3p5QwjcKgZkGJoMC0iQhBZaSfiVzEpGwBORYdL/uw7DNMoruFNUeAupZhHmNWIJnDNCVIEEL1F6QEYkoaeM2mvwjQEqScMxhZD4xOA5NN2assABIR4erxVUwMsouNY1Y5ECygy6wMXgIoNXkmczyDAEoCkvRsfvwSlNdwogBXdd1bADTLIi0BH8410JezAQ8YrgEhma1QHOKyYMrfy78zA95Yyhq2IbuyPbTafqz/qw736my3DOGcLdil+6rURBWZz8ZmoiWH2MqU5BoAc1p+hjXwaW/AABlwsLwOWaxBTTjRW6p2t4I5jFpG0t7HgI/gtuyC9jPZ3BHYUAuqB0xOCoinOOY1BkQKJoIxUsmHwm7VBNTQBPLbIEYTZDEAdLZx1nlows+oQQv9lKCleew6DYg0/TZmSdtXbfxrUNMSAPQeFrBo5PET27aCNtu+QCuTVwLkrrHZjfnHAkcq7waqsChR1d/GRFgDro8sOfu4yKKmZJQzAmABxKmPOLt2Jps8cukBgYqNAh17MvrPtjNmuwECUKcmkQK2N+Tmd3EOVaB3lRW7UwE0XhpigoALMwFIqoccwREDHkhZ1r53clawrmbU5zsI8NYAgiVYzBXIR6oLauBajKByslEAjh29sjIpVuYS09oit5kTHBxKCb0a9hPdrPYWF5sPZU3UfVSbg5YNqnMj1zSHGKC8V2WKqvNpJattz26ZEAqgxzXJEQkgR2WvqRq9sjwwBMRtINs6CvXeqsQE9MAVRGPzZFtXZsY0RbmDnicZgJWnOjs7w/e++1186tOfwvmNc4zd1AxHo1OhYBSW70ZbYXYNG/igDEUBQ4A1GUTXsoiCAW3r3mXsTDYqx08dy9lAn1kGodmfjE25jAdQQMdl4Ws/HAHLox3Mpjn8LMB7j65jdF2n/bJ5ND0hZ/HKxlXZWou4oCYotSX4yjanfSj3V7CO7QLSTQJ51yQ0SRcMYGnjmXMFV9m5196P1E40+yvGiKOjY0DPuikxXNkXctULRVfK+zgvTLYwkBKJFvPO5FbKHeacgOxLqXgisZ+88+U8jWZMEwNS5bsG8nNOcFlKqkNlsn4PZTyogIZNFhlWEY7ZkpyaRCPnytzYPJpc2fhUJ0XVDSmxsoVlZU5uV16jY8j2XdVJBljKMg9kI6qDGr2U3h7HSdaIMeSyAvy42gRVz+TymazX1r7UoSgMa1XubF2h9F0u9tGjW3Vlq6kLVGTJQIQGHKlsbyRlGcs+qsAoVMZNYwez8smt/WHl6CWZx+7TJIApK1jdEHSeDAxvdqqtbV2fdsYmNtZanaHyfs2YmMCZ/lPBYWr2R7WdTFZy2a+2ZYAagKQ8y/Sf9RdlDAsj0aUAjgGfDWze2oFof2vnqrw7GgWro2Vn7VbvNrq7jIM9u4yTQnmK3kOZ0/Z8AMi63TaKmn23nCOaZ5seBRRcWF+svFN5nQpysmuyssfamr/8jlAdUAaqDm7TO11XvPWnR8cTKkjsirxUm8HeqXm2dYTQjBVtXwuTLZT9x0q/296MInso82DyV/aYrQ5XHYRGBzUvvzUUuehvVIa2rdtxM1ZmO9antveSs0j7KNr62+P20bZhOeDtz/z0mWget8fto2q3b9/Gb/3Wb+E3f/M3cefFO9jsfowlqJqWfcarX31VfmlU/k/abr52E8uT5U9+o8ftI2nE9JEzKX3SWpzFLTv142jdusPuw92P7fmP2+P2uD1uwAcAKVm2oBwIxZln50l2rjqmSBxKJXCrTgCjciYAyOZwlaAuGBJkKpTu0qzkT2Vhkc+Lg0RPw0yuUEk7PRRaf50PYCiDBbj8nVmdk45AcOUQ2jLNSIDDAUEP0Jr1GtVpRVBmiuBB7ODsFN44HKGOH+8rXUjjFpDAgWXv6jjBOYS+F0YjLzTgrJncmYARShEPCTgwtKQVAUyMqPcGgKROMRDDcwP4smxFElYQOMAFh+A8OGWAfQmMCFMFwSHABcmuZMh3fBfgvDLSZAE1kPxJsz09nPelTAAT4IKMpWdXHD/FUYGasc6atuh0/CTz0ovseF8dExDHkjluswmaOWuclgNzTkFIOj8xgRiYzYSByYXCa16Cy1KyrUg6OE8IxVlOhdKfmdCHDlJKTdh7xAnICNRpxjQhEePB8Rkc6dK7hI5mzpgvlug6D3LAMGwwTBuQr4wYlqktrEYMjlyCRFJmKoNJsrHhlD465YZxgBXAo2APEJyXuXU+yLw0gipsRgq+yFkCdxwFwGQedFSnp8h6dZARA16Bi0DNHDO5F2Cg6BYLHDMxKDgNkG87+HxwytZWlQI5ZVRynbLhOGXLGQGmwtTFLGUYbD6dRn2UQ0tKNhAwjSOIvLDrmNOVWVjUiMDs1FEvTqMYBSQo7EkKlstQB60ESVNijGkEpygMPj4A7MWxjQZQaEESBUt6QBiUSOQjAXANA1qcYgmkETEYCSmK09GxAiTYHHQZwUsSZQFL5IS+d0AmYd1xcQuUYA5QYSeKAEuBh5TVSVccYVSc4IbJcY4041Iz/psMVdb1IcBU5XvKKmepOvlFxwuIhpEL+4g5WSWAwcWxbCADIhU+YgFuaUk6JnEmTini7PwMXd9hHAfENKlfkQSrBJKyeMHJOiev60x1HwSM6rwABY15zDLpSZnZvOodbtg1cs6if5yDY4YEplvwChewm6wRlugICNOUiuPTe48QXHHkcozlHill5Kk6Yq20oovyvNAl9DMta5hZyiPGKIEl1XkC0JDycJIZLSAvC/5a6TNWxidWJjynAXixEzIsC5q0hENW8KGNXU5cnNtl/zblruW7BDCKso6JlFHAykqCYWUkLztcY1KwG5u7lgAFuTpd23DY6ofFCGtoqXHwEhfAs8U4DGRVwVSAZamnZIASZdrQZsvBgpNABVYRhPkncVumrTyxluOB2g1k/TAHNCPnqTixLaiSFaBsDC5WutcCG9ZKYGELiMRAAqzkr9yvMnW1cyfr2uvfuEY4Smk7tRV8nb/CfkIE51FYDGirT1TuVYBkLOtNgGYGhmzZrFDWjEUARE9ZaTmZmypfFRxlnEU2smLjkklRsV/YRt5MQOt0sQOd6gnV85b63Fwsy1zWOaMBv1uwiy24VgEiYgdSYXVq2QY+qS3zpQxyCxwVHQBUeWgsZos1NYEWqJzWAwIA25fYVmATKAKAAiLQXy0uRKa3bF4N5CasGMiE/mKO88WFSYPoP0JhELOgc9ulxsAt55bynGI7UQn22vtV07jNfAdakE0dQ7s/yjnG9k/n9KxF0HKZul6JhYmPqJSlJi1VZPc18PXWuzI0s87WdA23t8wzjhzYMbavkP/64PVMqXNOAuyy0r0WVDf9qgZFDcKa3UG218rGXIK1qGNt+4r9Xtc41fGss1T2ACvPVedSbVg9G9U1yAWAEYKsX2MYboQS5KnaGMwQNpgGYmEMUaBiD5reMD3jgrE9Efg5YJ1GILa73fZzQwiYYoTzHnOew5MHewawzZrnmjVRRM1VGbNgNXnSaSdY0JWcyY+9h1MAtcPlAD4raJ/LliB2KfkK9EIjLzbubeDbGGixNScq355LeYitPYwMFLQ9QjUxRf9p/uO9K0HozGKzwPYa3e9qv7mub5j9KD+npHYfF2kq/Svr2BK/iiyZTrAkLFQdoGXNhN1RWZrIAXCSnIMW1ExFt9p9xN6w/aomtxRWTFOWZKAW3eNNH5U9SxkCGWoLZoAdCrFlRrFtW53GxDi9clLtXcKWnrdWwu9sQFPdzxn6Oco506QU0LVpJULYbCEu8nCZta61CaqfyWyiuneYTQ5AQU7y94dPPcTVt69hnEaBHnHGanGB9XxdgEc6bZWti1xJ7AObLUhVtu2t2nExPWVrlW2/yUjIiJSacWBlmJSFZuch07lac6ucFWws1XQHoPtHrkxHbGXGixzpvDKDXJYELtUpSUtuc3n/JvCi5wsD+5Sza9EJluCg32vW+SMLWIcqG0CETBZRFPoWyMKSLRmid/R8tbXn2poz+dlatSigNSIDyFSlUYCdtuUXsO32PLbjWK+j+pqwsbD+UvNzsTAu2QXb97Rr655IZT28G/Ck+j+bceZmddl9ipHGdTy49p9s5i49wr5BzT3N3wZqdVQF+RfQDrZZM6sKauy4slfYOqnzSkBhIarfqeu+3oC2ZtvsDftz6yM2ETP9UN6tnCfq91D0SNUH9Q71vtB+2vttiW5zn+0khGKUNQODuk8312zbRyh9ah6Aut9W8Pnj9tE2lx0O7h7g+Obx4+F93D7+9usA5gDeA3d09+5dDMOA+cUcPnqk7qfPpvSB2ke4llJIyD7DJ62OAf5YGW0et0dbdhm3Pn3r4+7GR9Z++Es/xGf+4DNbn508cSLJcT+jxo631jWD37Pk4uP2uD1uj9tH3d5/ubfWccKWMSKHweA8QggAW8BWg7SQw6Zry18xlEaaIFAWLk6mxIKW8ep0USiTOPqoyTYujmsLH4mTU8+eAEhAU+oMtbMbsmYJ5/rM4j+1jBXNWrUzpjmIszqBrExCOVy2DhiqtOl2aC0BB2bJaGaGV4YF5z0Yysqih/rsNIuba3AtZjtIyxkyk5RD8YCWupLxyQRY+bW2MRSkQw7RnKze5tOYFDTwRgC8gCAcJAM1l6B70G9IHiHYaZmqjM4LOEOCkQTvgL7vwOWwnpEdFwYccVIbKMWV4YTNKxE8dTJuWcaeNJsVWWbDztPOewXGZAQpXiHyAsuiRwmaCBBAmHmC7yQzUh1SlrEsQK4aODWvrDEm+BDU0Ql1UIuzysHX8WEL2KocOWX9SBGb9QY5qovAnCW2Zhxhd2cHi/lc5iFFcJL1QCQBCkdOsl0hQD7nnbKdiEPbZymhxGQBXipOIXNBZGQQB3Shk8zf4NDPgo6PghJZy7mRA3lWR7MDyKFHLwuKCayBfc4KuiDLtM+SEc9AnGJ16peJkzVA5JA9Y5oGMBKGOCIjops5zeatzqmcE4I3cAGho06dhKy6RliUmAjTNKHvvZYfdIhTUgClOJuDl4xgIe6w4JE4OEVHMeaLDtmhKUugAarMcA3oJqVcnD6krErEkknqgxf2Di2/FjoPx9BgNSGNUmLNA+i6TktjyXx1XoBGeYoAMvpZD+8dpgnFAZU0sJBigneSvez9TJmyEihFJDbQUYIP1n8ICMcx+t4hRwGydJ0Dc9IM96p3Te/54MA5KuDDlX4QMYJzAlbhCAkYkgx2cfi3GdjVMW4At+I4R3FPAmBlzMo1ONh8n1OClWMwhpicM0JwZR2QzjknZTDwQVjgOMEr25HtS+QcGAnZMvxjBCtDHoMKe1cBlaojWYLAojOk3KgXYA2Ls97ky4nqBDkPogADcFi/ZQ9JcJ4xm/XyfdXR5vivOlnAcCBhrDI5tbUeOqdj6+E8YZoEhCSZ1Qp+YRnfGCd5Z3BTWkzeOnOCI4+UYgEcC42hOj1VlrNmxjNrEiwZeBBgA4zo7g5lFBQALBSgZrIhTuouBMQUVaZQHM1WfgtgBCIJohWvrmXTt/4KAohr4BQWqTEbgJQ9IheQZWFwgPmu288ZunlAmCBVrjNUTh1AFXTdgqAtMDKb9QjBYxxHZQlswHXqJGZAWcWsHBlQAwN6b1RgU3lX1EAEUQPW0f2tZJabnYTKVNSyYNa+N85u3Q9ZbUFSMGVmKyGVa0ktXe+5BAqo3ELAmFn2ImV+kD1aWdwy4Fwu666A93Q/NeON2RgJUMDIFaTGArDNAmCr0QwBrJf/UR0vkIBaC2AKNofacY3UerMX2HRG1ZN1nwPgFdBu+x5ZwFbtYEN0lrGtc2VMBW1QiTVoaOU5vIL0LGjq/Sc/02w7wMLN6wtY1W0BnavcyB6/nU1eAreo1zI1ctsEuwyQRgT0mxmcgVRsXenfDEyQfcTYTfCTR3/Rw08eL/3pS8hfSji+8bDsUdToEgZM4EvfSjRIF3UbAG+DbAbWbvvdEg4VfaL6S80++aqjss621yyXu4naaoxtRimtLLu5Ks0m2mnMA+V1sp3h6jkHroSfBUDdMJkUuwiyrlhBEXvnu6o/UdZyLdFl8yDvSWrb2qouYUQ9gxYbnRkGOd8a97L+7NyhesTX4LaMpzHvqtZxxo1bZc21Y8GodklzprK+lTMvNf0uQy9npXL+0HHfYmqx+3EF3bHdmwDezxhTBA8meLYr1p70fYerV/cwn89BpwQ/BUx+lL86KRFurFHMLGcFA97YubsZu3blljdhwFNACB5cmKRqaWr7HgGAr/rWeunhxU7jqgpt7wrKqluklqkAV7fVgMjC+sYKr/zSq3juzeexd7qHIQw4vXoidmtjc8ozckmKkY8a2bG908tsZGX5s3HJiQugQ/YkYRwkA5toh1vAfAh+u5QhyVwzMchYepp9h9D0FSj+k/a9jZ226NQktoGDnI1b/eIIwoicJfkiBGGQzhmlhLWBjSrTDpfzXOYMylRsCLF1Fazu7D2B4I2xkQvTTrZzKTPYoZQ1kPEzkIpqCtUtgimjbQYmnZtt+duWBgaDUqPnVK+1stVoXfW1VGBF8Sflai9VQKJNjDyJCFhdX+Hi2gX6oQfmG5w+cYLjw2OkPpXvZWUUygwgUyODDUskQe1D65ll9l2yA7gC2dW0RQ4ZaZGAUxsBxtETR/odoUT1TnwHCUlZt0R/1fGVBByG6be6R1XdJJ1zTHreqoZoAeExg7OUry9rAJD9LdfTVH13rnMEkQcVxpII0SZ0lW2jfFA3SWZ5DhlRj+katuQJKBDPHstlznVGZY1wlR+zu5mqVjalURgU7Tr7lZu9nKiRN1LdQjreJnciJwVnUt6Hmn5y2VfQXAPIu4XgNfFoeydogTat7X+5mZ4FUNaDzYt8pjrLPir7ZrMu2aQPVW4uPwdlYrY+q/v6JRsJat/ZIXD71a2XdZ4aSwGq08Rl3ejJ9pmNrdLuNeZvqPNqckzVxmueb3NqfSnLWvemR5mRmiFuzQy4Zu+4NHo6nlR/Bbc11G1C7I+ld7UvVRZ0FHRcbW+097bvXpqqx+3SWOyf7b8nw8cwG7BartCve+zf30e/6fHX/+9/Hb/9n/02Xv/y6x++L48aZH+5GgPX37z+cffiL357DkCH9wQpPfHEE9jZ2cHs9RnmF3NcHF78LHr3sbRbv3ALv/2Pfxtf/f99FTfeuIFhMfxcAWJ+HhoT4+zqzw7A89Nut3/hNm596hZ2jqWk4ptfeBNvf+ZtDMt3LwP302hxFrHeW2999upXXv2ZPf9xe9wet8cN+AAgJe/9Vma5ZbsSJNg/n83QdR2c94gxIqVUgjjz+VxLtkg5NDiC91I3zEAHjoAxJ3AWEEYIcpCapBIQulDLeYGzOuZrVlg5XOvJkADExFivB3Bm7F29IY4iMq76GvTizFuHvqwOLMteL+wubNn1jfOhCYCUx0Mp8dXRXAIRFgxglMz3lNUJY25pc2Yo+wmzZjpr6TvxmgJAlpJy6nhhCN1vdhnmOLcAugSJGZ7k8GsHfYYGOIx4SB2xBvrKzMiUwUqPRN6XMntSh92BozBldD5g3gecrTZIiZAgpabM5RvZaQAdsJIvFlQjUGGSKHMCgFjLdOWkjk/xCI9azg2Qg3RwgADdGd4F5CwAA3Ik5bvUUWFBUMBL6S4ngUZhh5ExKs5hdT6zCpjzHj6Yc6c6RMYhgYi3KPCdyo1zTko/QIAdKSd4IsAzNtNUnE/MJisAZ8LFxQpdF7BYzgV4ERmscuuNUSsqytkCos7BG/hPnQvO1WCLCWXOrI5rp8ClWlZJK/4Vp6CV/SEy9qFQ5sMp0idFCTI7AkLnRaaUWc07LyxcIITOlwWWTJ4sa5wZmSM24wo0OsQ0ISPL+8AYxmQ+u85rQETdWa4GnwAuQYQpZYRZp85SeU5QkBvZs4ngFdBmzBhJQV1hFoqMOWiWN3kQLBgsfbKgZocgMgQBhJlTKmZlPbNpyEHAXFSDA66bYZak9JZzpGX0JBXZSitlLZfggulPlox4nb/ee8gyIaTkQS4A5DDGhCmxsL0RMJvPME0ZOYlseB/ALOXRBEgFJDASMhwnxc7JOwtDgIfiUdE7Y+MKCg4QMGRKjGmaWl+tylcoAXaRA8tidaXkhqh3mQPvqwPXe49A1VmWUhKwkfnbksiCTImDgTyLbiYRgq738j5UgR2MJExcXjW2Ki0DgFrAQph2lJHPgCxTBDuUtSfPMg2m7Eipli0LIej6ZS2llcDwYCKE4BGjA5M697WcITMKMIq8AEADBwE+OclgNh3AbOxHrjiSO2NyYo9xEoCON4Y170vWewgOE08KsKKyvycFhQbv0fUe42Trl2Xv8DVrvfNeQUxSYg2Qsoopa8ax0/Ih6rDNUN0VnJRjbFgXWAEsTAAFgmen5f2EjS8zVWd3CXgU77zqfWHsCCT7QnW+VoYU2Zu5BNoLu5fqBAE8OS0DoeU/yfSrsmxx44DOTcCDlY2v6GTZf1htF+sTPAkYkRWmrYEIC16V8kZt4ETvT/r3nLNV9kAFJ3n7oAZTdDk4b/aLgsW4OqaplGviEpgQoJMvfu/LjmzHrOBpV/bA7YAIqb4kFKWsdo8F5moicLOeLBCcNaBvgQaduzImpMFeah34ruh7MhY0C5xQBROjsCxYkEWCixLYltUs4B+ZD+9MT7gyH1a+xOSG27ljRi11ZwBDDSCr2DAsEJO1r1z0ht0jxVTmwsBIzmkQvZE5cDs3n7zmdP9u7TgL8pielLJDtTyijUHveuyt9tBtuhLMKexTuYIOEjOg+4DT+b965wZC8nDeYf98HyHVwEIBkDT2/dAPWC1WcJEQ0GPqE5AZv/z6v4dhNWhmfnueAExGqPnMzhMAsJ6tcXTFgsfY+k7pgH3K9b8MNMG7+q0SFiMDzTLOds8xdbG5H5f32o7n178bS0phGdEzz3K1QD/MGrmqx5Bynd1Nb6daBBkJp/snyM5KK0oQPPuM5fFCriol/AgHd/Zx/MR9dF706hAFDE2kpZr1pTMgzLuoLCoiQ4zsajC3zKTNAwOWEGDrJjWBQ4JkZlp5KmPZy6yljSHA1DKEuteWH2EAE9VHbdS6MYgMVFiDusbsJOAbWx9ABQXZvNgcwcCgHogsZ5gtcVLg9DhO2N3dk/4nQrfqMPSDvh8KC5iNgdgQqHZrG8BtApxQoLCNczd5uFTPG1oJXYe+noPtXcyOlmQiKuVjy97lqVwLK9eo50XXADHtzFg2JmY8ePI+zp44xeHdK+jPO4yzocwP2bxQTb4qM2r7E7h5to5J8FU3sLAYqylR9VfJ+KnfAwgUqL47bC/WlatGbba5JinCXkTG1hO1QXpq5sD6Ko9wzoPZlf1Ztm+qQ6Sv58CasSGfh1B9D06ZsUy9Oa8JFVnOavKeAojNVFmXSZNJUi4bmuoHmaM2gU3OO5aoxoVJiLmWECOVPwP7F9unsWeYG4ZsncvyE1W5s/sxmoSEVoZcM65mJxRQTmOX2oSQrD8mAgLjlb/6g5Lgkp2Cd5hRAOsNkLPV5YzGNst2LnAorDkqM+XpZlNBztilbJ36a3JIGOcj1gdrTLvTFsCAwcLMiQr+cA5ydipbWd2LqnlXZbWAtYhAqSbPiQw5I3zV+X10vNlkQv0KrExZupWjDrfuF+onsOQHIpQkIPPR1TMX9J1cAT1Kv53qwwbYZTYkLDGgYWcrY7atww3QYnJrMl50s+oo6Hta38oQFvlFlc3SH/tH34lt7ypSZ79c0lG2huwqbhj5pA/27LJGiv2MrSbTb32iYl/YHtqCk8sYEsQ3WV8S9SUdmtdu/mTJBk7HqH2v+nXrP1ATDqF2SZmVso65qojyR7aJQL0KZXyKb9C+w9uvYPeon+ldiKHm+6WL6x7UjqnpH9cATEmVQF0/LZhrG9TW2n11m5PfM7/LJDayWYakCBMVmZF9B2Xfa4GY1u9Lr/Pz0xgIMeCJu09g/3T/A33VZYcvfOcL6MceYODpW0/Lzz+mne2d4cG1B3Abh907UkpnfjHH3/3nfxcn3zh5ZI28n3Z0eIRXX3r1g3/xA7RbT93CerF+7wvfR7v+4Dr2Tz7YWFvLLuPN595E8tvMPWM/4sabNx65/oVvvYDXfum1D/Use14M8UPNy1/IJu7d92wvvfSS+CSSw/J4+VMBKS3OFwjj+w5P/vSaA1756it44/Nv4MVvvIiDewdY7a8+7l49bj/HbVgO+Bf/p38h5xhipJA+Fh2UfcbUT1gdrPDgmQc4u/7zAwR73B63x+0vRvsA5d5S42ySo5rTQ3aMEcMwlHIkiTNyzAihw2IxR9d1ClzK8F4cjilFCWTljFkfEALBZYdxzJLtpUHPBEbnA5bzmRykFNjiioNXHRTcglwEWBETY4riKFosdhA8gS2rXYOh2RgQmAvNttzDFUewuQ/Nad86/OxwWR0ZBE01ftQRAQDKLCHOGiqBR7mPlb9TyBJZiTRlK8msJd30gInKnkCg0i95LwOY2GFYD7RZ88TMWadXQx2SORs1e8aUIphJwEFOHJSn5xtMYwSRQ+c99m/cQO8SOopwDjjc38PEAVMGOE2Y63yvooAUyhyRAKLkcOxLORxjOkrmjMsM1tJ0jgSYkVNlmrHgAZGARpgFaMQuFkd/odGGOJecOVOdBL6SC+Yu1mAYFVnImoFIzsMT4LSUGmdCYmV4IgnqO3LofEDXBSlx5qV0nvWVWUov5EXExTDiwckZYrRSNlbqi5GmiNOTU3jv4Mmjc52URiJhbUJmKckHLoFOMCFlcx5qkFszSc1RGJPINSev7FuasamlrVjQQBL8ZDWQspbdigTvBDrjnUcWX7YwbpE4mjhmpJSQdHx9CHBM8CSBciv552BBJ2NYk3Jm0zhBHGlKWU8EZAfkjOA9fFAgQGbEJEw/FLwErzjLeLuMYRg1g9cXB7WA4DzIi6PIaaTOnH2RExikjEjqkHTmGNNgGMk6oozi0CnPUN2QUoID0HUCwnQNX4fpGmbRDV5Ly2VkKbUYdDy8BfkdJi3xx1kkdIqMxAkpJ4TgKwuNOqUM4CNz6uAoKLAJAGfkxBgHZdshBrkkALsEZI5gBsaU4XyG9wlgcSKnGOGcsG3llOBdQOg9YlRdCRmnOCV1mlVdHadJnYc1IEOO0PkeTsu7GPiHTCfqTjNTYJyV+AIk+OxYQwcs4IxS+pC76rzLGUzK1GZOymzgkCwAH9UPMr/CeJW1VIYvrEgBjhwyWAA95nT2Dp3rdJ6r0xAqRz4Im5I34A5bGTwW1gXTVSmCkoAd4YQ9qCPhEzQQp/MeuatOXBtvCxzbvmPgN5BJnYIf9b8z38m7OXVuKmOMcw593yN0TgCR+pyiDz2Evc4TeuqV8lhlzTWlT1jAsFkZBUjBM1n1hAXfNKW6EG4QKeuTglV98OX9bL/y8OAkupZZmHbYnOCqSJIyORmwwxzMzhOshKmIogBtDdRgoOH2XkXesgXNXNFdFlQFoIAlj8A6C1lYE43x0TmHWgOpBs6YlKmLMgT86Arw2IIK+gZgFoAcytpyhaAsG/CvsTUskCVAnyx6gWtwxUq1lSxhVHC2rcNazk8uMIapbYd1/YV0DMEK8LPx0QBsG3AgCsKAxlBGMQdPMvdZQbIMKHjMGBgbYBsLA0jjsUfiGtwnAz3WaIpInXMFTNa+h+6m0jdjlNSfXbGX7MJc/i5sYKSBHbHZ2jGt40WF+UoY5lDtQ7sXNcxsgAY5ZX691xJVnRNmQK66QGSIC0hK4y5oWes+ac32K5MfWRpV58QYSyDLQI/MjOur6/jsa5/F/HwON6mNbvuK2s6d7ouJpeSMI1dAlCkKaDB0oQRaYf+p6ruo1Nk0x/60D4Cxmm2Q0xp912N/tgc6E+O6Bjtt17LbUPlkKzx9AfDDejWx2anl8Vt3KbYQP/LH2ne7u47p1E/InsuHZO9VzhO8Vc6y3rQZBMixIcQOProa92uuq/Fbas4TOqda2nLoNxI8VzuYHOHhtYdYuCVSMFC2gJBeXL+IX/jO86oLhEkpwam9mRA0mD8lA3w6fa48K3YRR1ePt0oEm16T/nJRYCZznOus8dZYcdkHjP3OBuXB1YeIIRYdCrMNi/1ia5CLjNr9x9mA2AnYVsqky9xm+5lqyWvvPHaGHbisZxJdB4v1Evune3Bw2Hxhjde/+RYu1mtlGGwUip5DHBFiTPBwePY7zyLelL6vliuc7Z/W8mI2jy27U1Eo7Y+MiIjNYgORbofl2Q66McBKSkkMlEuJNUvSkXMdyjuy/kvsB9lfCaJmrdSlyI2TfbIIfCk8LrYOmcUjYznRhHs374Kf0DM2SJ9jgFt5D1b2Q5srA4/ZXplsn2rmsCxYVTtleZoOi2rr275vM2J7kgWka53JRgfWtWWlsmoJMJMsuUBJimH2NsClpFgBYJl/AaITSykskOZCCWjF2BYJ0PNDvS6GhNgnhKmrfdFXSYUVikEpi82nLIkMBien54usFg1JggezJiLI/AsoTRgPDRAorEPNeKMmF1C2JBzSObCzvb4b17McWIHGwdZ4q8nE3tBf6hyj3adsuxLbuGj1RjVnL/axgGPsD9Umq7a76h1Y123NEeAJ3uy/YterLADK8iYyxfkS4NQR3v70O3jn07cQ5wmxF7pdYkLQDKQW1L4FyrL7NGcY0ySV+bz23x7qg4E55XrnbU8WfR5CKKUW7WumS1ltc2Fcq/e0tWxfqP62Vo/j0pqpIPkCanEGALG1UefVm44rvjaq+tfmyHGxv4qet9FxdTysGVCOUJ+37f+rc2n9Nhuh2DEqpwUcx+1o17tYL6vO0bXPTXlSK21J9frGVBEbOzeyWZZKfVr73BYkk8s5pY41sD1GIrPNHQhbpXrr+YMBo7xv35PsX/bOl8BWtjc1MlJe2FE519u7lvdReSwAVDQ6oYidwb1Q5qg+bXs87V3b/nPzm+lek3dHrpkDbpYhq27Z1kXVf1mftbUXbcmh7c4o/pf2fer61vH3ygzZrKe2byar5dY/R+25N5/D3/7//m1cv38ds3H2U3/etYfXcO3hNTAzjv0xxjRid3cXS7/EzR/c/ND3/bU//LWPsJfbjcG42LkQsM5H0BbrxYceawbjdO90q+xQpowffuqHuP7gUSalL/z5F/DF/9sXP3RfV8sVXnnplZ+q3DMYf/6ZP8d6/uFAYGd7Z9jM34P6SBsx4crRlVK6zNq1B9fw7NvPAhE4/Zun+Pr/9HUBhb9Lm8/nuHr1qviH1g6//P/6ZcRfFNm4d/0e3nn6nQ/1HlM34fjwuIz11bevYnG2+FD3+sgbAXEe8YO/8oOPuyc/F21cjNjsbrBzuvNxd+WT2QhI/cdfQvGP/u4f4Q//oz/Eem+Nzd770zGP2+P2uD1uH2V73yAlC8TbQc4ct+YMMvYkImgQibaCy/Z3QAwzpw4l7xw4T+iCQwQhRmACkPOkDmKPfmcHSFHqdGfJDEwQwIoQohjtTSrAKdIgKnOW6zTQJVlqKH03FiJzOkmWnJYJYjnoKzSkHjpRnaHbB207uubC1GLZreZ0o+YgSKigKRkXVw7hmhsvY21OF+jBv4CU1DEIaNajlIETh3B1Jsk9E1KcMI4Zzgd0XS9PdAR2SvetMS0r/TOtBVi/s7uLiISTs3NM0ySBaxIgxv7eDgImdCQZBwke3M2xWo8YNxnLWQ+AsNt1cL5ThhdhcJnGUcpzdT2YtVyQlplCcdBKMNY7gLNkC5Or42QQHwv6m+MppwQoS4WwEBEIXoO7rgSlAfFZgBnBCxBHMv8cvAua6We/OykmZyAdFvBLYga5hkWpOM+EXSFxLTVjwLxpGvHWrVt47bW3ECdbF+L8yQmIU8b6bIVnn72JwxefBYPA2SFnzezgrKwiXsqJQZwfPvjidAFXB0vmWiLKMq820xpnZyuszidcOzjAzs415JQQQl8y3AS4ZU5uYVsqzF+6hnPOyCmLbHDGOE0Yxihym6uzn4svLdXyKLpuxnHClJKWdcqlpJ0jAjjDeR0fBVTlnJByhtc+yFjIWuvQASwylhVwl5uglTHlSCBCbmwlmljJMoTBRsrVZXMI6fyad57UUSdrjoFM4CRhk8i+OPDlu1k0BrOU5+KMnESGpyj6ENkymStAMiUZWwnkuQL0AhF4EkBnzkmZJ4KwPhHVIJExfSgjUkxAnLgEXcgxmDIiR+QcS5C77xneZw2+E6Y4IqcJzhOGjbAk9Un0PuBh4ENbu1DHtncOnDJSYnDiUn7CgkDOM7Kx8hEQGyCGBDUAckBOQOgUsJS1LBrbOCroyrGytXHxJDIzQifsL8wZOQpLkbA4CftXVsc9M0o5zxIA5QoUSsr+IuUMrWRT43TW4IzNXZ4yggZexknBZpBsY3Pe5oSt7zgnOsjpNTmLDDLXUj4imzX4Z6WKiCTjHWQAYoU+EkuZTwCOZK4iMlKK6DoCOglcxXFCyhHOA5Ftzgx3oqAjruJEMHYLX/QNozJByN6l5S6UPSjmWMahOqBNHqCO0qzzXzOnZQeTvXsao4KgAuDYxE3m03vJvNZ9wUpZFDYfqln6OUXdL3RzhYGb1JmfBOSAwuBRA4ZOg40WcHHq9LZyLw7YLhXkq7PcAjTCLkWw1HMrJ2pOeAuimvIpAQyILHMSUGTKWdmpnOp6Lnq+2BuZkWKGc7m8n8hfDcAakA5gkAa1KuMNYGX0OOcCTiBUZiDnfXV0M5SVDkUeQTVb30AE5puX9Stzb8FpKakoazFDGSw18CEMSfqZlq6xIIlku4tuIHJiO5R3S03wpAZA2r7IfqDXZ2PUMoC3BUMqUEni0CKbzis4jrVETlab1WjqqO7JAsLTp5fxUQZNqn0ifXYBjxEEGMi2f9qezGWsierfPoltO6hDJYBSAHycEaOugcZWOJmf4HvPfw97x3uYn8/L/UzOHRFm3OPK2RVkCMYZAJCylGNgB993oFZ/6yVOg1a2F3GugSwTDiJC13V6vX13+2QgnzSf6Vw2IrcteUUmavBp2y9ukSLa7jBdvq42n4KwC27pWFQF3jyDm5/KeOo/FhxH1/ZbT0w5I6YMR74pz4ey79rtAgexD2MEgdD3HXbv7uFiXOEkn8HAIc457PQL9FmKX8qQObALmJKcX3pl0CEtEyxlFkXmU06gDDxz9GTtKTe6n5vxVf1gOsPGhY11oUwXqd5Ru8TYTVamAKkGsG1u9b3LnlDWrezN68Ua02ySz7Qzth7Y1rQxS4Cwd7EHl43ZzkiPSNlsAXwh41M3H+Bb3/k2XnvtDQEjhYB+NsP+3h6uXb+BxXyBOE7Y39/Fc3tfAq31nHCRwQ+42ctcCaJuBfeb95LfM6KLeO2F1/DWM28BAHaHHcxmM8QxYTGb4+rBAXIWUCCM0S479EOPg5MDXa/1DMDFbhW9KaVnZY+LVjcbjQ9CBfJieYZhplT4zGAngN7UsAmDUMvaca4sTuASzLXy1KTvR7mxIaCgXTCmEKtupToiQJUvXxaR7Z8Ng3NZyw1Yhm2NVgYN0n1Sckdq0oxLTpm+GEWMwWWfEiB+LQ9GJseQ0tHIXMBTDCB6ydRNBDhlmZJkHmUtBKEbOslsLyAEgosBft0h95ste4Bkg1cfC4NjRlR7vdh2KQMDwc+CgFJzAs9S2XNDEh9MVtstd1nBV/ImfZ4hQctZo9qjYp9R0akFyF9mqAK3C4sLm54wEbLx4UZ/oOxNsi50FeQKoIXKUt0DUHwEBXBR1SIKi9LlPcNEi2yGqdiekhAgdqmBzajRV+eLM30PAo1cbDg8YhO0OqcFYZpcouqAxhaxfrXsLaRrN+eMNEUFlRE4YisLXGxxvRNlyAZlglP1nRRbq2Nky4WoXm79FHGu9qiuMNgV4o80WWjsPllcusexnu1kXssI6Q1KMpXNErOepwtUreiQAkotrYL/oH+vheHtOTo/zbfIPkcDFClbzKU9vYxV++1qE1IZkUZnsX3BRozLZ23ZZ5sDFcGth5lPpcEJbp2XTf7F32veJBt7u7d1o+0rF1uwHOzK3NV3LLCmLYBhXS/lncur6Vi65q1te7C92963+Xz7uXomItPpzaObn1odIK9b93YrZVifY4PL1ehqZKBdfzKeBi5tOl4EoMqkTmIzFm3P6nuiPKMdg3aot2Xz56XduXkH/8vf+l/w/BvPvyvIBQBmmxmef/N5OadrIybMhhk+7KiYvei9x3K5vKQvPlmNQNi92P24uwFA+nJwdvDI51f+8Ao2mw1Opc5paTOeYXG8+NDje3hyiKdvPf2hvvt+G4Pxtd/7mib9ffB2dOUI5zvn7+taYsKTd55EiNthP5cdnNmXX8j4zPwz+L3f+z289tprSCmh73vs7+/j2Wefxec//3kcHMgchBDwK8e/gvBv5H6ZslTy+BBt7Ef87n/wu/iDX/uD9/0dlxz2zvbw/Bvb6/MnaXdu3sHJwclHcq/304bZsAW6+1m3MIVH5OEnae/nfRZnC8wv5lufdUOH5ckSp0+c/ohv/fjWDz3ma7ln8glTPwEAKIuu/lF9JBAOcIABA9b4aNjifl7aw2ceftxdACB6671KqT5uj9vj9vPZ3v/uxA6cYwXfNNEDCeikJsDAxUE2DMA4jsVZZCwbXunDvXMYpwkhaPk3zlo2S5yCfecwTZNk/jsN9pAERUMnrCzmqbFSJ+JvzojImnmakKaxRCzMjKrZNQLuISJQVraL4hBQVqJcD5El6ADJxi5VVNTJK85wu5bAW+UALGtPPQXqKLLMOnPAmrOPNDhHrmbYmDPSMovE76oAHXWeWUBRnHWMxBNOzs5wfHKB+XwHVw6voA8dmBKIojDmxCSOXWKs1mus1wN25gukPOJ8vcb9+/cxrkYE3wN9D0eMaRqxSRsQRwWaECgExCiMMmkSZp491yEhARlwPugsOHUwVYeqUyaQcbMBA5jPZ/LWnJCSBBH60KPvCBIcF5Yn5yFsT4kxjRP2ljuYzzrJ1CQJBnddD6dAB09Oy9cZg1EWpiapiScOWjZQijkS1flppQaUwUKYFIwVQyaacgI4IUP6RCrvjoE0TRjjiOXOAqHrcH52AWRgExPu3nsAYkYIPRbzOW5eP8RTT16H8x2c6yCMRNJXThnBBbB3WoYBKvwMgoBvSB2ujAQgITFjM4w4Ob/A5v5Zee+D5Rw3r+/h/vEJhnHEznwHN65fw+5iCQcP48cmZExTxDhNiIkRkzEXyefMwnKUUzY/XnGAGKMGsQWczXGXkXKSQJSWAHNOWYIcISizVQZAZGXjuMwTAXBsWYQGAFFmHWw7aGw+wepoLXOdi8OmBrT1OtQMcNN3YNZsTIIVMKhllgggA7iIA9WCMUmdcW2GNWeh7fde+6L6grXUVYpJSi6CSuCFswVVJIjjvUfX9VIWkxxSzrgYZD06sJaYBG5cuwK6dijO3RSR8iSggAQtxWb030GHRLRO3/Xwsx79LID2AXDGvO8kQ5clhAOCljZDcRj3oQPAGGJEjBUo13lhwCLV68FLeT2j58+6FxAJM4YBdiwokDkjqYPT2OgSlIUjybNSlhJ23kkmsZQ1lPKVKQpzUdd7jMNUdK883sH5UB2XCliVnlkg3Rzo5hlPUMwZggeQEogZs8UcMUUMg5QyTQwQCahqSglxihijMcoRAnkE7+FC0H2ANdneFWdj0nmycIjToItz4jhw3hXHesoyuawMQxkEdl4Y4FICwcO7Do4Y+7v7YE4K/GHEqBshksoySblK22ttPalsA22JSKp7IGiLpZCTOlJrRLs64ZuM5wrAMP2RUdGNBNIyI5c9xSUghOKuL8vb5NlslayZ/6KfpTQeeS3x5gB2xgJUA1TO1VK35V2t/F95N5FJ2dd0DyF5FwGMEULoCs8aM4Od6FDbt8sLMBCclINMWcsNOSrAxU5L81k5XgMxwgvDk9dgX/a5BPHM5ijjtqX3IEAsZbqo5clcwzpSASU2X8Z2VPre6MMy5rDsdmw5z9nkuAROdLXp/WvJtAov2no+VH/Z9SqX2yByoAZe2p+5MJR4BflZUKMwSxDKmquWob1T/cS5astUOda9z0Bb5Z31M2rZQdCAgm0o6jtWJo4qHFnnZGvNfEin58+0ta8BC47oHnup/JTN48ZtMCwH3FncKX8rezhkfDwc+jQrwZbMDJ89rh5dxTzN8Oz9Z7E37aDIl9o2rLbgpZiUjjKDc1IwP4NzROIKHLncLGjevOrWtUXOy7sTsHVOAOpCae6lA9bK3KUhfZfP5WAk6rgJYtnWhSrjzdItfRERrOc9kLCWDsOIzTAihB7z+RzBGYqVi7ybPTHFCXFKYg+wAJZOz84wDhs48oAXOGdKESkExCRgViH/dKUk96DnnBk5sBOgFEhtQ7hm5KmOJRFylGxfKTMu7Bk5yTh65wrDbwES6o+yfWYE3ylzZR1V77z0DVJuCqV0jcwdkZVelT7Y2B5gDxS3+9cOuoEey24109/Zzht2P9L3yFjMn8L1G9fw/Atv4uT4GIv5EiDCehg1UcAjhID9vSWu7O8p0NYX69hKoBmQqsi0LggyBkQ22RUASpytcLZ3hM04Yr2zQuwmAc9eG7G3XGC12SCljD4EPBlv4uU7L+HK8VV0U2/WFnK25ASz32SdpWy2sgLSARTjEmbdA8lPyC6VfVYuEz9CJTA0MFkFbTQTAFuLBSyotn97dpBlwDi6ciTAnrKH2DObW15SCi1gtO557fdYGC1svaEGpUkF0oL3i9USu6sdDbDrKPD2s5wm92zvVwJ4Yi0xDwCZGA8PHyK5BAOEZE0ScWajgzA7moF8EFZJlc9+DPjyW19E3J10j8u4f+Uexm4EZ6Df9Lh6dAU5MXZ4UcaTIAlmv/Sdr6Kbi10zdBtcHJwhBI8wBRweH8JK0/vOYXou4vCJQ3jn0bmAF/NLeJiPcDvflvVnLEr6usYiJdPaJplxua4wrOk5x2L2sD1bZ4iVTZhZ5OmH+AFW7qLI2X2+hymPMu7ewbPDtXytUeSEm/QUnqanG0mSn97EG3hIDyoooJ1HMltS+OKQWUHQhIfxGGf5AlxAbVrGTROGMgOeA3ZWSy037Cq7D5sVjGKDFT3AhBv3pSQqQ59X1k61EaMbcf/afbGNFdQ4+RFLWopezA7P3H4GR089gDHX5FxlXfaICtLUxVT3Ja5AqWK7NYP3CGPPtklUR5jq2q7A2YZhptYXxtYGuDUZuhbbP9sYcp0jAmHdrzF1Ewx4ZMkK5RHcyJm2xWaBLnVbzyQisGNcLFbIynhdzIH2Z4YmLnHxZRWAjPofCoMh1T4UMKrKuYGxMzI8Xbattbea/OHV1srEWF4s4dk1Q0e4+vAKNvMBq+WqGed6BjD7wM7R0D6kkDDMBixXy6pbTSeXea363/ywW/LRTn/jo/5RlpGNk41520Y/CktJNcNkdOny3QhlRem49UOPfujVVU5b821yuv2Z3WO7DxWktHUU2LL17Z7RJ6wWq3K/8n7tLnZJ9mqH6jxdvvejgNyfjzbORrz+4ut4/cXXf+Q1LjmRx6b1U4+XXnkJy9USX/3Tr+Lqw6uPzNv7ae8Oanzc3m+rCQeEcRwf+Tszo+97TaR89/ZxJ/IQCD5/+AD8jfs3cOP+o6XuPmxzzuFTn/oUXnjhBbz++ut48OABrl27htlshr7fLmcYQqh2FgDHUgLuw7SwDrj64GpRrMc3j7HZ2aAbO9x/7v7WtZQJz7z9DH79938dL772Ipar5Ydaf+/WNrMNpm76SO71Xo2J8cpLr2CcPSq7P6t27cE1PHH3iY/kXtllvPLyK+85fldfu/oIm9fifIG/9S/+FtZPVqDQ9z/9fax2ZD/bO9vDL/zwF8AjY77aBjj55PEP/x//EGEh4ezTvVO8/ezbct/1Ai++9mK5dracYf1X13j5Sy+DHGGGGf4m/ibexJv4M/zZh373D9v+Jf4lbuEWANmnv4fvbYGlFljgs/jslnx/BV/BL+OXH7nXv8G/wffx/Q/ch7fxNu7ibnO2R/EfGvivmzpce3DtA60zyoTPffdz78mct5lt8L3Pfm8L3LaerdFvRN+EMeBLv/8lvPpXXv1A7/UXvZ3sn2C1/GClJa8cXcF8mD/yefIJ967f2/ILbzHcfpStHpve87oWXHr9/nV0sdv6+6d++CkcHx7j/vX773KDH902sw3O9s5w/f71j2xv+EnaerHG8cHxh/ru3tnezxwoPnYjHlx78KG++1HLFfH7tNKeeeYJSIAW4jiGlH4SV+WPuHkT0Ns6UCkAgSBU9G3WX9LsSSKPzgf0fY++67BYzhGCl/JYmpXZz3pxZOVcGCQAqDOHEHPEyfEKjh0OD3ekjNWlgJWUUWINiAOOxRlh2VfmgbAMGDs4O0jA1nn9rwb+nJZsY6WIZjugsh1WWYOJ1dEKG8fGSVYdOZedmjqmbI6Rer1Q9GdY76dpAqeErgvIRDhfDzg9u0DoeiwXSwTv4JDhtHzUFCPGOCHmhM2wQZoyrh8eYu9gH+wJt+7cwcN7D9FRj67vQA4IfYBzjJwn5ASsh4gpSXmumQImvAvY3VnCdwGJpfRMigld6DDvF5jPZ7BQMJvTJUbM+hl2d3cAYlysznHn3gNMmxE3r1/Dk09eRx+COs8lOJK9lDRYrzaYz2ZYLmZSSioz4jBiMZ8J0xABxFlLRsn8pBJYl8B7ZeRqsooBZIKUGGJhTkiZETMjueLmE0DANMn64IRxmuQwQk7YbrxDTiOcJ2RSZrAM3H1wjG9+83tIMaPvFrh54wq+/IVPYW93AdY+GVORc4QcE4LzwgxgJRWQCwtMSgkxRu1rwhhHXGwG3Lp7H+/cvoP1Zg2HDh49nrxxDXt7Aa+9/Q7OTs+xXC7wxPXreOaJJxFcj5iBKUWkFAEWcJJiQ0rgWESRi9MJROIQ5Sq95qS2oBNQg+C5uZZ0TRVWdWU3oxJEMgeWBDG8t8Aw6VpzujgyLPtMSjzV7xrYpwCX0AR51YHtQBUApuvY3rZkgTtlXWMUGcql1A6V9wFbSGFbY4oz3sE5DcY3IKXi0LOxhTnU7XOVU9VTksnrkHLEg+MzrDZRSgXBwVHG3t4S81mvssRgjpimEWfnK8SYsFwu0XcznJ1eYJySvjtjb3eJnZ0FnBMgXyCh6b9+9Qr6rjM3bqPLmqB/40gszDMazNewHpz3SArWkeCZMfEZa1p9Z6fMM6yyY+UfbFxTTpjGCeM0YbMZME4RUVn8+s4jeKdl8ViYpLjqY+cdQteXII+U9yL1UBtQToTS696WchZAizoq87gGxwHkCDEDIAmscOYSdE2cMEwbnJ9dIIsWBrFDIJGDpAHTNryipwjA2LHAyDkV/7qVxQxdB+eEiawLATPvBZAKIBMhQtnPpgmrizXeufsQ5AhXDnYQfFBGLSn1J+V2UtmXvK5DK3fmScBI5qA2fWBWSgH/qqPZskpL0Nac11AWQJL5S8oqxObdZwXf2FoSBJEAUGGMKwYakwdJSQL5O0hLdmmgJMaIzjvJ4IeWxIEDQUpWroYBIXSYdZ30l7UUpAEZYABJA/VRmR4rmQpIadDNZoT3Dn3fYRonnK/OQQ5YzBfoQo+csgB844RpmkRvJ5kDcgzvOiz12mma4L0A2SSj3ykYj7EZNrIO9J3m8xlm/QyOvDAupaRyYSVXZdzb4BPQONXfxYlqsp9zpSMuNosFFMp1qiu39GJlwiCb3xLgQBO84KJ3mbmwWMgY5xIE4lz7N00jhnGEo8p2U9aG7uXC/GUBE1fiGDkLgFLKk6Dq1SYoUd7P/tt2XqKesmc07273acfJxjplCXS7AtDQ99LgstPrWzCVU1CEgf1zFnnNZjvpe1hQ+5t/+l18Etve/3VH1z+XNV53kB/dzCm6HfyqAAQbKztPlPJ5esbwzmOe53jm4dN44Z3n0a1m5TtSblXnVeXL7GsiYLVe4fxig+V8iZ2d+XYJpjbohroXVMsCzfupTWA/FnlECaCTKkvTjrZe3+30Z/p2K7Bk4qm92f7PpVEmqvZDc23Zd2Ei7rBcLrC/vwcGYYwRwzDCOSlx7JysUtKEFCkVLOVfY4rgxHju2Wews7sDOMLtO3fx5utvYtyMODs/h/cOX/rSF7F/sIeYBDwdlRlRGAY9OGc8ePBQAUMyx8cnJxg2gwC9nQFvKqARam9678XRToxxGnFxsUKKGbvLBXZ3lwWQAShTAglYLk4RwXt0nTB7ZgAchb3SAv+AgUwqwBGoc/lugU37hVUJmT7MukcWWVHWVLMBU0pF5p2rLMJiA8jzx2HE0ckZ7ty9ryD4gN2dBZ5+6gns7++WM42ByaQjyqRkZ3Z9r6rzzVaSs3BKEcezU/zuZ/41jjenyEPCl/7VVxBSh9f/9qugvYST0zMM44gnzm/g33/l13AwP4AnAWtnPQsyUFhhGK3c1v2jWTZVkMtP3H5U10FzLgEZq6QtI4JF7cvvqN9z5f3rDZodrYxfXScVRKS7x/b3mbfmn6mCkJoubskDUM+dNjb2J+suv0vU2bSLvKIrn3JT2t5u1I5kjefXZ+sPyCnhwdEJxikVuxhgHOzvYT7rm/sJK9I4TQruCwg+4PzsHBtNBgCArvM4PDxECJpkose1Wd+j73sQgK7rcOOJG3jm6WewWC7qeBQfjp3RVT81LEZ23spse8ZloDKXV63zX88t7ZkWqstyTogxyTlYD7/kgCP3EBFT8REFBFzHdWXJJAX6WAlvauZHz2A6zIWl12SnbB4JOU3l18zAhbvABV9gnCbcf/AADOB0eYKH/RHwXQJNDpQ8lucLYZUGVZ9Wscm2bXVp9Sxk/XCNnnHOwZND0FLlrDonM2NyI8aTAScnF5hiwv7BLhbzXs8ESWXQxKvdV3QdUt0H2x5t64MiklCFJ5/a7yayNo76jgVc32zEdb3aDWvJsUZCdB5bXdQAB/X72UC08w02YdC9sI5jjLIPdiEUP6C5CBabBUIMda3bTLiM1XJdSlECGQ+vHWEdNrjoVxgO15jChCEOSDkLwM9rsqcyrKaUVMcrS5n6ML0L6EInNu/U4akHT+Lw9AAnh6c4PjjBarbCBGFN70ZJWNof9nCwOcATD2/CJSnRvrNaIlzKdW015WXpejcgjo325CcMsxE7ClJqv7sNSts+k5jGvSQhzc/YuhaXr2hlgOv3Rz/gorsodjcZdWbT/XK21e/bn/qhR9iE7VKJrai1fS+y3Jwn6suW8wYXxd/0GXUPiS7iYrEqdrABUe07JCbl9ssTEEPEvWv3tT9yzn54eITkEzIyxjCUvt79P36wYNHPon1sQSgGlqslvvyNL+PXf//XcXhy+L6/enx8jGEYcHh4iNnsp19q7pPWZrMZbt68iSee+PAAic9+9rNYLMQuuHv3Lr773e/i6OgIr7/+Orquwz/4B/8AzzzzzI8EKU3ThO9+97tbpc3eeOMNXFwIADnnjPX6Lze7CjPj4uKijEnbZrMZDg8PP7Jn3b1xF//k//BPMM5GhCHgH/5f/iHCGPDP/8//HKuDGqx/8dUX8Z/8P/8TdFP38a39x+1Dt5QSHj58WM+d2g4ODjCfC8CCwY8k2pGWp33w4MHWd51zuHr1qsR3f0Sbz+f44he/iF/91V/F9evXyzni42xyWqrleRmM7+K7j4CUPofPbcm50/9dbln/90Hb23gbd3AHq4sVvv/n3wdYGMXeeeIdzP4/M9A5oZs6HN4+xLAZPtC9iek91+i7zfV6vsbm9gZxI7p7/3Afs/lfrn3y5OCDg5SuPrz6CHMYoCClGxWkxGD8+af/HBc7Fzi6eoTbN29LUsFPyOq2WC3wpW9+Cc+/+Txef+F1vP7865LU1UWABTTossONezdw885NfP67n0c3ia/++v3r5WdrBmL6oEm3m3kDUvqIWPZ+krZerKWc6Ydoe2d72D3/GYOU+g8HUlov1vjeZ75X5YwYr770amGvWy1W1e/5Luezd2vvm0kp5wRPrCwdYrzkLW+CHuSbIJN8TwIvpSSIcyB1TIKBmCK898hOwRpJc2It8DnKd8ZpxDgJUwHYScmcbCUaJBhYAhYgZMqIOWKMGYE0o9RRcdqRPp9gwIBcgs6ZoRmy+ne7N4ljNSctDUWAD5XxxduBNAtbBSxIApRSV3LONECVZJNZQIM1sJpZYAoFBFKmVMZYAi9kCWoaODVHjZUGYqyHiM1mDUfC9pMhzokYE87PzwE2iJk6XpUBxxHBc4DzwDRmnJ6cw3UengL29vbh4OGclU4jGdec0HUEphEhSem0rnEaegI67+AzI2Ypg7SYBewueyyXM0xZAAUMhykCs8UOFrMZdhdzKQmVR8Q44WIlDE9TTPCdA+cE73s4FxDjiIf37+P8/Bw3n7iJxbyHDz1iSrgYL9AvlvBBAvjIDE/mSBHjR8bHa4CAJVivzicttIU0AVNMIDh0njDFiPVmRMwO5Dy6WQ94h8Qe2TukmLAZJgQfsIkTUl5jvlyi7zxm/QxwcufVMOLt23cxZUYfPEAZZ+fnePvWHbz88ouyBnjCyekp3n77LeTMCN5j3s9w5WAfs66H8x6hE8aVaUqImXF2cYpxs8bVq/u4WK/w2pvv4OR8jayluuazGaZxxDv37iDfHTBGKdl2sVrj6OgIgTxm3QIxUwHjgA28ZWCcWvqmZUdhBQmUUjVQ/iwyJ3IN3ohzRFYmqePZHIm2ZsV5nHT91HXFDHBSxhljEeFY4hC5OJxzWfeSeWhBbtVb5u4qStQCBtURQgUIIeURJMBXyxKISsxlncp7aOCaXA3Sw56hv2ejgW+eDQVCWKBV39ey6uXxzkZPx9IMPvsHxeGeqZa2ZNJSbOyQxgnD6gRnqw0yDrG3ewByXJWkvkcIAVK+y4FIQEXjmHHtyiE67xVYIGM4xqmU7JOxdcUhXQjvtXSB4ju1ZJNTwF1lRTHnYWGQs2CwgRk0+96Vv6VStk1AfQnrzRoXqw1WF2sMY9L5YMz7Hn0ICEHWTdd1wrjmnAJwVCYNGEWXywJpmRktt0UA8rjAxeoMQ5zgnUPnAxZ9B04RiRmRCeRnGAYgDSvMF0ssljsIziPAIfQ9xgRMkcFJSm9mThhjRky6K5mT3Xi8LACjpUkYuoFMCZsYsRkGkHcITsoCLjvCYrHEetbj4cMjdLMZXnr+WSznvTwvTlitNzg9u8AmOUw5o+sCgjJ9MRFcMSC3/aoF8MUlXCx9UxkQMJIEb4xRTOBBGZkzejfbdjyTgUkzLIxOUPYZqocyVqYuZgFUAlL+bTsTXAIKw7DBbDYTfeElOObJASljMw4Ia5GDWdcVHbVebeC918OwgLOSgnWKHsqMFBOmcQPnCeQ8ctJ9kjLGSUA0fd+hCwFeg6EpRozDoIGFWMuXAXWPVSCcd4TlfIbQBQAOm2HAME4K+AZyFntgMZ+j73o4EKaJkL1H1wUBDurSyo3stCaj6fkYo9g2xQFARV+mbCWcpBQjCEUm2qBfNRFpu0yILe/yr6YPzFvH7S02JG54argJJrMEZRwRgnNqT+USdPReGFOs5KFGzwQ0nAVsSN70D6Rsjr3vJZO6hkRqx1uZZd3LGDWIYO/hiDCNI3LOMq7aP2hpQlJ2SJFVYZPz3iMEDyKtR6pBi8iMBGOZM3tOGOR+suPmT7exJgUQK7BxK7iESwql/R5v/bfIDnO5DzlXGM1akJK1IQx446k38GD/AZ5/7QVcv38DHq5ep4GhZgXK2o1JQemy3yDlYseXvtg91PYwmKmAV3T/QnWQsZVFsrOLa4O1rt7eQBPNeWALsdC8Yz1PqBVgtoP9xdg3bG+zexqQwqJZROV5BweHeP6F59F3nezpqPfePvNVqbMySNYroGbfkic8/eTTeOL6E+CspSFJwIVWOocAYdVR+8mRjN21q9dUj4ltMU0jWAGGDg6r9QUyi3378OgY6/UGRA6bzQZd8BDWINkrpmnCFHuknLWspLAOSamphM16hXEcsbuzCyDA+YDMjDGN8F2nNgyV6bBDo+Ge65wAUBZMkahc7NCcdD/Uc7IEtEWAXLDEGkv2iVJiz0mQmPOE0HXw3qGzJByIXlpt7gmjiiJAhnHE6dkFdnZ3y5l8Mw44PT1V+8oh+ID5rC/MfWZzJS2/uZk2SClivuhwND/G6+ltPDw7VpZcRpxFnPcXeDgdg4+EoZeZcfXNaxguRlzkCwTXKRDLdKcN3iUZokafioFoA1litEyF4OOSwmtAXrhkc1vQttU7VdwBNOWsuN6tqhC1a3KrpLjpBKF08BE9ZuejtrvyvQKA5wbs2Nj9W6CiUi7pRynKRk+U8lnVnpUHFO1UnkNq49Y50G8WWWD9v9pT9sYq68QOniekQZMDuoDFfCn7KjXP0bOBnY8IHqwlhr0P2Fks8eUvfxl7+yar4hfxroKugO01Z79fnpXWZrk8Fe/mQJe5zUXvtEkhYFkLMSdMY8Q0TriWbxT5cWQ6znS4sLhaiXrbAdp9ru1D0aMGUCUq5eGnGItO2Q1LEF8H9xl55xdgp+vVeoXpcxFdP4NzDtNmxMXFBd65dRtHJ2diV2UDrlQ22jpYDDTAN1LhKEDKzMiUMOYIwJIQHYInzDHDtPDYXGwAZlzZ38fucgFh8xHf0mYYZP/MuZRNFpu+7LS6X+q4NMvQ+rI1ha6VwdYqszWlgBZXx7v+sG3RGTC4CkIFN0lCjzCMkfWtcRTEFEFEmPMM+yOLX5Bkb805Y5gEoNflAAO6J2W39c5LOVUCjC3P3nm26eVMkSIAxpX1IVLKmBCRZxm3rt7Cqzdfw7QcSsIndE9OMaGUu2/0mdknIMBnjy9+5/N44uIGOgp47uRZbPyAHz71Kt66+Rau3b2Gq8dX0a87XNkcYkZzeGVAz9kAT64MqYnQlh2go1vXkJYqv7R2A3vMVgJqKyXysL0+Wiu8gVQXm8d0mwHB2nnm7eluOtf8odkEfJojDKH0l1xNPjObp7Lq1pLgUPtNSh9R+d16Yz8X38+WT4gui7gpfw22mO6uY+J0bN3osD/tbdmBWst7a22g9J0A9VlcP74GS66NnDD4ERkZF4sL3L15Byf7JzhfPgpU+EvdCFjtrPAHv/YHeO2l1/Ab/+o38Lnvfk5L8/6IfRmo6wCW0PSXi03phRdewG/+5m/i2rVrj7DzfNj2zDPP4Jd+6ZcQY8QwDCAiLBbvXertxRdfLD8zM8ZxLKClzWaDN998s8zVK6+8gpOTE+SccefOnXLdZbBF297PvH7cbE4/rhERdnZ2yrhebh9WdhlcSsNll3H7ydt469m3kLz60xxjtb/C+ZVzrPa2A/Vf/ZOvPgYo/QVulkD7Y9cN6N3BBSTJC60seu+3GL0ut/l8jn/0j/4Rnn766R973c+6EQge28CqL+PLH/p+Pwq89F7tBf0fdoD/8Kv/YfmcmbH5m5uin05OTnDr1i384R/+IW7fvv2h+3m5vdtc76x3MPGEiIgQAmbdrJSk/MvSrhxfwZXjKx/JvVx0j5QuffadZwEAU5iwmW/wjS9/A3/wq3+Ak8OTD/WMbuzwH/+//2O8/MrLcOzwxW99ERc7F/g3X/s3+Povfx1f+M4X8PIrL+Pg5ABP3n7yA5XM/aBAo+V6ieV6+d4X/ozazmoHO6udj7sb77vNhzmeeeeZD/XdT/3wU+Xn5BI28w2yy7h//T6+8aVv4M3n3sS9J+697/u9f5ASZ3TOoet6TGnUsiOaTcWXHAF4l4xnqAMmZ7DS4DuwAnwYU4qIWdgKHDlQkMNiSgnDsAHn2GTEEYg6wE1SFkodXYnlUBZ8h8QJMSdkFjaQzJIFJwEqcUJJuRQApFnU3gNwSICWO5F3iMkOFer40JID3s8wjgwgFSedZTyROQb1ayX4ATt0qyPeEYgTCtAKkKBFllBzm9lXnZWEDGcxNnBO6jTIEv6nmk0bp1TKUzktl5eTOC4MLGBOcgvEEzEEJ8A4nZSy2YkTjAFEcAmcOePTYkamjEAOXe9BYHhoaSo4XAwT8mojGdDqyFsPE4bxBEfnZ3JgdwHO93DUIUYCI6ILE4JLoDhht3dInjBcrHHrjVtwXjyeGQ59P0OMEcfHD+GcQ9/1OL9Yw3cdkmdQzkhZMr/niyX6MMP+zhLOe4wxYZhGEEjKpzlgjCPWq1NwTJj7gJ2ZRwhAYkZmkiw0cuh6B/gAcgE5ZziXhFWKMjhl3D8+wlvv3IaDx3w2x2a9gesC9pZzvPDss9jZ2UHKCffvP8TF+QU8VO6IMaYJd+8/wHJnF/28x/nFKR4eH+HNt95GTgm7O7vwzuHO/bvYWe5g1nc4vHIAcMb5+QrrYcD5xTk4RsQ84fj0BA+OjsHs0TmHQB4pTojMWG0mgJLyUhH6rsPu7h4Or17FejViGAbs7O7CabDaK1uTYG9quZrKnJYlg/PSgTzlDEc1u1UXBGKKODtbSWlHADPfYbm7g342QwheHFcKGslZ1kfKGQmA18BXTgk5SdnJnJJ+z9YFQHAlQ9oM5MpSpDpBe+W8q5/D2GBkPTtzQhVH/XYwWrJGa6DDHPPIeTuTzf6jP0v5swBSNgAmRiC/FejKGrRjMKYo2cpgZbhxAHknASBPCkbQUgxwcImBFJE2SQLx3oPzBJ8idmczKduXIs5XZxKAIYGVmP5IKWKKm4Jt7LoAf36Ow4MD+MVcwRXSz3GcMJvNVUeRMN6Q6jr16EvpNQ1uOGhwhoGUlPEmFyCklHRT8BdM8VEpKdM6fgBj3SEFShGWy110swWYHC5WKzw4eoizszN0QYJyu8sl9nZ3sWCPmCYZT8gWZ3MIclIfWR2Z9uzEjK4TRhQwSXD0bIOz9QaRM3YXc8x7j2kYMKWI9TBJ+UZiPHxwCucvcPXaFewtFui9x4wY7Dr44AVY1Kv8J83IjQKejClJ4FxL7BlgNzMjJQH8SCk9EoBUzojKBgRizHxAisAmMTbrDd65cxdX9mfoQkAIPdgRzjZrXGxGEHksF05ZgyAgJXUTMxmQ08ZK5DVrngh0fRC3wXnz8VtAmksAxTmvgYFtJ4+BAOvKUZmABpN0+lOSUnrOOQS3vX7MPz+OwliUWeyRaRYRyIEysN5ssBlHpAxkLQsowCZxfgXNhgZVZkRjVUkxI44C8upmASDGNE0QYBdjGEcQMnLymKYJYx6QYsYwDlLCUOfJebOfoIH4CXGakFNC3/kS3M4ckTNrOaVJ7YCE4B3iNClwS/voBeAiuCrRv6UkrAWhNCDI+p2YJjjnKjNR06KC3zIzZrMeXR/A7MpYt60yG1Qnfjl4qKItYWUNoLegzRLM1KACWySLW7tLQGmsGeQJGXGKEoxRwLAw5zU2KdfSxEWHkzKVcI1fWL5T3QfMlstbf3sky1uDW23jLAAKcq6yCOreJbaWjReJI5QzumBBXVd0EUOyQYdxLKVenH53isr28EltbDa0R46p2NctA4moB7r0NX7kd4LJlO4xJEkViSvYxYDOOWekGME543R+gm9/+lvYeWoXz919FldPrqGPMwQYmBeABiZTzohxUkf2gPlcj05kQHwBy1rPnadSgi7r8+1VrAzu1jswIZOXM4wBA3DpwjI6VNZDG6yS7lDRieU7rG9jB5IW7AALmIm82V5qdpudSe7Hh8hMODw8xM7ODgBGCEFBdhoQU0OnzeC3gKwF5tIwNZPL5flFtjPKOLLqdXK+MOLZ+08xYZyiMlY42StJWC939vbKerx6/SYAAe+MwwZ955GmDe7evYMrBwc4OT4DmBCcV9sOWMyX6PseOWfMOinZslgs4YPYZjFHBQUFKbUbAobNKAAoJ4D1MWr5JzjASYnPOA1Azgjk0XmSMxZqcgRA6GcBobd13rDKsbJGxTXubR7IWSUEYXmaOhy4Xewud0RPE7BarbFZDyr7ABRQe3p+hvk4w67fwzgOOB3O8HZ+G0cHR+i7HkSELjh0oUcITjNbGeM4YYMBt/ZuIXPCcneOI3eEs9UKnIUllj3jlS//EJgcxjTKOR/AFVzB569/Hk9fexJd6HHr1m3EIaI3Bh4YiwyKbBsAppRmMz3KpqNrsM/0ROvwypwxjJOw0wGSNNP3RU7KGpIFWM/ZqEDBFmRnZ/VyLWwvsDVjElv3jJaNxzV6zOwQ1GUiYE2zh1C/X79R37u5wEasvXNZXzVb2EAEXPpcx8n0AdeAqepmApQhFJKHctkW0zt70rJW5MBIcN5hZz4H0QDSBLBxGsDIlaFYbbeUxOaLSGX8hmHE7nIH8/lMzjdkSW6ER/zUZQzk31LaqpnbdhztvxaoSKL5SpYm12ttTg0Cw6Y/5cCL4Alu7kHeg4cBm2HAZrNGzoxeAZTzWY8udCJTyca+6rwCbtT/2blO/sYFRMCZMU4Jm3HClDOCc+g7YVfLOWO12WCKCbyTMaw2cGuH2WJEHCeMwwar84uSrAaScnGsc0+ZS/k/AZ5zTbgpNrYm59le6mRcLCHATDFHhGkYMcSEKWecX1wASAjBwTkp0544Yz2MyAx0IdQSqyazRYob0InJKqCM59XW//FO7m39UJaTHbov2RL1W7kkopjYZE2sdC7XZ+oiJlBhTxX9n+Czr2XRstmhZq/q+yT1TXhhmSqYJ9vXVcclzti4FZwnIAB3Du5hpAkPbjzARVhh49fwLOzASUH5MWppcysPX+zc+owYIzJnfO/T38Pq6AI9z3C2d4azxRlO+3NMacStG+/gnetvwyeHvbSHGyfX0W16HB4dIsQOPffotVQdNauFLs1M5lrO09YTNWNsdkNKCVGZsb23knT8yHTJV3l7Ts2+gfoW0GpTlLOoyLRK12V7ssgddMxIfRFczlF2DnVqv1cIktyh6EmG6JZUJbnpIowZSbY3yyogO9Zs9ap+l8tAtDBcW4vl9ThjDCOST/JOygLF+jenIKVxPuJk/7QMas4ZD3YfYjVbCTtaPyL2k5w3p0/weeLjbCTME//z3/+f8cSvP4Ff+fqv4KVXX8LOxc52+RJtWc9/AHB+fo6+738sC8jPW7t79y6+/vWv49Of/jRu3rwJQIAHcq74yVoIASG877DWViOiLVar5XKJq1evlt9/8Rd/EYDM39HREVJKuLi4wA9/+EMwM05OTrDZbMqZnohw48aNd/WdWBvHEffv3298x4z79+9vsTsZu/YHbbPZbMtmu9zWbo2T7mT7O3mGw/GwgEC894gxqg/rUt/jiIudC1zP1wEAK7/CrYNbeO3F196zb0M/SIknErDSw6sPBbSk3U0h4bf/d78tJZ8am+9lvIy/9wt/D8/tPoeTkxN8+9vffsQn8Lj9xWwhBCwWix87n8yMo6OjRz57r/teu3btEwVQ+iQ2Zsb5+TlSTjjfPYfLDstBgB63b9/GgwcP8NZbbwnBxc+wmc31uP3kLTmZWyZG8gk/+NQPsJ6v8b3Pfg+n+6e42PnwQPSpm/Av/qN/ga/82VcwG2d456l3cOfmnaLb//Qrf4o//cqfYjbMcHBygJdfeRl7Z3t4+dWXsVgvMBtmWGwWH+HbPm4fRWMwVsvVe5bxPN0/xZvPvbn12evPv14YpM53zz8wMxjwAUBKYBKwzjCWkmwJGnRnc1o1pZigBy/UAJJzTh3QcppqXelZHSHmtgVn5CwBuJyEcaPrApIChJJS//XBIfQBKSdwknJBmWMtM8MZhITMQIwjzCWSUy4Ordmsh3MemQVgAufAWQKW3ouzoWRSMuC9ZcnF4sARx5LDFCcAjC50cC7ogVMdXiyHXAteAACntjySlulgBmcDeGgQXlPjzWktJqsrAeEapFcgGIQ5gKjXM60y3rA4veR+ClKijMQM1nJGDMkWr6W6AI65BAlkLOTvmRMIbIVyhMae5N5JnaIZjCEOGDaDZEoD6Pses9kcIKX7BwCMYF6JkywmOHK4sr+L3b05dveXOLj+BEI4RdpM2FyswZzgSEBDG79CzBPACcwJDx7eR4aUjUppxMw5LGa9AmWA+WyO5WIOcoRhkoBC5xxmIWDKDusUsRnFAT/r59hdduA0AJngQo8QehAyhmnE2WoF3wXMZsJCsrq4KGWFVuOI89UK5BzmnbA6ETMuLuYYxgl96HGxXuH44lSCjTnCZw924hR4cLRG5ojlzgLrzUpABmrIj9MAAmOcgIvNGsF7nK7OBHgUhU1mGEdwZpyt1+JEY2deNwCMKY6A81qyUJhS5rM5bt64iSuHh1hvJgVZOXShQz+fifOUHQgRDJQSjN4JSEPKbjjJNIf5VMQB5ZiBnArVuQTCAGbSjPAAT0AwVrPMmKIe+qCMRCxZmSknwAdh/tLgtFMWHkcKJGMBcXgieN+VzFhov8xBa4AJ0xvFCe+0nBe4OHKtTBlyhldGMfMvSZDCK3MKaeCNC3tXbRra1uCHjL+ClChoSSxjanAFCLbZDJK56B3u3b+PYZzAKWO5nGOxmGO26MEs2benZxc45TUE1JhBnLBZTRg5VkcXJwSXwYnQu4A8RazGAT708E5KNTgwyAsg4vz8HFMci47P+QDHZ0vMZ9dFvxSnojCUhOCRGRhTFJ2WIjrv4X0QPav3IRK9ygpEIE8gBLAzpjnJEWDOymZkAU3WgOUI13WYpgmdljsTMAaDk8BlztYb3Lp9F6cXZ1gPK1ys1pCyog7nqxUu1hvs7e5jd7nE7qxDCF6Cc8MGq/UaXd9jb3cXuzs7mMYJd+7dAbzH3t4edvtd9F2P9SQZR/ceHuH49AJjzuj6Dn0fcHZ6jJgyYhQZ6/uAcRiQc8RqGPGpF1/Alb09zHwP+AAmkxnC+fkaF+fHWC5nuHF9D8E5rNYD7j08xvkY4XynTIAO0yRgzNPzM3RdwM68B6mTYz2MCH2PeT+Dd0GYDrJHpozVegNKDKADXAQ7xiYy1psBe3t7AlYJPUAeFIQ50AFwOcITGvAWMKWMizGBUxZmCti2z2W/a90nJTDe7GUM6B5t19TAm5Wd4SzBLcsiHidZ73CS4SuAANk7LduZiJCYkaIAWASoI0XtBPxFyCzyEzljmjYCKlGAkpU6IwgLjgSq5f04ZcQxwiJ8wtgjeizmiGEaK+uYHr7EnpKgQVQmO4ZmXCNjzMKM573DrO8Rug5MVLLgYxL5j5ptnbJcy2Ap36r603FWQLewr+XMGJMAmgx4RSzgIym9CGWMEbvKeytJoY518mB2iHECuVhK7kpAtwV6QG2JWm5mK0CngRgpU1ZLdYleMD0j0TDWa0iZCkAoJT2kVJFHLLIj7n0JjJKw6zAjYQKg+hYo5ZMYKGBKY9/Kanu17wLdL8Txb5nvDLHHuAQfjOXJ2EQsa1qYDMT3ZnKYYhKAnogNAC3jl6zkp0Ng1qClsmyCMU0RU4pa5k3A40RaJusTfLDnElBONQBt7IissZYGOPdurZ4zlA3RNEqJ47ApjWJf254fggfIIVHGyd4xLg7P4TngYH2IRZ5hfjHD7tF+CZQ+3D/CE9+5AUJGJsa9nTtAR5j6CQ+vPQBnxvV71+Gj7JkHm310MSCxMGMZG2ItJVxilhXAUA9T9VzUMtAacABchNHKSpdxLX8yOA/X4BbsjFBBFSb3oie3QQjlhhBn+u3bt3D79u1SclCA7DtFd9tcXbt6DT4EMBpbC8L8KYxEKH0r80gMOAtvVimRc5XeGzqXkJKgMQoLL7EAhEMIYjNx8yoci64lyJ7Qz5f4hU9/BuMUMWzW2FyscfTwCOM41gBlzGAk9F0AiLQEp7IUcsIsBNHjXvTcbGeJ0MkeFFPCOIiceXLIIEw5Iwan58eAvvPaNwFheRKGp67vMMYI572Wqs6YxqlMxf391/G7L/4uQMLQknPGMi3wN07+BrphBu88jsIxfv/pfws3BvSnHXbPd+BY9os3r97GD176Pv63Z38Py3GOP7ryR/gB/RCRYgHmWwBWwKmSfMHZwM8C9DwaG8AcAIasrYvlBQAHx4Tn6Hl8Dp/Fr4Rfwc1P3cRiPsc4Tnjn1h1sNhsBEYcKIpY1L/uS+BGk3KwA1Ujlv5GpbOUcK7ijBnD1HYjUjnflO4UpiLTAk97DALSOJOkhsZx59VJhHgWXwHRNyGjktSxA1L2QaoTdmETLdxr95lr7Bm3jAqyw57kmaE9lpegzUIFeVia7rKbmPgAhqV0DR1itVspAmtGFDqELCJ0A5JGtpHZTNIwZ81mPp558YgtY6PVMPiowY8oJm/VaStU6CcYmjkjLhFma4W3cxuRlne7mHXTxSWzGNc7OT3F4eAVQZmOTSUBstpRzgZN6TT5D41spoCC2Uan6A9D9W2W4RMcYVc7rRwJiNPFiefeUI1arFe6vHuD19Dr+ePoTPJOfxWE8QO86vBRfxLJfYN4tsAjCdpbVBzSMA0CErgtS3o4c1qsVxnFCP5thPutBQXxLI0d8f/wBHlwc4830Nm7RbfRdh2kaEFPCyfEJxhixunoBisDOyRLPnDyNr3RfxtWd/VJyj2a+7K2A2MAX63PsLOZSApsZq/WA9SCM1saQwwB4iojThJQTZn0HK0oekyT2hNDBgzAmO1cDoeuxsyPM21Zu2fcL+H4lOrDvMA0TxnFSlvOaaEF6fwFvyZxMMTUJdajrDHxpvdS1BWCbhcxMgqIxGt2jZ5IsFO0gteeSlk92CiRt92ZjV2K28tIZkYShSlONcLp3ipEn1dkOR/sPcd6f4fD4EMvNUsBHsNRFsfum2YiH1x6CGZgw4mj3CC4IcGfDUylfPiUBTjtG0T31/MRqe6p9pYzWOakO0xKEw86I1w/eAF0CVRW/BzPYZ5zPL7DaFR3hnxNw8HJaYm+zg5ACrt+7AUwOe2e74hch0xOyX2eXcbZ/ip3THQR0CPDFZ8xOwIKJGZy0pCmRlGMHatmHOuV11st/zHZo9Dmqnbh1sf43N0q0+bbKjcoAVTbWTBnszK8p5wZzyPlsCbBqjzZCuWWjqU4qdlq2a8qLNZLZ9rjx9SIjO/lkNVthM9sAIKx2VzjZOxEQ/s4ppjA2QCg7T3NNFPRAorwl03ZesfMaZdN3n9zzxCehTf2Et599G+88/Q66qcPTt57GYrXAtQfX8MLrLwAQOX/1mVfxpf/pSwhjwOQmfOfJ72C2P8PF7gW+/5nvgzLh89/9PGYbAcw8eedJzDdSBskn/xeeUWK9XuPrX/86/uRP/qSAs3Z3dwtgyRoR4fOf/3wpAdW22WyGJ5988pHP34tV5Sdptoa997h+/Xr5/OWXXxbdkDPOzs7w5ptvYrV6/8G4a9eulZ/NH9S2s7Ozd2Uxeq++Xrly5ceOxb+89i/xP7z0P2z3ZbqG/+Z7/w2eevspgIE7h3fwT574J9j//X0c3DvAtbeuwUeZs+/9yvfw+v/mdfz3P/jvsRt38V9/6r/G7139PUxhqsrrwzYCTm4KgMrB4dfwa/h7+Hv4x/jHeOorT4FAGIYBJycneOutt37Chz1uP8u2nVBc282bN/HLv/zLP5ZhKcaI3/7t38a9e5WJY8oTpmsTnnRP4pu738SFF6DF3vkenrr3lPoubuOll1766F/mI2wJCac4xe/j9/HP8c/xNXwNz+AZdOjwV/BX0KFDj/6R8rrWftS4MhgjjaVCzNfxdVzgAv8O/w5/jD/euvatk7ewGTd4a/GW7GEPnsZX//yr+I2j34BPsu6zslZb67oO+/v7ePDgg5eH+lGtBfLmnHFwcPDI/nC5HR0dCSv0+2hWBvmT3BiMGGqpUibGO0+/I/pV2xsvvIH71+7jpVdfwpWjK+96n/Pdc/z5Z/4cDMbUTXjr2bcKi93Yjz+5rrZGwPGVY/yr/+Bf/djLhvmAu/O7uHvzLsAQVjwmHB4f4tqDa5gNM3z+O5/HfJjjqVtPvSuL0tRNuP3kbTx16ymEGIpdlCkXNj5igk9+y6P4SWrRxx9Zxi7E8DPrdztmD68+xOmerKG7T9zFW8/K3nr7ydvvCWDLLktZv4+4vW+QEkOUYEw1e4rB8KggJM7C3CBGlmbjNdQhFvgiAJx0I8oQGutLpzJmYR0AGMk58JAxRSnF5lzAEEcQAfO+Rxe8OP7A4ATEKQPeoZtJQDGRlCXZDCsgWeaLsjuQFwIligW8kwGQZtZ2QUqblUyknBG6TmiaKSBDWA66vkcIApYCA85JMKrruuJ4JGJ4Fjrz4rpnCaIT0RaGgXNS53xESlEYoABlkGEkaKBf+SxqQIrFqWcBGZaARCYuAABAAEakWXOZ9WAqs1az6pDKPQrrFASE1ALQJODGEgjUqxykPIPCoOA4IVAGJQkQcnRIbgQ3Tt4UI8gxUpqwXm8ABKw3a/BdxmLZgzljf3+B609exbTJOH14hGGzkohdisiIIgPE4ByRyWOcEqYpYeo7pJzhgziB1ucDzjZrcUYrcGLmHQaw0NSzBJWJAnx2OE8jYlxrpnvQd08Y4iildoyhixlTjOpErUxhmROGuIERAU9xg7sPbqOjDptxwGYaAEh2ugtOwFvMQE5YrU+R0lodbYSdxRzjOCJnCaIwMzyAOE44i5OUxZCFog5RGfMueAQv/9j6ijEBLqnYOOzu7ePJm09hPpvj9OQCD49PcH6xxu5ygdXqAswZ8/lcMgDjhGGcMCUGOQ/nAxw5OPKSrEq6FogK3T07Y2BxEvR2hJiTBqepBHCz1rKVsInXMpAKilP5TonhtARUThIQYgVQgSDvpq4rKSkSkbWUSGYBUBRnTMPqYVlzpMHtbWcTlLVIgg2EVIIKpKX7nF4oZRizltzITYBSdF/K4pjvOilLyERw3UzGkgDnAU4R4ygguuAlcz67gJ3FLhz1oh9yRujm2Nndx+npMe7cuYvlspcyZOqdYgKS81hNAwIxHAv1fhcclguR576XMhxgAXSAEwgCMtlsVthsVuJIT1OZT+89Fg+PkCYBgnX9DH0/w2aQ8pyOrJzhgHHYwBOwM5/DB2PkUkCbIyXi0yxWiKc7ZUbihC4E0cWQvjkn4NEcM84vVtgMI/YP9jANA7rlAs53gvGCgMzGacLbb76B1199HeebDeAJiTN88JiFIGXBsAZnh3ETcdERfOcxjAOOT05wcnoC5z2uXb2CZ59+BsiMt+/cw2YU0M8XPvUy9g8O8Mqbb+Lh8TEuVius14MCRBiL5RybYUDKjHGY4LxHUlpwggB85j5gFjrASTmZzTRiWK8xny1w/+ERbh2fYv9gH8vdXcx8wNlmhYdnUvry2rV92QczI2IN1wX40AFgbMYIIgkS+xDQdR18EOdryhHgCZwiNhcTujwDc0DMHtk5pCnDccDqbIPNhei5DNlPFIcHziwgQIkyKutIRswT9vf3sLs7r8E8tgNCVhCtyGeMqdxTyu4QOt13WcHLMSZYdMJrKTUkV+iDGUBiDf70AaHrChV+zhmUBMzoncc4jpjihL7vwSAJlkIAM26KoCABJAJjGMQdbsAfYy2cdcLAITqARS5lZWO2mGE+6zQDTd51nKLoTWXbcBrUXq8GDMOAmGKxHxQuqcFGRkLWw6HXAEWEJV9OKSJGKQsYglewmtlrSZmZfGFSbJ36xd4wG44FRBbFoy3l3AhwySuLnoZ3zBFv8T1CKXtoTnsQSRnLrIZeiZCxBq7s2ZB1njKcJwUNoYCLDGSQsrBEwblSQsVMHqhtlM3e0Tliu3+MRUcbiMrGSexU0gClBqC9K7JjARMmICdh6fPGVIcmWEItdT+VTPmUI4xRBkBhSjSw/zRNYncqyyBrSceowQLHwMhSYkxAU1RYmGJKSEnsZ5nzXAIKn/AzOCT2zeXn8hKwAI+BaLiM6+Xgj7Xt8ky5zkn5kIpjgoiAxKXUHJFDzAlEA8aFgCd4j4EnWfWVgGT7twPmcYG7n7qDe5++UwKEtoreufo2CAK8WMQ5XBRZ2z89wGJYAnqGKKAMBTHY+cJKtyYFPzvnwBG4dv8aAgng23kPnzxm40zsIGoAGDpwBbTVnifYkiwMzFaWIqS8tDIWgbYDgM0YyjzYb4SYIk5OTuQ3nS9mxvHxcWEytGfL2iPM+l7WZDZ2AMLVK4foerFB9vf2MJ8vYFCUvp/B+QpkKU9nSUFATqLHMoE1mGzPFTCJ2HpxigAcYpQzQtcFMBizWcDhtStY7uzi7p07ODs7LWekrGV7JXlE9LGU42R0XlgpBHvOYE6YsrI5qb4NoQPpfDovIH/AI/hOvpedjqrTcxBjNWwkkaEA0lD0RGbGD/b/HKmT9Z5oAnnCmZ/w29d/C189/SXMeYY/3Pkj3HP3gK8AIQcs10sc3N1H9hn3nrsHCoTvdd/Fc/FZ3OlvCytqkhI+tTyvsAiOKWEv72KgDbITgFI04JwGuZ2XxIeo+m6JOb6Gr+HX87+P3dkednf20PmAcZiw3gx44YUX8e1vfRtxkoSeEKSkTuiklN5qM0DOmbJWnOlOKwGPyshY/mRgHJKZA9f1ZXJZAUAKgmUplUl2Ds+s6B8o4x4BFkTXM4HpJKgMF3hU4yCuAD/pnwWl63rYXlmuLMbGX0jyL/FR6EfU+C2KbWALvZ75zcYBCOR1TRMpsKmWQnbOK7OtMGSD1I/CBOc9+n6GYRCA9rVrV5DeSfXdtR/9YinM0yRry3kBzzkGOgiDgGOH559/Hq+99poE2xxhfHrCtSeuYj7OcRpO8Gd7f4a7s3t4afMCvnjxRez1S9y//xCbzSigbGYsFsvC5JuZsRkGTT5xCEIhCEAZaQ3IAmPSowKkMvZIu86Axk7q6SLGhGEcCysZCEDozOmFmBI2mw1OL1b4/ZN/i99Kv4Pb/g4yJ8D9W3jnMPMdnhuexTPrZ/Gr+Vdx3V+F9+KnGacR6/Vazm0hoO86LGZznJyeYrVaA0TY2Vvg/MkTHI2n+Mb0TbyCV3E+XhR/TZc6sSWZkZYJO7yLRZ7jMBzgM1c+gy/e+Bxe3n8BV/cP4Z0TtqWUhKlY3/N8PWCYJhwe7GMx7xFjwunpBYZpQtcHzGfzYpeM4yhsnikqeElK73FWW8p7gDP++N/9Mc5XK/RdwBc+/1lcOzyAd16SCrVMWDRbjAhpisICZXOl8kwq9wWklDOOT45xdHSEtSZcVZdXBd3YWjHQUF039b8VjKR6QZWI84TNbAAxYzEty9nR2DbLeUXXMGXZE+Ii4nj/GCfdCfI84+HVo6ZcGWPTbzCxgAGdE2DgOE64/8R90V/2zkTofFD9L88Qu1fsZt87kbExS+lnfW/zwwGy9qdJzhFJwaUVKGxAQnuHrPZwLgArogqkkzFFYZCD7v/MjOgTnGNc9OdY7V4ADLxz8xY4EebjTMvi2WSgMJtu+jX6dY/gPK6srmC52cHYTzg6fCjXjoT9Owc4uNjH/mYXy3EJY6Uvt8utfWK6Vm1DtSrKOgf0JKX61GdsZkPR12Z/SjnL7YB+powHVx8gwtioGUf7Rxjm9fsFYJo9rh9dh1cACRGBssPVB1fhkjBC2V5lc4Yyx9IH5yr47nJcJnYRDw4fqg2Wsek3pSzH1E9IXbVtU07Fl936fxgAO32WrYdstqEr5yY7Q5RxMMf0J/w88Ulp7BjjbKyMMgz867/2r8vfKROu/ek13HjzBv74b/0x/vRv/GmZFxPfb33xW+X6vbM9dJPspc+99dyPDEa+V/PR4zPf/wxCqmGffuyxe75b+wZ6t6/+VFpKqQByHj58iIcPHz5yzbe//e13/W4IAfv7+498/vLLLxdGpmeffRZXrtSx2tvbe4TV6McxDX2QRiS+pYODA8znc7zxxhuPML683/tcZoJq3+GjagzG7978XYyzcevzW/0t/Ldf+m/xn1/5z7FMS/zTZ/4pXlm8AnwO8JPH4Z1DvPDNFxD7iO/81e9gmk34nSd+B187/hq+deVbjwKULumMm+NNnIZTrN360U69y1RcxVX8V/iv8F/iv8QCiy357Psef+fv/B38s3/2zzCO2++xu7sL772eTx+3T0o7ODjAM888g9/5nd955G83b97cSkR4t+a9x1/7a38Nv/O7v4OHDx9KIu2vbvArX/gVPJmexHA44H986n/EN3e/ia/d/xr+/rf/PkIMOD4+LmA27z0ODw8/srX/k7TNZlOYiX5r97fw3+38d/iz8GfIlPFP8U8BBjw8fjH+Ir58/mX8Fxf/BV7Ei+96rxjFH/P/Z+/PfnXLzvM+9DeaOefXrW7vXbtaFptSFUXTsmjKsezIsKwACRzIgRQZJ8GBL3JpJ0GQBDk5CAIkf8AJkosAQS6ixLnNEWIESJzIvRFZho4VKopMkSwWWX3V7lfzra+ZzWjOxfuOOb9VVSRLMhWSUg1BrL3W+po5xxzNO97neZ/ng+SbwQ78+umvc+2v+bXTX+Mfz/4xW7P98HwzwAvwNE9zxhkv1C/wr7z0r/CXPveX+ByfG63p1uv1SCAC6c/ZbMZ2+/2zg+37nr/+1/867777LqvVir/yV/7K9yQp7XY72rb9WJ//7rvv8tprr/Haa699aO34vbTvUB5BNpmrE1l7Tq5OPrZd2fXRNW+/+DaP7zxmt9jxrZe+9aHPLASjsRn4+he+/t0/+Ac/1D+6GYlfAR4+PRGXfvtLv42LjpP1yUfGndFF1sdrTq5OsMny/HvPc/v8NpvVhtc/+zoATdfw8msv8/x7z3P30d0bz+H3E+d88FkP1cD10fXHem90kW++8s0bpLO3Pv0WV8cf3p+qUPHKN18ZSYEANlpeee2VMQ78Z2m7xY5vv/Tt8ef18Zo3P/2m/G1ZCh60/RCMG5M/Jp3w7lOnYwIzqrpDIaeU6jVJfEmgldQLG3PzcImSdcpGdLMaulQeStIrRknuVbXDOZGhF5s5USrJJotkdElI5JKwlC+V/JJUYcYsyiu2JP/0sO2tkySt0QrBkhhVmXI59jomcq/QEEJIYyVrNqKKUde1WPFkA9aJFL9uuq6qaWqPTTCbzfFNRbaGNERsRlUIuAEieu/IMTCEAWez9HWGkCwZRzObqaqLWNwYYzQIF2JAVjKHNXI9ANZklTjOYi2WE8ZMZKSsqg8pC8EoIUmxoAf6mJDKohjENi4mUbBSj/qUEyZJwgPksyKqHqDkJxkDkngoPWyMFdUNIjkFhqEnJkNC7NjEtmugqWueffouzz37DDEOPH7yhM31Rg/lgZiDKGllVfQImRhFcWveeKq6IuTMerdTafZK+y8wqytSAXWtJHqtElISWjVnHTlZGUsuk4iiuDFETMo0dUVMgb4klzTeSlErQU3Ge1EdkusSwtu+bYlZZL99VakyCWPyynuPtxBUHSIEsXapK6/y2KJyse8kyXZUC5FoFwZ2fYvBURuHs2C9AKGxT8RsGEhYb5nPGp579gWOlivOH52z33VqOQVNJaQQZ2sqX+MqsRfTLJaCVkocMnKf1so9z5pmtG2zSvojGzAeVMGsG1oe3H/IfruDGGiqiueff56qqZSDJmBsSGLjmGPE6FpQeSEqitKaJNmdERKQMZa6qWUchkRCwPyhH4ghKClKk3dZ5ock+EAsNgrBUOaZcxZjlaAhuVoFq8RSRFKeqrxmxTwvk1GRESE4ZSH0CNnQUFW1JtkRoPAAQeyHXsBrJBjs+oCrK5rZnKvHl3TDBouhmS1wNdx/9z7vvHePW0+fUvmG66sOYzOlrjPlAfKA8DLFOio7CYCCrl1JrcQwUNXVuDWbLOtVzAlXyZrsrOPk6Jh5vSB0A07VdmIIuMpJpV5WO4EgvVN5R8xBkmHJilqTgbqu5HutdmrKxGFgCEGA34VU/LbtTkhIRpSOhmHQQLnWdVAInKKqharYRB4+ecL9R4/Z7ltCUju0LGtArZXA3lVSdWyTEJmItH0HKeOsY1Y33D45ZTmfS8K879n3PU/fvsXx8Ypd17JrW7KR+bDZ7ulD4OzWGfPlUlTfOlXlcUJkGPqW1bzm9tER3jrabuDxxSXbfUs/9JweHeGNoR3E1qnyNWDph0RSix5Jbhm6rgcizhqpho0CPIYY6LoWa2G+mFP7ZgSCra9kvR06al+PBEtZU5QAkGTsZlMs9hiTrs6hNqpulJ2XRGnk5OSIk5OjERQmG1Hls9A0FV77advLOJ8UkXoBzoAwDPTdnn3b4atawVRJ6KaQmFUznPOy7oYebx1VI+9NSn4p9lgFWA1hoG33OO/EmslanK1w1hF6AWNEVU0UGAcl1yo6ICqOzmGNkB9S1AR/ynT9wGzesJrPxMZytydnI/ZusReymPMKYssz6/tO7KQUCCiEBe8FbBTSSWDeNCwXS5z1WCeV8bvdnn23lz1sVlPp4uSrSshLMVB5R+2EwBSjAM3Wydx21oqSm2bIY8rs+360w6sMzJsZ1gvYlFSBMaYkVfBk6tpJhb0SmVJE44FSwW4UZM6ahFfFCgl6GFJUMtBBBa8qVipKpSQdMMaNynITVj3ZMsQYFNRPI+n1MMYsi7ZUkk/2J0X5KOdEZc0Y74YYlUBuSFlAJnHLtJOFxkFcWa4r5TiqZRWQI+cs92WMkMTRPkoJdJ0HqcRPBSyX6afrWYmfzAhSZtINAs+hLcX9e9+/6qbvZ1v+f2bjGM8Fw2eC4EszY7/q780EDBUezE0Q/zs1/Yxc9nABhcrnFhKatRMIyY0rgeV6SXKJbtVpPJjHNVA5DzhjDhQ6GAkCZdwVgsF06hLieU4H9wVqdyLqkCYJ0UBIbIY61Kz2x9TW89TDO8yYc7Y9w2Axg8HesNWcjncyVuMYT5T1PyuAPNpYosCZYVQ+GVVFCtnJlNPVBBba8ec8dmA+6JuirJQ5JBNqH2iMYJnmZ86ZxXJJpcQEA9y6fQdfyXXWdcVyuRr7GCZLF0NRwxQCUVLFj5xFQUQ+P+GdZbVacbRa0Q8d9+7dY3O9OVAPinoONHqmENKls4bKWSl6yFLYkLMA9xghTJVigKxnYWuLCt3UD0bVcAUwFiA5Z1H6NVliPrFaErL7t5ff5rePfptre02wsl5645jnOXfbp/HGk0g84hHXTpKfomohR5E7/R1mueGL+y/y1HCH+9VD3m/ucWXXI3FjFY54rn9e977Inf4OQ7Nnb/b0KYlyG4m3F2+RbMTYzMP6EbfzLU7zbb7MT/G8fZ7Ke46OjkVhcrsfLS5jirzz1puQ4amn7mKtxzrDcimWetfXG1m/tYimKI0ZK+PDKancODmbFTJr3w+cX1zImp3EPnO5WEJOOGtZLpecn5+PIHzW82rKk80ZGD37WawrynjCXSqgt1P7aQFvlTwb4yRLfzD2y5PebLa0bT8uWGNuQoeuTqdxIRSwuRAxxgVuWs103Sl79rgGIWeRso4V4laZo4dETWOMEoOFvN7tWkLqNaarsN7gjeO5519gdbLk//cb/4THjwvwJh/6mc++yPHxSvatJOrNGN3rSpyY5QzwVfdVHj16xNXTa36i/glebl8WkDwlgos8nj3idrzNihXz2UxUczQOldyS0eIQ/T8l8wrJKx88KzuOZYzGK0bXtDwpFfjK451VFcKEdZ4UZb835BEszNqP9iDPlbIU+Vxu1zyO57xXvcc7zbuQM08Pd3kqP8VpOOUoHlHZCmNkPc1GVWVisVyyNHXDvGkIQVSFhhhVdW5BNtCmjserx7y2+BZd6BlCxFeePzH7E6zMMTFlztJtTuxK9oAo59N5U1M5T06ZfdfT9f14lmoqTwyRoEpAxqiFcBG71DEmisWqwElW+0QZfHJeFOK88xLL/dZv/Rb37j/gqbtP8Se/9KWRCDaRiEqslae1sMSIh2O77Jm57CFKnImRN958ne12M8Y7ADnKdVglGfYp0psBg6FdteyqHRjZA8+Pztk2Gy0gONivXWa9XGOxnO3OIMm4JatSq53yhrl0ELBbbemrnj70YPKYMxqJkzmPBZqFNBliUVsdN1aK0t9Newst+jSGWV1hDPQhKNGQ8XOKiq41Sl5XZc4P9m0hTxVCirWGpqpln9d5E2PSvEPEWiEdynutnu1kPhW1a6O5n1I0UJ6dLbeXIaQ0KsaSpfhTlOlKOQbjuTGljDeW2lScbE+oQsXtR09hosz92W4+2kJkMi5aUas0huiEmDzYwOXqkmwyj28/EqsCI2Sf7XKDyYWQw7Qml0U1M5KFoi2knSl+n57NQayqsWBZI0bFu6QFrmayLi2qhOjKnQv5texl4zw4jHsRkrAu8iPxrMSgOlfKX8o+VM5Pefw9mFzm94fj5aLAxfj3fGPMb/5fv3e7hj/o9sNaKf/d2p237xDqwOXdyxt2Vn+gLUuF/mFb7BbcfXQXFxx/7Ot/jFk741PvfAoXnSgUpB9dG7oPEh6efvrpUZXJGMPnP/95Fguxdl4ulzzzzDPfN+JC27a89dZbXF9ff2A9/+Fomczfvv23+e+f+++539wX0pABlx0nwwlfuv4SFksk8sb8DR42Dz/0GV/YfIGTcMIvPfwlPr/9PF9dfZWvHH+F95r3xte80L3Al9dfBmSe/vj2x7nX3OPSX46v6W3PP7j1D+hMR7aZrx1/jR93P87LvMxf5a/yp/hT33GOd13H3//7f58YI5///OfH51ds9u7du/f76vv1es23vjURBG7dusVnPvOZ6Zr7nq9//eu/Lxu+f9b26NGjj60YU1oI4bsqFP3f0V588UV+6Zd+ibqu+c//8/+c999//8bff+7nfo4XX3zxe35OIvE/1P8D//R3/ilvffEt/srRX+FfvvyXKQVtne343eXv8rn95zgLZx/5GT8MBKXSyvgczMC95h7/59H/yW+c/AYAX9x+kZd2L/Fi+yJ3+7tU+Z+BpGAgNYlvPvtN/rc7/xvBBv214ef5eZ5GSEBf4Avc5S4OR0Pz3T7xD7T98i//Mr/1W7/FF7/4Rf7Nf/Pf/L4q5KWU2G63/Mqv/ArvvPPOd3+tSaPV1ePbj0dyOMAbn3mDi1sXH3pPtJH3n3sfg+G595772OqHD+4+YLvcktwPdq7+YWo2WlEFe/85Zu2MP/b1PzYSgG6d37pB+i4xT0ZUp7LJdE3Hu8+/S7aZVz//6mhZtpvveHj3w/vid2rBB37foepHxG6/31as/n7QYfN3Ivh9sH1sktLTd8/Ug1uAFSFrFEBpUkSQRMCIMTMpKTHa75RkgdMkYCElSe7bKLhUqvUdVa2HYWsAtWrIRU3BqvXFiFYRQ5wSm0a+R+qJ0ngIDEECx8o5LZ5MSk7ykKWqypg8Jm4kIaYYJZaU9LA3fq0cRFOKJGMwRmTyvZEEZyHmzKoZTTOnnjUCZPdCUmqaCqN2R9YZjFY9ee8YejkoN16qq1OWxO1qtaSulFgTJZFeNTN9Z0mWKwgipk04k8lEUaTJqP2WkjS0+qYkhGKSTT/mREhRwM0oFiRTokaeacoJh9hWGSShiNWBKDlETZxIsjfoZzhjqFWFyluDtxlDJCVDHxN9TIQMoRvo9y1hCLiqYjaf4bwCdZocNTYydK0qelV0AdohkkOPI+KLFQqw7Xqxi7AGX7sRDB5CEoKFM8yUPDJWOhknakReiCpDP2giR8Akp+pWQw7s+44uBE1amPF+68rhrRn7UIAoqc6MiPWLtwIY+arWRKuSRrBYMiJCkwkRuiCErLqqmDU1bd9Jcr6eYXJmN/S0fY/B4k2Fd5aqqWjqGbPK4ypLFwLbbQcJ5osFGFEgmzWWeVUzq2YcreacnBxxfHLE8vgI6ysSQpy43my4Xu/YXO8IbUdTOeqqYrFccnS85OR0xXw+I6v9XsjQtj19N+iYGghx4LVX36Dd7pnXjrtPnfGFH/8x6lnFkAf6YWBzvefyasPVekvsI86C87CYHXFyfMzJ6QpXoRMzEUOmbQe2mz1X62shJuVAChFnLKfHx9y+fcJ8XpFNUEvIxGbT8vDROevrHSlbMEIQ8xaOjxbcvn2McwZwCKgf6fqBi8sNu90wAtrWSuJ23nhOThusAe8bnBOiwH7fsd7s6Hux1mIkCiAJ0SRV+GRJmDtf4euaZtYAkW9/9TWsTywXM4yrwBsePXjM5eUVr3zhJa4uLrm63BNSICF+VG2/pWv3OGuZ1Y5ZXQnolKPa5lVKMM2aMBXAx1qp8vTGEQe1BnEC6Df1jNrV5EHs9nxdM8SByntmdUMcAmLzJTaQ5ExdiV3KZieWngIEylwRcD/KHqF2ec4aJcBaIcOlYnMVRsDZW0EBgu4d1orqSTSimFRAL7FVFFKW93L8TUqqEcKU13VKlLgKacIai1dw0hr5vBAiCYNvPKvjI05v3Wa+XJDJvP3uu7z97nu0XWDe1EL0wDL0vZBUXEUEId1RrAot+65n33ZkJCkpClKGQasXnBUykPNCjPVWLG+GoEQkI4Qv6wRAzchhvus6nJP1dlbPNHkJ8+VKLL6G7gBwV5KSLftbMdzTpmRkAcoUQMJOBGb9m3OWuq6oKkep1pQ9zuK9rGcpy5owhB5rUMUc2eeNlf7q9i0hhQKBq9KBKGnVvqHyXoAqEt5VuEoIODFEta2pxgp6q6DJZrsRNTNVY3OupvKyb/dqbeG8w1J+FpKqNbrei1cMMQgB1zkhM/cxUNcVM18Rc2TXdgJEJ5kDopLmdPOU+d51PSH0Ot4k4ey9XnfKDEoEnjU1ja8w1uHrmpxgt9/TDx05J+azikotKBNmrBLxTohIhaSUcha7RVQiHSG85pQIMbPvOrGqMkKzbKoaa63MLQM5xXEOOWepm4raewV2DTGk0S6igDUl1LQaJBrjxAYuRiENKviRirKek/7NMZZgUhRHFNxKSjQwxqodi4KuVsnRUVTmUp6kfQs4LOvzVD0toOqIEePVLrAAc2r8I4p8Mch7ncG7oqo4hdwGg/OOGAsJVqqbY0xjPOQV1IsxqnqWjOxiP5SQsMwaI7FTigpuF2LWBCBITJ1Hm7wCYBljuPf+Y34Y2+o/mzPSZHLWin4OnlM5QeUDYBM4OE/kPP3uUEUBprWJAoJqvCoqWQcqJOSR/GVGAC+PNqSAWgwaBa8KmFUIR9KSEvCdLaSAAwCdKSlWSIhCsCr3ZgoSy4iZKVAm1wISTE8KSEVVxTuHtzXzNAcsRxdHzNoG5+14f8YYbj+5RbaJy9uXYnuIXGsRSTAYnt08Q5Maqs7jOw/ZqG0b45wbORgHJCV5hkosLJNEENkR2CMXQhIjMc9aS103oyLNwQSiqF3MZ3POTk9GEkf56ltnt8aYaCQBav94tXwwxkhRhvZ5TGKvmLIow8YghRbWOlzlVd1I1o1hGIhpIMVI33WqDChgK6lYXAvhIebEEJOuPVJwUgDJFIUEUyyJJxKWArnWKnCcheiSs9oHJdlxjSWiimm6BvSmZ2f2vDN7F2Mzq7zgmf0zzONC34sQiowotBUyhHWORZrjcKOagynnU8q5TMagVyu2QVUPa+cVbA6qDCqKUIvFHF9VmCPDkVtQ21qVK0URUIpmBIj2zojVr3HUlRd74llD3dSo9CohiopN10khQQpCuHZO1H7qWc2sqfD6uUXRJ6jN66gCkhPnjy8IvcR4y8WcO3du4b0lZilE6buBthvoul5JxqJ6W/mGpmmYzWrJZWhhTzkf9P1A13a6nqdRsWJWz1gsGqrKjvM8pUw/DFxdXbPbtZqnsApay7l/PlcL7XEfkTX8/oNHbDd7iiaZ0TyLd5bZzCk5QeKq3W7HkyfntP0wWrbttap0NpsJYY4D8NpaIbQbcN4DiYuH5xgrsTnWcXJ6wqc//Wlyhtt3zvgHf/8fcO/eQyWpyzr3qU89z3K5wOp1FYvCzJTXAXhQPeBv3f1VegZSzvzZqz/DT2x/YlLj0TWt2K3Wvla1bSmEyLreelWGGq1jmQqxvHeEkIjF5rmsULmcLya1JKPrYjlnpTxZyJXPdeMzKfuSzN2Uk+aiNM81qjzKaCzFKyknVaizoETEMUrIE1GsKOyWfcQaWY+Ojo9YHR+LAkRdsW9bnpyf0/WD9pFXUoo8U4kpRa2o9D8YHYNB1O10n3MaA08KftKcFhEZvecQg8a2E5k76544BF0f+14KO4zhq1/9KheXl9RNw5e+9JPM6lpvVwiZpd/Ks3DOSVX2xA/h/MkTolozT9lJIflfXl6IYpc9JJfLo4lNYGg6Ht9+wmax4/zoEkgEH+htr30tMVIIQdbbosSs+60MEznryn6Tdf2UIqSkQWKxKcpM66fYNU8S/gY77kOFHJgRgmtRk82YiXyun5VGFRzVZdX1Ra4p6/lX1J9z0S4vcQnlmSdV2JzGrZxxlLinudtyrpe5IPtmuQ8hMVkqJ2uWMaJ6nTX/aD4wbjFF+U1twFWpNGkeQ4pFZOy7AwLBSFQmT3GUd0KCOpiDBWT1weNTNZJyjtfHzLs52Rouzi6IdhDVpqodYyjplkKG0iBGg4k8xtPTa63ma1NRI4JxvqQx8DwIWIBCujsIXfUVWrpmzNgfeXrJqPBWlLZKrHnYCqE/aQxQ+umQpFRshMs8Z/zu6XbLdeZcLN4m9aYxNCnvM1OflI/7hKT0h7uZZFhtVphsePGdFzlef0CtKMMrr71CdPFGNf5HvWa+n7PcLlluRdnoD/I5NU3DycnJd33NycnJDaIJyLx56aWXWC6XowLT96ullBiGgc1mM+Zhttvtd7SCa9v2/3Yy09qtuawu+Y2T32AwA7eH2/yp9Z/i9nB7fF5rt2bnPnzNZ8MZTf5nIzFUVYVXdfeTkxOqumK4NXBqT1mw+J7vL/vqB9Wn/jC3/X7/e1Z/eeutt0bFnu/Vzs/PbxA3YoyiWpQzp6en1BrTlZZz5vz8/LsStl588UX+8l/+yxwfH5Nz5r/4L/4Lvv3tm+vHz/3c9yYpZTK/u/xd/p0v/Dvsnahx/Xtv/Xv86/f/9U/2gY9oVVVR1zVnZ2fM53OOjo5uFKP9INsH17oQwg01vV/5lV/ha1/7GovFgr/21/4aR0dH3/GzjOLIh7aYOWe++c1vfqS60m634/XXX+f6+qYSTonM9vM96+M133zlmzy684i3Pv0WAO2s/ZD63CftR7c1bUPTTXvYC++9wOnlKckkvvVj36Kve5JNbFYbPllevr/tD4CkdAtQVQWjFZ4pqf2VSNKNGIIp6evJ0xxQskcBiKyK++hRSZNcBSQQ6XghQ3kvB2tjjVSweoPXSvacIRtLPwxktRYiZ7ECShMRxHqtrBX0RirVU1G3UZX38lqj6ifOgcn0IYgKiEFVdQwmF+UjBcqyJKicNWqjY8E4IQEZtSnB4G2FsxXYKeFvsNS1VJN67zXRp2QK58aEoBBUKgGvMCwWczmYxpLwkkQ0xmJdhTWaSMmgCL9YmJhUhA00aTXZajgFcV05KCsYGLXiNIRI2/cCzGalzcgQYNF4TlcLlss5TVNR1V5UXKwhRtjtWq63O3a7PW3Xa+JfAOvKVZK4nlXMao/xYunijFTzhRDpQqDtAvu2Y+h7BQ+CKuQkco7EZLC+oqoa6tqTc8TkTKXEot1uw2a7I8bEru1FGr+SKtuj41PIUm0+DDv6VizWiJnGl8r/QOVFyWjoAtYmlguPsR6bPDkbhhTpYxAFGU1+9iESQsRbqKxIo4+AVRYSUhiThuB9jbUVzjm8M5ATfRbbmqIShDGEHOk7sTqrnBI8QN6LVBZa72iaGYv5krrx5Az9kOn2G2JspfKuT1RuxmK+ollUHJ/OuXV2zO3TM46WC1w1w1eOnHr2+5btdct+F+mHgWHoMcYzXyw4OV5ycjpnPm+omjnWQggD+7bl8uKa9fWWPpQxKyS8+XzGfN4wdFt8ZZnP50JQMIaubVlf77i+3tG1vSQvnWXezFgtlhyfHHF6espiOaNupEp7t+u4vL7m4nzN+nLLbtcShh5yZLWa89SdOzzzzF2eunPGfFGByXRtx8XFlvsPn/D++49YX+9GWfrKO46WM55/9i7PPn2Ho6O5roqWPmTOLze8/e77PHz0hCFErQzMeGO4dXLMZz/9PM88c0pVVxhXkxJcXm14/Y23eefde3S9qq9pYqioKHhVA4pByDjWOWxVFNt2PHj3EXXjWB7PCAGuNzuuLi95+um7fPalT/HGt77F1dWebdcSIkBku9uy27ekGJnNPLOmJgQhZNRNjbNSpe5snpQDEOUaV+w9AgLOe6lqsM7hksFkUXxxlUNUCjxzP8ekzEBWIpZUCTfOY6Nhu23H5G/KQjIqJMeAqLIJBipz3Gj1ZSEp3LB1MJlhEDWvYj3qvVr5ZIPH4tTqow+D2DlaRgJLTHFUk4ox4QxUrtg4gjrdyjrphRS4nC9ZHR0xW87BOro2cr3ZcXF5xYNHD1lv1mQDtR4MSuVpU9fSTxxUTmLI2QpAGgNiIwbWedmLklZb6jV479SWyh0ki0WRwWkFfVYiSo7pQB1jShDHJGpqIGpzJfmc86E1UQYzEZFNVkxRr7qQJEZQKqtsmGZHi/WPV0A5xki2sm92XStkKOeEyBEGhiCWFMbJvVor0O4QelFoQixdvRULpKpqaKoab4XgYqxjKGpgOVPX1Y3rkKRrZN+KUhWUqjsnMUUyo/Va2dunlLTss6SMNXLfMUSdt16UsVS9yivpuB/EnlBso4R8lJnUD0OImmyJ+gyl37wXoLiQfozJ1I2XWMtkqqoBLPu2ZQg9zhvqymOTgvIISa/yDmPBZCuEm6SkPWTvLXQDr5W8Q4h0URWINEjxVuzeoia3S2xVFA6q2o8qjlHVm8r89N6JNW4qFn/S1xJAyTgIUd4DkKKQGq2VdcFmFVczjGoo8iQmQFSI63YEOEqCMCmQPJYPa6w52jQcqOlIrCTxodN5mtR+L5f5EoT05JwACnLgt+QRf8kjGJZUvTPmQqZORFV1KGN6rKrOE4AiMYNcp7MWxs9hJOyUZ1ZmYCHvTMpA0hc/rCSl5X+me6j296GiQkaJbB/Z8tjHAjaZ8bxxgLUq+UIAn0OSEhglGKPfy2g1OlWxq4pJ+Q6K9eA03idGlPS3gEB5JEcZXfvE8lWfk6KZMUUOmAdMnol6cFNEacS7jBA50ZUfk28Q52/avRk9n02KsEW1K+dUKibGPirEUYuhVmW3uq2Zt3OeevwUty/vMG/nGON03toRsB1H4CFhSw8Dx8dH1FWt92C4c+c29UgsKUCkp5k1hDApBBxmAipnhZRZiz2p3JMCe0WZrh/EnjkKUTQqyacUwVTOCWFL17ZyjVGB0xCjEFxSJIY4ztMyEmUeupEAaHT/FPXdzG63pet7csoMIaltjKGqK6x1QkBPkd1+w9D3ympgJDeCEMCzKv4Zk6kqi+58kFUFWNV+ypJciLzjWY2JsFiAyqJiZxB1nfL8yp5eCD3GMMYGKYvyrDGiCibFOxbvK+azOYv5HF/X1HVDXVV6PpX3dO2OlESptPYN1noqX+NrIbEu5g3z2Yy6qsUa2hmyWvH1XSAMAr7HFDGIEuCsqZjNKlVrqfTMLXFa2/Z0nSjuljOotWLT6r0jxkF/rkaAuFh59d2gRTNZ40RHXdU0Tc1sNtPzuJDFhiHQKnG8a3tCr7asSGyxXMxZrZYsFnMqLzkDub6BzWbP9fWWrh9GkF3UczxHqwVHq4XEJ+O6k9m3PVfrDdvdblSmlPM/zJuGs9NjVquZ7N1qv9u2Hefnl6zXmzF3UkCJ1WqpfWBHUk6Ikd1ux/nFBVfrNddX51xfbXBechFHxye89NLL5JxYrlacnR3zv/7Nv8m99x/Qx0DKooj62c9+BpB92msBzz7vySTNnxgezR7xWyf/B+fVOUU17Ln+Of7Sk58XEk/W9duZgzXUjHacGJT4k6lchUUKteS4IHG/t0IAjEMc7bFkWy3r8YHCSFmncp4ICmO+42BpL3NJSd0GdMxm3aMYr1P2esl3WTftO1I8pvu57h1WF99U9morseNyueToaMVivmA2X2C9JUYIQ2Df9ex2O3b73UgeseOFmnG9O7h4bVbXtDiuzWVfSKpuM8b1ug9fra/GoryJBCHza7PbSWJf8xYxRna7raxVRpL/YhFsWS0Xsmbrmm/0g0oEY5QIGfpB93Dpl2JRdki6MRQyCRMBw0HfDDw5ecLDpx7Szvdsqw3JKOkZlExfyFkaVRiU3BWV0KXrX55I65WrVJUp6bPSpTtH7XtLsQaWPpK+kPPjlI8rfVqIkzfGX9mEMWXznkg1er3kQgCabCFTmmKZrCpxmGls54yOu3zwfWhcYDRuLkTlQpJitO0r6qug5DRjRjVAIdFJLFPuPRUVSMM4vsgo+U6uJxyqB2UlfhkrcziXa5/IMNaZUVU3p3LeUDKPVdJYea0kZg9iwkwptCzk50mpUDqoxJfjuU5zndNrNYZOk+r/GBvo8z5sY4xnbv62fP9Imi/3aMrzY9yDx3OBFltNF8ZElNI8SemvQpgqa+aohJQPrq/8aKbrmMhW5b5LTD1e2vjmnKfvv/4PPiEp/ZFuGWyyQho2mY/sen0NwPH6mLPLM77w9S/w0rdf4tb5rfF5FXLK92rPPfccq9VkSffKK698iFA0n8+5ffv2d/2csu/9IFs5Q7Zti3Puxv3vNN77qLbf79lsROH1g3ZLP0qt3PPJyQm3bt2iaRqqqhrXl7JXtm0r+f+u4/T09Ad70X/E2geVv0IIPHjwgJwzd+7cGdXISss58+DBA1599VVef/117t27d2Mcf/rTn+aXfumXODo6GvfoD5KU5vM5P//zP39jXicSG7chmemzfmf1O/zXn/qveWP+xrj2fHn9Zf6rr/9Xn+wD3JxfZ2dnzGazcX79QRKTQggfIs7lnHnzzTdVsfTD7cGDBzfUtIZh4OHDh+PYOz8/18Jqx507d77r2m2tpWka9vubNpIfVz0suMD16prXX3qdr33ha1yeXnJxdiHWap8Mq0/aJ+373j4uSenj04+tGROZ5SustSpFrEoUmVFRoRyWbqyLRg5fNxdLSbLmnAVItYefr8CDKYcwi7WiJOPV2z0roajYpWWt1hHMyor6hEmQJcHvVImIpMkZiiS5JI9ySoQ8JZujysYDeFdhLWN1aTlcj7F6TjhX0XjHZt8L2KgH/6yfHVMiM0jCyki/xmzYDz1xHzHG4qxVBR8Blo2HqvakGMnRkbIXaySQxJ2vCCFQuYpFM8dbAZzrpsY5SfaWRL2kiAzdEBj6gRwjyaTpsJwztfcsF3NRZag9Rd0qk6UyYL9nv+9o24Ghj8SQNRGROd/s2PWB5WLOYtGwWs5ZNDORqj4z9CEyDANdL0nfzX7PbtfS7lv6dk/f7rk2kBTcXDQ1i3lDXdc08xm3zzzOyrX2fWDbdmz3LW3XM7QtXR/pVQ1p24uqUjaG2jtW8xlnR7c4ObrFerclXlzQ9T02g7cVx4sj7tx6ipPjJSl3XF6ec/7kEXGI5AiDVveamLAxUxtL5SwmQUSkyE2W9EftvVS5Wqk+SwgYbY1h1tSiFIMmC6KQffZ9T0iJgKhV2ZyF5BZUbj0KID7o/cvvEilkjAO8Y1bXLBYrmsUKstjy5QzWVaRo2Fz3xDgQ1eqg9g1Hq5rVYs7t22ecndymqR3LxRxrHZfrLe/ee8R2u6fvA3GQysraO05OVty5c4fFcsHprRVnZycYY7m82HB5tebxO++xvtqy3XZ0+44YIt47Tk6OuXP7FifHS5bLGfNFAybSxzmXF1c8uPeAq6stV5udKGHFyNx7zk6OefrObZ557g53bp9qEtQTAjx49Jg3Xn8g332xYdvuJAGLYTlvePqpE27fOub5Z+5y5/YpzbwiG1hft7x77xH37j/i0eMLtltR2THW0NQVt8+OuHP7hLt3zjhZLqlrAaX7PvDw8or37j/m/sNztrt2BIUchqOjOc8/c4vnn73L2fExs1qqk9sQOb9Y88ab7/Due/fp+4DI0igAyQSoHibo66bCerGxcs6RjKHxkby7ph0M7QARy61bp5ye3iYMmZQs+10rwLi1zBtHHAxDB0OA0CeCFZAsWVkXhhBk3BghEBrn8JUbE2jWGGIYyFHIANkCNpME9yKoUhtkQrdXVTJP1w8EApGAc47GVlTZ0/YBnBASsxGCQ9NIgtgnGFIU8MIpycMZvK/Z7VqGrqeqvEr0ZZIV+6+SVTdJK9/DABlcyFTW4Z0bFUxSjAwhYJ0HY4lZbMmMl0TqbKZgXOVJxhKTqBPVs5qjoxV15Rn6nodPLtjtO2LQtZTE8cmSxVHDCHYqYF0IubLvFasmqaAmOx0PIoQve69VOzXBmCf1DfmFwegzK/vkpA4CQhhjJHboPqz7bDcMbLZ7rHUsFjMhZY2y/bplJ7HKsWpdkEJQIEY/0TjdD7OCYGUPT4Q4jDYqGLnXHCJ9PxBzFFs3MiYlQgwMQzvaCdhop2R2yoQ0jKApiGWbQZNlDLimJudI33fs+kH3bIcJokIk8YgTgDKGMemckli3mpwIUeyAZA4Wyx8zArjSL5ro1f13ArbSSGzKGIZU/i6fFXNUopkflSySKvOUyupiGVdsXEBAgPLwcoaQA8VyL2dGcN0bsecLKTIoibgQrcmZkFTpMSUBoQwYBQNSDARVFSnKKOWZkoWgVxR6NA2u4yOPcUGMEbLVuSX9LSQgRyBoEl2tm4yQlLL2SbGDsJapL+yBxY6CEClnchQ0xCjAJASDpLaWhhBLxbKSvw6S86WqvcSYWCEMGCY1HHmSjGPAYCAVUnlJ4MizS6rYNqId+QB3yvkGCTApYDECC3lKWgKqDJXJUeJCuf+oceMBoMqIOen70vjvUTHIfLzD+Q+6lTlUkiilvzNpBHemO53m30gsm3DMsRl96QjWjJP1EESSddMaIVxaI6o3mAKUI/NWn1MZP4W+Ysb/L7u2jpPyRQVETNM5yGRVdNXn7Yq9SgGWtC/KTZSiCWeNWh7LDYjiiLw2qU1aWatRolWIcQQPR8WDPAFkzsv5ArW0tc7pbpPpqsCV2/Dw6AnLtOC5h8/yF+xf4GR2IuqYR0cjUavcf4xJ57+Cn96PfeScpa4qtTmelKbkzBHphqDqDRL3lrxSBvlbStRVJZaVdSUkFOdgPlOgXclGIdCHwDAEsToNA3EYxv6yRogVlfei1FB55koaKPcwDPIZIUSi2uoUQtOrr36D7WbL2a1b3H3qDsdHK45Xx2AM3dCz27e6hhlmsxnLxYrlYkldV8TY8/DhA548fqRKGZBUWdZkIZ05zKiclg/GSRkrVvuuxJkFJPfeqbLgtJ7EGNWmMo9jToe0WnFzAwAXMq6MqZxE6a+ZNawWS1bHR9SNFsQkXTuNZb/v2O12PHz4kGEYuLi84FMvPMdnPvMi89mM+XzOfDbHWbHmM8bSdj3rzZZhkOKSotzrrKFpGhbLBVVVMZvXzOYNBkPb9rRtx259Tdf1DL0Qy4oSiBRgSGFMXXuqSolTuaJtO7bXG9p2kBhUz9SVtcxmcu5ZHS1YLGbUVSUKhAm22x3X5xv97l4Ir9qHlfesljMW84aj1YLFYo7zEjN1fWB9vWOz2bLdtQxDGFVanLMs5g2LecNyMRfynZXYP8bEtu243uzYbPf6Pt2jMTSV53g15/howaxuZPwbUQ1t25aLyzXXm+2oxGW84eT0FJhUT4y1ohYGVNZzenbK7Tu3STnxzltv8LXf+aekoWWxOuGlT79I5QyumjGfzYX4n42SMOR+mtpRV05UgoNhbda8tnqV1xffJiBFFRkYTAcuk0JUBUXDpr5m73es8mok0Ntsda/WtdtM6muWovzTi1V6kqKCApQ6Y/HGkaIQFZ0rqqyyPztr1dY9joFtIahYLbgLQ2AseshpJFCMuTQzKZjEpORppHhDVGDk3BQDjOqRmgsr0njOiRpz3TRUdU1dz/CqJN3MGipfAUmIdLugistyCb5yLO18jAPHDS1ndrsd6/VWK4Pz+CeU6Cjj6CApaCx917HZXDMSnzOi7h3CqO4ybrGmbKMHsY5ud7O6Ga/FAOvNFuucqEErKb3szyV6KXtZHp8VYxydXaVboe7D473KfrdrdlyeXnJ+54L1yZrO9cQk9swxqkI4KAlzsjkxyiS3GBJKUNLzV9aHXQoHBpOpjCiMipJpGkn3kMlmsk1MKY+KeYX8YQBLhGymWFLjkRv8kfKZh3HKGNwVYp0SpXTNLnOjxKdJ33N4PeN57GAMF1JbLkqHB9dQLMfK2C7vLbFWTGl8DFYVRtNB/DqS0PTvmawKpmbsM8Y+kFtMpLEvJhKN/CKnTMh5zCWnA+U0W+ZUPoiFKM+R8T4mgEqJVHqv5Ey2E3lO+mcc3bInpiwxtEHyetoPRUmrDFgdDeTx+U1FCuMzH7+X8f456BMo5xxD1hyiDveDNn1OOVaW3+fDf433f/D3cUyZsW8K0XK6h/ErDmJyDp7P4Ynjk/ZHthm+txXNwWsuzy65PLvkjc+8wXK75Eu/8yX+o/Af8cziGW7dusXdu3e/51fOZrM/NEo5hYTzt//23+bx48e89NJLvPzyy5ydnbFYLL4jmeD4+Jinn36anCXX8u677/Lo0aMfwB383pu1UgR+69YtUUvS4oaxMClnLi8vubq64utf//polfdTP/VT/PRP//QP+vL/yLUPkkGcc99T4ej555/n+eef52d+5mf4J//kn/AP/+E/JKXEpz71KX7pl36J4+Pj7/p+59yo0JTJ3Gvu8Tfu/g3+zu2/w2Anksu1u77xM8C7zbs8rh7z1PDU7+U2/1A0Y4ycs1Ul6fj4+Mb8+r22GCOPHj3i3r17o1Xix9ExWa/XH7LvAyFe/n7V4YoyUhkX341wJBbHH5+4mRHc4OLsgjc+8wavvfIab3/qbfbz/Sdhziftk/ZD1D525Hd44CqHV0CVdyzZJgXTpmqOqeab8X0Fxck5kaKCrr4SEC+VCpc8VkEXSCxng0sBY5NW5cMQE8aZ8TNF+jwrmacHY1VBx47JpWSngzElmaBWc4cHSbH1GClMjBVTmBFcKv4gRY7ZGEPfD+QBBSdEHSEHg7eWoJkg5yxGq/EDcr0xKEiHwThLGPvAkZMdEyExSIVV2+0IqRfLhFirNVSk8mCNKPosFytWqxWL1VysdSyaNLH0IdDuW2Ho71q6XpKpQ0x0Q8t+CPitZT7T6te6EpKT86xmM5Z1QzoRe7S2H+gGkcAPQ2Q/9LSXA5drsfSZzxuWs4bFYs5iMWOxWLBarQTQJrJXdaVOpfevN1vW6z3tfmDXDnC1FVs446gbsXpbzEVa/9as4c6tY0IO7LuBOPSEfuD88pqLqz1dnzDREIbM5bBTsoWMyqau6fqOGDNX19dsN3vWF1e8/PJnqWdemN8ZLh8/ZhhaHJlknZAoFoYcBVQ2WPooZAtrDDGJclAY5BmXCo6c5Xm3YcBbS+M9RokF1ol9QsiBXdviksHVKuVuoY+RLkShfxiLcxWVMzQzz9GqYXl8wnwxE08LMm3f03ZRFItyEikKIxXgR82Mo6U8h6PlguPljPmixlTQp8hus+fycs1mt2e92bPvM8kkmqri1smKs6Mld2+fcPtsxdFqhfOefdfx8P59zi83vPPeQy4ur2nbgZylYuZ4ueDWM0fcvn3E7dNjGiXb9H3g4uKKJ+eXXKzXPH58zrbt1TbKslwsuPPUbZ596hZ3zs5YruaqmlTTdj2Pnzzkvfce8dbb9zRJrxXmrmK5XPDCc8/w/HNPcfvsiOW8YjGXqurr7ZaLqx3f+NbbvPXOA9q2YwgDZFEjOT1e8ekXn+XFF55jMa+pvaNWIs29B0946+33efu9h1xtrglZZPFDH/CuYjlfcOfF53jpM59hMRO7s8vdnt2+4+GTC157/U0ePblkiBFnlTzpk1RwVwKikQdyHEhUQkwIidxDp1LBOfV0YSCHHXHIdL3n+OSYT3/6eY6Ob5EQ0mC2mRQDNotN1WLeCDHHiU2h8xZfQ8STsmFIUkG5XMxkvGnuLUUBGKy1UHtJBBuL1/LEkpytqbBavZxMpHIW5y0xV4Qg5ISQZOvJroHKE4ZOiEZZ1cT6SHCWyjpRT8qyhmMMoR9I/QAhYVKi37e6dieGLIQFY9SqzHgwhkF2JbKzAi5EIdNgPAYv4I0T65hl3eh7hSTknZNEu5Vke1GUsd7jrMcZRzVvmC9WYMSuqRBNQsq0Q0/fi33M0HWkYaBSwMhUtVgeeIt1hiGKtWgabao0eZnlMy1TdXFCyC7KxsCQSEV5KefR3o5kyblYbU3VzMWSwAZNiphSvQoYJcCgBAwiqMWHkHYiORlwE0EqKOnGZktOgRQH8Ortqwo5NstY6fuetu+ITPL+mckuIcagVm9m3KNjTEJElvS3JvOlb4YUSMlj4gAxMCBqQAApOWLsNdEvRONCkj20mCo2H+W+cwYUIIqqylWIQQUgzMhenuMEDKOAWC5GEiUJnSKQFFgMCiqr0qHu7dLfeii0RlUbNerS74spjPGL2IkxqjqkGBlMHhUuBdtIDKHEEgIMJJJa9RYAOzGanh2AG6YkqhUgLEDnqO5AwchUfQOpPhZwSAlrOatSSsBix4NkHtFIsYCMqZBrmK5BAVVyIhWSUhIVFIMt3ankn4gbS+0VKEmTWmEqRA4KMbDEcIZkyjNKav1S4tcx+kUAz6TxohCUMEYtACcgCA7BnWLtkMYYmrI+hFTeMI5BKApKpd/R2EFUxqRIYEKxspkAEjd+3wRC/TBIOn+vNgJY5We97nEelj8UwJKDfuQQzzsgD6nqzWFupDz7ovpTPpMbQFgBZgSoLso7GbH4QsGnMhcLMDWBQAU4G79g/N+c0TV0auP1lus/BIQUFI5R1lo5mgjZ1CRRuSnCtLJGq900AjiKtWlSJTozCjdJR1i1ds66LjpCHCiWr9bK+ppyoq12vP3Cm3zF/SZ/cf4Xeb55RlRZ3FS3mJF5EJQg1A9hVGyLOROGQoAU5bFK1WKFVOVoKiH15yyErYl0FNV+MhFiJ9e2b6m8F7JRJZXYlapLFnJDGAYh1Otn9L0SVEJiCAnMgEGKY7wTa6XyefOZY26bUTU2p0Tf97z77vtsrtdstqKM885b7zCbNcxmDXfvPsXt27fxtZc1ORsl01zStx23bp3hvOX27dvsdzv22y0xR6zJZKzEFx7FqaVXYzlrGsRuOwwkjVvGdQw0zoujFe003i1WQf0hBFm3rKx1hkn5JWPIxohFqjPMmoaqnnF6eov5Yg45MwxC0lmvr9lutsQw8PjJOW3XQU7M6ppn7t7hx1/+HM888zTzphZiu5VrH4ZIe90x9IGuDwxK3PPOMmsa5k3Fct4wnzVKUHcMIbC93rBve9bXW/atqvcicWdTV8znc1VnEtKOsaKAud937NuWfdux2+8ZhqhzRWL7xWKmJKO5kN9qj/NW1IWut6yvd1xdXdOp8lXKsp9UVcXx0YqjoyWLea2EN1Fi7vuBfdfz5PyKy6ut2CXpfHdObJVPT444OTmi8kI8dGpxd73dcXW14XK9pes7tfqUohdrxDp7ebzi7PSU2jtSTLTDwBAi292eJxeXQpBTZS2MWPD6yo+qmYashDAl7wg7mjAMGGC1XCEhz8DtO7cx1uGs5fT0mLqei5pXLHGhkOOiC4RZTwiRd5bv8Vsnv8W23qhiieygEr9mauvwvtJzHSz7JXWspQitHMhNUTCUlrIQEopaUVkrRYXbYlIhfSKqd8ZLzBjE8s7o34R0bpVYSZloEk/EOMYzZiQ2lDyQjN+yT4nCtnyGKIjrvkFReFFtJWNVCdjifMVivhCilDPMZ3OsNbpeGZ2nWkCmCj3GOObzitk86zlE41TUFj4JmTNGsSwjJVyKrOZz7t55StRyd1syWdSr19eyDgyqAJYZ1xbpU4lQClmmKOWNZN2Si0LjtjztUZJ6U8UYfUBjnk9jWMPBPmko1JBxE8xIgcVQD/pm3f9Tpp/3rI/W5BTp64Hz2+ds6x2DG8ZnKNZzQuoTkp4ZVeIkNlXymZLJVWOo7IhIEeO4XVMIbCZLoVgCjU8Loaj0hVrsJsQWT958QIS5cafT76dbHz9jUqydxmhWWzCj4/YgctHPKf16kyQ0klBSHr3o9JFP/9Z/lWvISIoo5qiO7AlUbWp8Yvoh4zqj75czuhnjJ8Zxpd8xBccHsVEZQwfx3/jzdA/m4BrLPEypnGUPbmr8t0aO+fA9+nlyK1rokMYYe+I/TRFN+U95LmMsnfWuNajLN65f/mY1Ni/FCDeu5bDv9TPK+bvMcVPOouWMxWG/HLx3vNZJ8fPwTDH1881+N2onO3V7+aL8odcfft+PwHHik/bD2gxsV1t+/c/+Ov8t/y3/iflP+CyfxfBHa1B1Xcerr77KW2+9xeXlJe+99x6/9mu/xunpKScnJ3zhC1/glVde4eTk5CPP78XW6JlnnuHJkycfWynk/85W7KTm8zmLxUIKmRdi3bbb7djv9zx69IjHjx+z3+/55je/yeXlJSEEmqbhs5/9LH/xL/5FfuzHfuwPDTntj0prmoYf+7Ef4x/9o39E3/d8+ctf/pBNV4zxQ9ZwXdXxpH6C957fPP5N/psX/hveb97n4ywPz3bPchS/sxXY92rfTc0t6vngB9nK9Vlrx3WhrmuOj4/Hefb9VEoyxvDMM8/w9NNPc+/ePR48eADA5eUl9+7dA8Sa8g9azW1SBs3f45U3W7SR3eLDio9Xx1e89/x7AGyXW157+TUuTy8/ISZ90j5pP8Tt9xwBlEqzcoh0VlQhrPP0/TABq/DRi6YREKYcZHNGPelvHvyr2o12LXJOKhZKGXIkIcokZfuQiqeIQVSEKucJUSug4iSVH1NJ/k7h8fTv6SA4go6a0EtRD7a1H4kFw1AUlyZrhRQTQxZwEZOovGHZVDhjudx2DCkyDGByIkXLUBIEABm8hVXjqZ30URcNuz4StmpNkgKkoKCAxVnPYDoMothkcyAvFgwx0YfI7HrLcrXi9OSYxbzGO4f1ltlsRlNXHK3mnA6RXduzvt6x3e4Y+oGYEsM+in2RbXHOUNWOxVyl8A14Z6lrw9FSqvtiiHR9YLfv2O5aQkx0MdBe71lvBqzZ4CvDrKmYzxuOj5Ycr5bU9ZzZbEUiM4TAraFnt2u5XG84v7hks9nTD5E+BXLbYq93eGuY1RXzxYzZYoaxlq4XgDuEQB/BOY9zkZTDCBw2dcVsVovKwvWAM1YAjJioq8zl9pJvvvk62UDjK+6enZES9Pu9JPNiYr/NWikowD45EwcDOdGmnk2/px16YjTMvKO2ov4UYqKNgd3Q471nXtd4q4QOJeV0QyIGAbdjH7HegPPYpmYx88xmNScnK1HSipl+iAx9wHpPP4iNiMkJg6WZzTEwkiKytdTOs6g9TSOWevsQ6a92NPsI3o3J75gg0uAby7KS+dmozUNMcHElwIFz14SYBBBo5Tl1QwTrcbVMpqaucLWl63seP7xie71XEkUUJZddy74bCCmTXI3zBhMj3lmWsxrInF+tWa+3zGYNzjsMmd1uz/p6TzsM9GTs3BNDhORYzBecnpxQ1xWb9YZ2s2VWN9QzyzAEHj264OLqml3bYk1mNmuoUkPlPbdOT7h1suJksaDb7Rn6QUgXOXO53vD4fM162+KamtP6NkbJE5bE7bMTjpdLbp0e4Sx0bUffD1yur3jw4AmPHot612K10KSnggcoKSEb+iCKWTFGQtqLyo9WMYehF1JjCqTcc+toznY3sGszx6cnnJ4dY7A8fHLJpVo/lGTiZt8DAefFess7OUwOqafIhWPMpECSJJHlvccqMSkOkbqq8dbijMUpgJOtEXsPt8DP5xjv8d5Se6gUtNjuO0LOtH3k6mrDZteKJ3nViGJYSsRhYNvtxPavbsiqFEZGFEViFFl63+AXc6zz4x5Qhw5rEk3tdU2uCNFoYj+M6kIFIBK7NKfKDAJC1VWN846qrsXSyVmqymOtgEOGSIpiATEMmSElhjAQwkAOPcpQFfDRN9TeM1vOsXbBvKm5fXrE0byW6gDfiHJNzvTDwKNH5+x2HZvtNevrDV2IYiEDOJPwqrwh1aOGmAOpJK/TCG9irBCCRgDFiOXVWNWJmsloBbiQbdQSzAoJKSR5T0pAEkUG61SVyRr6YYCstjpGduAYMzGCM5GqtnQhkFHrtBhxThQDQj/QDR1B9+IUhaxTDoTFIsM5K4RjBRxcdhgrc9+pdUOxJByGARcjNkNQoBsjn+nVksYY4RqIwkRCxGak15KqH42VyApWmYwSV9C5kYgaL4hVoIRQYZA9U31JyGrRZLIRqzIEMLaF4KRgXYwC7ie1iCuJ8RJnJVXREb2PBEmse4pFQ1SbI+vlWYqKUSF/qRKBqgkKuSyPfW2sHYE5IeDIGhZTIWyYCVTKChzlkkBPo3qHKAApJd1K9Tjmg5UviaRV/eOZ0xhNlhcLBbXHoACq+pm6NhnMSJJDVUSsBpLGGbXHEHBmGAYKqbxYaaKjXwvBlYBuGIZASfSX2E9vQaNCvT8DjqKypMCmEpbGPP8hSDd+Zhpj4em8bcaq7PK7Qo5yI2ihCmwjwlRALhnL8QDckVC5AELwgS/7oW6HRKViu4Y1qk4AMp8+/J5DYO6wHSqPCVgm63jZZ8uzMaiaac7kQ/JR8azWM0dR4ijzYuxjHUOFWHVwdTexNwW1CkVpBBCzWtAUYFZRtHHe6TqRctHAyDibR+vQtldgtuzxSlzSq8dqf9a+rNGZmA19TIVzpWCkqDTlKIqKRlXPRPkvQVXxO/mf8u72ff58/+f5s/U/z3K2oFYgvthUeyfkkahnj74XO7ZYFH1CJoSe3kg87pylqtxoCWStkK+MuMIJITEkhhAFYM+i7hj6gbaPGNPjbJE4dzS1WsPZivmilvUxR4IqJHVdz65t5ZwahVjbMmBagzPlczy+8uzblnbf8eT8MU+ePOb84oKhFzJQISV0XUsIPW234/79e7zwqedZro5k38zyrNq+5cnVBSC2glU9Y6dEn0KiGIYs/Ti6NRkFikWNoo+D2NllcNmq7a70T8iJIYkFUaXVk7J+AkaUdlIqalFii1k1NRhL3Ygtc9PUzOdzcs7s9nLf6/Wa1998k5wy1+srYggkY1jMFzgDt2/d4uTsjOViwenxEU1dYZwlZsOuHXBB9sKYdD/KkHEYb6h07XZq6Z0y7LuBISTsrpP9PASGIOfcom5inO79TsZcDIndtqXvw2jHGJJYI4exoMNpPJRVScuDyWLd1g0S2yqQL+RlsQ6MZKx3QlDOUPlKzh7O0Xc9oe+F4OYlXthuxcJcrK7AV1JI5awVO+umkrnRDxLTKDGm63q2bUvfR6yzzOZzAZGRtWcxl3P6vKmxhtEatu06ttsd292eGCNVXeHL6pZLjkO2gFTigZRJhJFokbLE0zEEvvGNV+mGnlktsW5O0CgJLwMP3nvIw8ePJ+Ad+Nbzb/BP7v4mOScGM4gqoXGkrPuprpGFAGr13/M842eu/3kaU0sRjZUiHadrnwWMtVR1jbUe52sWy5WQ+a2oaM+aRnIgSeyd+xBp952coUIgxYDJYjW+3l6TspDiJIaY1nBnnazD3mEbsR2ezxdCsEkJstgXphQV3C8k7DRxXEBtDKvRum0+b9SCzWvORazXS55otI+EcSzIcxJiVIqJnKTIzZRYoxRIqO23NQ2zWc28ruTeVA1W9hixiNm3PV3b0nUd55eX7NsOMlxfr9lvdyMnZt+2YlupcerhtQlp2h2QGYBCvDaThqDBENUmLKVEtkUZPdNWLbvZHjknw3q5ZnO8HckegwtcHF9inOTWDKpUaTPJDlhXLNc0Bi+KWEBWwlZRJMxM1l+FgJbztNfL56RxjyOXmANI099LfJWYChTQWLds8OWMXPKLEzmHMYYeCT7ap+h8KIq1I3kJRhvhpIUPN0I/DSlsIUmVOMaOj2OMLUqcP0YkxozXksq1GFXjU5IcoHNjyokWK+KseV2pGzE3Yhn0fFMymeN165r7QcL4mPjVGyuxTekHXTb40FvK9+l/D3O2pZXv5SA6zBz8Tz78wKLZqfOrRJMH8ZfEYDdVVsfvyuMqN+bEMUXtNY73nMcLMOPdTg/WjD8fkqrGzzcH7zwcDB/Rbn62vD9z2E+Hz2Hs0Rv3M/6kj+LGtf+InCc+aT/EzcD/xP/EV/gK/wH/AX+Vv0pD85HnuB+VNu0zHz0/zs/P2e12vP7663z729/m/v37N3IjOWcuLi64uLjgzTff5Nd//df5l/6lf4mXX375hhXaYZvP55ycnHBxcfEHdl/fqZXr8d6P1l9HR0fM52LhvlqtMMawXq/Zbre89dZbvPrqq+Sceffdd0dbqNu3b4+EiD/9p/80p6en3L17l6ZpfuC2fJ+031/r+34kKJU25b5kD33rrbd47733xr8nk/i1v/Br/PU/+dfBwM7uiDZ+6LM/qh2FI/7dt/9dmtR86G+HFoKHKmW3bt2SXKv+TZShP3q87Xa78V5ijJyfn3/sfdBay9nZ2fhdAFdXV3Rd913fd3JyQtM042cUmzzg962Q9HGbc46nn356/Pm5554b/y1FaKJide/ePVVthffff38kMsG03sGHrQM/bss5j/0+DAMDgwqSCMHo/Ox8fO39Z+9z75l748/trOWdT70zFmKXFl2UQohP2iftk/Yj00z+mCvI3advjeDI4SFO3H4MTu0prDO03UAuIGieKkoScmh3h17roOe0PNofGGtw3ksVj5Eq4NoZGgfzxhNyYt8njFrgFADDKnBpjADRQckWBrHcyiDJYAWtrJNkoLeqaKCJg0ErNo21qlIhm6t34nuZYmTQBJktyUDNCJqcRX3EgLdiB5ZzIoREyPL9pDQlo41WJmnyZlY5vMs03rNre657SVwZtI8VeRFwxI4HV2uElFNXjtmskcS08dT1nMVswVyVjI6PVxwdr1guF3ik4tI5GIBhSGy3e663ezbtnrBvGbowgiQpi5VB7TyzpuFIrbqqyqltjtx7SEkVmSJX62u2272QDZQ9bZA+ddYy8w3LxYyqrkabmn4II1Gi2MiIlLreqyYWDwGdrMByHEHUzCTPHMekv8lQV455UxNNZL3dcL3dM4QB5xyr5ZyTs1MePHyEt56T5ZJut4E4UFVeQPFoqH1FVZV+EfA95Uw7dFzvNnT9gDFiV+eNwVvDoCSlbgikIOPO6dgrQJdVpMIaWMzmnJwdM1/Occ6TglZ3o4mQJEk2X1WSEPVOiGrOYZzXRG3CZfA2M2tqlvMly+WK2XIGBjpNYlZVg68c+3anct+GQRPYKQqg0tQ1s0ZsHGbzhvmsyDBCiLBrt+x3WzbrlvWmpR06KgOVs1S1Z7GYc7o65uh4QV1XYxIlZmj7lgcPnnD++Iq2ixhvsDZjTaSuPPPZjNOTY27dOqNpakhi+TAooLHZ7Xn85IL19Z6UDI1VEl3lmc8aTk+OOD09YTYX8kmMAkZ0IbDdt1yud2w2ospj1aKxtkaUgGovtg6zmSYBhUwUTRYALAS6toUcBWTLeQTPRep2TjNv1IJD1AViNoQA+/2Oq8sLsX3TtS6npBaDiWYxo/EGkwZyTlxvduy1Ir3r1pBahi7hqyVf+OLnOb1zwmbd8do33uTR+YUEd4hy16AkTnJUiNbQ9YMosDWVqDMUxQ6dX85aFrOGxldqHWVpZguOVivquqFyXuxGULA0yzjfDz2DWqX0XUcKPX0nNoPb7Y7NbkdMkbpuOFouabyoEGz2G2IOzOe1fKepWK5Oqeqaysk4HhP6MTOERBfUZisO1FaInt4LuOEqkYp2zuJrj7NG1jxb5ppYqVkjUusxRIahI+TAENL4PSVxCxnvpCK/bhrwNV7nxHJWsVrULBtP7S2zRUPG0Sdou0Doe3Lf0+9bdvuWbd+y3ffsO7E+GbqOFCLZFgBXADRf19iqYlFVzGcyb0OIXK3XdDnS7Tq6XSdAbL+XeeMsYImF/Zrlno0R5Z2g4mp9m1hve3JlOV56XA6U6mOxZ9MEvzVULtMPGWcr+mGgDQnvUMsSR4hykJt5sdXplLwx9AMhiP1QNmgfCzFUEvNWk9lK2hnE9quua7VCE8Ug5xzOqXWHkYT+IJuqkAnU3kj2IIkdypoq/1VrIrXxGW1QUIKILT8bJTwLeBGirIdR1UmcOyApeU+MohZUSH5CNpwS35LgFSKQICWihmKMIYdMCAGrieAhSlW5rxxV7bAYgqrulGpwY1W9MmaGPpCSKGcZHTeiXiT7oFVwSbbOPAEqOVFVThQJVAnISvkvISUSWe0dp+S5cw6DWjtltY7LU5V9UffIuVijFcBhgrFkb0bvR+K2YqOHKlrKixIWBcZKrKmAR8xxAoWMqpwVFREFDsIwiJKMMWCm+A4mEEAfl1xrYgJ2ch4BqkMyu3MS0xbiWAGDKaQ1JZaNn3mAFhRyYclNHuZEpL8m4NPYIrldxo5+V1EdKwQWjWemNhGfJCwyPHp0yQ9jW/5n8+mHw+ehihm24IA6/0DX3wNAcHxPQXKA8o/MZG8yqSjo34z8zRvwXkDnELOMPzNCfzfGiTWM+4AAUVqJrusFOY9jcFSd0E8qllo3gKGs16CKd4l8U+1r7JwJWJK9axoP6QC0KjNwhOeyQHTeKfnHiuppFwsSNSlpTODZwRzStdE7iSsl+LbUruHHqh/jL/if5fP+FZqmoZnVAtAfPDdRn0iinjMMEtPrulvOLEXRzKkFa7HqKnYxBSRLOY8KS13Xi1ptlnh/XC+KQtAQdN+02qdJLdsiTx4/FsWNlIgh8vjJ44N9nfG5Q6brOsIQRjCWfAAa5wJYS88VghA2U89mfPZzL9E0zWgZ3MxmbLdbsWzNmQf375HiINbjAEn2KGdHyFMV2DIhBfqhJ4Skz8OPRL6kCoYhCXnVYEclHecc1ljm8znWWeYzUQ2aL+bMZg3GWvquZ3215nqzYbPZcr3ZyHkrJZx1zBdz7ty5w927d6lUcn0+a5TgrIQnL4RrX8i6emYoRNoQhsnmMhUwR89/xRLKV7LfOYdOJVFKDgPD0NN3Eu9Gtch21mCdEeJQU9SX7PgMM5JQ3Wx37HcdoZCcrJw9nZXYqmka5vM53qmNrZIQY0r0w8Bu39J1olzoDGPMWHnHrGnEhqRyStRV5bAkBL22E4JeOdcZa0bVaessde2pfaVzeZq3RYUwqO1ysWks4LkxZiTSCWFXlF6S9lkYBtp2TywSqOh6qfPOV6LiJFapia4buLi84v/4P75CH1pMDrz8Y5/n2ec+xZ07tzDOcH5+yXvv3OeffvV3WW+uyCby+LOPePvz75Bc1Osz4/NPWdWiRyJHLlMIj+fPbv40X2p/ksqVc2vF8dExvhLVoaoSEqaQtqV/QlLifC7EbInV08G6ICqqUmVcKTAQwsAQB5xXEh8G72c47wjDgLWiQPnkyflIio2q1jifNzx1+7Y8Nyt5h5EoZIT4Wqyvig1z2Q/GdToVEnjU/+rzUGm7si04VZlDv8MXe8vKUXtRSSvn+6CkCVF6i2SNp4cY1e5SczFRrNJLvCD3oIpNuj7U3mOdpW1bdrs9Q4pcXV1xdX5J3w88fPRQC78G3TvNaDVqgVBHgu3pqoGr5Zrjbx0ztJnWD7z7z78FMyE+DXagq1u9ZyXk2BKLStzXB1EiHdVokfu0ZCpnhSwEaglalNtlvke1Ny1qR1O8NRGVvNrKFYtUNKaUpUNyLpmiZinhctmxxxiVw+es35HlWszh33Me81Xjrp8n0k4JNcc9/wM5zJiK0o0ZiSpjZFLeqzZw5QskDmEkLZuyLuj5TcYrUy5M46sSQxk9fxWbWElFGf2um3HDzaxxHu/t0Aa8XGfW+AbNFx82W5RZyzo1fvAUf03xQnna5b/j7j8SeqbrGR9GOXUwVh6Mry1/SeNnl0KVQyDQwLhvTU90Io6P12GmMTARfKZrHo8L46WV78kqyn+YZxgv/+A6D9Vd+fBzKLc3hizljHT4mdoB4/UdxNI3P2q6j4Ofd//v9iNe/YNtP8oElz/KraLiz/Pn+Q/5D/kX+RexH1odfnAtpcT19fVHAuwxRr71rW+NgP0wDLz66qvfUXFlvV5/T2LCB5sxhhdeeIFf+IVf4Pbt2x/6e86ZzWbDN7/5zT9wRZO6rrHWcnp6ivee09PTMT4rVkz7/X60iHr48CH3799nu92y2+1wznF6esrLL7/MF77wBWazGc45zs7ObhBJPmk/+u29997jv/vv/rtxLvzCL/wCX/rSl0gpcXV1xf3797m4uODv/J2/w4MHD0gm8dW/8FV+4xd/g1h9PGJSaVWq+Lfe+bf41+7/a9Su1vywG9WGirWgMWYk05X2+xlv3wkqjzGy2WwAIWl961vf+tBacOfOHT7/+c9/7O/6UZoPH+yX6+tr2lbihAcPHvDgwQPatuXb3/62nMu1rz7Y9rM9XdOxW+x4+5m3efHvvogLjnbZ8vf+2t9jf7SX1833bFYf+Iwfne76pH3SPml8p5PHh9vvQUnJ3DjslAO6nHcMMWcqBPT1vtIKJZHqtwpaFZB0TNwZAcvEMkNsb5x3qnyhG1bOgNjn9ABDAYjk0D1W4aPJKz18D4hyTTkWC7EDCpHAqfpJIf1ktBhJrVMMeZTdNcjrKy8qSsMwjAnyUtFqvRy2SzLWewEL+0ECyBCT2oGp6kEq1folcSCV0EMWUHLftcRkCUmSJWJTUQAKtfZQz3cMOGNJScg9XT/o4dzhXUcYEt2QuN4PXF23HF1cc3I85+x0wWLeALKR2xxprCHNaqw1tNZxnbcEtYLLWRRewhDYty2X6wsq77FOgZYYCVES+zFnTTQnrRyVZOYhgzkCMXTs+06BDVEgwchxRSrBpQqxVLjnkqwooEGeniF2qtY0psjFG1KQv48Vcgp0LJYz6nrGPBnqlLh164xnn36abALX11dsrrc8GVqMKjfQd2AcOUJTDbhBExXGkbH0MWqldmIYwNqEsQONs0JSiJlsHJ6a5BSoLCCrjvVsDCGLL/3c18xWtyTZHwNpCMRS1QVAwiLEJWctNjtIHpM8LmeWVcNqtWS1XLBc1WJRUIsyUcyB3XbPZhCrvRiuhUinla3eO5rac7ycsVycsVo2zOoG5ypV6Qp03cBuv2XfDbT7yL7tCUnmRj1znByfcDRvODpaMlvMqesaZ52Q/IagpAWp9m67yNvv32d9uaH2npPTY55/9hkWTc1qOWO1bJgvGjBSed7uMl0/sN1vuFrv2Gw7hhAkEe0ys7piuZhzenLEU7dvcXy8ovIVxskY6PvA9WbLfr/n+rqjbSNGySrGqL1DXXFytGC5mLFcCMgj1YiGEDO7rme92UqVfxS1tb7I6efMYlbz7N3bPPPMUywWMyxZVQYS+6Hj4vKat9/aknpDCJmYRe0mhQgq3//0yYIUe/a7ji4MVNYQnKVzmd0gBLOcMp96+hl2fcvu3R2P3n/E4wcXRGuJToCMoQ8FMgUk4RZzFsu57Eh9wnlH4xtc7UgRhiRqVrWf0TQNxycnYKyoVWVHuw9cByHHpBDoh0ibEuvrK4ah1z6rBWxKg1YtG/ow0A89pERvYNdaUt2ItcsQyWT6LhH7gcplnNkydMMo49/1gRxFgcV5Sz1TT+aFqMU5A947mW9ZABlJ6g/seiFKxWGQNSoLMdU5IZTWztN4x6pZkBeeat6wWC3xzrJazPHOMZ9VzJoak2HfR7ohYWIQq8l24GK9pW9buq5l1w5su8B+iIQUMIg6mvcVM19RNQ1Hx0dKwpJ1r5qJwpo3BpIASZtdy67b0Q8dbdtisez3LV2M9ENHjpFExjeOEDtC7KnqGb6qyLFnGHoyYuFRe0u/3dLHhAqEkVKQ18WBhCEOQYuypYqabLCVEttiTyDSkRhixmVPTgM5RQHzqoYhdHSDwTpPNkkVLdQ6IE/WWgJqmtGWNSt4lrM5kNo1ozywXEuUzSGLuokA3VbWklj0cSSRPNlUHFjL5WIHJkCrtWZUfDDjO4uqiuz9AtyCy6KlY3Qvlrmv1dU5g0VBFllHDg+rthAaYAR6jAXnJY45BBZTjKRgMM7i3KQ+JNXGcj1EAWCMAmVC5JF9bnpPVgUZvaeUNdmucLiZyOLDoGuXMg0mcAQl5yg5IqoijbGQowJOavs4Zr8NE4GiEMEm9aHDWNKZAsqI+kaxN8hZNEuMqj4IeJQVyC5kHcY4sShw2UJALFeQJwUdU96rz6MAhjkX4kkhRxwiVWYCvCjKXvJsSxxciPKHSbdYCEOI1ctoK2OKzeD0+hvEm1zUn6b7M4o2lJhnjH0O7cXMBM4cYBs/9K3MiQLmAQfjZCIZkjOHs3vEhjBKtCuAfwHZjICdB2cE+XAlK5IhHmgAmOkq8gFwZMquWWLNrHEoGVLGmgM7kPIV473ov8rYLUDVeF+WTJC1QM9GpViiWHIUkmjOebRLSrmMy5sgzUgU1J8ijGTenBmtTYyqRR0CVYd9ZPR6h5xHkhhGCj++kb7BO/F9fnH4Bf54/8dp2k7UUWeVngd07uWMM1Br9V8whpyHG+qOBWwOYaDt1cpJ9/kYopCmgbUSaFLKXJxfsN/tyEy24AWc26yv9fmXNWIaWwW8nZ7x9Kw4uP9xBBTQMefxjFjGqMlM5JAQSapms93seOedd/jxH/8Cy+WC1WoJZPq+o+96wLA6XrG+uqIdhvEZFOKtfKHYSsWURlXTpHg0JuKtnBHl/izOVBhnqJuKpmmo64ZGwQNrrarkGVzdUNVztruW8/MnvPfuO+z37bhujnuIs3zm05/h+eefF2s/JdY461VNtaKqndiWOavjTQhpqR8k1ky9WsoxxtPOWZrKqz2fp3IeY6wQ0FQdpVfychgSQ1EcIuO8YeYaalXM8lWlRCwzWp3nXM75QjpcX29p2w5npXDneLWUc01VUVcOX4mqoSgxSlFMHwYlGAmZzamVorfFDlCKfZq6lj1Ptj15r9573wUhlWFHkNloHNHUNbX2QVEQy+g1xEjX96PyGKqqUxb1yksRzdFKiTyo2liWOGrfdlz1PTmq4mAZx0kmfuM9y1lN1gKPoPd3fv6EZDJDiuzqLWGZqWc1j8+fsN1u2K637Hct9iXDN6tvkUzg+taaaDJmLGhIo92WyUKgts5gjWNu5/zp9U+zMEtmpuGz/jMcPbVkPl8wm8+JUYhjxkg81/VSoBGTnFH6Qchq1lkhdoGS6GUvTUpCTEpSGsIAyNk/pkROEIOMqe31NZcXQsC51mS5EOPDOM+FDOT5zGdeZD6T8e6dnXIPuiakXMjQE/murCDjmDdCqq+cw9QVOCeqV2ojXZS8xAJQ7n/QuU0p1Gp72iDkvxAiXVQLzKL2aWS/8EW5qRbyl3dO+kHnXhltKSX6Qa05w0DsZJ5V3kMwnJ2ecXp8TEqZFz/3Kb4ZXuXvXv4dIWl5IVqmGMgG2mXHMCtFHYGXH77CfHfE9dmaq5MnOBtHtVNNwGHUItwUxU00D6iqwoWYl3XsO+/IJsqaR1E8TKpqyLjWk/M47kfCjD4rw6TwPoaoOZGtJSWDMRIjpnG5N+M+e8CbmQIyjT/HOExjM2tKMYRRNdZp0xj3DmMoGrYSp0/vl0I7SsjAGD8fxAbj5Yx7203CzKiKlEvcUa5T7B5HclIJQse8YtkDiwIUU75WNz9NbYzXLLGQfE8+uEZQ1cmybx3EbLkcc8xUaZ/Llx3EYuUMxsG93WwH8e4NYo+58bfxIZhxKdX/HpCcD75p/M3Bsz0kC43nnIP3Hl5fPvj94XoxnsH0Gss1lMcwxl8Ht1riM3PQ93BjGE73nKfvzh/49+F7uNGv0/fdjH8OXpdvvPmT9kn7vrSBgb/H3+MrfIVf5pf5V/lX/0CISlK0Fcbxff/+/RFEf/PNNz9SjSjGyDvvvPORxCPJ+/zBKnLknHnnnXf4u3/37/KX//Jf/pDtmTGG1WrFSy+9xDvvvMN+v795xv19tMPz9nK5ZLVasVwuRyWXyZZ06tMHDx7wxhtv8JWvfIXLy8sP2Xh57/m5n/s5fuqnfmq0uP2k/eFthayXTGL71Bb/KU9KiTfffJPHjx9rLsPS/MsNv1r/KtFH3nvlvY9FUDIYTtIJ//bb/zbPNc9xzDE/Y36Gk5dFeagQkQ7H6fezlc8UG/nAe++9x9e+9jWePHnC+++/D3znteGf++f+OV544YWRoPeHaR588F6Oj485Pj4G4O7du/zET/wEKSXaoeV/7f5X/tP3/9OPXKue3HnC1fEVyUpM+PPf/nmef+157n/uPm9/7u0fmXzmJ+2T9kn7/rWPT1LKExgoB6IkxBirB9QIQyzS1JYcA5k0Bj5F8aYcdqyqAcSYAatVavIaqaQtIJClGDskDF1gPLSnGMeDM2iFVU547xjJSRlRNkgoOFeAsCLHLEmqjFQkyiVmUaDRrLFTm5uUI0OQzzNYTEpqmRM1sY5YoBzIOMvZ1hQV7hEMGKussyZb9FrjIHZBBUghTbLQIR5Uj42HWlFjSsVPvItqoeRIKRBDhrwlpkxdVRACi6rCuRpTNVy1PU8eP6LtOgEwVRkmYURyfygVgEV+vKgiMP47a5W13J0m6sbEhCbpaqfP3YmUOpO6hVVQNGllaAEd5FMPKtU0UzK+Dm6Mr7HCvJDLsirDjKCi9pfqViRgOV9wcnLG6ekpx8dH9H3HvfvvEfuMt40SGMRLWp6vfF7oeyQJIUk3Z6HrIiGK8goxQoSAxVaWys3wTr8/IQQ4o0nUqAlxU2wzHE3d0FSeHHqMd1QmkysviWC1AwDwxmB9RV3XLGYNy3nDYjHj5PiY5ULACmsdKUe6oeN6t2XfDmz2e9bra/bbPTGIJVJdVayOFhytlhytlsyamlnjsQ5Rx+kGdrs1m13L1fWWvu8ZhkDWit9ZXXPraMnRas5yOWfezJg1FdlKfrLrIpeXV2zWGzbbzQjKxyz0tKPlgtvHK24drzg5OeL09JTKeypniXGg2/Vsdh2XVxuu1tfs9jshOWQLSPX8ojacniw4Oz3j7PSE5WpGXdVYLClmtruOi6s1Tx5fcnm5Ztf2ApJhyCZTGUNTe1bzJU/dOuHW8UrsI2sPRtQIhhi5Wm94+OSK7b5lGOJYMUuShPvts2M++5nnePapM06Pl8xrGUv7rmff91w9vOLtt9/l0eNrsexjoBDuam9ZLWbcOp7TmD1DyqxDYtsmtl3Hvt+yafe0bUfOhqqpmC1nrHc7njx4xPXFmmFI4BG7j5hIIWI8VM4JBJbAG0/jK6yzrJYLTo6PWa2OMMay33ds9x3dvsVYwxAMj5+sCTHTdT3e1wXVJeeMsyiBaGC33ZFilLnbJGIY6EOk8gp4Zcfcz6Sy1clsNDHijGNeq8KGKowlhIxlg9qdqYKV81bWeCN2bmGzp9+1XHmr9h2ZHLQqPanynBFAeVZ76d/TM85unTE/WlI3NbV31MZSewPIeB8U4N21HZfna/r9jjD0DJ2M/X2X6IdEdKL+Z5xlVjsWtWc1rzm+NeNWM8f6Ob6qiLHHegsp4lPEV2KT2g9JlPO2LeHJJfv9jjAEQsr0hTzoLNlkYug4O1nRrBqG3QZvDTl5TMp0fUsbOnUd68n9gAkDIQa6Tsiiy7omhp5+iORUSxo8J1xO5NRjjQdvCDlJZXyxo0DIyM47chYgiWJ/E4MQfJ2lHUR9QCwJtWpZgQixyouaPDdjktoaLzZXCKBmrB8THkm37awkjJQT1jhCyYCXvVDJIkn3ZaMxREkKjyCsKiZFhDwFToH1XLLyWOtE3jYEIY/ZaZ8p/OkwTPs2OYO1JecvpIkR259I2dO1KonWOZxxApQgpMCSrC9xTrEGOSRZoco/hShjnUNI33kCJzhIfFOUYATY8t4BhjCIPWAhIUvlulTaFwVMEPJXsc2VexLVixQzGLXOKGQBRYIOqRNZlalQgoZTAC2nieSUFUgoQd2hTdoIghgDJo0xg9G5LmSHUhFdFDUPEJE8qRmhAMjh1019m6dkv/a1qEJYJcGX72B8Xda9vBBlSiukGXGhkzhJSHWJIl81xipWVJoYx4o+j1hA6gKaMcZABXgqxFrMBKKWivAf9lbUzEaVgbIElL7JCvjdINbpfR3enil2yEoYHM8beQSGRkK7towlJsYzyQcTJ8XqxEzskQm8ORwE49+U0JRvQlhGx58FsiZ7s05iefwHYKqZPrGsK1Ni+ANY0cG/R6CzAIZ6z2JRqn1y+Lo8gXAFvcsHH3y4VhWQOykBVIgga/5W+6vMLms++/xnmM/OwDnaGNmtt0K0iFFIMEnVP3WOXlxcsm9bXSAP50sByKQTzp88IUYhV3d9N559JvULBPA2E81tnDsjqKedlmX/lNvKN4DScp/m4GrK2jsSnfTZFBvNEd9FxmxEDtPPP/88n3vpc5zdus2srokpcH19TYoZYzzGwHJ1TFXPGVT1pms7USvJoqCJEbKpnPekY7yeu41xNGotBVkVV0SV1Hk/PtOYEr1Wb+/3O/b7Fmsd+92WEAIxBAqZS5QwZQQ3dc2nP/tZPv3ii9ReyDRFdahWW9xC/Itq11zUb/tOCOtZ91/rHHVd0TRio1t5GUciJiyknGHo6IdA2/dKSkvjQKicFyWqxlNXYk/svTzvhBBPdq2Qv8RqvtyF/F+tNmnzRqzaZrMZ1ohiVcpCiO+HSNf1tF03qmxlPSNaRIls1nhmsznz+Yz6gFyUEgxDoO16dsXubZDxmnS/ckYUlX1Vs5jNmM/q0W4YgxLQIm3Xs91L/xUVlUK8MMawmDecnh5xtJwxa2oq55F9OTLEQNt3XF2t2e56KZgg6nph8BbqSs5ynoGIkB37IdOHgfOLJ7T9jrfvvk396Yqj2TG+9uzaPReXa7p9S4qZdrXj/NYjtaDMmKiEYF0GPY4Tc0LlKp6rn+Oz9WdYVkt+3H1B7K2TVYWoLKTnnNntOoYg5PWioHa4tCVN+g9DwCVHITyHGDBFeRtwRm0jDbRtSzBCdtxstlxfX7Pdbdlsd3Rdq3GAWkwiY6nknco6FELk299+g3vv32M+n3F2dkZOmdVyxXyxIGWx9GvqCmtEUXMxmzGbzWjmM6y3onqGzF2Zz5GgcUYIiWEQi7piTxdTkmKVmIlonslaVTGV4oKqqbQQx+NsJVkr3e6IQeMotQVMmb6PxNgTg6iZFqJrHOWCDDkFnLNiUYcoEl3ba97Mb/ON9A1+13yV3e0t3osPZyk4i5q7clHXKyJt1TJjBSYCouRsleSQQSzZkhTXlXxbHmNjIdRlq6a6qjguZ4iyr0ZMnogwJbdTpIlK3hArZ8WyHkyEmrIvML6+zLHD7T/rvj+97pCgPDVT/s8cqqFNRPmRzKOhqMTrZiRET99rxnizfN+NDb78M5d9z4y/LkV5ZSsvqrQZCTONKQWZ03vLXnfYD+YgJsgw0gVKX4+b5eHv89S/VvNZhwQa+ayJSF9EJSU2KfEH47yWH/PBmY2De8vc6PxyTwfx77gxH8T4Bxf8gc6cfhwjiDHWOiBPjW/RKz/ohkPiz3huu3GZB+cJpvir/E3y3zduaYzhPniZN8NTiUmnopuDDyivGMfI1A/lmR1+ZgZRadVfjH1/cCM3r/uT9kn7/rVLLvmPH/7HnHz7hD/5yp+8obBTWoyi8PfBM9rbb7/N1dXVd/38lBKvvfbaaB90fX39B64+9M/ajDF88Ytf5Gd/9mdv2EV98DUnJyesViv2+z3r9Zr1ek2vRPePIksYY0YrKYDlcjnatM1mM5bLJUWN8rBdXV0RQuDRo0fcv3+frut47bXX2G6331ElarFY8Of+3J/jp3/6pz+xb/sj0EII3Lt3j2QSX/lTX2H1syueWTyD4eaYM8awvb3ljc+98aE97rC9yIvMmPEFvsBP8VOsWPHz5ud5/tnnmVfzg/jgn31f+ijSTM6Zy8vLMUdXxn5RB/qo9eg7td/8zd/k1Vdf5eTkhM985jMYIzaHTz31FDDNvdL+MOy1JVJ+j/f43+3/zt9s/ib/S/O/sD5ef6z3F+WkZNN3HSeftE/aJ+0Pb/vYJCXntKJEiUfWGZyknrG+InsBJY0xxDjJGOecRwuSjNqRqJQ9RlQERIZdrRZUTSSLp4lwiowmDApWMIIzWr2vPvWgi3vKZJPwBiHEmEJ2kUDJj0SpybuefABq5UxVOeZ1Rdv1ahUhr40lialJbVJWElMeK7cFfA2j7Ln3jhyKupCQodDDe1H3cUbteULEOqNy3YGczXj2jjEpCFNOyHqGFCQTKHLNHSl5Ua0xSazMhkCKCW8SJ0d3uHv7CFMZLq72vP3+I/quxxxsuAK2lEQnQKH2QDZOqwQl6e6cEyKVHuRLgscoUOwsCkDLdZaK9KxgSFYAp0hdl8MyeapWS2oRIPYuCkPmos4wgbfTf2VckM2U1MqMQOtiMefZp5/j9PQYXzUYY7i4PGfoWuZ1w6df+BQpQRcG2m7Po0dP6IdWKhZ1PFtFd4NWOGatVawrh6nmpDjQ1GJTdnbrlP3Q0vUtjx49kmRVtBAjzjkW8xnLpRCEmqoSYKBuqLwAA94ZTYBl4iWyewABAABJREFUSaBbT1PP5PXLGYvVgvlsdgACRFJIXKzFzm6727HftYQ+EUMiK9C7qBsWZw1HqznzWUNTVzgrMzvGgfOrLdvtlqttR9v2DF0nSjrIc1/MZpydrDg+bjhazKh9Rd14rPfEYNj3HVfXGy6uNlxvWnb7jj5I1aklU3vHctlwdnTEydGK1bxhPhNJ/SFDu2+5aLdcXV9zddWx3Qz0QySmAMgc95Vlvqy4e+eMu7eOOTlaiOpTJapsIUa2bc+T8zUPz88l8d6pkpMCZclkal9xslpw984ZJydLZpXHGgEMui7Qx8hm33JxtWa93rDrhAQYk1RAmpyoveP5Z+7wY597kafuHFM7MDbTh0ACrvY73n/4mK994w0ePLqm6ztJNMeiupFYrpbcOjmi8Zm4bWk7qXru4sD5+pLNbk0fEkOfqKqKs9kx7bbnyaMLrq6u1VYxkUMk5kiKGWs9latYLOYsF3MW8xmLxYqmboRogMyNfgi07Z591zEMmTgUooCCX5Q5F7RiW21ddNKF2OOtASsJ/OVizmJ2Sm1UieQQSIphtOFMSe2+UiXriLU4jIJzlqxrmSFRlbWfCWwNIbBTRbvCdRFPKvT5SvWtMZl917FtW7a7PU/Oz2kWC7AWbx15CAx9TxfFgi1miNlgqgpX19RNxbzxHC2PWJjMkZV5MMhOSFJAce4tnkjf7dm1LSGtGXqxkRm0EiMOPej6hzEk48BVYKxU/y8bzhY181lNIjGvPZeXF6zXkdWqAmDf7tj3g1SKp8hutyOmIGDefo9YgqZxfwwxMHQ9s9oTNSGaEliTGIYBZxMhDwzZqm2pJYUBb2DhK7qQ8FXNMGS8JnfDMOAtNJUX8KINhJwpfgmyfSTiIH2aUsJaj7GWyteyFijBx1pRHBBLRoExcpqqTWOMokpTtoiSqM6QQtDk6mRfFFNR1ymqBtKSJrKjkpikUk2v14iykhR/i2payYEbk0ewPGUB15wzI6FH9hk3gYzjhjqpcmRk78ga7xi1cUItckZEYwQHigJhIQox7YdWLEfk/tSuJuZp/9OWs5DDjMlavT/FZBKPTcSLog5SlLTkGUhsIXv0VPWtYYjchxIGCjtLYjyr/a8EgjFZNRF0hHTgxGpFiUnFWqHMjfF3B4CEUaBz6uebIIoxZvy7xGdOYwchSpf+lWd3UDFpIMcp/igxYolpS3+Wtxz+zhxcawGlZG3LGheWPs0j4X/67KI4FaeYJmmcISumKOwURSvtv2SKSlcZo0p4+iFutpTml9jSgihoZYwVAl1RgCFzo+9H0IoJgCvj1Fit+j/Iaow17MoAMqp8NE2PPGFP+j835q7+2x58bIHW5BoOtKBuDsHx2pyTuDGEOK4xco86v8oFMIHlZS2T+ZbG+7BWCiRyFvXRcf0rt5LLWFKrOSXPjcIOukGm8SxxA1LTfpaLSSmPoLRRcnyKkWgcZ2/c5t71e8TdnqvLO2Dherfnyfl6JCltrjcTvHmwRo7nJ10jzDh+9TlZc6MrrXWIG5ie50bgcoRep/9onxpQoDlPrytLq373BE4eDoUDcG56/HKWGF+m96Lg3nw244t/7Md55ZVXqKoKjKHd74kxUDnP6dGxkHxVbTbEhEuZ5eqYoyOd3SmrWlQaLzJled51VY9n3qaumS1mhChWcPfuvS8kqGy4urpkt9vjnKXve9lLdZ3xTvYXbw1148ehbZ1juVxx585TfPrTL7I6PhK1JO/1XDetRfuup++DKB4FVRHU87wxQoKvZo28vxIbv1JyknJi6ERFs+2jWMAWYpKuYZWvmM0qZrUfCUFyvjSkJKSctu9pWyEmDUMU4oOOJ2fFirdpappalJcqb0Dto0II7LuBru/o2kDfi2KPnEmVQOAMdWVZLuYsFw2zWghSxca1WG3t257NXooFQojT2NH/dcbSNDWrxYymEXVMo2MrFCvkIKrEXT8Q1F64nGENklM4Xi24dXbCYtHg9JhdrrkLA9fbHY8eX7LZdkrs1r1LP6OqKyFHmUwe5MwiFoqRzX7Hu9fv89pnv8XLtz7Pl92XOfVnQpZLhsrVbOMecuZuf4flMKczHQbLHXeHZ6qnOaqO+An/x2nqGc+756mTFIVIkVAm9hLvhiRnEXImGT236xpouXl+L5Mu5SSKbNZqxiCz3+8hJlIMPHz0SOOxsidG1tdryhRKZZ/UdaX2XveMkk/K+JxvrHk5I4o2KXO92bLZ7Xj05FyWqpKPwQgJbjEHMvP5jLtP3aH2Hl9VnJyeUle13GtRBtfvTbpuiS27w3tLU1ViC99kvLN6dBl3FZy1OJMhRYa+IzGQ0l5tlHUMx6JGOcVeGVUoRWLc2ouCmDEyV2IcuNjtydbwpn+XN/u3+Gr/Ne7nB2zylj4I4InJBxZkaHwma2vIicq7KdYik9CxbJMUDmSxSC/vQVV6AbIStGOMGpfKw/NlD4iSOzvcI8t+cpM4b8ec3iGmUdT2yrOd4uoSX1JOEVq4KP8uCnM3iM0HZw6DUbW9SeEol88se8UYHKoqk25Ao4ZPLuQQOYekcrYd/6y7542YQttIIpmI2GO0Yw1WJKXGGHPcbynEKTudrfT/Spw0Et8pZO0PnGfG+5Rc3yEInfP096yXmcY5Vki/N2O6sj+UYEG68PD7xoBv/I3FjPbZ053ncS/B3FSeuvFZeg2HA8Xc6HP48HmC6VjGBxSWPgAqFjLz4cd8ZP/d+PnG5Rx870HUUYIXPZslVfAt47ZETVk/0GhsWb5rGgfTRJIzxwev54DQfxCbfdI+ad/vZpLhi//4i/zO67/DN//Pb3J0dPSh1wzDwL179z70++Ke8YepNU3DT//0T/Pn/tyfk7PEd2nGSGHz0dERR0dHPPvsswBaAPFha0ZjzEhEKoowZV6HEHj99dfHvMJ7773Hw4cPAVGf6vt+LDT5Ts17z507d/jc5z7Hl7/8Zc7Ozj4hKP0RaTFFXm9f5x/+4j/kF7/wi/wb1b/BLW4B8NxzzwEypnLOfGn/JZ6Lz7H1WwA+y2d5hVc45ZRf5BfxeH6Sn+SIIzyeCp0HBmg+6ts/fst5Ome/++67tG3LMAx8/etfv6EEllLi/fffn/Js32Psf69WSITvvPMOwJi3BVitVty6JX11fHzMSy+9BMh8ff755z9kV1epkvAPUwsEtmxJJP4x/5hv8A3+Fn+Lr/JVHvKQyO/Nzg8kkknu99/nn7RP2iftR7t9bJLSrBZP+BA1oViSRrmAdcW6QFR3AIxxWsmjld8GCpmnVM3nlPHOqD1PHEFsslI+bElcizRywcDSeMi9GQBJEtupzYsevHMWq7kMIEnbUok+yuSWPLZBayitWJVhBewGind5ScSMVVA5j2BoqVouiYFhiKOFUTq4ynJoTVm5WJqYKQfNnCIxjBCs/g5ilMSMcdPB3CpJapTkTJCj9L/3XhSh0kDla1bzmpgG3nzrbS6vN1ysN3Qh4lCFCSUXOQzG1mQlebkxcWHAOL3OLBkITVBHDGQzPUPts1TsS0weFYRGAEpexJQxmCrCi1JAUimNXMZaSUoBJokFiAQQZeiUpLq8N8UkpJ2cx7EJmfX1NTEGnC8JewGMwz6x3YlCzr7bs+/2XK939MOA8wbvLVVVU9cNVVNJUi2JRcAQIgaLyRnrao6PFty9c4tnnn+Ogcy7994nZUtoe6nU9Y7KV1IRXXmRubaGmC1tn2j7gDViNTifVyyWM1ZHCxbLObNZTeWdJvMs3W5P2w1s9i37Xcu27eiDjD+TI85CU9esVjMhA81nCgKo5WDO7LaSML/e7LnetkJMCoGYJJG8qCtOFguOT1YcHy1ZzhuW8wqLWAwlkwlE9ustV+fXPF5vOL/aCRgQBfT1HlaLGWfHR5wdH7Gc18yaCuNrYgzs+p59G7i63rG+vGS72dINgSHCoGCbM5lZ3XB6dMLt28fcunXMyfERs7oWlZAU6PrIerPj4mrLw8cXYv+g9kzAqF7hvVSR3j494WS1pK6sggEy/0Ky7Hu5nsvra/ZdR0wGZz3ZCihgLSyahuefe5rPvPA0t86OhayGoY+Grpdq7fsPn/DqN9/h0fm1Vm6L1D6qVLaYN5zdWlFXjhQHsj8ip5bQb9gO12y6HUN0HC1n+CNDXdUs5nM2V5es10/IQ6b2Na7yuNrRLGqa2YKmmVNXXip9q1qstkKk3XRc7zr6biAVFbWMVLeSRMcuy9yY5lliu9/pGmpGAMw5KzYWdoEhs2gqjmrHvDY0dUVVN8yXS5pZg3VSXSxJZakMTgn6MNANA7FvSX1P6AP7PtGFzBCDEC2CrqZG5nPMCV8Box0TsgZq1WomyxJuVX0pQd8brmLP1a4ln68FKEWqr40msROyZzlnmeWKygQqU1PZGdlagrNsup4+BOIQaNuekNQep2QzjeyXznlqZ5hVnsrXzI+OyJXHe4M3CWcylXN4X9F1A/0wqPKSEHv2Xc/5g3MuLi8YcuThkzVdL2SrEJMSG9Job+E9uu5DtpqkLNXI3pC7QMTgdOm11mG9YTazbPcdfRvIxlJ5sXqpPGDEii0OgRwSXtfr5MGQqCqHTYm68ezbjj3VpP6XZQ/JxuDrmhBFWcd7UVMsCV9jLb7xWGMZck/MouSRmCp0y8Eu6b1ZBFCQLV+T05qwnoB4lGx8AFijW4m1ov9XEtcKGKPXPVrtkHStvCl7bZ0VBUllCQiAI0BQScQbrBC7vRCnkkRMRO0HU2zOpvryMdGcMweEHktIUYB6b0Ce4AjuCabhCuSiW6WRzzVKpLYyuo0Sfcb7NWb8XUpCZpX+VqUbe/Pehcwhe2tRv5R70WR4UTRTWw/5Xo2lFNh2Tojmo42XxlMTQCLE7FGJiqIQpKTdgzjOWjPGAIf4QlFuGknp5Am8JCtmYTGmBBAyd0ocMdq0YTXumoiFxZrkZswy/T+UsSPXbk0hGjOSUJKqxUC6OV6Z7ApLjAVZCBqmgFKMINmo8GkEaL8J1f1wtdEmKk/PVNQUjAJ35gBgKe86AIX0uR0qJY3xoy1j4ZDAlqf3G4lFC7GrgItS5X+zzwrBYiTq6mfZETc0o21gef0EV5rx/aDXcwg4jsDmAdmv/L4gVgXl01bs0UZwEw7UpygYnQBXenowOk+zKomqieK4XpT5JZd2AMqV+x7PR3K+cNby+c3L/Mzpn+EzX3iB49WSBw8f8tWvfZ1920msaCZQq5xpRhKjKZ899S/lPDFO2qkHD0GIcn2xgMAj0FjOjfr2A1BuenOeALuP+jvl/DYRJqa35nG8FsvMfHA9zzzzDM8++5yQkIdhfI4Yee59P6h6UCCEgb4bFJQ3AtJbOQc09VwfptifxZjY71suL865uroczzSroyOiyazX11yv11LcQkl8OlIWK6nD8T3EjImFiGNZLee88KkXePbZZzg5PWE2q9V2TkGLQchUwxBUVVeUHVMS4oixGe/Uvq3yo3WVLWy+LPcdo9grCxEnjsRgA1TWMqsrJRXVQiqqZP8qcyyRGLpAt+/ZdT37tpdzsH6ItVB7z7xpmDXyGc47yUfkxKBxbdsPdG3L0PcaM+nRXvcb7xzzesZ83jCfN0Is8g6neY0YM30f2Hc9211L1/WEG6q+umZbK0VOs5nawunapmu2EJ8TbT+I+lIMaos0EQOsyVTec3y05OR4xXzW4Iv6UmYsjNls9zw+v2K37w/U9TJGz86+8qKQU1TmbEN2gRQ7dmnHr+V/xFe/+A3+H/N/lWftM1RWnmfXdfRdy2oxF9Umk3lx+TyvzF7G+QrnPHM3Y+VXYuOMFDmETmyfg/oIS2HCOLnGpWycYyTNn0RS0LVe4xBX/us9JkZe/cbX6bs9qMq1c45FFbnbbDlxO+QcZmEluQ/p66xqoFHUvWMihMR5POY6zsk5IrZ6jn1u5ExBFut4CrFE96V0QLogs+sC+64d15x779+X2MeIcpWxk/ITZI5PjkWhwEhhQ1NVPPP009R1RfAe5zzNbEbbDWP8JWS0w7VIZrPReeqtEStC76Fx4/wzmvMq5P9hGLDOi2pXbnk/3uNrw+9y0Z7zavwmOSfW6Zo2dJMdpxaAFdGlIjY67hPZjM8rjOR5ucrLZy9lr6jEJljIhGksFjBO49Ak62lCconWQBy3BFWQU2JGnyTHVBSxtQbiBuHeGnNIN9dYyI35uBjTaAE67eC61eZpf5ftV76n7K/lPbkk7fQjPkSDKWeDg1+VPOShlW9hpQgpV+/zgGSVD76Tj4jljKqFlT3N6nljesH4zdN/y0fpD0YnpXx1MaHjZvxB2cc/vF/q1j19/hhTld1b7+8gHh6/+0aMAOSJEPtRfJjDz53u76D/db/9qKh3eoSFBHlwDDTT32/G7WVkHFx2eUshVk/DYFp7mT57tG0mj2OQzI09A6Y4eLySg5s4JBiNFzzGyDf7ZCJS3TyTHPbD9OHT+yxo4c8HFJMOCEqfcJQ+ad/vZrH8pYd/iX//U/8+f/xn/zh1XfPVr36VX/3VX/1BX9oPpBlj+NKXvsTP/uzP/r7IPeU9TdPcUK8pa9OTJ0+4d+8eb775JpeXl7z33ns3XrNRC9zfazs+PuYnf/Inefnll3nqqac+RKr4frcPnds+WZx+YC2T6ej4L6v/kr/x//wb/PL8l/mS+RKOiURjjOG5555jNpsRY+RPnP4J/oz7M+PefcQRJ5z8wV6njpkQAv/j//g/cu/ePSnqVWLSsbnk0+4tnrX3Kbv9KzBJSn6H6fhu+hRP0u3x5y43XOZT/ek7j8tD0tPl5SWXl5fj3377t397/PdisfgQIenFF1+8Qeb03vP5z39+tIV0znH79u0PzYvv5zzJZC655P/i/+J/5n/mCU/4+/x9EokHPCDw/VGre/1Pvv59+ZxP2iftk/aj1z42SUksdCw2SyWYFgRLIlAtE5KCbylPAIyxouwiJCGryboM2LECzjmDtZkcAcxYYZWSgBlFgJ2cyWo5AMUyIY8HPKkA0oN6UfZR8EZzkSPgVqrLCunHlgSMXv8QEgGDwrI3bCkAhIxTkq2WqJVlloODJ0bUKMoBVBP0oJWQWviWjHxpqV6SCjHpi5wQtRE9WJcEDUksvLBgi7a8EVlw5z3OeuqqoZnVLJYzjlcLTo9XeOdZ71pJsg4B4ysW9QyHJGmzUyAiG4Qhlkfbi5J2GOEEJR5lTTiUCn+xgtFD7WhKPyUW8kGyqgDDowLBmAow5FiUKhTIzIfpJzApC0idEsFETXpADFGu0YoNQzYGE8GRsQmcrzAW7j98wm7X4r2nqirqulLQPFDs9kISZbCYIAYZhzEnLJZAIvUD1maqyrJYzJkvFzhjiSHhnWOxXDFfruhDos+RxWxJfeZJhZCXFcQlF3wOIX6I/Y2zVsayl34PfWR9tWV7vdekrxI1UqbvE31IqqalCkEZIhlrE94ZXMh0MTC0Wy4upN8FNJDnvOuEaBWjEFAmVYyEt5IYGVLH1SZwvb2itobGGha145m7Rzz73B3my1N2+8y7GC62e/o+Mgw6gJ2SMZyj7weeXFxyeaUpEuOASAgDXTvggReeOmb1qVu0yfDgYsvb95/QdoHKV5ydnXLr5AxrDV0beTJca8IPITvtOy4urtnuOvowkJIAJCUXlHOimc05PTpmPquY1x6ikDdyskQTyQk225aLq2v2fZSxZDUTbcQqwxrD2cmK556+zVO3jpnNGmKGfRcxxhJTYr3Zce/+I9555z5X11sh6SlQGoGQErOm4qmnb+Obil3XEfqBvu3Z7vdcbXdcX20JfeDuU3f5/CsvcXKypHaOy/Nr3nrjXVbzuRDo6hl1M6OZzfDek7Ol7wPt5pr9xZarcM2gtoRiaTWIwyQFVChjUZPVCkpBHueps2IDaO0kJS+0JkQRKMO2z7Rhj7ve463HeYevrnFq4Vd7R11LRfJivmAxX7KYNZwuFsxmT1E3XmwijaXrMilZ9rs9u92Wvu9o+47Nbst+r1YbYSAMgRyz7leqyAFC5FOQtIDTI7iZijrOVJVfzF9kfmS2oWe3H0Q90NgxSZkRG4dc1LQUXcsYrHcslkuOViuWy4anbx+zbLzsN6bi4vKSdugZEnQJ2q6V6qahIyYBoQRMy7RdRx9EiS2ZTM5RK/qDknuFhGJwqjphSamXW4wJYy1DFoCswRFzJuQIOeJsRcqJbd/T9ZEQDUMEbKKyHudgSIltn4nJkUNSQpUhxw5vJPEeeiHdBSfKVX2vNj869W3lcYgNYEDATuf9uO4bjFgAIHYl1lpVBVOwwRisk3+nNJFHrMoLaDSgwLbRdVDjA5tRZ1pdZMGo7YpFbM9SSApuMj77rIoHzhjqWlQRMaW6eAJHQAm+6h1SQLhDBacYI1EBpjKPinqgMaomIFCLrrnTvUzJc7VHtUZBKI1hcsKipHC99hQFtHHWkrMlpUIaTwf7rVGSQtaqawt5IhAIqW8CxowtMRcjEcFaPwLCKRUil7w+qQJTITzEmEZwS96j604osYNsgiMJLCWKGlP5nbVOCdtBfy7ZA1G1kt+Zqb8KmDPO7SzCdYfxY54+P2Wx7CyV9NbakWg3WuwpedsYxmpmMmP1t4AVhmJJg5LsBFhC46ak40aIH6B2IObAsuNAWQOE6GcOrEzSB9Zl7U1y1rH6Q9rK+Epq+yJDTMD8McS+8d8SPx+QWw4wG5kn8uPomIiO4RuYS4EehYw6fcQUe94EqQ7BKd0T9H/HuPfgc9MYA6PPWN4Vk4JAMP79ACs8+B4BqBI6JplAt1xA4bE/pvuaYsmbaTFTYsSyLiFjCp0HIrwh5NGssVHZFjFCihQVNEeTa453x/xU+DJ//u7PcPLcMdZY2n7g8npD1w8Y66icmUhKOi5HwhNlDk79Xr4uH1x5uYayHn44t3Z4/zef1/j+G4DlBE66jwCRy/xVzxtRJhgt8oqttc4ujf8Kp877iueef47Nbk+4uh6JQs5ZVcUtxFM505Zz3xhz6TqVyIRhIMaB9fqS3W7Hbr9nvxPrV2OMFkfU7NpW7JZSZj5fKNH9Jlx+OLZMLsoxh/PI0rUdF+eXXF5ejW8qwGaMohKasgDzZYbIcV9Ace+ExHN2eiJ7J4eqgowEoYvzC9bX12yur/Hec/vObayB49WK09Nj+tCx21uaSmxfK2dYLRtWqwW+nrHfD8RhIOzEXk3CAlnrNtdXVN4za2acnp6MBUrWOpy3EvcH0S45WTRUx3Nihs2+52q7JwRZ7+ezObNmhrFy1tunfpzfUnAU2LedEC6KjXhZdPTcXlUVMyU3+QPycsKQVeGw7+UeQsllHKDlVu2ZZk3N0XLOcjEb7fiGoiyZxVZ5s9lxtd7Q9f20ZjGNKecdi9Uc66zYYsdIHCJDCLw/POD/2/4Kr6Zv8S+c/At86faXmDf/f/b+7Fmz5LoPQ38rc+/9DWeuubqqu6t6RAMCMZgaKFEjGb5ShG7EDTlohYcI68UPjhsOPzkc/g/86LAfFX5RBF/u4Cv4UoR0SYVEkRYhiQABAmj0PFTXPJz5fMPembnuw1orM79TDaJBTA3wJAJ9Tn1nf3vnzmHlGn7rtwSktpj32N87wGhL2KO8FwBN0xoDo5zjoV9iWPRYpnKepiTMQbadbB2YZmMgQNtz2QdADqyJRGHocXBwAAJwfHKCw8MjxJhwcnwMY8ETQJ5H75dYuIR7rsXlZhedT/CehIG4aTFqW0w7h/PtMUat6AWNAzjtIaV9pMRYLANOgsdR7HB7eQ53l9vCEmYlZLUseYVMzbbEU3JGfU5xCGAesk4KALPFXHW94g9559339DcBXa2trWc7rNV9Ynri9s4O2rbFdDrFaNSJzTpuAWUmXS41oSjIOpFSbwIin/EJPuKP8EZ8E+/hfTxMjzDEHiEOajuobsMVmxeMRdcyvpPoNwrESCyMQI4h+iUSZtM5zgFITRIA31J8ODGZtgNNEgwYhMpVAfvC6AYtO23gWGMedCSlplOtwzuCg7KpA+Z4FKCSATtUxhJV4BE7I6mcUwyUe9tU10BYlWvGnFchiMpZpuvAdE0p8YmcHJHPkJS07KvaBwaIXz25ix9x5aCqP+fMPCrrznxuXOzbSnesBIQCryrNRrag6uTK7MmUEw2gKi6hLotYZJ8kLOq6rmTRiu/PHlxvlqwHcf5dyriXsSUg69tmryCfzTYf8k3TqUTPqVigYTpiDYKynUewRNoyHrTy016Fbaz0H6yHrJ0RAGd7V+ZK5R2V56/Ma9Zx7BioJqs6wKsRzTLTXoGUeSvrk6q31e9SdEjtr/UP+n3HgPrv62b+aIDxaWdnPWs/P61bdrj08BL+iyf/Bf7b5/9bbH9mG4D4SD6OAejPS2uaBr/8y7/8Y2Ef6vsei8UCH3zwAe7du4fbt2/j4cOHkkRxCuTzozbnHE5OTvDo0SM8evToz3wfIsKNGzeeKjdnLYSADz74AHfv3sW9e/cwHo/x6quvgoiwvb2Ny5cvA1AQ+Gi0Ir8B8a8sFouPff8YIz744AOEELC2tobr16/nvzVNswL6OmulvY238d/gv8Hv0e/hv5v+d/gSviR62alGRDh/voB5ruHaT6xPfd9nNrFbt26BmfHgwQPcu3cPwzDgwYMHT60Bj4S9dA6HaQufab6Hjvqn7uvAuOHfR0tSSrFBwF/Gv8u624AWR7yBJ+k8vj38El6Pn/uR32U2mz312Xe/+92nPvu3//bflnfxHpcvX87rfzqd4pVXXgEgLEw3btyAcw7j8fiHYmQyYNLX8DX8Nn4b/xL/Em/hrT8TS9IPavuX9wEAQ/d02cqzdtbO2p+P9olBSn0QsAlrMAEEzdhM2XCDBukaVztCOZfMMCdC7fwnSBDaHP7EjFZrwQeSACFDvivB8YSmdYhJrOqkzBVCkewk4c2YScw4ZP2/BQUNpKQAD3F8+VKGji2rJGUbO0GDg9os4CR0o1KyyGtmWEosfWELEmgASoN4FlAikhJ5TmmXA0uZLguqmUNCHH/q3DBnf9Sye0yAgrnG3Rhr0zHG0wkmkynWp1Osr62jHY/gvTBV9X2PRC1GE4/RRKxs13j1QDhlUJF7Og8UEE2hTmeYpx1QE1+OaFfl9GQnQ+W40aPceVccXUkujJVjW66rnCv2N50TCSoKiIlQmAnMUQywJj6yUskTyAuoq+lGcM7lUgkpRXW6AiEwUvIwlhYAiFEzVJNkY6YoazY5gDrWrNsxxpp5a4qsDKdD41u0jTCKhH5A7HuhRlenW9QyX0l/Bu2vcwTXqNPayTqdh4B5jPk9hR2FK0coZQdaCaxoMIUZfUhYLoKOp5Snk+HSwC0SwF4zGmsWB+FcSQmYLSQLvGlIyl7tbOK5Zy7h+cvbOLc5xjIE3L2/i4/u7+Pe3h6OFxHNqINrWNcvYxkS5gcn2UFDELBOB4dRw9hZ7/Dqcxfw3LWL2JyOsXd4jLc/eoj9vQMpP8YC3tvbO8LB4QkcKAd5ITH27CiKMeX3k3xNVueS/Fwsejwe9uGR4B2jcT5nXjov49MraEsYxLwGoqVcgjhdCbPlAnfuPcKTx3ugxufsYmFiihj6AY929zFbiGNYWJTEgRyHIIDMaYvZyRLz46WUekwR8/kM+4eH2Ds6wtHsBM6RlCgkj7iIWHBAWEZcuXwF/dCjDz2WQ8Th8RLD7jGGIQq7F3kI6MiY7kiAclHKbhhtcg40cIJTMFnTeslo1TCVlZooLEvFMesbB3biJGMgMy8Ig4vIl8QJQ5Ts6VkPMHo4zEBuV8aTJDu4cYS2AUYjKTsynqyj6yRDaGtzHVfXzsF7oG1aAc5SwGzRY3Y8B/cJ/SLgaDbHfNGjHwakEHKJkpQYIen54AGCzIWHlGeKLOAMKfswyJ7wDgOp8xYlKM7MSJAgYjKAJABeEmLfY3FwiL3W4/G9Dl3XyD5NYkj1IYiz2jdo2hGm6yO0kxYtOuzvH2KxmMm8xoghzkEIcFoOSsCgEZGEkcHBIzJJib8Q0TqgbQkNGhyFBHIJFBL63sAcLEx5DnCcMAwJSyQslxGgBl1DcCHCWRAjSoBqSAOClWyLjEkjAZshDGB4zHtW2RJljBWQzFFAxoshiGMUUvbRAgQAgbXMmJ0hFuzKmfeJECBlUJOeTQOSBvdkz1tA1Zi+WL3JxiRCzmuZBnX0x4QURI+QtQthoEoSWIQyag1BWXsU9CxMhypzOK04znOWeeWAFse5/Me5yqmuhyapHiCATVl/UYPlcpeUAU5JQQ+AlJxgQOYSUrrPaQk5cf6zvpM55S3or077KPNlOgmDZQ40KztnVVMCJwEuZ12oTJCOjb0zAUzK+iPzJKJYx4ig7IYCjogxwXsJgoKEFYxMj4QFCyzIAzBS7gMps6OVfs1BBFSsW/mUNIBbXR5BAX6q36ZUygBauQwbF3sGkkVUTJcV4HUGQ1XfdaYz63ogA5npQq+ZErzzqo8qoCGHMHRtA/kcLR8zPLkM7gd0flbKZXy6mmX8rwBTbJOg7Bf7nXIEi/OY198rwR9LTkCeM18HITUYaMwDDixAEobq7Ky2iJTmAYpOCZQglWm2rnSiRJ2y8JLrFFqgz+Dyt/weahdB13Cqx8OYLKp3zs8q68bWLguFasXqVu5dAlWVDqRnOozJRbvjiNC6FlvDJtbjBq4cXMH55Tlsh2201OHd/Q9UdkbEENH3A7rRCKRjx3VfyyvWs1Z0WJXP9vnqtRaUpTwDapLBQJwlOqfvw/bPev1z/sHV98HVTkpFk7auVNsMBWghtqfIVUm8uX//Hq5dezavn8RRQHBBs1/Izjlh1WXV0QXEGTGbHeBg/wDL5RIhSBDBe2EEarsR2m4k682YkpKWOopR1reyYGQwpckKGNiqyDHZFwnHsxmOPpoDH90ua5fLKxe5U9l1dp7mK+QLAt51ZYwtOKvzGUKw3QSA8eTJLgBGq+XQ28bj5ZdfxM3nn8PWxhq21sYYdx6PnjzBex/cwYcf3cPhbIY+MkLkvHaYgWHodf8XYCYBmI4n2Nlaxysv3cT5nU0c7D/GUQ8s+h67ByfYO1pgvgzKZuyy/BaxTjh3/hxGo87eMu8ZZmCxmGNvfw/nzp1D13Uwu0Lu4eAg8qhtGqytr+cziRk4Oj4W8AUUNO8d1qbTXLqRiDAMhMOjhNlsDgPE24ulJDr4bDbHEGMB02T9XVjTmsajXwYMGLSsE2O5WODW7Db+H/T/xIfDLTjyeHZ8HR5OAOJBwNrr6xuIScpqx8hYDlHZmqx8mpblAtRPQhnAa2W0awaQIsvFtu2XS4QgtujR0TEOjw5xMpthMZ9n8H2eSP3Fa+KZAdZBhAWmWLL4nfb7rSwnTGZYSlXndpQNmrHe9thwJ6JzNy16v4Gl30A79nBrLZ7VJKsEYTLq+wEpJKQoQDVhFNPSu3nsKbMukWW8aZIHsRQSND0pqe+EiBAq+TKEiMXySR4zEOPBowcAi27StA2IPM5tb2M8GuHS5YuYTMYgkpKIk/FEyxQnsGc8xBOkLuKt5nt4l97Dk+EJZv0MMQ6SpJAigAhSFm9A9TXVd53KOWHQjWhIfFzeEUKSBDDS80kAIYyjc0dIjsGNMAQHEjA5s+mXwsDmVZYkJjBS9nvA/B/kkDhm8HLQSS1rTwWV7gVTUe09WO+f5ZrZZFwkvJyX6pfi4m9iCGBUdEo9X/V7WaTl8wY4zeZuMiKpj8vls5gqWcrKIAWRz7qvV04s/v6/12dpDVBc+SyDl4pumwHvZnhkXbmyZ+WlVvBEdm6ATa+konfZBbD3tD7aDTjrFVx3Uj9g7TzVn9u/xLmQzx65p/m89M76HgXMX9l6VPq5AoSqPjcgjqltWd7ad1QH4VOTw1V3CzOSMOKafZn1kfx8O4C53LMa9+wbr+2Yaq2h0tEM8FmzURngzvpq+lHRnur3MH2p0oOqF81Js/bMVbX7rJ21T9YYcMnh/JPz2NnbwStvvYJn7j2DC48voBs6/ObkN1fW/Xw+/xl3+GfXhmHAn/zJn+Bv/+2/vWrz/YBmut9iscDdu3fxxhtv4P79+9jd3f2pjOf+/j6+8Y1v4Bvf+MaPfK/JZPJ93/3j1sfbb78NQMvZdh3atsXf+Tt/B5///OfzNTFGvPfee/jOd76D999/f6Ws18fd2wAc1ra2tvDMM8/gV3/1VzEajfAHf/AHPxSY7sUXX/zYMoYAcHBwgPfffx8vvfQS1tfXv+892rbFxYsXVz57+PBh0ZW/zzU/qdb3Pb67/C7+6+3/Gt/EN+Hg8Bpe+1iA0o+7mZ0DyNozIM/9+/dx//59PHz4ELu7uxmU9knaHp/DHkvJtQ/7G9/vyZhgDlLf2hYd4KorZSifpPN4xDL+C/7JsomdbjXI2krZ1e3NN98EIDrCZDIBADz77LNYW1vDyy+/jLW1NQDCwnbx4kVY8vASS3wH38EhDvG/43/Hv8C/wEf4CEssf6Lvc++le4hNRD95Gix21s7aWfvz0T4xSClEwMptSHkPYbghUK6P7bJRjGwgC0hJPnQZsUkgCLDIArpBs9bbxmHctggpIQ6skbjifHaOsDYdYbBSWI7QkoeEGxTs4hhNIwFVMxDVTSt2liNEdaI5AthRdq45LQVnZVqcE9pxCY5pYEszo2KUYFFMSQOCWiZFY4zFYQikYKXsxPDzCoZonEcIysTBBLCTWKIZiOpA8t4ri4s4qR2ARin2jTp8a30TW1ubGK2NpbQMCMwJi/kCTMIMEOMg7AoW0DJjmagqIyHlB4qBrtlLqIxcLtTFMo7i2DHHpflANPwJkN6PWEoxsTrvOGXnv3SHVwMqVO5p/UXuiWSAg4QeP9NoozhSnUfOukzwCCHg8OhI2U9Iy50RLGAeBhbHbIpgxEyr7zS7tfGE0WiMtbV1rK2tYX1tiraVLNO2aYWVIztoSco1RQnKp5TQNm12QAoluwTwSRBhunWcjh9jiBGOAcfCzmSBz+KYouygQQ5+mBdLHKWckgAusoPMITKpI4XhuWRUke4jJgbTEo6TBFMB+IaxPmlxfnMNLz77DK5fvYCN6Rh9n/Bg7wh/8sFD7J0sMVsI5f+yTyuMYZIpOyBEc8LI8zpP2Jp0uHJxA89dP4+drTHAwN2He/ja/V3sHRzjZD6gTxII6VqhCU4sjj1HnI2OFJDfXfxZ2WOme9+yvSVoNERGiAEMAUc4xyAEgCxgDA0yiyxzLuVxNGavCMJef4x9lrE16vrsMJJUU8SUpFxGJCAJG4Zcl9B6xsnxCY6OjjRmLuUGQlwiMqMfpOReiBEffngb9+88ljEIAQ4OvmnFUe6Qg/BJA2FwjLZp1SEogDukpIAdKSuSwZHeYzQSZjHnGgHIpSgMdpyy07hVIJftWWfMdRoQdWQBtVIiygAD8jvUuSd5tDlox8LCM0R5poAIrczmE3EIE8uYNQ7eeYzaCdqmRdsQ2skI3ajFtPWYdg3Gkw1QIwGV0agDuQYhEWaLHv0g5ePi0CMsF4j9ErEfMF8OOJgPKmochihGbkJEq+eAsOSZk1kgf4mTlKNjykR+PUcE50HBYd4v4RyhaxuQ85iub2DDAefOrYn8GgI21zosTk7w+HCBk/kRFss50tAjxoD1kcOkSdhe67BY9jhaBOwGYckwmeIcAIqglNA6D8SEQB4OhJaA5EhK63FACwkSeArYbAJmyeG4Z6QwoGllzYQUMe5atN5jMR9AJMxXfZ+UncDhaBG0TMtYzj9WxjJOwlpBDnEQti7vHJJSnSROyoZDcCAN4CZ4CPgZuoaRBMQpazwhhZTXlGXVuuycTWAFcUmwDGg6j9Z76ZtmNwt7o577sWIaUWCIyV+GlHPL2d/BAFbKCkSQM9t0DAVcczKgiYBpolAqSl9XSonJuUV6xlvpivq8YyY9I5DBmKRlMlhZ/eD8isfbnPCyf6IwASYBs2SWnuqcMmd1YZ4hkHd67nPWZxhSzrSwxWgwhgu41oIeBgTKzEeplFsl1WVErkqg384wK8MJAF5fyeXzUf9nGeSqK3BKeQgyI5KBDiwIoL8UB740Z33Rv/nGZ2Yaw/mQo8LimeMGKl9liQurpbOzG4BXkJIGYxxK2WMrw5KB8ao7ggDfSHAsJs4lki0rvA4E19neBN0LZMGFT3dEwcgp8vxYQMYCLaxAq3orYDVOsprlTuXvbCXNkMFbiVnOkyrgw0yAB9q2QYwCUiSyLHRdQ3qt9cV22MroUgFurAS3qnVnr5H3l+rGlsXPehYyVgNmXJ0xBm6BAvvyOq4Ca46slLU9m1ZwUSvyQQYbRATPDqM4giOH8/vnsbncwJWTy9jhbXRurPeWrwcEDIPJWGMIkz6YPSHPtv/YeiyjUEf8VlR62D4tgUWNQeZYnQTQjXfO/lgxXFUT9LEB3HpRVfOU+5YDpgSbpQqetCLnU0pYLnp8+OGH2NjYwoYBUsQwEp2ADYwrgIahH7BYLLG7+wRPnjzOeljXtmi7Np8D+YzLOr0muiijDpizXLRXMccioYxZgdIVhiiJfXIOQFYzk6eijLn81cB22e7LzyUs++Iot6fJkUpZdzYuMU8Obddgc3MdW5trmI46vPLiC7h+7QpGXYsYEh7tHuD1t97B+7c+wnKIqqemrA+YvihnvdkTCUNKmIw6jNsGG9MGL9y4jBdvXsUH77+P7735Lg6OBbQ+hIjILs+qBeBZ7W4CcPvunSzv8w9GXg0McYqXtWoDJvYkkZwlk8lU5kOV3sVsLiXbdeM45zCZjKvvI/eHUMkW+137U3R8Gws7K2LeEyaHSPs9hAFvnn8Lt6/dFX9Kcji3fx73Dh/mM0R0B2HytfO9BgCAxE7Ku4kZMPtAdZIMAiZCCAEHBxJIODg4BCDBoKBlEbP8RwEDiH+iACVMTtYJXkX+U5Y5ZuuVLSEydZF8toEPli3A23numQYQnqi/R2wK7xphqlRm6sYrS/WoxXjSgogwcgHeCcA1JmAIIY9/ihEpBLCWbFyEiHlsALVbDWhMaivqlqqYTAz8w3n/pKU46x88XMA5h0e7j3H+3Dk0TSOZ/88+h3Y0xp5/hH8++We4vbyNtiOAI+aLHvNhwDL04BTBScq/ty5h3Mo660PCIrAUaWA7ncQOJRb7kJgNSgdvfgdnwEBGHAfMN04Qdo4wdsAiETiKrGhal/dN28o+h/pADGhHkEStmKKwFOs6BxcgEhHU9k/IJc/sTNUEHNLNuiLHMgsS5evkVe1MVDs0sZb1tS9y9mWZfik+I8pnrVUylcdUigJO2RN6TjlngPiUbebCylb6RU/9Xumwp87WnMhht0Hlk81f0l9VN866Its5K303NjqTdKYrsJ5rrOuTtL9kx2geS8rzlQ8jVxLmtIOqP2upO3s/KucPZXtCX50LMFlco2nl3fK5nVUMHSMHHWMAqciQPMX63DJUZs+t6tEmn05pEE81SzIFhAg9nfpC8eGtKje16Vd0YjnBDeRU7my6JjKQK4OhKv2p2MZl7Gv9NMvw+rl5b1T9OGtn7RM0HzymsymICS++9yIuPryImx/cxLndc+h6YcgpHn78uQYlfVz74z/+Y7z22mu4fPnyD2RUms/nmM/neOedd/C9730PBwcH2Nvb+yn19CfTfpj14JzD2toarly5gnPnzoGI8Nprr+H69etZxj558gT/7t/9O3zjG99YAXL8aS2lhPl8jrW1NRAR5vM5ptMpptMp/tW/+lf42te+9kO90ycBb/2ga9q2ze8IIL/baZBSfc1PsvV9j99+5bfxzf/LNwEAU0zxa/i1n+gzDw8P8e677+L+/fu4desWAAF5/fRkCGGOaT47Z7yGe+mZH/GejClm8PTJ2IgSHE54Dae8UJ/8acwZ1PXmm2/COYf3338fL774Ipqmwblz5zLQ7XW8jv8K/xW+jW9LssvHajs/mXaydYLdZ3bx+NnHP7VnnrWzdtY+Xe0Tg5QkuJfy4ZeVJ1cczhZ4srrwwqBUjD3nGjGOzWIjCdwACijQ4Fev9euzDUfCYgJyCIlxcrJE4xxa7zEkBqtDUCiKWSnoKWft5BJprI49WIAwZQPdAr1S5kqcv8yQUl9RQBBN44X1ohoTK60lTgehtmZHIP09JSAMSjdvAUqwsA6pwmSOKKcBXZBksflGGEiaRgAwFvAzGvtGy7o559B4j/FoAnIeYUhAUAcEHJgcWN1fjopT2wxgZnN2mn9Eg2/ZMWnOGMsC5AxaspYdmShzKg5PcUxZAKZ4YVmo8LM/R75rmcDePMLGRmDrrfIa51JTTpxOMakzyNmaEmd/4gH9col+vsRisUTfDxh6BbVwwnIp9Ihd28m7MuA8ofEtum4E752sf0gmYdeNMB5PMR6N0bWNOFSdUpoTAHUpiJKcKoeE9L0Ehu1djIFC9xIVB29ZvwBSXMmyLwExaEB6VQHP5bq03A4r+AVIUhZRInIogSot60UJDgEOCW1D2FzvcPHcDq5dOYerl7bROI/jk4A7j49xstjD0bzHfADmgbFYMtIQEYZegi9DEidljEiqhDUaWB+PGuycm+DZKzt47up5rI+n2D84xlvvPsZH93fx5GiGZQjCosYOTElKMYAQjB4tBWX5EaCM91IaYZUJStaNOXNAgA2VBZyIPbjKBK8df0oeoo6eKpBoASQgP98ACuIUFXr8lAzoxHAq1Mxx6ZxHq2w2wjCUsqwAEnwDHB8fYr4cMJ9L+Yn9/WOMRgGNbxCHAEeE8XgqzmIFQ3A0p2gCJULQ0l8pRcQYNItZSpVMJyMFJZWSQyITIlLgvA8deQWdCAtICSYX1iRjY7D1afd0CmitwXWklDUWGCnZ8TKiiWTsoYxfSc+ghAhKCkjjhFkf9ZmMpHPYWiZj4+Fci8Z5dK3HqPEYj1qMRy0m4w6t80itx/r2RbjGw49asG+wWEQJcDuH4+NjzOYzDMOAMAyYz5Y4Pplj1gfMh15AjGEAERCMtcARPIQ5qhm1mExGWJuOsb6xhq51mM3maFyHcLLA8eM9LOOAvb19eEpYHzF2T+Y4HoR5YdQwWupxeXsTEw5oG6BNhDXvwcxYLBOWIYApYtR4rI8bIC1BLiJGQo+IjfEE82GJ4DwaMCIcfOzhKWDcODx7eQsH8yVuPZkjti0m0w7jSScgOCIslkGY/lhk/RAjWu+UkZCQqEFkB9c2aJsEHgZgkKB1jAGtgwYGSVjGSIGGmlXuHWFIUc5mdUCnJA7pEAYF+yY0XQNEY5KyjU2Ig6wb5wneQYCAYJCT8mO+8eCBwCwMZqRMRhJf0/vBCUDQaxCDBOzstc63Bd+szwwN5ukWiUkz5wmZKUn+LQLEsntNphvropQG8tXaRw76O6dsgykqQEnOZEcAOYcQAhJHQOVPZohUwHUN1JZ4CGddgJPpACxBZAN6mCfeGpUzpz6HlRhTAzZuxXluwZz8Pg7KLlFRXul9YuRcSz0HFUjZBJ3ToLyMtyMJCIJ8nkMBWbKCkUsg0/QvoHLOM1eyifLzjIUohgSGsCs6e3FWkJwjYbWyYFN1D9NtDFxgfZJqJBLYSU5KQBZtpwZ7SdljIhmP031lvW/9bCLS8m+Uw0lSugGoGYo+ja2UYSl7RGLLttj0Qnt/lCCgBc0E5MaZNYg0uFJDghjKipXPaSAzAeh5NAwBBCmfGFUhzfYE9CzTCFa+e1m+Zd9aVI7L9qkDZdasnI6clxp0g9kgKc8vR0sgWIknISlYwxgYZK9xqUbE9ooV4JBUJ4KDJ4+t2RZc8tg62sL6fB1dbLF9sg0Hhya1cOSkZJL3hYWMAEMN1KAsOjVfFtCtZns1+Ib6nIfaGatjtPJ31DwAaq/l4kGcX7oKv5X5yRFFvZbKmtKVZ90WIYXCcJD3mT6zlHhV9slgLJQJfT/HN77+DTz33LM4f/4cpmtr8E6SIo5PTkBEOD4+wmx+gvlMAgsxKhNn06BrO7XnnLKg1eO4aivYv+s1geoKlGnSy6v3sDGxlczVTCm4w4KhdeAyj62Ni31o9wc0GQkVsMTsDUbXNrh65Sq2NjcxnYxw9cplbG+tY3N9Au8IfZ9wNOvx+GCOu/ce4Htvvo3ZshfWpCjg78zGyJVtA8AxYzKZ4Pqz13Dh/DaevXYZ25tr6HyLIUY82TvBd978CHfu7SEo+JkU5AY9/5J1mpOUr6Ia7ClSpTCDFOCfCIUSsDcwDVgTshJhfjLLY1vWYHUuxCTJCUT5Eqgsy4Nfr/GMCLB9glO2n65hcGEN1O6urU+wvrWJEIRh1cFjsRyw8AJA5yS2YtO2MDsWVoJT14YkF8nazcAkfb5zWm5ekxiYhdHp+Njj0cNHWPbLSg6XfVgH9bOczzYuKjlWrsnyv/p7YQ+0M9TYUjjLUQNfZeCVsYGDkGJCiAwgwMSdzb8joKGAi80e1miJy81jjFxC453qiR5t40ApopnqGHgCeY8+OuzHTXjXIISAvu8lOYYZy4Fxd7GNRSA8CWsIOp4NW59l7XXdCFtbW7h46SLGkzEuXDiPyWSErmuVETeBacAfLn8f78R3MJ8vEGPAqAFCilgMCZElqce5hHHrsdY6OBawomcB9Q6RpRy4slV2Xsu9sQDUh6h6MYAeBlaSvT5M5zi4+gTTqYdvGqRZj5Qk2adrm7yYY+Rcvo0Y6rsh9YMoQA2WHEXgKMxMBvAnldx53ZEB2hRop2spGCOngTd0PQiIjkGuAVVJBnn9pVWAMoOVPZM1mcn0fhK/BBc9pfjN9H71fZVl2B5iakPWTyqfBVf3sY9XdEIUOQBevT6XZKuvqWzzWIEkTc6XksjCDGb6FCC6vqZHVDpP7mk5U2wv0upZexoEk3+tSjWrRpGfe/rUs4O5vA6v+nisNxkgWT9S9WVHyjyrZ3oGnxddKfshgDxedj/T54rqopKjkkumd+Wyg6l+ZcrylKrBKPqUvWZ+ega0cbVGrXfkDMC02kiFZm3K1XNQ5O/Tn1v5uHo96jF/1s6aNAZ89HDscOXeFTShwfXb13Hp0SWM52Ncv3MdxISu7+D4J8+s8ovUjo+P8U/+yT/BX//rfx0vvfQSzp0Tdpf5fJ5Lqd25cwcPHz7Ew4cPcXAgDKx/Xtp0OsUXvvAFXL16FV3X4bnnnkPbtpUPSfThEALeeOMNfPWrX/3Yklnfr21vb+PLX/4yLl68iOeeey6fpaPRCMMw4PHjnw1owsqU/ajX/DgaEeHixYu4+fLN1c/x9Hn842oppVzC7/XXX8fx8fFP7Fk/jTbGHJ9p3sB59wSfab6HMVYZn4gY/mPKqA3c4lZ8DuljGKsGtPhe+CwWPMKddD3r0Kfb+vo6rl+/jtdeew3j8RjPPvssxuNxdd4zZpjhf8X/iq/j6z+Gt/3h2+HFQ7z3pfcQmx9/KbmzdtbO2s9H+8QgpcSUHUkSCDIKcjWXnMtZ32K4m/FjWURAlJQqILGWpykOV3E5QrPSIthBAjNUjj0mAsMjJGFocI1Hir0E7Rxlwwwo5cNIKS0yc0Gs3edm/GlZKJhDy2XHX0qMKDRSSFHAK96XQCArW4NkRmr5DnO4EMSxEQmcZMzAErBvjFWKCOPRCN6ce65R5gaPpnFo2lYc12QBLQKp08h7D0e+AJdcA6HCFgszWRYSF3e8OVLYHAtqoBsQJiWbCQnUAVXAwDyo+u51k8ByyQC3HzngAmNRUOCEOi4o6bybE5ihoKsGYGGxQF1mTycskRzirE5fe07jva5PiCN2CFj0CwxLKQkgtYolUzMlAW14L0HiruvgfQPvGzRtC+cleJ6zuVgc4q5p9Dqfxy77iEkct+bUtvc0J7I5jeuMvzwWVUDOnF1lgNV5dCqQo5FnxBzUqRxbqIBgWgrR2ENqt0ZkAQyIs3jApPHYmozx7NWLuHr1Ai5c3MZo1OHw6AR37h/izoN9PNo9hGs8uulYgAshoR8i+hAkiBaiMidpxiMYDoy2IWxsjnDj8nncuHIO57fXMTDj/qNdfPu7b+HB4xMcz4CBJRjkGUjsM+DR6fqTd455TCUD0MZUHFGm2sj4qpyJMTv5HVEuPag3ymNtcsQCe0BxxJs8A8RxmtMoy5bWr7PKNA0qEgCnIAYWdh5z5IEAJEajIEA0ADUOxC2OZwscn5yg12z1YUhIYIxaq9vtEDkgDla7l+U9FXjpAERHaBpC23aYjKensvTLpk0p5jG0sp25tBPJXpTMWihwSa6xLFBj3aozgCyAW1hUJEs7RS0didNBFn2Ad/l+zIBv1feZWnk+M9gxmBJAKT9L2Ewk2JdUpocUkXpgsQzYny1hLmhPBEoF9EGNx6j1WB85rE0maL1HHwawI6yvT7E2PZ/XXCIB1sQQMD/cR78IOJ4LE1PkiHbksbO9ja2NTbjGY/fJHnZ3dzH0AUfHJzgZAvqwREMRG2MPHpZwjUPjGmxOHdK8xzImKU82OCyXA9amHg+Pezw6iaAU0SeHROLcH3UdOAX0MWDUNOhaKd3IQ0TXAQM8hoGxHJZg1yHAwxPQs8P7D4/ADkiO0fiIMQWM2WEZAybjKQCHZezFqZ1Y5CKJ7Gk6B+9FZkspj4WUAvQenISxqek6zNISQ0g61iQMgiGi8Q0oMXzeEy4zKzJzZuAJMQC9nMF5mQDgmCTg5pyUDCPLrI4CjiMgDAFDHxFigm+BhhSQGiPATstL6J7lwoiTYkLUTCVjZpIyFXKtOPZTJUKSytjCjGSBGRMcnKiAsNRRnCrZU7KmC9uhlUs0Hcflc8b2LLIT3wCrsrf1d5RSNJzBVCWbl/NzXD6DbB8XMIm+n+oYGeykzGHQAFGOiAKaIV8ytktlDIIFYhmcmZPMaZ5SBJuuqYxEnFZLXxVQJWmwVEoQrgRdIONkjEV16ZwaGClsmAA5NeuTHQMEIkaj5feGxMKUqfPmmzK/FhANIcBAQynKOeSI4RQgL8ySBpIpfZHyogneucyuSapru0aDHk/pD5STAijL9Epn+5Q2DbHIP8qBmVsJ+FUBHv1AVDHRfSzYsxKQImH1XAncVeesHM2kgRg5u7yuz5LyvhrAqUE5qPYMGyuojrttnAKKq+9VbAqy/UtVIEi/L/eVfa7HXN5SBjrMqAizfQwMDICaBgTCZJjAwWPreBPT5RTjMMb5g/Nw5DBZTOC0ZKHtCXKyJsk7ZIYKuBycSvWcZRVJbUAu41beG/lvxQJZDYphZZwq4JG9t+pRWeeqImVsm7Ru+u/Ck4H8LhbU0w9FVtqvK7Osz6QCBARk38WUEGJEUoCBIwK8ACY5JXzw4Qe4e/cORuOx2AeJ0Q+DylVTFQlt16LjDoDJXAUC1PtXRzvb0XlARJ+y/ZHZwaqhyO9uzHx2fbVRVgPHlM8eqC1n44BqLknHmHU8RTWurs3zRFJWnRjjtsWXv/B53HjuOjbWpxhPO8QYsVz2ePT4EHfuPcSTvQP0w4CjkyPMF0uEIeSzI4NgqgQBeUdG4wijcYtf+eVfwis3n8Nk0iExcHR8gtsP7+HW7fu4ffcRDg6PFNgHGOtyLoOq8iEHcyF2ZiI1PfX/uaSPvaPaKHYLK4+zciNUMDOdP7JT77R45tV9lKeqOk9X9xqyPCNXzZldyyUpAo5w84WbGI07/Gv/++j7QcGbPT5IH2KLtwRUA3vXBAOCAXbvshZIbUnvPdqmAZGU+w0hYDlbYG9/H2Dg+PhIytsNUuLa9IvVzmtJ1PyuZG+az0p5ZpEN8nqp+mcpAcbFgq5NORH5zj0VbCd2K2tc1kZtj+icESGiw714BSMacD9dricPDGBCS2zTfrb/hc1Z2IJbP6Bp1A/FDr6Zou1arK83eCkmBOrwYbiMBCD0PWLfY4gMwGFjawsvvHgTW1ubmIwn8E2DGAKOjo5x//gh3hnexkfhHr6bvocn/BDeJ3hiBZ15dI2s316UFyApE2jboE8Jx31SHxjEZiLOpWejAn2882i9QxqkvLIjAW1LaVzRV51jPLr5BFgO8MFAQgwPRkPKlkTCIh7SIGst6QhrGa+c7EJ6rqlNbCXEiSOc90gkDMN1eS5jKCM99MnWBNuRWZXsBRBDVN8h8nlgNgfAhS2eRN81sGdiVgZWVluVVvRu081KMkVZv8Y8mlcpl59FDsk/TutwZe8UmZvFzcqx+vQZi/wexe7IWyr/Yvsm5bPedLHE1TkMU6dO623VM+np/tdyrZxtUAFmz18FGBX/hOrUyXQxfb7tb7ObKhujSJLqnQjZjrJzsYCaio5S7DCs/G7DVAOLqjfKfTaQ24rOqR/YucJJfNXFptH+rbDCo7ovZ92GTMetbKms7NYluW2cbV1aqXF931rOZzAWnm7p4z48a7/4jYHNw0245HDt7jWc2z2H9eN1vPDeCyAm7OztwCWDMNIPuNlZ+yRtsVjgd37nd/D7v//7uQRY3/c4PDz8GffsZ9u6rsM/+Af/AC+88ILoYzHi8PAwl/S6ffs29vf3cXR0hPfffx8HBwcYsl/8Bzciwq//+q/jtddey/6lGCP29vbwx3/8x3j99ddx586dn8i7/Ty1v/W3/hY2dzbxv1363/JnPXr8e/x7PI/nf2Q5MJvNsFwuMZvN8N577wEAHjx4gAcPHuDk5OQXgn1tgTG+Gb6INTrGt4YvPPX3LXeA5/2HP/R9n/O3MOcJ7qZrT53j0+kUN27cwK//+q9je3sbQOV/AuMO7uBf41/ju/gu/g/8H3gLb/3Qz/9xtdhEfPdvfBfszxSPs3bW/ry2TwxSKoFqiDNbM8RrA08MQWUUIIBJnIjeOXHsQsrDuHw/MwTFQE3QcjCcSlYUgJwCRwKoAAiLEOGSZGQJsCkgJcnqr0s6IAcWkemzrQxIBoUklmwX58QRqgEtZsmsj2okJorwiXJmYga5kKITbIwMJMTiZvbUoOkc2sahabw4qLuu1NBtGnUOqhMhqUFJGkAArRicUjZPA1TOyi6pk9tVh46CxUhZkYxByhwnFlyVxxWnh4Uoi1GqzooccCigJuj8cypGfaocHHJHhgU0QcrGYIEdEi+Vo+KY8r6RcnjOwzsnJFoQh5VXcFsE5zUCtlIAhGEY0Pe9lllTNoPk4H0H5xjjsUPbtUjMCL2UWfAKGDPgl/cNfNOAyLLz5e3Nuex8A/KS9ey99DvF4oOwTD+bs5qFysoTiVM1rYxhHq8cuKmd0aROeglaxhilbxaI1jnOThcbY0jALul6kr2lZRfg4UJCQ8CkJWyvT3D5yg6ev34RF7am6BqPvaMF3v3gIXYPT7B/MsNJCJj3sraaPmG2PBaGlFzOJwApAinmNdB6h41Jg+uXN/HC85dx4eJ5TFqPft7j3u4JHhws8ehggcAbmJybotsOiAlI0cG7DkPowV5KWXkRLLrnExwLA4mwTHFebwky5lHXomUOUipZiA4AYqpdS3kuSOctgZC4Wq/QtQ4nGaRw0NRKWChOgE1lfRvdvXkjObOclD0YU4SPAZOmwUABPHIIlPD44S6Oj48RQlwBEoZlRCM7GiEFpGDBHMv6i2g8MB53WF+bYDTq0LYSwOn7oCVG7J5eZYmUtbIMSyJ7Z12f6tQic/Kpc0wAp+Z1K2vYmD8I0PIGUPmWNEBbgEx1tqXJsdNZklYGEcpSZ3KWncm1BCmn1cBiaMQEp1md4hQlBYgBQESUCdF3dEAgzObAHhHAh+r45ry/GmVXco7Qjho0rUfrxYE/nU5x49mLGI1ajMYdIicsZkvsPtnD/YePsXd0jNlywKDMAEwDYhowahxGKYLaiEUcsD8P8EhY88CkG+F4GRGbFrsnCzTUYOCEngG4DiEOkHJ+DaDBBHYOy5AwLOdYHzdYG7U4WczBboTGAWks4KwwCNirHXksAiH0AxoAW9MRJrK4sQRhFgYsQ0IIUrINTHAeGHWNlGFJASkGJCegKEcOZBVH4BREBvjWIaaIzTUJyh4tAPaEMAxYH7Xomgn2DmdgdkgpZmDfaNQh0KBlGYGGvfpbUz4XSMswhiEiJdLzo2RNWwBQtqpXmS3rJe919VsTawCuaeA9YzHvFVxgWduNBlc4szqtOrG5Yl+yfeKQy/FlJz/l/58GleTSnhBgN5GUq/NeZYYCJ6WU3OqZQbnkmDq4qTDwgJCDkcx6NqkcsZbfVeWTxjZyXw1QTCiAbQtwEQo7TAY2s2XKy/jD7qVBeU9eT9ZqPkxcigKTwyd5DpzP56cFTC2oI/qIsjsqkNwAPhYEkLHKYQTR6ZS5yYAJsgaTBOecQ+gDAhRk6oQ5QUBK0u+k5X+lW6Rnhuphtk5RYjFs/7OgVVQ2QEeAdwinwAWs8900Ls+5ARvqMhplLX56Hca1vvPxgRHKYamsa5Kxg8oZknAqQJQH15gYClDNLtHsCbNcsn3BLGwIyVgQFeJsukK+hxk5+sOC93X5PajtUMsDWQMGMCuZ9BrHzvfOc2cXZKWyxJ8cOTjXoCGPlhtsH28LWIBbXNm7InodSAIL7EGRNDBPuU9WnrAOWpW5sMOznPn59VdYXFDpsGVM7P1Lq/9Wz7D9jaq/FXhRAaMg61YmD8pX67/K1bYCoHqcgJRcSTYgG3vKul5ZETrFyUCGUUtDx1wCEkwgauAcwzUGLhRAa7aBlPmPnENnLJWmN9mY2nlDDqeBYsbkAHtFIDNl5b9ZWT9G1fOPb2X9cjURp4FQ2j9bhzaX1Viu3EbLRcsSZTiV3Y13aJ3DeNTi4qVzuHb1Ej7/2Zcxm53gwcO7+ODWfTx89ASLoUcfE/qQMhOendfG7MvZrrEAM2HUtbh4bgubGyPsbK2DwTg5fIy33ppj3gccLwKOZkscHBwixAGJEyZrI9H9yCNqOTTTb21vib3uKjuqrIjCrBHlnTPQ8NR61k2qaSp5jvP+ZQjTbyWjM6gh36jIL7uv/c3OX16ZQ51FKmuDlRW30XJk2xfO4fLVS/jX3/7XuP3MbQVqAAERv5N+B8/H53COzun7pIqxymRgxHx2gulkgo31NfjGg8hhueyxt7+Hx48fY293F4vlcgW4WeSKMcigvE3+IXvaZK3tTcbqmitf0ndPnMsVil5Aeayz1KhsluxCqZ+bR7qyXQCAKv0CrgT09V0GdBiyzaPyLSXMaIwnvFX6qGUhy/1lfyVdDARJ7CAo26zfQ9t4TMZjbO+cx/Xr13HxwgWsra/BexnvWx/ewke3b+Oon+Htq+/ie9O3cJyOkSggcoQD0DKhcYxAEcvAygDOGDcegQU8NCTGybJH23jElBDJSyk4sDLfZkVVko3UbunaFoETgu6n5KIkfUUGEiF1EUQeyyg6ZOccOi8yeYAAfEIKFZBeHtN4r3p1kjVESewIsnLQOj+2TjQZrfVA0xCGAASS0nEewLhrsOg1oYSLvidgfS3hHRMqVIvK6AJQFn0gZZC9+QVhPrrcjwJSPi2/Te8UIHqDqOx7wOo+4SxXngb3WDKQNZPWlYpRXqG2m2tdBZbMZboP5TKy+Syq3t1unqUgW6k/3Quq3xadweQPV3+vznI7V3ScbW3VnTffw2nQswHY8rW2bmoBkf0WeYDKParrV84x2LhAdAtUcgRYfYdUZOLqK6wme5TzlJSoXM8C6Hmm9gUY2Z4AFJznKN/b9obNT/U2+X3zs+06fSvRYcTn5fT5iQpgudaXJakGK2NOtc6LlSk6a79gzQcPlxxGyxGeufsMCIS2b/HZ730WLjq45HD9znU0oYGPHj75n3WX/9y0xWKRATh/Hlvbtvn3Cxcu4PLly7h69Sref/99PHr0CG+++Sbu3LmTZZf4tNP3u91KIyJMJhNcu3Yty/hHjx7ht37rt/DNb34zg5SGYcCdO3fQ9/2P9d28Vqv4QS3CI+HTs+du3ryJz3/+8/hf/uX/gu+8/J38eY8e/yP+R/xV/FVcx/WP/a7FwR48eID19XVsbm4CkHk7OjrCgwcP8Pbbb+ODDz7A4eEhLOnvF7PJmjvhDZxg46m/Po4X8W586Ud6gvcem5ubuHTpEl555RXcuHEDm5ubaJoGi8UC3/rWt/Dee+8htAG/99d/D//s8j/DYzxGwKdgzAnoJz/ePXfWztpZ+/lqnxik1LRad16NQHMQlIxeA6iYEyZpuQ6rV2/OKDGPJYBIiBp8z0w64IrNPImjVKmXOQ5IAJI5dSq2gOIslyCyGck5IEBOyqJwcZxJkI6R9YRkLEpcZUTJ5+IUEUeMo+KjIGVhgL6lI49R16BrGnStgJC6bgTftvBesuqsJEhS2nmqjMvE5jxTB7QaovkZ6tSWYB6pMwnCtgGWIAIEsBFhfVw1ro3xyMrkZcc3mw/R3iflMQTUUcIJUUEi6psuTg0WpyGzBQMVJEUOTpcaecqZa1Ymyu7vnYcjYZHiHCBBNrS9OpdAQKvAohQjYt8j9AGzRY9h6EFCsyKBm9bDuUbBR+boIQHNKY3g0w4hmRNic/4KMIiUkSpa2Rxl9/DOCTuGrhEDTDgWevWkoAxbqzJ36uAvnmCABXyVjF0BuvghrC3EkuEnAVr5rkMBf6QYEEOAbzsYZCaqg04nHl73nyfCRkc4t72GS5c2cO2ZC7h0fhuRGQcHh/iT772Hew8PcbiIWISImAgJSZyZSTLsgcImRhrUBiUQC/Bp3La4tLOBF5+/gBdvXsLm1gTLZY87d+/j1u193H98gnkU0F1DDVrfAC7Cj312II5GkHJXXYN23GI8nsL7DgkCenTkhUmlXyLGmOVNCEGzNSXTMiVlqBiSOilJAk8KpiLvwV5AOk3jMQyDOhcbKRUFZdtwDZZ9QIyMcSfMZwwoi4U6BKVGJJgjIjP6EJGCMLL0Q49hCCp7qkzlGBEHRogB5B08nLxTiLn0CnjIrFExDohRyjKI3IxovYdvGzTOYTxZw9raGNPpGACj73vMZ3MMIamjUda1a7xkEmu5HQN9yJKq9r3uw+L/o7xXRPYbA8sqk8uKk1KdsPm7zhyDq45V752WcKwdvZpJz0BUoKvgPigHORy51Yxs2RY5mB055uCN3lR+EMEYqY2hyUdWR7wAIC0Y3UNYsIgIWEo/28ZjurGOtdEI7biBc8DDx7u4e38XewfHmM3n6PslEgdZbw5IcQF2AtpI3qNXlqjlQAjMiP0SDGHXS2jgiTGLAbePAiajDpM2wbcdDiOBhgBO0tdR22DSjhHCgGWIWETC5qQDR4ehFwrkZtRgOvboOSGFhNYBaBixj3Ba0nXghJM+YEkNUh+AlNB1jcjAKKCgUesxC1JSznsCeXG+jpoRjg9PwE7AOmyciQSMR3IOLBdzeCaMvUdgj8WQcHRyjCFISUdjT2hbj4YA9g6JjeFQZZ8X56rXUll2hqWIDExLEYgkzE/Oe5CeecMQwElB0TkgF+VsBSEGOUftrM5nXF4klNdl0/i83qVsmwSoRV6sMgcQlf5n0I8B+CxQzKJHcYzwCsBz5HJ2eNknXnUVn+/HkDPR6X2TAfl0T6SUcskxW9c549s9HVgIMWq5C2FNIOdzP608hICazKHPApGg6h1BiDHouX8KmGibNAdPdG+x6QaQ81JjGSLfGbkEjfRUSq5mR04JvMcYFVQvclPw3XIekCMBvdsxa6AFu7fNDyeEJLcXyLjqA1SBpkj0mWAB8GqeiETWKTkkOCrzgDHd5bKJZX05h5UyD8wAeXl3Z0FsTspgpRBwtmCTlON8Oov909MMwJ1BM3kNyN9XQyQWNKuux2ocygAcSXUvW++rN7FQoAWt5LqoqqadCzbmgKybrHtXAaM6kGhnmH13NaBkbEgGRquu0T7nzwBd66qnsoBWGrRYGyZoyOPSwSV0PMLmfBPr83V4OIz6cTl7c52vajh1jdR9WglkUrbOVuaDUX/PAI+rQbhVIFEFFspBM6r2wurgsI55bQOsTFYOpupgmX1oT5QOl0BpdV/A9BZXmPVg9g3lMdBXzzoOq9xNSdj5UpRSmrb2nPNojN2sslFSYsn441Pvl8e3fj/TWfS7ui4JENA8FZlt+6IOWFoguKyZ6t1WAprle2VwOM8UsbEy2DcLUwaRlklMSZNi7OsW6maQGoEExnQ8wdb6Gp595gquP3sFm5trWJ+M4dsGIUT8u//wx3jrnQ8w76OUs9J3SabjMa2uA2PLgARx1yYTbG1u4Lnrz+CFG8/gyuVzGI9bhBDx4Yd38Pv/57/H8UmPoHvGWdIOqZ7AAnxoGi3Z3SRMmoCNNmDbH0NHFAYwSLoGDEhv58UG9jGmZT7bMhsiSPVTGcMT2sAx1gXc4Gp92BW7V78bosxTowxmyGsUyGViq0SjqDYXp4QYoySFMdBzg910TucpIfk1+HaMCxcv4uozVxFSxD4OkNoENziApE/72MP/O/2/8J+m/xTbbiuvHedIbWFhKzy/s4PxZITGeyz7Hm+88T08fvwEy75kqhvgopRxKp/lvZv3Q71nDSpUfQ/luiI7FMSXDwpdj2xAkPLtfBdClo9lIRf5lO1tQvUsoCRFFOGhrgVlEtN5gX2FFTglNzPplc8dRgaHZcAjISfSIApj99UXn8Vzzz6Lzc0NbKxP0DUOQwjY3Z/hj7/5J/joo9voU4+3b76NO+OPZF2YbUMAnEN0krAXtNSUlUsj1wDkQeTBHHE8MEYsNrgnhxAJYVCGYmW8br0k0UWSsnGtJs7FKPuEnSQ9NJ4QzcfgoEkAosswCH2MGFhYH0WnJWWgk/EVHR7SZyry2TufAVLOe7VVBRTeeKdAfXm/XIYcwGw5CNifZI5FrpWy7CugIxhgkVTWqxC0rafgetPZYKAjXa4CiE+VN0+Bz/lcUd1bAdTOGaNpWXFmC8h9i2yx5VWXVCwGLlbOnFV7e7VlkL7KOTuzV3aMI2EWVkA9aj3nY+572l6or80nUv5Mgb+p+AcLgKeAdbIvsZ6Xel+iMDdrF6un6W95o9o3VPpUx2P+XhYaps/JqWj6d31nYx0iZ+uprNOckIIKXknl3wxbU1V5UPNh6DtmfYrss8oWyX2wdVy0o3o+cEq/069nf47NhSWUyLsiv6sse8qs9afvd9Z+DptOfRMabO9vg5jwyluvYLQc4cr9K7j4+CJ89Ng4KsHyj4MIn7Wz9pNuOzs72NnZwauvvoqXXnopy57pdIqu6/DVr34VX//61z8xGKluzjlsb2/jypUrePnll/HCCy9gY6Os+XfffRe/+Zu/iXfeeecT3pHRoccmHWLH7eJZf/sT9+VZfwtbdPADr3uYLuHhCmvnT77NeIp3QgWQ2biO0cYFfOYzn8EXv/hFEBHuNHewHK2WGXwP7+G/xH+J3+TfxDN45qlzI6WE4+NjbGxsoOukEsRyucRXv/pVvPPOOzg5OfmJv9ufp/Y3/+bfxJe//GVMp1MARdeJMeK3f/u38e1vfxuDH/A7//Hv4D9c/A+ntImzdtbO2ln72bZPDFKC+PueMswJZnSpcQ0gEeAhgBJPEkyzAIo42RI4cDY2k0QV4c1Nas5pyzqGyw4eMcsSnHeILE6Bru3QD4OUfAGDA8OTOaC0b1pyyUqfMXNh/8nKeNRsdzFAYyhlXCTD0thGhOHH+RZt22AyGqFrW/iulAHr2g7eaBNIs8Bqw5pJA146sNCxRTFO1UtQOXTqEk2Us6MBC+KzsuSIsRrVqZmpg9XpUhwAkLGgVVeFgWpAleNBLV3WccwOdB0/WxuGAWMgZ4+ZkW2ZYuLjIXUwVmwGNbMFkZT9U8aVVkvgZWcDKaNMGAAWIEfTOKxNBSVsDktzikjJMfV9k0PnWqCJJZsPxQlUAh7mGEU1hqUEj34LwyAMIzYdsqZYS4GZ4yFlp4Y45Rgg3Qu2xvK0253lvxLE1tIEcLCSXEDmp9Ksaob3UuojJXNKSOC4AaP1hOlYgEPPXjmHa1e2sLHR4WQR8Wj3BF//zgd49OQAx7MBi0FK2ySWQUvmIIeVros6EwlQ8J9jh1HjcGFzimev7ODms5dw7eo5jDqHB48O8e//6B7ev/MYDw/20fcRCQ0SfHE7E+Q+5EEkDB/GJNY0DuwIjW9BaJTyHfAkrCqcggax1RHFAuYyZjHK600ZM9RxTdXgC5MWoXEuZ+a2TQtyLpc08L5FiqwyLcG1kolJzqFtPbwjBDj0cRA5mVjecuQRPaNxHksycJzLTB99TIjqI40xYjmb4+DgAPPlEjGIc7NtWmFuU9DAECOaRmpxj1qP0WiE7c11TEcdiDyGkLCY91guepEFlGCsAtDsYCLKDtfaSW+Zo+agqp2TFkQt+8Sy9aBBljqAsOp0K/LU5HyRMRkQouwsIIKHnDOu+m6jeyUHlAwg4VIGEYj/X2VJgrI3McBR/+YyWCvpPbIcY0LgiAAGOyltlWJQhh1kQK1XpqqLF87j4oVNjNsR9vdmuP/gMR7v7mMRojBghYA+9kgUkLhH6wh+BMQQQExgeBwuBqQ0gNCiGxw6PwVAmC0DIhLaVkqEeicBg43JCIk8DmgpDEWRMZl0mLYdOkdgjvBth3mIaCMDrgEQ0LYeBIeTBcOlBPKE48UAIoeBCXAMN+pweHKMPjnANfDkMR53IGLM5wN8Q9iYThDjgBQYzC6fcd47LEOPSAkpOcQg5TSXwwDvPcaNx9gBHBmLJaOPALHDuPUYhiDl84aAtu3QOI8UIoaUQF5Av+QcXCOl4gheTw9ZHzEDbgDywLhp0fdBHdoE5xghlblmZU8yJsESoBd9JQYGXNSxlJI+odcyXJ4wHo8QlNGONWAje8HYiBgZPK3BjxSM7UvHLGmQUY8bVh3F1AU5VzWgQQxmD1iJDU7CNuh9Dm5A9SQDUQtQR1iZ2sYLmEPLcBqLWw4+ZHCs9cX+VRiGDGxYn4UC7BawZw2gNflAWnrA9rd8O+V5s/iDldklVgAQ16WxtE/qRLcASxRqTS15Zfex/kvQzjkLXKOUxXIyxt4CQ/pdY0FKsECrrhMwfOPhSM4/Y4WwYJfpbE2jzH4oIKEM7CcpfUIKao4hZn3PAjPCkJRWgqreeylxqOApcoRGopE6dwlO50tApgqN+TT7mKu+mZ5mHzOwoisjz7msJ+ccIozpRde4gl9lPRfoRYHNqL6ka9qeIT9ppT/ee2HmTMqQleQbhS3hFEgE8ghjYSrBJM5BINvPWZcub5Z1+za1aFyD8yfn0KLF9skO1mfraLnF1nxL7IOkwayVaJv9qAP88p98hlsALo+5gSAKk0vdqwIQVk3UdOTTyypfJ5eu2hLyYZYvpNebPIYmn5z6RmHwqF4EyEHF/A8bgtyx1ZCdrImkBbm0/Ir2w+UScNJ802B7awvnz58v5X8cYXYyw/3795FLaqKyiWCmqoB08zhVek0Za1usq2+6OpSs+kos70V5RxT2niycKffBrlpldKD65mU2TDbm0S6TaoHhrKdZQJxRjW1C5z2uXrmCZ65ewfpkhGeuXMTO1hSjUYshJpzMejzaPcbB0TEeP9nHh7ce4mAWqv0DGDCI9d42S9BxIEhiymdevonPf+4zOLe9jq2NKRpPOJ4tceujx3i8f4R33/8Adx/vQxInrOxINQrVGAJASxHXmvsYuRNM/QmIgiSkuDJmcjYSAjp01OfzLBDhpBxZWbSoSpwf4+kI2yr3XbXH7BzNP8lpuR8Hz8ryqH3w3okfw0tJYSJljaYE15ACoaOUyNW9kPj9fObHi/8R0vO/AkDK2S9OFti7uKu2sIytvdeH+BD/4uD/h7/X/F1sb23lZI3xaCQJQUSin/UBD3Yf4/79e3j46GE1vrZHZXCyJpFlU2F7yp9U8qsGn8LWbt77BaxLlXypAyArAf1qrTpjllZ5kXUDqv0i8sPmiU1MUOY/yXvAmriiOMszUh+VnMmnzwYCoDpZQWLIo/W6pExS62tTvPDCDexsb2HUia25u3uMg8MjPN7dxZ2799EPAz64/iFuXbkF5qBrhaq+iC48WwYg++HEdgiJETlkvcj7FgxG6x2c06QeR0DS5KFGWCRTTEhOSiL3mX06WQVwYaZVfSvEJIxKqse2XsDbQ0pgeJBzaEhYOIOyT3ath3fAcggyXlVZTvMZgoRx2DkvQD3mqn8BMRGGJHKy8Q4kPLnKOu0yg3fSktLeOXmUK/NuPklyxT6VFcBotMRcLdczuDEnA6z6MOU6p2vG2MyV1bnRBAl9NykPXXQTk5Pmu7D7m04MQlWWU/VncGYtluOWs15vfSgAZGWiVdstmQys9xXK8ZpHwvZiTsAon9XXyX9ppf9lD9XAFztsigywEme2dzNIHZWsBUr5VtTjYB8VGZL1PS5/L37N/NWyDujUvZA1GeRTwnwglY6S5RrpybqiLxWfpN2FiArYl0zulH/IGVHNH0P97wawZk3MUnb7LONW9bJVfbvud/VZrQRk3cPe5az93DQGur6Djx7P33oezdDg2dvP4uKjixgtR7j8QAAPPhZd46z9+FrXdbh58yY++9nPomlKiO3OnTv4oz/6ox87I8/Pe2vbFl/4whfw2muvgYhw5coVdF2XK1yklHLpr7feegt37979MwGUAOBXfuVX8Df+xt/QGFGxl4dhwHK5xL17936o+42wxJfbb+CSe4hn/UeY0seDbBIcZjzFOh3/0H1+zt/Cc/7WD/29063FgIbiD74QcgT8Wve78g9ywC/930F/67/PdstyucSdv/jxZe/+Df8b/A93/gf8T/Q/4fq1VUYlY/bpe2Gnf+utt/Ctb30Lr7/++o/yamftY9rOzg6+9KUvYW1tLX9me+nOnTt47733wGB87a98Df/hl/8D2PGfcrezdtbO2ln76bdPDFIymn0zvBiVDVjZmNn5mABnwWGQlswRAFNmLzJnKUm2VDRrmMXdaOCSlJ1P8nzLMgIM2DAghKDsCxCqcley+ZOWAcrGv/6U7Cd5AQLBeQFGgTSTqDEwEikYoEXbeIzbBm3XwXUtmsapw1sHijSozeYQcEpdDS2JVFhHzMVhZZFMaVox3kkYp+pspcyQAEjmXuUULwlgCRpOR+LiTDAwUcnsBHI5FV51shcPhUw2mxGtQTCjoKbq/8XRYM4LsZATxwy2ARuDFDKIzNYCp+JwBAFN28K3UlbNIYlziryUuuhajCedMmokRSNo4HeQkoE5cKRBGXm1ALO863eu2QyyI9RS9C1AqO+UQjgVjFBAjTFx2edZmS7BahubGDWTv5475vys7OsChF3DHBOQ8XIrDhEBBjISHIfs5+sawsaow5UL67hx7RIuXzyHyWSERd/j/qNjfPudR3i8f4TZvJcSUQkAy16MnMAcQSzFC5LU0MnrWNxxCY1zWO9aXD6/gRdvXsKLz17E9toUfYj46O4u3nzvHj56sI/D+RJDSohJgwl5TtKKE5kRcxZhhD5Pg7chBjAnOGJQH2GBWlDKTjxb47bPbB1aJrOwdKlzkGuQIrJjyAJG4iSVYHZJRCNR3A3mYoFvlRsSOBeQVWJS5rIEy7xO5giGgfZYSlCwOMrHkxGaxmEynaDnBJzMQHBoPIHawjbWth7ra2OsTyeYTiYYjUfwIAzLHvN+wELLGbKWMiLnK2YXXddmqJHIZtnXTuVlCbICyPLJxmbFeZYFhgAZ7bMV/5056Sr2vWTjjMJKkgJr1ygzGGW2Cv2OIypyg+TdACqQx2jeQQ1T21lizlQt5wPdb/Ld4jgEAU4Rl+SFcjeGAFiAqXFYm4xx9fJFnD+/jYYYjx/t4sM7j3BwdIIQhX0oxoiQAoY0CEuYBwgR46ZFII8+RMQUMURJ1229BAGknCDL98hh0Qc0nrA9nmDaEBAZR7OZyFUIcLglRow9ZqFisyKgD1pO00U0vhGmsH7AuPVoG4eUHE7mPZASyAMhMqbTDUydx2Lew5FD5x1CSjpqEUNcguDhGg8XpRxC4z1CjBj6AHbCRmTAT3BCHyO8J8Q+IjmP0ZiAQWTLZNyBHdCnOcglTMYdKCUMAYB3wioERtc1cC1hPGkRl4zFsoeVJgOARkvKeS/luMZeAyw6Fj46pKQMYA4SJMjOZGUmJAmwpBCkRK2ToE9SgJMjJxndHIGkLDsJmb3IgM4ppnweOmfrWMbCWFyS7QGVEyYKLdM66tx6p3tRS1JFZThqmlIm1TQKYVrUM5iTlk8kYZMiUpY61oxmpzEMA8pAWKuEuEx2beXUdq7ocgYEJU9ShlNlgoC7RbcgNXydtwCjuuerwEUWRyz7XEq3VkyWlQghCyBBwCOllIaezfUXSIMuxtpTBWWhMsEA4CAGRxlvy5TPwShVdBlSkqXWeXxmGWFY2UgAWl50Rfhl+SdjTkWXVl04lwKzeytDF1QvkkCGW2H4yCA4O4/cikj/OWinArqoxt0Ax3a65AAyG7FI0ZG4uhdVpbGga6wOpFkATc8e21em+UVUJWcYIEq6vuwZ8pAqXA4LEOf7VEEnEIRBgeSd2thgOqzBOYed421sLNbR+AbnDs+jTS1GQ5d1ElklRf+vy63UwSPTKeW5xuJRX2qywfSsYk+s/ES1puqJsYD8Sn84v2BhNqjYlKr72s3z3KIQ2FpHTd+yn/nPZlja+AMw1howVsp0Zs2DTz1bHyAsmsK+kdcTieydzWaYzWfKKiB/C8OQy7hxfv5qaKd+p9P2g/29XhP5WruKK7ZT/Xd5yul5qu9enltfY7aHjEnpdz0QBpuyflB9y3o+ACkXTrJPHBFGjccLN67jV/7SL2N9bYqmcTg8Osaj3SPcu/8Ij57sYTZf4vHuLkJMGPpo5j5sVxadXPtjdGIkunbrPdanHZ65eh6/9rf+EjbWphhCxN37j/HBrbu4++AJnuwf4PjkBMt+AFc2bv22RKfWAQEDN/gwPAsmRhei2AtyGtejqdaNQKFNdq/8PRtfZTZz0kO1C7LdSeVzUnvCriCqBp/yrse6O8EYM5i9lbdctc/qsuG2Dnw3xnPnfxl+CGgUnDyejPHF5ot4a/4OFrQEiOCZsDPbwWfjZ/F5fA4Xzu1gPJIA0bLv0S8XmIWA+/cf4sGjx+j7XoJspneb3Z8XuPy0f6JaxzYzWbbV41nJpHrxMee3xFONoCD/1XE2HcPOAxl7PiV08jTmcTd7QvrmbJatI08/Pxlzn/4jd6CsARsHzu8LtSFKaVEBFgNt0+LVV1/GhfPn0DYei/kC3339TTx6vIvHu08Q+h4xRszbBW5f+QgRUZJtYPq96N8M9bUlUr+U9LFxhMgxs3XHGJXxuwVxQhiCAu2RzxFixhBC0c/03uanIDCapkFSBrjGi909BGESJRJGtqZp4TyyDm2s2AyASZigBJwuLK0EOSsZELZ1nQfBnVrCWUJkJwgpFv9dq6xKTSPMyAmSSNF4kfuVqSDMS16SHkAOlCT5AcwmREuZTkc56c6+K3NKUPGY7fu8V6t1LuuSwFrmDU6vUp2Bch1ozvog5TEXmVDOIF2z1ZkoS9QYsEoCqK1v26NFLnIWN6KDaiKcJS+t3FkPV6bqfgLyLQCv2m9YJyOV+5QtVAAy9tN0s+y3cRXQ3M5yK/WqZ1GRsZR/z2K07j9XJYNhIKRT2nGtzjz1ucksVmb4alJR+l29SBnv+vwlZBZ7AMreTDnvsQav2vmd35JXwVP1C5o/xxjLrE82V2bfkdEl6WQwGyMU5+fz6YnTV33qHD1rP5tm06P+sNFyhO39bQDAsx89i/NPzsOxw833bmK8HGPtZA3OaMLP2k+lhRBw584d3L17d+Xz+Xz+C1y66s/eXn31Vfy9v/f3tLpIwpMnTxBCwL179/DgwQMsFgu8//77iDFiNpv9mZ+zs7ODv/JX/gratkWMEQ8fPsTdu3fx4MEDPHjwAE+ePPmhmXyWGOMPh78KgDHFDP77gIAYhMANWho+9u8/jXbJPcR59/iH/t5k8wJ+9S/+95WvCxiNRvjPr/3n+D38Hk5wAjDgksONhzfwDxb/AP9J+E9w5eYViW3EiMePH+ff33jjDbz99ttib89mf2bA2Vn7/s17j1/5lV/B+vo6AKDve/zhH/4hHj9+jA8//DDLoqONI3z9P/r6GUDprJ21s/apbJ8cpFS5x81WSSwAgsIYY04bMZoiM9KQgBQl6KfBHxBlxy+gRhYpJa5GHARAxMqmA2SDFciBPDOcBu6zr4nBAlKqqW3NsDY6cHNWAyDNIGu8R9N6OC+AmMa3aNtWGVTk+drZ7JAogCQt3wEqZc5qox0S3GJwKSuQkDM3TwcK7HcLNJt1yqzBExsEFPrwAkLS0jTmri+RluJr0L4ldSJxXW+Cyny6ymglzVI145dImY+oGLfF4aowFmWSUMhBccoA4Dhkv4cFUZxzaNtGmGG6Ruaj8QADjZPMNxCBnbBJMAMhDuiXS4Q4KC1+lRFEJTBDZvRXwRSgzBPZQjk1b/IcBtQBxOq0eNpgZxgV9Mqndn9djzFFeFiGgI4FaXYcKwjQae8SADg4BW4FjsgE4bam2RxiEin3lDBtGmytTXDh4g5eeP4SLp8Tas35yRJ37uziwwcHeHwyw8lsQIiSuZ2gQV8igAOABHYMjgGkmbdJ2buII1qX0DUJW5treO7qJbx68xk8c3kDcMCT3Rn+8M138e7dJ3i0f4TjPipQzsFxKYuW58gc2zr+TvcX533aiNOYUuXilu+m+j7mjIOVKZDfbZ2bAyw7jpU+g+r9SlpqyeaXxcmTQipZMQQkHW9kx6OF79QRKwOVA+kSaJb1aQE9Npp/lXnEwHTaqRE1YDRq4eceXdMhxR7eE8ajEUajDtPxGJsbU6xNx+DECEPC7LBHPyzBkJKM0YbZ1U7Q2hkossrGGzm4TaiZPExO1QHO006+DHhE+XtdxkqARV7+bTUb83+R91RKCZ68zE9ksLKGsTlVqzlSt6HKfWOaqfdu2dvRGNPsM++KIxgFPMUs5ZfKbRSQ5QjsnZRj8YRx1+Lq5Yu4uLMN7xwOD49x+94jHByeoA8BiQM4CKAuxAA4AS6AJLM3hJjPEEoEYofIEUOKaNAJUCMEwHl04w4pDYgp4OD4BMvGYX1tHZEcZLdEtF0rAApmDH3AMESQ82hGLZiVlS5JyTtPTkoyWC1VCEio5VaYYljO0KHvARB824CJsOiXYsw4j9lC1r8AiKNiMSUzz+v4JWK4tkHU8oZN16EdjbA4mWMYAppRh06ztIcYADDGoxZDCPCOMR6NMISARIBzLSajEZqWMKQBzjVYpAFjagEQYggIMWA0ahQECfTDgKZplJkrytnipdQbNLgQsw7DYMdwLGNiOoMAUiUo0zQebuQRQ0SMQdegL2BH8UMjQYIfrF5vA1vL3jAWNiDGoPvGY0Wm6/4xgLXpUwZsIZI54yQAaLjK4WwlIbwG2aLoOOScglp1VzsHEmQVDHhbZCQgR6zINmYFXql88I0HJV4Zo7L3hS0ohqilN1zeo09FEOrAk+oVnMeFqnEo4B8wMiCKFeyVkgU2uJzX2kpp3aJvJmXdScbqqKCEEjyV8TZgc+SkAUzRrawsiegTqegVWQdaLdVm1XqIGJSSfD8BxhppAUArQ+K0PJAELOSzxFLKxCIXOXBjsuuUPvJUEOZT1lYCO/JJDuacDszYKWHA/xhjjrXYAVKu1SFygAFtNT5UzngbKjt6sw4CGdvaaab3Ndafur/2rBzQJUITWnjhkcXmbAOT5QSOHC7tXkSXxvDOoY0NJvOJvqeCn/OaMx1TH+OqoFPVMjDAdCe9VxYj1S0yUEXPONFpqFpD9uJlFqonZd2Y6+syjZXOmeowNq7VAVoP96m7mw7A5TrtWwb32wDb3+pJrsYlB/9WgmuFvc3KPRvTY2aKJIIB3WMSMKvI9qj6Rn3Duu9Pv5/9nvWr+m+cJ0uvSU9993QzmVK/L7K+/zH3zb/rNUl/1vuMAQPAJJjdCrXQcufsFzjVDSZdh+l0jJ2dDVx/5jIunD+P0C/x1p17+ODOA3x07z4WCylHXPTbvEu0H6zzWm1eBghSImo08hiPOmxvruOlm8/iyuXzOH9+ByCPN9+5jX//x3+Cew8eYRkK0MJWUG2j53fO+h/lgK/Y78IORWAM8GYJAtVvNooESWlx1Tosfgs8db19vmrLI79z/jRxZuMT28cGn/J1BMYsbSHxVu4Lg3Ni1QoospKbYMAFYOM44OLEw3nRUZrG4/Ph85i6dfwB/59YpDl+af/zeGXjFVzavoDxqEPbNpjP5/jut7+LJ7t7iCGAwYiMlT4SZclQtj3Z+GJ1zVY2W5YF1d/qe1Zm10o7zYYlcr2epfLylMfTQMzVGHMe3FMdKpNjcohO+ZDq/hWZZz2ohQPByk1x0n1VddHWZwZqE2NtuobXPvMqXn7xRXSNlDt//fU38N3X30AIBtoWmXT30h3MR3NIcov0K4WY12OtZhmLKDFhGWXf+KZRRkgBIHGKUk7cOTBpiUcFtZs/KIYob6kgflbWFmMCBjjPkSQRkTBBsQCnozIcJWYpu0zCriTMSA4xiV2EfA8Gcymp6ckhxpQTZVIU1nPfNEBKGAYp6+68SDdGyjpV08h0NF7A+uaH9K5F411m/+Ooz/RyRggLrMuA9ajgKOe8JPSQlNXNECo7I1W2mT8ig5rrxa3+P+e92lDCCmrrKPuk6s1A9d7Xta5zbjpjAU6W1Wb7x+wJ4pJwQLb2icGp0murLZLvkV0ItMJCkRf2iv5c6Qsmnx1y/4vMLjZHGZ5iT8jfJZmE7B95j632L//G+k4AzB4o+mZZX6XrNuarsp251lDsJFvVreu5rYFEq2dE/S6UdQRkm2v1PbJdtfKMFRUg95UqmVcdeyvjW+vI9u9i79Tvgj+1fdptil+oxgJAaoL4HC8/uIzt/W04dnj1zVcxno8BAJPFBOd2zwGA7GuczdHPullJq7P2dJtMJvnscM7h5s2buHHjBj744APs7e3hgw8+wFtvvSXVKX6QQPo+jYgwmUyy/Xfz5k1cunQJL7/8MqbTKR49eoSvfvWr+Oijj0Tn+LE0wgxrf7pBB2DBkx/T8374dhQ38W586QdfeKr5fY8buz1ubK5+/p/hP8NN3MT/jP8Zu/0ufuPN38CvX/x13Hz+Zp7j3d1d/NZv/RZu3bqVfaBnYNefbDt37hz+2l/7a/jiF78IQMb793//9/EHf/AHK9cxGN/84jexv73/0+/kWTtrZ+2sfYL2QzAppVwqwVVZP4WvR4z8ZE4LcupvEGep0nTI71qv3s4q5wQEUOWrWA0WGEbHnCBmhBlYpLgpkY00+4DISho5ZUTyaFqHphEgjPcNGm8/fTb4AKNULsHCzCICUuXHZ6Mt12/PiBtW56taoNlDqo5EBUqQZQZpeg5rdrBlQMk9tZQFFXCDOLesZJQyMWSnvaWKGZxFgU6145S5MoQ52/unA0dsUUmoVUwCqnAW7NM7mOEtztXSt1Unh4AIMsCh8eiaBqOuxWg8RjsScIZzjcyAlnoz4EKKUTJmZQAwBMncizEixiEb7JZZWc9XdqqSjo/+3catZoSRqSuOdlOsfGYu4KfGSX7VUjXkVpQwAWtUijDX7ofiEAUp+wTb1JnDiDMY0ArZZxYeFpaFhhLGrcP57Q1cvXQOzz1zEZfOb4MBHM/neO+jR7h3bw8PD2c4WPSIySFGAqeF3sMDRhUOc8kw0iD9cSRlRjwxfJOwNvW4emELzz9zGTeevYSdjQmG5RK3bj3EW7ce4YN7uzie9eijlGVhMqe2uadKlmrOzkTllHNOHZ+kpXYGJIIyG1jQgfLeLplkulfJjPXiNCv07WSTsPL9WoFmAOzK3qekQT2bbHsOSNk5KldWSiBieAjoy7OuqVT2N1mAyt6RACbCqOswmU4BkpJSKTCGeYBnh5H32NyaYGd7A9PpGI1rwQws5xHzeS8O3xhhNclYmc9kb1NxpDPBN5qxqs/2eZyy+7DIqCwD9XNX5OFpo2MlE6/6bl7pZEF/lnILpDIkJRiVQHbc5z5V7HLVGgIX4IcJ/5V+pMJik07tWSbLNrV3le/nIG/FvlaWpMp4cnAe2Nlaw+baGI4S+mWPu/ceYv/gGMMQEDkAKSiYgTDouRghYDLvHIYo5QodkpThAgFabiHyEpKQ4xBDQlj0cAgSPG0agIA4X2LRDwjKVMis4BswmlZLEzYtXFNKCnov52BMEZEZo65F5IQhJoQUkZgxatvszK4DwlJejdBRA0ceMQ0C1tGVlQgYlhGJI0ajDs55OBqQiDCwAdA0sEEeEQGOE7quAdgj9AG+8WiJ4Fova9ILOxyxMDy5lpAQMR53SFFYlZquBZjR9wAGAUw1rQOzw7Lv81p1WuIRnsDJ6TuXErCJGd5JmVADQVgM0SGhHXktq0eIHpqFPkJMhNj3GuBQNj1Jb9c9ghI80DOobRs0rkEYZgghgKiUXWCuGMU0u1kCPASfBFAtrGGMoIxFbSdl8OAE7EaABGuYBSjkdR2naq+6wkBi+8GRlIAh7XvkCHICynGVPMwBZ7bNp87yEgNQsHYlB5TpLMuLypdq0snK43nvYVnpsm9N1rDKgyJnDIRgMj3vc9nAOXtYgkAp7+mUqr4Auj7KOeBIFwBDmSMrxioq78xGcQTkZ1npPeeUUTMUQLj3DikWuUNEyg5ZrrExk76orLbychYYreRsyrJT1e2KXerT2jJwDajmi+XcMi2EuZz5T0VobKCwKrMBXUvylPw8/R7XH+saYUaO0BQdxW5fzgwDnpDwDaCLI0yXE7RocXn3Mjw8to63MQojAYImD5dkbeYlr5OUdWb9rA76ZTsHdnaXV12dVBmv1Y+09/kcLbqsvXOqnl/2SwHNrJyVeVx49RF511Y6bOlVdY5Xj14J7olumx+qL3j6XqsUQ6ffkwV8SYT1zU0ph9p4bG5uYWdnOwfD5XKRlY8fPcbBwQH6fik2KAAg5scI6NGSDXQ1cZF91k+zKXLZNJ2wwixTrad87wrEWKYjt9W1RzCGR1Sfsz1Hd4mt5zrQufqt0oG8nuwsMlukmmtHwPp0glHX4MK5bVx75gqef/YZbG6sASD0Q8CiH7C3d4R/82//AAcnM0jZYoBZQbfGblq9FOv/pMy59MM3Hltb67h29RK2N9dw47nr2N5ax2TUwIFwdLLA/cczvPvBW/j2d17HYjlkMo+i3dcPQjUmZfyxovqzJhjo1UYaZnoglfG3JJ0S3C4yp3425VEvOmP9WV7etverfsqcwjZEljdlOjk/2XTwFXmid8r/1pvGJK/WtIrQgOiAPADP4Tn8Bl1Bu+awcX4drZW+YELfB7z++lt4+PBhkRvZ9lnpmfazPhNpZWzyegWq96JyH7Yz9JSdkH8SVhJask2A1VJtto5RAwCqwdBfxYTQhId8Zudhrp6NPKb2vLprK4BMmIxm3ZfV+5mOADuveGV9mL4wmU7wxS/8Eq49cwWNF9vl8FDKGIYQVRcXOTOMetx/5l6xU7noDCCBWzoFtjoIgCau0AcBQ4jwDlV5e6dgdCmRaTtHdOMIkADTme1nObst+U7AR6KDxsSIbOxjlMdHV2EZw6T6KXmRzzmpTZdHBKIyEDdtA3AAnNhENmdZ3qj+AGK0bZMT6HxDmbUdTtYN6Vw7L2vBdNXIQNPWCWSc51AYklN5L1uHpAyqzJKUyWZn634mO/9X2RidJwVDidxJibXMvRM2LFpdf5KAIGfmCgASUL1dxmeIsRrtsnBrgLat1ezP9bJ3mSEs0KrriDzi3Me83lU/qffDadufT1+rhztTUoAwUCdC1ft1RXVQofaULmv+gLIU85PNjqrPAVeBveuktLIfBdh22mfBVb/sffKT6vetOsGVrCnPrL6rt1v57NQ7fFyrdbJaXJWpKPLRfGtZ7tVjCvo+z5W/fRwoqv73WfsxNYbaB8DayRq297fRDR1e+95r8NHj2p1rWDuRUj1d36EN7c+yt7/wjUiYkS9dupRZYy5duoRr1649dS0z44033sCdO3d+JHafX+TmnMOFCxcwGo1w4cIFPPfcc3j++efRdR0AGe/xeIzZbIZ//I//MQ4PD//Mz+q6DteuXcNrr72G8XiMGzduZFa68Xicq5W89dZb+MpXvoL5fP7jes1f+BZjxGKxeOpzB4e/ir+KX8YvYxgNWPulUlaMmRFCwO/+7u/i/fff/2l29891O3fuHH7jN34Dly9fzmf8YrHAt7/97aeuPVk7wTe+9I3TJt1ZO2tn7ax9atonBylZLMYMQGYt/yXODVbGEM4BuSq7nrESuJF6CshOXamaYkFl+VIufcHFQATMWVfALgYysFJLAkaSUi8jBb40ucyRy3XUqXoWgOozBa44K28k75tpeAEQeTV686CI48McXiilkAwgkar3MONRHEIWHLCglDlQtQQcxEhMXIBGFlQgWg3A58xKzu46mLNJrk0FkEPFyJaulUBJBoLYdyEsNpTnW8sq6TMLWMBpCYWSUUSareU80DQebdthOp1iPJ6gbTsJ0DtCTAkhRPT9QsrRaMm8FKMw/SiNudM5ismMdQaYwSmqQ0xK0ICTgmMY0GxZ9zHznvtulnhM6ghXp6eObVJwU01MuQrIkIAREFecIHk81dnCKHshu6rJxljexbGEf9gJwImcMKAkJ7TuniNaAKOWsLWxhmef2cHN65dw9eIORqMOjw5O8PqHd/DRvSfY3Z/jZBkRWNkHIuAQkAIQoUwsjkEpQkhr9CIQhDnCA4ho2oDL59bwmZuX8ML1i7iws4UhMD56+Ahf//abePBwhicHS8yGXp2WAJOHgwdFEuclCTuTT5qJCSizWhkbr+AZWzf2lxxIVJkhgUIH0sxP25NZLmg5OejasrVjjv7IKTtQDUQgPrs6A7I44TOPgjolHREk7E5aPg4KwJRSPlEz+xNHCDyllCJxzos8IAE1OEfwrcPm+hqmkxHisBTGHkSc21pH0zQ4np3g+vXLGI/HmM9mOJ4NWCwGhBTzOkuke5C8gAtsbeo7ZJkELXdlo04WfFX5jCJbbYW77HhHXt+nHXYflyGxkj2q33FcZTub47SS6XlPoTgzU7lhXit5nxmTn7KPrDgikzrptdlcGySWAQGk1UEG/Vyc13IPKdfjAM/oOo+L53cwHY/QtR4hBJzMFyrjk4D5OmHgWy774p5PLKXfWJ3UDLRene6U4BoP77zIElKgSiQBuJGDowZN2yERhE2AXC5REYMwIzRe3qUdNWjaRjOMgW7UIYQAJinPEJcBi0VE1zUg8gi6bxfca8azMrlAjE2wgGX7kOB8QtsKI1pcBLTjEQyERPAIfQKnAUSMdjRGMxojDAFDighDEFYLDYxZ+R2CAKF818rcMAExoRu36IceACNRkoxvBlrv0VNEGGJmCWg7ARpHTkgBufycOYxjEFBSDeJICoYlyP4gByAKkEzKpDRIsZcxS1ZFUMBUxEm/H0tWdKR8lhLVzvXijF8uewwIiJEVsJIy8xHAuZybLvK8R6BgbngnYF4X8nr2zufSaiKZ9Gy0OrQaQMl7w1EOqDkQqPEi11DAUpZV7oV2K5/reRvaPiVlq1MR4b2DIy/ncg7WWHjmVEghB2eFESyXoySoLmFgXZdBPDUY0f5dznXrowVdUpHl1c8amGqykfKeV1WUGSBloEIBwdbgzNPOfpM/WZ5l2Vekmo2DECOV6IEBIWu9gTmqPurKd6t5KHoE5fEQOffxgY5PTVtV61fP+OrfpieYDpuvt8APgBpzUF1wKkwHPWfKh1RdC3J5/To7d0ACOILD2mINW4stdNzh4u5FODi0ocV4GOu9TtkTgC0ilGQJ0kDdKjNL2R9cfzsDWcr99feqREceC/222V6czD5ZGZJynbEc5u/buJexq22vlX3L9kkdvaq+nx92ajzszAdQ1c6tvrM6hfa9VVlTfnrv8dJLL+Hy5cvY2NyUxBNyWuuP0Q8D+mWPxIy9vX30/YDFcimfD6Hquurbak9kGxOFhcfswjxm1TvZ1OSxM/kE5NK2dn39/dX7ZGvgVCuf1DpQBrbwqh2iVgusB6cgbqrvyd1MzyVmOGI8/9yzuPH8s7h8cQfndzaxsTZG0zSYLXo8eHKAJ7v7uHPvEWaLJR4+eoSTk7nuT2FptBETewYVa0bWIvMoNC3w5S9+Fp995SZ2NqeYTsZICTg4OcF7Hz3G4eES9x48xsHREe4/uI/FcgmGE71Ay28mfRcy9jxClrlF3JZz7vSYqkqa7QACrbCOgUnNEyrzbHsYyg1spUCzXZ5H+ZTIJ5RVUdYx2xnxVD/LohE9xVSBsu/YhJqdrcyZLdp7h8lkhLZtwClKohMnjMctnBtj6FtsbEpQYblcYu/oEHu7+3j4+BEO9g+q/lO1B0ordpENs/xeQXZVllbvqGsjDzCtjsXKuPCpB9azl4W5zY0muKwMetERViafJLhSSa+Vv+WDovqxIn3N/sg2xuqcPHWwrfzL+pLKHYlw8cIFXLhwHqOuE/YiEIYgbKvWCQNRP9k8xKJbZMGYxDlUhpMKCEf0GmFHMrJstnWlcyCAeifro1q3rCA3rXYGcpLcYmd09o0l8SkxeS1zTtlnkGJS31c5P0wmJpL7x8gAS9k61zgMg7ApOU1UsjEOQ8gMT03jwVFs+BST6r4ulwEmR/AK0PJEwv6kffXOgbK9r74iUjZVBwQtU+dInmNAGrMZOBY/GiexI9OKjlvKkDoF/Jt9QSTAJI7F/oiaqOQg5e8Siz0CHfMsa7KuW+8RO6uSMk9A5XBJ6LQW46ouIMuU81wADs6x2hNVUkJ1Bpqubput3iqySMvyX/F/Vn93XHQhA0udvs3pJn4Jby+d901ZUKu6iWl+hDIW+c+mA57ao0WXr3ti/66+X/cBZT4KSMv2QHl+8Z3Y38q5Y8/OTzwlaD/umnocMhBKZaDtl/yGVC4v96jtJf32nzIBpQ/f/5qz9gMaCxDJJ48Ljy/g0oNLGC/HeOXNV+DYYTKfYPOwUJXQqfV51n6yjYjwa7/2a3jppZdw/vz5ldJWRITlconlcglmxocffoiTkxMMw3BWqur7tL/0l/4SvvSlL2FnZ2cFlAQAs9kMJycneO+99zCbzfDGG2/8SMxT3nv8/b//9/G5z31uxYfMLCW8j46O8MEHH+Dx48f41re+dQZQ+iEbEZUqEh/TOggL/2wuSZf7+/u4c+cO3nzzTdy6deun2NOz9vLLL68AlKx9HGPYnWt3cLj5ZwcGnrWzdtbO2k+6/RBMSrTi8mQgU7tzUpaEhOzEAQDk7GDSYBOjZJ5TZTgV45DIjC37pjhRQApEIjGgnXdovEfbSJkb77wwIjUNnBfWJHMEUDZKqXImlM/sOgPpCHDAsugdCA6+qkdvYAMLnpE5hrQMS30epJSUlQk5uJSdC5at5ay8kJUvYVjGVIQEoZN+r2RcczbI+ZSRTvqeNrTyTHFK16xLdaszocx8NYOeOcEofogIkQiWyd40beWIMOcp53H13qEbdRiPRxiPRmiaBm3bARDwyKLvsVwuMfQDUuRSlskcvjp/FihInMQRowEDKQdVsgmZyIiIykKlBDCJo8ZYBxzlcoJEpEAXGSxh7+E8t+LQsmxEXasKECjZ1cKUI47tUmIMKAG2GjwhbDqyF5L5tpMClAiaSSfXODCcghYmDXBufQ3PP3MJzz17Ads7U0z8BPP5gDfefYi7jw/w6OAYh/MlhgDEQYL7gQBEwCVGdIzkkdnKOAGRGOwAxwIi8Y7RNQ7rY4dnr57Dqy9cxo1r57ExGWE2X+LN9+/iu+88wJ1Hh5gteoQIDKQOLysL1xiIDkBMksFMSWWJOmyURcw5stgDDBFZ++sdOS3NKGKlbcZwrkVMPRbLpayb5LSapDhlE2Qsoy5kl5kaVM7YWsmBUahj11f7wIAyLl/jcqDB1oouMVYgFADW9ZFISr+xI6RoDntx3II8fNei6xpsrk8wHY/RNkA7HcGRRz9I2bDFYgF+nLB3cIi4e4Shj0hJMv+kNGAVTmAHC66YnClx7KeDDbY+vckV9TwyoHKJ9RoURyUjnwSnmT1qANMKSK96Xj5D1OEtTvAqJEsCkHLkhNFEe5QDflxODGOJMwc9n35O7Sytgzn6J7kvlNmpyrBUuWeghZpZbzQeYWN9HdOxlGXrQ8pGgIG7vHeaBQ2AGGEYEGLQwBqDkpZFSwlBy4PJn0gd78L0JmAGB7Aw4lhprKbx8I3smRhscpxk+iYgpaAADQHm9sMApwxOcEDTjDEMCwXuEWIMaNoG3nsEBT6FYKWppA/UNOCwRFCAcdc2GJFmOQMYlj1iCIghYTIeIXJAv1yA2CMmeW5IEW3TomWfs/cZkv08Ho/QD4Mw+DFhWC7BYPjGwftGWBsZSDEgQT6j0CMokHU8GQlDUGR4l8BkGd0SUBkGyUofT8aYTqZojk8wp6WUIdSyrWBgMurQNA36vkeMATEx0iIgJtmzDTEmjQQ3hhBBHNG0Ddqmw3IZQI7QdR2YIc9MyarcomkaZQYUxrWmbcDMkkHPBnQtG0TkScJ03KJpHBb9AOIWDAH9rgRJmcBQNh+YbqbAm8Tq7NdyGVQBr2OUYq41SIYIbdsgpqA6TFIAqcrBzHKU8n1SShqAsexx0W/MKV9phjloVrnJVx39qkOYvijyiLRcRxYelcioy1muOvXrUm8mmwQgB5gkiSlmJ793yhaQy+fJeZWUkaBAQgzsdNr5rwxPZCDvou+FEEV/dV4DhCTIN7CyNWaYhAb/9EyySm9MuSRjHZDnWn+rZN6nt5nSU4L3GXBu0386+OSK3gCUs0j+XGmgpnPUUZryVAAkwTLVPzZO1tFyA0cO036KcwfndMw9to+20aYGDh6efb4bVc9cHedVsJgxf5UECIn61oH/1dgPVf/lUxdoELlabzZEFriX46bAVCzgaXesWZVqkB2ful/eX1n3Rg7I8co3kM/w1deovqT/Lic5KjDI6thlkHTuMmc5Yeevb7yw4XqPk9kMIUbMTmYKQI1YLns8fPAAx8cnmM1mYEDZ8Sp5oYaFMXXl5Whnrg3DUy9WyRVbo4xsO5QytCYhGAaAZ1Q6iI2tXZftjHq6dRGbAM09sHXPJUhZBUiZqnNEb5FBFGxBU4Z3hNY7TLsOn3nlRXz+85/B5uY6WtdgPl/izbdv4b0Pb+N4vsCTvX3MFz3CELJereS48jyph5ifkW0w1RUdAO+Acedx+eI2Xn7hWXzpC5/DZNRh2Q949OQAdx/u4+33buHWR7ex7AcMMaAQolFhvdH3N3lh9mou9Ull/Rj43OzIsoEVkGu5DF5KSjMnhBAUeID8nHwuQhN0UM2VuTSy3Vrv6NVwY5ELVTA527r2XrZuyn4z+c7GigT7PmUdCuq3aBqHF1+4icuXLqFtBNzuxmL/MicMIWC/X+Ltd97BnTv3sFgskRIyE2s+o1feoqyl0++kU57HONtxNj72TnlT86nzvrr+VCT8NFhp9e+VfKw3nY37aqdhZehNwhbZuHr/DGzIW6g6c+w5pywaOnUPwOauApQy4NyKFMz2wqjr0LUNwIwQ00pQwVX25+H6MZKTxBxL3AIBlJCB7mYTefVLrYqRJHadfmD6i+gXXm6UxI9BpAybThPqNHlJGEI5r82QErxvEZTJ1RvYRXUa28MmZxMzvDjcIKWKEyIEXNQ0Xth9nZS846hJSF5tqhjV7uas9wLCEitjRco4RGjbFgxJrjBbPwP59P1tfcYUAfJ5L8YU4b0XUFHSRAeVa6yL2QDrzju0baf6yFK1xeLfdOTQtB4pSlKDlNNO4GgwWEbjCA0BQ6UzN76pkioM8BRR69VO3yUzgOYko+pMYVJ/Ylm13gNt44WJV9+HCHkcV4H/8s7ZV3JqT8peqc5s3YcriWaMzBxm52Q5N1Um2GTUe5ENJLUKzF7d9Mjn98drvDWgqtJxtMP13+p71zL6tJ/6KZB4fjDlfVbEJaEMjo4FTr/PqWMDq3/L/ovqvJM5qVh4SUGH6tejlQlBOUxUFthRVSdK2IcrI13piWftVGPAR5+Z/a7eu4p2EMajnf0d3Hz/JgDRya/fvp5LuDXxE4deztpPoTEzvvvd72JtbW0FMDMMA773ve/h0aNH2N3dBQD0ytB91korjNbAl7/8Zfzqr/4qNjY2AADz+Ry3bt3C66+/jhgj7t+/j6OjI/R9/yM903uPnZ0dvPjii/jMZz4DIsp23mKxwLe+9S184xvfwGw2O5uzH6H95b/8l3Hjxo2P/Rsz4/j4GH/yJ3+Cr3/965jNZogxSmLrWfupt9OJ3sCq/7Nud6/eRfJnIMuzdtbO2qe3/VCackrmwJXgi9Fmp8TgyCt2FYFAWuJNHONG8l4MIKcewuyAhgbKnNOMMvnceWGYcE4cFY33aFovThgqLEU5+KQOx9o4e4ohRI0z55w6pUp/YCws2hhAiEGcrRo8RjZglcGHBcgiTgSfAwmWfbuS0cPFUGZAxk69SbVDSy4twC4LdKyAndSRkHtbl21ADWCSn/K+OG0RS3+zU0D6HZGUecoyuTStDj4rpQZu4MTwDRSY1KDrlMWqaXIwNcaA5WLAbLZEjAkhqkPYxoorZiNadcKYg9koqlNKWorG5SwrZhuLklnLTIDRpVvwKHF2ZDVeqcZtbvR9muwkptVx1B8xRazkT1ZOjGhjCWgwmtQZp3OvtN3i5S+sFRJcIiSIk9xDOKCmjcf5jTVcPb+DG89ewLWr22gaj4PjAR98uI/bd9/G3uEJjhYBy8iIMBYZ1tJTDA+PyFGcgbEDIwIsTkVioFHgkKeItanDpe11PH/1Em5cv4jrz2yCPOHeowP80bc/xHsfPcbjgxPM+h6BBUAhXkiCMRg5YgUKxZz13QAF7VIFUs157NXZ6xVgOGpbdK1H27VYX1/H+voaxmMBB8znPe4/2MPeUVAwhzhsckCLk4DIsqOuMJaZczMzG3BSkEy1l6r9UbM4SMA/ZblT09qzykdOLCwpiQES+nWkBGLzGAsjVuM9usZhYzrB5voGpuMRNtY6jEYNFoseJycLPHoyw8NHuziezzFbzMFJnK8jK9EAYcJxUlNO5yEhpVXmsNMAncyk4IyuP0kpDmO2Yj7FtqAjw1BZZzKoKMCnWUTsd3GkW2hAt1BSQJyWGbS1YPKJyCZSnWZW/pNFVhpoM88SowAX2cbCHOPVu1dKvHM+O9Pl/arAk9AEZsY4vQOcnkNDGDCbB8QAzOZLyQjWgGeKCSkyQpRs6JAihmFA5IS29QCRBAidz2WeEidw0DGNBHhxODoFK0rGdILX4HoMEW3XYtSNEHyQ+YaHc6066iNCPwAmwyFlu8g1WPYBKQaAEpbzmZx7DqCGSmkJAkajDmEY0A8DkKQ/01GLPgTwwBitt4iOMaQgwKPpGCkIYGgyHiFwwHKI6JcRQwxgOPhGmJEcEToFuKYUM0BGghqyStrGC7jKy5ilGMUZmEjBTFKCwnmPlOQc8XoWd43HpG3RhYTlEAVQnQQwSEQY+h4EoGtahBhzUKJxhNZ7pBjgUsCocQjwSOw1yzmi6xy2N1qkCAxhQNOMlUUy5hIxy+USMWiARYMobdtINroClxeLAaRgxkZLnPX9IAEgBsh5NI2cs10nus8QCYEjiAT4ZawqKYm72gB2VuFC9ihlJ/xTzmbmnLVuJbNMiEaRqHmfGSOC6R6WxV/0EbkeqQRIAFaZ7zVwE4scRi17C8NgHaq3QIE44VHGRl+jlmsFiIT8LhZAMJ2Pq/VdQMgpM0F5r0xsChxnzYwXYJHLwadTg7hy/pOeL9Hu6ZwyjObXQoJk7xfGMtWODfCf9WEJpDtjCkiERARCptaQb7paP6yE9qe0FXWKc9mplW5/DBOUJRuw/qwjUlT9NwfcksOoH4uelzzO754HgeDZ48LeRTRJ9ty0n6ChJtsgNdDB9BOc2jdyLWnApwIcuNKT1Wx1+T1XeDZdhfJKR21AyW/GylACadmEqPqxEuhfGctKZy0GwqmgE6/ORTWoGQInB7LODX/MuH9M4yJL7M2MvdACd3WyiJ3LtY1kySNdN8JoNNKAcULQAD6nhP29fezt7Sv7HxeHXGU/1R2VeKGC3XSsUNkLeR/ZGiujUEbUxpvsTqKbEFEhk6iCftVVeq+ngSC1rpWfYy2XHqrWJlX9t8UBVt3W+ij9T5pgQYCWcxvj+tXLuHH9Oq5ePoeNjTGm0yn6wNjbn+Gtt9/Drdt38ODRE4RUzhGonijv6rLeTexhZbRNspuMJmJMRx22N9fw8gs38MpLN3Hh/AbarsXxyQKvv/U2vv7H38HJfIlF32O+7KXfeQorgB9M5xOZkdMGTu0zCdqWPUFa6nXqA1ovYI6uazHqWpxvj3DIG5gNDnsnEYtlrLBWnAE39v557qp1xXnQkdd9XuP1POofauBAQb1USVtUAH0wPTfZWi3PoaovklwheuW5nR289OJLmI7H6FrRIUKI6IeAk9kct27dxvfeeAOHx0eih3uvZV4r+w0mD/S9OY8sPr4VOVH33WSkjV7V/TxfWVZkWVR2h4Er6ufkpQ073ynr76vHgq6dj+lyfqIs4Py7rZrySDtTTY5V855/VcYZXYfZ1qzfpdJN6vsSCcifAQxBbPUhJuzu7mHoBwDKiqj7PaWk9qUy/pju4Mz/ZWXaOP+089KOMdnPSd9LE1oSQE7smxWfGgoDL0crPSf3NHbyxAlpCGAISFTJkETnoiKDM3g9JQU9AY0nJBbQk4ODa6DyXRIx4J0kbXinLOxRS2eLjeXbJutZAgwXWZRBwEnAWswCyoxa1s550e9SSqKHVSCsMo+cJ8wRic/RC4jMRHIunarl6iy50ZjhiRT4ozap138L2zL0O8CodWi9By8HwBiuuZyX0m/TM81PomMC2cMxGIu9TLL3LgMTs/xXf553MgYOtb+qPrPMb2vnTFnGWUev7On8XVMPzLdS7zlj6zIZWZSfsveqzV7s+9XP5Diglb/kyrGn9JOn9mE+G8wvizzOZV9W96q6tBroq/QhkxpUf7cMht3bEjnKMK8+M/eL6zHXfUjFN2oiLcuqSl/Nekx19mSyF7Kj0kBsZQ5S5S7XCVxVeVdk8J+TVr1zExpsHAnoous7vPz2y3DJwUePV996FU1oQEzYOtiCjxULz/fXkM/az6BNJhOMx8J+u1gsVlh17t27h6985Ss/q6793DUiwubmJl5++WW88sor2NnZARFhe3tbkh1DwLe+9S28/vrreO+9934szxyNRlhbW8PnPvc5/IW/8Bewvr6OyWQCAHjnnXfwu7/7u4gxou97HB0d/VieKW1VAG7SITxW2Wme9x/iTrqG47SGOab4U6zjn5t25coV/Oqv/urHMikxS/m8f/7P/zn29/d/+p07a081Yy2r261bt85KUp61s3bWfi7bJwYpOXICzGAtuaW2mTgAPSQXyow2qozXBG+U0ZqpZAEfA4l4/b/zpAAFqc0OqLFFZtg5ECQD3YxzkLyEobjNcZIDSmYAOtaMNHXE5T6Kw8YYUMgckakQl1vAhAmglABOGkg1Z44ZewwlgVeqZnUquGJAZqOFhOFBvi5gkcqcVQcA1HHustPASlY5rozsOghv7AhcnHvyb6834+JEsL8l6YvMpQM5YWnIDns1isWRkzIWwoPhHdC2Ddq2Rds2cEqRbUHhxWIhgfrImZGhBgtY0FJDchAnRlLHH2kpJHWUkUyFdwRPshqYGSHoe2smrasUSiLAYrRRnTUO0ndjoRDwmUywBDPV6ZQ9LhAWDR1TAXVw5VkhCENQfqo6UtSbmh3ZUcFWsi/ES6aMTerscMRoXELrgIubU1y/ch7Xn7mEKxe2MGoa7B8d480PHuDuo0M82j3ByTxh0cfsnAicELRvBOtzQtT8XwcPTgGA0Ip7AjwSWg9sTkd4/vo5vPz8FVy/tI21UYf94wW+8/YdvHPrIW4/3MfBPCIEBw6MRF7HVsthZWeLvG/SYIbTLGvS9SZ7N8J5B3INWu/RjRzWRy2m0zVM1texvrmOUduA0xLr4xG2NjfRtCPM5nPcuXMPD+49wuHxAhwCnAZ6wYwEklKBJquck4AJV46gVBxluek4secqkGXOXJ1jOAXUcQ6Y5YCyrk1iYXoRphGRJlayUZaT7E/ftujaDpNRh/W1KTbXxtjZXEfXOszmCxwdL3Dn3iM82T3AbLHAkCISO/T9Eg5AcITGOTiWNZP9dnkRSv66hlrzJ4CVsymAHipxEljAxUBX9kcCaYZt7Rw7XU6mACotsMoMZcDQ+df9J+dEFZhLcl2IQv0Pdghk8k6yhi0YYOGZvP1SqWqlPcnmoRALEZwzcENV9k4ddY7tfRTgkctispJ6OVjwhTihHyJ6jd7FIJmynW9wghMwEpKOXUhRADDqPG5bKUmWooBZIgc4XVMC1hC52TiHGIUZxxybrvFwEMZAToxhCBhCBLyDbyy7WTJ+hxDEwd8QYgjovFdnOKEbjbBY9lqmwYlEcMqGxMqe5MR5nWLAsu9h3GFd18A3LShEMBJiiogsJRs49Wg0INv4RlikCJh0LUaOMGqAIRGihXGJ0Ichu4oTR7Teo/UNQA4xBHDrM/Cw8RJscOQQAgvbks6yc0A3Gknm8TCgYQbiADTCPsScECLDuRbsZNWdzATwF0NC5Ag7uVNkLDmhG3msNQ0ubkxxPO+xv4yI7NXpT5j3AcRA23booQXWEqMPwliVQhRmwCB0ExYEtLKhMaYMPHEg+AbKnqXrQdfvECMoAb3OizA2CZNk33Nm+JIgD4MMwJdsz+s5o7JIGMM470E5oorOUKIGUDYm08GgZ6IEeqLubblPASSCBdy0iukgxf6aHqflFg3cERnGHGmS1s5m50o5Tgc5m825Xus4hb1AAHpVxFFBUFz6CCnz1+i+CaGMV4DoeA4MW2LOUwZ8ZlYpo4PPARDOYHwrTRej3sfWvDMwF6MhJ6QFKn/J6fhSgm+kfElKVu6lBC5srzAZWx5UIqasu2T59ykOLOT1xiVgpH9YPcueCuhwXo+OPVzy8OywdbQFB4fpUpiQnCO0scHGbFP0KxBcUvaklWgMiX5uZwKyuEe2EQBY6dN8slDRE0zfq/tYmh6s1b46HTTLAUJ6+kyllbF5ehwteG6rQFrCak+orFMqpVhMrycxC6rvV70z2wJlTJ56tarlWBeLzegbDymH6YpMqOwV06kJhLXpBOvr69jc3MTW9ha8AjcnUykNHZUx6fXvfQ8nJ7OnMgRJo9J2Pxv32u7K+0XtCTXPyvDm+SHkL1TvWDQpA+wAp6edsMqsUG6j9zJ5iSK/sh2JevWUAa5mIV9DbHpfBZLL60GuarzH1vYWutbj+WtXcX57E9euXcHWxjoa77FY9jieL3Dv8SPsHZzg/Q8/wq1bt/WcKmfASpdYZJA8Rc5XUvvHETCdjHBuZxvXrlzG9tYUVy+fx5ULOxi1LZZDxN7hDE/2H+GD2/fwrW+/jsUy6NGQNPZc28n28nUw1qzDYsMKGFvst4YYG+0C280SV0cHGHVS+n27OYHjJbq2wbgbSWB/GHBwdIIHRwMehDV8xFdxzFPA9jvb+Kb8rHpGxM5K+VoLIAOqP7tiA2YXQbX3y7mFvBfyjVT85eQHmfRs1+VeEIGch/cO49EIn3n1FayvTzEZSfmwYRiw7AMOD4/x0Z27+M53v4Nl3yMzaKKcbytjbz1VHSA7JKrXr6eIVc7Ua3/ls1rsVu+QbY9qnckQ2HgARWY8/exs69ZNO176b+er6ReroGb7Duf7rd4xS2G7hqp3Iqh9aTO/uouNXc2ul9fR6wnY2dlR0BFnMLOxeglQTsYwKZg6KajEEcE3lWy3d2F9ZrLzQQR8UvC4ra8CDBXfnpWdNlC0lc9OyjYNR+IIqdaKbzwoOcRg9pkkVogPTwFWEGAIgZX1VH0eYHjXik9NWcSF0RQC7mdWNl0Z16jl2hoHeO2K7D6bX0aMmnhFBGYSW4ZcAXrBCahJXwc6bykD+aHvpclvKcGx6NFiQ3l4OCBGTSRpQI4whCBAwsQF3APpWIwpl02eduKHm/cB7Ircjlo2k9T/Rtq3EG3NcpVIwLlcrGEcc1KkscE7zkyhMqZqJ6hOlRJjUNZTAcITUtIkAJg+XQDGedEzkCnzKp0iX1vt1bwD630N2zzVFWxjRvVFsAUtiQGlbLOJx3LhaV/O6k1KosOqDH4amLS65wuYm01xsBvm9VZfC8j6WAFJgxBNx7exIlT+T/OZAEX+ctZ/zd5htr2Uj8PVgbK+2ruZ/4JZ15NDse9srGsbqhLceY5rdutT8/IL1lx0wnAUGly/fR0uOezs7eDmBzcBAKPFCFfvXwUgsr4JzVNnxFn7yba2bTEMww+8johw/vx5XLhwAZcuXcK1a9fy386dO4f19XWEELC3t4evfOUrePLkyU+y278wres6XL9+HePxGK+99hrG4zGuXbsmCSSWrM6MYRhweHiIr33ta/ijP/qjH6kk3s7ODm7cuIFXX30VBoo6f/48mqbJtmmMEe+99x7+6T/9pz9mMAajQcAF9xjn3RO81ryOFuKzfMbdRUura7FBQITHIW/ig3gDfzT8RTxIl8Erhdt/flrXdfi1X/s1TKfTp/4WY8Q777yDr3zlK2fl8z4lzTmHl19++anPQwgruspZO2tn7az9vLRPXu4tstQIUaNXPgSsnrsE7eVjAyB57yTA46Q0i3eN0pE3GZjkFVRkhlftuM1OHzL6aSk3IsE91sCBZhEqSGGlvAJpoN4Cc2rY19n5oug4DYLVbmDtQfFmAOaOdD57yzJ7iNaxd+SEPYb1Pq7mjtJ3TMVYJBkwmHNd3VlqWFoGtdzBm3/QSYCrBBDEwMxGKNdl4URxNFBXdmETFXAYkc6NlrlyUKdFQg0sAhLadoTRqMWo6zBWtqQYI5Z9j74fEJYhB+isNFvMSqo5BkvWn/krnCv9t/8ZqEA+M2enOoyZtdSVOhxTFIMelSNEHSRkFPYacChgr1KO0HyGiQ3AIuOUFNBimWzWLHsvTysnDei6yqA357I6jsyBwAGJJVuOkOA4oKWEcUtYW+vw3DNXcfPSRVy8sIW1aYvD4xO8fesB7j48xKO9AxzOl+gjgaMDJULIvBlKWw4xpK1kAaXsFUZyAU6KJYE8Ydo5XD23iVevX8bLz13G5YtTJOdxf/cQ33zzFt768AEe7p1gsYwITAjkiidU96qHgq5AAFMOkSV1cnov7Ec5kALC+toUzzxzHue2N7A+XYP3LZxPWFsbo2mFIWVYRlCaYjxu4Bph+/BocOncRUzH69g/PMBscYJlHzEEYLbocXQyQx/6HHRG1LVkTprsmC5sAuYoKmwbMlZewSbF56Z7loAYYnHwECuYghXIk/J9ZD3FLGeMvcPDYdQ6bKyNcHFnHTtba3Dk0A8Jh0dLfPTRQ+zuH2EIWvecWej9IyNFeb7IJgagNPVKg5/3cVUWqJZqlt1qzvLi9ANqphHmIt9KLY/yndprZXuG9B2NyyUniltpIwZyFi8SWu9wfmcHy+USJ/MFljEhMMEZIIpkbdV9sLexEoxOX0pkvTmKUwkEmAQmZCYvk9l1M1YnZ2WXLACh4wIiRAb6fsB8vsBoY4rWM3jUYbo+wf7xMTjKfMcU5P5JwJlSokYyWyWaJz9C3Qfz91ZOUNZ5JwCu8QiBEaMw6YQYwDHAewm4DUNACEnPF3l337Qqk5IaK8AwBPRBGL4cCaOUlcOMgREhrIHm6CcQmq5D5ISjk4WeLQ7zZchnlPMeDDGIpIRAQksAe4fWEyZrHcg3OFn0mC1krQQFszQGME0JgQdAWRpMbyAGxt7DtcI0xF7KFfRBoJfeA13n0XqHbjQCD0v0gbAYBjA8wAnjtgWTw7xfgmOU7GYnZ0kYhBXPe49x18o6dQ7LBDw5GTAMCSkpjJYcYkgYgof38g6WFR6DlHpruxZ9lDKkTStMkOb497afrHwq9KwmCQj7xmNkQRVdtDFGxBgzG6QwGHo0LmGIUdaHM72ndmhboILzuQaClmEooCI2gAtsjykAkwXY673PbDeRja1E+iYYvrJW7Iy3/+cymRyKHCIrT6EsTk/Zz1UQgKCBspSdXcJGUwIdRJSpo0yuGQhAAFjIMqmUs5B3TkmYz7SumrIPRgXqEZw3vamcGdb/OnOaiKQciNKN579rAEb0U0FT5tJtiWGMOhm475wGiwpDHxFU9lMl04rcNeFRys7Z+36KHRNZnFugzfRSqMzNv2C8HKNJ4pTcPNnA+nwdRA5rizVsHG+iIY/xMFZWiQI4gpWhsmHISNZqbPP1slay9mhghOrszPq4fkIlWpS/s/J+eHoGaPU/cs2pdWS6agFEqDzPN1u962n7Ip95XH+mfa6+TStfOQ1NoOp3VLZR9X2qf1edvgp8N02LnZ1t7O3tVQwclWyAsuQquOKFmzdx8eJFMEswe9n3ePToMdKjhPlsjoPDA3CSDGiuB5hMHygAttz7PHTFKhC7UO0LFFYIU4JOO/RUDK2+90qAEtVa4GrUTt+PVhjezK77uGeemtWnPi+6NMPKI7PSdIkmFLG5NsWXvvwFXLl0AefW1zBdG6NrHJb9gN3DEzzZO8S9B4/waHcXjx/vYbkcEPqgQVU5G5LqPcT18qvXrpxhpMHUzfUpfvVX/iKeuXgO57fWsT5tkRzheLbEe7cf4P6jPdx/vIsHDx7j8ZNdDPksKYNZALP1OuYsf50KUFtDBKDrWmysT7EzTfil8bvY8DO0FNB2DZxngAcpi4sOjfdwXvQ0JsLGZIxR43FpOcNL4W18b/ky7oeL6ENCP/Riv9b7OfexzHRZF2We8pzU+4nNnqgBtqYTI+u8UGYtsnPb/qZrRfSJIsMcSfndz332VVx75gomo1bslJiwWAZ89NE9vP3Ou3j8+JEE+rg6//W8AgHEDs4l1LxBrpJPpldXULlKNFk/i/zNazaPC62OJeqxXB1PG94V8CdVo1mMlvJ3ZlyYBlzyT3B7sYPDOAIzqW9Kn1WtqapXKB9xvm3Z67Xkr75pZxepnYm6VWdaHk353HSblIBHj5/g0qWLGI+EBZU84eLFCxiNRwizudgQapetH61nU8xpiWjTZWR+TPJUi1EOr8zkm+1gLbcckiaF6b3MnxchrEGSmKgyPuuZoq+LHazM0gzVZ03uASna2NXzrL48AvohwBLUQmJNGNEuG2s5M1iqRWvFX0LnHahzSAws+0ESk3SujH0bbOycOvYs99RURzTeIUYpye0cVaXPoLaHnE+SvABhUIrynp4IzjcCTtL9SE7O7lSNmfnXQAK+mgeGY5akNyDriNHYR0n1OEuUY7FLkJKU9nJig5heQBAWXJbJz+NMpKXsiQRwZeJFxzelCLMv5DIH58yPxk+tc87rrHwnmfzlVXgz5z2rc5/t/uwlQg2+Pn0W2jvUe0VEYsVabeucqv1U7bXT7bSuXoMUbcHZ5/W1q0BGHZfK7jh97pfvmOJh/gvpm/uYe9etTtQAShJs1c0idqt7OUuKlbvkPmYwWyWwsm9B2b7s7zZl9bysjttT3f35aNUQbh5uYrQcAQCeufcMLj66CAA4/+Q8rt67CpccNo42cAZA+nS1rutw8+ZNvPvuuz+wlNRoNMIXv/jFlYD9crnEW2+9hVu3bmFvbw937twBM/+Y2XZ+cdu5c+fwD//hP8T58+dzglYtvw4PD3H79m3cvn0b7777Lo6Pj39kwNDOzg7+0T/6R9jc3Myf2TNnsxlOTk5w7949vP3223j77bd/5PJxp9s27eP/Nv7/4LJ7gDEtP9F3HALO0y7Ou118rvku/r/L/yteD58Dfs7kSdu2+Lt/9+/ihRdeWDkDUkq4c+cOvva1r+Gdd975sY/5p6sxLrmHeM1/D98JfwFP+Lx+/umcy5QS3nrrLVy7dm1lzp5//nlMp9On9uPV+1fhojsr+XbWztpZ+9S2TwxSIpDUkUcFMAHnrCvJeHJi1GspMCvP5n2TgUtAcWiLs8sVR5SzjDPjwjFTQZwwlkNpmUakwXjnqDIwfWUgFwPcDLekgRGqjFLo1azOWOtjprnWDCy5rhh0TEVJs+CClUeRXgOavrYSuCq+tZL9IvdcHSMBPdBqX1jfyq0ajwyrR59yQEXGpsxFPTcGFHMOmfFhGIIERIOw7MRUK6IWcHSIkTCfB8znAzhFDH1AzGWTSJ1vZS6JihOjAAAsg1oGs0bbW8D0aadfGQCG0lTrZzYv5i/I5jor0wxVzg2GBpbtmQkRdfAVJZCiGYXm4CPvc2mYPPasoCf9nzj3Ob8vJwYlDTITI7AAlRowurbB9voE1/7/7P13s2VJch8I/jzinCuelvlSVZau7qpqrXunAQ4HbSSIhpEYAiRnaMZvsV+An2Ztd7GcAQ0UCxgI2VxU60aXrsrKqpQvn9bv3ntOhO8f7h4R52Y2URxUd1WDL9Iy8717jwjh4eHi5+5rS3juiQ1cubSGqiaMxue4t32A2w8O8WDvGIejCZogRiRLGU2IaNlWXMsZqTHFqfNCqghqJhlS8ICrsDxb4/rGIl567iqeuLyEmWGFyXiCt249xKs37+O9rSPsnzRogxjMYpQU5ULfUcv8WQao7EgGgNh2U9vkTBiyoxsW4+egqvHExiqGgx6Iehi34mChEBHaCXq+QkDEwdEJIgBfDeHIw1ceywsDzM84BCwjwmHURBwcneP92/exu3sAUmBLyoNE2TnW2bOcaWOK0BLo0ujBnJtliTMoPYnx1xzpAQaaYRgYhpT2SUu9AYOew9ryLOZne3AcAapxeHKK2/c3sXe4j0nTSkaoGMExJNBe2wZUtWbyMAMs1GDoXKLN6Ui/wF2+VvK/jtOdlMdEl4y8UmItO6zknmzECraXARAk9b/xNkpWVCReJ5Mr++rq5TXMz81g3IxxdDrC8fE5jg9PcH4+kvrWsTsOVqN78h2ZV5Jt32o5PqNHIjgFIZgljtVM6lKEIbTsWtrFqXSXRfDbHDdtwOHRCeaHAzgSdMT8/BD9/R6ahhEpAJpZEIXTNrRRsqAokJA1i046g3Sf2HATRbKA0mKQ0lghtAIOjZLRKwZGyxGhleMmhIi2FWN9CAF15eDJIqMlEruNDOII7wgUGWgCYpRSC8QC5vBVBc8MDmy2TCAi8UkBSwGDQQ/eeYTQgiHPCKFF9DUmoZUMS5MWvgoIAILupdpXGAz6klUqBMm4KLiutMes/NUotIIh0EhoZihPBpgdmpbBbSOZ/OAA5xAhpTPqSgBFgRlVVUkGN2iJM44APMg79Ps16p5EwjaB0USH89FEQrY1S4OVOjwbt3BezqDIHiEIkNVXDt4BvX4P5Bv4yqGqPNpG5p2cQ6+q4KjFBFnBl/KMVlZM5YzI4EggqhCjgMyIGEyy971zYCs/ESMii2wkwDjoHuBcwpHEEeQBLQ9pTjvdK1ZTVZ070SLDozhzS1C3gZyEr2RQtPm/5Od85qZ+mHtFz/9uFDESqKrkXx0nJSgDENM+MSA4AVFAfIA6czpyEmUWYFkbo/InlQdjUB7ALSryQDSQO6kDrBsVZ0BHZmVpyAAmUpmuy0PsWp3X5LxLxYukD7DymVA6EK5l/t+SbxhwKcuXXafJJ7FZRkkfvJawdFg6XISPsmazZ7NYPFqCI8LM+Sx6oadnl+gZ2VGu4/d5HpCmWr93yb1kb+9e6/S7Qr8pgRIdRw1KucHk9q7skI7dYhnSfY+bjKSqcJqb4rjUZ/58h1b5ICpobBrQZgKyOcCkf6WelJ6SdQh1uFnfO7pb8df0CrslKk/a3t6BZUzMUfvovo8J56MJXn/jLeCNtxDUESyyU8ELdE1L8u44Qw0QkuaZdZgZ+FUsWnbolTypmMtytjrroPfnbojek6VN+6zMPFnqe5x0lMfThEknOq5O/112RgOayVT65AAMejUGvRorC7P44udexnPPPAPnCW3bYGfvEG+98wHuPNjEqA04PT3HZDxKzt9EIrAzuPgFJjXJS6Ucr7zXk8PcTB9rKwv44udexKeefwq9WrKrbO8f47W33sMbNz/A/tEpzs/HSU42cF6SFaE8MxEHJzpA2p9IwAXZsyLXxsioPOGzC1u43jsHUY02iHmDtESWV9DDeDxW/lonW8awX6FXE+YBLGAX3x89gcOxx/6ByKE5e0gJLuruUi7AW3bWZDBdSVmZoEx/TN+lh8s9lnkx7eNCh0n7m0RWffbpJ/H0U0+gX3u92mE0GeONt97Bq6++KgBvFCAV3fscGfBFf2ydCRln1KHSPAdWso6Rt1aeD/k5s0dKMgeSlK2j6+w96sxRcvrrXrazI/dNdDJHEbN0jC8ObuPaSh+fbY+w287i3mgZm2ezOJ0Q2pTppjMa4QfGQmyuSz6S1scAXLa+5biRPjfmn+1LnMSrkucygJ2dHZydnWNm0Eev8uAYMDszwOWNDbx36zYkSE/eurK/gkvbG9i89ADgbnnmUtYpu50DNpBIiRngAlCd5DcIsM7KlVuQVgQXgWSSzVrkxKDvMP6mSxVNVuPUd+ed2gmUfzknqrIxSQZa5lTi2NbeynhKRlyHwFHkRNWHImvgGUjsWi5njbFj1SxJSWZVnZptnWNaMaUnaGYpEwsIIAkycXreyRhEn2b9v21bDdqSLE7eO0iFeMnyPGlDOtMyLWg2WtM9Wd6fgIMQu5O6hhM4zTKueifl3tuCZ6e9B+Fv3CklJvKmyPhBzxQbF6U1NzItulnsacpnV8HLjPRLYG457+k8TKJYllHIrsOjrdyyjwMRlzxnGliTj/3MN7u238xzEy0ic90U8GDdnWqlrGnzm8eudiQy21H+/NExds+B6XMmya+U16ZzLxdjQZY3mbNdMwEFuZzTYsAmV5TjwaMy7iex1ZMaPni46PDkB0+ibmoAwNrOGp6484T8vLuG4bmUh3LRwbH7uc+7aJ+cNplM8NZbb32oa0ejEf7kT/4Ef/qnf5o+S0Dsi/ahW7/fBxFhMBjg137t17C+vp745vHxMX784x/j1q1bAID9/X0cHx8/Vk/9v/Le+fl5fOMb38D8/Hz6PISA119/HT/5yU+wv7+Po6OjR7LpflSNEPFrvb/ADXf7sTz/w7QBjfGPen+Ee+E6DnnpI+3fL7p961vfwhe+8IUO32dm/PCHP8Qf//Eff6iMZr/KjRBx2W3inw/+P1ilXXyt9wruhut4vX0Zt8LTOOE5RPi//UG/5Pb222/jm9/8ZiqBCACzs7N47rnn8Dd/8zeda5+9+Sxefu1l/OxzP/tld/OiXbSLdtE+VPvQIKXhoKeglioZ9iyqx0qsEaaiHJPjycA3qv4Uhu0UDUiFw0G1XYsGM2MiYMZ+pOgkRtdBBu2HWbBoSkm2iLPpliL+YfXs1UlIOYLT0g5n51tMxkRrUVNXZ4UUyTD33wZFSB+6n4t23b0+Z15Ic6XzZk6CLjhM5t0rQMmeYU5PjhFN26JtQjIGiUIf0UnywRJ5Ko7S7LynZBhRo7pahbIBVbNgOXTWmMzUR5XZf7KBorT9qpWBs5adHShApjMWmiBdo3IKk6GxYwToKvQy1Va6QGlLM9hoHqRH1i8bD5I5Q9ca2UHhtPSMxCfCAxi6CgtzNS6tzuLGlVXcuLqG4ewQZ+MJHhzs4YMHe7i/fYST0wnGDTAJklkmcJC3xSpl7IqxVaODGcy0rJ2tMwcQSWmnQeVxeWkBT11bwwvPXca1S4vwaLG7f4I3bh7irfe3cXfnACejMUIQQxbBo2UnZYJYEvcwCbhQHOgMRizKHuboLTOimPPUDCuRI07OG7z73iYQGc8+fQ0zQwKxx2DQx3hyhkiEre0D3Huwi+3tfYAcer0BBr0KywsDXL60iLm5GXCMmExa7O7u4+6DbRwcnCIEQABZ0qeU7SwZ8B5VaoScxJlByWBrNOe1RFyRcpwI0IxeVlpO/hdnP0fdD66MZosK6CQMez1cvbyGS+srqL0YCY/OzrG5tYWdvT0BKHFIz4whSgmsGOF6vZTGvgRkWvRokWSk04x2rUzJ4+aljA6UIRrIUgymDE4AxBKkZE41gpXCVN4bhTa9OWyIUFcejjyqitCvCZPzU6xcXQO5Ia5veDiqcXY+wdbuLvYPDnF0fIqT03Ocj5pcUo8ZHh6BGbksgqwa6QY3oBKzZqnRjDZi1JZeWoRwBhaUrkZCBlZQdmQwcHo6wvlogplBDSBibnaI1eVFjMa7iK3wW4aChpxkwmlDC+eRUsJHNdDbHJOW5wtBo4FJInFDEICaRNhGcCQ0jfBhcoRm3KpxGynqP8SIoLyz5QDfk8yGrAZ7Z64oJRQrx+nVAG5gGQO9IAbUvQqVOieaVsCpMUa0HiD0ACZ4knGTr3XOKzBJGblxG9I4HTkgMNrRWN7lKynNF6JkKoRDCI2CSUnKi7XqnNDyc44A+AhfSdmL0AJHowmcln6JWsrAVRWaqGeXr3IkHhOq2sFXdXJWCBsXpJR3QHQEV9XwlWZPjBmoFjjCVxUoUCoBNujXQjPeoaolK1xVOTRNwGjUiHOkaVIprwxiycdddnwwiB0CMUJwiUbl7I6onACgBFQVER2DghCdAFN9dtZohj/bv6zzF7mkdvm3BChJZqFc3qw8+41nlI4uA/IQWRZCA4az8mU9e9P+zFHSBoDKPLn7jsSjUplWjRjXsPSImBxAtjfsnoILJjkrOWOUX9jvNhvmLNKvAUi2MZMoSsdfWRU0OaHYntO9XvxFtvba9yhZrxIfYySwlYAEba/KORwLOdBkE+99Xg8jqE9oe/H9T8ORw8LJIgbjAYgIvbaGlUNNECSb4+REF17cFZ/LoAOkdSeyZ2Q9IPvGuo6szrvKa0ymLO61S7N4P7W+5ryTb9MN5kzj4mnTfqJCYO060abXkvI1CRDRodVytN1O0/RAkM98OxJKncOCQLqBJrl8WwnyNV6QHZ1ZmH+cozFqmZvS0dgZK3VlfBsn2ZoWARByQc7Ka5NhkJ+uY/TxzaQp+dn0CfXqTc1nBh5mZy3n39LTSl0FiVaAlD0MUzST9IppGmPoSQjLWOmIMTucxcL8DJ66cQ1P37iG5aV59Po1QA4no3M82NrDG2/fxIPNLZyejSVrB0v2T0E5eX1/zOcBJ3LJDlqlXSLJXDQ3M4Mnr13GpdUlPPvMdawuz6NXOZyNJri/N8IHd7fw+jvv4u69B5KJVuUbzb2UM8sm3cr2BKc5LMTbcuLTdTZLkybiYP8YTXUHk+UKVS1nSVVJidYIYPcUeONwFSenY1zy21ipDlF5h2G/wtxsH71ejciMOowwO76DDw5WMB41WvZY38i2zx9HE+W6T+mXqRHyPXJOT687p3OIC9rL8pq9XvaFAO2vXN7Apz71POZmZyQDLDMmTYut7W289fZbmDQNLCNp+pvKDNcoOG6xBo/uk7x17DwmZLSQdSzLMrYbusvHnQ8edbAXd5gMAGhJNVFwSIE5HgEzbgTvGVf8Q1yutjAA4F0fy7MeyxjhheUtjEON+2cD7J4T7p0vYDxpcDjpo42S4SbtRDYOzd2elHyTi+/MPqGfZ178GDAbledWlr1PT07x3q33sTD3MirN9Oi9w/PPP4f7Dx7ifHQuQJMIVLHCU3eewu7yDibVJMlbRjcwG0VaL5dkHGf9peJs0aw9McQsMzGjbRoAlslF1icU9o4Ip4FKyo+nqN1kEIKdx4yUhDnxE6TxcjTgEEupa+072PQFeQZDwE5BZdMk6+p5wAqOJbNDFvKglMvLsvZ0MIjYMBUYpGJoExhNCgMjQdE7CaIMKtCy6qChkMM6BGNnmH5PWl6N1MbkiBBiTCWQHZEGGUg2J69gdclML+W5GShsdiHtG8pbsLuNTCZiy75lwZaUZF+QnfMaxKd7LcsfmbaNno0PpQ2hP5itR85PdP6m9f855/Dj7TN6zqZ9VfCfR/jslABRyB6d/hfXUTqLi7OaDA+c+/vz+lzaA4tTu6NPACa7MEpAa6cf9pzHHB0JPGr38JQcnIRSm5tHH5KAGpzfldiavb+QWew5vwggwEfVfus//hYA4Nq9a1g4WgAxYeZs5gKA9Als/z17/u/SmHOw0kX725uty9LSEhYXF/HSSy/hueeeS8HsBnrY3d3FK6+8grfffhuHh4cfyXuHwyGWlpbwwgsvYGZmBs888wxmZmbSO5kZm5ubeOWVV/Czn/3slwI28wi44R8PUGIG9ngF32++igiPl6rX8KT74LHXLtARXqxex183/7dfeJ8/qvbiiy/iq1/96iN7dXt7G9/97nf/ngGUsq7ZxxjLbg8eEZ+rf4rPVK9iSCMAwAzO8UL1Dp737+CMZ/BBfAo7cQ1vtS+A4bAbV9GghgUwfFxta2sLf/VXf4Vvf/vbaf289/j617+ON998s5P5qm5r/Npf/Rreef4djIajj6vLF+2iXbSL9nPbhwYpLS8tS5aO5FSLSYkFSmCCgWrkPjFm+6QclgCl6UPQPmOIUm2KvZu+zhwHHQM1YEpsMlSropn6SqTuTX5EWTYDsplCmGMy+sijzGhoDnFSI0qOEErGHwdN0440VnF2sJm9VXcuI/Uky0oaiVnazUFA5dyKkcMyImXHoEVv+eRUNIdB2waEMNGSP5KNh82ZAKjzrVRXLcI/C7DZ2B7AVl+FMmDHO5/m1PpjBl1zDOY1t2c6eV7MXj7BUMSkQHccSmaoKA0dnL8j5CxG3bmU76M9uygdVYItbK27hlWjZzMWZ8ODOU1DgjYwEFnKVQFwMaLyHp4YM0PC1fUlPLWxiuuX17CwMIuz8QQPdw+w+e5DbO4cYf/kDKMQwNGDIeAXJ3nMATGhIfqAJrZAhJZZ0B5FBhyhInm/cwTvPBZmZnB9YxHPPbWGp68sY3l+Bk0A3r+7g3ff38TN27vYORpj3IhxKqhHUMbfgkicosTmtIE4xCHdkkAxLUmlPEJK6mmWNHVeJwMcSeadw/MGb773AOeTgKefvIzllUWMY4Pj8xYf3L2PD+5s4vj8HLElEBN61Rj10ixmZhfg+zUOz85xejrGzt4x7j3Yxun5RIBc3GpVL3Viq/PscYaXMmJTjFIMhCAOIJ2BKPV3xBDLYsEUoE+UMpgsPMYI0dK1m8NHgy4TDRFFrK0v4qWXn8Ww74AIHJ9OcPPuO3iw+RCTSatGRF1vLXUkmWu0BFGHL00RO5V7hpNBKqphMrntrGxi8QhW661zlhmAQMFAmqzG3Ryhmt+jKXBIICRSajBi0KsxO+xjfraHuq7g6z56/R4Ggz56vQq9ukKPCBU51LVHVVXyXBBe+tQTiHwdR8cnODkbYXt7D4eHZ9g/PsPp2RijcTAMlOzFGOGJE4+w7A5iiGdoTv0UNTodXZXKW0LcaRKxW5a8k/ltI+H0bISDw2PMz15CXVWoQsD6yiJOTk5xeNxq5XKJug4cMWkaNE1AxQ71oIfAmhnJHDmRwdwmByycZi4LEv3eq3vgtjCyK6iBmOErhxCDlG2LjKquMJlMwDGgqir0+xX6vRpN22A8EueDlCKQrCUxZc7jVDJp0gREEHzl4X2F8WgM6D3eO7RtkPd7ESHatsWgryWXqEEbWoTYAoioqh7aZqTbw6NXVYgc0caA0Aq99Jy8O0QBVUVIlK+U5AJcXSEEAZpZyRyAUdcCNGJmBG4xaRvUvQre0i06j0bSSyGSZJQKoQVzhPMO/b5kaJmMJ/L+AH2PQ0UEDi16/RpV3ZN3NK3Qk3MI0aOuPKh2iOcjTbhEkl2waeEqj6adoKqk9JEZ/wGJfoZXEA+bI0zBRCqbeM0oSY61bK6H8x4hCn+LkIxIVEmWS+9FzopNg6axsoDigPBegcLp7CTNrOYS2xDWFzo0ZntRxowC4JUINTlLy2xszMZj9by2ciuuNKxnkJacwdPGervG9mfBw7kLsJIzm3Tvdp0GJRgqOw4MNCsynQGdnHfwEP4un3kY6NzcIVm25cT6Sv4pAfCxyH7Jia+abGwZFq0cJ1F2zlmJujSHgIJnTQ7I/MowXQmEk5xmeKyj45PSnt19FiXIXuTmLHV1dYOuczcB4BNtlEEOeOTacs30005fHgkM0KukX0DhT8591Us652whNVp5xPIe2Sfls7MzKYHQ9DHmkGJ7WNGnDFhDoif7Ocs5pS5R9hGqi1AeV6lXFLJ+VVVYXVnFpY1Lci5rXyfjMQ4OD3F2doa9vb2sG0XLmPQ4p0N3bafBjnkTqSMUBU27or+FLJ/H0nm66qV5/hLQgxlTS9/R/TpEUv5aOB/L9UPBozKvMf2jmH/TJ2xu0zKUcIhimtgyX9i7OWUsrZzD8vIy1lZXsLq6jPmZAa6sr2BlaQH9fg9NiDg9G2Hn4SH2j07x4OEW3r97FyfHp0iyYOIN8h4LxAGbBmXzZeA/gDii3+/j0qV1XL9yGeuri7h6eQXL8zMY9muECBydnGF79xBbu0f44O4m3nvvAwXHAClzXVbW0lxkVmVgD3T3is6zM7qwPY28ZSIYo4axuTdCHQKWl+YwHPYRmDBuI7YOJ/ir3aexNxmAGbiLZbxYv4sbMweo6x6cdxg3DSaTgJPzBruHxzgbz6VMRkYeZsewM6QE0ho9pYXkggUnPbUAtBSElu0LQDEJ+TO7k5EAFDaNg0Efn//8Z3HlyjrqSmwS40nE3uEOXn3tNZydnemj8p4zGw6RPu9xLLAz1xmwm45gpY+YaJpR/ltsG4AyT5PPqHM9T70zdUIn3p4/9A2e6j3Apf4Jqsqh9sCcn6DScsreL2v5eofKeQ2OcnCY4LmlBi+sekwmh5g0LXbOPPbPHd44u4b98QBNGwpaRJp/033KcybbvnTdjY4TT7dHFHMS2arKJv0JYEQm3Lt3D09cu4rBlQ3UdQUXI9ZXl3Hj+lW8+94tudfJ/pkbzeHS1gZub9wGI2rgoMoDXM4pwwCgzuk6kQHUCVbuNq0Dc8r+WPI5C0Ax+c57j6oSWXPStImterVLWalgAa77JH8xBzgvwEELuvGVF57jAIQMiLWACQP8SFk22ekS2MYJgCTZFSU4S3FLcGxl6IUfi55oAXhAKu1qZ7iVSicto0ea/SgG0XvKMneQd7HeKzEN0jfvPSrnUzZAQPQJeQbp/iXJ+EoOMUjZNU+Uzg2vZehYy3gSiVyu3AChlbLQxvxYbS0dwFynyecJoAahQdFtC56gZ6nJo2Q6FEdEy/SkNJv4hhK7UZH0gYrPcxlis5PK9ubOfpnu7/RxjKlru/wifVroH93nPu7zziX06D1mKwHQkeUzs8xnVP5crje7gtlqS9CiPSexOep+ro8u+KytMRIHtXXI3U/E8Mj625qmPpY8isouZN3wce2xS/UJaF/7/tc+7i5ctL+l9Xo9PPfcc3jxxRdR13X6/OTkBHfv3sXBwQHef//9j6+D/wO2qqpw48YNPP/887h+/ToAKes2GAw6uuB4PMbh4SFu3ryJ733ve9ja2vo7v3t2dhYvvvgiXnrpJSwuLmJpaanzTkCyZ52fn+P111/Hn//5n2M8/nAl1z6KxiCMePDYc+iY5/H/Hv0LPIyXAQCvNS/jO4M/xEvVG488J8CD8asDllxaWsJv/dZvdTLxACJ//MVf/MVHAkz7pLQFOsQ36r/GE/42AKBPY6zSLgCxIkyvOyC0MEtneMm9DmbgW/VfgkHYiWvY5xX82eR/TnTxcTRmxk9+8hN88YtfxNraWvr88uXL+NSnPoWf/aybNWltZw2fefUz+MFXfvDzjv2LdtEu2kX72NqHBik5sktNkNBsBinCOWdLygZvszFlQJKzsimUo5+h5dyy5RKF4U5LW2hkjxkJDD80bUeWCNP8gbnWs6HNDp+IPBYkfc8MMjpEvd4lQ7Yjyjo4cv/IUSpxRc4c5Xnspt8JwMpUeomQsnTcj0bqyLtz6bwyG1IusWUONWZGDAFt08IiCQygkQAGMYMpWLOMlEZCm58SoFQ6P8zxaMAzs3hIRq1CeXeFoRH52dYSOIAIrMASHZUavRREUBgHxchZZBCwedN7AoVktOlEawYzGDgFZalxKkWWisHVDELJyZGMo0DKeJCyBlHqqw0zKuhD0mYDtXeYHw5xdWUOzz6xivVLi+jPzaJpCPsHx3jzziYe7p9i73iM8TgKkKxlBHaI0eL3pJ+BI6LkRhcjEEspALaMDDHCMcFFoHKMuZ7H+vIcnntqA09dW8H6ygx8XeH4tMFPXr+HN2/dx92tQxyeR0yiOprVKMYQGhe7oc2X7k+WaMNIDEaAZX+RqG51HTkHF82poBG5jhLoxxEQSej2rGHcurOJSTPGM888iaPTc9y+s4mj4zO0rUR6eyeZ3K5srOLy2hLmZgdomoCH24e4d38XB8cnmAQpOSiRxdThIdOy18+LiOMIzaKUo/9AWl6osLiXjqUIFrBYMihxokEzALfRjIhyp4PH0dEYb7x+B5WCaI7OTnDn3iZG500BqgLY6N4Bda8CkUNVe3me/TEnHmQfRsU5eAVr2k703kE661LxSgA5ytLoWfec0BbgrCQnpGRWApAauyYzgkrkK0iAGr4Grl9bx5VLK1iaHWLSBEyCGOWrugIQ4R0wHo2x3wQsLsyjqRj9wQBnZw1C6zA7O4O54Txm+jNYXVzBydkID3cOcPfeJh5s7giQQA2/HDlFo8p66r639UDQvkMicAHEgg5SuTfbW8Ybok8LzAxEcmjbFlvbO5ifG2J1dQnDysM7h6tX1nE2GqENnOfPOXhXAdwgtBFtiGpsFrCngEsoG9jB4CgGfTMsN6FFXdXgphUQLKmBOUYFDLlk4LcybN5X6PUkm96kmaRzU7J5Mfq9Gs55tKHFaDQGIFmcWJ0LbctomgaVI7RNRBsm6PXqVPYxgmS/OOm4ALEmGsnspaRcG9C0E9ipZ9nHvJeyNXXVQ+UrxBDA5MCQ8UQEgCQDV+UciC1LlDgvQiu8j2OFZqJZeRoCsQcHAJ40KrtFcgg6QtsI0I98BYaOT50uJi20MeE94XylezSg1bKoQivCA5qmxaBXofLiiGkm4+wsj5Ihyq6X4TPa2KKuJCMlkzootBwN1LkTYpDfSZwwde3leZUDWgF4AUDfE2pfAdRCq43Ba/aIEKasypyBpSBIRotooB49Nw2gpH/tLDOwM8yRocZuA9GYrGL7KM2RPlOThaXIcdKybtl4T+l346MloLl0rj7O4SClMVzn2mLYnTYdiUeOQNHM9DoWzdbEia9pGUayDHQxrSmVEc0md1LZ5/K8Uf6iJVHtupT1qnAcQB2JQAQroJFURpF1tDHbq6cAWNwd5yepOc24Vsrd4jDU38lOrvL39Bsy+J0e83sG2Cd6LZxQiXb1aRlwUPbQNAaa/gi5bg8VX0w3nvr25xu9SmCfdlBkJZOnEvB2ah6Kew1KwCjGSeX8defucfpGua+YGW3bYnd3F3t7u8oPcqaktg1JCsqOtXJObc7t3Y8OvnwfdQy52Vmax1lOUOFYM2dnmmcDlcT0JKODjqKjQpF9heL5pBswTj2ZgQw+K3SU9AzjX2V2h6THcuoDa78Tz02zk4Eg5eYw+vXO4Zknb+Bzn/k01pbmMDs7gO/VCAE4Px9h6+AYD3f2cefeJrZ39nB+eobJpJEZiVqmSgN7rKxtYmrQ9U39lHc7JtSVw5VLG3jhuWfw1I0rWFoYYmYossNkEvBg+wj3Nrfx9rvv48HWHk7OztG0TTpobAaTE73cP4lIlLfbZ1RQTEmj1tt0Dtl0iTbyk/FL2NnfxJPhHMvLQ0wmDQ6OJtgb9bDfDEDMGNAY671jPLnQYHl2Ab1ehUl0eHjSw97xBO+dX8FOWERQgEKyM9haEjCdxWKaX9k5lJl1tgGIrpX1U2P73V/MiW90lXPVxJCBrZGB8/Mx3n33Fuq6xqDXR9u22DvYx9bWDh4+3E6ZDKe3YAok0nOoBLrKCGyN9HqlXx1Otgt0l6jY7+U5rec7FTu9GJOdeV0uADAciEkDIyKendnCZ1eOMNvvgQA0IYIxwBnmMKYKc3QGxDHGbQOwguprh8iE5rzBcOBR+xqeHK73CIO5Rdw/voxw0uLg8Aix6WZfYHCyNXVADAxYEIctW161YimNJxZ8A5RBdqz3jEcT/Oxnr2Jm2Mf62ip85eGI8NJLL+Dw6AgPt7ZVJmAQO1x/8AQerGxiXEm5RrORxWS/UVlM1ysDyKW/ESJv5q1uIGiVKyAyiVRVs4xIksXHe5dKkenQYAFI3nuwkyAG+86yuxI5tE1MeouQehDQEnMutUcyJ8RRy1yLzG4BKRK8QIloGJo5ieXc9JWX61SOM30u89Oc6RMQEcqy8AKUMogzE7KxL/PItKBEaY2tPx1wisoiwn/tMZqFHoVMXex/CY40EJn8HtqYzzCYzFhQaGREErk66rth660LHAvAEwFqq/MJ+M4xJN3ZO6cmJrVXqJ5Syqe2uHas6qCV3so9YDICihtzv+2j/MiCoxfyTvmcEvCT4IOd69KBntamU87+Ma2jd6DgS1N6Sf4k87xpgJLJZdN6RxoZF/+nMXZ5S3mdyQrlvHT4jpZd7ZynyPzZ+ii3FYdOMduPAtz07P5v6FEX7aJ92NY0DW7dupXKg1kLIXSye1y0X1778pe/jG9/+9spAAVA0u9CCHj48CHefPNN3Lx5EwcHBxiN/u7ZVuq6xgsvvIBvfOMbuHbt2iM8mZlxeHiIH//4x7h58yZ2d3cxHo+7stcvoQV4/L9G/wpfqH6MZ6ubne8ehg3sxHU4RCzQEZ7yt/C0v6X9B1pU2IyXMeIBftB8Fe+FZ36pff+7tMPDQ3z3u9/FN7/5TczOzmI8HmN7exv7+/t45513Pu7ufaTta/X38I36/9fRXZiBrXgJIwyw7rbRxxgEhqNH6U9kKTlHL7ktnIQ5nPDcL28AP6ednZ3hP/7H/4jf/d3fxezsLADR9b75zW9ib28P9+7dS9c6dvja976G119+HWczZx9Xly/aRbtoF+2xjfhDnv5f+fKXlJlb6LZwdiuHY0YrgjjVTGGiZBRH8bcs6SEKWspKZCquRrhLdKcZBwz84tL7iTJO2bKckCeQGtSdc6KKqZGo1NEoKWEZypQNdVDrTmG0I87KHAOwUndpMFkHJM2CYHNgymVkMSjlCEVxQpnxxzmJkEr9VgeFKaFBBUgzLrdBSu4EzuWtCGoEUiNAdlwxXFEGK3KpzGdjlWRRkZUQo4VHUooLwxx0DsgyV0lqHxjwLJkLiGCmyfzubJRmsBqtBKxWAqSgWQ3EsCJGS8s0AI7JqJ1BE2pIYVZDvCnrAc5rVh2duxQjSi6r60QAglqVKPXRDAXRjCfqWLE19YBkvCDC/LDGxvIsnryyhhtX17C0MIOIiN3DE3zwYB93t45weDzB+aTFRJ3oCNLfNpjxjoAozlCmAEbQcjbisJdyTRFEHuAAQou+d1iencETlxbx4vMbePr6GmZn+jgbjbG1f4q3bz3Ezfd3sHt0jtOG0TIKIJRiDRBTOnMyS0z2NMl+BiM5O3QvVc7pfDBYjd7ejDu68bNBugLUIUIQIFi/8phfmMekaXA+HoOZ4EHoVR7Li/O4fu0SlpYWMBofIzDwcEtKwZ2cjToZNYwufRHl1wHZpeFophQzXpKspfOa2cMoRKyiyUhNGoFZGoraNoI56HuizolkQomakc14nyC3hG/UdQ1HHjFIlrMQItogpcGClZILASE2AtoAQPCoqx5qVSwNnGIRq7YXHBEqK/+T+FA3mg/qcUh7yIxaDFTFmvkcMonILCXWlDekEgLJcCi8OcSIiiKeefIqnrx+CbPDHk6Px5g0jAcP93A+bjCZNABajEML7z0+88JTuHppGZGl/JivKvR7Q7SxRdu02Ds4xL17m9jZO8bZ+TnOx+O0x8WFEdVQPdUK2jNyTiUIdQ5JacXAB5HVqcesIASh/GhG2RhBHLC4MIenn3oCC3MDEBjnkxb3N7dx+84mRpNW17RFbFs0TYMmNJK9iLWMH0spRisP10bh7c5Lqn8DqMYYhX8BangP6PVqhLZF5KgZgQx6yxj0+2jbBnUtkcoCQnICtGEBvQ17PdRqpB43AhIKQbLaeefBil6RaF8BDVWuUqAsadY1AZpZSQbJ2tfAOS9Z61hKtPV7NaqqElAZSRm40E7g4eGrCpM2JFAfs5xrkoVJnts0wu96vR56vZ44ypsWDkCriCIOrfJCgq96aEMUcBazGmLE4SSOAom+rnwGQFn5h7YJMOd2iC2q2qfovxiEPkLbgJyHdx6VcxhPJmhDAEldw5SZ0HkDGDsBpemcCAlJNLZzHrGNOmdiJGIEVYJVViAWECVJFHobWsCLw8N7J5HOEAcmFBSUQSucoqZLd4CVMhBAKmUwH2fHkjiecjY6aKanjtNCZSvvnDqIRJiIkVNEeTL5axcMbJ1PFWTfgn2W+HMG88h5bFlSMl8HIzm6LAoqOwpkbGQgTRjQSL6LUbMmJWcT9DnZgWtygy+ARZadyTlK/RYAs+4FHXueds2uZ3KylvIw2cgyuUHLQbDyHDmDApwj1N5BkmVI5rPAVeLHSLOSp3Hzwf40N/xEtH/9v//v6ewpnUwA0lx1HCj2BeVvsqz9qPPJaCKLzhnAZZJs6VwsHp+byj9dJ9LUu6b8S0D2F6mSUVxqcnX+sHR05axm5TsKh1O5Tzjf98gcKf07cp3Sd0jvzy0yp4xpIOSghoKmCCj2Xj5LTXMymTtTnjnGoH3JECrbU6n/nTnIsoh9m8Y7NcnlHNo3BphgmxeVPU0+MeaT58weTmm98mfFk3Uc3R6o8zM5rW3vZXrKImLSarPcqO+yviYpXHkpaf96vRrDXo1rl9dxdWMNL336eczODsDMOBs32Nzew1vv3ML9zR00bcDJ6WkGANg6po6rU92AXHampF2YeQgQ0a8rrC4u4ktf+AyeefIylhdn0asrNG3A0ek5NrcO8N7797Czd4i7Dx5iNJ4Ytea1g5y3nbWz13TWE7pH9fekNyNn+LC5In1m51DJ80gQfaTX7yGEiCa0mKcTfLp6C54cFobA2kIPg0EPbTvBaRziR0dP4e5RJXJQuW/t/CDbPcXWLuVKPI5PZNrncmrTgpSA2zQLnSAFo7u0N1DwMco0TUSYGQ5R1z20TYuz81MFB8cEuAdsv2smZDK5zScZmFx+Xt4LBop6lM9y+QMZP9B9luaQO/NjgFRbM06jNFosnq8MQrZgxOdnb+Pz68cYDnoIbUCIwL3TGfzo9HmMg0efT0FoMMQJvrR4D1dWZuGdgCeYGXXd0/mM2BzN4/sHT2DvJGAyadCENgcxpR3Bj7Cf7roX/KaYKxClrJW2F7uTlnk5p4Eynnv2WXzusy9jdnao5XgZJ6fneOWV7+P23fspuw8zY3t5C689/xqa2rKVxcKGk8NQUilr/WvZc1LgFylYXWVXKQHoklzDkRXEL99VVZUC4VgBZAyRpb3SUVR5mgFwCZjRXplcauAmm+9o8l2x/2NMoWrpe7OVkZ5ZBpwi1iyVRGj1dznXRH9wei7mTE8uAcKCAauUB8vYg9Ku2KXaVjI6uUIONPnFZE5HFjCjo415z5rs76uclR4sznrbI5L9Nwci2PoYi0jnOnMGIHKiAJgt1W7IZ3kB/E+sStbcdBEbQ5oHZT5GvuW6PZYfJAaOBBAr55RQPr/LKzu8RJuVjk58Is1l0Yo+29M+xC9lpx858jO319+mb+VSWMzzUZ67mekjy5bFg8w+65KekoFZxttLmdWeneXe4ijRd7giYA3IgXLay3wTm4xIGltrMp9L+7YYbNqLJ//388fP4cfY/u2//bcfdxcu2kX7xLfhcIi6rvHkk09ibW0NX//619Hv9wEIX9nf38cPf/hDvPvuu2Bm7O3tfWQl83q9HtbW1vCbv/mbuHbtWifYfjKZ4OzsDO+99x52dnbws5/9DCcnJx/Je//ujR/55Iq7j3/W//cAGLN0ilk6TTx5N67gD0b/DPfidcRkif45584nuM3Pz2M4HGIymeDg4ODj7s4vpP3j3n/CN3qvdD672T6D3x/9C4wwwBLto0cNNtwm/kn/P6XSb9ONGXgvPIv/Y/y/4pRn8UlZ79/4jd/At771rfQ7M2MymeAP//AP8eqrr+bPwXj7hbfxf/6z/xPnM5+88/2iXbSL9vevTVtUf1778JmULAMSXDI+JUVVLarJEJIMVtngVSqkpZKZDSgR2dBDYJLySo48rIZ3znZjIB+GReMlsJQqZqSAF1ZUQjIklQrylJLpQKncDcASneXL8dsITOFzmmnAFcpjNkjE4r3qm4I93XsxUjhf6TildqgzoyYkI0YIQaLJYlCnX1RjTDaklSCNKFbulEUkG6s4pSxOkUWmOeu0WwrwpFdrVhrvvMwjSb+SUk1GE3ktsh5MECCLS2m57d0g0pJaxbO8Byt4Ixt+tIQdmwFVsFkxGT1dNhbqY2M0BbwwdhqYKWpWGGfgGX0uFQ5TBpg8InlJP84AIQKk88k1WgKIGtQsJY/YEQbDGuuL87i6tognNlawsrwAX9U4Ox/h7Xt7uP3wAFv7pzg7m6CdTNA0AQ1b9qUA0ijIYOUXIsCRdO4MOAaAW5CWeasIcK5Fr3bYWF3GC0+t4/kb67i8toy6rnF4coIfv3kH79zexfv3j3B4OpFSR2BE8gJKKWrUG9DQ9m5kVkCUAQfJdkthuOV8f2mgNeOYWJbEqaDGJkJT2CuF+JqWsX9wICA9JlREmJ3pY31tBZcvL2NmZoDR+Rh7B2fY2t3H7v4hJk2QvqR9N229McNgNvCkbGc63kSXUCAAR4Roxl75xqXnMJiz0iZO6uz4NsOvRzb+OjjBZJlzRf+PzBhr1hmOUUGVhZMwBDVGx2LeCL26hlegSI58zYYxM5gyxPCZnHRp/2XDlhnHXfpCrzHDov4bOeR9qY6gbglOW3O5I6T5AE5OznB2NkLbNhj0+2hii539fRydjDSVfgQ7DxDjg7sPcHl9BXXdg68FiLG9t4fNh7vY2z/C4fEpzs8niLEVQJLRoxpYAU1hP6UkZJCa0jiTZu3hXGoLSNG4hAhSnsOsGcIKA6EDgbycLafnI2zt7mMw2ECv8qi9x6WVZZyfnGNz+wBRS+fBe9QsAITIkk0pxiDgJGYEjQ42AKWAOxy8hwIohI5jcppICU/ZVk6yjuk+6PdqVLVmJ4Lw0H5/iJPTMzRtEAeErnXTRimNUXl1JgZUdS0goBhR+Qogj3ET4EjKlrVtizaok4IAirIHg9INgRSMlJ0iMUZMJlJSrfIVQghoW8nIFpgxUYCeA+BcBRAl8JaMqtX5aRFbyUzmIZm5bEzDnkftBMRzPpkggOBdrYAw6ZuAgSu0anxptOREqzxK+IKc/axnpIHxuGGJtPeEuq5R1T6tg9NsPM55LZmhvFWzIlmVNE8eVV1p1LuBlYSPTZpJAikzK/CTnPZVANoSRS7ApjbGJBck+giSbcrKsD2SNajYGnYuc4yIKM/L0mKf5S2AUgYpIUFOz0mAJQhoim1cdgZQYWiPjBjaBN5KZaKMlcDOIFaHENL5Is+LCoRHcrBkedDYUTEGezDs/67zvgR6JNnSHCPlX+OIaZzidNKpSSA36a86GWJQZ4NcazyVgcR3Y4jZGEgk/MlSeRG0VJ9H7RkztYd3hBBajCYKgIzQEqA6VlZe9gluIiYUclfnjCodO92fCxE+tXL9kvO1c8hR9kMVdCjPyTJxITEkGkx6Q+ngk5fa7ujoM9m5j8ecvY/+TNYZO0PLdySBVMcAo9lCudPxZNp1ae+UugybPmIAXN2zFixgr8vjtemTsbOVWqT8eQEjK/qU73UmtOdZVseYSlSUZUYDVncX1+4y9yYjd8CEFelF0iPLHpXzmRclX6d8Nj2VynGUjbuCE/LNDi6XZkv9TW8qLhViokSHRj0OkcTxXjmg8h5zC/OYmRngiatXcOXSGtZXFjA7OwPvPSZNwO7ROfYOT/HG2zdx585djM5HkjkPSM5RA6RHeylLH1hrc+VZVl0ZApicmRlgZjjA1SvreO7p67hxdR0L83PwzmE0meDBziG2do/xyg/+Bg8e7qBtG5UDXAK5E7izVKTzxyyA706jYj3LDFTJCZzXNDu8S0gmAAsC0KViAtoYEUbjdG5VFLFcjzA7M8Tc3BB1XaFtA07PA354vIYPTp2Wp6WCDrp95e4yT9kQpsZlIzfZvNjHHdUH3XNomrfZ9VS8J4Ohst2BmXF6dgbGmc5zedKU+kHOgANWEHUnCzLS2Lu8pstzbMSJfemA8rk2PQ5Oa2P6eH78FG+1+23bFe9u2hZNIyXIraz9vfES9k8aRJ5AXFs9MK0gMPAbc/tYmq2MUDBpJjg+HeP+6RA/Pl3FyWSk5cli570lCKnk1XZudICmQALiJbakF1I5n0k4ge4DTs+1coj37t/HxuUNXO9dxaBXgQDMDof40he/INnStndTf9b31/HyOy/htU+/jomb5HK4pOVtXQY52PpLwEPen0yc9PwYctAhWAHvuh2c8yLPaplar0ClNoS0T5FoHYVtJwJedKkQBfxkZc4km5NPMlyc2k8mL5HRVmLl8kNUEI8BzmPkNMsc9X0ALGDQZHmS2nD2FnAIkv2ZWIDfmk20qhwqL0EebQhoJU2R6r753PRFyXjdYapbcrZRlce62kcoAqwZd62seAIkUUl3JLE/SQaOiIXv2JMDnJP5YJ0rnpJblPfY+mdAbyE7Qe1nlM92Zjv7UfApe/MUQyx4zaPHaJadnbN9lOmy5KmlTGVBCkJfMY2pnND0jIIW7J32nul+dIBS2t8uYNQ28vQ4tO9FHx4FXdm02CxS5zkZyGXzrNSZZMcMbtXHdF+uz7SuF2JGaqJ72auNqWV+Y++qnOiZYoOIkgG6mPKONPa4I+6iXbSL9olrVVWh1+vhypUrmJubwwsvvICNjQ3Mzc2hqqpsV2MBLnz3u9/Fj3/8448MHOS9x8rKChYWFvDEE0/g2WefxaVLl1DXdYcfn5+f49//+3+P9957D03TPMpDP/b2KNOr0eCSe/gIPwzs8F8mv4E78cZj7/tVasfHxzg+Pv64u/FLbZEJb7YvYgQpdXfAKwBLZqWGa/zTwb9/BKgUmXArPK0ApY8/i1LZfvCDH+D555/HxsYGAKgfoI/vfOc7OD4+xgcffCCfg/DC2y/gd/7gd/Dv/td/h/Hgl1dW8aJdtIt20f5b7UODlCpfZ4VPLYKPi6ZxhZFcnDSq7zgz/hWG5OJeZk7AHcvRIiCZKjmmsnEil+8q32XGOwEjWDmJLnDA0iF7n43V0i0xNFhEITNSuRUzulAyLCtARg0H1n/L5JG8VoBGtXJSFr33MO1SnJdtMtaZcZeIxOgcY3awxhyVJ83SV7vkWMgZqrJCGhWoAGa0zAAKpyVZJJusm7Ma9Pa5Iy0rZSXrsmtC/p1yhNm4KcLyW8k8MSyCrDSW5Si6QnFnqHeDO8bQ9ApIZheOFnEnN0U1zMhSukwj+o84CRQY5hiMgBy/rOXqlF6k9wR2klGJSDMOEcEjoiJGTYTZ/hAby3O4tL6IldUlLC2KkHJ2HvDu/UPsHpxg73iEk9MzjMcjyaTSEpqW1AAYcuSgGulSUnJmMQqyGDwF3yB7onIelSfMDRyeuLqIF566jCevrmJ5oQcHh539U7z1/kO888EDPNw7xukoouUKAQ5MNaS8Xt5PVr4Gtl+iGK+cbo5kFyqcDdGcgZCMPYjd6Lps3OrGaBMAp4AccVhZvUiANQNbv/JYWZrDpfVlLC3Po+5XOBuN8HDrEA82d3Fyfq7r4UGpVCRn4xsRpByD6zgwiTTbTiK0vLcjxDBo46LSeeeyMW3aIZpBSzJK+dorOCW9oZPFhIjgOCKECCuxIQ75WPA2YUlNM0EbxSnfr3qoq1r5UrYgMSM5uY0/BwBseyxbBbv7lbPhVuixBPcpD9F+W2r8ZAQtDKhl9GTKzaW84OxshPFEjNt1zegNKszOz2D/+BTBgKnK37Z3D/Bgex/DwRDHJyfY29vHweEpTs5GGLVqJNYulXZQy+zD2udu9gjkfoJTdLN0VwBoBqgJ0IxZyKUw7AAw3sAFJZshee/gCL1ejcvrK+hXHrODPq5cvoQ2Als7u+IcdJKFCURalpDgnJRia0KL2AZ4XwlIBdkWaTRdOclClDLQkfDZuhaQUxuAGFv06gqTcYMYIirvERrGqJ1I5LE6C7wj9L1HO5EI7CbtD6FnC86NbUCARVtKtp7gCx4QY9obBrJyJCAbK/mWMpMxEiCraVrNtiRZ8QR4qgREChzyYngXIJY4FgTrZVlq5BqnjrfaezgQwqQBWUYo5+DrGoiUAH8UAfJR+AYcQhTgUYgRzktZP1c5xNACpOVsOeJ8PEHbyrpVTmQS0qxTEQoecwRWx45FaIMjmjZIaTUqotuVlzoSQBqcA7FT0JHyZi91KEIrjqCqrpAqnQKgVsAvqaya8mgTtdo286oYObGAjnMA2ejuFQ1UOgWzcyLfY84kc0aUDjuTv/LzVSazMnLp2ZyykJiTVZw8ee8mwFAs75P9yJi6r3BilVHuMr7Su5KdukCOXDfZzfZW1/Egf+vaC8CubZND0DkP50gyWaZ9bbJPVN4LhNbAWjJ2kT/1fCJKMouUQYRIqkVfnJOZCaEFsZZWcYCnCHbIGTjJy34Kn9xSbwASnwPQOZem9YlpgG3xzWOcJo8CcvOZ25VZqUjfnc90+4CmXpbl7FJ3SfvQMntOfZ5/l0/sPOH0c+mcz+d5AniXb0wPLeRcKneeRc2X6x6SFyvtW9OPbG/kSciTpvt0ei0SSDnxD8tCOa0D6igoz2N3fqjI1lqc1V3UeJ56mxpG512lObvMzEZAyr5TTt0j5IKpZxefdYzlmQkaN1MaEbnD0RTPtLFzWm2VlwSkLK+TuSEwBt7jyRvXce3KZczPDrC6vIjhzACDQQ8A0DQR+8dj7B0e4f6DLRyfnGJ7ewuHh4cIQapZS/dMlgSm+TuATvlbACKz69zPDAf47MufxrWr67i8toTF+SGGfcmge3Y+we7BCe493MGd+5t48GAbO3sHKulJiVZKns0sa5kibfRcbMfcTE8tZs/Kik1fbOcX2xlAyGWYE/m69IuGsqByhNlhH8uLcxgMevCVQ9O22D8JePdoGXdGc5KnVDOQGP0yQwDLJY0W/YDRQrHjcx850w0hVeQxG0K6m6eeV2zDrE9kCs7sglBSOIE7a47p3/XSqBmLAYfKOfgiA2tmMbK3pV95zM7ldwFUUHxeu7xWxSGdvlFaeNxGTP0u3f/TTyZMgsOkCfBVJedrXWPSWwFczoZoOuv98TJ+eDCLr7t7iKHBydkE987ncX90CZvNCiYMkQlh8kx+mwGtjNfaP6UqZfJWd+TKITqyjnzsCntJ1/alpAfCeDLBzffew2A4xPrqMnp1Be+Ahbk5vPjpT+Hg4HsYN1IeJzKwsruGjc3LuHPldnEOMQJHDR7IJd2yvJRlNlaZx5Yq2dj0c0lcTmjGEy0/baB5uU5kJ0btvQDyw/T5m2XQZNNIepXIpS5lFLLdRGAO2mfX4cdJ1+eyJBonkJNP/c+LFPXZElhiWZW0TwTNLJWD+kyXEdkz5r0VkUpwS3Yn1ozaWfYWeVxtXSTUbKXIc/YyyTBqc+wpO4xTfxNxGCu0MnGsmX4z07BSdTamJFPauW8BiyZ/qJ1BxoJMzMaEdX6yhMBJVu3K1OUhjeLz3PnEPzo0UewRnrpnat88jjeaPNPZtHZNLDK965PyJTYvSHP0uDEkvqsMsZQjO/0q31vQZ5YjMy9OoEwUxwJpecQi25Hcm7NHpRGbfm7zGcs1KPYY0KEDSnSAJBvYgUTax6gluGU/iY0RpgPp/aZjXrSLdtE+ua3f7+Ob3/wmXn75ZdR1jYWFBQClHCd7eH9/H++++y5OT0/xzjvv4MGDBx/Z/l5cXMQ//af/FFeuXMFgMOi83/pweHiImzdv4o033sDNmzd/3qN+JRozcIYZ/LT5At5pn8fP0TQv2iesTdDvyBcRDvfi1cdcSXgzvAg/jvid/v8hwbHo4Z32ebwTXsBb7acwRv+X2vcP0w4PD/Hnf/7n+Cf/5J9gbm4u7cHBYIBvfvObuHPnTuEnFaDSF376BXzvq98Du4uz/qJdtIv28bcPn0nJi8HSjNdJiWeLvpKWHTyqgXozNJCqSJQij/I9XQNeZEjEVQFmKEvEmbOT3KMGLWYBF6U+qjJI+kyokcPqwouiyWAtWwYglfhwRUpfGav2x/RjIBlAzEgijkoxYMTCQMBa+gM2i5btwD5RwyCZYQaaycYlE6Qoi5qSSZTxbEBAGo0omXkNADiAo4KrXI64Jp0n7yg5+uUaHS+QygHYHMRkfLQllgmxbAhqRtFMTS4ZvspsT5l2OGXfyNmoxPifAUhFpgQzZFkGCuaUDcIMO9k+wFMZrvK3NgSbMybJAhKYdUWimvsZcALgqlhKkg37Hqsrs3hiYwmXVxYwMzNEw4TjkxHevrWFzZ1jnJxPcH4+1vJO4sBnBZwFTQMu601qIADIaMWRlF1T4xeIxVfNYkiYrXtYXxziuRureO7JdayvzGFmOMRoPMZ7t3fxzgdbuHXvALsn5xg1AYgOUrcpgiDZWaAGCZvnvLZTCUpZjPQg2bOWwtwcsQzpd3LgmPPK1oaDghbKiHajWd345KTkEgi+qjA308f1jRWsrSwiaJaQre0jbG7tYf/gGJO2VQe/OIfBIfENRwwODHK+Qwdl36y0jldwhTPAT8fJlAmppNUOIKfgCUDmYVBHglOHP1Hmj8mfYjRPsl+UQyA5t5DMayAvmXtqXyuIxWmf0SlniPQ/ZWMz2T624nV5HMUgBNCU3C3K+1IpCSRboBmaS+ejjSc7Y+VZzgEUCZM24Hw0wexMH+OzMXxVYXVlDg93tsETQiDLSAWM24A33/0A3hHOzseYTKykkZQ7BAzcoRki0nttnMWaFq2bTYYycBSdj3N2Flh2v1x+pwQpEanTMdE7YffgCFWvxsbKIkDAzOwAV65cQogRWzu7iIHhXQ/MDVwIej4EtK2UPmNuE0ghAyWUV0WgCW0nuwvAiFHKK0SW74WGWykTESJaF+C0xFoIVlpMMnClMmnk0MYAR0BdefiqlzL2BUjZsooMTBQwHk9AJJ+XwGNGAFjL/NUe5BhtDKi9gjRCdnp5R/B1JdmInMd43GgWIYd+rw/nJLK9bVspJUcO5CtIljMACvCrdO0rcjJehoKGrHSBSwZ52YeSsWvcTDRTkvQZkeFBGjUNhDbAO4derwdmxng8Fp5GUeYTDA4RoRXwE7QsH1UOFTm0IUoJrmh72qOuBNjUNhNxIDkHp+9r21x+xcrDxSjjF4eELC1HoO7Vkg2PW3WOK00DsDJ6zlnJOsDrey0rYwmiSbyIdV9FyaqVIuDTNpdzKoSs0DJzKudg+YEiMzxy2bIOeDSWAGuz8LNGw1sJkuygKPdxycPlg8yvu47Y7LQyA34GRUPlN+VyZKDzBAuG80JHgSM8fOqT8Sdz8MnfiBhlLkPIfNgl2RMg78GRCqCdvMl7ySClLCV5PAxcCSL9WfrHkcDEGEdgzBEVAbW3zCc1mjZgbGX1SOY6aFnCT2qbzvQ0DSh9fDPgdHnvo4ES5fWycEjy6tRL83lmv8sjC51CBWj72vSJdCFN35p0g3Quw5w9j+kfAMsawyqvszlFzRPGUCdndoYmOXz6WcYL7B/O/cjOy3y1yESU9h24zJCUnysZXkvZR0dWyh6WmdSZzpDlkSyQpVlKukL5TBtfAjnoOZ84HRd7vHgsfu4Yu+tjY8xT9OjPSHNP3Xso65ucP8rznc7CPA6y5yUuKXKfA6FyDv1+hWeevoEvff5lzA37qOsaEcD5aILNrQPce7CNs/Mx7j94gIP9fUyaNjnIM/Asd130BsAc61Ddl5M+lbM3VJVHz3tsrC3jK198GU89cRkzwx7qukbbBuzsneD2vS083DnEvYdbeLC5JWeVrg2BMxiskP/yWha0lBaL87W6hlD5qkPO5dSnOdSHpH2Vr7M+ABkA6chh2AOuz7d4ZvYEfaoQGTg8Zbx3vID3TtdwEvqq0yhPoRIuhWQ/sFUXe0dBRmVfkOW21O80/0h6iukNWa8AUFBsZxrKQXY+A6Z2gI653MvdZyadmvWcKuwkJVF3HNyZ6aV3c3oW5T1QdN30GeMsqRcd+kOHL3efJbrxI/NCwGa8jOebfcwMBfjRTsZ4erCF+/U6TgMkm5fJBiC8dzREM1kFtWfYbpZwHGcR2PhELLWe9B6Zjs4hkOehoINybqcBgen2xCDQOQOm94q9gwFs7+zi+z/4Ib74xc/j2pUNVCQZr65fv4bPff6zeOONt3ByciKgJyI8+96ziIi4d/luUYqsa/soQbFWAirzDhu36atOwWxCQo65COCxuc2Zp5zyfYbxZaFvCygASO0eqp8VeyqGqBmMjVvL/s5ZPllsIs6J/Ol1vTgHStlfy5LKMSKGFiEy6srDQUFXZqPSQ4o0OKuU8Uo9NoYIR4ymKLUGKoMk5b3B9EvbN0oHFuRnYN7Ke5CToIMEQiYF7TEr2FRlQSIZt+6LaONVmrEAD1bbEqn9kgDRlznzSpf0VEhQpA5GSvxJyTzLOlXudeMFzrtE7zbmVJq4mIdpnZqLx3VkjGLPJBkn3VCcxXaOM2BcJdsBs7yUt27+JenOQH4zCd1wwbAeIxbkvd0p6Yb0bBR9Nn1AH1/suTyP0zYou7b8Ls9dwV8IBX3Ld0SUZMHMkwnZBv/zAMGU+6X/RQjAmRDFBgwSGwAz2mj09miA3kW7aBftk9WIJLv3F77wBfz6r/96RydumgaTyQR37tzB+fk5Xn/9ddy9e1fsWh/Rnu71JKDiypUr+Pa3v41r16519M7JZIKHDx/i+PgYN2/exOuvv/6Rvv8X3xg9THDd38Xnq58AkCw6ZzyLn7WfxQ+ar2Cfl8Fw/+3HXLRPTPtp83l8uf4BZnEGAPAI+Gr9ffyH8QbCI65xwlvtp/Af8NuYoxPcDM/iYdxAhH/0wZ+g9sYbb2Brawu/+7u/i8uXL6c9+dxzz+Hb3/42vve976VyfgTCb/zJbyC4gB9++YcXQKWLdtEu2sfePjRICWaw4qksE2bYcbnITvquULIA1fnYIUcTdh3mdp8jAjnRosz5LO8ougMz9Iih2xwHzp7DSJ8lJ5BZHVEqf0U/LDWzhstFiEFFjC9RnbchGTECogCS2BxzQbKhaEk2mLErKc1FaTgo2KZQ8DlaSTZVCklSbnMMGuVikVEBQCxKuZnC38KiApMTSNfAVWJ8cWqcQVJsNR5WS0OI/UoMJyl6JmaDVOQAgpZFIhuzwhw4LbIq6zJO5yg74IrmnOuUm7ClsvnKGSJiUtot5XM2KJjRbIpcQd1rGGCyskmFNYKkvwKiyiWTzPjW9xXmhxVW52ewsbqASxtLWFiYBYFxejbG+w+PcH/3CDsHZzg9H+F8NEbbhGzECdlAEnXNpbwXQE4APDFGOO1TCK1ECTonjgwAPQcszM/i+uV5PHf9Ep69sorl+R7gK2wfjPD6+x/gnfc3cWfzCEfjFm0EOHoQKjCiZKzReXAkYrQ40AUoR8QZlJU2WeGIJhIwmRnPdO2gBkkUNJvXECmLihi7chruSJbRxWkWL8awX+HyxgrW15cwPztEbBmnxw22d/axvbePs/FIyrBJzT7Z+SSZWxQWJVtbjW7moBVeVVAF270ZbBNkcgojGndLqRXGuNJxbkAWho3Rp/cmY76+w6jUqSErBMlYY/yiLLEWQkBgzYzAHr3ao/Y16qoH53wq6QjkbGfRShqmzaWGVl3vZIBVeiuNZGyM08x5BLQMEEd4cskhKmupzjYugarZwEYkafPNQdY2AadnI6yvLIAcYdivsYRZzM/0sTs+l7nW8TQtsL13CHN+sT4PykstMVWMEV4NdwaGKPd/AoZKl5T957PG5sA5Dysp4CiDCxiWgetxhr98HjlSsBIDTcvY3jmAA2FpYVbKjw1qrCzPYzIZ4/DoBG3IRt62nYAbAzBKNG3TNABCB0QimXWgwFcIwChlXfFoWzHGxyh7mMjDVRXaGBDbCahpFNhGqOoaweZaDfZRjdzsHAIDbZDMUqFpEVgyYFX9SrKlIfNb7yUDkJXsIueU7wX46GUMMaDScqZNM9GoaaAJEXACyERkNE0DT5ZlKcBXrnP2hxBRV+KAaMZjjEOr+8qjIkJ0WroPDFfXQrNNowZkzXOkdEOeEMmcZ9lhGCMjNI38riDjdtLAeQdfVahCxBDiuJiEFoFcKpHmgpy9vqqk70QYTxoI/IZQVQ6eAmIUAJnZwCMTiCOqyss5b5nFlE5z1iyhh7aNAMRJrQxdAdlF5sBUKtR4RJFlxJhSeWYWZ6mU33B2/KV7DOj1WIOSGvztO6NL5S7KM8xYFRPfBLNkqUj3C3iO9BnlHrD9avRnmdTK763HxteipQNLzk753Zyh9qwygp6I4Cuv7+ryNOaIEBixnRTvtOfIsw1gZvJJciw4D19b5iU7QwRIJNkSKR0YMZo8Zk7b7OgSx4FDACMw4BDggxSAjBHgSAitArg7oLBPdstzmfWJ4svSnVvI1PkzIvycpvpBklsErCucnexroPOG7Eyj9C7rV/GuvE3T7dO6jG03uz+9F8ZHtTS1Pt1kNNtP5shM5RTTfGQ5i8oOFTpVAueRgf/0KqVtKjoe1YmaAdLSxHFr7y1m1ebF9CddowysA8xhWtIgJ96T90fpeEWS2xQ8YAd4OT4qMvYUHUpXTY2hnBmoo7bLxzjLsdO6RMeRSfnyzt3FB8ZzVMYzXcyIxYEwNzODjfVVrC4tYHlxHlevXcb83Aycc2jagL2jc9y+9wBvvXsLR8fHODs9FxmBha/bGFJ3zEsqwkHeQXpRTI55mSMPh7nZIZ64fgXPPXsDa0vz2FhewMywBpzH2ajF9sEhbt/dxCs/+CkOTk7RtAES6CDPZEAB0zHr4bquHcCd9lPer5fopiidrIDRMaeL6RHCscvZCD89r9idcATM0Bmu1dtYmq/xxOw5FvstECMOx328fnwVd0+HOG0F3M2FzkfQIKa01/LZm7df5gF5f9usWNaXDhWBwRobpXsxK7N5Ics5QN7b088qJqLgQQoERuYbJSc1OYKVJpx38CSl0qh4ljza9KV8njJ3dZhSLpbsm3mkwm/zNZ2e23agYg8qT8jXKc/mzG9LANFZHGB3PIPl2KCuBbh+Y7CLvdkWPx6voo2WalKeeT6JeKdZBLBY9B9J5yDOAO/Mj4xHF103+kbe8+W5k3ixpswiU1LtnCnGl/kRpr7LYz07PcOrP3sNczOzWJifFfm98nju2aexsryMn736Gu7f3wSYUXMPL9x6AQzGvct3E98XvcACLgo7U0kP6WzMTbL8KI92lGxJYvtSXYzscyH4YNsfgKZ5ARiwPMNS1tx0TQFoukJuFN3Z7CIE8j4F/gmoyYKJJPtMCG2eeytR5kgyUgeRj53pearbmexpQBLnCDEQmlYCPJzz8JAApgTgIgJpoAVFS1mn9Bo5lbE3plucRHm8yqNjiHBsgCrFW7FkO9eCzjIXdnbr3GsslsjPRJr1BgCCZv81mUX6beVUU3Zs688UGxGdiIvvOJ/jmRXLXoqJyAGgkHONX5WbBWmOciAL5zLYygM7POBxTfdwV9bOfEzeoXsx8Zsu/3yMRPnI82Hj7FxJnb3RGV8hg3Wb9qk4K6ZemPipPS+EOM0Cuk9M7y/6SaRAcBR7G1rKl/PaIb8ns6EMwpTRsecAAQAASURBVGOOiKabRQmZJS4AXlZ2GomEL9pFu2ifkLa8vIynn34aq6urmJ2dxVNPPYWZmZnEM5qmwbvvvotXXnkFe3t7H3n5LiLC6uoqXnrpJXzuc59DVVUYDocJsAQI33z48CH+4A/+ALu7u2rj/FVpjBXaw2frv8EQIzxXvYNFOkRFAQdxEX82+Z9xMzyHE57DI4LcRfvEtz1ewf1wDc9X7wCQs/Vz1d/ghOfwZ5N/+AgAqUWNn7Rf/Di6+ndqu7u7+A//4T/g3/ybf4N+XzI+ee/xjW98Ay+//DL++I//GK+++ioAoNf08I//6B+DifGjL/3oAqh00S7aRftY24cGKSXjVzJ0yOcpqjCbJeFMiXRebX4W3VmCgvQadA1/ydiYHu7UYV1k09F7HKgwihbvLpRgU9ZNiWPkaHdpZhgApAQYI2qkk2S3ycY/A55EAyZxUOddqZxmo5AZoSTSSR1MgdWwV5jlxDom79Y5EAXfy1hi0JrzMZVaMSeWtABmSpFrVnLPEcF5n2xh0icHuClwlo6NkA23HLLxwYwL0UAiXEbYBJ1Cy5ThirHJSARj0AWkiRHGHBms2U2QjH+RWAFQ1H0eB6WV/J6YjL45ityRRhxpWmMBTAn4w4zFqU/EAEd4MCoC+nWNuZkB1pZncHl1DosLs5idm0Vk4PjkDG+9d4C94zEOjxucjcYYjyeYNAEhNIhWlso5BJbsSUQEFykZaZmdRN/FFkwEr3QdWSKaKpISBX1iXFmdxfM31vHMjUu4cmkJVQWMmwbvbu7h3bv7uHlnB9t7hxg1QBsrjVaMcFoajilH4BmYQzJGqeGFJesIk9Kqkq3TTRVCTPRihilHBISgRnqhKXGkqjMlGXeK6EQ1AmWbiRgUez2P9ZVFXL2yjpUlSU17ejLC3sEpHu7s4+hkhPFkAivCBwIQGQ5SvgkKUCCIoYWIk+HNeMy0TwrGRwpeRqAEFIu2D9kM2VN71WiWFeSBqGXrjA7VyUYGiFADT1H6MRaGIHEMsP4eweTAUZzigES3SeSk8gjrL2Wnvn1nRihzcBIoRbunqEXNwJJHZXtCs5eIByoZ7XXLwIpBEWfQYZpHWCaVzIyjlgA5PjnF2fk5BjWj1xti3HoszC3i4OCs6wgAoYmSzczKWpmRkaMYaCPMDyCGadv/05H4dgTldUY6v8g5eCsVSk6BawZgs1T6rnAo5WwTUXlK5RzAEaQbJ7YRozDBg80dxBixsrSA2jvMzvRw5coa+v0edvYOwGMFSiqfbrlFDCFFtUuZphwNLXtHmaLyXfuVyLIKtohsZTyE37dqVHQpYp80o1JAIAJ7LxHHMQNjYqOl3jT9u6wzUHnJxMYsmYTaIOXRvBNQ3gRtXkcnmZk8eRAIrQJ/YmRUnsBR8tQ5cmjbFlqlSh0Kkn2JFQzsIE6kGCPayQiurtDrVYjByR4nArw5NJ0UnlFAm0+Zl2ICvZDy2spVcrYAaDmqI0YikBOIEUAbWsQGgHcYeIdhrwfvPA7PRohtBBxjWNfwLCBD5wUs6LxHcAJ+JAIGvQqzPYCjx8GJZNdrg+xzZ3RkY4WsacstYpTxibwhNNy2kskq8QSlP9aSdlAgbgLv6fpXXkBVIYROhh0u/yFK2ZaSk4RyqbjHgZQY+XOTkbJDzGQf9+i9Ju8xZD9ENZAroNk5yiBXYcIwACWSHGnvzOVj89gyL5RxZAfGtPPAfu9mXMvOEAMICGg0ZycQ2bcEgLFmTDT5Lsu3zgFepW2JfifFRFPiT1IiEQns4Zzd6xCDlJolhcaFKA7A1s6TqEAlNvAhP3a9PiktgdUeadnhBqjDDhDHDJUnQrr8b212l5XnMvcWJcd76cCZfmjOjJApyOhdqYy72cnsS/uerQw0F08w/cRohaE8PI+9e6JlGrMsm5xkG+5cn2aIGaFwcmVAQsyyT9oTnc5nJ5/91Ys6QCzrZ+dmnd2YpLLEXkqnJJGV3cnjzY5LzlOQJ1/7Ren79FaecmZyPi/tIaU+WM5VAhOVs13IDB0QdhZeIfIlJ53Fnkmpe5LFY3FhATODAS5vXMLy4hwurS1jbnaIXr8HBjAZN9g/PMXx2QiHR+d479b7uP/gPto2pLNZ+i0rzlZOl6koNa68x7JNgDpz4gmYnZnB+soynr5xDU9ev4S15QXMzw5ACjbeOxlh7+gcO/vHuHvvAd5+9z2cno3zkJXPdOEkpnNxytaUpqnQyTt0YWuTptFsClGvML3ZwELlnBe0lxzzeY09Ap6p7uC5uV2szPcwHPRBACaTFuejCX56tI5bozkpBYsiq4r1nWMC98uYy/HqeVKAcuzeTIxCn0bRZeBB5/zMU4CSZOX/0s6S+V3aJ6m/0DW2d9hsUIf2Of3ldDZ67zq8L/eJilt1vW18iQ8DNkIDe2RChPUgjdXON5T9NL5ZvD5xvIIhF2JJoScQNpsl3Jjch6eIfq+CI8Yzwy28X/WxM5nXeVWdBBB9kWSy83umzsbUJ0r0WwwqvTvzqwLkgyKTSWHIos595RQpf0nvVb0kLay0w4MjvPnW23jx05/C3OyM2Aacw9LSAr78pS/AuZ/i7r0HQASq4PH8zeewcDCPt595G6EfinEZFZg8gsRHp09UCYAIWcdK55btTdOFdH+wAomcS7+b3hmMv9tcmNxkdFaUfrOMmgByZiLO65hojRkxqH1O/0Sz77FlLs98mFlsSTYPTsfFMSAF0GmARNpfpLKZvs/o3nuXsthZ30BQUBBneoPJNqwBfHaMMVq1q3knMnnlPJoQEBuxozlHoptyTM8FOXhiBJ135wi9Sj4bNyS6RCEnKYHDdFbrp4khma9Sp0y8BN3kecvnMWV9qxif6Ku2l6b2k105dXbaXn6caFruybTLmJMO02lTYmAiMlssKN0XskuZ8X/6VntoyX+n+5Q5BDoyz+Pl2Ed5zLTMy3owpHPocc8rZJZ8v3xvScCF7m0ENpxCbkmiaV43WeOSH2aMdeb7Nv+PH89Fu2gX7ZfT+v0+rl27hvn5eTz77LNYWFjA+vo6BoPBI5mxz8/PcXR0hP/6X/8rXn311Sm7xt+tGTDpmWeewUsvvYQrV66gruvH8sDJZIJ3330Xf/Inf4K9vb2PrA+/jObR4td7f4EvVz/ADJ11+HNkwncn38JP2y+gK8VetF+19lb7qQRSAgBPEd+o/xo32+fwQXzq4+vYR9zu3buH7373u/iH//Afpr1KRFhYWMBv//ZvA0ACKtVtjd/8//4mbty+gf/8m/8Z5zPnH1u/L9pFu2j/Y7cPDVISAxcBZEZdTcFszpCApEBZFgxEcdx5r0auwlgEWMkpeb4pVwRLEa2KKatbRuu2i36VNbIcrZqtogorQmilxImknvbqCJaxNBxSLXA240pSyCxbkUaAmZGOreRJVoJlOFrWTD+1YN9UjglQY0VEjlSMpe29mITkNgAxOlFgDC0T43LmEHOAOT14pISMgkq8Obld8Xg1kKkRA2m8MTm4yCL7EXWOTHmPZrlVRz6nxDvMrpNyuASBZadejr4qHQqOKJVuYwAcssk1RThn+0j+QSPooEYyqGOELfuLPt/WgsxXFCVDCHErpVeIMagdFmZ7WF9ewMbaElYW51HXhDY0ODoZ44MH+9g7HOHgZISzpkWjJZQQxeFMbE5ONdJFA3sATDEX3IokEXSRi4we4vCoCOhVhIWZGtcvr+DZ66t46soK1haHiNxi/+QMH2zu4c33t3Dn4RGOThu0QUq4BTNGqsWDSTIOyTIpsMGLQY8RxYEOSo5oKyHGaWqLcj/k1CFr+0Xmz+jVMjHpIitMgpMBtzTESuYkoHIOC3NDXL+ygUvry+jXFUIEDg5PcH9zFzv7Bxg1LdoodO/UEJlScCsARqxq6pxxZkxzcM4Mk8iOJgJKl5Q5ERwsJbs80sHKJ9o4MqgpvT/ZMx0IPs1dcqSTZMIyZ32MAupKWUBY6NeTgAaTM0oBGhINasbf9HCZb5ZxRLUmMts+dIkPyL7S8itmeGfWFPc5ErBUsawEpoFKxajJRWke5QW6h4xuhL/ZzNr+tu0vWWVGkxaDfg8gj7Y9x9zcEL1ejXYcIEA5MRwzgAAGsZQXpFTSytYMeU3EQpzGJ32lHFGIbFgzXu0MbaXrkMBKnGzTMnaGvN9RmmOZJBIAWWSQfu80+wxHYDJq8PDBDsK4wdraMuZmZtDrVZidHWJmdojNB9s4Ox/JWeQqeHIIHBDA8EQIrUT9k6uEH0q6LRiIkUNU0BASjVRVJecLK6iXWaOBiyjoVsC1TWjhNErZeQBO6URrUVUkM+WdZCQjR5hMxgDLurgGGciSzl4tG+mE11jJEWYpO2Z7M0QZAzkGcUSYtPA9occYg4C/Ko1e0TJn3jtUdQ1yAeQoRf+34wYxCCDUOQ/SNWciWNk8k1GqSsp4EQG1l7IRjrzOX5SStJ4Alj074xmLgwqjJmLvLKBtI85CwPl4Au8IcB6DQQ9AQOUYtZNnRQZCZDgvALSmbRBjxDkiOEpEdBuRaTO2aKNKDUWmIqP5qOBHMURrudgig5n3hNBy2idVJSBoKRPhFagiZcmM90XWjFvKF9LeJcryQNq/yrMrgtOoW4ushXkykrPYjoMczQ2DXLOCb0o0rMBpE48uHpfOJBLYmfIoSvwr7+dcqtPOvuSsYc2CoWzcAsFZzw0iJBrOGStKZmhyiwDrDHAR2bJ12vyopMIMyxhlpVJg/SZG4IhgpaoiIyZ5OYs0diwoe9P/OWXmtPNDzhLlAewS7cHut0QGn2CfQuLXyP3MR5dMQnKG6lwI6XDnjMvXdHUJwE6rgt6K51DaAYVIieL+dE5nB3MJGhGwq96vPKecb9YFSKfP1HlkP5dOIHu59TjJV+kdmVJyhPyji2z7yeQktkm0PVHMENnEk804Ep0B0Ay5pLJg6aAzF2jqaPFyk0Vj+j5RekmnKH+28RSTb+tcOOZKecW+L/UJAbWVZzZ3nt+ZG3R/MVCKfZKA/EZjnXGWzjvrusoYDpifm8WXv/h5rC4tYH5uBsNBP5WcHI1bHOweYf/gGJtbO9g7OMTO3h6ayQRN08LAAan/eWXy3FqPVLbvTKGVbSJgdmaIKxvr+OxnPo2NlQUszQ8xM6jBHHE+aXCwd467mzv44O4WdvcPcHx8gqOjYwTT+2yPUizIhpQ3KQUwJ7nJeGaiFe2WPScvsTE4Wz/7JhFu4s1dLpmJxp7jIDzh+uAIX1w6xNzsnJZzJpyNJ9g7aXHrdBkfTJbQcM5ZQjYWE/hM7iz6mug3nTMZ8JqvKunKAngyxSYytouNvNPveR7Tu3S/moxlZ7XRouldxZZKMmy5v1MWpRS4UYAp+dEfO/o5Z35g2zH3A4/cnHYS5zUuKbbYKPqczD86ZwCprGB7NvVT5vYozmLcAv0+4HyFGCMqx3hm+BC7k3kIUKzgs7ZuMe8c47Pdjmufy0OhA1bgpEdm3pzPKOMRVDw/0b7tZ13bjsOf8pqCkXUOAHfv3sPMYIhr165gcWEeVVWBHFDX8/ja176C6oc/we07dxEQ0OMBru5cw3AyxHtP3cLB4kGy23QysiRitYCXDH4IQWxUzhVZL208NlDtf8oWTWKKARX0Z/YomwXKfIo5om0tqM3sb5yyjJo8ZjKWvd+y+QTkNQgKinKABNaRgoY4gz8so5LtFbEDis4sOiylMpatDsRKHste5s4Z6JD1G++KfWlClx4eci+JXcdL5uizSUAbpNR2GwIcBYAkg6e8glE5AqLY+KKuFZEDQovILEFwYHgxeek1+f2WvSmfe3q+c0wycZKFVWY1Xc9oEBAAl5WaTra7dJ6i2DR2ZiqPTHuZ8v4qmpWDTfrt1EV2Utup96gcW5zZxelA0y9Ke3hKbkjzZQEVxROty4kHlpKD7nay+7WfzMVLuDv2Yqo6IPuCZxavze83npH6wHnvasAGG5AO5TyWa1IIKFTMFef3G2/vTA2jW0447VtctIt20X7JbW1tDf/qX/0rLC0toaq6Ljs7hw8ODvD+++/j3r17uHXrFs7OzjAejz+yPhARlpaW8Pzzz+PXf/3XMTs7+0g/mBn7+/t4//33sbm5ia2tLdy9e/cjBUn9chrjU9Vb+Fb9l3CFfs0MnPIsftp+Hq+1L2PqVLlov3KN8CBexph76NMkfVpTi6/3/hq3Rzfw96l83/e//32srq7ixRdf7AAL+/0+vvOd7wAAXnvtNTAz6rbG5372OSweLeK//MP/gts3bl+Q+0W7aBftl94+NEipaa3OudlnzFCfVVQHlyLanYZ5EAGs5T+o+IdVAcsOByvp47LipI6f5Fww50WqZGaKmEvCGkGjnTTLEfQxIURwMGCSSxFEZcuRQ0CIAaolphJsuUmfvZZIImJ4T6i9h3cVmAltjOlvWbvdwFClAc6U147DhRkojEvkOM2vcx5miPfOyuepIQGUFO+sFJt6GtVAIZmXpANlBLcZL/I7ZU6yIUNvkXeSrkfh5La06UjRaZyyPk07aGBGFWa00cqUiOHEualI2VKRLoworNarbNSS0mkymw7MmvoamvEGYtytPWHQ62FhtofLq3O4tr6IpfkZ1L5CExkP946wuXOCw6MRjs9GOJtMMAoRgXPqc8vQwTGK4YplTnL0s86dGYSslIta/ASw41ERY9hzWFkY4Nnr63jxqQ1cWp3HsO8wmQTc3TrGO7cf4p3bW9jaO8VpE9FEoSUHloxbQAKOAGK4cmrojWB1qOl66c5x3sOyteSoSdJ1hxpWHEjz1FiJNFbDfsrQxIxopGYGT3PQcRcE5cEYDCpc2djAE1fWMD8zg9HkHCejCbZ2D7G5uYWDw1MxnqqBxsA+agKTPqlFkzh2HWreaYR+VNCSJO0kAwNpVi+QgAYQxTDLILArnCLJemRlLNXQ70iys+i4je7Y5rB0XoaYDdCF8Sth/VjolVlSvgvoKII4gmOLGFoQKjD7Yh/L3hbIo6yn0JZFQYuRMxnLC4OhfZ/Ne/azZQ2yNdfvEy0JH+TEYx61VnlXZD0pTJYAYzyZ4Pj0HL0K6PkzzAyHgK/wcHsP5+MjyW4GzllXdH8BrOVBy+i/HKkd9RyQjDtC6YiaPYa1B0QZIAhSliXrZCUuzcJXApqcGePTFApNWfRhyq7FBmTNkYjn4wke7uyhjREb68uYnZnFaNJIGThmbG3t4fjsHCAH7xya0MhZERpxukDm2/Z0LMq5ARJpXFVSKrJpWpCDAkTV+E4OvbrCeGx3SEk254C6V8NVHm0bEKKUgqvqHgiEdjJJ1sg2tBn4yVCQBVB7VhBYzmxI3sOgI9579Ps9TCbj1Hdhd6Tl4xhVAZ4jLQ8aFMjSxgaOXcrSZHRY1T14CC+qnEPrg2SbYICdrAcBksEuSElS4TnCc2NgSGJCeXPyJTDk/AgSwewAzPd7WBrWOOIJDpEz44EIVMm5VtVOgEBtgzbkrFJtG0BxkmUfZownLUJUsJHSpJRwkHlmpWHLCEhWGiMwIllJPY/QShYkjlEisokw6Hn0qwrjSYNxC7TO5Bh5j9eSHMw5u46A2HL5PgMF2T42ecVkOMQcoZ6cIeWe0s9IByLsw86QQkpTESFlZ0tndm4G9uEYFZxeOCPMm6Byl/RJskWSU9kqZjnOaarimLhhtronOQm+ML7HVI6NvMqNGu1PFBMfENnDo67FsRQ0yxIFO1MpOfDSGIkQnQDKOXCKTDfZsnRMhyj9sDOCuCurkmWGygkHVBbLDg0Y//uENgOlJ5eK6ROU9QlKsqzpAAqyNX9QcqBScQdMQdEnZ7DZo7Kkya+6BumaLK8SBNhtcmqpI8Rgh+a0jN89H00WtPboqhgNaH9VXvOO0Kv7CCFKVjcWp3K5b0pAcAY5pgkqxq/jLfpGad9Tmp6kj9kjdN+lZySdothNXGTwQQZh2rtMrhBZpRx2Wv0sO6Z3doHRxSCzM7VsSd5UiZcL8KDNSfae5knMR22ef+t3TlUEO7FUgeryAgJ6dY2F+TmsrSxhYW6A5595Eqsry6lc7tHpOXb2jrD5cAfjSYPNrS0cHB1j3LQAW5kWTn3r0Ij2sQOYYpVH0rzns7L2DvOzQ3zmpRdw49plXFlbwuxsH7UnhMA4Ohlje/8YN9+/i7dv3sLegfRD6J0BDQgqR5lW18ZuwmVJT1RmKE6fIkFGCIWuaw+xtc/vIxRnB2eghJERFfTgiLFQj/Gp+QM8t3iK2d4s2rbFuAUennm8dXgFD89ncM59oWPO77V936kjj1xOlKYB8Mj9IVAqLSjPKO0UNorp8y2P2s5H4S+c9K9sD0B6ftI/GDBgUsHEssiN/J3xHJNVU5lxB9UnEjXn+VehyPZNmh/T/+3Lgp8mO0LxPM4PhIG6jF/bHFqXjZ1kMsqAEJvDPFT5/DwOcDqOmB04jEYT1HWF4bCPy5MJBscNzmIvjwe2pZQHJ3tSCWkweQmJWVF5P/LnrtAJsk5ajD8br7rHDPCYvYHUp2Ji0x5jSMmW1994A3fv3cVnPvMyLm9cQr9Xg5kxHPTxpS99ASvLy3j9zTdxPhqDUGH1eA3zbyzgwdomdld2sL+4hwgFpHAG2hpd26qZ7OfUrpdLdal+h5zlSIBMqtt7BdSoTc05yaxsoF4CUtakzDYU2GjAbTvbIDpfyQCl1LToCKwEIWXobd8pYD1Rns6/8tMQQ8G/ZaUsc63JDE71BlYlLto6urwfBHjPKt/ZuUdKp8oX7OyI2ZZQOcKwrgAwxgiS/VLeqkJxPu8lACbqOZzBVQaOkWA4RttGhIzqSvQnZfXySJNOrrzFgDllwCCrjhej0EBdiY2nbbWUcBJEVcYiwEqWMRToRib7KI+C8ecpAKLNF1tap2ID6dfJDlpsic5G05sKkaD4v5AhinPRvk88DZmfcep73vuw0tM6cekkLPfw4/jWtLwFZPsF5cDV7pCUt2gW2bRkJgcQdfQaZTR6RunaxszrplvZR7u9bGSb0ubj0Q5Ozf1F+1Vsw+EQTdOgbdu//eKL9rG1Xq+H9fV1XL16FVVV4XOf+xxWV1eT/NA0DQ4PD3Hr1i0wM95++208ePAAZ2dnH3lfqqrC8vIy/tE/+ke4cuVKp5yctaZp8N577+F73/seHjx4gPPzX83MK4SIVdrF1+rv4eX6VZM+EdhhM17BK83XcDs8iUNexKNc9KL9Krb9uIIRDzogJQC47u5igY5wyEsfT8d+AW00GuEP/uAP8P3vfx/f+c53cPny5bSXB4MBfvu3fxtPPfUU/vRP/xSnp6cgEJ784En8b//P/w2vfuZVvPPcO7j19C209cX5cdEu2kX75bQPDVKy7AmWOSODZyiBLZzzSeHPzgUCRSTHirWsJJvhh5KSnYx4UGcxx5TSGQA4yPcBEGMT5dT4sW21TJgAkkoUt+iwauid0sRiLKM5oYYBM7CVmQUECFR5KcnlKw/vK/R7PQz6fRABkxAwGo1xPhmDW0ZQo2UycHF2aJjh1gyWKWuJs/e6BBpxzhVz63P/yJxyTsujxU4K0DSn4JSumhnJmBFTxgNVmS1SNub5MaMlg5GASGbUhj4MZgy0PimgInSdOGlNWByb0Qwd+m4ioDWQQkE00z+3Csoxk4MkVhKAh9h4UponOAdUBMz1PVYW+lhdnMXa6iKW52cxqCuMxmPsHJxha+8U2/vH2Dk4wmgSEaFlckBgOHBs0zPBmnGLIQZlUoOzGpdi0Ew5UL+qGr0iSUmrXuWwMONw4/Iynrt+CU9cWcXS3AA9Rzg4Pcc7H0g5t1sP9rB32mDUsjqqlHYjad1cSmnFE5CvtKU8MofUofUYInxpWGEDeGmmGUQ1IFJ6vpUfEhrtwlYizBjmNBJfjHs9T1hZXMDVa5ewtryMno8Yjc+xe3iMe1uH2Ds4wnjUIEaCdwyiCK/zyUxw6li3vZrMg2Z8YtZsPNmRSHa9Ai5StLHSaYRkPzG7uO0VcxqQAio4qjEoBI3eREodn/ukPFFp2XkF6jFrFC9rOS8jH05rF8DgEBWYFOGJhbdUNbz3kkEGRTYHBfNUjtLPtgpW/qjj4FEDFxWfJxgRo3Od3W9Oomzk4zTOBOYMIb0rWaDVPsj6MzPj7Owcl1YWcD6eIMKhrh3Wlhexu3cES2hjBsLkKwCU7zs1SMsXXphmx5GQHD3UBRwl25v1W/cNgRGdRqhyphdmApMBNy2zEidDurK/BEBwWpopAKlUFTPQMGPn4BBN22Dj0hqGgx6qOcJsv4f5mSFuP9jE/sEJWq4QmRC5BSGgjW0CPRGRZklR0IrxWnKaUUgAuwYYIqNBZoSmhSNCGxiBGMwNQB4D3xMjVVRDf2S0kxaOfOK93ntMJhPENkdTOy0P10SLLs6mXiYDLMm507Yt2raV+yqvgF/A+VwiT6qEOoQgJS97lYevvRqvBTw2aRsEDlLewNWSRSZEtG2r5c6A0MoCV1UN5xwmTSvr0Qagcsn4zkojTRvE2eAielUl5Tk1etwTAbHF0ckIx6cjNC2jDUjHG1Ums0ScnZ2DnEO/7oHAaCat8MgIsGNU3qPyVaIRZkYIEVVVaYk+OfMQgspMhLquk6OENHtdhJWg0WjrVughquw0U3ssDD2OOWLctFlGgvg/vGaOisEcipm327W+EtCnlMERoJntoRBiAoOZtGD+G/trPE+ODi1/a9kMCkcQwEorei3naORpPgVAwL+FM0WfIPtfGbbIOcXeLWUrZvPLSbFQLeFojoxpMIlzJmNJf0OUd3kPRDiAg5bpqGDA8OzkyX22CYpahsN5lZk5AFFowZnkZNnahIkpb089RObq6kwjJDBA5Cy35nWXzwV998k1pHGqT6FnZuHIMQedswyg9p1eb6MqxXU5epSolVZNNrU1R9IylFjtTk5wX5N20/ncASYVdGhPtL5kRxl3/rf+P8a/VYCEgNmZOfR7NQYzQ6yurqJyHlVVYXFxAQeHR3jt9dclMtZKPiPrJ1nmy3NjMP1iiuUOylcgzWueewEIZNnJZL5ShuwGG2R5JnvApuZA59JkzsQzTE6j1J1E7XmCjcnk7Bq230gHl9+jMtojq5P5QqfZM0yG0LWyO5kJZAC1gthM5+1VNZYW5nDtyjquXrmE9dUVzA6HqDyhDQFnowlOzyZ497338cGde9g/ONTSPJpHTnVb67Q46Ke6aH+ZVV/LMhIALdXMqL3H4sI81leX8fSNq7hx7TJWluYw6NXwBIwmLfYOznH77kO8/s572D08wd7BYeL5lNbFpffmQ6LYK9M8JdEcqcyn80ppWeXbFOhCnaVJW9MOFRRyWofOCiCn6hPz/hzPzmzjuaVTLAwrVBQRWsbZeILXji7hrdPLmLR5GAW8BAZWTs7eYsazPmG8oADVaF9yfzPvSdpwJvBEpzbOPDYj15wFzzTZ6XPJzlDbW+n8jCVvy/sjg56K8lcQoAk5L0Bcy6gClnPHABicAb2lLp8A6aT7Ismi3a52e57PdFv7cr+Xfc/rXKx1+cTinoYqbDfzWOdzMDPaJqKqCQsDYLE3xtmo1mcXneP8g5U6S+BEtrnPc5z6AeOBnSVPD8wnhjXTH4t1ses5d4PsxVx+V2TpZtYy3ZIx9/DoCD/56d/g85//HDbW1zAY9NGra1TO4cVPP4+1tRV87wc/wsHBIQCgbvu4fv86Lt+7hIOFA7z39C0czR+ls81o28binFc6M3BbF+KczuvEJyRDp1fZJtl32LKu571h9i0O0SqJp+yzknXT5EV9fiH92H6Lyied6rpgTrYyAql+V2ZQktJ4+WwhDfaIGtAgASK2RwgChkogLDgp36z7h63MG2xx9cwwnUvlFkeSXV5kNRls20YchwliNFtgpnHbDm0b0EKCBwQwle10AOeMvRooA9J3Q+wM4Fzs0w5TAxxbBsZsvzNSz8KTUYInoK96TghT/Aum71rAg86+EXwKWjQ9WGkplaW2fZWDIo2HdI76cqNYf4vsaOW8JXuk0aWV27TzJe3DqcZdsBDKn4uycOUZlGWFHJCmTL7LaoxlUZZdjXdIdnwCO7XTQLPlu4LBKe/JrC/rK8XRIq8vyryll1O3M1ysc5dbKR8noXeg5NV2CeUsfI/O4kX7hDTzCwDAysoKZmZmsLi4iGeeeQaA0OH169dx//59/OEf/uFHmmXnov1fb+ZT6/f7WF9fx7PPPotnnnkG6+vr6PV6nWtjjPjhD3+IN954A/fv3/+FrWG/38fGxgauX7+O559/HleuXEGv13tEB7x//z5+/OMfY2dnB3fv3n1s4P+vQiNErNAevlZ/D5+pf4YhzhP/C+zwX5v/CX81+RYm6H+8Hb1oH3k7xxDvh6fwefc3nc/n6ATLbg+HYenj6dgvqDEz7t27h9///d/Hv/yX/xIbGxvpu36/jy996Ut48skn8e/+3b/DgwcPQCDMnM/ga9//Gr70oy/hzhN38Cf/y5/g3rV7YPcYueqiXbSLdtE+wvahQUpeS8yIgUuUMyJxPIpTR7PpwAwQ4pwRnUkdwVRkwbCsL8y5Br0aPqRJeSR2pollBY2TA0h0sqBKb4wRiJbZwkqV5RbVIGcAnq4jAUhGaKLk/KIiur6uKlS1OEMrjd4HxFHftAHjybH8rKXALEOROBMoRWklAyFzAh7FyFraxQzhdl02EaTsVHDZQJNsazIZCfhQgrMKRZZZ7AUpyo3MKFQAO5KxIBsr07N0Hc1Yaqm0bS2jKsnTjo1pg7P80FW8hTrMUMdqiOlGqE8bsHOkmGQqkpGIC7BCRO0Jwx5hbWkOl5bnsL4yj/m5Ibz3OJ80eLB9gK2dY+wenuHgdIxRG1PGiUgsdAiA4cHqqLQ5IhYHpWRT0qwe2R4A7wiOWl0XyQ5SuYheTbi0soBnnljHM9eXcHl1FjP9GjFW2D44xTu3t/D27S3c3z7F2UgBeMSILoMs5EUO0Tkg5tC5MlJMWlmGr2vgAZAiJ7vOXbkvGx81q0UnywZlR3CxLtko41G5Cp4k2nlm2MP1q5dweX0Vc/OzODtvcHQ2wYPNXWxubePkrElOfjGYRkQEAdUU/iUzWKYoVs6lbxKkhKBGzZyFiWNIxkRzckUzIJPQC0Whv+yUJC1zkfeBAQSMpjOIh9KkmpMjGUUpz6uB9MxBzxxySQYWYyghwBNArhLgp9J+aYiw9PpplUkBjmqUY3CaF1tj62a2tWZrWgkEsO/MKMdq2Bc+lTOIlftSaF4NiYyU7URZLs7OxwiRMdPvY3Q+Qh8VlhdmMBxUmBy3sm7FQptzQGhJ+GVkS9mv39rlyibZjKpKgx2gkp4zxtsjMxCB4MxIZ+uhe5qsBzpPGlUPK4XJ3KEVcoTkbdI5aEPE3uEpmjbi8sYKlmaG6DmJmLxOG3Dksbd7KBGr6oB05FK6fgF3Ch3GaGsq+0OAJBFVv4deXQEcEQLQxoA2BPhKsqT1BzWapoEDabarqGsIVN7ADhIFzYhS7kCz2CTjNUe0rZy5VSXOcwEhORh0KmWCYDW6QiKsq6rGpBGHi/cOoQkIbQt2Dr2qQl1VaNoJnPfo9XqYTFo0TaMlrpS3hojR+SiRLxFQ+Qr9Xh8NTRDaAGYpyxY5CiiEGTEYKBcqi0RwJMCT9lkctAaSZgLIOZw2LUZNhCOHKtf2QggBIQDeC2CSmdC04sSeTBr06j6I9J0k/fDs0hk/mUzSuEASle4T6DjLWNFkHdurmh3LQSLUURPatgGBcd60CCGgDQyGRYJLdHlkRkUVnCeh9ewDEx4KKZ9X9cRxWUUDJ8mRwsEM1k7K3EEzuGkGI3FCCHzXE2PQq9FEfTbbvuUE3AVIknQon0t78zHW70SXMZ/zKYOF2eEZCchk2W7SAIzNRT0umc3/nmQeK2Ure8oyeHIaX5llUErqell7EuB1iFJqlbWfjjI/9M4jEhJ42J5tpZJ0oTPPp3ye2njLccszssPGZJTpqEbx4ctcl0D1T1oz2TkDawxwT4kfd0oTAcVYs6slnVFJHihlny5ASZ6RZVe5RAFKep+UTynWwM4EcyB1n57O+vRZR6coswgYMFx42tWrV3F5YwP9wQBEhOFggLquUl84MsajEc5HYzAIvV4Pp2dnSYYw51j2lRWgZKUjAzHZlKX9ozOXsybp3kxzW8qQBUDX+lY4ytJVpUyPrI/kecmz1v29eDbyeoq4pMAcorRH7IxO10/JLR3/pq25ueXSmtvnXUnZnsoqLxhdGbPp1xUuXVrD5UtrWF1exMLsECvLC+j3KpBzaNuIk7NznJyOcXB0it2DIzzc2cH9e/f1TChHqbKEldjWsch82zhzn+3cIyl2JLIRHOZmBrhx/SpuPHEVVzbWsLIwwNxMjdqLvnJ6PsHe0Sk2tw9wb3MXb771Ds5Oz6S8ro0tiV0SgNNREJDfn35Oe3b6e0prl9fB1jIHjAAGFDH5oku3Hb6m/zuVAx0IjiKe7d/FS0sHWJqt0Ov10LYR4zZi/2SCt46W8c5oI5X4LPkFkn5j3TGgHKXfs+xolJyBG0hzX1JZsTcKXkBGRjoZRlZ5fjIQKG+ItHuQZzm/qxMMkfSScl9y4gv5hRJIkjLQ6phcPhAfWeUyiMG6l3kmJzH48Y0f/ykXc8KZB5cAxp/7DPtV1+awnUXTnmDQEyB40zSovMP14SEejOa6N3G3o10gooUhGM+Sd+S+AVY+0ebaVKkSHJrYHU29Ttf5kZOruKZLTSUvleuszNrZ2RneeeddeF9heWkBs8M+6qqCI8L6pVV8/etfxfde+QH29vZT1lXPHssHK/jsz+Zw9+pd3L98H+PexER17b9LmYWYSGxb2g85D1We03LLAKTkrLM9E1MQSM6aXQSLWFlC22PQUnEsc06+KnSngmuzZbGkBJ7zldd7tXSZZgiz6ywAgMHwlYBj2hBSwIW9QEpFxzTHjjQjp8rlxBExImWLRrIZFutD1NkXJlPLGmewTGRg3KoeQgYypdSPMqNhZABRMotLVnlK8oCtkfU3quwYQ1T9OI9FAh7ziW5yQyzSLJETPclKmAtgkjGeBGXl+Zy1/2UMSKX5bH4Sr1X92vlC/1ZdIcb8tAS61LM9fZPOHkbl5TwSMV25btEvAxU/IvdR5snpI8oA0rTfuNi7+fTPfL5UwjiD30p+3dnq9tkUY8yyk8mBeqa5onIAbH7SETkl+0P07cJGks+SLMkk2QUlf+bElAqp2cQ+XZ9ibRIv1o7o79Pjumgff/Pe44tf/CJeeumlVIJrYWEB/b4AKox/HB8fI8aI5eVlbGxs4Pbt2x9nt/+Hb8PhEJ/+9KfxwgsvYGVlBb1eD4uLiwC6/CPGiOPjY2xvb+Ptt9/Gj370o18YGGhlZQVf+cpX8MILL2B5ebnDq8p2enqKu3fv4o/+6I+wt7f3C+nLL6s5BPxa/Zf4Wu+VDjgJAEbcxyvN1/EXk3+gweAX7e9fIzyIV/E5/ptH9JlP+zfxfnjm4+nWL7jt7e3hz/7sz/Cd73wHc3Nz6XMiwurqKv7Fv/gX+P3f/33cv38/fVeFCk+9/xT+9f/jX+OVr72CH33pRzieP37EVnDRLtpFu2gfVfvQIKW6J5cSUS6/lJQtKSlSKjLJgAEgaV+OIeAhygobSmMbg+CT0gZYBicFCGjkUIgR4mxlVaPsezGmiJOhSCdctoKhWkkfGZcogTaWuqrEyajOK+8FZMJghBAwnrSInMFIZlxNxmWZjeRoITi4CiDIM5JDhqEZOASU5EhKiFhUf+p2sprl9PDZMJyNsQRxCoagmSyIoPVwkqm1dJyYATWyRkmZUXNakU3OgGwgjQqOsb6puxoEn4yJpklbtFoyAKsyzciZEDSYM5mFgUcdbUmvdsgRPiwOwqhghdo7zFSEtYUhrq4vYW15FnPDHirHOB1P8HDnCA8PzrC1e4K9g2OcTQLM1OLUMBDJIUQvRgQEkGNEbpXGIYadEHUeALP0C+mJ49Q7QlRrbr8iLM/WuLExj2evr+Pa5SUszc+i9oSz0Rhvvb+Nt29v4737O9g7HGHSEtogFk8CQN7BaTkbQMvbOEakVqOU8zwxO91P2diast1ADUylc4eoqG9v1+XU6s6c5zEb+hJ4TMwr0ic1UJHOoeOImV6FKxur2NhYxcL8LPq9GuejMfb2z3D34RZ29o7QTMYgJngnpBoRlH4kMxgRAAXHRDbaQKIbSyluQB6zfznlVeX+SWAgM+Ro+TKbQWaHENtk1MtRnNDMFRncB2TjdeQIipSMWK1mLjFDtmVT6YKBsoMhhABuo5QuM2c0ZK977b9lZjKjfqlAJmMd8pom45IZ/krDoz0jOV5QfC59DTEmp4b6j2z3dQxo0w71bLTnZBicTBqMRiPZh5Vk5alrj4W5WRyfjBGi8mKKiKEbGcZWztH4vPL2FOGt4Itk0DU6L2hegEQu9cc4WVDgk/c+8ccEbGMDH2WHTQArcAygSGArxaTAJjNKWw78CMbR6RmauxOMlxcxPzsEHKHXq7GxvgzHwPbeISIiIvfA3qNVWm/bKAb2BDjVrHoRCG1QfhnBLgOFmFkM8GqkJhe7fjkieCfZjXq9HpgjJuM2AWrFWEq5TJsSTmhbBaqwZv2pErjYwEQEJ+9uCJWvjaDEkE0kfYaAl2rNKARIZprAEePxRDP+SGSxNSlhkPeWdw4hNvBthPMiDzRNI7zCEXxV5b1BBn4AYnT67BYth7TnSY3obRvhicBRy9wRQM4LQJRj4gl1XaOuKkyaVsrtEcG5KhnsmS07W5dXSmYl2VetZtnx3sORALgST3XSJ48aTCyZqABM2hYIEd5XWoqDMQrA2UQdB5UHTUIqGwdHEEyTF6dVYHgth2vAYucIIAH5OBIAnABgYuq/OZWMv4dgYMGoshFhdlBj2Ktxct5iEnLWSyLAeSrGZuAjQLIyKUBMacRrabssS2VeVxrskwhhpT2LZ5iRnwqAma3DtDxRlrrrOhNk5PZ5AvPGiKD7iVwljo5IUlqu3GeQPdIGUt6k55R4VmSOiwxMMsZCxmLJoGU8zp6pb07zA3QjnBmcZMdPslPBpwCG7ArvOt+77bGAd8png8lJ3cYAMvjM/jddwx5TnhmlYy7JqXaqFo6wnze3JY2a/ErUzS7rtAxtCAFN04BjxOHBIXZ2d9N4OEYcHh2mjH1SwtLOdHl2Bj7p+0yULvZLluP1Wts8nflM7qgpWpL3yPxYhtsSvMDp3s4cIDvkHnGYmdxks8rFmPRZ2RGYP6Ribcp1etw48lpMrw7SGHK/pkascobpPSbHzw76+MyLL+DpJ5/A7LCHXi0lTpsQcHw6xvH5GPsHJ9h8uIX7m1s4PDqSLIHBzl+RZy2rqOljRa/S/Bvfg3VT5RCjKYJk0FxfWcTXvvx5XL+yhoXZIQb9Gs4RmrbFzoFkhL27uYObt25jd+8Ao9EkZ9UApWAUZwwKDFDEVP07QJ26ND25PLXyae+ILmWyQwb8dEF9tsfKtaWSJEreAIJjRq8iPDHf4KtLJxj2+6icQ9MGHJ1HvHc8i3dOnsJR24fJrFTMMiuDtrfL9s5nXHcVdG4KsH0Sqada4iPl9OhYCBl/YTSfsew5K273ubqvyn2ReJXwvGQOKPTyzrnInMppJvkfJagiy1OJ7qcG11liggBBlRA6AKai/+XuLucm8d70bnTueIQlJQaQ6V5oRcZ7GOcxmdwFz/QyX2TGcj+gdoxJoHLG5XxQZAVP0W0XmGYwTur0TcZAnXm3fdFducTE5G5izd5LnfEXI1dZwoKHMsDM6M3OHgZhZ3sHPzj5AW7ceALPPv0UZgb9dLYsLS7g61/9Ml75/g+xu7cvdzrJhOKjwzN3n8H1B09gc20T26vbOFo4QvQaDBijZnZTuqMp2xoAZ/+kSbBxEoiCgpiclgmzs6HUg/OKm94laxI78q+tven1oQ1aQq4LSEllvTUIwOx5xsqilnGHnl9JD4lBdDfVZ4ikJLjjCMuQ2YSQdDvnNCjQ9EYq1w9JPhTKz0QcQ4Lmw8Dp5En5epYzHAkwjFkyiEslZ1fQpV7HBS8z/dsCkYqASAlYsnGjs9cqVxX2DAF4WdAkQeZhrKoXOZdKT6MYGTkHB9bs0joXCTxDQnP2G9kZUPCAqTF09pAeRd479GqPEBlN6AYvybiFd2p4mdJb9zy195dBeomvUHH2T4sAqbPdjk3zR7tu+kzIMkVp66HOfWyBHnoIW0DW9BlitzEsi5XaqyivSDpdk7xaPoEfeabJNnZxpmP83FbqSRftk9OYGfv7+9jf30fTNACAO3fu4N13303XxBhx584dhGB2pYtyPR9Hq9QuNTs7i29/+9t48cUXH7FHRLVlnZ6e4oMPPsDrr7+OO3fuoGmaXxg4yTmHK1eu4Hd+53c6ZeXKPrVti62tLfzwhz/E+++/j6Ojo04g/K9iI0Q85W/hf+r9FWqSPRGZMEYfb7Yv4pXm69iKl8Bwf8uTLtqvcrsXrmE68IQIWHW78GgRPryb/Feqvfnmm3j48CG+8Y1v4Ctf+Uon8Hx5eRm/93u/9whQiSCZlf7BX/wDfO37X8Orn3kVb7z4Bu5eu3tRBu6iXbSL9pG3D819zeg9HS0y/Zk5s8y4Ac2M5JwDtxGMAGaL6O0+g81IwAwpoBMhQAU1eqSo+mz4NL1MnJA5MsoMBtOOD2JKRiMxqkj0FTkH7ysVJCVTkjnz2hAQJy3GPBYHcQJr5HGWoAVLZQ1zFJCDlVoBJLOMzYk4bbOxxIzY8hzLbFCWiEIy/iRDGDgZNE3RtLJ8af3sfwctCSfOLGjGA4kCU6MWK6ApGcpYDZOatlmV6ZSRKhkTKYHEuLCOJGALZ3GP9P6gY+mAPqwESiEsmzHWk0uAD0BSd3swKucxO9PHwlwfl1cWsLG2gLmZPrwDJpMG2/vH2Ds4x8O9Y+weneK0adG0MsZoHWKXjBes2UCyodTKHKphWSyLnQhvAIK3dwRHjIoYg34Pa0uzePrqEp6/sYaN1VkMBzXaELB/dIoP7h/g7fe3cHvrACfnLZoIMDSiXrJ7y5o4AgfJyuSdUHcMnAyK2QBk+zTTfemUlu6JYRBq5DJTBYHEQCZoHWgCNAS79DFORHNwRM0KAjUoVbXD0uIsnrl+BRtry6gqj8AOuwfnuP9wG/c3d3E2HiFGJy9U4xDr/FI0ureozgyQkvfHZHGRreYS30nXFNZzc1BHmF1Ns70xEGMLhpT0i1EzZIB0/EJnOXuIGYNYSyTo7wpuZM7GPzgv74sspdw4SpaUmCx2mimKC4OiGuO9B7lKy3qRjkHGGWNQ47dl/NExKlqnNJ6SqVgsTobkFGErRWjARTN15f3qzHDJBlIogXACsOhkZNN5SWVTCgNd00ScnZ1iPNtD2wYsLy+BmLG8sICHWweSBYciyMvcRNicsDrHzPjMOZV8x/pWmPxte3LxOxUAJTL3GRIvFQM2AHMSswAEjOdKRHERjUkEeKdnEiuY0YzyMVn9rJ/Hp+eYjBssLy5gdm6IECaoHGF1eR4gxvb+IUYjThmyonNwLsKzE0AHC5AtcgBzRNsELTvjMOEG8GI8rqoKTA5t0wAtI7BkePPeIzoBz9i8NW2r2YFYQDPEqByhch7jZowIqPFcaIV0fzSTBr1enaJnYxRwj505BjIJISTQEbGcmz2l5zYEtG2r5Q2Ev7atZImo6hqhDboXJZNhZJfoOjQhZSizLEPMDm2Q+z3L0ojsoaAAbgXoBDNwl0Z84XUxSoYcZgG6gjVjDmlcOgsOIEYBOlnmnDaE7MTQPkTmDITyck545xEtO5HOE5jzeVnsPQMJmdMhZXch0udycjJLVrCA2nnJoBUYrclHpGsfWpV1HJqG01429mGza/JLCFHXReSQSWxhQA/v9WBQQLkTFCWapgUTJwCKlTKqK4+5WsrpjSaMk0lEkAeLTKFnl3BapIwiQN7nZsvrOIjszAhTgElmgDNoqeRZGTTqCsN7diqUmRsL5iJZ8ZjhvPmFHErAt/cVGCqnEjQjnjmYWMBv1jUdQAacGpCuAFkyFC9gZSWdym5aYhakNBfz9UnezHT0yW1dp8/0Ok0bSrvnk53vXaCHDbkEt+Zm2VitbIstBNIz03vInifXZSnwkRGkD815Zk6x/mAA5zyaZgJAM+SxgUAjdrZ3sL21neTsBNbojD+PTXQDk6mp0xvpLidaLp2SpaPLMuBaYRgZb/ke5DmeHmux78rryn2XfXPWB924nbNaXYqFk82iE/IaZHnTKiLl2x+zaKmP0sNOX7Qb6XelmzQCtkx6sjlNKx0OBnjyiSfwxPUrmJ8ZYGF+FnOzAxDJmXB2PsHx6Qjv3LyFnb0DbO/vo2kCxpOJvUhfXGarUR4LIKd1y7yvBHVN99uB0e/1MDMc4PrVK3jiyhqef+Y6FueHqCrJxHs+brC9d4Q3376FB1t72NzexWg8QQgZcEDaFwEktOXEKc+msqum/SQDLtlZlDdbcpXKGEoND2lc9u50qy09ZXnV+mb8yyiOANQ+YmXQ4KXlYzw9d4yeqxFBuH8+h/eOZvDB8RDHbdWhZ3uP8Ud1Bet35uhFSkTBpuMobablIHTpKY8s8XsjUKHXXJIpAxiKeUYBRtWOZqnA6KZcBN0bquswAIq2ohmsmt7BeaJLgKtlUkpnhH5joCljfXZLyiIDpVrOvbQ3dsAnVICegIKUC6APaGr85dPKn40PsAJ7u888CXPYmwywGAKYW1RVhV5dY7U3wkwFKfMHTvd19pm+m8qpRrZ32Hu7HL+rnwEF3XB5ZUHr+c4pFmu08+heKKelBIMyjLYY52fneOvtd3ByfIIXnnsOCwtzSioRC4vz+NpXv4TX33wLt+/cRQwB0QGOnQQCRYcnN5/EEw+fwMHiAe5cvY295T0J/NAWoHY4Pc+8k6CSNgQ4ppQRiZzp2wYMZykNHDkFEIqYJ/JTiDFlV3fF2Wm2iekgE1J9wgKPmAWsW84f2IKUckZ2A20xs4LvRXZCCDAgjz3PzgDmmEov2z8p6AMMZ8EoDD3TTCegRGMpM5SxfbasjCpX2/jyiqZOpNJtREXJOQOzC2C9jSK7GM+0crilzYP09+ks8h066hwzlDIwib5sdBnhuABVl7qS0ieTZAsXHte1D5dMsZRlDPQZO0eIdEjsLfI+k3WFT5t8YM8Dak+oSHTySauZqW3PFONL/LIzC8D09rYgh66cYrRR3jg9pYU9gR4FMuklafxlIISNubynMyd2POg/ZTekz5zOO+Orj232ALORcD7foPTNnG3lnOxIus/TMfVznn/RfqFtYWEBRITDw8NHvosx4ubNm7h58+bH0LOL9mHa/Pw8vvSlL+Ezn/kMnHPo9XqYnZ3t6E6TyQQ/+MEPsL29jdu3b2MymeD09PQX1qeZmRnMzc3hhRdewMbGBp5//vlOSTdmxtnZGV599VXs7Ozg5s2bOD09xSTpN7+qjVGjwZrbwZfrH+Kl6jXU1IIZeD88jdfal/BueB5HvIALcNL/GO1h3MD9eBXX/b3O59f8PQzpHCc8/zH17Bff9vf38Ud/9EfY3d3Fr/3ar3X40tLSEn7v934Pf/mXf4mf/vSnHVCiY4fZs1l87Xtfw1d+8BV88OQH+Ouv/zXee+a9C7DSRbtoF+0ja/9dEFFTbgorSmmrfCyy2oA3FskktrOgijk6hgmJXLLIZ3UqQKPw2ZTdbCRl5NJpWtgJyVivwAeCOO8t0spr1FVdV6grASeRZtyIUR2rscU4Sn+ifs5aziOZBrlwnhf1xGU8ahixaDRmdXgTcoS7GH86xlo1lplKH2OA08wHYujKBmDSf7uZZfR+UmNxx36aDZ+kDmXLnCRB+w5WP8kMOaRlsGytzZBiPniisgQTgyDZGLIxMyvGNjcGHmGwOMzVWmBGAulnlKwYRmfJSKu0EzVzBCJmBhXWVxaxvjKH9eUh5oYDOCI0LWPn4AwPdw+ws3+Cg6MznI9bhKjGrUiGn4MnDwIhIAoYCCxAMjKjPhA1gboZtczSI7aE7BTx3qEiwsJMjeuXV/DM9TVc31jE8lwPtYsYtYwP7p/inTtbeOfOA2ztn+KsIcRA8KjgOEpWFQgwiYiBGCRizInzP6r9QtbJZbohyk6Cwgg/bfyL4FT+y1l0KWVjlxldZZtlYwnQze4lNK52O5YsHZVzmJvt48rVNVy7uo7Z4QCOgeOzMfYOz3D7zib2j48k2pIjHImTNSh40NKRE1lmo2A5qjQ7SY6mFKO4ZLYgLQGXUoDT9LhJDKi6oEaWksHG9oeWjtQBW1p5n+Y7gjT3SgwBIFaDmkS3eSJUMghovTYEBlpEcACIPIhDYTMSvtO2AazgLlbDGzGBIoMooqoqeWeMUroIFkEYEylGzfzigFQKMgHTCsUTbHs4IiSjHyXjZ+JHtoNTBhnpdOIlUHCGcZ1kULT92uVKkSMOT06xsrqImdkhxuMRmqbBcNjDcNDD+fgs06L+NZAclNeYwTSBqMpMc2a0Jkr7lhPISPiMzLeVL7B5MmNkBNgV+yUbEoGyZJV8kcEMck1MThRL66+Z/5il1BYDZ+MWk919zJydYdCvUUlRNczODAAiHB6f4uxshEkgkIJaPHLGQB8IMXoBu4WgkcIMcpK5zoqvERGqqqe4OU7nH7NE6lbeAyzZvkKr2QBBqKseapIIZO88YtMCJKDIko6cc7IXGSkLkJ1rMYQE4g0xIkQtkRgiPDm0UTNA6RkfKKCqa4ChGYMcYmwKmo1wrhaQo2VuQkSjmflkL4W0PwQQJPuYWKLIoyOkIxoMVzm4yGnccIBjgMkhUAQQUXkH5zzGk0b2vXgZwJA5ZDajMCsfFJQTQx0pWlKQOYJii15VwbtKQZhp0yT6Dep09N4lB4PITrKuMkcNgmbgcBAgrSPAxxYcJeucZaFzKhuENmASYtqLljExl6EEEIM6nlgzV5pTIMLAufa7LFxErxaaC1oeddKwlB4lSpn6LHp8UHsszRH6zuN4FDEJI7QRiN5lx00qfSaZ0gSkrO9NwDp1yoTM2y0ziLECVro0508qpQaLRFZeblmMigjhyGaIJ1CqJVl6MlT2jMoJC36aQV8Z0CRMjJP8kkDzem4z5XX2WmpEeLnsBecJg0o4fQsp5wgqAP7J4WX/WMQz0tx9cpsKdJ1WSKvloJAvzYEHJaiFO7+nN7Ds5fy+8vr80K6j3bpWRMjrz5JVVfbG7OwsBsMBHAhVVWFjY0NLbMq1M7OzAAjHx0fY2dnF5oNNtG2T9IESiFQ61IpeFVOUAUh2Ze6myTKF7GfjmGoJCFWMP4Oy9PdpmuEMbMmfTb2Ey35AQeBTHSDTWuzX4l3pjH9M8En62pzL5pw2ocT6oHuhyEKZO5r1B+Lp9WfN7FdjcXEes8MBnrh+DeurS1hZmkVPo59DZJyNGpycjXB8co5b79/G/QebODw+UZHAoF9ZbzEAC5tOZg5KKvpU9KRD7soL6qrG8tIirl3ZwBPXLuPKpRUszg8x7Hk4YoQIHB412D06xd3NLXz/hz/BwdEpYszAU+1Bko1gWbGUB+WMPUUmkGJNTBew9e6sLGfH9zTNFbOfwGbTzW6x99g/BMkguuiOsTE4wpML57iywBjUQuOTSYujEfDd3TXsjSuVkWKiKwvSyAJk1pmsbwnMZrRWHB3UoT5K9GtBC0AJ9isHzknOAFsJJip4VUx6WQlUKh3wSc4Ci70iTaxIeE3bqAyR+YHtLmYBg6OktXQtp70KmO2gHIE8x3gva4coPZtT3zpzrN/p3VPzkV89PWbrO9tFxRzk+UIaV8khAxweTFZwbbKFwbAH5xxGo3N457E+OMPhaFZZxFQWH+qePAZQLGmYy7lNU0xpL2cK0s9UN7BdnztOOm7KH5Wjzo8AOGcczTNjs2Mzy3ldA+P2nbs4PjnF5z77GczMDFVPZczMDPH5z30W62treO31N3B2fi7PtjVyDM8Oa0erWDlawubGJt6//gHOBuYUjYB3ab3MriByvunoMjaxJSDpnCb7RxYguPeuI4NxUJ3ZFiP9R8iyl62F6J9WRs32k9nfnJ4FJgMWhAIJ5hFbQuAii7fanCyQgiABerGgLzFBZP5MJOO0x1MIqc+dUzvJY6SBkPKz2DlEdw0RqbwZEXLgEHPxLCQ6YMsWHzPVGQ/xCvA3Uuo0tnPHzkhZMyIZn3NiYwhlxnkrE0xm06Nk9SIQWLPshZTltgwEMH2h2Lyw/a7ZBLngP5ZJUPUo56AZfi07r+jMbHJFsXMcEfqVR79ihOjA3OoaUxqjyeYsxx1Q8FVw2vEo7ZFpvxXyTZp17YsKHygkj9wzoz3kLx4Jpip5X7F2HdBasf7FciIB42wMtp6J/LNMlctXI9uHmOFVF2aIHsoozt60Byj1y/ah9fKifTStrutkv1pbW0ulvnq9Hl588cVUVhMANjY2QER48OAB3n77bfz0pz/9ewAW+fvZ6rrGYDDA9evXEwhofX09Ac3KxswYj8f40Y9+hNdee62TseQX0fr9Pm7cuIFPf/rTePLJJ7G4uNgJgi37tbu7i9///d/Hw4cPf6F9+mU1h4Cr7j6erd7Fc/5dXHab8AjpSBhhgP80/ifY5ksfb0d/gc17r76E3CaTSUc+/h+xNajxevvSIyClHiZ4wt3GG+Hlj6lnv5wWQsD3vvc9bG9v45//83+eyr8RSUal3/qt38Jzzz2H//yf/zOOj4879xIIPno8c+sZPPnBk/jp536Kv/rWX2FvZe8RNfCiXbSLdtH+e9t/VyYlIP8tDTnmaLIWY6lMCarSDBesGXtyhCHBnPXMEhVnwntQpZdbBSQQJBJQOmRvQ4r0VEc0EanjUIBA3jv4SgwmKbJVnb/tZKIKnCmURXSKWi7FSBARiVMa5a5j3wx3VjwG4jjWuXFJMYT2TTLdECg5yrkoD5M8VQAE0KWGGUtbTkCqMc6cSutJSTU1grJmbyICKCCEmGvas47NxksGRuBCwTaFXAEPwQyzZjgRY092NGQDjfVLv5DHOcsyY1p5RzWXdVNbDcMBrI5TUoe9zlvPE2b6HqtL81hfnsPK0gzmZvroVR6jcYv9oxF2D0+xs3+Kw5MRzsYtmkhSwoirwsTISVkXm4bQpTmzEQuHokUMKp1IpR0xtjktreYdYdhzWFuZw5NX1/Dk5RWsLQ0w05P02kenE9x9uId3P3iI+1vH2D0e4zyocUzfE5NRRIEhmvlD5iYb8ZIVz8m8QcEYGbSRs3AQs0Q/FtGFZBYJZnAMhdEISIabhDc051cGYiWnr65bJIZnQr+usLG2hKefuoLlpVl18gccHp/j9p1N7OweYjxpEGNIoJqogEXSeXRGe5QjCm2/RTVMWjY0MTIyQDkFvUvXu8IYaOZjUkNPNmrKrlLQVpR94dT4F8CgKJkrBITABb+hNMcVyT6+ceMyXvrUDXjn0DTiVG6YcfP2bbx38x7QCrhAQAKyp1otW9m2ATEIKMQ5EgAlBU1EICDHGAOiuQHIeIpkm/FeSxMqLXEs1hlqyDVjVOZSeYsyEh9JRsFkOLe5Mh5mIKgg86V0l8qrFedBzu7BODkPGP3/2fvzZ8uS4zwQ/DzinHvv2zNf7mtV1goUCKCIArGKJIgmaTRRrSEByCiTydps/omen/WXaMbGZDZGcWujJCObQxGgBBAAUVgIoFbUklW5Z759ucuJCO8f3D0izn1ZENQkqgrAO0Dle+8u58Ti4eHh/vnnM48YJmgbxukz6+hmCWsnVrCzP4GBI634olOHZoTpXXNw6hJhc8jZCxJIrgMaREDKsVtWJ6046BwSoHuMlW4rQC3Ko2QAPiKtdoBSAtBkgak4bOV+ClDS8XGQ/aOLCXv7E4QuYWVpAQvDBgNitIMWg+EAu3sH2NzZQ1TgmiOPREn1rejHGCMiSAElULYiRlQwkoFQrTycg9NSXtInCSDI/kReHPguSalL573oMzRIDLTDVvagJMCULga4xgMGnlUGH6fPNLaQmBK6xAq4cwAHeV31qfMS8Bf2o4icRZ5LgLGwG0Lvq3svQfSCb72wHgXRIaR7sWFbvJbEDCkgxQTyHqItUmYgSyyAJ2IHhgPHCKQobIrOI8YIT8ilX2MEQpT1Fs1eEKwiCBHOaSlAJ0x5xLL/G5OdcwTvGLFLZR1qEDDrINVRRAJ4pQR0MYG17K13GmQAA47RNA2G5LE/iZillNnDHAlLEUcgEMM3BggSqZX5TxmsWjugjYHGkYMhYp0vmeuA2EOS4c4gJgEpNYSmIaAG+DAjpID9CWGMgGlndpyuHYIWVJWoBCutIQMgp3aW4wwuj0n0ZWZ2ob5OKFA9aZcxc9qalsCQ9JFZdDdQ2B3EDrSAh+lC7usFtV8MqOicU33AeXwp2xYKNKMKkKU6VRirorbFyoEBIJGV4cBjdaGBQ8LuOCAoeNUCVcUG1iBLKvZvT7+/Ly/bi8x2pt6r81cJ0lXnjLng3nwAvATIqP9dQTKjzKvtg+XeYldoi4iwsryCJ598EgsLCyCSYELTCniYOWE8PswMEl3X4Y033hSdHBM2NzfRha7fB5a9W+aq7lXVnt5QUCXzGZJb9nTTHfadOiJevWSGXS/on8t71eApGz+zI+w8IONWWFaqf7lY9Nk2Qw579fpSnxdzckIvim/fNYO8P/cWN+sFFfPTK7umPAXlo3pSc4TzZ8/isWuP4OTaCk6sLmNh1GLQenjnEGLCZBpwOO2wsbWLO/ceYGt7Bw82tjCZTJRFkvKjcnAUMs55XtReLWNRAK45U8LMeh1n5wgXL5zDLz3zNM6ePokTK4tYGjVovOyx0y5id3+MO/e38GBzDzdu3cWte/ewf3CQR6CsDOjZzp5ejY+d84pxn8eLqt/F3M0nhJ7pmEeAgQIQR/4763Nrz5z8avd7a5+IcK29gQ+u3MXpkwsYDQcg8ggpYTrtsL17iFf2T2Nj6mEJULBzrO47+XIVyAYGMULez4hsfsxm1HEiA5eydqgPSiIUFhJ7NeV75GHLf9t8mG1+dKnKcx0I5IBHrl7Gcx/7CJaXF5EiC4MjJ3zlv/133Lx5V/c7A99z9rHI3sRiF2lnvdGp5qniPB5lTmwFqa1Vl9DM672s77qfBswofgOoOiLUky/nA5t7HV+Ss5klUeTxrZVG1j1lT95Oyxh399G0QOAphsMWC4MhLk/28cb+MlJA/352K6p7gnxmgsmInYc1ic7aWt+kgvNV36vm3OyR/KHq0/Y8MrkvcmYqhKiCe1l7K3Yce39zawv/8P0f4EMf+hCWlxYFDE8SkLp69QpGCwv49ne+i4PDw1z+DzrPTOIbuHT3Ek7snsDrl9/AvbN31ZZIVrG6OsNV9mO1H5X5rvYoV63p/F3OTF7CLKq2jNr6rCxJpParAyHp/swsayuD81j9Yaj8ApDPxZSyv61ntAJHypeTI1BU4H7ehtR+NPnV2Tb7LWXUS39KCaZ/UErnWZlkcnp/8RVZO6KCkFJm8GW18UoSAZExD5VzAycGvLQ7hjSna6hXMhN5rWryAlJWgiarptvhCK1rEGNCF7PGAkiy583PB1JMk8q+cwWIWfsd+mNE1TZP+XOUWW3Lbs/MCJlVSb5U5I/RpQjuLJGs9K88v9KrWQdwbz1am7nfcDWlpE1mb8O6RNXPqq/5FvXeyHnoq+3oKBCxZ7/kfnKR0WoTIehckcvj2RtfAMY6bucJ002OgEHr0DigCwmzCBQ/8vyc6TzbGUp7d3z9468LFy7gd37ndzIwaTQaYTAYABDfzubmZj5bTiYTfO1rX5P1EAJee+2143Jt78OLiPDMM8/g05/+NNbW1nqMJHaZntna2sKbb76J27dv47XXXsPOzs5PtXQaEeFDH/oQPv/5z2N1dbUHgKvbdXh4iN3dXbz88st44YUXcP/+/Z9am97di/GZ9qv41cF/w4C6/jsMJDh8u/sY7vOZ96h9P/3rkUcewa/92q/h1KlT+bWUEv7Df/gP2NjYeA9b9n64CLfTRXTc5LJ/AOAp4anmFbwYn8Evwt73xhtv4E//9E/x+7//+z391TQNPvjBD2JxcRF/8id/cgSoZJdPHh/77sdw9e2r+Ntf/Vt8/8PfB7ujduDxdXwdX8fXT3r95CAlczjmQ1Q5/AYDEVSGlmQxyaGq1Jo3hVX/zdXrciCM2RmjwW+v3MkoB+9cnsRJORJnbA7eofUejSeAKdNLR45SxikmDSbEHNQo7ZN72aGMzdEMDaqacwOsZdGUacACQ2TgKGltYU1CddArlx0MjTVKGKc02ARz4CjjSRVMK96FpP4azr4Ey2LOTCZ62C0ZheKdKGXaLTiXeidiC+Jl96k6Z8pWXTlVYA4IdSJQCRbYAbnks7M64zS7LXokjgiuUHE7BSyZc2jUeKwtOJw6uYAzp09ibVmASY0nTGcRu3tTbO5McG9njL3DCcbTDtOZlvBKEsQ2/2nOHlV2EOcEzMI6volLTiRp/zkKswYjCBhBS0cRIgYNsLowxMXzp/D41XWcX1/E8mgI51pMu4A37tzHm28/wFu3dvFgf4z9SUKAOJCRS90gOz4yaCaX+isOSRGqOlhVHCrFicgQNjLOIB0413+fAZCD9+akyalm8n/1oOd5NXegjldKAnjz5JA4wiXCaDjCxYtncObUMtrBAPv7HSJ32Nrexds3b2N7Zx/G1G7gtqSgH0dOq9qVcJ059+wiBnx96CMD+Ul/nNNyXtb+1A+4ZSCi3sJlGddVJoiFLKOVh1gdNZbxJ+NkmX/eNfCNw/kLJ/GFL/4unn7iGgZDArFHFyPub+3i3/9//hCJg8x5Kk4hqTGuOlAek0usyTNcT/c5V9haLDAAstKOc+xJ+pnEAtAw2QJXziyggD65gJ+yplIvGZOtfwOxQB149ivnnyZn9SUy5tB1EePJFH7Bo5sGLI5WcBinOLm2jtv3dnE4nqBpBLKRHXBEJZO80m353kUj5n/tw5yEkcUY/IxlRMrUGWC2f1mwR7ove4fIqoIyuO9IrBqClDgzuqDWLRp8cI6kNBUgZWGIMRyuYdQ2QAQWFgZoBw28b7C7e4DJtEPkBA8BUME1eX6998r6lxBSQDcNABhNS0gpagBAMoa9J3h4HQ/djw2kRISm8XDUAkmy9EXuhBkspiD9IgHoAEDopiDXIIHhfaOBFWHhMbASAEy7DgmExjtQkj0UTCr3JOUGyca86LNczoqEsSmFAJ8UVJQSGu8xbFpM0wyB5e9sH5CxnAGDpsGwbTDrulyGLdpaIpcDigJQFMCXZTja2HrnMWibXPbVgeCbBuQI3XSqQC2gaQhNK879ECT723HEqPGAb5HgkKKwpDktJWelEkGAV7APAYhMaLzHoG1BnER3pASvWd9MwKBp4RuPhkQ2nCe05EAs2chSVq5k03IstkFKSfWkz3q+XsOoAlDMynioMu+cQwTQhQhyqQI2MmIMIOfVttC9BcB0FjELah8kIJHTbP56tZL0zfZgRq5DQ6rjCqin6IF+oIwFTMUFDMRJg83VGk+5P0B0UuKQmfPzkMp+B1fvIRWFZLabOAdpat1X77c5MIeyn8P2WA2URE7gpDatjkiKESkZ46XsaVHLjtTPybaeznWa2zvfj1c/TFPOEr0wSa3na1175O/6c/3yu+Wzxb6ZV/pq7antU+YOmo0uctfh7RtvaekYwqlTp7C1tYnZTEpm7u/vVWuosDv0gB6VjpJFV0KgBkau1978Xlr+LjtePQQGioMFWfU8UY+3yWA9er1d02T2yL3LH8UurMee8u/5XFc/V2U0g6iBXttKssP83Y62k3s/jQ1H25ycWND6msysAblkLk+dPIG1JbFXH7lyBQsLQwxanwO+02nE7v4+DqYB9x9s4K233sbW9g66EHqlOVG32xrnXH5u3Viu/s4sIDmKWvoyaD0unjuLp558HI9cPoe1lSEGvoBmt/cPsbG5h9fevInXr7+N3f0xxtNJDnLn81oeRK7Oqyptptutzb3gbDXaOcBtsCrtRT54oAS3qYCfcr900LPMMrItl2WBih6vyyE1vsF4+TG45QTnxph1CYGBO4cLuLM7xNuHF7GTVhQkVMkdl35kMBhX+lzbnLtuv1H1e/6s9YN03irbua+oslwTFKj0DjGn/ISqLJ2ryhw5OPjG47EnHsG/+N3fwYXzZ+HVl5GYce/BBv7rl5OeyDjLU+6/SiSrfrFEitxbR/mcAR0f4qpd1mdUQA5bywQBRzjTE/Z+/qbOqSkMKt8rt62GrV4nfThisfMpi5vZiDYPe3EFu12DFSLMJh2Wl5bhXIMzwwmWBw6bwezIvibJMqyNqrVQ1RMT8fwtGytrr/XXknjKd6sVw9R73X41MJSV2JLmlH0r60cqQ1ZACTWIBtje2sYLP/whPvjBD2BtdRWjYQvmhIaAc+fO4Fc+/jF8+9vfxf7+YS4/ZnJhfrylyTKeee0ZnNk+gx9d+xHGgzFiirmkdz6CkSbZ5L1yXtOLTeNV64ofUNuqtmJUFtRSYpuRYlBVo+c9Ri5BR3rPGOQ187GR6paoy61f+tz2KRmyxLblkpauUxnTgL/3HrBkAiqDbiA7FrpxPYMXsEzZafUvLuzUtt9Y8kbSfjsvJexjlKQCcpJQwSkWWxvm9yy+CzDDk4HiuS9HVPQfZxk0QZK/vLGnB0kiIS6sp6X8sRMWYCpJLbbO63Vp/sns4xPhUDmxfcOWSl8+hAG6D9axsnY9AI+C90UlFYBc4oRpx5hVr+V1krdj27HyQ8uYqFxYWevSj/oT9kHTn/0zRPEBWHezNaJbJ+VEU9MVvR2Gyn2kPdWZpTc2tpFWT3+Ij4XqIVdfVZb5qleivzOVceXvqObuSF9xfP0TXvfv38df/dVfZT/OBz7wAbz55ps4ODhAjBF3797t7enzZ5/j6/1xNU2Dq1evYnV1FY899hiefvrpDDazK6WEyUQSMG/cuIG///u/x61bt/JrP82rbVs8/fTT+OVf/mVcunQJw+HwyGem0ylefvllfPe738X29vZPHTD1Xl3fDx/G083LuORuggjouMGb8VE8SKfxYngGt9JFHNH9PweX9x4f+chH8PnPfz4z5Nh1+/Zt7O7uvkcte39dd+J5bPFJnKU+MO8Rfx1LdIADXn6Hb/58Xa+//jr+5E/+BP/yX/5LrK2t9XxRjzzyCL74xS/ij//4j98RqAQApzdO43/9T/8rnnr1Kfyfv/V/Ynd19+dxaR1fx9fx9S5cPzFIaR5oZAeb+WDAwwyvfhAbMEdpeV2dEd7lIINkC0MPn+WI55wEN43dQA7XXr4LqMugAJFS4ByQroNbUQPYLreReu2lfEh3xaGoB0GvQdFEkCAtFSYRy8rk7C01x6YdFzkf+pkTEOUnOQIpS4CU2ylk/cK2Y94Gc+qmih7cMvYxF4Bgnbv5OeHKyaGBwZoivj5UW917LoF6ToUmk6x/ytpkGZrMXNhFHCl7iTpl1TlGYFCUACy8gkDUY7owaLGyPMKptWWcX1/BqZURFhcGAAHTLuLB7hgbu2NsbB9ib3+K2SyiSwkRAnKLGqjOjhuTPeKeo5wBYZiqZRpcMdhY3xjUiMPTJcZC2+LMyVVcOr+CRy+fxumVBQwbYXHY3h/jrTu38dbtDdy4t4Xdg4RZcIhKL+qsTVQ5/aDBeYIGj0uQ0z7Hqc6yokJZrq+lZDfVNaRzJQA0KrKtH+NcPrB2vivTEEHZpKCOK6AOKIhcWSE2RhcD7tx5gPv3NuGdrImEDoeTCUIXsruRNcjeD6goaMnmYE6HkPJSm4M9J/4TZXY1WSda/hGFzS0DjpjMkwkD2BnDSSJoyUN1SKIwoJTgcul3Lm/lPQZ+gLXVBfzGr38WTzx6BcvNAI0bYNrNgJjwnW98H9dfuQHqBCSSUsxOxqQ08NCybswChBgORlmvgRzYkZSPi5XzUdeZ07KOR3xrtkArBq7ILE5R7oMQknZaKPLt3ubLMjCmaiNdRzx3kDXwWq0r8hwxA64Bp4Tt7U2sLZ2Fowa7O4c4ONgDc4fFxSEOJhOElGCanMirI02d1IkhqeFO57DvyOFUA/VUjBJrFqux2XhT5UcCLPXYmUza2BI5xJCULr3vJMyZis4hM9JZmSyyNVcxDOj4jscT3EsRayuLWFocYWlxgBATGuexMBpiY2sX4+lUAXROy7b54vAmAfzEmDLzW1LWwRC1/GEKiJHQ6nbUtF51OMraYUZMEY2T0AJIgwFe5iBOhcErOcKoHSDFiOm0Q0gMDFoYOFcEQeSkbTyGbYuYGE3bwFMLAiMkRgSUDUfkKQivP9pWykkIUs+LTozCohNhbSV0IYgoatkBKcUq7Y4xqm5lzHScpSyejg8EIOqpyGfrPSybO6WEEASY1TSNsBlZKS8khBjgmiazITTOIXKE8x6cGDEEpAg0bQMHBwahbRvEBIwPxwARBsNhLotnWdNN43L/BFgngUimBN94YYzSPdQ1DolEf3VIaJxD40mZhxr4BMymnZT8IRL5gPQ9pphp/l1DgHcouDodo8xUREgcSja4gs8oSbkVYoYHAQ5onJTciTEBjQG1RVkzEUKkXNLNKZMWkrFrIgesZSEmOCemqbGVxMgw9staxzgikC/7OTTgkpJltcs+KKU2is6oQUQZGGtKgytHfSJh8cpKwwINpL9bm4utlHVCddUBiKycdP25ysYCSJkqE7rA2NmfwBNhlkQ3W1kSr8BTK2mSn2M6C9n8fF9e8yCj/t+1Duejuvbo3R5+b6p0fLYZ7Kf84pSdbWlpCYO2BRSEFELAeDzOkhFjxM72ttrX3MsyZbY9wGzw+Q15fkLUZtc/nbKp2j5zBKSU7XFU3+/f296XfbfYhLIvcu88ZW3Nbbe2cH1P6v2ojYwSkKsAL/YpXXPlM+i1fx54RiS6rtgrrDYH9eW6ukfdt3o8mAHS/ts+6wjwDeHEyirOnF7HpYsXcPn8GSwtDNE2AtSNKWE8DTiYdtjc2sWbb76NO7fvoksRXZDklpQjfjYoXD+6147atjKb2RlQUs+HOZBJoqNPrKzi6uXzeOTKeVy5dA5LowG8BvUns4DtvT3cunMft+9v4PU3bmBnd1+YRklPLIxy3rQArelxnXgLQrK1sZKDut02bzVzSzmPJBN49C47etQ3AJDZuepRsvOwtqEeL/taTAn394CvHFzGKbcNEOGQh9joFhGiyVV5DOd/TAfKmS3r9MourAmLe10gC72jHPl7bePec8qS4GynWrnf2lK338ocVZ/IZ0BZ903T4oMfeBK//uufxfkzpzGgBo4cgpY5/+E/vIjN+9ugKAkidq61Z4v/gXUUWBlr5DwmJVRJty7VQXUfYGurP4WVaOU9mkmBX7Wqs/OhPr0E/iud2FM09fj09b/0qazrcg/7nTBDg61pi3NhgrZt0c0CQojwYYL14Rhb44HYSzoe2ZcBZHBdSUpCfpa1n7mwxdgXa79OTwTy92vfVvUOlc/3xrG6nc2jNSSfQ3Iba5mu7k6Mra0tfOv55/GBp5/GhfPnMBw08E0D3wDnzp7BJz/5K3j11ddw684dhC6obca5P8zCqnT+wTms7qzirbNv4+1Lb0uJL0IumWV2l5SJMeB6f57KOFjfdHZJzy/BvHSMxjl4AkKQ0tBEBPKuGhPTqUDTOCAUP5tTJi5JFODi2+ACFirqTxrDmjyZNRLpWSTGImMyzDofFdRFmagSF7B63t+MuZrsP5Q91tg/nSUyUrZ5xe+WQPBik2cfi7Q76XdB6g+A/O6dlq/npD7IAqKXcm4Q/w+b8HEeF3LCilSXN5YzHwCWsx5IWF8ZBSiVYlXOTb9npfJMR4g9WwSh1ic9m6SaW9sXFf+oU+Xy+OeNJasOuWcy2wXIADiglNPOIFWVcStzbe9asoJZLz1bsb/1FdnReaPMGmxrsdhBtT6pVL28m8cP9QKuzIlaE/btrfrqvUZ5WPI9eskLebtmzLqIEISr2nIupI8MZKjd/LOO7pXHV7nmAWPr6+sYjUb57/F4jM3Nzfx3CAE3btzIf7/55ps/9TYeX//4i4jQti3OnDmDK1eu4IknnsDVq1fRtu2RzzIzNjc38a1vfQs//OEPM1gpxviQO//TXc45nD17Fk8//TQef/xxXLx48QhzUkoJd+/exf379/HNb34Tt2/f/rkEJpWLsMMn8UeTf4XH/WsAgA1ex414BfEnD4H+zF3ee3z+85/Hpz71qarKRrl+9KMfoeu6h3zzF++aYAH34jmcofu9vW6NdnDR3cKr8an3rnHv8vXGG2/g3//7f49/8S/+BZ544omeP+rq1av4gz/4A/zd3/0dXnnllXeUnza0+NAPP4TLNy7jW899C1//1NcRmjDnLzm+jq/j6/j68ddPvEPHmPIBs/iTJVOszoi04PWPR4n33zOwBUDKilDYM7yXDFfXODTOo21bEIxVhIUpJyXEECQIZScy86VW5Q3kgG30wJb/JJcFnrPDPjv6S33v7FC0ALSzgx16QS97njEtGQgLqNgT9MogiJSkXJP2PWfD2+HcRo6BEqAvWTAWarTDv7EzmdMCZKWbbPISrBRGYsrtIvt+MudMeY4F4a31mf5avB2lLBokqMdazo8jAxz1AG6yoj+bAMeEgW8wcMDJ1SFOnVzC2fU1nDyxjIWBByXGwSTg7QcH2Ng5xO7+BPuHM0w6KZcVU5A7M4Asj1oORJ9aWK3qceM8v0ezl8rh0zvAEaNxHqtLI1w8vYxHzq/h4ulVrCwtwHuHSZjgxsYe3rq9g+u3tnDnwQ7G0wCOBDgDinnAWYmPMq829gyGV3aLXlAGrEFrIMXYD4KgMCcwowQmnHhcojqUXOVtFSaV4rCxsTF2Mcmic8pSZrLkes/MLSOPxAmzOMM0dKDU6DpJwnqBGhAjICyH0r/i4Ex5jfaBkIBLkm1ogRJzEGWa9+zYM8dT/xki7iIf2nUkRj4wyucIDCkrJUwjCv6pqN37wYQG3jksD4f45Ec+hmc/+GG0rkVIjNAl7M86vPTK6/ib//5NHExnSM6B0EgxInMqQdrASYq4DdoGQIPhYCDscFlmKTthrR110LsGEpbXzEOs649YwXglkGqOeG9zWd2fHlL6RUWq58OztggokDKgoe+sB5g7AIT9gwlCICwvDEGOsbQ8Anlg93AB27vb6ELtfeeyGtUBLWs65fZldiP9UikhirLeU8kWp1TAXXU+fb02nBfQK1iCZZ6rsamlv+onFGwgWM/izEwWMNRAg9MsxqjO8q4LyjKWsLKyBNcQRqMGTeswGDTY2TvAwf4EIUREjsqYIPPWNAKoIXVgx6hO68YAYyJrAryJso86B+8ElJOi0f7X8y59aZxHTBGOHNqWFAgEZUsSEI7XIBKBpLyZc0CU7FfvHAa+QUB5Rh4XBkBOWaVE5zFJZppzQNLsZtL5lWzuiNAFmEd2NptqEEyYjOCdlMZLEYmVHcq36GYdopV3UgCQJTqbjRGUASqmoEw9rOshqd2TpPyeAd5iFGBO0yAk4WYKXcRoYYCRW8BkOpX9yBGawRBJ9ygLns5mXY8Rz8FJUNQpwFn33ul0Bin74OCbBhwCpHAgo+GIJZ3ng2mHSAJoTEFKvsogRzh4OMdIcYaZglysjKoU00M197bmCrihrPOyPiJHsCv7rGVgE0smOKWkQE4Cq61UgjFlv4kp5ZKeopccQArY1kAFq30XUoCoay2pp0E+c/iXvX1ON0LuY3uqreHasSxtk/uVwIWyTepaM7uKSAHuRBngZybnw4BJJkfzV61rsw7SPc1KmhARZiylC2N+T0FJnODYHQmK1MHRH2uCv8dXstoqc1cdELH9ex4Qe/TqA5myXoYEptrBAG3T4OTJk9mWXzuxpswbIp8LCwvwvslyc3B4iFd/9CNsbm7YI9ScfnjAqI45Uf+fql3VOaTao0yLzn9nXjZqGe49m/v97+3l+R/dI0WQe3Ji96l29Tyu5dwk+67EukjvV7VF7YnCIMJzk2lnsXLvYklUbddnMViZTOsxr+xCNjBEfw9nlzAajnD29GkMBy0uXzyHleURTp86icXRUMpRMtB1CbuHMxxOOuwfTrB/MMbbN27izt27mM5Ef+v/81z1AA21DZ/tzKwoSl9Qzng2NuQIo+EQZ06fwqn1k7h07hQunD2JteUFDNoGzjmE1GFv3GF7b4o797fwyquv4/pbb0tpV+u3JXqoHi6jVM0lESzwWc9uAdzoCFIJuFeTUaaQoQyo+h2akx0ScExmXCXKpccM+AwzSW3O5+x8+wBDGONiFzGDxw6kREEusWt9zTq01908F3ZbBjIohfWf3H5CljkwFybWqm21hGYQztEBzYDR8gzboiqQ4NzZ3/S8MfGdO30an/jlj+PCmXNwzguoOgGzkHB/YxM/eOEVdCEqCE+KNwEyN9YGaaOAuwGHxnvdu1wZEN20bH7ZXst6yXSL/U55EKzv5Or1W4MGVXbyflz+7mup3vCVudQ+28T2tah1Qfp9t1vH47O30S4MhMHHOyyMBricdvHW/llMu5DXXn5ub0L7Op2q1/M89y7qvWcaqnyt36uiAiv/UP4+99cD7NylsuGcMi3ZeQI9mQYKMAZgTGczvPDCi5hMxnjk6lWMRiRlfj3h9KmTOLH2y3iwsYXvf/8H2NnZgyUkFTADg9hhKSzhqRtP4sz2GVy/fB1bpzfBTudX25CSJfIht50rwHQGwpL51Ag1M7qVpjXd6QxAhzI29cgwC/up1+cRc29t5vJqNiaurKvEKZN71fZgWSukCQPadrNJvc9+CRBArlG/QyUHtb7QvicWX575Ggs4UuYp+1JTEcQUo4IIpQ/GJuqbBlBmVjmaOU0+MzY1QgGqE44w/xDB9u0CeIIwnjLns1FixsBJLtQsBESWyZW1bmgWBjipXSzl7EsXJBkhM9zn5VaDKIvk1uZK9ilS+S+Ds7nIgs1b7l3eu0SWhI3JZKDoFNNpcg9JlpB5MVZS5J9sNQ6r64gvuyhIHL3e4UxQ6Zx6v6stHLK+P+y2uS0oY1CdIeZ9yvXny1uk/Hv21Er3ySZ59Hk2lkzzw/ILdxFpMsNggMceeywH/i9fvozTp0/nz504caLHWrOxsYG//Mu/xGuvvfaut/n4+sdda2trucy3MSWdOnWq+Mqqi5kxHo9xcHCA559/Ht///vdxeHj4U2/j6uoqnnzySVy8eBEXL17EqVOn0DTNQ9u3vb2Nv//7v8c3v/nNnzpg6v127fAJfDs891434127rl27hl/5lV95KEDJgGrHV7lejk/jQ80Peq8RGE82r/xCgZQAYHd3F3/8x3+Mz3/+8/iVX/mVrEuICJcuXcIXvvAF3Lp1C//pP/2nd5QjAuHEzgl8/m8+jyd/9CS+9pmv4ZUnXzkuAXd8HV/H1098/U+DlGqHVgnCkAZQOAcWs+NSv19n3IpjxUpQIW+izkEDruJYa9Rhy3qCs8BUiAHcxRxQ7DtnzYmmJa/yIVEAVdCgX78t0KyscuizTB4JajiLccKC/CVLp3KoVAdSY3IRhhRGLi1VH7gB9dvYuFYnSqJcwz4f2gFpf3XoBhXAhjhNnAIaUnYuEJyy1BQnqznQxIFRvI+cPwcQlXYVZxryId7AMUT1YVeebef44kDWkSN1mXNC6z3awRArC0OcP7WGMyeXsbo8wHAoHBTjSYdbW4fY3B5jc+8QO9MJpiEhBg3MVOABtlJ5ENAVUmEoIPMYVD/N0ZHLLlQySgxhPqGElhjLI49TJ5Zx4exJXDi7hhMrQ4y0rNL+ZIL7D3bxys0N3Ly7i+2DDpMuyBhk0AtA1MJRAigKAAauyIT2QJqrgKAs76VtKRloqArAwkBHLgcrTBZrx0X9twFY5gO1KTEcSEAastQQmbUcXt/5AaijRwMK5jQmRCAJiCSxgCcKsEKC1+IDFIhgcdYai0fKskkkrGnOy3hY2TEoUCsDeNio1IsDOZe8ywAMC1jL7DPYPKxKea7jVDF19E17e5Y5ZBktET7w1KP41D97Fssnl9A0rbBdJMbm1h7+///1v+H2nTuI0UoPRgXayNgmZgE8VKCbpmnzvDsLYujzxBkrpYEKOAvVOJRgLotXt1eSzdZ9ZlbLOpmyTs7fteAHON83s+WgyEIGBJCNepnP3sXS364LmM5mGDYed+9u4My5Uzhz+gwOxzPcvnVXdDuRlCvTspcwhy5JJmku32DyUEccgGpMDMAlr8cYYdm/gMlZ32C2vShGzvtNDrpWclnGyZpiRryUDBUGJ6/lreQNV5VzkNKGMu4hJuzsHSIwY3FhiEHboHEeK0sOy4sj7CwcYGNrB5MZVOdBAwVBgD0kJU5jjAgxICqwLuo8OMjm5cgjdgkpdgr0k/JvpH3uuiBLQvUnQXSKd5zZPjglNENhoSACQtchWHYyOYQQMPTCfNPNOoTIaAeNsBRV4xVDh0HToPGShTbrAkKMGPgWgAQ5fdOgC0FGVll4QFK2wHuHFJO66TXI5wiIGpBlzpn1WQSZ0XoS9qOUlLVL2KZ8nnfJyvaN18AJIyiYJnVRggZJbIgUWceREMEgkmCg8x6OEkYNsDwiHE4COpZSaJyEzchp8BAMdLNO2uwY3onsE3nEEAFyOseE5IRZimMCO2BpsUVDLSIHTBhwkFJvXZrZ8sCwdVhZWMB0MsHmQSclJiD7yGjQoG0bpBBhwGYGMGg9ui4gcILzwnqUS07oGmm0TGRdEoKcR0MKNCJ5L0ZRyN47uMYjxoSkchSTAMyIuGRC50CPZsVrcEvAaIXhUAIMDOdlfJIC6oicZJgnA1Nz1ruyPudsUtYxVYaQ2oZ7KLi7smtyIBcMMCGlozpPvlP2lF6g0lV6hPsAKXscgxBSAV3lAAgol0Op9S1p2VM8TAe/j66+3q3tFOT2HwVylcuAH8jjRb3Pmn3gvcMTjz+Gs2fPom0Haj8BMUUcHBwgBWGavHP3HsaHh7klu7u7mE6nxR6w0N8RnW9trBtXBdLm2m9ghLneqNz396KeLNrAZHu1kqkj3yztKbegfJaozfhiF5QvMldtt/03289A/YXMupafMwfjymcj62YFfLT7mf7ohRVhxqG1Xh+tv+kzSe9JEGDqmTPn8MwHnsKpE2tYWhhgOPDwjXyrCwm7ewGH4w73N7dw6+4d7B+OsbOzh9l0KkBUa3YVyLP15ubsDBmAaiy1zTZER2eZ0RDjzOl1fOyjH8bpUyewsjTCaOjRqF7rQsTB4QHubO7ixu37ePvmHTx4sIHpbJqHXy4py8OU+k+rzhN2WOd5eSNU49mfJwJ6+q4ONpeJq2ZqTn6sJb2zbJUgYXtz+UL1Xraxaimq5p8JlPW/vGc2sDybchu490sBM9QsmEV/1HNFeb3Vcl2ewOUMa/cwqdbzV5Hdanx6+s70PmV/CjMwalt88hPP4eq1ixgsDLLvQ4JfU3zta9/A9evXkVLIti/ZySvbhPIaaUltR743LnUf7deUm553xn5zqxGsRq78sESOI2q6fsHm1jRjAdhwNVnlufPz8hCdRsB2XMXWbITFEWM8maJpGiwvL6LhNQwHDToDKVGv93PnhqqXORhfGG2y5qkmNvfD2BqrW5nvpLS52KSY03P1eaK3l1T3oyxX8r8EZVDjfvsJQIwBb755Hd43uHDhPEajkZR7Vp/ahXNnsLjwcXzr+W9ja3s7g8GM/dtBSrk7Ipw5OIW1V1dxZ+c23r54AwcL+2UirN0MxJAKaw+zlhB3hYlN+5NB+URgp6uJ5buN8zrmBbhuPjBJHxIm25giiBwa77IOAJCZTb1TAJLZS/B5zjwR2MrC1/oJ6udj9aOR+arQ0+cCakqV+MtnpRqj+WXE3EtqAxsYSUDt5X6Ji+zYvp4xIkR57ASYI74AB8awFWDXVJOCjDnKxhWk56JKDxBZSWtZ607ZgDMARf2FvvEYedEXk2j7B0kpYv2sI8ZQE0Unsw6zWMbQO0LbVPan9lOYe1mTSEsCatHjyKyBpHLCNiaOAANouaIriRTsxhWQyewUMrEzW6GMUW0t2Tq1tWyymv3XEP+BsMCbr04Vdp3AUa9Tva+BqKyfQOWLsc/r3kxq5xCZD7O30fevuXuUcewnlGW5mlfkMPtO78IGZsORZx4FObxDm35BLu89fu3Xfg3PPPNMD4Q0m816JdpeeOEFbG9v5/dv3LjxY8vjHF/vr4tIGJOeeOIJ/PZv/zZWV1cfegZNKeXyfC+//DK2t7dx69Yt7O/vYzabvSttffTRR/F7v/d779hGZsbh4SFu3LiBF154Aa+//jr29/fflbYdX+/dtbCwgN/+7d9+KMtXSgnf+c538Morr7wHLXv/XtfjI7iTzuOCv9N7fT+tvEctem+v6XSKr3zlKxiNRvjgBz/YkyXnHC5duoQvfelL+KM/+qMfC3hz7PDIW4/gwu0L+N5Hv4dvfOIbeHD6wUPOi8fX8XV8HV/9638CpBTzAdCAOqxUv8IYYYdqyvXg7e/i3NHvkpRJ897pfxIQ9L6wEgFyeE4xIUbOGTtC7VyzNWkQCQIkSimWNjiALAtNvoHcEjLKaPVFGCCAKoCINCYHvOuDbkpRQSUl8JTf1/bljKveRebLzM4STimXnbDvWUCXqnEFUBzltSN37vTIibPThtThwYlzmSw50CftG8pB1UYnO+oSqqkDsoNWHbkozs0Epf3WOvLm1CBAUSDCItN4wmjgsLIwxKkTKzi3voSVpQEGrQfDYRoYdzan2NoZY3NnH7uTGWadMllYRhwzYnZEUS5fpW5Qbac4acoJvMql1ICsyXB5X+bQEWNh6LG6OMTFM2u4ev4k1lcGWBy1ABzGXcK97SnuPNjDzTub2Njcw/6UNSArAVR5eoPkpDYBuYiEiJR8fpYJgZCrWHacXE77IyVtoAwoxWkNKMAqCUsSq0OFvM1x3+FsWc3OSem2mD371HPUOyd8XlZWhi2AnB2CFmRlATBBy7dFBbCQgIUECJMySIjzuItME9TjlEyyZOxTsuw2EtYbByQyp5HpBWW7gWVrR+m/+oUcCXU6185e0nVpoL7MzlABYWwtsWVtF5mQtWIgHgBwOHPlLD77uU/ixPoKBk0LJg/XAtPDCb7637+FF198PVPRW1kjqO5IzIghSn85aaDe5TKPrspSNrlgW0t5DZf1XJd0tBFnBWGI49hlXZNDDZXPLY+F6jor3+bIZXCYBfg5s9Ehj41Gj3Ibik6EyiZA7BE64NatDWwOPWLqcOP2XZxYXUFMEd55EAvjjFHRG1MSqDB92V4h60PvPcf0lbgw5WTdqexIdRsNoFO33cCO9j4BJXNX15LP+4M52xWcqRrIqW51CsozxoPsuCbSIAMB8GAG9vfGmE4DlpcWsDQaoPWMxhFOr6+gHXjce7CNg/GkaqoxIwmAxXuCjx4hRUTHcDEgclAwhOh1K33qFIDhNQMVkMx7Y7hh5lxOFQw0vkEMM3SRMZl2cBQFTAMBgTATYhdknmJCiB1SSOhiQhcCBoMGbStsaIOmQYQEFLxzmHUdGOLEns26vIeDgUZLL8kYkjAXEcE1DVzjMYAAX4ikrJk54VOMYI4ZgOidsD2l5JAo5QBgSsIQFmKEdw6tb9FxMAHRTGx1tHtVWTGKLtW9MKjTejyZZjDVwEWsry1jdcHjwSxgPwYwpFwpqQw3XoBIpPdpmwYLo4GwQgYGuSZnZTee5DWW9dslYLdjDBqGHw6wxCxZ0B0hTr0Emhpoub8OzgHNoEGcBZgfP4UI9g5NI+AqKZEGXf+ExjuEWNa62ROeAHJSDq/xDUKI6DrR214Z+BhS2rJpGjCTAJ6aAVzDAqQLqZQ90rkwcLhT5qwE0x8i6yVIKa84JwCltvVg9lpGVpnw4HRtO7UDC+Oj9MXlIErRpwYCMmuR+6wL0P3YVdGmSr/UFycDNLLFAso9az1Q3kAvO1P1iWXbS9CsDl4YALMfpJDAdQXofZ9e8yBqqtvLJYxLKHvMfDCI9Isil2rPKwjIfgeA69ev4+6du9le5iQgpclk2rfbOe+yKJNe2S+l9bqHGrOL6lcqVmZJJOjvQfZ7tjX0I+VsVdk5vXbpk1O/JXkkKjnN4C79NwfN9Jn9gP1cdIrn+49sc8o4I9+P8/sq4O/odLKx0D5y761imTPnMcvdsX+4Ok9YkNyJvjm1vobHHn0Ep9fXcXp9FaNhk8GTMTH2D4Wt8K0bt7C5s4utrW0cHo5ln9H2G8OAdUPWUH+9Ye5XjeEiG/L1PNkZj8VkW1wYYmVpAdeuXsIHnnpMWJMa2Q+7yDgYB2zu7OPBxg7eunELN2/dxcHBodp9Zqu6AroX7Yik7Lt9wyZbrrCTeFYrGlzNusZkI+sPVHNV1pwFd3NQnOwjRVZ74B9rsa2NfDKbA8XpGY3zr3q2TwKKtuQCsVVTTzfYs4jrOahaYG2tZAZgJc2r+qbnggxazW2wcXH5GJnHIfeonIeAhy8DPvJH2QNswogcHn/6cTz9zJMYjQYKmpYg/SwE/PCHL+HrX/8WuhBUZ9m4K0yJUZJBdKRJvw/dt0vDuLfMbb5LsL6Ap6xPyP214azmPa9f5PNEliEbL5K2Zp1o+53etz6DcL5/nUDUn1rr34RHePHgEob8KhwCJjzAdGcR17E0t2S5J6/W9nJ8ocqOr3V2pf9tPwfln/021XM6p0dZO1EJR7Eyyhjabl+vheouOrC17WFrQz/Dkmzw0suvYHd3D9ceu4bFxQUM2xZe7aCTJ1bx2c98Cq+/8SZe/dHrmEynVaOsHJkAIIdpgCt3r+DM5lm8+NSL2FzbQKLC3MOAnHtiynLG1aBYXoudt6X0jJw7CECIChIn8cfIPKsEV7pKGIdZzy8CQm8aSzLyICf2p51bTUdJqee+P5JTFAC62YtI8HrWsyQbU+f1euYUYZpVfIw6T4ryo+ynKCB75xwSld3S9n7SM3NWHZwQqTDQJQZCTGAOmoDFGA4cloces9kMM07gZDrLEhddXies+r1pvFSKj4XliljPNSpxIveEWRT5TuTQNuLVgydMg5wRXQMgSdl07+Rs64xpSgcsKYuqTbyrbBzrG9sYV3OSzxbezmUGtLIzutlpVOaYNFlFy7Ee2Vtsrbr+PvcwC8p+F7ZhAdnZFZGAiGz35wSouX4UqUe1H3D/vWo87HMmDw9Leurd23Rh3gM565Xi0zH7IK9AZQ629qSiYx5y1e3IZwp91jt95xflCiHgr/7qr/DNb37zyOs1KOn4+tm8nHO4cuUKPvnJT+Ls2bM4efJk/0wOWRM7Ozt48cUXcffuXdy4cQPb29vvKivR0tISVlZW8PTTT+O5557D8vLykTbu7+9jf38fL7/8Mn7wgx9gY2PjXWvf8fXeXkSEZ599tsfuVl83b97EX/7lXx6Xepu79ngFX579Br4w+mM0CNjlVdyKl/Dd8Ox73bT37Do8PMSf/dmf4e2338bnPvc5LC0t5feICKdOncK//bf/Fv/wD/+Ar33tazg4OHjHew26AT7+rY/j6Zefxv/x//g/8MajbyD5n+cyk8fX8XV8/WOvnxikFKIEEsWx5IRVIxnAguGYtWa6nYTNCUXKkFQYEKQUi5eyHRZ0TwLyyKWvuAT1i4dIDqKZkYGBXBIkO1qlBd45JI45+GWBcmOp8c5l1ow6+9qBNCtKO84MKa+W3RPqsBTvnrytGY0pAsRS4ochbDz2WTvcErIjsX8gtMz46r5gpalXxwoA8bBKf+TwGdRRIUAhSiGPH6FmYDFmKaGJLlmiXgrIEDKzDKuDhVMV1FdjXZw/5aCdndP6uyfS47s+AwneEUZti7WVBayvLmL9xBJWFxfROAKjwywxNrbH2DmcYf8wYn/cYTpLmHUJXUABeChzUh1MsABK7ac2OWHz3GXAibztcn/KOHkkNMRYGDU4tb6CC2dP4PzJJawvjzAYeCQAu+MZ7m/s4db9Pdy6v4+t/RmmIUqQXllHOJe1A2wkGKzsJqyBEcn2E/YPAzXIP+Igi3kdEUpgIFFU3iuZiwRo2SB7FiNX1KBSzi2zCGnpNgMWIn+0PEuknfLcFSezOeQLe1nSFF5SOTTHoznJpL8sIESLIXBSJ4sd6vTZnMBc0YVnOSRxEmlzvAZlKDFAxc2W16QTBhmOkn1XO7XlK/2gpMhv5ZFkcxKzjheqQBDQeA8PwsnVVXzuM5/F5QvnhcWm60QHecIPXnoRf/eNb2A8niEmyJglAhIhUZR2GyDNAsvs0PhWwReNOE0hoBIDGEHnt8cKojLHUHAGkzoIRY8aNwDlNVBFH3Q1CBCrOKjIOSQDKFbBp2Rjpd9llRArOwKGZPaTk+xLplJmDTIOAYSNvX1gj8EhIMSEm3e3xNnIpeRk0oTVpKW4xHFp69qc3iXDHkjKXJSyg5YTeiArZJ3BZf2AqkBYhjiqw1eBc6aTQbmkSc60hDlYYVuUOB4JCJxylrurZVTbktjp+rc+McJ0llkJF4cN2gbwDKwuL8I5wv2NHewfThGT6lwkOHOmkziWPcmad47gQtKSIbIe2lELJsAlIKSELgibUtNAyp0lyv0HgADJHmYOUjYwieM/OSA5CyrIPCNFwDlEqeoI5wWIlRhg3UpiDIgJcCmhGTRwnuCTy0AgcTgnpBTg2ga+GcB5j27ciSyKGkLkhIGyGsXE6KLIHQgCWomqL1wDTgFwDI7S56R6JpdEbSwLWQPTxIgsQE5iJ4A0Yikpp/2LMSGQBTFIg0PCxuMcISRgc+8QhxPCtNO5JgAOCF2CS42WBmQMhy1c43UNEOAaRHTZqR5CAPkGTTsAIUhgkgjTmJCI4V3SEnwDMDHcNEkgh0R3bRxMMWhbkCMMB62uI5m36TTANS6Xz7UrxYSm8RroIXQxAGD4VgE6WpYtpVK+wntfZdGrQ1wBpKI/opRRTAKsQyPjJ+s+ZaZKCQ7ruiQJGhtgTkqFRMQIOGrkmboOQ4wIQUr2kQKYwAK2894hdCG3FaBcQsPArgZ6lgVgQPhK1wK5VARpoM7CA1x9tt5b5oPqNXgzhw4sylg9R8arBG8sEO+yjQBha3MiCzVLmQFW388hhZjByEBGEzPlzc0CgXUvMtjUylZ6j7W1VaytrWFtdS2DMXd3d7C3t4/t7W2Vh4Tp1DJb6/OEmQdc2QmU94GSIGCtyLtDlumS3FA7s+fncg5Y0Qtslcx2s2f1UzAGw+ol/QZVw1IF8qvfwQpUy5teZftaADcD4GDWcu9swPq6PVfWKrItmMdDNp9iO9nY0pwEimGYP0/1+Fcfqb+V1xeJjnaOMBgMcGJ1FefPn8Wpk2s4f+40FofDbLNGZhxOAsbTDhtbu7hz9z5u3LyN8XiigFrOtmXqzXR5tvW7bl8Rkeo72nUA5Zyp4zxoPU6tn8TVq5dx+dI5nFxdwvJokAHWky7icDzFg609vPKj63jjrZuYTKcIMVYCUWQg21HavtxGfbO3XMrgyqer363sEEw+9POqYrJ8UdVpMhuqujVRHqnec62N9U+TjDzIKgM9gA/qNhfdbPfP5z7LLOopXQOW25/6ZLbzhI5BBtPbGrf/2XzXaxNa8oh7up0Y2a478o0cBC/rhuZGwuB2DAhTLBEev/YoPverv4a1lWVJRtEzJYjw1ttv4a//5m8wnc6UhVXHzPpGyMF/G1tiZcR1AtbNY5mFpeiJev3JPBfwpTwmz0K1X5U5L7qj6m0+N9T6UttMZR+Erpl8L+1Ebqa+l1AAuHYmEVbahNvdGg53n4LjgO2wBKYG5KZH92RUMtxbSVkl1p/MY2OyzmWAy6ybDOhebVXqrJ1FOgoMyeTOfgOK6ZWXbVmivTHk6lu9z6bqdx3Im7duYWNrC49cvYqrV69g0Hph6kTCwmiID3zgKaysrOA73/0eJmKkyo3IzB8HOIZjh1E3wkde+AjeunQdb159A9GJ7eycg2RGSX+jAvsscYpTxfRGliTBKgamv1jBl5p4Zcuba7kyYF+Rc9O/iQXA1Hgn7j3IucMOZfm8D/VFeELXJQX/VFMuX0c0MJS2m5zm2UXkc5HplMRARLWcmAFnPrHid5REJSDzmpF8yfyfwubJiFbuD2IHm98IJEyAe4dTiA+UVAYIdTXclDgntFnJOy6tVVmTBAEiB8WMwXlpe5c4g/pJWeQlzy5m/TkNUeedsg/V1llS1iGXE9vKuBDJmZCT2N4Me5YBUg30xpmhcT74XrMog5UFXm0JRw6siaNHfIL1HqlyV/Si2kJVf0CsYPbCdl78xcisuBkQV2lIyrKeejZEvSWTPj/vLWZDodIUdVer/eTIHoW+XmYuOln+rjVbvUci79f9/Qr9J1R9+Hm77Bzhvcfly5dx4cIFXLx4Mb9/48YN3LlzB9evX0cIAV3X4cGDB+9hi4+vf4pLAJwNRqMRLly4gMceewxnzpzBlStXHso+E2PErVu38KMf/Qjf+c533lVmLCLCaDTClStX8Mwzz+CRRx7B0tLSQ0u67e7u4vnnn8d3v/tdHB4eIoTwrrXz+HrvLyLCxz/+cfzGb/zGEdkAgM3NTfzn//yfjwFKD70Ir8Sn8B/G/xYNBdyMlxDQIMG/1w17Ty9mxvPPP4/XX38dn/3sZ/Hss8/2YufLy8v49Kc/jbNnz+JP//RPf2yJSwJhdW8V//r/96/xd5/+O3zl176C2PxilZ08vo6v4+snv35ikJKwDpkXVJ3yXpxdNcgHdghSp3LTNJpx76oDLWvpn65XRoQ5VcAKKvezQ5bjXjBGTk9Gq6x/A9k5YtnUnO8HAE5LuFUH0tx2OWCXw6A4NC0AbI6Y3MEMqhDHjh3MvfPq4GV4L5k85AizLvXKz1S9QDkAWnCrZA6TBk9zdj7M4QbYydsCHebYKcEw1kyklMuXFH+yq2Pm+ZArThQCnAIHkpShaRzAGuSVAFqTx9tZL8jBU4L3hMGwwXA0wPLSIk6uLGB9cYCTS0MAhGkk3N2bYf9wgsPxFONZh2lImEVG1yVwECrVmKK2IdnMlsN35TA0METluSpjo7LFZdDgGUhegx4NYW1phIunV3BufRmn15awOGhAlBDTFPe2Au5sHODmnR3c357gcNJhFtS5aYFUZSMpmaziFLJAuAQXSYlwLHtNGT1y2RuXZTCvKQXKOJVPr1m9NkeylmTzTzrviVOWAWMYKOA/XUpVRKOAlHQ9o2LbkZtnJ5MFQE3ObDLIQBx6L6+sWsJ0lIqThUVaDHwj4L6Us70M9NFvV+lXUnr4pNmDZW2bs68q71Q7XtSpB3VMFqCJ9omToa5AVLL5QAIk817YRhpirCwO8c8+8zF8+INPoPUeDgr+4w43b97Df/7Pf4MHD3YEKJCCMBqpM1Ymi0GJNMgM+IEwdPmmEVp+y9gDwTkZn6QZcI6LQzz3U532MscaBKjXsxNQqQU3ah3rHKuTT+Q3pdRnOtDlxECvvGMNbAMVncUAOMUsk9l5SaaHdKxShuYgRCkNaI7KsseovJgeI5mbqEw7jfNFV+raYRInrGMZw+ys5CLT0L4YKBOJe7JmutDKzTFSpuwXWUJ20hZAbWHDE+ckS5k39Pc8aJksC4xZQDBnLTIwnXWSmbWyKOXfBg1AjNXlJbTtAA82t7Gze4BZR2AY8xZgwX6ZI9MhQ3AISHEmZW8ISDGg6wwowPCugYNDiAEhJDjfAJTQcUTTONFdKaEhkvKNUYIRDGHvITACGMkCR6pHZKykhASiNC/GiJAYC22b17D66xFDyAAEQBiUZrOZMCWxZOeOhq2AqUJAYGA0aBFdAsWItpWyco13YKflMclL4ARSqiAmRqSUgyW+ITjXyC5CUn4x61e9bG0Jm2RhODBQnYCz9bNqE3XM2BkHHM4aMAMhAa7hDI4OwVjBdG3FlBmkzPkUOWY7QMCeRUfAEULo4JzXewHjyRST6QzTLqIdSPTBOQfyXkooNhros4iYGhMMAUJxrGyv3HeASADRRARyTsfTCehSAUYGgIayGgqYS8bYedM/EPAoRwyGLWKT0E0TOELYsSzAzVaKUZ3IJBnWg0ED6XqLySSgCxEhCKsix8KAYQGCbjaTtrADp5Llrou+qDddw7IPINtydQa/BJ/6bG2wYACVkOMR87R27FtgttYz+p1sC2R9VQIjzpGAA6G6Wvdyk2FyVjq5BKHnM7zfb1e2MfVn/ju/5OpPqhwCg8EATzzxBE6tr4Ocw3A4lPXBjPF4jJQYg8EQo1GE93uYKktEcdhVq/uhY2QGdmVr8ly7LLhTGUDzAbXqbkAlA+XpFoiq9rxaVKzTurfJ3xa4g8p4CeY9bL7za4Q5nZZPEKV1jMIKZLaK2Vd4mEz15drG4CHvFnu9YsTMel8TQAq0R76d70RS/nJ9/QTOnjuDM2dOYzQaYW1lEQutx6htQCCERDicRcxmAXv7+7j3YAP37j/Ag41NdJ0Ck8wGznZ61VKd0wwAIWtf9X6vbxX8wOwEEnv9zKl1XL54Hlcvn8epEytYGg3ReimDyRxxMO6wP+6wvXOA+5u7ePHFl7G1s6sz0p+T+qGckyqgNp4BeKozXbZ5zHYRnWZzU+KVJlt0pG/52brmhKm42Bb2ySPMD9X813uInXcAWL5IGXaVB9nnbD8CSierM4A9syfq0lOZMpVTQ4ow5taoPZpyv2DnGlv2ts7t7vqZ3hPnllqGLPb6dLSz9bmGzA4k4PSpk/jcr/8zXDh3RkqW6j0YCTvbe/jrv/5vuH9vI9uZWQbsrKltz/F7bwyCLpd2yrNEpf2y/c+VC+z1s/SLyxeyLNj4I68lethdcntlqrOi0X2Psz4rg2j6JuXvcT2Wtq/mZjC200oeD7FxzJZB1dYKbCXOALHtYHJg+0L+ePkz+32KLBc5JJi90l9P+YTa29NlDqrEqWqt6Yj11qyNSxkZeUbmXbY9gcucGPZsPB7j1VdfxeLSIk6vn8Rg0JazrGNcuXwJ3nt8+zvfxXg8EZB8HjiG2UmOCJQIj954FMPZEK9deR2T0UT3nqSMwWYPCWDE9icAgg1MAvwgYyfVTd32b+ulgX8Mz+oYcrbIUqZrUn+kxFX582JfJStTr+cRAf2EfE4mINtOMQZJiPFeEhxTzAzWZnsk6DlT5Z0SgMSaOGYTyVp2uABubG+xubGeCNuSzmjtr8uKykBG8rxZFLZZIkJMUECW+JYsWcDO5uZrSOCcDJoC8lpMDHidJ2g/5Vwt0x71fikFdEGBa5YQpyBbRwSnICeuFSCZT6WvKPOeoD4ze63s/yi2dlkJqidre6m0G/XZ2xNiSBm0ldUKc/4szE4joGmc3kvGrwsp+zjkvvUub+Xi5btubg/IBhRVa73aqnrzovKTn6VSn8eL+retd5F5/WrPOvJ61jVl/5kfy94dudq3tA15zPUZR7r8M36NRiP85m/+Jq5duwbnXC6ZxczY3t5GSimX7dra2sLm5uZ73OLj6x97ee9x7do1PP3003jsscfQti2Wl5cBzJ1fdC1sb2/j9ddfx6uvvorXXnvtXQf9PPbYY3jmmWfwxBNP/NiSbgae+y//5b/g5s2b72obj6/3z3Xp0iX85m/+5kOBdiEEfPWrX/2xpbmOL8Lb6ep73Yj33cXM2NzcxF/8xV/gzJkzuHz5ck8XEREef/xx/P7v//7/EKgEAG1o8dmvfhYreyv48q9/GTtrOw87gh5fx9fx9Qt+/cQgpcZrthQBpEAfcyj0QUqWcWKOJhYHQCpOKMvkJ5JSOCUI0AfwFOCQPiMVx1KpGy739NVrOWDA4jAAzHFnB23Xd0rNPZMVJEKOFNxQAtLmsJAPGzjGKQhLnuu9R9M0EpjjhOlsivFk0ssO6jl4rVi9uqEcIMFOloxIcpbBrMG/pK8TADhYeTbiqm2ABkGtnJE4canXAXUK5CBJcXo5CFMGFDyQAIQkIBk5oAulC5OEFhwIrScsjjxOLC7gzKllrK4uYjBsxRHELUIX8GAnYHt/jN3xFAezgDBLwkoRIyKLgyElRgwp9yFBGTTgQOIZygxRZfzQC7KCzdnB8BCQBDuVVyY0vsXKgsP6qSWcOr2G1ZUhlgYeK8MBGucw6QI2d8a4eX8HN+9vY/dQQFQhSdZblp1kJdQsi9pVJcu4BFxzkFR/VmUMtPIecsCTCq20OUaiyY7OpbHLMPT73qsEpbwGxIGXstyIIzVl+ZsPrHn1OEm5HOo9L0UWmUQJhJI57eqyM3a/WDmBFTAm5ekSgjk+zbHr1Ollc1eVURFwUl4pmnGpA6bAjAKeUYc8s2bUocwROZ03HWdW5h1WxhTxwmVnli0TclJaqnEN2sZjofV47tkP4bOfehZLiw180yIhIsSIg/EEf/vfv4E33ryNEBlWbsr5VoA7iJIxGaHO9ITZbIqm8RiOFoVdjlzOAq2dQnmuogECAAtsEyn7CAz4ZVnH1n8tZ2GlHypK/KSlJtWtC3O2y0Nd5WfstSa/7mDPVocptPSj6fkUtXSFlhUzgWJh8PEkgLNc4gvQUmjIJdbyms57TSPTZMAhvac5trN85zJnKcttD9DGDCRxOqSewe1KcEqdmLlUJimIi6FyT1nPPCSeVb0u4EPJxiV4FFm1vchACMxyoNzfP4R3DoPhAMOBsAYtLQywcPEslhZ2cP/BNqazlAF/SBHkPZxLiDEAiBAgqQYSYkKaRqQoTDSJI3zj4D0pe5GMbQyyvqS8ngW6AHZWjsCc3AYSdIBPaD1jfTjA0DEm3RRTbtE1XsoW6FoaDgdoWPa4lCJa16IdNohxnOVSSkJI2QrvNWNVgW2zEHWuE6hpMgBpMBjompLsV6fOa3inOllAViCgs9K1AJhlj05s4CwSBkQn65CTsJGZmRJSCS4RCRMWQUupRWUx1J0gkpYhc4SUOqQuIKpOBxd2NO8TGi/r2DcCgiAWmyaSrKOQUtGfzMgVN0Bo2hbTaYcQg8i0InbNhnHw2SnOkDJtEkyxwIjowK4qyeG8MFFaeY6B92gajy4kteeKsWH7C5GV2+iDCiXDWYwYKbUhwXrvHbjVwkUxSLlC3UujMmSZ/mfdl8h5tG2LEBK60CF0nJnTNCk9tyGlWIDxYO1L6jkaGQXAW9z5MsM1qB5AAdXO6SUZhsrxL9EpFBYl3XOrcq61HioBGNMrqhNcKQfitG6hPIoyYJ0h8mpRE8tKr9v9frzqBAGQQVYAsXvqt2q9LDrh5s2buHf3Xgkgsej+/f39DIyDrQPYR+og9NFgUO8sUMlu9Qlpt+03JcqWA3t9kI61DfYmbHbqBxf5Kd9sIKU0I3y2B/M+z1Je08o+HR2jwkICLvablR3MoNj8vTnWEtMqVERxfk76I1KvGvuNen/Vn6ztGgtU51AYla96ENrWY2lxhCceexSPP3oVo4WB6EdyIHZIMeFwInbX5vYe7j54gK3Nbezt7WE265TNESIfqcxLzzaqZotSBZgAeps5V38r92SWLwJhNBzg7JmTOH/+DK5du4qlpRFaRxg2DZzuG4eTDpvbe3j71l1sbO3g/oNN7O7v5+ByjvH2BpuQARpmZ+R5qcd6bm5U7uogt503bA4M7FBmUSHZXErlFsAN5zmzebQm5/mrVnF9vjawS14yKKCgAj2w94pe7GmvStbr5VsHknOgV+XIWkPUf0JPSgnFtqueZevD+jrXGuT5MGYXO0NUn+zp9eo1YzjxTkDXv/arn8GjVy9i0Do45yGlUhnTboYvf+W/4cUXX0VkOdsRNEAPVtCazZElrATxR2gJV9OsrOu+Zk7qd6va+QgP1S1ZBInn5s1sawPqlHGeEx9kaZnfm7gvP30wXrlKeeciB1nJAVraifPfXANM67NN1RaHeQEobeg9v3TuqDhU/crrgo68q98ts2JvFg1Zvc7z67Z+NOf363bZZ/tjlvDSSy/hiccfx7mzZ+C9g2vkDOUccOXyBQwHDb7//R/iwea2gI0y4s2pOSLsqY49Lt67hMX9Jfzgg9/HhKawJA6TDed8JZcKvI6c16kzkFpls1kX5BakMsYYeodh45GiJCVE57P9xSAp4e1YrR7xEzVNg5CTq3R8FTQlZ65i9xbdUYCYyc7V+R1kmxzKFGy2WC5hltnHdGr0e2Zj61abn2k6scyfyYEMgpU5r9cJEyEqqzM7taUrG55YDgWJoEAp02FcZCJ/PsHB54UZtfSpPVuAZ2rrovieij4ELPGmALnKZDJR9uEBlU/YdJKD+gWAEJSNqLKhctvrPSTbZWq32NhV9rlXH5X1h5yDulJ7Ca6cx1bATY4IFC1JlvL+Ng9cYDZAMucxNkZcnfj+nNZ6j9Q613O/+S5K+bZy2WquS872qs8+7LfaDrTv1/q92o8cofjquHykUjPFhn0HG+Nn/ZpMJvj2t7+NH/7wh73XmRm3b9/WMvMJR/aqn5mLMcAMBMYUkhz8i3g55zIY6dOf/jSeffbZ7GOqLwOl3b9/H6+99hreeust3LlzB5PJ5F2VgcXFRVy7dg1Xr17Fhz/8YSwsLDy0rePxGG+99RZu376NH/3oR7h37967Wnbu+Hp/XaPRCP/8n//zd2QC++u//mt85zvfeQ9adnz9vFxd1+HP//zPM7i3ljUDKn3hC1/Af/2v/xW3bt36sffyyePZ7z6Ls/fO4j9+6T9i++T2T7n1x9fxdXz9rF0/MUjJOfloAfFwPmCV1/XAWxlKBkQyx1c++DOk1A0DljGUXaVzDlKnjj0GlYx+KmCf+YNk/Xd2tgK9Z/Q8SAwUoEWU4CNpWSmSA534JSSr13s5DPvGo/Hyn2WnEQkDQtcFzGYdxuMJui4isRPWhJ6z1RxpNsZOmF70eXJedvmwKGOYkI+SVMpQ1U5C5AN9HZjHQ84okq0JaDpUHi8D3MiBXf6VskmRGERSjsw7QkvA8sjj5OoCTp1YxvraChbaBq13YCIczGbY259gZ38X23sz7E8jpp04U4VlJgorB0umG5RRiJW/PFXH5uzsMYeLOqqA4nCAOnkkzSxBQ6Bw5OHYYdg6nFob4eypJVw8u4bVpSGGDQHkMUsOD/Y7bGxv496DLdzfOsDBJGEaLNgBlU8Fu7A4f3nOyeA0uCiANaN0Lo7kWrY5RQWXWYYX9eavyHLOZVZnngZnQYV9RAP5vQCgPsvYc4y5yYhXaoBPSLHKulVnhivZ7wYyyQ4r8fzI2kDpFzPDsck4QBCAo7AyOZCWJzP5zGNRub5r+YW2zzkbfwMvceW8mgMp1S4WZXWyNUCA0OOzFc8zoJLInn1AMpE9Gt+gcR6t83j0kav41X/2WayfWINvG5Br0SUC3Azf+eb38Hd//10BJCIWXQJxrEpwQsAiIczAjpEiIzBj5Jw6Tw1MAAXrcM4IZVZnLHOet5zdp7LlyFi7qvEzOYOVuqjnlbPMFQVBClwyYFv/gF7mq/4GxDmdueeNxY6zUxZQ5yMYOZZeOS1jTPlv5ohaigsNu36V7T/LyjSnb2lr0rpjtgPMg1IzCMrkVMeYlUmMzTud20BgdtlxyFoSIH+u+Et7+kC2ygK2YAWNCatSycI1BzWL0KJLjO29A0ROWFlexKAR1q524HFqfQ2Na3DvwTbG46k4q5XPjqtAlDmkU/LoupAZfGJkuEZ0dBeT6FySfSBG0XHee2FuS0mYiaoSA45IMm3BGigA2sZh4BiLDWOxbbE3YxySQ4JHxwIOHXiPxhNSF9HFgBACmmYER4QuFj3jHYGcB1hAv2DGLAg4pmkaZSskzJRFqG0cYgiIidG6VkrMQpiSBn6A0EW4liRYPB4DxGjbJpfBs3Vv4OuoIBdAgEJO93dZe+YUJwUyCXAnhNCzTRJLOTZiWXdOgYJ2DwsE6ETBNw6uYvwRm8Khi1KyKilzmPdSLi1puQHnPdphAz9wcB3ggpR7EGajObnX8nvEABrba6S0m3c+35ORNBvegEtaMi1IOVNCf++wratphNkpRobzjdhHjZRiS8qaAjh0nZb3Y8iztAxwq8GzBkCIAdNZp2vTa5m9iNRNEZOwNulK1yq4Bk6nXEYigzuACgypNgYXZk4iCVaIHaLBUMfwjc+6gxO0DI+Cc1UGvALMYhLAtY1z0R8V0N6mwVj6qkBB1pG6dkumtSuAS7sjl+CXgJyzZV321boOyPvs6gOASmZ9eb9vGwBFt+7s7PXjP0eCKRVYon6K6Vi7P8oxYB7ok8E8PXu9fK9/4+r+VO+99qbucTk4hWzHjtwMAxdw0u9g0U/hCTjlt+EdYYvXcTtdxC4vIUVhcuu6KLJv/aza39+n7b0CKiljVI9pCYT3Dwj9XlqCRf91O0eZDM/NA/fHtZ4nVhuSyT4oZ4+2cVhfW8Fjjz6CixfOYmlhAQujQQaHdSFhGjocjju8/ubb2NrZx4ONTcy6GWLossxwbz3pGSG3sToT5k9UZzGC6kXSM26xK6TNAsN25LCyvIgrF8/h6pULuHzxLIZtg0YDpYGF3elwMsX29i5eePlV3LpzH+PJDBlIh3xqUfyIGamVMWElyshAZ8VetkbbyDLULq/nxew76q+L/pxz/qzt8UDRJw99Rm8kpR2p+q4xuubZN2aQ3P5K9ojyK3k2mOek0LpeP5WQkxrmPmdQLFuHxrb5MB1gks1sZilV421zw7mdqNaavQUqL+elX5emU2eCI2Wy8R4fe/ZZfOiZD2JhYaSsLh6RPUARL/7gRXzzW9/FLHSi5GFzqGydjnKZ7BSjsoiW+c9th+yxAmi1NV/0Uj4H1F2ErR/qrfvyXsW2W815WVX2XZQz3EO1cqVRuP+MXmlT/a6BdU025LO1Lina31h8QVJ+tif7VP3Cddvn2laURK+N/f7Zvcq6KHIHYVtW2748W29MZb8Hc8aQMXNmXeX5ZrGtkUqnzbdzrsmHB4f4wQ9/iJs31/DE44/j7NkzaFsvgHzvcO7sGax8+lP41vPfwe07d9X3lDUTQA5UsRCv7a/hQy9+CN9/+gcYjyZ5nHKyBcw3g2r9FbCKTanJjvSzAFHMFvcEtMSghhBBmHQJkTxC4vyExhlLZ+zZczXzuO0vMt52folV4qABTpSZWr8UU8xMRFB2WucdwC4n54QgjN9WxjNPQ7U3S6JdH1RWJ1pmPWtzVrH+mS0in1MKpcxCa3aK2JOsjU9kyUeA2KIps7clLVlsgFOysQFrAorIhHMC+rISetYCGVPKe7f1yeYxsoDBvO8n8diEiz9O17cmG87rITtTWB9iLH4tkyEDUQF6to6c72Pf9958pOKTCjlBhbKN0HW2T9Wzx319QpTNnVJGT/VQZdvP+0qyftBzhfN594FtGJy5kpD3Xqd7U07GNDUom2//GVloHqa/+uD8op2p+mK1r9pe13sM53v9vF3/o0Dqz8Yl87JKO1ikMa766zhJW3BIeLx5HR4RP4qP49vdc7idLuAdN4qfs2swGODcuXP4+Mc/jkcffRRt2x4B/IgvLOLv//7vce/ePbz++usYj8fvejksIsKpU6fw5JNP4umnn8bVq1eP+CutvQcHB/jbv/1bvPTSS9jf3/+5XJfH1//c5b3Hb/zGb+DcuXNH5IaZ8eabb+Lb3/72sawcX//o6/79+/jDP/xDXL16Fb/+67/e01UGVDp37hz+7M/+DK+99tqPvReBcPHWRXzpj7+EP/riH2H7xPYvyvZ0fB1fx9dPcP3EIKWUD6HlwMJsjiA7jHGlrAz0k7IToNzH3rcs0QgDMsgheC6wloM5fWdSL8tTHYIGXrDSazWNtPkWjRqayq1AzhgSBKjhHaFREFLbePi21b+dZvujYu1IcNSgixGTyQyT2RTTyQRBqYcTF4cZEeXAn3StOPKYBciQUlQmGjsIS0kVrtqbmPUz5bI+9kBazmmZmgTn+9pfmAmsFJwyF1HJ2CYN0joWcIWHxDWbtsHiwgCnTizg5PIQJ5YXsLIwQuMbMDMmXcKDzUNsH86wvT/D/nSGSTdFVBYijgpAShFJHTicrO1OaLRRgCaF9p0BZSJx6sw3Z39MBXBCMCrrpGwhDVaXhjh7cgWXzq7i7MkljFpG6z1mIeJgErF9MMbN+3u482AXO/sTzLqIoNlxUm6I4OAAq09L4lxInBQGVWjRjwBEmIVGnW2OJEvQeZ+9pUlL5cg76nDqgf2AzMKkcpPUsWCAriJP8wGrSkbY2HOU/WkuGBgteGoSpcF0CTC4zHhTWGrUoebyElR51WWpgLMMkEkM8poNXAVqrJNJy/qVdeIs7SvHB7IT15xs6uwTME8BCZgDKTEjqcw5Qs6OYn0mOQdK6rTKzFMCEHDOCxOTB9bX1/Crv/oZXLhwDoPRCOQ9QkpIcLh56wG+/JWvY3fvAIlnYGUF846QOKKAWXTYKAoLS3LwvoWDgjFInHy6GIujm20toCdfzMgASUCcWgkRMUYBajhhHCCiDHBik1Nd/1KeTBlIYAF9BnGo2FbKPCVwHnMrTGf6xILvIi+sADGhjydtn8kV4FTuq3UClmRVVseuBTlgLkRha2IuetSc/lZ2y1pq8+z9HGgvj0M/eCCwzKTsUCkHtez5lmTJqp/AItkie1FYe9icnwJQEfmBMv1RZplhsM4LdP/QDYWBhAhBqQKzFLC9I2wLJ9dWMRp4xCDjcvLEKhrvce/BBvbHM2Gx0r44ciCvY+A80Mgwx5mWDuSIGIAuMDoXMRi0Ai5WcI44zT2caxFjgqcGjjwUL4SgYAxOCSEltM0AYIeNgym2Saj0nYK5Bk2DheEA3axDDAHDdgSQrI/JtAMHcULHGOB9g64LiE4yolOMIkMOcI0DqbM6B6tMT6ku4MgIlNTJ7jCdTuBclKxhL47z0XCAlAJGo0Gek1mICCx7U9cFwDmEIPtI0jmq14EFQSzgYUEFXdx5fyAW3e7JSX84gRqfgyOhkz02pITY6doJMm9N08B5QkMeEUAXgoCYvYcn0SspsYDMHKNtHBYXhhixBycpFZfUOR4Tg0PQwIzo/04Ba403QKEB0OXvpmmUxYpziY5kpTtR7IysizTgRhqMNYUdo4CFfUNIySFYWUouZT+M5c3KWZjL3liRQISmbRC6gGknZQF94xCjsAGwS1omU4JHKRW96LwHQ5yR5AiDZiBlBytGJdsPZQ9R3ZTEZmoaY9zTscngcAsQQZnItKQucwmQUfmcacoCqK7svioQbGI9v4dZyV/Z84AURJdaSdj5QMnDnJzvl6sOBwFHAyBHgz39IBn33gMAqmyGAiJjziZWkVf90juNjs1Rr336Rq/cNMEoTvvtts4R4DmgcRHkHEYu4ITfh3MOJ/w+lpsxFt0UQ+pQYdC00Q4L6RYWeQvfmn4Y0w55LZsdUI9CPeflLJZPVNluskNPb3znxjOPc9XNOrBuQF6zDeo2ZDnu7dn609oIAax6T1gYDbG+vo7FxRGuXDqPpYUhTp1cw7BtMtg/Jsb+uMOki9jdH+OtGzdx++4d7O3t5zVH2qdsz+rDqxNr/tcCuha0kzbVgTwbH4ZF7EhtEe8dTqyt4eL5czh/9jTOn13H6vIIjTJDxJQwCwmTWcTuwRRv3biNW7fv4sHGJg4OD7LtQcqmwhmtjfzMAiIpOgBzfSgBzjJfmRGGauA0ZVaU+rzcB5VUc85ZYt750nGuxdVKN+UXsi6qvkdlXDNUiA1sYuNM/S+Rfqay0ex8wLYQ6J11nT2v2JGk0ddyVqyXh50peusj35tyW3JpUxQdnsE4WbZIZbCcyyyI7h3hyuVL+OSnPomVlWX4ps2+C4CwtbWHv/mbv8Xh4RjgWNntelbUrktrkwDnSOTKkRdgvHdZ3vrjkf+q9AhVY+V63TagO2V/R72qy3Tnn1mh2CnSzr4GBqD87KwuVFkZNo9IS0b1tFDdcuRnI4Of9V5syUwqx2a4o7Sz7JcM6vW/foIrcmP9Vt1s+rDIJbIQ1aJoMtW/6vVczh8AhG3Sxjwz/6CcV7IfzGTYPA9cqV3TEHoW0fWfYsLG5hb29v8BH/6lD+HihfMYtE3+zuLiAj7xK8/htdffwIsvvSL2ps4N5TUOQSk5won9k/jlf/hlvH3hBm6ev4ngOzATOCT4xsaDi/wYuINLP/oyhdxOp+UKZ1FYA50jeE3yIwe0rZz1YpC91QEILE2bzYLY3clKwhNiEBAR9OxGzinLqIyU1+QE0/01eNwSCYQ1KSF1CUQ+t917B5CcMw1IkxIjWt+TFiJWs9hkIvsksz7Lml1VDZctqLffl/O6fZ6s/DiKfEdlX40u5bO+2PbatVTWoGtKMp3ZOI4sOaEpso8yHtHKnOp4FV+wzasxgcpDDHBUGIHkvJEBk/USJzGtXH6PVP9VesoJC1qMRbezPoBQASTzoPb3CVK2quJHqNrgzH6ywVJfBqRfop9KAgcRlQQF+VA+xyTzfUDaU7Nfs322biRQ2Fq59CF3RcfP7N68gR3ZAmv92X/VfjGgX9GLFSh5zkZ+P58nfhGuBh0GJOXnlmkfl90NAMBFfxNn3T2coG0s0iEcEuan6jl6HpfdDfy/x/9PTDF6t5v+U7+891hdXcWjjz6KxcVFPP300xgOhzh9+nTxB1cXM2N/fx/f+9738MILL+DOnTtHzpw/7Ws0GuHixYt48skncfnyZZw9exZt2z50naWU8Nprr+GVV17BG2+8gY2NjXe1rcfX+/t66qmn8Nxzzx1JUAeA2WyGv/7rv86lK4+v4+sfe8UY8cYbb+D+/fv4/d//fVy7dq2nt5aXl/HFL34R3/72t/HlL3/5x5bJJBAu3byE/+3/+7/hWx//Fp7/2POYjqbvRjeOr+Pr+HqfXz8xSMkO1DExCisJqVOzHKBy9g4Vxx3BSdBMnR3iBIuaKWeABgUJ5YNicRREDZqaQ9f1Dpwl+E4opWiKY14PeNY2LmUGnDoqGi1l0rYew2EL7xzatkE7GMhhLTHIl8ycxgEcGTMNZnICDqZj7B+MMZnOkKIdYKV/SUFGIMplB4ByILRxyk4HUjAPDNBVAvnWGWbWUjdlzCwjh1Pl8DCnkKPec21MWLPjSJ1hBlxiZnjWElwuYTTwWBo4nDm5inOnV7G6MsLisAUBiOQx6SI2dg6xtbOP7b0xDsYdpgFSHk2z06R8UNJAPXLWl3nXCACnDhpyAOecvJwzBosdSKCzcvcRhEWGxC3VEGPYACdWV3HxzBrOn17DyqLHwrABkUM3izgYd7izuYu37u7g/u4U42lA13UamDX3ZfESJRJ2HGGMsYeXdha3LbJjToLgCQbnMIc+AQLWIlK/mR6kKieW3cdrqcV8T3KILG0sQSctBQABpcCZw6aad70vmSGbRC5y+a/8eXN2McAGlHJajq04bhmcA7asUC3J0CIo0gwgpYJHzCUKSe9rmdUFWGWB/jprToBAYA0rGMhFgxOO1BGvI5+zA1mcnaDihGJwzqi1gCaLUpO2wPfaUwILwOLSEJ/5zCfw5JPXkChh2s2AqYMfNhiP9/GVL38Nb719A6HrSt+SODIjByQmKbeVImLq4FtZD54Iw3aYS4gkRh4XKYmlJdjUN91zspHMeA0MNZ3qLIMbxqxU1n2CAtVAgLI0AVryq9YzRpmuTqusZ3IwxXLYAUqF/pyVcSvpXmHrVPyIWmYuIrPKFICHLDV2AgosWcnqOCWU+UPJZDXd57msRiKTFQ1E5KAZl7WhmgXJnLyi9yJHpMDwzoJbpYSijTuRAaUsg13KcCEZUDYhpgBQgCcvY0bF+chaJsTY9aIGv5CDhBFJg0UxpgxUOrG6jMXhAN4TmAOWl0dgtw5s7OBgf4Iu6hw6D1Iaek8Ozot8kRPndTcTYBDHpCXNAgBh8xm0A3H0OpMtA2YWB3Xeu0gAOugEiJdcg8CMLknbW0cYtYDjGSIHsHMIISDMhB0IziESF32ma917LVGmWphAWoKMtayagx80oBQxGg0wGg4xm3UIewcIsw7RE5aXRhiNhgiziPFkCscODgIyGS4M0bQy34PBAJh2iLMODIJ3DSJkPlJKiNAAGtVzbw55KGCmVTY7QuSEmBJSZDhI6bSmFXSX0z0gxCD2kCMtCys6VBzdsoZDjGgUtJxsv2RGmM7AaIRtCoQ4C0CU0oli4gRpF4BB2yImxmTaQTCxEkhPLCxjzjsMWgGgTSYzeVYSBqGkwOjECSlKP4VdjjNbpgQ1BBzqmNAFKTdjdhbrfiwlNBo4JzZU5IjkZE175yEkkgkRCVrbRm1LAnlgMPBoncXIWEvrei2hRlnfEaClfatgkwZMBMJE2l4YYhUGyiJnDFXSX5trgz87ZdaLbBn4Ck4SNdcL5GR5MV0F5PKUltltutnsgqyfsm5HT28lvT9nZWo7binLOQ/Eeb9eRwPCdlHvdZk/04n2UQtr2ef1fRsTVqAnW6AK+TMWTDN+UMACNFzdS5+hDJkMC2TPNTXbpBIMNVzeij/Eih9jvdnFcjPDspeynY0nNAg5MAjVHU5tO7PnGYRZF7E1HeGN2TmMo9lbyLZ/nX3/sDHtBe3m3iOYnJocalAqf7qMwZEuo9L95YUsa/PgLgt2lWdLn0+dPIHHHr2Ci+fOYm11CcNhi1bBxEyEEBmHkw7j8RQ7ewe4/2ATG5vb2Nzexvhwkm1hhoFG+nYzzF6wUmk9K7F8zDpo94Ha+4xq/RLDE3BibQXPfvTDOLN+AqvLixi0wvwEiG03mUXsj6e4t7mLO/c3cfvOPSnBEGI+xyDPi7UloiQcaAs5h22rFkujqTeXlPtJVac4zyqhx7owp1tyf3XGerKuQ1YYLqqLyufzpOoL2S/Qe5+q51c9YpfbzpiXZmvLvD5Az5ad77u9WDDMfZnO+tzKgFU6o257ff4qw6e9yrYq59uXMxE04afWJVmQ8nliff0kPv/5z+H0qZNgQMrzMoG8Qxc6PP/8d3Dz1m31fRg7XyldavsJq2/BKZutI0Ljm2xn2HmS1PdyNGhv+6zJRT3eFtwr32GbZC4gLFs7Mg8ms8Wv0QOhMFfbkslvldBjZw3V2ZU2hu3+KMMO+6MA0EryRp79fBOuxKS0v+pcdbH4XaDAVKL8XMqJd5XY2Tgji5Syf1d7NvrJJVnu6zM6VyuE+0zSSfW+AeP7esTuVfWgKnOdx4KlzNE/fP8HAAPnz5/FoG3h9Sw2HA7w9FNPwHmPV199DQeH46yPjFmT9Hc4xnK3hKffehKnt0/h+qU3sbm2jYgEthKWMEYdJ+yWem6qwby13WQ6j5kzADgBSCAIBsSjJcBBzjkJBgSSM62Qj5v8mXxUdpaOqDO9SZKkYExIgCQWDbSMxTSJLR9YEi8GbQtOjNBFfRZATMqmXtmaDkgK8gJlqEvRETarVKS81kGWSKl4RGEh1d8dkfgj80wrq7SCsnr+FCCXGeaUMsNqGXKdh2iM8SS+Rz0nO0bWP7J3S9+kRKmVoC5nWlK/qgF2Uyxn596Wy5zPzqVEdHkv9ysxiCp9Yr4zLnuD2Ii6NohAiTILW5YlBgpjGkBeQG/Wfdb16qBiB0myKvp9bh8kTW7L/bEJ1S2XCjDCeWRfRU+/kvmvuKxR02VHxqL+tgF8S1v002U8bIyoBgX2JqCnN8rf3P8MvTOY//j6aV2axIqEs+4uzrj7eMRfxwnaxjl/FwDgETHE9H94xGMGIjzupnP4u+7TWvbt5+dyzuHKlSv49Kc/jatXr2I0Gh2VdZi+SdjZ2cFbb72F69ev480338T29va732gAly5dwu/93u/hxIkTaJqHh+GYGXt7e7hx4wZefPFFvPzyy+86w9Px9f6/Ll68iN/93d99aAlDZsbLL7+MO3fuvActO75+3q/9/X386Z/+Kb7whS/g0Ucf7enehYUFfPrTn0bTNPjqV7+Kvb29d7wPgbC+tY7f+qvfwuOvPY6vffprePPRNxF9POoYOL6Or+PrF+b6yZmUEkAwQIsdshUwxE6O/uaAqJwsYM06ZwMHuXwgkgNZybrJ2VXl+AkpraV8HW7uoKiH7UQAwWVmGQK0zrc5kwQi0ngPp2xIw0GLYTvAoPVo21be8xIItbN7UiCMa706h8RxFaIcqGchYTKd4nA8wWTaCZtP8cUVdqJqPKyHiYViKVFxYJkDSJLxFbhkDsniIcuORQZQA71k+DRITQ4EjepZbS8mEKI4LQhw5NVhI85+q3RFnNCQw6htsLQ8wNrKEOdPrWJ9eQEroyEaT5iEgIPJFDuHHbYPOmztjnEwniGEhBDEsYNUspoTGJHNwch5XFLqdKahjEp5ctURoO8xiwPUQHFOy/GlCMdJmJMc4D2wvDTEmROLuHhqDadWl7C6tADfACF1GM8CNnenuL91gFv397G1P8F0FoURRz03NXAMENkURw0jWSkolVnB8BgThfXKspOUBQIlLOlccVSb88hb4IxjLmtoJWsAAZwQvDhiNBhaMpf7TkwgZPk3YnWROQPzqLNQgReOi1M4A04qo8BpfrY4wFlRFYSYAryxo6FyROmcO/Li8AEgZQhTBspl9gyUsXDEmgVPSAZ+YAluC+AxGscNwKXcGTm9F5X1Jp4/XTUMWwBKt07ZaehM3knLvXmGYycMON4riIfQDFr88rO/hE9+4qNYHAmjmm+AEB2mIeCHL7yE57/1XUzHIbNtIEUp+ZZELmKSoH6KASF21jw07RCNb0QHZkcWq3NBS2Y4p2W3SqkhAT8y2DE8SVmu2mVdG4sGUkoggBM8kcpmyo42c3AbMEj0qsi5ZfRmnV2V/QOg7E3KKGZZ3jqv5lAsbVK9pgxTBHWMWvUmRmZGsGAZK/OKZWQmUm2hrE2IrEGpmP2QWcdoST+nrWEWoELO6rdACidwLM9gsJa2EukxFZ70u0TGoGMBSOEDLAU4RfiZEiKZ3AFQhihxREMm2RyEun9ZtrDpHAYQImFnew/dtMPa6ipGgwG8ZwwGHgujIc6eOoldv4fN3X1MZrFkoTtzAie01KBxAvRpfSPlg0LIwB8iB980us8WlipCEip9bxJmwTHZ153z6DRI4BtZ9USMRuU2JQFGteRAKWZ9G1lAOxEJzgON6kvnCMPREHCMEI15QFhzkktIynrWdUn1ZoeFwQgD7+Gdw2w2g/MenoCltkVqGnCKmLEAoWLskILD4vIqkIDJeIrYJaSOs2O7bRvxVkexHUCEplE7BwLwMuQgqVy1bQMCYdYFhChyV00DmsYjhpDlhaMAd8gJEIeV7SnmoGRC12lpOAKi6n5ixmwW0Q4GotkUyJjYgdkjRc5gJGjgwRHD6/rT5QvnfM5+znrCOwEzsQClASkHKGA3gncebavlFiyYoQFQEKHRQI+Vy0sEsHe5jYCBJh2S1NxE0zQi7yECrP3UMqI5GzlGzAwvWwVCggu6zkWZG3go63/VuUSEdqABpqCsh85AlabXIpwTQFlUgKKV5EiJtU1VwCmZnWlyU1+cWW9y9jxKkNH0Zz+YSvlTBvbIu7sYDKobCSXgIppSSOTyg/qb+PvxMjuQ+j6IuXCL/MeMpIORzwU63gVgVPajkujQC+nke+dSc7I5wUDBUNsiPzszrhSAPGl0iAAMXQfvpDzbqEk412xh6BOW/RSNYF7zmYbB2T5xnpCj1BCAJpgwiw67YYg70zXc6dZxkBZ0zzadWw1eNWrWNsDODf1xyd9SO6+8apqo/lf2Vhk+26/Lk0jPCbZX1SVsLNEhP0GbSGrvrSwv4cKFszh37pSwJo2GGHoP54RJbhZlb9g9GOPOvQ3s7Ozi3r0HGE8mmE5nNj0qEsXWqaymvG7sjfnAoo15uVFpaJ5btuQQxnDQYnlpAY9fu4onrl3F6vIShoNG8I2Qs854FrF/OMXNOxu4decubt66jfF4ggxqQX1uNTugtLlqYG6P2VtlnlDdp6ySknxSJabA5CvzDsmrNh+u/G1N7KsLqtqXeu+Xp1P1twmEyDHZusrNLzcoa4kFTGA3zuUEUazYSj9mFqJq1Eze7JxvzEY2xFaifV636ikEXN3R5JzsWSS2Yy3KvTkERB9XZ5j8DtUgN8ptNdHzTYOP/8rHcO3aFbSN+h1IbIWYEm7fvotvfvNbCLOY22sJI8lOYxksriVMdZi98/lsSNYnXQdirlUpP1zGsV5PJn9ZK9haz+/q+UzHrTBEqb1Ra3RtGNmsqW1dZsNkpfoWa7IJmZ+Iy6TOLZf+BMl4zAMKZF5FPmvgXwaTUe2zKjsP15u3CoeJslMVYn9T6WHWgVahD4AkJTAEFN3b5XQ86nv0nmUdK31lslJdRXqVc7jc1tZINURadxpgxnQ6xXe/9z1cfnAJH3j6aQwGA3gnLDvOeTzx+GM4tb6O55//NrZ3dstJxHQIkZZ09/DscHbvDNZfWsfm6iauX34Lmyc2ACiY3Pf3hSLPoi/KmQK9dR01OVCnCARkcFZmsSEB+EXT9Zq0ZM+2xzrv4RtJBpBzLwF21hckjuVHgCD2XqPMSCF2eh9CoyAdAtBFYUFNbGefFk3TCIApaXKWJdJA/JeahQQAhdm8t1cXPeGIQI2VdS4ymlhAVs77no6ydaJDBAPKpCzM1GORLqY/S6KWlvcGR9FtbOD6Ilac5CwmKqboEIA1ja1cooNJE1OpgM6MnVVlvujb3KByDyoMxEhiQyX1QZnPSe5TWJnLdwqgkWv50/NKNCZjew45JEpFr2cKqzJPMs4pJzZl9lWT27zydI8jPVdRHyzU9y/afedsOcxffT1Z9GjVxIfYfbYf5Y8xZ+B4sZe0r9XeNafJj6+f2sVYpEM0CHjMv44FOsTTzcsYYYJTbgMe8X/6ODflAR6k03g1PIWX4gfwIJ1GzNUqfvav9fV1PPnkk7h27Roee+wx8SHMDRKzlEa7fv067t+/j1deeQW7u7s4ODh4T9q8sLCApaUlPPfcc/jwhz+MxcXFI20GhKXk1q1bePXVV/G9730Pu7u770Frj6+fhYuI8KlPfQpLS0sPfX82m+HrX//60T3h+Dq+/omu/f19/OEf/iGee+45fO5zn+uBLp1z+MQnPoFHH30U//E//sf/IQMcgfDY64/hkeuP4M1H38RXP/NVvHHtjZ+Xbev4Or6Or//J6ycGKdnRvwZGlMNUOcVmUEGClt8x8I0EuMRxaIdJn5mXnNC0wELbJYOvciImyOFUD98SIyzOJWcOOE9oG2E3aNsGg7ZF6z2GgyF8K+CDYdsC6hySciMO5J0AaYBcLsnDKUhFyn3EmDCdBYwnMxwcTjGbdcJIAXNaVVkxMmDa/tqJxXoeLA4q+y6hAmfAnHXzxnflDGXO4+m9V8eW0UCrSzNFnUHSUkLKkqEBM3INiIV9aOCA1cUW62vLOHtqBWdOLmOxFYaW5DwOpgEbW4fY2j3E5s4eDqYdZp0wJsXEOXMqe/BYmVuocoZWY5TUC5L7SDL2nhwcHDiqh4oDGBGeGgnUuQRQgnMJjQMWBkOcWl3GhVMruHR6BUsLDZq2BRNhxgGHhx0ebB3g9t0d3N04wHia0DELOMnALdmRU5wH2bGgQUGXqfAVjONldcjEpiOOBXGieGHZqJ2nzIBzGjQyEIixOjgQfF5XTh0oUWn/hb0I/fJRbAHV4hl1ziGmCHPvkxMZKEu5Wl8kDu4+9TXBgxSUEstazg4Oc1xacMjl5yYFbyjSKpfisjIEVP0PzL1DeM66y+PF6gwrZepI+55CUIeZyL25VbJDPBnYT++tdAfEyOUxhAHFAE5JgZRSoq5pHJ568hp+63/5dZy/cCb7eYGIBoy7d3fxt1/+Ora29oXdC1GzNJ3Kg5QeyixFjsARmE1nGAwEoJTZkrRvOh0AFYYPMme6ObacgzcdKDMzBwA1II320gImOpzkqJd5QSj05QIikuxXYVwRD7ExgcDpbkBFu9m6MN1t7EzGcleyKY1xiXpJ/qQAOGFcs/JnKv9NodAHUOLzTpzORAbaA4xmL+8arI5yJpCWSySTMSosFtD+G3MHQzIgKZc5tPfQk8kMViJj8WJotUbJpoWNnQIMjB2JBRAhG585s22P0L3OVU7NJCDPg4MxptMOo9EQiwsDjEYt2tah8R5rq8tIYGzs7CHNpPQC6R4MtvUPOCa0zsF70UsCUlL9lJIA6nSTSUmyeVNM8C7BNboXFPUO7xx84ySgAMDAOV0C2BFmIcKliKXhAAuDFjwJiBzgFNgUWVnwnM+ZvLL/VnBlcjLPWpaBdDxADl0XsbO3n4MSS4uLcI3sE9NZACtzjicplRdYSrpOp1OkEDGdSpCDHDDwLUIMwpjYOnRTtVWcAUttfgRgZHLjvUPbDgRMyNJnZilDSk4YhgCfZa9ppIRCSoyQAlonJcnMqa5WkPYdCoqV73rVtyGEzAjZtMIC14WIFBKYQ153w+Egz7MFS4kIjfMCVJsFAKFiUdMyazB2FwEBGsjKkTBPBrCuxShyzxExNpVPX2SIYWVlkfujIwF2su95cvBeWAATCfDckQUhXF7LRITBoIEnjxCiljV0kvUNBpwAyPogTVljMQQA9dgrc5VGhZgZ3gODQatg61jMGNM9Ove2c5ZA+UOcQPqejavZE3Mh2SOXU2R2L9Bq7JPZdup/32wUsSepvPY+vwp8W/6qA+WAjgGZTi2lN4Bio9Tlfnp9twhUfr2cJexHHsm8wPTe2SxKcMRY8B0W/RRDl3Cu3YQnwsn2AAOX0FBUcF4J+JDZKFWUzIJpEuQXuz0BmAXCndlJvDE9j52wgJCKvPfai/l5t2AY5WdbgKnYrSqzzP2R7olG0Tg2vmU3qmaDAOISIAdXwAbSkDkRjN3RE7C6soSl0RCXL13AlUvncHr9BFqv4EBymIWE8WGH8WSG7Z1dXL9xEzdv3cE0J32oTqzt5jKtc+OE3N/6ElA8QKyMY9m2qNYhiZwRGG3jsX7iJK5evoQrF8/i9IkVjEYtvBNGxIiIaUjYP5zi1u37uP7WbezsHWBzawtdjPn8I2NIc63RMx6Z3WvPz5IDzH2+dxEpoykdebe2earjVA7IqyCK1a1Ad4aZTJTnt8dYAYIxWWS5qtqSZaTSSWw9ofo95L2HTUxQgEFlTsvazI+BsWhYj8q9tIPVujOdoS2j/pjW7bGG5DODnaX1PiQbpY4a5wVhtzebPI80lX2bbW/M61DGx3uHj37kl/DJTzyH5eVF1TsAkODA2N+f4flvfQcPHmxm5pxq8QEwlt/STwYhBimVS1a2KhX2mL6cS/t6YJ1sF9TnCc7srnnfymBO0zG52/rafKmJAk6ys1nWh/Pahea1G5V7aB/rZ81ppupHYaNWC6ScmbKU2OOPPDTvGWYjMVgTh1DdN0thGQfMySTMPq73Y86yyvMHqGwXmNzpetU1WbexrPPC2GWa2M5BBo4vVguq3ksfZ7MOb755Hfv7B3jqqaewurKMthFb3hHh5NoqPvaxX8Y/fP+HuP/gQUkCpCI7Jl2OgJYJZ3bPYO3lNdw+fxs3L9zEeDTulUKmqvSkJMu5ss4qgRKW8zwpAHMumWaAFe8Ig6YRH05IMPq0lFTfo/gJclIFKllH3y6w5zMDs65DTAL0b7wHeQH/hSBJPrVfKBlLOidhiQ0BrGW/DQgvoCePBGPhLGtQxqL0XZoh5yEBBCVlsDc9VFhnrRyaswMnkMtQZ21sCY25q5Vu5Gov0WQjQABQxjKVSxibnmjr1VRE05jqrQR4Fta8xVGeQ6gfC9r/4m/gbCtB58ySUmjugb3zEaMnlwAyKMzOqUVPVWtJ56iUVUT21ZmON7u7ZiUi7YOcqaqykNWTTJ6kb5TZZ/N7bKLNWYfYOD08qGwzWt6b318f9rVsY8y/ybXc168j979nYPwMnCfezxchwSFhjXZwwm1jiAk+0LwEh4TL/gZGNMEAM0kG/b95ddzgpfBBfL37FO6nM+gw+CfswXtzWXnEc+fOYTQa4amnnsLjjz+OU6dOPfSMG2PE7u4uvvOd7+C73/0uDg4Oio//Xb4GgwEuXbqEZ555BteuXcPy8jIGg8GRdqeUcOPGDbz88su4f/8+3nzzzWPWpOPrx14GUPrABz7w0PeZGS+99NIxi9Lx9VO/JpMJvva1r2FjYwO/9Vu/hZMnT/Z8cWfPnsWXvvQl/MVf/AXeeuutd7Bv5CIQmtjgideewKWbl/DtX/42nv/489g8udk/qx1fx9fx9XN//eTl3qp0GlbnDCDZpNlhh3KOYcgB07L6Sq1Uy6QvDi+XqSqqw1cNXOGK9FqdXV4dEOSAYdug9ZJZPxwO0bYNmobgGwnCepLDqvcSBOXEaLxSCVsppMTgFOWQbs5FPTwSiYNkOovYH49xcDhBF5KwKcBBUxVRylXVDo+UqYfzABJKPfK61+bU0j/dQwxwc6qk6kukAy+BdAMeJFgmuCMnmX8pgp2D1aWglOAdMGyAlcURzq2v4PTJRawuNVhabNE2LVIAxpOInYMJNvcPsXkwxs7BDJNpxCxI6Qqjak7JKKmLo4FgNOUli6vqjQ6HgStY5UMdGsr4JNMR1Mkxg/fiVBh6j5MrSzh3ZhVnTixjfXUBiwOP1ku5jMk0YGt/ihsbW7i3uYft3SnGM3H4lLl6uEOAewd/c9D03yu+7pA/K/IuzBGZ7YeKrGdnR+XQZPUgOXNOaGCObCiVFrvkrJWMzXkHh3r4snO2ByjiBKEidxXLlTowne85YqytAi4DEluAoQKYZUdlcTb1xhAMcCzr3FiwkJPqlKWkDuS6zPxiP5EU/KGwopDLb5kbWm9S3HI9B7EjA6MYS5nQt2e5M8YLqB7T7zIxTqwu41c/8XGsDEcYb+9JKaiYMOsmSNThy1/5Bl565U3MQkBMMwiYzsAnlnEoTrhuJuWULAPTO1+ciQquscCc914FgyXLUUuRWdAEXNa9fQ+ETBNfy23xrHPWReY4NbkF0Bt3c6L2QHmIIHK59JoFQY3tzhx89kxH5i0v9y6AA+Q9oQAWzZEta0ieFTNbgDm4GyJhn4A6WYsXVEBgzJU06HgZUInMUY0MOKn7L78X75y0GXmfoLrfGnxxTsovOhLnufO6hpwTJjyWMmqZ+t7YyCDAWlsItnySzjtZxEiZrCKERWradQgxgCEgy9GwwbBNaJsGq6tLSMTY3N7HdDKDlbAzUIb5qIkJ3jlAARuOxIlqrDkApHQXQUByzsnaSawsOQneK9iDGS3JPjybzTBTeUViBJKMeOIEzKZok8csMUgZeUII4ohH0VdWhi0GC8I4pMgInelZdSy3hBQBNA7wgG9bMARsGRIjMHDInTr1CRwTulmHRIzGDYRNKgGHMSABaFsPBwkmhG4G37YYDgYYz2bKgOeQUsisfqETkJBvBTADnsJ7r/tiCXhKKUmxOzyZHGn5MC9rt87GzeVANePYgo6Wxdw0DULoELsEeC92Dfm8v0YrNZsSui70HO6NbwAQQoiIUTK+k9oi3hvfGGXAK1PCYDjAwDsByjopk9C2DvvjgPGMAPbgGIQ5zCcQvLBOJS0/SQCR2gZUQIKAQ0zS3gzOJAffiMw3DllfGKul9w5N4wXEEMQO8mpTeucRg5UZsb07oWl8ln9b16aPLHAlYyg/ZVzUBomcxzXbikAVnHASLFIQWL0/WikHswPq3bG2L3oOy2rvNV1Ugh8VQADGSGFAX+rd+50DHe+XywCx9WuV3aNXAdpYv1ACKFlPG6igPoPol/LdeqNf7g8D7QEtBbQuYK05xIobgwhYaWY40Rxg6AMGLuT9NQfZtAkSH6X8OFa7osDZbMZK00JkHHSEVyaXcSNcyKWgS8Cr3OthbS+d0POHPSUbptZHGwrbr3tffsj9ih1luytDdTiMlRCoNkQAUqJzZXkJp9fXcfbMKZw6sYqTJ5axOGpEtzoPJCCEhMksYDwL2D08xMbWDq5ffxtb2zuYzmY5gGc2nD2LqueWUX3Y1Z/zHGzMJfKKPc8qb955nDp5EpcunMMjVy5i/eQqFrUEnXeio0MU1qTdwzF29g/x+htv4Uc/ekNstixvc3NnEdRqbJkr0ED92Xqu8serPptuqGQwz4Hdr55ckyOWPVjGUGWlGtvyL+U5Lw1E9bq2Lz8b2c5j7o+5MK7Onwf6v1v/7X6cbS97UGXv1t/Mdn8BPXHvrsXGrQFhICoMbNUdLSEIefnW99Gn2hdIwLCmz20MFdpUteWhncXVK5fx6//ss1hoB+gmM7WbtYQtEp5//nv4xjeeR4haklX9KFSNDWmnE0syk5WWJwNrMQpYX1mWnbIp5/5Rr2HVXlJ0bR8U1p9ONdUz20h5vz5zUu9vuQ/ln+V+BBjDYJ7f8uz8GxXIn907v5uXgcpS1rZFP1UaOOt8JuPZrWadSv+snDjZOtM+5vN7ZgJXnVS1g6js4dafsu+bnujvZfJ8SwIhXbt9qaxmRc9apt+qIqBUxsfmRT+q5yPSUQfu3b+PLgR85MO/hMXFRXhmtMoidPLkGj7xiefw6o9ex2uvvVECp1z0SD23DsAwDvDIzUdw4e553DpzC9cvX8dsMJMECDZACmnZ8NKmIhcyG97Z2kjZ8knRWJDUJo4FhOKdl6QAkzNtYy6dltsr85j0HkrULizqSWbBzj1eB95sPo7C5GMM2TFGJBa73pElGRGingOzfQFZ443XxE0u9mlKJTkRiQV0zwKqZ+9zopUJQc++owK4ygC1zCJtgFSVQM7HcRVj+cPAQokjUrQkOZP1soeIfCfEoL5XXVvOCVO0JaMmNr8pVXa9Lmo9Tw/apgIRMZqGECMwC3JWM9mypXHETjb9ZTZOpR/t3GRrxGW8X18XGVjMezkLxFQBsUgZkIqjtae7MlOTjiblc7bMqZ3vzBY9knBQ/sr2leiCDJ+rbLqqy5UOKTq8zNN8gkL2J5ZOmILPt5jfrwrAzVrY3y+Prx93yWiOMMECjXHe3cFpdx8AcNpt4KK/iQUaYxGH+Rv0TzC4zMAhL+LLs8/h+fBxlLTMn81rOBzizJkzuHbtGh599FGsrq5idXUVrZbhrNexrYfxeIw7d+7gG9/4Bm7evPmeMSZ573H16lU89dRTePLJJ3PA/mGAKmZhNfzWt76FL3/5yz0g4/F1fP2465d+6Zfw+c9//qHlApkZr7zyCv7yL//yfe4HOr5+Xi4Dxc1mM3zxi1/E4uJifs9Apv/m3/wbfOMb38DXvvY1TCaT/+E9FyYL+MzffQbPfu9ZfO+j38NXP/NVHCwdHBskx9fx9QtyEf+EO9hHP/pR+UIOnKhxrdQiFlAldc7omyXgTXUWisIB7PBpjlMqjk1SB5EcdCVA5Bthfxho8LBxhMFAKJYdCQuH8w0ANh+dGn2spVXktNo0Ht43mRGiuHhg/gs4EhppTlLu5PBwjMlshq6LiLmEkzmA9ZjJhZXnKHK/9vCl3vsFsCGHfsvUl8+Ww6aMnQFL+sdI0mcaGMNK8zjXAKwADHUQeA8MPGFx2OLMyVWcW1/GyROLWFxs4b3QIE9mHbYPIja2D7GxO8HBpMN01iF0EkQIFkDNZ2CGEHAQ0HOSGBDAZWdqkSMouwipM7UAEhIrYMIr8IJZ2BYcsDRyWF9ZxJWz6zh7cglroxbOA53OycF4go3dMW4/2MWdzT0cjhO6mBCgGZnMAtpC3wnwsKVgYCn7nbk+RFDlnOAC0ACOHEh6jlog0y272pkAe44AXDhFLcumzlJXMkPtWeKE0DWl414HKM3ZklJxZjvnVBZ0rKtgqMQWxC0hzjORywR14nE/EDvvgLaSOCaXRQ7kPkKpLRJbj5cjybwXYJTrzwUnLUNWGM1Mp7hM729yqLrGCRsLKUDP1k6COvfVySht8yASwB6phzwBoAQstEOcO7WOhYUBnCM0TZtLGcU4xe2729jcGyMiIHIHSgRoKaMYQ1UuKKELASFFpNih8R7DdoDGNZK16GXd5/iBjS0BBCelmVKQN52XkiQAUM2Jd9JX9Jyyqp9IwQJsWYrFd1Xr5p5sqY5OFoQjyo49kHk8Se/p9bOyPlhBd4XorirRN7c2MoCGUPQaC6BCgB6FzcYYdgz42FB/zbFFGVTewDLn5AQ46FAyd2vnXX/NGICQMgNWDmKYHkatk6lwqKXC9pNsXTNnxqaUkgBFdX3UQK3sQEfZHyzDU/pRAnacBHyxsrSIhYUBBl4YZpggpXNmjJ3tfezs7yOEAMDAFuoIZSsRxsqkJAwQHBO6rsMsRITQIUFKn7WDVhzTBGQ9pSyDzgNIHVaWFtDFhGkXEOHgOCEpSLdtWymRk6LuHSrKpPOckgYLdW8jUiYppfZPUkJU2J+K7HEEAkcMFoZYWBihm0yQuoio66AxhqfE8HCYTKZwrcfy4ghxOsP4YIrDWQITYTRqhGHNEWZdBzBjOBhgqgw85JwEaZgyS513wHA0LGUUEmPWdVJyzQFN20hgQn30BgPqQicMH96XgIEFVIwlLiV0IcI1Dl5Bdl6DR0nL89l+UMB/Bubxsn+AMBwOkUFTug8bGIDN7gJh2PrMZhRjQuQIOMJgMECjdloKEUujFgst4cHOGIdTllJ/McI7h4WFVvUrSpBDs7PNcW/AqISidxoNajNDSneA0TYul81IUb7Ttg18Qwhdwmwm7XQOaFqxFUOnbIPOMsGF5QqA7geU94gQooKaBNAOVHtile2eEufvNqpvDQhmsRcDKnAsNg4z5QBT0eXF6sh7mNrIpn9i3pstkCtybzpHwI7Vvqtg/YcFg7c23p9U8X/wB39QtbcOPlnwpDov6N5jMJX6PGFzmb/e21qKjjed78FwJHbwqt/HwCWcazYxahIW3RRLfobGl2C+rTGNiyIDxjQAKGWT5+bQGpF/N1tD1mZMwGFHuDk7jRvhPA7TggTVe/Yn6y3mAlwPPa6VIGL+KgGlF9z7aO96mLNH2212Wx2lsvGQo5/YEm3bYP3EGq49+ggunDuDlaUFLCjDn8QhGSEmTLqEg8MZdvYOce/BBu7cvYuD/X0cjscSiJ7rg81vPRb5TbIg3lxATUEDbAYOlddZz4UWwCYiDActzpw6iWuPXMEjly9gdXGEYSOAxaT2ziwEHE46bO7s4fa9DTx4sIUHG5vYPzjMzDC5lQ+ZH3uFHvJ3AWHZByq7xGwUmusjqrVey1u+hY1NCdSa5iGunk6lzb2gJkxH1q2155a+ctaBVWC1+oZ9voq5Fvu2ssHyuM2fmeph6fXfQOiqBx4yJlSNmb2f72sNUXiKncSp36xeSzizxZYRBeR4nu1sGwU9A1O9BrUzS6MFPPHYYzi5fkLPZgKgjTHi7t3buHHzDvYOxlpCO8JKytr+nfubGDHJXpdY9l4p9aZA+6yw6mGVRpj/Re4HZNYeU3QPGcMCKurLT33/PtDExrEPsrFfeF6u6rmu9HrWt3qGoeom73TWtnZq96t2ltLlQAUMyftLAf1mQKzq+Ho8+jp+/vlHV/vDzjtq0pcVU+mk+bGSPlZynOWwAhtSXy7zV/Pa4979TXfW47+ysoyPfuQjWF1dgfckbNZezloxMe7cvovvfu/7GE/GeezzHlzpZjv32DN3F3Zx/dJbuLN+B4GisvgKgH1+cRNIQUhJyq15J3aaDZGgx+EcZQZkIVYqY+KdyzJWj0F5lgK09BCSSxuqsKQkrEyD4QBICSnGLEtEpGAmYS5OClJqBy0cSyJFF4Qd1ntNBNFnpRSFORlmE7p8vnT5HJsk6JjnDBlAY0vVO1/2Y+2NlZzLYCCUtWeSUexWZGZYsz+ZU7Ue9M4q92wyTijJnrpebGxjLGdWXZXCRK8MsQIcklOy14RSHRgQERYGHrMuYDKTsUtJ9irfei2p9hDbCJwTAcwPZp8yVicbhwTkvd9schsfm8+UtIw3JOnBeSolrbOdWeu43q4isq+s+q6ahyP7CRcdUPx/Vn4UZdxRZCB/td7MqLqhvWR6oNI5vTnVcct+mLxOq9sSYU5lZRtk/P+a4v12/bt/9+/ek+d6BHiIv+uiv4URxvhA8xIWaIITtIUTbhseEZ5+eiw+iR0OeBHfDx/B891z2OKT+FkFKBGJr+LKlSv41Kc+hatXr2Zd87Arxoi9vT1cv34dL774IjY2NrC1tfWeAX0WFxfxyCOP4Nlnn80l6B52xRhxeHiImzdv4vr163jjjTdw7969dzjbHV/H18OvpaUlfOxjH8PFixd7r4cQ8MILL+CNN974iYAgx9fx9U95ERHOnz+PL33pSz1GJbuYGS+//DL+/M//HIeHh+9wl6MXg3Hn/B18/VNfxw+f+SFCG/6pm358HV/H17t09dEX73z93wIpmZNLXig10YnEsWHBzMSFnULPXbDsG/nhlLpeMj0ZEthuGzmYtq0AkNq20UOjOC0aL8EiMKQOOsnhskuShZOSgBpijFKmpvEYtA0WFxelDrwGE0H9jKnEUWiKtWRLN5vhcDzGNEowi+3wTE7rqidYcFFHQA/Mce5QjRygKOCchMxOJV/NTDoWsGZAy1xQdlo4V9xs1Vf1GSylpoBM/Wx+IKcl8FYWWpxeXcDZk8tYX13G8sIIbSNlDA6nM2wfzLC5PcHG9iG2Dg8x7QJCjEIxn5IG4eRKmnWWy8RQle2rTlX73RyW2rj8uiInwElC8AkWGCIBFDChdYRRA5xYXcD504s4d2oRK4sLWBh6eBBSihjPOmyNAx5sH+LWgz1s7U4xngWEmODYyZ012xEJ8K5BQmE76s9V32lvTsnsoEQpIWOBK0pcGKrMAYA+WM0cQkhcmOYrR0EuZ8QA2JgeoqwR1yBp1veRJcvFKex83ZeKNYcTOEVlFvPqb9KMMwWlSJuTsun4LNY1gIV0nqU/RQ9IgL5kMQpgxEAuClJyBniiXlCBSEuPpSgypo77PH4sFOtEvpTV0ns7dSAJQBDZiW+06kjGLiTjE1mdZVUwBgylVoeW1ZPyRGTsJc1AZJLMEaVZvzEgxIDAEQlB5dlnJ1AIXQaHORJn66QbCwvYYICBgivJeWHfMUekjYv3MlJsQCQp1SjAw37WHKsDzkEAHTanJqtsysCAQlk2CgtWP1AFmOMt66Rasoq/Tj+v5Zo0cEKNyBgSH1kD+afeIybRo7F47eHIS7lHTqhLBKi4A6R6HsjAIwIUACcaUkpGkrymCtVKpRgIIBljnz47BzLsWTAmOPmIrxx8vTGz7uSSdNTX0lYfDcquUX2/6ArV4WQAUAU/anAm5YG3NSUO+aWlRQxbD0eMwaCFayX7NnYJ27sH2N3bVScy694GkIItDbRna42YNTAbpXRBjCBX1phzBO8NcCV6RRh4kgCCdN0zOcApCxU5tM7DMSGGiEgSYLMMZwHUpKw7uy7AeYJrXC5zJYELAZOkFJBCgHcCNmaI7jWQ3nQ6RWLJxhsMpJxiCAGtb9DNOlDjMGhbTA+mONg/RIIHvACaho1k6o0nh9k+iWqzlP3f9KEEXMwZlVJCitByeRJQWFgYwXunJSBYyQ2FhSmpnmmbVnUGMpiNVb67GGV8NVjhnKwzMKPxTS6rkFkKVVabplF2IcnuTixMIADQtgPMZjN0XafyJ3qmaTx84/U9YYyS0rktCtllQkNAw8C0A2aJEUkATU3j0fpGQD3BntWCEaWsGjOaVsZKWLtE1rwX8Dkp8DnYPqUltFJMKvyMpmmUpYkxmwUt7Sbvma5lrpk7i46q163ts6ETO0zkqmS116CfHCjIAR9lO2PAmH+SsrKZDmfWsnMwhkvVe66/d9cgflJGsRhj1hwibwI6M/swxghORW8wOO/71jezwTfu7eD9eP3rf/2vq79KxO1obKQARuf1ZQ4+onyG8vdkBBdoitYlnPabGDjGanOIFT8BETB0HbwrwEArfWLBIZlTKsFCtRuMtattm56MkLWFNOlB7SvT2bMA3JmdwL14EpthDVMe6JYg+4+IuIX4OP9bM7TamOTgeolIHjn05dQLrk4MlkxiW56unTpAZW+IvVeAGUwGspRA5fLyIq5evohHLl/A+toKFkfCYuuVYWoWIiZdxMHhDLdu3cXdjU3s7e9ja3sbMwNJppJuIX3t75sWSs8BO+1rOU9UwbgsCXWCBLLuJhI96oiwMGxw5vQ6nv3wB3Hm9CqGbStBcZLx7kLCJCTsHUzw5tu3cOPWPTzY2MRkMrUnlFay2cJ9QJkNcm3nWzt7V2VH5Pe5gODy+TnPMyo5F4PHMIv1WRBU3rezQOH8ocIOlM9v1bpC/yXk+1gfqiBvZTOlub6abGXgynz/87qpW1/1we5XNcjOIWLzHQUpFRu6BJjLXHEe7xrglL8392x7J0H8HLZmdKlnuzi3tTrbZEZEmzB9GLkSeMvjCIIlL0kwv/DUqrmYWVbt84klEQIENM4LM6vpRwUpUdUH6gXudS5JTtr18FP5Jc+rJeMQFR0Ju0VRQXP6sF7ZlUjYeNXCUMlvEUe7V7ENZQ6KbPXP7tXn9T4ZwMOFMabozaPrsQA7KH8ur3TKxeTy+s/5eCD0xL4aHNPDtSwkEZoiS/VMEXrja/ex9Z8fZHM5r1FqXZKHudiG9dNKUoi8Y0CllZUVOV94gtOy4JwYO7t7+MEPfogHDx4UZlbUuq2ADnN7GYhIuLN+F29duo7dlT1QToYSO9nOoyYX5reyMsGcB8rGTOxaY8PNzDlU5tnWYbJkwmwj6RCxrgmwAi41MdIVyCWRJIuFGOF9g8aLvZYB72xnoAacGN10JsmL5BRQJICcLnT5LGcpHmXYexLYAzyzyruNlTGJ2vnQ9gn5uyShmfjOq/TCugb1gRZfltOzYZ5HLrZDLtGuyUfgckZ1CkSKIcKAflAb2tiwgpVB1Tn1tZ4AowEhJklQSFmKOJekZzsba98skZOoZkWtkgvUnmMUpjwrH577pWvde/Uhh5TtbWubzcE7ASVqsJLJWp2o1zs7VLeo9wvbR3qX6a56z02VpNRGwJwerH0sRJRL6Mlzy+ezX1nP2P2OFQ2Z91MijP/391/Q+6cLUioDc5K20FKHp/wrGNIU59wdnHEPADCWaR8NvTvgGGZghgFeCU/h1fgU3oyPYo9XMG8//axc3nucOnUKH/3oR/HMM89gdXX1yPkdkDUSQsDrr7+Ot99+GxsbG3j77bffM8YkuxYWFnDx4kX8zu/8zjuWoAPEL/Xyyy/j1VdfxZtvvon9/f13uaXH1/F1fB1f7851/vx5/Kt/9a/eEai0ubmJv/iLv8Drr7/+EFKPd74SJbzwzAv42qe/htsXboPdvPFyfB1fx9f7/fopgJSezYrGeQUnqDO+PuEYEMOZc6ZyfJnDm/Ug7rxD23g03mHQNhmQ1Dal7A5DwTuVw5G05FuISQNdESkKwEjq0Tu0mgk1Go0wHA60trseWNlKGukBnZVlIiVMQ8Q0JEynHWaTTh2DqbBi6JUzksqpHiCnmZWxn0EPcZwxUWb3KDTCnH08taPGgDG9kyLM6TA33rUzMEV1KDg0Dhg1wOrSAOsnV3DyxApOrCxgadiibRwYDtNpwMG4w4OdA2ztTbC1P8F40iHEhFkI0lb9L4HzIdycrRL4TqAUxK1QMQtlhyqRYaZggIacdWVOQZYsZ2P1aYjROsLioMG5U6u4eHoZp9YWMRoQ2tYDDMxiwriLeLB9gNv3d3B/a4y9cYdZFEkTgA9D46PFcW2uNaJeG1FGsfdefdX01fl7LGWbxLnieu/VoC1zuEAdO6kCqRUgVwLYVxOu4AImMKXe87OTPZmzqATwyGl5qQSpSEgl4x+xsMPELC+61lwNKinzRFrWkIwig3SMUcp2uexQUfCL1O3rjaGvHNzJnE52KfNHojqQzLJetc9J9Q4g697DytTZGEgJqi51stYSFLCTFORV5jXl8ndex9TlchAg6U9pLYG8k++wADQCMzh1ukZI/iOAyALmUjZI5oERU8jtatsWg6ZFo5lCiVl1lOo6IvimAQGIgdUxKKxwln3tXCmNJ2OjYLA6KGOyCkiQkSvZsY5mBq++zOcyfqjXiCmkBCvxZoAV003OCVsWAeBo2drqFEUlv06c5ObsJHXc21wcDSFYUKnkvjMrQxfUd08yLwBrZrmMZ4LcX9i8bO2Yw1gcvD0dkNvh+07iaizqoPl8kDJVTljx0qf8nVTZ6z0Ag4L+rOeJbZ/h3jjkwBGkw+QJC6MRhm0jQJGBR+OA6WSKEIHpbIq9/UN0XYAwsFSgTS4sMayObvNpxpgQY0SMHUIU0JKwiXlhElMwY9N4hCCgGwPHMEmJuwwmVAdx7AISBOikrmzAHPcWAGMJUlhJVgPLSClTFiYlBmInstW2LZglg8iR0/JpEa0GFRIYnIDGN5jOpoiJpeQiEzgGtIMGvpEgQ+sbzGZTxBgxGo3gnMMsdGAIwAoEDIcDAIyuC+i6LuspIpczb0W+jbXR99j4iITxJ2nG32A4ELshiX535LKEi36VqNZkMhMgiyeVZf0MVWUJ1ebKIG/v8/yZbrSsZ7OtLJgqIEMBCXUhqU6S+bHAhNdSELMugJPoVZCGFdTmkNqFuuc1Hswxg5aaVkrwzoOUHJWSr7Yv1GAMWxPOOTRO7KwQBIjKDAWR21oq7HX1Gq2BxTYXMhZRS8JZJjVlRsH5AIWxh8hWV0EVVLU5aKCCJasac8G3mq2plgcym1kBe9b+8rmin1PkzEBJ3oCcRacISEl+37z//mRSKiClEiyRvzAXgEEVNAbmfuTdqKEE5xgn/D5GLuBMs4WRD1htxmhdKmU1q++ajW2vmq4xcBEn3TdA8CRgSgPJmV4reyU0EGVBT5HbEBmz5HC3O4nrswvYjcsZjFTvbHXgPdOuUCVn73hM08/2olfVfatnUfVu2b8ecsdeNE3ktfENRsMB1k+s4vzZU1hfP4kzp9exuDDEoNH1S4QQEmYhYjzpcDCZYmNrFy+9/Aq2t3dKoLLqex1Ak31Jg81cSpPmI1YO+FVHo2r59c6h9l2VHO8IC6MhTp88iUsXzuLyxbNYP7GCVlnqAGFh7RJjPOlwf3Mbt+9s4Mat/4u9P2uyLEnOA8FPzc65i+8ea0Zk5L5WJlAsFFkLAPaQA7AhDUAggoEQZD+S0j+g56lnfsOI9NM89dsIHygUYZEiFEpPEcCALDRJ1MJqFAqozMrMyjUyM1YPDw9f773nmOk86GJ2rkcWs0CgMgpwS4l093vPYouamprqZ5/ewp2d3bKO62tqEfX9RN2/wKk+/6TysJCG7VS8sbaPqK8x2WVoKsryrWqeysazmgwDkj7UgzGXd9fgKCIqwcyq/x04ggLWscCrTbkaGuGBdXuf9yt5WjazM8lbYvNUA9T1OC/v2+qG5eyCMPjO5V7nl77XQATD5+tawslr5LaSN9DstRpEWcamBpAJSHl5XKVfxSWQdO2EzYTSZrfNRP9nzlovIMTogIjSF6qjtI1Bgd4O6GADfBRgVdFpZOeHylwqKnTwjiI+1YyorpXuKVf7XF26p/TSw4Lm1YSv5YrLM3yfweUddstQTri0GT4rqr/MNi01K/OB/Bk+pqCBPMm787CzvM2lki6Tp/RwBUB2Y2XYS563q2rT4HtUYzNoB9xuOaV39Oa19XX8/Od/HhtrawXoHgmcEvok+4V33n0X7777nqQT1vYbZMnmuNWr6G+gpw53z93B9asf4sHKPjjkkqasYnoGlBkoKHAUegCr0jsEKEMPHOjkDRaBHjSv+KC0seb30MMXklI5C7Mx5MCNzVEHi6tPI+eMGKKyHKm9xnCZi63sG6Pqj77vETU1cwEbAgaQNzl9GAtIPRdCgIPZ3X5R3Zz1sE+omY5ghx9dKOQHyX4mZwP+cGEps3td2du7ywGJkp46oByQ0MtV6QRnRTd/SBF/85uZ/zIn6z+AkQf1dPm1eUxQG1nWvRiCAshrdqwy2LXNYzJpv8mBBK2DslrJob/a5ipzsQYkPQyMYGPq+kD19RCwWemienCXjQf/vYDVnFnfLxjqgRqgZPs2W5cHfaHj7LrWfDMDJr2y9lv1T/6Xv/5MSi0WiEh4PH6EFTrGi/EtrIVDXA630aJDRHqo3fzTKHMe4a3+JXyr+ypu5iv4WWRNGo1GWF1dxbVr1/DMM8/g4sWLuHz5MpqmeeicAoCu67Czs4Pf+73fw4cffvgTBbX/skuMEevr63jiiSfw1FNP4emnn8bW1pb7LJbL3t4erl+/jtdeew0/+tGPfsxe7qyclbNyVv76FAMqnTt37qHf932Pb33rW/iP//E/YrFYfOrnMhiL0QJvvvgmvv3Vb+PmYzeR42e3JpyVs3JWfrLyaUFKD+ejfEhxgAXUGaCbRWMyQuUot5QmFqiL0BNAGtActUEC8CGgaRql/42eix0ePJUNVJcTkjpIbLObk1BQJwYI2QOhbdNgZTrG6niM0bhF07SQKzKYMqJ6uGwD3XcdcmaczBeYzzvMFh26rkfKSn6RGcS5AErUiZeZgSDgmuL9CRKc5l7YVqg4vdSzImwhXNhdOJdzQ0ZXzESa3ozUYZndIaGjKynwbBzUoRAIiE3AuI3YXBW2pPObq9hcm2B1OkaI8v55l7H7YI57eye4v3+Mw5MFjmcLdEkcLkIjnzUFA/S0GoHIWDeyBG88ZZZcb6AP2+QDZQudq+A3WV9mYWUwpwEBGBNh3ARsb07w2MUtnN8YY3Olxeq0BSB01YuccXDc4ePb93Hz7iHuH8xxskjota+0E4EQlLUnqdNFWUSUItoGjnRsWAEDASXlivuTzfmbeBBUMwdwrhwk5rQ0502oT1VpSaxsGxYsqnwOfopemboEUpBcPurgLVA7TKj0MXJxqJojnIR1CkofLvdaqp6o8mgjUZ4vwD92ZwncWStprCxFkvWHsby44x9F3sG5YkcJzsxV+ok0uCtOT3FXSruTgqvIA9hyQpM5+zjl3GsfWC+SgITITltqSrVAfnKQVW5ZGVCgjsXEWZ1d2rZeTjiHIICglDtNqQQAjQYNhPmngmAAWVisYgQ67fsWTeXmlp7LnIUOPglDUO4lXRwByClpoDpAD0y6g9UUU2BxrOYgQKaUs57os4CJsBURTAfFygMqvZW5zAWQMhVVG2+Lq1jaMHs/kQJASdmKNNAq9wedgeyOSVLHIpmbRcdTtIvCaLLqk8r5TRqsSupYDpoawOoEGFjOPWwi/8ZwBEaC9CMF+Qcu4DUbe9Jn1OdeBYih6TlVj5SAlXlgZbwErCB6sdYfgNyLUIBiMi0ktRZpWi/5NLujkFn7VQMcwUBcJEGnk/kcXdcjBkLTkIJ+I1ZWWzQtATnj+GiBWd8jcwJCcFBYGxsJyhPAbAxcph+UAS0IgK9PqTCM2Lxw8FmVDpAlvRqBkFKPjCCsRpzBXQY4OLgnJS6saywsOpkZnQIxJC4g4CSCUIL3KYPTQlijmNB3XVkP1elKISMgCqMiEzgQcqrAkcwgElayUdOim3foFh1yysLmFDpJJxvlGb3KR2bGqI1IqVcWpQIeMRmTFFzCvpYUfGnjnbOAwmJUgKX2XiKVNkspqutVzkkCHApKVEkU6VSdXIBSRTcA0JSThJjJAwsWJLFrsgKxGQJiQggIkUFJgrYxBp+bloqNiRAagjD+QVNVssgPoIEf0ytQFocCvJH4MSmLUnGsUwWMhUBS1faA64CkgSELNDJkcgQEtE2DlBh9n1AHBkyObE0w9kHoaW8EqlIO2hyU+SGkmyIzsY0gCBijxAnLug/SYBoXvTQISqBqK5m8svcpOBVz0dgwqpSWJVUF3D4Re6aAIK1KznD5CJYB4NXNKeubYhP6p8WExgodow2MtXCCrXiIGIDN5hBj6jCOCVH3Ar5YEWDBeQv21EAk+yz7FqYwtcQgBynaptFUkwq8Vkh6qZvNJUkN0/UJix643W3jencV+3lNdBAK+2qVsQ8FxCbrg9lZ+mX53lTtcn/6/3VGuBgM50ABaVcADtNBVI+CgOovnL+AC+fP4fLFC9jeWMPG2gom4wZtExUYA/SZcbzocXzS4eh4hgcHh7hzdwc7O/ewf3iAbrEAQ1PsWh9X7WBto4Gl2f5jAxnU86dai93WLQ8i1P1IaAJw9eoVPPH4Y3j8yiVsrE0xaYMcdIDMkQRgsUjYPzrB3v4JPrpxG++9fx37h4cDm32gb9jma9XvJO8fsJNYMN32b2z6sKS3dJseZe20NR8EZ9/z4H8tFyQXlCBxeYf3A7j0uV9SYBZmG5aGqv7z+aDz8SFy58FPa5dd62y59cjB2waun2J7g7Im2RbLm8VQULVZGqWtdeC4vM5A3ChjVq8jENvV9zN6rwPmvYuLDnfZyzo+8ocMfRW0Zq76HHZhLQPV+OmYizwnlFFZssNgq6G9U1JzS3CfIVzQgKU7lErY2iH7I07Wr6L3pPtc+dajJO9k7V9lW1qSGG2j2eZwV0Q1BEvP9FHwi2txLfrL7me3ZUgftCT+Xg9bS00WbN9Yv9f0iQxJpYt8HrPPS9GhRV7cHvAHWD1t7OB+hKEWrTvW/AllVhmofNiz1XrgdbNnFD+UDbPfqWB2qx8jg+wAjvWfAUDq6T74hXB4eIgf/PkP8NJLL2FzY11tVQGDNE1E0wQ8/+wz2NrYxPe+/2dYdAttidkrpieLxjS90HKDx3au4MLuBXx0+SN8cPV9LMZdZQ9UxfZWA79XgPnDKGoqZ2WWFLtL+qQG4pm45YQiTyaCJCnJQgjocg+KEig3Zh4DeUD9KabLTS+Z7SDjXg6vBBBAAanvYXs06GEQk+ektiazHRCo0rVVQBkHyLnfyWxSlTFngSLvq3peFT1CQCaVCwHF2wG2+ibTf2yyTCZhxUdm8mQdbsBG17mckbPOSX02aQrMoB1vIpgYzkSMag9Q7ITi75IuIK0ba1+Yz6/oYW+TMiq5rh2IetHL5pcdaDWC+3/qQyben1TmqzxH1mIH6ZqsqPCW+WrrFfxgoTHv+zrulZQLlQS7fOWMk6ZHya+VN9js4+pjm/hLCp/Lk8yPtqzu4HX/61BM2zLO0S5GtMCFcBfXwscAgGvxQ6zTAaZ08lNjR/pxhdmYk17Ct7uv4Ga+IuzPP0OlbVu88MILDupZW1vDdDqt9uilmN5bLBbY3d3Fe++9h7fffhu3bt36TNNXhRDw+c9/Hi+//DKuXbuGlZWVh9YfgNf/zTffxB//8R/j9u3bP+XanpWzclbOymdbbt26ha997Wv4zd/8TVy9evWUvmyaBr/0S7+EJ554Av/iX/yLT63fCYTxYozP/+DzeOmtl/Ddv/Nd/PEv/jGOVo9ObSPOylk5Kz+75VODlOqTSqSnVITRyFK6EOy0eqPO/HbUYtw2GDXm3JcAbkOs6XAIoYkehOk7ASMlpVfuOgmIGjihdmYFc+IF2eBPxiOsTpU1qdENOGVw6gBIOiWKAdCc4SlJ+pOT2RzHJzOczDthN8iWWz14Khw56dNXDgrd+jmluvyX7KhQ7qvgMiv4qupMrrfLFiAEAmJhRWAGkoCeZE8fNHghzBoZLOmpcsa4jVhfGWNjbQUXNtdwYXsdq6stJuOISA0SBxzNO+wdzbC7d4R7D45xNO9woulS+myByuSn+IHi6BmeKhIgSNUUlO1/VEBLObVmp+M4y+Y+ZQN+ZATS4H4GmhCwPh3jsfPreOziJi5srWB12nr6hXkCDmc9dvdmuLtzgDv39nE4S5irk5ah0Cl1kmVOID2J53WFAQbkpBxx0nQcJTDq6SwMlGQnutm38Rg4BoiceppRmBRA5nAqznGrG6t31F0cuTj2iII6GtUpRkGexeLMsbkmz1o6RcPm6JIaBgI4WqYpRu57GAgLevLaHFxJHaiEqG1iDULJ8yRQzepYgzho1OHCnADW9HCBQEbRjeIMYm2n9aefoFPQkp9SrfrJJryAgtRpVhk5rA5fBjuzmTiKSJ360Plp11IZPmkEwMbcIfMwuKddgu2J2Vl6curkMwVyGatG8WRb6jELJAtACgBGo4h2HBF7GaegEI6UcpXCkZGSjJGlQUkOglLnq3papR+S91e0NIJcaNtZnYEBJXARAg2C19LXRbaF6t4AK7miUjdnV3Uyb5kNTR3u2XSieOEGgTd3YuvfURlUsgUGtF4pFWYYFSFvK1BOPoZQ6cUQQcxo/MS4BHEMMFfmDfnz5Ei6gQmDyyaqQJXdm7OtW1p3Bw1KXwvoynS9wni0P6BtEfp7DUyQgKCIoWnLbGoFGGiPEFS/CWjEpNM+EweusR5JWsTMESkzxgBCIwHZlekETRghzuc4mh1JGkwKA7CTLjMyHlnTjJk3mhlhPEKTszNiNI2Ad5wGiSFsQ5wdgCOnaIGoFY8hgoMy2CSbP3qCmIHYEGAA2SyAj6YhTcfTivNnvtC5wJi0I5EXBSmRjsfqqgTTU5cQ2oDZrJM1QfzyyMglhVZizE9mCmwJejI7IjOw6JJcnaVOAGGx6MCpB4IGRjKQmUBkIFeS4Ik5tFXteAAtCNDFmJSIAISMUWjRd9L3otmTyC+JDdLomjQaSXq4+bwrjEiWuqJynHddh1EbMJ2soO8Zi0WHru8xalv0Kcm6A8jgJGVADDILhV1EQHxtjDJGOWOh49ZETe+YdO3L7OCKxNJnEiATXWBpdk2HEETvyzokdQ5BQJPB1zhjvtSAoYISbSwCxRKQCkHlJvmJbWHJCy6rsZF5n/qMvrf12dZQ0nm4tLZ6QBEFUJWBZBo7M0jThLLai2B4+sL6WcwGXtVAkNkmHlSpAGdqUZleLIE1Dc6ocsoGRPUYhUc2Hu2ogstpWZAN1G97hIYSImWcbx4gEHCheYCV2GE9ztCEAh41liTW9ctlJ5X0SIXxoLbhiy1RQKrCmtQ0ks6ticGZCwQMkgEF6HqqGBhbAGPRMw67gA8Xj+Nuv43DvOKBKQfeELndJaUExcQulD8GbKuoglfLXhg3tHQN1bVVa61Pl1TYRVDgKSSJFBistsDqZIorj13Ck9cex+VLF7A6naAdBbQx6NpE6PqEWdfh4GiGg8Nj3L57Dzdv38bx8QmOjk8c+CgVqAAb9d8WIDM5tcWthNZchN0ss/loXcKlj6y1xMB4NMLW5gZefvFZPPnEVaytCOOTjVjKwKLPOJl1ODic4catO7h15x7u7tzDoaaPyFWtLXDrZoPbpzZ3w+AOD5LbiDn4wZpog8YDuffvvbkDuIuvJct9Sbbw+WXlafaqOlApdgkGZWBbk/+vvsL3MfavDo7KcNqYa4ou7TEXUS2FHbnca3aG10Gfa+HoQbMBYT3169V+XWqvrU1lES79xPoZaT+CGTZF3EYeCCAG4yZqp9K9pkNgALYlds7qfunHpLrD7rX21tWtQs0m77pOhUbAxMwCBh+yQJleMiAEV5/WzSl+FWOolO/J3+fgL9ujDkbyx60xpX+H8mLvLPNBzCR2+bI9zpLmgDPoVLa5FQFrVaDAchMc4BcsYZv9z4BvJo9DcIsfN3H5Bqohr9pffcimnGgw56zf7Rmm0q0rqO5Wb7vVp+iIPLisrol3dtlPewukGsGkyfY4tTplyN4VwP7+Pv7ke9/DC88/j6tXrwAw1kwBlrdtg4sXLuCLX/gCXnvjdRwcHIJrGazmvryqXq+BJjV4+sZTOP/gPN5++m3c277nbHAO1lH5y7oXKsAdb708Tw8O2F7b+tueo1PRD1CEwCAFXQFymCSpfBBJ+uZu0VVjK4c0R6MWnBTp16fSJiL3HUi9Zd/v4BmILcqAHvAwoL7wNHIuvoeSJqyMr/lF6vlQRK32nRTwISA2PHMBwBCK3mZS/czSDxTs4OcQHFQWXiiLtPgyKDbOtEshINj8humLoY1i/Q5QSbsGcqZ6gjL0szHSwf1CdpCzlvUa4C9+B3bwqOl988sKKIt0f1L20CW9L7tcFT081Oc+FloHcW2YrclV2umiBxhwFjCvcyVT8gzlvSZCMl8juALHwe258lRy+63Ie9XX/v/hqlueUuuEes3Qa5Z1kb32Z7Q06DCmOVp0eCa+h4CE55p3sEEHOB92MMLC155HqfQc8YA38SfdF/Gj9AJ28kX8rDEnbW5u4oUXXsDnP/95PP744w9N42ZlPp9jNpvh3Xffxeuvv469vT3cu3dvuJb/lAsRYTqd4uLFi/jKV76CF154QQ+mPbz0fY/r16/j7bffxttvv42dnZ3PtP5n5ayclbPyWZabN2/in/2zf4Zf//Vfx+c///lTa0AIAU888QR+93d/F1//+texs7PzEz1/vBjjl/74l/Dsu8/iD3/lD/HOc++cpYA7K2flr0n59CAl3QjbxiyGgCY2iBEY6SljS+UByKa+bRpE28gBzt6SNY1CSozULyTFSN8rKEkCd6xOf9ZNowVoAGi+ekbbRkwmY0ynY6xMxpo6CbrZC4iNxN9yEiAMpYi5pjFZLDocn4hDve8FrJL7jNrJ17MEJTLkFJCcvM4FwGGZr2Ap1wqowzfaZCwopG3P1fXCHKF5jxAoe/CCGciU5HsNFkr6ql6CKG2LrbUJLmxOcXl7BRe2VrG2MsG4kfRV8z7h6KjH7sEhdh8cYefBCfaPF5h3C2EcooCUpO7ZwUkJD9ub1g7FAuIiAAJWCu6ADyCJdsAczuZUDeoVoMAAJzQkzqrxuMW5zVVc2lrBpa0VbK9NMR1FjCKDqcc8EXYP57ixs4+bO/vYfXCC+QLoUgIpow20Olnlxp1FlXPSQAi1oyDDHMTscsVIkoqtSqFW/NXm5Kwcox5oFmYeT1GmvycWB1ntQCaVJ3eMWDBTASIJEtg0Ni7JpKGBXZ0XQR1s5kQxqm9m9lN5DpCrnFPWXRy01dVJLpnbls4mANkcMSqnMJBF5VyGpXBj982aY6t0dUkxIKAr6Z+kE5uDBgU4gThoe3W+Gwe4Ps9OBvtpynpe0ZBu19iwAAiTEZHrp2R9S+pYzaxpLKHgEQHWmcPaAAokXjQ5iaulBr+Yg11uS8hIIMpo2gYxiMJlMNq28RRIMofsJLQ12dIDCjCM2MB35mAKEnTUNqbUgSi6o1f5gkQmakeUBQNcV5k8C9iMQhw4SNnHrfQdozj77LrB6VCfLxiAosSHN9QwmYUxzt4BVsAZie5PKHUM5vHzAC+7g5MqmbMgNVEBhxbnYgV0MznmEsg2cA1rXc3hbixRBeQUlEFM3wN4QJEV0Esxit4zen+bIxadQECIUdtj819k1TUF6RhzOdVrTnF7b9Z1StKEyanQJkSkDBAEoLQyzlgserQnLWJLODg6UabCoHqR3emeGT7Wdb8BAooFdc5GlPqZplNkZd7LiLGV5yRxLlvKuq6zAJICfvQZmQuYgELUdIaSziuypCAjJmAUtd2iA3NKmB2fYDqZom0i+j6hVzbARccIkPRz47YVJ3CfQCMBg1n6hZQSQrS0khJ4IGWNMh2amdE0AQFAj4wYGqjQAaQp+VSWYgwKlICPFZS9TcB/4nSPISA2mgZO08TGQMghqexGBc2UdQLad92i8xQFyfUOHOyq0x6cWdIvLXpPQ2ep5zSMg0CSwsosQbGdFJipc8DShHLPCBke4GmaiKzp//pgDFsMyrJ+GJOSzTmG6IMYG2l3v8z+oyetQc60xmyBK1WMCphy3QNZTgRgEUsAsHLIM2f0PSMlQNSs6JOUk45V8IBd0HEVnVoxw2mqCyKg63tkZcTxIBhgBBe+zjlg2FgIneWgrFMCAk2qK8OwP1A+IwreZuh6DQcwcBkjWyc+Qzr8T1OECRQeXFsNM4xCwmo4wbnmACthjvV4ghCABr20LwZfZ6DgTbOBbE0yGz7nMn/dXilLIAB4cEgtd4QYHJzUNo2noTE1SJaeAAEAAElEQVRAUwgqOWbocEDKEnLsE2NnsYJ3Z49hL62jy40GBytbsVpvrCYePPc1adhPbmnV8aY6qOTrsNmp2aN0clWqnqXrPCyALM8KIKysrWJrYw1PXbuKJ65exvbmmrDxRbm2Z8aiSziZz3E8W+DGrR18eOMmHuzv4/j4WNJDKpOo2/26B5DqVet+ZT9C1y6GBRzra6lMKDYbpQ7C6dyCtCGGgK2tdTz95DU8de0qNtamWJuO0IQAMe0yeiacLHrsHRzj1t1d3NF/u7v3C1uujncBdBSbwepsbfJPyasIwNph36kdxirv/uRq3P2aoV1pwXrTeWoauq1kt/pTufxudTDRydX1sD2I2SREpZvBlYjVdm0BmdS2kwSJSz9YoLfqMZVHqWig0s5Bv2qfD0xEb3uZtdVTvf+q7vA286C9ti0psmd24zAIDNfVsqXXva2t31bLat7B32X9U/YD5ZKy76zH2bqN4R0Gb603yr6wlKasutBsc00B7fqmklezN1EBw+px4xJc5wqU5qlTH6JzQDz4c1hcSquPSEV9OHa1fBs4Xupe+tVu4OGjYHvZ02/W/REVaJvrItXlcDu6qq+rZK7Gq5h5/gmT951Xzutsfxc73w69cPWt10M/qXXeYP+CAnIvuoKUGSZXTyxtqPc2BdRSgHtVB5Y2kF0/6HL0fY+3334bFAiPX72qOlEYQGPToG0Zj40uYX1zDa+9/gZu3rwFA2Xba8AGHLGxNuYv+X7jZBM//8bP4+PLN/DBMx9gTnMYIKUAXStfB8MPhVEqfcWsIBrrb99PEGLF6ma2NLMdQ9L66fWcEnKQFKDiu0mwNI591zmbadMSUpJ9WqCInAqozupPmRy2SiqHNVNbCMF9oq7EUXRtkQf1mQAgWN8O11VWWTNfkY11ANRXYWu+gef1EsgBkWDMol4qHcZDmbUDRHV/u2zrWNuBCmabk2zGt+tdE2mrme3vAyIysa7t8DXNK4xKt4J8DwljE63mQrHxSNcFdvmXfS5Z4wbrrN0/0DvVmmeyRNrPsk2vDvDpM4qegd+77IuQlIXFXvf31nrvIWsjD34pz5Q5V+uo6rlc1ihbXhxAPXhfpUse8RIwZDs6H3YwxQzbYRdPxQ+wRXu4HG+DwJhghke5WcxAQsSH6Ql8s/tFfJiexAwTAI9wpatCRDh37hy2trbwyiuv4LnnnsPGxsYnylLOGe+//z5+8IMf4Pbt27h//z5OTk5+yrU+XZqmwWOPPebMSePxGKPR6NR1zIyu63D79m3cuHEDP/rRj/DBBx+g7/uHPPWsnJWzclb+5pXFYoGvf/3rAIC/9bf+1qn1IISAZ555Bv/kn/wT/N7v/R5+8IMfDHwh/7VCIFy5dQW/+7XfxZ/8wp/gj/7eH2E2mf2sLJtn5ayclU8oxJ9SE/xf/rtfQhsbNG3EqGnQtiMQAU2IJbgP9oBjIEnhZpvbPmUJIvYJfZaAVp8KsCKzJfmp3D/MBfQB1vQ+AeNRi8l4hMl4hNFohBhIAQiykRNneUQMAAUB/uRMyJlwcLLAbDbDfCHpcVIqDnVOw6CGpTYZOrsAsAVXFcjiHhlS9pIhgGJwUqWKlLh7QTf6kST4nEHICmxp1JHSRMIoAGuTFpcvbOHyhTWcP7eO1ckIbRRQTWLgaDHH/f0T3L57iPv7MxyczDHvO3SsJ6mZxdFG5IFLZuUF4MIgZM4lqW9Q1pvkG/Q6hZm1KZAAqTJLei3ZDSrdPHqQktKPI7C10ko6t/Nr2N5YRUsZKS0waiU936xLeHA0x8e37+Pu3gn2DmeY99IGJcvxdB1AVFaF5JtsC/48FJzwkDGxYKM5Lu30md0rPy10W8bXnWEkgcRAsaT8IjnFZUGh7HTfKgDSayAF7ZnzVxxIoYqFEIRkIlUpsAiEqE5MTX1TpcVIuVNGq3ICVMQ8oIkK9DG3IxFgqauQ5VSY0QlTfWJQ3+uO0ACijBDF0eJpDRTwEJWZBha0qNouQdyh6rGrE5fxCpz1dPNQ3uRf7ZAsY2ogwMTGpMVAzmiCvVOeFUJx3DCEzcbAh8lAUIDrBWPxYH2ngOI0VRxXcgRCn3p0Xaf9ABCSpqsCYmwRQit06DBKcUaIUVJKoaSjsjbnSpYDCExBTkByffpYHE4CMqhAcVRSNlngVsA4NqblRCgRlXaFIPTuVd/GGEVWuQDvhgAtwLyJUi8F9wD+HL9eGjcAxDgwBEX/EEWY8z8GY0MoqTkihQLgqeYrIE7gQMXpa6WAJiztSvk+6/sNsGRj4AFyd2bayVf2dBAMkQtzFFtaK+Ys81/ba6nApHNSAZgASFVdCQRW5iJQcXqXfhZnsYbR3RHdNA1WplOMmhZrq2NMRhE5J8wXPY5nC5zM5zg6mmGxMOaZ7PpHgKglNYEBuAAJXOQsQN+UEmazmc8HK6NRK074KLLd9Z2AbIO4WvsEBf1ZmgOVeVkunMWn71llk9E0DUbtCDn3mExGSCkJU9BopCnJZDzn3UKYm2JJZxdiBAJhrDZL1/Xo+x5EAb2lVCRJy5YYyH3y9ddYsJpGT2szEJuIRhl3+pTAykplMuK/BwlkhCCns3PO6JU5ro0RBg7NOYMiMI4B3GckfXcbCR0z+iQC1ygzkZ1oBiStlKVsoQBnUyoSIqBVzS6KKMrIneNEBIqkJ+yhc0KYDbuuR5cMNK7zTR3/jdpiMTZomhb9osfJbIasLFpBwT85J2UBFCB600SMRiOklDGfLQSMBDlFHkNQALqtI/DT2sIoJQGiEA1k1uj8ydrXwpJU9FF25jkJZgigyuZzrYtszTcbM6eM+aKDrXdE0o8haKo3XUdMdvquB2cuaWJtXlZ6w+aWGDDSDgcUUTmZ/bDiAFE2gJ4BxUXrFAB2KTln7O0ePPR5n3X5f/9Pn0PUvg4hYLXp0FAqAHMAIuvVml73ARcgkqUSrkFBBiyyUoI8w3UxkKxpTZRU1MauVsUMtQ4qm1TbG4RZz7iz2MA7i2s46Cfoc/C6g8u1Fger16F63az3CoPgEg2vtd/rUts9HvlDYQww288ItwjAZDLC6nSKC+e28OQTV3H50jlsrK9i1DRiM+oBkUXqMZt3ODzqcHB4go9v3cL+wQE+uvExUrL+tnUI3mazSYLX2WuLUovqUMgwkle1h2DME/IatecUNN82DabjFlcvX8QzTz2Bxx67gJXJWIAwygYIEPrMmC96PDg8wfWPbuJH77yP+w/23fYbvppcXuovGMPAXQ0UqlvmPeKX1gcU/GYMR2nYdrnE9hvswVOu+tvY2siUiwV+/YmMInJlHGyfw7BNAVX/bDzqahH8AAtZLaztQQ93+M6rCoJq0L6yuc2O85fY3qp6qW2nNSMXTHmWoDF5Q8zq8puqt9hMrDWlW4lUriv2XwlwD2dYseFKfXWe1k2Df62yUqcDtrld3leDv6xX6vlfW9Oi65LaFfb+cnDDALplf6Z7LNd1w74pICsMxsvVx+Dt9Z3y2XD/X+ZFDVqwv4sdXw49mC50lsFqbIquM11u7Sp1GKiTWqdiuAfwfSHBx2Ewh1HZG9Xskr2NtaH0w1CP1d+XP+gh17kMuoAM52tdoWHteHCvyKfVRRm3bewGKrQCrw60BlT+yise0iRkTxcve8cnn3wSTz/1FCbjCZomYNRGEASg3/UJ88UCNz6+iTfeeBOLrteuMLmXupZeLGuWH/wDcLB6iB8+8zrur9+ve0RtBOkLZ/ZFZVdB9lm2R3fZsv4k7Xcu4G1Z9xt9pgCg+673vbLUX1k72VityfUQiNxW5Cz7ALOpDTAk2U3ZU/SikrOgz8jqP5C9UekPt1eq+Vz0k+5pALd9CGUva3M+RgJlOwAm+yomPSzKpjdsLORdluaOve+WQYPFx2Es82WxK3ZVmb4EJtm3m31c61gTuQCWwyFEwrbLZa8JUh+JVUEZkwzY00Rh/+67HjaBTBYcju3Tjiu/Ial8GQsygXzvBj90MPQVDn27y6wAtW1Z9Idcm5IdQDH9XPbXte/E9oXFfqz9JYV9GIO6kY+XVmT491JZ9oUaC5V/DwxY6O262f9j/tDnfZbl9v/r8uDvzfAAY0g9P6H5j2TpOeKd9By+sfj7uJsvISFiaXV4JMva2hq2t7dx7do1PP/883jssccwnU4BfLL8HR0d4c0338SdO3fw3e9+V5i0P+MyHo+xsrKC5557Dq+++iqeeOKJh+6rreSc8cYbb+Cb3/wmPv7441P7srNyVs7KWTkrpbRti1/+5V/GV77yFUwmk4des1gs8Nprr+H3fu/3MJ//5PYGg3H78m3877/5v+PDax/+LCyhZ+Ws/I0rwx3HJ5dPzaR0cXsLIUqKoqDBUqct1l1tZkavm/Tcd+A8R5+zOtjYg5u8tMFadlS7wwuQIHwQMNRkOsZ0MsZkPEbTRGWyKAEF80XYJhUUkTMwW3SYzRc4Pp5jNu+dDYiZfcMO6IYw15tQ9k1/2XhXjldVfllZLNwXwnqeyv22DAvWW03LaTFATjtLcNLeG8BoqUHbNlgbB1zaXsUTlzZxfnOK9ZUxRm0roIZM2D08xr2DE9y69wD3D2Y4PJ5j0UlwUzbaWVhrIOATUievQroGQQVz4tSU23IC2dxljBAadVKUjUV9gsedgfIkBAiQYHXc4OLWFNcubuD8xhTr0xGakTgR+hSxWETcPelwb/8QN3b28eBghuNZj5TkVJvFoAikaWkAroAx1te1o9jYDIAwcCBYqR0EHjB0acLSdVmdl8qMEdwlCkKoAtVFfk4DOIal5mUq9QjuxNLGgStnlgWdaqcQijsGBkIhFrYI2WgZ3XnWQ5j6EFJHMUNkP5gMiAMqmjNN3lSBBsUJiVCcv6Z0yJxwqisYVn9zuOVBfywHDglDJzrM2edOG+8wTeEkzpR6Q8maCsydPLB+k5qGigrdnHCSYq2kYbK5X9jNBBwkQMIMAc8MnUymQ+wZIUQwMlKfEQNhMhkjhiisHhqgLfJFwpoTBJgi7BmlPwBxTkqgO6NPjFZTJFm7M5c0Q3XJmqbG5rXJuQVda0eaUJDLuBvzi/WlpZfyPjNncy5ANmO7qotTrbsMQPVFmYMDh507GgtYz76zuRFIT7Oaw9+CYqj0t07l5VOFAPxac9jWjvRIJIAidRhaQMpdtRly2lPrZuFEGbMKHAlrl65VXByh4AyKEQxSqvuSXpQg8zUQwNoHDIaxmPKyE9SiAUQQgE+Po6NjdG2LnBP6aYvxqEFsGqyuNFhdnWJ9tcPOvfs4ni3cKQoUQKH1ub3D9QoFJcsjjNoxEveaKg3+vekX1t4R5iRNH5ehjnsZBZFngAOEdcrnMSk7U5JgyKKHsAhoigKKODmZI5CAiCTNq9CdEEkAO2dG1/cIHNChl5eTOmB1PLOlLAgCrE7mLKeI+VxsGANPEATo0zYSpGljg67rPJUEs4C3ZPyg62tQBsaszGfwNcSAZcwZXZ/REmN1FBBJQJZdzwAKCBKkYDQSPROIgCDAWEn3JykUzWaJMbjDOVmatGCOfJuT8HqDBIQFT48hQaGUS2Da2Nos7R9A6HMPcbxL20JoRc8k0SnGvOXgdQCjcas6p8xtwT2IjopN9DSjpOkc+tShIT2R7UtkQNM0ICTklJdYBk0flXecBnkUhsicgcl4hNC2um7ZPUn1nNwjIEYbOwWCkQJW7d1cTrYHCoVJiYbrqKRCtnSTJbj4Sc7RymIoc5OKbvJGPcLl0krva0EJb0kp+h6espU5g7vkwNQ68M/1jWqHAqjsbSuiJwVspKxJTYPG0lGjgGp8L4F67ZDAY58yFn3GvcUa3l9cxW7aQmJakq0SZJI/1R7UelIVQCJro99ZAsTlrqHd4z02kBF7vlK86kJtYIYYIjbW1/HcM0/h8SsXcW5jFWsrY4zbqMwsMk9OFh2O5z0Ojk/wYP8Id3d2cfvuDg4OjnB8fOyBWEZtdeoaTxjU9dQez0e7rPMW9CygmXrclJnRblPA8ahtcfWxy3jhuadw+cIW1qYTjNsIjd0iZ8KCA2bzjJP5AvuHJ9jdO8D7H1zHrVt30Kc8qJMsoZUsUbFZ6j72gC4FtwsH+wlrO5GCbMwmdqkY7gcIGMxVk98aoOS/Vdct1atUu4BiSp/ZGNHgFtL3cS1P1nZppdfa1nS34/2Opfnn7ZN1oKT/lecGf2ep10BTUfm7PLf0oNk6bG0a9H1p19Ksr/ajBj6jwfx0sBibVA+fLeteGMxTb/3AXsLgW/+Q9c1q8xTRK/uS5X2pyYL1JQBPB5VTBgWgDVGAvuo7MLupVkNmSw9BSPb64POOGa7/isSZ/A171cAyZf9kbafq2fDvXUuQgaOrd/jgnJ5nw3WQ/f/1tBkAAuya5fXP1SFZh8jHVOpClUywTYLqrfYe8q9q6TVQycOXXqr73erCdWtsJlX95+23v4d9ZG2v+6wGi1HVD6GqX12RWrXWzQkmQyRA8fffex/HR0d4+eXPYTIeg3NG2wrQvmkaNE2D5557BqNRizfefAtHR8fw5pleGFZc10FSJlZg/WgdP//G53H98Q/w4ZWPkIMAf8znUfRmpbPqvQ+z22cO9iNba0sNck5gIqTc6Z4loNG5kzIj5V5BTJb+23x7hBCiMiix7mOSr2HVQLisBWVJtb1sVqZXQFk7ETSNsYA9AwNZ9+cBxpSrhxKomiuqUwa2jqWi1bHOSfaPTZD9LAD0qosNBmV7oOG8NRCSUcXX64D6WxkwoJLLtqlQlaohsxAX45nLGlWmvvgZ/OBOJbv27qAH28wX5HXVf7GJABfGQFFR7OaSHQLQbvdrCzu1LrtsNjk0LfRQ9oqO5crkrPU3ORM7AD3coKCyvKyfuPp/OfhlMptz0X+1LeKgRO9iGjwHtLTWL+nXTyrL+qEowYcotUekXI53Pusq/IULM9CjwUfpGr7V/SLeTc+iR/tZV+u/WkIIuHz5Mn75l38ZTz31FMbjMdr2k+udUsLBwQGuX7+ON998E7dv38bu7u7pdfozKOPxGJ/73Ofwla98Bdvb2xiNRp+49zY/yb179/Dtb38bP/jBD9B13U+5xmflrJyVs/KzV7quwze+8Q3cuXMHv/Vbv/VQoNJoNMIXvvAFtG2Lb3zjG7h3795P9A4C4bHbj+F3/+Xv4ltf/Ra+86XvoG/PmO3Oyln5WSyfGqQUQtRtraQYSWzAo15YfHJG3yUkpUe23ZLjIVC5YgKEOcKdTENHpW2EY5Bg4MpkhMlkgtgEPW1vebyLIyDoRpHVWbdIHRZHC8wXCxydHKHvE1JfmESGgBx1VFUby2wsLL4RzBpkCsUJULFfZE4gBE/5Y04Ed2prSit3iBG5Y4jUOUEAImWMI2N7bYKN1SnOX9zC5XMb2F6bYGXagjmjSxn7sx4PDg5x5/4hbt3bx4OTHvOFOECEVUmd8CxOFrAExYRVpAfDTnqRODcGqYOKc5VQ5bQ3Vh4IMwIxmadNKYslmBgoIILQIGHcAhtrU2xvbODKxTWc3xhhbdogUkRKcsJ51ne4/+AYt3YPcfPuAR4cLTDrBAyRU3ECZtiJXjkhZkFbcx7kxE7fXJwE6nwV7/gAFCJ9L30UWH087kxVJo0qbQpRceyguPzcwVpSiOn3dhQL6nwIA4JxSd/H6nhmwNLAmEMk6HMt4Fn5eat3FIeQyT4gjpHUd5Wj0oBCkhIxu7MfhbUGMqZN0yAOvK3B5cMcuQiE4mYChql2jG0I6txTAJH1CVQml+a8gWHq7SGzBMWD6h0RCqhTK4lGqpxSgARGmDQYqVORQkB2Rxp7AF76DmAogLLvrJXmtkaCULoroYmm6KKBDnGZAsC5B0i+Symj7zukvsdk1CLGDBq3CFHfQAU45Ol6YKltIKxWFDxFRtC21AEBmb6kp/9KijsLLImuYU0ZWZ3UJgFdBb8OmmJO509S5hgfWxIaYyI5lVkFBIhM/lkYoxT0Y8E/T4lWBehqB0UJ2geVbwFqMgsrFEjmTlCnNhGhN5aXShILNb45JLOsNXqP9XUBRbCf3LS55qck9SQ8haFTVOquQF02nRN0ijIiLIBpLAPZ54nLuzk5FfRlQTeTO3m/jjGp9zezO8uJgrDyyFvAynIXdB5lEHplXgOTpv5KaEcRnAkRGaOGsL21hvZ4hqPjGfpeTno2TQSfCrrD+09idaYnCH0OiCEhpySnZVMvDElgMHp0fe8OfgEPMZoYMV9I+oQYW2dv4lwzOUnKMJHtiJQzGl2DMgsTY9cLU1mIAUiaHgxAO2oR24CYVN8SQIHNNY8YgsqryL6krCRtg6yHPS/AKHNz1LY4mc8RIOuopItjAC1SZ2A51SXGqKOp4Yy1KMaoKXDlM87QVAsNMmWMJwGPbUzQgHDvoMMi9+h7ARQmT20owdIQBIyWkQANdJiNJcsDo4kNCEC3SD4/nb2ATe9C7LaUEdsGOTFSWgiTGATI7Y5/1etJ56+weHXISa6JmpLLwYOVUz5GSXGXUuesRQCckcWYHzIkTUVgm1/BU5ii7wXw1DSih92WSwAxYiOynnUtMQarbHZRqmy2XJgJk4KbiID5YqEMUY0ybhGIWhAJCF9XN+kzZBATxuMGgSJOjhfetzbT2WZ1KMBUxwSaFifSZS0ok1jRR1ZMn8YQQShrj6S9VTmvnlkCzo9eqdd/Ye4rwXjmwpTkOkjX3tM+bTE6mIvM66covQhZs0gCVW3TCMjQU+kBFtyWSwvwxp7b54SUgf1+go/nF3G3P4fDPEXKJaBzKsWer3Pyvdh5BiSyln+CMxwl4O2wiCoo5n3hNlcN9C6fBzDahnDl0kU8+8xTuHT5IrY31zAdSR8wa/rrnjFbzLF/JGCe23d3cfvODh48eID5Yj7Y08naVWxf9nSWNJA/ZudAKuOAagy1olw6ZNB+06cmx5EYK9MRHrt8Cc8/9yweu3gOK5OIkYJTJSMko88ZJ7MOB8dz3L33ADdu3sGtu3dxdHiERdf5GuDg+cHbWdtT2QI2BszVdQokIxrca+2kWgAxlMcCUDIgE+qB9J8WrPQncwl+Y1lGq+Cu2Xv+DlJhITd/fURY3+t9wOWZJSgLX69qwIgHUxH8OdIzVWtZGUewVHTPY/tunbzVBVXnaSex9at9640pbYC11fpF94PkeqEAzm1/4j99oHRj5PUp42pfk4IP7P3SF8spjtQe17upflolNzaeBaBPS+2wQxJVGsucJfhNCqj3fWeRW9dt+jlR1dW1rFbyYvPWZZvZA/fkHVCGiMISAI5KS2txZq77pYyttXkZiGT9aC/0QwdV+XHLWwEuVfa8P74Aysl2edb/p580FEVPS1feUQ2VHjIobNSo+sLGoZ6H9bx1HS6DArNWl1lxC0S0qqP93/q46hyyOYwKvGZrhI+76UTVE4yyn4D8fvvOHTAzPvfy54DJxNMgy/ySNI7Xrl3F5tYmvven38fe/T3Y3m+gPwf6j33vEwCs9FO8eP0FXLh/AW899yaOVo6VRRNavyEbsMgGo4lB9oNU7OOSXtUO0VTgYO1301sM2evagQmKxe/FYCAENI1UIqCwpuoK5sxbJt++x+ayvpX0dfC9ANmhSHsGEeqDC2A5dGAjHmrRAnRPX+YCA6BcfUCMlUmDUSR0PXC86JHAQ5Y6lQDzDaSsc56KXNVgTANbse4/XTHYA1V25CCnyF7qlYlPDzgYQ63VOfsfLAc5Klk0GbRxN90NOs0eRTZd3VCqtDiXdYJ0r0R6cNbkxkdUn+eZ0Pzvyn9o0sEqSy5nZZ45+zZLSs4QbL0uKRELUFYzCrC8p4kBvbL6Dku11lt6P/hWy/uh/G6zu8hkKaorQqXEbBgrg6DWUmflv70wA3fyJbzev4o300u4l8+jhzIDP8IlxohnnnkGX/3qV3HlyhVMp9PBWmOFWZiTDw4O8P777+Ott97CRx99hKOjo8+g1g8vGxsbePbZZ/GVr3wFly9ffmg7ALO7Mu7fv4+33noLb7zxBu7cufMXYvk4K2flrJyVv+nl9ddfBwD81m/9Fsbj8SndS0R49dVXce3aNXzta1/Dxx9//BO/Y+NgA7/6h7+K599+Hl//H76OuxfvPurL61k5K2dlqXxqkNJ80UNQ5Bl9zhKgqYMIunHP5o3yDWjZ6BqwyAL8AeSbONkkCiNREwnT8UhYkyYjtE1TUq+A3Skhm3bZWKaU0aUefSfU00fzOWazXimDq1PwuhHLnD1A5c7gih0JzH5iSl0s6qQ154Tme88MCgLSssRJTGyRF6+jpaWo01kIoEdomVtqsD5pcX5zBZfPreHxi1tYHbcYjYRNIGVg7yDh7v4Md+8fYnf/EAeHJzieL9AlSBo0BkjTizFXgJgKmOWpYYiRuIcDuypwA7wL1FuF6uQj12ArOeFlp2NtJ9sQY33c4OLWOq5d3sb5rSmmIw3kQep6NM84OOmws3eIO7sPcO/+EQ5Pesy6jAyUE1qABy6ZjB5bOpooIEJT4KRc6ghUtN9GaS3SOAwkFScWKtYdqFP99CkPdVTEAtYyx0zOkqQpgKRuQcBzDhYDBv1bg+EMgGQOkAKkqx2NwefNwK9p35NQtEv1h2nNrO7C/BAAkjQnTOSOkkikTiXzSMPTfWm+NalFkH4X2u5cOdjtCgEUMBc2ABsVH0+qHOFWef3J6uQxgEZQINEQEFNSBMRgQCOTdg1aq0NNmGv0tGY24FQVeOECXBDQCRBDNfaBgFxo2Y2yHITSx5WT3djiuqSpLfseXbdADA1iOwao0dN55aSrnYpLuYR3xNGm7SdxcJmDMyCAA8PJigjeLkuxaY5CG19hgFMHmt7mekk61h3ZcEdu5fjWAAlpIN9ltxLGIr/J7we071O9VpT+dWehOT8ranwPumvEz5z/nFlTPgrwxSIg7oT0FIdZdbC8y0BNBBRwUGIHr4jDmwCSeZRydtCjBTGgTneTdfWpyrpQFg93PGdLV2hDVYG1pI2nHYdJAx2l/aTAOwWwhejsBAYUCWSOce1XXXsSGEezGVJO6FPEJI8wHo3RtC0oMNrRFGtrK3iwf4S9vQN0na7hllaBs59eJesf/WnAS8ricM85D9bb4rCWfkqpBxDRtgKyoyBMaIEAVpCMObWFgl/eGqOsgZlF/3jqQyqB/LZp0TQR88UCBmBjzuAkAOsQydd0mb4yj3OfEGIQkE0d+qE6IKwfBaDV9HS5z8I2xAxwBTpmc9bL701owWD0CtxqoqxXMQb0uZcxykkCFrHBbN7j4OAEG9OxAEV1njkDoo55G+SEdE7AvFNAnLImwXSv6TciH0sRM2PXE4CmgBsZOSXEJsop85Q16EOSwszmPVngRdqczAGPsnYVRgcV3xAlkAo7La1ren3SmuFMQw4CVwBB00S0bYsYAmbzGRZ9RgySUi5QRNct0PWpyD8xmkbkMfX9IBBgQSpjtjQ2NGOAIwWfMYCu7zQwU7XL1kEFTdrCJ6xuPQyca3OcLTAWypyX+cNoOBSgo65R8ryiCwQkbraN2NMmkyEasFPXy0G6s6G98aiVPiW3JW3fUIPKTf97X2IYQ7HPpNieg/w+v0bHpokRbStp3YS1YHidAebgcqr6IWcsEuNut4Zbi/O41Z9Hz9HrUgMIThUzENUALelt62At+diW64fPKyAl+2F6Vdd3BVSIWEhqlZXpBNubG7iwvYEnr13B1cuXMBk1CJE8Fc3JPON43uNoNsfh8Qy3b9/Be+9fx4P9A2k7cyWKtlYVSLDsiVDJZhVEtM4fdIetT7pOo1KXVFsmZjqIvh+3I1y6cA5PP3EV165exub6CtqG0FiacSYsesa8TzieLXB4dILbd+7hnfc+wM693SXWJLhccRXwJ7Z5GRTQYjZIsWuZ1L4fDNdw3Ansc89AD2QyMLgOLrPkdy49V+UD9t4S1Rw8zwAcxOy3QOssj7JnGXSm+t5M2MEo2VjXAPx6HPX+YLtg03XVnLSDFyDXZwbM9oeovWkHeKonD3qKlj+yb3S+lGlm7akuZv/fYH/o7c7lswIsqySxsh+9PqbGq7lxqnPqtvq8QRlDuzx7Q8p419/r/DCQrRx8SMq+ImmOsvotBowmqBhFqi7xtMi2z/Pvqcxbbw85KMKrd6qd9qexnhadPdBX1TvKs9g/r3ro4fJbfed1reaprRv1GNeMJ/Y830f698N5XIOGyn3SgWVeyt8GKHC9pvZqSfA+EBL3m/inZfr5e0wn1WuB60xZGE7JY/27yRgPPity9bAh9H2V7ilMbmoWW9PVd+7u4GT2p3jx+edx/tw5MGfE2Gj6YvFnndvexFe//Hfwox+9g/fevy72C0j8YmXh9LqS6UEqwLEL++ex8edfwu0Lt3D9yoc4WT2utJe0Jas/LuqBHlLWcOtXrjbIBiiTrQ05eNF6wvd2MJtNAO5JaD4BaIpq6w9LO677VRtzP/Co+wKXtsrHUcZV6pKUJjx7XaqxHSySBm4h97PKARuuUrSyyw9F8RnMFz1CG2CrlzxuCBYkiN8DEDNS/JrVmBDKPnawh1dbOlTyTjYfDZ5vqbKzTRPvi/LIAhxMup+1z0/JNOmqo40RpirVk5VeOa2j1IohOQRm/o++l9Sx1l5kcrYrHZGhLmFefnR5A9XLM+kYD/165P1TrpHfijyKiqv8Jd67rhzLXNAfdowws7FkV4alDfyphbR+Xg1WHdrHQ011Vv6iZcEtrqcn8cP+Fbzev4IZJniU+zXGiM3NTVy+fBnnzp3Diy++iMcff1wBoqcLM2OxWODdd9/Ft771Ldy4caMcWPqMSwgBKysrePrpp/HKK6/gySefxHQ6PZWysS4pJXz00Uf45je/iXffffeMNemsnJWzclb+Esrrr7+O/f19/Nqv/RquXbt2yl9JRNjc3MQ/+kf/CN/+9rfxrW996/RBwP9KiTnimfeewT/9//xT/ODVH+A7X/4Odi7sPMpL7lk5K2elKp8apLR/cARmCxwyjMGmOJdkE2eOeMshzw/ZL3pADwyy1B0gjELE6uoEqytTScMQzdkkgTo7hU7+jITEPVKfMV8kHJ7McHw0Q7fo0bMAqjKnwrQCgJXtBsHq2sO2h6SbQq42ZLWzGRCadSYebOZSzwAFAdJAnBMSqC8bb3f4MSMyEAkYRcLKNOLS+Q1cPr+Jc+sTbK6MMRm1oNBi3iXcO57j8GSBnd197Dw4xv5xh6OTBRapnDjnTLAT6Azx1pBudP30EZUNdmHrkRbUgZb6FKZG9LS9sPw18o4gwX3OGYGBJgaMRxGr0xaPnV/HlQvr2FqbYHU81pPOCfPc48E84f6DE9y8c4C7u4fYPTzBfNEjZzsFrY4G24STbfR1jDT9TCBzKqCkUdG0OEUGbfNR2ii+BnNUmyxHgCKEq0kcauVkVjnFSVRTQ9vJV70mONzAHdEG6qg3aNaGlJM4Y5aOxplDxsBsJZAr4xmq+VQc/vIzRgP8aUCMRS4JDARoIFkBROZJoSjMKzkV5iZYvJMrxgsFQ2SB4gUSdqHsdNpsKkBnhaSKMw4ZBtShljx+ESBBoeyePxmDRgEIBjaysZCgmekeeY8AIuzEbxnvYHPDKdB5IE/mRGN1yIHUWavylK3PuZyGszRrWj0/PWktttSWiTP6TlIHidwlNO0ITdMK0A56P8RBGaKBs4I7WPtkpz7dZT4McrOMafbelk4OIUiwXPuDSwRRmEmq4Cyx6AkLRhZntQC2UlIWERQgZyb2E8kG6hC5DHoA3U6sBgUbKlNMca95YQ3eipPVxk7GzAJoRfdmfW9QkEMqulXlhIKAHZCoPIdkfqackXSuero4HbOUS9pK0zPu4M6hUhfSf8TKzkRV+g/TqdmmQEDipE5TAzXYqVlrFyFnFSaSNiBDUi5ycZiXACOU3U/BUTIrq3EIOqfkOptXmTPm3QKZo84RQowjtFGYtZpA2FydoA2EvQczzOYLdRQHBzIGNlBJCbxkZmU5K4FK0VniOE+pF/YeiL4DSxCjV/YRClHTw8k72lGDrusRAqFpG/RJUsiNxyPBCuaMTOI4CzpW7SgidVlAqk2DGCQ1aEqM3AuYiELGaDwCMWRe6vpbp3UUZkjpT1l7gjqzpX4ZwGLRO5gng8Apo+sTXP2pvo4kczuzgmeVXYhZ7Ie+F8AS1A4ZT8cIkZD6jK4H7h1nHHcd8iJh0UuqNeQeIQfEhhAiYXXaYtxIP/apRwIQTb2RgZIksJLVLotVEEh0pgAKA4KmAyGkLgGKlcmZEdtGU0WUU/W5SuVIKgdJ06HVrksiYX8CJwUpGVBQ1u7YRAmIdL3oJ3XwZ1KgMhhNEHAJFCwnwEQCISNQVNY2ArM8T4ALYkD0fe8BBwE/GjCd0bbybiSAWEBqdjq/aYThkTgjRgI0fWJWQIb1lek+QFLf5T4PdVwgxKYRMFnF4AYwWgMScwlAWODFbRQ2AEuhshDGylyCbKrzc29gyGLrfEIk5ZEo87kwFjpzBAwIabEUC1IN76tDNnzqixIEBgR4PWobAbjFosctAFQOC0j/ZzDAMt9SYiy6HnuLMd5aPIvdtKnMo2IDlPcWY7UO0Es9ajBSFbyqAk+o7oGCUFkNYE+LrdehSiNs7wDksEcTIy5dPI9z2xu4dOEcrly+gI3VFYxHEU2IgDLHnSwSFn3C8ckc+4cnuLe3jxs3b+Puzg5ms5nrDWYbk6qnte71foKsHXU7vTnVTsr6umr3Q91N+sy2bXD50kVcuXwRj1+9hPNb65go+1NDAUQZPUvavdm8x8HRHIfHc9zeuYf337+O3d37ClR9+DRwlhkuclTGrL6DqnRlRYAc+OP7AwBsqXCD2t3FzjZ7vbB41HtnlH4zGSF/vXbL8kTQd1d/Dgg0TjdY7ZPs91H9fHsIytgXhp0h4IbAeq6ipLssz9O0uQowtcbYHqAG5bMGmIkLa+xAJsyord4M6zNSMKGzdVozbd6Y5NmzSzsrrCBMZ9jhHZlv7K83nWpyb/1hVfM22ryoquwgGNdx5XMDN8Ptu9K3Xle1fzOMVc7anhFD6ymEfI7Zu6AHEnyvQwMwIZbvsnpQ+bRs5+o9qPYvbD8lveFWYW2ner9Yn5rdYACe8mqyxlrXEaorADL0WOWLGcp3PYdUPrlur/5d2a72yhqc5euPPtL0q6Ag7Dkqv2xQTQMH1O11qIh/XMbGG+iP9gostYkGvgED7apO9jlks8vmBlwubb7ZdcvPr9fA5V6s7RvTVnbl/v4+fvD6a/i5V1/FuXPbMH+ApFuW61dXpnj1cy9jbXUNb/3oHcxmJ6Xd3n6RfR7MEwMlEkZphGu3nsD5++fxwZMf4Malm8icvKJZD5HIHCHXcQaWCwrgyTkjNo0fTIlRGNkNzAG9J3NCiMLIzeo/CULQqvsZHSoWxk47OGk61TsfRd+7FFR6z/bZyRiDbA+Zi90ufW+6tYCzyiEtG1f2e6xfQyxp71MG5r0euAGj6/VQUpZ+l3TRQBMJ4zagT8JKqlb6YI0Quc7IObiNUmSjGkNtq60NOSXvD4ICxP0Qm32uMg/TFeoXMDkcrKPZ3ziwuUKQAxdpqBOLtEuxFNjL6Vpds1XrvLHUQeuELGvFgHEe6iMjAnJwlW76JdihKU3fTqSu1MqsGsxiG9filihrLkmqc+ah9VSvNXXK4uoBPl7VgA7sI6qvqVSVy+dpJXJWPkWxbruTL+H3Fv8DPkhPIePhIJ9HobRtixdffBFXrlzBpUuXcPXqVayurj70WpsDs9kMd+7cwQ9/+EP86Ec/wt7e3k8cUP6rKqPRCC+99BJefPFFPPXUU1hbWxuse8vFdOqHH36Ib33rW2fgpLNyVs7KWfkrKB999BG+9rWv4R/+w3/4iUCljY0N/Mqv/ArOnTuHP/qjP8LBwcFP9A4CYeVkBV/+7pfxwtsv4P/47/4P/OkX/hQczuyZs3JWHvXyqUFKi17ZiHxzZgEBO3mkzkgujjIos0sNinEmBgBNIIw09cLKeIzJJGIyncjmH7IZDDEiIINiCXKZk2be9ZjN5jg5PsHJfIHZovf4QdaUK7YRAyCbZ90GuxOei7O4zoeulwOo2Xd0I2mMS8TImluK1IHIGgTTBEr6uIwYCIFajGODzekI5zcmeOziGrY2J9iYtlgdt8ggdBl4cNJh7/AB7tw/ws3dExwen2DR9egSI2WgTxYkVxCSO1q1PlpT/ywbu5KxV5VNbk1fbGABd+zEBOYATqQ01AxGD3BC4IicGKMmYn0ScXFrgquXNrG1vor1lRaTVkLXXT/H0ZxwPFtg92CGj28/wO2dA+yfLDBP2fs2ay6tDAIpS4LVf1B0E26Owrz0fX2i108h6U+qNu81K4o5f1idbebYs76xU/Yiv9J35lCr31v3YyZoILHIv6WgqU+N1cAwoDhOPBBSjxEKi4il6IK9C+a0iw4m0yiM1EOr6nJp3Wkn/1Cd5P6EPo3uhCXz7blDlJZOi8VQAX60ztmCcO7ade+t0ORDWE+ysbTBwFK1c1PdYiTtywjq/NF0lCxjCNIAudatyDY8bZK1NYMRmBCrsRCAlek60WPG7EHqfLRghziFMpiFSSMri4tgTwRQJ/1RWEYCSWrIEIynTUZY/GDaXwoUqR1qIrUGQhQHY87qKFfWJyZxwAYGQtaABUPZwowhKJxyjPuJSdMN7qBWF745E805q47mEpsp8pxSDyh9OimFFmf204sme/o4l7maXUXYq8oJ5iRHPFUEZQxijOJwZdYD6aGeltAXq54IyJrKg5QZK4I8RkAEsLLnRT9FXM1VBbEE9fpbcDvlJCAeTRllczfrWkgMcCB1bmZ1fkswOrGdVlfntjnurZ3aLzHqfGFhA6rbZ+mhyAIkOk42R4RtTOi3T45nQJaUfCk1iGgwaiNGTYPR5hTj8QK79/dwfDxDrwAXI1ILORSwXiUzxspTA1wNKJeSgsBc7qODnYQhKfpzmrYRUAgxxuMRoExt4/FYwDY5CRAwZVCIaBoFOJMwloVYdKg5dGXcEvq+c4e3zF0JAgnwRuXRGB+WKP095CS5MbUuHWIQUBXDWA0yOCdAU3YJuEnXamW9yWDEUeMBY3OeswVGELDIDO4lMLlIDGMtIgIE+CxAlUUnshCbgGgMIEQK8tVAiILErCUZLNfqJAkqGyEEUBPR69pv4xiDpLmUdGrat8wuc3UQzPjF7PNiC4r8m34jfQ40SJIha2XTtMJ0lZIHOcDQlAem/2ztN2ao4IGAQEDTyPqcs+gG0SGMppUUhov5QsaniaAstlsTW09VDIjMgoDRSAAuloKw72vbtwIMEWBTMnhKV6lr2zYYN7L2d566oQQ5zFaWNggzoKQqDc6c4SknMjvAsvRxiTJwZk8jauxnj2pJXNYUmJ5FtSTx4Ac8cqKKugAJTObYAziWJrpphA1Bv9VbhS2LUNakrGOQckbX95gtgLvdOj7sHsN+XkePxtc2r0NVTw+iw9ohE4K13rU5ZXPCT9MvNS/r8822Gtpi9TsEJD4ejXDl0gW8+NzTuHL5PKbTFqMmYhQleUsGMOsTZosZDo/n2H1wjNt37+LWrds4Pj7B0fGJMsYWu9igScUega8ntiYV1rNiBnP1e2m/rt/KBsYk66DYcmJzG4sRAxiPRrh0YRvPPf04nnrycUzHI4zbiEbTz+ScsNBxOlkk7D04xkc3bmNv/wC37tzB/sGBpqLR9VRtxuANKPWqiwMPbH5V9r1fyUszyhtej2OlF/VvD75rkLp+s30/eK4NxlI9BvsNGweiwfMG8lTtIayesOtp+N7TQRsqjIUGvLY9Qv1OgsuKvWPAwuBraOkz36OZHlM9T1SudPnXT4K+M2udiS1oa3xPul64TaqhcwWH2xjZu+p2mp0HQH0ANSTD0g2XwxJk7VR/gYPYylO0PlVbKjvWGEkY1T4ENu/KsIsNyL7m6uTTdpX31ALgfUrFrvUx0D4m/6jYNzXQxea732+2nX5mQD5joWZUclWnydNHlrlQ+s/fL4Pr41xV15mt5G89bKKdQ8FYa4bzrez1y3Pc5liaC26fqGkHlPmkZviymvBS+x18zLkwVfl4gD1NotkzNl1Yx9N8KybDDgI3dmjd65elnkvfwvas9ceEmo3R1teytnJhjeHyDdX3e/2r9Us/DiR21GuvvYZXPvc5nDt3DkTiSsyQNTiEgPE44vnnn8X6xjr+9Ht/iuPjE99PiGuiAnuWQdKXBE8FtzJfwYtvv4jJ8QQfXPkAs2bm+sP61PaK5VCZPiYGUJZDdNSITSyAZTk4wdA9p+4HiBmkB7f6lMT3Y7JaJqan1LbeM/+fMR9XZtlQ4evFLv4q+EntPGcStjHPWcFE5WGZ7SAF+UGRAoCvRMzXQDn8RwT0zL7+OiheZ1/KcFa26Iy/og39WWy6CmVuV+uTzX4iyBxlDJjFDKTLDAcx+77R61yV2rZwHTj8vPQtD2XX9nEVGImAwjjFlf60ZztzPKkYiq6VbiHXE0F1fzLZ0T0VU/GtyN6rsAQGZb8LJGncUrIjfMv2XmmVy7J3cdAsAlSxTle6xPtz6LukgV5aXg8qHVqNp3VHOdC6NDZn5ccWZmCGCd5Lz+L/7L6IG+nxR5o5aTKZ4LnnnsNXv/pVXL169b/KMHR4eIj33nsPr7/+Ovb29nDv3r1HBpgEANPpFE899RS+8IUv4IUXXvix7QGAruvw3nvv4d69e/jhD3+ImzdvykGns3JWzspZOSt/JWV/fx9f+9rX8Du/8zu4du3aQ1n6Yoz44he/iIsXL+Jf/at/hf39/b/Qu7b3tvGb/9/fxPnd8/jWV76Fw/XD/9bqn5Wzclb+CsunBin13IONAQFA2eiwOo9lc2Ubzpy4eJkAdx4E0lM7oxbT8Qgba2toGqGKjkH+EQlLQaCoabcSOEMYEjJj0SWczOY4Op5jNpsj9QmJhQ1Bz+8owKAEw8upJEkLwrk4Fy14WAfuPCjG7MCLEAxYoaGRTNUGFDCnOyjCeGtGARhHwsbqBJsbUzx2cQNXLqxjZUzKLCMnnHePO+wfL3D7/hFu7x5gb/8Y80VCl6DOFAmCu3OMLZAqabcKkCX4CTOqAmFCuR28XwpIJgsLUOXc8c18EtabJtSp9iTkOR1lbG9McOncBi5vb2B7fYLpmNBECUSnDBzNE+7sHWJ37xi37h5gd/8IswVjkTJ6TpJWTR2diAHMBEJQcE+pU02TPDj55w7J4pyqWXc8eL58YsqDD5p2yBw8VJyVIcSBY7MA78xPZfUJ1eflPUt+vVOB/YfVx783KdPPPS0hICmPzDllTq4ID/w7oCiIcyp7hdVpo20q4Ch7l9XNXdSoTyVaqrDSNnKWGHcMMSOwPT8hK2DD22IBAIr+fnPahyDzRRwv5dogkS2plwa4DEwADfLL5NMQOZszTF3vJjNM5WS/BUpsDP1EY/LAg48f1X1rzvvipAegwESRhZwWACQVSeaELiUEChi3LUZt42MZgOIoVkHh6qUO7GJ2xilmmdeWDswdpupszgqQQAjuoEvKRmP1I613ShIcNDlxenVooJ2A1OvRUViw3FJEaRs0paKkX8tVv8jnMUTv58zJda3Jf69OvBg0cFzNA0nxqC7WVM0rJtGHLMDVjJKaUZyvhT3J5w7Yoy4OJkVhfLJZV8sFQ08ys8mkT14fFwcLqYMQJLJgQI9MCmBjPZ2qwAqpm6bv46DDKExaAQYELvrAAtoia8X7bQ5ke4c5XAfAR12fJVWhpPc6mS0Qm4g2NshgzOYzZSVqMBoRzm+vY9y2eLB/hK5Poqs9MFbeHeMwvUftYGaOaBoR7D4HBe4JwxEb/TcRQjC5YnRdJyCLnNF1C7RNRIykICNxFuWUNEAgzc0MUBPAXY+MjPFoBHQZ2TgZIiNoijUQYTKdIuWEbt4Jk1IwIB0gTCVhsP5b8MPS/LhcqMM6NLGk6oIB2djToIFkfo1i63NQQBQN5ouFs5XFJiKhA6eMSBGS6lFUW0oCVoyRFKyWsEiia7ssa744yNXprHPTRBOqQ8yRbW0zZsqs88ljWyQAHM6MftFV/SCy2AZCjMJ0xYl1HRfVQxa9sLln81DnXh1YJDI7JLsdEEJwYKet0nZS3JhCSIO3wkgVvU/tnaLzgtiMCn6WgIz0u695ICjpCULEIOhiQGhbGwMFkVWtezIwegjeZsNejJpG2aUyAskcDyGgiUCvWk0AlyX9pJU6FcnANqnmnUzrsn45qDQqI4AGN08FfB6hYqk/AHhga6jYhgCeyvwSebZ0exBWNNNno/FIwNQEBCoAbNPbRAUAChYgaUoZJz1hdzHFzcU53Ou3MOMRkkkgs4Bi2epSjQd03bF1TcfDr3jIGJq+N1ujLlTdKOsWoyTyEKB4EyLObW3giWtX8OwzT+L89jpGbfDUuDkzTrqEeZdxcDzH7Z1dfPTxTRwcHGL3/gPMu7msa2Y/ADDWLg+SuT1Q2caDQBgwAKNUbUO1/vrY6iDKfGIfb1n/gQvnt/DkE1fxxNXHcG5zA9Nxg6YpTAaZga7PODpZyIGH+4d4//qHuHN3F/f39kTfBt+Zef3Jfx/KFgZj6ENVMYyaTV/tHesFkGs9Vn9eNxpFp1owVO2putfKpcW2JhR5sscNGIEf8qpPW+xZNrayR7K+s7Ee1KRqI/uLfZ9o7VE5Md1at1OmYQ1nWtohkT2WUH9Ntp/wXGblWd5rPqQF6GgAhjLvhmPF2o6KQMll22TGh6t6j79bB8DA0H6V7zGW2lf3f7XHkr9Lv9X7gLJ3FQArZ1YmaLGtzf6ycUC1Pzs9MwfdWkrpML/CgB9mgcP2UKjkwoZNbX1Lc0XVuHD1QlJQvgoffLRduaPU3buOq/k3BKAU9uSh/VlAE0XSXD7q/la9LO1k5MSG68ZAStlNaH8OXL9XNmHVN4NZOTCa5eOBLwFA8DZYQ+r263riLG1aZ2JPNWb9SyqQXLGc+3t4qT7VelrXx64psl+1pb6MCPPFAn/+56/h2rVreOqpJ7C2toZIhJQSkh5ICTHg0sXz+Ntf/AX8yfe+j6Pj4wpAXfU0KUPlQHdqh4eAmIGnPnoKW3tbePfJd7GzdU/0jspe7Z+o99SUpR9yTgoSEZkzZlffQ+ua5ynNCG7rxxA8xbvJh60JMTZyNihJuuqlLnIbbjAGzpBZyQUEUGtnz9x+r1LxycNkjxF0c0AqEzHKYa0+i9XiqYM5yft0TgcK4ifVuRpUqWUW1qU+izSfAlGr72hg2Jh+rWw124uarUS+/mkfZ4ah4Wxdqf1MnvazGsd6LWFbn6wWy+tUdWWx+XxAZYy9PkPxNlYsouBs3zLddX7qvUUf0IC1yP/pvX4OjMt6ZN6yU75W952U9cfaFyytrfeA2U2ENCD1LH1RT1ZPWV/L4KCYLq6v0XoG+oR7zsrDCrMAk26mK3i9fxXvpOewzxuPJHOSzb2LFy/ilVdewec//3msr68/NEjM6u+6c+cO3njjDezs7OCDDz7A8fHxZ1DzTy4hBDz99NP4uZ/7OTz77LOyJv2Y1HTMjMPDQ3z/+9/HO++8g48++mjpEOBZOStn5ayclb/Ksr+/j3/+z/85vvrVr+LLX/4yVlZWhn4VyHr1xBNP4Hd+53fwr//1v/4LA5Wa1OCX//Mv4+n3n8Y3/t438Pbzbz9sm35WzspZeQQK8afcgfydL38JvtGrnDYaiR1sZIJt4tUBRYHQhIAYIlZXJlidjrAyHaNpGrSjBkwaBIc5sorTh4jQJQEozLsOR8czHJ/MMJt3eooFfqLdmE+MMcFKHWAvqRpIA02yQzcnhZU6mG73WzDVPV4MUGyKY17DGk0kNIGxuTLGpe01XDq3hguba1hbHWHURlCQdE4HRx329me4s3eEew9OsHd4jKN5LyfuU5YNM8NPDQqRQ9noWt1I2XJkoxvUiVmdrGJ2piLr08LoY85IcziWniMOBUCAjLYhrExbPHZ+A5e3p3js3BRbKyO0sQVRg54lAH40W+De/jFu7hzgxr0DHBx36BYJvZ49s219BioQCQMcXJZIN+xWTxuz5ZNGXlcVSHfOVb8PAClV21lPkIMkwEPBTtXBA9tENZChor4HxCHIwv5DgTXFn7TOZIuq+hVgGA/6euB8dUe5jps+RxgaCCkJKxfBnEHmtBGHZgnyAiBWxgKpu5+uIioBKjYnl56nY5yqm4HZAGE/GQRuYGnLBNAisgqwpbILJRWU+JdYT9OznFoEwTiwqXJ4MaqTy/pZ8lQV5uxTIAjkZCQxF5r2aCcIs9RZ5xJXwU0HVCqQpZyzUXBTEHAFIStwRB1eOUuQNUSAgWxMHwR0KenzMrrFAt2iw2QyxXQ6Qds2qE+5ARUgQj3z5lo2h5XlXmqCpfITvRpJdSVJXXOSdGghRu/znJKmqzMZtBRsIjfCqCLCVpyJ2u/BgKJDBjBnYSNSB6roT4KBA8gBk5bKExBmuxo0ycyYzTswM0Zt6/rZ5Y2gTFIAcqG09xRaQRy6UlVz9NWBCQFSyDgbwKKw9pCddmU7LUnueMzK+kBBgA7sgQVAUXjqSI5SJ5EYd0bmnMWpaykqdYFIVd1sjUsZApRQQC+xnMZkY8Sr6hNpyH6VWU7ZRnPE6j1ZmYRsjDMK4Moc8k2IWFudYHtrFW0T0He91iWjHY1AOWLvwSF29/aw6HvXI/W6aO8CSh8Z01LOclKUWeRCmGh6kKY345wxXyyQmRGjBuEIaNoWkWRuN030dA4Mkb2+70EkDCk5M7peGJsCEUZtRIyNpHqDOJwjCVNZygKEGY1GCDGi7zos5p3MNHWY1yllkwKphJEnuKMrZ1lLQ5DUaxYgyMoKaAEvd3zrLwLEBjhJXdtGQD4pZ4xGI4zHLbpFh/l8Uc0h0QH2Ttj8huo0MFIvDGO2DlgaVJvMMUbklH2tKKkh4O8JIaCNETn1mPe9OusZ6DVYEAIQhF2sHbW+NnV9L+n5ooxT5iwpz0gYMC3oIO+Bv7sOeAcFiTUxSnArZadwc4e9X20mWhJwEotdlJfaY6DS1DNSp/ZRVKI5X9eCz6EmxjJeWcbcwEuiHgOyEGKhiQIunC8Weo8oITvRHqMAxEx+AEJwsL4xHMk6zh6ss7oLQ1WIBWzCbEBLuJxqa/27uoi+YLdj9nZ/Mmrkn1b53/7p1TK2pUn1IOt3hbGk1u0WIGpbYYJrmyhzMsYqSCtrJC29JHP2MTjugBuLbXywuILDNJX1l3nQ14PYHIrdUCpfbDcbp4c5PWp73NpAqqc19gaofWJ1JgLGoxZrqys4v72Jp65dxeb6Ci6c28Jk0qLR4GFmxrzLmM16HM86PDg6xs69+3j3/Q9wb/e+gjuXbDqrWGWnmn1tgAEbj9JcAylp/3q9qwbXLB6DDrBUN5L2ZDxusbW1gZdffA5PXLmI9ZURJqNG1jkS8G7Xa3q6+QJ3dvbwwUc38fHNOzg+PsHJbDboZrbBqqOYg3GqdA8P7sLyX+U6Vy5L417aXbrG9JvMX99b+Weseq3Ub/B2NS2oSjlr41Dva3xO1HY6qiBlvY9dHoKla2wci5Dz4D6rq4A8q0MPVHah9b7G/h4Gucn7cQACrwKjdanb4nWp2nzqWqu7q9lq1ajknKvP6r6oXmrhWm936Xe5LEPTnuqcXfYZ2PjILUuKIAQFHRVgjV0n9+paUq3nYlNI7XPfI+WMtmnQNK2sE74XszG1fh++e1kleRtUFEPlG6jljZYC3LUm9mttfEzmCaDqfQW8aX1ShsHkRDpC71I5rHVRGSSbV1xdJ98mtaeEySeWR0oPax9ob6qNMJBb9z1QPYxlnJyB0lpdMzPw0rXDuVG3w/YpZZ1g3ztYXa21dV+5HrZ967B6vk+ubx6CBQsgwurm65W3oga9Dd9vc9afb53EwObmJl79uVdwbmsTo1EUn5zaNyEGRIrY3z/ED157Hbdu39KDJstzsuoXqzWz71ftXxc73Dl/Gx9e+QiHqwdyUCCQj39hj4Gk3A02T2pW7OLDkD2gHKjKOZf052rP2T7RwCE+RnqfgQVTn6pDhFWvK+KlBmaHWFJl+hITyh6UUO+t7Jp6rmiddU23Pbf5i5q2AViA/KzrLlMBcRpgkKq+EjCwpL12XUio5l+17lR1q0W/+NhI0mtnO1gp4Cryh0LHoxx2kr19Kn0GZXZi2b8SobL1tUbK/FSDaWXYK2Zv6zosretUgE3WThtrX+NsHQADLH4WeZDN51rT1n7Gat5YHfV6e2bWOR9IUlOXtRLludqXAz1V9bWeDfYxrTQAbLk09tVa1nQ4B9ejkkdrWQ0KZWbM/p8LPHLlfz1tQ3wW5YQneK1/Fd/pvoKdfAFltXw0ChFhZWUF586dw5UrV/DSSy9hMpng4sWLwjj7EFuMmTGbzXDjxg1885vfxPvvv//IgXisXZcuXcIv/uIv4plnntHDSw/ve2bGvXv38NZbb+GNN97AgwcP/sIB77NyVs7KWTkrf3nl2rVr+O3f/m1laH34mrS7u4t//+//Pd58883/pvVoNp7htVdew3e+/B3cuXTnLAXcWTkrP6Uy3Ht8cvnUIKW//Xe+CLhTmgabOtvQAfANomy+BCzTtBGrK1OsTKeYTEZyQjZUDjZVDLmXZwflIe77Hn1KmHUZh0fHmM3mmC8WsBOgOVsgQgACrJvnssGS5wxO72trDdBEpKwByKU9UP9LlWLEPhP6Z9vFCeAgUkBDwKQlbKxOcenCOs5vruDc5hRrKyPEyEAAunnCoiPcP5jj9r1D3N09xMGRpKrrspC/J2UwMHaQTFTqRWVjGyFBVQnQhipYRers4OoEk52alrpbShFnkhpsbMuiQMxoY8SkDdhYHeHq5U2c317Fxa0p1sYNRiEgJ8JJ12PBGXsHx7izc4gbdx7g3v4Ms47R5VScTMSe5gqsaVGonB6qTxARlZQNxbFgVA0FXFLSnw2dT8vtqQEQAebsk0Fl96xKUF2YDwR4ZKm+OJM6MSsWqswg0s0QDYFedfDwkzZLy6V2EIPl5IoF3oDicIl26iyXuoTQuIMsaDoTAyNJM9WhyupkJ3EiWXpChFjejWHwMyiCQIACVDnEkgCEIGk4mLKmVhM5CwC4Sp3knFMakEYWWcyWZsmdr1S1T9P7QcCK5riBO35RxkDHxNsknSE/Lf1PNgCZtc6C3JZuTh2OJhs5C3MHS1tkbsq7E8iBQBaQTzonc+qQU4euS5iMpxiNWjRNVF0UlBEF1iMDp5alqJAxCJ7KqAwIKSuJIFwkcKTp+ChowBwKHoI6uXLpWx0PYhY2N51TjTIf9Smjz6k4znPS1Emm5zVtm0wPVYVpAKgTWS7OMdNHAkSQdH59zsLWxIy2bdE0TQEQEkQn15TmAEBBT9yK87vIleh5c0IbmwoVehdYughxxCnbijZJUgCcZm1j0ICJL1NJeyjdrWDLXAUjTQdpEMl0CGnKtzIPgaTp+JiT6BwGjFXJ/JUGJo1UHNumLyTVo65Q+mxWGSnAvCJgHjBBRKCM9dURNtZWMJ0KDXnPCaN2BAIwny1wf+8Ah8cnmOm6a88YgpPgOqMOJvSp0zkpspz0ntG4Rd/3mM0XSDlh1DZoRsL+RVFAljY/RLayA9IsgBdjA9a0P4qZw2jcAtp3BpC209mSRimgaUTPpa5D7msHv9gAbdvK9woykVPLwu6XnNELnqYsBE23x6JXJNWQOYx1ukbSuZ/RdwlNjH7yOescbGIABZbUZqZro8gagSQdWRL9asEMkbkyn120lNUgxOA6h7Pp5lJH0YcS1Bk1DTgzFknSnuWeQcoKhQA0bYPRqAWBFSwaFHgmwOzReCR6c9EPQCBExR5Zdv4zZA60jYAUu65zlras7zU70YJeFIDYEEajESK1WMwX6HSTWtZ+XUeSgJQYAlKSJcJHRZ30GU0UfRxDg5yBxaKHMGLaiWWxB/q+nJTPWUB0fZ81VVxGiJJmTNLNZU29SzCkozPvweYMa2CM7VOVA2PzZGEe4wK2tnlsAKaU5KR8CMImRBrwSAqU2915gEex/G//5Ir+RtX/pVgfq/Xn9iEIyi4W0LatBuvjYH0ki/HAzPTy/KRpAPvEeLBosNOt4/riMRzxajUm8P4eZC7isp8owaJSy9qGNh17KkBRb7XcLoXPCdHLMjcm4xHObW3i2tUruHb1MtZWp1hbGWPUinyAIPKdgNm8x8HxHPf3DiTt2e3b2Ll3H7OZpOx0oIW9YbmPSEN8vvmR6hu4QJtt2t/3X6SD5YCmagQf0nqZSzFic30Vzz79JJ5+6nGsr0m7xg0hKLNpnzISBMR8dDzH/QfH+ODDG/jRO+9h3s0xAFjZONjat8TIWEGI/P81SKiupNndJTh5erwGt1R73vo7HnxifRGKTYoy5LWsO2AINLgWGKaXInt3te8+VervuAaW4VQ6U7edbT+Mam+vr1oGl5hc1ONsogwIYNNUXP2uut+gNtHy+8nby8N66L0+dPpys9uAsi4baLy2e0wCtIfL3ghFOojqI0DweWDjwVoH26uwz5Pq+vo9pq+tLgpU4Gp8qKpfHfQ3MBdD1m/WNNgxtmiaUNhSUACPpp/s96KffOB8LhcRkutc//kwSV8M/APVffaB/67jaU8IegiC1TZyWan26IxKx5QO1vqw7m3J3oz6Qus3swkNXM2WylnTetm674fmrJ9hMDLtk2rYiyyLjWfyZYzGpqu9NkvrQwHq1fOsfD/QpnX7B9d47VA9wPu31mV1a0xuYHdXsjbUm0P9ONTjpX3V8FYsV/ZZmWfj0Qgvv/QCnrh2FaO2lUM+OYNikPTpKeNkNsf16x/ih2++iU5tR5d76SyvueljmytZ2Y8YAHLGounwwRMf4Pbjd9C3nYD+1WcSYgEeSdtqvc+ofvXnB1ABTzGLPVX1FrtPreohtW/tUKGth9Y3zj68NO+LzquG1W2YAh5zcEpRC77vJChohuDMn2Y/F3BLhrtygrB2CcuopTWufblDHe8qq5LfMFg7KvleWm+igrCMUTbbA11nF3u1jLnuIbPsXYL2a84m79ZfNQio1nVyVQjBmVlL+ng5TOQHmkzfsR0uILX/Wfd+ZZxr3W66hqj+3PqiyFoIBILIX/L0s6wqjDwtpB80s2ey+jV1TxBiYYMXefUZU1VAtaGuQ6Xu5huFj431pengstZzJW/wPa4BN40l7OR/meORK58hSCkzYZfP4f30NP5L92XczRfBA/DqZ1/W1tZw7do1vPLKK3j66acxHo8xGo0+8fqcM/b397G7u4s33ngD7777Lh48ePDIpT4LIeDixYv4yle+ghdffBGj0Qht237i9Qa4+sEPfoBvfOMbjxwL1Fk5K2flrJwVYHV1Fb/+67+OV155ZeDPqUvXdfjzP/9z/Lt/9+/Qdd1f+F0Mxmwyw3/6u/8Jf/ILf4KT6clp59VZOStn5S+1fFqQ0qdO9xaWnFXAkFWGbEOkQfVRGzEdj7CyMsFkMkbbFnpyhgTzwbrpT+UdIKDvWU7PnsxweHKM2azHout8k88Dh7FuYLmcNpJ3ZAUEDDfC5ti0FBk5GyAj66Zen52HnWgOwdT3mgItIAbCtI2S9mxziivnN7C1PsHq6kROODNjkRh7Rx3uHRxjd+8Y9/cPcf/gBCddRt/bvtICVQZMIGQqm97McvoyICCCwUwOspLGi/PMmXxYHHVwR5dsloM7JAzgIM7TEIqTMmdhPBk1AZvTBhfPreHxSxu4dH4V69MRRjEgKkzjaNFh93COuw9muLO7jzs7ezg+6TDrGL2mMSJN8ySAAKEnls1vdp9tObkoPFHm6K7HQ8BYSw5UbauBm2qncO0gJBo6DtnYGszJokFuA1gA0Z0BwgqkAUZ9ea6dUe7EGU64YGOHysmjcmR1McYODK4pjsHa0enPtb+JEBs5LWcgvKhOQQlwG6AwFAcUm0MEJTWQpsgwp40HGcypBwsoy5zwPtVaSqA5OB24gEwAsKbhgjjozCFKVJh83FlUUal7AIyEXSMb+MV6hcu4ieOOtWKh+Lf9RCwczOMAlAwEd+awj63PC5XBekzsd3Y2H5VdTRkGiGNL2JXU4R0ITWwRg4BvhGGjsFCZE6o+qVYCKtLZ7oRP2VPi5ZxBuXKA20lFMgYNkQ0L3AbQoP29sVEZsJGh4EEdJw2OszrkCAbSUm0YIlLqFLgGEBfWF5sbOWdhUlFkSUoJMRIapSbxOQoBbwQKaNvGx7VpGtV5BuCRk5SyZhBCiEicNIAR3BFvTHfMGU1jLEoCUqEQNBWgtc3AVNXcM8ciM6gaK5ClwpI2iMPV9KsCh0JxNJKlYqpOcdrJUHDWZytI1B2sxVNtwFmTB2OvKvUpus7qb3M1s6HG4Nd5kMFS8jEAkvXx4GCOxSJjcxNYWR2jGY0wGo2Q+x7tKGJrcw3j6RSHxyc4ODzSk7nmIK1PIw+Dw4AEpKF9ECCpPTPkdG9O2UFxOTO6RS+BhRwcPEMoYGKoHg4x+vwUoCMk5UIwfRxQVQ+ayNVdupzF9ug6SVVGIJCyHDlQ1vVTAQTlZKBUqvzRCirWtIWCHtD0acrmZM56W9dDI2gZJoBiAPeSEnKekwBwAGGntHGKBgRX6agAnUEd8n2SZ4AE5GVZH4mAbiHsVcSaNtZkFAVUlhJjnhawYJ3ZRKXeQKtzNaceOvFBIcCyQAQiUCRwCuCe/QS0R4MYxVkuHnBA01aEWE4oW/q2AHYAngVLBHgrgSMJzkhAqqHC5Kfuen0NA2SMhuTAt5SSTl+5PmsuYWNMkvSVrKqcHFQp/S5sX+wsiuR2KfS9bosapYTrdNb5DbVHdd2OwesSZBK4PiDSdJiQIBmrzZbV7gkxApnRNsKI1efkeu1RLh4q0n5zm976yXUc1LYR+Wvb1kF+FlwHWYAfgyCiqVbOQJcz5n3G7cU67iy2cKs7jw5NGRd71GAN1qJjM/hMPil20FKAz2wo24+U0Fix8QD2U/aiOQir0wmefuoann/mSVzc3sBkLGyzBoztM2M+TzhedDg+6fBg/wA3bt3B7Ts72Huwj8WiG8hjAVAUQeS6jwleL1cyHKrf9dZPeF6RMx5c7i3U+8ZtgyuXLuDF55/Blcvnsbk+xaiJFSso0HHCyaLH8azH/f1D3Lp9F7du3cXdnV0cncxgRqhZD1C9Dp/rpdr1GMGupPIu2L5IOsv3d7kanVPOsaVArveCLThF1bns2qpiPcIwI1vtVfbEpNV1NWBMPrUR8aXAbfBSDwmGV4uF6V/dJ1mb3DxYapsFTp3htLKNyjMKyM0ebwpafsg11dZ08A7vM1TD4ItbeZa9w9p/6j54lw/63GznMs9klpbAv/Q/V2gL9qcU+SaTLX1PmTJ2qEk+4Lrq7G/zynHV0bUesIYMfSpl7BwEXjU+RGFhLofAyA8tAWL7+3yu1hssvUNMa5VBW4esL6xOhJLmCOSsgqXIyizrYrGboIzPWqPqmVIN2wvaekeantTGstbB1h9ZT2F4+mWV/VD5SLxWgUBcrw9SV2MjsWoGPVyAym61fqBlOfU6lfeZrVlSMNrcqPQiVX1G5JJhk0YuGabzknnHuhctOoSZnZHVHup+DXsuww8kUDXfrQ3WqPqQT3meP7Sa2LJ2CgMPDS4brBciyJjP53j99R8ipYzHr17BdDpGaCJijH7objIZ45lnnkE7GuOHb7yBk5OTpcW2mqdWX52Lrp8AMAWM0wjPv/88rt6+ireffRv3tnaBoIC1BDAnny8mr9YZJpM2HqYp5KBLdLuDqtlRF28/kwLos7MTOTOvrz2lq8phsTIEnt3e9CYv2wkCNmIfTyqVr9DZMvbB/Stg4/rS67P5TovWqddvO9jGLIBu+xSactB8A9YmNlb5Si6s7imVdZptPK29LOAbAzEmV1zil0Ao/ifxM2QHOflKWr3W1ypA/BH1fKbivxKAFvw5xScIMNsBJWNj5WqtLrLv4GEdX/PJlPVO6pkzEEiT0evc9vWKeXDgS+z44Lag9aPJvo8XF1BlvSxbLzscOtTf10qo0m3lRn9d+VzkoGaxpxDqx/yNLx03eDc9ix/1L+L1/hWcYIrlFfKzLmtra/jCF76Av/23/zY2NzcB1GvrsOSccXBwgHfeeQdvvfUWPvroIxwdHf00q/upy2g0wvPPP48vf/nLuHz5Msbj8Se2CwCOjo7w8ccf40c/+hHeeecd3L9//6dY27NyVs7KWTkrP0k5OjrCv/23/xY5Z7z88ssPBZ+2bYtf+IVfABHhD//wD//C6xWBMJ1N8Q/+f/8Av/C9X8Dv/9rv451n30FqHi3GwLNyVv4mlk8NUmLW/OeVe6I4c9iDCOO2xVTTG01GLdomyolzO/FdOVAyAxyMYjgjMLBYdDg6mePoZIGT+RyZEziTpyrg2sGoTmXA3JK104QHTkACabqh7Bv+zKxMMJBNfvWIcnJO2Qs4oQUQGmA8iji3voIL5zZx+dwaLm6tYm3SogkStJynDgcncxwcddh5cIKdB8e4t3+Ek47llHCSrWlNY02szlI254gGpZy+mmCOYGEokHpSZglqMYORfJNMYG2ZpCzKYOQARAKI5To76S9pnSTd3njc4sLmBI+dW8Wl7TVsr69gfaXBuCUkBhY9o1t0OJp3uH3/CB/f3cfdB8c4OunQ9Rk5KwUxCYuWiRhnksAjEoCMQAICCOYMMmcCs1PME2niPmZNv2Wb6RIsiNR4UM5ATB7YVqcm5yHTAjURBroQXyMhkqTRMQBKBgtLDJFv3M05akAZZ2mhKuUMSvA31Bt71vHQNmbFs9gpXSJx1obQiHOFNb2TybzKhaVpMyc1KeuYNFVAJQKoqQKfpCm73CUqYDEmAQ6AhBHIgjgM9rRu1t+gDAoybqQOrMDST8nodCBANGfo0gCJzF8F2ghRFawbmav0jGS1YwESQbo3ab8GdXLbnI4U9BnixArBwGX6bJT3yDPV92OABpvu5vfzL4VGPSijSeLsz5JUPAoWShnGYS76hJD7XrPAZXBWhg69R0RSACcewKLo4MIyBwisndQ0hMwiv5lYwTDw/gGUKQmsKdDU4VUHAwgmGSBNgyBBej11HqKcmMsCKJSMUuTgpBijsE9FY3VqPD2EATyBwsxi8ziYgyxGkNY9xhYZnQQRMgM5KTsG+ZwR/aBjFBr0fa/PCj5fgjJSicNP3hkJ3n/mBAwRInDipRRXHrPqJri8ZBRmMhApRX9ZEOT0o0gMO2+9Tn8KDvLyew2cY2m7NM1HDeuFyi5Q6RkiQHjy5D7Ta+rMzq4zioMTDCRlmbFn+hqivuEQbE2B1kfBciynm/uckHgdG+sBPXfIKWPeJSA2mEw1UB6A/b1DLPqkIBNJBxiaWKW3UuAeMyJIUpyAPN2frD1RGJMoI0JTq+Uyjr2ehqZggbDkB0jbIH2dkpzqoyhjTN6X6mx2x7I42Y3DhjkhQEAPi64Xoeh7xMYc5mZnUAkEQsE9CODELhbZ1hVF6hAYTQQIAYvcQ2MGAtBTfWoBB9M/0o1y2pkSXP5TSqBc2QjKhFR0ZEYrkwQ5yfrVG+Ahksw3A+gsOaLNdhMGRk1DQUFATJo2EqqziAL6boGOOhDJ6WeAQKxgPrCAk0i0dAIrxkHXWhYbJZPKp44MsejYzAw0Mh6WVlLWbICi1jlD66L6Pwdd63oECmhCQO57UAxoYqNzRsFwepLc1gwHeir4ixOBM5CIkbmXQADpGqOsCSkDyMJyFFsgRAY4oOuyrwkNMdo2qn5PMLCkB2kIas/oJ2pvir0jikR0HCtAXnVaJLcjjPnD4hsEu1wCFBl1Kr8y3o9mofL/yr/MGpghtR9jjGga3UdoWkEfQ3tCpQ/NvjL7MPUJs45xZ7GO9xZX8CBvIGdd+yXyowEgCyANP6tLAaKRX8vVvqMeF4aBxEtgatB0ZkTIfNre2sDayhRPPfE4Hr96Cee3NjBqbE0R+2PRJSy6hKNZj/sPDvHuB9dx/8E+9vYeYLHoBm12m02DVtVLpWZkwAwpObPrCLAE12yXV0Jf9gwzrNhtJ9KX2kopS60EIrc2t3Buex0vPfcUHrt4HiuTMUatphdmmVspJXR9xuFsgRu3d/D2u9dxZ+ceTk5mwkJgLQiynwEIRh/pYetqL1qLlPe6pWqyPgJkjsqAum72/QjIvx9YAVTaSjbgVTDP5cPk0ewvXTR8r6n7NBsb799KfqwdnqISxW4V3VtsWH99FTQ2vPLyvQMWjOoeTzNX1cMNCNj+lL0f5Xu50Bhti13D1ZttT+cd771ay518elreBiAa6//q+TXEzqEgZN+VOWg7pAJWsBezqg6tge8NafgOs/+A0rFVMfHiuu/cpoPuPyqNQWXkWW8kfw+5bRt03XSbJNj3pc72fjI/Bsp4FNE0cI31FBcQlPeWtqN6Hqp3oPpNrjFGwoFx4XsAe6dxVdb9nEEaDC/jXSzkSp6qt9Z2OKq5CiZE7Ufye1HkC2VeOksJFfmAzUevt61DJhNVn1R1Mnva38Wl/+zhltLeq1I9357tE8C+ITIYY9UP9rfugwYLPA3qYg0vclxr52qNqtdeoKSMU0BLUTcG8CB7nesB1gYTgL5PeP3117G7u4tXXvkcVtdW5KAMSFghAcS2wZNPXsPW1gZe+8HruHN3p2I1YwewW1/Z7Da7AADU/ERgYPVkFT/3w5/H7tYu3nn2HRxNDkW21RGVnX1b/TU+BxUkHkLl76MyZZndR+FjWS+pNiYs+6s+2cFHsdUN8JMBn6vWhcaCCqierlN6kYE0FYwXCH0ezvMYRDqaai0ha6v6bYQUXHSKgXw85dtABqUEEiBYsrWlqH61Gcr6ZQJTd4d8V9ZCWZdKv1rlWRlne+rFn1JPUpMzEg2RAWfarhWP6ePSlqJH3ffG4kOVRbTU2w5DDue2+thQDjuBAdK0UVQkRuWqzLNie0I26DreiRlEubqzrGcGLpTDHShyYXISyj+w3wXzzw1l0DqHfIxRuntQyjAUeapl2sCmg/9MpzH+RhdmoEOL99Kz+Gb3VXyYnkD+9CGUv/LSNA2uXr2KyWSCl19+GU8//TS2trYqO2ZYmBn7+/v43ve+h5s3b+LDDz/EbDYb7lUekdI0DR577DGcO3cOX/rSl3DlyhXPMPCwwsy4efMmvvvd7+L999/H/v7+I5em7qyclbNyVs7Kw8t8Pse/+Tf/Bu+88w5+/dd/HePx+NQ1RIQvfOELuHbtGn7/938f77zzzl94/SIQLty7gN/9l7+Ld599F3/wD/4AOxd2HrrXPytn5az8dMqnByktOX5iCIhNg3EbMWoaNE3AeDxG00Q0sVEGAUaXFmASlowgx5rAOSFlRtclLLoei0WHru+RcsJ8vsCiS0jGcEQoTB7qzKkdsu6Is42fO6vVHeOROdm4ZTtpBBT2F8UayG7QmGjEGRTRoI2E1VHA9voYj13YwPmtdWxvrGJt2viJvUUGHsx63HtwiNt7c+wdHOPg8ATHsw7zxOjVqWSbaGMcKY5d8vbYCaKck5/KMieKsZzAHAbK3MKQE2NGNUskgWEwAw00QCwgqRgDKEYEZgRijCKwNp7g4rk1XH1sExe3plifNGjQuKNykQiHszkeHJzg450j3N49wIPDGeY9CziJUcf0i4NWx8ICzhHRA5E6uKdljS2AXpx0Wetvzk+GBXQHLkNN+WeOtuz1CXofVT+Lg6NsyFUKBkGFOjAg93riMq+vtmYQyLJSA2I4F1nuuqSBWxuz6E4qrvpFfI/SV4QSEHAHkDlOyEAwwzrU7bV+cs9E1Z/m+7Bn12t9DNGDHkShAHfcmUaDfoKOTc4ZWUEHbA5NqxuzyqyEWMUxSd4H8ih1b3NWhovyCmZG00QJrkMdrAaS0b4gCsJY5ow8xt7S+1wTtpSA3EuqIwfDefAmDNIJmpPN08qxAAfNGdl3SfsvoRlPpf9i1R8KPJR6JE9RtuxMcEe/Rz2svpISy8eTBPAZY/R5kRPDJqXNP6h8GRhA5EbSnhlrGVn/c3FmFsepfBdDTYM/rGsNtnLHpjldtT/tpGIIAmg0R/Dyv9g0IBBibBScVuTGn1n1W+IsoNNK1p1ggaU/PA0JWXo3mwY2B61F1fwjUtBRDVxRuQB5YKrOyRdj1JPotX6jwgZnzmWUPoE9q5rfUm0DsaqDlYwdq+hcGTMDNZIHayy1pVVDgko1k5w47rs+4f7eAcDAxtqqMFwQ0DQBSalUz21tISJg7+AA866HHhx2vSnjEMGcBr5TJjsFL+AowFJohUF7EhP6RUbf95rGKTgAQ07eEjixsAtlPe0ZowIHJUAiwKESYA4KypM+yqqaCE3TlH6ioM9nWH48kyFLXWZpJFl1lq07DjImaUvSFLRt2/o84swKnM3ONFfuU2BhKrKSs7SjaRqAK8C0vk8Ce+LZTikrsIp8/lMQR7sAXQIadbRzLyxIIs9F7oKxoZHUE0RoXX8nNFFSVYYIgASwlZL1J4MSkBXk63IeFPSk/RG4rNQGOs1EYE6gvpP1RXUTa79TLgEN01EEKLhJAHI9MlJSWyFlJJCkFgmsbGoB83mnaSar+cy6VoJKIMrmVz1jqcylnAUMlplFx5stRhlN2xR9rWyiZgNld/Qz2qYFwMhJ2bY4IyA6iI1MF6gNyNDxD4xRbOT3Pslc0MALkbBRGcCtBG0e3d11CXjB7dhAAY0BYXWOBhI9YWyfmZPlTirKmsUuTjnrfMhYpICDPMXtbht3unM4ztMKIFrGu/7bYzWVPBSwCezbqn/FQvQgFJF3+YBho0ppPGpbjEctzm1t4OK5TTz5xFWc397CynQswCTVy4mBWZ9wMutwNOtxcHyC+/f3cPPWHdy8fQcns7nWS3WG6pphVEr0IKo1YNnGOOXPIWjQmXVsQvmceWivMzuTiwXTAsn68fiVy3jyiau4dHEb6ytjjJugehO+7i76hNm8w/7xArfu3MOHN27io49vYj5fqP1+Wm6sgykARkFhuwy3Ux5y1wAUVA9p/eSBQPLS96Yf6lqUfiB9gOn8wRWntzhL9nt5Py+913RCVcHqIfVeBZ7m0770df/0beWa6n0y5BagLvJfrBRt4/KT/AP+xPbaCxgKXK3GTYajandlb1o92PqnWjdRz9m6TtX8BZQt2MZW1zfT6daJtn/wfUplN1I1QGIf56p/ykESm+O1LIjtBt9f+XPqvZLbb6Uf2Ri2GJpqR0BKbVRfSqByu/WHzYF6bErnV76RMkx2X2HeKRcUf4+uNWZsqmzZRmnZxqdKNZtNO5SJSidV/SolVO0Z1mPYpuLfsX2GDrzv4m0v43sPIhCMPZWqSpVAvIu+z+XyPvK3VgqEFLxn/gSiU3OubCl42P91X/FyP8A7UWw6m+zV2um18h7VdrqW9O8Gve86hTDQL8AgmxTrXPHfDUQ3uLjqR52TmYGbt24hg/Fzr7yCtdUVYYOkcllmxtbmFr70pb+D117/Id7/4ANPB+2PA8B+UA0AsY+byY3dEDni4v2L2PyzDdy4fAPXn7iOLnZqqyqY3MmwtY+qOWhz1PYZINIUi5W/EfB9rU1ok5tg9nelN30uDU0VV8rsSoFOD5LbGmXPUst8DQSyUvvLCOzyawe5SOXfdG0BHhkotzoUAShwSptgaZdJfGmBghwA4Fq+ZUzcO0ZASgr60mcUH0EYpIY0PeadbWSiXFYIkLE7F/kuu2gua5MyM9ma7749fbyxxLq9xvC2ARiymyt7s41hEwN61oMzsGdZXWqdpmtVPTf0cz2HIDpX9XjOxkon9TX/UOnWIve+Buk6YPsOOxwpbNPDVV5k0WSKIYcigr5bD7TZ/9VHQgR/NrwOf7MKMzDHGHfyJbzRv4y3+pdwn7eRMfQBfxZlOp1iOp3i6tWruHz5Ml588UWcO3fOwTsPGy9mSXl2+/ZtvPnmm3jttddwcHDw0676py4XL17Eq6++ipdeegnnz59H0zQ/Vg5zzrh58yZef/11fO973xOmvrNyVs7KWTkrP3MlpYTvf//7AIDf+I3feGiaUiLChQsX8I//8T/GH/7hH+Lb3/72Kf/eT1LavsWLb72Iqzeu4k+/8Kf4z7/0nzGbzD7r5f6snJW/keVTg5Qm4wZNDHKiuW3QNpLGqA1Gbwxn5Ah6MrzXTX7uEhgCDOj6Hov5HIuFpHDr+qQptYCMpNTeZDskGNWvAXqWHZcA3DloxTbnsumuPN3KNhFgToKsyXqyOtoiQA0igDZmrIwjNtamuHxuA4+dX8PGxggrbUSkBohy+urB4Rz3jxbYPZjh7u4+9g9nOFkwek15Yht5YdvJDqKQesvGNlcn58tpv+wOJ7vWNo4CjEJxdsD9Q4igcjKLIiiwb2hjCIhBWETaAExHERtrEzx+ZQsXtqbYXGkxaUcIHBBDQJ9nmHWMg5OE+wcz3N55gN37R9ibZ8x6SReUkzhiA0GDR0unrVBtup3aHPBAcCigBG9/db+ddCPtD/uOUDbQxsABlH7zIDMYMRj7RNnQLztBCzDGnDTF+WAsRJFIAzgEy00fYnF0uWMT0NRe7lZSPwhX79QaKUinCLMyW3CRhxJAIw9+2vB73UI032IRd2Nz0ecknWg2X83JNqhTliCfpN2xqSZelYCgADAFHYQyFw3Eweb8Y2UgqsbVnPbRnFUoARCZ98nf16esLE9wx3GwlBzm0CJyJ6IE3jXlD1NVNX1/Jne6yHAVByexnY4j0QHi6apkRQAtkl5KwAoBQF85uGw+SjBcUmK1bevz12WKCG3bFCcjZwXslLR8Nl+lW02e7LhxrTuKw9kcpEI7nxEhAA5huIE77z2NhKZ+ClFSNhngoDiKRTbtvTKDggupBdhCsM/k8xgD+r6vHMB6VyiONAFhqvyHxtvBqegCkJ3oVN0eogqJ6hg7/Vo587I6Go2xxJy5gVBO8kPTVqkcZZ179m2wMalkNmogwttU6+naSVuNiTH/mYsUbOxkoiFlvSnjaWNd5LOsW+LLHOorXx51fpW0lOT3FCCXObUNwGia0bzn8q/rM3bu76PremxvrWM6HQOcETliMe9BzFhbGaNpA+7vH+LkuJP5YONUASRlHBNSYoCCBpUthWfR9zYPc9Z5mGQ8ukUnzjZSEEnKyLqGNAEYj0bIKbltUOaF8MUJ+xgj90mY8kIURhx1yqfUe50zNDVbMH2UkXOvqVCjPrMC3KlCcoAlC+ikBCbIWfNkPsrvTWwRY8B8PnegdIjCRNWAkVKPGG08SlAnKKALgAROAmHRMyhn0VdBGMyS1QF2alxk1MBLUeey2RUpKegKCgoKAKLUnVRfAYzQBGFnUpa2zGloVzHEDtC1w+oqYFFpZ0MljZ+BoQzsl7Lo+rZp0KdUdFDKDuoURroGISowK2UkdahDZVyARPIdBShDgwadFPBjcmfzKYH14H5Z+wEocFXGOSrbp83XlLKk//OADms7ixUq66cCK7lab83Oi4TIBGJCa4A87btI5IE17+BKD0RNkZMJlmFQ2QEZMQLMAgipdcijVhoNBgZlSzIZl9P8gKwNGhxC0WGWfoYBcOqRc0bXZ/QJOEhjHKUVPMgbuJ+3ccQTZA5mkfpzUOmfTyr1d5UZXvQWin63GWu2hJ96J4GJRiKsr63g6Sev4fKlCzi3tYn11TGmkyj9gODr4/Gix2yRcTxbYO/BIe7u3MPd3T3s7u7h+PhY5aIEs8zu1Err574rKDVb8tmQP6WsE/C1QZ5FpYmDz2FrZgXsbZuA9bUVPPvMU3jumSexsTbBpBXwnUIDkNAjJWDeZ8zmPfb2D3Hr9g529g7w3gfXPZVoGRu2xgz9Q/b90vAtg6G91vXaiWqdqmz24XgPA4uDdRXLcqP1rPYtNTjC7nE72vY1g2dqU2vZqva43oZqeAb1hNpIg++KuWjPG76PC2OtPUd1GWlfet9guH+pvxv0s+92qp5Re5aWDpTYc8QeKv3H1X0D2UYFxBuUpU6xd9p3+nvK1Rh5cX6fShasncXGraeFTIVqbhTNMKia7yeqetp+yoElbLpIPjPOMKqenNRnwNCDDtV+wlshdKFLn9vcH/bXcAyrK5b2E/W+E2wHHSztcJEhf18uhwiK7V3abXWiqloFplbqNtyjGTijgEGKXLs2L1qO4AfPXMejiAyjpIoDFXvO5katT13mSepZj6PZkNApaYxMXL0L9TBYY+xdpQOqzqAi69WQlTlU1hiw2Ts6TvZ8FDWx9Bj9e3l22q8EW8fKV0M9VK8o3r9LL6xlkkG4desOwISXX34R62urGI8FoB1A6FVPt02DV195CbEJeOed9wpTqT57oBOsFWx7MR0rLi0bd2M8/dHT2L6/jbefeRv31/cA6GED1sMEOn5Muh+h4iMaAEu03QPZ8D1mPb9MFw7XiTKeaiO6DzOAlt7icmyypEAbkzPzlVjKP7EFBdRsNrIt02bfOmMrwYFXbq9U+1vxTS6lboQeiLQ25uJTs3STtq7byGRmc+S4HFl2O9EJFVuV+qAMFGp7OAPJkY6zpX13nVjJW9QxsMR0tZyIT9LakVFLJhg+hsLoWNJTF5nWtZCLD9l0k6+POragIWi0LNVFbgbgNluqfU9uh0/LzK1tVm/3QNapurL2bbH64IPXz4G3Vf/YvQGVX0Ofa2xbA709qM1f39JzRI8Gu/kc7udtfJSfwLvpGdzLF5AgLMKfZSEiXLp0CV/60pfw1FNPYXNz0/dPn1RSSjg8PMRHH32E69ev47333sPu7u4jyyzUNI0zJr366quYTCY/dq9mwKvr16/j1q1b+OM//mMsFoufYo3Pylk5K2flrPxVFQMq/dqv/Rqm0+mp9YBIDjX+6q/+KogI3/rWtwb7kZ+0EAjrh+v4u//p7+LZd5/FH/z3f4DrT1xHjo+uT/WsnJW/juVTg5Qun992Wm7Z3EcYDER2rpo2KgsTQpcEqJO6Hl3Xo0sJKWX0Cm4BzHFQNtJ+8hC6LWJz/VSB6DxUEkOntv6d5eR9HaQRIACqE84ajINAZ0Ijm+/pqMH2+gSXz03w+MUNrK1NMY4RozYgRUK3YBzOCbuHx7h/cISdvQPsHc4w74SNIqfsqYNYvVZk3qsqoG6nmrI5i7X9xHWqOaWnRtnAhup+eaxtSO10T9YTQVFbR8oQATSBMGkjtjemuLS5gstbU2yuTTBdaTEaRWWqABIR9mcz7Dw4wr29Y9zcOcDe8RyLjpGyMFakgRO9OBEDggTPaNjWeux8WPUB9fjV4Ab/NWdQFmc3q5yh7kcqABiunKX+fHXqREu/RjL6jKSgCQWoaazbGC/Ap50bIPLnm3NF2HDKJlGC1npnUIcThk48a58F6Q3Y4EwvWHLe2lyz9ITexqCpkuSuVL/LgjZadw8uVPJkY+Kp6YjcCWUjXAfmXfZIWS44I4CNRR2kQXZz9Luz153D1Xibc83nRQnABQ26enDHnkbkackYjEVO3j8SBxEAGWUUJ2TxqrtMCWAkVw4+Kr2rJ6UTBCDZNAE590teaBtGdRAFQmBGn3qAGW07wmQywbhtHdgViJacUUOQTzbHWCQFf0iN5GRUCfbkzDBadTaHXrKUZ2HgRAshKCBHdEDQ05FQJp4QbBzF6Vf0aWEZIXWOISvQhhjmOjSnqZ9WjcLyIjo+D5x35kV1IBLgXkzSdFAu8+YErh292gaK5oCDt9uuSykBUR2YKnwpZ5n7CnLru07mxo9x7HgwR99jzmUQIfUJFBVgyALGEQah4f21w3qgt5lVtoegok9iQRNdRN4VNBgn8n6tT08G6x913nIl+yUAWOlJErnIDOwfHUMYBdcxHrUYtyOAJQ1b20QgAFub62jjDEeHxx6gMr24DJSyUQ0KSDUwRt0GIgFpiI5mJGVb9FRWKYN7SfUViBFjA6izX8CyyWIIiI066U2f6jtZp3ZgRggNKECBPZYMTh38CpjIWU5hC2OTMhOBVEcriJI11ac6+2EMZZb6TwMGDtzskjjf1U4ARTRtQGiAnPvq3bnYOtUayRZspYCeM4jLdZwzECvGEh2EvpfUeMHkNWcBkNs94MJuFjUBbubB+1MSnZpyLgBdBf6Y4DMr60MerufMjC53YJJxb2J0ecxsIGCgjRGpTz6niYAmRiQqJ7BDIOSe7SiypEYLMnckZVylk3VuuJ6r7JAQorNgmg2Tc9ZUmToH1bEfKEjK2FjW9gKyywoQElVWp2iVsbewkPYPZ9HRKmfEQBM0TZw6m0nBXsuBp6ysVKxA/hgscEGQlKMa5AWDqKQEfhTL2soEQAmswGwMcCEOhNl1SZmSZOyO+xEWHHCUpthLazjKKzjiVXQc0XMYBJBM+5n5MgjSPMSJYbbS4DO28M7gw1PBHVRXxSDr9tbGBp55+hqeefIqtjdWMRo1ksZO5TElRpeAk67DyXyB3b193Lqzgzt372F39z7m84WMra718DYMK0mVjJmdZZeUNaXU0O6vlowqbY9eQ/UDy1phjwmBcG5rE088fgWPXTyHy+e3sLoyQTuKzsTHWebXLPU4ni1wdLzA7Z37uP7RDdy8fQez2bykdBsuoNU7TeeRLZSDdhXbjpaHTuXK9inaCZauhZf7sNxTdFoBOyxfWYVOS6+aDYcCwOWlvi91RjVOVO6v0oF63W3JtjGpHlH6wux9+No/aJjrLLEf/e/Bu2yNgdtcPjZUACh1/9q7jCnYryOzWYLaF2UPUHqizK1TAIFTfVQ1Z3nsKpvI9IfN/WHXV28gwABltq9zdkDCsN+42Ael1m71DN6P8lbtRtbdm62bsaSvHzS0ulfl3liBYzSG6ljabvaA7Y/I+mGprSrPRQ+Esi9c0lvetWxryaDTta2uVQdzxcxw9jaXcZVHqKxVLzMfBasfyWrErD6baKA/7ZlKubk+r8ZJPtF1EYVJ2d5UWiGXWxssNZdTQte28mB9stewP9H2dyY0D1ktfA4t6xEickbS4PUrjJTLfQyVJPnYKjl4S6WVhl+XvUet54ukFmhEud5/9/fzsCr15yiakCD72Vu3b+Pg8ACvvPwSLj92EaO2FRuwadAngYa3bYuXX3oRK9NV/OitH+FkNju9Bg/krGj0gW6v+nXraAt/64d/C3fO3cEHT72Pk8mJswRB5YnNR6dAdtsPMmQ/DRSdW95pFVKbAurfIyr2NZe1yPZ9wiJfDh3JHNRdNNGg9wwISGBJuWc6anlsqLSBuRqBYDar7fEDmAoz+bLutH1atoUDtu4BxsSIStbkEF2ZUQwDNLF3kaz9dmsBQNraKM8p62WZuQRQ0dEO5Kxk0eySxBULdDFSHMxqKfGS2/H6hlD608Bfwz6RQRdbnmHsXWWvXNZK6zHW9xljvK8/xZhFLbMAOVu6MS7XEma6lKo1ql5Taze4vc/8gcZ0BcCWXkD3LEWz2LptDUB5vtW9qkup/1+PYsN9n7ex4BF28gV8nB/HTr6IO/kSZjzBAqfTy3xWpW1bXLp0CV/84hfxyiuvYDKZfOK1Jtt7e3v44IMP8NZbb+H69es4Ojr6aVX3Jy5EhGvXruHll192ZqjpdPqJ1zPLgdCdnR382Z/9GV5//XXs7+8/dE93Vs7KWTkrZ+Vnu3z/+9/HjRs38Bu/8Rt48sknHwrMbZoGv/Irv4Lt7W380R/90X/zmkcgPH7jcfyP/+J/xBsvv4Fv/L1vYG9r7/QG76yclbPyV1KIP6VV94//b7+pmxh1cMI2gFlAK70EFVPfK0gpK5tQgqUoK74N2czlnJA5uROAQMr8UU7jBxAQgm+MAbgjwNMW1cGCyjkGKhTIzBIAlRM2whLTBGAUgZVxi3ObE5zbXsX2xgq21idYaVsBGEA2ubNFj72DOW7vHmJ3f4bDkw7H8zl6TbfCLI6cnDI6c4+yBUvlNKQ43LyaAFPl3CrtqjMqiAMjV44S/VwDuL4L1d1mRq8KNCASEIkxCoyVSYML2xu4sL2Oqxc2sTGNmISMtg3ITDjpGF1mHJ4c4/7hHDfuHuL2zgmOTzrMlbUApEAaAwzJzt+dJOZuZA0oUDBHSaGFr4ZJwDBx6My1fnBHpW7AG03bIwzjVT9aajfdaZvjQNItGWApKhtDdEegOHmyyycZv5bWVajBq2ArSNP2ZKuEOv0SGOx03KX+krLDHNkWvBfWCHG4iSw26mxiQEEx5I6IrOwC4vxyou5Q6HydcctkRX/3lGKRgEwF2kTKKJF77zUrIQQ0IbrTyAGDRA7wykaBrr3taW1YwRShcoaBNN2WBhsN0AjIHGQNeoO9L3NKiD7WdppXUxypMzCxUlQzkHWyqD/J+1+czuT9TgA4JQURqKwSeWol1oc0MSL1wtCgn6JtlJFIc5N56kUCUi/MICFIPVMSPSWnHKPQE0PZz7RX7NSgOT5N12UUsFmAOjYRvJ7QlD45GSisMA7knFxWYwyeHqCkU5PRJgC5Tz4fYtOobiXXwaQB777yhIWiVT0lFLSOxBZMltnqfEs0BI+6zKJ2adupUPNqyj1JA2kEuD5MBjolA+5gkEKT9VRp1PRWQVObJXWGG1hEVa/WS/S0aRGprugse7cBakhlqq9YzqRDEhypoG2V+3QuECPoe6DvtvXPiqWQlABh0RmuV1UXMmpgW3E656qegABxrC6n7rO1SvV3Abxmn+eBGOPJCFsba1ibTNxRmZIAVDMErPVgbx/7hycCKmILYJSTxaxzVf7OAx21/DNlSQ1JmqZ00XXoc0afBIgYmwajcaMsaXJPbAIKG5MATptG05uxyEKuZAQqazU4NGdlegiMRqnSJXBup5eljy14aYAeYqi9ovMuECzICQJCjGgaCSo2MSJQEMB2n3Wey3WxEdBR6nun73fWIZAys8m8Nv0YYhRAJCAgFW0/CKAQ0DRlAxd0nQim25mFWYghgB8wUt8BBDRto1EHZSg03ZSlzvYM0WkC9Ewe0GEk1y2Nrl0kADJiZb+SNblpItpIkvI3ScrLJkT0KcFSQYYQEGNAymJjjkYjNA2hm6dyClR1QYgRMRL6PjsosR2JDdCrbVoHPggo7I5EzrSWFGgOsI+BA0Qs3ZzKOCBzmK0OISBS40B9B1V5H6nODAFNbJD7jJQ6Tw1I2g4Co+t69JV+aFtlFUsqm3YqP2CYGrZaF2IIeO/dO3gUy7/8n19EvSOodacwcjG63KDPhN20gT4D99I2ZrnFUV5Bz42FalFsMZt7akMxyjzT9YvI7Ao8JFhX1qjy4SA+N7jO2RrVXmtjxKiNuHj+HJ64dgXntjdx4fwWpuMWbQxi16ju6hPjZNHj6ESAO3d27uGD69ex92Afi0XnusrSPrFVoAIchCpw6kE6xsCBUgDadbCpNKyOP9WhQvvQw1p6bSRgPGpx8cI2nnryGp64egWb6ysYNwFNKGx0nWblW3QLHM977D44wkcf38FHH9/Cvfv3PUWvbx7sd6LSVitWTwtUE1X1rS7T6GGpffWdXm+fBQv+LjubbE1a6swa+GYA8WIvydtBdVpyGsiOVrD6Qb4n4upaWzctCO2vtDXVNkZmy6ge8L70dFbWApN9/c0DxtAAdF2xKhju/axjoizEIChbmKlBNbz9QEeptNtgMBu0DrSS6yprl3bt4CCRBfB9JCoG1HrvbAFzByL4PMnOdOOfwbWGj/Kp/iL4OiePsz02ijxy6d3y+BJ4t0C3ryH6gBDCIBWw2eYMBTFQGZtsNgtkP20HkvzgCApopMiatauGIbkGLPJBYnfWYL8i5sX2pzAE+HidDbnFPFizs9enngMlSD6sT2m73WN7AgOcBR8DPLy4vJOPcRkvrzHK8bcyu30emBxxkQV/LhXmRdtzWy/be2o9UnVn6bXq+cvg1sE4+T4IsAMcNm/KLK58XNZCMlmo1rBBPdjnt9/LBoI5XR7W33YYja03a39UWWbKfgKF5SWGgGeffQbPPfcspqNRYS3lIXhi7/4eXnv9Ddy9e9fZRmtFPgBNVuO4XHm7JjPjZHKMG1c/xo3LH2MeOtcRRMp4aWnHGM7wU5YlZaap1x6/XO/R3rG6uP+KzMY0ACMqpqAiZ57KD6j0Avm8qcepZimVA0bCfuz1pQrMb8zmKr9l7nJ1kKDSSVy9W7vYxtmYRUWfDlMy+rpEZFt4MCfdL8jexmwW051c/W0darqtrKHQA3h2OER9vabXY/C+lT1TAHJGr30Yo7EUlfRubuerHy7qoQTz25j5Y4cIrK8AOYBV+9zqeW5TvD70Y+00liYHlpltR9UaZF3BRRtQIGHZRGGDMvFLlV0HKEsuZK9F1Z6+Tl2YKn+Oyw9XMmf1qR3Q1QQjIuz93x9BoMv/+kkLgxRm4ARTdNzi/fQ0MgLeSc9hP29gJ1/EHGPIXv+TD639tEvTNBiPx3j66afxuc99DufOncOlS5dOxzuWStd1+OCDD/Cd73wHN27cwPHxcVnPHrFCRJhOp3j66afxyiuv4IUXXkDbtj+2fTlnHB0d4b333sOf//mf4/333/dDWGflrJyVs3JW/nqXpmnw9//+38cv/uIvfiKDIDPj7t27+IM/+AO8/fbbfynvZTDub9/Hf/nSf8Gf/MKfYD6Z/6U896yclb+JZdl/+0nlUzMpMSRwnBPQpx5dn9ClhK7v0KdeMi1ldbJpijPZkBsZb8knDvR6GMwcNKSBQAs8BU2jQ8jQ0+qV88jBPChOVd+8ZjYfdukCZj+9HJkxahjr0xG21ye4tL2KC1vr2FifYNxGxNiAGVhk4P5JwsHRHHfuH+DBwQkODxc4nHfokgRTsz++OJozVw4HSxsERojwAK2BttwW5wK4CrTEkoHi1LN3mXOMU5a0NsreEIjQ6CnJSIRRZJzfWMGl8+u4fH4TW2tTjBpCG3WDGhvM+ox5n3D7/hHu7B7jzr0HuH80w+EiQXAsEiRkA70wIak8lM0El1Nog427MLLIxh7VJl2fRaVNy202IIOBdrJuzi1dVHZHjoAVMhiR7ARbfWKQB3KTuThnzBFbTmDLSyRhEAT0oO9Rcp3hYCzNEHEIqWME7GNlDhwD/eSUQSysFQAj9QZCq2i5c1ZWH2gQUgKSTktt/aK04MWRqQ6IpYqa06zPkkouKmAgq2O3bGTl+Umfa3WR6arX1Q4ndbp6Cg1lL/E5qU4rB+KwMZ4kSVOgY2TMYwJ4UUFSBhlQ9kbUzpoC1TCQWXHm2kBZMFuCIgxOCSFGZZphZf0RRjdQ9rRFgJ2MzHKq0vtdnpUcQCD3hUgIlOV0aAZi0xRGkxg1dRlj1DSwtFsuoy6nNlDF8WeOwcFcqVz95mz1cabiPGVBrlTtsTYXJg8BEejYVvqGqIxZ0rRajaaUK4AdVvYbA80FH6NQ6WY5ER2LM6yyK32kHJwDWNoo5h6RSiqgVgESFg7LnAW4hqJbA5HPgZSTpoIMGhjKxVmo9WVWhh0EvVadyerYRBWUEDaesGQYq0uRvSLyKYkj0QNCHhzC4Jm1DrXv7PTqIIhlTnGqdJvNcQ1s+FrIxlRU6WMeAtkkDRZKIECZrGytzYg4Pu6R0gF4kzGdtAK4IWEBCo2kcNveXEdsRzg4PMRs0XnKAKu3yRHXwu2yOly//Wy6gpcjRXCIMrsb8hSU0n9JHqUgmxiEaUD6ThnSGPK7Km9SdhOba9aPwgikjEw6R/ouCShFgc3E5aSsz8u+MO2Zg5o4IFNJQxhjREq9pyS17iGI7OWcgGS++qDO8zIPiCKYqXLmS5/1OblT2VJVxCa489vkLaWERk+vU4gCqmEWnZQszS2BLGVMFjkzMLCSjwHQgEugcspc9SaDnd3HWNQsoGp6PRAhQvRH4owu9QCiA+gyMzp9ljAc6dqo4CjSMaIQNaWZrRlauZzRM0OnOBJnUM+aMlTkTtZLs7WMmUjHgyU9ps0Vk9MSdBB9HMzeyMYCWq5hZvQstm0B6SmTVtsKS5Tqz8yFOaLrOnlFiJICLqACUUo9Ui7yI6wTDAq1LrO6Z3/H4Lj1I1akWaQBw4yUGIkZh2mM47SCO+kCdvM2cg7oIDa5akN/hqfuQXYZlUtKAFQKlTv59Mn5T3Tia/SpTg1rxcZ9ZTrBysoUj1+5jAvbm7h4fgub66uYjFvEqDYEgJSBWc+Ydz2OTuaYzTrsPTjA7bs7uLtzD3t7e0im06o32Sl+q7JZqgUTP2RwkU/I7eQS2DZ9PNTBppYDQUH4tlZpUFR/xhBw4fw2nrp2FdeuXsb21jomoxGishaa/uozI2XG4ckCR7MO9x8c4N33r+O96x9hsejMvETNFuQcAlXAshg8cJ1GZnNCzQWL2PkacnrfZx9a6M8C5/5oNiBKabfdW1cH9a9DYavGSIRUdxfFfuaybXCoiq27g0JuA9XmO1X31V/X+xpvK7FO+yUmHHuk9aGuHQ4Qsu/smVi6lx7yIchZYkVW4PJTG6W2tto+izKDw9J8tv2LHwAp99rzi56135WBp16E/aW1j6D6eMkGMSDMsMtVFuqh4GEfDcauWgPEpizg0lzbZQYIqtYXq3ZWfSjfy37C6bMYEqD3G8ye0j2krjfSL2U/4LYfUM6WaZvdyK/kFtpXZgPT0hjaxqs+SGF9WvbztcapOk8fZfuCIcihdD7Xf5ACrF3PL+sx3RtVI+e/uX2ntefC0g1jMtT5zToIXO0t6yGqRT7Vdru/QwF3wWSGy0N84pe1yOrF1bV06k2lY6oVYDAeA3gRmyettP90n3C5tzqlcQqoZP6R6l6yz63OqPYhXk/159ne1SqSZR688857YCY8/+zTmExGcsCJ7GCGXL+9tYlf+MIX8IPXXsOt27clAE1lzS5rRpG0U+2r2kMgrMxW8fy7z2P73jbeefpdPFjbBwIr6MVu1TYvpTWrmcyl3+DriQNf4NNUu88HVw6PoErn5czC5TBa6dahXgCUmRy2F0VJW861RJjuMRBZRs5+VAgOAtNxMnlHXU9jz1ObQZfzcj2qpZaGYClLuw5U6xsFkNXb95hFr/vo+NjW65npG6sj6b2l74AKwGPXZ0vaLP8yFz1W38soPmKpVkABhWZvv+kDuy5ndubJSnurDqqmhjVisLdfOvBYpVQTP3dZe30yMORgn60L9j4Se6xm5S7AStmfe7+GCGO+GxbbA2ull/T0cDXkpcY92kXkh7DDF7CXt/B6/wreS8+i4wYnWMEpPfuIlO3tbWxubuJzn/scLl26hIsXL2I6nf7YVG62lu7s7OCdd97B22+/jevXrz/SwJ0YI5599lm8+uqrePbZZ7G6uvpj2whIO4+Pj/Hd734X3/nOd3B8fPxTqu1ZOStn5ayclUel9H2P//Af/gOICF/96lcfunYQSVrU3/7t38bXv/51vPnmm//NayKBcO7+Ofza7/8annv7Ofz7X/33uHHlxqNqTpyVs/LXonxqJqX//lf/r+j7hK5PynjAkiYIdnpZN5NgCNjIgkNZ98LkJ1IsfYE5xUK1gSx7pGpzG8y1WAAMxt4BQNP/qDNPT07Wjp0mAuOGsLY6wfbGKh47v4nt9THWpy3GoxZt04CIsFgk7J902DtcYO9ojt39Axwcz3HSsTAm9erozhlJnScWhDZgTOZc6PIh7AqG1DAAS8plP0qoUlKhYs9giDPy/8/enzxbmhz3oeDPI75z7nxzzqysypoLVYVBAMgiARJ6HDQZu+1JRoomUm+ht+5F79R/gdZt1qu2XrT1QqZePfFJRpqJkvhA6dHE1iNBgBgLVYUqFGrKrKoc73zvOef7IrwXPsV3MgEUSRBMgDeAynvvOd8Q4eHu4eH+C3didQSHoyYRa94fgCmjsrhrJglYmQJb6yu4dGYbVy9u4fyZFaxOMlZyh2nXSYAQBT0TjmcDdveO8f6dXdy6e4CDowHzQRwahYvF5VAR4CBz0FiWEDsl5Sc7zdngwT11whZ1sJhj1Mabctzjvj2G/Q9QhwgH4CnoZDwkjkM7OQUrgUfwLDnMTeYE3+8zLGuKOUYMWJLUw2/OTQO/6RTEMMxNZCdcdeL9tF4jQ+GICgdwBHHlJFTK6vSxk8keVGgcLcYHKUkZHjKfk75NgYIcnianV6lyXsgSD5kfiGABqQROwWuehifS4yiAQ4AnNi/iLGd3lqakGXN0Xg2oUAQR40GHUg2gBliANSnYhdR7Pyo5ZqnQ9RomDuBaNZnLSGAHJzBCt0RwQ8BixjPFspCwZSRRgAKEXg5uYwaXAUMpGIqBpgY9ZS7ZVzp0mHZTQFORp6YElGRxCOBmTp3zdCnFMy75fwo2cZ93SgousPwKkTHKpJUABy5Uu5kIZGAsowlInzcgpwyihGx1woxViTRzR5x0NG5maKY7sgIEQnvhX6ic6hdWZg7mD4s+ZEqeSYwhQJGiIKHEUX6L3aEeJ6UF6KH6gNCkuG+CUyY7hmDQwIefZCS7tlkKWeY9Jy3xpvKYLUDU6AcfldLLPkvu/GQ/iWup58OJr/LJSdcslSGC98ucoDSiYRNcpdT2XK5VpVeauYo1xq9S8thPvVYVgznxp13C1tYattZWMZl0fjIVVbJtnQwFi8UCJydzHB2feNaaWovoGQcusWbDIte34viV4E7hqrq2gMsgJZ5YM62BtWyhZZBJzkfGYykTMimwBopfIkKXKtYmGWWoGJggSW3iRKwDYkpxPcuqs6hZvwFo6UV16hsgmoWGXdeBi2R+Egd8VmCploo0hz3LuHOX/fm2lql6FF1ZBllXVEcnQZUJ8JIEECQgJXL+1xD+iC9XV1d0PZExl2LzU/WkcnG+cZCsB3rMbjE9K30bNFtRsoxtlRUEJQAqSgkTLVsJZgxD1axyjG4i2dtqFUDSMAxRxrJWrKxMPetUawcAUP4DuB9EH9gc1aLzrpkCuagd0GmGOnXcF9GBnlVN5TGlBMrJdVcCxMaFgG5zzqAs+q4MFfN5LyUyu6xlKnU9L5ElT7J6TUCQUomSEaoiEWS9VLtHMm3KBOTcea3GahnEtMSmr3tFMnZSEmCaZGQLHWnrYU4Zb791Ew9j+//8X15AqRXzMsFO3cZJXcFOOYMTXsMATdliVnwbXMPYDrPWAmdtbbD1EWge1d7vNwNowEBWcpdMXy5ZcTkRNjfX8fSTT+CJx6/h3JlNrE07rEwEBGmlc0tlzPuK2aLgZNFjb/8QH966jb2DI9y7t4Pj42MMw+BzZjLHTcc8YKfNki5QMzYrFwS1112PI/jSLyd4yUiz8choYnsOfX4CMJ1mXLl0ES889yweu3oZ62sdupzQUZJAmerlAqBXudg/OsHN2/fwwYd3cOP9D3B8MnObx16zDFqNWDf5deNJIgWTNMCTdjuBACDAnx/PGQfP7R20zB4jWjmgy+0re472Q20unzPL6tnsXUcHTcw2UHv3Bzm3lr/S5dylYKmro79trbE9AXO7HiB0+yjoq9faPqfZQ5PaIL7RaOjlto5uFezLSE5DDa99n0Eu7YlAVn6L/XsJuo7HYGupckRjL8V9QR8NkLv9FYASv4ZiTDK+sI9ImCz60Jh98ncLHoeCUGlUAq8xFkbKixWIa32XPJXs/UnQLGy+roTfAb6faPqqtGoBF27y+XVht1h5pPH0NPNPln1S6WX8o/qRG5LI88wH04D+Gjq3c+T7+EYOnS4ALC+relhG8+86z4WXR/d4/0jltiLoYYitGK7b0yOT3vbwFH11sN0SU7dZosYaOgjkfgUbE9P9vG3j1xLPLauR3edrhe2jgs/tar921Et9V8OrYx3CzXXj+VjORufrcUvE0a/Nm5WRckq4du0annnmKWxtrEv5aBidhRcLSybJ965fx2uvvoaFBhcC4AfAStxy9EOuidfb2ilzKgeNTlZP8PLHv42D7f1YEwDVd0uU0jm3GIiX5SOgSybnLAcTrX8tnZtsZPI8avRqrHu23xgbNHA7wsv+WpY88H3Xmgx5NiL7ypgDqpOsH2jmX3UU6SFE0y/eQZVx63e28sSqd+wQVOgRtZsfsM76e1s9TQGSCl9w0NH67X5A2PUCNDSd5xlxLcu7Pje3/oNqkgeX6USSoRa+hontDt0b+lEUl5mk4KGgvS6Zo3XdD26a77TGzJh/UrJxSlbiyKIe9Gr3cWKn6eEPHaP7Dxv0VOgw9Zl6pjBu3mFyT809Ul7T6D8Ghcnfew9hJqWD//sWAOCQN/FueQJ7fAZvlaexU89j7iXbfoCx9TfcLly4gJ//+Z/Hpz71KaytrQUPfJ9Wa8Xh4SHefPNN3L59G2+99Rbu3buHxWLxY+z1X7x1XYenn34av/iLv+jlen7QOAEZ682bN/HGG2/gG9/4Bu7du/dj6u1pO22n7bSdtoe15Zzxuc99Dr/4i7+Ira2t73tdrRVf+cpX8MUvfvFHBt5lMHbP7OJ//Wf/K248duNhNi9O22l7KNuDfB4Pah85k9L+wSGqJxTRDSjXUV1tc5xJQHGABE7c1YVEAkoA0GyiYjNvgBcbQrWNd1UHgjtz9JnEEGCAOfi17AYYk5Qx7TK211dwbnsFF8+t48K5TWyurWCly+oITBgq4eR4wP5Jj7u7h7i9c4D9oxlONAhVGBg4MoqoF1PK1CHbnxoU0z19Gmss1uxKFmhqN4Dm7LMNrmwINeisO14JRVYMLCeWmAg1ZSQmdJyQiLG2mnD5/DouXzyD82c2sb02wfqUMEkJzBIAPO5nOF4U7B0PuLc/x827B9jZO8TxfIahAkPRzDq6oR055BonvZXwshTS1ldmBY/Z9Rqgl+waltkjsgaFo4LUQdL8rfnD/TS4n46PQKnwjP0DByuYA5Oafscm3lyJ4cyz55A6RMyBIMNSB0STHciyoEDvMRpJGbTG6dU40v1Z7mQmLwmz7FyULA8abnYHiI5LA1rhxF8ej/Bf08WGD9mz6bB621qAgjmhRvGMhMgMYddayTQyZwlrwF4d0xqAdvltSh7AnIrC+MY9EkixZ5OVNZPSj2Dyk9fi9A9notFbnk+wslnyf3EmuWPN6ccgJM0SEjxjrETEImfg0Xxb9ow20CQlKwcQS+rwlBJyNxHtkkgAX6TAsJSVJsmd/u6f10C4nDQWEAKlJgtICkeazbYB/CI4YzRswSwCZ2HlGfXMuZ5lKFgCkn3Lsoz4yWO2EBA3wRD2NPZE8JOUpWj2GmYtd2fAPWgpMAm4Z30PARj0qCklQjEgI4KXrDSGAUgqSxYy8udHEC5knKNiQiM3XOMaUnmoCGBi+KtbQNtYj9ikuY5jA0SRB+nM8dlmKrLT01mzBIKg9DTPaOMwB3sWrNFaoXPdXuNO7oZPbU2xGQ7ejlPssfaGs1rWXJGjTElPAFcsesbu3iGGfsD29ia6RFiZdOiSlEHMXcEw7bC+vo6V6RR7B4dY9AvncUrJAxzCjUnASq2NYrrUeB1ZSigWydQxDAP6RS/rNkUq/pTE+QXICYs8mQBEqHUAg9AR4/LmBGfXp7i9v8DOsYALHZxYGMyDPi8pTVllqAJVdGTS0mbVEQEEs1FMb0b5PtFRwrNqpwDKf+ZUF3BK102QstBRcAq2/gGCp2VnTC99W9kBXElpYZrQQX9cXZaHhRSgpfbeEuXCEIkfYi23THpIICrN2kAAi02SPNhQBVhDjGwZI3Wes5ZkSFbK1O1BBbGpvueqoJyqpdFSrPFZnfKVGYOWY2Mu6LqEaYKUTasy9qr2V60EcFGgkZ52biN+aJz5ak+wlYW04JDejyIA1pXJRNdCs0tCJZiek4CB6oBEHiCpHiBQkFrhsBH0xL7bwhVNeY1Y42TdEbkxoGBSXhzLtuq2pSDZw9T++PAzMg4QBs4IrggduGwfxDgbe8UMPWA0dgLGUaOGjqaoCSN2cHvVwq5SakjmuUsJ21tbeOTyRVy6eA6PXr2EM1sbmE6yAoJlnSwM9H3FYqg4ns1xb3cft27fwwcf3sTO7i76vkdpg5rNOiw60taC+2k2CvjbM8DOj2r26KhsdPo7ma1BnkWymjFhtCKxARIRzm5v4NpjV/D4tau4cvki1qYTTLIGEbU8al8H9IUx6ytOZgPu7uxhZ2cP199/H7du38GiL+M5ZfZsja0NApuNRqC4ldUYgq+ldk/YOWMeGK3X9r2v541VHOwx6kp779iKtsdEsNnoz0sXGUBl2XbwZyz1sX3bA6bf34uGz23eCJFtzYfG8R5/Zhg5oyE2dwknN3NlgVvGEiWa+fPffH4x/q55r9kCZrsu2yduuxiPmH5uX8EGPtA+k4kv+77Ju0HUPNsIbJ4EVt0wnuPos9jMwvbsvG8gV5fVRjb9nnZMLX2asYwAVWyZlyJDn9iSWUuo66UkusbKRN0HuGn0ge8TKWSCH9APqK6zP8ZACMJoCNpvt++a8kCs9nSMvfnedfCY90Z9bp4j09nYtE1aR5+f0TyYREYpTibjfAoamM3iPC3z6vqBbI9owDZ/4ZIuchgb4PqbnZ/hvVGOcNEY98l420GRds2SKFlm35ALcnlSo3+s75qfIVP6eUPrAGO27w7+8Ed779r74oBd20YU0HWHIHbLu+++i4ODffydT31S9hM5a+mtjMyMVCtymuDZZ57C5sYGXnnlVezu7wvVyHgeABKYqvZvSc6wRCaID2FtvoZPvfZJvP7cG7izfRsFlqU45CulcclMIKEFHE0zYXMloVTgYDaESwlyT3VfSKPTTRaY49AVwYE93swhQI294tPDLssAAoRo47N9QlvWuVGzSbNNt5wRQBSoaSk+Itvzgxtgne4v5QBFccYwvQVmBQktLdwje8b2nHEFfMjj9dDkKDklQ+/SA2wkB99Z3yurT84OhzVgLJjcycE5Vts8J820W4XX/JAXzHcrWUzvXzdHHYEuQq5zEmmGXdURtVbJfNuscTZX9pCgh4m6AI7ksEpq7Ht24Ll1ippffO+jNom/Yfl3HrHfeC6Wf3+I2v/r+P8KAKhIWGCK7zMrD01LKeHSpUt49tln8eijj+Kpp57C+vr6SCcvN2bG3t4e3nvvPbzyyit45513MJvN7tN5D1tLKeHy5ct49tln8dxzz+HatWvur/l+zcZ67949fOtb38Krr76K+fy0tM5pO22n7bSdNmmlFPzJn/wJPvjgA/zTf/pPsbW19cA1NKWEn/u5n8OZM2fwh3/4h7hz585f+d0Ewrm9c/hn/+6f4T/+n/8j3nz2TdT88PpbT9tp+0ltHxmktOg1J4M6k2SzuxRobJxPBqBg1uw2qO5ElB/jk1zyuQWbm9NztgEGeXYJcxCx1V8nYJIkmLk6ydjeWMP5s+u4dG4b57ZWsb4ywbTLmHQZRBJAOJgV7B/NsbN3jL2DE9w7mmPWD1gMBaWynoiXjV9tNucBwmLUOtynFMNZEIFm8w61jlZmljIJ6lyrDgSJTBeWscZ2jTllsGcTqljJFdurHS5f2Majl7Zx6ewGNtYzUAWkBZbyU7NasX8yx92dQ9y8s497+3McnAyYFdYKe1qSggXwRfa/FI4Pm6+UImOOO+P0TwMyJMru9VCXNwxg4HMPbk5jBe8kzWagLl5IcgX20+3MjE7LyNgpUMtiZFk5oM+3uWtPBBnt2neOHHbMKMOAujyv6uTw1IL6t/giovQMtdcjHM3LdGx5qnUIyYl6dudFAIIIlc3pq0FpDmCgOxUbx7KNq6WBvVvem0cn19yh2qQkt6wT4vBI/j17FhLLzlFCbvW+jrI6oMSxWAYtN0UROBY6pBGNJAjdzpeBTCqS8Q0E+AIWpxxQm7SP7OAQSlkC3+qps0BwPLc4oItZMmOwZo9KOftzima1EBomFM2OYo6tTrOxmZuX7TQfC91Y9VQ2WsKcR9LfpIDHkeNXs5WJ/ksqmQqsgQQUeTS/GgCvyXGSDuxRuthn1tcoWOWc7v0Xlgy+l/dU5b/knxPBnZY2Z4UrShGd5Q590mwpdk2RklqFK5IHXS2TmerfpNlLBMEk468FKTUyR2hAKzTiHQHQQecquTMvaRp0AyVWBzBF4MvBh+rMBGla9tRkbANJhqrGSZ0oqTPQvc0KUGgcgJQQAU5oKZtGz4hXWUE0dooUyLoOMhI4KXgO5mBssjtY6QlCZB+iADm2ushaBBN0ja3BN7UAh8dzMAjnz24j54wuZ0xyQlcJfamYDQVb2+ugBBzuH+Jk0Ws2NXigM1koLClcyfQiRHcmJnAJPSs8U5QnCJQn4SQHQ8qhwcdU9GWVpWQYlR4TAHUxoJ8PGAZx1hYt62gp82spClbTIBeLnqsKgBbgTHiSBUBnJ3rVoWxymAi1F7CNOJUjKGFO6qSZEYahajXLAMw48FUDGHa61TIZdd1EslkOTSkAgpaebE5bC+tFBiqQg32qwpGJhVcsg1ALdtG3CsyTDKAgE5pJ6GsBAFJ9ZrZBzllktVRwKZ5piVnGbLaAlLgS0JStY4Ovv+T8nFIG1yIyTwCQkVIn5aa4xzQDlAmzvmAoVi4OYFSUvkjWo5RiCjVbEVeAPAMjw4I7OWd1pg6ecapfGOgCyJMJqFi2Q8CAaIYrzVn63g+9Bw9Skuwzvm67ym01serfyuDSBC/YXiF9JK1VE2CnsE9Nth1M/RC2Rc1NzIPdnjK9i+Yr/2m2DgBjbrObHqTLWhupfZ4WP2nWW/j8Wagsk2Qo29zYwKNXBaxz+cJ5bKyvYJqzl3IjkuyUcy3ldjIbMJstsHNwiOvvf4AbN97HbD6/PyDU/IyAWTtgH6V33DMgtZeYXvFrRf+x/0/Zj5vDIH4rhQ0PYHNjFY898gieeuIxXLl0Dtsba5hMksq72ESVGQMz5n3B8WyBw8MTfHjrHt6/eRvvf3gTi/kixudrqfbBI5PNACxwxk3HELag7Z2CRha8Ww5KM1zBIvjB5czt0FjL7T7bs/nrk/GW0shsybbvbuvZkKo/059sNGvBQ82+iTXzw7IFZjbHmHhGGbit37zcdzS+iPif7DRZftboEQgbZNyZuCiGEJzq88KMZbBM25V2PZP+UyN74/Ha+JcDqrYP8XeOU9fA9p9+TUuDYAJ/h73P7Twfp9LXayqaz8LG0Vz7AD4c8e6SfFpOxtEaa7zEcSDGs682/GwPIbUBJYupz8JInxKilJUNJ5ZvHr0zpin2ELE+Lctmq4MfpK9Z6dUI3ui5Ri8Battb4hl28CHsF5tLA0kkP8xmdhHHjOtabIeapIldlyj66zY+TFfI86JvNKZbw7pBkgYkSXLopdoz4TlSg9ea947ElOI68lnX/ugoUtM3mzPzHSjVdEaWJgvxjgBohf6L+yhko1W9Pie2VqWRpdLqopAJG2/7htbgAXZ2dvCVP/8qXnj+eTz22FWsTCcOQElJyqmXyrjyyGWsra3hO9/5Dt7/4EO1/yhsZdaZv2/IxldwN6UBaNbm6/jUtz+F7117E+88/i6QIquo0aVqxh3rNpssMyOx5OtcDBVN0mC9D36/gdzCr0eRbL6ZA9Y1u9Wv4eUMEvshFD1DZ/tJe3dkaq/O1/K56TH4MtmY8sq7CujRYTOZLdyQ1Hk/FCD7fzrfWsYYJi9gXwfb5zTJ5mFrs/vpqHmyKlsi4yEezZXJctXrlvWljdOzO2vfKIXPjW1smvlaavSJjV2Z5SBVo0/F39ccbmvlpXkHU9Cponqmqjj0FgdcSPcmsXYQXCR1vswfK5l6ZXB2UNRJSW1Hms9VgQkAOfSXfjmeX+er1p+4/MSHp82w9jfdhR/acs44d+4cnn/+ebz44ou4fPkyptPpeO18QCulYHd3F9/4xjfwta99DYeHhz+mHv/V2vnz5/Hiiy/i4x//OC5duvSRx/ruu+/i9ddfx8svv/wTM9bTdtpO22k7bX8z7e2338a//tf/Gr/2a7+G559//oHrTEoJzz//PM6fP48/+qM/wquvvrq0b//LtbO7Z/E//S//E/7oV/4I//3v/vdToNJpO20/4vaRQUrmwFlOHU/mXCFz9tgO2Db7TapebctOeiD2dqOTh7aRTwpgUuc0aSaSRBldAtYnCdvrHS6c2cClC9vY3lzH+krGdDJBTgmUMnquODxZ4Oiox739Y9zaPcDB8QInsx6lSPmSortV24QCYwdzgDsinTDHDhcWJDfnFzRbAjNGAA7AyqVVG5EG2T0kCDAbJgSVJKCZEmNKFetdxtb6FI9dOYvLF7Zwbnsda5MOE0sAlCVj1eG8x87xArf357j+4T3s7p3geD5gKECBPF8qpTRQBQ4HMnPxTf+IE0hBKk0abNv4U7NJtjvlz+ppq6nxrIwDSwE8sPJnUH4b7aOZG4dNU4LKSjGBJVY6BJ8ZwMoc0JbG2Z4lWSfuDxgYTWS+0+iE7nLQf5Rdwd4bvXPHtF3rWSTMYa2npOx6KxnHwkp20F/4JlnGJUbSIOuyrLXvcoe4+ZIsSNvKIJGePqtN33RsnNz9Kk6iOpLV+04Mg5zuRl+ngdOiKgCBPXuFlTakSEsz4guggqvomBacA0h5JEBL81hwaUnHWOmpsV9dsjVVKFDP6KXApNa57s9LCZkAYjm1aCCmyWQiwQOuyGQl9GiJX4IfQxcWD4KQAlhKjRTtpQSPWtDRA/sIORJwC8VcgfVEP1AzeZpwAxwY/cizfQiwtNSqpwqtT+QHmQvL/Ots6HuT/+38RtQAZJLzQvhn1enIWlSPTK6S06QFIll6pPb51tqAfLu+iHuxuXZ5Hkf8Wkf3ghik/MJQpyPYnYnMrKAD4Vt3lAvyIQAVpGBKtjIBMu4IMtmzxXFqOk7WBfL+EKSEUACiwuEsLBn6zR2VHCXq2HWrBMta/XNfG/EVCygGhMOjE9RSMWytY3tzA2srU6x0CakU9FVKtG1trGGaM3YPjjCbLdCX0vioVf/qrz42deAyGJxaXSa6t8uNLgGDsgLgyAIMsv6Uoep6RiBU9Mz4cGeBSdfhZMEKVjTAnAJ7fMzyu5V0KwpUZjKHsTKoZlOqlYKPKQJKUooyMj7lDvBytyaLtQhQiQPo1AbWhyGyh1nZD7EnbNK11FdhycAEQinazxz6206ocy9ZiCyQ64BjpX9WMKfrWR0XoWKSCV0WfVOK6kliZAJAOUracFUQtdzbESF3BMpAXyRrWjzb1ksJSBn/eiCuCbRJti4toaWylUCYUsLWFFhfy1ifJBQG7h4WzDhjURPmsx6lJpRBS6OlDikBZRjAldF1HYY6oA5llP1S+h9ZnqLcpL4fAHlZOfZx2DpWawGzypausUlL4xEyhjIApidr8H/oAbXJKmsWjbCrTVYFuGZlMtH0nRo++sFO4b/JFvpA5MEBSgg5Alq74n5bg/ADxtfwWLyTXYbbIDAReZmTSSflzR5/7Aq2N9fxyOWLWFtbxTRrVjCJFqEyYzEULBYFJ/MeB8cz7B0c4vade7h96zZ29/YxlOJBPDRjtM61YB4JIMV3Pm5bnxE2ZTvA5WAcmX6TVGSwgx92DaB2ntpAXSJsrq3iqSev4WPPPomzZzaxtjJFlxU2TXC7elEqTvqC4/mAnb0j3L5zD2+9/S7u3t2REo+NPh9Pjen2+x04OloPGMr98P4FeMz4w35/wNiXH84RIB0F45XeTYfFDlG6G+5Dpss6ZfMo95H9tHEQ+eg8O8ay/Nln9qzvs/YGIGUMtrGR35cNwfox2n80srIcjLQ+I8YUAdfQ/RbY9OAxNxTkJYrTuG+e+YfhMga3TQwYBljE9D46LAVfl+njIALLYMkY2W/eZydaPNf3BTZWhtv8MhS9V98h4IKxHRbqa0m2XNiVp9X+C6BUc09Df5Du5xBZW8FAytk5N3leN+FRweqYvh/vwbixlc2wrgg6my3iPKPyGaxnkkn3z4WOsSovm42PZlQBBHrA3GJ8cAe2XzdeMxZs5CRkx/Rk83krr4CvuTGTARYR863VJWO6jWnYyq99Fs+TnwEuNZGwNzMbqHJMg0hIG+uP0cnobQe8QrmNNQGbHa38RTB2NjsiLjdaAjbf4zVx9LvbffYrxf0MzeLlN4zWI7u+IRScKIjrjJxHRyd4+duvgJnx6NVHsLoyEZ+d2y6SNXN7exM/89nP4OLFi3jttdcxW8xHa6XR38xz4RH5mhxxYWSUkeUKPHP9GWweb+HNZ9/EbHoSmYudp8Q+K45yEv02WzBKFR9brfC9m9FwTFO4LRY6J7R0LOyWCVo67u4Pp23oGc9sZHOivEd2JQdPtlMy3iMHa9kcSdbs0FWsfq+aQr/I87Q8drVsZK2uwfj3JXrYapQzud4P1WhzpfZCM4/2I2sWpJrag512QbNe2ufUTn7QByorVT0YBDlwNEmy15lm2TvN+oJ5ASolOVxRZb/GgPqgk9tYyQ8ecfPORh7MBa60JGjZeddFy/YCRuuVr63N2u77jXj00roZesvXLgo9EfOFYAi2a5b6/xDvJx7GNplM8Pzzz+OTn/wk1tbW8Oijj2IymfzAfRkzo+977O7u4u2338Zrr72GGzduPPSl3ADxm5w5cwYvvfQSPv3pT2NjY+OH7kGZGcMw4MaNG/iTP/kTfO973/uRleQ5bafttJ220/bT33Z2dvB7v/d7+I3f+A187GMfe+C6Q0S4dOkSfv3Xfx3PPfccvvjFL+Lk5OSv9F4CIdeMX/lvv4JHbj6C/+0f/W/YO7N3nyl32k7bafvLtY8MUuJaRuUjZKNnJzliA/YgABIgG2Q5DVYdWHH/S+zkUDi8JDQlGU1SkrILHQFrkwnW1zqc3VzBlYtnceHMGtZWEqYT2W4yE4ZacTgfcDir2D9e4PbdPRzsH2O2GDAvRbP0xKkjGaO5r5IHpEZjhnzvKcxHTiRzFKFxzMoowhEbGTUsSws0q4GALgzAIJvYRARKhJVpxtZaxoWtFVy9sI3zW6vYXJtipZtItp1MGOqA2dBjNq84OC64de8Q12/v4u7+HPO+oPAAKWmjtdy1tE0iRmENbMAcCeRzMQr6M0uJkcbxwlw8iKcxHOiAdaOrToEE2ImxAH7F6ddkDhoGBs2eIcAMDebCMqVothLSevV2qorJ6QvEJt6ChDp54bq0WmZAA4piH5vw/dgJZ8AY8Ss1oAZYtpNwIAR/LJ2mbr5PGtwgQMFG7KV2LMhsgB5FPAhvqBPYsgiJk6kpq4am5IGNx8tDJaVldhoLr5qTspVjc/poli0DPNg1bKd/LUOEAnG0RE7S6ytr0DVnmEfVggpWAqd1WrPzRw2+03dUPYFuchIOZpWzClQU708LMrTyOAJAsPcHQAfaRy41nHfk0+r0ZJaMW0Md3AtMENAYk2QTI8pGTBlyrQo8C2cpEEA0AWhld2CZ05hgZaj0hC/bSWcDkdGI9m3Q3zmX0Og2BSUNVcuyxQlvkIAGJOuJ0CClTp+Xfc7MEVhqFVAHK+E1spATacYtGRdlPc2cAC6SZYlsbMyaHQhgLqJ5qmVbCTBQaoBOlgGn5V8P4Kek4MXIREUazKoKvrKghdBOA0TFnMgx19UdpFJaiaFlqRhexsmd4tDT7W3wQfWJAR4q4JkjHHxFzclossx7aGRZeEXhsc4Lco3puybbFUefDXjDqk/lKQIkcWBmI3e2nBWuXv7DHa+1ooBweHyC+WKBxVBx7symOHWnU6yvrGKRBzAD065DygmHRyc4ODrGoh9cl1iQHGx9tjHp23TtsyBh0vKLoDzSAfEfY6gFyTIQJAlwmF7shw7Z1mUusCxgJk9RSnCsLy07BiuIKCND2CqAbrUaYERKPWkBWM0kJHyQcxaQV9FcaFz1xHWsJag2H4S+DsZJvnaAJIhQa0GiDpKkzuwoNi80SqkSzLST22h0uDYDcfppb8tkByjABiK7lJGoYnMl4ez6BMezHnuzgvkApMSmMTTgSUipcz5mlrJ6KRMmnaCha5HMjgC8PI+DRKgFzYmOIKW16C7RWVQVOJYZ1C1wcWMFW5DShDMknEwzZicD+jmjFMIwiL4VMHYR2ycl0bUqW7UWDxiYzVDKmBfs9LboRrX/iGC5EyqLrNkYRpn3lC+5NGuczTuFLFvSTTM7o+wIYEFnD+SS6Fh2FUMh/3T/mvXwtfuDeQDUMDYbchxYi2uNt9kDOMsBFKdT0yI8S/E3yZ5ia3MTVx+5hMcevYKrVy5hfXWCSZcg2xTR6YUZQ6lY9APmfcH+wSHu3dvFhzdv4dadO1gsevT9woYHD8C5XRt6NvponbsfcmXyD7K1OXru9peH99TuAsTGRgTzbb9hAfBEhI2NdVy9cgHXrl7Go5cvYmtzDStd1wCxxLYeSsUwMBZ9xf7RDB/evod33/8QN2/dwfHxkdhRtkQ19j57P9pRPSCENjasdC2NdSjuvp+ZY3ojiDt+Zrwv5Cds7+ARXaOxZOc19/ur1MYf8ZbaYmFTwOeT/Tk2vtEIwJbl0uyXB+wn7E1OZhvIiD46x6pXqO3j0rVhu2ufRoFIO/QR64fd433TeyxbpAGhPKuDjYNC2tp9ko48RjT6Lvi5bbKHQENjbl+xtMix/X9EG1ln40COZaaw4K3NA8Cje+U+7W8z7y3v1mr7mJgDVh0Q2S44HsEtLdpsvHUMUHB5oPF8NjYI674wusZ+mT3J1wMyXQHdY8awRmW0R7o5eDp+CC+bbsPS/rIF2DiQTm0qO4TgGYGtyzom8r06C580vEy2duuA5BWxloxAqcYrVH3+qhOG7lsnYz/Q0tGIRm7Pheygea/ZYc2ktg9f0hehybG0hrWgjbi8XStsPzfmRYxacLHDWzBac00PtjrLhtzwP3HMD7Xj0X6angAQe5t4jA/Vliqz8U0KF32Pb7/yCg4ODvDM01LerctSXjl3nfejyxlPP/UkVldW8M1vfQvH95U6auhp64i+X8UDVMcUyZzxyN1HcPbwLN58+k3cvnAbhQa3t0QHk9pj7PZqpYTBqp01umYERlIq6rLousAmy2TaS5Sb3dvwk2/9lDdyjvJjpPtonw0frJNCwXCsJc+MSmNgrOzlyefFSkiCm+dWgPJ47Wp5KkD6rdonmLyN9AcRusRYn4rPYNZX9CxzEtnM7Dmks2V6TvakpFnzXcdi3C8C/NCB+1kMlOluQNv7mAIEmCqmHWE9ETqw7CC7jL4Wye5a5WBKgAzD92ByLPuI5gJu1tE65hEGxoebyHpmFg2PANPV6Wj+SvhzmulwWsdy0VBoJJDL6mrJXmhL9y3Z0qftwS2lhPPnz+OFF17ACy+8gMcee2x0QHu52dzM53PcvHkTr732Gt544w0cHR1hNpv9uLr9l25EhLNnz+K5557D888/j6tXr36k0nV93+POnTt47bXX8Prrr+Pu3bun4KTTdtpO22k7bX+pdnJygt/93d/FF77wBXz+85/HZDJ54HXT6RSf/exnsb6+jt/7vd/7KwOVAKArHT7xyifw2I3H8If/4A/x2ouvYZicrmen7bT9VdtHBylp9ozYNdHIJ2Mb+6TBYftGnHcauKkSgPZ03Y2zGGicL/pZgmxGuwTknDCdJJzdWsWFMxs4t7WOrY0VrK52WJ1OkSClXuaVMFsMODw+wd7hAjsHcxwcLrDoC/phQF+l9MhQ4gTN6OSQOcDA4gRofUvm0Rvt1mV8bKl7mWFx5ghWibKiJOW1uBYw5HT+oKVtKCVkEidBVodvIsbGSsblsxu4fH4TF85tYG060ZPOwEQDXPPCODzscbxY4PbuAW7vHGFnf4HD4wXm/eCnFK0+uwc9YME1hpTlSx5kQIryL0QRMDYvQAVL1h1gBFAxXklEyOq4q8xA0vJULA6YlOAAoABz2J6YPB1z0tzWxFLqiDTjigWrMxnQpjkN3HwvAccS0wUAlJt5t6CMOBw84zeZYzCyFFGikZPBgpdtRgpLWV48A0zrLIlALCmZraQSEQGlCUQu3SN8pc7A2g4G4UxzR6LICzF7Nibrg3Fu8kC1gacqxIMzBqWJI1pcJuY4EV5WJzHUMdkARYjIQYhFHXIgAic4XcxZ4qfyipVODB7yAELjoCciIIUsWlaQuDfAPUa3djypcQQTScDeeCenxqHZ6ICRI1aBEQI4MXBJ9CFTch041IrJZALmiqLvrpalDMnvkzlkUJeRSQLklukop4SiOhRg4ZHE0UdOCrxJ7ryyOXLnSGXnBaM5M+kp7QCOWiYBuy+RFZRjBQWR825K5CX+mKs8vxY/+Z0gTtScEjiRlyQz4F1tghW1tg6z6ryWsixPpQxa9pAUzJLRdXJfWy7QTjVXdZq68xDhnDS58MBHBXioSDmJviIBLVQPAmlmHQfM6OdZ+YNUn6mOMhVp9xqorF3XYklR2pk8+fcNeFI/L4VR6X5HOOm6awDFrAC7sQM/wJ0WWAgnMEbPsxxE7jRXB26CgEgFj5KwGBh3dw7QF8a5sxsodY4uJ0xyxqIU5GnGFq1iOunQTTvsHRxhNu81XhQubqoC1IxMBsnHA1TPcFIpQMPMDC4FhYGFZhiztcMc/SJjnWZoY/DQq9OVPNjCDJ1zBVGSAPFIdRdXBUJCOwrhhZwzhr5Hv5AMPAJeKUhZnd5ckBWYUhXolLMG1yprpqYmE6A6twP8ApizHmTra1VwavayDCY1OTFyliBG30s2hFqqZ9vphwFdzqDMGIbedWQtFaU0QIk2WMaAAL3k5PiBytQkAdMVQpcIfQVm/SAlCUENiEv6V5gxLwJ4o0RCHy3DklNW3jVwpY0vhUNeTUnLqmcgrkRAAeF4MeDuUY9FlzAsChZlwGFfcVIJAzOQgUlKGHrL5CfAoemkAwEYegk8UJJseCI/9i4R5q4jdJ3w0dD3QInAiK1RSU93s5ZyEKBHBBCIgeIgPQUbsv2mwQRiL+1awXAtajLothFAaicaYE5KVaIBL9t69xCnHvZIlH1ggR75ZxRXoSWbJJQpbG1utV1sStA8P56VScq6bm2s45mnn8TF82dx6cI5rK1O0XUJXe5AzsNAXyr6vsdsUXB80uPmrTt47/r7ODo+wuHRkdg0td1PNGNY6i/j+7RmP2T7iOUh2OcMs82T6umwsWyNtetNfxFEB53Z3sTzzz6NJx9/FNubq5h0HbqcfL9BELld9AV9KTiaLbB/eIIPPryDN996B7u7e2rDKX9R9LFd2cDxt+8pmjG2E+y7qsZO9fXZHkZL/EHOMTI60+kADEg/4gWnSfBc8vujPG5Mh4FLLAgbzxkBDf1xpDw9Dg66Dl8arNxnoK6gk2dzQuhGQhOgtEfoeI0uZvebTR5jD53uoyU7gOKX3NeWQUKjNdr7YgNV+8X7hBHjjteU+Lzl87hVOclkxfpNhBGvA+qCYLXNRuT18rq+n5COjLtgXR0N1WwTCgBOM986oJZQMSDEvgFobDqK98X9ATQ0UtlBAW76Lvae2PaV47CNrAnKQbpn4aY/Nr+yd2/Jrns063Nt32XdY3hpb6Uoo+Ebtn1PSxOAlgLnAZJU3mjWOx7xMymZeUQ/28cZCGIZiKRQj9H6YH0ZAUJ9vArOR12atgAs1Tp+h9FSO6LjjGfbHBtygdCwC+KQjvOsPztAfrKG6XhMntFkiDYebtd/ZarxEueadNTfVgYcLkcmIxRzaC9plYLvq03u440hXxw0GvU45M7n2HS56Slm9P2AN7/3No5PZnj2madx/vxZTFjsmawHQRiMrst47LGrWFtfwyuvvobbd+44mNz0nquekazqp05b+J6UAKwv1vDJ73wCNy99iLeuvY3DtcOxqOrzhJS6akj6Uh+tjQWsB88aJriPxkBzHkz3BswoQ/G+h1/G5FV9RxxybUBtAlmFUpezkGeC1/eydzfrqh0uHM2VdtdUeq1wwJOVhiaS/UbRrLImv7XRxfbgmA/hn8rAojd7H5hkeCnPvrIeLNLMcSQ8a08tzJLB1ueTGr0R7zU944BR1xnBt6YjjHaVgZNFQZpkoIqvqi+MnsUOZAByro8iy7m+OxPpvkxpn2i0zzV9mUjGmlOWOQfH9LBrNJ8zbsYShI4M2ybftkcwFjCx97WTGWSp73n0A8q08IMtVd4f60f1tfe03d+6rsP58+fxcz/3c7h8+TKuXr36QzMmAUDf93jrrbfw1a9+FTs7O7hz584DD2U8jK3rOly8eBGf//zn8eKLL2I6nf5AMBYgvDyfz/HWW2/hT//0T3Hjxo2Rb/60nbbTdtpO22n7y7aTkxP81//6X3Hv3j383b/7d3H+/PkHrsNEhOeffx7/4l/8C/zhH/4h3nnnnb/y2ksgnN07i3/6u/8U3/rUt/DHv/THuHvhbrstOm2n7bT9BdtHL/emDgrP4sDmhA3BHoFZwL4hFMeNlvkxx11lPbRpp0UIDAu2W+pdyZh0ZmuKi+e3cH57A2c2V7E6TeiSlCipAPrCOJr1mA3A7sEJdvaPcXA8x/FsgaEyhhIbylIjC4Pt4riylp3SzbSeioQ5+NUZYGnCYf+ygAjipJJdpyWaFMBSq9ArQQOamsWl6zopmQLNoJSAjhKmXYftzRVc2FrBY5e3cOHMJlYnhJVJRikESh0WwxwnZcB8UbF/MuD9W3u4s3uIveMeJ/OCooFTZqFp1cAm6UbYHM45dzBHLOkcRFBMgSscDmTyP8wRYmCgHBttVhpo8I4cQGMkVwdrlb4kXUSMbpZNxDbb8gx5v2TkkgC2lSUDMAokGyiOLTUzc5PZgJCzOiXUweInm8xhbGXfzKlmfW+c3FZeKKdOecjqxIe8ECAgpGQyYE6N7DzFTFpqy1Lte04bj+PlbI4Y8/sQ2uNXIyAVhXz5aT1KXlIoxipzGw5reUaCloOyAAsQqeOXgiK1Sjqcqv2W7EFJS9jYWNS5zdEncTxqpiNx/YiThxr6ul6RDFI5SRaVooLXOkHV/QwGS2p2IuRkjm9CHSTLCmkZtFIFIGOnakUWimfFqWx87CT2Zg5EC6pPpiuoLEHMbCXrIFmxYMBOBV0wrDRCgH/Mj5g4qTMqARjCgYyELkdmD8ucIUQGKGXNDGQOWElZXuTYn9CHYz5NvrOmT2IFaYwcu2h0np1AbjyZpBk+EgGZInhiGZxABuYKMEw4XyVzhQGVwNwAEiGgFAZy16FA5CUnK10TfEVEfupTgqYJnZZK5CKlKJOWgiSCZluLA/GJ2dP7ZwcIKUBVEJQ6HgaqONVD00iptlKKA1pEpWlgQfWdLRKmOyzDBSh55igPG7ABIvU0vfLGCGQYbDh2zLJkwBFQbAOWBXRuLRyqAQUW97yBOA0sZw5SC9AzwXUzs5RKE4CN8EVfC3b2DjDvFzi3tYGN1Q5rqyvAMKCUigxgZdrhXLeB6WSCvf0jnMwWGErx9VcAblAFL3Jo40wKKjJwtJERqEDKoAx0JCeiTadJkFfWgL5WKdfHRbJAkQYejXYWBEtJMveovrHMQrYAGcA3oYKrggA1QMiVHUgGJuHZyqhcBNilGYSIlGdaoDALKDapzcFaLo2JhIerlJ5MWYFJpMDLrGA8eRK6BGxvr2I1J5ycLLB3vEApDKl+KetXGQYgC52SZpiqnq2w5SvnElCp4ESYF0KZF0wzsLaSQVwx9KKDAgyg5SrMRshhFw0gZF2LcqYILPla1dpLCkoDK7gv+aWmWwEGVcLAGbeOGLu5ggpLYAEJlRI4yfrSZQF2DYPJWVFAiQQ7LIBMgJdxdDVmylmDC52iWCXrRQEoIXcKbCyy9oitIUR02alid4rNq2VmlU+A6lkz5Z0acEoRCKFESMjK+7KOSxk/AVb2QwFpOTmZTwl4VUsD9xA2D9o6KhwxPm1O/iaLiQU7gbBv4rb2XuEWA6umRNhaX0fXZTz6yCVce+wRXLpwDhvrq+gU+GZ2amXJHDRUYLboMZv1ODw+wd2dHbz33g3s7O5qBiH2ksERk1Td6WUBfWDNmEKnxpjVBnfLwAkVa4EGjcKYhtvpzAqwBODrI2R/cu7cOTx29QquXDyHRy6fx9bmGiYJaocBRBmlDuhLRamMeV+xfzjDzVt38O6ND3Hz9h2czGaSiUxp6gsc+3Q0NgT5WNnnuuFFjiEQo7H7GvujyXzKzb7LZDJ0gV0UoFpX3fcBDoL2xltGc5sPi6XqJ64bLEhn+AQv6SadlVGyEsHXWQV3PMhL1YzZM8qBQmeMuKCZa2LXsWY3mI40Oo/pjpggBPDVFf0S3WPkjQ0BmwP4uhjgGn2b22c8+szuGYPuFETmWxj7RffkOk4PQsM7ETzGS31q9mYOhGnpzUGvUZDfVcs4CEs+hACLm6i2BycYCvZoadvMv//V2IPLVLd9oSSL7MCwUq86ryb3qvNUFTq9Y7Dsv5pPReinvhfVnUn3i6ZXRnqXDNxP3smE2B8HPeF9cd4y3UAPkHl9GLu+HH9PKUX2L9vrjlQGj+bbKauPMUA4h/D6tWAF6ev7bTz3jV35xg51JVMkdrDGM9M2/Wr3RWSgKWNpdp4wQLZpBNedzvuNTjXms8/JL2/ePab9GERA44uNbt7VkCNyvTCSliVZaPblYGOu6CKz03bc93YOoku+Rrouk/e///4H2Nvbw6c//Xdw/txZTCcZ067TeRLdm4hw4fw5fO7nfw7fe+ttvP76GxiG4qU2HURpvE9Ai9JrYEoNPUQnPXLrKrb2zuDdx9/BrYu30E+GMc/pPkAWYzvMSEGP5mkm/ya3vsb4P9pNe2bDA24bNWOSYVjWd/LMs1YuOOat+rwycwAk2/VpqbRx6EqHsGE6yZh0Usr5ZN6L/cosABbNGkqJRj11/h5Pv4/V1tMKwqIwEjO6ROgyo5alNbUZt/mtCOZrUrLbGmGTHw4yAKGXZc2qvjZ5n31d1J9MmA9SljqB/RBmMRk031ImUE0xl7726dMoxjr+bLQUg0gOyVR/P4+yyZrPJWzLuJlNt1jv25eF0QLndZcF1neb3WEyAfcVcpMRUL6wDO/3z+vfxmagpJQSnn32WTz33HO4cuUK1tbWfui9zIyjoyPcuHEDX/rSl/Duu+/+xAB1Ukp44okn8Pzzz+PatWu4dOkSVldXf+h9tVZcv34dL7/8Mr773e9ib2/vJwaMddpO22k7baftJ6cxM772ta/hvffew2//9m/j4sWLYx+QNiLCo48+in/+z/85vvzlL+OP/uiPfiRrca4Zn/3mZ/H49cfxf3zh/8C3P/FtzFZn92+HT9tpO20/tP0FMikBTWQ1Pm/KVYQj0jb2UeaMgeZ0SfGgKCAnwiVjUsKky1hb7bCx2uH89hrOn93E1sYqVlcmWOmyBrcFmHQ405O+J3Pc2T3E0WzAbD5gsRgwQEo6VT3dDsBPPFtfiSyAqI4o39jJeJNtjP2eGk5SbbZptpHLyeUcqcaRYFlQfFPo2aYSMgFdEkDWxmrCme11XDq/hSvntrC+krE67YBEWJmK83IxDJjNeuwenGB37wj3do9wd+8YR7MBi8LoKzAM4swIsIkE26XclWZKYQl6WDYU6XuNDbfPu21ObbNvgIXkzmVmuJNI9v5JnAINL8ACrilKDYkDT912GkiSsi4GbAnHpJeuMn8BV3HqIjbdFeEU4mqOyOTBf+j0Fg3oG6+ay58MVKW+jlqFNilRnHJDjjJIdeysI51zCf5qWh5LGgYBIZizqzQBDgKhQrPLoHogxsY+DIODCdzNx0uOMx2bZXayjEUpJZgz2vhUAqRSsoeQlb6EUgf1w5KDQMoweKYhZhYwDZmTzJyhSUoRwYAc4WyTcorytwddibwf1i8/mYbGOWzzyQywZEBjSBC2Mx5W51vVwJyBX0oN+rQnCavJn6J9ijqGBbik9yjApus6FBajpWiJL5sTkRtjbQFaGJBKumzzKLKYSfQRuY+3ccZ5uSvTR3B5hQatSxlk5i0Tl3q/uWiJIXuYOn4zEYaiZaOSM6HLlUmmOSdJBTmRlFWr0GxzLYCl0fNESU7zMksZoyzyY8DMRJbJSmVCaZKzAEvhPK6AHLJxVQctyeJRVQ8b0A5gCLijcgVlQqKscifyIdmkYg5SEsdqdZlVGeCqAJAokVRQw4HCEoROlvFKs8BY2bvcZOoy4JkEXBmUcqwbDtYyfq7Ks+EclH4NzqOiRRWOqcAWA0G17h2PCTsoMUnAwAML5iA3/QIYGM7j3NwEdhvHuoBN7dkEyprRhyTrRgGjMuHwaIay6FHPbCDnjGk3waLvUYv0e5IzttZX0eWEvb1DHB2fYMGi86CZdzRq4SVuWOkmbJJAiZFhpd7Is3YxaWlJHTtq9TKWWecQSCgyEaqvTIeyg18t6GjzbnrVAoU2j7UwoEG/nJNnbCAAtRR0XScvVoexgVa6nKFpo+BBVKW16OvBY1QBTLOAIQS4pHJjJ22TAksLM/rFAivTCaY5YXt9iqFnHJ7M0Vv5NgYm3UT1lYA2BXAmWQ1z16EWYLHoJUAK878rP6m8DaWCKzAfJMPMUEUndakTvTPJDuCrVLWcqZS5nFBC7jJKWQiILWUFCjdBjirAP3P6k4PA2H3wVZ3tCUBlwmJgdBrg4JRQtf9EAvCsEOBRUWCx8HoSMJKeGAYkeCu4ZUbu4vRyqQPqAj4/DnzJKbIcImwRMyIsYGNBpcoSmGHVK6TP4spAakpHWOBDM9VIOU2VC7MllF4VNpagYa1FTr+PU4Q8XC2mXWhKtiJ5VM3p195DQJTbaK0aM0UgnycFcq2truLatUfx2NXLuHD+LNbXpliZTjDpspQkdd4GhkXFohTM+4LD4xMcHp3g7t0d3L17Dzt7+zg5OfEANoCRfWotwLyqfyn66MFaCzA299JoPE0zeQc8Fhplmc2GMhS8ZT9ImOSEi+fP4Nnnnsa1q49ga2MVk07kgZSnbM0cSo/ZvMfJvMfh4TGuf3AL739wE7fu3JUAsIN94IFPWx8syDxeSwyw4N2CA9J93i0Axjr/Zo87+Xxq28C3g1vcFCaXBWcTNhAJGp2pv7MyWwsO0H5Zf8Okb+bWjCV7p80vgBaQZiIna/FocsU2tw2GZaF1wgVgkp2Rw25u+6srQ9Dc6Op9sL2TfEsqYN5fL5cVQzMZNL51rm3sdXDY6zZe7aK8hxteJQM/Bw1snnwvZvOuc+ryQTSentryRSNfHM9uRmJfN/aPvZ+jPGZj/5o57v3TQZltxYDbntZX+LU2h6HvAS0x3OyPWW1r1vXFgIVu69j7wA5GSBSgNRsH6fPt4EnMR8OxHGMsNZ4ra07Ssscl6EbNdsR5TbmM4aU3Y59pWtY0UHQhQL/kPOX7PeXlNpOLb7abiWvBXXaQxMEGzVy4rdroB5uXFizZPNzfJfug9r6wq9sygGj763wKmByimUPnDd93ShccbICQldTyuMuMPrc277QDJHogI4CQo6kA/JATgh6+Tjp8LPbsagszIIBA7Ue7DDk45gHz7DqSDZhG91G71bmtOhd5FmYx3iTdAxwdH+Eb3/wWPvmJT+DC+TOgVcJkksMfVGWfuboyxfPPPYvpZILvfve7ODw6lr1Kw9Ourxpdh4ZGo/4qLdbn63j+jRdw6dZlvP30W9jd2h2twaFoyecyPEixTsJo7XeFTd++lDn8PGQbCftWeSg1JTgB82spzcm747LroE0rn9beTSOIa9BC36WrhfjniuzhpzmjZqDvC4YaQKSkB+y4OeAp5disjJ36YGvoe0aAO03GagWGalmSZPKSZk5ORCGPVYCc5lslksNrRQ8U6ZlXI57+kIMWoZqX9I/qLDBkTafmcMBonhD9Ieu76jfYPFDIg/1s6Nyu13ZAxL72NarhGVuvvBdk5hL7mmIPNr2wtESN57nhMyvJSc3nznOg5nft75Le+dvYNjc38dnPfhYf//jHcfnyZd+7PygA2rZhGLC3t4d33nkH77zzDt59913s7e3dt3d4WFvOGY8//jh+4Rd+Ac888wy6rvuhYwYkq8Wbb76JV155Bd/97nfR9/2Poben7bSdttN22v62tzt37uDf/tt/i9/8zd/ElStXvm+mv5WVFXzhC1/A6uoq/vt//+/Y3d39kbz/wr0L+Mf/4R/jky9/Ev/73/vf8d7j792/JT1tp+20/cD20UFK5tuAbHKsjAmAxhlJTaYPhntJyDZGttmPLf8kA9NM2Fid4szmFOfPbOLc9jo21yZYXcm+4WUWgM5iYBycDDg4muPu7iEOjudYDAWLooGoIo73wsVjkoCAGbSzvsEdofmbwKwpM3ECxvUW2PXTVNAMFuowYHO6AR53LRhiE6u72qwlaCaJsT7pcHZrFRfPrOHSuXWc2VrD+uoUk5Qw7TIKM44XPWaLAX1h7BzMcHv3ADdvH2Fv/wh9rSgspaWKgWYwDoLL8PSkfY2gujjAgVoHD7bJCU7SbCJAeBrD0WKbcX0y1BMnc9UloDIi9qjz7SVR2Df4D9qipXaT3mwC3ZGTUmR+INnIR+Ylimupque5jjfhml3GMzBZ7XrEhr7qKVa7xtG1zCi1B3IeOY+hHB3OpgBnEGcNhI9H25aIY65geweFg3Tk5LJggft1I8uNBdvFiVnRBietBFRRPrVny3yrM6WZ26GOy8Z4yS+XdetbzJcE77VfZKn0zQXCjZNWHOUoXihNndhaSg8iY9E0Ww0Bfa3IyQI0yifJHPXJeUsCOkZbmyFCaeYo5sn6H+XajLZECX0/AE0/0dxvsmzOJtm4x5wSAV038TTgFoAWZ1uV07wUIAhzPIVz3UAX4hTMEEAPKXBOwFZx4s7vokjjb3woYxUoXMt7ksFjPJ9EjFoH9WMXl5WRDKqD18pQmYwwBAAoz86qt2UOc86+dkSZJAVruldN5imxeC1Nros7smXdMTAjSGVT56sFDFWYcxeuxyzQIXwdjlIrxSdZwCQjWK1SfrDzZ+j7ASkF5/0W3WizaKe0LSucA31gQ2UPFvhpV4bKrMoYVXVQkpdDM/BRaeZAuUa6oenjY2mKuTGHsTmRwRxl3YCG54X/a1OqktG+X0p3sa11AMAF4IR5P+Du7iFKBc5ub2B1ZQU8YfTDgKEfMJlMkNcIk0xYX5lg5+AER/NBdXkFkvB4rZpxiDXjWm0CnU0QwMpbshYB9awxenHpB9RakLVUl82FBZ4sa5alwM8pa4nKKENIRr9OwDww/cWMlBM6ZQEL9md19qekksYVlZPaC1WBhT7NajNAMkvB5FxO19IkN8DNcLCPMpqpQ70UxvGsoAwA9z26LLrdwG9sQNihoOuyOO1JMyyAmyw8kp1nGHrYqVor3TYUC5BIPxYMVCR38MvHFdwjolMMP5UrSckiUxKXioEHWb+ND/UZKEoi31SSgsOsCSgjstSRZ7EbKgvQERpg1cxiVg7PbU8GpHZbuzKr5KRkib2QqAAsYKjqRrCW+9QMnALoFWxaUZM35dCZQ+/WJxwgquBd0ox/LX9aVkBb/x005uuORFZ4KEADnGfVrbXG2vuwNjcNdUF3fUJLfXb+agKmY1Ef7ftzImysr+HShfO4cukCrj5yGWfPbGE6yZpVCz4vpQKlVCyGivliEFDSzh4+vHULB4dH2N8/wGLRqwwGKCKCN4Azf9tllWuTd1/3eQnkEVErb3b6vx1YiFO8i/xG5SEwJjnj3PYWLl08h2uPXsFjj1zC+toKJl2WrIcKWO+Hin6QbI2zxYDDkzn29k9w/foNvHf9Bg6OjjxzgnWQ/XUWyI6DF/D+wW3QNhBJOlmM+yesthNprVkv222If2hG4OhyD7nFV20gmqhlN8THAdqWp4zvAWzfhjGfyhfRVZvzUY90jA0IGog9iHxXGlB+vDb0RXxg9qG/g9R+Xx4rs2cfG29Tol/txw5i4nG/Q1FSjNX2Jc3Y3Q5qKKsSM+KZ9r1xUCE60j4hMqzVUV/RyKHZU7rYBk30p2v7lr/UGKs85hbpfoq9AOBrb8MQS/QxOiitvU/y3pgpVhulOr3HYzK+0pshtqvt9+zggQXuY++3TP+AS9jHQdUInrdzKOrUAHIKgGDtMRmAqhn+SNex2r5k04z2BrNzA9QZe/H2c6NjcmDb+B4m0jJJYccBGDmdazOmEdtqP0aZs02NUkO6Zq7gfhT9xNnY+MIAP3oF2bJF3hcACiIfz0lkJh3LOZr5MOKNtKJ3uu1zq7Xa5zVrEjef6QU2Lyr54wd6T1vgBUZjCCvK5GysV5ib9znLNYAhu59aaE/Q4PjoCF//+tfxzDNP46knnsDa2oqU6O103R7EJzDpMp595kmcO7uNl7/9Ku7c0wyHygAGbqFm/mQ+2Xk+Zi0ImJBwfu88tr69ieuP3sAHVz/AbDJD5eL76pb2Pm/c+KJ8XXYywOz9dv10ulHrH23o5SRTXcOmQRip4ePmwvBRNHMlPr2QHbF72zVePrPWD+L7XPQ9CHZg01nK99sJACyDtM+78YUePKyNX9XWUFXbg5Zuk0NH1ACG5LoKACPbX8fPrED8AEBVBfU3mDu5vIaeGz3G9FZDU5MFIjlYZod0fO82+n7EPVLy3nVwzLnJkvwaYO0KAhqgZBxWMn5QP7vKioHYolpBM5hQUo1uCHlFQ5MRUBjKa2QZdUP3mYw7MHKkkH76GxHh7NmzeOKJJ/Dkk0/iqaeewtmzZ8Nu/z6NmbFYLPDhhx/i1Vdfxe3bt/H+++9jNpv9mHr+V29d1+HKlSt49NFH8bGPfQxPPfUUJpPJD7zH9M58Pscrr7yCL3/5y7h169ZYx5y203baTttpO20/hnbnzh38m3/zb/D3/t7fw0svvaQHc+9vKSW89NJLePTRR/Gf/tN/wo0bN34k6xaB8Mzbz+DK/3IFX/75L+OrP/NV7G/v/62zpU7bafvLNuKPKImf/OQnASA2m94iGGub7fb8VfKMDXIKxlL8TiYdNlanOL+9gXNbazi3tY6N9YyV6QRdJt2gkgQQ+oqTWY+9wxMcHC2wfzjHyaJg3lf0uj+z0jysJc7UFyd9U4eJOSxGWROs7zVOP45Ps1A49Zpxyr5RQRS6GTeXQyILqIfTKVMCcUWXEyZdwsZqh6vnt3Hl/Ba2NiaYTBI2V1ewNl3BghnzYYGOCEMp2Dvq8cHtPezsz3B3/wR7RwsshtLsS5P3g1FGoAtAM5pI56XPCgBw5zsEyGLjadsyc0jGEKcq2uxapJgDWrrfwC7AGHgjQKYGINJcb460ltfMQUMOCYgAdgTZabS4tH9bsKDU6ifzDJxlv1d1NEl/630LlY9HHTM+zyNnjwLcKElWD1J3CJnjlX1sVnrQn6mONM9etASkexBwyYFlkAB5UiDXyPnK3PwUOibKMK+OlZkC4JlImBUCQJKlCmRZP6rPkZU7tCxWSeW+aOklrloGqAnUcVWnTVKAFLcALKFBW7rO6OcOOs1MQilhqAWZpHzYMAzi82nmtqVVC8bxgA8xUDQzj3AJzLVnACmbj1qjVGQpA5i0lGKR0o1d7tClLPOUSPqIlifJHbbWNcs2JGAngoHjLPtZAI2s/6wZixhYAiElMserZa+S4eQsWX2YQleb01PmUwLxlASYUEoZAaAii1lzYo+BsSxXL7eQUkI29yhJGQbj4pgTzQDFAgoE5aZ0js2pAjUInlXKyuyZw9ayWFHz7FoZlDt18LGAR4g8zT0zI6lDNBzyNOa7KhkkUg4AHGkprqBFZGTLFEEpc8qCzD9K7pwlAqwoj/knq88HlO6i2y0DlIo+QFFSz0J8klkr+YlV8yVapgwr/WO8R8r8FeM1rXX+WjOaJO0jm7w034seEKkn0tJj6yu4eP4s1jZW5Dt1MldI1o5+0ePgaI694x4HRyeoZVBexyjTYSu3y7+bzhSQzjCie60FVelBWuYx9InpydTIpOqunHx8jLbsFwm4pylvZtkHs2bTkYxzdSQTpNmiipWxrZY1LHSCZ9siAg8CXpSpTqiwkoOhz3JOzX0aaFCZn3YZXIqWpSMUBmpKSLlDYiBRRcrjsoyFDSgqmdG4sIIKk9Kg6FpFbsuxMqRltlPPufJWGACkNpIbEarffd1jAxgGj5dSR0EVWadoxAOm6yzr3KQTwFipRcBUsriAa0WmDMoEourBi4EBKQPKGGrxrI42dSkndJOMSZIcXDllLAZg3pcAhGrJRiLhhbWVqQR1hkFLaCXXW6WXebS5bvVMSoSUG9uSOcpDNWU5agmZkGCFghM1MJFSQteJ/VKG6mVA3r9+Fw9j+63f+i3/fez0b+yUBwQDWpAGkYACcyKsra3hyqWLePzao7h84Ry2NjcwnUjmID99D1k3S2H0Q8F80eNkNuDWnbu4dfsubt2+g8PjE9crERS0Po37YsG2Vp5jjRwDWOIB5H2PZ+rnyi/O/24bQe2klg4y9ykR1tdWcfWRS3jmycdx9fJFrE475Cx7rEnOKCyykUj2SfO+4vBohv3DE3x4+x6+99a7ODo+xvHJiQe6IpjZADr1xTYrPhrdEIV9FTquhhIFluc0hj3eZzTRYwfIc/y0fabTAmaXx7tHj7O9QdN/f59t5uwP64/ppYYWD9rX2LU2Ln+28YJ+avZ506nxsx9wf9Ct2fskg4SMiO/PsH7Jnmu8V7iPiez5y32q7Xw3OtwvHdsJdl8bBI6AL0af21VVgTdOA1tXmzEYkBsw3IgClIw128nwvi7vJ0YGv/dp1KoF0LWcuNtLDbgUP2CORvSEBKvZLSr/l90+UDuFY668pK3tXXSdTFor3EAPpHaW2/BOK6WuPr8uBbuX+Uz6EDTzknWIMQqQY4n3Gc3z7gfDRqBdeYLGvMLNM9pm/BrTZAApyyZLo/uac0qjeSW1RVjtkHae7Plonm+3aycavWe0M9lpfShwm955o9EhDnRs5I2gmV+DSceyt6QfjP52qds/Ni8+eAaN3t7MLTDit2Wam4z4mKmhJxrd3ejCkbDZdzrqsTKP/obuMOCgXB+A0DEtBIMtNs2lCxfwwvPP4dzZM1hZncYc6i2lSlnfk5M5bnx4E6++9jqOj4/jgka3RH949Lv/dJ4b7znm0znev3ID7z/yPmar85EajW4/gJ+TyW7wmt0X++BWduI71wntxCzpvaB7yEX4OZq9uhvkTaZHf2erT9D0kwXUz9DDGpphCCQlzrV0uYGI7Z32fJERLfncfNbymunZmCt9FhCgoJa2xGjXEmc5By+GX6oVCB7xr7NiwxbNc1n8K1m75RnPrZ+sWaJMLzI0SzQAJveNMY8PAUnGZ9kpJxIPzVA4suFRzBFB9u85xfPsCwYkQ3Grq4CGxuTZgVtQezvfrOMY7/VHYut7EyWJvg84+JfHeNjav/pX/+pH9iwiwtbWFp577jm8+OKLePTRR7G+vn6f7nxQG4YB7733Ht544w288cYbuHv37thO+glo29vbeOGFF/CpT30Kjz322EfKFMXMOD4+9hJ2u7u7uHfv3o+px6fttJ2203baTtv3b13X4fnnn8c/+kf/CGfOnPm+axozo+97vPrqq/gv/+W/4ODg4EfWBwbjYOsAX/uZr+GrP/tV7G3v3e+LOG2n7W9J4+XNyfdpf4FybwJscSdRbbM0hCOGIBueRJ1s6AjIidElYCVnrK1mnD8jZdy211ewtpKxOsnoEoFTBhNhNgBHswHHi4rdwxPsH5zg6GSO2XxA30sppwpgKNUzJLGBlNh+0siHaNmYmBsnAI9BKjHWduPPXsvbxifjZ80SIE4QVsCAlCqycgwk5UrAmHSE9dUpzp3dwNVL53B2Y4LzWyvYWuvAhUGUkTOw4AUOFwP2D08wmw/Y3Z3hw7sH2DucYdYXLIqUupOcIxBnnGVIAWnQMcA9zNwEthXMpcABK1HFzZhHcw54+R0LpItvLQAjaAIYY8cY/J1Q56cFVmyznRLBMVEcDk93UNM4kEvqCI9U+loeToMLy/M45t94ppVpasEXbfYQyw6kHp5o6p3yIOMDPkfDd22QV/pnAZskmSH05Ffbl5GDrEoqsJwEhFBgJ/nstUnnOgMwUJRynjow73dO63wwa3alJvCMcQkod+AZEBEUWaz0GgNGWCusJ/yYFdARJwbHTiyb33DqLPttdSQS4E8MLpoaLWfPGmGtLjlz7DMHwJkTT8FAbDRp5krGJH/Z5lxAe4yUMojsHaz0NlpTU7EqBWBF9UHOWQBU6jiiRmdKH+PUdAt0IEP9oUbmGGUbo+Gy85mUiLUoMILM2RxZfiwIyAQp2aUOQ0oJgwKUkJME+EtbXExp1WaFMkCoIoUIQovKBhLpQA3Qx+cEhFJEN1pgxByziaw8nTj0/CCl6SCjkfLacjO9bTqCVDmVEmBMKZFjPBfvbwFlpKq1Bnc0J6HlGs+QJRrN32mLRVYeG3RdMlAazIFMlgeMvBQVlCrMBNY5NGes8JaVumKP5zpAy+SWgz/D4Q4vHUNgD8gRk/ImALTjg+v1cN7XEd8lK+mq/e1rxc7BEeb9gEtXzmF7cxOrq6vgWh0M160l5MkE07WC1WmH/YNDzBd9k9nQ+qDrmuqN5XkSShE4SSnURBW1FAHTZNJMX6Zvkur+rHrZymM0PMwVucmAA5W3CskAkLs00tMGnKy+iLliDoc729pUVZJZTubC5Df4z2MqEECRPDGeKetOq6eqqQdUJszZgLYZ2ZOIMbgOoJSk/zmj9hVFS9OlJFkYq+pWbhzgIplmHyFOCZveJBIwTLMoJEsrQAKgY0DWUpepGjqOVZaTrqmlKuCVvNRutoE4/2n2Si2tiQQUBY8OKg+SzQpS+g2MaZewtb4OqhWLvsfhXIBE3TSDipamswyTKlvUzP9QimdRSjZvquds3vthQNZsVHUoqDyAU4QPbT11vnWdAeeBCKjD7QLjEWDZrko2uzBIP3PytcGDhg9tG/evDWTJz3HfPbsZBLs1nU5x/uxZPPrIZWxuruKRK5exsbaCaZfQJbXhNMgyVGBRKvrCmM0HnMwXODmZY2dnB9evv4+793YERGb2juoz+Foftm30J2wH638b2ByN1HVpO155kVkCbUDJLeGGv9hMUbW/V7oJLlw4iyeuPYbHH3sEZ7bWsbbSYaXTfQgkWFW4YFEq5oseQ6k4ORmws3eId969jveuv4/j2Rx9Ka79PXrHEdBqA3xAk4XG7TkKWlFqxoFGqYVxZ7YAdK0cbVZtAlpRsGubn/ar9Yqarj/QkLS+IAK1vjfhsBWgeg+kFGnmclmiTIcvfxfWXcPHTh/CMjM5PR7UXx5dBTTAmUYxgNkxnSM9M3pqw4em3+PJDdihPVCiNh03JZONb/351NANzQGmEOYYnzEyM5ZHzIjyXjFXbg00+yrVlxyfudmv82/22fL4bc6c5izjvW+u7dk0vt/G43Ps+5ywO0O24+ASEXkpIZsfMh0PjMr6tARhIl9zjMna8uVOf+9ihdih7GJnBIrLuPnb+ktL/DbmncoBnuWG6KR2n9yqdoNu8r1El5Ix5Sx2hkxCjJ1bfWfgcPbryOjM+q4U+wlu9t6+NzOV1DzbrVsaaTpjlxGntPLrtDHRHdE6wI8hD/cDlADbQYdSa2lr42uYSudUxutXkfRT5Lc272/tCPg4Y44QGS9bXa73EvlViBUPDU0f0GytQ+g+Bo9sorHqCv0nQ4z3tYudrxAs+7Wbt25jb28Xn/jEJ3D16mWsr69hkju/paqtt76+gqefegLnz5/HN77+Ddy9d098XRxPtTXdlxIIPazM15LF4ZRYWazg6feextWbV/H+Ix/gw0c+wHxloSXmA2wUKk5+8b2uZbmG/bR9cIAy7T4B+Y33QW3HmE1XtBAv9hKBxq/trMUaDrRqPGxTvYeb2WRgKJbJUI5OuL6ochAzJfJS8pYdMOsBKzuAKCQfA3atB6Jfm343ZkRUKjT+HUHaQraYfG9lX/p49d0cN43kwuoG2x6N1AcCSJlMsGWj5wb4I/SfTjpkArgyFkPBwGKX5py8tLOtibau2pvtcIcdrgqVYn0xv6fcKxl1a8vKGCl3oiX9R06v5VV2+W/zEcTMcHPleD34aW3r6+u4du0aPvGJT2BlZQVPPPEEVldXv295GGvmz5rP53jvvffw1a9+Fd/73vcwDMOPqec/mra6uurjf+aZZ7C9vX3f/utBjZlxeHiIb3zjG/jqV7+K/f39+w45n7bTdtpO22k7bX+TbRgGvPLKK7h+/Tp+/dd/HU8//fQD1zgiwnQ6xac//Wk88cQT+Pf//t//SLMqbR9s45f/2y/js1//LL72M1/D1z77NRxsHaDm++Nsp+20nTb8BTIpfeJFiJi1JY1IT5OTHvrWwCUkc1ACY2Wlw+b6CrY3pji3uYatzTWsr0+xNsmYJNmlFSbM+4L5UHA8H3B4PGBnf4bD4x4n8wF9LRqIEmASc0UCS0k33blFcD/cLG3ZK/PNWFYXG4MNP1MKwFPjfII+jdRJR0SAbsSHOjTXkpYdyZATRJLRYG2asLU2xYWzm3jk8hlcOLuJjZUOmQfkpNkRug5cGcfzOXZmPe7szvH+B/ews3+E2aJiUaWcDXNB5Yp+KO6Qtu15SslBCJ7mWgOBRTevFpi24ECysinQzbJtyHVHvcwapCXCSNO2mzPfMjUxQx0Y5OVSJF17AlhOAFuyPcti4j5LdYJUlg2+B1k5QFcOTCpjYIZUjSItq8WgFOAzAxQtg4AcGKSDr6UqwAzqGCFUHkb3LTtWg7fI+2ZBXXNCsWWMaRwPRR1KEiSGAmeCj8FJK5YxqNoYgEq14W2jS5asSQC6SfZ3W7YKawEqtL4USP5vkQnn4yXUR1KnXgX7/Ntz3AFt8qQBa8lG0jg52ALWMv7kwQ+4A8acfAbGATS9f+UYVynOqZxChq3LzOz9NICRgc5IPWDuQCM5rUYA6qAAiTwuGVaK6BeqhMpyYrPLGYvFDIULqBMQEZeKSZ6g6yagnDHJ2Z2GQivhbcNYmWwQA4Gz8lxDDXhOQQ0UDmPBBBIY1fmCoPpXHXHJ5T85T5mD0a6nRA4sqvpMq9FIOTWZi8ayVmv1cnUCILDymuwOtATTJepST+Z9bII70OxqyV7Lfq+A8+J5FoxgUJQfVJ3mMs5VHaQAaVYmC0ZqohJUBPiMqrnkRK4pZc/K5NdCeKfU2mQKW3Jm+7onGpVV50opPwhxWTMHJMn4ZSAVblK9txnlAAMbQcetdM1K1SANijvHA9DJzJ7WNBzPco2BfZICTYmBRFICrM3qJvwnb8nq7BQHecNfLDJqWsmcoqT8Opl2uHjuLM5tb2Jl0qHLGUMt4Fow1IrFfIEyVMzmc9zd28fx8ULWd5tzLs4TNgR3OivNhmo6xGS7wEqasl5jTm2X61pHGYIMQJI8O06sGba2yfzyOCthimAEQBiVgVC9F2uk8HWvZTdz6vw90i9253WXE3JKyJQwaGYjW6O7rkMFC5gQDMmcCLEPwMiTJDpI565wALdSkvsBoAwFSd8zlEHeXQVkWq08gq7nORNyp1mcSMZJtpaVKiU2lH+Slt1LGaBOrlMsrpd3bNfgnCT7FpNkeCw1SrfkPC73ausn14pJ1zktTCe5vOektkQBKmE6IWyvZuRaMYBwsKgonCTTnQKGzbGcSbJm2XPt3cMwqEqSNa0MWiYya5YthTImSihDFWAbmU3U6LeRPaHC3H6uAVoCgBQ2A0C+jsg1EUAUcKMByuDlRQHg/esP54nW3/qtfzbSpMbfADToApExCwKTZCbc2trAo49cwbXHruL82W2sTDtMJhkTzZgkawJhqALO74eKRV9xPO+xv3+ED2/dxq3bt3FyMsPJbCa0ZVuRmsD/yAwK/Tn+TIM7DwjmEpYesdw8QEVug7eZ2nzcTUlUAmNzfRWPXLmEjz37NK5cOo/11RVMuoTEYnd5oI0ZfSmYDRXHswE7uwe4e28XH966gw9v3sLJyRwGKii1BpScDDhpZZwaAIDauO2a4oBem7cRtSgG+oDm4XWzqW0t1iiyzwPZWtRSVIE0zTW2B2l2fbCwO5nB6TLj+cp8/fS7FGTB1gGK+TTbfwQCWrKDjS4R+ms+W6JF+0yLnjsozPvFoS+MrjoWNROEIin5nssuHgGu9WLXpzECHWfsX0BtJgUezautpTbfaOeGm3uUtxsCqFUo2SdGlpQTJuSKmwmlZt0HQyLC7LsMYEST8ZjiV7lHsh7zqLSO8b7zh5MrxtmOOVgpwEwW4GYrZ93wsQOMXXRsD0q6z6ijTJ85ZbWPxQ5oeT/8F/Bsfi0vG2caXxsgSj91fjDeMdkbAWKbObM9mflPWp6JdzTTHw+F3+jDbvjGL2GQ6XrbJ8dJjEZX6vsTOT+EjI3n0t/lc3W/NrZ5MdCeHb5q9V08n7zUr+lm2xOMAKu+rid/f9MVT45Yl+jQthZGdT+4g53v0byb0Oosp7bTpJ0rP3TX7MODTvJshyFy0MTmw8Dc9lbmZk8A00+NnXff+JbWx4YZjN6um7Tv0+kKnnrqSTz91JPYWF/DyqRb2iuJnVxqxWKxwHe/+z288eabGPri/GDAvhHNG3oZu3p5emaxCfQLu3Q+nWN/ex/XH30Ph5tH6Lshnu1kE3sMJlfOn8nHTGjAsfZ0gu9H4ACotq+mT+SuojS2ktyAZeEesR9yir1liVM/8MzVmgVZlS7cJ6RApKT6WnwsFaTARMu+3PqXZB/G9qhx9iadUrnPBmJARN3LVVu1Wc5hKA/4IR5uWEP5v5XvnIyHdL9gpCVysJGR032BIN8zm5z7Mxv7w9TZSpfQ6Vz0VbKzEoV/3Pd1brdT6DTAgUwODqxRZdLt/EYXha8N4OrcEuuv8afJ82jdVQ5r5IxtPRwJYrwz7JR4PwAc/MsTPGztL5NJaTKZ4OLFi3jhhRfwyU9+EhcuXAAwtuEe1MzHsru7i9dffx3f+c53sLu7i729vb9U3/8m2/b2Np577jl8/vOfx6VLlwB8tPHP53Pcvn0b3/nOd/Dyyy//RI79tJ2203baTtvfvraxsYFf+qVfwksvveT+8Ac1ZsbJyQn+7M/+DH/8x388iqf+KBqDcbh5iOvXruNPP/+nuHnlJmars6UNymk7bT+d7X7PwIPbR86kNHIrkW0QRZ5yTgriAaZdwiQnbKxNsLWxgjNb6wLMWZtgkuzkkYByThYV/QDsnSywc3SC45MFDo5nmC0G9KVqEKygqvPMNtcSgLKNG6GWoqCAJAFxIgd+2MadOTaYQGzgLbBqDvs4+Qqg3ayxBE0ZyTNPmIMhkWzOc0pIidARsDKd4MKZNTxyYQsXz21ibTVjbdJhtcuYJELpZXM76ysWJyfYOzzG7Z1j3Lp7jHsHCxydzMG1YqAKRpYdpm16LeMNWRp02XVWase35MLTTWzKXZSYAaOWipSzO4XawAFrVoT2hC6aDb87AoxuNidEnoEJGOvcykZceZsBSFpncJfEmdACPcwhVzUtPighpyyODYNqkZVOGQcDWlCa8YQ5O9Rli9wpSKEpyTbOptM6ghsnFgtIKpwJVtJHHb8Q8FSbQipZxoWqZZ3CIxxBJtRwmLE6wFky1CTlS9J5IpeP4HmOegPyTsriiHKHg6XqVoerZo7KBkI0x0xtQUTBU7WWUfkfc+qKk0kC4GTONkTGIEt5bQECD1wQgc25xJblpCr9xKmFJLIHmw3KIpMk2XeocSYasM0c4DZSSkmzulQHImQNWLVZniyLVfLgRwK4YCgDkIAuTVC5ogwFXZ4g5w4W2GGWMmHMNj/iuBPfNTmPuR4FYOAvhgQNc86qk/Q0IhHQgAqdl1zumnIGxgON48r0ZaJw0Tn/KvTGvmdmdCmjNEHTNiQgsl2dt+w0rzhjycuFAFrigBMS4EEvyzpl4A5ov20OLAhnADbTJWQXmewpEEi+D4d55eqllgwYAbBnSGtBnKTrmca8YCfQAfJSWDlnoBZ14kL66zxmDsIKTjo2Yxnl/zYUUZk9u5LJrei6OGXvwN+UgMJeAqhCvsuwU+raDzb9Hot+LQKqQ4q5kRKVqrdrcV5hCNiEGkc3VEY944t5kdE4v0loJJyhjmUiMMt81Dnj5u1d9IsBF85vYW06QU4Ji6E6KGQ6zZhMVrGy2mF3/xh37x2g7wd9UwIQ/XSZ4ZCBZKeUWYA6mTJkReDmGZDAIcda5eU6YYDahAQDJsY4ebRehbM2ysJIdkJCcvBhJOEjlV/JXigl+dqsjtzwqIkCOTjFHNbMEQSoVv4kEXKyEgxQ2RA5ydAMeSlDk1fplBKGXoCetQrwhtT5P5htlRJSNsBaBMxTyi5bWdcN1pO+2YBcSdcdzblkIRZKlg3CxmPgLELXJSRU9MMAWCZAWQikFJpnkAuQktGhVAlABUhNbDFTrxL3rVibTrCSKtZXOxzPC465YqgVgzAGamVMuglSThj6Hou+lxIOCDmknAVcSEAdNADBQAT14XSVgI6A90yHEZEHm4mklF+18+KN/kZSynEECkVtShY1gFEpMhja2mkATVa+G8NFHr4W/dM1oQmKmFwRAZOuw5ntTVy5fAlXr1zC+fNnsbmxhmmXkMym0jkYBkZhYN4POOkHzOc99g4OcefuXdy6dRt7e/voh8HlYbn0ietDbvYCZp96ELLdHyzpw+ZBTOPxIUaqU16be5trfOxqGxNhkjPOndvGE9eu4uknH8f21rrvszoNINYq/w2VUYYes8WA45MF7tzbxwe37uGdd97F4eGhHOxAAJ98LsjmxLrDbpP78Jox29+JUqw7LCWsyMAWaNc+dkUky18buB1TqA04xjOajVvzSL9KF10DEPizRTGpvc/ty2CBdF9N7gODNHNDiBI0S4GcONDS2BWW7aYRQ6eLC+rSeDlW8LbcTdjdsQ6102DdZNufUVwthz/GGRUCcNaUxzF6NiXHfLj2Zm5pE/NuNKSloLoFf81mHe3DzM5p5rwlq3XRgtZpJHfQFEuh6cReGdOj5ad2DYT2xey16EUDjgCNpzkcAXKdT58BuFnBwAEG8LkE+dzEXMl3sp4b+NkOcViZt5i7sO1bEA1ayYixN/ST17b7egDEUYbY+0nRv/Y9zfDt/U4jo10zNWDnOv89qGCWQTMfbf/J3tvoooaOxt736y3AwFPmf4gHmt8n5smf7XsbuOyNZSbsalKd3dIsxogRLVxaVXDid0Zl8v176DkKNdP6Q2IIDd2bdUT7J3vAdg0Jm4+bO33tqjx6HsMAqcELxL4C+Hvan857zu8NLRt6gsh1WavGorv6hzJyy2OkA2AA8/kCr7/xJu7d28XHX3weFy+cx7RLsjdTO1qyKhHWVlfwiY8/j9W1Fbz++ps4PDqG7cN8ltt1t5lGXwc59EujagEAq/0qVu+u4sLdCzhZO8Z7j93A7Yu30Hc9YOtVIj00CIR92DS297az0NB6aakZX2bUMT8K+VrGI5ljXxPjU5NXHtEaRO7niym2O2pzH2C4LQLAlVFst8WQ0t0ua8ofuke2w3TyOvLxk77fnuGgJCTN4Be6zhjIslGPgDb2PkLYx0ROqwDfxMGUdg8svruQPdcFjS4FGF1K6IgxzbKXkQzBLPtein1T13Vx8Me6bn1KBLKYF9vYl/zP1k+7h0OfAxwZp51RGh0mg2+XwZEFQWS6htW1HLQY851rukYb/GS2ruvwyCOP4LnnnsOzzz6LK1euoOsC7PiD2jAM2NnZwdtvv41XX30VN27cwGKx+DH0+kfbJpMJrl275iXd1tbWfmjGKEDkaWdnB++88w6+/OUv486dOz9xGaNO22k7bafttP3tbkdHR/iDP/gDvPnmm/i1X/s1nD9//oE2ABFhfX0dv/RLv4TJZIIvfelLP9LybwTC1uEWPv7ax/GxNz6Guxfu4s9+/s/wyidewWx1Bn5QmZDTdtr+lrWPDFIyZzSLZ0I2OSyfTxNh0iWsr2RcOLOB82c2sLWxitXVCSYpSWYRAPPSozKjXyxwvBiwd3CC46MFDo4XOOoXmA2MMjRZepj0bHP1zb4HtkFSSgisJa5iM0dJ7ouTKOZ4AhhF04mHe0+cCdU3t+5gbo4phjMAYCuzoo6PTAkTAlY6xpnNNVw6t4VLF7Zw8dwaNiZZTksSI1UBOs0HxvGix+FJwcHxgFt393Dz3j72DxcYasJQJGOUlDIByEu/6Cgt4gfZftsJHdvsW2YBDy7bZpUJdYgTm5XZHedxkr/K6aVEoKQbVzLnO2CntYFmY6uOMibJ9sFcMRTpG0FLAiFKxpE6YD2DECkYwwFl0MQy4RDkWjWLg3W/jjfi0qFwylToTj0UvTt33WNgoB2dZ1QBK/B4jG2zVNwp2RjEBRzOO14CaRC4Dsh6Ys0ce3KtuQaNlvau4p/BMgtR8w71JJE5AFM4Y+Vb0oxSbXBt2U+WPEAmgVjWU2ZKUwuoKIAiSlm1Dk9GabJascpiZcsmVUAkwW05vWxlfqQHtVYURHaSmMk4fSZOIHNUSb/IEM2pokuEygIky0jIObLL2HtzIpRBQCaUlDZkpXE0g1pKQLWyPwpOUkBctfTdBPRDDyRGZvhzkpafM4et+gD1pC0aWgCo5GWo7HSdgOaSO5wr6Wk+6Al2dahV2ElFc+JJcLpy8XlhrqiVlO4wXFM8zVQamQNVTmOiFs+cUAvDSzZ5RiCVfzuFDhrJSNasTQMzvHyGMR7k9KWDotRD7SUTlcdT6qSsn2bIk4BnFrAQQlYg7IiUFFRSigbNMCrHIDJRoHnnkDV9mwE+smbOogrUOmggTB3AbHMo2cSSy6g69bsMZgG7ZSKBSZbqpdsqC1BGMj+ZBz7420rwURbAggCi9BSmZgqstTRgQ80gl4Q/rIRnrRVdUkc9Wwa14jqIq7w9JUJ7EsCq+MlsSuDaHeoeBDItCTRiG45fD+zozKgeN6AbuKJQwr29AwzDgPPbG5hmycBFClZZlIrVSYf1zrKPJezs7OFkISW5iI1/AjwGe5fZIFDwl4I/vYRDE1ipLpssmQBrOOaqjaF1zDaBRkpWVrQp4UCEwFnq+EsdOfxY7RbjI64EsGTuIXcUS5ZBUFWwswb4SLJNVM365IEOSihGcQYyZQ0S6LoEsVWGJP1htdFYM1HanFWW0moJmqWPoYDliulUSiJW1QGFgbLokVNGl8kzLrFmNWozD3RTApBDZ6ktZ0ENA5myloMcBs161ARBTOcxQ0FdyUFNEpsWIKfxYwApfXUSeWEpNby9OsH5FUKHgtWcUWrFrcMeiwJYuQgGI9XsZd+Mzy1Dk5SWU7kmEv0DBVURYoRJFG6C0NNsA9KSnXKlZG0kJs2ypFydEAFMxHdqgDqNxiAaICTT+NmCwD/c+f431TxrB8Xf0D/XVlewtrqCq1cu4dpjV3Hh3DbWVlfQdZJVxDIxDgocrYOVNBvQLwoOj09wd2cHb793Hfv7Bxj6HoDyR2PPLdt2Zt/HzoCavlnpSF0jfJ0RrgvbCx4Qt3c4gB+isNwsbecuFmkkIky7jDPbm7j26FU8/tijOH9+G5vrU80YJYBV0XFS5nAYKuZDxaJnHBwd48b7t3Djgw9x8/ZdzOeaKZLcooD91gwzfloAz20Zk4lmwtyG4xEoaXk+l8EZiFU8XnlfJDZsdQdKNFkIzE6xbhBF+SeTRAMWGI2Zm+H5mESXyJyLjEqwVBY7/x7N4rfU3CJmA59H8Neey6OrfYCynrRBSL1tJBeu1aIfBnoUi5mjz8s0bvQi2ILR3rWxjWYszVC7r5kPD4aOgWU0ognBDU404uGvaGCTrfhgPP6xfDafI8Ydn9uo414LRre0dnLanixqyMGjzzqg0L16qMFlOfqZ0GTF8Oh1A3RqBtrOw2ivBziQXh7DvuellFz2KKbH7R07DLMsuESRhTDohFE2TiesdbHhO58Hn9iWnwPAZ0NmGrkifK1iQOwCvzb2C95je4XdS2j2hjGvvvy1CraVfrO94h//nnTPahaIqKKxDMbv8JMK1cBIRreGfgYmsPkm9QEAJv9oZLSludi7RO34/EvA38ehWyF7D7+Kg7cVduF0d/2nfphwFZj9AVjxKh8wxzMflEV8ZAd7Nt7gOSsBaaoiVscK06jLbawzTH/D7wRiFsPnYX0ouHPnNr7+jRk+8+m/g/Nnz2Da6bEqz1Yje+jJZILnnn4KZ7bP4Bvf/BZ2dvfEj2BzEavEqASavrZZ6XS1sT2Ffl6ZkTlh83gTL3z3eTz17pO4e+EObjx6A0frR2P9Oh7oeAn1NQY+l65n24XAH8NO73Zd4kbujZa2z2+7IE+oo7nn5rnO9w6CN9tFvVKme617gD/Py8Bq/2w9zplcvxoF7VBM0v56QsuRTWY+qYYGHLJsPY+1o4ZMtERTm4shOjYOiciFRkrxM4yhOG5HGD+z+JzWpxmZLKVRQpkXLMw3zU2f2r40cuo6Wt8Bgh5gWwIEmV2sDBWH++Bz7LNHBKrRfxOrsd0D76O8l0dzieZ5LeeYP/4nrW1ubmJzcxMvvvgiXnjhBZw/fx7T6fQj3cvMODo6wo0bN/ClL30JH374IU5OHr5MUj+srays4PLly3jxxRfx/PPP49y5c5417Ac1Zjkk/vbbb+M73/kOXnnlFRwfH/8YenzaTttpO22n7bT99TRmxhtvvIGDgwP81m/9Fs6dOzeylduWc8YXvvAFPPHEE/gP/+E/4NatWz/y/nSlw5VbV/CPf/8f45f/+JfxnRe+gz/7+T/DnYt35IKfPNPrtJ22H0n7yOXePv13PgmANEggwZ9pl7G+PsXZrXWc317H1toU66sdJllBBjmjMjDvGbOecTSTDEF7Byc4ms0xXxSUwugLo6+SlcRK4VgAptSK8JVIxgdAU9unDHNeu/POhbnCsyiwbOYkhsloARpgCQpYoL+yOfikHzklJNagsGY3IVRQAjKAaZexsTrBuc0VXD6/hbNbqzizsYLVlQ7TScI0S5B9qMB8mGO+6HE0Z9y6d4QP7xxib3+Oo9kC837QjaaUiuNaQSmhqGO2zUwkziPJHFO5zRhFOm4049bNKzNQNTtIipO+QubkwAl2pymps0kD7Q2wKaestOLRppthDtTIQgQL8Pl3jfPQgwp6oje1wQYg6XuUVSGOQOEDmUp16Pr38p05SFrnBQD1tavjRz17Ul5NaUSs9LN36ZgbmkS2IoryNRVglJGj3X/X8i2ZIrOPBJ/FmZBzW3aCncYuAzq34sTR8ketV5jhmTc8XbXWX7KScUF79r5HX6HOBwmcJgYoB8gk7hnT2PrV1iC38mqSHUSDvyzXZc2yYSeNLWNJbRxpSXl11E+22TAHGoPV6ZUSoNBJ1EGzLkGCdmADAkk2GnseyMoTZc/QZFmOuFQMTTCMlECsgaphGDCUQR1nAubpugkmk6mMMWctuygOnQLNglMF7BMlC+H9MdBDzhOfo6KON8nmJGXMBHwpYKhaTOeZbFV/jpURSCm7Q5hIykMxETTRGHLu0Jci4ASNhneWIQkWsgsghZUpE0BZdf6zeTSessw6or9CZgVMpSfFDcpDeuqRBYDABHQpoZbBgSOhOyrIdY/KtDr05BQtGl3Q8q6eApXilk73pMdGLYOYOXRNP3DqYHrG0AKizkTnWHkrsAKYDJxiulDpkCic4BLUiQiCrVdGT6LcAIk834VfWwDPaAOEXjJgCifNPkMJrPNtpfRMX/n4XGtG4GOkzxFZxIynAtyVR+8HK09o/UKi7JmKTJ4zEaZdwtmtTWxurqCbZgylAEX5K2VwAkotODo6xt3dQxydzFELJJsbqgYGQ6eTZa5qdJvTtfls9LeOx+4DlP+U5lVrMkpGRtUZGrwitOAQsyPs2SETDNJMarKeZi0bV4qBrbXvJHJWakWngtl13diJ3chYIkLuOgylSHlS1asiV7KGpi6hywL6KZo9ymSXSUMERG5H6XIKAT4ScpZSbeAk72n0Yc5ZdAQCJFENaGxlQDNGfbcsR+Z877S0dtCwRAABAABJREFUrb0fpidI5FfKzwmAqstR+rLvewjgBx4wSyl7ELTqcwhSLi9lLcZQB2xMgKtnVrGZB6ytTHH3uOCduzMcDh42Fh2VswctnG4cwyOojikVXAldnkCydglQUuIVkk0zQ9b4fhCQ0yQpoLQW1S+iq2oVnhPaZF9bALEZbcwREWJ4BjVdHHPKCvyzbF1S4q8W4IP37+FhbP/8t38bUH1IJBmTLl44h6tXH8GVyxdxZmsDq9MOky5JqRKQg1mHyigFWAwFi6HgZDbHyXyOe3d3cevWbezs7uF4NhN7pAn0kemypkWwf5wRYrSQUOwhgNgb3O84UD3htrOamY1NY5kMDUzQ8h8BWJlM8OwzT+Ha1Su4dOEs1lYnUiqzS+gyCSBWYm0otWAoBf3AODrpcW/3CB/evI33rr+PO/fu+YEOs7PdPgB8P+GBKx27j80GFwuQ646WPhbINlvfCO3ArCbWFmuOvQ++V/C+PKC19nR7b0TWkusB69yD+tUGDkeBTzWUyA8rPKgPdi2a5zVswvIcJbXTExrucy40XuDxfMS4rL9BuHb8HpyEARYRazSaEjotPZUW/h7TMA52WiIFxbw4fwQlHvAbYr4RQVa329usS94Ho+X4GS6fHHMYPGnAsmZeLajLBkKJKSQgQOtLNBz1wTJ8UmMZ1eivBWhZH95mubJDDLK5DJ4gXeeX9U3cZwDkALNwZaScZV0DvGx15LZE7M8R9nPbzL6zvbPZoU5HbsELwu/Og7ZfQguCMhrTfe9pEuDoHtXmQPjb9qk+j83sWwbY9oALwfaMIa8Rk2/kBAhgpIPtYw6NT0JfsfOm84t+5kC0Vr+DNftxow+cF+v4ffo0mwseCYwrT4BaXwYahYJ4j+nY0drQ3KLvC4pB+THGbAadXctN3wE7bBHPa4g2kjkvr0iWoVdB+s36dz8Aphl1s+bZFVYirNFuUjrcDnypXmzpZnwR/CrfbG1u4rlnn8GVS5ewujpF1wk4vJTI3gbVO7PZDN/61rdx/f330Q81skSFsl4aAWIu7BtfK0MvjH5Xw7Gf9Njb2sf3nv4ejjaOJFtmo6dg+rl5T/xJD3yXzRFRZHCNQ0ax5oUPLliqtcWX/VlodLyViDM7yMuVNWXZmAPA5zLUzD9zA21pdLGByrlC6WFDIj+UYTR0EE6QJPxdxhHsX6nNb/v4oFmot+TybKAoIlK/ssxwax+5dLm9I8uDHawEVyRibKxkrGVgmgmFE3aPexwP4j+2AVrm6GZV8f2WM0OoJ8+Qz6Z/mf3wm3pBxPZTH3lqSp66PQVZR8IH24q39a9pzmsUdhC1hwRtbRUaHvzfHj6QznK5t5WVFTz99NP4xCc+gccffxybm5vIOd9n6zyoDcOAxWKBd955B6+++iree+897O/v/8hLvfw42srKCr7whS/ghRdewMWLF+/zP36/ZuCst956C9/4xjfw9ttvj/y8p+20nbbTdtpO209Du3LlCv7hP/yHeOaZZ35gVkFm2Uv8/u//Pl577bW/1jWRwThZO8H1a9fxX//ef8XNKzdPMyudtp+q9v09vuP2kTMprWRxnK1OMjbXJthY73DuzDo2N9exvjrFapehbjGUSpj3FXUYcDwv2D2cYfdghsPjBfpFRV8KhlI1gCqZUmplB3Sg3Xwz4BkJIMF+21hyVWCIbaibTZVkAGmASrWANYhVNFCUKfsmXhwXFBmj9PWlDKDOPisCNmFgPU9w8ewGrlzcxPmzU2yudthYWUVOCXmSUUpBqYRZqZjNexzPB+yfLHDz7j5u7Rxi92iGxcACFKgJrIFeIsm4wrphzsk2xzGh4kQIR0sLAgqH2TjTCSCkSEywjB2S3QbmYVCnnQZSUlLAlk5D4wMwB7Q7X8gcj5Ke2QN8o/eHg3nkq0MAqbyskznUiST7BMGBUUXn3MtjcTyJUsMzrdOxdWqYM0y9BS3tpB/ZN+RjoNODBcqcKm2fcxawQSkFibJmTYjNftClKlAmgt0+qMbJZ86flPNos0xe5qp1dJnzJikoq45AViPK83hcSYFrZRh8PoIGca87hFCc/1rwljm5/LkGsPPxIOb8PldXZPVCZQE3EYFQsTGd4spjl7GyLnKWwOgXczADOQmoZzbvsaiMu3f2cHhwCDCjrwVJ9ZeBIFkDw1SFx0sDOKkQR17OygtansjSG1swy8r8td03J+JIAasjbVku26xwHuxXQJA7yUBeIoqs9BuqlO+DabfkejHnJMAXLRtRNRU5gb1kIKCBFdZ+aQYBByt1HQYtd2e6grXkWAAISbP5hHyEM80TxGsAyfjSTh/DZXQUvG10g+gS6b85VyToo6XPGvCq6AkBYdi1XtJSu1i5uG9QMigZjdsyaHKBBCLCiZlAjXPVnOkml8ratc1kZAFqvd/Gpif4Xa4Rv5uOp+bzFqzonzWZaxz8oY7katdA+iGH8wMgIiCzACNZJ8LJzq5LyL+jcT+YR8Y52cXq708OIiuSKUb7XkCYLQru7h2iLwPOnt3EZNLBPLacMogqJjlja2MdOXc4OJlhf/cI/WJARVKsWOhkD0Z8hJYaHSvZJ+I7qnbaXvjdsjAxQcsuisy1mbDacBFgPN7qYSUIGaAaDhQ2HiUizwYj62ga6YaccwQ5CciTDtNJB56XcHQnFruLWYAqWbL7sAEKa7XqqMhdh67rUCpjNp+L456NvyhsMJUBy11WNLtkrYy+DjDAiJXRlMCG6e0xYNEc/6xAsNrYaoAAOalCy7TCAwP3zauWjMgpg7pOeNX/g8+F2TSspUIrExaFcFIyEhgnRwP2TnoU5d1aKkCWPTNkhVnHzYiyLSmBTP7AKGWQQIHaS10iZK6YKB/PBkZV3Gdhky8djgiPUJhZaSwg0mknPFe5aLbLpLoaGPpByttSo4fUjuECyYKJJBP+w7P4/421LsmatbG+jssXL+Dppx7HxQtnMV2ZYNJ16FKUC6wcmbv6wpgtBpzMe+ztHeDOnXu4fecODg4OMV8sNJDGDW2A2FNA/3qQLRf61O3oJmgoLQJQDG4AHfJdBAabNa+x42QsVibS7GF56tb6Bh69cgnPP/80Ll04g5VJwjRLKYqUk2TwUpu/HyqGUjEbCg6P59jdP8S719/He9dv4PDoGJ7ZjQEDsrX9kSE1awAt/e0Uga9JLUhoBJpBCOt4rxB7qGQBObveyPhDsxQZGO9+2zXuMVoS2vmxfQkBS+WfMBqPrdH2SAMUky2AaLs3plBsPWI9saH6HqmxaZyX+H4ONHXe7vOsmf1spXCX91DtU9y2bvvW/GzHEqDlhjI67vvAS20QtOGVZgUMyXAlZ0DVOqK5PhC+zxnZS/LdssS1MtSOf1T2bmyK6/26+Pnf5NlFVyYTvPiJF7C2se7gwVIGMDPu3b2DoS84Oj7GyXyBk+MZFote5kEMcnmWZlyK4LqtHwFmCdsiBNHAqSEL1HZT1wYIr4wUyoNMHvvEuCjANKaXWvq1Jqfxo9mYLeVlHdYMpbrGRoYgBTRxM9+qB2OfJyO30nVcudERPO41tfcRrOzyyJyiWOdDMbS6oOkLGnCFZzqS/a35VlgtBbslDiw0OlL1SMiuv8nfaUAoViCb7W2D4OM1p5WZ0H9Lcmr3tHSJJ6pu49G8Gi+F/mo0oq6J1b/TPiNAd60uaAG7ru/b+dAOmSg6G/t3I6aAaQ9u11TzFTS+gWXeJrK8ecovap8eHB7im996GY89+hiee+4ZbG2uY9JlyabKIvOs+9H11VX8zGc/jUuXL+Hll1/BfLbwo3wtv9hctkCt9qfLovWzlUsd/HSY4uLORZw5OIObl2/i7SffRj9ZxOg1XbXvHWHgx1Ev0GYONJ3crqEyP/UBnzEso9Bo2bX5bfiSEiF36lOyLERkPM9xyMhKmqv8mc7NiRxIOQzFAYUNe40XVZi3IcZW1ecbS/RohWr4wMCU5HrL+ai5JtaKJVhlozbk2vg9U/gA25+qPgDlQOFEAU4OhTCkhDoUDHXQDNJmR8Tcut3Epmp1zXP9F/10AJi+mEgOOySKbM1DYc+UZlllQ0+GRhUfZg2gK0kmrIBLj/V03KqTxiT79xEN7195HoZmND5z5gyeeuopfO5zn8OVK1c+Uhkz20PevXsXb775Jt544w3cunULR0dHY936E9TOnj2LJ598Ep/73OfwyCOPfCQ6AEKL4+NjfPOb38RXvvIV3Lv3cB5wOW2n7WFrk8kEv/ALv4CNjY3R57VWfOc738FiscD+/j6Ojo7+hnp42k7baXtQu3nzJn7nd34HL730En75l38Zq6urD7yOiLC2toZf//Vfx7PPPov//J//819byVcCYf1kHc+/8TyuXb+Glz/1Mv7oV/4Ix+vHD3IAnLbT9lPbPnImpd/4R7+A1ekU2xvr2NpYxdpKxqQjKdHDsuHt+wF9BY7nAw5O5jg+WeDwZIGTeY9FXzEMchKEAQENQbKvWBC0qLPGg4mspT5gYJz2RJA5kgyEoc4waGA7ByDAM07oxr5UySQSgfyqzrfkji/5DgCJI5FY6pBvrk1wYXsVVy6cwdXzZ7C9OcW0I3RZy1JRQibG4cmA/aM5FgW4s3OAO7tH2D1Y4PBkhkUtfhqai55QYw2yZwnG1irAHObBNxltcFqGzD5OrlKWhUhLr8EcWRjfW9XxQ4Cn5a4YbWTs5KYlT/aTVY0jJeemrI1t6j3Iyn5PZXOyyxZZ6B33UYr0y+aYjaBjOMosMCjzn0d6Wu5lUA6HUes0lnI6ANrgnjwUcXrPniXOAstes4yWbcFIgJ1qSloabwySsCxNqQm4MXiUfj81c0rLHujG/5UoA4k9e4s4iE0exMlgAAmCnhrS8hNVTyuGE6aqEzuC5a1j1sbh/bKsKA297fpSyuhaA2jZNSZ7nQXM3Tei404tPe1kt5Y+gwI8csKkS/j0J57DL3zhJaysd+hIsrOIHExRekZKjNkwx+7BEf7Tf/pveP/9D2BZ08zhZllxzGFkfjQ70TnUKLUn9JSSdsOwQK3Fx5ZzxnTaIecsp7RYgDVESbOhFFQfqziwu2TpzaNUWVUHugGeiBIKoqyUcbqAFoJ3q7qbuiVgAysvaKU6vUpTt+csgBstj1ahOssBOfLsnDuXe+u/RSpkriOoxGzAAAE39YMAKKz/yedXnsEM538DmJrD1zONaf9gpflMP6ijENxkYoHRDWC9XrJZaaCGEesH4nQjm8OZ0kj3Ob9acEYUMWCOx6I80+jCBAFb2Lxan1y3sLuMw1HcOKrNr25OTsFlijufFdhEOeuYgwdMbiOHHqvjUovjqWMZgKSBN8euvjCRgbs0YEO2/MX6yx6kGusEB6U5kDFkOlnGOgOSKl9bldQuEzY31nDu/BZWugzUisIVKXUi02VA4YqaEg4PjrG/f4DDk7k4aD0ww1FWznlx7GT+fr8vmzxVS3o13mINRIaeBzDOGtZkzoLzFfv/AC2jVooET7qEWgeUgf30r2X+kuyGHGA51TGdZU3SwMO067CyMkXpBwy1yH2uc0VmJpMJaq1Y9INh4tBZhqGuU1mSzER9XyTjTq0iWZRUx0iGSyOTBbaqgnZSEjCkBVYlK0KAryQY1oDsVNemDEy6iZaaE0Bb3w9uB7AGKJIGhkQHSRbHQbP0pZRQC1RHRGAmZwVkarm1TIIOGgaxDScZmBAjpYxCGYte7E6xOS2bnYFSm3XQAgpeC1VkPFE3Cq7nDJzbnOLMlLCWCrrJFLf2Z7h9sMBJ4QbMLPfnlDW4U1GHAgOZTSYZ006Apot+UP0sGXQAaHar4OOUElYmCdsrEyyGgqN5j74SSgUqEm5ev4OHsf2//5//D3Q548z2FjbX16SUWyYPTBEBpVQUAP0g/DxfDDg4PMLN23fw4c1bONg/QD8UjavIXFh5Qfl/2I9tUAjQQJIHYkPGfR10e1RBmhT61vR62KSABezdzranmv5w/RL9mE46XDx/Fs898ySuXrmEc9ubWJ12yEnYuKrgJUjWqPmioDBwfDLH3sExPrx9Fx98eBP3dnZwMps531pQzexwWcKt73W0L2BE99CM081iasFMhGWKmS1HFE9jHutNamjudPZ/5YnjbAn2Ooc5i61uJWia4HDYKP6ycR/92vF+YkwAs1GarYCX/rJ1jJeut31Os540c+1d4uA1s4fv8zG189FsW4IGAbzzIGYz5jY5wvK8Ln9u7yBNQ9jysqzfiDlfop3Rw/ViO1aXl+i3f25/m1zYHqrpqw3JyofKrewHOKLvDWhuaR0f/WX70GbkbQB4a2sTn3vps/iZlz6DySQjaXBe1EhGHRggxt7BHv78a1/Ht771Gg4ODpteN1zd9k//sTl3wDosY7PswSuLzvfMSEnWHzsgJOZYgH/NqvAJtL1RCOfIBmr3qWa/gajBALSATKMdjQCFEbxeAgxZTyzzcWWXw9rsI0LWotS5dZ/8+zEzx95S1lzrewAHlgEaAXwhtC8IkGIc0hkfiWkoJ32v5mOC84m/1w/awOeCvK/tw8Z0t/7YXPq+o3mvU0LfF7CcB8sKRmuZrTVL2VrGo9O5l7lhhpbtvk+EGtkCPDMcHqzDndlbGth4fD0wIHb87aC7B+jLFhzlOrbp3/3QDuDSpUv45CdexNbWJqaTDgbeYogd6D4zMHZ29/Dmm2/i+o33MQyRQbXtDlqZeJCOsYu/z3WtXjzaOMKNx67j5sVbGCY9ljSxZzAKn2Y8J16h6x/bISgg6Z60NlmiXdaNUrrPNPvbrim1qK6WPQYALU089v0A8D1JqdXLZFqJRwJFJiauqKV6uWSzC3xfxEu8DltL5HfL3OPrnv7ie07YWjzWQynbISrVFxw0BZl2aNYlQA9g2iEs+cYO3pn6o2YuWPWs6Trb7+Zk8pIwVDb14HrTM8npP7FPRvSGTKeNs0kSGJMuYW2SMaGKLicsSsXhbMB8iD2mNcuaxAzUwm7n2V4tEfwwsNNB1yMDZ7bPWumEaotB9pmVxSNx+C8fvnJf169fBwCcO3cO6+vr9+vkB7RhGLC3t4fvfve7ePXVV/HBBx/8tQUcfxxtdXUVjz32GD73uc/hscce+8h0MGDSO++8g9dffx3vvPMOdnd3//o7fNpO209Ju3TpEn7pl34Jn/rUp+6TudZ2/fDDD/E7v/M7p/J12k7bQ9o+/vGP45/8k3+CtbW1H3gdM+PGjRv40z/9U7zyyiv3xRR+1I3BuH3pNr70uS/h25/8NmZrs7/W95220/bX3R7ki3lQ+8iZlD725GV0OaPLCZPcwU4A9aVithgwW1QczyRb0OHxAifzBYYyQDIlVZQiDsgKSDCqVCuUIS/QTaa11qmF0Raz2bjDNmP6nTrhJPtBbfwGBEXnhPuMGYu+lw2yBqrF+Qp5JgoIhI4SVlemOLO5gkcubuLCmXWsr3aYZuDs+gTTbiKAg8qYDwssyhyHR4fYP6744O4Bdg6OsX+ywMlCnWWawaQM6qBMAEiCkrWwYnlkhz0MvQYrHpCWPwEWeCBSz8EQgBE/md+U3ZEb2cfP0FP6pDAGVkeqv8VoJg7bUVBYZ6N14hETIm2w/Eeamcici1XLAVnzgDYaRwosgNs63eT94m+s7kBsXWdcwmnYAroko9ZSQLtCj3irU1DLr1mQH0CTEjo+Y4QjPYIocGeRlchi1oCbOUtq0IkxDvj7/JLQj1E8Hb48PjLJ2HXiOIpyX+EIErpL+Rs0DjD4OCwrxhjst+wobK8PWrfgozaYIHMZWWTazwHNJGEOIy0ZRGCVe8hYmxTTXi6KGR0YTzz2CH72pZ/BuTNnPc31dDrBysoUwyLh6PAEq2sTbGXCt177/+He7h7YUuxzBbHQyYJvQivVR8plQ6kYShmBIbkKsqKbdiDOmM/nqJUx6QSgJE4+9pPYUnqtuIO3Df60GWkE8AABeUKBZkAE2m1Okjm22YFJzOawk0wdCUp35Q1zhpnDLGlpMmrKv1R3VAZATcAQkl2kc+CVBixJM0wprSxA0vfieE1dku9MX6QAYRh9BJjF/pnzCAkwwrJQoXEKGqjCnIOSxKrhlSpgiKwOOXeEtqfzNaOYOHlbFyeQktDCeA4wvabBb+2bBUyI7FkN3TTwaAE1+9zAS7JcVXGY+5giuMfKE1YC0unDsiZWZpTBxjPOOiCAOAXaNEuEOZQZse5kBQrq9EDxjgoErq6npTwYtFycSQg5DYFWv7aAR5Mr4fnqvGVjkXnpe2Dv8Ajzoce57S1srq2gSwLkmU6mKEOH2WIBEOPsGS37tHuAvcMjKZ/Vpk9oaGFtFOSkkOURQLVpOWdQrfCQBcH1UG2eURugib7A39c+34NCRBrMFUDNZNIBJLzU6lRlRAd42npRa5UMgrUAOQOmN0h4LTGDFWRETTAm1iYAXJDzVNfOiqEXjhRHtoxJnNeDZsGyeRUNXWuV7E0QoAQjHPqpE1D4UKQfSWWwqpya19zylE27KXLO6IfqWX6cpyrAFOs6KILzfkRb57SqzE+8/G7DkwAoZXHKF1vTCXWo6BMhIUuptcRCV24DM+rg1+ABs+oWBWbael5KQSWWLIkub8DxrCAVwpCBcnSCowWjUgZ4aPQLezzA5N7jIURAMpCqyFwiRiLGSpewGIoGP2Rhl7mrmC8GHNZByh+bHgShMeQeuvbU448o2Kst6SlrUCkFfQH6oWDeFxwfz3BvZxfvXb+Ovf099P2guss0JaseDf1JbjuFHlCxhAXQlpsDlAC3wQGjd7Ne2fVL9xcvxRQBQ1tZzfZJRDizvYWrVy7hY889hXNnFJhEhJWJ7K8IUk6xcEEpFYvFAvOecXA8x+7BAd5+9zquv38Ti/lcS7+SZ5mTF9ZYW5qAm4GtPBi2vKcwmVWdPQqYm65q7hltr8yKagNzcCtPZ6mRVX/G/fq4fQ8rES3bhwfQ9ZqwsdDsB6J/Vu5vBBpo3hPBdP03litYgDMG2T6hBcO1xGiAmd5/7V8DWKH2Zyyq/q4Ay+nnjKYv8ZS4ZWxTyEdWJKZRODZGil/dbrQSVw0R2jXUx2cvbfS0z207/824YsradTKeURv+aq+F7Tv02qWlV19HPhazYZy4rW7Vfm5vbOLv/sLn8YlPvoi11TUHXOWc0OWMWgg99chdxur6Oi5cuIH5/JsxP6OMQP5mH5O9ulYLmBuFbLyqUwCxD5mRKXQhwyvQ6TuC9mHj2+chSTHnYacYKCZ0YvQVGMsEq/1vNu5IR5pd7/xQDUUJwEreyVrmHOHdDtnVbZ6RcTzPbmdVOaxlbKjv95HqO3xvwhjxhc10C1agRhPZdcazzm/Jjgbo4SKycVtndRwxm77XQvsckGdFGVG3pQfZlaFH7Nlo6Ayfs/FMi8Xd0DVucxUePNLwj+qMKKvY/GADBTqBYLas7/9trLZX09+dxy37tt2L6L+PzrKMNe822R1xpeq9yIQ3oqbKOeP2rVv4er/As88+i8uXLmJ1OpEsPySZgsB2wKDiwvlzOLv9WWxubOJ7b72FYwX3PuAV4/agvUMzL60ktm3zeBMfe+N5XH3/Kr773Hext73vYPzlxy3bsg0J/DMB0mvW5xw+DT8s4rQM23LsXzNr3L5DyJ5OhmU8Y7tHDznoLQDkgIH5GW3f4UsW2xzLgUSiMe8nkqzgcgAw+mYDtn1H+/kyKAeQEvI5xZ4p1inlIrvXyphBVmd2H1XMg9uIxrw64NjLif6sOkuSBd32twq8Gx32oubZ0fXwD4RsM1irAiTnJQbUp1zBCRiGgkVlVE4A1VFWOuefVmwa3cqAHw42+y/rXsRtQi1XWln2g/1QPUssjJeW+PVhadeuXftI1xkg58aNG/jKV76C9957D7PZT26wj4hw6dIlPPvss3jppZdw5swZBx3+sMbM2Nvbw5//+Z/jm9/8Jg4PD0e+29N22k7bD2+XL1/Gb//2b+PChQsP/N7jcwCuXr2Kv//3/z5+93d/91TWTttpewjbq6++iuPjY/yDf/APcO3atfB1LDUiwrVr1/Abv/EbuHDhAr7yla/g+PivD8BNIFy+fRn/43/8H/GzX/1Z/MH/6Q/w3rX3TkvAnbaf+vYXKPe2gq5LqCjoa8V8IQGEo9mA/aMTHB7PMRuqlyIoJdK8M8upaNv0Mmu2HvcOyK6KEQ498Q9RbLqBKCkFxGYS6oDSQIeUMWIwqm6kw3FZbSMNCfYFiMdO/BBAFYkrVqcdNtdXcP7MOi6f38bWugCV1lY6ECrKUMCUUZjRLxY4mi1w73COuwcnuHl3Hzt7c5zMBxQt2VGKgX8YksOkoiZopqEMJAlIEeQItQXi251om6GGUtLgepx6krrbrVPTmqVKbk5JmZPYTicjRbYZsneFQ7EF/1BKXkqGWTI5WK56m28H1IDceWGuQvGjynxb5hPbWXPlBqA0diLYZfJZdRdfJLeWMk6xzW9pFxlyNAqtv4sTw7iO1AlRNJhv10nAWHOWmFNdnT7mmBGasDuGInhi2Y/cK+RehNZpIUApBRy581/FwwNdCFonKx+iPddn1VJsRvU1/GCeaBwd7YnNFmzkgAulg8mJ0cSfFg9qnF4cDg6bFa7uIDGHaeutY3OsK+91OeHcmTP4uc9+FlcuXwbxgEmaIE2mYEpY9FIqaHUzA1Tw5ls38NWvfgezWR8Z0moFU1WwjnOpO6/ZAIwqiw4YGgpKLeAUYIKcCTllTLrsOielhGwOJh1vbXSbA92UH6s79trMPtWdtHZPnKC2YLvSzNKvQwOjTjPVA4kABWgxC4+IrENKBdmcJc1+UvUdKjLEdmIz5Ee+19xqzJ59jRJFxjWVJ9Pd8D4xONlJ3wAiVuYoWWdyplyeAM2cwE1A2kAz+saU5TS3ZtIzx7lkaolSjuAo3SYyonoykv4jAGkaQKOmdBTbDMSYRATJ+ZyIQTAglDwvEynoc2zoLstiyKFqIWXPopnHTMdYKn5u1oFSimbManyICjSrXEEpguOiA0X/iV5JHrCIuUlNmndxvNr8m1xbfwOQxJrJRx3XxTykyR3bzGXksS0MHB7PJJPO2TPY3FhFmgA1iVN2ZXUVFaLzE4l8TacT7OwfYDZfKKBLe9luJBj3ff7DwErVHPH2UYJkymFW2sha1uUOOSeUGtkfHdBjfGOyRga6NocwpCTYhLz8CCAnmInECR2gJtEbpVQF0WkmyCQl1KpmYCuVPRNZShmU4NnZmMWJX4eC+XwufUgiG5WBoVZw4SaooGA21WO567AyWUG/WKDrJIuXg8hZA4BVZUjvH4rYLaR6IcAjogoX+iwDFw510PmA8hD7fVZSh8EOIh8735MEMiGnt80GYIbYZhBwMit/J7KMT0Wz5mWdguLAxaqnxSszKANdl5Fh2ZuK8m3DQzDwhgRVjmYFJ3NCBqOWHpQnqJSRKEOrIIpu4tDXVe0dL8tVKwqTBxEnXYdpJtTSoww9KmcPHEh5mYSBK44HhpSts3WcDev6ULYudWpvVrWPGUOV/cN80ePgeIbj4xlu37mDDz74EEfHxyGzRj+YXoLPfYBysGQC2noczUF9sOtCJ4TtyrAsTe1nFiC1O9psrXad8TUBWFtdxaVLF/D4o4/giccfxfrqClanHbpOA40a5JdMK1IS+3g+4GQx4ODoBB/evIebt+/g5s0PMZ/PUbiRBYNam3xYhhOYfdqs+WMCOIkMQGA6DWrrGVlYrzca2rjHAAyzE1p70F+1bJL7/a3+bnX0g+ePmgfRfc9rx2P9Mat+fOGSjb1EEyEmIZTO+H7XbQSgKTVnNPTBPwDcBrayS/H84ONWx9H99zZ/215lTCZu9IPdF2M1m9fHFMzvts9ITKgFXMRkjqbT1sLm9+YBD6Bx2Idq4PgBpnbc97X2nvv2T/L9CL9s9LNpINGnH3/xBTz7zNPY3NgAtEQvZQHoFsHuI08TiCru7Rzgzp19lMqRnZc5+MoFoZkENqln1XHw+bCAurEu6bpke2CG6ZB4VkO02GM04wMCJOBZkrkBBjT0aAEx4X/Rrxs+1KfKa5PsJYXjNOOKDbrhF5c7pRFAo+633eHmC8H/sJeKtv1MuydtHqNpYqG2eYzNDJGQB+2DiwR7P5qlJP41f5PTuY5p7lPZvqcBSjotTOeMB0x6uEY6Qe53aARpRDOXbyv9NeLzpuftRI/mvp0YNFlgLPdqI0sm06YXtE8MjErVM/nj4lrfV5GpntAFRLKfGCtGp+NYO8Q45NkKgqvN+E2PuQxKX3d2d/Ctl7+Fp556Ck898QTWV1fQdVkAKiyZhwgZIMlY+fEXnsfFCxfw1a9/DYeHx1Ei1ulIDuqzKXNpI4rfjcqtcepzpe9GwvbRGXzmWz+D2xdu482nv4v56hwE8kxAfjhh6REtSMfVX8MLlnldPjJwj+1bq2Z3joMHAf5pyrebLcpwPgCFHMheUuxwz1zvtGG3Zx1o6vw35ssuT/xdY89us+bpmh1s2ACQGlQb6bqEIXTsuJQ0nFiyn+WgKSyjtWkJ3SMrsK2yfYbQ22QrLVrtF7SkcE4aT5g82diSZdD1NT+N6A3YoRi5uZSKUisWMjjP/Cz7+eTrtek9EPkaNcq+54efBCCWs5Q0l6ysphxiopgZfUUAw+Mb/KQ1ZsbR0REODg7w+uuv45vf/OZPfBmzjY0NPPXUU/jYxz6GF198EdPp9PvbTEttGAa8++67+O53v4tvfetbODw8/Gvu7Wk7bT+dbTKZ4Fd/9Vdx/vz5j3zP+vp6HEY8bafttD107Z133sHv/M7v4Fd/9Vfxmc98RuLb36d1XYdf/dVfxdNPP41/9+/+3V/7epo44dEPHsX//P/9n/Hai6/hi//wi9jf3r9vb3XaTttPS/vIIKUKxuG8x2xRcDIfcHg8x8lsjuNFxWKoKLUIOGmU7tc2jk3JLN2R+RKtmzLWTWDr6PKALCyLQ3Oy1TZQWmIJrJtWC9SwpQHWzThBkikhqWMSUv6IJKgEMLoOWJkknNlcx6VzG7iwvYHzW+tYW8lYmXZImXSTDhRKODjpUUvF3v4h3r+zh1t7MxzMCuYLCXaVUjWopXQgaNpdgmWe6DR3cvhei2y6KfnhvZQsuGWeIwJqlBaLoAlp9hySE6G1akadAFAMtch1utFNyTb/7DT0k1Nal9wyI7XOuBakwr7JNWcXy/i4KRNmjlnd+ctI5FQQGOposaur1Dxa0rylwh3sRHrS0pzBTZDFzkOKk4Dgp/v8OhkrwGDS68ickuJUAnJz4m1ogk+22dcJ02LzCSSBRjZ3gDghyGhCcP4Ob+c4oxKglZhMNPw4rTkXAxxkckDuiIKDISixZNmoEKeGZuMR0ENWJ0hSJ1UJmuhctqfYJCMUPPOFOMKKDqFxcDfBBmYt30Fwx2wb4AsAG0cAwUTa3ykl0NZW1/Bzv/ASnn3+KaxMMuT8KGN9YxWLxYDFbECtjEWpODg4wB//8Z9g584e6lA0axdQQOBS0cF4gTyFt5U7shOJmRRoxiwlqHLGUBaaIYtQuGLarSDlLsZWyfkIUOARW4RYAUc6QAEXBt8aTxboPOm7c85Sfm4Y/Bn2bNMD4nCrqGQZHIDEFqixoE+S7HKgxkkuM42qmdOSAIEyEgpbVjXVNbXK6c1S3MEmZdUUMJrVCa1gxw7ZgUQRSGCQ6hYDBhJpYR8dA1j4QMo8WdkySaMupRbUrWn9IuFdSSRBsg4oqCcxC9BEQaBsZcdSQxtVFiPgXWUF/Mh6UXTeIsgpMp+QtY8GHoHqWFIVqEHnbCC8qplimkx1zMggVHW+FgOmQmhFEr0SeVFaZlkowQp+MZBEO6UCnqhAFr6kRvZMxoTfTNZsHVUaKh2qoNAALZFhDu1qsl2rgtLMOcvuJI5yARU8hN4yQHDhovNNWCx63Ly3g0XdxlnaAIEEZIcBXVJwTCKsrk0xXZlgZWWCO3d2cHQ8U6hv9N8GSM3n1h/jRZORGpe7LCbT3xbMA4E8cxXcaS0pxVgzFCg4gjXLTQ6wrl0sWj+BiwAcC7TEGawEjIK2B82YBOUhBgA5Cc6Dln3LHYZB9H+GgL1a5/hQq2T144pMOeyklMHUgCMpAYm9PKTpP/WDA4nRDwsTSnCRknBIjAzR0bUWEEf2B7DITCbLThigpZQle98wKrGr7wKjFrEHZC2zcnGW7asoIDJDMhyITJRh8Lnnypp1DuDCGCKCIMGaSSel3liBj1wk8LpUyhRJglOTLMA4LuzgeAMkMDOQGTlR0JizgC6ZMa8VlDrNOprRTSTTZi2MOmgwp6q9wbpeJESwpRQUlfAMKbXQl4qeZd1KZPLFMEAtpaR0Ff26XMLhYWsVkOxWRQ41zBc9Fv2Ae7v7uH7jfezs3MN80ev652wcQRlr9jmEj8NCC3urtVU8WMpwGYznqM1ietx1vnwnr1YgK/R6JgBSgoUV4JdUUeScsL62hqefvIZnnnocZ7Y2sL66gknWQJGC9auCQue9yOd8vsD+0Qlu7xzg5u17uHXrDnZ3dzFouUmnhyIvQod5Eka4WjD9RTamGLDvJzzAvmTPNRFpO1QS64XOY7Oek1qlHMlc/PpoYfD5VDS2rV0zCnK6vdOEycyeb5/rNlXYORpmRdREC105Fo/2+5YW8Q7jPHsCKXOxf6t09WfaveO9DCOA2m0fSO0L+PcN3/ubx/1Z7jls7dWbzZZR1XX/mNTmtgmVlSqkyPYrBlRw0IbxjzNaADvaIL68g51OlmHKx0yqB5fusfdaEF1s9ma0DShgFFBu9hPBYOS3PPfcc/j0Zz6NcxfOSclSlb3ppJP9upaAKpUxn8/xzW++jK9/7eso/TDqt5WDl+EbUKz1UwDurdB+VrVFimbws31/ynrgwWjAzvKqv0izDi3xGkuA3vYTsgVTneDzZNclXye9SybXLdHdngxfywgQo7yc0HTQWMAeYdzqwXixgtKyLlADwKbI9ljOm7UiIY/mMiwzhI5go4z0ZwTQanRMQ7noNze/A27TIyUzfXQsHPqnLf9IzfPJeHEMMiOVkQAXqjy73qbm0J7ycgJMozJH/8MIbcXW4Ew2tga8YB/5xTxaK12j2JpoD26IZNeDqJnDVlpDN9p8S7cC1G4P52YvAh9z0NPnw9erdo0WwWjLxdnejJkxm83x+ndex3w2x3PPPoONzXVMScD6BvIB68HALuHKlUv4+Z97CS+//G3cvnMXrLqg1eA+0lA3rpuC9xq6x/T4fdb3XBOu3LqM7b0tvPnsm7hz/o4trKPFxeebQq5CUhkmm7LNjb0gEJmPfVJqw7dg5xmuLPY/2x7ZvVXad6F/tSxIlpnb9AM1hz1Umdh+Hon04JAvDXqtHh7K5Kl9BDAUHa6VHaTpj4bcb+UKQQRLGCd65QEyYjaD9VXfUHWCTBc7TI5YDwnGhLp41gaAZXxIlr1K6Sp5gxsdwT6fRodkPF1jvLJ/1PUise59lbUUXFWM10mAVFY2FKzZ+nQOVRJc/7geqtZD5UMdvwHdxwAX1nUkgOIu10vq+2FttVaUUvD+++/ja1/7Gt566y2cnJxo1u+fzJZSwvb2Nn72Z38Wn/nMZ7CxsfEDg6dtq7Xizp07eOutt/D666/j3Xff9X3VaTttp+0v137lV34FL7zwwpL+fHBjZrz77rv4vd/7vZ9oPXTaTtvfhnZwcIDf//3fx97eHv6H/+F/QNd131fOiQhPPvkkfvM3fxNf/OIX8cEHH/y19o1AmAwTfOrlT+Hx9x7HH/zaH+D1j72O0pUffvNpO20/Ye0jg5Su3z7C8WyOk3mPeV+w6Ac5ka+gHa4sWUeA0WbGykKNHDQcoAvygIucio+dIXtGAFCbFUM3txxpwSWdsIKc3AmS9OQYmp1+BdMgAS+28DOwupJxdmOCyxe2cP7MOrY3ppjmhGmeYNIRUmYN2hUMA2PoKw6OZrh19wB3jxa4sz/D/vFcImq1YuCkAbaKwlEaLLdKzkAcHqBunBBeWoh0bFF2zGrEA/FcfaBsVJvSKEazyJRhG2LJTCDPCgeHUd6ipv58iuwgfvoXkXGHa9UAonkE4Q4mGyqrc6ENRBgYi32zHA7Gxhc3Ck4YACbnjKEIgMOz/SQSbARZcB8N78V1rVO5zUzSlh0Bw8E/jtCRbz2QaiWgzBfRBnHiaisXE4EYKw1mjmIbl/QtuXNSGMRAf55zBjHj8FRXrPT2k2T2Pp8DwqTrPC2/+9iWHA/mPI1T3AJsij4YrTUoq6fqSimSyQvup9LyYe4q0mcGKMv5E3p6mAFiKT1FROjSCj7+yRfxyU89hzNn11GHipQmODqa4eRwQC2MPJmiDgMWx4f48y9/E+++cwt9HRR4JC4bK9mEhp9ZTxxatjUDNhQPimp2Ds2aknNCShmTboIuT0Ak5ZlKAyIiCpmojd5pnXl+0pFDNqqWEjIdwWDvn/UlTkOGg6vVn8kBOMb7OnbVv0mdjtbs1GWpxbMrhdMTDqhhn28BV5VSxQlJCUUzF9n/imY/AeBOvfZkZwuyg2Ylqy0DjvqnvKcgBnM0urvR5lNPMZojzbOcKC0I0ExvknWoS8mfw0ReVgkQJ21qgiae3coUktG7cQjb/Mjcik5ImoKedTH0OTO5GnmRY35lWFa+Ef4ucyTafFuWK8YYGORk1OeZPvQ+Ki1aoKCDXG0sgGYVSl4CFPACQjG3BFDKsDCBZOkRnhKdSHEC2u6rrAHQBBRdJkgy8Nzb3UMtBefObGF1dYpMANcBBkBGSkgJWF9bxYUL55G6fRwdn2Aobc/ggdg25GmnSm1NKeqINbCHY0uVr0aBeFLQnc5j0exeQtNxdkgiwdba+xIRcjdxPhF7RtZK5sH5SmQoSxYdzfBo4LDaeOprqUgCZ5S1s/JoDj0TkcVwckaXM/q+BycgU0alitoLXYkySpFSZJPJBF6Gw9ZESFqJRS9gmJUJkHMH4oT50Ktu0f4nyYRjkxEgGrV9coaXffDojfUZWgqywEor5pxAgu3zdQ2lKtBcQHtWXksAH1Fa0r5zEIDqqMqQILTaNikZsJEQOoDVpiTPyunZj/Q61sw0Xc7IOaEWDUwnYQDS6KZkCBo0UGB6QPpcmnIwEjBh5CS2WV+BoQjgq6JgrmtRYQHuLqf4JTLAueiOOgyYNCe/H8Z2cLxAPwyYLQYcHh7ives3sLOzg5PZTGTaDjss3Te2r8KmBTCaR2n6Hdna9/9n78+fLDuO+1D8k1Xn3l5mnwEwAAY7CALgBnABKcl+FL2EQmFJtiVT4QjbL96f5oivv/5+HbafNlrhsJ5kUXryA8UNIEjsC7EvM5h9prvvvacq3w+5nttDCrQNCKS7SEx333tOLVlZWVmZn8pk+zGVfUhnEgSgUWowuWhye81QQQ2xM4ledejQFm4/fRPuuvM23HLTSRw5tCWAtlLUyQThjw69zMBYrkZc31ng2t4K71+8gh+/9jrOnT2HcbWSNK88pUfW/f2SgA6fJ/0MPTW6PqWXOaNkWYbuvO74Xv/e9Effm4z2PKWeqUJR23TP8SasZywR3SafYSqjc20+dPsntq04k/iwp+3mc4ADFNZ7lSM4gHzMrorYmLxrQV+jE5CAC7Yy9Vki+z7m0XjyhsV0CKsw09H0LnvXZS35r6YfphmbDNf1khs067wD1QmZo4nEZPFuBpKZbhJ9tX5l/Ta4J2gLwB3kviatImYF5ag88DkmuWSjNZ48eTM++9nP4pbTJ7G5OdOUORWr5Yhx2TWiou7Dq4Znn3kBjz/+Hezu7fl+ZmOwzrmeofNhoGNfCj2/5xLIQUODRTMFyR7WuvO3MZSfZfOcaz+mFx7kd7et2OdJ58x6stPadE/QVH/yvRwAccjAmMA0U3D9ofucx1kU2g7teye+A0wvLb5W7Sxosoh9QRmQgSCXDmKYxiP5HV8qSDqiovcy65L3JVZB2KhiDVGpmmoT3hef4zQdDhRIJJuAKRIt48xtILckR3VsxeS7L7CCvEtO1n6i6+RvY0nfQ7TTZTof67Mc76f21s5A1ocJn7rgQUyG/owVC/3bLR9IE24zOW2DbSjBq50Zr732Gi5fvozPfObTOHn8GObzwYEdwQcy3lOnTuLLX/4yfvjDH+Htd97BatV8P+G1scY6MbrI3pDTFlIeD6dZJNLI24StxRY+/eyn8c7pd/DmHW/i+vZ1r3GferM2h8XOr3rG7b7WeSLzXUamdc/r9ap8CpseuWzwd/USkKWMrINcWGJoBDgQRo51sG7bcfkDoLNcbutdbhNIcFdCpQFjb5jYcJk1ClYSpqqk2PiJ1ng9E87qYMAAhjZ3Js/8bKV84Wdt24vT0jHZnfd/5thLDR0bvEsuQ4W85Ot2n17LGlGayS+SOagOATpjn89cjwk8450ApFkkTCY5ijd9Xu6XRRzpLHusWJ9FoMgpLMBkH8+yWq1w/vx5fPe738WPf/xjXLly5ecejHPs2DF84hOfwCc/+UncfvvtOHTo0L65ulFhZqfHd77zHTz77LM/16ntDspB+TiVe++9F1/4whcmdtefVFh1kt/7vd/D1atXP4LeHZSDclD+R0vvHX/1V3+F119/Hf/kn/wTHDt27CfuvUSEe+65B//qX/0r/Kf/9J/wwgsv+OXWD6sQCMcuH8PX/+PX8YNHfoBvfeVbOHvL2TigHJSD8gtQPjBI6a33r2BsHasujtGxNXC6Dc7MehhKji49XTVz4iTDehy+2H8C7IfuuDFsoJAMcDFDoRzILLpDOPHlP4ZYdST1W9Gwt3I3bz4As4Fw/OgWbj99HLeePITDm5vYGgYMBEiYkTDMLpYdV3eXOH91D5eu7uK99y/h6rUlFo2waGIsI67gpgHRdRxV83zYoZo1vLylFYEbXgFpkH1sGgBCDXBhSGCIw9GM5601vYlZgvaIFF0woEKR8CJmmDBntRgDsjHLDu4aY8rmFBplR+uyMPUGpop0ehbxJSyDhQIAZBAKMw5Yf934D0llYyYrMwqbkUmAJ1CbSnfaubM4COqRB0AdBrJhZvWDpJtWZkhRwJj1wwzeGRxiZlBjtQwsCJCQvF3L1CGTN7mqxp/8eVcrpxhTuqeJUYuSAAMmdl9SvhY+6r0HAI0k8k9+NjsaJsbNbPBPa4802pYZgyxCQ63iyO69qcOC/HdiBqshpCj4jlA8ehH30W+xAcK2dtMfXfpeC3DnmdP48pcexeFDhzGOBb0xiDu2trfRliN47FisRjB1vPDKj/GjZ17E3u4KYoWxtDrC++LIlj4aKA0s0SeKpteR1HlTQKU5wgXMJDeSmSWlmhtyjJpm8yJxZBdzGASRJ7Q2wI6lUbLb6tXmrml0lhQxLTtks+NEog0JkMEAhl2vytVSEWmZeNKHcLKE/RgswI1Owtut9dRfdidCgchUKgGSkKgn5HQwBrZUUgwCU9xApCyzWp+ktjILn/FspCFTmVSL8FUyxLrD1Yy4jdG6GapUfpqxmg1HE4A+1qhU3PV9rbdqOxLjRNtg9jkpKj8NRGRrhTWCnskxDiIjOz+tBCDN1lqU1ppIf5Lb9zburvwu7ydeTAbO4uPt+5TYLN8sNaBFjsugR3NwMDdfu8LnUxBg174TwlhdKFKvqiVYDM5Emrqs4cKly1itRpw8eRxbm3MMglSCXWe3VGbz+QzHjh0BiLCzs8A4riaOgvViNDc7PNbIHuBLo0MAhgXgBzApIExlGRVOEceSbGVrguXW8GyOWgrGMSK2VUgKsI6m6yZSkRq0xKLykG6Mvi82AfGgizxkFryfgCq7ptZQfrGIeCRtFAVJGI1aa5JuToGulnpSxuPiCiM65rVga3MDy8WI1aq5rByqh9jTG9I0edfGZTqgcqPs503oWXT/NLC564S6twofJ5N6F52uM4EqgVlASqTgBtkSzekhc7pcjpjVit4amCXSpBn19VK36EVgTcFXzCugN82DLtlpZOMaNR1cHQaUAoxNIvyVCsxrwVLB3M4gYLBGiyR0zIgwHypaZyxZASyQKIBdZWkHwGsHX3OeNo1+RiRp6rZmA2pyQ3zcyiuvvYXGjLNnz+Ls2XNCv6x76HM3Amrkz2jyeX4z6Tdr54YsIyh/rU4ZdxDxVEdinTvTGaG0JwLmQ8VNN53CvXffgTO334Jjh7exMRsw8/SxKoO0vrExlmPH7mKF3cWICxcv49XX3sS58xdw+ep1Adlx9IFTW9a8SZoMRjc9zV1yFBQJh7RpsEHA+C7a8omYPKP1sYJ0Ke3J9n6o/VO6e50JYLSmH1H8qnuYfU5G7snz7vib7KWpZW/S6JLOlrqLce5o3oxBTqv8mQUIsX2M/Xfys0zQKQgov+pzeR/UR1zGIOYzty3O3/3nCMBUiZhv/9bJEnwRPB/7Ygak+TKimB/b3x0wg9SOVmg9JqQNwD7X8To4UHtkc2FRiRwAZDQIcQkHHxmtAT08WOpvIwaFrqIj3trcwCOf/QzuuftOzOZzWMYiMGOYz9BHu2wh+tG7587i8W99G9ev78Kcwbn+UpQRM5iSVQ/QcQRvh2Iw0b+ZfeCeFm6/+jLlvyz73KYQbUxAYEhzB7toFPTxOVR62voVsqbLBmkNEfPk8oLpScFZ610N5p6epUM2Z37N4CjrcwnMUnAxG6+Q60yhVhrgL/SGkPHeiuqV4dRnJsCA6zquDKw0GoitywA2mQ7kPKVoorwM9lELnNYBbA2vAVUAUAIHRJpjCqJMFrtvUJhWFOvJ1y9nYEsGva79m6qJKc2gsSxvpwMO+Ip9N9nAfB0YAGTSmMscOM+43LP5TTyrzI7OjAsXL+J73/sePnH/J3DXXXdgYz5HqeQ0BiBA6M7YmM/xyKOP4PiJE3juueexWC5Dx0jGln1Lk+BAt6meEN9bJOq0RFXNINz+3u24+f2bcfbms3jrjICVJrpNFgkmi4k8gk/oxIw4f0yBnjbfvpemheBgVQ4gHqcXHQDD9hcp/+n3+VKD867ta6arrO1TFNHK5jNJqd1GS3eLuCQEi/Kc6khVcWe/jMFGVI7LUSbmAkBkY5/uTSYx2MY1VbCcz6XNmGeP0G/n5dxPbTLAwPqBy8GYF5PHAs7CNO0vR6prvzAFtSlCov3F2dA6afsLY1AZPrbQqzsTSvTK5cB6sTVnS3aoFfUGe9PHoTz77LMAgGeeeQbPPffczz0waTab4YEHHsAjjzyCO++8ExsbGx8IDAHInF25cgVPPPEEXnrpJbz33ns/9/Q4KAfl41SOHDmCv/f3/h62trY+0PN7e3v4kz/5kwOA0kE5KD9npfeOV199Ff/23/5bfO1rX8OnPvWpG/oYANGDt7e38Tu/8zt44okn8Gd/9mdYLBYfav8IhNorPv/E5/Hwsw/j6U8/jb/+8l/j3M3nbmhLOCgH5eetfGCQ0vW9FZpF3lBntBxIwyAICpASMDWk5psncSA2kMq0LYsm4KAmZvTRIgyoIzW9I6nUOMA0RGIkMhBKJ1DrqARsbMxwdHuGU0c3cPL4No5ub+Dw5hybGwMKSSq0BhnW2Dv29lZYLBouXd/D2YvX8N7Fq7iyM2I5dvSuh04FynQUBdcAbjhAGC2oELiJA21yqFYHASNFLEIYZiyKCbNm4DFjGKQaudFqVZIbFcbe3KjhRlAzilm7buhPqcfM8KP0EN+fgKDcKNM7utYNGyOFU7slg7QbTlgcvICAmtgNctkAKGOUW0Bxa6w7GCkOzqRGewEdNVg0mnWzqTtPsiEFEvmllKkxL25xNefVKS+rUcONRCRIBzJwRT5MZgNm+lQsNc7rAX5Rw8TEGkNqKCEPP9+ScahbrGd9tKhFl7l7ujibk/WoK9kBMQUm5fmIFCNBO4B5dN4txr/M032R4bxt91q7h/CPlVGrguG4QxwOA04dP4Jf/qXP4JaTR9FWBauVADG2t+boxBj7EmCg1jkuXruK73zvSbx/8RKWbSntlaKpw8hvfLcmAKWwGLNEpTDHydjAHPLHgAarcZRIUaViKBXmn4DxX49ISB1wQ77RW6KIKKgrrYsO9hSQBlCyuQhgUpJpWnoXWSbpEQxQJ+1JUiZJEWWp0do4hnMotRF1FgEd6OwNw6DRoAIoYY+aY9IiKCHXV4RmKhYnDhK7IO4OChazea0zT2Njz1Pip941EhnMAWvrkxRsKQa8SgWogxuVDaynG4A+Z3LBbqEKeIaU98Tw1wNg6SkyUrQeNSQy8yRqnX+5tp7cacxpTZkM0zWSwZO2TxqgxN/p7Gk5CxX0ZrId/q4DvJK534ylnSWShxGhVol811t3kCspoFd2iOrjkfSSkgpRxmQG70g1aXuWzZEZXG0e3HishmPxMYhMNoBdY8aV6xId6cTxo9jeltRIsq8XMBNmswHUGjbLBogIs9kc169fx3KxQoPtM1MwZkyPers87Zn0KVJuJkeNjQNw5ne5qfNflGeQZHetRSPnCd2Wy5XLdgE8xfq29FyFImrPBGzA0oPuOpOCUKm776RrCs/Y7SIlx7gcUSthplEOuTOGYYY2Msaxq3wSeZxlvAxZdDuhkThux9UKzB2NImJSb4BFXKKiySe4a3SgkFkr0+kAFI/ipTtDlzUKktQcVCSVqzlVaiWAhUamXrLyGEHkZ+Umqe/SPiQpHW2/Fge0ybOia6H7XCc9gyER2hC6hPGAAeIJCvIikrRwKisHraeSRIbqYDRdH7VWDXyo63XVwOjY3JhhaybpvyyVakkp82S0xdNpZEB1ABWLArY0VeNi+cGV+7+F8sQPnnKaOXjTtbYoN3KgTL7Xd8KJufb9mm7nAHK2CB3wNZef9/fY9AP9KTWpbgFsb2/hlptO4IH77sYtt5zC1nzAfJBUf6RpCW1YrUtquzZ2iSC1u8A7772PN995F+++dw57e4toE9AISgD5mgyJZnqyRWpxee97tdEln6+SUyvthTFMinaS7mv0mABd3ImHVJe+PPHA6VkCbA94Wx4zQ1PlGljCdKt982yy2T60mwopXUyMN4HN05qZgArUyS36XPTPzis+njycyWAT0WG6Gk34Jj00ofeEUVO+Y7Z+U+hD8jl83pD4wKS+9iCAzU6rAIdNVleo38FT1u9Qs2KYPKG8z5fPm9cb47/RypW13tcr1mi/0LWm73Oer/WxKlUtEp5tiLAIoEHXQhWf/tTD+PSnPoFDWxvojbDSOZnNquj5GtqRqGJvuYu//tZ3cPbc++g8ws8xiT/Z5t15JREU2m/X6xJYlAWQ3VX+DBatVwipw7AoezSZ5wnAyWmpf9vwyVuf0JwcvMu+b3Kqd5LGCbovO0TfLlHIG8ZjiST7xp4BWn5pgRW0MpFJ6bLHDdYuKOTzpH9JPjuPMwe4yiMkwnXqrBtYlBwfv+mlSeyvO4alDue8JCf1vODjCV4MwAgFz6e1b31fB4jYw0YPJBpMd0lWUZbmnNOe5uONPph8NalEBgxxmad18HROrbesCyD2h3SW5HQRIsk/4SIKGQPbA3JfTVZnmq/tA75/xV4ksjHkjX12fWcHTz/7LDp33HmnAJUEVK9ymqFnD8aMBtxzz104fvw4fvCDp3D5yhU/T0WKusQcShOjRergZGvI69A6F+uDMGsznHnnDE5dPIXnPvksLh67FIBbe8WjrIu8G3lSna9B02dsLQR4MtF3oivF2bZo6rcpiBLBL1rnNB0bo5SKUgysn3ho35ylHmt6z66RVyWdefCxAZasHyHnooqeZG6mc+Y4UlrEezrnNnbIeSJSkEbPi8oV24+JLZowRbsaYVdeK7GObfJ9/EbBdYDS1A7Deh7JW6PZh0wmMk+j2ps9xtarXYKdDQIq6kkvLhwyfbKvEiU6p1VkegZjX8Tij1P59//+3/9td+F/Sjly5AjuvPNOfOUrX8GZM2c+cDo3m7c333wTTz/9NJ577jlcuXLlQ+7tQTko/+uVUgr+wT/4B7jjjjs+0PMWjeXDTgF1UA7KQfnwyvvvv49vfOMbYGZ8+tOfjvPODcowDPjiF7+IO+64A7//+7+Pc+fOfej9IxC29rbwpe99CZ946RP4w3/yh3jtrtfQ68f3oupBOSgfpHxgP8ZiuafpnVKYXLV++CGrxwGX9G8zxgFh5BGjXRi65Lsw9tUSKVbMCS3tlYljxs5TDhQQzyeYJfIFuoSonVfC5lBx9MgWbj51CCePbeHo9gybGzNUhgAPhhk6OpbcsFitsLNo2F12nL+4g/cvXsXVazvYXYxYjUDnog6xFjdeSgGhYygAo0yMxRadpbeW+i6OV4nyIwfJzmY0SoYukkOuHx0txZg5/Swygt/SJzXkZVMJEoCrSB3eP/ghN88H+Y1C8tD0hQo6dT/Qm2M8O+WtZCFuICGi6kaC+IbiNM4KTtIxdzXWmhG8evqjLhEFyN0cWjq4FwenifHXvZpuHJDqot8E7D+k27PqZDdjkPB+/6lAH0txRTnNEMLoaeAGAxuZk5wABbTAjRETwyZL5KJsxSMiv6RF+hxzR2NG4aqh9zOVEmCMJBoOd3a+8zG54QJma58YD4UDJF1a1NklbHUpGgpfAVO9C7hOo+owwUMhluTgpyKpew5tbOJLX/wc7r//LsxmM6wWDY0lVVdbrTCbzUCoGHnEipf47ve+j3PvXURbjuhq5iGYQz8MU8ws0avciCsOAyo5+o0472utHnlM5N4IqmoY0vQMZsZyo18R4NtQJM1SG0cxALLNEwWdmCLCjhm/SNMUFeV5nVOJUtXdAGVhvGdUMarjoDUB1wjgQGSvRcMxWmcDpNG89+7gDhBJSiijhVqoIsR8RNqxtVnymHoHqWGlCFpBAU4EGgb01lDMSeKOC/bxATmaC4GoKABODYq2HkHKS0lWqowx+zgrn4HMvc+oJQyFQouQJzJSkZvcgF7SXUOiSWQLACqTbN4IBhbLa4vIODHkoQAhQk50HWcuUUdacMl7YN9nx7zxJZgjghfZKoXOJ6NAZMyyjTBnhf0ESFOgde+/i0MzYFOX/QDqbNb5anqzNfYt2bs9+lCxlFkyjIkxtkt0GwOJXN/dw2psOHb0EA4f2sKGOv57V4chgI3ZDLNhwMZshsNbm7h4+TKuXd9BY0qAT6QJE9Br55APE0syxNERIEGEwRlhmhYmTQZjZRHTS8SAbHs8ofUGdIkuJvNDHpks6Ard52M/NXCSbUQSUYAALgoAivXcWlNZpeBBZafWO1ojj6RINYB/zF3APxCwpEf2ML7pQB0KZrMBQ28o1HF4XrEaJV3ecskKZJR5LQMUrBVp1pwnofLIbgSjoxiwSsdo8rh3S4srNK7o2J7N0HvDamSMVXVDCA2GSji0UTErwLW9EYtRAHWFFATKXVJ1irvBHWUSlUz4V/xWKqupgFF1rw1ZUaulp2wYuaMC4MYK6FTdpjesVkuJsufR8Dp2x1VEuiRyuVBrRetNoiB1AZUtLB2r7WMK/KyFJLqSrUONYGopGAgd4OJOrA5g9ZPP0X/rpTWht0VmjKKLAaGHAEmmc6zRrNOsvwvf47Eml8OxBV/f2UGMNblLesaRPwuA+azi+JEjuO++u3HrrTfh+JFD2JhXzGrxPdHSD3YIMGnVOsbG2Nlb4eq1XZy/cBGvvvo6zr1/Aa25JjHZo8l1R3dvTceTQLKcvjP9eupkjoeY/fSV3mdfs/5Zpn/SDZF0XZ8dq9NftxkzvXG/UyzmIvY1OVJSmhtrOzMzp8+n3OMcwdF2gBTyONM5lZOj085PSfZOK9Z/7EzmjQfNvZ59PZ7SdNLP+CCd33jyrus5qa+xh+sYKb3JrE5M/cBpYDVYlFV9wDb9tTYMoGZyHdOhBV1BKQYhJv0w/dcmQoe5rxBNR+71aD/lvNjtYekfAki9fjYqpeD+e+/DI498BidOHkOpRSJ3QCMCtYZSZS+STxuefuZZvPDCS3Jej5FLX3x+XPub6EkOjLV10kPuUOItZgO7uqI4mWvRraS+qrql7Xu+5ih0xQnBLTUbgt8MhGdLMctD4ytPVWfvIejregHWwHjOKbp/c8y56MYGftAnEsghcw7reUcoqjqBEZWCOIbfKOnMZtqzRXRFGlMGXroWl/aPiPSjmkFaU5N9gUU/hMoit2FQ7DMMAihL6pC7jNQvTmNDvL8uL+OyRp/WZz9d/gmB7UKCfJXWmo5n3bBO1mc27St6NOFx7+t0X7R+W9rkyTgslZ4vhRvIQ1srug4y3MTrM1ms4bGzrcLbo2nfg7SEcRzx7LPP4eLFS3jowU/i0KFt1FoErESAAWYAxnw2x6lTJ/Dlx76E5557Dm+9/Q7GZulcbeVlngwa++nAeTXvUSF4U9f8PQKwtdjC5370CN468ybeuv1t7G7u+lwaoNqqjfOZ9IHt3JueCTomWYnYn0J9Kms0w4Q3XWbYEDqDS7zPCHCTyFuaRIiPf6T9UiyKqdhKCwhLIsjRjiXdpXW3TCZWqEWJpiaPwGLH8j3YPs17qS3pjlktKEXS7BJpxGibYSIMlTCvRfU2rZWgUWqzfIHWrzZJtemIzclsCgBT8Utok+HomAQ4yqK0e0QmGaMBuQyQJFkMQjZndrL9xXSc1lkiqSf5bGniiSiBs9J+kHvGCtLqanu5wX59UP7Hynw+x6233oovf/nLuPPOO3H48OGfKWrScrnEe++9h8cffxwvvfTSQdSkg3JQPqRSSsHf+Tt/528EKeTy6quv4jvf+c6H3LODclAOyoddFosFvvGNb+C1117DP/yH/xAbGxs/8dlSCm699Vb87u/+Lv70T/8UL7744lSv/hDLscvH8C/+f/8C337s2/jOY9/BpeOXbmizOSgH5eehfGCQUutyGG0dYFZnpt2Ax9SpypZiSg9XE4OM/p5v2bM5x5BvEkIP9U3qJ0BzSGFqKdXIE2qQ5C6u53npmA2EI9tz3Hz8EG45eRjHDm1ga2uOeS0CVgCJw7GLMXJ3MeLq7goXruzh3IVruHptD9d2F9hbCUhq7HaLMEVEQRwg3XTFSLcgEiDAIgjEwM0SKZFM6qCONQAUUYJab7BoCUJ/jYjDDEsRV4pFOSpuhBQDQwA2bC4sVYuRstTqluAwFsq4euuodQBAUQek3z5PlEFiYX2e3sxJ6eecDxQWQAqA8joiUkMu7ngnu93E6QAvn/de1Kggqb0klYyZFIvyWRgGKdVtY1430viveY4RAJv8vX+ePjP+die0OvTN2BG3EC1qjDlhDZQnESZq1XDbajj2PifDkDbqRm2J/DC4oSaU6+SgUBuGOb4YOZJPpk/QKDuIfCUaPYhAtYB7cV4xJ4KBNLLj0IwjQy+YlQH333Mn7r33LuwuGB0Ny9US1BuOHDmqhmql01Dw6muv40dPv4xrewusUlQQKvAUj9BUR1Qkak7ro9BU0/9IGqkAP5YEcrCoSpubmxiGqgYoMZo6f2cHhH2f/uPeIyqP0pw9NZE6OXTeWNdyR4TiN1kp0U/gcoHNiGV9Vt9B0fRufWxucKefYPigQpKybY2npJfiuBlbw0yjQRHL+uyQOjtsTbq9WQBpui4lcJWBY9J6IUCCTIRR0m44EhloyUAzxnocABQF6zkQQkFErKCzxgxJMSiGUJMTTdOvmfle+hzgVwcSkgLGKNaNReYSWjXhfZK1pNuC0yCMu5HC1Iz5vp44ySE18Oor/sxUvkjfaq0agS3SqFodIQIkmp3LIesrpzRgzBhKDZ8CmWOcPE2dIV4YjG43/a1GAtoNcvtYdKfWE4AM0AlX+EUpbmPtvYuluMAdc4vViIuXr6H3juNHj2BWu6dONT6oIAybhGEgdD4EALi+s5Aw+GSOsACT2u1bgRN3p312GPjcKA3DuaO3UHXOhE8rSOvNYEsDDdVaVTYLSNP3P7L9OEVIHDSOWe+qY1gcQY2cxWJUh4t5WRS9Zx4hcCHUoQCQFHOAiEACwKNEDSlD1YhrMoejg3EwiYrRiTHbnAPLETMscXK7YG/J2FkuffxdDf2s88wcvJzpGbISLrtCVLJGT6yYzQaPCEfE2JoXHNuu4M5YjoQr1xt2VxrvqzMqSNL3loKhEFYqxwoZUAkKUhKjfKkGTBTnL6jh6NYcs1Kxt7fC7qpjxaL3mPxlAOMoafY8jYOCxMZVi0iXOh+9MWbD4HWwedFcz5U+ERVwAZZNQNetMVZUJENmqe4QL1RddkiEK9MPhMa1FAUxday4ozHApWD8GJ9MwxkOZKdM/JeLOL/V55T43fht7Wlbv/FBaG1JJqavUwl5RSbsSEBih7a3cPqWm/DAfffgppNHsb25gdlM0x6DPJqFtb9qDctVx+5yxNXre7hw4TLefuddnH3/fezu7GIcm7NFSFVKfad9sinrp/tG4vSRP/xCg40s6Xmho8OdWq7NUbS3XvY5m00eIvQYopLIyLFPsunwIZOndA99cr/6z5Pn7Ff335vHzc48dkZI7Zhsit95vUblFeFHIkmP4iqyR3O15rNj/cbgJJuQG41JntdLOEZ32vfE5F/4eKT17nXrnpfaDL009iw/a2sambgIMXXAukOVw3Hp6ypdTKLJqAIcA2YH5a+POvO78MaU22KmVSf1s4aBbdLlEv1+Mt/2PgOnjp3E5x/5LE6dPIFxZDC6p82dzzf8OQGZN1y4eAnff+KH2FssVf4X10uTYuZ6KiFHqzDdtDvtjCntVbMB1FpRyQCr1mnf3Kc6HVLkC2PzvAwoIouss5/V0VN/CsUeaPQ3QbH/7JvOepMo2bmFPGPQs41B/Cnxq8yVRW31KMUwgItz8rT/tr6SbAPrucj3D/2cbC0ETSmvsenT3oK58u17zd7s/N0B14WjjuhvduCnpn1rMznkbbryk89zma6mM2FynmDO1F4rupkwkesORl9/iYPS0o1YexlotB4dbb3tGGucRQV4p3oNpu34vktTiQFKABk7g2Yqqs5oAMkMGMy9YcRaYspfMcY24s233sbYGj79qYdx+NA2qq5Bv6ii7Q+14tixw3j00c/h+IkTeOGFF7G3WMDStvkmC9/ZEj/t37WQxIaPKo3H3gSAyhV3vXk3bjl7Gq/c+wrO3nQWrbS0n5tdx+SNjTzqMLMDEeSyk9osjQd8Poj8WX/d50L5roisR1HwkZ0TrO+ux5NHpAp+8utAsQcTQJUkdXpnbAzAQIS+BFYmY20MFDxAPrcGIIx+U9679tFeowf7PiQXlTZmBZUYrVYsV4zlmGwt1FGq2HkqEUZL96Y0ZQhd/PIbAZEikgBiDBWY1QHcGpaN3XYeeht8nC6vjP5d+pCHI5ftir/DoBTBiwCN/iztCz+vmkQGbPqI047ELjIBnduKIxdXMHNRszlfX7cH5b+7EBFOnDiBe++9F4899hhOnDiB+Xz+gd5lZozjiLNnz+LZZ5/FSy+9hAsXLmC1Wn3IvT4oB+V/7XL33Xfjq1/9Kobhg7lNx3HEt771rYO1eVAOyi9IWS6X+O53v4vFYoHf+I3f+KlAJSLCzTffjK9//et44okn8Bd/8RfY2dn50PtIIMzGGX7l8V/BZ3/0WfzpP/hTPPvws1jND+TQQfn5Kx8cpGS3//VwCtSpwdYNWQwDLgEAejh2ComjCCmNTVcvHSGMqaxOBTkvi0PfMrXIP5L6RdoRZx9Bbt3XCmxtDDh1bBs3nzyEm45t4ej2HBtDFeVCndrVozwAe41w9eou3r+8i7fPXcW5S7vYW47o3NHGJlFP3KlpR/AIwQxomH2iMNDYbScUgLvnPHdHoJ+2G6AGO2IziYphrfUGuwnV++iRGMxw09jStUTY354APsTijBUnYlGnKGvKuDD6mTnRQu4TFXRIqjfJztaTUaBEaHj7aQAUPQgLZTo6Qf8idI0q4dFJIICiYg4NyByDe0S7MM+GG9vMoit80ZUOhSJ9C0oXX3gnkKUsUud6Z3EKyVQZsEz5UA1sYtAQmjmQC2JoKAo06LCISuGcFgONcQZh7F3YnM3IaYYdAkpB1XEZv5shZWwtjHJ5/fW2z+hvAAVbW6yfDUWAOh0C5jH0hLnow3ArUTGQeVPHTVXrL+J0Zb1uZjdyWVcEQG6YjAVaFCyiNGFNVaQ8YzQwgwl3CDinFpy+7WZ8+pEHMAxitKuFsDkvmJWZRr2YgcoMHdfx7tnz+L//7+/h4qWrGMeVyoMKg5KJ8QwY24iBGKUMaBplqrNENmsmg4QzUIcqsk7nbtVWqFRBmMnMlgqmorfjmvmLwcQqgwhlKCiVxEAkoaUkIlMXB7IYlKqvFaFbk3YIEiVN13RnRhsthIbKSJa5NDdNgTB1KeTRhsRnZ8Yn1vmoGr3LUvSJABADWFcDqkk5RRp1OAiO2Jw1hPmg67qzYwoZBdw6Clc1lln6IgFXirFbZJLxCnehS1VxOurNduGVrumdCKUW3ytMDrHK5yJhXKTvpYpTi9QZRQKkYQZqIVgKK7PvqXhIUdoMTBhrDBAgJxd46jGiAhQFHYI0dZnyM7OJde0ugQvLuF3mxro1Q2DcDjZZEu3nkP9NDZCEqmvIDKks/GxAVd+LYbZMWHQzk/oNrPuxtNvTXiVsYalJWUFw0rHem/aLMNgNduU5M6h2ilQs7pwmeNSeuO1vopvhYf8ZWK06Ll66itVqxE2njmFrPsNsNqDA9rJIp7e5NccwG7C5uYerV3ext1wmMKSM14z60XIy1DJpqoGO1ixVme7nClKQ1GZTUy2REZZANSKeZVABsTgLckREk9Ug4W0DjZqjM7UAc6IEKBh6ATw5pUEgLiioHgGtkoB3e9d9D4zlOPo+1Hs4iCS9WfeoZh2E2jv2dvZQqWJjAAgiR2cMjCprhlIVrif8ViCpI2RMtqdU1BLA6EjxpXpIwk9afwoDwyC8VcBYjg2tFfTeBDyIig7CYtFwcVxgPqvgaii35vt713Y6EYrJNtUXmRnzgXBkYGzPC3bKHO3aSsCgyilErNEbyPXUDKpuCiIWUG/xNbBqsg962qY0jwYspaK3pEFYsfop+oh5HVAHwtgU/Kj6rjlCmoJK54WwNcg+VGvBiIK+7OBuETGmOsTHqeS00KHi2fqY6jgwJw5s71OZuE9LggME3FmZv2P2eYDLVyAplfqf6bGMza0N3HrLzbjrjttw+paTOHpoCxuziqEWBbSaAy0c4Y0Zy+WInb0VLl3bxVvvnMOPX30Nly9fFnCpjcvErm1ETgw4HWiNJu6QTPJT6MeTMcY5Rco+cFOo1bEXA3qegMr8kM/TXuQ9OJylE62V09xlvZWAHG3EARJG+/TY+hgy5NZ0bn9A93jyFzja8T1UCB5AgGAQiygCQJat8wmnbpnCIHUGkEfolYEbAR5OkQsw/T66QGlOdK+Nr2Bg8cgCRKk/iaxGRebJ77EgYl11zrAMo4Hszax7tp2NpnME1/+nfKs0WVu7Ph+U3jfe9WVoWg+CBnZOgY6fFaAZExx7qclla8j2vzrgoYcfxOnbbta7OwIopIFQIbo2UXVd8tr1XTz55NN4551340xg68DnU0BIoOJndQezTnhCaGGpzkz69yYXZ7yvqidPeJKT8x+I6Igc/OBACVVkzcGcd5p8acykZQdSalln7+k8ghSQL/uXryuluuydcH3V0+tSnj/lUl9WRku2b4AEHNqXtshn38AvSQr4+si9Mt6CpnEO3vDztdXIoTs5j1o9Ore+Ju1bCnkm/AgHTmS5GmO34XIAS1xXhOvF0LOoTKntIUZK6zdUl/dP4enNfA9Je5nNadYjCR7BSzvgL0Xqu5hEM724jSedTYLmSBRKK3ltjU5kXeqSyLzMx1IKxYOMWNt2IcboGkSODrmNxJu0LzveffddMDMe/OQDOHb0CDY2NL2wzzFp5DNgmA24//57cNNNp/DMM8/ivbPvu13KB2ZkTGPKtJF9Cp6+bAJA9m2Ep6AyZmwuN/Hw8w/j1IVTeO2uV3Ft+5rvMZM2J2gs0mhK8Oi2vu5V9ubLcOs0Z7CcU4ziuqeS2o2smUqhP4ndbG3MSZDbuTRAOIQ2NjABVfmxFLlsWUmBlLYuUz+t71lGFp+ydKHG6TvlUVI+LiQ2AKd7N/nQ4ZF8O2OxbBhH1iimQeMJSArBeiajTZbMCrBVAa4VvOx6ngqOnszamu7AnSWy00SgFo/Y6+tzbQ+UaK4+YqG+6kiF9FKfyRqTEZx1BpGZs0oedVbDYQPdbHdTfeGg/GzlyJEj+OQnP4mHH34Yt912G7a2tmJNfoCyWq3wyiuv4PHHH8cbb7wxPUMdlINyUD60UmvFL//yL/9MKRhffvllvPLKKx9yzw7KQTkoH3X54Q9/CAD4tV/7NRw6dOin7uOz2QyPPfYY7rnnHvyX//JfPjKZQCAcvXoU//QP/ykeePEB/OVX/xLnbj43PeoflIPyMS8fGKS0TyHWtD9spx37mBnuGJVPwBapg+PvSYQIOxSTHRjj4CROQEAcw2YIAkiBM4QqzpqNguOH5jh18hBOHNnEkcMbOLy5ia3ZIOmW9FjXesfOcoXlKJEJdhcrvH/xCt45fxWXr+1hbwRWowKYNAWIOJHTbRWkaEWIdEXEAHlu9wj7awdhUNXDsQKFzPmv/zNQSEF47ez2lBsFlWxi1FNDrt6ItagkXVMiGRZEDLxFnWlh0HQjY0rTZ6feAk2b5g6GMBh4RCgzEjlLiKGlsYG0wshBTJCoWFKHgLe0fctgplZ4T38WtqPkTAqjjP3s3CPIlnGUjtd5buIYhbYfxk2LPESobowGM2qtahCz6CPZucZxu9QM2Nyx8ohTiPHou5aqK5xP8GfXw/x66h8SkGDTMeRbttGVSBVkaeRAef6gDutwnojNNKKxFEsdSNJXSmYmUsOJO7DUUCIGY4mQQkUmirk5zf1WfTYpkwL4OG50VSo4evgIvvjoZ3D61HFszueYVcLWUDHb2EAbxXHewWjjAtd2dvGjZ57H62+8jeVymXpq6BJSGrZwVo+jAOeKAAJb72BN7zYbBrTWsRpH5ZuGsYvzdyiDpuFTsFVvQIXcYCNJ2WNzUErBOI5YriwloPCIBCyyVJkdQ60CDusRur23iG5lctVSvBn4Yz0Sla9BTcPJzBLFirsvkVoqmo7T+sk+h1BDFrnxt7OECbfUcgZ4KyC0Nkp/u6QWMud5B2vaDE0rtma47WxjJbMaoo0NBI1OlVKDskYaMx40PjX+ro5qUPAoNzHQaqMtrQWRw+JsMZCTG/85eNgNt0iSjpNchLFx8ShodmPc1hpoHYBR9IZpg902Dnke7ZVq8k72uq7g0zBUwi2Kvm+69VV+p9S209GplGQFRXQwk/+Z7gLso0kqIQKCXmQgr+S81Pj/1rfWbGzCH8a3wicxhkk9JDxEXWUGhIZja7h6bQe9jzh54hg253OJKNeWqMMMjAomxjBUzGYkEZaGistXrmN3b6F7TEToM0fL/pu3GiWRp1MazoRIMZLpkPmjALoXywutdR+jVBQOa5u44tHFWkrhFoClLDsl+gVpFC2pk4pIaQcXNZ0TT/GmYAoyADQgmVLFU9BbAC1nw4D5fI69vYXI2ybyfMUjsGqY14rl2LCwNQSAqtRr+xkRUCoCMNlExpKjMcOJyqqXmS5pEe1szxsZ2G3QiBMVy8ZYWT4ZEn2jdQEfj51RZnaLH77ewBIFqRSSCdL6zek5rwMIwO7OLnjYlG2/dzCLjClUMN+YgUAYW8OooCSLUuVOSPUQiYwh3wum8sOcDjKHBfD0mr13lFowKxVDIQyDrKmxK/CwN5cFGZwmYkcA4E3luYGvidZ5/ONXJuvQlLN93994HNnp/EHqt2UI47u8zp2pBBh38sRR3HPXGZy5/TSOHz2sKScrBo3GaN3szBibRDvtyhfXdxe4cn0P77x3Dq+99iYuXrqiFw5kn+kqu7OTPTTbtCd530z/h9fho0r7SEgVW1cBnM9F9Ov4O55h/yDvM5Ozmu8rmReT0LSDm+7bPkqXeaFbu5fPlfKkz+rYspzFWj2h64V2aWs/dM1pvTf6LXplui87b8X3AjLFjebgJxSfQ/gBxiNOpEONaXv+Dk3qiDOHNj/ZP5yH0/w5hawNMr1c6Zn+zowwoUgaH6d/4bIMLoOdJ/KeiOirzaWdG0AUwE+aOm3ha3Ha7+mE+gABcEqNHLxBRLjjzBk8/NAncWh7A7M6oBBh0AiHoofrftgblqsVnn/hRXz7O9+d3nzO8gOI/K6qJ7P3gxwgySrLZX+SsXTV5akU14cyIM3aivUl/fMzWrahUIeD4fU9jyrEBmIxPg2ayTeeU0gjKU6B075cWN/QeZvIAI1QGx8ZTYJPnEu8nhiff+z0Zdc/42N7NuuWATiXqchtZfBS8Xqn/WNf45nuk3M0Qm/I+87+tZ5lpAF9EPodT9d0Xu/aqLdtQJyJRCGIvLH6bZxUQGxAXNOFEkBT381yzu1POt+w84mtNasGqZ3Jtpx5dNJ9p5lV6GsdqV80nbeQXokRJps42ei8bz4v9l7ab2y+WBZL6hcmGyMx471338XVK1fw4IOfxG233YrN+SxFde8ShZjFflRrwfHjx/Doo4/g6aefwdvvvCs6vckwXx/r/Yfrw1lGTwZvf9raSocOUl4/fe40jlw7ghc+8QIuHr8It43avm5jB8HSKtrv0q7pRxzvJB4wu0MGV9p+bnPGzKBu6blt3Cq3/TKMjRh6WSeGKumQJeWtGF8IIzo6OpYoGLvo9L5TmgCaLBUFadqay7qRCTtM9RQjfdcLZ7a/S6q0hqFKtOWWt0BdF26/1ChS+2SBr0cBS8X8yd+VxAYEA6Oa2NWu1iJ2AVbd3trdN4bEV35WWmMiI4HpLBbp20CRpZBe4tQ1aPfd2KQOfKu1MUidfWLbFDDVfil4UH56KaXg9ttvx6OPPor7778fx44dm+w3f1NhlshJBk5688035ZLaQTkoB+UjKw8//DDuueeeD7R2mRmvvPIK/uiP/uhgrR6Ug/ILWn74wx/i7bffxq//+q/j3nvv/akARiLCLbfcgt/+7d/Gf/7P/xnPP//8RyYbChd89unP4vZ3bscf/6M/xo/v/TF43UF3UA7Kx7R8YJDS1NivUSEQwIR88J0aJuK9zl2Dc9ghkybOU7aUSyRGAgsHXoo5eKs4ztExEDAbCrY2Zjh6aAOnjm7h5hOHcXi7YmNeMB8KiCWyB1PBoq2wXC3R0XFlt+HC1RUuXNrFxSu72F00LHvH2AncGL2NYtRhueVvh/nsYDaHqx/+9DDKmvZDjAKSe71ZtA2lYbHoNrCQ5ebk64kWbkJTYEnc2rZbh6xprMwWaTcOazEDmPzjlzDNoaCHbDGcSoQBi34hNgwzWVkYY7hxotAAVHEmyo1F8rbBKTKM3v4hBbBky4UbZkoYAZgFrFSqmrcpxiSjScAw7kACuMRRPf3FknaHFJRlIAl3HCIb6rT9znAADaU60ryboVUMJ0GfDnNMGu8GX2TDvRm13DSfDMBudE28ltfeZL2ktchQx+SNnveWzRjb/MZdLvauRRejPK8wYxhjtHnW8ec2Cal/JfonPNp8EzfDvYAYGEMp2NiY46FP3Y977juDrc1N9BEosxmoAou9pfBpnWFvuYORO9557yyeeuoZ7C12YWmvjP6yNsywCY8yxCy31NgcCgY4gNxSygbAUgsKBKRmVOzdgDsy75auwcZlPFLJIrUZ7wB9HBNfsK/VrhFRerP+C0jOAEXV+FfTQ7GCkWqtzosANJ2bGNe4C98OdQADGNs0bZmD4Rgu50zcuAOfwrjp8i7zWBcwCjsgJmT/1HmQjXgCRKhqdKylaqqNkHUuy8xsvs/waPuDpWiIG77dHTnxjsyVGa4F/OMGxUIoPAXq5Y4bQIwIAs4CpbDrAkIx55CahdP6lFuiUq/wv60F4wnB9ojDSdKn9ripCvjtR73GCPbIQVOnjq9VQIzrKQ2lhPonUDfgCKvh0gCGlKLBQecd7mixkuXDRAYRMPbu/BIyKvQBe8dAe9aviQfBDP4uq/S3zujccHVnD6ux4+ihw9je3sDGRtEobyMqVTDktuiRQ9vY2BCwzdUrO9jZuY7lyuCxFkGnT+S+jY9gnwdY1Jwj3LvLt4nMW5O5tra6TJbLFMHWdE8NVzXSkEQz6ihVorhZdBLB03WXDxlY6ml6YHUNKJoCsLUGjAlMZmkJS9HEFlKajbtWFHSNjkhYLkcFXTD6smGoIjN3GmO5XIAL0AqjEmM2G4BaQQrQRomoYGZ8r7WIY6dL6gEiDlkmFJWUSkpr4xlJhVbR24i+s5I0cChgqgB1d/rCnoWATmsl914QEFEfzfFlsldDdi+XI3aooFDFcjliadGRYPt7R2tdU1WGk2h97ht3dZJBxoAEBiykBn/tk+m3CHnZlcdKLViODcvVKPuYz6MxZDiOOwh7CuJqnTH2rukXGXUoGkXx41nWzxPxx09760brDomrk/x1B4/JlEinGY1YWkLGUCsObW/j1tM348xtt+Kmk8dw5PAWNgZJs1sr5DzBcp4YexPgEYDFqmN30bC7t8LZcxfw7tn3cfbc+7i2cx3cLH1jtGt6uenVpo9nvcv6Nx1fkjU2PlJFOZ2p8vDZ2ttH7+TouoE8m1A9rSdRzSlXZ5VO+i3HQgMwmYae/tXzhIMW0prKx0brqu/z3vfYr1z7pyk9oTqpyYM886njiX4ZNrZveMGnTnLTRdJDiX7r9PR3kPpsddhnOj6bM2fnCV/coH8+P7Fvsyr6lrrpRnXYZ9Yf6wOl9+IMFvRhwM+VUxCRV+zvZtkVPwmgSFfn62G9fvs80db7qnzRnbPsbAIcPnQIX3rsCzh16jiGoUpk3aGAiFVvBagQxnEFZsb75y/gL//yr7C7u+N7vjUWZ3dOXKR6n5ObJ+el3rr/TQRNq0xr6zN0WZsLn3vQZO6tD84nk0tjwTNG4q46Y06tSBRRavyyCgctbN6yHJL6NBUyhc7iAPU8bwRPv5jgLr5GMn0m2p+fiRT4n87G/iznc4I3l87MSie2cYv8MdZJsyZjnsi5fIku66NJvFqb+T1G5hTvQwAppm04LICA6eUm+BxZDyYy2taiKMT+jl8Ws68oONSj3IGDnGVtMCb6MJ0Tl6m2BPy8aFJGGN/U/Nhk9DFXrrVPvv3x5PuQynAemJzrnB5rkoHD5gGribKcSo+KmHGZTQB2ru/gyR/8AFeuXMW9996Drc1NzIaCOhREtFK5xDYbBhw5cghf/OLnccsbb+OVV17G5ctXXH/Oo5hoF2lwZiPL443zVpKp+zZVYHt3G5/70efw5u1v4vU7XsNivkiktFTiJi31sw4QGFQTP/qeHdGg7DJI1qUAjQqqYFqx89mFtSzrA+Disg92yQWOZ2ndUlJD1rYCfxoDOws5b1kacUq2lancjfHmc1tsJ3kukHjU9kWjv1ycWK5Y08EHuBYce5XJYYkebXuxN5zkFrwNmWc5w6/GjkEvoI5+eYw8vJtd4gqtL+25k33TF6j3T/SldbBWtgvaFRDpq8Vl62NL3093MiUtiHKKeNJLdXGxJvTng/LTyjAMOHHihEdNuvnmmzGbzW6oW/+k0lrD22+/jRdeeAHPP/88zp8/fxA56aAclL+FcuzYMXzta1/DbDb7QM9fvnwZf/iHf/iRpHY6KAfloPztlfPnz+Pf/bt/h1/91V/FY489hs3NzZ/6/KFDh/DP/tk/w1NPPYXHH38c586du6He/2GUkxdO4l/8//8Fvv3lb+O//cp/w/XD1z+Sdg/KQfkfKR8YpARMDTQTo52eVrNhwww+zBwO91o9gqw5ouwZ2N9shnnyQ7Qdq6kwNmeEQxsbOLo1x+mTR3D0yBzzSji8NcfGfIZBnfq1FKxWI5arFUYUXLqyg8XYcfnaAu9euIZL15dYrhrGJvfPW1drSm9hStcUQER9Mm5zsoEs3zvc2G5Rl4BwfpdS/ZicjfFUSjLSGdHEUCcpO1hBNlNnkwN13JBGsLR4FjXCjBMEkpujPebKIlmxRqey9DDMLcKua/8JHOGjoamGtDsWeWfiY+KIIMB+4y/4x0ANpRTP1e5GajNyEjRdjN40QhhaU0s+du8Dh1Gmc3OAmdF8yszwqEBm8JJoMWZh2b9xqAkZ+Vube2LSMRT0Pkr/zDhoxhPOBiGdA0pAEwr+WHfi3QiglGkSxpZkuAC5saindWjGhnUnCpFF6QBKqZM2qjrBg/rwyDjuXEr9nDpyczsM0vQ1hQqoCNjwwYfuw2cffRilN/TrI3jYxGJsmK8IvGIsAWA14vreDnaXS3z7O9/DlWs7GkmkgNt+A5YZnYQHhddnswGrcfRYb5aeiRkoNMDSOkrUkoLeuqT6YgMEBF1sRBJlieT2nH4jPD64YZ2IMPamwC412Pmcarq1yVwIrRjFwSjWz6FICkkx0uvzCs4SR2oYswBCQ1OHkhrJNT1V18gyZY0nnZ+wf+0IOKajQcCmpFFahuzwyEbqVIgkCpJEloob0hlQU0oVMA2zggSm/Wi9oVM809d40KLdGK8HACnZ0UkjbEHS8Jnx2Ax7xrOYrHRO/ETOY72z3kiPSDv2fGvdnSUO8mmMWmzubWyWXlJs44XtlrzIeZNvxtP2ngFkPZWEyzIbt/C9jaO1DqpVZq7JrX4zPLtzFCTgOpNaN5AVRud4T9NWeZCIAouvk2VDNrKFXEDwzMQppakqLUUXE/YWI9p4FWNvOFa2UIaCjVlVUB6jL0fQQNiezTE/MmA+EOZzwuUr17C3GDEmWZyL6B+cIiWmvcaM5T1AriYLbV+mbLFG2g/YYFEFnRVYk4zS9hYp71MzILZELLNgaA42dT6vKEXoLrJHNbFCclO2GbiOwKxOn2b6gu37Ms5aCipxrEUFdFY1zpfB6FGxGoUGdW57bAe3vN8YyJW9bqNPZ2g0iKC5RLjDvsiL5lHqY6RDqx79IdYBqGCog0aLbOpMEfAjNwbzaP6HcORpH8dxRC0VvVRc2VtJHSCsOtCLRU8kNADjuEJptpbWdOBSJk63ruu5uF6rdCSVu0QusySToumCElFpOTbMqkXr0X9FvCjYS3Qq059AhBGk4CRNd6c0ai67Pt5lXa/JOmN6Sr5L+4WBPe37ffqRrV0/pJh8IRAJ/21tznHzqZO45647cPvpm7G9NUMthNlgKd3knQKJUGmRFHaXS7QG7C1HXLq6g7feeQ/vvPseLl66qFEfYYIsjcvhzuJ0IooUPCb7UqRL6Ou8Po+UZHNyKsFEqKfliDNH9ndNgBJK0xvR2z+n6XzE/ihtWB15DibnnNSOdj+txSkQJ+Yoy8e0cTslYWJC6RFAEleDkx7iZ5getP6JJSrwj9gBrGk/XHsCaaxB40wr2Gbn7UxSZ1Osd+u/n18mJw74vMt0q+zVeU4HLuvZtH17JPEBgATonPKEPWvjlSrslLs2bmtP597Sbfr+zgYwCIAJUpu5T1M9dp12TnVATqnSv0I4tL2F/+2rfxd333uXRJ1ZEVBmGHtHJThgFr2LfaA1fPd738OVq9f2zbG0wd78Olfm6IqmpIW+rLELfR9YOyuVMjlvG4SMHAyU0zVl0FJaX56+aHoRQfZ68uedxjFl+oxFfGZdT+lhgvd1Mk+JB4hjPhzA4PLWJ3YCCuL0uYSPhCWbBnwNUPDAWnW5HjLlYu0b1xGQ7SfBgzYndpahvFZyfZrePkevtTZIBZDpXzZ8whodkUFQukpsIek6t3Vi3xOs3kxGgxyEri5thnLjshbsdfg3k3nk+DfxkX3I/rIAnazOLINtvKbgRX9jnd/I9pEl4g0lMYtdZG3TkdSESRZkeYF0LvKB0b5fo+8deOWVH+PChYv47Gc/g+PHjgAktghwrK/egFoL6nyGe++5A6dvOYXnX3wJr7/+JpbLlY9wskdzzLGNvzgN4OcZp1a+JOJ0iRoLF9z55p04fvEY3jjzBs7dfA4jtYlcWheRDIbmDYOnkGa1AKR+WWsmMzyatlVUCGgKsPO93ajqf8D4kUAREZZF2JqIc/2+IFISa25G8jNI96Z9/3DA5VTHWz8P56nPKfacD3WNMYDCNj/5vRRNHKYzib3K1iv5BkgOfjN+6UV0ylUXcBKTqPxMpCqZ0Kozo7UxgexsPHm/i8p9nSH2pGxPm4C0kl2p+3dTcKyt2UnaT5VtHQFikv1D5QwCFHZQblwOHz6Mu+66C1/84hdxxx13/MzApN47FosFnnvuOTzzzDN47bXXplEdD8pBOSgfaTl27Bi+/vWv4+TJkx/oeWbG97//fVy9evVD7tlBOSgH5eNQWmv48z//c7zyyiv47d/+bRw9evQnPms67COPPIIHH3wQf/mXf4knn3wSe3t7H3o/CYShDfjlx38Z9/74Xjz+S4/jmU89g3E2/s0vH5SD8rdUfoZISt2NXpPP9aAzMSYiDlz5YGlhZy01kaWwcANOMqgQgIKGUgkFkmrh2GGLmHQIhzcrDs1m2JwPcsu5ioGyg7C3HDEuRnTuuL474uLlPZy7cA2Xruzi+nLE3sjqsBSnW+eUSgnmaGKAOG6wcXFjq11IM/d2PuTFTbbkONdx9S5OQBSS2/U6ZjeI9D7JHU5UPZWK3Gy0Q3yf0Lho6OBSivot+iQqT29muMpAiHA0W912gpV3OM2ET6oaWGLOM19Mbv6okax3iTCQc8j798RxHleLgR2EDTxC4fmGAEWkk2qD8BROAdRip5OMC5BIVckYBDEUDBTGBwN0yW0vuAneOVL7bbCrSEtjljlO/VYDCk1v0dmcaYUTA2QA2iJKhq0Lc8ZlZ/86GIi1Tkp9ZeNlxDvr48llYgDh+IwKedq73LZECiruEM9jyPUHWAMIx77UMRTCradvwiOf+xS251sY24heGiovUPsMe3ua4mtWwNSxsbmJJ556Bq/8+HWsxpVELPF+CwBG7F0kc+h06p5GzNN++RSTR0galx0dDW0pkW+GYYZBcUnr6Z6KzklrDcMwKBiw+/otPsfhqDEjWBuFdhEtjvTGoTn3ZFiNO4ZS3RBWzE9OalRLDo0A40Qkr66p6CwVWEVefwE2yOu8K52sTOSEjo17T5GxFMiVojwZjYun7lKZAeMdpQyFsZEJeuO8O9/kPgiNdG3S4E4i69cwCHFaS2Arjt+hhvg2NoAKOjp4VFmq0U6YGeiYgDyiLogRMKVxCkO5GB7Ng0Oaok9e7SLLScGqynidbX2LUZ7BKD32F0+pof2O9KE9bpyCZCy+FwA5UpAISUYzntf+CsalqwvC1nrDOOrYWdprndFTesZ1mko7fcLHMt+WNhEoGlHQ08qxmkEdsFoBpEgB2nlLiUW6pwGE5Ypx6cpVrMYVjh3dRjm8iVmdYT6fgdXIx50x3xwkzcusYmNjA+cvXMH13YXsa0lu+jwGuyejL3zPs/Ui66On31nH3ifvZsCcAdpsD/JofkYHmXn0XnzdSz91/zBwi+ZFLaVgGAbvU+8N3CTyTiGRkxb1DWD9LOatVo3kRG4GByARj3rpmNPgshLEKGzpxBS0zEWiUGgqhWEYRJ5DojL23qD5bDVCnC4eRoqcweho6J3ACqASoFhV2ar6Tie01rG3t8B8VjErwIIbxtHS1jAqJGodiMGN0DlAYWRP9Y6OAsPejmNHLyyKIxcBiFkUPpLfJU1e9b1DwGex7putRdVRuukxDE3ZqHU2cVSUQp7+omuEHdNpynwQfhlHcSSViHulKrbuAQRDHouOUdTpQagE1KppN0sB1Y9vJKVwwqRP0rrjfY60qbMF+rb8mcHd67rNtA4BghYc2t7CnWduw/333oVTJ45iXgtmtWCoZRI9lSGRCLtGZlyNHbt7K1y7vsCFS1fwxltv492z57Czu6dj6NFXAEl66E/7TYU8haeM1r1mSOp0Hk0oky7PY8gWcQihq8P8auZGhAlVd4YyW+9cJXa9M2Sg9pFtiB6zYN/c2FJI6ob339vYN7r9I1a3qn8lztIbcg9uNOu2PXPnaV1pPEx2bkmyygRxGqH3KIGO2RqxNo0GbJd25JyzPlI7Mtj79nPCu2xgizwibYLI53b6BbzdG/X+Rv3kG7SL9J45rSe6AjBp3+mQ+jV5Px3uTG9DjpyMSCnkoJK8R2ONVr5mgIgiIlGEH3nkc/jkJ+7DvA6yD4BRMKL2itH4sEqNw2zAy6+8imeffT5SMqaxOC04+JW8b3Cd0c9gSlvTc8fGYHTwSr6vpSgaPUA41lboYXaGykBwTu/ERNpcGnhVZGGe7XAum55dSgAxfN6nP+CgCRU4GXzo9ep82WTnOdxXEk+EqAqZiMQHJr+yDcXaNv2wp7UZz4VokipCj5j03XRgAhJWxPkciSalhC3E2s/cTTDZgnSuSfNpbWpEU9u+Y66mYEBOBPJLXrZP6He+o1DRtNoq7zO/pnmJvWg61hvKYW3LAGdOE9fbgo98eD6gEPY2djuX2JpgsEeD3bfZeYXsfU5EhrOk1eXPasc9suxU7yGvN7cq596LFy/iqaeewsOfehgnjx8FYYahVr0kJxFoxrFjGAqGoeLQoW187rOfwYnjJ/DUD5/GYrE0gibZtAZIAybnxOgYRd+Mf0OIgNLMEIAj147goecfwpErR/Hq3T/GYrb0ucwTaHRC4iyLNm22ndARpN0c4Ve6ZJdcZO662sUMPDgtJCnMYpv2SL2dxU4qIiftFwSNxh/6EEOjVVNcBpC4+Rorz+i6Jl5CHlrU9vSM6pETNYQtyqmmXoPYMGyfNTows1RZZB67z1MC7aj+xp3lHGNnCNU1pCss9wfIemK0VxWJQtbFHjNhhumZNK2Pov2PVO9CkFL1LNgzIaJdF4U30BAYGuFb+yY2p+IXlg5KFCLC8ePH8fDDD+NLX/oSjh8/7p9/kMIsUc/Pnz+PJ598Es899xwuX768Nt8H5aAclI+6lFLw67/+6zhz5swHXs/nzp3DE0888SH37KAclIPycSrMjFdffRW/93u/h9/8zd/EqVOnfqrMICJsbW3h137t13DXXXfhj/7ojz4SoBIgmuNt796Gf/qH/xR3vHUH/uKrf4Hrh67f8Dh2UA7K33b54CClbpED5GYOFbuhG0adMLisHc4hh1ZPMZMOe34Y9bQ5jFoIhTpmA2F7a47jh7dw8ug2Tp86isMbhFllzKoAeGqt6NwwNsZytcLOomNnd4nrixFXr+3i8pVdXLq6h8Wqo3XGqje0DnH2WBSVIgfhWgtYgStyw1kdDu6olgNdVydw1Zvr2QgWAAONZpCMhHLK1wNvJ6en0DBunpqlyqnDDEtYw8m5P6E7kd7eN2dppAYq6iAT4MD0PVhLpNFVoOMuBdB0FqxO+zAWxYGe2Q66CkQi6asZadQ+lW6NBy2kOnP4GlhCoxioUzqMdlMagxQolA1juW7KBkACIQBKbhzS9tlpIU5RIvjN6wkQSJ3FN4o8kw2mYsQwfhZeWDftSCqflH5Ox9ObgL4MwKIYjzDkIg7A2YArxh1yB6/1qfd0O84MaZyjKk3bl+gsmVeEhm21cgMxEaFqOjQzxu6/4QXvo3GZhM+G8mRFoYIjhw7hM5/+LObDXNIObm1htjEHVksx+mwUTYUzYtgA3nrjHfzgB89hZ2+JxiMKVYluoLSopbrRj1nXE0GjNjHGcYXOQq82WjQZ0mgsKzGHOR0rZsN8ArrKkXuYxCki+A+ja8No6Yxq8ejqDEzqqXqLuncFJ1Yz8RsYKgxJY29iTGPyyEWdm8sZHaK8S8X/DtBS8DcS+M6c6L2Ty7vOLA7u5CAxw2FJTgQx0smaK6RQSqIwxlnDkCar8kmXTgIswBkBUJA79Yvysa3aDDYy/uy9o7UViOpkfa5WK5clJfcDlj5POdFSMgp7Y+SIUEI6x5GiLNa4RaTrfYx1zqxOzrCMhtHQ9gFSAGoAcgsVTX0qkpDVW9IJKDx1ZDTO68ocWPpdC9CHr7dkkJb1p9HBFOE2MdqmvSUMtISq7c0KYcUKqMMaOFP7Y313o7aPScFY60ZQixxlgFyLprEGjiOCp4i1W9SMAh6Bq9d2sVp19AZsbnQMw4ihVnQiLJYrrFrHfGMOIsLmZsHxY0K36zt7GJvtX9aO7A/weUx9TXLd6BU/0w1Vd5TFAALcJ2lmzPEnYOUGMGOYzVCKRHYI2gLDTMAxhQraKOlVizpPwlFQkJCWznedYlxA7LF1EPCKpPuzuQsHK6OASlVw2ih7vUYPKgNJ+1QgaWybzCspkA8cgGEUoCt4CrF2vU8kN6dlLZkxPOhoTgNx+InwHFh1SL2tTNr/zI/icJDod2w8ajoZgN4aAAGJlVpQikRs5E7g1rBRZ1hyQy1dgO+asrZ1ckekAb3z+gJkPUtKBZ44DbgxaiWPVFALYagDRmpYjk0jMDLG1SiRRjV1nXIZzAEvaTeEdqWYjskYmwD9Z0TYmFcQC1hr5I62+vgaurNzFmnub/Bg/J5lAxIwJz1Dk7qEkuYenc8H3Hbradx95x245eaTOHZ4G/OhoDpPqWNH98HWGKsm6TtWY8NiOWJnd4n33nsfr77+Oi5euiygagYskml0lIFCntZM+rieriEcU3kNGE3ydzH8OFvJeUJ+MptjTetNDil7mdKb8HPCjXnEdwmXDfmfdGkiurtP/nn9RKaQmErp0X/c2Rcj8l6SvhOf20mDJn3KNGKOuWes80E8lOniZzs/HlAiXDw70fQ5/ZLGPNkfrB/6bG4/P+s0M5lh7ducEU3oYtF7M9U4Bh//9Z5Hnc7bHMTLZ6FJjUkup/5wxySdj7ebaGNtdT8LZz5jUJFof/qg/CiE2hnrI3N667NOMztbWZ0k59+777obDz/0cKRgHmaoQwFak7NztTnpKBW4dP4yvvWt7+D6zq7zr519hFzBp5bSm5HTpjU9P0j684mz2VN8ynosKBpVOa1gnTO7DFXSecJGmNMnT1arnzVD15VtNs7UsR6CmgLe1XOurk0Hkyhd4/wcoCcNrBH9sPU84Zl8KYfTOjCdPnjBLlgQQkf0E7u+Q9kxzqZvZD1TuZ9SRFH7zkA+xuO+jqTkqKcyZzSp11INSx1GPfKRGNDD++u8AucT7zcjAZRCNhUk4HZ6HN5eENeXrFKYEXNGaV4iatV0fqxD1j/jEecDbdyiWbu9xmRkkqWc6AGnj+0J7HNlbXu0WVtDpLyS5afLCNt37PP0Iz8zIVjU43WanPXzZJLmSkwmwsVLl/Cd73wXn3roYZw5cxvmc6CWsM10ZiyWo14MkPSvZ87cDqKCF154AZeuXPUodEYhaTLSW/t8TDaRyfDghFzbkymNoXDBmbfP4Nil43jm4adxfXsHINbo6GpzTGsmLoLIBUzTiS1lY7ZJxF4prVotfjLOJO8sQC6dY/Kv83kiZLtcZrVpk4VQBtMyLKKvpYHWMfc4exMoAW7g55ZJ3xmwyyyxXqPbOXJfZ8ag5yDFFXm9Vp/Z0jjJxPyMyHjbbvVcVuR3uU9Cak8TGWK2NXCseZ7Oftp35Q9PYZ/7lsYH2KUi1jTVKk/1TE2Z0dKcZF4McFr6DBDAPgRk3eF3xw4KgPl8joceegif+9zncObMGWxsbNz4/PJTyjiOePXVV/H444/j9ddfT5HYD8pBOSh/2+Xzn/88HnjggQ+8rpfLJf7sz/4M165d+5B7dlAOykH5OJbXXnsN//pf/2v81m/9Fh588MG/UXYQER566CEQEb75zW/ivffe+4h6KmeJx77zGO5+7W78n7/zf+LczecUkH9QDsrHp/wM6d4MoBSGIzXTqTPObTFIx1UxpGj0m5ZTowEgSZoOgt4mB2EgwnxGOLK9iVMnDuHE8SM4cXgTG4WwOSvYmms0ByrgLgfoxdhwfTXi6k7D5WsjLlzaweXrO9jZWWA5Nr3NqAdnJjWQdo9YIefmAiY1bCansxhbxYxmKd6KPidj7YkeArDqrONJh1q7w0tqhLTDut+8g6bwaM0Px2aoY24CkFGK16GidaC1MdGzSG530NqRVA+Z+wzJFIZfiHOm601SAyoVNRKa4bYOVaMe6OHbjUiavsRCznMyLpQq9OFkoDGDzvrhm8xcWSIdlFNa2rIISxJxQceo3Sg6TmumeN81sk0J+0/Vgz06Jye6WhGNcsrUdjOPNXy/p2txB6ndWNIbZ2tGYaKCWgp6a2hNwAqCPqreRoyUw6pC7DwB6w9i/QRgCyjVjFtq3AU0lZxQr1AFnD6Mn7R3EodhKz9nBngDXFgqAg8JTTmCEvs4qJsxUqeeJI1TBWE+n+Phhx/Efffc4XxcWkddNTAP6CRgkOWyYbZRcenyFXzvu0/i8uXLYqjp1SOStSZ8DpVFEsErG88krRAsylDrelsSfhu6tREModFsNsOsDqBSwcp3DjapVUFaSjMz8ICBoiATjWhjhn4zOhETqFYwMcZx1BvlmtKyioPdol8xCWhuGCoMcNQULMpqlCV1qgZvaIpMNSKas0PkiQFnRA4VmOOewUUiriHdYiQIcFB4TaJJ1FIwqwPGBEBgiKXP5rh1S18mUaZghjaWvaBZGDRSXjPAlvIMk+02QFewVNXUe+LwiXFlI6XIsHA09T4ChVDLoLfHxdU01ApmoFqUNqW/RUIZiHzOLHJba5IirZSU9Ek3POoAVZmL7qkDFfim9HZADiHSrOneYdHTeme93R0OYE7r3ndXgu4blo6IXT5Q4gmLRCWgQgF0WXQm9tupQHgc2MIIihN5AmxFqj+BlEze6ly6MdcjDOm6JAK7803liRq0C3UwF7fpZ+BJ3Mg166l4SXtn7O4tcP58x+HD29je3sR81jEbxIkwdkbbXYkMBLAxn+Pk8YqN+QxXrl7DcjmqXiB12vr0XdK3tuTEURqAoYAv/d5fSDdozRFXBKBke7DvKeqI6a3BU/Kp84YhBuJCM9nn0QFiVL3N3VrzPQFk0dYEOFohqdoM/OgREQnA2F02ZIdEM+O/MG7IE3MU6pwO80HXAsNDoMmEoac2bQsU/UqFYZEod0LPiLBm6W6sPXOE2lx07qgkkRMXy65g04JaO4aq/el2g7qorG4+NiFr2vMYmkZP4kK1ZREwaplhbGLor5Uwq8Jjq9UoqRt0ni39l+yHAnSqVeWFjR0CfurMmA0SBbRpn1ofUeuAQb+3iHJDAWZDRUHBaN4ACuCLtCU8YgBM07NqBebEmJHU0UFYLRvGfWlwPl4lO36S60R1WE6fyq+u2VGag/ja+dV+LRDg2pEjh3D7radx5x234uabTmJrY45KwKwShmpnFVKeY4zMWLWGxYqxWHbs7C1x6fJVXLlyFa+9/gYuXrokspXkPCG6n0WLjHUDIgdz+HIjiwag+pH+D2SAAk4Ps+F509CmilvQSv4SscPwSw85gqa+z0gIaMAjjAr4Zc3Z6i+yf0J5Lm5YyGnBwMS5WJIcpekBTN7kxAPuyFs7I+iZMTvzM7eEMw8+Gkp0M74zkDXreW2tK3FmmZJv6kNO+oftZ/mck+fLwVDe53UXInRsAYCY8rzRnxTgHvplJsR0bqZ9IMO1BmF9DNlDSfbqOk28G7FnxWjincRd8ldm2zTHRKT7gjzLgKfRsT0Xpit4v9bWgOqLJ0+ewBe/9AWcPHFM92yAuKM0BTdr2vamuvHeYg//z397HG+9/RZciVEF1KKL7uO/RAtWghL0LsJkjKY7y3u11DgfsckJoUNB6FM2HaIvWCuhS1kvfMYZbl+JSJU2RRTtJOBAcV4yZ3nIvkn/rCUFWFurqm2u9VlpZWP2fqgO4Xs6ezudY+x65SX6k+be+mrygp2Bg8XYf+opnYxK8YxHQTSmcb5KEVoKTWVN4uTQI0THJmXWkEkyTovy5G9T9IQAn6PO3cGa9p3T1miQZt0uoek2ovRO86DrjEzOey7wNIbJTw6G83VM/v5EMpmO5vxJzis2R2w3cjLd2Untcs04a30HyQZ906rt3BtbXJJllMczFczkzyYZRZMVLX3Q+lerFZ559lkwGLfdeivm8xmGAXGxBBJ904ZWqODMmdtw4vgx/OCHP8S5c+/rZSmht/eSgwemM7D2kctg77w8o+vXRKjxy5Hdw3j0qc/jtbtfxbun38VYR9/TQgYz8hwPau9oTSlGksrOLxF4RHT516Mr6SUEZgNDKe3twiREXvmQXb7Ld3IGYV/KxiHk0YrlpazLMAMeJDud9df3Q99TdTz7NlSa/hmmBxI6qP3CgDoWld63RZNZ3Kd8aPOSBw1IZFiX13o2IbmkRZCUwVZ/nKej2mLR3W2Bkw2XnC9sHm1+O8cFRVKGExMjoWqkVWejEEo+HkpzJStJzhgFcbFq1JTq/yuXWitOnTqFhx56CJ/85Cdx2223OZDxgxSz1164cAEXL17Et771Lbz22mt6lj8oB+WgfFzKnXfeia9+9at+2eFvKsyMP//zP8eLL774IffsoByUg/JxLjs7O/ijP/oj/ON//I9/JqDS7bffjm984xt45ZVX0gWaD7cQCKfPnsb/8f/5P/AXX/0L/OCRH2CxufhI2j4oB+WDlA8OUqJkVOC40VoI4N7QPfoLudEqG8+R/gKKHggJtYjhemNesT2rOH5kGyeObuPI9gxHD8+xvTnDQBUEwlAAgNHQMXZgterYW464cn0PF67u4b3zV3Dl+hJ7K/newBSt2+2a4o7mzpKuww2lgEQcACL6DOLUW2pxA4LZPFgPdBYdxgyjFsrAbieasbFz1/zu9mBTB3ZE0jWlyA40DWb0s7RJlmYOQm81JkxucbKEM641AA5muxCncBgAJXd7R/jF1Chhh2OIw5tK0cgnCgpJYYTFUCC0K0Q+bjNqNHVMmmHLHdXdIjV0N/SJY6Br9BD7SD6fGLH01lhvSsNkqDNjSONwgooxMaIGWR0BxEnAB4uAgRSNqlQ3cgM82UQMoBQ32sLAY07GpmC0OhQNQU8O4AEJH9qBN4MSInVT6leiofbG+bj3HtkPvBryefIbumSGnfw53NDqTiTYjVMCoaOwAZHivVIxoYeBDsOxb50pEiWtFAxUce99d+BTn/kENjYKSq0CghmqgHgaYSgMHkfUClzfXeKJJ57DSy+9juVyiXFcAUwSzagSSh3QWtMQ4jIdFkGENO1S6wIIKFWc/YCmlHKgE7BarsTZrxFFiADo7WdmcWBL6rEKYvZ107sAToiBoYTBvVvKQjUwS/Y1o01RQ70Z+shiawvSiWVumQuYW9yAZoBJAA6w1F/Oh2OyowWgzk0ptj5ZbdecDIjJYCgrQo2kJpzSDc2JoRoW+USALxIVTyOh6I1CdsOrwSgpjOcKihDeMJ5T42ox4GiktvO0en0aEczcOAxEWiWzEpOBp0ymd5l7sggsrJH1bH50/VnKNWiUKnfwMohqOIJGABWgIpH9uAsQoxL8Fqy1b8AV9K7fsaxRdXj3weYiDNQCZBIQqRkLLaJS3wdGIHdqTf42Byqzp5cjqrD9OAM5Gjqom5wJh8d+GSX1GQDHZIfsd1NHissnmGPGIhXC03J0lXPeVx1Ft31WrcfmDNpbLdGvdnlzcwO9F8zmMwGCQsAaIgcY86GiHN5CqYSrV3ews7vE6JH0DGArfO4OKo14h5TOwGQZK3hIou+RfhYGx7xfkWGw1PgOQKI2ZmpwAsKYoZ9I+mNzxGZKVqdBU1mgMpfZ5Ex3PQzWLsfaGcfR56MDvg7QDWAqoMFiIBkLpMjWegB2CkP1vyrz3htmQ8HmxgzLcVQAqXxvjttCIvNba4CmT2KKSJK9s+yPOiedgUVrEkmpFgyw1InuokBj0UN7ExkzVKENIOvwyAw4vFHROuPaClixROnrrWGltOoMzGcVG7OZR3pC61hBQZm6Vk3Hkj26oNbB+RKq99jeZ07Nhq6pDxHrSh2flSV6Xmdx2DMk0ketxdMPs0X+7JLSbTafoxYC94bCKzAzlqsRo4iWn8mA/tEX48u4KW6rRfQypWVeQ/58rsf2EtVd9Dxx7OgRnL7pFO44cxtuOnUCm/MBm/OKYSga+S+2MwHmi442jh2L1YjdxYjL13bw9jvv4Y233sGVK1cxtobeWnJCm14aurWtZvvbwTYTDxdStANzIJE71GTrMX3MaJD0PXPMqX5gITomDjt9OctrtucRZ4WYidjzps7iOItYRFbrW0REIddfYg9Is2zrIFVqa62s0c6+54zuMvrpISbrsJky67tg5pHpd1P92cZigBnrnzzK4PDs5dl1uR11IE0gxQdeFzlPhB6UX46+TH7PNNB3LEKogUOQesQ+/9N5hO0f9jHZzEe3J1TR5/PajArT+T6vSZ8nsxHsnxfdQgRAzNEP+9zbTUxUdJHZ+GylmXP2xPHj+JW/80u4447bUIeIgFHscN0l5RD0PLUaR7z88ut45tnnPVKh9U6Clep50Do1WS8UgGPV5WuKuuL0ZEt1TRK5Lwajazx06DyPwDSCRkkApSz/nE10n/SWJ5OVuCw2cJ9XAG6/MB0hX4Lpa3EwXZaxQgqSDLUxRf3kbTrX53WnDOL9IIu4I+PoKY2ay36TE8ojNs8mg52Tks5pw6Y8ZieivpPTPad3wdGH9TIFM8nerTFlXZ8Gp/Eh7fkm872/cHnm8ontMljQPUOaJnKCyAGea530vdRWjfCUaeBCU4uyk3XMPFHeU6ezTR67TLF5cNlj+wlizRo97Z91qtq6mYzEDwK6DpHenexhidaxRYZ84djbOL1rfLNaLfHMs8/i0qVL+OQDn8DW1hZ6AYZBbAEoFgVVeKQUwqFD2/jSl76Al19+BS+99GMsVyvk3q+J2tjrktzLnJtC6ELman3ngsui+TjDAy8/gJMXTuLVu1/FlSNXkHkpNuFYAzIvHKmNMw8hAWwhtqfgV87V6edwO4DJzyxXCtnauNEOsH//tP0Mvm0qj3YDVAnPGRhMIjBF3aVoauZJK0g8F22yrpXexFbnaSEney/QiFUfB+JqKgFUMCuMjUHk+qozVt14S3R1uzBHhTRKKoFHk5Vmc4nOMuBR+iPCue43PcCJ8nlc7LC5yDqHyLsU0dlIXKxRm8/YTaunImeooUreb3qqvYEM/EUvRITTp0/j/vvvx0MPPYTTp097evOfpSwWCzz//PN44okn8Pbbb2O1Wt1Azh6Ug3JQ/rbLXXfdhd/5nd/BkSNHPvA7586dw5NPPnmwpg/KQTko2N3dxR/8wR/g0Ucfxd//+38f8/n8b3znyJEj+Of//J/j8ccfx1/91V9huVx+BD2VcmjnEH79v/w6HnjpAfz51/4cb9/+9g2MPgfloHz05WeIpBSGwwBgiAHXjuP2vRh7AQOFFDeOCtiFmFGJMB8Im/OKw9tzHDu6jZuObuLI9iZmJIe/Q1ubqFUib/Te0Lhi0Tp2Vytc3xtx+foezl+8hguXdrGz17G36gJgGlcwpEbLYBJN61NrRSkVvYcxEwQ38nA3U76YCQjQdD2aakkNiMQAd6CRRDcpGt3JjVPpFjyzhLgntcGZ89sOyNpB2A3DfAPa3jerXmvw2/RhzJ1KFImcEeCRcGRrVApL3Qc1HPrZW41PnSdGDI9MM2kn2iVEf+x3AOqsi3eyMQOwQzmnSCdxiAdJ9IVCFcMwQ2sNIwMWZ6U3dj7rzHJLGIClvpAephuFmNKssN325Mnhf72vIEkFZlaFdUePuQbEkFLDSMJhhDO+8/YBEAVvrgOPoLNjzqvct7zOpET0mzIBklidCubw224yx5bSK9fZNOWSAXsMPMatg2pJKZrMoKsp5YgcWCI0JY02IlHLpL8F6AWVKm6+9TQ+/+incWhrC2W2rZEkAKIBDYy91QLbG5voqxU6LXH23Qv4wVMv4NruUsJaE1CogziiV9UCHYMY12qt3tc8l8yjz6+APhrm8xk6N2zVDZUPBQYuqu7oaw6UEUBUgNkIBG6MYZiB+4jWWhiDWdZcper0c8AMi4O/aEohselZlDeJvNN7C8OVGfDMIJ34dSiaGs+McrbWOmtknOJgIgO9iM0qIil0jYI0DFUddqw3KYW2S32HNIKIpQaM1JgC2gCxOhxYjW+x5syUJ8NXeSNQCa+POkvqvi5g0lHbLwwxoBn/dwG1kI4xxqLrQg3oMWaJMFRKEVCDzhExYG6kvuZ8aQo0KySAsrFbtLRI41gAyZipgCuGRu6y0WUjrspbN2k2kXXuONAoX+584Yi6RbbOoJG/2KJTTB0qhQhcYn37PsBdaQbnnexchvWJ4Xu9/RTaNX/eZLbvAUk+Zb4PQ70+l4yrRWULUweXMCqT0QpBTyD0D/lL+Go5rnDp8hUslps4fGgbG0yYDRJZaBiAPmLSx/lshsOHt0GlYGd3F60pTQmgSgpqkj6XAqxGTUVoBl7ZwHXfKC6fwwE8dfQbTcNAbmNSEIPKMx06gILRowGVxANN9wyChZ0SfuoCyC3ka0j0myT3INHmeo+oWib/uEOjMCrvlAILMjaUgloLlqsVVstR9lrAIyz6/qYOjUKEZvqLRY5wfSd0lVEjXIwaaoyKpM6UG87sIL+hVgACoraIjK1LmrRBdSXuLDqY3uQfKmFe5Bb8sgmvH5pV3HZshpPbA3aXDRf2COeuLWWfA6ONks5jPpuBe8NisfB9vFIBk+wTpiNVIqA1NGY0bkCHgiaFjgbiXrUV+tgE5F4JIzeRiwx/VpwQljoIqnsx5jpPdVCQald4OrECvzpoqAAXrMaCkSSqVmsdZZhhKDP8PBQ/MyTnnH0en8i6MweZCNAAPBIR5kPF8eNHcdedZ3DHmdtx9NAGNmYDCoChEmbqXDCAX9d0sGPrWI4di+UKO7tLXLp8Da+/+Q7OvX8eV65e0b18f58mDm11mE2WvZ0n/B1zIum2ZM5Do4G2YRFR9oNgTO8zfSQA2e6bhK3N9JW3H/2I88TELwf/IA2EUmVZX7Ri4OkMWrHn43QQP+x8JL8bBax/AVjzHoRynoaQAErWpzQEA07F1wF0EhlXXW9xevY4O/i25lF7cpSHqXM971lpGPv66TRjDlqljpN31vYq6DktDSTt877vp+/XT4LrtKS1zzn1jfyzNGs0pav/fgOecjBArjvpJFOHuOxgkxTw09qiLQvyUXQOSNtnOZ3PZzM8+uijuOeuOzGfzVDKTNOCwversY+Y1QHcGpg6rl6+hv/2/3wb13cXfkYyf7rp1URp/fJUv7HxE+J3d+Zb1GEwhjKkeZrqSdB0rpP1P5GBejlGU8n5uzJ0j0JkepDNHSVakjSzxiY8rStPWHrO19CagHD+17nLl5JIaRd6rvHqfnYB60maQ/egbAcweeB6lb0YJSJBBVjUw4W5jAn6kr7DpheZ7DKdz4gxkU9Ggmg7AALwiFAAxcUo7at8auPRqv3SXICv2JtW8CIDkhI31uhkfaffGVAAVpYvcJqup8EDUrTSNblm43JZlISh0SfkKsfI8pZh7+iA/VeEjAz7ULLPpfFYmbBlkiHG95OX9ZIQdM3Ku+z16DcTOQRAL/3I76vVCm+88QbGNuL+++7FkcNHwCC9QAPXZ3MZasX9992H48dP4KmnnsL16ztp+NELIpF5rcd5ZjJKm/9QE6Yln5+czsCpCydx+OphvPDA87hw8gK48loFygPoPicA0jl5jUIqDznNn81/BnNKHTcAwyu/OO0p5D+RRGPudonJ5AXY14PpGT5PSe+An3XtmVALmp2rOHjf+Nv4oTh9Q9hZ3SX9zYCDaIkkElIlOfF3Fjvb5qzg2OYA5o5FI1xbiH3SQEUWdRuQixAdAewqNifaDQdE6rgskp+tMesvM2NkOYPLxQ7bt/Perxd+UqQrsEWBNtBuLFNb613PHbLMgyfFVlX2z/MvcJnNZrj11lvx+c9/Hg8//DA2Nzd/pveNfy9fvownn3wSL7/8Mt55552PLELCQTkoB+VnL5ubm/hH/+gf4dixYx/4ndVqhT/5kz/B3t7eh9izg3JQDsrPU1ksFvj2t7+N1WqFr371qzh69OgN/AJRiAjDMOBXfuVXcPfdd+P3f//3cenSpY+sv4ULHnjpAdz67q3449/4Y7z4iRfRhoMojwflb7f8TCAlO2haxAw7UFrIc0CU86LGJjOsuOMLko5ia6jY3pjh+LFtnDiyjSOHNrAxr9icFcxrQdWUPETA2DoaJKXbctWws2w4f/magJOuXMP1xQqtFzCqpG9hBnMGvMAdrEC6SaU50rMByyKqcM0mXYbFHXYDiY7Lzs2FhiltyA7uyVhFkgLEwvSXajcoA/QRIXvt8wjfHnNQvF9mVIU+b3OUgTiR2sXeVeCBWZUojJpGF49qwXZIp2Q843Solq4QqtsO5CAd0U26OfInhgc5VhvNCd2j3ng/WI1HLCaesa089ZDYp8MQk40MMXade4r+rhunWCYvGTx07H2fVXefkcyc90EHnswTJmNJRlwKw4PxUnxXlCcVBGX1E00Ot/s3urj1eePvp+9lAJwb1u1djQzDKUUXABRNcZZvzdm8kq6fqgZ3AcoQqFtklEibVajg1PGj+KWvfA63nDqGzdkc880NVGKUMqLQIGHVZwOIKmizYuf6Ln7wgx/h4sUraDyi88rTQxjPmTElO+TIDbMyvloLWpPIHnLrLsa9u9hDbyPmszl8PbHZ0vV9IncgC5BLgAttVAAjB7hw/81/gAuLA7lWj7bUWFI3Fawb+9QhrmkYAYkOJIZ/aaOigBFz1HsX458ZP9XJPbYRDMJQ5snIC49cwh2Scq0EL+hswYAUmVcad2zUmaSm0/VsQCqJ5MICLtBu9NbQTSayySj9DnqzV9eT8Z1F4sprBoA7Z7KjRKK3WVSiMPxrp9X2O5WLE0cKiqd/tEgvrMbu7qHfk+GWyKlikV9UCsKis1mbWFuLBHiKSYOJmnPKosMVBJ3Yf4bsnM9nysfhaIGlfjFHD5DAQHD+CIePpccLwKUBYgQswV7fOI4O+JN1FCCXfFPW5SEQNMe0mGy2fQgkc1ptzpg9/YbJDKS+hIM+nGNdo/W167sYG+PwIWB7q2CzzjEMFR0Fq9UK49jRWCKnbW9tYGNjhvms4uq1XSxXK08PWUrsYfB0tmZUFzqZfLH0XkFDAdWEsT/Nu+4VoY/Y1EkUtp7o3XrTNWngupTGkjkZ1BXoLARE16iWMt8tUjYoD7XWAvCWHBPmMKhVoj+gyTAbZL7Bmu4CAgr06G+2b0FTO7rTgrFcLeXWcxegGLOB/0SW9sLubGK2qBPa31I1FaVEE5rNFODZO6hWoHdUlr26N4kKRXXA9gDcfLji+NaAxarj/WsN1xcj5sS4vrvEam8hoPeyAWorjCNhGObgIkBAQCNS6RpnvTmfI1M5uEvngTu7HKxFwOq1skTe6V2cUswexbNqar7NeZVIoqVgtRqxHBX46lEINUUyxxrtTLD0mcvFiNVqRLUUFWSpeoHaOlr76G7i/I+UrFfzDb4P/pWniEz3EBDbqRPHcfqWm3Dmtltx8sQxbMwlnd5QLc2Gpm3RtjoE5DX2jrExdhZLXL5yHW++/Q7eefc9XL4i6SC7RRXzixihX+3TJZlhCnGIXdO7kXTHCZxnMt6sW1px8CSZzh8S1QGSKkcLmbsKrk+zO/XCIbZG3VSfDUH30aQjxu95S9E+6UjIATXs38XzWT8mBGB+SkeTk9ZG5gkCUoRXc77Ft4nkoTdYG6ltVjlpzkivY/ojyezUR/+Sbsir7LROZ6q1fXgyHm3/RqBWTm2tFxtbgUV7nXzpE2VOewAeXeRG/fA20lrET/nem5GDne8F9kyshkSDNJsi42mNvumMqfqJsK0pkux8Y3vXfDbDo5/7HB588H4c2t6QKKizKroVdRA0rbcBZocBbbWHJ574Ad59513V1yJtnkc74tB3J3TQ0n3/twgXZfLsOI7JSZ3WVqJH8bHrejA50QPoYvqaya507E2sOF2rjVmSp3l+vCmP2MWhCVcxpusdcNpHHxSo0Dq66t02q7Y2TQxO0tPpehCbkMoLW5J23vAIqg3mnE8zH3qycla2a8QTVnHWK4LfYhY5BJnqZLmqEJc85c+8zmxP0oscxu+m41h/hbcAu6xh6ZYdDICQ2aRteNI0nu4UvCYH/C9bf6lvxcau82TsYOp/Xp9Fda6mIGkHuXHQUsgwpaV9v96jiS2Hgini3JXkMwdA7YbyNP1cl0Prc3zDCox2CA7JO3CmqJ+jAbz11lu4ePEiPvPpz+DkyZOYzysGKpJqi8jPvratDkPF6Vtuwhe/+AU8//wLOHv2nF6einmF8xR0HU/BrkCSB/aJRu/dpxtN+JWwsZzj0898Gu+efhev3fU69rZ20/Pd17/MZbJD2frTSn2tu87VwZzmG1P9xGyXbgdL9dgZznUjMz8We8YiF9v6N32B/HshVwbdaJ8toDE0Ym8hxaznixNJeigf2mUls0lPSKryFWoHkQukwNaMsD0X2+3OomExss/n9b2l0qyCWNJrk0Ykar1LOm9RWEPGpL0l9NrpPITKQg5y7QmEBWQwu5xZJNJl2FJGvShnEtrXWI68TAFv4q7yt+T2RUYR8wRQ+ItYaq2488478YlPfAIPPPAAbrrppsne+kHL9evX8cILL+C5557DW2+9hevXr39IPT4oB+Wg/M8qm5ub+K3f+i3ccsstH/gdZsZ3v/td/PjHP/4Qe3ZQDspB+XkszIzvf//7eO211/Dbv/3bHyhFrOkhv/u7v4v/+l//K15++eWPqLdSDl87jN/9D7+LJx95En/1v/0VLp64+JG2f1AOSi4fGKSUFfWpY3NaJKwtQJp+oFRCJcZQCzZmcxw7tIVbTh7CsSPb2KjA5rxiPlPjVSHUQUyFI9TJxYTF2HHl6h4uXt7Dxcs7uHx9gb1lx9gIjStabxjbUgyS4u7XdEmcDsvqWOSSDsdAGE/UHV+mh3cwawQlC32sN/EgTZRSIH4jBdDAQBxNbWBqiiLpm6eVgRkC4AfiMDrZ93UCEjIbhtA2AzLC8ZmdaGSONoamVuBIWaRjlxzodpSt4lTUuSA1BNZaNcy3gYRacrwkow9HiqFs0DKHjRs5PP0VT4zs5tSWg7uZjM1RxEpHMeKSjsuuaGZAivGegb3idtDUyNYhDsiIUJKNIpjMUzhqCEAc1h1YUcLwZvWNbQp26glEU8Sr7HOfaeZGHjL+TG15PzDp23qZ1KtjdGM8ZYBBKhSOcotE5imZCGiW1nFCE4k00VqHRedyQ7Qbm+TXQsDGfMDnPvMQPnHvGXW0M2ZDRy0zLFaEcWzYHAYc2hTe3V3t4qkfPYsfv/omVuMCzCswGggDmItE5PCbs2rIJkAijkj/uqZ7EiCNptpi8mgXw3wGXjGYB3UodxB1lFIlAobxAeCp1eSz7rfPujodxnEJKpLSx4y/RIRVax5aH03T+LgTJAyTDvrQ1ElEBBRJBTSODXlm7Dk3FquxDuYc4Y5SBxDpLcNx5f0x8A2zpfWSCZrNZhhXK7RxRKEKSeEEt24b0Ghso0QhcoOfOvQVaAPILb/OjDqbAeoUrJ4StBt7hFOCGYOCx26YVsy6oeHTJ593hl0PvNE6sXUkqTHDYJ6N7E571r1AQZ0BvJHP2Qx+Pn8Al7ixaQw/TZeobehUE0ncF3Giu3tF0hdSkYhF8K3ApxtEGlGHUOugMktTlpns1dSWxJD0UuB9e3Y2vk0Ai91kJNI8TeXFel3ZR8A9QF6TiAzKKwHQoZTSR29rupMjwDViIBewTi0VgIBhWGnhfSsFrTN2d/cwjg2MLVm/cwG3DMOAsTdPYVeU14EtDLXi6rXr2FuuhFZpbxV8CDsdwlljo+q+Rogk5RjdgD88NQHr3oqixmJ2Q785XIx3a6novWFsTfja11fcti4kgJc6ELoC16hUZECXza2V3tWYDvIxobNGdKrGZigoGFcNhNG2X+9H3rMzuBEAqMq+3RSwV+rgRnPnGeWBbo4FVUM8nWwTeT6OzeWBrdk2jur4EV6ohbCxMUMdCEdmhFOHBmz0PcwHQj22iXcv7WI1AotesNsaVmNH4xVGFpBnG0Uf5K7RptxBQZjP51itmuwVLPTPOk4G87I6TAoJEDXzO6uuRTAHK4Nqx6wImGZWCrg3LNkFBByA2jTNY5e1oeQFQ0AsHQ3yf5F/pVS0jmlqnY958TW15nxzGaV7OUhk5nw+w4njx3Hv3XfhjttPY3trA7VIxKTBnOEqg9VVLE4j3ff3livs7o04f+ES3j37Pl5/421cv74jIF/9Lxzjsd6yjmZ9zGsrHE6IlG7pvdiXwgsUMkLb0XdkQ6fEc1PwDiZ+wfSF7W32WUL20PSXPAP+b9bv8vxkeZ+f8/ZMX/EBqM6pc2fVSQojOzMAOSLhdAipD5kvpsTWfZy898x9MrwMcLOxTp3F+WH8hD98xFmln1Iw9cfHYPtgasNfJwrgkBKIbVxr4zWdjYJpoBqPj9E+J0BCANoZwvdnntDZ61nTg/Jo83M+Lhhr5co56cXxvnO2z2V8OgEBKd84EIbTuYcy70evSiHceecd+MynH8LJE0d1TwBqYdm7ekHvjKEUzAaZu1Vb4eVXXsUPf/g0xrbSM61G02Jy8JHpgDZmPwc5HYMmqnzBhiepq+Wswax7AuwMZGvRT5mxJm2TpaTL2YUZhu/nVCL9D9j02pA9uWtGb593/Uz2Kll/kyhHiQ/J3vZ+M0JGraU8R3TfiUHkUVMM7OtCPC0IBxC43PJv0hq384D8XiZnfKtP7QLGTwk8kSFOwW+hw8SpyvbzPl2GP+GMvS4MjAfXFo/rq4gfSeJmyQSnnbWYgWp2vvG+533I9rw0RgYU7Ge2DUzWqdXvz9n/0hisXmtPwNK8n55K0zgviQ7CLAtgInvSumftg/BaIo4KUfs1opunR4xOtr9mHrAJTPuTv03SH4sAnW1D9vvOzi6+/8QTuO+++3DPPXdji2aSptjO9d6elFoLTp48js9//lG88fobeOHFl7AaVyYeJjwU4DMnYPpuulO5TcPG6Dxt9cj3hStue/d2HL1yDG+eeQNnbz6HcRh9SZoN1M54uU/ZfiU6vTxh0Xjs4guACa3sb1uLk/lhq9M+kB53v1wTo7f0yMGhxkPRJ4MCkuT0jYhk2piLntQ3742ftSKqcpgAQnh31eOHQXT3Whjb84KNwuA+4tDGACLG3qqhsVwaaE30RVuRIlbZ+2JzSGAUqkAFeGzIoO6sH0JHZTzS07w4fzIma126zxLxy9L5MWG0udb16Tqs7huyjkMnZcDpGoBL+N+/aIWIsLm5iTvuuANf/OIXcd9996ld4GcrvXe8//77eOWVV/Dd734XFy5c+IWk10E5KL+o5Utf+hIefvjhtHf8zeW9997Dt771rYMIaQfloByUn1jOnz+Pf/Nv/g2+9rWv4ctf/vLfCFQiItx+++34+te/jieeeAJ/8Rd/gcVi8ZH0lUCoveILT3wBd75xJ/76K3+Npz/9NPY299bOtQfloHz45WcCKU2Niv5FGDCI9EYHo5LcXh4KcHhrAyeOHMLJY4dx7PA2NjcJ81owFKBWMbqNTW417y5XIADLxrh0bYFLVxe4en0Pl67sYGdvhWXrGDvAnfQ2TVfngziH7LBmFo1pv1lvoUPBSPIe+38N6HG7C8i3OdW4RnJgl4Nxx9gbCkoYiUrBoNEUzNhKkINfqWIMs89HSx+CuJUoB8cbgMA4IkfIn2EoEHtc90P3jeaL1DnvjmDWmzElHAiU6ltPaWYGRIIBfiQ9UzBDGM+oYF8/p3w0NdR5Gx7pI6JGxFPxHBUzVkDtmAxzZiOlnRKnYDpsp3Zyf8woKeH3xfCgWZEA9EnkEHEChsMUAKi6WQwAHOwERjjifRo1jRWUh5nR0CZz7WAznt4yJAQYbWooEqe3gJASQE3nXyJidcBu0HUG2MaQwBxaZ2898YLdYutu0Kl2K1kNRSN3B1RZxBmqyYTJMg/zoeL+++/CfQ/cg1ndklQ5bQR6kTDavWJzcwB6QxkqOgPn3nofTz31PK7t7gI0ovLgqYOKrsXeW0qZJOMeUFAKYVyN4M4Y6oDWGlrXcOvcJPISGjoaWutoY8PI7GlhJGKPROgZhgEGQjEZwyXxHhFWo6Z407RpQ4rAQoNEuyAGSpW1WiDGozoMEhHEDeQiwkjfl4g5CfhgdM08Y4YsIAE8JDqIpNiUOc0Ak94t1cnUyGi8uVIZVm2d9w4UcTwIuIk1NaZEMpEIegIsMVo1BZBY9COQ9G9sXW/2sqaNw9TZQoyxS5od9tRR8n5PJl435lWLxGSpueJmOymQrbUmEVK6zKk7vpUuEs1K9iLZLgwoCV9X2Zho7RjVGnfUFBa9dwbVmAuCResLg3rXFHGlSFSM1sN4aWs3AFuAgO3k/RijWRKr0IeVKp2BvgJKkVvS2djJBEE9KChHZXgFzLvgNvV1o7SlfLPoSuCCzqM7KUz4dY59zd6T+WDlxZDLlJ7jLim0pG5xHJYSQClzKkxSUup8NG2n9RHjyDh+hLA5H1CGihlVlLGhLVdoqxHgQYEoFceObmO2s8TOYherMaImORDFF0bIXJvT6T4L3X5C7hMlh6Tuw8WcdymsfwAUde2uRr2xLY5PgFGHglkVPpL0bcIYvQnwqLee+mjRiaZp+wCgt+hfJQKGqntuyBdJJUAYx+7pTEz+xW3s4JFSivNE6xKtaZgN6J0kNaEysQMZcppQpY3c5o3IiiHHmoOzHCwHBiphmFUMQwWBMXbgyl7HpuqDsw3g0OaAC9d2cW3BYCpoOhtcZB1IxKPknG6SVpK4ecS+dZ+Sqh46eHInWFedshJ75EGjk14WF1B771iuBMZBvcHir/UOdI2+MC6bRlaTNogYZSiS1lRBSBI1AwryIgXshq7wcS3rIBhzfuuX6XP5pxChEHD40CHcd89duO3W0zhx7Cg2N2YYqqR6tWdEBpqOLWt37Iy9ZcNiOWJnb4GLFy/j1dfewLtnz2G1GnX/UUeNOoFCdzPtK+vka04lE332vij9SEOUOUlrRpWstO/yVOfT5+wiAaX2DChLUH0ZBjpY05WTzhC6N7sDLfoee0MeV/59XabpcKX/nN2uSi/dm8L9FeMykJARwpyt2QYSzji46xLppxMxp2gz2acymZ3QJre0BoZXHO7A9WIAsZiuGxafk5ALqkn7WwFUsgEFaCc79Y1GOtl6Jkx6R+qL8YNHSvGh8SQlUHBvol3+frIO4X3yM7N9F8JePp0QJIABUxrA5yKv6/37I9JZzp+C8UQO0sWqlR07ehSPPvJZnDh5AoUG3VK6nOGVz4ZBFMpSJE3P1atX8dd//T1cvX4NAGvaHYq2/JKSzp1Om0XpbSKg9RzGKjdYZTbr/gZP2Q4YsF907aZAHY9CNOFHOE/YvCeCefAxZom8aM84yEiHUYj0UtFkxn2de+q4NBcTW4PqyLE+4nzoQKIsE4gcjEJE2NcAbG/k6cf6hwM+lH4uA40PjYdg55xch8m1ADHA6iMPlKxzYmB+eJTipO0kUscYQ4bkNcSo0DTjSfbFfMZekOfF5KF/YHLQZESS/bYuZR9X3QuhhxqYJ9PB6GSNEokE6gbadLlrnUSAGDUnYO52rt2Dr1gkYaOTPeXCx2BO+u6aLMvsPqG3jdv4f43399W5vjYS/Ywn8twgRce27dlo5qCsVKwv42qFF198Ecwdd999N7a3CLMhLgfIGbihty4gcRDmswH33ns3Tp48gR89/QwuXLwQwA+boiyU0wzuhz5NOuVjNbmUzw7C18ChnUP45AsP4sxbd+CtM2/i7M3nsBpWKQIo3HZm/FVc7mlP0k8Gg5ItLusVwFQWknZOdAn28cp5Lebb+rsu66V+UjtStmWoLK1y2dOiCAcZKVcxkWmT8xlFf8ymlde1ySOxccnnywa5/8RAqYz5QFg2YNVGwPePmCNmJNAVT/rDaGt6+ZT3hezk/TAwqgCcLFr+VNbYGLsGwEWJ9cCMOFu0kLXGZ0R2aXR9TSv9XfZjukf8ApSbb74ZX/nKV3Dffffh+PHjAH72MS6XS5w/fx7f/va38dxzzx2kfDooB+XnsNx+++34u3/37/5M63+xWOCb3/wmrly58iH27KAclIPyi1AWiwX+9E//FESExx577APZZzc3N/FLv/RLuPfee/GNb3wDb7/99kfQUykEwi3v34Lf/OPfxJe/82X89Zf/Gs986hnsbR3oOAfloysfGKRkoXbNSSQufIKAHOR2S6GCoRJmFdgYKra35jh6aAM3HTuEI9tzSec2K3rbQ0BMDGC56hg7Y7FiXLu+i71lw5VrC5y/vIur15dYNAEUjB0SwpYbAAKxpSwhkEaMcJAECbDEQtTazRY7jAVQhdwonA/dYgyIE6zdMpPK5NhY9CBrhvfOGmYdjM5NnQvejB7Iix+aDejhac3UemGHfYI5oqGGTT2g9nSw9TGkv7Ut8nFg8nw2CjmIRQ3ybnAAA6QOVa3TDq6sjgErloGOpdJkmOjqlAmjb9EoM93jNScDnTlRkG+cwr8HAvRlXwYtg345VL4YdJEMgk4x/7u1rmPXsYESYCQO6TbIbkA3He/E4uad1rWhfwr4ScfQGqhWvS3cNehX3BTOziIg8aq3FWaV3htAFV3TJ3narDXHg9HIopi4YZU58Y4wYjjSFNBh5jM3aGRHGyXjopRSZOzMAHFBKRWVCLffeit++Ze/iJtuOY7jR46jMWNvsYvlYsRsowJtAYwdVGcYuWBvucK3v/8jnL94DcvVHrh3VMwx0AyrvoQxJhEbPkNSHJmBcWyehkf6QrD0TRKlvwlQqo/y7Chh2xnFo6U1C5ndexiLeWroJgWdGVBoyc2NoFa4sae9E8CNyAZqHWPvYYJuo0TZomgrUjzKDUcy0yoDfWzqWIn2LKqbGLma96L10XmHUdAbo1SgjaOk3KIBq9VKgQ4sAKpawSygAYmWBLDKb4I6baDigMJYZpHjSlFnjUc/s5DrVUVI11RKyQDPQNNITQJ8lb3FnMbGaiK7NPVdrRPwHrJMMIM/SQQoW2Osz7He9CYIaNbXXDLoktLdDaJGbUHH+tjHPkraw4lRlH0hxg1kBeqYYV/lY2eJQGMKrKdt0PdNThsAzOhvIDFo2wJOUdAaYv82UI9FVTPntgNgS9G5CiOnjbr37rLZjbwQUHJsOno7WQFJ5ngyY7cAJiWiVmcDThWoeXVikJaIUVVBHXbjP5y76F0BPwZ0idJ6E9DhcoVjRw5ha3sTdS5CoswGlDaILqFR5uazOXiD5LZCFxAPw/iCXYa7bJ84EYwvBeTsDhJ3lgCE4vQhSAoFAQ/KnBWwpqvsGl3DnFQafadJ6ojCAoacDarfcEPrJKnEqAjgUeVDKUP0Ug3n7qiztaO9H2oVudO7AF9K9ShBMK2G4anpbG7lP+Vo3X8F1FsEKKKgo1ILhjITUA7rHlhiLZusa30Ej+pQMnlJmuqgqwOBxAnduwCBmCS9jgC7BJh6dGvAAMZ4ZQ8dA8AFTAWrLvxM2ldx4pljhNQZJ0DAQkWiPyF40vZoAKhV1gtBUzvA1mA4EBwUqB5DpqSfANhdNKw0RcPYI72RrE3RUlxGOOsR6qDRgtRZU4aKylCMtqyPj7NPIakLLqdMZ/LPVOedDRU333QKd565HbfcfApHj2xjY6gCTqrkUT4MoNS6OOJbBxbLFVpj7C1HXLx8Da+9/ibOnT+Pq1eveTo+dw7aukt6P5AdYfGJ7bfW8z4dkKqKtt7JKwnnkoFHXJEKWUGxtsyRDgN0Jt0vyyE7I6xPuTnZMz/au8Ef+xTYydzoiGFgJGvTVUaYYwuqV7L/7k47xP7vD2eSJRrZOMSxmUC9HPLU9QVC7C8M0QVN//V9f11eO3EmI/cupXeR3vTTD6cXgppQpSto7m+Sj9XAZbnhdRCw9W1KpvTbGg1MtxExwelIQtgXTc1oud5epoer8wm4iZiePHCba3s+87yfsIw0PtbMQ9GHACFEP/1FL7LeZ8MMn//8o7jnnjuxfWgTmxubYADjuEJrXWRzbwApmBkVq9bw3/6fb+ONN9/GKPlHUTCgkKXOMVAZaySK6YnRdMI0nSBHDqlOpLJagLYGFNUXWOXEJDJUGjcMpFKQZgkB1pvqyDY/pILP9Mp89jMdmrx2nvAfJZnCQHKu21qAj1nsKTZ/gEcbUh2RmeWekAEKWPdFZgW3AGbHyBEIRdZjjY/iAxM5EgXXxh+L0ADGZDaaJINMfzc5b3J2IhHSWvd1V6S+yQ15sjVnpzXyqKwTPlYet7btvVS9fq7zCnvQ2QDG950FMO36lUXyzY9G92TOTS7kcSmNZc1aR3Rv0rO6pS7M43FZk+xlMqC+Ty5kOc3KMwagNKEZ3BMgrODpWBe+701kvj/o54oAvpHTyN9NnwORkhcgBeAH1VjXRe9T2hEA9I4XX3wJly9fwUMPfhJHDh/CfD5DpQoNde7RQu1MVGvB8WPH8NnPfAbff/IJXLp02cdjY4h9KdbvpBgfB9NPZtp3cgo+tzEzGId3juCBFx/E6XdvxSv3v4Irh6+iUYt1lvbXrucgO0f5nlTk/BHntCRJXD4av5u86n5ut7omFzuc1/VZYbSkE671gex7djkLQC4A2fpJMs9/S+dU+ZOcv6x+5wgip6Glj3eZ3RraQJjVir6yFKIAoJfrJnxmu6D0NU2Xr2u3U/B0bzN9l8xG7H22OY5LJia3eVKHRAltvWsEuyTDvQsxR5AhyB6ZeUoJUc2u5PIfP/dlGAZ84hOfwCOPPIK7774bm5ub+/Wgv6EwMy5fvownnngCL7/8Mt577z1NFX5QDspB+Xkr8/kcv/7rv475fP6B32FmfPOb38Tzzz//IfbsoByUg/KLVFpr+NM//VO8/fbb+LVf+zUcOnTob3yHiHDrrbfi61//Ov7jf/yPHylQCRA98/TZ0/jNP/5NPPqDR/F//cP/C+/c9g7GYVyzzRyUg/I/v3xgkBJDDm9hUJIDa6niHKhUsTlUHNqa4ejhDRw9vIVDm3Mc2hywOSsYiqYlKXrjvY1YrRiL1rFojL3ViItXdnH+0lVc3Vni+t6INurtEDP62SHQHIEU4XmnB34p5lQVB3NE2tCTWTwH1kxBtJaiQw+DpBTQ98XwW9ARh3BAHH3yN0CofqpzG40aNMTWJNGWxBBRku2CJ22K4dPMSRnwAz/EZmMOd0mdU6r0rWp6JpSpwcqNcZSAOJ5GTokGJMNcMkf0oJ1EN4kbgGKstP4nFwwVCXUMAhVW8AfDojExIA5eNeh2i/yDOKhH5Be539PaKMAPJ1gctqfMa4Y4VkOA1MHc3GjGyh9d6yjaTwOVgSX9S3daW90ywgoCW3QLP9TLd4XM6EBuGBIDwAiLSGUpDapFovkJxk/W8YghqulUdjfUskdIyjdQjbmyAVUNk2SrwXjATZ3iRG4BUHIeNYOeORw4R3WBG8E7A7MyYCDC8aNH8Mtf+QJOnjgCHhltXKKgYHF9iTJUzGczzAfCalxgbB3LvQV+8KOn8dwLL2FsC2+cS5eoRnsNrTV0RaAREYZSxcndGUwCQLIg3L03iZRDcgOuWbQUpUmlCqpArYOGdK8AFUiGKblZN6sKbBBLlkTbUJq1NorzHOwgjlGjiRSN2gYGRmY0BVdaajM05brBDF0dzLpuIUAjAwt1pzX8P+ICogZuHVQL2hjAvO48LWn5Yh0xwB3cCxo4yRY1XJrEKUVkYyno6HpjGuhU1L4ltGASY53Qs2u6i7idKU5/ubkuiJOK1iTinplomRnj2HV915AeRALcoQJu4vTwVDrGkZY+DhoZRkjnP8dmDiiafMU6/70ZwFVulQ6DpKIiVL0x3aELQo3YgrBo3FFYaWQGb503lCz/VIbB5HSXVG+F0NOteANPjcqvCmlRx4rMmQFhm0bP65rer7fuoLBVk8hGIqsFkFJrIPe7ToOk05J1USrQWYGtPZz9VIsb32cKgiEIMAYErPporCoRxGpVsZBSZiitoDoEFwK4xo19wMcOTzGozyexNDFc+1ohdWCJI7F3AfosO+PieBV7yxUOL7axuTXDxnzArM7QIeNrTYQCoWsaORKZ15tmCAhjcTiYpzLZgHLQvS8Ad24Cz94ZWBpTeyIM9ATNi+Hvix9E5rQzY1w210tqUTkMixwjeoGAhITbShHAmI0t82DRvGG9daxaw6ANEwQM2ZrQYBjI5ULhshYBK+ssArgGa4SkVUevugda1swum04tM2m7NwzmEDT5ouSRaJzFc+W0JgAqG7/wQoMDkXXf7mPHYjmKob51MHW0TkCVcXVNV8cKCgNH+suqEQCZGZ0ixR8IqveprkECbCqkez+TrD8i1KFGSh4HdZGD7QgK0utd1mCXG9q1FhRqGragYOwyp4UUB1nIga4goMwK5jQADP1cgGWtSbSPaa7Ij2FJst/lsqaFKUTY3trEHbffittvvxU333QSG7MZZgNhVkX/k6itphsyRnS0zhhZ5P3eYoWdvSWuXNvB66+/hbfffgd7i4U7lr1w6NL+wb7f4gMBBiAcOGvnDgDuhLf/JnAYV7fZLxwIV+T9A8nJhxCA5vSNzqi+nfs+lU+hQiaZ40+pPrs+TncUIsk3gNK5QJ6y9nKt6sSnqEd3ryQXU0v+p+nwplfZkPfPS5xB5Tk5LwCTkbDy1o0cmN5i9MsdfhSAD5o8O6WtHXSKn6GCr3jtURuHO3z1lOHO9DVHGenisP0EiHmkRDPnPlIdc4KgYh3LfsCV7cmZBg4kYJ7svZlmenqY1OVAZP1Qqg0QmehLuY4EkLNx2D6iIzJdIF4j1dMlDepDn3wAn3roQWxtzqXtLmDScdlAGtFPwMsjepeLCM889zx++PQz6DzqxSABK5RaZc9XHd2Wm8jTBOZOq9hA7QTZT6cyRc9tvkeGvSKWsVzW6hpZiWiNXXpe20LzWCY2K0L31uRNO+uzXqKx+XMuUaZkS3dk5LevvPvaky46rwBlDNiu8092TS3AySIsUjWc+ryelp1Io/hkmWTrv6RIUMmhjrB7ZLCQRUtifSnWg8IF2HaZkMPshE315zXInOiX5sZsOmxAVflsIkMQzn3R6CxSTaxz7/96pOXJfOn4rf3Uv8QB3l8bdz775/a8HrcDARZ52mgT8mbSoQnIK+in7Zm9gVkjk6vOR3LOyDK4+zGMVE9MF/mcht1Tu9kYQiJHn/KaMHuT9WNie1vbn8n+TcLN7E5pJoN2vaONI9555x3s7e7ivvvvxy233ITZbMBQi6ceNxmQ+XZjYxOfevjTePqZpwWoxIzUxGSfM9kj85H0Auf1/fLQ3luX00ZfYsKxK8fxuacewe7WLt66/S2cveksVsMKrvfCLgMEwNX5gNmjGU26yqK7+nQQJmfyrrpN8XUfM5b3c09FOClpbUljfu6Sc7runmp7FMKELbaQrX9o6nP4OdSA7Ga/svmySM9+fisxXmZgb9GxdBuqpA22gwHZrrimV2bwsOlEwZ9Z2wkZL4/Ip832GIJG1Tbdwf6GrwcD6hsQrzf2yLN6OwJmfwRxrJc0H0SEwqQXr/RvGDgXP9flyJEj+MxnPoMHH3wQd9xxh6/ZD1psXq9cuYLvf//7eOKJJ3D16tUPo6sH5aAclI+o1Frxq7/6qzhz5sy+M9hPKsyMl19+GU888cSH3LuDclAOyi9aGccRTz31FC5fvoyvfe1ruPvuuz+Q7Dlx4gR+93d/F3/wB3+AN9544yNPMVm44M437sT//v/933H+1Hl857Hv4JmHnzlIA3dQPtTygUFKtbCnOSMAQy2gAszrgK3ZgO3NGU4e28bxIxs4tDWTdG4kqSkGc8J2xqqtQEUcM9f3RlzZW+Hy9QXev3gZV68usLdqGDuj6WGxtwbmcOoBZu/Ydyz3YjnH/RaoOkLtkCfgFPJnzLk5MSgiDEkWfrd3OfTnqE1hDxFzJZBuT7pBTI6o4vRM6QPUeUFusAoQmIebV6MiU3Mjt71rfZwWTccEjcKR0phY+gGpRT6ztBjVbkmZ4ckO+pDDsxkbzPAnjhqdF6Vf3LZSoxZHNA8BMaTbh9r/Akll0VntDGxO+WRoVCNF0dtB8MN83LpD4ob1m3eMtfRlDAgIJxnvzYDsfxttbY7DRGTp7OwzSz/W3VpjcxGptJqloVLDxijecTVOCI8ZYMwNoGZwVGOR7WNmhJM5KTKrTO7wYg3JPjXwyt8GJqKSo1KJCd75P/FVqWK08D00GVWLWYcR0Z4yMGWoFUNhbM038LnPPIg7ztyCed3EUAp2rl1DHWZgdGxtbmNzNqCNHSNXbGzM8Npbr+Fb3/oBdnaWkMhpQltrp9aq6ZKUBl3lE1W0toJBc+xm5FAr0M2Iw2CMqJWwGkdx/kJk1WxWJW1RKaik8V1IQTisUVuMEyhoWIcholgZPdiMe+y3jf2Gbmtu8NJp1qhYcP403m8KMrBxD8OA5XKpY5M0f6RyzvCDFvltKAWjG+HDIEzF1rgASJklDSEx3KHQekNvowKMKogEaEKdEFFlpkWiw6Qbrc6rxoW6GrnJGtaUgW7cJxt7OESmNzIB6h3cAEqg0ABDaUSZWjEq0IRIUhS2zshy0/rYe3MjYCmDRJ9S2hQN8tN6GCDjNqMZ+czpaOtCvlvlNGEALAJgiGwDdab0jbU63Sz6EUrI12LOIABLjRRmPFJKwVzyHgl9AFBhlzu1FAfLlqFiHO3mNDBoCjFiS8HVUQmRlsTy8OmaZ4iybfS09olII3ZB0s5pu2AB9YECWEBEE2Ph1FBLvu97REAzPLPMjbRpFBZwm6XmtPXTe8fu7q6kG+PDGMqAWYFGYKkYG7BcrLC72MNqbEApqPMZeATQG1pjcIt9wMCC0mJT3HHIbdvT1w3v9v1krfh+JM7X2KeDPwH4zVhiBUSx7OKtaSSt9K5F0KqaHk7WT1W5KBEpDYgtfCuR7nrvaAqGtDRl61H5stPR+i3gMPl0qINHDKRCoCoRJYdhEMAvMzoxei1ozKhdo3wp/9daRB40dQp3AGgim6tGU2vNQVYC8tEUw1VkWyeJNiVOZ43OVXQuWuhjgLqCqOo4uzu6Rc8Qvsr7mgMG3UsmMIbmUSLlXYnGJ8WcMJaeIiY/ANUMWBYVDHXAikdPCySLwXSPogAmAlVCpQKaVd3vtZ86Zz1FY/s4FksXCJicEmpszOe4+dRJ3H7brTh9yykcO3oIG7MqqdwgoDDTO5ihtJffl2PHYuzYW464fPUazp49j3feew+XLl3G7mKhskMcNlFCr2PTLbFfv86AcZNR+bv8jv3+Ew0P2qS+tU9/lffjE3Nwx5dTPvaP/Y2kqyaHoDlr2VIipzf8KU5/q8dyCvxfl2H2njnGseaIjN5FV+JMwtYTih3U1HCrZ93xZ+Pi+HBCg9AjAM9nNN2Ip3OJKX2tb5k/TT+ZNpTmjQLobXXYt/GojXYfZaImir6YEzLAFQEKmYAOKKK05j6a4z0D5CZs5OTQuominyka5P4zZtRlZzsQPGqTA0EocY7qDjeGPSkN1mman2TWywOEu++6E1/8wqM4dvQwapHUzKvlUiOaMmZDlTNwZzAXlKHi7Htn8Vd/9S3s7S4me7NH+CVN860KODNA1fSzmLeJDtgNNMGAAmUtrVMB5CJDLXq5q7g4h9LL+H4qg/RsXSONMK/NAVmbqoPLXsiJ9+QpA9nFfid/dGaPdGlRSntvWqXqtHbuVUFLKYJHwlUaB+iakfeL0tDPAkjnQqQ9FZT4WHlI+cdBGXY4WivkD7PPWS5x2SpJRZMp1mujdWfwWv02dj+/pP77eNO8xCwaqCTPb15jeR7SeEj+oVRfnu9sC4HLPr6ROPH6s66W++rv60U8kXUc4O0kw4pG/eUgI0ye2qVFhu1RpBH/yPd0WbeyPwCMUmnaZdPftV27UDOR85pyPbpPaW9a23edmBNq7Duprm8PZmcJ6WPrgFynAhiXLl3CD3/4Q3z6U5/C6dO3gDbmqArAt6ierXeM4ygRugFsbW/jkUcewfnz5/H6G2/gsoOVWM9TWbZwyNSkj8R1K/mLkfs7HTtDZXHSQagTjlw/ggdffBB3vHUH3rz9TZy9+SxWdeXjlEBx7JURiU0p7Kl5XipK0YteZPqOTSk5WM1kSp6SfbrU+tz42YI8qj1AcpZN7UmUYcDvczEkKrmtWyjIxtLbskV5hu9Fvsch+J7ZgnQnYBhDzoLWdwNHIYsesgGkfToyBjCvyfF03rOKCJRMxEI3SwWfPv0JDqq0zlVOm40w72GhD6kk7LpWjV9oqqcIoKtP1tnPQ9nc3MQ999yDT33qU7jrrrtw9OjRn3kMZj947bXX8Mwzz+D1118/ACcdlIPyC1K+9KUv4Zd+6Zd+JlvJ9evX8c1vflOirh+Ug3JQDsp/R3nttdfwH/7Df8Dv/M7v4L777vtAusmxY8fwL//lv8RLL72Eb33rW3jzzTc/UrASgTBfzXHbu7fhN//Tb+Ir3/oKvv2Vb+PpTz19AFY6KB9K+cAgJVIH5FAI81qwMRC2t2Y4cWQbx49uY2tjwNZ8wEYtmNcBRB0guf2/aCyp2jqwXDX0DlzdWeDiles4f+U6ri9GLFZdnKYsR+aW0oFlR1l27LmdTsu6s8AiKogNK27LhRFYHbiqoLQmQKDW2uQ8ZzfMIlWOOHIpGb9JDWZuVNH+5VzvVCxVVhglxEGvRkxzMHVz/iXgiRkk1EHTO4tjjuFRS9wOTmacDmNc7qe0G0bOkojY9fZTNiAaAMcdAwTkqEvsH0oH7DDu0XUcuMSQyAd2CFZjbTJ+MbGGybf+xsHbDBEMjhvobHVMjR0CEpk6iuLGkBlK5W8DlXEfw/iJMABFHZECqrOBS0hvPJGvEcPxaKIejdjD7jwOIzkBOs+eAsackBbNi5GcDZGqSeZd050YbSiBxVCTsWEKvhP2mM67O4OScdONuBR/ZwNTNibmenrvqEUci8NQ8eBD9+MLX/oMjh45jM1hG2DGzs41UCk4fOQw5rMZmLvIja2Ca8slnnjyR7hw6bI63cXIaSCV5XIJcoCO9ZkxjiuPrNaVLwxwMbYGMAsQqo9i/KkAlQF7e0sQOrY3NjFo6raihugCBSi1hj5o/Liu0ZQmgDx2wIWvRaW5pYUDFZQhwsK33jAMRVItaTozAa9JWsSWHAm9S7Sf3rsClAyMoCCfrnSyW9I6L01lEZUSaeBS5J58k3dcrdRspbd+ld4SAaQ5IKtUCYFuQENuEsmnDoMbNDO/AJjwmoAhFJCQATrFwJ8kaIMkS6w+eGo8TKLwmJOmqHOjG3gDAOleUjilBVOZ0TTyTq2UDLHJNNy7gygk1ZUAJcSAautZ6hZj3ujv5/XCbJGlFChKRYcYhlEDaAposwuorjWNAFPQxgaH66mhnpQ/bP02japk0QC9f8XkBKvBVfoz1OLryudCQorBXIoWkdAN+RRy0/aEgSwKYZIJKn4yADjzhq8Vkz2Uje76stLMnT8ktBPglQBAQj7prXA1wMpPeXa5HHH58jVw62jbWxgGwjAIqGk2n4mjZdZAdVRgDVBohjbKu6tRImh5egkqKAjDvbXpjqa0b5HuszcCyE2c8CndRqbNlPcLGouuRMRoTdoehuI6AnfGyKPOkTl0bP8pnmbU1qUBJ4EmYC6IY7fUqvsdu17Cbbp+ZB/tug9KyrPODYUV4AfZ82fDgN4KiDrmdcTWnFBbxdXrjN0mDgChUsVsqGitKwiJUSApMVnXecx3vv3cYflwpVlyvUUifRr4ViMp6cGOSzj4h6H6f61LutCmYNJaq6+3qmumQW4su3pFQNf0e64zEPSZvJeyRPhga1scpQa0M4cKICDhUiQdoESKUP1Vw9YRqX6AAJT7ZYJJtLmPWaGYq1oIRw5v444zt+OO22/FqZPHMRsqhqoRWJOu3ZkxdgPXA71J1IXlasTu3grnL17Cj19/A++dfV8ACcmhB8C9Wfbn1DAw1WXWdZv1Ov6m0tf2YnuX80+pWHWFtQqYXeZa+wYG0I18+ri+Y+JnAuRxHgkHunyq+6w9QRbdRdXHfTRBqtH6Z+cTUpWeJs+TiSDfVacV2Zrw7x1hlAFKfprRz6Nv6+e+PGKmWJ8+bt9vaPo+WNbX+mCNjrZWLV0XbjSH1hKQL6RE1+N8YONap0f8quewNRB0aPUI8LCPQd9bO0/E4RAwz7zVG1AxbdGUoHQmIIoLF0Y33/KcNKoXTEaX/9i/ZqazmngjnzEAl50bm3N87nOfwe1nTmNjY4ahzAAGVqsliAjzjTlqkX1LQJyEZWt48skf4uzZcxFx1nieSAGkxlfRx9abKWZpvej+rdElJFWuRv0tAhwdR4l2ONOorPKerY+keyNxEevKpLB35PNaphH5h3mfYb9EUSj0skhTGrlVLQWXjSNHJySdzOy8N3qZzDK68YTn988dJ2Cu8ZjZYyzSiuimSXYlvsiXAfzztCZlfed+2Brm9B5NdTTWdkKJiD6arr7WluARpmArMPs6Dh1fQViqh7n+xrbfJPm3NhbT3XzP5iSbcx+BAH6l+ghZ1sfDzFDkhnzrEcJVbkTdxkcU51cbWzHgidKQip8NkXROMWcE0Mq4hdnkj9lHtN3sGMwyxX6SpgY0SuSzWZJ363Ijy8mpkJ6QZrqWJq0HvbzrdqYAYbVa4ZlnnkFrDadvPQ30uVyO0LS9pRTUOgDUVa9jEGa4/bbTOH3LzTj3/nm8/PIruH7tmu8psLWX9s6JQsA3BiTl76dy2Yg15dsCwuGdw3jwpQdx5u0zeOOO1/HuLe/J/JWQS8X3DCMHu+x0mcPk9k2oTmVRzQ175RdtFKTpcNyk09xIn/I1ZeBLA7XrPlYsJFInFOqotWOginHJWPaI2CW8LLYwOysASGetadv2vZ8zMv8FW2hw16zncJIrKmc10qfbaTmlestzabqaPrPOuF2jSCPNY0y36CMTkFX6Z6J6yjRM1zfilywjXeZrm3am+Hkop06dwuc+9zl88pOfxC233PLfdVmDmfH+++/j29/+Np5//nlcu3Zt37wdlINyUH5+y6FDh/DYY4/9TPKBmfGDH/wAb7311ofYs4NyUA7K/wplZ2cHv//7v4/f+I3fwAMPPIBh+OmQDCLCbDbDww8/jPvvvx8vv/wyvvnNb+Ls2bMfUY+jFC44fe40fuOPfwOPffsxPP7Lj+Opzz0FLgd60kH5n1c+MEhpVsVpcGg+4PjhLZw8sokj23Nsb88wmxXUKo7KoVRAnTKtMxZjw7IBu3sN1xcjru8sceX6Hq5e38XuYoVV6xi7HYJbio4CYO1Am2+TGYgnG3Fu5FQQgIdFQbHISX1y2CaSVEgepSAd0OyQb6lUvC096Nmh3MAZnVkdiNZ3+A1QoUlzpah3P/6CuctleO+TGp0KoZqlxA/ZYizpzYxaxcfp72pf7JAszlw1NDY1epNEXKo0vZnjACMF5UiXarTtqdOQ6B/mbhhdWCEDdu5GODz9nWzTT3M7KckwGLxgVChheJ6kB1LgFxWAempTvpNoCVO+CeMLu3HWjAc35i8kw4kahK3vHAAQSROHxG9lYpDNxQyBpIYYG5sZ+abtM3pPa4UVTFAI4bu4kXM8jC0TQN+NnDzMkygpzud9Gqkh1iNJOrbeUKjgjjvP4LFfehSHjx7GxnwbrTUsdhfY2NpEh6REW+2s0FcrbG3MUDcGfO/7T+LFl1/FcrUH7i1FoQiKmQPNUhCUQnKjrnc1SCEcLjq+NgpAUgzgsm6HWjEMHZUKhmFAVXCQjE+jiYDQlQfH3jFYBClhNAeEBA2TcciMi6QG4tZiDLWokV3WWQej1sEd9LXWFKFMAUlJ3hW9Ld6bzLsBaoir82YzntQ0ZZ7KMhnWAWgaSzNew9c9szh7eAAqxBhtqSSNtq01cXasVkJbM7ob3yl4gZRexouzoaToLhVNwZa9C0BHwBPJENjFsVGrAIUCLCpz7beAWaK1uNGvdwGZKU+UGgATAlI0H8Y4BsjIxmjyopSCSgWtN11L4aC1MRmviahMws1N4raH9RgrwgiMEW7szk7i3hu4N9RS0UkAIVYMzGbtDwqEc8O0gcFszlh4Bg5OEdlFkOhCIebiNqvxtvG5RNypE14sxsvqMPE0HFpbBijlCDWTSFmIEnKPvJJki1fbvsnoPumL0dlHwozVquHyletoq4bDR7YAVMxmFfPZgFoJ89YkxRhtgHnQUPfAYtmwt1hgsVxp2kDvoHaDYi/Q8U7HZXOzv09TZ2Tav9M+uf551VD/rQdAZ7UURyuDJdqjXClGb0DvKzU8w0GcEi2OwEWcbSbfV6vRd3EDyu0zxhNN3jFDP3NH89vY2nfYLf2OhgHz2QyntgtOH50BbcAr43XsXh9V5oZvpXMCxjlRoTS0tK9TECMpYM3Bk2w+DUnB5kyDLnIzAeFr1YhfANrYRO+qBKA6sFHASpT2PdtzcjoUWasW0Ysg4KeeeF7Wiuph4UvSdznxkoxjGCTCXRsTuAYSjbGrFmSphAFIKsVCHmXo41g2NzZQiHDy+DGcue007r7jdhza3sBsVlFVf7HoSaY/StqmjsbAamSsxo7l2LBYjLh4+TJee/0NvPvee1guR1k72cHrjp+pbP9JAJd9wKB9v8feYLJc6rEK4mdSK/1D2WPCKb5P7lkVPI244c8YmA1r/fM+uIsp+p0cUNNuxpimtJAXwgHPCJ0q8VbSceRHgED2FadhHvH6kzc2cmhvbvjsRDdP54nJB+m37q/mtqb7tc+rj4/iXGb6u9FKn8u8FZ+xbQqT9nhf25x+6tzmYVI8iTSH+3TOG9BH5sQYIGg5aZGnbyCvjdy9RKUbtXmjUeU5mOxp+rdt7HnGbJxFnymF8Oijj+ATD9yL+cYMtc7BvWNcjRiGQVLYckcbO9Aahipg2xdefAk//NHTkgo6yWEggY597LJ3+Zpy+awL2c4THCAb03nl7FVAJc7dBq62MZPrM9oSd49W6fqE5CQNOuk6Nxnm4DJLFW40s2jHYK+f9Ixg68541+c1l7XvAU57cga02SNJNuT50/mk1MYE9ARycLRdisq6qa8vTSe8zlfTPjpTxVmPk11FGbAz44auKM5VhLAOu4zSc3KGlnmzi14EqD2I/ExixQH+icbG6wJ0sOi7Ol83Fn2qvydZI9R3keL0t/MEkC5yTWW+fNb9e0q2EB+j0pT/X/b+7N3Wo7oPRn+j6p1rrd2pRUKoQQgQjToEEjYmJDgktmPHjuMmzs138eVc5h84/0yukudc+OAkjx8/5jjYzmcbA8ZICAkJIYHoJG310u5XM9+qcS5GW+9aG28SC23Hs2BrrTXn21SNGjVqNL8aY0GXvJc4TyuN4txbKDVJSun4Qn8MeqqdkfmHkn/OJeFosy7BVMj3+mAS6bGUsINISxfGhu1jXOgOBwcHePKpp/DGG2/i/Xe9D9ddd43oaWR+xorKpIesKmq19xBuv/VWXHvqGjzxrSdw7tz5xMpJJoa09u8G0HnmE1ZwjK15HYPzZWzssZeBcPLiSXzo2Q/j2KVjOH3rS9jb2lPph8QP+sQeO3pvfbDDLMtO6DIxf1ZemaBgtYHPoLxrojXt04RYFzzsHnovAyhAKdieCk5sMbanFc7TGus9AZf2LjYuJ17LIMREkkT/Ub7hiHuED8vQXzC0HCh7plvzDdthKiKoTy+/n3zs4rMjp4lTfGEHFiLJ8mdy1+SA02VgDR+TqyqlRBYqK92tF3cW+5FdWKoMHafuqmrHjx8HANx66624++67cd999+HYsWOH97craL13vP766/j617+Op556Cru7u3/f3d20Tdu0d7gREf7Fv/gXuOGGG36q+15++WX87d/+7dvUq03btE37x9YuXryIP/iDP8DHPvYxfOYzn7limbS1tYWPfOQjuPnmm/H5z38er7zyytvc06Nb4YJbXr0Fv/7Hv44b3rwBjz70KM5dc+4Iw2rTNu2nb1cMUrrp1DZOntjB9aeO45rjWzi2VbFVCdNqQp0mtN40eCtBzNYYe+uG3YOGS3sz3jx7AW+dvYTd/RkHHVi3roABAvemmS9YfaiRbSIcJBLsghq7bsSqgbwEoXjwV52COdsEgHRtmKbLa4qXR2IQR8kZfYA65cj/lIw5iJJaaqhbXw3oFMampYDXzE3E1uEx0w8k4Nut0JT1Sw1xcmNYysZYsN4dK3rKLQzWMGz1bZbf2OBO0iezluUp7kgU91p35xe8fAQOOcQswCfgG0bOlsE6XD8RaHOSXEduSMMC7hrgc+OcPJhv782OpVIogjwDYGcEnRUtSUSwk7EjiM35MDnULdjiOQxSUMT4svjY07u7hBZhjhlmNFbAhfIbPPDVNRvE6CQMQIRlFJG/KxU0CODP2jIQFz4roZeBKgTUJg6YorzQEBmx1C2Uxmh1783tVdwxPdWK99z0LvziP/153PaemzHvM/b3ZtTSMW2vQKWitQN0JqxnyXS0NW3hhz96AV/9m8dw5q2zaH0tZcY8K1TMGSmfWwYd7gTBaohMKKXqmuyeVQdU0DWTV58ZmFmdh5K5qNvceBnDAJMZWEt4WcrBNXMk6noz4JYE2IsHhgQUYE5vKfPn5SihzyWSjE2dtfxSlHiz6zzGRCGniBltnjFNVZz9nVCnIqRimRM7qmxggeVpPpu/qUSpMZtvc5VOpEH+on0yAFXv8OKWTUso6pzI6TuVibp05jYrUxbMvWPuAlKqRi/u/g+dDq2dCuGXxgwtxieAOFsLRWguGWYI8zxL/6eKguK8PncpQ1XMUwoF7lhZLjsFSVmuV0yFHHwza6YXIsmA1FrTYBW5w68Pa133Js1GY2CkvBeZm7n3rquJXYZWLx1CvhKlQqaW+yjBi5MCiIx+Xo6HACoVlW0/YYyZ/2T9G88TSXYAzqVMs+O/CJcXtgBLXjs9nbQNkJLxXOZBAULBOS5O3BpNMjA2+uaOfc2qZN/B1h6n/QZSDu38pV3MzLjm1AlQ6agkGSIJRUvFbDtQrjdgtQUcP76DS7t7uHhpDwfrptuA7j+F/N0uazDqI5FyH87PeR3aXMH7qmTOQZlUPiUDcpk1o4xlRypNM8LpejdwS+H0viZgxt5Rp2JFQ/0kR2+x+r1/LUqWEpFm44rT45b5L3GHjlMzPhXGVIFV3ZITz+tZneEdq9UEZim9KP8YZdIyb4UUCGl8VA/peyEjRkCygbEE0Nklax0KepPgsAFRYZzEwunUDRgaGUQk+x0A6mkdCssbSFz4WgBXpShYUDNTjuAPQim2pwWHZgbokEBt71I6mdE1M0wEi2X/1z1dgUrcNEi+BHtfRe2z/+RT2N5a4eTxHexsrbCq5PNUStrbFRDfGWitY9061jNjd28fZ89dxBtvncErr72G119/AwfrWVQncCp5m4XVMtpyOOqyDPIc+kxV02Xwffm9vM7m3IBnQNJ2XcaFTQFd75fvizzBAqaHQYwWXLeH+Eg5/mIjRdKhl++yNxgAMw+Q8zVH6BE6CfpZ7kDIOhq+pOjoMkpvujYSjbwPIZ8oXYs0VvmO/b/xsemsNNxCuSs5yOV7jUERxjnLdBmYwMhBtjNS8AcvgVyU/pvHOT5zyRUjQCvZGGoX2v2kNqINlJb3wlgi1ogDUxwkId8NmWgSnVwfHoeExJlu8+T++gjJrk70IJENH/rgB/FzD38Cp06dQG+MNuv+M1UJRqtu1zrLvraqePWNN/HXf/03OHvmbJSsSeXjzbaLLrHrQpkoGQDDqe8CsDIwPLtp7utGItYY+MHe3gPQbdlNbT5Z36uaDwyKL48MHnLQsMka1lKf1j+3D7sDWCTo7rAPAMmuY6GfZSohzRDl1Y2kswjZwP7vEBjiqExvtg7NPqcRzGTgwQwSyr+bPpnBW04DBQq3LiDmouM30JaX7jabwvsTcsnteyDeT3FYyH0rynemk1iW1eByOG+Y5BuAQiwULCY7DKzk8i4OxsmaIl16ltFGH+N0AMxnYLLQ/Ra2Zp0L2UT/UHrZ7rE5ylLM9JcRPEPeB/MKhazwiwY5yrAsPRx8kOhC/rw070MvwnbIz/UVnXhQ5Ov4bPjvo+xlvWAJRrLrBpmvz2dmnH7pNM6fP4f7778f1113LbZ0zVgGZi6ECRVsdlAnlBXjhhuuxcMPfQLfe+77eOGFF6W8b3q22ZBBRIxNSBg09L3PlYeRHsuxKh0rV9z54/fh3a/cgu994Ht448Y30MjsmzgcZn4eB2baMkly0/5r69T0JC/PO1Jw1OEx2sHhh0gDRtK7utgTBazlxDvWc/e+UAEqzE6wDMHRn6X9kPszgEmBQ3S0THXOt1Qw8+y6hK8pmHzSPlEAt4R+h/sQgKjMuQwDpDoQjGzrTWtjqa4cMfHMjE7iH3NOYMiBStcPfNDIjEeHmPDqaP/xP/5HAMD29vbfmYngqMbMOH/+PF544QU8/fTTeO655zbgpE3btP9DGxHhoYcewr333jvaeH9H29vbw1/+5V/i3Llzb2PvNm3TNu0fW+u947HHHsPp06fxu7/7u7jxxhuvSDYREW688Ub83u/9Hr785S/jscceu6zf8O1uq3mFf/alf4YHH38Q/+OX/wee/dCzmKf5sO2yaZv2U7Qr1ujvvuNGbK0qdrYmrCphVSuIAInhdLTWpWRbEyfZ7sGMty7s4s0z53Hu4h72DiS4YKWvGrOn5I203x7uhmR2aIOZxOpJECCUGZwBCIJdS+F4Nyer2qhuKHqwrrNVFgIolcsyAaF+WXdmmwFuJ15gjqBwqJmRDX2fp/A155OCGbL5VwopmMBOwFOkDS+kGaaMPAzzP7sTWUYj/THaaIfzfdYngEYh6IJN6Os4jUTXGEs4E+wXtswHnJzfBnSCBPbNyUYKzuKujrfEZ0MAI528MueCPLv7de74IAFOuRMLmpWgdfWpqhPUa9ovnGdsp73i5FTmESrh1KQUeLfSfEADUVFAVDgRw6ltjjX2AAIzqVObJNuLOrdQrK9apiqB58aNS2hkU2KBYgvORZYUhvo4kkMG8kEXYAbI+LuBzLGenRZUwjmDfLpKguWe+UXz+R/bOY6HP/Eg7nrfbdhe7eBAAXSlMsq0wt7eLgiEYzvHUKaOsq7Ym9f46t8+hldfO6vZgciBC9HyCX7AU3k7GC4BlBK9uOXTgQW9Nxzsr0G0xs7ONgAJghYqmFYTem+Y9RSsZ1TSueAu16Koo1Ad9NUca+bsJM12YKKESE9Dyj/LUFVKRSFAcQGelYN9nad3M8BdQU2to6WsPVQiG4gKLQ02lCGrVy0FIPJSRs7zJCUuumZyQiFUdfrItU2zuHT0We+F8CwVQlG40txmEI8n1qHvrHWlwEr7nFCLlsVgAtA1m5WUqrMMPZbhiZQvK7MHXeqQIc9KAMrj6zRJoAVCR8ua1FtzkIU4YYvLp84MaiJZ5r5WalbM67Ws0VoAycWk4CQNjjWhT3awi9M95KfIDwPstOSQjX3JHZcMKYG3yIhCkDKKvXdUEoAKFXGKU9HShE14qFgpQSOe0o+QApastDHAlAXHmJW/LV9LygoABVjBdx2/pnuJEwWz5HVowRL72wM6Vn6sYEgdos7ikTbdS1CYs1f2UCu3OAYZbc3Z2uwMXNrdx7rNuHY+jrazwtZqAkrFarWF3gvaPIMLabktyfC1vb2F7e1tnLtwCfv7B7CD/gGWsuAeZM1xyPlh/pIsDz1Dg2wpuDzoKfqGKO9j8p59Hfoe1zp6IV8rpQpoT5ZhBvQIndYHyuOlCL+YDGF4NrNSqj7HAEQ2DgMVyj2WQUjmVDP9MLCeG7a2RGa9dY5xvlTMzDhg6V9nwqQn0OdZyuu5tNb1LVnObBwVzM35xuQXSKF9PQCezB3zPKOWgnleY55l4na2drC1VX3dF6o42F9jvZ4RwsaCHNKXzozSAS6WwSwCCaaj1LoFQOUfKVCThNdtD22tx340lDm0iYYEo5kkM5Bm9HO+T4Awto3IlDbNxjRfxZmUbnnXtahFSy66bqd6IkQGSylOmZt169hbr3Hp0j5ef+MtvPLa6zj90svY29sH2AB+KRMDWCYpLAD9jF0PB1TN5AhG57V5WN9KTRfkIXsCKjNtB/BAYwSf5L0LmaD/zQ4GZgvKLl/Nw/tzP00FC4BK1nHDZjAZbzLgckPMupeDS/TdEWCkoZMO47HPzPgydk//jVewPUlvSc9mH/WCXvK5yV+j9NgLX07JSkrjQew9Qn+4fWDdRhoHg4eu+/iQ97g05tTZpSxPsz4+i0x3SAAxMoAKx9+MsFlASNiVtA4IQcLl3htjI45eIdGeExdot0SrccLaPZk/UsCU7YCAjbTbi50/iWJuHYicmZ4I773jvfinn/knuPGGayXbKKuZRCwHHuYZBNX3OtAKYd0bvvyVr+FHP34x2XL+UFkoBmz2WSjDqLM9CLM5dQlksJIAcTuIBAgL01dAoTObPZ/m03QYmF1qa8dopNt6mp0gnX1i86IA6WJ7oH5pZZ59DhNdXUbZnuIZU8ohG5kAL9HFHPqtlQIy34DzlfZb/DuWyVPKPIvMTtmbVZf3bDxQ2Zp0TgCu71g/LKNibn5wRvnQe8o97cExqkFOedd9EzZJ7mvHbGDASjmZ36VHT5R25vsxuEzX0oIGsmpNSo8T24E445uwacnnKZ6d17Hxjel0Lkdtn0sC3p+TZAWgfOjjgjNLkCb5kYjyebrgRVsY9i7fZ9m/Ep9UH/uQfDyxLmOwA8sivRfjzMt3WVaPYxy5JHifrXxnEp4h95dCNcZsXbxw8SK+8dhjuOuuu3Dne2/HVp8w1SLrgoqCYtTeqspTBFx77TV44P77sbW1hR/88EeeMdpf53yo+gObnrjcgKJDg2znkKvOQ0angebAzv4O7nn6Hpy75jx+fNuP8eZ1b2IuNp/hi/B7OHZkzyYPowmjtRm2tmhRTsfeKVmF+mATDj4D6/diTgGgMaOS6PEH6455re81uwosiZZQ/D35EEjOKK1v0vGZFqH+sCRj7YAGoL4Hz4g/u39mmkrsgyRZ7OY5yobavp31RSB8eJaJODOb2T9WOm/JA65/On3I5yHbpi5fOqNxU0E32uZjI9/HQgJefe3EiRP/S/e11nD69Gl897vfxeOPP74BH2zapv0f3gyg9Mu//MtYrVZXfB8z40tf+hKeeeaZt7F3m7Zpm/aPub3yyiv4z//5P+MXf/EX8eCDDw4Hu39Su+GGG/Crv/qr2Nrawte+9rUjdLmfTSMQrjl3DX7nv/4OXrjjBXz1U1/Fcx94Duut9TvSn037h9+uGKR06viElZ5C59Ywg1Cm6qfrdw8aLu3POHdhD+cv7eLsxV2cu7SH/YMZc7MyIKOBBsBtsWxMhdO9IMBB+ZR+OGQs0CxBXsvyEJ6uDga6Aj3CuwdzS3ZzN2kWCgl0Ejx5b+8OSrGAV+8SOO89nJfmODHQjARcxMnWjnBs5xOQch6Isn9aT32KW7elkl7u9rHv3WsqzhQqhIoo6wIdmwQt0mk9y0LCQOeRJoyOzuaGU0M1D4DixJ0bzn6NzjE6GJpZpjdEsMGch5IZIAALo2EuPgB5ds5aENNrQYkG8v/BHR42FwI4yJQPGsYnkIDqwnFjhr/No7oOxVHaCaBl392Lp2NQ7iLhRKO3l+jjAAt4mudi2VvEWWFAgDFtvK0RCU6aY8cqEVGehxwIPeSM6GgwwFeJ2B7Z/CWAFRizliqsZVK+IjAXdYJbaUDC1rSFD33wLtxz713ovePipV3Uui3O46ngYD7AxUuXcOLEMTnB2xoKGI888iS+9+z3MR/sg7hLphelr2QBYvSmDhM9OW1OzpzhqZCUwrE5sGABMzxLR2sNczPQDYFQxYnMDZLYyLIaFS2Z0Dyrx1oD4AXVsymBKNIFMdTx2VGqZO1oXfmfCR2p3KReP0MdxZIHS2luDjE92dht/ghoXTLXAVLax3iLyIMCq6JlhhLYk7yMmJHLAqHaHwXxzG0GZumPrctChFllVPMU70VOLjPQ0FF6EZlLUqbIsp6VGtl5JGOGyNSCSURCl+xfUxV+sjJUk8o09XCbS0/xXxRyiFnKHKmMsedXGZw7QQuEbwqLU96DdOpM7uioRYtoEDQjE0BVxuAOSd9jGKuVnNictAyegZZqncLx2Y1PNMmVlUWzjGslXMiUsqDZPsI6dxIQs5PvrKd1C7hbAFBDTFaSDwC4o8DALJJlq6H5/FmWGYBBQjAvJ2fzrG/zElKVCFMtWM+z7xpyOlozLrDMU58tSFl9DFaKlMiCSBF46i4fMTjCO+sas/ns4qgmGOh1DPDrQvFVBP+vrMvOwMF+w1tzw8GpEzh5smJ7xdiaJqwKYd3lzQ0MLhWFJPvURBVTnXD+4kVc3N1Hb7b3K0iWbD/RtzGQQVMZvGw/Byezga51rdja7MmRn8dajCyF0BFO/rk1bO+sUCtJmbDeJLBbJDsRs8hS7l2yfGhZBOoyh4VSGRnl81IIjeAgzQx4imBm2kOZFDBRoo9UsSbg0rqjNclKx7QSvQpyKrpMFVu1KEAll9IKYFKtAmgyEAsQql0hzQhney5J1oPVtEKbZ9koWWTcNk0hK8qEXoF53SSbhC1Ye1YBSgI7S+YnHt5fa1E50XW/6UIzXcNW6yHBZOQZYJQKzYKn4+2AoqHApGUuGQrwD2ANc5O9oSnA2Lh8EfC5mtr2qmgZZNXZOjzbADMwa8ak/YM1DtYzLuzu4bU33sSLL57Ga6+9jrk1X1Ox7IeNDflTB7JQ6InLawNQZGtP92dQPI79iYMeOWrQ8CDmECTCyM/+HtOdPXAV7zBAkgUZPfC9sCdyYzr8pdkbIVEZ3lHvuXXVNf8hQOiBXwr9O+gWXTJ7YjxIoN8e0TexH6D6ZlDA+Ng/YclWEsFafasi5gNcku7xPkYHrf+ZDPB+xs2+Iyvt/OmcHkoBCPAekdkO3sOhU7JHBN0XQ1bAUB7LUm+PDuYpJKeFKPExV9EfG3cfaDh2zq51YLM/29WrkaADbwXIxcdva5zCnhC9tkdGUT2wwZbJEuz9OXXqFB5+6ON49y03Ska1g1lAqiT2UesNB+sDbK1Wkv21S2nj5577IZ7+9nfQ2wyktT30acEkBI7hJOp7gNvsavdldLezYmyhV0IPVAWxNWivWSZNFmnu6JEHl79Q6ouXdl/yBdwG9j3Q5EValzbd/pM5QDZESC4B5U/LWGK7ashV8inV9cCZziQZPpse6CkM0oNqvnYQ+QSNbEv+ZLCCPmLtyKEgHtczAkDkIHGKwRL8DJC/zOUTjU+A2Y1I7zSam3yMDso7Y6pkfAqksPc2laPCBzDzD/ZEAVEp/9herrxlYLA8eSajlpIv8+9S3oeZZOPP0ggqV2y9W3+DcJTWgsgLpRWFfmp7hbwmyRRmtbvgzzD2KWo/u+4sL8tCx9es7T9+eGGc0qDnEVvlsFqMzj5MPWxBwQPLjcRszjwX+3t7+O6zz2Ke17j99ttx4sRxTARMRbLA9QZwEduo6/2VCGWr4J6PfATTNOFHP/ox9vYPYjY58XIa6zBXSKR0Wa3X6nr27ud1uaADEaFwwXVnr8U15+7F2ZNn8fztz+P1619HJ7MdCXVSPwrYAZ8GiBY9LoQ+pTkOXWKUVVDZAD0U5Tah8abyjJWE9P1T9SqiAiZg3VltAfWnUugzRArctPld2Cz2fPH5hG1l/Of7aqgMcihL16NkpY09dihfWQidumTKysM3OWE+QHvnoAyMB1lMp+yD0pKBtMGRIRfHGSe2tWmAqwBIwXkt1gNRSKd3KvD199mYGfv7+3jhhRfwzW9+E88++yzW600AbdM27R9Du+mmm/C5z33upwYovfHGG3j88cffxp5t2qZt2qYB58+fx5/8yZ9gf38fDz74II4dO3ZF903ThM997nOYpgmPPvroO5YNkmAZWu/EbS/chhdvfxFf/dRX8d27v4s2tb/7AZu2aaldMUhpa2vS4P6szqWO/f019g4a9tcd5y7u48y5XZy/uI/dvQMczA2zOg/EiSFGzgBqcXs2GbTpbzNQl47+WqPcx+CMMQdG6ndRJ5UZe92NQUsBbCWOLAuHfOdOTTeGwzFm/jiGZkKhgrkbuAAATWM2AnfV5/FFLx1wk5yH5dBdR7XDbubew3HU2bLwRBDXHAlEUnZIHErmIlRHAchcNen67MwTYzaXFDNnmnXXzhQ6yMXmGgb2aTFeTwsfoIPwIyaXDJEE+9M8LgM+RpX8fXbskDksB8BW9FN+Tz5mqAOV48SX8wNZ6mZznKkT1zKPqPOds5OagVKr0yNK2BS/wAKQuVRSdhAUy5gApDFI/630jpVd9JKJQJQGXNJNAwbmOLXOWor77JsgQMBBtcJKLFVAgHG0woom3H3nHfi5n38AdXsLcwd2trYBEPbXu2hcME0TtrYrmAnr1nAw7+GF06/hkUefwMWLeyInmAXM4/NBetJQ5qBWAUsKEK17Wa1apYRRb0KXao4viJ+p61rPWYSqlpgRp3cEdqdpGjKreTBIedQCCuLwKcMadud7k1KWrAKNkuPJM6pp9hv4vDWUUkEonjFDaDJ7NqU+z9LnIqCg3jtomoyDRb6himNbAUCUnIA5gE3Oi3HacFqtQJTp2bUMj2R72VpNsQ5YMjBJhg9IIFFpMNUiZTl0YZkkLywyprnDjSNjVWcABU0DQAWkoM2q4FCoOKAYKzOqAkzTeWYtYWgZpsKh3fQqynNGwSukzmRS3rB1RyTjZgV4UI3sf5YJkAbZEuvNs9ANazD2MONz1OpyVEptyH29s5efsvmT/VQcqF7WI43HsrFNtWKtvNwVeGtO1gICamTWsj0vyxgD+RpwkCGZTjzYRNYNOy2u+66VEETIKg+1MIa1kIE4togcWBye1GFv8D0tyUlzYkcsZdQT7N0gATNeOH8B83rGqZPHgWOMnaliWmmpLmY0hu+ZVAuO7WxjWlWsVru4dGkXB7MBJmqAvRayQvg0+m39is7kYFuANazUn+9jSotaygBEtgxGHhAiCJiUNTOa8yJpxgfEPuWrUkuMsACuLHucyalaCVhVBeHFfiMgu7iWmVHrJCVMuu6HTCCqABUBmOj7WwIZzXPz8dr7mmZ1s1PKKiYdVAWMJ6ILWSYM4RcJVgiQ8mC9j1WdsLW1kuxEDH2+ZYpbo5YqgMoEPpLMCwq+TPxmAKnYU+XzeT07iEmuVSCYZtjwchCW3c/2bzttDxlfYwFqllp1fi17k2Od0hqwDJ1YyJ+rszlQLlRe9HnG3BhzZxwczNjdX+PM2fN46eVX8PLLr+DcxQtpneeYW8jZZVvaByYrx2uW6zGear8FyAYYMsX4Fa7dp7UaT8mAw5Ct+lSGb8KxPwOgrjKyRB/T3cv+LweeQVeuA1lvXR9fNB4/TSZJ7E8hgYdnOZ3cCEuyy/s0vGjsw1H096lNejCnu8neC9/bj6TH8mW6b7HZokfRYrj8715Lh0Gy+oPynwFG0CV/9PtgtpLxTgbF5RvZ7ScZktE898seOL7Mx5wVEP2X6eGgA9MNYmOFRUJzv2XeerbiEKXcg4+jcwZWDg4VLadiVSZ87L57cOf7bkOpArqfPLvnGpKNtqBOonM27mg84+zZC/irv/oKLl64qHxh/bdXxAEbAH6YQPrGg13Guv8bLWxLF54jt7VGPVLnT5k4Ax8GPiGhzbLKITLPJLp3vT903AATihjhtPbh8+Z0t/XDas2Tjo/j4ITZG5alyEjGykMekKfEP5kn0tR6BqVSUIk9q0q2yTt3zzBoI/L7VBey+0zHdZ07vcz51GytpM8nbT8RWcfIgzR23QEQMP7ga0hrI8Di1l/9htmzrCCPyeRjoKSSjU8py7OB/mPNZ1BoMAgPmaeG1eV+D/M1KZ+BnD4mRkx2+mPth/oCcgYwhugstci67xxzGe/KWXKw6DeGuRHfCivZOM0FnL+M18lpEnS17GEmOyT7bPCw3jXsCYNMp6Aa1Ja1NTfssWn8R+8VjNYbvve97+HsmTP46D334MSJ48AkWZWKHuiyPU2eI++fVhM++pEP48YbbsBT3/42zp+/YGIRBl722c/jOIq2icbW8YLEOzautGaNr51nOuG6c9fh2qevxUs3v4Tnb38eF49f9Axt3WxMXsidtPaN64OvDMwYdoxleYavnZCd3i+T28ZbyifMsjaFB7vTM+wcIPuaw7YKXs/gn+Dbknwjse/afh3AQfF5VCp6IMj8dtIHsXtmP2BpB2/CP6R/U3x2ORXDxhEill1vcX+F02rcX2zrkOUfa6Eo4DPsZ58mvy/T6Wq2Ja6kGdDg6aefxlNPPYVXXnnlne7Spm3apv0M2zRN+PSnP42dnZ2f6r7WGv7kT/4EFy9efJt6tmmbtmmbFm29XuOLX/wifvzjH+Pf/Jt/c8VApdVqhc997nN43/vehz/+4z/GW2+99Tb39Ce3qU9474/fi9tfuB2Pf+xxfPVTX8VrN712tLNt0zbtiHbFICXuDU1PN7cOHMwNl/YPcOb8Hs6e38Xu/hoH6451g5R8S0EeMyDZDFkvbxGeOCkbBTe8skvAsllksIX4gSLgw8nJkw15cZClYGZaHB7IdHudkUuGiV0aRjVZXzUYJP0FQKyOMwn+grobh+7gAsQhRjSArLyfycnn73cHioGGbEx6wo8BL53mzmUzqn2UCjaJv6UEidJYvS5U2AONfpkG2TyoRgQrjdC7gWBSYPQyZW2Ef/QZxeiloyjTcP1oLS/dcgJAsKC5zYuVzRqcT0M/ijs7zbEShj8P/TcHIYO91JQ9c3BamZ/Pu6uOEQa8FhoCFOL98vtGR4kHO3Xc4TSp6BIlF0cPjTwjDgdAc2rAAsVDWbTFfOR3BgDHGDoyPjGbQyPAHRb4Ipagop3IKiyOuBuvO4VPfOxevPvmG3H8xClx5swNW1sT6rSFqU6YW8OxYztYzw11VXHprT18+cuP4o03zkmQsnXnkd4tV1F2+Msm7rTUCREHatdsOcKjtU4gSAmypiWEHCxBhGmadM1C6V2cViOPW1YdA6UIkQwICMvsRFpuy+cy8yRhqit3prXG2kdyZ1UpVQAInVGnCcyEg4O1zxERYZ4PQFBQDsV7jV7Htrcl6A6g9XBK9nRdBlPFiUB2ANpUJWuJlP5jbG+t0NvsjkovU8FKM24aJBfI2tybvkv6XdTZXauuRc/6xZ7doqQAiDi8NYDAIr96bwP9Y5+QdWFLo4A0O4yC6IhAWkaTddAMROk3y25CAbogmfDhfV0BKL0L6MJOTPYuPCdydJRaBrCQk43BW+YYFRoFYPNwID2CGPK8uM77KcRJ6zjxnDrwOzu1Uaqlj+/O8x40YAO2yncWEETvIEh5OavC2XqTuSMpP1dK0VOJtidjdKrDShkmOa8ZFKpmWCruzFXQZN4HdP9hG4vzRXZwx/URcOvxjIXclf2xY3d3F9w7Kp3CdFxOP1MpAsDsBev1rAAtKVE11S2sporjO1s4d/4i9vYOMEsaKFiWw9xszzla9gu1TM5av7uWGWUA6FiU+hE5GOUdkdalypdZ1q/pMqZ7HdrffJ8O3rLMP6RlVPNe07o64dPnrTVUBdOY3AwHOAMd2N9bY63LqaguZHJeglqEeTa5wZimekhXks/keyuPITwq/QmAMGByQa6VjHDcREaZzrRer9PYpORKqYRmJ45t3Rr9VG+xuQxZJHMgADAa5ln2mlhjkjWOdYtOspgJPHdQFd4rJL/biecR+MQLnjIAIiBZMq/uwIKVbO66P81aFmN3f43zFy7h9TfexFeovqMAAQAASURBVEsvv4q33jqD/YP1AChgf4btYar3D3VgQteKtT4Ge/Iz7LZxz75M5yn15CeQ2GwA6d6oC2T54wF728782Qagib1aXpkzf0SmvfzsYe45hmWyYCmfPGNIIhUP143ArGSu+B6TH7mkpVycLRP7Luubtl85ZfwZfZjHxTPJQNkmr2Ksy+D7UW05hZwGfvRtGU6TZTh8zixY6qAtHUsGm6l16s8c+TsDWijNxcAk6d186HN/5sDjlNaN2hoI+0b4ammfK+iTbJnF/u38lohgepmPiMfR0oK2Icus5KvcXWvFvfd+FA8+cD9OnjiOaWsLAuSUTHpFs+D1zlhNE5ra5ev1jL/52qN48fTLaJzLPLNPRUgTaU3BDsmgi76Bhn6CoKXRhhRJ0uch24/aa7bH+nwiaL6cMo7roXKhOw1DFtgbSwmQjWVOkSXAYb/pflRLBaP7HmVr2oDssXZsvoR3pqlqGTi4vcUQfSRdGWtmkK8yWPctCHtp1hy5s4KGtS2/WooVBbwkHjK90Gjpz077scmRWF3k+4GNUW4Z59CuzaXPBvlqursOzmdF55wGkIPJW/YMcFlq2LI1vpDyhTTwiD1jsA98/SwBHSF3uVvPxpEFEU02YMGDFFup6UXGu0N/0nabZLYdCln222VNSVlPWUBmlig8X5v9DsZng4RTOhgfunovnRC6DPvFSFNOc2P7qe/DaayHmm7oWS44k+te+Prrr+Ppb38bH/7IR3DNyZMoZXI7jQBUEvu+J59nIcIt774Z1157Db7znWdw+qWXxZZiDJkRDYQIlR15rRlPOZ1cDuXdhVz2LO+z362kNINw2yu34uY3bsIrN72K07e/iN0Tl9zGMv4lpMw9hY6kITNHhtxBnobYtfVhcsv8fHHt6LtoLYGlLMuX7r1GMvNDh59s1CPCrwLVn+OdIh1sT8vUir424wOlicxrC7oSAQWgnnWyhZKV5mPUV+nQd7kXbu9qvxeKrc8sm7ykJdjZ6D7OU35XtmP+oTVmxoULF/CjH/0I3/72t/GjH/0Ily5deqe7tWmbtmk/4zZNE37pl34J999//9F25GUaM+PRRx/FD37wg7exd5u2aZu2aYfbd77zHTAzfuM3fgPHjx+/ItlFRHj/+9+P//Af/gP+7M/+DN/5zndwcHDwM+jtZfoDQu0VH3/s4/jo0x/Fk/c+ia//3Nfx2rteA5d/mLrlpv3s2hWDlPb2Z+wfdOytO87vrvHm+Uu4cGkP+/sN8yylRDoEddx6h2QBsXBYMqgoAmlAGNGMAJIsA61DQNaflXx5kIwlzKQn8Otwr/oOANLsPwzPsGLBLjstMzhW1FEC0tP6+hksWw2kZEq4BWoymM3YHuufF2jWlMsIm8HZC2jxnHAsOAwpOT6Jk4PMTu0vg9WZlskpSKWgaJkaczSaA4l79/uE5mHAetAgvGRwR4028s+hntMwnDNQxmjNDBAXd3pnUEUG++Q6nebIMPqEs06fBxoOHRvNlg5f4y8pXzUP82HO36J9YIbSpviQupZzKlSRj7ixlQBKjjzWQOqRtv/giYM7wsf7Of0zp0asDZujJSjJvs8ALwsCEwykJPTNmYaGIC5i/DYnrCm3rz25hY9/8iO4/ubr0Q6AeTWDULCaJmytJrQmjvJaCdwret8HYcIjX38CP/zBD7G7u+dpsRnwAERviJKFsNJrdZAV1s/emgPFDHzRO2umFinzZGNbrVY4tnMMU60o6jg03szyxt7TWkct7PMja1+cYr3PLneIKgiaiUlPWct64uSsIxBFCb9CJD75Ys6uDl7PqFPB9vY2WhPQQWszemvYPrbj7AJWQJWWvtw/2FfeKrDT0iYfRh5ReaflyaL0hq4QdVYa7NF4sLijmZJDXmRlqUUd1RVUqzjximSagzoC7fmVCkDFy/a5c5pIAB+I9VZriXWmsiTzdl5LtdbkXIxSZgKISRms0vrIjrjM93ZtZEkCgG71x2KtGZCvi1swspZl+RX/mBlSzVILKzrAhZciIPXJ9jz5NjtwAeFrCxB4wK9KgMnKtNl+lJ29kb2m+h6XnylzEjKF/P7krNWMN5kfbOyZ3uZEtr221gLPj0bZXW5bhyoWi/0yAj4hz4Kn7Xsa5iAebPtDAIKYGbu7+wKK5FM4fmwbdaooZfJ9UBkYoIJKcmphezVhqhXnzl/Cpd09rGfL/xbOdxuTBF1i7YVuQr7vyt6q7ysCriMGUA/DTm1uRsCZ7aOS0YrUMV0LSdldzcRjW3eH7m9sWbqCvrH/ygwJANGyUxoPVs2AFnzNDM+y6CBPLmgtOc6pKxCKfa8PMFTixdQf7gJmQq26R0UwQmST7GLg0Ll6YwkSsIQjOzqKVhFlDvCeAbJbEzC+7CPGQ5z4enzn6MTnI/nNdVIF4hlIiaByssDfWwqhsJSldBASxrJyIYcOg6GA4IerObgwz4zWGXNj7M8Nu3sHeOOtM3jppVfw6quv4tLurupe6XQ8e2gMQMjBo4Jil9OvgYWemK+jCEznE/lLfXP5LHudANDS+tXnywyarUO+V+Rriq2FHnMsY1rqIVqylGU/A41ZQw8BlLyfJo/Y++HXDaQyHZ4dHGABsaPouLzdApiDDpuus37ENQE+tzlTLvYg6KJ3GkAPGevvNd0i68DWERZryvvkBk/cn20Rv25BF7vtsivLbDJRjGMPMH2SEwdTBjstnuhreQSOGN0ylMsoJrI33unDGObO5iLsNn+z9W3o10iD3HdA5KqvP7NROAg1AC/s+c53NjfwbL35PXe+91Y89MkHcOzEMSmXNIstVKqULLVMsVNlMBcwzwAKvv3tZ/HE409gvT7QVxG8Jhk7xM/lt8ntEQCS9cCu+3ay/9L+7bZ9LXroQXRVtsw4OKzPAWkt6poJYInQysEeSQ4xYh/I9p+B/X2CdHN3QAGzZjstmDQjldlFzB1Vs7Dm+bEDSW2OjMms/bX9Jyk5YitQAlXmdeS6VnfecHXP7Y5Rj3f+JxMVwbOWO8X1yaQbL+XfoA+mdeMy94i5UeER9LVXKxUyH9nnDki6jKzMOnfYl/qUtN/Eb8YL47wM76Dog8sndq9bGsvi2Us7w56T5xOp7F7WVfWRmdV8P7E1YXQr8V6Tz77/6oZwGEAmd1iWpkEGY9xPlvLTbNyeP0P0lYEA9iyniQNshnRPunPQNfL3MQfyjNdefx0XHv0GPvqRD+PdN9+E7e1V2JGc7wp+KEQ4eeI4HnzwAdxx++149LFvYnd3z3mDY4LhO+RCfh/qkOlMSeQGT4+AOJN/xgf296qtcPtLt+Hdr92MV296FS/e/iIuHLsIQgdcNgadGBjn2LuX+Ep1eQdRuSyG2xJ5MAbCj/VTwJqlnJKsZe/B+L5RZx+/D1rYzOY3x/7q9yoT2fV5HdkjREUJps5Zqpf0GFXQBS15+Zn2ikbZ7vsYyvA8l4swjjFdYbne4tlLX8jldMqrtfXe8fLLL+Opp57C008//Y5nE9i0Tdu0d7Z97GMfw8MPPzzY8n9XY2b86Ec/wl//9V8PwPNN27RN27SfVXvmmWfw+uuv4zd+4zfw3ve+90j7ctmICKdOncJv/uZv4pOf/CR+//d/HxcuXPgZ9PYn9AmEY3vH8MlHP4n7nroPT937FL72c1/bZFbatJ/Yrhik9PKbe7i0d4BzF/ZwfvcAe7OUZehzk+A7iRPMjTLqnh0kAwmgzjRWx8RRhpspBDn4Y20Jbpn9WnPWSf1xCxS4kQV41gCCOl/U0V+1VJN6YzT9uAKdOrtXw4zBWqy0UzifIu84eTmbDHoyAAwYklaewqESpUvUGI5KcREIy64YNVAt+Cv+d+2HW8vp3U5c5J7pTxtbvNOcp+EeMkPbnEYl+mfOpC6/ZwdPjF/7nJxMBnqxA0Bu/APubF06Od3RnBqrM3d0gHQUmpQptCfMDh7L9DHPhgNuuLmDEGyZP+AOFyl3JY+Ww6DhGLYybgzSNOR2StlYIzkULWDBjAyYsDl0pxEATS+jDsPDABp3UKQyLzmAmh1SFoiNbgRHCB2iZM/Au+bAInOqyzrj3kGlYGdnCw994n48/PADqGUL22UH02pCb3La7GC9xqVLuwBPuP76a3H2/BlsHdvCt5/+Lr75+Le1bNLa54SKnvh1p0vwYpYYrSe+0Tnus6CaGJJxaZ7XeuoOmsGooYCwtdpSEKLcX9V5n51YcUqXUKi608dOAncFkclaZJElBD1RB2xtbaMWwqVLlzQrSoeVvqyVQF3AgB2M1mx0HfPcNFNPR60Vc2uYW0MlKXcRzib2bCqduwIVNdAPyy7H4NaAOq4/m3/WgI/JJAcjQVKpb61WKrMITYEoU50sKiDl5oz23FCnCVIjK4A+zB3TJCXkWlcAHI1rwsopCeiwC9t78IoU5GVZ6shLXM1WAskc+r05r8ocKliG2R3UxseDS5DHQILxhMlQ6RVQ64TOc1qjBEHR6f0OKCjQqgij49ae1RuYtYzekEUnHJ+Dk1BEGSxQZe/2de59ZO27BvLMwQpbR5aJUOa6koASu4GKl3IXUvKs1snnVMCcCm5JssXG17sF2exvA22lNPMYA+zyPiuBFWve4a3+PKOOOK9zOVMPko9uY3fOW2jJHPA93cMM7O2v8fqbZ3HqxHHs7Gxhe3sLVTPvwNa8vrPWAuod26sVbrj+GmxtrXDu/EXsr+fkAI79J+gZ4x/7PTCjjJ1GwK61ojoIjBJkgFPJeMVUgF5kPyuErdUKq6lj9nmWntUE8KIENrI5s9PKRAI8Er7VrRXQjEq6HxZjdPJyZJL5B0BvkFU6RUmFqnpZLXL6nRmFVB6yyP6C4CeZAgO7FdQKzPPstOk6rwWZF0mO6pusURIaMM+ycjYAkErGkg1D+cx51ddb0uV8/qwkp4lEoy78GpNhjTU7YJeKMI0bFFqF3jqYCyT7lQH7rCRdzLYHXI3XOdbRsN/36MPV1i7szpjnhr2DNS5c2sOz33sOr772GtYHawAmL52JPAAFHLYBHPSTdN8cqVkGXdKTXC7Yd8uQ9U8C/oRMlR4PgXBavi/JX87faQkjLPpoehCSxuu6GnTvCrsh9y76a3tTPGMIxiV1OL/bdceeaYp0Pfve6W+h+ArpZ1oFow0DDOVqFlMWwXG9d+xkfMzpZtLSXHksNsfxHCf+8NifGIRLnZNHspEAhzkmGg0pZWxc9gfF/aaTqAUF3RvCLswPGS04EC2HAvi9usdY/zlASP673WvzqXuvzGlZ0CX2aqc7xmzBA82Q5of5KHZL9kfwJhHh5pvehU//ws/jtttuQaGKikkB8NLHuTXM6xnggp1j29jf30OdKk6/9Aq+8pW/wcWLF9E0m6f1x7Sq0KuUK014W7eNMNrnboPjyH7qMt/2GkD1BANqpfljdgCXAf9DfuscJOC9ovBgdr7NIyPKuq7Xa9Wv2OeSst3ItscpsEkBXZ2aZ/vxPbWEPZ/nxLLiJGkpNGGMelNMZizirNexgTSlFYiPw8r7yp5Nw/NCVnTPuugqcNps3eZF8K19N/CaCSgKGWf09lVldrgrL4ieGIF9HEkWI31n+hyiL3mtZB1O5opM1I/C0IJpHP2U+wuIA4IzynUeDtr4vpP6lPsKxgAsZLXz854yaNxpHzkkcJI8KpaJh/M8Bkll3B1IJf7s2+hngPWcpxOh8jwPvTj0Wayf9Bovc5fePHbQaIHldSNNDu0j6aJLly7hySefwlu33Yr3v/8u7OxsY9JsozJH8CcxQ21v0Qfe9a4b8dAnPo4nn3wSZ86eh/nkAKh9ZsyMUdbmfgy2UlrFhMRPFGtpJOQgO0HAqm3h1pduxc2v34wfve+HeOXmV3AwHYB9rjFk0QIwZDhyHVr5ovekFdk4SIBHTHEoyufM59M+YHSikLMpU1K4Cs0eh8oEs/+6UWNYQ4Oul35fmmdD1k7AdW3Oc+H63aHFkuwJa0Yn+PgOqyTxgWV/koSsjNBHutsTWf9nPeRXNEv38t3LcTqNEfLyarYnAOnnhQsX8Od//ud4+umn39HsAZu2aZt2dbS77roLn/vc534qgBIA7O7u4k//9E/f8eD+pm3apv3jbm+88QY+//nP45Of/CQ+9alPYXt7+4ruK6Xgtttuw2//9m/jC1/4Al5//fW3uadX1o7tHcNDjz6Ee566B//PP/9/8OR9T2L32O4RduWm/WNvVwxSeu70mzhYN6znhtYFHNAt2AyoPRM11wW1YkGeyCoBWGDfgjwBrLDrckBuCNIuXATM6aS+liECM9o8SxYCGk/ktNZGxzbgJmrvchLSnJfmPBbHTBivVAhlqpjnGVYKya4HhVHuzpZsoPJoxJrzhRkSnIPQigHYSZ2SAynmu0w0cvqoE7Ugn9TK70yBOx+fnZJT/0AxQ9SCJj0ZzfkUkTohLBiXS5Ag6p3L8MPh6W4SoiEtuDUqmkEAlkEq6JWJlj+zJ4zAizFTyOjkywGnCBwRjJfgjhKQZEYyh6ydAu0sZaDYiJffaaylfGGIM1Zek/wJkk2BEn1sDALsUlp148HReWI8mu+zslTGT3J7v6yDJJyawkdTXXkpvdEZAumPlr8RJ3vi8VKwVQh33f4e3Hf/fTi2dRzHj+2g1hWYgdYI6z5jvx+g1wl7ux189hJQgR+9cBp//hdfwbnzF9F4BqiDaPL5kkxK0gcDthRlSAMHEYT33YHCaQ1ahh4ilFIFVNEF/FJq8fI+NpaYywAAHkW73rpm8ajOhALYYqDo3BUpgbReM1p2mjF7BhTLtAQGtrZWONhbJ2ecBg96x8yzO58ZEFBIZ9SpShYkHWcBoc0NtRQFzCmfcMdUi4OCzPlm5Z4a4IGLWqvTt+h6tBPeXVdKKZIhyeQ1q1OdiEC9gToDln2sFDCKO30BiIyioHmkgQeoFl9n1l07RQkCCAXd+dtkbKwdmdN4XgGhtVmd53XgfSuRlmVpbubUE7lKQ1DF9hCLJ80tZV8TYaqsIeM2ABmzZFDy0/ceYLe9KkqYDhkHSU8lk0jHUoo7X6nA581KHbgjmsgdsQ0hcx3gyoxGkXnGwVsuc7TEHUt5R9Jgj4BZisgd3QfzvuOOYn1nB0BFQH61FM8GYn102rNsRu5jBjSlPtK48r5eBhrZT+ZRzpGWYXMnt65Fmy97NlCwXjPOnbuE/f01Tp1irLYmrKbJAW6dGZ0Y6yYAwVJEqp86dRylEs6d38Xu3tod4VD9wfYX6xsbnUDhSGfAsgdE0OmIlvaEvPfVWkFdypVZ2bmCAFYL8NHAhiZnSwpG8qB/wYIKrGAppVnzsUjmHx8Hd/QW5d6kq5r5gruWaKPIJFQlODvVik4QsJ4+u6meWNQhD8tKp4koc+YuZvYMVhneUOs07JtFgQzSfwaazUfIRNNrSJVFm8egs/G+fGdAJ5vXomBoyTBVNHNSZDkjLyNr/MielQ8cZSWt35KJj5Rf4H0BdN2iA62P11/l7c3zl7C3t4/TL72EF198Cbu7uwIAD2MCIQFU91CdmH0BS7Nyxr7eQ8k/8t0hOw4HgjLP6gdOzyWQ0HUGF30pwMqHVH+YrrzUjanEerDP+RANoDSgxARpDIf0QQy09GFyyMfl449qOXSpVpf3xcboWrbu0cO9fpEJt/g2T1EE1WUwAR4gECV9l+L4BC/oEVtIAPVUKrl9Zl1UFf2y4zfbSGwrwpJRDBSB/F3iGWfBtJPJxz75QQ+dQL+SAjjgnc6T4H2I2VmuiYEeBU4z+/DQsNM7bF/i/BURkPQyG0PWmXJw13WXxXOPbKS2kbLKztYWPnb/fbjt9tuwqitM0+SZgYkFON+4gUvBvGbw3hoowFtnz+GLX/yfeO31N4dsZvGaEVRoIB3vuy/MRDvEVBnvm54g4J9Ys3bgYZyJtF4o5+XIZGfdYyzKbmyRZxhue6gJ7830YM+QCwX+mi8BMae2v2fb2EDbQ7l3pZfI1tBJbYcty07odz4um//EC7aeY9w00OIQ2E3X+rAOKGAFtkYsk7TLkwWPOgWGdawwPxVgeW1gIX/zMG1eXDYl+mb+XtoS0Z3cd+1HEs6WscuykI99tn0wyt95f3vYYzY6+LtCL87jiGf2QzLUfWfO3+N4jJNt/uxggdvORL5uho0w0yvpmQbH9X3A5aL2kUReUxjSLm+lr8nfM9D+MIg0A9oyzzoNALdVhz0/7x1548PRso0IODhY44c//DHeeusMPvShu3Hjjddjxew+MuNbRoACzV666V034qGHPoHvfe/7ePGllxXAbQC4cZ4P8dshUvyEjT7xZJbhThs7XKnrcLWe8KHn7sbtL92G5299Hq/e/BoOpvWgb0S2Vd0Fk0CVywJ0OLw3A6NdVlgWpSQ7nV+txDEkc1wReyLbr+Ku0jXdjV/MHgy7K+sPua/G6flwwuVAPqbTD7Qvmc+ybIn77SBD9tXm5y51RuYO9PAxoMTu5v50BCmzDRQ+wpifoTcqcxihS11Onl0NrfeOS5cu4YknnsAjjzyyyZy0aZu2aQCAEydO4Bd/8Rdx/Pjxn+q+1hq+8IUv4PTp029TzzZt0zZt0668Xbx4EX/1V3+F5557Dv/qX/0rvOc97znkkzyqERHuuusu/N7v/R6+8pWv4Omnn8b+/v7PoMd/R79AOL53HL/6J7+KTz7ySfztJ/8WT9371AastGlDI75C6+MjH77by1R01pIGzOGWJ3VsphMlYtj5q5CNLzP/LHBsbp7sQLcsE3KNBnWphtcQALijW2knZOcND6mVzdBs6jgtCmoyY7ZZJhHtXoyFUaYKgMZghWVbou4GoQXziwZuay2eiYN7Or3P3U9PE0hLWYWDxx04KcOOGLIFvYkDSOqea4CxVBhQSLEq6uRKTrXkACSq6twwJ2hRujGggU0lgpKaIfkSjGYl5kx9aOaQFoO5Ihyver1MSYBm1MdToLSHBFgLWfp2dcaylh/rDcnkdudnBtvY3NjchQt6DDKF4e0+yvRsHS8zCEXAFwBAXR0Z3XkVViJNA09RBqkrXSJLkrl8eusOwDLHu6fxN4ABJM2CBUDDiXG0syCXlupeSi7Wk/MgmxMUsKwvtthk/WjAEyzZJ9Q5GAHshloqQBMazyhUsV0q7rjlZvzyv/pnuPP9t2N72pKyDNMWWm+YmXBwsA/wjFUpYK6oqy0c8C7++At/gW888gz2d8+j81rHLyV4GB3TNAG94WA9A+pUqrr2qRZxTnU7canrUNNqcykSGC4FTcEV6/WM1jvWB/uY6gonTpzwIJdn8yCSgHlnwDMfuStW5pEI8zyjGjDSHLoQMEBTxxdpDhhzalZiS8YipY8oykYSQbLSaYCrK58KoMfmSOUeMxgFOzvHAWYcHBxouUsBQJncKUQ+9lKEly27XQ5syNKxQLqsyVqLZMrrjKq1vppxvZ8G10xDvYOV1l4FTZ3T1gcllMpdAhdo+byCWkoqa8me/UdkhgGUBIzWGgNMKJVcZnppJ1b+zC54c1RyrPtcftM+y8AMW2d+wtyyEemwGnflERl33s8guDIIaNYCRZpxaJoUtNDjmUTo3UBUJHye9hrrj+wL4Xm27EERLGCALaNW7A1Wfs7knpX0ImYBqkCeVUtVDoeP2QAXlQhztxmCyiO4fLAedAuSWJkRFfrmgBcZVlF1Xjs3OdGcAJa2HrNsGgJnJgeVDtlZPcrI7sGIQmWY//SwtC9GODsc7cDOzhauveYUdrZWmAphqgKCsFPPDCk70NoapcqaPzhY48y5C7hwUcu/dQbQkp5jGc4iqM3c/L3Q0pOuPxmAyeaGraRlpo3K++QE7+k+AgC2PpAHujp3yQgFAYN13UuN34oCHqXspsIUaQy21lpAhfwZlmGrdXaZvpqK8p7OFwlnTPruqmXjWpt9z2sAqEeZOXJeIx2f7Y86XkDL1wbfmQ4l6k4Q0UBJKewxOPJrsZJzOagr18makLe01rQ0pcmSosBD0V2nafK+mqydNStdJQPPAbOW1BEQGZz/iMizEara4wENoiiNMc/N9Uvb/3tnnHnzPK7G9v/6D/839g8OsLe7pwHOMXTj8sXmBLbcc+jFvrHvLq8jyTUm/0O+eNAJIcfk/VHa1jXEJDuM/7Nebd8QpUwjtv4onmUZVDO4kpNNYC+2V1uWFSoUuhjH82zsPoqUhWCZYWtslAYeGUNNl8RA6kEAIS0H3xXyc2M2eaCNCiLVj4QwyZpLr0gyX++Lz+jQd0etYx+LB+wyvY/gERpBP/7ENI/a+/hcr6X0DCy6yb52KT6kPM/5huhD2MIpc4rt+aEKBs/6fpzsJP1pwDeX/+mKQ6vJN40FnWyP9Uwpieb2X6e9Zb/paa8gf660LhYlVXTVradS8PMPP4xPf/qTuPaGazCVquB/8QF0lsyZBD2AwaRlhdf40pe+hr/8y6/iYH9XbDDTG00PqAR0VntTPi+2oxQDNvvK9jEadW3ebU3ZvtBm0X1Xqy3YFPueA7hd6H4LNzxDfzFgh/OJXnpZwCIZtyglXf6lWe/dJ9jF2Kj+pLklTNMKgNgQ5vuwgy6kdrABu1xPyzwOA9bbZ8km1xd2t3EtCC6fu85ta8oODmBstp5d10Ssh+hDiWRUhFFeZR1Ap8AwOjF3Raepx1zoXhTryB7CsR6weP5y1kzW+RqUn+YPcDskTxWlR5KV32atgJyzFoV+YLQ3sDsoQPuZhmZrOhiOApgSmpEBzOzAU8xh1rlN/7H7zL/m1Ejy1Fh/2O9djkeT/rGs8QUfDLsDkWaA0uuPYvLlvKS1R0NHF/3yRWI2lvd2mF+TzUvwiukUBKBOEz7y4Q/hjjtux/bWCgVq01s/dA5CrzDblPHSSy/j8Se+hd09K+XOae+wfShG7jNh639YSOxf+dWJn32puOQLuuS9zHxhl45fwou3ncarN7+Kg+kAgJQH7zBgUfCny0YEEG/cY0NHy+90kJLxcJES1nmuVZTAQJUOymwNDMoJ6o7UhcJP6ruZ76fDfJsTR+llst76SofoLU8r6fBJ1mXI3kHwTN6hdybgHkLfz3uv3CNAPeMk9/8a+yPGPQC+rP9paw6f6jgIZmDv//3OB7eW7T/9p/+Eixcv4syZM+90VzZt0zbtKmlEhN/6rd/Cfffdd4S8/8ntm9/8Jv74j/8Y8zz/3Rdv2qZt2qb9DNv29jZ+7dd+Dffff/9PJduYGc8++yz+8A//ELu7u29jD3/6xmC8/q7X8bWf+5qAlY5fXf3btL/fdviwxtHtijMpzfPsZa5aPrGlBo/4StSwNmcrWaEWRjgytIMcQfdwZi0cDIhnRlABgLl3SN4m4KnIWmCGXz4RAzIgBtwRZCCRzl1LubACE7SV6HPvFkQqqTwXQYAq6lhSBxe5YRmOTAG8WIAhysVBAw9kTp5svKIE+AbqKNJMA9YXoVEAU7o73Io783I5O6nI191RZV4pojiRHkQryVgOUJfMZ8wDYKcwuzsc8jjc520/E++AtDyeGe9mZlsAF0ZTdQCU0cFwZOCCSGsEsc/TEGDy/rF/FzY/6f9zwFecEHLCTefb5zccRNw0mJCyijgQIrmUycfahuCBOT+YBCgzz1au4PKbkGf80TERZ0eDXGOZewCgVpIyahxOEaNJ8QxUGN+rvFLM20WMShWVCq695iR+7hcexrtuuhHcGjo69vfW2Dm+jVqrlFYjwvbqOCoz5rbGwcEuHn/yGXz7qe/iYH1JsySRL0FA+sj9AKtJgtfrefYSR9O0QuuzZuyArm1hYqv+RiSAoZ6c3RbAFtBcR+szVqstQIODnRsqqq4vDRzWEun/fV0T6jSJgwcC6GFb0BRnI0sRR89UrYwAm28RhQR4x8QpU1fKYpLkVQRMI9NX1eBN703XtnJYEWccEzBzBzRjlIjP7jwhcAECp9J4LhtJwCREEtgpBviC0FdKeRn/tXCWw/2MLq9rraiFwNUy/ygAkQ3kwZ7Bq/WGorzX1SlcqLjDU2aAgbSv9N7RGytIwsABFeZ0hNJP5FucIK8GMjInXZIN1mzdihNcmYoANDiwkkFaRU8DAiXLFlbQV0GjkO9zmwFmTFXK9pGBcDs8E9cy05zIa90LUuapIWOABz8KqLB+H/uvlBnQcen8lFIiaI4AT3bL+lQ0OKeAX3dYswWb7BOKEqlkjk/pTy0FrXWlmTiMSyEQaoxJx+oZnZSnY/yxP3kA3nYfAxir/Ja9eAxsWDBlAPEMnmSRawQDr8oq3ttfo585h2tOncCJnW0AhNVqkjVPAJUJB/sCMqu1oFLBVAomBQqeu3AJBwdrcJceu0itMl8OKFXZl3UAG+USfEGl6KNovJ50jXc+xNcO9IOCpf3dWh5TZwYeQCDJVsGMWidfgw688LlnyY7U2N8ha1H2ya5yGJBgiwFEFI6I3hXYaSC4QsoS8l4iKbFTa+h0vdu+nzM9qgNfuia0tJI2FIGAtNEnumW9NGhcqjxNwFNxQtp5hzlAfUnXFGAgaba9jmkq2JpWWrYtwGqdLeuS7SE5YOAwTecNiyywrecpxiEAMJXvfFSQ5OpqZ86eBft4oo395uHXwzpc1vlVFnD8NHkwtkWwSx5mHOG0W2ZBy89XDTjpmX5l9IECBO8jSbp1HqfwZwm5YzdyyPocKIugsj6UIoAq7JNKRylRCcZRI2NkOykAUCGPbLFT+psoeJOTvsVI/fJ788vyL0Gco1iV8sIe7IkjrpVeIYMc8rzzcKX96+MDkLrtH5stAAdjAHBdIIYjfWXAS6upmmzUQxg/4/ONdrmzJqECIJO+ZsSDj1grvj/bXNjnpn8eWg/pffYCGkGo0WGdddOH7Tq3b+ClYk1PNUbKegJZ//wFbFoL3nvHHfjYxx/AsRPHBSiNgnndMW1V1YNF5k+0kh2EO1pb44UXX8Y3vvFNrNf7ruf6utWsgq1JaVoiORhj2YDs0E1nA9UuwNJKWAIlW8DWqg4RAjQWYGsA7EElgWOXIOkgfClF6LGwb11+hEhw/SeviUKmCyb54XMD35fdJrb+6DwX/c71Sd+DyPmgW4eK8XvIbx+K8phxboAtNHMMqf4y6K0mM01uU+yDsa1634FU7pZxSDYYnN75QAcUYEKTndJT4QHjFfhBH5tXl70Uqyzmhb1fWX7ktZPXFtvYjHHitcPm5yp+mkf7nohQTASo/sfKz/kgga0xk43BRFmvGPseYkXXjXfD+qH3AQ5cc7rqdw40G4YQvBdTkDYPe/ghWyzPlc6Hrqk4WKdSdln2NUkdto6k9RBzZO/g6PRyrerTmGKsvq5sbhd86LylH7fW8Mwzz4IB3HH7bdherYReAIraZlQIvcF1w0JygOr22+TU9Le/8x2cO3c+RDAAy7qe9R0rVSd6wGGZn/sN129kgdq9lrXa+CxoMO42xy4exwe++0Hccvo9+O4Hv4tzp86Ci8gH0zzAEHlOLAdiitKS9TnGG9pXy07q07PQB8JOy4MK8LP1ObIPiw+W1H866GaMpO8lbcFlYIyfAc2C7pyTdM7DZI5nkY9DhpKBRqxjHp8TyzWkSu/wDK1g9UNY9qk8qKSj2VzbqnQd03hElbghozVRsouyZLv62osvvvhOd2HTNm3TrrJ2//334yMf+cihffzvapcuXcKXv/zlDUBp0zZt067Ktr+/jy984QsA8FMBlYgIH/rQh/Cbv/mb+LM/+7OrpvwbIJr2Ta/fhF/7//0aHvrGQ/iTX/kTPH/H8+gl4iab9o+vXTFIKZe0sCYOkjAqzfghteIL1XDkAQjnDqX7OYF+MthI3mWn6OV2NQzdYdIHA9puiuC+nQKTIGsuC8WAB8elzwUgzehBBpySci7WRzu5b6d0Isgp/a/WVc1gIO8y0EF2W7E4L8loaxlWwkFn/hc4wIYla4c7GMXs9FJI3orPicwXIYVb3Oh1w5rYHYYxDy16yhZIG+c9z0k2ekGkTmzLZGUncrKRnozkoTZ8OD+zY3HWDDMShNDsQ1TUoRpONim/FTyU+7l0IBlwzBzUUroP4N4kQFmqO4Kkj3LWV91h8RxEwImkY/F8C1aYQ6UwSiXNghH8MNJT/l6v1+PGY0705Kj0n8mRMQSmlVMMfGTvqpYpaOF46OrsIKTa9WAtkdbRUVCmAkZD5QnHt7bw4IP34q4PvVdARQeM9TRjf93Rzp9DKYydY6dQV9sgkqDz/l7HmbNn8Ld/8yQunL8E5n0wupQnAvu8WAChA6BaMekYWtNyYqiR7YOktFrm61UV2bO/vw/uluGDsT5YozNjKvK9n6DuVsKA0Vh4oDODhqoRrGUeqzvJOwtIRsAeksmqowswx8qhiWfJgwO9NS2xBGyvVjg4OMCsQIvGHbVUbG1tYT3PcMcbkfMqsxSbmNsemDSIbuumxnsYmukIQGuRUal3zWBEFR16r0T+ZRUWyRTF+pyWSlFl+W7lqzyo4CKABnlJpJCFFPhhjLLAQDSeCaszUArqVIW3BgdlgF5NNi18mMhAIVtYcYowsiRZs1IXObCL5PIfAEsqyyMYlORtjzXIiV72XNk/FCSnnwnIsEaAg/lQqTcAvheRBiPsvVYy0Fc9s4O9LDCdAXCsa4GtuKbKJmYN4pkjM+017nDX/rTWvK9GB8uKWMjGreCzZnJIPu8IPmHNghjy8mgZJ4FDdno6cAzmXheeiUw0KfjCac/RMfT0nMhSpc7YFMDozNhb76Of65jXDSeOHQMVRp0KQF2zYHWspgmTBhXmtsb2asIN151ErYSz5y5if28N5ooGLTnbAdKgooAZ4bzEPYCL5Hy72FOIkPehADEZjyZwsNPV6MJDZq6uJXTCEa/3dvk5r+e0P1uGJjmpn3ziyt+s2Y+KLQD5XAG8ZaXl2wpAmsFxVqCtgGmF8L0zoNnqRNbE/hWqRsiN1uaBH3L5PFbgn6lnojORrj2kFvpZ13JwAkonAEXlUFzHTKm0nepvMFBsyJ/WCFuTAfOEV4tmQstryGVlJdSpCLhRgU7F4je+/jMgPebc5YHvAFdnc4BSiGfnX/8+NQ8KDTIigid5HwEygJ8XzyO/b4QxBrV4+G7Rj2TjcLzeZYvdb6DV0GVz4O8wLXLAzB4UgL64LoMOlvTh9P4BE2NyxYZDpmdbmR+jJXk/nbnS3pZ/xnzEmgQwAPRzyTyZ7Hj9UrdNBD782WI/yPr20jeT6UfL52C0fWyPAMe8mvxP1AtdIvUBzEMZOHaa6PN0v1RB5TYA0rstm9wAQFN9z5/nrwudh1NmkZFcxm3xDvtvU+Bv8BLGaxaC/CjJcegzG1uyL+wzBgKck8fvOlkKYKODUHDdtdfi53/+k7jxputF/2uiD8+dwfsHYkOstr0kZ6GCxozdi7v4ype/jrfeOgvmGWw8nMeopORk3wAZDK6gR2WqbGuBxQ9ARJiZxb7Xe032W4YLuM4Rssiy/mS+9RnSrHqFyOfeqEJEnlHV5l5Vbz0Qpc83nwQgh1va7Do2i3LnoHzAZJXNScxq59l5nPN1rgfCA9mNQ7+SMekehBE8QvodMwOW1VP1VZsjeafJhyR92fZRAwmNQCOCrkFbZ6nvSPQPvtMyeAiQ8cDTNPxw3XmctJBvMHvG7kn9M1CF78LWv0EecXp07BTRg7w/xr5hc+tdU6Hq7yFyxWaUd+l7n7N4/qA/mQxD0G6xXTp/DH0y+WeMCviBKEbxPUqAMDJ3biMvB+0H1UyO2Zx1W9KJbsY1WcqNtM9jB3iYi7zbU76PjA/sulFOLltsCWFRJCGOeZ7xzDPfwd7eLu647XacOnkS01Ql+bjbxlYqWOHG2s/bbr0F1157Db75+BN49dXX0VvKrjv0V+UDq1zneEa2G0K+pXEBhw54uNwx+tCCvqK84cSFk3jgiQdw8fhFvHTLS3jtxtdxsLXvehIrb/TOavsIhdwXaNtd4jUG5wpqQU2WjP6SfFj4y+RMT/2FZn6TPVUP59mTXS5kiQzEPhvzaOSNcQcIPgOYhvn2+4z2aQxJ34i1lewwtnVo+p7SkBjMDcwlslJTkjm5h+yzkzIwZTuYhkFlndr8Tfk5R2sFm7Zpm7ZpV1d797vfjX/2z/4ZVqvVT3Xfer3GX/7lX+KNN954m3q2aZu2aZv2v9/29/fxx3/8xzh79iwefPBBnDx5cqEDHt0MqHTrrbfiD//wD/GDH/xgwF28061wwS0v34L/6//zf+HVm17FYx9/DM98+BlcOHkBXDY66D+2dsUgJXdGaBD58Gk/Nc9ysESzbAwOOwVH5GACIZUxSMHieJY5wOw9YRT2VFpLDLXijjHrj723czsym49lkmitgRCB766Gc7F6bHp986DUGPi2TBWIakjh9LNyCtqzYjQjKEaIBpoKCIfdkCSC9JPEcQE2kE40ZvYycTE3pH0rGigMMFgpXptoDOqwdY31ZFdkuwjKD74ETc9u70P6JvpvYBnP1rJ0lhj/mNPNT3UuvWPmRE19IXhgcTSsxxbOAXNcmOM3Ts8Scqpj0sQtCZQwPCO5icjSTBenr/gDLMuUpnMv5DwbmWuCl8xBbmA7p2NyEtj7HUyU1wwQ77Ex6rMlEMzO0+6s9zTzrD7kHs/iLpnmQbBCCVMlvPfO2/GxB+7ByePbuHDmIi4d7KHsbGG/AcdrRW+M/fU+plqxt7+HaVXROuOJx5/Gq6+9inmesb2zA8IabX8tT+4dKFGqqbXx1DYArNezZqFBnJTLa6cUtDbD1lSpEgBvrWGepbzR9vY2VquVrpcKC1zIPMA3bSuLZnLI1k9JMmNYT8qS3cG/5iQ0P7N41oxX53mNpiXt4v3h1ASx81GtFX0WOTIriE1OYC64pMsJbjuJGaW24l/T9QoWh7Ek9BCQJlvQyZxZZJmgCOizA8iqAqJmLSmn1B9kfjjZ7NQtHJCg06pyi1NZicikNPt10u/eumShQQJISSdRyuSONlJBb0GkACPGOjBesfmzdWWZ7QzAYk5LndpF8CMcwssW4K3xy6rlKPpSFmOUhfZ7U1Ab2AIJWh7SShyygTUka9Z6vXZedTCIl2/T/RXFs9IJqEyBaQhwHSnoyMBo4bgdZVHQmbQ8WFE9IWhqSzQDbjI4I+sIRjv7aWUvabFP5YBA7oftq6UUzW7HaQo0yKG/FRTP4Jbc0QBbdjr55GA941y7JNnt6imgFtQiNF9NIj+4Aw0NdZJSi1QJ1117CjvbO3jrrfO4cHFXM8QtTml3mVMZr+ofKXub8G+WCxoYo8O0svUnvLssg1ph4LEMauq9AQ7kgmdDMCd1m8dsV27QaNo+yTinmbqWxg6zl6IESVmyaTWhFkLvhKJ7rZdRNRnFAqSDFpkkLYEXPGH3GA2i1CoxNPDgnv1U/gFOTwsGRbAi5LzwXKytUiaUAqzXUUqRJL1UyAEF9dZaPchgWZ/WmDHVKFsn38bfWZ8gFKzq5OORLIO2bwyk1ZPV0U97zlI3vFqbr7nLyM9RLuR1rJ+k9e82AgU4Mz/LryHA1ttR/aHFfnqU2S96EofeiByMSutEZR6ynEqZQf2+vKAXNLBBe+iNMI7N/iW1QW9OHbbnxE/dxvW6BFjw51iQi/yzTMdu/fZrZb0NQcwUKANBszGmz7CY+mwLgKGK5zgHaXyD7aBfxjrOny8BB6MNM/CVyiruCWBmn+W+L97N1ufUxn0TaU7GvvPieanji70w8YTJDeVpDqMoeBJJpxj217BdMi9mkEe2JzIgIbe+eJ/3jfNuGraU/R1zIp+upgmf+MSDuOt978XWquJgb431wQxaVTTWLF+dgSZ6cluv/aDAI488hmeffRa9SYnoRt3LZzp40Pb3pVhkKWNqJb5yNgmnlR5YyLQVvYU9I9NkpXxZM72QrUlyXor+uGUQoA3bsxe0M7rF8rJ71QZWeWV2Su9Sqq15RtYkFFyfJx1rAdS+MoAwWYYiONmSDh82qstF3asd4OdLjJKoUXlochpwIIR0KUBYziNp3siEGwdHKdFcNhiAyb63200P9BJ97FJUM1KyACtT35D3kZxNyOhh/UyyYJRzAbxAunfo+/BNgM+NVpxeGlNv4K14jtxieSvjDZ7RbfE2lzNkkJ54n1Mv0M9evk/m3Nar9LknvsjiwW3oJLfdLkPOYMrDWLwjJkLULqLEKyEnSf9P6TGj3+eofdvmcCknvReJzYyOxh2Wbcwpr/MlQED2BxgrhzgOvgak3O9z3/8BXnrpFdx/77246aYb9WCc6Zqx55ntbjb3yZPH8fM/9zC+//0f4bnnvo+Lly7F3uuDG0e/FNvem0G3GOnl80Zqc3qJM17c7z9Eo+0TTl24Bie/dxLv++H7cObaM3j1Xa/hzDVncbA6QC9NaON7Eg/zZ2uHEL7hpTTMoCBJPkwIvW4g/EgA3QMyr472Y+IdSsTMbOoy6ShqAeZ3yOLKntVTlj4i84PE4RDzZQR4TEeuc5C72jsDJYGxvHNGh4Vu5PbPKBv9CXw0jWM7v7xPddM2bdM27Wppq9UKv/RLv4Qbbrjhp7qPmfHVr34VX//61zeybtM2bdOu+nZwcID/+T//Jx577DH8zu/8Dm699daFbnp0IyKcOnUK//7f/3s88sgj+Ju/+RucO3fuZ9DjK2sEwmpe4baXbsN7Xn4P/vlf/HP86M4f4al7nsLzdzyPiycuotV2tJG3af9HtSsGKUlQ14JjC2etGpLD5xZsWiyYDE5iZi9P1VtX/1sE1MURKCnUPZisDkVPj67/wkECuBM/6xnJC2NZPtiBKAIgKYCecNd+dkhWg9LDmwgz3JLrNY3TnXVkLiCKIK87lMmf40FV6wGxB8cygAUUzoBwzmngEaw0VOO9SZkn65u74IjRWwZUdXEk0WEDlB1IVNx5Fg6TMgSg2QP58ndnAqOjsFxrpUy6eV7UqZWzhcQ0hYEup4RGA5mhoBlJToNptULvHXNr6BwnSp3vKFLLHxLe7rvgNGbDbcWptuGUWXJycjfvDMOcv+YIEKe6lCvI4Dh/8aKfEXiF86kBzsThKWtsCWpagiCsbx7MN15WXrSU6J0NlCT9F8dhlA30fhWgosKcIESErTLhhuuvwcM/9yCOn9gBZsb2tIXp2DYOqOPE8RWmztjf3cXFi5dwzalT2N7eRl1N+M5TT+Mbjz2F/fVFdO7Yu9TkBC/P6F0Cv1MtaD2ys5kz1MAakmlkRs5ok/8B5IFv7gJIyWV2zEkmJRwp0tOzlc2R6zKIzu41WuYSehl0I5k3JncqSX8ju0YpBW0W0EWtAihZzw21Vj0hDj/9saoTGs8uI/rcdF2E472DMVGAN9AF+IQCUKkJZBPNA9pSI0IcfRac6F3XGDAVAaUZsFRACOSl9VqP05CkWfMyLws9yOWprS3nVQogIhnPdSkRZV53Aw1J1wQsBwqAY+8dleT+roEm9sVGzh8xdxh4xYGlwLCePPsOFBhQRI5lR7iP15yuad+y+VZvJEj5Q9YUaZaaRYCbLVAxZhcspaAYn3eGCD+RPZaVqdQ68KOtAysReChTFEX/wYx5lpOpZKfcCQKMSPPUtd5roYIKimxjpHOl8+FCjEgz0hkIyU6fRtB2mBPAMxY42MLvhf9tnuIApI3PgQUuNMuNAHd8ecCy6Mh7xAFMLCdSGVAQEXytyXpgzL3hwu4lrNuMUydP4NTJ49jaAranSfazWmQ/9jIjBdxmlCJgpVoLzl+4hIN51ixjNs8FbGUbMc5V7xzlWmEOY9lf47MF6En5HggwZQazZV5nxrAG5Mue6DzOU87GZToKEBkKPMiS+uXBbi0JK1ndisvKaaEHiLyWNdiVb6x1DSrmjDSiE4psyUFIJ0WXXdzLECZ+k0xFQM62ZXxhznkiQu+zBzQMXDgV2U8N6CTXdbmiELjBZUBL4Dnbn4hsL7fEB0X3rCYZmjh0QSxKNRl43bJUmpw13pmmaaDp1daO2pcAuC51pe0wkAkejDrqOSEzTM6rVeOy0P4TBkXeTTxYK8yxeO6ibyBfiXDAODyAPPRLx04WPRof5M+Ty/q4rsYB+ltVSqYxxUj8Pa7M5s9Z9WYexjYGdON5xvv+lrTu8/i8BI3pt07ihR2Q6cMGaWFYcPBoJ0wAdUxe5Ee6DMnTDJOSAPI+Cd130jXWH4o7jmzDPUvbRj87mu9F41zeY/ZEPM94z0zMkOMDH49P0RfE9/4am5NsT3Q7UJP6fch2En7ONoTzQ34BJb4ne0zx+ywA/4EP3IV77/soVlsT0IGpVJRVRQOwWhWUDgH0H6zFlqgTSi144fkX8Og3Hse6HYDBWM8AuKteqbqB6uAsxlCS6VEK2kDvPh2J9wf+ZOENBy0ZobJeWEzHCL3FknW43NGHuX6R5GEGK8mcREaynLXK6Gd6IWlZ0q52o/GtgGY1G3TK1IGW9HcDYHDKgqiypbcAWy7lnKp+zotOJOOP2Kbjb5XPXm7Pvh5ok9a53eSsp1I1yQjrS+ZDX62erRnDuOxap7vPe5LxLkUpzXUMZpAGCu5xNsry0uWy6h4UwJNBNB/RbB6J81yNsoYIqbxkWoPpouwrcJqbjmNIfZMBSc6Sv9tHAxAFzHexZ7M/1wkj9NNyyj7ktKYIZm85tX2tArGP2dw7Dxsr+DiDJzo0c2HeS5y/xqn0NazfjO9PctfGizy3wJIAMcrDIBsjzKVLl/DEk9/CfffeixtvvBHbWyusVtUB9QwsbE6Z90IFH3j/XbjhhhvwzDPP4uVXXnHAsMkEG0tez/Y3+drJ8hqRySiRZKDp+MPl07Dn2e9csLXews1vvBs3vX4z9lZ72N/ax5s3volzp87h4vGL2N/ZPyRPDOg/AMWVHsvT3qHLW2bU0S+WZbhtf7AZSdnmYy2n+eaRR70/yuvO8ks97rLrWOWIs9C46B36ZXLW/rbrkiC1tR17hj175Oxs38f8Iz3kcDus61FM/5G6xaZt2qZt2tXTPvnJT+Kuu+76qeXVuXPn8Oijj17VfpNN27RN27Rle+utt/D5z38ev/u7v4vbbrvtimXfarXCpz71Kdx11134i7/4CzzzzDNvc09/+la44MSlE/jo0x/FR5/+KC6cvIDzp87j2bufxenbTuPVm17F2WvPbrIs/R/arjyTUmrZeRF+0YVDhqLkz+Eg2tFBinCy5mBRZIsI4Ax5EK1SRS9tNEzdcNP+6InYAglUtdbU2Cd/npWDE+cGg1juYG5u2ZUhgMoQTEE4nqych2SjCFpZRoLO8ruZvewld1JTB0dfKkqUnB1qWA9ZPqjoe7o7mIxu7qTITk+9zYKL8tASYzMHgKCYBoO9LZ17nvFH31clS4J+MjhYoBgQSk7PpRMig316z+PpCq6hcE4ZXYhRa3Y0pDnA+C6bS5unIT6yzHKhtM/PkLmTrzxTTcqikx22RwZ4WINjHJ+b40icvt0dQFF2QJyaAUBI/TGHdmYjXQcCSEpOluTGbAvHuBE1HD0R9DTwXkHFye1j+Pj99+DdN1+Pg9ZA+1UANRVgLlgVQl83rLZWaHszzp+/iFoK9nvD1x75Ft46dx5NgQCFCvpayj2UqnRmRuFIUTHnLENK346OaZLMTCZjLKgPdHfcdw34MuAnRFdb2xqYl3novYFAkGWiwalCoB5OcqGPZbwpmOfZgUmr1QqlSEmF5NsBrBxhAba3t7G3vy8Znbr0s0PeW1crSJBEPF9UAG7N+2tORyJNlU6IoGeWjbYuqmSBsYB9rVWzv7EHMNxpZc7r5FyfZ/asPOAOw510bqiFHEwlDl8LkI//vByYzhm3DqrV6cusANVCmGpFnSyTTzhaqeh6bk3AACzlP1oTMIvNhQHueo9TimnxetkcAMOeNDrBQ074vgMCSgRru+4jHjSCzHHRrDA+rmAbTdsfGYnAjNa0lFR28JKlepfeGAjOAErCfQyarKRaeJS5ROkoy8okGXsCxGRjF/lcTUgIOAyEBinPmoMZEbAx+SP8XSmVzNCegQJ0anPQeZTvzn8ECDA2JqrU6tcOYCrAgZqjbE60sxKbSnSTics91PbCjizLRTYKGHZ07uYARSEGFZGlu/v7mGdBZV1z6hjQmvIEYXt7paf6Cet5jXkWgOS0mnDddSextb3CuXPncWl3T5/d0ZJD3EokGk/4zuqg4A6wpuGXMEzqa4zzcvuqfR7lX7RsQq2+/okI7ah5sHntkZHR9ml2OTHqSgbg8Qxb2j8BBx2ddcUm07L7VeuLyk2JR/CYHamHnELJMkADHnofqxZlgGtG0s+ODIIYDROwrghf5CCY7aXTVB3fUarqe2QgKVgszOknPGngVqA1kT2taVYzS1plGZ8OqYWh61o2s9BxcNW2PO/DWky2xBIocFSQ/PLt8POWgRx/0qCDWTaU1C+ige5DEDX10z7L+qn3JM25MUHQQHW4hd2iK0tp4N10frWXeNc4xuqBOOuD6Zxp37A9PPdjJK/phvHy4XqV/3F/H8cEA+/FHpsMxsvPpX2PUe/2tY4Ad/jcHdFvG8+RMkYfMPBd2vtVHZcnGV0ZQyB37HLMXQ6EL3t06B7m4C1/Dw8ZfZzXrO/54fYu34vtHop77Qbb19MVOcgMf453cLAahq9jGcU1I5NGf2xNpDETkWTvZMLJY8fx0IMfw8kTx9C4g5r6DrRvE0Q3qrVg5o79/QMpSbzX8Vdf+irOnjvv64NAalsEHIJyp31foaHvgNjvnQ/zpWfVNV3b5sz20lJ1vpTnUwqZ4Pn0rkRX2+N771GSr1bRyxxolAku+lOdJrRUBr0z/L2k+rn1gHTX48wjw17E/oHJMxNTLseMT1hK37X0N6Xe2R+ZZ82HYJmBAzQQctb1X+MUCr2slILemgtBf6/JVH9mHKIqhRzw4M3onvYAmd/D2YwNJMCmD2a+zwYGUYAvneQhz40OA4EybxivmJxi9vGPbBhyKzI4xv5oc5hEu9pSBnCElsbTdZ/3Iv08PEFxna1poUuM2WhtHw3lqZ3NyH96f1j40aXT8N6x2d7NamPFrCS5ZWOPDUHuTXabz8lAG7t/IePBPoAAOqvcjGXtNADG/QXMabR5NtIIbbkRsLe3i2899SQ++IEP4j3vvgUnTuwANYN0tNwwFS0tbDY84YYbrsUnHnoQTz75FJ5//gWxK5H2H5VRfnDE9eXwJXLqFpjHErY43AbbaEmDfH/SzQnAsfUOdtY7uObCNeKDrQ1v3vgmXrn5FZy95gzWZfbDRWQSayGHl7pF1mV8W/9JukVapxQM6dnBx3cg9maC04sSffJ7Lice0pXjs1OfQx6wi9tYmjFG10mDIPnpsc4x6q+MOLzhyyXLl6xX+Jqza46gy6Zt2qZt2lXYTpw4gYcffjgO7V5h673ji1/84lWVTWTTNm3TNu1K29mzZ/EHf/AH+OVf/mXcfffdV1zqkohwyy234Ld+67fwhS98AU888cTb3NP/tWY20akLp3Dqwinc+tKtaKVhvVrj2bufxbfu/xaev+N57G/vbwBL/we1KwYpSakuJIMpjJZup1/M0aOfH2UojgEJA4lYSZ4wzsmDqykIRxHoLMkJUeuk/ejhwCLWUhhFg7Pd3FnhyLN+woAhAKxMCJH0h+x+wAJ+zIxaKqp+HoEHeLYAWMkcWBYhOBCKOAJwShX4+SEK0I2BFBhWtiZdnSZjDLgaACccOpItpXs/mS3Ynt0n6tJiHpyJ5rvhBDYzAJMZzNw7GgewSehvWQHEIWw+a/ULBC2J/V1DMEKzOdi17vtOvNUbcMBrADIfmZ/A2QGrDqY85+50Cg8As2RWMQCFORfF2YnwHiD5KVhAKPYJqwNJgDISULbxWYYmIwQPDhFINhh9fpQOyB5Nud82n967ZMZCeow7HpKDjBnMbXDcdydQnNpTr6nSO0BXBfo3CzDo7g/ciXs++n4c217hYAbW3LC/f4CJt7C1WmH/0r4Ai6aCMk3Y39/DWxcu4JFHHsePnnsera09+NoxSwYSDj7uBHQiNO7g9Sz97+K0b91Kz8k8T2UCSsHewQEASAYJL0ekICjqzr9TKZiqyRQZoK0FdMnSVacKSUWkQIwiwWf46WwBKZFd07sEQjgF7zXjk0ZisLu766XhSqkoVebF5BOhSDkfZqwP1gGsnKw8l7DfalXRueNgltPcq2nSoWp2jqJp6UF+j4NrNNDdtbRD7wLGpEpYrn0ioHFDdopTkTJs3QBISsRaClpv6ICvHwc5Qu4pJMClrgIgAABWFqegcdCb0n5jgQovQwUNJrXuzuViHjp3psep3XCWw8fYmQW4wOEEdwCT3mKLzkBOBcYosX8RJr/HAxoQcFytk6zz1pDivLq96MB0LzF5bVmqPEjCkTNnqpME59aS1aWqPGu9K/ApxmjAW3DK4GQkYghwwuSr9tsBaxYo0est2CNAlgDQGr/VWlBYgoPmCI6AcjxTAhlF9qIO5zPWPoPZA3UZmOAeVd3zs0xksJanjDFKwEsInnrhtMpAqHDgkk9QgHzY5TLT4JvGwbzGm2+dxf7+Po4d28LOzg5WVca22lqhtY51WzsvU5FgzMmTx1CKAFMu7u5hbsbkSS9hA7qxf2X9AqAZgSxDYIwtghNHg73yXujfkea1SEEpAzGBo/RogI8IQEl7ooKHe+gIjRqmyVRLcoe5lQ5pEJ6a1x1AG9eU7keFCgqa7HGWecN4V4OZTTOO1VIAB24kZ7w660MPUAACkp5RaQhSRuBP+Huaimdtatwj45yOAaxgSispV4weUkZU9iABKoosDj2OVS4W0hKXXbKEWqA9zzlsztCdRmxMSdDsgga0osRDV2szHTLG6IEuBMhOrgz+vlxbglj0l8FOYd0HbI3ke+0tsk+afqAZZXz92f4fBxWMc8f3ZGk0/uYybei7ZXA9PM7InGLvs6D84p0uw+A8MUqs6BmxlgbKckXv8f0yU42KjynPhb3GePLyDBdymPP9WZYjzb/vIUphjr3Qv/AfBqw6GsAWjzc5BgU/Z8kZ723cfV3C+dFoJes99AMK+bJ4t32eAV3yzvHwhPfOiclDn+FTw/FZKDPpKUueMl6xl3mHArRDpn+EPrwEWA3DovQW269M/ljPfH7G/mYzxuwQZsaqFtx/3z244473YFUr5s5Srq0zylRRa8W8nj0wT6WgzTMO9md84xuP47nvfV8yorJZsFGm2teK/1PAjOo/JQHcLbhu8z77QSYrrZtpzK6vGRA3Fp5sUs7xPR9eitmTIErIiZBANnfQjGtO6mG9zPPsewkhgPj2e3BNlKd3Pc/nj9w3YjqslxjXPcXkXWKBQ/xr2TStn7JuY616f5jDveIPtIM0C0ZDfGb2XMhHDL4Hp6Lt4VDQFoyfKXgOy30xbATHC9lcD9clmTx8nPcd/yj663IuL1fSwwHsa8XMdZuPpShznV4I7vLEO2SKtO1jROOBrrQrsf2XgFrkAIum1HaZ6mDwNCCzbbKAcHrZfsPBB0HbBd3YeLlEf9JjC5HbwrbHJqE7tPD5MJyciD102OttrrKue/iJMB0k3oEF7eAydPRl2jttr0zN9/D8Dml7e3t46qmncPrF07jvvntx8sRxrFYTqtqpVQ8dNc22SiXW5M72Fh64/17UUvDCiy/i4GAthyEhsjAcZyGDfJIWwz6CuKMucohmiSoczyYTIDZu1+PgZRlLK7j5lZtx86s3Y397D6++61W8fPMr2N/ex3q11rXN6ZlZDuX93wBNcl1rw+4F50HlbfepxqaeQIYyLwEQVnmR9rTgbfEdDIvBdKC8LafvjBR2cOMQACgEWTwm8bM91ta36yemH8mmEZm4Br0aiU65JV1g6IT6RswOQdZBNm3TNm3Trq5WSsHDDz+M66677qe6j5nxxBNP4Nlnn317OrZpm7Zpm/YzaGfPnsV//a//FXfeeSf+7b/9tzh16tQhf+Pl2vb2Nn7t134NtVY8+eSTWK/Xb3Nv//db7RV1v+KBJx/AfU/dh3PXnMO37/k2nnjgCZw7dQ6Xjl862rbZtH8w7YpBSuyxjyMMFRrdEe5UMxPTA1xjFpjxBJsZW+ZIs6wogJU3yE58d8rr+8xQK1TE6NTSX0WdU137CQDENRmMAFtmAnXYmkPPnGQSAI6gnwXY7XMP2gKgDgefOFgC5IGPrqedzLliQRobs9GA2cAYDMvEzQwHL6CEM5DIAmnhmMzT5OAkmIM0nxhEKndl4C8332EZHGz+9Ikxb5CgoxnNFmwW52ZxZyVpNgEwubFL6uEiPSUHcz565zW4pxmiSNMwWZBOuyL9bMqfYBh4xMOJ5Ka9p8WGOh/8RJiOyYKyxfiYCloPR6PwRSohZCArDTAye9Z3ybJkjo1iDJgCicKMaZ7CkeOfKQ+xlrkhSllqOgMofh+RZF6wdWMAAoCkfwsH0+B8Zj21mgJ9scYIxA2EivfcchPue+DD2N7ZkvgyE6btCfvM2N/bB1rD/n7DtCKURpjRscaM06+8jO88+31c2tsFK3Ci2zyY065HmUKbJgbHKUrLbsMEkAAdWl+DiAQo0xq4CxirtwhG9+QEL0MAJZxdhbQkDzN43fRz5Tcm9Kal2toMyzhW6gTL2gTuAvgBQ6ojCP8X7xc7CEbkjnxeanEgX5u7A4mo6GlgTWXee8cahEmP8hfKQQ4hiZ3ydyeh8nKbpQRRrTImmfeuSdeKl57rXRxc01TRmgZBVNjIGg3eYohzr6rs6SlbW/AmQJUwbW2jEGG9XoPb7GucivBlZ0Yrkd2EYPNn0xTl+0xGmNPNgl0dxhNtkFNQoNgh0IbJ3D6eOozVYZcFKJZJ1rIFXUyGC3+JjPP+IZf5lPnwd7CU2fQcSbouK9k+pAJk4Wy0RWNrMsqVZH6OgJoHQbLDPu9jiHGY7ESQR53hknkIvftJ/dabAnsqCgPcbM8KmdKb1OO0/cADb1DgrtWmsO8xtiEAnzK+8eJ7y541jNEDOkG7rnLhSDerfc7xHiv7aEBZkU9IYpuxboxzF3exv17jVCcc29lCmWe0tQAvV7WgrCrmecY8C2hla7tie3UKx7Z3cObseZw9fwn7B2t1SMcYGUG33AJorGsZGPjaHPIDaIPHuTEqlkI6D5R81RT0JN1xFzxTiIEKl61AOrVO8Xwi0mAqo1ZWWdNUPch8bWOSMRtgUPZPeIlfsOqEiVejbGnoi7b/Op0Quo/tCR7A11KWvCixaP/azJqZTvrpa0tlEJHodp7tiw3YDpE7MM1jcZKakmwhAFyHU/K1Rl8crA1XrUReKCDUae9BBfbStVdtS7pqfBS/B0AJyLOXr/NrsqwYX6Js7JGeuJ9MZ3VWH6Wo2xMmW8Zgd9bbHDCW5tikUSqKM+jScd8otw6NIa3rrBd7kN7katL/oQGmYBjti60bsr063jaCSuH7UtrAEnEGCrvMGGRQ+i6upUHWL8EPLrvSM6IPALQctqk3h4mles1gG4y/im6gc5XtEFjg0OZlMWyC09TuzmA142ZwAJey/LXuGvk4LWgPPzK8T1lG+b6lbMc0DHrki0QzThsWIeS409U+tzmxl9jgvf/xrpJIO85UzAvFX4mv2MS82jeSnfWj93wUD3/y46hanpJAKLVgRsc8ywGFNnfJWswFHZL18ZXXXsM3Hvsm9g8O0phGSeG2HdkeGHMZdEsHNMj2Gkq2Wx90KLs0ZFCeiTTLRG67tTZexwQvTW6llKH7Rt4HQ25J2XDTCW2ficyVqQcOVjKuDJpksKHozGEju60zDIfSQtS1q+MKsE8A0LJMD9vfDiyQA6GcT2nMGC12t2a0TfIneFP+JgUmS7nrFu92/ZqTShNrIgoFL2VjMLXdE/J7sfsEMUOW5QUSdf0yJWMmOKSFrT3ZU0yvUcmU98LcpyN0ZdvnAPOtuITyfWrcQeVv5x/d24a9KPdxeIA8M+sjBLi9F0MnH09+b9bBBQCS/V6mKalstvVs85p+DjTPb0h7Wn63gzqUhv7ZYaGw6HGIwzyng16+tNFyVxbvH/U1BYIpz7z55pt49NFv4N777sUN11+PrdWkWXq7++xqLWAW3yMg6/3YsR18/MEHcPPNN+OZZ7+LM2fPCliHgseM3oeYhzM3mszG2M80nuCHJf1N/i/2jGRLADiy1O3O/jG898X34vbTd2Bvew+nbzmNN69/E5eOXUKr6ZANxSFRwHyAyeewVAqUF9wvgtEmPLz36e9av9JKbko2aM5iwu9PFAl6ugg4ml9sWw46j/QgIlDNBybSXpB4Nr/Zdbs8n4zI6qd6q71z9HUkHRILv1Ie1xGSZ9M2bdM27Z1upRR8+tOfxmc+85nRz3IF7Y033sCXvvQlsTc2bdM2bdP+AbfeO37wgx/gv/yX/4Lf+Z3fwS233HLF925vb+PXf/3X8cEPfhBf+tKX8Morrxxp21yNrXDBdWevwy989Rfw81/7eZy57gy+8fFv4Psf+D5ev/F1rLeuftDVph1uP1W5t5wxKbdlALhAHKQWEM8Ao+UJj2yIiRHUYYVHijo6lmVb8klB6ddYUk5OQxagE9pspeAUGNAbWuuodYJkW9IyS2LRRbYbkvJC7CacvbtEX4tcW5Ltz8wCKGEBPDkYSfvZe8ek5XY4jQFsWQvCSWp+glnTupMZywAIdQxC+rjNGchBX/WyWPB+aaRa1glzuIfl2z14MxrciH6mUkOFSB3Qxg/h5mIumjgk9WtwIIerxMzvoqfpep/NvaD97cPYiUhP3s2HHDOWBYvBCTSmxjzHu8yRaQM0oFDLgCKdLgMhlEKwlEAEioA52EEdycMF9+ANDmgtuceMpoF0c9zZuhlATYCDlMwp6UGlI3jUMoeQOt3JndqxBmU4dqI6AsHiWAamWlCp4/prTuGhT9yPd7/7XZhnoE6EjoYLFw8wN0Zlwt6lS9jaOoYTx0/hYH8fe+t9XNrbw5Pf+g4unN9FJ04OTQrfHwFMAk4pRJhKBXdGg66ZqaKWCeu5qSe3SKyNOhpYTliv1wq4qRLU0JJtrWuwuzOojBlnaqngXtBIMtbUVPYogkscgMTOsPIlpcjJvVIiE5RQrWFV5BT4wXqG+SHDwRZlxyyjWu+SwclPDzNDUr1L8MbW9MwqF0GYNMuSlQYzd5OvIgr56CWx2OSuEF4yOVVdhx1UCxp3CWCUAipWFgpeMk7Gy5qRgAXQlN5HROAULFmv1xqQifF7AN5onAO4KgeLZkdT/z2mOqFzh8MSWPaC3hgR00h9sDT3HLLP1o4DmSjWrMssIhSW0/xkWVooQAjy2I5ak6xL4wcUcKTjA0VAkyC83VpzV7rRNPrY3SnIrDxJAaBkC0oQQFY+r3fU1YRaJwE7GMiLjAThdLa+DNk7dH/wfUblssla1qBQdozKXgf0qi+CkxQiO/oRe0eABq3c3SFnft6bDKSZZOZRwJ28Zv05eawJIL18FtmeYWOC8ZICixFgOLBJ3ejf/sEB2tkzWK+P4/jONmi7YlUgYMVSwaiYWwP1hroq2F5NKDsE8Elsb2/jzTNncOnSvmfPAeCl7dyRnfud9a0jHDLhuCbnjQEQsKAjgRR4e8T3lE7me+aG2NEs0OU6mHzqJTY1yQW6lXKwUrPLPuu9nbvuJRIQr0Uyx4VaIvtT1mUs0LsMHI3l4OSBU53QW3NZBt8Pj+Iry0LHXsLPKLzUa5czIGLD6KdUKQRW2lgQgxD6lM9pl2yCtu7tmcyqBXUGV4LlWBMROa6bCGNcrW0EKB3VMv+FXPrJY4q1vQiqmEqjNsXQE9WHbF0fVR4RELnGbgMBVCQTC3crrRcrg1xGc3pPlp75M++i84R/YKPw/db41AW7ywC/Tv8yuU802lpDWUM24iSdQfXl0b7IAKxRxto1wyNh7Gh7xtFjHwLjeb79+RlYGtd6div/JgVJvS+qWKb3ydj6wAJHrXvpW3d28f029SX0feh+PdoJRzl3Ome6jvvdErRlL2VGKmk6zvmhlc4cgEn9PkMXTI/IFM0gH3KSjfOQwS1htyE9OfWbOPRhp4P+DilvVgm4+4MfwKc/9XM4deqkZj2W9xys1yp3CXvrfUx1wmq1jdZmzH3G/nofj3z9UZx565z2ayFJlKZWvp1Y9LGm4ApGF92nlBEMrwNgJQSrfi42btJZW+yHZINWm9F5LOmER+4QvYM143Ho6xmonycIXhK0KeLJ5ECeV19D+iPboNaXAtO5RP/safrs4IOVWM+8xdpBAhzs4yYtzF4FJCOsfBUlVYNvzK9hfDHIV19r7P0ie0ahZDfysH/7zc4JDpHz7xy0m2hn43UZQmmsHM9czFysW+Oz5Xo0OcHxbFL9xPwjAdbRfcrWkvFS4gu5P/YU6WfMT3HbxIasugIBcqCmDzKJSnHobE+98GGnPpcivqo43OWjDF4zWeC6osmGhcTPssdoN1yR9gLvA3xPCzkVfG+8ZdKXXcbHO/O48j6T9aUMnnGePEJ+57F4XxIPX64FXRcHJRay+OKli/jO00/jfXfdhXfffBO2VispIawXsD9DebqIRF1NE2679T1414034rvPPYfvfvd7mqXVXjNCeJZrOo8771uHd+0FDTjTPfam4T6iyFa00Oech0AoTDi2ewwf+MEHcOeP78SF4xfw4/f+GG/c+AZgNkbKrmR23UjfTGMDHbGrAmSCa2C7pQwxXkv8luyg3NzXZnIAAHHse+P1tv9oH5mR2O6ytoR/Lw+P60gPQlrpx6TueJ/S+A49PyYoETAklv03KPGTeXzTNm3TNu1n3YgIv/ALv4DPfvazKYP3lbX1eo0vf/nLePPNN9+m3m3apm3apv3s2+uvv44/+qM/wmc/+1ncfffdf6eNYq2UgnvuuQfvf//78ZWvfAVf/vKXR5/hVd4IhNorbnzzRvzSn/8S9r60h9dufg1//Zm/xjMfemajxv4Da1e8o1/O2ZabZeEx5/LlgEnLxWKOE+MeBmtWEnXOKKhn+SxzIi8DGE3SVMj3bnRJoJmIFeTkb3cHlmUx8WerO44QGWYckKVWXc/Gf4/AqwTYJYNDZ3IHYT5xD+iJSk+LlI1WSv0IA5MKMNWKngBg2XiX8igjPVgTHUTWkAjYukPMn2VWtAZIMRrbbgzn4IL2r5TqQLYynOiMQK89wwPi9gwi2KlzB1Eg3lPyZxgdQ1JuC1K2ypwk1t8ec2VN+NSOM8X7ByecksGcIJalwcq99B4BTJnbgqJ1MBszejePSHL4aL/k/QbQiSCvvbezlOOyIKXzd4nxpp4q61gAW97nJ025u8fQMq8UKij+N/tpPZsbC2QYyJABHN/Zwf333Y0777gFtUygLcJBb7hw4QJ2tncwEWF7awdYTah1C70x1r2hUMezzzyHHz1/GgfzgQazezioWIBItSrvKO8JvwJEFVTJAx7myDbPiYB/GDzPwfPK0/N6DWY5mV2YlaYlQB+967xKJqGpSglHA2/M67XIBM3yJgAXKeUltOo+d0Jvme9aCqapopQK3t8H6uRLRoAPAdiRTBo2H+rgTmttqRxI8KFqyTqhna2n1pqDBnOgtdQo0ZgBfkWzbNk7DThl99UiJZ8km47ylQEsdTE2daxXqgAkJf1qtRr6bbyWP7MsIPIY47WQCYUJVKo6N1kDOM3XZPgVJUAigIQy9E2+l/0kg8PiSwvMAFLmUD60tYeip80pgI7GY9J3OYtea/UyVN6nbhnzpIxdURobgCciGaTlSoRvS5HntZ68lywnzJutcUvzBi112jtabyjMQGPUJMs9l5/KIgMP+3hgMkXAd3lvWrYsv+S6WJcOtLIggc018xiYsPVqG90RTussE4d9zL6L6fP9Fkf0ewicZ4cxm4M7/kYuBdp70Bq+HYrM1uxiBgg20NpBn9HOn8fBwQGuOXkMfWuFY8eOoTehcaEKkMi+uQlwcWtVMa0qar0eZ6YLOH/hItZNsqrNMPmHgecACRiVUqTsYtofvK9soTqfuAgoUAZtjVkSB0c7jfu3zz80ING7O+7t/mEP63kNSnm49XpW+cHRb+218WKpkrnLgHhW6hEMKW2a3nkIbEU5wGKyRa8tcW3wj4Gl0+/AyHOArt+jAWPjvpnBKkmlsCx0BNlL/LCygh4NCOh6JQ7NhcKRfTZszcS4Qze73Pq92tqoHR3xvdsJFnDNjf3zo4erMlYvDZ5BfH7oiaOu5p9zesChcFjIcWgU0QP2WS+ze9O+lZ+/BBnkUQCITKy2Zq1LaQ1EP5e2Gun1I0DFbhed1nhWASnM3t3LgcmyWPd4nj2JYm6EYoyMLDrKBvS9QEdAIM+4F3rwQMY0jkRjG3N+BxsZUqd9LWe+sEAiD7dn8+DQu0HLZAj+udFkkKGpq3kOoXQf17vJQrJRHSkD0wuCF3RgZqNmYMVAGg6ajbxuLzS7VmVq2hcYoo4EkIkTPXjBzvHgG264Hp98+OO47rpTICooVfSbg4MD0Z0hgFKUAiLRFZuWbH/2O9/Ds999TkrzWSaiJPvNn+DZPGHrA8pjxWnu826D0TW7LDEGsGZaXcglK71kdofWczc7y+abVM8jIj+sw7o4OowB2WlmPhTTbauVATZZMex1AQTizD9pTVn/pMxj0ougGT314JeBXd0GtHXkwCXNpkULwBIATRccvLngL6GJ8lEay+DTQQJ3UcirkAtp7/N7Yn/O68AAWZn3s44ZEJ34PORCgPuQH2vjyv1Ki4myTknQQ2UKaNZy2fYUVvoa5f3v1HfjbTj/Wn+WQJqgkMy7Kk9Q35rqa9a3rEfLXHL6HZAayvZ86494cbwbJEBOsv15sdfZehv2tRC2o3z2oZIvR9tanUJZH+WsCwYf+N5zxPsyLy1b3tWz7jdcm/u+uPao78Zb87oeH2lzrCIT586dx1NPPYU337gF77/rLpw8eRzcqwRgTayn/c2yshUCdna28NEPfwi1FDz77HflUNegJ+tc+/sWtBsHlzvp1w3f2XrS3+05ln3oaM3h8DvsWqPP1CZce+5a3POde/DKzS/jB3f+EAerAwQ3mI1xWP5nOeDy1nofAmGhwCQa+FxmgXJ0O6xrj7DdpY4OBGYKCJtitF3ssyNJ5bqGSTAmpzpM/wQl3uIkX5ZKDRBZolzvCX65ghnctE3btE17x9ptt92Gz3zmMz81QImZ8eyzz+KJJ554m3q2aZu2aZv2zrXTp0/jv/23/4YHHngAn/3sZ3H8+PFDNsjl2s7ODj772c+ilIIvfelL/6CASrntHOzgjhfuwG//t9/GEw88gb/4xb/AxeMXjzYEN+2qa1de7u0nBD6yczCASgunmWUrCjfPsFjCGQEArNePDp/cBXNSEZUBzGHGHUOMuah7z5jnhlLIARHZkKyTlIBryWCUfhcYeKYr+Cn3u/fmge7sYAPM0RJB2Di1lpyUpE5NiOPR64l3C16Fg9qC4Z07Wp8904iBdDo0iEESDO+eYSUbyzoejoBilFCQMiXcjbbqHEtz7QG87Gwn8pJY8rd6UsxJagY6R7kAL5NF8DGAxOXpJVCMMZjFQbZgwSGgnpwmFnA9DPAIBy7cqZ5YjOOlHizs6vDLbkq/LfjeACtE4qjs6uQzB2kGVMVLxQtnJ3JJAVBWEs+C9Msx2DzEuoP3tZA6LpReNiYBjuXSI1BaR8A+nBjkgQcCYVUn3HnHHXj/+98L7jP299Y4dvI4agFOHDsBOQ9c0Oc1plpwbHsHMxp2TpzEmZdexLe/9V1c2j1Aa3tSsqEzqCjIASTZWCiy7HRNvyGOFS2F1hitrQXAoZnFwISOBMbRMgDyHKF/oeIOLCJaZKeQ6SzqbC1cJIsFmvNWLVVPSLdwMjlICQ4Kamlet6aKg4M1et9X8EdHqRWl2Dlycn6xPnR1FFsGFWtLoIY4oYG5NTD0OzDAHZNlNSMZtwHUBARVkkM5ZHDr3QMy0zR5ylsiQm9N1uIkwKRaliCg1C8GoM/PAfzedR14tQrL/jQrIKegte5ryB5FDKBJWTFo5qa5NwE3pQDSco3I+hKHcHGRUPy7AYwVXknts2QzkhJ0lkWhKDAlhRMsYGArSzcbooJaQt711qTvgIzXZGHTsoVQeSF1+JSPmqx9ZkhJSfIxdUjJsACZCM1KIZSpQhJKCb1lT7MSWQFMaa0rQE6BE7ZnJpDJKCdGsFCANrsnv8pyqKnDPDuBY133yBiVAkK+RyWQXiEawMnje1KQhUgCaDgqAMA+7pFvhU6sWRMtMGd9MR6wv/Nj88ndYu+3J3bG7u4e1vOMY8d3cMAh+2st2JpW2JomEATwONWK9Txje2vCDddfi9VUcf7iJRysZ6UH+d6z3D84/cyBPg/SBBGC7xLt5F8FW51UQPUi4w8+ErhkkqMfEZzJ85qzaDGLvGuz/CMSgKTx7mpVMVUr6yog896aZmPSwMoQMFmWCg4dJ363WcLAG8tsbvDRj3yTP/R7XDcLYFI8RzMUuEwKEJiV82SIzDGMkmPEVAaVInoUaRDF5sDmhVvwdAa0SteK0LRppsErNESv9nY5/Uf/Aid0yPJa/3NhSkR2o8PPzjy1tHmWur2B/jNoFkt+PXI849rJfDgEkkTFSX0bg108jIvzI4+kyRDkRS7zrIHOXLIQas/oO7xvOIo2tPhtXF9BnNyX3E/yNeT3cVpf/kwO3rYlGoLO17z3L3UxmSqHvosu8qHr/Sa96CgbRDJcma10FF2ybs2HeGW4Bkset+GOc2FfBLgjgtw80N9u0KyVus8xabnq9C6BqJgMj/lmfb9uuOnaoI3R1ErdWCeNs/PaWa1WeOgTn8BNN90IcEebG1ZbW2BibK1WMOWN1baepgkdjGlrC2++/gb+5m++LiVSFdztffE58f8ADIRWCdeBWW1K0wWZR33S12TSY4zmBYTZDjalPVHGKHokbL1C5LzbY0XlewlAT8xh2FxDgLiIfdHZ7J50CCkExDiXLvuSsFjoCPL+0L3MngAAYk62uulJ0Uri10R57YbyX8roZbzZXF9PIJuFfPCu98OBen9eWtC00FGcHMrf7GMCvASiyQEEUCC9RGilv8cKg9+rw4l32nUc30nw33TPyLjsz7P+IXg4UUvHGAdM3L8Es+0iuy8ogIEoFGuIDXDHtqxF70/gPm82H0Q6d5YNa9wb0VMvkwwiWPlCDDrMoKPl9WR7rX6eS8ZZ32Jl5K+U1gacy/ruol9ZwvqBhsu0JViEEj2yLTPI3+EBqdToYk8cRH7uq41/cW2bG1588TTOvPUW7rn3Hlx77bXYYkYxu6TIocBSpNS9lakE5CDWhz70QZw4cQLPff/7eOutM5JtJ+2kWTUaNCoOQGvm70N70nI4g80RczDcu5Bzh0AzuQ/6+dQm3PrSbbj+revx4q2n8crNr+BgtVafh5YVBwc4UJ9dK6W9ydYBp31sUB18JA58W8j83De5N8uQeO/lGGwJ9uHFGlg+x16ZMwB7ZzMzZZtnfKGKqqww5OeTZvxPw7fSkMs1e0jOb9qmbdqmvfNta2sLv/zLv4ydnZ2f+t7z58/jT//0T//BBt83bdM2bdP+rra/v49HHnkEP/zhD/Hbv/3bePe7331Z/+Sy1VrxT//pP8UNN9yAr33tazh9+vTb3Nu3r20fbOOhRx/CXT+4C4889AieeOAJXDp+6ZB+vGlXV/vpQErmeEwG5iGAkl2bjCNztsh3cv/S+LL07pbYwk6XW3aSog5XK9fjxj2PhpVlFOJsibJm7lAz3cpnWfBXDEUJHZlDpndGoXCSOfgpG6nMKAkEIkAkJMMxuy/1OYl+Ri8L3DMiICxQBjFWc1YbGSPgIJ/UCFBwgjwrG832TumjghesHB1k/HZ6mCrEs6tH/i3jxJAdpRQAKTuKAmvCeaEBX4aWYrN5Kz73jRuYpWxaKZZZRbJNsNNOQCGsDtmjgiTm2LXYUzhkitrqUULPeKsQNLMVKeAjU1HKA3R3dMe4LPiqIWqfRzu9BHNcq3Or0Dj/uZnLpuTgZnaCGngJ2cmi/dC/QR0eNld/r526B0dJCj9pqn1mtuwenNYn+7iKZraZCuHdN70LH/rwB1BKxXrdcfy4ncar2NneAaHhwsVdcGesVsekpBszDvbXeOSRb+H118+qI7kNftFaCKVMmGctWaar1k481qliXs8AyAM0Uu4geKwoSLGUgvXBAVprAlSiArRwZvbWpEwaS/nEWgtWq1X4nzqwntchCyiowb1LCS4wap1QigCl5i5l6GxdmQxqLCW7uHfUaXJ5VwpLNhDjK4zrcrlX9i7AI4AcfGie5qZZsIgIq2lCm2fPnsU6naXLMxo6yPtJDoRi1sBVb1JqzssICo+sW0epRU+laxDTAVrqKNd1Tsr+tZCXMnOAQynYggDIDChKALg1MFcHWIaDX7JLKdQO5NmfLECbZWfIA/a+R2KcDM7I4MVwnFr5qcjkJHNP7qB3YE7OQlUi+NAt4xc4ZDlBAUoUoATbo9zBOYJrTJaO5Tdt741ALhF51iyRo7qfyeKBeYm5NZACRiMTHekaDG4rpbiTOfPxELTW/rTWRJYgl5nQQAsLjXqmWR9plgOx7P1iEGtsBcKPEigZgZiyF+rzSEuAMQ19zy07WQ//nfZkPhygMDrZeXqnvcoh41fbYrPjd/9gRud9bK92cPz4Dgp17Gxt4dixbRAxKlWsMcsarRWlNxzbKdjZXuHEieN46+x5nL9wCfMcZT2z3iOBcT0dn2TPspXE+7FvYaBVBk3kec8ldAst9ltEGTYpAxLPEhIrj/Z8R6xdIb8CcKaKuqpS3pMJc5uFhzv0ngAvZvCG5xpI/Dk41pN8LSQlLVn1FQMoXi5YQkRAYSm7yknHRJf3LoIWRASqIkcE9Cd9711112KBUKM9qY4o10UfLKiQdIChbzy815ok9+qgAqxWVYCI7TCo+2pq2Z74uy/GcK3RMn95OJgD5RNy3dx1nBzYOeKeHHwKeeVvh+0/sd8kgAyM2+W6fM1hv8CC9xYkYTj0ZHi3raGjHA2xmqWF/JVPyQcT2WSQxjo+S/cpW0sYaeZ91/EL0N3eU3zMnJ7HP4n26TMfd5oPSp9bwL7YeoGBx8f3w+ae6FD/g2L2ovy3/s7jt/FVzIywcgR3XQakRw2ZYNPnvPiNMQbTh96YfM2KTmr2yrwX5VFmOnDq4/A4YlgA2J5qwIohwDvIKH0DBQTDfnMZp31YrSZ8/MEHcddddwIkhw9WW2F71EogdBwcCFC3rFx7QpsZ33jscbz15hkBnEieS6cRkcx7T8B7pHGXQkNJVUB1LrK1Gvuf6VisgFMQgNb8edxjrXdmFCz0KH12znoFm9duOpMecmDNLkliz3imJRg/xaEGf4fq3JzZIL078wbpd3L4J3Ql0UUZBmoPu0wBxKAh8xL5Xshg138xMKl8L/o7eNyDet7Hk43MHHxlln/mGfOrBEuy2+4BiiHPcpn7QiAHv0d/WWmX9nyl0bA3DJxCIX6dt8mUR6U59NxRAjQl+g1r2nUqimv9cgVS8SgLOD0zi4F0q/Qry/P8blOi7ROKceSDH1k+jvqPwal4eEwaFYyMi4nwUojLHYvTGpFlaF4A0q06+bLsWf6ew/SVR4Q9Osgy0+Fzt3VcZm9mfrVnHVpLmc6L7+3LDJzktPfYU5ZwqXguDaS7eGkX3/rWk7j3vvtw4/U3YLtO6i8jbE1VwEr2fOU/EDBNFe+78w7ccsu78cQTT+L5F17ErAB2W1OLpRv8jKN0AQTvpDlA+nxkhXiW01HvNfoP+ovKg2FntvUIwom947j7+x/Ebadvw4u3nsbLN7+M9eogb1Mq/9XXUovLNS93qNcFNw9cO8xDHpe/4pCdofuG219HPOPQ45aAL5UBSScS+278254qLLcAd40Cwr+jPCFO/vAL8+JmzvfrH6WYDXSYJzZt0zZt096ptrW1hX/9r/81br/99v+l+x9//HGcPXv277lXm7Zpm7ZpV1djZrz22mv4/Oc/j3/37/4dbrnlliu+t9aK+++/Hx/60IfwR3/0R/j2t7/9Nvb07W2FC971xrvwK1/8FXzykU/ikYcfweMPPI5LJy69013btMu0K8+P6DZRBMRyKa0cSClFUre7k4EtEBPJwdsiIG4ntMhPRpqzWV7uTrRkbJmRaBkaADvVCownrOVnIdLyAZplh6XME0Doc4M7w83JyymLBMz4U6APRwp8QDNfcBh4MoYS9OIw1PM7InAeAfGqGQmY+3CiURw6cGekjD071dhTtHtwEQaskXFTCQOVnY7sJxwlc5PNc0vGOJJxrsFi9XhYuTpxtnZ3ZHmQVME2eqOXbYI6pnsPIJQYxWVwJEX2itGpYU63cLiI88dK2RgfGT16zhBFpOApBcb4qU15iwdYF5ksAHNMW6aN5MRTnhAHmdIplRwwt5nNlS6QAJbYFUrnBs2SoL0yJ284mAGwzF3R05NMkeS+1OK8Lw7dNji5BaCiZb84wH2WeWMqFbfcfCM+/QufwA03ngShYrV9DMeOb4G5oM0NvTfsrLawWq2wWk3Y2trCwXyAdZ/x5JPP4jvf/SH21wdo875kqAGhqHd97jNIgwDZIVWqgG1mLa+mqw6k/NEUxKDkQ5sbGjUBOrG5AIWikSlIMpMxV5FbhTULmjq1pgqehW8FPCclG+fWNPNNZKLJJdt6F2BOLcXBYcIO8nebG7gWtIMDFKpYTRNQCOuDg1QWzUorsPKMlpk0noUB96CZdPQEODeREZZxR2WiOaclq0+RTFWama0oyKr3WcahGYOg7+fGIWPKeKqQNcOVgSdl7WpGN7tOZZPJTXOyWYmqCMhrUL81AWrATuwD6CXWja5lk5UuRvoY8LBAlPGJrCEBV7UeJ+YPAVF0Ndq6Mp5yR6uLG4NF2D4GF6IWrwsAVPLT6rNNftRa0RlDEG357s5QfoLvG0xIp4152JsiOMwub1n34ap9K8pLFtwx5/voHLWgEvv6EhkuJ/mNblY+ptSq3kvNyKbzleWllPULGgv9fdAIB6rpEUETC5JLtjcJSFoQLwcVsmT2wIw7rANoEiAaCnlPCiPjmAfb560zluHH9k9/lukl7lC251XMc8cbb53B3E7i5PFtrMsadV9OOXORfvcuJTGZGyQDVseJY9sy98w4f3EX6zll8TG+1tFayUTnn+RoHgNNtgfZHKSSh2leumaHyAAzmxe7hvQdvrcmXcmBJxx7OVjxzhxzS7bOVXb33jEXebcBbLrOtwc7yAiMtO8nXgVSkCP4lzujUdfsfbafkvJH2vc8WK2g6VoF8K1Z3nxtavaNrA9IkFqpS1b6zpz8RXgQ7Jm7wOy6s2T2g9POaGN7u80fL4LrPh/2PFtLCogiLEpbXmXNeWBoI/gmfsJ1PL17IccXGSrjcYciRvIsffmQ3dV7ALj8XgRW2d+e2S7kiwhM/SzmLoNLhgBvkiGA6XkIPre+KW9kOToMM8lxD0ApqFl4Nd3mW98iIEsjoWwdmewZ+jf0cflo0xVyn2Psy3YUAI+cOQiWB0cIrhmrMr1YAQc0Bp99PZkm7nZZemdWA3gYnbLHcEH8mt4dz6MYLxvtDg13fG6ieZ7bYe0n/iNAD6jYnGQ+zPcaPyZ6YjFmBK8Pn7hs95udDU0XsP3dS8cacpchu0JJ/UDYNKtphU88+DE89NDHcOzYFggFdZqwmqRUcNcsIaVWlColoGsVHbyD8cLzp/GtJ5/G3Bu4a1YhirKy4SOgYT6pWEZJsaddByEDj5odJ49yPdH18JGvMvjN+JGRaE4B9B35BAkgy8M7oHPLxeRF8bJqthZijyY0lR1FM3caaD32yDTlphPZ70ovAQQVgDgBwtnpdyiMn3Ri5xMrCW4ZqjLv2NrMbJeFZpa1+p3LQl+vaY7SczozKsJP4Daxy1tKNCCfL9dVKN6xpItlgPKW9D0QD98NFKJRRtJwzWIjyl3LLa3bEHVLQaKyjeH9OhJA4ENi38vUOBvkSi7NbHx66H7rc9r3bKzi/zlEbmUSjq1WbyaEL2N8b94no9/ystiDct+WeqGNK/hwnJS8P7oe6PptOTS3TgPvQubf0BN8rVC8Y9hRhj4gbAfk5wdwLbfdvX08+eRTuOOOO3Dnne/Fse0tAOIHEdoXv68pOJ1JdMbtrRU+9rH7sVpN+PGPn5cMdA4kjq4h84itiUzotP0NJSOVJrnH45bCwzOFVuMI3aYwmzQ/x/+QX47vHccHv/8B3Hr6Vvz49h/jpfecPrSPSrbgtNZNZtskpr4fWlkL+ePXj9OusiTTxvQM6F4UnSeyQ3/ymR+SUhnq70PigdhSkQHXvkYIA4FMxlv50dB/0t7l3YtPhjlO/Rj0J5fvm7Zpm7Zp73wzgNL9999/yHa9knb+/Hl84xvfeBt6tmmbtmmbdnW2N998E7//+7+PT3/603jooYeu2EdMRNjZ2cFv/MZvYGdnB08++SQODg7e5t6+fY1AuPHNG/FLf/pLeOiRh/CVT38Fj338MXA5wo7etHe0XXkmJcQJDCA7WMqYQYkBNschMniJYNmKBkeAOumkvEs64ZmcSqSlabh0eGk0tqQRYXDFqTN7F8KQJHGeIpXEks+q9iMCQZL2vIJRFIzEXorL+mZ+0I4wOCVrTneHHyvYgZEMR4TTWOxKcvpagKZzS4a6ZAAAujr+LXDXPCDMXLRcjwAvqBAKKpoGwqTfXbOAK1jAnJ4ahPP3sRmxBPJsTWbe6lVKxwxakgwrerrcHEVkwIlUWiLxlDirkhOBgKlUdVqEk6EWccTICVn2Z3qKZzPw7dAtOgqxZ0IBC1CDzKhnSGk6MiNdstxETMKcnVaeSILBLZUAAveR73VttFl4zkoGsTo1izqeLZNOqeY4hTpNw4lo8wSwZmNIlFPHQyHSND8yTgerlQAv2fz03oEOCMwiOeIscAt1MHeWFDTK3KdOnsLDDz2IO9/3bpRK6LyFggmtM/b397FzfAetd6xnxtbWDo4dW6F1Of386ouv4uuPPoEL5y+g876cEq4rL1PjTj6SV3ZOQDG7JGXvEYe99r8LOKd3Ri2TAw91SODWgSJZjxgdjZuAciAn7EpNJ+FkEQPomApprgzlTi3VBc0aAljWqwKuHaAKK7VYSxGXeRHeEHYuwGSnoOHPMK+t8XipFVh3MAQ06aBFFKDaSinBexpUKF3W6MHBgQKLIuBNvXlJplIrOsJxWiHAUSvPaA7hUgpWtWBtmWyU8/ossqaDMG1pOQ5H8RkgUHlTHXLmqOskk9xZgzYKiGu9oRKBqjqMi6RvExms8tLK2aWSCQ4+SsEFB0NC5GeBbA7dS4aGjBnATmxABztRDt8DBNCK8T5z8oP9pO5srEwpYwUbmIGUJ8Mh7xmQAFCZwH32cVQqse84iEblIFHKLthRivSXNHAbclpki4Ek5h6gTQnWkQYWRPY2mBwjFBR0fZ+V8+hKA5e5SmORxXMEPlTmlVLQ5nkADZAHvQwkJvtdBnuw9qekuSUdn+zWkumqTpOAHY3/jPdAAAfYyOSK/B6ZgTyQidiLJClRV2bNDujY94THLbCh+7uCXOPEqu3trPtFwVtnz2N9cIAbrr8W4AMBchYIvxegEgG9Spmv3lErsLMquPH6U9je2sKZsxexd3AA5uKBFyvv4AERfzecn5uWarQ+2Z4llLfgawEQJWPDXrGyfwYyhs+9lQVt3fbc4usDaR8HGNV0nt6B4lX55EkGcCegN6DRDD8hTAqq4w5i1Xfcna5AcyT+wkiH0B+h45TrqSd9lBlUxgA3Kw07MXjd0KDZq5Q3RbdNeqn+m3t34F7VYISMRbMoWWYqaHkKVyQp+ssKACCGVc0FcwAaeqxDV8NDYZF1INue6naMRbXEq6qNAXDTN2ng6bxWDzdK/J6eywZSFZBnDvhknjAeGYNK6ekUIXfX3zHKjhzkM5XGdk32/8T44Hpd5tfQg5wyLmuTMgT4QmQEffKz8hhCB7R++ZsQFxvUEG7f2TPI91TW5xTfAwzO7padAo4DKG29PJw1QKfB92rvkhI0reL8FO+3UybxxUjroAs4bATnC9h7yMtvw9f+gtlMGUUA5Z1PrR/pfl70MR5jAekAoAA4BFS2vtnzAEArRLrc5cXTWVVfD1zaWJfBYJNfGMXGoXdDdCAvkZX6Z4CR7mkvQ4/yiTU9k9TGVnBqrRPuu+8+PPixj+G6605q/woIFR2MNjdMK7FZe2dMdcI0CaC71Irz587h0W88jnPnzoldrWXV3PRyxnXzxfneLrLSqLLvGMg2Sv+a/S23dN/nDUeU/Re5dLLsWRSLWBlSMbr6zth7COq7gIH1yUxqmRvLeGRgYrNTmSKDG8N5gc2u0MEXIi3lowBqDrlneOzcFxFNISSaHtjytNYAyLMbh2yArs0CQvMxjSu3FAOws69vWQukNq8ckmktsgbD+Nz7VZJ8DQXPbUmKexxg7vtDZCWSH1Ha3GSg9cUXBidAlO4D1u+QCZnnHObiPGTjHcDFA3skMJc20XTjgI3NjZc0TPSzlvUtB2X461S6u85t9CS3I1y6xrCUUAFgyGzdAc8mKvMTcqYAaMoPIEip+dgkTJSKDpVJstAd0/lCP2SQNzclSaKrgQ4RNEqfWe/z3mOcVChKapPbUEYDo7HoUz4fgO9tHBfFGEmI5GtOxxVfk9PWeMz75Rs2JX4D9nZ38dz3vofd3V3c9b47ce01p2R9VUYl1kyhClIR8QYD/2yvJtx/3z246V3vwneeeRZvvXUWy9zheT5C9oc899KJTvKsv8TOiCTneBxlrE0e3+frJR4efUkXOisxcHz3GO7+3t04vnsMz9/xPNZbBy53zb70uaL0Mn+JEzyNY9F8HBhsPOfTeEVcNy5yf7HsqeN7OG5Kr0y+jHRlsIXue9qPrOuE/LF+ku4d4u8ZxuhkiH3TxubyvUP32QTA2rRN27RNewfb/y5AiZnxzW9+E2fOnPn779ymbdqmbdpV3M6cOYP/8T/+B9544w185jOfwYkTJ65Yju7s7ODXf/3X8cEPfhB/+Zd/iVdeeeVt7u3b2woXvOvNd+FX/+RXceMbN+LL/+TLmxJwV1m7YpBSBIaTs02trByQFIMujNkhEMnhYAkHtQUDOliDSOI0Cie3nYI3LxgVcwhGf8wgRzrZlx3u0s/xpKM8WwNyKegUTj+59zDasKAUYJ47zOFt1xIZGEoGTOZRcV9GdqRBM5rkchVm2Ofrg24RaJ/UUO3qH5UgsAWckWgNLAx+YCx5hDB4c7YTVicTN7HGp0miXhYgtp52B+8AVCo6z27Y0uDATkawBj4IlnkgTmK6w0qdHpLFXf4uOk4LCDFYA5oMy3ASzmaW06mpTFN+f/RLnamaMSdOmgXIJwcmcwmjTD+jefC2uu3YHIPQRdOh6JPDAQWWcmSlVllzFJm8RidwpIK3fmU+FQdaD+esgqpYM3aASMA6EGdGDtISrXDi5HE88OCH8N673oNpdRxTnbCe1zg4WOPY1jGUnS1M00rKJzBjtdoBiLFuB5gb4aknn8Ybr78uJcRYSz11RIp/SCaQaaqY51kAXcnpYiXc/ERXEZACFcI0TZjnOZzNYKxWE1praApakOxHcKc3SE7ftrmjlIrt7W1sb2/h4sWLAqoxZyiklFEpVQL9rWmQ3U4ta1YyXWsCkpGyRfPcACZMRCDNGIYC1CplLZhFZtjp5967BLU7gwprxiN5bq1kq9bnM6/N3lqacynDxdTVOavZ15LMMBHE3NFZAnStNxAJSKEx0Gc5vR6ATOVb5bEAhyS5Yu+zudIARLG16cUII+OdyEjp0DRVzM3eU1BKF37sSZ7aetXMdMLFGmBVB+9UK2YFODGRIB8UXCrAtsOZNkLWh5yX9S9Zp/I6dyChOgK5x55hpTgAk1OHaQMIQCkDZYbTxC4LHE0JkGZeUhCERQiKC4ExCJyBsPZ3PNfKm1p5ADjvEMHBdu6QNLkCAuvea+FsYpZyX2Chq48dQ9kIk+s2/2DLeFKGviFY9XAAxvqhe3Wb58V14qB3B60JsYXTOcaf9weKEppchnkMUSp8N+6/MtqWy78kuQXlIdbSlBcu7YKIcO21J1FWK/QCEDWgFFRUgLqWA1Ig1qpi69g2pq0VVlsTzpw5jwsX99A0WGVlTUYAAAZHdC5/NTiz3ZEd+1iMqWjWqrjWs0/C5IfMmwVg878cXMm8SM5vxiX+tNAJCShTQa0TTKcorIAddbw74AQj+MoAUj2976iYg9EhxldcFkvQTq/rDJTQXaUkkD1bAuO9sYNghENE0gkI2fqnOm9rAq7uMndWoIhZZILIVqV4LG7Rg7TfhskyHSH03dDtBLhLqIWwWlWDjF+VbcxakGEfSxkwTuVSbriC49/bb1159bAsMMCKr3UHwSb+WQS4QjenQ8/JNtE4SLjMzP0frzUQnQEhMz0IwwQrXy/DatmmsMtCh/fbRhosu+qAhKCBlYUFTD4PMzFQY1xX8fe4f5Pzc/7c1rUFwlgBfSKi6XBf4yWLMZB/m/eVJb3sl/jcwqtwfdr7D9v3rXO6lx3BV/Yy0nm3IHawTgIZJN3K+WjJQ05zC7hTfMai24B6+i72YZ94iEwSORf8kLsfq9DUitD5/Aq9qOtE+fykvua/DdSJQpimLdx77z24/4F7cN0NJ1HqCoUKWhf9eqorlAluOwJAKRNAcuimd8Jzz/0AzzzzjIM+TMY7fSE6ZTWdQ2lseYoI8IxKcn/YSkV1rLzM3D/ge0KAdIxZbe8iiE1Sa8X64EDPEcWcEQXo23RLBzY5bbvbc5bdtWl2v0IEZB2TSLMgjRkhDYQV8ygDGmROsgv8M6MTjSVi+Qj+FjajBFoIsB/3AOobbcwd4evSfwt+Y0NnaQZJB0mY/pzlg2vYCtwxRiTZoj1zpi/myCy8lMNZpDk0KL0bMN0kQK0EAnIZ5Eyf2DbioyJ7u4GbgxLytHwDezeVt4evTUpJH83FlGUgH5quBGi2/mWZo0TymUn8YP08apcVfcdk7LiXedZvW//KmxSXQPa8eKgdHnNdxy51BYp9XbD2z/uW+hDgmPR5koPZnrXrIoPmKAftomCvhcDUvsX+kt+dvjdZbRxGAcjx99nemPaFhOjXN8shueeffx5vvfUWPnz3B/Ge99yCrbJCLWrHliS3WbPNqu90qxbcdvutOHXNKXz7qadx+qWXMauPxPpldD60D6n9lYF8yz15oJ/zD6W5SKOh8TOX3/aVfz7aEeliEBEqF7z3hffi+jPX4wfv/z7euu4t8YHoBmVyPPeO1S8bDLgYSeaP3Mc0D4eg1HYdBWSPiLUfCex3SDoYjwZvGs+4LpN0CLM7Ta/LOlf02TIPj7Q0+TaCmhZdGcYUeysBfuBq0zZt0zbtnWpbW1v4tV/7tf9lgBIAnD59Gl/+8pf/nnu2aZu2aZv2D6O11vC1r30NP/zhD/Ev/+W/xAc+8IErlqdEhI985CO4+eab8ad/+qd49tlnRx39H2BbzSt8+qufxl0/vAt/9i/+DD983w/R6xHZ+TftZ96uuB7EIQd0ZzeWrIWTIAL+BgQ6ionNiUVFsgdJ+SQtaWb5TIg0Y5C5GoEMIima7YSIUKgORmwEoKIfVrbG7s3ADrIAujkWy5glahnssyCuBTnMM2gn/Px58gCzkJFBUPLMnLEonHPdHYXRJ6Nw2MVy7TzP6pcp7iDPrbOd1AxgVh7rEIxPRrdn3hgAMPD5yCcFuzpg/bo+8oxns+i5//Kz1gpwAKDEmUOScSK8FkIjYpQKEHXNcgUUcwLqg8VRTYf408ZpfGEANzPE3YGqPDNkpAANzxmDGcLHxgqdDcyC8Tqy4OcwPZFpKp/8dCeKjDnPqa8V5mFMQ6BN+0GkzlLjPQLQpGRC5x6BepJsQNurCfd+9AO4794PYLUFlDqBuGBrVXHy5HEQFWxvT2jrGbuXdtF6w8HB2h0kzz7zHJ7+9rNYrw8wt9l5IcB4sp7bLFmAMo05z5+Oo9ZJn90FGECEOk2ehcuu9+c4yYLuFhyY54beOlrrWK9nCQZwl7JuRLAg9DzP6K15iUUBXMDBRuJHVACalQ0kc36nNd47VqWq87xrXwWgV0HyDpdHYwBTAjT90LwbnQgEbtCMaaQLPMnMWtABNF1f1cAyvUuQg8SZJqcwJZHMzCIjhd+LB1O6zmNrTUrYNfk3UcFEBVV5hyFZhGSNitNagGKWncXT20gGKTLAFodfNjkYTT7mcXswxsAT9j0jSu651y5ANFn2eRDG6lF0EjBmWmtHBVN7F/+xlV/rndGUnyy4zeb6ZVYe0UxeDlDs6H12mvjaJUjGsQJIgC6y9EluPIIW1vP1f1SZo+Va8uebYxOQUoF9BrcZbb3W7GQNdkyadT25TDWZn5yiFQESI5XdWR5lzycl+caaKdD3b5XFQNDb7hkUZ52/DB4bAt0why77XF9edyb/nwFzxn0w0dMWfJF/tnu7JpDGEfI3HM2dCecv7uKNt87h0u6+gBkBTJWwszWhaoaGra1tkAIkpzrhmhMn8O533YDb33MzrrvmJFZaggw0wk9GmoUOY/pLBCiL/ovAf9CKPfvWCG4raY58dwQAf75kl6PhuuW/ovJN+KsNvGH05i6AoHmeMa9nkTMJNDU8P4U6rfymy/qe9dO4f3DqkwXFYk2oqAORAWgnl1eyDxXUUlGLADtZ5W1+p5UAldcYOFFpa0GXRV98baneXJRe3ue+5De9rbOUxuspmM4AuIO4Y6pXb7m3pX6aNB1vee1fzgg+/LHKR3DoBznqCNXt9FoDndr7zJ6wC7OeOhrxplPwIAfyNUf9PfbdeCDxsslUXGbsKXg6Us1XtMtC4+Xhfbq5xgriUDVT8xLRyH3Jv9uaOnpuljbF5RrFZMi1C5shxiMvywFEX79D91VW5PUTbxNZoQOOuY1sIbKFs4XMBzkJ2wo5njfQZpheTh8xLDNf8ORhh5DZiSGj4gvOdMh98r1z+TADI9j9iBENPBS/DwHPzLt5Pzdbx+jrn8chA6GVMF8hwoc+dDfuu+8jePfN16uOK/K61oKtrZXI20mA5PN6BnPXskWy/l555TV87Wt/i4ODffTebPDateQX6GGvjfO+0IUMhA8MwFbOVOKl38Ls+EwzFt27QwH8zbMom85gc2DZbkfbOtaq9dHWZ+SihjOdvb8UBQ/7+ghtBsNetpRXCz9MZmZ9xsDfNtdGZ9d99MDEwjdiF2dAlPO7MqLBATl93iyTlWZTqiSgLnt3BwC1821NkS1GsuuSsDOgUuJQp7nZZzZ+iE5K9rVxgO7p0eegY9aBhxWpNDDbzO1Qr3k3SikHq9jXKgtztmjo2Af+YCn/bTImbI4A59kadl4wQLWvi6Cb2wY9f69jMz47JMO1r8Esyl89HVxIB1oGPkhryjcfdp51nrf1l/XbsQdK1o6ArsFtVpg9kT5bikqXe4MuNq4BHZ1flykx8kBagz36g3xNmm+3F8ctUB81bt653xcuXMC3nnoKL770Mvb31+LT1GumWtye8DVKkv15NU244frr8KlP/RweeOB+HD92bNQ1Dm0kieZGx+TTFLqOvlkg780j3/isJ7sA+dn5u/TEPPd5Ho1+py6cxD1P3YP3f//9WB1s6RwZkAcuy80+XfYj9z0S7yf5nPZ+mFyJhw8UC24JuuV3Df5mSj6fha7EKi9kzSI+Q4zJn4vxe6GVC4ZD1y3nw/+29/UAy7tsYsYGp7Rpm7Zp71QjIvzKr/wKHnjggUO29JW2vb09fPGLX8T+/v7fc+82bdM2bdP+YbVXXnkF//2//3d873vf+4l+umUjItx444343d/9Xfzqr/4qTpw48Tb28mfTCIRbX7oV//7/++/xL//8X+LEhRNHGGab9rNuP1UUYwzc+qdHPzjVxh6DRekkF5GDCyzYbyV2rHtEUbNC/RZD9qNKKbvIZYKS4RxMxuhgJEtQY1yk5EbocgwW1Mt0MWOXU2A5gn99cDpY4B3oyUGegUsEmZpkxFMK5vr9h2boUODa7skBxTGYmpwARN4v5i5ls8Cjw99oolkBmC2Lkpzgl2phBdw1OwDp8zpByvEUMBOkfJWevOMuWSc4pRpGAqUsxrhUT3trblTbfbCABAUwYjDsKRxKcY/RggevkM3j3NrQn0PPc6/KGBwN2srfOctFDrzaexp3zL05jxlvZ561+/L9R4ITsOB1p9fh/lWq2J5WeP/73oN7P3wXTh07jp3pGIrUUMOxnR3sbG3j2PEdbG9vo/eGOk3YXa9xwA3n93fx0mtv4GuPPobzly6Blb8lPqu09jJK7keUEozZcZ3oxcxDBprOETwoRAIMAwS4AgkuCw+pg5YDGFZLlWxKTcBK6/VaM58QmCPb0QhKIynLpb9bMJ8wYTVNqEr/2bKqWMm8WpQHZU1V+VJ+rwVzW2s2oDhZXUoZxurBrLT+ip4GryBwa1i3JhmEyIIGxs9yf6nymZ0UJ5VRBDlBvswSl8EapVYFsCmvEvmz/R93nRNZg1QrmCTtfwej6b9aK7a2thLfTmAirOeGZqXtbH8o4WAumlnE5KuV7FutJkzTKubJvPGwNVHV8U6HeMplZMq8Jp+NMj6v08yPtqZat3JQJUq79e7gNaOlPMKFQ5ofmffWFiAsjywQ1uu1lhSTeaAioNha65Bt7KjyXvasvF9ZIKox0JXnioFeatUSiRFksyxOnRssCCJzzQ7Ko1L+/+z9Wbdt2VEein7Rx5hr7SrrTKXqVA0ICWzABnx1j5uvq2ZswTHGrfnhPJwfcZqPX/kp1+2+uW4urm1cgX0NQhgjkBApgcpEUiqLnblzV2vNMXrch4gvIvqYc6dSGKEUml0ttdecc4xeRI8ePXrE1yMsjZ8U/qGcqTSF7Q3SUm4FrSibNlHrajkAvrgz6hi4xtYqHECWQMAtfTgjVSfJeWr2X+x7GAzT08bgLJ4qsxfDMmvrCty9d4EXXngZt167h2VR7C9X7C8WjxKlUGnoapH0CECBKK5eO8eTTz6GRx+9gbPdBGbkrIbvugdsgY0jWOm4cWfU0TY0GugylsM5aUf/Zg4KCbVKoQVErKoOTlqxLg4GVAeCoseaN+dB8/3EovOtS3f8txjYUPNvqAFNq4OYzo30IzLqhf3X1XhmcHhrdT+g1DPquVACXxwUv7rDyhCIOXbyjyKALup7oaiGo5Y5gMJ5UNbG5CCkBIZTn7Y1O81v4nxvXt7owbiu7a3esq0v1iqKc9GeBkBIOp8/7vB5Y307lE8PekfKuWY7hoN3yscDB3GRLVvHoJEiATfjcxtnXJEfXAUcw9CVTV+ttqzrWxuLNf7jvBzMZZEB1DYGh6WIn6cIMNDa5Vhb7BnXy1baxbnrWJeddiHr69tFDzNdstLMdRaJ1mPUr+cUDFDjET5ImWlySobBHul61eHYz0pPjnvgv/H8KP5udRIHAI/jL/UHXcrePtTn/PXwjYfwAx96H97y5GM42+0wt9l0clXs5hmzg0HnaTK9tAn264oVHZfrHq/duYtP/MZv4IUXX7R55/4xuP81Gh36UdcONx5giNo68nc6ramz8YJUmaVoL+V+j3N+AmYRl3HqWdv+nUD+YhAhgoHjrB0RKGHg6BL5KY+nvns1XorZyLOY68P5ibpDJ0KCbFVRo5QCI2/G5yJjIRmhc9sG20lZ4bpAmSf1Sz2maybf+i0HOyZ6W5ZpVkL/RVkvHa4PFuRHyri6qsnTErpbs5tP2cUNz1NPGORh9Be5VirdN3rDeApgXQSgUUcuEtb3/VSU6tvZh6irnNHicf9XqJvWiw1UhajH17Xf07ZDuwy7MYCowDVpMjB4BILWJq8v+5F02Zx5ok+03Yzrmef/+hnY6GEbu0adG8q4WuK74KGyb1LWBa9zvY40JP229eb2W2a9roFhHxuj6dU6U+LkuPaXe3zmM7+L5/7wa7h9515cwOxrT9mhADaprqGKeZ7w/ve/Fz/+438W169dxWAC2OwBIL8X3sq9acvNpRzRg+TYb1v9ge3WvX/TppTK+Pa8THjnV9+JH/ntH8X1O9fjglpfu0c3Td7zkN55PgEw6Oed68dlyIAiswe0Tl3tN7cc5Zq3/47vN2V74lgkQZGDHsJ1x3OMZlvB30KZj9CTnLWKPEECwUtfqNcEHxfBEalDv6Wudyqnciqn8p0pTz31FH74h3/4jyyHVBWf+MQn8Nxzz/0x9+xUTuVUTuV7s9y9exf//J//c3z+858/4m9//TLPM37iJ34Cf+fv/J0/FUAlADi/PMdP/+pP4//4//wfeOqFpyD9pPd+N8u3BVKqh8Y06/HQdtzwfszZOBilw+jShucHp5sy/L+Fc0+gTTHySANBKTyUj1Emss4KfOia0QIAHDilaB4TIMKS8wb9dmxhhLcP7hwUA1/BDGcCczI3meK5wdirhyCjEUCT9oHW8mA5zzPCwnJw8M+DMsdoHe6ZwqnT8EIDvxuRaMxmJAAI5qkNjlLAgTdBv2rH3higNoxA54rwgFweNr+3QmGGUzqBpTUHlyANsH5Y7/Fvh6Kb4W0DNuB7nQfvaniFgzE2/ByGCilAhzLQeNfTggEEQ1Qex0B/Le+R51oTWIAZA5gkfaehnZhakcNbrUN9ydfh3JxntHn2scRUYGqCt7/1afzZH/koHrnxMJYLoO8NGHJ+dgbBjN4Fd+/ew6s3b+Hy4gKTNFw7u4qr5zPQFZ/5nWfxza+/gHV/iXVdwrgW/9MOi4AFn9eePiao08740KYmjaTzPKOJuPOY0SPceOrpqLp2B3n5beyQT76u/EauwKICLcuKaZpt/RS5QIPu6k7/dRMlRtXWzTzNGzlgoBPOL6OvWIQcQZsUkBXqEYs6gKUrLi8vsd8vYSAL45WMIJuptQLoAujo7x2W6k4N8NU8JSYNXXbD1RSQySMY0ZhpMqTIFxugr0VLgdYmMaCMmoCbz3aYdjOIDVh9LZiR1AFG02SL2FNXkO9J15Xp2YqsFpGIGGN9aiFHLQVcA2QKAIqqegQzgd1Ytr2CaS+tu+Ip9BKUZREz3LFSx15C5ks4XkZgjInZlNduTx/2DYKVEjjLPc7+ZXoQgyK0MJACbkPls+5gEdg4V6d/9i1vnlsqKRhwFyb2CWji+DodauoRoBSQabJoaZLyxqSnBmi4tRYy1ZxJBh5Z1aJyrQcOFmE+ioEubbIoQUajFSp66Dgp8ivkbNB0u6dn2taDfZLAnKKz1P2asnPbbtUT4nN6Rym4B3nAPoZhWVrwC2/9a1fcv9jjmy/exIsv38Jrdy5w9+I+9uuC3oH9/hIELfd1xf5yj8sLA6ldubrDU08+iiceexjXr55jnqbgpxi7r7ljQAP7N10nlce5HigHqjMk9ucAGaXToM5rBSbN8xx0r44+8noT9n0jc1BAaqyzCdrUcHbG9XK4ZwYwqxrw6/jc0VD5mxb+nOORJ0L3jP8cVNBXrA6csj2KulVGw8wIaIq+9AAh8jZ39zWsKNE11G4qT5PrjDGO4qihnGsG1JQSxSrA7mra6qrAxX7Bm70M6xFAdf0c6jr5d/wW+vP2+fEccaCnl/lOPvF9V5AyDFXWj2u8gnyGM4PU9VEchkg+z6Gm/n+0aPajAlfyd/a0OtLY4HEgxjEdsvpPYw2wj2NnEOEGhp9CMBY5mbw9/p4OM0HVP8r+QblKeR8Him3DdV7zq+0RqFYB7lUtBmw6vyQcqMI6Uk+nvl8rJ4+M74DvcC857M44XeWzlsFszycp3zb8jCOkAeV8EiDkvZSIYWwL+VwlYJwn6jNln6Qcqr1QtXPUM+9+F9759rfjytk5LHik0W+aJoiDTZdlwf37dl5o0rCbdtjNBg7+g9//Ij73e59zvbxE6dVwwRYHbFlHXCcuZwd28J+msCOMYCLyMOukbB+BGeOaAhLYQXrE3BS5wWjDvadNI7reNUA3tWjnflHGhcqK7KOdpbrWiFJl6ZX5ZK+p34a84HxvaDz0SUgrXhZrWa/UdbWVd8khsuGvONNzHYZ8x5Dij3t4XCqjbkjZHWNN4G7zSDJcC1UvsCXaYv5D94iwIaN+Q11evM8Rybv+V86CVb8RKbJ6c94AKq8UoGnpBefD/h1bpV1J6vcuX9X1n7rDphDO+Whlvmq24xhDsEIBUbJfirJG5ED3RlgAMMiR+EbSRtCVp4x8Lka12c9C/hSeSRpttkoA417ItJS51mUY0+vsy5TpUmnq7ZU5HyUEoq2D/XrzXO45+Us9rwLA5eUlPv3pz+Azn/ksXnr5VVxcLLjcL1j6ClXq0qvbWhS6pi7amuCtb30L/vyf/wm89emnMU+NnBn7dqzTYEYtvallI4er7l/Z9GCcZXybNliPiAzn16EOSbrw34du38Cf+dSfwdu/9nbMy5wyjOzuQsDsAYw6n9wZXFr2g3Ffl00fSJ+Rv6NnZc8ddEgaKoPWRdYi9UZAPbJR6lGMfJ66XfYt9jH/rgnTbHO9FPkU+3dZz/xdkl4ukdxecyqnciqn8idfPvCBD+Ds7OyP/P4f/uEf4td//dc3NsRTOZVTOZXv73L37l3843/8j/Hv/t2/w61btw5shK9XRATvec978Pf+3t/D+9///u9gL//kikDw1uffiv/z//1/4id+4ydwfv/8uIHtVL7jZX6jD24NhDQOMEKKSB7qqvE+jbgZOUkU4WyJSAWlrXqoA8yxCZiRxFIK5YFr7QsAxdSmctCrqZV6iYgx1tu15KPvNOjYwW8qxjYaKQfjkiDSItU+c9winjKnW9j6DsXsxrA4AMv4nsBANkk7GtHsxNh7zdHOw6nGOGMVSR5U1W8ssp6YI6Ac3uthOqMwbIEOUHhEjfHWF53/3dPYjI5eGomLUVI15sVthZ7H3g3GXcNp4FYyAJ6GSglkyboAxO1KM2KmcUHcKb99PhyKnD8nJcP1Vwc0x7KS3k4T9sIinQjQksftkF8MFJ3zSPDQZHwVU1gMQBu+SEOEz5oayENEsPZut5DVQFx09nfNCFgEKM3znMbrMm4CHq5cuYInHn8M+4uO1169wG6nQNvj2rWOO9LR2g5tmtHXC2AVTLsJl5cd+76HXKz49Gd+F5/53Wdxsd97yi/aPdIJZWCMTDeWY85n6DSepslTstE+42AWTd5j/RU0xrGqG+kMuIMArFVrrCojlvCGvAS9zBEskbpPwiBtzmUacrmiCJiwW+vigDOJcOxtkkg1IZ72Yl0dsBXG8RY3mlnzzufNxm/rJJ1CjNxi70/ThLlN6CB4pGM3TcY3y4KO1dNicuzrYIiuRi+N+XCDp4NnhBPiZWrN+K0xdZbXDcU8zRYVZYUbSE1uNo/8JGIG0776/LhMCoMZDIAFp5kCA6gl1gL3BRcZJl6dRjKCoDhHjC2lDmAAFOu6gPuWiKC56FuLHCa/Be82pmcaAWVwvg96FtmT3+vwLABP7+QRu4SgSaQspvxf1wBUTK1BOtzo2tEgFs1KO6aCRQ7nDNc9+bE4h6r8tjSHvKXfk8Ycj6RhNMDDXWNclZ+YckKkhTPCnhuj+9UShl2hvmBloD8EBHm1qaRbid8LiAgegdFl5jZlZu43VZ/J/SJrzHnkvB+moesxhy5psXbgYlG8ePM1XLl7D2958hGc3dhBV3vu7HyHZbmAdpd/ait5mhp2c8M8P4IrV87w4suv4u79vUdwWJCTMupfKZOKHjAQuPCB8hYFoxFRTqV8CjN66AhtGHdQyBmcvCXaYpOVlhHGKOeqYw8Asw4CMLkiTTIdY2m/lqijihA3wgMSvBG6HPIz0DDN7WCMtt7EaSce9U5Dn6KzqTp1uJc1Echsxv2aUpByTWKuvP8EnfvakNYwN/E9QmKPUjBaljsYFAC6r0Xx/a5heVPb4qpO5ktOJLJvHn1jo8NWZ4wUAN23Ol+TlkBsF8ETEXGmgHSKurGRFdmv6I9QBmv5rQAd6caKPibfM9Vvrb7+HU4pU/DNMcs+iuklXHcQ8uwBFVGWyQPLdn0F0GMrQLhOh8bKhRN+LUBTDTC6csfWUpH3PfeDDsqiUWaFcPC6yusHo7Xn47xS5EqVBT3q3Q5tnA++ZyWlRR1HzMHY63gD7AvfxbgGEHum1seCpmwva1cMkxr7FZwPDvtSlk7yv7fN8/KD9mSOrZ43xqeMZlevXMH73/c+rIvi4v5qKbpxiflshz32EJl8fzId1CKJOnh9UXz961/Hr//6b+D+/YuDuQneQgErhU4lMd+x5lweW0RR0z9Svht5qIdZcYCP60UBgvD/xIX44Ih3OkbYGOGZ3s8KrdkaoIIKzk2uiDLAkCMdI2iXTu3qAGffqV8F90rVocx+Ik0iQuoxfZW0ViAjVUNNj1bF5NGtqecl6zvfyhEZkwyOWEMkE1z3DO5ByF/KCeoSBOIwnWeVIYPthXMabSddockvMWelcC+PMcXflAVOD+o9dZ0I56DqkEU3QHYlN36JNpNvvf+acCvTUiRTWZfvJf7NeY9fXZYEfWPtFH1N7dIP+Qxi1yRG+ZnLMNtzevjGHeuhjCsK+bXwV13XEjyC4R0Mz5F/ir7HkYbSmu0o62VdZS0YnST7Mvxh/E0Q2WHkKI1/Y23y+62s2r5XhXoZc0LPGLVK833hdz2+E1gE568+94e4+cqr+OhHP4InHn8E16+eR32zn/3XdQWjvHWon4Eann7qCTx048fw2d/7HL705a9YFNcadY8Up5wZyMQVmrwU/M21qANJh3nImspclfmOequMUoUWPVHgn8u+uduf4UO//0G8/etvxzeefh4vPfES7l29F33lZYsRGDSWKo/rM3GWK/xHWmz7G+u4lK2DPKhcWZS/aZHxXhHvL/RjdEXRc4Dhb2743BtIOym8V5eYlDUSPHCcVKdyKqdyKt/RcuXKFfzYj/3YwZ7/Rsv9+/fxn/7Tf8Ldu3f/mHt2KqdyKqfyvV/2+z0++clP4ktf+hL+7t/9u3jqqafe8Lsigne+8534+Z//efzyL/8yfvM3fxPL8ua/JPt6RSC4fvc6fub/+zP48d/8cXzqRz6Fz33oc3jpiZeOmfZO5TtU3jBICajn6ZpmQvw4lwYie3Y4mheDoB2W1B0/IulAo5FN/TBF0AyP7YoOpQEKdlAzsEceKafhVt8mSofCjF9SQEe65TcH15SznaUOsuRFTWbw9k3+7s5TMVAA1jTS0VI2CQ2q/pWfO/tg6CKwR52WCYyyVAcGAmB6HjMQCwyIAXdaJBAMAJrSCR1ddCN0D4OJNef1elibMFS7AcpMpV4nMkoJxEJgr4v1JeZKzaipYTy18deIPpYNzghBene1KdfmRlARNDjIzCN59J6G2eZRWswY2WM8ecD3Prtzrzoow9hVeDhNiog2IgKPO06sfo/E0gSODgijW4+2acgKhnTns0WF0GUJw0oaOpIHeqfTWM2Qjzn4gsRSNHTRmM9qRxiNr82i3BTDV/Kijfvy8hJf/erXcevmHZztduiwcO3Xzq8AUKx9tUg+YeBr2K8rOhT3Lu/hD7/+Ndy6cwfLak7zjBvDxeKRXJzPuw+c9z9pXF1drhgeSQBpFpWJ45MSXax3M+wI0Fd1IIvRqDVgXZ3/YL9Nc4toOCLmNJgnGhc9hpOaUY8O+O6gubnNFlVpWQw4KWbwM3lm/bCIPxNUPJWj2jqd2mygITcWNjf0T835bppsDU40+LrRvgPabP1blKI11pbAgFRNYGmFYEDGpS++FBsaJvS+mIyZZvR1RXOeF5mdTyyd0rIs5hCPSCILGuVKdyCPmMx2JI2vrYbmjnhLQWR1Jfv14ixZPcWjoi9rOOYxJ7hk7Ytlt3CZBzGAgkWCUnSMKaUApDFUrb6uCT7h7kHet7kFRGZPE6Ww6FZlvbrM6g44A4hizUhMGZFOQZjUNE2blFspq2pKN65xuzk/rtdpMicawVVdBFObTHarhlxUB25SvtNRbdscQXArdOkRhYY21mqg5xw1aQGmyBRzaYinc3wCjbFwgFYa2q0mXwtiwKnmstG2gs1t9DKXfV0PZFitlUb2cOoMzhMd3hj29NAvEPVHtEWvpxe5mo4e55lVs+pwMIyOKO69sX8PDpd8zvb8FXtVrOseL7ygWPYrrl47w5XdDrupYZJzLGsHZEZf90bzyeZ/woobV8+hjz6E+fZd3Lt/ics9UzB2QFdQjopq8IP64hj3JY3RmizmXp3j7apo2gBMwQ8QoCFT61anNsq8aDHSNyTfo9AtgQia5IXvwZp60roq+qLoJRrUtkRUrDLH6IA0V/J6gitVLfIAo8s1KTJEqJdWCDPn1f81hQMEMNGSTyAyxEBRZ2cz1lVxuV8hK6Margkq6R3N9yRzvNpi6d0jZU4NKqnzFJYeyCDuvFVxEF7s02/OokPf+V3Ky+Ol6t3paLLtMl1K4azxd7K9wju+HrQ+Q4ajQurzKeXJ7KdLsAAEFPDSMDYZ648BF9DaQf18L8GWMtSpqW9KqbKuXaUMq47iAqpEzoEUeVoHIFmxr6kE3Q7OOu6vHG+ZR0Zv4zkmZ6A4zbkzKYDN2abOae6TObsV+KekE/Uybyz6G8PbzKhWMGXtV9UH+J3/f6z/yrMj7WsfKz0T8Op6RRl/AkKyqvEsQzldZbpFirHzuDsbNfdB6vdDP0y73/S79Lfu/ZUHwgGawAoM9SaQY1lXfO3rz+PWq6/5JSLjx91s5xhepLh27Sp2uzMIBKt27Pd7vPraLTz7uWfxjee/ERGBRnlG0O12tnKeTLfwM6XLCK0cxb0gCA1AeswKZ8b4pwLLgQAJRfTBmMW4dFA7dAj6kogOGsAFqX3RuCRQeYln6wAfuy4o0oLRuffyzCPFLz5wa4edHYOeOkTk5Ti1AK0NNNNjPZt+gPhcaRNp9YBcgKGLpeASzl5PYMLkdbNPvdIkZDzP7z6fDg6LaKf+/Ur+5LzEXp66UQUQcS8Z10sd97gXqBPTLu3l98kpZc0GtcfZCFk78KT1q5V2kns2/EvdS0r/yNIx4Zr1tAYh7TRtO2RbAmayr9wnMlJuAOTqvrbhAe5zVU7UQgpUMMsgq9lvJPjOLoQlHTjI3Gm478HkOVkt+ECG8QXtkLyUO8TArQM9hs9lLrT+wv1yeKGjVD0QonLHsP9GSWGTaqji9u3bePbZZ/HhH/pBoD+Ms/PZoiMJ4lKS3xKJ9PLi5+qr52f46A//EK5fu4bfe/ZzuNzv/TIU7bbW3iGITKMvsvkqP47Pk1Y+Syl7Ys7ZmISsqPMC7tFFERnm0S+xKQQ37tzAB75wA8989d14/unn8Ydv/0Pcv3IveKeXLIrbImVQEsbgUVYfvpzA0hohjV0zue2vSQGY56wO6zvHlXW0yc7A4he+7ExegU+aNt5Sf5zVKB8OdJTCT+J0Dt7XWFOnciqncirfjfLCCy/g1q1br/vME088gWvXrsXne/fu4cUXX8Rv/MZv4Itf/OJ3uounciqncirf0+WFF17Av//3/x5/82/+TTzyyCPflt537do1/PW//tfx5JNP4t//+3//PQ9UAkyrf+vzb8XTv/Q0Pvb/+xh++6O/jU/+uU/ilUdfQZ/e1DeB/1QU0aNXJQ/Lu971rsFgaYet4jhkhcUBxc+DATytQn7gghtPehgxmbqttWKIUUWEF28tUj1VA2k9SNHhUN9vEIhMCEzRxuhY+xwAmHUtY/AoJDRhKNtg/+gUFDdWtjzQomNMceJj7uZAdvMa0pntYzV3IGhYC8d2oTdDvZujtIURINoq1t2wX6miw6KYaHG0DQIpz+YgCMOMeQUI5vNnh2ENIwKNt70c8GMe6+mbUWpqu2oOOkvfQiCCAaWqcYyFBswYr1Snp/f3SIqKtTM91pT1NoK+qmO7Gls6xI0+Vn/exlLQECHxX3St5xgJZMDm+Yiew0gNbhA124sBksyJ0rNuCIhzODCZiPjtYYXxlg4GJRqgmkxBtzbt0GTC1JobuoEZnmJL3SGovaTTWgFZ0HvHsi5Y+2IOJtWInDLMVTeZIYzQ0m0d0NgmrVk6HefztXe0NgW4jdFJYr7dgKlqgJJpmrGsazHcCC4v97jc79Ga4Pz8LFJtQRWTiAGyPDXXqm7ULvPSpinXqSqWZYmURpy3YV2qOaitfwTzSGQMHGlh8zjPU9BqG92FbfAzZRJgsnAqEbKgih3TaSVXojpLd9OMZTFAX+8d0rT0JdeRASNMlnRPYyFTM6CTACotIqI1aU7zdFh6RWnAHVLfCPqq2E1eZ0QVU5e9bnCk893Xo6Xzs2cmnwPrj+R6dtBETd1HGhKAZU6nZhGcBBYxizSAON6RvEnDv8mj7RpjFK9W5ovri0bUGsmJfWD+38pD/GxOHqPj5Gkf6azoOu5X5AMCcms9YeylzCxOojZN7ijTcHDWSANpqLV/CVzK26sJHhVpEd2NbQeQqMhDRoDh/ldleeX5Cma1pzNtHmlIM+s2PWq8zyg/zocCRBQwzk3OS2HVSj96bWSU72MZwQCjMxIHz/dOY79FbLxytsNjjz+CRx66jt0smFszIOs8o3fn47WHjO/dok3c2y+4ffsebr56C/cvLnws7oilM6LORfSWvGyf4pZ4mS/u067WOC3gUR3q+/D9tsczBH+hzA9pVw37dY2OIImyb4jpErPToi9jOt4wtRe9QLDpgwjQXD6Xd81gbwCheTbQKFOxMVojdTvKwJpi0vQthedEBJqB5rlkzs5mzNOEZb9iXRXLqr7m3VkB2x+awKI4iaV9ZCpMk+3maFpWW/NTS3myllBJbcq1ImLj0b7i+W+8ijdj+dmf/dnhcy6Rb9MR4p4Y8/vIsIbzOz8dyFYfqesVB0qUoNTnXRvWNWD705Eub/WeKv+q83YAMR09inFtOhgiGksnU62POlQsn5BFXI8jmOO4PKtPjPr72Ifx0aqXUhagPD6OLuVD9ThXYECdkyCTov5xoPPmvI/PBR0iGgpKxSPXhZwvna/niUGJLi9xT85zKJ/TcVxsZMvz0Z3jYws+LT/avtWGOSavd4ZG2XhCnVuQIVmK3IUc5We2T1rg2HMhb/OALTIZPTyanUItsmOMRXF2dobdvPMNuGNZL3H//oXphDXVjYztZM/L2lbqXQinuhZZoK5T0mEMIKIKBYQu5hIRLarunqZrr6EjM+Um52PixSnVuPRAunOf0qIvrtRL/fdBf6u0phrqkznOuOtn/FyinVKvrrweqc61pD1H6qeZsjT3wgeVyc9nCSkYAR8sQSOUMbYGhZ8XycdSIleVEnOoWni4/K7sTxvPIP6e+PmEvOfcbEB1ICOBahlJoemgo3BufM+1aqXoSyPda3sxCQe/5TgHHtjQcts3KTxV9bcYf5lfyuYAUWiCn+q4h7Ve1k8t8Wx0TCJVLTmPMvdB2zqfq1KYazEAIcMLSf86L5QtWctGflZ9IFqJwY5j0+RftjXwYl1L5Vx10OaRbyQfPV5iv5PDuirvbetzdrxx/Rre99734G1vexseeugaptZMZxTxSMU8gyH4ovu5fL+s+MpXn8Nnf+9Z3LlzN76PC1MHjFroJPx8SMeRZlyzdTWU9Xxs9vSQP4e6a3tF76/9UwD73SVu37iN5971HF59/FX0ppkieisvymZJGtcnqAcJ6lr1NyX/C54MHW2YudGWJRLzaE/owJsignky3Y4p2+P9QnZBAmh5NqlRxlvzSEz+GtkpopRz3IXPJrfB3v6/7m+p/l0vv/iLv/jd7sKpnMqpvAnKQw89hPPz8/h8eXn5LYFNp3Iqp3IqpzKWJ598En/xL/5FfPCDHxxk6hspvXf8j//xP/Bf/st/+VMXvU6huHvtLr7+1q/jEz/1CXzxPV/EsvveB2P9SZcjJ7ij5Q1HUmo07iDPQ3ToHhq5i1EYNKLkYQ4y+aHTumo9tkNVNRR1j2nbtXtkiHTCMGUcz9Fmw7N+WOqhFo7nMMTH4Y8HxgTz0EhVHZ5D+hYggBlxyBYzeBZTqdXlhg/woBiHUzem+KGYhoOk12icIohEWknZ8kBaoxhu8kZPGl/zWY6xtWlM17KxQazViVznqqREA5A38th681uiblToXd1w2N2QgDLufM9oZ9FYWmvY9318B0kQSB1DOKyVN+pznKDRWgxoUB35ScfRwUx7eM4WMN6qt7+7G1WPGs6LobB3htiv86wHf8e7gGduabFuDKjUh9Q41flmc5nRzVQt/SHEojbYeshbbDRgBqCDuXVUoeuKVVes5F9YpCxbYN1BSky517CiY9V1MP4JNCJDbMdJQIs50NX8U1xyG/BdBePN8w4ALB2X7jG5c3lVS1mmsLHsdnZLe1nMoTyGxbY+Tm7AJ1js/uUeu91kYL6OSM0ADttpRVDJbrcL4NKWn+h84LOMaKEK6NrRBZjnFLsBRlkTBIVmkYigFvmp8kt3sBSfXdfVUrYh5deq3UFD1nlGm8v2DHDIFG2kXS2Vv7p2yNQiQlGbWgCiwhguxrPobvgTlDVAsETyANMy0rzsxEsaogGeDk9pSZMGaZNFE9r8R0BWBbZWeV75icZEi5Dmzh6/hd1XRZsbZNJI0Vgdr63I4q0zabueFcZLdGZtgYmcwy2YJ/Yl3mrv6tFUFGgJYOrOw9j0JXixzGeliYhAugGOJpmwYrU0Ej6RNOYz/Uqkt2Kd5AvuI0pQrsTviiPgUfaD9uoyXkROv+KcoIwWRJQ/7ufqYw8Zpoep24LeKH33PtEJUPd36gVysM94fzTXyXFAwfh93aurE1m9LZGGVVfcv1zwzZdewX7pePLxh01GTYCgY5LJo8N1XO4vTXaIYD4T7M53mFuDNMVrrzXcu38fy2rReOpd5epgLbta9rPwyrCfCsBIR3R4Z6SRdCt4ODJ/P8FjB87WygNeuC4CdFR4ufLDuq65uW/m7UFzMDqeco3O8zTs/0ACQ4N/y1xPkz+/kqeop9qwAzTaAUb7pGNj9X1o7Ul30lagmBuwmywF6eoAXpOzSNk5TYhIllwXfdQFuS+Qw7oWZ82bsBx3eB6unWO60gDK8bdDTR1Yp55N0kEUstYeAp1J1O2qDKHeLlUeYeRh2+x0EDS1rvpOHTf1ybI0Uv6hqJb0lB3R/bMvI88nPbZrP/86dp5IIIxuvj/adJkXRUa/jYPW0fVp/fLfXMHivnC0jZYyRLk2QYCgRkN08kE16ua+XfupG8DXIP8KDbfjJFV4Ch7omE8WfcGf3ugEvvHUb3JPHL8deWPoT7ZX53jjJs6pKHspgJJGqgBU2H9/nmMDLMquPV35mdviqGHHWlK7UKEKBzJYC4uuVCEAVdy7d4n7vh4NMOL0Fe9fOZiGDKz6DkmKYYvI80SVG35maw7kU9+7mvMIAeBQWOTVJlgh4cweaF1oq0j9Z1nXcgHruKwDElQ0tUyhTFBIHSPPm1BPIVr2EQCRhro5bVhH2jxyL2jDXJNMLdZX101q5JwNX2obwPug8+YeFw52HaEH8bzAneg9eY01KEHwm/5L2h3KbgquOTLCEGxx0Mc8IlPo/WlTqvQc+TlXfN1kuHfwe2FbsZxr7xD2EPIDddwAwiLlyFGdZvP5GDgm1/jGxsC+F1lCYB6f57jJSzl+hD5TyQrOgRAMwVHbPqnUd8q2WGXKEQmbMjiiwB0Camu/jtKl9G8YP/saD6bc4Fi2Z+B6rhobkeGZB5VqcxwUlNfbFEcqbxWaw/4F6Y2X79y5g0//7mfxjee/iY9+9CN49JGHADTMk61vpplvAizrAoFHFIXi/HyH9z7zbjz66CP4zO9+Fi+88AKWZS2x7KNhdii/VX5+AK9u+p5znSC52LBhMjjsWzLSgTx5lPZS0hQWaooqdvszPH7zcTz66qO49fAtvPzETbz86Mu4c/02+oN0lVjSCaRLcKQtqJCfg6SzvYXjqhdyRptCsdDK2KjGuK1uvsNLUYzi2uNVSyvahECk3D8G2lZwMufmCO8NenAS4lRO5VRO5U1ZXnvtNbz22mvf7W6cyqmcyql8T5cXX3wR/+yf/TN84AMfwM/93M8NEeq+VWmt4cd//Mfx7ne/G7/0S7+EL33pS+ET/V4vAksD94EvfADv+fJ78Nw7nsPnP/h5fOH9X8Dzb3n+FF3pj7m84UhK737Xu+wFN6y0qUF1xdrTOF0BPtVIkunFuhuIp3imHoTEgSjpuKQD2pzpvCECEU+HcehYp2Fhmua4CcQIGmZ49GQ1UsytxXi0dTQXkyAY4SYDIRCkRMeyHbe71oMr++agK/C8bsYCoeGvidvO2L47XD1dG3tbneSAOdAAjTQ94YDxIUzT5P45b1uLsccNTDEHZkGKfvfNgdWMc4LmUV9qGr2p+e1YIR18fv2WdIOgTXQG2jdG2E20BzeUgfWr08lpdIxdGwEAfXTJzm2KaBIodpLuB3J1WgxmuSaIND+qsKgiacEQdAuTT4Ne0JaGPkYXc7r1wwgr3Y1FUfohAI1/T9MES/u0YnVgSIBZohGCljIijaU97FBR9LVGPFNv0gEGvp4ECRJcPYJLg0RaMgN8rJYeh4ZWmJHZUVXFqGLP11B/FSQxS/PUNmpRj8p452mK95pY5KgOxTTtsF8WLOuCJu7YVeBisTRwAdLq3aJzAB6FxMBdl5eXmFrDjet2uxA+1v1+D1XFbjdjt5vRe0bYIl+21tCXNSKSETTYZARBVlBMBU9MrVl6uO5JwZqU9Wq3xRtaRFPq2hFZyAQH802nuaoGrbZOXRqIRQzoBBg4alkWqKeyW2oEKJEYD+cp2LOvnsbN572ry/2MwjK1hnlqFunEOM/G7I4PkyvJskarYkj2ekyRkYPb2+I3+Sy9XQK01tVSEJJOva9QTZmWDtxxDZJXqjPI5kNSVpQ6SKe6R2xlUQXHyIaWtT8jbUeFZvhMp69mfSH//RECmur8iEhE1tpGeCKPNh1vjvO/tcj8oa0y1sGZo8DO+bMLXCYmSO+YQ4JmZIXv1eKyBcC824Hp8ugwqbSu81Dnlb8HWEPT4dZay7GW9brdSXh7/4BHNnNc99ktbeo63AKa0klOfnbjNQzEOk2Cxx95CE8+/giunM2YGrDfW6rI3W7C2lcHrFj6WKji8nLBohal5+Yrr+CVV2/h/uVi6R+LMVpggNkDh2/pH3Wn5E+TT0DbjCEN4LG+6Lzs6Yga6gWGNrb16QO+914YbSFH56PO01Z/G+dYMc3No19wT0+d0QR+cwdej/VS53RdXI/d6GPNdVIIAoQ7TQ0NYqn7AIgwFeSKuQHXzhTXz3eY24T9uuLO5YL9CigBeYoAfC/ckwWh3/W1D/sPwRyttVgDL3zjJt6M5ed+9ufsD6kOTF8bB3vZWA5BSkXf2uwzI1CNzhZ1nac6YVJG1rML66QjL9tgvdW7pcM/x8Au9Aup6/3ViRs/YnT8kyZjfVvaOKijbP/8I/dA4IFRLZw2VWYFHcr/G6h52w32EcB2zGW8sY5JY9JxM99GAaEKs3GPsje8+NLDyad8gg5ojYlIGVT4K3X3fAb1DDhOp+8P8CnP9wZ5o4gTY5LtcK4GAlUe2JKv9DfoTAqk6nJQZdao8ax1N52O6il9Kl+lpB3HFlHjUOepUh0D/VgagSHlsyL32jGlJulBZtKB9ozIV4ljDnfKjhGYGbpaAUDTKd6a7afdU5k1b29dmT43ebLuSdTbCUw93+3sLOc8xz6azt/inegTNnuUSJklxN5ZwVccK4JvM9IQ58mmkvqFn9MZUWjg/UO5VPWsA2DrsD6sk5QRcd4h6Eep2xRdu+hKdZ0PosLnlher+MPUGKkzwcOD/kWCOh9UHqzrqtKzMEf5R0K/rrJffI8ooqDMBSctpWPVy/PZ4bF4tpc+HdMjgwc3dW7104M1V/X1Qv+QGiEIch7Y3kAePlvrLfxRARfsN2VyDqUCUHDYlg6fot+Ne6C/9MDz1sFfIyCOtiTS+6APmzWYD+SYyI91bXLcWz1lWK8b2rCdqhPXemtfjp2Zap0jrxTteKO7PPXUU/jRH/koHrpxHWe7qcjcMXJz5eHeFaufv77+jW/gM5/5Xbz62m2Xe7UnOs5fGesgs7b9jvfGcW95nOns/e2RbpvnD84X27+PngeMU5ZpwUuPv4g71+/gxSdfwr2r96DtGDitcha/8b2j2nolRFJ8Dr0Th3oc9xOU3w86G7oJL+uU86dSJgCTKM7mhtmjDO/X1c8N1Cm9ulYAyJX3e9krkEuBZwoAuPN/3cObrZwiKZ3KqZzKqZzKqZzKqfzxlx/8wR/E3/k7f2cIsPBGCm0ln//85/FLv/RLuHnz5neoh9/dolBcnl3i2Q89i28+/U08+6Fn8fLjL2Od1gOb3qlYOWItOVreMEjpne98Zxr9lJFU0hE2HpyOO3WBavwbuuG/lYOcwg3QHepOTZE0XJlDKA0lo9GEBhYMh00zVvjNL0Jw/FklkGlblCAsoOvqtXAM9plhyluTcJJbhAvE4VIKKCqMeVLSJFn4FjOWrSvowGAEA9XRqcx+S0sDG4Aw9tHI1JoBQixNloEh4iB8JIy7qkUkEslIOBUYlc6BDBMftztFsXaP6sK2I91b9xt36sZIH0fDmOu+Ghlh9s9wEEkCR4ZCI2cBdIlYGq9lv4AOyFYP58VoR+CWCDyqEIkB8GoufTscJ+Bh4n0eSfswiIoE+KmCFHrvcds3DI5qTrBYO8j5tT9sLVRjQaBSJdNAtclSETIlmkgaMgDB1CwtmBmvExw0rE3t0GbALFGLaMNbrZbGrYehpCswT+KRjIJUMX4a5/k7nOqWSg5hkFvX1VMqADtPXaaFtyZff/tusqA7UMlSQ/i6U4JWehrmFdjvl1jbu92Eq+fnBtyICB7W32kiX4+GcK65rRN8+1v0N+baUvf0vkbqw/OzGcvlHhf7Fa3NwUcCA2epIsAaYd2SXN9sz1IfZRSnykuM8NG7OUemacLkoKhIadZt/KsaoAuFr2hsn+c55kakRH/y7wig4W3weW4OTEs5RCPx1EYn8uAA9WgDUlJdKizqWvA8ZTnMgN0iEp96VCiJPte0dRnhqoeRlbKDUYIg5uyvRkIpRkft3X4XAkKTx+ueRzrUuQraFmN25ZFtBK5McZb7Y0a6A1SZ15HgMkZRAgouMkE6nYlCo9OxjgXueNdxLFzDBJZN02Rp0xajEdcW+wwVu6XrFFQo2uT8uQGUJN1MRvF2eZMWzxJQy/XFerM9fs81N8UzFWQXn0td0wZEuDXIDo4H53XyMo79XvsFDPNcnUmDEzgsxZtK3ADdpOH69St4/NGHcP3qFUB7pKhU7ZjPLC3OcrnYvuX7ibQZl/tLvPzKq7h581XcvXcf+8UYw/Z0BSOIRNyxGH/uQ9x+Nca+QiRBkSAX6Oi0YDpY2tuP0QeFb7bO3/p9vFdpWep6PZX1wLlcHUMAGJExQNXwyI2+7hUG6iVtqqFelb/leku5KajeyLonpE7gMkEV8wQ8cWPC9bMJfVmwdsUiM+7vV1ysQMdkYGHqjxAHrvZYM1DEXgnXy9okAWJd1xU3X3xz3ipkurdD4M3o+NuW7XmC3z2IJcbqQzu036CFX5AOwiPrdrtca5Whpx0dyaY//H/xpzSfJcclz6DMrWwqLuukPMN6eA5K/vc1FjcsSJ9R7946XqsDFshLDfytuv6zycM5rBQ6cO5u55NnDBi/85lhnkkffz7qk6yDFB1aL2u07vnbwr2tTuI0TSEbRDhebyfI+uB5Qv1IHiu9TJocAqEryILnTcrbY4d9CZ7ZOpfHs+jrzVXwU8jC+v+1HxLzFJ1if1Ut6kUcZaREmqP+m31ohV+jR6G3VJ6M1ZLTWfUY7skF6MI+cVwWtYlAYesrlwfPtzxrszdM99nELmrNfs4XP4PEuXzgj5zb4GMC5Ekj5IURLXobnfuVRiL249wMlL+s5WKMVxm6CAFS3Js5FZRz1P2rPlR5odnZPi8a+DnVZYzWcxEOo0/nFMowP4yMTZ0jZWCyUUa7GmVRK3VJ+T6LbdBRX+gjRZYFn5IfJMfPPhQ5VNtnG1WVY31K8mnO75YeSUsZ0vJtdZVqHygjO2iv6p2F4AM4zx+IedruUJTlsuETvl/lQB1LVfp8dVUKRUt1PHGm4W8D3/naQbn0VNfMQc+tN1XSb4mlpe1hp97QK+esyuby7IbOB1FVD/gHGwUk29Tt75SxhQe283wwvvJb3dHY72ma8Jan3oIPfegDePihh3DlfAeepwlSkpYR5/0AF9937bh9+w5+8zf/J55//ptYVqZ09JZiLz0+fj5X12HIbWmb54+AoAolD9b4tq36udD4WJ+O16XoreO1h27jpSdfxP3zC6goXn3kVazzit7WIzpmrts4twNOYxR+yTY4npj2vjmDoepkiPq35yA+l/JRcb4TXN3ZxVe76CZYFRZdF37uPqKnsl7usZE21PtBWa2quPf3L7ZE+K6XE0jpVE7lVE7lVE7lVE7lj79M04SPfOQj+Ct/5a/g+vXrR21mr1dUFbdv38Y/+2f/DF/84he/Q718cxSFYpkXfO1tX8OzP/gsXn34VazTiq+++6u4OLs4pYbz8kZBSt8eLA6Iw1L3W5huSjsw7tMpY8+uRyILsb56aCy3xASY2gRp5qyx9rrfRFcU1MhQNw1ogDpQw77vvXuKqBbtHjl1HkQSSYNcC6duGEUGG4ccpJ/hwa97FKnqBIjUCGGQoOEy88aboS4PktVgjWKgO3DcyWjU7O5ANLboEKTTsZd54/OM8iAeElwdKMW62V9z7GU71VhDR3+ACNzgpATPKGnkbSkCUMWQ/zTYm+N867hJumvvcSuYNGYknwSiINKW0SjQGHlAGtZ1iTYVgKgRPsO0K9BsbsKsQGuelyYN3R3ArRhWHpSGqEzXOB5dY+0YMMPJyvnc8qh3g1FELL3XkgZt5wYCTjpTHGzXTe+QbotKRDDLhCYNl32FqgHnjP4LVjdqdpmhsxmcmPFEu6dZC9RSc+LDDC7e3toThEL437Isw1qySDDdQsAr0KaGdTVnwdQEkwDzNOP+5aVFD3GhsK6LOXDXjnmesDubcH5+how6RUOkzenUGta+hEhorUWKh0prM+J1pIw7TAFmMsD6CK7rJhbFyOd0WRbMux0g7tx3OaO+diM9hjAaWDMb6tSwLCvC4C4EjRLklqkcoSt0WdBbwzTPkYKtTZQ9FrlGUKJHSYKiLLIdTB5Ig65rLKJq9KWxbF0PwVpNBFObPPWep5lz/jVnuub66hYpqauBliLFyNrDwDnPUziP6PjgGiJwL0AlaGU+zEg3pHr0fluKpTT2VVO7QCy1X1mjW3nLiEVT4QPycfDwJgIeo/tEqiig0AyW/mnV2AdMtnGkluzGvmK+RAkD8+JON1UDLVB2kD42b7afMiKWuCyfGY3NgVu6dl8h5lzpdE6pRpdWNZketOmrzV1r4XDjPNl4jJ6rOyo6DLDUxNI3khbhqK1Ou7p/e5/I/3Cnj6pmmj2hAT7TwdV1U//mXrUFR1VghPpmMjjqRXKOgj4jv4TMCYfLQnN9zIeqwYdu376HZb/giccfw8M3LBf0PM1ok61rEUFvHRf396YjAOjrJXbThMcfeRhXdzu8/MotvHL7Lvb7FavLHCnRYEYaVP0Lw1hbmyL1GJAOMYjL+0jNkdGWyHyDU5ab8Ebf2M7FULgXVz1p4yh6I6UN8yXoq456CTylmhKc5HoEx61w3cBH2gSQsX2mgavjEx9DPrOGfF67YtEJntgSXVdcmWfMbcZ6seJisSiSBtA24G3qk0yhWaL3eTo7ygDt6uDLN38ZnXLF+TvwRTp2xnS9fBZljut3lHdw/Y1zWWgFoOYIOgpaOdLn1AHyHHPMQX/YUYrDBHzUjg/ywmU7ncgh2LOSjf6OwTnGfSJ045IOdaN5Rtv1X/ulAEHi65Qb1v5WL65D9jHHGto6GEtP2PdCj+HR2PfzmZBemm1ZVYzYV2iDw7k5OE+og442YyBACT4OZZq/+pz/v6W2ztYLxMjf16BbnFg194MD+g9jYB8eyGXbEUa7ALCl6jGnOM+W0lqJGAo7u7mGxChEw7lUkqeNht57/u3yy+FB/mCPuVHWMSpcxZlbqZz05J6cDl57PlMNJ39Lvhx7dVemyjG+WXQtbY5pZluz88I0+0WketmHcyo+977vpZ7se1oBp1QZwDngbMWYBZ7aPsE5GZXYLiVYijmCmLjnJgvIOHA7W0Li7JxtjfuXnUEzPR73Hc5XpJnrPcC/A0CePKE55wFSGBdvWXMy/C61X5Q3qgOovrVWhxt7cU1X5geQWEcNGQmb7Vhf7f965UMW5Rhiy42LVgSFRSp4lxdSXmgQgBHpivxyAmf/N2Opn+ue0YEAWZPfR3r6RQog9bCoKS+nkNISraftQylXJWkEIPQo1pc64AYQ2NVFpVqqWv+Tes1A3uH/89mU7dlG6q9+9i28W21TTOcYtCx0qOPh86GrF5rVPSroUmi9LVUuCkr6rUJvtqWbd7JjHXV2hrn3vkRcWso2lz99XfH888/j1Vu38EM/+AN469NvwdWr5xGNszlASWB6wX5vl9BEBOrn0hvXr+PP/cSP4fO//wf4/T/4Ii73e2gnTdrYodDTfX1gCx7f8FUdJl+Px97Y3hZ0FMlU1JxX59u6VqydAnD050WBqU949NVH8Mirj0R/L8/2uH/tHm49dAsvPv4S7l+5j/tX7o+ta/KI+ti1jTBpUy/L3uRjrDIyu6lRb9J0EOW5P2jK2a4Wl34ShbgsntoEoONytTfHXo1UHvhcMcztgY35VE7lVE7lVE7lVE7lVP5Ul3Vd8alPfQpf+cpX8LM/+7N45plnjtpJH1REBA899BB+/ud/Hv/9v/93/Pqv//qfmvRv2yIQ7JYdnvnqM3jmq88AMI379o3beOmJl/C1t38Nz37oWdx6+BZuPnbzjR51vm/Ltx1JCaiHb2RC7MKwWwdgfu//+qxkyhCAhhRGRhBBRGsyYxwdz1kRD3px4C7OtTBQKyNAiBvGUBwLazwbt1J6DwNTAImg4QyqABMa52ggs5JjomOBBkve1qtRL1QlnMACYPJIMhbBAOhSIzlMYYhbIyIEf2tDu60aOj1qBaMcCcTT4aWDd6Qdo3/UG595cD5wFIY9LgFONG6GQcKjyYhHc0AfD742h3zVDCAMhdw8kg6NASIwI18BodEYBxVzjrvRpinC8R1h6DkGkQDsmO2Shs68WRo3ZCsvB996mhfwxiMdDO5Ygjr4ivymkWbNHByb/iRXOB1q9J4cJfJVM/y2NAbVtGc273kbVcQiSNCI2RXIm+A9DVY0tkR3JFLJcM5qGqkwpPi/3SPIxJQAweGWYsujKcX67B7VxtqfaFB0I1NfHWSggmmeDEzkTlqooOsaqRsUlnZn7QsuLy/Q147zszOcn824cn6GVclrU4B9pJmBazc3qDQHe83oazcHt88p+TucFZJAJYvkZQPuDjQUyXkQj3rTmkeOUsFu3hktnSZ0nCa1xJznLguOGU/9o6cQnAb+o1HO1k8DHBA0uXFs7d0cG2JRNwQGHGowgFZ3ABUBc0B34BYgaNZeAyy6lgDSsF8NoDLcbRUHUjiT9rU7eCbpOrUJDcCqeVuzTROaAH01wM/q89Gc3zX4kaCWlCk1+o3JUo/qh7I+UOWfrUk6YaYmMQ+Gy3LDqwOLwji/WiQbRuYSaR4ufx0iSJFHavQtOnISnDRBoZiaRcu6vLw02kwuC6MejeVFH6nJgNiMAb81yag5lB5h4CxGf3EHhzlQjC7VOcP1m5F4AEtf6jRuVAE85RXIIwlirZH+Jg9HX42izZjYu17kij/X19XAYsWRYyw3DTeslelnQWDOCEqsivEWeARlerjZU8h0Z9/cpyi3ox8yOiBJad/twX1zACmR/3SMhrFNyXl+tsMjD1/HU088imvnZ5h3E+Z5RkPDfr9iWVeIMKKapaxc+oq+rlj2HS+/cgsvvfwq7l8u2K+WDhXi6Tm5N3ehUuX/9pj0SpuiAQBA8qTzcdUJtirllsb1u61zyCJDVSeWxF6cAIERgB40pnykNuB0re3kNivhC5mmmhqH7Vq90gSzy8i+2u1khFM3gSPWd+fp1ixJbNkXBX5LORaW4vwMeOTaDldmwFpv2HfgtYuOi8XH6GmDJMA7xmcEN4rA0s9SV2pVrgK3XrmDN2NhJKXXK+FMin+B7Ykup3N0fJHdANn8m3pVAhbqeaKs1aGu0KaH58a+VlBYrocAF5U+DLKnvlHGnKU489nu8MXwaKxXINODMO1xTf0MECCZzl7NSkrlGyeZqedFX0EBjx6CELPPqbPUdU8NnqAKTnPS/ZAG9lzq/q562Qh87jnvWsbD/uU7vj6DLhUowffEIqwqHIhfwJNJSfYStVXSGIXm8QtpMpytMPS3St7hWz43yFA5+P8ch+8x1rD3p8ARyuNVqto+CG9Hc5xBY9nQn+8mqJJjrvWKzx/nawRPZD9yT68jAcLhW2iZdOQ5qwIlNiA631ssCmsf58ff16wOnVFHXR+bpgm7yQDziDNA0Uvg0e6EPMdLOa4/IPWHCpCJfZQNl8kR1L00AUnqANk4+9WOFz4Q2DolPYPmXHO1vTKu7d4de6x1KFqIC0+SdgPSPujue2rwSmy4Es8jeKdhLfMYOgtJEroEvN4xahYvCsVdGfBsm5ceoBuaRysYxjjqdj4On0vKT+oP5O3aN0ZWCVkrXAebfYBjkVybcP4b5U3OX/SfwLDYQwhAMgCb6R89dP0qTmuRJMBAC+tiiWa03YcqrxW5zak6bI8rXFywan5dfiUdKbti7OX3ur75bn3fOxV/DpHMSk2xPof5GIaWO6PIADzKqrT86XuKyFBHDGjTzLaN2rODT9zn63lkeCr58Oz8DB/+8Ifxlrc8iWtXr+DK2S5SUoqnOF57gpQitbjLl947vvnNF/Gp3/4dvPLqLU8nzdYYsQsuy2Ug7WhL0oF3op8uE8a1tqHNZs7HhwpgbPNM6I5adqFou+w/LIXUUj4rgP28xzff8k28+PhLuPXwLazzvuxs9iz3xYMxOKvXyEQ5bSPvhngq+kkt0cXS9yaK892E3SRovDQEwX5V7FfuCzwPc15SNqfuxrNMjod6ysU/2B+j/ne1nCIpncqpnMqpnMqpnMqpfGfLjRs38PM///N4z3vec9TW961K7x1f+tKX8G//7b/Fiy++eKDv/2kvCoWK4t6Ve/j0Rz6Nz3/w83junc/Z5Ydvn5zfs+XBFoixfFsgJWA8zBHMUp1B/J5GYqb1yu8Eja7QMDLV9zyyDg9HsBvodmimIW50yNKpkA4NJ4JaNBAzEDRPQVNBORXJl5GNwvEUhj/1fvShv5O484q3j2IcCpTIAqxDVzNk2RDcGOrpzCYf8DRN4Zx2y6E7eu2/iPAS9ON/mWZK1RxvkWNcHcgSDmvWV0YfaYUk50LT4FXTKLVmRtrVI1TYwduiAxxdZW6gC6OhW6wI8IH6wR3pWDa3XT2Al7Do1kE3JNvNRLObql88E3RaxlaN9hmdx/EGRo24CZ1OQAO/OM+2Bjr8aAivjpgmxp+QyQxl4bjnLSk3lDcb47quDg6zCDM1XP7g6BbO6zBLQZNIjQgMc1b5E9AEXpW6mxsMu4/XjCDlFl4bUxzBjfnANo0N30/HTwXyjQABcWOrR+9SBVPvdAcYweVJc8MLI7cYi9EJ1kGwDZnLIlSYyFuXHhGaLi8vLWLRPOP8bMb52Q5djdfneYdlMfAPxzY50ITOhYiOAcoylwM09oAGqRbOAuNi4+upJb/P8xlWj6QhcAdIR4Dg0lExQcTSvwkIsOuROrCrQiaLqqSdIEtAWsO823nKO0+56E6LJpPPk63XBgnaMvpWNR5ObYKBMcbISJQ1TSYsi4HajGYZYan7vJqh3VMqqWA3E9xjEZekpUODa20Kp0QJvAUCscQd8YwsZDxFx3xEHiv/sd8JLHVDKASKTEFoacAUGXmpQ9Qi/oCgNAd2hIFfNSIMMGqc8c6E3hVdV0zzFFFceu8BLIiUjSUiGoEXrTVM4t85AIrzUuVhOggM0LSu+zCIhxz3tRf8UOSD9b+FFTb2Zne2rLGHqs+RrUERA7vWyFM2Jy2cIgAOIkSxUF5z/4+IAjRQh0iS0QnwADVFNmO0ddkcCDzqKkDKr0oHKXuD8Upz0J31Z2oJpmseFWyYh/KvtUqwix78NoIfdOhXOB3iWQMDPfbIw3jy8Udxdjbh7GyHnfcBIph3DX3tEakMTTC3hr4qLi8XvPjyq3jltTu4c/cinKyZ7g1gREoxBsEWwFF1gl7oNhXA2FaPO6ZSVkdDXaP8LdojzZrpS9t1beC4cY8jrSqgRfUYy3BPTdmhoAxH8Ll6ha0J2mSpLkUsEt66WvrH6pyvTu/UdVP+eJZbaK/pCBVTA3aTYm6Ks9lk+grBvgOWNbNZusw5QUpGDwf1Fj7qa/Ja5c1XXn5zp3sDNvq/U3U7dbls6vhiF7Z6ylu5tkYHD+U0+YByj7KzPpd1jfs/eUVVAyi/BSlVnUck+X+7/qOvocPK0fUz0sJp5DKGDtBQHWPMHp2uM1UJzxSbcWqlXepVVT4NTsUYU+3nqPdv+TCfGi9DsDLuk0mnB4r8eIC1VpBH9t7kN+lD7TbPExnFgFNf6xl9wpKphwqbBG2iH/xwhC7ORPIt5je5f3TGY9NW8AojFeIQDDXSUMtgs6ZK720/aqnyu46jPhfngajPCULZXMex4eF8WsoZkLI1aRB1FLWAoBFgTPEqhUfAPcFpMkxvVMZHE4hB8KcIsKxrrPd5mjBNTLEmoUNSd2FfQn9C0qBKmjo9JHysl3jeeJV+fKhdSIiLE5LjO9ATXT62lvvVwcIiaIhyUQD4hZauOqQNk/h3uIaQa7fIDBbaddJegY3uDzvPwCLl1jkf+TfbHVLUKZIOW11LhxkuLGl/ZJ8O+xzvFV2FYMyslwq6hnzMFINllkMWtuC5LZ8P6zd4wCjMKLSt9KuCkgZdBOOeZu8hdZsc5CCLWEcbLvhVm8TYTq7FIrf5/7E3u14X9K/zUeV+BTFW3uVrGxlQ2o5ngFIHAlC65YlB/ubm/uAxxng2nMK6jui9FbQLrfzEy10jpGq7JxyjbR3kMM4jm+V2B1IA52dneNe73oX3vOcZPHzjOna72dIDtzz/M7U6I+UzQjDUvnvt9h185jOfxZefew7rUvQKrqcNfYyPNvLGaX4w5kHHKPN6sCby/SrTam26eV8qwco7/MStnfTaUlHHjxbJ9vwCLz/2Er7x1ufx2kO3Rx1Ktvuv85BsQEqeXq3KzdpW9EmSJyQYtO5/iHXexM4WAomLiKuazdFsmtm3Kn+2NNvukwLg/j+4xJutnEBKp3Iqp3Iqp3Iqp3Iq3/ly48YN/NRP/RR+8id/EvP8bSfkgqri7t27+A//4T/gt37rt/74O/g9VJZpwa2Hb+H3P/D7+NSPfgpfe9vXoE2/9Yvf4+WNgpS+Le46iprzg0w/OFQScFSNVmK3vrch8kWKI7nc8uMRVN24Q0OW5cNBmyzqUg3FnkaI0cil2iO9TDojNQAK6k5pHgC3kYqOjVuRDvTRWdmHAyD7CBBsQ6OeBAEZe2dZVzdswscvgxGOY6NThKmnkn7815xbva/oDPUbfazRdWhIKGmFSLeg3YaZBB5vw2+s+kH4II2ZkAecR2rIfGQkg3DqOi0naegYD899ExEEw3yP9KGTJkwnQpCNpR407qExnAa5vL1Jw1YYMtQMgjKNznZAPdVR8lD83hXhnaThvNNk5/0r9Iqba2GspFXCaG+RHiR5p9jeBuNcmap53nlUrnF9oE1Y18UAciU9kjlO53iOUWNswosJRwFV4eXX4A/mspcSdj9GoD2cB+qAJK5FM6JbVJ6+rugw4Bdpy5t+5sjXiGIzTZNHJUqnucwNurc0SPPUIJjRu2LZd7TWMbkRfKXDYSJHCdaF7o402Kx9D2mC3W5nRuHiDODaNCyLRRES56lpiOwD7Pd7p0XHPFuSAW0JKAm5pR1w0JNAsJsn7PeXOcbSB0hDm5LOS4nwM4LJ3Ajma2jVbkFVxJzoTPG1qoEZe8hgDHxjz08W2ahRjhr9mC1HWoInVTumNqHD0p/Z+KWsR+szHQ5LRLZzZ7UgIzeVPSGzT7Kfmd6sOn5rys5YygpP89gixV2AxIRyYEzhx/oUilYMit0No1rWVy8yZdnvg8bsD0F8rbVID8eOTeFJcPnoEaP6KIwjVdzgjHPwAmVFrL3cANOE6u+tmunf+K9C3Yg5Ahs7FGtfEhDq86gOpqChnXxi6RNHUC/g+2CZl5qmgg7BaqBNmSXx/biHe/SvmC+PltQ1nYhl3HWs2whAsQ67K1CStMp3cz63Y8vPBJEWKag5HrYvSEC16UbpdOJ3y7rilVdvYdkveOSRh3Ht2oIru9n2uDZBYQDPqc02x10tDY1HRnv4xnXfNxT37l9Y9DidYu+NdJOeMqzSiLy0daBtaTfqHxt+qvSpm1aSJVKlSP1bxGXJ2A/qKeEkr2EpCTykPmYELzRPsM+2W1o9A4ABMFvDNNUokzm/rU2YmqXetD2I9SN1QiAdUiVCHOnZobhcBZcrcNFh4EQBNNJUUY6S13r0MfuUNKq89b1Qcg63/R2dW9TxjgFfbJW93mHHnDP2TtXRqDxJ/N026RBH/Tjrs7Wqoe/w2TqmYHUZf6972QgAyrVwSI9sv+5lPBeN/UP+LmVvo4fsAWW7Vg+dfOLRDjQ4cwvkyv5RBpZ15QKnAkrqeuO32W69iMK6EZ+5BwTdy3nCKeb6vKDKU45n21alA7gHHSWX/TCAaI49WmQaZVJ87zQhoCRf2QIXYqRRH7tFulaYUN07g0/10EGb/ZJDOtZ1VWQ+gEEniuiFvodH6rGN4k9+oDzs8VBu8pWCVUeJImXOgUzrE/PoW5nUIab+HbT1tmXggzI+14MrHaaWUUabNKjrt6G3N17OSN2RNOid/fW5Uo+I03j5RX1/KmuJsiouL9i4GIkHriPoamchcA/0PWeI+hu6yHihope0v7UPKGtFfa5qlMqYWiXn0bmf8oD8wDXGDbGu5bpmqHPyrJt6Bdez5gRrj5Trx20NBeT8AB4iw2mMCsMayqd8Lo/WUT73lAdbXpPhUd9Hyo5V+2fDLwCN+Nt52Z+v9oZhnFIBfM4X/oBo9pGV1vY5D9jUZWm3kXUHxfLv7VocaBx9SsqS723N9LDzDH0vsoD9MhmzkVOl7aDJ0Ffn66DFFiCLYU6D9qVdiO31Np6yZqpsLPKp1lPXkr1CfkveGK8lPHjbCVCdJP8EqYc+lxkiP3ofLy4v8Qdf+AIu95d4//vehxvXr+PsbMY8d7skiWa22RC0DapryjTtuHb1Kj7ykR8GRPDcHz6H/X5xdivpDf3f7dkoB1P2xWHwGuPX+rtsqMR90OdAgDHdG8a5EBFfBwiwcfCDT2xd2vmuoKZSL8oeWm+4eu8q3nH/nXjrN9+GFx9/Cc+94zm89tBrYQsZh29ymlHV89uU0bG/+mXa4KvNek9JItgSsqut21Xz7FH1pg3BD/VvHeeFwz729qmcyqmcyqmcyqmcyql8/5Tbt2/jP/7H/4i7d+/iYx/7GK5evfptvS8iuH79Ov7G3/gbEBF8+tOfDh/p91uZ1xmP33wcf+6Tfw5/5rf+DJ79gWfxiZ/8BL72tq+hTw/An3wflTcMUqLzRf1QzBuxHTqkQBqNwv4uEDeLqhGw3kKemkcl8uglW+dh44FMzMjYWsNud4b9sj8wsJvfik5Abw+C2T366byHOzDyBGp2p0PnajiG41ahvbauPW7/HXdYjgbStVsqLEYGagRgoMdBFUxL5vV01QHEAq0gqwaLAtWjDaHBTy3agkqPNHEa/anDGB0m4WjF8XH1roBu80lyzuww3jt/z7RcYXBqLaIqda+HRsHmc9SZ/ktGXohJQr2p6kZKaBoxnRbznA6/eoM+nJ3QoCnciWk1FeMV+RTl9qgk6Moi0Rhsa7fbWdSU3i3FlU1gGGHpmLcmR8euqoXczsgw9kyjwz/SFebMdVVMYXzzqDnOCzW1kaI4GWi4brYum9PODCTqNhmF+vu2zs1YCgeNMDUfDR2xpgpHhCF0s47WANcRwNbMuOKAqmmawsAZxnyxNtX7kTyZdZP2fV3QGjDP57i82OPi8hJdFevSsdvtDpwXXFvko3VdMU92U3lu1rcKMhGIOzS8jt6xQh0sYWmBprQHh0FWeIOuA11XVNIEiNEjb6yeLqzTQOo0bq3hctlDOyN8jPRePZ1WRM/qCkZOmfzZ5tGPuirmCvQ0LrG5ZHQpv/m7rmtEFAHcedMzdZ2tXa7XHBfTp9VUb4w8JOKRe0IeF6AIUk6j/i0JIhEB5tnTxC1LRCIiHfleLVZHgi6qDDEKOi+oScBIxYfkFzoG0ji8dWKPpQJdtt/XwqhiBj41ed3ahL4scEmFASCiCcoJfraKB7nJlIXVGbFNXTpNRLt132/GqE/beVDSDuPcVafxsTIYXMtYKqgufreHnHbpaOO72WfEmEQsyt/S9y5LW6RlrGuoRlQi7fNvcV1kcSCbA05aRm2rugBlRq0jFj/p4LIzaNhSoTL+S6Dlli/2y4pbr93D5dLxlvYYdvPsgBbBPHvkrg7INEM8JaMBCjrOzmY8cuMarpzNeO3OHbx66w4uLld3oGZ/6pxIfoi0GKONXvM3vrN5ptaX+2vWXedckXt5jUJQ57o6YqqjKPjSCFDcN67tpNIaaSIxPEMd0Xd8pvPrHcuiWLt4SgyTcfNk0dXoSAXfUQMihW4yjXow9ebBfaKMWGb6RpuncJpATHYy1SfBUsPYvBoBgAj4WZ0beJOXKlOpiXLKjju4yEHUxcJhuH2u8snGdRU1lNeaGCBt3cgF1hXOs7Jnt8YzRj6vmi3g6FgSlDCcW/x4U4FPfL+WqrfU53meCd2NNOXBDcfridKT9gfnKRnPSPldHXOOr5aBZcvD/J7r8cBZFi/lvsKp3u4h8a9qAWn4+9uzw7bvpS8HciYkZHaHoLAcZ9l3y0CDWpL8NtL82OLcas+8nGBnEB+I/SIynEtIw7FeHeRJtKyaKVVRaIWNzrVJqRn9LzQKHb/OQ9TpdNLoSfQKWvaZsoSPr/rxt2gTOe/gCVIpGwgcom5f+YSNIgLpbmcRIn6uQqRKnOeGdbWImKx/56lA81WNlLNAAdG7XixadFuQ/yT6HPTh3Daxv8vvfKbqR5yfqKPIBYjJCdMoe77rZ/ZVPcL0NIWQq/pSvXQyriOS1aMNI+effaljRGlzAMiUvToji+RZgpd9lHNdZIlNJVPFy5BWGtu2Q9ZK0Gc7d6bzZj9yfrLNGLhyPIUgdY1L7m32E/WPDcCq9DW+KH3KwWT/+Xdde8fWDndV7l0WaYyEKS3UesJmNq45Kd8FPTa0ieeKThj7dKkDOCKHj/Q/66wCbPMk1zbpUd6VI89Qn61yZxhH6dN2LdQxjOCgIpc2/UtdkedAZ6Giw1TbSYygXASw7+suUy84jPvKsX7F2KH46le/ildfuYUf/uEP4/HHH8U0nefe72d4pq7k/hN6lwBXr5zjR3/kI3j66afw27/9O7h3/8JkbeGYg7WvOvSS3+tmrRaiBe03CsZYynPBx/weZZ68QwZUSnlAAJYCcUECqHzkEqpM6UhPYFonPP3Nt+CJl57Ac+94Di889QJuX79taatdRpiZuaOviMj4tk4a2mA/EEQEtrI3SW0whqkHi546gCqAVoH3Nnj1/WkbXX0gKcb5O74wT+VUTuVUTuVUTuVUTuX7ragqfvVXfxVf/vKX8bf/9t/G448/fsSG9/rl7OwMP/MzP4MPfOAD+Ff/6l/h3r1736HevvmLQHC2P8NHP/1RfOhzH8Kv/eSv4bM/9Fk8//Tz3xeRlR5U3nC6t3e/29O9dTMg0blvhrQ2GiLcQNFac2Ob1bEWJ2E9IBGwU2/kIf7NtG5RNzCGU/Z/w8nd/PDfMzz2wTPVCCd0sPszDgiplCFIKRydYmCEjnQcA3T2KqZpDucxx6Fqhs3JUzmZ8z4dW+zjcHj00+LgyFdARSP9Xe+I2/zTNLkNbQQ2jcYacYOV07BEfhrmBdsDu/fDwSI0ZJA+qhqOY0v3wyYJRpE48IqPTdEjXZ6Ig9UAMJvJMed45TGAzmlAoJjbjLUrFneycz7Ir2nYhxtvuwOjSCGCZyQAKTSCmPPbndRup6xOdhFB8+g+fIdgqdYm6OpO88lS9GyjUYTDdsr0URnhCkiQEvmpgp7I180jcowAD4hkP50P7OsW9dGyIRB0WAQlAoKCZqpOs0yJNqyjDS8zbPg8z2FEskvAbikVAOrpx3SNea20qSmzSKt1Xe22sV9XtjUlWNYFqgnQWpaOy/0eAsH52Q5Xrp5734z/6UxOA79iXRc0adhNE6Z5xuWyojsIweSDMY86oEUE/m+zd6EeQQhYV+c7FBBSMzCc8W6Oh/NhAKs50n1B3QetZjhfeneQ0gQCbhhZx1KOmTO9QbBfF8fIiYcBtygqq5qzpU0TmijW1eWar9/WGkQt9Z16/xjWsQkwt4ald0/xCIinIpRIxWdyv8lk6agI/PToXW1KmmsBk6wEqWlGHBKYrJWpobUJy7q68Mj0aL13v9R8CJLNduAADgJOmJoxo73p6uvNUXgWeUYpNos8j9p9fYqlAeu+ptooM8m3CaxJp+IWoGN0l5RD6mBghafkyj2s09AKDQc712HsF0f2u1yfY/SleTbwzbLkWjO+pyyahvHUNUkjfYOB29aiE1TQ2AAsQabt5P4x0DfkYIKsuHaOFXPmNgO/xrp0I3nRP7Zya6SRU1SKjlPk7LAXy0YXEuoRljauDCTsybZ3mCOAT1iEhUOwdzpTTN6en0148vFH8ciNGzg/n7EslzCHXsO0mzHvbJ9BjHVyvaNj0RWvvPIaXnrpFu7ev8SydgcJa4KYVQPkFE4X/rvhnS0fDnrGZq5rSoNBZ2PqSx3fU1/f4VoJHcSdISGvix6loyNnqC/2k44ahEGRQPZU+BzYLCYr5nkC0xlSr2KqC+04XL9NME2pA9d9kE5Leg1XZtgRwTQL5okphDnxuQYZDRJApLwb5gejXqSquPnimzPd28/9nKV7C2CFpvMOGOEhw3mAD23m+o0cjjdie/jy2J5R61Z3CA061VC3HKyJaEgTFlCft2cStMQ0ztvnbI9pmzbTsRX0oYPyQaQo3rXDY1/dJ8hbmQp3rGAsfCccflvakTdRaPKArh2r2/Ts43MtzgusZUu/SAvFgR9pWYe+jb81p3t3usaZqay9WrOCAJWso8rxOtjm0XKceKNzkDSrewIq2zL9tYMqNv0JuYlx/x8pLcNf9cwQv5b5y+eG4W3IKuU56iYS+m+cJ4oM3J5VtvxT2+JM1nmNYYVeUNciDsqgDyD1GKOR6SQ8x2T019RVmGpznibXiXPfIFim7k/amaqrxYUTnsnCz+z9r7LOZAIjMDvwKs4fI0B4u7RibE5n0qvOEtd4Avua9QGjPidOb0FJ182ZbTlvnbKv1M39K3VbAz2tfk6BP0/Ae+eEisDAdYogkuQ6ZWo9NiJFTqVdqYCZy/cSdHdd0NvMtWL9zODBo3RIvUiCpiGGNNd77FccD2V8CO7Ck4WLQmYoeafF97UPnKcYH7JP2YZ9jme9NdpcdNPflNXJQ9FHDlK2/c3Pg55IWgJ2TuRcsB81utYBDWIycy63bUrSf5BTm/HX1J5sq4pKKeM5Kt+8VDtVPBe8qvm59i8eKaDq8lvMwabdOg9wHcAn6bBvvi5SR0HKl9qnQbYLzs7P8f73vw/PvPuduHblCnY7k2V9XeMiUZua6xW9tJd70iuvvorPf/4P8OUvfxXLug5Rf2PO4lywgf0WWm3ntc5l9P3YXB/Uw/cO6z3eXj645b1DHenwt1h3UY1gnRa8+PiLeOmJl/DSEy9hnVbHHRlt4kwqCTCOSISu1w06k1B8jLo9n+dz7EeKrWLXpqyS/C3Pqpvxln2Wz7Lc+/sXD6TJd6uc0r2dyqmcyqmcyqmcyqn8yZeHHnoIf/kv/2X8yI/8yBuyxW6LquKFF17AJz7xCfzWb/3WQaTk78eiUFyeXeJzH/ocPvfBz+FzH/ocLq68+fTvP2o55qs5Vt5wJKUw4mFrbqcxIw/fg5HejUx2eG1HGZjRNrTUx5Ln7AoospDlg2OoHuB6dxDPlDdQS73VUJCOWgnHNQ/X2b7CnFt5y1p9LLxXm84oM0jW6BZWj0fpif56ep5I75RgkPi355jprAB6GP44L0xnMU0zM+nE+Gy8cDCCRVqxA68bebt6IIB04KahOAEj2xRCeQOsDX1mRIkhTQzZABrz0QFM8xQ3X/nc2gna2jg3iiEnjIF+mFZVjyAjDhBKIxuFHR2FAsRNIjoUrMnRuZQ0KI6K3u0Wsqcuqzw0MOvAw+48XRHGRtU1jOGD0aodMaaiJQ/yFre6g4PPVBu1EqAEH6+nYnJKQnmrSyGSUauYCszgEM7hBQRkgUAyepfVP6ZGgBugnRgOaEyQVaQOqD5h6TGGJikf+G+mkhgdsulMB/qqgFpqpNUjeHVVLEuPdHfT1OzZ3g2IE0Yen3N1w7V2TG3nhksx0Iq3G6A1OJhmtn53Vbv16PRtkxuMpAHePyXgpzoEoMF3rU0hWdtk62ch8K2JOcU91UOTBp0sGhMUnsKuOyBB0SYBwXbzPGEJxF9DF+BsmqGXl9DGtHSWyovOgphLWNo9tASOLOuKWcQjgCSwZJomLPslxzoZ3wksMtTi88I+MuqRAOjRprWbEc+c7ekSUQOQVSO4pfF0R28r0a2KLOtKYIKAThjAo/M5LzEiRQuDNfvhgCGniY/Cx+5p2yYJGcIEBtu9KXi27BHbNRSRuiZLUajrGlFb+toxQYBVIz1aAnDgvERQRKFnMYyzGIBUBjld9x4a1ese08TmDtJiTdHCOXlUMRVPpdfTGMuITZyPWEdiIJ2pJcAOnAdVNGN02w/KHqG9R+rPEQxQh6yD84zgtyo7Rsct4reoxKutkaRYB1usdYx1CVQpt4ee+c/V6ZQOj0j/SeN+AWoy4uC9i47nv3kT+4sVb3nyUUzTZNEkJ0DXBUB3/rBoD2dtwq5N2O8VO2147NGHIK3h5su3cPvefez3PZ1L0SsJ/9Ex+hzjaw62rjuW1tqQ2rTWYfIXIPC91ovhhnF51/vIiIRQW8sq/eicTs2AltRpqr/Wnm+bOSRQrTjZNcHQvavJnD7yQnX4DXuVR8ODy3JGRVodqBw6zGr839oU0bxGHsob7lU/OTYnQ1SvN2F5kAPIWOnwtzxP+EOD23GsN1zKsv1t9HXxy8rHx88nxotb3nrQODgv1QE5jgWgXA5nN39zZa7yjxx8Np5sbbMm1c8HGOc++TL16crrsnnWRXGRfYfj3MrP2Ic2/dyuRXaz6tkEl9Q1yX/rOWRoH5SZ5YxV9Oe6dw1tDbSSrKhUzPMNY7DmwRRBw9FJ6kRiFNbos1UY24r/kZFUs21rc9OdTb+zMdNTBeVizZYPYwkccF+8U538UhrenrNq0wd98y851pFOGqcKvpLrrMwH2zyYn3q2KHMRKqoGfSWa0ZhWnisqDQW5zw72AKc/5Yv6+YVRlBSbdOVeN4Et1oe6lsczEcmT9gP/zWeoQxE4G/ZFAVXB1Hw2eDvIz2h1ZitMhefnujdZBB2bKNIgeI57FnoC4f1snAAyApDS5kE9ZZKGVdeguYifyQQBRKKcpdxL/d3BQZRZ3sd6IaTKvKrvpqw/BOOPqpcWkADfN6oFSLDwWoJFs+9J18P1xnnnuSKa9QtBYdviWJ2hBAhgV2o1KVtX50PUPZG0HIbH3lJ3yXkH4JFjpEQxr/yHkZ5Vd5Psu2jSPTbSbftFH7d3vFdchoUXjLQCAl6gGQWv+TvsLMcVNisttOAe4f/J9nvSOGZq2AWD/6rulhObYwE2abRjPhH2ATnyTtIIOebN3AW9at3lb9JxrAzDHNSNI+R37Zd/zjYU9y/u49lnn4V2xbve+Q7cuH4V52c7FzEKbYiLdUZeswlNTEPeFY89+gh+9Ec/iitXruBzn/99XO73QNCV/RFsh1DHKZL7dsxv5aMje/+wN5bfhXuUlGePPRd0lHg+fs2OxYeqz3CN1jXE6EwCYO4znn7habzlxbfgzvXb+MJ7v4ibj95Eb+OUadknqXdtGcckQLYVvdekg7F7uQxR9rUe2QpyPDKsXW9Fs0Wu+1M5lVM5lVM5lVM5lVM5lQeV1157Df/m3/wbqCo++tGPHmS5+FZFRPCWt7wFP/MzP4OHH34Yv/Irv/J9D1QSCM4vz/HRT38UP/yZH8bzTz+P//T/+k/4g/f9wfdVGrg3DFIKpxUQB6o0SKSBiI7TuF0Oiy4jqhl1ozgFWHhTtRqUefgSd4ymUTFTo/FWo53BPEqNdh7rhkgR1i+mwKqAAYKV7NDWHThkEXbydF0dCgo3drp9iYamSpc0yNVIPTbOrt0NhUBTjWgS1agO0gDpfKeDmhGq5mkKx9Y8T1CmT1OnHQRTo6GAN7K9b90No8Kx5I3S6rBWIG4+KgwcZA6BArLyWTAb1Aa8Yh+QABreVKURTsu7OcekmX3Pg7o5YW1aGqAdSgOpp2rpxZquDnjgYd3mqGPtKyRC9ZtTEqoOrshbc0AxVLtXUiBDfaLspKepU4sgQwND8If6Tdi1xw1JaRJ0DVI57frawzDsHXCDZTHMuYGHEZugDgSBAWD4fMxLGAwLiEwI1lrzNmwx8hmYbiqGGu+fG3NbGM/rbW03CLqjed0vDvbIsSpsnYqUVIQOImpCkJ4ZzkUMRhWGobKcWqTGs7Wy9m6O5HXFslhUpLN5lzwdQDgCUVpJ0eDgKhGsQrCDz3NpdLebPOqMYlkWp5vRYO1221o8Ksw0TwMwS9UAVJRNu53zIY3jSvlptO9F9hhYwW4Oa8ytgfMmIOa8A1iWva8VRrrrmOfZwG2tQcJZI5jEZV2R0QGcAQAYMHQSjwakCsCiLelq4BzyQJtmk0MKLFgjKpBq9zRU4Gwj0lWqGT8NmGCp5GhMZ9oFqAR9zJHBm+8uz5Bg0ZTp3Vahp4yAAlOz1D57XQar4do7VJrxc09ZnKALCV6kYc+emdIBdORGd34G1oUg0+Zrcgk5bUA5CRAR01sYEGoK0GpE3+lpQAbXEREYka7CHGqiXMebPdanQl1GLWvu26SqRbsDJjSfH3X5Zt8vjAao6s42iX+ltZKOMp3lAttDGMlukgLuKHSbPN0AOtAmiyBjX5jMYcS84FlyQkfMRQDUDlwH+U5nijSvevg9UvyksdvVFTDNyeCc0KorjA4cyh9y7Rr8yyfh9KIj29coZad27PuCl155Bft1jyefeBTXr52DjtPZgdmrRxpYu8nPJgYG3LUdHn34IYjaLek7d+7hYr8aqElSrobLrfLKEeBLgqgoN0gFHXTBJhllcHTwF3B6maW6V7OddOhwnWnsJuawD1hB1Fcj+9l3Dg7FmForHOMixYkNoCuW/WrgO4+4GPoLRWYBIcHHQEA0NHe7VmgZe0qD7T105HRPyKOaKd5cL2IkSHV9UcQAT9HXqBtv/gNeqtKFRuUnGfmPcwMg9+TtOST4Q7OiUqS8nxcAxt/TsWd03wLuBiDFZiB13xlYfNP+WFcFohUd0HXebf3j+xh+i765cKKuwTUYT0vyC8qYTZeivoqI0FNG4GqTbNovbcc3GObMOwYtz3MfLbWUt2sn67hLfYo4T2yfo3ymThxSosjpsuRjX3SXdXkA5XPhsbJH1vGUHgCa+sAxHqqgrbovF4Ikjwzjk/xGdehfANBylPlefBQU0iN0dSR/wHXg7Nf2hGJEjufjfEliOv/BgTikte8N3CetOon3A/TDk0Lhq0radV19jVaKa/AfQs1MQAz1P1Iwngke1Pj/+hzXlkX3dDC76/YjIEYirVq1FXB6bEPK0QxnmFaAOa4DcXkx3TTEzsSpQycJeYHB9pliIPSFkL7rDvZY2c9If4zgIV5IqStroV5aeI97WpxzvclW6R3Kkum9MaM+zqnoFUFv5iTzd3wxRFTYXLOVL2gzimsNcYZIIE0RKzE3hDpVmg4bQ/R1K8upD0a00bHqWFPCZ6seJWx5o19WjkoW8ldGOTL0hxff4sUQIrF6+Xxe4BjnmMQJUIcU2RNy1Meko8SuDYj3oe6FrCfkFeDnVc6zRJ+GUraEcS0XBih7L+lRP0eTHI9a21GV0yuAXKRFmYCcmVEaK+lfdQNG+hJaPIr0LLwz2iDLeEvRmEdfH9vHyAfU/bTMRywSngHzXA0128Wzzz6Lmzdv4od+6Afx8EPXceXKWchQP5liLXzRi00GAM7PzvADP/BBiAi+8IUv4t79+1hLWw8q5JGgGz8j12yeJ5J2ledtq9rwy0A8zTkfVIrDd4T7O/c9/zL3tXGPHtKmblnW67hx+yF8+Hc/jG88/Q18+ZkvY392afMuZV/ydqTsm2MaUqAsmWG9Ud6G1NrIt7iw5JWMACXOaX0/9VHqj9txn8qpnMqpnMqpnMqpnMqpAMDl5SX+9b/+1/jCF76An/mZn8H5+fm3rTdO04SPfexjEBH82q/92vd1+rdamja87Rtvwy/841/Ab/2Z38Kv/D9/BXeu3zk4K/5pLG8YpJSpweDGKD04mNGRwtQ9Gt9pOXSO6W3o/KJxaXSumMOfx1I6vaQ609wY0Wh0DINHHrDYN3veB7ApkZKs1Hto8Kj99u8bsPYVqnTE82BIR1eH3dQ36o0RlxKsA6ShOx1/qwMw2O7kBghLi0aD1uxpyNZ1QZqnWUeP0TKEM5ARhjrssB02rTCgmgF4OPAio7ZwPvKX0WCYht2R1uEI0I6mHmodjGriBtJujnECybTwRWsA+goCAxjdgDYrOvjCqSoAtFtkArVBtmkK45ls5rqvPQ1xhV6qit3OUvitq9/8VDhAzNPArATcJCgooifRKeYGZmuj28gddEXwnSSx0rgKoGkxyNCuqQX853xsN3d1cAiL09xSaVndtlYLn3iKLxIzeHFqbnjOyEvaewIXJaNUEfVGA1ONdhHfeQQAGqcNbLiWOWCqPp//tUZTsTa7p9ViRJ5lv0aKN2iJUOPrY5pbSdtTnTgGHGmTQIVgCx+3R3JRtfQ7DUDvSzEoWlqyiGgDm5/L/WpOB2F0nNUNrOa8ZjSnuU0BDCP9JobnZhogpvLwVAxz2xmgwPku08dJ8FkCGiejLVN3eV1rX4EmEbmq70tKM0+vGc5WAbqnXSAEhFFaUKJ0RXQeaSE3uI5WJ2trTEXpkaN0jc+qEulAUSJqJa8TGOK3u0NONQDdfD8OaKnRiWxPgaeUy32hL0vKcmD8G3RyVIO/l94BGfevAJSF5V19PY9ADeQqjbUda6XVFAxpUCdPNRFoE+jay43oCiQ0flYHhNCRb+lB+pBuC/QmgTuP9TXWD9KVJaJRn7q8oSOU6UFMHtJoTHoi+hJyzNsPp1Sh3zzP7nj0sQ/OXe6JCVzm+m+RXjAL51g9kpyBjvsByKZGo5JIKwvQmEuHma2njNITNO+wtH5lz+Yc50eJqAXUi2q0r3yqaiXp3JEmw55AOqxd8eprd3C53+OpJx/DwzeuWxqybmDr3lfMZzOkK7q43O890rBeu3oFIoJ5nvDa7Xu4d3ERegb3zEEXKO0PQGrk2qEqw1R3h6CKQ30sHKXpivHvc2+ubVOnEKGzy8G4AxA89bxsJyumDlLTpKZzQmPdcf6hBqedhI9wPgnKd3AynVc9ZYmloDQwFW87L4vvsUKdhrzGdpNGxNP2ektgEEfpeDhIO/emdizI+KfzXWjD9XxQnTkV1EZHzobPotoiH1m6IiMfyLhO+V35FLxZ23u9UulfBvc6v8fQ2Wkk8DZ7kuNIYJZqAonyrNLimS0vUL/MgVAXlTobIaMY0bBShHtAdRoP8yDivH6MOnG4yv625OlRBrKu/Jygre3Rs84P9Te2yPMG66hAsgIS8mq2jtXjU56gDsoZtm/bawJuTIVIoGqtlWe4Ok+c2+E8GLSrFy10GOcAVPJ3dNM/sqKKegTbERwo3oGYXk0dyn6q0hkhQw/oFNNM4uZZC76vhhx2mgeYIV5x0DnHx7aDhCkPGGWmVf7qGW0o+FKcyY6lDnRad/arlxSdrMNf4z5OuQ2RAAYCBDyTKmVPkbxMEmCU0OXGSEKklenraSvgvJIWoZMxXWtP3VMEEV0sJ4jzZf0JoH+VsyJoaFG/OuAizk5xkQF+io3JtS9Xyg0J+jF1m0YfKmiofm//2rnO+aU8Q56N9eTzZ1GzM1JQnrHHcVdZkyw1ymiuP46nnsH5ng7PIiNTHRF8Gm0MQ4zRSIzI5xzbPU0HPkbh2RKmKBob+L7otIOwU8IAk05c/0P9dZykK/cbTWLGOirPDHV5fwJeGbyczBzLs4w8gIOjQIt5EWzaxggqGWgoMnBEjg2F/A1MQVx1AcpXJdMHzw8ULvt4bbnKQv6z2cHqnlraHvigLOQBPHJEzzlWKjtU6nTt+Mbz38C9e/fwwQ++H08//RSuXb2KqfHCp9v8xG2cPeUNo8vu5hkf/OAH8MQTT+Czv/d7eOHFl0J/4LZ8sDLqXCZhys+FslqeKwPajlpLNYKRX/id1rb50iAkKYN9fR5b0/W8gJRR2/6rKqZlwju+9g488fIT+Mq7voJvPP0N6MSo2GWt+DtkR+7BKWzYrvWx6gxVT93qtCMNMehRte5C1uPjPZVTOZVTOZVTOZVTOZVT2ZRlWfA7v/M7ePnll/FX/+pfxbve9a5vO6o/gUrve9/78B/+w3/Al7/85e9Qb7/3yvnlOf78r/95fOhzH8J/+3/8N3zqRz+FZbd8t7v1HS2ib/D08Y53vGM4rIVxtZg6adAM0BDSEci/FRrRWsJpOdUoLeUQTgNUMZSyvmnKEMSqnnIGCVox8EWCH/h+BJooEUPoqExSMBUX4pnoUyUeD4pBllbqBTJtRUOeactBmM/xXRqlRTwSxho0sPeLYcL718QMpozI0MJgtTVB14Ns3myN8apCmoE4Kh3CccZ59QPyoQNEA3DEaE4MSVFvNdoXZpAmYKamX6tOYVXZzF1xPniKlnVdoVgh0tDaHFGJqhGRDugxdHzOAs22iLHBjH+NhjMNfkxgQr7Zmjt2VouqEk4GMJWOz4k6rTkHbfL3E8iQPDLyXGsNDX7TT0ZTnnU70xIBTA+UFgg6s/K2rr1IRy3bibSOmiljCPSIW9rDGjW+zN8dcEEnAWnWc57R4IC6nKNqVK7Rz2iIRBkNU0iJCC73e0ytYVmWeGDtK5alh7P47OwMu7MJ0yRgakUA4chQFU+vY6nWVOl8EazLAnTrwTxPWPtifAujHeXLPBvec1lXBz1ZCrQmwLru8wK1R2ijcc8AWYaeocFqXVc0sffFAV3djZi73Vz6rd5XT7elfZgf9mm/3w9yLtayg8PWdYX0vLWo6kwtlMESEXpsPRCwQsBXj7bZFymG65VOi9J2yukG7S5z3CJnv+vwToATIJA27h+qapHlHJS4BVEsjG42SfC7zQvXUvKcquQ4+hJGyuRj8jxyHQED8IQG6QOAhQNIZGI0l1GOMqoUPLVoTb0wT5ODETUcIqw39ieuE9UCYvX2FRFBbIMbLWOvhs8EnjRP98d1R8cI9xCFgWKYvo99qs61Y0XEIzf1NcKDVqDF6Lhl+rSee5SKAYTNKxLjbm3hK6wMAADnv0lEQVSKyIRMd1l5K/crf14s9RY9onUMfe0FNJv05X4iLZSE7C+jANDgrDqMqd78jXksdEl96dDZnw4Z8rHgyvkZHn/0ETzy8A00H+dunrCbd2hNsKinJ4OlS5zahHneYb/f487d+7h//wKvvnobd+7dx7p2B2b2Qe+q/JZ7NDYWbY2vOIY69nRG5zs1wkMxnR+pe9QzTL/rwQegRzVAawQzZf+Hfpcxbfc/Nn0AFhhkBfUoiXSCtb6QGUydg+IUdD2kNcE0Fzp167OlKh6jkiY5BNPk+zl00DfrmFheffkO3ozl4x//+CAfoekIriMYQBq2mIa/1fWGuu9to+llZfxnXFTHgBjhKNKkb+5L9d1Dp84xBymw/W5cU1vHZ32eZ4daf+qIh+sv9anSFwVUe6looHL5q+h4kr9uhrjp/+FTuZfUced+Wc8O1YHGPuimrmP9tD/yuUijNvytQx3bc4vtw1ajrU2P9gqJPWfLj4jIgTk38Uz5HKOg/p+iG4UQpW9JlyaM9FZT7mUUnEKcA56pe1x06gjPZ+ck5KaUeoACgtIxxRgd/ts1NnCBHoGJFH7c8kb0RriH5qWEkA9FJwDpJTqkSh1oU/pzTAuperQAobMwyjH8914ir1l6Y0a52+4xhb4eobYuYO09OsToO9s9HcrzMPUhpB4liDRiPFSLJIC82k2ohxofOT+XFJFQjQs7lVYJ7Ev7jh1dHJiwMhooz/XZXvd9DAOn+mpI5kGuYC28mLM0AGcoZDf6FD9XIVxtI5SnXG4cx8iDqEsz6go5wc+VZ1RjSmPsSHBfedCXWJ6/67iGtVPGoP5ulQ3bcSY/JfhmkCuFFqYajRI8LxE6tTXni/VtS905pI6vErmO6cjYOGe89KCVaKWBalPkT/WxY7Sr/Me50TJ3Iw0bBzHIhV7oEbTys2/KNbefYaTZYL97HdmX6QRZ3wjk41gHWbfpZ4xpq+McKXXcBzvBRleZpwnPPPMMPviB9+PatWtmM9HUR8POOtBJPXo3sOwX3Lt/gS998Uv4/O//Pi4vF7dN0HYwjqHy1HEdkBwmm282tIuPhzXUZ+v7Q9tBorqIbT4qP7Intb/H6h5sZKX01vHqw6/iq+/8Kl55/BVoK+cVrz3nNPeT6E4Iq8o/qS+1trHR2S3UXHextlm3n/HJaxtdjGMgL97/vy8P6fpdLr/4i7/43e7CqZzKqZzKqZzKqZzKqQA4Pz/HT//0T+NjH/vYt53+jeX+/fv45Cc/if/23/4bLi/ffLrnd7Ms04KvvPsr+NWf+lV84X1fwDqtx41cb9JyeMXkeHnj6d7KAbw6gYXGxmKw4aGuGkvrb8fqBkaAhNf6wD7wcHXMGaFKB9/WUVwNjgkOOexPuSF/xGnKuiI6RhhcLcqIAQDyZr/1r2/GzkPkeDCvTm635ljb5Xa1OcXsb950mqcZbWpY9osZbMphNSPm0PDj7/YVTKdHo2Q+Yzf7t7Q1sATHXSJiDLfP2jDvImIpzqARuccMwShtaUZBcvIECGMT0QhuJKQjpfkYRHjL8tAxOjomCi/xOz/42xxYJAjxlAfSxI3BKAaXvMkubixGq4Yzxbp2tDaXflsbFi2nAZ66rwL5AAkn6HEDVKUrJwVBJ8Bu8TaVeLYaz7f0GJzPJe0MU58N97jLfABuZAfXhyKiJcGAhz3aNuer8VwBVxV5kuw+rjMAkSaIoJruYItltQhm3Q3/O98IdV3RV+OEs7MzzLsabYjGfuEld48u0tAEmJiWTCy9GVMlqQgscEwaI9kfFhoW590OgIGE+rqgwUKir71jiTSYmzDl2tGmGQsj/DR3iPqanJwG67p6H9N4JzJZfCGfQzN29gOAZv03De0NrVkI9+4ArNaa1aUdYadHRp3RbnRwboVqx9QmdF1d7tc21CNYCZb9it6B1rJPa1cwAQQjOAz7ReEVVY8upwBqZD9147KDXQIgIJlqivIJjGZToi2Rp7lGBQZogrSQ/1x7BtxQrB5By6LW9DBkdyAdZoXHRQx8YIEumK4JwQs1HenwjsvvNeprkfJz65TX3gNMFnwpDswSBJYDQAGdjXKAkZdYL18wXqTTtoJndKhnu6cOTgIZ95MAepa9ojGdaemTeVmiNdQUf5IW/UgRCXQDG8LWh229KU/XdXV57nxgKNPBsGzpSjyVZDRiv03TBEHDig6P3RfzxNSV/vDgbKg8AU1HSHV0jM+N62gwPrsxflXg/v0V33zhJu7dv8Djjz+C8/MdptlSNlxe7A2kBMXZPGNyUHMTxdluwvzQVZzvZpzNO+xefQ2379zDxX7v+oX6Hj06VQ7oBO6nlEv5e9Xttus61ptHH+RaIDhv2PsqHYy0HtHC3jewslNTNHhiS3cGIAx9q/w2ysoK8jsEV6nm99t2qDs2d2SvfQUjwVVwfN2fawTSLpShqaf0Etmjyp0cHCioRwb6XinUeYev6DjZ+mU06Bnf6HH+HOr7XzzBUb893tbh+h1a3qzd7XmCjuRtH6sMPKxfj/4djjrNCyFBRHd0VbY1XYS12NpprvMSrHEsjenQfalRvfISRLSxWV/8jmvI5pfnCYC+svwC43suZ5JeAkYI4PjyTEP6HLYdlBvoPPIeoGXuGdVzw64cq3gd/KLIw8EbegQ8MOj0QQaCEDT0whxSoYHYmeJw70xZtS0JE9E8B/mjnLsK7MjgrYf8n/09XmT4fzpVR1lYxxw8wLXC20Wbst0jJL5LPjyQK61lymd1/QU825EiiIiPNcpr8+iknKtR3FqnI6os8uxQ+0pHczSPohvxAkKpM3Ur07EFiItdA+h2JAwInOBkKjQie4mff1I/3oxjYF/TXcGUchKiZNM2QUPqujr3MbuEUaNNsQ98ZwvBOJCklYbi50s//0EL7UPGlHWDpDFiDsjLKM9WHi7RnIBYH8eozbNJ7beyz3V9GPLQ9nzSGGlXSNmcgnPQ/wotoh2fCC3g2TijFwbjGt7a2nKuZUj9ViN+Bt19XIfR04xy9UzBMdJeQx4UU9xCLIYskEp7LX8noCp05krXQZ/0mdrILSl9zxR14z6RdC1AHrZTU0HD26hzrakdH7NdxncxrQn843js7FLpudn7Cz249qqMOLQTHS8Dfzo96uf9suILX/wSele8973P4KEbN7A7myGeBn31qLwRQZxyWyySXdvNmJrgB37gQ7h29Sp+5zO/i4uLizhPYNP+lm6sTMrYaecbaig0R/luHOnmiUKnLR3yERkBdPU8geR72fwb65X8VfSd3I+A1ic89spjeOTVR/DqI6/iuXc9h5uP3sTaVq9bYxylSXuXZ9aiHNW9PfbzclZhRGXTI1qh36ibDPMQsqnQ8o2x16mcyqmcyqmcyqmcyql8H5eLiwv8yq/8ClQVP/3TP43z8/Nvu44rV67gYx/7GB555BH863/9r09ApVLmdcb7vvg+PPPlZ/Dld38Zv/rTv4ovvveLf+oiK71hkBLwAOOkG1qZOuiNOAsAO8TV2/ZmMHFjx2CMN9NopBNqGUEnIr2gGHi1lfqq81MiTVI1/KWDOg+W235tgR1si86j7O9Ih2POCIE4AIFvHIkggDQY02lQDf6QvJkXB9reM10SFNBuDlbQ1sKDMh30TLkE/7sNjnvAblUpxKLUAJG6ivNNGhF8FKm9UI1giNERGGE0noJGYQyTHHsYqDYRGRgCvve1zEWhB3Q0wAHQTsMVU4C1Yf6jaZ+IJi0i6oDOD8n6ySPkR4sk1HNsxWiomumz2IiBe0anFUEFVh/dAeYsWtfukYmc78gZYUjgl7ztLD4HxQhR+Qfp4CQoxZy8ikia4HxBG0gF5dChyjmhIwUQdDoPaVTSTKtDY54F+9gamRKcFoARn186CZZNiq6guQBtAjojZtEg5BHXMlKaGWZWXQfg2zRNgHZgVax9b3TqHmVlbu6o61jX5JXeO2SeBzmzrqtFUGoNy7pgWfbsCdbV6iCPiDRMk0CbOe/7WlJCuTxiBKJ5no4YPzWi2nRd0MSANXuPGqSqmKYEdDJtpIHizEC7Lh4Vyo2wHQ1agCmTTG4YK0Y3hxR1T38lrVnWIlU08EbvuA+szi+80W1R42wOdO3mAHGvTQtgUJVbpU46h3oPx2rIXNKEFIp3035pUaryhi1TC7LkfKazb3Qe1zQiBChxDS0OMhjHTzBMOBBjJj2ClzsHCOQgCE8iclHdf8Z6zYaeQKcYcHkmaFEFgBZgRE07ozqkrAi+ZjoSJNDU6s9oAOw/acF2INs9fZyfqaZL9DqmKfcHmz+unR71iVSnpI27TWIRp3wPmKYpIgPR4E16UY5U2cQ+r7G3espOyT2NoN90bEkAu1gPo6IdgHJcjrYtT8T6rrQt3FJ0Dzqs2NaiBv575dZrWNYVjz/+iKUf6x3rssfZ+TnaPGFZV8wiwJqA4t00AzuLRLmbJ5yd7fDqrddw7+Iy5J3tX4pMB1fAvUf0vYO5VtaB+J18Uraogz05Wq/riXSA77HHeB5tWKOiOtRxyIlZqi5Xvj2UQ/ELwoE2DFjIqwmODd2MT6mG/sh9GLC0qr5FOs85+NZl0gjmpx6demJp4HVG+t0v2/URYBpsvn8DdT0YIFTbSz2vtn3cwTcCRo61tZXxx+qouu+37nvqz7FWyodj64u/R/X5x8jBD/AzqWqmiip6uGqpo9JrqKT2awss3tKP5yqJs9yR3sQQ8uftXur90vGdCnh6vRs6VV/L+iibR7rTkdw386yFxvaulHoAkU373P9CqQklPvrMVFrjOOpYtZxBQpCWsW8BrON4a6lOzKqnj2sxx8diQSQ1B7qhhwLBSz367zxTxCphACKICEUtwFfOS36m4eWGOjYJp2kCCmoT+Qt/GPep0BEDdCMjTfjKxoHLcyYvrdQ1srUNKGzfqWfqberbGpVNu0VfrXMQKeE9Mm3XBJ7X/qZe7NFPVTNer6SewvN3m/J8XaeZfG7Ren1uw1CRe61x25ZPBerRNNmuOs8m/Z0GLnNyThKI0GLOR9rXoqoO5rLnql5MOZYS9YD9Rh1Xcq5N5Uveq7SNv4/0hfQZ9IDQUyhUNhxaPtb+cg6aA+mCv0PXzDVH+09SqhV6ZL2131UHIi3IT4PmUz7HeLbPlHUV7WixeVW9q+rBccmR81frl4FMuRkU3YnfjUI3+FuE/GlVMRGvbMfg0eH4Uuy1pb9S6gUQ0cx615y/Mia2UXprnyUBrgjZtpWlbZifPtAPRwvl9uTrjjwT07Z9IZfK8Ft8rXa57otf+hJu3ryJH/iBD+Kpp57C+dkOq3T0dYG05hHYaNsC1KMSN2lmjJkFzzzzbly9ehW/+9nfw0s3b8ZlstgGy4fX098eeJ6ourQ9mHii19EBjv1a5eDhm8JFOL695f/td1xXB/sv0LQZWOnWIxFZ6eajN9Ebo12Ovaj7Efk098scVYqfQ7tzNF5mPqqwBXxkH+Vrr0/PUzmVUzmVUzmVUzmVUzkVwGwY//W//ld86Utfwl/7a38Nb3vb296QrbYWEcFHP/pRXL9+Hf/xP/5HfP3rX/8O9fZ7s0x9wvu+9D68+6vvxlfe9ZUEK83LA8+N30vlDYOUzCEow2GOB3uRPEj23jG7sS2MHe4IXdcV63JooM7DnFVefTkCBab0RVWjXzhr4If6ajjQvP1eHai1TT7HCAg1vYoWw0GkFSnf06BlZ2zvnHbwZhxEBgektUeHcwUFNRRMymD0bVNzI67fstECtmhi0UzqoVPVI0LkoVsUEZVFhxPpYLdNmpg1E21yR6qOcwvAIx0g2tbeze7ech4zPY9FDVEI5nn2M7x6yhM2nEbC5nxGw8V2HjmXNKJC1dMR2TwBefMu+hvGu2jM5hs9DvtmsLPfaFydWsO6rJ6SpocRlVGyyDs0sIfj3A1S6TxUQJxmIOip8lIaNXIu+FnDId7ifR0MPGFEDUcGHCxEUImBu6TwJDCmFbLheQQdrzvS8GkCs2qJtdNoEFWLqBN8ztvfBhZaI0KU8U2CvCQMpsu6OgDl0NCTa5hRlABBx/n5OZoILi4usOzdeN0UMhloIXhdgakRJJZG3oZmt4qdp0XE0qqhW2SnaYYyMo06qMnBWjuPmrQsHtZ8XaF9NWcNl6WnXNLVDKSrz9+8mxGRoKBY1z3meca6mgOjTVPevFU6cgi2EDRhWqsVEqC6HrxrIRbF01KJ3zw2XmDKIfK10drTVaoBR3pYzjsmkei3AaM65jZBoQG6VDXQEm/GxuKGpfVKHteQJ+LpqVSBqU1QdGg3RxBvvGd6v8n3En8XBDmWiCKFV8YIZfZb3xjMK39N04R1yTVJ/gzHoNrCXOOz/buuCtVlAzQcnYYVZCHxna9vb9vAYp7OUBOYW0Nljs51QH1X3oKqOLZ4NhbBuMf0blGwahn2Z4ZgEsCiaRUDp3p6N+e1ZVmc7g4oFgBoIQtEZAAbm/hmWpUc1wCAPGIcVUU6NcvvdJh17WgelcPSQJYb0y77I0qUKtZVPTBXRm3IKGTJygPgqKcrnOMJEF7hccVo4I1xle/rPkeAqpT1s93/qoM95l0EyyJ47fZdLOuKRx9+CFeunEMU2C8LWl8tithuxuwOjf2yx6S2npsoHrp+BbvdhLPdhJdv3sKde5ceDbC5nNmkGEVxpPjnbWo/cyXQVTSuN5GiTxZ9jPtadfzyNzp7A6C6mpIzsCydDQwz0DRkBQr9oo9H2iHwIvf1rPdAf+VkIHmwOn0oA21oBONz4LkPD+tdCUJVAKvr2VpbLOMdxx90fBOXoDlGPdD8QVXGuEM738z3O0bZf9AG64jKEEDvB9CrgtSSj0aQW9b9rWh8KG/B88GRtvmOhK64iS+y6UdIdi1tDI6psScZMTVTm5IvU58u75mCxX/I0LEWRrm21V/LmLmGIAfP1X7qMI6xjnFefN1MyRe5n+Z4Y3cU6vXH6J2d4JqtaS6jf4OuTh4cK6DeEzOtfNvH0Fqm+vH+2Lo+TI2ZNMx/yQ+jK9HnEMf5NIgh3C/yHFT7p8AGPJD/aKlHOflNwpEej/pvyjMW3ciD7MzK6nzld1rWVoK2hiIe6aVz5OQvxP7NBivIuwoEkYwUo6hpHBXzNAMCO/tFtEdYJNVhn5I8r1K/ANdRXroAPCIjyh7e83ISbQGqrvPDwPOsYwukB/KsAtgZHZJAL/KKDpdJiu7tvzexPqd+Q2BMd1C6OhMbAMrO1ZL0KyAajjN0XtaXHQr+sz444NZ1ptwzxbAArrNlBJtkIAHTxG5AM8EeNqoGwA8LFgnX13gf+tRivngm16ARyvg2PMR2S13xmySNKu+jvC/lY11ffCz4FrEtRr1V5639qXpA6FY2exmlWnVM41vqV4TE9N9Kh5D1HpSi/w0aStC1Kmf8x2ddivxPBSD6zzNr6AVFTse8cAxHZEU8V9ckUm5kX2ofNZ/n2IrMqPsjpd9w1hrmJ/exaFu2f+Sard9H1M/NuA52r1I3cKhvDH0p70fdm/5CO1QFN1+5id/4H/8TP/zhH8I73vF2nJ+fAQo0VaCb/aVGLiaQktTcTQ1vf9vTePjhh/D53/8DfOFLX8blxT70rwrSqvbi7RiD515Hp5X6BzcdOU6bJNuoW9ha3rZeiHXQ2vE52Z5Xtu3VfrbeIrLS3Wt38eKTL+Lutbt4+YmXsEzLKBuk8PMBv+ZzNYr+wfgOesuKH0zboyQ4lVM5lVM5lVM5lVM5lVN5QOm948tf/jL+4T/8h/j4xz+OD3/4w8fPka9TRATve9/78PTTT+PXfu3X8MlPfvIUVWlT5nXGe7/0XjzzlWfwwpMv4Pd+8Pfw4pMv4nMf+hwuz793afWGQUpxq89zubsJEEDzKB1pYOWBO8J9A5mmCRJgljQwmNObQAoz4IkbP+yWP2QaUoYMBz61yAe8vVnBImNUlkz2IVJSbyCNZ8z+QiN8a9VJnkaoMIi64yhSl7WMbFHBPWk08ue1Z2h3LcZd0lsV0umMbeG4CDorIkdDUGI4t6pHO9EBzHRgWKfRkDUZAS0Sgzsx8larg0zYGMkBPydrGhpzHGa0mOYZu92M/bL3d/0pN0hWh6UI0NfuAKkcmBlCPNR0MYB1jzgjHs0J3uugjTD6BUdJcIbwUxjsaadgNBMIeYXGPD7Tw5jYuz0zTTMS9GbdixQJvTu4S8LYVWkfhoRu6fsEwDSZc3iaxOmSQJ00gPA/jyzD223IiDgGChM4ymkwWtDYHs+iGI0bDZX23trXmPsAihE8qIomGvzGaeOctUbecJd1N4ZZvb/TNKFNE2Y1oNLokE/jewACYQay3hXLfkHvBjZQAMtqII9dI5DM+h2pGpDRUNZizFMxcNDUGlanu0Kdv2ws5rQ3oz+BDLvdziO/uJzTbvMe8scMR6CTY1khop4GCO6U9kWkaUyiQRllDlQJcsrvp4lRvYxPerdIZ4w2pApIL9GPRHytEDgGyCSY0WJ9pVxWoCu6cD02d8xwHSmaTIMxVqCYPPpTRkVyWvbV5nuewsHcVTGJgajIDxZRic556/PaO8SjRx04Ot3aPzpFGOkO4WBorQUP1yq6p9Iz3jaC0ckS+5bvH+M+x3Hl+mSUv0whx/7AnzXA1RS3pRXrshhISRpkapCSXi+EyThi31sTrGs0ydSJQAI1M+1PRoHjzdbRcO1g0VajU9HhJUFTdVnD5CQVUKRaohMWOcyUir13rEogk+8Y5J0yKdEWaR6yLukenOigoeaAKeoB1fif+1j2M3QNrlFsjctJndH4DEBLRAJxKCzpSWcGZXbVAYpjBYODg/VjaA/lnd4JYnB9TLSkSDR5eHHvAi+tKx599GHcuHYV2i0KXTubMe+uYnJZIdOEdekGTBLbm+cJuHbtCoCGeb6NW7fvehQ4tqsHvNjL3HONpWM0da7BaO4iTbj9bAppJ9g4wiv9QfpTWtWoJ9QZSp2hG/jc+3ogHypGx8WQTi0WSuoiWydLOuSMH7k/KmV79CfrIOgv04YKloV7PNNtysADpEHlsdRNyXtHwApvokKwLSdI6xo9fBgI+WBPjWljrQYUL84WAMi1T/2S/Lhda9XJflDHxuE0znlZFqW/VX6w/yErZRzxgS+ujKXqQwNgx1tAWYPl59I3a7vBQQBbOm+OACAgTuuThZ829Kjf48jayDGnbjjovyjzKBh4vWjyQTfT5SofSFlbrNMBn0A5G+aUHYJ/imzgtFJWkQqVv3z/TY7Z0qD0m7+LkTZinsZz/pSWuWoTUt/Yit3cQercJE3LvPvoxM/u+bpE/VwY+TRKg4fzPM5lXRcbWrAMXdVCwwRt8zktz+S+qOPr5euYs9ovl+lNmkcG2pwnol91/dlFF+rl5Bm7ZJNrWXu2MegMGFPxAKl3dWRE2SJ0gACipj4yTQ7GB/tQ1iLnKHhdwDNfgFDioFt5Ihm/nh6ghA+zAaeD0562nVwXTom6PrmvSst9bysbinimnp5zUH7jg1L1c8q/mi4167Xz5aFMVCAiQVUeG8+/fZCTtYjrmBxT7EFHdEK2QeORDrxW9mqfF0b3SQlYayk8pGVvrHtlrLNyqa38HpGmVCO6WRDumNzmiKXScJC83lb+Xns80KTKFh9v1VESJKbjXPDZsqfyN56DJCa3rqHcT6MX8UzVjSToWcgXY0BUK76f2uxt51jLp9hPSl+jvkpmkVwzpesxHNkMC0j9lHWDe5Zu2il7U/lutJHWTqUMqvNM0Fil+bIs+Ozvfhaqire//W24euXcXl/t7LfbzRlVXMTOsKBtxoCWV69ewQ/94A/iiSeewP/81G/j3t17KZM27R2uh5Hu2zPcQMi68h/E4iRHpV+hQk3tXZ+t+3TsF/68LZmkJ38jWFaHOshPtY+CCRNu3LmBG3duQEVx58ZtPPeO5/DCEy9inVdUmRAtHdueCz2r/ln35ao/ujBH7In+fwRYlmV0fGJO5VRO5VRO5VRO5VRO5VQeUC4uLvCv/tW/AoA/MlDpxo0b+Et/6S/h/e9/P/7pP/2nuH379neiq9+zRSCY+oS3fvOteOs334q1rXj+6efxaz/5a/i9H/w9XJ5dfsuz0ZutiL5BT8bb3vY07FDeMhIJugESKkgJ8Mg2frMUTNPiDYoBe8z5mwdks0ulUa21xE9tQRVbR6abPiw6CI2H1XEDHkr9Rj3SGCE0SAgjOBSjo+TBsrszGTLlLUNdkSk4mqU8az6YaBPZH4w33gP4VI04wuhJBs6KG0ZAGruE7loCXgiAUYDRoCQP1gKfHzE6pbHWDtGcD2skQSA8qFqFfZhj2aSHExEDQ9Fo5n0gHSaZw+DLUOZQQKUAJ5wm0zThcl+ivvgpubUpjFtM7xYGUmXEhozEwXGubrRr0gKAAvHEZprzxButRnMDPsXNVgchmFF0DV41e7YZAud5dkBL3nxlNBcRiWgjlS975eeY2yn7IT36BkikEBNpgJrDaeB1rcYMDQOOQC3M/8ZYIm5YAhyQImYcd6LCJ8X4XQRQS10mIrCAUukoiigaHvGr6+K80IIvVDsmqekAm4GfRNCmaXDoV+NQXzNq1bybsN/vAcBTOQHLsnp6NPtb0HHt6jnOdzvs+wJFw+QgJQMXmHN+XResa1oL6YxvTTDPEyAJUrK5TwAHJM37FtnHecUjnzWZQlbSLXV+doa+2g3tVTt6B853OwMQqaIvq41JMgIJb74y4hVaw9wsShT7siyXNrZOgKSluZImHmVlj2n2CA0dmKc55mtVM4Jxrkz+iEcNc+Oq3wQPQ7gDwcxJY1HSWvN50Y55N6OCdqoMNxBVpvNiai86KkQE8zR5yrA0UK+r8dPkqSL7Cm+fcmhKw3rIbDj4FdGWrXlx55WB0rB2LH0tRkoFwVCqJgcs7Vna0QNc6cZfk8/rsOZ5C14aDbDq67FhElu/aRD2SHwTxjUK2g5HJ1SuXW4hdAL04mDIFHNmTHWwlXikKZkMYBh+rZ57PGmomUKTUZ1GtcFu3tKhGGCujs2819RmGvtl126ysydAKlMD5C1wg16qAT/CWD/KvABWaXddhAOjcy/N4ATo2WwYTbaOLKAYnP178hUKDapusgUTRAq7ZgkRnSuzbojvSc5rRX+pAGeTdbYWDJDYB/pSdhmVOs52Ex555CE8cv0aJnRMuwnXrl8bUrWua8eqHWfzDvuLPda+YlGFqOLuvft45bU7uHPvvu3HdBA6eKZrTeuTtBpTtCL4ng7D5hFFKIchye/k8Vq2IKVqnT8GCEehSbWtj04bHb7b0rHua9s5rp9rO6xncCIdqZc6VRMCXeh83bzrcitAXw7YS96UaGPatVibBFtCFa+8/OY8xP2tv/W3AIy6yxaoNDhfi/Po4MTiOT6odtLhMqbdSlqx1Lk8cDaHYycdacfeTbUrJGw61Fwe8vet7k+nYQKotLSb7W0BVPE9dTInSozGu8L20yGXTtWtc3BTVS626Eulpct3f6CCP6AFFDy482K43rnDdb49L4H0j5bKfPGyTPQ/n7Emik7dWuiG2TcgAZQY6qiSBqhgCd/jYw/nflMHUd6UpD3PQjmXZWzbfcSfCzkpFVRiE0Wn8OoReQaZN8g/2fSjdlagfbX6ABQplmOuIjPWpz/VKt3L+uD5g3yYzZUfyB+FPwvgJ2hV93WmZxrkg8YZnnK1yo1B7uZAXIfLdGpr0U3stwSnM9Lp2TyZ812ZerulPqx+vvI9mqOLVeDtSBmfAlC/iBTDij0l5yH3P6Y1ByJi6jR5m27X6K5Pk3ARlTbBdPWsaD/JkNbZ9I419RijpvW75T4by0fLmUiRa8R7neucwPpkE9JGx7yvEIypemM9aOoRFGYpa+q5NtsgL9iQE7DWPX2tS+Bx+XOdBa9ZbVkfSlt5iYZ2F4FdtEoAds6hukza6iPWZKZsiza3ILu6xouCE/LIf49oW7EXHJZ6xkCZ7xTfVS7mOMadNfdve5d6dlnlscePelTK+gEGWCYCZX9E+f6ILiZc85mKnOl067qq+6R1y/7QGJiOAyx9SnvjMKPRh8LpGJkKwa8hX4/u3WVMAxVQ6IPgT+7EiuxXfbdSLPYqrcBhr9fP+ai0KmOZ5xnvfve78N73vgc3rl3D1GwPP9vtTN+PtWjnlGmyvauvvMhiF4Gef+ElfO7zn8cLL74YOq+E8iblkkElWz0DF23gyD7BNZiE2I4lefBgXyrkjz21zs2GsMMvR/q9ff9B+s625PeK2w/dwXPv/CpuPnITF34bmjrMwRqUylLOLTr2k7+nLBnHH2uulbNz6dP9//vNdyP7F3/xF7/bXTiVUzmVUzmVUzmVUzmV1ynn5+f4C3/hL+CnfuqncHZ29keqQ1Xx1a9+Fb/8y7+ML3zhC3/MPfzTV7p0fOOt38Cv/eSv4Yvv/SJee+i1jd7/J1/04JR6vLzhSEo0AokDDmiMiANzPJY3x6IrmoemNNy7w9Gfp8E5BjAYgAoYZWNsoQGCacmqg4y/VyfrQTtAGJ0jpVAxaA3tqs+rg1yympqOwhyF1SGbUTXM2JRp06byjgNaPCrKlvRbo04anjWMfOr1wFPpdI8SYdnhPGULxvFPrQHiqYX8WRrSAgDTBNBxHmqJAz/7GQdlGiW9Phor/Pao0SSjM9TfhRViNLrXNqNtN8ipaKa48snqbtQkn60BKmOkKN766hmliJZXjsc/ko8JTGueesozzqAvqxvlk0aDE27ofxokaSxqMkY/Ms6wfxlpgc4J8gWNcMH33fpHw3w4psqa9OFkP9yYN7ToxgszITWorhmlqhi4RoOXG0UihZibLfmdt9eBSBGlPlvwNUqQUo2AZqAj8fF2LAtBjt2jeMDndE2A39wwTzPmecayt8g24mt8nnbWj96x251ZtLR1vC3XdcWydAffFJnSNYB0rTUsnpaBThQCslhRAgysX+t+gcCN3PCUWGoRhlprmHYz+n4ZDN8JugPgoI427dJY5bRXBeZ5NgCRAynMEOjpGxwUujvbQdWjq3hkqRYOgayzqwGCyAutpVNmv67FNGo8Z2nPHFpVIn5t14KIBhBlWcyIGYZIrs91zfQVsSoKYFQNyMqofFpoGIZBIYAhU++tTBMojNLTY/7orIM0iFjkAa4jpmBSVU+DmXJCAY+kZ7JymqaQKW2aw7DKVHo0xC/Sgw7GT7YvTsXgO5V1oFMLOUA6RMSjzj0pb5WLCNZ1s2f64q6yAJpy1Iijw9yFDJN0viFkgYHxeq8RA22QFomtl5voGu/EPiG2t1xeLu5kyL0zUjl166RtbSkj6eiRyhdIsFBNPSYe5khRwZSUkQbUPWYgD6dxAeTW36oDeADK4BAsyz2V9mOTC5mylvzVAcjmvTQYO1AJI1hs/Nd483JZcfOVW7i8uMQjN67j2jzh4v6FyYgYq4FEV2loU8O+m0zYNUt1+tC1qzibd7h1+w4uLi4jMppKAuxi7N7XtUTCI6/RSULgFecvYw2OpTq1qsZBObCN3pTzPKZ3fGCpzqYNDcnrdQ/a9o1zEuvkiKxL2ZzyxXpvESoMc005snm+iYP42jjO8ncO25xB2hHpTUUQAOs3d+F5wMd14DRBrI3yqZBBQo8b+OTIAWwAbxS9bFtS/3kDpzjuNeNXobc9SF4ctB2NRm8pnuLdY2Mh34B6ngL1ssfRZo4NSwrpS5vpwC4Raf3Mgc26scc267mmYKPa+i3mJtqOnbJ0so5lu26pO5f/E2BIrXVAexVsAVMutnyvsC+sPxvHOP+vnBNsmdtZb9xjy9wngUFZTfkYEwEEKDTq8M5J+U4OH/BpGd3W3HNGmahZnwixfvZuRCzN84nEfu3vcm8s1SlS9h3QCWWeC52zjyOP55LXGBM3Tj0Yxyj7uW8PAFcfBMFHoU8q23BdrujATEfbPP1waw19TeCwpfWeop+m97F/BDA4wKobOCX2AUXwXuyNvpdwfamv6zq/pqtYe331aKN+5k3AR14mQkSLTAAcVAdAfo22E8BjRVwMiu8cTJR9EkwT04anvSSiaw9zWQCECgNG+GcV57GYJzvP+RIBz34HPFf5F2LnrA3vkx9sbRZQIetOaQ1G04pISClmU6aUs4ICrnun/OIZge9WWc3/59zEZaRNpyJ1MMpetanH2k6wBdfuIG94xgy6FttR3ZtsAu3DIMOTBt6bcR/DWOp8kwQxY0f0o4N5hF8eg6KIv9oBIGAvCD6vHYl1RGAqX6t7dfQlgWgC7lEbGbPR78l/uXoQZ8JtGXi1fKsbetR2tu9ET0NuVFtNgg9TF7AxbDWT2AIGWnCMdU/KZ3jm2y8L/uALX8Ddu3fxvve9F489+gjOznZ2nq79F57F1oiwbHLEZvXJxx/DjT/7Z/A7v/NpfOP5b9p5tqzpzZbg1epROg5gS/988L7Luge+W4gz0KueKapucmxiNs/Xec3ZGJ95kC1126eHXruBH/y9H8Ll7hLPP/08Xnr8Rdx6+Ba0aeFa+4cXN+MLjonbphyO+5gstTN0RqF+kO39VE7lVE7lVE7lVE7lVE7ljZSLiwv85//8n/Hiiy/if/vf/jc88cQT37ZuKSJ497vfjV/4hV/Av/gX/wKf//znDy4Vn0qWpg1v//rb8b//i/8dd67fwW//yG/jcx/8HJ5753MeqfXNW95wJKV3vOMdfgalw57pnspB8cCqYAejjLjTBscdjbphgOKxWUtqpuLsGevNg+ODGLy+m89nWo0ETNV6xNMImIHSjGYIi8u2PrOLNnfQd8yzQDw1HftQHU3juy2ic7BugsAOHMRe6JiukS5qvdWB5sN0AyUP4SVaBDx1U8vUVc1BCSsNb8KoDRqG3MbcXUDSqRivOY64g+k8E1GUiuFY3YBrYy3GoEilU6JdtKmMN0E7omYgmuaWUTj8t961hIjfGAmiD3lQp7FDUQyunjrNzYdh9OOY1268P6R4KhE7RqO93/SDpfAjcAyaEWLSmKFDP/JdOsCNfgbMiIENbYrwvXXgseap0io9zDkKX8vdQHTSzCimawHrJJCsTTMEafjnrV4zqtqNY7YzVaep1hu/dnPXeNDGV2nGqCqcJNa/GgIDqhaW/PLyEuu6Yp5nzPOE892MuU3mh2oG0lFoAEd2ZxYxaVkU69INFKEO9GEkrdY2a8wiMc3zhI4eRjbOR1dESiuB86P2SIuH1cc3Ne87MEnD0pcgzbqumKed3yRehj4QGMXoQ4MzSBWzg7EWRl2BratI1aWK8/NzrJ7eTBjVDCUCCiRu8M9tgsDSaRrox9YBo2nNZU4DwKAlklBEzBqdswFSWsM9gHnKlJ6Wbi353Oqi4ThTwtnLCVyq8jKANeop/CLlKPL38m+CFCs4SDC1yaJjiVi0PgIBQbrCwECARz+RlAVQ7PdLyiSPXtdag0Y0NkZb8ohrLZ0+3CNTLmU/KQcAREQZjmdYI3DAgjKd4YyOBDvVPUN87QNS7NbFubVZmxYdwOW9Jh9Unqzzn44rHaJSdV+bIohIQnyf+0qTdKRZ0D6J/bDuhQAy8hH7v3GQVJptdYshEpD9sbFHy8E79bc6D1FPoXMv+7P2Cigdi6oG2G00lLvhXba7F9/zbcD37qkJrpyf4YnHH8LVK+dosEhmu9kw6tpge+jasajJhCvzDuuy4M7du7h3scf9i0vcvX+B+/cvsfaOpSeoM9KSGVVzj2mMLKcDFIk0qC4JLXMx6mvp+IjIGIEvLnNa56XqjGU/TcezDvOUjsJRT1Ac8s6hIz37j/qcT0Q4XzZOrHmeIc30hq4mU0L2wcBG85xANPW121fbo9skaFOm9VEHkU8zI37Zfy+/8OaMpPTxj3/c/xq9PqMT+UFHk9SlRsBJrS7PEsChHm2/HcqEb7+QPx4MehrkhZaObvSZAazQqWvLUd78lu2M7rHhmaH3mz2z8nv9bji35cuhU7ItqwuRyjojkfi6ZL066se1P5sOsuOhB3BUD5DA5ZfxnDHSBRBpR+jlb6gBBQ8AN3X+tmVTBbLrSAAJQtZHXcN5ggAUruF6Fsjnju0/BtZFzEmk6hqWSOpbcR5gJ6Pjh+OKrh/0hn1qA99E/yLKmevOpMu2X1xDfhjO/aAQ1t+tdBj7MPJRBYolz+EomCD7YMXSR2dUzNbEdGHf6CqwhJdN2sR0thpRIXmGoM6TICLSwMYrHqnU0o9pibTj8KOQMbzs5GPqTEWc+ppAAuAtoM1ginelOLMFYzTf7d5bI0Upw/ZI6jkKhN5eUwoHHwRx7dkmKCD/ZDvVbG+QRfyxtLedz6o75WUb2h0KwE3GNciqwUhFxeEP1dSpq25WdC97NQEzEc2k8NMxvdHO/gkEs3rU+aPoCh6RiOcY0rxrj/0hADZbOaGH74Uej6FTo8yv81Z0pyhVP4vxpCwpBBx1MhtOzuGxuguJ6/qqetTYQtJZ+CVpGnKiAm1HuSmcM75U9EfWO/RrIMPY/2Fc9TkcoWnp+xspwesb+bbd0ZLWdePZ/F3W0bE99IH7qnLZCK5du4qPfvQjePKJx3HlfAdehGttOlgnXS1N/DzZb8t+j/2y4uLyEs997Wv4/d//A9y/d9/lwUYXxLjPiLSBzpWmqfdXigSxtkMZx6v5/eupgcf23KPnwO13r6PfPOgceUwPUgC9dbzy6Ct4+YmX8M2nvonLnUUUl8aU1RqqlXLfoC7RDs/VAeJ1O8aBrip5GUIEuPf3T5GUTuVUTuVUTuVUTuVUTuWPXh577DH83b/7d/HWt771j2yDvby8xG//9m/jl3/5l0/p376Nsp/3+NJ7voTPf/Dz+PQPfxp3r909av77TpXD673Hy7cJUlIABA55tBvxo6Saw6UyWhrcF9DAxu8t3Yel0WEaKoIZtqllABrJdKh7/DwhjTwAqV3fmzxlz3BQQzF8F6MwjUBwYy+AMAKm05BGpOYO9NU/T0O9B0QvhrgEByUga9u/Y+/SEa6q6Yh2wIFi42gVu51m5s61jNu/laQ7wQ8WlaIFI9FBHMbvatRJaoO8YACcStvDsdk4GtZ18b+zLu28PVhSyiFTWPW+hOGW8zNNGfmEY+A8bVPT2TiABEhJjq0a3LSE9CctGgaHosLTbDnzRQSYmoZvO49OLoUZCOJGpK+pMGbrGnMdzov0YJjdyThxWBNm6FwjqsqwfsSAdMcdNGUOHHggCojUVE3kgzmc6OkALvQMHkm6E5zCqDd2+3UNo4qIgTZYX10XLFybva/+Gbjc72MdXL1yxaJQwKOmTAQsmFGLICW71KzukDBjmqpiN08BvqShO6P3ZOQbRkGhEdJS1/UwmhnQR8pcGFCkNcHZ2RkWH+dg1A6+9bSSfYG2BJEYj3cADV3tJjWNh4DFJWEKva7Wt9Y8dZtYqsNBLjkIjSm35nnG5eXeIwOpO2ca9n3FvNuhr3tLneIRb852u+i7iKXN0M7b582NYymLegHN5I12uGEvadn7gjY1TNM8AHy67zu0xRpQTYO3BsN41KX+jh7IOD5DmjAlo/H3xG7BEW5uFKUxm/uKRSzSnmA07l8KA7/11WQBU0x6jaPRP9bmCMoIkNrW2VD2gGqcrmungpRaa9DVjZit7G9TRgKgdZ/p6UTE98wyTci/p+lwfR77e7vn0ZlDg6qI0SqcHaojEE81jOFhh26Z7usgapF5c4IGFehTnWcHTrWBbzJVnqXGc/nuv43y1OtmnagpLbfyqwcg7cCAvulLc8fuFvhFXcd4oYUc0vid+gn/U1w5m/DEY4/ixo3rBmbkON0xOs8z9quBJXfzHM7E23fv4t69C+yXFfcuLnHv3n3sl9Uv3rOfLvNEfVmMqQEZ6bGOIfuaRTbfMWKSyCgnqt4JYHCm0vBe19Cww1W98UgfUOra6p3b9+t++KBn6HjlWiQPQdxJoPUd29Drvp0Ob2d7j7I0zY1kCADnvJtCP1dV3HzxzXlo+9mPf7xoGgBQdEPg0NGDXFfUMcjfKM+LiDvhx7mp8ofl9Y8+6ZxhvQe8+gC5tz0D1d+CJw/6kWeQHM6D6zva4yKzHvRslZEpswQJvBhBSsfGlL21T1kXncEIp1rqse6E5DYX+z5CpldxmFzhe1KgvB9c2Ifkj6Irh8C3vtmzGd22vsPW6fRjlJpKs7456yL6P3J1ZSKNPazweXSpl+9ICOfByhRl7ga5yN+zIyjELiXBAwxwuOlwzAllex2b5LSN7T3QulHOExsndO239baVs5PJwhD3/k7Ej6h7eewR7PMmTecAJBn3f2veeCz3DYBRXQHbC0U4AkndiDuu82bjngRGMPX1XpzDMfc8p3MeN5d3SNeQA8o9gMTI+W1i+l3QoYyLe2zwHfkd1MlY1XFgb/JK7kHN6dy4f8kWxGNUIFDfaKnBV7wERsd4X1dAUn8L+Uh+D8Ajsi3KFY6vyFme8wbepp4QgDESKf4PAKOrGu9FWuWYi1x38Tr1ys33bHurC24kZ9K+k38r+Jufue/TBpMptCRO/1TdN7oN+7CZU9JXNrSudAy6xvrE8Wc7p906/XrRLMlLlAZVJhzs0+zzdo8t4xj4wzuYaxN2EaTuKZvxHCtBs9oHl0WkR9/O9TF5XGlQxkGeJT34xlBn3fNLv+rnLU1iT+AYMM5X1icDnwybrm5kbOkzyvdXr17FRz7yQ3jyiSdw9coVOweWNnl2UZhtYWoTTOUVLOuCi8s91q547bXb+NSnPoVXb91KHbd012S5r2jJMxPXxqEeNRY58v3BU6/HDA+o94389kaf/3a/Ez873LtyD688fBN/+I6v4c6NO9BGAvIfHcaWNFVsqyeAyQNR+3P2TvKinkBKp3Iqp3Iqp3Iqp3Iqp/K/XB577DH8wi/8At72tre9rn3z9Yqq4sUXX8Q/+Sf/BM8///wfcw//dBeF4uXHXsaXn/kyPvnnP4lvPP2NPEt8h9t9I+WNp3tzRwkju8SBpzjvD29XuhGtGYCIxkc7+NRjtDvZJKNhPCjVRq03jRI0rJjRz4xn1lZ1RPPfMNod1JkgizzdycZ4QJBKNYzyNmNDa4eRe7aG/uq8pJNw1Y6mCU4ZjA5SQDZuwO6MWADBRNCQHz5pyIq245ZrOgrtoNrRIFBJMMjgDHXHer1RTANEx2gMBSSMH4wgI9GOhlG/GqKMHhaxRpCG1DRQp1GcqevIR8YzPdtVizLQWsM877Bf9vFuE4l4TCiH7tlBawqNUPxxK7YJlqXDQr8zmgsjhqQBr8kEhWBlpBVopPYCgMZ+SzEWOyiJtKzgPhpYq7GZpXu6LnHDHI0Vo1En5/fAkUEDj6cAM4feGIVFAVvrpXHjpXHeyCfLspR2FYqe4EL1WZXsFyOHqVbQh0dDKSOuxkoatYHCG10Bbei6Yr8s6H3FNAnmaQZtwa1Nhi3pQJsazs/PcLnfOy9aijsCzkSaJVCaPGx29KNhWS4PDOEGWmjhTLb5WaFdrZ4m6G68BhTSjfZtmjHLBuTmt7WrnLHfuvWvOD5aA/qqgKwejcd4gs4AytY2TR4By9N/dcWq62DUn6bZZbrRSlUDoENZDfUV6l2b5zMAe4gIFk15rR2QyR0MrXlGTL/J3LtHmKq39DT4uDVGlWJ/J+MdTb6x2+DVed/BaGsCrmm35iNBgta+O/anAugB1xIGWdtXW6/uU8HiAJ2pwb83XqFzADCAm6BB2oSuyyBLq0O9tckcWapY1rwBL74WI/VXWcOxJiUBSuHIUQOo1ghY0L5ZOwkM9m5wt4x1mvuSA09EoGoReHrZRzKqh++jXRx8VdORVf7FUP/o3Emhpb4GZAJ2Z5aeUev64HrzqFpQ3wdXtfSHZY/PNeWpQvooS6pxmw4C9qq2t92zJ3duEXCyjdh3bIz1M+lmH7Z8mGW7B4czvDpNol8KOBiTspFRDYf9Q82pcv9C8cJLr+Byv+CRhx7Cbm6223hIK+olXRVdVwMKtymAiLul4/z8HGfzDnfv3cP9y8tI8QhPqah9jTVZgWGQ5nPSOdBhLFueLwQseyOKs0WP0uT16X9YN+uoe+WBs6n8Hbrut3BcyOadrQOTOlNVmQcnJvVXNfmVfKvoms7rNuWlgTpe1XSUv2mL2ogSXPLG+rulbX7cgAeOPM93Hlh3eVN9aYhgAL4d1Fv0363StgW/uB+wjJtLYes4kiPjPC5j2JfcL7jHHo79WJ3hzKrPKIbv4AeLYFtNXfXY2qqyR8vfRiMZHqz0jvFJroORFppr58iYeJ7g96FPkx6o86jpxC2u3Zwj0/9aSbPKdkmi0D3UnLLdwcw5PIm55vmpdCbaZV0Rdbb0CIX3hD0MovHBoivUfWV7iNiInaBksEy4qJFMQFB2ENx0S54nSFcZdf1scwSoxd7Er8pcp8w63IOhecYczzkAmGq5RBAK/cL3+dwnynhNUUx+Vg29jfs8K2yWv9aebVLOj/ZAV158YZ8kImtmkWGPTN503pNx3lU9mXzR38pQQh+pe8wDwRJOS1vvvs/x0kPIAoQ+jNAhWJ+yEr/YUOZXxCN3+fOVlr1He/Z4yrGpTQZslgTt5zxKac8Gz/6EXqSckGI7gQbAkPIDdf2RRqy7nit9RpJ+Pm6fqEpnnltQniyEjnnielLNdmhDC2BP2fvDnlJoPoCtnVchiDR9jCB1CCxBFaz2jyRdtdJOBAdg/pA5CJ3t4HdJHhkimIL7ZsrMbRlWhjA6dOq84v3d2kPq/sJ+VbETczT5mq12rfI7ou6yvnyOx/SR9ibnc9xvC423/RorKGNNKYv6dx1fmcv429faluvYv7rf6rZ937Q09p4jJcQ0V9owKND+eO/uXfzO73wG73nPM3j3u96Fa1eveLSkHHfXBOZ12hph8zzPEyYFHnv0EfzYj/0YPv3pT+Pll2/GeTvHJtly1SUEvp768ORmFkKeJRm2T+CBtKhfH3nLnjl2rvh2ypGzAut9ve+gwNW7V3D17tvw1ItP4cWnXsRz7/hD3L5xO/Q/gUS05tCeNEQkknvFDOai6Mgz/paH/1eGeSqnciqnciqnciqnciqnwnLz5k38o3/0j/Cxj30Mf/bP/tkDX9IbKSKCp556Cr/wC7+Af/kv/yW++tWv/q/p5d9HRSB44uYTeOLmE/jwZz+Mz/7QZ/GJP/8JfOOt33jwOfFPsn/6Bmfy7W99mx1w3HBHwwQAT3WVN7JoGKbR0g49axiWRGh0cUOENHfGdDCvNh1/FRByEJmAhixJcMnULJQ2QUrV8cQyGHsBXg300uOQpps60mjEW1VTOcN5CG/vUz1Ybp1a2z6pH+wZ7ciMPX7Qr47roO3GIKV5gI2+NgS4iLfstXcw6kgYwiAQGfsTf3ePOtPS4AikASUNVE6E4hSzrHVplANqqr964HWQmwiuXLmCZVnM8NsJCEiDYO8IMAffgZoxBN0/++3NtRiC7bBuz6maw5l043jT0OVjEvU+0GBGVmEI+dXP98VQ6e+HkciqiSgPAKM9AXYbsrRf53MwWmkAM9buYD6CQ9yDJoojdPXfMfKdwterTG67LQ4UBaD5ji9PQG3cXVeOKv5Tv45tbSdg0UAMdE4U3oKB/FZPWcYA3qrA0tdwBtZoJaxbpGFqM5Z1wboYmMRu5V1APDrR5Gmt5nmGoEFXo3ObG3bzhP2yYl0V07SD9gXTZHQXmJV8Wfejc8INPXUdh6FaBW1KI2FXM8jv3HF8uawRwUbEQHTogiaeTM6sy5jEwFyr5u1qAW8mrpBp8pSC1tepNah0zPOE/X6BtIZ5mrEsC0QVaIC0Gfu9j4U8IinPEgiUY7O0aasZi90xTtCnQfk6drsdJgHmqWG/X7Cqmhx3hwzEADudQUOcjEvvmAjuEZvLjg7p5thBEyyLGSjbNKGvJbVRa9jv93Zbs6Y2hK3zNOS32HuUQEFBOCGkGR8RNEuZQbYXwNIDKrDvlpZvvyxOc09rAUY2MTBmlUUWHWpJx58zBkFxUoC8YXsGIIwIBo1oSyLF0B7p3zwFBYFarIg3TH2NSyAMFW2SSOsHALr6fE+5v6WDpKOv2bfWDHxpRnlry/jZwE3L0n319qN7XPJa9o8pAWPsTvveFZAeaeno2x/yDNOhxLf9Nj5voce+JQKV1dYCBJmilgBiyvN0fDRpHqGvb/pdE5UV4E2R9UMK09ATSlq+0FmMFy21QQFPb/bdEYzQuH1Gf0222l6ubqwvHikQZHDorGyQBsyT4Ma1q3jskYcwT+aE300WRQ1iqV6nydJGUmdbe8e9e/exdgMyXlzucffefdy9d4H96oAwmJ43Olta7Nm8Qc+Unsa6I3CRa6c6XGP/iPH4uphsrdYUozYnWqds5Els6BI8e+jiqA7J/M7Zp+imQ9ul3+Ho3fwW8/uANrKtdNQy1Y4963qc6zqTIShHHoTx26s335yRlD7+tz4O03wJfLbvBxoNc1P+iX0sP6f7GrHWtvP5rR1KmjqdF0a8evAcpV4TnRwOdlr6c1iPDHU35HJNGW7vpZo56vr8bXSacplUIO6x9kkiLXKjDiV8jlLbrfWML9TjQHrUOZfpDOd65imE8nggnpbvpFSDUpf/nWswzyjzPBd5TllSaFgIFfTVbIOAKpEE6xayhJPPwCuF9vB6Kw9G3WUiox880SH2t1GXJ/nUwBpeN/c8Op611llpWD4GmAiISJvDgzF3h+fmWKPlldrv4XVs/yjEi3E6sck0oY/my1t6HluFIkiweynUzdgs5T/XnF0YsejDcQmidyzddb5pivlpnq5ImZbWU8DlZaUJiOjSTg8Fuq6Fv6MnwVdcA7k+8hnyraXUBdaiS0Bgeo8TKOmt0V6OVzhDMPtGywh+rt/Dx8TLQJEGWrOvawVlx9RmPQH2EYLvS8o05Nk/bRipG07e3zVsCKPMD1Zx+kaUWu9JLjeNsWSEHZdbfRxnHQsbo45CHk1QV5E9dV+Ps0cF0gQUMqMoett5XkBEyQybgfq7Re9XBEKZjOWXjEY9onJXyqJc65XXuCdoWb8YfsewB1ZBRDpXnaeu/Zh/5HxQd6n04qSS10wecYGPMpJrI+VFnbMKhKr0t2fNRgLQ2JI8UgZUvhq27qoTyuE+RzrUfaS+H6C/oiPGd2VsWmrMkZT+kJ6q4/cxVtZzBJwYfMrPddwpGxGtl8dcNPMi1KBweWmt4V3veife88wzePihGzjb2b3Xqdl5l9FYJfgDsf9bynlLE7nf7/HFL30ZX/nKV3Dnzl3wDkvuxbHrx3gGHWSzRjD8fkjvWkh5yslDHekY3ZOUwx4Z/RyfidndVs3fq/52pN/bNuLdok+s84JvPvkC/vDtDlYSfWAduWmkrKA+cZjmVoJd7v+DUySlUzmVUzmVUzmVUzmVU/njKdM04Sd/8ifx0z/907hx48YfqQ5V80/86q/+Kn7zN38Tr7766h9zL//0F4Xi4vwiwErPP/38dySy0uFJ7Hh545GU/LZ9E3hIWDe2xImQhyf/f8HmsGiO+npQD6MDCL5xY5ocP6i1Nh4B08FhQBtVDUPHYfh+q7d7Spk0DJuhqzX/rhtAwK3aPhYe4OAGJ35fHJSqiPAbrSEcSeLpv4ojbQtOsf6a27J5nRXwM0SDUkCkQUUHgxrTjUkTv0FlfWKqEBHandzARgqKADLFfAzAsAYoVr+czLRnRmuoRXMKg1cvc0rDRBh+aDTlDVUHE5SIPQrg8nKxdFFqNLdhpZGPNz75hjSLBIMukfoHDkRSwME4gjab87mhAR6NxQA0DH2vabhlp9UN0Wp8pqsxeMfq5/ukcROLtEJDd9gGBGYQ1Z5GHlUzoclo0BrsZr5m6ITsfcU8z2bWDZ4U76v1i7ypnRFaAALAzPACGKimQacePAFsjD0imGQCxEEz/K0BWBPcRkOTQj2iUIN2G2vvuV5UCUoQixQGGIBFLZKRTBlxplKkqw4pruDAFxufR2YT9QhWwPn5uYGewgHmYf2bpTPTbvylwjleXW6YXNrtziACLHcXB5OQNj2M70zNSFDP2uF8SQefGLCt0ZJu/xE0IgLILOH4b4K4FSlq0Yz2vJkt9lyTCXPbQdChWC0t2zQBfYIFsZqgKugrIJgArMbzrWFtDX1d0V1GmmyhYBYDAnUDhnQUp1xzwFE3nl5pW5OGZenoYn+jTWiqWJbVU+eZfDLQkUX+IkBnbuk4t34CkzR06RZBCAVM4tF8pNFoBzSZLWKRrzcDDnl9nnquRbhz5yv/eDY1ixAlxqMWYMmjLE1zpHjra8cS24uthdYEk0dS2K8rdrsdVFegd0g4EAx8ZD6HZnTzfkJa7pd+W3FdF7Q22bPw1A1Sxu/7UsT00zTSQsb9IB2z6VAxucy60phpBm8z3K+9Agcl9s5WHARMKUEgjKD5fuLRm3x87NuQBhUTIJyrdM6YjEXeuldaou22vQWiEBcx4kAj+DqVkD29r+histTzUZojOfY+zr9CPFLb1JoB7nqufTqxu3AuEwRloNie/UHZs8t3tYReZOjH+L0H+FN9/7Tvm4PuDPxmKWamxvRtNpshI1wuUFfAAE4K1k8jcwF1217QoR1YVHD79l0sy4LHHn0Y16+eW9rIiCJo+1lrE9Zltf2vGz0tahiwE8VD165gEuDOvfu42K++thG8qSpQdEibMENsDbqOYXwQMaCCV+u/rKd8CCcYAIviFWtAfU3WXUSivter0+iWpv/mtO/ivXO9rkECM8Z6SrwHX8OHIPu6uVO8hAM5+MPkCHzfFtGQiep6HtPrQWwfn2bbp5R7CdPCcZl8+xdS/uSKpH+l6iHh/qOwO1KoTwx+zIPf6/vcRw7PFOkI8+eH/lB2lv4NTkAKAJ/L/D8XQ3Q++1r29aHkUa5N8oIU3ox3+RyVab5T07pl32Kv0JEvB4fUdhzk8w0lCYgZeHYg4ZaeXJtSKij5Q4JOft6jXCOtnH4JONPsU5mLCmoK4AMHXXq2BvgkZSdXoC0pjfmwn1uhQT6jpVIBIJPYeQtAcKyQv0iv6tgs/Ez6bB2S4RTU3DfKUhD/gqDOmD7yHPc6H6OtrXGDSjByaSOmUcCDS7TNAdfHNo5OpvRRn5djLuAEU5TzS8X++m0Ih5BCwRTemmfE6MoAi7LRlLSj1IECPFD6Xucx5pegZdcjeHWEZ4mcryKSXGdZV/YXpq3F+lUHjgr65Vr4rqx9HQGz5L36Hf/e9pv9NfWrXKRBmT8g91kfIvnTQCF+/lV1g444HVvKsqqH8Rzl/8H3SBHxM3xedKE8MlnFvjibahlTsTXAU39L4xk224gKUNiPdZd9ws7V47ySjYMwse4LoNnrI54lN6fNehCSy/TSDsCVhKzLzwxQuyhnae3YCRlkfERlbQ26rkUWObGEdrFRnqdO4GzhoG/qD3VM4w7Iv8mFReJrGSuAyOGGrK/MRhQpL3WfC1HGs1OfRh3qYXNRX8+2cv/gGs69iufT2u+0h3DeEO/n4GjjKZu9EOCGqPMQeFt4T6tsS/nJiKq1/nEXYhek8G4lIM84m7XL8QEZtc6fte+T5/kCRxTrvtAoU8zqQMPoc+ggkv2oMkNy7mv3+7riK1/+Cl679Ro+8sMfxkMP38CVszPjyS4Zyae5DOk8A1p93J/n/397//ZzXXbUh8K/GnOu5z10u93ttgHbHHwMNjgHyE42fB+BBImwo8gJQSTXkfY/8R2uIn1/R6RcRYkURSDCDsrFDoFNjJwEggHbsWNjGzC2oW3c/Z6eNceo76LqV1VjrvW228YGezOr1e/zPGvNOQ41alTVqKpR1QTvesfb8Jbv+A785m99CF/4wh9XE6jPPfmn2Zt04iUpKLXI9kvYrxMxbzRZ3ot1KbLmSnvXIE8hvFjiw3LewIZCDJbxBp2GTpDrEu0XOiYs5wVv/ux34E1feBM+/Z2fwh+85bM4n84hy+c9UniN0y4v3M39xO6BXH59wAEHHHDAAQcccMABXzP03vGrv/qr+OxnP4uf/umf/poClUQEp9MJf+tv/S381b/6V/FzP/dz+MQnPvENGO3/fUEguPvkLn7gN34A7/3we/F//T/+L/zXv/5f8fD+w/nw92cEX5Ubo97gnW7ttgxQmY7og2WiEMaZ6ry5dnNkypxQ+qrPMmNLfr7/zAw3HLP4IY0GfAsIaJnxRekgLBmYfF6tiVtUzVABSGSSoFORN3TNx6rQnqXYLLKvz6VPIBfjF0hk3FEP2hijR2AE5z5ouNG8pdfcumaBHnq1VE7NELEHPsPgi2XxG93KLEx+oBVAw/xk5YIiuwzUDRESh+JRspwQX/WWoHdugRB94LydkaXFZnpjBg7iY4xhgQWkl8kaafRgDnmWMRrxf+/dS3PBHX8NvW9QzxTEZRo6PPuSl21yuqABSKSheXYfRToZ0jkgHE7Mu9PoTmNQ2RNhNitr17s577MMVwa7AW3aL/m5BwQMzxyipR+kE4jjC5pww+FQdRwlzkbPkm9pBMq9PPooa2EGKQb22JyGBwhxj6vTiK3rGFJJJQxRDIwj2O27LfZHBIaVUgxQu/VLniQNYYC2fdZKP9b2k9snePTocdxSpZFdsStbVIC4AdxwLcVAD3ggivj8xsT3iN91XXFzc8eC2WDOEWb6ao6S7s+ldcnw1p2vqNpNRCu9Z3uW9NLagmWxrFISGeeyhMWyLB5YZuNbltWCGwA3WhnNcT+SN9b1bhyoGifrqh4w4rxCe/CI3jvO5zO6j8/JbuJPlY9zV7RmGaQq7qusSQdcGoNJ8+tphSwt11HAaNBp/8jSLFik8EmRwqvgwUcexJZl+Dq2vmE7n51ZKuNmAFhJprZkNp9aGjUMrCh8DmmsTP4KLE1wczpZtrDyjmWu0sChIWAASL5fs/qEMzT4REdmt9HgwYHInT208tBtO3smglFWA8H/KLO4pnZrPoNoMrOS5LqWjH0ZSGhZcyyI1TJuRThRyK1lMrI3dwyEDKScqjyXxn/n5dxf1gxpfBj/qrSJdNjzs0rDo/c0/qvL9EFc5xhAnu6OVuoWhjcasAv/2e0RCz6UmK8AZrwfuZ7kk27exxiCrQOvPHiMz3/hi/jil17Bw8e3ePzkSfKEoRbMdbKMZ0M3nBbgJAMyNvTtDIwNd29W3LtzgzvrYiURmTWr0GfvVhI0MoCpBbZWfnihmxA/O6iBPxXvADwm1IO0pcXvbJX63rV2a7avIHmXJcJsiaUMKHfQ9HwZY9Ch46I+z6xS1THEQDJoRwTsoeqmToeud51uVpcVS8gDZvVI+nytLpU/H7h2nph0uN15ArrHOp66nuWlq/1lk/Vcsf89eWTqVrh4F5jVvWwDLhPpSEM6R0tbkeVu4i8FC2zLcVAzTL7qePwXa++6/p8O6PmcFn1jvz6Xf+8hv3ceG2WRxPGBeV0dWpMo06RVZw1/30wj03yLTkcR2PvI5ytCOEZgKmfa+9jNSxEXAfi/5Px4Dgh9obxqezGDLRLXqcMjPk05RllWxyjl/1ABOc8QzhfonB7c61V7WVbldcVyPY9A66pJeepV+uYc92MYRb/wtm0I13iC833kGb7ygqpHavlqPzIRiT44+lF0kMi+CfKUIg+msdhX1E8iU248Ith6x/m8xb6f9Lzye5U4M10g9iPxVPdCnE9Igz4H0/eXkDkhj3Ve49Rp1VU9lmbj+aRkl6I+w/m2hjhzhYbuv9XMiMh9WflnpXfuVVWkbaPKYS8ZnqWw9WLtTR8dMUU/oV7y0mTCRW7UTDRcPSSfRtIVoXnABTsUgcfZycXesQzOM98KPe0CL0EJpisW2082WM8kMr0fuN3pX9FG+Zx4ph0s34fT1TU+P+tp03d1rzvGYlZc4AnUdTw4H6469JjHzF2yw2/dFyj7YpJVwFTqrdpauPaUpVVLi8C8cl6a6TJlI/lJ5V8xrgqCMjdNvhxtljHzg9pP5b+a7wceytim+e7e14K3mMc8zHkOFaeaumXSiuCll76ED/3Wb+OlP/4SHjx8jNtzx3nb/LzslNCHn7vtYo3AL0NQNxkD9+7dwV953/vwPd/9XZ6R+hKPo8x5QpxI4JV43KHfN+uMrwp7XCTtwS9/5l7l+0lTiHPLftyxI5wHBe7qXp26lbnt2se1cRfaWPuKt//uO/ADv/4DeOMfvQjpMVKEPlp4koiVRcwzUAacJs3phPIDDjjggAMOOOCAAw74esEnP/lJ/Jt/82/w0ksv7c6frx1EBM899xx++qd/Gn/zb/5Ns4kc8FXD3Sd38eP/54/jf//n/zve85H3YNn+7PH42su9veUtYRCpgUYALg7vgB/ghkIWRMCC6hyglAYWGrLoDKfTv02GY3ErrZYyRfZ/GhfTCN1LuRbEgSsNGvlO3BKJs24aeDjeJnajXpadAbm8F++4gZTZJkTSEEI8sB9rfxQju8YB3gJk2qXhWhWqPTIuQLJMDTxLEXElyNvBbqNMQ28iNdYGsFJO5kxtkXWCh1l7pUUARcV7BhjNtKFq5bXoDD+dThAIzrebOfrjWSvTlX+3cDRkqa2Omd7yZjHHRGBQgzmobfIiloVDBBBtaVwswVHh3HZKtvYb1tbQa9lCn3cTgcps1A30Wq9GQ4uvhQc9sRTY6LyFlzYUmvrYT5NM96+eeYbJH1pJ6yySZRHzs2aBDFE+r2QZKabZGAdxK7kHTusC1eGl+LxNyVTede/ErXLtsQ8ioMWNWkMzm4nGbWaWS8gbgZwP19FKgjH4YeB8tkC+u3fuhjFuXddYV6l0qyyyBFj0ms/TSyAY/gXwzGn37t3D7e0ttm3Duno5NbEyEL0PbJ2BPbZfaGqyrEyC7VyCBUG6TfpoTXBaVwiAx+cNUGBdc5/be0b3NzcnnG+fWJYkWJYr3r4eQyOryHqydVJkX+u6AqoYY4u9xDmMTieVl7eABTXQYDXGiKw3Sl4Yhrs06emwtera80aylnX1QCkLnKPzbpYndd4sb7d40KTCMy6J7bfuTpNC5EEzNmZz1AxVrIsHi3b1wLcGC5zKQNYIDuLaSAYInU4nnM/nCHShU4rv2EVgxbosaBFMs/m4s2QWYLzH4l4bRAXdS4tcGJZ3xm7KlSYCbXPpU1t/XwvPaMU0+5QLzUsqEE+1P2YsS/komZEMRdahlp6rQWrVQayQthQ6Vyye2acXR9e6rtjOW66j5Lyro4GOLAiDzJC8XkfIUsqN3nusER3JMffdvC0bWvKl5pkG07ltcPKsXIrkRTpkov/a9vWgCQu4tKDZpLvEsWcxkprBTiObQ8wn5HwJNS0G7WsBlXRE06kIrTSguDmd8Mz9O3jxDa/HvXs3aAKsy8mD+6zN85NbrzhnON7OW2Qqefj4CbaheOXhQzx4dOt8kXx93mPNAxZsLjD81ayX5Pe6k0XFEVEdM/laOjJnlcxlu+OsPh+4UUXcadZ57YdmwISVdRqZYUznn3ucX6xB0SdTH6YuxhwedA5criFggeDruqAtlZfae5Nj3ffJn7z04GJs3wzw/ve/P37fr/PVv+sZINZubnN+d3YuipAGZ94S8mun+89uqPxbpLZtuh3PE7h483INg5fv+G3S99SU6+r+Ydnn8ZBOj8/tZyOh95OWL/aWjgiWYuvU7a/j5Korz3CzG4/N1XSS6hzLuSDwMWvOc3BY4q+eB4YbIMSc+jPGp3MTM5DMbe75ZT27TI3NOoqi0KHO672jh92SFn4yl5dChEWYbMmzVd0H+/HY+3FWCFrKEWk2X8ZUMoPw3DE9Np/fAhkhe/LcpaWPep5I+kFp0YDZZipNooyp0hM4Q8/uEmOKcaXTG8KMGMyegrmlvV4zaklNdZk2vFw0x5qZVUXK2FTdce2t636WEu/YueBklyw8W2LVZ01X07KGDNS2iwbJu9h2XgiJfiUD+TfPeCityPpy/mB2UPtE4gzAJWYJXdtnjiNnw80DdKaLYLvMJtWpXp8jZcYqF12mrj1pYrazaH7npc6tRGBIzlhj9sf21TO42MUuK22tY5S+i/4WyyfRX44/aXrmjx54Vw7xwem0BKUDkdWmXtqadcH8jJd0omzetA33ATSVbuqazzI2QMue2O270M3I0i70pcK7gXldi2DWK8+VCUxz556+GGvRa9LWMwdU8kw26e5yyXunL0t7ZKUMkOWZgWeIkHqk18IPg9tW+eB/itNexY+dj0tIlNZ9nfQT+CttB+64c9uM79IKLMC+0vZuf/jn+7cr/Rfin/rPfVAuBQG4uTnhne98F97y5u/A/ft3cffOja+XB8EsNu6+bb6fLQOuDl7QUWzd7Eyf/szv4eP/8xN48PBRThtlLWKYMn1fcZdDLnN/Gr5eC4S+dflGpbWQaUW+1+847sr3rp0j6vi/0md1HdjqaB1ffP5L+L3v/D186fkvRWYrVe5tPx8zkGzsgjVtoDH5J/+v81PH+OcFR7m3Aw444IADDjjggP97wDPPPIOf+ImfwPd93/fhdDp9ze2MMfBf/st/wa/+6q8e5d/+FLAtGz759k/iP//Qf8anvudT6Gv/yi+9ClyePK/Day73ds3xtf99MsZcHKAub2LMgTeXfV46gSQMCmnYtM9pqJkOgCLTmZRnWDMKlhJqbhwexUG1PwAyGIOZVkC7iUjc1KqOizT0eiaVOBOmYYYlaLY+G+IBRGpkMzp57SVk8BbbSQM5St+Oj0QNADNgqnoGEDf4WuJ3ZjyxLApcDw2c5kE7jKV+wDWD57IzmpVVcYNKzeTRe3dbgobhMfDcSxCSztkwREgD6ZzXQGwa0HgDrpdsErNRykvwXcQ5eFYKKeuQFmkrLQbOGxHwsM/qwrbCEUVDpphpKkrdaAOGl2opBnWWIZoM6uIp+lU9yKIYCqWut4QxeGkZoJcGT8OhlQIqBlLavJvRwNbNiGT4mG/50hhcaXXOzX25RyPdeFoD3UiTN35pOBHh+Gwu67ri9ny29YxsHPZ/ZHrSgUUsmMUy+JhxXcSCRCIjUxjY1G/DAjK4J1usvTTB+Xw2esOCvrnj3RE1lAFKi5V2cONYlqRsEZxV+aIZ5dIRcd42N+SyvMUoZVaGD3ngfDsycxkzs3npoe6BRM1LJqhKIVzFtp3DsAsU47jzkGVdwSACZj/rPQOV6BAHE+wgHb/h9NUWnw8daCJYG9egQTwoStUdh02g2iejdHUghvGO60HcjREllqpM4l63QCsPxog2q1nT9tno3Cv5TawVAFnXcIQ+efIk6bjcTKfTUCTHQ+Mtb49akAkN4bbPVNUCPorBMGShOwdqlj/LbDNs3VXTGRTyhpmxDG/MsCfero4R+6/imPOLvrl3Yw/PDnXSTsUFN6KiylwLeDTnngd2cb28f5b+4n6vsNcnUMYjUJzWFQ2K0YENDF7ckrZ9LiIypYrc98MyKeQ7URqoOCGYRS4c+NKK/JszAu7lXx3/0kiTI2RgizYl+Gsf6TBs7kyDZtaOmAP3yE5Hihv+uzkLJMJgHOkx7nPvePnhYwwonn/9s7hZT7hzAoCGtpkjZF3WpO9lwc2du4Aqtr7hdHODbQwLamoP8fDRY5y3bvxp2E6O4C7vM3U+nekNXwF8fypp6dozgRvOvQEyImDNGwrZY/sgaV0pnyFo4tkIXW7bXpeQz8FZdvrihT63p+PQayhPM0hOnQauOS2N544SvC+TkyGDPl77IeCbBfb7/rU5bWa8Xn4PVD1810ppQ2fcXem66oKzXjzrlvXva+Oexmkfvsr8oven0lqOzwMeLr5ILGn5l+8YX25VaaOXep7z/GbqdJRFlKfTec0lueIp1JiXTvKMUTJdyuX6pn6+D/qb24XscPUqe9G+rjIV8dl+L0NJT4VmmuvQyVYRqjkmxPlnyf+mscQ46igq3+en/KXuE9dH9islpezXbv759yVuymATJ0HfEr9WOTQpVO5Ej70SZz2JRzjKwAX1gVfZ+3VsoSdOY8O0iSs28uyYwb7sn/pRfOD6fglDKDLHz9mh+7BP9lZ1Sz/3RobILPlMQpkCU5pguNysGszEcyQxyfODIjNxRttVRvrvqq7fhxwynZJt8bw021eytzG8rCp1SmDKVjNnHuVNkGvBS0UfmHgF5QCmsfM96scZ4JfBoyjBakC2L5UICq0PzdWN94iz2MTlXQVY0rN8UAksHp/kGRA6ZM06KmUdy8iQwKA7+5Z6Q/AWRfLeHXenLArbSe1L3G5V5lqwGX2zzzgLeLtcyynIpepD/EiL3BCJcmVV/5wkeeU/V/hAZtormNIsTT2hbg9lv1e5nbYRjctbOkZcykn85twrBD6rPChyL97lfLkecF5QuFjguuDvGh64tgKNcXKPJJ51MssICtEAEw61/Azs1L4LDlQkLmJqFXoQ3N7e4sMf+TBeeuklvOOdb8eLb3gB67pgEcVplcgwTFsLBGgqmaxeFUvvGHrCO97xdjz/wgv4H//jY/jDz33eRlXL7k38e5b/dT9f0wG+Vrj29jV5VeU1lNoTv2NLVzT0p8i+a/rw/rOQ40UcLrrgjV98ES986QV88fkv4ve+8/fw8rMvWxm4Mk5ecjKUyjR+yQ6uzP6AAw444IADDjjggAO+PvDgwQP87M/+LD72sY/hx37sx/DGN77x0j71GqC1hr/xN/4G3va2t+E//sf/iI985COvals+4DqsfcW7Pv4uvP2Tb8cn3/5JfOB//QA++5bP4uG9b2wZuNccpNR7RzVWEK4bPMNGaWemcKrOz1djFIqRikZqOsAv35HZEDaq8WY2rKXNkbf8FDVQSN0SVi+u1wCVsCMCGRwiaZij48icvdZeV8t00wb88C1hTGG/dLpHxg5IHvjFMzyoZ7ApY4rx+Z92y4u4q+YlM3a2xbKApJkkDVlp4KyG/upQnJ0xIgy8qOtQjE3V4KUagScidG4bDYwxsMgylT2isWoMjaAP1YHWFgzhuNyM5m3TYCX7HaLFEOjrYsFg6XiJ7D5XmJ4ZUOYU4QsDTmINLDACjRj1ICLvP+flNOBr1GMMbmzjeCQzjTATTiu4t5eUC0bzVOwPluiJCTq+7MYynx1h1au+BO0W1GOBEUgjoMYI00lebhhy37BEk/i+5DxVs54k6Wh4MAkNdkM3c8oOhTSNwAEgy0r1uO1MZ77hf9ssOCGd/cDqt46XZmNoy4q+bRgK359uxA/sJy20xXtRjVJqzCJUaXXjLUDJ8TDow8oRDnc0FP4Ve77ZPhDPwKO5tm1HOwqJsk0CYF0WT6Fu60jjWGsC8cCnZVmhurnDWzHUs6tgDkox2k9jpeFsQddeeKYFGFkWqV7KoM1O5HVdvXSiB5EpA2wYnKlo/i7xSKfCFAhDugK85OSAxVyotQmmI6+lPDNDi4BZagTQEfPofcs9rAPnbTi+shRDjM3H2TfDw7IsgAIb5V/LgLsmgg7F4gFmLM3I8ptGwz3px4Pmrkn0DBpLeUKcZLahwmOcQmwvWBCNOK6GqmUN6yN4hW+3oCvBlbT5QMgkyoVapjBlqlrQTZF9syE495EZyj08RhkYQu41SlCsGZxrUF/gRSRkq0CwiAX33k4lKBE0MQd1pHOQuORe5TPEjSBpsTqYujSIy/Lsq8ok4i7XktkXiLfeh2c1yLFNuk3wY88ihAXh7iry+ZqSPn3u447b3ymGvF8AzN7j6zx0QDvw8oNH2PrA8889B5EF5/MDLA24d+8ulmXBuW9euqnhduvQ3s3JsC4Ytx13797Bsqy4e+cGLz94hCe3Z8sK5RmV1GX37FTX0DPqmqWc1UnXi/kCGXIlMu3d8mT0Y9w1y+4KPLui8/faNtHIvdoaAxjTITMZ8q+sxzW41J35mQ1VtDjbdu8V6rI9P7jU6v9xLyKCnb6ZXQp1j76a82XW56t+yWevtVs/vDxvXBnN7oxR30u8Xhs/dYkYq776ec2OOIo872Ci9bhg4LRXHbLMjCDlnWw3A0SFoyr7jHJuWdpT8GBjp7yOM4t/znOO6Tgj5zgxFu6bDAib92TVN7LfxG+Zn9Y5Kp/cnUnsO/K/GmwTuKMOXMbmb4FnCVJM8v/stvL0Pa6zPFii8Bpea48c+z5TYaxqnOPm4JKZ0FO/mHgpEHNBxdHFXsru9pC45BmsNCF1ijxLEyflTOAzqN3t90vuXwa65Vy5x0kPps6RBlB07zxvJT0OX1Zx8ZLrqwDUMy3uxwVIZKajvg64bl30THHdmXsEBT/BpmugUgxr+OWUws988BG8FHKeuLEAc4VfU4rsNuQR0aHrGlwZQLy0dtkO/gzPE5KZJCszvdibFmhe1VYtz8cIyvpO+1EnSrb2Wf4xMkO58Cv6FwOIBMlXo33M+45fGzrc5jAL9dAhYx7kN4G/cjmCePB3uZLVvlH3pF3syLUe09gyIIvnScADhMhnuef5oOSoeJ6xR6graKxV0IF/FuOjDk+6yuUr+wtApUf/lvyIdovKR7TMe88/qJddg6nvCa9lztIqw7UfBX9saAqMivZ8T3BOhR5xhRakMDNB2ncm3Gppr/wkvUtpv2pok85S8JzjtotKbDJHXgP0djp9OQ/V/TZhlevMfibE8YOnsv7yxE6UOT5m3WpuxfDk/F8Vf/i5z+GVB6/gfe97H97wwgu4c3MDnDcAakFLfu7jxYGu6nYo5w+eGfoNL7yAH/iBv4YPf/gj+PRnfs90D93x9as6/25eV3A576PL51/dkZHzn/WbeQfknnjad4UOC51d6/u1BCrF0Op+BtBGw4svvYgXvvgCHt99jD9482fxxRe+iIfPvlJFb+GzRb5xiK+GjgMOOOCAAw444IADDvg6gKrit3/7t/H5z38eP/MzP4M3velNT7W7vxqICL7t274NP/VTP4Vf/MVfxK//+q9/Bf3+gGsgEKx9xbs//m684xPvwBef/yL+21//b/jE2z+Bz33756Dt64/T1xykdNVRVIilOjNn47sddGhgi5IfpZ0wsCrSGLgz4s6EOadGz37NOCnhfK/2Bh/N3rk0W8OnPpKGPcCCacUjFToiGAFQd4LbrRRVC0QQzRtYabyy/vvo0NE9QEowaIAfnuIdbP9aME2aRdLAL57RRuOga05yjXYu8HDNwO9GHJZC2DsdUPAZWWo0M00staxCjI9j9vdUIdBy0xbA4K1Bc7gLPOjDp16zgkDVf2cmCwCRjcYNnsWhMTxDDdvSKStP0ouC6wdIEyt3B2Ra/x29dKfDpm5U9nVPR6rGM+ica9J2V43SRUl51S7mgW+jAxjhjA0Xkhv3WlvR+zkNjCxNMzheM8Q23mBTWABY79g0b8YOHUDPvokfGk0Z/BbZaXwdzDmRRlXSQgmRyPlp0puIYDktU/kuOqYFFlTAwDURoHf7ftu6BwTZs6fTisUDGcyx4HvHy9MB5tS2Z08491GCNOjIyvJVzFTRdaBmLeP3pGHuq94HTutqz0oarvdzGp0BG0n3dJpz7wzVKIPYxALQMKzMGgOMxGkmbiCzvTFgznj7m0GQbWHJCHvXnJXMFNMjExZXaVkWsDQgA6+C39CpEOxCMNAjgIeZzNRxO1QtoEE9IAIs1zUbZStuFSzt5bxyc0fAIpC2mPPG32fwFLHN9beAoeYO/QEW+8vymlm+i3ywQexmKgQ6gG10o1fUrDdmUCVfn2UTAydtD9+5cwe3t+eLjFpZpinpI2kiA0anAIy6d3z9JXBle5urxNKTXvfQAuZ8fDRcagnuyjEoMJxbFNka1KHiP8yRWrPThGxxvIShn7bO1rwkT2azWUC5XQzPO1knIlgEERx7vr3FPul8tT0TlhIotA/yqcFpU0AUZlktTj8WZ+NyX1gu85pukuPPdixAVDrQljkQKvaA7N+fg7WqMTvGyvWxl8o68ZniOhEgsqVMT9E5MtDHgkePz+jbl9CfexbPvu4ulnVBWxvu3Dnh1BdsvVspRi/pN3SgD3P83rlzB3dvgDt3brCsJ3z5lQd4+PAxtiiROuPH9ko6CfZBc08LyOJ3tMVXWQhg2luGwyzled2hUZzxibHgX5RTqN/t+plkZekn9kF5zsTxvFYcI8vOzuPMoAFo2Ssu120c5E+aMuWrP8v9mcGrHTTr3GMPOBplWoFLfOd3e4fQtbbrs2W9LsYzjXzqPz8jh9Rr3Zfxko64frXv2WfGrVo1w0rrFwEqQ9FBXpIB5qTf0MXkOm7y08po6nNaMmZK0OHlXCXoMD7ZnQ1nfbC0H90X/RYMmNHod98udVyh4FWTVSGRyLdL5tUYU5kfs02WHesDnJjvPAb/LENQyyWA4Ct0tk+Dn4ir0mPVm9XP0GxJk2Qm2O+bGfZrzuD6y3ZsaNdLI+5IbtovPJ9ZyZhLuZozSKoPXaHgK3Wha47xC8RezI+ZP6fwmCIbKBNyjTQysnJOrUleghGOM8emhT4j02Udjw+VPIu7kfuHQddV3+EZYdZVKg7t76CjokNMuC0iX0o/oU8WnSJ0FEmc1qAg6nCkOcpdOztL7P/KlxlcZP1SB8wzH3kkbTZj2HkgOqWMrPSBcqlAiy0lHix4Uo1Ao2CqiR3Tj6n/+XkWtTnK5qpreHNcn4gS3rVd1yNWLwiNmaUEdS0NVxn4yXdor5DS/tJKxqxAV+m36LWcX9Ktjyvsb+Xyga9/8DCxPRJ0GPqKIM7Dkm2UKQaNaF0jHwP3fSWvoB4+sxeEFYV7vjbpUbYebddHYvWyPQDQMXCmLvcqOhPnlbRT2ijjqc1M+7uMJWWePUxZz316tf9pXpoNlv0eonDK9lVGOX2c614mmQNz/jfpAFOrhR/PmjMAxSuvPMCHPvRbeNvb3obveutbcPfuHayrAM3sDxAEHdv5JnnfUEVbzB6yrgve977vx/1nnsHHP/4/8fjxk+v4Ebh+pRfrcTG/3ffXROqF/Cry+elQpVt5bXqnytQ6lOvr/mpQ+UvoYprf6U5ZaNpw/9F9vOsT78K2bvijN34Bv/fW38PLz7yyG0cILyMbefVZH3DAAQcccMABBxxwwNcTvvCFL+Bf/+t/jR/90R/F+973vot4lNcKNzc3+Mmf/Em8+OKL+OVf/mU8fvz46zzSvziwjAVvfOmN+Lv/4e/i8Z3H+PB7P4xf+19/DX/47X/4dT0siL7Gk9Fb3/rWyXjGYIy2O3xVp21tOY03mX1nMq4ww4gfjoWGL52OnNH/pdE7pgRmMqmY2htbY4zDDTOSz0QfQBgpAYHwVmBx9NUAntNqjn2rqT7cCGilOFQA1LJubpSTOKBLGI5bM0MrNA16LC3Wo3Y7Ag8WnMAsPMSC4bn7DU4GodAsFngziyPqQVZEi1OxpKZPaxPoTGPpuTA0iwVTQATbVjK+jHSaMFhgac2yFBTngyqwtMUPyDTi2mHb7C50atvJuYbA0MBDw6iCJYk8wCEMjeV2LB0O/r8wA81IIx2N0IYOtRI2vl5cu+qMjMwuYk5caTTaDTCYy3sBLVQWMFCNWTlGcTplrmw6NAH1wBzuBw/EUGaZKiV2ynKTAGP+o6ehw9eFJbuWZQFE0LfNxtnjdd+7w8dg67jQeI0MULPxKngjt4+yhshMRksTtGW1TDcCABZkpV6aS72sm6ri9vaM87ZBIDidVty9OeF0WpmMBgJECSiol8iDYFksYOf21rLreLgR4E530rYis/4MnQ2va2tYZME2hgU8bRvG6J5FyIK/VDtEBad1xYD6WB3/zCYEK4u1LC3Wqhq2aSta1jWCrTJIyTL0WHwYeWHDuliJot6NntZ1TWd6oXfVgVVsnZfTKW6RD0+2tZCXbb3w0jRcNZaO7CWA0vHe2uJRqZo8QgTn7RxG6fV0spJfHnRY92OaGdWDRFxueEkL0hEdRBbINpebSH7vWY7iRrKtkUQP8EDSdExICeBKQ7DvbafxJehfgLZAwYDAORjjzp072LYztm3zzGYZwEXqs3c94FIYYJROqmVZLYhPsmRfBDq5fLQgvuTrvXcLdhXxgDdEUOYouBAgS7E5DpJeFEDlVz5nD4ATzw5lme/8mVLSRFWxbcb/WAZxdHdieXDqwsxrm2W2UbA0nGJx/qkAlmUNGgWKI6iRFxa8eBnBhUGD8HaU/MOy42Q2i7yhHsEdYavnfklvgrjsNlyMyC7HNQk61QwTCEyHsVfAwFTqEMNlKh2YhHQQV/0q6iPE2giQWda4HtStIIBYoPWsMdUAZZa7HLg5nfDc6+7jxRdej2fu3sGyWlnLJoLzecPjbWBpC8T7631DW1foGHhyPuN87tj6wMsvv4JXXn6Ax7dnDO2mE2nkQgsZUoPhqizd63t7F0B17IoHJUwleV3GprPlWlALotUsZ5gyLOjAfpmdAii0Ee1k+d9ZxyWNpsOvlsnhEGsAUsrJpIHEGzmY99zanJ0SwIOXH+KbEf7BP/gH0xpwZa+dbZ4WrDY78vfrGitHgQrftvF1yoj6/KvDddrJPVp50RyGFiPPsUyUjBgnSawVfq0xDddjfe8HL6lBw7V/12kDh9M5qGRuKdO3/UfdUbLd2IMFbyUjRExC5nlVXY99li2e8l6vrIXkfCJwdLcXGDAdejbPGWXciXuXTTPKczClb+73y1XMYDEOOvXD7J+6APc0zxMsYR0EGTRTeUQOaeKBBfemQ9Tx5vsZOJDfT/soCWrqmbQVGlGhl+sBabH7Qj/WGbtJT5IZDJndc+JtxK3TVQYscDHmHvlhbaMiT/ysNKjUgrIcOVafX+/DL4KYTrKui4818RRnwCIDGJA/uutUfJ4L788rco/sqNguEoigD3PeW3aj1KtrMB0DryP7ksIj/suytty/EJniFRQMJtutq8ssUz3zgk8TpwSfM8+GsScnWuclEQYb1H3tZew80xVEpmWNAJBJdpOvt+B1PDeJiGVpnPR8xBpdlRkoe8L1Ivt8RP8MIr4WgHxN9ldua/+W3TCte/Ja7u0I5BTExSuumcb7pBa4Hmy6HC/okPfM+2MOLuQ6UK8St6/kZzkm8jwRnzfXhRsnekBpX4OBSJ1/oFon7DAYJdpyJKQeeoVXOdSSzNF22fYCxJkxeXFuSfYX501e6sPEfTGBlHfqajsOyU/2+3uStSEuqEfO7fNFvTb/gocdZ80/nhK5ug8gi7ZDd+TYyPPjzTKHma/OMjLxm/MpHfq+/7Y3vQnvfe978dxzz+DuzQ2WYoODArede7DwdKenPjp6N5vcH37uD/GhD/0WHjx4GBdA6rj1ArmXOCQOuIb7PT3TXq711eZI0wVruwcAzDijonCtxVm3nPWW68/5uhe+lkGSErrH00aoUPSl4wtv+gI+89bP4MEzD+Kp4KNl6Lf/n/31oD9/+Gf/7J/9eQ/hgAMOOOCAAw444IBvEKzrive85z34e3/v7+H+/ftfczuqio9+9KP4d//u3+GVV175yi8c8BVBoXhy5wl+572/gw/80Afw+W/7/FV7YX3+tcBrzqR0YZgvxgce6uK29/5QxlfcMG7G2pIJwwM0ZqeBAUvPjGJY2AcoTU4sb+P6zf35ILqfU32OgTXVGDw5rySNTrytsvUN0OElE+zwPaBotOH44ZT4owEo/i4GYzrL6PhWVWgzXPUx0Noa42+ePj3mrur15Jvjm3Mww1x17ou0HbFUR10acsPYFVl3YhK5Dt6CGTGtJA9xOWRgdC+Z4plO1tOKdRE8uT0bXv1AHwd/nwIdmXSIJC1Uu54ZQJntKmYzmB2nGHF8PXhjiwZEiTkIlsX+2raR5YJoRJGBpa0AVg8GyCIte+NS2njcKA8a5NIoyLKBabUtNF5JZmeLvDmd0AQ4bx0zpPGTjptR9kZ9hk7sbNjKRDFBFUsCROk4hwZBhznVGUSRAXC+dj5g2mks4xMA0cicRMe+qgUwQIZnKumwgCuJ4AqIQLtmIJL/38SCADtLPfi4l8XYmznQPfOHZ2aiYdbw08LYHjesw5AsWJ03RbCeAuu6YGiubyy77+uxKUQGbs/DM6StUIwsBeYGyWU1gzGDjxRmZL25ucF2PmMgy30pBiwjut8E9/JRooKu3fA6BoYjpiswth40ubgzI8zI0iDeVmsajiPAMkEtizlqohxemx1/lqmKCGeQnAfcufHTssLZ/ss5Jv+2zDI2N5bCSxKVqaQm96Y6M907RWy/Zba+COQhHW8DKsAiObYYr6/5wEDz7EO1fQv43MJIGxmLoMDoAHQqk8Z3GanNACWOkfMQ0eDHWjY6g5Es01VmPYgb+BEkupjBlwnlKCvUbqICiMx2DABjwB6wC4ihDJGUGYh9kcy2LQI6EStDYnYr7gNptazaLHsZKEoHvF0wT0cnBJbRSg1PyYPjnwTyGdKU09kYlNvlNd609XhR8T7o5wtZyB/BM4nXDHJl3zWAkfgjrhjENNmS92Mp/L3is8rgaVAeTCRSSsBoOsAu9R0Fg+wEGcSXdLT4e7mHbs8bvvTlV7D1jheeex2WpeHm5oS7Nycfgbv4xMu3toZlEUg7mQN0AKdlwd03vIBn7t7BS1/6Mh4+fozeMyjYyo/qhEvqOnvtMR1dmPA76X1FdsaaVbw5EXCPBj8qjphJv9S5r1hTvZ7xgs7eqpteQnHi6359OUgGwjmOyhxSb00dTMv41NNSXAuk+WaCy/H5XggJ5J9SEcSeput5Ahffz+jPNqsO9fQ1urb3njbuyznMWtr+25yn8Zw6hnyP+kbyhzqeXQAdlR7Jcwd/53dxZvE2hK2Qb1KhujKXCftsN0pT29/MKGv4fTrOUk6Xv6vuVP8gPwLDZlwDkN37oGxsaGIBJ9zjuTcwyTV2O49UZl3u4vtXAedP5LKVh4mPhTplnJv5BNdNMmgxk+dK8HrKoAg2yK4Lv9jzkjrE/e7yNv2z1hYLcGeQNEJEoS5T6AlcS0k5ZvRW+ZdjUTIIJLMZcYxFZqplEWawbR1nbt7EX5130CllRdBo8sx6sYU6oG+GMkbieviaWBxQY6Ze8Cwkl+eqJlHmln1D5qkwODrWQ+HBTpkdZ78XOf7eu4s5G0s42x0/DICbaF/yokPiSmNd2U6cb2Pd/CxfFrN7wJcFV7WaUBURoELeOdFC7mJPozrhwqbUIKVMM2mk7vFKT434D75QdDFKEuFk6pk66bHit9qV9uUYxcdH2pr0DrkM6stRFU5d8Gt68Zh5JeenGUAkhR4EiFKb2W9ZrDKj1tpF2TmCjsK7uXd9rLY+LXTm0LsKk+F2yWCI5AFVx6rAN4mjlF11bCnHiHeUvsk/lHoZn/c/yRf1Spapp+kQlfc8TRuIs49qlJ/by46068xrVvda6TzmnkOQaFTKczFq7vPK7Dk/R3AGfdbBX/lV55HHVVOZ1zUDJWVar8SlxtjqeKG59+yMMvCHn/sctq3jfe/7Poxnn8W6NLTFLlH5dYuJrrjWEgdby2j+nW95C55//evxG7/x3/H5L3whs/1FkNZrk9hl9ad1v7ALM2P4hIFCdDq/i4q/eE3y1frzVSDo/FUf3lHhtbXf6cKXj1j5hu/47Hfg+S8+j09/16fx2Td/FirlcsdTd8YBBxxwwAEHHHDAAQd8Y2HbNvzWb/0Wnjx5gp/6qZ/6mgOVRATf+73fi2/7tm/Dz/7sz+LTn/7013mkf/FAILj75C5+8Dd+EO/45DvwK//PX8F/+8H/htH2tryvsl19jd6Mt7zlLQBoOGLgEEtv2TNzBotrBgFA4hbVfMtcZEHcr6cxJAxOCMfQbOTMoKWaqr2WNaOTvTpv9+OLtNrTePIGorhzvhppEQbjeiuMATbNs+/Q0TDC8GUGScHwxhqdvVcW0Q74hqu41RlIFexPn8RVL4758oCnVG+ToVrEAhxsfG7Y8sPxUJasqs5mgfrzmZEjHdH1jnJe5rT+mNlGxRy9S0vnRme2FI5ZvS23Go/R3aiqFpwhHlzSy7rvDvQMtmpIxyXXalkWDMwBWYDfaBwDsthYzuez058FLom3ezqd0NqC29tbjJ7OcfYRBk6xvqAMjkmalaZQVGenl5tg2utB46gbd0XNOO3TXJcFEPX+LRtPBHM5nUHSDFpvmVZjjI7cb77yQWvLslj5sZLNJgwfomXfWalDZrsadM77dwCgvUcwRabr3xtSLWgAYmOw9W1OAwN96xg6sG0bug4sYsFay7o67iTH2ljSoTiMxG4D9+5GxUZ+ZtmHlkjn7yYzASyjk83DPrVsKd2Ni8yKNobtC8v6MtwYzLEsk6NpqGXoWlrDtvU0Ezs93tzcBB9rLCfBYC6/TbquKwAvsaEDbWEpgDQeSxOsHqylXv6vyeLOB7UMZ0H+LUpZMniA5fE4FlUtZfYWr3pA/mV8nEEcfdh+b4tlVrKxD9RwQGBMawNk0OWyLJbBi6C2tgO9lD1Meibs9zT5OUt6MPiqe8Y7G3fpxvmOqEBkAZ1hfXR3znhAlg6XW9WRIhcBDOy7OkEYfGqOieLYcUNvKwOy/dOcPyR/sT3UPJORxvtjR0Pwb3vv6SAbyUdrvzrJjoHedcIv5fB+zpXnAXbjm5m5mjQPNu0YXdDJ69zpY3SfRu1a+nKoOcMyOEsv+qu8jPjvzHoQJnCTw9Ql2O8UHFboxZ5xXtD2usosP+HrlbqHOC92h4zzJdIR/QyXQS6ZgYdrcE09Y1AbUMvX5Ppw/Su9VRqcg3PgusROL1IArjvduznh/jN38brX3cfdmxNWAXpXrOvqPAhWyk8H4PL4vG2W4cz1gwcPH+OLf/JlvPLwEc4bSyx26D6gQFIkUJdIuTTv5bpeACDaZjkvRnPJDa0VZmYAHUhX8DvJALhmpz3GN+0bTadNHc8FFOeUNMkylBNNpVOtOknnZvYBx/NepM6kqnj04Jszne373//+i880Vur6ieaaE+jCqZTfADv6eVqb+/f3n+37u1z73Xkier4+KlwdT9GbJ6emMYsmmZ2EZ6doDxIy3MSwxvrn2EhLnMe+e8El2o2ua6Bv0Go4v7hH0pmlyAyj0LrDNPZO5U37YASEvl7wjnk+qjXjH9uMLss8Cz8jjiR14ejReXDVR/drSH3DePkMPBPvgx38xRhfL3yrft9ag7SGvvWQDyjygriDUDeofIf6ew1ds3fqvMgTI3iDyGMr4tmMPYYhuNWOZoiXa7Q/I40YThpogSc+4c+UOQVNRysl+LeMN+eTYynLPM2PgxuaT1SbQA2cWpYlzhLkx1y/i5ZdrmtOKPaH6S5S1gnTnigaapSQjaCDwv8tM6sCGlcprF9JRNq52LN0lkszHDv1HOpvtcyx6X4SpX/JZ1oTl3tlzsJgLSSfSiJFoRrHi/2V4k3i8pJ6/5GlRwQ1I4xSVoMldhWV9+XY6zrvgk3IJ8m3J9lZLkiUNmN/7+TNNb6uVdcCJr3+GjDERYQ6RQ02HElP0xTK2DiuCxoqfAJJg8TzpQwsAXnqY/GHyQf4LnHGkuEccw2CqmexPX8g7iAoWS5l993lnNh34CDeL4Fvju4I6ppw4c3yg7IXg4dWlFzpf5pT5bfef8i3aZxS6Lnike3O+nq8N61O6iFPxWfQ0TyHfKL0fWVeU39FJl9rb09TdW77MyR7C0oIfDS8+OIb8N73vAfPPnMfN3dvcFqWuDylMJuGkm+K7y/FdFkLEDx+8gSf/OTv4qP/42M4bz1xwyDH0E12OzaF6+7j/c7mq1UG24dJJYnZK9T0lPbqn4r9aszjmMe/p5XpWQHy0ks+V8f91HmWz7UpXnrhJXz8XR/Ho7uPsm2H8/93u/L2ny8cmZQOOOCAAw444IAD/mLAu9/9bvz9v//38dxzz72qjffVQFXx6NEjfPCDH8Qv//IvlzPGAX9a2JYNn3jHJ/B//G//B774whcvDp1f8bzk8JozKRHSmcRAEbk88XIQVw7g6ZjDxXd7QmM/1ZhY260/q3EYwORIrQY5GmQIZhyeTqH5bBjL7fDHDD5NZHJuK/JGoEAsCMkDAmivqriyYAeN/+p8qxOxlgey73vBURrF1ecF0PGMCWc2ZvhNQPEMSjSsmeN7DM+LU9bMDMrFMExDHxqYRt8ygZTMS467DBhhliCNABXOYCjQz5tjoE3ZNQxD6azIny0MaRYIw9uUdHQg8LF4kMroaZyt9MLneFtU3BAqalaRbWxhYBFxo7OPqfduDM1pubWGdV0nJqf+vBmNfYzNneZx85zOdA2jbhMPOIvsKAPSFizraSp31Ee3AADxkkklOGUyAAetL8XQRKOeQBkA4DgUMBNZddZJjgXmUB9eHqHJAmYTC6un02BrSxrFpcGcxjK1x33YWsPo2b/q8NJwGreApQlkpMH5dHMyAzwGFAwoyYCU5oFwDKw5tSUMjEMta073kmMsPdVaw3a2/po0NFgwWDrHDfcWbGFZUtqSZbys1FpDZAIYEqaoGiiQvCl5Gw32t7e3Pq8gpjTGi+Fn65bVDKoeLKCAWrk3vri01W4cOw0uzYLOyIC7dl82gXqQFdeOS79tHaojAhLIPxigRKe6wGl3ABAtDik3Jg8A0tD8syg9FXzFhm3lLorROwyl6jfV28RHDMfwxHFyNbhjNtzV4Dp+l601aRjoQcsRiOplwvbOVPID/wR2Wx/hhCBE0JkHnLYlg5mIAx3DArowB5lSZg432jKoFhFYOgp92p600mpjkqOUYUMHFmSgC5ERt8VJ2+gT7mqASzWWXhpOvcQbS6SWrAbiJdcYTEn6ocE227L/uw7UYGCO92nBaLaGmeWA5cQurMSljf1cZvJJ+cc1ofyPdkrfcJkDpBzkHojgrIKrOo86lmvBEPEuM0CUuQO+R+go8TVN5wycP/WJr6A4WRkcp1BzDnTFo0e3OG+bBSy2FbUc5vl8NtnntDtg+2C9OUH6gtvzLba+YV0aXvfsM4AIHjx8hPOZActGbxEEqoi9c2FYL7ipa5WfafqPQrPygKRCUyLpFHGvbHwvlQaQS0w+RTmQQ8qgorpuUxBYWcscfOo1+6CY2SlSnFWVxnZQn5kG/i0FTwtPMriGz9xXuMBjfe5aO/vn92eIp7VxzdGz35+40m5S2Px5fTzUJ46j0IfWdU2SjZ/T12WOpNd5v9Qzk9Pcfn6KQu/z+UvEO1bJ8k+Smp1CeeekILKMdbd3Rebst9fod3KiSg18SJRnlpA9XxCKl+QBQGa9gFysf92HOV54BsaZBovWPeHJWwYAkGVXPOdZSCG951ghHuirqLioun3VWur6Jf7yPDHHoPGcupj+7YRTs2P5ROcWQ62knE49LLTT4I3zuKexT6N0HISeAtQSs3LlzUm/U/VYUp/dGJbtxPebOpOnzKprXPcfP1sWBkRX3GZwA/nMGJYxeWnEfZ71h+8PylILms69EefMQmtjsKy099OyXwuEaX4exjS2JF8JmpjXzJSornrBm1JnkND5uHTUUWeO7NmTIPN6I7ZWZOsEENlGcyy5Xnam9QtkvVsmnqBDH4QvIPEQMjinEGti8ly9/TwfkrlFdtXSBr+7JnWc9TkrSdxSPwgIPcHXDZgCRmOPysyT2cncsyD030qfdaPPkw8ZkdOa583nqwwK/jP/42M3Pn4pF81uwYsyutf9iffd+Nhf4DN+J+79s3IGqXOasSM5PRR60IqgK/Kb7Zbv42LOHpfEQcFRyLTK2/YbLfRmn1uZ+/73uphV/6v0wX00DXOnD3CvJK9L7gxowQgmfErs86J/lPnOysie/IogKXR6Ia1VPYO0TP398R+/hP/yX/4r3vue9+BN3/YmLPfvGj8Z3S5jMdtbCWQcfo5aVrus1btdEnzHO98BiOATn/xdPHz4yGTIRJczrlO2vkYIASKI0owXD1S8SVUontJe/sJ/q54x65/X29JCX1Pf7OZV5nh5Tt99PwQv/vGLeN3Lr8Nnv+Oz+PR3fRp9PRw3BxxwwAEHHHDAAQf8+cPHPvYx/PN//s/xD//hP8Tb3va2XVKW1wYigvv37+NHfuRHsK4rPvCBDxzl375OsPYV7/7Yu/Hmz74Zv/HXfgO//CO/jNub273R4yvCa86k9Na3vhk8rrMsEcukhJGDxsHJgbAzzGC2n5ShALjiJEgL1JV2Ltv+SlDOnQAw3TC8eFbhxo1dPwKM3i3TRpPZQTmNzeaSqeLhhtAFHe6kV/9OzJA6O90QxjUIzDju5dbs+UvjxrLkzWfL6JIBPmbUkMkxa9/RsW0Ob/VaA0sDBG4or6W+mmUw6qN7YFEaSjjH1hYru+AW1cgAQtQLM6Eo2rIGruz94c/X27SwUmGaDpcxRjjrxQ2fpFG/E2rZoPSSeQVDE0Ai8wlLBHlJJB3Q4lT2wRWjqfi4cXXdSERmdEKsUXViLA1Rek89O9bSWqwBbNXQ2mIBJmMDA3usTNcCqAVaMcgIY+dwaWksNzuul0WjtVur8aLH3qABWiSz1hghwrNs0RDkBszwkDFrjL9LnHONJIOlBrPttAZVBpQBCstaM8a8z2lwO5/P2PqGZ+7fBZlDayugwLqc0HvHtm2Qhih7ZVmEEt+ZmU2DhlmqTN0o1reO0RXNDWQAsHoJvdttxP5cT1mubWmrt9sh4gEN7iVicOLit1KHBwwwoKIGWdQsL6OPyDk0OdJowFtOsa/H4I1cD570Eg1owGm9we22eSaBnDfgpdsEXuoQkWHLsml1rKvhzQyoLehmaMfwgLnm5SSDFp32hvMq4x0bRHKPxDoUXmZ7I/fdsq4eLMXxZmYncYeZ7RMJx0xYtGmrL/uyeWAfnazVoxqOl2GZkqLMh1qmra7Dg5KybFn8LZQnA9MNbRTjoJjBneUTYx5t8YHWwBrSfwNLVjILkqpiWW+go0cWL4HEnhERQEopSli/0p6SVcczx7Ql37dATNtzrUnhVZfG/RqcEZn/yHvF5M8YxLdgXRaXaRoZzWicp6ygjGMwXnVsjOCDGTDN7FAmH2xOCjplfS8FfRhWKD84l9iDbQ05x+BfvmNtlzSWdAL5XmJgasgK2wwQqWWc0vAtMgdWRztKF0/SJsu9MQvPRLc75YoOJqP1fF7LugHN6a3yFolyLuS562nB8889ixeeex3U19NuPg+cvGylZSBc0LwE6LZ1bDrw+OHjkNnnbcPLLz/Eo8dP4hb0KE5cXFmLkGdlv8w4weRwij81w8HpDBBJPZAaSToKigNAyxoIYO4SDyCUwpvHPhojx08HcKWvkItRsrHqceHJuNhj1HtE8u9KG/Vv/v748e3Vsf15wz6TUg0CQOFYrxYgNAdE7KHu1xlmp9vc9ldzlgDqauWY9uOszz5tUNRdK7+INvadsB9+HRlPnM+FM/fa2avOsZwdIDueYDCX4d7r0XnGmeefz6eM9qnHmtXniwwUXF0DoXPZ+80Z5BP2r0465/6pwrBBSUIaivOJ1NZlfkuf0laUOkdk3o1nC0umTMih+Zex9SWarsETkxyQ+upMLyK1nBhMbu/lAmUVzxnTfmNJs+Q1ib7yB2XdFT5UQcta5cSKXjZlf6jyXWKtsX9/+s2lO+nIdd3QEYI1uxQo61IDlHrvGGPg5rTyiBPnu+Z4inNz0duAckHJiDcCiImt0ACbZSo1/Y1l1k1/FwB9ZElpK6lLeuRp1jEycr1qBkQpY6p7uZ4pCJExOQTuvJMie9Nuf+d9LvWzwooeAbm7QKJRxuY41VECoJwfpPy81O2Yu9a+LsHD2Iv7lJlSaTOerYGivha6D3Sv/ND387wB/NeU0zq1Xffr5XkCIeNcr4iMc6lDBP5UCw1Sl7gin8p4iM8677082q+0lL+C1sSCRhBjSVxLycy8H+++PxsaxxWIST2HOq9mKepoO/jiHIw5SW6/jFNtK9TrGDA7k0jlRjp9GTpV9JDBvPXihpI5ADEv1cu2+EvaTRDrHmXdJT9PvnQtKI94uOSlHDc412t68TTJePJirsFfCq3Ec5OulbiptLZDdcxlGq//dlpPePNb34K/9O534dn79ywgV8sFnnImY4Y4wMufq2LbMrP0l19+GR//2Mfxh5/7PM7bdnk+KPPg3/sxXz1H7d7Pee0xWAL1ruBiHsO8BpbpfLYlVj70WiDPDaXd3Xivyefr54f8TKF4+dlX8Hvf+Rn8yev/BADwyv/vwWse158VHJmUDjjggAMOOOCAA/5iwd27d/GDP/iD+Dt/5+9EIoWvBVQVf/iHf4hf+qVfwic+8Qmcz+ev4yj/YsOQgc9+x2fxgR/6AD793VZa70vPf+k1vfuaV/Ti0BQnPnMg2sEws4lMxqKpnfw9HOrA9GwLI47fxtH5++oU2meb2Dsaah+AHZPDmFPa2pfj4dN7Y5N15A49P+TRHztUgYF0lArMae/GSCjSKSx5sKXTUmi/nW7PetYPnqwVUL+xY07wBW1ZplJQYYxTZO9Kx/cSpWIS6AD39wKnic8aRDF6hw6NwnGtHOqXtqBjRNCN4aAYHAyRTgf2Yd9GGH5nGNNzlsnEy2PRyI09bVZD7AhjT3XKM+tJa81LCQFbNyO0LZNA4+ZUvT1XbxQmDan6zTwtqfTDeDWIJc/YlWOmoSd+9yAlMx1KWrH8nT567AUAESAHx6mUNbOPJAznQ4fRVVnHfK4Yc2HZdhA4a6Axk/TZuwep8BYxM0V5sM+6rhijB82pZ5aRtdl7YWi29Vg8eOo8NmTpwBaZkEZnkILhjZmRGsT3WwtDr4hg286AAqd1CQfeuq5Rui8cLEExWYLSAiYaYgM5r1Cnp9bEBKEOrKOhe1u1HNrWNyxLw7Jau6d1haplJEJJpQ913tYkDJosNxfZ1FjKT9OIaEbCYvxsgj7OaHKy8TJQUc1JY6WFBlaxzCdpZLXb+rZHGtAUig46JmiY3LYtWIKIAEMtuw2Ata0liAfoNJjqQGtAA4O7WtC78bRsvxpui216um3elC6dNKxmeSz7LMriqfEhHaQ9dzRJrpGZBS3Yw4IzLahsBfcLwAAbJY8XD/hSQGSJ8Y7BzDRZ4kNk8QxvND7SKZN4qGXhyBMzYEYS306zKGUfxb8bPYNh+BxLrdm6Lj4D38WqGJshjMF7YWRXdw5J4TGFtiEN8Ax/Lklt32vKznVdgycJBH2jEzRpvrZbbaeVL4UsZ+BOT6Mqs64Jy0Iq10vRFIAUWQ7x4M4RAVYWECO+jhL4gbYog2hr42UYhYFMjoch3ncJDnAZySxh1UBPuaPDeLyETC+OxXJ7PYzOCjC4ZnL+jJSX4WbSzJqXjrd0iogwoPw6sA/inaVebFzGf/q546Uvfhnn84ZnnrlnpSS3DctiwdF3lhVYGpp44KzjWVSwnFac1gUNHUu7j2fv38Pn//hP8MorD70EUizwRPfkhRmgUEu/BOFMc0l9YHIvADAcVFnHrB2qc58mWNTpLQO3nFNO7c9BRphwD8B0vXju6pD3qwHSTzog9gE8Gn+rJs2BztVveqiOlf3nXA+NdXm6E6niHGUNnt7r0+C1BijVdeby7GmgPrsPErrsz3mM8zDZk228YP/EeaLwD3JcdZ7hX191nk1jZJBIwXXFb6iXyCNItvG0oKKdflWVf+UMkteJd1R3TaH64LEp/zPoQQodhS6hM01UXGrJ75I8L4Mk6v7aQ+6xIs/jfFAufoC8RUM34TtB85K0EfjQ7Lc+SjlGHcN883JBVyLzDCijc26xIPZMDa6s48iPAhPRCvcZ8VF4bV6e2O3usjfL0drJOYOpgsdpBhSJZKBcZA8kTbaZz7IrZiruvKCj1g80xyIoQwdlZqGvMl7qfFk+GlbetGR/qYw9eIGUv6MnEkTqTSw91UTsTEVaIc2rZXo1mQzIIi5febYswQsxx9n+EmMaubMqnyBOOB/LjpYXecgP+ii6IZBZGZ3QeeFHXI9W1yeDSqTSSVIndTsJOjCcjhxpZDaq8n2yN5U5UKe94HtB1F9JRqbeNyodkUJCxs8MOkiBJWWhQWsadGWyjXPEmLh6jC1tHOI0nXr4LEfKhatpROVMUXZ28FfbLNEfNQeWnau6ugiK3p/7BNBIuBbn2Mhcbv/kNHb8yn9mkA3xk5nPhdmv4j04H9DY0tOqxT4E9i9q/WJmXS5Tyj5GyexX+aTyPF4Cz3fdxe/+haJ8iRmnShtXwdE+6IjypOIwZQp/XmAixqH5Ue7T+t3u3VhXra/tA+3TzrjfBdHOxPcpN2yVb7czPv3pz0DHwF9697tw7+5du+DgfBjLgtWDk0JGlnORiEDWBYsAb3rxebzhhb+OT3/m9/GbH/ptPHnyJPud5vWUce4/2Otw5d95lYPVzsR0BTLAbKYbe2OWX6pz8FniMdsCqt31ep+vDWrfafPkAF/38uvwno++F6ON68g74IADDjjggAMOOOCAP2N4/Pgx/vN//s9QVfz4j//41xyoJCJ485vfjH/8j/8xfud3fge/8Au/gMePH3+dR/sXE5o2vPWzb8VP/exPYVu9ZPT/+7W9+1UFKdEoOxl/Fe5ITGdJZEWJ4Js0lOWRvu3aHxdt83Bbkt5cpEnfByZdOASUxkn7e2A2jpkNYuTzO6AzNX+WQyNvMfqUGsQcyf5/7z0yXvBwXoNT0ljEeeXtPuJ7WezGpbQMRILQMEUcZOk52llsLj0sxmYMXUATbBhgFVhPltVlO29Zxs4zhgDAuqwQBk75gM3BbfMaxXi/RaAPwiqgUAtsodFPaUBI3HBscQsYPQ/MItGPjg3h9AWw9S2eizUVRLk9M5qypFYGmigsXf/oFrwBIAy4QmMwA0bQMJTGWJJ9GtHVLV40ApMELSHN4pejM5gl6NQfzLJECgy/RdskbhmCWZ2K0RPw4B3HTdI/oI2oH0jjDo0bCjop6o1ghd2SjawbPv8mzZ3I9qplbOLaipe+yPYtQ00uRLXNCcyBNKJMnWColakbvRej8IhMUoaD7ng1nA0vB7asJ/CurWXoyfJ7hteBU2OWrh78K43AzqNiTwFozWPFrOSbwoJfiIPeO26FRmXB6bSi923mS6LY+hmQNTZBONZKhpw0+jYA7oiAQDlvIg6AqM1PdQBNw7GRuCUP9gA3ZRa2dG53ljwQsWAO8uyRhi9AsPXupdqyjEtXQJyfSRNINzpgtigA6F4esaFBFnHe2oMPy7LYnN0xQyevqloGLec7TZqXu/D/l4Vka3y2Gb4yy5aA+z9LzCVvDd7vmXXEaUCMaVvQQ7d23P5tRn1JJxHUsghBu688s61ZljNm57Gbng3L4gF5zv/oaONakJYu5Raftdv7oqQ1JM4GM9ioGWQFXkozyxGi/DvSixB8RAQe7GJhtJ6fz57v6u2N4A0MijUDapbYNBqqsphzEQywxEqW9bO1TzkVWcx2fAJoUHRbWQFGQ1afiQBd0gxCxkPgJR6tVJ3hPwN4Q1ShZFE0ZgEt2bQyMEtcZWkRhMyAIn7NgCcdwAhnKKZMWcbTeOvbjcz+TzhbhG4axLipP9XALdWGNpL3k4vQEZNOlOKo1DSUc6cz2CccWEX/0fK5tWNzuO2KLz94gNvzLZ577nU4ne4YL24W4DU2Re/nzIAgNs87N6tnzrIR3NysePH1r8NpaXj5lQd4zP0JOEPajSV4a+6X0Cc8ywVIw8nKQB2FjjzjdyNkMnkDF814jMb7Fw6jcGRVB3jivgIdDaHnxJzmn5OjrsgvzjPwUtsMMZYB4DmPdHZ8cwM3LTA78vcBWbu3rujpta36zHQeKE/sVIF45ysGKu2e99HGOvNz6mRze7PzqY5RkO/4l8EzxZkgy0hFdjgTZ3mOKLOMYZJn+Pd5GcBpNpkPGDxd6bQ6z2t2z+DnSMc7kds8mLaWPIz9q0h+jRTS+wB+Yra6ljkfoGSvFZnX0HWaVoI443OOPPZr0f18bToz+81ILfpEHSd5Yxm36sT3oZLlg+Ld4lT2div++EVmweVaoOC/CNEA0kVIZvD8YI/P+yMdpxxH8ldMrfo/XJcQcXXP5timQCdcBqxR5pOn1qdrwEm8D6KNeMSEx9kJbjgZvq6cV/JK+3B6h1l7xMqhi+MqS5dpzD/KdV/hQTr/M+Ekzn6abQOmZ/SYkoQc5XOUNaZfVptJCSYMEkm5lTpuomxWtFD0/gykiqC/8iOejz2nuZf9jDeVzyJLcXqaAmoKrhjUnfac1KnY30STsruYUP5OPYf8YcQcsiyh7Q+eEcry5LkzdA1PAlv4+l4eVT5lfSVOANf1VEyrLIoXbV1ZCjjpr9qJYj8FrXL9doGsPrY9SRIdtj4SZcg4HCHu/WeT5vYUjXMTtGjFUta14CAnlrislSL3eo/WtjR1UtLyRHMMxKv4K7IvuJDUHmY2VgM8Ay8Fb0n1uc8hbNf3b8inkIamX0n5SFK+7/HEuWSPsbVjTa15It6f1PgG2HVXZbt/nXunbPREne/1oikY/y1n09pYtLTXzcgctFYZw/R62cP8mWNzbOvApz/zGSgUb3/b2/DMM/dx584NAI0LFarqNsmU5QLL9hy8RweWpeG7vvOteN2zz+K//+aH8NJLXzS6dfzV7RL4L39zs4QeOisV2HOBSpM7EVxbzQ90/vU61q5/Muul+733dNgHMFW7uf3N5zB9FmLECUJU0PpyTeQdcMABBxxwwAEHHHDAnwuoKj7wgQ9AVfEjP/IjuH///le25T4FlmXB+973Pnz7t387fu7nfg6///u//3Ue7V9cWMaC5XafJOfV4TUHKTHwKCEPfnamr0Ezs1GCRrD8LA+s9baN5uko3jVn/HBjSZsOvdNorjgY7DP3AiIPaToskErcmGV2XJnaZVutBGD54MBjpPoBTiERnCLNMyp1b4sZVuAGuQZzDGvzm5ButBKYU5xBH2LBEdGtl3lj0FOWRrJ5L8z84GtBw0O7slGV/6mNcdt8EcNgJFPbnaWEpEG7AhgR7EVbmog55Hl7VRWRMtwCDxZiLE7BWujDDHUtcEm6YsYpdWMDjYfLuniGF8lAE/DGn5erc0c+MKIEgw3Inh9ag888eIsOEwTZeOYrhibMRih1wxWzf4GOCR1As/YMtcOybxQQ0JCZzn/Vga2zXJ4FePAu4dAe/YTjWUcYisSNx4tnGjmfzzDnVhrKI/DKfw4PVIBnTbJgMcXNzQm3t7fowzNiBT3QoFv2iZfgYzYuBt/ECovCshXZrCO8gf3DNs4Ym5caM6JSAKOfQcdPawIdgk09MI3vi2BsHvDBrBfCfWB9jp5rTKd2kyWMTUO740kwBNDew9A6kOX1AMXWR/CPPqwcVKxpOCZt77KfoHfhmBdABOfesXDtYEEOImKl6pwW+2Z8woIKHIMKTBlGnBZGoc1labGvVZwGaQIT4p/lEK3f02l1nrAV+5aHHAh5jLrRVp0mm/OgJbLI1duPLEVIfsBMbr2PyIpFBy3Lh9r7zQMzBycIKDBGOpJsqcnXeQOYm9dw0ZC33mdH8sAiWXZD1YKxmsLLZu4cebDsQ0sTnDcrdxgQckMBL1Vof6fxWJFlLCpvNhaQzhalbNCgGijUA6kMb1sfWBeJdo0nNAsMKjKMgS6qXqhKbCxZ6pDlUcSiSbrhND7nmkQgJ4pxuEc/nOywSJ0wbLfm34ezzmgIRTYTyymrJOaUeoFwCLkmBbcsu5cZzSibco36ZkHGkT2MfXtgl/oei2x4qEZ2L9noRnptJvuNVVFqGh5NFI6pDcvklfIinEDkhrJABDitqzku+3CeRdKSUp4HHkhZMveRSobxWs67+U10HRZfRZlHCMeGIsbKn2lmZwibrcV5sz29fWng2dt7ePaZexjDeLQsJkuaLOh9s0yFi+lEow/osEx0bRnQmwF59lmcTid8+eUHePjoMTZmZigwmEHDBha362vgVgY/k08nrXBvpAxjgGwG/gZ/YZDtoOzKgIhgK8VZQlpU3xP7QIB4kvy36MHUvyrs1bXJuXOhV0+ruHv32u36b26Q8i8ufq+w1/WNy199spwLkrs4Xei8Vvvnn9ZWlSH1c2vT+7jWxrWPLtbbx+d6tekm1G+tkQycc9dZdUC7XCeDJHVnZ3RI+l5AoiF5kwTfoVze+bt8Lzhdl8GbzuNPuLyOMUVbIbF4EvFGJPtnEzv8s70M5ip6ZgyRwQ4Sv3PQ9CvbuHMcrZkuR190oFDLc2XvXtIfsRlDBPd9ygdBBHiU9aE+FnP0pSJfpuNbuFjEIemx4FRjvDkWRBls8iTibD+vXMP6EXW60Rn0S3mPaIsfZJCHDZzB88uyoG9bnO3y/IBp/HXcHMMotFFGhQpBAeocWahjzTyWspLBU5pIy5ZUkBlw+Sn88ooH3wdvTznkEgCUkxGskpPw/macU76w3dzf1JlyJDVTcsiuQJZECfkZS1kCOvYiy3BdeTbmzAspDnExgqgu/3I8ftUsPm8CK/26bbnFiQOuEzM/MlssaUfK/IPW8mJT7bsGlUUgfhlL1XiqbpMbva6JzHsOEvzXgpyYATVpNHhGIzIQzxPXpEWendR3R1taubg1r4ft5HmulRVHYA/nvtM/coUS72xo6IAMibksTafHMhBj6rG0XYSUITD2Pfke7WJzcMR+75K+r2drGeq6NkgXu90v9ec+EKMsUNmbPlwwy3OVIS5Sw1ZC/lD5HogWLc8ns55QPZ3z5okDuxWfpQrpP1sj7Uq+UplKnUWew8XPsvGur27wvzKCoE1Uso/9TRtPju/Kgj0FrgfIKD7zmc/gS1/6Er7/+74Pr3/9c7g5nbC0BU1c159IL4MMzbbgZambYG2KF17/evwvf/2v45O/+0l84pOfiszRVbrE/peUV9w7IQ9izGX8dTJSqaZeFAAmBly0At0L1mzs8s+djGCXqpVKKh3P61Bp/Gof89NPGdNrX9sDDjjggAMOOOCAAw74swZVxa/92q/hU5/6FP7RP/pHeOMb3/hUW+5XAhHBm970JvyTf/JP8Gu/9mv44Ac/eJR/+3OCryIv1hy4Ep8WYxJhH+iDcJxmmuQ4HJaDIt/d/13tJG5eNEehVseuTn3HWIohVlUjZbhP6cL4zmezRJxORgJOyebQ8kDZ3BEGvVrCDrCMUGbzYFCDl9MSOvRxOXeOG7WMCy5xJ+Jll8yQSbs0DXq0xbHE2cV6qd3kW9cFXT1jC5iyPPGCRQDl3c9W1uAS9xDLDNOkWdm+7DBwFiEV7jgxx2HNfGShS6BRXRVDJBjG4kFk29bdgMKgjbIOmngabnw2lDXErUVY8MTwPlpZO5Y9q3OcnC3CMod+I5IBfS2JrNI1yxVZ2326MW3rk8YPAMWXZni0EnXNco30jtYWtLY4XUn0EWPUgQx1AhjMZPPyLBg7A17QP224gjJmrjMNtR6gqL5KY35eRIBRAgigXnrLXkOzoBD14K7Wmmf9sfGfzxtUJEoL3J5vDT8l49UYlnVl9aw2Zgxu6B6QqADW9WTjv70NA93qJcLMsc/04gBkQJub3LlxaeJTCwZoq33e2lJwN+9P8VJ2XMi25PeqinW17ELmO/HgyZKhp7UGtB4Ba4AFAyl0CjRRLzcClrIyyo6Au8XHsywLzuczWluCr4UTElaSblla4AzeEhQRBJQ8rd7Qt3JaSXOziauJl97TzHoibmBcPTCjygRo8mAd6pmV3KlZyrO0xgxxCvUyH0sz3Jy3YeUplusBrB5jEjTfPNNQDexktiFVC7IwAkKsF8vY0eEqGJAGD570AFgpwTZu/V3aAma6YflJYLdnyBvj7yofrJwJkuIueJM9G0UcgBJsiGL8NT7g/L48TuOtuCOCWdViDJ7drxr4Uy4BUkvr+Hc21zQMN0naGsKyaMkbLoNMrB2ulYIy1TBFfPctS1DuzPrWrmo4hjgeBvRc1Ut8EtV0KxT/EegciAODB+jkIC3zhnA4COBl4txhcj5vwQMgDAol+yn8BTMkDTsdVp0I3Dcms/fG5ymQQ8talp/hGPDPegdu9Yw/2TrGGLhzcwd6WrA9eYybdbXsl00wtOPUViganpw7tm1gWRfcnE4YXfHg4ROspxOef/3rsK4NL7/yEFv3Uj3qwa3Y6Rg7HSnnwaCwDGLEbu2pB826Su4z9cDxlJW7fkSm78h/9zpx3acZCDXrdLX9a2tZYXbkx1DKnDQIhTztazue/VnBax/dNXzMAUIAgk9co4tZh62OPO7BeiZ5rWOINp/6x/U2JodWGUXoe/y1yqH92ITOqgx8jK9279XPkhZltzP2NFaC3jQDfZJvaQzdzh8+KModfzZKdV32Vuan0+dKUi6f1nnU7+qZop6N4h1JmUc01ZHQyd+ZybM1D1DUslD57KUegYt+oWrZMAuuJAZtutLTCCXbusJzhPjJs0Q9U+xxVfFFmQdiQmD6gGPR5LFmwEzo9Ff4lCYF5LiqLG3xnLIsUy2Z5PObz/yJp9QhqVMVHMLpXhB48J1feF7iJtbHaUHEgrwheY5hkDx8vULewgNSkPpLBGEAkLZAYBlK8/wmGLG8hR+53mpBzKTJ5Ds8r9hbvBhV9inbF0onrotfMLDlzPK4VIqWzFgb2Ws98F+dHhl8RDsCZUjSIJWWXOzmi9jEgvviXBA0Tv6MvAiz4y0ZKJoBEwweo6CuQSaKOhS5oANK5uaBFkG7/m/oiIUGQ60KfAopLPQd0qqd+zC9n4h5ik7l5JK8ehfchnoBy3Fd1lhgvCRQq/vexC8OeGC64y73ceqLFX8x1yKTmFUz30DQSJ3TRBPKz1vIgUlW7thcHU9t1wIL6zm7vsOOACDxN52rRCI2JB/f6UATKXNfkUaYGby8H7pw0k6lq6lB5/lFqMcZh7R9VYcgcy56Jdvjni5ISN5b+VBlwpCyTsh9xNHWTupY92OKSz31Y2vbzmi5v5+iMiWdX/kst47h7OWXX8Z/+/Vfx9vf/na89S1vRmvPorUT9MzM6XZepq2MNqIxBkYTrNKwLCu27Qlu7tzB937v9+LFF1/Eb//Oh/HlP3k5A72DH880yN+mNdJ55Jd62zyZ4C8ptnd9zXu36kkVyO+ffg7YY/Xy+afpsa8FQhcu4+HYDzjggAMOOOCAAw444JsJVBWf/exn8S/+xb/A3/7bfxt/+S//Zdy5c+draktE8Nxzz+HHf/zH8c53vhO/+Iu/iM9//vNf5xEf8JXgqyj3NhsV9468MBY4ZJBEOmrt7FsPezr9rG1GuwyI8MAPuXJUopMojbD2bzjuSsYRBp+EUWzXZx1P/i7TwZS2iBoIQsPf5KyK0aaBKg2yGcxSnViTYUnoqB9WbinakmJ0yDUxo6GZNZuIGy3N4Dz6iEM4DQ3pHKdjnNibHQ2zoSafz4AWxxuDeZCZjgzvZvDgjTiaCQSIDEeJ83SypaGPtJCpv7NvBpjMN4qr0R4e+AIAiyzZjwIM32GAWR7OJf5Ws7Q66uf1QYx1TNnG6KBkpguWFiJdVGdQ8xICs32EgVEsrZSBNHCDJTPUiPfPvbKpZeKYbBw6oFggYhlBbE2sjxqQpG4MvL09+xpV2rDxcn7c3zlmjQA47gUaqRv3ABRWyq8Vm5FibObMYOAaDfp0qPTeIwPSGAOn0ylqj9ZgjPO2Od4aVHmDcHhmKoWOgWVZ0+bpNKROv7ZeCo99s1G7EZ4G29NpxegjMgJt263bGZOn1LWGSGYmckPs8L7MsLZBNQMVWaawD1vTWjaFwS9DO0RWLMsyZ8XKHYRlse9rEAz/toAb8sHMrAVoPK9+a9+2jgV1YAzP8MZgIQtFUS+FCW0RhNd7x7KsGLo5zaTzhQZtM+RK9L940Fh1JFMOtGWBeJaiuCEti2dBqI4uC/po4k+XIMB0JmWQjvVpY1zW1Ul8FOOoWDChh1qyLCTKPqYjlu3Sz0CnUso4D4wcA17rYpZBtaSOy5eaHDECL9sCQQnSiZhaw6uVDTEit+w6sXWNdwwrhxkBaaqW6SpkANkdZbwb/fdWZs8OVOWKNPHMHiVbE1IHSH7v5VObYIzqsLD9bIFyGnLfMqlpsfpmQCb5QnBVab7uExOMvkPO+oCstF6RPdZIvll0iyZEE515MrVdnXJ7w7HdnF9KUN4CaXQaejCyZqAMnVh0eERmCM21CaeR97VIyf7j3414B9FyhVl3Sqj6TfTnT27dnGFffuUBhiqef+453DlZYKgsCkiWpVTY3hqj4/bJLcbWcPd0F6fTLToGTqcVz9yccNMWfPHlR3hy3qxUpMSgQ55pwb2qO+QmvVCDNgI/5C1R+m9MMm2vk7ZmAcFK2XBFR628JAIidjitMnLSDavedgXn8/t68f78Gfe3BG5ELtfyWwVmvWrm3fN+Arh2yfsvnTWTLOZeeYrH5bojcf4+1kFgOgt5/FP21J5e7Lunz7vOvX5HngDOKcqz7YLji6Ns3272XdqGFL65O+OB54xdW7vxJ5+vfVHT14v5s499/1Uvdu87qCNnQGy6z9KNvMNNaY/60DxbBtJyjHA9mq3NE7x0+pEmcbHXqMv5H94c+6xMbIeufQ+hSFhHEYhYx6O8xDPTytxXxVLipfK9+IxKeaU/1cgWOqFHy+/MzLXDP/vuveK/DmWHx/oq5myTRGOUsS7PoaBVBBFsyvE59lMeMrNI0VumM6MPhhmIWIqdMj6C75Rn7XIZwTvc8wNOt551AYTOG5lo/TJGPU8EYpzYmF2QPJD7q7FcnH+Z8kAyay11qiLzbE4ejEw9rVzUsq5blIhNNEno57GootOYJ5pP1mnjLuXRZ77lPENLHy7ntTRGrhvqaOFTpqtVOVuV10L/03cV3wySy4sfMa4L+k2eEXrzsEsiQkGhhsPQCVQ9wy3b8kt8uxnadhaIZ9ymrse9GDxM5/lz3snDk5fE2vjvNfskdJYfUJQyofnZzLvsoo149pvgJYGV8ngMlI2UIKzCei9tOTqNfQ/B5RgEmGwhpl3lQ2hOMRcBz33K/kOGt5k2kXKdnQSFFN7M/urzE78uazZBaaNmbSNearAXfx/B0xOJqa9XPJEHV+m3W5/yic1p7l85vUkWz+/rtYlV2VJ4OxR48uQWH/3oR/HFl17C93/f9+HZZ5/BaV3RWlyzMDoU4qChNePR23nDaT1hWS1r29Ia3vId347nn3s9/vtvfgif/dwXLJvbjiYSJ9d+r3qAol6UId/PM4a/GftpxlfVpSb5uMcR10QvCSP1yetb4GmBTV/pmeufJQ7i4sqr6CoHHHDAAQcccMABBxzw5wkPHjzAL/zCL+ATn/gE3v/+9+PevXtfc1vLsuDtb387/uk//af4+Z//eXz0ox+dfKoHfGPhq8ikdA3MMNk7y4FdO8XMhio+YoEts7GrQhMJE5QFiRTjRxjN5Oq7cQAvhsQ4hIkdcquhrR48L9szY/ayrCW7UhqAdHfqvXAswQNClGnd3dApgHb1QIWGbTt73wzeyDHQQRhOCNXIyMKbRZZRJ0sXpTHM/t6XfWNmFuvLjb4KAC2MpukMofmlrh3CWGD/eyYnMQPu0gTqJRTyVh9QD/1mGE0X/HxQZuYpxRibj9+CeUZXSFMv5wa3DcxGRhplm0UrhNGRny+LZdwZo+8MB+5sLnSbAQQKWeZyadXAS7xv3bL6SAOklg2i4UzGdOhnEE04hEGDM7P8AAwWsvH5vhgWdKVQjN7jGWYPMcNfrh/3VNceuGSqfQarzIY5OO1KOAYIdf7zfsmbxSwNZXPqWJYFizTcntNp2wRTEM7oI9YzMkwpsG1b7INlWbCua7bt9MCAFxqM6jpxj2gf0GY0bobeeX2Jt8XpUodGJh8zlmZWjyyzlDRHWNf1SjCQlziTxJ9AveSZAoJwBjEAMm4WC7AukboFMuyG9+3tLdZ1xeqlDYeXZiTN9c2CehicpKo4nW7wpN/m3pYsA8W9T/wz0CBKKaD5TXSjwz0PpyGvZhch/k+nFefz8HEMCxgUxzHXn9m2BqIt8g7xMo3pBHD+gFLCw3kgy0YRf5Un8Pe2SAR9EcdZFo+8kQGQvp88mIZZoyydvKYR3w3hQ8vt4sKfaJYdhfepTTyNzSWoJwJwVCMoTgF3wnFMO2e+z5l3g9veCKk+x0KzlBMpJgXwPRNOmzYQNddgtGEDLk2TJ/jfmX1tRAlD8rW9c3CSw+rlCsUzH4TYdx7qzwyt/Cuh18CopNDgY6oazxCn1difpQMzwwDLXupIY7RqKWlX50C+zzEUI3WWpPN18DKWDMhsOyt0lHQrc4ngLe654eIl1om6jzle4OXqIrjB5wRZsDSUwMTkZ5W/7+kH0CCFPhSvvPII5/PA61//LO7fE+B8i7YI7pxWKzWntle2bWCMjkfbGeO+ZbK7OZ2wCrDdbnjdM89g6wp59BhPbufAM+pi5O/ie81Igrznku9A3fnKIE5XZ8gf5vIMvkZagpOKMwK6czjt+D7XeD+GUWitBnPs6WaP6xn/fAeX74SnLOlsUky/iWGvQ1wGXFzq+OXtslVmmp3X5bL92JOhq2NyDOU4nEb0cnyYXMpPh0ove/3+Ykb6FdZNMY2b44hSUFKDx+cAqXoWEudpADKJxcUYGATQJidVnc/++blf4+/jVQ711xypvom8L1Phh1yna+5ppQ5Qzj2VNiTOK9GB9+9PtCJDylpfnC+lvo2yntWhLI47ddKpupJ/V84ke3zsx5yD0svnUmhHu0n/GaC0P5eySS3nMnFCsLfywoHtgWmYyYeykRiLiESpa+o88W/l39HWPPaYIwAGq1U0KANgW4OW7Iw5Bs2+dmgCMvA/dMEpAxGPTByH7PaMrdsYeVaZeXKZi8++LXMgNi8vCPV5oGR9nPUWASAlsDn1yaJrCQOacr7sq2bV8e5M9LeCL59A793Ks7c2ZYbhWEbFg8vmpS3YxhZnqZhjmR+QJLLnmNSDcj9WHOz5S76zLK7DdGYjdvpF8jjK70uWKlf/MvQm0dh0ZJo339jLaqMjiaDpQgm7PZo/dXrXz1axHrZ59rw21j/a5Dzt8ymIjH3U/ot+e6F/xL7ZjVfJM3xWV3SmGkTJz6Z1Y99s31nKzP5mTsmxBdapi/uZCIoSFIVkUzs5rjwTtdy3M2j8CJtAaSfX37BUh1xxXDm0YF6PaoMUzWDbqn9Uepja10u81PlNuDLmNes1pbWqy9ZziQJ2uYQCjm3PAyuZtLmMqRMDmC5o7Mc7jal+X/bpF/7oj/DbH/4w3vue9+L+/Xu4c+fkF53sDMwT6NA8t/Rts8tl0rAuC9alYWwd9+/dxV/9K38ZL/ze7+MjH/koztsZOzKd5MIOVRe81FEARDlxf7Ck6L+q2ukkAec25Qo9CS/61C92De/xq1U+XYenffeq7wW9HnDAAQcccMABBxxwwDcvqCo+/OEPAwDe//734+7du69qd301EBHcu3cPP/VTP4UPfehD+Pf//t8f5d/+jOCryKQ0G2nMGW5Gob2zszpmrjtDcXGQ5nfx3AjrZjG8zw7QveF0MozFwZnHbzej0JZR+olzZsxtn5peiuM+g06KbdeNU93HsMQzszG0TQdVhaeGR9ZZZ2mxyekszcsarW721jACEIcxHzfU0wjBg+3SlrwNG8EYdGYogBZODnvVTuhWRsyMAUwXD8xGY3Oeqz9vJgRuYBqM9kFSFYd0wtfbalLWg/8yCKGJOxGVt/eSjsLYzOw96vh2g0MYLzE8SKlmLGJ2Baawz/WvNMOxT8ZU/yrW2wPkxuiRRane6lyWxQ0+VqKt0iGHzOwgNNbSLqli5XAaLI2/lVM0Q6/yZbaliUGjL/XgE8ePZGAbn7HsWwgay74535rbpfZHPJMHpOG/vm+fzetGg2aYsLhRWwaCLcuC0+mE1jgeW7smxgesslrBpXoJL3ipLjeu1aCoMABDsSyC9WTBPAJBwwKVASw0bDIoxDODjS3fZVanoRmYx8mKoHnZhW27BR13HEtmtVkABXrf0EVwOp0isLE14HRjtwSBBlmbZ9gCtt4Bac5LmgVYieEhjKu+329vbyFtjVJnle4XaR48Y2NrUpwszRyao2dAD8sqqFoJp2VZcb7dcm/4MspiZdjO53MxyinQbF2YdYl8bFkWdIy4ZW1ZowDI4ntpDqgyvmOGtD4UHTbW1gSrp4gnn6yyibyD/EEa0H1NbTEF0jJIq5HGg16BZTHOpIIoH8Y+zDnLeeRt4cofYn8Eqcyyjt8Tajk0jt0cYAoRBmqVjFvdy55hgFmnNIz5tu9VXSYMD+Jx59WUIaAZnUwXqofvLzHZV2Vo7POhsKKfAkWfsmSJO5OG/1/xoGqBZtzrwZ+UzijnWeMyk6LxS2aHa2hL8cALaSZ1EgaC7rMFLSKWNax3dISPxXg5BLz5Pmz72V7RBmiHNLkIvpp+L1eTtae+UR0I/sKkc/AZ/l35LGDjUCHPbJF5yW644wpNcX8kHWr5PQSbkFoYYDliL+uwnF790ROctzOeeeYennvdfZwgwKJYlwW37mgeUKA1nG5u8PjRY8OTCLCsuO0bltOKZ193H6c7J7zy8CEePXoUWQGLeyN0q5S99tMydc40aGX8XB77OJZl8axcc1AyktRCFtdA3qAXuVzflCXJW4lD0pexxdyDdd2vwWUAwzyveS3jpfnBb3JIJ2x8cvHMHKix/+wrvVPfE+cdSUevdmyd8E95hqQXBSCa55AamHBtHBdBGDoHAZLVmazIQER7dj+PS8dSsLmYdcq+nBNps4U8S3rZjR1U6WY8sawUdNo5uzdNRzMHnbgfr+BdakBdabvgh8/UgNIY5Z7OyY9Cdl6urOz+Mr3CzkGU6VXWtOoAZ5eg7Kot+snM+y1sM9qqc9KCi2tw7TxtQyvnw4K91LVdrtf5l26mc2VQsgZfytkTGaRB9XUsY/GHratZXlywnzgg5fvE9SS/Kt52a0EenAHzKI5cmQgpxCcpmG0VgqMOSfkB5EUHo1j73MqxMujkMnCMOsG0nB5EZdkfrZQuA8BItkk5cPmaOt9SSuYNVYAXwThUMXuCBRVlaUHSKs+bqn75QnTO5ivAsjA7Wcp26h6DmUmVcmanl3hgtgWxt2kvamCKW9LHXeUk/PxqRFVoMnlOWxaMTpwUHgpY9s1Se63uM8tehNDjStX16KEGNBKpuR9yzNaGgKu1X/vCIWHLlOO0ypGKPY92poMpoBoMuC+EwV4KjatqoR3xeeU7qV9qIGUfOIaCF+7ZaEI8OKLSqCAC0kNXJFZ8Ljlm7jed0UMs2YEu+DRfLdxx/o1/Fr3Y1s0zEoMZpP1MqYgMPlpwAF+HyCUWmy8nSZ5T36s2Res/ZQZUI0CqqBQT89vr20tkdd9LopjBTqYll6iBi0l1fF8Kb7kukXN/1o+SurX8nTpD7hfyUX4SZ+dprtck+lOAOPTfeUlDVfH5z38eDx88wrvf/S68+MY34N7dO5b1dwy0ZUWdiSovkSqGbpBFYOYe42137tzB2972Pbi5c8LHP/5xfPnLL6eeVGllHlwZ4vVAZb5HfhG6/071CHl/BTOxH3dry/07rzEf8P0DZPCQzm3uzyT7Pq/RyNNxEYi4/PyAAw444IADDjjggAO+yeDDH/4wXnrpJfzkT/4kvvu7vzsu+38tcDqd8AM/8AO4ubnBf/pP/wlf+MIXvo4jPeAafFWZlOZgI4DGLfu7OmN5t4antbx1Mr8//50GymIs8t9oS8hgl2JcLcaYPIBVs4eE41V1PmwCr36knrMYFYeC0syV8w8j6nTTSNPIqXm7SGAGQmmW0aWWZaq3CgEzEjbJknVAGr9463EwAMmRxsN18/JrqsPaGKU0xEhTiXh2HzpH9nOJO41uCLGAp1bwcg2LEsYstx+V4Awry8VACwZxidQ13ZVJ0TxACyScfoOXD5Gp84ef3M3RkJlrmCBjsESGB0ZtNAK7A1bcsllLaXE9DX9p2kkjhI3dsoMIet8QAWN8VzHREC3BtuaeTQn2P8pcw9DHwBAYXS2yhJF8jHRcmPFVAq+qGmvR3KhM4zw/GzqwtGbObEcUs4QoGng7Px0nKJl3zNnANbCp0jBHWnKjbDINMIRCRLCuJ5zP5zDYoVRQoEPBcJs4obO5+Q1aEYEsCMfyGD3oJoNrmmfZcmGlVuqpSfKQzVODi3gJRc8G0Ja8kSxNMkOA06KVFCrGTZZw0AxcgQj66GEMtKxNGpk+LDBQI225Bea5s0O9VKP/PK1rGDxtH9FhQN7le06SF2F0z94Cz9Bjc1qbBQBF5hZYgEcfG5aloXfFsi6z0RYAhto4kbTNADKuP2A8o4mEobZ5Riv+TtqKvYbMtkNny57Hh4yI/SQYVc6AARtzZiUbtgY/Q80aBTPGs6RH95v63F1cQx0pAUgrYTD34E5zTtFgaM9Y0JW4c1tKJsLMFMgxtmUBIF76b0Db4iUCu/MCrrvzgzY7/MNhq5QJtr6y+Fwm2oQZ8d0gOYbhk0bQPhRDPECH1lPuGSyIlErFVs2gNxFA1Mu3BW9xWilZfGwOSa/kp2YA1nAQZNm7pIfgLWp4ixKEPiSWI6Xhv8niwWIbGVL6VLzNUQKI0gkQCw5nO0atumvDIbPO2X5nALY5Fkdm1pFcL64BDdUimbmggu0Li5KKzJGGmZD7HuI6lahJvczykAXPFXGprek0KSD8h7LY95zIgqED5/PAyy8/gEDxbW98A9blhO3cbV3XFXfb4nIRkPXkcqyjD4XXm8G6LjjdLHjdc/fw8ssP8aU/eRm3txt6rw5uTfyE/M09NK8T9a5cmfibikMoP3SUYKKFRHj+qNniwnFPp8POc8ChsMzQ7PyoWM7xXToN9pR1TY8ueu/OsfLNDTa3OsN0Yj5tHlSKdELhhUOp6qG1P2ULuQbXHFLTWYJdpuZ8ZUQ6Pas6PTKtUfxd6Mp+so2dw8kfop4c7Qs/959TyZ3Qorydhkp2bLPq/ROaXNUNPd07dU2z8IQpdMt/Ui+7Mv+y2NwTl/thbq1sytSxgCzpGnOudDC1EPpR4I60p3qxVrmvRj7vMshaJN2Wc4vyeQl+EDiKCeeShLzWxDF59BScUzKLshHqNEnfpGPqX/ndHKAEpGc9aZ+4MbSU7DaOtpQROxzttgxtAPugHnFaynPRPoBOds8mDjlGoYza7yP+9HWIzDRsK/iF/YhspWXseZ5tgblW1nCvd6b8mfk1z8s8h1GPyHcy6xZxRJ2j9sMzVa55zWiWF1/qpQhpgpbbIPbUiPNFkYGqfpEDqduiisTcQxHQIILUElDoxO08bdY3Ks1yLDFWx88kDwMvufSFNKONtAXAMmqpxtzKoiOfyrNm1W2mufgLWt6cuWc+xGTgpK08Y5fxTeeVSxkNzrkQYexnSZ6UOCx7L84VsVr5DpgHbeaTxJWUrF1NBD1kLTyDFgAMzDTAmVflyH4S7wKZ1hGFN6RKlLgPnjbhuAYSpf2IgTgXuOKelMyYCcrKK5miQ2aUKdi5pPC4ecLJi5A/1deviiuWi79KO+JnrUpoE9dGmXfqAJXXBL2wb8eJVuGfggSVv86zosDRCOri28GXJlFVMUWu5d0HjiT3apFMlEE7lBY69t/GjLNXHryM3/zN38R3f/d34R3vfAeefeY+1uXk50TL6ruua14gW70kZ+w91z0WwSoNb/ue78YbX3wRH/vYx/CZz/w+tq2UMC17lgGfxNOsu0wSE3uYVPXLb5/6UcrePbbndveqqdY+oXOCsyJ346PXdCaoz8yy+YADDjjggAMOOOCAA74V4HOf+xz+5b/8l/jhH/5h/OiP/uifKlBJRPC+970Pb33rW/Grv/qr+PVf//Wj/Ns3EL7qcm+XTi6EsQRMly8oGRdaedd/iqItizlIR2Z/qYcgnrHzEHZ5Y2Q/Lv7MZnyMqMYMg1pShz2mMbUYQYrRnoEW/H0OOkkH4BTYBB78szyUPe8lwXR45hX2lWOKsQxEdgRp4llQJIIZIpuIAKpiVg7xM3rgkMZVP4i7w5gGQsB9hIuU8ktpMmruDO69Z4CUMNAn58pgH+J8ETMiRGEscTwos2tUx4AFyQAst1INkQxusnm0Np/Gl6VBFNjOZ3CmcKPJUMnyUdgyTTizCPm6NzqwRSIDBTPIhPOYNOOBBrZgGmWg5uCuFotv2ViYHp8Lo4BYYMEY3Fuk2wzeghvQtIkbhGGBOU3Q9QxVC2yJmJvYk1LMwXDbldNfWKGcJjDS2DVyPxmtWqmgBr+JK8yQVjJf0ZgPH6IqgDljSeylnQXGst4UoeFtDzdGjZEmLoEFd7RmAQIMQpK2hANYmWWlOA/EAyUWv9E8VHFz58ZKUMEC3Yaql+fL99SQa2NaPNNQMQZDbL9sbmBbWoOoO/+704+PfV0EGxr6NtCWhqEdp3W1uW9nDOcjMoZlV1GjLQa5bH2zZ5sA3dC7Lu7oH8NvwFo2IVtGCwhZRNGGBUONYriKLCsqWLjONDR2tS66BwotAmavWZcVpzs3ePjwUQSIaR9+u9r/b+RlZjg7d89MRmdKa37bcZvKkZHH0tipGC5ejJZ7Vw+cs7W3eA8ab82AuojthTE24xwL95BaVhYw6xECt+yntYa1LThrjyAv7kgaJ7eezjvnSsZjgKCNsdn767pagJtnbjKsGn5oYI2sPCPnfDqdjN9uYyrfMMbAIpYhB0F/AGQJ03/IMSXfpGXVZmC04o6kpUFUbf3FZkDat1vscIM/5arx8kVKIBHo/OF1awZMGmatvCT3tvheyExiUfJtdERlN65LONJkyqZBl58oA/GMP9FgTUdN4teDP0dmJFDtaFgCXxEox37hXFh1os8IFoDTR/Bal6eaWXZi2s6S1N9hhpGQv8XAD9+3Ek4GmcbAceQfcNq3dW5oVQErMlCL/lSc7hT16oENwgBUN/oXnYbOJ0plHZRn1tBw3vEnLz+AqODF55/HzbrgdnTcOS24d++EfgbO544hinVp2G6tXOkiFtR5uncHN6cFEMWNl3T9k5cf4snjJxE03ZogV9bWIHgGZbUyewXdbeAilEUxmuR/pi8p6OVNuTNphUEftnOzSQtCtGdMHmXWPoXrCqqu/yXe0Bjg2KKda857CwaWmGeUbZ2+uxZo880OPEsUEqUXrPDga5cMAKQuFjpU1V+I//x3hsvP6nki+0iSmc4qevl++hFJJV8Bik4krt/z/f16Gn+y3/ZBANTxWGo3x1Mc5aqIUq0cp8Q1hDgrGJ9Lh24yiuSROfzZsce1Yxk5Vp+jE1j8+wwenPE0ZYapvQhlZOrHKR8lWvKJJA+tq6+6m2uuF8dBnNasm9MC8B11Xs55+w9mwCRPIf6ZyVBlbnM6W/gYrgYqku9c7BPE/mGfyd8Qev9uCvlM/FmyNE48JHnTBcxHDB+bXrQdSPOBZjBACfph+UE+G4P1s49IfHdRDmeamMQeyUH5pYiL9/LczbUUtHg/ypTV80S+6ftkZGD0rsx8cH/n27HCXNuY98xzFH7Bg58pJvpvrVk2UmYThgegSwubgHLPUOFtpA0vh+56HOPLm6WjDR5g40nkDgUY0rQP9pDQ73Of5lpojBtgQCKCBZ1OJy/pnUJAeUGqkqLYbuaZUBJtAAR9FPuP68e+ioHbCIV13VmL3IwxJ6uE2XIqbcxrpU6f+erECf3iQ75fvwP5l+ZnGWSBWHMos+JSt6z45NqVszZ1Xu59X9uhiGCQGD/5XQof1yXbLLkq3yxogrp9AsBSWE/YLpAPX25ZRS5H1S0dH7y44XtR4PjaiVQ7c5ZLeCJhcyqcP+ZM2h241q/GuinmALYpaMzXtOqFUL7BcWXbsx5S5h+/ZXBeBF6H+nPJuxkmHJ9QlgEReIT8hLs2/g5Z4vtEy9NJePZrnNFDHu0CI7mOO0g9gxfJSHNFppXP4Lhlu71v+N1PfQqqine9652AAjerZ5huA6fTCgwLRh1qdgqo2wkcD00Ep9WyCJ+efw5/+X3vwwtveBEf+tBv4XzrGd/LXud8Ugcj1qWsxUynOZeJeou4Kwxlj2e2V9YPRdbUPUP7Z+WtALP1J02kfrDbKK8B9nruNf32gAMOOOCAAw444IADvtnhfD7jV37lVwDgTx2oBAAvvPACfvInfxLvfOc78W//7b/F7e3t12OYB+zgNQcp7Q3e8+956z4Mc2ZxxDVjq+yMHzQQEjIQaoZrTrr68zJQSS7eve74kel24X7eIrK7XcNGLZhG/HYjx7J3UIrjQsSCSRjsw/JvzHRiBii3JXoGlm3bMKCgQ4vBVnW8ZlhkAFULI/F8CJ7xQAOliGe78JJMW+9z+Rexm2lD0gBmhuIlDsUKiSCs6jRhuuU0xqbhVuAH7mmdaPhJA0ALw1ManYcOpL2PONNpqlzbGjDWZL71akYTC56wm67qMUrVaF4NAkkro3tAicjkEIryEEE7ZWxqDt3me4VToFMzMh7RGFqyZzG9+eywkqDP2n+N6lzCYI0w4NFONRmifX3m6h/W17Is2LYBOuXrOgLMwpR0IwxmQnP8FBwy80mkaLcAmTEGugdFCJoF/aiVTuu9h9WkudG+NcGyLti2LWjGjLC+RosFeESQg2f6GapW0guIrE3Ds8tkcEaP9VuW5qUFGcDT3ai9eLkBf8eDLbZtM0N5cTavy4Ktb+hjRAktHRZwuI2BBQ0WCJd7zvajQR+8MU0agWd2ylJNgJWmgo9FWkPzNYB60MgYWJelOGoEosDoAFQgixtUdaOl02l8wRgC9VJKfevo41EEMIlndkLfnJnn/hlDLWhFNcryMYMR17+uEWnYbtgOC6xyPkI6HurjHqRc48/i9KLogAiaiq1DYxje8NgD7s+UPcZzF1hpsoZFNDNI+NgFXp4CGTijZq2FxYWYFCRvWcUC0mrgARlUk5wPSwGqGyDpZFraEjwI3J+CcN5EqY1yu76PjjWUL4myb5wvH7T1QCnTtmCMDu2zgX1oj3XKjEbkEcxyhTCqcm72fWavAsctxi/qfgsH0VAsYm1lsJoF3akUw7aq0asYFx1Dce/efYyh2LaOqNQpFvyZWbGc9ak5K0UWM25T3g0AoqjlR0O/mYz+lYbE1yuDZEgXk+OL4qkafSedp+hAWpzqocvsnMzBD4uu4bKC+6uJl310RwrLFtqjNLfPN4UZmJD8fdazgpe6w4I8Nd6H8abeB7708iu4vb3F869/DvefuYfz+YxFAO3E8QbIitOdBTJWPLm9BQRWdnNZjHV1xYuvfx3u3b2Ll770ZTx69CjWOEpnhL4wr5GU8c3rV5xd9VnOkUHaRZeoOK+gqiHHqzeB+DV6ZSB+yi4Las6AGjq7KcueBnW/XH5+ObZvFdgHUFRXEZfi6U6X6jpCPrlHyJ8KruvRT4ei+02fIvgb20mdmY7n6+etbCudXzUDYdUL892SYVLEMstIxebTgtok9e7dWauOJc8IeeaqATEaWU0TLIAlx4DgQRJ8sGZCnefPuWfwxj6Ap0welSo4h8mhKGwD8/4h79uPvfB14jZxI0VW13aQLk3F1Cb1j1HOM7XNOt4ICtFo1t6Pk54Rj1LOx3AuaffaeSLIotDnHl+Z7THntms+9ivnY0PIrCxXs42UBbA+XLcmToJ/enuj4ghxnoi1UJYEzzmod8PLDEDqKjzjjxyQy0LKtFLqakeTLGGb8rsGnCHGDiCyC8XcJx0o+QMDAur+IU6XpZmeq5oY8efHUDQGOEx0JtFAsiSJv1MHy++YcTfX287a5FOo+l+sJYPmUfrzcBGhXKxnQMRZTP2cwhLdUxADR6WI7Mucgd3JukaEKRc4D55BcsgajceySKU0zfkiddnah/HsfcneLNMOnvgLfVB3Qowt99+kzQhf833Ds+hOL6vzNnqVWBHaG0gvud/s+zj3kh+ELpKXDdL+lbwiLnjEd7yWpB6oB+zissBg8pBUdY0CLxJ4iPOG8zJFzj1wJUjccl+Wf/fy84I3u9ANLqqWzbU122c1Qeyr6wAW/Dvv16qf2qeu+U2tTTywyOfpqLDnu9GkTA9ONs7aPvslrYmEHj/3XadkbzJAjvqCdbWXdy58yvgLamAXNObSkNM4dzpgne+nP/MZPHj4EH/p3e/C6597Dnfv3gFg572k7wEdZjs5NTvbQXkeFz+3DNy9OeF7vus78fjxI3zyE7+Lx08eh37O/nJWVZLx3z0lVFSFEN3pE0UHwBU9ZH402kg9q/ZzDXeBtKK27EdY3tnpFXOb1lhuqb3+ecABBxxwwAEHHHDAAd8aMMbAr/zKr+Dzn/88/u7f/bt4/vnn/1R24nVd8e53vxs//MM/jA9+8IN4+PDh13G0BwBfZSalalBLB5zOh5xyaL3mXLMTlOzOf7QOzQEeFV6NkGbj+Sjn7RxXzYC0P6BxXAz8KQkb3HgyJiMP4MY8P5D7XbTZYD6Nzw58Y9SgqIbZaLQ/u8uEbxpDR8G3Ds9eM8w5TxtD3OIVzqfc5mebdEKEkyODimi0r6XOmOFIRCxDgScDEi8bp2N34PUD+xQs5MFYPOzbfDVuntIxLfxPBNIsg0b3cnYWbJLPL24kpVGYxmLilqW0oF66R+hE9gAzGuRbrneDAGNgCDC6ZWvhob81d/xvoKVnWuspUAtEQxoU944eGuQjK5Gkk5tEQaeE+DvqQSuiClkaMDLgK/ekBco0kSj9sdxY5iCWdeM609EqcBrwzxgJYmMeOZ8yF/bLeTTPXDHNnxaUwjNo2A581PE3iTJg261lSlpaw2lZsa4edCXwzCpuoGIw2rIAYplatBsOhlqWHFX1IKWSAp6ZdcaIPq1E1bIbZ+4tqDLJEaQtWJbmwVLFkCM0R5LGG5pYCTdWd1qXFb13PHnyxEJjWrNMSTrM8KvkiYC6U2k72zi3sTm92eZdb26cPhiUJ04nC0QHVCyARcSzrCigfXhpCMUYHU1WuGk4yFrEMv6oMQQAhvcGeAawAQjX0WggTG8jDXcMLlPQUOoGacm9XHlA7PUw5pNxMLjQb3THXptvu46Re0qV2Wuq/MpyeIAGT+iR7Q6Jx8JrtsHyXPmMIsv46UgnAvczn6WcoGN520aUUxQRK1Oo6oE11QnFsmk2lj66ER88W9fS3MFmJVfNgSUZbAGFROlE41kWiDnCMcG2GHhpk6PBM0vHTDSOXI/BWgkOLE/aPSMejbQROFKzDYYhGWlwRpagbMxkVoyltuQSzosnT55AZIngD5tjQ2sj6MHGJWjI29BDS0ZCoOAs55eyChMd0am2LC369E1j9FiN0Du7ffDPMjbKr1lnUjew13KwpQTibiwcMnHPPURHCW+bi+8lY/fVIO3Zh8DgrZ1BvOxTkJdPuMpxbH3glUePce4dL4yOZ+7fxRNVrO2Em5sTRFZ0DPQ+sLYV67qiq2X5Op+7Z9u0YMtTA5579j6aAI8ePcbt+ewZJFhCMOfATAMsZVjYmeMPLrNm4/w13S2Cjvcyvb5Hflb2hwVZtoleDDcMnE1SacuCdCKnzvU0nbfqmdccCF/f4Jw/G5h0clxZi1ebUvCBigMAqAHmX+t4Zl4gcp1OLt/n8/vsM95m2Tc8YxTl2J7Uy72XZ6V5na+tOXWXOp/92W0al8ZoksdOZ7T8jrIsB0D+yHPGdTxRf+X+y/EXBby8K95YhMYK22ZWHcnn8vUyK5+X4+5i7hM+EGWDY63tt3i+lTEz6F84qDISKb9JWe+BcZ0mi/gwGZz42j8274WccQQxa6G/OFhSp7eRFYwiAgGQgZJsJGUMsMc2M0SGvNISSJwT2IkQ9aA3rVOu35ZJ8olcu3nGDBDRfSPYdWpnz7LuzN7I8tniQ2X3hhPT2wE/k0k5GxHnpf8MvLFP9jKaz8NVK+IeUmbk57W5vHhinm2YHjVfFmHp7a33OA9Tr+XFAeKM68VgbJY/F+eZy9IABosheU+l/9D0LWWJzwUQzhnMTGnnUZJy6CQxH7W7Qk0swIplzKgLlr0V2xYyrXvKdD4607C/dMmziN2ibwWfi080aSTOsvm9qcut0MW83pFByc8dHGTb7S/AcMCzcM3INcu3S15P2tNYq0IjPpnhNL1/P/vgGmXQqNjBeQrQQ5xnuDuJLwVYPlgzaD/bix5BXhN2qTIzqvZ7fRnzR9O+i+dyUighjfEcg23q86o5ExJY7yNYV76R8j/lE3Gs4GWRsAUixULlAXxvz6PgeyIChy40a0x/X0CVTaRXEWB3NrP1c344C4zp97DjFR2AvKPKT26+2B+k19gHhWdUHW83j5hjEQHi/HWMgS984Qv48pe/jHe/6134zu98K+7evbFn/Xy0rtZC9/cZZCaAnYv9TCAQLAK8+53vxAvPv4D/8bGP4Y//6I8iuIy2ltzLXLG01T4N/XvZfqHG1jNseWnf5IXcJ45n9hV0hrJU5P2J6cv26liuz+WSPr8VzxUHHHDAAQcccMABBxwwxsBHPvIR/MEf/AF+4id+At///d//p9Jtl2XBj/3Yj+Htb387fumXfgmf/OQnv46jPeBrKve2/70a4tJAwvPXfFO3Gl+vGsqxP1BdBnYANHTxHZ3eZ3KB2g4NhvXm8TwvBic1N6hVC0k1tvjEmAmmZKoIZ5ZnQUrHgLVpWS12Dihh5pAMJJrxmD9p3ANgBvJqRJEMRkn8upEsbixm+2mMt0HQYc9SSxXnvIUUcxQesukIN+e4hJHccNPEjMC9W5AEndDDLDlPP5gLrGSONPRtg7oTiivMG688iEt5Px3hZjpaWsPQLZzxTVY3qI6yVphwXXGYnpr8rPddhqiJvq8HwYVRmI4NL4dldDk7TgQZrNFk9fYQYxCxLEJWAmnzzCGCesuZDm8G9CgsS1bcEeM4aEgk/UzBZl5qagzHmb0QRpBiBBbxUmeePYYp2Wt7+zWG01nv3fZA7N/m2Zu2oPvTumI9Le78lbC7Kc2wYgFWo1u2oo7FSrwBwGDfhosIRnIDFtehriXHa8F1+T1TBPZupaKal5mr77ZYh+QNzCBlQUFuTOuWZac1hNNCACzrCoUFo6gKMjNLQ1usffahvr5jdCzrAgxgaVnqjLdaLQiJdA/Q6L42401bd07imZNEh6/HwPASWT5J79cCFYO+24plWdC328jAAKQBN3BsGzccF7EvmUIOV9aiRBBObLkJxDOWDO5VjkmsPJ6VQUMYq8UNmr1kl/EvIhhRLS2cB/ZYp3T4zAMQnNYVo3fbWzQM+zPMrtUdf60tlt0GvOWvGF2xnrzsWxNU+ZPBJR4ktWTmHw5lqAK9I6LmHGjk1WEp8FsTL23Ygg4zQIXlKXOP0/IZ8y50zYDAvSM/PmMghtNLdcrwueuOftllvSkG7d07TVhK1crc9V4dEnw/DdTG5zUM6OJZ10wmLC6n+rT/xct/5u1/L7EZmdYW2P4YOSZBGQd27WWwtJbvwyERYm5WmIOHxOwY/FBKEWnKPK6bZVCi01PLWgiirI6kXuBhWr7OzjNDnhY9j8ZyGsJJbHzel13dCfLkvOGPv/glPLm9jzc8/zx0BfQ8sKweoNw7Hj1+HGvStWPbNizratnIumUVu7kR3NvuWMWaR8CT2w090xi5SBmxXio1g4PjbncYqfK54rkVB2E68YmwS92RX9XHWH6Njm4gHclWnsJLheiwEpW+NgOWsWJ2DO4cHEWfpkxM3ev6XL+Zoepce9331Zyzr9bO3kHzlfCRX8/nicrnXs3pNI+jtnNlnNlCIaniBL1wEGW7vExBdrZHy56/Xgtmqj/DGVlHJwCkymHE7+lYvtaH7vrXi71X+aGz4zhXQOv+KjIEADPbsWxyQw05EATjqTPR5F9WUrXUndvhjM2QNxpaij6oyVe1vqfUE2zPcx0LNtMpq/n7PEZ2Xt/IPq6up9MYy30Zz6n06Hgj33fevT97CTJwZIyUgXuoJJ2BmYg12r9RA1E4az5LfEVA/MV62Dtz4M9eb7jcXyH3fL7qn1nwB0fiOnRLWrumjljwK7PHznYInoENnVdwXuaeupLPouCXZdJHyNW5vBVxEedt9iFJF/WsErRXZHJrLAk6Yh7xno+t1ZLmjfo5saVALWsV4/ExuqyHOh2F7PK9UM8C4pjd4Tum6/sJLjcFGjaJxIXpupFdVrNdYJ5bvOTYCNTwmUleeL+VzoT7mvqBB0dO+zGDsRLrzhPYhfp+qWV4Y4UTSA/BZ0O/y6C+aseJs5ESrxlYl/wqHjCdjXTrc42Mksp+BjD8UKp7STTLxGhbghou+JsPJZaD2axqO0Jco+hTkBKoVduqPD072PO0Op6CgUstItoyXZ8nicxSzHe9Nf8h5Rvu97B9lQBOfm+8t8o37sUx00wR7Mnqy9mS+5bzLrSRsrKM/BovL3SVaCh0r7HzMa+mxjz2cquqaVWCU0ZeowyTiYlQ2a1j0JN/+PjxE3zkox/F7fkW3/1d34n79+/jZj2hj4GF5eYBP+va+LvzcYVgaZQLdp5+8Q1vwF/7K38Fv/8Hf4Df/dSn8PDBo9K77zaKz/3Yr6N2JzvL3Hb6aHlhFq47qLoUaWbqq+zDoATnWXWA2e31fnLO9fdXe/aAAw444IADDjjggAO+deDLX/4yfv7nfx4PHjzAD/7gD+J0On3NbYkIvud7vgc/8zM/g9/8zd/EBz/4Qbz00ktfx9H+xYXXHKRUb/vX3wl74/feEDU7H/bBSXDn9Xzjh9kbVMfu/fzJAI88TPIgOFBv782GvDQc8rNrgSYcN43W3pIbE91xvC4YAvStQ3tHuApVMYbEAX3oQMPCb8MItSyWiYVzTBzTEYo4XbYmxbEq4L24ODxrZlgQ4QG7Go/Fb0heW0MLXjA/eZvwpqJeWqjgQTUcygwKgOZzNHjQoWtBCAjjWI+bm3PGpqCLkQFlKM+wq9nYiLDrWDCUO+XPGyJIjCEwkuniaYyl05/GV/uuAX4zkYE5PhIAinVdoPBACP9cShkjVbXMED7/MUaNIYgMNCzRNzsGrL/mjoelWSmm4XTIsnWkhUWWWIsx3XzNTBI1c0kYTMNA6MbKXUBRa6vTpRu/PTDQDHI0onK/pKu7Gh1Zfm7a7wJzPLhxu7WG0+mEjZlCoDhvZ0CtXF2XhrasEFmguoWByRC5FeOaB8uti5dg2AeL2V7ku5w7cUp8qCq2sYXxGQrcuXMHfeswk5e3VwIOI2gAtCFaWb+63tXYlkY+wbKcoMOMakvJFAaF00zhTQyuoOG/BC7aBVzjJcwQM4SBlOr2cToI+Y5CW4Mui/FSIJwoKoK2rL7G7jDQzfaN0+bN6Y6V41K44517BD43o92uPQzoDJCk86UG/ZnRfA7k4I4X8vkSJGN71gJ8umdWsbXsWBYJ54/65h99ljFRjoBxUEEmaaCLIKoyJlV712iiBBSVfbwsy5TJZnJMeXnJAeeRItg6++luJK8ywf8eSbciduN9DI1AKAUwukLE8R3GYZIyg/M8iFQsS9K6NvTNSuJFoEu8KdA+0OOGe8IYc7BnjDmMri3ecd9I8l/k3yLMYpEZ7gyHgtjXdY9CIcuCsTkfi5Ir7mvxwErivsHK6ukY6NXg70TQRCxzXgR8uGutWXnBDGCpuks6IWySFiBDHpm0IxN90NGwp43IoFB1EV/8XkpQCrOrFVqkQ0MAKB3lpNgSkGtbiN/YOnNBa3AgYxkhDNLK9VNJfY68qgYzgSVwfR2686QvffkVnM8DzzxzH3dOK+7fW3Hv3h3cv3sPT+QWj588wW3fsK4r1psV2/mMx0/Olt1sWdCWBTc3K25OC0Qatv4ggv2MNjRuXqvCy+Qi9kU4u2yQkV2Dc56g6HxCNLp+EeWIYgWuG/Nj79JJwbVuC0QFwgBvNR4GWcq71aGRv5N1XdO994E+F3P6JoKnje3auK8FTOxaw0VzJsiutHF9rWofNSjKfUD++ZWe9bKPvRzY9XRl9AB8LwUfrecBGOEpqizLgJM6lrzIcHn+Kr35eC8nVR1xVe6VD2c31rVLHy6nCddKZVfHc1F7sV+b+fyiFzoqf6eeW7/jmKh7cT0r0vhnrvGVYJvSh1LBKzRCXTgDU1JOKsokr5K8PVXl5zS+Ms96tigoIWZCnw6pzXHWcy2Q2W+hF3Qfum2MbMJUzIcyTNpuXlokz26+Wc7a5ROVrWCwdc4zHdY5XeMdgXc/j7D0c/M5aZ/P/eIXKhggkDSTLdKuYJmGai95bqht5nkidRWe0ebga8GyrCWIwecX60dyyedNts9rVQqMxWci5awcY3PZNT0345MBNTXzm5Z0NqoeMBI8ccSypS5uHQ1XnGL8095sZe3VLzchaDQDqnyvTec3gLYX1TIP6h0Tvy76E0ivuTOT7Csv4HxTjwQ8SB9ZMjjxQ/SUS2ceQFXZRLVDTfgvfITfjzFQSD+BexfUpTNIjGUnSa92uUkq2mPAU0CLvZ18uBEHfplljz9vI/kc+YHE5+SnTchjSCszV6UMm6aIlJ2kkdC7lfvOx1jWGKRtRaF1gOfwWW9iv+UDpzUj/bIm9bnAWzDc2A+VP5XJTTo/A7NI6xkAVSWG9xNNFT0kB+/72r4Z+zUuNPVqOqCd0XTaVxEAVV6RRPEkh3lskPLdbib5/IRPtiDRjgoDIcuLvrf2KpSq4nze8PGP/0/cvXsPb3qTYLsZWJaG09pwOi1YlwUNgm3rnoHd7Z5j4LxtGE6XvOh6//49vOPtb8fNzQ1+479/6FJwQUMfl92k65M8kyfPLFggX4jPUo7m/q04n+XLq+nyImKlsQfHWnSYWE+J7+KdSRessuWpXR1wwAEHHHDAAQcccMC3NDx58gT/4T/8B7z44ot417ve9adu7/79+/ihH/ohPP/88/hX/+pffR1GeMCfKpPSa3gaNDak4b62IWlwEIFKf019p/HZW/FDfxpBx3S4rf3Xv/ewdzRfNYZqBiYsMAfrCGOmgNkNrGyTl8hRxbKsHpjBkyh8DtVQmcFFozjipQlG72EgN+NLOt5qkA0DQk4nW9q0u9Bo2bD1zQxZC8c3Z2rgunH+zUuqJK49CwDLMYXzrWUJpjq2xqCagVYCchiYNdzxPrI+FKCZYQclq4EftWHFnnxU6mmcPW39dt48q48b2zh/EQ+imkvgALD1mtaZt1vd2OW4gxv/mgdANGZlcnzVbAw0ONLxTOOTrSlw44EvvTMTl/20S6jDMkbIALRPNQgVXpaKOGnwkntjWieFoPet+CksVMtIzPZdBOcU+tYSJEBTVBj9Wgbu2By7B9ll0F1bBdCkTzq6RMSzA5mBT9CivNL5fIa6sZcBF0bTNp4+Bpp/vi6WwWjbNgvgivFaab8mgl4MhyzlFoE5vrdIs1Jur5pjocOCzmzNGwTn2y0M6NVYGOssw0rN+TeqFsASgSnrYkZQVaAxK43RTYNCeavbx7S0FQNA3zYssphTw7MbSRMseoKqRHY2BsQsTazcgypOp5NzFcXpbjNDltOxjhG3DdfTAqgZ9ewmY8ciCsCCAXQbECjaAqxtQYd6QBTDAMgzG4zjDHeUDMelRukuQ3E6CVgSibKAARLMfNM76bkQv7fhbAAMlljaAgyFqGJZG9abGzx6fOvJmzJbXd862mJOKgvO62HwN5oQNFkwxhY0MRnmNflF2u5TVjA4MXhloTfyvO57VVWx9TG1N2Jft1L6EbGWpFXjq83LlzmdiWWZs4Am518jjf+232zvtSaR0S2cCMV5wwDFkDWlDF+ZOGitnW6aCiLLFT9uzgOYZa3K2DEsYIsObVEzPDfPhtaHld0UY4qGMwUU5pBBQ/Dz1gRoDWPjDXxFH1YWzzImFSOuqjmR/Ob/EllKNOQGkWLrmcFCdf1JA6pA12zHWJ96sGZm8bAMbUZXU8k7D1Si7KHTIXClDLwbMXelV8b7i8yMcD1kKML1GD4WpykpS46qY0mU3BDBLhOTt8C18/1IWSKQCEKFmmzqaiLs5QeP8PjJLV7/umdwOt3HcvsEz9y9h3t3Txjo0M0yi61NcOdmwaMmePTkjG0M9POGO+sCSMNpWXDnzh1I67i9vfVABOOtOkhbpF2lBypxRcdIrNusG9KZQN5UnfOp82CCvX5K4FpmBs0WOoh4Ro82OYczmK3qgfu2r41hP5ZvRXh6UFLuxVf7jvum6kJfCa457u1ztv3a4KvFewYiIXxX7LK6kULe2e6Ksw50Dix5Gg1ezG+X0Y37A0774QQNnh8C23V7xLg7L3kwu+18xLmAcHwq2RudxDOdS3mQ5wnO1eaQfDG6LXw7/gZQAy6w78N5fJVfIQ9V0bWWudrt7Sv7s/498W7gKTRZs2VyHNVpWNbUhP/sHPXD38rgfM0gjiAob9LWx8+cDHwrZ0l4z1H6JsZrTdQMOUmsOdqYNhJfM+0V1QEzL6U+tMczMxPPDtbEjW8LtyXwPGmXQLgGHCXPjxPP94AlymTSA8/iVoHrkvdUR+/Ml9tMe5U3+dh7H4FTTPPJuWeWX84rS29zr030pLt1mHQXv6jDyyquh8V+4hnP90EL+cSLDBrnG1VYaSUJUWrr5+XUFw/eGH14e8N5FgAsiHOOCEzt1RIElnqVkTX3OalixPySxutaCPZ7q66NvbMrpUo81XS2sJNZ0Ldahtveu+0BCUqqTLQs5RxMaBmSSljZbs2TX+T6h/3FdeBrvN1+HbHFSXclLDPGEkFEhcFrHKhiYJglD/vZ7aWRf2vVp6zimbdQFMgyNt3JqjnoaddnoEVjRuWJoNfQlUsro9KN8iJEyg6uhjgGI7u068QXe9H5b+5qmeiQfL7tJjLT48y7jX6KwN0JTa5vyP1p3jOuFHM5Uvb9VJ0k1iFpOd+WGJZlLHZ6ZpAhlCakWQe9Pg1fe9kvX0xSifCi0wa9xn5A0G/fBh4+fIRtGxj9MU6nFU1u0BqwiGBdXN/3S0mtiZWPblZKuutA9+zSi2fAvbm5wboscVkuO0yeFPpFfFZpOINXr6Jcd6F6FzL2cq2u/z1phvHTgiHLJZm9nHwKHVyTq9MAkfR9wAEHHHDAAQcccMAB3+rQe/+6Zz3602RlOmAG0W9lb8YBBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcc8E0P7Ss/csABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcc8LXDEaR0wAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABB3xD4QhSOuCAAw444IADDjjggAMOOOCAAw444IADDjjggAMOOOCAAw444IADDjjggAO+oXAEKR1wwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMAB31A4gpQOOOCAAw444IADDjjggAMOOOCAAw444IADDjjggAMOOOCAAw444IADDjjggG8oHEFKBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMA3FI4gpQMOOOCAAw444IADDjjggAMOOOCAAw444IADDjjggAMOOOCAAw444IADDjjgGwpHkNIBBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcccMABBxxwwAEHHHDAAQcc8A2FI0jpgAMOOOCAAw444IADDjjggAMOOOCAAw444IADDjjggAMOOOCAAw444IADDviGwv8foaOpPTk2Y8AAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAAH/CAYAAACxPcr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebytSVXfj7+r6nn23me4c9/bMz0A3S2CCo0DkwgiHZmERI1GCY0GO47w+ol5oYkCykvUhAS/qEiIARVjFNRE42yCA4qaOAAyCA3dDE1Pdzr3jHs/T9X6/bGq6qlnn9vQEJrGUB+4fc7Z+xlqWLWqaq1PrWVERKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqLiPYO/vAlRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRU/L+NSlKqqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqLhPUUlKFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRX3KSpJqaKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqLiPkUlKVVUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRU3KeoJKWKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKivsUlaRUUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUXGfopKUKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKiruU1SSUkVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUXFfYpKUqqoqKi4D/GSl7wEY8wnde/rX/96jDHceuutn9pCFbj11lsxxvD617/+PntHRUVFRUVFRUVFRcWnFldeeSU33nhj/vsP//APMcbwh3/4h/dbmZaxXMaKioqKioqKioqKivsfdS9RUVFRUXF/o5KUKioqKs6Dd77znXzjN34jl156KdPplEsuuYRv+IZv4J3vfOf9XbT7BWmj8qY3ven+LkpFRUVFRUVFRUXF/Yp0mCD9m81mXHPNNXzHd3wHd9555/1dvE8Iv/Vbv8VLXvKS+7UMxhi+4zu+434tQ0VFRUVFRUVFRcWnA3Uv8alF3UtUVFRU/MNEJSlVVFRULOFXf/VXecQjHsH//J//k+c+97n81E/9FN/8zd/Mm9/8Zh7xiEfwa7/2a/f6Wf/m3/wbdnd3P6lyPPvZz2Z3d5crrrjik7q/oqKioqKioqKiouK+ww/+4A/y8z//8/zET/wEj370o3n1q1/Nox71KHZ2dj7tZfnSL/1Sdnd3+dIv/dJP6L7f+q3f4qUvfel9VKqKioqKioqKioqKivOh7iUqKioqKj6b0dzfBaioqKj4TML73/9+nv3sZ3P11Vfzx3/8xxw/fjx/9/znP5/HPe5xPPvZz+btb387V1999T0+Z3t7m7W1NZqmoWk+OVXrnMM590ndW1FRUVFRUVFRUVFx3+Irv/IreeQjHwnAv/gX/4Jjx47x7//9v+e///f/ztd//def9560T/hUw1rLbDb7lD+3oqKioqKioqKiouJTj7qXqKioqKj4bEaNpFRRUVFR4N/+23/Lzs4O//E//scRQQngggsu4DWveQ3b29v82I/9WP78JS95CcYY3vWud/HP/tk/48iRIzz2sY8dfVdid3eX7/qu7+KCCy7gwIEDPOMZz+C2227DGDMKj5pCv9566635syuvvJKnPe1pvOUtb+GLvuiLmM1mXH311fzcz/3c6B2nT5/mhS98IQ972MNYX1/n4MGDfOVXfiVve9vbPkUtNdTtve99L9/4jd/IoUOHOH78ON///d+PiPDhD3+Yr/qqr+LgwYNcdNFFvOIVrxjdv1gs+IEf+AGuv/56Dh06xNraGo973ON485vfvO9dp06d4tnPfjYHDx7k8OHDPOc5z+Ftb3sbxhhe//rXj659z3vew1d/9Vdz9OhRZrMZj3zkI/n1X//1T1m9KyoqKioqKioqKs6HJz7xiQDccsstANx4442sr6/z/ve/n6c85SkcOHCAb/iGbwAghMArX/lKPvdzP5fZbMaFF17ITTfdxJkzZ0bPFBFe9rKXcdlll7G6usoTnvCE86agTumZ//AP/3D0+V/8xV/wlKc8hSNHjrC2tsbnfd7n8eM//uO5fD/5kz8JMEo5kfCpLuO9RarLL//yL/PSl76USy+9lAMHDvDVX/3VbGxsMJ/PecELXsCJEydYX1/nuc99LvP5fPSM173udTzxiU/kxIkTTKdTHvKQh/DqV79637tCCLzkJS/hkksuyWV/17vexZVXXsmNN944uvbs2bO84AUv4PLLL2c6nfKgBz2IH/3RHyWE8EnXtaKioqKioqKiogLqXqLuJSoqKio+u1AjKVVUVFQU+I3f+A2uvPJKHve4x533+y/90i/lyiuv5Dd/8zf3ffc1X/M1PPjBD+aHf/iHEZF7fMeNN97IL//yL/PsZz+bL/mSL+GP/uiPeOpTn3qvy3jzzTfz1V/91XzzN38zz3nOc/jP//k/c+ONN3L99dfzuZ/7uQB84AMf4L/9t//G13zN13DVVVdx55138prXvIbHP/7xvOtd7+KSSy651+/7ePin//Sf8jmf8zn8yI/8CL/5m7/Jy172Mo4ePcprXvManvjEJ/KjP/qj/MIv/AIvfOEL+cIv/MIcNvbcuXP8p//0n/j6r/96nve857G5ucnP/MzPcMMNN/CXf/mXfMEXfAGgi/2nP/3p/OVf/iXf+q3fynXXXcd//+//nec85zn7yvLOd76TxzzmMVx66aW86EUvYm1tjV/+5V/mmc98Jr/yK7/Cs571rE9ZvSsqKioqKioqKipKvP/97wfg2LFj+bO+77nhhht47GMfy7/7d/+O1dVVAG666SZe//rX89znPpfv+q7v4pZbbuEnfuIn+Ju/+Rv+9E//lLZtAfiBH/gBXvayl/GUpzyFpzzlKfz1X/81T37yk1ksFh+3PL//+7/P0572NC6++GKe//znc9FFF/Hud7+b//E//gfPf/7zuemmm/joRz/K7//+7/PzP//z++7/dJTxY+HlL385KysrvOhFL+Lmm2/mVa96FW3bYq3lzJkzvOQlL+HP//zPef3rX89VV13FD/zAD+R7X/3qV/O5n/u5POMZz6BpGn7jN36Db/u2byOEwLd/+7fn6773e7+XH/uxH+PpT386N9xwA29729u44YYb2NvbG5VlZ2eHxz/+8dx2223cdNNNPOABD+DP/uzP+N7v/V5uv/12XvnKV/5f1bWioqKioqKiouKzG3UvUfcSFRUVFZ9VkIqKiooKERE5e/asAPJVX/VVH/O6ZzzjGQLIuXPnRETkxS9+sQDy9V//9fuuTd8l/NVf/ZUA8oIXvGB03Y033iiAvPjFL86fve51rxNAbrnllvzZFVdcIYD88R//cf7srrvukul0Kt/93d+dP9vb2xPv/egdt9xyi0ynU/nBH/zB0WeAvO51r/uYdX7zm98sgLzxjW/cV7dv+ZZvyZ/1fS+XXXaZGGPkR37kR/LnZ86ckZWVFXnOc54zunY+n4/ec+bMGbnwwgvlm77pm/Jnv/IrvyKAvPKVr8yfee/liU984r6yf/mXf7k87GEPk729vfxZCEEe/ehHy4Mf/OCPWceKioqKioqKioqKe4O0Tv+DP/gDufvuu+XDH/6w/Nf/+l/l2LFjsrKyIh/5yEdEROQ5z3mOAPKiF71odP+f/MmfCCC/8Au/MPr8d37nd0af33XXXTKZTOSpT32qhBDydd/3fd8nwGhtndbrb37zm0VE19pXXXWVXHHFFXLmzJnRe8pnffu3f7uczzR0X5TxngDIt3/7t++ry0Mf+lBZLBb586//+q8XY4x85Vd+5ej+Rz3qUXLFFVeMPtvZ2dn3nhtuuEGuvvrq/Pcdd9whTdPIM5/5zNF1L3nJS/aV/Yd+6IdkbW1N3vve946ufdGLXiTOOfnQhz70cetZUVFRUVFRUVFRUfcSdS+RUPcSFRUVn82o6d4qKioqIjY3NwE4cODAx7wufX/u3LnR5//yX/7Lj/uO3/md3wHg277t20aff+d3fue9LudDHvKQUaSn48ePc+211/KBD3wgfzadTrFWVbz3nlOnTrG+vs61117LX//1X9/rd90b/It/8S/y7845HvnIRyIifPM3f3P+/PDhw/vK6JxjMpkAGi3p9OnT9H3PIx/5yFEZf+d3foe2bXne856XP7PWjk4tgKa4+1//63/xtV/7tWxubnLy5ElOnjzJqVOnuOGGG3jf+97Hbbfd9imte0VFRUVFRUVFxWcvnvSkJ3H8+HEuv/xyvu7rvo719XV+7dd+jUsvvXR03bd+67eO/n7jG9/IoUOH+Iqv+Iq8Zj158iTXX3896+vrOf3xH/zBH7BYLPjO7/zOUeqEF7zgBR+3bH/zN3/DLbfcwgte8AIOHz48+m45HfX58Oko48fDP//n/zyfsAb44i/+YkSEb/qmbxpd98Vf/MV8+MMfpu/7/NnKykr+fWNjg5MnT/L4xz+eD3zgA2xsbADwP//n/6Tv+3u1N3vjG9/I4x73OI4cOTJqjyc96Ul47/njP/7j/+v6VlRUVFRUVFRUfPag7iXqXqLuJSoqKj6bUdO9VVRUVEQk8lEiK90T7onMdNVVV33cd3zwgx/EWrvv2gc96EH3upwPeMAD9n125MiRUT7nEAI//uM/zk/91E9xyy234L3P35UhYz8VWC7PoUOHmM1mXHDBBfs+P3Xq1Oizn/3Zn+UVr3gF73nPe+i6Ln9ets8HP/hBLr744hzONmG5zW6++WZEhO///u/n+7//+89b1rvuumvfRq+ioqKioqKioqLik8FP/uRPcs0119A0DRdeeCHXXnttPiiQ0DQNl1122eiz973vfWxsbHDixInzPveuu+4CdB0M8OAHP3j0/fHjxzly5MjHLFtKF/HQhz703lfo01zGj4fz7TMALr/88n2fhxDY2NjIe50//dM/5cUvfjFvfetb2dnZGV2/sbHBoUOHctmX9xVHjx7dV/b3ve99vP3tb+f48ePnLWtqj4qKioqKioqKiop7g7qXqHuJhLqXqKio+GxEJSlVVFRURBw6dIiLL76Yt7/97R/zure//e1ceumlHDx4cPR5ybC/L+GcO+/nIpJ//+Ef/mG+//u/n2/6pm/ih37ohzh69CjWWl7wghcQQrjPy3NvyviGN7yBG2+8kWc+85l8z/d8DydOnMA5x8tf/vK8EfpEkOr1whe+kBtuuOG813wiZLCKioqKioqKioqKj4Uv+qIv4pGPfOTHvKaMcJoQQuDEiRP8wi/8wnnvuSfj9acTnwllvKc9xcfba7z//e/ny7/8y7nuuuv49//+33P55ZczmUz4rd/6Lf7Df/gPn9R+KITAV3zFV/Cv/tW/Ou/311xzzSf8zIqKioqKioqKis9e1L3EfYu6l6ioqKj4zEYlKVVUVFQUeNrTnsZrX/ta3vKWt/DYxz523/d/8id/wq233spNN930ST3/iiuuIITALbfcMjohcPPNN3/SZT4f3vSmN/GEJzyBn/mZnxl9fvbs2X0Rju4vvOlNb+Lqq6/mV3/1V0fhXF/84hePrrviiit485vfzM7Oziia0nKbXX311QC0bcuTnvSk+7DkFRUVFRUVFRUVFZ88HvjAB/IHf/AHPOYxj/mYBx2uuOIKQE/eprUuwN133z2KonpP7wD4u7/7u4+5Nr6ndA2fjjLeV/iN3/gN5vM5v/7rvz46QZ3SSiSkst98882jSK6nTp3aV/YHPvCBbG1t1X1GRUVFRUVFRUXF/Yq6l7hvUfcSFRUVFZ8e2I9/SUVFRcVnD77ne76HlZUVbrrppn2pyU6fPs2//Jf/ktXVVb7ne77nk3p+ivDzUz/1U6PPX/WqV31yBb4HOOdGUYtAcx/fdtttn9L3/N8gnVooy/kXf/EXvPWtbx1dd8MNN9B1Ha997WvzZyEEfvInf3J03YkTJ/iyL/syXvOa13D77bfve9/dd9/9qSx+RUVFRUVFRUVFxSeFr/3ar8V7zw/90A/t+67ve86ePQvAk570JNq25VWvetVozfzKV77y477jEY94BFdddRWvfOUr8/MSymetra0B7Lvm01HG+wrn22dsbGzwute9bnTdl3/5l9M0Da9+9atHn//ET/zEvmd+7dd+LW9961v53d/93X3fnT17lr7vPxVFr6ioqKioqKioqPiYqHuJ+xZ1L1FRUVHx6UGNpFRRUVFR4MEPfjA/+7M/yzd8wzfwsIc9jG/+5m/mqquu4tZbb+VnfuZnOHnyJL/4i7+YTxN8orj++uv5J//kn/DKV76SU6dO8SVf8iX80R/9Ee9973uBez598IniaU97Gj/4gz/Ic5/7XB796Efzjne8g1/4hV8YnUi4v/G0pz2NX/3VX+VZz3oWT33qU7nlllv46Z/+aR7ykIewtbWVr3vmM5/JF33RF/Hd3/3d3HzzzVx33XX8+q//OqdPnwbGbfaTP/mTPPaxj+VhD3sYz3ve87j66qu58847eetb38pHPvIR3va2t33a61lRUVFRUVFRUVFR4vGPfzw33XQTL3/5y/nbv/1bnvzkJ9O2Le973/t44xvfyI//+I/z1V/91Rw/fpwXvvCFvPzlL+dpT3saT3nKU/ibv/kbfvu3f/vjRke11vLqV7+apz/96XzBF3wBz33uc7n44ot5z3vewzvf+c5sIL/++usB+K7v+i5uuOEGnHN83dd93aeljPcVnvzkJzOZTHj605/OTTfdxNbWFq997Ws5ceLE6DDDhRdeyPOf/3xe8YpX8IxnPIN/9I/+EW9729ty2ct9xvd8z/fw67/+6zztaU/jxhtv5Prrr2d7e5t3vOMdvOlNb+LWW2/9jIlYW1FRUVFRUVFR8f8u6l7ivkXdS1RUVFR8elBJShUVFRVL+Jqv+Rquu+46Xv7yl2di0rFjx3jCE57A933f9/HQhz70/+r5P/dzP8dFF13EL/7iL/Jrv/ZrPOlJT+KXfumXuPbaa5nNZp+SOnzf930f29vb/Jf/8l/4pV/6JR7xiEfwm7/5m7zoRS/6lDz/U4Ebb7yRO+64g9e85jX87u/+Lg95yEN4wxvewBvf+Eb+8A//MF/nnOM3f/M3ef7zn8/P/uzPYq3lWc96Fi9+8Yt5zGMeM2qzhzzkIfyf//N/eOlLX8rrX/96Tp06xYkTJ3j4wx/OD/zAD9wPtayoqKioqKioqKjYj5/+6Z/m+uuv5zWveQ3f933fR9M0XHnllXzjN34jj3nMY/J1L3vZy5jNZvz0T/80b37zm/niL/5ifu/3fo+nPvWpH/cdN9xwA29+85t56Utfyite8QpCCDzwgQ/kec97Xr7mH//jf8x3fud38l//63/lDW94AyLC133d133aynhf4Nprr+VNb3oT/+bf/Bte+MIXctFFF/Gt3/qtHD9+nG/6pm8aXfujP/qjrK6u8trXvpY/+IM/4FGPehS/93u/x2Mf+9jRPmN1dZU/+qM/4od/+Id54xvfyM/93M9x8OBBrrnmGl760pdy6NChT3c1KyoqKioqKioqPktR9xL3HepeoqKiouLTAyPL+YAqKioqKj7t+Nu//Vse/vCH84Y3vIFv+IZvuL+L8w8C/+2//Tee9axn8Za3vGW0samoqKioqKioqKioqPhkcfbsWY4cOcLLXvYy/vW//tf3d3EqKioqKioqKioqKv6BoO4lKioqKu4d7P1dgIqKiorPNuzu7u777JWvfCXWWr70S7/0fijRZz6W28x7z6te9SoOHjzIIx7xiPupVBUVFRUVFRUVFRUV/5BxT3szgC/7si/79BamoqKioqKioqKiouIfDOpeoqKiouKTR033VlFRUfFpxo/92I/xV3/1VzzhCU+gaRp++7d/m9/+7d/mW77lW7j88svv7+J9RuI7v/M72d3d5VGPehTz+Zxf/dVf5c/+7M/44R/+YVZWVu7v4lVUVFRUVFRUVFRU/APEL/3SL/H617+epzzlKayvr/OWt7yFX/zFX+TJT35yjdZaUVFRUVFRUVFRUXGPqHuJioqKik8elaRUUVFR8WnGox/9aH7/93+fH/qhH2Jra4sHPOABvOQlL6nhPz8GnvjEJ/KKV7yC//E//gd7e3s86EEP4lWvehXf8R3fcX8XraKioqKioqKioqLiHyg+7/M+j6Zp+LEf+zHOnTvHhRdeyPOf/3xe9rKX3d9Fq6ioqKioqKioqKj4DEbdS1RUVFR88jAiIvd3ISoqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq/t+Fvb8LUFFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVHx/zYqSamioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKi4j5FJSlVVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVNynaO7thdc+5IEAGGMgBIwBay3OGYwxCIAIxjhEBGMM1ggG8MEjGDAW3we894iQnycCEgRrwbqGYKBxhunU0ViLQRACQSAEAIMxgnVO3ymBtjFMpw1Na+l9TzuZMZlOsA5839NYQ995Fr3B2QZjIXgQMXQLT995rGmwxmKt4KYG6wSPZ3u349zZjn7RY22I9dZ3OWdw1tA0hunM0TYW17b40IMNtFNH74W9Pc/e1h6EBoLhwEHHylrDxtk9dveE7e2e+faCPni8gMESfE8QEPGEIBgcQsjtHYJAkKENBQIgASQ2sLNgjLaZYMHo/c4abOpPEcQY2rbFNYbGwWTS0Etge2uPvgPEYUT7yDQWYwzzvQ5nLAbDpGkJ4vXl1tIFTxDAWhAI3iMiWGO0bKJlxhqccRgCPnR4EYI0OAxCQIzBxHI60bJGEQBjMNZkecvyGaGfpz8MoOV2rcE6i2ucDoLGYY1hOnE0jcGL4IPB+55JO0H6wGJvwXQ2xbaGee/p+6D/5j0Gg3GWILFtjY1l0fe10xaMYJ1l0rR0i54QfBxDDc45FvMOEbBO62bthN29BdZarLWEEPR5rqFtp0zaCWsHDrC6fgg3XeHaz/sSrvmcB/Mln38VD7xojdZYdkU4a+CUwJYBG4AgeGdUHor+SDJljCAYvIqWSo01qUFBoLF6rQe9BwgIBpUpC4SgciBex0sUM0jfOZv7yBozYkuKqMyG4vlIwBoLJvYrKhf7+jz+tIBDy+sAI1q3QHpulJfivSoh6RuhwdBiaIBF7NsZcAQ4gCF2lY7FqKVs8SwTCy8m/h7LA/qB4GMtLCGWXLAEAz5e2gNbCHuY3B59bGtjwAqsS+CIsUyLumTBF0HOU1uz9L1g2EHYQDgjsIWlN9AH6ETofWofvTfJYwiFDIThFSY2jO/1w5A/Cxhrs45KcicCwQvWWkTAxTbziLavB2dVZ/jc8SA6IWCMpfewONvx/nd8lKs+73JWVqK8OICAxeR6e++x8Vl+u+ddb7mdM1tTHvKFJzh23EJrwIGxZN1K0PGQ6hg8OGe0nkEIJrZFEKyxuavFq+wYE9tOYtuIaJ3CWAh9EIzEh9k4znzABOEjN28ResPlD17BtG1Sg4jTcTURrWvoHYtzPe/+29u48nMuYe0CoTEtxlqCEfo4bxgxEET7wqrsBfGYYPBzw21/fxIQLrnmOCYOJOe0jywqf2JTX6gMGAAviAVvDGLBhhDHg8VY8BLo9uDW99zOiQsPsX5sBeMcVpUOBoPgtR17gw/Cqdt2OX37Llc+6Ain7zjH9EDL+rEVfBDe89fvoveB6x75UFZmFmd13Ik1UWcM8oaQx5s1BiPoCiPqoRAHmol1siIsLHQ7HWc+eopDhw8D8I4/fwu3/J+/YDI7wMOe+JVcfs2DmKxYQqPtYeOYN1H+iTohrpaKOUvn8mEeT1ostqc1WQ+HIIQ8fw51M3GMW2MIov2Z+kmHuWCCIaA60FmDjYKtazODJB0doh6zBknlIiDGYpP4x7UdaW5Acj2A+O6oGYJe7xF8ABGLhKjgYvnSPJTrSFHu2C6qdyS2YdIzZrgO8CFomYyNilnbQmxctxKFFW3HxliCaN+n/iHKgwQd30lXWRv1fByfIkIg0Dinc5qxuRxpwjNG+yi1C3FcG3QAiYTYf7pWsE5nA2eESQvrB+CCY46jB+HIQVidkdd+fTDsdTDvYL4LiwXM56qXQpxXn/WQcob7zMGxnzgCLM2/xgxrjeHT/FtehuRZPspKCKM7hr1F/g/Wal9aa/P8Lkn2o5iatBZC9bJrHNYaJM5ZTdNEuYhroqDybMywnpK4RxGv854xBmN1XZdEctF55nue4EOcE3Qvpes+gzU6flyj7WGdQyQQJOCcxYdA3wuh90hQXTmdOtqJZbEILLrAYq57GhHR+QaLiM/6Ja2hUhPrHCxR78UWCkNLl22a9hN59WOGv8q1mLUWYw2Ns1inemmx6Ah9nNiG7gFjtD3ipOnSmjGWIMS2pRjveaGYvkvlszZ+pnvGoqYjuUprNRk+GslbLl/+UvIr9UYT9yBRduOa1hqj/5zKncQyiAScczr/9AHXNAiB3nuVGYHgdUFl7PDysvTGgHMOMfE9zhL6kPc6xlqssfS91+vj/AfpMzPswYzBGIt1DmctrpnQTqa4ZsKhI8c4dPgwD7j0Qr5k9Su4bvNJeGAObAN7DGtayWvJoflM8aeq1DTryb6+iJLAMIqH+a+QMv2mbP8CUvw+vmdcIC2T5M9MXLcvt3P5rOF3yc9O34XixSqeJhfGmHFd097IyFDexsAMmAK2uDo/Nq8FhtJJ6tLiOxWaYn8Rn5Hm9LTnCQgLoB+KSYjlilMSE4QZBjeS/RJl/5jxJzK0bQ/0ArsIcwwdw/oj6ck4PQ5VSb9nOwFZv+TvpCzBsPdPa6hcnlIoGDeP5DWEycuQYV4YrpEeNu7cYrI+Y2W90bJGITDDTVqmKJwS4Ozt59g+J8yOzDh6bBrH81JTFt2XZCmVSdcnQzny/jjJsQxtN6yV4tiQcsQMbTGMxeGG+XZgc2PO0eMr2Mbk/Y6xWh4b1yoChA7O3HWOyWyFtcMNxkZdEsuu+18zbvssZwLesHV2znxnzpHjBzDNMDbTfnF5aslqPj4imEH+TaEMdF42bJ7dwwKrB6cYZ6KOGrddaqv5Ts/W6T0OHFnDL3qCD0wPtFhj2TxzjrNnNzhx6UVMV1pdeyQ1l/SGyPiZRfemfhnJbdEhYsD7wO7mnEnT0DjDqbvu5O4PfwgCHLvsCo5edBHtxCJ2ePYw96RuNgz7ieIVS7Kf7ymbwyxdW34f5Tups/G8N27ONF6STkolkvgSUxRmNGTM0K/lOB4pfIYb8seFfCddUl4vomvFssx5+S2prcrGYlgPmfI96es4rgs5FDPUNZWutDfmNitKPozPeEdqW6JuKhon68QlfaH3FM9bbjCD7q1I9oakJwRnoWlgZcWwMoOVCbSt2umjKZnegw/Q9+B78D6O7fjumz7/XrsMPm0437xdUVHxmYfH3fn/4ykf/ZH7uxgVFRUVFRUV9xNe9PD2Xl33Ce84koFbLSOSiRhQbvwGIygWrGkimSR+js3PCSFkx6agzm8xEIzB92Aa3Ug56+i9Gln1eqsGXSTyYAwYp440Z/DBs+g6+l0PIkyaCU0zpWl0W6hGMslOdAx43yHWKeEkBFxrsVhMNBJZa2J9lcrQeY8PhqYB0zRaZkBCT/DCYt7R9cJi0eMjf0f8Qg3LAr03rKxO8dKxt9sp6QnLvAtIMBhrMUGKdkvWgGTAGyxBxkCQoA5voTDWRaNBNDylbW0Ialx2JvVXdNw7i2umYAy+V1eu92oEd1YJaNL1WR5CCBCgE5hNJ9jogAahiwZ3gWicl0xwCJHoNkvOlc4jnaNfBDXImTAQO6I8hWQELM3fS8aHBCUFJDKFyly63vfxCcmAAZjG0XlPF2WsnbQ4Z5lMLDQWaw1tO2XeLZjvLhBs3LgnOfRMpxOVjRCyfIsIvusREwebS+MGXONwLlmgBOcM7WSCiNB1anrUto8OuujRCcHj+57Nc9v0fsLq2oQPvOPtnPrIXUznjgtvuI61xrPiHII6FbZFoqM0muQLA3AeqwzGNxtlavg8GrNtYZYpjC42Dfdo5LFJ/mwa66lPwCYHttHPkoE8GTRTv1gGA7oxidR0PjvvIAel0TxE44xPBhuSHBRyxWATten+ZIBGHScLyMQzH438nnE5ApIdENlgVxis8p+FjizfasUoOQlYCPkdAdgF9grzngcaBCsGi9CaSOQ0KOlk3DijemoRzPDVUDImwBqGBUYdGbETrChRSyJBII6kqH4Go2T2Ahh15A/kQYOLzntjlRgoRsk4RJlAyA7qwTAq6mQjki3L5ktVjP0SRHACfqPjwOoqbmKwTicWb1CCWywTqAM1SCAEx8bGnMW8Y/1AYHooII0d+jJ7VMhlFQBrMqFBnzcY503R/8agZD0Gw2OQgEgqd9FZovIX6aQkvZd0dLcX2Nnc45IHHFVCbXxHMtcaMQQxSGz/u+44w+qhCSsHGoyR6LDSSVXLOIyVLAUCFosY2D67x8bWFg+89jJaZ8ApSSOVV0THmN5rEg9UibNO9bREi64ZrNF4UUf/5ukFTTtj5cAKxhpcZJ8IINZH3WoIVtjZ2ePUybs4funFbPcdnkCwhoBl+85TnL3rFA+47oFMWos0yXFqstCbqGuieRcXOzIRaUqDfHJIxKWK1nkeOHtqm8nqIVrn+PB738lt730XZrrOAz7vkVx4xWVMJibLKYkrY5SUlh0qJrXWIMvZKZf6oXDE20iCywSd6ABPDpwgygNOpE1DIp4OYyTXPeoHW34W5dqnZZAp13FkR4+IHQgKIijJMl8VHQWS9bRPZPIs3rEeMqwVkyMhkJwKZpiWUvszlF2ijpCgc5ktGjC9x1qVXR8dCMaa7NQwkVCd1pp5/iIR5aM2trGcBryPeivNg2m8GxBjsMZF8kwa42bo1yjMqZ3SvKoFiOREMxB402h0jWHiDJMGGjus+7oednaVsOe9YW8h7C1gvhD25obFnpJJwcS1Kp/xkPF/CMGMZNBQtB/DGE5OI4zg7DAHlOvA4deBPARBCXpO9xEUJFuJXnOTCKbp3XG93fV9ntecdTjniNMZEMlsialrdW1sdSUVnWA6c5pyPRcXDMlBrfsfAzZgxMX1ah9lPtCZkJ1QEp381io5TzqVceeMHh6JLNuu8yrHhUAUy7+hrZIMiu4ahjmeqEpjb0jaVwwdJBQPiwgi2PisEGIZJR2kCLg4L0pi7eayaF3btokkMcGHoHsWko7Oymq0F5q0lqZ1dF2P947QhTgm80pxkIn8W+nmKldGiRw5rld5KALR/RmIkqwAsQaJezzf62euaXRvlUjJTikpOpYl90Has0jQwxMmLo7SGlpE8D5umK3JxH2VA92bKmFSO9M5hwj0fcj9FvJUNEx0kspqVK9untlkb8szdevcdeWdPIA9VpkxRYlKaW2eWmxEBpCocsctmX/La6i0JowyZEa9M6yQKX7meZlxv5SvG73aJK1cfGTGV+7v+3tWnIl4kKfB892175fhkIDEdbqNdwaUyNMAYgY5SPVP6qVcP6Unnle/p7VBvNpLJAsxSHyH7iHS49Lhh7QzskUfDfP38Irh0MUwVxcFIFXCxakuYPAY+vKqqLeSzklz4KiGxXPTXiOt6Wz8LJFkUrlLwkQpkrkKZnj/sGcc5t6yPgJIHwgeJlMXx9l5hC/XSXVR38P2bsBaWF21ethhqTClDI+13wBriv1vrn0eLGR5GnXUfnksx1h+pwAedjZ3WV2fRiL88J5MtsYogTvAfHeBD8LKepvfnw5m6bxsctHynJorZujmnp2tPQ4eXcM1JpO9xo04VCL112g4FfIyblBY7PX0nXDg8CwT+zPxvxiDAH3v2d7cYmV9FTGC914Pz2BZ7Mw5d+oMs7VV2lYPNIopyPKpOEvlXxqi59U5aU8hPcy3OqxrcI1j6/QpTt9+G2A4dNGlHD5xnKZNdouy7mlfFf+OglW+63zklnTRaL5fKlv6vDRRjGRp+TllXxSdZEbPGQQiPXdMDC3+k9YS5x24++V6ZAsyw480L2WC8GjImvy6tOZJa7zRe4RCBw46ZrTOKRXFkr7KRS/7aGnuytWMv9j0vnIAlUj3F8pEL5OhHmW5ij8bp7bexg2fBzEsuvh7Iif54Z/3QognwrIcVlRUVHySuGv2bvbsOWbh4P1dlIqKioqKiorPYNxrkpJ4ycSCRHwJgNGAKRpRZ98uRj+wcVfoxYNA2ziMgd4Hus6ToreAGq/FCM45gogaVw20rdOTqtGQa5DotEPJM8C86zFeC+WsRUQdOn3f0/eB6WRCO2viyXcwVpCgBnzrrEbtKKyj3qtx3IieBjYCfYinkUN0OMWNsJ5u7hHUGd51gX4R6Dd3ER9omgkGR9M2tG1yHPR6itUZ1tYmrM70rObZc3vsbM+BQGMtHhdP85Oj6gxb/NKAzZIhQQbDXyyzif2X98CBbOj2IoRFjyC0TUMXAilag0YwiJE/JG2649lPmwhEMJm0CND1Hbb3eB/yKTsTI/hY6xCxhOBZWWlZP7TCxtY2/abHoO4+awSxNjs2jDGIHYy4g9EnlcXkv621+bOBQKcnqwUNseE1PIkaskQJQ+rwSM8JuEYjT2kECMHvzfHe07iWzvdZFgXRPl90NE2T36kEKROdK0ractFiaeJJfWJbYYUQe6brPPN5iqJl1PFlbXQW62l6JVCtMm3XOHTwAhq3TujW2dzsOXNuwcqxCYLQADMjNEFYqLVtn6EzEywoCSiiRIw0/lN7FiM7GYpVpsZWjFGUEIbf0zv2KQuTjOWDy8gwGOnT38u/5cLlb2TfV3GUkNyEep3Zd12m2xTGqjJalBrADHOErVyKGJ1JAo3AinFMSIZlyc6aMmpBNmphogEfOqPEpAWwK4GFSQZqywKhy4a9dEpRaON4tzadhC7OhC97IRHS0cVlQl8ydjYIMyxTo3awGHgrRnEzlOa6VHdjVccmMpIWY0xQytWO7w2FkhUNQKL6qiirDMXN7ZacssnYl6KT5GhwGE7u7DE5OKNptBOsi3ovSUCMdiJGyVfBC6fPztntGy4+tM5s6gZCR/wX8tFdsiUxGzgLMXIoic1lMgz52mwYTb04WGejrh5GmjOJqqSsCWcs0sNdd26ystKweqhRB2WMbuNDwIaAxSFW+63b6zl7eofLHnQhbiqRHDbEEHPGZkOxDuQhspmIEPbg9g+d5PhFR1k52GCcRptJ/Z8cTLEDNBpNJKmILcgm0aNljIlzpjrO5lueMyc3OXHxUezUYkx0lVmHjqmAFZ0PwwJOfWSD1fVV2pljZ2OblekMYyacO7nNe9/+bqazKUeOH40RlERDcakiG80NhTgNFvbRUJHBGBz/7L2wcecOtm84cHDK3R+8lXf9778kLDqu+JxH8MAveDizAzNodDxYiZFWir5PQyFHF1pCNoibGIklqJ4P5WQX62BsIh3KQKwkaaJBQ5eRBSAR4safYQsCc6y3pAgQ0TKtBKKAcVbrBgRrYxSbYQymNit/mtSkJp3IlfzcUDAgfCTwBDRqDbF+yWKf1lxxsIzIsiVyhJCo70tdZI0+I8Zeyw5O5YrI4NhamkWSPghDqAPy6WoYIqGV65J4zbgNbJSJ4R05eo/R9ahzMG0N0wYlKTVakr6HnR2Vxb4PdL1hsTDMO9hbwKIXfGdATA4ktTQVfmYhrglLlIccSrJXuqz8VmLDGyK5VSdnXWuVjxWJ+ifqtwB91C3WaVQ3U76jmId6H1RZkcg/Nq4RNTosBpqJ1fVsmiMlkp+Mxeb1t8ptIvsjkWRjI1F3mLVzvSVIJL+bGNVCCEEj7YQQaFyDtQ2YkMm9wasMGQNNazFN3P94kF4ZWTYesBhxmQuHdNaEUXCXV0kSB8xoWVHozIHore3Ue92rNJG0k7SVkmWGSGO6Zhn6QND1s7NOx6VxBBPwmWicxp/o/tLq4QBjDE3r6EMg9D6WNehYj3NQkiJdDyQZOZ82GcMsX2PiAiAvGeN/o/dd9YaO+RBCjHIXovwIfZIh5/BeIx9JHLtKLOoj8Sj2b4p+GLvJ+0j/KBYrIZ9SId/jo8yIlHotHSSKEVoNtE3LysoaBw4dAWmYTFdYXW051d7MO47+EscXD+bE7sNwfj2SlLSeWdUMXTksDQYxGf5eWn8mAopZvo6lJSzD88sPRjPByCNdrpi1cMO6uLzLjPpvGeV159tfjK48n/e/lI+ltjGQI1TleTOW2wk0RqO5JqIKcJ7oMEOdg+jz+vjc9HsZlTat60uMVw7nq5+c93vVCcuKIumzFK0zjvfieSNbRfmOtFYrq0fUCTKQlcvvso5dWsstky+WFwyC2hpGZLulK+Y+4Bs9+JbWRIOcFnekHwL9Qu0e1jVMJq1G1MwFSuul9I7is33tN9ymt5pSSChDSuZxJ8W6aXmfZ4Y2NgI7u0obm642jAVs6ZnofLR1bpe1A2vYRuIaLeo/ijaJv2RCSNwXEAzb53aZrbRMV5ocVbCccsrxT/m7Yd/csNx6vofdrQVra1NcM5bHYe0drw8wP9dhbUMzaej2OmbTCfMuMN9ecOauk2ANBw4f0EMC52mTNBeOyHqxi0Yf5MpIbqfgYbHTgYfZtGF38xx33nYbvvccPHqcYxddSDtrUeOqFjxpHinlp2iwcgobcWdSH4bxeCivyUU2g8wNY26p3YvGzwGNlp47aotiIKchnyLMmaX36VgebMFF8cdyUcj1sgoph0exvRiNpXxdoUfSBaa4Z18DLX1kigIsk7tKmV6uQLZhBAaiXlpKCINcLfcjjAiiS8XaB91TgHN6yMvZeKDF6B5zsYjk5BAjQQc9rOK9RtCWUNj7zqNOKioqKj4R/P3B3+Hnrn4W1577Rzz89DdyoL9ovH6vqKioqKioqOATISkR8gY8OcrK0+UuhrZH7RGEGGLBxlQfIhoZp7E2ZQDDGoNzNhJI0gY1plpwBpFAHzT1VtcFprOWxrkYKcCjEZls3tj6IIiyT/BWN11N2zCdTQjSQ+uZrE5onKNb9Op0IOC8peuUIhJ8oOt7TEzjICKEPtBYwBl6H40uiF7TOBwW+kAnATNtcBMX0/XoOepFv8BhmK5MCbKHc8J0tqJOPiNI52kn6l3em3cY42ma1GZG6+nUaS3JspMNF9kkEI3Vulu2dkj7ks9tSjxtTpnCxURnvtJBvA/0XaBxIB4Msb+Cto+PqTVsimBCjEoB7M73EHxOUTZpG3oT4sneSIKKRkTXWJxYFgsl5HSdp+t6jVjUGCaTCV3vCYvoUhwZYJYtCRSkiPHvzg2Rc1LErhAtGFJERwEzOLJEmM+VvNY5tSQIlq7rlMwxaZGFpdfzqPG0t97X930mZyR7uCMZTwOLxZzJVKM0+ZQCL0UCCEK30HYIPso3yagQT4QDoe/w1mGmcMkll/L5D/9CTLvKxZdfyDXXnmD9yIwdEc7Me5qJDvEWQxfHsRUTI3DYbDwqkaMgFYaX0lmeHa+xCwLJwDU4u0b2qWIPUpKQPhZGxrL82dhJkAzF2eEb/5UnT5PVbPmdI/thvn5wm+bTePHnAiWhTAGPYYPCsBatsg2wQFhH08K5aKRNJ0z3V1tPF+8gnBOhQ+iN0X+xDE50jIZ996mMT+N1fax9OTLi0B612fnLEQ29QIewJxq5yUeFr5mSknE09nCMJKRRUAajsIkEoNIJmiIgWGtzGwsSiSQDaSeNIS2QyamfsiM/zhup7jJYjMFZpA/s7M45dNmBnBpORNNXhiCZVWeMpp0QYwi9Z37qDM551i5cpY0nDkN8V8jkhbEh1cQ2CIlgEC2SVkw2XiZDpNZNPzCRRJANk2lYyWA8NFYdJ9apCyV4YW/Hc+rUOS6/+iJoiaRGfZF1BodD8JrULhju+uhZVg+ssXZ4onIQHd2GRtvAatmCpIgzWgaHRvi76yNnaRrHBRcfwLUmRpfJgeZRfTlE+JMocMnEnNKeuFx3SOkBQwd337HNocMrrB220IDBaQQmG58ljUYt6YUzd+3QzQ0nHnCEzbM7HDm0imC486NnuePWDyJNw9UPfTDrh1YjEZbBAG2K9hdRYbbpb5KPmTR16m0hjlmLdML2mTmhW3Ds8CHO3nknf/cXf8721g6XXnkd1z78Czh4ZEbTBiXuGPUtCAzvsYPmckRiHkPfp/UQ8f3WohHo0jVZzIe6afOaIdsaOidn43v+fNBuODM4qmNTpJSeiWxri7wWWj6JKagsxsWVRCjkNj46jdMUSGY8puPvca5QZ4BEmTPDwGKYk7SOZYSmqMykIDLFPjSJEBbJCIk8lOf65FhMbZnYFEsTn6SUosUaydjhe2NVbySHqZi0Zo3PtTqvylA0LU8mh8e6kwhdiUClfdG2lqaFphUaR0wXZfEetneFTQ9dn/4JfW/y330AI+nkvZbJ+8AnESz104J7JCiZYUyU838iuI3XBCY/jah3rbFgJbcvoBFJje4nghhMMDFqia69EvE+OYJD6tOsD/StPqaubRoVHtvoOlbnEyV76PjVfUJeSyjTNxNWJCRizZBKQ9ejgrghXXDwHsTqOyK53Fq9znuNIJv0f9u2pGijPgRdcwYlvlsLk4kmpw1e90U6zocDDqVOIY+ZrOkHRnrZhzLUMfVEyPI80JklxFSoabyauFekfOZALktErd57Uqo9a3S+cXFsEdM0pnR2KjNKnFzMe3zvc1q+tmlomoZF1yPBD+vGJHKmfH8ZoUZrn/SgSJLTQj9GHS9p3s/PGu6V1LeiUUm0/priV+unZHTv/WjeyqtSGcpGXkFHAoD3MSKry+2hc1ecyWLUWt375AbOOln1YiAETwg97aTl2NFjzNbXOHB4jZW1Ft9aPigf5L32Zo4c+iuu2foKDi6uifcKaZV8nmUl5Rg15/m0/HuQhHu+bvgsSqcs35EwjNyk88e6455KGf8b+7NY2u67o7zn/NdI8d94V5yDgokR1dA5Za9sgPg0n+ZLhCauzc7/ngEBjZQ0J6W21l4PS9ctv05Tl+oOziP0saypHqkdy3/3VN/0W0DThi/QfUUqy3I58p3FRjGPTRm+L/eRaczni4pOKPt5IDTsL3EaYiWBKYuT0fk0zHumE1foK+JaOBG7Ihk6f23Y29qlEZiuNdg26tWoq8vxrWp3ILuMiCBFXVSPJCW9v+yFqhjaLV6b117pmUb1se9he3uP1bWZErBi+YKktX7SNapPdrfmYAyztRZjw/D+pXaVoivSNUYMO9sL+j5w5PiqHhxJ/VkOnmKsjeRkqT1yhO24PpQAu9sLXOOYrBiMizfIeRorwN5Ox3zhWT+8ymLRM5k1uInFBM/GnWdwjePw8WPM1mZ5bZ4iaxZNPRQsygNFH6b1Q5oPMgJ0ex7fe1ZWJix2trnzwx9iMd9j/dAxjl18KdPVFmd13y8WXa+Avic9bam/l5HaNveFHUoxst8s31PcO+ydxvUevfM835fPonhGqU/TNJoOGCFJVs2o3HFpNDqwNHqHLP2dbyrqWMq/7K9DsQQZIS4z9qO4biTD9zCxjNrFFu8s2igXwQxyMyrW6CFL9SjHRyFv1uo6y9qos5KOE90zLCIxKUhM6xbSoTRSooRRlfYdbquoqKj4RGCEWw78Cbes/wl/ccFreept/46HbDy9WE1XVFRUVFRUVHwCHoxAIhdI3ryCBj6YNJZpmwgeGoGoC0FPDsfrndPoSfpZMtQaGhzeJPKNmn2aVtMo9F7oux4jDc4ZvAvYVo321jgapwedu85nZ6uzGlYfopPG9EybltnKlKY1uNYiEvChp7EtTWuQBrrgES85nYjv9CScRjVQEhYIobHqgBDB9zHliFiccRgJ+LlX0pZxmMYQTCB4y6JbIPS0UzDOMZ3pCeE+eObWaHkcTI1l2jnW1me0Ds6e2WF3N9C0DdZqyokQUjou3RmniD0pokk6WV6STSQbu5NxR7JBIORkVdExLkoKC9EZYmKfpJ21Rs0IEEx2bho0mtT27oKmcTQ29XlMgaN54PDe4yUQgqFtG8TAzvaC0EFjlVR28OAKTduysbHFYtEPRoRo0MjGx2yEK6M7mdFmeuDWpOgo6XRfJIFYoyfmFwugIaWWSPc24nSz7yyz1Sl93xGC1xPryfliyAax5CiSIFjnsMbiJajjSQyIprlr25ZF1ymBI3gWXY/BgUQHSxxrNhsh9JkaESVGG/FzNjdPszWfc8VVl2IOTrh1Y5cN17C1ucXJuze49MIjnLhoDdYcVgQf4gloy8i2kuShNFyXdheXviv2EobyhO5APhqMYdHRO9Ik+zcjpe3FFtbisYPALP3Ud9ql+83Sldk4xpCiIv0+NjYW9+RnSErWEtMlqEFnDvTxNGCZYiDE8RYEegNrQIMpjP37DXAdsCOa0s1jCZhsILIMzyzrmYzbAY3AtBWfk5wYWmclD06A1hjcUKl99rQY0ZsFlg2EDQl0I2ta0ThWHZ2DcXB8up9IHooZTLSsphyvUjS84JwSK0IY3CgDqcSoAxnASHTslTIyWCiNCH47MFt4Dqwkp0KRSlAkMTIK+TRsb/dsne5ZX13j8KEZttExnU6w5gPGJqWwUiRils1pspT0ZKLRPGeZih1nI4EjkWGGJpUo63G8W5R0EUzmbwQv3H3HBgcOH2D1YItxmsouBH2fQ1BrNuoQOLvgzKkNrr7uSlyrbQghkqYMBnV+p3ZW0YiRZjzsnFtw5uQmlz/wQpqpgFEH05BaIJHG1FmaCJTEzzNhMRKb8viIjb95Zhvf9xy+4CCu6RHTahvbSB4wgo0hoXY2F5w6ucGFF19At+iYTKE57DQc/d42a6tTrv78z2XlcDxBbdNoITd0Nr6n/CPESGNGwFi8iYRVJNYxjukg7G7NmW/POXLkADsbZ3jHn7+FMydv49ilD+LaR34JB48fom29zrkx11uOhhLn4NKIb4iG6ujMV3KPpmvMpJw0OIVI1o4yluQmRdRICo1hnkvzu/J2TE7xmUl90VETH8MQySRFTxqE0xqT09KYpfRhRiTKHkjKU8Aw7kstqg6SdJS70ANpTo4yReySMrIBiKYOFK2rRk7RsTmkGrGZjJTHWep3E4mExOhLQiYYDfUe2jKtEYhrpoH4XDgLTIqmE58b9d/ImbDU6akuWkwdS2ldYiMRLJ14JjqngoHOg9+FXdFoSl2vJMJFp1Gs+hjNKq7MYio/XVcWKvUzDuV5+TJCjTWamqJxw34iBFFyjYjKnTExffQg7/FBuT+Qoa2tjdGIgqXvY/rcTFSUrJetsap/1Luv8mRNQSIfGtQ1DhOdrRK8RrMzxPlMMFEIbV6jp4MYDOUCXCTWDGt0vUZ1tq65NQKdzXOJOE3F3PUB5+IYl6CRoQDpLV3vaRqL84GmMTjX4Czs7Czwi5APEmhU1pCGZVzTpTX2sGaGRB6N/VcQlFI/peu0rYb1eLoeGYaFy/07kHBSuxQLM/ogWEJONZzGWnaeJhkIqodMHv8WZwPOOdpJo/uV9PJyAVYgpwZKQ7fQdyNn/3kxSHQQPSwjUT+VkdMyq9Rof4Vg8mGF9J70CoMSm5Jc6L7OxH0Acd1hckrcdLOPe++oaIe9Xqxj7M1BB4vN89J8vsPm3jYytWyfXDDZXmF1bYWd7S3mex13r2yxccGv8TDzjzm6ew2IrsmSE7xcVxoY8wRGjb/ceuTGHfRC/EtS+46fs/8p4+eZ0dOGtcs9wey7+p6xPFb2PXVfvZfvU6SYyGnuKEk5MERBaoEp5rxEJTEDoTCQ0rsVJMHcVsUeLu2j4ziIQwlvhLlo+vbleuk5LaOppvMXRbSN+J9UN48SlPTo0kDeT4SDtL4tK1yq87y2L8edKW4o5ua0dx0RFYrSZVmn+D4tE01ukhGCh363Z/XQbBhvxfepTfPrRO/Z3fEIjvXVmZL0Uy70sm5FMdJaJZMuTNxLF+2QCQZEvWxl+Dx13nkwHkvD0mS+22GNZbrS4Io1iv6aFpz6cD8Xdrb2WD+0hmkikXxJTlPHjdRq/CN0ge1zu6wfXMU2Jt+X+6L4ILdJ/DtFqUx9O1w+2CoWez3douPg4TWsk/wwKeqcesr3gZ2tPVbWVhAfsEZop3q4oFvMcc5w7OJjNLPmvH2eBoXJ8x3ZxrCsn1Kj5zIH6BZa1tnKlG6x4M7bPsLuzjlm64e44JJLma2vKAksCQWMo2Km8qR3LpVvtF0v20uW2jv+tLFcedyUHTfCoJwGORn6JV+e+o2ldqMYciPZKdaBsr+fS31R1qtUHGXq1UwiHhjm+2WVYV4SoSAOSUwTXrw73VjM/0tNeN7mykvSot2H+po0NQ+3ljou17EsyxKtv9BZ5bv03nEEpFSFgPa1jyneJEZO0jW2yYT58uDFsFrYH32voqKi4pOCgTPTW/mVBzwP86HX8jkbT2PIc1BRUVFRUVHx2Y57H0nJKHHCEk/VG91wNo1hMnNMmwYbIyXMFx0LH3JI+6YZnDoiemo0bfGsFU1bAIQYmaZtHe3EaU7sMCd0AWucGvd8YK/3GlHJahQmJRbpE1urOd69xGc1rUbwCND1gX5nT9PiCFgCTWPxPuAcBCe41mFp6Lqergt0nZ7/sw6axmKsxXVBCVTRRJnS3DjX6Mldp8/vTcC1Fh8c6RR3Nw/MXaBxC5qpwxiH94Gu96wfXEN2d5hMLSvTBoPXtA1zTekwmbY477BWCVXqHAafjOvR2aARS3w0/ochTQpQEpSSQwv0OjAED4jg4nE3i9GoR5Fw1HULTaUQbeDOWRoX69eDGocMnddUBm3jcI3TSEySoiLZuJE22EZo3QQlevVMZy1d37G5vcV83iOlJbNw/JnxLyNH13JaBonRvPQRaVcfwLicAqfve5AU1ShkmRG9jL6f0zQNwQcWXRfJSIa+U8KTi5v57PiJRlMvHnoQY2kbS9uo8WuxmOfoAH2v0aviIFBjS4yi4FxKeacWBBGDRg/zGBvY2T3Lh+58PxvdWTo/4dIHXsX6oTVu+fv3QOf40JEVHv6Yz2ft2GEQh2sNTIboV6k5ioOiZcsxmHmXbCb52yHFh1m6E5PNnUPfFL8vE29KO9l+B9E4HUTqZxe/T4bx0nCU0wyS+mdcN5O3RYXspLqJRCe91s3FGnep3UaliY6k6HJYGEMvGpFnbbkuRKOb6AnqHuiNoRMlJOV2TQbrXLqxgTAZnebAIjmnxeDE5GhGjRFWMKyKOjlSMSwlSUv1GFj2gE1gz7p4yntoV2fTKTsZFW5oDY0mgZjoNCnq4cBGQuPgtCv6y5Cdyclhq6QNydcYl5wtJhv+StkSMWyem+PWJthVdfhjhmcpd8VAJDQIemJw6/QOe0E4enjGbMVFYlEYDKUSU8SYRDwqDM/JSxr7LaWxy5kQyL7uWImAibNfeohJ0aLQCxNpiWgwNKJpDDbP7XDFAy+mcSqLiQDlxERdYPA4Qgd3fugcF1xwjJVDGv0mGS+tdXhReU5tqakeBzJX6IW7PnQ3R44fYP3IFNsknRvrZhIJdEwMLSHZ0pxjPuBFiUDz3Y6zJzc5fvFR2hUXyQHplH1sB1HSTt8Jd952isMH15k4w85m4MiFazTWcvdtpzl912mu/fwHsn54immCrmaMRjEsw/aniFsiEiOSSGHQHoyyGlXQ5FPRe7sdmxubHDx0iL35gr/7m//D3R/9IAcvOMHnfuEjueDSY9ippNBH2Bj1rJxjU1/m7HMpgkucs7OznjJSB7l8ASUIJYKRkiILwlAcCPnEr8kfZR2c9VSQSDYdogFlp4JRHRmiPIfCW5/WD5kEHWUolTGN4ZR+V8tNJILpO7S+MRqgMRpxStLYH8ZLmovSuBncq2OCaYikDBGNShGzFWp63qT84zts0kdJb6R6ofNKchKkFHKGsaF/aKQ0RuP4j+QsKynaXNTtBoJoHct70pNIfZ31nKZyxSd9DMT5I4gSkawYfJ9SM0AQG9fTqa+U2BIgksBtIRSfgciRaYYZ2Bgl5ekhhDRXxHVtTPub1gISyUVQRK8z+lwbvYt5vWmVDGTiHEbQdNLOpPlG13vap2XULjRKKimNVnTQYuh7r1544/O9OUJpFDTrdJxYY/Be7/ExfZy1xAgWMbpRnlvJdUsEKU1dDUaCppMMhuRZliCEHjobsHF96OMhCk1hrFFYGmeQoPsIE2U9RWhKYzQRiXThm5aiyyvCpBeWV3vaAsvxZTRCC5gYQs05SyJxYhJBJ04XUdclopemM9PrQky7nYmfSC7bkLZRnfe6V9R2d41GQPUh6Do6lU/IBI1ETE1qcjydFU7Q5eqi7b1c3+TNlKjkTLw2CDEVqK7fYSDfpTkoxDGd6pgdkFGuUvQg8Urks7Gt+r6P7yemdhsmwLzui4ctfPJMpskC1afe9ywWu5zduIu9xTZBHEeOX8D21gZnT53EimV7ZYo42Jj8Eg/tnsmlfA5N2+QobuS3pmaJGm94FYleIOMrh3sToaNs5/RrMZ2l2mUiVHLklk5akt4vJsbRrJKePrSVFGW8p7Q7KYXZuNzFRUJ+hynKb0jrIobIgsMtw6EUhgMgeQ3OOL0rpG4c2jPdk/+NFkLxKinqk2Q+tmNKEZdaxxRtYIAmjmeXr0mRRIe29rG2PfFAR27N4TmpoYVhXh61oSl6fRhS+Zq8tkofFM9Iv6f1RCZjl2qreH6ZPin3k+ghuU4EO3OZRKTtKvmgRErNmO7t5z2h89hJQzOzee2Z6myGZdUwJpJ8FTKTuibtX4quYljcFm2Wrh0vNEbdnuB7YWd7zvoBJQ1ljnm5t4mHLsQbdjb3aJtJkaYtES2GgZGjWZpiTRjnsa2NHabTltlam9NN5cKmtivqUKbAGnWboZgroqz1wu7OnNW1mdo20ngr5Cs3SYDNjR0mbUvbWLo9z8raFGdhb3PO5plNjl1whGaqBwJ1sWlyvyTeS5KrwhwV17jjtpdUgVgC3wfm847ptCX4wMk7bmfz3BkmszVOXHIZawdXsQ3RdjS04dKENBoP+ZuivdJt6UvDqKsoh04pP8OHUkRCjHrQSEx7LgOR8jxF26criz7LW4ri5UUG5Sin+x+63Pfl/DtKD5nlaTxeSvJ0SZothkjee42I2OmL3BdL7btUxuXyLxNOTSnoDB/mg0pl1dIDyjqfB8vjI5UzFUqCRrAXGaJxJ7JR4m3nZV/WTfrC4VgyxTqnoqKi4lOD3eYMb3rAt/DMD/9/fM7G02ll5f4uUkVFRUVFRcVnAO41ScnaRo35rlFnVvBYJ0wmlumkwRBPcAp0IjE6D2A0rH0IPX0vSMyjY10y/BiaNlou+mRi0w193wcslnYKa2srWGfZ2dllvvA0LhBwNI06WtvoXNRUC55F36mByjTMu45+r8c6G1NoeIyBhelpmgaJx/+bVlObqRu5JYQ5i0VP1wcmWGYrUyZG6GwfT7VrygHfw27omEwcs2kLEJ0aMYpEgMa56ChRp1Tfwd6iw/dzNCWRQyysrE+ggdY6uk6Yrbbs7nmmkxbX2pgs3Go0EyzBB2w8EYMfHB3GWEwownIXVovoiyV5+0eO8mjo7vse1xhWVqYI4HuvFjlrNeKUMTndxXTaqhNB84khInQ+IN7gg8fZEEMKqzE+Z2oRm693TUPTaB/s7i2iM8XoO02IBkUbjWApLYuB6KBXYVIvoYvpPUJyFEgyFCdLQDT2iqZXCCrgOeqEplgJebPftI4QhPl8oaSkfChbkKDEg2QQ64MfDJrSF9+ptcG2jr7XyEnqWY0no0X7wzqLtQ3GpBPwjr09r4YFl+oVWPge9rbpRQgf+DuObl5EsFOma8K7//YOTt1+By2OlQOrnD5zJ271GFdefS1XXnsp60ctzjo9jYlA0PEXQh+dcIPjMP1Vhn+W4jv9OBk1BvJLGJtbRk6D4RQxo+8TaUmW7zFDOeJwyuVJPjYbrSz5RG0yLGISX0L1WDK65bKTf3PaW+roNWqId/Fvi8Gn9xqyQ0TtmEOJQyynF2EhMLUazShbiqOzPp2/TvXNpLai3QaD2GDJG0rvhnZIJvM4rhMRoxfBG8O8qFuqZxvr5oFdlESyB2wbE09iDzLrIEdUE9Rxbk00botG8rDW4NGOcrm9S6diYdgz+gxnNPJMGnchNq4xsXDLDtJsMFSiRIfH4GgkYMSyu7PL9NCKDisRMEH70QgOh5eQnTYGQ9/Dmdt3mFo4fNEE0wDonONQ2QoiGBfrIppGxye9KTFdh0gmZsVckghD+xDbKhjJOqp0jNlo3U4GQm336IhfCKdv3+bQsUNMD1hMC2ITmSTKf7BRxwfO3rHLYt5x2QOP0TqTU+8l26N1qQN0JBrjMeJosCz6wOnbt/AhcPzSg7gWGmMIRtTQaZUwaaM1NPWGpD6MclFKqk9j1/b4znHyo5scOLDO+sEJxkYtYeK4S20aBOMDd912Bmtg/egaO+e2OXRsHTsxbJ3a5oN/dyuXXnExB04cgBZsY8nRosiBsAjJKG2VzJBTRjkTU7LGz42obMQG6zvPmdNbrK+vgwRufvtfc9vN72Z68DAP+aLHcdFll9LEQWQiKUL1U6xw0kOQSU9qVM+fZuN4SlebI5KlEa2No4b8RHqKp54lDJF4khE7z9+xvrkngsnGbkE0bUR6FoPRWkkJ48gfPpUljk11Yso+hZ3mPJvkLBIKSr1vYs4BH+uFTu0pi9sQZMRoRCYl+ej8mkgNkMh1dpg/RGudInoQYkSySHJJq8o0X2kgABUQE43vLuvimL4lpn6TnG5yqIeOVSUOCarrvTExNUcikomOnXhTGc0kxHWqjguT1xMhKJHfiaZfgEhaCCZ/H8TksZb0DqIkpz6kWVg75zM5kpK1Ls7XKRVxjIplB33og8SoMDKc4i7mxJDI96YgGVFElslMOI2qmtZ0zhkmkwYQfNfT+6BRMWPkPhtTfqaoPiEEfPA5vad4TaFlrcHEtL1pFWStxjqxSVYTudMZGiwiPX2vRDrXKvHfG0/k9GuU0hDnRwFj7ZgwmMYbcczFuoZeUwWnNL5N48Do2lV1gcrDZNbivdA0jcql75XcJoPcGnGRFCSktFcU+mL/fqK4JvVRjkw3zG3GSu4nHxl9Jo9prUsiKWmUNF3veu8JqCwEGZ6XkNo47X10MUhOl+hcPIAR1PkbGVMQ8+eISauxNCfGSsT5IDnWQ4ip5fIqmPzTAClKauRqJ41EntPRQzZZL6VoZ0mMB/HOFdQDMHkxS6a8mEgWMTZGvPWIDETw9Bwtu8MYYXDWDi/U4uq48L5HFruEs4H53g62mYDp2d7col/MsViMs5w5c4pmsspdx+/iC458BQ/zX8m0mQxzTHx8jL+oLTtUYSB7pDUxS6SiomWXCSRluZcdt0t/7gumUfJ1ih/5+3LfsPzc8vNEklh+RlnKQQtLnqdKSchzf6rS8nuLP1K5B+vI0rqYRL6m6ABIS4h01cdydqe2HfbIRREK2RR0bzD8rXojngmIkZx0fZqiwqZ/o+aX/e1fygaxLmkNUbaPLP0cETZM0a5pXZ7qk9Y/8QaT9Fg5rtDfjUDoPK5NRH7IVCsztEW5zxWB7Z0e8ZbVw21ca0f9n8pshvtz3Ys9QmqfpMpG3bnUAGV9SlJKSQop+xD0wYvtDusaJitK3B1FtDKpkPrsfs8z31lw+IIDMbpf7Jei7csxnwgXKcLwfLunW3gOHV/VdMGpjMX6eDRGi4YZxlC6UPtT20Z11u7WgsY1TGeNprQu9EkmcIjWe3d7DiEwOzBhsfBMVx22hcW85+zJs6yurzE7MNUIiYmwLkUZl/TGcoSjQjy0DIkALxB62NvraFs1uZ6+63Y2Tt6Fa1qOX/YA1g8f0qjBhmEfEF+au2RZby0rqrLhiv6JDT7cUpBflsk2y21fiHe222X9YIf7R21R3rc0WIVhb5aQ9WPstEwKK+opnK+62k7p0FEa/6mKQ3vJ0ARLbVPq9Dwdle+K5DszKJCRLKRfh/ePSynnaQMo6j8apKVeGZDPn8Qvy2YejT0Z+kFE//bCaA2WCZLFz7Lew+9m+LvQbxUVFRWfSuw2p/mlK2/kkadu5Km3/VsmYe3+LlJFRUVFRUXF/Yx7TVKazZocQt6InshPaRAWfY8zFu+F3b0FvU8Gh7gxjhvAEHeTUux+0wlRa/RkaEof1nU9i4XHGquRm6yh6zq6vqfvgp5A9YF24phOW1qr5BR9T4jpeAzdogeUNOQMNJOWRdfHzw1tM8E5jQSlLjl1cNEYVt0MAba2diO5xjCdTvTktvFgNOWCGpoNXefV+B+fo0Z2S+ssfe8Rr2l25p2nm3t632Mby8rajJXVKU2jJKqmdRBMPGk9IfRazoDQe02n5q0GUA/KNtLoPmifKOlIT9NqOgl1pBH7xJrBEZQMAMkxmQ0Q0XDnE3ElnghuGofEvEfqyIntBazMZhhj2N3dIUUICkZTY6mTKTqSYn6NRa8xXKRRJ6RzgbadYu0qW1tb0dBUWiw09k02JRqDsdBO1ZRlRB0ck6lawza3dvGdxsFZtmrnE/xxly9e6EOPtU5TaMT2CEGjJhkL3aLTFEvY7EwxxrKYe43WZAeZdo0FKxqZCn131/fYhTr6+z45uiyNa2hb7TPnLK4xKjsWgvTYRDYAJbgEA97T9R0+bNJ/dMHO2bPM1g+yefIOdra3aY2hcy1nTns+/MFbWVk/yu7JM6zOHkvbXMz0CBDT/FmjwdNLH1OKrOIGkci8kTKMejIsJltLaVgM+WmD8Td9ko2OqT8KXZPtasKoTENLKiyS/FGpU4vvBjNLaeAe3EbDNVpCNVPnupMCypcOlBhZKRmyYkMElICi1EbDCoaZ1ehFauotLOjnqUf5TSIHpJYc7h2uTEas5bZLRnMxZMfBPFqsbDRoBwaSksXgRePXeQFvyWnthJheJzvatZViYpDsBLCqBPTamGZSnXTDCeUUHSCJQkrZ4gz0hV4q5UINs2bURq219N7rRaIR/VwwmN6x2wmLnY4Txw/quDFKsGmwWKtRGDwDaQCvTt1TO3NWV1c4dGANjBCsx0WLsLEMdYLhNGG05NkY4SJFF3KR0JPk1hhD25gYPSNG4TDqfLc5xnz8UaTHkWhxtMGwtdmxuzPnAZcdjilH1QFUktyM0YQ4fi6cvP0Mxy85wmTF4ixIzA/S+8yd0Q+027Di8CIE6VlsCnd+9IymeVsxuMZDsDo2bBq7xZwu0UkipVG4iBxBdHgbwXrLuZM7BAkcPb6uqdmcpp9UeRVaE098BmFrY87G1haXXXYJ872O2WrLdM0yn3s+8L4PceDwQS68+gR2AsZp1BoX6cUhrTfM2Iib7cKFkXyQOROJiAHmcObOHSbTCa6B9/3d2/nA3/0VzjU85PpHc+nVV9KsRMJYIqcgeUykv0pn8T77vSEFLBkZmBPhL0gkHJqSMjoQBJOBvnzmsprJ83pWoiavY8htMo4Ukub9lAJCne4xAqZLZUjXFusFUb1ho7INuVCpOENkmzRAUkSo1D8pEpk+svQm6A9riekKdSym62z2RiUFQy5nGrJ29F7JMp0IZEM7DJo4EZYQYjTGtE4qTs3HRksp5VJbWlvomvJSVO8OY3GQUV1W2Ug2j6SIqOhDWjhHveKDALaIkhlnjai7Rv3+GYi2sTmCTJoTkh7tul6jsorQdT7KhyFFb1Dn37CmMHZcT4ljSFMUxqg8MhAiRZSEL2i0nhQBDAGxMSBbJMknKUx7i75PqVi0fZ1VAm/fe9UhdliDp/GRiCtN4wpylfZx00RSPaJpVwOkKDg+BIw3OUqNSWtel1LExYMAhZfKOSUoNXFNbYymVUag74W2tciszesMH8A4i4ljM6UQzYNYhRoJSuJM6bCHuaeYtxkksZTKQruoDjA2HkKwWWcOa720XtF6gslp9gayZpp30govyX7SL5EUHLQ9nHMxKlPq56KwgxSR9n6TaZOdfNYZmon22/b2nBigd3lY62dLCjnIcCADdH0UCEgXo+PFsa3kzShPRg/oDM/UdYN1VtdkfphXJOj4AIlzSToEYuPaJOrTRFiNk7RzNhPh0j5HguDx+OAJ3uMXC1zbsrd1DglCYy3BWvwCws42rtkC3/OO5veRA/AweQITOQCYGEEsafLxIYHUxaoHs9bSNWcpQ1kWxnNaatuyE5IUDNcMF5xv/l1+lJQO/P29qjLH8uOLDQ9p3hz2UPlSKfciRf2Kz85XNUH3Nmmt3sR/pfiWT8xkIBlIUWlPI8WD09AelTHOF8sbroCMyYDLZTbDmLTFvJ3Gv4CSv/NcvVzH4nlLbbnsEC/LPV7PDf2TljWS5G1p85jXIfElafkSChaQDWTC7+5ez2w6yakM49sKeTTjugRY7M3xDmarU62H0UMsef+Tro91NLnCYxktij36O7dZrtNAKs/XpTVZuiapSlGyzM5Ox4EjKznC5PJbJEbLEQ/b5/aYrrZqYymCMy4NwaxfDDG6JQHfaRSltYOr8QBgGu3DeDNFpfKvURRH07oMOj+usOj3PH3vOXBoVXVOauLYltaoXAag6wI7u3ONVu4DjTU0E10/nT29iXENB48dwLYmD9jltkkyfb7+yOv44jobo2maAPOthRKwneHM3Xdz8s7bMMCJSy7n4JHDmgYvnsSSokGMuecXJznI4yH1eZb/8jMZl7lQjDre4roqv2eIMJo/KQblaMmdnlywQod95hA1eSSTZV2WYIpHjfRpWR9Juvv8/ZTbhUH2x2VLY/884+w8k8YoDVwhZ1DqqkGJyXJ/LT2vlJlsLzjfvFYMMBndODwz2erGBZRcNyHuLaRok7IsZmjL9KjR0FtWTBUVFRWfQgTT87+P/WcE4cvv+Ncc7C7lfKuTioqKioqKis8O3GuS0nSlxfdBTw0HcMZhjaUPgcWuOhV8L+ztdYAaVROJJBkrXUyVYJ0eTc0pG6Ihp2k0XVrXK7GoaRyIYdH1LDY2aRqHMQ0SFjENRoibVIuZaFVMzKuSyTldiA4DTWFmrRrAfSfqPG4FWpj3HZOpiwQRiYYvQ9taptOG4IX5vFMnIjBpG6z1WGfoe3V2dAuNTLE61RRoBmisZboyJXhP1we8h4X39AuhnUyYzhyTtsGHHlloqjsbjxpJ8FjrOHxoRt95sIZFr1QI76OzZRHwfVAniiPuMNX8K2KjQSieJC42oUOqnuTMkOyAS86ZxLvRlG42O3iMOHxMuScihK6nmURKRiQrGBMjBJBO96qBXeIz0s7a9kIwnqZR41bXdYhA0zRMJsJ8r0eMjfdFB4fRNH8QmK44jp04TOgCE2tpVxx2Arvzjs2dPZQqUpxBzTt9MxhSkpEWLZvvlQaQoqSEsIip/JrsNBDxpDQhjdMITxiDdS6m0nAE6Yvw5+o0mO/1uQ9ACXV96CK5jVjHwWBvraOZGMKiz84Lay1iAn3XaZl7j/iebr4dHRQO007w1tIHCB3M5zt86N166nC++4Vc9/mXI87TToSVVYeg6aLSaG0QJQExOEhtLFcQjZDSxzroGFRzSCL68DG2GCbeNBimB2NiMquUBqohYhM5mlEy/HuG+4lEERM/M5EoI8njX5QvOYoHB4KJUiLMsEyCEk7mJjpQUCJFaZRWMoSQzK4NsIJhHZjGv0cRmOJz+vjZngjbRthB4/cMtiDJxvBkgCzbbtlmFEyKgjK4btVpkU6UDpYuQdMJLaLRXIzDI1neEgHGoFElBCUwiRF1/qY+MUr8RFLqRpCgPeNFjdwhOR9zuqrBuJecGgZymqWRdSxe66MjW6IlzcToJokEFQMTsbvnWfSwst7gTKxBlK0+krQsFhvAGyEYmN+9xWQ+59Dlh2hXYmq0pGtSHy+Z7ATJETUIGsEppZpSY2OUpvgzp8Ai6kAhlytHgIhjPkeySPq3E+6+fZPDFxxktmJobDKgx4gehSxKgFMf2aZ1hkMnVjRtQLJeSuz5bKQ1GBudtuIQ07PohI/eeorDxw6wfnSKc4m0qgXWNK+GlP5AiCkAARNkGKRp9InWL5EV51uGzdM7HL3kIG4FjIv60kbda5JMCd2e8JGPnOHIiWP0QTC+48CxdQKeO265g73dnmse8UCm61aJW8mpEJmcGi1o6MPsvEh9RHQeROdRbhcRpIfNU7s0YlhdmfKB97yLd//1nxO6ns//4sdwxXXXMFlTAqo60SXrRJcjC0WZjX2ZIljYSEBLJ39xkokZJg4QjfITIvEi1ic75geCXxrSEr8XIUbzGuQnEZIy4Ug7fzB2l+kEiAb74tlaHjPyXeZeNoOsavCiGAkHo2mlygfF9iESRlK0rUw1iY781Fc5QE70BuS6omRQE3XK4FxUjWnjWFV9GHu/IDMlPZ0bEyL5N46NPPYkOzojfyD2S5pB0hyndQlAU+qISIIq4rUMFSgcirkfclvoN31MARUVdJSBpFdSO6UITMPMm95NMdY/U2Ebq+MtEeDSHCIatc0QU2EVJKy0JktOtSRjZdpGGJxtOcVb7AgbO9F7JWNY65QgIjE1cpxH9TCGhgRUJ3AYHL8kUqrqmzTOg9d1hjj1BAUfI2E2dvA+GXKateBT9Bsd29YYnDMYGyMphRCviZFKnM1rpkx2EqfpPGIqM+ecpnAjEuKDRuKMzCeNCoZhNm2U+GMMgiOEtFaPc246jFKOeROjY8Tfy4WIRnIhKw8dY4NuKfUJRIJSMQaUdBVyxMUQ66LEwaTzzGjADPQLk9cYpPV87EsDOUJs2zYYY1jEwymSR02SIX1WM3FMVyaZmONaSx+8kpxMTNY6hMbLBLqkq4siFGSL2FAhEb9VWyVdrtdH7WL0oIpEZZyiaqRDJyXxR2KfLiP4MFI6Ijb31zBWQk5jO9wY94l4TC+I+LhWsHixSliO6+kQenY2hLttw9sv/D12L/0ID9p+PJeFz2HqXIy4NzzcoIcchsMLgwildVaeFylkplgPDr+UhR7qb4o/lSBSrnnKq5YJNUOU0RCvHSKvFjCUfvj4y7BWN0X/l9e1QKNTER0Fybco8yBR6b1aphTN1cYHhyR3ZdtJimAkdJh4RCrJ1LgZVceOPzTFi7VKA9FoJNCkNUaaT/U7YUgRl/f3+Xkm/yyPX5QRRoYyJbLiWG4YLh0Tcoyu2WCYF9NwW16vENdFeX2IziFSfD7oM33vfNEzO7waD/EMRKsyWo+LfecRukUg7HSsTCY0UxejbBJTAJP7uaxXrn/SGaMPyXXLbZAbgmL/PEQliq04fktSnUHY2txjMm2YTB12iT0nS/9d7Hh8HzhwZCUL67DkGtowE2MMmdgqAbY357StG9K8FePOpPmkKHj+1YzbZ6jKYFPoF/r8lbWJpnnLVU3Rt7SBRDQd6rmzu0xnMzAaBX62MgEjbG1ss9hdcPTiY7ip2iuX57fcPkt9UuqbXIfl+gTY21FLyaxtOHv6FHff9hFCH7jwkgdw+PgFuIlGWE9z52h9GH/bRzgv2ijLvB23m1AQ9yj3BemCYaDk1OplPVK9zjeeZPld48bSIbX0WXr+sgpfgln+IxY6k74ZRxoq75Hy5/I7Cr2erklzdJK75T7PZK98A8U4Hh/szI2yVL9yTsu6rrgtt3khU6YoS/n48tHmPOVN+5jRu2X00aDnpFyjENcZjMZ5vqXv6M7cAVxFRUVFxacaYgL/+9jPcOv6W3jyR1/KQza+Ksa0r6ioqKioqPiHDr+3xe4tb4eHP/5eXX/v07053YBZp2EqWo1lTdd7xEAfAl3nc7qDdPJ20ljaVlOXKUHIRsdXyAapdJJTghoJrbXZGO/7oI7qXg1YIQwnn2105HV9Dybgmll0cmkUCsTTtmrg7zpDN/cIhm7h6ebqYO/xEDydATEN1rWI0WgdxhiaRk8me+IJV9FYI23T0DhL0zb5lJYx6hDsfYxUJEpaatoWYzSlWcDQ9B2972lap+m85nMCgXbSgjcs5nvqfDUW5ywrq5Fo4xxu0rC1taDrTYyoYwbySoy+40PI7RNAT2InAocxCCEb9o2Nzp64c3aRjJSiI6kjx9DEe/vgaSYu75Qtjs578B7rYDqdEKTRVH0xFYE6l2Jul3gczzo1qljTqGPKez3B2Htm0wmzlSnN7hzvtxFxmvIjBCWztSqHYgyrB1foQx/bb4I0LWe3tug7z2TSIp2PzrzCMBmNAU405UJyBoxPisWUeoYYDcnjnI3RwzSyUtu66CQ2+D46GGIUq263QxAap5ZK1zhNWxGjbpXWkiCBPhLzjDV48ZoOMVuiDH3XK0HOaAKB5JDOEbEkgO+UeNe0LCSSyHwgeOhNy97mKT783ncwm0150JXHmVrhyotnrBnYEsMmEg3dngCsGMsEjUDjTTZ10UdxcSY69RLhiNKMOJw+Huy/Y0tJSlGQ7ilNc9kQw5iklD5LkfTFJMeKZKO+GrGSZSlZTxWa9kwd2uVbLepothhWBSZAF02xixTJoLBBeTMEGrDxTLglpU9TAlciQSWSUxfbN6VC6Iy+o881T263oRXdyKFflji16+AoxQzEK2AgSSw92xfG8tTa6e9E51MRjb0W62qtphVKYeytic60GI8/py2L0RZsdD5qPciG1ERI6IXCqZFKMjgMM1knOuh9dFDYRMI0hmAFGyBsL5isTnGtaMoeOxB5Uto2K2iUJCv0Pdx+5zY+OC48vg7TQGj1hK1BkJDIQwyOvcIoacWAH1o1EUsTKSXrqxjRILWw6tZ0cp1iHiPLWBB1Tm9vzOm7nqMn1mgncbzFNC/WxHoF/aw713Pmri0ufdBR2okhpbqzcY516Z1E/R/lXRACltN3bbLoOi5/0AnaNjnINPIDNjrJfJqfDT4EJCiBNTHXSjKLkipies4FnPzoBqvrK6wfmuCapC+sEksigdBj8F3PHR88w8pslbXVVTbP7XD0glWYwKnbzvLhW27jwZ93HWtHWyWjGYaUHqoQcE6ji7io01OkHWMgmEQAFUJM6aWED41GsXVql3kfOHJ4hTtv/SDv+ou/ZLE557rrv5grH/ZQZuuNroVcGtkpPqDkFGwS1zQpYlEatdamtInkOScRLlIEFWeHOTNF2zDDgB6ixiRiVxSEyA/U+S1Intdzu5RaIxES8vtVNlNakySLWSOnMRDl0yWimiQncIyqmchUUrwr/RY/ylkcTdRF0SpuSGMhkUoiwdQMcguSy5XKPzgGInkpvidE63/6TEAjXiWdlQhJiciViV6xV/NYBvHF71G2k0NOCUmSO8mgerHk7UmQXL/Up5lgEdCUscUcpY5yO3J4aZcPUTFS92SxZ9yP+7w4n2Ewiehhk0M+6vgQuzMMJD8YdItzcVz5oIQ1w0iGs9xGPRqX8oVe0geliEaZ/JGcdUTybYrGlNs/HnSICwzfG13jio7p0CcFIwRJqeGsEjhF14Zp/KZ9i/hI0kJl0xklFVkTWIREso5RukRy2SxOpSdGZjBBsBKj56BraHWoWpCA7ztMTIHsrME1GmHQWItxjvm8w3jVIb6M0ZjWDnEe1AYkL4JypIs0h8cFX15xRL1h7LCeMWljAcOaOzqwQ9QlIQTEeJy1NI3q2SCiaU5Te6beMoPr25RztSTCQ4ipsh0suhiBzBB8iHpKNGW4a/BB92BdJP9jdR7vuoCEQNM0dKHXMZtVW7kmK6PWFAM3NZ2My6fzuJZB09IlAvA4ooVGYoxkPhtlOYZ3uScyYtpfYxKB1EYZDnG+C7mb42IOIJMJcoHjCzyCs0M5RATfL9jaOMlk0nDm6AHe3f4aD5ZLOSBHWABzlEDfxQhXFhPXHIz+5YBdsSXLvULZisNQLIQw/VeWrpOle5afU2wmhoMV++815YPLd6QxgBkIC8V1hiHyURMfJpTRo4Y65zYwwx4DdC7qZTgsRNxjpPv18ENqA5P3GaMDAeepe245GX9Ttuq4jEM7mzjZSP67uD5NkEuNf57lwOh7s/xB/DVO66RHp7VFmgvKlE7LxKtyLZoeIPm5xTondkyan7UfBBYacbZplZQoxbySoi+n9UVaF+3t9ux6uGB1StMALsTDGJLtDuW6Iq1JR9O8jIdlKVvj6IhFw8CIfDFEziwuE/C90C16Dh1ZjwcyiveQ2jfKYy/sbOyyenCFZqKzcyjIWsvSFdD0t+mVi73A3u6coxccjHOm5Dne5s4d1jFJp9iy7IxlzMQLRQy7W3Oa1jFdaaKtSvJ8pWM4rQFg+9wuzjqmswmLecd01iANLHY6zpza4PDRI0xXG5wdiDypDGVEH1OUK11ULrXSDr1MD7zY7fDeM1uZsrOxwd0fvg0/7zh60SUcufgimkwWO0+fFUJQrgVHEXeKNszrwbJP82Vm9GxtIrPUiwMKcb/XyNNSIcDp7/LVZXuWsl/eN6o/7O+XpToW0+W4TMt1iBeXU3Q5pEzxQFN8J2WZTDpQs08cRuVDyLbG883T5bOTPkgPWibXZj0TC7es71KdyrYwZV2X22C53KP5cJhDErozt7P74XdTSUoVFRX3GQzcPft7fuUBN3HJ3z+co4uqbyoqKioqKv5fwM77/5ozf/Yr8M8ef6+u/wRISkMEHGudRiUyugnto8HeNepA1tO9ajKbTJye/A16ttxaqxktesEalw0+QfSUq41e9uSAMlZiuH4lcfR9TxDUmWzVkRy84JxhMe80rLQxNM7hWottNK1W14PvwQfPfOHj+zVakVhLM5mAtWztzDECrZvgrMcYaCdqSFgshjgjXR8IVtP5tM4ybV02sAQf8FZPZXU+YL3XyAsEjQ7lLE70FHfXafo63Riq+9j3QvAGEc902sBU0yqZxjGZOla8pe1bFnNPP++jc88SJBSOKotIIAQfDRSDAcgYl1PCAYPhLToU0r3OpFQJnoDQtI0asOIpbB+0/YII0nVMjMOYwGxlEm2VsX59h+R0F+m9ntlsgoiNJ8oh9AFxgZWVlumBGZ30TLopBljsLeh7jYgyW2lYWVtha3sP5yzz+YKmmdBh9WTcoke8OnMMASQ5JLSeyTGQIjEYhtPbEMO/CzmdIYBEMoC16gS0rsE5PXVubHSi+D47XnLKDgRrA33wOd2hFT3hXR7TVfJdjEYRLCwCNqaqcK5R44EBQcl16tFR87YQT7IGo9HGvCRmlaZ8MprWa7GYs3HyNm5734S3/clhrrnqKtYvuYQDCDMMq9F4uwHsaUNgLDgCLWogWRAIaCSrbK4sjB6DYaw0BFMYh5SgMzaDRx2T2mIwSY510PAYDDEVnahxXo1LgiXEsxfJGWJiOqnkJCHHiyrf5wRmxjDVZmROJHlgaIyGr3fGYEUJWymakxMth45uoUPoIBOwiuAqBGvoo8Myl21Up/11zn+L1iifhtx3XRn9J9+Q3QvJmWHzM/TEdWnI3NcfxgxRqwza5ymdUBgIE/mEcvRvWgMhpoZKY8gmY1k0tIdk5DOoIzfVP7ZlTjMXO8+gpBkDSB/b1RgWTh2I841djhxaUcKBUyKdQdM3tFh6ExBnkEiICXuwdWZBc2DG2pEJbRMQB20sWGcGY79JRsnoq01p8LKl1agjUFJbacFV18OQyi0SSkqyU4rkkEmUSRJ6uPP201xw4REmM5XJRtWAOsYj8cEZQ+/h7ts2WD84Y/XICk2jMi8xzJQSZiAErY9mn1NSTkDY2wqc/OgGl15xnMmajWTiECM6RNkSA2YgU1irBLQczyITXmJPmqiCDJw7tYsPgRMXrdG26Y4oT0ncgkZ9O3P3LvO9jksfcIzNczusH5hgVxx72x23vOtWjlx8jCMXH2DmAs5qKrk0GlMkDiVQpgeb4Uck/IToTFD/eHSOi2FzY5fd7R0OHTvIqTvu5G/+9K1snjrNNQ99ONd94fXMjk1pXSSKxn5X4q7WwxXkudH4zOSdpCuTQyWOyThWEvnFWZvLmEkX6b+JEJoGZYhOaDcco05O6ORSKh3jqRyuyKUx/t6MrN3ZsW6WIkCYYn4s0j+liDQ2OcJjzjoTn23TtfE1LqXVigTEUs8p8TTqGxl0XIhlS9FblA+nYx3KICKDXgHVF+laV/RHrrdJY3vQ39n4b6ITygzzEGZwb3sSIVSdmykSJ6A6p3Q+5H6K64CkSyjmilT20nlQOL9yAJVcBxjWHsX3n6kwxSpBTI68aoPgQ1ByJGRyT4g6y8S9QYrGY2yMfJXklEGXamqsONYKuVYieZp1B6E2sf8JgjEaLVQiKcrZWEYr+RCAiJJYvJfsiAuieslEcup84WMUujRmBlJqkBRfUefTPq5DrDW0zuXUoTq3DvO5T+vEKHOj9I2xLIn5oeIeo8oGr9FWYzQjnbA9k9YSnIkpiKOz2UQiqgzkZm1nGTn4UuOVxNtUmJIkqWkqtS99PmQS49fEZ6qjOrZt0FTR3oNrXJ4rQwhaj6CyEYJGsbUGZrOpRuJbdFm/G4SmNbiJYeHBNTpP9FYj0BqU6NVOHNJJfL/BWE0Rt9hdaGQpiWvNUJIms+gMcpQxXDMi0BW5uoRBNrW8IUcOGyLxjR2cIenHgmRkkswX3tbEL0ozR9pbEA8A5f7KhZG4t4urUonps2P0MRsb1Bgi+Ryk75Gwy8apu/mQNFx66WXceehmDnVfyIyU7hjmGOap/Fq7+J2hZyDfLy9+U9mLKXCQMTNcXrZ8ni9lOCQRimelO3QKTWvm4VpTPC9Ns+W+I6/ZYz+49LvZf38LuncQjaAE5SEKic81eb2e5riloaWRa5eaZ1D/xbxRNtRSWw43Sv66lOL9+4lY1zTe9713uDeJ9SBvo1cVJS1aJ83h8fdlUlEavyUnO39X9n26z4x5ucvLv1GZlu+n+Cy293ze0zY2EmBMHrYGwcU9pzeiewoRxMNiu6e1RonsNq7yZSAyCWncDWuo5XbN5A0zmp3iPD9IcRlZMU6h43oOTawIsL25y2xlQjsxef2aLtJxNax5drcWYA3T1Tbvv4ZodktrDoa1m6AEp62zOxw4sEozMUPb2kTiNKN2T/NJIjGlMttcARPnVi1jt9fT9571QytqF2Nc//RrCDDf9cznPQcPrtMtOprG5kiGZ+7eYLoyZfXQCo1NBwzK1hs/MK/Yi6+XdXu63Qh0C89i0TObtextb3H7hz7C7s42R46f4MSll2jUbyuZtJXH1vIQHg204me5Niw7P/0twwcluXCkIsrhmGRvaY3K0nXjXxjLs8R3FfcZ0lqlqGMaE1muZTRmy0h0IxJPUXUTrxs1jRmuyfVdUm6mrGdxbapDJnQVhVjWQ2mfWzQx5Vp8uY3Gsix5fKfypPcvj+P9xZf8vDwVxnFc1imtT/WOpQZYGsNFy4wvKtrcz7fH64WKioqK+whzd46/P/g7POrkt97fRamoqKioqKj4FKDfuPsTuv5ek5SC2OgdjZuklALMGpwLiHSIDM6DxhuMA9eoE9E5q8Z7A158NCgp4cIHyRtVL4HGWCaTCb3vs0NNN1whn242cYfqoyPMBzVOEyyzlQnTqaGZNATxdNLjnKYJWnQhnoRVN8iiCxg3wXhP1y2QIDjb4k1P2ximU8t06pjT0UjQ2A9iCBo8CENgOmlYmU6YNBpNSqKFWKNJwaLradsGF0+N+2DpF15Ty4nFBA+iBk9nYNK2LDrP3m5HN+/pZo7p6hQjgg8LDh1coZt37JgFvuvBaCD9vfmCfhFbNoScTkKE2C9jS0Ny0AVBnXwxOoT3vdYhCHshYKymX5PO60noGK0BL5raxapTLvjA7u6CldUZK2sTGmdBHGJa5r3HiGNrc858Tx3gq+szjHOcO3cO33msNTSNsH6gwa4Fml2D3YXJxLGyPmXr7B6IOoqEQDtp6Lo5q6sz+k7YOHmW3Z2O4M3g3MwpUYySQ2QI8l82hikcJsmg731xctGY7IiUECOYxNP+EgwSUw8OsHHcxFOU3mcnWnZOmeGdQEzVpg4k7wXxgpcea2DaOnXehSGimN4bHRAWrJngxYD3ONdE54rFOofvPHvzHSZTwx0fvo13mr/lkosu447TC9YumrFiYIKmeJviOAPsRtLcigir0SG7KUIfI+mM0zbIKIUXkE+O6jXpxHEyZg7pzVJgqez8zXGvEySTjGDZGK1ybUWjH82MyQn+ytQHDk254BAaEyMOif6ejOcThuSAU6MRpARi6opISjISoyUpGSlJUnI3pnQWIVqsfGwCscm4pAQEH9tMSCbYMVLbhHjdEM1n/M5sgDIm/5VafLBnltboZFgebNQBonNu6BObfw7O9uRPVwPjEOkiBjdAjEavSWQeKSyLwWokChsNZykNizFGo+1gs9FNkjFeIiGBofjElHNiAiYobWmvh9Pbc6646FDUzyE+U98p3oLTFInSC15g48weYWvOxQ8+RrOqaVx8b+jFaHoHUxpotWCJ+GJitJshLUv8LBkwY6OmNlanXtkbhhBP/6rzdiBqiDHQw7lTOzjbcPiCFVwrhChLKYWetpga+3fPLDizsc3V112m0RhS6slImkEEH/NxpKgWVmJavl44+aHTHFxf4dCxCdge4xyCpRMhZYohRsZSAoFGGXFJnyZntAzRaRAQC91mz913neX4ZcdwM8mGfpPHnerN4GF+rufuO89x4aXH2esWNK1lbX1CWAQ+9K4PY5oJV117GZNpNNLa9JxIWktRhxyIHzt7BgcE0Qiu6V+V0Gnodjo2z+xw6PAhds5u8PY//TNO3vFRLn3wtTz0UV/EocMrmJZsbU7jJkiMeFSM2ZGl3zCQ1OJ4SJEks9MnSE7NiPJ/s64z8R0pNUcyymenpdFoVtlgLRLTkxVWdWPiyd8kvzI4+rKhXrK8Zo0UyZgjB2H8l6KaGYOm2I1KORSeN0kEJHSOc9kTI+T/2kTwk6g9h7gNOWJBbDvJil8yIS2VVqwMzuigpPUQkh4eyp5GpRSdldZBQCa4Dv8dnABxmaTdO+Sk02fE9VsiEqXoc0iMHmXiegFGqfyIfydSAZKiOWjdZSRUxGiSBbs59s846tCQpu8zFaktiPN+iO2n44OcdoKoi10kMiVyhYnROIn3qiwnyYl9jM5RzhmaptH1cEhzoN5rjO5TIBLnZJAPHwKGuCZrzNCmovMKBI1yI5EoGfcFAjgpRpTRiHTOKuGmsZa+1/VgijaqETYtyeGbDnZ4r2ND/68/PTGiVJrSg64XU9pUE2UptYm1dniWF0IwNG1DIrdMJg2+1zTewVlN/4pB+hT5zZAiT51vxaKRFQdhK0knkgSaOM6DprJ01uV9n8n5HrMyyrqx74XWKOFXCUYCtqX3uo9bzH1kgMR9ZuMQHKH3MU0eTCYWMzG03tF3HuNgdWXCYk87Sw9spPTVGjGpX3j25gsk5bEyWq9hNRs/RNdO6aJMkok/xzyggqxajANSSlhJ96TWHCLVjWGG8S6D7hrUpcl/5+iWkfRE8Ag27vVMlD0Ziiy6ftA1Z1wjeK+EMhP3LBruUffejWVvZ4+tdoMQLuXuxe1cYyJRk2GNl4g6FpgyrNEp1uhZ7+ffS529fx7STpE8D5YSWLaaGX1eTAYiA3l+6Z0G3Qu0FBFjIUfntMU/c56fpvib+JzR2t0YjXKJrnF7NMJpYHgXMHbWj9qpqMYw/Q7tN27A0T0jkZLiufHGcg2end5p3VaQlsavyJTc0b5whKJjbfFelZE4Pka1KOudDkgU746imOprUscU9UovyD1fykmuW1z/iNYiCGzPe6bTlKYskYbjHFzUJx3M6HphZ3vObNrQTl0mHsSgkLmO5LourS/S56Fou9Re+4f/0A5Lc3zWz+l0THxGt+jpO+HggQnW6YGrkCIfFXUTgX4R2Nna48CRdZ1j43qmLNOw5tD3lodxdjd2ccayuj4BF7JOHPayhfhJMaMsDfxBPmTox17Y3pwzXZ1i26KDR3OS2lx8F9g5t8vqgVUl/RvDdNaACJsnz+G9cPzCIxp5Nq4Ts/4uH73UtphitkuXSnFoK85b8+2F2jG7jrs+8hF2Njc4cOQoF15+GdPVVtcT+dDEeLyl1+8fROP35l/LwRRYIjoNgp71SVoD5fIXTV98RhpX6WGy79dBvlPlC+T+K+4YkRGTzkldkN6d5Cw+v2yL5fE76iczbsP9ypJ9KLtcy3BPOm74O6+9ymcOYrrvvqHd9lGGch+VOi+1RSIjYZK9pzjwlXRMEsulaudVRNGu5cvLJVf68nxzRy7nPcliRUVFxacQYoS7Zu8m4GvKt4qKioqKis9C3GuS0t68Q9Trg8XSLTxtExPCBNEUA0EjjgQfcK5hNpkwW2noe09vNDIPIiwWgRDTWSTChm6MUiQgi2scQbw6c2PqBU0DpwaIdGrJxBOfvhfESDztHKM1ReO/90RDcsjp4iSklAywt7eg8RrVKTl6gniscbimYTptNEWNbZm0LVtbcxa7gqVFfE/wEh0oajXr+qBRhhhODzkLYo0SR3pw4qDXfaCzThsgQL/ocG3DdOroux4T1IHbLQLS9zQtNI3gu0DTGCUDdcK8C1hvoffq9PR64lgbFyA6ryE6+GLZ0g5XtJ1lRD4Qgvc40VPdIQiNMzTWYY3QixKUvATAId4gWBZ7PasHWg4enmmUIWB3saBfCMZZJvOe4D2ejr5bcPDwKuJ7rLW0jSHYDmzLdLVldc/TTODAwVUOHzmI77TcZ8+eYzrR1HxCwPee+fYC4w2NVUODpnbQsppIiklpRpRwYXKKm7GDz0Z5KayeIhCsktPEq/HSa3o8EHVs+J7gQ75HI4VEQ2B0BFiTTmVKNggni6K1GgGs9yGSEZSc03UdmBbrGkLo4/iyDOnzDL33+NBBJO20TaORmJoGF0Sj1QSD7z3dYs65jVPsbmxjusHYrjGSYBXLtggLDCtiOGIcE9Rw3hvLbmERUyOsWk0sIxtxNCAPzuRsHGMwagbGjth4cLUwPeozEg3AIjTYaMjX9mtQUtGKwCpKVgrAAnWMBBEaAxOjkZRSOZ0xOFJQksExbwSmxbBIb07l1mfr6fCFgT20rTxDxAd1TEomK2nqsMGQn6rsolUxkZlITv1s+k/EoxQXRR8firINKR/GyHa7XJf9UZgSoSpHyCk+tygZQQ3USY7Ve+xM6nu1oqkzLMV2HyJAEEkcwSRDqETnjOBsMuLbmN4nljobKocTuim1krah0sf6aFkN84B3hsma00gbkEIOAPpubTetv/WWU6fOsYvn6IWajsCgqTIlktAcJqZrS85rHcMpeIxOZTKUMfZAHu/x+xS1TY2nMkRsiwRHjXDnIllUneK+89x1xwYXXnIBtk0mTyXzWGM1JVJsf78I3Hbr3Vxw4VGm605TssQymNznGiEipz1LfYvhzN2b7G7tcMXnXI6ZWKwN+b5EJEsDMREkUzS6RMZQp2W8UNSZFADphLtvP8eBwwdZPdgM4zqdThcf+8riF4GPfuQuDh8+RNM65lsdh4+tYJxw1y23ce7MBg/6gutYOdjSNiZGxUlkzzhK4nOLrs/zry+8Qs6QIw0hBlkENk5ucWBllX6xxzv+/C+4/Zb3c+Fll/EFj3kU6yfW44lwnUM1fY6LBKVoK46yGYcwg1OPzGwxJkVvMzHKC5nQFcWTFNFHsgNfNK1dfI5GNwh5PCZDdiITpOhmguRnpNQEISqCUfq7aFnPqdNITgVFTmdhytPAkVhHHN/J+xHbQS8zOVIFxThIumrwzBHvN3FKLE5UgzpLozV9SHVSuD2SjpHBiA/JkC+pM4Z5KCmmmDoq9YfNRKHCcm8KMkDsy+zPizo96VTt4jQgklcg6e6oW10ibKX5TXWjL6LklAS1XLc41kxuJhnWLPlZxYRAWs7puuwzEd6HTBjSVapGbTEIiTifxpUPmgbRxMieSe8mmer7SIeIbZPapPxvSsVoUj/FtZ8p56qku0nk05SaFUwipEcZSXKaUkXmziOSPiJlzqRUQZLiguk+pp0I1mlE2sW8p+uCRuqRgXRlbEyzEyMa5XEqEvdaaT0LbYzcpARSp7IlELxG5Gwap2WIgzl4ifsJ9UKL6B6mNRYn0HUeEwwmRg4KaQzGPiGP+bRCI89xw+Dc3+9peRQik9lai7OautkbnQ80IqyDoGSs4DUaUjvRVWMAPRQRhKZ1mvpZ9OBD33e0rcNOnfavNfQEjdKKKPHAQdNaptNJntfnu4s4iB0YwbUWM0dJvXH8Jx1LJlXH0W0gp4CMtRyixgwE5Kxfo0pLjvmcmk5MJJAaGmcJMfpqmnP1vZIbMb8zrZcSizy+KZGffSIEEnVKUEKXtS73V0lmSpH4MlEQsDbEviJGM4vzrgQQz2Jvj93Nbc6duIW9+SZr/qDWXVQDOXSct0Br4ho8jv1FkqJiGZF+RC73WJSKOuaPkr4w5xW7TAoZyGDpHZLnqVRdh+4pmljeRDxKhxUkfuaK78p/5Tp/eE/8bzG3UchLi6aQ7mV4T3pXkqSkzUxa02WdNzwqz4kMUWuGL+JzyjKMGmkocR6+xoyIUmWxs0yVa1zG7Xu++1Nd8l4x940Zvb+EEiWLz9OyINeXlAFxVM6kb4pghkVU1/gcowdWvNGDBiYAPtCuu+LkTKHpzPg5BkO/19H5jkPrqziH7gvy2qOodBqrca4q5eJ8ZIP8d9IZ59GrywSElC47RzgKws7WnNnqhKY1w3tyJNNBWkVge3OPdtIwnWmknzIVbSo7af5b6qdur2d3d8GhYweQhoFQbYYxnpteBSyPy33PjzeZtKwKsLu9wLWO6UokgmW9mORDD2ZJgK2tHZpJQ+sci0XHykoDFnY2dtje2ubohRfQzho94IXZrzvMuNvKiFjlwDRmsAsgIAHm23MmbQt47r7tI2ycOs3q+gEuvuJypuszJfab8TQpZX+X7Q1DGrWyr8tri/Gdz6ak8Vi+xBBTgOufJaHQjB819ElZ5/j5oI8K+TbDWBy+GLeVLe8tymHK69PtcUzka8trUtsJwx7cDPclXVk+NI0f2f/V8p+FHi2uKcqb+6rUbandl6qen5/aJ8pL+j3p2ZH+tcOzR7af4lk6bw96MLfZqBLnj0Y36styb7V/wsnr4+X2qKioqLiv8N6Dv8u59jYOdZcX2q+ioqKioqLiswH3PpKSF0Ln8b0neDUoucZpuo64MW+cJfReT/Uaoe979vY0yotrHCvTKeL1ex/UqGCjuU3EEESJTt4Hdnd2cS5GwBFobDxJ6/T0cuglkpZMTreQNnSLviPsJaKI7rgkRIN4Y0A8OFdsJoW+061d01isCXjfYxs93YjVk8euNRhnmK60IB7pA9bpKWTvPU3bYJ3DCnTxpHRydPU+EFDjc+ssk7al7z1eDMZqSjxCYN7NwWrbrswafK+OsMVup+0zbdj1PV3XE4I6oKYzh5e5GlzjjrQLIRqB4nY9WqA04odkB7pNm9T4v/RdQnKreh8iQckwnbX4PoCJUZd8PAsmlrZxOKfpMfb29rCtpr4gGOa7C0QMk7bBW6FtG8Kix/ue2WzCZNoiGLYXgb3tHQiwsjLBTUSjamGYrE5Z7C1YX1/BNQ221VPQs5WpRvnwgdl0xnyvY/PcLpIT50QXplGZSEbtwTJQWCCy3AxpEUK0QKUIRkGP1SKiBKWmIZu7NZWI1fRMBvo+hzFBktUdUTk0g5NIghIktM/1khC0X7qFx6qfCWstK7MJPgTmc3UmaeqMKHMWoKelRTNlRKdeY4Ee+jl2Pmdv6xTN6oPZjYYMh46JXoSGwDpDCrgu1i5FNGooyEc5hRU5GkKKiyEMxrvSKG8lGQV1fKY+KY2CKR2CLSwnjUArQrBG06ohTLGsAjMDMwYHg0ZT0lPLyfFgsnHVZCNrNhTnn1k4RhE70rcWmCFMBHpgBS1LjxJifGxDb+LpaAN9rIUmyDKjt4E6Q3wyLGYDo4zem83aheFW27wwxBVlzUa1ZetbeU1xf/oqB7GATIYBJXWFRHCIZL5EOkj2Yk+MLBNMNt5qWYpIH1FPJcOzQTApbUIoDY6DVU+d1toXvREcVtMo9cJ8Y86R9RWaFlyL6lS0jawxGllHYnQIoN8L7Nx1jiOHV1g/PMHaAM5qClFMNsrZmBolnyJ2KkdlPyWyRhBtn6xT4vdq7IzXGHVMG6PRAdVZEEeIoATN3nDyrm3aacv6kQbjBHEWZ/wQ3cppn/RBOHtyhyBw/MI1Jo1gGm23bGgGUl5Wo17tTDj1u547P3KWEw84TnvQRmO9zcSjJvZ1iMQL68wQXt8ANkXOCjHSj9HIEyYg3rJ1eo/eBy48vkrTCganTljCQBIVoRM4efcm1liOHFzl3LktDh9dxUwsZ0/tcMvNH+Wqa67myPEZtHE9YW0mBSZCbUrlRpSVIguSrlNIfSYooc7AQjhz9ybT6YzWGd7xl3/FB9/zLg5fdDHXP+HLOHHZMezUYZqkpyBgCUb7QQkyoqknSVEEQnSck53Pma5iiA71RI8ZLMgSi4WBMi1IE68ViIQ7S8rUmgzfOXKSAXEowcAOjvOk87J4xgGuxAhdgyVyTBp+KeCPkiL0Q63yQPhJxA/i2sGlVB7JIWAYojJQGtPjaI59FRhI3S4RP4rCpyVJIl4VPKLB6R8bzDiD+IFgl3STk0i+jDrdJcdPYYDPJPXiNLUzcd41MU1l7CYb5S6tgRPBJpPDGIiqJl5vDfgQy5ucqmlNEvW6Nrlkp+3gP5BRf0pIfZj6aei/YICliEufURCtY/BDBMpgbCY/aN8lckeUfR/oNP+kppt2McyDjwJHnG/i2AmxnUMQeumHFHEmRXkxSoIR0YMGaa6Lspf6xgeP9HGOTLIc29oanbtSlE4VaYnZdqMeKAipPgQdZ7FcPvTkKKZ+iHqUrjdG5caPPJRxnR7USeWMidH6Qo5K1Tg9+NDnqKiRcBvXsDF7Nl0IhD5FOdKDHdZFTRDT2qnQxvdLEe2kkFWhdGaXO6t0YVpjDAuQdCjEOF0omD4dDtC2MyYeAoh9u9jrcG08TIIheK9RG4t1u0ZQ0xFqrNWIFnOPDwFnLW3rYopyjwRP27b44GkmLu5pbSSFwdrBGSLQOCWS7e4s8qEOyWvEpADLlddQ5byXSvq38JJKbLvkkM9Rp1LUWzO0kersSFrLbTSsi8mvMYPOFt2LpEh+ZZ+ojHmdJ61G7goh5AhVWjUZHPNZeesfApEQGxDpcSbQTAJnzUn+9NDPc/3mMznSX0IQE0nfwmrs/RQxKDVFXErk8ufoKibq9CwvcdyVa5Ci6QvKR9b7+d7YXcO+T6+xomu6uAoDxgSlJpbNMOwp0ruXgoYwkJOKvhia/WNAK9GQojalqDNRl0CObpa+y9fI0ATpNWllkYonxb/UFmW50kyXbADL1aKoa17hFmJXjvrU8OetsuSvC4e3EjnLOpTFy88vHqhSV8z75nw3lBcO781rH0nTpc7RabFoBRad7l4nrSWdvUjpX9MzpGiLEGB3c87UavSgRDQsSTx5HjclMcQMZSm+N7FxR3p2LFhDGw4coKI9GenFvT1P3wcOHm51PxHHfGqEtHQMIizmgflux9HjB5SgtLyEkER6MMsfE/rA1sYes/UVmkgiGslG1IGSG+Q8cmLyWYN8Y1rW9HPPYt5z8IgSwUzxAj2EESNxirC70+M7OHRwxny+YDZrMI1lses5ddc5Dh5aj5Gehr4qipXHS9nnwy+pPwyJJCzRfoEIO9sLtQM2hrtvu4Mzd93FdG2Vi6+6krVDaxhHPuySDgDl6u+fSgZxLhvTUswx8Xs7vndEAEoEGhlfVz5bUiedpwBJJtNzjNl3SZRh/S31sSkqldfqkOeVJEqx6bS9c5+md5NJWqndS+VjGOvdYpMxqueIhJbaZpg6RyTI4taR3lhSnaOxmN5RPivvxM1Qz3Ks5u/uYTyUsjj6MP0sumskH0U99n0f7y33PFkf54k3tU3cc5jzFK6ioqLiPsLpya38pwf9I/7pB3+WS3ceUSMqVVRUVFRUfBbhXpOUnBG8iBKCIutAIlnAGoumMetJhn8l5ngN12gNbWuZLxZqpEjpUWIknsZZJS71RiMAGT21GQSsbXAuEIJa1dumxdlAbwPOOBaLxUA6sGCdpet7em9y+qxhn2awJmAnlqaxzBc9odfUcxIN8s61eK/JVHzwbO/tEMwkOngDwQiNa9VBSSR3NE2O0JSc1uqwIhuYg4/h8cVgbMA0GuoZAQmanss6RxAHRiMuaWoor4QkD207ZbHd0e3u4gmE4Ok7z2Ta4gQcGnnKiAXRU9sSfNz4x/Qnfti1p4g+aYPqQ0wtgTpdgBxdxFq1MHgJdNLhETwB01glkFk1fLkJYDzeW/wezKxSIExvwAt7ex1N22Kto+s9TdPT2AmLvY6uD8wXPbvbHt/1rKw6JscMk+kKe/MFoRMmLbhW+9ZLh2sn+Dn0vueCiw/iWqXRnDu9y9buXvRUNdkaItlyM0TwKtOuZYeLNdofcTMvJhkRJRrqLEFCJMh1tM7RWosXJaOFmK4tR8eI8i7JiRv7IDnlkhM7hJQGxMRrY/q5WIDG2ni6UR18CJFY5uOpKqMh+Q0D8cn7mJYRhB4xjtDOYX3BW/7qHVz9oCu44pIDHJtNmcTyHIzUFT3pnM7tmnzq2cW2syamQSgtGAL5NKekSEUMRqtojRlSFAypD+K3+lNU76SHOmBqLLPYJ12U6wnCTGDVGCaoM9pE63RbWGYMAnZIaTYyDlJgyQJ3XsORKMFSHRnjgOYdSloKGLwxLBDmRqMv9RTyRNEehREsOcJDfKKNhldtsyGKhmNMKBISFS/eF/WiSlaSsLHhayjD/p+pjdI16hSJhlkzlCmfgJakO4ymFCjSXJno8Bqc70N6mhSlwTpNgzYYDVO0jKJLDECDR6NjBWM4dWaHY8cOazpNA2JNfGbs86Bt6jB4I2xuLzhzZocHXXcZ7QqaNsAW7RiNc9aZnMItIbWjziWpnGQJyMZekyJQhBiZTes4MrKiukeidVNCYG+n4+TJPS674gjtTMDGiAlRbtWZp5F0ZO65+/YNTlx8jHbVYpoQ9WLqW6VlaVo2A3YYqyH03PGh06ytr3HoxBrWCS7135K8p4ZJUegyqTVWw1pDMEEJSlblr9vuOXX3DhddcojpiuqjRHrpE+nJqEN4+8wuGyd3uOSKE2zvLlhfnTFbc2xvdrz3r97P2voRLrzsmM4tLkmiVUN/GkhFmgxjTU7LhUg8tar1ioEZVZt1gTMnN8E0zGYt733723jP3/w1a4cO84jHP57jV1yMnYFt0tiUbLwNUY5d1LMU70gjSKKl3tqBmGhNJJ6meSWOext1oiDjtCZJT2aWDpl8lD8qHbmxX7IDl0GvJH1NSO9OxIJhLJcOiGzUNyp4aQ2RjO25xePfvgwFYDPXI7UGKfLHQBLWNVtKD1me5rXWDFH2pKiXTc5ZGeZydJ1iJY773Oax7DnFl1FybJCxPkltWXogsjeljDwwzGOJVGbNQKgaG/2TzBeEVBPrKuTUcKmQIfbNKHJTkm+SnKS+oog8R6FzikmUtKb4zISNRFZIGseUIq4kWKOkem0OJSRaGdq36xba7vGZZXSjNBeltMU4U7RhVJA2kvskOcot0vdFX6d1mKbLHJyZxcA1iVhn6WP00hStKJEsgoSY0k/ofI8sQiyCgNHIR86oU1MbR9d+oZDTXOysa1Jj6fzhRAUry3wcA4l4LnHRoWtQ3cO1cd/Sd31OS5yi5zXWII2l8wOhyeSxLqPUZEMBGf0+6KWhn5Ne0mlMCEYwEiOHmnjwJOkpYxAThghuxkZinoBPkaK8Ro6yNspPwNmGIEpEChLoF+A7T2g8TQOumdB3Po7hEA+uaHSntMfV6E2Opo37UJ8nlFGd0meFxs59n/T/ENkvLW6kuF1lXPWI7iGNaKTUxjrdTyRiVAijKDhlmqZUlBRJrIRzg/M+pahOfWGdyr6IHh6KYaqi011yKmYSmTX1qU0Oep2LO1lw+txJTr/zLMcvOsupYz/Dw8wTuWbxaBpsXiN7M5CUoEhrVvwrKVj7NdhQ50RgGlZTWvfx2npAmv/TM50kMpI+IZPx478yihLFd/sXyuM37Vs/fQLQMuqaJa0Dhr0AkbCkhyN6hvYbS8J4nW8Y1gqj8kmeXoY2lP3lTzrFlH8XD1ruI7P0+2jESFGmWLA0epbnq9T/y/XKz1oekhRzYbrG7i9frk+cM22U77RPXSw6jLN6fqhYE6Xxpu8eyh2CsLOzoFlpaaYmRhpbKrlZKjtDey8NY9KT8xRzD+1ctn8e+2nej+uR4IWtzQXrB1awzbD/GOZCvSNgIBi2N/ZYWZ3RTGwmW4WyPU0acyb3j6Dr4d3NBcZY1g5OVbekCEdL/ZIepnWMzzOjBshpvpP8hA62txasrc9omlSOtH8c1tcCdHPP7tYe64fWWMT0ne3E0nvPmTtO4ZzjwGFNZZcOjaX9UakfRhHX7PhvLefSBwH2tjtEDNNJw6m77ubu22/HtRMuueIq1g8f0EMkhkKPS/HfJFv7Hz1qv2GZkL9bxr7PCmV6T+O1kJ7Rd8sEnLy3OO/yUvLYyqnQiobLun1pUCcZKcuX9ljC+PPcZsXYTF+O2q9UgrBPDtO15cBMUlUeCEj7pmVdWu7h0vNL3Zjm//LZo74t2mXUv+lFRXlSOfJ6MF1a1iXeZ4peLIlX5aNHfVwIQI7yTtF/xb0VFRUVnxYY4dTsZl73wKfxZXf+Kx5z1/Nx995lWVFRUVFRUfEPGPd6xm+ahhCg79Tgbu3/n70/i7F1ye47sd+KiO/be2fmyTPdc+eaWMXiTIoWNZCUeoDR7hYgNGzDgG3ZfuonPxhw+9UPAgwY/WIY9pPh9+62GzBgW7YB9wjB6galbolqNQeRIotFVtWdz5Qnh73390XE8sOKiC/2zlNUFVklXpIZF/dk5t7fEMOKaa1//P/enKbZxHeqFsY4epwLxGQyXCY55Uk5EecZML12KUeJmnxOdVAHVxymFg1ToTjO6y7PABrD4EEpQCRAzRnrnGtgIHMKW4A4RrtPxZy+xg4hzDG3U2euyLHlbOWNMePmzB7QmIt0kzIOic24ZlwFk59IEKPVjXNCVsGFkRQz0xxLoMNO82qGXFkSvOXHh0IWLcIQLACfsjnuHY4xOGadWQ1wullxs71hv0vE2cqmIXN6MjJ6x+X1nsurPcE5A2SonTi2gH9hUSpegazaJBGk1PWyIVa8d20Dm3IuEg0DMhlzhh9gs1kDyjzNBigQxYfAMAyIM6alOBtKIDjP4DOaM1mEoVADpRnCOOBGxQ8eh3D1LKFzBBeZ82Tgqgzb7c7qqwCndtOeOCvzPqGSWflA8KPZYzm1Li43GRwL/Dg0dwwS3dE9C3SZZ1PTAgipLjkpbRS8Z54jU0zmxHPGkmK2ZtF6zYo6WlCtPl8VC1qhaE6oRkScBZW8x/tgIJw5GUBJsO8FxpXHe4hxJsaMZte8VSY9pO1Zzil4O4vrxJHTDOJRCTx/+Yz/8O/8HVbDfX7ur/4iX/rRd3j/8Zv85I++zZsnFlLYiUllKEWGQEyaocoQVEdjDSopduLX9Y6SEohtAXKq6EnvEFsABIvr155tgpL2+4gxGJ2wSBgJBhIaxYIKFkRYvL6L/6VIoWh37u7I4fP9pt4pVf12NcAwir1TEWaEHXBDGUuqo5gqN1SYO1SICiqFdUmxYFGrk2LD5b4Dp9iB62lxfB5es3x77KCr+T+uD2vfDhDQMYy0n733tLCsqGDB1hL0rIFjc/ba9VUmp3eMVmeoqrH0QBmnvJQxC3wlRSuMCNMUGc6GIt+phVXH5FKQwhyEBSOcClcf3+DcwPk795DB6rie5K/gqYSxV5izvTJzLPJ9B87Kck8FZVFYkmyKMWBnY/BwlanJxoFc6kZRcoSnn+xYb1ac3Q8GRKxu3exQp4jL5KhoDrz46IbgAw/f2OC8VUiVDTQgWWFxUeMySJJNzjN5Lp5OXF0mvvKTj/ErcGoMRRUMtfSgMu61tqaUxTVARcQY4IIzUGSOwrOPrjm/f8LZg8Fk2cSVgLMg2dgGyZn9Tvj4wwuevPUAnM0x6/sb9iny+7/1+8Cer/301xlOHBpKHnMFoyy0+Y5l3JZa/t6etXrCC8ApCRefbdneKI8erfj2P/sGv/Er/xXDeMLP/bV/iXd/5IsMa0F9seM2Mln7G7ghdx77w2Rjtraxv/p+a3vnAhrIWoB4xeaNSSJT2UIAMhnxhvppb5LqHa/BYmnvXQIc9nkNgjnHInvFco3ZLoURy7Vb+36e60n1diJ7sWWr2gVck6tUnXSO9QroqNGn1k8NOFznRKAxf1T7qmAPlcr0WB3rC6uSUua/IvHrXF03usWDL2U9uVRiYSXpPf2HQZE6RFZGxWWFZN/UtpVS+QcyYOX7CrQ8CFpQgUylnnJ99rJWSF00xMAcchCYakESbP6Qjubj8wxQAhrgrKJSpcwVqnX6XuZHW9PbF+KcjfM5l6HJ5OAqoEjq2qP0PV+kwGqdZtUG+EYXW6tgJHFCPdZQmVDrQmPp6UWiDwMG5fKcCv6p7WxlgkWORotMm42TDfToMuoFCUX6TCGlypxX7INATplYDxmU9TuUMbWw7CDG7IXUucwV+TTLfPAe9RTgurIaPDEqu1kLg6eiWRhGj3MDbk5s01yY6JytonJl+iysHaVNa79HlrHgsNGXX5cgmrFOOaPytH0dgXmKy95EjClKCggvp4xJ/1ldZzWwkg8eJ4EU1X4PSlZnTK+zrT/D4Eg5FmCkmKxdGRCrDdY5L+dMjIr3ZZvcxmoDYQOkqFQ6kwpzOQCWUcfxBeBzwK5QqqUH12m1J7eMOy0QWpfU7e8jwCX9+LiAQm2c1pYvV4Cutk10Jr/YzfpoZQiT7h4Qp+1VZsOCc5nddsuHv/8HjOMGyXD58oJPTl+wP0/8nP51BMfc2l0KWHoBLGl5SZ/Hw3VIv449HNtqvyw98mAte3xdaxe1VjPWpAXiIKU1DbAiC5PT7eX1dwVD/VHTd1unCwWbTQVWCV4Ur91erNzR11UFN6Uu+7fqtJ/nZVnb1qf0eVpavv9mMb7jfUP7vf9Du6qsa+RjRAbd3F+/lqW+OeoDdWxuYJoy9rXeVtchtzK29CeXl31HmhLjeuy6Qq2XUvau8kSFuE3kXeL0nVNjceQ1NtFXeF8uXernuBaOcDvt7wZ67D7rgRIVTIoqu2tr/fVJaH2XZu/YIYjSAXc3kRyV04djOZwm/TB1UIa6ZlPJqDrmnXJ9PfPg0WkD9ZMVdW20a/3usD8fFZLFdht/aBZuLieCd6w23vLcreukGyw0CVeXe9ab0djc50jYjETg5fMrkkbeePsNwsrWstLZe7WRg+G0t51meEcNVfK4v57Z7xMnpysuX7zgs29/B4fn7S9+iXuP7xsY9ugFtSWqPfRAlO+WDsb/2zk5uObgUdUs+mrv+1C1zaOH1rL39dR9cWDDh5npbL27Rbvv6/q332+06nFHY8rRO17XFHV8O2zEbozTBdylejtf/ei2tEux9/rZ0dhT8/5d+zy389lNswcfvbaejgdWvXXF69NR+y/jPG3sbdvI8sjKmKUc5+Wf8667dJfu0l36IaRteMF/9M7fJpP465/+r+6ASnfpLt2lu3SX7tKfg/Q9z/Ypzmg2IEY2b6MFzYoTOQRncmDBm+NSjVEpBI+W4KUrDEveO5NDqM5nzOHhiwKLOT5tmxTnclJWHJozaTbwkw/mmB9Gb479rAWYUQMImBOp5N+JsTRlMbmNGBMxKmRnUg8oBGPAqSxJFpg2qS3JFp1zXnBZ0BTRgQI2gRxjkdMSRu9JyZy/iDlzc0qgQooJdSY/E7zlvUq/eOcsqBJjqQNHWBsQarc3KT3nHScnG6LObG9uikxFZrMOrMZASrC7mcBTJGcGUjJJvJwN9BHLid2cM7kEG733B4GFhf1nASuZJB/kCMNaGFeOcQ05efa7mbAOjKPJ2KkkkMg4rpn2QhgDiLeT2TkxzXvEDWzWI/ubGSZj/Igxs73a4SWz3gzcu3/GNCdyigQfSCkxzRHvBD+6JgO1GkeCC8RtZtY9++2+SPcFwhh4+HjNnGeefXaNJg8umYRhroHF4t4r7Fuay4nzzmskzlmgSKMBrUrQWDPMs/0dQgERzYUyQV1jd6j1WU8n+sISYPIUWuRJUmFn0lL3Hu9NDtDixyXgTz2hWBxBxfabg1a0sLDMhGDdPMdUPA57Yozk/Z7zexPf/sZv8gff+iZf/cpPMZ7fw335HiqZGQMGQWAW2GHsRSZl1ksftDDMkYO7c/CXX4TlpHIF22Q6B1AfJGFxlHiEQZUVsBIDJJmkznLaubPeZeBqjuvFyfzP8QF+H+k264zl2qhBnFJYM4QgsMZ1Mg52d3WKZSCKsFPYqrIXYZKOGal3aik2pi6u0/azBf/61jhyNjfnU+eke12qAR+TLWoWDF09VvieMSEsr2su6AKMqC+qMlbm4McCcVUqpzy0l/gwJ3QBUpTPVZSQhSjK/mrmLARO1haYtj4h5V02oSiZQa0M233m0+8859G9E+7dG20OEikAjlJujYjzBhIqQAcLBFuLLSCHynJV+/UyH7gyXkqZb5xYADSrBdfFCQV3Qg30bXfKxYuJL371Pm5Usnq8zwYsKdVu4BbH/jry6ceXfPFH3iCsClhDrO59oNVVBXhkVbIY4HG6Snz8Bxc8ef8+q3uO4MFlJVJZFawhFAvK+mKfZoe6AJQoQAwx5g8wINjLZzfM28hb79+DQVF1JX8JxeO9GkPETvjsW5eM64HNycD1xTUP3zgjjcrHv/eSVxc3/OjPf5V7j0ckLFKmdA7jxj7DYuOqBjztHdNSgKiqgkTl8rM9n310yZN3H/L0ow/4J7/yK2jM/MK//K/wxZ/4EcJpAT2UwWXpa+ahLhDrxUxlebeNv9V2m6ksa4USPTBQTe1OuvyvpY5L39MaRJfaF7U58I3dSNu8svS/2kO12PRiDxZUWOb31s9cGcMtwtRGJ5PQapAJKrC3BZQrQtX1AY4aLO9H5eVUfQVGW3+2POVa/uI8r8+tABLU8rh0wGWetL5eAZH2tmovGVrATQvQQdWK5LVrw26uz1pl2jqwbX0GBgRZ2G7KPbmAy2p+pfb7+vjaBrUeFkDUAaijRSMLCxslSF2DC10At37WmLjqOHQrkvT5SjmlJiulSPu91p8BtqWAbGx97pyzPQTLWGtN48p61oCtWiIw1frrHkUwZokGGspLP8W5Anzxxd6Wtkzlkmq7UCQJtQTGFbSwalbGGQFjLKuMkqWfZxU0LqBVA7AVg1Qlm16mjbimoVnY10yGLYi0tWmbUxogSxbb0n7/sTDLGdDE45OQUrLnOs8QHPN+jypEEiE4vPMkV6QsGzWdMTdVYFYFcdWA3+uYMVrQvP7dBS7resY5cEEQV9h+UMR7Y9nNmawJEcWLSUIb4NdhAP9ahQnxAbLJdSsG+IpzwntYrbwdmEkKpX1tj2eZcMWOqqSyw6ERdrs9KWfGVYBke9aTs5FM4urVDnI5GJMX0OYCPFiCsNbZjwDZUEBk1W4q4xENNAdLv6bWWXm6/d21O3Rz+LKnoNiuHeqRJmVbQVGtJ9YDGy3/y7yhGNOrc/4A9EQ2Xt2kgZiEly8+g4vA9DDzD+//J8gY+NL+r+BwhAJiz9jBh349XEF7FPutJnMA4ihzw2JbyzqgdLlKnFfGR+krrCXHsg/xUORapb27vbBMbdLqqHv3D3KIbSyMR3mVxU5k+YhBhVClprpMdEtvk5nWsmeTQ0CYLpcdZV/pWWkOv+Hg825p87oCdb/Vki2fve45/fOW9Un9/RCA1bYLXZ+oyxC6trTv/pCGKhVW2b1TBp0SmzO3gCDqSzrbqyxXM/DqaguinJwYuKeQTne1sICC+rqqXa3PXZ3T+yz3tSaN+YkFZFEGnCpjW8EpOQvb7WwSdH4ZlAQ9BCcg5Khcvbrh9N4GP1ZwYx2/6jhzWAlN2iopVy+3nJytGDdWb06MZf2oKx2sWSpTZ12B9aAThzS2zWkfiXPk3v1NOXRVylFZnRRwBna9fjWBCuNmYN5G1icDMsDNqz03r3Y8evMhq9OhAJSWzC1206VSz1LfIcv6tW9LUSHtM9eXE5vTNbvraz75zgeknHj3C1/m4ZPHyNiWyMvYWqqy1o3rXl7rogzRthbtAFV1jSvorb6wPKMOYFpsp5RHpLGz1j6zrJOM7bO+/HgcaO0HbY7px56W5/7C7iEHWXRLRTZ7y4e31e/aq7p89CCs47Irt/PdZ4muzg5Gh9fk83hfpcVoj4FKCLijGuvcGl1fuF1nx5ntq7Y9Xo6fcbjWaM8SbfZaK2mZw47aiaPUTa5OpaxfbzMK3qW7dJfu0r+olNzEf/LO/wbB89fuGJXu0l26S3fpLt2lP/Ppe57pVTMppkL978lJ8c6zWgULjDoYRse4WjHNCd0nVqsBP8CcYwExhQLSccyamaYIxWGSUgl0q+KDayf6sysyaa46LYpzOSnqMkMIDMHAI5WdpoSSG8jIieBNDwRVhysemlQDJfXkfzaHS0yRFDM+gLjAlBJBjCXKeylsGg5RJcUZvLPTY1qCoM6hGHvRejUYsMoJMWViSjiqM9zKlU1LAi3SaHaC2INk/GCOg3Ec2evMftbioLJ3xajMU2a/j6zGFagyBEfwvjBGQfCDyenlREZw2THPsdWUsRIBSGNT6Dfmi8yFfeYGWJ0G/ApiSsQ4g0uoeDudvRZEImEwUNLl9ZZxHElJ2U8TznvW6zXOCTHCsBpKEMojwbNazTx68z6rs8BuNzHvFRJMMYLkwniVcMmRM0z7SBCPJiVFx3Z3w+nZirPTDdvrjOYEAe6drnEjaBx58fSaeVvBD+XMqZjUnpa/OXAALc6eZjtqgY25MIpllLnIfajYqfjcnNvVqVAdRlJO9Zf+VQI+FnS2NvDel4CCOZyqszZrcSSJMK5N2iJlJea5sTGJFLmLbMxkUlkIUJxENE8kVS73jj/4g99lXG1w4rj/mw/Yyte4/9YJpys4cY5ZrDZ2GFihshvV81YOJZSA0OIIPXaA1BB1OcEsFiCOmJxc7Fgieif6ApSBQaTIq8EgNPabdlN3vxx7fjovZE81/sdxvBy+o/esFU4oWa4LLIOtsuTBtecYLOBUDAy2w1irJoVZrI5Seb4rgdhcRrvq5F1gBOZcbvXYHGgFWNY5q1r5q4eul5oq/1YmkIQWJ9xxIEFbsDXXZ5XPHEXCraum1s4ZkhTGIqxc6BJoroCmGhBrwWm/sNFdvNyy2QyMAWO8cRiLRsmfZIrcCOwVbnaRZ5ev+PqPfZHViUkg2hin5njMGDteAd54t7DgSNdm5tguQBEni8O+q18nFcgnS7ClHAe3cZ5GxpNm5dOPX/HgwcDZeTBmpEwJUiqiJvmY1YMKn3z7U+4/WnP2eGUAHqEwL1jQ09f+mFP5rDBhROGzb1+wOVnxxjsbwmBtpcFoKQyfUsZ5pDCTCbPmwhhX8l+CaqXaCMVru99mXj695s0vPGRYlTENcL5Yptp8i8Lzp1dstzve/fITrq5vWN8/JZx5Xnx6xTd/7Zt89etf5NGbD/CDtasrnTxBkdSgSyXvKk1GUHvDxwAKToW4zbz47Ib7j+6zvXrGr/7nf5/t5cTP/tIv8pWf/TrjPYf4ZHN8A35KOWlvbeZK4V0Zx9s45YSYtbF/idR1AS0oXOdSA8rU/tTZbBdQ8MVkUmkPsylzHodQnlGBMMWLvWBctAPE0PpqDXYsjE4lT7IwZ1TQiKeA8trcV4IZrgI+yjjSBYxcqMF/K0MNzDTmpOLktz5kY44TaUyO2lEFiLROtARRShlNNq9jXKhjSGknY1Na7M789VZ3FZhYn62lXC3wV59VfgpaZN3crXzbr7qwULV2rExLZeaTBbxEbYdSltqXRKz7KQZirnVqYEubcQseq7Vri0W4ui40EM3nOqpQ1lkpL/Ofc3aoodqTiJokSypt623tnlSLRFYFkxemIFWSaQF2IAppbDFa3pEL3VFjSik2pmLMr4uMZAWo0dYuldW13uswlisoc5TWdlwmhFxYSF3pCHW+9N419o4qOZxzyUM7sVFYocpzvHMgdvDD2G9Y1j11PalmQ1L+XgBDZiRajKUyB+UqCVzkN3NS4pzRIoNmQHnLd0p2UMWpgV5VbCxIMdFCqGX+7e29sl20gHdnBzIIwzpAeU7KamAlTSS1fZeSTSJ6TuynuQFlUukIAvhg+4EwhCYXl3NmtfacnWxwwbGPs5UtK1GTrTPK+E4ZK3JOBdCRScnKsD4ZAWGeMiklbnY7O0TxcA3ZcfVqT5xMlKvuY1tQuSCxvgteprXdsuJiAbqlvr7qiu32Q7S9p/zVBv0yBzlp45kNh0YdI2UsqZJytQ6zLkA4A7stgEwtqMuFaTeXV0amCOnqFcF7XgjIdxy7t/4/vPSZH4+/xMo7UslGURFcoL5a+plQxKaX9dThOvUwiVT2I9uDRZZ9Q6vPvubKPNBk1bD3Lo/u6/j4KbfT8Z1/tPTdDKPLUTek95bw3d5ZwVcBGnNV7P7vOASX9WtX18dTSD/n0PYZSz0t1x6WpXpllr+pS4ky1vf7Azk8pCCHz2vXH5W15rVvpaUcrzlM0r+irLFQiDGTEFzxuyAc7NVq8WqeNcHues/qdCSsHb67yK6RbvylrYcPGu51TS/L9z0or5xxaPk+/KUrjyo31zPew3rjC/iwT9n8UAU0eHO1IwTH+myw8drV9ZTVaD1wcdAXAVXH9tUEwOnZWHwVpU9I7VfSyiGy7ItSl/WDEuiyt89Rubma2ZyO+EZu1QHyy7pcsjBvZ/bTxPn5GTFG3MrjBse8n3n20XPOzk45OdvY/O5u21IFTR0YkNDYZei+067t8py5uZoZ1yM57/jo299iv5146/0v8ODtx/i1rVuMUbazh2IDXVMf2PDyWfdXtfNuXOgr79AU5OCn6sGxivZ5492sdt7t15d9S1l/9lmp66SadKnPRu7aD1J6mL9+rKnrICvfa+y51osu7danms+D8auvAu3XHF1ebjftQfUc4Lz652pXNwcvOxr76hqou6wfD27lqX/Ka8a5W+mw+lsfXcaIpQKWPeDt+fR4XWLFqf5Jy5U7qvO7dJfu0l36F5WSm/iP3/nbKJm//um/fQdUukt36S7dpbt0l/4Mp+8dpIQ5HmJKaMp4cayGkXHwqCZMBigR856YU9Fe18YKQzmlrzkzTRMp2sYnpRJkyFJO9VpIx4lJZ/lux+y9o0oO5GSnT6NEnHiCEwMhCQyjhwwpKfM04cW3e70omtPilKxSEQWYYwxPWsok5P3cnFiSIIsQHGxWFgya40xwHj8OmMC9Q5M5udMUGbzjZLMyZ8tuB9SAiRbHvh29UzWGHnGCHzxJjWfGQCaAeIaVJ8fMNM3EOLNaDZATMUW2NzOaDdx17+yEDMzTzG4/gXoLfGRQHHEuQRMfyDkbiIXKPOCM/UoFKceamowR4D34tSOcDBZEmC1iuz4ZmeaZ7T7y8NGZBcr8yOWLK+Y4M6fCSOI9OUVudpHNyYpxYzY0DgIlCPHw8Qnn5xv8aiBdb0mS2MeJHCFrKgxdoXo2CB40Jba7mWkHIXiGEJjjjBsc0xS5uJyQ8YTzR2vInpg23PiJaTejcWF3MYeEBRvqaePKBGOSGsKBfEjOzSlQT5YZw4KdiJcWFKrBrdKfVJf3dI4na2qTSHSuyPmRi0SIGFAhJqYpWXuJyV9Ye5pMofcWwIkxISwSjev1iB+KRoZ4IDLN15ATabrh27//W+zmmRcXypd+7Mt88SsnxPtrsjdmpslKYKeOVS2QUDyoHiWIFPkB7ZwtRfqK6oCy77wKgRqrlsVZQnW2FOaD6uTUQ2fxwSnmI09975zqSP9vX/jHSc3T3L2s/7oDo3TFKwAa6e6yHOYC/xnFBuWNFmCYwBa4UWUvfXBBCuioVIxoY5UCC1I2+YOWp2OHpwUETJGmQs4Oveevce9zHI5ogNJjz39JDgM4NW+fyOLE7jxrlcXFupF2Uof2vWveQmPy0hm2NxP3H98jG1Hb4iRFm1PcGC+UjPDqw0uGqDx5+5wQMDBQsTTr47456KU6THPL4gLyKn2gekarE9/GDaraZJMwrBKHS/DMyuEKY872MrG7nPnK1+7hQ2kFr0CZq8Qhakxc1xd7tld7vvJTj3FjsW+/sMqgBmQ0UIuNPdb9hMtne149v+YrP/FWAdZaoDvhrZW0MiyUXNYy1eiCaslP/d0CCg5ljson33nJ6dkJJw9cGZ+s1PVUNJiU3v7VzNOnL3nzvSfofiKosjkPTFcTv/tPfp+T+2c8+eJjxsFBAC2NUKX3rPaMCbBWfGP00RLsxy2SWVhwYN7OPPvoks3pCft4ya/9g1/h+cef8tM//4t89ed/Cv/AEzx4cWSfyfjSza3lyhRZgu3aTN1XK9JsQGYt+au9pYGF+v5UWPXysiYokaHFid45rml9uvaTwrSRy9Kjzl+dd7sxI5VhwolrA8MCmLV3pdJPan6ljN3QOdvLzyqTtcxplZHQtXz2wYUarGpB8dKHGsinZr8+q3nqu8+o+bXC1GCYmrG3cqJ1rVlnIFnqsQRWDMC3tEQfKK31fRBMqvloHv6DkbTVdW+fUGwydffLYg8VjNyZ6GFe6oDR6nIZY4xtptabLIuH2h5SQGKf02Syw9LG+QqGcM5YhFSNMTLlZDbpDayTqpya0wakyJWqqo7FXcuIW9qxMvpIAZc5oQUmtdRfTgbe8E0OyzWwm2aTRHPimg0AyzhY+6d0faIM+FLekTr2qFwZMx0EbL+TyQWk5xozJtnmaTtMYXLKFPY062clgJgL/1mZ9LIWaW5xrU4WuWFjpcIB0Qx0GDwVJB+jZdx7x3o12n4lJURSJ+dojJ4pGUDPF6lt7ebtuj5YgptL0M7+tC9SVpNlU20grTlGYkyFNbfUWU4Lq6IWkKdauySBMJZ+WSJqzjuTeJPG04ZzzgD8bW8qC3tu1iZFHmcDJHnnyu8RG+ltvk9ZCV4Qr2zORuZ9YtpHNNaxdZkjqBYoyxAirRa0jcXHK8puGORA2u3gubR1UVtO9dfJYiPt1jIfkOy5lRU2JRrArzKQ1Xppsuuy9A0pYNOaMdVoh0Vy4ObyFSkLMQXSm/8RD/z7vK1foS4vjqXZDDC0rCt8P6x1xelrth+FBVsDe+muK/XqylPq1bbmKfZABSu+ptJpZvvDTXL7Dxsz5PDTo3y8NlvCQa0Eigw2VuaIGrsSSqIcOOnqtdlRqZIqdfTd3nuch4P57DW/63EFHz1Du599e/U/X5fy8XfdH21/DzQp2npJKayqkPaJceXBC93SsuzDZXluVrII0y4yXe958u4j/AFwfmHUq9P4QT0IC5Nt91mtd+pPWZ5Zn6e3q6/VWAVEp1nZX0/mRwnLeww4namoJQHmfWZ3PXH+6BQZDp+9SBWXfiQdLE0h7hI3VzvOH53hqiomWpgr7comaVweXQ+yvG4oK0ska/usXF/u8U5YbQJ12i0j5nKrQpyVq8sdm9OV+e5SZrUZyCnz/LNX+NXA+RtneM8BLYxCA8y37t8bWjUQPWTDqm2UkrK93DOMI/M88fGHH3L96pInb73Po3fexK+d7Uvp1gRdxo8BS313kVrtjX241G171lL+fv3aV2abd8s6AdU2jxyAsrr20KN7teX1sP/16+V2D4d23e8x6PN43De7D3sw5jKOd2U6LGK75yAP9Z7uvtqUwu2y95/3qfU1WZ7Z5vA6HLR95+s65RE4uZubOPxoeQdL3o7HxYMhVZYxol5/6ILRg8rU1zyvmXmXx75/1xTuPWT67A9eU767dJfu0l36F5OSm/jP3vnf8qXrX+TL17/c5uS7dJfu0l26S3fpLn2+0+rtr3L5m3/ve77+ewYp7aPBBWpA2lPUCJxt3mOOqDpSjLbZ8kKUDElAisxRToijSH8pEqub0c40BhRfTz1nLQFjRbJj5R3Ol9OtuThcs5JjJgLqhVUYGFfenOxJmfaJPFu+c4IsxgaRkoFDBm9sSFpOlNbdo3MGEmnOjBJ8i/uMRmCA3TQhbkCCsE+RNEdCGAjOnNjjEBjEWJW8COodKY/spn1H4Q85O1yup3cz43qkHjV1XskpoiqEweGCQ4YAKCebkTwIo0/sdo6UMvOcWK9HVqvCxHHq2d54AzCpI2YhZykeS494zzQb0EgwNiXvHYgzSYTiIavSFxQH17SLXL/ao0ScE8ZxZdfMkGLm1eWWYfCMY2QYPWE4YZ5h2u/xQUEG4qTElAkkLi8nRm9yZn414k88l9Mepol5TuRozBQxKprM+CxQnog5g/OYFAGoRFwYuL6OTPvJTlwjrNYrNCnTPjN44d0v3OfqcuLZZ5fst5n99WTMVpnmODKQRGWVWtwH1m7mLLIYRwleq7nDs5iD4PgUFaJF+qXKfZQgVfG+NUaIFEnkLoZamMWcliCCoGqMTbuUS/+xfM3MzETrV+Vd1Z5VDRRoDlILVjsSSfcl6HXJq2dP+eBbv8v9Nx9w/t4ZTMrJKDhvJ84HlEEzTpUgvrAqWb2E5ha3cuw0E5UmVwSViacErzCgU6lVYqnP6jSpLkFfnhqLa9Ijy0m949SdHFty8kNK1WtX3lTfWt9ffJLmOC4FOwQotQvwnZk4aPYUgDVwKo4dylYNuDRpdcpLY97omWZ6d9aB47t7sxaAUpfbPlcHrEl0fyMGTNF2L0X2q3PctXt75pZqu5SgyCKXBiXwWGWkDu6pDtZSlmIc8z4hMXN2vjKmvXK95AWg5QqCRMnkSfn4W085PT9hc38sEm7FkZ6l9EFtHkz7sTApuRLcsCAtLFJbZZywjlXyWoLZFEaoGthVa4vqqFfNxFn49DsvePL4lNWJw3kt0CTFqY0VGQcO8jbzwe99yhtPHjFsPOLF+i41OJ3x4he6JxQlAJl4nfjo9z7lnS8+4eQ8lOCFIaqCgBaWJgMN0AKbqQTNzekrzXkqZdxLTplj5sWzHTknHr+5QYJvDCDVMq3gSt4rH3zrgvv3zwmD4/piy6Mn99CsfOv3PkWGgR/72S9zch4QD+psvFIpLDPFyW5sCNVu5cBJ6zyQtY1PmiFPiecfv2I1rgkBfu0//zW+843v8GM//VP8+C/+NJtHI36wfKo4A3lRmYSWPluZmnId3zuvcQ2aas42l5bPm4O4Ovy7ftUozkQam5cTqHJRJmupLWBRwXetz9S2Ko5y1VyYZkqgrHc+qy7Sd9BQd9avljm/dgNKP80lqlGZWUQsQFMHOZNh0wLaLc92S5+1lMtDSz9Cy2n62naZdsRdS+zITG+R8JEaUyrwVaHJ6Jnco7S+6lr+C5hTrC0bg9Iy+B38UuvS5lSDg1o118GoPm/JU9Zlvq9BXQNCFfajMp9V5i1j5qrrBwNxGrMNB/Naqa4isVXy14GPtFpceWcvVdSYxD6Hqa4vK5BxmbWtcNrZri2/il0XplKrKwPDhOCLdG95RmGvMNuwdkupn63KWF72Lk2NtNSvgegMdG0MQgbcTGWNXEFuWtZvubzY9kYd6wTWBq4xslXwnfX/nK08KMwxIoNHvCOrAWKksHEKti4PNQpe7Cd4zxzrbF/rS5b1hhrYstmu5BaZEuo4ZteuxgHNSnCeeY6knEm5lLcwrYZhIMyeaY6FbUeoqnRCGbtK/YONJ5XBqnUIObRHzUqaU/l4kexWzYXBzJnkdzBGUB9s3kpJiUX2OWdH1CphnYiTAeqdBx88fnC2mo65MNhqAVPZvKC5sFRpkW0rNVrXHa6snVUrIgeT1ivlEiecnAzsvUnPpQj73bwE+GtZOwnBCpjTzuba+FO+69dqy35imf8Okx79fQQwKjKCUIGk9nsFO9bbU5EirBDIHuTbBuayr1WtByGkPLOAbiWTJeKToHFie/2Cl9cj/9Ub/w/+0v5/yFv+XXxh2/IIocyHlblRkQMAUwXeTyzAoiVHS0W47p7b+Exbm9UDDrZ/LNdrfdry3NsV/MMdR7/bPuV2Ox/eBX3L3z6KcfC32F7KqcllJ6SAlaxu++mwa+1lPS7L98s7yjv7RqF70K3cttXGYYmlfrPMq/2aq9/W1Xf3j+8D7LcAESxt2gfja77tp/WtaT+zPll1+8/6/qOGcIJk2F3tERE2p+MBW5EeZJoDRhabp0sd1LIeva8W8lavdhw2cHd9nTM1w83VxDB6ho1f+mW3bq7rP1W4vtiyWo8Mq3DQ7nWNuczBrfD2ngiXL7dsTles1gbmrTJflZ2u74vLnMjtBmzWpI1VZ9orc0ycP9jYocfuloXZycDolxc7hmFkHD273czmZAXA5YsbNMGTtx4yboxhuin8dm1S8yfd5zWv1XZu2VtStpdbk08NwtOPnvLq6QsevvGEJ194i2FjPsuleHL06/Hfi93DsvY7uOYYndR9dFC/5esDYJFqe2ZrSu3+Pu4zpY0acOe4b9fvu++WvQnLTd3fB4zDstiCtLlQDuu/WtHhx+0h/bCjh1/dSrfGm/rurr4PxrLXXHtMSJa7uml56O6/BU56Xca+W76P+n/N20E9yO13HDSTHL5Qu2cufYkDWzmo1PK3W5384Rm/S3fpLt2lfwFplhv+b1/6t/hb3/y/8N72v/UnnZ27dJfu0l26S3fpLn0PKZy/wffjT/ueQUp5tkDsahUssJwzKsp+mhGnBoIAtJ0OV3JMDM4T1gEfpDluQ/AE70pgwYBD4hxhdIxDIKfMzfWeec5NmiERbAPsi4M3mxREdR45J81J5LzDS2bIHsmQopZNpKBzstPQ3hGCGBtQUnwJluRsQQUndprXAncGakrJmBFmVSYfCU4Yy/GxOCXmKTIEZTN4hgHW99aIg/1OmXcwjMbuYwFxIeVE8BC8AZBcYXCwTbtHxJE0WsA9mWzPMHjy4BnDKXFObFbK9eC4vNoWeS+TqwsC4xDYrBwkYbuPOHFNHsEX0It4JahvjoIaIPAOY5VCm7wUmMQE25nglLHYgsnVZcbgWI8r1IMMQtTI5t6GONWzm47NegXJMceEuEyc91xfZm6yY7PxjAlycqYfiAX345yI0bhY5qik2TPtJ8IqkDSR0oT3wRifihPf+8BqtQaUKW5xThjGsZx2F64ub9htI+vViHcYo5LW+xemJIB6alxEDBRVk+bCkCJolnLi3iQw6gl8Ta4xwlTdG5P2yFRJiPrTgga5e38XbBMQyVQwktZAcJYWAEUgTYX2RQVXJAPNceFJMbHbTogIIYxNVlEcpBKYjzcv+Oxbv84/yVu2u1/m3R95ix/5+hknKCvNnIhjIx4nyoAwYs5IkydTRoRNGYIuRbjGHCV2WrewbGB+kFDu98Bsrc1QAjGVMWhALJAhBtYZq3O7c6DcciDTX/DDSc3FLsefv/79r8/ja29syUA8mRFhVOFEhL2YFNwFyh6IUrl2gFyYrByN6SpTZeF639Nyqt6V31/nO6v+8IOgRXO0LxxVy3Ps2h4c0ByxNWBGDdzVQJ0uYAqwcb2MN1qcshXolAtjQ04RFeHyek8aHeHEG8imc9YKLFJaGZI4pleRy88u+epPfYFhQ5v9VEC8a31eVBtIJ0sJhrP0w+AK8AUtTB2+ACRrJWnrt9b3ChNIZWQScAVxozlx/WxPionzJ2tkLAwGRbLNyVjkYyBq4uKzG5wT7r9zhg+CS3TgMMUF18ZAmzCDBe+T8tmH1wwnKx68sSIE2pjU2r54aV0B17T68NJk3fp+Z7cY01u6Vl5+dsObX3hAOBVETDZDvRrAqFyfs/LZx6/IAo8f3+Pi4oKzN+7hVp5PvvGCi4+v+fpPfoEHj0bcyubpqBmXS8BDae1AtYsONEauQS7XNCNStjZ8+u1nbK8jm7fu8Y3/5jf51j/9Dd7/4hf56V/6BU4ej4SRMoZrsTszdpMiK7ZU7Lr2gUxlUXElD1bW4GuwnRIcWDzAVbbM68J2Y9O+Fmao+rPa8wLmXIIGlq/UBbvM0b+APpfrtfUFqXOcaMMMuAqqybQAUZmpjNmlAC0Qq5vKeOGbHGNGtIB5jwJilV2oAZdKlFAQ6wOlLEidF7sBp59qVTupOMtdBTFVaTqtfd8t7eQKk5GXJfBdHfLiacw2x8EJLxVYWtkM7eHt1HSp7xrkF6vIsgap/b/UTwUocphCEJMtrqxQbexr1VRAm3Z9/a6xMrKAo2pq3VP4fMszFBSpD96AW0UbsALfXAHnLOwv1qCusN6IE2P+KoxpJklWri+3iDepMttnxMLaquX1WuyvzIVdmxkgxLXXihigycDRrknzKkKaU1uDVGnONh4hLWhbm6KBP7uJVbOB75NkXGHLyxU86JQx2NpyGE1aO0YDfzsvxu7aIzKkMqIa6F/be43FNOUC8yid3fnKQmvy0CGAD8J2Nx0wqIINVs4Jg/fMRWJPxTIrVQa0rXO7+zha/7ToZwF5RQv2hcFY61LZ63gnDMEjwUA1WbOVISYkZ4bBE4JDxDcwlZJJaQFr5cqKW/tt2VO0ugeTE0zZAEqy9NdqJ3GOBO8NMCZCTDNt7kmQY2Z3sy3ylmXPKDSZoB6A1GpFau0cfi7dP3ZfR8WFlmdW2zleY7abu/cu83j3hnK9Lk1RH9mt1+pYuazhaG1sY18qjMblYE8B0UnH3jjtrsk5Mk8T001mfuPf5V9d/c94kt/GY2CZobzLa+WpMonjiLEijSW/QQ1MM7PIlykU1khLldEwiZJ0YRvNdZ1qTYMXe3fFEJSK6ivyT006zu13+7sCLiqQurJOJV32YImFhVW7fcLhM7WtgW7tc6DVn/b1qcu+49bo0ObX23nOVLbF5Vl1fVMfUPcHt+pFljK3vs7S99oYUH7mrOxi4nTlqSSgdb9DN8/WpUmKcHOx5eRsTVi5A4aevoAta7KsU9oah0ZQSmMA7K+D23XTDQHtIilYdxXSlJm2E/cfnSK++BgKQE1KBzY5S5h3M/MUefDkHAltyXzQBZb11DJekGF3PZMVTu6NxRfXmvpgj76Ur2+cQ8BHm7cFFDvcePNqx8npGj+4cgxLlj1e96Cbm4mkmdPTNXGazC81CNuLHdcXWx4+Pme9CYir60w638th+/Q2UZazS7tQ82fXbS/37K8nTs/PePHZZzz95EPO7p3y1hfeZTwJVifHoLKucoTDSqn2SV276ZKnvj1q3o6HdWGx5f51y57h4PK2v2/l7X6Hw7bs+01ZFrdruq64PF+OPuhSk0Lt7V5pbFs9A/Rxvz7u0/17peydDgpZ5/yjum55LOWSrv7qvNfXWbd8WOqf3ob1wH7aR99lKmlZOWrf107VfZFe047VJqW/Xm5lZXnX8eM7e5GuGMs7tc39d+ku3aW79CeaBJ6P3+Tf/8r/hL/1zX+Pd7c/z23vyl26S3fpLt2lu3SX/jSn713uLZnzIKw9IXhSqtIIIFnQmAmDsdYkLSf2REoQ106u5qx28nJKjKsVJyer4jVUc3Z6xUkixSofZ9t2KcCZjCOnzBSTgUOc5SXnWDaPBqIJwSMI4+gRtYAhzhFTIs9KCMEChU4Q75jnaJt2cUbzrcbSg6YCOBFyyqQaXMOTZtjLbKeKBaZoW9Y8whgECYGwHhBnp1jTFHE+MYyO7TaSYwmgicMFT1Y7TRxLPXkPJ+sNu2lXZBnUWCXIOKeEIq+wGp3JvgHXNxOIMgye1WCUDKvREdwKHxzbfTbQVE4WTBXBkdvJsiYXhLkwffHgWv2r1V/KEJXZJbwLFhPOiTA6/OAII6zO1iSUOUUgIj5bQN0F3KDIoDx++5RhdNzc7JmnCZeN7SNnZZ4UP8A8z4XxQPASmHI0+0oGEUg6NRm/HI09Iivsd3t0yCYJhyAMzHvhWufidXLs9zPzRJEZTObY8Q6a092XOgEtu/ic1WQ3ijeuWkP1yKQiwSHVOYXRo5sMlbOAYnPuuFsOhyrFUf+36yrbiwHHgguFwcNOgtsJdgPZiauSiQZwkwJAcs4CTynZCfgUE2neM4wBFzy4jDgL0mSFOEOKA799NeDnX+CL7/0I6/uBtWTWGFjIYWCkQTMq4IvLa0RYY26hAeFE4Aq4IrMTJZVTmFGEvUIozsoRA2VkNThbc6KX7UcANhio6Q9zgP1ZTAbYMTjEWP5fibBVZQvsUPYIs2sYjeI8WyopdZ6rnrIftKoRAcUxyOLsZPlhTyhOxddXf+8WWxxoh7Jz5pFzzSO4vMQJLVCfSzCisodUoEAG8B6Xhf3VzOpsDaGwFdUgdQEe1Od5hD3Cx99+zjQnHr93H+dMshS3yF1Qg2XFvlIuTE816CJawA6K5ApSMvd5A0QhBbhjefZOcOUEq0qR56kMM6rEyfH800uevHWfcOosUucEp7lOjc3pPF1nPv3oOe996S3Cqc2rlRSmBgKqvdSGzDlDcrx6uuPi2TVf+om3GU9AnDZppRr4zGUoyzkXp+cC3EKt7EntXgNjlJPbUXn60Use3D/h9N6IMRZokcxQYxUSgQRXrxIvXt7wzhee8Opix+jXnGwCl8+v+eY3fp+3332X+29tcKPVrSgEXYITQShMddKCJa7KNVTbVPveWJcSkh2vPtvz9KMb3nnzMR//s9/lv/77/z+Gjedn/urPcf7mGWE0FkdFCcEZ2K84znvHcXOSu6Udl8jFco2v+Sl268slqQ+o2fTf5PJ6Ep1eFs3swNZU+aCDasXrHAQWKpjFFS+6lv+cCK68pBI3adMvrHVabLlENwz0UwB3uZa5vrsGDFtoG+ftsyqXZX3LAO4LE1k3RpQxqwWySqBBy4f1ZLYx2tBAO7JkuwUQKnhLa1mo46GVo9mvGLCjNZmjSYo1toE2KFaGIy1rUspYtYDj7A1L/df7wMAl2oE9qm1W6S/DdpSgTZOHbKZdAjXLOJBZggqqyzh/aIZ/Ghx2lXUoN6bFvp+lAohZ5gvX2lTV9gupMOGknPEexnHAOWuTZd5IxppT67i8q1pszkrMCYexHdkBC7veDgcYUFKwfYD4Sh1k0tcigneeypIkDiRVdqOFeccC2IUlqthLRq1vO1f2RtpQc4UgCR+U4L3VkTOWJWOwy2TJDKNjmhIp9eBgG9c1F1BvAR06H4r9FZmuYvdKkdVuNmvbwv0+gmiRT/ZQWP00eHxMdmAgKbPWcoHJMC7r2Jqsm1idV/BmautdNbBPBaCVfiwestRxOZf9XbTneV/2ZImcImHl8cExT4nVxgBYuYCOwMaelJIdrinymilpByqkfC5t3rMxy3pjSrkb7x1phpxi+cyYulI0MJwU5ikV0FTtzh3URzWLOm4uXbYN8MteTCrIUQrRnNlx7pFu/bpLyjha+or97PteWyjQmGJVF6nPup6Ruhc2W5YyGFUQkpYx1OqwsomV9ZKzsuu0Azy4LVfPPuXZOPKP7/8H/PX4P+JBehuHFvlFA8r4lrdiK7KMcYMIXm0vsEeZSl8CA9fMXQ36MjZWIJOgLQAr2NwYxJibXhcM/rOcFvCRjYIDxmYVsTqc1QBisV2F9RGg2mq/f4Blvq2G1l19mI5BB3y3apfuKX94w1TA7mGOXvu6W09SyvpGIU/K4IOxk1ZDaV1zYZKq+4tpP3N9teXtLzzBeWkg/oNdUPmlB+pI+aAsZw7zUteXclQ3St8aSw3VeVPs+yzC1dXE5mRFWBmbKbKwhqHLe4hwdbHl9HxDWNUyL5ZxAFSqL8P6/bzPXF9uOX90Dz8u10pbm0r7u4I0G9tjLWMtX/eeuga8LkxQq41fFkGUdXFdd6kw7zM3VxNn9zbEOYF6VmNg3meeP3vJeLJmcz4iQakApfrSHlS1VGhnM1rbX5a8oUiG6SZz/WpmNa65eXHBx9/6FiknHr71hPXpCudpIGGRpZ0O14ccNHK9/sBObl/WqstJx1LV1eURec4BUKo0xbLPqF917V6/7MFAvT33+WhVdWSvvQ33qfa39riufvv1fP99a5d2SeFXqjZHNbnjgh++uAe49Yemap84eGeX39f9bO+tTzkeWEq+276sq8s+3brtcBi9lQ58X3J4XQOh9vXXf9++k7bmadu/I9vvgXBmk39OJse7dJfu0uc/CTwfv8G//5X/MX/rm/9X3tv+/J90ju7SXbpLd+ku3aW79ANM3zNICTWmnxSjSRGU/5xx/TOnSMwz3gur9cg4jKB22nKOJmUWk6LZFfmumRCc0UQHwGW888Q5kZJRyA/BtxM3dfceZ5Px8m40x7oKijMpME14l8kJxjHgnQevJqOAY7tXvLegggsmEeaLpIEmMBprC474wU5PZxGmORWpGbVTh84Rs5rmUvFMTVMmE9GsrDeOKYGflJQmRgJjEIbgWJ+MqGy5up7sxO9UNu2SmVJk8AasyVG5vtmWoKaBTGI2R3LKSijMC0lnvPc8enQP567JRE42a043K3xxwqSUWe89N7vM1XUkxdmc7ioECWSXyElbULR34DhX2j2DzsZqZbJhjnmy0+jDeiDnhIbA5X7iRg0MZQFySsAxEOfEft4zTZHVasNKPXNU7j0YSTGTZsF7azcDmsH2ekucDTQUcwkWCCVIXOQwBKY5ohmCHwyItZ+Y9rPJ3jiHeGW/nakooRQdOUZSnhhXnmEciBNM272xEznfnGuq5phyIi3oo8V7olIYnzTRJL0qc4IYKCl4TwjB+kiyk+yL40vbTy1B/6OOB5iUiURf2kTwwVi5XEFU2E9LuYgieLEAa8ZkEe35diJdspKTaw5asM+30zUybMjXLxjCt3n+nS/w0e884PHPPmEeBU9ilEyo8KHiiFoBVXwpU0ExsEbaaWVVZS5elISyLU6SERgtTMgkBpoJGLikOnFNEHKR8PnzkqQLQ5vFWTufAKMYuGuFMVld2Q0Hrv3m0KQ6iLV7yuL47p2W1v9vA5Hk6OcSjlhypssX7aIl8L4E28xXdngqujIrcfD34uwGsyFxkHcwvZp54937BgApR+QraE86xzgoaYaPv/0pj9445/T+Ch/suqwZFWeyWhgYoZVIlpPkWQx40covsJwGLewyIkXGTSBrA3RY0LuWpTo0Mxnl4kVCNfPg8coYjFoQ2jqHtVmGWbj48IrN6YqzxysL5qIkF3ESSrXJgRxRLlU5bZWPP3jBW+89YHPfwKeVBr7WU6520EdHnIIqruj4mIO5XOsEyQJZePlsYp+FJ2+vcYWJA8mLRBkG6pq2yge//4wnjx/ionEb3H+0Ie+Vb/zmt3Gj8NZXHuDPrK5UjMnHSQEQc8gcU+3ZiTElUdcj0CTTNMPVi5nLz/Y4WfHB73+HX/v7f4/r51d85ed+jvuP32QIggv2LOnttAYWqh33rDYlCF3BKn20Q8CYs7TYSNcRqwRgdaw3Oyv15J2BXyuLSZUtM/PW5WR3eZ73rszZCzMSqkUqyWwxL5e3n95JAXcYoyVgYNqDKERhoug87b7Md016jAoSq1EApcoAVvuq8ofIUif282gelMK10DnhcwGG1/VIBRTmApqjt4Fqo2KfaQFDGYuZtsYrpD2tH6sWMEfW1udrHzSZtRJ8L/lcril9PldWRLewHXX1HZwsMgvVfhDUdcwoLQojxkwjxh7QRuYiZVfrqdbLQd2VfGkBk7g+2vM5S5rLOJ4L8xCYvVVZNM2FUcfWqD4EWyMVua6sBSRRAZbZACziXKWUKHVb2rGAJ8rwaM9RW6Pm1IEyKWDBZPWaBbzawQdX54kKOoEOFbys3Zz4IgOKNWsBNFZwe+zou6rkX5PVqnNiWqDAcRBcVvb7iJIZCsA9DA5KPvI+LpJ2AlUez2zI9mjTNLdouWA2WDvNsg5NCI5xtIMPSRPBO4bgceLL1KZFSk3Z7w0gVfFAvoK8WnCra/TSX1oeGwjHoSomXZcgBIdtgzzTNOMLOFKLRFsd6FSNVaoy4fpgZfZDsa+C6Kx9WYI9L2NsTQY2XRaU1QZrfeScbO8gjhgNHOXKfsMbcorU1tWYJLK3QyKqQpyVeUFAHwbs27OUejghF6OwS7SNMWrN2f62PZlH1Gy3rvS0G9/sXbLMX3Wh3s3J5AJSLv3OwUEA2d5YwVJ1Tinv6bSI6lqx7mFAcVlRUVKOTHGHTgYSffXqFR9ffchvPP5P+flX/wM2jAwYGxpYHUiZ78ZSdQkakN6JOS2y2ljXy7/FkmOTkLPyxO77o1Wq5VdYxuBjRMuftVTny4O5w346bM8lAl6lScAZZ5glbf/WtYX9fWgxy28HtXmgOctBXR+DAvr72uwoyxUt7xxd3D3k+DnHz6vPlDJIqQrTdmY9BkJlRKpdRvpyYeDOZAAf74STsxHxHCCOGk7n4MYl1SVju6b87MEB9XG27l7stBs6Dwqlqkw7JcXM+fnK1mWlP9VFaANzKOyuJgRhfTq09VVtpx721daqZUwhw+XFlvXpinHjbsvcQTfWLeNqb0et2K6uL5eyxV1mmjLnD1a2LodG8SQq7f4UlcuLLZv1CifCnBInZwOiysXTV+Ss3H98ihuFuv3KUlhy9XB930sbHwC0Wt2WdaUK+11ifxNZr1e8fP6cFx9/yH675/TBIzan5wZqbvvRrh66pV5fx9r2HUdN2l3fg4Aq2KuxD5cvmqRgZ+TNhvplZjcFL828VEbf3n2SvoG7X/tiyXFB3OHft8pZ6/foM9VmprfuXxpl+bW9t7O75T5t19Q1yWtHel2eczAmdX8f/96/Znm+tn1UX721co99fK8HJmnJhxyU6eD9XVW4OiWXa7S7sAeb9Tk+6J9dOVr+uy/b+HCX7tJdukufhyTGqPT/ffd/zf/0m/8Bq3zvTzpHd+ku3aW7dJfu0l36AaXvGaQ0zTNBvZ2UV9voewcSlGEcCNkR44x3jsE7wlBOjmYh5sg8JzQZ640P5pydYiTogBM78TVNCUQY12s7sVyAISllk+PK5oBJCWI0lh1dDeCwk6zJTgRrNiYHN1B3bPhgUnKuHGlRUeaYGcsp4WlOzNNcgh9Cmgz4MQwDQ7BT08FboCJFAyPJ4HE4kyIrgZY4RXY3Du8C++mSYXAkEuzsmHwWxQ+eYfRM+0jKJmXmTOmAKUYDeKHs93vG1QrAgq444pTQLMwkY+kojDnOCw8ebNjt96DG+BO8Yxg9mYz4BA6mGYbBgiw5mwGoGutEShArG1BxXCvJAErFAeBCaI6i7XaP7pRx8pyejSSE6/3EGMVkeuZEnu20uTgLfijCvPPkWdFkEhaZiRI1IWUDUM3TTBgCYT0SVo5pF8lTZjUO+MGRijzDfo4lSAiaE95bgK8GbLwHcmROwjgOpJyJKaLA5iQwrk44PVtzfR158XRLVleclkugMmdl8MK98zPCIMxzZL+P5d0WNIvl9H0NDteApzg1sJh3jGGEaW75tQBDkSwpUhKqBWAh1clhoCxjSiogMQyY5z04L+QMMSaqR8GaKpV3QGVtctXh4SxQkXJCIzinOFWcdzhNzLuXeCI3Xvi9b/0mb//Me3zn6j6Dd7x/Gng4JFbU07ZSJO8WyYCtGhtSKhTzHmHEcSLKNcpcPMCJzLa4BU8pLElYQCLecpIKk8BaO4mGPwdOk+pT9tWD5OrpSZOCWwMrHBv7imtgr5nUAECHAKTGQNOSHPsRKaFuvlsFL7wpdD+XoIRJcRyCqup9lR1PDz4Vk/QSs9Uqi2b9qTrZlpPKWWE/RaZ5z8mZN6YFt7z/wOknFvi6er7j0w+f8Rf/yk8xbqTogghejL2u3uSKJzZ3EYp62jKXxjB2MtcC0dVpXKhz7DneLQAN542Fz7zk5izPQtzB808ueecLj/AbaexrjXFDrI+gme0FvHx2yY/85Hv4wvqDM6m/6p+tgAopdeBKUOKzD58TxsDDt09wTgsbz+JEFVdtQMrIAlr1LqCwyNg94o3xRbNAhukq8vLjC9587zGrFXhXWCzEpDCzGp9BjsInH7zkdLNmtQo8f3HFk3fOcC7xnW98yv5qz4///Nc4uz9ihIZCloT6jKrDKQ3MIFoYhaB54esYVwiezKmf4eZi5ulnV7zx5iOmq0v+4X/5D7i+vObLP/ZT/Owv/AKnD05wgyB+Oe2ei5PXOWkBjK5pW6osSdWBW1WFcmW4IzfQVM4USbfSDzpJoWW4X2ywgk5ztvpXZ7bkap8qjuSsS1+qdl9lE6RGFZTGAlJlfGqwg9L+zcGeO4e02PtrGerYUQNdIkWSq4BHXOnHC7iwsFCW+pBSuNov2ziS7VktSFTsTBVjNeiHIq19tAbLS5nK/NbLAfaSHk3WsAI0xMqdOpajJienFAaqwhRWMqDF3qQYRa1551wJ/FoGqx3Wew5G0VL54mp/1WZH7R0l/9WWrY4XVhEtjVvXnK6wtNSgO3Xd0lPkfc5SyskkAgtIxEBVS32CR3ORg/OOxgZRAFpV2lfEF3YZA/o4VZNMyzXYAuI9FcPtxIAtWY1Rx/q6lHVcRIM3OxCF0p9FhaR50aIq+XAiyGCHHRDbgzjninyIFoli209oASZ57wjeG0Cw9CvqelBsLZVzwiQArY3TpMyacD61wwo6W19JGgHBB5P21axlPSnN9isjlWa1gxtUkJIz+Tc10LiNdwY+dwLr9UCMDs2ZnBLinYHGSnsomeilsJlqBxx0ZLE2yqoNRFnn/2W8kmVMQQvrkK0dvPMohblVk4HtU2EPda6si8vKM1fmLc8wmAS0amUGMtatmBUX7HCKFzsEMu+jzWduAeFWyew23LQAep0L7dc5RUIIxsiUrZ298wxhYFgF9vtIjLGtXSojUcUAee9Yr9e4YCDHOEezy7KfOGS3lJaPOoZRZdXrYRBdrobcwCcHY08bG40dC1fG+9J/6lBYQVO1jWrey5dUKcTGVldASlltz24shsY85VQhz+QJZoTLV59wdn3Kb61/jasY+OX83+VkHBG1/QSwsE5gn9l6sgbmrRsaqEaa7FvFmiWWeVBYumzSZX6tdhhZJOb+vKZ+hhKRVh/tYAmH0nqlK9elMUcW1mzicEehtz45RG50a5KWr/7Z2t5t67/+3tccpijruMM9Da9/R/knZthPE2fnJ+Wz5co6J2v7A3JULl5cc3K+YVgvQJ0KcqiAASfLe7tRpf1WGS1ptdBVUfuzYyFqVy3lrhjxnB27q52Bjla+FbQHwVS2yTQJN9cz5w9O8IMscla45Vrt8lafpXBztUdVOT1ftbGjLEnLNmFZf0p9px4+ozaISreuzAY8urnacna6YQg2rxgQvM+LoBmuryZEHKsxcHW9Y31me4fL5zfsdxNvvvWY9WZoeax7tLo67wFhFRBzcEij5pdlDxB3ieurHZuTDWk7cfX8GXOcefO9d3ny7tuc3F8X5uxDJqp+jd4erb01dnk8qs/jZ1DycmQuZa1Y9yx6cFOzeVm6Xl1btrqo698+Q933/WdLGUp++s/K+nUBfnVtjB7Ui1AODchyXxtsjsrW21DdB+jRNf3oc/B7Z8d6dIXI0Q0c3tz2E+VvleWhSvHXuaUuc19xXd1Vn0Zt2/5dx6DGXh5a6fPNwR6tb5eDKqs+iVq+17yzHxP7IrvWVsv7l6vv0l26S3fpc5IEvnHvP+XvvP+/5N/8zv+RVT77k87RXbpLd+ku3aW7dJd+AOl7BinFZGAQ54MBhySBd0hSXDKwzDgOnJysCIMjY1JpFlBzFkwQNZaFspHOmthPkZjMoe+EFgRSZ45cJzAXQEpOlU/EkWJiFycLZAweceY0H/0Aqmjak+ZkzEmipJRAtYCGMpkSp9aE8461D6gmUoQYlRgziJLizGYzlqCSkmIqJ7MtKJJjKk47C5JKVqbrhNMd67NADpmYA6KOeZfYz1sodSXAPCXiPDOoK7JuVjfOjl9DMkaO4F1FbxQntgGNnAhSyrVeD6zGgd12x7TfMQ4bsibCOLAWSHlivc6kODJNiWlOrPyIF2G/n9nPCWJiTgkL0DlyLsE4UTs9jLegilEkGTvUEBi9gCaCADkCDtGMnep35NkCGCIwiJDiDApDGEhpxXbOzPPEajRWrDgZA5c5uw3YhiamKSNJQMymUlZSNMYuKc514zMxr+GcEr6cViY7wjiQooGLbiZIszndr6737KdogTMx2xRVBu9ZnwTOTk84OT1Bg3KCMROhgelmZr+buNjeEMvp7Oo90AJ4288zMSdCGMyRHovLsjnzqqxSB7QoTgvn7GT5g0fnjGtHzpngA1mVq6s9220sp7kBtSAZJUBVT8zW/4I3cGDwgRjFAlTJTr/XQJmTjPMZnfZcXzwl5plf/bvK7/36+5ycv81f+8s/xv0fPSN5YZtMhkeK40UUdmQmcTh1xAyzUwYyJwWgliz0xICzIFnjfTKnSsDk4rbATGFPKo6hGft/LHVz+7TfLXf19zq8ff/pGLFw/HV79aGnSuT7z5OKWj+wUabVh+AYuutGTAbD6lNbYAeW4Lbccj5VWYzFdafl/ubMPcrPH1YCG9318G/tQCVUAFP1bNp7XGGEWAAM2hy51W1u9mkNf7Od8JtgdFKyBP8WR2K5Jys5Cc8+vMCPGx68fw6jAWwdFkD13hUpz8rIoouMAix5fV3hawV10QjnKoBAmp02GEIBmuQsPP/witNV4PTB0DTm1OXCAFQBF0KaHR996zmP3n7I5p4neFBJxKQEF1BgzrnIaUmR5TJn5svney5ebPnqT7yN30DAoU4bc0dlhAALdh44ZFsRDcST+3ZVC/Y/ffqcB2+sOLtfAMzOrsoamjGpOl483XL5auKLX3rExWfXbNaBMAY+/fiCP/j2J3z1p77Ko3fPcCvLQ1AhiTEmOPUL6BOaBFoWY44Sw0UV33Y2UK0o+QaefnjJ6fkpu3jFN37zHxN3r/gLv/yX+am/8nPce7JG1glwJlnr6NhWrD3KCF1YkzqHvhyZQh2T6AMUi030TvIGQu1NqHrci4RVtUPRsgzIGa1gIeiNswPtsASXYDmxKx0jUe0f1a7h4CR8dbZXsM4BqIn6fEV8kf8p80aVRPPeL+NH53B3pYs0EJnqwkKFUiWNcpUQPBhFaO3eyl9P/Jd6q7IFUhtDpIGQahmsXMVmymXGjrXI31Q2RNXlgQ38VG2BWp9dv6YGYnRhBhAKGK2y7yzlrSCnynJTv6tBu4yxNWr37Dr+VXKWFlTKSz2LFHaiP3x6+hNPWRXR3NZbKsbsWRnERATvDXTiXOGda1iMheXqoF9hY5LEwvbjSscrgKQK/Gqg9i7Co5rJqsQkuMqygKLirU2LDHOV9UmpCKhWmU/NRdov4cQOaQh2cCIVMKuZluLE2F6QAlD3C8gsq7HK9AHqOFsDD66ynnmTGU3Z/i/15cTm2coqJxVoqtrkrTUbeERwhZWoA+Z1/d0VplKTRUu2j/AGbEEE7xzZwxAU0WBsuQ14KQaaFwOtaK6gmbIuL/XQZJOLXJhge4xxFaz+HOiUC2DTRq+k5Xlg9iMGaLXxJtm+DWd7gpTx3vaLSiYVcBpdv8vJQFp2gMJswYLguQ2kbQ0kUtrHeuU82d6xMunFmNFo8oJTYVhyUu1MSzs4xvXAejUa4xbZZI3WAYdHk5Bj5OX1dWN7ajZKWUtlK2uz32zzXmWNPJiZjn41dlfHajMyroLVj5q07fZmNrauMpG0ea7TFNVu4V0/Nsl1Wt1WUGvdAxlbTSbOW9JV5MPfmfnsW/f44PRT/DvwL/v/Hhs3GsiwdORa1ijagr6KbYE95XBNbZeuzHU47GWQHNhaggpyPrz2u6fvZ+X7x0zfdbwuJWyvPszDHzVHdb5baoIGDmvjiSoFgmlLXKQdkGiNdJC3pRitz/QflOfahYfgomOoUf2rP0AhtGn/IB1bfVteddceWkgds8s6QSnMdeAHt6yp6jqge1Yt07RNxH3i3jtn4O19FSzU/16rqd8DLJVRD3IsHx+AQerakW6MlqU9MtoOCCkwbyOocnISunnx8J11DXR1uWMYAuPGt/fnnJDCllfzd9DOFJm3q4kHD0/wQ7fH4Yh9pbunLoVvFa1c16pYYXuzJ4yeVWFo0rY9kVb3qjDdRHbXE+cPTkjTxBg8wTt21zPPnl1w/9ED1veM4cpYqJayN7s/6jz2mc0E/dhQx9kUbYxcrQY0Rz754Nvsdle8+d7bvPWFdxlPA+K1Fa4HY/WvasAoaaXq8rD4hfp67O+tFbHUpzRbqh7S/tYDP0ldEhVfmcoyBlRga7V/7dvwKC+1vQ7KVS+pv2iXZ5a5dLmolKJbw1V7oLLWdh37ANx0VEWtrOXfyoZ1AOLp67LNy32ddN8dl6n+fpAHPcjfcd6Ox7/GfHX84Jr3o3Y6vqbWnR7VQ11bHtdje70sfa6vh8U8D4+lvc61VQ/u3KW7dJfu0ucpqSi/+ujfBeDf/M7/4Y5R6S7dpbt0l+7SXfozkL5nkJJzJr6UU7ZAnrcNZkyZtAPvAuvNgA+ece1JSdhPc3HQS5G3sE24cwZWcs4R58w8mZNoGBU0EGMmxkhOCS8eKZzuKavJn3lndPJJTT6ryGbklFGfiAmCh5gmxiEQVEETzpvHwjtBsgUZNGWGIbDerDkZAtfbmavdHnVCjqAZ4hwNXBOEMDiGYTTHfc6F4cgzxXJ6V4T9nMn7Gb8OxJRYeQPymINpIM6ZNE2QjcmJ4sg1+QVBk8IgOO/JqoQqhzCbtIJkTHYnZwbvCd7YRITMehUYV6cknZG1EAaPd46UhcE57p+MnISBV1c7tlMiKaSYEOcIobIAKDmLwUdywE4sp3YiLWqClAlOOTsbOH/jlGEdCENAXl4gGAPVbjeTs8muBe+Z9jMkEO8IK0dMiVcXkZSEFGGOM7utGuOQOJNyyMo87/DOMa5GO9VdduBxmlG1E+mCAbrqEWRVA6KlnAqrx8j1fkLdHueMVWk9CpvRIerwfuRss8blyDxnprjHoYyD8OT9h5xsVsjOs9oMnJ4PbKeZ/S7x8P0vsArwK//417i8mim6gE3eRTAnaE7KrDNOnTFRZQWXi1ycRdrtNLA555yGEiiaccFzet9z/+GG9Xrk5vqG3Y2y3U6kFMnqmgyKsQ8Y30ZqQRZrXwvcmhMjDJ6hnogup9JrvaV5wqlJNaR55oNf/w1e3HvGj/zEyH6f+NaLzP0zWA+Ky4FZCqNLVmYHsThPcwkwJITYHNv1tPxyYG6mMABBA90YyKaFcZvzSZGDE4AcOH9vO2V/GOnAufW6Cw486X+8fFTXshff3rk4neTAabVSJYkFQQeEGZjUAI1ZGmP+gRMOKQ6oo3wuJ3Zvl+A1Bx0PAgXuwCF+6ESsXA3VcV+fvTCEdNd3wK6kNu8kAY2wf3nD/fNT8BY4rnIoKiaj1HngiLvE02+94L133uD03ACniM0Zrkg7NFxBdYrnBRTVPaoLYBcHryG8LABWwRCpvN9VcFYFXUQGNVDRfpu4eXXD+19+zDCUObKw6UlWUnZ4Ucjw9LMdOSWevHNmshKKMTJpkUpwwhAgawRCCbrAfpf58Pef8uY7Dzi5V0BgxTEeChAiawnI5FI2aDJMte6NaKJYSBK8ZGbg1ctr5n3mrXfO8QPgE0kTaDArECUq3FxOfPbBM95+501iiqzWHn+yZvdi4rd+9Xc5e+M+b7xzRggKzjVnqqijhlAMDMkCOhGaMqBXG0MyCmJMKnGnPP/smrPzUwbv+Cf/xT/kg2/9Hl/6mZ/gp3/pL3D2ximyAvEluJJ1AR5JtSWrMGt77YJQUppXuxvMSgxoIuWEfPVWV6DvcjlSbKbM+8boswTI1UkXfJDmva5gvyXoogVkSntGYyOq8oR5CWwpNPm4LObg0fI8VySbcsljPVGbM43FTFGza1VCoawyXIIsNlL6eR+McZ7G/CO587+X9Y3Vk9VpcqCacCUEV5nMqixpRVr2IBMwnN8CNipl9WWy0SoHaHc0ubosLe91FLRmL+w+uoxTrQ67oEYFk9VU5R6rzagU+TAWoJRIaW81AFOFRxizSZGOLPdXFgFYgko1tdc6Ks0b5fWvAfB+vpJrMrl1nClzRWEOq4EtVYq0lRALY03j6CsDgAGaFhBYlS9Uxe5LuazVF8mqCibLBTjicAVMYyCXBhqSAjZxxnjj8yJJ1/qX2KynOdkcIUIInuANvLOfZyQb05KqGutPybNz3iQXy3hrTEiFHUeMMQJsn+OSMYQGlxm84IMgEgqTq0E5gvcHwbAWdNK6GqXUjQFVtTBSOZSkQnAOF1xhYzM2Vu8DKiZh47xJLMdZcQlWQ2DwIPuZuazXLdhNkzMDk4u2F9Mt3upHlnfvhfVmYFgN4KyeEwpZjSEpKaqRGI2dNSelTmAuWJulpOQUDYyW7LCJd3bQobIRxZgRSQwhtEBi1mo3dRymZbQt97KWdUgJ7GkmpoSIYxiE1dozeGNSEALOB7xTpjmxn3agduDg5N7KbDY5TjZrcMJunpjnxMnpPVZj4HreE7exvb/K9NbqUzXgapOAOpIsEymgpbqfwBdp9ohzwubEM4zG3rrfz1Zv2aRntWlTsoCMqGu50jc7ICZQWKSCzR+VGqOMjTmVjXQSXIaZLZ6BszcCT+//Bv+Fznx9/4u8779E1tAYlcD2FWUp1dadldmnBmPLMYk2uWZMqszZVNXmLmGZN1vr1rGye+cPbvX+mnQ4Zd163/dz3/ebWt+vYyB1XqsNbJ9UkM1AWZvQzkc1ZqslpF2mYzkGHR29VY+zLrfnp+OKb2Z4m+11qQ5rwLaekGYN3f3l3dqPgJR5v+xBd3MZ6/pFWreiqetNsfXQzeWWcQicnI4Li1KX7zallzxUgGyf+wYmqGvKDhTZnkV/TVcHrq5/be+QkzEQnZ5tTCrzIEPduAbsdsq0jzx6fEZxC9j4K76pOB6AJcrPlIw9arMZWG18K1Od8w6Ab20hWbOwLEiO272uq6cpMu1n7j84K6BaWKCFrqynhBiVq8stp/c2ZQ0rrE8C85R5+tELQhg4u7+xwxwdw1Vdu/P6bJViatsnQRn/xHyB26uZEMyf9um3P+LVi+ecv/GIN7/wNqvToVC8LWVswyRL29U5SIRu/Fqmxfpv2da1ca21++vqjoMHHBxE6obog/t7RuU615Xt5mLCt/qj5VT6z+ozdLFzpStb+Vy78paVTttHLWuUpY8dl7XtA2pWXPfOfvgq1x7YWM0THXttPx79IWNqa8f29zJhVNuo726gquO6OXreQb2Um3tbgM7+DotxOG9ol7/2vsN13mEd3srawTuaHR7nvbbd53lDcZfu0l3685tE+ceP/j2uhk/565/823zl+q/hdDhc792lu3SX7tJdukt36U9N+p5BSv2xZS2OkVQkyFAhFtfV5mRgLStccJCSna4UAfXkOS0+ameyZ1kzeU644IgJ0pzY72ZiijiUVXAE58nZQEsxZYZhBRnmNBXHT6HrV0ziopwSilGZ54kQnAUNUIIXY01QcyT7YFu6eZpwznNyOkKAOSvXlztSzExzZhzN6Ry8Oc/DGHDesd/N7HdFJq7IsYEBqW6u9ub0Gh1OJ5Mqc56bNBHcYMwVrhHSU9kFYsqkekrYBVJKpJzMWVicxnGf8NFBSITTje3aUVZrT8wRr8K48oRREKcwJ1yA0Q0G/vIBzakEcJKBmUJhHvCO7S6S0oDz4HwyIIC4wmhhVB3jJnD26Ix9zFy/3DIUFiTNieAHhjAQg52mnqfIPEWcCmNYFfaShJeAukTEZOxSNBas1Wplkm4pk2NGvJBdYW0QxzSlJnMgkpujkhIArAGqHJXsBK8ZkVgCEiPDZmC1EdAZkT0PTu/xxjuPef+LT/jOR0/57d/+HaatsDpZsTpxbKctj08f8+TxKR988oIpRVLOPNULTs/XLUgiVEeUFoepOf0XGbfCLuU8OIcrdepcxruAY2C9Grh//x6rcU3UV/gBzh94hk1iv9+ynxJZvUmQsHg9xNlPVW2MDVpZHMqpZju1n/FBGceRYfDs9xOC4ETJKVmdp4yExEoCwStf/MKb/MzPfZn1fce3Pn7OW/dP+Np7J0w5MxVZQHGOqK6cl1+8fxmKxJt9Vk9BW881UMKEMSfNCsE8IgSEoBDE/H9DGbD+8G3HD3hT0nsZX/Oq7xpgqN7FP0Z2Xsu6JF2AQJdXjBijwEmRbpyAK+AVyk13Ye94NKpyueW86t3at14OhRNrKeatXMrhqeJ6p7maF4deZb+R9owaFFj6cv3UiZBL0DYn5eXlli999QHBmzSPdggTVySnjFHCsb2YeX5xyV/4ha8xrEzizUjrMrmwmAWhsLKYjEpyBTzQJixzfCYj2CsyQAZk8I4ir6eL7FOJXFQQkSMjGgycF+Hphy84O1+xuWdjbHUU5xJ9CM5Y2HZXyrMPXvHmew8YT4RQr1XBiysgiEx2QPaQhRwyeYaPvnXBehN48s5mYb5xqQXdNSnOFfCap8ikSZuH2jhWpCilOWcd8SZy8XTH2+8/YthUaVAxwIlQHN4ZTY5PP7zg/qN7DIPj+cWOt948w2nmH//qNxEd+PpPfInVKciwGI6d5KeBZpu5Vxsu3uksmTwImYzPkLMnZ+Hi6YTXwMkY+M1/9Bv8wW/9Lm9/6Yv83C//Ze6/cYqsBfWLrUpXXleQa4qFSAykI83JbcxGBWihWhiorL2dW7p+DTQ4Z2CtHlhVAxLVbF2LYEkBmZZ+Lhi4otH/lMCrK6wGddKp9ltso/Vdpcm51Rj8IoOW2xhTAUlS+2yR1+oD5ECR+8Vsp9hLC8Q5OQhWmFTc0v+19Omi0GX15sXGIOt61n9LGSoRTFUzqoGV2leqJF4DEag2+dOa3LLgPBr77HlSomwLq5T16crMVOu7ESCh+EKzoHl5lsrSXlLyZMCWUgcFNbVI/tk6xm6xd3uB3Mmf1XqrdlflHEs1HqYa8JFiy59jqTeobabL75kSUCwlVkUquEjtcIG63MCEigUOF6YvkyujrLFAigR0bOtE64u+rbErY4zzRUKuzj5ax4MlvxXAkrK1q3diXJDO1pla9iHGTKdM04xz9vfaD6Ss7LZzW88G7/BhYbzwwaTv4hwLUMoA5wZWApIw7e2ZGCktw2BMOKoGQkk5NVtWcmMcyjk3iSQnFuytA0+1mZQMMEddI1rL4IciP1cORLjgSDkaF60zu0xFIi0VtimlsOBSxhon5CmhWoFOBVhZ174Imu0AiBs9u73Vkw+uzOGgGhcAGw5NiRRt/Bp8sHGpzNc+CEQDNWtWe1YJclYpN1t3L+xcTeKsjnfd2qUxl0EZ32rnyy1454IvjL/KuPKsh8D9s1MeP3nEs+cXfPjhJ8z7XKQLM9OcOB3PSJp59XKLC7YOfnn5Cjc45sI026+zrHeUhdOynDY7LmN/W8uVcdl5x2ocuXd+gg8DMd6gZJNTl8RcJqbVemCeMzIdFLQ9sPbXfk1oEqauAJsiTg1wlwoY0O7L3dhq9I7ew6PH55w/2BCZ+e3rf8Qnp7/N1zc/xY+9+u8w5IetXutUf7jOXJgf6ojRhvnu79TdW68zqTgDglbZuDZb9kWWZVX6w0i31tZ/2Ku6i38QObr9DDn8Qhdw11Ben4G9wE4P2aeOy9G3xWGqI4ocfNRADf+cktly7/bkd3yXdp/ealfpr+HgLMl+SoTVshavz5GDqrF5OUW4utpx9uCEMJZ+JvV93aEG1+Wvfl/n+5oXoUmwVXBABYjmkslmj7XPl/vKSI4C+5uI957VJpRDGEu5F3CJkqJw+WLL6ekKv1oOaVTGzrpuzWXN14BZquyuIoKYJHNdOzsa8Abp9pLlea3/iSz13ddpyWeOsLuaOb13gh+lurNoDOXlOZphe7knhMAYHNfXM+PpiB+EF09fMk+Z9778BsMIjZW9Zq9ri35cqDZR2ziX+vW6vHO6iTh1DEF4+slTnj99ysnZPd754vusT1ZWHx0gqj682U/7uawrWvm7tKw/us/k8Htx2sBh2tpoAfH0/VjggI6sb4JqR/W6W4Act/x+AOqp66Nit1rXtX0/q7/oobxbX54qI3owdpdftL3n9sixAIOW8rb9Q72/5vfA1uSgzP0cylGdt+Vpu6HPf6n5o7a8JTfXP68be3q778cXLe10MKbWNnnNoFpZGg+Zt5bDELcG4q596/d9e/X5B8xH3sa1Y27bu3SX7tJd+vwklcw/u/cf8ntnf5cfffWv8Tc/+N/xcPrKP3dteZfu0l26S3fpLt2lz1/63kFKFBkOrYwR5tGwAJ0FCOwEV2JOE9VzUzE41XntxJeAqCLe4wJQmJOmvbLbzZYx7xh8wDuPd57kzME7uuK0kFxOIluAocqJiJgLLUYLHjqEMChDzuA8ks27EidzqK+HkSzKbr9nXA2sN2vOVydMMTHtZrbTxDwlclKcM1r7MDiG4G1j7pQweHKKzHMkJ5N9yDPcxL2d1o2KZyQ4h2bPejxhGEamaW9sRWosCPtpggIwsU2/knw0ma4g4I2I2nuPpsLwpEqYIsNgAROfZ3PmJcVn2KzWXG6vTIbHRZzz7OPEfpoMIJaibei9GMPVYMGS/T6iXllvTBpgGFdkhTlOOBnIGVbrAEG5ubhh3mWGEEjZAixp2rHfz2RThSuBBZBgjmwRMRBTTPjgGVTIKSEqzPNEzjtckbcIYWAYBsiJOCfmJqVgQYwaNPTOoWLgp1wYCbwsniMVj3MG3Jn2iTgJDx+fcP+NkcGNfOG9e3z5R9/io5dP2ZysmHZ7kwbUyLSfeDZd8uzigpjg3vmKFBMffvAR6aPM5eVVOcEunVOQdjLftvrOTqIP5gmd04SI4HXAych6LZydbXj4+CE/9pNfYkqZl68+4+WzF0QyOkd2cWbYOE7ORi6vHDdXxrDjXF6cMM3zWU7FllPklZUhpWxAuKTs9xZkGIIxq1iwyk74D07KyfUtc7rg977561zrlqfPn/N768DFyy/z+OE9Ts5PGO8FVHOR7TLJMWFxohqow4JnVTLAYaw6iw/NHF9RjeWjBmers3yFNJBSpepPWiThmofrB5v08J/XOuWXPzqP6JG/8Aeatz4T1dmldTBXUAMQTEgJxCzt0Ge4bt76U8qO4qzSenK9d1tqd+/hzz5r9XTzcTYP7umdh+3d0k7Lt9OQnXPVTtKa5ICTkeHExmAvSmQ5ce8b8A/SBBefbAnjyKP3znDBQAbSvP3GhFBlKWlgEylAUVkC4Z0zNpcxcwkslC5XKatEm5MPCnjJGajo5nlkfzXz9tcfIUOdFzM5eXBaZBxMpu6zD29YDyvuv7FBQq2LwrpW2V5KXqs2Qka4erHn5uWWL//4mwzrIh/k0zI+CE26qLWNLywFKng1Q8jthHwujulM2gtPP7zi/P7GQFZBi8TdEh0R02rh1UeXuAgP3jrj+rMtPo9MznHx0Qs++OhT/sJf+lnOHnlCUHPSVuOoUhgC3kmTp+uMpY1xLluA16miCbafTfh95vR8xe/+xj/ld379v2F9/z4//0u/zBvvPDAGpdLUgjEvIRgDUs5trCyYtWYrdQRoSkAliFrlbQ5OapdpQLQA6HQJYLnO9tW6qz2jc1CL0OQapXfQd9EVEQN55go6ktvBl9aFljhSc+AHsXuPb6rgowMHeEn1XSY1VgAIxVnuaj/JRfyjAnLqWFL6SAsKuCVoYOvIMmdpkSDtnegthKRlXrDPFiaeAmKsdU+LGSEUwhVHxQqVYbIUvGufdsK8CyrUZ1QAkNXXkofU8lid/wUUlozBpbH7CQbGUS0BoJ4RTNs4YnW1AGacOywn0NiVpAAxbgduF6DA5zG5IlXX+lphJ6ohcOcMbGIBubiMpUVWkFYfrkm6aGl4xVhVUzSmVye2NvT1nRTmh6rpA0iTM67PUHxh3KPabwG41CiXOBtzFWPs0axkcTQAYHDgWPYozkD4OSuxILNqOb0U+TWMDSlqAYp3/SXN2cbIbPO7xISow4mxNkmxiZzLO9IStWtMF4VBUJx2fdzZ3iYlk+NNhclNaPLWrgD+vXeopjavGTjVBhSTIjTgTy591FhBK3OEMqwqW4mBBp0mnBtQpUizGXgGVWOyhTZIzlNaxkvq+rbsS7PNx7lI+9laWJtcXYyxgGQWoJrNpFZeKOtVNRCUCE2CtuipFbux1ZKNM40Tkri3gx6bs4Gwsvr2g7Lbb3n+8qUxEUthB1V71/VuZ+OUF4bRM+/twEu6SaSYDsYeSwuPWBtIpUiBixBTLN97nDhWa8fmZMW4WvH4yX12u4mbrTepp9Hjy2pcfAV0J5yv4FK3vFVr7fSoizIzZV2kLzUvLEqFgs5Y0VzxEViNz/OOZ88+5mp3xb0HbzDFmU9S5NP7H/HP7v0mf1X+Fu+4H0cwifDMwtGyKBJJWw/W/UTjB9Jujal1TVlm77peA9t7HK3tW513c8APMvXQqh6oaR+VsejgjqNM3DaKH0Smll9b/eprLjh66cEcKQ1EZHXfjTdHT+sfeVAHbbFyu3DdVuB2fmTJQ/1eXntfyWe5pn6es4Fk1iehgH+s8Q8PUNT8KvMuE/eZs7c2SKiMMHWBRVs/aJfNlr8eGdUVu+XT1TmxzUzdu7u1U4e8SbNyc7nj/sMTpLKxdosYA6Pb4md/Y0CjTWWAkuPy1XVlnWftSXGfubnccv7o1ED0dWEnS4325emfW3PS/u7WoCo2r95czoTgGFe+sT1bHUq3iBT21xN5nzh7cMK8j3jnyQrXV3uePb3g3oP7hI3H+dzW530eXttvDpqljAnFLjUJ0zbBrKzXgZfPnvH8k49xwfPWF77Iyb1NOzl1CGizX6pMda3XY6A8y6uWJVw1o27N2qfDv2tFLs+v72oAn+OxrLPL2gbymu/6tXJdE0n3+8Ez6NusfqWt4Q+6ti7X16z1IJ6DIWBZEh4lXd5V610Ovm3pdUW/PUC8HnQEthZvt2jP6XT03B4Np8vnvT0s9dsxjpU1QZ/hdlikv7XmrbeJBcV1+I42TtD2hbdS1+jHI7y1z8KX53xgOH/0uqfcpbt0l+7S5yMJRNnzT+//v/nO6T/kv/+t/zM//upv/Enn6i7dpbt0l+7SXfpzn2RYsX73R7/n679nkNJqHcqp1IQ4YRh8Ae0YOfs4eDZrOxkco7HMhAIymmMkzxEy+HEwp3wwIMy0T+y3M3FKpKikZE76UOjjU0rkBOI83htISsmEAYIvhORlQz4Ej5PCoBRt25Wy4jLNcV+lFPbTTE7KbrvHi7k3vQzMMqMusZ1mnFo0MmdhmjI57xlGx3rtF6dnhiEMuJUQJJmUQ/CklJnmSNJMFGEeMzfbGckmteMQvFOG4NhPid1uZj9FsgrBDYyDt4erI0UD3MQYSSnjgjAOgwWUcyarlPLabn41jLjkuL6Y2E+JSSPeC+N6JEdhWAkPH51ydbXj6lrZ75Od4Cbjh2CALBHCAOtNQFW5vtqh2Cnh4D1+yDhvYKHTs8DkEpocLni8CClm5l0kJ2cnnjFwVQ2epEkZCon/9noGdYZrG4SUg8m61cAhjjgnqzfnLdjTnYQHC0I5H0i5MlLVzbWFM6II6jw5KYN6wiQ8efOcJ2+tuZguQYUPPviE3/nGh/z+t5+yDivWJyvGtSdHCGEoJ+4dA5HViTDFxGbtuXwx2Qn/6n3R6kDRA0eNSX0kQgh4PxKTknNk8MLp2cDb752xOVkTc2bKe15cbvnk05d8/OFnPHy0YbWyE+PZwcXLV+z3e1YbIc6Ck3KaPFPkP5QQ2+D2XwABAABJREFUQgsm5xLYSymRUirAhgjeW7ukXEBMGRHPPE92ut9HttsLfue3/gnf+OZv8+Cfvo862N3s+dX//BFf+9rX+Yt/5Rd4+M45bz7ecL4ySYCdmMRbde+o2sllcMX5m1sQuTpVq7Mzd07d6iZp8UIxK28yXMVJ80OKKbSkWLnsVL05tHpWp+pHbeVpTrfuw5rfP2ZqDqtST1YfVluZRSavuqpzu2vJyHEuqm+rjxks33VufaUVVLrn98/rY/L1mRWq1zsp+zar7W8hQGnPueV/U7i62PPwZE3wdpFvdiE4yhzhDJiw38Nn37ngzbces77nLTiLBSCcE5NmVFDn23haIwTifAMHaAFd+ZKRoupYVJYOvbBavKfSOXadOhKZOMHTDy959MY9ho1vgCZEEF9OyCqoOLavZl58dsFXf+Jt/GjPN7m36oFebMtrmeOA6Srxwe99xtvvP2Zzb6B2nqUE1RkrJYgoi1UI1PCMKwGIKnumWEDn1WfXaIaHT04QV/qmJGOlQpoU6auXE0+fveIL773NPkZk7ZEZrp7d8Gv/4LcYxhUnT06QVWH7g8bCkLUCw7QE/83YncgBFtCrI2RITsnZcfls5uZq5sH9DR//wbf5nV/9NYjKz/+rv8ibP/IEt4Hs1ALinYdbdXFG97YuYsxuWXU5UFuAkQ10o3QSVdUGlkAM1dbKkwVpcmOU5/T+a7M16Vilap/RBtoSjM3J5NekfV/77+Hp2q5DUmXDlk7VArKNImwJMKguQWjnZAFCyALkMwBQBVnIgbN/qQMtemxa2IB66QUtJl0jI9rsrQUsan6zFAqPrlgCqrn16/ocY0paYhxVUsvyaPVlzIIGIlQgN+aPlmsQWeaqyg6QoMqz0OW9jhM1Y4oWSWDhILhTDEdzJosszGUtElmXEtrGdjAQRs1/DcprYWyqY5VzC8vU5zWFwZe+XUFJYiDO0ljBe0Kwyk5RDQBdGN0A6oX9uiHGZFLK0QDYt4ynjCGLZOTSJ30wRlg1klAD5hTJsRiNwUkpco5l3MgZk1LMlWlJmFI020MKOMPsNScTrqqvzFmZ52SsP10Qs5ZlCI7cgICOlLOt62qnUAPBaVa8GHupc7bezVlJ0Q5h2AEOW5fXNbHZaV0XZgP6eo+UvtBYwwpgM/iAqGdOkWneklQJwTOMIzEmQhCGYcU0zez3MJd3p5xx6gz00uZIYZ5LfTiTxTOJ4soMIITgyjxe4QJ2gEFzLm1kIPgKvrcDMGrS4AJxrhJ9ZZ2o3Uqz9LMquWcAOdf2Ej2vpFWDlvYsfVxA1JkkJQpZCBpYDZ7z+yesTz0vr64QgRcvrtl99JLdPjKEwGo1EFbO5Lyxwy4xxgUY5YWzszU3VztSETpr88LxQqjuJ1IFKgcEb/3Ew8lp4PTM2Ghvbm7gmRITbLdbtjcT62QsXFWycN4nkxIcDEjX9xct++AqGV0XcJWZqq3gC6OgdGyIlWEupSIBiO3Pb65fcX19ycXLF+UwClx8+pzn5y/Rt/7v/HX9t3jn/hPWwdZ1ExC7IU2pRz9Y2k2Wampw6W5Or9diZmi2019/HPD9Iaa6Js4swN/QdkJLP7WMy8Heok8/lFFelnm7mzEP33UU0K/p2Ezts/4ph18eAzCWOXJ5u3T3dsNfd8vxtcsrDq5T++f4nTFmJGXGYGC6CoBb3myClAaoEa4vJ8IQWJ2EDmgh5WDNUg8NNN51p2qkdWqqy64+S/pdKnQBsShODRytqty8mllvRoZ1oaisdVEBT2WsT1G5urjh/OEJbjh8RQWYFDK99j5jflVevdiyOVszbnzrXG2t2edPD59bn93XufSfKUy7SIqZew/WTc66AiTq7J6BecpcXu04v3dq444TJEDaRZ5++BkO4d79DS4s698e2NXAONqVuVXXknk7/2Dvj1Nm2ifW64GrV9c8/fAz0qy885X3uffoFBmWNfNSmX29SqubZY4/atq+H9W8duvn/v4DAFJ330Gf6N6/bCqW8muXgZbdw86+vHNptuW6cm/fv5d9Yv1SDjA7t5539B1aD3Ms/b8frw8Lqa1/9c+s+ajvakkPqqHZ3+Hj5fZYBAcgqDY6d5/1daNy9GG5funPcvicmvd+LJSDSw8/7G3jqEx9hhc7WPKzVF938OSovNIXq++zAn59wunX/tKt8t2lu3SX7tLnLglcDh/zH7/zt3n35i9wHt/5k87RXbpLd+ku3aW79Oc6hfM3ePI3/uff+/Xf64X3zjfkbACH/oR9ih4vjpP1is0qoCS2VzMpJ4aQwZuklfOBGtLWJMzZJBH228Q8ZeIUyQmCG8pJJgN0iDhzImXbfg7BTk47H0BNXi0UB7APwmocuLnecn0zM8+J3MA7nmlKRQrMnPfjesW0n9jt9jjxDFM0B7lzDCGQR3NgZY2g0pz/06wmV+eDATzizDAEgrdAnTpPjCZ158SVU9yOlDLztGPlM6oT4+gQBguAZDvhm6IBqJyzOtUU26le7xyJiCcjkhlGT0ywnybGcSDFyLSfmQdls16TknD57JIpZU7vnXD//oY4bVmtHathQ3B2CvdqO3F9PTHP2k4ie2csC/ubTEwJxBGGQIqCpsj5/RU5K7ubGecjIQSSelQjKVGAMGWTnjEWJVekcjRDhJOTDSqJ3c0OsjCuLPg2Txk3DCVAtNgczlieLMBcZFgwB1xMSswz3jmCMykHX6TNJAvOOxIzLgdOVw/4sZ94jyfvnXG9u+CjP7hkN+3JN1fsdntS8qjAwwdnnD4cmfYT834mDjt2NzMbCdzEHXjhS197n88+e8nuGx8w59icCksfkRbgqKe2p8lOzzscqp71xvHFLz9GPHz88SW73czLl5dsbyLb3Z44OS6fT9wMJl2ieKZdxotjPQaEzDwn4mSeKC2sFAKQrU4H78haHLJgTo5UJE7EgvYiFjQCIaXEfrcrkjzRWKyubri+usS7kcCa8yen5Bd75MUNDx6f8XZwnArMwEvgsjh3Fy4pswevwlAYaybMcbLGTrDOKKm4iR12Cj+LAYRMIkgZnbCinobmh+Sp71Jh6pmASSnsTTBKPdHfu5+KjIQUOMgPIejRO7aEhQlJRRAVQgm+hOJ0lhpQKze7zmHaOzePnfquK1N795FTMNcPm7N+eZpjCQJVB1hPCa/as50sjVhDk5WzoIYf6vWvXl7y5ME9hmCFqHZQ7cuYXSzEt32VuLi44id/4SuEAMEZyO8AqKSQTb+LGs90BXxTM2o+cTH2gQKcccG1QMHi3KtMg0vg2SEWctTM1YuZGCOP3n6AHys4Q01+BjUQiDrSXvn42y958u4560e+yDLU+tQCrLVxJam1vQYhzfDpRxds7p1w7821MRX6wkCRXRmD+zZaDClW9rlKC1XsvMAiiEmZbhKvXmx5692HhBMpDFFmaFIYqnJW9tfCJ995xf03zsBl4tXMvUcn7D+44nf/yTfxU+Jn/+qP8saTgSEUCZ/q73c1cFcDS9JAHlQnfXFWZzLZQ3KJ3VXi6tXM+cM1Tz96wW/+l7/Bq5eJn/5rf5kv/Ni7rE6AUIKtxRYbQKt44E2FqDChyOIo97KwOGhv89X5X4BDucqH1cBiD6qiMOgkA8J4VwATpR21yJRW5hxRmzOs6GUuqe9sHbR2SGN+WcaBvtNaPnypv3wMK6ysPe7IiV1+XyTgzFatTJVVkxLYs3mlsZgUjLXAEvDMudS9sWtU5hiEhYWptkmxqwpa6YFpFNadoorVgry2JqjtWQekrn51YSQyZp5DhiILNNjaoTIiqhawdGFhMVCHLNJ2UllIlrax0+82AVR2xSr32oNUa2BD1cYsXJn3hMZwJVLvkcKgswRTDMhRq0QObLkyLf3wJ8c/Wlqvh8ZaBlZPBvCy9fc4BIbBWIr202Tg/MoWKTZI+Cr3V/qNpsLcwjIOVVBjbQPUpM2cSAHnOAN0FYahnDLOL2yfIXjmOTJNkRxzkzZUVXIysA9ggZzgIRaGU6Hk2QBjPgSMpw6Q3KQN63MM/+EKQNPAHr7aBta+oTA9VdYpO3SRC7ufrQRylTqu4JsCFpJseyOOQWFlQhcpTH85k1ICtfV/ipkomXEcUcT2UCmTR5MHFiAEOyii2fYzzkV2U4RYpBerUZZAuUIBnBmwTJwdAogx257PK6LGoprUmGYFaVKOLagvde6hPRNxiMSGt9TynxOHOEcuEoL9WqfCkRqoRrWMY1r2Xb6t57UMapU1yolnvVrz/pfeIsvExcUF86zspz0aCysfHi+e1TowbgLTNJFjJuWZHGFwgWmbyMC9BxvGzcinHz0n50PNxgZyqKulkteUIWssa2ZhHDz3758xzZHraztEtL3esb2ZiDEBjnmXmYtskBbkvxQb894OxJh6oLS6EVmYnKRMNsakVOYNLYcKOmoOJ4udp5TLkFwjrR7NNzjxeDdy//yMJ48ecPbmJbP/x9zb/2uFSYkD8EQWXdYtpUaqIyOWn2O5J5Y9SAtel/VkKuOmeQYMiOy0LQM6uzhoAf7YqTwiY3lLQC5zj+VJb73FU9eR/0K2OoCtj7VMyLX2XGWQK1fQ/lp60uEe4vZfNbWZ6WiDpNA/7vDeHlVyq62WXPV7ifpp/+7uKVbvU8QNggvL3ZXlELpgPYLOdkDn7P6aMMjCoErtmbR1YbvLdd+V7w+KXetZjvNdniXdmEedy8xW5r0yzzMPC4tSWey0PWGrtwQ3r/aMm4HVqa+EsctebLm1lbmCRrbXEyKwuTc0BtIGCKlLuO4ZNdW2bM/tK778yLOyvZw5OV3hh1I3tY6QtgfNM1y/3LNZjzgP8z6yOhmJc+bFJ89x4nj/i484fbhCQhmf9XCJvIC8uvpvQ1XNVGVnU+Ks7HeJ1Xpgd7Pjsw8/Y3cz8/j9d3nw1n3CKEud97YuXVt15a71cAu8U+/sPziuLiljqR5eK2UQq8ClnnSoPvc12VvquLPVuqeQrk2Xg0WHfe/QoOmNk8oketT92zM7HP7yuZPuc+murfuNLh/dvvSwHg9acslXbe/Oto+q+qAsB31XDotWf+nzL1LOTZTy9t8pcquvK1276MFXfZbbPwdV9Rr7qU3S5lpoe7ODfB8Y2fKMA/CcHr6/NuHxrXfpLt2lu/R5Tx9u/mv+3lv/e/6ND/4d/PcjHHOX7tJdukt36S7dpR9o+n6JOr7nWfvho1PmaSLlhAF2sgF4Egw+cHayZnMyok6JF1fsrmfmKZPKCczVamQIoajA2Ym14DI5CMEJe2C/jXZ6t0p9qDlLpykRvGe9DoxjIKwc4orjae0ZwgBieQpDYLUZjZHBZWT02OndaExN0ZiIwhDM4eK9HeMVYR9nZK8MzjOs7GivD45hjGy3M5qlnbIex4EwFJmYIZjEUJFgy5pwXlmvioyBU3KMRLUT2yEY2Mo5z35r+RqHgNcMLhVJiBkksF4FwO5zwRH8CkFJZFQcLjmmKbLfG0An5cjl9oYkGR+ELI7dfialPWTHZhPYrD1pnhiCcn5vjTqY52jtGatToAThsp1sXm08We1UmQ6eq6uJNCfUObJAijP73Y4YI94Jm9UK7wJTNDfxajPa6TTJBjITYb/fI94RvAkPxGkm5Vyc2Q4Ixbmd8N6XHXNGVPGuOMkEcjKnEggBYQyDBURQppygnIiXHAgirM89j7/yBt/84Jt8+Acf4mXgxcVVkQ3KeBd4eP8ej56cc/Iw8PSTZwR3xvV+j9fA47ffZhiU73z7M8bNNY/eOOHb3zSHvSteK5EqAVQ7ZC5BFmdBhXnCi+BkYL064c233uXy5powZN56sGJcJZ5+/BH73YwfHOjItIvMRS4kOANSpSjcu3ePF89fosnkLUIIjOuAADFFgnPltLgxSU1zWkAAmEMj5ozDpBu9G4vcg/Up7xxznHFuIMSIF2FzesqP/NiX+fGf+hpf+9GHfP39e/hQGFhwnAFT8QbNrQbqIAXr4jhOCAPCI8whdqPKvtyjLKxK9e9QTn4HFoCLPRRgYTk4/urAafh9elu05H0GJoFYZED2NWCzvB4nsAaGGjw+ettrsvf9+36OPIsNRFAcTAZSqHKHEMgkDCjTO2orKKTFEeuj6T44fjXmNiu+UXMWVifwwTX9eUjtQET2d39Su4891GuOwx5aHZOz9bPhwWBMCdlAR1SneedBlQjbZzvGTeD+2+siU5BYWLAqMAGT/nHLU7zWas4tEJpVyzhjwe2MgVdceaWKeSq1cDqJYoG7gqqRnfD842veev8Bw9qk1Jyz4GmVfHLBoxGuPrshzpE33j/DBZO0K+oLTWKnHuAdBKZUpeS2XD2/4Ss//i5hDeINyOm9MQJKuY9SttZSUgNRxcFfTUwzvgAFScpn337FvfMTTu47qEEdsed4NZ60FJUPvn3NKqx48vCM5xfX3H9yj2F0bG+2yMrzi3/jL/LoHZOwE0eRtzJDUunHpgWcKMWuG6NFsWmykm4Cl0+vuHd/w/blFf/0H/06zz59ytd+6sf58b/4NVbnJi0rQwHdoIiXwqpSWXZcc0DX8VuqVlnnrNbKXCQskloFkON9OYPfgjklyFTASw4p47Q9pwZgEcX72vEKEEWVIK5Oe425SZVWDzV4a8wv5eT7QgZm1/qlg4oIqcAAKxdNLUOdC2AB2i09msa61Z8OB/C4kh9IvgSwxN5b5emEhZ+gchVV4FfKealb6VmHbgcDBGubXAYvk8Z1pU5aE1IHqAZOqfdLLUsdM7uyFDuo0nvWIQqYquTD6VImRSAZkMH6UwWQ0MBrqTAYVqmxOk+YTQg4s0HLwwLCMKYuK1DLf0GXViBbBeqhNAmIrIUlp7fNz2EaV8EAI4W5qgI/a7v4YHWpYgCflGeTcNYEIraX8NLAO5X5zAcDry0gIi31Yqw+lT0IJwwuNMloCsgwBG/MLuUwQ0rWnr6wNjixvYJJO1vbGuOSNYCI4LzRQaScIBqgIgRva3jvcD4zT7GBqEJwDGMwWbicrT+VMSCnwmLmF9CRoORkoBbvnf1f+mVMBoAK3kCvroJIspJSZAzexrYq0e0H0HJwQECdR1NdHxrMOKFMcS44PQPFpp0x446rQPDWD0NwZT2RCckAT7mwq1WWJEpZhtEbSC1a/91PCU3W+Cka01JlwxInDMFjKErjiRyGwQCELACEeZptLgUQA8XkbHaVRK2/UQJ4zh0w1bkCSkvJqNca8EDswIaqGmtcGakEwRX21ygzz69ecnVzzXwzEbwnTTOuQCbFKcMQODs7IaytLsZBuNnuQTNn908Z1wOffPSMq1dbxpWtIep76nynDRFbgNuygKFrKFEkIOLxfsXKD8QkrFYB1cjlq52x8oaEHwZySm3x57xrQNH1yYarq+uyzzL2Wh/s+5QSPhgbVFYDflLsxXZtZb2WK4C1ACidyXOXYbaM7dmkB8Vk4YeTQA7K9XTDJ2//I96/+FEe7X+kyT1HXeY/0AaYb88ra7YB2JTPZ4QIxMKgUwOuDooktSVjeT1c9N5aB5cX1fdVAOz3tYLX5d46B1coWv+UfuZVjC1Uui+lRI31Na/+vkf9/gbtPurqq37pqZLAzRS7XJb6kB7e1WqL5bhBXdfXK+r9tkJo63/t1wDaPa9Cto9SBbzK4fP7/dKSm2V9FKfMeGKMo66UC1lK1V877xNpTpy8fWYAlVIyOXzjAmatfx9UsLTM10MYPbtJ387tcIksgHnBhkIS7K5mNicrwlgXR30htWVk3iWm3cSDN87A1xqW9p6DHZcu1Rn3ke3VjgcP7xGCtIIcLC2krqWWZ2rXjod7ygr2tCtvLvcM48C4WYBT0jWSiK2dry4jinBysmI/zQynA97B9nIik3n7K29ychY68JU2ljj6PHBoNwc2VOYaVYXZMV3NjGMg7ieefvgZN1dX3H/8gDffecQwuv7klQEvpbbZ8jztmqWfU7rq6M3hUHqty9/x97XbSf2yq6+laQ8lf3u7ouwbapP1wJfjeqrj7TJuc5AWcO+Shz6/ZXvZytwD2howSZey9HZegUjLy+zONtZ09Xjw93GS7sfxhXJ0z9H3B32zMnyVfDe76hqqr4eD/HXfHeSnf29XD7l7Rv36mIW2ftH2WV0jt/d1Y/pr66a8pzKVH4wz3+X6u3SX7tJd+twngV954//E11/963zt8r99tEq7S3fpLt2lu3SX7tLnNX3PICV14FfegsJZ0WiO8HmfSSRupi3bed9OVYYwcnOzY54j3ntc9ugAq9Fzdr4mqTENeTWQicxdwCqBzuBzCcS6EvgVO7VbTxiLE4a1w0kmTkqchRe7qwLIELwIq5OA84GrS9hfRxA1UItTCDCOHucGYkwWeJgUr5FVyuaAHz1jLoxKKbMaAidnI6vTET96pt1sJ7gpwWxnAXADysA0z2TNxOIwH9YDYW1gGck1+FGkdUJgnRJzyuynyG6/I6zXrFYjU9wx+ID4kRwTuzmBzyZx50rQ31nwJidljombbWKOEaeBm6uJNGXS/Q337o2EwbFZn3BxccMQhJPNgMez30dStrrLGaLOJnG3WXGz27VTdLu9gYpQmCYDFhmlvzfQQI744PDjgMYZQnF+ZUfcJ1Qz0Sf8YCAsHAWcZY7vOCtJYvGGKm4ANwg5Kn4InJysGUbPzfWO3W42yY2YGYbAEDzTNDPPU5GaKM4FVTQIz1894+/+Z7/CFPfonFiFiKgSBJx4wkrYzntWpyPjKLzz3lu8fH7NxYsta+cIa3j81kO+9e1PuLm4Mbm60uahgA5iUuY4YQwhmZwNvCOG/LKgR/H47aaZ73zwlDA6xlVAiVy+2jLtJzQ7fMBAYkmRKaPZAhHjMJDizLAaCcGzHgNn91cMq4EcM14GhsEzbhwvnl1zc5VYrdc4P7Pb70ogzk7Gk0BLQMINxngRRm9yWDGTnSOnPYiHALv5it/+3V/j+cunfPrsR1n/zX+Jd843rJ0BGlbABmEGhIwHMq6wJBmDkkPxZM5xnGKB2VEcW+AKZQ/N+ZtZ5B7q/UIv+dAFDDr/awsKAH/U/Ul/ajTKArpKRw+soJGIlb+yPQnKwAJm+YGk3uPVO6aKWzsWB/dKhFmFvSxOc+0e0d9enW9L8OfQ+d47rBZgU631jvGo3NdOwR6949D9ZUF1kcWJe+CoL8mrkAQuryeGYWRzYiA8EQsb+vK2WZyxSQFXU+LjT57z5rvnnBRptcaURAHCVnaiDqAkpW5qgNXqTBropNqCE4xxwS3NYXUo5XlqwD8ckpTnH1+zCsKDR4MFvDHmJqvjjHN2mj5tI5989Ip3vvCIsHaFtc+YClIWVDJBLMCoBJIa4GO+znzwnae89eU3OLnn8a4CUYy1YnBV6qt6qUsQpNR3KEFyk7WwYLgFlx3kzMXzPepGHrxzAoM5NasCTEqWL03Ky6c7bnZ73v/SY66ubzg9WzOcOF5865KPvvkBX//5r3L/vVNYFUvIRT7M0wIkudpRcZ46b+NFznlhRlBjgZt28OLDLeuwYn+149f/4a/x6Xc+5K0vvsvP/NJPcnJ/QAaMKauh47K1oXfkErwW0WazKt1J+lpvpX+YfSy2osoyEGlx9lb5rd4rXp3Ijubd9sWQmkNapcjl2PpAi2SHUh3UsjjCtWsDLSQpaixbta8Z20cpVdaFBQhtwKpS4iKh2Q0UYqxxtUNYwMjeX4i9DMBjE2wDOHnnmmN+kTwpzEulj6nafJOVBraiHwMSXV8UknZhiTbuGdAsV4amQh+gVnBKdVJZZ2rQKisN1NOCabr0/sOgaCley98yaEr5Ukv9VcaWFvxRIBt4rBpHrs/JilOT4qpsIbnLj3RjYC4Rkdyx4NQcmklIyUFtTLs5f45BSgolKCykpIUhsth4VlLet3qUgqrMmhsLUtSEzwre4YeAoiS3zMjOOwMGVsBSruxoNAlgG9VNIkxzYbXzlQ3GAELzPHe5lnKwQXDZGagGA2TUUcmYk4w1NUU19rBoQLQQfJtNnXc4B8E5k9WlBsOq5JoxuVUmKF/Y31JKJK0MONb3eqaO4F2b44Yqx5hzkRbOpCT44I3ptEl4ZmIBlXhfOkZZS/iwALb2+1xAfCbhvcszOWfW64EQDJy1SzOCsfkE54nR9j7GYgZJUwtSN1bbmNp4aQxYZY9Z5MM0Q5wT4sUYrrwjaS7rP9fAbsbYW/tQGcLEOBcq+E0bcx3GrJQNrDUMAR+ktJtdn2IyEJtQwF+GXrKxv/R4gWmaePbpS5NiVC3Sya7lzw+OOUf2cSbtBT8MpN1Mjso4jMZQHJXgIafE9VU0BqdygMc5xxSzScM1uaplXbYwRhm70zTPvLy4NKbdOLPb3hhgLEVEXGOxGoaA80t9iwgpZ/b7CSfC5jSw3gz44E1GcVbOz0/JRK4u9+iUjc3MOXROy6BXJkotUVx15fPSjzVVqJdN7ArovOOTD7/NxfPnvHr8GLzgz/9f/Iz86zza/xiixgSYWEa6ntPHAEcG5lkhDRTvRAok19blbY9Q1qV2LEWJHYhFWNYht0et2/xKf5TUxnaWOWU5d6DdeKAL21OXt15q+oeZahC+HjAxIHq3xWrr3mUOku+pnpbNUB1v21x2tOFYrlye/d2eeOuGviDosnQo18WsTHPm9Hy1sMZ0c3CVeXNqc9P1dsKPwnpdpN7k0G706P/jbOgxCqWzYSlrjzZ+ac13V7aGIBKmXSLFyPmDVUXZ3SqyKmhUri53bE5XhLED4lPsryzWCmbTODEFiHB5sWN9tmbYOCrmp4HbS/aXdq52rK0stOeXUoii5VTLtE2kLJw9GMyw2gqsyuuZUcy7zG6aOD8/IcaEd8IQhOkm8uyTlzx445z1aTDmSuGg77Zy6tI+/eeVqbDtc1XJEW4uJ7w40hT59MNPuXx5wcnZCW9/6S3GE3tXv7zSythZLXRZJh79stRJD5zq9w7LM5fvK6MoR89tZeo/lzr3yYIb0yVPFTjUbScO+qr0nym32vmgn2nXZY8f1Bdbl3f1wKPWb5bFbntgb/8HQ0IDCnUHW44uqv37ddKJ7TJpS+WjzJT/61II7faltdL0uKiHhdbF5toj6/uPbYHl88M6LruBzkikAwLWC2/ZUPk99+/r2qp/Z6+K0APNDuz16JDOXbpLd+ku/WlJSSb+n1/4X/BvfPDv8BMXf/OOUeku3aW7dJfu0l36U5C+59naeU+KiZyUm+u9MeqIBcaCE66vJ+Kc7RRncODEgD0FaGSAi4AjE+dIJDMni0SJd2xO1jgf0Dnhi+SDBYmVYRWKZBqg4L0nRmWeE6pCENAIeUrMUySheOcR9ex3ShgV552d3i3yHfv9TE4ZPzjGlS+B1swUIy455vn/z96fPd+yZPd92GdlZlXtvX/Dme48dN9uDA1QtAgRECkSogZoCIUdsq1weJDkB784/GL7P7D8PzgcjnD4xS9W2A+2aT84whQtizZISiRAAARAgOhGD7f7Tufcc85v2kNVZebyw8qsqr3PuWSTBIkm/MuO2+e3964hh5WZK9f6ru9KrGJTUk5A23kcDa035/j+7mAHPm+sOSkmPAayCI231A+qIJkxSmGxSDiBlCLJORrX0IVASuaSDY1nTErIFoGbo107DErUxLCLHA4DitBHc2KsOnOmGFuO0LWeYYikZExXmhxt17DfD+z3PSlbmx9cdvTjSMoQnOd8veJ85dkfRu52vaXKU4dXJXjH7mZPzFi/73pyMoBX01iKgRQdfa50/sXQlDPBeTarDUMcyDnThoZxGElJiSmaowlLN6YlybwujN1avHpxzHjvUTWn8mEYySQ2FyvOL9ZoFm5e3uI9BrzRYpCvzmTNODFzdk4QDyOaHF7MSNyGhpCUtvN0Fy1REx9/8hneObqwZrMJPHh4zoNHj2gbx/XTL/n6157w6efPeflsR+NbHjxZ8ejc8+TNJ/z9P/yMZy9MxsQkGkER9eBMBlWULD27XeTpF8+5eLTixfMr7l4erM4usTpzOO+JY2SzWdG1nr5PbLeDOXdU+fLpc842njffvmBz2dKuO/LQ8fRHLzjbrHn+8iV3Nz2aFN+CSqZVXxg3vDmdxtEYrLKgGnHenHrBNQDkPuGDx3mPppE0CE9/9AOun33B0y+fs73d8z/4b/9bvP/OQ3rNqDMjY6Pm5BmBSCqmTYvGF4GNCpviSBCUtlhHqmG+/h0xkUgLq1fCwCgNEKpVq1qFllaxRflqE/dXl+oOmhzuzJGxFUyxLAmL+h5RAkorMqWA+6Mos1Ht1QdWw2J1E8wgLjk2ii7umNrH3HVL0+Cyz6ozTBf3s7hvjmKeQUvHtTyuwfTuE8Py8rJq8PYK2+sd3bql8VIcPDOblRZjYjXwD4fM3XbHR9/6Or61NCEg+No6obTl2NEgU31mPqilIX4y7qoxVWUt4BZdpJoqTcgCospwUF5e7fjgw8dIY+CkgkUpIBQByUiEL350Q2g9l487XMn1YZHBSyCFAA4Vc0wSlS9+dMWqXfHozTXSFFtvYSgyhqTCODcJYmXi0QmIoZJRNbYNJWL8asphq3z59Jp3PnyD0IArKVdsnQfEIS6zv1W++OyW9957BH2PJuHioqG/6/n27/2QNz98g7c+uCzrUJGSmrapAGwmu/pk2V1aWbF2YwBLHTxXn+5oHaiO/O5v/DYf/+F3uXhwyZ/9S3+Wy3fOkBa8t75QKSwVEzDGnPxeZALemBHdFqgJDAWIK+mLhIkpospN9SFUx4oUSh/nZwfwbJCXRcR0ZcWqYEw9YgeZFhwW2KYCqJgcBFLrVNpTlkLDDjlj6nGVdUMLyGVO11SdNDUdljlQrD6uLBqVzcdNoCmdhkOrHJdUh1om9DyriqejpCAzEF8F5pTUhVpTj8oETJHye2UNq11RjfB1ZtY+SOXHQqxmbDBV1l1duybJR2GSt+r0mLu9gKoKMnHC9cns+Kggp2WpfVhHd+q/Utu6BksBaFX5tnFfrKM1ZavYWCzX+upUyEV+Jzkx4ZpBVn9E+80/jSLl7JCjpapNsbLQ2VzIOZfvXJHXkmazyENeMLWMMVpqsjo5xVKvOedwGHMramxBxnbp5nmDUmEMKaUCJi+7UlYDaFOvLXM5GcDRBxvDrKaD5xyNnagxvVOdFJ2qpunTkkYOY6YxqCyasbMQERcM9ZkzOK1MNm4GphUBNIylzYucLa2c4CZQjoCBURDUGTgql3D7mkYsxsQY07xGIFO6PFeYb1xlplAmcItzjhgjKSUOveKDJzQN/RjJCsFbCnANgvcZGSIxFbY9EULj7RyjxpxVQVDGMuuMQSl7YqyOPi3AMmu7946c09xuJ5DE0lLnbMAUb2tcZdIy+bF/gcKCZTKXkzLoiE+OpvGErkEE+r0eyZ0UhjVhyWRQ5nsugEMHvikpI7Od6Xxn6b/vtjsEofEN5xcd/oEntK2BgzXy5lsPePblFYf9iBPH2VnD+VngwaOH/OiTL7m+sQ4R8cWPqxREK3UfURIxKtu7HU3nGfqB2NtlTePwjen9cUwGzPKWyi6nVM4qQtSR1Sqw2jS4ILjgWDUdt1c7drsDh34gRwqDmAGzaPxi3ZMylww4ljQXUGhhncPWe1+YtwTTkeIwsI0jwxjxKjz4Mxt+7fL/woe3f4kP+l/C5XXRu4UEJHJJQVbWWqBBjgA8Bugx5WY+T+jEXqRl3R0puhpGEOkXzzhaR5d5ovgHQWa+okjVF47PDXMKQ2Y9cpYwEzFmsNI/zjnmH1Clr/gwv0fgVeCWli9lvm0C6DI1ZToP1G+XLCjLRy2Vfjn98asaq4s6SgUb15+WJ5Dl3l/+FWC03vXLw5kc17jOsBSVfj9wdrGaUpNpee/Rw3Xx/JN6Ltux1Burwisc16+CWebHlHmeYHs3sDq39GbK68+XgrLfmj1oc94VEGf9ZV7H6to6g3qU7W0PChflvlrNqX4w6aE2xYrOfAQsKf0+pUe2f2NU7m57NucdwS/02DqeRW7SmLm97jnbdAimE6wvWiRnXjy7YXW55uLx2tJaLyu2FMrlWEw660IeJpCgvby/iwQEccoXnz3l6sVzmrbj7a+9w+qiQ4JO+3GVgSplyyFezomjeizmRx3joxvmS6ZP034zjc/xM/X1N87iWN+zUAtPVcfX3ijz71JaqVoA3XJ8vSyuf6UuMj/SLdp82h9FDI/bpq993NzwxbNVF/Eicnr98dp00sxJRz+6AKY5Mcec6PGYLh9Um17FbzG20yV1HBZtPVkqyvVy9J6j9WP5XJ0/LoFtc6csKzq3qZ7zjj8v2smMGfuj3G/uy325L/fln1kReN79If/Hj/6H/Nuf/y/4c1/+j1mnR4sd+77cl/tyX+7LfbkvP2nlx2dSygZQGodEHBSSWHSvpOlEOAwJESVkT8qJlLOBjUpYu3NCSo7b7cGYlIrVK0WLg+xWnstHF5x1a2LKHIaeYTDDrBnNoWkbYyUSe25/iIwqNM4bK5GCRhhkBDWjej9EnEBoHEMEkpAT9DnSqBCCAZ+aJpCiEpPiEYZoBv2mcUapLR7JyhhHUjSD0vqyZUyxOBUKGwTmzAvBI87ANSmCZilOBynOy2hOFGcGc+eEVQjEkiIi+mTp70o6nRQz/WGgabspPcZhbykcQuNZtR4RpWsbRIQmGFAJEc7OVtztDmz3kdXdgPPK0EckN2y6NbKCMSayJlIKWOqIxHq9oetavnj2Ah0UzR6fHcFnVhtvDutDgmCRhTFlo+5vHUaPpJAMPOABVZMXdY5xiPR9JARP0wa8N4eLajKAmtpB3YlF31ampKQJTdDvM6LGPuRcZnPRoFk47EdUrd9DEFxQQmg4HAZjNigsFRdNx5MnZ4QHnpdXN6RdYn2+YnXecHO7Z7+NjEPi4UN494O3aVc9oYl064bD4GmCIM8SPmfEedoNPP7wnA8+epNPb694udsTB0sfEbyNqW884gP9mEgxTcbPly9u2O63lgYkCe3K8/DJBW2n7PYj29uew36g6zaWRnEcGXOmaxu6oGzWLc63bPeJm90W8p7tYcv19TWKo23XXJy1NK3nxdUtIhFVB+rImYkxQFWJMeLUnEVREt55fONLesPiSM6JnBN9juyfP+Xw4jnPtz2f/+HnrB5f0G5WFo3dmLNuFIhEPJbOpBFYK5ypo4MjY1ijcC7CCjPiDsBQgAXGXSAMUCAUQoewBhpZHDsEKO7+GR7wj1vMKRKpUc32LIvqnkt1MlfWpwyscYs3yz9VS0810im2fpmzvhiOtUIfzHJVuQCWRrrqAJoj1RfGr6kFR6bnI+MlUh3ni/uXVlKWDgRZGA6P61GN1KrGQkSJdtUEaZt5+Pa6vN9No1uf6YqDts/CzRcH2jZw+aSz1AwL8NDS7GbwwWMj5QS6WLRRmd0rxjIkBahkv3q3rDsFkucgKy8+27LZtKwvAxSwkThj0lEpAAuE/fXI9YuBb3zrDfwKcwIWMBJkvC+OenUFhGmp4L78cs/d9YGf+bl3WbVC9nlu29JIubBMS9mTdbJsGihj6lEpDAoZPvnkhidvPuTy0hdmpyofxTGUQfbw+R++4PLBBd3Kc3e95/LNCzLK93//U9yq4Wt/5n3CeWH/KGtJXqS7gmrEnlMVODFGkFpv5yprkOfmeY/H07Xwm7/2m/zg7/0eTbPiz/7rf5YnHz3Er8H5jC+gmCOLratSY+12OkvVFLis9n4VtVSvzhhAxGlJzzQDYY4cSjqDTLwh2SajsA9CzMshsXRXVW/Q8tnmsQGyfKmDgVeWLhEmoJsUQFSuVuU6xgWI48r4T4b/Uu85vYeUMWFaqir7Wy57sVjGJduXi+MqC8V5PsvX7EQp6ZSEwgploAJLS5cnFpjq9MkyA6lqn1TAVGU2y9OENPlxbnZOVuaZuhBbV8xWdwFLwZghFDkSyhx2pd4L430FyutCPienReng+i+59E1ti2FsSt2PnQFV0FWZ2KikgFkkG9POtMZOQmXAYQOMLJkKdGIE0ZKz4Sfd/KaFIRMM5B+8AXFSnaUVkFSo6irTUl0TjAHBQBXDEK2nynyuumPwjlXX0oYGVWVMqaQAy0VOxHTzZAEX4oy1J+XCTuaKwzVZ6uC6X6F5AgBSvaplHTTwngFaXNGt0ArsNR3eeWcAkQLOSzkXpgRnoI4CIppSBhf5CMFAQympsZVqYT9yrsxR04eM/chgHFIEzjuHk9KfYrJZdU9fEBlaUngH53FeSvpJCCUwIzgtYCZF24YxRsZR6fuIYgEjTp3d3zprl2aaZq5f2zY4EUaxOYianuKC0qyNb9PqQoH26wREUi0sPGneH0Ssf6a9KE2exAlgVQGTWlILutInUgBTuYDbcjJYbmjsuU3nUbUUTzW1lzE5mdwM/TithQJ0TeDywRpaYbfbk/pM11la8F0aSDETU0TWgkrHEEsS49ZxGOxvJ0IXCpBIE8m37OIAwdF2LXGMUAJHLL2kpQEfowH9VE0mY7R1ImdKej1Ht2oQZ2PcHxIpDngfJtYq1MB9TShtkkBKyn5/IKUdebS0292qwbvA2abDOc/zF9fkMU5eVwOq6JQyWk0ZKjqVgeLq+mZrfK6KKw6PxoGxP/Ds5ZYfPbvhR4/+Co/DH/Bz/a/wpryHpzNQUQHzeCxQoUFoyufJ0Vuc1k1h16xg0Ek0KHq8zExLalJoQAVrwVcsYuXff5TFtiwXWWY20ll/PX6eqdKF7aw4xhdq7Mndf/RlqfvXLXVRvdeWSd1fnA9sQi/A/Uca+3zjsjVy/LDpx+nZMt+0rM8EOIFjPJnWcZx/V5Sxz6xXzZQm7HXtqyelNCipz5y/1VEzwk6nO3n1/ultupDHk2ucntT16L3zPfUsVvWX/S7ixbHe+FmVZcGqJoWtboS7m57Lhxtca5VxRYGpfSkyS3kN8hgPif125PGTM0JjZ6GqA0364rKiC3qcWS+xD1M7iq6vSdndDrSrltXGLwDDFBZA2xskwe6qpw0NbRcYDgPrsxYRePnsjhgTb773ENfKnCqu6KfLuTmNgRzLcY1/mJm/hH5vNhkfHE8/+4KXXzzDO8d7X3+X88cbXFP6oJ5xK6BtofzL4tl1n1nKwrKPqq5agSGVSfNUEk6/cTID3OpZnqk9izsXz69n02W/zMCb+Z7XrUPzeWI5r5dr0avL4QTUkcVvr1szF2M0naVO2nAK9KpBGMvrpvbVPmYhmuWCkpV3Hotlf5QK1+fXdyzrO1V7uYHUdi3b9Lp2TmO8qNz0p/2yXPKO2kuR08VivDzXT/2sTKAlqf3xmmpNz33durPsw4Vs3pf7cl/uyz+vJbmB/+e7/wl/cPFX+Lc//094b/cLrPKDP+5q3Zf7cl/uy325L/flNeXHBinl0Qy83nm6VgidUev3eTRA0T6XyHOm1GkgxuhQ0sgMQyRlpR8tYrg6AlLO5KR41yJOcI2wXrfICPRCGiNOhBA8PjSkcUBU6LoVGiEVI7JqsqiykprNe4fzZlBwzpFK9KaSzfmGPVPVqPzFCU3rDYBU2B2GIYE6YwzyQgjCarNhP/QMo7LbDaAGDAq+IY6RsY+snGPdNbRNYH84kINY6iwsai8VR4l30HYt49gTdUSSMUh555HgC+uAm4zAMSk6RvAWDRvziHQtmy4gZNKYabtNSQGjtI1FeIs0iDiurg9stwdwI84FJI24pLRdg3fCat1ayq/9QMKxWbdoVs7WHSkOEyvD5tJz+UbHdt8Tk7F5uEbpVp71prFI+FE5ROuf6igNITDGnpQyzoUSTq+QLeocpCIdJiNaCJYCzbmMbzIalRQjqnDAHAfNpiE0ytAnwgh01ne+8fhO8K5hSJE82sE7BMf5o4bHH5wxupEsZ0gHb7/zhO6i5eOPP+fF81uGoWd/OPDpZy+5vrrjzScX9NFzdbXDZXjz8WM27Q39NtGPiWcvR55vf8hhUN595xE3N3eQlYeXlwx9pB/3tJu2OHcycVT6w0DOwrC3um0uPRcP1jjvCx17RPHE6MgpFgtKJnihbUzO+n7kXB2Nb/jy06fEYcS5zKO3HrA5W7NqAz/9U19n6JW//td/izQkcjLZTtEsUF3XWlR/jMXxU9IyeEUase+BEApwQgG/Ztvv+d73f8h/8Tf+Hsm3vPO1j5Cu4aOfesiTRw09Sj9CfwfdCh52mQfOcy7GgmZulSUAxIBKQaqzAFaF7WAEegwAkjHwUGVaWmEp1oKJDV9pNfpHtLik8vw0mZK+Yo08+bUkg8EcY0yWwleN9X90pbrrHMYIsbR014jgGo1be3smvD82sKf51lLviQ9kchZPxsVynyvvyyyhTq/2WjWLT5TkzIZecyzp1JYMjKKMo6Wr2Vy0Rylulr3oyvvSoGxf7Hnn3UesNg6kJgmb09Aps3NfipF6/mWu1+QAmO6d+7CCKqS0vT6hplFwAoe7xO564Gs//YimrQ/Q6V+VbMyDB+GTj6959MYZm4fe5h2Kd0oso+qkzEoRs0ZmYbxVPv/4mvc/fMLqUlCvOJfwEkAEV9gqJgFYGPFrNPU0XdTkwRfQRYPj5dMd3jsevNnhW6wXajSpUyQZE8OXn21xvuHJG2fcXd9y8WBF18Inf/CCz374gv/aX/h5zja+OL/V9mYKMKU4zbWAZCrLlOSl8VZwXkFHJAdurhKHQ+LsvOX3f/3v8+2/83s4lF/6i7/E13/2fZq1pcr0vo54aWMuznrnCmFStdYuGYxmgMwsiSboLkhhAKmwxAIeKXMDKY718j3YPl+dqspsLKfKsc6sPkm1pLidmbmqo8B5Zw7LNIO4tPQVFCP/5CVhAkadOh7mZlb2ojoedkFeTABhBm4pmG5UwRdlAkrJxaOa5+9gAloIOqUT0DqnvM11UZkBgaUeFLBPTUEiuQDupACaFp6VysbiZW6TE5lSEWZlAgRJAS7V9VB8ZXKxsfPFIZArgGZBT1DBYtWIXx1RWSmgm2OnwNIR5b2BSygyNTseMNbBMk4ydQ4TAO44fYpbOBcWDqO6n+jiHfzkFl1QAVTgnitgvhgzMSZqJkFLVWWupuzEGG0wsGDWhGRj19G0BAza3hJTxvtsZwenJPIEXJMSQFEdo8F5k6VUQI05VmT9BMJzhQkJTIc3kFwBW4gBicxRmhbzXKY5VgGZyRlYSZyw6lrGGBliNhYZ5+magGJnKZIioqiHpmlARlyZjHWP1eLgEynzRixtnP02O6JF3JQSR8ShGokplTOaFl29gEuytSt4P8mkMZ4qTeMQsXTDKSaiczjnDUyaFaeu9EcwBkBJqOSJia1pA+kwTnOxWTm6lefQ57JO2n7lnNC2AVUlJQOaeYelecuJQpFWdBCZ5oCosXTNykvVFBTnDQxlbTE20lypPdESZOERMVCZbwQfwsSIZ2DGwqxURiAER7vxaGtp2YIPnJ01PHx8gTSO519ecXu7RaMy9iNXL+/svHPWkkUYDxFNynqzommFPCpjVA77xGHYGRPKJhCj7T1nm5Wdf/oDWTOdD7iSEnq3s1SJBoizlOhNYewlC+NYFxkhJWPGciV1pqW3M6CcaqYJDbthVxD4SmiNbco7OH/QWfrFa4Voae4qSMnOWN5As2VtnFjmnO2VqYLNnKey0SiONA68uLqiffoC37Ycoudl9x1u3viCx80Tzg/f4OHNz9Jdv8lmvebBCjoRqmpls7MCA2dds0qAwwBIpuPa+NW9uersCQMGBYwF9ej48FUHgB+rSGFy0uNURJN0MuuGIvUEdqSXn+4zVev/p3OeeF0F54+v/CBH1T95ygnc65Wz0FLrtgvqPrm876iVi/e9ts6v3DPLRVLY98aMNJ1zpgfMeidqOsZwiHStp13547OHFpiI1HPE4lwkr9ZHyvOrXNZXnrbztD313xyV7e2BiwcbfGUQqkDMpaSocHu9p101rM78pFSL1NPfEi42d1IelbuXBzZnHWHljGFMFF90uaqTTR1Qx3E+0lg7j8ZGEbUz6eFgAVqbR/M5btJxBUvTqrDfjYxJuXzQMBxGW3eCsL3uuX5+x5vvP2Hdugk0XsdQC3qlBuwo8zgsqmztF4AE2TEclKHPtK3jxRcv+fLTZ6Dwzgfv8uiNB7hQmS1PdOrXFFmgVpZ9vPx7Gu/yzKoTTeM97dvLG3Vq6JyCTI+vWbTz6IvFu48qVMZpycizvK/eWvXepUxPOuzJO8pR6Qjksrymfn51xi/XhIX8TOAou7IClJZ1qf0hi4ed9nn9/WjNqO866b/TG+t3/zBgz/I9U3dMNKlzyYtAHFk8dJKCGmxQ+/2ojnWlWdyjBTS5GMjF5UfsW8t6V0DWV4GW6oX/ZPvefbkv9+W+/DEXUb538f/lf3/23+Rx/01+5ubf4U9f/Qe8t/8Fgq7+qejQ9+W+3Jf7cl/uy335Ry8/Nkhp6MfJUBxzxAVP1wZShN1+4HAYiDHjnLEnaVZSMmNECr5EOgkuZkITCEnJKeK8pYYT5xiHxHbf064aumDR02MeyGqRxq5tOIyRcUw451g1DvUJWcGqbUnRId4AUPvdQNaIF08bLJ1BKunlLBVDxjnPat3RdoFxGBl2OwO2BIv0HMdITongG3a7HtYtrvO0rdB4x3Y80O8j5+szurajHwcOY6T1gRQzh8PA2dmK9XpFjBFRA+Lk6iAN3lJ+kfCtR1NxksRK628G46hpAtaIgxhHPA1OPEqmCS05wzCUVA464huhhjJ5p9Y/aWDTGShr2Cfa1uMF+jjQx5Gma/Eu0HXm3UtYhHR2SrdpkX2PpV4Q2jOre39I9INCVnzb4AL41uHUMww9mYxvBSGw342kfW8OgWwpAVw5+KbR4CbOObxz5NEigVWUpJkQLBIYsdjFHEeLaiaR6UmaCN7jGlidB5rQcTgMUzqOu+3eotsbJXg4v2i5fHPFQXp2L/f43PLh++/wL/2Ff4E//PQTNi/vuLq+QRDuXu44bPdcPFihrudw8OxvDsTdCA+V1Crh0uOGwNgf8BqAERrlwZMNGh1vv3vJgwcP+eKLF/zwR5+ABj782lus1x2//Vvfs/SJObG5bDm7XHHYj8ShR9URIyAOzWYwXLUt0gZ8MOdcHxPt2hPzgVbOkRzZrFcMY+Rud+AQI+uu4Q+/9z2atuPiwZphiOzTgABN43HOHE85KykD6orxIk+G85RKeKNzE2X3vj8gQ+TzZ5/w6Iff4eFbb/DZJ45Hb3+Tw6hcj5lnL7d8/J2n7L50/Oyffoe3vrlmA6wwNoRFEqs5tYoWo6ZYlHR1B9VUB72WaGSlsDRZ+rcEtOVZbrnALa1V/whFMYDSyBG2YypSwBpmO6zOgpm/qaaWeCXBwT9mff5hpZpFFUpKjOWrdHIGLQ2ox3Wb3R2vmlhn4+cUTVsMtvbBvpwBSsY6tTS9zkCg0zpzlOpr7r8M4hHN7HYDuYkWzTpdZ8a8yfGKkFQ43A3sdjs+/Kn3cJ6SbvHVvlLMEZWZYVv56BqZHA4Vr1ANqRlLIVStkTVCf9m2FJVPP73i4o0N7aUDrwY81ZIirqJVElw/PxBj5p0PzwlNIqtFGWcyUtY9EXBSnMGSyb3wo++95PJyzYO3OnIjiCRLaVTaJVrYZlxh5EmUtI4FCCGzE7tWRzEQ7fY2cf3lnnc+eoBvEyplL58iiC0afHs98vzLW77+jbe52+7wrae7aLh5fuA7v/dDvv6tD3n89obGa3FMzF4DEabI9FyfS6amh9FsKZtsbVBcdvR3idsXPZtNx/d+/w/53b/9m4xD5l/85T/Lz/yZb7LaONTrZFTWghibGMQKaKDKrTPFYKLWMVBIZeooYKM6dbSkFCqVrs7r6lQwYElhbKE4NKrBXAwEUVMnTUb8GpldjNkzcBMDXujSgC+lLvZlTd9Wi6Ko00lmDMAj0/Prc6zfZWJJmmR7msd2UQWQauX+lzLvpKZ+mKO/XWWsqmv4kedjjviWOldy0YWY+1bUFSYpN+0OmQoEcdMzKH1r625h7tC6Apf3qU7PkAm0UdpVaN4qIc7sFNFpTjsxYEwFIU0DWd+tasCqIrvLcTg1+k8pQopDsTrtUhkREduzcgF/ia+Qy2lgEdFJ3iqT1+LnSVZe9Tb9ZBULYmBag1xJm+xKQIOlTyvAv7IvaFHm1E0DYOucB81p9oaVOYhmoiRjy0lKTIkYY5FvoRFPVkvzPIPaFOdLWrYccE7RxlhHY8poSgRX003qEYBMxIAr3jtUMmkYSzXLfE12PV6IY0QINOIY02hsejka86kXRpJpR9lAQlkNvCUIwQey2BpSmaFwUlJ/KlJY3Kr81zld61nBSwaec2VNcQYezXlOAZbt2kQyzsICfLLUlI4ska6kw84pF4Chzd04RrwvKffEwE1JF6ligpuYr5y38RrHxDhYymHUwERSAEGqMEabyZWhJ0YlF+B8BVTVNpquqiVlnSOXvleBWIBO5iT0pstKnBhuxRlAH+pn23NjTFNavBhLEI4D74SmFdqunk2ArLRnDRePL/nk86cMYzLgo1pwCZpZn7W4oMSIsYFFUO1RZ2tqaDxoRHC4ArBruoacYHXWstlsuL7ecnV1RUqRy4uO9WbF/kc9ORpLXds1+MYbu2yqgCAPpDJdrD0hBGM30kzMSmiFYRiIMaEp0bQNKTuGkrqvCYEXL64JIdC2LTEqMSebe2LPsfm02PvKZmxgzLLiV4adsrbmOIIk+n7L82efcXZ5QYwjK4U+d3wRP+Hbu29z9fIv8/Dw0/yK+495tHrb0ilTHfZFgyznx7osUOvA8Wed/mdlqf+Z/M/7lUf4JylVL8/KkVNcF054XVy7XP8r4DZNdfmnXybtX4u+W9W2V/aXuTFu0ZfHP7966JGjf1+voS/LMdtrkSo5verV+lVgaQWNC0CCpMlsJeV1UzUX552sQorKfttzdtkVFtB67dEgUtXIpcydHq+OWvmVIIVXu6DqJ9ttT7NuaDZukpuqj9v9VoHhkBj6yOM3zg3cXxtY9Zaje+z/c4Lb6x7nPGcPWvBz3y3rJsIRGP01Q7ts3gQYiqOlqbu4WBHCQr9dNFVEGPvE9vbAgwfnBqL1QlgF+iHx/Nk1l29csn5gDLkTi1J9T51LC3VsktlpbGT6TdRbsNh+pAkN119e8fRHn5Jj4o0P3uHJu08IraB13KteJ4vhmUBL89l/0l0KAqR242wvqJ1f6rugBppA60vxKkL1VSvQ8bXl80y3NIPL6iH1NdNNjj8uVffpzLCU7aoS1+uX/b389+ihr7vn5Jn1X6FOq2Xjln/OC6m177ivp1LOVct+X9bttJ6TnLOY4nL6w3zlFPJVZapub3UcFnWZM7TK0fPmx+kkn8v5NvVR1eFO1pXXluX6ISfVV47n5+IZda9BFm35J9v67st9uS/35SeijG7PF+vf5YvV7/I33vpf87Xtv8J/5+P/LW/0P/PHXbX7cl/uy325L/flvvCPAFLa7/coWoy9QvB+coCnDDm7YiiGnBIx6mQMn5x3GPtSypE0YlHrRuZixoaYSW1gPwzc9lvGIZHGXFIwZIZ+awxDCk4yhEDbeuIYqSnCfHA8WK9o28DVzY79YURDQLyQsiXgMeO8R7yxwwxjJKdMjtCtmglcJbgpPVvfDzhnKRDGbU+zami8MDjldnvHdrenbT2rrpnSJ4xj5u6uZ7Vu8a6haT1D3xuYCLD0A5BGc24IUpAXlmrLCTinxeFsQKWzs44SYlwiVzMuZCQYrb8kmZ1hwDhYOjXNwrppCZdCLKxWkoXQOrIKcUyM+54QcokoLw4drySBQx6JLpMdNJ1jHDO7Z5HDPtOuGkvLR0A1c3d7II7KsDeHBxnUZWLKpLEciHOeZMM5T4xDMcqYE8J7hWRMJWPKxKTE1NM2ntV6ZYbz4FmfdbiGEsWthMaxumjNeec9/WEgSGAcMuMh4n1DEzwe5SJ0nJ9d8On+JdubHV88f86v/ebv8Yc/+CG7652lXyHjW8f5Zcejx2sUx24bGdKIbzv6JPR3iVFHHp5f0AUFMZajmDIXlx3DQVmdn7MfE9vDwGq9Yns3cHV1S2iCsQbkTGig6zzDmLi77nEJ3nzzEevzDZ998ZQxWdR3TNC2AcRz6C0aXRrh6RcvyOMLUkqcPQg0nSemAecsheDV1Z6uS5ZywgltEwCLgEeLyVsyIpmUMiLBnOmYg01ULYo8FfYXVUJx7PWHG/7eb/46j99+m4s33ub9ceCDn/qX+c7vf853f++7PP/kwPvvfYsHrSMwA2jM/OSODCmJkn5Hj21BghmAy/Q6svNkZAIS9YBXaIvRLdhritHr9YTqp2VpKBtUi3G+OJE5Bv9Uw1FmsoURSsuG8tkrrKux7SRcbWk4Ov3utPy4dqLKLmVJRHRyrkyAhEXHVjvmkQF6YcWc7ODFgXLEdF7RQeXPtKi5lHutz2YjXnVavWLvYzZGLl01ArQqxLuRi4erKY2LcWllVEIZA0NgpAT7m55uE7h41Ex9tjSCVldFbYtHJqaXKiX1r5mRqsrsXK8J/LF4/uxIgdurnhQzj99d47yaA0csZZVTSKJkdaRD4tMfPOODr71pad5EivPUFeemsSKILYvU1AlfPtszDMo3f+4hYV2ZRLy1UYw5oaYGUJnbUY3tU5ot1ZLCCHI0mN0wwBdf7Hn41gWbc3Mqi7McVsZyoqCOYZf59HvPefvdx6jLZMk8fHLOoc/8/m9/zOMP3uD9n38DtzG2huqfdEAs4KGpDx0lDZhYKoxUDbaKSEaSY9gqz7+45Xx1xmff/ozf+dVfY7+95Vu/8Av86T/3p+keBkM2ihaghyJ5ZjMRKYw8ZbxdTROrTCwtNqwLKy5MaYJAppQZYACrmI0hsS5UglhbdelOK7LmS18K6DJNWi5dodYPBjooMlhA3tn82xPwwQzh9m5d/J2czeEJ9EmVgXnNqq+dHjVNyiok9tFV63R5BzA7VKr817W6/OGc6RVaQDxLRiDF+lxTRp2BHHwB3DhX4YQGOLX0cEyVrOM1sZowMyVNc7uMLSUVU03/U5mwLF2pyYeNlU5ABnNwmDzkhWzW0O3jfqqMKrZqeQqYqo5PlTW0iNLcV64473ORn6wFLFb3CDc7skWP311l0/qgeDz0eD8sW/VPbElFlzEAiiDicWpAaAPy172gpD5MMwB42b+5rPkqlkp5AkVkQCz91TiO5T1qABgcKSXicEDEQPGWbs9Y0nLMpMQEAGtCwIljvx8s/WUZDJNnV+TZ0oDllBmHsQD6oG2NVdRku6S2wQBTgOlYGCClawLkRBwTKSlNcHRtmNaTnJWh6PPO2wJS92qtaSen9ldnqQHsNBuAqMrRtP63nmm3LR5MkYQLBWyVnaUslRJ0kopOD7ShsXNgAZVNMN8CTBpjwhUwlaUpVLJmsihjsn+zGOgpxkyKkBOERkr/W52GIdrzs627SXJZWydM6bSfKIXNp0wIS+03s21UZ2LKxhjifaJtgwF3VGks19mkoziB9Xpl62oqZy4ENDMOthcKDi+edVhxdnHOc67Zbfdc395x+wd7+mEgxrEEUQguWGrxpgnEUS3tsyiuDahz5DSSNdN0gaZpsDAW6wtfmN+GUbn+/CVxHK3OZO62B/ohTqxjdSEYhpE4JDyOs7OOdtVaemvqmJkw1HOIrfuOXmNJn+dQl0pQiBK8oDkz9DZPhjGSszEX56qnF5Ypm3fZ5rgJvNkJqHIBkvM0Lt65ogNEbq5ecNjt6M62PHnbEYcNV1dXXD97QR4Dm7c+4+N3/zLvHv67nKXH9t4TDVmqc/W1HtblAaNcP/8yM3pR2ZeKLi/zNSe3zz9MHuXTp57ovlUXnrfcaY+sX+jiuozp9K60dXrF9M65zsflde1/Xb2ZJ9Ti6+m/uv9PfXB6ltI5zROvr8vcLXNHzrv38VAt767PXL6v7glVW7dnvWZAl5/rWjHY3PeF0dOOMXMywKVmn6OiObO+aCe2WLtIpz4xXem0aTIDkBZ1mXQyXZ60Zr1s7sNjGat2jMtHxpZdzyZ13k27ZIK76x1n5y2hrc+xs0ftqwlWs0BhDH2i7xOPnmxw4bgdWvYaV4VyUa8ZBKYLIGzdp+tvcHc30K4ampXt1Ybit7VdxJ6dRuX26sBms0aCkA6JzcZsOs+/uKbpOh68eYZvFsyJtQ8XetBpOQWNS1kc0gj724EmBLYvtzz7wWcMhwOP33qbdz94m2blzTwii3l6PKUX41uARTr30QRSPhnPZRWXjEkiVfeQuc5VL6yvXTxgGr36Dl3UT45/f21/nLZhKcPLJXJZF12AOZcCWn+X48/H0nlc12XHTFXR5W3zmW2pv0xytWiLyDLQbdE/dR1d9kudNzK95qi/X7uMLp5tzzsZk9P3Le9ZdEltS71guYbMwEX7LpuCewx8WjxrWaepBk6P1urT7W963/IaXTB31b5Y1PrH2EHuy325L/fln58ikIl8/+xX+U8/+o/4j77/n/Kk/+lXtNr7cl/uy325L/flvvyzLT82SEkxA3PM2SJYsxKjZ4yJw64voB7BO0eM1VDqCmuCmw51OWU0JyQ4QhdoGs+YzNHgvCOmyHa7NYf3CIIn+JYUe4a+x4tj1bY8fHjJah3Yj1sO/YBkSwHnvCcVw3MbPBq1RBmD98EM3c4o8KURxiEx7COaLCWEE29pSMSAL03X0A8HQBkOA00Qzi5bnIN115JHx+1tT9e1rNeBtjWzb/ANaYwc+p6UM23XEoKBozIjMWa8etR7pClG/OzQZH1EBt8a6CeOFh/qvTFOaTbHjV9lRBRhJJw1rDYdLgfGQ4YkDOPI/tDThDVePJt1R9s2DMNA4xqGfiAOkaYL+PWK7XbHYehpvAfN+MYxaiSRyV5xraApMoyZnALDPpmzx5uRab8bEK/0h54cwakHn9nlHtd46/9kcqLOIpbjaIZxV5zD4zgyR/iJeRxVQBw5FwOETzx8fMFhvyvMUoVJoYExZVYbz6rznJ+vCcGASl+kxM2uNzkelfbijDfefp/3Pnibq+G32fU9L2/u+Pw3XuIbQeOB88tz3n7vgvWmJY+Co+H58zvUOdZna4Yhc0g95JEGpcHx6OE5MUZ22ys67zgc7ri9jdz+zo7rFweaznF+4Wm6wPXtnufPbozhy5njdL8bGHMiRSX4gEqmaTPBKckrOcLF2QYkc3W9JSZzYIfgDcg1jvjQcnN7YNUJq9bRSCaOI3d7AekYY6I/HGibNUMfSTVqG4vKz5rNWV8i2I2kINK2jTmcy3iZQUULo5OS+htefNoTEOSdt/n7v/0bfP97P+DFd3/I40cf8cEHKz54JyBOOKitKSsRwsKwKMzOVVkYeqrNb0psILNBFygRlDUtGzMwA8Mr1EjrErxvzpnJmrSwsC2sSVlhRIkyg2wqEGm6Y2nEozrK5tQRgjCiHDADdoNO6cYmQ2+1kE3FQCKVhcmVdrrli15Zn1/9V6Z2C7E8d/mI2lIb+WrsLWNejX8snJ3UPtfpObYvlPuoALJXD3i1q+co9cmtcGwcq4bz8t6AkhTGpNzdHnj/m08Kk0Ot/+yWcipEhSFmdtc73nzrnKY7kZOpb16tZY20dbrso9Or9OjbpVNsMsNWh1zMPPvsJW+/9Zh1V/aUiR1m6m1EPU8/vePy8oxHb64srcBipCorxiwyxo4UbzJffvKSd7/2Bt2FlL22TAQ3LZsmQGnRBzLLUjYv4QIoU0BNyfHi6R1I5tEbDaEpdQglNasITjIxCZ//8JqLBxdsHrRcP7/j0aMNHuX7v/0jxn7gT/3SN1mtHU0oo780yGeY2NpKO8VZNP4SAKMCLkPaKc8+u2Pdrnn+8VN+91d/nZtnL/nwX/gZfuEv/QIXjxujUvM1JWFJxVfyeGndW6pR23zTlrqpWPQN6FCc21BSp5pVewJcywx3zOgMZpmaIZNxvQLKwEDeUoAwxw6V2VpcU6M6T3FOygRmWoiCzTdHAV7YM1wBzDgnBmbDZKCCBScg3pSapCT+cDJ5uqTI73StGpBgyTY2zYRSJy3p2Zbp8aozzxVAwewJmCbP5HAwZ11dcaw/a5qdyZDuKyuH4ounOJW0d1pAdtY086DMICYtbbDnORHwCzaLsrnUfleUIDKnAKqAqNrOIj+5eDVmBpvKrFPXEpmcQG4CkYEPMsv0Yr2rMlTTI9X6AMWxb9/N0fnHzBIVQFvZpX6iDW2LqmnOjKOSYmG+SstETdb2yn5Eaf/UNrX9Q139uaY5s37IqsaABORo37sSEGBz3N61agOh9RyGnmHMiCZLxxy8gaaS6drTOijgCQV8JLhgG0cqbD+lqlNKyFBSu/kmMAyDsdaUNHahCaZziRQgk9K2gaZ1oAkjG5tBHzGVfd15fAUJZTszqAgSikM5U8BKzLKlNmeUwmhX1kjNilukDpJGkQa8OuKQbE0QyJrIEbwYMMcVZjNxxhJrYChsnGpaNNT0ROfK+zKNM2Y87S3dnKOyHWViNFBLLutRTjYfqsjEmCBLAbLOepyIs/5XLQAYa1eSAi2unrryrxbwY9ZM21nqOiWTk+kS4oSomUM/4r3QNp6wbogxEgfHWGQyZwPDhdUa9UWuvGc4RHI/EBoDbbVtYLXZ4IMjD5ngWraxp2nsPLDf94Ul2IbLiWOzWVubxzvEOQ6Hnr5PbG/35GhrYmjEGKyysr3dsZg6jJXBCcBDHyMSZWKSIou9QzK3tztSIYZsGo/DoS5PLMcaMm3jTZ3IRQ4bj3OJFCPetyXFnpa0iHWfL4EzWgBzCOSMiix0faHaGBwOLwpE0rhHYsNw94IffPuG7XZHvNtzdvGEzRqGsy/4/e7/wS++/A8J6ugwdrp5p5pXwapRLZ2vs047r+sz+Z9O4pLVzhYZxel8npi9w8d64Gmpu1sSA5mXbXXax+frmPZ3mElPlhqsArHugzIHbSx/P75j1tNrEMWkQ9fzixzX+/Q8UVUMr/MZ6LVl8bxly06PLa/ro9P3L3t10snltD/+AW+RecyVea902FjuDgNt10xpmu2J7rj/VIiqDIfIauUJzUldF698HSj4lXae9PNS7uqzrK5lXV7UH4X9tme16Szd5kJHlulOUywOu4SqsDlvp7TKR/Ng+dKiK+RBuX1xx/n5hrCSiaHIXmPXCnIMeFgMkky6nRbdTo76Z78dySlxcdnMKXsXlTIiU2V7N+CDo9sE+t3AqmtwIlw/u2PY9bzz9TcJraXmrd1Wddtlny7lwtQ3mXTVSb5HZXc74kJgf7Pj6cefst9uuXzjEe984x3aM29nhIWuWrt9oZKU88EsORObsBzXpXb7UlaWwSNQzzsy/b0E1tRyBLg6AZfoceOP7mFR7wmUs3zuq7cd/XAM0LGvl2Cloj680m6KflpZvqa1ablILetZvpvOUizWZTlZN+vB3XLYTkBBLSC05TjU+tXvLFDF7p+IWKlr++Lxi/raXJz16/rcPMfaHYl2/VzX/On7ekZczPtaltnhqtwePWhZNzl+7/JhrwDTaiNO5NNumdtztKO9Zozuy325L/flT0wR+Gz9W/zlD/+n/I/+8P9G0NUfd43uy325L/flvtyX/78uPzZISZxDFHxQUjYgytib4b3xDlpjBEoxo1HLgXJONeOdn4wqMZshOeWEpOLIybNhWrNFZI79SI4DKj3BGXvSat2CJvb7W3Artrue7Xa0iNfW065axjiy3x5AlLOLFUNv1PzeOaJGixDzkKXQ6gcPhXHh0B9oGs9q1RKC5/LhBc9eDATX0u8tpV0cM2NKOA2kBE1wtJ2y2njGMVpqvDzixRFK1HGMA/0h4ZuAeE9lTcpA9kygD1XFBV8tifRDoh9HVM2w7EPGezGgl3jUCTEO+OwZ+gMue3RQfHYGaArCXb9l1bRwsPQTNe2AD8FSG2hm7A8lnZyjaRobGxHapqPPIyEr4JFkkcFDjMZq03lyTsQhFSec0LgGLcgT5x1JM3GIJRrK0ldIiW5WUTQnQgikmAqffDX8Mxu2iwFCtWG3S+R0QLyCLymMcmLs1eo2ZrxXzs5aLi9W4JW2a8FHxBko7vpmz3d/8Dk/+PRT+n6PjMJ+f8ABFxfnbPeRbhVou5as5qh6+823aNsVYR242275/JMvyVFpu4YYlTE5sjZ8+LUPGNMPud3ecfPilt3NQIw7VD1DL1zFns3ZhvXKsxsjrffl/J/pD7E4CgQaoU9KxrHetAw3d4h4Hj0+5+yi5e73bxiiIhpQEl3n2KxXIIHbu4GhTwaki4ImAfU0TYvqLamwZMWSBkOcp2kafHCE1qLRc9LCZGZzN+VEI8FYPiwJFeSMS7HYOjNC5PrFj/jdX79i+NsQU4ZhRBRudz/P9d0TwsPAc82Mh8R7m4ZmMmhXB+SJgUeP43F9dRQUJ4fZsbQwHAkRPWFWUhqgoz5bJ1sq6ORwUIzNAkwMI0qPEpGSfEUKQGk28piRTsjFguaZnRpWVwChx1iGWqCjpqSbW1VBQDMDktq/mvEiNBiYq/aNMIOulsxOFdxUv3OL55YXTVY6Xby74FiYumWq+6K/OLZTLb+fWeVfjXSu/VSNosfp1Kr/dDaLGctQZZGxdaIfEqqZrvVMxCq6HE1zA2WE/SGy3R344Kcel2+Ok3QsDcVTJPui/tUYf1Sk9km1CMrU7slIjs0Li552XD2/o+kazh61FtmIkieJKP2gyu7lgZfPt3z0c28RWmesOcV6W+dDruAPtTUzD8on33/Ow8dnPHyrQ8Jc0dkwWdISwZGXRxzmTKawuFDSwcUStemU26vI9dWeDz96RLMuTj8BIdm1OaDZ8fLzHeMw8tZHD9jdHrg4X9NtGj75/nOefvqcn/vFn+bsUcD70reusH4UcIel0jHrrjlT8+xQQEhamb4s4vnp5zva0HH97Et+62/+Gk+/+CHvfuMDfulX/hwP3tsgjaVLmozSFSg0d+nsGHVMqcnmlGnmYHGYvuMqKUVJi+aCo+ABbM1zs1wf+xJMGmrKOpECafJ1XJkALYgx94iXkmKJI0fqMnJfXGXSYprHUgCuS2ahXNa26lyy50hZmybvxuQMswcxfV+jku2ds2fCUloJkmb8cL3VTZ9lcpwYc4rMqFFhAhXVKPjyRru+shmdeDumdFWuNJAKJLfPUkBA095R20phmVqAi+au04mxxzmQPAOPHBRwzKuGf+ZqzcJUWDfcAoAHHPVjHb/JQeLtnVL2sgramoBHOjsMnK9p+cozXXVwaMUWTnthXUllGW7/E1aqLKIYU2pM5BLUELyz/SwfMwpUeTbCIJnmbMrmEkwF5FKbnBWkgiLsdmN51RHnhOAttXNWZd8f8NETUypAESG4IgeSSJpwQSzt15im/X2mIrC5i1hqLhs/Y4aylGHegiOCJ2c7b8TRUpXFaJw2qJBiLsEIuThTTReOY8SV84QrIMphSIgr7DVGN2ZgipgLKATKhKudToqZhOnWLgvOZUKwgIEKVE4pknoPY0LU4XUGhqlzpBTBeTSmqrUBtn5NYJNkIC9xxoyay3pu9UoFIGZnsjLQeO/wvrHzyJhsZxcxEFeuwCo3MVNVBhW/lI9Q9CJn45GzFBYuncZLyzlUMADUkJUYe4K380poDOAUowVh5GTzNo6Jrgs2nt4h3lqVVdkfBj7/7Et8Y3IlWQ244xxd19KXVNzjkMjljLNet2wchNaxvduXdaAEsmQYRmNHeuutN0gKd7db8igwGiswRReJQ6Zp3QwgGm0TyVrmRAEe1cVRnNCtWuJuZ7qrRtbrjt3e2KVqurYQHCG0U1BSSpnoFJ3oj409eRhGKGMbmd8n3tbV0BSW5VxTR9ehqAAzA79V/V+zkjQh2Tbgu7srdrtbKPSDTpT93vHi5XPalUce/4CP5ducXX2DN887gl/o1ceb8rQ+TusQi/WSWaee9GqpgKCy3zGDdOw6nR9f9tWqn9Y1CNQIkimp3sr5oBxvS5/IXL95uZrm1gT6KZWvwRgeM+IEWdZl1kAypi8kqq6qk74/BUvUtsus/071W/yXyj5zzLx6DIpa6tGTnrHo+6PhKL/rUtlZXHP8WV4Zu3rd0XeyrIe8ct10bbZgsLbxk75w/NzCvKeKJmF/6Lk4X5mecVLH5f3L7/XoAmvBDMWu9Z3edtRPS2WjtmXoIzEmzi9XiKv65RywY80S8pi5u9lx8fgMH2QBdJvla9aBytsy3N4cCKuW9UUzsdW+0qip3kU+yx5T4VTWxiKByvT9OAqHQ7IAv2bZJ3YqQj05C/02MuxHLh+fEcdE0wb8yrG96bm+vuONdx7TbUJJJXksfUf6HeXIU7+svalLGRC2uxFxnmG354sffsrt3RXnD895/5vvsy6p/SbF6mhQqw4/9eq8kExnpeW186SW8vusOSyCBer4VB3/VOgXwjO9/3UyuZhodRrmxW+VYc4CM3SqvmoF7py2cT6XHD1/8bfw1b/NWYn1uKL1o8xNq+d566Pab3rUzdMLF/r1MriC2q8n7ZhXyCXTkBzX/eSe6d/le5cVZu6jaW9j0Y+nslPrvRzX2mZX23T6y8l7pocs+0OOu3chA0dAqGmdt/kznV8X102yt3zna9aB+3Jf7st9+RNRBL539qt85+I/5+du/ut/3LW5L3/CiqaIBW/9s0jUfV/uy325L//8lx8bpNQ2HvAM0TH0AykZTKEJjiY05DjgGkfTiDEsjZZoKDTejO4C63ZNzMp+HEhjZOgzMcZiDC1JOVQYDhHvPKumJUlkPxzAe9abDu89wxg5xEi6PXDoIzEWs0jKRHaszgKbhy2OQBoh5cTQm5kup0RyisuBoc84F2g7wbnAMI6oZsQFchbGMfPi+Qu6xrO5POf2bkuOsC8MQikOpJjZbBrWq4bd3ZaswcBW0YzEYeXo2gZk5G57Z54p74sxH9KYGIeRtrA4iQ/mhNZcqLmNqSZGA6s4Uc4etMSkbHeWlq4fInf9HXhvlP5dR3AW3ZuDOfZC6xiHSByTsUWpENqAD4EYI0imcQaW6fu+pM8wL9owRg7jyHDocQLn5x1DSaP26MkDUo5s7w5s7/riFAwWwSvQNC3jONIfRijpX2I0XhcfhG7lCE1D0zT0/ch4UA77WByQMkVV26HZM/SWL24chPW6wbtMtwpkYLc9EMcE0UPr6VFuNaIOtrveot3NDc9+2POjj39It/ZszhqceJSIDw1jVDQ3XL3YE9yK88s13bljnw/s45Z2DNxcXZtRRCNeOqQRDuOOH3xyS7tpWZ93fPnyBS47gmsY1BxSQR2Nenx0PHl8xpM3LjjcDDTieXl7x8ur3hw8LiNO8W1iP+w5uzxjdzhwOGQ+/uQzHj48w4eAdwNNY5aNtmtZrVpub/Y03tPHxJcv9njxBLF5OA6Rw+FAaCztw6Hvy5goOTvEw3rdoarsd72ld8KcNnP6G0u/ZxHSgThmfIiIZmKK9GPPzdVLmtDivMe3nrvbT/mv/tp/zuFmz7/xb/8iP/r8OVdf7jn/hQ95eOEIcmxgr2U2WpkRvv5uqwsT6KcBIsIWZSz3KjWtnAF+ImZv9AuDt6ixZlS1sRr/s0KPlOhpq0MFpExmYy0pK5mWLqrZVasxv0bbAyOV0agCo2ZD84ilN6op2gaUhJCKczAwg2rAhqEyRCkF1KQ6pYjKGLhqpIKPdAJWVEfFbDs7NbAvogSrsbUY+KrzptrezOExt/F1diy7b7Z4uakPK8jsKEHDwqAmjGQcmeE28uji3Byq85VH7wBBR8g3idW6pTsLU8S4taUY5kr0Yu0DKfXR+lt93mQU1QKIWrapOHsmI+6xBfLQj7y86nn3/UeENk+9U/tMa29G5ctPrnnzrQesL4OlUEMKy8rM7ELte3EQ4eXTLaPCex88wDXF0Hpk9GRuY5HLGimqgIoacEaLyyoX47nLDHvh2Rd7nrx1QXeuBgaVwvBT2S0Utl9GXnx2x7vfeMKQIuo8qyctVy8O/N5v/4Cf/vkPefODC1xQfGNGZMOVzcw0ruwJrvZlsZZqLobtyoA0wu2Xmewct9fX/Pbf+A0+/fh7PH7vTf78v/uv8MbXHxI6CM6RG3O6mIgVuFONkrXGLyXG+nYCzBRwiGOW+WLArQ5FZ0SDJb3U7CyfV6+ZMcIX8HE1dOfF/KxAkyoKWgd5aVDWOd1grbWv4KpFCoBTT5Q9epa3qf3MsiLTWxZW9IVxujL6INYfks35TvGPS32tlD7R0u/Mcw1vIBARSjS6Mzk+va683i28Y8t+m1L1lRcvo56Xhv0K0pydKWU8F2HYeWpySSmoBawk5mBTLYBUmftdWDgcFnWqYLPJSVnBD6X/bJ65WZ7mTYRFNWaHQEXNnZTaz3VPmUa2VGyqS+lbcWWsfkKL9zbOMWUSiQryEp0ZWEQgBJs/ltpYccFNqfKCD8YiBGhScgHHOW+AfleYvXIyZpcmeNRlxhQNhBRKWsw6sMlAHYiBV8ZkgJ5u5enWDYIjxjx7/aE4sqk4G0QwlgvnjSFTtQCIKkvEzlK7rRqcN/3WdK88ybcvdR3HiObCmlXqqZrxvgFJ9H01erlZlur6XtiixEkBMWZyTogaqH9ienBiacZiJo9qTEkKeYyIt/OGeD+xlJk8gw/O+jzmSf68c4h35JRAZEpBaen2DACkSYmaC/uTgcG6riOOBmRfrTtEhHFMHA6DsSbBtGe4IjdaFhBRNRY8MZlqGgODOe8sbV5UYq5pVrEUk4gB+EowRJ3bWtIiu5zJqoxjLIhPk5UMHNTSFI5DKutAspSiOdEPCZcEH8C7UNZEZb8fAEeOStca+5UIHMYDh77HDTD2BuqKKSE5lM07sj8MPPvyS0RkStPsG08e7XznVGiCI/jA+VmHbx1pULqm4eXNHTfXB7SMtnNCaGAYB9NdXUCzcrfdM4wjdYdxjokdKsaa+tnku+8tgKGClcdhLPulK/uEQgF3pGiTOIQAHuIYp/2ugkSLtjMBlpZO5awJjYmUIpaW0Ztu4D1Dv+WLj78HY2bVNPzay/+Mf+nFf8gb6xb1s076VcXmSj1XzAAfr0y69pIxlXK9itW5gpSKOjPpAHVPnFP1lOfoDFCqFTiF/k86+bEqubh+btJCS53w51o6cBm0kE/+m85SqiweZ/XWCmtfXr9oR33PohN12UFFT0JnPXpqXvleqo6xvO/oIfW6Zc/UL6umPp8n6v/LUadRALrzPfVZVVtLUfESLDDrtA4yd/bu47/HyAPEP6BZhXmrXgrq0Ztf3666z89Apa9gOnxl7O2anJXtduTsYoMPsJSeWdZMr9vdHlitWrqVsfJNSszcCUdpf1UxcFAfefjGOdWHcnriOS1VF5sCGKTuVfOdhiEXdrcDXetpW5mDUhb9jINxn9ne9Fw82KBkUlbas0AcEk8/fcn55RnnDzvwZZ1BjsA/S7maGdqqHj3rb4KtZcMugzrG8cAXP/yc26uXdGdrPvipr7F5tLZgRjuk2H31/mUTTz4fgXpKn1Rg7FF/Hg2JTgzPVVxFFv1TvrOU3PNTjtaDhW7qFp+XwzHpsEf11pPPVe8uK5oyAeunVNRLlf1ELOoQLKe4srhn0TdT9fOiP2ol62fVo3a+MmVkboK+pp1yev3yGXWdWfTRUkZqyYs2HzV38V1t4/ToslbieGWNhCUQrDZAp/q8kpn0ZB+w+s1rmtRAmqrTLdt48oyjlVKOx6hed9R/i2d99W56X+7Lfbkv//yX7EZ+9c3/FT91+ys092xK9+WPqGjOvPyb/1e6tz9i89O/dGz3vC/35b7cl/vy2vJjg5Qab4bTfiwGQ1+iW9VbpKk4ox0QZd0FuujJKdGtjZ0ljmZsHGPE0rsooh6nDocZWpu25hsQmqahaTwxOrJlYCMluNtuSQrBebyLFnHphTxCVIfPQtM2dGvjaD7sIvF2MGdZcQasQouoTExHDx52JMk0gyLZoVENDIMjpcxKGw7+QLtu2W17hv1ITmZo70ILau0DM9CnnCx1HIDr8aEhhJbDvi8GdWNmcUhxzpZUZpoJkmnbhhgH0jgiY8arWhR366BV7saR3e1AzhZFjngyka51tKtAjCMxKqEpDB4DjCkZ45BKMfxbP+VsDjrvfElJ4RjHSD+OdKuW/bY3gI1zeC/4lefJmw9JYySPCVzm/GxDaAMqws3tgaEfAAMrpRhJY5qimRvvzejsIPiGEKohrRh0nDFJeQnEcaCmNQEhpUQThK4LdqZPjt02cjhY9Pw4JNKQIA6QOsY+cXfXEzqPZuhWLUNvz8wZUhISiZhH1uuObtORYub25hbnA855oib2/S1pGxlHA2yhHo9n1Tp2ObE7DDhnqUCcE77znR9ALk6FznO56VgfAvvbRCMNb799wcO3HnDxpEN8T/Ar3nnrXf7G3/wtbnfP0CGSVWnbhtWZY3u7ZX830viO4CN9f+D6RiFXZ35kGMwxc3uznxzAToQYYYyQZOTsoiWliHMNKWWGoSe0xl5WAUaigRBsLFarFm2sn4bRmLJyrpAXc77lHGmCxzklpkjKxeQmiRgSDkHGjn74EhkzH3fn/HUVLtwF/+K33uWNlZsjab9KcZsMVmbPCWIAHVRpRKa/q5wIMyuQ2WYMDFPBS6568opRfcpyAsRi5FcRBjVQQa3V0mgvLCOP53/ROSKyvjsxg4IqWMmYlaQwPWUGqhOgAI0KoCOW5xZcAMs0TQEI5boRSAUAAbKInJ7rW8et/rU0O83XLdursyHt6O7ZFKnF+lvBQJljY2e9WhZ3VWfBid3yyBYHleXF0la9uN7x5psPEINqHgGDqmykCB9/9wUvfzjy9kcP6CWzocaNM1neal2WLZrqVR3+9fJFpY6ls7RXlz0SQS2l6NPPrlmtOjbnHhFzaVWAxtJTcPP0wDBmPnh3TeN08XRO3lZASwr765GnP3jO17/1LmdrY6JQjiOqj6q+MLLOoJY5eleLRdX5DCO8+GxLF4THT1qCL05cUgEZNSQycUx8/ukVT955QOOV2xc7Hrz9kLQd+fZ/+Qc8XJ/xzkdPaDdSGGJK3L+U9F9H4z6bTp0IqYArpKQuyyNcXw0c7hISe/7u3/xbfP/b3+bi0UN++d/9V3n3Z95BNoVAaRI2nVJjpaQT4EuKBb86MVzZi+t4GKPYDKKqzEEIuKxTGgY/RVeb4xInk7EYChRWBHVz/6pMJE8z05EWkqEycTQzOSIEUGfPqk45pTo9i8OijK0IE0Copo90BbhCnuV6YiSiyrlMDhwtfZ4VVI2NRXRmTxAM+GF7OTNAp6RGqv1SxzVPdZPJCT0DamZ5zQshXUZxU2U6159neF9lOXDOFfu+Ttb9KTUbGKjuxDBfmSSljpkY68PEikVNzZanPprWtNKfy/mUa98uxkjVQBGVxebIaVKfVQGsBeSkGPhKmAEvtSzXIhv2wh5V5kq2XF+LF7zG2fETVFwB7lgfO1sTKmCEImdaWR6FIB5VtdRZhU1nHEbTX5kgn9PaLSJFlguApqSfsnG2gR5jmtJhWSoyUKmOQClsS44QwsQ+ZwEENmlzKqnFfCggHQPKrDaBmCOSBFExoMyYqJ5hzcphPxDaBlBSjmXMM96ZrhpHYzLV4sCyVNRqe4nLeBcIIc8MQ6XNrs5pTK/zUpncSvq0knYyeME1jkzm0A+MQ6KmFc1llnkB3whDHNFoKYW9dwaqHu08YXPFxglvTFUoJaVeATMBGpOlT4t2ZjPGKWPTCyHYOUBhjCMhWPo7xBzcFUjkENKYyCmV+WHAqEyZp+LICVJKuJJTq+IHBSmp96BOosp81gRvTD9JiTFP7E8VxFSp82r61KYLBojynpgiYx3bIr3OGdjfB/P2W+pzwAt97Ik6kgv4p+x6BO+xy4UxmTyIE7z37HeDsWqVxnTrhrOzjn5vwTwPH52xPl+jLhLTAX/WsTk747bfElpLgTcBF50y9InhkOxMj8nzGNO0n+Rsc1JVbX4U4F5dxzXbWrlatSBCHC3doGZjrSsiZu+Eki5T8d4XFmDr5zr/T8vkEC5n06rVZGf7YMyKixGncPXlF3y7H/noSeK9dzPnzfSUH38tYk6ZVv9dgnRsjV88dfHoV2u/INdj3gunffs1OvdX1XbWU4815OWOplhgw7w9zLr/spy+13Sc40oIM9a5tn95/6n2/1V1n9q9QGzIou6vK7WfT+tzWuTk7/kUs9Doly8p58J6nQG6hH4ckOZVnXlZ4t01T7/9bW5eZt75pV8hORDNNFK5Dl9znx5/p7zajuPPr+8fw1QXrUuF3d0AQNe5xfW8Ik3DPjP0mYdvbPBuAWT6ijooEAfl7mbP5eWatj1mrDqVd/S0n3TxV1knartFIcPhzsCJm/MG5yrQvEiZONsjSzrvbtMQgnDY9aw2KzQpLz55Ses8Dx+fTyxMFfyzRFstloqZPW5ZxRocodAfkgUp5szTjz/l5ZfPaLsVX/vm17l8cgFBy/lepzPUpHsdC54Bd4/ew6Lf9fi71wjENM+X7UAW/TjPJ108YmHymFPB6+LxizovX3a8mjC3b1HHGdR/MtcXa/MSGC+L317pC2ERvLCYGzrfN3+nU9trfSZ5XPb56QI0PWtxrj25VxYdM+sFx21cyszRd7Kow0k56t7XLFq1fUdtqH28aEs9xx1PPo4AZ0dtqn8v6nzUntKJorr4Tif26ElG52V6+r5YFI465yc45uG+3Jf7cl/+SMqnm9/gZft93up/7o+7KvflT0gZnv+I7Xf+Nvsf/F26d3+acP7oj7tK9+W+3Jf78hNffmyQUtZsTD+Y4TSsAilFY7YQwedAHBPjkDn00QBAwVkEcxtw3nN9dUeM2ViCLKfP7EBwQsyJlDKN9/ggDLHnbrsnRUVTxjvHEBMxZZpglM/qzTEQROhax+aso+sa+jEx9oMBinCEpmXUhCQF5/Ah4JyyWje068CoIyKeeEgc+pF+b2AO74V+GNkdMt36jBgFCcrZWcPt3YHDMJCz0WOvNx1ZDzgvnJ23rNbB2IDGkZwCq/WapMlSpWHG8daHYgzHmIq8R1Om8w1JMmkYQaDtBN8pQ0rsd5lhHAkNtKFju88kFN33jCmy30ckOjbrxGa9wmlD7ME3jq4NSKHedwJjjCWlhkVEd11gvV4RQoTOMzCSh5JewTv6/cjTpy/RDI0L9MMBXt4yDonDPjOOxlblMHaFYewtIlzN8J9QiwAWIWfh5ro3oEtjIKk4Zkgw1sjy4lypTggzbDhiTuR+JBVnoEXmm9Fq6C0CXYIgXghNg2ZL2hV8YLvdz6miRnBtIDghk/ABmq4jS4JG6dOO8TbQbw2Ypk4RCaxXLW3TsPFn7PodeYAhQdMWQ7wqLkM/JsI68PM/+3W2tz2ha3n/ozdYXXS83H7J/ubAISY+fvE5WQ48fKNjv1X6fUJJxDGy3/fsd5nRZ1QzKUN/UFYrTwjG2pWQKY1O3ydL51RAaahDGnj46BIFrq/vcGUe55SpfhinATSTo0XoO+cL+1RCorERqObCNmCQC1eYlVKysU+5AA4USJm2cQyDEqNn52750Q+/S+s7/vv//r/Hn/n5S3wTSTiSOL6SBPMkXE/UGJQ8xoCUhSPWoFNDdnXbOSyFW6KkmynXVNhVggmEUG+un16Jqp6qNRtmRWcj/9IItDT8jJjjbcCMS+ZQcAujXDFElpuXToOlQToXZ0RlfYoTQGkGBxwbI+3J7ugpyz6qdVwYTamMC69ap2ZXqEzGU1BLh7awbVXnhrxSm7lP6vezYb8wSgAOW/MHjTRnlurGU50ocy9rhk+//5Jf/y9+l/PLt/nmL74FGBtC0zTFoXo8HkcG6FrtxXX14teyFJXb5v4sCW0UDneJw0756JvnBXRgku0W92aUeEg8+/SW977xBt1aCKKk6arZYOlKTZPCOCif/Oglb77/kLMHTYl6lgnIIlP/2ffGwDKn8smFCUlllgWRwoahjtvbxHY/8N7XHuE7EAvbnlJQOQU/Oj75/hW+E86edOye3fH48Rk4+M7vfMEwwi/88jfYXDhjk8DW7snJKczAFSeQZ4YcY2WwHhJVyI7DzcDNsy2db/ntv/F3+N5v/Q7t+YY//+/8Rb7+pz7ErR3O6yQXbjEBDchiA2nGWJlkYDmorlyrStkLDDBSLdkT6EQUV56Ry3dagSgy9796G7dc22g3TAwDvshUZf0JBTTmKw1DeUdyBbxYjci6TFNQGYPqHjnLjRRPgUNQZ/qTFP1NiuejkJJYSiBhAhqKGIDyyPuQq5RXAIl5gSqrzXE0vdW5ZtDLk0FepjZMM0EqSKusJmJO/coAZlWVaX46ZGJ1mCP3mRe8avgv9cwUoIHMUfd1f16GC8tiDavreu3DetG0fjgmsIeIowIepoWvjEuZVvN91WErld2pznGZU/zkxXWLFHZa7pfarmxyrRi4p9a9rsunjAY/aSUmS1UG1h8hOFBbLxDIydiMYjLWCwF8qLIwAwdtMdUjp5JzttakZGnNvCvpu9LIMEQDBGoFaFbnUbaUy1JZ7BQXTJ8TEcaYLVVarHJv4PpcYcHOnEE+FPCL9wiZPGZyAYk4MR04plRA4pWVSAiNYxggDqnMZU/TerIaY404pe3sHBWHSIrZ3uGMKdbWOQu8qKKdycb2mXJJsWzsFALGjEaagvgr+5SI59AbSH7MyXS6ZEyCqoVFRw0YKMHOabKQ15o+OCU7XwQRgvd450mSjQmpBHioGrtO34+g4MWjZFSMqTeNZS5WJ1tZhw2YZcWAPhVwYe3LmvEuL9YHCwDRsu7N3j4pqQbzvBdhcpdisrUeV85HBRSIEEdFU9W+yvOqU6+gO7w0xBzJMRFCgwtlHdZMHCDHPIENwc5v4r2NgxgwNydbX0NwBcAXGEdjr7p4fMbFmYAXmpUnSs8w9qQhknLkertHNdOtHGlsDBQkBg4ah2hMwVrgLHW9DoIvKUdzUmhqd2lJPVid8WXilQUsqzFniZOSyq7uu27qI61sGXWtlMqat3QYz2DyjIGncgZRh5JtXw8ldVxh1XV+y8MHD3j4tuPgfoDbvTGlU3Nftf69xtnqmVNHq0DSch7Qec05vtHGverqsvhVtWoBdRuf946lDrp83GJ3nC6sW+/0xsU8qFdWQFIsN1WmpiM+whMlt2rgOlVo3r1qK2uwQ/3tSElenMfcouHTTrl80LLIq7qXnP7/or11v5vYaKqgLC5bYCng5P65BfNWIVifxZhou24GKshJVwE3H3+fp9/7gmEU3tcbGv8QshLJBD/LatXBlmNbtYmj6tTnn7RheVfVOSpYGgzAMw7KxeVqBvksJG4az5zZ3fZszjt8O6ceP9IEpjEoK0+Gu7ueZh1oN+GoUq9t10K/qvK/7O0qMWYDEOII+37k/HKFCwtduLShMnreXQ+Qle6sYTxYcKME4erpnj7C2x8+pt0UNtj6hCml6aKNpwO+KJWtaOgTw3bAu8Dnn3zOy8+f4kPgg5/6kEfvFGZaN+uf073LvjllPC2/L8V+aqks1NNF/U+B63WrW25R9Zl16p1UY6rANE8Wc7muZZOkHKvdR/cfPX/Rbln2Y7HHWYfMtXFFSa39fwSohwkwVuuwHCIWdbTbZe4HWFT+NfWmBl7MD1tK5Cngpy5duvjtdaCkKVCpPPdo1a9js6yzcmT40frgen9pkLzagKlutQ7T58VLRY6/X7ZrqdKcmK5KwNgJu5IsHqWLr47WXeZxPmn7fbkv9+W+/Eku+/CSP7z4f/Nm/62F9nNf7ss/ftn+wd9Cx54UB/rP/5Dw07/0x12l+3Jf7st9+YkvPzZIabc3AM1YIiCbJrDZtIQOxhQZDiMijbEljUaF3648TRdIOTImM6q77MiF9j3FVCKYG2MSiomcBefhsNsboGcw4JOoomk0U7D3kBUfAojlGckysjrfsHmwoY+Ru9uBFBOaoF21OHGExjEGBW8R0c4pzkPGl+cPeAKNV1KwE2az6jj0B/bbnrubnqYNnF02iBearqWPI2McGcaM9GZYbZrAbr9Hwpquaw1wkwdcdsRsMSopJ1rXGvNMLuxUbWDMIzpkpOtIqkSXzbkAoA7fNEg8sDozNp8cBVQYByWPkLYjOQmNE3qsTS4LTQhs1p1FRys0oUNFcONI30eGaO8Qn1h3DW3j2aXRwEzO0x9G+kOk30f2hzuceoILtKvAmEaGPjH2uThizSUexe6lsESJSEkfkGBQnBvnqNsxMUhCsCh7M6DlybmdKwOVCvu9JeUKjaNtAqqw7wdEFeeC+aySElQIePbbbI68HFExx5PmPPPXZ8/Z6iHb2xtePL9is9lw8XhN1Mj+dsBnWK9WhNZxu90xxszLqxtWbWtsVNFSPbRdhzjHerMijXs23QOGgzlsYs6cPV4Rifzw6cdsf7AFgX470g/CbvcDGmcsAV3X0rUgXri7Hel3keBb2m6Fam8p+3CIKmfnZxz2Y3HEgqsR2QXwVdkgssLTL14SgrMUi94Y0LyHzWZNTCNd26J5YBgzu31kzJEQusLWRWEj0CMnYMy5pNhwOO9JOZV0H6ApIeItRYKDw65nvTlwcSHEdqSXzBmhpBgoTCv/sENBMdAEjFEJaoo2IRbjkaVvMENxNXotYugBAwfk8ltNOWYgJSaw0bHR+cQYfmT5nZ88R7jOkWjLKOYEpIXhsD7Gl28MDKXTk2bjco1kq8+0v6MwMUlUkEYFOVSj0hyvX42A1Yw+/+UWfbG0lS1Tjsl0//z7iR3wyLBY71v221FaD5nfwdFzal2UqMJ+O3LWNXQBQrm2gmYmYFbK3Hx6R3w2sHkXVmulVc9uO+DOHaHxR/WvMjIZ+Y5G0f5NUx0ryE1fMULPsiGIekjw9PPnvPvOA1YrzEk8PV+nt0vyfPHxM84uG84fmSPcUWOnZTJEztHsZjR98dkNSObxe2dISftQ2bWktGUao2roXYySgaYqqMkVw3NCcAx7+OyTFzx5+wHr8wLyLFbmbFBfXFaeP9ux2458+M03GA4D/qyhvQh88t0bnl8P/Nwvf4vz91q8L45doUhYxlfwjWZjU6mAg8kBZ53lMJabw13k6os7HjRrfv2//A1+52//Bm2z5i/8yr/Jt37pm7SXlkrLIcbk4RQXC5BGlFSc91WultGglQWkDqhzNgbGMmSG2gpKQMwZLwvAjpMZHKZFth3GDuKcXSdIYV+RwsRhz6n4JxZsL6crX66gJilZ77LJoLjq3JGJicK5wsCkJZlIMYpLrbsYUK46hZZ+V+9lBgsWpgwvrqpWSJ6dE1kLAGtB01PvleKBmViTKhCt9K2lCnRQgFc5F6BcAZJVAFZN0yWKsWpVNirmuVhn3rLPxM8zrNZVxNJM5crOVfs9131h4XiZpQLUGL/Q+TkVyCAKeCGn6kCSaQyO0t0VP2bFNE21rc6G2o4KhEuFxWfhyJ8cEpnChFlBJmXts841kF0BoExO0J9gr8KYElKAKtUp0jQBFyCmWEgWHKQ07RWmYziyFuYWKCBsmZxDORtQemI7UNMjk8Syh7nJU5ULcqIytrlpncJS7TYeCZ4x5cKsanUwhhwbo+zm8TPZst00jZE0RhwO7z2qubA+QUxKjgk04bylhovRGum8M/CiJks7rKZ3xWh8b84b8s2Js1R5KVMd/l6czRfNSKlnTrkATKwfsloaYcSRDJmI6ohzxvhkZxEDidnSP/dRjsqQE6LJAkPwVECe9w7E0r2lmAq7i6Via4JHsLU4JwNOkSFFS8c2ln7KosbImg0MplnLfDK5TiQmlrNpR61rg07smVBANqVMAMnFGqJVQUGmPvS4ApwRS/WGkkSLjCqSwOMMpF9BWxggTQvVkq3ZDhED/Pf9QFZHF1rrlz4RnLDerFEy293egFUp0YRA0wQ02fkwNHZuSoW+rQ0tvqzJQ1LEZTQl+m1mGAYUGIZEjta3xjTlQaBbBRDhcBjRDME7mrZFNZZzuMd5CKFjGC2NOFT2wRpUYvJQgQa77YGandM5R07GpNStW0SU0ARQ5XAY2e/HwuYUqMAomFn1oPRdzmhJhy7OIVrPMAa+S7FuYImIkOLIvt/x9OUV333v13jn8PO0+Xze3I7K8XpYdf36y5KdaPlvlb/l3Trp6sc68PIJxwARPbrutD71mtMa19/0H/B53opnhsjls6c6nGwHp++qARp1r31dwAXMOmkFfXxVnU+fWddH+1wvlKPrp/umuXrS77rc444gCa9eL8cjVuuakqJRWZ27GZj2ivYFTpW165BO6M43iEKMBiQXv6jr4r1LwMlch8r+eNw/p288YoOsdVLY3R1YdY62WfZVabvodN3+dgBR1uc1ofks05PU6LHeNGwH0jDw6M0L3KJNteuONSNYnC6O2r2Ukvr/OQl311vWq8YYoGTZy5WrRTjsI/s+8uDBBh3tNOu7ht31wM31ljffe8Tq3M9p6GSWy5oCfjkXS3fgZlXdvs9CGjKHu5EutHzxo894+sNPERd4/xvf4M33nuA7wM3n/1wmQSW51do3C/1iqc9NdZjVgtMOnK9bTmRZpgCb2yiL348A7/U/qYzO2AWu6pqvWccWX85AwlP9d26LuOV31qDpEeWdlel82ZY6BqfTrzKlF5LEeUt+5bpFHVn0CXP/SkGNqVa9bW73Ugam+iy+r+84WrcWD5ep85fr2NS9R3Wt905rpcwzZAIPwVEf68kjqpwcBaOU5wh61H7KnlV3k+m75bN1vm4ap6O2WsVO53Zefqh/LsZHjx5yX+7LfbkvfzLLf/XG/44/ffUfcBHf+eOuyn35E1A0lTwe4gjnj/94K3Nf7st9uS//nJQfG6Q0poQrzpqkyhhHnIM8CMNQIpSjWpRmspQKIi05m/FYxBVggOLEjNtZM2PM5F1P03ga52lqXjd1eOdofIuGDDma4b2xlDGiGVeATqEJtKs1iLDdDYxxZBwHmibQna8I4koUcKZbd6RUOCdKBOjd7YHh0KNDIvgGzcYiM46Jm5s7hjjQBo/zCdXIbluAMg5CcHSF1WkY4tRfSWF4uceHA00b6NqGmJOxKqkBrFJWhphwZDZrjw8tu93AmBLEnnEwA3LoFNd29DEzxAMjIw7H1fM7vAu4piEli7CVrCV1gPXNLmY0KavOjMtdK6yCsRb54Nl0HU3bcBgbYsrEOLLvLRHVbhiIYzKnKwEvFuXriQiWqq7xgc1mw8t4hQQhjwlxAecdwzgaU1NSLIo3MrMhWZqAeqKujCyCksVS+CklRYUWdoZk4BxcxnuMCSgrJSeORWbnTEbwKOTikGE043dxgubsF4bxjBsTL65uGIcDiUzymaSO/VYhBR49vuThkwuubm7YPxvY7xOqgqaIk0Drz3GrhMrA9c0td7cHzjae1mcev7Hh6nrH9e5A3g04n+maQNopd7ue67seieDVs02RpgmgjouLFYeh57AzmWzbwOasYRhGvGQuzjaERjl/eMn11Y7rq1viWJisstI1QggNMRmrkveOcejJUY1Zxguqkc1Zx4NHK5p2Rds2BAl8+eyG7fYlMQopzek2aJw5uxehYzkrKSkxm3vYFY+6YFHQeSiGqRA5DDtu717wm3/373H2+C2++dG/SesgiLMUbGIAN7OqLCwlxVBSHY9LAxvFmOMwR35Gp1SKMAN4KvNQNfzMRtwlWIfJmpNZfJiurN8IIrOb7AROdGQcdEd/1zrZ1WFxV1zUQZiNr1oNsMrkGIFi2NLZUXJkP1oalpgN8K9zYMAMRKo/qXKUYmrZ/lPDlqOyTC2M1IvKHIOb5r+rHdAtrINL+IEZ7DOK5+5my4P1itbNRrO5r+yvpnF89LU3+PTtK97+4C1yFvqY8a2nC95AL9UwuTBmnphnj50M1chdATSLe+YkO7NMOODquqdtAg8etSXNDswjXp6jyt31wHDIfO1blzhvznMt7ZnYUEpf1qjN3csD10+v+cbPvkvbeAOmlPGdJHphyF627ThJhEmVqJtlLDm+/PyWy4sNTx6tCgNStpSsAlEjqo7tbeaTpze89cETZBiJdz0P37tg9+We7/z6d/n6z3+NN9/uaEO2VGcIuLn95jt0E8NTtaJqlsLuUdqQYNwmvvj0jnVzxh/81t/jd371v8Qnxy/+W/86f+ov/ClWZxmaZIxvyQBK4jI+eJwaY5nUtHYyG7SnIVVmwE99cRn4alMOwVH93ZPxu6SdMZv7Yt7LfE1lZ3OFfUMLzT6u3JNnGROtRu3igC8sOXM6N4Fs6SdSBR8Vlp1pzmGG+5wLQ0Uq4FQo6cQo+6jN1CWTnEhN02Pj4ZdRwBRwTC5uJVfGqfRfZTms65M5l+d3CYW5qAjhDJ4qYKSp3VYbNw2QPa9Gzlc2hTyt+VZMnzQQksCUbqiC06TU0UBSc/oUoTpX5v5TZQKi1b6c21IHWaeUeEdeqDKeUoFKWpgM88LxoGrAp6WolX3MMYNlltdPzFTMr6qDMzsNrE9rmsCZqeont8zOZmtNyhFihmjjlbPpMQacKf2qFVBi5wlXKdPEl+uLoycmXDZWoaYx6KeUe8RlpOAOnQRjuIGZjUkT4vyUdq2mlBMUHzwhNNSUV14EQjD2GGsVWTPDPho7nBpgsYK8RSCNYwGgeKr+NPSGCLL0csacI85Z2jKhsAAJaUi2vnmH93VRMsnwzsD6sdyzCg4XAn0fTfcVA3sY4APwxkKUolqghGaGQyJ4A2AZyGcGGIqYPqeFeTMEJecDTeMKCMlAet4VBk71BmKPljpaHAZ+US2TKk0yG7wvY2wsOW3TorknUfoNN6WKywXYZr19pGgcARsWS6PNazcDSaffJ+/fzEJnqdkWuqHOz7a5aecptLIw1gCKWW3Nmtnt9va9YbeMaXRQmtDw+NEliLLf70GFNNo7xzGjGmnbFh+CBb8MI04cXevxrePhowuurm4Z41BSLxdWlyz0vaWktvXEG8DWZUIIND7QDz0pJgPaeQMNp5wQwfQJD926wx1GdikRYyrAJNsfvHdkX85M4sjZzhYheFywc13bNQUQZUBZJ4IPbrFnVEYrNR26DkGZH5aG1piWLfWpozKE2FDpvFfmxNDvef78BQ8eP+al+4K/c/5/5xdv/ns0WoCEVRnV+RlMo7sUluUv9p+n7ONFP1jq9UBJBX3EoTdpbrr4tLxnqVueKp+TE1xmvV2Y5bpqycdOa530xOmsMd2vR7pufbcetWXSAqgOcS0Dkhf7yFSDSVd6tfNmTb624dgRbvW0B8hrn3D8LEo9Xg/d0mN200qp9JpLl3uqUNJBiuCdLK6pekWVSWG9Dpw/2ND6Dr/akNXSV7a+6ofLMw1HI/+6Ikd1nNkTT/tgKU9xzKQI5xftMeiDMg5Fd4xjZr+PPHy0Lvviab/pIs2TfR+HzPa258GjM2PE43gMj0ZPj8eEqb/m35dFSzCZD4HNWVtYNWt/2f1ZIY5we9OzOjdg4zBE1hcd6RB5/ulLLi42bApAqYJNq+p11BezGC/qgOnbYjpZHjO318ag9OLpcz7/+BMkK+999CFvfe1NY45dRK9M+4XMQSNTUxfr1vK90zwr65ku66Unc6R8f7wqzX+ctmm5p03zcLHH1WtOwUGnzz7B5M81qvWVuZ4TiGgBUDpVL+t3k1gs+kSPPutR/Y5+K9/nRZvzoo2znM03na7Hbtm5i+dMZ/pTGZFX610DRpYDVbtoKQNuWdfl6+ozl32tHMtC7bNFVfJp3Upb65ifAtSW68QxbHB+xrwOH7+wZGGcx/loPBd77eLj6Vjdl/tyX+7Ln9Tyxep3+D9/7X/Cf/y9/xONrv64q3Nf/oQU167x96ne7st9uS/35ccqPzZISbNaOFFJR3IYBoZ+ABxZE5ozMSopyhS5O/Yj4BFvzqJV25CajNNA348c9gOgpGT3S1DOzjszaHqLgG9y4tAnAo6zTYvvHEkzmiCOiRwjw5AsArRPoBkRpRFnDC8eSy2QMuu2wbeBYY+xvDhLbWDAD2hXK1DHftjRbDxNbohDJt6OIA7fQr9PDHcDwcN63bG+aPFO6dqOGAechzGB1wawyNA0KkM57PkgrCUQ/IoMDGkk5sTlo4AEcElofWNALSylhF8JGpQ4RsZRGSIc+gPDmFmtHIebLZo9TeNRyUSjKSiHS8c4JmJS7vZ7HjxaoWcrHAaiCa3DBWWjnu020qfIISacD+xjYoiZ0LakFBkGM4y3obFn5sT19V0B1phBnEBhTtLJccTCCTlFDaW8lC4q+kCrcbQ6cSs7gBYGg3LSTijDYNHo5vDUAlqyCHNyQp0jxhFiRpy3LtEatezxjRnQnYPt3RaKg6RtAldXt/TbxIMHG97/6G1urq9ovPD44pwbRvaHnv6QyXpgtQHVxG53YBwiwSWCNsRu4MNv/Cz5+z/k9nZv4Llhx1nbQEk5s/KBlBNpgDQIrYd33npEVjjsB/I44EOLOOFwODD0ic63ZWyF/aHHk/ECh/0I6q2vEFaNJwXPoR9LNH+ytD/qcd4gMpvVhsdnlyiJlzd3JD3Qj5n12QbfR1CH5gbximoixWzp8yThvdC0vji7jAXNu4CBaWw8nNSkXIIT6Hd33PkXqOz5g48/RiJ89N5bvH15RuMr+KfIvropHdIMYSllaUEBAnMUscH+lDQZaGRpoym1qX8fmXdOyszCdPz7zKjjJwORfU5Uo90MiqmMLTWyM5FocFhCGC2JwpZ2pAUbyLLWIpOTZgYnzWxRY7myAhBqrOpRQOTi71r3pXFdlEU6tZPufk0/KTXN2LKvlq4PmPt7dhodX3FsdKx/W8pEW/eaRy2KQyXjp/cpQkTxII5w2dA+CLz55AwvmaZxtL6hWQAy4Jgl67SN81gW0ANy1Bfu5PfJaI6l73n69Ia333tQGItmV0G9Nmfbtz755DlP3npAt8qgNhJZIoLNH2O8Kb2r5lD47JMr3nz/Ed2lNxbAqVfLmrqo/8QGJiaTU2q3Wg+KfKqiWbi5Htn2PV/7+hOkoYAC8mRt9wjDIfP5917y4GzNeu3Zvthz+dYZY5/4vd/4IY/ffMSHP/uIsAaVkrLLYSmUYGKvmUBBroBO1GpX03IpSh6Ez35wyxgDX3zv2/yt//xXiX3kF3/5z/Nn//U/xfqxNyapYjnNhWHCZXdkfK6RvpXlqFpk88JpYo4Ih6gQ1RgoBEGKlVy1pGcrTq3KuKbZ9qlqSJ/mo9qcywJpIecli5056heCLmXP07LHSZlIc4TwIvmKWAcagYxMglkZhOq8WTrlK4uRwvR9RmcD/iLdXsoZX0KoK6hXREwfq6nyarolEdQxRR5Pzmfm+Z0xWTBpnle5Cdw1OarLsxVzRklNV1A6qVS2AqFq1LmqkkUL1dT8nSsPm8BPsoxuztN8nqKmrbOmMa7Psf6f+3dOC6ggbuH7LjqLkzllqJaal+h2Ft9bi2Vi1XNlnFWEVAFtupi3dZKrAaSW0ehT2pMTR8hPtFNBOcIhmw5RQWS5tKUygdnAphhRXAG3SWF0VCQIKYLGND07JzXwp8dAMFh/hGBsnmQIrTfgHIo4b3KdLF2WJNsFfUlNbN5LKaAO+65pAuIccdTifFeGIU+AwsrKI6iBktRSi6WDGgjI6RRc4Jzg20DTNohmvDPwDgIl+26RTYU8g5W9c4Vd0GTAiSvp/5QxDWQyXdeSU8QFwalDGnOQ52iMSTlrScNdcGLDgBNvoBQtqdmqHBZ2mxjtvyzewHVBjGFJbF12uMJ8ZCn7KPtoyoo4tX5IeQItKlpYeI1Zqa7ZOZc9KFFAVjCvFTWlMdNzFpNrIWo6zcVaZJos5dyRDdxeQcXiwPtgzu0y3zNa0q6VuT8hmMCX1HeVDSUX0Jt3xjJ62FuAgKgnabSzs8Jm1dIEZb8fyGrycOhHskZjwSpr6tAr6I7NxZrQerbbA6iS8wihQZzQBJPLVIIVNIMEYbPpiDFacJAakxK+OGTV0fimBI9k7rY7S53eeA5DgfuL4BtP2wSGITLmundY36dUNhKxs+vDjaV+vbrdMiZ7WQgN2dX1uOz3mqf9CalsgM7OjikfKWc2fwvoW2swgwGl0nhgu33Jd78P3x1/RGof8Yurf4dVCK9o1hWC9qqjniMBcTIzBS31Kn3lpoXuWuXhtQtvvW4GMC3L8rla9xPRhSP8VR256panLKd6cuVCyqc7ZfrudW2rNZ3ffPybHP15rFnOetDR1eWHuTmva8/xh+U5SI++f/09r9bx+BuwdSIOiWbVTKy7VYMvojWVLEqfRzZvvs3mbAPOwHk1JGC+6+QdJ32yrEVlXMmlMyad7qRBNcXi3V3PatMUcLMe9YmBGMzedn29o1u1NO1xjxyPzSwFOcHt9Z7VpqVZ2fnjlM3z9erD6QxYzrC5fkOf2e97Lh+ukVDvmnmNBIfLyvXVgcZ71m2gP0RWawtsfPZsS7tZ8ejtc0u/JnNfvX5kYQ4cquD3qsdZe3fbTI6wv7niR9/9HnGMvPPBe7z30Vu0a5mJnOvEAGPC/ar3Lf9d6F6TnjndZ3vCa1cFmX4uQJTFy1nIhi6Yocq4T+1bPmvRhKNKzyr0tKYswYZHy4zObeDkEcv7loCmo07R5Z9zXU+fcbTs6vy8+szpUXJ849F3i4dM47CsyuJD2UrncTsR9rqGLj8frVmLP6p9Z3p9ffhiXGodqmwcrWWL+s+rxGKFnhftua6L4IpTzO0k++U9E7OTzvuDPbeuI8t7q+wtOvKk43+izxL35b7cl/vyR1kEvnPx/+Jvvvm/4V99+j/H/fiu0vtyX76ytE/ex589/OOuxn25L/flvvxzUX7snTfHeuQUUoKxT5YGxBmXRgietvVERwFCKDknxphopKWmG1HNKBEXlG7tEZwZylPGN4JKoukaMww7A9EE78mDOSBijGRRVqs1q7Vjd9gyjiNRR/IhMsZACJ5u1eBcIMZMExrWZyvONx3ZOVqnnK8a+n7k+bgvRpQ0Re50Z2u6TUuOibvrPc43pGRU37FX8mhG+xwTiqUFSWlP1zaMhVI651Tq7iw1w35EgrDeNKxDII+Jrgl0zcYAW4fI3WFL34+88+YbaAbfKt1lIDllzJbOqp4W42jOi7ubvaXc8S2aBSQV477R+6skJAhOMk7MQbMfB6QRru8GQhO42KzxjdGbn21W9IfEbjuYM0wqU9aI9wFHQx97QgiWyiBlmqZBsyOlSBwzOS6iVJkdHHZiNuDSkva9pqTRyVJxbKR49XzsCtjImC4UAyqF1qxZrqSQMMIKi6pXdEoZB4r3wmrdoiRQIXhHf+hRoO9Htrd7JAn7feYHH39MHBOH3cgbjx+yuXB8/IOnqFgk+u42kfKOcRxx0hBzZrvtUYVf//XfIwTh9vpAt7LUZ+3mrBj4ew555G4ojBSWGY/d0HN3d0eMDs0BR+BssybmyKZpefuNN+nzyHbY8/TZS95+tOGnf+Z9/v7f/4yYFR+EN995zFtPHvL9735Cv+9L+g6HimOMkPeZ0HjefeMNfuXf+CWSZP7a3/pNPv/sOd1qzcurZ7Rta0bd4jzMJWq6ba0d3tm4hdwwutGcbZLA+eL0MidjypmcMi4nus7Rb6/4G//FX+W7f/930L7jp775Lf5b//6/xjc+eGDsQgW0YBG/xRR6Goo2FSnYyRmoU24AtBgZ7e98cqcZcV5Dd86xcfDUSFll83VFiwFr/lyNatWlkPFgwLJS6yOqeqoRu75Llg8/orCv7DivM/SfGtCFYzaOyR64MKApZqdVmentl9cuP89vPn7TsSn9VcPs8splzY9NdOBVUXHc9RkvgW4dYLIjJ6p7wRHQAkJ7fnPLNu1Zb4SHa3NgZ6nvKk9fWC0rbGJq06IRshjDo7QWxXJZgVm5wrIUrl70XFyuuLgIxeBv9TSesBElgArPvzwQwopHb6wRiSZjYm8SHG7RN4qSo/Dpxze0reONt86gpGc7dSnIog+rkbwyiZ3KgnF1GbfYsIenn17xzruXrDb2lEwuYIvCGpMDX35+Rwye9956wN2LHetNS+scv/s7T8ntip/5c+/TPhC8B5c9OAOTzu0rbDFS6WVkmnviLJWOqpIG4cXTSBoabj/9hL/zV/8au+uX/At//l/mF/+9X+T8zYDvFC1paKZhnQAmaiDQrAXAamuXRZAaq1wtxpZjhuUsWlKNViCMPc/XZ9b+c/O/Ne0Ai7lQHeZeCgixOKyN/Wiu0xGgROd+OGpTNZ7LIjWJ2jOdSEnXVJ2/MxuPiAE/JhYKofqRjxz901pW9mEzdtuzpVr2jwDGldlNJzCUYKwyNZ3VNHWkMkPYSx1zH9Tfc7Gs13rWVG85z4DAyYheZCgX8XHOwHNLJqYawW5gnlzYWQrIq4Bb6rtqtldzIszMcQay1zldWwXCaUkHWNbHrGlywFTGLutnmUFyBdBlqeMWDH9aUjsuvVTYe73IlNbPUueWPim/11Rys441j6mIbRI/6T6FFHXhWDHmngqUMwCSOTKzgHoKw5UWAI7NhAoeETFQk6X0LKxf2c4TNXrfdGGTEV/OLOIFxIASPhgYQxLkbEwbWU3XFzEwtvdhAsaEUIICMGDFum1M50wR7yoAA5tXIYAUwI/aGgM2PzXNbDIpJYYeus6XekGKhVi2MCA5L3jvSaOxjbatnXdyNIalFl9SKiu7fjDWkI0zhiOv+NZSTqeEpbz2xjSVs41JzMY6mgVyFiqdQ85VojLiHcFjjEnOG+gyZXO8x0zXNniXcY0gTUCi0vfGIDsD6qwdiqUL996RkjnbLNigpKYrKexEsbRqmqcU0VDWZa3r6dKjOM+n6Rutn+c1cbq07kMyayEFh2j3pXpO0YJw1el62/8L2NjZeVDEGRNuVlI/Wvo1bI3Y7nY2RmPm8vICcYnDYTDdLmcDkokURj1vOnjKyCg8e3plKdYUunVDzkrTtoAgY0JjJKkQgpDSiKqy73sLMEkC6vAhsF53jONA23ZcXF6wO+zZ9z39IdJsOh4+PueLL16W9G7QdWs2q44U7xgL09Fy/84p45xjter42jc/ZMiR3fc/Yf/yBtQxjhHvvclujGRbdC1tYLB0ebJYhyXINJZCCTwpelau4NlybR5HPv/Rj3jx7Eucdrx4+H8gfLTmF/nXCCd60lG6HmY5Wi6YMzDhdecNpn2xnlFeLa+/j1nMyrp3/F2tw0T+xKtnj0Ulyj8VTH/imJ6nrj1LXn3OrAEsJtSifstjUb3qWGtf3LAsi/29vmNiKlKO9v9Z/z7VT8ted1KXo5GRJYBEJ8AHHI/dpONg6aPHIXN22SzeNetuS005jpl933PuBednPeB1bV7W/vTXqZbTeAtOj6XrtM0Ah77OKX/UBikdWYEFh0NCs+PsvDmWYznp0wVyZns3oCpcXHSToLyudcesjHNvHV15JBCKJmF313N+1tE1brqkMr7ac4XdLhIVLh+uiDtLORoa4cXTPUOfeOfDh/g1E2Nsfd/yHDudH2Q+50xgl/pPhmGbSCOM2x2ffu8HjPs9b7z/Hu//zPu0FxbMWFOnWf2YdOa5ZVbcPFiznsdCRpfdIrNEVGDs6ZyWMnGl6o58xbyXmTn3aF4s15Fa70Uf1H5aBgrWvpnPxcfvmbbSxRxdiPBRP5wM/1H7l/spmN68PB/UfyaW7PpOneuxvJaTj6fgp6PxWFxzvIYs1YTTuXnye2UAZLGsVR1m0bB6NnndnD4tp/PM1I8l89lciTo29nxdLq2TPNQLaxuPnq8csQUvcbR1rzjqo3LnDIKSr27Ifbkv9+W+/AktyQ38Z+/+LwHugUr35b7cl/tyX+7LP+PyY++627ueah4QceSkxdhfoki9sVmgCiEUg04yivmxRwiMY7SI/GBOiK4LkyE+C7QrT2gdh2GwlGEqDGOiCUK76njw6IxMYkyxHLgy603HmpbQePrDyDgmxpiRIDRdZ4e4DMPQM7aC6wLnFyseXa65vYF+APWBMQ8MfabvEzHC7bMtmjJowgcF9Rz2FgHtBMR5+jFx/fyWt95+wObigtvrHYedMTmNOdIPGd84zjfnFgWeIv7RGn++Qg8DjfN4FRov7GLi9iYyxsR1u+fRgxU+KOHccbc/sN314BxtaBnjSE5q7e0jjfdkHTnETOiMBkOTOUVCcDStp+3MODwmcFHRfsSFlt02kfNIaKBbBfb7A2MS9sPIoR9ou5asQtM0DIdIfzDAUgiNOSiiMvSWhkG8p1u1HLYDgrA568gk+nFEB2PNsNQBZihPMRphFLNRcTKKFdaj5fnYnIEKkgk+lFQ6mNNKHYdDxLk8nbidt2h4S9dhThxzWJtcjinRtI62c7RdQLVl6Ef62xFJDidK27Yc+pHb6z05Os7O4Pr6JaFtaFzm9uaOJsBmvWKXwfmGGBMxZ3aHgfzsJWebjgcXax482XC39ySnnK3XrDcP+dHHBgbqOri5ucL7wGHsiXnk0CtN0/HgwSUPHqy4ub7m8uEFl29d8Pvf+QNurrbk3vHSRZpNJuNwPuER9jcHbsINzdrD3tijfPA0ncMHRxwzkoVn1zd8mXo+e/GMT6+vuL65Jg3WqzEnVquWlHaIM3iIcwa6yyRjP0iWbqlrPW5lqepSro5jmSLQjYFAyCmCC1w/e8b2dseme4NHb/wsn1wn3n0vsylghRp56CcB0KN/jgxwJjiTwcmiDc0Ep+X/hYURn4XRvQICThe8k9ctSzUYLw1rSwNyPjLq6JHRyNjkjf3AwEqFrp/ZqEQxGM0R3NWwKYWlpcYn2lNrW5Z2s1ecMcdddmyI5pjtp7KXGHHD8W+nfTI7DWRqHzCxQ7np+csnzHfPda4jVR35BiLY7QZC2xL87IixfjG2LdTASDoK+8+2nHctOShRhIYZ2AFL4Fd9zswmBAuDaLlmovpnwWqDgugEpHNYesntXeLq5Zavf/MR3peUVlTgUDKnHMLhEPni82u++TNv0zSABlSqqbjCk+ro2/p1ddVz2Ee++dNv0gRLlOMXI7xMOXEqr3ryd+2PJSDj5Zc9Dx9d8OBRh5ea6E9IGsrYKbfXytVVz/sfPeb2dseQlLMHLV989yVffOcpf+rPf8T5A9vXHalYsA1KNTnICrDCVcBFlikNVwVhuEG5/WxPf5WJu2v+1l/7//Dli+f8zJ/5Fr/83/iLXHywIXTFISVuYrbJYsZYzRnnnTFwOGNj1KQEX62ypT7lnVN6sWIYNwO0TBG3Igs2JFkCgApIs0qw1lRlM/hIVUv6I5mNw+6YHaCCaiZjux7PEQNLMMkgamlmwgScscrbllfktTIjLd4lTibgYa525+rgL6x+WQXv6urCxAgzfS4WcDN4y5TKrMqecwtD+8LRq0oBZhQ3lTOgUW3flC5OF3NO5v7XyZouBhqQum5b/9a1MVPTo6kJegViOFcY6IqTZuGeEWFKBzf1v7P5MaWyK3X11Emmc70rk5UI4qWki8BYuICCzS9wwLnfa6q7yrBU+w8RAyFUUERhoizTZ/qoi8XM+pcpPc+ps+wnsYxD5RwE6kopgLMUf6dOtfo5pUSMtrvkbA0XZ6l7XLnGmJHsPu+dsbmUuZeTEryjWTU0rbFYGlOZgdidszS5ToRY3pWzIhFjEcL6O8cBJw2uCbRdoG09GQN+i3ckjcY2NBog6LA/AIITRVyedCPEQOXOGYPMOESa4AkhkKKBu6Wkzkq5piPxxgwao+0UTsjedCVRpQmOIWVyUlQdMSaatbHt4Cxd1xgHUOuzXGRVszEcOWdMZTklxFvqucoc5LwB+r0XhjEyJjtjBHWI88YMlUa8F3yQEsggpR8yTVOYAoUpnbWqgaBsfAuokzJHypiJM2AYYoAVS7kmE/DJFTBi0urCPtJoyhJ9rIsBhSDLUpBLmaAV8JdTtr1+WvervqLTXlHXp5QSKSu+sACHEGxMyzhI2XGdc8SY7cyUxBhWx0jXtYhk7u724GrKbl8A2LaGxpTIfaJrW9br1sBwWUgpsl6vCZtznj17iQtFXqKlKEQsKAO1dGxnZxu6znFA8U0gaubm7o44JiQJd9uRMd2i2Bg6hTRk3JljdbaiTxG1WAS8g9A4YlQ0Kdd3W77/2Rfc7e64ud5CyqQ4lpSfhdXPF9BlKjpVkb9UUvlJAQE6b+trynVPqIyMJquCgRZxmTSO9MCqC8jK83e7v8rDdcdP7f+8yebrFqFXPODHWvGrf/345avOE7OStjiFTKJaF+4TRbQ+oO710z5WPutxC+o+UXc6sH216mGv6Ik632vyX/bU43xqx71UQTbLen9FqVrB8aw8LfrK98v3nf4qr/w963GT3UBfHYec7Vzh/ZJhdgGcZr5nuB3ZhAbnDcBu+my9SF7b9KO+XfSRnPR6XVMqF1ZFbtSrUoTdtufywWrByrp4maHyiUm5vd1zcbkmhNKWo2rNa1/9dhgSfR959HBd0jrL1F+nsnHcPJ1T1C1keB4nu3u/i/jgWZXAkkkPWUT+DANs70YuLzvSMDLEzOay4+625/rLGx69dclqJQUsP58wq3wvx6n23PR5mSctwXA9MGwTKpnPPv6Y7X7Ho7ff5Gs/+yGryxYJdo8wr+ciOjFizrWu+uWsmx4N2rLfZnGc51fRDas6+zr97Gh+ymIpqHN3sUdN+uSyDnJy/VEfLd5Tfqz6jCz+Xr7H6v0VD6m/Ldp6JHsnk316z0IeZ9mY67xc58px7GiNepUJivmcIFVfPF7ej9pwdMZaLn5zn9Y064vqsKj1NI7LbpkAUqdj+5rPx8UukLKWTz/XdlfD1WIuKYs2lX8ndtlFn0wNKt/XsT16R63Coj5Hw/IPXt7vy325L/flT2SJruevvPufIAi//PR/dg9Uui//yOUY6H9f7st9uS/35cctP/aO2x/GKVrfS7BUB1jkZyjsA2kcSckO8gkh50hKyWjrC7MNSdBRWHUNOVjUclbFN46kI7g1qjAetEQYec42K84vOlwDd9uenJSsI2P8/7H3bzG3LVmeH/QbETHnWuu77su55jl5z6yqrOpqqquavlb70jY2tttYGIsWQiB4hgceeERI8GzxBi9gJBAIjJDfMFJjAV0F3Xa7y13VWV1Zldl5O3lu++yz9/5ua615iYjBw4iYc6717exOIUuZ5f5CZ59vrbnmjBkx4j7Gf/xHIjhnxoaULG59FtIY2W47Usq0TUPjPKtVQ0oWFqJxyn4Y2I89+zjQBE92SnLG0jT0kf6uJ3hHaBxJlJQG2pVntRJcMC/ivs+kCK9e7RlT4mTTcn7R0g979p1j7M0Ysd9byK5xTNze9oxZ8Rl8sAN3aFoYzXv79GRFCCbXOCi7a+gi9H022oeU6fcRJ44meFJvlsKLyzPGcWQ/DPgQiCmSckLxNK0jqWPbKTn3NJ3QNIKKGTBuvWO1DpycrNjtOu5uBwthIZnQtJiXq7Dd7oh9KnW3dhjHjHOp4EMU8gBUo4uFmPBZyEGQbKGuLMRGxgVIaow7pvSz07j33pTYRYtdFdSgNK2BZbwLtK3Dt8KYEt0+Iql4Hy8MNlVhYOE3pBg0AsMwEONITo44Whg/VTG5Ni2JiBPzML+77RhHJY2Jjz56jmrm7befElPP9Ssl5h7NI23TmNElR2NwKCC7MCQQeP7sFTEnzk/XjL6hWW2QVmnbyPZ2oPENbfC0q0ATTmn8wKo94Stf/wKrtfDhB8q2j3z/xx9z83IPo0AS7m569v2HCJ7NSUBUOT0/4Zd+7Zf44Ycfsu0Tu7u9AdE2mfPzFf1eub1LfPL5Nf/hf/i77Ld3xH7k5HTN4Efzwk6gOXN6dkqMI/t9T0pC34+IOIZhJGfFh4TfrIwxLCX6LoJ485BWwWUs5FOKpFFI3qG9oMERLnu6eMVHn33Gu1864Y2TNWcOWrFAaBS+oUlndqQwOVS2zGCktPh9+e/4uXvbxyOF43F4hqqgR2aFtSxyqu+v6qwlWMiydigGSnqdwv5A8XZU3qX6eamgfK3h4Z5Wcnnn4jY1pZs7UGNz8KZ7Cr1FSZa/1jIoxaB/VJSjNy+UkjrnU8ZrxphL9ruezaMTvCheDQCmeCoLUAUsbe+UeKu88/SJGehECRTATGkFd6+x5wPEcb0dzGHKFuV3VNYENxl9chReveh5591LVitXoFHLfmHG4pyUzz654e13H3N2VkJQVUDMJJzCfVTYofZd5rNnr3jv/cesN1JCVMye1XOwwEMZ13K7SRN92GeMHcjx6lXHdrvji19/jDrIU9mFIAqMdFvHhz98wZvvXNKgvLrd8fitJ9x+3vG9P37Gl3/lbd790hneg3daGOwMhFfHT23nqjmVGg6xhGcVQJKw/Xjgg++8ZHW+4u/97u/y/JPnfPHP/Cq//V/7F3nzS+fQgjgDkFbvUtA5nJcDJwreUVmLsmRU3GRYUAogZNL0mlRC0fLa2mPMgzX8V1WMH3uiLjTYIIURryixDVSLhV8tmvKJEU5mViXVeRxVlgydG9BYe4pxTUqbziFFWNSrjFgBkUPgjeVn63hlhqpgoFq/OVyGGbld+b2G7zXlvd1hoAJjOllOrk6qRtwKW6uO1vaqNdUCuKih2w7LoxiLgPVbNWasWl/RxbidNfNLBb6xGlWAEkzhY0sfmVimpMh8enKWocMMUs6ZDGaBVyDacta1+rrSp3EyPT8bL+SwrcuAnI1eMsmsttdE21U62+vAW7PhbGZZynkhkF/AlPPchk4cPnhcYSCqgKQabtBqplCYsUglXFrpVzkZaLRS3klpd0VJRgdKSrb/dDhCE2jaQNbMOMYytmxe986hzvb8YPNEjJlxNIbS4C18V9M0pOwYu0h0iXEw8ExfgB5Zk+WblThmSAYUEedIyXpo05hzhzhjX0xRSQn2XSSlzGrtOX9yQjf0DH2y/ZhijE2lF/W9lT+IQ2VmMovR5LgKQiig9KQGqI05o2osjjFFYrTx45yQSp/arNeknOn6AdVESpHKnJYbC9+lamDQlCJ9Z2OngvRCcAV44+n3IzEmRBTv/MRolnI2AAo2l1SQYh3LKSVqKE5KW7oyQS7nEqlxNN1iP6IzWHQJJpoAvTKPc8p83TQO3xgotO/iBMKkrjVlIqygubo2iFibalYsip+UMGf2bu+dhQZVY39NOVLDxQzDOPX1aPRWFjp9yDhvEHY70xSmrwIzFoG+H6YZ6+Z6i0pvTFsNdHtjLnJAEwLBewaMreT8fAVO2e47ul1H3u6sf6or4OFM33WIuCJvaDae9emau74jhIYhj4gooXU0jcM5pe8z+37kJz/6FM0RL46wcngf6LvBQp2mZAC8FG1/r44UbS+XioyksOmhbgKAWag3meRve6fCAJYFp4I6IWvP1atntCeB/+8X/0M+3XzIn9v9a5xyav2GGiR3sR9dLKR6fEnLeeLgTLB8eJGkrre141l/XILjDs8h86flWn5QhjLN1QJPq+DiJqWAYOWwWBWsMRmup7wOa3m8L69lkMWz81Lymk30QWGO2EmP835tPnOtl2XRg+vKcUmnK6rT92njVa4f5KfCOIw0rcfJIUjpUPKZNCRunn3Gxem5rf3TUjzv2eBg+3ivRsuCymKDcnBfmZOWT6nCfjey3rSExh2cIevTio2N/XZgtWpYre8zONk+e5m/geuvb3acna5pWg42TXIk68n1ZNrr1rnZZFUltmTt6rtM1/VcPt6AsxyWtRMSOQp3rzrWJw2hcWxvBtp1S+wzrz7fcf7GGRdvbHChFu+w7X/aruZev1NIu8zV5z3ihU8++oDbq1sunj7hS7/8NU4fbRBfWTxnYDzLvfQic1lcmxgt6/vkfrmm8Vv3eOUGkaWM71dgAuEU2U5nt39KxbUO2DpPTmWFGrq43ns4T3Ag4nuvkfv3HgCAFvlPoZ+rjKjnHDmQ5UGmRa88Fb3UY+phde9b5LUE48giizoylkzWyzNB/X783PRhIeCpXY6EIQvZThoTmapw+E6d5T/Lifni9FdmmU5jjcUipQfvnoostiWZoz3bQJzecyyb5Vy1+H1qjiOZLo88BzJ5SA/pIT2kf0ZScgN/693/KR+e/B5/48N/l/P4zs+7SA/pT1HSoWP47Ec/72I8pIf0kB7Sn7r0M4OUNBelr7HaG/vLOpDSiA+QNDIpczEvy6ZtcLIi9onBSOJRZ8wGYz+g2RcvYiG0Zta2MFmBOFqIsnXbELzHN4E+dux2I6lXhjSYYtk74phwoRolPZodOWayy7hgLDv7fWTfRWKKNMFxfr5BgmOUkdurHZoyKtDtR8ZtpHGek01LIqHOs14b69PmtMEH2O9HfPAMI+z3kfRqT4wdX/zq2+RtoOs6njw6B4Rnn7+iu9uz2ayIMaK9ZxU2NDiijNz1Pft9pPUt6xbWoaHfw64fGGKiT9GU1JoZhwHFk1NhsokZHxyrJuDFsb0b6HYdYywKfu/Yb0dOThPtqiGmyM3Vnjwq4rx5i6kSguP84pSzsxPONi234x377Ugab1mfrOk7owfPKmjKxfvVQjaA0fZnzaQcCYXBKI4DnmYKleCCw3nPatWikolxLOEMmEJUmKEi45tgzxajVQgBcaZkNDamzKMnZ7QbIWZ4+eKO3c1AToBk1qfB2Kb22bx9g0e8MKZYWAjM0J1jxtGQNYBkXAuQ8F5II+y2IzihCQ2rVhhGY+v65JNPMfYJUxaOfaQpIUvMRu5BYCUNbzw+5fHTNS9vBlxy7PqBz553DONLTs8a2tYMZM7Bug1cnF+y3/Xsbwf6fs/d3S0vXg189Oln5o3uhLN1Q3SZu30kiODVFEV9N9CsAl3a8Z3vfpcPfvIpwa2NZcIJ7XpNTJlMJjKQ+sSzDwc0DaxXgbQaWLUNqW3ZbQf2u86AF96x2awZhsQ4JlIcZ6NVyux2HavVCjCAmnmGmZYmeIGspJSJw0CPGW6yC9zeXfGjf/xthtzx8d2nvPP4Mb/y/tt85QtPWLVCo5lWPH6huJtDBZpCpvC7ISgeIagWxptDpdOBnXnxeWYSkkPl0cHHWYM0Kdx0Vukv+YyWHDczm059zxy2J0NhVFJCMTQn7J+BdArgYpFbLdOsMrWUp3ssb7cIH7RUrppCbVaQ1rrJcY5Vib/Q/FYZHYaim5/NizpX2UtRGh4ru7RkeKz4qsaDLI5hTHRjzxsnJQzg9Fwx1gk4NfDGi+dbmrM1Aehf9TRPVpMHMtQ6s+gTOuU39YWqgFyAaQ5V/LXWOpdfhKvrjhhHzs5PFsxNmepBriVI3atXdwzDyPtfusRLxiMFkrTsjSYzwRgXPvzgc84v11w8aorRye5z5b5cld2TIlsOSrzQcZZSlXZUGDrl+fM73n3/kraJCG0pdclLI0Tl0w+ueHR5xvnFiqtPbzk5P2WMyvf+6BmXbz/i/V9/ijstYBOJVIaOKq2qxBY5rGftX1mVnB39deSzH3dEPeUf/M7/hx/8w+/z5ntf4K/8a3+Nt7/+FL/KuDAz75hCehkusYRAqywLMIGKEIxZKM/8ZL6gRKbxqFrChxmgQBVU5tbRhcXBusoM6kEKQEcwNiexdaECcZQFsKYq4pm/L+eTWO9zi1lDyhrKgvlE5KBcFYSnRbBSx7oWoy4yse1MddCi7MYARw4MTGMfTH6FiagijgQtYwQjzyyAGCn51rCqtbxJdTa2TMATRXztG/OcDgZcPwhTt+jLubBtUPq63VZYj8pNpanJzk3gBxOJvuZ9dXAUAILWMjC19cSWpLWdXQHTlHurAWg5xRxYAQrophogaj/RAsqZKlnBOTY46jQ0hchZzsUL0Be1DzDP91P4q4OZ9xcnTSCvaQ0QnLdQl7aXTAbmWYBJfPA4caSUbX9fZGJgkoxmNwMcyhwxjBHUoVkK60trjJreWG5SygU4knFi4LXsDBSSJ4CMUGMDeucRcex2PXUNCY0jNg3iBddYKGwt7Fw5ZTQbuKkpbEuuAJ1SSoTG2b60jxZyzhnLVN9HUo51UkdQTk4MCH51c8cYlRAs/JyWvuqCJ5HKGBca3+B9CYmlzpiZsjH+2HxkKBzvgjmL5LqaOGKKxnSTmc4StSFSVJpGCY1Hc2Ycx7IBcVN545AYh4Gm8TTBHFq6biDFnqZtiGOyMaZu6rtCYcOigsxmsGjtKAYYqIdMm19CCAZqygmXbfzkVHcjZT9UADv1XU6sr6Ro4CvnhNOzNbg8gUqHbiRnWw/acv7ru1hCz9kuL5f5bp4XobJ42lwBFMBoKmA3xIBD4mCMkZSU7XbLNJYLy5bTXMU5r6GaWa0a2rUnD/ZsP0RyLAAxMuJ0YodrmoZ1u6LrBjRZWba7jjFGdrsOzZngLCx5FkhjKnsLW7+G3hhYd7s9+31H1w0W9jBnCA7wDGM2p5pk4CvNAaNayvjcAErwgSFGsmYiCe88vm3LuS8X1qqZWS+OEfXe+rUru52CFHVi3JRMso+oE1wU+r5H0w2ffaJc3b3kH7ff44fn3+cvnv4N3ne/RKsNjchij1e6dZmTynIybxlYsoMy7XFriGFrZl3kcnB8mPp13Uccp9q+0wIi047pKNfl38M3TOtKKb9n2spOZwk4LtPhEmUXj0t4uJdcpnllme9ZunPMa9N92dzPWw/+1JvkIMdlqeb97rI8y7/LT1VeCdgPA5uT9VGO9Yw0S7jfjaTYszkNbMeMJNvr2B7ndYCgZfnK38W+7n6p7t9ft6rjmBli4vK0WezG66/zfNn3kX3X8/jJmbF7v0beSxlkhdubPW3TsDlppjxrUx2w3tbzxIGU6rlgUQ+ZnRBygt1+5OxsTQjH48BOK6hwdzcQGs/JpmF329M0LeKE55/eIl64fOME3+jBHm0aFQd75Vk0hzsdLYC0zO5mABo+/fgjXn7ygtV6xXtfe4+LJxukkL8vu31dL3Sx8RRlCh3NUYvAvN87dudZApnqeKxFrmyytS4H4RhlLtM0Ly1lTgHO6yyHKpeDcteCHPy+LCEz8KU+I0dbVw7LVRt7sSRPD94bU+XaFL56qowsizDLzc35TvPqtNettZMDQNCcx/y/47E5gZ+W9x6n4/IvKr7Me5rpap7Uee9+rrWnTO+e1vFF2eq4Wwy2KdQd836+fq+3TW903JPH9HVRh4mRalG9g6ou73udnIQDgr+H9JAe0kP6ZyVF1/MPH/1fuG4+5J9/9j/mG7f/EkHXr1ltHtJDOkyaI2l/+/MuxkN6SA/pIf2pSz8zSKmGvrB/zmj8tSihmxWNBHb7/XQgS2mkaRpCcGjKnJy0qEAik8ZEzlLCcdmBO+WMZiENoxn58KzWDY8vT1mfrtBgTEIxjqh6vAuIs/AEMSbEWxl95dtPmRwVhyNn4eWrGxRhs/KsLzf0QyKNHS6YQcKL5/T0hH6diOtE6x1hLQx5wLk1IsLd7Q68ElXohoyoWPgdn9kPme6lst19zMXlCU8uL3lyeYpmZbffMYw9iGffZWJObNMdTy5OSJIQp2xOGoIPBD+iyUIZhSC0bYN0YqHDdGCzaXHSkDN0OhB8g3Pw8uUrgm9ZrVq6fkByBfwoY0rcjR3rk2gh5MSjvnpUJ7xviFF59WLL1cs7Nutg7ZY9Y58RiQyDsUYJATMG55l9QWfFfyZMBjQRT05ixiOxUB0gDHGk2n5ESt9ygi+nfuegaSw8RYyjKcA14lRwXhEPm5PA+qQhas8YlfVmA1oAajpwct7gXOD5JzfUsD7GDuEYsxkkHc7Cx2kGHXHek3OmaTyhbdjnnqyOHJX1yuPFwnGYYtwXj60RVfMqT6kqJqV4VWc6LARCOHNI8MRBuHu14/xkQ3Ox4eXVDTdXBhBan3qkUbxYiItV2/Lmu2+w3e24vu4Y9pE8ZDR4UuPNsOZMRTImUE3kUYkD7O9eoPlzVIUYFJVM14kxpTiHpsS4GywkSLPGe0ccRmDD3e0OyR5RoW1b2oYSJkTwzgxhFW/gnAEWu65DtUdEaNp2am/FmKucK+wfquQ82NhPke3NLbrP/Pi7Oz788DucrC/5zte+yV/9l36bb37zfc5EedTASmyyMmX8obZkeUzwQFOUYLH8q7CE+k+OnpvNAgul4SL3omKzb3KkvGEJMamq7vmaYEZCM+fY75GZ6anRzEYcjUIU6FUZ6j1yGNjB3rb0Lz6UwawEne+vgS5yVXYVy8qsXKtBxu7nqRwqpo49SZf52+cZCDZ7VnIv1Uv3PfXm1lGFbky4IKwDk0ewwAKsY8afOMBnn1zzZ775JuP1QG5bnMFL8QUgVL3Kl17Cyhz+bFboHkrh9Sp/+56BGJXbm5633720uUmqRCIGPyuMan3m5edbvvCFR4QgOAKOjIiV0hi2lj1TuXq5x0vgnbcfmT1w0RsmQI46MlKMFLOiejbRzkpIXWj2oyqfPb/j0eMzzs483imz92oxbmngxecdnSpffnfD1ad7hk55+nTDH/2DD7l7+YJf+41f5fzE4WREJNj8IlpMKbNC3y2UwLmUo3rZojDsE88+37HrB/7R732bH/zBd1ACX/9zv8KXv/6Y9TqjXgpFl4HwtHDyO5nNhLMCXQnOkbTsCaoS1peQTVMoLyuLqxOa6gR+oIRBC3UMTW64i96gWsCaTPOhZGee9yVcjXm6mpZ4aWxwxeql2eaICdI2x7g0nqyqNNY6/8zjxDlIJbpe9ahNVcmtdbyUdbYuuMyh46jjyrvSn8pyWJTatjYzybkyr0lhOsroFD5OVZEshMIAkst7RGdgoysGHy9mFCfPTEYzm5Ive5dpNpiGhWBgrAMb84I1CowRq/6eFTRVxiaZhvhU1zqOmAFC8zxpFch1tlOZ23lhaPHIAeuaqk6W4Sp/MECDAUYKW0hmChu5tAyE8v6UC8tYBd3UVte66kxddg4pWF9ay/ELmqrRrzKbGFMPE2OMc97CLJY65MraJZSQjlKAgEouTEQHXvxlXjHAjoEGvfe2f248YxoY42jsNVkm1rScFZIBc1BztqjsZzkZmF41Mw4RMPYdEWdh4wrQSUQIjSM0DW1rXJDBC1kyfRwW4y4bq1dUxmgAF+cgBGEcM/2gpNSz2jScn67ZbFpSzLSrlpgGAMbRmJW8RE43K5ImnKOENvYICWOcyWWv1tAPFqbNeUcTHCnafjOJGKAcoesGVk1TGGiN8Yi6xijEwUKu+UZYt40ZhaOFznMFIDYOkbEfjd2ntBdlbzuBR+EAdFqNYao1bPPMzgSH+4oKDhrGkQqIr11GymQ471lkCvWcNZNUJ2Ogd4LzQjcMIDMAJTQBG/DGAuVCwA2xhK5kyrcUbAJNWtm1AOq0gOK89cVSn4lloqwP4oIB2kowVxZvmOqtENWAADhBgjEqprHn9KSlaVpubnf0Q6JtHKGRAlrLrFYtCFw+uuD29pZxGMkxo9n2nXZ+thCMGWwRKXuFNCZi6e91LCIGpovRAGBaxgeaDSxWxlJWIY0jgrN1QRxNI+B0YvCytjG5KeDF2d49GbuweMcMUrDQfMv5HmdrlKiFfRtiJsYetw00Yc0/PN9x/fXP+PrFn+Wb+7/Ee+MvsXEOX8HAc1d8TZrhKxUeYvcu9qos915M42RabGS+Dxbr1vTSuQRzrqVnSQW+zXtQJ1rOE6V9apuVMjalB1VQVT1vzPBs6mngtbU5DnO0vG9+6oilaFETDu786WmZ1+H1w6246Rjqj/eER93f1539/fYs7VZ0Ik1wRXbzmnuw9Vfh7nbP6VnLyQoSoYRFy0wnHjl43N6th9vDuhc/KM08rJaXprtUDcx5erLC+/k2KXWv4F7N0O1Gzs9OCEGm8bGkdprbxPaWQ2/sfpeX6wNQkx612pzD4VZ3zlPns57O13e7Ae8d63VlK5v3W3XG63eZfkhcPjkhdZmhV9Ybx+3LPd3VHe9//U3WbT2vVbCQm/fNi34w94SlI4HVIiVjo8pO+PzTj3n16XOcOC7efMrlk1N8sD2YyiEraZXB1KbT64TDi4tGPmrQmTloeY3Sz+Y5b1rTZBHCTue9yxK4X8fiQSmXcR6nsTL9PF07AKhM7VUB/kw6jek8PlXNWjDrYR+VZfixRZMAU5i0CZylHAhycrRazJE1v2XZZSEzR11X5eCdNtbKBnhZlpLXBLxx8+fpCDeL8VB+VFbZ+fJxfQ/afmoL5r1HnU+OxtLBMwJ1i1MLfjyfioBUZ7OjeWOpa5nzvQ+EXc5F9xa549/EHhCZG/wAAPVPm9Af0kN6SA/pv6hJ4Mdnf4f/w+l/k6/c/VV++7P/Eb9881/FHZzXHtJDekgP6SE9pIf0n0f6mUFKKZri0fuAkogxFWCGeUI65xhjnr17BMYuM8pAioWu3ZXTeBMgZZKZV00pHDNOQXCEYKHM1puGk/MVo0RevnzF7fWescuQIyKCD8W4m4VhP2IhQiLOCW3rGRNcXW2Lt2YiBFN49GNE8ogPDk2OHBO+DXTjiMfz5a+8TbuCm37L1c1IGkyh6teO1Sqw32XGDkipeLU2qIyMQyTGYhjzkFeOcXSEzSnuumccB1wMbK/uOD3x5Ecbrq+3bNYN7cqU4FmFMY0MqQcXuDhdkcmoWxM2K7xXbj9XGmm5PBP0LLPrIvu7xObcDLfBO/aDGUC8M+NAHqG7G1ifChePTgDPzc2eYUhoSqQxFxYiO8mu1oFmbaxXaUzkMaHRvMJxTIbcepD2zlmYubibPOBjMl4YC43ginezkJKpT6UYj1XBN7OXvCYlDpGmCQQRIlpo/YtyNjj6mPjw45c0rccXLYTzDmlh7dfs93v8Ct54cop4z3bXkccKTjJDCS6bN7VGUvI0zpkcIrBy+NYjCrlXul1H8BYWq1kH2nbF3d0ehyndx1EBT2g8oVHSkMnJwAl3twOnFyPrsxWtF7wfOTnbEFYt+UpJUXBrjzSOLo5kSXzzW1/k85fXPHr0iO6DnzD2O8YxmvE7mbo85mwGl1g8DZ0p+3POE7OEk1wMKJ40CkNONCthGDMpOUTMAKHeoQ3c3Q14p6y84/zJE4Zh5OTEk11muxtJKeOdJ+eE5kxKFrIi+IbJYzxZuDvvPWEBEPA+FINMNSgOeG2JcYveRWRsoIt8+AP49ptPuRki7739Bife8403zrgIpor3xaS/1BpWX/bEHEoNAK1KdzlQ7Ey6RRbsMotrs4JXccv87uucWf5U/9agWQp4UU4RWrV3VRCS1cUm4QZoFFqEHtirMkgt26xIrurn2Xd/vudQSSUFHCUTQMkzK/cMZjcrs2s9lpGPXgcwWtZ3CVCqKuWaZ54kevxkUTSqLgwFDi1QAFVPEsuhvxu5PD0liNCixFLriaNIzTt6ezsyxp7Lx2t2u8iNJJAGr/6gEgeKcypAaTZCTWC28kg1/FRjkKC2ZqmfZPjZp7ectI7zEw8y9yShKe2RITtePLvhZNNycd4WUEY1qiyDohXleBb2u8jL5y/50pffYdMI1QgKFTThJsWl4XYqmEHLHDf3C4cWQ3ppaXW8+nxLHjNP313hnSKl5WqemUx/nXj10Uve++ZbOJR+pzQna549u+PD7z3nV//8F3n8xprgQQrX1cQKo2YY02WfmnqBydKYfzwpZa5fbFk5zw8++YCPv/MdLi4u+OZv/Qq/8Rd/jc1FgzSmkK591YyVVdm9oPivmlxngJpQtOGGG9EJyCC+aJI9eGXqFeIK4xCzQbIq9H1RLC+9Xsl2zTMzJ+Wq1S+yqApnVUV9qX8uxow6bytTqFzvjCwk52pI1xmIkhPeGTCtKtO9L0GAyjPeVeNQqWv5F9w89ufRaTV0Iriikc41TIxtlxAxpjd0VqyLVoCZgWqt7xQGptIQvgwqJ3NfqC+ueLNUAF66dCUvWvPJq3eyZshsuMmLsAYVPKR2oRryBCsbNWTfInsHEwNUffWBQp4ylAqrVmVL0pKTFFCQc3O9zOO+hJErwC4pcqTsXSrQaymHqR8pExOYw/ZMyuw5PjF6qE6hrZRFuIcCsDNbjpuBVL+ASQtgwyYB+1xDCFYmrgogrMn6bWFQqkCv8k9zLsyDNiloAaF45ybATihMRd2wZ7/viWNCU+1kZV9S2IAMSKMl1JQQgoFMjFEUQHHe5oWYEpINGAQVnJEZx57gPevzjTH0DMbak2tbB4fzUkKFSQHd2Pt9cFP/BOhHY6LN6shq76llyykjjSPmxNAPNG2wcM6YgTEXllgcqAi+hHpWMbDOMKiFGj5tEAfbXc/QGwgeTRWnsxifhfUx2WQQ1sH6vxPbm6ox8pjBTpDCoCpirE+5MufUMZzr2NIyzM2BxYkw5HECLBqTW55kspwvlqwV9ZpzrgATtABwbH1yZe6s3UtFGaOFw/PBADFOBPWCSMaLL0CoxMX5Cc57dvuOFG1GKQHopjJN7FbMjiKqcQZORYiDgcmcg9B4nPfs9wmP9dNxzIgLNI3HOQtBriV84Dgk0iqzCi1JbYWNCcbUMxRwna1oxt6Um8Tp+Qq/cnRDT0xpYpCado7JFjUre5lrtUxqi52xbUHqNWeAISiAI5k2UoqiDoYu0raeEAKtX5Fzomk9/TigGlEtc2lF1mLjqTLRTpItBlTv5jCuFCY+KaCxnJPNpyKgycIsZmV7o3zwox/y8sk1P378J3xl/C3+UvOv88htpj3gMlUbbRbbMxw7OSy3Gvqa55muH92zAKJCFVfN7HAvfdCROTQ+C9AIBLV+XJk4rCfUgIC2v6+Mm8LiXKR1f35YxgkspPM1FnnXpp9aarnlqnWU++WXaYFc3n0/HQADFn9f+9ThUC/r33yhjusaNhkMYNq4MO1XrKzzLqgCq9MI+67n9KTBZQtdnhSaugIvCjWt5SXVc59wLIf6fZb78lsF9HedMZGuV25RsqmwVCj7djsCynrtDSRNmQML6FmrU0bZt6UR7m52XFyc0Cy0fnPQuxkINjHXHby/7r8LIKgCrsv3oTPnw4vLdQEYVUnMtc+Dsr3Zc3m5ISjs+kTbtvR95MXzW84fnbM5awsQXA6fXwhs2T/mHxfMY1kYtiNeHddXV9y8fMFms+Ldr36BN77wmPVpg/O8tisuq3747pnXyy366VSWRV7udRnXrrNARB3oFcp7bCzPjgn3W4GDK3Xdm8SzLPuyn7LsfwZEmXrpAlCkBzI4djQ66rWL8Z91ccuEyFqM4ILeOViiF3PF9LkU50CCpUDHz+ajCpfl4vB8Vku7yPN4+6CLG5f1nViOFsKfRHPcxPqaS8eTwKG4JxakmSlqFtlUl3prnYPLNT2Wkx7xzsnh88t6H9SZee5fjm9dlFWp+wEe0kN6SA/pn+mUJfKD87/NT07/Hn/+xX+ff+mT/wkn6elrzwEP6SEtk1uf/byL8JAe0kN6SH9q0s8MUkLFFOmY0td7U6pLEvqiAHbOmTI/Z7IKORclSQkf0IaG0DbEZKAh86LXEtZE8Co067aw6DiaVeB2t+Xq5ob9vkeTeZDlmMkZXMx47/DOE5wQoxLHwZiRPEBmKF67TsC7gG8gRvOeNi+hRByEfhfJ457zyw3Pdy8YtwP7646xS8RkYR7atafvM+OQadpAHAbG6kEdHGeb00J7r7x61XF13THETBozwTdkySAjzSaTnefT5zdoiqw3azbna6PTv8sMXWK1EdSNXN31iAZwwt3tQN9F8uB5dH7G5buPyAIf/OgZzUrpFYKHdt0wDJkcE1kT+GJwECWNDdubxL6/w3kLxZCThWzQamjJ4JxnvW4R5+h2HXFU2lUo4R8iOSsxZVNWOcG5ROrNG14pIKDJA1pAapgWC+ehujDUFg9nnPUt5xwuKFnHcvh3xsaQlSxKjBkhc3rRst54csx41+JQgsuoZMYYcAkuHp8Q2pbmrqHb9wYkGyK5CdOWMkeIyVilUFPgDNFC7JHNfO+Loao5ES4ebwBHn3qCC1ycr7m96XFuw9On53T7LS+fb40tABi7xO524PHjp3S3e4Yhc307sv38lt12MCAUkf0Wxl5Z+1u2/S0qgR998AGNNKQ+GRNPSDgXGfqEC00xisTJWGUgolAUDgLekzUiWRAXWK1O2GxWpOEWcQ3ivIWsK571PmaevPsYH1oerx/x3rtPOH285j/5+3/I3d0NouaR7jDjTcIMeb4JZljTSGgCzgVijEiwMBxQDL1ZSigyJeWenJXVag1pJO87dEgMfc9//P/6Hf7RH36Xr3/1azx5+gb89n+Jr7yx5rKAE5SqUClhjgRGYEAZsX6WVEtkEJkUP26haKlerpNH4WumPTt4FDClPTRdr8b8Y4fGJfAFwKtBOEK5wS+U45VhpioMPdBirC0eU0YlgaEAdBqgQRiw+lY1oC+aORGsTZZHpknZZArQyrByVNEjGVRtWVU2Hty2uKtS8R/eU+nsgYV8izJ9kV/mMNlqASkLt3d73n3/EsikhbnFsouIBHJ0/PhHL3n65jmr1tE56PsBZb1g2FlCgGBiPVjU51iXCOAPzAo1RI6taYnEbgcped75wvnEg6RHuSnK9c3I3e3I17/5FO+tL2W1NnYqIBVaZwZSHZWPfviKt996wtmZQ6RC0kqfmcwXC3/4heZ1WQLzQrUQQEk8itJ3mbu7yNvvbvAhlZqaiUakgLAG5ZNPXvHGF59yEhzXz7asmw377cgf/8H32ZytePsrj3FN9XaetczV+3M2fyxNLSalsWhc3SDcftThe8dHP/iE3/87v8/6/IS//m//db7+W+9zeunwLeDlXl/RxTsM26Fl/j5UyEr5XUSKV/CsvV0q+GuedY8jIgTnDHtWfszoxCpp4QlkCgMygWOmsizCFCzAUq508gqsqsPBlxBTh7pgm5+ccwZeqbRDefajncZ2GbIzQI3yzuI1PtMR1M6BZAO2kktouoUSPRyBwqZGFbH1RAwUVZlTajnq3xpabumXXvPJWLm0NI5SozjNzEHkWXlf77cK5dkQJHVkytTGmpc9jgKqtkvG5Gf0TeJkMq5YtCqZAF0iIM4AFTM7mgm5hodaWgKW8//c7gsjBBVMU9oiz33NRFAbscp7ca3kM4V2FAPRyNJmmme5TRxmv9BGhZllwdK8V9QSjsw5PzFg5oIOnHEQxo7knFj4sjIAFCYgdAW0W+gwe9Wu29P1FjLYiSfLHLrY2M90Ym9JNaxxWTNtT1tKLwaAciUspPWjZO2aba5OOaEt3O63ZM3kMRPHCsKys9KI9Y/QOHMSQKb5pVk3BbQFw6AMQwmZnTMheGpn1UZAHbv9iCC04mjWgXGMjJ3tudpWyJpL3UGcI0Y1MIwK2WfWJxYKGHqaxuMbV0B4EU2FQVStbYwVDFDH0CtjHIujgifFzBS2kNnBpV0FfOuIMeKTyU2zWji5bJ8p40ULOKlOJlnnte6QrqBeL/NbnSspzEBqjHUulDacQrPNvVCc4IKVT5ySYwGLCrTeMWqmIdgY9opKYrVuyMlYfM0hYJ78YlxcV8CX/Wq2tdGJFGcGT5bEah3sPJXNUWO1Crh+RLNjs2npuv3UN+pcPfSRzckJZAu7nDFngdpGWSF2FgLRy8Cu24MIKSaCa4zBCcDZeBljRpyxmNXQZHXumkALBSRaw65JGX+bzYo9e2PaFS1Ysoz3gfXKs7nYEBNswor333sL1wrf+eMf0vc7C7snBbTsDAiYNU/vVS1j2XljZp2cLtwE9pMyM1YGEkIJayp2Rs05MzxPXF9d8+rkMz46/4Crr3zIX5J/iy/Grxq8ujafzutnmv7Z/HC4/5DF/w+vTuw5ZT6b98yV0wbmX5bPLXOusyLzWaLsxZ3OuTpsjzeFkl3moPNe3GvdK2lhV7JyBOxsEsXIs6b1npllVDlkYTou7/J9UzEXvxyfGV5X3+Pf695lCp8o999fPy13TLXsSxlWMEjfRwuvKTP3zrQ2l02e4NjtOgTHeuWRPhIu3iRnNdAir0+1febzhN6rnxwWfCpx7RU5KX2XOD9f4aReP0wZGEe779GjDX6xB1iCsKcXlrng5rZnszmhXfnpncey1OXfo4s1VJfVoawBmMNITspuHzk9a3G+AG2nRy2crWZhu+1Yn6/xK8dwN9CuGrZ3iRcfvyR4ePzWKeLvt9+B2KauVs+d9q2yhrkM++sREuxudnz8gw9RJ3z5V77KG+8/IqzU2LPrHvMIOHjYMkcFOCrY6/rCNE6P+uT0ofbpZbZTWx31k+V9i731wbt0sbtePrjofNNvuthTTueeKsFlnuW5xb7WycwwVJdfmMWHQNUDVGeS+vK5XItqyeJ9S1nUPS7zuyoyR5c3cliOWuypD+u95jpI073lf0uW1WXdl6f66XapTlJz+9U63RtDxxPhogBS6pjLOmtr6kKu02Si0/leF89Oxa2Npotr92pb1269198odZrWN2FmeZoK/5Ae0kN6SA+pptHt+btv/K/4wdnf5m98+O/y9bu/zk/fIT6khwSbL/+Zn3cRHtJDekgP6U9N+plBSrPRRSEL6qqXqNhBWQRfwzpVyn+Kl7ECOMYxMcZITCXUiSo5RRoCofEFCOLwAcYU2e4T8SbS7S1EQtMEVEZizoh4mtCY4ts7Yky4QRh6CCEY8COap7FznuBgtWpoGk/ORsO/3/VoVHJ0nG5W9B5e3m15ubtFNNH41kIYFPp4f+eLglloWmMOgqKUJxNWrjApZIbRjFlh5XAu41uH8yt8C9tuRxwdQ5fYtA2qBfgjQvaBN94+Z7WG65tbbrYdQ9+z3qxpfUsUAT+y6+9oY+DmtiOOiUeP1rRngRgzfX9L23hULKSbAXDUwlgMShxHYlacG5G1o+/HKQSDaoIu4T20K6HxntOLwNM3zxi6SLfvub1LuBjQzhTxacjkwWAUNR6KRQRY9BlXWZN0CvdjDFwF/LNqGYbBQr15j2/NU3zsE6grRiFT7m9OG84u1oiH7XZLHBTve05bz9OLS17t77i4XOPFgVfG1NOuPDFa3Kj1ScNq3Ra9gefmuuPmelcMfQmhgHzGXMBpjs1pYH3akkg0bWC/77h4tKZtVjQhMKbI7q7j6iXstnvQwGZtXuspJsYucXu15e52azTuPuG9crZZcbfd0/WRHCOSAzd3HcOrgbb1rFeOruvoR3A4HBbqMLkRzbGE5XPF+EIxpBlzmQ8e54WcBJKN0RhHzi4fEXPP9iZaOBMy6+B5fHHG2++d0T454fMXO3xI/KW/8uu83L/k9m/fsrvb48QTvHl4n5ysGWKiH0bGOKB4VM1r3zk1A2/KNK1Hk2PojQUhD+ZVnnJGXMT5kTxa248kQjJj3O76FS8++D5P3vgCzdma21//Jl9/uuGyUdoyvzgsFFxHpsOgHgPGDDMBN1h4805XZvW2LFzelsr/qlfKVWlWnq0qWKeHT83f5lTDMlRFv0hl5jlOs9IrCKzL/V4MkBSK2rtFWJd6jlh4uEhVIAotpljrMMYm85CzNxx4Hi6kUY0ys1wsD13cf6iz1gkksDT3OZjp3rXItyhFj1mX6t/6z9W3FgPC2JvxsG2sBXIh1U0WUAwKLCgOiefPr/jN3/w6jWAMelcWprEa25bKWJjXsqUnayrqyAP/5UlZqdM1XwwbZHjx6RWXF+e0oYT5KWWqBgpFGEbHZ89e8M4XLmlbmeppIK5cPJ89SGGTyspnL/aszldcPD0pdaj//D9B8TprHuVA1hUcamAnHeHlxzdcXG5YbZYa2VSUrImUHc8+27E6XXH6ZMXN1R2nj1acqOMf/85HbILjN3/7G5w+DmSp7VFlOr97Kd9auoX6GheVq2d7dnvl7sUtf+9v/R26bsc/92/+db7xF7/E6WU1Ch/Waa7jgRnhQBGsZTAdK8FN7rOGvOrPtcwPIgIFrFui2hTASHlEpfSBUqtFH6tGXy3g7ClsSlUqywR1nJXw5fdUgC+13xkwyfZWaDabSmX0UVtmA2VuWirCDa1Rnj1U3C9DlFXjnPOQaxgFPxvtplAeUoDpNYRaKbCBeOpYKYYJXXgeFwCSAcN0qnWVAwXkoAU4hip+YgfSA6Gn8nwF+TiRyYBdGSFqd8hHXaIClLIaq5I96ycjdAWUGeOYq7UpbVcA06WhVEGdMUFOBnExUHOVtStMH6WzULBpk8HfxlidFxdh6hS0hqxZAOcmA8iCmamGEpmwGvVDMfZPDEvLkEi/YOlgNahG6CUYdnHeUOrYsD1FlXuMyfbvWsC+FaCmFoKqgosqqCaNBjrSwgpUwYV1dnLOmFqcKyAHBNUCVHSgZY9VwRnOu9L+gBprjRr6lLa1s8C+G9B9xqGFhdaezynTJ+vL3mMh0UI9S3mbt0m4QrVVWXR8EKRxSC4gruDox4GUjKGpbQLOB2PbyXYWOj1ZIV652+4Ly00mOI9zHnQkpUTWSNd39IPt6TebBt/amS3lCKLG4KZaAEOWcrb/CTYucgFzTaR9KCQlx0T0xhbnvGO9achJLf9k9YzZTeDOef0t891in1GBUjJ9rlNF3UMYy25KyfpC7RvMYDaEyanGN462DWRVhn4w4KVTGi/4ZkVMkWZV+DsnRowS+g9oWmdhucuc1O+Ns0bTvAZVxhXnwDd2hsQlgptZsdrG2iQbARBxjMYGpNA2De3K+kUcE048QzcYIFuVcbDd3qZt2XcD42iwEinAtJyVtvWsVoG+G0mGysSLx3sPRFKKBt4Uh+rMZlbXUuurxlxc+3kcI2kVmAy3KCEIJ5sNJ5sVm9OG6DLxriemgdA6ru5u2O32pJjIZY71wdG03piiojk2qJYw4VkL+66tUb5QAta1cGlQzZqRnKY1L2rG5UTbKGMcuNrfsr+74Y+85+rtK/7l8N/lC/oVWp13LoESKlorWKnwzcjRfn9eAqapbJ7bjjYf5b7lc1NuZS2Y1saajvaeovO5xEAi9XY9YrlYbggooKY6y9l67sqcVc8nodS1hsc+ZhGN2DlDD1/EsiaLETp/07mOxwD+5RoniwuLnfq8yzu+aaqizvcsRDdthcpMkQqgrW08FcbrpvayNciAhHB3u+fsbE3YmXOS5lyY0ZZ1nPc+tX7UPSGHLXC8Ch9KcN7H7nYDq9aXkJu5rOdLxw5bj+5u96xPPE1zuCuu59LJ7aXMjd0+IZLZnPppXZ1a7DXnu/rc8d4ZlmBxGy9elf1Nzzr4clarsqnwa3vFbjuiCOsTA8/6lTGmDy/vaNvAO+89oj3zR8Iq8zmL5q+tVwfSVFvr58PO9ItDP/KT7/+Eoe94/xtf4cn7l4S17YkWJVuMi/uVXYZmZrHmLZrsYFzddy84av+jl019ZPH9AMAkR78vmmwCHZUHDwA9LO5ZvF+O3l+OOtPLjxmiluw9dr/ey1cO7jka27Io10IWGWaWoaUsy0P355JFzosL03wqh7KuRZHjDJZyL/U1XYUc1CVPlZwLd68cy/cvf1tOAwtZLYuwxMeZnKUe2+51RjmoxCL/I3FM+b+mTBVArYuGmI4Mk+yXTizcW77y8cse0kN6SA/pn/Uk8Gzzj/j3v/Lf42/+6H/P1+7+OR7Cvz2kn5qWa+xDekgP6SE9pH9i+tlBSk5NVTd5WdqhZhwtcJH3HhGj+HceVquWMY50/UBO5nVpBqFEzEoQjyuemzmN5AzBO4Y4slq3KEYh752nDa15UWqibQOqSooKZAstJUaJDxnvhFXb0q4d4zgQY0LEQqklVVIC55XWe4Z9y37oWLVCdD277Z5+n1EVnCjtOiHe0TQtwZui1HuPD4Czz1IYo3LKxNRzfrHBO0e3NUakcUiExkKfbdoG5wIigSQZdZlmfcL54zfYd7cQM2+eX3D5tKGXxO7qDlU4Odmw8mtSzmgT2cZI0zTsdnf03UjjhM3GE9ae7nqgH3s7ZDpj6vACzhtzUGhKaLQQSDFxe71Fcz2QG8AsJxiHxPWrPUkjm3XLXRjQWEKY7UecBHO9TGaAWbUNKo6heBfbYXk+1dbwG4J5giMysTuklGA0Y4kZ35QYwQzr5VlRVqtAu27IGtlu9zTNCqcbmmBKuH5IPPvsBrf2bC7MU3mIkRwz46DsdxEfHKu1sD6BNqwLwMeMYPu7jpw8wQUaCajPeA/NyiHBcXO7pW1bvPN4WaGS2G87dtnRdZmclP0w8ujyMW+/c8Hb7z7i+vaK58+uyBE2q5Zt6Lh+dcvtTc/ZyYqnjy+Nin2/wwm4HHn5/A4V4eKRsN54NJuBNYvnyZNL3nznKS9ePOfTZ5+Rkike6z8oClNMA3F6dkIcIvs7C08RU88nHz4roSoaYoycnpzwS9/8Eu+8+xi/djx/9Yxxt+Ougb/3+3/IP/qTH3J31Rvhi4AEYyiIGi1kH2YoMAYA85wfNVmYldAgJepWyBSjiym7jFErk6IF8hr7xJgHmjSSU2LVrNn3medjz9/7j36HF5/foP/Cb/DWkzVPVi0bCpsHyoAwIGZYkNqbq5JpVjAe61nsDr3326GCcckFcl95W1l0FoQrKKbgd0UZlsovZhRYkuzDpFiuike1cA7L9zXlrTWcQ1BlJUIrwgikYuBeYYo3VQuFliZDrZV2yb6zlMkx9byDEkrEal/rvwxjt5TB8d/ZhjArkmt93EKh6xcBEhKQ1ABJt9ue8/M1K1fCUAkTwMPAE46kwvNPDZD5+GLFSgBN5FHJyYC0vryvGqyzHrIoFfvE1B6VvSovlMC6KG8qxqHru0S7abl4bPPAbICxexMWvujZsztONg2PHgXjYijvAyubOC1rqfWe21eR7cstX/vmY1qvk6GusqPUcAGCgUuqYrJqL5fKewViAXgZSUXi5sXAugk8fdLghRK6TsmFLyBnz/WnW7rrPe9/4036Llq/Om/48fdeoE3iN/7Kt7h4syl9tDC2LZXfVfla6pqZy2R7B8WrcvdqpNvDEEd+92/9x7x49jm/8c//Jn/2n/tlTh85C0/mpISFrWCgJQzjcI2ZwmFNpfrpWlXhUOm/1Pg7N62GBsKWjMrsHT6tSeXhCkoTEfM4drMyvraNmPa7sOaV9lELGVU11yLFoFjbN2MAmAKEqbOYKZfLOg4zo5vIxJCRdOEd7GVhZCnjqfSjpAVwKPYue6/OYceKTHJRrOcCrJjK6y30KHV9F5kZRGyY2v5CZ8a6XAFZBVHkatnrPZixmQIUcxUgVfqbqxp9ETRVVg+rgxYgB5Q1SSjhFcvYyzN7k5tkLPMcWCeuYnGQhdWoKvFt3aK0pd2XtbJVVaND6R+OqV417KiJX6sdcsq7Gi9E1Zhl1OqeShG8YACbakAo91eg18H6Vcrzi5qkWv2X86aWUInU/lDAO96A7CknUjQwDswe+5VJxmRSvcUzWQRiKs4EpV87V5h2TN7BB5BUQhFrWSMANWcDV/q4D46cU2HWKsbOrDh1E5AoJ0dKkbZ1RDLDOJLHwvriwGHnCcGZw4Whqwp+34A+tnfLZhh3QmgCIhAH6y8xljDO2NphDghlXfeFXcsF+rGjEcdmtUI1MyalGzN5iIQQ0GgCW7cN+z5PIUgdigs2t6QxM44JxNogxzJenYVjq4PA9p6enJRhHOdJcrETSCkTdxZEs2kCQ1dCvqmBmwSZQhSLKO2qARxDTAVstOw8h6Bwm4PnvmSgqzwZtlVyWTdlNqqWeR4x5sWhH2mahuBbpAHNiZQyt9veHGgakOBIMZFiKucGA0N5D4g5zog4mjYgzjGWEG3Be5omkGtsUIGUIY2KdxkaAyqnZOH6BGMJCsHm89OTEx493nByumbX7bm92ZHGzNnpCSKOq6tbdID1quX0fIMq7PthmsyGzgDIzoOMOq0RKsLZxZrHTy559eqKq6ubMifP84aFQCzSVp2YkuNoQKycYXe7r3eTJeObFauTE04u1qiDuNsSuwgBPvrkcz797JXV3WKJGruNE8YxohSG5mk1Z1onxBVwalnbvS8A2hridgFsrGA5Wy9yaQcDUw3DnlefPSPlzP/j/X+Pb4Tf5Ff1r/EkvjkxgC7/zXvXY2eE18+v+k/5vcqqnksO5u3FNT24fn9/nZn3C/eQUq95W10zHBQ228PffcnGgCh2vcJ2D+Vw/JayH1tM5/M4m/On5CvLC8uP0wP3y1YdH15Xv9e9p36zsisxWcGa4PDTDuxY9qb32O9Gnr57OnG3xqtn5PSNxZnmfv3uv3u+tpTXAn48XctAP1i40tOT5gBwuXw6A/su4sTZfQfv1KP3W82HTtjf9jx+siG4xc8TqOp+uYVD2RxEUi5vsrGR6Xsle8fpqTkZ1rtmBhqh3yeGXc/5k1PTIY2Z1UnD9qZnu+t4572nhDNP3Qrn+tKFHO61bxHNfDJTxj4zjJBz5iff/5DtzR1vvv82X/jqm7RrC6NsZ9g6T/wT+iIzo9xSTvd6X+mXeiB/ne4/zndyXFhcX34+fslyh1QbRRb3LJpxngKW9x0W6V6hpnP/4Vbs/rgtf93ifRPQ5eg1CtP+X2F2MjnKG2E6jy/rM+UNJRT0/XfDgqlXFzIpf+tzrnyfQjrfF4E9UjKp57ha+iobJ0xAxYk6e2qYuV5T3Q/YdUuZlvXjsC7LtjvACr2mvxykWr9lXaZBdNS/JzlZp63l0SPZc/RMHYoP4d4e0kN6SA/pfroLz/g/fvVv8utX/zZ/5fn/kLe6Xy1Obw/pn/WkcZwW2f2Pv83J13/z51yih/SQHtJD+tORfmaQ0nrTTt7jik5es1pCLZgnb2a1btis1jRrR9on8x7OSorZjAPicKIF2KN4Z2CVoY+MCEgmjlC9jZuQcM5CmFWP2Jwy3hlwxftK7a+omkeu88ZsJM6U9uIcq3WL82ZUaIJnHCNd34NTVqeBIUUrT7ZwWX7lWa8DoW0YYrKwOeoRp4Sm8JpEM9i1vmE3jgiOGC3EXBpBVcjJjGTnZydkTWz3O4Yh2eE5KPv9nmefPifmHSfrFTle8+nnPaODu7sBxpGTtSPJyPl5y1d+9Wv84Ccf8/LlNaerDY1TNMDt7UD/aldAXhvUZfpdj2IyalcNKUeSDoQQaJsV3ba3WFII4lwxijmaxmAU+9vR6jkmXAmLoVnIycIDiUDTCsELF5en5Oy52/Xsdl0xFOl0MJ71KrP2QotlbRxTUSKCaCbHjDiPD8GUxlIo+0cYUmQcE94FNiew2QROT9cMw8B+n+hiYp3Br0ak9aSodNuBFB0hBFbrQNPA0CfGvqPvLdxf8CsePVojmri43PDk6SNwmf1+y/X1HXe3kdgH0pgg78k50/eRVMIkBOc5uwiMXeLkFJ68uaJZZdrc4BqPU+X9994BlFevrsi9crpZ8d6X3iKJ0n3ckWIC3xKHwfpwyty86un2sRhrPaePHE/favn8qjcZp1yM+IIWN++JhSDBftsRGmF14mnbNXFIpMHCv41xj3gYo/DxixcMqx0pZ7Yvb7l93rFdj6w/es7HH70EFS4uz1AdOT0/Neao7UBKkGIJZ5iMSn16f9GQDENENNOEpvQFM5QgHlUhpUiMiThmVALogI5CaiE0gd71fP7ZB/S/P3C9f8E3vv5VvvGNL/J40/Lm5ZkZ50TJ6lEB48mY+V2EOXTB5MWHjc/yoTDhWNkOwzocqouPFbiz+WJWmpmiqRhSpCj/F/kdK8uWoKGl7aB+9Biwaakwqgw7DVImcZnyLfbMA8VSrcOS6WZS6NXxeFQ3tygXB9crEOQ1YCWZ1cYH77onx3vqNgyGZEDXu+2Wt964xIvDmSmqhLZwxoSjFtrw4x9/zjtvP2HTGItU8I7UZ4Y+0waDQ1VFnLBgk5nKW5muFsAlmX+fdZFVvo6uj3z27CVf/uIbtK5KNS3yFciw30f6fceX3n9CEAO+GpVFYTqZ4jWZD3u3h08+ueO9Lz0htNZjnVTenyLNBavQgYJ6UW6TsbWCx8BcSOZ2B6/6xLvvbgg+4WnL/QIFrLTdRl5c7XjzS5coif11x8Wbp7y6Gvnud5/xy9/6IudPG8RBQwFj1YrrYXnqvF970UzlL+zvRl5tjcHjP/m//x0+/f6P+Mq3vslf/K/8eS6feBqHxW7AQu0swwDUETetKfPiAthYOVSuzw0qRXFdWW0EC9tY86wMEoKWAT0bwCelLjKFaawMZhUcIaVvIjKFqpq8VAXEC5IN6FCN8t6JgYCKcr2yFTkBdYcybQo4or6GMi4o67FK8RSXqWWptZiU1IvO7bS+r9wjzGHJihEYNUAd4qghWSnGbOcrS0EBOInNTU6kPFNAo0Wmqga2QapxedaQ+xKiK1fUoIM4GTF0NqxKDefDBJYQMcx0BfoAs5EJKSxNoCVuhbG8WflCcamuRZl7ae05OhkxKkANjA3JVVBWuV4BVdS+YlaaZS+0dqlsW1TDgc64DgRc6YPKgarLF7arQrB1YDyqydai+vLXzbM//9S089FDFXJKB8aZGprLOYf3wULzxQqIsbFDAWLJUhbFQJRTnmSbcwl+Kra/FGdOFVVEgoEvwPp+6fIGiBDK3sICJNWZwgVv4KICKEvZQlj7IPjG2XlHHOJtdnTOERqHq2HkKvIsZyQEBFfAfELjA0POkGEcooGQyvIizhG8sFm3xBQZxlRAPgbsG8ZIzltEMiPK3a4z8L9zoDNYMng4O1tx8fiUz168MoZPBU2JnAwMlbKd8bzzBvRxIGXucaKkEpbLO9vh1BDeNcS3FgCT84ITxxgjqDLmOAPpUZvknOC9jR8pc5CBxGTy4p/ApCaJozWvDt6yRqRFZzKxTmEA0Wzh96IiycBM3tm5UjXTtg2ZGkZQ0DGBM1ZL66vWN31weC9zWEDMaUeT0DQtl5fnCJmmdaw3LeIdQ9ez3e5Io0ASYoygxlRV1wPEwqm3rZ03YuzpB2uDfox0fcRloW1bur7HlRBJTSNsTlcM40jXdaQCylvunWJvIf5UjDku5sj1zRXb7ZYSEdwA07Lc2c6C7PuR0DjadUPbtqQxoTmTogHUpCA9d92WHHpSzPTbnrHL+DAW55gB54XVakNKI03bFIBWshBumWk+rX2otm9W0GjtFFzAe5nCZ4IUXYSxgdkc4Ww9KRlbeMiRu9tX7Pod17ev+OjRj/mjx3+Xr/Ln+I3Vv8yZPCWUXXvpySz36NNf0eW3Gcwx7bkPTrwH6SC3CiCWwywPjMbl7ilsWx06HO/bF7vynzL139t7LxAFokzrNhRGLy1OFnKY5by6HNbwYDsmP83BY7EaChN7z5xzlfFS4ssxvfi+XG+PqlSfTDERgivnPJnWf1t6Z/D87fWeVRPw3SskDXZ9HEljtvP1QgYCC7bew3K/FiBSPh/Wy9aP/a7n9GRFkPvNJgWEmmJmv+u4OD/BlxC088iona++T0lZ2O56Ti83uEaKloAJjF7LcDjCX1+f+qE6nTggRuj2A2fnK1x1YjyQuhCjstsPrC83qFfGXWS9bhiGzOfPb3n05IyT0wWDkugULrrW4/CMudzTzv/iCH2fySgf/eAj7j5/xfnjC97/2nusT8K8/8MAkJOYFovIfJot+7J5SZlDuh9OAEwNerTnu7fzWjaPLvrIayYHXfYBPZT/gSwWeU7iKt8ncM8iL13Up/5Y9R7TVnH5vVzKcliXSQR1Ta5746Pf7V0zQGlWt8wOJ7LYLy9Tlc00vxU0lavynafOuczMZ5iqn1zKZTHdTvlPzVjW9iq3pUzl6HmOry1kVmW/bKjazw76Q8148beCb5dArWX57/WXw2HyU9amxY2LTnXQnjKzTB4VaV6H9Kj8D+khPaSH9JAsCXThiv/06f+WP3z0H/DrV/8Of/n5/4A3+m8QdPXzLt1D+jmm7uPvkfsdwPT3IT2kh/SQHtI/Pf3MIKVmVYymzkyAMSaGYSBH8+TN2RS1prA1oFE/jOXgY8eblCNN4/HiGbMptDO5UGrr5I0+9AnRxHrVsm4CBFPAJxVSUlJOtKEhqTKmWBTjjs1mQxwHxGVc48F7xmQK2TFFghNy3zOMBspZbQy4FFqBwbFZBwYnaDLFc8ygabSyRy0gHkhJcC4QXFuASg5PIA6JvRrddB4jq6alaVacnAbeePPcQFF3HSl3DH1kt93jxMAZ4uHFq1fEISFZOTtZ44MH8Vxdbdm0iTfePDXvtWiK6v3dDeRMjIpqQ0yRnI1lSRQ256cM3WChJhoLQ5CTeWmPfUe376cDrpb4LqoWos8McXZvvyvGAydTmIu2dYTGADhDP3J1u2foRyqEwXtfDE0Wegw1z2DBwqGMMRWDgim20pgKiE1pfDBtRC6e5wIxKWOfcM7jxbFZBdrGsbvbMQ4R8Z5hjDgc/ZDROxiSGVCGPoLCerMm68D1dY+TBucd+92e4Fc8eXTKL33jKyA9Q7phdeoYerjbj6xWwpfe+TLdPvGDjz5mvxs42TRs1h7nGxRvYLTiBX97s+PF8zva9ZquV66uO2RUrl7dmA3NOVwrZKd89NkLrm/2pH4kpkQO4L2xNZh3Nai6YiSDZ89u+eAnzxmGiCaHFzOQaQHwTcAHTKkwDiOhaTi7POWdt95k3TY0Qfjgw8/45Ccv8GRWYSS4DlJge7Pj5WdbYq9EUV58/inrZmCUzOXFI/q+w0mmFdCVY79LqLji7WwMBhK8ecl7xzgas1ZOkXUL601D07rijS6MI+QhTd7SGiMpAbkyHkTS0DPst1y/+IxnH3zAD3//j/j9d97lvS99hd/6q3+ezRtrzhtHIBEax1kw4I6gE0Co6o0EOPS8ZwJTVK9hyl8D+iyDWZWk8zNLte4UhKRodzzQlH82mgzKEhdlquEWfoq+cm7II4VjVaQ6tQooEFH2wA6lZ1ZKO47NEkVJOClTD8FGiMyhJRYFszrUt1eP9kMZ5EVOy3ceA79qe1SWHSmq4yBCHo19YLWuIB57WyITDK4F6ri72XP76oZf+7Uv0jiTs8sYk1Ksjx6xLpRPbnFtqVrX6eoMWqoiyJjn56tXI2+9/ZjN2hUwQF6wMRUv45j59KPnPHlywXrlzNBV2so+zKHblExMLZ99fsPjt9acnPkDhWMFQB0byo7LPLMHzcYFr4XRaBSuPrzmrbfOOGvcBNorVmsExziKGQ7euaA5bdhe73n0dIOO8Cd//0d84QuPef/LF7SF+cP4oxxhIeF0oNYtQL3pN5m8xq+venwSfu///Q/40R9+n0dvP+Gv/et/mbfeO0OahDM4oZVs0ceXivip7pOCd/699nmDK5cy6Vym2i9UmMI2muFq5kuY5T8bKbVS6NScRA4MUq5qqeWwz7syYYgwAavr2JyMJVPoOHtflgWDUTbQQ2XXUVV8Ca9h9tcCGqyDVmcDgjHqCGQDlc9AngLCyEV+IpViAxWdGJqcOgMwYKGaYip5FpCRE8CZ4SdLYYey5jO2kmKAzKrmYSwWtkR8Zc0waRZixrlfqyKl83hv86rkOn/KBDIile0CM0saRU5RbX+Zs/UCLXWs7E11HrB1Wcr7jbnQZFiM5K4yTC0MKNn2vuJkNmjpvKZUmVqWM1iy5jkDKAury7JjU7nTlrPRbISpk/8ECC4ht6SERSP/YhsVtAL5aug0Z2yjhfJtMtDkrBYWSucwHNXIOrGOyAyms2FW+6YJ3OaHTBMCwRsNUSogpvquypgVU0SwEH/tqiWliJIJ3hgrRwsSOAEhUJDCzrRat6gmVDPeQdM4kqM4K2RSniHQFUTogrN+hMOpzftaQr5lTUiuIR4Lc2sBWIXG4UNTZCj0w8jQR4RMlGTh7TRP+4xV66xs4tjve7wbcS7Tx57t3sDmsS9nnZyp0N2cjdLLe8+qDeRU2KWCZ7vbG2AnJdA0s4llCtjTZGvsiGWlX8jblblAHPhg7EwizhxIhlhY0srcLNNMWdrXQvMJ1i9isvNEbfdpPmPeA0z7lTLxa5Zp3S7RARmH0UD3IZTQc5mszhi8NOKcgcxQCI2N3RgzTixEdM7QtoFVGzi/2CCSibknSaTfRfp9jxPHG08fIc7z/OUr9ruOVWvOE+IF1M1Mat5CoA194vTslLGAeFLOXL26mlhHxAkxw6efvWTsUwn7nKdQiDWEoaqdXXO21Xu3Hbi5tviHM4B7Kef5UgVNarY9/nqz4vHbZ/ggfPzpc+KriBdogtIExSsMQ2Qcyr7YCTEOrFphGKM5ofiGnBPeiZ2/h2z7/9raxXKqWQtrsU6hySVkA554G1e5nmN1Kr3VuS4qqfaNyJAG/NATdz399S1Xn73k8zde8JN3vsdl+AJfyt/i7f6XuHBPOWsNslQnpbrsTHOZzECKgxBRx3Ne/XAg08Mb7u3tdH7f/K/sGmWRp8572bqM12tT2abMD0p/UOBlD0hYSOmRaTlf7EvnFekIq3VQnvpiK7FMZ5j66yS52tUWeQlLFs5l+e25e6+d6Zamshrw3PrMah1qiecdawUoYfuo25stT59c4vKunFFsErPxtDz36YE87qXFMl33dwcAm8XvfZdo24amPTqnadWm2P27bcdmvaJt3JRXXet08QwoWR3b7UhohPVK7p8BC7pjeW3aS9Q+cTgdTLIWjIFzfzdwum5YBznKqbRadmxvO1brQLvyjEOkWRkz4NUnt6xbz6MnJxOLnxVrBlLp0buXZajlUiAn6HYjkuDZj5/x6tkLmk3Ll775JS4erwrqroyPCckm0zvk+CVHqJkJoMS8rZjktJBJ7eOynAQWYqn9+7jPLMU899tlv3lNknvZH7xj+exUdqlr6X2xTutiefEEQFqWZVn25Rw2gfeXN9d3SR1mQGF/EzmQ6fRMycO5Mo8vBCuL/ngA1pFjWcm0p1PuNSVwH9Cfj9rqYEwcya/WRY5kjNazzuvn+SmU3vJdU53mvcryxcdEqPXcUOU0z8WzfA+yWABEp3cv6jjNTcxz29Q/KhPT8iUP6SE9pIf0kH56EtiHK/7e0/8N3370f+Wd/Z/lW9d/g2/d/Bs87r+KO3ChfEj/TCRN//R7HtJDekgP6SHdSz8zSGm3jxZmyCdCCDhn9PFZBVHBiUdESTnT9T0+igEtBGJOZnxWSDEC3phhREzhHoonxxSzovosZ1O0q3lwphKGRETImiev5BBa1quG0/M1+25Pt+9xKjQhkFf1YJcZh4RmCE2DF2W9cqQ8MIwjXjzrk4am9aTR3tcEC8swDAPr9Yoxj6zOViCOvovsdnsaH9icnNDKmmHoCOJJebQQASuHMjIm5WbbsTlZcX4J7drx6uWeu5uOFCP724EYI65xrIIrxojA9dUNSAM5kuPI976/o/+TSFJPGzzBKRFhHEfEJXwx4OecOTk94eT0lMY7Li82hFXg23/0j9ldJ8bOLPjO+YnFSot3sxMzFKooiJ8Ui1lh1QSa1tiNxGGsEM7aOQ52KK4KfM0WosEX5qzQeNbrFueEMWbytiNGBU2zcqycoseUcBnEQQiNGXXFvONztpAA/TDSjT1xTJxqYLNp8Jhhx69amqYhDZHQSjF8jMQ40LSBzXqDD8HAPWnNxdmaZpW52r5AfAKnXD2/YXvbk+NIGxr2ceT0ySlPxws+/NFnpLbhyRuntCeBYQRJDu9XqMLddsf1rmdzvefVqxuaIOCFP/rjf0wc1caSE9o+8tkPP2LszRDsJKEx0bQNIST6YSCrw/uGHCFpZHe3I0UzBK9PPWMfGaOBhAz2UDhuimKkEYWYGIdIyonf+PO/zqvbZ3zw2Yc8ulhzvvI0l2vaC8e4H9jf7Om6RE4On8wD9fLyjK7vGeKOdr1CJLNqVzx2gd1dRPAMKbPfDQx9xxhHVDxBBC/KqAm0sCbFRLCoCySNaLI+IgJZzdNeFTRFhi6RGm/tOvZITGin3KWIT46vfu03+KPvfsz2H0bOTwPr9YYvvnvJr37tkYXGQUmSaQrDkoFJzC86FwhSKJ91oUIWKnjADMyBQ51jVVRXz7dZD2bHDz99M41WxgjLlqCFCuYRIGAsQL4okVJRH/miIlt6Dtr0OEOFakkyQgfsgaFcv+/XOpfy0OAwl/c+EKbW1JI7uDqz6FQl5VIpttR0H16fjR5Wdp3C2KkKd7ueVdvSBF/KVA2U1sNrGZ59csX5xSmX5y2ejMfhVNgPIzllQgkQtyzPbOpc1mNuyxq+yZdSCrbW1NF1d90Rd3su37wAyVMrOQxMI5jn+dVdx3qz4unj0+JlzNSeaWr9VBgbHM+f3ZKGyNMvnNE6Yz2okpv5O2otXidXLS3C1Oesvo4R5fPbPWdPTnl80RojzaQkVTKZHIXPfnJN4xyPLlfsbzta53Gt5/t/9BlpjHztl96mbaWEVi1gH2ZjhzKzGOXpDgO7jRjrkg5w/ewWNzi+/Xe+zZ/8/W/jzzx/9W/8Vb74rTfwK0DclKtDDkIkLNtyCdxY9u/6+3KU3JchC2XvkdaXWSFd+3lNfgGWSrAIUaEzI1NRlpvy+DXjR0BLiNG675nmHimK/WyhrqqVSnBU5p1aq1zaD29sJSQmL+Ea7g1mphnxZqwWLM8aakHrOzGDYxZjoKzV1mRsgRQwU2VCqr04iCshuKwCWspVWYbgkMEMQF2d/6pRYZaHo0SSlTrfFpATsohPoUX5L6i3kGjTbFjmfhHBVSCCnwENqsAihBxqIbdyrgxEkGv9a7fINpYsfF2msmfVsGRZ6950nk8m9qwJSFQMHN5ZODtxxkxQDD0IOLWVKKNoQS6J2r+8MJBUQEh9bwXxCRbKp5bzFzXFCEJGnbG9iJHpGLEnRealHWNOeAyUog7SaGGdVc1hoaLVRJyFmK0MR6gB5NGpjWLOkO2cgjKB70XEQteWdm6agG8ckgqbUQHx1z5a+0aVuQGKZgCgAi4YeCknJYnQBG9grJhom4aYxsLI5IijOX0I0LQrC6OYMqIUts6yD9DMGEd2nYVYblfBQjgLxNHmknG0MGPGYGR9K6ZMX0KJOac4Uba7juHazmOrNhDWwhgTaai7ISnys/HTrBqaxnGyWaFAN/YG9ipgLZONwYmXsrG2KX1U6+gAxMKlARMbkfP23iZ4kth+0cZfBXeVNcVBU0LhpWz52dlDpw5Uw9xqMgadKgvnDXRZHWoQc34ZxhEoDHa5hojDQro1npzSVJ+cDXwfgieEQNP4Mp8GvFOUyK7foWrh8oahN2cUMsE7rrfb0r9zATolzk5WhNYbq2wSfGhQVfbdQB8jz5+/sj5SGO1ubneMo8lNnDk/DOOAZpmNnmpjwLlMiqVfikc1FxCWzfnOWdi1GDMkN7Fd1LZyBTzgnbFVukJpsTld8+rmBTknzk/XnJ2uGMioz4xjJJby5QQ6JJxLrNd2PhvGEecCq7Yx1jEnhJA4OTmhjyO7bW9MUsnOiN55XGXgw4BcFn7RIWJgv7omCLY+S7Vuq5JjRL2jslUkBZeFPACrNecXl7y8/ZwPdx/xHfefsmnO+aWz3+Cfd/91TvL5tBOrIYoXNuYD1r7pl7krLr/OwNjywzJ60EG+zGvacn+j1qwTwxiLZxMGujb21TnVrcI0NpbzrNZ2XtRALa8Ec7ifZX61fxws61L/W7ClHPx6Lx3eM+916+fljmcpb5jX1XmsL0BAdZ0EYlaGmDjx7SzL+4Wn34/krJyetbib2ZEj7u5IY4eXZirHcZ30ODs9PDPaGj9fqbvRccz0Xc/l5ebgbGV/5wyHwRzHTjZNAS/IQT3ms5dJodsPxGHg8vHZxJZT83/dbpny7DJMl/VLBQ73narQDRnXOlabQ6Ob7YVNL7i963DAZtMShwhJCa3j6qpjPwy8+8Wnpgtg0Za6aONSzEnGy/6rdubVBN1dj2Th+cef8/yjT8ErX/zm+zx55wwJy5IdNtSyHQ/lcNxvZ7B4ffr4Hj1q+6Ovk4yWc6qti/PpDarMD983PTeNraPrJcd6tjXQpLymkFBZc+bzyfzypXynHjJPn7MIy34UYVCE4IUAAQAASURBVGZ+XZS/zksVe1ZrWOfdKazzkmF0Yn6yTe4E6K95yCzXJXhqOU9Oxaj3yuEP1VS4vO9AygtgTn3vNHcfyQZZsDqVdx2EXC71E52dZ3Tx/PK4qQfAucVcvainshgjpYyTbI+bWg/vRctJvMapXNx3oAqo18ptSzkffnhID+khPaSH9FOTGFjph+e/ww/Pfpf/6N3/Ob9086/wb374v+AifuHnXbqH9HNKw8tPSNtrwtmjn3dRHtJDekgP6Rc+/cwgJY1mOEkK3ptX/2rV4FxmGMbp5KaqBTjUsGqNEafXEXVG99+PgymUskJw5nW6auiHjizKatWSUmboR3IWuj4S97F40jr8ytO2DudNcdwkhWRlSSX2Z87KOCbGMeHEaPtzUoLzuGBGiZRG+j6xOVkRgqPrRmI2UIwAPgSapjAHiYUe2+87cjfiXcOwj+x3A9uc2e47oiZIiVVo2XcDCvgwElrPulDiD0M0pY4TVuuWk5MNJOXudoupJrJ58rpA10W6bsRJomksRF3Ojr6z8ASPnl7w1run3GzveP78jjQo5IT3Ar6AdUIkrAKbk4ZdP9KEhtAkYorG4Yx5CFeP/vovOI/3jowjj9EMMMW4osXIl5OCkwlodrI5Ja+Um9sbNM8H+SnUDRZ2zntHzBYyL2fzOgcxlis1o4GIo1m1bE4Dq7XDN4FxFHZ3I0PX0648q/Wam9s7QnDENHJ7k3DBDBBKCR+SlD5Huu0ACB0DccykpDx+esH6xMKw9f0e3yi3+yu6rkNouL3dM3QJcuak3dDdZoYPP2VM5lXe9x0qK6ujx5RwTtjte27vOpx4vv0H38OJsN60xHFg7DP7LpGKkbPb92b4mAxp9m80C56FLZEMkogxmvLA5YkFJWWIGXIWNBZIhTfQTRCPOEd70nD5ZGOhc1LPH3/nh3zwyY8he977wgV/+V/4c/z+H3+Pm+sb0jgibGgC9DGy20a8G3n77VMePzplt7tjHJWT042xI2Hm1K988336OPCj736M5hUpOxyetmnIaUSyGQb6zsLuDYOF1EjJer33ghcz2sZk84cYvcds/MY8hxvnGDoh5Y521XD7/JoPf/QBfey4fPw2J7/9Z7lTJQi0JBoVBhJjFpIKK2ehSozBKJNw6JHRoZLBV2e+uQSm3qvKXrdQpk3K4vJ/p9AUlgOz4Vl+abpjztOuOVYLbdBSQViV5XNy5TkpvwsRiMxBxw4Yx2X2FlwqS5dKdDeV6wimZNqxg3AMx+AnvZdX/T6z2Ryq3F+nPzX5DAhXXcfZejP18wofc6WUI0o3ZD754Ir3v/YWvoWgNWSfGZt9qOEQZmkvw8/lqb7LkhrIZvbertpRM7yOo+N2N/L2e2c0XvEEYyoSY4ZRMdDAsItcf/KKr3z5bQvHWd6eJ9mYGtpnRxYL69nt9rz33hs0rvIOLY0K/jXyqh90CkMzGV6k1szYCXd3kf6u4533HhsjzGRgMilEdbx4taPPkfe/8AaxG4nDyPmTM64+vePjD5/za7/1NS4uzAArKIiNaV0oYYWqfi/hIBaq9qzgR3j28RWqDd/7ow/4g//424Dwl//Vv8if+QtfZHNSlaYytZ0e/Z2V3XP/dMzPzKmCiUx5b2PgaOwtFMXuAABkv1Wms/Sa9+dFvxGdQTh13Na1NE+NNbP8CMaSNCmkXQVFlp5Rn6+Fqb8LU5ivQyOCTgwSQjHGL8I91IJNYEAxIFIFDYgwGUeMIKmAZKqsynuNckoKgMlAebZm5QLGKK9aKvkLcIejcueFkaPgBKYGKVOOtVtZK5eK89r0roxVV/p0DQdXw6GhJYxTBQsheC0MVVUZXwqqOhv6bN9SWEdKmznnSjimybQwVTZjgJAKHqK2s7jCgAUzw5LNYdWjv4KzLIyxTpWvzFsZPfSArvXyUkD9dp8rYQCX8hG3nKl/wZIa2ECnseEITUBSJo5xXjHKNOzE4YM3cIEIaVRSVqSE9arMnyKOpjFWUc3Z9pnJABNTCCipwIYCWPE2WJ0zgFNOanvRIVrIs5SLBUom4F/WGVxFad+UUgHO2F4554x3HvEOi26nExA/pkRMmdwNkIUUlyHDEjEnREuotXKmEWf759B4NEfiWPb7YoxT3rvCPJanOqRszghjHElJESkg9jpGqSyYjvWmodWM7AfiUELSlT18zpmUBmsvVYbRGKeC98Qcp9mQOhdOVsx5TFGenea5rIxDnAc8CqON96ZpaLwvIdjmPl2ywKlMsqxAyGl2EQPTZM2FmcHRrgJN6whNcVqIxsyaYiK0BjTa7zsbn6oM5ewoDuuPZSMaCzOoE4cKDH0sjFotzcobULXs97quI6UIGAgtJ5sDvShNU1anAr5JOTEM0UB04tAIYxwZxsK0K444RJz3ODFmUs1Me0vNyhhHW1vq5FvEkjWh0dpEyjmrMpfWKcTOHRZCtwwle9zZDs66iiOsG1ZrT4yR/X7PT37yjH7oAGG9Crz/9S/y4cef0u32gOB9IAQY1UK5xVFh7WjK/mwcMw5PHIwOL6VMlEiz9rg9ZHETKAMsrHwNc2rMwcbW6r3tm5ybw+J6wdiXUp768XKVz5pAHWMcCeNI33UAdFcvGeJId7Lnkze+w+9dCL9+/W9xrmcEChuqKilD622vUwHq1qozaHtap5dT38Hf+cHlvdMzZaAKx2Gj7aE8V2f6sUY6rMDjui+Y3qxH+RdQQwXoo7YXn9mT7nHNLGohy4pPGR/vp44fOSz04s6lIX5aDu0eObr/oOp1yilb9uV5aUx5DvW2KOsMKDbHgtubns3pCa5xhM0ZOE8iomlE88wReoC3PpL1cZ2nPct07/xwVmXXRU7P1zhv42DGhssk/5SU3W3HxfmGUOdBmet/2AWEGE3XdHFxQnCL+XchwWUb2HQxA5Tc8vq08ShXFMZRGbY9Z5ebad9ab7F+4+jHRJ8yF+ebAlLMrNYN43bk7sUdb777iM3GG8NsfdkRkH3JWlTbfZ7aBMmwvxtQdbx6ecsnP3kGKrz/tfd4+4uPacL86NwfZN5jlr4+97H5xXN71UcOG/1oF3jw21K8yrzHnKsxd8LFkLmffxW9Hub6utF4CBRbthlHn+fBX7tjLUMF3RyUpIwTL/frOpV98bqJAKn2pWmM2U35qHzCfE65B1yq7znaQxyDj+bKzONtAj0tMnPcr98yvS5E3jSPLxq0zhn1fcu5/lhCyn1GpGnKXzbT8TR6VMfp9Xr4nukMuZDBNM1Mz8r9Piz386kYpuO6TOdRuV/Dh/SQHtJDekj/hCTK4O/4w0f/Abvwgr/5o/8d5/Hdoz3FQ/ovamoev4uEFo0Dedihsf95F+khPaSH9JD+VKSfGaRkYbtMOWzei+YpLIKFK8iCOFeix1i4hNXK44Nj3QZ2dwNxm82zfSwerjkR48hq1dC2DTln2jaw3/fEaCCjEMzg7J031iXvTfmeEipmvh7HgXHscc5o/zULfRwJwZcDlqldolMaD5CJ0QAxWSF4zxDN+zgHM0S0rQdJpGJNu7nbMySlu70jDZk0ZsQ7gvOMY8e+GyArXrrpMOe8t9BryRG7nv1qpF15QuvZ7wcLfxc8p2crxj7S9yOKB/XEaOCVpKa43+YR1ye8D6gqr65uGbnl7HLN5eOWbpfY35nhQnM2D3MybeO5fdlxt+3p+0TAo34kYd6pjQ+4xpFytpAJwJgjKctB6BXTihVQkwghGE2/sUCoha5zQvCOWEL/VdpwEWhU6LuRTCZlNWWzKpo94hSLOZNwQOMbLi5WrE89WcxcqqI0a0+7PiE0xt60Tp42rBj6TLfr8Sq4BGkcGYIjhFCM6ErTBE7OVgyjsaxsb7ecyQpxmZPNKSrCbmtguDiOeCe0TWC4yyRV2o1DfGCz2rB3Pf3Q8fnzDt/0NKvAyXrDvrtjvx8Zx4TkRBygaTzbm44UR5zzJaSM1b3rOlarNbuhRyhGkcIq1vcCLtK0DVEj4hRNSop+Ck3RdWboImd8MX6WoDZkogHhHm/oU+LuxZaXsufliztULEyNdns+/vgaH5UwKuv1muAjOQ8omb6LZI0kjbSrDV3n0TTgCYhr2O73dGPkRx/9mLZtWG1avIPVOtB1HX2/JWcpoCOrd4w2NvowWgiRVUBJiLMQXwEMiId571ejg/OOqMoQR9q8YRwyL59/znrjiXfPubm+4eLkhLNHp3z0ooe+58vvneDEkXBsh8TLq1veeeucjcCKGVhSlTKm2ypj91Ctz+zhWxWLMhuDJ2XTDNhwUr2ZlXyg3JnZL6Tkk1H6kmsF+FjoM2bDRSlkLsrrjIU9qkM0Yqxqtey1PEvbwVLxdpzusyvV2sqkmFsq0ebnJgEd5HsIZJrBU/UhU7zOBsuA4FQZouJHuHzaFpCIHCjNa51eXA+k1PLWu5fGIqc1rJjNIzGasc8zK+eqmtvAGHJg4JHyniqnaiConBJZI5+/vMZ5x2alBBxeTUXv1IAsGWXMymcvt7zxzpusTkKBk7kSdmyWrSJEEfox8fmrW9566xEnK8EvFNdF13pgCLgne5EpdFXtG5SZAJRuVJ4/v+X9ty/ZuAKYk0Tla4l49j1cb3veePcRKcCuS1w8OSNuMz/+9if8yjff5513TmicweysP84WgMPQfaWtivZZ1KwkPgtXL/Ygaz7+yef83u/8fYjwG7/9W/zmX/s1Tk6rH3ABhRz1tflvBfDNRov7AKVZPlPb6wxq0elfBb9VBfohO5PVaZn3ofQriGlW7MqkcK7gpAqcQ+SgBZ24qU3nsGOlrKXxq7HZ2I5sIRUxZbpkSogzQbMxhYAZ7u2jsad4b3sIKZOSGfK0MO0ozlPAPYqr81I2xqhIMWJ7NwFwnHeTh7M4YQqXkirYpirZy7xRFedizFA6AWkM7pmtYWwuRkvoNJNDUFBnoAHvxNih3GwSMLCCvaAyWtXJV6SEwSsa+8q0UMFkTop8i5dxHWyV4cphxvw6q4sw16+CfxwTg9NkFElzHynNUAw1jswcAqsC1pKzPilS26eMdbXwRl7EwvpIGROlfKgivgDxihXBwtoxAZ9+sTFK81qZsxoQXirTlTLF8ivWnKwQMBCCXwWiy+R+tG1jno2GKSVGi1pWwG25hGazfaR3gi/WaicOtIDvEZyzGSwnJUVYWr4qW00sexkRV0Kf2WCvQLs+jXN4RXEFGFnbw/qUqDFoxFwBMEyWICcGMk/JJoBUVs7a77OYw8WQIs4LoQl4L9N5xjkDe2k5C+WkE3jNOZtzclbGnBDJOOdBlK7vGV/taddNAfV4hi6SUgm/lQyoFLxn6DoDtMRU9vdTUCKcE7wLpJxIschT53Ub6pwsk/XReWPJsjBzdlccxym0XYoWWm9p1MuqdtaRuT+ZwbmABQuoyGHjrykgha6rIamlsEN5e04T7crjJBhzVoplfrD5MEc14LMwOcm0bSiMSmX1UyE0nuDDtL74Eh5OWgsZHnu7tmp9cUbwrE5XxBjpuh5xmdA41sVZp7KgaAEPaVTGEgtOCqjOwGc2t3ofjK1YZrY3G2O2q3FllyQeSAbELEOMQkRkM15l+SvtpaK0reAbYV9AbCLKOBrwDTx348iHP3rGeu2RtjEAlh9RTYBjGMp5IkXa9YY0DgXU6Tg523C33ZLEzkXOOZo2sF57nAh32x1d14O6UkgtwMCyqmouzMDVAmzrUxCxsLQq07okGPgsZWORXDethUzcb3EehJE0dKwuz2kaxx+/+jafD9f8i5v/Fq1uGBn5zP2A/T7xjc1vsJFwbwdybOidmEuO6Snq+iGvf87uPRw505zPvE9c7nXMgYGyts0lmvYrUyuX+bdkn4DlPtNYlOwN0w66rv0y74bknuV/ud9mKhU1Jz18/l51S9mPP1fwry7vWzw1zTBFpnUPGfvEZt0c7O9rierncVS2u8hbb58b09xqgzoPjKjmEpKTGZSg99tpCYoQmVtrWucWb1Wg2w+IKm0IhNJDdPF7zXO/H2k3K3zrp5dOZxmdZlNzgslwe9exXjc25x2W8LC/vU6QdeyUz7osCAbm2vYjp6drVn7uQ4s3kJOy3/Wcnq5wTuiGkdW6QRO8fL7l4vKUi/PWGDmXhah9q/YYOezj9XN9rO8SKp7d3Z5PfvQRxMxb77/Du199u+jvKmOQHIboOpDwon/qYZ+YK7Ucs3MPev25gLJtqac8ftpdB3I+boLpd5H7T06IXT14aPn1sN1rp9EDOU7raa2STcULQH1xSFjkLzCBeWTZVziU3RHm63AumPbqejimZfFcQTs5ncu5fIEuylHnk2luXHxe1P6wfPX3ZZ6l/odCOqxLWXoOX7Co89Gj89/yodZz+vP6yWx+X5XRsqlrWy/zWby/yoBlWZevkIW89fD6VPayfv4TUV0P6SE9pIf0kH62JPCDs7/N//mr/x3+Gz/+X7NOF4xuxw/OfodGT/jW9b9B0NXPu5QP6T/nFC7eQEKDxuHnXZSH9JAe0kP6U5V+ZpASasaphJJzRIb5dKOp/I6gRUE/jsr2dqRpnYElzjZkhbwdCoNOMeqOiZubWxAIwTGOAzGausx5oV0HQnCkmAneFLf9vke8x/lUQg2YhlVQM6iVcg1DLEY7R2gaUkzl8GUQhAQM+wFEccHTrhqqsks8nJyckOLI6OF2O7DbR9KQjXvFeXKy0ApZgSzk5Mz73gubTUPTCsZWEemGjE8OWDMOo9F3ZzMEagnpdXKyotsPDIOFYwtNY+xVY2IYMy7BqjW5j3Hg9lYYSli9tvGIRAMARQsxkCPEVgihJ+fM2I/kKIisEE1FQZxYrzaM0cA1lQo86hywx7yLKR6pQtMI3huDgveOGAcLUSeBtm0Zx70p9nBF8SD0YySphX0zI08qBr9oZVVBnMeL0jYQvNDtRq6utriwxgfH5jRwctpaaIah5/S0IUUznjQrT04jKRmsQZMx5qw3jubUs1q1rDYNMQr93ph6fIAmtIApY1rvEQ2MjLhGGXyi22eyJLIbQTN9v+fP/Povs91v+cN/9Cf0A5yKEJsezQ7B04aGbtuDRvrOPMXN010JwZPVWBnIkMZkEXuCGc1i1GKUFNBE6pWmFc4ebbi73pMGAPN4RgLeVe9+C42Iehwekcxm3TB2A9fXO+g97UnDMGTy2NOEFb2MXD97yW/81tf5wU8+5rNnN/TdDucyJ6eecRzZ73uur24J6xX7aG14s9vy9I23uEsdbbvGkWlcw+px4IvvvcvlxQV/9+/+Z3z0k+eQg7WH5ilkjRSQlIG2MJnkbGEuAB8cmoVhiLhiqBInaIqEpuHpm+dkbnn28R/StI5hvCZ2NwzdM77/B/8ZP/7JNd/42jd44+1f5lU/0vUjNy9u2e0GwnrNW+erEvLEgC2uBH/TCVJyX8k+hZ3SpUezTmOE8kT1So/MylaDg8wgDl8N5VM+Nhd1WtlVjLkoiIFWPDIBEhKWt2IgpTpi63ejWi9Kxqp0XSjtl0rz5d/ja3P9darhfVOEFEXXLIdJpw2TNu1AObnQatePk0erwK6P5rHfUNiuLOU5F1yE5x/tefTmGeenAS8DGWM2SCkT+45xiGQNkyfnQZkXda7fZ6WulghblcEkkbMwDBb68AvvXLAWxasnSyzsWAEUXIZXn29JKXH+qEXE1p4aTNDBZIzICENWnn38knXbcHHWEIRFeWdKflmUaWmImku8bEUQMg4hZseL6x1nT89YnfgCAFG8miY240mD8PkHn/Pmkw2XbcP11Q2rkzWahT/+7meEx6e8+6UL1m7if1q8VRZvPZSnKa+NzWBMyvZ6oMvC9as7/v7f+k+J13u+9Zvf4i/8K7/BxaP1VO9lflM/WlyrPFNLgBtHzykzY5kxA82/LBWySwOP5X1ousiL++dylP4ilcXi9Wl6jx5fW4IB5xEzRRdbDMRqoK5jJ4sxb5RoN7PCWwpgx80MPVmV4MEYJSqbUAFYqNVdJVdBlD3TzKykWQnO2ZqC7Wk0zdKoinc3uUpX7/PC+DRNJlqulWd8aY9quCghfHVqFCaDQ64GiCqz5eQyGVJgYmtSMzybHAXxoKkA0Wp4N0Aqc5MsGeaAZMAfpM4Hc++oRpmqs3eTgUQL+KSY9EvYslqvChKo+1Bd1LsKQQqYZQrjokyAsjpmR60sWLOxW6oAFh3MSWEf/IW3L8hkYEq6COU1DQI3WZsM8CaMg+IKiMN5AzGIKFmM4bMCnMaCUnJOIJaZSoyxMTQBUQuvJcFTmV8RPwNdaruW9oMCnIp5ckCQApKwEF52plAt4BgprEfBowWchNi7VQ1o1PWRoTeQjzH2SGF6qmG4BFU31aNpAz4IqgklW+hAABLjoAWUU9i0CtrE+wCap3BZdSLRZLKamAWneSwwlv1lZSDLakAvVMnRETXTrhyNs/NAyoJmYZqZVQtI0C8Ai/aSQxg0kzE052znBdXCWJamNrd5oIyT+qzYflodeFd49CQXA2MF57gCSMn4IIVNKzOOyfJy0DQZEYs3lAsgKCU7MzZtQLWyH1XZqTGytCUktwdSYdERmerT98MUWlMLaFC8IAHykIk5GhjbGYvPm289JqbEJ588M6YhAj0D4FA1Z4u+M5bgpHEaOy4X0GgJfagZUo7TfCdSwrfJDB4lCaEV2nXDfteTo8lCyXjxUMKmTQBaNfi2kBF1jH1i6BOSxZxbUianSHB2tjnZBC6ebvj0s4Hdbc8wDLb3L2xxKSr73YAixjKVYbfbTQbixtueLXhPWDneePMp3gV+8IOfwL4v61NdP+r8bAAxG65KU5yTUtLSt7R8zyWUqeC17PW9haAbhhuuXpo8xyESx8jVy0j/h3d0Hezf3/G77/x7DH2i73fc7V/h2hXP5bv8Fv8alzyaAPUHLKb3Zr37n0vXmtf/16Rcxkso40k5DPdmWSzPIvfDGy1B1RVCURlMp3cwLyl68PRRpSb1z+GeqpajXnCHjxzsp+pWZ7m2CxwJaR5XLO4/vm15oZ57FAv1NqbMafH4qPmXqX7KtLsdCd4Xdh/LpOaRY2T34jMevfNkOij8lGY63AO/vnhkMjk5Uoaz0xVBKtBfqaxWVb59Z85rjx6fzEDs0v4VjzcB+hV2tzuCEzarBldAOvV+OSpHledxf63761oTLecPRej30dj82nmv7Ka7QLJwd71jswpsgqfvelpvwas/f7Ult57Tx+u5Lq+B00zvXhwc63Wb0S383ZiUvh/5+HsfEbeRp++8wRe/8Q7rjZ/2s0zPLSs+S+AYgHL/jqVMXiPDY9DhwT1yfPPBO+dHF+dmqdvmefS9jsHG5LEYTXpYZpHDO5fFdOXD4QmKmZ1LjuSjte46l0XmfdXRq+7PfeX6sq/aXvo19aqykbmcx4JXLWO81qlipIvsnB7mBYvzSElL8sXXzSNTvRdz4fHcVV9w0L+W5TrY/1iaxprO9TyY0I6n28WYh4VzxdHEeoBXe817632yqMSy/ew8sTj/ljXiUDi/0AeKh/SQHtJD+sVOAj88/V3+l7/8V3AaUEns/Ascnj/z6t/hX/3kf8bj4as/dQ/5kP6Up5zoP/sxzaO3f94leUgP6SE9pF/49DODlKT8X7Ox2jjnaEIw7+KidBEsvIYBQlaIQnDQhMCoI+0m0K5WxN48dPddb+HNEjMIhuIt3QRWq0C78nS7PX0fSdE8Rc2rVyCbQSwOIw6hCcEUtZpMMU9m1bZ2XTM5mYIVoGlaQBnHwcKQZaPMb9qGduUZx8h+L6zagBJRDPQTJNCuAylFxj5ZOIJcvFxzMTWKElrH5iSAKBnzbm5XgTGO7LY7cgLnAt4XA4OWf07BK5IxNqRiCVXM6JBUK70BIp6hgxQj3hm4y4cVKfeIlrBgLvLmuxfgMq9ewNXnA7u7iKgp8bV4USPGjlTD7eRs8lOVEh5IwBnYpB8G+t6Mbt4Z5XyMIwNmHEpJCSFAMY5qMaCklGnahhA8KSXzoJZA05pCOgTP0I94abh+1RXw14qxy2SfcSQExTcOL2KMVrEneCE0Dc4Hul0ijWZEbNee9VmDXwWadkUms+8j4wCNd+x2EdGRccyElcM5T78bCcFxcr5BJIKLRBLXdzvapqHvd3z00QesT8/JGbr9aKFHotI0LZcXl+QEn2x7BIcL9huU8CIiGMm5sU313TAzd1GAOd7j20KFngIXFy2nj1pyzvTbSBNaxjSwWq0gw37fF+OsEsQRfIMxIWW0yzAIOSbzgE8O0UxOIxenK07eWPN73/sTvvPtj/E9IGPxYPSoCsEF7m4G0vgcGG0sjSOff/qM1UlTvOSNVeBkA0/fueCDD56x3yfa0BKjAfpQA2EJMIwDeVQiEecip2enhNCy2yu7bccwJjSJGZQwo1IIHufN2/7Dn/wI5z23Vy9oVxZeJUfHn/yDT/n+P/wDNidv8eU33+D5x1d89vwFzz/6MdtX15xcvMnnn77kt/7Cr3J57jhvDTLiccx6rsPDgYOi3JmV5dU0Uj8dKLCK8cRMiRbgy/xxK3CizqfFqFKVVUCuBu2S9UCmQQ5gITVknEOK57PgqvKzXF+69FbK/EkRJcfMRIdGDDgs06yGm6nc57T05D30qhVqeK05VbDUrHecvfURC1e33Y+cnqwKmGdRgoISSAjbbaJ71fOVX7kk+EWeCsM4sru54erFLW+9vSbLwhh7WPT7Cmfm9hdVHMZCMwzw8YfXvPH2GU3AWqQIyZXWScBtH3m17Xjv3cecOAuJWuU6GbBKZVXh+YtbvHO889YljZvBb1WOjiP5TX9NLjXkmLVNATFQWQqF21cdsh958nhtd6iVXRAiiaTC8xdbVmvPk0en7HYdwQmnTcP3v/s5+yHy63/uPZom4wnFsFOABJI5CPSwVICWtssY+9luyGy7xPa24z/5v/1d7j58yTd+/Vf4a//6f5nHb68QpyzH1NxHZhX63MfnETrzbsx9IJUu80895E9K2UPD3vIpv/hW75vaYKkUXpTjddem8TYpvWcDUB07E4ZAl+Nu7jfG+GbgM5ECoqMatmQ2FuSqfC7SqgAgnUMPVKW34mZQkhrzWNbZ6I6AJMAXs5Er/UvncC6m/FckGAtQZRLSYgwWDBSxcMimBtK0PY39kmssxConCjCxzFlTqDWZmcWUmaXFqZDU2C0NrFJMrzKHTquGjYJ/sP0qZW5Rq99kBKcwP6mxcPjCWFIN/lMfkSpLFt7H5VoJG7JkoIIZdAEFyABIXvStRYg6Y2ArgJlquFrUQWv5q8FBQKTe94ur6LrH8icWNrgOAq2e9E5oGk9omrJ/MkB3UoPn2t6+IWdlGEZjJlIp5wAt8jBQk7VnNgBrVlLqca5CdzMWAtn2q06qw0UB0WTLq7Iw2b5WC6CIiYWphj5EzVlAnQMvBcBkbJHGWCpl/yz4xvbDqsaCav1Uy5h1E3OsONsji/PGLBsC4zgUhpnKtiQFMGXh3ijhgadQd8t5q/az0gopZ0hW1lhGmPcNqcCivROcV9YbA0yt1p7t7UDXJcgzECZGczwQV0J1CdMZydY+nd4PZTyU8W1gvxrCrYxhNVbaOqdWliQbq66EOjSnh+AbQutwwa4bK5IwDOa44ZwvcjBwlTHiGtgpJwvFJt4GmA8NcTRAmAiE1hFaA/t6H9DCeJVTASNnnVZlp0KMQhySnUVci6ZkY1OEvo/TnvLjj57RtCtSFOsHOYI2hAYuLk7RrMRxsJVAIMVc1mFj0SNX4I4WJwApZ6w8rct21vKgjtPTFhesYfr9UOQOTfCgMAxlDVEIvob0M7auyt6iKDGOSAFwJbWgtNux59MfvOT2qmftPS7oxGinWvp/zHS7rjgoBJw4drs963Vr/RZjGBM8Xdfx4uU1ccys12vrWzhEHKH082EYZ+ccoAnmuGNAqDyNVRtThclXjL0rZuXm+sbOfvvO+nhwkB232zvuXr5ivTkjj4958eJjttsd25tX5BhxYc1N85LhvSv+Qv83eeKeAq+BXSyR+cz7nHn3Nu+f6157CfaufxTbZ4rOIWiP3gQsjM1T6EHrA1M00cUzCjMwqixLB/uVg/ccOixM61U11k+bsQVwSY/rXdbQaRfw+jSBBHSWxZS91PX/NXu3I6HEaGzSzWS5tzuX0h8SdPvIxdmK4O035zy0G+LtjrHvia9eGvuzf83OsgJXF3I63M3Wd9ncOka4udqyOmnw/iirCfIDQ1Z248jZxQmNOwQTHeeuwH6MZHGcnxnov+4VD9r88LAz5yOzPCZA47IdEPohkYbI2cWqAKot57L7IAP7PuKCY7VpDHzszUHw7tWe/bbnnfce04ZFH3vN7nm+sgQqza0WozG4xTHy4Xc/Yn99x+M3n/KlX3qPkzM/1eW4b7y2fy6leHR+qXvxWUqvFeG9cWgV04UA5/PJdK/O1+rnWZpzHz8swet61uL3gxccOhYtQVtSync4eo76yKJSy3G3BLkcy6K+Zx6tx7BkpvWofpkcnRbvUS1MfnooN5UFqIYjmS7ODscgsNqnwfYah2E/Z5kczHU631tT1YNWMleVea5d5rZ0ZjjwIajjSg8/z+NwzmP+bV4H6liUxaCY3i2HMpHjuuvivFDul+JNUnvQlI+a8PSgsZcOPA/pIT2kh/SQ/v9KAvvw8uBSJvEPH//7fL7+Lv/tH/6feDJ87edUuIf0n3eS0BDOnzJ0W1Al3jz/eRfpIT2kh/SQ/lSknx2k5EwBL1IZUMoRWYtnRwUurYzxZrMJBjYSh1+J8VCjrMIKuVyTs3D96oa7W2UcMnEsJn3nzAuXQIwQU0+/j+QkpLEn+AEfAilHYppDeDRNsFAMCmOK5KQWemxQ4tAT2hIjS93kbS1iLC1NE0AyaTRl8DgITeuJg6OTbCHCshIctCHQtC39KPiUcSpICIxR6aIpnnOC7W3H2HvOztasTwLrkzVhtabb9wxdRJ2VLwSPCy1ZMuREjJ5VbNjvR9LOQsg5kWJdnNV64nIBSZnHbJYSFqIRfAg4TZycNDQb6IeB04s1l49P2e8SXTeWEBMAQszJACReCMXjNUYMPEYx9DhjulIVYqxMCjJ5JGpexKOvRtOiUEjMikwLPWHeym0TODs74eRiTdQB8Q63DfS7iDoxunLN+GTt1LaNGXAiNKHBOWW9FsY4kDQTmobTi4DDQgSGVnDBwG9xjIg34IHmzJjMW1x8ol0FXLBQKYJHUkZ7YX87EJwZ/7e3A0MAIfC9P3lGs7omJsgxEbPSe487hfXqHMTx6EnL0DuGqGzvOsBCl41DT07FIEcmixlqT09PuL27M4V6SvjG0bYtK9fwrW99ic9eveLJmy3X7ordzR7nPEF0YZD1eBG+8NYFT59e8OnnV9zsBlJMNlZXihCRHFAnDHnkblT+4I9+wNXLW/qbkTffOME1njh6hjHjXaJplb6zECqb05bQtqSc+Pzqhjf8IySYQWl3u2d703K7+yNevboGdfzKr3yVIfW8eHGDp+Wtx08QHfnRh8+4vjWAYrMKjKN5iw7jHPomphHvzYAxRAOSNZihZxz2eNfQ3T4neAhrcK4lDw4JjtON4/rz7/B7/88Pubq64vazT2ibgMqPOb18i8vTDe9+7X3eeeJ4fFI88WGhEF2q5WW6NinRDv4eK7wOFaQjyqhMCp+Zzl8XoB2ZAAxpymmGRFSDxKxGtr9ODSzQlPsGKhhqMW8XDZXpKGdA0WFN5tIL1Yi+BItYcswE9ssau6P7qtfi0lizLJMu7p9DcFnojr4bePOtS/5/7P3Zsy9Zdt+HffaQmb/hDHes6pob1QMKjcZEEYQgDiApiqTCtiyLpsLyiyg/SBF+8J9gR/jJfnL4zXKEHeFHPyhMB6mQguKgCEEkSADE3ECj56quqjvfM/2GzD0sP6y9M/N3zi2waQNCAz67+9Y55/fL3LmHtXeuvdZ3fZcvjCy1KCORghk+eXpFdAP37ywKE5ZRpyCw2fWk3UAa8gHYwXIIQKhtPzD7GqihjQYDYrg46/mX//J7nN475p337o4jV5IHoTsGDEl49vyS09MVq05T9U3jpi4ZI5pwJQKXQ+AqRN58/Y7KMBXIMed0ulmmNiqIpjJpVTCL8vYZdkG46AMPXztmUdIyqGMhkzCkbDjfRLah58037hBEGIywPDni+eMNH3/7E378Z7/EnYUtYyzjPj43PJvKnDMb05EdSAy7feLy6RaS4V/8g3/JR9/6lPc/eI+/8O/9LPfe6vBm4oeqK6nKU00AV//NQUJzGVKuh/JMAxXvMoEAp5GcUtLNTf2HdVYWnbre5p/ba9fNZX96O99kvKrG7QownBvar8/zOLZz47Cp46Of1XbYCZY27l/ZTPvZ6DSw5e5qvJaMMVaBR6LML5WUcppgBR/p9TKmrhv3q/JcFUcFgDgzY+2odVTdcZxBbVSWwqiHwRSwc51razV16wi+K7fpu86ORnkdKENIaWQZqqNX9zyqE2i04Jtxmz906FbAFlMKtvJsdZzI5GQo9dcMVXZe77jXAxUsLjNAizEFIKL6kJXC4mWEZEQB5KKYmapnmbIn17113IcNI+sSVfaqX+OH2atgDnVFQBlWoQCUFODinC1ptgrIxeiKy5ILaMhiLGUsI5LtBKYY32CagqamwRPRfwhkSTjnSorkyvBowNV0oHlKl4bqiOSEdYWpp6yDCpxxzuIqUC4JKWcNSHCq86WQlK0nK9MnaGo5QYHYxmn/QkyEUDgTpQDkipLtGlPSBisYqGkaKrOWtQoOqgKeSyruGBScNQLabHVMl523rHsp/VBWIl3TpsiX8xbXKMCmyY6UKzMm48Y4302tnfR+sZpyTMV4Oh9UMNYE/iuLb/5GMdoumekkda2llDQdHQpma1uPaxxDCChBliOL7g3OOXU05nqmKa3Nhspeaa0rKfd0rTetMr8671TOsp4lUtR9zWJIAqkC24wCEjGmANssnfc4PH2ItN5psEzMNE2LAXa7yH6fxlQzUs4rSGZzucVYy2q9IKfMvg/KAmZ17x7nC1Mo3PS8WANBVISFoizSNpa7d485u7gEo+xe/W7QVIA5K8sWCdAz/t27a05P1jw/u2S715TokgsLr0zvp5y1T8+eXhD7iMkZt/AlAEfn2XvV9hSwh6ZwzpqmMCUpQEJHyok8RLZYrjYDIgmD4bXX7oOFly/PkWy4c3TMatXy+OlLzi+2ZSz0PRaHWNKV1/eRFECsKYC5AlpC5ymlSI6RaPTMaKyDZDDeYmzPxfmnXF48YRgG0tDjncNYT9Mu+br9Ffo7mb8c/lfc7VY3dSGBcYM2N/WKw78N4y3jYprOGJP+cu2oMtOVZaxx/irXOqrWU0E+9cK5XjOBs+UQDGUYdYj5e+6gPbPfXnXKMFACDg6vl9mVBymIZr260dHx86pPHYKPMsJ+iHStn+68pg8KMPSJXQyc3mtHhh9rG1gek/IzchbaqvfMxulG2+YfynX2Hi0hZL79zUfEmPniB2/N3lDljDhNCZvLPa2zLPwUWFL1uvnZKKPnj91u4Gi9wFvV16v+Mp+NOQOrzgU32qnieqhrJ4E+ZJZHrdqIxjqEyrkdh8x+33N0vMRgGEKkaT2hT5y9uOD+w1MWzfVz5Vw65iM7zXddQxbog9BvegyOj7/9iPPnF5w+uMt7P/YWyxM3slEeytehTNVz4fVr5mWsRiZG1Wkcp0kaW3kgFGYc6WnNvWLMmWZnehPPa/gDzgZz5c5M15vP6tD4FMbezGFQB0EEh1W/kt1NzxWl7XL4+UG/ZnuZzDo57+esaaO+OxeDsU5T9YfZQ80EZKvfmdn8HrQZxnTPo15S/jOXh2mNXwNxHaD3plmuzZ0DpOblQN7qYMvUt4OdrY5X+WD+jrgxL+V6O7tWZJJ1Yw7fF8AYnFHbW+1S49+1nbOOjG+N68J4W27Lbbktt+UPpxj4ZPlr/D/f+0/4T77191jkkz/uFt2WP4RimwXNvTcZnn74x92U23Jbbstt+RNVfvB0byVViDXKUgOaMkFtlRrda5wa2pHMxcUFISSOVyvWdkW/H4ghYRYOrDDsIvv9vhgMlS3FOY9zjhgiMQa8N7Stxxshlsh861BnUcoaUYoaEnMWXFMNkCUthgGsGiNTMYqqMyqTozrNXNsgWSPusqiTIYpGi1oRomT6ISBJI/LCvmez3dN2Lffv32XZtcSYefrsJX2IIAo+aluP944oaijbDRcIV0jWNG7WCCIJ50GMMgTZxhNST0boupYcNIo+pYC10DQG61wx8ApNY8lJGPpA27RY49mFHu89ko0CcaJjexHYXAZigN2VOi3q/6yDpvEYm2laj7VOU+s1hhCFEOpYKWNTzqL0/s7ivMF5jWyTMp6a+kGdB+ooLlGt5bQ9DENxGFi6RYP1mf1+x2a3xziPQXCttmm1WhW2ooF+GIhodK1NsA8DzhqapqNxDY3J7IeItQ5xgmstTefp+z273R5nG5x3OOMK0EkQr2nmcgFM5ZSwYviJH/+Atlvytd/7Jqu149EnTzBYmqYjhERImbjfslp2SCqpyfaRlCLf2TzCe8/n33+b8/MLnjx+geSMcw7fOsR4ck54qyCkfeixDvrQk2LCFBOxKZHl6xOPbTLnF2c8e7bFYwkx0XjHfh+JIZNIGOvoGseDN0/58gefJ/zOt+D5nq7riGng/OKMfpN0nrw69fvdQP/xGQyZxmWwsN0G9rs9guHoaE0MAbJh6BMpbxF7iYjFmZb9bsB1HbvLS2RI7Iee5dme5ZFhSD3ZZU7vHLHdXbC72IMZ+B//+3+JX/utr/MP/utfJQwqvykK/T7rGrUWMcJy0ZCLPLXGE0Iip4RvGgBy3CPWkvHkYEk2YICuW5DY8PWv/QskG/qhp7OO1rc0Tcfm4gW7zYbPP/8z5J/6EuvPn9LZkpqwWHAUeiIIiWwKz1I1rF+zfs2N4tX0Z5gAPXnmubOjofvQGCto1NrEhjMZoyvoQsqVhpqijpESvdbkYWRXmgxtk2XJjd/JNWDRxIkzGgnrM2fAHoMZUzmZWf3z2O+Rop1D5qUbhtrZeAFEgc2Q2OaMNIdm9drnvcDZ0x2ffu8l9944pl0YDFlTdxiVpd1mAGM5Ol6OfRuDlcd+HLpNxvaMFksdn30Wfu2Xv8F//Xf/OX/zb/0lxEzpPFIZRYsQybw822Nj5HOnpzQHRvw6x0bTdYnQD5lHHz/n4f0TjlpHa6YZGIGeHJbRWCmH3zsmRqUqL2Q4O9uwPmpZdhZnVB6tGJBEMJZhl3j58Qtef+uUhTWcv9ywOF6QB+G7337KF370TR4+WOGL3BiTDwBl47gVy+ohQERnv98Jn373nJNlyz/9J7/Ot37zO7z9wef5y//zP89r761wLhcOsyqvM2dA6fB1Y36Vq/mnlskhZISxRmV8OBzFykBW/dPMZPnQdXU4B26cyWle/ez3uTH5QKautd6Nn9S+HBrz63ez5o3FjnM9AdMOGJ5mBu8sUoBJk8HaFgeuMhSZApIwY8q2CsYRp5Xl4vAGCqiiAna0YamMb416FlPqPAjfL21Ms5VQgSmlnjlDnZ0ZyA0GseV9WJ6Vpa6BAvoqLCfGOmUpKx6RERxmirF+NsHz9CgjMKCCE42y8Ixuigq+KBZ/K4ygIAFMYcmpafbqvKUydmbGoOQL28pYjDLz2JH0SdNAkoWSharIDCCGlBRMVgElY/pQRb9hSqqYEfdxjaXhh6scvgNhkqsyu9pPo7qk6h+qpy1Mq6nGUiaXPqaQNF1xnsBmrgCJUipvxTy9oU2Jyq/6Rk3vWf9lEZybovmt0fG0VgEWNaq+zqbU1GQJpKRs0/r1++nNr3dYBOO9nnVCwHtPt2pp24aUhHS1xURtr/dWAR7OKCMXsO+Homtr2jDrTH0QuYBIrFXWmhQz1tTAkso6pOm5bAUnkvHegkAYpqCFGKPKnHOkLBDBWejDQIgg8XAWTWHHMUZBPKa8l6XIdYpSUnRn1SWKEDsDzoNvHClpGnC9d2JgMgVkhtN1JEVo6rnUGCGmqEEqFT1V5tF5Tb+HGE3THaOmnrTK9CYoA5Z1Boy+10PIxOJ5TFnHSxl5te2kEbI581Aqe4/BYkSDPt5663Wcb/n+J49wTjh/ealyJ4xMP4ZMY7wy5omC6hKJfdY2np4esQ17Ukjj2dY1VllaRQMufOMIJV1dSJqGvO7fCppwuAZSDoQwsN0MSCo6nliGUMba6q7deIttLG7ZYq4sjXMs1h3GGi43l/Q7BVIZp6xEOQtxr3q4pmzWfVfTl1s9Y+Wkjv8shTUWEB2rFGp6vYTFsO8VlLc8atn1A89entG0TgFFwXC1veKLH/wozdJz+bsfqW6SMykmlTPM6EBuW19AiJo+WcmLlTVLxWQCv5oSyIIxytgbB14+ezzuLY3zxMJmNuz3hCEQh8Sd47f4+eZ/QmeVrbKCfmsYhMwS9s7fy3XxjHrPvJjDM8cIMhk/P7xYSkXXdYk5WKKChKbvzcG1Ve8HxkCj2ZMP9LLpnHFTD5rv8BWQOLXrmoY7/7O+W82hzju/9Hr9U2umkhLs+kC3bA+u0ZWgZ6XNVeDjD5/TLVe0nZs1Rff20EdSzrSLRm1PzFmA5m2atWaew2maLkTg2dNzPv7Op9y5d3fUj0xpFTKlfdsPKn9HKwVO3eilTGOQs3B5vmG17Fh4OzK3TirPVMGkmV5v+VwG5pKqn+02vdq1vJ3J01SbpMz2csfR0YLWKUNb02jaxRcvNpzcO+H4pDI8jV0f+zGNknbuACJVOpwSXJ71NM7x6fcf8+LTl5zev8P7X32H9UlzwBJax+maWF17kpl9fqiXj9+Zm/r4gVxzs9Q25Nk91+V3XES1e+NzPmuupha8qh/z9QfT+p0/6mDmayNn11W9ctqXim577an11rr/5NleMv8Jpuik+tmYnnJcE2Y6h5lJ96oPEHNdemf75cxGMYGYXjHHMp31BMbFO+2pMs6xhYNz2LXmHrRhPD+Uiq+n3oRrY13/mExJI3BrxEoLs81F3xjXUzFqVRNYq+4r9ctRVqWsosKmh50175pIXRtSrWfM/Tlr/6uE/bbclttyW27LH04x8P31v+C/ff3/yF979L/DS/uvvue23Jbbcltuy235U1h+cJBSOeEJJULUGqz1IKKgF2PwJVo4DJHdbiCkjKRNMZhmMsIQt8WYmchB6wTBW8dq1WGM4SrGYgSxxD4p1b9ENSQWx4/NJUFTVkOvdXriy6KR6U3j8K3Be8922zPEhBfGFGNK6S70+6D1llQKtrE4B23jWK8ajchNhtZ3GOOQbAnbPRIzVxeXDF1LTJkhBnWKiGXZNWrMbXTYQkr0+0AaEtZafONYLluaRtOnxSEVB1RmGBJDrym9nFOGAZNgvV6wPFqAUfDQ0Afa1o0mphQgE2gNxGHP6vgI4wXfOVaLjpwzL17saBvLslvS7xN9X1Ik+AZjhZgyMmRSjBgrGqUcNQ1GyonKc9F6z3LVcudhx+rIs91knj25YrlccXFxSQwZh8GSWa5b2kXDdqesPsZaTZvgDYuFYYiJFAzWtAo2INC1HtcahtBrGrW2wfoW11i8s0iKtG2jYCws3nfEmBjCThmossDFjsWyoW0ci26lkeR7YchqbDN2JNYm58TVRYQMJ4s1dx/cxXcr/LJhM+y43AUMnrTbqiHRQ06R0Beny4x+wiAEAt//6GOurnrCPrJoW4wTFusGHyw9A+ujBZlE17T0+56cLc61rNaeEHowCckOsQPPz57rugvKFGOMplgcclbnrG9oDBwfd2yHyG987Ts8fXxJ55a8fvcOTef5njU82jyHHPHWc+/+XbabPUjCLCLL1RJrDW23YL/vkWT0+5xxrmV51LEbdqyWK4iO1A/YGLDG8Pq9+zhr+fb3niI5ce/eQx49fsHXf++72MKisfRLnjx7yrc/+ogXZ2e0CwUMDn1E8pYUFTBmLHRdw2LRMgyRGJQJyntLSpkYgzpEpKSbEkDa4jTODLsd5zlx/vwlOSda32BWK6LZ03Ydzg3EEAmScBlO7/0090891ihTSIcywGiEWWFKQ42+c4Nz3ROrMW/6SEY6cHPtm3r3yMLBZPSEChw6tDglbtiUDmoTIJa68syqdAiemgzKkZvRk6MFyjAyMtT2VSdFNZ5mEa7bqsZPJrurGgdnbb55D2NLDJbtLvK1X/8WdrXEvXOvsAJFBE3y6HLi7DLy//67v8iLF1f8R//x38DZjEcBqVYMkhJXmy1iDUfrBk8qgDM1940GdapR8tAMXME+GGXD+9Y3H/Hf/+Nf5qizvPfefTprRgCbsjepRbOPcLnpeeONezg/Ny4rwxllrJMYQhaePjvjzsma+6crvKn1WWUquja/rxq7Q8N0nVt1cEQxnJ9tsJJ5cLTAGRCi3iUGMY6QhMcvz3nw2ilH647tLrBcdRjr+Z3f/ojj0zXvvH+Pxgkeiy1sR9XxMQF2pIDxJjN0/W8I8PTxHuOW/Oqv/C6/8y9+ny99+Qv8lf/w3+ThOyu8U9DM4cqZybrh4O+b/T+0nc6NtXNsRuJwvkeZLEJa2VCm62R6/vX1/op2TKDD+Wevau38k8nxNwuqHQ3l8+smRh/GPUU4lN1xCyrNsHDABlIgHxO7VF3rzJwPswjjuZNBQUEy3lsjh+v+IVlmACJtoLFlD0U0dZbVnh0AsQx6n0hhtpExCn5uLI8oQ5S1k9NXx0I/d8Xar0Z7KSm9ys2l7frc+ra3o0PEOu1DxQ1JLhqOm91P3RONgpNKWtVsZukGy/OdZQRdWGtG6U6V5cYwOQ2MKakfZRT2UZZLKLSyv80FUcAo+GkeMV337NrPGnH+w+1ZKDvWrIk1TZp+NoH9kUzICjwJQZ3GlQknxpJyOSnbnlhTmFcsbaPsqcrmAhhb5t1BznomkVyYuuaAI23DlCJKQS4KYDEK1hfBOk2BJgLeOCpDq4LfjOrvRs8cxihYRtPMaRv0OqssYjmzudqxNTuyaIqsyhZUU4QB2t8s5KRgGWst2WUacSVARAqg0JJjJkdRL6LTNHlZMh5L17U4Z0mSFXSVTLm3nqWUgdRbR0qBpumwzhYdXPu130cGk1nYhhByAaMwrr8YlXVHGYUqI1XZZXVhjQxH3aJhsfZYJwyDwCYoy8++V4bTsr67hQZ/9IOy21prxlR+3jtCLMxVpu53hdHJGmJI5R4FfVFAZK4pIDBTmLIKOMrESAyxAKKUicc3jrbtps8lFzYvO/XdGHJUwE/rG3Z9wMRMksx+PzDEIr85lCAOBRrEEPT5WKxV9hJjM8bCi+fnJX2bMkZVuXKuIRJZrBf0Q48VS44JScoy5lqvKdJE9ZGmabjabJSZK+tZHoyuIWRkMnZGz9Db7cDF5WNiyCy7JSdHKzBCkkzYX4AkrPGsj1YMQwDJCEnXLSDRjsC+IQQMmkJwserow17TNUaDkcxq0YIxeL8kpMR+uCKJIOKRBPu+Z7fRnbxrG1KOfONbH7G52uG9prCNocicTCxfvo6XrYC5XMD/MoKRanpQI7a8S/T9FULQVIvo3tqUM2fOGev0HbTfXRCfJX6dv8/ipOXHzF9gmU8LK08BjtYdT2b64Vz5nL91X63w/QFb6U2t8bpze65jlO11vHcCA5jxfSfjPfMzxfSMGbTmle0cr34VtUi9Zq4PzCswhy2/wX5azyizs9f8TSdASJlPvv+Ml2dX3D15D+OqrUS/Twgxw/e+95iPvvcJX/nJL+NtDWjQ1rtuRcpRA66sArDrTB6cgoSRBWkO6Jjrr5Iily83fOeb30dy5K137tF5NcBNOpqWmGC3HVitWkZSvFrjCDrUH1lgsxtYLDuWi+ZAf5yN6PyWg5k0n3Gtm+mXfQFMrcb6hQqOz0VHvep72nVL2zoNjms9zliePr3EAnfuLHB2YhGdlPgZHEkOpGk2gpaUDdtdAuN5/PQFn37/Gffv3+VHvvIWywJQggq8n9VQdUFzKB/zZ0x69Ktk9bPPuzWtnJ2D0mZNn/dzLt81DTCYESAzV8PnYL75+NRnH4zftTKC55l09LoLHaz/+nM2LgfniVeca649afzvCAKa7RtTvxVcXJ+l/WdiP3pVtTLpybWvtW0jwOcaUnCU1uudnFU8MkeNy2jWw2t70XxbnvZM3Surnl3fE6NszZYns3opfT+o3xw2r45PXQJyfWSuC++8Xa8Q7HpWg1e06XrjMOOzxyUoh20+HJTbcltuy225LX8UJZvEf/f6/4lkB/78k/8Np+Htz9BNbsuflNKcPvxDqysPeyQOuNUt09ZtuS235U93+YFBSt63oxnFNzUBuCkGcMEa4eio4bXP3SfmyIcfPSYGjQjrww7noOk8xlnSEPHGsrpzRMrC5dUOh2e1aEq0dFuMtRnXWJquwSVDDAMxDsRoEPFY4xAr4+kuFMO1wUADki1Dnxn6pI6cTlmMYoxYawghMgxBU755Q9NanEcZiohsd1tSNsQEkgIx7tW4a6EfAvu9kNIVGY1U1oNwYrvP9FEjgVNKo6OPnJRVKGUkJY7WC5rW4Z1lsVTa/dwnGtvQtRa79oSU8a5jvV6TYmAIg7LmdA39PjDsBgX+NJ4UMt40xByQHOnajsW6JRPBCfdfP+bybA/ZYUwghl6ZEXLENl4BWCHirCOHgRwzFtFUdKI8Dm1jWR01LNcdbdew63titixWLdYm2s7SLRc4DM4m7j1YKyjpZUmJ4ByuaXCNU+N+iKSgjhVvEstuRQyBoN4CUoykkGi7jhwyMSeOjlqOjlvEwHYT2e0j+30kRCGGDMloBPkwkNcdoEY/RJ1FZGVyGs2CIrSuxXhHEsNv/843sY2jDz1XFzvCIFgTsVaN1IvO6/OGSEqFFYKEZE8YItbDbhvVkG01BZl3EELPoltikvDW+2/y6Pkzto+ucNEQU8I0sD61DH1H2CtXy91793j+7AUvn+5JQbDGqUMjRTBSDKvCou1wWJ58/BycI/TC6mjJn/mpLxJtZBsDLx9dqAEfU5xUhv1+qxHXjSHEyG4XSTV6PVfK+Ey76BCXcK5hfxU4Oer40pfe5Wqz5eKq59Onz0kM7KPlw+8+Ig9gbWECE4Nbw+rOgv/2F3+T/VWPbyz7/Z4wWDQFYyRlTfmQs9NId6vpKEKImpLIoA7IwkKWs4LNlLVL2YjCoPJircEV0JU1grWRrm3IsmdztaXf93zfLXj7gzeI+T6LRctyqSwaLQ5nNN7WFscC5maqhTEK8Jr1JstkU5rbduYHjfkdlsqIo4alCpaZG9BsidJXVxOjkXgCOcjoNK8GJ8M14yiTeX3uZJibYc21f9PnMjPuFef+tb7IZ/R7asF0fW2DoAxJX//eE/7hf/lL/MW/9rMjm5AX3VN7NBXZi+cX/O5v/D6f/9JbnN5paVD2FE11mTAmY/KACX1xOqkTLk/LnGo9FgxpdP5r60awAkLYRv75P/oN9hv46T/3Aa+9fcqisAklMg4F2fXZ8L0PX3B6umLRTExLOmIKU6gMOAOG802gaRa8fl8BSnU8MozgNmZzMx+/ufG3WhPrOJpiYNyEzC5Z7j9YFxlm3OfECBHLy6staWE4urMgDpqucrnq+OjrzwlXka/82bssXMKKvWH0nwPPKiTJYopDMGLEEGPDs7OBaD2//7vf5lf/+9/mCx+8z9/4D36OB292I8PLQQqLIv+5Gn5nozBnl8qze6oMXpfTQ3nnoK7KyqXfT1ZYI6KpykpbGGWhXmmm9V8WmLZBIWDVBVDnf2IzO+RN+6xyfb1lprR18wrqyBysbTO5cyrzmToo5qtfy9Q+rT9hyGUmD/enOazPjBHAVGO2meapjpKtKaKYASatGY3dpuhBphjF5+AbHVJzYKg3Rg6cGVJQOeqIKSwZUlKmXRvhKRC4OGjq+FmQmkJX0L5bO7In6SNMJUUBQcElApLyrM9ac/075fKeGwXTjGw7xjKytFkdJNVT5wNDXccK6sqFMsoaM6XfLA7laeVXJ7t6Ml1JZZYriOeH2LDVeE9drc4V4FhWPVDfrULbOdbrJSkn9iGSU9KghNI/5wymAGZ84+i6jpQzfR8wKNNnToJzXutGQWzOO2UUSwoOypkZKEjHWlAGp7oPxCjYrKxDypRDaahTwBB5llJOAx6cLyxlZRpCUHablEGkpM4q79SU8giKqvsUqJyHoM8Hc8BwUheGJCFkDbZQFiM0uCELUti3rAXnHSmXVW0MQ0hoOjeLtYYYFHQPRXcrOiBiiTHhjL5vQ1T2W994DFYDGUweWaMwGdcoA2WMEWs8OSgMVEym9tAaTenctA6sAnjU+adgKH2GU9CM1ZR/3cJpmrYx1TElvZ0lZSl6vXocrVXmrRQTQ0xl8QspRg3MKDKHreOpILgYlbVMci7nST2z6X4p7GKvIKayJsm5gM1sYV4r50Gj6/jpk+e4RtPOxSEpGFIm5iYFrGmqtQq21HFwkHQe9U2jspILoLMycDlvOTpdY3aWzdl2TOUtRiHezik4R2XP0PcD+33ZHQ0TeKymvJSM9y2NV6ZX3/gCeAu8/vpdIomL7Q5fUJ5RNKDFOcsQVA77IY6pDnOqrGK6rmJKhCHine4BISRWC8f6eMUwDGw2ezbbfQEaGa4ue0wu95uqIwi2cTx7do5kfV+lJORcnfiVUc0iWYjoebym6BMRnMyYh5ICzsoxHczEMJhTojICN95inQLfmlZTLkoS4jZz+fITfvPe3+fJ4pv8G/Fvc899jgR4MQWgUcukXIxng/quw4zvv/r5Z+nRn7W9z3WJ637lm3XNHfVyeN2N+qc3DxVIYW7qLofXVh2kaFJmun/+iCmsYqZnzOoyY5WzHrxCL6r61j5kPvrwGYu2GfXfCRyu4OcQEufPz2iBu6cr7KhH6RrIuws9m0kib88UPDrWddiM6uCPY39KPySTNmfsP/42H379Q9LyfT739tsc3zseASJzDTEJXG4HGu/oGjsbn2kU5/pbHxS4uO78mKqu6oIUXWY+RhXQXBSwMh+HIJZ5v4Ys9DGzWLYFpDWeOMZ9fL8PpJxYLxeaLjJmms6zuegJu8hrb5zgnQZiXJ+7cdbnMs9czxdygs0uIhjOXp7z6Xcfcf/BHd7/4G1Wx05ZyWdze1PrnT9WRuEuQzDuqwcqKdwAktQaRp181sbahxvrS5iN97x9h+eTOcfYq++frYaizBpz8555C8y1n6NcjJrx7OpZv6v+c732g7/l5nPq7xPbsoybg5lVYGY31TEY2X5m4lDX49h2ORjGa5vb4U43D3QY+yylzlnHzeyasZ8yMVUfPGGOAKvyMxuKA/zg/BlSz0tTH2pVYx8P9vxZPXJY17iWZ3/X8bsxT2Zq2wQAnHVqPO/OvqoBGdfmbc6ofVtuy225Lbflj65kE/nFh/9nvrP+Rf7Wh/85n9t/lUMN9rb8sBURQcIe0ywO3pWSM8Oz749/hxefICli3Kvd7zfB+mNF9E++y+Vv/CPSfsPDv/mf4brVH2ofbsttuS235Yep/MAgpdPjlRphUqJbNBhrCDERhkTrGrwTVquOEAIX251Sx0dIBhpfwAQh4xGa1rLqlqyPl/RhINsWSQ7fNOQh0jQtWTLOoUZpZzCDwXnPgpZ+Hxn2gvPVXKOnuJQKXbwIMYYSUa7/rNcTmxGNtNz1gZz0ZeCcZ7Vu8a0Fkwk5Y40lRY3UHmIsDiU1VFLo6lOJlkUMuOIQl0zOavAH7XfjHU3nyCXtl6BsRVebLWsWZIQ+BlrniuEThpRYdA02Z7bbnu02lGhx8E3CepBssa4BAhCIKRMiONfS95k+7ri66unaBmzCN0LTdoQ+4RrD6rghhID1hqaztM6wsxGHI7mOLluyGRBnCEOmcY7VouHopCGReXm2Ua4Q62laj+TM8ckRGEPrPd6DaURlYNlhk0YyhxgZQgRR1pwQsxrGlxbrwSRDvw0YWyLes+Btq4CVIbK5GEhRiClxdrYjDDqHGHXKOCzeKJdTv0tsrs4BgzMaBZ5tpmnAtOAceKv0/vtBZabvd5zc7TTCOQlWHCkmbGPwztKHoE6MJBgj+E6dmEkEckZCwtpWGX8QhmFAvEGsOtcWywXGZJYLS1g3XO4GdeQMmYuzHmOV7Upy4jvf+pQYhRwNp3eOuLraamq5AsZLWdM4NW3Ha2+8zsXmOaZxPP7kJZurM672Wx5fveTD73/E6emS5eqET5685Or8EgQ2+x7Q9Iy5pAEUUceh9xpVPAw9zx895879I7x1OB9ZHnk24ZLTB3d4dr7h4rJn4TswTtM4RDCNx3WCicJuO2DbhvOXGxprGQZh6DXFYhZlniCrATXlTB6G0Ylra8qf4lzQtIzFxJ4TIQgmGr3OFKe7hbbrsD7TLoXl0tMthH0ILKMj9Rueffzb/PJ/Be//+J/lgz/zAVEslwJLZzhdJhoMIm5UOOdG89F8fN2yWz6s11pjDgxvrzpiHB48rkdOTgbU+neuRvuDNhWz8TXD3nUDorappC06MOxOFtbxuoP6J4Pa/Ps8+/kH9XFeDurVJcP54x3DFXzutddwGBKiRvfiPIsJvvHb32C43PFTP/njrDpNXhdRQ9xeDGGX6bdb1k0GEwkCjVhsQh1QxSm82e5IGfqYla1AUOdhSBgMcUi8+PgFw2Xgr/57f42Hb90pzAATX5Wgcnt2NXB0suK1+0v8LOp5chboCGUxbK8Gzp+f8/k377Ec57KOvoysXWZWQ2UDAGX7mcrEjqXpGQy7nHny/ILTO0csHTSj48HqOwfh4mLP2fMz3n33dZqYubrYsb674uxiz0ePnvMTP/EuRyuDF68ACaNsVjXe+JBFae74MFgccRC+/9Elg4XHHz/hN/7pr/PBB+/y1/6nP8ed1zqakn5VzHWnAiNbz9yUXr+fMyBdT8FQf69j6Wb3zmVNUPYrO1vP9Ts3fnYovXb22dzJmGd/VyeFm302B1fdXBNy8JuZ/Zu3t7j1qSC0eZvqzaOjpRqvzSFwse4LU0snZ5TDoFJtr10PcymsACUB1eMkH5hLzOwpeRaKq8Q4hfWnsIVU9qC580zK/j839teUXd6ZAv4obS5sRYoLnpzfUIAmKMtnRRyKMYXZqRrspeynWmEFECrbjepwB0HaokxRDshlI87189mM1jZQUhyZ4uXQFIxmSkNWKramgqcqYOowvZ4CIOp6sEjZZCtLljpFVacxBQwxgqJKHVWmfxjLYtGWNmcF7iMFLFTSlxmwzrLZ7NgNgTAoa6oYSqph3dMQnW/nXXmpZVxjIKs+AIITlEnIqSxkEUg6503TjSnRtNQdVcb3BQIxK0RllHZbAENFTnPS1a7zZkcWpVwYm4zRc0NN76WgGwXqpAKCmG9wtqTPqmAAUeTEyBjkvSvyDrmgUlLKWKuMtSRoW8fCQYzaZyl0cSFGJAeUscdibVLdGausREaDCUJQ4BVWGYbykFS3M1ZZyGxSncs62s7SNJoC3FSZLA+sQKiuUS+k8Qp6spRUdo2O2xDixE5Q5qLxCkxxzmCNppyTLIi1GKn6oiApYIz2JwUdGNtaZYcdtyQZdSnndM9KKRdGVGVgHYaIZGVnGnfisi4llzSvlXWHAuYyCqqTrOA1X9BaISpvpbPQFTBRBTZVMK51prD1FCeqBd+akS2LIofGTmxfuUy8Ai4z3nn22x05DrSNYxcypqyVOKiC07UtIsLmakdlaloslDU1D2lkHNF2ObCOdtFgmkTMmZg05fmnj59zsdtyeX7JarWg7VacnV0x7Hu1D2RlHRpyYW8cS9FEjCWRGPqexarFWU/XQbfyDHHH6mjNrtd7u6YhAzEVQB8G2yhr5jBkxGSGPmraz0hJpambb90/dfp0bIVU3pl2fHea0mcFj066DSIlAKXIY2HkShJpfUfTWDAKSfHGklNie/WCT75pyO9a5M3/B0fDm7w+fJXX8/vcMUc04piFxozbTSHIG3WFzyxz7/PBB68q9f19yKByeMlnP/FV30zMJvrtvBVzneF620YdaPa1ufFLaWsdh/FZ07ejHjP3vn9Gu/dPHzOcX/DGj/6I6hDl85qGW7C8fPKUF9/4Le4sLK35CoiukQyEzQWbJ484u9woq/TFY7aPPsTcextSQuJAuHhZAHkDuxdPiPstqeZ9ykIMUUGdV2eEfeDqYsvn//qfx52e0nVuZCWaj1qIGWsMR0dNSbNsDidiZNkxxCGzu9pxerIcU0zPL5105En/m/TRw/E70MXLV1Fgs+npuobOqL44P1sCDENit+05OV3hROhDpG09IWRenm+4//CYbmFGfbFqxTVA4LNUlFF6s+X8rCdk6Pc7Hn/4iAcPT3n/R99iufIlUEgORe+gnvkp4mAgZxosqqvdkM85j9h0+3wM5ucQ4XC8D1ZpFV1mgPnP6nf9Xmr7p1rNZ9w3npnMYVv19zLjpvb72vNuLKWJ6Wl+/R+kTda2VQDXyDJa7y3IoOvyM86KmfXdvLpdc1BQXRY1/fQ8MOt63fP2z4lJ53XWRr1yj6pfzyrTParMszGfOZfzvh3M34E4Tuyn9flm9hxgQk3VYL36jHouq2MDo44z1meYcvJdL3LtWXb6Y74Hj4Ebt+W23Jbbclv+6IuBj1e/yv/1y/8272x+jp94+bf4wtVf4SS8gZfuj7t1/39RRIT9x1/Hr+/gj+9jfPPKa3K/YfvNX2Xz7V/j/i/8L2lOXxu/G559xO77vzdev//+19l861dZf+lnkRjI/Yb+8Xen7z/+fdLV85vPSYnh6Ydq6/At0m/hFqR0W27LbflTXH5gkNLRyYIYszK+GAUuxEIRL9aAc+z6wIuLDWeXeyRqpKJvLIu25fhkTSKw3W+JORNS4uLyiiEXwEUWQrK4xrMowB7fGHa7DdtNLEZCQ9N6mrYhLSP9EIiDKKgpJ/q+GLmx5FySIIlV43tWh1FKhfdApDiW1Eo4DEmNxRIwNRxeDMNeKfi7rivApUTf98XAPFH+Oms1yjMLOSdqip3Gamq0xbIlRFOiPjOCpvUaSnQ1VljfXbA+XbLbBra7xOVFj0MBI2GIIA7ftlgysaSVsBbazrNYdngfCSGNaSyMOIZdYnepfXJNxPuEs5b1qsMcGfo+IOKIKXPx8hIh03h1wnQLQ7NY0q0W9MOAt462saQYaBrHncWaEDNhCMSg0cPqkADj1bHd95AkFweKxTWG3A/FUefYXe7p96FEcy+ISVmuFsuFpp1zDbmk9AshjsCwoU+kBGlQF7xDnRXGKAjNGEOKAeMc3jajE8A4q04xMYQ+YExi2bX4psF7lQ8xgIsa/VzYvLJUJoOMKWk7rLEs146Teyt2+8B2E5ASnY4JOFuSQxVAm/U6//0w8P3vfAJEQp8QYIgDzhm8KUwjLmGtEKKOhRA4OV2QTaLvB63XmGK4X5IcnO+es+s3XD0f2O6EQeAX/8XXeXlxxe5yh5wsydHQ4Om3PUNIIyNTFsFaTxo9XxmLp+ka2lbUcULEmIZ2YVksLdYMPHn2CUMK3Lu75rV7d3ny/Jzn5xtSEHz2dNbTLVrCEMn7BpM9V9stSIOxGeszzi81MjpTjDWCd15T+xWjb8hhZh0UnHMaQS/KFCACKWt0dte1JBIpC7t9z2LVaEq0YU+I6hQUAxfn5/C953zxK5YXz55z+Z3A6uSEozsLjO9oc+S4cQcRdVaXqkY+j4a/qRwa964ZmDk0oFU7VS6G87EOYXRWq2tSbrA4vern9ICbBvz6LI0iv2Y0K3+8KlVAjTq88azP+nz29+jsP7ipfiilf8re8Ojbn/DG26/x2lt3kZzpKeMsQsiGy23kO1/7DuvOcXq8YPf8kp04+pgZQs/l2QXnz5/x5OIZznp+95d/ndPThzR5OVow47Anxp5PH31K260Q02BMg3OeGIsTPINzjv3Vjnfff5d3fuwezsHSJjwOhwI0RAzbXeTi+QVvv3VCayOWeoDJiNgiyxljhLjLvHj0grc+d4dVq0kP5qxEh6CPmWF4ZuCcT+0U06x3JBHOrwJHywX3Fw2NMKa0FBEiQt/Di+db3nnzIc46XlxtWZ52pD7z7d/7lM+//zp373c4q2At5X6yzE3WIzCJiTHHmAICyZYXz3s254ldv+GX/stf5b233+Df+Z/9HPceLmlNJhee/utAmlFWqkO4/l329upgqfgTYw6ZmObjpmNbjOLFaitF5GyNIKeshWty+yoHRC6jPZ+D+dx5Dl0htdhrdc2/r3W5MrkjGGm8t8aqH0a7zudivr3YuVOCQ/fCHHZUODqwKPDGiyEaBQXma6s4o0CXamif2mzGD8TC3ETv6v5SQV+j01FKurOJLWn0NRZnzJSmTFmBDOooE2dGUGX1AUJ5tmEEa4zAEKmgpyKlAmIUXAXKtkKeOamKY1LZM8q8y6zOOocGjWIvt+U8c0bVftjZvOTJiZIraMloaqXK5DSysQiYPDlfpPxnclyYA7BqlX8pTgU7Yw1RQMOhM+aHrVhvCubTkCSRShozEYNY1c1jVr1xCAoucGhqMO8sTevBQAgDKWdiLHVQgJ1ZSqpBBTS5gm4bwqCsSM4WWRHa1kFniUGDLpzTlE6xClZxQkkV1toH4yZZLP+tgIYYCsDEaPo0TUFlRv3VFJBMzIVxs9JtzZxG9XySszBHKaqMlJ3TWLzzusenQIwKZRUjmkLYe5zR1NpDH3HG0jaemBI5a0owa1FAUQUflFR1FHkSKnuUQiw01RyIiRg0hXXXOay3o56Sop6prNO0ZFhBSIXJSlmdrLW4krLPGGGxbMkipJhGRqdcAEGShWymN2NNLanrKBddyzDsB0Sk6PgKUlIWHEdKmppNBEJIE3hFBJO0blOc1XOWvjHd3rgwzeiwrKBAyQpgAQHvFOxl9Q2jLFb1fZRHxrn6bN94smggTNs5uoXqIyGoTI/gqnFzUcaxurcOOSoDrjMl5Zqm9XNGg0WMN2SJ2k9rcc5jbGa5bMhZWY1MGVtjNBhIbOZqf1XOdkJOyiD56eOXxJJO7jL3mH1Pi6ZTG2IcgVXKjudmTA46l65xJW1eAU6nSM6JnBSA9OTJU1J2HK077t495emzl+z7MAIyScq8JRlM1jf90A8Y67FWbjL8lVeVnhfqmCuDXm3cCASoOm0FkGYFFzpryxlW7Qa9CQheQbgoc50U6sPOOIwRHj35kBi/z3eWv8Xx4i5vtl/gg+1f4qF581BHEDPpe+VFclOfL+t+9rM6yDV10uFFMt5odO8qYD4N4LhR7eGhpL6vR/TztOfMS30nInNG2fn3Bxvj7L1lDj+43oz6tRy2cWRlGS+4WUHdnXOKvPidX2X79W9h7/Vcmaf6faasHSHmzCe//TuED38XeeN1Pv2lf0R3923syWv0Vy+4+vBrXL54Qo6BEBNn37vk6ZMzjj/3ZWS3hTQgcU+Oge3uCutcSYnp9dxvaoAc1A1/dXLE8d0lvct4q2ysNdhFwXjC1cWGk+MVTYXBz3RDYTonxCxst3uO1x2tn05uNX3x9Per5uZVf80/VX1oiELTNixaNxoK61UZTZe37xMnxyuctexCwjQK+nvx5IqToyXrdTNjYMqMXFAHIjtTbOQQVDcMwn6v++D3vvkxi6bjR774JsuVxxWazTnvYP3vHNxzo/+18rKv1jFWHWv2ni21XecvGGX/2hPMwQezb2T65bBFo9YwrQup55fapqliw7XF9Irabnwl06+uAtxGhXVe6yH45UbfzLzPk94879fUbjPpKMLBfNYxqgFnjH8z326ujeVhHyfG4TpnMzmv27gc1mmg6DnTtXOso+5580eaMVCiPsrYw/EUzEHAmJm1ab6XjbrEbIIO+lfYZ+eY0ZsgzfLE6wI3G7tx755/P/v9YNjqx9fFdFbfARb0mmzclttyW27LbfkjLgb27pxvnPwDvnH8D1jHB7y7+Xn+nUf/Wz63+8lrmslt+cMuEgfOfunvkjZnNA/epr335s1rCpApnj0BhGf/zf+d5Y/8JKt3f4L+2Ydc/uY/RobddH0KvPyn/wX94+8wPP2QtDkn76/+B+zVbbktt+W2/MkoPzBIaR96YtBUCiEMaqjMBsTSW0HxGGp0JGaseBrvWS1buoVHjIKbmq4hpUQMiTxEcGqoE4nsh0DTNHRdi5HEZrNTA6TxLBYLUg70/UC3aFmftPgeri56sgm41uOSVZAJBms9UiJ56wHaWU/jHc5myKFEo+vBr98FjBW6pWOxaAsgphgosrDf7oEaMQ2+8VjvyTlgjS0HOqFtPSkpWMcZixihHyJ9iMSY8N6zXC4xJYp5GNLoeH32ZFvo/4X9LjHsE8tFw9HRgtBY9vuI89A2HhkSxntS1kjTEBPdyrJwnpQKc43x+FVLTokQMzEGwn4gWwfrjiSxsEQJ/W7AiuHoaIVt9dAc9gPDJrHbb+lWLfhW09gJSM50iwVYZbTKEYZdJJXvdpudpu0T8G1D01kqnb7zjhQNfZ8Y+sTRcUe38Bgc2+2+2FYtKaqDI4uQYzGyUxz/ooxTOadiiMhqHLRKm2CMoXWtpnoYlLXJOEvKiTwkQNmcvNekXvs+goHVYsFiUWQgJtrGEX1Eoi1RSZbjk4U6HZLl5GSFa4SF0ajw7eVGUxM4dYTkXEjOjaY1qBwU3iS61hH2PRZH03iOjjru3jsm2cyLs0v2Q6BtG1zrWCwaHty/w/Zyqw5JqwwSzsPqyGHbzMuLSzYXA3mwpAyByLe//T1cBmccz4Yt3sE79x9wcnfN9z9+xMV5IJOoCA2LV0NvFoaSQmSx9KyOW/b7nv1e0wA6O5DSmo8+eop3R9x7sOYLX3mXl7/8W+RnEWM8q3VTIpQzi0XD5vKSfRgYeqFt1OjjrCPGMKZ5McW5o0xOTlNuCCx9R0oBZ5wyuCWBkqrHGlNSLooCu0KvTp7e4L0hp8Q9TnGNOiskCaSEbY44ffsOn376dX73a89ZLB7yxtvvsLx7wvmzO7zz9l2au4ZAaZtAa8CbykCiViEjcyNpcQqYeQxzLTNwhBzSZ89siqNBaG4MOzSKmlLXdfOsmsdskbHqyByfUSqdgCaT381wCFKamGJmKYZmlUntf7lm4h2o+20xRB76Kg5KrWN/tuf80RnLowXf/M3v0jrLkCENQFKnw8Vuw/7lnlVj+f1f/i2effsU509IFrJs+f43fp/L8+dsNhf0Scix5f0f/TM8eOMLtN2atnEQHZ9+8gTrlhyfPmDRLjlar7FWZQox7PY91hk2izMevHmPBSr/TemXOssMexGevLjgwb0jjhqv7D1SjJZGnVs615aQ4NnVlvuv3+V03Ywv3Zp6axwMUx0SM0PwOMdSWF9G2+R4WwI2vTqn793p8BVAh7LAiMnEZHhxvuPeg2NWXcPFZiCIoTOGb339KafHR7z51jGNNcV1klHYisczpSK86dKYUlBcbSMvLgY++fgpv/ZLv8YQB/78L3yV+/c6TT1nKvhmkrG52V4NtYeyXp04c1mvAEH9foLv2dl1FQJ26NAvjFWzJ04uwldEGJfPpvRw9d9kza4OwCr/aXb/gWH+4LO5Nfr6M7UuV75IYx2vcMVU58U1h951AFj9zIumtKtzUDAi+qzSpDy7x5SNYZwxM/VfqEb9QyOJmdU5T2EoUudBirNUHeYWsJnRmTGFK6vsWosCb4QR2CPFC2FsSalmSzq2rDpXNebbEVxS6raVQaO0ugAwRoa4mpcBHRzDzKlRcng6h6YGwoxp2apfy1iU3YnJSVEZWKQ+yChrhxQGxDouer/2O5dPXHE4qoNfRpBBZRMUMyZyBGvGfhoKq6MRJun94Sp9P5AKW0zOlZEUwGjQt06QAr4LGEEB5sqKKpRUXM5oWlBRncVYaEr6uCwKEmq8snzGGDBiaBqroJWc9CyC4L2d0sDlhLXKfBPDtKKrjg9FpkqbKxi9Ot5E1AnuSlCFc44YYwFgqTzHUFe21q3/V+BGlU9BwdiKxVZQvKBzn2PWNLcFVALoeaM0SrJht4mICThnSFHTYVmvAl3T6GIUsJUCY1sEXU/eawqzlBTApOec0oakadMoZ6gK1qhpDEUyrbe0Cz/uG6GPqov3Ad86nHcMWdPjWZSZNxd2Uuc1jVzVkWLMeOeAjHGW1rsCMss458kZwlBSGS8bdUhGlLGp6O0IhAPH6Ew/MYztp+wlyswJFSKuQDcU+FREVAEquupyFpzT9T4kBf50bUvTOAXdpayMX1lTpNWG+NYpkCtD0zQqA87QGAWFqTwYZbYqKZidc2SpQUN1n9Nne2tofMt63dEtG/bDwNXVnph0LSgIzel+mlI5n1D2JqFpFESYYiYGQVLRJUXYbrfKGGgcaVCWqOXxmjv3Tnj85Bnbzb44NitItEpyAYlGoSlApWGICs4Sw9VG6IfEbhtpnMWuy1qh7P3Wslx0YCCGAWsd+177JLkwWZWXUiKNOkmF+GbJmt6tbOje2xHEmFImFRammvYPdN83lgKiymRSSWkouleUc6ZkZbmyTQNN5Mnj79LvehaLY07u3mG3ueB88ZzLh5/wPj/DW9ufoUvH2Gxp7MTAeKCrX9svD04RdQ+6satO1076/XTtIaNi/W3qr8zuu17XTEUYLzAHdXx2e6uucXDGmbXtoE0y/T2yu5qb43G97zL7GS8vOX/0FJMij3//6zz/pjKDVZYwkyGbzNX5OV27JO4TLz95Tvv0Cuu+hdjE5uwlL5+8JPQ79ilAdhyfGpz7lMZ3uh/SsNvvydnjmw5oSnBNTSeqSkTK+o6jsbgEi9aN4IDa7gxs+sDqaEnbuIOxqgAtfb+oKrLtI+2yZdH6G8yhnzVGc3100vJmoKBZxI0Gn0VWq6bwbM71dH0HbfcR3yjjcoqZHDPtwnP2dItzltPThTIiHrRCNXpjDmUCmbRiKdp7CIl9n0g5891vfoQgvP3+Q1ZrTW03122nts007Bl4r346QXImua7yNW8LMIJWJhBj2ctkunGsZ2o8h+gOuC69B2t59vdMGyj/psCIMRVk/aQC28cKzUENhwAnZRCrH805I2Gs6vCzUeefWjfht6TUqXuXKy/4yjWJma6dRmF26pHp76nl09nsB9oHa5+Lyl62fh23aXhuAn9MlXWmPa1O72wQKsCqDvW8MwUXPa7J+kytbL5OZmN7bTEejHcRl/H2PL9vdu67tg+OsjHve/1uNv0yDdXBu+FVL5Bxr78uwlzfr2/Lbbktt+W2/A9WDGyaZ/zu6d/j+6tf4c+++I/5s8//DifhrVtmpT+iEs4eE84eg2T6T75B/8k3/tX3vPyU8PJTLn7tv5kUjWtFQs/m9/7Z//cNs04Pp7flttyW2/KnuPzAIKWXLy81JYIUwyymRDNmxEZSKsZcyZrjDf075UgUwRphiMro0zlLCgaJicY7utZT7JcYA22jDCpHfo1ZH9GHnr7f04cIWPq9siQ571kdWfrdgHeW7mTFxcWVRn5WY/loJM3EGDFDUgOtM3jniSkzDBFjMquVGnVzFkIQrHF4p8bVNAzMrSspaqoKZUYSKh9K2zYlol+NqilnjUo0FvZ7RDL9XgFPTeOJMahRVaxeaxPOZ3I0kNS5sNsNdEtP0wghDEBDDIYsmqpt0TUYC76kFNinQNO0WKuRsrYBb9RolstJ/Opig56GG8TCctXR+Q7fGo3MjYaMAoX6faDf71isKkMIGCdsd5GcBO8NTdPqQVsMvl3Qb/cECSxWDd5nmrYBHEkSa99ifcP52QaswbUN+6En7AM5ZXxT0h40ns1mRxaLxeK89tM6ZYrKZKVXz2ooqQf0jLarbTsWy46mawhBI5JTiup0EYs3HgOkbIg54Z0HcRjXse0zu91AQlgeL8gSCTGQ+55mgUYhx7IWojosrc2c3j2ibRskC88eXxKHCNayWqzpU1AZNoaQBvZbBQQ8OD3mzbc/xxe/+BZ+Db/3jY94/vyKECKNb8kJdpvApT3HpEzXOlzTaBS2t3QLHcN+B5gdYiLOanS9pIQt0cAuRbqmwS8tP/oTX+LpyzPkfItkp7KSJjk2prATJYWrDJtIv09Ypw6+s7OBly8HTG44Omo4PbrDb/3Wt3nxdIvJgm8tq+UaLFyev8Raz37I9IWZLBh14sSQMDZhcJoeLwMRBjJhUHObtQ7r3MhSoO2rkaa5pL5jBCmpXpgK7soh2RD6SEy6f5ENbdvgmwWPP/kan35nj0TD6uQ1Nhef4Ns1b7zzFe7fO+H5ccBmA0kI+54Hd49YGqErO5yValIt8idzU85kxCxuj8mQVCxf1Rh53VUwBwB9lrG5Xi/jdRW4MX0uTMY5rhuGmSAaB0ZaCjPLNUP6ZNC+2aapL4f9qWksptRVh31AHJcXPckuWLoFz75zRrtYYxeNRiaj+Z1XixX37rzFYhVZ3H2PO68/ZOVbshVy2vLiW084312yf5a4Sj1N49luA+dnL3FugxCJ/Y5+M5RtfEvbBYY40DYNBqNMcU5T7ZwHw3az4XP9Eev7DcnYArxQ+Xpxuce2LccnHTWtKCgzjoJvyroBnl/tEJM5PWrpSs9zsWqOUaFl8EZHQfl8YsGZARLGC7SEIfHi6Rmvv3bKwujcWUpqGoSYDE+fbYk5sVwv6HeRfh84Ol3y6KMLdldbPvjgPVYerFTHsMHS6XOrA/BA9g4jjPs+8OJ8y3Ld8Z1vf8SiW/I3//Zf4L0P7tL5hKUprGB5BNFVQ+h1B1ZZ5gdrZ84GND+aHdw3k71JWqe2Ts85dLqMBvOJtmYcc8O0kqYWyEH75qC/esX1v+flM1fP7KYKNoQpjd2NukcmCHNg3K9qitQIXRG8MSwMLDC0pc49wq7uHqLgSmv0DWAxUEBdaTZeB6OWlfHm5l6k463pQQpzk7XK/Cf1/VJ7VmQBZcHIFGBScYyPYdJSQZmlFZVBKFcHRZXKysQlN6zsmmYpT+NjKlhL651S1ZlxOsZSFmqSCfqpKUo5eGZNy2Rl2qNrfzOTo2h0oBQvhQjK7mTMBDooTB5kKWtwkhFjVUYkT2Oizy/gnHGMfzhLGGpqr4lFRKAAxyZOryk2X0AKSCMrWCtnZSkyBZBi0HS81hWAhBSutAJ6abuVMqHse/q+J6dcgGFOATxWgdEp6tx2TUtvemXsrOncxoRB872krFdnlL0nJL1/UdmeIilN81GdRtZYlTmhsEjJDbYmY2VMfee9grH0fjNG9legvnWaUrp6vKrzLZWUZ7YMckoJ57W+nDJhyAXglkfguC67ade1RVhTSec1AjiS7oXDvrxXC4iubTy+0fWWUiIlXbMWT06ZYcj4pNfnpNqBdQqos84q2FBE57ik4oox0C4anLfKaptq0IPBN25UNkQKYCkX+TEKfDLWEfowgllUr1T2jAoCrCkTFXhWmJxKcIXB0i4aPDKC1yRncm2HUxadKhFgC6OWIeRMiMqy6r3D5HIWCQlMHoGLMQasU5apTGa5XuAbp6Cw8x2S8ijnGqAiRU+PGBSwf3y85sHDO9y9e0KykU8+eQabHsm5MDMZcjJ4E3DO45uMbyoLrrJA1Veh9ZDIOFFZlcJ2qu9A1c2DRMRpSsQqz6NjtebmLItcQYCw3w1jwIq1lpyEPkZa19C2Dev1mudPzthvw7iPV0AWFGayLAoYFYMU1rOclbkSU+DLWUA0oCqZsmcLJNK4h2SZpQREqIx3I0IUPY/WvVlEGatsYUNDDMZGHIJcRnKKONuwDQP9/hLrW45PHvJs3XJ18k/43dU/427/Lm9e/AxvLn6EI5bKxigVQH1z456/yQyMTEdzfWDueB7fw1WvnNchN8Hm83uvP3QGeTgAauo7soLR9Mu5o39SZ+SGfiJ/wM/6zHl/p32vAO9n99R26bUG163oTu+x3mfW3RE5ZVzXFmY6h4glm4SETB4Mpm2xzUrtC92SPGxoXMdqdcKQHVm24CzWOrXdOLWjhNhjUdl13tItGpplR7M80vdQSVsq+w1DH7m0DaZZ0PkpPKFqE8oWlFkvlXnoUN+yBQiqfd70AykljhdLTYl9MGeTDntDiq4p8Wb8fdLlBSFmtTktlw3NCISe5kaA7TaSYmJx0pGzsO8j3arl6qpn3w+88foJjZufXhj7PM53DTq7NtcG3Ut2fcQ6z/NnZ7im4UsfvM2dB0uclRE4NcpLVagOZHN2nuAgNGCS3VfJ2vg5B8Dv6V1fNdzZdzKr+zMWkpnN1UG759ebqb7DFTFv380ytmzs/lww5uEKRaMSOej7eKk5+HFjbupfFj3rNug/A0QgGP1Z750CS6bxnLNCTx2oOwVMkjjrktwcDd0HGa+2s2eN6n/RU+q+VJlYx+19vk+VTcpKAVvZOjbTWbWo6eO+OgaIzIThYMYqyGhSGKd3jVzbl2d9qr/XtWyZ+jOL4xgldVzL04/xGeM7II8fTeM0/3uagPH7OvYyv+G23Jbbcltuyx9PMXDZfso/ef3/wC89+M/5kau/wM89+894e/tvsEx3uZZQ+rb8/1D80V3c0V3S5c30a39wMfiTB8TLF2qc+tctxmK7Ff7kwfRZTgwvP4UU6V57D7e+869f7225LbfltvwJKj8wSMkZR9PoaS+LxVjPEDRdFWjUsHMeY4oBTzKNc3hvAE3NlVOiKWma+iHibcOya3EtDCER+ojDEk1kvVrStA390HP+rGe/jwy9IhiaVsEk1tf0HY7GaQoq36wYBsP2qqfvUzmYZY0QdY7GqyG/aSzrdYdxnpcvrjTqddExDD27XQQc1ih9f8wZLDS+YeiHMZ1EzqX+QgNjjaHvB5qFp2taNdoWRwpG8J3FWU8sacuGEJCU9VBqMmIS3jdksUhONK0y5VhjkCR0rSM7SwxRnReYktagHFyLkT2LaLRv0kh0A1jnWayW9PueFDI5WJwB5yP7fcJ1HRnDrg8IMPSCaxyL1YJ+Fxj2A/020nUNbddoVGw2xYBvqZFQQx/oh1jYBwovg3MMUeh7ZatarSw5BIwB3wj7focVjcizXQNWCCEyDIEYgVz6NAz4RlNRRMnKxpXUWWBcQyYhkvCFnattW5YnS/qhJ22jgs6Spe9DcVABqJG78WpsOzu/YrPbKSPPEDT13KJjufCkq4E0RDZnicZ3xBhxTU/bLVh0Ld60HN1ZIQ76bcLgsSay6DxdBxIzOTsEwzAMSGpoG887773Nz/zcBywXno9fPuP52aUaoZOwOd/RtIE7d++QjcH4lm6VWR+3hBQwriNEYXN1xWLRcO/BMednPakXTEpknDpnylxkLM8vLvnlX/9Nnr88L2muMmJzMbBknNNI55QzIQlX26COMBKLZUvXdTTecrRacu/OXfphj7GZYXOJEwNoeoQnz59BhpNjTSEVQyQ7R8gGJI1AQk05ombHmDM5KICpaTyLtiUMiZjUoWKtKQ5DBSpZLMY4ZfOiOHlsw3LZqmM4Kfvb8+cXLI8aGudAHFebKxbLwHpY0Dae1eqI/fYJjz98gXUNV2eXRB95+4P3GC63WMmcrI8ZQuSt+8fqjDOGFhkj93IFTplDsvm5EaoCGiozTTWsJVFHd42hTaPx9pDhxQqFOapSjZuRTnxuRJ4bVNXYNJliq5FwnrJq3lq9R0Zy/unbCQCiTvipjXZ2RbXXVVCI0yU8GWDLla44Ue6+dspr773LAsexhz4po5eJiZj3hAxD2DIEoc+epy83yki3aLA2s/CZd7/4DvdfO+Fbv+W4ils+/8EHvPnFL3J8ckJrOz559ALT3Gd/sePBgwXvfel12tYrk5ox40/n1KL3W7/vGJxhbxpe975Eu2tqootN4uzpOZ9/5yFLW5mrKIxkFoey+GURLs63XJ6f895br7EoTl9jKmfGzGCJGjxHZ44cyk2dL4uyRSDKtbMX4XwzcP/BCcuFwYlV26qVkkrE8PxyQ78bePjWKRjD0+cbupOOzYs9H334nJ/6mXdYrwyNqQwwh84FlbI0JqcQpvSDDsM+Zl7uAq7r+Gf/4De5PL/g3/0P/gJf+rEHdF7KfZq2Lc/isrWuPJOd8qxifK0SfNPkP0mRLfWla9eYA1msUfoyslLofE2yW+clM4FW6tqa1z2PKr/OBKCyLuN39jOMBXND/3x9ZTlcH8L1/aJ8I4zO2jqO8zUn5ALQKOvPGBqgJXOssD8GqoHc0JPJ1+antjwyByFNbRWp6agmrp50aDIv9ZjJ+W9McYDXnUuZkKwHsv5eyEpGA7kUJ4OmSyrpL2eODmdMSUkliANEGVBULRM0zxrj3qP6UpFfV63wChY0AqamhKnOAKtO9eqg0PaY4vzWdqVsIGd9ZwrkpGOSjCgrUBkTJwWsVCmmhNFRh0Hf74YxVZsUNjbsBGjJIpoOra5Ra0YmF9X/KsDUzmTph69oOqyyDkVB0TFlBW1QZMUqi0wqKcwUWKNMmePaK/OXChjbWot1kLMhDgGDwYuh6fTsEmMk5qTgL1PSr+WEJKNg6bKunDVYLyxsS0qGMERlspE8tk+dOjovznu6RYMxht2uL+xZlhQLQKmk/qov6xHwkDIjKKJK9VwmYgLvcFKBXVKANQXUYG15VmE2oshnAewYY6k5W03xaCuwQuXMNU7TEReAiS3p0FS9F4zVc46mUta1VPU27z3JFPaj2U6bU9Z1UEF3s7S83cJrWu2gaQ8dmu6szmfOmrJPnX863qkAfZy1GhySs6anQ0bgVooV9KZgFoumsdOUp0KMmZyirr2yf+akOmgFWo4sSmTVd40yuVpryVHwraYMizGRZZI3EUGynrX0vKmAKxFhSGEEduWkIELxhmXn2e405VwKaWRyMinjvOCsLSmwHcOQiKEEiFhD1zkWC8cQcgHaqLxLtoixLNcrju4ese13vLy44sXLK013nQ0xZpIbWK/X4BxDDmXNqE4poqC6nDJN41guFux2gRxyYQjVPqdc2iwKUH706ROGksZbsihotKwRDeBQRq6c9ayvYq6gw7ZtaLzjaL1itVyy2++JaWC5apAM251ocE8/gAhd67EeWqNv6BjrAVh1Y50zp0E/BeiW0bMyhW0sK9VN2Vd1g69gOJXZIhOiqRidV76anDIxCjkbfOuxRedPIeOT0OZE03i8E1LeE4ceBsvLIRBJPHzzdfbbp3w0fItvr3+Fk/yALx39NO/3P8c6PUD5hGup62rmfZaqd8z3v+m7+Zlj0hDqtnJdk5puvV5Vfbp+cKiMXnduHz7vs/VXw/XmHvTu8NqDZ8zv1L/qmWfeXtXlwHct3fER+dELAg3uzn2ys+TLZ5B6FMCWGfpANJbGtdijU1bvfIHFvdfIZx8TPvk97t4/4tH3PsZs4ejuCW+9/y6287TGsrmMbPdBbRa+4c0f/zG6e69hXYPrlkDVFYW02/DiO18jboQ9llOr6dNqu0MSdv3AyXpRZHrqWB3LYqpgNwSGfc/p8ZrGTGN+MIciM5E51J/NtU8nAJKMenSfMotFS+cnGM98jkLIxKwM2Bhht0skgbCLvHxyxcM37tB017VfM/uvjMEr89kdz68CfQTrPd//1mM255e8/8E73HmwxNtDNlaqnnb9STLpkNe/uyl35vAKM//r8Px9WM/h2Ne2zPt2MPbXF9i1P+d16tzPQIhmdj9Tnw+rOnzAAZOUMa/sx/U2XJ/r6xeZ0g9lUFIDcouaAhOqe1aWaYcZzy2VCaoGX0nt5LV1XftRYkHHM4SO7TQXlYn6+l5V5ciYEWNUVcTZya305RUdrYAeV/V9KW0th56RNbs2vQCg5BXgwPGvKouvmL9azzxYqV47noFmG53M7jFmmq0ROFVlrz5vJojz/tZr8zhAU9/ni9HOxu0Wo3RbbsttuS0/JMXAzr/ka6d/j6+d/n3uD+/zhcu/yr/19H/Nw/0H2B9SFu0/ScV2a9xiTbp8jju6x/LdryAxsPvwt8n7zSvvae5+juOf/LdZvvdVNl//55z98t//gYFK7ugeRx/8PMt3voJtl7jju9OXORNePuLsV/4+7b23bl/It+W23JY/9eUHByl1gnceawxhSGAcPkOy6poyswNa4zSCrF1YdUCV04/3ytYiyglMSoEYLWIt1jhy7AlDxCwWhCbQhz1XVwMxg2tbOiD0A2kQJCdMzHjXgkB7bFkeNbAzyphkq0NKHRLOeVLK5EGdIstlR7dYICaxOrLkYOhcSWyTS3skIgg5B2IwpJCRXJw/BYxhZ5ZBA5Aysc/kMKijOmea1mOdJcYEaF4FpYlX+v22bbBeEKsRxnHQsW5bT4qJlISmtTSNw3QZ7zt2+4HdTtNxxQgpQQyJbuXJuTJNtcQIYcjkvi/R0ICd0vdIBC8WJwkrjqP1Mbt9JMgeK45l6yANWPH0+0gcMs4qCMl7BSs11mJywjjBthD6DMlinGd7ldjsdqSUWXQtR8dL9rstOWecbTSaOwo5qXHb5kQ2mdAncgKygrKsVWN3ipr+y1hN4WFx5JwY+oG2c5zcP8IYYXu1o10awjDQ90FTLRhDY52CnGIiR42gjWGPbxtNg+BhuWrxpuFq2EA0dHbFyd0FMQ7E4MgxEYdILmlIkstc9lt865Hzgb4fyFFwnWdx1PLwwRHH65aXLy4Ia8t+SJylQEIN5C+urvj9jz7i8ceP+PTT51xeBiRHJDlyssgwsN1tMd2aZxeXNNbRJTXA7zdbrNcx2oZIu2hJQZCoUcbGWrz39GHQFG4hwEbYb3fEfSjgGgr0wdA4R9d1OOfY7XaknHX8sYQo5BSIw4aT9ZJ7D+7QNh7ajvWdFV9+eMyzRxu+8fsfse97rLPkOLDfwPFpxxtvHvP8+ZbLs11xmih7knMaed8PocxJMZgaS3SZlIojJyu7VmUbsEadNgZDLOwAykiQiSljLaScAIdJjn4XCaZnsVhhjScFIQ6B1lu2mwuMdfhOzcebs2/xyTcM9+80nD97waOPPmK1PuH4/n3yz/8sJycLjBFW3nO6FBqjBnIz3wuYm+Gm/048EdM1142IZnb3gaG1AEmqsc9c+zevoRryDhmM5pGr1fwk1LSX8xZXY++8zskUWGuYWlpIzUbjdHUm1KjLw6pkBFc6J4j0XO4ND9875f5ywWq5ZNk5BXZ6w8Vl4Pmz56zv3OerP/E2772xZNkJzkFjwWfLh7/7fV5++ohmWPBT/9ZXeffH3wIj9GeRfVyzOFkiqedHv3SfrivMW2Y+emqRzAK+SXz0MhDdmi86xpRnQ3Zc7LZ87s17rFtHJ5CMQsYMCo5wxbJ5uY9cnF/y7hsPWXiLJ5fnVQdBnZtD42a+xnc1nxOtJSFmIIrjfDsg1nB30eAlkSpirhh6NzFzFROfe/sO3mXOrwYGLG6Ar/3z7/H6u3c5PW7xJuO19RrtakYbLEbA4wqUpTCUmEwgE8RxOYC4lt/4xd/kw9/5Dr/wN36W9z84ofEVACRjX8c6qb4UOzoCoTqeDq8fx2Zm057G6nCUJv+8ynZ9nlAcmKPc1vGf5PSmnNcVci1qenbVtIL0anNw/3THyEzBoUPm4KlS23nIzjR33syNxQfr3kyMBkJF+uie5Mg0WFyBUAVgTyIBrVgWRvekweh313eHyV0ylTxrQ/0+kwsw69q+ZSzOMl4pxVmhMqasYt6YkvZWQdvZoayMgjK2lMFopI7lbDCyocmGRCaiqpmU1F9zgGTOqTC9UIAFOlP6XK14ZAmhpu5SIJ6mlJit08ogJbq3Ga+OT4M6yetz694uUuRvHIcincUpkZP2yZjJqVGdFXb87Jqnow5v+d5ZMzJLfaZH7IekWD85SiSVsYfCEDWBcGq/rSmp9qjpnczIPqPAsZoGLyMRQJnBcqaAlyNZNPVyLturs2Zi5RAFqVQYpltA06rOq0xAUes0FKDGHI44vctEkgYWiGW17EjZKyg+o6AMFMyswCDd/6ZNyYxreXKlKrilsg3pu1oBVpomL47jBcpM4wq7lAJqMiFmnLXKlpPLG8do6jxMxrWemBQIkwqbZgZMBt8UsExZG7GkZKtv/NrSyjOVs+CM1QAL5/BNw75PGIKCC1PEUAI3UIBVHELRvd3I+plL4Iem3MsqzmK0fZLKurBINvQhgBG89+BUB6ysvxiVKWUjU/CJMqlWANV8x86T8y7nkR3FGEgu4RwlMKUCtiYeipyndZljxmZwThk7j44UtHB1vkWysOg6ms4Rs56ncqpsPkZ1iAwxBKy3mraxgL3ahcM3lqP1Qkd8C76MSZas8yKJlxcX7HPPbrun3w/ILIeMApwT290WFxzDEHHW4VFwsKRUWJyg3w+EAoKqDEJzRhcRKcCjjBlkkotR15MRoKRrWIMX9D2lc5dE2OdA9onVeslmp+co11i8MRjj2A/KHFP3vxiVAW2xbMFERGKZb03zKJW9WKQAOMt7pqQSzDV4yBiksiFpTsACThVNg1fAdRlBYkn1ZsrbLQtxiKp/Ng7rm7IP5JLOPmKsxTUlTXi+JGwsl88ycYhsLi54aRzLo0+5eusF3+h+hdf7r/DV4d/l3upoSqN0XQmfG6blhno+SvL45yt+l5keVWu/ccaQ+Rt/OjXMzw9GzOxb5seJeXMOP+RV30/nHXNwzcSmMl1XJ0AOdLmDYgzr02OWb3+Rt376pzg6WdM4i+k3DJ9+nbR9TozCJx7YBO699SZf+Dd/nsVqqWLwzgnDPc/2e9/k/NmKIQba5ZLV6QLjDHGAIfcs1h3u+JR3fvrP0SwXBZR00BDA4NbHLN/4Mv1HLznf9Jwer8YRSWLYD4HlsqX1Fj/Oh8A4vvrfIMI+RE6OVtofpuCQUWe59vRRRg4E4PrvpmhvQgyZEBIny44GIc0myIgwCOxSYrXuaC30oQTZieHJJ+csF46jpSvyWwViAqvUp1XNuaYXVtCZEDGarhvD44+f8eLxC979/Bs8eLjC2UM7Y5W5UTzKGfbVAJ6pu/MQouthBHV/G7ttqlTK4diN5/XDOTfT14x3inyGZDCCdeoTzNj4+Zqb6hz/ni47HI/Zl3O219FGK1Uvnfp0fZ+4LioyVVmeWXQ1KWdiihZkBD+eAAzRKDt+HuuaQFd5Vn+dQ9VLZHyoMYdtmffTzL6Ua1NT18J8TKotBJmAN+WINP5dx3NaN/p+yrO/D/yCRcc2xhSW2InlrbbrYM7qDlrbXf7NAUrjjMwQafUsMFU8DcQc0DTv73Um4lrPoUBN182Gbhro2sVXLaTbcltuy225LX/8pbywnnff4nn7LX7rzn/BT738D/nrn/7vWaY7f8yN+xNeDPjj+yze+QpHH/w8bnUKCOHlI17+s/8X/affmNnkDM39N3nwV/8OzZ3XADj+6l8i7S64/M1/fLNu65i/XBdvfpF7f+k/wq1ORz33oDhL++Bt7v7cv49pF6++5rbclttyW/4UlR8YpORbjQyNKRFzwBqvUc2dw3uv+3SNUpUStUgBRRjwIpryS0DEsFotkRyxzpKKAbD1lmwMQiIky74PXG0GJEPrDYuFpWs8IenJMhQmp7YztAtIkuiHSMyRxlnEZXLWtlivBvNmqQblnDPbXdCoVe9ZLzwPH5yy6/ecnV2x7yMWiDGRUlDAjBQAltODa8rKyqQR+xTnhaY4iDGgB1JDDAIxkaIauCnXGSM4DzFGLMLqaKkAmrBVEJax+E7ZqVISQsp4K8QcEZNpu5bdNhbDQ6RpHG7INL6laZTKfuj7Yth3UFJG1NQSoIa+09OO+6+tSZIIEXa90C0cRoTLswtNiwC0jScl2G6C1iPqsIghICK0y4am6+h3O1pnaRuDWxjaZUu/T+y3gRf7DUik6QzdiVKvb+PAsNeUFcYK7aKhacB1HsmWvoea0M1aDV0aQiqyBL6kNss5s+93+Lbh6PQIa6Af1JDXNi05CdvdAFkoPic1ZWSLRMNi3XBy94i33nvI+flLNtsLrDjWJx3Lk2PupsDzJ+cM+4izhpwt3i4Yhj2h77HREmKgoaFtDIs7LeujltdeP2a72+KXDblPtGI4PtIxCUPkk8ePOd9fsL3c0feDgtZsQ3DC0GcMlu3Vjs3VhpTAeZASPXy86NAkiJZ+P7DfBQzqJBoGIcTEvu9JuTgyQkl7mNRJ65wdDUNiFKARQigpQRzkwuCQFJwg0dDHyFm44uNPH9G2nnc+/xaPHj/j4mKvjAOxB0nkKFjXYGzD5WavaYQ83H+w5PzllqFXJwdDZBeDzkM1moghSgJR2copF+dCKmlZvBp5c9ZUD0bAqGzHqOkzmsbhnCfnTIwD0OIXDmvAe6MmUWPp93uG/aARuNnRtB7nhf75d/jlf/gIsmF3tcU2Deu7D7janLO+s2S/S3z1x36Gn/7JN/GumlpnxqXy36pKVoOsmX0HE3Bh7lyYwAzV2FadLdXgdmhcum5cBGYG3WIiExBzjfa+/GZHw9n19k/WrlelqZpM5DfbMCU1uN6n6T/WwHrpee+de1xtMj/159/juNHoTHUeZYIY+o8yX/yxH+E7Ty44OTE8uG9ZGAUFiAheLMenC1bHK/qrPThLY2G7Eb753ResThZgA1/+wj1WnZm1R2FV1ThY2Y2unuz43jdfsP75U6RYMSPw9PklxmSOlh5vCgtG7buUCG8DfTY8HwYevHGfdeux5DIelZ/n0Bo4n3u5ZjqvBtw6Nx5DBC6HyP5yy2sPTmnIuAKSqmw/fRIeP7vk6HjFsbX6rjSW07Xj13/125zcX/CVH7vPygrtbPbqHNWzVwUaVUdDZZWKApe7nhAs3/iX3+N3fulb/Lmf/3F+5mffo/UGW3rqqAb3V4OynKnQgMLKMxPuyZmhFxyyf02sR/W4V6Os584IQ2HgGcdSxp/1+gpYctx0XNRyzX5b2iQ31tnhVTf/nNpR6y3tMIzjU9fOAfDPTMb3apkeZ23mPAYKqEZrryOSMmytwUuiMbBE2bM8yqy0AbYUBrVSf1PGJI5tEWWWKnkSHKrvJSPjfM/BZa8aCszEgGUBlyY2k2pt96Kp1bJkvCngU6Np1IzRfay10KF7eRTYCexTSYFklJkplXBqK1KAzqp/SgGvOKuOaWV8qvukGbc9gFzWeM5SUtzZEUY4OQIUqFLnKQma+q100hZHjDqIZqm/qpzbqkOChk5riq3RAWOqQ8OMP/V+GZ0wY+4KZHQk/bCWOQgJlLHHW2W/0bSv0wRURp5cGDVrylfvvc5FFhrvVXSsAgU09VYz3p8FhiEq4AVD4y3t0iEo62gWlFUpCW1n8Y1VRpmsc7XoOmLKhBCLM0kZXF2jwIichDBErFdmR2tLmuicEKMOPGMNJpdVaspeZkt6Q6NyJjXtW9aVrc64XPR1/SyXzVDKWUpgBO2Zeh6x0HUtTdMAytiqKedqWjEhizIHZomaOg1TgJDKGOjQdNPWmnLGE4xJJcBCStrswiQkOu7eWU6OFqyOOkJM9L3uHL61GNHzlMEWVh59XsqFETPp7zEpgMR5ZVhKKdJYj3MG11pc4whDYugjcdD2WGfAKTtSDGkEIAqCN1ZBW0bBMca4sq6K/mUMqdClSZZxbSHC0PdY52hblSWJ07rKOSurp5hp7RX2QiMKBPPeIwb2u205NztCDOA0fXUYemU/K0JgbQM2kYMC9pVtymFdSWvnNZAiiQZByBAxObPsHCkpS1GMgWEHKUQQwTt9Q2oggp4nKCmQFfyVSUHP4stFRx8Drr4ZjcEUKgdTgHEpxhH4qXIoo9dZHaoyylEu6dYqc9jEPFXGUZQleJDE2dkFTeO4053y8uUlu61CZiVrUJIYgzUOax0xJrbbAWstx8cLdtueodf3hQUF9Y10eDrXWRRsNNdZlZVVx7+mTxz31HJNjmnGslTkqICvKEAt50SZia1HciKEpOxUYmkaj7WRsL3g+fZKZyFmXOPZpD0f7jc0XcPvpt/k4t4Ffz3/HVbWlzZe05fKe7mypJg66K/QzQ+KzM8Dh7rCtBKu66Fln37VNTK17vqzb9jOZf7dNeC5zC+5eTKZqlL20UkvfNU1WpyB+1/+aa4WZyzvHLE+9rQAR8es7/4Z9s8+4uJyz51VZPtkg3v78zSrVWHpUY3JdyucN+UsCFhNhbj6/M/w7Dxx+nYDWXj4uVMWZW8ws5GVg1YapD0i7C9w/QB2rboAsN8HYogcLZbYa3rTpGcKSQybQYOQWu+wTICP8Wpzcx7hEGw2jfL1sVYdqg+Rk4UGLVAAJ4KebZIYtld7msbRlVS3FstqYXn06RnNwvG5N09obcYdaOoyjU3dJ8vSPGA1EsMQIykbzh9f8eTDF3zuzYe8+e5dfEG5V4CTmcnBqyS/ypYZ/5h6TTkHX7/vVdr7DR2qvhpmd8/bcBikVEBGhkMWpFn79J5X9GA8cx8+er72Zj06aOur1sT8oRYOmJlu6omHfTs8q5RPZXZOBBoMTmZBILP654Ekgp7Fkujo5FkdZWLGdWBmba7jeH19zPta/x6Be5OojXtfKnqx6umTfq0psZWdrwIFI3qOj5U0nmLDMaYEwszGvugTc2BVff1MMmGujePsl3nfil48qvNmPkZMwCQ7vd7stWeNfa+fX18vs1fjIfDqsF1i5l/9K94xt+W23Jbbclv++IqBnX/BLz34v7D1z/nb3/u/4WXxx92qP8HFcO8v/i8wvlVG6PJZc/cNXvsb/ylXv/dPSbtLANzyhNUXfga7OJruto7m9OHNWn3Dw7/+n+LWp+NnbnWCaf7V4KPm7ufG899tuS235bb8aS4/MEhJkkFThxnapqHxDc4aYjYglhCUlt8WinrvfQFHaFotyYJ3jqZpNDpZAotVhyYUyayWS9arFmNh3wdCgO02kIZE5zvunqx4+PoRUSIXVzt2+8TV2R5jhAcP1yyXDednO1JUsJNvOmKCfT+QciIMg0b5uAbfqEF3v+vxnaPtHFEMnzx+SSrsSfhiCMxWDVXWIAm8t6zXLTjYB00xkGJm6CMpFOeDSbPDs6Y1IKvBOoY0Rm0bo0wukZr+QnCNYX3UkkIkJqVIkixI26Bp1SzGCmkQNXaXg7HFQM4Me2EwGe/dGJnvnBqsrXU4b7AF0OMc3DlZ88Uf+Rx37h3TB+Hp8wuen3+Kbw3eWtr2iL6PbLc9IpquxVnDYtnRNA1Xm6txbochMYSBYR9wnUW8p+sWhTo/kCUR9gpwU4fQnl2/J0WVIYozKfQByYmce7zryhgmnHOkpKnATAldF8mIsbjSrmGfyNnSldQWOSZyTKSUGYYISdOFGRyVR7kqH30fefbsJc9evKTf99hssSbx0fceIR89ByOkNGCspekaUjIsVgsWyzVPHz1GEuyuBoac8d6wGwZMzLxwYFcOt2rpXGTRCvfurBgG4enTS8CwdiCtwYglp8QwKDNDuzDk4LHGEnPCIjgswy5wcv+E+6895JNHH5NCwHmLdS273Y4+Ts7zarCv7APGKPMQZmKQUMYUQywpAl2Nfvb67JSHYghRp0SKlufPLukWGu39/PmG3U5NTo2FnAYSlsYsCl12y9nZwGrV8qUP3mZzueUbv/8JQ59ZrVaAUSdiTEhKCBabhRBCicaeWJQkJ1KkOCI1fZAp7YXKUmBAEsnBctXQNAuMWPphwJqBo6OObqEpLMOQCSmxv9xwcSncvXvCauWJcoa1G3ZDJERopePs6RVXL56zXB8z5JaT9jW+/IXPsT72xaA0Z8G5ychSDWhzFVMNa68wtjNzlMwdFTMldm6gm/9LMEUP1mtGA+v034Mo0YM21OfJ+OHc5Fx7We+ep5Crn1qKvc0UNpLrzgzUkulEaI3w+JPHXG3f4PhOW9JZqjwNyXCVehad4bu/901+4ideQ8wKKXS2xihI7Wi95OR4zdnuJYHEEIRvfvNTmvUJcQh86Z17nHZSUjHpnplmCbq0LkO0gGsJL15w3MQRuLLZDYQ+8u7nTlnUcR7nW8l1o2T2GR49v6RrPHfahmY0jM5neTaf3Jz7V31nZaLLDzRcpcBr9+9wp0lIgQK1xfSbkuXJs3NW1vJg0RLJDE7Bmp8+P+f03oqf+epbrLpMazJe1GEvRshmglFNLpdqUDZgMjkZLi97YhY+/fZLfv2//T2++hNf5s/9wo+yXliNKDV1ZCY5uS73ZvaM0Rk3flH2rypLzKVyAvPMR2weXT+vfw5Y0rjxCfBjRqOztmMOCKtrc97eyeGhEbSHK4gbf00ui2vG5rHOaRSmKHPG/k31T6xUzJyH87QndnyCJZXaLJq+oDGwFOHIOBaiTGKCgo4i4BFWMgFgsgixgJiCCMkYwuHUTM9VlYlrLshXjMQ0gnUuKkDJGAUntdnQGkOwsCfTFPBDyfyKIBwZwx1gbaaUfOdiOUM4EwU2mppyqHhG5o5mwajjv0Tnp8JskzM6p6WBudAh5SII1paIaauA3goO0nQLU4q9PHMO1NSOCsBXYKadpWlLSRkdbXHEaWqXmSPOGGWSqqmkrBnfw9YqiNg4DiP2zfTu+aEss7QZzrmib1BSHRe5TFIYWJSVJ4RIllzALVl375JWK4RA0/gyUTq+3jmwCkQIQecXEZx1LBcd65OWmCP9PhJiRlLGOMNi2YBR1s6URNeJZKw1dIumPC8W3rDiWLMaFEDO+EYBJ0MoZwmrzHM55XIesnhryElwztK2XlmPsiLn9UyRCjuMvtvsjIKrpiyz1pJTeSNUh2CqbECGoU8Yl8v6OuQdUaBQOYdYfTflMm65pC40gCTRoJAhFaeYTA4sSUwPF7y3LBYN3bLFeY9tWpL0pE1fACqGtvPK2BS13c7pHuV9AXYNhRbdaNrwVEBXSTSVqnGOlKOONSWNZNYgjhQVyF7T0lVDXizBIbpe3Mjap2kBpaQFq4/VvdVY3QNqQEcqKRYlybj2clatTNuiwzCyoZkS0LMJbK50rq2BbJRlR672xVmYp7RxxmAceOeJfShzLYikAuAyOCxXeY9pFJznvdNU094RQ2az7Ukx442A10SrMWmwDkZoWmUQLb1VOXKOLELTtPjFgn4TmZKcmpIOjYMXat0fFahT2CTLfljf+ZT3bJb6/laQmLXKUqxzVBikxJATDJJ4+viFpofPJd1aeR9nUWZYZdmyDH2iaQx3Xj/lzl34+PtPCEEUmGdKaruUNIiB4rAt+3lNM639qfM5AedG1roCWFLWMg3oaAszsmRISdk8vTMlJanKUpZM2EthbRZl7lQJZkjaZwkRiT2+D0TbkGj41vKXeXb8V3iHL2ib64v2mpJhbvxyWAzTOh21FalTXj9hOh9c91jP+j8HKk2gr9ll82Ycvv5vtAomgO78+oM6rt1Rn1v1s+mLa7qXzPttGPqeF88vOFrfQxSVgLWO5uF7uHXg5KHh091H7AdNdVkhfCC4ozv4puF4veTioiGjYIXzneCP7mAkc/d4wbKdgDy1YXO9s8pX3F+SL5/T3mtpSqdU5xBO10saqnY3P5eNt7PZ7LHWsHbNCOS/gW0pDz4YFTNrmzkE90znOQWmDzGxXHQsLNSQGjv7frcfMA7WnbKG9WSsd1xe9ZjG8eb9IzqnNU5nw6rhTnvAAZi66omi9peUhe3lwMffecKDB3d550ce0vjZGEtN83UNZjUDbV+Xo+t/11fWHFA06uWmnD/k2h0H+u68ZzefYWbX3Dwb3Lx2/F3m15Y/zFTP1PjZ2WEGqDx8ft1vpxZ/FshkvL7MyfW6mJqhMiFTqrea7m3kBChtCWWf8NfOMAlVY+vP+vs0/pOMVvvBjYG60b6J1epVc+/K2QSU9QmExqi+k8oCa61hSQ2O0v9Ega2FLdDXd9u0aMb6D8bLToChSq44yWjpz0xwDhiQyutmNoGHfTHTeMybYcoLt8qtjG3Vq+ZMUaN8z5sxm9ux3tmz6rM/cxJuy225LbfltvzwFANfO/17fG/9S3zh6i//cbfmT2wxxmDamyAvYwz4huOv/sK/so72tc9jmgUS9rNPLf7kAf743r92m4ZnH2m9D9751773ttyW23Jb/iSVHxikpAYtTa9U01aYki5nGBJ9Hwrri6HxCh6ISQghadq1LOS4p2mjGoMkkcksFg3et+ScaFoPRvCtY7vfa1S1szTe0i0bmrVn2A1kMs5C4zQdgW8NZy837LYa5emtYLwCErplh/Udm6utHjwTSAw447BO3ZUa9TzgWk9rC0NLzIQh0qeAazy+sew2PUlgP4QSQS1ghG7lWaxa4hA1mtq0rNZLxKgDKgxRwUlJjZYilhyrIyYXZ4Ow3SjV/WLV4qzHO0PjfYlktuRytBcRmsYVtiTDft+PqfhSEoY+stsMuGI5yEnUnVIsAzmrccg7RwyRTx6/5OnZBRm42vSEGDDSkIymOHCtwceW/W7A2oz3liHs6fsdwxDw3pMx6ghKmgYupEy82rMfIng14FprMDYTQyCFTL9LCBnrHCLqSLDOQoYYDDlZsk20bUvTajTx0PekWCJ1ayoBa7UOI0hqCLvELu9pm4YUAmTBWwcess3qvMwKxKGyIljRyPddxOHJg0dMxnj9PEtQ4IvNdK0jJ01fsN+d0w8WyWqsdyZjm6QOzew4Wp5y/nJD/2IPWbh3esTrb95hsW64ON+xPllw8fKKo7bFuAZn9ki2JHH0qafrHFcXPRI1RUU2QNewiT3h/JJNP0COdN4TUceIGi0Mqc9jBHN12HhrSVmZy6Tk7NE1Der0MZMDxhhyCBirbF7G1XQgWmdOll0Pu08uaRvPemXYbHv2PVjjEZPIORGilFQiQB7oB+Fzb7/BJ4+eEV8OCBbvrF5frYfFmqNOBTUut43HOHUYKC29AsYMFmdkimpHUzQiCkDJuVGGpWEgxsRi0amTU2AY9iAKfhp6Xff9YsBbME0kDBeIa2jbjpz2mGRoTcv+RcI0D9Tx6CAYTakk4kbD09wQPBkKDxlSmF1TzZ7qpObAmD9i+OdG6NEePzmtK/W4mYXVXQcrzY151XB5zfVw7b9TJOw8GnDq1cRFNDmjGA3KaWZ6h0N3qRF1grWN4+XTJzz69IzX7r6uY5P1yqvNnpPTBW2fsSkRhjxa89SnqMDL46OWh/dP+OhZx5CEjz48I2RHGzPvvrbg9SNNCyVWAT9SvDa5hCUe+uEi8eqMB4VRbp/hYjfw5ut3WDgze3FKATuV38Vw8fQcHyNv3TuhG8fajm2uBvo6fvP5nwyF1bhbDf61vYmMYXux49g33GvUuBqKddgCPYarIeJaz507ayzCdtjjfMfF0x1Pn57x1a+8zd3W4bAjCKjKo5NJTucy06BOnCxwsenZ7TMXFz2/+A9/hTffe52/+Dd+nKO1pUEQMwGn3Cghc/kpDsxyFQfjMAnkZOC+nqZwGvsD82qVC647YhglsP6mgJFDZ8+8ffW+OUBKpqV3wwlgZ7VMM3o4r3bsx7Tyas8VsyLjdaNT51r763Py1Krxu/lIetR50AksgIWBDpXdbCocS2U3SsIbx8IYOgCjbF0BIQgko/M+IPqewRIoYByjLER1T5PStrnLQGb/KmjKSwHsGEp6EE0R0hpojGEr6jRYGgV37oqzfGnggTEciUpVQgFAHhBv2FtHyILJ0GTtSy7ggQo8wOj26FpTWAK1HcYbZUHSAZ5AC1lnwhZjfdQcSJoGq3gBJE/rqM5qxZaMzua6/q3OUy6sN6NcCPouLGCQPFGWaK1mei/U/szXLjLzcbzaJ/VDUmp0fNFPDAVkpTqyAgxK+jwzsZ/m6qQUnYNcqLVk1Iu9stfkDAVIoHtHxjtDEgWz41SvC1GZe0wZd1tevrtdIMfyXjUoCCSmonOqronUFFh5WndZU7NlUQBSBRcpwKQw+FQ2rxQJMSmbpDXjpFlnS9o2V9K8QdM148gpo1fWMZLaDpk2ibIrppSwWJxrMUbBS865wp4JOUeMU1CSKQxWyrJU5J7C7BQ1sKLSDFYQh/a9PNHYkgo8cnG5w1ztEavp9pR1tK4ZwTplKOn7MJ5/+r4vQKICviIpeKWmpQNiyqRdj3Elza9RIKLKhiiACEGB4jL2wRqLWBkdhMYajKu7+gi9HTd6YxhZCjS9t5CGhNiaYk/73/jCduNUN9cUgBVQA5JzOXsVEI5IOTdX/VYhpNZRmHM1oCWkCZBmjRlTI1oMjW/YD4GwGzDGsFp0NOsO31iyGbjTrkhR6NqGy00P24HVqkEwbHf7kjI7QmGrSkbfwSkmwtWW3W6Ps3qGF2CIaY5XoQLLpw29gL/KwJlKR8T0fgEZ5VOM6m4KFKv0SzomVX83xtJ6VwKWhrIP2AIAU8BgDBp4EbLw7PkF66MO16jNISZlZss5j3vMtBXquDtryplDxvNwLqxKBlM7O+qWypRXzkRZYRua3k5ISVO5G6PrylYmNcq+L2qXkJK20bctrrXjnmZMLCndFzRLz5Plt3hz/37lspraNHujzvXEg29krmlPxRx8Njnbxzd0PSvwGWXuIZ9XOi8yfSTXHz7rR33Pzas1896Mn03niHkfqo5h5tVfe56xmm7z4vySmO/SWH1CFkNMelY8XnYsFy0hH4IcDEDTakrBhcNZZczeXva4PrPwwp2V53RhZrqY3i9MslbZDw2Qzp+yO3/B6+5dnIGYYbsbWHQNjZtOWlNLpjEddgGbMyerJX6mL14vB2MiZZzNoR58XS+uQQ9DCLQZVs3Ex1oZPBPQJ9Vz1l2HAYYQcc4Rd4nt+ZZ7D0/ofGWhmbfvUDeW8Uw6sZcK0MdEyEIYMt/79vdZnSx59wsP6bp6fpjCYq6z2Gh/uQGcnw/M/AQ6Xxs3zgWvWADzcZ0/T1XBwxPGq9akudGg2UPHffHmd2b2x9hmM50H/iA2qYM9YfajXmtgZDuaZOazx7DKpkHwMDKsWiZQzlxmYTrDuHJNZSlO0yUjO2tGzxtJpvVdv4fJfiVmOqEJ07qrz6n/LNPZsapWefxcZSogGryBYYGyso77i+j5qQOC1SCOkU6pDMgNuSi6+QTwmc4Gdcur2djLq/NambE4lnbM062J1PPH7PtXyA1U/W18jU1gKJntS/O5nslbfeQoV9cXy225LbflttyWH+oS7Z6vn/xXvH/1C5+pM96WP/rilscY55Dwh1Pf7vu/h1ud3oKUbsttuS1/6ssPDFLCSokWNxrNaNAs9gW4lJKmUgBLSolhUAYUgJwMzmi0ZjIGrKZYSEkBJ8dHC5LNeA8xW/oh4p3haN2RPLSdxy0Ml9uezVUgBUdrDO2JxdhcqP8NXbsAp/TZ1jlW6yVYiDnQLBRYUiMmcx5ofEuKid0mkAwYFCjVNp4UI84o85Myx+hpT50KArtqYEk4l0pqKUfbKuAqab4BmtayWHYYLJtNz3DWq8FboEaTq+NCwAlxiPSmwQJNqxG96+US54Q+7FisluzDgLeGtm3ZbHYKekoCopHdBqF1DSmXdBNZDfMhJEQybevx3uGMJaXM5eWefGlpOod1ntPTNaHPbLaRjEbfntxZ0A97tvtE452mrivGvmgjkiOIwXrL4qjDoJHj1oLznkwmxkSMkIJ+J5KRbIghgJUxmtp7T9PKGClunCtsR0K3aIvzLhNyHg3L2SRyzJjccLTsOOo6xMAQh+L9FY6OVpycrkASSMbiEWPxy5Znz8959vgFeUhgRR0sWDAO3zjyPuCdY7HwLFeGMAS6zrNYd+x3idQHTIJu1dGtFR2WtpmzszP2ObHd9TTGcZEaVieZi7Sl3+y5s1rx/hd+jDc/9xq/9lvf5tF3n/DlL7/Hpt/yG7/5++owQlkFrHfknBh2e5VjMpGAM4bV8ZLBRJ5dnKvsZYfFFaN+BccJwzBgbY1WsywWSxKJEAZ1IImDXOamOqMozFwYIOJ9Q84QU8SUyPTlsuXk5JhPnz5lKzskNzTWslx4YhAkRhyGsIevfe17nNz5vqZzs7DZ7tTZpFY4dXZQIvyNPrXrPF3rCWnAGGGxbEkp46wnFaedb9Q5l5Mh56jORzxDr+BBycoEtt3sMNLibYvxmi5osfT0ux2NsxgZSMFwtUt4bzk9bfGt0IfM5dmO3b6nbU+5c2K42m/4zsfnrL5wj4WDSt1ewSeVWr0a8CfC0KnI+Pn0qb1xpigsK8V4X+/TX5SpA1MYjuaMGswMVrNnT4aoyQB4/Rxz2MaJuUYoabmYHAmTCXkCZEzOodEselBv/SRjuXv/Lqd3jnj05AUf/NjrtMVqJsB+u+fOnTXb0xXd8pgU1dlVHVDVCApJWeJi5PnHT5ATOF50vHvi+eLDNa5MQEBK6pMClJnsiOO/3S6xy2vabk0UeProgvXSs24YQX8a/azOPE8mYTjfBZIY3vncPTqnwB5bx2A2D3UkDlmGVGY8k6zUVVclAIFB4I6BO12D8h81LAAxmspkHwzn2z2vna5pjOUqRE0Ft4PHn5zxpbfu8XDhaYzgq6PAZCLT+8OVz0cwnVis0RRc2z6xTZl9FP7RP/xnrO80/KX/0Vc5PbWFNapCn2ZG+upomnkD7KzP06eMd0qRzymF29SmQ3aj+bjWtG3X6z38e3QmyFwOtVxnfjq4b1wqk6RPwDyV2SlStYBiZMbaNHt6bXOt0Znp27mDQmZXz+upTh57o1Zdn40oMGltFKQ0Pa+Cu9SRaoGuxEK3qPwpeCzTYVVnKw8QrDqtRFPD7RFdT8ZoerYyMxlz4KRTTanOnbAAlsayMrBGwUi6V+qajAjeGJZYFlgi6gjvjOXYqlOhQgIStgCL1IHSWgVaSWEeE6MMlaDMBcYavDMl2rk4oA2Y6ixMjKwg1pjCNGPG1F/GaIS4gg4KUDIbxGnfKmhR2VM0tVx1TEyzYMZnugL2qGmGcq4cWCU9UrnFOqNenBIcMKbsLXj5EahUwVV/ArwKk3wURq3iLImmMMmUd9nI7lMWpTWFYclYssnkBEkyUphQG69gHBFIMWAowH7flMAGRz9EwpCw4jTd9NIjZEJIkB2LrkFEmW9Szgoc8paYQmEcEhQFVdhirINyVsgCKSSsU5bR+oqtQJlcQG5Gu14IkybGGCmMoTr/oil6rY6RdQYxVlMIxpKyquhOda2VrNLkmOnTgHOGpnFIAfpZYzXNobEYpwAl5x37fT8CMfRsUgIHMCNrU52vnBIiqTBaFkYwAxjdwa1TIJHzDpuEEMv+ZS1d4whxIEXBFNBKNjKyTVGdetbgnC8AET0jmALii1H14sqSpGkqQReAAgS915R0mqJrAgrX+fDej/2NKY0BEDnpvDrTsFotWK06kmT2gzIViSjga3087ay5MH8t1wvOzze8fH4BKZNNLnuhJRurwRGSC7OwpWn0eW3X4BvPbhsUZCfl7Nuqa1WC0A99kYeEybAXg+8a0k5Tuy3aljv3Tjg9PcY+O+fKXvHgwR0uNxuuthsdbyojXZnLrOmZnLUjgM1aR0yRGGJ5fxWXs5EipzoGknT/0X1LgXmCkHI6eInO34GAgjSNRXKmKSnIc57qxjqOjo7IXNLve0QszljaxhJCAbobQAybzZ4QhlGPDTEwnqvHjVf3/SoD1lmsU5m1zipoaiYLuj6LXllS1OUSMJFSgjy9iUOIGONLUJBgCpNxDIOuV6Pvphg1hbb1gkHXd4qRgYS3HS73vHj2nN92v8aXl7/AiW0ZV/WBIjIPMvjsMulaExB7YlO6ptfM9uI5I9/8jHFY8QxQ/wO+Zg71mrFl1PPDOGnyg/ZrVLRmOnL5aSxHxytePrpkSJmFd0VchJgiy8bpnti1/x/2/uRZliRL78R+R1XN3P0Ob44XERmZkZEZWTmhBhRQWQAKDaIFgADdRJMEhdz0giIUCjfcU4Qi2FO45B9A9oYiBJtskr0hukFiBhpAAY2qBFCorKqsHCMiY37DndzdTIfDxVE1M7/vRWRkYcjIwtWQF/dedxvUVNVUj57zne9j2JcDYMSyriUbGG282rG7ijzs15yuHPdPehb4g+msJQPJcj+BwvbJI4rrKArDdqQTYRMOAfXXLcNdMTbL05MjOjfvwZ63uiutfw+/aYANqj26tMebpe18wHXNlq3Qf6nzcBHiEA1QhTDW90eLcLkduHP7mNPeLySXrZ3L4n2f7XW9xgajxAJRDbj1ve+9he+E137uRdZHbuK5neBgYvvbpSUtBz3wnF+eg9a282TRP0t+sbkNVec7yTNXeLYfpM01k71X76KL455Bliz3E8/b+7djFnc6aMOalHTw3M+9zeJ4nhknzReg7eT2tagxpVb7OlCZiXQG9ExgvXqOrz3mZN7/Crr4u7VoZTBTiDCxutZ0zCkJpe3PDmQumZOjPEqHo8f2EkEWtlCtY2Keb9r+SWQGXLWGnRI3aHtR8zEYoFLbjUFMereaXibtvBgQz/O7UPcP09KoLOYRqeOwnifX+nA5z8nMNGV+OmY/04wTXpxQk0am95+Z0IyPvsdyXfjYSfmm3JSbclNuyqeqfOf0bzO4C9bl1k+7KjdlUfzRKRL6P/D5+zd/m+Of+8a15PObclNuyk35w1U+MUipxEpzX1mKVquOvnOkUkiixHVmHEaT1zItHbqVJwRzBHZeODk+4vhozWXcc3W5N9BSLlzt9nQ5IC4Y/b+qOQG95/jOiqOTnuKUs/Mr8j6zCSu64Ok3R4xp4OzRDo2eW6dHKImL8y3jmFmtO46O1+z2l4hALJngHEk8MStxjFY/hRSLZb6OoL1QVIgpEscBEWcU+SpWPzHpt3XXUyg4b4GuNEa6rsc5alDBghYxZ/a7LXGfjXGHzCQTgjFkqIIUEAo57litA0dHx4iDy6sLjtcrvHguL/b43htgBSWVwm6fSVFxGhEv9KvenNAJypjpQmcZusmykxXHOJrkgvfC6sgCQPvBnEHeOZxgbDLi0FgoIeFd5uS4p+ur/FhWLs+2xH2CYsEiB2iyoIpzxlTQBRhjJg+ZEi1rW1TJxVWmHMVrlb9YOfpNIOVIv/F4FyjZAn5dH1itO1arjhQzH35wzvZSyVEpJROC597tE1599WW++OXPshu3vPfoA3YXey7OdyiOey+esN8nun7F5cUlJWVe/sItNGQ+fPcpQkSjos3jpsbsdHpyxK27G7wTnB8pY8/JrQ1hLTz+IHL71LPf7tlserqVibKtjtdsek9ymfc/vGT7dMe43fL4/ceMKXJ6suJJviK99TZDipzePmb9cy/iNvDWD99nTIVxv8OpI2eBYmC4fmVh+9Wqw4uyOlmTS+FiuwcXyGMyCb4AThSpwTTL/u7wnblehl2aglKqYkHaUkwCQ80p5pziteBClUgKgbAKjGMkjRkXIUvkYpc5vnNEvwrstuYaWnUrXnh4iw/euyKl0fyF2Zz328uOxlGd4oCWmcHECRbE6e0ZU87m/LXYDj4Eui6wcgapKFkZh4FxGOn6rgabHaI21nLOVYZSyDEx5ox3nn5d0BjRMnJyeszpnTVO4eioQ5wnikAIPL04R1QIXY8PmBxdHhh2j7l69Ijvf+c9XvvsHU43ipfGC1PnTcx5tWSlaU6rJdBiCbxonwmz5FuTeztweC3O1erQa38vgxiHjvR279nJ6qSyCS0cpe27dlSrzzJzWOt9pT2fzMctPVoNMNJCnMKCmUmEMSty1HF8e8Pbbz9iPxZOegtaXsWMEzjuAsMqQd5xdXVFKfcIzhFqLRyCFOHiYk/cwdUHT3j9M69x77Tny6+csPZWhyokWB2QMwuJcbo1h6TQdYGkhcv9wOYSVn3gxTvHdFJZM645X6GwK8JWCw9euMWpBy9Wr06o8+5hGOR5gSLBFuUJtNYCN9NBgSCwOT2+1s7Gb5O1I53v+OxmzcoL+1xwonTO8933nvDwpVt87sVjVsKUtemwdahxdcx3W7BeVfDIrgg7hRiFv/f/++eoJv7CX/6TvPRwQyeFMNU8kBbXc3I43pnGw6HjWFuf1ADjkm2sfe8Xn10Ppl3/bBkkuR7IWh51GCBi6it5znfLa0zZuu0Iffb79l62LNo5+9eu3N7XZX2X9XbasoFnt347z8ZtHQn1+g5lrcqJOAPz1DE0VlYHV1nDUv0XBHqZ69rq5mpLh2sealVlJbBBiAgDMKBEwZhdsKzoAQNceCxb2S5RCMAGOBI4omUwz72jCFHrb/W0Y4Tb4m0stzZYSGvuVRkrK0injmOE4gzoWlBwBmTaJRMYptRgkFFB2VXq+iI1kusqWwvY2oMwAY68F1ypVUCNNZP6nlTbzlemI6kgImdL+MQm0EZJYwoKdbwXZzOkLgayd9fiDhVAVSqpnIGxmIA+n/bSWG9M4spPgI2UMlmKAbKqvl+N+xnYrAIGnBM26571umcXI8MQjcmqyqgNJZKLAWi8GIOSAs6DC46YkoELioHQRBziDeyfkhrraLD7FedMpq2ChlypHSpVwgsD+zf5L4TKsmIVT6VQtBiop6558/dterc1x6YE6+kmIyb1eppKZfYyYJLJwS3Xb2PCnEZXtlVGXKlsZ96A+zHSh4DznnGMFfSTrZ5FGWOmYUwQA/JojaZprvOHGkuS1MhYSib9JgK+grhIYFJ4lfUIATXwluZijD3rMMkcmkRdZBzSdC2pYwUsYQOx9yjlTEkW+TXAmK2xB6HhYmCwxhYVvFRWpgoy7rqJ1alk5fJ8ZyCprBMI6eTUEhvu3LtF0cTFxQV5zOx2AwXB+cJ+iATfMaaRkgvdEYTeAFIZhdxmNQv2CrDedKyP+8q8lUA9qibDLN5zfHLCfrevbE527nrT03cdxWXc1UDcZaQoV2eXAPSrjotxy9XljkePzjg+OeHu/VPOLi95/Pi8jplsQKA6TnxwdJ2vYBoD4GyONowxEXPBh64yaRWct7pbYkhl/PI1EQJBx0SMNV20gjsnphCojEttGbB333lHY0Irqkg2tq39PlM0T1KYqBK6wN17pzx9csV+b3wcIpagEMdqv9b2Um32cmXHqQyFvsp0Fi3kMttgMiEDjOlL1fYNhjyqQDiqhazzu5FzmsCsNrYKpUT6fsXmaGU2lmrDxlG0sN3Guj/z+OChKCIZ8ZmT055L/y5vrr7J1+I3pjVYF7bY0hZaFmmTRQUaNLuDxbHXkyHal8vjJluq3uRAQktk8YYt7tv6vP06gR2WFdBq0i5qvwAdLBl4nm+rzR9OcXhZ7lPmSyaBbuPZbwcuzvecPjg2H5Aq+5Q4Xa9tbnPKsL0kjg84Xgf8/DAowjBmUjJ4w93PfZGT4w33b6/oZpTctOcyAdIlwJ76VML6zgvc+vxXiCnafsc7TtahMg/VuU7n5ygYcGfIhc2qo3ezpJY/sAKnajxjA8/98xyAvhx+0vnFX9rqXd/rXLjdBQP1acErgOPDix2h99ytgK3DrpYJbDOBtuSwfooxwI5qLHhvfucdSkx86Suf49ZJXxlx5KBz5z5fpB08d5BQCd/04GXR+uzLp1/uu5emrvXLtZtfP1av/b249/X40fPNsuklOzjmWeaDQ5bd5bt3sD1s42D5DPWXdo6nsbWyYPVjGscK1Z6oexu1sWfgn/n9zYvrG9DIEn4E23Ms91wwS90fPln1B8j8Tmcao1JjKGbar7TkIq91X1Nr45EJQLVM9rCUGWs9ez6dPmvMSXOl9KCd2tXbs7ekgvl9h9QYFxcT6PS7HP7+zLPL1PvWPs7WrdaHE6C0XuOA+ejada7/2YBL1N+XyKi2Fk0ycHp4si7uexMDvSk35abclJ/N8u7mt/nN+/8X/uQH/5tpL3FTfvrl5Ku/ht+c/IHOXb/yFTav/vwNQOmm3JSb8oe+fGKQUormPBR1eG+bt9AF0n5v8kspT8dWnyJxyKxWKwPJlIL3ytFxx/4ysVqtcM7hA+SSGIfI4/2O9WZF1/c41zEMI+MwEMcVYxpRzay7tQVVs+Nqm9nudgxxRHA8PXtqICLv6au8WIrJAE/qCM4hrsrLdIGSMikVo/7XuoVWZ8wrMRLjaJINlW6/ZYmWbA5W33Vs1sGCAFqMPaoGA4Yhsdte2kbUmQxbycYO5GrUqqjRv1MBFNRAtkomxsJ2aw70nCK5KJvNipQLaZ+JYwUuqCOOyrhP5oxySskyBVW0QNQ0ZQeXgrFCYX2YI6gaC03XdwiQSqJoRsSTkjlhj09W3Ll7y1wEVSpmJYHV+hZnjy+JO8uALikz7Ab6VWC1CYSNM3m4QSfnP1WawyTEoBRrd82w30ULtnnHsBtZr3sLJqwdIQhKQnwwloWjziTHdEBywHU9tx/e5ujBiqf7x3hRfN7xwt0VfZc53448fvohH753CcUTx4HgAi7s8d7z0iunPH0sDBc1QxxjOeiDcnRcOL5TkOzZXyqpOJ48GTm51SPBc+vkFOSCnCMr6XAIp0crTu+c4leZcRh46fZdvMDT83PSEEku8OjJlnf2Z7z3g3O+9ouv8/Dl+/zDf/gveP/dp6RhJMdir6kIfRdYbwJ379/m9t01Tx+dcfZ4y/2XHvD4yVO0ONarFTldWZCkMwmOcZ8I4ug3HV46co6IOPYaKTlNTgnfOkNrRqV5/BHviTHifcAFT4x5yjQuuYCD7dWe73//DSg1AKIFvw589ee/yG74fS7f3SIUQh8pRbi82FWHukPq+9CCbVoKfd/X4JMF+Pb7gVxMmpGsOBcoOSGuIOIJXihZGMeEiDFwLT2OTb4u50hMie1Wcb7gPQxDYhgzd++e0oeOi4sdRRM4C1jEWIj70YCDp2uorAThOPLCKxk3vsX5hw+4+7l7rIsgrlAwwEaYnGSHTuT2c+lQXibALR2SSy/S0uEs6JQR2TJs2/x7HfC0vGbh0LgVZsBKg9zo5HCU6RofVav53Hbv52Wdzl48WVxFVNnnSFop66OOb/6TH/Dun3jKwy/eBeB8t0PWlvW+6gJ3jgLf/73f589847OEDSDFWH9UeLxNPNpeMZYLjk4/x+3jzOuvntL7OfvYVWemB/YwAWlmgIY5CV+6f8wXXn8Bt+rYxcLL91ZsXOOd0cp2ZP8VhIsEj88vuHO84U4QPJkeZ2xL+uyTAxPd/mH/LsbHM78wZXK6Zz4zEnsHPLy1xgVHkoJoxmngd9+5wAXhCw+PORYh19MnRgVhCpgUKiCxunYVA0/si3CWC8M+8d//f3+T/QeX/IW/8id59ZX7rMTYZaaN0yKQZJ7fyvqzcIi6RVtcHyFTxve1Npkd33aGXrvCctw1O0QW84CtO8s7yjT/SW3rFg6Y++3wXdV657CoyfX3sp3XIgYCFihV5veqXjhh47EFCBqbVZMwCGJjtq9zSWPqsX/CiFYQXAsmCCtpbEO1n2ubmsyO9ftSaqxlOLcnuj5XXS8BrY5+kxvMiNWlnpAU9lgWs8kpNIlEX59plqOrzT7fUZUgsK6/ezEmqGaslql29iwdcIqQ6hzYWNZ8BfvsgCtqOztByiw5UdTsH6qtpDV9WVwFFNU+tOCYRVKmDGQnBl5S0MqiMktr6px53aRmyhRZsX4WZvojM/8qAGeevQ18UQNydew2Kc8W2GzBtBacaJO/+8je++mXPLFS2XtWSiYlA5urVpYioGX0T7E0Nbm1ok3u1SSlUSroxPqzFGNYLV6rJGyVXtZIGqLNak4JoZtYkeKQjFESC0aNcbT30BmDEqjJNtVJQGjMT2KSQLkBJ9w0+WmBTK4SbQaaQ6iMSIY8s+9sXAfvq9TYLJio6ioQI7UbT4CcJq819X2bvWQxF2OAopQSXj2qyr5EY82pwKNUGuGoAFV+uba7MQfNM0Ku7FEmMVsoZb6X7aEEvMN33thQtZBSqhJodp2uD/Srnkn6qb5T66OeEBwxZnIyFpOkCV8BMaH3BqZJBi/WUup8oKCuTtIt+iaUDM4pOGftFzw+BLw32WNj9LXx44MnFFA1VlipLF1JE+998D5SCiUl1uuOzaZjN0S2ux1Xl5ESt6hmk5XGkglu3V6x2wnDNlZ2M2dzulOcKyAVIJbr3J+UW5sNl3lP0ULXdcYe1VkkNATH6qgnBGHcD9x78S4iwvn5JWMcceIYx8wYMy577t/pcAE+/OAp4xAN7KWNtcYAfd4Lxycb1uuOs6cXBhJMmThGtDAxmYZgNpgVVxmypO4niyWzLIOdNdGoreozMGVmchKAIpUBjboHrv1WlP0+LgxXpYiy2vTo08vK6gziFNRYgkWMAcp5j7b9L1RAUFffg0IuJktuzHgy7Vmcs0CxMdjZO2bvdJWqXQCOGsOYiF0/pgiDtWmuLNH9qsM7V5mWfAVDGpAwRwNghSq1aKxOA+PwITle8Bur/wd3Vw94cfgSvqJXGheV1P5blo+a6Zs1M7NiPGuZXy/XYtaTXbT87KCrl7Yos913aEvogT22ZJdd2neTrdXAUHrdav6YUq+pQCKbDTwU3v/RY16+d4R4W3d8ZVIsCkebFcP+XbZXe+6sT2jSxwrEpFwOkSHtCatj/K273L7d46SlhNhNBXANJCoL+2D6Fo7u3OUzX8yc3D9l2EduHwW8NBnDw0QWBbIKu92eTR/YuJmhsQGVDhA/9afynHZaGHLPa8Pn9v80tuwZV6GdrFj+ofDoMhKc4/7JirUsk1aWt5xHyly3KlmvZsMOVdb1ze++y/5izxe/8gp3bh9Nkl2HtvpHlOXas3ggXdybRXMtmmwaY62+ih7U/9prNq3Jyyss7n5Q6tREa/xpjC9Nm8WYXb5ny6u1Otv7IwefXTMhof2t7R2yi7s6rqX2X9tbuGvnqRgj6rIfzYdxyIK0MDPnesp8PWEe+9d773pLLfdX1Pegw9pmGlfKxMQq2P5hBrDpwXO0mXJ5b6HtNeo+qb5zh3Wbr9Bh+40kTCyl7VhLwGACUHnaPvpw/CwZ1WbAkM7r0sLuacdNJtjzXuZm5C322EzXnT8WsH3K8t0Xs0VhMqmfC36aW3Bxvbavefawm3JTbspNuSmf0qKS+W8/81d5Yf9Vfu7iL/y0q3NTAOlWrF/5yh/4/NULr/5brM1NuSk35aZ8essnBinFlHFO6Kvkwn4/MIxbc5KrqyCeDtQcx65mSSomQeOccH6+ZXu1Y5eNHv3o6IhV6FmHnpQyV9sd26uEbC1QYbu9Qtlv6deervOsOqXrlf1+y/YKdrvIqm+MO9nkAToDO8QYGYYdzgtOfA0EeUIXKCVSij2Td0oSA/Ck/R6wDXbwvclGVfm49VFvQIekjGMkSyJpoXPm+M+aSBlKFMahkCNQ5baWnqtSJQocMgWmUJNFaI5XH5w5VKPiQ08shfHigr7vTKqkOPZDrBJuwTLB1eQvRF0FcineB3LOpBinwEbOJieCWtAy7SswRQzY0vcdMY5cXA2kZCxLbp9Yb3zduDqjzZdCt/I8eOkOw3bk6mJg3BdjoEqRtQuELuC9x0kHNTOW6vBoO2vvA5QaDHKWcaVZGcaMphFdO8RnrorR519eWB856fBBcEFIuVDGkQ/ee5ft/oyLywt8hrVzHJ92SNeTxdP5jpI8V2d7iiZ6D2/94EOOTzacnJzw8JVT3n/7MfECvDhWndJ7j/MdqShZB4aS2Q177t0+4Vd++ef4jW9+m8vzC+7cPmF97FA/MI6RcKzcffGEHEeOVz1f/upr4APf/Oa34Mix2WzIBbbjjof3Tvn6l77AG++8zaP3z/EKimWwJzUgUIoZ3WTu3D9it9txdn7Ffkx877tvkVN1eoeEF0VzQVbmNVLg+OSIsBEuzwfGbazt51BmZz41Y9tX+YWcLcpWsgX6Ysy4pLjOxnIIBsbK2fhpNLexboDG7W7HN7/5O7z33gU5K746hnOGGM1ZfHS0JsZIySaFYNIljtV6hZZMzLGCoizQ1jKvc9qxXnf0nYHmLJPZUUqmpTq7KquRi7mYRAxYqZXBbbcd6LqelIFd5gkXFpSLSt+vWW1MZsSJRaZLcez3mSwZkY6zDz/kB//qnxt7WtnS3/uPubc+4ZYzcFLLZE7MzrvmV1o6+5YOx6Vz0H6fnV4teVdUJxag5sRd+rSW11r+bX/I5J267tw8cBaKHEggNOfskvGpHXvALq6zs3J6Bq1Z84tnad+aj7ECNqOwfxq5eHRJef0WsQjjLvK5B7dZA2PveeFz93j/6RlZlOSS1UFBK6vb44tzht3AdiucPriDhkLEUaF+U73METqzT9nIL5NM1YOHJ/zcL7zKeLXncw+PueUbkGmmvW8u6lxg+/iKh6ueB12HM44FGwOLB5bmhZ0ff/YYLj4TmQ5+pjw3e0KozAgBR2HV2agLanPr1TazTomvffYep96WogaKyXLY79dd7m0MJBUud5GSCr/59/81P3jzEX/hL/0KX/3iQ4JT+jre27PMvAPLqz1T7YMyjSGujdlrv7crCzPI7HC0z3edr3Poil6OxGZqOFgELOYrXWcms59zjRqj1uHfsgDT6DR2mlN6+Y63K7UAVMCyfNdMIjtTQGEi+Kv3yCgJmSQLnS5ZkeabOGo28OIhgm9ZyO2jT+iGFq4FP2YWrnU9QAXG+nOWPDwMJGCrzwScmi4vglNlxZwVPYH9lmwNUzsonVSQXG03FWNzugJ2WLc2trglY4G0CUvEABRN5tS5GmWCBmBqzy0iNSixiDLY4KlxhCqBBKAzs5HUAHjOdX0SDOhUj9c6wTZWgpTq2uMEk7uycdfmVLumVMYdNwdAtILQdDm6Pl2lBUgaGDpnrYyHVl8DUHgKZQK22FRZ9xfOZJ9iGshaKlgHghgrk4gzQHKskMsatHNVG6/vgsnkOYwdMSVKrJJVrtkSSghSgcp5kneTBjBq85s4UklMko9tNVEDXxmAzOG8N9B1aTKCMjFD5VQQbwkKE8CoQErGamSMMpXFdaHVpRUs1PZYqvO72ViXgImtqBTFeQ9i8mZB/HRergAVrfKDBohokGMLwDkx5tecMwdvs851MnCfSSg16SvvA2mMkySaJbWUKmdX20x0stHEOSKZ4jFgGEzSiUvRObPrsBlmuW7Wd6HJMVL3WCkpaDaSp2r7xnGkjUZbRx0pZxzK/mrLsN+ScyZ4jxcY9pGsSug61kcb4h6GHNFirLxXl6NJf68C602HamG/y3gHXaCy6QZKgRhHcrT+Pdp03L1/zP7tPeOYOT7asDnuiGVgjBEJiusdu92+MoEGXOjJ5+eEtcc7x8p7Isp6E9hs1jw9O6ckZdX3xDFXwJnt94oqGqzdHz0+MyBTgbOnV7UJrX8EJrlzHxwlmyy6846x9imaTLKPeRw0O9J7s+vLNFvbMaZ4WGaGrDppaq5W5mJsg5Ji4o0fvkuKdg0vghZZAAAd3nnb39bEn1TnlLbHsfevsTPZ/NneKdt/W13EOUtmapJXLYGoPh6K3bP5ObTKuVVpR+vbRKrmdlev3dY2A4F7VA3EpJpwac/Fo8eTfN6vv/pf8Sf1f8GL8gqhJY5QgSK6sGNkaY3MpQ37+Y9a8evHy+GvB2u1zDbhR5wylQPb/hqoCZEDGWo5/N9UveX9r69esni3n39TK419MmXlaL2mq2xfGWG/H9n0HQGzfU/ubLh37w7r9QqVwyctMbO9sndfyoru5P7MmLiw6VprTuAKmhTrzLjiROjWPSlm7m5WHPuWEkG1wWa5MQXGIXLqAkc+TO3Z9jrPtsyiTVtbHnT+ob36iUsDxDSNVSwNIqoStHDvZEXv5tpMrODt6GZsVnA+OjN8JYUx2nv43g8f8fTJFZ9//TM8uH8yMdBOTEztGXQxFg82BAtr/jlgujmBYGl1P9sqB1srXR43l0M7dslutNhPcL2HDsFOizSIqY2WZx+8qgdPs7RbQdq6f/BayHQ1k1Ft+waz0dt+dDYNtBlWUzJVmACC7Zn18Bl1sT+S+ZvWzu3fsr4/rixbennulOgiLYlGDq5/2EU6gcaXpb0P130ws63GNNa1XsPVxABLvLH+ysBYf5bWyYv6Te0u8z0acLzZ5ZNN1pp9qv+1sSbzx7L8vTIBtvu07yfQrywu1b7n2e8WU+9Ux4/uLV38/6bclJtyU27Kz0pJsuevv/K/5T//wV/j4f6rzN64m/LTKH5zSrjz8KddjZtyU27KTfnUl08MUup8Xx12QhwzzotlVwaTUVite8QV9tvBwDl145NLJqaE9x198DWLsSCSubraMsaB9TqQc2EcE02WSsScrv264+TYc/vWMcM4kIrJzfmVQ/eDZcurZcE67widslp7njyNtuHuekIw8I33gTFZFvBABCcUHE6F1cqTkjIOES+uZsRCTLYx9MEcsF1w+E7o1z14qdmfJiG0Wq+5OLti2GdyVJy3QEiKLftaScWkDLwYc1EuBupBMdr/6swLnTk7U4oUQmUHKKy9p+sCY0xoVtIQyXlAnEedPUuKmVIdzM6ZNJyi5JRJle6/cf1mtWBKGhJjlazo+o7VKoAWNBloZLiKkAurTU/WYlnm0hwTnhyVmArSCV4CqBIHxbvCPg2kZDJdK/ETm4WqEoINwZQiwTvWmw7xjfWmpxRlGKI5yjGZlZQSKWVS2iN4yI40FpwktmeR7eUFx7c23HlwjEgmq+fq8orT0xPu33nAcGXtu91fkYdCiR1njwu7qwvWJx2bzSlxf8WDByuO+p6zx4VudcSw3fPk0TlptIzoy7DlO2/+kDFHupXn9O4RD1++xdn2Q87PYZ9GfvTBYx6/9wgXhX/9re9w9/4LiBaOe+Fk1bHpet53ypPtjl//jW9xcXHFcd+z2qz48PEFlIKr2lQqSorKm2+8x5MnFybxh7GEqWKZ4am9P4pPyuao5yqO7HY7OvHsdyOazaUYvGWUq1p4zTmT+uv6FeMYa2AIgvfEZAxIONAELli2MVpJ7i0ND+/ExrBYcPG9H10QR1AyAU/JrrKbKRJAU4aidKHDdY4Yt6g6hmGPIKSSq5QKxJgJasGEnIzRRVyHq9IJq87TrdQAVkkZh9HGmDMXcI6JjBB8Ry6ZYUiouikwWorDOWW18Ww2gZRMSjCOA+MwELoekZ407LhMl6w3ygcfJEQy+6yMuuMzr32JX/6FX+ZOF+hRVMokMWYwnaWTbC7NaXYdyHPouJ+9WktHXnMutq1HYwn5qHKY6XxYh+ZsBJ2uO387/392XB66BL3Is89WnZ4t87A9T6kOwNPg2aaRr3/5VTZhw+uvvYBDGMZC5wMr7/CSOVl5vvHLX+JyO3K6DjjNk0N1t4s8ee8p26eXUAJX53t2uxHurKf7zkEF+7mutUzTc1oAYq8Qc2IYBz5z5z6vnHhW9SyhMcBYTxaMveuVoxXHm4C4TMHX0G6pgY+Pptld+hTbBx/nLny2KDSmFQBp8CN7YlElpMjPf+YWx30hY2tBo9KXg6Pn3xvQT9SRFC7OB7I6fuebb/Cd33qLP/Pn/yhf/cWXWXWlynm5yT2uz73e/FDTZ4dP8QyQpbmNrSUP26WNsdXifPs5508LNh794vgG5mllkjdgHp/t+sv39Pq7ugx3TD7kGhhftmkbawYy0gWzERSRg7Zqx/UY81B//QYcBkDaiOyWc8Yi+DC9y2oO9BbkK/W4FuicHfafvDTxmcMgzXLOENYtGHoQoGEOKsnHc/04SgU/NfaIeo2FEz4v7mtARHuaLXABXAJbrG+dQhZFgyAZXKnsHdXJH7yQaxDBwuR2rSYjplTQ1HT/KjPlqPaUzkARVWOpqegm1UJoABwxoJLNwwVxroK3rT6tT7y3e9k6bIkAZZEN3Zh8cG4KjB8AIX+yLv33WnwDJChV8teet80hPnicU8axAp+pEnjFwDpFC32VSyoxoqrEmMwG8lLBO0yAzwkU5IX1OrBe9QxDJOZCiYVcTLrJOWMXEucIDlSy7RO0SYAZW5NzVBvVxl8Du7WZOARvctbJVkubMwxIYXVp66IiHvoQDga2sa56khZyZZeSw2hk/XX+3ZhehZwrBEfLLBlSB0fBbJ7GkdeYXVVbIBlQA1sgoLlQiYYMYFH3EooBQ0petDMNJAWSlaK5JoskfDB2G63vnOYqU+mZmJao97B3jgomqfN/UcYhG9NRfRYDn8yUASZJ5mq/pGrLemPbgXpNY9Op27EqD2hyfiVXoJnW+0u2va6Do9MN/SYAxUBjY6Ix461WK8Q5xjiYBJ2YRPU4ZMYxYxLahZNbHcEF4gDrkzXb3RX7q0RRk5gdh8I77z5CBdbHPRKETDG5YxX2+8gwXjDuBzyOd995xOZoQ+dNsPX0aIPc7nj/w8dcbCM/+OG7kyziLJksSJlhICkWnjy+IpdMzguIspkVlW0IYwBrn2N9mkpjwZ1XAIHKxNKA8zqNUWMoMgBgSiZ9SH3/pYI1bTDVn2pzZXsvXAUlGeWdzdAGBCy1f43pDKhJNPbWlaLEEm3+RCeAUimVgaPeO6cMGKClAZtCqPsjlQqW08qEbElE6CEAUKSyvdosVve4gu+ostTZZB/V5n1HlU6Pkb4XhsFk7uJ7hXH4e7xz6wf82Qf/S75a/iROBaQCrH7CQMM8s1pPXYdtzMdd//9H7yWWNlI7cp7B5OA8mx7Mt3FA+7EoDg5Ymdo5y7rYR88yexzuQeC09xTn+flf+DzSObw4cjV8umBWigfunPR84XMvcLoJlanI9sJDLJyd78hDMt/O3YeUnK4xxTABnpf3n2WMmfY9AwUf4M5R4Pba0ZEP9gWTLCDWPEddqLZJme42W28f3ff/bpb8OidjD+RK4d5xT+eb1TfvGpeJLa2Ug+uYrbUfIlkdH35wwQfvPeXzn3/Iyy+dENzMitOWw+VQ0Ws/ny168NsM1NcDG7LV2+ar2YadQDzPuUdLvpmAaW3dYZoCJ3ttud9tV3rmfViOk2sdt9znPO8dbcxbS+CN1vkNPWQ0avuKNtrmN+e6Yb4Yy9NXH29Lih6231zvn2Ak6mKuec5p1/di1z9bHrncGzy3vtPc9/H10wZqrfcZMfakUa1fE9PyUismSNFFvZrFZ9+1RBi5VvFWkzYltrGzfPj2fbu4mzpI5ndjcb2D7l3el+tjcDm6ZPnFxND6EVP1TbkpN+Wm3JSfhSLw3vpb/Bdf+k/5c+/+VX71w/81N9JvP72y/uzXEP+JQ+835abclJvyH2z5xDNlcxWVlEHNOdjkM1SUbuUJfUBLYp+NSUIxmThVRymJo03g3r3bfHB2wX4bawZhqU5GJXjo+s7AEr6jXwWcy5zc7jg+WaFnyvZsy9n5FeOYKTkRfCD4nq6zPJsh7ShDIo4mH7Fer6ZgT0rJwCxA5zzSOwsWuYLzFojoek9wlg+XcyL0M5Gwd5aB7Dz0q55SmYG0CMN+RJOQkzG3KDJlbdouXGoAs27nVVFRVusVPlk2ZWM4coiBpbxlB7tiMhhFM2W8ZLXucMGo6C1L2UBioV9xeb4zZ7MIRTM+rMCBJJPzEhFKsmzuFvxpUluaTbYvxSotUQrOzRmgqo6r84ExFWI0JFoIFpjXCnBKOU/0HDlmxt2A8wbq8l5qAMGAYkUTRau8iZisWOg9XR8oknHJJAO1WBDDSTDfdA6UCJog5WiBQoSkmTIIR0eBW3dPCSeeVCBuE77rOD+75Opiz2p1mxBWwIC4bGCymnV2dRYZdxmRbLJ7OfPa6y/S317z27/1+wyjOYk7hHEfeO9HO05P1mzunfLk8VM+/L33TU5NO/bbPVqeoDlztDpmv1eU91mtHNuzgRfvn3L3sy/xg3/8z7k6H8npAz7/6svcOj3hX/7W71nGlDN5Ey8mi3h5uWc/Qr9aU+KAZkHJ5h5Sb0ExV+g6h3eBcW/OeS3K/mqksZ7BzDrUgmU5KylmhiGCmAybBE/XdSDKOKbqmFe0SoKghdB5fC6kZA5V3xvAzVQUhRyjBQ8js7wclrm/2xkrVg4Fb9FecsqUmKeJRxEoVa6wOm1KicRRavayZXh7D74zSIJIlQfUdjw2NrUFMHNlizL2tVwUiQ4fhL4Xxjig2XF5MZLGWBmbMjkNHG060MRqnZFyyTAUPnjre2wvH/P93/s+4tf88te/hgvOGHfEnquoUd230PzSIXXgmpfmiNTlpzSn1xIA8YyTjlmuoDnIltdYOqlaZvbz3VX1E53BDYfu30Nn/dJheP2nTquBHDiOG/Dqzsqxub/C3V/z4meP6DcdWT3b/cDd001lU1F6Cq9/7jZPrrYT/TwYqOi9i5FHFyMnq2OKK3zxKy/w2Xsb1ugzbDQsHII1VIZHcCp4gdHB6qTj1ReOeP3uimM3GshMO2DOQ8n16da9h96TnDE+zIvqEjz00Z6+icnsD1gOXM713a7EEZASLxyvTNqn1looFLrJcb2UapguUVkRsgqPzrZcFfj+d97nn/2Tb/Frf/qP8Kt//FU2oUzrlYV95rHUHKt16Z0qKFQQnXCQXVyqg7sxWz3rll4yis0jtDEqce33Dgv8NkmxFmMtekjd396niDmh59BFDWi2mggG7p0Gzzzip3Y7eE/mTPtOjd0o1Po08FbFnj7DktSyn1GdgnbtuQ7CU4uOl0UjN7kOWTIUTV7y6yDF5we9PtYvrTUj++CgZ2ejJSMCy9+X4CX56Hst3p56i9ruizHlMWDRCAzVJt2hnKFc4shAbIEUJxNoY563qrxPvbSbm2kCHOHNXisqh4EzBfFzXUq76GTyHQaBWuxa1STskBms7b2tD22sNdYOqYNlYmMSJiBcC7ZbcBekSck9L9LzKSvWjTox9jTAVwNEeCfgjb0wlSpnqDPAwFLHlb7vjE0smv1ZKkJXBLwzsFNjcwnBAAg+NACCsYwOY5qk1JwAEvDOZslSDJASx2SsLQF8EULnENEqJ2agKxGTEzL8VWN8Mluk2eMtSK81qmhEWcbWZAAa+z7nKgGXyzRmDsBJWLstQWmlguTac5XKuCROKhtm/b1oBXspQ4qkkCdsq0nAOZy3pI5hPxq71CTnZfcodaB6cZRc672cWdtep9Q1tiREjDkKaX1pSSG5MXBiY7sBB1EDQrV+15KrbLhMSSmN8XNeXs0WNkBKMQDQUl67gl9KZcgs9d6yYKkqxWaFAmgxcJjU9zPlQh5tD3x5uefyYqDrVnavidavTP1aikmwQWZ7NRB85sGDu0Qt7HYjKpUJSmyiKckTgiJeuLq6gm1dTdQRhxFRm5dc3+N9R9FIobDfRpSB1Ykx7Pri8E55cP8O3DrhjTffMaBbnaMM8GhsWk4tCUdLTTaY+rFaiBUoZjLKxozsnZvaclrxtJj9WUGTjbHUAJjWvvaOm4xyk59r70OTaDagZu13FO9mYJyBAe2dsHekzOsJBjRSbA9UDRmTBNTlGJmtaRtX9i5olYAzKUarg7jWWG1sNkDSEkBXpvE8sXOIQDIGZlWIYz4A9YUQTC4vR5MZ7EyaDzVAWhz3PHn0HucXW3L4L+DByOvxV1nrZmYXmeaBa2Vpay7th+Va+/zY9PTz2X3C4WczR+ahNKwcHHN4zjOlDR85vHdbl+frHOxI6mMdPvX8l4GPTnqH9sJ6DduYKQL7MdJ3HiMCtqt1Xji93U+2q81iSnFCEsGFjhACfdjzwr1j+rYO1yefLb651jOsaK5XAfrgOe0teWUCbNHsSuqco/N6QGMeWjzfR+0jntfQf0B0wWRWLk5frjy9cxN9j1RAoc0PukhMmBMWmixXUWMA3sXMWODs7Io3f/Aer3z2Pi+/cpdVZZpc7hGvP9rUUnX9EWbTFpjAFe3g+U1fPJQws3q1Y3Q65WDnIXabA/tcqu3SGup600/sszCx3rRbP9NNcvBjqkGzA6ExkFWwKGZ7t32EY7b9mzzaQd0XjaFyeHe5/gAfM1x0upYsPvno064/pzzbiQd/Lvvv2Ymj9dnioPbM0AxmPtEuejmo26SotcUX60NCSQoJnRiURub94jQfLvtvxktffwBgtv8PBtnhr/Mrq9faZfkI1z6Z3LjXbj3tUeSwvm3voIsDhblNDyv0scPiptyUm3JTbsqnvQhcdO/w37zyv2NwF3zj0f+Ko3zvp12r/yBLfPKOBaT8DaPVTbkpN+WmfFz55HBONRmEUrMeQ+jBmRM59A51GVVYrQM5WgZxSZWjQsxxPAyRJ08vyMWyCKmZmKkCEkzmy5wZXecRHKHzONcz7Cwz9t7d23zw+ILLpzuTfEiFzsN6HbjcXqLqubzYs73YocWT9oVx5bh1e8PR8QYnhaN1xzAMPHp6iYKBYrRYdnRndPG+0ty7SgE+xkwu3jgyBOKYGGOuwQZjXNGsODydKFHL5NhVMeckbt6EGigkkUuqQYzWzlg2rhpAyJzHkAYDx+RYSCnieyW4QAiBzdER/cozpoLrzAG86owNp2imq1J14xAb9/i0mVbM+a9ioBZXKoNTNuCWD46ipcpAOEoRcsyUCkgZY8J7y1h2zlsEWowBx3mP7zyrTW/ZqpIZh0jKheAdm82arpfKDGXBojFl8MZ8s9tG4lAmMENBKWWklIKTgAsWWWmAKwNSBWJSttsdY+k5f7pj2O7wrmccRxyBzme8L4gqJxtPlJE4ZHIOlOQsCEHivbd3bDbKy59xvPHGu1xeJPrQ06+NmavzntPjE1IaeeN775BTYb1xSDBmqP2Q6KXn6OSU9XFgGJRcCleXW7Z74V/8zg8ov/s9hvNLjtdr9nHgandM2JxSiqNEwWlEfUHFoWpoM2UkRodlFINU2R5xVc5AG5sQJh3olNWqJ6ZM1oKqvY+qBe+h6yprEBZ0M5mYYkG4kskp0vWuOtXN/aU5k7LiQmWByJUEX2sQTC1IFHywbPlsQQXq/GFBYSXHZE6flCbpBbIeUFo3CQ4qM03R2ZtSYiK4gJea6Vw9MXHcWyCgGYI1ECziEAdaqkRDbPI+FkwJ2YS8BNA84gSOjtYcH3f4XkjF3uvj4w1IIY4FLz0hOM6fPOLJ08g//Zt/g1vrwMuvvsrJasNa4ShQZXxmQNDS+T+7yJkk0w4d4B/t8F866IVD4EnzYDUn3NLhX8MpBwGI5iKdnWaHLqqlA/nQET9T+R9e3+5+XcJhcsAprETwwSQwVivhMg7QOa6GLS/dvk1flOIswLxaCWmAsShHTo0FT4Q7dzasjztc6NAh0R8H1p3HqZJlbvPSxlStT2MUalCNDFztEvuzPbdPNlXGrKMhPaW6hguOQTOihZUYi5DTYM86eVMPwgu1AT7GkfoHCiosx8Yc9am8I4j3iEp1XhsnkairkgoGnMn1uZfMSjYDCpe5sPWBN956xN/5m/+MX/wjr/ONP/VFNitHX5FQ5vcts9O73autdQfj2RiFGnhwapapfu19uM7K9JzM/PpbYygKuInlyteeOmydCg6ZpFNkluPAwGxZWUhWzHKNEzgFmdq4lSY/9DwmqIBJgKxpsgk16CDQQq+hPvnMltauKwfXmkA6k6N70SKTXdHev2sRkWuNfX2kXT90CRp4bhF99vKLwNHyosuwxsE5P2a4z8+g87PXP3UhQRJVOAcutbAHBoRRHE2Aq9SfS2lDdRVUVOq8UGW8qEAkV9otZ0kPcUqNt1vdFjJkJes09yFq7EoKOGfsXbnFR6zv1S+ClLW9zd6swaxloKGu61pnzuU4m9i7xMZ3Ofhu2fqfrtKYjbSYVJvzYQIg2LOUGsy3fUKuQBh7fa0TYiykvAVp4eLKTdWALZXJyoBCvkoXC9TftSghOGKiSjdZ8kUAQu/Z7+MktWYyWWL2UTCJwtW6x3slOAPeX1zuUKSysJrUcpOBaoA1JxgoOpdqg8kE5MhlzvI3cJLgnUe01LZx05gsWQ/WaXvumhRRg2/Te1d0kjuxV9QYaWz6FjQpTrWyJ4klPgRju7GkjCqjVdlvRIwpKuc8SxdOe4oFI47K9A63QFppIBMBMog4vDNpQ9uLWH2brebqiC5YQoTvHMFb+8aUTWq4KDhH33Vmp3pHTJkYrY1zsnc4JbNvZ6lQxaTPDEbtRMA5cv1s2neoEodIjMKwSwbUkRZM92hJeG/H971HvLF+5qSUnCf6s3GAHGC3H7m43JEjBO8IAVwwe15EiQl2F5eIs32G86Bq+ynBG3OTL4xDhuSqVGDH2cUl+ekZkgsSAvsx8eGjM1zX2XjLBiRQZ3a6MdkVcJmSZxnBSX6NmdkFpUr1MQGdpgl0mp+x+V+a3NUy2skE5DFQJtWfUMdMqetJY6IrTYbHgH8AJgdYpbvq3qeePS0T084g6/QetA+npBxttjCVMasxIAoNcOHqc2tdByZQUn0+MDBdY7hDGmhKydnqWlSRUijF23EYyCqEQNe7GtTWajO6ylpmdQwdxDEyDue888bv83fk/8ybd36XPxb/Z9zR+6z8/H77yQ6o1pMs7ZW5C5615GubLb5YgglmW12WavXPlKUtxgT+aBbdtftNf85/N8DJweeyOKXde3lOjcA3O7K9j0t7yZZfk+IcVcmqrDo3JUxMdXfCWJR1fYc9Al44WodpLMf91dSuWbC1WxZ1YwGg5ZBRaCzKuI2cHHWV1a0hm5VGRaM0GamZjdP2FPWmzYj+hOv50ub6ycuzZy/t6OuG2/U9ZQMalQomEZ0Ta6JCco6L7Z4ffOctbt+9xWc/d4/OQxMWPRjNdRKYn3za6dCAFVNtfkzTTLuAa3bp8558SmoRFvc+5AdTDve8ywsUnZMPdPGvfWfHzobeBLNcNEB7d6f76wxMWkqXL+sDDT+2SASYDrj2xB/XXu115Przt8v8ZHblsk8/6ruPKwfnPWdf8eOr83FvhC7sZbM1BmBPAynNTL7Lf0tbu9n10xUPl77DeXUxl079vaje5J+ovy/fiWW/PDOlLi4zPY/M4+hgzz0PvWtjer7IT9a+N+Wm3JSbclM+zSW6LX/jM3+VH5z8d/yP3vo/cnd8DTi01G/Kv9uSL5+Y3+uGzOqm3JSbclM+tnxikNJq1dOvTPZJ1bPqV6x6gEwRZR8zJRdC8JycePb7RCke1UJOli07jIlxLBCaK8i+T5WFR5MnjZH1UU+TBBOxTOrdOJIHy0a9vNxbZnUJ4BWVRFIDTez3I9TgxjhYIANRtleDgX5WjovtJXFUhl0CcQzFpK186Aw4lUbUJ9ssVqek86AlEQchDlpZg5Tge7QUxnFEcIRg9O2hsyAFAuMwVKelOdRN3sICBSKQapaxqpucuyVD3kfcCF23QsSbw1stqIyA6yBlZYjG+JNSNikucZbxWwqdU1KO1RnqyJh8hcOcqtKkHxRzdi8j+Fh2q6pRlSsGKOr6ju3VljSWyYksNcrfnLsixqjjOl8zqD37OJCGRHN/O3HcvnuM857zs63JSiTY7vfghJg9Y1RcNtk4A9EoogZWcq5mOVPsiuIQX8hkxiFzcX7O7koJ6shhj8MRXM/pyRHrDVxtL+k3nvt3TyhZee/tC8b9iEmz9MQo7CTx7e+8zfn5jjwUWDvUC1mUOF7xgx9uCW6NaiZpJObA0WlPHBPBdyZvloSrq4GL8z13bh2Ro6fvhLOn54y7hFNlx8AuOp48/iEhdOx3Oyge31uAKI6RQmNVUpxaEK/UYIoBygQngdL6JAAqpKzkq/0UEBCg6zw5KzlbuMZJBzqCyAGbiZYK5CgGHMySa7CuejmKsX1oro4Rp5M3JJu+hgXEcg0IwTTeZv+M4LTdiwmkY7Vt0iQ14FQz352zrGbLbs+4aLILmmY2gRgT+30h+G4K5HrnEG9j02dlv4uUaDIsWZVhLMRYWPUdq5Unx9EkCR2MKZNLtuBKTKRSSElIaceRdMT9yDAm3vjWb/NfPf6QL/7SL/KVr/8yX37tdcaNAe9WXjhxNiYjUrM0DZQl1QtuIA5jqzK36CwY1xyjLPpoeleZNxvLXPj2tzl0D8EFWvvj+ibl0D2t02/Cst+WzkdjiVlepejMBDMFj+q/KYYvWucCg1b5EEg58vh8y53jE3oxCIevdcwiDAU2KE6tTdbA7d5x3DsbJ6r4yv4gUiiayOIt+LB8xsmrV4gIKyBluNhFPvPCCef7CwMb4KdgqSBkhKgGWOi99ZEAfvLmHXooPyZUc9DKf+AyObuXV6lu5UoN46b3yVO1W6ajfb2EU3vLUvW27qLy/pB4/8ML/sH/59d5eOeYP/Vnfo7TtWNVz5mDBK4GWqqjvI4HoGYQ68E9hUNGMQML6dSWSwdwAxItz5XpGibREEQqUKm9Rzzr2Z3+moMqbrqvgYWcyATSajCAsLhKWTiOWx19vc/cxg00ZZJtnbTWaReqc3DttxYEvD44rgchpkOeG11pz6QHwYg5qFDLMwPwD5DN04IgevjZ4Xzw7C1lPvWT3oQW7LxebacQBfYol8Bjhb0ICQPXFTAbUdr4s5pIrXcLftUpt8oD1d+1zlNqa6gCFBtnzonJQalWJ4OdNM9zOoGWWq9P65lgdp9dzuyVZcA81XdELIBvIGE72eycWvc68KSi8Jq8kmhdR+vk+mnO03JOCH3dHxguna4LeGdAq/04GkuKCl3naezYxs6SDTRU1KRr3Txv1KMMyFMqEDt4nDYYqskF55QpWWfWUJyBob0xkQ2DyduWknEihM6TYjV5iloCQMm4zrGv4IKS7d5Rk9kodW1wQmULXTy/ryw1DRyVGwjCVRCSzXhOnNUfJsBgSokGqKCNh7pPETBmGGARPkPqeiXF6mWfUx9ITHpNjSU2JpPetu/tmqmYhLR3JmHVpNumt74tQToHgTVfe2vry68qFazVgEFWx5wsFCi6YNWRmuhRCqXKTxtDVW2zXF+uKuPmfbB1qLG1ptbGoBh7qKglMTYJPxRUm9ycW6xpgm1sDOCUc0KLI0iHCw005zg67gmdMAyVNXbl2RyvuDwf2V4O1c7xlmySM0+eXE6y2+qKSYpXANB+N+JdR9d5xhgpatdLMSEq5NJAUpY403e+1jujOaMNkFUyMjjOdtvaPFZXm0ecgbsw1hapQJnQ2JGoc5A3Ri0D2lWnqkqVRsz1OJvYvLdrFgXNGecCqrl2+RzunMaGSpUjb/Jlsw3TpKMVAyw6V20EVTTnugdsI7vN6rMt6xb20LT2XF94pNVj8dF0n4IUG5uzbKTMe2RXIc5S7QFn3zsHqZTKfDfvo7VkfKhylraYkJIlcaBK14U6V9keKFd/AMUSn7bnZ3z3d77Fe3ff4Ycv/mu+ev9P8PLwNe6mL3Ir3GLj3JSYIMzr1zT/V1D0zDfVELit3Z61/5druTL/MSdZLY5re7n5kZ8pM+hWpj8me+A5pTEVHVzjOb/P/T7/7Zjhmw6h854YzffSO18/t6O11knLbGEKZhN31bcgInipdqDABPlvDEiLh1jui1q7DbmwOe7JJS1sRPtSrgGU3EICt+0Hn2vXf0S7XC+fyNT6xOWg8h95h+W+otn2gvmqznaRfSr88PfepHeB1157wLpzVdbXntVNzz23Z+sTu0EbtYd7gvZVmxN0OSraQK3lup06+Rt0vp/9e074bmqG54f2lucvlsdpDz7bZddHtDzz7rbrt4SLCTj1nE63ffLz6/Ox+86PeW9/XPDy4679ictHNSLPf87rH10//cfXeHmt+WrGqKtV2k0wrviayFIfdHnv62xfsvh50HHVRJlM0MV9XWM3XFRv9n0tuCmV5m6b/772OFP+yrXXtOEbzeZ5fv1bHWGex9teaKrXv3FH35SbclNuyk35qRaB37313/CjL/8mr13+aX7h6f+cL1z+Rxyl+zXN86bclJtyU27KTfnpl0+8IqVS6MQT+o5xyKQYOTnacPvOMRIcb73zvslEJSWEnjv3VjhvQJj9dmS/S6R9qc56c/wjDX5Qgw9YtvJuP1JU2W6hXwWOY88wGNuNFMu36irDT+gso/n86SWpgKtO9NV6Tc6RnCAnZXs1Muwj3cYZe9NoznknMO4TRZSQoQuB9abDB9vC5VIQjG0pl2zBV9ex3w+4ykqhOoN7nDh850klW9Y2BecNkqWxui6kghCKuVMm+QQAscDKtBEtFlSB5ky0zW4eMbm7zoLOKZk83GrVoUUZ41AZq1Z47ykpoZorc0bNABNHSsY3oNmCtU16JASPiklyNTYa77xJ8QXh5GRD3EeoAQVzZtuWenW0YrvdkfYDcVDGYMMsZwsaQEZFiaNjezUSU2a/G42daXJ4CplEyQXvAn7dk8eEUygpkzWTMzg1fgrE4TDnvWjH5dOMc57jdcfp8RHr48DTs3NySqyPM6t1QPoO3wXEQ991HJ0ccX72mCI1+VkLOSrnjy/RVNisesQXrq4SoTOWnnEY2Ww8t+/c5smTx2gU0lUhDhHUMQ47drst3nmGfWZ3dUkXHJvjzeTAFy90XUcpsNsPDDqgWIa5aiEOShwLeAPIpFEI3vPwhTvkknny9IKu9zx88S5jHBlj5uxsa3KF3qGlZfYDCrm4+t5l+38SivOoegsKBIeTyspUB6YWj2rAVRYAHyqUSR0lV4mONn4q8cywL4zjYMFXbVI6as+Gwymo2LXsfmKBqMo5YjNCmSQW6gtSJRQFqRIrolbXSVYlZ/AOJ56sNWBVX5yUMuJMVhKo963SF1XGQzQbMwCFLnhiSlw93aNY5jv1cqH3xmJVlJQT63VPFzzj9ox3vv2Usw/e4fy9D3j0tT9CLoXT2y/y9a98mc/cWdO7WSpLULIoGTfBkkrl72lcL8b409hh7MjmQmxua4cF7wWT2aohv/rtocMXDHw2h3iWLcyUNb78bGamaaCKQ0cxi3uUNraZprzJ+bp0EDfgUKGQcJwG4fJy5Ok2cfLwiFDr0NrFA0fOIZUuVYRJtsyLEkTofMfKOfp6npNZ7g3M4eiaF06NgcdhsnFP4kg4CRwHzy72tb5a2XLCzAilSu/9JAEAGCBoerLnl49kpvk3LJPU2EG2uXtOdQ7d2C2UZxm6QsIk77Yl86NHW957nPiHf+PXuXxywf/4r/xHvHz3iA1Nvi/jCNPYKszZ0NYnWsfMHHJq42h5/zL9m49ptVyOV7f4eznuG2hoeSz6bFtPYS9ZNonitY3BuT4BE8bL2mRi7JjGAOcqKErqM7uDOsg8Jhf1bIvbEiQ1g4uu99Pzy48fP/LMdeQj//iD3WeaL54THfiYeMNPVOYYr2BALuqIM2Y0RdgC51rYATuEyMy+pVTw7KK+vlZQpQXQLCDe+q6STNq9qoaaAKl6+cUZCMi3AAP27ngnE2AoF/sXEZJa8NEVNTA9rtpkNu+brJROwXAf7LmKVmYboCGctFQGJbH5qwUMnJOJ0ERgilzIR/TFp6Xkomi0YHwpkNRsm/Wqx3eeMUVSUsiK84F+VRlUsuKS4J0BBpwYMHVmb6n9qmVmREtpYhjyztGvDPCfkwWFTQbO2l0mgPNoQO/GmONclTU2e8EYUwo+G+imARksGFVZgaotLVUmWjE7w4kBNGyVtxmj1MyDNualITNgjnBJXQO9AdhyakGpJXMNk9xWqZPpIccIZh81sMACddCkz3Qxtrre9lMm46wTQMh7b2t2MYC1qrVtnhg162UroNwHYw8x+6vKgZWCOk/XmRRfSbmCwIq9E3Wf4r2HsYLS1MDvcaxiqwpacrX7YL+zhIxcyswMRFtfTN7YOY8Ej+Ri+4nKkmPNUAEcGEDBJgNPGiGEjn4TWK9XiIOrqy2lZFIeLYEgyARcKblUkHbt93atAjkaaKzvAyqFMea6t2rzqjEjkYBcSHudnilnY8p1FWw0jibn3PX91ObeO/q+I6VMniTHXQVP5mn8iqv1ysY+de/+bUSUR4/O6LrA3Xu32O6uSEmJaaTkXGVjTerQB5PLy2oyeI2VStWR1XgZRTAwmhNyyROy1xhXmdc/Z/tRXaLrKxgUARFFowHRKrbH1qjGUFbtPLCEDeddZYXNJtOooBwCq6Ct7TNYzUm1VSpg2+aX+v5UG1brO2yALgOb+QZ7kZkJqp0nmL1q9pixa+Xab957wBhgQ+dN8i3bOhCCx3koOaIxcfX4Q95I/4oPzr6P4rm7+Sxfv/9r/Fz/y7wYv0Sn/eTQKSiJlgq2sOOn9+F5ttDh3wITGKz9X5tc1jRXHZ7/rDT04lrP+ew6K8/BeddtkGv7kWcqr83WrBVXs8PWIjy+HDk57uc9jFSAuhpYPOqinjKzcLbx0CSj7Z9bPM8CSiVaJbrt2Ahs636z97AvzTpe2DYLW9A3oOkCKPhJVvFPajv+pGWq64wwe6ZL5gpYORwT9o41htpdyoy7wlvffZurp1u+8ktf5Pbxuu5zr11qAlzUd3pqMWW5D23vfxuP8/6n7msnxs3DerZ9ybxDniz0xZNzMCCf1x/X34FpjyPzdQ300dKt5uSGZaKWXV9nkFSt+pIRbRot2irzTG2fLR9hqn/EYZ/ooOe+xz/uKh/71Sc8b7r/Rx3/0deZWmvZ4BW82RhWM7BXAyc1ZuHWzgITA5Jeu8x057YmaV2v6tCbzlmcr9U3YhhtXYzzuf/byC1qROUtOXWaQWROVJO61k73nM26g2SiiU1z0RYTs1M7b/GQAgdA3ptyU27KTbkpP+NF4KJ7l9+6+//it+78v7kVX+L1yz/HV8/+Ml89/0/pytHHr8s35abclJtyU27Kv+PyyUFKKXN+PphzRzoIjovLnckdrAIiAe8zOVvGZeiglDgBGk5vHcOx0oWOMY6IOHKJODG2o/2QyToSYyIlR0rmQBz2iTREc+xlCN6YivqVN0maxiBUxLJNXaVh945+7RiHRI6QooEXigolG9gmBMF7YRwsBoBXQufwvZBLJBchp4J3DsSkIRyOYT9apnERMhHvHMEFy06tDDfm7C+ETjgKK/b7SIrRglLOYzETc/j3q84cvamYk992seakRUkpWZDkwEnnkaLkaICvrguIF/qVsTeFFBiGyLDbs+5XHG9WhCPPk6dX7HbRNqBekGwRBssgNuAXKKtVR8qFOI4WkHeecRzxPnB7c0R/tGbso42NGA0wFix4MebEEQEpnjEWMsI4DkglwM7FwET7/cjwfqLvOkpR4pgmx2BWy2HaBE+3ElQ8K6+IL2xLlf9RA7g556reew0WFUfXd9y5e8yDhyccn2y42m+5HBy6d1xd7rm8VHwPWfeEvqPvNjx6fFHV6hQnLeTpK7AKVpuOIQ6kbNm0q9UKEGIaeHz22EBY+wFNHSrCfh/JSelR/Mpx5+5ttrsLUkrsd5ndPiJqAKXjow1n55fNo4VzxmwS9xEtlXFBHXk0r4IIvPTZF3nwwi3+8T/+Dfp+xYOHL/CDH/6QmDLOm5RD53q8M5fL0WbFfogMaSRFA2q4YsGwXBLiDKQUgjGC7ff7RrpC0cw4ZquXs3fQeZCi+E6gC5QIcZ/Jo5Ilk8diWfo1+NXGr4iwWXXcPtnggyBB2BwdoTmQy44njwfOzneUYlJwuFydMM0RY1nsJY50BJO0Elcz6Q3eUEoN6iQLTHjvCSFYkFjmOtm7VINK1XsYwQLGCuMYCZ01QvAe1LO9GskFNgSbE/zMLJXLjrDq2Nw6InjlR7/7L3n/+9+B/pjTOy9y9v4H/NKvfoPVOnB703Or6wjOHGNjKXQi3KlSk5VLAafmSIsoKwSHrwCjCt6ZnFDmiZozo2WSMVtmJi+dsh5hybvQ/FEN2MPiWJidwUunLM89rn5fnXGuOpfLIphslW006YJTWFPIV5EggaPg8Lp04Ckdwr2+5yolXBcm6vsOJjCDeRgzXorBinQRplk47CBXp6LHCVxeDmjOvHh7hQJr76aMa6mXdTa4WLklyf9hEPinXa4DzH58mUMnHgPteHWQ4F/+vX/BW7/zFj/3K1/i86/d5dQZAK5xl1SiJorOAI9JKoGZUaiNrcaW1JzC5lM1qawl4EsX33kMOCVtjLP00V97zudFzn7MszvRKSu+XWICTomx87T62DLTgFhVHkQO6z6Pr/ZH8wJ/esbIz0qZ3iw1cM4ey3ROCBcIFwZNtng+WCBNtc5rTFJv14NI9VDwiwBQnZcsoF4BKkXxzuaYXqATrYBIG/jB2ThPqkRRovOMeZaEcWIZzLksAgYCUMgV2aSquDIH2bzMAdRQGf58fdFSfbedVKCBLAP5Mj9jW0A+pUXV5Lrs9fCI94wxwbaBeYx9U1HEKaq5gqZBnKMLjvWmx3tPSibPXEpGxIAbKRlzaYyG5GnMrJTCuGAaUtHKtmQsM7lk4hhZSo0h1cb0th9IsVQ7rZBjQdUhzuG9gZxSMUYUrdJarY/UFuc6X1qdFUgxTXJybU9gIIjGeGInaSm44Ag+GAClsgVJY99o829NKnDFkiwWcVv7UcemAaG0RqFsj6PFGMKa5JfWySyEgHPG8CQovvOsVz37fWQYorHQ6EIODDcz5KAGYCr2PE12q7FiOW+2lTip/ShVptrhQ2CMkdUqgNpe0eyiPPWh3cv2TymNeO+rjVgq4MD2UU6g7zt88Ghx4I2daT/YuGn1aoxU037CQd951kcdR8c9PhjLUSV/NIB7bKA4A6N437HfpxqIthXP1XYpCwYWA/fYehpCX0FPie1uh+BQKbYqVyAQBcTZHjKEwDgWUszkPE4AuFamvldfGeDs8yCO7EpNlLHjixZiity6dYwP9vcwRna70dZ2X+XKcDhZJJPQ0oxAqp0lrgLXWvc0NpgDu8QSIMymNwiIAdoMZCTBoxnSmCnR0hUoc6i/XcbGvbBaBU5PNvjOVR+Fx/sV/Ur48INzzs+2VR278SPKAbARFK3vk5PALCem03y1TCxS5yrQ0N75Ur+z6b32b710KQXJVAblylAldj6KjemSjKksuMokVpnFpND1HeIDXjzD5TlpuwXXcRXOONu/w/de+Wfcc5/jc/I1HoZXLFkp3qEb7hKc57Y7MjBeay+EiIGYej0EMbVxufiL1tJLG2jqWhYfLM541tKx9hRdRL8/pkht89a/z/v+o2w9q2d7UvstZ2XVLZIK6rkOAymFuq90k/2A7U3agUWna8kzd2Nh89W5DUgxIylzsu5sPXeVRJzG4FmPbvet93zeM/2slOUesv0NVUJVHB/86APOH59x++4J9+4e0VfbyuaKmdlrnl+wd5J5vDmo+SU6u8ra74v7PttXz//++pj+t1FEr4X4ZHbrTQDBluQjh2O1TZk/Pkj4MzpIforluu8iaZV9FWHEJN7K4nsry/3DoQ/lede9Ppiu72kBAmrzDhzsHecxqRUs1djeuOaPkYk5aWISlMWaq9few8VAX96rzBdcvG+Hz/ITuRJuyk25KTflpvzsFFHO+3f45r3/K//i7n/Jy7tf5Cvnf4kX9l8B4N7wRV4YvoJTz6rc+gR2yU25KTflptyUm/JvXj4xSKmoZQ43eSnNSimOkgpJ1TKhvRCCAzHZI3OAOgP+eDg5OWK1WjGOmVunp+z2V/Tdinff/ZB0vmfjT3j65MwCRMBq5emDYxxMS8r5QEFIMRNLBlHLyFbHqu/ogzfHscCqD9y5tyYnOH+6I0UlxXFiKQrec3LSAcWCI0koSdlu97jRIq4iBkpIuVDGSPAeLcqwT+SklEr9Hrw356LIxCbUMladD3Sd5+hoDcXo/Fs2chf6Cr7KiHeE4FC14EMLAi+dPhNbDebcR4pl3LuOEBwpJ3b7GneolPlOAk4s63lzvCHjyJybY7UoKhkplqmTsgUnLC7S5Cfsnrlk+r4j58z55RVdZ23R9z3SOYII/TqwWgXcLrM6PWV7FRnP9/TO47qOISVowSe1rHhqRntz8K66ji6YVEDnhQcv3ebo+AgdhKPbPWdXO37w3beI0Vt91bLWvBOKBkoqhLVnc+JxXUQlcbW/4un5Jft9hJwI3jMOkK4SRbNxuPhCGox+OfgOp0rXCaqefbIg2eVub32jbnIminhyKpScgI7iC0Uc+3FrMmR4vHd0vWM/XDCOA+NQ0G3CO2PoGoaRc5QxZVLNIu/8ilUQXjg9ZrVe8/Z7H3J1tUezxzkL1n3rW9/l5NaKYRwYY+K3v/X7pGgyHV3XowmG/UAISknCbjuSNbFaW4AjXZm8x+kdx9U+st+ZlFtKkZzjQeZgk8OwgFABZ6Cg4AUVoe83iBfyfsu4i8SScVIIvn9Ge1eccHw78NpXHnDr7hGbzYbt+Z7QHfPHvvFl/tu//o/457/+XYpWMaaSQBoQSReBBciSKcHGUZOcUDWnk+gc4GusOT44nPd1/lIoFkBz3kGVkBEKMZqciw+BlIqxfAUhO60BHft5fLxCVRn3A1oyp7fXbDaeYdijEYqODNs9cMH20SO2Fx/w5lvf4da929y7fcrrr3+Z07sPuDq74PH7j/js66/Ciw/otODB5AlEeZqVbSrcXQWOdZagKqLkCbxR5lljyZIw9WINFMw9icJBkEIPXFvQSPN1/uDA2zY71ZbXnj1hU1Zw/b9rPv92N4E81VuJCGcpcnra01UH9hxcsUDBKjguBvs0YMd4hTFFYwZg9vXDHBibKNaZoC4UIAnsx4iPkVdOj+lQkggPjjp8BbC4UtAafHP4Z6SuPk3lJwEoTQ7U1k81/u4R3v/+B7z/1gf8wh/7In/hf/jHebDyrEVrb1k7lur59NVB2vrKxucM5FLMGdxCy9Ox9V5em7N2DuBSA/stq3Qa1suaXw9U/YR90a61FE9sz9aGeQuilIN3hym7/tmLPmdwLCN/n7Lx8mksU3B44TwfMcakVOeJLTBcZ264Ni8tWauaVXVwqCz+kkWAqNo93sNKlBPgtgjHE4fd3KWKslPlEmEPZK+4UuhclQ4UweEoWsFNtUYtmE8NkizH4fx9mSQbkbqMaQF1E+BpuqKC1Bfx2vT/qSsV41PrWohNwitZxctC6gkt5GrPNrZEceADOK903rNerYjRJJ1TSZSUjDGHNDG1eu/ogq/2tVZ72piQUpVbU4DSQEvNHhZC3duown4fjaWlNJCD7QH6dTBZsqJNEIiYEiStoJ/Km6gFFkxPBpiWKvFWg+XeTcAZVTWWJxFj5XK2f3ErR4wmXYcY0ylaJZHdcuXWebAejIk5GlW0VOCSfe6qfZeizfDNVmoSyw2c4YPDFzdJ78bRgPelLNYUodpl8+0nQLli9lUFnvsKdAoh4DuHc7CqoPhhSGgqBPEU8cYCOyVYyGSrTPcSYxztQqjMQ4XNyYrQdXR4Nqcrnp5vyR88NU7RKrdt7VA5O1pf+EKMA7udgZ+GMZFSsb2HGNispGZuKpFYZeUscUOALlhyyjCmCk6pq6Ga3FSMo/VWsXliWvOAVGmzRExaDYHdbkdjvtLSJJCFnDP7QY0htCZ7iHSs14Fbp2vWmw3vvv8hV5cDqlR5NMfZ0yvOz69MxtAVnjw9M7tsYihVVBLeCznpJKW+WneWbLTPeAcnt1fsdpHdLqLqKqtQOQBRGgClATrUgMLO9riq7V0XRGx/aB1qICatmRMNBCcOJEA4EjZHPX2/Yn81kPLIS5/9DBdXl+SneR78Wq69B7O92BKMSqnvLHW/IcbUpA3YpMYqJn5mXmoSbVMdK/OXmTJlev9TzmiyfZ44V/fijQmW+g7bXLDedHgnjPs9UT3Oe6Im0BHnduQ0cHnxmB+Ef81v93+LO3cfsDo+pewK6aLw8iuf5/XjP8qd3cvcyg9ZhWDrVSrEJDz0L7GuPFDLIPUzkepr5XlLyyIO/rFFP+bY6+ytz7v+9e8nr4jMv9vnQlFhlwq4YkD3g+u2NX+eO8z2g7y9IMWxspAp7ug2yJKHpM6BzOZeAwwUMIa5kjld9bh6wNovrMWiOFdrKvJj2+xnqSxt/lZUYftkx/5i4LOvvMDnX3/IreOerrZna/dpa3nNrpPpo3knWNBJQm0+qPZh3RMbPvKazbes13OfYHHBP9B+4tqVpqXXfvHTdwc7GWT5v0XFdDr6D9Mo+fdb9Dm/57qXSFQpz6nZl1KBtUtUD1t/sS+Z7PbFAfoMjUv3AAEAAElEQVScgdWARgHoMZn6lTCx8OnU01DUQFOx3qvth2HBkC1UNvLFXNqOk3ls6fTl/PwHny8OkMXQm5Qm9fnPc1Nuyk25KTflD09Rybx99E3ePvrm9Fmfj1mVU/p8wpcu/hyvbv8kD3dfOzgvaM8L+69WZv0bO2VZ4uO30ThMf/cvvIr45wnz3pSbclNuyk1Zlk8MUvLBUYqvQkxCjJGUhCjRmEyCN8dL58ipmDSadwRnjuaimcvdlu1+h/OBfJ7Z7a5wznG527LfR3bJsmFty5dJuRD6HpyBd3AZlWApaZUXWbUw7CKaC+sjTxc8vvMEL6z6QPKFfmPMKKuNAYWcC6xWPatNYNgP+DDahsx5YzuKhfXRugKbhrplLWRnvCRazPmdSiSlgpZC161xzhPHREzRAlLeQBXjmEgp0/UecT27qz05J2IqBOfJxbJsc06IKCF4Y5KqG9HZsZ8nSSGp0l1d15FLxqvDBU+Klh0bY6KkbKw4LuCiYzckrrZXuCCs1j1xTIyjSZ4spb2cE4YhkrMipnsyBQScdKg6inpijoz7PSE4To7XSO/RAMenx5SkqFfEK+tVR8qOeG6yCKUyYnknFMn1vsZqtV533Lt/mxdeusd+f0EO5sj/wudf4v5nb/EP/sFvcXpyBOoZx8wwRmIcMAIqj3OhBpJ2DKNw9nRPIVm0S8NCY73KyIm1f8mFde9Yr444vnWEXzlun5ywuxr44P1z8gj73R7E4UUpOXJ5MeB8R/Ad909XFDzn2ytSjJCgp8f1hfVRYL8b2O2iAdaOA+NoLGIiFhwbhkKs7D8IiBQePrzL6198kddef42//49/g9/5rTcokhDxqArDfmQYEmASfDEas1XwPWUUUhL6Xuh62I0jOQvdKnB6+8iYwnTk5KTjC199gTd++Jgf/fCMUjwlSw0QWvAp50wpLZNa8B66Hk5uHdFvPOOYKKOBo45vBdxWkaFYsMNjbEoVXOREOD4y2Yyz3RV7icijK84+vGQ7bNmXLd/9/tukkquTscqpSKljcyZ7b8GEcYw4LwTv8MGhongRk+QTC+Rpyca0VrPStbJxuXpOweS7cmzcG/Wdq3NZiolExHmP7wNSYHsppKg4KfShr+MpUHaF4WrHPu7p1htiSji1YFmKI1dPPiTmHau+51/dfYnN7fuQI+wSX/u1b3Dxc1/k4oPHvPiZz/K5z7wEON56+4zzyx2vvfqAfS9sgqND6FQmcMcBAwA2P3j7YOFan8szTv7FMc0B94xzT5fnyiF9+OLqS5zGoQ/Z7uOmzwoeE7AD5XKfiaWw6mdX9wSiUrtw8Aaka98JBnKMSUGq67o0Z7b15vLZFHP0RfXss7KTQoojD26tCR6TIEQ4dsbSkouSszfpOM8B645d79OzKfs3lpMTWw8eff8pT37nMX/2l/8Iv/bnXuf+/TV9HUuFBihylanGyszatRSVa/A5JTMzezUGIqeVdenaAJVaF+Cah3QxFmAeaLIIAH3c433E5yrX+7RWp4KyP0kpzcE7BecXTFw3Tt6fuNTXnQQMAlfAnpk1Kdf1qEkyukXYoPnpl3PeLLbyvGzpdqwdEwQ6hA1wKsJt4BSlb9eQyp5Rr7VxwjHCBQZO2nWObYKhKCLFJLoU1AljMaCfw+y+JnlWCkgxKU1VA4U0ubGiZZIVVBGkGJgjL9h2DMs0G4wGmP90OkOkBocn9oTKfKMVnIRrvSXVPmwsPTVQU5QhFqRKKO/3g7HyOCGOJuuqOU3gAQPKTNwVFeBVZ6PaBwbM0XpcoetDZVFtA8nAJOKqPKa32c6JqwyOJovWmCAMHAVm2wZj3ElpntZqFKgBbRowqAF4nHOUXMwmVFA3g4VKKTgH3jMBnFLOE5OO1uit9w4RT4z5cO2ue6cmfdWkxrw3IFbOVofcmH6qRJj1B8QxU8pgbFhi06/kGq5Tqmzv1NsLcLnZKUWVlLLZmNqicMaMG4IzlqFS6v7RZMWo70sI3uTn2kuuDfBRd2qFCczT94HNpufWnVPGOLCPI7tx4PT+PfzacfH2JZvNihCMOXYYBsYhzpLCWB/Eeqth2FeAXJW8S5mSbfyKc3gxNlpVk2vu+0C3NsBV33WkMbHfZzRVuThq22HgKu893arnzukacDw9vyDnMkEjXTBG3xgLWky22AeIY5wtnWLtqWrsQ9Txv173rPqO23dOuBr2bK+Mq8EYvuoqnWcL0EmTHhe0AunEtSCqRUeNYcmYWNcbx3odOLm7IpXMbmdjsDECK03SrY0NWx29E5Nt33R0vTeQWSyUrGw2R8Qxs9/vLZlHZAISGcAKjo561puelApPz7ak8YI0Ggjwajtw9nRb38MqmKwzJKWxKc1yuaWyODt8lY2T+ow2j/gqD2hziZbKxlZxT967iraoMu5NC1FlkoBrjEwq4OpKgCjDkEhJcM5k50XsfY97kz1PCpIrAxUm0adFyeNI0cRWhIsPnxL63iTvEPbhMe+dfof95Y57D1/izq07OBc4e3xJLIWX11/gs+XrvKJf5Va5x4reRtqCCabtA4TZbl/a9AfzOsvg/Rx4d7JgYqp9d2jsHV5jCd65vkY/z5Sa1nltLEUVIAzEVDjerIzdS6qdsHi4dm4pxXxZQB63lphS1xzXH01Pv6x6q4zJcStjhlEVyBz14QAoPLE7KgzRQHDrbrkL4/Cin5Lyb7ynUNhfjFy9d8UXXnzAi589ZX1UoRlyyMw79W9tAq32jju83EFzTRJpi778yGdZXHvxyeHVf4LH/ej9xLPHTc857Q+ePXse+1Ntpm/md+76bvum/ERFjKVoxJiUmlU4yeMuEquWcKXDOe+6iO617w/Gp/koTP5bWKGsMIBSmM6Uunq3lVEJGEipQxgdjJgsZcYAjq7aWlUVGdDK8CrT8+gETm8vFIs7znWt5q2tVw3gJNNQnfGZN+Wm3JSbclP+gymjv2L0V9DBo/V3+Kf6f+J6embQnpd2v8jPP/2f8uXzv8i94Yv0evRTqvGnq6SLR2hO09/h9guI+3T65W7KTbkpN+XTVD4xSCnn0Ry/YrT8WtqGRiklotEYatTNmR1MWbmWWTbGjBNPvNwy7J4AJsMURyUNmZK0Ovwr2EALu+2IQ9gcd/RrZ87pyn6iYtnMJZvTsO82AMSxIN4xYJno66O1gRmGjKij7xyhE3b7vQGctIJlkgUtRIQ8FmNbialKXHkoBtjIJZv0Uy0pJcZhpAvdFEBQdWSMdUmkZjl7JXTC+njNfjtQsjLmZM7fpDivbI7WdF3g6ZNLGt15y+ovWpAilplrKeY45/DOZO1C31OiXc+yexWKI46FYRi5utwbpXznTGIiZqPUT8ZI1ZzlilCZ7xGg73syqTJpFXK0gJ8BpBJ936OqbK+2FtgRTxkLZUwcr1eWJTxGk7ZzjpQSnS8mm1CgZHvG23du8fKLd1it4eS2J4cNF4+ecnX+lNX6hDefvMfbb77Hw7t3uf/wHuvNirMnl3z3O2+ahJ0mnFNyFDSDc4rvCv06EFae7TYy7jKaDfjig6frhZQyKcLROnDv7i382iF9objIyf0191++R9kHvv2t32fMYwWmmCt0vVlz++5tPv/aizgJ/PZvfRvnO+KYuboaENckTRzrdc+duyesN8rF1ZaiQh5heBoJ4nDFwBU+BJzzbDZrSi784I03SWqsXTQntRYDAKkF5pyYIzyrwQZyBZWlbLTzKWe8C4QQ2F7uwCVeeHDCgxdPkVVHEkGd1CAF0IJNxWQHVBxevAUmnKfrOkLv6Vae4AubjSdGOL53n1yEt954k/1VlbYwHR5KVlarwMuv3OLWrRPOL6549N4jLi/2OHX0m57f+uabXDyO1ceTQYK9H2itT62dSA0CGOuRy4KGAF7YbNaIGnjQh8qIhtjYQAxYmM051fc9RYoFAzMTUE/EEaPNDRObQajgLRyalTjYnLFeewiK857dbuR8n5AgOC/sry4pCcQFpM9oyuRxsCCdjIznP+T45EM2pyv6bsV3/9U/5Xu/+012Z3te/YVf5P3Xv8zR7fu8/8M3uXh8xhtvnBK6yGdeesAL91/g4f17rJ0jlMIqWARpBJIoRzXI7jBn13WgDvV3X4EnNewyMcQ0590ySNHOXGZLPM9Zet2huvRvOaoTtzrWRD0RuCzwZBt55cE9RCO5BiHbFQyEJQSUUIMoAUCNWUwTBG/ySnEwCVB1ZQGIMqBAERiAszHx29//gPXJhq++dEzv69Oom7x3RYXvvvEe3/vRBX/2V77IqXcH2YY/m347/ci/CoXzp5Ef/f7b/Ilf+jyf+8pdjm/7xZhx+EXv+sX5DnvVWzDLxs0Mfgv1HKjgshYPmCg2DkfSQRzoo1I554j7c757dmTqIkDwcX13GGhb1OwgSnbopnbT50umB3gWoXQTXvixZdHOCbjAmIqyQqovoDEnzBnmDSCXbcGtAdHqfOew1ZfnNZtH6zWcQKcmLdnTpAvb9StQfQpk6ELWENbAbYErLzxR2DqzVTux645FOIvKADbL1hh2QiecXbVCwdl6bmBmV4EClWGoBqjrclXBHlSZXAt0f3J43b//0qTZpjC0YLaF1LXWjEJjyWkLRu135wXD6lSuoGwgYqhyoplp8WrglQZGyNmALt3K44PM6z2gGCDHVQalUFmXihYD1CfAKav1GlUYhwgYcAMpdmwxqSlCZWOpqI48Sdu1KcuevZQGasoVyGNzVIpxAk2VBu4p1DWRyt7aGI08KSZKY4dsUV4x0ESTxJtmoQmQYYPPqigzYElMai7ljOZZwkpbUCyZtRCjSemKt3m/3b/MWDAEpjHaGMpcBfM0OTLNhSLGnqSYXWfMPQZYduJoiINV3xNTngA9Xow5yDu7bqoGoohwdLTm9q1jxGVi2rPbJ/a7SE6Rd/NTUhnZb0fWq55+7blz+4icN3zw3hMD/6tClTYr2QBhofMGThMYhmhjrQJfxAniFSkOTdYA3plcdEqRYR/ZbFbcvntMjqBSyDlV+UADyIQ+0PcddMGAL+I4OVmTcuZquzPQSrRV1nfG0Nr1gu+qxNSQiTHjtMrciRrbj4D3wvHJhovLc4ZxwDnIzd7XFigtlXWKCqqpa3izgYuBbRqQLtREHHFC6D390YohQiz2DmliWqMbX82S2WECImZL5sklI6VwtFqhnYHXN6cduEyKrrLv6sTQ1HeB9bojOM9+OxjDVc5m1wZPHLIxY9V+XFqm+hE2RZNqBwOMdj7U/Ue1gCrLciVOqklGdS3x5rdQLQZeY96/a9ZDk0Hq+zABC5WCGvNxKXRdqO2SjWVKKktbqW+jFFQzrtj+poiQ8xbVyGrdI95x+eQDzh9/QInKdnvF+dl9uvURw/aCcbfng0dv8c38tzhd3+azJ1/nSyff4KXyVW7HB/RVji6rsdasxLHCZMjzM60mEwvUNJ/K/KjoIVPOvBbPgCVZrPlL6+y6rXZgF05/zyc3YbahKI8v9nTe03sxsGdjM9L5TAd0NukfMEqVyu7snZAunlBShq7yKC5p4TAQ/liUN999zPl25CuvvUgns20xXRN4en7F7373Xb7w+Zd55f7Rwk49fKKfnaLXX632MQqMqXD29IoXP3PC8e0NoZOpXVQNkAHzeLneGnbk4sI6y6SFxZHXx8H1Ml/3k+zaPmEf6MFQ+kRX/Li76/IInefH+cVoT/m8N+KmLPvjequ0/UDB/CGjTGbF9P2yHIzFRee13pCDETr7RwyUNJ/QAEqOtsLaniZoSyKbbz4vDbb29Ao9tq/YOxjqwzVWuIJ9NhRjX5q2wrqYdZbTlRzeZ/YxX3voxXD7JG/LTbkpN+Wm3JT/AIoo13cAUXa8efxPefPon/J3Xvrf85ntH+XLF3+JL5//RR7uv27rjcoN0xIwvvcDNCfEf+Lw+025KTflpvwHWT653FsueB8QEWOK0eoor5TVQ7SsTUfBrR2hD4BlzIrzdN6RhsEYlhz0fUccIzlmKMaComqZkkgFI9RNV+g9q3WgC0LnPPucyCmRS8E5z+qoxznLLrzaDuSixCDoNtL1juNba0JwDPs9JRf2JSNxJMdCSpbd2a+rLFqBGCPjOKJF6arsg2Um2/LqvRgT0thYgJT9fiC5CuRBLPvOG88Hzpzb63VHStEc6sCwH8nJpNZyyRSF/XYg9/Ys1g7FriOeRutfxKjLnbNwsYo5SeOYzGEKNTJQjDa4MskUtcCQz2qZpsV27FrUMtRFQVwNlFiAxzmhkOm7nuQKKRVyUrwrHB/3iAvmWMbRhZWNk1CziDdrVl3Pk6fnxugUNoTQcXl5wWrV471Hx1gz4B392rO+1RO6wls/eof3P9wxXI04lG996weM4xWSHI+fnrGPW27fPaZfrzi5s2EYC6KFzlfhKQe37m04vbNmt41cXu5I+0jXdxVcZR6KUoyGXyls9wl/vqU8zcRszFcPX7lL14/s05av/cKXKESePr5id3FJTJn10QbVzA9/9D7DfiAl5d6tNdtu5GJ3QR4yORvjFShXl5esNkec3j1hHJXH711QCmSNhOBwvcd3Apq4uDznV371dfqTju+8+SP6tWOfZmEiLR5xGZFimeBa0AraoxhIJ9dMcNWC99TAmMP5QAL2SXjne094/HhP1/fmiDWL0gJszQGopTrHhaSZYdyRno6ES88qBL709S8hwfGvvvUd+nXH/Ycbxt2Ky8uRcTsSB0ElcPdkQyCQ95nebUhXO6R0KCM5jhwfrbl1x/H4w0xJJrQk2HMpIE4nP3NpDiO1wFjKGUYIfjRGHJUalKySG84CBU6M8Q0Riljgr7FpiTjEzbJyWmC1CvjeMvqdBHLKxiygGS3K6Cy7fdX35JTZDZmys/6090MgJ5wrZBeJecC5gDjPftyTdMSv76C6Z3z/nF3M6Oh48vgJl+89hj5w9uGbDBc7kBO2l0/pQuCFV7/Al/7YH+ezr7/Ggzsn3PEd+93Io7NzVBOvPnzAC6FjxcxyU/1XOLHgu8UTy8SQ1wLbjWmkbSeqUM2UCXzoBDxwrU7nybVrLD+b1hVs2rkqyj/57Td564fv85/8+V/mMmZSDX41taNcnyEI3Nkc1cxoUBEihZhSlXeRysRR61W9k/ZDQAsDwr/43Tf5a/+3v8Gv/Ue/wh//y38cT6kETIIUYdDC99/5kP/7f/33+eBJ5hu/+Cqn656WYqjPeZ6fhWIBhVb7JmJmjbxPyjuPnvDaz7/Ei5+5XeWjZkYXgUlCQYWDjPuld1N4flBqGbRZnvZj2/Ijv/x31wOzM/ojbnUtKEcNukxfy/NPuylzmTJ1nxdRoDrhUUaUBCSENMVwZDq0MSq1vys/yCSb1PrycKayb1wFxwggRekEjkQJSA1oZHYoGwLdImxUaw4qU4CtUwsobATWQRlwE8ApU9h6oSBoUlJl9JjANjUoJUUn+8vXtUhQiszMS1Kl5LyzdY6iFJkjDA3Y+6kdfarTnNykjRrQxEDWZZaqcgYot9OqhJI4tGS0gri6LlSQ0AwkaHoVzZ5tjDLOV+YgnSUrSzY4pfe2zguQUzGpZ6j2QMEHrN5N0qxksth62sZy0YIXRx+C2RY52zOq7R3s/Drv1jqVqe72fLnMgKMlO9bElmh/1baz/VPSbPadzmDrFLMBO3RmrAIqyH6+knfWpjacq0yOymwHVJvBxmup65+xwEirhzbGFOtbaWtp7QOppFRF83Se1rYUNYAxeAMvFWMmamy8OSW8DwRvArDB99PeaL/f453ZbUZiU1ARY/NJe0S0Algs8UQEtlc724tWQMjV1Z7dbsAFwXUOSWIyr7XpJQhHJyu6PrDdjgz7EQp0weGDAemNTafupZyBO4Yx1qQVJXSe3GWiHylZefjwHjgYdiM5RXvPfSDFSM6FYT/UtiuknKz/irmHnbNN8n434lyP7zwxFsax7R2b/FvAeQPubbd7Mqc8ePEuj8+ucMGRpzEGDQiodc9uY7ECdurk2Zi8Gtgu5Zo8I8roM2wju93IOCYbYw252+yNhmaobA9ZAV9loxVyNGay09v3wCnvvPOBMc5sPKU36WVNhWFnqLE7t45YrTu6PnByesq77zyiFLNrXGVDWq09KSc0V5tQKhiw1kcaKzPPzpZalJxMxg5p6/u87qi2OdmaL1dkUntcA5jKFAxu/gwfKmNPpu7Paj2KJc2YjLgFAkoplJQt0anK4SkKWSrTbTTZOCoIrFgCi/k2hJgKWhy73VDr9gG7yzNyzIh05Jx4Ku/wdv9Dvv3iv+D+g5f4zO1XWYdA3AqbD18hlJ6vnf4q9909emSyxVtxGHipClbSQMC6iO5P7IV1aj6Q91q0/iJGvpjprndMa8+5L+yn1jlQee/RBb/37Tf5+lc/T79eE0uZWLHgcI/TO89QCskJHiXtLo3Nt/lAhks07RBOpvNaJxvwQfngyRXf+u3vIqHjK689pAlqNwC0Krz/5IJv//6bPHr/ks995oVP8wr9k5UJ5KhVWd2eKhW4GkZO7204OV5NvoXmS1s++8Eeoc27PP+9vL5/sDosmLc+rlH/PTf4M7f7hMxUz3sPnnu9m/KJSwMITexJHO4GANpEPY/PuRdk8d3BLqItc3V8W6KXeVNEla4B6qSBtnWx/ixruNxDz7+3PUS/OFYxsFURk6xvc6klCcu8xdf5+LZuzwk0i02qYkDrdv1r5/+bEqrdlJtyU27KTflDXAQGf8H3T/8h3z/5h/zdF/8P3B1fA2CVT/na+X/GUbrHl8//IrfiK5Uh+A9vUVXGx+8cfDY+eot08Yjuzos/pVrdlJtyU27Kz0b5xCAlLUrWjFLIKZtT2TlWq56UC7thD0Dyii8GBPA1q3m/G1HEsrxdAzd5k0eLlsvSAXhMmmAsaC743tdgg5AjlGjZypbdbACdzvvqPBQuLrbgHUUKY8YyFyVwebEnp0yuGauuZkmLOLrOmcM5KyEIY0o1U7dm8IpMTFApxepsNwmgFvwwNndz5rrqmNNKn++c0VqP40hMkZwSCKxWHSE4SjImHMXAQTEqOZtsl9QAVJN2EATxQgjC0dEKFzwxW8Y5ubDyHaNka7vgqoySkmKagltOPKgnjalmhJpzVMQyT733oOa8FhRxSsqFvK9OKLFgUtfB8XFf5daU4g0Ec/vWmqP1ikcfPiFnT9h47nbHlBS4urqiX/XsowUnXPCEDKs+kDWzjwPvvP8h2+2WcR9x9HgB7zvLli4m03fv3hGQefLBlrGcgQY2xz3eO8arPT447r604e7DU/aDcvVox7CH4Nf0XaDrO25tjln1Hf0Kzi+3PHl6hpeepKMx6BQ4PekgR0rq2Kx7jo5WbI5vsVn1PPiF1xjGgd3eZPGObp3yg2//gOTXPHjpPr//wzfofKgO88pGVGDcj/he2JyuOHu6ZxyELqwIwTy3PgROb23YbzMXV4lf/43f4au/+CqXVztzRHuPLKT5TIYDfFB85ymayCmCGoNDzgZWcmJjNu1HUlHYFYZx5MPHV+y2mRKVLvhJTrDUbGkRC8Kgag51TYTec3JrRfCBFIVhD99/80Nwmd1VYn81cudehw+Oe/dOuP3aLd5/6zHr7oj/5D/7M2S/Y3+1ZcyeJ3/zn7A7jzjnOT29x2q94vJyB2KMZqgaGE8taEmxIKB4Z0CUyq5jY7sFF2sQrEYOUi4UdTXz2KQGxZnzP8VxDhJXqRmTbLC5S4Kn39j4EoGL8z0pFWMD8AYUjEPmSiPjMHJ6sqLvlN1eSckyDppDSNXmyxgHEAssOGdZcfvLK1Iwt9gwZFQ948Ulb3z/24hGLp48NnYgHF1nTvg3336Tt9/5Efc+8wK/+Mt/hAf3HvD4ySUfvv0BeYykX/tVeOVljp1ldwcHnShdlQ6ZWW6sz5v7XlVRkQMHXs0frgHI2XG8dCRTf07xYTikDK/HTE5+FGcxI64uRv7BX//HbMcdf/7P/jyKJ6qSaIFSC766euegynZM9KuAxySUxpLxXaBfrXBdMFp0FWJ12jVWFS3w/R9+yH/9//y7fPjm+9y5c4stgmoFgtb0wbffOeO//Gv/kPffOedP/4mvc7xZiJgdBIt/xkoLplc4h+DJKkSUR+PI6cNjXjw9oZuiUDWgP0URrNel/bq4rF941ZucwTL4sPy5OPI5v12/zr+d1l5KLHySKz5X6kIWv1z7+iMduT+zg+Xfdanr2IHTfM42HjCZgykvuAYBmhu/XWGen9o8pvPlFvcxB327mn0ZRC1bWQ1gtBZh1YJsAOpZ1WNszF/v9PpD54hDAE4RjupcWdSk6hwQnBggowbzNBtYVgtIARdmpqBp7KuBa5QGFDFwgDeUElrnRwvu2bj0n+KoglZ0amNpgdov4ioAeBGgrOAIEaBgNi8ZXFv3zeZ2SAULKM7VwD/emH+0VHk2TA55XIprsBgoZicBSM64UGFManugkl0FyZUqW2XMJ2BgkmaPZRTUpNoaY9DEtiIy2VdTe+j8efubFuhvH6jBiZ2DGBMxzpNtCL6Cq23VbmO0qCK5yRbNY75UqTcRCMGZFLUIqRggXKiMMc6kqaS2UVGteyOpTFi2ImvtnwZqsX2Fq3uMCkdQwRintErHUfcd0HVCvwqklI3FFSU4kyu2BIxs+8cghLUnJyhJ8Z3gkrEbOhGkVBmsyg253w7GeKTgxRO8sZDFpHgc3nmONh2IMe3GfaEorNcdzjn22wHnxezd3rHfR+KYQd0sBYiwXq85OdnQ9Y6Liyuenp3jJdQxbv3cdZVlJyvee/bDwHrdA4U7924RU2TYjxwdn9CtVzx9/xHd5ojj20e8/e77pCjGIIQB6i3IWdjvR0IJjEMCddU2bXKUQug7cjJGkx+++T53ri7ZbvcWJm0sP1pnlrqfLUlxwUEF4oOBxmwMGltEMTRdZfpSttuR7TZOTFom0TzPQU1WzftAY2aiSWGKVBkwYcyFt370PiKFOnRpqpbee27fv03cR9bdiq/8wpe4uHrK4w+eEGNGJKFqEthdv6brA7vduAAw2H7BOetntCUjyCylXt+LZaB62ucXbJ/v5ucyCWral7Mt3EAsYuMTN9vatucWNBkDnLgKPMPAbjFmck5sNn1lHzYJRk1Lg8vqmVOVyayA/uKEVJmtYzFfhlTmsqeP3kOANKbKlGVy7SknxssL9vsrHr/3Bo9f+C5Hx8ekAvuLHSUr3zn523zl1h/ns8Mvcn/3RXp6OieECsYxfq/DtXW5AomYLJqwmNzr58/GzOe1/eAa7dE5uMTie7Pzx92Wd3/3d3n0g7fYHl9x0n0J+mNSp7UO1VbQUvc7npQL0TvysGX3+B0be94R+g6RwnjxmHJyQpaWXFFZdnPi7P33+I2//Q948sEjfu5XvkFMA1t6A+zkRNpfEMfE9777BDTwc194mZfun1x7rk/vev3jS+uvec3KKDsKfh048mHaPyz7rL1nz7/a4V+z2X39eLn24+Pb8d/qzu3ZLcAnOeWTfXNw7Y945ptyUJYsWQd7BNVJJrqxRtvX8sx5sEh4aIg3WYq6z0c/0ytapcxROrB/IhNjUq4nBqTuWepoPLjQ4YzX7uXErlnTMKdkDbPVbO/d7OWK+2fakiz2IctHX86hyzl4Ob9+ircRN+Wm3JSbclM+jUVMKu69zW9PH71x8uuIOtb5Dq9d/Rp/9PF/zpfP/xKrcrJYdT89RVXJF4+IZ+8DsH/7Oxx94Rfp7n0G8d2BL1BzZV+uZB4A6fwDtt/9jYNrlmHL/u1vE24/fOZ8TSPDez9g+/1voilx9IVfYvXSF5F+Xc/dER//CMTRP/gcbrWp/pWbclNuyk35w1c+udxbqjIIC1BALsp2N9aMZzdlIVOUHM2BHwdzGPoQ8J0jeG/Zy8WkF4IPlUXJsv1SDEiMhKD0nQEM0ui4HAeMnciu5QIWAFDLFqYynmyOO1KJaFHiPhH3mXGvrPtA7zLFQd/15KzstlvGMZOToM6bjEQ2B7DJqJm0mlLIOdt9VGDhfGxkwaoGelAElTl7u5RSZTxqpn711OQ0WFCCCkISVzeRc/DCY+3ZHP8+OLoucHJ6xPrIkUqE0RFHIfjAZh1YeU9OBaeOVDL7YaxU8W4CDJSSSDkRqOCP6lVuTuT1poMaxMAXri4VCDgxQNTxpuP+/SNO7nTE5Li8FHZDMtmEANvtFaUIQ0y4cQRJlDwifcGtMid3NggezY4xKcEpgYKQuXx6xfYyoSg9iQd3Pcd317z/2Bh3OnFsVsLm+Iij9YqY4enZBbfurBHv+CCNhN6zPu44O7/k6jyz7gMekyMbc6GMmb5Tvv7HXuf+wxN+8zd/hw8efYiqM2p/cYi3TOTzp1suLiL9quPRk6fcOTlid3nJLm653O24PLvk+Pge9zTQOfj8Vz7H6k7g+29lgnOMdeyY88Ah4thtE0ggDYpr740IMSVyTuzHkSye88s9Z9/Z8d6Hj9htbZx1XSAO4+w4qGwMcYiUZGPIOw9dDeplJe0LWQUpxljVHPPjLlH2GS0eCuScoY6JOftXWa83pDwiLiKipKHw6L0t1Exz5wM/vNoROs9qs6JkeP/9HcHBahM4vX+bX/rGV7h365gv/bFX+Uf/6J/xG//ot6AE0EIIMI6FIQ7I6NhejsZ4g1DU8tHEJXN+ZpsrSsuKdhZ0cjXkKJU1CaisX/YOBq0B0VJl2yrgUoQqGyc1Am7vY85VMsMJMY6wM6BfF2wOG8cRFW/sUs5AXCqZsDJGsK6z4EgpIN6jqnSdQySb4ZtyBaYZM91+u+f05IQnT87IWVlvehyZJ+9+Hy+BNBZSsTlAk7Addux3hbd/919z9tYR23e+z/rkhNXqhLMPz41lLkD/Z/8sjo7hckvfCZ954S4PVgGL9wqBjFNv7B7NOSXmQPN1dlNmh9/MrcUUirB/5shbHFyDq00oZv6qMSOZO9uzdfA73/sR3//O9/ilP/ULuC5wFAvDbuBs0+GKBVhyynTVgTdE5SJGxqMer8Ljy5EhZ2Qt3F7dRV3mnbMdnXMMCjlmXHEMBWIc+Tt/67/n/NHAa5/9AkEL//r3fkQoVa4ThSB8+199mxfu3OGv/E/+B3zuwYaj8Icr68MCCjYfjBSeloKsHXePTgg1A76FGacQ/sd4LFsg+5nPPkG58YP+h1oa10Cde6vzfUDZKWQRk2aABcH0IkDM4diZ56al4AIzSKQGHdq4DmrZyUfAicCxCOv63Q4LSG9wrH9MaEvAwI31jqI2f7bAQVrUyQt0rgblnYGLcgWlqNg8jDOJqQaoUrl+t/ldFAFtqmjaguN8qqMLDXTUHCyNqS3GaithLCHOGfhH6uKRqtSV8wbCdyKTLJWxIYERjjhULbnBwP2O4CtguYCWBtzBwN+TbWwSeiLQBU/oPC0rvUg2dqVkABrnTc5LpO5TYpVsKzKDECqAw1eZ0BkUUplMl2ultcT0QbVYpm8M0FYoWWsAs4IpRIhV7s4SJGjW0Dxm9eDqILafC8HT9R0+mASfo4KBnWO9ChRRUsqTPNs4xnp+fQ4a45MBIVSbPaVoNqal0Nc9jjeQfRlsrydi+5zgHZvNin7lWK0cYyzsh1gTJowJVpwxWMZs9VZRQm+MQat1ADXGsVmuycZNHE12y9qzsDnxrE9WnF+O5GjHh05Yr1eUIxt5Z+cXJqcogo/OkklU2W0TJRc2a0/OEFvSTCmgIw9euMN6E3j69Lwm9RSkMzYo1PaV28sMEvFBcB62WwNV7MaBMUbymICOk5MjBOg2PUMaKCkbKGICFNV9uPNoqRMAFaxFZd/JhuwZBwP/xJhxUXiUztFi0u2ug9j6lDmAn0uhjLYPcN7hO2fMrKmCepAa8VyEOMvyGu27wzCoKhOAqmk3pyikoQGhjGk5pWTsuquOooVhn+28Dq72e164e5d+JeziFW+8+R5njy4Jocf7gPPGHrbbX7EfTNq8sXY1Gx8qqK7aPxNQS5rsp8z1l/mdbMe1YG8pBaeNK4fpHZ8lD6s8XmX+ceIoJZNSsfUnGDA+jomMTUJSky0a2ZmvIKgKHVy8v8Zt6r2bJOecmExijta/u+0eFLreJOvSsMWJNyBlMbCV1kQWD8TtFuLImWbOREy6fIjG2tc5cpf4HX4Tv1/z8vB1/ujRX+Cl1QvIPCUsp5uD0L/Txi1kewWtmQzLhIZ5HC4hBg1oMH1ZE1DsBkKb76xk4L3f+02+99/9XVSU8aXM2e4RqcDu4Ys411FyIeZMvniC5Mj/n70/i5Uly9IzsW/tvc3M3c9wz51ijoycs6asKlZxHqqbTTWbKBASgRbYokAIghrSg4CGpjc1JEBPGh4F6UESoAFoSRAaggY20aTYItVsksWqYlYVqyorK8fImCNu3HvP6O5mtoelh7XN3O+NyMzI6hyikr6AiHuOH3dzG7Zt22v9//r/cPIMeXHC4uwew+u/z/bRORdXV0SN4KAJwjd/69e48+kbcsqUnJEC4/UFabjh8dtvs3n3nKN2wc3XvsRXz7+F9x1SIOURSmTse1IO/OKv/g2Obt2iDe6JtfUf39g9C6YMUVHsUS0sw65f/kmF3qcpaN9564c4xEcK2RHlpkdSEZsTIjuC0lTXmOaPad6X+izYNVfVGWjPu1JtMTHPTSI6r89dXfc3mE3bZBftqQ0PVs0i7N0zu6fuB2NqyrB92L2zyJN5uavHNROM6uN5nn/3H8P197J37PsT9xPzLLvfP8bpxCEOcYhDHOKPQagUtuExXzn9j/jD0/+YO+Mn+fnzv8mfevjvchZf/h6Vth91KI/+s/8bw9tfm19Zf/XXcMsTlp/4WSQ08+vje6+St2uWn/gZ2nsv0z3/WS5+4+9Q+vUHtnrxm3/X1if9mqmJaXzv28TL98k350zP4823fgu/ujV/j6ZI3lwCEE7vc++v/Ndp7730wzr4QxziEIf4scZHJimlZJLurhJuvPkDkJIV4NBJnj+QSyJkI2TEIVrBSQvBCUpiM0aEQIpKygOLRUNoHKU4yqA4F1itGlbHgavrrdkwYV20WXMl9RihKCeb4pvg6RojQDVNg6IEL2w3kaHPlJJpG+tG34wbYkykXEyOvHYH971ZyBlRp0MoZm0AO4uDUqieQBXoqrL49aGiT3RS1gRvr33FVXAjZ0uXc64lNi1TRmqPaK3dxk5qR7PQtg1t2yCixJyrB7ljufIsWs/9e7fYjAMPH51XK4LAmBISjQQlDrwL9H2/q7uq0rQNKWbrDC+mTtX3A74NhEYITUPqrbA42Q+IU8Qllkee1cktLs7XgHB9M5KzEVd8GBnGaKQZUZpFRywJ8c5IbKoc3WqgQEpi1hml0AQrorY4nrl7i+XdBVsV4iLhUU7PFpzduUVKI8fHS77y1Z4hmsXDyemKxdITR4eWlju3M50X+gHef7hm3BRiLxDhvfce8/aDd/jmN95As6OoAU2rkxbVxGYz0G8zvossjj2LzvHw8ZbgGy7efMwwjmjOPH7vbS7ee8TyKPC1N95m/NbA9rygo5oNoQtWOCjCcrkglYSjgRJxYp3s4ziQoo3H7RWkEsmxIK4jXRU6FyiNI0shxhFNIFLvg0kBJpc6vgq37h6TU+Hi0XUljxhgllJiLtKrVIsMqRYfikoxmzKZLE4yMfWUkimaoDi0NATX0LZC1wmpRLZ9JkXl5CwQx8hmk3FLYSyZV7/+FiThfPuYx//git/+zT8kbz2r4xXqByMvauHy6pzHj88pg9I4UBLFCZo9qq6OP+uSt2JMBRwBvNknzAoTUmX6XUazAZveO4YyknMmVHDRbmRXO5cV73fgYkHxISLFkaItnZfLFTmrdSJHQDMikRBAXGC7jbTBkWKmazpSUlIptE3ABwMVFouqgKYGJMUipEU2tbU4gDpysrKT5ERxLSkVhjwgUciuxRfhtOsQ7+kaGK6uWD++sC7sMaE0vP4HXyWpR1zHcH5FjD1f/IVf5M/9yZ/mrBMacUR1OEkU/AzwjXaX07Ariu20S6Raw+1iLjjvVcSkAlK1ClZfrZ/bA0yLwLYvvPaNd1lmR77c8Gv/6LdYuUBxA65zSIRh7NkOiS40BAn45piRSOMcBc/7D97nrTdfYxjWHDct337wBn/4B69x+/5LBHeMLxGnZuewvb7k7dcv+PxP/Szbbc9b3zrn/N2B4BrQRCwjXet48N4Ff+Wv/Gle+fxtVriPWlP/YxFKNiMq9XbMN4WyHbh/f0VblQSmgq6Xn6ADP8THKqZZRTELmVGhB3qFQSZ7Bq2qbnvKFvVTVPKRQFVy4In3TGCC2S7Aji5ZV22ieBWWIqyADsVXmNrX50yo2ysVYPhed8K0b1LXcyoTMKK1k9vUOZ3WfZbypPJNPZ6JzGmk4olQM1kOKc5XIGZec05AuUMmVs/H9L6d1sYTUQUquK/MqIiyp1ZKfbbPTDWzls5lslhyu6aAxlXCTIWrnGOx8DSNY9uPJK0UtWr7VEp5QkUQtFrtTUiOAVG+ql2WWMjqKrHbbLqmQTcpOdlaq8zHZUQDU9WZrqnU76eCYTMsv48SsX8VK8A/v2efiCR7wNreuGE3AiYShhPLJ4w4JaSUqnoRIKZo1DaOo9WSMSWurm4YYjIyl3O4miNZI4dnjKMRZebr6ECmxoeJUGB5ogPEOTRP58vux5wTKTnEYwRtb7ZX2z5iijGWN5WSKFnmpo2SE6hQckLE0S285YTV5jcVZtUyp8JysUIcNF2Dbwoes2HD2TaWy5ZubImp5oGLFl+tg4MXupXNN+OYzUIsKZohlZGry2sen0eub7Z1lWQ5XLswY12zFy+44PBi525SOB3WI2D5WRoTN5dXuABXm5GSM8Q6j3l7j5Hh1Gy4czKCXLI8z3kjJGm9cXIsFM31AgecWmNELJbP2uUxmofphlnzgZ8vaaZpPELDOvZMilmWt+o8/mZ0dEZzFZzO9olTDp1zmufmaUUZgme5tDpA3w+MNT90HjRZQxNSKLEwPr4hDolu5Xl0ccnNxYaSleQyMdq2nTMLwmzyr4RK/tSq1jTZGu8DtxP4jCpl2mfMxmyXLz95T6eqoCz1/XZbCjqp3VbLsGlbuIJTKLmqR9XHkSny1DoABe9MHW7AbKO1WF0kRcuRvTdSmnOCeFOozjkRkynPlmDnOQQj75VcdlY+9RqUOkd5MTXSJlR7xdaRkzVYlLQ1MhOey/cfzgrSjJFX85f41tk/52/c/+/xAp8gqI2dyVzaqc1qZZ7bPvg0moh3T5N1PoCp6wdf+7DtTZd0fZNopEFIvPbV11guOlOa+tY3CeKt1qDWmLPoFghvU5zgl0eUsWfsBx4+eJcxDpSU8E559+33ufNoTROOLL/UAk7IOXJ51XN2+w5JvF2364ILkcZBzIm2sUaT2y89z+rOLSNBfof9/+MYO1M7G7dxzMRN5Oikq3W/J6/dUxTaQxziBxMTkUdsnW0W0bbOTjCPw0pFYn9U7v/2oSNTma1wZffS7r17662A0CI0spvbfN23p+e6P8IhzkSryboOmHN29n7fz4Hmx7PuXpsKMrr3+3xG6nPpuzUmHeIQhzjEIQ7xfYdYHfpR903+0bP/M3779v+F/8pr/yc+sf5zH6u1oe9WT/xehg1l2HB98d6Hvn9SOmruvkA8f/dD36PjlvNf+7/v1Xq+c0ykpKcjnNyhuX2wjDvEIQ7xkxsfmaQEMpMWrEiZqwKPgFayRCn0/WBdpGOxIm4xQEaiMGg2oF4hl1S7mjOleOKYGcdIzoEmtBydGNmkH5PJ4AFZzYqgJHDiaUOV05dE64U2WIYVk1Kk4Fzh+FaLC4mcxYp3aSTFyGLZEJqWYUhsN4kcdY8wZN+hillKmPsTrvW14Fu7SSdAYO9BY0DL0zL6u5RW1eTZxdVO8pngNAEyuteyUrsvvaNtA1Mxf70eoTeYZrHsuHW24GjVcHb7iHbouLi4ZrsdiMnsoZxYkdP7YGpMrbdCfzFrK9+EWpu1wu04RmZPcwxwcB7a0BhQ5627eb0p4AtHR9AtYL0Z6YdIHAwkCMHRNEYQG2Im54aUrSM4Z+jaltA61tc9eSh0XYv3il86KIKMMCRH2ijd8oi2G2idsImJy7cecnN5w+lpR9MtKd7s6xrnDMgToQ3K8ZFHU6AfepoQGBhJKRN1y3vvPmAsPU4Cq0Wg7wdKHcuh7Yhkkhact47wrunAOR4/uma8MXLXYrWkE6U7WnCzvmTzaEuKhYXrOLnVMcQe1zZstj2xH9lujfjW91tQ6LoFipGHFLMzsHsimzuGd9x/7h6NF9585yG5qiGpq8Q9BJFCaBxHiwWqypAGtpsNi26JqlYwpxbny/SZShkpRvbZJ8IVzaZuhikX5JwqOOiwm0Fp2szP/cKnCd7zu7/7VZxzpJzZbtfEGMlZ2G4UeiNUfWX4Jqf3Vpy+dcVxs+ThxSMel5Ht1q7HIjR0oWMbtwSvLLsOqd3fMSpJzSIi6yTWv6dEoEpWA0Oyq7aStXMdlLYz+wvvHfgwExEN3LLjMvKh2viUanXShB3eUgQfAuOYcOIJvgFngIqo4Aj0m4iqcLTqSGPCexiGyDhGvHd0y47FkVkMLkPD1eWGYSh417HZDJSSOD5Zsdn0jGOka1tkgrc14lS5vl7TSMet4yXLDpql4NpMP1yjxbNdD8Qx0fqOB699Cw2JNA6EYWAzFnJUXnrlRbrnbxE8tYjnSCp0ogQ1UKFBKRVcqRhffQroB9IHMeyWqWQ3QxK1aDYTnOSDa3JVpcRMG5b87M9+kayZ17/yNsOw5fTZWzxz7w5HYUErDSp2H65WJ2hp0LQhuJbkWq4fv8EbX32dy+trGkYI8MnPn6Dd8xx3Rm5zeLJENjeRZnVK6DrGK2WzWaHuiLaDNrSIdOSUWJzcpTle4RSig05+croJVbF7BLi4zrz12mM+89JdOtxs8ycKQQvqCkXkJ94//BA/+piVOzBrt77+G0Vma4anjRYm0tG+ytf0OzCP0onGsT8rKZPaij0/G+BI4USEY8DvQQgrtXXEPsjwUWsnk11mwTq4e2CD0KOVdCXkulbUSj6a1BulPqOds+dOqVY+BjLYs27fkmgSNBFMxXR6/XuXP36cMa2Pdz9PALgRtOxhkbKxlApaGwYqGadAUq3qro4yr7WNvJFKMmJDMTKBiAepqouF+bu1rh8mJVgTdtopqapUwKuSMYxAU5VQxOFUEDESh28cOStjb2QBQaoDlFRLJmVW5hZTaS2pkhn2yFnfPfSJn4wYYQBxeSrX2B+s++CbVLvrUnY2dlrb8Lsu0C0CwU9KVmbLrc4INqXUZgotFExJdrLk1roGc8EhaXddY0xGMpJJ0dXIJ00IZC0gzu6H2WI6USaFVzXFopJtXDeN2d0hUpXG6jGKESyKFsaYIJt9tYiYzVoBzcqQUj2mgHcZAYaYuNmOxMEaE9plR3CmaFN8QcTbvFEBx5yEnKoibxzJWB67Xm8qQd4jVaHILIXFiFCSadpqT54V14Sq0NQjWfBNqMSowPJoyfrmhjRkSi4EH2gaI4Q5b7bOqSTS1s4tsc4hTqoderXzm6Wl6vzhhKOTY4IXHj2+qgNip/xldjX1XLcBKoktjolQuzm9N2Wp2bKvgsI2fHckHieO0AZSjOBM7TfnXJXM7OabVcxIHJ+eoApXVzeUYvs71RPAkTNINpu2m5sNYwws2gXBBca0YcxmFVhyIThXVYoi3guLrgMVUiqkZIS4vLe/TASleqeY0prdv8Xp7j5zgpcpf7Lfp88VtZxid07rliuJ0Xmz07ZGL6kqyaXOPTZWxxhrTuYpKNkpTszqzTQFjciUUiFgFo9NYznvOJSZdNn3IzGOLJYdU7eAIJSSEVGCd4wxEYdIlsJy0dC2wQi1Oda+Kmf2i6ngXUE216xdMoKgQh+VzLf4h7f/D/z5o1/lk/GLhLIi4ogKQaZnsdbnqj33/A4dx75FngDHJ9Lbk0+wKYfYIzxN57deu32SwfH9F7j3zH3GoUecY32zQR3cun1CExZzLhJzYbFoSbEQRChDj3cNQiRuI9t1j5aEiLI4WrC9GcidI0zXXaAUsziMqZCyksV0U1xTaHwdG0VJJeCf+4zNK/q0OuIf97DzUQSGWHjw6IZnbx+b+hmWIIoa4c/eul/nOsQhfrChutcUoFTy5N58sqce9OErJtmpEu1tV/bep7V+O5GWzOYNGoQOaLFGhUkxzjHr4D0R3/suqLmLWKPERFAaqfUbMSXWKW+fyUh727Y1NbVy9uSxzAnOrmwzq4nuLNufMEc+xCEOcYhDHOIHE6JcdK/xf/3k3+ZX3vsf8Avn/w6rfHfvDbvs4EdJYBJxdC98js2rv/P9fVAL8eGb3+M9/zmep85z8nP/OuKb7/3eQxziEIf4YxrfB0mphk4wEeRiwIFDCcEsj/KkNFQ7FuuHaqegAQviXS1AF7xAihFVU9MJInifGccthYAEK3Q6J+RSjGASM8EJXedoF4GsDcH5mp052hAYxp5SlJOjJSFEbm4GNBUW3RK36mjawtFpB3guz7dcXW4RDQzbaGokw4hSLPGrxJWua2clFju2CRipRVmskOmoIEslbs0dNlILb1IBKM1Vst0k4Ce7pKkQp9P5VlOuUrXzbF2Q0C08d+8e0XaOcYxcnm+4vNmQxkLwHSlHxmGEbACWkkBsW03jKckIR8uTJXEYq81VYehHs9QTDzgWC4d65ehoST+OBOdQaVARQrCO12GIlFggQ+wL42AaCIulY7VqOT06qqpKAcHAEHEwjCPbzYAUh3MjIQhd1xHHgl8K7iSwjZE4KsvWE8cRCXB509NvEm0bOLsXSGMliyyFpl2CQBx7btbOwAxp+cQrz/H1r3yb7AaSFt55+31UMk4amhZUE8Oo5HMjTOUysjw+QsTjsnKyvMPNdiSUkdVx4PbdW6ZoReaZF+/wrW+MNP1IHHriYqQpsO0HmgqGjSlCHjFbhh3pxaw6TPlHnYI3QpqTgopytdmwXLSMY8I3VphWMsELUqBpWpBMLInj4yNDeYvZXEzd4M4J281AjtUSLqjZAvo6RkUQaVguF1xdX6Ga6dolWaworhXQ8sHG/Wbb89WvvkYpcH1t5BzEc3MdoRS8a/FOCU3LJg+Mm8jNg564cGga6PuBqCOoEeSyJkLnODlreOb+GbdPz+jCimXT8fj8MV/52jtcXg6IJPuuUqjVfgPY1O7TAiQvuGB/a5qAc56cM32/rQVTs3tzFcERZ1aRqHXWxpjw3plqma/qZ86bOoWYHUW3cIi31/OYsbKRI6XC5mYwIKeMnN46JqfMMIw4pygJ5wNI4uiko22Fy/M15+cbQlBun52xWHQsj5cM/YZ+6Fm0DYsQeO/8mu11D4tCPoJuuaDf9vQXiZirUtlgilDiItJf8M7Xr+0ciOfxdeJi67j1/7vL8V/7FeTuCQ7hvM+8c3PDauFZOAi+4U7wdF5oKtDgqEU53RXapmLXznLpg8D4U6XBJ4pmVnhTll3DSy88w8M3HtX2/ULewPl7PW3u0bMF4iHQoThiPyLjYNaIIbL0idPlEcvuBBeFogPtybM8c/8F7i46Tk+Frg14u5hslrf59ph59v4pq8WK5+6fsFw2tI3SeI8P0G9HHm7X3MBMXsUVVN0fq9r6/vNpPwRPBi42id/83dd55ZP3ac5aShWMMpNFewoJrt7fP/LdP8RPfBi5IiJEVYo4U/HACu+VI/IhKkk6g+P7cwrT6+wIStNfCuBRWlWWCktxLEXoHHQwW1kWpjnNQPsygRXyXWwZ5v9ZJCCKKUONwKb+t61Qc1QlYYT46TiRHZAg0yNuWtbqbnYN3pmVw6TwMVt82bpz4rnvd1V//GJHHZtO26SYJOi8Bi6lIOrsOld1pN1nJyI987mfLf0qYSCESlagmDoLRp43Cy6zlcq54D2ExogEpdjFmAVQRczCuijOmdIkmEKNc56u8zhfaFoj9YTgGAezhh6HWInhtpM5a1VFkZkXoTz5jJy+U6aTwnQfSFWHehpOM/KJq3P8RL4q6OwBMj+HK4nBlk9mJ51zRhDa1rNYBlQzQ6+kQRljMoXPstsuZbr77PjNXreSVkRouwbaSkjJSkwZqWveUpSm8ahXI2Zo3Tetd65Uy+1kpHEvjkwlU2HKLyF4msabGq1M6zxfz6/tqJH4itmqGauJ0HhC5xnGCFlM8TIn8BDTSM5qar651IYYU8EJNRdKMZo1OIoLgdViRb99ZGMFZbMeoBKpXZUhypVUU7IiTnHB9CmDcxwta0609HgntMuWYUym/iOZmAs5mzVwKYlcglmRq6mc2p1i10bqDR9LMts750zRq5S6dhV8Vf25vLq2fDqXaQk9E93AEYKte7MWFl2L83bsZrVoRL8meMYh1uaHXcPNvsWhKZ/t7ACtSUKeHOyqtSkD3n3nHJgUXOugr3aNrhLrxDlbSxfBZcd2M1A0mw0iillQ74ilxycLjk+WtE3D0WLF7bMzttsNf/jVN7m+7tlXmWXv/pmfIJX0JA7Eudl6rRSz+VNltnCf5nCzSXeos3ui1GagKSexrzKCkvNC8JCzje9lCPWc2nmYSEIhOMQpXdeiataHKjvSYymZpjVy4WbTm0p1smPr2oa2C+Qc0VII1RJ+3FiDSNdWy6KqJJxSIeWCD82OiENhjCPj+WC1HoyMMqbCq8svI5/d8tqd3+Tl7S8TN4GvjF9C2sHqNOmMnyr/Gi+4l2mdVNu3afLaBx/2f55mtg+ZG5+KJzhPas/Qo9v3QBxjLnRtg7gWEcf1RY8ee1YnC1rn6MQRgrBoFLKyKbBsHcftMdu795DykKIj6he8/MlPcnZ2zLIqTLuaO2pRHrx7SVh2hCbgg2fVepyrpOfqKPh+3xDuPUdiIuv8MVxT60zjm9de09OtiNCPhbfePqdbNoSFn4kcTzLQKtD0NAPkEIf4AYSyU16Faa6ZR+28xgfYT2unvGJ/MvlAvYKnblu1XMWs3YTAk2SkiUC5rxs2E4P0e+QTT/2eUbIyq0NFajNHrS9ndmvoKZ4mK03Tju7t22SdqbI7zun9bm+N/XFStzjEIQ5xiEP8ZMVl+yZ/56X/Pv/s/v+aP/Xov8FRusdXbv0dNuExAGfjK/yFB/8eL25/6Uf2POqe+wzSLNDY/0i+76PE4vnPsHjhcz/u3TjEIQ5xiB9qfGSSkgh4cZU0YwlNKRPhxqpzKSVSUaTaT1nxTg1oEJkJKjmZI7h3Vpzt2paUMpucabuW22dH+OC42Zgqy3K5YLlcEhpP328Y40ATAuIN1SlRiLlYB2JOaLTuFlXH5fk1zbJhtexYX/ekFDlZLQhdJrSmHOODZ7lqKRHWVz39dqDrWlJWNtvEONpxjmMiJSu2lj3wYEringSFrKK/a7ircIyaVLvZcrUAxGTWO6XaUu2UmSydFhHGcSCExmzqUsKHqq6kI0MPaRT69Q3DGBmHRBoNVJGp67kUEAjF0XSBknPtzldKiSyPOsYxwhDpFl0lKGW2m57losO1wpgGXIBx7MnbiIYFHZ4cs6lboazaFn8kDGFEvMF9MSriBpz4ChgYoFNKJnjPyekSJwaSOGeF8+OzJcenK2IeiJsRhzOVJB8YNZGidVtvt5nxvWuyWnE1tMJiCaFpGftirhOSaFvPentF1JFSSwYpWq+VKBg6H6zjPQveZY5vHZEVhm3kqGvRklg0wvOfewVxicVqyde//ibbMbL5+g3vvntFyQVfMmmbSX2H854clWEY8eLJVIKbGqFlHM2uIjQBLUpMiRSV5bKhaQJ9n3j44JwJm3M5YiQnk/cP0tI0gaNbJyiF49URt05Ouby44vzxFYiQUyQsOxNB8m43YEWYyimlGGhxcX412zKMwwapFBUjyVkfV0oZ1HP+eABKfR3rmkylgmaZRbdCnYccWbYLbh0f8ejmgpgyJI/g5xp1aFpunZ1y+5kVx2dC1yqf/eSz/LV/89/gnXce8L/4n/4HXFxuQMySwlSgPCJlLriUApChV7QxkpGNP1N9MyUAaJqGUO9B41FW9YWcydmK+F3XoRhAlMXhnBICrI4Cy0XH0I+klLh37xgtBiZdXvWs1z1eHItFQ7fwjGm07S1bJCiugdA0DMOAd4EQBB+K2ehlZdxGll1HcAW3cLSLBQHP5rqHmFk0gdXCcXp6zDgM5BJJOdJvEmksOB8opbDdZDYZUk52/zoQ59Hte7z29S/x688t+blf+hOcLE94+60H/NqvfwmfB3KMhMUpP/8LP82f+MInuN00u+KcTgLpOxoAMNsa7c18lbAJyFPWcE8V+ESV5Apntzo0OD7zs5+i0cy3v/GIxdkJ77/7Fp/91H0+9anbnDqPCx7nlWWGRzcDwyLwTNvw8Oplzq8vefzmq9wMa1752Z/hv/Rv/0XunwSOG09wilNFRVivM//y/rf57Bc/yeObkZfvLTmWCaTzFIHHF5FzLaQmcFMSKwmo+9EW6fYV+j40nugG/eC+7R4jO7rGRHUYRbi+ivzmb3wTlcKL948IFFxxMxPEsHo3W1wdipSH+KFEBbKC7Ir7CXCi1arBRl6sY9jIRGanlGvV3canzVS7UfpEuR6PKScdI5w5s3fbARg7xSU/beGpAv93H/67O2zudFboUbbAVpWNCCNGSkoKo+71Jldw1Q6wklGczQHOV6CgWlghdW6QvW/dyUrM+/C9wN0fZ8xKUGUPFtGJoOWqws+kw7ezQgY7dq1zOUWrcqlt0zmhbRpyyWi0NW7TNtVSdySnZCSLJlSllUCp65ecs31XPb+TYmpJavY+Ymu2yTZZna3PnQ87lZTgWLgWHzKaTLGkpExoHDEp45irqtKkTLu31t+bz6kqd1CHnWId+bJ73mp9nziZj9+IRGU+l/tjVuqLZhUFuTYlqILzSi5CHGIlg5htkYittqbmEyMGVkKSip2z4irZwHKNcRhnEpiRwkIlH2VyyYRgJJqSEwh13eVQCXittlnFyPE5m30VIeOqupMWSNV+zrtJi9aO2TvHYtlavul3yjE+eNrWW+6Zy3SKEfGzXSBihKK+T/W8TDZa4/y9Nj4VnGO9uaaQMcrWk/ZhmqsBUiWoFad0oTGLrZhQ57m4vKJrW07PjiklslguuX7nffohsVkr/TDlyTUTzGbnhgqaS10711mvnusnlHuN54WWTNsFQuMZ+kgcUx0PRq5yzs37Oh1EEwKKR4uwaBpGhM1ma5/J2db8lQzmvcz2fJNyGPXOjbHO2oU5v51UtZDdvgN1/V7XKjI15jDbyRcVNBkpyzUe5z3D0Ne/2zqlptggwmK1ZLEKIBmViO/g/vO3ePRQKWqKQHYi6opWxUhme2QlUNtvtedCQef7dgKEnQo+TOR1qfts56cUrcdr9nOTGpNgamJOZP67qtac3o617yNxtHNWtNA0nn4YcXtWjWXaj0I9JuvdcGKW6WA8PlUbS8HXnEsLXRdo2oD30HVtVcZWqBacOUVETB1utvcrSghmR9c2ASFy8fBtXm9h+/yWd4/fZc0Nr739Gjn2oEpK8Htnv8Z/4aV/hy/qX8Kpn3OKMI/XHYnAPfXkmsWppjd84Dm8n48oHji5fcrtlz7B4vwdnnv+jPMHN2wjrLcbXOe5++wpJ4uGpl52h0KGy5Q5agOicDP2xO2GMUL2LfefO+OZ5++x8A6GG6YTXIqQ44h0LUfPvcji9jMcVwUlqbnqsN0yDsdsixLV6lOL/c6PH9Ha+okz+3R+8YFGhqc/O01u1Gdkmd+VgXEovPXGY6Bw//YZXmr9aY/pofsEpUMc4gcdMwnOlE+raJ01wWLjtNR8wxpQ68fqFDSbl+7fG1Me8PTtgm2/BRb13w+sufSpD+z/+SPkE7tn+2R9beSknY3dbp1oxPQPfF3d2u6Wm8i0tv7Z7VTtkZ3fKFOewRPL70Mc4hCHOMQhfjghyqPFN/h7L/4PP+SP/5Rvnvwj/tKD/y5/7v3/NkG7H/ruhNO7LF/6KTav/kt+YAtXcTR3ngcRs4QzS4/dn33D4uWfYfHC5z/w0XT9iKPP/kkkHFSUDnGIQ/xkx0cmKXnvCd7PhTar6VZQSBwpT520tWSsQK42UrW6FFO1sVIDW4JzuC5wfHzEGHvwEXEQNdE0C7plAF8oksgkvAp37t0iLBw36y2XF9eMmwFUEKn7BsQx4RDaLuB8wzhkmkboFg1SrCsQ8QxDQdXk/0PrUIHjowW3z45pF5733r/ED1Ktr1zt0jUVG+dlBglQ61hVBERmy5A5/6uZa9YdUYlidiBWoNc5KZ6UlaQCUAKE4PDB0/cjmmuhnsL1TSINysnpEc2qI4+FRRvo7jRcnF/T98XafAQ0mb3J0I/026FeF9uf7daUX1wtCocmzPLxOSmDJpqm2mHYkREHpXdGFkI9qBUH19drcjFLsK71rFamUTAOIykrXWd2D+M40PiWs+OOVCIxGzmq5IQTRX2hHzZ4dSbDLoWLmzU5A95TkikARVXSkNGcKRlSLOQ04N2IF4dHaFqpdn4Z5xSRbCSsWpRwTtAMMUe7KRpPTInry61ZF2ZlHCLnV9fcvX1GaDqUkeWtE1JJPHpwjojDJ2HRBlbHx8SYEc3gHM515GxqUFAtGOq4sdpIHT86WQZkclFav7TisjqETAgeHxyuFqtzbzLWcRy5ucmUIlw/uuZ46YlFa6e02Qas11tSdgTnOVo5jm6t2G4GLh7f1HFr0K+pEtnPtm6yc4azsVmoIJLY34TJEicRfKAUZ8CEFvKm1CK8kilcbbbEMdeCS+3szooWIaaI+shmewPOEW4f841vvcX/++/+p3zly1/n7Xce1GK8r5WfCUo2a5b9Aut0zWLMlGzkq1zMDtA6lDOuM5KjmzrQNYP3SLHCTIqJlBNFFV+7Yk0ULZGGXIECT0qZoplcXAV1EmPJZskTlqT1QNN42jZQopKHxLCJOHHE0awIlsuG5qRlvY4UUZJGxgRaEstVQ9pGVivHZz7/HNdr605ergIpGQBnc5MpF6Q00G8zKVtH/6JrEYVV24F3bK6veetbX0W0563Xv8FnfubnWZ9f8frv/iaPHz8ij4XgTjg7PeZnPvcKN8WA9jEWbjVWWC/q7cEhptbgJ6BBdsU0NykksFNaenp5LxhI03n49Cdu85Vnb/HZz9zmU8/d4s2Xn+EPXj0nLD7Je+fnPPfCES88f8bKV0KDCrEr3BTlaOnpteGZZ27jh2s495wct5weB46WjpVMdlAVaNHM2w/e4/nNc3QddN6UVIqYgU3Esx0Lr33rbZanHXdP7tDKVOb78VmePW0r+hE+Mc8zRariQQlkBxc3A7/zT1+ldfDLf+GzrLqwA3pqFXOy4aCCoYc4xA8+DLRqBeaUuxbbO4QBs0dTjOAzoET2iKqzHYHNOZM9GxiZYxLucNhidwkcC6yAhkmNST5Qhd/X+JG9V79jKGQKI1CqZeKAstHCII64TyjCnjuBakUx7eOsQmI7LHkiRQjZ6XysZZ+YNZETxF4z4GVH2vm4xmRvZESfKXaknUkdcZp/jGtvx+Uqm8sUTadrNBEfzPpoWv+LOHKJSDElktAYocZITGr2bUHo+4EcixGIdEf4mYD5pGpkjOAriSDjg7FHTPnGEcdCigWHmwkcTqBZdngv9OO2NnbA1OwxqbiIVKLPpOqyN1bsH9kBYDOgpjOKpZXHNavQQCWCTTaB84fm7eVYSSPYuImjUlKibQCvlJwI3rM6WtFvB4ZhKqTpzBgo2VQw6yZn8tz03QDO6ZxboFKVqqyBY1IqyhlyVFTzTK7wYkpHqrbGEyc475AgaHGkbMQkU6WyppeuDSiFMUV8CARpTM0Gs7H24vHBVJhutr2RT4I1J5RSTPVJdkC6FrPnzlX11ospaOaYUKlW2q7gHdUCTWYA0NRxQbwp72w2PVVvl+KVcRMZx8QYEyEIQ7R1Wxwizlt+7D10i5aUTdnJxr6peqZodtQzt00nUgRPjCEFYow19zbiGVpJMs7IdZp1to3UXGbL75J6hokkNV32ek9MuVPTCu2iJafC+qafx9Q0ECegdiL9PDmsZU99qUx3MtXzrF6DQsGaoLwTQiMUzYzjZA+5s/KcNl4oxDSQ1wPLZYNzjnfeecT7712zvt7Qb0f7nE4nT+ahjehTc6dtP+dScwAjxe1s7ippqd4DM+lI6lOkEh5zrkpUVJWrbOMi+FIJlq7mR1q/Z7JoUzJayYXT+Svzd+Zo563kXBVgTXl6GDNFC7koHsUHmxPzmGjawJFv6IeIF0doBFVHUIdLZjk+zcdTPgVGomqCJ4RATJmx7+lS5vzdN7m5fMTJ7TuQMsPlQzbbgVyM+P4+wpc/8/8hyQ2f6v8szfoWyzZw5HcUv0m1sNTn++7sPzHt7aafD3m8TU//tgnc/cKf4NG7Z5zddZwdX/Do8Q0PHoMGePDggvDsLZplSyv2ueQVyVYbEBGWXcPp6TFX14niGo7vPsPZz/wZWhHo1xS1+TMX4cHqPSKeu596mTZ42qlWInY0JcLN197jZn3F+Myx5Uzh+xcy/0HHE/Qo3a0xvusnJhIftm5SgWHMvPvWBa14nn/5DqGtpM1KwJru0Xlt9vFdmhzij3XsVPT25wcVq09OFtKwT/qpdTd2TRL79QrRJ6ea6ecpp2jqf/P37s9d3z1l+J5/zLJrOMh1XzM7zblp+VwwEeqJaKSyl7ZrrX88+eid15TzY7l+vpbEnnjz4X49xCEOcYhD/LjjunmHv/fCv8/D7hv8hQf/HveHzzM3Cf0QwoWWO7/yt1h84mfZvv77DO+9Suk3UNIfeZvd85/lmX/rv2UkpYv30A+QlALN2XOI++Bxfc/m5UMc4hCH+AmJj1wlOT05QkRIJeO8B82ghVwyKWktrk2FyYIWRylKcWUuruUca8FZwAmpFCRlHp9fghS6ZcdisSCXkZvNY1QK7bKrRdXCWBIrWdH3I9eXN8SxkJN11WpJVvBuglktJZMu98GbfL2Yek/OyqbfAh1tE7i52uDwLJcLfIB1SGziQK+BIQHBEwTGwR5IpUDJlbDj8mwlpXN2qKhYl6OKdRF770y2PSZLDMUbOJVqcjyDK9YJvCstOyiOlCBn60h0FUAuCVJf2MZCzhuGh9eUZLZVZ2dH+NBS2DLpzEAtphYDMvYBHiNU1Q5SAecSoQlU6I+SoXgByXgRFstgnc9AEwI5JpOWF4drHMEH2kWDOCWpWWF1R55xsCbmxaKjlUQTPI0XVqsl27HgglBcY8X3qMQ+0nhH07Vc3/Scn18j4litjtAKdmyutzRNU2X41ZpAo407lUS3XBC8YztGoGW5XOLdyPHRgu12ZL0ZDAIVR4l5LuiLqxYNOLMtsFIG7737PpdXNxwfL3n1W2+x3YykWFgceRZdg/OZ1XHHtk+kceT0pEWkpWlPubkeuVlvoFT1Jrez9dOqdGWXV+i3iXFYA82sOpA14VxARc06zAM5o8UT+4x4T8nK5dWGQqCo2Sp6BB88eAPqJCgxjzhvhCmPR6RaCJBrob3SOmoFQ9SIcqES5ExRzEgbDo+qkYK0ohlaiSHLZWC57Li6XJOikfNctatTEk68WQs2ynazYRzh6Pg2N9cbHrz9Ll/+0rcpWejaBWnsiYl6zxTraC927iagw4mYXZ4KOSnqKsQtIGJd494bkYokNMFUFZq2JRcljRWwKWrd6oBmBefwlaQ55BFf1Qb6MRIaz2azRbMnBG/EvVKIw8BqtQQVxnGcreNKqRYgKnSNp+kCuSTapSeNdk4LheNbLd3Kw8psPlLOLFcNrQuIFNrWs1x13KwHbm6umQ6904Cu1WzrltAuPGPJ3FzcEHPhTITH77zG5fnbvPX1L7Nygut7XB4oMRPjmq/87pdZndzh5U+9QB4i/XrgL37xEzQuo+IxwQkhi0ItADqtdkXinsCipkbhDyrxKKjDq9Kg3Nxc8ejROT/98i1++tOnnN1e8Otfex9tjvn9L7+OpsgXXrrHSbDCeGigy4oXpfHCi88/g6yvuLi+ZNF6lkFoKTOtyOGM1Ffg7ffXfPImcXavpUyEB5jLf9tYePzwmu26Z5sjqg2q/kfK1dl19OsT/06vP10Q/eAGTPkMwvyu7ODh9cDv/Oar3D5Z8Ys//yLtka9FyVyfT08lRocC5SF+WLFPKtor25tlgtLsgQ5mmyZcqZJF631r7/VAqs+cMAP29rM4U1HqgCVCy6TWsAPQvhvg+dHDESuJKiH0mGJZUa37WElEFU5vRYilIE5IWkEEE3SphCudSy8OmaWWTB1Sdwp23tSZjLBRwe0dR+BjGctFU4kPWpWT8gyYGNl2IkzrTMaZ5j9zp9VZeUWk2u4AKRfSpjfLwOBpWrMBi2m0cRAqax/7bNZCHLI1ABTQYrbSooo4Z3ZYdW1Riq0vnTeKnHdia4Zsa6bgjQBQgOWywzeO0UU2wwjJgfM0rRGY4hgrf3QiDul8LHYn7BGKahQUX9chOZsikK3Zn1TxkUlxSSaVW51VL0SrOk3SeZzMJJdq+5tyIY4J49hHmuh3qk/ypD3fTCRhIl3pfL4mQLtIRvJE6tCdIpAYScN5U4ax3MP2qRT7nhA8zrvZlriobUecVmVf+6wTU61CpyYLu25xrOo+YtcvixH3UzY7LBFFSlVrUiGNpr7l3ESTqGtc58w6rbUmi+n+atqA85muraSNIdc5yVVbPVsXOzErwcnyTithZejNZq5pPOfn17NClfhC8AHnTZXHSErK8aLBObOUGiRRhtHWv9RxWnd5R1Ss16qY1bqRMQvitNpJSl2b2bmwz1ZFVCd4Z4SVojsikKNaTk7jVGAYxmo7V2lG4qod2mQlXVn+012uztSHnKkE2fiyk2rEOqmWdthn1HJf5015ue8HU3wtlneKGIwrOFPYCpYXZFVEWlKKDNuRzTigaspBA6PNM9M9g07ykXWeKZiSmH2/8ZnKfIw271QCRmVwmVqtmBIZoK7MObdzu3nE1JRdHeu2zaLF1tLeE1Ocx7YdlylRucluLpuV4USociJoqNbZpZBKtaKuqtUpZ1pvpD+pFo8x95hSrtUDRKxRyas18pSCETHZkfWmsbAdBrMpF6EUT79eM/ZbhptrgjOb1CYoLhdECuvrS7721W/z7p1H/Fbzj3n23T/FX3zhV+n8smoi7pq6tJJtJwB+N1s/+fsHY0ct8GDWgM0Z3cuvcOyVk5tL2jfe4q1vfxNXHG+9e065f8bt445Q75Uu+HlLbRs4Pjri5uYSFaW7fZ9Q7WhldYxH5jlQFwPbwQgEU17/xPq8kgaskW5f2fS7H9EPOnakhKrApeUJIOR7UpTqumNaOanAesi88cYjFqHhhRfOaJonbb/3xFoOcYgfS+xm9ZoTYA0MU20gUe9PdsS96f2z3T27XEOx4vlk77ZPivqo4/y7v28iuBo5aSJXzc9cYLdC2ZGT57/O5PS6ubK3j/rkPflh3ERh70Qc4hCHOMQhDvExiSKJ37j7v+P3z/4f/Jvv/I/5xcf/VRbl9If2fa5dcPz5P83RZ3+ZEgfGB6+xfePLbL75W5Rh8x2Kbbt85OlYvvJzsxJSe/fF72tfPs7Nh4c4xCEO8YOMj0xSWiyscKjJ5N3TqDTBs2hb+mEExDpOsxW3yiQPrlNXoFY5caAW+HDCMEb6wTplx1HJGZoWJAhN1yFSi0YCzhU2wzVpzIzbQslCjIUSwdUCG2UqzlabJyIhOLMYaA1UQB05KeI9mh2qwqJdcOeZIy5urnnz7cekQRHvWB01tN5xcXnNdj0aiUMVLQY2uBBomqZ2qpZa9JuK9oVcC31KITRWmMxJEbGu32Ec5uJ/CJ62CxQ1VSArIhsBJGUr4jov1oCnStPC0ckSxDFcJ3LODEPhwXtD7Yixa6U62YwVSpksIWTaS4QJhLDCdEGr1LsY6BUsfe8WnlIKN+seLyYVP2wiJ0fH+KURNUJo6FYNvlFiHM2CLTSkHI1AJg4vhdWy43i5JDQLlkcN2Z1ycXnD40fXUNVyttvRpOv9QBwdTXNEjL3Z0qmnDZ6b62vSkGnahlJ1frSBxbIh55GsoGPBE9gMPb4Rlt6st5plYCWOFAvWFGkklHEw4GS5NNJJTGaRoGrF1xzh6rJnvd4itXiehoQEYdU2XN+subrqabzn7HRB0wV8GxhSwfdmc+cq8aiodekDO1BMFdTjsA7zQkRcBm8WgYIYi7vUblzFFJdy5Gi5IkfPtk/kWtJoPdy7c0IfM9txxIWWzXpEsxXExTnr5CYbkYhq8yFWJC/FyEqND7Srhm2/xaOzJYf3Huca674uRsKzImih325pvBGZhpgNoCrCsq32G2pln9NbLbduHxF1oJBII6CBs9MVQxrwnaOQyFejEZ18LdDMQFwlK1bAoFTAq2gxJTJn9m4+TGMdvA8GHjkT//ZBCJUkNwyRJhiYlWO2ceWN4OSoAAi5Ai02bkopLBcLoi80wWxk4jjQtA3twnN8ugSJNqadpxTP9dWG88db1DVoFDQnhMwYHTEt4LESJCAUxINmzyijkQjF4b0BPIuFqUk1TeD88dpAU6ds1hv60VTMhjjSLQJjaXn0OLJoG9I6MnoHDo6PAnrUcnXe8+arb7I8+Qa//aV/Qf/4EZ/7hV/gi198mYASyAZEUAGpJ/qeqyqcyBM1rqeBhjlEcaIsOmGx6Hj3nUv4BaFzyrN3Wj7/8infePeKW3ef5Xe//DabPvHzn3uOYy+cuoYUE2NVkVguu9kGQ1QJIlWCvWAUAZv7JDg0HPPoMnP3vpsLkFMHvwCr5WSFISwah3cfLOT9KGKfoDQOI03TmI3qR9kXFYz1YOCjKFxtIn//H/4e2/XIF//qi7Qn3shtUpULfogdKYc4xNMhH/LbVIQ3QFzmRarR7aATR1SqOpEV5j1mHdPhWMjUCax0YgQlAdppdVar9/odyEn/eY8nqzJp1AQBqYqDjZgF3EAhipDA5nS0EigrAUPnXZzJt4KtR0vRWSkIxRRNdCJUGUnXuCJPqlF83CLlBIhxDMSUJL0TXDBFD++Vgq15S1Xz2C/O7KuySEVfTEko29rDTeuWiA/VjqlO4qo7Ik9Ko3FzSrWY04zoRPqpdl21qaKUQokZSUYGK9OzBmdrIYFJGzPlTOgECYoOWvMiU5BtqoLGOIzoRFurhDMRW2NMFks7ASRDw0vJsy3TRHTI2WyVQ/CklJismZzI3CAyrXmm8TQ9h50XvKukq8bRdk1VnixkzNp6HBICe4StSZVwZ0myQ/bEztt0bWYw3O5TIyKZKo2IEVUmlaDgrXljtVrivWe93qJaCN7hg40Vs89yM4HFuE223gre40PDYtXhguPi4pJcEiIeQUlxrHyuTM6Ck0BKkVJiJVZLJaIpeKmEKCNohMbbei5ma4gQqdvzNE0g1dy2aYKRoWJdlGgdR3VdL9WqKyfLk237yjAkTHhJqmKTWaY78aSciWPCO8tpnVN804Cv46OSZozJUhsLpnHuZF6PSVV4U5N5Al9z+lyVuAq1wcAWC6UUQtOiVXWrGtjhvXBysiAVpR+i3cdVYdmJA2cKYkXLbCE3kZlc3S9rHDC79WEc6hre7js7vZ4YjSg3qTLlbAqzpebCpao5iSqtdyyXC2K2BoDjo47FqiWTKJqIsSDScvvOMYXE1fUNufiqLrUr/KrbzTPT9ypqIG9dd02qR5VnNytUeOfnOdtsBqWqz2ptQtnN2bmSBu1YZVZjmkiUWvPxJriaX9X5LCcKjlDVWUVsTNn97ej70awKoZ47TBEtOEpu7T4WVwlOdnypZMiOormSsswSMjQ2uOJgSsveuVn5y+Zlq2nkkkkDtMHbfjsj8zetp120DNtISZHN9TV9f8Pr11/hm4vfZbUa+TP61zkpp/UZX+ct3ZX3Z7B8+n0C2dm9th8zkUmUbtnS95lYBGkD3a17PHd8l/a5T/L43XfZvPkN3nznfdJzZ9w9WdAKHN//JNuLB5CN1DrTiRRcu6rz/Qe/OLQtcT2QE4R2n95s19w7aBqPi6YM3fyIraOn2N/t2e7wo5IR1HKk3XVRxqS89vr7rDeRu68c49vdm3ckrY/vOuQQP1nxnUbavE556tXJbbFq982jdSIjeSzn2J+PAsxNeDur+w8HI//oMRGRpn2y9XzDTuVIMPLSZPs2WdlR3+PQ3YFPDCWdpv26rp3+VJ+j01FUvvBsl/cDP7xDHOIQhzjEIf6oIbAJD/l/vfTf4dXjf8KvvvU/5zS+wPffXPh9fKXz+G7F8uWfZvHST3H6xb9M/9bXuPqX/wnp6uET7z3+mb/A5lu/Q+lvPrCd5vTeD20fD3GIQxziJyU+Mknp8aO1wbci1t0qivpYO3MN/J+6C61oXkyNphb8n5Coq0lT0VqsUzXyRy5sNhsW6lm1rRX8nMmYZzXVoThmHJ4mNARv+6PeVG8AckrWzeis/yXHUgu8MDgrqokICWUrkVQSgvDw6pxebhhTNDAoJjQmIo7iW9p2SRxMncmsJ6zIOx2b6gQC7PpZrFhZ2G63gLBYNITQ0JcBKDgPq1VnKkvZ7Aq8OEJwJIp5p4uroIJlm03raCtofnK6pF11XF7eWNHL1w7kIgQPy1XDmAtDTEZWwlUQp14HEYLzFRCx1Hd+vNcae67HJI1HxNF1DaEo2/UWh2Nx1HL/mVuUopyfX1Gyslg6uibQNg2lQIpA6cBlTk8WpGHAqbLd9BTpaY/vc3xyyvsPLyiqLLqGRdcYAU0LY8xs1wNxyMQ40rs0dz47sXFXMsRcO+ALtE3DmGG8WLMIHW3n0BIJTUfwDdttT7+1oqIUx9hHI79QC80YKSAlA5WcGADkgielWIEVIxV1XeC55+4z9iMuwJAjbSh0bcvlRU/WDc+8cIdcemRSFitWJNRSrDNRQGuB3Yl1dlv3dgWlSkFLqOS1TE5mY2uXLRO81C50K7wUrIPWibDoHM8+d0rB8dY75/TbyGQ74Zw36zv2yeBKqcpkRqhxlKTElGi0qWQ8aLuWtg3VKgAuziM5VaACrWQyGLY3CKYANXX/LkPDK594nuvYsx0iLz9/l9O7R6gvPHz8gKvLnuXqDn/5X/vzNEvl7/zdf8D1zWBKSM7hnSeXTPEGB++DmLkUQrVPcUBwbr7vVaxj3LlA8EZc0lIMNHOuqjzZMcdUKvhSGIaBUgpNNxGbIGUDU1KEUhwpRpIbOTru6BYdQz8i4shqQMik9qYIV9cDQsvmxsDLdlEomA3DsN6SokeKYxEEv2joVp0BlMETc+TiaoMWKggp+ABpzMTewN47dxb0febRo2vi2qw7REwRrV+PVYkAkhdc1+GLsFg4knOoy2j/Dt/68j9jWF8T4paTsxVf/ubP8OL9Wzx7ckQJdo80OERNoSBXe8WgmJ0FzAnDjGHuPVNUJgsRAa8sVivee7hmndVUkAReem7J0e0Fb7x6RXjmeb7y9QfEKPzcF57lTmtkyx6z1lAvbGOk4A3YppbK1c+gnWKAo/eBi8cbfDqm0VmkZAbimqq8UKJjlT3tYjqKHw+JR0TounZW2vhoYQqEKkaS6Hv40pdexZXCv/4rP8e9O0dQ/1a/5Ie1+4c4xEeOHTFnR7NRqNp7MhfpAxVIUGUpjlbMtrHBivUZU2jzmBqGUa1hwvN/0B1Jpvxkc85OvFko4uvTVhhF6XGMwABEMRu7CCSMfKHCTCyc1GnEyQ5Mr8DKBKBLtbuagQ2ZyD8/0MP7gcYw5Hm94b3De5nJ+agpjBjBnmrRzE5hZ+/YZsBYdjZnuwNXI+0guBCqHRyg1bap/uecx3uzaTYQvKo0qa0l2FNUUSzXKBlyynhXVZxKsWeOmrpRiZHS2/rVOV9VZGy9F+sgtG3qTGyaiGYToYn52OrfJyLFXi415R6Inc+2DbPq0USkcNWKzJojKhFkUhUSYVKYbJsGEUgp2xrOU0km1uywWDZVLShVkrg1pkwAmEhVHp3AsekCTQSlCpIZ+cbNCh4hBOJoJJ228SwWgWGMpJgqqcdXZyQjkqVk6+QmCKujBcN2IKdEGjNFBrN6azwp2UzhHLShsWaPYjlcGvOsamK3muVFljcaQccszXRWr1U1koYg1VLLVdKKQ4opV+ZU4cEyEeh2K6CclVx0JuqgxdRPq5LQdMKcE05vHZNinvO1tjFbPCO2JU67Bs3J1rhObCxXctr+8kArecrJRN6uCqRg5Kk8kd926/+iVX3Ve8AIa1qlGKZjPzpekItdi3GM83dkMaKlNU5M0O80tu08TLbLZpVs9wgKzldrcz+pKE0qR1L3y8hCMRucrHVbpvjkWK2WxBJJRVksGrpFS9bAzc01Q282Xi++9Dyhdfzu733F9hGzFTQ7QiPmMZ2LOq4npQoq6cvVhgetKK5x9yoZnB1hC9kDe52rVpLT+S6QFIJZ903k0pIrIROPquV+bedpO2ueADGrSrWmCNTGVByL5SLZXmvbgART44ox2YGWUudaUyZTVbuGRYnjWFWa7MnlveXEoo6maWsTWaQM1ng11XrIQhySNWJpteoTU/lwqtXGQBEGttfvEJPiSqTEnl9/5z/m7Xvf5JXwBT7jfpE78QU6lixqU0apGcNEEqgTHnuzyZP5xBM/WyPLOCY228jpwiyqGy8cnx1zdPw5Hh/f4uFXf5t33nlIznD/mTNOnnmFq/P3zALOCTFnFDdTbqbveQK3F3vmrm+2pCHjV2FufJje49RqU/02k3tltfrxU4gnVa6ZpvA9d2g66mozmOHdd68QVX7q889zvAjz6mxSzTvEIT4WoXvzxR7LcKoJwKTeurNxC7L73T5R19eKTewiey7RP2BoVHb7FNRarKaX95+mZlln+Uau9dpEJS7VPGC2ftvf/NTMML+iT0ymMn35/gd/3BPWIQ5xiEMc4hD7Icrvnv2HvH70z/nU9a/wxYt/m1fWf462HBG0++F9rQjh5C5HX/iztPde5uH/9/9IunofAH98m5Of+Utsv/17P7TvP8QhDnGIn/T4yCSljBVhKaDBcXTS4poqUY6jbR1h1VFyod9Gs0wQRxxN4WfuT9EJJygzGOOmfhFRUir0faHpPL5xVqwqhTQq/SaSIyzalq4L+AbrL2mEOCbGIdVitxEOxNXCrBiJpSQrhnov9CkSqxS62W0I43mPKoxDBaqbhnHMjDEhahLuzgXIU/Hazo3qTnLdWCb2ukzFaKxLd+wTo8u1sKoUMoumo+08oWlomgAu03YeJ4FHD6+rMo3QqjD0Qy1KZpxvyFm5uLxhvR5paWhDQ3GgUVgtAi9/4hkurte8+/YjnA8kTRVwsSKirwXUzFRQr/uNdf5RJfuNAObwvmUcR3BCCB0lOdqwwDnlvfcfE1NhuQwcHS8JLZRSu4pTJKeBO/dPODld8eDtLTdXPaIOaQIXX32DrIW27WjcYrZ6OT5ecHndc3O1JfcGADhv5KeYTbUreI93QhxHU0NyhSLKmEYrQIjn+mbLsSwIoWPoIxHF+YCXTEwjqgXndwQu6+zPpOIgQxzGCsBUIlyOFShzFfBKjHkgasbVzt+j4xVNcLz/4AJxkGKhjKZ+JG4qSGOV+bk+YAiOIHg8mosZVDlXFbWEuDUFApPe330GDdbFTaGPo9lFOLOduHPvHs889yybIfLq6++z2Wzw3rFYLMl5AhkcSgAmBa2dFYH3Hh+ErIWrq7WRq1RJsWfslaYx64eccyXDWCll7qUUqUV1xamwXCw4uX1Gd7wgbnuObx2zOl2AC7z15js8fnTN5iZCGfn2G2+AK7z7zmPSVsm5cOtkxdntYwqZ8+tLNjcjqJ2jekfWgtK0765etzwrKpgqQDHgKNWuZy+oGiHSpqoyk/cmJbiSCuoquQuzxYgpElygXRhhK7Ses7unXF2uTYVA7X5P0c7tMBSuLgdUR7wvOCm00nJy74i286xvzJJitRSOug68r0fkubro2Y4RV8mifW+EvRZHjIqXwLLt6GNkiGnCb82msQu4AmVInJytTGkoBLyDLgTyOBC10HrFNwPr69e4uegpJbP+0r8gt8d88rOfZtk6XnjuFsHD5z/1Oe53LagSc6ELjiODMNir383xRLFMKyyrVQ2sZL72h9/mrYe/wK3njuhqt3wXlF/+3BnffGdN4CXe/PYDhpz5+Z97nqFklsmAvYwpzjm8nXOb3ae7liIGNIrCuLnhy7/7df7cz9/Dy36BrpYyVemvBt58/Ybhc8/SHe3k1X9c8YQ/tUzHVefuD923aiyhRhT9va++w/Vm5K/+5Z/n/q0FHjWUXgyMnHG5QxziYxBub0Da6tFUFrwYwdIrNCI04lgwa6Wxf2fI/g+y92Ml+djGfxCj3p52DTbX7vZ5n35ipKRBhVFgUOiBDbCdeEZVeQMx8qc9O+zTaWLnVJbWBNAX1AjWldxli5OPN0vJeTF72VJtzLyflUpUTSUohIDZyKZqpyRVsXDaSiXozJdRZ6KG7hOXkpJi2Z2vYuuxFDMUIXg1Wzins8qhlsI4pKpoopgNrpGYDNyVWWGSUhU3yu45EskMo6nMTDZYoao4lvrAM7KDkWGZrNcqyURkhyxNxCc7roo6CZV0pGY/t3/uAjRta8dBJjRGRF/f9GZhbNJ5aIz1LNp/OWVizKRU8OoJwaGBeo4cx8cr+mFkHNNM6hAPUmQG6u187EFfOpE4bP9LvV62FrTGFASC92gxVkcphWGMqAhNM6m+7AhqiqnqdosFuVh+lqKR/cU7xqsNuZjVdtc2NMGOZSEtN+uBOBa02qeJM2syI6yoEXS8M3Uh1Wobp7PyF2IqSDFls/GOGfPFE7wzYkgpCs7e97RVKzXfMj6L7Gye68yFmnrV9c0NJduYsVxWSDkyRtuP7WYgZ92Tf5AdMeqpp7iTyZJsRxgSZwq9Oe3Wtzrl5sCk7GXnRHEeOxcqNN0CH0yVJ5drYqxW66E2AKUElawyoZ3TvTOrKU95uWLXHaWkzFitttlTy5oAVZsLmQSAKmnI1KsWx0f4rqHESBdaFqsFKRfef/+cOObavJP51rffQEvm6mLNxJLvjlpunR3jApyfX7HdDJD3bW+nL2PObSYS1USonGzXtOwIZ87X61m3QFWomq697M3XEhzBTXOK1RaatsF5oWk93aKjlN7uvUmhqdo9ahFSsnEYqmqcd0ZqtyHrd/NC4+pz0K53v42kUvDOUbLlQyEE8NboU7IRp4Z+tMeOE7zWAn3j6tCzPKIKzlmuLEKMqdaHhCZ4VCNDHBliRocIb75BziN/uPkXnJ7+P2nTklfu/CxfPPnzvBx/Dtcv8MGx8p59k86apH8AeK/Dan6sq8Kw7Xn9zfe5c/oSwVcl5FI4XjQsXnqGwC/w/u/9Bo8f93SffoUQOsZcCPWesoacnbrTLibTtkr6BK4vLlmvz3C3u5nQUG9uU15RoV8n1lvlbDVpEu0pE/0o40PWBvodftsnGE5juRR4//ENfU584hPPcNT5Wg97mjp2iEN8zKLecNP6fFJMmn6fXnNPfeaDOfb+PbIf3//435stnt7NqRcWkCd5f7J7/Lt5Jqprub33fMe92Z949lMhmZ1/57/p4ZY+xCEOcYhDfBxDlIv2dX77zn/A79z5P3MrvsS9/nN84epX+YXzv8lxevYHTSPefbUIzd0Xuf0X/su8//f/t0houf1n/gZ+9cOznzvEIQ5xiH8V4iOTlJYnDXqdKYNZTPWbTLNwNAtTngleaBtArDMwpSqjjkdLqJ3gFahXQbxQXKFEKwyTC0WtCFwyXDOiOJarwDhkri82lFFppCWjaGNy413naNuO4ALvv3+Oc56cTMXFiX1P0wRKVsbR7MdQs6MqsZIqHIypR43lYrL7LtMtO5qmoW0EqdLyOUIq1XYAhxMhplQ7b60OaRYFYSfjXqzgaZ8RfOvNPqAU+mFgddTSrRrEmeoK3opB7aKlX1uHYxMCQz/gvJ8l5GNMxJKq7L1y6/YRY0mUKHRdQF0hlZGsVtgOU5d1skq/q0XViXDzZIe2MFkfgVCy0vcDPhjA0jQNinB9vcY9KPR95Oh0ycnJAkSJqZBSMZs6lKOTBheER+cXXK57xq1CzjRNJKYEeIZQuHf3lGfvnnF0tGSTItvhHUo2AMCFAs6RRkvBRYRckhGOggfN+CB0S08u1sFecsEHxzBE+i2kZCl80WQgRtcx2fat12tizJDFjl+qFQcC2bopc0nVts+sKUouFPU8urhi7DPLxYKj02Ouri4Z+21VBlBe//ZblOwRAi5UwssejjgVxEUUL652qxqAYTYMNjZ2lolTMdbIeLkowxBxQWjahtVqRUxbcvZcbXreeOcRTbdgsVzx+NElMnjiuCWEYPZzjV1vhapKNKk5Qc4JV23hKHZupt5STRkVQXw9/w5T9UkGtiwWplgUYyIXoWk83bIheuFy7GkDHK88kcTjR5e8+cbbjFs7B6UkvvSl38XhiTeRnCJt47l1b8HP/sInOLt7yj/5z36bnC8Y1mYBIRMqPUlmAONYiWjOgfhqqWCdx877GbgzklJBnHW9TypZqFmSOGcd1yKFo6MVy1XDen2DKsSxsFx1LFct3VFXgZyB9aMr2qah6xYVJBJTLiPRtg2rruH4ZIn34EIwm5i2IY4jqUSS86g4SirkqGzWW4ZYQByqBjqujpacnHQs2pbL8zVX59ese1N8WywCrVdKLoTOrBab1qBzU0obkNxynUYDvQTUBZwPOBlI48j1ZqQZHvD6V/4Fb3/rXzJej3SdQ4Pjl/7sr/Bv/OVf4ebyipurDX/6l77AMjSYHsGT3J+ddcI0q9QxJAktZh369hsP+M1/8S0+96s/z8JB5x2pFBaN46dePuZ0NXJr9RxvP3jMb375DV54+T7PBFNQMTuMgmRFcmU+VSWDMpkfqsOLcGu14vV33sEFj4rOVpFTaVI83Dlasd0khiK0UtCqyPKjjA9Tz/hA6AQffDCKKCnBH3z1LR7ebPgzf/EL3DkylcIiBpJMV+NHfWyHOMR3DSl7xXtTulkAbV27eJmK+AVXlZf2QbLZdlJ2r/p5izvmku5J88j8tx39bw7dvbrbRzB7K3vftAf7oMNMAqn/Tfwo63jW+q9Q3ATG11XHtN8V1DYLpUoWKBMXxOZsN024lTAzrbc/roBhaIzkMp3jFAuuOEJbyQ7VlksctK2jZCOgikgl0E+khwr6u9owMSlQlVLXcEIRiEOpSkP2XeNgKiFGcjdIyokSulAJFfZ89YX63dmuhRMjtFeFxZypllrTiKqEmunYKrlZoFof29rfO2Econ1+nr/t2uVc9sbajrQ0rRVn9cG9ECrBQYzIX4qSSwJKtbR68jkyfdpIOvV7ZzVVQZxjsWhJJZNjwTeemBPbvq+Ec2wtNNmD6WQjvdu+7v07/U/29liLrbFUFRVbD/dDJl0auWu5amnaQMk7cv90asQJY4xGso+ZnGzN53KuTSNGIGqCpwktbdPgQ2Y7GFHch2Drgj2ijojORCVxQhCPc0poA2MsBsKrElrTNRj7aD0pzqF5ZxtmZDhH0WQNLUV2Z2Ian7Ygstyj2vaVrDMBICZbywAsli3b7ZqSazuJFtY3W4z8s1MDrQdhx7/3VIdqY+fsaW856URU0XnsGRhpCkqq1jAkYqSVxbIhxpGcoR8GLq+NeNS07axIW3KcrZd9mBSV7RgLNmc77+Z9nfiU+6PYeW9WyUVNebR20pS6dm6aMKt9zc0UXlhvtwypp2ts/rjZrIkxkpJZUBu/Srm8uCT4QKiknLBwHJ00nJwF2q5js10j0rJdp0oCrKdmunRFq7KUqTi5Sjaa3meEwXpwMo14O1AnUhsmai1Advlf0zSExizXUBir+nHXNeAtvxPnyDEhwePENPtKtnPjnBEJvTelKwRy3tkLppjRYtZnVOJZSYo1YqjlvWL5LAKhacyGsB+tnlIV07pFgwvsFOq8NTTlnGqNw0hApTZuTc1iqdSLrUZMVFU2l495kDeUMXP1npBK5rV3vs6rr/wO95Yvcvz25/iLL/51Xlw+u2fJXEfKRP5jB9Tv5p1Kpimm7vXeO+cMn3me5cqIVAtvjUFdcDz/iefpwi8zliWPs5DO15AKi8a2a6RKI/JPJMB5OqtX1yks28DCZ9pFmHOdWamxfuzkeMGt02RKb64a3H03EsEPIZ4mQey/rk//YZrXefK4VeHR+TWX6y0vvHiPZZ0P958sIrufD3GIH3c8Mb5l989EUALm9bb97cNoQx986cNG+NOZ+JRTfCCf+JBPPf2e6fdJgc8sqvfIgkBGZtu36b/yIfsxb1rrN8jerS5PfsBUR6fc6HAnH+IQhzjEIT7mUdfeF+0bXLRv8I2Tf8Q/u/+/4k8/+nf5pUf/NU7Scz+UOreIsHjhc9z9lb9FuPUM7f1PoOP2j7QtLYW8viCc3PkB7+UhDnGIQ/zxio9MUipF8cFkrOcKUDYf66YxNY5cEiEIp7cCOXuurwfSaKQd1IgtbbvEiVnurPstKSYD3PcSIe89JQub6xGSstkMxE2mDS0nJ8ec3b2Fkmka5fTWijFmNn3P8dmKHJWbqw2qVtgz6fZsBA+1wm/WghMjsMyaHyKIWHHUFKOU2A+ELnN02rA6amhLYNgWpCSk2iCkXKyLEZPSt7KwFSGnAvwTmaFYQbAUKy62bcMwFIbx2grWzjowS5V8L7W4F4cRJ4r3IN7UlIZkqeqi6fCuZXm0RLdrrtYbusUpDx5d8+jROaVAiRmnhZKyFTbVkdVUB8Tbg3Hfmmn+W+0xKqXg8LSNESmGPjIMW5qmIT6MtG3g7M4py2XHeN2zWDlckxmzAXP9euD6ZiAXGLaZPCo5KnFUnFd80xBz5nq9oXvcUBIM6YbgI4uVR7On9dadvFn3BOfBWbF7zKYmszpasmgLbtHw/sMNXSisThYsli2aC+cPrykJQujACdtNRBhZLFqgsFg1yMYKslZgrSBXMdUrJ34uxDbexntRZRwVXxJN42lbz6pteNgP5DgVU5U0YACSJJyaNYBIqdvLiLqZWxM9QCEER+ONYJeLIuLx3uzeDPhweHEsVwtTLEuJUhLdElbLFdte6XMmpcz6ZmD7/mNSLDQ+EAukqJQ4Il7xUsGZ6fauoFbTNEbGKmrd57VKmdVUic7uHnH39m3OH92gudB1DZttX8FSQ5RSMmU1xOG9J5XMw/cf8uh95XTlee7FgeJb+s1AFxqaIyuQO1XyMLI8WvGJl+9zfdXTdJ5nnjumz5e8/sYlq1Xg0597hre+fcn5+wOgOKd1zioMQy3XuDJ3pfvg6s8GnLSLhdmFpGz2DSJ0rTMFI1XEeXK2a4LLBBcAx3YYObm1wnvH9dXWFMYWgSFGNg8fk8aIR1m2ntVqST9sSGOkDYHbt87wXhFNjDERnKdsRm6ftXRtw/rG47tCojBstsQxkaLSHnkadZTkydmzWQ/0/cjjh4XgrMM+RSUPA4jQnSw4vrtgs9mQYsS1DXglpR7wbLUlxg2pjPjgOT45IQ6Jzbo3FSintEEQjTx+802aqm63kUAsyj8+/4949Stf4aaPfPGXfpmf/aXPc6pG50kCjdrYcmqWRpsC/ZjpGk/noKnVsnHMFIWz26e4lBEtZIEj58hjhkY4CvDKMwtun3acnXb83lvv8nu/8y1+9tPPcefOLfqUDCzx0caw6AwAa1UT8AJHLfzMT73I6s6Ks6OA1x0ADNYpfrpq+ZN/4XP0EmiahGO5m8d/DCW770VWMprV7nkmauB8KfDOg2u+/fAhf+IXf4r7x54g+gQhq37Bd6hqHuIQP/qw4eie6BwOTCpF+ysVMNWOHenI/qQ7BY69luB9a8MPu5V299eOuPRhMZtJqtlbZSbAgPln2IGmpQIJg1abt/rfqDDKrvN5BmO1WjzsTTcyr8lsq5Oizx7HiiJlVlwr5eN7QxtI76hOswYYud3MqtX2zjupij4KYyZWWyvBQPvG+wr+e4ZxpIxVEa6qqO4IPkJJyqjJAPtshIK2bVgdLykl472yWHSkquTTLVtyKgz9iFcD/Q2oLk+MK60ksonwMa2lnUgl8GDrtwwlZ4oqTWP77LPY6FEDvOdrVudjqUSHUhVQbXhWIkodHrlUZRcxda04JsZR582YHaB9btc4Uc2UpIJeWsjZRl/TNEglv2tKxBhBoB9HYhxtzOdq5VQVeCZijCA1fylPPE92YJfU65+RIrW5wFShUjYVI6lkrkkRxtHRLT2bYYMmW4PGWNCS7LzXG26y4ZOaQ6kqw5gILuLFU4gEr7SdN1VW52oeV21z1YgYMWdrvHGeNgjqhNxHxAmLVWeEolJIY0aYCD/1mCkIAedhsVyQYjIraaU+bnfPcTv3Zg1XNM8qU7kILlUlqEVL8Gb7rPtsDN3NLHlCJK1D5gmS0pSRTqQBV9e0pVqmOSez3ZoRIe1+y9nuEQVKTqToQJ1tv1AVkiM5lXn7ptZkbJ6c8jxWd3SpSuDylcA0q0zZ+kW8sDxasFou2W563Ijd1/2IitnimWrTdH9US/Vqj5ijWb87yeCs+cCLwzUeweGwsbo66rh374Sri7VZp1G4udkwPLoG4Oi4BRXW11Uxl4lYZs0L84SFgpQ5L5yEl7ybrmnZ1RbcPtlK58+LU4IPKMoQrQnDeWgIRqBDzTpyiJScCcGzaBtC2zDGAcRytKZxTArAw5iMSKewWgSaxjOOGSWT1BTTcr2PQutocJQipFSIxUh72/VImBXaCqJGdBSgWwRaPClme9aIXcQYEyXX5h01W8SmbSklGTGpTghta9dGc2K4WePErIlUhe3NBa9+7Q951X2N1fFvEe68zxflL/Hy9hfxZWUKU/X0F6AvynpIeOdZ1pzCM9kNKi+8dJ9Ri+Vz9XMNQq6ksdYJ9196mSEqYZt49+EFN+cJjgpDzJWMlYHwBFnHbsGqsCRwetrxyst3uXdrWSsmT0IhHji9s+STxwucTAQm/XGlE/AhX7tbJe1TsGY9ZCaaxM02crHZ8tzzdzhqZx30J9ZLB1LDIT5WIR+ug+S/w0D9wEj+ngP6O5CQ9IPkqN23f3AbYA2okxVpEVttzo/4vVlIdco3av5Rl3kTSWn6yifoVk99rdRFpuzPQ/s/7+3zd+uTOsQhDnGIQxziYxWinHff5u8//z/iN+/+7/nTD/+b/NLjv81xeuZ7fZAPrhi+xyec5+hzf2r3Qmhp7r5A3lx+nzutaI7f52cOcYhDHOInLz4yScnjIAilpktN8ITGitolZ4Y+4b0zOzQRQmudsCWN1tHmHaH1oA7B0XYNGVPgyTHjEILvrCvZ2fs1F66ve4Y+4Wgo6kglM449RSOIZxw9LrScnp6wWq24vlzjxJGGyNV1tabKGSfComtofcuYIkULTduBgxRHSiyVKGJFGSv8ms3DzVWxfRSTXQdHytnUn1Kxgn4FzwzCB81l7vxGpyK9q+3vOoNS45hhTEbkwgrT4qq6hSjeOXCyK2rXQrCoUJIHKSwWwcgfObNdD/TbEfSGIoWcAASyFXO9EyMlpUp6cULwMA7RiuQ1zEaiEsxESDGxJRHaFU4CpSRETLGoFDFFnlwYtwMvPP8st5455ivf+jqb9ZrOB3IUxnHEi6dznhyUbRzI6ilJUMmEJpBGxbvA7XunEFbou56+v2B9vaGIR4Ln+NaKRetIOeF9oEgFHBROloHshc12g1fleNWw7TPjMMy2G+PYk6uNh4g3dSWXOTk74s6tYx4/vGCzHsgKjqYSayKK4p0n58RQO0ehWlcURwgtpycn5JyrlckOEJ2K9YophnnvydWyzrqca2VAwFR+THHHrj9oTiaj79yEpdRr7whNNpAjK6qO7SYT4w1ta13WYz9ydXGF+EzfRwSPF1P7ciJkTcQhkbLZhU3gm/eBpnGEpplVyHKyTlgD4QwUHdNAsyi88sx9nnvuWf7gy9/k4nKgjCObzYBzwnK5MOBDC3mIdN7TuJZlEFbtgiEVimvwMuDbYPfpMOBd4Jf/7C/y6c88zz/5x/+Mq6sLLi+uePxY2KwjPkC3dKxOWq5vBgy3cpCtqJ6zAXOegGYlu2KEJGdqDoVs5Ct0TyGr2uyEPQuUaOBLaAvtIpDLCMWZdUE/0C6WDGNksx3RVImXWTk5OWK1aEETJSW6rkV8yzgWfDBwbhgiLg0E36DSsTo+omlG+rglRhsXIdQu6UVDSYV+kw08dZ48FoY04o8WHJ8dMfYjMQ0G3OTIdps5Ol7RD9HmnmJqDVdXG4ILrJYdoXXkWLg633B9vcF5h2/MasL7hu02MmzXlOgxx0sDMcf1Od/+6r9kLMoz927x1a99lu3Ln2C7GYk58+ydU87awFgy759f8403HvL4JvPiM7f57AsnvHxrhcOzTQO//Kc/yytffI7TsxOa4PAUioPkYdTMEqFFuLuA5hlPdPf46rccv/Vbr/MzP/8pNtc3pLIlM1arxOk+mWptk2pQ4TOfv8cLn7zDaXC4ivJPBgwAEuD+K7eQ4rl/a2mkwh8nojDt14faNFTAUUIFk6zjUlV5dDnwtbff55d+6Qu8eLog7BGTPrCtA7JwiI9NyHzvPvnqd/rt6TfKh7z6YTDF7r07n5i9155+70ROqv9PwBZlxDqaE0Y+SqoUmYgEOhO/s5hq0kRmSiKzutJEolJhT01pR6Yywoa9Wbyb1T0m11eRyYrMyInuu5CsftzhxCFe57Wx88wqLDkXSs62psNRnB2XD0byIUhVPjTCeMkKpcykrZmo4fyscjKdxzhmcjZigRYYxki6TCAGnseYCE3LcrFAVem3Pd4vTEl028/We6Uo4h3B1TUwZlnnvCPlSBqzWT/lyYKOWcEmx4KoqTk6t1sLTqqmu7H/1BieLDgmVlodKLJHPprIJxNM5ab14rStei7V7YhFqka2E/NuQ0u1P1azAs65QExVdcmsZ0UrScTSE57gXlRC8KTUMxH+nZvIVmaBl1OxxhfnEMl45ytZSms+YbbNJ8fHuCYwrAtDH+magHemsChFCU5QEaImyqToVAo+GFHDOUe36hDXkYrQbzeI1PvYOZrOETyUYso8q2ZRiUiZUD2slGwcdYFhOxrpfrosxVRlKlutEjIKjQSWy4bGC30/Wj6IMEGHcwOLahV93JuHapNAycpm3Fby2qSStJsbpmvsxNRKZ3viOnnORDqMg2XWgbspzjhqrt4vZgnmvX1XqjaEKSt5Gy0X8N4aTfoeH6a81FTInDNFlVKMcKXF9nUiZDhn+aY4K+ii1DVqhmIqlX2fSHGNc3B295i7d+/yxutvc3PTWw5bx08INg6NDGdqQY0PLJeB4+MF/RDJmhnJ8/kZxxHvA8++8DynpwvecK9TcmToE+urAVVTMkqj2de5UCop0fJ2nU+s5T6CnciiCtlId86Z2q6yd1+W6XpZXSMnUzEyq3vLoRBMKSkXYsx435iaVcygBe+rummwIZOTWVGGEEAccUx1brLhM2xHvPesN8pq1eGckJLNWyXrrOjknNlupkpcCt5VApOi3uo0TRtQ6rnQwnY7EppQm8DqerOYerYTx3LZ0rUdan9mGKxpwPv61BRn5LBc8MXhxAg/Io4gjhy3FFXWOfF7X/3nvPfSG5y4/4R0bc0ed89OAGW97nn4+IKbTeRodcIXl3+OP3H05+kIxFJYHDX89E+/wDonmuBmAnBxEEtmWg17YNkIRT3l9i3i7Rd58ObvWyNSGm1OrA080+p5uouneT00wkuffpFV43DT7bvnkSQCvvM0mlk1Yc40flQ5xRNEhe8VE4FO9+aqOqKHIfP4esMzz9zlpPN4vqvmzCEO8bGN7z5ev9/R/MFMw9ZyTzN7Psj0mZUMa+14yiGUqubGngLrtF3Zba3s/ys7glLlhT/JPZqWKfXn6Rn2BBlpfnO1u61f/DFOJw5xiEMc4hCH+PAQeNy9yt974d/n1+/9bziNL3zHtzpt+KXHf5tfPP9bBO3+6F/pA8uXf4b+ja98f59znubs2T/y9x7iEIc4xE9KfGSSklOTAG8WnqTJkhdnsv/DkIljqjLxVjS1wpbigknrW0FT6PtIGgubYTvbGrjaoae57CTcxbplU9QqF59JSbm8TFxfXxNC4Ph0yeZmpOla7t6/zWq5YLO+ZrFy6KJDQubo6AgR4eZ6TU6FthNWtIj3hLahWzRs+y2bq57tOtJvElry3IWvpZBHx6hC0wneK6F1jJtUOzjNkkJqUcqAI8v6ps7SGSQBwAqq4kyCvRS13+t51uzQbEQL5wScw3k/Z4hNG8g54wisjhYUCtdXW7rOsdn23FxvyVHpy0CzCDShJQ3JCmnBE4KCd6QCsU9mf1eqrG/9TwSa0NAuWjab7VxMz0nZbhKr40AIOgMWKWX6PtGsI9Epr23fJr0NV9stZcgcnzb44yVN79CUoQhJM2MAnbrTa2ads3JxeYW8Z7Zc7767Zns9cHy8sAQ+iqlNNbD0Biasjjqa1pNLxKspDHh/C42esc8M6611jYonVlsr7xuKJtKYq2Wbcv5oYLEI3Lt/i+3RyOPzG/qtkbEmgMA6ebXiRLt/SylsN1vefGtrxKOp6KClFiurXVgwiwYxphiqVthGrGs1BE9K9bogpDQgrhCCsGidgQbqSVV1y4r/jq7rGPseFLIWcoyEpuGkW9F0Sx6dv0+3DHjX4FzCmVsAZeqAVbNLy1LBwQosFC0MQ2SxWPHc86fkPPLo8SXr6wGRwHatDJtr2kVgkQuhawldIOUrnDgUhxZhHBIu1G5zaWhCx9Fxw2c+9xzjmHl4cU5JCdTU2bb9hvX1htC0vPfwMdf9BUPZcPeZI87fX7NZZ15+8XneeetdLh4MeN/ShkyWTMmOXcOzY6IPmrWLFWVSSuRs9nM6ob0IQpmtGJrGiJglQ5oYburYbHpcBdfyRik5IZJQBR+Fxgm3z87oY0ZLIpZCk5XGB3zTUFTo+221smmBwPZ6wIfMa+tzHj3quX3WksbEJhbGMbNYtnatrntin1CcWRt6YaQQU2bbF467E47Pjoh5qMehrK8z6+sbUo5GkstmTZmSsuiUo+WSRbNCEW7WPV3XWmEeJadEHJNZkMSRKM7ArKalbTuzxksbQPj93/jnvPXGt7n7qU8i2bNdb/jEp17mEy89x3qTePTWAx4/uGIbhU//1Kd4/q//ChfYfLkhcfes4/jOLYaYCRW0EyBqJqiAC1RskdPG8ck7LV7ukcfCH/zm1xgvHxh5TATKWC2gbF42YG5nqnPrxHNLO+vKFtM/kBn7LXgv3LnVcfX+NZ1bYqDiVOTbs3L4IcS+WtJH+55KoFIP6hHJJFUuriJvvPOYL3zhEzx33NJg3ZaTDdYhDvGvdOyRQOZ77mkEYIYG7J07yzZnCpHAGgMVwACGEVOGmHRVJtqIikx3arVnMKWMWTUHmcwmKU7n/Zq1SNy0RNN5941kUma1oImAMIGvH9fQnPEhELytIREomitBqVS1T0U1V4DbmYU0laxV1XpSsveSmNepUhVhnHM7VR1gHEt9FhjpJJdCiZCSzOpTKRVkyMSY6LqGlNO8hu9WDW3TIAjDOBoo7wt+Vm2ytVwonhIcMRbikFHNT4BDJStJdW7ymB5qWn+WPQKK6o78sod8PRET2aRUi9tJNcfWrDviwrQP83Nwyi1U8V5YrjpysXyilEzKqeYooDGbvZVz8/Xy3lVlV0dRiEMyZZ1cd3N6/mLKfRPxZyKaoKb61LauEvDBixGVYsyIJLyHh4/OKxA3EbPsuRh8tWBSs6ma7tw5X8lKJnOz3tInu0OHPoIWFsuWXEq1f7b7MjRmpe28mMJNELyYwunRqoUSGIeIE3Dek1VtTVVzXlsv1XW5h6EfiKOwWi04Olqy3Y4MQ2LfYnVn07b/3Le8IY6FmKoK00QGUJtHrIGmEsSy5cczwW1Sjaj3QS4T2UZACs5hKq01J4/RrGzBhqLl5bJTEZrnP8vFl4uOzXZDzhNto+B8tdvVSjqajq9uWUSqkjGQlaZtuH3nFHGFy4sbNutxOkxrIMFxeblhGLIRjkq2BoJqnZfz/nh04AK+c9x59ozzxzds1gOoKf2oFvpxJCdTPX7jjTdpWkfJkRBMQch7z+3bZ5w/vrBGDic0wZvqUJ5IZDvC1WS1Nwvi1GtXJsYoE/hsNY6JHOi9x1FAi5Eonc17TqzZaxrHKY92/zghOEfofFVMy0zKVd75avVezI5SheDNbqykYlaIY6HvM0dHNm+lrHY/Yw0MOjVkOEfbBiP3B0dMppQlGUIIZmOmdnxazOowV1U4KiGrFHCNVHKSPfVKVtq2sfMwzT/FyFClWBNIUrM89N5RkikMKzDmLW+8+k3eevdNUz9OxhI8PTu1Y482Ttebnna5Iv/0e+TTR/zU5b9FJ0ua1tM4CMnqVzaF6nxvzM8iwKEctWLkuc9+gW+//Srn77xOjgMzAVEzHxbWBKMsGiOvMZ+R+TYAYNl4SjRL9B9l2LxRx+SHKMp8+AemH3bv7ofM5XXP3dvHrNonCUqHOMQhdvEhq7S9fIInUoysNVcQyGq5xDTTqO6IStNScH8z0zNzKt+Wve1OVPEP7MlTE8Bk17s/a2kthkz5xN4uH+IQhzjEIQ7xxy9EOe9e47x77bu+7bXjf8o3T/4h/8U3/5cs89kf+etWn/4lrn//PyVdPfwjb+MQhzjEIf5VjY9MUhr6keUyoN7s2JrWM8SeYTsw9ImSDTS3TsCID56UCq526wmBlIsRj8ZcO0LMTsw3jjYEFouW0DkjDg2R7eYC5zzBt6SUjcRQBLyQULYbGJxQrjdcXFxxcrJijCOgNEvH8rQ1EEEC7TIw9CPSVuA7RnTIjP2GopnlMtCEQPAN/XYkRgPnnTg0FYYcEWekjazQNI4sQjXlYLJ4mwt0agSlp+157O8KtSBpHd3FyCzsFJNEale1K7WwPHWOF5omcPf2gpc+8SyPzq+5vLzh6vKmEgaoheJE3u66SEPjaBeebuFoFx1jKlye35jSVNE5mTWwRkkxkUuu6jemICQI45DpFrUDM2ez+vONFURjomkcVzdXiEAuDuccmxQZbgakAEkpWRiGRFFHVy3ScIGowvV6TUyJ69iTSyFuM21wNMGzHXq224zgGJyjWxaWy4b1eo2uFRfgqFvgYmLRBprFipuy4fbZgpIdl+cDQylmw6HW6e7EE7zQtp7tdiRuEyRYHS9ZLDq223VVrpqui8zdysCugz0ZmONnl/vafVnVllRNSYFiY2/II1On7aR+ICKkqtyjldgkrrDqGm7fPqZtHCnB9dWAaqFtO45PFjy+fEzOoEUqIFA74XPh4uKS23dg0S3YrIcKEhkoNY7JyCq6AyV8tf4wgtRITErTeGIZOL3bsFh2JBnZ9pFUIt1iAgsd77x9w7vv/AH9uKUoBF+36Q38abuAC54hKcMYKeI5u3+XX/+1r3B+vqaRkWefu8/jqyturtYIjjGOfPn3/oCj4xVOMu+lgRRhuTzi/nP38E2gHwach35zyjtvPOLqsqeo2b45B+JyBcioEmkVfHIGZO1fTwPsglkrBs/JyQqOM9c3vSmHaSHlRGg8OWZKzBUstgJPEGfKcuNAaJfEVFDnrcNNM1dXa0oxZQEf/GwhU4pZKJo62YbVsaMJHS6PLBZGllqv1ywWHUfLY/phIPjAuI4crZbEEmkWDakMjDFzenYMQL/pOTlu6fvE9eXuGEMbaLxyfLRAXGaMG+Jo5KXQVJuRJoAq4zAyRuXmZiCNsXZcB0rM9CkirjCmgvrM1as3vPXmt1mElhgLX//t3+D0+JjVakHbHbPZRvoY2aaH3H7xDq98+iW6tuHl23doG4cvZvFioKTSoJw2HVMnbxEDjL0Kt5cO3zYEfYk/TIV/8fU/ZBy3UByqA1kjiq+lOsFRVe8IHElhWxLFN1Ud0OH2ynAtwnNdy/G9W+AFxX2MlUk8kGu3t6DquFmPvPPeBa984hnOjh1tgSKOQqmWWYc4xCGAJxGFD1TwrVhf4WYGhK3CIIqZxUJEqgGYknUCFHafKRWsn8ghOoP39l2TtcO8C1QwfOISzrtk5BCtHnim4MkOiqhklcm6YSYmfAzD1CeVMZuV2KTck+JkRSQ4V8xqK0cj4WhVYBJX111GktCS7cxWQo6TqqxSLcNcMKWRUZPZvbpAKcUAcaYGA622zbZ+HmNkHMJMN/CN4L2pTjrxIIrzYmuIYutlX9fOYpxzUw5pg6krVesg25wja7Z1vQcQ28/KZnP1ok+EBa2WZCXXsbinpmPEAZ1B6H3ShNbf3TQo6jgrqjgxm6acM947louGo6OOm3VvakZpykeMuC3UcZor2d7XZoEg+CaQc1VSQdC8Iy5Mo6+UQo7lCSIOWC5QqtKTloL6Mq87jEhlyo0yqVKJI2YbJ6IykyNSsrV2GxyLRUsuMCZbh6kqqRIMSlaCs1wtxUSM9uxHFR8sD5Bk50gEgg94Ae9NeRM1y+WUoa+S7FNOoLVBwppWzHKqjMpGjfg9WWPNDSECUlVypzPC3nVVMZMy+0yZvwsqUYnpsus8RpCdehKqVel2mgdsJvLeV4tr+1bnTEm3aSwHv15fM3GnqiYjiJ3jrLneWw3bfqz8ObvWed4HZvTUSBtTXpznez3lxGZ7A2IEIMRyW49Z32n25OxIcTACTh3YRs6xhg7vTY8mJWss8i4wDpnrq55xjASn3L57yvnlJeNo96eibNYb2rGp4zwiztO2LbFkTm6fcuosv++3I+cPr9ncjHUeLpXgoriJO2iDFxFTtlPZyyXq+Hd1XlCM2Nc0DueTAdRFrUYiU6OQY6fCZKSmXBLjGHHeVKpLBbxTMqIlKoQ2VDWtaFaOTud6xDTGtI4f7wUf7DiWywVehM12xOGMxI6jW7SIhzFGUoq0bYtqIaXEwpv68DhQlaNyJZtCE8JM8rPmBq0W635HAsQz1nuvcpxs7pTJtrJUi3VjXrqcyG6L5aSZ/uqKtvW40FCKEGNi6G/42h9mLl+85p3xij/f/E3uHi/wCMsQ5vzBAY0IRXfk4QnSd8AyCHK2ZP3MXTaP3+Xx1TnilMab3WCpGYXOWYU9d4LYdSvobvjXypDW1zrAtQ1xz/bx4/p8nuiJ0/9jLKw3PbdureiaiUz9ZHx8VxuHOMSPK2T3z94if84NVIioEZP2CEllfhcTrXL++B5leP7bFE735h7RvXvyaYvs/XVHtSXe29a8ctOP/0x1iEMc4hCHOMQPKopk/uXt/5Cz8RX+6jv/Ez58xfu9wy1WuMUxHEhKhzjEIQ7xfcdHJimVAuOYWG82TApJRTMlQYoGsqMgxZGGjIp1jDaNmHoPmVwcwbVkhlki35mnmBW2vJV5ttst6xtThQkhWNdrVfToGisuFlVS2jl055Rwrqdpza4pJ2WUEW28WQblZB3V6khR6TcJVGlbz2LZoT4SB5NZb5pg8uXOFKKkForHoRDUlKHaRcD5lsmaCxWzWZvAhQLjkMxKaupiq2WxnHeAgvc1HS1TN6YpK4GdEzsvBoYUrDvSJNodD9694uH5JYLgXEKzkYIQNWKYt8vbtg1tF0i5J+VMoLXCYuMR1arMwi6fFle7Xq3HcD9hLUXZbnLt3DZx4rYLhLahaGF1fMq9Z++R+jWXj2+4GRLrdST1ia5b4kNj10ur8oxz3D475WY7srneIgLDMDKmWkyVBsHRbyLbwTrTBaXPkWGAkhvEWcEWFTYhctQGuqUnHBeWq4BIYbtNiCssloFcjCQlYpZWVnydOnTh+qo3cgnW6Z+TjUuqTVspewl+LcJTgR9TD4JJkcreM5UJmFueZO91oNoj5D2lBCO4Oew8b7cDfe9pmo5bt8+4eHxBt2g4Ol4xas/YZ+settFASbAdE8Fb97gqjNtErgpMqp6UjRxnQGdVQAs29nIuFbQTIKM+87U/fMM6wdXIUqU4NtfW8S6SaJq2glrQBF8tNwz4MWJjYypR/Yai8DgNfOmff5XHD85JSWkWgW5xzPqdBwx9ogkNLiglJVKfiOPAdrvl+HTJ6mTJNm64/dwJMS8RV3j8/iW3+jNSucF7IY5bhn6yVAl1oWmqQJJtUkup1C5nI7N4L5Ri1ocuKZttTxtgsQqzspsPDSKObmGWMTEmO38IjW/JvrDejMTrbe0QDjTeMQwD1SiPk9MVXhzn5xdQMqe3jhjGxPpmRFXYbiNbzYRuSRwjqma38cxzp+QU6R8kI9ucLHHO07YnZC08Pr8gjQPHZ7cYxpHFoqXEgkM5OQm0iwbnxOa4aqsiwQCWfliz3kQUYTkuaLuG05MVRytPvLzBCXRdSxcCzcJzddObaoBm66pXwWuglULWgZIKZcz0Woj9JVEvGftCI5kH6yv+wfklp/dv8/KnPsdf+0u/wnOfe4aV92gaiZXuF1CW4ljnTPKOgJo9WyUfHTnh/i14/8UTlkcnPHzwNq335BwZiqkduAq8GEuyIHizL8WRgGa/kFh/cMBKlb5xpPr5H1UR/vtTaTLwERwq9qwZB7i62PDSi7c5Ogp2fGId6h6l4D7WKiuHOMSPOmZ7qr2GZ8HIAJMFwwhsga0IfQUWdkQkKJRKHtjdv3XlUMlJk7aGMqkmTZaUT77HVN323GJmW7cJaN5t3daI9usOvnAiuPDxhRVyUTTluoZkVrqb7JRQrWvi3XlD6rFqtYRTe+bIpCwzE3wwh6aqGljGifht5zt4A+NVlK7rsPVOrushI0JN9kWhsWdjSWqLdG9AtNmzGcFAtNo8Z1tTt21ApdD3iVLMTglsjZFTnglDJdu4M0KTwzVVVaoeeym2PtZKOKDsyCi7/+/sAF0lIICSy2QsNo2PyXaNmck2jxZVYoSb64F+GGtOlu27nBgxDKgfxnnb36JGeCcV0kReQkglPTl4qUCbPrUWrvecWdpOBBcjjYszSyivnqOjI9DMZr2lHyb1VyU0rR2hqySuUkjVXirlQiqm9mrKXEao8CGgCmksFHX/f/b+7Fe+Jcvvwz4rhr0z85zzG+5YQ1dXDyU2my0OTYoi2GxRomXAEk0ZsiSDsAAJNh/sB8MD4Be/+Mkw/B/YD5Rh2DBkEaAEGZYACaQGmrZMERy62SObza656g6/8ZyTmXvvGJYfVsTOPL97q7pIkezb3bmq7r15MvcYOyJ2rLW+6/tdT2vPuJIEk7lujDHVZ6ITNDQgcFuXd3atzTZSijLPxcBzzsBWXTrOJLsqpc4YO647Aw2x+gJr/lKkMfE+4GL5xLpj/Vv1NOxX4JKuQKd1444Gaf7p8TDjvG9sWAFxWFFILoybDSllY42igUcaO5YITNNiLk/VFczVz7GmTcWeroG2TMbsxMhr4Lv7u4WSz559hbQY+6eQGnDRDuYaw1bvhqv0uSpUO958VL7zrWcsKRlQ03kOh4nUijGqmqykoGhtgMgK252w2UZC7P2xsj8cWOZMHDdcucg4RqbjsflYtH53guHV+rAPuyY16cTiJKA4AqkUXLECiFIVLWUFOTln85qWnhluwKYwUEphmg7GfuaaRJohkNZ+ULW0OIgwbgZyyiyLjeMlWewhxIG0WCwFV6lDJav5etE7Qgw2b7S+S7V3SfDmGwcfbC6tyjBaoYVz0YB6pbHNSp+TOkjO2qdWZRwHwhCoVUnJ5OGcE2OnbqAm53tTOnyTc0RtbvYoTkwScl4StTpEK+SF248W9q9e8PH2u7z36Md4svsZ1HmCQK7GlqUNZGQy52qsfJ1tDitVGD1cf+5dNt/cIs8d83GP33mmxQrUfAPloZ0J7zTMChB6rzi9ptvvNlZqd7jXH//xvqftWv7hzlGxortlyTy+2eJD5yZmHestmvGP6GovdrHfnnY+Ak7xVF3l1/oQ7FGIRgC6MieVs32VvoR6gwupLRZOv7f542wR8WBqWbd709pc9PBi14/r4fR03ZcRfrGLXexiF/vdYCqFv/7On+efuvtv86P3f/KBP/6Dm7D5/FdYPvraP+rLu9jFLnax3/H2A4OUplyY89EC887hiklzeedbYqCgLTAs4ix5IoKPvgXwKzlVavUMwVHw5GI038E5QvTkWqiTVesdDguoo5I5amlVlnB9fcPjx9csOfHy9R33+wnnPN4FC9B5SzKU2ZLZiuOYJmoRlnlBMRp1L45hE4mjY7NzSNiQU+L58z2H+wnnxMAoLY0kWNVvSUKn/g6tatYo2D24Vv3oIKdiiZIT8z3BWQVfKUajuxkDjx5tSTlzmJZW4U0DTUCMgVIrpRaGISKilKWuMhdhEK5vthyPM1oyUFHxbDZbUKWotMRLQRGGccB7x3xMHI4LwXk22yvu857qFM21UdsrtVUp98TGufzdMndJDciiHA8LEjy1wPHwEVdXWzYbz2FJHO7mBjbypKmwL7OxCmUDdtwdCrdf/QBE8CHiJFBzoiyKemW8jpSScSWwGTaQEzkv+GCJkumYuH60IQTHPFlj58X6WaoTkgtptoTWbhe5enzD/f3Ch9+5JQzeGJoOC1IccRMZN7C/PXK4T+CyJRp8NRk+1ZNUBawsSloroVX2lpIbi5ADZ4FYxRvwq9YVtNbBTSs7Ez3g3yr2e/VwdZQZ9jlx82QAV7m7f0nRyu3dkeNU2OwiS5pbws7jHU3CDZLCyxdWsey8R6qiVSglIyr4dj5RVkavGGNLKtg9liIwK5oqJQsi2SAbFWr1iGvjv86gDhFjD6hkCy63JEI+WkLFiTeYiHM8e/aCJc14EUp1/MbXvsY8J8ZxRy0ZJxXvlVozOVWi3/D0yTWiMx9/8AGH/ZFx85SPn73geFx4+623+fKPvssXv/Q5vvPtD/mVX/iGsbDVzDhYVbyKrJIU0gLi2irpvW9MBd6qk3GOVGC7GxFfmJY9JWeG0djI5ilRihKCg6ospTJsR+YpkZcF8QGV2do6COIHBGV/f0eMA8F5rm62hCBMx4wXCCKk2ZNq4So6jvtMXkweblmeG+BwqrixkstCDIG6FILzPL65JqVEyYnoPccmwRKjww+Bq+sd85JsVouB42Fmvu81xcEYqY4LJR+5RmAHEpo8SDTJx1Iz+bgwzwtXuy2iJh2HWxg8K+uBV+FqF/FRORwXjscJJ5HilETi2Tf3vPp4y1XcQvC8LPBYlUUFMoyxVSYLzLUwqiNKr+2FgsOjXA2W2Nxc3bDZRI63r3n+4hV/99e/y5Of+iIxYPOzWkV1FYMJlOZzeG2JFU4pg0olu0oRwXMewjtjKji3s0p1/eSvq8nZtuffPfj7eyUUWiKelvA17FFL7DeJjJSF16/3vPfuDXHowjKCShegdE364hJyvNjvPjuBix+GHDoQpqg2ViS3fp8RJmBWOAoklNLH4JqkNJ4G4505Bft1lVGAPhpXBqUOvmmApf6+Xfc/mxQ64KSeZw3a/ZyYUwyoIi3L8Fke4aUqpRaT2HRtjurSyGuWpMssPUyCusZaoQ3sH4JHEZMeUgOHxGhsSSZJ1FiXFLRU5ra2cQLFZzbb0UAIy8I8pxNzqHSilLYWbiCqDojXYnJc5hN5fAggSq4Z5x2CY1kWY/3hPJnbwSRQCji19Y2rJ8CZ901Op60VRbUxorDO/aZcK2i1NovRs9lEcimkbPJYtqbr68q2hlVbC3pn96Ctl8dxQPxAygdEOwOTEIK5ibUquZTVR4nR2FvmZLJwtpY04HYVA3HVcgaqkpOkqt1/A2upAcnB/KXcpaGAtBw47ie8NxBNyQY2cuJIcyav63G1dUhjWbL2MWCxsRwZ6MiJNDCbY4yB4pRlmY1xypmk4DYai0xOjQNNhWWuRsJZDbAjzjFuHHEMTMfEPNdWdCKkyrrewynL3CS1G7jBnltn2X04SjvLkpMG3Kv2fIxBTBtb0QmM9Ikx/nB6aOMFTmJ4UBugfHe1IUTP8XjE5L8K+aA4b59FXRuHBhLp0CltoDLnVyHKlbVNsDZwIs2XLEh1bc1zAvVoaUUu2ll8T5nRzgxXcuO+kQYI6vJq0pi5GihGnM27IbqG2bE5uVTlcDigqgzDiNaC8yZ7bkxilRgiu92GZZ45HiZyyozjFcdpan5IYRwdm+2GqrEVEVjq2aPtfHI2D+vKrOXEN+anxpbb5znEZNzFpBFLNgRYaXJ5qk0+sCqpLCsrrtUDmMQg2gGHrZ9oIYbAECPDEMznV5MtDsEKa0opIAZkqk0u714nhiHiGyhwXrKxI7tKCJ6rqy0pJWPH9gZe9B4keHBWALUsyaTmYmA6LizJiluMXcrAm91PtrFr0N0YXWOSteKPUgoxDIRgLL+UioYmMdfmihA9IRrwU5OxKtt1VfIys8wzzjt++b3/J+/Ud/jC8cfZjZFUlcGfXqm1Aeqiet4EBDoBlYFclDgMlHwg54Vnz1/x/pcLw9Crqu15dhBCPS3L199PQB4DBBTXoGd6ekF/DwzBOXbg+5qc4REf/rAOhU89zie9kHbisy1qFaY5M24CwXMav2f7fZbXGRe72D9O+7QRdG5VmwSbnravGNw508BJLaTcN1uP8ybQ++zP7g88ONfZj31OOPMUVp+iu//nq+q+rZ79DZcwwcUudrGLXex3px38C/69H/m3+LNf+7/xY/f//D/waldECI/e/sd0dRe72MUu9jvbfmCQUsm0ym8l+FYlWivaK6GxAHqtinMtit2CdjEMKMo8TYhzbHcbxFeUwjIpNQtPn1yjItzv95Q9+AAlFXJOaLEkQwGePXvJ/nhgs9m0YLkBLoJzOBlwOFQrwxjwEVIupLlAFTYxWoXznChVmabCNC0c9oAX9vcL07SgtZp8VpOT6O8lVUiLyVGIU2L2DNuIc44QPL5XGRbHEAVqq8+vBlhCK1Jdk6ByxM1A9UalHUIghEBJmVwKuZW4OO8MrJUr221AYrDgvE6k6sEXXBQGRqLzlpzwjuADznnu7u5bcLCy2Y6EMLJ//pqcW1WwM2mwlBcDr6wZMlBR1LFS0fdArFLwwTcAC6RFkGwU7YpSS+F4EKZ5QbFkS60mLZFTIgRvAcqsqxxdtQ0oFHJJ1KJIErQecc7O+e57T3jrnRu++92PyKkyJ6Pr34y+VTRXyMpms2E6zEiOpFSQVNlsIuNuS8ExLVb1bLIiJ36D4CI5JdS1VGKr0LfzK6WB6nqF/3n1bFElLcmAZm0Dkc7ARGNfqifqf+1JiDZMpFPHGyxO3SkJWqoQouft999it9vw7KOP0bxHVJiPE/Pcx6Cn1la9ivU5EU+tFlyOQUy6qopJZRRQcVzdBMZt5O7VZBXUKYH4BlATuw+1yl9xxZJX6m0MK4jzax9FBO8UaiVEx267pRZjFSglt2RZwAn4wTGOIyktxjyWMh5PcIEYPTIIj5/sGEbPOGz57ofPuRp3fO4L7/PNr38LLwFfBjQDi7K/3XO4OxB95Rvf/JaBCrP1JXWF7EC9ATqGIRJiIOdlBYzVkilqsnTDZqBiIDhjMCiWmAuWyDoeDsxzsetslcMpFUiVeVmgwhAsebKk3BJuAhQ220CuFYqw227ZbkcciTwGNtvI7mbH8+d3pCWR5kQpNndsQqTmzHiz5Xo3cvv6yMuXMzdXWwMDbU2uwyqoF+IYuL4ZjAUCk6rJOXHcH/HOcXNzQ0mVu1d7cqogTZauWnLo7tU9tSR21yMuCFfXA2lKGKtQIISB3W5DygvTvEerkLSyTErJmc02IkERKWhOuJLZjAbY06LkZaZm4cWr7/Af/aX/hCfbd/hTf/yn+dwPv93SVJaF0cb6UNVZok8cxgekIB7nYNyO7G42XD96hGdhHD3vvfMI7zsk4JTIR+xdkmsfZ5kixszUBHvaGDTWA6cFFeNe+lQf5Q3Q0fe1Nzd8MxmhFk58E6jU2dXQUzDStWQZDbyQqvD8dub60ZY4Kk5PLHiycracApQXu9jFTnZKIFjisahSUBaUJI4Ea2Kh0pIPdNmXlnw+SwqeyymcJwpNasZ+O7EStPUAbanICcTU9xcacKStCzqYZ00otKVqnx9SqaZT9Rm0zmokYGB/EeOpUdZE/QmMURsovrOGsAICEEwqzRmIIycl54p3EGMkZWGZk70zpMsqW+vVCtO8sOTcGDIN0ANAMfkwA/ZUOulOB+k4VYZoMsW5GEtTqYWajSuxYsCdWg0c2plFWsdYsz8mzQxi1C8rs0ittbHu2PYhWA8rKDRJKVWQKp28BHHCnFOTamvyWu1+asVAGq4zbVZcNGBHKUqlMi+ZqiYFW3NtQJNKaSwkm83APM/GwtoA3YhQ59pAFmosssoKcn/zoevZQHgziQagVaiy8poZ2CgIzgkpF8S7U5GAc41Zxa7DXpFia47WPh2UtUrmVVuDdtar3fVI3RfSUlgaQ9MiiWEMJuNXlDFaH5hnK+JwakAXCUI+JuY52bhrsr2qHZzj6RhisLG+vsfb/RrzUn+v9/miSevl2gB8BuQ6zSkP+9FpllgdN8tSNmte7CnJ2X0PaUDBVnAiYozDhRWSd8ZkpqdilXpas3TgG+qsaAEhjo5hDMzHbGzHVQ2U0+YradIyImfzX0/S9vnzjZSpAXcMpKJngJ71ZjDGniGE9Ti1mm/rnW/PHTabER8d0Udy3RNdYBg3TEeTT96MG8CxzEA19q7DXnn1at/8VO0DD1XfQJTa/Hdv8ms0gF7NqFoBVoyRis1FWqsV6axjQcilUEo1RjXpUvFtKjqTufedlQolZ3BSTC5dTV4thEAp1b4rFZwnDJH9fkKLMh+nBpsxPk1p/q33nmXOVtxSKuNgzLNVSovpGJNzHIOx+jU/c5kXSjY5bby3I+cGFOwIKgHEUYsyTwu1+YbOWyyEagDMIQZoa3tjerPnW6oxU3svDZBV25ipzYfuSC3r9tN+z8/96l/ja8O3+Vcf/S/5Q1/8Zy1eBc130RbT6D2tj5zTjDRsI9ePtuxfR0rZIAjvvfOEYfhkyKy/c2tbm3c51v4uX8FIHZhUK1X+YQUkvpd9b7iEfuKbs+0bULLPtacpwoDY98eZGIIB09Yb6S0m60Rw8ScudrE37Azx09/a5l+c/lkZVAXq2RA+f/t94nhtg5XF740NTq/+9r5dVwinueAUF7Ad+j59XV3PjtPf9edCphe72MUudrGL/Y42gbv4AX/hR/5t/s2v/rv8yP5nf6uv6GIXu9jFftfYDwxSQo2W3DlhM44tRmoB7FKsYlZalkShVfmZLML93aFRywfwkDUzhsAwBqiJQ04cDnf4IRodu6s4p1R5mLSoCkuGdD9xv5+blI8YcKAkdC6oGONQ1cJQ3Ro8jkEYNsZkMuwi4hzLXLi/O5IPFgAvpTJEz1xowCgDjqwV7mulo1UE+6Ir40/JC96bhFKtlRgDo3hCyITRk3MlJyhZmsyDBdiOh8l+ywWZZgu0OWOiqiVbVaofKEmZmBnHiPOOosqr1/fgPON2IHtjdtIEy7wgXrl5tCOMymE6MGwczsNxnjoRFClnkyxRA6FZ1e55yK5LD5xc5p4sq9UYcnpywHsH3p77ZjNYUiFlfBwA8CJIUYIfrErcQymOnDLD6Li63rHfHw3MgqeWBapQpoQTYU4LpSjXj65RHCknSgZRz+2LiXJlfWFJmdflgEM43u1BTbpvfziiziLdabEwfK0wpwwotS7kbBXwqkIVY4LpCY2VQUl7Fe8pAuGcUTf3JEWvpIUOZCprQLT35Q6MsQiGY23m1sjSg7tqz6DkzLe+9oGFDrXixaQSq854Iqe0Tg/tCsF7nG+VrBir1mY7UKqxmvUklFIYhsA7710zT/D61Z3R6EuTG2xC9977FYRVi8lmKW6tdDWZQlZwEwrTPBvIR5sMBsaAYJIYkSFuKLnNH976/hAjaVlY0kSIMG6eoDUzbAwM+PzZHfOxstl63v/iuwQHT68V/+sLHz6bOFTlOB3w+Bbsb31XjO4/RkcYHJtNQKRJXaTM8XjEx5FxM7DZjtQKaUosszETdeYDbc/G4UGtUnmaFkS8Va1ny0z5MeDEk5ZM0UopwmYT2I4DuSTSkrgvlZRn3nnnMc4nwjAQh8GSKXhSSU0uojJPMyLG/JWcJ8aB6xtlmY/4g1KS41YPbHeR3fWGXKAobLeReU4sByXnA1e7gRg9wcMwOLabyH6ZSbmAE0KMljhAWJaK7hc75nZkOwyIKClXchJyrixLIZeFYRwQMoq17RAdWipLbvO3wO1+j9Dk/2KkpMxXf/Gr3L4M/Et/5r/H03cecRONu6ggJq8plUchNgaD8wSnzT3qYfd0ZHO1wccBN1wR4obtzUhWd160fAIMYKwLNXwik4qlMizxUah4tX7rz4A+b9qnBhV/E3sTjKSsuevvsb0xjzg8RcSAiDiKQCrw7MWe5Tjz/pMnWLrIAAodRNc/X+xiFzuz9p7l7N0csLmiNoB2BrKwvl17Ah8xwIrrDGpydsgGUOhkmmtecF1LnacKTomEbh5p0nCNhOOEbeDNecgKCOTBHNLZaT6L1teY0phQ1sZsa/7T330tZExJUipzNfCGeGNOKVpw4o0psuQmZ2tgfxCcA+d60r+DKliPbwn3DBgILDTJ21pLYwUBXx0SvLETaUG8oM7WftEbK2SpynRM1ASqgncGxM6prRf19N6i9asTWr2BRnKlSAPvuwb6of3tHT6osc7mauumKrhW0KAAjfmplNr6c2ftbC3eGW+cSWJr1bY2VMq0tHeFXZ84ZwK52cBLKp5xG0mm5I2iTYrWQFBrlm3tqw99hzf77PmbT6s0II61i3POWC6xa+xyTc55A9a0vUMDLTln111rZRgjwzhwOBxJS8HhKGpy5L3Yoi5w9/rIMSZbz1aTcxZxxryaEiF68EIqxkZZc8U5z1KVeTHmWlyDKLY5pLMD1dp9YtpzP2Na7NgazkBU50131kxa9TSgz5Ke/Y+TV9bb+2ybVmRhCoqtxdq+tVbubw/t+po8OIJSEXUPj7s+L2MGEt+AeNrmHDkrYKmVtFSEwna7pRbYH47r/Yrrfs0Zi2wr6DAWNDvuOTtMX7NYIUB+0HvsefZCEKXLOSs98dpkvlRJKXEU2LktqVqxzGY0+bNe8DRsRsbB8+6713znWx/z4oVJU2s9zdu9aUX0zEey1G6IrjEiV5NWD55gCA8Dt3khq7FMGTPvyV9yWAGMcycmXZHG5oYY0Kk2VjC175xvxWDa56xq4KXgqI0pV9UYj6pTihZSMoZgO4djmU3SPkTP9krIcyLnitaMqjZpe7GijwZgohRStmu/vtma36Ou+b8D8zGRsoE+vffN3zZAfc6FqpVhCAwh4KIBPHP7vVaTbzeGbHvGEgTfXoI1t6nGOVLuvjmN8U2oS8EfC09+9IbXX/hl8vQHGMr2JJeKEEVZdBVKbm148i2cV3wwf9YK8kzGsqhSxdr1fEza2GrATC8PR87Z9FfP+vVvZifA0MPv3vz7Afqgzw19PcKbo/jNY55vZZ9Niko4NkDdNroHYtf937+Zv3Kxi/1use/n/wunwgPhBPZRHg7bTxvb+sZ7m7Ntzv2IdV3Zd3xwPFk9jD5fnDje1i8+cc3SweLK2ei/2MUudrGLXex3j93FD/jLn//f8W9+9d9lW95CLm/Di13sYhf7x24/MEjJR7dWVkzzbMHBFnSp9cztcl0WzGQzalVSFkKEMDRmIIclHZrs2dWVZ3dt9OGhepxscMwcVaF4ihZqUZyPhGjVfaqKV6Psf/xkR6nZQDdpZmmMNrodicE3qn1hqYngTMoJD2F0bMrIfKgMw5bt1lNZePXynsN9NeaY5mIaa5S2IGsPxhYDazgxynQxVqeilboUnDh2NwNXN5HjceGwzyxTxTtLwmutDHEgeMjegq8lZ0qtrWq8B7sLOGMqWmar8B62AT2Wloiw6ujFedKSKKmwLJak2V3v8DFQRVgWZX8/sUyFkhSnFrztEeG12tudh6P0LKDcgu5iQdvOnATm0MZgknt3txPOK0+fPmIYIi9vXxlblA9stkOrzLTA9DiMPH3nMRLhft6TNVv7xMGCqC1wWxbl7uXC/u4VKhXVTIwDUoWchbtl5snTkau3thznyv3LBVcjToQpF2qT/JLocNGbhFvmQcWq1mqApNID+0bV32Vc1rhkrQ9ie112wZ0yEnRkhFHe17Oq2R50P4FnjEUJkCbHgQH+BNb+hSppTmslaUKBSqkC2tKgTerEovw0ZqzKMDic88xLIS2ZVAreR0I0ycb71wvzfubRzTVZLdjeQVI2xqtJAebGLECXaZBVgqQnG2wuaMkz59bfpMkraC2AyaPMU+HDD19g4EdjTtNS6BJxVOFwv+D8nu04EFzk8194h6dPr3AsLEvg9e0dj59e8Xv/6O/n5XHhxavvUmeoGUq7DxFjdwuxSd45QCrHec9mHBhDpFTl6tENIQTGMVBqZpkTw+hMKgLh/u4I6thtN9Sa2c8TaSrIMBjFhquWrKiV3e6K999/i/1+zzQfkGqSaZXK/nhkjLGB9TziPM9e3uFUEF94/fIWBMbdSKwePR55++n7vHr+AhTSVKnOMWzh6lHg9lUi5cwwLFArimNZCsvsGEbYXG1MllILV7unXF0Hai3MU+Xx0y1Pnlzx+sWRjz++ZUoJHwJlWSjFQaaxrNn8t9tEQhBqLcYA4Ycm4xbwzjNGcEMTGVObZ5ZUKAopV5alglZ8qBj0x7G72fGVn/oxdu9d87d/4+v89O/7CkEceRSeOlZZjdtSuDJoGGDBdBWICjdUQkkEnQi+EAGh2NzGKRl27ltoAx+pyFrRfw4WqAhLVQP8tITpeZh+NXn47fmvnx64PCEOtO3fw4iWNPl0q3h8e/cZ25MdoxbHq5dHvBO+9MW3CVINFCinY13ASRe72MNx8GYSzwnE9ruDdSxm1TMmkjYfgAFqaEAmzpMN9qlLt52Yls7P93CWOCX+HsIDOvBoTfI/2Ot0QEdnVjuzzzBIyQdjXungAeAMa6GnvImc/AkRyC2f7EVwbZ3jMMaanCyxP44eH2VdAzmJiFQkFehMk1222q+cPaAQvWezi1aAUQxokFIma6U0diFbAzs624dzrrEpKcMQKA68eIbRoxQOh4l5KpSixqbR1n5G2OnWe9ZiIILO4GlAiJY4b5K5cfDGYupsPVWXbMdQ6z3O+fWahA6c772wF30YY1BtLwcRh1ePMcAUegJ6UVt/dsvpSIihgTECKSnL0tbLtd9bu5f+QM/WvbQ27mOjg3RPAT85LZ/VmACrQq4V54XtbiAEx3Eq5GTsV+MQGzjF1ozRe4YxUrWY36iVLgm1MnQ10IkVZth6tFIJzrfrN2CId4IbHClZu8axSTbT/IQqDSjS5JpXdh95mNVr91TRVvTRgS5WgCAP9tH2LM8Sh6eqhpa47I35EOT4qSZvfFDzYdevqz0rY77qa/n6YA5DOzOVotlkkaU5gbU2+UBnMudW1KHMRyUvx/VZnpiZGg1tn89sobj6UL0oyQBybgWQCUCTdVsZ5OQkFyfOr0w9Jrve/NMzBioRIafC/v5ojDht/D+62RJCYToqr1/dEmLg8dtPYIjEGAzEpC3JKzR/AkI8sUVb4YYSxVPFZBGdC624ykCsfZ6Lg8P7wPE4E5wwxIFcMktejMW09VHzOa1dxjFydb0lLYutvRuorku/e9fl1ex5Hg6zgXqKsCxHWwu6gBeHjJGb62v2d/eomnSlb8BM52ircmOjNrnGQslCSkocBO9tfGw2zX8RbezTxiw7jp4hBm7vjqRUVlBhn8OkglZHwmTnjJ3ICntUawOiWb9TulxemzcrBtBUk4crWTHWY5qEt+IjhA3c3T3jv/zV/5iPv/ARf2z413lr/mEeDZGxxVYWVRyuAZJPoAEHjOrQeUFqQsiIBKIPiLyxPhfOAHXtjwdjU1nF5NRc82Lovj4LfOqw7WP8zXc+n/L3aafTf94c9p+0cwa2s3VLmyOn/Qyi3Fxv6HKrb4KSPruri4td7J+Mfa8x0N/Ta+FAG5xd1rnSx7augNPz/U544/P55OQlnNvJDzi9Q/vB2lt8PYItMz5ZEAF6tt+JuRX9PmuLi13sYhe72MV+F9jfv/4v+D9/5U/zL3/7/8CP3v9zeOJv9SVd7GIXu9jvaPuBQUq77dbkhxZjtLEguQXspJd5t6B6l01wCJkWt3GFOlckCRSQAnMt7LYD1zcjEhLqKstsoJSrq2t2W6WkxP545HhcVpCMc13XQtiMAyE6oh8IJVDvjWa9pIzmVnErwu5mwyACWhjcgFX2ZcZNYIyCU3j8+AoJO0IUXvgDt68XSjJAjIi0ql1j5qgiprrQq29TQUmEGAhOqJqouZJSZX9MxBDZ7DxL2tOjVT6Mjb494bwQQkCjZ2ltDFi1s2aknioRjbpcLeCIAZqWlFjyjGZd7zlNC3evF8QLV1cbA3DNCdS3hEgGVQvAagPGvCET0APMzkmjslfW7AayVvjXYqAtbUCZzSY2mbTEbjNwqIkYHTePNpRS8N4SBWku5Dwzz4XjYWnXb0Au7zyl5lV+rWRFqoA4A6GoEoJVXG+3A1ePb5gaA9MXv/gOb7/1hONSeHU4cvviFYdX9y3obkCbpS6oU0S9dd/Wfy0Ia8H3mk/1Ri3KjgBeaEF9C6A7CVgZ+2ljwZmEQ6sYhp5v6MwmPWHRqpq69ls/Rq+ypbEiiFCanITzVtXa2ax6xexJYoYVTJUXqFjw3rkRKeC1Mg7Co8dX3N8vzFPm1etjq5DvQdXGzCS05JydF6xiNjhHypmcKyEMDMOAyZdYdbprCThxQK2I1JWy3/vAoqXJE56uvcsnSIvUL3Pi1Ys75u1IiI5vfeubhPAFnrw18OLjhQ++8ZLvfBP+3m98RHCO6+ttA0Z2gFJFXGW723DzaGdJNbWK7DAERBylwLKUBg5cmA7C1fXGAuylEseB7cZk6QwIZpX/Q3SnNleIfjDWKZfYbiOlLoirXF1vud8fWZZEUUHVUdKRYYjkWihUck4E59GSjJXAKS4MhBB5+vQJ1zfXaDFGJwnC0yc7jssE3tiidtcDP/Slty15phXVyEcf3jMEoeZMWjKPH1+zzJmPP7zFeU8tBd+Ag1fXI3f3A4c5sb+fcGpzGCkTYsCJyfVpHbi5uWKaM9OxkNNsso1SgUxKgnOVGAKKY5oT85LJKVOLUnIDrOVMcRUHHPcv+dv/1V/i5/9//2+unr7L1/+7/x3e/fznuBrhD/3Ij/K5p49womQtGC+Cpbxa3b8BFQ+F1y/vmKfEnCbmOXGcQG/aaFwZKxqgEBhjaMDCPuRMqkMaDKpiCdITjYnN929GJs9DePLmd/owwKfnFdhnoAJBHx72U6Of7a5lTRkwFfjGN18QNfHFLz0hOG3Sdbpuc7GLXez7m5HZNAkWNUiBQxgQtk32EZRFoKC4/h7HZoxVtgF7n/f1BJwnIE5JwXOBmZMpZzPNJ0ZvX3egJ5kIoOMw1/NDTzR/dsd+8IFCWaXJXEuwr8CcM0BpZ6XUnjBRAyCXCpKhuEoIJpM0DJYkVykgkKuSkoGyY7B13pISy5JaUlza+qyt/YKtbRBbc0kxkLo2sERXe4oiBDGmIXHOgLutYMCJIhSTbvKBqhERx2FvDCUGBmjvQVp/aWbAhAb4LsXAGs4bIKlUclZqTfjgm0yTySghxmYqYqywQAMzGbCkr+ONmWl9FWLgANAl472xwPhgPkhOZQVLKNaWOSUQIadsoIMzgI09J0XXDPup358SaR2c0iWkO1dY27YzB2AsvPaltUEtlbkkHCYZbCyztr4chgEQY60s2WS+l2qACIzhxDm3sv5AY/RUv/qSRQ2k4YIwRE/YRFIueOd4/HTDkyePWArcHyeO+yPHuz3tllty0dhA9Xwgwsoq2t/3pwSgrvKCPTl52qmlF7s/cA5AkBOwAD31n9Pu/ZnoOi/Ig+PSGGObxJxACJGcs7XJOmOd+kh7wIAYuIti7D8iSHWIGnhpd73hOCWTRa99jpPTnNj8GOOIM2YqERtzxiDUYgcqOO8Ja7FOOV8srY1s49bkHlFjLHsziWssP53oS8ltfIjAXbXnG6JHmClLJi+Zu9vvGtDPyXoAO5fNC+M4EKJnWU6AGh88qsaUXAvknJrvDCE0dtDOJkulKX8zLzNOPMMQ6SxopeS2znOIs052PB6ppRKCR5PJeSrmi6iTVdmz5gbOqpYid8hZvMbhvbAsCz44RG3fceMNHCQ2p2w3I48fbddx6lzg1csjSGksSyZBPs8Leal2LIEqFR8UnDCOEVWYl7T2/1qSPVekzYVdCj6TU7V5pT2zLjGWS8W1+IQxVLV5oZ5iFL1ozntBc+b2+XPuX77EucDty2f8xnu/yOO7H+GPbv9lfvKdP8Ljq42B+Vv/tGFg/oRiBRV39xPzbCxuWjMvXtzx1pcq4+BP40lPXdK3cX4OSmqhmHXbB7PdeX/+TewHhQn0qUf0zJ/41AKFvtbonCo2PheF568PSCq8+/YO1xYX6xxycSkudrEfyPo7+s01fDj7XDDp+R4DrGcb69kxHq4RT7/b3w0ErJ/8va8zaHGD898/bdvzeUZ/4FnnYhe72MUudrHfwSbwnd3f5v/+Y/8DfvL1n+FPfPS/4IvHn+5Rw0+1E2v3xS52sYtd7B/UfmCQkmqxIFR3hFoFoxdn1XctIFr1XP/6RHefUloD5Xku5MGz223ZjCObbWDJxjazzIn7u4XNRlDNbDYbhu2AvLpnf3+EUvE4xAtxMFkjH+Fw3JOSUooyhIj6imsVf3lRpmPGuw0uggyO692GEB05KcfDgneKxAziGMaBx08883TH/XQEUQOBVKViQTTVViWjJ4mQXk3oXSB6x5QKx0NimcEPBkS6utqR50LJmRAsyOuc4EMgxkAuVnmomIRFzaZeLs6AHVWtYlBrImxGtpsNjx5d8frunhfPXzeH1GSJNBuDlKbK7XJsDmnjCNBKly6xSsQOpBGgroH8Dq7x4pCAAcByQZWVCcaJMzCIZgt3KaRUuLs7tGtVYhzxwTEvEyC8897bOCfs74/s9xO3L+/JcyUQqCWTciLEiA+enAtKbkklsNClN9AShesnI0+eXDFXkwAM3vPk0cBP/v4v8+JQ+JVf+SqP9TFelZozpVhF67Axhpy02D0h1g5abHHxJgtJadXyvVNrazvtiUsnxCEgaAvkNkCEkxWwk1Jt9P2sFc2uMS7QjlpVQesqNydeuLq5IuXEcUoM48jTp2/x/PkLynG2NneNkr2xNmlLziCOUiwBM2ycyZooFpyuyrj1TFk4LuAMoWT9XC2AHF1ogeK5Vf9bckyrJWV6+5RSyNkqaTebLSknlmnBuUBJpUmw2POL0bcknd3xacI4VfqXJtUizq0MVWnK6LiDErl68j5f/+qv4yPsxsB3v/sxOQs+QGpJAAFC9IzjwKNHj8g1sz/MOHFWBV1hf28Si7kUYhjJqmQMeDWOI9M0cTjOHIZM07Ujp8QYdzx69AgfHNNx5vn0msOhMAwRF4TDYba+rgJ4nAxonckpUZNntxuIQzT2tyVbwicEXPDsQiBsIj5smJaFWjPPnz+npJngPV4Ch8PCvBSqZJ482fLFLzzl8ZONsYtJZRyuqBnu74/sbys5O46SefHiNYd94upqZLsLVM3M9wuuem4eb0g18/zlPTmfgWlEGAZwzuN84O7+SC1KypnlaIwGw8YbkGspK5C1VqEUk2EQhbkkYmNhciJNPtCjqXL30UcM24E63/OX/r2/ANHjRfnKT/w0f/bf/rP8wS+/y+MYSAgeExosVI7tSX/1Ox/ywQevyEtAs+PZx6/4pb/za3zxn/tpGB9G1e2JwNb5NsZlncP77LJu62DobBc9kfr9X5WrT7IypX3KPgqouAbitUp7zq7hEybgKS3vqKgW7orwd776Efe3R37mn/5hBmcgTnWKSIWegL3YxS72SVuj+g/H9Zrow1ZLG+wdvkVINOk3YEFZEJaW5Ovwo4Zdp4vnek4B/3PwkPYEMg8lIM4/9+s6T4qeVnif3OfEj/AgtfiZs1o7UEAa24itW1yXjF5BHUpnmDxfj3b21s7QgSrDMBBjJATPkk0qbVmMwciJAVy8CyZLKo7jcTZJLmc+jPcGFAiDY5qNkbUWm5slmiysNuB6Z1VywUDCwceTv5FMrhoHS84GnBBnBQnSE+za5Drbc16BJ+cAkQYMab5WX5epM8ZWcdKklBrYp7WRd84ASiImYewMCNALKsTQ700izaSWrFltremDMBBs3d2A6sbS0q+rktP529Cuce138may66H17ULwttbL/RxyAimpAdU7e1lpTKiqVkAQgicG36SeHCHG5kcZm+w8mzSqiENrab4bK/Nn1b5+r4jK2g+7XzNsRpacjB0pC2nOOO8pOXH3+t5AzsMATVrcmsI4WXLOjYHKmHZKrisA79QI50yqnS3thGowoIbJeRkrUDUpsAbaOfkkxqhDe36985zmBj3zV1mPH4IxYi2p4LxJB3dQmLRrOs2EoFVYGV/b7GPyzsZy2fuHSQPWdv1tLJfG0iCtd2uTB2xzpYgB22oL6FoBkYIa0C9EO0/OTbqvlLaPWp/2nLFYdWbhdvdNOkzPAFLme4hJtrvIEAYqcL+/p2ohBEc6Lo0NVlZ/rN+z887k4lMmNfY2AzSqsSi3uSmGwWTMsvk9IQQr5KHiXDUGLWmSi84xjgFFG0ReKSUDHu8duRg4R1rb19r6a1WqgHfOCg+a9J13xra2Asm8w4fBnk8t5GJgPieOEALHQ24gzMxuN/D48RYfXfODBe+FYXQss5JmbXGKyjxnljkTB0+M9jZbcmNVE2UYHblCTr17C1oqVcQKukJkWZK1oXdIMS035+y++/tOq7HM9SIoG6t5lTS19nXrOHDV+ogo3D/7mP3LF6j+LX51/Cv87PI/4s/82P+QR25rMu1ykmNKBtvj8PK7LMuC4AgSKCg5LQaW+sRs1iMSnIEsz37XsxEpEBrL3flc/4PYaY5gna8fXoVJy3bWsIe/ftIHOoEQbAWyqPDBi3sOx8SXP/cU51jZ8VYk9MUudrEf2N4EFIEBMAMnOWeAogZW6r5FYQ2JPTzQG8dej3sea5DT6D4/b2d8+wSbrJ5iHmtIrm/yYM3ym93txS52sYtd7GK/c232d/zc0/8Hv/L4/8W/8MH/hj/2/H/Ctjz5ntsfv/lL/+Qu7mIXu9jFfgfZDw5Syhb8cs61YKa2RLOFPr13xv7TgnFLygZi8sY2k3NpwWCjQ085t6pJRyWypMLt3T3zoeJcYBwir+8O3N/PXF1vGYaBPVOr7lUCAT8IPjqurnfgPc8/fskym1zYsBkJY0vgJKhLgVzY3VwZmKMoS0mgwjgEcMJ+Wri9PbC/T6SjoqUSgpCLknNeHTkVIcawVtKDBYZSTrhGgZ+lUJuKBd7kyjSAtupxEUduwCzE471Rwy/zskqQpWxVmnHwDehigJ2cs1XCohRRXty9IqeCc57UArgnSbliCYwiBkJpwd0T2OaUrNAzj7gnGjp9fC6ZOAaGYcPxuKyB91oqKlZ/KK5JJzlPbrJ1eTHZLraJ6+sd4xgpVbg/LAzjwLDbEsaBGEc+1JdM+2zyKs6YrvJCC2pbyjAXY8hxTZOuqHI4LvhgSaJUF5Y7hVl4651XfOPjZ3z87Q+JTthdjeAGsvbAssc7YWkJKXEDOcPd7QGtJr+ntckN9ERmrwC3ZmrfNZCXq6gWxs1IHJRpWhjCAGqVwCJWKWUyeXY/vcobMSnEnozgwfNwHJe5q3qwpMTHz16Y5IXzFvhtlaQmLdekFVC8tOQfnhAiLsK4E2KrYL69mzjOGdTkGpx3xjLQWAMSuoKeBGfPE+s6qdSWkLDOktp+qoUlLZSlJeE041xjSVLPXAuquSUi1RKBTV+v5ML93WTsBDHi1ALwWitBLEGx3W355V/6Gh98946qMy7A8Zgp2SGhMZzVCsEqrFOqvHh1iyLkVAkeSrXqXucD09HAP2EMHI+TyZtppBZhmRMVxzIXtBZitOTGsRwQv0WxsRhGh5PAMES225HjYeZ4XHAuImDsaLkgTYJvnhN+MKYt7yxRMC/J+nTNSErEjWVzKpVlLqRlBg2MG8dBM+MYOE4zT262bDYjqQovX7wyCYW4Z7jy7Njy/ONXHPYzVzcbQhhAFpaU0IMlgOdUcSRECnEDj59ecbgzZjMpSi6JxQtX14+ZjjMpL9zcXPN0s+NFeQUqqAY0m0zEdhw4HhaW1NLwrrQqbQjRwvkhBEIMBvnMhaswAoHj3T3T/R4fPDFGfvH41/mhH/8Sb21+ls+9/RbHCiFYX1SEUjNehN/zY5/n777/lBd6IM6Zx08f80d/+sfZxfOkG2ugzQmMbd57gADoI0eNOSw4YXBCrzd+mGc8i9p9Al1kSdHaxqPnYdJAgVlhLpngnMkXPUganLY7Dw7WlqTaq+Nv/sZ3+fCDZ/ypf+Yn2Y7+hFSg2LVecgoXu9hvaqe10GnknaqjLGm8ob9TbYssyoxwBGaUhJAUMkpZQccnMNJ5zL+PaZOZPIGO9Oz382lJ39hXzo/Tr2kFVXewy2ebScmJWxM0K4NST5QIK2uG+RzSgD49QW1r7M4YCgZSKKUwL5lCpVYhpUrJdi4fPClnjlPCp7wmgFQV0drWcE3aVl1jllGTn4UVvIOARIcWxQtsN/aCKY011XVpIufJxWSXp2MmL51x0+R+Wk1Hu1lb49DXhj2Z34Aarj5kklKtiNp7YJWuE+tPvWhCc2lraGOX6axFgjQAE7Z/6QCbE/feNC8rSLzLkkCX9q3dMVifZWfJsWXgSSrkfFy9aSsDqHdUVxo1mHICn3VQj0ObRorUSjX3jyrmfzjnqSrmA3hHCB4fA1fXHpiYp2TrTncG6mlrb5O30wa2b2BBhSUV6n4iBGNeyrlyOCzcvt5zeziAGtOWD45SO+zQZN+8F0IDd6ja2rOUhIiegEkrFqlLoOnDJONZu9ZaiNFkx+Z5McAJjVW3HYO++/kEQWM7PntW67MRSCW3azQJtJwPlqxs094qjdtBGd0hFDVZ43aVzgtxNGaZWo15sgPikD5XtXVMNcnhcyYorR2g1s5rVKpr/6mlkLS0YpcT89PqeauQVe3gHQ+iPctq4yHnBgJf53gDNjon5Gxr7g8/fM50XIDKPBdqtvOXLr9mXbEBsYqx+YgYm4/HJNkVnPeNEFfokpFd4s7iHbZbTuaXe28goloT82KALyeCj634xzkDTS2J0nxfk9U2ME+fx0op+NpAYRg4K+VE8cacRBYklbXgoxQDWqJKyhA8jGMgJXu2y5whe3IxwJ1zQowDQZX7u2OTwIsEH6jR2jstvc8aSN57GyO7q5FlgeNhbkxdQCmU4liWBaUSY2AYArVm0tLmq2pA0HEwwGSaMvU0Ia2J9NDmM2nPuLT9nHqLU5AJDfp1mJ7xV1/+O5SPPuZfeet/xuCvkQARAw1YiVHlOsL77z3lW9ORNHucKO+9/5jN+L3eqqeipu9lfSyskqFt0Oo5KuCkHdee5dkZ9MTE5JDWL09bFCA1xi8Hqyy2jQs9XcS6S1/TQMbx7ed33N3t+coPvcsmnN7HKn3l89ldT1zsYr/ldhY/PWdFFAzs19/C0JWYT3OGb2O9AEXbWG5/VzjzJ86P8j1ggy04KWcbnFYAD//96SNaHhzDPur3Wspd7GIXu9jFLva7xwRmf89/+oX/Ld/Z/Rz/2jf+T2zq40/ZUCnT/p/45V3sYhe72O8E+4FBSuO4ASDlPbXWxqDkqMWovi1gXlpFpCX0nfeE4I1RIxdaqbQF6XLhcDhSnlVevnaoODbDjt1OyHmmOguupwVev7xvFYnaeNtN4szANYX9fs88JYKLMPgG1AAXrTI4bCIbNxAd3DzZoQj3+wO5JMbRsxkDbhhwMSII0/0dh2lpYBSr6pRqsnaiVuEXGyirqoLvgaEm/6AGcHGh0ZPnjNOI4Ek1oyp4r/gQScmqkpd5ZtwM+GAU6qrGVuODgZRUIScLdHovgLckypSoWprMgbGKODVglfctMKsdWNOCy9olGXqSyJ5x1yxf/zqj+q5VWZZMjL4Bamx/e9aKcw5XWz9oVd3OKz6atFzKibvbA9McAMerV0rwjrfevgGnFGDYRI7HheB9O2elJJMEcAKZ0gJutUkzWLIoJ8f9/ZHN4AljRNzCfjrwy7/yq9zPR6uw95V5ued4LCxLS1MMsNkE4hC4fnzN/d3E/d3RAsi1NuaclkoTq6ClWj9vMfHVeddarBK1GJBvu93iXW7VmBawtlxEa2OtDXgla0wg9KRCCymqWADTOwveH+dCra71b5M/bI8T1LBgPVCrYtXvtHHgnQVfUXj85AoXlFI8x0NFDxlHC6K3amrnXYuXWgIvDmEFZVTtQCU5UautZfb1jE3HEoSuVbM7cdQqa6C+y4VYu7hVAsUO1atl7TG4Cn6jHJcDX//Gd3j27CXTvLc8wTGiizemmVRxOKqAqoGBQPElUGtLRLWg6/GwMGwgjpGSCofDgTllvIOyZGZdUHXEVYLR2Gli9HhfWcrCZjuiWgnRjr/kApMBnaraPS/LsiYkhjE01iYhRocLnsP9kXlaSKWQlkQcAmhB9gtx8CaMkWE5LmgtpKLc3Iw4r1xfX5GS8p1vvSIXk7XEee5uDwzDyJQyh3lif9iDKLurHdc3W9KiHA+W7Mg5A4knT7fsHm2QV0em44Jqoaud5VT4+KPnjNvI4yc7fKgWiHNCWWAcHEjm5tHI9fWWD7/7iuN0tHmrFKpziHikVna7oY2VipbKkhYWCiEMiLcx6cSxTEfSsvCX/8O/yIuPvsO/8q/9Gzx6fMMPPxm4wRGr8FiCzUOPt3zxy+/z6tVH6OJwEYaNmPzeuZ0F6Z1CUnDSklg0PpSeRAREGsOa9XzbpgXwLKiobc7vJ9B1y7nJY45ykodQNfDSUZVDUqKD6HqCQujhSG1ZPe1zsVpIcxFhr8ov/N3v8st/9xv8mX/hD/DerkGg1izJOc/KxS52sd/UHgCV2hrJ/mjfWVC/tIEeEKIKWyAjTMC9KAegwxl7ApCz/66JgfbOf2N2AmjMS2eYw7N9z/c5S7mfQaraNPAZzygItiYp0sQuGp2FVgME2drSkre1Jfq7PNqJ9RM6O8vK4nKoyNEm72Ec2W49pRZKAzqgQknFpHxbkh9VtAgMJs2UUyKlQk3V2Eg64EvsfeKdMG5GAxgEK9rIyZhIYnRWwOC8JcoFY45VAydVlZaQ7qgeh3dC8M3PaGxAnQ3DgAptRShNDqsz83Rm0Ya5EWdgqVowFpHo8cFTGyAbHM4L4mxNVRvDTX/31VpZ5ibZVjm1TwN7POitPZd+Jg+tep7+evgG0jc+tyUwpb/j5I0t5UwAtdbuudgaHFuDTtPCPPc1owE4ttsBccYcWg1Zbz5oA0B1dtMHufr1omQFuGg1EIf3HpFCroVnz1+QayV4Bw5SSZSM+aWc5Kacd2w2I/OSWKYm33sO7uoTgFjycsXb9C7R27phF1JK1GqQg1LKWfvJuo3oCQrZ1yeeM6BB+7diS3ZXWaULu8+xyiyeP7AzcLc0BiLX/Mp1CEIbF56y2LpuZaaq5se4dT46MWatCdRqa3XaGDtJViudRU1XoIWjp3tFXJNYPPmusm4LJ1xS94N7d1IrrnJCroUPPnzemJ6tKKgW14oyeuO0taFqkzzH2KMNq0ZtM3WtBafaGMKM+cmYlQ3dVKqNK9fAflqVggMveGdtGGI0puKqFitAKNlAVTYH0KRHDQA0DLExS9n4965LvxvIR4ujOoeKIBhw0aYfoSaLyVh/NmaoEDylCvv9TCnKdrdtMYmZaTraftXAc1o9EhzD6EmLroVL2kBKwzAwbiL7/bHJ9TVeLwWqsEwLONhsR2hFXh0O0/uXj8J2E6g1UIsB4DqrFOJW8GFvf6oxtRa1a3DOGeDLtfdILcx3t/x/v/YfUCr88eF/zA+//R7BGazXAmKO8en77K6+i/MenFuLls5m7k+1cwhknwsfMLMqD0CR50czFmXaFZy271sVVSpKlHMuRvstqbJUK3varkxNfOo5ODt7wSTePnp+x7MPX/GVH32fbfQnV0L6tvK9b/piF7vY97VPW+fDw/nEyDcF4zg0P2DGwEqnt+fDD6svITzAN56fr4/lLiUn5xv05egbV9tCi2ebXQb/xS52sYtd7GKrifILT/4iAP/9b/4fP4VRSdh9+Z9m+fCr/8Qv7WIXu9jFfrvbDwxSSktqtPYWkCtVIZc1+GigFUHVodoZVDAGDazCECwJYCbkWin7yX53Dq7g0dMrwrhhmuZWcayUxVh5qlrC3AKAuf1TyNPC/v7IPBViDJYoCA4nHi8wethuPcMwMGvl/u6IKJSS2W4Du90j8pIpx5lHw4ZpMzO5meNSKLkFrfEGLpLI1S7yzrs79vsDpcLu6oqiBR8DMQ5sd4HDcWKaE/v7mcNtJhdjR1EE5z3ihVITKRnLUYzGxuOjY7sbSXOmoIRggdhSrCIUFcQFFAtcLvvlBB6prPIhlmgwuQbXAv6WdGhhwBXc0mUampfbfVHR1XtV7VW5xkTTkzWW1zNmFHOWG3NTqYgEamkyCs6Cx9MxM88V552xymhlujvigqc2IARV2G03LLVwnCZE9FSlKiDuFLReK+/VgCnLUtAq1gbBMy2ZkiuH5cAQYbvZIDKQkyGb01yZ9hM+wlvvvGUV8KXiqlgyqVp/pgV1e3LpJA9hQVfV0gANNgamY2KeEr4lnGqtrf0x8BkW5BYsUVBacic3WTTvDGRmx66WpCiNUF57kkUN/NMyAWtaqLN7OWM3MxYBZ+xawVO1cPv6gGpGCExTIc8FL54u1aciLdAOImENkIdolb1pSaQl45wnhoFcUrtWJZdTYN+7fqWNTcZ7Ss42hTgaK0IHKWGhmbMETs+XlFogOw4TiHd87evfMcpsZ8CgWsoazQ0umuxBrUDBS0BwaMm4YuClpAmTw3KoZrbbkXHw1KT4anIfpWYUR10qcz4gvjZGB0s8et8qi73j/vbI8TCTiyUhh9CroyuJmVorIQRuHm958uSKZTnNXVbpKyxLoiwZXSppLms6xnlPdcLgPZKVECo31yOHw8L+vrDdBRAhZ6XmQoiRYTMwHzPPPr5lHHc8enxNjMJ2uyMOnmm25MSyTDhRNoPHu8jVbmdSECkTnWcYPHkpoI6SQTxMx4yTI/t7RcSTk7bER8XHiItCiMr7X7hmezMwT/Di+R3HuSBeGWKw6vmi5JJJc7Ln7qCQkSJMrb2cC4ybEZcmfuXnfp5pGfiZf/6f50t/9MdQV0ji8KJ49XgHQ/RtHNq85vQ0G64htpYcMxCAMqmyQYnrrNmqslviP7QkQ0uNriH+irJ0EJJzrCnCFnHMtVJVid53gU1yS2cds3JXlDInPn89MrSQZA80nqAINna0MeAdVLldlF/9ux/wC3/zV/jTf+qn+eLjkS7XeXqzrjXUF7vYxb6HnY+Zc9M+iawIkJP5dVkka2IhiCUUCrBgoKU+go3TbEV04DvzD302afJw5+fgTL6tZQpOwKcGnJeOD+4ApTZfqLFZni3fPpNmjBt1XTMpSlFwrc1NCte1JZeuoAeTiWtyTUIDqLT1r2IACQxQkZdka0ZvQAhxDooxD9XzZysGaCk5M892XSlltBrTj/cGoEaFgCN4h0omq0MXk7n1rrGdisMRqEuFomzigGwdNe2ZU1kBFDSeK+ccm23k6npgnheTMvMenOBjwHtPiI7jcWKZ88rGYiB6uwfnHOpkZf1kZZyyOwwhNFCw9cra5IxP5D2nLJc2ZqZ1HUYHa5wWZH3c6INe27fs0oenv/sT72CPE2SGlXXG3sm69od+9pWtUG1ta0wqzafpAB+n9n0tHMrUxl4D+agVi+DsGTvvGlPtGVjmTdhBa5tSToxX3hsbF6WsfXCIAzEKy7xQ29q3ZGP0ck4IPlBCoSSlqnvQXmvbN8B/mx4aqOYsg4iByWo19i8fmhiY2hpKG7MSctba7XaM0ebMV+knrUrt33NiSFif6wqkevBo6aif2hbsvjG/zrP1G2hMN2foSm3Hc64/VzF2SbVCFxFHxdZKTg3gZcxD56AgXeeAU6tw+n7tLKd2XHtnmz9OT7iBM0ohFwO95Ty3YgpPKfZMeoFOCMFkmZeEqoFe7NpKm6elzWPmT3SpOx8MEBjEI86zZEs1m9RiJXjrvyaL3OMonloqeTHfoLaXiBZ7NquEN0oMns12YBgDpRjTUC2VXGy9rjXbeK+V6s7v3xxP32QEvROG6DkeF/PxgiNGA1s6hHlZ8MXYodKyIGLMSHXrERdawVlm3ATmaYYKLnpQIfomhRmCAZq0Mk+LASRpcoCqLFMie7s21xjtxCnibB40JrTKzZORtMB0TNQ5G9jMmSxk7ya1SbJ7Q32hqqQ5U73gQ2SIvdgo89e/9R9zeJr4szf/K67Hq7V4xeEQHxtrmTYAYF+bn5ji2qA5G9PaOUxZ6w7eGEMdOLiGWtoGxvdk4IC+RjifXvvH0ABKqrQ1gJKqFVvklLkeA116dn3/n08Kvf9jslJTVV48O/DBN5/xlR99jyfbuF7z91ofXexiF/ukfd/xIp/40F5Z+uAbaf8WscLNDnZ0ZwCk80lFzvar0pn1OoJJHqKa1njtp4OmTlEH1hjJafn2aXtc7GIXu9jFLva72AR+4cm/D/AJRiURwY2736oru9jFLnax39b2A4OUrh7tqFoZlszr13tyalVzGIW+MW54q9I1ig20GuON997+OaPjrtXAJ13CQYCcE/d3B0I0gMT11RWTTBxLplRBnCcGSweJU3Ip7O8nci4cjwu9dhSxxE/ZF8btwBAcx2nP3TyhxYK617sN3o04cexvZyQXvAa8c/zQFz6PD5GPnr/k9esFkl2PyQkIb717zfVbG3K0qmyRwtXG40dP3AZCdNzPiWmaON5PlJYUQCuiTWZMmhybtspYkZXFRhQ2YyS7wjwlyimiDeKoxSGusUW19hRcq9jsMgiWuK6qCAZSETkx15wCVibVZjJwFsCHHnvryaBTAuz0nWuVte3KFNvO2bO3iJ4zZiEvuBBbhT/gHC5AWSo5Q50Xci7rdd2nA2EbDAjiB7TCPC2gstL2i3en9lNlnpKx/wDDEBi3Rh8vXik5E4NVt2+2wnb3iJyV+/1CzZVcEof9gXHcsN0NTPuFebFgshgqziqxS7FwQJPREGdAHCctNSPSEkEtiFiVgEmCZK0cpwWqJ0jAOSiaIFtSLfhgUgtnDA69P/TqVScF39pPRPCuAdjOghJy9kBMVq5Qqklt+VZxSw3kxbfguie08VdyWivbfWvfnLOxoFGpQ8QHkxy0SIf1L+8DICZJsJQW5FDEm4SVdwZcrO38znU6f9v/lFg4JY20yVloFcR7lMo8VYZNABJowDlnTElVid4qvN969xHvf+Fdnn30nLwkgvcc7hfiaKC52/1Mzg7nC0Mw5iqdHJvHjvfff0yII8ekfOvbz0iaGK8du0cjm3EgJ3j+8T2lZNLiUBam+0RaCjmdpZFrRZ1HqyVxfHBc32x59HiHD4Iuyjx3uTuB2vuy3a9mg6ZUy0ZCgLizhERwjvkwsb+bLDGWIvMxM46O7Wbg5atbNrsNDffDPO/ZPrninUePURxpqYQYefxoR/TgnclMztORWhOpFHa7AS+KFrhbjhQskRKcJyDUbMxOMThutiNhEFxUhquAivDq9Z5ho2yvTUbzao4mbyegNZEq1CJ2r2ISoCFEcrHkUdTAdjOyvYrEwZgq9i9e8Kt/86/x7tMrfub3fYGb6y3O1QYE6BI6BWqGWlpwT1dWpE+YWhDwWGuTc+MMBmA7eGArjvHBr/bbRCVJZSfBAohiczsIBcB5tjQIgorJ0wBLhedLYV4K74ye4Friis5u10KIjQFPgKzKfYW9Cn/v1z7mb/3VX+Vf/Nnfy4/90NP+VngzzXqxi13sH9paUrK/k86/taXSCix6mE+0FWjg9HuXYKtnx3qYLnzIO9Pnq/PcgoEc2+9y2u5cXqZzKnS2ofNjfRZt2Aw4kSalNa3gohUEUexezgEIK9hADNzj2o+VLuPVgAzSpbsMbESxdfJuuyWHxHxcyKWiIgYuag9V2pzrxOOkgm/SbWLvFymKSKRqoYqizkO1bZwXHLEBHSq1GnCpqrDZjUh07A9H7u8Wk65TA0iYjFIDaniT/63YegbNVK0syYAAOeXG8skJP7civGVlxVGtjdGjvWPbGsx5JS35DBBj7xytAlLXTndiqXqYzuosl2/m4k7SYGcFEuuP685ne5wNmrOvO0ABek7sHNwCpySeAS2kH9Y5nGhj1ZFVJrCfYp4XwuAbE66tOWxNq+sgfgDmwcBG0tb2PvoG9KcBKAyAVNV8p+3VgIhjbiAyrboy4fSrMAD+CWhj99j4oYQHoKlTklBW+bMT8kiNudgJSbP11waOq1psHLSCAMNZ1nXXE/ZI2q3rA9Y1e4R9w7NZSXq/6uAu6yO9jaQ6apEVSNT9mFqNsewka1dXgJgBwVyTJGz9V1jZxEBWptVT/7M1XS+MUlh9UJONe9gfBXnQvn0f1bYfxl5bqQbqdM5YjwVC9HgP26sNm92WeZ5BbRwd9wub7ZZcCvf35k94JwxDsPsujjEGnj69Jo4j9/uZly/vqFRCdAyD+S4lK/v72RjFsskCQm5+QBuHjbXYickeWsGQMG4izovJoKXS+rPQpexOvmBn/mz7YvNaHAK++ZjzNKMNuJnV2jInYyBztRKiNtotm0tSTo0tTlocyOYwxoj3gVoMMFVqJadi/y3a5CvbeFClNhBo8G6dCsYYWv+uhMHm/2k21uAQHeIdcXCrLJ2xUdm7o9Y2QJvvW9X8dR9MhtvkOg2smA5HlIlfG/4Sf3V5yp8Z/6eMrVRBacVDxST5tI3zT0/tn+YZxaSaBCt6WEmT2zwtauVcnyid0JOkU5A3QFCc1hImCd2vorOdCEkrc1Y2Ttr+bS3QjyKnc3XGtbka89Krl0e+/fWP+JEvvc1bT6/WtcdndNlwsYv9NrVPAmXPZ5MTVLmvXVnXab3I6cFqTB7u//3G7DlUfAWar8f6pE/yJvj8/PeLXexiF7vYxS52ZqL8wpN/H6+Rf/0bf56gw2/1FV3sYhe72G97+4FBSiE6YtxydDPu7ohrsgeuUe3XqjhnQWUBSu3B5FMF56lK1hldeK9MbEGmnMEXxzzPhOB4660nPH18xd2re273R6Y5Izi2m5FhG4zBRoRx9A1AFAElpcRyFK6vNlxdX3Oc7pkKJt2gnpubSE6F4wJvPX7C2+/sOBzvmSclXI3My8RbX3iKuxoo33jBdJ/xXri6GgGY0kJ5uZCqUHImbCPjbgQqeV447DN3rw8c7xY0gxajhO85hZwyE+UsyAcpJ5OLcw7nWAEUVIjeIV5IuTQpB7BAn7Vp8IFSWvDWGXioV4srHUjUAuCtQrW2KmyLKDcX+TyYdV5Vu1r7rlHhO0cDJfWgI3jn1+SJuIoPwSq5sSpvQVZZL4mRnColG9G6CGtA07VgeC3FGJZaoL80mncnBn4Du9dVImEQtlcbRApLssAyTomtwrDUTBwiu+2I8zBNTUpBpEl6FaO/HzylUfM7b5WqOVnA3yqUT8nAHtNv3EcP2qumSvHC9npj6acqBDFJkFw8h8NxTTQMYzRQUJPB6ixYVnlpoQbXQFM9YVfb8/EhPHhWlvAxlqEQgiXaso23rFgVsZM1+WLBC6uAFXcGUCp2z1phWQpRXauWNoasUirOm/SBMXV1qnkL7AqVqg1Q1WQWRJqUX5VWBVvW/raC60ptDE6OnCFE2G4Grq43eK9oDSxLYVluub4OfPnL7zDuHEuB47zn6eevCGKV7+noefz2lte3d5RvPmN/W3j//Sd86cvvEAN88J17tleez/3Ie7zz+ff5hZ/7e2weRR5d7xhHY+hJc+H+/h5VwcnIMmfmabJq4DVipIjDgJFjXIFkirLZDNze7akK03EhL9kSpC0xNsQBp8Yw1pM4tVRiVK6f3vDOu2+hpXD3+p6SlEePrri/3zPPyQBxpRqeaRtIt4ltHBENLPPM82d7druBx0+vOe4XjseZZTZZuWHYsEwzm+2O43E2mUvgeFiYpgWRnjy2unEnHhqzlhMhhhEfPHHjiKNjPs4c7xMxRXzIiBPiRnnydGA6KvMhMW4HnBdSqcaCRSWXTAgbtpstm+2IE+VwvwcPx0NimgpXN3f8nb/5V/lPvviUf/G/9Sd5Z9wQnRCBJErRRCVTaqJUq3z/fmwiFSWppeosz6sme2jpDzzCrklAnKAKBkISFUbxxlkkDbggQsYCjEFoc5hQpOIAVz17QLzwdBN4PEbcGn5scwknyRyhIupICh/dTnzw3QN/7a/8In/ij32Fn/ipLzSUQktGXKKIF7vYPzrrKJB1ard3a0VImAQDnCqdZ7R998kkI+vfDwdpn1NOHCv2PtSzfdpSz5j5GqhCOAGUenLUPZhDPvumVamuS8fqCvgGGitGB131lpOWeG8pWq2tGEJPslX0HHWTchM11s5kTCXBe7bbkSEGk+JKxjbigyeOkVqyscWqgRRijHTWVi2w2Q7EwbMkNZBTtrk6jIGSKktWttvA48c7cs0mXRw8x3k2KbAQiENFlib92mScl1zIJUNntomBMJgvU2tlWaxYIc/GNNoBI10KqNRq0nTS2g6hFJOuMgCLYBwf9lsM5iPkbAw2XYK7FyF0gIgBcmxbrZ3VRujZ975s7OAee04PE3Hdeiqsp+pW/lY966+qn3hfG3DXroVWHOGDb+vZBvSmrgCZM3zS6TxO1jFcW4HMOSDJ/u9WSb9+AFXrdz4Y7FC14L0g6nChAULUZJLFKSHY+rX7VitgaIir/+OcFakYk2YH7dD8CX0ABFI5zQu9PY0gVBlihFFW4If3gmpAtc9MJpOtaiDvE1jptI6xyUTeHDzQCoc62GUFH4msPpwBK7Rh23phjIH17FE5A+nr2TNf/ZN+Lw28dTZ+WR9nbaAqt/pWfSaoqisLz+q69Oe2JmFPAA2TpWYFgqna+i5435iDdlago0qte7abwDtvP0a8sj8szPPMMIYmP76wvdrivIFjYrQ+/OjJjrfeecQQPa9eHUCU4ishCsd0JIxCHDfWlxFyyhzuZ2MoxRlYsEkWnnzvuralC/ZMfHArcG2aFqDFBXI1X1GsDw7DQM2lSTmztrHzyu5qSxwjKCzzQhDHOHiO02xMTI2Js1oQh2OaGOOAViHlbEUZQ+XqakPJBgQtuRCiSVOb1JojpQTND41BmMuM89pAvg1A1uZX5z0i5p9LDSsTXKnGzlUKpFwRV/AibDaBUoTjMSHV4aPFmmpROq4xeAet/yzLgizaQEqQUkHE8frlC/7zX/uLuN+75Wfiv8GjcMPo2pwT+vu4rvGq32yh3YEFn/a9MbN+8ufuAcQ31g6KFWB06afz/bQd0ci1hasBNnIm0/aJi7L5RDBmqqVUnr+a+eZvfMCXvvg2775/00CAjeb44kxc7GL/SG0dUWdrHkUojTXJllWnMZp5CEp6c2V/monap7Of3wSS9+/kwTZ9XXR2bWdIqDVcr2uU4WIXu9jFLnaxi71povzSk/+QsdzwL33nf8+mPm7F+PU33/diF7vYxS72CfuBQUq3tweEA8tiwIUYA9tNpFblOM2U0pMK2irQDHBjIKVq0kZqgfPSgsWugSEsqFstCLWIATSqsL+7Y7fb8vTpDY+eXnO7P/LqxT2lFpxrMlNVSSmz2Qw8fXqNUklLJSflydsbss4c8sIyVWpe0FpJ89aYRsTj3Gs2V6Au8OpwS7274/7+HrAgoBbwHoYRXFwQAmmGPBeCV8bNSIwDVR3zlJgOC3f7iWm/UOdqLCm1i3uYm2cU7z1ydErAFC14UWL0HJPd2xgHHj+5oqLs98mCa64gYsCZ0/HqCorwPlClMs9LS767FkBu0hhr7NmCy2V1dy2Ia0ApaUE5A5T0QLpVt7eEXVVo57VgvyO3Z+l898RN4mkcNkzT0aTLckJrxelZUqW/yKWuQJxatEnAwWazabJnjdVHFc0V771VEa+BcMi5MIyezRiI0ZNKwTcsVkrC4ZjZirC9itw8uuJ4mEiNUl9qYnM14qNJgQ2bSAiRu9s9t7cHjveJLgBVq4GmhMZS5dy5j29BfRXmuTBu4cnjx6Q0t+svjENAdVhBVkrBB7EEWAOqSAvGq2AVxi1RAFYFTK2UpqH4AKTkHCEEA000GRAVWqV5xoVWTdskF8ZhNEnHUllSsmSQH8k5k5aMOI9C63OnJEMrSzZJNqyK2iqdHdU4eNCqOBnadbekjogxUpVe839K0rTw9VqFbUCgQohQ88x2e4PzkbffG3Eh8/TxlpvHW6bjwv7uwNvvvcvTt6457O94/vFzch759je+Q8qZMQrXn9/xxS8/5v0fesxmOxKuNlQyX/v6t/jq1z5ivz9wfR0Ig+dwe+QgwrRfuH89IRqojb2r5fcI0VNKYckFVJjmSioL210gDp60VO7uj62vQM5KyrCUTHDCZjNwfbODohwOB2PcwtjHwugZh5Hb21dsNgNx4wmDsBlGhMqr1/eUnIg+klIiFWNbmIMlPQuVkmZqKlxtR2q2JOySTE4yq4IWgjiGwXF1/ZSlZG4eJdKcWaZEypXb1ws1m+ynv4pcXY1ogXmZ2Q0mg/fso9etPwVev1rAFTYbh1PH9dVILYl5ykyHzDBGhuCQGNhsN6Sc7fkd7rjbvzKZzjGChyVV5kVJr2D+ld/gdvoP+LWvf4uf+qd+lD/wk7+Pn3zvPaITxs0AUik1kYsx0H2/hL0AviVb5UGUDnqaaxC3SiedapRhgyA9no8lOReUWSsDzgQwBQpCxgAGe63cF+VpFK6dEs+S8ADSGDHMDAhW1N6Xz55N/Gf/2d/kK19+jz/wB7/E4AUvBdECOnxqUPJiF7vYP4S1TGOfO4qayE5RyAJJYOkAcGzGyO23cnaI/k/nZztx7Z0SDCfWj/XE2GxiJme/nOUM1s89/OE+cQT4LCcaj0eTea5V0WrMjTHaGmNZErUD4elAppa81wZ1OQMkPIR1manasdOSrJ2ckJaFWgsxBK6utoy1crifqFUpJRtgop3P49a1UQzGNhhHR6mZOS3UrDiksRkmBEcInnmZePFqARw5m1RvTtnAqs2vsWVcpdSCiAd1lKp4V4lDtPY5LI05ySScatHG1EcDZ5wB29SAsdJvXOx7xaTdxBm2CTWZqHEcKA0k7pr8VN/VWFzOGGza+lwV6Gw10q7lAbjJngT92TQAjL1b23aIMXn0goJGTST90ek5YqkfUR/8rrVQSpMHV5MC1kaKtEKfxK2gJLoESvNhDGcghBja8+gcBrW1oWtrbqABmdKSCIMnhIA/Azwh1vZLyozB2JYcbn1etvY1sIQPAVwD6SOk7ElzNukqo19pQJXzBjiTZtHTWqEUY6gZxkitGR9cW1sKA+FsNDQm3bo24Nkc0lnHumwkRDGIAueB1TPmhc5iq709oQHAamPqsuM57/DOk1LGKeRyknvWFh94uGCRtVCiNrDTSXLujNWu/13t29pASr1QQxrIUbR7EGvjPehTnZhKnHWInAthcLa+HmAcAnNaSPtCqcrjJzdstyNarVDhuM+kZMxm3jm2jwLXjzaIg1QLfrC4x/5u4vbVTNVCDI6aCsuc7F2SKiWzSnZrGw82DxogakkGMMrZWKPjYG1Si0kKdmapDuQy8F0rrBEljhHvHfNictxOPD7Yc1nSTIyhSbFZwdF2O3A4TGgtiA82Ly4ZVeEwz4gD8Y6SMtTKEnzz35RSocwJ583Xds4xjgHzA+2ZP9psbcyWymG/ME/GtBWiY3cVT+BUV20unRKlZvNNU6ZkxXvIKkTvmuS2J6VKzTa2wmAgwKrK0uIfvSOEVuy1Tm1VORwmUv6Q/+iX/jy/NPx1/ujNv8o/87mfZXz54Qp20kZd1yVCvx9MyfVR+8YGJ0DyGXPJGUBQMEmns8muSUTbO7Dv1zCqVBUWlEVhFGHTCizOBsqDs3er7bjLVPjut57x+MmW99+/Ia4MTt/PY7rYxS72D2p9hJ9WSboyp1Uaa5ucv6pafLV96vNVV7c9jzGeH/P8e9vwNJbfnBX6yvkT85jy6e/Oz64rcbGLXexiF7vYb7kld+S/fufP83L8On/yw/81P3L/xzl+7ed/qy/rYhe72MV+W9oPDFK6vzs0MIUFcq2yT3DR4bLRb6MVqoFmRCx42OndhV7lar8ZC04zpYGcoJTZKhzVcX93YJoWNsPA7mbH1dWGNGdyplVSV0qxANk0J16+fsUwDIiYzNDd6yMqloiQAtthZFb7O4TI1XUkl8yv/8a3qVmJccPxuGd/P+EltIg2bIZACIIWq4hGvLl33iPquH15R31RSXNlOiaWpazBfUtb6VmV81nw/yzbZFWFVq2bsyLe47yYvJUI03GyClCxSkFL1Nj9d4kxA80UWKwGpwOX7LODBlY6VQaeJ3XOqtbVsu89jtyDxj0AahXW0GXI7DdvCQHXpeZokn7KYX+E/Z4uP1dapbtTC9SFEMnOwCuhJwbmJmWAp6hVhPYqY+8s6V+1QlWcCzgxWbmcCnf3R8bsudpFvFeGEEhLwfvI06db9tOecYyIU0pKjNtIqNXAQcWBtGSRt8rTVCa21wMhBJ6VW6bjDFUJwZiHamlSdSqcqnXt+ahYRfL+bo/WLT7Ck3cem4zHnIixjSfvUVWOx4VclJIWu6fW1hULwpq8nz0XHyPkTM2ZWkqrmG9WKzllqtKqUptGiDPgV5TQAF/C1dUGrZXjcUIrVtWPrGPU9eC/k1YpbqlYLVaVXlLv69aPqjNZhM1glcPTtKyAOuca4MNBCAbwSXNu0jTekpCtotjaBBQDBQUnPHnyiCUlrp7egChf+T2f4+pqw8tnt5SqPH1yxftvb9huAz/0+S/y0eMNX//aC7ZXT3j18jVLqVzfbHny9hPmBK/uXnN7e4vzjiFcIWw5ukTRzP3LmWVfyFKZ95mSIDibd4zVyjNsI++885SUF168vCMnNRnDxfpmTZ2RqiUUBER8k5GpDNERBkfKR66318CGXCvzbMlV5wJ3r+/RupCvNjx+/IiUEsfDPTfXVyzzzDQnvAtNVq8yuMDhfoIA26uRqoXp7sDLwRKn02yJh4pJKlzttmjweHHc39+Raubm0Y6bR9c48bx6/po0JQ45E7eBt9+7Jg4eITLPB7ZXVi19vK9sd9dorUzzBOK5ez2zCSNu69hdbVCcyfbFAVCWnLnfH5nniVogxpHoPSFWkwXEM0aPbyBArQsvvvVN/usPn/Orb13xC3/4D/M//3N/juvra2pObc5uzGtNXvNTA2wCXmEjjpPYBD3lY/1QFN+m6V5fLnRAgCWKu0xJApZSTL5HaMCmDkhw7GvltmauY+BGhHguCKUdbmBJwD6IFUgUXr5a+PVf/Do/+8d+D3/o932Raw8RrPq/J/gudrGL/Te2DhJoZIEG5MSqmotAppLVGNNseyxxLOdJiJOdIN22xuspzp40cCINJH763iEr6LrnLDs0uLMutTfyJ08orEc73/KzZqV02acGYgH6VYuTtn5u0K7zzEuj3nmQPxFpsry03+y+jQjGGFO6tFwpJuUVosmqiROi236HzwABAABJREFUDyYfnY21o1YDKtXDhJwlfY/HxmilxiIYnKdoNSk4Z+sjVTgcrMAghEDJhbTY02sYc3wwBhfEQBCKAfPFeUqytUWX261qCfgVyLDa6dn371XPQD8rIEUb+EYaKxLGhtLWY/YGaiA6bQCQM1+g1gbkWYFH7ZzScTqndd8nrq0/Iu3vNuz61tx8g/mJrkxJXbar+y3WZp3Fx/pCThUhrzLhJ79KHpy/Utu7vPtIK+pgZZjpjJDQAULa/B8bq7UayKYuFSHgB29eXTvnOEbi4FsysZKrAdJ8FALOQCi1AWikiflVY/gKg8engqpdi91PYxFdAXjtblwDHLVbLCmzNIBHHCKbYCycJZscoBOHisn7GftSfgD06UuNB0Co1ndObE4P/cNSSn9idGCRtYWus5w4Rbxr8oTJ/CMUGutxvwbh9FzXft3ln88k7s4BSr14JufSWFutKEJa+xqoUEhLZt1Rz/qz6yLAdr1eHFdXxnoWx4F5ntkMHh8N5BKCYxs9Q1Coic02UmVD0RlVz3QwfzMMgWE0oH3OZZWGcy4w7Eb2h/v2m/VDcX1cQV0Bgo0110EcQwOBKVVlZdbNM9SkK2hzffm05+SjY2hgOW1zpTjz33oRWT0by7kW3GhsV2lJxBjxzpl8vDSQJgYqStVYy6JrPlxRpmMCVVIqdGLmzghcpOLFCmKqNolCMXBgOhyI0RnIKwTGbUQ8xOBb8ZrN2zE4vJosaAhAgZQqTm2NHhrg0vnSQjXCMieUtPZh57xJH7rTet2JJwYDypl7UJhfv+bXw/+Hb0w/x3ff/dP8SX6aaU7UkluPOQEaH4AB3pj1woOig0+CCrpVjGn1BAlQTq6KMavkavNfl4BbJwSs+CHVyiDCKODOhOBOC47zObEDrJTjXPn4g1d86fNPeP+9RwxyAkU/5Gj8bK4dLnaxz7q9Od6VU8i3s6PV9bv+RjrbXk4eQZ8/TmLz32sGejja+xCWB9vL+p8HAPCzC30T9P9pfs3FLnaxi13sYhd7w0T5tZv/lN+4/i/54v6n+Rn/Ezxh91t9VRe72MUu9tvOfmCQElUaA4809hpAK8uSqVpxXcapJRUqlqTvMZs1+NxcHd9Sw70E2EA6Ji1wfX1NCJ6cUtvapKyeP/uYNDuur28IEZb9QlqKSUdUBUns97NJqFUhaGCIgWG7YXcd2QwDx2Xm9v6AusqSM1UdaCQ4tWB2tcrlVCsxOsYY2G1Hdldb/FC5u9uzzFbFGJzJST262hHGyHFJvLrdU1/OpCW1OGIPHJ2CP3rGmCFqATmteQ1S9upkCc5AVseJOWWrWlQLEFZMDqoH351zLYFCY7LiDYezUqus368nV4Bz5iS7vlJNLsDYk3RlwanVEvG1Ve52oNMpkNwTDo0+v9g9O1eJISDOUXPBi1uTDKVHOLEqUScKzlPyiSYxLQkRYQjG/pOKJVm889RsQdtasgXRiyMthbIJeB8aMMSCosfjkeBhOkzE6C0oWzLq4ObxFbpzLHNGRBEvuAh+CHgJlDwxDA6tnlrEgFkoNTdAlnUhA/cI5GVBPITg0WqVnQHH8bjw6MmOEB05enIqDcAFMlsSw9rUAGX2fIVaC6X25BCktFgg1rtT9XtLHIXgcaFVi6sBqnpgv1TFpQaAAu5e31FyaRXdllip2p+1CWA556wKfAWhCdXbvLAsab3eUy7AmLziYNW6aTHJDucD0XmcV8ZNZLfb8OzD55RkklhV1GS3xNs9OGMOqjUj4ri+uWE/3XOcjjx/fsfVMLK9GiyhlBfG8YqcEpNT7j58ye39Qrw2xrfNsgWOjDtPKcpHH32MIMxzMtk6PBKUqonUJMZSLcYYF4AsrUJeyLUSQyWXxP3hFuecycE82nLYH1nmhbJU7qYjpeQm62b9EMm46Hj0aMvjR1t89EzzwlJm5jSvIDBLuExcbSO4SJoyz/NrUEfNlelQETy7rW8TSWUTA8fDBK7NZSmxGQdCiEyzySZMh8IyVyQ44gCimcVntmNEvLAdNlArx2MiLbcISgyVx09Grp7swFWmKRMiuBBYUoGcuL7aorWQ5oXdNvL69UROJkE3bneEMODcjHLHMk/Mx8q0LIjrfS3gfTGWB7V+6leQkuKCgqtIXlAnvH5xzy/+7b/NX/m5n+e9d97nl3/pV6AmvDO5m85WZwG7s899+kPYeAEKp5mm4qqB8zr9ugUTjTXBco3WR7UlDwowV2PfGEXwdClGacwBwrIoj6Lnsdh2qsHY17SnDuoKUVDJbT4M3N0X/tbf+iY/9uWn/JE/+MOMTvANsvAghHjJJ1zsYp9qq9zwp/129kNfGlUMdFjUxnZe/1HeBP+InJIOJqerD9J8/cSuZSCddk7NU1LiLL3YZgAe/G7brAJZHWrRACY2D52f77dDUkEacAbX5X+7BKyu6x+ks150Wa7TuvkMudT8COhzYgcsCQZaCDGuUnLGNioMG8/d/YGUlCF29tBgIH90bbxaldyAH16EGALjOBpL5xBZlsTdfm+MPslYc4JzTQq32PqLE+gjeM84GEujuMi8JEqT/XLO2F27DIfUgvO+yenanK/na/o1E/WgJVob6UNQECcmnNKupRZjJK29jbUzJbXmdw5pBQX9kP0scvYMTjJxp3fReWKtP0FRt4KP+nFM0koaS0kDnpxwF+26+rYGour309vUu3XPU0tolwKra2Kvdrk6aIADIXjXQBy1MUOZnJZg7/mqihoCjar2Tg/hJHG+LJmcDawxDAHvjWG1osQYUN8ZtOoKZHPe2EFLLoQg1u/yCYwnXrCCB2vjB1JwdJlre765FI6Hme12hCZvWMWALN2PM2DKqXWMBMu1AiJb+Vjxiv3Pedf6fm3+BATvGcaBopVajH2olg5sa+shtRjB8bicfP8GRFo/24HX7xFWhjC7LmkAns7qq8bQRGf0bYC1lt4VvPkjzq57GCIlZ2MQA1TajC0GYvJNMq3UYsUyav7ncrdnXgqTSAOdnVia4hCpmrl9dseSFOcjLjhClxjTwn5v0svmOxnDr4iwpKMVFalQs61to/c2HzU/vzZATe8ry7zYvBgcY4jGvlStX9lcpOsAW+cKJwzjQBhM2ltLadtn8yd6G1cDVYkLKNpY68yvSTkRvGMYLN6SayU4Oy/SGXIhhIhzxv7Wx0TOjVHZYwVBwYG3vh7EwFPzko2JVaygqA6eYTNQtFAz5Aa+CsExpcViBN6xzHObi4CqxHFksx0QJ5RcWdJiQMJi16FnFWDeS5OQs/autazn78VO1GIMUSVxPLzmb3ztPyfuF7a/MuJrxnsxH/9s3qLPL5zk2vq7u89N60NqY299dXFiXHQ8ZEDpHHml+/HS/QPW2bQo5FwZnDA61iKL/jpoo+U0F/Z/q/kh3/ngFbvrkS+8/6gd/zRbXyoeLnax72/raDxfLJ3/0r7qKw9jq28saGpQIz2Llbdd27rmUwBI0ucVOZ2lzQ99ZwMbnQF+16WYnA7y4EpPc9a586HnW54xMX2WfYmLXexiF7vYxT4zJpBl5uvXf40vfsXx5Bt/8Lf6ii52sYtd7Led/cAgJe9gCIEQA8MQEQc5L5Ss1GyVdA5vVZvimoNjYKEWtVmPVVFSA6ZIC8ahIK3CdF4SuSbGYeDm6oqrq5GbR4F5OfDh7YRyx3YbGcIAUcglr1Tc4zgikkmHjErm6mrLe597ym43sLu64v44MX/1m0xzZsqVcQjEKBynbGCFXHH0JIMi0bPdRlzMVAdhjCABL45hDOSUuTtMpNcH5imhKoQgJgtVLeBae/C/B5pbRezqYho90+og9paqWlmyYPJpxrhRWjU4+kkafMECieqkVRZ6I+pogXpRAzVYxbWnh8qkH6edvcsdWAVwe/7eN/CTNke7BbSt7HGtju73QrtPWlVmqQKlEqNntx0bCMYial4tAO3ErrtXExvIwDXnvSJVKC247YMFM2u1ewti/WhaMiU5vATSrNzezTy6uaLqzDTPHA/CMi+Mo+fRo5EwRhzGxOV9JJdCqYWaC8EFahEsJ1BRzbz1ZIMPN7x4fuDubrJguazZR0zWoycUHBQL4EsUhuuRlBPPP3hNmQu7RwNxHKiSWGarOl6SVUN3XvcqimglSrQK66p4L1xdbxm3G+7vDygV7wdKNtCa98LVduQrv/dH8FH47nef8dF3XzJPmZRSA1kUCy7PxUBSrZLXeUtIheDwwdidjKBGkWCJoNwC4Fod4iy5o9kAHHF0PHrrmmWZTbIk59YnjGUtl4p33uT3EJTCMAwUcTgPKoWioHg228Bm9Ox2Gxu3y8LzZ69RVzgeFkqq3C8GODzsD6Ce/TFTnSBUppRYJiXuRook5uUI4nnx6sDL118nTdnkDrzw/uffYQiBeVnIecBfjfDyQAqOJ0+vuZd7Xs0zSSFbxBoVJSdlOhYqi0ns+YBqJg7GopCnZOxUWhtjQW7JV2GeA89eJpsLKsQYWJaFnBPeDdAS3sMmcHVzRVHl/n7PdF84zhnnEttxYAwDqRTmXJl9NdBYVcZhYPCDVYaLUlv/EDEpvrJklIDIwu5qw1wzjx9t2IRAnivPXtwSgvK5998iekH8iAuRFy9fsxyV4/wK7z3brWc7DERxJhc4VYZhZDdueOvJjt3VNUuZqK6wlImUFmqWlUFDawGxfjuMxm4Xh4AuVhG9lMo4joQglJIQJwiFaT9xOHyTv/Dv/F9AIu9eP+LHf/hdYkuuZjp3iaJayFQmjcxZ2QZjtsilMXfQAbUV1LeAnaWqZoVcC8F7+jTZkxEZSC0ht3EOj64ghCKwr5UlFUYVHoWAo2LyHF2upFVnt/OtspUI+7nwN37xqzx+d8Mf+qkfZud7yPGMhZDTe+RiF7vYp9nDKPw5eAiapCI2li2BqKS2HlsBEmuC8cRy1I9s667TQc/g6JYYVV3Z2TpHSyOGWOeK8yvtS7p1HdjP0f4x4ASsKQhDOq5gDAP7nh3gM2gGTJLGKuQbQ0qmal6BE6r9eXVGKX3w/M5wLCcWHBEDPZwBtlNKZLE17DgMbLYDw+iZ58Q8zSxLIqi9u2OkgXds/emcWxk+UBhGz/X1xt5XwRNEiMtihQPVrqGoNmCBXZsTt/aDWu2tYlLVdvnee8LYQA3LwjIZa0k/v3eCqF/BROv6+ixp3t9LD3sla3sp2gDrteWixYAQaj6KqDw4ju3bZfb6Id9IirXjd3kjPX84nPrj2aWs+zpnQHhW3+jky5xzQbkzv8T+W1fGKG39KHhPZ9xa2VZp0tatH1i7ywqS6iAmK/wQ4mjMtaV0JiJ7LvNiBR+1KHmp1LKsclwlG9urFQUYC5KIwzsoKZFqaWyyzf/CNeZXQZus9dXVgIhjv1+avFVnaznNCR3EIu2511Jw3hiUSi0sx4QWZbOLbc1eW0HCqkW7Wi9kUKcreNM7x2a3IcbAfn8w5hvnQHwDCxmo4+13HxNHz/Nnr7m7PSBVGrhOVsBNqXVlQbPx1xhiWhHNyhClfXUlq5z4qa/I2k/EObbb0e5zTidpN+zRGrtUYyFq/SPGiPoTa1NpQCrz9R1DjByOUyscSY0V2Jhau1+7LAu1iMnb10oIDhcCWgvqlHmejSGtOpaU2e9NwtxY3Rw3jwfzoVSYqTgXGkDNZOUOdwfu79LKkmb+dkUxVmpVY/qpRSm5NKDaKYyi2qbDhtrr97IsC6C4zprc5iQfDPrqxOGCZ9wM5JINpJQruRpDkdaCq25972VXV5ZeJxaDsIKccpp3GzDGmLZcK1RxFKk47xkGj7R5JufMsBsJo2tjbmCaF6ZjsoIzIHiTwJbGfCUutOsWNhuTElxKQlPFiVvjHr1YpwN8pBV9OWxs12rgsVp732n9SKxAq5ZC1czLDz/gb3z7v+InvvN7+Nw7T/FxoADpcHcaSCiz23Osyv2UicGzjQFXNvgKo3crcKBPX9qGYlZIWtk4t47y3u1VDWLl5PS+77NtBRZMUjBKO8fZe/7h3H+aQ/u3iyrfefGacev5wruPDaAkfay96UVcvIqLXez72fdaXncJN/PnbbtzEv01HH7mU7Ro+NlRH8KLTrHh87XXqUDBXmGnK+pzzyeuUR7857TU+9Rzsc7tZ8u4i13sYhe72MUu9puZwMvPvfzE1+nVh2x/+KcAe6cf/QuKpPV3p4FdeftT1uUXu9jFLva7x35gkJJzvgFWKj4I4zgwTcqSi4VEGj25dIYkLADSAS2rLECL1qwV0uVUSeil1Ys78MXYQvKSce6GGDfEMODdgeVYkaJc3ey4vtmyLIl5XkhzIk+ZYQhcPR1xGhg2garZgAl3R461EGLkS48fk3NChoHkhMP8kpQLY9w0KbTGTCOQSiEttTGcOLabgd1uQ0W4vzuQs5KWiqpjHAfysqClpbwa4KfUfKrol5MsWGuUVg3a8C7Ok0qhLFCzMfqE4HBeGGM0+ahkjEQiIK4HhM8TcLK2dQ+cCq06lgZmalT8qgVVYzY6d0V70F9aMMtkw7T1h1YV3SLBigHOgndrINkrFOn09BbE9963xILdbC6FWio+BNAWZMyZqlZFLg3BUXNuFakV5wfe/txjxLcq0dIq1LeRDz+8ZTooaSnUWpBJmfcZRCnZ2Hg2m5Fh4xHvCXEEgaUopVigN8+JEDyH+5mKsRANIbDZbHFiUgJh8HjvyEsGPUnjaQsc93arCiUXfIzEEAEh1cT93RHnTZqgamMxqhaAFZfX/iGNTSAnq/B3zjFuRh4/fcIwRvbHA7UlyKo2QFxRDsfC3d0t14+3vH79kiXNOB8Y3WBJAaw6v+R61mmsUh1nX1gipidpKiK5VSonSoEYB8CSMtW36tkG7ttur2x8eUdalFQ8XQJPqIgLDMHz6HrLbhjI2c45jgN390emaeGtx1se3WzYbDcs35oZn+zYbk127+Y6czxMvL47cn97b4H9quRU+VBe8fY7T9heP2GaXyHFwkBx2LKUzP5uIZeM1gUh4HxgtzsQIsRBiKOgtfLkrS1P337MuHF84AvTITPfNvYqrBK9pMpRF2NSUOV4v7T5zhkYqJ7Gi67JKpAqzPuZipV8e9wqWTGO0RjghoGiUPGkqhyOR1JSljRb/3CRw+HANJm0Wq2KC5acCeJIqZDzETc7Qgwmv5ArmrOBaUqlLoXkYDrM1CJMXojXBmq6erQlp0wqhatHI7U6DtPMMETuX++pqVJmGHxExggibK+vGbZKngvDWIlRWOZbUs7EEAgOtkPAbwbmuVDrDC4SYpt/amE3BlJJxOAZhw3Hw8RhP61yH7iC1oiqEh28/PY3KEV4+uM/RvDvohQ0zaSUKGRCdVRxHLLy137h7/PV7z7n9/zED/O5959w9+wVP/7e27y9HWweE+lUJjZWEV7khaszedIHAT5VvAij9BroJlEJ3NfKyypsBN7ZdEEG31QYTO4SZ4kpbWJyNkc7Dqr8/Lc/xD3y/JGf+BJXobGEXCqdL3axf0Bra88zxqEO8SjiKKrGnNR+K3rCZDRykPUVqcgaxX+YUmifexJgTcafJN8epg/PwUifBCqdb9t/6UnLc7YDXQEip/sSxKR0/6Hb6x+/dcBKKRmw5HFPeHcQTm+F033I6d9ngJnz5I/oSf5YBLQUaPKqpZikbc6JOBno3jkouZJVkaExUIpQqpBTJudsskJDwDmT9dofmvS1ONtPK1ebsb2bPKkxtMzHmRDiei9BmkR2MOZDbaykwTeJJhUGBrQK83IKWPWbdvTqfF19k7OOef6fE3sNDTDQmDZr7cn7xujjHKWYn2HIhzc5vB6e4mHbnwGT5AQItus7e1etNEztqcvpOa6f3zwmclr/rufoO7U/2iWXJrP65rvROW+gnloRTkDB3qC+FzxEYwkywHxo/pjYM9kv5vuViuaKFAMsma9k4CgfHOLdKtFiwB7X2qOuYzYnW0uLa2xeMVC0QM2tDex6DYR1Ytw9B6P1D9YMrZ83mcFaoFYD+Rkg7azt27Ptz27146T3RyhaDQBeG6CuHcM5SEvl449e4qPnsD/aPTqPd31d34tSeuue5iVbJxm4zMh6G3dk0cZK1fx/59dr1CZrDso0GTDMB8cQjOm21P781dA6mDzZZhzYjFhhTDYG2Hk2uenN6BmireOCc8RtQJzHicd7yDlzOC7Mx3l9BiKetDRfFEcuiwFEwkDcSWPnnQ2I6mh+XGU+LiyixOgIDTwzxMB2t8EFYZkDIVRj4cKA8q5V+pyeXTUJYwGoK6NWHy8duCZtjGljbQNjmhIMXBajX8GgKRVSrujUfSBjF5Lmv6/S5UhjU5bWv8xXl9L6b/QmZ90QP4LaO68oRSpownuBarJv4hyb3QA6GDBQTPrteJzoU4pzWFFbddTSx2BgDI55WkCrxRRqMba6Flvx3hjuzPfOSKXFE05gpe6Th2CjsuRCKr1AwEEwfz62GEedD1BS6wMKmplefcRCYYof8O3tz/PR8Bt89YNv8fXvfkjcDPzQF77I54+/n5+UP8EPbd+3eAXn85s9nUkfysat7HJtgHf3402QQlLlUEFwXAVwWMzpzff8OdMjbUhmFZ7dHqkOvvDOYwZ3fo7P8krhYhf7jNob/gR0X8HiqnX9bd1h3f4Th/qUv/X7/W2Lp3XaOPdDTuc48TK9CUPs4/7kf5zOcr7GO3G4XexiF7vYxS52sf+mNn3499nJz/Ld7c/xN97+v/LrN3+Zo3+9/j7UK/7wi3+Lf/bZn+Nx+tIFrHSxi13sd6X9wCClXE2+LVDRnhin0WurWCKmKnRmFc6CqG8Ej7tDtFZV1u7gKZpLY7YwVo40zxyPBwvuewheqUlYjolSXhOGyBgjmziQ52TSb1mRMRCGwLwkvvXtvYFhABcGglPyvPDo0TVehOkw4ZzJPFX1xBhAhBgjUIljJI7WVMMQGDy4APNS2WwG8lI5Hm8bvfuEqDRK/mrghRaoc86RS2lBPVoltbVGrbrSqXd2oDVXUxurkzhc9FAyuRYLjDZkUq+k0Ra8rFUfBv71rFqVVj29xqxbJWHtz6qDqEwijrNnCT0x0bMizY1Vq4q3qs7agp2tihYDJKkqKSUgkouufaSUgvcWKB4Gjw4OtyzkJoHQK8rHODBsImH03N6ZxMZ2HCk5M46C+mTgoZTs/NVTsyNpZrsduXq0I+UFF0C9UlDuD3vmlIhxwItn8J6wsf53nGdyhiyVSY9sNpEwgBZlnhPgEfXYIy2cKN5PFdsGIhNocm8dwBJcJIQR55UgnkOeOOwPlGwtjFgAkqqNOcaOF0IAJ7x4+YJhOxCGiCRvcm0NfGQSdpVf+9Vvg3hKLXjncd4Za1nJpDmtMhD/f/b+5Ne2LUvvw35jFmutvc8599x7XxUZzDKSTJFiUlaqNAuLEmGAbNAwDDcEQ7YBteyWGzZswP+A4JYBdwR3DNtq2KIB2xINQwRssYAImiIkkckig1lFRh3vxXu3OMXee61ZujHmXGuf+yLFSEUw41Hc4717qr33Kma15hjjG99nW/KMxmRVqcQY9FxVWv9VZfEypQHWikoxiGtyDJpCiynz5s0DfnDsdgPPnl/x5tUDeSlkCqVo4Dcshd04MDjH1X7i5fvv8/bNHafjif00YEXY70aMCA9vH3l584xnH+y4uzuynBK764HntzeIFd68OmAE3JR58eKa+bTw2at7bmJBCtze3ODHysNDJO8juc4UM2Bkz92rR+Icufv0kXH0PHtumaaJmCPWWJxY/HCFMQ9gTlQCYgpWLNa7Jod3Nu9qmyFF588275qciFKb6RxJQkcmZlAmObFQVebAeeF0mJkfC+PJs4QFslW2sYqux86rnF5MpCVhSpNQaKApPXXFuoHTHIhxYfBOJRWrXkNYCuTCaCdKFOYlMV2N3D7zGBxpSfjRklIh3p9IuXB17bEycnooytZkPMOo9/nm1RuWZeH29oZp2uMHw45RAYg5sb8ecaJV7Rm/jp8cNVGTojIKOK98I94Lgx+ZTwtLSFjnsPuB3W7H4BynxxPkjJECppBZCLnw3dcHrL+lpiOnUvj2x6/4D/8ff5HXn77mb//UR/yBn/05/tg//9/g5Yfv8VzACmRUYqEHGx9TYhZ4Zprkyuou6Fcr0pIKXXRBpU6XCq9PibdL5hduRyyRgucsNbEyfmkvGQrK4vJYKr/9rTseXx35l375Z7lyZmVnudjFLvZfzVbZBTYxlNz+1pmUdEumc7pLsrybVJCz5MR5UqDDCaT2deBpcH8DO23gG019dymZLWVwfuyevD4/Z//eCAkpbc9WzlanH5QM+aJY3/tZUdYO3RezydmevbPK0899Lt3SGJbevee+H9Okf0vw10pKidNJVF7NKFCmlkpcAjHIKjMrNDBAoe3xtAdTUma9XArOOowIdw8HhsHjvD6Lc1KwiLIiNhC7aOI/xogfPN6PKg/n9MpDUn+hlNJA4bovF9HnYq6a+lLgiGlsIJuvcH7zG+ALctvrby3IKtVkrfpfudM6tcbvvsjZtv9Jq6/FJn1n2oEK/XU5T5afwZzWH58yKK2gptWtUKemCk3Oe5Mv6j6K+kcVa1WeqqwgDT2XMRXvPMY6YkrkmBUoU/txDNZbnLfKmJMLxijYXZlz9BzG9vm3+UZGaDJgbTURPXOIQSW9GjhNFPGkQIhUVRaLSiyZxQScVwBdjEmZXfr91vJkgTlnWTCNISGlxCr+2FwyYxogPRfmOaxstf36zoEb1Iq0/euyLKv/tvannEvvVU7H5Qx0ofPJWPVRuqy00MA2T+ZsY4IqZu1fae2Y0yZtjLCOdWnUdCklYsqknLFWJdasMVSpyg6KtlNKBSuFklSebX+1Z55nnWt+gKr+jN6T4dn1NdfPJ+7uD8zHhTpYBj+s7Z5zRkxhv1M2rdMcmCpMg+fZ7TW1Jg6PC37yWFfJpRJjZT4slFJYjkEBb67irSOjTETanhbnBsRmxGRqUblvOggf0XktGxMSlSbP1+fQU1l19Slay5ozab8WO6g1r8CmECIpKUiT0piKq7alsw5jDTEk9VFo7V3LWqRUW5inz0vnVH4wZ2UOI1XEGkbvsaLMwkqWrWyp3g8t/iA45zjNAe8VCFpSax9vEVsQySxzYJ5n/OAZzIixG5ivlIxvwEKqss523zslBV+qL4QyLVUFHQ2DSnvGmKhVi8+MbeOuoZRNu95aM7kWfjP+Pf5h/W1O4VMeH98QC3znG9/i4fUbjHV89va7fPrT3+Pu/W/w347/Q94rH6BHXldMUlWmPdeeL09X17oCh2pbQ9tSSaEScmVZMvtBmaE6OGHbg6yRNZp7qNK1tfLqzczx8cRPf3TLaM7PfH6Ei13sYv9IO9uQrkAk6Xva9ryjs/J93k/4HFrofI/1g3yLd+Po5/u8sz2XIKtE/e9mT2f6u++r7+wTzx/ilbMXL3axi13sYhe72O/RKpVff+//w3/+z/y7vBm+TjCHz23BT7zmr3z07/APbv+f/Fu/8+/z4fJHfjIXe7GLXexiP0H74ZmUrMU5Be44p4GrEEKrOGwB3apuWV5D11tAGDYnS0RWhhFgrdzoQdQcC7XJ+hQKUsEah/MVYzSQRgucpaVQUtDgXq1Y1ZFimTPLommnq+srUs28efsWnw3FGB6WhcMps9sN5BSJKePEM58CwQSMsRwJIHA8BXb7id00El3C3e7IS+bxceHNm0fmYyDFijXgrMVIJdVCzIlcNKBtRYEj55Xwer8tvdWC7JpzqbihVZa3dFqKEGMixrxKIAi1UcyDcVYDzg2cZM4DURp1XgOM50mDXlX99LXNWdUkgFV5hnLOELTJNkjR5AupMVCVor9XTd6v0h7W0Nm1RBRYU6lY49eEzjiovFfKjsNhISwFI45UKiFkCsLOWbyfgMh8Upm0UiNzKljrGaeB0aFjRCrOZpzPuLHidgo86/91MEdPCGlyw1AKWLGclkWTHzlxfDwx7j37612rSI2IqUipCiZqbS3tfnuCQIPT0qQFFMAWYuTh8RE/WvZXE1fX1+RiiYvKTaQlrwk0rbxuAX5REmkRlUcJS1JQngjea4BW2Y8EaqLUiGBJSZNVezdqcL/1pWlBaGlBT0W/6PFyzlqdXRVgJ+jntD9VVqKSMMYxjBZnR+7ujhQKKWbuQ+R0CgraM2CtIShGj5wq8zHw5tWJ9z94j8NDArEUhGHcE8I9ty+u2e0N19e3ODPwc3/wA377a9/gO9/8lOlqwpuR43JkGL1WTteFMEdqEdxkcTXx/gc3fOlnb9lNhq/9+ne4efGCP/iHf4pvf/cTvvnbryhZx/jpdML5yjBec/ti3xICgvVCyYEX791yf5c4nAJhUZGeXBJYrcYWAe8cJWUM2jc5n8ml9LHhGgNTamDFqvNDg+GsybKwJPK1zvJwCqSlJdEqjZytUkti2o1Ya5lPJ5BMTpUUWnsPWqlvnVcZS+fYDQrCjEtkDkdK0tV69A7nPDkrG9XpuLAsMA6FwXtCyPjBI9ZhcubZy2tG7zntI9NuJJUF6woxRKbRUorKYS45aXV1VNDRMI2NgSohLvPe+zcMo0oVPt4vPNyfCCEp89tQKDnirEYAjYFxcEyTp9ZEKpU4K9OTc47JC/tx4FSOPDxG/sp//Ld4//2P+PZ3vsr94z1vvv+Ku+99FyeG1xSG8Zo3dw9889vf40u/9HOkWBAr7NHk3YKuiYNxdF6E/qzqD7aeVDindT8hHGuBkPnAGq7FgDgyFUtpoIIGaqoGI8rkciiVY6n8w9/6lE++8Sn/2q/8PB8MTcpGCrLWWF/sYhf7vVqfnx2oBOfgINr83sAI52CgKqgcDms+9GmuoW2puroxT17foI191ThPRoKyLfVPVZrcSz37i5wnQOqT93ZQ1Pk5v+ggJdP2QbaxZRqjss2myQOfJ2jKCvQ9AyidMyn1u13fw+ZPgDJ+tKQ/UimlsVtJAyOI3VhKxKjEUo7tNJpsyimjfDdF95d+4HA8EaNKfimYPmNjByZXrHHkVIi5gRAabC2lQoxlBS9Nk0cE5qCS0yoBpcfsAIHaGIFqv/UGTOhFBrSCgO2ma1dr20ApHclSe+IbZXNqwJCVeXVtVm0vOcMWIe+MrA42au29+njwAwZgA/0YBYrUtgfdDlXbo7UVsBQFU9FBLuf9LnUFNaXGkFqb9Fo/ucqPJcRYvFNQQIo6vko7dg4KrHBemWZqLVinrMGlFpxTQLd4levqDD8qh6bFJx0oUkFlzfrdGsGge/8Y8zpcS+7gcf2DH1SCu5bG5SaoZGG7VWVt4gxw1OZBpV2P+l8hBIwz2GLo7LnOa5vEHNf2X5to7UtZ/Tvdl+pnTPPXOpuq+gU6qPr4NGabZ9L/OwMpratpB8J0MJUoaMdaQwferf6u0b8bY0iptUnVvss5rGun90bZcDqOp1aWJWCd43ScyTUTU1IgjhGurif8IFjnMViuno1Uk3FeGHc70pKJ2YEkjLHkIhyPUSUfRwslM0we42C327HMM9O048NnL/ns1Wtef/q45nJTSZgKV36nnzGGFDOpJGyuDKPDD4YYhZq0L0vJurlv40n9SAXtlJzb/DJPJpex0tiQOiS2Pnk4lQIlZh2vqIxcTmVl0BWhVzgp6KiNCQVHsvoqxujTxnTGsFo1JjS4tkYm9f8bMkacXkBp8zh1FjJrKEbf54fO8ORwzjANI8usQDgRlTTMOeG9UKvHOQUFpqggTmuMMlyZFjuh4r3FNLbmWuB0CCrZWADbmXy1rRVgpecWQ2PQrqSUqUYQq35Rq8/jN4ev8vC1mVIWHh7vSEskL3ObpHtKTdw93vM1/gH/6c/+X/nK4U/y/v0fZbSOvXcKehZpACXtpHU5O1vbWkRo3WckILQ+vfWGyZnV5+jjoLa18PypGCvMtfLq9ZG7z+75yk+/x37Y+O7WgMXFLnaxH9rOd0CbP9Cfg30TWtdlet2i/YDj6A/nvkG386dqjxW35+jZZ9/FDcl/yW+b97F9Pds9P3mbPmveveIvskdxsYtd7GIXu9gX3776L/4qn+x+57/8TQLfn77Kv/eV/z5/+pP/Jb/y5t/C1eH35wIvdrGLXewLYD80SGkcFKA0jCqP5QfLeKUU7LSAaIyJFAvzaW5VrRsF/xOHrAWYa+ZJkLpbr5q1xq4Vw7lUjdZQkJqgAaCss/QyllIgpkytCSRoxohCKoFpv4dqOBxPUAQjliVnUjhRaoAK3o54Y7VKs1RqbdJ1pVLywulxwVlDXALWWt4+nJjnCMVgRCW5as5YacHYM2r7XDRIPQyOUrTqcG2YnjuosgF/eqC3FgWKZE1cpKKSW9aYxqRkWqBeQTfQ23RjqpLtBFvygTXPDqg0wrlMmVbUtspP00FPGsg+Y51XMEf716XNtJ5/k2oopayeuim0BJAmqbxzrWoVrHWknDidCsPoNYBdNckwThMxRkLMxLdHxp1ht3eYoTKOI8PgEZfxbiTMESvgJovxglSDdyNLWBBbEaPV7t5pxXEUBfVY6zDisM7y9u09OWe8NaQC1Si7Vs2W40MghELJTxmoTAvwWmdaq/cwYmk09lWzjy3hmILK1Z2Op8Z85XDG4/1AsFolLU4D0xqWNIi1iCg1fZgXYtAkm3WaVHDOklLWoLCA83Zt+5w1kdGTV0Ys0uUkepUvbFXSxhBCIUcdO9YZdvuJWnM7h0rViSjQptSsfYkmIUoRcgPMDE6Y9jvePqRGUVG5ebZjmCrGnsgp8ubugZgynoHb5ztevLfj+tlIrob5NPP1b3yDFAPvfXjDs9v3ePPmgY++9BGH47ew1rPMjvu7mXHyDFQe7h4xzjPeBUIQQizMoXBVHCkkUoiaUHKCGSHbSnWWh/nINI3c383Mp5n9bmAaduR64vl7O5bZMj+qhETJWu2cUqLkBKXg7NDWj5Yg7HQXAs5ZckpkKSpHglZN17wBLGPKlArp7YlStK0F7V87gveWGHR8xDgT47wmf6gQl0DxME2O29sXPD4+EuPMNKl0XgVOp7mBDQskZXdKNWJlIMVCCBHvHTUJgYw4hxssL9+/JcfA6EdK0bUVs2AFHeOSeXY7cXW1x4+eJQYeHwIlF/aifELOGdzg8YPjNJ84niLPnl1xdfWsrYuaiI/LgrVuTSoO49ASG9LYIQwpF1IuGC/Y0XG1H3hVIc5Hfudv/3V+oyaO85EUAyXMUOBYhXp6y+tPv8Xf+ptHHn/ll9m92PGt3/wu8yHxz/2xn+crX3oPRBicJeTcVrSzJftJdLBiGkA3YphTJYrw3vXArdVERBWLvMNzYmt/PggRuFsqf/fXv8s//NWv82f/1D/LR+9NYLpEYIULn9LFLvZf2VoKfE0sqG2wJENjBKWus62DmXq8vh/j3cB+Z43pn3k3+G/YPl9lAyVVWAEO/TP27Kia6JAnSQ6Vh+zXKOv7CiB1A/l8kdOPg1e/wbT9kHVGgQIhrgmfECI5FUqELfmjX7Z765uWBuLogJqNLkfbtTEEdXYYZQHRIxW6vJKybHSJo1LK6otsHHqVXE4YqyyTa7IfUeaK3EHk4KxTGaLWd2WVcdKfSy7qT8S8AmioNHYa3UvnkuiyyivTUG3XI5sEcym1yYjqbde6tdO7yTBVaGptJSBO934r+2ptcl9n7EVrsqz2lNznTdYTdyacrc/On3v6trLNnyePUtmubX1vY55dMRh1PbQOnw6qaPvQRkmkADiopTT2Fda+tM4qACMXUsrkkhlG3Vf3f0oAKxRpQC7XwPylIihDqW7hTOtLR066Hy+t01dWXek+rZArUA0d1hOWqMCI3tzr0G033NrH2N42zd9qoBFtXz1fTZV5Wdre0zRWozM/3PSeaOuGMetsyu0aRGQli5CWaS2lYtBiIT1VA4E1ebDOEEtV+XZphRnCxuhrrSGlosw+aL9JYxfNuaznslZZzrZCChpgpayLr/cGPwykY16vc381YJ0wTUDNLKeAMTCMjsGPDKPRghvrORyOnOYTAgzeU1PBWMPN7TUxJZWfjip/htH5mlIiV0OxnsPjiRSFlAIhFsKsMuDemXURF2tIFQ7HE9YZllkBQq75aVC4upnIKbPMkdQkqyuNBbU0Pk+xK4jrCa6kT6f29963vQBM2Zx1Hus+OZzFBNSf0DFvSTG2OdZjH3U9Tm2sbsY6pmliCa1wp6gvrdJ9Z4O3SvMNEt559XVjWseAeN8AawYxld3VQE3KEmd9A2ghOicq2qdmWOfwPAcdqwZln7VaaGONEGIkhAXvLdM0QvVUVP6w1EKJygiFqJScNNy/hkXMFiZpS4x1yoBWa2E+vubV9z5psRx94laqymWGGXl4Q04zh9Oe/6wu/Mb4m8RvPOefH/8c/8rP/DfZWbvu5c+XPNlarv2+zY91w4DgDExGlAV3XdvPn4T9AaA/5QKffPLA9z95wy/8zAdcX/n1ZE+5Gi92sYv9Xm3bj5z5Attmi15csH1g+9zTqPgTgcaznWY/1JPN/5M9nalC2bbA1LPPb+esZ3uwc5NNlrqvgWe3ce7fXEiULnaxi13sYhf70S3b/I9+E4DAq+m3+Is/8z/jHzz/D/jXP/lf8XOHP/Fk33+xi13sYv91tR8apPTixZ4YM7lqZeEwDlzdXHFzMxJj4TgvnO5mTksgB6W/78n5c6dKgNrkr7q0Rg+86q8tedPAH8ZopZwCfRSUU9BqZCqYvCCiwVatutWK2iaAgVB5vI8cHh/1t6znySiYRo9Z8Q52e4c1A6kUctVEPSjIwnuVMbNWqfmXELHOMo4acDPGcrg/qNQDgjGuJYu00lWkriCgXrXara5f1HIpkDUoXbI0unaBqlW8zmgANDaq+14V3Sn3exLB9ORIl4Som/NpjMG0/qmNZalXz5pWwandooHSnBI5b320MjUVzhhjBGMsJbeLMg2kVCsGwQ6Oq53HmEqqWRNLOZNKVnCQsThrFQQTKhTDbtpzPM1YXxknZYTJuVVTFstuP2CdIeYEWcgpUktSZikxpFSJYaGUhUphtxsoKVKrUHJlmRNgyKVwShq03u93XN88w7qFx7uj0teLodSCNWgSqlWlrpIIrV9b+J5aioI8Sm2BAE2eOBTQR82QBec8hzk26YbMXGatDu1hDM2yqIyYqKhUSpkYIykmTDVUp3Ip0pJwKUal2LcGbwes8yzLArWSYmoJKB1LlEyqFStgvaZHjdHkl/cDIRy1n2ohZWUcAk3seK9Ak9vnNzgvzCel7S8p8+zZFcfTwjKr9N/uZuL2+RUPjwdqVYr+j770gmlnefHiiloKbrQYC1/+6H1unu2Yw4nHQ2Z3dcunr77NZB2DdeAS3/r6t7l9/yWlFJ49u+XN6zv8ANNuh1CxCI8hMr+5J1jDZCBlx5vvveLN3ZGUCs9uRl4+H/E7z93jPVRHCplaM2FeePNqJiyFkwsMw8zV1Z5UClf7gbflwPFBJQlzUWmEGCJCpdiqieR6Fllq32ouUAvOGMTqWqUyI4bdfgcUliUQQkIL6zegoB8st+9N3NxcsRxOTaZFmJfI3f2RklU0TExhHCZlmKIo+9A4sswzx8eocmlimMYBK8rqsCwLfoH9fiKG1KQXEnYc2O1HcikcDpFKYnCwzIl5OVEo7K4mlmNkOQXcODKHwDgMWFORpCJnS67cvX3AjwPjNIBRIFuMBT8ZxGT8OPDy/R3WVcKSCUEldaxV+QfrDKkmUhQsymRVYsYAKUZMgdEI1gmpRE6Pb/n07i01F4bRgSmkpMxtzA88voo83H+f3/mtr/Jrf+s/x9iXiHvGY4m8fHnDh+PISaCaijvzCdZ+fZJdECDja+HaaHJodCDSnRHBUbfkpCSVGRJLrion9I2vfo9/+J//Nn/iT/xhvvLzz1V/ri+yFxali13sx2ZbQP88Odi/y+eARn0P23hE1nfrjpMVfrj9/jTo349v2pu2RGTD0p/lMwy1gYfPF53+Wc02nIMm6/lC1DZ65smVf/FsGL0mjjszY9tXWafJ6ZgUFBBDVmaOtXNk9RX67a1b5/r586wsmfrLhjDrzEFo+3WZJ2msTTU3WNKaxa5rj+Wk4JZzlH+lkmtex4lpzJEq8dzBRwpkNwacNeSi4JgQ2v7ZdDafivHKMJNTWcFDK1BBWiK6sZauHtY6DPp9tV9Lk2Jrxzi/bm3XsoJKqH0Hu7UfnM0NWXERnB9kY2viyXXKemnbOFxZczrW6EyauvsioIBB7bvSGFCesvZ4b5nGAZHS/JysMtJ5yxwqwFn3XCKCH4YG1O+MoKaBakDhgYaUKyEEQLBOC1Bqm9Rd4qoWBV34JqdspDHlpE2mrd9nLgXnPMZYTseZWov6sY39xlpDdZUUnwYu1/5CQUnGWmU3qI35SuraIepbqlRhZ/6qORP73uRsfRG6X6cX2UHyjeRR+39lKOpyiStWAu8HlhCa39dGWr/ONWt7virV5lOob9cHQQGV/26fVYljxzAOGAMpF3wp5JgZB68++ZwxUhlGlQcLi6EUZfu9vr7CeW0DoWIaCOWD928xxvD27p7DMQCFw2lh57wCdGpkWRbG3UQKCWs9JUfECeIdJWt/ZYF5mSn3KjMeGrNTiAO1Fm5uJvww4Lzj4fCoBQw5Y5wQlsR81AKRbA3ZVbz3OnZMWxcQcgOgrRJ5qB+9rUFnVpW1GupaIFPb88GYPhYKkoXUQEVrZl1QQKaFcXJ4J2sxWIxlZVgVFFg3jgPWWmUPFnDOkZICgqx1OKe+e86NiagUcgabLUZU1q2zxXpnSTmp/Hlt7EcIx8NMpeIHgzUW2vgOUdlpe3GGs4Lg1KcVg3WOIo2lKek80QKngvOG3X5QFuqQ27P2fP3UprTGKCANlXDu9Emetv6gQKxliU2evgExG6DKUChpZj4kDg933H/yGfubF9y8/BL/Sfw/cXvc8c9d/wq2zdtV7K2i8/i8W8+nFBXfnlUdfrTxlPd3PwU16FoI96+P3H//jl/8mQ94/719r486/3L2/WIXu9gPY09m6zp3+2zcvINzsND5jkxaLO/dfVo/zOfl2raH9w+o6W2czOvRn8zoc9/lyeflybcn+4N3ra5rzGWtuNjFLnaxi13s99OSWfj12/+I7+7/Nv/m1/89vvL4py/P44td7GL/tbcfGqRUxYAtyhQyaGD21advKaXw+HgkhkoMhRTyllDJWplcgdpjt6JBuB/kdWnwtNLQMy2Jod6Tc44qTdKABvgpGmS2Xsg9wio0aR6tVOx042QNxq4nolVSC4hTgNPxuGBsWgN6zhmm3cA0WMbBsqTI24cDdw8VWy1+9Az7gUzGeceUR5YjxKQgJ1olYmnBvw4c0srtTT6oxYJb+4gGw2NF0kavv7IbGUPMEalasZlbtWktW7pNZQ/OKL1rS2S14FRPKBRacL4FuaVFsXIpWKOSBwbbEiVl/VwtVUExbJWHIppEsGIx3pNSBKkYsSCCFWG/s7x8eY2YqvKAprLkwrJklmNAqgKwliViPA3IAOOobEsGcN4gTqs6M/B4XBS0FJRef5g84+jJPiNGWZ+sOFT6DKQYSkyUUpnDTIlQawRbcd4zz5HHx5mr6yuMcZxmDcZPw0hJymozjiPjKAiBGBPG6sDLtUAVFJegyaxeBW+cQZqMXIyBkjLD6NiNAy+urzmdZo4PQWUoWkWtiEBW4FgPqJYUEaOV2oIC+KTJq4VYqKmSk86ZVDMhR55d7TktCyGmFlBtDP8lrdXWJWcoOmaSKXhv8b5NzKJsSbVACNoPGqg23Dy/wo6WEGbEVW6ejzy8OWKN4Utf/oCPv/WK3eT5qT/wEiOWD17sdHwEePn8OfsrixhHYMYNBmcdH335OQ+PM1/9jW9zOmaOx29RKXz08gXjVDktB169ec2nbx5YDgu78ZrbZzuOp8C8BOZjYJoKGGG+P/E6BF48f87dw6kB/ww1B375j/0Sz57tEWf52te/zeN9pOSZWgpv3868fXXEWSjOMdiRq2c7jK+8+vQOqiaXUkmsZbdFthxAA7Ct1XZ9uZOeFK1ID4o7i/eGUnRcOuswo0qydQAgVHKJzKeZwXv8pDIEx7czx8eAZME7wzBYrq4Grm+vmJfM4bQgRginhZQTSGayhmFy7PcDKcDxNEO1mOI4PQaur/fsrgZKjsQQVeomFXJWtgG/98wx8nB/YBgdwalkz+7qiuMcOJ0iznr8XmDn2E0Dd/cHwn0gnCJhjgyDQwQFJ1YDuRJPJ6wR3v/wOfcPB95+9qCV+1WISyIsGeNhGkessaQUGEZHSUI6ZXaD1wdayUjR6vR4SrihyTuk2mSFZuKi4MXqLNZNfPxbX+en/thLnr0c+Nt/82/wwTPPv/zL/yzPb0YFwbZ1XGncFYqw5RYUiFlEWcsscC2VgZbdFDaWC+npBteeA5VShY+/88B3fvNj/vyf+ef4xV94ge+qHjpC9LF1KWe82MV+LHbOEdOJ7qhK8rfF8ZsEbgO5lPXfBpfoPCSdXLJvN9ffW6riPFFA+3uHl9i6XVOFlsCsa8KjrilK3T9D3zu+y4cgDRzSE6df3PWiVN3Li6Xtbyph1udfCJGSdX/++XxNB7ecPVjXtfUMwPQDbAXHQNuznSePKl0uzDZJo3J+AUJj2miJ7ebQ6B679U37XYwWFpQSnySErRGMczirrB/WGU5LVFnqCtYU7KCMnRhhGD2pgTVKLxCgg5U2cFI5A4ls/sT5/aE+RZPy7UA36YxRtVJTaqCYDWHzNMG27WGe9EkHKHGeENvgX3U9d++iDqZYP44yrzwdyetnawPrNC4yAZVUW5N5GWnyYNY5qkgrYlAZPkFYlkjFNl+yNjbbst6LSuiqvHHKeQMQVWXQMdY0UMLG8kJjDapFKAlijpSs0CpjhEJWybBcCEvEWJUQi7HJSzcpNZWVVslX7w0ppbXtSgcSFUA629C6waQzEJUGmCsNoD3uBpWCnhPmjK249wUrUEP3RWKMgvFE/UFBWVhKytDYa3r/5pKx9Sljr7SVSH3IBo8shdxHrOh+yZheoNOZaJrv2D5vrWHajYiBsCwKiBqsAvEM3Fxdc5cemEbLzc2enDPX1yNuHFhOEWuFwTtqUXm7lBOmOh4PM/MSef3mnpwqpbRr3oH32s7zEjmdIjUXxmFgGi2nRQGEKWVsLip5VoQcEksrDrDWQImIVJ69f8u084CQSuF0COrv58wyF1LsYLiCc8JuN2KdcH93wIjBuEpJRbeMVTZAUZsIXeZ9BRFKb7keatD5ba3FGqMsV2hh19AYi3PqrMbaqSVXQkg4Z7EihGMgRfXtrRWGwTEMKqE2L3EFi3YJwI7hVEbr0mIUIKIsyYLgrGvjWQtoYkxbLIGMNbXdg869WloMwvrGVqt9pL63p5TaJDkTOQs1FxKFnHX1GZyO2ZIac5UfoDHjSQMwltriS5RVJh3TpnXR57prUnQxZqSzl+Wsa4/QwGRtUqVIzgYkY5zFG5VvjPnIq1ff5P9++N+wvPyf8y989K+uy1x/umyyrtsSqD25CdAqfPJdoEB3LPrk3vYph0Pk7esHvvJzH/D8+YQ1cv6pi13sYv9Vrceg3/lz/92cva2wPX/XhyjQAadnu7rPnaLvwJ4Ai1Zw0dled9uy6WuCrlf9lx94ne1D/Xjny8g7V/HOqS92sYtd7GIXu9jvsz34j/kLP/8/vgCVLnaxi/1TYT80SEkMOGPwxuO9J4RACJEYMykUTdCXsjo7azBVETBnzo8gVStC18T9k8peWZ07kMb4Yii5YqyszlcPqFcpDMPIeDURQ2CeF61UNRbnBg08x9QCuXCeNupnzUmvJaVIlQAYjLREAhYxnpgru/0NBc+n8xuWFEklkSu4wSJeePH+M2I48Xicebw7UavBlFYZLVuAua7gpZZU0MxG+7mubbK1IWfsRcoiVYqyPAlgncOYgmlVuz24XTFsVYN1DQyqDEKTIxMQK41SvvVVqeRaFGzTKnU1QbO51Zqj2fpNk+1aQalV2Q5jtFrRO4PxllwLb+7vmaaJYRobcAf80CqNcVrFGYTjUcERzluurnfkajXxklUGhAphXqi1Mo4D0irQS4U5RkbjkBDJOWFt13EV5jlzOmVOR5VE8NazmwYykZgSiJBi4dNP3mDEEkJCKoSatCo+FaQGqIWrqx2nU2A+BeoqGdIZpcwqfVapaLzfKpghZwyGZQ7wkLl9fsPgJ6ITLJWSIyk3Cv2iCS8aG5e3DuMsMRbEagWo9lumVJVS6HJtIirBeP/wSC65VcprsLb2oMY6xCopR0wVjBOyKczLwjAOUCNiNKidi7LYdFyOWMNpPpKDyhCO40C5yVhfcINw82zk/fevGPcjp8PM+x8959nLGw6PJ8Zrg/GwzAERh1hHysJXv/odjnPizZuFx8cTVEMtwvfjHVc3E8ZpkPt0v3DlJj54sePZyyt+62vfY1kqcyjEcOLqauBq2uM8nI5HDvcHrDOEU2SaBr773U9J9QXej8zHxOH+wOgHwgxpaXMCoYjhFAPP/Q37m4HXr+/wowdTCQ9LC6xbatGq7oarbFWzkBs7w5bQOQ8oCdYYjHHEGNtcbkk3hOW0tIR2YdrtGMaR4xxwyeAaY48f3Cqb8+z2imEwpFh4+/YB55QxrETBDwbnPYLB+5GaE5jCzbNrpsmo/KFRibZXrx8RhJwTpSSurvZgYNhZKomUAvsrj4gwzwHBU2vkdFwoGe7uHoHMfpwaEM4yWI91nt3eE8LMshSub3f4MbPbTxwfZgUPzicwwgcfvaBWrche5srjMZBLJoZEyAk7OJaUIcE0jbx4+RzvPD38X6lYow+5vCRCzGtiVnIklQU/edzeYXLk4Xvf4+u/9g/gsPAXHxa43vEnf/kPa4ITWAAPOIwmFqTDBwxJhFTqyko2iV3BD5p80ERdX7MrFVuFAHz/7Ynf/s1v86/+K7/Az/ysApS2Z+jFLnaxH9U6wGiN97f9Yw++C0IWMI3ho4tRGelAoS1I3yCDTwFCZ0kCg4JEVMZtm8ONXHLb31ZWUABnx+pJ6P7vnDVpk4k7r9g+x+m8W739xTRjGrjLdMbLRExplWzrYIbz1Ko0FFB98gBtr3H2+7sgGrY26qAXSm3J9J6lMRTZihjGaaA0dkStm+jSarICQ9b+r3WT/6xNNo22l1+TSoAxeO9w3pGLglWcdUTJjakyU4M0Ce3KMDr8KMSUmY+BkrbklBjZfKBa1336tkPnqT+xXYX+1N7UpZ36xUvvG+nttb22oZSemqztrPfbpY87q05ZKxme7ns+zySwXeX6inTwmGmApk2ODyOEXLBVkFKRXCklK1im9UdOhVKt+niNCVeMaTJpglQF6HfG15IL2DbjDMoGqxNLGWKojRGoAZdjacxaHeBV8KKgjhVkhCHMEWpc7z/XrOOpVKgJERr7i1XZcDYg19rGdesrdQnOfEW0w2JIbc+h4pWtGqFJp+n46fgsEfBe93Ax5uZjNADh2fjo40ZQgpklhHUenQP/QAtYejGNAr22a4wxYqzFebeOlT7fQcilsoRArZ05x2GsQSa992WZ2e0HpsmRijLCTruRYfTsdp7dblRWU4HduMfEQAyB4zGQMoh4cp4VXFKFw0ElrI3tTETKxLrfD4z7kfz6gRhVkrvkhPd2ZQSKMapctxGqV/DVp5++Zn81YYzh1Ipnau7sZWzAHBFlYj4Z/OgIMYERDAaSFpJUHTbKjHQ2BvSZsnFbrB3Zp0ubPL14yTktBqC8My9FmZyss8SUiSlhRWVEnRNyr/kyon5xUobXRh5ELYJzBiNOYwFV5cOdA2tHREqTq2uMp62PdUgoc6xzgh+8Fr3FiHMKwyk5Y4xTCbyUV6bZeQnKvNfYzmoBYyr73USlEpaI8x7rVQ6wZD1XTFp4NowjziojcskQYiElZUQOS6AiWGcVRGeU7c+5Lpeu49UYg1Rl98pN0tsYUXZwKmJ0lxHyTEpwfDxQYuQB+Kv1/8DP1q9wUz/QwiAaSRYoKK2BSGuVXlenHE4VBiMr8PkczPQUOqCvnkLm1as7fupLtzx7Nm3n4GIXu9iPbmdMk+377za33t2Ly5PXpD/6UNn3HlSTJ+/ddrdPgVFP/A8+LwZ/DixafYSzmHI/tv7Qnin9Op5c72XluNjFLnaxi13sJ20P/mP+bz/3b/M/+c2/wsvw8z/py7nYxS52sX9s9kODlJQ6vNHjl0oMWStUM3g3tGBQVBKkYlo1cmkBQVZmmB5gXgExFaT0II18PvgOzcNq/BNO68ydsQSUaSTEyFRH/OBaULFirbR/HqiE2urba0baz90BKz2GbuhfqEbwbuDDD1/y7OU198cTH3/3Y9KSGaeRRSI5ZE1ilELJAZGJaed5NijI6fHtAkmTGpMbME5IOSEt8Fuy0qr3APN6r7JJHqwOawv+55wbq1FzSWvFULb8QXtfa7ItidPjmLW2StZ26JY1s1ZTbzllSi7KjNQTA82M0eRJzb0i9CyALQbnbGOqaRW1FVSuShMCVSwpw/1DoNwvWO/IJfUOJqdMToIYh0WpRKwYckyIt2AsKSacsYjVyuiYInFZsMYoA5eA9yMiwrJkvNMqzlqVVn9ZFnIoDG5HiIH5tJBTZnc9knIiBa1Ajkum1tTaTkg1tYpjoGTGyZFyWquHa5Pa607/E+BdBYqQam7tZhBpbZUqd28fMWKJoYNZNGEixmCdVpPWJjW32+/IReeeaVIVOeWWeFApwtoTOaJgsmUOvbO1LdDAeQeeGSOM48iyLNRcWqLKNNBMZXe9AzRxEmOmpoI1yuTz5vUDIpVBBFsT0zBy++I5x9PM4+GRF+/vyJJ5c3ePMYYXLz5g8obrj55TreWYAjcvbrBmoDwa5sMjxzkQFhAs06C0/vNcSEvi/nBg3Blun+149sLw3vNrUsqkWPjST33Ew8MnUAI5Z06Hhf3est/vuX+8J4aEYeD6ZiKWzPc+fsvj8aD5t2oYR4NtCSNKBqtVuDFm5uOJED9jvPK8efUA0ShbQu6JmgxSMU4DP4KsSa/SxkJv75V5oMk6JCmkpHKE1umSHGOkJJ2DxoBzogxhuXCaA6VUpnGiZpWcqOi4D6nyeLjXpNCi/5SCSxDxWOPJsRJj4ub6uoGYhOPxgdN8wFlHKoLznhgTIWiV+ONxxjqVhtjtLDe318ynhRAS47gjJ+HuzQPHQ6Ag7PYjS6zEcMSZgWUp5Bp4frNjnAZNFkpEbEGsMIdMKjqeK8o4YAeHGypSMtVUboaJGDJpjhyOC6TCuBsQybgRjG1LgPREf2nrUeY0B5XVMUar7Y0CltISeXN6zdEdePXqviWHB+Lyim9+/av81Icf8OzqBdNYeOYNrpq18hnJZIQMLKVSBE5L4GYaG4hpWyEr2zOntt8jcL/A177+Xf7wP/MhP/3ll6vC2wWgdLGL/eh2DvaBLegudWM7ejcU3yC+P/BYBlaAboUn7DJ9bivwqH7+3NLZ2HQlsLIxOvVjwwbQb7nllUNGkw5nMnFs68t6/e3Z8o6CzBfO+vpWsu7N8pkckbVWE9l2A0Mbp63QgQ/9vo1V5g6qrKypuoU6Yx/tJ60bE+u2b93AA6AyuDlnckxP9t7n1y0t+7PCn2o9U/3o+4ENMEC7Dmssu93IuBsIKXP39o6SCt57Us7KorLu5xKFogwn1rLf75hPgZL0Hq11jfWjtGp9mgxZPRvX5+mlc8SLXlRnsOoXu4Gatv395kt8PnXV713buzO0nIEqZPPzdOS+wwOyIvRq/38byw28La3QYb22DsaqlZyBVIkoM4+Y7brUz9ErNtY2UJJKipnm96hsuBYhKKio7SE6mKSDSzB6rlrUr20zT4xp/pJefGngtZKVibQK5JRIIW/AoDZGSq7UxihUawNVNCm5Pqy6rN+aVhQt0ukDcpPik+ab6b3HkKHmM4BRfQqSedLYyorb96WlsrYblZV9uF83tVLzdth+V2e51bX/1vXUqG+ogPeirMhPxpnujcVogUgHsMWaGMaBcZxYgu55x8EQkoK9Si4MflR/v7GSlVp0n9zWFBFp0nQVauZqP7EsyvZZciEmg/OGq/3I7tqzvxp4fJgJDyf2+z2PD2+Qqrx0ORWMFJz1TfavYsVgxVAqLEsm5QOCrmHeCYNvbFqxgFTcoAypKVfuk8qtpZiouYHDSo8F1NX9N42dqrSYyBoqOAOHtT9QkSdS8jmp31takKPLuSPq95WsgJsKVKvtruBQwVpHLp01KWrBTItPCMp0Z6vXNVhUulyMMq7GkDCmtrG+DQ71ZSvGKGgtF9cKjdTPzSljnFcPymgfxpixDqz3xFzaHtk2X9+oDHRWRrAQA7YKuThyi61oaxjmOeF8F2PVS/KDkJPRdkidlc1iz3wJaeAhu1i46v3Sin2QRiCloDxTIaYFazISoha61MzxWPj+q1/nr139e/zx+j/lvWliHLQQRUFpeo7OsJj1UUjKKg3+LgBhBSy0DYh+rrIkuLs78t7LK26vp3VovMu5eLGLXexHMH0gn+NDPze7tvDr9rDs2OyGS2r7mv7ebS5vJu3/bc9b27vOdmFQzwoqNiT4enz99YmnsP607SLOzt3Oue1zL3axi13sYhe72I9qu8fdj/T5e/8d/tKX/9f8m1//P2MZ/tEfuNjFLnaxfwLthwYp9SrnFBdq0apHrbpAg0SpsN/vWOZIjpWxUZmfTjM15Rb4hXHncaNS3eeUCXMiBa2Ks60CswdTla4cnBGcpVU+a+DRoICnnPU4j/cHxJpGE+7W4H5q192lHGgBP1oFcZeeq1WrQIsoC1NPWBxPR/LbSERIuZJTwQ8DFUMm4b0DSruGmXmujJPj9tlzHAeODydS1CCyMcJgPBaIMZFTC852VfG6CXsYo0kEsaZdS8F7o9JYYcFa0ximFOTjvdWK4BZw76xC3aHt4BehVXoLdG5zrXItrVJcq0LpKbGz4LYImjQ4C4KuYKWeuUErwZ035JgpVY+RQmI5KdOS3pvFpbI67SllDaK6ytWVw3rH6RiYdo79OBCiygeEkkkxY0oBsfhBKzprKaRYCCESTtomxojKlo0K9PDeUVIlhcTxcFRptVwIRsEY3ltCiCzHSCnSjqHApNIkF0oF61iPn1ogVIzgxa3ttcrjNbBROQsoW2Nw1tClWyiQioLPcu5V0Rqhzrnfi7714eFBZQzEaqKlljWksQWnKzlXarVAZ+BiBf5tidktmbMsykol1uDHgf3VxOl0IuWkgJmsxy5Vq46NMbjBU00roy1CjJWUC9dXnpAiyxwJQwEpHE+Bh/sDx8fI1X7E70fG3TW5RI7HI1/+0kfkpVCTYz4cmMPM7bOBD977BT777I7f+Z3vknOGrKAaZwd+8Zd+lve+/Ixf+7tf55NXj+z3E7ZGnk2OlAdiWoghcf/20JgOVDbs1Wev8NOOIsLpdMRbx7PbK66f7/nwvWekHAm/nXk4BobJMR8P5CQcHiuneUGKZZkXYmwTrEvzCYgVrp/tMNbw+HCkhB7kaQCxuqWdu/W2RWA+LSs7liDsb67Z70cqCRGVPKihUDEEEtJYA6zVqvzjYW5VxhGqbQkswY2OYfBcX19jbJeOOzHtDUsMGCuM0xVhUZBiqIFljpSWVAhEhsGyjAPDYKlSmENGZGCJlUri+fvPyPmR+4cDNnlyq8pz1mKGxPXuGjtYMBXjDfND4PHVI9YrA1ctiZwqS4yUYnm4O2BMZ85TpqdhcEQSlca0lh1Xk2faOabd0Bi/NPHdk4pihGE0uNGTs86lUjJhDkioKmU6giPhBssSF958N/L3//rfIC0TP/PlX+Bn/6VfwqHym1kM2gOarlyKylTEUhgHx0hPbPS+7zwuUKohAKFW7pbCN77xml/8A1/iyx/sENOZQ+x/yZP4Yhe72O/Ntupg25KWPex+DhJaWTp5KtnQX6/t/Wty4fyz8JRopp5/Vn+p/YP0nRLr6rBxsm2vnwOXnrBW/sA71PeYLuW1neoLaSk3EEWXzKnKqlSLJvOp4J0joSAQay1GiUaaBGptzz3BDmZlpUlJ94G1bJCYLrnb+9caWUHcfQ9Ue6ao7XlDiO1KpZ1b/ZLNn2j91/aHtZwdh36cMxBBraSUeHh45PFoKKDX2RL2xhjE6h4VqQq8DpmStDDDe8s4eCKxyeCpz7SBdp7ec7cOHlGw8wbkybko8N0Kmc0/6dJhyoIKWUWhzxAo7XznSbIm82TooLI2mutZ+58l4LZkHJ08pL3v6RhRSVxl0HXOUkpZATQrqA0wUlc/ShoYv3SwvVW5aGMNIWScU+nplFXSOqOsM2nt/w4GyStDTCUhKHuVAm60zzMKIi8NSNFBTTWXJlHWClHy5tfVM6BRbyspEGNZx4z6E8oqsw6hvm+X82RiW3m6D8ZZArTfS+nilArMLB2g0WgetainF7301ejsvKsHyeorr7JjdfMD1/FelVWsKqqrFR1t7+nzYB27bTyoay5aNFMLBktnqqxS8d4xz4GY1C9elsCyRMKiDK7GWawbsRZyTry4fUZcElUc1hRyXpRtadwxDwMp3ZNig3k2YKAfrzHeUSQoK0/OKokcEzFWBZzFRM7K8Nv9v1wy1ntqRQE1xrC/cgzjyG5U2fRcDG/ePq6fVyrbogVdxhGTApV6w3dmpyow7TxiDMtpIbVirfVh0/v+naHQey3n3KTB2xrgncqb0VjHmsw3ja2alYVMmvSgrExo0vreNGlFK6bFGjJxCZScGEaHFluIsixV6MJ/pZT1HCk1efk2hFLWv5UqpKA+r/OWcRrIeSGljC/KYlURco7a594SU6RDfEot5KXgiujzIudWaKEseCnW5ovrmBu8036gIKJt4qzHe6uS1L0WDHj+yS3fem9rd+cHjHU65qsWnClwCaBozEoq1ltqTsz3j/yd7/5ldvGP8m985c9gR9uOvUm/SpP4U6alijUGL9uK+WR9b2MlIyy5EAu8evPAe1d7bvcepPQnYB8oF7vYxX5kk8/9tPkTT4Gj22/nM/Hze/nuP5w91Z/YD9rzt63Y+mKPIXffoX7uU23dO3u29z3FuSTdE/DTD7iWi13sYhe72MUu9ns3Qfj5v/fz/Pof//Uf5SB89fb/zdev/wa/+Piv/9iu7WIXu9jFvkj2Q4OUTqelJV6MBidrZZqanFpKSotdDQsRsazBHe99A4O0QFXVAN8weJCRMCnjSZyTBiYb3qVX/NVa8U7ZL2jJ5dQYPkqu63uWJbZqUAODApFiSCxhaVWUm9SZc1YpyFsCnrOgFdCAG4Xj6cS3vz0rWKQlIJyzOCIiCoB59uwKsdo+p+NCTBmHIZaAUPGTZRwHYiyERleeaTIEpbakWQNKtVhSv05jTQNmQUqFmBacUwDWMHq8HwjLQgpRA4AVUq6AUvfXluI6Z/XZyoNNq7xpLm1VGTJtB20IBYGVJwHvFm/UpIrpgfGW0MiZnMEPhmHw+KuJGJMCspa8VsobUHBFk+UTcVSEKhrYs6ZiTGa3HxFjeDzNhCXh/dRkNlSeIOdMTgmqAj1MbSA00Qp7rCHkAsVjrGF+XFrFY7vmUpAqmGqw4sipYqpvaczcAFSlBRBbRbcItajElSaulCLfWouzWg16Xsl6Xo1fOygIZSQyTqiZBg4r7bo0NaltqgmsrdrYsoq/1C4/UaAKteSzFKeeUFkHtM9X+YV1GOQ14aN9q/1tvSOmwNu3Szu/JSWV8HLerwGNQiYnGHYeamaYLH6w+J3jtMx4N/H2dKTkzLi74nBIzHPks+We09UV4masm/nwSy94yCc++eQzDg8LtzfP+PCjlzw8HokR3r55wA+W2+d73rw6rH3z+Hjg137t64xf65XKgVNY+PCnPyTHE28+PZIPKstQK9zcTiwhEpdMLoLETEyZUhP7vcFZD3XgzdsDwyRcP7umfHzHp5+8hSw4axi9owosS6JmC2vyCqZpwDiopnDzfEKMskGcDkElA1v/KeCtrGtVl+brldm1ZKqxWNG5P8cTda4M3lJK0khWaYnGqGuYJniqSl2siS7L4AeGUSVmrB2Jcebh4Z5cIlAYRkcuE2IEayrLrDIL01QQJ+RQmXMmJw3iW1NJMbDMYL0DDPNpIcaE85bFBPxkmOIAObEcjppcOt4Tc2aaHMZCeIjkVBgnx7PpiloMznlKNrx9fSQtmlhEIstSSLGSc8IPmd2o1dBXVyMhGdIScFcT3poGVsyaBKxNhqEUUk6clsQwDdy+fEFcTpwOj1o9nQuGiowe5w12MphcKWHh27/xTb7zjf+If/3P/jlOf+wXuB32dKiCYKA6bBX2oiBDsQaH4GlrMGaLOIqOh0ThMcEnd4Gv/sY3+cM//xFfeu8KI4VKRAFKF5DSxS7247CeKlDYeQ/Lb2F3nc21JVOffq7/O8NRrK+dA3377z3438/z+SD/03Or5FvVvHy7jvK5NEYDHvT9wxOwB21n0o/+NJ0gT0/3hbIUU2N/ETrNjDJ8KCuGsSrxWtd70H2RMXaVDKIlpU0ROjOI8yplnGJeQTKs7fe0OTqoqDSg9iabpQD/ngGqFaSBLnI57xnNb/cKduBscLyz5xbdS59OpW3JFE1irTJ7COCswTrb9p3SGFYKVVSKUNmlDM4ri2hYQgPAsAJ21pHR0P/SZPXE6D615tLANt3Pafu+JoOG6F46N3mw0u/lCYKovjOmW7v2ZPq7uTHZAF3bHlRBGmtSTjqAqm5gn1a0QRaKNfjBt+GSCaFBH2oHoW0AsRWg164npQRZ2acqwhKTsuIYLQrQm4Za9L6lgYf6scWcSWQ3qajNN0oN4GU2SbX2fgVoO2qJ5H7fHcTTr7W1ZE61jX/1B6UdZwUnvdOeIE/6IHegPGvXvzMG+8iQjhV6wmIEuldqPKtn17atdj0JWup2rs02aTfqBkUzrXAoh77n3ZicrFZ76PmqMvbYJq8lpuIHBaEsS6QWCCEp0471xKQguxia72MKxhYtrjjOzKeFWmA3TQyDRcyeGDKHw4x1lnHy1LysdxZi4pOPX+GsxTpDLokQDc45pusRHoOCTNuK65whZ0MWHa959fsqZtB9XwwqI2YdYHT8hCVB1aIZLQbS8Skoc09vb+/tyhLnR2WxHhiQJRNj9ydaX5bagLP6u2zdoP1ZWyvXQoyhAXF0j2mshxxb30OXMVxXSulFUw5ndf+uxV3CkiMicV2fc9HCMhGj107FGo1XiNVisporMSqox6AynyZAKVYBUAixxSGWFLX4Z7CYCCWmxi5r23iHWtUnUvZsuL6ZWgtqAdYyR5xx6k9LJdXcnivaSLEm/GAbS620MaZ+wcra1/wJgSYVl0m5ULCMziNGyA1Y1WX2BKBJSuaUFEAbA8fjt/nV3f+Lf/H0L/Pi6n06TKmzNzavYZ0rTljfczYV1/6pVFKFY6x87+M3vP/iipu9/wHFYxe72MV+LFZ558m4/d2g4Zl3/YwOHupyn099is1xkB9ivn7u1Q5oPYvzdjbNCu+o9P4guNNTz6HVCGw7jMvycbGLXexiF7vYj8d+0GP492hJZv76h/87fu7wx3F1/NEPeLGLXexiXzD7oUFKIsIwDlAgLLNWyjn11paYsWLJWYOMa+DFmMZKlBoYRani41ygJKqoHNIwWIRKWkpL1DeJn7aSl2I0CSwa0KtVEByI0torzqiswI4wR+IClfLEGaxUSsqklDFKMoM0BhKpT4NAIoIRrd7NRVk5qkDxSvG/GzzXt3tiVoagsARKioyuMhiLMw6sB7EMwwBUPvvkDTlW8llSRAtKzRpk7BXPCOSSKbFq8nwN6GoiIeVMLnNLromCnnKhitmC1VvvrV/lLHN1Lk+GGISiAXIjOOs2Wb5+jVUoRVmxENE2hK3P0HuKAR4fZq6ejTx7vsNYpSA/PoQGytFgXwgJTMGgEmXWGkoRDg8B6yrTbgTjWrDSUtq155CxzmhQryjICAwFZSIZBs80DSCbtJ3KgWiCww2Wq2FgnmMLniuQoVJxRoOONfeAQUtgroH5Qs7KvIU1ikOolZK0SrS0ZMG5rJcxhozOEWt1nmiCTKultf0UpCZGg/Y1t7lQzcpwlWuGmnDW6pgvPW3ZAsnSgiBttCuwTigpK9ipJUFAKzVr3YKhvY+ts63SuQFnagVjMKZiW7G1E5UuSbkQTkHnZUzs7EQ6LpwOkXC6I5dECpa7u0TKAWcFiuHx8YRxBu8XPv145upm5O1njxgD1o7IHMGMYCq3z6+IKXF1HPHWEubCkhOH08zjYWYwjv2V4zAfiGnijRz58pdv8SNMxTH4iWWJ+MHy/MUVj4+JsCTmeWlJMgV7HU4H5mUhxsz+xnP74obb5xOvv58pLW2Tq0qEubGBkozHWstyWogpMF7tmPZ7xFdyCYxXA7lATJr46glJtSbiIz3RqVKUFWlV1NKqjiMRi8FQMZq8NYa4LBpAL8pAUaSoxMQ4aHLHWEo2pBh4mE/kMqtUhVfpChEIcyBHDWQPo2W3a9KGOWMwXD+bsK7yeH8gxUKMheNRgTTOJW6e7fDGMs+Ox4dZkwk2cr3zxDkwYCAXTLXUnFmOkeP9kdFP+NFwfe24vtpDu6+wGKbB8vCQmE+VU1hIISBYDBVbDUOrnqYqcDOnwsPbAyYnSkoqf9OSCzllco6UnMkxkl3i8eEOrSKPTU4iUaIQDhXGAZMNOWj1OSL4QTjef8Jjmcmy1xW4CgnhTa6kkrn1Oj9GBFuhSl9XG/AUaZHCSgbulsx/+nd/g1/8qQ/4g196rgAloT3TLgCli13sx23nSQV58hXO0vefez+cBfv7i7U/b89A3u+89xw81POF23H0M51MpO/OMiqq+vTM+h5DT2ycgULW92zsUHou2U76BTXnHa5J9qZYGrBDAQ20fVQpKk+07cPO/APRNVfQvVoVfT4rc4zBWlmZitZMTcvZZpTRrgOGqYIYi5ielNZrXFuvsz1xDgBpa3vVfVbbEuv1rACXnjhqPdzkkimlv2tlNrLGMO0GQkyNlafSmQCda8yq4immYKxC7mJMcCZ/d24b2KD/obR7amK0IitbUq0q+UVWoHtp+0YFUjXm2XWYV57+4WwkFn3tPD9eO1BKGp/P+cdEwfmmg5uk9VNDWVijt1cqCjoTZZXx1oMRYsgr80huAKNz8I6IqFxVUPZTKxVpfoMbnEpch0xccmMqFazR/VEtVVmkhBW4orPPQqmbfJtRFIH3VmWjku4/YlLAj8Guc5Z1fDSQEKDgKl1HSqlrc1ZqY9zZxuLGaLsVTEhrw36/wJPxqyC1qiCU2s/b39dANWLWcd/Ht9TOtrutnGdkC/Q3d/CfQc4nR7teZbE0mI1Zdh1PFVBpO2uUFTiV0gA7QqKSSoVZWZdqY6MqVQhh0XFj9HgxZ6SAKYnHh8D+aq/jxVSMdcxLQIwy6u52E8sc8ckyvbwhhcISEyFFBC20Gaol5kROylZqrgasE0bjESwhJsQI025kaaChkvI66HPOzMvMvGhBy7hz7K88+yvP4aEquA1lwVUGU9ekDZvMdkgsS8Aajx+9AmNWIOfWzx3Uh+EJa9kGTDpPereBVZSZKrf1FFGutK2ghebv9YIuZRMqpZBiJoQWlxHTWJVEu3EtihEgY4rKUyP6GZUutww7h5hKTqb5wMqGXXJiHJ2yReOYT1pcMowalTDOaBuJU4BS87vjoj7/OHn8YNYEu2KwDNfXIykVQqicjkHHUpNZNEZwDXyoBVY6T0qFuKTGKtcnlB54lVLPqOxcyY3xSLSIrhW41SykENfnVy664xATeGX/Ph/XX+PL9U9q4Urrm2OuPC6Rq9Gzs+ohPuXc1cW1X07fwyyp8p2PP+NmP/HBs/0Ket7Y0Tj7frGLXezHZed+BWffz1//QZ/RN29QpnNf5GwToN9k+8z66jny6J29vj5f+zHOH9rrsvFkVXgHTrX+bX2Sn29+L3axi13sYhe72E/WBH7r5j/mG1d/g198/Dd+0ldzsYtd7GI/dvuhQUpX1zt200CMQZPlGJx3RFtwURl0CkptbUQBSSEm0pzo2RjnGttFBRFLWoIG2ltCPuXSqqortRgFcUihSpMyEAWHdHkjlXfTilbBroHYzbEyW0XZGjzVQHCXkOhx8do8Nw3xlQYgarIQaGLENjYVY0RzyaaSQmSZA1Ysu5s9RhJuVJkBQRjE4QfHvCyI1QCdFGWDYT23Bi17oLGU0iS1LHZoYCAjGDFaiRgSNaxRyDXJtQaBe6CZdxzU2hNkm8daaZXVIlC1+nD9e0Xp1VtCBxFMBd9kI0pRinYjlXFnGXee+7sTKQlODIPVitRqLG7w7K5VksFUeDwcyCkjsSVOjJDIijsTw9huouQEpTKME25QcE6Iyt5lrWXaDzijf59nZc1yzuK80tRXcZSQiCGAVIzXpEE1wjiOJJOJIRBiUIBbY6vp8hfGmpVxBVgr0qmQS8JiVaaksgLP+j9nLdKkQvq4VJkK9fed0T5eYlwDAMa0PpCKrP9adxVNe+QMUrssx5p/0uC0Mb0L0UBsT0psCc8+KMS05ERPqzZpBm8toVScdxirQL1aCikFBcLsdypvNc/Mp4Q1hkJLHnDUPsaoJB1CyYGaI7lYrcSVVrUdE+lBJRm8HzBWqMZwWjLTWHjv/RvGnefj775hf33DRx9d8fr7b3h998B8Hxm8SpXtimOwO/KcFZxzSrx8/wVLKByPJ2yFJWq/5lKJMQBVJf1EJf7evL5XsJt1iLFMfmbaOW5uJx4PsyaNKuysw00DbvAYV1WCJXiOjzO73Q43WOYlUJLKOuymgbRYcqr4UbCDJ8dCXDI161wqtRCzJmcQaewGYJ2n1kSKURmWYE0YSK3KDGAqfhiZphHnnEr3xcBxfiB22Zsmr5gFXE+aNVBnCKkleAtu8IRw4nRa8MOgLFmm8vLlja4d0hkcMrUKKSnLHXWh5ojDU3NiHC3Pnj/DmYH7u0eM6HgQO3LIR4bB8Pz5Huctj4/KQHd9M7Hfe8ZpT+KAODieBJM0qSVSmEar8g3HiGBUdsM20GOuxJQ0GdJY+KxziB0o8chu8vhBGdq8c0TxHEoi5rb25EqZA5MMmjhJBWMhl4Vf/9W/w9/5tV/iS3/8T2Krysa8PS385jc/ozrHL//8e3zpyuOeJHDLOudyky+RangMhf/iV3+Ln/7wll/5Qz/FaHQ9brN/nZsXu9jFfjy2BfhFn6egewtWqOhZ5bE+Kw0qo9LlGzp0MLUDdpjTNlNbcrgdsws8SvtsS8m3t24J//O5rinF7WndwbEdK6AseU8TI/3nbbVpkhNnYIQvonlvGyi9IMbR8BK6t3eu7fM7CFtbNWdNSBtjKLUn7TW5X5EGZmhsF12aCt0XKejHbICRvAlz9KTNyjZUikop9/0cbS/dmVSk+RNV1lxRB3/IkwO2XqodYFE3kAqs4BwRwFRiA8orcETw0wAUrNe9fYxZ/QCrz21WwMqWoFqv9Wzs9L9uBRBnfkFLqm8aiHl9hq2fPWPo6Vnyc6awz400aeCIs+xXB+Opn9H/qPAW23yb0mWgBAVuOMvxsGAaOHkcHSVnSlV5bGWdEgUNhSYBWNp9C81nbPO6STvrXhbAUKTtjZw0hhaVrzLNH0qNUUVEAVMqM9X28LUX4TRAUwPDdfbbnLVNc83b/YusjEt9Iktj0+lMNgr2aTLcrY3O53y3XrjQpYL1GhtoJ6W1e8/Xp94HnaGpdH+zgZLeXS7aqFmBdrINBTbGpW3tXBkd2N6joMHtmvt4VQxeUVk7Y1oBSdmk50SovU/X6+/jsM2pImQpqx8DEHPlcFjw3uGdZQkLpRR208D19Z5cMktccG5QBpz5RIyBnGqT4NY2HOxIES0s2O8ncq2EmFmWoPvFpMzDOet3Y4VSdA0qUglz6jeNLIaajyrdth+UBboq+s7Q5PMMOredYfKecee3sVL0ugoZM9h1DDtvsV5l2mJQtiln1O9VKTu0mKYNBmMU6trHn8qtdaYkwVq3jtHeTzGlJtOm/kef09LXs8b42m5WZdsF3e9GLWhS6UxpfojBGcM46T49pc1HKc2HhtKKYiy1qI87TgPWOZaTMlTb5v+ESAMbCd4pgGlZ1E8dJ/XlKpkqWSXoC1inEm19PIUQMaIFQ8ZuoMwYE6W2MSqdac6QUmyxAcGI3mMplUSTIDW6Pum8as/zhhAsIjwc7vhrr/4CP/3hz/Nh+RnmU+TxFHk8BLCW/KyyuxmfApQElK1Mdxc6ciBm+PiTO57tdvyBD25x8nTOP/1+sYtd7Ee1zZ94929tLe3hZznD97SnZd+n9yX/3C84n63blq6uwMvz/T5nv7/rSjx938aH2IRcP3cXut6dxwjbJ+v5s/zdO77YxS52sYtd7GI/KUtm5i9/6d9h+s4tXz79yhc65nexi13sYr9X+6FBSuPoEFvwxvLMX5MTLPNCLYVpGilFk+sa0CoqqSSGcfTUWpmXoFJgzjEMjpKSBlatI4ZMjAWDQ2ym5EQvKpWzYGxnfTHGgKlYZ/DjQIwRI8rskmIL0FYoTQ9AUMkEDczp/dQKNZc10C/WYBsgI+dERdl1pJgG2hGkCMtpQaxhHAeOJ5UPs8ZSc0tmOcd0PZETxPlILpVUlPklSUZ8C76K0pav+Yx3A/p2A2PlmpFSqQZyKRoIfFI6D521Z0tIQM+Zr5IWPdi8BiI16qzSehrANLUBVQa3VdI2KQkFmQnDOGKdJS6Rh4cjUHnx3jW1CstSGTFc7x3Pbice5xNzKKTUg4KVJQSo4BoF/ip/1bILAqQID/cz1hqs8SwlKSONEYbRk+ZCThUxhWoT3qmsXliUHUX7BebTQlgSxgi7/Q7nHUsI2h45ME4Dzg/klIkxE5e0FR+JbZJRvYIVxmHAOMvhcGgzowXrBZUJyLkB2ixStTK3UhudfCaGiMqWCN4piCnmtAbznRlIWauOjbXaP00GoOS1cH4NLJeSKWULLJSySZL0ALix0tibCtKYmXLdghO9Ar7WwnJa1kHYQUtacd3GhxiVLQmLguVqoZqKcZ6Si4JocibXhLEOI1aTcS0Rmddqfbi5vubxdOTN2weudhO3tzvevH6Nc44Pnl8z+Cve3j8SMqRT4NUndzw+nni8P1DzgOwst7dXTJOjVPjwo1uu944vf/kFv/k73+Xh4cjD/VFZCsxAWALeOk5kpt1ICjDPKimQFqglgC883M0sx5ndzcjLD59zFWeWEDjcz8qWJYlkEoLHOce4H3j28krb5RiYrkaEnd5vLKQaoBr2+x3eC7WqZOV8iox+ZJ4Dd6/nFqSHVpqM1IJ3bq2i3k0TKQV2N9c6xoxT6cCQOBxP5NQkKcQ06cbOnlWhsfvEmPBe+7YixBTBGqQYHu6OUDMxJU7Hhfy2shtH9tOIHz3GFGW/yFGlJoNKVzgvvP/BNYMfuHub8MOIcRZMxY2GFCLXO4sfHburHaYq61ctDSzqNCFpnGNZEnEpLKfA7srjRwW3ppiQapvsZVQgYQOqphRZArx+c8cfeP9lG/8KfH17d4+UzH6/Q2rCijJIzfNCLkXnZaysUnxJ10tJhVgqxWaWZeHhlPitT96w3M/8ztdfY+0V7z+/4uajGwXmnoUB+7qgMAeHYMgIp5T5e3//27znb/iXfukPsHemJSbZFv6LXexiP17rQfezr5tc2gZAajvFdU6eJw+a4Os6q/tnnwCD2JIAZv3kevB1r/fOK3S+g56IoJ37yTFahrgnNs4//+7v27HefeWLY30vqGwodvUdlBWzMdW0fsvNp6D9yarq7cooYU1n5AGxdgWUU2UD0zTGnQ03VJ9eS60YqwCplLRwwkgHngPIVgCxHW6zWtf+WxlvGnii1Fb0UOrZEq8sK8oQJJTSizd0NJRSSUkT64hpsskKeIkhkRtouSPgpNPgtP7uY6d2kJFsg6+UJi2GtoPKMOv79TFWn4zV9RY5G1tn7UfzE/p+sh8b2R5pIjRZWdMAAqzS1brBrZRcWeZABdyg+0nnVbpoaL5HiMqqRO0+Tm0SU8ruSZN4XdmE2l5ZASRl7Zec6+pzdXntnAsl1RW8RNVZXzpDk8jKPqRgOl05Si5tL6KsS1nVthW8lM7k/RowB1hl+BRkJ5RY1nEpogxDzpo2lusK+lKgW21sqtJAUCoLpknRLoPV/FFjyY2FeF37NiqWrZH6eOkVDh1wVJVZRse0HsIYs7LB6mHbqnQ+Jpqdz9s+hsqZr6dAnLqxt+qn1nnQ27FUBQ5aq4UPWhjSVrmiDe7dSExB529VyWNKWYuRjoeZWNSHXI4nYigaMwiFWgSMZbcfGbwl18y0m/BO2E2ez149sJwWlpAwIozjQJXafLO6Sbc1CXEdWAoIikuiFsO08xhvcYOhFGXwkipN+k1Bs10G0g2d0YzGWGxxztObu1btWygYL+yvdqSkfReWRM7bmOtrUym5sRFpZzjr1DedRh2rOZNzUXl2PcAaH+lJ6s78psUzbbwUWTPutX2m1kpY4joWVY6+aH93MJQ1WKeMTNDntbbltBsYBs/puGhhREi4tkb3AqxpMgyT17YuEGOENkZMKwAqpSqwMCjT8TgNuiYXlaXrZGUxxXZNTlnEgJQypznoHGz3FpZAzmmVywP1t3NjPjbW6HrWJOhKjzFVGmivUkviM/Ob/IeH/y2/fPff5ebhK9zsb3l5e4UdLH5owu0rSuAM7UBFUL8h5Mr3P3tgNJafeu+GocdrLnaxi/3jM3nybbW+JzwLy57tCbfPrL7DmV/y7n7+ybnqD97F973YuV/TQUer5Gdbf3+QJ9D3tduzeYsg90NuIOUvqidxsYtd7GIXu9g/nfa167/G//EX/zz/vW/9u/wz938OV6ef9CVd7GIXu9iPxX5okFKMUQMsQK2GmCrFCNM4kWJmPgZqUXm3lDIpqUhRKYlcFFDUq8lsAwXVmtfgtdCkHkrego9aivq5Ao7aAtPGVrx4igBkRidMg+N4WkhZNiewBZyVrWirAdZg6SbLlc4rkut5FagGIHMDEUipUBVIZY0hxoxUWELk6vqawyFy9/aBmrVaMDRKcm+VyaUKVNEgswaAa6sO1cpsYxuDkyioI6WE9Y31qaBt0+7NrJWpW2Xg0wTC52tnpFPto4F9a2VtD+P055QTYoVpHBmcxTnh+bMr3n//BW9ODxyOJ8b9jpQjJQsxC4fjEesNfrBMe0ethRwqp2NUGcCWaMBZRj8SgwJnYowKvGruukGDegbbkgYJYwxWlHo+x4izhpIjpWhVa1wyIhVnHc4I3nsQuLo27PdCiJFC5nRalOFmv2c/DThvOTweWcLSAGmt4thUcknkkBDMWl2aUoKcWpVnlxMpGFu5utoRQiKEqAH3Fp3o99gDsx1gkWqhxl5p3ZIhLfi7VqKjwVINqirwTwOgvVJ2S4qBjpc1qWAV5Oa953Q6KdtTU7/riTPb6O5p41zYwIBSNYmWc7tHYxCxxJAJS9yuu1aklpZAyKuMYyW2SnNNIJSSqRSV2sIxn2a8M8QIOWYe7h4ZR8+0g4eHe77/6jUhQ62RfDhBsTg3Mjo9x/MXV9zc3FBLYhgTz9/3DB5ev73j8eFAXBZyzBQTuLoaGaeBh4eTMm05o7CrtqZd73cMO8vDwz0pRpwflSUpLYSQsQ7ef/8ZDs8wWK5vR97ePRBj1eRACIjo/Ckxs8wBsHhvefHejSYYs1Yk+1F49uKGZUk8Ps7EOWEHlUaTYjRhk5u8Hw4jgnMO7z37KwXazfPM/cMdOWmAXNnkWsJVtPpf+4uGCNIAeq2ZlLRCvFaVSRG0Ir2uyTBHTolSq4ID54qYGWNhmrzG4DssZ+fZ7QeubyZiDIg1fPLxG4wTnr+8wnuLMwNX+xE3Cs/GkRwqh8NMPM2MfkctiRAKhaysaEUlOyuGabfjNB9AKn40zA9Bq6elsNt5hmnAI3hjFOx1/4jm9aStuUalMVOilEhKtgEZURkJEaZpoFbD6TSTU1aWPmcw3kFJ3H/2ff7SX/gP+NWf/jV+6Y/+Cu9/dMOf+he+zK3zhFq58YKpGaStYcWDOJCeuBZCqPzGb37GlbX88h/5Env/dE2+2MUu9vtnKzDlSfi+PgEnmRXIJGfgpIpjSw6cMxj19/a/2PPXpFVYCytjZj+fsB3wjGOzrbBr2l5BDe1M53BIWiJi3d+tn/3iWpfX0X3+xlrknMNQyV3WWbokWVklaleWpDOWyb5/Km0vDKz+Rq3njDpbb6290Fi1alKgTKVijAJ5vHeEEEn5B0DBtgNs36WBZESgseNIu8vtkyu/0/o3BXArQKXv7UAYh4GQokpWVWlSzAbnPCkXZSOVCkZH6zkApaKPfmRLRGlBQKGcte2W2F5RO5/vsH5vsAGSzj5FVZ9EztqjwgaGQgE6xhj8oHua3W7k+nrP43JUNhNUbq1UlXKNMah/4gzGKWNMjvqaygMK1hkE2wAHGxisy1fVuoHtae1Ts7K9WKyCtUtRn0NWKIaSmVIbK2OT2xZlKlUWx6QSee0Tpu23+niKjblTpcmVGat0QFgHsaGA/ppV7nfbLSgQxXuHtQoaqW3M93ZPqfsDZ7O+zZOeeNSChbwmI3u2tNayzok+BrovzDv9W9axrYNJzq+9/V2ZyhoTlDlbec6RSe0ae7FRH3edq640Rp8OImxXvCVS2zly0UVSmiR6l+CuBcKyYAerC2iFGCI5GbyvlKkwHxeWmKg1440y3JoqOKf9t78eqRiOp0WBIkav7e4usixRAVrtfKU0xrFa8N7jnFEGVNE1aBoH/GgJYSan1sZZAfYpV6zVwhVndF8/7UceHx/Vl2Dz4U2THo9LVHiK1fnfwWrr+LMqe56S+kbW69irpY2VxnrU+0glDBWkFEMkpbSCM2vdzt9hniKNybn1UV07aOvbDiaTbNoaqs/Yzpwm1VAzpObLluYTW2Nw3uK9J0WVpB4GT25tPM+BXMA52O9HEBj8pP3RmYKdkObc5qzGWQ7HoOxYLclfSoGsa0DKpUnG05hrnbL7OYtQGUaLscK8LNqOaN+Pg2clPhZWQKQ+v1S2zlnffK3UfHoDVrDO6x6gFj777sc8vD3y+JUjf/K9f5uvXH/E7eioRddAs8IbKrqT2KAMmUrO8Ob1CY/l/Q93OLfNma1HLnaxi/1+2jkIXb/Ws1W6MSU20FB/zp5jETf7PLDoyXLb3iHnr6zPTTl/03qQd/dscva37W1ne9Kzo3/u8i52sYtd7GIXu9hP1gQO/jP+/Z//H/E/+J3/C//s/X/nJ31FF7vYxS72Y7EfGqRUO9NMzpQi5KIyRbVo4LVkDcxa6+hV56vsQPOfrFW5N3XODKAV0LUxwRijEky1V8lS1+Al9IBqXb8vcybMGesE60CsBgdzycSDMtb0AHoPrHZATz8e/W8r4KQF41tFo9gWKFwDd8qopNIShVw7o01hmiam3Y7Hw2Oj/K7s9pbb59cYA3NIhFPk8c0jggWUjj6XSk4VRCtye7VgbkkIpFJSobYgurW2BdLLGjTWYNjmRpZeQdqBWuf3+uQf5EwLwAvGOD1+rZSYySb3Uk6whlNYWJq83+HuEduCgst8ouTIuBsZvON0jBxzIUYoWahGJaqM9fhJg3FONLkw7h05FeZjICWlzlcwj1Kui0AxCr5w3jE4A1nPW4uOFWsFK1YTOBZqrhgviKk4b5EmLTJcXxFCRBCWEEhZgTeCIUaVEBDqSvteSudWqFgjrSq5JQdEExvGgPXKwuWcVZp4tjGn47isfVBqQQpM08gSQqPd1+B0CKFNOH2vOeu/YRgAGoPRGSitz9GWoFIZER3LpRTmed5kLqRVzNaeYNGK9lprSwK2BFphrQStrZI858o8z+u5utRKr9rSiva6JeGKVp4KhlASYgpXVztqySynRI6J/X6iC6CElBQYljO3t9c8vj1yPCWMreymkVgWSi7sn+15/mLi+Ysr3r4OHA8z6XHmOAemybE8ZlK2+MEz7irOekJIbSwJV/trlfIyVaXqSmU3ea5vB957ORKD4fXdI/ev70kUajVME7hrz+3txPX1DcM4cHg4MV0Z/OiJOXE8RZUNyZY0L4hkDJ5aC8Pk8HvfkkaJec4sS8a5katr4WonCJa7t48cHxNWLNM04Se/slfN88zDITb2rMaohlmz6j2B4JxZJQjXUJPRQJbKOmiCRqvXdVxUEcTZVaZEpR8rlIIfLakWlpCZTxHvHaUYbm/35JwoRQGmIUZCiqQspCWT0x3PXzxr0hSeEjPl4cCz5zfsn13x5vUjp9OC9ZbDw0KIR4ahMnnHzdUVdw8nDocjtY2NZQmkqLIOu2lgup6IYVE2hlLx48DheFTpPKl4Z7naTZTJtYScJmpSzE1WprE6GJBacF5liIyzDHutRkgziLW8/t73Gf01H/6Z/xZ/9Jd/kRc7xw7DdW2JSTkXZ6IldIVUM6dY+PrX3rLD85Vf+oBpr+83mCeRx0sQ8GIX+300AXs26/o+tSfgzfr32h7Hcsa61JMO+t4OSDoHNfX3rZCT9VQb6w51S3iWJwmF7Vz9M+dJBTk7Rq2dyEIa5OeLv5J0ZolVgmtNwOZVjqhkZRvta3dvMDHdDzANgNLBM6YBLdr+3tD2c6wJoXP8/gZX0hdKbZLVZmNNKm2fQy7bWv0k23MONWIDepz/3rL60k8mbYw8eW/3lTpQWPegufkl3nlqKQyjZZyGlU0l58p8nBXAJJaYtJgkx7ICdDQvVtsesAG7Gjilg5n1Vs64w9brPvOXzm+9SwWfgeP677k1lPZTAzfUtqekkBCsE0JKvL67JxVlOckhYlHpppgiAk1u2zCfYhszm2yUIvwE4xUgoUAjwYjufWJI255U9LOlsZR2gJAVq5K1qr5FbXQIRkDErveVU8Y4o7K7UqiUJlloG+tM98FAxOCcI8fMBkXbpPlqm7RVNrlAagfptH2/McoMQ1t/3hl252tJKbp3t4NvQJP+HmmAvvUv6/js7FGgcrR9Dqzna30PXaKvNtBXJXU61zUv2tnK1I9u9ELrmgR1859XIJR+yysgb73ClZVHpbbW5tHvuYHq230NgwXM6pc55yimF0nofI4xcTgclc0Xg4ghpIZkKuAnz83NDmeF4zFgjOF0ChyOC8PoKbFijKLKrdNCmFqVnVZv1zTApRYYOVF2IKFwtZ8Ay2kOxCUiVhisxTXWrS5jFpZIiYVxdPjREWNmniM5lfV5Yowy2aas71vXh6KswiXr/XnvGAcLFU7HBaptxUhO3YWse/WyLGeJ7gZIq9t62RveNkm+vib2MVH7eO0PMOq6rtWiQEh13s8T6OqfiBFyFVIslFQawEsQr4UUuWj8RNmXbJO0S8yS2rUEnLOEGPGDYxwHEF0nrGnSSlXIJuGdaaCnVmQktT0bCjnR4kM02eeEayxe3nlEpMknVrq8q3MbyNQYo2xptbN8uxU4Z62CXDtTNSLkWKDJZi+nA/f3HxN+/nvszR/HUhUIuLbk2qz0lq9AypXXr484LC9e7nG2CcC989h/d8242MUu9o/TPi+20ufg7zYXz8FC9Z3XVojQ2cZVYC1Q3Q5yDizSr7J+/QHHW4/zFIB07rM82eLK5+/rYhe72MUudrGLfTEsmYWv3fxV/sj9n/8BO5GLXexiF/snz35okJKzDrDEMCsrSNVAU4pJq0FrJYdMdSCuyThU2F8NiDWc5kBJTdpnsMSoVOuCgGSQzgSiEnCmJdVTLpwHT8+/05JHpRhMVZr9h/vQmGS0+qwzJ1UtF11/llbxfF7V2gNuPQGygpekB+UqdWW6UbBQboABEcMSFj7++GPEGqZphFrYX3uGqWKdcP3eFbUIDy9GStLqvZAi4ZC4f3WkVqOBWSuEFmAHZTuSFWSgLB+AggxqgWrWgPM5CKuUzn7zlGlnq74tlJqRakAKdq0CV0APRaixskjCuIHDceFwWggpURLEOTFYq6xAS4BiOB0zwQRSCDhj8IPHjzDsdljXQEOdGj4klfeohWpRVpQCzlZCjlAVPNQ4i8kRBmeZpgFDxc6J45IBpYnPpTTwRiXXwrDT6udSEpXMMDqoCiQCwzh5clWa9ht3zfHhxHxqsgNVg9mmSYn0xJkYabIdynZlRNmKxkEBEimVlhjr8gjbZkFEkyQ5lXXO9ErlLu+mDAK0ZNLGmGQ6801qQDlpAL+WTOrvc1bl1XLOlJwpWdZAfx8fgjTwk46LlFJLVLXQxppM0cCs0QjuBnppiZhu1rkt2SAoa00Dvmklf0sXlMLxeMJaRTb5YeT29hbnLW9e3XFaYBoGYsh8+9vf48WLF+zGgePpke9/9oZxHBmNpwo8f/894unEfDoQQyYVeHP3lt04UqJQxWIkYQ2IsSAG70ZyOqmcwZxXycPdbkSMJSeDFGWBe/nyhjgfub7ZcXUzKcdUFcariXkJvHn9wPE+sL/xvP/BSz57fUc4JuYl4KxnvBrAKOCuZGG8csrOtWSVhiwFqRDDjHcON3qVfxs907BHqkqcHQ8zMca2Fmhfm5acqwVqky3Y5nRLxLQkIoAVHT+lbonNnBXo5pwnhUwKuo4bMW1867xzg2PaDxhnyMXw5tMH5lOmlplaMru9yri9eXtAjMFYTymJFBRYWfKB3dXEs+eW+SHwcDhxCprYmQ+Z5bBQa2ba79hdjThTVPLQZIzR5FaMgev9DmsGjo8Lh+OJlBayqMxjyoWrYeLli+fUvOi4r7kBCCslZZag4KoYF5aQKRmGccJYu+Zjnz27wg9Wn0lZJUid2Sk4NzzyyXe/zn/yl/8SP/uVfxt5tn8isaI1kgoi1OUqkTEcD/D3//73GKaBP/ZH3mf0QpUtsf0kOHgGPLzYxS72j9fOHfknYAueJg568q+unzlL7PbP92Q8a459/cy7GYieSDBtj9DBjUaUBMS0FOX5NTwBLJ3lLc6TIB0QUZ+e7gtpCowu1JLIdUvy9n2MiO6BMKXJIRmMaNIXgRATJTfmJad+SAdO6/63bKxJYraihw4E4qyNOiij9WKptH0pxJTPkjZytt5rQr/b9vR9mvhBnkBX9VycATPWF3VP1kFJItIk3kKTSdN9NiJtzy44b3CDxfk9Oet+bRRPOCUWVPpIwRp1la0TY1bfqrbBaW2DiZcOztrGKMJa6d/3muu9nD+rauVcs1q3vnW93+3Z1sFZKt26+mMoc6fuZVWerVRhWRJGGuunMSp/l/MKkF8ZZ6yQUYB1yqmx/hqcd41ZRX3Wkut2uZjVj7UerLMsIa/AOaoyuRiBXCu2gWb6nr/LLfd79oNvbV3wVl3rGvMK0FFf96xwoaN8FO2xNqdzDuctp3lmVV97J+i4AUb0GLkWyhKaD8vmf6wAoa1XeweVor5P6+Yna0afI50ZqbNAVbQw41183QpWEVl9l/pOcpVeREH3s7dr2a5LpXdLn6OVtc+679HvD6oWnHT/3VjGYWCYHIeHE6c5MrpWADMHbm9vyCkRQ+A4R6x1OKP77FJV+nk+zQoMMjo+S4lQDCKBWhWIXq0WEzljwDYp9Xz2JLAqOziOe3IKLMvMfj9irWcaRzBQcyVEXVuWJUIRQszkWvDDQAgLObXYgrEMk6fWrD4nDrHS1hGdX8ZYpCjwxln1XWPIOO91/KdMiGGV6et73jXo0sZYn+PnYLLO0NbZlEyLgeSyjd/cGLClgZLUh3h3P9vlJxUQNDpPLVqYlGLhVCM+GZVzz7H5OoaUEzEp9HGedR9/fa0FEilWQlw4zREjVkGbS1R5993QmHyhSMU5MNa1whl9llhTWebSGKhU5h6BWovGLrxjWeI6TY01WpzWYjMxpU3qzQB1G7veOUxjqe7FIG6YyAVSWLC18tmn3+fv3/wN/vnnf5bRX/0AWEFfLbS3Y4TvffcOEH76p6/oqnOyrhIbKPJiF7vY75+9O+OePrf7rrHFz3RhffLBJ5/voPqz33/3M24PYzn7kFDXz52FAH9XYNT2FPi8fdH9iYtd7GIXu9jF/mm2r13/NYI5MJbrn/SlXOxiF7vYj2w/NEhpd71T1gyppIeZmDIUgSz4VhlXIiAw7T0iDlOV0r8awc+WHCrX19fYyXD35gEQBucJYSalRFgSc4otqNqD2WfJ93fYgNaK2FLISV8rjd5eqibrK1WD7P0zZ5T1a+Vnsw7oKZ1ViS2p3ynPK1WD4RlC0EDhGqACBJXsSnNgf7UjRuF4yky7gXJcGMeJq+trHh9nliXgrKWUjBsspRplIAmpVfgJ1oJ1pgWUu0QXWnFnBINdg4SlFKRKE+3iSXu9226gCQvf7tkYDegbFMhkBMSrzILzlhSzSv5VreaWAoMfMCKc5oWw0KpJA9aXtarZOktOmRwCMWh1rPXC1dUO7ww5FA02pkzODfCz90zWUarlkZNWOZeCYMnZcDpFRl9xzlKOgRRUwqKKJrSsEXJVoJL1Sp8+7UasM5yOs7J1Ndk906onU9IgoFY80pIapVUcC34YKCUTQm7MX6xAIe8HRIwmXaoCelResG7BXioxxpY4U4avDg6Ss3EnxjZ2hqfj3RpLTmVNoHQpmCeAopUtoJ7NHTmTntOgck9O9Sh1T2LkXPTMLSFUs4LgrHXUfn0tCXJedd9ZmsQqyE3l4TqfWmmV7woMS6mQcsWZulYhv/fBDfNp5jRnpGbiElVK0QtxniklUmIklIoZKzUVvv+9T7i9uSHFwPFwooqlpMCpFCY/8PK9K958eiDMgeGm8tGXbqjF8HCw3B2OxKNW5taSKDHz/IOBn/uFn+bb3/w2czjx4pnjK3/oZ7i+uuLhtJDDwqvP7vn+t94yDHv2w57D8RVzSuDueHi817nhDDEn/DBqIH7yGGuJIVJyYfADRSLDMJBCgTJSqyEsldJYiZbTzDwvGtiGLZHU217MmoQSKW19a0w+ooxeORSsczhnmUYVKDqeQlurdD6nnJskw5ZYtFaBW7kxiJ3mQKmZYRpbglMD+sus614MnmU54CbLbr8jxcqyzJQMJQm5zDx7foMRgxQhLfDqs0eurnbc7PeQK48PR3JKmOqJoXCIB25uRt7/8JrHh0B9rNQkJCLWgBG3BuXHaSKeZpag0jB7v8fYQKkdTKjSOIhlngNhyco0kTNI0MTWOOAHh7WesMQGCivsb9/nvQ+/zKff+SZpCVg38vHHn/L//St/lY/+/J/j5273oHxIPAn9SSVXOCyFv/sPvsHDZyf+1J/8Q/ixUFUElR4i7HPxSSL7Yhe72E/EtjlYW2JQ91MdeKT7KrZEQHvmmvZ7eec4Cr7oKYrzvMS25tIBBCJN2EXWY/Xjdaamep7ceHKe7frqk2TlF9OMa3skgSpZ2SdrxVTRNd4aLXgQwQ1WAaFFix8qMAwOqsr6im0yaN5jjWnsflllaedIl6JSPEeHf21AJX2ttZrQWHU6c9IZguMsmVTP+mxLJW977e1x0Asl+uvnh9NnRQexxM7uspruy2k+iBYiCDmDN5YcMs5ZamnSVk3yteQOpi8r6Km2/cMqadauv6x7ww5M2Bg8akfBrX/b/CbaHnO9zSYtKx3sJeo3CDQ2WLPut7W4JVKCSvg5rwyOpklwLSE06Ta0faSsx80NDFIb+1JnM/GTMvjmWjDWItKBEkoE60dPKR2402THyiYNl0X3sDE1JskGJJZayaKepGSVCM6ltXuVFeBCVTk3Y5WpMTeGYWmsOp11WIy2gR8GainqT/T9emvbkjOh5saC1KmEOAP9SHtrZ0eVdVT3DqnrWOxAyM0UzGfPJPHah+Rp4rIfY0uUPk26Phmr9elJOnNW0ydvfkorRLKG9ZTS90G6J1K/vwG/ulwYZ2OwnVuLdoSam98muh9NObGzHjHKeGNNUWbNqsy5pflQUiu1JKp11Fw5Pjzy7PYZKUROaSGGqL59rUwDXN1c8XivAPjd5Ll9fkVOlZgLD49H5saqpOtIYbC6bh0OgZxVCv7FyxucdcRSwBZKjNy/ecRZz+AGYizkYnh4PFFJOlYwTe7PYNs6Z4zKcJdc8Y1Z2DoLg7ZfjJlljlrolNoYz7n5o2dAxA2HtAGV+hjY8tsNONqKI9raLK0QJrcCLZV6a8CkNgD1WjfftrNbLSEpyC8X9bGNMinl1Ne6iBuU/ajULjmo116apNw8LzTqu5XFapwM3hrmuTFpVVbWVOctw2ApGXJfR1OC2hicrFWZtcYYlWImxcQ4DJxsoNZILpUUG3DR2BazUJm3PoZLBieu+RyQUyUlBU1aP+D8RF3mxirtqNXwjW//Bt+Zv8uLn/nFJiXbIjiVdf5XIKbKp68esF748Pk1zvT1t83+FWx7sYtd7Cdpv9vee5uxawTgnXd0FvSn63LdDrDuz7aPbMD7/vr5Uc8l5jobf9vgbceqG4D0/PDnT98vsj9xsYtd7GIXu9g/zXZwryiS/tFvvNjFLnaxfwLshwYppRJx3rIzE9Z67u6PLMuCq4IVBbOMo8E4y7RzVAopFOYlaCDZCtO1x48ayPrwSy9VkqhUwjxzf3fP23ikImeVibUldeHc7eoYCwUjWYRKqrlV+ClGJKVz+bONeL5/WSv8ejlhZQVhrIHZVu3Z5TP63ygNh5JzC9xWqEUrJacJ60UZb0wDD4hDqmV5iBASp9PC42GmZL1PIwqmiiE0oAutalEzJr36sQd6Q2xB3Fq07cUglTU42CncTZNF0GpfoNZWRU2rMFaAlAiM48AwOnIspLhogNFpVWMpmfm0kHNmGAYyhhATRizDMFAE3ACSsibHJCM4lpiYY1KJtuY5SxVleSkGI5ZYswb0MAze4gaLsVqxnENifz3grSeGxOFwYl6Uzj2EQo6FmND+aEmFWhQgIBiscXhrSTEyH2f8ODAviTAnahGG4Lm62rMcE8scMGKxThMrJusYcoNht/dc3VyRYuHu1aMGsBvArQg8PBy1KppN0kGDlhu4RGzrm66GUDV4WxsAq55FIQRZk3FFo7Tk1BM0m+xLJ6DXHJNOiBRbX4u2gYKuFAi2JdoU8NXzDD2xhWQUpESTcMtNOkyrZkWMyqS1JKARp8HlHFuCya7zqTOP0a7Ne0sIcZ3GXR7s9Zu3+KmCJN5/f2LwlXBaSAHSUjkdCnFBEw8ua/C+GmqMPL99xu31Nd/73nd5/XrGikVc5tmtZZwiH370gmWZ+fDDa66vPGFJ/NTPfsg3v/U9vvWNzwgLyrLkLMYKX/v613nz2QMOx/e/9wDiuZpOHEJhGsB6x/EYWE6Vh3zgeIj44rm7e2R/44khEg6V4/2J08PC1fWIN45UFpZZmXm49tw+f8a0d6QEp2Pi7u6Rw92J4yGQQm0SDwVEQYcaSTdbmrtuCTga8NI2NqVaKymqJEIpqQHydA5SDTlFUu193NaydW1wTLtJGa9OBw3AF1jmTE4qy+YHRy6ZnDIpwqlWQoo8sztyTMQl4azFWkMuEHPg7Zs7TscTJRQwgjOCdxDiCWzB7wQ/OuZjJIaEWOFwqOynEUzBj07X2pbwv75yDJMnV3S9mivRqiTD8+fP+fXf/oSHw8wyBw6PM7l28J0masQIu2EiZQW0DtMVz18+5/7tG8JSWE4KRMx24c3D13BxZjeNGLEcXr3iH/5n/wVv//Sf4ueeTVhMY0bKbWZqYuW4CF/99e/y3pdu+Vd+5ReYjFBqagxVdpt4PMl/X+xiF/sJmzz5V9evpqcYGsCjB+47COUJWGU92rpqP/nXUvIqeixP5eE6OMA8AQX0a6tPznGe9Mg/4D1fVEs5YY1RKSHf5HxyxgDOWG1vQ5P+1X1QLhXJBYwWBThnEVFQydVeQbQ5t+fSMSkTyvkie5YS2sBd53t9TYTrY/VcfqussFLOPr+JasgKMJGzo3d5q88ldzoehbpK5VLBioAxDZCvIHzvHWKbGnD3UZrEUEmFkqIyrmQFK3fQUWlg8fPx0ZEh24hUKxWkscyaBqxqGa0nbSeNxXElzTwDxeulmxVsomBnyA2ULqLFFroPqYTUQDimST7VClXZE8UYhkn9G91f6qXHBqK31mC7/9d8nrik1gV6X6Vo+1nXfSs9n7JSGaozhCWSYtT5J6ygna2PztAcDcxgUKBEjAnrHKXqPdZcyVmltpQpVVlsVbq7YoqhmIp1Bj80mbgkGKP3rky/UEUUKLWyUnUkydO+UP9vG4VbvwJrUU3/SAe0i/oQFZUPb4g5kW0eFDroQe/7XJJwY+xs4+qMSexs1D9JqCrwqM2lxkLV76r/pCCt5jO0MbwB3jZPZz1mK6rJObfmqGvcYJkDXd5vv/eIoOCfVBXwkxI1V0avDGwxNzC/tThj+eijD7i/v2NZGrsOGTGFJczcPLsml8w4WpagBSfjbgQzUXJhPuXWLSoP+Pr1GygaPwinyJvXjwzOskQdw35QH5gKx6MyvJpiEQvDYKimyWE29t1hcCrtlQo1o8xnxWAGZWlNqSgrao9LGAV8dUZcqNu608A4a6yjnCWo2zzvQZbaXiu5IlUIJbfYTVuTWj+s0uTtizUW57u0tIJFS9Fz5eaDGNECltL25rkUXW2jPhtqrVgR/OgbACuuzFiUBvhzFuf1tVJQtmYrKiGZygrYjEFl4Y0TSmpAtwreKytdUcQsKSSMGJy1+GEg58Lj4Ui56ZLsiUptYFoFSTnr9PqzjtZpf0WMCyGFtSgqpczj/R1SCs4YaimkMHMXv8tvffj/45fqL+CwDUjQmbLUYobPXh8Zd573nu2x74AJLh7ExS72xbNzwJCwFTPU9bn7j/7805+33dv50397RV8wq+fCk/e/C2D63a71c9dQv/g+xcUudrGLXexi/7Tao/s+f/P9/z3/2if/Cyz+J305F7vYxS72I9kPDVI6nRYNQhWIUVjmREyV0TpGv9Oqshqw1lFKY+DIINUwjJbBW7zX4CwCzlSWNLMskdMhcHc/czxGcu1Aj6JO3FklZnejzp2xDsjpQU3vbaPiBtbUwlnKqVX7dUCJGLMG4WAL2vVEkbTj9NjwStZfKsM4MO0njqcTpSYGr0FqOwjj5PDWk1IgHBN5UbmwEE7EZWa0Cu4JJSnN/JK1IpdWZVpbyLgHoldWHYFq1sp+MVZBPzmvZf5rULJu4BcREKtwr1IyMQaMGfX9aLViqcISU6tMVaSKscI4TuRcSEkrf1PqKJbS6OktN7cj084RQuLt6xPHx0AtGkwupjaJqaxSCcbw8OYR6w1iaYCjzDiqjBkYTofIMivTULQa8M9YUk4IgnMOsQnTMiYaJNVESSmFUouyorRgchUYiqUU5UUouXI6zCynoBXZteImZZ5RFhmLFYN3wjA45nlmPgZyA3X1aqdSpSUBZK0YNUbl90SEHDOl9L7tDj+tEph1LEFj8jKCoHJozhpl1Mmo8kS7P0wP7LMdV2RLeJ2dQ6dNVUmP0uQERahFq9tNG/qlTyKk0TFIY5dpEoAVxDigrPKGRtDEIbWxw+j41Ne1Q2ptFbfZtDnXq6YdIJwOgY+/85r91YQ4QxWP+IWaEqfDkeUU2E2GFy9uuH1xw5s3R5ydGMeCNYn3PnqOnyJ/+I/ecv9wzxIiX//Gd8kPkZsb4cs/9RGVhWOoSLF88+vf4YMPb8lz5JvfeEOphRQj968P2MHw0Ucv2Hnh1dsH7t4ceOCBh8fIMO4Z90IMloRK6eUSySdNmsYE+8kzjZYweZ0jVWXm9lcTfiikqInWwyHxcDwynxZK0nZ+8cENwzjz5rMHUkzrnLdOgWG7/Y6YMsfDosft66MxGMO6PkgFWxsLRynUpEnFEEtjJKvr+ui9Vwa1ltCY9juGURM7zqvUyvEYmmxgS6vbVk7dqsylZkw1xBBxVrBSeO/9PdaMvPrs8P9n709ibduy9DzsG7NYa+99invvK+JFlRlZMimSFguAsEiYRAqUQEmABTYMGzRsuGF31BJgA2q4Z8hddw0YNmC7YcGAAAMWLck0QduwKNqSSIqZkJLMipFFZEbEe+8W55xdrLVmMdwYc669740XkZEpJeO95B6ZL+695+xiFXOtNecY3/h/crYCEaMy3kSGIRIiDGPgzcOEqvL82YY8WyJexSxA59kKOZtbs80rJyGMjrjDttEHUhVevTyQU+HnfvYb3N3d4SXy6Sev2E8Lz589Z86FVw9viB52uy2neWl2b5WaCxVhXgqHZquXc0HEg1dutoE8L4hEVJWXL38XEUcNgb/79/9Lvv7BX+bFaLdqL6bsocAhV37ltz7l2Ys7fvrrzxhdU1tpi4b1WfY9hYZrXOMaP4q4tKVppkZ4/V6k4zxhlrVA3pP7BjJ9FnTYP0NWEOD8KW/butH+XrFCQ//7GUjqn93th89vdFx8r55t6j6PkZZiz1FVStJmq6Z476juAkpyphyUUl6hiOj8Or+6BBbmyayacqqkpayKjkAny3C6rhjO1fTLedPFPdlUNE0xp2q3nW7VpQtESS9ezwrK2HdcFonOJHrfhotiUwNGQgjk3Mh71XU+OQwR77ypchQ7buKElAs5FbPjdkIpiZT6fLOrWdp8/XJ8XY64VZWRppJCU8dcD0qHYrSpF7X55gWWUpuNtM3f+2u8zT2DQfc4pdTcACADUnI2NSXMyQ6zrrJ1XF93nE4L8ymjfW1YDQLpjRseR24qW4i2824KJqVIs0q2xhFBqGJQhQEFppxqVno2r+ngTFcosrWRtuaQPmxsXmxLLgOVaylMubzFFdka0yxepSntaFVSSasaDvq2amo/S31c9LVFXxefx+J5PXE5bs+rXmnDXM5LYPTtNeG736ttdK7r7XfDXue9QSp1VVQ1Fdn+f33MXa6ZnXSLPNuG3oixWuG1z5duE90aJjoEt5ZptdKX+O1SXO+jOVeOh9lgMaemDuzt/jCdZgTH7naDc8K4Gc26vjqGEeJQqZIYt5Fn721Z0kxOyicfv0aAYznx7MUdqhnUoyivX+25v9+xGQNpNgWtmmHRzLCJ3D7bsImOx/2RnJXjYnbDPgyEJOQFak0Gz4iYitak5CQMoyMOAVUDYZwLOO+b8hikJZNyohzN3jjngtmYeVM7FtBayEultvETgjeIJ0Zqqc1qruG3662tPwH7z1oWRLs6WLc5pK2BewNYs4NrdtShWXOWUgjBmqKWZA0OYJ9VXV//rgmYC/hNibGpR4ljntoYa8N52IQGpHni4Em5sCyZcYxoMZUxN5piWE4FiY4QPEMM1MUaocbo2zXiUHG2DiiFYTsShkjN2tSYCjFEdrsdZf/UIKXeSGSWb6Z8a+pqT49PttZtdpDOO4bNYPmFlKm1siwTmgTvA3/rO/97bnY3/IvP/hpBXHv2G6ybivLJmz2b7ciL28EAJflsW6ZrXOMaP/qQ7/l7n2+9+6/P0ib8XiVUeecvl4JIACpN7fHis95dU5w/eeWH1234npvJRV7R/nmFlK5xjWtc4xrX+LxGdYm//eX/JaKev/zx/9Scdq5xjWtc4wsaPzSk9PRmXmXGT8eFXCyJe8iV+ZQtOadKLh6OmZytQ1XEwB3UsyxKygvbzcDT/sTrN4/MU2GZKmkuBt90yEYEoSKiVPUIfl10OSyPtSYvew7Wmf2DDwFlIeemOETnL1qCrSnddIjDPqepzrTQlkR7u5P0spAF0zyTq3W9hmBggs+V7c0tu5sNWpXpCC5sePZ8h0rm00/ecJwU7zPb7ZZpmZmWs8KHUA0QWr/ftSRdgz9awss5A0I2mw2qSp1r61I9d8uiQknWMXtpx2B5ZSsSDEMEVwlNTSaMjttnkc0mkIqBPm9ePqDZOhNr66IM0ROiHTPrIl3YbKMl48bA6bDYJpTK0j5HVQnRm/R58KCOUi0BWHNF68I0z2ZDN46IeGpuxYCa0FwtMaiK8xHnIpBwzsZVCAERz9LtIpZG9qjgvDAfZ0suBo/zsExW0KotSTpPmTqAH7wlWptU/HRYrBNyyZRsBYLgrSRYGiWkraAEXRlJV2Cqd5evNoPwPePKulffTk1YsQqDfeqFiUvrcP6eNGXr5r+MDvsNw2idwbnggxV1aqntujoXZ6ityKBt7ImndAUaqS05bbYsZqNSca7ZsJTaVKxkzbj0zutlWXAutES2wTfeWyE2TYV9nhEW7p+NfP2r7/Hdb79mOlS+/KWv8t5HI68fnki5cne7wxP42o/fcPs88HScmGtgPu5Z6szjfuZ0VKiZ4+EVcYzgK8sxMR/NAkHciTePR/wQm2pTQdPE+x+9YNwG3nt/x+vDG3ISjqeFx6cjYcoMp0BaMiVbIjz4wDQnjlmpKRKc8vz5hjBEppMShw03twOpTmStTd1nYhw2zMtCzgsxOqqO1FoYNp73PrhlOiWO+4kQArv70QpgWamTGqCjvtmhaCvYlHUcdfU0BwbhVLPV807XYmRPTdVardjrXbMhcTw+PiEC4xAJMRKHQq3eoB6rSrXrpY8v1nF/e79DvCk5PT09GfDY1CQ2Q+D2PrJ/OjKEW3IqDN4hoVscVT78+j2b24Hv/vYD+8NCKYrgGQbwceD9D+643XlevdzjiExlptTEISV+6zsf8+Gv/TY/97Uf4/bunix7qhZcqGw3ViBb5oTWihfIS2rQVuLp9SuW054Y7GESh0gIju0G/HZDnhYe9yeWWsB5Hr/zHf6D//O/y1AL/9pf/ct8sB0I6lGF/Zz5L/7Jt3n+7Jaf+upzxv5IuRYVrnGNL0w4hW4N1maLF4l6e6adTRttvujeucLPaNLle+09Zn56fn25eJ/9/vxN/Tuaoef6c7gAk7vSZnvtD9Ol/aOMZcoGb1Rd1UNBSbWQusoLQil5nRMZOC/N3qe2AnohRivkL1Mi5WrPytIVji4YpHfmRvazdwpAcnFse9G+wdz9OXcJG602GGrAmFzAI64pgaxQS1cw5N3ike1rzoXcFHhC8P1TGOLYFIwMgBnHDbvdCFJ5fDyY0mHNhBAwLquNuL7O6YUtufxem/+voErbKOf82qjRf9dtrNZdV5p6oLb9ugBRnEOcfWfVgjhlHCJx8ORiFrvzlM4WxAoqDqeCmNfRqhKltSv2nM+fqlLAoP31GJemGCpNoaDZQhVT4ypq6lOI2Tj3a8YJiLe5eKmmaGtNNOd1joiY+k6186TtGAg2bsEUonwUSnJcWreVXFEHLvS5v31GTuU8R744N/0kvKVw0/e7nKEQ4Oyudrkm7WOvzbFpa9szgNTgow6G6Hmf1jFxsf743uWEtjFzLoGKQIyB1CytziOhfV+/f2prqND+mdoAp/NBWM93f3s964C9xQfSGyHc+nbnxSzeWhNUyZVcC47K++/d8+b1EzU7Xrx4xrCFx/2J43GCqsQ4sN2NbHeR/bEyJzjOT6ScWKbcGg4UVzP7p4OxbNqUeqry+DQxnRLq2rVSzCpcq2eeZ5yLLGnBuwHUVORKqaQkzW7eGkgUU/4xp0kP1eFD4CZGcrImIsQaxmqlqYMVvAvkUhAq3gspmXW3iLDdjehWWeZk95WhgS9LNrvnpoLdAaRujbmqA7oLdeB2amoDAvuQbSxaG7NmkYqa9V5XxC5FTLUWs0TUZtt2eW1f3HzbGt+UuVUr05zNnpv2fc3+rpTcmows1xNDa57RynY7Mu4iKcHT6z1oJc3J1jvAMI6Mm8AyLSxzxnnQZrP4+HTkk09e8WJ7x2azZbedmDkypxPO2bOnqxZ7bxBiVdp6K5MWa7JwYqpy3gmCNZ943+3oKlVtHnB4/Qn/4a//b3j2tR/jT3/059g6e6bNpfLdl0/stiPPb4fPNXh8jWtc4/uH9JvlepNrP7/45woZyWr0enGL1PX1l/PHnhM/g0uXs0q4bKTo72lP78/awne/9eIjrzefa1zjGte4xjU+r1Hcwv/no/8VP73/eX7s+Od/1JtzjWtc4xp/4PihIaXjPjEM1smHeGIwACNn64wrbQGV0gkVCN6SSGhl/zRxmmZ8ty/AIS7gZACdEVWC96g3aERrS/a1JL2tqnqBwP4QuhWEawlgxYmw5NyK9qa2U2tdOzf7+3ohoWo1RMPJmpAuxWwDhhhJKaEqOB+Q9nqzW2hJeGCeF4ZxAMx2zUtE1LFMC6VkYgzc39/x7NkNfoQlK2/ezNRcKccD6mDYDO3YWUfk2o3qWsKwQyxYcUCE1h1amed5TUT3rl2P/c6UTizhWatSWylsBWhKS5hLpaRESlYcqUXJS0XFMc8ztThKqq1Io2bRgSX5tVRyMYukaVpAKtKGVa1d3QlUW3egE3Lv+pQRF5rlRyhQK9FHS/CnSq5mfydq6kIxmB1c1cIyn6jFsdlsCcEx1IATR21JUq9WcMg5mzVVAUnnogreow3O6V3DtUJOvfAgDa5T67ZVCCESBtvnWlqnfuvs1rcUv2jjrp73v1kJIr0T1DWAyMbp+T1KrQnnLbk5DNHsJZrEfC+WWILerq+1rNY+v29LVStriirzMqMVfPC898ELHp4eVpAMZbVKrOv1xgrClKotCVtbUc9b0VbNpkGcQ7R1pNNwpwuIqhdotHXiIyBVyQVe3N0xbrYcDkfykjjsMx9++Izb+y2iA1/6yj237zteHx7YH2bKnHn2/BlzBT06fuM3PmZ/TAybwGF/IJ0KQ7Sc92Yz8OrlS1xw3N3dsbtz5IeJTz5+w+GwULQQglK1sNk6Up558wYe94+c5sIHz5+zDJXHp4U8T6SpFSsksFQ7HzlVxjEQXCC4EXED404RX9k/HTl855GUFoTA6ZTMgq2cqFXYbEacqNkNugwUbnYbXtxsuXsWCHEgqykRpblwOsz2/QDeALlaKiEEU5NoKl84DEBzYtZ4rTBkYCMX472SS7KiQhHmh8XuLa0wUTTbfV0vS1nawNGW6KrgxNQmjoeJONq9x/sAOjMOgSE6ljkzTw40MM0LtzcRvwlsdoEYKjVDjJVlWri/33B/P/Lm9Z43H7/GRcfu9oaPXz9wmCIPrw/QCtV1UTRXXn78SJon7u4GvvzR++SaeDw9oBRubwfmKTHPCXHKzW1EdpE8Vw6HmaUmKzhWG8vDGBhGR0knisJ0WprthkIUSi1Mrz7h//bv/Q1OKH/tX/pv8cH2lsO88J/+w2/y0Ufv8zNffUEUuxed0ddrXOMaP+r4fuD5Oc4p/J6bV9WmbgTv3A1pWornz1//u1D51DNg5C9e14sHzQDyrU3oGiXSahvCxc/eeb2KrKCUvvtZn8PIuSnsiLO5u5P2nKoNZJD2OqNRnAjaoKZUM9k5K/4Gt0IEIn4FT3yTiMypUGsHSzoRAqv+0aX8ZJs/r6qEQK51BQl6E4P2gj66npe1INRgVJFLYMWs3LpgiKlQNiWsPn97pwhkIACgYqpBzT5tHKOtoZzN5eI4wNGslFJeYFVLEWpTP13BlkYFObl8ItkvnQgVSDn1WdtaPHNigMmKoKzbfqZOVOz7bOppjRveO5zzrRElI9617XEN2Oo2ce2/fsFVodTK6WT71bd3/b7zlWlfX6E0qVHX5qWm9HPWFKoNirDzJivIE5rKU8qFkjPeBUIMiIT1/EWxua13rsEl5QKyavPgfnG2+dWqlKU2Z7cxbiqUpRgI4bwjtrVUaWqVl2DSZ4HNb4FL61E4nys4w3HaQXaa9Xf7z0CvPq87b3MfgZflSXGy3i/fut80dVXnhGEcbN215PX3dg2Ykmq3zbNGjjPMcr70Lveyr4/OW3JWkJO2rRh0xhl8svWk2XzFMJBLoUplWjIPT0f8EBi3AT9U4iYQFqEsYkBfgDkpT58czbpbrRkg54wTYbsNDeIPZsmmjs12RMTyIsvJ1phKJTi7T2x3I1UEJ4H9YQY84xAhbpiWSi2Z2iA36fshdsyCD8QQcM6bArGdLZaUycfS7M0N1qxaUZ9wLhisWSu5WYOLWPNRCI7tzdBs12ztGrynOjXL46rnBwymdCzSrMbtSl+vVej3x/ONr/9c4ayii5i983prE+iNDu2cuXZdXY6sfp8WHMuUKCUzjoFhCAYjVWUcAqq2n6oGJ242A1prs6gXajGlr+k0A473PrglLYXHxyNaCj4E9k8n5skUp/JS8AI12bisueDFsbsJqFM244Cz1BdBI0qzhC7FrEdjgMHAsSXZWFCFVAqBSAyDXXu1kpbUrPPs2u/NJvvTp/wH3/7f8b77X/DR/Qc4J3zr2y/ZjiMv7jYEWcWyr3GNa3xO4vK5+P0uzfMc8Xtf0X/SVVjf/aSer+7ftd5P+335nW2xHDff8/NL6vit5/2aHL9Yw3zmjnzeVxXXuMY1rnGNa/yzHSf/iv/7V//n/I9+/f/KoLsf9eZc4xrXuMYfKH5oSAmkWTMkakvMxOhJyRSULAGrKyBkiePaEmNWPvEukLPy+HC0Lj7nCM4z3gSGEPCbwOuXT5yOC2QMfFDBOTWJa2hqIZaELQ3MCcE3GflqUEo1MMN7zziOqCopJUopF0V6K65771rCtbYObVu0lbZ9pXVzOu/wIlA6DIIl2rwpaCxLIiXrRI5zYCBw/+yezSbgvIK3Y1CaipCWLvPu8aNjGCNahMN+Ii8VxDqrSynnlLxzSNtnKwA45mkGvSiutES+qrYuvtaRrbWBX2f7AFWzb5MKLigRIRXl+DhTqyKDnUfNPdncICgP3hXrcldniUIcy1RaR6c2MKwlPy9WvKU0NSjnmKcFF6yrctyMqBSDJjpRgcc7Z4nnwY5/iI5xu2FZCvvHmWk+sXUbNpstpZjl1GZ7Q4weFxw5Z54eT0yHZGpd1TFPCmLdrudkev/TupYrIAFEPFUhpUQIjjFEhmGk5MrxeGqFgHcuFdU1saDi6P3B/TzaKSorpARn9aVzwqDbeFkhIERntlnaSqWtOGKNWc0eoSmD1cI5qSxWDDFIzfQglmVphZ9e9KloG9POC0pZ8xmKWTSUUtDeubzCRwbmrYY12iC4rvmgvhVazDJPEaZTxuGtqJAzr18+srstOO9xcWA/LfzKNz/l5nbk+b3wOL/Bpw27u5G7u1tqgZu7DYdU+YX/8tfYv97jwsDuZkAk8+x+y+3NDW4w1aPXLw/UXBli5fnzWw4PryjzjLaCyu3NwP2H93z561/i01cHnB94s39FkC0lVWIcGUJkygUtghPwAQOMogF9DkctwuFpIpXZiqTeMc8T+4cZaiA4s2DJ1Tqet7sdu93INM1rWdkKEQsuwPZ2Z7aZD4lpnnHiCd6TMTWrgt13fQOUeve+Wa/0okIDOHHUWtZxGoJBi4gVoWqD7KQVIGwsGoRVq65FkTiYgpoTYSqp32rIqXJ4MpWo9z7YcXM7UqNwOsDd3Zbt1qPqKCqkOvP82Q139xuWaebFiw0pLxwOmWmywkDVxPMXt8w5UVCzkHy5J02Zzc3IsAn4dilsBo9UwYnyY1//kNvngd3WMwwOPSnTPJvfnQrBD8zLkc12IEZ79qgooZrFW8nVilsUgotsxy1vXj+wLJkQRismpUItE7oZ8RXKsfLtbz/yrfmJ3/zu7/DB3Qv+2NeeEV1CiN83aXmNa1zj8xnvAkD9H+6d11yUEZCLZ7w9Uc92baLNTrUXCN4Bmi4/r0O+9eL3ojT4SNff9/f0KG/9+7Jz+vN5B+pTaAM26nleXxvc9U4ltqvjuE6yNEAkp2IAd1uDdJVGm/95jsepKffAed7SPrOXjZx9XmsJWCHdutJNRun0baT9rkPoveu9z4/X3/VQK/iLc3ChFvN20X/dU6AD6/aZvti8brvbIs6AnCjBlInmdP4c3KoO67xAiIh0NZO+XWfQ5y3bUeljrCsj9U05A3ldGXcd6WfCxeYOrtl0a1NUwlRdS25qMRhwJiqsMMoFpJAb5NTnlTYPceQL2Mu+94znnO3QnDXLdMClQV2mitTPrDfIwMMw+PUcO+/xwRtgMCcUbcCH4oIQYmzKVjbnCrmQ5kxOBa1tjXRh4tim4mfYp821KrXBa6YyZdNlm9fFEFhqsvFxsX9vxbpGebshAs62awrUnC+qme2eVJvym9i80Hvf1Fx0Xf9wMS4vzz/nM77OGW3uZ9s6TXObP3bzw4v7p7Mz3236OtvSr76VdenD8AJ4eXvfV4qnbWPHRSticliglfmUyLnnI6CocDhY08dmtDur+hERYdxuQGGzG0g58+ZhT5oWxEWoiRBg3Hg2Y6RKAx6LrQUZAze3W/K8QM2knBH17G4GNpvA7nbH09PEMmeWkone1iPWhNQLy9agE0eP94GK2RjWrEzTgksQhvO6u+RCXjKoW8+Z9tWlsydAWW0PaTCgUqtZwFmzi+UUUAPNpB3Dbh++Aoj14sp/Bybrj7KqXZ31/EQT19a7XVWrLf9L6XbgDetVWh7BmdUidv1LswtPS6U4CNXWnyE4Qmzqz5uAc9JgIMV7UKlog7JyVpbFgMTddsvpeGLGGiu2txvSnJmXTE2VPGd8tPOgguUZgjAOwm43MGwi05INetWmQLWYmrB3nlrBqUGVopi6dHCtuUMoua2xtDL4gaUBSs61pqpcqCWZxakq9e4122eO/T7x8s1rnj+748svbglSqFij1xkMu8Y1rvFFiM/Ce87X8AWGq+3RLW89ws/5w+9z4Z+f15ff1tXuvne9AbwFP727tet361spv2tc4xrXuMY1rvF5DoFv7f4+h/gJw/KNH/XWXOMa17jGHyh+aEipd6dWFRTrcNOSKS2Z5b1vQIVb/yvFlIE8HrJSfSXNS4NbTEHGO5PdvrnZkKUyjJ6cLMHsWiKsKhfWa/UsN94SnN6fO22FZoXWErA556ZIM5CzSYPXi2JRyc0uqSXfLcFsBRHve0dhRSltvwz88d5Z7ZtzJ4p2SGrJ+G1ksxmYl4XD8cizIhwOez79+JXZlxUlxIFxDKgYlORbsrqkBXFC8A6pFcQh4hq80yyeannLtk2LWiGlFXF8A5kQg8vcRUFCsGSi945aMnHwjJtIqco8pwZ/OfKcrfQhgneY3LyyQmdWrLHPG4aIwxF9bNL/aVW5quVsg9YT5M5ByhmydY5O04T3ymY7UkohV4hhIG4c41i5f77Biefx8Wj2cKWw3W7I+cR0moAGpkVBoiAutLGj3D/fsRkzb17vqbklFXOzgmtJ1hjNa0Kbj4Q1l9bW3a94b1Z8KS2IKjHEc0dpG03rSr5epBd6TYVWuJFeXLFEe62VlDLnok07L7VSUqE6GMaBEAKLJEoWK4w1yy2z17BEaC+e9euwn3LbxK5spjw+7hE11QWRc9FKVXBBGaJ15U7HZZW0F7mwrFHad9LUEDA7isviijj6R1dVlsVUyRRQB6Ke6CO1Fo6HhMqCdx4XIE2JN1Pm+HDgZjNSynNOc8K5jEjFbxwpF1JKpDTjs5Cd46tfu+H+eWSz2fE0LyypMA6B6ZCQDOTKT/3sN6il8At//1cRt+Gn/thH3Nw6nr/3PtMM3/zmbzPXhV3coktiWh6oJIbRE8KG7WbLe1/akXLl1asnpmlPyRVRb8XRJPjoWjFIcN6UmrKaHR4V0lyoujerAoUYPLWYgpoWx3zCrvGc2T8eWRa7X6JC3Hi0FsqcDXTsHfP0Am4buyL0UrlW65YuegYEpRUyLBkmrYreR4IzG8SmYmD3VSuaBh/YPNviojCfEiV3MNWhIuwfJ1SE+2e3fPjV53jvuNltmOaZw2Fmez+QtfD64cSzuw2PTxOnCU6HzJe+fEtwntcfT/zO/hVhN/DRlz/kO7/7KTllXIXTfmGaM5vBcXsbuH9vh+ZbgnrCIOQq7DYjPgjLBMfDYl3RXlrX/5aShZRnNmPk+Xs3pFKZToksSvBKXhLu7pa8WLHEu4ggDKNnmQ1iOs4z7uE1t3cjz9+/55u/+l1+8utf4c/8zNfZeCUz4/HWLX31aLjGNT438f0S/T30nb/34vm7Of3Lx+uq2dJeeKmWdIkvSAONGvfyFgIg62sa9HJRLFh5ATl/p158h+vPcPgsVOBzFx2q9cE3qyHWJoKLVwHn89WhWdeeNSq2Jqh9ntbmPiHaPMuUUBuw0OxOa+3KSq0wZBM8ujXcqgLSlGJMsdKUcqqqPaelq72wsjrr5+WuhtNfsOI054JP3/8Wq9Wvnj9rLU61E93tmOc5MS+JXGCZJuZ5Wef/4s7gbQcgqvdvzxXXbWv72ICCPpXttk4K65wAGqDkuoLSxX5JPz9nNZ8QnJ3Xqmgu5+df2xeRplbSvqfqeTz09QzS1H/a/CM16+OuzrNu6zo+mlVVpanEFpyHEKOtoTCQyTsBKQZxYYBRSrkp5Hp8CLb+aCo6pt7St49mkWtNJaUYIOJwqzXZev36DpKcGxHEnS0Dg/d4L+RSyFnpylsXFM96Hi7vVm9dHxf3MWnfW/VykHVgrTXiVIWmpoRgsFh3XLv4JhGaXZzBFR1CeWu9o2KqylRbS617zvoaxdaNMUbECWnO1gjUzrVbb6wX59vb3FmLrTZqX9teqH/1JqL1GEm15gEXmjW4WWWLCD7YPLhmx6ksLJMBRVUFWBBR5mVZ4UJFoWTwgdvbLePGmmXmppTkveAYcAjTcebu/gbvHN/+3U/xPvLi/VtECrubDctceXrYk7WYEm0Qqtrx9yHixCPOsdkFcq4sp4VS0nph1QrLbNeTiK3Z4xBWZWhb8zd3ObX7mqkTVWouBvupI1VtORdlmRdT8Wnq0XFjYyOn0mziuwUdbZzIauNHg824GGPrs6vdj6Ha9dnveutw7nBdX3ScLT2998jW4ZZu3daH91m1yUdPHKOpXztn9n41E7wpni3JjoXzlZQreVHG0eFiawqrcJomxnEwBTXvKAqlKGmpaBSCwM2N2ch/+NH7bPcD85KJcWzK4UJJZ4Up5yohmFpcyZng7XnmAClKSXUFkYgGBZaUG+Bl1vXiBUegVJinmf3+gU8eXvKsOD58/zlferYjOKGZ6F3jGtf4nMV/1evy3Vl6f8qun3sBgX7P63s+9+IXF7fftz7nvD7h3WnGxZrB4tJqbr1/f47XE9e4xjWucY1rXKOHUmT5UW/ENa5xjWv8geP3BSmllBnGgc12S0m5WaOZnY04XTuPLcnrWoEAS+SLEKoSXLe26pYJze4LJS0TtVSc82w3EaEyTRM1X9i/tVVT7UlxxeSzq6k2+RDQnKHqmqgspSXI1ArwXW6+wzO6FihWP6Q14XruanUXK7beddiKKy0RP0TfEp2Cc7A/7Hl4M3E4zizJVKicepxTkAq14P1gnfMVxjGwGQb0ubI/nixxmAJpLiiOtMyUmu29DVro68auZqPNTsu1BJiitIOHOFPV8c63c2BAjg+eotIANI/4ijTpekti2z7VBkwpSm3H9tyBmQ2qQthuBvSYydWS786FNQFcakVzQnqOuSi5JkQhDhHvDW4bY2C7HSklczwtnI4JHyLBR5Y0gxacE8YhsiyQlqXZszmWpZDSCecdubR9lAGRaNCceHzslng9GQpxCHaeMe8J8ZDmZN8TBu7ub3h4euJ4OGDqNO3Ir8WVbu3Q7PouiihnOOlckPTOkWtP2BtM5tsYzqmNaZypDrmzotb3FriUGD3qhFJYz8tZMUshK851xbGMlop3rJZ4rY5FCIFnz29NAW0plHxWihpjtEuwFfZ2NwPP3ruz4l2zfTweFo7HebVhUFWT+acXowzAcThEhrXqUop91+ADzrdCE5mnw8T+l7+Fj1tACFF59WrP7e0WLYUYBryr7Law2zlCEA6niSpCiMJ77+/YfdkKByVlKJnNZsuPf/1L3N3f8tHXnvPy9StKsUJdTtlsFHPCiWcYN4S4BTFAbX/aw5uFaYaSK7d3NzivZid2zExHYbP13N3v8FG4uduRlsI8Z9KUKLOSko2AUy1NIevEMmViHBhipGhmv58s+X5YyKUybka2txtc8wUKPnE6zZR8Lnwh4Hy7pYtaEhzrYC+5ooWWGD8XxLpaAYp1AyP4ENbCrXfein9Y97Ddgivbm4FhCIiGVijJDKPn+YcbdncRlYK4gOBZNBE3kfvBbBLy7DgelDwfiFvP4XHBiXCaJuIQePbejtN+4jvffcVxODKOA3F05G3k5euZUM02brO74e7ZDTfb57y4v2XYbnj9kJlmbUWokSFuyZwYR9dAywZxtYJPShO5QF4yUgNarLCQ08JpOVJypmhh3GyoZSHESGKkLB45Jf5ff+tvsd+/5i/9N/88f/IbX2HTbIYCw1r4vsY1rvHFDLn8H9Hzz+Dc9XxRlLdb5IqlNJjlbWsm197bixHl4vu6pZz0z2txCT1ZYf7d4sb5O5W31Zg+jyHY89MHTwyxzcfLOg+RBiB1SHwVJhJpikcV16xm/WqtZrZqMQRicFAKCQMuVgusdn7Ox65b8sk6tykXQIw41+Stzla1qKlS9vVEP+o293t3P5UzxNOL83IeUhfQet++2qAh7z21FlIWdKpM80xONocupRC9Z4jWfIFURNRUPJqSUwjC7c1IHO44niaDM7KSloSW/uw/r4GaEdoKal3G279r410MiliVqNrJUzW7WSPZz8o/l49DXT/nAnzScxlMtRq4hanT9vlxvwL735Szeq+0S1RrteWaOkruFt2OGGUFkCY1yyvnPbWe17HeJEltfnShqKXNTg5VpiWZek8/9/K2tXgbSAZ59AVwm7ybEq6ti8dxRNLCPM1tvdDvEO3OIH05egF8XJ6bt4Cl8x+ywj+6/rmuGdTm2pfqN5d3NQOUmhLXujWrOaId+7b2NWjF4UI7RrVZ4vXuHWzbranHW8NDt3umq/z2MaMMY+D2bmcjzQklJ6bDwjwnU4pqQFW/r64KtVra+pQG3Nnxs/uGazZ3tu2lVp4eJ7MjbuvktGTGMdr6Ndj6Yxw8qoVpKpS64Hww67e7LdtxS62Zkuw6FO/44IMXDKNn3Azs9wcOewMIxTlcAXHemjrEUYvN2Ze62P2menK2Nc9mu7EGnpRJSwMqqzBuB1NkFoOSlsUaNmpRg+WqUJJSndnelVLbWDYwc6n2lKm5nSdpTSsYsGRr59zAOzvXta0huy2b87JCTKWtAU11zjVrcVY78n6ezierr4XtmHflXsTU1sQ31ShCs49WEGXceOLgqFQqatdry93EIbY1W6UWR82mKrcsdp9TdeSScc4RfUAUToeJ7XbDuDG46Xi016IdBA14Fxg3I/fPn7Msldev9xymDLeO7XbHPJ8QMSC21oJWuzeIP1tE5lRAW27LdoWU5jZi9W3QDgfqiC6Q04G/962/yb/2E/9DPny+NfVuOlxwcZFf4xrX+CMRbyFIF3/Vt/+5Pu7l4sWXAFJvIpSL1/b4LMv5s/7r5Yzq7VdwvmNdEaVrXOMa17jGNb4Asbgjv3L/N/ngk5/9UW/KNa5xjWv8geKHhpRikCYXnhli4PZmy7zMZqVANQDGCTkraT7LyIcwkHOikhlkwHnHdjsSvDMbHTwffekF9/eep2nkN6dPqRm6fL9zkTE4kitmV6UVpyBBrBOuVqRYgqxbZkljiiiC6oU9AdAaaCnVXmQJXbUuwJZANjUm37rnCqmoWc95iO6s2gRWACkNDqreOhZfPzzw8PTQJMBNYSUvM/e3W7abLbIcGW4CzikueuZF0DnhBe6fbXj+4Xu8fPPIw+OR/dOJ5eWBMvfCCaZIo7awNNhDTFbfNcH9aklKTYo0u7fVBqIp4KDWzex9QBA2QyQMnqfHA9NU16KQJeNtmeo8K1DVKRTLQTpytoR+QUk5gQsEZ4WKWt5e3nb7BxFHcOC9EIbANCfmyRSifCjkjKnAqO2TQ8m1EHxAxLHbbjnuZ+uOV0xlyllSV7AuaKfC/nFGdbEikhPwQowDoZi9Q62WbCxZW3cwoAWyEkIga2XKiZgWxs3AMi84PKUVemiFyFotTeCazZZZSTQLrqqrfYeIHbfcO5vb6HQtwdkVAMCS7loL3jvGMZKkkChIt3tzveP13BFvP/PQxkEv4FS19/ngqU7Jy7kQCJYk11I5Pk3EzUCqBZwQW4FvHCMqphZWq3Wz3j3bon7D7f2O/cNr3HceEZTDabbzrN1yzCy5iiqalaKFmuZWyOlJkkqeFR8UCTbYay3UWXHLQoiemoWymJrV7d0NOi6Mu8B2OzDnwuvvHKlSCWEkiCPeee6e7QgjvPn0CRVHvNnwE3/iJ9EykUshJeHX/tHvcDzOfOmjD3l4ekKrkGulLAun00LO1ewJvPDwKpEWZdwNOLfBiRJiJQ+Kqw4XPJUKaupIIUSO+4QjUH3BFQX1aILTMlvyvwhJC+jSYKGmmFYKJcFUzGbTexpM2axUSr9GK6UqpaYVRvPBrChzzuRa7T7tu2JYbQCTFRG7PRywdl2LgIRKjE1lzrtWOFHCKISNEJwQ3ABuYNh6XITTtKAow8bUAkqGU5rZ7CIoZvUZ7Bqc9ieW00LVymE/4QfH7mYguICXiHOOYfDkIiRJBAdCJvjK3e1zUpp4SN/l9mbLZnfLb//qt/ilX/4WbnTc3Q8o7/Pw5iXOVbRmhHZMFeZSGUOkzDOlVMYhsL21AlQtlRgEfzNymgvzstg9kAQust3c8lM/+3W+/GPv8c//cz/BH//JLzO2olDXM7lWE65xjS9ofIbakrz7tw5dXABHl0WCxl2YCs1byNH5Nfbs/0HfdfF3uQSfvrcQ0TaFioFP+ffaxx9h+GjzQnumOWIM1ODJKdPlN8SZaojNI+z5FEKw5gMgxGDPNLF5W8kFUdhuB7bbwFIjS3pqU9VWhhFv6o+02as2a16xu3Zttj29kLzOw2AdE9rPnBhMBQb4r1pYohevszeLayC6tDldO5nd0rfDKNLApTNErCzJrKT7a7x3LKcZDZ442JpqGNpzvX+rGmDsvOACxI2nTIUllVVJ1ntP6eBHt3s1Q6FVKXNVsa0dPJIV7niXZbL1hW/2zBHnzY56WZptrGKWwQ2J6uO5M0wXn7SW25RmAyUOJ7r+bFVeWsElpdte29zHGhRKSVbcb0CHHV+/HndTRgpAJcYIS25wBufrrSmgardkLmrNIm2f+/rLLJTP6qulmvruZfHQO7OCyrVymqemzhvodmi60h1nSKQfE0RXSGkdm+/CRp9x33r3df1+FVpTTSnNHrJ/n1xAc/2rpduA6eUHs+Jr0tc5bwNK2tR5xWVrthDB+9DWNAYP2npH1uahXJXoA4pd4wDzkkw9uH1u/7+KrhaKlboqCRvkaMBaH8P9pqnarOi9rPeGZclsNhG3iYR4vs7TUhrwVnDimBebo4+bgaWc6Cqkm9tblunI8nhkWQrHwwQIt7c7jqcTKWXypK0pxID/EExJKc02pyZ4UmrfXKs1FHk7b/OygNQGBXlKKnZPU3t+9HtIye0YqDRALzVVZlvHp1INYlwKOZfG0NlAr80WmVXVC7QpvOJsjQKtwexifFWTGlvvaec7Xx9LukJKVi3vcFPP2dhdx4dzPsaL4KJrKrx2vJwPq41cKQXna7OuNrWvYROBdoyiWbMti8O5TAgVbffsWpWateVnlDEISGGzGc1Srs5NofmIixuOhyeWpRBPjgFPdrKqv0kD30rLhwwxUJrqtwjEsd2X23aHYNbrKZ8tQZ2YUvO4C7z/4R1//IOv8aXb5yugtF7ccl1TXOMaX8T4/Vy178JIPxhUOs8XPgte+szvf4uJOjdT/qDtud55rnGNa1zjGtf4rx43b26IUyRt0h/el4iS5PSH9/nXuMY1rvGHHD80pPTsvRuOh4l5TuRS8cUUXzYbqCVTqS3hCmgmp2IJb7EyjPeOu/sbal0oNZHSwjIvFPEcpw0397fEzYAfPNKURmIc0TkjCsFFcGJda6UQR+tkPR1OqxJITyArVqBRd+7IE3G2Pc6Sg+SK5tb915VwKOeEr2IJSjHJeFVLfIYQTOWlnuGOzWYALNFUSjawJjscMG6EEB2naWL/VLi9v0OcXzsjc8mEoUJ11OI4nBbSp9/ltEw8vDnw9HpCkxB9YNzuOE0TNVeK2sNNvCX7QvSM48BxmplTQQqWwC0Z5z1D8GYr1xLJrqnseO8YN5Hd7cAwDlasEMfxsKDm4tTkg1sRo7AmHHuSDjXLjdpURARPHAI5L6tyEFhRxLpbe1XCdAN6p7nr4EVWSlbScsJ763Dc7cYGwRWqOIKHaUkkozQYh4EQTZkoeI93nmWeWeaF4Boo1fZFpFJzg0GcFQ7MQs86ri0ZbDaCokItoOp4eNwTXETV5NmdsyTypYWIJetrG0+9uCZ4Z/tGtUIK71hAKUCziJAGWrmusNRsTCome08rmliS2Qputdq3qgJFEXdh5WEjhd4X1Ts4zW7u0mrCkvmnaeY4z2Z5gcP7QC0LaGa33fD4uFAXcDcb5jnxuH/kzScOJ8Lz9++5e3HLq0/3vHr5mpJpgJxbC1NVe7FBW3OotHGhzbKlMqXT2sVbFULrDnZVGMJASZXnH93y/MUAoXI6TZRU8E2a/9n9LbvtjjkXPnmzJwwbcAPzPPPm2w988MGXmA6Z6Xhgvz+xP06Mw4Y5LRwPE6fTDKpsNmMrkMFuu6VW5XSa0VpJy8L+oZKL6VbcP78hROHwdOL1p8fWHeyJPjMdZqhWoLN9Kq3QVFGC2fihVDVFoiEEQvSEEHjzes+yKCk1iLIVCLUDSmKFxy4EV7BxnVOy72pjVfXcRf+WskQrLtZ6Lsx2aCnnAqKEaPeZUhKVgPrIGANVIddkxQJVDk8LY7MnnJ4yS5oMmJPagNWMamF3u2U3jty9v6XmxDxlXn7nSF4qD9MJ8FZcGeB4XCgZVDMffemG7c6gxjhGbrfC6IV8esWbT77L+/eR9++3vHo6MJUjh/0jqUw4FfKSzHYQIcTIfExohGkyULHUzG53y7xUTqeFZbECZi6ZUhWRAE4ZtEI98DuffJt/9a/9Vf7if+NPMboBeUttr1/V19TeNa7xRYrvf8V+9m/6Vd40GO2V0lV7WJ+/XXqpzxP8Z3zW9yjxvFNAUPjM913eaSo2/3Wf43vP7mbDPC2kBoXYlMQxRCum56aO45xYQ0K252Vufzpn86SuIJrmRC4Z7zzH00QltHmSwzl7nnnxSJdzBPoDUwR8sDOXmx2PWcPVZj/UYY3LznP7X7N0dXisoK/KiqN1+AlosLBB36ZIwrou6c/iHq6BNs4JuZgqrKqpwcTBnovLYs98AzdsbiRdtMeDVCUla+zIms1WLGWzG6qYmqqclVD7fEykg+4GhKWUrAC/HjZtllw2T+4wy6qyJLRmCfudD56IWX118KpxIVYgawKNjZLpfznDS826blU0ajCSnY42vtd96MpbXdWpwxd2veWmHOsEYgyr/dqSCt6JrU2bum4IwSCWC+vmqnW11HK9l6GfNK0rvCGtkeVMcenaJGJgmoC6ph4KqtLm7P0t57Vl/xZZYQ/W48wKKrn1q9563wWwwwqzyDrmDaLy+PbZXcELzgAU2uG088eaQqRcbKuez8fFjehSCa3LulVVpNt/lw7G2b6ICss0k0olT54YI/fPbhAv7Pczj68fKfn8Bdq2RS+2rQMx5/UMOGcAkx1H17b1/Fpxphw6DJHdbUQ7yJ5tHS0ONtsN23FDBZZp4c3Dkc1mpKTE09OJlLSpMhWmOVG04L3nNM1Mp9SUWu14OGcwm3Ou2d/1sWE2Zd2ObbMLeC/MUyJPPRfhCL6Dm3KGJFd4TJs9Yb8+mh23mmrdMAZKXahZTdGpXABs7fpG6uUBbT/W8zXL+bM7SCd9PdF+5zpId/kZABWqmGWiwVR2T6jqcLY4BzWlJqmhrQdN6alks0YXsQYZJ56a7bp33uCscRzZ7AZKzkzHQp4LtRamY0IFhiE0INPWo5tNYLcbCIOAWn4iRo8XZTqdeL694dmzHenlnu3jhvKUSTEh0ADaYqBj8NQCS1vXWe9SXYHTnDMpN53ErsjoQrMp9AiFw/GI+IHd1zPxwZ2vjWtc4xr/TMX3u+5/ILj0GYDyD4wVbpLzv9d52NvfWPn+23SNa1zjGte4xjV+uHjxnReMh/EPF1ICfvPm/0ch43/4Uv81rnGNa3xu4oe+c212G07T0lzPlLTMiHie32/ZbAZevX7DnBIgDKNHnHUhTtOpQRDC/vERESWOA/NSWHJlu93wsJ/YT0fEC6Uom3Ekp0LVym63ASrzMrektzBsR8ZdRKtye79B1d6X5szh6cAyJ1DfkrJ1TbZaeETh7nbES2mJfG8KIaVJkas09R9TD/H+XGhIKRHjsKqVAITg2GwHQhCmabKiQrUE/XY3Umph3G6QquSUUMfZkiyYvZJq5emwZ1MHjrMBM7thBzee6bgQxJHLQgiOgiDFuv8MZDB7Mhc83ndwpiWGVcGfFXd6x2o/HoqStfDqzSNaC8OwYbsbESp5TqSSKWrdm94JKadzV2o9F2x6h68TIZdCnbN9urLK8LuWvD9DXtpUTSqDmC5UyckUkJqFRK7VrM9yZrMZmFOm1EqM3sZJbp3h4hvUYkn/aVooyZS4wsafLTycw3vHvMwtb262AwZ7WMJYOyiEFW4220hVT8meebKiWq0VrwY8OW9KWj1HYAUmA1JC8AzDwPF4WhOyWltXuDtbWHRQRFFc70rW1untxJQCqAQfGKMVj1zrSi0rCGWJ4mUx+zxZVawMrrOEaWkJfGcd4jRwBfuuVLEilLNO/JKV42kiBk9KQtlPDMNICLbtrz99TarK7e6OD97/gJ/5uS+zfT7yq7/6Cb/49yZOh8U6xFf4hZbUvugGL6U16Nu4zanQLUJisPOjNPWlCstcyUVY5oSK3R+2uy01F5ZpDxSmPOHLwM3tPbM78eu/8tt89StfJs/Km4cTjw/fJHpYpon9cSHlTMqZec4sqaDV40Sp1exjcAs5J5bFuo9DMLW1ZbH3DGMgLQnXrC0OcwJ1rcs6AomU7Jro58k5Z0l7LXZ9eatS5VQpKTHUSNw4bu+2HJ4SOVW7jloRword9eJ40rrx21CuSpWz7Z841wA6q/NZkVMJ/u2i32XBtBSzjQlxwHtnhdvmNZSTKT4JSi6JkaGpHViBuZRETgvjsAER8mwKAj4o83IClPvNnRUlSmIcIh9+sOF0OPHdj/eoU/JO2G521PZsUOD5hy9478WOT779xGlJZO/JS+LHf8zz7MUt731w4mlKnHJiymaVOc+ZZSrkBGDWfSIO70whqRQlxg2Hw4nj6cCymEqVcwUViDEyjAPDIGzdyJwW4hD4iZ/8KaIbkVYwekv54JrWu8Y1/pmI8xyoYwmNEVBWZZ4eVd65O/ywtwl956Xyzl/bV3g5Q1Of11iWTM7V5lo0yx+UzTgwDpHD8UTK2fa5KeOYcqA1P6gamIQYNKMNrHFN+fJxf2qAiuBwrRFBGYfYIJ+l2YCZuoUPBkeNm50Vn4spXaQ5mXVPXVGzBqLTJ4hoqYToiMPQXuBY5kytshazOygDZ8ikQ8Oq2uagBit47wjR/h2qa1CIzRfMvrpwf39HLYVlSQbeuEhOpkhozQDYXFodS7JnevADsvGkxY6rUgnRN+VVQCvi23y4rW2cc4RgMENX0ekwExfzhVUBSO0Zv0wFrZXgDbR2o6eWQi6KMS8NWu+NIXo2TQRptmgGLdi5sHnx+n2dRmqvaTuEViWr4tt5MqWW87gThSo2R/bOlFpUjR8Pwa8QRlmtB2WFnrSaFawEWa3CbW7uDOgXaVCMWy9IvVDYMphLDTRxgqqtO0spTcm3rQNWtZ3zeOt2dM4bPDZP8/r7RnOt+9jXE13d6K1jBqtFV9fdct69pZCk7ZrrgEVZD7OjlmrWXl1dStc3tBfZv6V2U8YzHNXHf2kqQdpmj+PG1vBdDdQUaD1DjHzwwXPG24HvfPsNh/3R4P5mqd6hNrnY774DHZhSeXvfxdkx7CAcCjknXIXTNOM8iG82Z87jm8XakhbmuTDE0dShTjNBPLlW5jlzOr1Ba2lgomuWjPZfY7roCqh97m7Afof+7KaQG/TicCxTIgyuWXSzHmsnBgWawli/Hpst38X6qsNa1mTTxmt0bLcbpimdQSftUNyKfV3c4+R8bYsdtXWOK2+P7Q4Jir3t+4Se7+lNtbiu21kRPZN24tra19m9ynkh4NZ97Eqy9oA1BS9JxZ4V2e5XN7cj3sPjw8RpSmRJxBCtUa0GUi6c5sKLmy15qaQ5kxZlf1jwYcB5z2azIcaJTEVcwIdg9ualNyeJrYU63NV2wXtvVoU1n2G95gkqrQHJB4jeIRrIZHa7wJN8QqXiL5GE3y+AcI1rXOMLGX398O6/1zvAW7/sM5bf+zPffev3+77P+rn7Pq+5xjWucY1rXOMan794Of4aKgX0Cild4xrX+OLFD33n+vbvvKKUlgCvSiqZGIQYHNtNZHczosfKkgsoxGglklqaNVWFkpQwOorODBuPG8AHyK4wTYnlWBGsiy14x247cnd/i4+Bh4cHjocDPnqGMeKDN8nvYGofuWT8KOzYIE6YT9kScO5cqlEFqiXKFyrPn+/48MMdYTPy6cePazf26WRdd2umTcF7Wjd0RXVhGCLDMOKDY7MZGEdT3Li92zEMAR+aAH11LAtstze4ohwOB/anE9QRVwcODwdcsGNEreyfFlTMFulmN7DbRLRWci5sxsh2s6XUyv5pT8rWPT2Mo8nIl0wcglliLIVlWkANsnFRWrGkdz/bfpVcOJaKVodWR1kyu1vh7n7DZrjl8Wnh9cNk4Jb5vAFiikBWgqERMXgXKFpWyXnfOsa1qU5dqri41sVczP+CeUpmt6C9KFDXLlFBWEohzSdoneupZjRVQowMMeIQ5tlsuXrevBZLXFbfwB9pcEnwePWEYSCnap2M7pzQLQ3wgULVghMb5+MYiOPAcX+kJKGWQoyR7XbD48OTFVLcOWnboaxa6ypJb8lcAz2cmupTbcUWU8gxW4nSuvIBEG8JcCBTIFiS1yw+zkUMVes0jdHhxOFdYDrNlFLIqqt1ArCq8dSqBq80UKkXZLw4gh/wzuznJDpcdDx/cceLF/ccD6emCKW8evXA/ukI9RV//J//Cd770gfUX/nEClzek2tZz323SakXHc+2/dZh6n3rdMZRS6GWatvtTTpfm5KCOOH1qze4kBm20ZTbqqI5MGwCear81nc/ZTvMDCPc7m6Zp4XjdOLlp29Iy0R0EFzggw/fY3888rSfKCUzREGaHSTqrUimNha899zd7YiD4+HVEdXCZhNIObN/LJS8wQfX1CGUeppZ8gIFclbr4h/s/phzhRwR8agUs8VUxTuzMNCaicOG29sdy/xILVix9LJTvCf09Vw4FXph3P7SlQ3ohScULbUVHHoR5+1iXr/xuSYP0q9b3+x2asmomF1FyYXiHZtNwEf7XB88W+8JMZJzpZTM8XQwxaVSIQZOpeB8tkIE7TmyCwiOGITjqVndLTO7mzump8Trl0cSleP+hmVSnFcOeSLIltvdjt1my93tSIwQ5shus6FWx1FPJJfbubGCeK2FnO1YhhA5HmdO02JFIHGotkJ69TitqF8o4pidQ1zg8fUn/M3/8G+w/Py/zJ/+4z/H6F0rEDo+W+/kGte4xh+1WO25+g20FZzbTOCc3W9wyqpw1F/+DmDw/b/o99qQ818/z4ASwHSyhgbnHFpN5cR530AUbUo3QmrPe8SsVrWTD2oASAwBdYUgQlVTKKnaYOcFu8+39cQwBsZxQMXmnyVlpAHZqtXUhhp8omqKh8NolqOmBNTv7TZ5tnmmPTdzKgytKcF5z1HmBjtlUjK5oNUSTg1uMetkXZUyQwityaDB4znjnCOOZg1dqgFaSHjr9dOykBazNatFbb8aL5KWCuLtO4dK8A4NNqcZQmAYBkotLPNCLjRoy5u9W7MrdmL2wKXZVMUhgOjaaHBZAtNayU15FBxZAcxKa7PZMU2Z/X6+UF3pwDX2OdIWJvZxDXzQttKw7+pNFu1fK8zUIQnU4Gp32ZzS50sX/9PVuqQ3RKTS5ji+KUNWUlvP9m3MtSDVGgKMBLR5l/MGoNSukiKsx6XvmzVedIVTU9IZxmBWftXWyuc5Vrl4v65FyloKSzEl0vXgcYZHfFcPbsSTYOuvy9uQ0iy6YFW17euVrqKF9rXieU1zLpLa9tPAusv7znnNIl04zrZdG0QoTT/XO5x37G42jGNknhfGcWfz6P2RNC085MrN8xu2VJ4eD00VVmhSs/TmI23qO+vtFzALur56bMduhdvsIwzmMzXlED05JZYZYm9+ybU1G9l9ZUmZ4pU42nWeqylzTscZqAzR5q7P7u+ZlpnHx0O71t16LPqx6qBPjIHNZkCcsH86IiKM48CSUlONa0rObWyXWqlTpitCAcTB4YM0mNKuXbTa/lZF29Mg1W6HZzdRebv0/dbftY+bt8575wHPQOHZmnI97fa7qm99+voZcl57vq3ApW+tW0qt1OzxQ1Nr6vCV2PjuasBO7P5tqlCVWjMjA+Icw2DrnVyWZpNtOQrXIExt13cu1mThxBSgg5hNIdXu6TkUglekKF4MPlYxmNQulfY8UF0VlTsouixphU/tiFVqaWupWqhZWEoyy0mBX/5HvwKvb/mTH77mS8/fPx94dW+fqmtc4xp/dOMdSukHQkZyxpQ+6xZxMaN6543f5zM7DP5Dbeg1rnGNa1zjGtf4vIWK9naca1zjGtf4wsUPDSnVAt7FJoufW/LN45xZX+1ubojjyPE4cTzMpJLw3hFHNaCl2YgNMVDEIAgEasoUHHlRllkRTQxDIAZvhQpRUjaVje34jLiJ7E8n9k9H5mkx8MR7gjcbLB+FYeOpOVunYEvQuWDpyrS0LkyE3W7L7nZHUmHYRDbbgVoq4zbx+HhiWTKi1vM7hMCSrPvWAVoLKSVqdWgtHI9t/4bI7nYHJErJILAZB4YhIFV4sR24Kbe8fvnAMiWGsKHWymYwmfnjcWkJdvBauXt+j/gT07zw4u6WEBxLXtjsnpHywrgZKKXy+OZETibJnnNqHb1CDJFxDBRMraUUXYtiVa3TU9W1YovZ1eWyoLebpr7jca0z1BR2RtKU3uoMB0vMLfNyVnRpXaTW9d4l9uWt/yz53qCkoix1oadFtXVG0gsPuNbjqQRVhsGKAmlJmJT9SPSRtEzWvXoBO1k+3TdAwdSZxHtqtvbUlBacbzYMYoBKTYXtLuL8yLIszNNiVmviGMYBNzpSytSamZaZUpvF21vgjbCkwrwkU0my7C1tFxHv8SFAOXdN9/333rf3GExhHdl2HE1NwKAr5xxhCNRSKemcjsg5k4rZDKhq60y3Lm3nzvZqTqwLdP1+Oe9DbkWyYRgMDPQe5yHXI5sbx9e++lV+61vfJs2ZOiVez5X//Bd/nfqL/5hv/frHpHmm5g64eFPQ6ufcWvdXSKb28dULK8X2o9ZKzmb5GKNZlDgn3N7dUerCdMyMm3tub255/elLGxP7RE0LeS6c5jdkDXgnvHo8cnw4UKaZZ883vPfeLU+Pife+9AHj8cSbN7+Jd5FUTS1JRVFdUDzeB4YhcHO7ZbMxUAeBYRgAMSWmpVDLTBw8tRaTEEMoteJjIA7CODruX4xsbyIPbw5MB6WkSjXfD6hmw4HCfCoo06pc4Ny5yCYqFyPmfD65KMz0gVYbKGjl1frW+OwJ9N713dUarMu5NDtES+hPs6kSBX8uylGtmJtz5XhYCFGIg8OJAXMGAQkpFYYRcrJrfTouOL+ABDaj53Y3wOiZ0kzYDtw8H9jebnj/o3ucF04Hs9CIHh5fHXl4/cSwibz3/h13mw3Tw8zx8YHte89xTgkRvGTKdOLp8ERVs3GIN2ZpWWslJbOW3G435FyZ54Xogl0fDZK0ooMVdz2QpoxsHTE4lkn4f/z7/zHf/NWP+Tf/jf8JP/ezP4E45VpLuMY1/hmLd6oEl8/yMzEKa9/zZYH2ez7rIqnwgxQUfo/XfZ5Bpa780a2jDK51zXYTQozQLErTUhogZKCSeDu6ThTEVEvFOaTNI2qDzWu1QnwIfrWcNYi94BDiZsB5x3EyG2uzPqIB3kKVukLlLgglGwhhqqSmvGT2UyDOE4cBcZ6Kww+BCIiMpJQ5nmaDCOjWaILUipdm/9YUkkop7dlq8HjwQsTZfEJBxdSJehEccdxuIqfDiWW2YrdzjhgCtVbmOdn8wzmid4zbDUeZIRXGcQAqMTiGcYdqwQVTWjodZlBTfLy0wAvetdNlVtGmzMkFyKO0Dg8UpWRWZappWtYivh0zaQpQ5e2x3KI0K+cO2Kzv61fXSkC8o6bTQJR68ZlvASL0WXgbd20t473NT5uslIFPxcaT4M7JvgZBddhC2vWttTbbrTbXXtWI7Hc+BESiQd5NmamrqphyqQHUKS1nZaOVbtAGF13eNy6qlw2KOq8/+k7bz7u6q6qarTXn+R/aP68pP+lZFWc9p1XXufs5uuKQravaIDHL9T7HbGs2bcdHsDWIb5PZZUl4b3P7GD2n04maC9qUrD75+DW1Jk6HZApKbRyuakF9n3HreTiTUe3eewloaYP9GkHj2mc4HwAlJXDBc3vzjP3TIypqDQoJSq6U5ci0uDYnhjxnnMB2NzJuAsdDZqllBRKl2XzbWDFbdFWzsfbeVJBLLeSlIOLwnhWe01rJmqnFxqElTEx9ShxN4dRAN+cdSDIoEYN2aMeqjx1VZZ6aEqx35GZfKPrWYFmPU798tB1GW6udj6kpN/X1bAfZ+rXPW3CddACu2UnS1hxVm/KwNCvA9nqzwivoYo0dGgSkWfA1C2ulEqOQl74+VnSw7w0eNsNArUoYRqokdk4YN9GanGY75kPwpFyYThVYiCmw2URyLhz2B/RLdr3gnDXB1Mp0nFcVPmlKanbd2OAbhoiqklJuDVl2nGwtbq9xLW9VSkaCqThXhWUq/Orv/BL/2dP/m7/yJ/51Npu4HtUfSCJc4xrX+CMTP/ASf+eXv2cJ8vd73/g+r7/edq5xjWtc4xrX+GLEq+Gf8Bu3f4efeforb1WFrnGNa1zjixA/NKTk/NqfaAm6IpRcePPmYEmy6JimE6fTQskQhxHnIYSK68ltFOeUZarmSaH2OcuSV9lucQpOES+I86aOUxWnle3NSC6Jx4dH0tykvitUp9RQwCsqyriJxBjYP03kZCoZm9EgIGQiZ6ESeNwvZBG2d3fcv3iGkybB/nDC7SdLYFbr0Ftm64wOcWC7HXDOMafEsmQg4pynNHuDw9NM1YRIIUbBD47pcOQ0LYw3I9vbDXFrll3i4NndjuA8Tw8TwQ84SdzsBm5vRxDHcZpJS2EeEoLjxfNb4sZxnE4sOXPYz9SaDbDIhbRUSqrstiPjEBBMnaW0rGOHeMAKPJZhrgYwVEjV8ebNzJuHuSWbTeHGLNE8uIpUA2vWbLhIk6n3OITSkpw9V3wZvTDnvae2jm1qf7GlOJ3KO5LxViwCIZWCJmV3s2mFDhtDdp4SuSl+deBFGsxUi4FKBEvul1ypxazwEOsQF0yiXbVS1aG5UrMiBJOQF7XPyxnnHdubW06nUytGGEjU1Wo6IKW9GCKsikHW/Kssy7J2o3eLOzArsdAKTVZss585EZBK9GbflnNhnhZaLtqgkHZ+O0jWu507CAStk9pJU+DphQ9nhZJaGqTRukJdoORMXjLL6Hnv+S3zvPCP/otfZ384kueMaoGy8N3f/g6lzpY4LooWXcEo5w10VIXqrDvZSVdL6OBcsbHQIbiW5NdSUa1sNht8jOz3J8bthtNRQBJf+miLMrCkI+ILywz744yUjB4iN2OwbtXq2e5uGcbItCSOp8Rv/87vcng6mQKYt27ZcTdStJKWmVIWkMGuxdORJZnNmyKUatYhZi+p1JqZj9mKUs3ODRE0K8PGMW5HSom8flVIKZisvxfS3Du9pR13K0pOR4iDMMSIDpm0mPIXillHtrFT2xhTVVRWkw1oRaLLzusOInV1r8trshYbI977piJhqki1VnKzYcyl3zOUGJ3Zl4hnSck6ubMVE6zAZQWT05TRZi03TZkQInFwPD098fQonG48X/nyh0S3xQW4R1iOC6nOzEdlPlR2mxEZK0/HE14G0pT49Nt79vGEF/j2dz/lw/fe4/GUyXiKVOa5kGe7ZxRdEHdqNh4BEcc4mo3dNE94j6nOOWWZZkqxaydEiAFqLjhv1+fhdLTxpAtPn7ziN371t/mpb3yDYRPoeIBS6RYcb98AL/+4LhyucY0verwNBbSf0aZZF9f4JaD0mZ+jP6Dv6Qe8b6V4+ALdUeSSwTB1jNOp4mab+9VS2hzGNeUVwbdj4N2qR4VmMeAc0NoVP8+Wux3uKM2qqlajL7yPLMlUiLr9jlZt87RWlBchjgOAzS1zxTmxpgjASSYXewYfTws+Z8bNsCpC5pRZUlrtwUwp0yyWwaAr7w0yqPWsluSDrPP06bSgWgzQEqWIqSymlAhDII7BFH5cf9YbeL8shRACIQgxmGLn4XDiNC+AEJwwjoHtdgSvzIuSlsyypHaMOhxmaldxsGYQbZpGpSntNCGsVWXFzmddT7NWyIrNnzkfX1TskxpMIh26Wa+BbvF2AUNwodCiNE/Ft9cYK8jN+ZJsH0ufD1280sZHNSvxGP163rpNcVVwUg3WoM9TzZLLtsE+zQAlm8eLO1v4pVRA2/lszRfe+VXppoM2VZVhCBTnqOU8tzur1ax73lbiZ1BrhaG0KyO9c0+6sFeW9vr1oEm7nsSsulOqb12X5ibn2ree13RVFYeswEgHnvr2XBJU/XvpsE6x+XOo9p75lHh8c1it/eyLKvNpAurF+W2qNHI+Nr35gaaKVNo2i55tpvuh6/PgWhVyhmANUfO8mI1XgVImajGgsZYMUim5knI2oK1CHKOtU51DvKNU4XBYyEmphyPLbHZqTmgW46bMJWowYl8fTnNusB+rclWt2tZltqgrbZ7unKxjeLV4RlgWqCVT2prJSWtM0MtHRhsXxfIuuI6Idrs5a2xZga4OIbUrhnfVOlZ1oItnm1qTVAfeGqnULD1NNco1VdZqi5Vzk8rFuZXWLKS1NstqMJk3VkAw54JzQpEO/1RiUyBLqeCbfeMwDjgPUUAxIGzJBp2FGBmC4DIg0UC8IkzHynwqzEvmaX8g4ygqVJF2jG39VbIp7Hb7xPO6SsnmK93AWtfuJW5FuLyXBqPZOUqt6SWGSIiFj3/873KI/wIjP/bW7KGN+vN5vaCXvmBP/2tc4xr/FOIzliYWvyfddH7/Na5xjWtc4xrX+H2Egqs/unbBIgv/3tf/Tf76b/yf+MrpT19BpWtc4xpfqPihIaVSrDg+xEgIgWmaqKVyOJ44HGiKPKx2AbUaKBJ9QNS6dZ33lphM1VSIFKieGIQhWmKqlEqphWlZ0L2y2QzkVKglEYI06wZP3I2WwMqF4AK77UgcPdMygWuddqLkORPEE4NDEaLfkJJZIKiD0zyZ1RewpMTpOHE8ZFOlUaxwodbd3W2TUsmMYcP2ZkcqGV+tW3tOhZpmHl+fKGVhsxk41AIyIS6iaeFwOCCvAvM8sxs3CPD09EhJsCThvfduuLvbAJHf/c4bTpN13Q4xoKVwe3PDi/tbisuknHjzMPHJJ3sogqaJUmAMA0kXYnRsttYVuOTCPGezoGpFHBpEsErla0tEOwNoEOu8RQR1Jrtea8YFb5L9rTuyNjsvoMmfWzOyiGtNrbom0FQtYe2aFVzjg1Cn0LpPexcu9qPWeaot79m3y4ol220kJeXpYYJqalb20tJsAKxgYFHb/tu/VCHEwG43UDU1iAdw4PCkyRLI4yYi3jHNM5oKteVL59OJkjOCFR1yk7hHL7q4xRlCIrome+3dbi1YWtEATHVK0ZoRsY52VQitO740i64YBKfgRElameeM60CWCLhoXZ5arEDUttGAMEtsKy2JX81apZZqhbSaUCKKFcuigyFaF3kYI8HD8bDn8c3EYX+itmKHet8KajOowXqplqYSUKlUUIevdsyLBDSb5Yt6hy51HSvaizdOCc7jGxijVUlLwjlHrkpORxzw9HTk4eFxPXaoFQ5zKjhRbkZ4//17TqcT09Fs56Z5YXpcoDrSm0fmKZNzoRRhHAZEYJkXQhypZaLkhdMx45wnxkoYPMs8W81JKppYi6FSlWEcGTaRUs2yzruAj545ZU5TQYudF+/AxUiIgxUHS23XXAI1sDMVoSxKpVgxzzvi4GEqlFRMJakV7Jw3WKrUXjRTemrcNWUKG3bah6GBp96ZJWe18+CiMIxm66JVwEH0NBtCJbqAumanKabE5r29rqJobmpmRTkeTpRSCW5L9ZiViQI1UDTjgjCOG6aUmkIauABu8MxLJuXK9m7k+f0tOZ0YdpFx3CDVcTwVHt68IcYBnLLkbHYtvgFGg2fLiB4qTg0KE6wIGUOg5szTaQJxxOBNjaNUfBzYOHuda8U7K8x4yjwjvhU1R8e/8Jf/LH/xL/0ZRBJPS2IbAtFBxYMEM3471xd5u3R6jWtc449E/CFczt/zkfrWH2+94It0N6m14sRUIEOIlNLnpkrKbS7Si/G+21I1NQ6sKG1Wzvaauto9OVNOkrVGbkXtpo4TY2zzhELOztRXvaeq2TqJGrARo8cHz5KWpgRk6oGbpgJjIHo1hUVakTp4VAu1ZFIym9ycy2rTuqpGAXC2Siolo9Uh3tsaSdVUnbRCNYXFWis1t/mFM0u44B1aKqe9KXsMzSKvlGxKUoALynYT0Op4ejxRsoEBIXhMGcnWdCqV4iqnvDBNZn0kFyCB6zZRTbkqN4CsK4Mgsv79bTiC9ZytgI3CGbyxz1a5UNFEz/MgXTHri2Lb25/Vj+XaLwG9B6Ot3/p6YsXx2/93uzqzpjM1WVsf5KKIXqyTaOA/IHKGu1UVLefTGoIpApVabG2wfr/Z4jrnzC7PgSabB2pbkJRcmNo6qoe27+gqRWco6axp1NVoV4Tqe5SlqjXbYNeIb4CdNoUf520tgNbVba+r2jhxdI8r1dogkXIBivUxLaut96XNNevxtXWbc2ZnhsAQY7Mys+uz9Gv+AsYxUO/csNDdxu3LbXuc7xZn7VisK5wLeGv9Nxewj0H5GdufWhKdu5nm6Qx09VGngncwDML2NpJStiaTtt+pnd9lXuyaxyweQxubOWWkNRj0RhAnjoLiXRuWbeCWvpakz889PhroZLZ3rin4VEox5WStBgnh3GqjebYhrQ2SsfFd24kWZ+PKBU8QT83a1q52TYf2HdZHdD66b13PfbC2hhjBwCz7rgbW2DKhwVlnq0fhbNHYIcuK2Fq+vc+Oo+2zIJSczXrSO5Z2jmobu9rXQYO3NeO84H17PlBX+MlHx3Y74p1QTsqwiTgcpSjzlPjyw5e4u981G0BT7XMIgwaGjSdnU+tDTEWs5EKpZiuamgqY97aWyTmv4xoMQFsPnzQ7OwEn1oS0vdvg3tvz9zf/B7769Bf4oPw074ePCMMI+PWe+PbBP98brnGNa3zB4/tcy3+gS1x+7/e9xSvJD/jdNa5xjWtc4xrX+L1D4Sf/4U9+z49FhWEa/vC/X+DTza/y7/zEX+fnv/tv8dP7f5HnyzeusNI1rnGNL0T8PuzeTBHJibDdbtjtthxPC9O8sMyJJbfu5dZN53GmUgN4Z8nt6IQQBnY3O+a0kFJGCHhvRYdczBYppWZXlc4JRde62PAgzpOXxDiObG62DMEzRGF3s+E4Cfv9ZNZx1fP8fsezux339zuWvPDweGQcIoWKHyOlZk6HE/unhaenAykl0ID30RJ/KKoZBwTxiFZ0mTmeFqr3EEy6XY7KzeD4ia99gBvh41ePvHmYmJdCCIXNkHn+wT1D3LHMmRR33N6ODLFSa+HlqwNzmXiaHombG+bTzGE/N/UShwRHSpXHxyP3d7eMG49XU2jK88wQN4y3W0qpzCezL8s5czyapdGcFpMtb/Ztlru07KA1s7akpQjqaB3M0PtwtNkeWQduwZsbhyVQCbhsKj65dbQ7cS2Zadnj3iVthQBnyW8nlFXRx632Y7Su0Vx6J7clTF1P6DnBOSs+HQ4TOSvDxhsoNhWzlGqfVbUi1dRgFFpi2JK+YXDE0VSwlikxzwnvqwFpQEkJHxxxY1ZdpTqWBKUlimsVTsfFEuXOtWJaz7hygWa1rv5m2VFpVg9I66RvRYNa14JGLpaYdc5gplyKwX5u4Nlux/3zLUuaOR0Tj7qwdPuxEE1i3gspL2b7560YYx2f2rIOTWpeWtd3dLgg1OqQ0uAxUXa3Gz786AO8wDd+4uvMy4n9/sT++CmFCSeecWNWiLXZXdRS8V4ZBk9JJpXvvIGLUiujd8ySqOqoGqBOeJfxIeBDJOdKTmXtxnbeM4SA0G26EqpCqWm16DseT7Y/YBYp3hHCFh9gd+8JN4VxiLiDMB8TTgemw8I4DixLxrtA3Jq0fm1WjiVn0pxtzNZKCJHqFKSCU1x0lFmpuRUbrey3dguD1XB8CGgxJQfxSskLWjArFHFmnykgvhJcU6CqDlWzY7FEd0F8ZdwEfBCGwTEMO6ZjYZkWuhLYECPzNFNzV/HRtaxg7iJN8cxZwp9W2PAehtE3uwthGB1VDYLKTQ2rK4CZ/WNp3dd9XPXirrTfObwPrWMatDqOB7svhWivT8uEEqjVkRbh9asjIcC48aQyEYPZiyZRqmS2dyPTsVKnwvZmQ9qfGAbhGz/5Fb703i1/9s/9ScpxppZMLU3pbDcQYiUOI4gnl8p0WjgeFtTBfFrIDWitHeySShicnaOqiI/QAMKaEjFGfIit8gJ//x/+pzy9/i7bYQuD573n9/z5v/Tz/PSP/wwD1TrBZTU3YpWIu64TrnGNPxohn30xf+ZPv89r++++329b3f6d359/0KGPy+/43N5iWpF2teMNgUqxZ3yqa6HcnlH23Cq1zy0ViTaf894R4oDZ0yYE3+aGpizi2vGpTaElLcmK2O3ZuFbLLyy/TNCyrjBQzqagJM4AqO0mcnOzpWrlsJ9NBUkL4j1KYJkXzlImbS7QLNy0AQOuKcC4BtDnXNBcVhURUdgNgS9/9AICvHncs98v1FQQVRyFsNsQQ7Sit8Aw2FoKlMf9if1+Yl4MbM/J1Ee0HcucDdoqxSDnYfTkxdQytdkb+WCAbSmFmpt6UrOF7WowNECrgy19vdAtDlclzz4X1jM8tsJETSlHuiqSmpJULU1NBS4Ar/YvWxKsc5uz/VlTblnJB5uviNiz/JKeWoEesbmuqjR7Wpu7hhhJSzHFlLWxoc+lL3YGEHHEaJZjBrsbxGXqqLLOjVULrgixWX2lWs/TAXEr2NOPW4eFzuuJDs4IaF2hnH492fzsDFDRlJUubeI66CViCrs3ux23z7bUmljmxOPDRMq96cQ1q0QoTfVIxJ8v43VMX8Bg7Zbkg29zPwNMAMYxsLndIFr58MP3mNPCdEocj8nWOyKEEFYYvtvOgan51gaaSINwaOCMKV0JBvZbU4jzZvNoa5JuT27b6tt81tSLzIJN0bUpqSu32v3G1qPehxXqmeaZ0hSV5imj1Szm8aZGHKMnhhEF5nlhWWydmJfUD5ypL2PKrXiPqsGFWm39dTHyDbbMdd3GWiuarNnHFIdoDUD95mr3GbsfCFqtiaTbuFmjEAxDBGlATQgkKWiyubNvsKdZyJ1BvyattRavtV/nfTxgLTi2NrPXmFV3gw+bumwHdJzrsJPdr7WaWp0dFlnViTpwZvZwrlnamSrROAztPNoVUlJlnkypehh8a1SquGbnXGohlYQPQ7Oik7ZuUHY3Ix88f85H4X1uN1tOnz7a2jULL1495/CNp7aetevAQDrWv3dRaNWK+nZNesXhLqwjZW3GERFc8PacUuXhzQP/0d/9/zLGf0AI/z63/o4/v/3r/PxP/Pe4H7a2re24ugu56TM2do1rXOMaPziuaYhrXOMa17jGNf7wIs7xe34WlsCP/dKP8eprr/6pbMPLza/zf/nxf4Ob/AF/9Xf/bf7sq/8Bnu/drmtc4xrX+DzFDw0pUZVK5XA6MacJ500OXRVSKiucYdYAlx1zCtGh6piXSi6J7WbHl1684Gn/QC2e+2db3rx5DXPB+4Aq1KLUXDmmk1kaRM+8LMTNYHZHQYhxJNWCJktc1n3heJp52k9MU2J3uwWfyTqhzhM3jvSqsOSFuPEIMKXEkgrDGLiTHfuniZKssxZXqKVY4tQ7xmFkdzvgQ+DTT54oOROqoMHhPXztyx/wMz/zdQ75yHFJPOyTKZPM4NRxnKCkiQ9f3PPBR88JoxCdUMpCGF+y/7WFmgbevMxM82yWXGode4fDiWVJ7I9HHh8P3N4MHI4TT4cTmmGpprwSh8Ddi3vmoynaRB/Yz0dTpumJe2jdnHX9uwiINxDIJPGlFTRgtYpqFmKIWgGjdX2LCMMwsswzyzQbDIEdM/va2pKWTXUFS+bZx8panAiuJ5JZt6un3jq845xHvENcpRZPSkoIBiPsbkfSUplPmdNxZpkSpfQuUoi4VWI9RggR5unEIVuCV7COc9eKN1UddS5MfiYOjnEIaMk4b68P0XM4HNcCmG2zARpWbHRrAaEXxLqtg7biTu8qr8XG2proR/AhEII3qz0Upws3W+H+/o5v/OxXGLeV5XHhF37hN3n9uKcrV5VaKNXauxVTSuoJ3pybhQoOtEv2W4HIi8dJQKvZl6laUaHUzDxPoDM+Ol69eeLlqzfUXPDNDsyJIB1EaknlGIVCpVbBhdDS2kquFV8hOgdNxSyrB98VuoQ4eJzz63kPsav6NNWuBrWJdBsNU7PqBZyi4EWp6nh8U3j18iVVhS999IJan9i/malJmcuMeOH+2Yavfe1DXHD8+q99i6emslTKbJ3ymI0ErhDiwBA37B+fSJPBQDejsOTEkpVabVwWNRio1EwtBV88cYwI3Z7CwLQqBu5pVYbB4cZITtZJXLOytKJBHAPb3YiKKbc5N5DShK+ezTaaVUgqZ2sZ6VYhBkJaza5ZLdCVldQs9ppdgY/COEaMqatW6BXBi107VRWJgnjXLCDb+QrN0i8IUv1qXVNyNYUKH8g5MY6RzTay3Y7UWghh4OnpyHF/opbCsBGcGwlDaNeGt/3SxOuHNwwx4iIcT3tT5QoDbhDiNnBzMzAtidLu6UvKLGm2Lv2qQAFVdtvIzXbk8fHYilSmMpZRQhhN4UM8eIfm3BSm7ByUVNG6gAecMs+O3/qtb/Pr/+Q7DOPI/f2O3bjjNx8z/+2/MvFn/tjPILIhY/YwflUeaIXaa4bwGte4xu8j9N1/fRFbndXs3BatpPz2TfDSKuxMYPXfqal6NjUfkYp3lZubnYFKpTKOI3XqCoamCNQLwhVs/uiFJWV8s/fq9le5FkIDeM36LLOkYlbOzkCXaa4NxBWOpwwU4hhwmN1wKWdIQ5GmqtL2o4JgNmDOOcYxIN5zOMzUWvDiwDu8wPPnd7jo2J9OZj3VreoMe2eaK3mZeXa/5fZ+ZwBHVXJKBO9x4gkS0GzPcttHOxYlF7NwdULOmRBCawwx1Y+iXTXVmfqUs+8XMO82LsChPgQvAaDWVLDCNX0u36Ah+usbJNatklRNKdKJkMk252r2X32U9DmyNMs/VX1rLdO/X9wZDLtc+qzUT9sHm253SBlCaJZtIgZxDJhqzpQa89Ms4Ppn0wHB2qAaOz9crIVNlcfmxSmVFSjyQfBtXeV9YFkWW/u218vaGNKvAwNtOhh0PuZnAAdY4a7z+TBbMucMwkMVL5Xt1uGkEAaH95FNHJhOmdLXMdptyEyl1sbA2XpstZC7ACUNPjPIxDkH3lRUu6jPdJzQUnjt34AT3rw5mGV1a3DS1nAhTpod3uXQsmPl+tkTQBxBHCEKzjuOs5IWKArSxr33bWUgZ2suU0LzbezYxlU9jy8nHstptCFYC955lkk5HRKIcHu/YdjA4XG2RoRq4NAwBu5ut4ybgU8+fsPx2O37tDuvNbVim+OKuFVVK3jHbhttPbGYumspBVGDc4rW8zXQFMi0yQhJO1hmny1mb64O9abyk5Mpxnrnaa5l62UjtDEZnVmztbVVV7XqUN863tvPtVNUfV6LUkVao0u/lvp7pLH9sl6TWnvuwbEKd/Vre722rIFA238+mFqZa4pyIXpEzorD87SQU8ZHR84Qo12POZf1eKeU2/6KQaaoqfzWypIyx3Ti2Xa3fncpSkqZebXDZF3/3NyMBqOVyxyGbbdzbQA1e3W7fxiQavcEs5RXPG69UVWmybZ/Ghb+dv4/En51y7/0U/8q2+09l5DYNa5xjWv8vkMv/ricgveH7TU5cY1rXOMa17jGf61ha/t/us9Xlco+fszf+Pr/jNv8ZX7u8V/pq7prXOMa1/hcxg8NKWkxifJFK8tykfiFcxKrJZu999bN6MwmLZfK8ZRJ2eyrop8oxYrYh8OBXBem08x+PxF8AKV1I4M4RyFTtTLNhbGUVQ1kmo+4AGEcUBGqCvNcqcURxpGkyunhicdHx6cv97gQyYvig3IbHYfjxH5/Is9d/UW4v99ZQaBaoaLmbMX6RUmpMi8JqZXsCi4KYxgZtyMxKM+/dM9vvvyY3/itTyhLpaSK02Yt5wceHhcGCs9uBo7TE2WB+ZB4+fKRw35m6yMvnt8j0fHy8YG6n8izJcdUDVYotRVocNTsSclZ4d45llQ4zTPDMBDENZusRBgcVR0eT0UorcjQk9XakoIhBFRo+18aoNQtpBpYJAacjOPQkueVEAxWWFJdF7wGqZVzwaklU2uDdKQlMTvcs3YO19q6ibtMv6zdyKsyUet8TkumVpPgz6ny9DRTSuF2t2EYPa8+eTRISXtxIK+dpktZqNUKGbUKRh0UfLBjYttlnfHHQ2aaH3EeNpuRECLzvIAIwxgppZCnhHcOFetQRRy5dViaJUSDUrg49tJsIIpJ/587fU1ZwAVTh7LzVLi72fBjX3/GKc2clj2/+90H/LQxSOZ2wzCOTKeFvPTOb6GURKG268qOo3PWoWoAF63TOOOdxw2WtDV7Nc9pD+n4RIiOX/5Hv8VpWXh4mJqymnXBTvNMCAHvAznNLUFuexLjwGlKlFSJwTOMnnG75fntLT/5k+8z3gz8Z3/v1/jdbz+ypIqj4r3dQ5w0a4pW1LKEst2y0mJQV87ZCkvegK6qhSogRciS2A0bKEC2zvNaKy8+vGP/+F00F9QFtrsNN7cbDocnPvzoA25ubtg/KqUkpHaYzN4r5mfGkhISHOOofPClZ/zYj3/A0zTz8Xcf+fh3H836QeuabLcDDbUs7G4CqsIyVXLSVngS3Fh5/6NbplPFReG992755NtveHxzZBhGKpVpWuyjIni/4ANsvGO7CzgJTFOy4oxKs8DQM2jYFIOk2b5ZZ79l2mtTD7MkvyLZ1MKceJxza4Gg1koCBmdFjBgbrIRZxZVlHeFoNYDVicMPEEdvKkrOCjlxGM22gdZRjCkk5FSoOPKSOe4XnItUCvOUeP78hs0uouopFHwUng5HltPEP/eTr3l/c4vDocWRC8xz4jSZ2lr0AR+Um611XYdY8SHYtdruQ8MglFxIU1fxqITo0NYVXsWK28uT4kNhjpm7m5HBCXne8/BUOM3KP/i7/wmbp0c++O/+d/j6N36SsNrlnK+N6/LgGte4xu8rPuvG8UW8mayMRVf2qO/URoQzeGHFaxoQUlEoDSSv4J0pbiIGYZecm+JiRjDoxqyq7CA5qY2zsSYKAxbMdq09Jmnyd+Ri3x+iqeZNSzJ1pmMydUE9q73mZvmjVVeFkHEMgAEPIkLKiZwKJYFmZfFmhBYAAQAASURBVJaE84VKNoUn55oNFhRXeTidDKYtpmbqmyqTeEdKhVzN0nZaZiSYcuV0MguqMXhubzZUgeO0cDzNpgy4AiU2B8hAlWrFe6dme+pMbSnNibxkWx94U+gMMaBtLq2crcEM7Fi5owbrdytwXc9rP72N0VjXHrR5vThZlXMv1xMdVuhgErXj1piykjs/Wzuc1MfMJcv3bmKuXz4GHthaITcFyVozMQZTPeqwQRubq6WzGgRmAEabWzUFWVPV5Kweg6PkSsnJAIdgqrJlBcsdPjhqyjauqqzqWmb3LA1GkXUtYft0NtWuF8ep82Hi+l7rOiccxsj2dqTUyvF04rCfcDVQcmEcBkL0pJTJSdFmBa5NwsVEjPQCtOkbYtunfZx5U92pNIXYBLFWtrstpSin/URa8go+hRANPmz/p12WRjgryxZTPgrBFFN9CNze3PD1H38fnPDL//i3eFisMaePRd/Ud/saq9sd95xFyaXZtjX9InHNurzPZu197VTQld1KKWw2A/NpYikVR2AYIiEE9vsTKZt6j1DMxtu8xM9wFwYm1QrDJuBUub3fstkEcJHjceHTjx/s3FdFpR2bBv8ghd3ObANSUvLSlYrAR7h7tmVZCj54xjHw9HBCT6ag1eE+VdCiuDYvt2uyrU2XenHNXRyPpvBr99Pz9dTV1dbGnH4dp9IUk2QFlHoDz1k1jwbR2Rgq7f29UYUG9Ci2fg0xtG9silfNkvBSxaxDTWkxa8PptLT1qeUgcq4Mo7eGq1JxzizIj8eJk8w2Jp1vBYW+pjJ1OddUqQUlpQWojJvY9rmtn1w/dk0hSsw2tOdCSrV7gxZtCrcKQYnR40QpuXKsE3PK/K35f839b9/zF37yX2YY4ttcgXzxpgDXuMY1fpRxCThf4xrXuMY1rnGNP8qx+D3/7jf+x/z3v/nv8NP7n/9Rb841rnGNa3zf+KEhpeAtO1fFEi61mA1aT/RZWFeuakvWoEjGRIlap2DJFaTw8pM3iFNKgZQWtFRKUtI80RdNooJUw0d6sjI1VREtLSkrnuMhcaxmp3Q6JcR5xp0BI0UVUTg9zYizzusYHC5Aqska3BBu7gbi0GTsNXB/f8/N7Y7Xb97wu7/7hjQrUZScMmNwxGhWR0UTTiK7mw3fef2KuNsgwZOOyQrwFVyEVBI1V3Ip/No3v4v7lsMPA1KsuOGk8OHzHS+eD7x8emIcR/b7mVKSqUu1BJ9ZWRSeDgfGOHJ7s+XudkSi8Ph04uXLmTxPBO/YbgeeP7/jNE0sS6YU6xYupbQuXsduM+K9UBWWZrHle0Gh2751GfWWJI7Bm5VXzYRo1lObzYZarRO7JCtKlHouXlQ1aMt6YC0p+Vb3tNj56hL+3c9BOCeTezeyJSJNVl3EEunlKYN4qi7MxxMxhjUBKyo2Zmv/HBtPJbN22Fa1AlVXNrJkbDZARh01KTXDIS1AWi2znOswTWYzRHKyQsW4GTnOEzlVSuGtTm7pCcVV6cZSu8Hbdto2tHJcragot7uRZ89vOC2OuWR++R//Bo+vC0EdzhXG3Zb7+x23dxs+/vYjzgWgknJZk7GpWQ0IFR0sue98MOn8ZMnv6BxIoEpGvCWXv/FTH/Hn/uKf4nF/4hd/4R9zPExQheAi25tbsz4ohWVZmsqRpY6XpRCdZxhGnBe2G8f97cjt3T13tzv+0r/y5/nWtz+h/Cf/GF8XapPBL2p2KBJcUwBSlIKPNl58CKSlvNXhm1thsrfmjiEQGPACw9aBczw8HpmmI7e3z9jdOOZjRZwlqE/HhadceNx/l93uljg+gSglxbXDXqtaZzuVu9tbnt2/QDTz0Vfe57B/zYcffMR294KXH/+SbU/pBSFLdDtnEMz7H26oqhyeKvuHRFoKMTpu7gfe//CG05QZNgPihWEbiVPAOW+QU1WownzKpgY2WFHLiM6W6PeC3ZqVUpuVSlOP0LVwdrZRsM5/KwCUIuiS8VGIPuCcwaR1hZ0ELcp8mtHicUS7PrSV5Roc5b1rxb7MEAezXQuOtMzE4NbniildeFIqzNNiAGYuuBDIqXJ8nFGdrVPcwTJnNrtIiAPbIERXrGPabRjjlu24YQzRnjcVvDg2Q+BYJrwf8MBhP1GrMowju9sdp9PENM+gpuY2jINZdgTPuDE7iMNpIqVqilYSKKpoLmSFkyQ2N4HoA8spkeYH8uT4B//om/zFh4mviiOoAZ1WZrz2L1zjGtf4g8el9dMKIlxAIJ93lQXvZQVVbG4k53nfxR6oGqTvXGjzpQ61t5eookVY5nQuepcGtVRZC9j9IPW1SlfzUYXcCsr27PSUbIqN/bsBQpu0ma2RqcgW8xuy4vui5NJgC4Rx9ITobf+qstlEgxlS4s2bIyWXBvebOlHwBgdXLVQ1C+XjaW5WuY6Skil2tjlFaYqgAuyPC5wM7PGtKq614JwjlcThOKH4Bth0BUWaaqod95wT3nk248B2G1GB0zSzpNQUXmweFuII1azealNGQQ1+ds6g/RBMSXFeks19xODxdWz2JoA2aO2U2DzDeyG4YM/ZGCjF1Iu6og6d6ebSXs7Ot5QzBAxNvaUPONcaA3pcABfSFHRWvqJi0LLYfHIu6QwxtXFU0TZUZf08tEE10iEIznCU0ShtTSPrmK8ZCrbmcd7hnc15xRs8ow322mxH5mWxcdftpfR8PdCUq6SpY67HVc+wknP9nqFstxu228h0qhQtTNORnEBYbG1I4OZ2y83djpefPCCYIllvKqmq1GYJRwOQfAjnNV3bxhDM9ndOy3qNffWrH/LjP/1VXr/Z85u/8TtmrXwBrKzNKqptzHIhGGXqaC44QhB228h2u2NZEn4T+OST15yOE0JrKKADQdKgvEbwkBsscjEX7hC5GjhU6hlqsuMZEKEBi8I0LZSSqdUTh0BaFqoqy5IoecF5Ty42z/Sx4oM3QLEKUBHOc+qb7ZY4OJxUdjdb5tMJP0RCDO01fbwKZ89EwTf7MlO6wn7nDHLpYKWpZFnTjIgzhTFZTx1d4cu0fGyt0AePiR9fwGL9barnz6Bfx7JuWr+vWMORwf3Oqd13pa7v6btj+SS7nxLcep/uwKdZQpqilMOt+QtVxXc1KbVrZYjeYK12n8m53yda3qp0uNGa00oO+FgZo7d7bcmUnIjbAe/DqhLb99tJc++sBsuZHaTZgcahwUwKWSuCX9eyBuHZsc2lkheD1rzvirYVqpgSnzPrUYo9i3LJPIbKL2z+n/zZ8JeJDA1MbGPz6t10jWtc4w8YCutDtk+tpc8jeOvWf41rXOMa17jGNb6gcQyf8re//G/z5W/+SW7Khz/qzbnGNa5xjc+MHxpS2m4j4mFaMstcjCExhOQMWqglLXOu+OQsudU6/lywJJVaJpKaC6ksiIt4NcCotm4ycYJzviXBK6EIPhjsIIMnlUzRxDIlBL92dUrrtqxLolaHi0L0A16Fuc6UklGpaPVwKCw5EaMniiPNJoEeYkShdZAu3Ox2bIeZ4bbwlS/fkXPhzdOMl0yIjmHjuLkdeHjcgw+k7z4irpJTsSRmBpkN5vLB4WNkqQ6mip9OPLvbsbsdOR33zDnzq7/1bV4/nnBES/TSgRUr/AdvEvTTvFBr4va9Z3z1qx8gUeDjV7x69WjS5KqcTidT6VElFzvGZjXhcE7x3hE3nrtnG6apUPYTIUScF1JeTIK8mu1eSsUKLkVJiVZMKcTsqXXgdHoiFzVrJxFK6l2arZuxZ8rpRSZ3tkgDnLMkujTVJh8EH/1aaFhm60Bf2aGekxPrYK4FELMpy0XIc2ld462o0JSKVthJQdSt4826bR3eeUuEOm/gEtXqMBXrhseADDALgc12QEQpo5CXQlFlcJ5nL57jpwOHpyPTcbEk4gpk2Vh1vhWgam1t5ULwwc63cwzjCFrxVD547xlf//EP+a3ffkNwAU5HJGWKGGyltbD7+o4PvvyMj7/7aGPZO1KDd5wXnJfmgSCEMDBuNjYmvYNc2Y4jX/3ae/gg/JN/8h2Oh4nt3cAf+xM/zVe+8SHf+Ye/wps3TzjXZPGL8vj4BEIbZ3T+DIGmklOIw8Bud8PzZxu+8pXnjLsbfv1XvsXf+Y9/gV/51d/h9etHRMy2L4RIbUnklCq1FII39R3vgwE41Qo6abHrSluxsuZs59gJGWUzwO5+xAdLJO82A2jl4c2e3c2Owz5zOk7ML08EB3Ec8HFhmmacV3Y3G/YPRypWlArBMcRADI6bzUiMjtvdrXXhVs/j44EiptQ2DEOzZ6kN1LOiqRA57K1gEYLn7jnc3OzY3m6Z5pnjnIhDYLuNPD4kcraCWbWTDKotqV3b/g94HCE4VAvDxiEMLHMmzXXtGrZr8Xy9mVqBt4JF6zo2RS0rJtYMc05273YGPplEWCtQVEv2dzu3ECOInZOC3WtK971xBqd659kMW4Yhkmthnmd2my33tzeIgh9gGIWUCtNhMsU3rY1XtALDdMiEMBAHuLu/oVCYDyckRsTZWI5BcM0aMKeED8puM1ByRtvzIudKykdSyYzjiHeemguaFfXKsBsYosO5ypIzBVhqu08BUg34pFZSybjkmo0juAHSVHl8eM0v/sov8af+5B/jeRhoeCCCNtu3d5+yayXuh30sX+Ma1/gjGPrOv/odoQpNo6XdazhjGu7CvvXzHjF6xEubZ/d5Lm+B25egUs5ltQd2zrU1gqzsB239IS6YGkpT0OiAgXOsYI1Us0cK3uOip2LrkVwKZUkG7Taow7mmNpRMgTD4blvbwBlRahWWuc8JDQBYlkrONMjAsSyFnE9t/qpsxsCL5zuqwv6wUJbEEMXWFNGz35/sSVHqelxyaSop1Sy3pFXLRZpaoxaGaDa5KSsV4c3TiSUVHHWFarp6VS8/iYCUtoYKMA4Dfgg2VdxPNtbU5njHw2kFby7BeydWhK9qkoza5rfe+/Zz19Z3TVW0jWBV0FxW+2etQslpnatYs0QHFrD3rRfH5Xrikghqv2rgDtjayzU1RG2QV8ldxesMxhlE1eGJ1gjTxsvKiHBxfV7Mqbqy0Xo9ikEPZkvcVHpU19e9tQ/t94iBXoq39USt7fiZDR6lgRz0a/283SLn67/bgYUQ0DbrCA0O9yLE6NlsR3JZiH6wtV5ezLCuQkk2hxv9xZrFndf6ro09bWss52yc9zWWD57ddsOHX3pOTgufvnxknkyVyg+Rjz99xXe+/ZKnhyMiuq73c8nrtXVG0DjDbaqIt/26uRkZBkfRzP5w4rd+42Men06mBCpmSRy8b2O3tnWFtuva1LukqRrVIhenUtfT0o+jOsENwuZmsPGTCuMQqCjzlMyaOxaWuZjVc4NykMI8p3UfuiqyQTddhdRU3DZ+SwyRUmEpip4mXHD4AILnrCameJH13ylXhiGyjY67exg3pt42L8kURINnHCOH/RlyO2uQGayoDTqTEFgvOaeEaE0cJZWmsHyG1PrxkovzdI6zgtn5/EHR0mC6d4jB9bDLCiHRmijs3mYLvX7uFGscceJw3o5NKRkRu0eHljswYW5tTS1t7HpZwave6NIhQds5wWOwoK77etFAhbLdjGbbiJiduZiVXqmF0GC94O2eVVDCoOCFXG3NWqqgYvtpeR6DW5Xz/cm1m4205qWSMr/0yd/hF7/yt/kLw7+OV7fez37vx/4XZGJwjWtc47+W+Gyw6OKn0tN1+tZv3mJP37mPX+Ma17jGNa5xjS92fPP2P+I/+eB/y89/99/C/fAowDWucY1r/FOLH/rONAzCsBlxbqHkybrE1IrdZpnVJf3t78uSVllr7yLRexgiRMc8Jcr/n70/i7Vly84zsW/MJiLWWrs5557bZibJZC9KVFWJFsuWUXIHuQouw4ZdBgq2BLeA7QfDMFAFuN4M+NE2/OA3v7lguFRuoIINSCrLJUgq2ZIgiRIlkSJTmcnMvP3pd7O6iNn6YcyItc/NVIkU2Nwk1yDz3H3O3nutWBEzZsw5xjf+Pyeo4K1KY5fUuoRbVAqmASMhagI3pcJKetargWQtx/HIFDJkoe87Li4GAPa7I+M0UaNj6DqQxKxfoV2ahvGgEuimFa1DNIxTou80aR8muLs7ctxNHPcT15crrBOc7+imwjSlpqBjOEyB+/2RmpvykwNrHVQFB+YkUgKqZFwDFJwVlRr3FuOvcM6zv3tFzpZSCs4YOmeATK6FHCDVROvjJdXK7n7P65eO1fWa8TBBKpiWwM65cjxOSFU7C7VQy1QE61U5ahwTpW6RpgrkrMV1hX4YMNawuz9yTGVRkkHUaivFgvWGKJUQ1b7PiGndveCdkBLk1n0s9Qu73AaVKbujSXAtJmmnZ9c5rBdV86FgO084CnHKtKZuVVSSMl/Zk9JLBZrd3dLxOScaHyRNUy4YUHuoluzTa6PJyhRhCrF9prn79WTflVJmnEYurjYYB5AYx8gUEs+evSLVTIqhFW3abxk9XgVEVFbfot/vB8vj6wuyKcRYWK97Yk44BgLwze99gnVrVv0Fl48iYu7ZHQI5VMKU+OTjZ9xv78ghEUvCdyhMkiriqtrRlQrWIuJIJataWS54K3zwlbf4l/74H+LVi5eknNkfE5vVin0Y+Q//wl/lW//kM8ZDZug9RoRCbl2xsnStCgbTOrBqBTFqm7gaPNePrvjs6Uum8SkpZL7zzU/Z3Y2s+hXRRnCWvusQMUxTYBoDtrN4r8UG7zxd78Doe6ZYySkjJjErJ2hhzOB7R7fpuHxywbjfE6bAxeXAYYrEWBgGz+ZqwxSO1KZq4Iwnhcx+Smp7GKMWUKsqKM3jdjwGXr+65yef/ChVCocsvLg9Mk57Li4sTx559luIWWm6YRhYr1bc3u2pEsEY3nrnkq43PH5rhXWG27sd/WS4vx0pMVFS5rg/sNuPpKC2kWL0HJemDpEzmKaAFaU2WxLPcDUQQyTEyDRGShbClJZu6ZwrUipZKqZBpKUpRxir95U0BYe5+DVfY9D7de46t87rsaTcuqYrzrIUm73vWTqLU8b0llQLuUJIBcZIThVxgnVzMVA7nJ2xuHXHsO6pFXa7UVW0YqBuE6+oOFPZrDcMdmA3jfTWsY2JMUYFnKSyXq3oBs9uNxFT5uKqJ4yJ7f2RcMyUNNF1HoxligVJiWor+33COME5i4in7zpSDISUsEahXSjUXHE4Vutec3nGkqbKcbfnV//e3+P4r/3nubx+gqle4amqsJQshN2DkO/74hznOMcfgHgIkT7gfVGjWy2INmHS1iAgmNrWUDSFkCpLPUGZFMOXMWrNWBzOWkpuqpsN5H7wU6jVagM4SlvjURUWqromTbksqplmBkEWAH4GmSrNM66BAgrG2FzwnVNbWVTVphah6xzDoDbK0xSazargndVmDJlfWd9DlYlojRKAGHJShSKR2ba2Eia1qe07z24/Qq2kqIqZuar9TwjN2qvSwI+6FPDnktIM+EhWiEWMqkCJsWB0fS/WUI+xrf8BUcWmBVpuzQwzqFSr2qPe3m4RZxjHQG3Ah16z+Y/TGDtRSgpL5VSYSkKs6PuWQqkFYy392nM8TAscNFe/atXnvoJXVdfqZR7jLGuQKgpeQVMxeoixPCSI4MF/ZVm/iGmgvlRsNarcGxLz0m6+jsvri95r9QE8R9WGC9ENyPJGAg1Gmg94bozQMWHavjOrzJdey3m4NyspKk1ByCy/qxBE5bCf2jUvS+OGvsa8J2ljoB2wIDhv2Wx6MPq6w9BzHHW/kErh2fPXdN2KKpb1xRrrLPv9qOe5FLb3B8ZxVAvelBDb9l2lgqkPPnlbH9KgrgZrd4PD954pBFabgdWlYeg6xMLTz56z300NeLJtPLYcAieQjnbtZzBsBvJcA+AOx0CctNloGkdyjHTeq8KR0BS+jNrBZ4VJrD3Ba0b0IldvKFXXsSKzHZw2SxkjraHEYr1ras8V6xXeUXUdg+89KctiEexmVbaqUFB6oDzFcg+r0s84Rpzv9Lp7y/GogFE/GN66XnE4qJqOsZrr6Lqe+/s90kCifnD4zuA7S0pZ7ciBHBNpUkgnhERMaYH9ZnWmPKswwdLAo/sqs3x2MYLxWZVWszYS6GCYb+OTqo95sKw1M0UrLLbtS+m7Xes37tkGX5VyAilnuFDvQbs8I4pSSqRMy+uoolQpCvc5ZzT/0OYaawSMKrQZZ5iOgZxVwS1P+nvOqlK0855UKnf7A/sQCTm38afW4t6rDXlKGe/U+jqKZQqJFDLWqm1lafNJCEk/pug+R8TgTBtzpQDN5m5uSJMGpzXQsla1zZt2B351+vP84fUf4yr8mD5zqKf54PviIep3jnOc4w9enODth+u2eR3xxnrk9A/M6yHhi797jnOc4xznOMc5fmhD4K+/97/np7Z/ih85/OI/Zf9wjnOc4xy/d/GbhpR22yNuysyOSsZYhZRa5/Cp+/mUQBKpS6G7c47OGvb7A0WSltmrkGJoikng3EmyuzT1HSPaGZ0ylBJJKbE/HFltVgzDBdYoLHR9teLqesB5yzhd8fLZLZXCxdWG7f2ezqeWhNQErnHge4ORqjZTRYsTcQpQi9obYIihYARCjHz6yUumKTKFSsVoYUgE5x3edRQTGYYeMcJ+N7bkpWhxpKiEfZwSNUNxAp0lFyGMhSkknC3kJHjjqVIoaLfmqusJMRJSIeVKzWCqkIthe8xMn70iPX1OOCSoVpO6c8e1EappF60l/qVBCaElGksC1+s1HA9Hyi5ivefy8QWzfZMRQzUKKwlaBMrtv9YatcMAYm4y9hUtyM8gUjkl1mutD8ZKZc7s1wZgGBFiDGAsFxdrkEqcMlIcJU3t2kgrwD3scG6luwbOnRS+KmRaIasw+0XMFnAKZag8+2GviWDvfAPsHGXpZq9gQLImvq3T5O3hcCRME1LmImElTDqubbPZomoRZ7XuMMYSQsIYoV+p3VqeKquV4/2vXjFcWoqFy80jfuNbn/Dio9d0g2N/2LMaHsGjws/+kZ/ge999xt23P6TagrOFaT+yI/HW4zX3+5ExqvpOLok6geAaNJco2WKs2jOmUgm1sDsc+ZVf+x6ff/ySbtXx+N0L3n3niuurRzx7/pyf+ekf59nTV9zd7tUGRQoxaPFutv1YVL+MdjJb6xSuyQXE8N777zGOO370p36Uwzjx6m/+GlQtpOaYOMSEMfp35zRB3nWO2ZJgHCeMA9sZ1pc94/5IUvpPiwjW4q369qWknc2lVKzzlCoKPOakXb0l4zuD6x2rC4PvPHHMlFRJJVNLRKqQinbE4nSM1Aq7w8Sv/+Pv8vjRCrN23L2eyAXWG89P/tSP8PknN1QR3n73gmHtuby44tvf/pRiChhIOXC1vmKcAq8+3er9L5bt7Y6S4eb1nlwa3JehZK1oidF7TuwMXBZSVLuSHCvWCrWzWG/onMV1hnBUJTRT0aJkrUvyHKOqTLNNh/d2KeaJGHLOJ4WlBhGqdYpDjFW1qKg3d62ilnytqOCNJ2W9OUspVDISqxZQxJJSIUwj1hiMQRP5UYuWw9DhvHYzq9OPoZbMcR/w1lAHw+hptjwWu17x0ccveWVf8/TZS0JUq5n16gLn0GKkqLJFLgVrLV03sNvtdeyWpEXdVmA5HhLeG4xooanr9HOnoLBsJGIseGfwTsd4LhND39N3niORGOHm0xe8+N7n7N+u2H7FB9cDfadoZLsCD+L0t/N24Rzn+IMarQEA8wBGcFTU+nieOR7OIPPPFsDOoNKXeBIJIRPjbCM8f8YZKKlvqMIoVHPil2ZQwntHjJHaCsgz0EFbAxqZwS9zUpuQ2W5YFsWKdMw47xqMarFG6HuP9/qzxipo65q65243NlipkrJaHGHQpgepVNHGC8GoTXaziKUYvLWUef09VULMbS2lOhqzEqSxjlr1GYQI41HXk7pSViil1NJUPmaVECFI2+dkBf9LVji9nUUQtHEDXcvkrA0ioOoesVTyFKlB4XbzQD2x9RGo9SpAmcEiXW/lktq/67lXu9zWpCGF/MBatv3KSe2qAlkvrjRwGhTErjOAN4NM86hYHpcPsLyHCoVzY8K8NxXBug5EKCnrmvThTTL/6oOH8oyTzOMTkWYP9+B1Fx5OwcHTeyugJdJsbeW0Z/niOyyfWR5YF8/w1AKAKOw2i9CICOuLFcYK06hqPU4JcVLIOCesNh39yhFLRqpldzgwHgPGGFKOlAibS3j87ts8/ez1AiA5axuQYVld9hynQEy6p48hUZI2JFSV9mqqNjru58rn9v7A/jCp7XPnGVaWunJYZ+m7geuvXrPbHnj9egsI1hnypBbs83WeATlpCjrSQI6UMojl0eNLRApP3nuH7fbA9775se6RG+iWmrrqQxZGd7CoCmZR9V/febyvxCkSY2oKUWb5vZIzYSqMB9sUmMqi/qx2hFnX0RZVVer0elZUzVTqCXBTC8gG1jSgK8bE7c09Xdf2ZbFtqcRgXIf3gX7wXD1aY21V9U9XCTEtFnPGeupUOTb4RpBFfXgKEyKmZS0E2jZYzDysFYLR9b42X0nVnAhOASPrDMaqSnJK7bwsd4ie19k6UedfaSrFDxS+pN3zrfq93DpGAbJaWeZwhRcLppoGP6kSqarLybLtnFV859815mQZOO9trHMNDmrPhKrPj5IjOeg8a62qoU4hE3LlGCKvX96y3U3EqBbvznusVdu+pH6AugfLJ1W2ee7Saa0un2uBJGu7350qGKuNXdEWKKvWovPxu2ZrqHOnqjnd3r7i/23/j/z0zb/J1y9/gieXFyeQlC+GPPjzHOc4xx+UmMHeL/7b8lX9wrwQ1b60pom8fTWnjJnbHKoAX/lDv5OHfI5znOMc5zjHOX4XYjJb/u8/9j/gz3z3/8b748+fQaVznOMc/9wxN1qXcUcJI+W4Zfz0mz/4h//Yf+039Zq/aUhpCjCGoMnTBog457DWkXJCxDIMHSIwTVNLDjZFmpTYbresVwOX1xvy3ZbdLkBWSMQY6LxDbNXCRaEVCwyYSm2Ax5xwzqWyP0wMfcE7yzB4XGfZHyPx7gg4jDW8/c4Vh5jY7gOr3tN1lt0hIkmIppCq0FmDdcI0ZjrX8/h6xTB4UkocDiOPr6/pOsP2fosRxxTuVEGmKQEZsWptlhNIolRLSUY7VjMYRDvfG0RTaiGlpB2JpfA63oM4xBgCE96KQi1iqWK1YN/1PH7rkuwLxzEQd5GaKttDZAqZKVbEgneW1aYHgf1hoqLKSDlG7eCl4ozVEy6CUOiHHmMqpUmhqwS6JYTC65dbrHE458iSFkn8WpIWSoqBWig1qQ2dMYt0fDXN+qLUpRigVlIngxKgdcPrF9La0HOJCnOIYzyMiDWEMXHchaaiJEtSTsfigsYtHbhmfr0HcQLpylL8m0XWa272E+YkI2+t1wRhKw6IUdsAjCiEI9LgtsrQrVQRIDQ4zTSAYXCaDE1qD/iTP/MV+gvPzc0Ok/X87EOhhIwzhdWjK+za8Pyz57x4duAYI9UI8VjJUZgY6borDuPIpx8/YzCeLBXvB1argc1VTymVjVie+J7NZsXzZ8+5e3WgFCimgS+lUDKUFDWTUSoffviU7370nNXFCjseud3ecTgeMPU54+7A13/8K2wue/7+L30bMcLF5SVhCqRJE7PzOREDxpsFFDNeGEMkF/j6T36gSl2P3uEb/+g3GA8TMRa1cMBRiib/jZkLMkKI2oWq3bGOznrefucx61XHbnvPy2c7DrugXbtot3JJlfubHSVX3nn7EbVGxnGkxErNhlgK680KkZGaBe87rBWiRFyvNpFd7xn3aiuZE2oTgxYlQgrEMRDjpIpdxWPWwm6f+PC4xRqD1IpzPX0vrC8M1497nj6/wbiOcYrE9ILLqw3TVJjGQsTQ9yuOh8BxH3Gdx4qwGjpKrvjesFo7pGZCFLbbIzlFSoHO9k0hApwD8YITtbwUKuMYEGcomMXyYb5rTsl1sygc5KxVw7mgcIILtbphraVktWFU5bF2bnLBtO/nklXJTURtPpwCPyKGkstSKEw0K0unNo+zipuxFS+emiO+M7z33jXHQyBNkWHjKGIIsbLdR1ZdxlC5v7nleBgpOWFs4eJaVb+eP79RWzZroBrSlIkh0veeruu0WB31nA+rgRiywn0VvHf0vScGVd+z1ih8VU8KUdMItTqMRKyxxBRI2XC/3fEf/od/ic/3I0++8hX+K3/yF/kX/vAfoTN1KXqe4xznOMcCVWNUUa7BGcp7zG3Os5qMohNVFvMxMhAreGASBdOvvqQyzsoynGD1WW3GiGn7CX2G6Bouo/ZI8+9mxjGpjdHQUwXGY1jUk9SJ6mSFU4sC0sYINJsfmCEXo4B6VsjAWkPFEmJiHBW+QAQrFe87jiERQqKzhq73mJSRovayqRS8oakICd5Y1uuO1aon58zxOOKcox86xvZc3O2PhKBwjz5jtThdsu4vclO1yanBEDIjFg964uusDiVMRW2kjFGlDnFmgXkq+rVBsF1TeslFLU4rjGNcLJ1E1OJ16DptXoiBWhW2ySmrlSu6Tp6PSEToOo+Zz2fRNVxFoZ4wJexsCzcrXRmzNB1oowJtUzCDW3rc2uthF8Us/UAzxfOwHNeey031VdWP9HdKhhRTAwBqgxsePn/lwcvNJ23pgFj+PluAnaR+3vgPTfhK0abGTRUUjLZ2VklqllNtz7WoVbbz4p3XdWYICAr9G2uwXu+LmhWI2Vz0+N6SUqcASqpMsbBadZScsL5nN07sb3d451lfbCgJalTwzzTY/dXLW/a7A53z5JIwxtL3HVUKx0n3908eXbK+WLHb7dje7ompNS0tllz6xwyfHfYjVQQ/OMYxMo6qTFvSLbM2kr6/gjud70ghNfXd09JIjAIetcFixjYFmly4fnRJJfP6ZsvLZzeEmKhFVZitsSdQjGavbdrasymuGWupRffO67Xep/d3R6ZjbO/f5p2qlsWH/ch61VNRKE8BJVXM6QaPcZkcC7Uo8OKcbfZiRm0hx6iNSlJOw6vq+DCzKlBqeZFObejvx4m+N6puux3pegtVVbnGacJYD1VVk/u+o2Q9VkHts8MUKUndmo2FwTpqrTivykuUSkyV42HipMQni02hKdL835pasm227u2+KLmScl7gm7n/oT6ocpdZNWm51ZYban7C6TyWCtU2wKueQC6plVy1aaKWukBrCkQ2gGn+uaTzqbXaSGSdbc9WPRjdS2a6ztF1AykVZAY+izQFvETXWTbrFXd3B2ZFp37Q5pj9diSGCeO0kaEilKqKvKYpi+ecMc7QdaqaGoKq2fpOlbRLPs0bZnmOK2g1hYg1ZoHgQIixgFQ+/uxjPnvxGX+//gq/ePdf5V/70T/N9cXVMv19f53hvMc4xzn+wEY9/acuqpwoWL6/Id69II878nggx0mbhos+n2Ity9yapcIvnCGlc5zjHOc4xzl+6EPgVf9t/s8/8d/kP/f83+I//fJ/crZ+O8c5zvFbipoT07Pvcfz4HxNff066e04+3GvOZU50fF/8NkNKqdAStKCJu0opQkqGECK2JQCd04Syc4ZZnj6GzJQz4zFwfX2JdY6SR2o2S7evAE7cUvg1pjIMHbYTDvsjKcWW+LU4r13Mh/2ItZZxDLx+tdVOTzQ5eX3dcXu/49XNgWmKSNFOub639CtHcoZjmIjTBFVtEvrecfV4xZMnVxip7HYHjsfAxcWa9cbjXIdfee63e4xYnFhSShwPIylnrFlBcozHAzUpAFPIVJnLShbTVKJKqVCzQiOm4L3l0eNNU40xHA5Higi2wtXaUySx3U9MoWCr2iN5J+Qw2z5oF+16PdD1jtVFRyoJqZYwOfbb/dLlKlXl2p1XeGBz2bM/jMRQ2Vz1+N4whcLu/khJWeETINWKOEvKhlpa13B12pFaQUSTw6XtccUaZos0Ztn9ekpKziFV1aG063guwBlSrIQx0w+WzneMNrSE+PdbmFROFF9tnaLSCjwnAKOeQKXlXGihpaA2eLU1AocpYx2t6GIoJeGMw1pDrkk7ZMtJxcl4LTJZp6pc3ltWq55ubbRIFTO+c+yPR6SH68c9a9+Tp8r6UOiGjpevXpGT8OG3PuX24xt+9Efe52f/2M/xnV//EI6Fw+EC0wuHKfIPf/nbTGOg9wbJBmcH1usNdzevOQRYecfXf+or/Nwv/CyfffaUj771MTf3t7x8teV4d8SYikHhv5ibelBKWGcYzY40BsRYwjRisvD40bv8+q99RiUhkompsttWwGGMJjRm5SjjLcaptVylYpyOicMh4PuOIpW/8hf/Jp999JoUCyUHehlwnSfnjJSE6yyuc7jOcdwdSVPUhLgYckzcvX7NWz/5AT/6Ez/Dr/6D7xLjDcZqcW3oe4VjMoRD4P5uh/VCzBHnHDElchJyhs2lZ3t7ZBoF7+Ddd68RX8BYYjTcvtxiUbWiWkQ7jalg4Op6w+O3r0lT5eWrW2qqxP1ElMD7H1xy2B/58LtPuby64OULtQmrIsSokF8MmbvXR6ZR7WNCiEgtjMdAjgYhs770bNYrUgqIha7vkCKMh8IUI1YctYqq+4SIdUIpjhzV4q+0otrmYgXoWA8xcdirRaO1qixUa1kKj8p5qVqTaXZ9y02GLNY4pRRKeFgolEVhYpoixli6Ti0sSqnU1IpHIlhjdR5sgFQVGIY1w8pinOV4OJKmgu87ck6IK1xsBoaLDWnMVDIFT5oCcQqkeOTdt69Ivee7H73GGkO36llveu7v9lqUItH3a0p2UFOD2oTxOJJSZn0x0K88w2DwHWy3Ae87VpsOA8R55qkVK/p8yylRs2GKBT9V0lAQeqapEEIis+Vv/8O/SxHLZx99iN3f8pV3P+Cr777bzumbhc5zQeEc5/gDHnVWEKkNPWIp6uZaMFhShSBqp7udAp3t2B6PTFTWznMXj/Rdxx+5+HImHBY3NkAr2rUBn7pmE6N2wVqsViBjZkdKA99nm7jZHoiqwHlRyhZjtZhPY0Gdd4iBGNqzTlQLZFYmUvvYgsjJPm622+l7x/3uQJh0PRlrATJi1BrOW70WaZzItcFlVpWXMJXOG1y3WqyuVZXEsqoDzjcoy1igtiYGJZIUpon6VJhpCakPlEuWM9jUTUFEgSvfVD9AFkUZK5X1uqNKZXtUlRurL6Ww9UO1nwbROm+57FfLeU7JECbIURsf9JoUpCq0b5xdLJT7zuE6S4iZcT9RS11UWWaYADOvFRuoNUNP89q8ztDWaa0h7fhmIOIHgUqAbpIbAFQKpKhwhrWGbGeL8Yf2dctbPNhPVKTtJ/T9ZsWrWQ6qvgk1fQE8VkCqUktWSBod46bOxzUrtZ6kZWabaucUtBHRc2at4DtHLQXrLOMUwHQ4J/TeUzM4mynA/pA4bA8cxiN5zKyvei7WA/kY6C+8gjdUjiGzvd21dWBWiM1qc8o0HSkqV0PXO975yhP8jaMbOlJO3N3uGfdju2qyjIX5lBiBNEVKKlhnCOOEqZbNxQXb7UQpaTkfh0OGBw0olXqyGxOdNGYQpVZhHCeOxwnbOZ5+/JzxkFR9p1bdJzo9p6YanLe6lrVCmprFcJtQSikc9weG3vLk3SdM4YWCK6Lzj/eeaQqYZnkeU8ZaPUbn1OJQoRS1XitJG2GMgYuLFYjaG9ei8401lZK1RSa1NXcFNus1V9cXTCFzf7dV9Z42nqp4UoqEEOlDz3HMDeR0bd0uSBEO+0DJRRWPUiHX0uwwFW/tB0fXObV3RtfdGIuI7k914AspzQpoCiGWXBcF5lo1bzATMVlya3KaocC6NAsJMN+28/V8cIvpqGnzzAzolWbRNucKjDFNcSoreGb0+zPsV9s9VssMvep48b6j61URLKZEzaWpwCkcV0X/a0Xnf2csMWRtnkgZ4ypD3+GdZZwSxhl8a2jIJWOd4LyhKp+lgGspTQlN98K23e9ddRSnzxxrzXJ+jJkVotQGnqJ7y1qlqTPpnmmZGmplNx6wwUA98jfK/4UPtu/yr2z+jTbt1NM0KA/nxfO+4hzn+IMS9QtfzascqZU8HQj3L4l3Lwjb14vVaigFax1j1NyfVGHMid46UslgznPIOc5xjnOc4xy/V9EdO0If+AFl0H++ELjtP+IvfvXfwZc1/6nX//03G0rOcY5znONB1NZdl+5fMX7y6xw/+jXGz78FOf22v9dvuoJRalMPQhYBiFIyKajcuBSYxpFgNFnT9Q7vDSllsrUc9yNhSrx6eUumUIpZOk4RiKlQakbELq8vUkkxkXPrrhRNoOWkybCcoGa1IooxNhgl4bwjTJWb7UQOujkLEewh060MvlcLuaEbGMdMiTTlFkcVw8vXN2rvgyrAHF/dkVLC+05toKiEGLDdwHrTc3U9kHMmxMpue2QzeKRWQqxkNMn8MLltmh1V+ydqmeXet0tHrRiH7xwpTRQ2GPHkkNjfj3RGu+qHfsBaRz/0lBhJJWJ9ZVhbrtfXrDYrdvuR/S6wuVhx//qOOOWWRMtkY0ghs9sesR6GwfLkyYbVRc/z53sO2yM5Z5xVdZHD4UiY7bhEmuw6qphjDRRwCFMbqDFrInUeMw/jpGpEOw/aMSg0i7qsBZpaI6Wo/cAw9ETJpMUmpC6vpV+Ydj5LU4uBeZNujFlApfk6QKXUfGrIfvAaOZcGV+Ql8ZpSWW5OaZZwc0K81Iy1lovrdUvSZ8SrKlQqFuMFv3KEVAihMAwd/XqN6QUjez5/ecft7cTN839CqdAPK0KOfP7xM25f3PHTP/VVPvjgCS/uj3z86S2vXr4mp8QuVdZDR9cbemd46/qCdy82vHx2w/OXr3nv9obvfO8jxnDkrXevGQPEMVJjpBZNCNdWsBMRLJCPhRKFt97e8PjxJSTHj/3UB3zvw8949vRek98pkqOel1Mh0Wgh0KkCWhwjYEg54G3m808/5x/8vcq7X3ufu6cvMLG12VZLnILahFm1C/N9jxjt3F/1A0ksYgzWW1KcmA4Tr1/ecv32WxTJrC4UZhk2HZuLFebeUJMwjQHjVVq/d70WL2olBu2i3lyu6Hyn48NGrq57nPccxog1hffev6K+f8Fhd+Dy4pJxnBBrmMLE48tL3n/7HV7cjfgLz9MPPyUHyCJ8/vlrwhi0G7YWqlyTciEG7YbNSdj4nmkfORxGrFMVBbVPdEwlksaqwJcN+E7wK09KlTiqzd7mYoAKMWihxXeGrvNNzS6prAYVihbUjNUiYqkJ62ZQsC4JcFU3aPdsKxqYhx3Prft/7kSmaHdxTk2FrEIqZUnCi6nNfgQoOgeWrHBfDKPaxCFUY/De412nr5cjBk3gT8cDrnMY4xhDodaJFBKbTa9FP5OQlDHFMo2Z680lm/XA3W6E6nn18o67+zs21yukdMSQiNNRO91LxhiLsdA7R8oBpkQ3WNabjmHVaeE5FnKMGONYr/pm+ZmhtCJHU1ZKKRGjqGqVwLDpcc5x2GdCDniXePrxJ+TjSELvNZ2LHjwIaf897xHOcY4/EPFwHQRQROEPi1CqIQFjrcQq3E+JtTNs7++RznExrMhknC1crzvEGAYxPF75L3VN4YTZnGqpqiK1VLQpzWrUGIMVVSTRwrSjlkjJqs6j3eHmIfau8Gsui5orVfcSlfLAkqq9T1Nameu7D22CRQRntSCfYmmAhCqPplSxrpJyWixXaxbEzsVnbUg4jtOioBNDbs/BjHWqaBJCIOeCFYe1ov8zooX/nOl7j4mZmNu6FxqEU9ujQpZzaDgV7Y/HMH/0ZrsLlMI9e4y15NyUS9rvdp3HdR3OO2rSc9V5p4CHs3R9zxRUCWa1Gjjs9sQp6fnU1gB9tsc8i7XivQIi4xiXc1qrPjOLGHIuC4ig57tZTRlDTrrnnFWRdHzMGjwPCnHS3vsNVaS5oUb3fxWoWf9IKHBhrUXQc/CwrLdYu82fqhRKK/A9fMVZjWD+t6Ug+ABUmu3fFtWwBiTpHqNt/hqgNNvylXyyqer6rm17C9Yo5FKrAhPWCbmokqMqGivY1fWWm7uRwyFi61HtxwZPpHB/f+B4CFy8u+b60ZrtPnB4eU/JkZohI7ihWWNRubpcI53j7mbL3d0OPnnG69d3lJzVkteqMlgM4aQKxcyFNUWcZgs49ANd77EY3n3vihcvb3j1Yq922uhasyxroaprVtOUumohpawgVAExld028clHkctHF8RxhDKPD1UIQ5qFL5Wc9b43xeiarym9Wqf7iZILu91ItbfarNHmGusVshPXU6Ku8XyvMKEVT45ZlWMxGOPpB89qGPRCSMYaMLbDpEosic2mw1z1TFNg6Ic236jymAGqerlz+WjN7nZLRRV0tncTtRZ9PRGsX6tdctC1vLruGUoq2gQhsvzPO8dUErkpfqaU6XpLP8wKollVgLzufVNUyMmYE2ST82z/eNozzEpgtKa0nB/Ak8KiwrogMm3cz/d6fQAa1rlpqN1NpU3GJamChxFdE+ea3+AR5zmh1tKgSVoxXVWXYoQZ9BXROdg0wCxntQ3MKeOswTp9Z2MhXATiUfcnw9CzP07aaLMPavfpHV2vsOAUIyDklLDO4vw8ZlvjDx0ffPIVXv7USyaZyPmkLm2Nzo+5zLmFeUopVFE4K6Xc9hlWgb1qiFOhSMGaHd+Q/4ift/9ZHpUPltnxS/zoP8c5zvG7GJVKyYF0/4rw8lPC/o4pTaq8GjPOOmxVyN5bGLzuHYwIazpse6Z+H8h9jnOc4xznOMc5fnAI3L1zx/vfff+35eVMNPzRv/JH+ZX/4q8Q1uG35TXnSGbir73/v+Erxz/GB8d/4QwqneMc53gjaq2UcGD85J+w/8bfYnr5ETVM8Du4O/gttFlLs/KaXaq169YKSEuOllKQUpvaBFQRVA1eCw0pJ7XJQRMtSzKLWZWn4JtUdoyF+/tEXcoZDYypavtkmTty545ZVZVyAut1z+XVBrd3lFVmtzsSY+FYIzFXDrsjGSEnwVDpBos1hWk6cHejYEnfd4QYKFmTY6Um7YZEu/L224mjxKYyVJusuCeXjLfNSqFq8lXtB/Q8gMJXcwLR0hLNuTTLCT3bXQ/jNFFj4Zv7z3GdhdbRkmrFiuB95Z0few/rDeHunsvVY64ue+2etI6L67cw3cjlVSFPAe8q+/uR3fYIReg6iyFTkyWEjJHEwWvCcL89NDsEFpnykoWKQUptST1hs+l48s5bTCnx8tkr4hgxUpjNpEoRTEXtS2Y4aE5QfvEh2MaMnoTWSZ4qoUaiSVinnZ61zpYPc6dn66g8VS3aOG0v2rqoS7O8k9OPtWM5FSVOGVBNztY6S8kLS/2swTOuc3jbMY4jNVfEasKxXw10vcF5KDlQRegHj/OW/baw342UWri9ybhS+cmf+Sov7hO3Ny9Y+8rm6gI7dIwlc3x2zxRgHwu7OHF3e+CT737I8binph5nezZXV3hr6AfHV3/ip/juhx9zPB54+jSw/ytbdtuJw3TgrUcXvH39hK++e8Vv/MZHHA+Z0tR0kFY4dAabDdVDyPDqxY4njx/z7vvXfPzph+y2O2qqeK8KAjFkYk4KK1VVmtFiXCAFtYmo1VBT4LjPfOMffY9PPnnBbrunxEoRh/M9KQRCSIjVbt3xOOmcYw3rVY+zlq4f2FwOjKNhf5d5+WLHPnyLNGVCmJr1giZyH797xf7mgO8G3nrnmlQSNcPN63tNnhuroJIY3nvvkYI7tjL0nlJgTcdd2DKsPeuLC4YVdN7y+J3HxJIw9pLx/sB3vvMhUSyDs7z/I++C9Hz83c+YDqrohlNrmiGqjeJxH7i4tFQMx93EcT8SY8J3HjEFI46u0y73w37ieAhM08j14w3XTwYgk/rEbS4Y47BimMKeftVhxeO8qqSRKmHKeKfWAtZZjNOkVD90+A4O+1FtJapgxGlRcL4LWqFW1bFsg/W0gKdqUiDNPmbuuK61kqZCMWptgoVQ1DbD6mxASglnPdY4Yj7QDx7rLCEGbu/use50KzrrsK7DGIghY4zaINSs47bUyuA7uq4jpkgpkb5fc7EZuNsd2G2P3N3vwVouNwODdxy3gZr27Peqfre56NW6wqjahPUKRFnbgVSmMOpnI5OTFr2MoVU8IWedL6vV4ldMmXEM2M4ydBXnhDolQogkV3j6/AX/37/zy/wXLq54+63HWNGtQHsaPpwKHzx5z3GOc/x+i3/asr4CCcM+VUIthFqYcsTbDlOFlbNcPXmEoAv4R36FEbOsqOZF/Rfhpy9TnOa6dtQVtdFdACFOAMgDuEU5j2YP1mzBpJrTqq4VvRc7KalNsU//W9vPSCNza6ucSwMqxEqDRFAQSJcKaldqDNYbjoeJEDO5Qg6VQELXnO38tzVpmEZSipQGnFAVjBajiM28vhZjqKmojXQ2xHhSkCmt+K72qzQg4nTsX7zEMyy82Kkxn6qiUHBR2F5MVCUgFEzRvZ1hdblW5SIya6+qrKlkBaxjRsSwuVgzTSND7umbamUppQHJWoBP7TOM+xEzWeKU1Sq8ijYA5NL2Q01516pK0Hrdc3F5wXEa2d6pXa8UQy7t5+s8Zr74ub/47w+fpTPS1PaPqbRzWU/fn/dmszrS/Gr1i685j8n5/pr3dKcD+b6jqzNM9oWXewAmixhmi8PcLMbU6kpVWX3nm+qwtKYQECvkMUPU/WnNun9+650rzC6SQqIawIIzqtw5jpFaKve7IzEnxmPkcL8jl4ja1VqMddRcWF33XDy64JOPP2catYkgPY/UIsSU8Nby+OqK9UXHxx8/YxqjAnFNZXJGDo1R+8oxRqYQWa8HdrsD93dbUlQQzTrBWUNBmhJZY7dq1XsgKxReRS2+atF7Z38/cTyqehCtkUmso6JFV1pTkZBP86PTPYITVWW2rud4GJnGREz3iEgDGgWb9R7xnSPkQNd7Vs3ureSq0GFVKDKEiO+E1brTz2Qdw9A1aGjOg+hrGdNDLS1PkBl6z3SYOByOmt8Qw8WjK2oVXr+4pZb5HlVrNpmiKkOJ4CzEUghTIUU9HuvavV0qRgqdt8QGkcWg+2XfaROBt5Zj20srWDlhxLYcRSWn3I7/BBkZow0Luehav4oqvul1UzU2VTyaScEHcGGd/96aIZgBnQVZVdhyBp1KpRidT0o9zYFzI0VpCs5i9L7pek+KhRBUtc7Yk+XlbD9J1dcuDbBMMauqnDV0Xcf+7R3mM3Btnysi5JgWxb5SK84YjOkoXm2v1fpQbfvmvZIRx+XdFV/97o+wvT6wf2vU3MQDBfEvTuIzrKk8mCw23jht4Co1NnhTCBF+5dN/hPT/O/719f+cd/2P6fWBRWVvwTQfPnKXOeu8uzjHOb6s8cW1hPwnfO+N71SoOVKmA9Ptc46vPyVOI7HlMGoueOfwXnDGaMMUFuHNefhhlvYH6E2e4xznOMc5znGOHxQCn//U5/zs3/nZ35aXe+977/ELf+kXeP7153z8Rz7+bXnNh/Gq/w3+/a//af7Md/+vvDf+/BlUOsc5/oBHrZUyHUj3Lzl++Kvsv/13yfs73lR3+Z2L3zSkNCvLzfLftWoSxDiniaxFtlyBkNAUlkA7Q7VrsXXOVtPyia2DFlpnnibHtTNXFTrmbxqrnR2zT4RxTrtMTbNJYn4t7VwuteAMvPPBW9hXjlcv77VoHmiKTSg8JEItDoMhjonnuxvtamsA1bD2dL0m1qdRVYSGYcBbSykJUy0p6QkytpJDYns7kXJtyi8GK6Lfbyo9Jav9EaJ2FSnP4JduCeduxZQTtVRSNZicsE4TiWI8ruvp1tcU54hxxDlHQdjHREyJ7f0tn3/yErGGR2894vWrG6Zx4vHja9YrtXTbXK65v9szHiLTCOt1Rw6J55/fNIWpDKi8+sNu73Xf8f77j+lXlifvPWbYbHh985LVytG7ntvbLa9e37G9P5w6ux80r5/k/OcCwrwtPv37DDJJaV3xFCQ21ZdWrFA5fhogkRebASp6zltieOnsrQ0UawnEGZWai0t6bKfCA2giM9cZ2qD9bpPArzqWFluNdh9oPt2q/WBRm4/jYaTv26eTjtvbI2mMfPDuNa5fcdjtcaZwOGYO0w2dd2xWK1JJlArPn93x+sVrhs7zzlvXfPo0ErIm9LfbPbJecf3WV3h1u+Oj7z7DiSGEiZubgGC5WK+4vrzgZ3/uR3nywSUvXt7h3ESYIrUUcsrElMkxIaZHrCHmSAqF2/t7/tpf+fs8/fxps2gULq4GLi4vMVjCMajNnVRu7u4Ix0gKASsG4/Q6pKCqSjEIdy8O6o9X8ylJbYwmULKOcec6TebWQi6JGCO5wnDheOvJI8IUGcfE9GLH0DtyjOQshMkRw4RYBw4uLja4TjAYKJZh8KTJkI6Z3fZAN1ScKwy9YjSbzQXbw4GuEzbiiCExjYHODwgVZ2G17ulXaz7bjrj1gJRAmiKP33mPm9e32hWMqNpQFg6HREgvWa173nv/MX6ovHpxYDwkwgQ1e4oYrIcxBo7HoyoYOEOulRJhdz9h3J5hcHTWcnl10azYdP4sWU6dxG28a2G1zSUpYXAYcaQaSSmSS4LqlmKYKrzp3TgnsGupVKMFF9NAtpy04GtEtAjWkvLaOU8rABS9f63gvMcUKBRq1o5yY4R+1bPeDPR9x/Z+z2E84pyjHwbilIgScR5cB6u1x5hC3wk5GHa3R6oI5tqyWTtWvefiemC17uiHQecqJ1w/2vD65obXr0Yu12vITgtatZBL5X6703l+1YM1VAy9H+j7NS9e3HI8jtSaMUZwtgMj9IPTa9ssGah6LqwxzFYZxlpKgn080BnBe0uKkZd39/y5P/8X+LVv/RP+M//yn+CP/NE/xFfefxu/zCozdNusEpfZSM5FhXOc40scPzCFX3/Adx+wDjPMDZWEOm3ex0wRaZa1sHGeJ87jjEDneIDkUKmLItsX5Srrl3iqmNVt3jjE2iAEdE0wfx61m1JlS7XEoQEdqlQkSINytDgu8/kxut4rM6ACuvya14Dt2dgq7w0kUlWUak6AVAiFFEeMhXW/xnqHJFXAKWWuMbdjW1gpVUYMU1wK8BWwVq3e5t+x1uC9w3sFgSlQslqlzSJQMWTax2sqIKez9obqE6Kft54wrflndJ3V4Jva7MvqbMUMxjts1+mzSzJ958kIu1FVZlLK1HJUdRmn9lclZ1Zdz2rwuk/qfANGIKeM79QO+3AMaqN32s7p+S8KiQ+d59HjDcYZuqGjAJ3teNI/xhrL9n7Hfj8yjZHTp3hQQJulIGfQvj4oqL0BDy0LeL1dcnlADslyvY2Zz+lp02JkblrQF1v2MA9BgDdUleYDrG/8lQfX5vSuMxAO5AaDN+hblYgKqSlwWusASw6JQmyqtpbxGKjZMDxaI6K2aqvBMY6R8TAhMjH0qlSJUyz6sBu5uFjR+cc8e36jTThSCCFgerUX+/Sjpxz3ur/MOTNOaj04DB3eOtYXA66zGLGs1laVX2JUC7Rme1abZbC0ey3GyIvnt4xHhVqMMaw3PavNis55VbbxakP86vUN6RhVgcqIqoFWaUo0ep/UDEYs1ZQ3rsNDpV1jLXMzi/NW8xO5Yh0MQ0+wkVQzOaqNHg2Qybk0JWedT7vO6zWtavXY95aSIUyJmDLTGDEG+sGRUiIlq6CQBeOEGHJTD1PQx3eoolIVAhE/WDoDYVQ1pPEwLoMsl4qpCmnmPOK85eJqwFi1QosUSGphWGPB+WbT3qwejdGmMYpawY3HuNiNeecQYyi54LxaRJZUWxOCnlPb4KRSiuY8GmikTUNzB0+ba+a/i5xGu7Rdd2tam+fe2d6tTb5vPMfENIj0wc2m5840wEhzTjknxAjOqUKW7wx5UiW+ue+plqLqelbVxqxtr5MrMSZKURW7UlUJznrTPrPVYzeC7yxGKtMYSUHwrlOF5QYWpqRzuPWCWINUy+PP32LlV0gyCjNVtQK0RtVJXNcgr5SXsS3LfqLlPkT1TLSRpLa9nypw323v+Tvf+I/55OJT/vXN/4J/8ev/Mp2xy1w0z4WF2iwmH0xPnOMc5/jhiNPa541NxOnbFCrluCO8+JBp+4o0HQk5U6h4Y+mdXeYWtfn94gwgv+m/neMc5zjHOc5xjt+d+Il/8BPYZLHJ/rN/+J8zXvbf4t/78f82f/p7f5YPjv/i79j7nOMc5/jyRi2FePOU7a/9dabPvkXavvq+hqrfjfgtKCmdEn4PN0eaoGnEklTAtGRrpeS4qM+IgHcd3muCN0xJE9d4bGv7Eme1XmANpUm6z6ACRd9XlsJFIU6hvacq1RhjiTESYiVMR5w35Kd3mlg1VpOWUpEqyNzV6ARnCmPImngrFaRQMVQpHPaRMHqMtRhT1FarFy4uLsg5EKeEBDBWk167fViSbiJatM61ImIpOTdQabat0Gx9rafPJtA68QxUQ62zpRotKSeYkpDOIkTqbsf1pmP9zjUvt3s+f/qKcTdiqsUZ7UB+9tkN0xigVA6rwLvvbnj73QvWFxf43rHuB0QsxlR2+wPf+fZTnKnY3pGytGSdnicnjqtHF7z93gbjLPSGl/f3IJ5hfcF4GHl9u+VwSORim4JKpYomlcWcutjn5ONiA/HgHNQZblpy/A+K97VQWzJUCz22nUNZeoCc92o5liKmnBLWZq6QzOV/KUsS9VSAYJGGPyVU9dfma5ZzwcSM5Bm10o5MdQaxlKiv5TpPCBErnuP9SAiJaoveFynSD47f+MbH3L/e8dUPHvPs83u2+5E0JUo68taTK9bXKy4vL7h/dc97X32X27s9H39+2ywKFVNJNfHt3/geN693TGPC+RmqslQm+n7Nzes9n372mm99+DH3dwcuLjdcPbri5vUNsXXKYypWMr0VBu8YK4g1DH1P33nGqCpjb7/ziKsn17z11hXrwfL4yTXPnt/zy//g15k+vcWIKun43hNjptKSvVbBlc57itOiRq0NxpC6gGfOq3LaMKzph47nz14RwhFjiwKTDVystVCl0g2OccyklAlT5PZ2i7MdfVealQGEaaQfOq4vV9y8vifeBaZ9YtoU1hcrwjTx+vWBVCrFTAoRjQljIs52GAHXG1Zu4PWLG45jYnWxwbiep59tufvOJxx3R2rW8V4K1FywJMIkiK2kPBD2mWG9YnMp7G733L06Mk2B6/XA1VsXHPZHUqqs+45xTKSkFZIYMsfDEVLh8ZMrunXH69e3jIcJ7/qmFlabEkTFt4RUCFGvQY2tuFvpOwdVOB7Sg9n84X3F6d4sWjyorQBVStX52WZVyyuWOYFWjSC1YL1ZoFFnbbtWWl4XY4gpaOGrFI5jwHWOC7dpMOhETQUjQiwV5zvA4n1HKYVxv6fzln69ohs6YohEsWoDmSCninMdYmHc76gxM8VCPCj8ZXxlbQfC3UgMcyd/ohpDZy299xjjOOxHpqDWbReXA1ShUOkGA8ZBs5iLMbJe9yiEF3HesF53TGMkpsRYCl3XLR33L599zt++u+Gj3/iEP2P/Db727p9ExFFEC+gyF1sfznvtj+/LKZ7jHOf4EkX9wten3uT5e/M6o5UNKQhTzhxqASy1wKZzDO4EmtjlNcwbc4DM65YHcIy+erOT/JLGG4DJw39v8L7+86yepKoRqqxRGnSua2RndW2cUgP/a10sSWelIArNTkhfezn/DT5nVg1s9sWI2q2d1oAKtBaE3faoqkYNIgFdUwq6b3FWC/khKtigLzcrOCnUVEJpaiTtGCr4zlMxaqVrajt2IUxqbyTLfkKfDaZZAc3r1vkznZi4739YSDuX0lSaZqVEfeZkbI24bHDO4DrLbgpMY2A6BG1IsWrFPU1HLZYXOJbA1ZUqy6Ss9qfrTYeznhgTKTclyV5hqJhm1SrwzmBEYeVqtCkjHBIhZgVcciWEyDjGZv3cFEKYC/ezpVX7/A3UqvIAUHnzDLzRkDAPxPpwRJa6AGHS9gizRbcYhSF0ofPm6y4WcbU2OLA++J6OqVpOnUdVTv8+1xtrKdo0AxirP1tywVrX4KTa1pQKneRcSCFQJakVFGp9/smHz5jGiWFQNc+c9f4Zp6RQ+MpjrXAcC+OUmKZALizAim2wxeGo1z+nQs5Bz7WxlKpr7Dhlcrkl5IkwBnzn8d4tIEWpum60VFa9Y1h3HEa1Al+vV6QYmEa1yOo6tWAvkri47hhWPTe3e7rB6/vXqjC8UUuzWmVRrDnBe5o/KAs5eJpHjOhEMdsP56xqv+NhWvZ5IkI1ug+1TtXNcinE2JQ8rdqfSdaGq5IyiGFYdYgE0v5IjoWSWsqiGqYxa6NBTaiQr0L/RtTOsI4KYcaY1Hqn81ALU0hs70f9mZlkNc1msI3vUlU5KQdVlut6i7PCcR8bTGjpBqfjJGYE0/ZidZlrY06qUNV3+M4wjhMp5mW81TpDXqf9d1kUiHR8WyvaEGErU2hg0HKfNoDyDat1fe/ZJvzUdPTgPeZ780FOxDaltnludKY9W81pr16rqmCJMfTaFUQMoY2JdrzGApZSTLuPEiKGYeW0uaAUtXgOCnxRKtZYil165BCMWnymSD8Y+mHgcIiUkNrQU/VslwzXL68QJ4QYyVmR2VnNC2jXSrQxpwgxxjbXil43EbreqT1dyM2eVBZ4qoZITpmP4jf42/bf4+fTz2P8labMHsxD5vsnxHOc4xxf6vj+osAXUGh9ptRC3t8SXn/GdPOMGANTVtVqL9ooa9/YNzz4+pxUOMc5znGOc5zjSxvdoeNr3/jag/az36EQeDl8i7/w1f8l/73v/Ad0ZfM7+37nOMc5vhRRa6XmSHjxMYdv/xKH7/wyJRx/T4/pNw0pzUm8h4mkRe3GgDFWk4zNWqFmTZCWmhDUxqEUTWIbUxVCYAZO7KJEs+RsqyZjVE2igUlFk/vWaqJRDHRdh7GWMUzUmvHeEkOkGkOucHd/JKWCs5oElaYA0nWei83A5kItDT57dsMUA8bOZaWCt1Yl7mPGVzCdU3/uBKYYTOcwVpU+YtTErbUO5x0pKliVc0ZEbX8olVQ1oVhn+4J5g1iYKxH62USLH5WWyB96ai0NNihYD4NNdKVy3Cds75jCBAWmQyRMI8ZYOm/UrsJkQhKKGNy648WrLfXFyLASSjlSSsfd7VEPRODrP/4YvOPuThPVzgjXlz1SK9fvvsV2f+Tu+Z777U6LEWOFrFZ4JavNW61QTQODRBPg0iTqa6kNLNLruiSKYfnfkhCss3mAfmPuiK6LFLpKrJtWwFP1FoPvLH3V5P1srZFSadBHa42tCsOVGU5q7/5G4vrB2Be9MApGtSSvcwbv9TOGMJGTZb1a0fUdL1/faGHFGUoS0qGSyx6xhnXf8dnHz3j5YkfJkTDuKLnDekdJlWnK3N0fOcbEs6c37O+OfPjR54SYqdUoaFKg5kiaLJfvvcc4ZfaHO/KkNl1iCjEGXk0Tho67+29TJEHNhBhZrVZq41fmDlfPauX5uZ/7gK/95Ff41jc/5/Xz11xceoa+Y9qrqkyYJj77+Ckffu8zPvjKY966u+Fb3/4cquXiakVZJ9aXG2IqvH5+p/ALNGUfVThwXqefcRy1+EPBOUeVgkhGxDKOE9v7PWSll7Z3E2F6qfZ51lOyMAWwVqFChXoSJVVWFwkxheNhxFpLiomcHdFFbC+kFDnuK4d7T9cZcoHD/Y5Us4JNpqfzPcZpYn5/iOz3gZv1hO86un4gpSNhHyhTYnd3ZNwH7Xo1gvNzEVlIOWNi4bCdqFKZwg5rwVSHGIsVqxaUJbParNjej0yxqIpE1aJKmCbW6wHjK7vdgRgzh/uROEHpM91KGJyF4kmpMh1HStJucL22VeeEztP1Duu0gDEeEgg4K0vxD9T+zBijc1iz4jFGVcusBects8JYni1yrMU7R9dZvHcYJ6SSqUWgSgPrDKXOSfhCJeG9p+s6SsnUmslAjhHfeYZ+rcpK40SpcDwWLjcO7w373QHJ0BVH2E2sHw/89E/+GK93W+4OB7rVwHoKlO2RKWTWl473P3jCbhcoYtneHqgZLI4QI6VmwDDFzJQyuQreGQoV1xQwSslsNmu9V9aVcRwxVlQZwFqGiwHXG0KEdEw6vyUtMhun5iOlHgiHW65XPQa1k4yS8WQs/gROPgAvz3GOc3x542SHcCostBXy8ucC+6PF6UMtRIyCms7wqPN4a5A278/sw/Ie3zcRyA/4tx+C+aLWE6jx5jeAZhFVG8jVbN6kbQ6aQe9JuabS1EdlZhPAzOpKX3xlTiB8KaqgNJ9AQW1RjSHESG1Kj4tKE2o1Pf9df0WPxXunNqpen3t32z1lSsjsuVNrs1BCVWcrGOyiDltSQXzFOMAowBCjPnfFyAlEahCXQv8znKRflOUv7fNUVaOaP6+IvHEOVImqFfdF12RVUFuorKqwNSnEmzOknLBGoQSxQlJCgCJwHCO1JPrestvumEIhpboACG89XiPWcDhEUspYMfRdU0MxcBgD4xia8lSBYpb95Vz0l0bp6uU67ZN+0Nh6GAsM9BBO+8KYYGmOOO0/tDmkKU0ZBWGc77APGkZyUauoUuZGGk6vI6fXV2XJU5gHX0vV9xF0HWWMrrOMNcQYFbpAcN4xTWODhQSKKmlSCjFFus6z2+6ZRt0jHo8FwSpQ09b3x6Pao+VSKKlwd3/Q28Xo3kmbZ8A3MMrYqMfdQPWSku7NUewhpoyxOsamKTTFrQb8UTFYVuuO97/ymM3VhmdPXxMOE31v6VoDA1SmKUJI3N9n9kPHajiy240gql6zXnd0q54YEtu7g6oF1Ye5Ac0t6Lww791qAzlAm1FUySY3RTYjhpgq5TjRdQ1QiUJOelFK2yaODZh3naHrFKxPY9ZmBCrHPJJj0j1mqZoHcKIKyWXeu1as8XivoE3OWS3Gpsw4ZlVT6zw5KcjijCFUtbAX9HqrqJCc7CspTFPEWkNMkenYrB4ziFhiLOQSdD4LCm7NKs2lFHKGvtfmi1yL7o9ioWaF8fuVU/XrOFvbxWVONaYBQ0LL3bRxLSdbTYVFH+Q4ZoWr9ucCQJkTDLgoFtc2v4uum+d9uLGzPdzpDjbLfV3btQW1Y9bXtM5iq1GVIxQ4qrkyTgHafOysHsM4TrrfSoWSMiVlvva1rxBK5cXrmzYPWCTpPW86y7DpyLkwrFX9N8sJeDQHQ3fo4MpA1Aa+WaktNwBR81r67BGn802tRYFcY3DeIEbNmJKwrA1KbmqDrVkrp8Dh4hO+/eSv8NO7P4Ura0Qqvs02s/7il35tcI5znAP4/nv1jZ1FiuTjjry/Id49J+/uCDUTSsGKxRtV5bPzz5/v/3Oc4xznOMc5fuhi2A1sbhQY8pP/HX+/71z8x/z5r/7b/Kuf/6+5SO/9jr/fOc5xjt+bKNOB8PpzwvPvcvzoHzM9+x6/W3Zu/6z4LUBKoMmtB1LdSzp2TnI6QojzbyDW0PleC89FE/MKpABVYaPSWJFCIcfUuqFlSUqxJLlmcESL4dYaYlSgxpZCjGkpWpSi1kXWCRZNXKWkx+WcJif7vsd3HSD4rmOzGagyAy+dFs+zUHPRpKE4vOm4GFYMK4frIXsoUY/XVjCpUG2iunZ9UztHc0IJGnnTKg5LZ6FophpN/jmj0IjmnzQhmXOk6z2+1w5HGRyH4lk/fky3Mty+umH/4l67/qzFudZBWwVTwbtebZpq4X6/V3AiTORiubst3G9HanHknPDGahJYMjlFhpXl8mLNo6uBUjOfP33K7e3EfhcIY0ZqwVQHxKUoN6s/zclvQyv2pJOFwpyEnLsy5y5pY4zWVxaFJZbxUJef1IQoptJ1hn5QOypoCX8jGKcwkVAoxWC9J0UYj5HjYaQEVdWCuaHZsKhaMVvBvQko1VohVy1uWUNOKvNvIwyrFULisA+M4y3eO2rN4B0lZrXKW3UYk6gUVhvLGBLGGUo1VHEMFwNl3BNqIWdhvw9sd5NaEKbcijYG5yBOE7UYhn7DO++8xeGwIzbbRQVbEimURZ0FCcSYWV9sMLZjfzhw3AdCiKQ4YUW46D0/8ZNf4d0f/YDXuwP3u3uePL7kZ37uJ1hf9nznmx9SkoD0rFaWcL/l4+/d8PrFHVIMQ28xm46rR49YXw7c3h6YjhPbdKSWjLTuz0Ih5aLKCbW2JHHr5PauAWuV6RgoWe0S1I3MIVJYrQftUk6VnIRsMjFFanaqiNMZHj/a8PY71+yPE/c3B0oslDqxu98zHQNUPZYxRELMhClRcwWyDlOb8cYyTrF116KWcuOEcSPOC7YK06EQDkGrA7YptPUW5x3jcWI6ZnLR62HkwOZiIE/CMRRiOOrnM5aUIrv7irGWnHT8WWupuVBTRayldFk71p3T6bs6IFFK5OLqCu87bl/uSAlSqq2rHVargVpz6zZu9hQxUXJitooRMTivMJFaH9hTQYwKRnBWwUxpReBSagPc5ptX4cHxGJim0Oz+BBGFWJ1r8E2tzRrDNAuPgEjFOst605NSIYaMc9rdHcIEGHLJandRHIfDSEyZwXWIWHbbA8dp5N13nrBedRzGkd0+cNgfySWqGoKFwzgxpcKwBm87jsfMYXdES86OWhzWeWqqag/hLCVlxjDhxJFrIucjwwAxFlLJWCpdU2ASCrVGnBW8s5Tc5mIUcKpZM4e7w4GXhwOv4sTLp58hVvix9z9gZWUpcGq5aIY3v8zaKOc4xznmuU3jBLLQcHtdUwAVApUxBToLb2/WbfbR4n6WucQvbWk4kxW/X0oMDwgOac+XE/vzABBv32vPIWd1cV2Krh0KFWbroWb1NoNMs0InM+D0BkTWoKZSydLeq7BYyuUvbNCk2RDpJZhBF1nUMECYptgsnjICdJ0W76115FQazNLUoYogzjH0HauVxzhIJKYGUdimyDRNGeONFuZzK9ovJ4kTkNMA/4dAgLJaTQ9olhBaIH+1EPLeIVbtsIrx2H6F7WB7e0eZkgJzfafAQy4KKFFBDNbquQhJ1UNq1n1KKQrbqBKVWgzttiMFyLkyDJ5h1ela2AqvX28ZDyMhZHIWVbqdz/NyAb5I7LXrOyv1Llf3dP/Jcr1OgNL3C0w9ACgEVcvsLN7ZBnQsYsDMUEbOuV1XhR2cmAXgkDde92R1pcPvC/CUPMAWl32GjsEYK66q2mWpMI4BCVGVuqxt+3BV4HJ2VpoxjFMmxtrUvoRu6JimWS1I2rqygWnLRqzdB0UB7b7zXF9fcpyOpJzf2H/N94f+m66Vne2oonbDOamaUylZm2t6z8XlhuOYefn6KTllri83vPvB2wybjlcvbqgFrPVtbVcZj4EUI1LVNq04hTSMVUDPOUtJDbqxdrnus5KaaWq9Zdlfm6ZG1M5LBYyeByMG6xy+64ghUbI2gIgUSs60LhvEKiw1DB1TTIyHqJBSLapwkxQ0sk7XmPP8sSicVbURy1K1YUEEqYaUi+4hQ9TxhyGFouOpqjKvaTZ31jnCGBv8pzp8ccrQoWBRbkqqTX1aShtTzbpybiKbPUZFKikmVYdqIKTCR1kVa63OGzHEBkexAJp+aTJrqkrl4fA+wYQLWKok3On+kPkYDKaW5dlWSm17sPYzBYop2qSSK5Jl+b15fpAGI5VaG9ij+QZqU41rwKtrN77mU1JTVGpsociiJmbF4JwjpsJ2d+AYCuM4aqNdLMSQFOTrtLEuxKhKf1QuLnuohvv7HbXAo9fXSLSIWB5/9hZPnzzV+aDls3KKes+bNn4xC6jorMFIO2fNetIYnVPynE/SpFpTqoKX93f8Sv7/8Wvh7/Pe0z/OT1//cd6//ADbUkwPn1/Mc+M5znGOL23U5Q9du6XdDfH2GXH7mjztFYAuDTI30BnT5rpZ4bou6wx5sCZ5Y8F9jnOc4xznOMc5vpTxI9/4EbqxA9T27Vu/+K3f0cd3lcIvPfk/8eHmb/Gnnv6v+PruX+EivXvKP53jHOf4oY1aMtPT73D88FcYP/sW8e452qH35Yrfgt2bvPE/LTq3JGDrGqOp5uTS4CEjrNcDIpByJISgicCgCTLnDd7rS86l2KVjmJZkllNiS1Ap7pLVfsEYIaWgv9v2WwZp3Xbz+baYKmCg6xxusExjYD8e2e33OG8xr/UzdZ3DdwPDakMMkbvbe7VbwFKKAIZ+1fPjP/k+/dow1cTHnz3jPhypOXOxGbA+0/c99zcHQk1AXSzGSj6BL1U/4NIBzpzs40HS2uhxS4OnBLVIsM5ijYNaGadEyJH72xs6Z+k6y+Ziw3Yb2G0P2vmZFdAaVh6/9tSqneIU2G4jx4MmxVZrq+BGhhcv9sSSscZz8fbAZtPx9geP6fqeIhCn54z7hK1CLUYlyI0CYKCJdYV+5s9bKLkVn6p2hYriQ8voop0b7TSXL+b0F4UX/cGCmErfey4frel6p+owxnEYj4SYQCrGGWJIdEOH7zpyTXQrxxgjpNx4sdkaTYti0iz27Nyl+AMSeQp/nOTix0MhhdoAKasdu6mwWXWqWFMKgxcev3XB5UWPtYWC8OrlgcMhEFMhpMrFdQfjUe8GUTl8VGNH7dDa/9VcyKKEnzEDT96+5rNnTznsj9qd2oCPnDNSLaUabCfUmkghUMRo16wkSrMUcJ1lWA8cppG/+7e+wWE38mNff58f+an3+JGfep/X21cMlwNDN5BiYrs9Qq4MnaXvem5f71ivHBePLri52zPFwm57VIjPGL0He0dKqpKWSqWkjDUWY9WqMceMaQUW7fSfAb5KLhHnPMYYvPdMY6DkSC2aMC8x61wkBeMsuQRyjsQpkkMhTpGaVcK/85av/ehjLq47qsA0qgpbOERELLYItSTG8UDKtak2FcIxUKTQDw6q5xgih+3IuE+IgevHK1brTm3zvCc9neCQEdH5R0SYZrWnUlSBriRynlRpAUPJTbWHQs6JmirGGrzVzvOS1JqsFhQgfGToB08BDruJw36iZkMKCmhaZ9u9aamlME0BMKr65iDItAxz51rHcrHMVjvSCmDWWoyBUizOOcIUmWJqSfVmpSG0Iq0gRRWCnFd1ilRUxUxEP7e1Bppyk2+qWnMnf63QD0PrHs+sNyuGoed4HEmp4IcBYwqDFGz1jGPio0+f897bb/PN3/gGtzf3pGPicHekX3keba7Z7Q/4Tp813jlc73j7Rx/x8sUdL57dYMVSxWrXsuhzoxTIIVKs2slNJeOcqknc3+1aYcPSD06LZ7XSWfWFMFJZrTpizByPQe/pZktpRMALf+mv/3U+evYpn33nI8R2/Ik/+af4E3/iX+LSWHypYIXc8KRzSvEc5/hhiBluUMRQ/0ez/VGVht3uyHozsOk8fS2YWkkIpc0NM960cEn19/udL+20ndY4c1F1LvQrA6vF+nmdmFJeijgKMpjl+ZFLbkAQC2jxRpG8mmYD9wBGz6eizrLvmGGVomtawSCm4r1FrGGagq6n0fefYkJAwesZuG/PsZzrso6dFV/61YBIoXcDKW3JKas1tFELJ2MMU44NIpmVlZrN24O1aVvCto/38N8foDPtS4VcWqFq9laSRJiO1LFALnhvFa1TPplCQS1bayuY615EEHJKy74mRT3XXW/1NeY9QM5tjQO1FKy3iDGsNz0ild12Ik5NwabtKw1CNfO518M8iajI8nPzZy8PPyQse1SY1bi+b9S9cW68d3Sdbw0WaqkUc2rQVWu6MLqmAZCkx5ZLWoC4RQlmuSp1ASn0VpbT9Zp/os6QwkkNJ5bUVGTaaxUW229VwhKGlaPvHaUmctY9se8hHwspCyamZskuCtqBNgYsx0Uj8E5Wgbm0sVpmmzClRRQmFwV3UIWaUtSmDNH9rUhukJi0BhUhl8ThbiSFwqO3LhnWHdYb9ocjU0h03jGFIymBs45h1WG9ZXt3wKaM85ZpykxTULC+KKQiTd0qtzlgBmYMRqENVAGo5vxAsad93AbqITSVz8ps2Q15yUMov1JxvaVSmKaJcUoKezVIqRYYes/lowHfa25kGiNSZdnzplQAtZ7WdEkDTdom17qmeJULYisYgxUFHRV8ktZcoK9jBLWZM6apSrV5UMxyvazM+9PCbLEIRveRTQ241AopL+PD94a+94gxqp4WSrMLnMdnA2XmjqCigJaCXaf9+WnuZIGN9D5tMGDLFYjR/bcR2wCrZkcn8oZCUy3zfriBTaI5h1oLmYI1OpfMQK9plnAzzDNbzlmjanbWdm1/WZd72tj52SvEmLm9vecr77/DcZo4HA7kXAljACrDqlcVMVOxRsjtuLrO6ZyWV6SY6Rq4ZkRwYnU/Uwop6jVoUzq+2cypnWSb96Qs53rOhTivKoshsqhGGaN7DeeF+/09v/RLfxuTMrX8ZR4ffpz/hv+3+dnVH6Or0nJtZ3XWc5zjhy0qlfHZ9zh+9s3T+g+dG0PQhi/nDSK1qc/PJKjmxU9r2oVQ/D36JOc4xznOcY5znOM3G1JmwBhMNv+Mn/7tiSqV58Ov82e//t/hrfAT/Nc//j/wM9t/9QwqneMcP8RRS2b7K3+V21/6i5ps/BLHbwFSOiXyT53itFyfqv2Y2rq+W5NXTplpmhhWHd2giUeRaQFanLcMqw7nDCFEdodRlYNy68Rltpc7JfbnbI0mJdsxtEQutKRiS/JQDNZ6bG8wJnP9aE2sKnmfJ01cWqeJV28EJ3DcH7m92VNrpORKSdqJiRFiDuz2I59+dsNx3LG+GtjuRmoWLtcbQjiSQiBNCVszVhqA4RxTyKfeldZRqDYLrRtQDNaY1vVHg5ZasaSKKotMkZI18eUHg9gj412kpsrarxEn3N9vub85kKPBiiFI1GRYBakJQgEs4xQosbQORIOpPZ3t+LGvv02pMMXA7jCyuztyPBwRqfjeElPESOUrX3uXmCxHMxHGRMoVEadqKKI2d1okAt85jNHEbSmcGqSXTsjv3y5/EVCaxx6zKpARnLN0fU+MiRAC7ArW+naetdO4VGG1XrFae8bpSDc4ajaIGUirQhhbV2xTblJ7rgZOtaKCGLNYDS6KTrWSUyGX3LqkhSklrLM4r+9tjNrRSU5sNiuoGWMN3bpnCntePN1Ctbzz3pqXzwr3t4mXz29IWS02rDN45xgPhZpUMceY2gozmqitVHaHAx9+9ClTiOSQ1eKrtmObi57Gc3G9Yb+9ZzxWTKcJ/VTGJYHciDi+8sFbPLqauL8PHI4T3/3Op2Ac3/i1T9hvE3vuiFNE8Dy6vuTJu5dIL7x4sef5i1u8t6TkefF8r5AMBmctrrNUU4k56nEZ7SROSa+btY6c1ebEGEspcTmPej0q2EQulu3uwBQnVOs/t/GiUvnrS8u7X3uM9ZXXr+/Z3U+UaHBW7cREIo/fuuDxkwsyI9b15CxcXvX4tzqmMfP69p7NxZpUIyFVxr2CQeurYbGsw1XWFysePxm4vQlQK6uhY4oTrvOqstMKjn3vef/9x+RSOOwnjK2YIqRqwFhM6/h23hOmSAhJwTtnyDU3dSWdQ1zvSaEyrDsevTWwufTkAuO+kqcJK5aQ9N7uOk83KMAHajsWozBNhfF4pJIboKTAkHXaqT8emyWNFUzrDscoUihGCFNU68mCdqJ7p8l0URBnVoIzszpAyuSYmFUzjGR9z1bgywixqjpGRQv6qxU6bqwWXkJIWOMRm8k5LrBmDpW7+x3744F+vcI6R6mVGAMhTXhn2e9Htb30Xq3X0GM6jkdWFwPDdmB3vyMVQ7fZ0PsO5y21WXYej4WuWyOlUErGWkvODXwzsE+R9abS9Z6Uk8KOBjpvGNY9rrfNdtSyGhzWGyoj3/61X+XZb3wTKx7rO+5Dwawsv/jzf5SOysqqWcMZUDrHOX4YQu/SjAouplyX55eTZqFZ4PHQI9WwPx7I3iO5kmtVm0xjsCJIoypqe9nft4mBB4s9XfqWB3DW/B2FIGKNwFz4tdi5KG1NK9JoETqlTI2tsC6tiaG94Btz6Q8A0B/CTA9hMUHBaVUYrAxDR1hA9xlo0MYDZxS8HaegVmi1wR6zy7DNFIQpRF6+vCOliPWW3MCUddeRS2IaAzkWjKgVmzSaOJUTVDJ/jtnMbQZh5uOZmx5OSqR6HCXp81bVeQwlJ+KUMQjOeXItHMeJOMa2lzILCVXbOrlGtY1aFGrmY6kWI5ZHjy50jZdzW/uMamMnwt3tFoRmPzsg+4zzhZoVYJ9VtHT9WhqUAN4p7K1rq4fX8sHe4s0r+k8beacB1tZAFWFsIEKFBxbVDTSTgu88RoSUI4iOu9Wqhx5SzIxjeAOsW6C3erI4rF/c4LSfntc/87A0RlW1FKxQGKIzln7VEaZJz7sx5ATb7YgRy3o9YI1jv52afR6t6YHFproWbRFRVRVVvbLWU6pax72+vVcIJ+fFcri0/YTuiQTfO6Zjg6Oa5VtpisnzfsI6x+XFms26EBPc3Nyx3QnHY+T+9gjFMB7jop4jtrK5WGE7y/32yH4/tflTmxgQ3c/M6kKVk82hAv9zLqKBTPak1KsqySy5BBGaypAwhUSltnyAQnxS9Oqt1p7V5QBUpimRgjbRWOfUtl2yqupUYRozoOBS3xm9p3Ol1sCwWlHReT5MBSQjVIVlciGlhHOOi+uBFHVSscaokmtrrihFqLlivdVr2Yg489ASsp37UvXelqoqQ3Y2GVS6kZyyWqN3jhwL1lqGlcc6hfMlo3tWEXKd70NtWFDraAOtEUn3OmmB8RBZoFHvVWFbIbY2v7a9whwppcUyWkxTEJLmbikNFJ1vVamUkilZLRQNQlJ5bn3volZpy+3d9uzGVW2kM826M5dTA1lpoJY1qHqZzjchRHLW41CetZJK4TjpnL5ed6QEVlQRdp5LjDWUKTFNiYLF9z222HkS0SY7mVXREtSKc46Sm2ovVZtlXJs/mpWktQpvGWfaa8hpP0rheNgTxxFrHGIcY/oOf+6z/y3/rQ/+Hb5m/jAr7+ntA0Wr887iHOf40kcFwu6O3affUuU0WOY6qZWLvqMCsWQy2gB5nCact3TeYuWkw3xClBZEmvMccI5znOMc5zjHOd6ItjR43X+H/8eP/Q/5Nz/8d/np7X/5928+8hzn+H0ctVbC8w+5++X/z5ceUILfAqS0SHdz6rlUuf1TB6j+GxhpMtqlMk2BWivrizUiFu8cdi10fd86hZ1CS1Ip9IxjILQqsiBLR+pi+zXbK7SigHmgdrMoyFhLFZX9Xq0M19eXLaG04uXNlpJa91ytOCd0K09nKpvNmnSzZz9FTcpVqMU1qXWD64QpjXz6NGnH4+2BYjIW8Np8jJWO63WPrOD+fkfMhSmoagqLKtScbZsLWNrtnZtNHaZJgReVm5+7aFPSRKXFEN3IOOlnXXUOMT1jLNxvEzEAuWLUGU7VdIzgnMM0ifcShZwMpWaMgWoqUkAo7PcTWMOjdx4Rp0waI1TD7c0d108usbbj5sWe3T7hrGVYGQ5j0A7qqupF2gGcAe041w53IYwBsWrXJ9aQs8rJz4+7JXn/RoHqwfekJdwRcirst8eTGpMI1qkdlvMKrIzTBAhWhJRRWf1qGboV3cYyjpFX6Y4YVLLemFMn9zzwZ9u5nPQ8LvdBna2uKnW2xMoZY9Wm4PrRJdMYudwMPHpyySefPEVeH/F9x/1ux34/sR5WrLoNj688x90rUlKVmZzUOsEKCAb1K9BCkhYXHKv1mhgnYg48f55IMUFJVCxgSLXijMriG5cxNpNyoCSL9x2r1UoBNFMxxuF8x/rimmmsvPfe27z7lZ6//Jf/Bt4atvcj29tJlYioSHXkFNjvtvz0H/o6jz94zLe/9ZzDHRhJiClMo35W54UigukE13vCpGpOOKeJ7tZJW2uh73uyK02dRxPSzlk67/GDqguVCn3fcXE50ERrOOwm7l4fEFN570ceYb0j50KOLflLpe/UXjJGtdu7vx2xzjJrWEQzEvNEzlqQs14Vorqa8b6wvT0SwojresKUGPeRrq88etLz/levQDJxzBxfGnbbwGEfCBPUYsmx8vLZLRiHcwbrOmJJ1JIpNTUVgIzzChyVCCkWhAS52UUWcFjs2hPKSIqBXDp224CI1fs6TWp5IArEFGpLto/0fcfmakXOhXEMWnQyWpwAwXeOR29dUWuh1OMJNHKmdV5rR3AOiTDp7xvr1Paw5OW+sWJw1ijsJ63DPSuEVUolx0pGlSJoihgxpFZMQAsUVhQ87Dy1iFozNtsGa0Bal7wVh7OW9eVAiplvfvN7PHv6khAKVRwFw3Y/0nWO9QVUPHHKvPVkAzWCVA7jiO07crWMEwybtxh8plt1jNO+FVxmWKCq0pITVmZgOio46vtOQbKaKcWQcmZYecRWbCf04rl0PZSMoFYi4Vg4hkD0HXQbLi48/vWeb/7DDzlMhovrgV/86Z/gcedR7GFuSz/HOc7xZYqH0IEWCypj1HXisOqbTVIBKax6ryCnZHztoVrujpG7MLGSnk3n2YjgRMgUYq14sWoW9wMhDI15XfJDEbNCxsO/P+g8qEKzgtV9QDX6LKoFUkwIvhWcDUYUUFB1Du0cn1X9YkykWprDzQmHn4v7IqeDWQo/8yG1/YRxtilyKHze904VPHIhTgEq2KbcYq0qUlKL2kczwwPteVgVarHW4H07xmYrFUNuqhmFQx6bvZrj4tLjrGG3PxJCYorpDejq4VJ5tiWm2T7NyiG1nNbNMzST6wwiFHIN+l0jOGPUldqYBgFZZvu80tr3VcnnVJhXC9Zmly2qNFVyZr9XyzDrPN2qo4uZHNRqyTaAdxoDh2MkpqLMuTFt8/zA7nnGxPQigdFrnEkLfKPqL1VhltOWdPncc7zBBy0bDxoEkpiLdiKA1b3DSaGrqJplqYuFr6DWTM5bnDhMTMue1ci8n9AxLaeDUnBs2Vefmn8e3sW1QqkF7yyrVd+AflVkUUhcLbZjDJim5FJKVaWfpmgkRpVXSy3Mu/dlLNSmptSuqVTde4axLPfIcqLqvNeuIIUUE3m2R2v7yxhnYGi2QjTc3R55593HdBU++/y5Al7pVu3aq+5hjVWrrpwy1nUMQ9eUkaRZtSUdW9bqmCu6LrVe1/Q56Vr6Yd6gVFUkNcbp/Gt09M+qn843yKlU+kGVdWxTEg1TZr+bEFNZXXTkVFqjjKHrmyWXNBjQ6h49TKnZiwkihZISqUT9DFXVLrRhqGCbsmhMSe3AqzZr1JIxTSGrVrUWy1lt2mJI5FQW9aTDftI5ymqDU21wTqUp7FhRGL4WatbxTbO40zV5M04vur9IoRAsSJAFgCo1t6ayihFLLqUdj2CtqsNa1+Yu1FpOjGlzoqXvugZf6tw5KwRLA4VsU4jKSZWCZ/tGtaZjUSebbeOFkyKadXo8tdT2eg0+qkBTj0KE2hRrS676DJ4BNQwxpQW+okJIqpTqO0ff97y+uaekNudZixjbAK6M9Xo3l1LoBoe1oucxZqoR6tykZDz9MNCPnQJVs2VhrW0P1ppBjOZNkLw0RM0qZbUoCKj2htqEZE27Rk3lDaCmSiQTjX4GUwymh7+6+3f5hfv/ET/5zo/z/tVlgyXPcMI5zvHljAcQeoWUE9uP/jE5TnjvW168Lur188q2N4aKKpD3vaqEv6m2WUm1YNp+4p8GTMMP2X7iHOc4xznOcY4/AOEnj8mG4so/+4d/G2PvX/L//JH/Gf/Tb/01ruJXzqDSOc7xQxY1Ttz8rf+AGqff60P5TcVvGlKqFFWHEFkaL7STrnW8ykkBqFaFNRQcMkzHQIkZ11ucsS35FlitVnhnMd4RoxBLgenUeU5taZSqidHauqI1aa65UtMUdbRL0uC80K967rYHylQ55glyIZXC8xe3TFPAYOk6DyR8b1hfaEJwN01aABAwWKhZOy1b4t86R64F7wyrYWBKI73tEIFj0IR85xxf/eAtHj+65rNnL3h9u+P5y/u2GSxvbDxrO3fWGLU0qApPWGO0q97p5cmlkksmZLAYSokcgiahis2EMdINhX7V46yjGO3QlJYUNAjOakeN7wyIodSJXAOmCrZC34M4uL0dqbbSWU/NlXfeeUw4ThhnuHxyie0rz54+Z7+PGBIp6qWuCNbN0I4mAo04vW5AMeB7h3eC9wbfd6RSOR6DJnLjXEhqafGlG/eLMXeGa3fo3GopIohjKZz43uO9wxpDCBP7fWacEjEmvDGkSZh6h7Ue4w0dVpOhUolx7uqs1JL1utWWCK6aJNaiQlnuAd3PN7ilKWWlEDBGu+WfP3vFeJiwWF49uyGXzOXlJRcXPa9e3nL7aiLGgjFOP2Et5JQIWWG/0iT+wbWKR+Zw2C9nJUb1klQpfFmSu9odqtYnNy9uSbGNwaCKWPpLtikRVF69eM543PHo7Sd8/sknjIdANMIYnmPogMrlxYbVyuOd4e5my4sXt3zy9DOO2y0UtaeiBAyqQEUteOfo1z1ZWqK/6/DOccwjtUJKzS7FGPreqQpUKzz2nWMYDK43xJQRqTx61NF1Pf3aMYWJi8sVXd8RUyDkCA2Eunx0ydWjDbv9kThWShW61YoKbLd7NqsNvjOkMFLsmpQyIar93t1t1iS2g9XQkUNg2kWkVIbBU5xAzsRjYuha5y+VGEamYyaHjEhhtdGkUpiyQoFWmtUZChMCzsHmakXXOVLOpFggade161QZqOSCTVCiqjPllDlud1hnWW8u2FwM3N/vKQbWlx3kyjgmSqgU0c75YVUZ1p7ddsJ7h/dCtx4Y9yPGaPI8FeiGZj+QqlqzGcEZVU0q3tBtOuKUmA6q+lTaM6DETK6J5BzWWcha3HJdS66nrFYvovdKbXYRYrXrXoFKi5RKDpVjmnDe0HW+WX1mqhg6PDEHss2Y9cDF1QUxZ7774Sc4HFdXF9zvR7wzxFiwXhjWG3LN9CuDHwwhCNtDZLufCCkTc0Kq5fLxI0zaYSyIEzbrlaopHY4IBt8+S0xafLUGVuuO+7s9pegc1PUWvKVay/5wgGzY348Y1Bpkteroe32uhRSw1TJGA0U4Hnf8vb/5t/naT/0of/jdt3j09tut+PafQCic4xzn+D2MU0G/YEiihcfLrhUKZojFG1X5FIU/ZqD/rauea3pUGaItzBvYUFFEsWk+tPeZSwz8UBYbH2j6zP/QFIyEOlM38gC/afYWRhREyXla1lq5YTfWdTiva87U1nCz1ZGKLMqb70kDVh5Mq0JdgPq5eG2sVVvpDDUnBd3RtdVsvWWcbYofjeMwpimhzjCU7oWoNMCpQSZUvHeqXNQsjYxT5cBSIjlnjOhatu89iBDaGmguLlVOn2EeCYu1WG37KQNObFsTamF9/v1c9Ged1/eNMZFyaUqFBkxttk2yqMCa+TjbybQW1LrVQK10nUJYIoZh8FSp5Ji4urogZVWIohjG/cQUg64JTFUL4nksiH6a2m4CI+aNi2eswVpV4hURBT5qbRZg5c3rzKzG++Bay8NL38baDH+del/aHqbBLabTdUiB2gAaVXYphKhrW2N0b2KasqdQoDyw+p7hoYfju7E/GMPDo5rBu1oq0xhUxTIWQgyUnMEaYojUqpAQAtOYCDE3Ncd5L9Bs5Ep+MEYAzDKAYkrMarULMLVISD0omjaAMIyT3j+iQFpiVkCbcZHC8binlJ7d4cD9/ZaSoEphLCNGPCLgvaUfdD9we3vP7c090/MjKcQGczZlTmRRkVAo0RAmBUGddViriswVBbv0HtJGJKMdD5ovsFbXdkb3VtaJ2na1+STlRD94rLVMIXA8Rp1ncmJY9XR9xzgG3UuVpppTKylE+q6nUhSU6zwnSLEq3FbV5r5zQjC0Jq9C13mMZAWAYiFJBKPWcUJqYKbgfNvfFVWLy0X3BanlYzR3YpYGsGVoz5NdhWLb19LuKRS61/PQZjYD3nnGMaLWjR0lzZCbvn8RBcGsE4wTTFULaesdYQpUMtr5pDZEOTUQq+rP0gro+ly0OO/ISSHAXEobaG2uapCZsYJpUFI1Tfmq0CwMH9zJba6q7SFaW64gl0JuKlDGcoo635utOayN+xAiFlms4lSpTz+D8x2I4LyqgueSiaUSxkJIqhxljCpVGWtZ367xU4dc6L2fprbnhfasUtUz56zuw2IihNSgOoP1HoraQOqeOZNnZe2mZOu9Kr8WVM01RrjfviYOR/6e/Fm+Xv8thMs35phznOMcX66YlRj1TyE8+w513NJ73+Y3mCd2076Wtq7Q3DwMxixr6ZM5jCwK7F9At3nwoHjw9TnOcY5znOMc5/iyxLsfvsvmdsP27e3v+nvfdB/y5370f8yf/u6/z1Cuf9ff/xznOMc/X9Rauf8H/xHh5ce/14fym47fNKRUmBO26GaoAKZirEVENKlUHySCW5eYtbYVXgMuqvS3SKHznRZsnCFME/e7A7vd1IoKptk8aTJSuzXBdm4pPMz7KDEVY2EYerpuRU6RUqFmQ06JKSVCmDDOgtGOx1wyrhtYrzZMaWS3nXAOrHF0nSOGpGpLzlOlkHPieCwcQ8JYWPWB6B0JhVS6rqPvejaXluk4cnt/ZAyR/WFPKnnpVq1zsmyJluxDk1lz95xaRjTYRcCJIcZmr4R2CjqEzTAgBo6HkTxFdtNE33esri+a1VlpUFVHLeC9oZKZQsSIsF6tKDXhrfDo+kILH6bwzrtvsz8cqDFz+eSa1zeFZ5+95tXze/pBsL3gKPS9YzuOGAPrrieEDM4tBRAR21RH5i5IcENH16lSUJwiw+Ch9OzvD60Y8c/aHD/oh5e5m2gelwoOpRigZrJzag3Rur27zrekP9iWIA5xwogQiYhYMkIV7QxWAK8VmkSBEc3Xz1BSk45vP6ufG1LSZKeCbTBNWrDqesew0fGeEsS45/WrW8IojEft6BWT1PqgVKRqYhe0I9s0OIqWkNUClHlwvqUpWAmzZZ2CVtK6aWd4DGqOpJB1bGSoWYsOxgkpWb733e9xe7dFqqOUSA061vuVZ7XuuLhcYazh1as7vvfdTzmMOyjanSliqTj6ruAFVtbjOk8Imft7VehxTm0QdNrQpK+1XhOsRbBO55V+6Li8XBFTYJwyxoHr1AIhpkqMHUkiq1XHO++tuXlViEeh76HrLYIqhaWoQN1xnOg6x2rVM42FnEZ8ZzjuR27voio2dU5VBmrGOsfVozVDZ04WDE7oVwOpVsZjYJwE7lNThXI468kpsllfcHUlOAuHfWB7dyBHLVbEONucuAbW6WuPY1Box7Ru31bMFAPDxjEMHbkUrt/acHHVs9p0HI+BXFSVp1ZwBobOMx4SQ++0QNIsNI/7iOsNl48HrDi11nOGbrA4C85D73o653j16o44ZULNzYoSrMtUybjOYqxjWFuMTRzGoHNcEcDq/Cmq5qCWGxXjhNVaVahSzJSgBSdrtHBvKk0FIJBTxVkPwqIq5jtL13VIK+wY64HKuJ8wxXJ9fcm7Tx7x8uVrDvs9XTew3nQcp71aQ5SMSGJYrUkpsjse2d8kxtvMNk0MzuPa9UiHhDMeJ57xEFthWqGC6ZiZxh3GeowYfG/JOS3jWATW6xXGVOIUVWEiFw77I7OFacq5qQIKUjOSApIqTz/9NfrVyNX6MeH1JcOwQpglGX93fKjPcY5z/PNEKxrUSi+Ac4v98axEOq9bvr88UHE8KA8s7IKo3WMpDXQyC6j0RVOyH8Z4oxzSJDKMzKBSU5qZf7D9naboU2uhmNrAIrClICmRUmIKD+yDRE7nX2jKr6oWUsqD/QQKLswWs8759v28gAYFVRy1bd+jRXAt+CskHTkeQ1N3MlgjVGuaEpNaINVadR9TdN1fSiBJpDRowBg9NoxQEhyOgZBUtSampsrKDCH9gHP6hbXgw/GhztUKwjRXYYUEalMMMgZpIzHHiHWObjXomignQpxBFlkA/ZiiPt8bENN1Dt95XYvnRDd0xBgRMcSc2e1HwiEgVfckzjc7MyPktja3Ru1RFwxLFMBX2GhWAdKGgVxLs65rVnCVBlQsn/qN8/OQVVp4uIewkGlftPVIKQlbDDUZsuQGZ7V7vVknVYqqEOWmAIXCGbU1CrT//0Ip8KSCJcuFPJ3HBZrIwqycZWpBlRKqWrn0jmlSu+oYJ2JQ5Z6SFRKyKGA043mn81mXMTQfxBsKsQ+O8wFKpd8vJ8iQdk/NgJc1tp2zogCLVbhnvz1CbYANpSUUMtarmmoIgWmaKLmy3x2a7WE7x0A1Bu/URrHve4w1HI4TJc52i9pcUhuMNa+zVI1pzkuoqurmYsU0BaYp4ry0Y6zkHHHOUKXiO8EL1GKoWJwDtTNX9aycczvnOjYW+994xFlDSon9IWKt1YYEmcEYg/ceY9C1vzGqcPUAhks5U8PcEGaWz+N8r3CVVMIUySrM1xqD9N+tbTCkQIgKGJUGUkmtaj3XVHl8rxBiTJmud/S9w7pmLR8zIeY2F+lr5zKrrlZSVjgqBt3fD6sOtWRWsNI5BWu8V2syZ3uOaVRFp6pKqiJq86bKSnp/gwI/KG+42KLRRqvU09gzzWKtCqSqGO8yD9HU7dp71axrc0CBQaPzg/cOI9JsQdEcQCyEKRFD4t3Hj7XJ6TBhvdU9kFWrtZTSMl/nnEkpq7LqUZW9xBlWecCKgVxw2fB4+4in3VO1RWwwmQJ/qQGgcsp5UXHeLY14pilsC7I0g9VaSblQqlohzuq3ikYKJUZuXkfS5SUHdnz29q/yFfkvMZ/Rc5zjHF/W0Psz3TwlvfgQ92DNLyce6cGPyxe+rG883+cvl3WjtDT+8gPzi57nhXOc4xznOMc5vhRRYbVdLX+10fLu9979PYGUEPj25V/lHz/6f/ELr/+7b+Qyz3GOc3w5o9bK4Tu/zPbX/8bv9aH8luK3YPd2SmDSkmZzstw6g/VOuzRL0Q7kJcmbVJK7JchK0e6xlAIp32KdEFNmCnkBK0yzcah1fg+FGvq+b7COFiCkalJ6ve6YpomUdZMVUiKXQJWydMCuVj3WObb7PbmoCk0lM02RECMGhQ8G39M5SyiJnBO0Tuqi2v6tSB1JQZNQxlli3HM8jk15pBDHyMWmo193+GrAzJ2dVu0oWjFGN5AqR46xasdmzHK+52by2RJuluc3TVI+xInOe4WNSmEMIyEk1quBDz54h5ACz16+4hhC6+p1OG9JaTwl2ETYXF8Tk8JYKVdSfkWh4nvL3UfPePn8FiY93+PouLrutJNRKn6lfudSpMmXl9ZJLi1ZWBogo13GqQjhECgxQTWkXJrFmWud53MqXd7YXC/j8I1uH5Wb71eD/lYppBxb5yWkkMmhsL4YNGk7TXrejSWEqN24QpP4F3KtUNV+rFKXYs7STFxYJOhrSwJUKt75ljBMDRgSQCXwQXDWE1Mke1WiiftESZBqYXs/EUOlZMFIYTMMVAr/f/b+7deW7ErvxH5jzhkRa619OSdPJpPJS5EsFqsklVollSR3S7ZgN9B+MAQbsh9sCzAMw/Af4Qf/B37xiwG3DaMBP/ih+6EB+82S0RbkdpdR3SV1lSRWsYqsJJPMZN7Obe91iYh5GX4Yc0asfTJZlSVWMVnmGgRP7r32WrEiZsw5Y1y+8X05Ok6HaCVKAciLrGIjQHK1yGZrhKWwsUh+1Nfqn5HKXmN/L7XAUhaQnJIJbiDNmWcfneiGgRAgJgOAZc2gHYf7E+//+COc8wTXoSRQIQTBOysWOB/4whu3PLrZ8JVvfImrx1f817/9B5xOM3PKS2dxa/UyKnsDdqUo5DHiOuX1N2741q99k7ff/hEv3/+Iq+sOR0fK0PdC6I3K33eOEiNPXtsSwobQ2/2JMXIc92iJxDlT5syclHE/WaGznOp32r0yaUIbi2Ho6AcrKJQr+7l/c8N4OhrDknf4YAWOcQSyFUlS0rXAOSei2HlY4UormI4K6qwsUgXKlPE+AI7N1iMU5klxIeA7x/ZqIOfC/m4kaSZpLfjNmXFMDNue3W7LbrDCwv0+cnW1wzllen4kzZFSMkPp2G42QCHliaKevg/c3l7hnKI5GfvcZOCgUqC4jGqq0gSemApgRZCu67gOAzEmgiuE0NsccA7VjDrwEhiGvu73kd4F0pwoJbPdbg3s6gSXbI/LMaPZ5ogmKMmKqH4QJIgBf8CkFbJCnvBPhDce3/Lhh0+tcJoL4ziSM+QxcjiMXO0Cx/1I1+8YD440dQSFqy5w8/iWjo6NKiOF681AeO0Rp9MBHQKhG8ipME4j02x7Gh3Mc8Y5ZbPZ1PueKruCzYNQu9fDbS28KpzGaOeVbR8OQZlOkX4T+MHb32MjO+ax4+n9xPXVjoF1TV/sYhf7+bP6dMZpIVDI4lER3NmylbN/z00egAnWNzsEL3bcXIyR0htHIa3E8BMO+XNuZ35cdXRraGHj1cAPSo0n6rsrQKl9tgGOVAunMtV9t+G4zwovrDJBUgEvDbjkfWN8tMJ313XM81xZG62AbdKlqzPqnLEn5cnYUeY4k1qDhDYgvTVpOLd+R/PP7Ozs3EpSVFZ2kFQKKZdFSjhHocsm5dUPG6Y5VynYs/SQrDOrXfUihX1mbeiWIazgoNBV+aHUpIYMMJBiQotWWSdPidEAQApapetawQuoklldZVcshGzxEQLiW0F+Xm77HE22S43whNC7BywxqjX+kQrqaWClytaqQEnZxjbb51RBnLfnM7rGEz9xJjaUjrGYdH2/MBCVKjsnImi2++HEYp2cE1CZCbTCAhqgwJvUk124opWcpcUU7Zu1MSzV+SBqQAmRUuNlrXPa0fjUQnCUbNc8z5mYdAFCqgplOU8DwofOZPsO+xOcsSG/KvPS4stXR+tsqthnZGVjaEC1NgVzYzT29rqr62w8RYs3HJRcm3WcseScjuPiLzrnF4CdM+XzRQJ72A5sh8BrX7hl2A786Psfogox5WUfMEhnqWAzmyMls8ia9zdbrq6uOB5rM4C4GmMpm42BdAoWhxQKm01njKBiQNFcJemM6dbAVikX5pKW8YsYEEdEyK4B0QywFbpQmZPsWruhI6Vke0yL28SZhF2277HmFUdMM2UuBnxcZNHWXEIDJOacl3nXrIFrfKnnYBRgpFTlydTY51wFbKWUCZ1n6APDVY+izLNJufvgSIfJ1lwsqBrzjzjoB0eTtuwHayIoOVW5uUyTSG8TqtS1RXGIlAXMFTpjx7Z41Vn+RRtWtbF3G6CnkI2VVaukofOEGk+UAsFbmkvUGjVSKlX6DYoUpHP1MSo1nlZysjyWXwCRBqiapkiMNeaue2fJNgbQ0fcDOGVDpgsD3yq/wu1uCyWx3Wz5xvR18mszySUEA1HNU+Q0mrynypnsoziTKi+pguPsvhpoyf5m7GgGtG33UbD9L+dk9yUp+5dHglf+xfj/5FvD3+O1zdVP9EUudrGL/XxYOt1zeudfQ4prTpgzt25BIa22pE0/BcBuf7eYoqopL6nW5pWunQEXu9jFLnaxi13s8zQfPd/4vW8sv7vi+OXf+2W+/xvfJ/f5J3/wL8hUMr/1xv+B33j+P6HTzc/8+y92sYv92Sw+e49n//l/gs6nz/tU/kz22UFKy7/64JVSFJZOZEu1tg437z0p5ppklNql7GraWIwSu9L7m1RWS9BYp7F1Q7qFtnwcDQjUGGVKLfiWIsaqkkbA1S4027hVISfleBwJlYmpqEn1pLsDTaquFEeJhTJHhqFjt9uRale2lspYowZSKTmTI0gQfGdAKCTXhLNgRDgn+jTjfKjJqLJ2sdRkZOusL3UcfU2Mt79Zl1xGclkSmd5bd+Kj126JaeZwPBJCT9/1XF3fcL8/cH+3J8UZCcJpmikJ66JMHh8DXRjouh5qwvBwHMkxAcowwDSfiDkTeiEgDFpIoZiMiRayCuMxI96zvfakKXN4eTQ5jOJwwQpMKSdLOuMoOZE1EaxtmFKMHr/mewEP0gpvjbGI2tXMci/tb24BcLVB7TqP7zqKekvgec/pOOLwuCCMp4l5tsRgFkAdIhnvpXaR9kyzyVw470mzga0swWlyBuIt6VlJw8gVfAWdJeCzLF27LXmeizL0zgpYJ/jxey9J0ZKkwbtaNCgIBR8C292Ot778hDgVvv1v/oiSXU2SVnm5BTGlDwBKD7qgF7DYCogLXbcW/gDEkWq38vXNFbe3O7re0QXP7aMN779/5MXzlxRNlAxJTaYvlUI6jaQ50nfWxSneWAe8t71ApND3Pc4HQgj014XEkRAcb771mHFOnI4zp+OMlkxpBZZizDupMtJ0Ag7HD773Q9770QdoyYwoJQrd4PBXnSXMk7GMlbmw6TtCZ8WbVogZ+i33xZLLORXmmJeipIhbpNScd2hW6xYWKDGhueOFThwPI7urHV1njAnHw8TpNCGYxME8JebTjKoY647AaToxT5k+DFDvIbAU9gyQJAbEUVfBUgnnLfH95PVbnAsM28BxHDkdI/v7yQBVB2E+pVUiISXSnNm8EdjdGJhzczPggnJzs2OaI6eDjfd4UDQJ1zcdb7xxTcwG8Nvsgu2bCnFK3NwExrFwOIym7SCCFkdWIWeTeHHBimihdwybnlJ6pqPJHFqBV9AM05QoogxDIFRwXRigqEc6Qbwdpw+2X/grYyWIU+F4MEnAOCem04zvBfHBChRTJM2RbbfhjTce4Sj0wxXzaWKeZo6HwjQmxCunziFa6FzAScdXv/xLhG8M9A7u93d88ctfoS9Kno+k4vjlb/0a4oTTuCflSIqJ0/2J+/s9z5/dsT8eCZ3QDwPTOFFEKSkac1fOnE4j3gf6ztbBZtst7GGn00RMpe5lBorMQCAQpKfvOz589jH/t3/6T/jH/6P/Pl+9uf6sj+qLXexin4M1oAHujEGFT8n3N7RMtYew64cmgMfYIqaUydEYGT1N9PgMqPSXyB5c/XlYUZlQ4Oy/9W3OOWODbEUVaUD4dqjKsCQV2CQrOOkcnNMK2sZ4yQL6L1nJRSsbiFLJNSrgoH7eKuvmS6a0AqaU+rMgVTpYVUlqclNdFxZmnMZ8UnSVRxaAIhSnr0wYiyckF/I4LbHCebXqAaik+XxaQQ/trKVBJQw00I5hLCYmZV1yIheTWjKJoYBTJcXM/f2hNluo+euqxOV9vj7r7drGcVrucVSAvLDqeIEgQmoQrRoLtGehOHs9lkiTRVv/WxYgCI1pqDTm0PoMzY1Jx05gXWorGO6B1XikWS4FnScDydQ4xnsD9+e0Mm7lnCnZfik0X1KRKh/mvTEGFwUVtYaZBrjC/C0jpDLAULF/1kYD12LEFXxi56eUOdp9jMaetMhZYYAKcTyQwb66uiLGxH5/XNbAeRT/sAHpIVDShmeVf1unZZNQY1ljFpsbC+pm27Pd9AybjqvrgQ8/uOPu5Z7G/qJaIXZ1jnov9H1lHBOh84HG/hqCSYgZk45jmib2B2PHvL7dGqtNLOz3p8qI0xjTqGC2UoFoQpwz77/3IfM0g1SOylJMBt2gfdCAXtnWo9Y4rrFXGIOnoc5KqfNAqZLcde8vFYSlLAzJJUOuI68lmwydt3WRavOVdwbSi8lk7EDIKSOIrc2sFCz+bbGmIHWPsu/OWZd53ZqcVJVh2NR5paQMMRZSBfgRsTxBbeyyeVtwG0epZ7293gBKCI6UPC42UFQhKQybQN935FIQQpVhrHuYJLa7no3C8TiSUl3TxXJBLGMrdT9u8o6OebKGg0pDh8lsKtRmF9dYZytTVVs3SMGHylbaZrOYhF6pQKmU8wIQ9RXMpKXQnQK3j26q9LjDuUjGgJClsleVCgzyTphz5vr6mn7T2TFyYffyhjfcmxRm7u72OOn44sdf5vD+yHtvvksmwSRcPbsmXHe85K6C6QKNIUlhAUWmer2+sm6H4AExBroz9uaWKxCM8Smo4h1IKPz++7/D9/Tb/K0v/l369aHBxS52sZ8v05I5/ejbaE5obUtYPYH2pvrPK37guUv9qi3vEWMY1wak/4mfuNjFLnaxi13sYn8mU9jd7X7qw7z+3uu89v5rD177ld/5Fd7/5vt85+99hxwy/djz5N0nvHjrBcfb41+4W//R5jt8sPk3fPX0d/5iv+hiF7vYT2UlTjz/rf/0Lx1ACf4sIKUl2VtppFu3V+tm1lpOUEW0WCdgKpVq3FuXqJPKWlOLA96kHew4ApXGviXamjyaJbTKkigtpdB1geKUaYyM0wjOIfiabKrAGC0m0VQMYJTSDO6hTIZzDifWaZqzZbVzMHBK13nQDieWwJtSYoqROWUcgmZHyrF2+rZEsaOI0qknJ+X+cCAmS+bropl3FkCeJc0NhFTHoxYPFGMEYkm8K0UT9/f35GxJzWmcOZ1M6k3VOnjH42zgkS5QvEk3zNOMzJl+6Kwbt7TE12Sj7xyH/YGY7fs2nTHpuOCJ2pFzYvDZCuzZaNSdWELSJAiKlduzWtd/yWSUOBnDjCjQN+CRwwfr9is1kdwS3suceKWgUPP5rWwFmBTU4f5g970PhCAMm4DbOELomadIPIyWjFyKAHmRZXAeVAOhC2w2A+Idp8OJ4PoKZDHAiHOevu+WzvppikiyYkWcMxJkSUi37nnxNp/mmMBhc3HOiHjQwmma8M54EZREjpH7F/eEzjGdJqjJxQV0BDVJWZPUZ4UDfeXnc1YlYy2KRh3vXe0KzRQ12cVpnNmL8ktff4u/+td/mbe+fMs//2e/x8v75yjGhkMtFDkPofc8eeMNvvLV19nfHRHvmVPh/sU943Hm9Uc3XN3smI8HrjY3jPfw9h//gF62/Orf+grPnt1z93LiO9/+Y2MkEodTK8DknBFX8D6gBD784CVxnqxY0XnIdv673UDXD6RZ2G63VngTz+k4MzqTS6NkSkl0m4Hd9YaijvtnR+bROuApBeeNBUxLqV29fpFoiCkyjTM5ObQEchoZNp5hE5inSJoL3gvH04nTOOHEQEfjca5FOU/nPTEWY3EqyfYmZ8WTnA1kZn8zeTTvXZWNE1Is+D6zP87MMTFHS5JrLMSc8F7I0brBUQP4gHA8RLZXG558oXUyR4arwGY7IOIYTzOqJhcyDAFJM13oa9eySQ30g+P2+hGnU+Spg5SFeS7MsRhgiYJ4S5R7b4lyL46pFGJMlMqIZHu+o+9tvcdYlk75EKyoQC2giojdD9r9KBSXuLrdQpXWyCVD8XShsp1V5oLtduAb3/w6/XSk63vcGCtzgRC8yZFqgaEfyCnz/PlzRByxJHrvmcdkQLF4Yre5YhzhxYt7CvD8+cccT0fbi1OiDwObYYMPJ1KamEaTxyglsdsZJevhMDFNGTRVecG+sjJILaxSZTQMzCmSUe04HYt1b18n8hz53d8e+ft/92/zxb/2KyYbgf+THtMXu9jFPhcTmgxbwbOfbA/t5QxEdIYMOAcJnP+pFRoegAjqi11wpCkypswQPFZ+ffVIf0nsDKh1jn8QFozNYg0k1PZPaWw0yzguiB2cw5799RgtnjgHqTS2T3CI6AJccsLK0loL5Ig926TKA5u/7CqoqILpOWdpkgXY1HyyxhxiABVH13ucc+RSmFNmmuYFwKwNXL6Mi11bUQNuGLuKPScbC08D5CxzoAGStIH9XwG7SFliieaLTONovqV3BtZKiZTyckzNirFlBsQZA6AxjuTlOf8AYNYktrKxz9gAeNQ7xHuTaYsRKMxkc8dyRqQCRc4XSR0MbTFm9eMbk5Q25hyx+98A6Eq9blZW2gdTsA2ZnEWEioFOpEoQB2NZaVLUKWc05RqH1PXXwGZLkGaxXugDnXcmwYZb5mQuGVdZYBqAJMVME6grxRh6jM21xULrPdb2QtEHQJ9cQQ0NIKfowlKkpTyYIgubDazAr08rUlaw26uvlZxxvjFp6Rmbq11vThabvv6Fxwwbj3hMFvdYZeGx2ErEJNiub7c8fu2anDIhBI6nkdNhZJ4S253JDc7jxM3tLd0m8OxHHzCEjre++gVevLjjeJjR+70Bpdr6qWN4PvdPJwPqU8dWxOE8DNuOru/IudCFgVx9spwylbTHGiq0ELrAdjfgXKpgFZu/8opUeVt/Tb4xVZm4nBOht/yA74RQAXBSwVE5zQaKqh06ORVKtiaWLnhyalKWxpalpoFm0mk0OcsGrDRQk4gwjjO+M7k2kyersnvFjiFLk5gg9dzn2STwusEavJyzc/XB0XUW7zSGOB8sl4LTCtZqQM/KCIaNRd8ZgE/EM89p2TOazL3Uh4CRYy00wDTUqLG1ycokXMGCTapzafJq96B+vu0fruVFcl6BXk1KEgje8/rzJ4Rdx+3NNYfTc1tjavtl8EKpcbXznq7zjOPM/nCHO0pl+VYe/fFjnn3wIZthw2bY8fLFHTEVdv/FhqvXd/RTj4+B3bMr7r96z/7vHCgpE2Oq+6HtuXhXZdBtb1Dv8F4RaQ1Kbhm7tu9bWKVoycyjQlFcSaQY+f3ut/j113+TrvOLb3Gxi13s58mU6YO3KftnAEzJWNaG8AmY0k/49Ke8JjWWqGteMCWCuVieXpxU+OvFLnaxi13sYhf7qUzha//maz/1Yb75L7+Jyw+bEZ06/r3/+7/Hk/eecPXiis1hwxff/iLf+9vf45/+r/7pT/2df5rNbs8f3f7TC0jpYhf7OTYtmbvf+8+Y3v/jz/tU/q3sM4OUtJgkAVhfotkqQVPKmhBPSWvSGJzzNYlalvfZf0FwdL2BgVJNvFkSr9HVtySo4F2osgCNbccS+qU0mTiHE+Ok6DpjG5rnmRhnS0wVwUkDPkllR6pdp2rJR6VQVEhJOI4TziuSM6/d3PDWL71OccrL/Yl33vmAODUGKGMLaVaKJdpTUrpuQ99tyWnCdY55mheGm0UOrY7HOQDLugPdwjrlxIMTxFmCTZyQo8maiVNjMFI4HUerqyBLF/hmG/DOcdJCzs66J6MlaacY8S6Y9FhNKgdvv1sXeMSFDf12Sy/C3bM7TmNknAqh96immkOzBCvZouCWvI6lSY3VIo5CmrIVSbxDRQidJRcboK3CFR5U6c5Dchs7t0iANOCSiNC5wG67oesNMDVPk8kriUMx+QDRgreJScwmDRHnXBOwQh86gq9/KwZIylFtbhQleFZJj1poKEUps60K72W5v2unfJXoE0uSapU8RCFFy8PaNDDWmtMpmQydmgSHqNL6fE0OoEoE/oSEwqdJvi0FMy2kGI0xyHlKUmMYmkc+ePdjrh7t+PjZC56/OHD7+Ir93XNEK0gwzaAbrm9ueOPNR7z5lS/w5I3E7e01f/jd7zPPM+PRxinOE5u+5+/+N/82sSv8wXfeBYlc39zwcn+gGxyhM0YuhSql11gSHE46BGeJdMRU+BTEOYaN40u/9CZgXbkleqZxwhEJIZCKcNyfyGky0J8PdH2HD4UwdPio5FhwTcYhWZeuomQtFM10ISDirFh3SqTiCV0gpkBOPcf9RMlAsDV8c3XDlNLSER3HTDds2GwD83ys7AO16FBl4cYx2/zJACaLllMhl8wcTdJsuOoBT84wnWZKlcizvVGW/VGzcjrNFE08eeMWLXC/f1mBegaU6fuOUoR+Z1JyFJNwQIRpTEzjCfGOoR8Yj4mxREoFiu52W0KXcFMEhZIhdM463kthHmOtEsBmO5Bjle4MVlANwQq+uXZw2zQubIaA7wxMlVMmxUxwvgL57DydF3DgMvjgl45xW28OVxQthdD1PNo6fPe0SiwVnEtc7XqTGCwZceA7Ba/EfGJ/fyQeTbricLhjM/T8jb/1NcLLez7++MSz5y95eXdH0YLvOpyH43hkmmdC8KSsTCetkqZwf3eoHeQGfDXQl+N4nOl7x9BvTFJHHFFNQnPTD9zcdpyOiRSV8TTjg7IZFL3b89v/xe/y73zj62x2/VoIfWXpX6TgLvYLbe351n4/Xw71xUYy81PbJ9ZfBRIYXIU5KYfR9lyhMkD8Sae+HKYCPdrrUmu09XnuRdhsel5OM4pJU7kKl5BXrqvVy3+e9eIfsrNUX6X9tABsWJvFndDYNBoQx4qy6zU65/GusqnaQ3dtipCGSREDhzuHUqpPZhI/WsqZ62l7bWMFzDSwdlnmUZO1tgaNtQrUQCLGgFKY5rgAyqSD20cb8NDNiZSzsfS0cdB1Tmh1nM0XLXjxqLfCdMqJpuXbAL5W2NY6Xm2M66hqK9zLEie067O3aZUukgV40xiYiog1qtDAPtZMkJt/W1lWDWixAjR8ZQsFYynCOTrvTCYp6SLXamPc2HN1AfS0+9VA59p87zpHSmrSXm4ZqwbMr3dlnW+fMgcXRtvl+anVdzCJPgNlGatjymm5FhGHd8Ze4p1DQgUwqQEySjGggS/OYoCyNvOAjVspcQHQ6BnYaL3/dr8WubvFhz8DvWlZxtsuuR2j3reizFOuc7+xULHEE68it87CrrMXdRkrbb/XOKSxuUodE/ucAbKm08S7737IZrthGpPNgXwGfCsZ1NP3A9c3O4btlsP9gRACMSZSUWJU8v2J0Dlurne88cXXuTvumWIkx8SL53eknNhse5MynzONC2q5+wvKqI6NszxCi4ucE7a7HU2ufp7t2CIZHzxaMCBhKYTgKd7k23OVMPfBmmVsENraW/ezXIytZz2fVVpNxVjXYrQYNHiLM7Z9T4zWJFFyrhJ5Be+rzGCRZf0aE3FbMO7BHFGAGluXovhc6lqRygpUmxwqiMdY5gTVbMB7LYQwkGM2oIw4UrJGJx88JRuwERTNxSThHKSSSSmBOFsfIuSUzC9WrOEEIbR8TGuqqffLYkGT7nNO8L1dV5NhlOrfozV2VqAU1JnUNdL24Ppcrk1igqvPFWPUNmAPy7pAKiNbyeSU6IfeJMArRsrGC7z3dvxcKB663iTvci5ozKQYeTp8xJvpCbubW/rtAHdw0iO//2t/wPM3n+PF05XA7vmOOaSFwc7Ws+3ruRjTld2XejW1gSWnQtcHUGMezxV868SzGTpjDJ9LBdcmgrPx/tf3/xl///k/4lff/Nqynh8882wifwLUebGL/ULZmR+GfFIGdQkDPuF76ycAq+jaZLt6GpCPd2hOD44nQDo8Z/rgbfNx1PyD4Jzl4j7rumw+8uKr8uCH6uZUJjhjaGtPLVE+cb2vXtLFLnaxi13sYhf7i7UPv/Eh6hQ5qzVP24l/9j/7Z/zgb/wAKcJwGvjCD77A6eZnxJYi8F++/h/xd57+L7hNX/rZfOfFLvYLbppTbbR7aPPTH1GmT6796f0/5v5f/7OWKPpLZ58ZpOSDXzomvaxF0QY6EixBLUtq3joErQHOAEANrNI6e52vVOi1WJBrglyUJcgTBS9K57HirxOSKtNUTEKoUqKLFoqzDs3iPKeUSfNsBD01CZOzsaYUNZYOpVjyn5XdSURIqZD3drNFlDi/YFYDBE3RpJzEC5prsb0WJBTXagHGnjTHKvfj8KEHEeZpwqFIcHRDT5yiJVZVEbXPt07gkgqt4VWcJYa1JuF9H/ClEOdKBayKQ+nwZAp4e206zvU+AZWzxwoxxhgTp9nYWbKQ6/hZEtCTVEmnkayFq13PMDjuZ0WjJTCdWPJszpOBJ2gJR2rnbrE50Io2reihAsU6Dms9ZLlOC/orEKeO/5KUZ50vPthxgzOgW0wzOMiiUAolJVJNKJaSl67lkgzo1W0HXMzW5azZKOXreJp8Vq6SbzZOIpa4BBamnawFqlSHr939JSuJjFeTAnDeEvfG/tUhCNM4kavMoVBBawioo6hAbrT3rnbvgneu3sOa7D4DuNn6Y+lebR2jrZPWktuhgsRMosR5wfmOzWBSZI8eXXF11fG7v/MHvP7G68wx8ezpM+Ic8dRu8pJRDQTn+OrX3qLfbvj2v/o9Hj+65aOPXnI6ReYYOb5/4uq641d+9Rv88fff5fe/84e8/+5HDKHjt/75v+D68RVvvvU6fe+Wc81W+7NEjUDOEXHBpNe8gWtinNGp4McdL57tCUEoJbLfR6YpMgTHsMVkJHPEOcfVzRUuOE7HmXiKOIXtpmOWXCUEFN87pGa6nXOkmCqjU2X86QbbiJzDuY55hpIdMSVC8Nzcbrl5fM1+f+L9dw6UWHB44pTJMZFShFKBK0umpxWTFIdQZF0DrhYQ5jET06mC8sIiuRY6A1SlVOh6D6I4pzh1xKmwvxvpe2PNypN1tQ+3O3zniWOy7uUEaU7kPBmbEjY3EE+eRpM2dCZl9mjbAULeJxgL3neoCHM0Wc1uMEnFru8YTxMihevbjRWCnD0RvPOMp0yKbT3afZ6nTEjG1tbY2KIqFSlp7F/OMc8RquSmxmLzA3AIsRQO+wOaErdPbhicgfrSbBJtKjZ3vTimQwRf2FwNuE7ZbAOdFmKGx689YrsbCLsN3O8Zp5n98UQpGd8HVI2NzTtjZxq2PToW5lMkF60sZQW8FTaFQrYLNmbBWKVCU6wyG8a2FbYDIh0hCDFFYo6cRoFyR46Oj95/xnic0F1Xc46V9QvFq7CwK12SiBf7BbWlWFDXQK4AFc+63+qD95qXWsQAyL4EECVLwmkVUqu+ncfVBL2YLJPavnOGqDH/Vu21l9PEzdVAj6Bydgb1h08wk5zZWkiQBSTTPihAQNmFjn2MDF4IUpZr1CozZgwL+uDqf96sMbAs9gp7UCuWLlgkWWFM59CTBSwkssj+NHBS+7uwgj9aAQYttbHC/KOUdJFtWgAhtXCd1UD/DRC0YA3qP837R5qMlb2+AphYQEgCnMpMfF5Zt9R2cln8OV2uiTNGkFIM5ONdjZvEZkNSew5KbV6Q0gAKusRZa9z1CvNSm4+qiDM/t+RcJeXAaS22WeUbrf5xK+avoAwD8zucASgqaEBVqxTaygrT5KUMyNvAI9Q4zgAOBl5haXopqiYpTmW/aRJ/ukpclQqW0gb0W+ZMm0DmM1WSLRrwr52DVAYW7zyh88RkDC8qbW55xDV5Z9aAvyjqCuJ8ZWexe1pyXgBYBm6o843aZOHEAFXL1F9BRcIaX6sasKcBr6zZwa7fGIOFeY4sTLVSOL/JevavVNBHnXHrfarosxV4t66pNr/bPGmT29g71/jffGMDwoNy++ga1czTpy8YTxaDjqepzhOW4+RiDTKbzcBpnPj4w2f0VXrbWJiFkjLFQcrwR3/4Nvf3B6ZpxjvH0w9fMGx7tjupiZs6jrYc6zq1e+IdiAt1bhp4sMSIOLh/eWAYPEWN2TSlQhc8rkrGdV3Ae/NxcymU2XS/nAPX1XgwGYhO/DmbkYEqDUzXZMmsOUJqk0GLzb2XKufuCAGKml6cE78cM9W4kQZezPJg/jTJL1tI7V7VVVAMzKIpU59gUFl4YD1npFRGIk/JhekUCfUa0ZUZqp6IzfOiC6ORD76C4uz9KdY42BvLsO9MHnKerTEN3ALqMkZZk17zwQCPKUVCMDZuYy9yiKM2VxmwzFiUquxgZXyyZh6tjT51H6rM2Vo3GEVrk4iNnatS8iWbr+4qqNLVJIXJkytFLZ4ouTBPJhUOEVXo+0DxnvLNjHxgDXI5Z1JJ/OFf+SOev/kM5x2Fwqgj05sTzjn6vkPFMY3WRFTRkst+4KQC3sqaY0uxBs71mVmy4jpXmbhsXyulkFVwGTKZsXvJxzf/ml/ll+ruUNd3W/fLbz+v3sPFLvYXaw/hzazO3vlee7ZSPvleKPNI3D+ljAfy4SVpPsISs9thyjxRtDxYae3ozXmccyFpYePWZgc577gQ+eQ5vHK0FXGoK7iqWhAhamZKhU1laG3r/8zT5oJSutjFLnaxi13sZ2vv/Po7PP/ic17/8esAZJ/55//4n/PHv/nHi5uehsTh8eFnel7P+x/wO6//X/j3P/hftyzbxS52sT8naznyfHjB9OPvEl98wPzhD4j3Tz/x3nx8CbXh4f+f7LPLvUnrYBNWWu5WFHgoodaKC7mxBrVkNCxAoEZNnXIi5bgk17xviaNSQVGWFIoJ5pgoJRNzImfQ1rzYigrFwA45J2N7Ki2wOk/+V4BUS8ypVqaYdn5rcaPZROHjpy/X7rsQcC6sNOPUBJ9bE3NaBC+B66uBKU6oFnIQtARLmHkhJpNMaOoVrdAltG5Go1C3RHwmBEuEp5wQ13G97XA3MKoyTTOMM049zgXU2diO02zyQsFAXlrlR5qEnNM63ihSqBIMavU2sXOJU+LFPNXEn1uKKSZvZkO8u+rIRTieJpI6Y6dRpfNqHZfF6IpFDIiQYqp35SwR59aO5ibRECo4rrXVOyeWpJRa4A+eYdPjkjBNJumk3tF1AymZbIX3laEqa6WHL6QUjT6/21KKcjyeEBwpCqXY/RPnjbFIHM4rznmCN9avmNIiJ2AZfktCN+mGnGtiWJUQfG089hVsdAIULwa2SikRvBVCUipV/s4tRQWrJwitg9/JWeepGKvOMoiwFtG0yQ34yvjUCnMmjdj3G65urtnshN/8zV/ne999m2mM/PhH74MIMWZQS9o6tXOZppnD6cTLF/f84F/9Pu//8EM+7J+RstCFjre+/DrHwx3iHN/73o/59rffXuRM5pi4e36Pc4539j9g3B/paoerapVErHOiFRpFYJ5nkzKQQJqF0z7x7MMXvPHmY1KyRO08JbwG+gFub69xAmGA65srPv7oDlTYbj1958mp0G+U4/3EPBuAjRJpDGalGNW+SVyaDJtmey3OqYLtHDc3O5wYc9s0jeScuLre4QkoSpwj4ykj2lVgZEaKFalaV7tg6yM4t7DRAcseFUJgHKcVzOYc4gNSlJQNXOeDyd+pwuk0cthPcCUM22ByBM5k1lJOaK5sTXMmR7t2rYlqFcc8GwNAN3i6zpFzxEnHdEoc7iZOp5lhECQ4tpve9opSCH1vc6WsUnUpm1RGN/TklJmnmTQbsE8ddH1P8AFQ69RW6/g1WYtgrFYx0RGq/J+t3aJiAKtkjFdFYNc7NEeCE7wWRDOaMx4hqrE0dc5zOk64ALkcQWEIW3zoCNuOUhKnFyPHZy857kf2+wNznOiDdfuPx4mUC8FD1xWubzybqx3P3n9pmCpMkrDrA8F7ZkYAhqFbnmPzZNRpwyYwjrGOuzLHCRccu6uO0zQTc2JHYNh2/PI33+LmZoNiTA4G3BUKDiWfpRIvQcLFfnGtVBkrUTF4jjQkRnsgVsAH5tsYv6KBeYqzZ7kSiCoklKjKQPNxazlPYQkDBDwF3xL/QvWNBOeMAcLA+f6MqeWTq/TB7w8ATPLgjw2APDjhPs4cnXDVefzyngo2ABpr38/rlnAuh9aK6O1yV3BNvZYaZ5TGtCFn97T+angKJecGDmA9dmV8acgVrceyAnap7KWy1qAqYqPVZJqsGu1v5/eEczkpFjDQ8t764uKaiQGerLlgLTIZaKsVo4V8Vriyhg1jVN1uB3Kx4n6TlBUMnNOAOlIBRBVD8MBM0rXGFr5JLhubytB5+n5HEohzRGNqdTJr6chUCTjzv51zVfq1zntlBQC0OKoxU2mpgB+7zhjTAsB6WB43Gacu2Koax2mpDz4A0Sxx2sqUtfytXv/y8xlYw7mHC2KNO2qMi7Eieu/Mh4kZnAES0DZXz1hSWaJLBPBB8AQi67VqZf5twDypMnvNd2/Svyv701kBklXW2Rou1i3CGHE5YzKy6zMwm6vSXBU4U6/1YS9VO647k46WB1P8U4ufss6h9hmpY4MIV9cDb7z5mPff+xAtynRq93CBC55dm7H1PH/+kvv7A/MUGacE6uj7wOtfeMxpPJJT4eXLvcXgpRhIBmWeZpwI8ziaJLR3lbGqMmrJClaysTKWK/P1g/mqSZnGCe+35Gzg/zQnNGec69jsNjYSkhmGjv1+pJRCP1gOIOeCFKUUISc9e+zIcs+0xhIGiLMTKhmSphpBGjjJdrYqGQZsdgMxJNsTcmEarYnmfF41AOCyBlyLnnlQnHZiMWXKCSpUzTlZPr82KJ0zBdn1OW+yeOJAihDnZJKTZ/O0zUFgYfZpa6TUeFeT3duSYZqSNTtVhujg/RlYqaDJWaNWgXgGPKU+W3OuACUaGIkl1i6lLGsUMRZCMEY0LXY93jnbn7Q1sVWwcQUQWgPSKrmoat/V1qzdw9qcJ3VvzGLATBH204F3dz/k+sMbZBDuru94+oWniJjMUk5lEYh1ruBDoRsGY/PSCq46z7V5W3ve2TiZ9GhtnApuYaK2PI3tJf3gyckRs8X+BAid8u7Vb3OSv8cmvwYYQ4tbnqtnErUXu9gvqpmj0ZzQ9dlVf3+Q8lZFS0KnPenuGfHuGXm8p8TZ/J2sZLGtpYMHT8G55kZtnwKPEkQWP0Az9FWm8yfFCp85pljyqyz+BghD8Iy5sGIjH/rYqx91sYtd7GIXu9jFflaW+sQPfuMHC0jpw69/yNt/8+3PP78nym+/8X/mbz7/xzyZv/E5n8zFLvaX31QVjSPp7mPGd7/D6UffIT7/MWXcPwSm/ILYZwYpWUJkTZYihUWWS18tChjzStGyZEdbIgwsieK8R1yj+Ba860iaVjm0GiAOmx4XhJyVkiAXse7BUuXPhAXQ0zqpc1mlFs4lr5bzc7JI11kQuMo3nIM/pCa2chGT86qUvyUXxKez48qaCK4BnuARdTy6vcb3N+z3I/cyYmJ5Hh8Cc0xMMdeE6zkV/tr5bMl1A8j4EPDBg4PtEHjz9Ud86Ze+yCFOPH/+kr5A7+E4zby4O3E8xMps4sA7+i6guTDN89KN6Z2jkK1IU3QpKogoRbSCheoYOihFFsCEgUkcfd9ztduAV7IraHHEKZNiMqBQSUsBBmpxxlnQv8javVJ0cNSuRy80CJxJ3xkwyhJxEFOCGbrOmE6OhyPqlM4bO0zX9zWZb+xZ4nxlnRKQDM4KEtvrwaqMiLG9TNkSm97ZPHNuUW3puoA0xp1KOW/nXhOBmPxWk8pIFdw2Tw2MZ8xLWpSSEoLShcCw2bDfHyCpsZVVjBKsKYM2v7TJ6BVBvS4Fn1bmaJ96dU9b1kPJTNOBcBK++vWv8eFHH/POO+9DrsU+Ct51NcNuyWbnLfkZc+YPvv1dxlMkuA3TVKAIN9eBr33jLe7ud3z88UvuXtzhvDBsDGTiEKbxxP75ASXR+wHprBO81HWJ1B7fep6n00QpCec9fehQrOB49/JogK6i5GJFhpMoyA03r93gQmZOI8fTyBwTMc1stxtSBQaavIInpoKSEA9OK5Ar2zG92j3XAuIdFMc8tq51R4yRzTCgGnG9zYvrRz2bK7i9vWE6JX70g4853icki3Wzemdd+SK1OGj3WTlf+5agRr2xG+V642sCP3Qe0cpEVveN03GkeazeO8QVusHhvCPOiXme6bpghcxiYBotVtRx3nE6nSoAa+1qVlXm0SQnDvcz42lCNS/gSUqVkEuF435cinpW4MuLA53mE97bPuucw7uelGKVSrD10OQu7JlSoNg9SbXI5kQQNWCW88Ye1Tqr+yEQghUVgg+ErjM5vLpOrIBqAKzQeULX0YWeNCdePHth+64L9AEe7XriuAc12U4RGDaBfuPYba4qW19iuw3sbgJxVg5bTzpa4TglZZpA+47NZlied/OsqGacy0uXtwsO7wLD0BGCI+VI3/WoDKRciBGm+cR/9V/9v/g7v/ENvvn1rxKGG5N50ML1drBaQi1+Xexiv8jWPEzz7daiwsPUvuJpTEPrczJVtpwSM6cJXsaJzc2WKWduusBc5R3vjjMvThMlGED6qvO81ncMnRV1P/hgz/NU+NpXr0kI/jMU+8590z/1vQJOC0+ud7ycC7M6ehpyodRr8vXqK4D659AesChpvRsNJKRaAfJnY9L8Fliu60HM4RpwotAkfUyCswJEKmAhBHt2FNWGVrP3A4tUGKwFfGocU20p+Z/HEwvYpp1biyVXoMByJ+rXnt8V0QpEkcoIdAbdaf6BIFCMLWTYbIhzQiQRK5BIxJNLIZVU570sxfel3KRa4ys776JKieZ/hk7Y7kx26zhNOKcM11v6IJzGif1xQtXhfWUswWI6casf0sBhFls8jLtofqs2RtX6ooIxf7V4osUEFuf02w7NQoypMstaPPSwSCjL8ducadd7HrM2cpkWG67n1dhH60tFTY4apeQMRVBnLCvixEAitFNY2UvtsW7P4n4ItN6KUgxIXxb5PBsfOxdbu13XmIrXOKhUmbh2ni1ma1RE9r2l+kY2h3JuHCtteFYgkgFM6jidsTkstco6Z7UN2NnnF2vzWisQaDlGIeUZXwQfdvzwnR9zf3+sEoF1BjpX44l2HQ6wZp0Xz+5BsZijXotzBmLq+579dKJJf4XQWf5ArYFhGmeLGyTUvb/OL9emxToXczZQkK/Mum0Bxjlznw7LXlLKymDVDYXQCbnAaZwWSfYGONoM3ppSRFBNPJB6zCuD9Bl0yO4HcgaSKZyiMbO6bMxAIVj8u7nybIbBJL7KHlfXesk2qZdr/NRbpet+WtSQUSrLfAC1eAKYyip9Oc923jbexiTsvcUvOVc2oUYs12TKaj5BvCOWTCnW5EIF47X9L+dc5cpMrrKoSRqVBq7zjR3NJOac1BiXyvqTQb3NqiYnWdp16rq7NpZt1ICH4lnyRAZkW9BjNVfEkhNpTG8irjb5tGYx7LwFi0WcMxkmkTpu0YBQQAiBqZ8pmgkecojQKcF7fKcM267mLWyug9r1epZN24CnFpeFLhCCNXW0faJJ7dkUMFntJgOeKxuc8x5fn60lK3cvn/K73/0t5MvCr5f/Hm9Mf42SC09ur+n7cL47Xuxiv5BWtwJAlj7XxTcthTIZY0F6+RElTVAy6e5jSk5ojmR1pFwqc72xPVP3lOVxqwbAnGImWZIDL0LvHQR7gk9T5sdP9zx58wbXC+Ezrs3PHlPYxXmUzjmmVPDBPWx84Cf4Ahe72MUudrGLXewv1gQOj1aWpOlqIneflHz6POxF9w7/11/+n/IfvP+/4a+9/B9cooeLXexPsaUhMSfSy49AC6cf/j7ldI/mxOlHf0CZjmgcP+9T/dztM4OUSk2yWbek9fBpSzg2QFAFnJjVMslZMWLpzqsU+U2eSmpnpiWnLFvchx5VK3jjMiEIOKXM0Lluod6u5PhVOsfoxF1JpGJdgOdx1QJAWhK8LR1jiZ6lC/nMFFYKflqy20E2oJNJxlmiqyXrvBdCTbDu93uub3Y0lqhh05FTJmUDZFFBF0s3cE1YNmmvlBKCgbpymRnHbHTrWTleRd57/2OePn+BqLAbtmy3cLc/8vHHd+RoycHQKWmeSadIqGNUfE10KQtgCGdJLJNFaKS/xk5kf3cETy3eGw+BBd0ZJHFze81wveXpRy9J8wg4SsnW1FcT0jY15CwxWLvcYRkHEcEFAySVXKyrfJlba8e4FSw8OmVKgZSjJbprp6P3nmmaSHNGvK84D8tc51KQYolFHywpSb23u6trTocjx+NIyWISDqXgnCJdTQZ2jmGzoSWg45wZT6MVOFjShvVcSy28BEqpc7kIqZh8lHOOOGem6d4AIM7TdQEXHLlkHM6YfUShUswvYChV9FMaHx92OltiuDEFSS0qqGaQyI/f/Yj3P/iYNCd6b3JWWluQpUpBmKqHsR7t90fIBa+e28fXiPccXu5JceaP/uhtFMeLp3tjsSKwu7pms9mgRUlJefFyv+wTKWeKCIhfgIONUavNC+89XdfVhGyhHzpKNmAMApvdlqura6bTxP39xNXdyM1rA95vOB4SWmyNj9MMknj9jUfc3+1JKTPMZbl/JSkxJpz4pXBaVAniTMok5rZVAEqeLNnuO0foPH2fGDaBbtMxTpHDfkKc8sUvv8bxMHK/PzXCLcQVQqUhs/v0ULbEO0dcpB1cLRAISuLqesDhiHEm1T0uJZsHBtgJpJSJU2Kz2xgDVDT5Qu+tmN11Ae86gu/ACTl58pyqtKBHcyHjKDkzDIGchJxsnZWipLlQ0kycE6HrUHWMpwmTnjN5vnb/QnC4ENhurYN6HGfrFBfBV9YCS6prlaSoUnxG3FblFq142NXO4pSM0Qpn4FErXPVkBN/1iAuI75jnRNJCkznxwdbSfJoYx0iai4HMOthudsjQIZ3n+qqw3QrSX3Fz29PtHE8eP8Kp3ac0RZ4+fWkSdqkVKQ3kNk/13NQ6xO38vcnqSWUCcHBzM1CyY55mTqdMyUrfgXhPSYXoPGGeef+9d/gP/4//J37lq3+Fv/rNbyG7a25fe8w/+Hf/OoZZ/SRDwcUu9otnzqSqME/DVfaFIitfo+DIamwbqdj6BOXFMeKB60G43jmu3JYs0PWeDui99T+H2w03NxsKlU1FC9FV9sNZ+Pbbz3Fv3PB6ylz1rdr452cCqBSCCr4oT48ndrvBBB/lHJ5QwbcMf67f/+dlenamTcK4PXNX9NHDIksDwFhduRVPzMcSzQu4tjq15utg7w+++bPGYtN5b8wZsVTAgC7Yi/UUDDjtOWPO0Ycns2A2WqCxolfgzP9aPvPK+1eW2TN/bUFr1WOxAmCmaaaUYCCFYs9zVVefzdUnPJMBXgBg7edSr9cq1uudKHDPicNpIsZEcIFJEk6swD+O0aSEakNBKcYg4pwYgLs6vU0STFwDyDeozMqW1e6PxYz15wr2MoYhA1Ff3VxzPM3c3x0MELN8x9nIvDJOSo1L261os0TW+E/rnFtjVarvZUwppRRcPotF6jVrBRFoNhATsADIFPPBDCBT2bWc3dcuBJwIMUaTkVKgSg1KcMt1OO/wdRzSnCk5rmCuOobtXO17GguOLiAVVRbgWErGxmPyXFVKvPqWOZ8xi52BuR4MSJubr/4NFt9O2hoT6thlnj19uTRkeCeLDFfruJDq59u9MubZBhW8utmgpTCNMyUXXrzYk1MmR4sBwa7Ze48TIeXMOI6L/7NI/rGCdtwrsZF3D5mgh6E3gFcyVqfgHJ2rcXoqTGME6ZAaewkeKAv7lHOBeR5NYst5Y0quwL2lWFz/WZtE1ACFVb6vWa5MoSImc+c7A528rE0EJSvbqw0xZeYx1u+se8TSVNXAOXWf0cb+tZac2z1AFB/svd4LpUiNDVkUDXO2fW+WZEzCS/xJ9d0NyKQtf0MxsBXO2IJqYT/X+eac0PUWC3gfrKlMrbEnlYIr1PjPTrjFgw/maFHEG9AsxlW6W2o8bfkWv8gvAujSB1KZvHWN1XPWKkXYYnaMSbnmPaSySLfnTZNdbHtDThmpbHgG1ILgHFfTDoLHB8dtvmLnB8KV4Hths+2hNClQ4XQYibEQY2M8bvA+XdinRcRABM7XHI3WdeYQb/c/pUweM421zdVryzVXgYP33n2PF0//Ce9+5fv8A/c/5039m6RiLC8Xu9jFzEqO5OlIOd1TTvfEwwtjRR7v7Zmjq08aU1oa0KbapLXtHN4rvfgKTtIzeWbbJ/puzY0qkKnM9qq8eDmSCbbf/Fuc/6fltM+t7S8qEBCOpZBwJkl37lstSOaLXexiF7vYxS72MzOFxx88Xn69enFFN3XETfz8zqmZwHu7f8l/8vX/Jf/jH/xH/PWX/+jzPqOLXeznylSVMh1Id0+Jz95lfvZj5o/eQXMkPn+fBwmXiz2wzwxSMpyJ0fwrLaHslqQ3cAYcsdBnpdeX2sWYl4Su5kzofAWiJCQEfAgGfsmFoe/xwZPSjHTCsO2JMbG/nyhRCV5AOpPWKroAoEoFp+CUQqkJoJZzbckuaAUrbREm538//91V5u9UX3MPmhYtYVo7J/3K6LTZdmw3A6UI81yIMZI1IQLb7ZbjaTJpJdWatV6T3QuDkkotDJj8HVkNIJaUY5yY0kf4jwNDP1Cycn/3jJws0Z4iOCkMvckmaS5oMnBOF/oKtrIkrWZjyCk1MVf7FWtXI0v3qtbEug894hy+s8K784XXHu24vnmNt3/wY+I8W3LMnXUo68pOpa0gVJNvLZB+IFVRtAbrguKWIoXULmLUaPlbEjOnvHw+OJPbypW2H6UyMFW2nlpMmUeTExRn32KdiB7nI+KE3XZbKelt/EpRssuEKhOQc7EEqjPJjEbRD5YwLmdzyqTWTA4ix2SFpVInppOlAOYaYK8mWjebgb7rGI8jUyyVxp7a1anrXFRdPqvyyaJDKyrYuvRocTgVpnFmf/8BKSoiVcrDeetwLaUmwLVKKSrEzKbrwXdsu8BXv/YW7//4fbabnilmnj+fGE9HgnoeP3nMNEcO+wMhCK89ecwcj9zdK5IUkxcoKEZlfb4O2xrwtctc6jV1feCXv/l1Uoq8//5HTJOx+5RaVClFeflyT9IEJLquI4SOLhiDQMqOF88nDvvI4T4h6isQrVQglxWwfOfoh4CIJZHjNBFzpuscXdcZ6KwHKgV/nJTxMBH6hA+e42EijRmhMPezJa2DJ86ZfugArYUiY5JSXfcme15ZokqlMcIZQMs5YY6TAZeCAbsM3GNgwukUSTkzbDpKTsRxJibbI5HMZmMSYle3V5ScOeyPlJTZ7gaGfsvdiwMxRyQXXHD0Q8f11Y6iGe9vSAmOB2Niyzmj0fZ1H6Afhipb4DEyPQM7pRjJxRjjtKysfIpW6QmP9x1uCLUIWzvVSy2uZAMXueBwIozHCCrGziWOeUrMLoM4K1z4gARv4EsvDL5bWBRwtuZ733N1vaV0GZEN3TCw6T2713YM2wE/Bx7d3CKne662A5ubgaLKaX9CBeIpkibluJ/JpbFuCKK1E7wo42lGBK6udhhZnlJSYRgc/caTC6QYSVErKFCY5gxEUip0IaAkkmbeOb3LG2/+Nf5bf//vcvN4QLsNna9FnD+1W/JiF/tFsLXYLQizCvuYKQ423lNShmygaUWYp0jKno+fnSB4vvjFAfFCV2vz2TyPWmC2Y/aSGc5AA4VQ+YsK9zExJ+VL1x2PQkDUnqd8xvX5WbqfnUISxePYdoF7r8Tqk9r+U31EIBXP4H+qAf0LtebrCee+d/NTVtBB83HW962Ak/VgEFoMUNmCtAFFatHbVXacxp5pdWrzp111LnMu1R+vfii6gNuNWWdlXQU5u1cLX8wZiuYcYLW+r9bHlyK5mS4fWSTTljjKQNCboa/ApACSyCXX+MCjfgXpL4eTVoJq39Vin7Oxq9eoOZPHsjBWxpiMYbUCFEweTuozSeszq/qs9fsUAy2oKmkZJ1nWj0k12zoyAIEV8roQTGDIu8oskuiCZ54mTqfRfHNX53aLJ2SZIvV6V+DLp9mC/zq7V20+tViVKhnVWGRb84lhdSzWLXm9Zy2+bVLjjdG3zenGchQlVUCDzU/JazKi1MYWY9XRCqVmZadSLCqUGh3Wdd5ibW9UwpWNph5zGSCbx0Xte3ww1lsnYiywhcr0U33u84E6H95XASKvDuyZ7J+BUmqs3G6WthzAGUhHa2NOMaAKQN8Frq63PH/2nK4zpuE0ZbRkgjiub64Zx4lpnvBBuLq5Man40/n1nv+nMXatTUiuxWNqILt+6HjjC6+TUuLZs+do0kUastRYPqUMkzGB+uDx3lU5QogpczpFtDjLY9hsNeBNBQuJmO/vq3R5TrmyvNnzBe9qPF7ZjcRZw0QuxGT5jJyySQorTGO0GK/Os8YI1Roc2hpfx0KXeXmGlgJsr0mLdPnZflHXhJZCjNYAVkqh+CZhaO9xorjg6YauvjdaPOBDnXtq0u/YNPFe2Gw2q7yhOsZxbrPFxr2s7NENBEeN31HQUkhZce3aquy6q8+TJgcoiAGXzgBrqDU+ubaunbM9rjZLhNpokFKmhNZRIlUCzn7s+lDl5gqtoasBAburwXItTridb/jy8y/TdwHvAlf7K3ZlQEOyJpTZZLelAvm6EIjzhCB0XViPX+EJawwP+IVYF+8dfefIxST2pO1D2gBYTUrSGMmZCy4oc1/4wjfeoNt8xJfuHhEq+M6C2otd7C+HncuW/bSxsKqiKRKfv0c+viTef0xJCUqmqDCmTMJYh7Rkk0ms/owXW18vXo5MUbm5Hei8+VSu5pUWlkvWLcmxgqoFGq+nEWh3gSEoHQoqqBhT6J+nNZ/IAV1wZMSk6Vi9WgVSvuQZLnaxi13sYhf7Wdrtx7d863e+tfz++IPHbO+3Px8gpWqTv+d3X/uP+asv/yH+0u5wsb+Epg0sVGvpP92xCmU8cPzev2D++IeM7/0RZTqhafpzOttfDPvMIKVWUDB68Sb9xNL117pS125VNbCLtgL7WoRBnIFGANd1zDpb0qbkCoQRpnnGZ0ffBwMzVeCPIpzuZ2PBwYAsWcuSKKL+3wOixvyScyvmrslKarLSmEzKWUKTV66nyfO4JdFXeyTrNVamD2e0wClZYSp0ju1u4LA/4XaBx48H+mnk/uWBaZqMLr0xPWntVBEqO9XSM2ssRFlRsfR1S6pPZNwp00fFZQcB+l6IwPF0whKIRonf+4DfeEtI1w5aySBqgKnoE/fjiZJWII/3gX7bsdsNxHkm+FDZq2ZuHl1zmiZ839H1Pcf9no+mPR+8f884R2OI8YWcrLigVcKiSVqdN+WcJ7/XzmY1PFZNsJ+92ToX60ut6KK5WHdnLhWoYmwwrYhznsiXbB2QxuTilqJKAx3l2JiPrEPcbktZwFGlCCkp3llHvhW5IjGtNPPr5mYFQyuUWZJXSy3KFMjFQGul5LM1QpV6SgyhZ7sZyDnT9x1dH7jb7+t3tH/WwuZSeEHIr5Rr1v12nVs5K2UCkULwhZIsRRlLRpeiSpU/0JlcCk4hzxnnHZvdwJwjh/2Jr/3SV/j4+Us+fn5H5zyPrq754ltf4J133uM0zmzmhLjAaZxrUadq2QlIsQ7vgkl5SSsQ5gzeWKaKCiEor79xzS997S3e+eF7jGNdR/OEcwHFJNdC78g5WqfxUNhdJTY7yMlzOE1oBqFn6IV5mm0sUq7dsAawub65YtgGxmkkxkiqXb1aVlaqrvOEwdgypn0kx0LMic2m42rTc4wn5lk5vJxwnSNlo+ec52llJMgNcFYeAMlUIfSebtOR5ozJSDiCD0ynmZTUwFXWlm97qaucCarMUyLFQpysgN4AidHNbHbeCpoCu9sdc5zJqTDFmSyFftPjvCXZrCDTcTwFUkrE02TzFrcCQ4sV/0MIiHgr9DXAYBcopZAjNnh173Te0W06XC1KlByX7uylg7iCtVJKBpwTwblA1zlEM33X04XAaR6BhGqpEgcGb3SiXO0GxHvGaSTlyHbYsrvaoJoJXWB3fc0YR4bdFUEzPheuuoFM4va25/bRDbttz6SeZ08PpJS5frzh6vWe3bbHB4hqtOwvn9/XvdORoskC+s6AV0MX6AfP0Adub7cUTRxPM6iN2zwnclb6wRN8IOeZgjF1udGT+5lZ75AbT95t6F2H01JhFBe72J9u7Ykgf8KLn/qen3CcV9/3WV7/SfaT36+f8j751PcUhKkYINOpMw+0FkJzseLkxnk6Z7Iougnsx8KzO8/+mHn2fGK7uSKwFkbbs3Idl1B9GdvLHCbpltRxl5XHX3ud1246yHBPYtcFevxSgPgs9ie9V1vRXRydKzhVDgXUGwuCr2d3So73Pjjxa1+9/ozf+rO1Vvo485SWu7oyxJwXoNr7WxFeHhxNWIEY7ahlAQLYs1dKNrCA85VZRlECUS3u0OpDtvFffaoGrG9gkTMsh9bZUVlMGoDq1WtdbQUutD/q2WxWBVxlM6RKQNf4IOfMPJuEz7Ax6edpnO21RoyzIgiQ6vMux/4UEEf7uQBSDKA1q0lA9aEj5cI0zRVQIsQ5VrbYYKyi9fq1WKwSgrGFJm2yUlIBB44wBIa+Y5omQOm6jlIizmEgDIFpiuSUGEk1vizLMVqMZNJmnxDN41VrsdLKVrnOpPpyvQ+yjI3Ua9FlnukSky7rsp5L0ULJVUoQlsaPcwnw5tNk1FgfMRDUelOcgZvWk67vcfV9TeZqvcrF96/3N7i66vOZlJo8LNja8Sz+zbmy8YaecZoqO1AFk7kzsN3DwQTVB+exLt4aDytosXtlTQVSwew16ePWsic05Tfz2ZwPiHfc7w+kmHn8xiOmOXJ3f8B5z2bYVNacSM6Facrc3504Hqc2mZezFm3Cl1pLrxWIVs81R2Ng9l7oO0/RzIuXd4xjXMCe3vnlfvrOngfWU6I4n8FDilJZbalgK0+K1Y+t67A1efjgCZ03QFDLQdStrRSLg5oEndbXLF4sSGU+jcXA6zGyAOFVLefQ5jFaG2Rqt0PbY0WErveELhDnuEihqQpxzuv+UednWzttzpdc0CKUEi1/4Foh3aTwpmmyvEkIuC6Q5mRAH1VCF3C+Nps4W7txThYDp7TkjIxZzVEqk1MuEad13lRmaVfZjKixgUmE22dDZ00l1nBSHhzX5oi0qWC5AAAtOC+EmvMx+ThH6CoAsRR0YZyrbN3OAEFFjTGq77tFHq4L1oAiwfH6D19jk3qGIdAPHVebDb+cv8Sz249RcYxTYcJkZFUy3jlugrFkxaScjpP5/z6cAfpWaTkJnq5z9BWJLFnIUzQAVWlgLUffdUxTXOZdKR7NyjQd+OjjD/jeF7/D18rEI7m2dXu2tC92sU8z224/LVo4e+1TA42zX3Oqa6tuhWkyBmTnH7xNgHR4YdIH9YXzOVriRLr7mHD9BDdsl7+F6ydI6O1sQrdS6r16KtlASOnwgvTyI9L+GWU6UrA8ZCq2Nh3Qe6GrvqmIx9fnhaDgHUXh8WtbjmMmxUTZ9pa3XZ+wywks7H8rPfcymoowpsKEcnPd0ztHLJZz7B84oK/YOTCd9tg+e++nLOwlcyiKdzDVPGrnpRYIlKyO/ennpyB6sYtd7GIXu9gvgn35j77MZr9Zfg8x8Evf/iX+zX/n33yOZ/VJe/v6/83k79jl1z/vU7nYL5CV6UhJ8/r7aY+EHun6T7x3/vD7pP2LTz/O6Z7Tj36fzZe+hb9+sry++fKv4jZXALhhhwufPO75ecwffp/TO99m/PEfke+f/RRXdrHPDlJShWIBj0hl+QBEG4OEgYNElFIT1GoYDZrG0Tm9vgE+CtvdgO+E03EykEi2ooLHEkS7bc9m09FtPEVgTiMqiVQKebaknTakg1qHuRdPViVFY9xwzlHOksxyfk1iaKnz1OwiPSBrd6JlLz89MCxL8mzJOnI6RsbTC1IqHI8T1zcDt4+v2QwDL4531Cbi2jm7MjgZM9VaZDnvcDUqe+prQtZCVOuq3PgBiqfkRM0joqLEecLhCLVIfv3omkJhmiPzMVJSoaSMZGE7DGyue8b5hJeOR4+v2O22fPD+hzjnubm95uWLZ3z40TNSsuQZWGd43/VkTcSSoLilk1S0BuKqUIFl7XpE2t2wop/JtAFq16ZalvdogRSLSS04o7TPuSbwa+e81ZGUOCayS6tsmBqLVCkGknLijHXIq3W1V0mz1oVqDFs2p4MXEpmSamd4CSsbU5VZ8+LYDB3JCXGeaa3/ouDEm1SHF0ox+vu8UM07Pg2k5UTYbLd0fcfxeEBLIYRAGHrC3JPH2Y5fgUTOrd2SpeiSxDmfraomn6cFsuZ1LhW3JLINdGKgPhFH8Nbj5VywVL8AmokpsukCWYXvffdd0hRRCm+88YhxmnFOGHY7fvjDd3n58o5clLsXR8bDj7i/O9p+IZVBSxtYsECxTmJZCiUmrxBTZcmRwPEw81v/n3/B8xf3aIbOC93G0/eBKScgs90EXCd03jNshO2NJY+efTSTxkzOyjglhr5fZNFKKlDABZsn8xzpBmMVE7EqhBVhTC6sZKPel9lTNBFTQinEcabEyG67NSYClFgyEg2gZoUHtcbcypjgfGXjShl0xoln6AduHg90u56Xz/aksRbtsnXfLuw7KM4D3pO1ARBtnTivNYEPObVklSPHwjxOzDHRdQNXN1vunu+Zx4QDdleBMIRaJPR8+MEdx/1EnI29zLlg1+BM4iwXoeTMNE7GsOaNGUvEEZdEP1bO9x7I+M7T9z2aMjlFUkpLgVi1SiaIASZLUqJkOnFIXwgbwaknBCF0wuPdjp4qh1cnvoGyHCll0pyZU8LV+V1K4stf/iJXVzfc3t6QSgJReoGgjiHYGv36N79KzCe60JFzx+Obmf3hwGEcefHiOZuh40u/9DpPn78kp4h3hVJMCjJncCpc7za24xWl7zyvPdkROs8cYZOtsCvSVQk4x83tlukY7b55QYJnTgmP8u3f+S/53/7vMt/6jb/JP/xv/wN+6cmT+jBreo+X0sLFPmmrjJQRXqxQ4E+6NCv2oiXSXzXzRwpl6fDXs8IBGNtPJdZAVFERk1qkFTb1rFvYPhVa4VFK7StuYGQD8Bocr+DUL9+TMQe2KGQyc86o87SHVQd0laVCRHGhs+9VAcmoKLuN5/UnGza3mUe7gKm+WlG9Jehh5RYoGDC/+XuNvWRS2EeY0sxVv2XwDqVjVGNpDMuArwUWwU5FgVjKwjrq9dMLhcYrCU6NWVBcYUiBd97f8+g68NajDYMIqcAhZmT4zO7952PNSalFlwV2oqtPtrAoaYUZnNdbWuPE2Wh573HOWVG2+nM1QsCJGLNib9I4ipoElzaARf3u9gWlQJWGyqUVvKlyUu0kWpHqbM0s4Jfzwv9afGrrpUm9rWtw9d0auGjxuaIyz3kBJcTZ0W/7BeTQpJGUNp7n5yNL/AA25zgDdRgwpsYcijGBqBJnKoDY3lPsJtS4RKt8dW8y0aWQYzbWxMoQuRl6ttcbxvFUpUwN1JxSIoQO3wXm48Q4xep3W1DknDGJFC3GAFnMr1V0nQfnC+n8WtqqaRKPdRz0wXvqGGeqNF6NvR4cYY0HjVFJl5to87CNp5AbEEJYN1Q5Zzm1I7rKvJTzCh5r7FBLM0aNO72z2MFALWdzp579GhdVhlNdv2e5wFZ7ZF0X82yg/EXuyjmkyWpJA8+dM/LU+f5KUbRBPxowTtfBprGCOlefFRXA5tq8riDE4GvMheUUclGOdyOqyvF4WiS1Qu/BCy9f3hGjMePGeSZHk4FrN3qBozip1yTLsUXcAvwx4JhDnHA4zNzff7DE2t5V33G5+4WuNmR5Z/6m70wuNI+JnKqUVs44qa+nM8atOq9iTDXGLMvzqBRFy5oTyZqhsso24JJmbN2XCr5c8hJnDQ2lrmFZr9c7oWRBNCHOGg36wYEXUrJ0iVQKNK1yYItVYFXFBNa5KoizZ3hj0NYaw5Zse0GaI84rw6YnqcXsmsHVODvljCtCnAvzmOo6aLt+LZJ7wYuxCJWcyVLsXrYxkroK1OalU2lEXXXV1pi/seKq+SpthxMx30RTwfnWYNak8uy5E7xnGDprbqqNbG19tP03W3cJpSjzPOP9ht1uy253TdFMzpnX/GtcX9+CKvv7O3Ae7TxFOkQdfQC3dUxzIlX2qNB5pGRjdhLr5fHe9gxxxsjVdb4ysMGwMRn0lIydqes83gfmOVuTSB8q+18xOclgn9WcSePEf/0vf5cfvfacv/LkXa7f+hWCD6xSqhe72J9srzx1Hz6Sz18vVXr5tKdMR9LLD8mne/I81s9pbWxyD3JXi59cKlN6/YblOcjKShQPd/VnY+B2zlsOA/DbW6TboDUXXZNfOIR8OlDmkdKo6hSSloWpLDTQlBjL0aIqLK+ukuqzFsF5uN0N9H49wxWk9BAIrGevFS3Lu2MxILcxvgkdQqKQ1GBNrh3nlfNoY6DVP3By/s1nX0yLM9a7F8Tx4hi5y5k3Hm/wIhR1HKaI6y8NURe72MUudrGL/Szt+vnDZkNFySF/TmdzsYt9fqY5gxbm5z8m3T3l9IPfIz77MenwfH1TOWNBfvXzaba//wkWn7774HcJ/dLk0D/5Cn53++mfe/5ja6j4DN9xsc9mn13urYJKloR8pdhuXadZjG3GB29MNTXgXJLzNdG0JEcr402sSdhcQSBeTNO76wJdEK5vdgxXPSknxnFkHqPJBAA+BNBCzNmCT8uN45wnxSr7RgW+lLVD2oLLKjWGzWPv/VLUXjrwpHX2QUvsrrIUsiQcjcykFe2NBnielFTsurO3jsF5ThSUecrEVNAsgF+6XVQK4i34XBLEqmfrTNfxx4JLVUgxcZ9SBUBYWC9ODCxWk40aU01UeXxwDH3HbtNzGk+c9iOCcPNo4Bvf+jIfPX3Khz9+zng48eLpC06nic3GaIb3+7ECt0DnuXYfCiEEhm4gnQrzGJfkbAu47Vo+OadaeO3aGNQEMnr+nlYcYSkQZdU1Kautx74VaWrCWsRkoirji809R87ZumJjRj025pUBRSuNO5rpus6AKrMyazYcHJlSDKxhDC/OpL/ExqCEsHRvllKLPCUvTEyts1iWbMHDQRGg5GzFs2JyhUpBSmE+TuQMqAESXO22zrVzFFpB6uFR21xpYCAtoJUZzN5n9PVdbwlMS3DWT2omRpMtCz5QxEAmqon98cDpaCC4H737AaqFaU586atvUFTZ7+9RTXhxxPFEHCeoVPj2/GiUelIlWSqrTqXrz2rJ/jYHSoYXz4+kZHIS3gvqXJUQi/SDSS+WVJhnpe8KfRhIs+dwiJRoZd5UZoZeSdORNBVK8ZQqzVHqw+10HG3mukLwPUkm5jmSJVfJB0tQx5joQreAj7zrSDExuULXbYBIPwzGnlaBUNTuYOeseK/F2NrEByjCZtdz+3hHtxFc5+l60KSoqM2p5KHM9cYamMwHwepPlf2rSouAELyvxR0lzpnTcSKEHXFMaPaEbiZ4j6tzllI43B1Mxkwdd8+PxEmXuWxFKOg2geubHWlOTONMjA7FUeZoa9VZcU/OEvyUUgsRjlS7r0sFzSHWpayqeLGO6lLUGLyKLGPe9rSUGvOWMfKFzhgetCr2iDhC6BhPe3JJOD8QY2Z+Ednfv8MXv/AWh8eF03gi54gPwuA81zdXnE4zqWRO45ESC8FtmarkH+LZXW+5P5x49mLPeCyUGbabjq7vyNmRZtsTut5Y9Xabjt3VhmHoORxHtASGwXF1tamAT+E4GZvXOJ5wAptNT+g60hQBJU4T33/7bX71r/4KPo9nidxLQeFin8HOMR5aAUt16pyVCl9JZMvyuYIV11XMcRSFhHLIERFh5wL+TLrAgEWCaJMJVooKcy6M00QXOkIXWJnerJyYVfCWsecYlcELWoRZIXTGrhjnSBZhnqpUcC/sfFclm2yvdN7jFihVu0qt/kEN9LMiBR7f9tz09b0L49uD1D5ghfYKwSSpMpcMzvHu0wOaO958vAWvqINBHVmUOWeSc/QPzuWhOefIakVbdVIBzis7YjuP6h0tZzU4YX84cHX1iEBG1fPB3cizFwe+/pXXPuPE+BysgdTlIfuQVlBJcxadPyu+17lobszKlLKUWNSex+1nlIVhNQQDc4fO4Zwnxsg8zcZ8WmNJ58T8olpQayCM5oJK9f9R8z/X8hI0p8tAArLIFC1NDoaZ4OwDCxuJgd7lga/b4pIGZDZQgCzgEZP7mq1+XgxwYzWyVypWlfVn9cNXJk37+0OAFQD1mavrZS1Rx3KvVMhFmGYrjve9Z3c7kHLi/u5UH8BK3zlK6djfH8mHXJlnzJfLKdd4q94/rKmhYECmrusouTH/OLQ2Z7QTU/gEyJLWUFLngB37E1e4AkjOjrUc4pVDVkS5rUe3Sry1Y5dsYHRVAxI4tza5tDgRMannBkhPsbHKlvV+ltWHF0yesLFVqtZbyflaqedQ8zHICixZrlLbuoi43Hz+Oiei3Q/OPtPOZYnV2iJ4ZXzk4VdwRku1TF5XWWqNDcj+YHF3/VlcXc82DtM0mR+OcDicaA0tu97YZHPJNVav4HMt682qXy/ns7uCLdp4NSDf8kwravOvJZOcnWEp1e/v7LnV2Mu6AITAPCoxNqlFe25tNh1pLhjZhLfGhrN5lVNBJC8AEGt0sBalVYZcKvjEL/fNpLnzwooDQtd3pBiZp7TsXW3gRdZ57cSBBPptYLPtEWcxcI6ZVOWL7H47hFyXjlSgizMZ6lJHVNwSO1b1dVpjVYoGiEmpINmYohwr4I3abGKM1mpsadEOtMw1MRa8zc5kAlLKlOws3sk21iorPKFZY1oL3td9ru1rdo4moSeV7Uwr2zKLzKLlFcqybZTSGqAK4mVZy3WBmU/hMKbnmkzKWbl7eeB4mNluJwMC5cyJP6Z7tuFmc4Xzgbu0553ufQ4fHGy9qNQYR3ABxBXS/mT3vphM7NXVgKowT1RGN7vmYdNV6XFPjGtMtt0O6/4w23iXSvUl4gxo5ztySngn9F3gG1/9Em/tHpsEZ11Dl4jiYn82Wzjb1t9zIp8O5PunpPun6DyS44SWZL4R9bmHEur6KlqYiu3tvQ8EWdoVakyxtuM0DzAXZZwnnDj6voO21ktjD3Po/XNUjctdVXAK05xxwdbNPFlT4zRHQt8xDNaASbEGyuDdClB68ADU5f81vYGibIdA51s8dc6FuH64bY8tJ70cSYTTlBjHgq85H62Nux2OIgZMVpFPFWY8O/p6hnX9nz/reXBe9rsDtoODWAj1js4FTlPkZjt8xrlwsYtd7GIXu9jF/jzs7d94m9/8J79JiFayn3YTP/prP/qcz+piF/uLN1VF40R8/j7je99h+vH3SPvn5AYG+lmcw9n3TO9/72fynRcz+7dqtW5U9K37bklE1vb5EPwnkhwqlmxC1aQMigWn48luvhXfIQToh8DuaiB46y68uztwd3fPdJrICWid9eLwvUeTJZ9aZ3WMeemWdLULxprhdEkstaL4ebJVKtCk0eHDmohuIJYGrLAuSF8T01qTzLWgImvXMkAqBY1KOVjnatcNlDKTW1clFpgKnQXSqViRQNwSRJ4fT0SQM8YlLe11j3hsjL2jC4EQHDEm4pxIJXAaEze7LV94/JjHX7ziGEf+8Pd/xOG5SdF9/7vvMs6R4z5xup+WAs1YZqYx1s7HFQzTOkaPhxO5z5Q544HdzY5xnjkcYi0mrJ3o9QCAdbyK6TeQpSU/12Rj+8xyrQtYbh2T9jsVLGSAM2N4WtiUavK3db1KLTqoQsCkpIzqXRAH292GYeNxweFOQsrF5AMrkKoxQ5UqxZdFKMUKNu3+tySu8752Q1YKf81GD++gpFILbSurkOIYx5m+7+18tVA0WSEr5dplDUVzBY4oC3OZMxmTlqw21qlWIGYptIAxQFmXJcYq1QUkeVxlJUML3olJcagylwkX2rVkYjrhvSME4TTNlkT1jrv9sQIAM/3Qsd3uuHtxR5wT1nbfahoNrMTSdS1Olo7nnDJSmdCUVWatAQXBksU6V2aewbpA7++OeAn4ned0KIzzxDRl4jzRB8/t7Q3b3YZpzLz7g48pJyX4DtVUa2sOcZ44JZy3BNY0zmjG9oSsZC9L0TK6SlleFOdMri6liGo2eQDv6IJnKpMl0osVOUsx2SHUgDzeC5ubgdsnA2FwhD7Uyqaj0FESiAfvsXFU6wK+vd0xbBz7w8h0isyz7ccUiCWSvY3bZtPXMYJ5TBwPMyXPnKaJm+sNw7bjtC/MI8QkOAKH44nT4YSoNxapimZwnXJ1NXB13TPPwvZ64HScmI4RJeBCQF0tVBUD2rW56r2j66zo0Q2OfrNlPEaOxwmHGHvedmBOkZwzqSglJZM1yaXOHQ9VqiKp4rPNhy4EvA8EH/De5sRWN3RLcRdyUuIcefrxxzx79ozHj25IOTLnmUdXG9788hcYo/Ly+T0xnkjjhJcT3guHk+1p/qmAK/SdMAw9WSO3j67o+sBxP1G2YZnHznl8UIaNUPJsDBE5s7vq6bqOfDihFLrOkea5Mg4U5nEkOMduM5BSZLPp+Hf++q/xj/7hf5c3b15DK8jNvQJluNjFzm0BCDaAwlrHW1Lmfn251nGFpkbbSERaEcGdQUOyQsoVQElm8MKg4IowaWHSwrX3eK3P91oEjqoMwdOLUJ0WA0GhUDzP7kZGEUpwhNPM/uWJFy9nUp54cXcia+FLb1xzSok3v/o6u+h5kU328vXbLVfB4bWJsp2vjlbV9SiO4zRyfT3QBakAqwowqB9qn31Qk2hjJtB5T1JIKbH1gY9f3PHk5nU0JIIEKy14k1BNTulqIWA9lN0FX+8TIlX6tBaaAV99rQWe3kDYCNsgfOtrT+gDBC3cJ0GGni+/Gbj6tArGz43J6hfyCoxE13HXbD6FlVNW0IFNZytb2d/qfExlmdiGNy7VHzS/IcZEGqcqN9RADisbh4iNd6kMO813XJhGzBmthaUG3JEVG3POHLqAsFrZaO1cF8eZH1PBaa2k1bAebc1K+65leGiMRNSYBXIFudT3OXC1QcOAUkuQcI7rOLMKAqvFr+U8anzinCM4hw+OnAtxjsta7rxwvdsyXHVMaeY4zia3OyWefXxfweasgUoDaZRPdgKeSy+XPIMasKLrAiU4xjGi52degdjnLy1MK8s9Yt3cPnHdZ2aoouV+tXvXGmsaIqr5oU48qmWRjmrzQOumKVXWvKjQ9wEfzPdONb6rFckFVCJV9q0B9VRzjV/qqQFUiSvnTHq6UCUNlzet68mu1eZ2KSuzU5sPbVrZfJRFZusBDETXebBM8hoUNqCKCLUJw9arYjGcyVy34bf72iS0ihpjaWNcasClFmdT3y/Afn9aGkEkOELXkcu4xPwNoLHcaJF1bQkLAMxINM5BZrZJNEChTSeLlxzGxCFiUtAAWTzTmCurmpBixnlhu92AGAgt5SNpttyCge/bGIrFeq4y8VS2MbQyFdXmCKEyli1TsiyxbkoJEZMSFqmgfVojx8peRf2b81JlIR2pRDrXLd9dKqgs+CYBKAh2vSE4u67QM4+RGEtlE8PmZKlsX7XhyXljkEqx1PUAwxAInfnoZWGQtanTgHHQYmmWRiFxtkuGLlCCkmaTlu46Z52McsZ6hNa1aKxIbUwM8NUxniZyypVhqDuLha1pzNU5rTWXhLiFmSzFQvalNqZV5mURHj9/xHtf7xBfGYlaXsNZPD+NJ3wIdJ3ndH3ktNvzWK4JXc/91Z57fwAyvu7bKRfmU6ScbExDMMCnga8CwRubWt87nFN8MOCiYM+1UtKyLJusZkyJnBPeW+7HWJgqKzGRvustRyeCC8LtzSN2/fWD5+7FLvYn2eLqaPPkVv8mT0fy/TPmj98hj/sFfNtAOGekhKyNr6t/FZy1FqRSyE7wCp3R3TMVywN0sjYlOif0w1B98gVOXc/UjjuOmeeHCddbbjoA01Q4HSf2x5EMvPHajqHzxGTNpHFOhD6w7QO92Dnm6m+svMVtr7YHYC4ZH2RlZF2ih/Xd5+urAdfbO7zYp7wYWChOCaGrDIT2rHbNUaWyRJ3flPrDKp1s+7su8sm86i7RPG87trKre7cXmJMypsLtzZbhsjFc7GIXu9jFLvZT21e+8xV+9z/4XdTrn/re5196zosvvuCNH70BwIff+JD9a/u/6FP8M5tTzyWCuNifh6kW0t1Tph9/l/tv/+fEF++bJMzFfqHss8u91Y1n6Tqrib41uWcbbUmZrIoLfqG0bwGVqiWVKGqsITXRZ8V+Y2gpJZOScDjkmoA81q66ArmCQqp8FjWRG4KzDjC1TreUTdIJ1EAwribaRcBB15nMUwueG6NSrp2CC9DDOYKT2pF3lizWYiCE4io1/Hp9jfnIkqRrQQnn7Ts1sd16+q5jxqj3W0epsTBVGvi0hrOW55QlOZdLQbAk1jlQx2TFLIR2CF0IbHcDORf2d3uKA1ym5BEvha4LxifujH0gTlqLCrFS/Ht8ZQbKJa8FpSVjvqbCVWEcZ7wThiGgeab3cCJTit2rBywCulI2O1+BX1q7JZ1U8MyZLMEnJqQsxRPXEuc1GemckHIilWxU9snECb1rck+WfCyAlDO66JSq5JxWlq/M0Dk2Vz1FYT5FcpaluCK1immM9UouiVST1a7OoZb1F7FzS3GqQKl23xqgz5Lty/DUxHqpSexSCkGpEmwFH4Q8J6wx9BVNe1kLCw0MBCzU+lZcBeuu1AqQA9FSi6NlKRD0vcluxGzSG2nOeG9ARCfOZNUGKzJ7H8gpc/9yZOh7+mFL0WIdz96DlIquqrO6fjd1fbnglyJKqQwHilpnapXNoSZiW+exiEclWZE8Qz/0OJeI84nTaWCcrZCJc8s1hK7n6Ud3DEPHa69v0OyIc2E8zhxPk3XvF5NNDOqJsZg8Y50oRRXNBTAKfXFVoEgqvXZlf7CCQCbGxGYz8PobjzkcDhwOYy3mOGKGofc8efOKYeO5vh243x+5e3mi6wbros6W9HcBbh9dE0eTSBk2A4iSUuQ0CzePrxA5kPJIjKVKEtl+FYIHUWJKuNAzTYkcrcswR0fJQi5WAIwxM0+zJcCLst1toQjjGKskm+1FuSiH02igPzwueDZXDnLBh2B7sheGvscFK+6lmCia6UJHFzwuGEtK3/XLvire4zvoQyAXh8y5yke5mkg3OQuwrmedM8kFUnVg2nWLc/gQrOCREjHGygpW94ngKSLsjweur3Z0mx7VuYILAvd3R2I5cn21YQiB0IN2oKKkWXA+cHu7o+9Abzu8eE6Hib7v6LrAHGeurjdstx2hokD2+xOKr4W5QoyJOUZ224GXL09Mp2RFMufJGQ6HI+y2DEOPD8LbP/g+3/3Bxzz69TfoXcHVTPGyL1/sYp9qtnm5s19dTYjXejBg8mu5Fp+bNJywsvcMZwX7gtKL47V+IALHknj/xZ5H3cDjfmOFUlca9IcpJTovbPpA6B1BFSHb0bOBPrMWDqPy/scj73z0nOHxji+/tuXJ4y3DZsMPfvCC/XziG9/6Et98fYs64eAK88sTbjtwfd3Te2MsGlPkkBLDEBhEKquSXZFiLDBJlZvOAEq15kIrGRQwP0NZ/pYrC5Or/++q9/fouudm6CBd89FHe26/dAXBwEdBhSCeiJKAvh7rDAsBuhYbXH14N8BCrHI69oxOBg7B49XhBTZeTOK4wI8+eEa32/Dmkx3hDNj+82pWtGrAmE/+Da1A+IVc85xZlKXZoaJ+MFYuV/3DBiopS9xybg5jr1p92vVnfyZN3eID+3ZjgzkHsoQQFpbBszNnZQmxDnypvqo+OBFdgESt2tzih/a2BQD1AGkji48oUsyPbEw61feTGhPpp82Ds0FsIBtqTNeAOi3eMd/UfFFXGzGcr2PsFCUxx5mQTPq1ATMUA1YUrXK9COLdMqbtybXiS2Q9+bonLYCcHKmnWOPKVm2rvv+Z7yxtjzq7zjbP7Gp+8licA+Bp80AqIKKCEtptKOTlPj8AQ8kKbrM5JaRo4xc6b76YGqDOGIKabE39b7vv6CJv3cBsy3fQmCUb2KmNyPnVtWac9XicHdvYVS3+EwFynWucFaDPi6i+SXDW7zubK44K+nHQIuIGQDmft85ZXmBhv62gkCbPu+BzKuAErewUxRiolELKyeZRWVpZ1uJvGydhYXJq52pLSKss/fkEWC9UnM1psHvThWDg8RRJuUA5WxfOniNzzOSUCN7TD57dVUdOhThnpinWOK4yipYa5zWdzzZ/HtS6z+au6jrFFajxdAie7W5jjHBzpBS711kNOHt1syF0tm7HMZKSkmQtXA+DNdP0fUeOCR+EfjBpoRgTKVvMEIZAIZHiCoA0ME2Tbsz4ZY5ZmbvkKs2uxtZEtmvIVc45hA5Cnf+aljXvWo6k3lcnJk+GxxodKvDNBVuXRQud+HV+SpNTzGhRuj7gvTWCOb/mGyxHc8aK3Ua8AtZyZdNurL4rc6GwmYflWQE1n2Vnb006wRnbKoVh2DC+PiLP7F7PcyTGSNd58A510HfBQMyTMeUZ45/gK1gvJZMRxIPzdh1D75d9Oc6ZlHWZkyLGDNZ1gRgLpcoRLtLZWZl1pus7+hCIceZHf/yC51+aefN2u0hIXexif6pp81JBUyQf74gvPyS+eJ8S57P1xrq/srK3tifzyn5ne3Soa9J7z5gy0zxzs9nigMGvKetUGzWDOEL1j0StubOhzgvCFDNzMuDpNCWurjpuh468U05D4Ppmg+89j3YdXpUJQAvbEHCdEKovab54oQj0XupacW0oKEWZ5sR201uj3yeHizZi8srrFlPoEmt57wgdbEPP8/3M5DzSB7zYeAW1NFoW/fQ1K6zPu7Pv0+o/tcbOtvu1yFAQk91Tyw3FnJnnmatht8rcXexiF7vYxS52sX9ru35xXRuT/vQ8XfGFD7/+4QJSUvfzmdu7SW/htfu8T+Nif8nsPEdZxgPzxz/k9IN/xfHt36WMP39gvIv97OyzMym1IFAEWBP+DxJs9Y0GsrFiCmcgifb+XApL1d+V2glcwSFa5atSw514ur5n2Fhi5nScKmuLsSm1ZPrQ9whCTNnYUPyaSGpJY4dAlX4QcczzvJxbAxjVhkFCcEu3mSWitMp0yYOO5VaIsG5t66i3wsEZWIQGOrFKyzimSk/uUC2oW1mgxDm8L0Rh6V5cmIPOzrOBaVp+3HmH7wTfOXJWA9SkxDSNSwDdhY6+9wxDx/50Qj/uuJ8mhMB21yNZSaUwT9afIxQ0JwOTcHbNWWuhoIJxalHBeUt451JwzlhNNl0gokuXLljCESmVJceOmXO24N2tUm9LIP2Jws5qDyUSwEpWdtyYrDjVwCX5rHO7Ja21mOyE9z1eHNPU2KMcg3qcy3Zv1QAwpSin4wmPoCUtRd4210RrUawxFLX1oA1IZCAhqSkJ6/rWWmNpRaezQpCCZkso+y5Y97ZAP1RAz6RY17YxmYmrRQPn6HpLgNpys3OiFLrgsUMr4i1B4XCkuYKUWNkBcl47RZ2yrE/I+NaRXFLt8oyEzjF0AyVlYrFO40KhG0wGTWvBEdFa6KICfsxC8FXiLi9z3/AoZ8U7Cq6yhu0eBbre5FuKBkp2XF31pI3nNEZKToAVi7s+0Pc9w8aYB1JUcoLHj7e2Zq62hLt7UsqM40SalRitcOGDp8Qq4VCLRA/kL2mJJqkSJVqBVS0/NxOCY3e9QbwnJWOR0wyIY3d9RdcrH7x/x+kYiXPEywSVrclkUzIvX+zRpISN4+pRz7DpmMbC8Tgz58STNx8jcs/LF4fKVqAE7xmGgZgmK/ZMEXHQ9xu0CGkqvHx+YNh2VeJA6bTjdKqFQedJJZPJuM7m5fXNjm7YWPEmGnDPicnpJE2cjiPd0DGEAaQwzTPeO7ZXA94H2iKP48w0TgiOq+sB77dWGHS1wFlMXi/4HleBmM5j8p0ieOeZNdY9pLG12f+dQN/3TFWWcuk+L4WYZmSGMWVcKcxT5MmT17i+eUTwjpwmNEdEHMfTzInIk9dvePL6E7y/I0dn0nmniXl23D7u6QcHBHK0Nbe7NuCZq8C8aVKmSREXgYL3G1zwdF1vBa1xIkWl4KwjsxbZUkr0Q4d3no+fPuU//k//H9xeP+LXf/mL+H87MsSL/QJaKwJoLXBR2TVmGhufGltKZZisggdnJYT6r7jleadiz6seoZPAsL2ieCG6Qi9ix5DCrFYc9SieUp9+tfMaITvhFOH53Yh3jq986Zq33rzi4IUvbD1SlDHe8+u/9pi/s/uCMRyWyCkqjzvP7ouPKgNFoRMDE3QhsHOhAiwEJ95YLUXJCE/vT2y2A425UWhSxA4VA2w1sG6rLDRuS6H6YgJzztzsNuy88sU3NuzTAOIY58Sm8wQEVyA5SKKEs6LCUro58xNl8X+oQE9oPDsGLFsq+cbA5xzTnDlOhSdPbhiCI7xaCfm5M62ueS1znSFydB2VFWSiD1M5n3AHi7F52bsqw0r9jlIqeENqPNEZs6Gr8h7jOD8A+6taJzvI4ufKg6RQ9UVsQrDItNFYWqqvK2ewEVkuZbl+89/PfNslXqiAjSrlaz5+A5W0kbGnnBX/zf9roJSVZ8u+Z/WN1zFfx3GdS43FSCoTpztjTsqxoCVX5hL7hHNSmWqFcZrJKsScCc4TthZ/ZVWmyUDvBUUWnfZ2nxuoqfrPbR2crRFVJYRQmUNmcpOw0zYv1vUjsIKD5Kx4d3Z/13n2sJDXgF9nqLBFBpjzEV3G7GEBsCF8cspQ5cNzMcBD0ozHgWbEaZUsF0LXAcmABLiVsWtZBQ2gIQ17U+O5laVhmYvLOWmdH2UFj5z70JV5KNRzVDEWzxgjKVYfaomd65VXWW/T5a5sTEVBTarTiSC+Nppo5cYoLZrQGu+cS2tZebe0e6Ht3oFGi5/VqTHk4KukXmU9coJTqRLhFZzRWDt1lc1TLXgfLO6pN2pdC+draT3GdtchzuTx7HyMzcr7QC7m0zdAnAgmmdV7tHOkpOS5EJyxEXlvIHyKMs+xAnfs8elwxgqq+vAcOLP65sZU3d4q2HyydeHp+56clZisAaw195RSOB6i7SGlkLXUPclZwxJKnEZQCL1HnBiDRgjEaPmZTTeg5UROc5Vib8vF9tcmQSYCXehsjHIharKGEW/zQESIaa7bfs3xlLzIqfVDR993NU9QWVepjNZaDKzjHN1gsOAUTVbOe1cln+05EmeTTBaxZ6Xv/CqrKbave/xyDcYWXJn6tLJ/eVcZqWC9PSsno4hDi609k2O0c1Zgmg3clsSRM4y3EX/XI1hOxIljnq2Zou86hk3AOU/oTLZ8mmZEHNttb7LiQdBs7K+IN7nbUqo0t+UVSrG4O3iTy7YmqFIZwGojniqSjV3L+SpFqgWNmbc/+gO+G77DGzf/DZys8/FiFzs3Y57L5NM9ZT6hWkgvPqTkmTxPMJ2MJU8gFltXDl2bhj7tmMtPi4dSITPGoHTlPHm7rf6v4hUQIWN+upfmCZ35MUARZUrKOCWCE3Y7z6OrwFT9G81KLIVhgMfXAzgha+GUEt539MEaPZtv1x4VQ23abJ5d0fpMEM8pFlIFSq7vaFdZz4u18aNddXumtz011r16IwGCcnsz0DmBUiiuAoLPRvP8mOur51Hb+h0thlj/9slPgLE93h9HNtuO1262dItfcbGLXexiF7vYxX5mJvD0K08/77P4U+3p8F2e9d/nS+Pf+LxP5WI/x7ZIuD17j3T/FFCO3//XlOlAPrwg3T9jZV6/2C+yfeYKp1bqcue8dQK2BCmF1r3YwBX2ay1CiZwFdS1J6CojUmMkicYipCb5pqVU2ndP33c8ee2K65sNEoT7+yPv//hj4tSyk4KoUPIqfSXL6ckSnbXvRmCapprYrx2qS9Kxdm9KS8atCdVVvovaCbkyprgKfFqSVWrJL6vnuYXG3GHfpUVJNQG3AFlyQbMlF733eF9IJfEgiJT1PNUicRpjk4rSdR27R1vuX+wrGExqss82hZxn4pQ4uZFn4UD/dE/RTB+EfmfBdyqBOVtFTWmsOvW7yxpay1lBqOX1sxHWVLrzjQGxJOI8BOfrMaxTU7yrMhqZkm12GLNRWcabNuashYEFJNYyo+dztBRS0soagzEXpYya1sSDcdQ2F6V2OWcDUTQcU4yRlCPTFPDOKNdB8Z11kJac8CGAGH2+nJ1Sk8lZGkzVjtf4KJyrFPmqNbmpi/xbrgl+VEk5AopzMGwHdtcdfTdUNjBhc+XYv4xMU8S5wHya6jz1C0ip1P/5yiGhWJ3h6qbn9skNp3kmRjjtJ0osOKekVFDLd1NUEAl0HrJkYjRpib7val2p1PVsYxk1UZJWQIkQnGO73XAsBzrfurgc26sN3dAxThNzBetoLYzFYknc1lV6Xmhpt9w5YbPrePTalc2hZDKJSSMv5wkVh+s9pWR63yMZYpqJ5UQf4OpmS0rK/mVhPMz0245+57lioOsCx/2JF0+PxNnGy3WehJJjZZmSNYGFuCXx085Viy5zSWpy7+W8pxs6tCaBQHBS0BJJ80ycMyU7+r7n+mrL/m5kmiPBBRImezNNM2S47rbk5JnGgneezaZDnDdWOUp9vhvILSclxmRsUnNcxrYfjLmEnME5gt+gHkJQ4jwRZwPKlFRMqq8YE8Bm53ntjStyLkxT7dbNhSLKPM+UmCpIoMfjmY8zKSVycKRJEZlrx3IhjRG00PWCDzZDU04E37HdDbVAI6RUnydaEGcyd20NdVcbvLAk5p1XVBNQGKeZmOBwnOg6V8FKtkBTzMQY0bmgUYjxKaJv8Fahvs8b81POaIHnuue0qXt1MjmJwzjx6NE13bChH4SrTU+KhdMxkkrmsJ/w3nG121rxIBVUEk+eXLPbbtjfz5z2M+I9t4+uOB0jd/uJkgsOz2675fp6SymZpy+f4XG89/3vEktaEpDLs+5iFzuz5YlXn52lFtqnbADQvsA0RWJnz6VtHxaGoAe1qloYsB8FU8KyvcMheFampW3wFAezZoo4nAoZIaqycQ7HykJY8MzFiqslKE/vD3Sh4ws3GwaXKQSGqDx/dmQqmSdPrrnxHkehSOFliahzbEJAKPQ4lMasYAwIWweKX4r8U5xJEvjoxcTTu8w3bzpEDRTeLaV0tQ7sYmx0TmRhOWpSFTYkxsSzn2e2fQ84xGduvLDzgrpAzIWEAS1bx3PiHKiky416CIOpz2rWUkdBKeoWOS6kUBDmCH/09p55HPlbv/EmN0FxWkjGt/TTTKG/MHtYZjnbu6r7/WnlEHn1rc0v0HMfcY0BWiHZ3G7FV5Dr0Ac2285iBy/EFMlxLST5WtQu2mSOKuMMa5He+gcUKVBIZ6Apqa7/WXzRilRqV34uD9fYM5ctXFY/Z5GkQpbivlQHrh2f5bqbP7v6yHkBvBuwQyt75/nSXo4BC3ilXYpzQugD6TTVm1bjn1ZMzOYHxxpXueNcP1dZJWXt2qfGOWeQjDM8jbAgTtr8qEAFAXCeLMZUlfIqyeirDGBOGQMYlQWgsqKdzo+pDwBI7bofTrKzCaaV1VZXue9czJf7xFqtx22Fy/Wc7BpKUXQuZOcQqddWKdqabJQTh3NN/uvs4J9S3l18zxqbSR2/5hOERYarxmel1DjILnHoO/qtJ4RQY1SIczC/pbK3xNmYM6nz2IeAYoCRdtuknvPV9cD2ekvMmZyUw/2pMg07dIqUpiBdQR6ugsU1FcQbG1kDGBmLma23kksFwBt7jnNC13VEIgTzTanxiAvWrKCxrgdXj1FZu1xlxVoAjGczQMRVST5X512okmyVWQeLAYwU1ppWiuYqfZjo+84YNYsxNLvKjixOCb3Joh0OU91nsEaNmgtop9FYmNv8Xm97BX018GOdHjpnUjSwWwP6CYqWzDzO4Bojh6Pv7N7GmGq+wubHPEdyKjUHAVO2XIzUcZunuQLtoD3lGyN2Y9POOde1kdtqsHMsreEFSmW3NkCBMZ2IugqGFLrBgRTSnAxUqraOUs5na9j2sJSTSf05VxlpY117xrqnueC8mCy2owKpGruxq/tYi90sR+KwphnFJNUa02lOqa5vAynlYvc8pVRBcJ5SwEltrqlrt2CAo5cv9xzHie2wqRKHQGW9mktES8Z7i29Qiy2aLGQuhc47JFieJWdrcHMCw6aHAjkncr3e0HtyMSlOcY5h0xM6ZRwjc7T8hZPA0Blj1pxijW2e8l35Z/y7/N1lRbTnz7onrmCHT9uPLvaX3Vbf4IEGWYsdpgPx6XvEu48o0xHNrUHP2NsKSicW0xuwvjKV/SkzRureZbzU1RVonnH9UBMQUTFmJAXjX5VlR7J/1RGLkrLJPzrBmNA7YyAC6BVe3s+kkrm93dC7yt5X994++CoZV4FPZ/5AYx16yFhsscL9fub53czjJzt7NtR9vLHM2Tnrkv/6ySb1GVWBhAhBivmu3q4/50KuPpav/kYR8H8CK0Pzux74fvWzSIt6WuOIcByV4ylzddXTCaze78UudrGLXexiF/u87LOwL30eNvo7/r9f+A/5H/7wf7/4fhe7WDNVJb38kMMf/janH/4+6e4jNM2f92lTBZMhAAEAAElEQVRd7OfYPrvc21lgdR6jrT+fJbtZiwPWVYKBeur7BId4UG2Sbo0KvHapaUsoZyvgx5muv6LfdcQU8Z0nThHUSjjee1AlBKkJMwOoCBYsn8aJHPPCFmBxozN5roxJnkmx5OlZcrA86EpcCwHtclsXINQCebYEW3uDFUpqR28phM5bR2NNrIYQQIIVrmIhVkki7wLBCeXsXM5ZhQTrFGo8LqWW5hQYTzPTHI2lpohJZjXwlFiSPQGkzDQeEJRTTQDjrAMKdfggi0xbaydc8nreZPW0dmY65ypTT6YkkCSkeESxJKMCLlOTzBX8lLXK663U6+4sAdAKLeWsqLB03Yt19q6FLldBW2pJu5Toug4fghXrlmLP+Uy1xGmTk8spUbLUYkEtxCLkGBFJFC14L+Ri0oMpZUSM0QdWyQzvXM3p1fvVCjGlFWha0cYSjyqFEByPH98ShoCiTGNmOo6WQFQr+rz22i1f+NKO0AcKNjbDocOFA9Po8a7j/qVjPE51rOx7+q4jjyMxzfQhsLnZ0G0cb771mNe/8Iisyv3dzNt/+CNErbM7TolUWWma1Mkw9MQUiWnEeWdSYyjzfKLvHcPmyuad65k0kXNm8J7NJhDE8frrj+m+4vj4xy9RVfqhsxJqKjhnSdUw9HjnmOu9bl2q4f/H3p/F2rJl6XnYN+acEbHW2s3p7r3ZVVZmNWzEIkuWKNEiaVGyaEm0IcgwZEGAIMMGbPhBz36ynwwYMPxIGH7wiwHDFiBLsBpYgEmTam1SIimyRBbJKlZWVfa3Pd3ee3URsxl+GHNGxN73ZmUWq7nJ4p6JvOecvdeKZraj+cf/B+uXxoRla1LYbgbIhTRBjsGSGZ0jTgmVRE9vCUM19p3Od6gTTqdk6ehS0DLhtzuyZhxKtxF2u45+CBz2E3GKSzqjJufnjU9a4lBN5qKBB6EGr3WpkFeQ4jkfou1vwhwIyynz+tUtoQ+W8LnqGYae0An7O0cXAhfXO8TD/ubA/vYEWiixcNyfrOLWeU6nMzkVptFY7IzpQ0CF83miH4yNIGdl2HjGONGFntA7xjGSb/ZVhrCQpypJqAXBklmuiIGDHJzPR8ZzYhqzsVo5R0wTpZQqd9bhvOOwP1YqCyGoYzxaZXcLYjqVurdmYy0ozgCMY6KMdu6UbMkqEUsMgRgbWDCwUnDGSJdTBM14Z2xOQk0ySEacSavlKhvadT0xparIKMQpMY4TivDOl79MTDCNkZwssKglkkbljGcYerIkuo1n53r6PvD2zQ3bTcf15QY0EUKhTIKKZ7ftGfrA+XSi5EJGGaeCd4lxOhPTyK6/wA0bfBg4HCdyTogoQ+9xurBy9R7i3cf88t/7W/z+n3qXnfcIDqdl3g0f5Pzv/+Cx/R5pyupIYwlB32+t/r8UuDuejHGyMl/ghNAFgndEZ5/talC9yDJz7tl7CsfDGYaAD97kzrTew9lh51XoJXDOxoRRiliQHQVp0GbHcSrcniZ2Q8cW4StPLwhiYFrEI6qM+8T3Xx34/T/1hOug9TWtQvtpv8O187U+nFmeMu/TLfXisEB+P/TkUfnut9/w6lD4yhevSaEmFZoET33GqAWPMKzD+9Kqve0Mj1mZClxWNobB+/l5vJg8y6TK7TRx0fUElFgy6gP9PFz1kBK/JAhpoI4FzONUyCqkbMBmgjFcpiK8HSM/9dUX7ByASat6fqNkyOfbpAGt2n+rSdSSUZ/aseYzs9mC93L4y4dWP5DK+rIksQysEadkrIqbgEtpBi0s9rWdnd55tEphOb9IiMaUjFmIlshdmIrKalEuoAN7hubXrEFKq9/eS34132PtV7XkXQPvN5aj9o6Wg29MpMa82FiFGnhpPiJ0lbCqSbl5IFiS1ONpoqRSGU2YfYDZJ2iJTK3MY0DJy70M42VgMC36qXFt831+tvb3unEpZkNNU16N8GKbtrFSXeTSln787Pu1tk4/iiyBv1l2ufarikIFVGiTfGudtLrmDBbTWpRzf4M2m8z0mWcbtvnDBkIos589g57aWphRba3vqf5yTYLWYhLEbM9hO8ygt5yaf2OdaoxBG7aXHWBJZtWCBMewDXTFwDg4MVC7mq+eE2ZregPu+CAMW7Mf+74j9IIncDxMJn1YmFnfpCVr18A7Wa1pMUCNVwMTDZsN0xTxPhBTJFWQhXeOkgu7yx2bi46b14e5qCklAIeIgaxcZUIu2SSTG5DNuSY52NZiXePVL9NSwSQqFBUjfUZBTJq0oHgPvkpMllJI0VjGcsr4TW+2rPMMmyr9O2bccSI1RuJVHEJXk3HhK2YZ9zbXVseQYqw8rT/vmwL1jKhgzSF0pJzpeodIQJzQ9QFV6AlMGmksaimaXyviSKlUkFjj/K0sxQg56wIe0CatZ2vXeWe29rn6OnVuzttZ/b8Vb9mfBvCBknR++VZAJnPhlienZDGISh2Sk4Ex7bUrEKnGBlq8x3lPUQzwRB3XkpddW0xerfF+hebjqbGxusYYTMHV8fBeSLkyZ2dF5s6o41gMqTTFyPkc6cLAmy+8Jk2xgowzwTmTn3Y9Pri6BxqyahonXBJk6KmEwziBzgdbJ84t713fyXx2i8loKajzxpokFg/w3lUm2TzvVcF7ghf+m9d/jj/xzr/Ez1z/Izj8PAcf2z/crYxHxo+/RXrzASVZLKRU2yEmo7vvu86APWpFTABZzB5oBQ9lbbvVa7c9K6XMVDL90N/7vdDinOAUpgy4Uk9MqWyXM/c3GYgVMBmcsxhUH8xHqLZ0joXDKfH8xZZ+0XFEEAKyVFt8pue8/le1NsSeIyCcjxPjtmPqezsf7n3X9vusmDRd9TPaptEA3KrK4RwZOosLO8yma3FQh+01Yy5kcRWopbWYsD1+swUq2+b8+LKcJ/OPGtC0ULzHidmwx/MIvafzzY/6tC312B7bY3tsj+2xPbbf3fbtn//25/0IP7D94tN/lz/xyb/JF84/93k/ymP7MWrx9iV3v/ifcvy1X6CMh8/7cR7bPyDtN6EV04LXNZhCDYjUiFNjTLKgldaAIDhdVfzSkhD2L3ng+rTK2FZ9q4AW5XxOvH1z4JpLzudoklGyUHI3OvcQHLuLDd57A8eUTOg9STtzrJO5qub8Ca4LiAjTOdWgrMldoSzPrLqKEzaKbQtUl7wkL0ppQeZK61ssud9ePHhPCB2n0wjaKHsTfbfBe8cwWFXj6XQixYQXXej1saB9SziASTJRgShGS2wJ+RQTTo3mvBTrG0lt/JZKW6mB+FKzDg2EpTWxVihkXfpizl8I9b41KVKrtOekoLPkQcltXB0tqRBTxmqgVgFPCTXWXzt5DSaaAWGyyugs1eIiatJaxdh8pAXyC8QxEscWJF2SNC2o267d5NXme6+TAXOuoti9Sq12Fk/nPSllC5HUqs855bAKfGt75jrjF2Ygo7QOw8DuYku/2+CDGHAiFHzvCeq4uNwSBs/V8x0xw/k44kIF8onjybNrBLi9O/IkXJncX0yMp5HxrAwycHE1EJ5s6DrH9YtLNlc9lMyYTpxPife/95rj/gyJynBjE0ErSKyocjqlVb8J5/OZvg88efKErhOun1zz+s1bLi6fsD8eefv6NedJwRkjxbMvXvH0i094/WaEkuk3Pfu7kfE01gCsBVSdtMSLUiiknHDeWDtyznRdZ5WjDpSE8z3D1pOKSYPhDGSnCXKKhK7Hdcp2F6zCvbKgicDd/kScCrgJ1cJmu2V7sSF0PW/f3JjkQR29RrHvnJAr8NC1wFcpeDFZAa3zSDXX9VH3EAQXhCCeaUoz+wOiXDzZ8c4XnnFzY1JzJXa8PZzrNezd94cTzju6fsN2ZyvZKnoL49lYukzqwJINXRcoucoeOG9rMmYyBRcC4g3YlHKTA4AyplqZvSxDC34Vk14IwmbojCEte4I4ikwgJjMZ+p2tY6d0faDrAo7OpAkUzqfMdIiklGrQ3BP6YLKEglXF162gaKlsUyDFWBScs8ST7wKIga3SFOmDp98Mxg7V2d6aUsGpEFzHiYh6sWriCE4dySUg4zUgrqA512DfNIOi8pQ5Ho+oF7xPlH3GnT3lyhngtEoW3t3u6bc9IfQc9hN9aJIOnk3fIQqn45ngnYHDJqUkIRUYNoMxXdX3yDqx2XiePH/OMPRoKuz3JwOU9B39pmc8H/kP/4N/n5/86hf4b//cPz4HEj+V+V5vYo/t91S7J9M0/3cOnQOFgmNMhZQNIN31HV3nCbLYQb434bWxBvubmrhigfd1K5g9EYI35jXEsrmVscJRWRslU2rSrAeCeLqabCjqKdRgfed40Q0EcRxOZ7IXrocBV4w9bTpnvvWdO+R6oO8dWSx5Pjj5wfN8fZYvP6395XCibJzw9GpHcSNvb/aI7ri6MAnU0ODeqiYt9ADA0IAPWm2YXCxjGlp/IkxqDEe9mJ3ZO9iGwHEcEScMXWDMmeA9vqbx69VA/drUmVMM1UozSU1VTlmJ2aT5bvcnjqcz+zgClzXRrTiVH+Plv4zXkkSxnmj9u4AxHnyntvuJ+Zo5e5AKM6mfJfHdEjKn40hMiWmKlKzV7mjneZurxYodRKoccSG4KufhZWFKZEnOe2d7/8zmNFMWr59dVtN3YSttBKHzzxsrLNYVD1mJSpVWarZ5WwU+eGM1yI4pTiZXrdYXzX4zxo9a2b8GU8lis7SndhV4r2aWWf88OFrWicf23WWLquyn6wGTVnRh32rv0NigTI5qYRV9kFujummsJUsEVh14P6mmq3vC4gvURTb/0fwFWtqwfmFmaJoRJff9lbW/uO6Lew/QpjxmZy9sseZHOVkAJ82ORNtckQdXXOb5/N5iTMBd3+GcN3akmKywQgtd79nuNsYA7IxdUgRjjhEDt3kf8B6maWLYdICBXVI05hgRRz94+n4wJofg8VWKOJdMSsphfzLwRanvWZpdDFRG5pTyPL6qBqJSZ2An55uUW5lBLIr5lGk+c8AFGMdkANjOoTkTp2geZ/XVpfqeDdSi2hh+Co11dplJBRc6fCeIN5tTBGMVzgYqM5CW0HXefKPKugQwTYWscD5PdR2aHTyVxPFwtvhA9RnQe1O1Td57c6r9u82Fxk5mLrtaH0iVe2y7poPdxYbtbuB4tHGIk85sXQ1ol7LJmHtnBQhFMykZWCmlgmqqDMfWLM6xWmsNHKWYJJm2dWp2xOxrV7Dlcg6v4hBiQNAW93G1UKqtNSsCC8ySS6L0m4CvsaWUlCnFGTgoVWrTe4dUAJcxRBnIv+iq3xuQ0Bn4qfnuqrV4isqY5WQGCdlaNFZGcd6kxBuAq/osouDFg7dn8gGc2PtMnZ0LWU1Kz1i0hFIS3jsag7dQyAV6F8wfFGohWJW/Q+3nudg8LGWWGHfeGYN0zHW9Qtc7hs2Ovh/IOTOdR4oqPgSLE+XCq5sP+Qvf/r/xpd/3v+Fqc9WCdMuc/PQ29th+DzW995dCGU+ku1eMH3+bct7Pv0y5UIrFarsKpBFqAepiyM07V2kHK589b1QrY3YFxs2FVfPDyLxXqDPWTAG8a3Z4ZTcUwYmy7X213azgsl1XFLQIN3cjU7K9s9Rb+GqI3LMXHgCRHxogSjNXBVEz3J6/uGAYHLfHyGbT0QfoRGa2JyfM0nczW/+9frHzqu8CvW9WcONvap+0T/fekVSJKdX9W2dmKZ37fPEG55FZ+U1NGtg1YGkx4bgxFrrgmYoVVHU0H/Nx5T+2x/bYHttje2yfZztdnn5sDfGTf8tffvf/xL/83T+LnyPKj+0ftmbxrUK6fcX5g29w97f/c9Lbjz7vx3ps/4C13wSTksyValIrEu8lGnQJ0oIFsdycyL/vHLWgoFQ5oiU+p7Oz2JyylArjOJFeJ16/vSHGRIqF4C0IlXKZ/cecjcq8BWZDgBA6dqHDOSWeMjEaFbv3nm7T0fUdt+nWEuI10ATM1ZbOOWMRca5KdrUg2iowVZ/f03TH7YGK6oqpJxuDUlGcKH3wuGCVMMHXqu5zQXxgmhJxNCrxMHSIOqazSWLllNFSquttQVwRo8Dv+x5FiSkCQnCg3lN0QtMSOGzj1MZzAe40ViNW1ZP3QT0iUuWrLFDsQ02qSasMtaBXzi14vwytBRsqyE1rlZWsU1DLHJqTCqvggarWvm1sResZWmrVe6Uw1rmuGrciFLgvjbH0x/p38/tWgI73nuA9RY2NBVVcC+4Wk5iQ+n4lF4scl/vVrUvgoD6Td/O6KKUwTRNMJkejxViDnj694tnzJ3Rbz/F84O7Nie2mpxscwXtuX+/Jo5JVcZ3j4mLH+XwihMH6rhSurjs214HL6y1pTKQ0cftqpDjl8mKHk94YthQoiq/928InJdd+L5nQdXWdZXSqbFip0Pee8zlxOo3s70YL9msNhk8R74S72z36vcTpbk8XOm5PE2kq5DFaEkKUco4Yuxr0G29MWNHo+XMF01gFuoW/VJSw6RBR1HtEAjmCakQ6x/WzbaXuL1zstrXytZDiRE4WGB6lcHdrDDeHu5HtxYaUMsf9mTQqJlDUKtBb6sqYyQSPEz8nPOZEVn1O7/0MbMy51P0qo1XSryWILi92Ji8YM6fDyPE24pxfEleiiI8MQ0/xBqqLeWJ/2FeZAUgpVlaFug5r4MlY4DLiLGDoXcduNzAeR8CSLU3KrX1fXIU5VJCjq1KV3rUq/0IuJmHkk+N8HiklzFWUNdeO64XgBepZUUrC+WIgibbPaKrSOd6SAFQJimL7pcl7WGKiFGghv5IyLni60FtCq1jCQUR4cnWJKxVk6TLbXY/v4VgMsCFqgNGUz2jO7LYbiiuMceTyakfnlVEgFQEPU5zwWdgEx3guxLjHcJnKxcUFXdeDOGKtBu+HDf2m43A8QUwMm60xsnmrYD+fI6fjSNHMZtMzbAbO5xHVzHYXuLp8iorH+8BpfyYm8J1ne7WhJOVwPHH61gf8x3/hP+EP/fTXeXH5HO45Ay2TVVfxj6kz89h+K20BObYE2pLiMnBMyYnzaWS32+Kd4Ptg35pBCY3gHwZgysrojH+n/wwPWLXggzPbiwpmkMpaUO9tkraW1SuS2Z+UZzubj2PKFDxZYdM7vHECggrDZmBCTQxOIJfCvkC48gwXPQVH0kJwCx9n/cvSFz+gNUvV2StzN2aiz/z8H3mXFBN3h8SUC1eXgcvg2KjgUXpxc9X4YoW4+b+qiubIZXD0K4DNzHjDMiYbV+iGjmMunKMlUqNmnBQKXU3MlEVW7jMWbQGkMsUF57jdJ7738kTpOn7qJ17gvJKcSckV3Oo5fvzabE8+/DnM0nwzMqZ9riadP0UQ1RLO6+/RbMu1fWdjljBAxXms4BdtoJVSzyJrpZ7ZLeneBZOp6oMnibEDxGSSzIucUK1olwU2+PANm0S02Y7M2NJmCrfk+mybt1kkC0uQqkKuBRdVvkmcsY44cYTeQSpsQ08uhemcjJEkBFAlRQOumE3NnPxribHGzqiiIG11S/WRdMlhP+j/9t5z+Ylbg2xW9jerBF3zDeZ5YUB1YzBaATWWoX14haVv20A//Nj87wefWQOVGgJEPr2j6Or7bnXfH7TvrG+79p9mAJRUFtwma1fnjLjKLKmtY1YALV1fXGf/aJn7BpqJMRowbZ7I9ofz3gBmwXzkaYwGZi/GmGPFOtYXofP0g8cZHVxl6DLpsm5whE6IYySNiXKypHA/BPrqh8axMhfT/t+SvW5+rxDseZZ1UBjPk8mQjZFcCuMY8d7NBQGqebYzz6dxTlafjucqpVVvQUGzWesmr938PU/JDRBYE8GurZ3Wn+ZX98Gke9GMD45h21UfQE2SSx2uaJUUtz09ZbNbSylwToQKTClV/rlFN2aGqXYOq/neyzpZBnyZ+4s/rEArjqHa0mDgs5Qy+7sjMRmz01TSDLh1gq3J+h45RWOixvw6i2sYm1TbfteFPSLt73Z/5wy0FaepMvX4ylrNvK6XIiDu79X1RVNKePzspzcGZe/q/ANEPagz35jGhmVrtbEQtbiFmb/1rFidM6LNf3T44Gcpx8bSeq9/ywIL6LqezgfO0wkl45z5+EPXkTSh2YAW4nxlwjam1ikl+n5D8KH2G3OnNqYyVSWpsThTCze66merwjRlus5XNpVc5eBC9cWM0cqAgFpZY8PsW4LifaDrzKtPeTKfMtg+3fXmL52mRIrKL7z58/z86z/On/zS/wAn/crmebijPbbfi01LId2+ZPrk2+TjLZrip48cIHg3M+QbEO6+FadYbC9gzJ8ZpfsBTqjIAu6vP2B9atgsN5vAAYcxsR0CXo01Kdc4iwF0KqSn2lOb3tZREbNZEjBcdTzdeCsS0+X+y1u2x/iNfYrVy5IS3J7OPH26YxOEKRnQc1RBO2EQwWmTZ2tfk0/dVzC/R7MV37VPzMCj1ecFpROQrmOMCfGeWECcWf66uub9N7v36HNPGyOU8Ortmdsx8vzpBX5KVbbu4f0f22N7bI/tsT22x/bYHjSBv/78/8rvu/0X+Lmb/+EDP+Kx/cPQSpo4f/9X2P/t/5zp1fco4/HzfqTH9g9o+5FBSia9pPP/l8CazB7smmafObhlTB5zjHIVfIMF9FS0IJLvBbRLserFnK3yz+LVlW2lVrxJrS70YrTu++MBRaxCz3kL3mg2aa8KCAFBgpBzYtqPOC90LhjNu+ZVQM7+nytNuPeusoBUkAHc24BD8DjnmFKs+upulqxyXgjOElHDEAids6o8HM5ZhWs3eK7dJeN55OXHdxawGnpSTBZAzTIncbRJk1TwhOZCihHfhznoWCrl+xp801r7e6uSds5ZsEssSOhqsiPnRTKCBuqpY1uygqYa8LNgu5Zc6fIr2Mt7o9EPBadWVftpwFq9p1ABEkJeFS4LrOadhXgtEeowRqcWsK9ghRa4b/+TloTSe6Csh30Cy+fqPyyImBKlJqN0npsFh7FOKVUqoAU22ty37M/95BLMVU8tQJByopxb4FXIo7EW3d2cuLs7Mew6pjSRx8Q49PSD57Dfg3qEgPOOUAp5E9nuekQ83aa3QIwI00m5TSfO5zPO9aQEx1PibhN59vSSi+2G43ZkyhGbOmWWCQrewDIpFYI4YslIjVwUVaJGSy5MUwW5CJeXW2OuGRMqhYunl2wuerRknjztCGHg9cs7psmAT75zlpACOhkoGum3HnVWFT6dE12tqLUAc0+/6QDHdDZpuWmKbDc7zvszJVkFa84Kkum8gX3EJZMLEwzQ4gspjpTsSVNmyhPjySQbRWWunkYbW5sFh6xKtzJgaKukNSiTJQOY5wjzPmABO8QzXHg2Q4cPxsb18tUtWir4KxdKSZUBQoxtI3iCN3mG83nk8vISVxTnAqfjxDgmHA7v/JxYtbWoFLFsg3MmmyYo5/OJGBNPnl7Q956cIjHamgrBqvCnKQK2nhEPIuSUieNo7EdDh0gmTYkYCylNUHp8Z4mLPMGpZMRBF4TgbS45EYbNxhIkanuXE1cZIWy/6btAKYEkxka12XY4J5xPlvzIKRPEkaeEitHK984Bma4b2G52eMlMEsn5zHS2/cE7T/JK5x3bbUDlgikpz59sEafcHS8Z/AYnAecnnFeC2l4qWoylLsB2M+C8q3teJsaJrvSMp7OxpByneQ+92A2cjhP9puN4ioyTcnV9gQ8Qp0yKE1OMiAs1CW9z5XZ/RPEWeHXKsAlcX/fcvD4TNcNp5L/+L/8Kf/mP/gH++X/2z9ATbA+6v5vx2H7vtnWy3fKzlrR01IC4Dzy5bEyFLXG3AAHa2StAp4AL3EyJIQidb5+R+RC2MysbwFCpAIJ69tJAyoXGLOQKfHIwWUSZTMr24mLDtrKdtWB6AYITuvqM+5hI3sNW+frXLvj49Zm7c8fzrSdQAH8v8b+0+4wr93/rSMDru8SvfPMTNi8uuOwsGf9i6zmOyt15wu86NphN2oGxIkldh1Tbo4F4xVHEE9y6T+1dUinGuCDt7lbpPTjHIWf2Y+HsHc8GpZ/HwSGysJM+bL7aH1mUAHTi+N7Ht7z4iec83QaT1EIIDfLxkO7mx6i5CiZvrKszIGNOKtuz6wqoVH+xGvdmU+n8+cXOWr7zECDSgDbcWwf2b9duZznjCuSxewkF583vSDGjubFrVnBDBcaKGGuiJfiXgo71czRgypwcn9/NvkN1q1wFxzdCpmbbOteShVR7X2eJYrCfGYg+E2MkumpfapkB03PfaGPAbb2hSzFE8PM1SzF/osko3WM6XY1lA2w15pcGVpkBTLrmJWMFzqpFH01eSRf7fLHTXSWXbXP7wfxgBVJodnf9dwNJLB9d3VgrwKy9rdz/iLRJUd93XlXt3e8/wf1V9yDhWVQR0yar0oayADpmj1Lmrde1R6ydtfrEvGZsrsg8pmumWK226/k0wWnCBVflqIwtUpwj54T3Ye77UjI5T/R9sH0uN+irkiYljXFm9kpZibEQz4k4mK/snEddMRktsTWkGADei5BTtXfnYpjaN2iVxGvJZjFgqjCzfvou0A01DkDB+wAoKRZc56u0oK0Zg8Jm87edq+xnBefDPF9dZWXOWYnV98olQzBZO1f3hZyyxQq8+cZKXkmNGYiksSU1wFuc8gyEbGum6P3imGUfs//OO5g+GEtdrbvm/gv0va9SzlbgdD6d0bwwNikKxXw6xPyT5geXCq5yYgDG6RzJ6b7sYGM/ogEawQA2xYoMYp3wm22o3yvmT1RfvO97pindk0ps68MYtewnxVWfpbS9YEmg5wbmc8bq5GpxkJZlnRsrsoGo2x6nWY2Zq4KarHjDxtPiGm2vNTlK40CUGjex61nxgwKZ7hToX3Wcno7181ixWWXYY9gy9IHgMhKd7SvVnnAenDO/DS1zAYgxn1WfUmEcx2pe2F6XokP1PBdsjGcD7hXMxx6Gjm5j8zdn62cbZyGlTAiOlDK5kl42kFnXBQOUqQG/zqcD//nH/zY/9+JP8nR4hxkyN29oP562xGP7rTVVpYwHzu//Kunth3NsQzGfAlWTcxOLR9xrD2yxBX5jfsiYDXAYugbt/bTN/nBeLVZZK5O0f3kMELTXxCZYzHMzdPgKSpU6Yxuwxtfrn2MiO1+BS6AZbg4jz683dO3+n2kqt/3z/hu2fylwjJlXb44UZz5TJxA6heA4p0LMhS6E+VwXLdXGvW/n2jhg/kTn7623uT9WZ307JTzKEDzHmElF0EEYRHG6tpNtP3jY2tWbULxTSEXphh71dqa10fwRIVuP7bE9tsf22B7bY/sh7eLNBc8+eMarr776vB/lt71lF/lL7/1ZfvbuT7MpV5/34zy236WmWkg3n3DzN/4cx2/+TWa6+cf22P4+248MUroPUGqx2RqUfuC/tH9b8N3VwKc5Pc7VhH4pi/yArqtFtH7OmdxUKVatr4rzxraRY8Z7zPnznpSMit51HlGTOUsZxkkZsifFzHS2gGzRgvPe3N9VwM85ExFXrcwj0iqZa6C30oh77ys7SQ1iYQwfUINe0mjCDTDT7uG95/JywzDY70xy4oyTgDqrxry+vubm1tiiwCr8xuOJaZzmKlHXsgmr+HouhRwTqTg6LTPDzzhO5FRl6VYe9jq5Z4E9S4xI/Z333pIU2qpQayVfHQ/7nl0jJ+ZArSI1maLzs5WsiG9gIatW1VKWhLrU4HXN2Ii0BGSZkxQrzq4lWt/GZ52olLk+dQ7A3gsFtwSYPAwS3/+9axrw9WetsrOmWmpwvAZRiwVeJDQA18PrVrk7ePDOsNn0lsBywnY7EGMyOR0POUMcJ7IaW5GqIsXo7cdjAunY7AYQC+oPvcdLQYLxU/jO0/WeMiU6Os7HM873FBWmlMhjYn/IHN6e8CFQkvVpP/S4zpFKYhonqPNe1XM6nVlX+4KYLM9UaejV1necEr5zXFxdUnIibHsunmwgF/K2oxThOu/w7xiQMBfleDwxnRMlKaHv2F4OqBTO+0zfd4jrSbXSFwwwc84JVPDOgsoyKBc7zzD0bHcd55hMZtE5DPxhSeDTcSRGJUVlGpNpi5S6V6mnpGRAoZoNdMXVSvK6pouBSdSJsViJ2DiXbKClCsYpTerAovpG7+8K3eDZXQeC77i9OTFNEY3rEJjQcuGqlsxxSYhqDBA3b2/o+sAwBOKYyDFRxBkLnIJIWC0VW98ZW8u5JNIpc3m15cV7l3hnEmS3N2fGc2Kz6dhsNrz85C1pamu9ghYbgDCafELwkJP1hVMbd0XwATrvbOy9R5zJXB72ExRHcWrMT0UZNj2+D4ABSVNSFF+BXY4QLHh/PiemyQAKToUkav3ipbJDCIgnqyOTQRNaAqQNOp3wvQcNuBAIXU9wwSSnNh2FRDofGY+QJTFseuJ0ph+ElOBiswFG4gS7yw2uVmFLVqZxYjpPHDkTQiAHk83ousAw9AhKzj35buJ8nuj6wOXVJaoRS+bkCgJsAAtF88R0jvhO6IdAFwb6TcfpLnH7+sw5Rpwq+5vAf/H/+wX+yM//Sb7ybPOpBOtj+z3e6plUsPUd6zk8uMWaWhLqipfGQtRaC3gbVEiA43FkuN7WbyykNS3BMKdT52vZYealMl0gRDXpN8nK8fWZb+yPvHPd8cXnlwwOXIXAVi5FAzJoocPkck7jxCnD08uBjQp3r0ekH3ixNfvuh83vqlxLzdnPbJ6nUng9KskPvPPikk6dJRNF6bYemSBm4eCFQSww70pB3VL/vKSSYUrKzWni2dWuMhe1+9FyusaCR0uhKFtXoPO8PZw5l4A4xwtvIFw7KBY2vodtHk/LZvDxm7c8e3HBNihRM+c7Zbzq2HXU5E5L3Pz4tTLbjA0Asmo68/DM9lRL5egyBLO9usyH9cx+2JoM72ITtsRPyRUgX5kHtSbEG4BBoUoGGQNLzg2Q/wDQ0p6nPrOrfk9Ll7VfrQE0zi1MBAuIys6CAkiTI3bLdxsQyIdACFKBVGLsgs5kg1LM9H2oRQbVjkjZktt5YTpZvK7KjlJfRDE7R5MVZ5SVHWqyRw96ePUOCkhWSxauAfrNpnYmi2cgtcaQ2frQbJ85Odbyh8IMHCiVI2yWlGo22AoM1JhVqICQWQ1wmT73WrvGApJb+mRJIs4PufgdbTzq39v43Mt5SgOMLE7b/AyrQgbqPamAhuXjy4T/VJJXlsnnnKd5Kb4CNZxY0rZJCrb+lYpwafbsvBfXOwTvTdovFXBN6szewalJQouvZqranp6jcpjOMwBGBGNe6gdSyUyjSSuqSgVGNXu+9YbZ2EXX/S7ElHHesdttASVsAl3nKCmx3fakpPSbnstrA9NPY2KaTPo8F2Ne6obO1n4ps0T72gc0Nlxj2/BeCN7R955h4whBjPmu2mpoY8y1745jJMW6w1fW1DZK5kuWmaFZpfkLda6Wxf9tgEylsT6V1fy67x/M/id2duaca7GGsRiv99QGmmoARy0F0rLez2k04E8qlQVJza9Unf32eW2psahpXmInpSjbXU8/dCZdvwmMp8Q4RhDoBoeKYxoL5AWoKM7211KK+RGOedxn0JAYkNhXJqyiBe9tP46jFZR45yp7c5mv0WIN1i9afb9lzea2x2pB82Iz4KhsjVYIppjctsmzOULe8vW/99N88x//NeImW4EUjlDBXylnplhIOpGykqYRcUrwjqv9BR88oTJ5C8UbgMl5T6oxH1WlJOzsLgr3ZN4M1CWdRxMW96q2VIzJpgpSY2LmrPpgErklF0oRvIdh6FBV4pQ4HRMxmZRpVvj127/Df/zBv8O//NX/Jb1fhJ4e2++tNoN/45np1ftMH3+LkoxdufkURauff8/+XdtYLdr2IHYxfxY7Lx4AmdqOP+/xy6F9L37WzmxjQrJzqgNevzmSrnqeXQ4Wk6h75OKl1HgHdu5754nZQJp95yFli4m2J/oRpngzzdZvkgUiQthsGQYD39YIIQhsOkcswmR4V8Lq3R9cfX6A0xhxwdG7+6F5Ow/acywybq7aKJ33TKlwd8r4rWe49z4/+OXmsVPhNEUkKJdVOjVl5XTK7C7czNz/2B7bY3tsj+2xPbbfWuvPPX/i3/sT/MX/2V/k9OT0m/ruO999h2/9/Ld+rE3zb138Zf7Se3+Wf+7D//WPbRzysf3WW/Ml8uEth2/8Ve5+8T97ZE56bL9t7UcGKeWc71X1wRKQL6Vqj68DsVRHt2QklhqwNwkzX5MBrbVgmOqa7twCS0ghtWBcKZRsyemsSxVJ1/ma5FV81xFwxOlMUWW/3zNOE1rAi1UMunV1bQ1GmdQZFaTT0VzJnEv9WXt3S/b3Q6isS5Amc3qzWgDQ1SC8Vuk5EXBZOJ0mcjF5qBgzHsfl9Yaihf3dgfF8JKsF7GKcEBzXT64QkRrwM/aiyrxf/fsWwPbkDHrO5KC1ShWcNkYoVgmB+ywEBoSwQKe69lmt0i01eVMrEBEDGVGaVIZRGSsWLPS9mwPtOWXilIxxqfYtxfqszYFCS9g4q9xZBXldS0Kwco8bQKghwyoTFHMCaAlSGiW1zomKOaHhmgzWg4ry+R6WYCpa2ZBafyk0eRppgRuFJl1lwdeySiQtvyss9xYRSjZKaOeFHCNnWgBZGc9nclGcWDW8VIaqRMKrR9QRcyFn6PoeB5w1c3d7IiVld7ljdxmIeiKoZ5pGq7b3lnTovWPEZBPzKHRDZbzpPRdXG568uCKTefnJW077WIEjxpCjc2KpJoEsezSDEFsw23nH5eWG3S7gdz25RIgZH0AzXF1fsr3owMHLj2/t+VwkS8ZJIKMMQ0ealKkoYxwtUeIM5OeD0vcBkUy/cVw+uWR3sTXwYifEMeFiYBg6SkocTyPSOdKUuX174HDIBN/hcIzTZPPYEICE4EmpgvekEIaAC50Fgkutss2r5CItQVSZAGp1r9ZEECxrMGc43kXiaJW0OYEWh7glAGTL1KEqBsyaq3pbMF0Yz4kDZ1uLKijZpGrE5O2ca/e0CsI2110Fje4ud+QihN7x/N2nDNvEm9c3KJHQJ95575qb1yfOp2leN4JJEYxjosRI6epYeE+Kxrw0hI2NQ4AYJ5xYoDNF27s155oEtn3gfJzIKbPdbfBBGM8TJRX6wZL2pWSc9/TDgJI4nRKagByr1KQtvJwLJTumkolS0NJRNPAzX/9JeherDIXjdFKKerzA6XTgmy9f8eYUUZ0Q9QzBWJZu31hlvmLzrOs77vYjU4I8TozniRA6A4glxQUxqvaU6fsNXd9RSmKcMoVE5zpEIcWJjz9+Tdd7Nl1n1e8xcz6NhNAxDJdoTkxjxudMcAb22h8iOTmO54gHusGCkr/41/8e/+G////iX/8f/ys8v7rGC0gVbXxsv1ebJaJVlKxCrBX9OWeGJhUywzyWNJPMp+h9h1EQqAw+2xAILalOBZe3z61QDJ+K69cfFAqo55QL+3Pketvx3ZtbfuYnn9IZ4QuqxoDYzlJFmJotVpQnlxek/YlzEbzAk8uOjTP2ICQD/tMgiXVyQxpwa3lvFWOyO8XEs2dbLkJL0jabs3DZOcYiHFMmB+FCHJ33MzRp2e1rOt+ZzG7nZOnl+of3QkzGJBLcwrAI0Ivw7vWWX/7WJxQuuXqxoaPhUuVT4wPr5IbgVHh7TpTNwE+/t8WlzO2kfPzhnptnPVedp6UXf1zbnJeCJcFkBtScxG4AjAdpL7QCd+ZEt3Pct2eXubv0XGXRqNK2CxusfWcNCGqyRsDM7KnFmG+alJZiyeYFoNKecTUPZttW6r10fjZ7zrKwfwQDmKi2hPJyrTVLVFEDIGiBaYqkZGupFDXA8dCjqoxTJOdYiwtMJkswtpQCUG3smRVpNTb2tDVhnis7an3uloDTz5hd81i2BGgbz1l2bxnJci/rN3fenL2sJv0MKGlgiJwSaJ6fbz2fPhWv0xUgYg0kmh/4/jfWYKDlZ4s/sfYZ2y8tZ7jM1Yf/bk83+yjlwS2Wip5Pvcgsr1Uqn8Sqb9Zye1KfPVdmllIKY57muZcqm4VQZQYrMzBV4gyAbEAHJx5Eyac8sw73fU/YWuJSs1a2q8q6G7MB+Epj/nFVZlhmyTnfefpgbDHnU0RtARoAcD0e1W9sAKqZfUIMJFRKpgv2s5QyUqxARrD1g6g9ezH2o9B5clJSVrOleo/Ltn/EnBbgvSghuMoapnS9ox+6mRVVxPwm573J4+XMubKX5lSYzpGUMLbW6g+ZLS4zwH/xwSuzjxqLKg5jbS3r9dTWuwEm1xqU63ne2NvSpOS47C12nrfToi3H+8xk8+/q33IppCq1Tf2czp+weWByhNW/n//vKpOxYxwTPgghWDGASwUTcM1sth2CYzrHmREKxYo/MNCXVAm0xj5dMICEc1Ue3TZFK7wqOu8BKae5P1BIMdN1ARfcHDNRZY6bKBhrmCh5inMBmJ0PMvtKjccla8GK14QXL675R55/lZ/n9/Grv/8bxKQgfmZH/v4HH/Dhm9sZaOcF+sqwPbzewk9UJifnK1uZUmK2uaBSfTxbx4gxMnof8CGgxZi6ikIXaAPF8TTivaOr/lDOxSQIte2fxiCWSzEgWmpsemJTq1g8Rpwjjon/8oN/jz/IP8Uf+Mofme3JT8++x/b5NV3919qqfKD+u36y5Pk8LuOBMloyLJ8P5MMb8vHGZN2qPVQwZrx2HjXwHfd36WUP+tRPWP3G5Jnb1vbZs2fZhdY2/PolWsnF4RxJxeGCZ7vtCdXuVllf1xa4QfdcZZw2ybVTzExFGbaBNMbFypYfMKvvd/BcLNkE6bSCUkUygw+4FXio7Z6ds4eZcsaFgJdWogFLWcfSByEEk+590FvWm3UfW9ky9kth8EJyhTfHyDgEer/+rrA2W+5bJvaLMRYOU+bqasvGCacpc4xmQ8RagPFpFqzH9tge22N7bI/tsf1mmyB85e99hT/1//hT/Pn/xZ//rLDfD2zvfvfd37kH++1qovy1F/8X/ugn/wZP89c/76d5bL/FVlKcmZHS7Seku9cAxLcfMn7460wvv2vgpId2/GN7bL+F9iODlGAJcLWAWwtMzo6m1IAuAhWcITXhZRWbFiz1rqsJZubArxY1Rh5d7iUi9JsBl5UpThZo9w4vVtfRQAUWoLVkthalqFG2932PD54Yi7FrIDVQVUgp4UKVOquBdamBzSaXdh7HGmSswKIpk1KpUgrGVENx5KRQGvMP1U/WmqxyNbiUmSaTMVMSWpQwdFUqwjGNEdSzvdgwnc84FB8CY4xMOZlsWrBrCRY0VZjZqHKyAH5JmDRZK0MSNwcd54A0S8VvAwI1lI2W5dnb/3OpAesapLTOL1biVIOhxrJiQAofwjymIq2C17UpUj/bKncx0Ecp1cmv7n8NjsxJBrckhFqSivnZLdDbgnwL/XuVt2kuvyxVVzV/MkdO1sCttsU611geWsKrBhTmxEq9h9i8AmMHm6MZrt6grgVYWGlUYRqTgd2ysB+PBB/o+wHfDWjKFaSilDzRd4HrZ+/inJDixHg6cT5HxmMGyQx9sDnlerw4qxgjU6ZICB3ShSqZdWQ8ZhRPv+lx3jHsOrYXA/vbPW/f3jGVkcsnl1xeXzKd3xKTjb33fpY+bEEthwMXqvKPjUEpisOzvztw3Cvd5QW7i46gnvOUGDrHmAr7/QkXbMy6zhO6HeMpczqOaDGgYD/05BhhsgBO13n6wXH9dIfrbH1dXvXgCtM0kpIjFUdJVTYAIWbYHyxhMp0jx/3ENEJ2Qt85HEIuSqlgxWHoubjYgoPT+WwyjuJhNECiZmNPy5VJDZpsgsdiglrnCnXvsyS5SckUShTGWNnfXK3oE4cLtv+kaPuMViYwSzQIokbhb0H+glIMDFmDVw2trmpzJ4TOnqlJUlQAARRu3t5xezjgu0IferR0FSzUM2y2pDRZMD+sJORq0nKWZosR3znC0JGK7bfihHEa8dkqz02+oaBqLA8K5Bzp+4D3HXGy6u0UbS1sNgNpsiB721vsrHCWWNBISYJ3Ji1RciZK5MnVJd1mYMyZ4zhxmgr4zB/7p36Wf/KP/jG+8oWvk46F0PdkEcLguP3kY/63//v/I7/wK98kI3Qu0fmOq4sLPnE3iOvY7BwxZ053iSKw3Q4wRroKVHOuIAFcCPZupRjQNBdSnNAoDArbq0DnA6kIqcBm2OJKNva0Oj45JxzKlFNNYCfiZMnoXATfFTaXnnwQY4dxEPd3/I2//Jf5+pe/wD//z/1ptsO2zo22861txpXx2M7px/bb3tpZ0Zrc+9dv6kqrK9z/V1vzqWB76hAM9CbL0W25t4LHzfvI/eu2w28504IPjOeEbCoAcZWYXwBLD2ZO/a4AHodHmRL86neOHCb48lev2AYDlbfPLoCcjIpnSpbcH0KgqNJJ4NUne4b3rnjybKB4rYBm/0NnrWKA8SJ2zwYzSknpO8c7Vz0bl+cErVTZYKGwdSZ1dE4wdB2dCBGtbEwr6JeaDVZyppMFELakfY3hb4oJ7R19s10wlr3LoPzke0/5tVcn9tcbtr3Qnsg1+/Gz3k0hqfC9l3vYdjzpHK5zvHxlzHdnhQnFq8kJ//g2pYFIpM6LRdqtnpXNrZDVrJP1yYoBeEVnMHjb1+wIbv7EYif6EHBqYCNYQE6wBkOU2a7TbEl6EWry3aGTMXnYlW195JIriLqxe1b2Ge8tUSxizJSVuVREKyNT+3ue2T7yennWP9p3pILniypOW5LeGFcExzjFmsg3IE9XfSIDqDiTFs659qXMII25kIC1b9eADcsOdC89Kss+oOgaS8F6LdwLWkgdFrELSytWkQX4OP8pVOaUCmZp1NE6O5qz33YPtFif+7M2ipXJv9j7nxlUsd/NLlMrUlhv5nJ/H3x4mXs5ziYr5aovvNpL1x++lwr+1L2aP7G6r+oMWMopg6/SvDnjnBUEhS4svnoFynWdZ3txQSnFgHckk7WuZ1ffWUIVJ4Su+s1UGVFxFK0SaHUn975JHCouOLq+I8XI+TiSUqLrA857vDdJGa3r+N5Z2UA2TWqsvmKpEmBmF4OLSj/4avsu0l3Gkuzo+lDlkxOCMcaUYqyv3hmTp8tWsBS8o+s9w9ZEMn1ocmFpAY44kze19RoNXH9OaLYTISUrLFKpjD2r+dD2lBA8KrbvNLCYOCvkaWtvRsRpK2hpJ/nSG9LGnKVIxHzi6o956loRs807k7K+J/HI/T21+cGCnckLH7Gs9lSt8mMGbNH2gsX64Hw8I76Cj1txRH3PEPrK6lxmP7ztJItkW12XqgYQ9RDEE7rKBlcLYUoyVuu6feGrdKGIFUtogZQKMVXWbOfmdzRAG1CEUuMj3jlKyoj42t+F7tyziVv6JwPnmBlTYUqZVDKn84EiV/z+yz/I7mev0ScGOlIB0UL3N/4mn9z+MjkKKsX8yb7HOw/KXOhzOo8Gch76CkajVqAUkyuszNYWm8jkvGLWKtAFTz94nOvImSrlqbUvTBYuxYR3tuEWrN+K2lw2xiWhC56SdGYY01I4pk/4u3/r3+OLm3d48cWftLGfAXDtnH6wyz36E79jTR/+beUIrMF0869SJJ3uSLefkA9vydMZUDRHoz6vX16fhfPPtMXPGvP3UgOv2H4/+xMrEPmnjtCVa3E+R5RAcDWm1j6gP3y+tFPPoZzPhVe3I9dPNoQVoery9hbfM4lZIafEpjN/4TRG9sfMbhe43AR8EAoZqRxBPxCwvGrZNqg5aK6lcJ4il7uB4FqMhU/92Ve2tVTVA3Lt48ZFq/NbCjmnGYj7sEN9BS3GXKrk6HIXB+yGjuOkHE6R3WVfr18Qdau58tAXtTEfU0GCY3BCEOh9BQOXWnzbNqPH9tge22N7bI/tsf3QdnFzweWbyx/4e0H4wq9/gcu3l+yf738Xn+x3p9103+Mbv/Rn+Udf/K/onn/5fpzmsf1YN5OBPhJffZ/T936J6aNvkvZvASjTEY3j5/uAj+0fivYjg5QsdtaqV03jWqvufcWL1MCjzo5fC2jU2CiKkotCzChK6HytRgbE4Vr1n7bPW3K/65yxBOEIXWcU4ap4J/RdR8pGdT1NGRFLFvR9T7/p6TYedZnprIhaALJkiDHjSqnU7h0XF1sur3Zsth39rgPn+PDD17z55LZWENq7iBgAJ04TqgGwRFUDxZgMmuI9BAF1JsNS1CMlI0lJ2d6/lDPnaaKoOeFoRj3kFLnY7XAhEFPCteBQDdI3KI/MlaBQnAULqRV8OrO5LMFJT6sSN8c0ZnPTYWGRcXWsUBaWI4yDwQKn4LwxCWkNZ2ZVPBbQTqXgiwVe45Somg9zha5VHArFVaaaYgF8tzq8pM4treWPjbreKixXdZyqNTiHBZI/df41OZkVS43doQZV2ncsONzeUYrMAWKRqo2ggLo5WaFlSduolBnkVDFh9xIJLXA7555qhiJVSb25H4IFSa8ut0wpmbyAOiiJqyeXPHl6xZs3txxP55p8cKCCk8AwDLQq3c2FY3PRA57+MnOx2XF3N3GaEiF4wuWWaRotcK7K6XSuQBIL5N69OXO8GekGz+VuQ9oWDndnplPGiqNrYqsYGML5KtuWTY6M7JimZEFrYMoHpAxcXe+Mar6ApmjBYee5fLLDec/dmxviZDJilELnPEULfReIoydPBmQbnl7igvVzv+mYToXz6YzzgZRHQpWFjFPmsB8R59nvj5zuRkueZMhTRrwlfE2yz0I6zgk4xfdGiy++cD4limY2mw2jGzkfpjqnW5LLxtgJuGA6HSmlJahfLCkozuO7zhJWKKEXLi83pJS4e3um2wrPnl1x+2bkfDovc9wr2+1ASpk4WcWxwwLZiAWWpT1PTX5I3YtztjlWKvuZkwRSmM7Qa0eKSvERSCZDoANvPrljmqy612Q5oWndGNudrQMnVcqTjA/CdmcSfZYUgjgVpvMEQOgCXRegg6CWuNFcKmC0sL894bxVYYuTGcQqAmkq6JhNeqQo4hQfepyH0Dn6vsMPA9//8CN6FzgcIqlk3t7d8f/8D/5j/ubf+iZ/7J/4J/nv/Ml/kZ/62k/iumA7mjq2l9cE50kRipj83NXuEkomT5GskRiNTSwMgSmNJs1QFE3KZtcxToVpyhaE9XY+TinSdx2aC3mM6K7n4nqDuA6KEOPIebLEdN/Z4SkqdN6x30dKSWQtdH3g4mJnAF8Rur7DXTiuLm0tpZh59/kl73//m3zz/e/y3jtfQHLicnNFNwS8eNqpLDUhqKJz4PKx/U60FoavQWFt54uxYYgIhYJTR5GMFDefyRbYr8kqO0hICFKESe17gzeWIAx3ydXWZAWXoLfZaqmeTQGYQWstJ16vDdT54FFRkmTe//iGd1884b2LziQM5vPTzvzPpu5t56G9t8mvjISwhaJkQwyhKE6VZFqaCEKMFljvdwYFOuwn/qu/8W2uvvicp88rY4YqmYxXt77dg25Xiizw57tYGLywc4JT5e3eGAov+g2qBsBygG1wC9vKZRdwBQ45MTjHPheedYGexu1R+1Mcw2agyJzqmBO6HkvyTFpM7sF7PEKpA+AVnl14Lm/g1X7iyfMBT2XgYLFxfO3UekyBws3bI6ec+clnT9gJZMl85Z1rvvP9l7y+jXz5elsBPvpjvMaXB5uryVc22ZzKkvWnK2hmzrTYNxuItoF8ZvA5VCak5rtU8Gt7AjH2FLNv6xk625FibC3VdnMVbCTOzpwi9vkQTF56mqKxYmRjXNluera7DaFz+M4yand3wv72ZONpDzAnBLVoBXyw2ITakmUCUqWXzPi0914XRgApJ0tmY3aMU4gpAcp2uzGmjBhRZ+CtltAuZanon+3h+SEXrMxi8baftw/UJ9OFIWlmomqXm7+52EzAzBIzswZVZ7GBl5Yxq7LauoAr7CxbJT3n55QZXGRTqnqjuqzxlmRdJ+yUyt46v988UWwc2p65XlPa7ittmO79vsnjMR+3supHmX+mq5suhRfLdZZEqs5/f8g2VjDf8v6SL3QV+JlzW2eFvu9xznE6jcQUGYYOF0xaSlSqXWfz0DkIvckTo4k+dKSkjFMytuM6XZw3P+98npjGOANcSoIxRsRNDNuBfuhMku0c6xZlL7seC1fftc3/UoH+qnZ+iChu6AyApYrmNMcmfPBI59CxmGOlxoDUBc9UJRFFsgGEirHI6rkyNyOUWowkzpFLIdTCppwr+FuM+WgaoxWlqMxzvMwSdnVWVECOSjE71VnSvpTKquscumYCqnuPzGtCluuu526bF81PxYBnm01PKYXjYURE6bqAZkFLnIsEvIe+78yfiLV4q877Wea87QXNCMfYXHPbGtqErQvcO1eLuyqQMteiJvEcD+eZzUgrINg1ie5qnzZWbueXvnPuPuCrFcA0tmoJtt+HYGDcUtSAY6om4daKCMSYmAST3msMV1rKDHByztiNxDk2ZUM39ry9uWXbdWyGTZWiTrx+febmZs/7H77idBF58c++w+X1Bd55xvOZ47ngxKOVsUvV+loxVvEcU7WPtAK8RlsDxfYJ5w3YarGsGjuokoFOhOA9uRgbrXPBAEnBU0o02TZtrN8WL3HOkVJcsQ8WQtfhxdn5htB1VSJ905FSou96pm9+xN/6//5bPP/v/WM8j3+Q6+45T6+vDEA177Kr9mDfe2y/je3eWlv9ePX3kify/i3p5mPi/hV6Pi02kqwPF5Mp0zrfEkrnqCA2KzAIbrmRNHtrdfP5b6sxX5JPi42mOJxAUuV0OPHO9cXqS+s/H15jufzMpK5C18HzpwM5RqZJGDYL0AdWAEg12erdrkfEcFkvP95zyAW/uaLPyjgpm36xE35YEyAXJamxJouKgW0xQI9vsfBP9xICdA7GoozFQOVDBa3e85tKs3tW7LfVHmhX887kJ3PRqri93MejXO88rw+JU1Z2vp4Ma5vunt1tUysn5e544uJ6Rycm3Tp4YeMdr4+R6bpjEx6X92N7bI/tsT22x/ajtu1+y+529xt+Zne344u/9kV+9fmv/i491e9eExXih9/hW3/n/8D+X/sj/KH0r7Ep15/3Yz22H9BUFZ1OjB99k9N3/g7n979Bun3JTAH+2B7b73L7kUFKs58sDqmgjLnai4bdaEH2PCdFVZagxqxdWMEMqmpMHZVtA9SS1CJQLCh4mCp9mFjiOjiTwEolVQfMnDVXAzMmBeUMpDR4VArDJlhlqPM8eXrJeE58+P4rYq3MTB5C8Gy2GXE9m02PD46rq4G7t5AjlCw1CaIVZCDEWKv6ageJlaihVEk052fWHNVCxiqD7eMGZCjFApXD0NEPgZQToQvshh3FgR6PxGgV3aVWawP3qs5Nqs0CYs4twfiHrRSdY44tWF8qwKJV6ZVPxeDXKQCpwVoLXAsL9bsPnSUmozJNY6Xyd3OQ2RiMdK5aX1i5KqX+6p7mey+/t/uXOXk0V3DNSR5ZXc+AQjndT/isP2990e5hkoLtQ02SY2ZIqoF3nef8ZwRTVvco2e7rVs+oNZPUElP2jrXqvhSr8BTI0RIMoy90fYc4CzCXDNOUePX6DYfDiThNvPPeM/qN53Q+ks7J5r2zYHwL2l5c7BiPN7gOrp5vcaeJqIU3n9wxnicLag87zsfI4faM90K/6/BAniLj3sBLu+stl5c73pxvV29dGQjq+zUwi1Zpspwz3plcWcCxvztSSuTqySWIME1WUWyAJCWXRL/puLi4ZDxFQmf9NE1n4tkCyjEWxqkwjhPbyw27qwtOxxO9C8RJQSKIo/OQNXI6nGwtOofDIyrsb05IdnTe4Z1NBMWqlo1O28YlBM/uYqDrA+N4y3ROJkPoPDOnhvg5qWkU/s4Y2nB4XRiMnLgapLYgfEvkd/3AsN3Qo4znQr8J5GJAzhCMOQ2U7a5ntx3YH45omUjJ1oVmY58zKT5ZWAlq8K+UloCo+1ZYgvHb3Ybd5ZaUJ4IXDocjIsLd3gBKTjqcgxSjSRoNgyVlVOjEgKK5JDabHiWiGFucgaLqll2Zn3yV/0C0rgtPnBIplZYttL28AhpVC1r8DPhMNGk9k4QMlT1Oi5rURkzEKfKtX/t13ttu6QGNI2mc2O/P/MLf/CXef/81v/TLH/Av/Jk/zR/6uT/MxcWOP/f/+a/4/kdviTExnRJJMumq0HfWdylOxGzzlALjaWQaI94ZqFSzI0dPSSatWVPHde+w820zWDX45mqH8440ZtBCjGfGcaLzHSFYhXU/bDmMJ5TCdrtFXKgJFJOnPEdlPCuOQt8rMZ2JaaJ89AH78cTHn9zw7N0XHG8m/rv/9D/PP/FH/xGybwmFmvis5/JjxPF3qq0QEhjwtSXDjeukJQQqE6GDLMZ35AWkGMNLVk/MjgnlWCYuQyB4X2XL4NXdnsvLCy5MxdPkdguIKqVWwRrApbHEMD/T+t8tsZvF4QpIFm7PsDmMfOGymYdLLXVL4cv9i9bfKkntbDtr5uf+0LswZj5+OfLh2z1fe7ElEFARAsk4ONRz3p/I8Ux39ZRShJcvR777nU+4iHt2l1/h0u+YYsHheG8HK6Xg+/cX6t5s7386RNIQGLZwTsLdceSd51cMTil8FsuQGUeiSieZV4fIoe/IJfE8OIqsQUpwdzxzFuXJsKsAh9an7RPCMPTcTBGksPGeptICwiDwhScbvvVm5OVlxzPfmHgyDegEgopQELOvVThm5fLpjgvvcBSEzFXouAwdH3y056e/tOUiMIP+f5zbQ1tqDRqf4SfVdmr+xAx60TbeVAkps/8XcA9zorvZYFlXgIBqr/jgQF3DB8zns6m52VnjnbPPobgQIFiCq9/0pMkY8XJl7tRcOJ0tadwPgc12MP+knoWNrdS5VQKx2sql6Pxu6z26sYk67ykxzXZqO+vnM1cMuOC9PW+T5pqTXc7NNmnr6/s2dLVTKxJs9u/WY8SS4PrMMV0eegVy+Oym6AzGpNoprRhCi7FLFy2zjcA8J8oyjnXKzOdbe9fqI81eagOE6bI27p+F90VWPn1MfkZ6vvpRaDNlVs/Iau+vIKeHfX0/Ybv+kVZGLh74c3VVrFk26298A5pUxpiSCxQDR4QuGACksouO08Q5jhUsURAC/aZD1c92WQPh+eDJ2fYeYwxV8EIYAlmV8TxWqTizLXNKKMZyuhk6Y63IhfM5cj6NdR3Jav5amwFis6+06veiSGUJKhmiJkrJ9KWr0t1t/du9nGJFUF1H6S22kIsB3koqlb2XKo11pus7hk1f7fcGslGcd8S6JuOUq4zX4ndOZ4tDuFZk1daUcxXws/68xSacd8TJCqtmEGWbWdV/bXLN2aqzDMyky/xra8+Jfbf5YDGlauMLXd8bs2fOFWBpjFgGzKQCWZa+a9fUlZ/c+n/OcwuVsbrU95QZKBS6gFbms6jRzq1irNUNkCxV+jGE3hiSsjH4OLE4hgFrlJi0xkjyCmtrD9BYqGyqFFrxXJPMq5hjwNUiuMb+WueU1DiIc7XYo1SJTfNdx/PEeB7ZdD198HRVstVpIZXCOSa+d/iIV7/+mu7qO3zlJ77Mu+++x/e/+32+8/33GaczpeRZ5tr25wqKqvNKxFWJagNcuYCBloqBCUEqW56SSYSus81KMkPvjWHc1xhb7ceiua5vh1SwkwFXMyF0UAFhrc9VjREwpkicCsfjRCmFFx9tOf9a4Rd+/q/z+uO/yNXha/y3yr/CP/2H/jQXu43tf8I8F3/gQfDYfhtbK3mQ5XxQpZwOpJuPGF99F8bRfkYhVzBvQJFSUBxjykxZKQ6GzjF4V+1RMfl5r+y6MNvQD5uonTH3D8bfwJFUIY2Z0wS5tHdo53Fjd/3Uifrgra1NKdFvA0+CZzx7bo4jfTew866WTayukCE4MdlqFcaYuTuM3J3ukC6hT55w2I+M55Fn11uuhu7TZ301FNbAalFligYwElH2p4khOMK8sczhjPrgzSgRpMp2nrMVXAxh9Xtshy1i0pV9t47j3O8NY2BqACkh1J5sc6P3jt45DmMhO6UPjj60wo3lGRfLWRhTptv0bDqPqyZbY2b68PWR8zRwFfxsjz+2x/bYHttje2yP7bfWFOXu+R055B/+4X8A20//wk/zxV//In/9z/xVfuEP/Z/52bv/gH/x/f8dXzn9Y5/3oz222iw2VYhvP+L0rV/k8Ct/hXR4O0u7PbbH9nm23wSTUpP7sKCUE8Gtqp69F3B+Zt+Yg+btu3aR5mZT1IJ+KWYLrtSWYprpqKFW9qkF0ygwjZMF4LyVdrjgkAJTjHRDS+pWB0zBi8cHh+9rKUjAGF6cpYBMpkA5HiPj+JY3b27ZXHSWPEywGXYM1x3ilMPhxOk0IkYJYNJHTdqLVtnSrmqsKn0/kFWNfrx+eF11hNSq1SrlMHQD0zlxHs9024F+6JnGSMoJ72eiYbw3hhbFAqmhEbXXisv5SR4ClvS+qykr4BBUvfMV6GdmCFpdzzTRXb2uUa+XUqnxcVCyJWJZgvZFjQFGWvWoKtRrlAqQcrIkdY0VRueqx1ZZKwLe2VzUssintWfWVhHvhZIX8JBzbg7kWsDYVYBWnZ81KNE+t/y/Jg5hzgisAVGf1c+zPF2dv3OSbLkEpRS6rpuBLaUGMKeSSVnYzEk2kxgpUsjjCcmJXhzpOBJcz+XuAt0Jx8OJcZpwnSdmpRzOHG5PVUJvIgwdvh8IXUbcEcSRVTmc9ogkQg/X1zveeeea3XVPVuXDD95wvIvcvrwjpsqiJEs4qAV6i1qAdJk7tvZTSpYYTCYFcjqCyIlu6BA8OSayN8DGZrtlu9kynkdCADQTp0wcE3EsJq2TCikbm1DOQt/tKEHZn27wzuFCoOs7TocjvnOkZAwHVAAXCHFMmCiRzPtH15mMXEyJlNQkeg4mURb6ytyWCuLDMk+dpY0FSwKG4Al9oJwzJa7ZGqyaWHOZ528LFB+PR2Ia2Ww6VCN92BLHiOZI6ByhdwyDJyfl9es7nHPsLnacz2fr0yJz4s15X6Us7ydGnHd0XUeMsQLJbG3EFDkeFR+E3XbHNEaTNax7Qku0D0NHCF0FpNm8NfaIRJGE9z2h25D2mWmM5GTv7APk3NYTaIakJkBl+4xj6DuKWhIiRcWJJ3hjz8pxwjtjS/LB3jPWKuQ0ZVKqbFYOgheC8/zsT/8MP/2TX+b73/mAbR8YusBxgv1pIn34Cefxv+HV20/4mZ/9/YTQ85/8xf+U733yPlO8w0mq7C9KziNQmcVyIdRxRwUy+C1cXu7q+ZVwooQguMrKEYKwu9jSB7jcdkDAWNgKuwvHaV+IZxA845johi3eCXmaSNPEGLMlbF0h5UiKlsiNxcYwToW7/RGqnMvLNye+PlzBd7/H+x+9z/EMbDf8gZ//Ca79VZuJ63Arj+13uhmrTzts276fW44Bz6hCzJ40TWRfGJxn4xxOTVLlk7d7DufEs3ev6DvoiYzFc7hL+OjpRGqo387S7CrDWv2JXyWTCiYX8FlN1IMUSPDt773lWAZwgagZZ5BLe27JljCf5eFWb1vPq4AlGE8x8c5uYLNxZBzfvzvw3jPHZTUAXQ2bFxSVwDvPrgkCY1a+/cFrjsc9H/ztb3N13TG+OvDm7ZHNlfAv/XN/jC9eXDxI3Ns1GyOlInhRhq7jlJUMHGLmYjfwYtMTFBKQROlmS3MFEkAICNe7De/fTgYsaTiH1r8Cw8UwsyWsLzE/khQ8wkUfOFYZmisveJQsjoznyaXj+lb5hb/+MU72/NTXnvK1L7xg6zyixu7WREWdesakvDyeeeeLFwxiCUk0oEG4vgq8/8mRlEz2B/yP7VIXWPq0ZsxbIt9+VgEPle1ivY6WizSAiBlyDcCwpLZM8qkBLubf2HKx/s0mBO28n21BX0HpUplBwBgmNVYJJqk5LIxtKeZq1y93qDJaJul2Po/VjxG6rmN72eOCcDpNjKeJJsKxLvpYAzRaMmv2oZwgKzm2hQGJGTQwr8cQzMcqBd/3lLhmX/qsyVGv5TBwfilz/66T0bL+2yrDt8rXLX5D++76zzZu8wRg+SwsoJN7wMAH/azMfcLqN2V5wfnRlnm1jNHsf7UrVkYpA0stScr2/QYynS+k5jsulv26G1c9VD8zg0ykJS5bEnT59j3fjPu+xgJM49531gUQvgKamyxzUUWykMXA+Caba4zEWgqpJHzXEZxHiuKCx7lQmcEyZEi14GB+xhLphg5Fqk8gFQRVT5/qCG82Pdttj+8COOjPIznCeX9miql1zvwmrW901e9tXShmi7VWCkiRKrtoI5NzMmZgp+Cr1FkyEFEp1YfIhdLA/aWxfihpSnTBgCDnaaqMnna6ptgYk8zn1waar5tJs5mRyiobrI9N8tcYSXNl4um6rspJVoDRDHpq47+sde/tNMsVqNPmwQJrWhL8qjozQ3VdML9ehFRyjYmA7xzOMRcIeO/puo6UjAXO1pPM61ac3JtbbR2I2N494+zA/MNiACUnbo6LOOcIoTPgGzIXoS3FTzpLTlrUJtP3G7tmzHO8wq/l3tUAZjMLW/V3ui7M12ygOitea1JpzGM1/2ze3/PMPj35ROoTu92OL7z7guPhiK/SnaKF28s7fv0f/yZcF3Yfbzkc93zrW9/mo48+4XQ+UjQiUsw2E60Sn35msgrO2PeMTcrGMoRgcuqpsgK29VyZi7quQ0TZbnoEmEazCvreGbtVckgxaWoEemcS2ZqS+c1FUU1mB3ohOytso8qOWiGWAVv3/ZFzTCRNHPZ33PK3KSr80fhPcMkwMwGbHfSDASaP7beprQ6HkifK4YZ08zHp8JY0HnA5U1ByNrYf2zvq+hJBnMU7vILLmc55Y/+hICocxogrwrYPLPAYO21LW3NY0UM731vY89Nj3z5tjDy5QEyF3W7DVIoxhc0AXK0yifdMiKWpscOWYvt16HucKP3G4aM3SWa/ZlOy6xxTwoWAF6WocLc/E1MinydOd0c+Op64eX1HFuWnf+Yr7N59gdXy3H+ChbHTrhxq3DEr5GgFthdDh6sPn9vH9YGfXW20ITiSFk7HQu7ri6/vB6tKh7WPtTyIoHQCeMeUC7gKNJPqbyJcDIHvfPeW2/2ezS7xE195jye7Lc2aXdwV21unooTeEdrZo44iEDoY+lDPBv1U/zy2x/bYHttje2yP7bPb+eLM6erExc3Fp36nKB9/7WP+wv/8L3D34u5zeLrf+Xb7zi3FFXKXUVG+cfUXcF8K/Bvf/HcIOnzej/cPbWtSbtMn3+b0nb/L9PG3iG8/QtP0eT/aY3ts99pvSu7NfJgma2XVg5ZoKOBNes2JkKIFwVqYsYFPWmv0tc2Rc+JbaN+qyXRxpBpdfm4uoDrOh5M5od7R9R1931E6o9BOKZJjJmoixlgr8wCJbIaB27dnbm9OlFTZbsQqmjMTqg5NjvGtVYaqmqzOs2dbLq+3yEs4HRO5QMmRVv2MVrYLTw182ZvFlEnlRMy5Bia1BtRqsNHLArCpVYAGRErzzw/7EzGmSpeuS9/VoNnCUlWZg/iswEEbQ8FSZIvT2YJ+LXB+77Prf7NybmWRVvPOU7TKQqkxygRxuOBtLCqleLuKljJTyjun8xivA/itmlRm1NfCbGSU8taSNor/9qwW0DMgkpvBV+3ddJa+quNgN6+BTuZEFzOwqCZ419J580xu8jx1FmtNRtQq5pmmujTa+1VouY51rjKBXdcxTVOtgHbk5DgfEz4Y2GO767m82pJjJDy9YOh7Lq52uABjmri5OSHO0XUDMRbO5yNOoPM2TsNmi+89t3cn3ry+w3nP9XNj7nLOEc+RUjJX1xd0G08sHvHCe19+SucCN5/sefXqwPEwMp4aEwHLny1Yr1YxKuIpqpSULWleHB6HFmPXipNJSpyPEyUbk8GpTORsDDvbfmC/PzGNmTIpKSrTFGdmIBWIY+Tu5o6iShonLq8ucaVQSuZ0OJnEShFKAnVKwSqS+01vFaQlm3RWcHgvdIMnFM/t7YlxNDrx8zmy2Q6czudagR0Rb2vdd5ZkRywRNE3TvCbLVCw52lqN5qtmSqqxqWLsOypA37O72uGCR0vEd47QC9fPnjCdjtzd7UkJhr7De0vEGhi0rcz7YL0251uwXstILnYzLQYaw1nSvOsD4/GWaUqEEBi2vc3BonTBVVmIxFirNJ0TusESQKpWfR58YH84cTyMaDGZgZCbZE2TnLMKaB8sidP1Jr+BMwa20ineWTW2SE/JifM5Mk4ZFz2+s33ce885tfcywKJH2Aw9z1885cWzCz58383ychI8MY6U6Yi7Tej3J97u3/Lq5RtevXqD66pkDxVs1HuGYUPf9/XnHbvNhhiV4/mE1gpp8crusifnDV0wqcvNMJBLYooTziubXc87X3jB7ZsTt2/29C92VpXv4Mn1BTd3exRBvfLi3SdcdBum/YHvv7zl1ZsD45Toh0DwQppMNhTJiHekPIF6+u0WTSZzcUpnDvsTQ3fJ4KGTKi9Wz22t5/CPSnH/2P5+WtsQVwyBWhBtbGCWoLo7jZYw7gLbobPEESaN0An0wFffuySXZbxcdhynkZt05qtPn1bmDEHIeCIZx4RnzIneeQaWxP2cm/8BY+90InvP86dbLkMAl3gdhfc6oVVWO11f4LMvJAq3pzPbTU/vjAHo6qojflD48Hbi6096OqDU1MIhZ375g5f83M+8x6Yoh0Pk9u2J3gvpMPLNX/oGb77zfV6+fcuzn3yX8z/9jwK7H3B/mc9zKASxve7tG8fHL9/yta89Z/A1oYxaQltNlvdhwsWp46JTLkX4ZJ84X3VcVsmmIgb6iimRUEQCK4GG+/0KDKJkB6esvJ0K287RSQLxeApbgV//b97nux/8Cn/zS/Cn/8yf5A989StcemeyccwwFk4547YdF4MlFbIIXg3k/u6LDd98c+I0FfLQ6tV/PBf7jHmRaufJClQiy4A4wWSXVgAFoSbfWqJ7BXKZ/9YmvH7G+9dzqUkupZggGUup897YY3yoDK+tuABUTXaa+ozeOcaYSZMxWMzmshiQQbUmoYtWlg6bb10vbGrSWWksINVvaH3CAlxoD11UKTFWgL6yLMdmA9fEk1rxRKlnjVb/pORc/ZoF4DTfT6Qm0Rd/QstqOa3AMUuSa/lvA/wsn1gVQ+jCxHIfWLjYKg/b7OdILYhxjlxlpB98cPZfHm5vDz7ZPn4PG3WvYMQB2vqxfqBlHXngD8mqS+71TUsmLifBwhgkn/r8Z31v9ivW153BUCzTe/U9oBYHLQxS9alRhJyKsfhIY0eyOXF5dWlzOdjmllLidIwGPPJVSq0YsKeBQfrBbOiUMzFGuj4Q+pYClVq8Y7ZlEWOIhcr0uoWhv+B0TJxPk0mC1+u62vENIN/+lKqh3Vg4VBWpTDA5KTkbECklmx/ihOyNpTjnROdDlSDWWtjS1mOFf6qxTp2Op1WSWRFn75Gz4tZrbpYYN9/N/LxscmFizF+izIw/KZk/WoqSs4G/tFRpRNeKCWQeWPtcXhLDuvj3tve1+VD3Da1xB2nAQvBV4s+uYYVMXd8Tx2ixGW1AykTOdp15vjRgnG0My1zTCh2rfjSs/GUR009VJU7jvLc6ZxvIvL85b+OW8zxXXZXQ7F03S1XbbUplmTcbeV0ERGWQ9c4h3tipoMYN6s/bntgWTc65goDcDNxy3pHjwpKsqkz9SLqI5kP0Dney9egqWPk7P/dtTtsTPimcMlkzKRdO55N9ThzqKqDQOTwdeQVGc96KWqYYyWqsY8Z2ZAxIDgMLeedxzljPUor4sMTdcp5wEkjJALSbXUeK4KJDPAy7wPXFJR44HEdevbnjdLYCv+D7OmdsnLvOoyrkUnDOMz47Mb44AcLxeEK85/X2W7x23+VdvrDay+v+I21mPrbfkaZQ0sT06n2ml99Fp9Nc5SzYvnKaooFPgzcmNoxdta1qh9IH6CqLmh39HlUlSeFy0+PdAg0VDCCUEaa6NwzO0TyOVT3mDxh6RcWk6t97MpBU2Y8Ft+3YzlYGD3E6n9liMd+1EQyJCIM4Xr85snnvkp1jfm5FuTmc2Ww2bEJgTIX9fkRUSXHizcsTkiPHuz0MHvRLv+HMXZ+zIsbAOI7K/mbk6bPBfAdZAKNZmYtB5MGVBGXrhYPCORb6XirAaLl+5/2n7CFZrS+tZ1PAzo6pFCLQ+4Xv1gtIhpuXt7xKtxyOR37qp3+CF5eX93wdxQBXY0rGeEgzl603QwfbwRNjIVkE74cP1mN7bI/tsT22x/bY2D/dc/f87jNBSqlP/KV/9S9x987vTYASwMuvvuTjr3+8/EDg16/+M75z8V/x0/t/5vN7sH9Im7Gv3nH4xl9j/8t/mbR/CyX90O89tsf2ebUfGaTkO0+KuVZhepRCyrokQLVSk2NVYQZcYQkiN5mvtaOzQjpYfKtWMK+CxwVtkd6a8C6kpDAZhfkUUwUwtArhsgQM1ZEmq2J0zplkU1EDKGGVhQrkykBkLBp2/5IBFY77kZcfvyHlyH5/IBe1MiJt4JqVnNEqGG3BSigxz8kAnSXGrDlklgUr2WjGkyolKRqUaZzIKVb9eGocvQYOhRVARGrftPFYAlD3mprUjNTsj7AEmrQiJpagur1/Cxo2hqNFzmD5+1wN6qzKUyrrSuVbWlJsqwD6Q4m2e49ZkyxN+sESFjIHUNv/vff4Chox4I9gjCVKk6JrAjUyBwllCey2+5VSn3n1HAqixrBk19ZPPeP87CtAUnvHGZzkfZXoKyYpVuUWBMiayTFXabwloSEARXB4utAxDAPi4frJluvrK1LOnMcT5+NkNN3Z+srXpHDOFgg+HicohRBOqCh937G76LncbQh9YJymOn9tbUvoOJfM+PbOzq2SUUlstgPbi4HxnBHJBoDqOrz3xEbH3+YjMksS2nhZgN2pI6XC/u6Ac4p3PTliwdfOIT5z5XZMp8x4OJgcnHir5tM8yzpaJwk5Zfa3B7R4vDgOTPje41zEuw4UpvNkQAAfKFro+x7FwIQpTrbWi2MqVgXch47NZsNhf7L9TI3tQKuMS2msDM6qYRFLoDo1WYLj4WQAvkJdSzVQLVaxavISBpYydjAoyXE8nHDB08WM92LjmAs3b++YTpEULSGS8sR4N5LTAtSzOVUwRrRwb320UFRZgRtLlRRw3lNEyMnmd8mOWAo5W3DaEhdWhZkTtudqk6uAftcz9D1gFdxdHxhPJgeHLsndNYMYeIIP9F0HatIbthVVORqKAYpKQbwYk5pzCFZh7AcL3Jcy1aSNrRsfPP3gGXoPEkk5U0TwLtg6FzsbxunA7d5zc7hjmiY0RAPQOUFCoORAVs9HH74lpYQPHk0juVhi14e6p2c7Q/CF4+nMsBnoBwNzqSqn42hMWMHx8vUtp70BvI53kSlnLi47nr3YkF0EAsOFZ3fdsQsdz5+9SxkCx3Ekl8gwQAg2FuNZ6Tcdu13POCZShuAcYSu88841bz56y92bO45d4hvf+g7fevmKn/nyNUNN6Mt89jwmFH5nW0uYN3YAJamgBVxRXt2eOMTIT7z3BPEm31fUE0tlamkhZFG8N9BrxlOcMPQ9L/qA87aukxooOKgxJzhV7k4nri929BXka3lC+YHDbimIjmPMPH/SsekC336V+P4nE0+/uCW4dv6uGAV/QEvA3RR5sR0IJBTHBuFp8Lx8eccXr19YJXA9A3WyPSLj+eb7e/7WL32HX/3Wt8nnG16//pgPPvoG45tbDtOer/7BL3I1VLmRz+hzx8KcWNQkLThmfvnXXvL1rz1n21U5KSZ7H7XkISKzIbzkNAVP4t3LwMc3Jz54C19/tqMS6eCBIQTyPQfv02CGBvLYSSYEz40W9kmrVJswTcrLj44c9nv2L294/eErXt19xL/wL/4z/GN/4A9y3feEardEhf1ZKUlwpatnbrGkdVEuLj27AW6OmdNVRydK94OH6nNt4gXJOifoFZnBQPUTfEoi695vmavxxTb5lf3W7Euzu6QZuqvv2se0sufUv6vZGnmVhG9YkcacMssKibFcVfdnTj6LMz+oVKYjlmMYUUu8nw4TOWWmmGfAensekCpR1P69fuHVj9qDqS6AreYXsPgURTGQVGUSWaN0ZiBU/f9Dn0Gb03HvZ/dGkeUFa11+S6g1QMP6ew0Y1X68Bh3ADORfLi/NQZmff0n/6fwZWV1r/u2DROEMZFoDMGg+3Or+7ZbtQRfk2fLys6snyzA9GCudASZr0JDMfscPk05ZpL3sPvPYzD5YmfurlOV6rTRIjFbz3hrSBwhl7z2+t0T1GCcDrEStYPcGCZIqp2PAeBSOembYBnwI9ENH5525xDM1bQXFqRiLS8po1ip9lfHBkZLObE9ODGQyy5u1EVoWKqvutJ8UKxeJJWLMOAFUSFnxCKX6/JrhVAtAnPc4X4tO6vihYkweurDvCMI0Zpw34E9L7OcKtHEqFIolo6WxDxsjrneh+oKZ4AMhdGavVlCNuYUmFWluZZnnkvmt1X/K5i8ts7htRLV3GrPTat6p2ppXVTRXMJq3Ioycs0luZ+tLV+dUTpFSZZlBZ/ak9UJc9jGZwxcyj8sym80PCTjnaxym+RqLxCW1EKdtQ8bKLOBcZSK1Mzx0gS4rOZZ5/rZnsTXaZLZ9LUZSSs5oamtksQVaD7UiCZFlbTjnyJT1xmr3GgqusTtpMXA/QtxOHJ4c5nmZtVgRS46IN19XRDBCaYdzntubgxW2BG9FLCWTSytQ8lX2zeJDKUYQj1aGI2MBq0wyYeB0HCs7s/18OozgYdgZJ6QrNu7OCcfz0Vawt2In71scJtN8JxHoerN+prEyZXphexHgPNj6jZFcXvHXXv5nfKn7Oa42u1ks9/4O/+hX/Ha3EifS3UtO7/+KgZPqPM0FUlG8FFIq3B0jT663NDPfjv1W+NdO51kcd76+OOGyH/Cz3Wxr39fInQM0F3Q+N+6DgR+O+BLfdcboTWLbCykLtzeRMQQ2/WIxfPZV1teDWKykwddn9xhb0P4sTFnZuOVaosLgPV3nORwz337/JR9//AlOCqVM7O/uyHFimkauL56w2y7yhQ/bfQvCerVzgZevjia52LViTcXKLjwZk3P7LKCSAN4pl5vA68OJPmy5WJ3Hgtk5qkJjI1yO/cW2rVDdmVEpZuU8FZOBy5nbtyM3NwdSnJjGiQ+/+33O5zt++qe+zrMnTxi6jiBWiHYeM2kC2XrUmQ9VBFIFh17sel4fJsbUm1rkY3tsj+2xPbbH9th+pBaH+Jk/v3txxyc/+cnv8tP87jYVpbjC8/efU50oojvx967/PD+1/1M/IJb72H4nWj7tOb//93j7V/8j8v715/04j+2x/UjtRwYpKVa9SPWfLBmfKyvN4ow1NhjnxAA9zCE2C6Y3J7oGA2enuQarjD5aW/xwdmZdrfrRmiWzIJUFWqbJgDzGJhPm59BcQ7YFUskGrHAOJOFF2W4HthdbDqcz59NYKckt4OWdVjCScNxnjqc3zCw42u6tNLm0JYDaqj6tNXksdQ4tjfmHCmCotPw1iVKykscEFWwkwSjMvSg55jnA2BzjFWlTBSEsgbl7VYfzGN53mr2XGhyu1aVZjQ2oBYK1SaaZ4/oQTGTsUUtSTsHmSG5V2DZZnApFLBA4B2FlpUZfg4otaNgYrqQBMJB5XNr7zzJSqktVZgudzQCRluOwWeakUraLGPvIKljTqk7nhFjr3NV4rfu1/X2damjSbrXz7P3cMsdFjO4+V9CEN+qtBUhTCtM0gSa0OHKCkjvOpzOpONLUkVOgGzy5CCXCuDd2Hx8Crg9z8N+7jhQnFMd4SKAHCJ7QdUxT4nAY6bqAC55pnAhdx/k0Mp5HcsqgntP+XAPvd0wpUZIFXV2NVFuVca7zwOruVKvESnYrljBqBWvBFRBXyBjDkkX5IU2RUu4QLSZbgDAMgd1Vb3PlDKqFPNn6o0mRFEWlMI0jXk3u8fpqZ4kQqawDWSkUJqKNRZ1n8RzJxVifJo3oxp636z3jOOFwlGx7jXeOVCIolSUOAxh4bxWvUqn6KZZkXM2dlvQp6kjF1piviKtUqfaTWhYzdF1l8Cnc3Z1IU4RirHHUZIOq3FvnFqQvJm0hUhOkLelme4L3DlFLYISuY0rGquB8oO88OZvcmfcB76oUn8A4ppr8qGuj7si5KDEnhELRwmYb8Fxw2kdCCOBkXs9dHyBHDGvpiDFV+bmMiAXunS8ziEYRXHFcXm0JwSQPxjGRJ+F8SpVVQ+seYVXHaEJTwmlLdHuCc3TOBKus0FyYxkQskUxmGHrSOeM7OJ8zvuvpNo6URmKK9ENPJjFNNhe2246inumUiecCecK4Tjx3dweT9FNPKcqggTgKn+xvEfFcXexQCufjnm57xe10JomSzyPiPG9eZV6xJxdl4xxd5+m6wDD0iAjncUKBy6sd1093nA4jtzc2PzaXGy53A/vNhjJ54nTi+9/5Fv/3f/vf5X/6r/9P+JkvfplwL2XMg5Pgx6M9yJF/6hF/5CfW+T8VVFOTxetfy/yRT93jN04f//BPzbO4niE5Cy9vD/iu46LvePX2RPIdHx9OXGw6dj4gqnT1XHT1nDQJUgPdejVQxNZ5pPLjZAEthakIRQJBTG7tOgwMOEu+ipLFEmxmd336uUUyqp7b85ntRY/zmfe2PZ987y2nFwO7jWJ2zSJ7ds/IWbWYClcXG3bOzcAJ7+DrP3HF9PGeQ1IuOpZkine88yVjhfro/bf813/1b/L28IonO4/EPfvXbzgeRuKQePcr7xjAsT3Bg3e5Pz88XpTj28S5FK6fCgHbg724moQR9jHig0O8ZxHTtSpwcPQdvLju+WRMnEUYZLlXcILTNfvMpxN1JnBZAcco10F4fUh845MzN28OHHLh9oOJaUykkjiNI+df+pj/6OaWD/7UJ/zhP/JzfOnpO7js+OiTO159lDjrmRe7jt3Gzu/X58jrY+RqGAhJ+Obf/YTN+AQnhT/8tSc/cJ5+nk1rsh6Z8980RtF1L8421WyTQUu50WzH+ntY5oTc/8/8+2axCRUINM/jhe2SBs8QK0DIjU1p/lyVFqxAf61nbKgMgTkbc0vKjVUTxC33KdnkpddgGJEmVDg/6mwjz3nF2Qa39y9SZru/9VkrsjCb3oGWxfeCyqTRzdJXS2r+QX/N/1ySbQ2OsCw7Xf2m2iJ+sU0aSAEe7O2tKyrgoP3dDHt5+Bj1O7IexlkCUXhoh9f+qWxpbRyRBXB2D08kzU6qzKgsLFOy+pCw+KNrj0qk2vja3mt18c/Yn37IETefVauuWiui1cuW+aNOHDgrlnEi8/19lTOPKUFNfNaU88zCmSaTjvWd2WCmqG52mfehvpfUfjQwfkOZpclkl0MfSNmYiboQQIQpnfE+MI2VKUkVEW+guaJVWlgx1qq64ortua2gyTmpQBcW4Ec7w+oYUYxV1fA6mVIWAFdRA4v7mn2XyqzjPLhVX+Sk9R3r6NSBL5qhVDl7CXWtN/afhdluLtrRKmGquoDz1UBZglA0I6yKacQhld21aKHgLC/tVutpTlAvc6GexMtabetzniMKlXkqZ62YNMH7QEqVjVadFd+0+bWaiEuBkpo9u/J31zJ8PtQEvRrYLcZk7G1Squx0mR++rdGiFmNAGkOStgVcGV4TdZhNVto7KPbstv9bX1oxVPX7USsOKJVBufqcVhO3Xm3m+/eDq/PFwL7jmGZmKaixnCC8+cJr9GVZ5C7nOIVZX7kU1EFJVkBTUJwKTSNKa1FS13uurracz7Gyi3XkHI1lxrlafOOsIKpKaat6SlZinOYp6b1nmrLta1rZp4Lgg5KLMo5Tnee2buJYQKzwZAiBvu8pRQhe6Puem5sjiprUeR+qr2bS4iKevhsol4IPG/I0QlH++id/jp86/XH+yT/wx6u0I6t9Un78XIqHJurfrz9RrzX/0UyK9X4/L9LVv+e/f9a1asfd23tsruXjLZoT081H5LvXlOlEUStmMDtTyKokNRbqnKALHbEo4zmy6Xo8ajGDeVjqWTiDuSuTmwjdyoJwohStEmBVhrFzbj6XV14VsvrewwNesOsUMfuoc8JO4Hg4c9UNdZuT2cZZfJP7h10xlDWbvq/+jP226+Dp5ZbTlCldmEFzSZUSBLzZ43c3e86HvcXM8oTGaEz/Wthc7uiHbh4TvT9bVoNlu66IUFJmioWnzzfGSa8tZm3roShMOaPBW3HBvT6zv/W9w4+BuJJ0a3ukd561p6qtn2v/FprUngGHAwbWvTslDncT55LZ9ANd31kcB9Cp8OaDl/xKTHztZ3+Kd5+9oJPA4XhmPMHhMCJeGS56eu8Zi/J6fyZ0HrJweHPie8fJgIuP7bE9tsf22B7bY/vhTeCb/+g3+eovf/XzfpLPtU2b6Z4d/AvP/y3++Cf/Jk/jT3x+D/V7tFmRkuUqp1ffRccTx2//IuP73yAd3s4srI/tsf2D0H5kr8Ph8e5BUBmtZZxiCehiuujirHJXsUrEIjIH1py4FatSQZrMWQs0V9rzBn1qiS7wVY6BytIkiHhEjaLaeSF0AR+EY47kYgE6J2LU8PU5vXP4vmfoPZtB2PSOrrvgpiiTRFRNFqGIwwVqAApK1FoxWR3GCpJyUgiOGkSzyjplqchdAtxSg095fjvUKuS89xSUlDNOTfbIB0fWRC6Ji4sLxuPIeZzsvTGJI6NYd6haQK9oRpuc2xxVqRW0dbx09XMpzirsqnRVzFbxqo1mvUYvFWNjWHTSGz26Aa28rwE8xUq86p0anToIU9K5Tx4WayoOlYxzZakiF6Njp0piaXXNjQadmsA1xpnGTqNGKQTia4CmJnBWgXBQXA1iNFkCnRMgVUqg/Z0yM121YH1rs6xW/W+LubYQi1Qaf5P2sv4qBSzeKlAUVxzGSGaSBz54QmfBc+ecMXT5AhoY95kU1CTIdgO7ix3O9YRNBjUwW9HCdtsRvCPFwtZtrYJY1eRIioFVitiAbi8uyLlwPL6mCxv2dwfOR5PsCq6Cb1xgigktYY6rgYFUxFmVpogSgq/B3ow0yqNSLDkn1HfvyFkJGigUUqIGna1vxpy5uOy5uNyhuXA6TcTKEhU6h6oQp2hyClksFi8L25rGVCtTFZL1q4iwGwZysSoz3zu0CDEq/WbAOeF8iqSpMGkCYWZCwKmBoEoLFLWxg6wJj1/mjGoNzgsmr2BJAqsurolNGkuC7WMtIC8V0BNjQg9lri7WBBZlsmRiKjrvLcaglC0p2QCfLUErBvTLWmaWpWG3YXsxmAyFwO3NkZQ8KUbiuLCclQKh84i3RJLmumjF9onNxUAYHKVkxmOk6zpSLKQxkZJje/GEq6tLjsc7YjrPkhIL050ltHKtyneuUJzipQL22poqJhPixeZr1wdyKhyPZ+JkiYHgMt0QkIAB22IixppYECiVuSxPtu5jVIgnXOeNmWgqOApTyYQ+0HvlydMLfvKrX+Hb3/sE1cxmM1SQWUGcJzhhGIRh8OQ84jLG1jcWYkrkFGsluVXT912HiHBze8cXv3DNi80FWpS4P3N5cUF46ghOGc/2DjXdxjtffpcvSuHF9Y5f+/WX5HIyAEmAw2nk+bOnfOnLX+JwyFxfP+XqyQsKO06xUIojDB3f+cY3+S/+0/+CL/2r/wpXwSHqQTLwY1wS2bbY32rC40Fit/2sJRnm86fF2Oe/r+Q865caG1IBvIaaSK3nH7Y3TPW5A2osXqKIZooEJDjeeXZFEcWh/PTXXlCAsSRevdpz6wLvPd8xzKCHyrSGQ4qiPpPUo0XpXTvFFY/JqaTiGKcEg5AjdBWg0xKxJiTnf4NONYYkWwOeQOZy69mS+d6Ht2y/esXWFXQFfKrcgVVWwkBWReF0Huk3XTXjFrnWfuO56uCwnyjPh7n/9zHz5jzSE3i7T4zHiXw+c/KBKU6UKTKNB7ZPL7l+8gQvS7W3SdyYHdBYYexdjdHBI7x6/Ybdsx0XXbAEsqyrxAu993y8P3C523IVPB0G/mocIiqOi82GD44nYsWwq9SEpBTOU+ai7+gUolFyGPxJYEqZmzEhziq/t3WieR/YDB03rucLX7rgq1/yTDeRjz/+gP3pFWWEj7/1Pn/n6m/w9Z/5Ct177yGTsN0NPL0e+PAE2gm+c2QRzjFznCLDLvD0asuv/tod/3V8xRd+4oo//Pe5fH6nm6s2glRqqnY2KIqozAwhdua2+daSxS1V3kAoi1xc+9iMHZCHc74K4NUz1qZooRSZE4uCAT588CBKyvV+dV4sNzLfQ3yg6+xsMDke84N8c49oYKv6roKd2bowfrb7WtEDgMwArbZnLW+iy7NU274V5M9JLRb2xAb6MEbAgniThKFJ0LEwpDTj3FVDXVnGxVq1AOuGOYP326+V2b+bsdoz08+ayWi+1H3JF21j0/69JHrXdrWmxc+A9biU1b6nS/JTqx9w7zUq6KCy12ndw5pvtgA2qOM6Px4NJqd1L3JIZQ5eP7N8RvJ29eIP24JOW3WGveMMtlpdXrNSnFY/h7oPYj6omi8VvJsBOg1QJQgpFpxTiiZcLlbcI4oLrjK7GstOCJ35FqXQVaZOs3Xr/NDK1qVmWJZciFMii1YpsVzHP1df3M4h0bKs6XlYZAZZqLr7wJFVX7duEtcYepZJNDOd1RkRvGfY9GjJVfKt3rKC0nQWRFrGoNkCpTIbppTxOHIp1fYO1acrlSXIUSgmHe0EjcYalVNmZtVVqWCy+ZWrO23p5ga6mv1VXQqOYIm7qFZPWOtsmjtD74Hxmr8SU1pWRtE6R4wdiMqW0daWXb+lwKlrd7lum3haC4i6IdhJqoWUDaSlqqTU+njejm2fz02yrvow3lsyvfrqKZlsnzHlNjCkI3T9DLBSVaNrbMVf7exo60ZtPSCO4O/buSVn0qRzYVVRAzrlOilsbBXxkEVneb8ZO1HPKlMdt72z8mMhUiUVncUNfOgqqCQz9B05AdEKeJqPWKo0uq+FGCIWD8oxGTuyLuxdrRDLeytgKCURE+x2ga7rEUplLzO2VZt/JmWbxgmc58nzKy4Gz+2NyRr6IPS9Faj03cDlk4sax/OkLyTGTeTiakMXA953pHLg7370V/iZL/wcX3jxlEU47Mez/XY+2Wdd61M/e3COzf7D+gBffUYVynQi374kn/fEm49tvUwjOWcS0AkLoKfuDSrQBUdXz7ndJrDbmI0xRs/d7YHLyy0+rDyAaiPYyi6Vodr8lNXua2dsdcK1glunVBgGz2xvPXSu9GFP2Ce8h95VAJHA5UXPJzcH7qaOywoWdKtvVQthtu0UiDlbHIp2S2m9StcJN7eRuAlUTK4xiavndE4c3hyNBTorrihIlZpMCcRgzlLPLq2mFNTt4wE4uz1gipmoxooqYHLPq75wYjbnfozs+o7BtXdZPiXVZ0nN/hKde9VA5mEublApS4FJUW6PE1lgMwS2wZsd6eD6smfbBSa1YuJOA3c3R47nPYkzGpXbl6/55GrD0ydXbDcdT662pAFUHGHXE3obDe+E68uNnVfZsd1csB/PDE9/XHlZH9tje2yP7bE9th+zJlB8+eGf+z3cPvnaJ9w9v7tnMu7Dx3z78i/x9M2/9vk92O+hpqrk/WtO3/tl4psPOX/3l0AL6XDDo5zbY/sHuf3ocm81Ch6Ct+oYVUQsMAeW2NeIBaeKci+w2oK7LccgUiuL3RIYq8Gzh2w91ApD74Su63HOAmK51OvVgJ+rMnSh87hpxAmzdFLOtbqvRFzo6DeBi90GpxBjJgyeyydbbm4y52MENQYVXSUqvJdZaq3UoEMXhC70XFxuSSVzHickB3Kp4JbKXOLckkSJWlYSD5VlRhM+GIgpp4LrDMigBbbbrQWSB6GXwOkUDezUKkxpwVuh7wcKQowRpSxnQmOFWiUJqP1eitHXqxoQrawSQFW3ahmKJZLLnHABS162kLPpwlUAlQU8vIhV6RUDYlGDbUMX8MEoh3OxqklLMhQySkoyVznP86jYm4mzoExp4IoarTaZNa3zxqovvfNW+ReqvF/OlaWpyg24xopVAyC1evL+XPzBIS8RcGUduil4cXPQsEl/ZM01SWVrI5diQBstxJp06UNAvH3XOWaqfgP/eciQorDfn4HM7mKgcx1vXr9hnCYuLq5wPsyU7zbemTAEci68eX2LE4cPQo6FGG3OT2pBm6EfGM8TcZrI4gh9j3eeVJ9VnC59VNdryZmpTHXc3cxWlWNGvLEQ2bsKvoLaiha8t+tYxa9VcnfB8eUvf4GYzpyPI/tbY5woaaluX0B+tcPbHMEkKY7HE/3QVcBw5nQ0sAzOwj0516CcE/pNTymFFBMxjog4k02Uliidw+w1uG0AoBhbBW6sTEbLXJhXSEv25LLMJZE56Wosa7bWnLMgv6u/N+BdqYwTNalQk2V18c7JJG377UxzknA1GeScp1V+S93HcqzSFnV/bomhetmZkcm1lJrAZtOz3fX4zualFMeUC6cpkWKmRAMLnrjldDqQ81j3NNvnQ+gQcaScavDfkl3iPeKV0Ds2240BUUUYp8TpOJKSY7PZEHPicDeSDLWG846+cwzbHqkybCqCCz3Od1ad7N2SFHJiQVlfwa1kSIUQhGGzpR8GTvsb7m73vHr5mpwK59PIOY448SiJXIF2oRP8sMX3AxITeRrpeocPwYLLMZOykA6FvFEuLjx937E/nPnSl5/w4vkVl5c9x7szx2nk2Ytn3B4iJBgPJ968OrB9Gnjv3R09ns1my2Z7YNgEehcIzqMp0fnAe8+3DJ3j5fvf5/b2wHS6JWVBzg7xwt/65V/jv3+OXO12K3Ro4ccTqKQzU4+sAtK/+ausv7okflX0N9rGKdKSmwaqnhN3FZwjomQpFQCkJJydslmZsDkWxPj8pCZKcwXqeBY2o9DZUw4q9M8u+PCDt5yvN3SdAY+yClkSXo25TqpIK95hUmUmfmASfo5OBN/bvnW3z7iN4ymCyzUg7phTsbMcbH03AxmZ7bVzatKAeCQIv+/rL/il77zi1aR8Yat0mJyj0yaN2uRyFZHEMcMZ5Z3QVVBm2znNvgj9wPfuMu88Ea6M7IHzmJHS8+b1iZcfvOQcI+76CV/60rtMdyde57fkpEynkRgzE8qGQiyOt+fC1bZjAyC5WpzB+kozx7Pw6mbi6mpD1CXx6rGEC2KJlO2w5c3tSHiyNaaNouA8qCUiSinc7iNjUvJgcyWLEIsjaWB/Kny8H4k97Laenbcq6sM+89Htmd2zDWEQuiqncL2FZ5uBr7038PEx8eHLie2LF1xcPmN/N3AmoOPIN3/x1/h/X/xFwv9oxx/80k/ylfd2vHKJ9z+YOGjHoTJ4Pnm25frphmOCU0lEF+iC8O6Xnvx9rZ/fjSZVosM5Z4neeb1XC+ozWHiEJgv6sFVbrYE3WNh+Fnnidn1mkG9XWblKZYRtMm5rv8WHgC8FcpmZk0otgDCQvvlAIsaKqFHpNh3b3YbTcSRPqZ5BldWgAaqknt9AA9kZO0bHZtNTtDBOkZybjFIDCbRzv8zrWrUx+di7FtVKptLsP62yyJ6u602KavC44BjPcU6omqxtZSylytfVRPn9nXjpT5mB0TKP1exi6Gqj0XrV5gvemwzL2LealHVicP58HRMB+s4YC3MFPvggDEOP98LpHA0oUUCrD9NAcIukm92rqFJSrciYp0plmVjde1Z8nuWc3AKYmv05nf2GtTybtv5rNuCnkrq1L+stlinbemkBb5fV93V9LQVlCYbqqpNVDYi1zN8K7qzZaCfepNxQ+qHD4TgcDpVd1y02YtG27VuRR1GT+MVA93Gqkump0EATLgRjbsqFrNiJ2RLAM0BM53m6rP8FLAzM93fVN5rZc93CJGqxhAa4d/N8u7jaUUomxsh4Mlm70gAzyr37Li6FzQdji60+ttoamc5THaeF7WkZRmdgpaLGHDUP0TJPpN64FcAgDq3vk0tjLF1GfrFglvdrk2Q9r+bvKDS+DSfV3ypq4Mm5iEpZM1ktM1BmUGIDidnt2v7VfK269gVy0gr+snnVEvXzM7d9tfqH9ZXx3gO1yEiseCSXYozR1UcomshH84V8WMBFbYyab21yeuCdmwtnxDXGJ3uWacoVcFZZxmKqcxVjZHVirK9+mQuIw4funhy8VlBD6xddes4Ki5w3mewYyZNyuz+RciarFWyo2vlj711w3mTfQheMhZZEccZmHNSZXGKpbNfFvrPd9ibvjRDC/5+9//q1LcvSO7HfNMvtvc8510XcMFlZaarY1TRNVUOmm92CpAcBetFTC/orBOiPkZ4aEPQkQAL0ohZEoKEWiHYiu7pIlq/KqjQRGeba47ZbZpqhhzHX2vtERrGSAslKkmdWRd57z9l72enGN77xfZa2a7DG0B9GxRBsxnmBLOTgtEDGKjHMV7o+hTCp3bVRW8bd7sB6taL2ws36Lftm4LjfM06qSOwqy5f8Adthx0t5cjY8f2FG/9Vo5qE2zjyS/v+60tOAfLidkG8e7fyD6PwvZx+n7E/6PdO7zxnvXkEKGAF1VDdqz2zAY0qXU6z122OXmd6i4V1XW+y6YQpRY+5SOCVmthKzC1lJVb5TWVbdsmgoZqc4YJhgCkLdsOCt2DmWMt+827M11EAKhYzulFjVwOWqYQiZVa2K3HL2JT1a2ROVmGeUzMrXy55grp005c4jnv2UaTqHLXuVGBOrroGcmaaeatPy8sMXbN+9Z89O90XKxmPKiWgyRix3x0Bdedb1jHzMZ9M5KybhbjuSjSkopTnN4fOTMNA4p+r9SasaKjPvacq7En2meczEyqo9aXn/QwAJiRwSyYra2FdKNrQYrPd4X+Z0Ft4klTPUnaUWw+0hcIyCqRtVzUw6/vOU+PqzVxhX8YPvf5+LtiNbwxATw27C24ZqDnytIYlhd0zc930pePu2/vfYHttje2yP7bE9tn9pTcBG+1d/7letGfjqb3zF/Yf3D34sJvFnl3+fv337n+B+eRrCY/tGk5wJt6/Y/cl/Tf+z3yePPf/MJMdje2z/mrVfnqTkVNlF5d3V/sDaGus04BvHSaWiF+WeAuoXIE/jW4MkVfawdiYoaWVaLtUpzs1e3FLAHEdVga88m80a6ww5RWJU8oEkzpQrMjEb6qambkQVZWIk9Wq4IQIhCGIiKR6xWckSF36Ndb78J4RJySTWGqw3GKfBaF1VxJiJUUHQpjKsuhXPP3hCdpGbux2HfcKMQUG5QryqK63kjDmVih8lTs22RSJZK+dKgkC95A3OaZVhkkC37hiHiWGcimG40oIsUlRVsiocLBLvpdLQocdMGSkqbyfij/48zlXJea4mnoFKBe+Y/25OoOacjNCKzKx2UgWcz0krSH3lFhDae48NGZsDzsPLT1/w6Xc/Qlzm8y/ecHcbyZNgTEAkwRAWaytrzEIEEYFhUBl0W/oKogCeWRIRBeAsFmNiMk4czvtFDn4GwbUf2yURZM/AyPO22EEsANVcdzZfwkM7pVnyfwbOT58zy+Fz1mrW+fySElPOGGfx3i+qQHM160zWMyKMh4mUI0YMxzxy2I2AZx9HhF7HkrUYK1SNKjYhMA0Ryab086P2dQFnM96rDYDaRqhykY4vgzUVIrG8Z732XIB4U5JRs8KGSMR7j3GaCKzrmmN/JITZCsxjjaWqbJHpjzgLiUy79lRrIY1QmYY2w27bE8aIZrhOFcaC2pmcvSVySiRjmCi/EuinQSW5rSUFrfw21up5vaNdqVrOcOiZxlQqc+18SJxhGbcAxllM0mr+XBIPs7VdTlLGJmXOKQpCJRHr3CkJuiSeYiYZBbSsMXRtTeVr4ng49ZvShxyq4MacjOGkmlC65ZKwdRZUhUornitvqauK9/c7cjLkHDCmEPjKOJ+TbhaLWNSeMCViDITJEOZ7FqvkgUkBdEmqYFK1FZUv/beu1NptUkWpLJkcEykrUdF7T9c1CHr8ccjUbYU4nXebtmEaJvaxEBSGhAFVHKsNtXda0egVcI1J1Y6URaX/iVAUJAQRvySErBHECnVXg1gO93vimBgG6IdIDIGchRhn+z4ltAqOpqmZxghY6rahXVtymAijAI4pROpKx3lIA9avWV1UrFcXuKrmfn8EZ9jtj6yaFV4M63VFfzhgrdB2la5xKSjxpYaLywuwlv6oClLDdCQZz699+gGSR1KsoVjp3d3tCTGx2tS073/K3c0XfGf9fTIOMRYns9XRv/r2wKLLnP1lSbzqOFiSh98yF/+V7QEZSU5Y84NznqVWRL8zV9CqqIGUq1EwusJiJZNMQrJlyJbrfqJ1hsvK0liD4JiyWg54KzQGXFEbwhi1uKRA3qJ9qmssn3z8jN0YGb2l8V77uDGkBMcs1NbTOItqbDmsKAFR5os3GWMyRhzb3YG1a/VeMApOl3N+M6FwSpoYyEmVYCgUUJNpW8uLZxekBGBJlMTyQj9yIGpbY8hMU8LWrmg5LuleJeUKYBxfv7nhux+0XHS6vgxBE5fdqkUYMfXEb/2dv0XX9/x4GggSwGZqZ3n75jVf3b9HnnzI6693/OmX1/y93/4edTMTy4q9L5YpGP7kz9/xdtvza88/wbhTVxJRRaVcnuFV5ak2js/f7rh4suaqsdSZRVVlf4T7e+Gr9yPuyhNDJojlps/8+Od3XF6sWbeGpx/UiFhChgqBVc2TrsaJMEXDbRaiGLLRfXAWOOI5Yni93RJdjalWpGARazBj5sf/6I/4+8Hw5j/6D3j2/CN29x1/9tN7vnx/xycfbWjqGsGTBYYx8/qzO754955NcGRJ/I//l9//5x8//wravJe03i1Kk875hVgdY9LRJw+X+NnOSQk4lCKAMuQLWUf5vLLEH3NPl6yWNs7pemHdnGSa5/dQktalqj0nUlALoa6usM4QQywWqJp5yhkkZFI4KWiZmAuBXvcFKRcZS6OJ4jlxPqu0KElbCyoqXyw+PdjB0vdBs1fz/ZekNFiyZFIuYyyf2R6XgX1K0Sr5QfejKtHhrWOx0ZqTqHa2SZrJxdpHZ8uo5YNWYzy16DqR/+bU/rwn4uEf5TOn45jlS6bsZ/Sas5ToZb40kWVfOl+uFCUuZwzOG56+uOLiagNWuLvf0feJHAVrVLFnOE7kori65BPLhDDHYQ+KEuT8juXsmVDWqrJOLeoq8z6PJV5SIrnuO89ttL5lNJz96mE2fHmDhdR9dnknZd/ziy3PWOMwlfFSYvtpBTDFilPjcC3WiDEt31HSnu5fZ5tm5+1SzOGK1dP8H6J2zjEqwYR5HbVJ72JRNtJZ2pR3mc/669wPFzu0pVOWWC7bZc5wzimZpcRu5abw1dJhlriz6zwpD0xTBFFl2MontcIu1pLne4JlthBZ9iCSC0m4zDfL+zUGWxTYZpwjJd2fmtqQghL4Z/Lgw02XWc59Is2VoHomkJ2f68EVzvt9c7rmMzIEIgvxM8US71l3UkV60Ivm/nL693yehTg6k5KMbqu99wuG471jHIYy785z3AkLOD/VcgxDIRiqIraQVQUZsyTCZxKBr1yxQLNn67euF/FMnZVCWFP1YVXNnfv0XNjhnCMJxFBi16IsZY3GdItSGootCOU6S1+bSX1KfsmkrHGim216nSqfZDHEISIxc/X1E8xVIaTl0zs7xxJqrzDc2E9FFVzHbJxSIcllnHd0XUWMQXG4SvGbumkYpkgG/Z2ovXXXeGIKDH3UUKgQuXTNiFgrdKuOMCVCypATlalJZCpnuX+6BeOwRwNWmIaISfCq/j2+uPs9fvjxRzjri5WtfdCz/1W3b5tRz39hHvzAPOAV/XNdt3zjH2dT1YmIdDqiElLMUiAgKZKHPeP7L4m3ryGGZW8cs+V+CuQY2TSVKhxZR8iqyOmsoa1cIaWcdCTPFQ7nvzWNx3kt2DKV14JNdM1MGWJUsnzlT+uCTifmdKQysYspZJsz0u2s5Ha+Ui1/P5uDOFPNL7qD1K1nHFOh086K+meD4WxOy6W463S/iw6mkiwNTFPAGCG2qh47TVmt210kimBMwjnD1PcMxwMhTWTR53nYHXjz7h3u40+QEX7+6pYPXz6jqWuslPV1vrpseHd95P39gScvL7XoiRJLlL2KqlNpTah1jm2f6KeJrnM0/kQCyyHT95npOJCGqsw7lmw820NAxLDqPKuVIYolTSyE0CwWRlnedpbSD8pcmICQLMcx0I8RcRUZR7YGmwwyBF79xeeM+57LFx/g3IbDwXDsB64vKlUXN16vJwuhD+y3R6IExjT+VSPksT22x/bYHttje2z/ApsRw/d//1cTy/ur2usfvv5WNak/vfp/8br7Qz7tf/uv4ar+9WsP8sgpEG5esf/RP+T4099Dpv6v8coe22P7l9d+aZJSKpkCX0BCMAWkskugHGxUYGUGjUTl1gUIxUJMJGOyxSQFpVMqwGbW7zjjF4ArRbXhaeuabDLjeAQDzjqausKYmsN+YBg0eDLOQDTUdc3VkwtWXcN+t2cMWySdqqDDZAgS8Ra6VU3KQn88AqoCk32xSSLR1hWXT9aqGGUM27s9YxhxOCRXOFvRNA3d5Zqma/nqq2v6HDVoLJWnTWOpKs8YA/0g5Gzw4lX6O0f1bk8UxSclrAzDQM5C5T2+VUUe5xxN0zKlQJZEVXnqRl9hjCyAcl0piJiK/VkWBSNSPlVjLcBw8Z3PJbEzJ4EwpyTPDGAuAOeZ9dlMDjOGbyjKFCKQmSsZ9fveVrRdxfNnz+hWqlzw4tklNh+QKLRNR0zCq6+vC+GDYjulIKYC2XMFt/ahUhtaruuh36Zen6AMLYNxCk5OU1z63GyLMVepWmtL0D/f4zm4Oz+D8wQGc5asYORmUcB5gILZ07MQKcmqAqabNNsCnEhnMaj6UFXXxJiwLlM3DSFMDP0AQC+ZkEacrzFGE3DWGtYblXxQOzAhHgMhKDhZNTUpCGNQ+XuHIRCJU0asxYj6qNli+eZ9hZPMMAbCpAQ8y6zSY0j5BAabUrE9P7uUNFGhSlqaADGmQSRhLFSNx7mG508v8VXC+MhwvGN/CIxHA9FycbEmh8z+MJR5h9KnizrJTJwrYy6GqM/COkKISx9SW7mIc26pZB36gaapWKyDKGoCirGVPmdVlckCRoFztXko7/gbbSbAzUmV836UUsI5t8yFtiSZpHw2J2G3PWjKPUNdVwuon/NMFpyVJgrUN1f1nwOwBTSvK62yzRKRpEowMRQ7x5y14rkkoFKMZd5TgC6p19zyDPpj0HOLVvRa4/CuxlQQw4D3nrZrChlQE80uG7LThK/e8ymJZa1FFOkv64AhjCPWOYwzeOcRsaQghKnMp5Tksj1VVTvROW4KiWEYtVK+jFlr1dIy5UzME97UeO+p65pslVgxTXqtXqBi4nKlJD7nLQ01KWqS13lHWzsqZzgeesZRrTqtT1gcQz+SRagaw8tPL3j2wYbd/Q5rPDFMhDjw5u0OsuH6dsd6vaL2AQtcbTqcBPbvJ1IOSIgIDf10JKQDT5+tWXcd797uGSdB5eoT1/c3PLm64OJqxWEcMTZR1ZZhnOj3A7vX7/j9P/hDfvCd79NZVf6xciJK/rW2Bec/m2cXioCZs4VLwk77/i9x4Wf5g7MsLxg9ci5JPGfs+XSOIZLFESRjjVYyu2y1qjgLAQWNbYDbKfF2P3JZOaigbSpGEd7d7dndHfjw6VWx5xMuO09VrEdnlT9BSKJzWdMYfFXTT4nkoLZlDHqHyYb3N3uM9zy9amjLGpgXV9RZ/QSMy2wuG8aUCUWBck5az3B7Kvfry3GSUQBckySJywo6NKkRDURx3O8GnnYXXOD0VVg950xXUjUES8TQ1VU5V7kHUUXKZOAwTqxXK75+01N90mKy5Q//6c+5Cwe6riZWFoaBf/Jf/desEG7vrunHI8YIx+2RP/jdP+L5i4/5zqd7fvKHX3C0K37wg5eMnZK5G++KQ6fh9RdH/uE//SmhNby/3vGVN9SuKF9hCCYTks4fEib6Y+b6RnjzR5+z3ji6pmHMQkXF8f2Wn756xx/9UeDq4pJutaFZd5h6xbu3E/7NxNNnNd1dhbEV8yScjdrt2KT7i5ghoWpWOUWiGCYR6COv397QW09o1qRhhTUBiKR+4Ef/6J/y7tV7nn7/N6nb73L7emIMB/78wwu6zTOcW5GzJY2Jw5u33O+2vL+Hd9fv4FeUpDSrYdizvdVM3BHAiSWbWW1iXjPAOgPGLQo6czFDLiqcOZ8UF3M+JXMWQpOxOOc14ZMTM5/GO0fltdhhGgOg5GxdRzXZVpe+nRYboEL+z8WkxBZCsDWkmHQflyh7PB0V3qtt30xsGIeJmKaiMOhwZX9aW0/btYRYFBVFlmN5b3HekXLUtavEDc5VupeXssbPSbF5/yzovs7PVlpQVb7EbBlX4jl9NmqPZFIpMChWRAApC99UqVjm60JkWAgg+vTnTywfe9AW0geL/UpGFnLw6WOndcEWazLJSiiIIXHYHcg5Mw0jaYx6WqdxgSrVnJaUWXnlwU3IXFRQLnaOc+YvnT6mVnlokYGSGfLJtq4Qt+Qba9YcZzxs3/zJecL2wePTVK05HUPmY5brM9+IL+aHqsunLBbe1qDKqKUAZFYEOyn4KBGJojxpvaOpa10300w01/6glmcOk90SS80WYKkQ9hf1HHMqtJgJafP4XXbz2nlO7wB7prY0KxsVq57l2kEJdaYoLTmuLtfUjWMcj+SYIAthmjA4VctBi10WUgzn7/v0/kD7u0X0us8ETbQflQIGKcVFkpgLE9Lcx0rHN/MkJsustOyFzcyQOetkMwFt3jeftj7nfebh/HY+l4roWpNiJpZzOecWe+mZTKj2cqf5YrEqX3pjGb+FxDgru8YQSVEtp8/D4PN7EHNS4BI0iz4rMaVYOunZ7VhrcHZWJ9I4wKBFavM5l/hSzjGNcswFZ9KyoRzzMo8bG5d3dlLqE7B2IUAiqA18kuXepLyjOfia1djmwhPrlBxlrC2EDourKnKecNFQe8NU9ptV5VRxLynxz3uPQcqzzMTZ6ElfiRIEK8t6U7O56DC2Y+ynQsBKpBSLhR2sNh1N44hpomvX5ByQeMLdcooME2QSdWO42LRMQ+A4KN7lnWEaBkQqLlZrcrbIQS3svFNcaooDv7v7+/zd4X/O89Xlt8xnfw3tjECzTMHnfwq/OM3OX/3G5//Kc3zj0/OPUyFMSo5IisT9DZJ1DRpvX2MkYnIiHw/MqsUJQyhWklLW36qu1QatjIGcM2GcECyHKRGyqmh1laqXn+aEeUbRTuydqlMrL27eBxm8gxiFu/1At25ZVRY3x1iwfG5eB7w3ZANTBpw5M42eaUf6nz27Cl2XDLsx42vLylFwDsMUMvtjxHrHZW3wUAQX3fJUMxmyYX9MVF2tRCnmWKestxj6ogSeBd7eJlarmtvrI19//QZbKendGGH37i0Ha5BYCn/Qsb+/2/Pqq7cch0Q4TOyPEVdXkDcIaoVoC4kr9Jmff71lNx5I1/oM2tozk7yyqFKgYtqBaZrI0TL0gXHs8ZUniWBshc/Cfr9nypH3VUfTdfi6wrrMNEaG40DTObXTNL5sqChYrhaFGhS+XOpvyjqYRCeOdJyIFqRuIDSYUFTcSYRx5P2Xr9nteur1M5CWoR/pD1B3K6xrMMYpJj0MTMNAtomQh79qlDy2x/bYHttje2yP7V9kE6imfz3tVlOVvvXno9vy//3g/8h/8vP/FPsr6ezw19tyGMlTz/j1XxR3n8Txsz9AppEcJ8Ltq+I9/tge27+57ZcnKWUgCTGqSoot1Wk5C1k0kVDXHmtneWoNKF1lqeoGHwIxZqaxVKWJyg8rWASuqF6EKRTAUEAMyUZyrvBNhfWqlhFjxtvIat1inefN8ZYsmco6TFLZ+WE/0lSe9bplte5IOTONE9v7HeOghISuq1ita6JEnFe1j5QD3jvIWrNTVZam8WpLZCzrzYZhjBz3PZMJmhgPPevLBusdMUy0jUOyZxhGulXL5mrNZtNxHAbM/Y77uwPe16zblvVK7Reub3YMfSanTJCkwK+xBIlY70ljYhonVRFphBDkBI4Z8N4yjQlLYr1u6FrPGAZihMNxIswKMssbVbTalKpyKTZMSTirfD0HPs0vACJaWWtKsicxa8OcWyrofxlnhfZqjfct1hjevb3l9devOfQjx37SanIUQE9ZveihyLeLkl1yAVptqaKWucBLVPnCzlf2zYSCaIVmnuIJB87zUzAnYFVQ0kQB5B5YwM1/f4jCns5RwFYFDPQvs6qTKeCZKgRo5ZfBKjhaAHvrLMa5xRowZ1XXssaQJTGEsYwrQ9PWdCu0GrKtORwFqJBsaLuKrrN0XUvMWokpUyJ77SsxJ4ZpQIJW4nuvdZApppJ8UdDVOKsWirWl8go6xQyuqvTeMqRpJqdphdeMBSp5SYknMWaGftJnIQZJwjgUslHrmaaIs5lmVfE3/84P2O3ueX99R3CCbTN11XI4HnnRXhG+TIQhKThc5ocHKR1jsM6TRQgxQrGdU9KQzi/OeqyFGCYlxpR3bdCE8qy4hKg9gjEFNDOl4hfIWcmMJDi32LCz6pjkpf/oZZlFOW7uS1LGmTonmaLshAJQVuXCZ6UJ5+xSzT0nakqKRy01qpOlgS3guS2Jj2yEkCIxTkxjLDaJqdyPhZzJISH2YUpxtlIUiVgzE9cgl2u1RnBeCZjWAm2H946YAs6rml0/9Eq0aj0pGVUgCRNGdG5NKTMOp4p2a0tSwwriMpMEtYBIuSQjlMCntns6x4z9iCDkyhNDhGzwTglqmMic5zRGqCqVSp8rwp2rIQk/+N6nWBP46qefYfHUVUPT1Dx7+oR3t7eEMNG0Fav1BlJkOPZMgya8wjRhJsE6Ja8JkQ9fPmW9WRGD8OzZc67f3ZIiaIcJ5OCwdcUHH1xhXcCuLVGE7e2B8TDh2xXGThyPE/vDQNN2fPqdpzy/WPHsas3dTi3lrBXGIXC0B67aC9ZtzZOLFeu25nLVMU2Rccr87h//Cf+D//A/5reev1Qo+FdANfYc4C65beYJVJOW55mF8/n8lJCY27clGJZvnv1lBt61Cj+BN8WoFCaBwzFTG1g3HidJxw5FAQyrhJKcWVeODxrD08tLKpmVRqAWw7q9xDxfayKgn7i9mzAvrqhtViCaOW8ewToEixjBu0TXVkw56TpYrtURaOqav3h1w0Gu+PSipnFgxJ0UTgQ0wZsJWXizD2RvebHxdEZtJGdFpTLFk1ASTUKTJa/vBn5+s+N7v/6cF42C84cx8+OfXNO3Fc5VvHxSsfYWEYsY1VbKZIiGr3964Os+8Bu/+Yyh0TXawpLU7YfMH/7Ze3729ddcbhx/8mPP1XrDn/7pn/D69edkp9al97vX7LbXHF3FMB1wLqAkqMz27TX/8L/6h9TNH3K4OfD0kx/yO//kkvX6Ga6padsGR4tJ8MWPbvjs9RZbBRI1X336nE27IueKOEwMYUBEbTu3u1vGcaRxLeN+4LjbMUwTUlc8uXhGPGzZDnt8uyJJxzoLjCNZEtt3W479lrd3DV2zwVi1R1XiiiOlCQiQM8lYsli1AixJ4Ukcdkrcb+/JrdBePSelSDYNYXynJN9+5N1PPmO/7dl8uAd7we31juF4y+rZEV+15OCZxsS0vWUMg6qExvqfb1D+K2zzMFY1FLcQKWb7HiVKGKz1J+styYtNkHN2USFC5qS0nG39TvGJnlD/mO1AfKX7a1mIAuDrGuMS0xQLwUkvNCeU6FB7Vl3DZtORRWOh42FgnAKIKeuLU8KRnCyLXLHZNEatb0+qOrpXssYSUih7i55xGlS5xrmSPLYglpAjdVPTdg115RinQM6j9jGjhJKm1Xe+3/fESZV0VNl0VhAFUi7r72ydapT4P+fh5zmtWMVWlaWunSoqJt1PhqDP25zP1OaUzJ+JDTN54mFqcyZSzF+a30EhcCzvUuaDlnhC122trVBCmK8qtRNOifvbLSHmonh4UmDIZ9czJ61nApFeh76fs088uIf5Yo3IkhQ8EZXK+iXm4fEpEdR8HH0QJ+Wph930G80sA8ScHtQ38uSnuGQmPxmhEFDKr81M4D+pVBkKaU1UMVhEiWpqfah9LU8GpOyXnSqeGqv9pm4crqt0TxaFcYoMw1TUzuSkhJxON6dEjtm+2halHcAlJWlY3VuO/VSu8+y7zPdTVIYL4eK0e1C1IGMMrnKFYJJIOfLi5TOES26u7zjse7pVja9qUoykVDG9CydyD/Ne4UxFGMCo6pRI1rn7rOjAwKLSk3Mh/luj9qfzJ8zp2gHmOp553jm3p8OUmGF+gcaUoXFORphf/xlR4vzP8t3TOKQoZ80XfPq8dSc70yWKMZSCh/m7s6JIuSNbYpWkhQPzuNTAveiOpFL8cBYun97riWiwzAgy9xEt3LHGkLM59ROjP88C3njIRmO1ouQ7zx26frDE2jMGMReT5DnmKs9cX8+JcCSi83ySzDQGUlRip86H+u5jHZYbslbn3OWxo6S/pm64urpgf3u3FHJECVSuYlaqNc5Q11VRsk5FzdqUXZqezzVWVV+8w1c1h8OodozGIZLouo6mNoxDwFlP29YYB67xRMmESRjHQBZb1ju1iZcEV0/WxUrKUTXCOKbFWt4iTOOAszXrVY2IJ60ghkQ/Bj7L/5jf+/of8T/9/v+CzlXns+RfW5Nv/Hn+83mo/OKImZt58JNvnZLPvnm+UuhakMnDjun+LXF7TR6PpDipFfoY2LQN3quiaMhzUZ3OC8Yp/uIQ6hlnYy6mgLa2rJoVFGxuLIT3YdL4wdpiTW1L3M9pzjdW9yBTAr+o3ym51FjPzd2esG656DxuKVwxZ/eppKJ+zAxx4nJTs6oNnhPuMj+rIBpPzD8fgvD2bqDZ1OR1g3eK672/O3K7nwhYhpWlax2VsSf8oUwU/W3k3V3Pkw8cXWtZRNPPAsf37468+uodvs4gmbZtGQ5Hbq+vkTxhK0uaJlIaiHHG8yLGagGnyZa79+/Z7Q6YDL5Zs93uCcGAq8pcVGHEMB1Gbnc9mcBh25PE0LY1iJK8Y5iWZTumpOPI6jPPIXG4O5Ik4+qG2ln6flC82ETsFJTQaiI5akw/xoF6rHG2UpwWo3GXqBqmyVLIXfNDVyJaKqrmYRiIecRXjrq9JFlPnPZIEowE0hQ43t4Sp4jvLojJkAs27+sAWGKAHCdinHTeH39RDeGxPbbH9tge22N7bP98bdgMapv7b3H74yf/D/7eu//do5oSBSfLiXD7iuNnf8jw5Z8Rd+/Jw+Gv/vJje2z/hrZfmqRksEsF2kw+UWBO4asZfKzqqlT/FnDcCsZm2q5m6CdiAEmWtAT6dkkka6xlljMiardzOA601NSmxogt5BynQZ6MmnBPp4SHFcO6q7jatDStWktlgWEa8dZwc7cljBlwjH0mEgghEYNAFqwTtd1pKzabFeM4MoaEiGMcw2L1kyQzTiPT9cjtraWqVdlIrF53ipnK16xWK7Jkjseevp/I2RBjpvJQVQbrW+Tmvly/WRRSnFMp8jgGrKjVE86QvMFEfR/TNC3gPsZSNxVt69lc1KzEsdsP9KPRIDirjYyCebO9mVvsXFxhCMUCAquqkPsG4WgGaQuYMUvJL/CNPKjINUbwvtIKTGfxjeXJ5YbaGsb+gPUV99v3SAHPDZaEWn2Qi4qSzD1ihjczSKkqmlUk5GR7cE4OeZh0OB3HnCW0TriwfjbFfPrag2Od/jz/uTEsFflzUiHPz2hOuJi5anmuuk5FDcY9JEOVa3TOA1Ik5KFuaiSIKhmVE2mSKZCSLdLY4H1D29VkEmHqefr8inbVEELmuI+kt57pdk+ShK8UEE5JLf6MWCCrRVztqVsFPuumomk8Mbc476ibFoPn859+yTSEYmeila/WWJWnd06htyxlvGiCUSQV25UKyfruMiAm4lcVT1YveHuz4/5+4MnTp7x4+ZS/8eJ73N0cePXqvdKEZvA5yYN3IVKs6ezJmsBZT4yx9C99wpoI1T4ksYCOFqzzzGoLmgwVNhcdrlGbuHEI9MeJnAWLQ5htL+0yplThwTzoJ+djJyNaUWc0mWELsG1Kgkes00SGPpRikabgkdrhaH+hkJvmZ6HkNnCVvjuLYxymMn4tiCdMSclwRsmX2ThSHBW4z7moqp31dWxRChAwiarYN8acaNqKtqvxtWccg5JwjKWuGqrKIwa6dUvXwWE3gLHad+ckgTHaJzBYo88vpYStPMbmsi5UxBRAUnFw07kGowTXYYikrD9P6NxtUJKSLwQ1EVmqt91sZ2M0QedrIQ4jb199xcVFS9d1fPDyJZdPr7DWst3tz5S4Mtv9ljRFJBnAYUzCO2iaTtcMZ+lHuN/29GOgWzdcXgRyCnjX8MmHL2nXsSRuPLvDkbprCEHY3R+4u48En3BMVCK8+uqW97d7nl1e4qotd7c7mrphuz0wRmGzqWlrBynw1devcK6ibYX1umLdVdzfH8l9z8/++A/4L/+L/5wf/Cf/WzrfLSpCp/nw9LfzOWheiR+EUQ8ypSwEzG+2bwL935Y8mHW6ZlJONDBloTKGysz6QKfPn4Pic7LrYYLh4VkSWoGrCeVE5ayuo9bo/PONC9rvBmwWzOWKqvXc9CO3+0DbeT7oKrrKgbOMOVMBlQGHVhprAiHhvcU3hqoR2nXFh2yQlLndR25uR0SEq6sV0xipK2G98rTOq1oTie1+4hDg6ZOOS2fYH4Svb49s1h2f/egLbl884wfffcZlNSdJlDyZSEzR8fbdxNfvjrx+d+Q3fuOKj5/UVNhC9DDUyuNj72C0ak3QD5mffXngq5s9frVCPtzgHNxvEz/74h3u2QWrquO2jzx92tFWDpzoHkQM413kD/74Hd13nvNqC20NTjLBKHnVB8P9+54f/+lXfPbln+HcACJcXLS8e/ua3e01EkduHQzHI0Z6dgchMWEkEcKI8Z48HHn9s5/RXT2jWT/H1zU3tzvGyZOMx/saYzyExOdf/JSbu7c8f7rm7s0bhnCgqVYce8t47DEWtdVyHoPHmI4hGWgcVRayGbjfbtnFa4ZprxXsObEjEMMITYUxLUThsDsycSR2EevbsiXxBJxWuohgUyIbgKIiitpQ5WxJYWQ/7alroWo62icvSG1FuhfkaMHfE+PI4d1rphhpn77Euo7t7ZHoHetuTU4VfR+Y+jtEoHYeO33LwPwVabO18UKoKKPZGk2qZ5lNUkyxg0PJrQYEtWBTRcKSfP4FUsc5xWTeN4JkJSNnUQudOfmcspCniXGcFiXYmRzhrGHV1bSNX/aXzhqMd5qoQhjHSIyi6qhFeW0mE6tdrlnIIFPUgo0sRUEwChTCVBaQKKSocYivXLHSUhWQGBLBBcZxYBhHQsioJXIuCXDdi80KlpTne9qHsCgoOqtE+Zijxnbo/mxRTzVG7dScKoDUtaPvR7XSnVkHmqUFKMSC8rzltN9NCwWivNGzxUGvTfdsSLGpsucKP7LMczOpQ/cARW00Bqq2oaorulXFNCWu398zrxhZClNiJrqd9YnzdCyccUOW3+j/nZKAp740P9v5Jn5hFRTmWoVS9DE/lwdf+0bvPPt6IZmY5e9zsMIDtUxTnpFwUrSV+aDlZKYQ2KRYsGONkj0KkSOmVMgbmew01T2rfPrK4uvZKkzwlVXFYnHkISMjOOPINuv9GlP2x7O9XNGus6h1V6UEw7ryYBtiUtVTax0hRiWay3LjzC9mGd2lDwiyvIl5/ohFNceoCBR3dwdSTux3I/0hUtcWX8EHHz2n70duru+Xfl4O/OD9SDn3qehGySNzfK6klzz7tyoOsagTzbNXmdeswXlH01ZUVVGXHqPiAWl5VcucJyKL+tc3e8kprNWfzap0shCUHsYdMxnnAUFnJunMZKjF66yUGpUxaB1FLdtorFdUhrII5PI9U2Ig48kpLDcyIwLznDwXMUmW5Tu+0njRWENVOZxXYqaqhmlM74oKr8bDqp7knAWLkg/SaQwoYeOcTFbsQFFFL7HFjr48vsV21JrFstFaizUOU1S8rLUlbjJsP9zqu83zWNb7S2m2wc7s+i2Hw4HKOtYXGzaXa4abO6ZpYpoKMS4J/TCUhzSrjSnZwvlK57+sc/s4RELYKUHQW0zWfhGnzMWmY7OpkWw49hNxKpjOseewn3Sse0sKkb5P7I9jmVsN91uhrjw5wzAEfOVoG48xlj5knBO9JjMrgiWszYSw5Xfe/N/4W0//PT55/pJlD/6N2ODUvm2G+0s+t1g1l+88CEK+cZwzqHAmt0Yp1qnlk5NATpnGzzOSIGHUS3UVYi327JgPZ/LTTJDDRDhumYZj+VzZA6RIvHtDGvaLOt+8LFbGgHNMMRHFMcRIPyWcs6xrT22zWhOK0KdEW1VawKBPnRAjxjl86Z8OYVVIcSkZ7vvAoQ/UdaXXYozuIZ2u7bbMaXfbkaqtuWgdNhmu7w/Uq5bWOa7f7whPL3myUURjVlxVq13DGAz9LpCNIaSEedZRzxeJwSbBCkRrGOeALcF2N3HcB4IIbaUW8FlgGBL98cjlxYZ+lwnR0NRFLU9AsiHHxM31gWgMYxTyqOM6SyYbi82GNCau3+/pdzuGaYeRTF2KhEIYSGGCoezBJKoyWi6qnEn33iKZqR+osDSrK6p2TUowjhPGFBzHaoHdsDtwOG5pGkfoj6QUGJtC4CtwofOuqFp7vK1Qom9W+/rOkqZACIEwBqYcaYxDUkBIuOwRU+HEYSQxjaPaV1tVN9ceV/bMzEV6pa8VBUAt4rQgiZBGlA5nwTuc68BBHAxZeiVupsR02JFywtdrQhKGUWiM4G2thYgxIGWN/qWG8GN7bI/tsT22x/bY/pnt53/z5w+Kw/9tbKPd8t9+8H/gf/Pz/xT7y9MRfiWa5Ewe9ooHNiuM/6uVriQn8rBnev8lcXv94Hc5DBw/+33C7WtKVftje2z/1rdfnqRkZ0AZUtKEuveOtlWrjePQM4ZIGAe1JSiKLGCIKeEtSp5ImXHURG3Oc0L8HNg7A6RLIBmCEPcRP05457EYejLpJjFMmiA3KFHJWkvXVnzwwRM2Fy0xBUQyvvI0ruby6QVJhPdv7zn2E9ZZcIX0kjNNU3F50WJsxrkKcdD3UatOU1EzMhZxqiAkBeIwGeIUaZoKrGcYDyDC7e0du8MOyZlpCoxTxBiLd5lBLPd2JOcjYYwLML8Ao2hg76yQkmhFNSphnmNCcAiZbNWOyhgFTCUnri5XtKuG8fM3iKh6ibUzfAIUW405kXCqiz5V+poiF3/CiU6qSrZUv8YcFcRTzftShakKLyklckpkazC2IkyBmNTyq209Te1wlao2qN2AqlaYueyzVIIpiOfKNejkLaJB+6kyW8k8MzCZYlSiQ0kwnIB+7W+aXD9ZHKjyez4BzSek/xSbC2BPz0DOEvRLMmMG0koWQ86zGaLgwmytF0Mi51FVeQooaayCHcZZssSSjCtVyE2x5UoKzI5jZBq0GllMom493UUNXgk8vq4wznLfHzkeJoZtZOgnvDPUtVfSWFUxDhM5VTijBJkQEikn6sZhnZINva/o2jW3t1uGIdC2LetNQ0pRSW5ilICSM2L0+SNFdWch8ZQEWEmsD8OklfAINzd7fucf/hmGwPZ6z/4u0e/u6PueZ89+E8kjde3IwWm1a4onYB7A+AXcN2RssUSxMzEoZSRnUsgFGE8YUynRK+m7ccU2TUQVgp682FDVjsurDl959ruRr764ZtgnjFHi2Djp+zQFRM/FdsKI1hs6L6peRAHE52cEpypj1ALSmFwSEBbrbSHLFVIhWuVrrRSbzRoFkItylTU4B3VnWV+syFE4DgNhCIhYcijqJnMfq5XsmTCYXLIeBijgpDFKkERMsToTfKMkKeLJbk2yJmDqriLGiHEeAfpDvyQKcpZSdQjTkAqhVJXXxFhsbRagTSTiXKWWOlkKOFYkzp2CdHWlNgk56fPx1qlYqHe4yi5KG8YaqqbGeQWKxynqvTiL5ICdLHmK7La3vLsRNu2KzdUlIhPHflCVjFGVnsIkZKNl2s5VVCWZYp3B15Zx6IlHIUYYjj11qzYP/kmHv1xxfzvx1efv+Bv/3kt8lbl9N/Lm9Z66jexut9zfjThb0122hGHizfst231kSsJxTLx9tSXkkaZpIRmtlJbAs4sVzli877C2YooTu74nxUjVOswgTPdbfve//Uf8h//+f8jf+c0fYmWG5WWe0pACyi5WJCfvmnkqIyE4o/Z6UvpLXhKIBUgus/KiOFGOcG50U/Lk3PaBXUx8dNHQAmOGL94dWbWelxeVdm8r1E7JMNeHQNNaVs6QLVTZlMQoy1xgCpA9jsL1NDFk4WlTcdkuWgBI0RQyYhlEyXkuQect7VXH7i7w1c+vSd7wycvnrGpLDJEQ1Ory5v6AdyuePFmxqfVoh+PImCObi7WSict8b40Bb7m86DjGnp/+/JopGJwVnj2rmKbIwQirpqbF0rUNX73ZUdcNm41jDML98cgPv/eSC/sRP/r5HddPL2mfeaoCWmejhISE7klaLGkcOG57+osaTFZbtyzkQ8C6mqODnTGYCP0+s98G4pC5uRlofYtzhvFgiEMkHg645Lj+YsdwgItVd7LcHCOf/8XnXO/u+DiuuLup1aYuaVWv4JEp8uonr3j7+gv2t6857q6xOXC/shyGPSFMpDhhEOIU8FYTuJMErAgSNdEwDQNt0/Lk6QdcPv8uTXPJNGYMR4oaLskYhuPA69dfEKYjh23isN1yRUI2YNyKer1SErAYxGrPFSyShCyOkYrUCq19yrDdcXd3R71y+GyJedCkZ2rU5tF6mkoYDwdGI7g6IMYj4hEcSMIYVe5SAqxT9Tp02THJMPY7QtjjfU12FeIMfnNJaw2DOFIUTLqDONJfv8PkhF9/QMZw2L3HS6Bur7ASmPojtraIOKb8qxvomgLOaDyRl3jCV7qPnEIghqRrYNmDWmsW+yBr1Y5T17aTFfDZNHM6Fyzr6Ly+paRWPidCPcwJ/2W7llnsqVS1py57Rj3erCw0q6mkQhJZ+BnGUDlL0/qFjBOy2oIUxzSsbsI1P132j4LuBSQnEIvxuucxBkKYCHHSz4kSBhBBrCEG6IuyKXm2WJFljVYVHQphZSbQJCW4o0qXSnIppPXyPFKM1HWHrxzjlKDosinpvJAJZhKHnclFLMSB5fmek04WksXZB87Y/voMTkol+rVCe8hSzq1x0bEfVfUAJfGf567PI5uySCz7m/md6/+bsy70cL3SvjArnZizYy8XxpJgX849l2385e0XEvtm1s+Ts0/MRKTlG0tssZB3zuzD1GbQnj5Wtnb5dDTmMNA6W+IOPXUIujed1ZBcbVUZKCmB3GAw1hFSYuwDOSjhwzpoKo01vPe6TgrlOVMKdopNVxamooLjnCXEDCZRec9q1TBNjrGfzhTQSl+ZrRvPCDWnwhKz9I+UdTbf73qNL7xhGiYtRoqQcqSqHH3fU1ceZ4xabeV8ir8BmZlO5USmkFUozzAXqzAlT5qleOu85zhHkTY1VI2lW7cIeSH7O6/YSBj13M5VTFMoZBfKPFPevZTYvMSfmUL2m8lz87Mwer5TGHrW98uzM2XOLdJPzMVKlB472/OphbfF17V+3oZFuUhywWlyIUE5WebFmX13GvdnfRcWNTHrTVFc0n1MymWtZ8aOytMu9pm5zNcIGqctvb7c3tm4WIiOZ/cvhewqUtSMjI5ZY1Bbc+e0UEOgS40Wgjgt/lhwKquWggldz2PMS6wkwkIuCiIkiQxTLOp9kRjUAlFyLrGPzk3OzjaHtsRzeh8xFItsCiHTCNJk6rYCB2kMpNiQakffT+wPE5IMIUzlWalCzjQlhuNIDIpzGa/EpDgF+uOotlhiSDYzhoihYnO4gI3haI6EEIkpUxVV32EIfJZ/l3/6s9/h6dX/itZXpzF49t7nZ/9Ake6sO6Rc1LOW3nEiXggn7h8Pjjf3ilP/JmfiYcswJW76ic265sJB//4N97sjxynz9MJjs2IQftxSOcvg1ozGsW48lbdUVx/gfIOgxXzhuCUf7kgp099es+97gsmsqopNbZf4eI6bKQqjiWJBHgXfWEy2XF/vwRuuLtc0larUpZwh5WI7H5FGlYWsVUwhZ8H787Xm9DfrDJfrRuPzJDiBpvN4q1aegoK71hk2bUOY509raBtfbOBXSjAVKfibXWI2iyEbS11lri4axeRcsdmc9w6F/CtJ15AgQsyQAxwOAWMs45DYHyKVToaK5U6BKUw4PMexp20bvHXa/ZNw3O652d6zvlwz9RNhKhuquRAxC8P+yPb+VlWSxiM5BqKFLEFJt6o7Tann0mJP0fFkZlL1jGut1nSbDdY15KzWi1CsLMve4LjbkeJEdBUZofaKLeq+Q8tsZi70rPguUjAqo/OcqytMMAyHgZQmgjjcPAdRg8sko44B0pei2UoQcfANo708L4Cc1n6hTOlZSHHCOhCK8jkW16wAQ5QyF+aMpEQ8HjCiBY5TTIQRbKPYXYoTOUcMuVzHY3tsj+2xPbbH9tj+yiaw2q6+/VfnydV/U5vA8y+fc3hyYLj4FrtYA3/y5D/jzZv/PR+Pf/df/fWdNckJSZHp+ssHNmqSM/1nf0CeHl6/pMj4+idITtQvfg3XXegvDHTf/du4brN8dnr/FdP7L5AwMr75KTmMj1Ztj+2x/RLtlyYpVV4DlCxCCBPONTRtjbFaEdYPI9MYVbY6G3wBn2awSC3aDFVdLZZts9XVDO5BSeQXAH5BnowGqTFopaUxBofBOKMS2pLIScHrGJRQdHO9x7qKpqu1ElQy/f7Amze3bO/2WpVt1UoLUUsUTUZYXGVwvmKccrEUs0zThBWDd5ZJkk4wZwuMGCUohHGidq3eN1r5PY6T3oNx1N4udnchRA6HkZwSDo+rlcyxgFNZEKM2QjNLzNqMkPDW4p0B64jZnMAaMez3I/d3I7v9iHM1TT0RfCgWJCXgLxWXzlakFIrlVQFHFzDcaBKEswpnq8ClpKJ0lHJJGmiVoz0rD3a+qATN6eusYORhe2A6WqoKvM2sOkM/Fggqgc2AsWSrqVcF6nIBRRQM0subk816X3OfUXDrlJyYkwEzWWZuxtrlXk3p26fszQmoXd4xWW0MZtDS+OU3MyHjlPLKZ0cuxy8WdkrI0Hc2g76nvp9JEWIMWKdWDFLIfCnpMZ13iMnYoOSOWQra2Yr72yPGGKZpZLNqadvMEDLDLlJRMchAt/JcXnVghW5VAyucrdltB2JQEuE4BgyWMAphihx2B6wV1pcNTQPWqK3gxfqKr798wzBMnCyV5mdRQG+r6kSkk2IUaEIrhkhKmZv3W+7v97StYxoCu8NENSXERH70R19wv73jyZML8kbY7XaE4LHG0x+GotwWEVGyXMoKdqVShZaXqmKLmKyWJRko6gO+8osCmTMZkczF1YrN1YoQEzGoTaCvDE+fdxz8gCRDW1fcbyPDEEuiR5PdzmRMBrKCV9bMSKNWpRpb+kABrywzOK3V7moDJ5q0rRXQnMagago5k0XUJsNYMvpvYiaGiHUNEi39YcSIL5ZQAjYt5D8l3QSMs0oic64kMOf5rrzDIkzvvKeuNanVH0esdWRJTFNPXddaiVeVpCVqlZOmvKi1ee+IManiUs7MiltIkZ4PajVQVR5r/TIu4zQD+6WiXCJVUy3KU3VX65gOEZNVdcLXviR2pBRNKvHRWk3+hpL49t4TY6J2jlwlqByHYeTN+3u2B614TrHYkcaEsQ5bKYmvbjw5ppKYAmO02jvkEYNTwDVljvuBbeVpu5qXHz3Fxp4omZ9//p5hrwDoOB6LzUkFJN58dctwDIz9SEItiHxVEUNk7CcO+xErlraq6UV4PSRePN9weekYDhO3t0emHBHJNE6Io7A/9OwPP+Mf/Jf/DZ98+hFXqytdBUSUvFKSXnBKUhvRhHY0gsmGw/WA7SratcMZiFKS34UhJAJe0DXKFAUj1JbHFaDYlcSbSGa/z3x1M/H1cYf/wXOuMtxeBz7//IZj7Hmygso6NuuKX/vwJRcbz2efveVohN/4zodcbizJWZBAncFkR4+BaHjzdsef//QreNbyw++/ZFMriW22/REEhcyhsZaIEIDmssNbXeOfXnV8+PySrlZrw2wazZ/nTGsq3rzZIW2Fq3QNWLcNF6ZhXu00XzfbvBgqB5+8WPH0osYcE1VXIY3BndUvW4R1bfh3v3dFykpmfvqk4bdXH+Eai395wZOLFdSWyoAvK5zDYwHvDL/13Uvku4ZsEyELVgyN0aSDcUKsHLvDyBAN92Niip7724G37w8Eibx/u8fkmsp5QhD2uyMh77n9cEtOhq+/fMdmc0HTNICwff2OLz77HKmE4/5SSQvWgViMqcgyEQ8HPv/sJ9xt35DTkRj2SAyMw8RxOCgx2QoYwWFp6g5yZjwmxFiMcWQjmLri2Ycf8uzFS8Q69vstVaX2i3GKbLd7TF0TxsBh3FOvPM3FSpd0X6n9py8kulTIKjkta7RkJRH72mFThbMOGwJu69jt9ph1hxyPpDiyevIE22SwHVQwHkdcZWmsQUyFMYWEKXoPM/k8yWwDqokhSYY4jViTsC5hfVWUKS3d5VO8CMcYCDmQQsSkwPH2hg5L1aw57Hom57HeIzkR80hlHUKF2F9duzf7gJBR9gUWwkxOymXunTOW6Pi1JWktAimqjZkm9ZREMidJ513buV6OWfZtsz2qLFcw7w/8vM/KJQGXNVbZ7QZCSFS1L2ofiePxyPE4EmPGGVeSQbJYf9migABgnCOFpAnBrGqd1hgtFkhpUV6ZM7jz9ccYsUXZVO917rPaZvu4ef85r5WzvZtuqTU5n7NgnKYgRSdn6soX26SHBCNN8GmqL4TM/Z3uK613VJUm1FOxjeOMKKKFFel0Dw/z0yCzYpMq88xEltm25IHdlS32dJxUYeThY8KIqldKNHRtxfpqxZYj/aiWJWpvMieSCzBYfK+lJPpOe/a5s31bWrh8Qs6tt85+a+b/+eYN/+U/XsKs5XOna1muqRRXmHJ8OfvG+fM9v4M8K5uaue8X9Rj18FvGVCyWNHYmJblTbEgWchCOYVzIZm1TMZiJkNSW3FuHOO1/zlst2smZrlN70ONhKKQpJUbMMUxOkEJGiLSdp65V7TRMSe1t0MIizt7bNx/crG50Im8JFOXW2Ro4BiVGpZQJSUhZCfv3t0diDNRNDbUwhQziELG670q5AIglZhAKGVDnmzmemF/srJqr40ZVnqtarYWt1aIb7/XfWWxRwPVYa1ltaiYfSEGJlx5LCMVmrJzbz8SkBJJ1/rLmbGJ80P9Y+ud5rDX/21mdP521xKIop0psthD/dH82x2+SDClkwhQhzbGK6Hpc9r7AUjAwz6P6bk7KTUb0e/Nca4sqaoxxKVaLcS54mlW/NC5SK3I5I28ZnHEFI5np8Gd9XUTjAedULa48FOGhDbeew53UaZeuZLh6d1XiI1MwjTMcYCaylnVdi4tOa0pVebLRLjROgfvdkSnEgvuUdQVKAdJcKCZFGVrv0xfr9/PYFYFxCIQxsrpYsb5qEBO5vj4Sp6JebLMWPyVDlkmJFqngNCIYV/C4NGNMSt6wApI1TktR+I2ffMj4MvD+8pZckil5ipAgJdj2W/78z/9zfrj+Lt/9d/49VScVigXV/N+sl3gaorE8xnG7ZzgcqdbVgv+pApuSI7R4iVMBwlzoI4l0/26JKfJxS+63DPsd4wR3x4FDA3HTkfrEYTfy/n7HjTfUznKxaXEYNuuWob/lej+w3qy4umhxN18DGRMjTixRQSyO+5GvX71nMpmPvvOCttJ5MkjhIHIiwsw0xgyYWgtschYun22onMEXtWIMpW8axHscnhAzJts5eKCtq9O6tQzy09xvDVxcVMiYFFspF9BYd/qkCG1rqKIQghIkL7umqCYbnl61TCFxQsL0PKa8u7qyPLlwuFrj5X6YqLtGsUMgGdgPE0PMjAkSjpwdx+OkJJeU6I8TwXuMKWp5MXIce9bNhhgSh9hTNTUGw3g4cvv+LWIyTfRMk8c4X27GajyQM/vdHYfjPTEeyBIQUew5xqmQxU8EaVdpAdustIwpd2st3WZNt9IY4XhQzFgVWR1hCmX8WUIY8I2nXXcPsBtZXos8sJWd8T2degqhPguOilTXqshsDDFlpnCgJePq0qmtxfhSSOfsQtg05a3K2fHneba8agwQk0bftihHC6rGaaylajW2ijmRQ0byBCkT+iOuzVgcOUB0tqgNR90zmgzmkaT02B7bY3tsj+2x/VJN4Lt//N2/7qv4a22//f/+bb76G1/xp//xn37r70e75es/+r/wdL2i+fg3fiFu/atav72l391/6++sNazX6289psRA/8WfaDEgML3/knDzlSocSf6Fz/+z2vj1nz/49/HH//if6/uP7bE9tm9vvzRJKYwB7z3dqkGMYLxhDCNjH5jGSSvFs4a2SrVQEL6ua5zTgGscJ7U3moMnzUuxIBhiT+Cs1eo2VcXQJLqYGfpgUfKYq/6ipEX2ewqRm7s9t9sdVe2UGBUDd3c7pkFBH+/ApADFOo6cqbyncg5jHMZ5Uh4Zx5EU1JLB1zWSIzGNmjAwgkjSiy2g1TBO9NOINQ5XVXjniSki5ALA6H27YvWVU9IkpXOLio61hjBlYs54CxIhmYQ1jsurC6xxhDGxWjdsdz0kwUoilXl1zPDll3c4b6m7irq2vHhxyW57UAAUlZvPUiSU5VSheErYFNBvzgqU15RTxmT92bmdqhQLiRhUUnm2oFIrjUxOauSGRBwKiD+/fMKLl1f8zH5NPwaM9bx/tyXHVJLdBnG5dJKitqQ9qIDTpT64PFTlY8gZsD1XIP8iYDu3GeIsH+L0BUXclu8tWYBZrt6Ama0xVPHF2pmYAwvRTswZcFE6djn++TNeqkutUTA3F3WvpJXsqRDb6sbjWr23uqn0eVtDmhL7215JbimpQlVO5LxnDEGr9r3h8mpN3w/sdyMxRu6uD1w9ucT5xPX1PdMYqKoG72u89xyHvlTie/pjT5bAal1zOPT0B+3706RqM/YsIajjdK6oL0/EmMUCxRhVPTMY4pQwWGrvOWwTUzCI8UxTYn9/ZLfpMNQYB3VjMNUKcJAtKQfSXkmKhqQoKVZtCYrKlyZ/bAHvtW7TeVeISmqP1q1rmtZxeeVYryuO+0BOQtPUTClQt9WpcjtnhuNEn0b8qqZxFpMSbVMTReg6R7du2N4N3N6MiGR8ScLjLCarGp0I2ELs0nyMUcJQ6cs5JVLUar+mqU5JyCykELFOiUUpRUQE7wyrtsGKVitKympPAbjKYL3grC/2cahCBxbjFERzOE1GlGR9NifFglwSNZIzUzgB/dOYy3ylJCjrbLG6mUmCEIOl6dpia1EAUDvP88V+AluS8yXpSElQGrMk0YyFqvbL+w3HkSxCZR1N5ZcExzzvzNZ91viFGJoTWk1eEiXOGNbrjmMYwThevX3PH/3JTxmHsBAwQefJ1jdYK8RZKSBDNsI0RbzzeK82cs55rANrPLv7kf3dwOZyTbtx/Oxnr7h+e+DiYoU1meEQCVMkTIOeM4N3tSZw0oT3ME0jpIwxFRfriidXK2wwvLm+Y28yaYxcNs+YRk2muxbWFy2I4cJfcr8b6LcDv/Pf/Q6f/tZv8Lf/5r9PZWudU73OnbEkgy0gKSJRiBjGmHFBsMPIZCO0nZKrYkKC4E1FMFmrS43RhBoTg0xUbUdX17iUuVivsDFgU+DYj+Q+crHq+MhMxLsbQrdiPBx4usq0seLYB56+2ODCjj/6/T9BSBAt9uKC4xDxVc1x6jnsbqnGSG07eHpFCok/+tOf8tXNHV284NNPX3BfRQYpAYtXyzZrBF+m+RjhdjewG3r6uyPtesPFBxveH3s2dFSNVQIWkIwgtceuWq7vI7vDhDSWZtVwUWmCXrU8SiLxrNo1A7v9xOs//4qqa3n+g5es1zV1WTGmSegPE85ZvvrqhtXVhidXDfs3W+rnl2wuanIW3nz2jquPnrBZNUui3WKISbi/29MPE6vLNV9/9oZYG773vZes2xpJlnc3gbfv90whkkyN+A13d0dGCay6hmm3Z1t72tUakwzOWw6xZzce2NRXpF1it+tJAmE/8Gd/+Ee8v/45zz56yvG+I4YJ45SkJL7COU9/c8ObVz/h7u4rwnRLSkeQrPYHw0gmg9UEondK24oh4MrYxYFrHM1mxfrigml/5G53SzKei6fPsZsn+K5lY1TF6nq3BRu5+OAFq80TpuOIGEdeKsVzSTBqMmO2KBIS2JJsKuoS0lRU6zUvmgscwuHulsP+CM7QAqbOuMZTtRXjOBbFnXlnoftVodK/F4JeLvsJI0qITXEo6nBFMdFbQpgQW1FfPCGHiZQjSTI27JEQGG5f01w9YeU27G9fkxmJAYyb8JUSkOd581exxRCLdWxdrN1U7TAVUupsTwin/LuqBZbigpyJoSgAFfLRA3rJkj3Spp+xS9xAKYaYE0yzGhJlnjhXiMs5E2Jg2k0Iqo6mFfdpIdlkk5ZrnPeRp3XIkGImZSkkjTOr5TyTXU0hzpzvSJVMp6qPVrcuUPaf53taKWtqISwBi3Wr+ueRYknaFfW5IoSKYPDeg8vUTc3xOCJRlpAsl83JMER9ZjZiHaxWrcZGKjWw2DLPifaHtJn5HZb3KQ/e1IMt+/nn5vuc1WRmJR2yLLEgotalzmtckJLGUpdXLQJs7/aLKs9cAENR8VrIS3K6lm9r3/ztzKH65mce7PPPY4nTB/6So88ECVmOIUsMdiJFCSUUKsc+++vDa1zISQ9GgCZSS6HDUlDhchkbFMWaXAgxSmzS5KuSGyYTFxKbkkGSEoxSIsZEThBGtSc2NtAPEylo33XO451dijKcs0xT4HAI9P1MDDScCEqnOzgRkebh+osEJX0nek/KlxFqp1bmOTucFyTpmI1B+3JKWghQ1bWOaywpBWSUh0WO5XnmubBhvpqzjmBnQGNODjv9bLeqaLqK4RhIWbDe4f2sgmTJ2WGMjqkQNYauKlVhrSstbnDeUDeevg/st6NaVZb1ZFZqkiyn/nGWyF5IkujYjEmwqcx/phBLYIk3pRAaBcEZQ11XWGeYRNVJnFXlFetEYwosMSghdyFrMc9vpthInt7R6VlmUipx8qJIrUo31pgyx6clfjtZJnKy1Dubo5fxaIryUflnzie9pfnvp+Kk2bqwFCgh5Kh74BTzSTXZzAQBffGmFM3N9nka68/KsoL1ug+UrEUSb96+xztViplj4XIDZc5KzGpoM5EPYVEBlmV9MsRYAo99T1V39IeR/pjwzuIqGIdY1hghRv2uKu86kkqOA0VxzVjqpmJz0VL7irubHcdxwu0d1Rcr2mSR9c8Ql/CVxzmHdxWyGzQ2f/cVf/Jf/j8ZQ6JbPeXnf/qHhDDou8iw2mxYrVou1hviFLm9u13sy+PulmF7zYQhi1X1H4HGN1w+fUq7WuG9xRkgR4ZxTzKGy80lpEjlPbW3TP2RME1IEtaNo7UGGSIHJnJy+Mby6cdPGKbEOKh98N3dHV+9ijRNzcXFJc5ZxpRJY2IYRyQqace1K7Kd2N1sGZOQneP+fsSJKkqFnNWa2jslf9nl8XLcDeyOgxJmxNFdtFpwaBzdqqYIdJU1U4gCxz5yfwhYl7FNxaqp8Q7CgjeVgy9DwTBNmds3twz9yMXzKzZP1tTupJo49arilWJmdxx4+mxN6ieiWFZPOipjuL85kK3h8nJVMAUp84hhGhPbux3NqiUNgf3hwOrJiotNh7eeKcJxghhkWbtDjEwx0HQNjJFpHBDT6T0bQ8qRmCJRdD4ZpkmVhjDs7u7Zb28xlVDVkMKE8UokNMapPF2I7O7fM017chrIaQQp85ZKUC1Fo8Csvb4QSwVw3qu1vDGM/UBKIzELTbfCWIf3HusbyKIxSgo03QpbV5Ao8+085xWC/EJmLLuB2bJ4AUp1fc9Gz+O9JRf3gaEfaARslTGuwnur9poxFjL7CctcQGRkmTeWOVAyOU84ywn7MvO5DViHb1f6ORFMFCRHiBNpiLimI4yRLEmVXbMS8x/uNx/bY3tsj+2xPbbH9tj+8ra6X/Hxjz+mPtb86D/4Edl/O/lnfPUT3n/+f+bJ/+h/TTAV/9X//f/E8f4G0Hjrww8/5PnzZ3zyySfEGPnpT3+qcRNw8+XPuPn6s1845nq14gc/+AEvX778S/YugsTwL+pWH9tje2z/EtovTVJKMVPXWt0V4qQBjjUnlYs8A6cK4ltnMR5EkgakMSGSSGJLMlkrjDAqPZ6LHLHKjmuiwDmLK8H/TOpw3gEZby05CyGkAmqWoA1DiBNpCIAgewWjUhRysU+yNpNEK0u9rzBiySmCzaRk2B9G6EeK0xgRBXTCGBinCcngncWYTDaqAiDZlkq/otUgmSmrB3nM6i1vMaXayqhtnUEnWqtVjNZDVTusN4BWwJHBW0u7rnG14367Q0KmbRyrTc397lCAXw06Zc4+pMyUEn2YaCrHZtNRN466qhCx9P2g1WlnAP4JIv/FgNSZU8LLnP1FLRncYu1mSmCMkSKhrwpQJEhGk/61d2SBd9e3vH17B5Xn6UcvOPY93KI+KEjBGw1iHIjBYVVJpiTUT2CfArXqI39q5gzPOVUbnan5lD4jppBDSqXjuXrSfIAFCjh/Lg8+ew4knV2DQS1eUGBWC4TPZMuNVg7OFZtakan3lnNmHNTaY066TaL92nkF2acpIhKQJDiUbGe9wSLEFBhG8L5CciQRcM5z9WLNNE3EbSJFy+5+oukMmIowRvrDEedG7SuzDYLJpBi4vxm5u+kViD6rdLalZlIB75KQ5UTa4ux+pZDiRBI5K8AbQuawG8ji8K3n2Qcb+t3I/u7A9rYHr0S39WqNGK92Wo1ndagJQyYmTsmXkpCcSVGmJP+kVMVptbNXImVRq6q8J8WAr1pWFxuMSxz7CB7aumEYelKE4z4WULhhGEZSzlTOsVpXPH22plk1hBjwNZgKdoeeNGoCxlhXnoYqiylwViD8pKCi56QwIQjTEBllYiFCln6tKhOZPNuzlReRE2qVk0d8AxebDcfjBAaePtuQE1y/u1M7Tp2uSCRVGzIWiyEVYHxOulp0nlK3q7ly2Je5P6l9mtiStFLlk1mbBwGJwnAcTgmIGXgvJNOZWBRC0PPOloaicvWGec2walMQVSnIlGRyJmniU3QtiSkVZbiZ5JdUbQt0HSr+e752DClTu1wYm5EYJ4YhAKUifJ4CBKYpYJgJWoWAGYXDfsR77VdJMjkGnFiOh4R1hqoyXN/eMk41h33Ci+HqoqXyNW/f3JGiqpA567GmWBlVnqkvikpBE+CffvqCJ89avDf0dxPDMGCdViI7KqxPtF2FbyGmiaZds2laPp5e8OrVNe+/fsU/+C/+P7y/EX7t09+CaoXrHI2AwVGttfJ3uhdCimyeVjTGsD8ceLJuMEmYJstuPxEk01QNY7bcHQOu9VysGpgmvv7J5/zBH/4TPvq17/F3/tbfJkwTV08z+/sbXn3+Y3a7W150HYaROPZEiTz/tR/w6ff/XS4uNuSb97y6fUf/5p50uGd71zNVDT/8d37Iy+cveLcf+PzNNV3X4fwVh+OB3WHgib3k5us3fP7qFmlrTG/5nf/+p3zn42c0K8dxO2EidFctly+uqLsaYyDc9/zxP/4zpspy9ewFXT/C/ZH+OPLhhx9w9WJF43QchAwxCdc3I7vtCGNPnwZefu9Tnm9WasNpUfsTtK9W3msyIhlefXbHZz+/IcXIy/3Ep7/+MU1dK8AeDIc74Xi4Z7cf6X/+jo+/84Lbz2+pX468/PgpJhh+/BfvWb0/8NGHz5SrieBMTcqed1/vubvf8ex55Pj6yD4NfP5+x4snT6nbFZGGQRowao+Uh4H9/p4xTXTGMx337GqHWIeZMjfbW6Yuchh7vOmw1rG9uyOGgeP1lv3tO/Z3r0n5hny8IyRh/eyKul1R1SskZm6/fsX125+Q0gHkSEpHJGnFv7NQOafqHDmTcmacJw5jSHnCGEuFpbKG/f0t1gYO/YSra6ZGqHymWz/FOZBxYNjf0LSOtqmKlaonZe3TTkoGDUtG54EksazPmoi11mgiMCaO44Gqq+m6Fm89bXvB7bs37G/3TFOgXq+p2zVt5ThMA2E6FrXJCsmFMCmxkHV1Tp3VJg2ZcepJeaB2TcltKNlTZvJ4VdE9/RCw7GfCQLgnTyPD7TV+lYjJMdgI1NR1g3eF5M2vbtNHYUhFzQNTlHxKMsnIWap9Jp86nY1zysu6DnocY057scUqat4jFnLKvO8zZW8y719NUReRJGXtmJPi5XyS1VKuEMnTTAr4BklCr8SyENTLtcQpLMQo60oyPmSmSd+xdvVSuGFkIR7kuerAmEXxgljIv0UNwJpC9i6qbaY8r5nc4Cuva6JJixJJU3m1AjWWw6FHEtSVY1Y9Oal9yPIUMyxKYyKWIKqY6KySg6YQzpkCGCNn74Gz38nyHFme8Nmf9rRvWzpKYV8sj9uwJGx1Kc5YLIdhQA7g6grvVClGSeEnwuBso306eblPmZ9e+cWJ8XHea1mUWZcnM1/mw/ub71FOHyjnKz8154f4RQbTLKy1vP+zY2iu1ZZ3IafLLZ9diBXm1Ofne50VxyjjK5b7NzOhpJAFEJh3P95rTOq81XTsbKVlEhno1jU5Z4Y+INkSUsJhsFYVZVJMxDASbNnvGbXvkkLWT4sq0ENVnOW5cfqRnL8lMz/3k5LYTNLLSRhiAGOpO8960zEcRvrDRH+csMXyMDo9b9WoVXBVe+KUHxxvPtmDGHn+eTmfKe/AFhIlokUA05QxRSGPEptIVhXlFEXJi7GMZ5GiSmyoa8dm02C9JQQtclKVZ0sKWth0sk982Mf0+kqiPBsdOzM5KEkhhZpvdDklF809yRY1pBR1Py0m07SOpmnohwmDoe3qQobpOVmk6zNLM1my/O+Jl3giCyzkzNLhNccuy/XPpAPr7OleOcXGxlgqp/Pb+c2o/VqxGD97f1DmxjLel/eU8xKTYkwp3pLlGnOe52lhtV2RnxdFJsqaLko8dUWZdooJV6rLLKo45q0vT+NUtJRFkJAeXPs8PWSTimKgvlNd8wre4osqZkyQLZUTuraiXbVUVc1uu8dZS13ZolqeCl6nSjY5TRgD603L1ZM1IU7sDiPjFHDO8SJdcWk3tLuWJ8MV+yc7Uo5MKeM6x8VmpXNJmnj92U+J4T/j5cvvU9sa7wxdXWEyrBqDNRPh/powZi4bQ1t7TErE9XPsx09JOFKEMQSqusIYR0xCQtQW0cDh7sjXP/ucMUx899e/S123TM5ytJbxeOD+9j2WjJHMFEZyjLi25ZNf/01WXcvx9j273Y6I4957aqeFFa7tkLblMCWmw0jbNVTthhwT2/0R9iPWCDd3O/Ceyjvub/fs7nas1w1GDGESHRurlrprcJXiSLevbgg50WxWrNqGwzEwjiPOetZZ1YVnlakskCLs+kBlLcP9gWrVMm6sWtRhwc3jNxXCjuIoYQzcHSayMRze3nKZoGtacEZVv7NlGjIxBvp+IEjCJBhjZGOExtccR2F/2DGGjPeObIxiVsYRp8jdLtBkg8/ClC3jduBuO9A2TbHHm1XkMqSJMARiClTiEcmM/YBYR2Ud+/2OlLWwKsSguFEWwjAwxkQYe3IcleyW1PbTVg7fNFReizTiMLLf3pPjiJCQHBalMFAC7Kx6LgIpaxyu2JTuK1LKeHHkGJjSkZgp6mITMfR0qwswHomZaRhwDupa7UHFGKKo2qdbCENlYRazkKN03itEJXRPFcKouHPlccbhmhpjPGN/YBpGTJjwdYNzFc4ZcprIFqya95UZZN4b6f/YeX4TJXnmFJW0fVYkM1+LKkJX1Gx0/RsE4hFSQGIi5h7jKtIYyKFSfGHZz35zP/TYHttje2yP7bE9tn/e9uKLF1o0Zv/NXVfX92vafct3/vw7PP/yOe++9+4v/WweDtz81/9XYoz8sB2gPdnkbTYZM13Tf67Epe/Up2f267/5a/Cbv/atxzTG6N7mX9D9PLbH9tj+1bZfmqSkVjkTZpxBXcHitLrZa1VwzqJS51WlFmVFWSYmrQaxvtbK4KUCsVj5pJMKi5ETSKVtBttO4L11FucdcQj0x6EkDDSxYa0SFFLQQM672eIrY8ypcl5mAkNSZRWVO3ckEeKoUrzOO+quQshMk0pna6CrxIq69ZhKcFVFmDJDPyqWYB2SS0VcqYJSmzBRMoyxhCmQREEBb7R6vls1XFyuOeyPHBnIWW32Pn75hNWVZwqJLz7vMQJd3WLEsNm02DwQkxT1iwKenYH6IYiqJYwjDoczXpVcnNo3mFyq1/NckarV1mZm+czB8GzR8aBCWJWSFHxkSSoUugqJORE0A3CGkBJjSkjMxDHQrDdsdz39MAJe3xMleWO9khSMUHkld4xTIARBiRszQCDMVUOuVLXmXKDXkgiY7acW8Pmc1JQLqWKpiNX7lFQABnPKM5ysQsrYkFPiMZfKxbnrKnYgIAZf1+U55wXchgL6uzm5kIuKmFpq6KOdq9sU0B57tQDMUkDdDN4pcIXA1ZM1dedxjWOYgspMNx7nEnXrqStHt1rRrlpiyPSHiePQM42Jpm5AhGmaCGOi8hW191qdLBWSIphUVMSKJUOpgl0qv5fbP1mQzIk0a01JXp0SJqa8vmlMGJu5WnVcXrQctztyyux3I+1an93duEMksb5okbWh6Rq6TSI4KbZrhWhmPee2AyzziiY3Y5gQlJyWYuJwOGAtXL87stsPNG1L3Tb0/cBxO5CTYZrUPsJ7xzgmKu8xMeK9oesqrp6sEZMZo7DfTyCWzaZjnweMODCC92rbkEtCKM+kqiKTEPNMzqN0HlsAuMT5sNO+nxfZdlWHs1jvwCbazrPZrGiahnGacL4ixsjYRwW8yzUYVLFIUlFCOktqGWwhvandpLUOVzuSDNS1I2ejCRTJpWIdhjThvddkkcwKCGovsVmvCT4y9EPpLzrHKElPlU1ijDqUF/KSEqTm/2C23hB8XRXulvbBlIRYCK/zs81RiX5RcrEzUTAypUSUmso50qBEEseAzYGL9Yb7u2MhFeYlURBCWIhXM2l2rhhXZSxNBjgKWSoKrnFcbFqunrR0rqZ2mctPntB0FXVbc3nVcHt95PJyRd+PvH59y+3tCFjqtiNOE5Ii7bqhajyOms8++5p+G6jalv/of/LbPOk6bNtxfb/lMIyMoefYH0lZ18imqXn2wZrd9p6f/vE/4cMPf52PP/yUz774Kd/7G7/B1eaJ9p2VWnRVTtjuA7vjge6i4tnzZ7x9f0MfR1IeSCEzZqG72FD7ho+uWsQkrIU4Wd6/ecvnf/yn3Lz6GcP7z8g4nn78CR9+8CHTFPjqs5/xKkX61NMf9qQx8P39iLt6yY9fv+HHv/+73PY9zz75dX7jh7/FRz/8df7kRz/h6zd77m4Ttl1x9fQF4aJGMFS2Ydq+5qe//yOuX31Jqmu+88knpHFi+37P7335no9ePqVbX7IbI8OX14h8gb9a0XWO2y/fsH2/4+nLZ1w8dYhvSWPg65+/ZXuMfDh8QOW9riHGqULWwXK/G9g4w827Hbm947raYaLDdmvEGq1cxxRiMJAy797ecwiBxlp+9tMv6KPj8vIK8UCqMQJDHzj0e+7u7okZ9u/e48Nex7j13G/33NzfkoeA71ZgG5yxZCI3twfe3twSaiGlAdPV7Ee4/YtXbC5WdKtLjPNLMsymyDD0SC0Y5ajRb494V5GOA/3U8/TlcyREJjuBNTTes7+55ub9W+pKiOOBu7fXxO0943Qkf2VZrTZqwXc4Mh33xGkg54kkgRBHVUvMStaGhCXjLIu9LFYVBCWpZV0KmfGwI8dEzLf0g17L/e0rnn74CU+ffcx+P2ImIYQDT158ROc9HrW4ibnMLc5gxZCNURu2XKgHZV+gSmJq5zscDvTDntVmhfcOYzxkz/riBc5YpmHPYbhmao60qws8iX53h0Wo6hXGVJpUKpnpmfMwq/5ISkzjAe/VIW+2R9Uq8ITNRi1nas/q6TNSGDnmAHnEito19Hc3ZOe43d5ifcfFi+c4u8Y0KyRO/Co3Jej7hWCDFPUNyjMSSqGC7m1S1oKEef9pjV0U+5REUBIxyxnOiEllXzq/Z2A5z5yUD6KKA/O+eVbu0a/qBtCW5KD+ZCaNlOR2Fq3in0OVsufI8/7ZgnF6nd5ZUiF6p3jad/vKY5xTy55czqc3uyTSZ6LMueXVrJJhrcOie1DnPM66YounMUblnaogNKrcMg5K/l2vW6rWUVWO/jhqAUjMhJQBJfzqvk7JLCHnoqKUMLO1sS2J//wwRnioRjpbAf8iUQk4I4Z8gxB0XgywWMTpt3PWdd8YyJIwWZOr0xRO9sycPo/RYpGm9hgjjGMgxHkvq+dYLtmYQsIWlu2uyIO9mFk2BfKNaz3bxy1xx4mGI8sHvtHkF39uZibM2WesOxHL5Oy8c6HQ/DyNneMTd0aum0+kxHaLWYgm1szFQLrHb7pK+64/qbwoCc5rwUlI4KBbNao6FjJjPxGKjdBsuZYSOA3Qzu5JK3H0sZoH13VSsTm9C+FEHDrt72e1pZMK2el967GnQUkCIqj1vHFIzqSoP1NlNB3X7boiR4qaZpmTxZZ9+qlvn7+mea03xpJTImS1uZsmjXcr77HOMo1B1UqLXaKvlCAZY8ZVDlLGOYP3OifmFEk5EaMWuDS1Zyp24RjReSRlYpBT/1q6iSmGzaenouUr+UEfXbqOnGK3eX5xlcN7Swh687Oi73wvSjaTmdfIwn3KUtTAhDnGY4mbT+QkZx14PZd1ttiT5ZN9p0ghT2mKXu+x3Htlcc4uxLq5v8xjwJTJ8cRTMsWeq9irlXjidO92mZ/n95xSXkhLItBtOy18yHlRZJ3H4ExamO0WnVGVqFkNnERZv8q9lessy4xec8G35gcqzBZVp7mxcp6qVttl6wzr9QrvDMYKT562tI2jaVtiGNkfRg77QIgJX1X4VNS71UOeacwMQ+J4VJXzjz9+wf/w/u/y9NlTppT54OYD9ld7xdOc5diPOAIez8o0TGPPcLjH2sj+sMc1LU+vXuKNm+sW1bKqgr4fGPvE5apjCoHDQRV8KDCZzy1tu8ZYwZGJ04Rxlpgjw3FgGHd8/pM/xfsK13S8+OAlFsNw7BmGI84bxvFIDomqaWg3rzlULTevXnE47HFtx4cff8pmc8GUj1y/uaXfjTTrFd36gmQ8KakFc92u2L6/4XB3y5gCz15+QF1XpCnTH0eOu8DmckO1Uou8w/3Azc0eVzvC8cBx11O3NcbXOBOxzhEny/2wI5Cp66Yo3WgBnghMUYii88OUDkRR1XLrW90gIgVjLTOcCHEMjCFQtw1xmri725LWYGtVM533QEpOEw77CSuJKYxUxe4ypch4HDhYaLsV2ErxN6N78GkciSZSOYsYofK1KnfvepomY51TzFN0xQ4xzkAZ3tdMx540RYxNTNNI0zWLJXou+5LpOHDsD5iinB6HiSElkEw8RrAWbxwhBHKK2DIvzErwUgoAQYs6tbiuWHzLPD8VAi4GI0IIE3mfwThSwQzC6KnaFiVZqzK8xEy9Wi2WhrmMVckZsanY+y7UoXnyZFklMnqtQZ+la1yZDwuE4zy+aiBbYgqMxyPOVfi6IsdIkExVtxp/GHM6R5mjFhtcEVWyNfm051om5vKnaNxjnFq/5RzJEkEykiM5ZiT2RAERi29bnBVwDnG/dLrgsT22x/bYHttje2x/SXv+9fN/40lK3/3j7+Ki5ra+/wff/1aSUjVUtPt2+bf3nsvLy3/mcR9VHR/bY/u3o/3SUUcWBYJtzGoNZBzOOOpOFTXGfoIFHFeLoeE4gijYnpOqJJU4CedcsdQQksmlVHeudFUIR0rCYAaJjDgSRVobCGOCdIK7VVCn/LtUKEcpiY2sguJKmHELUBVKMsAIxBwVIDKzVHlmGgecsXz88hnjNNLHyO6uJ4+RmAyrVY1vnIKMTqvXMkUuPFEUQDQINkar9bMk0kxsKUpDBkuKcHu9YxqLpLu3NF2NLRYkOatazsVFxw9/+AHPP73g9bt7rl/v8FXNq7db3r/bYkq0bovVQ04KfjlXk6aAmEDbVdTrGusrhsPIOIyklBeLCtB42BZrDZMfKgwZcwrK54D7nNAkSzWRVjwqEgxYiyRDGKOSBpzV8H4ayH2Pk4x4g8mWVN6XBdariu9+50NcZXj19oa3b+6ZwnxSBaK9c3hnqaqKlCIpaYXqFNKpMvvbWkF2Tfm7sScyVpZTpex8rvkr6oVR7rJUfM4JSFeq82dwVq0MSgWd86UCNRXZ+1RIIHYBgBeiU1JikhaAKvAr2ShhKAZEVAmo61qMg2witrVECTiEqoIcVTp/fdHhsnC8O5BsxlYVWSCkyH7bMx6iqum4QjDKYLItSSHBOoN1J0UiyXOybE4azARAvVZrHZliKZilWBzOdMT0AKyd+5SQ2d/33N8eGfsexDKOE0lUdUMBfgPRMBwCVSt89J0rchLevd6zvRsgZXJO5XrK/FGAY5CzSjejQFQMmthzhmEIiDhMPjLsD9xeH4hBSNGSRe0bMOjY37R4NFHjazgc9rRdRbeqGKfAcTewWXesV2uMtaSs/95tB27e35c+pMkWtbfRZKCVeQzOAL9BMIUYVOzdTiILZbzNgFXiydNLtveeu9s91vSahDJKfsgRjHGomRcF69QE1oKWG/1MeVqa+MMQY8J7T9u1OO+ofMXQjxwPg5LDig1CjAlb5vgUMzEn4pCIo87JOctizaYkq/JO8lx1OI+rohJlZmWFoqRWKqdDiPjalcSxcDyqZVpMiUWFoyQl5vE/n9POyRuTmaaEkVot45ynbhu8n9XPUiEpKSF3TnZjtGrRObesazp3asW7Pq+shIWqwmLJY+DJkw2bqwZrM0+eqWT+r/36J1gTePP2hrpruHx2xLc1bd0yHgZeffWG4zDy7s0tt2bHfoxUYlhvar7373wP+om77cAUosq8J8gBxn5isoaqiojLVOuaGCP77TWvvv4Rb758zYvnl1zUa2xVEW8C3lQYK4SpZzxOvO4nrlYj777+gu14oF1vqKsN/WTZ7wO+toRpz9svfsI4HXn+yUd0l2uePX/K3f3X/Pkf3+Oqhvvjlipnjrd33Ly7ZjdsWXfC/u6OnAx/9nv/PSkMjPsjb798xX4YMLVl+/GHdJdPsLbhD/7x7/OdH/yAT//GDxkF4lbUVk8Mq6fPuf7yFZ//7Cd8+Ju/Tk6R9eUTLi4+4P3bd2RnaJ5uqHyFHT9i+/6O12/fcN3fsL+9YdcHjnliDAbXtNRVxd3dluv+PcfdlqsXH1B3F1hTYxCmlDkeB/bjgd3tLX2euHq+oWkuqFyNMY4Q1Q40lT2KxMx21xOzcLFZc7yduLm7xVhH1XUYGZSg19RwrCBXbG/3DMcj3mTuL+7ZNB3WWN6+v6ftOi59rapwEkhEJE6E/YHdTYaQ6bqazaolJMvxMCj5z1VgaqypkDxxPB5o6jVYT91suN/u6dqJ/d0trrKs2pbWKsFcTMZI4vbtO2yV8J3HGk9/COyne3KeGLcjB3mn6hrTkdYa2sqTQyEb5kjKUfdHVVZVyqQJvpgD/TioguacVBUhxsj93R2u6pGkiVnjLKSRrTOEaSAFQ57Ath2usprIkIygKoAue13bs5J+k5zmmlz2PKoAIZASw26HcxljValSRAnEVVsRxpqr1VOG6ch+dyBOCe8dIhOHbWJ9Ifi6BSzZugfEDUHnwDAOhGmg7SoMSqgUNNliRDApki1kMTgrrJ4+IaeBKQVyNpi8x+SAxAkbM3E8MnaA9LT2Kdn/6iYV8rxmxaj7W+tK7OCKlVsspNWyBzO6H59JCpJPRBIohB1rAE2kLYpA8IAcM28D8rKHUdZISpqgYbZfhbN9SYlH5GQLJIImlK2ulbNih2RZFGZMLnZLxiz7uRQTzhrWm1bVCSUz9oE4qXKqcRZXLJq04EOJKCFGTLm2WVFQJBeLZ/nGuqlMgRgSYYrM1fwWAaOKhViNWXI2eGPo2oqLZx37w0hdV1SV427bs9v2S6JfuTYzyUsJ3pIS1gpNqyoSGEN/mNSWaCYKnJH6zWnTwYmmf1qnl7+XpNs5W+d0lNMdU+5bkirQqGmMIDlQOcBTFIL0mVirapF1ZXnyZA0W9oeB3bYnzRZf5V066872V/oArDH6nn5BZekX2/n1mnJjxpYA2FBs705zwkPW0un+ZqLC8igxZ/u9onBUrAQXQr6cPv8A0CsXdcp1ajwt+WRfZV2xZK+UxKVEcFXNstYTgyp4OusIYzip31jtZ9MYmcZImeJPdR/LLc3j8ptKq2b5w5z988EzoFjslD2YKZbRcnacRQHMGCArQUliIRxpbJ6zkoFS1L1twiAp4xvL+kINWN3e0u/Hhag0k0UMFOXns/OZ0g8Lmc14VdUkJBrrkRSUvDUkJSVmyktwp/HpDFXtlZjpDWKEpqmouloLSQ7jsv9W0psq30xj5LAbTvnocpGZk23TqU+d+oObVd2Wjm8ePnMRYgyKGyRVf1KMRuc5ndMKUczk5V0KZ2O+vHOBsk+HhamHISbFAZZCC+/JOZyer5lVWgRsUeFKetAYUsm9n88tD+cpHbeneCo/6G4FuCiEqFyIDcbYhcwWQlzUV+Z3PCvAzmNtJoua0t+MUVvBxll8VeF8KZjJD3oMzD16nmPmVadYxKtFeSG3GiUNMOMRWCpbgRHaVYMhUVWOuvbUVY2xEJwniaHtWsQIznskCrvtgfv7A0M/MQ0TArRNBTlR+ZrV7oqQMtMUqe79Yn+XY1J8rIKnb56yOq6YSPSHnrubt4RpYiVPGYeRWDVljbSllkxJ2kkch2EiHHfc37ynWnesukt0orYFE0ncvXvN9vaa7mrD1dUVV08vCW/3xHGClAgxsPOei9WaPI7sd1ucB5OjqmbGka8/+wltt2LoB6ZxoiayvX+Hr5U8lEJgv9/RXKzIJpGiUzIwkFESxzB8Ta5KGYyr8ZuKqu3oDwdiFpyHum1oqha2O3b3N0hSMv4YwewOHPYD2WRsQgn6eaRpO5rVGudqrHFLQcz+sCPHQI6RlCeapsPbGos54RjzGBYIkxLQGmuVEBQTYxxpbKv4HaL7x7rBTIE0DGQycdLiBD0oTCHCMOHqRq3uTFF/zRErmTxFJsA3DQB1XREEYgpYiRhTaX+1hhhH5h2ULX0/hqDk+xypfYO3vszlurcO40hKAefAVzV28GrLKarynJOq92YSlbesmpopCFMoZKF5DjWn8TTPZSkntMbVLnskgVPRqSjRcp7f0zRy2N7hXIUxXuMEd/qmEtZnxcGC0+VCBzVlfZfTjDsT55VAJIua9DwPGgvOO3LMtI3XgtiQGI891hliUvX0qm4xRQHWMG+STthGSokYQ1H513lW8cuyZyuKpao8rfdUtS0hxUKwF6xRW2Inqr4VxoQxCVc3Wjj52B7bY3tsj+2xPbbH9s9oNlo+/OzDZc/19PVTTDKIOwvCRMlLz75+9td0lY/tsT22X+X2y5OUyJAMQz9irFBXFW3XUTWeEDVQTjEDkWmcMFbJItY5pjQt1SwzkiQoicE5S1OhgWZKSsIowVUuJCIFl9QaCRNLgJ6RVKrqOAGFiIKpQi4KPyVxIQoBOe8wzhPGiDIEFIzCgAsGlw229oDXyhmjwV1IETFC16m9zu5uIIbEGEayURLQxabjk09fsBuOXL+9pjYdkrXCjqyJttnLXMNUQ5yr+VAQ0JhSPY4mxFOM7A8DQWqOfWAahbvjnnfvO+zKcdwH1htNfB/GidvbPWliAXGxmWwEmy2Vt3RtRdfVXF5dkYDjcWI3RlLSautTBW6prDWihK054VcAQ5XtV8JJLr5RGugrUcEWZE0TO+bBsY0piglZ1H/dWDbriu/8+nNef33LtA8cjhNhhNWqplupndz2qFLRwxSwzuFFSlJC37M1jpgiU1CLtJOsPOW8p8r684Th/OeSgMknspxzZgnyF4UpZuu2U7W3IKScFiKDUiqs4hVZqzExqnYD9huS0IWMVZJZSsoo6mGckgbGOGKIhRSRS2JCK5F97bi4WlM1HVWlVj5d1xJTZr/rqV3FsBvp73dcrTZkMcQAtqrY3e0Z9hGTrSr5GLW9mUkqmPSgmlSv+QS1Wnv2XGdgmlJ1vbwDQcva52YWhYQYU0laOXJOhGnCGo/BkcWQggJKvjJqKYgwjYLPlqZdUdWeqjVgL6ibmsOuZxoSda0WCyEktV1YiClqhVI3LdOkykLee3KxLHxydcV6rSB817a8+uqOMI5gPCk4xAihVHd2XYf3ntVFw+qi4vLqgmN/wLqK8XiNtYarpxdq/2QbUgrEZKm3lhSiPtekAPyceJVCzpGSIPLeKdHIKiAaJkOYkhKJ3Az8a+KgPwyEENlvR02mkZUIGgLOV6QkxWbB6rxlWKwRpBxD32M8S9Kx9MsQE6tVQwhB7SpSudZ5TisqE2IMxmqyhWjKOKBYxAlzpSKSsFbn1FCqtE3J2InMKhkwW7TM872S6NQuwzjtHyFETT4ZVe2aE9fOWbAVOeta4rwrpL9MihFrK6ZxoFo1tE3LFKaFJGqjW6wd5s5vnYKrOsVpJaop43O+Lox+zlnHNERiLzy7vKCuW+qmoqmEcRw5hsBx2GJdwpqWqyc13/3+c+52O3KGmymy6jxTVDvScTzw5OmGj6+e0MeJ3XHEDKoidjgM7I57RNB+PUy4xpKamtp6cgwcdkd+/Ed/yP79G7LruPvOD3n69BNMBEmWaAMRkGxwdU0wcLvb8/qrz/jzn/2IH/zW3+TjT3/I+uIFWTJhGrh/e8fv/oP/hvc3X/Lb/7O/x0cvPkDyyLDd41tP9kde/3TPhUmM9zumu3ds72+ZKjA2YyrP9nrPH/53W9piTximia9+/iNc5amrDZvLhs4Lw/6OGA7krsVkVfMiTBz6I33fgxiunlyw3lxhmwust7xc1Rzebnn71R2bD67omo7N8ye4119y8/Ubkpkw3vPhxx/SVB27w5HD9Xv63Z7LDy843m859gO+XrNZPwHnCGGiv7vh3bsvaeua45e3pPEZLz6pcVUgSySESe2dstO1aQyqcGWjWhg4y3A8MF1sqHyDN2rPkoyj7dbU5pbb+1u8JIb9gf3uDhMTkhP77YF+CrTTqMl4G4lpYhh21FVmuN8ixrAKawgVftWxco7d7pbKeVad2mZOY88UD7R4EhP1umW6u2a3vWV3+56mcaoiJcIUB7VHuL9jOG4Z8oghcvXhS7pVx/7mRgm1IRHHPdkEXn6w4u/93b+FnYR/9Ad/xpvbrVaHY5Scbko1NDOxUPdJOVsqVxQ8nMVXHl/XOF8xjpHaew19Y6S/uyMcJy6fPAfjCxFYCbtGkioaJLU5SUZw2TBXmc82oJQ1N6WIIRGHkRB72rZT9Q90rBvUarWqK6yJXF5eUjUdu/s9x+MR700h12bazUaTQ6ilsJKalWiZUqA/7HFGiYwUAs6sZpnjREqZaUjEqJXjzjmkbpH6EokBkwdcnlSFQBLj2HP3bqLbXJBTIh5GflXbrHKRU1Gosfoz6+yimiczAaesi0oI1d8vMMcpH3TaQzlVzNBvU/bgSdULy/5O37kmeZa8vJz/MZOglCw3J/1B1yCzJJhKwiiLxgpm3hsVspPkJeltrcVZPfehH3St8hZf2aWQI5e+YMRQ154nTzcMIbDfHvC2kNt1YWdmnMzEBE0qLqluDLJYqc7JdMlZYzURJe+nzJAT97sj4/+PvT/7tW3L8zuhz+hms5q9zz7ndnEjMiIyIyJdLpwkLpVcKnhCSCUZ+QEk/iEeeIEHJB54QPwFSCAEPJRE+aGMKEyVnU47nTbOyIzu9qfZzWpmM1oefmPOtc7NzCIA2xmV3uPh3n3WXnutOccc3e/3+zbRMwcBIlunV5vtWtuSM1pVaFVFFHSbrqnWIpoUMz4kUYEql8L+BalQ/1Zd+lgeg/xe10J/VlImXu5rKR4uH7i+vr4sn5OSAPyttmw3js1Nz9PTieQL0xSIvtA4TdMafIi8fTzUM4kUGJVewECKBYiyKMe8NzKWM8gVoONq+Fz+sQI1Vj0U1osu9cy3wBWWvqm/WsBwq/VhHW9S9KwKK0pXy/AaQ3zrOtQyutcz++VcItcic0nijoUMhCj8KsRuyapVFUxsvQWE0ZiGeZhJPtB3bbXMAu0sOYmC1TrHV+XYOl6XmKl8q8+uoBuoC1hwmU3LuWp9XQa8vLce7NVStC2LfRhgCtZqIqJiWgqQEKWSGvPFFETE1jiiz9hG0fYG67bEkJgGX5WERRGqXoBkF7QAxbSxVVm0VFJKQVvYbFv6jcU5yzhFHt6dGE5zPW/X2EmVmhsooEVx2TYGZR3Bz1hnKnBeiC6ojDYNpWR0BGvqva1g2NpLl1q2rHd1zVr2G2stSVdS1XXn1meTQmaMEyEsmkxC9ipK4v7rmHCZjctTXidtfdhZZa4H6QJGFCWsQqkqw+XqbX9+Zl0B/ajxaZ0nlzEBRV+tgxf01tWklXmVVzumGv/nusZV8IRa5iAKiiKb+n16iVNY4wxZM1K1Q4SYIhRRYLXWiKKZVqSsL/dXijBI6vW8px6miuQQ6riX75UzRJgCXmnariH5iLUwjTPn88w4BrQRkGXTtOz2LfMsMc0wT1gFu02D+OPKTey2G0rKpDnhv0ioKRFSpn+zocwa2zb4aSbFSHNo+ehffSL5t5wYz0e++fyXoAzK9gL2yllAVcu4Lgq0qSqzkqN5enhLetK8fOXZ7u8wtqnW1+CHice3rxnmI13rCH7CjxOaTK4iQZM1+POB8+kAwePnJKQFK/vdeHzCTyPUvEkqkfyu0PU7Nttbus4wDiPzNOBah9ECFIkpkWJgGM7kWHCdwzaicFi0wnYNe2M5Ph4pMdH3AlqjRPIcCMmTS+Tu9hXbzY6QxKJsnE+0raPve2LMHB+fsNphnAOlSN4znU9kEo21TMezqCG6REZVMluhpEqxKdX6PFdSli4Un0jRk61jEeQCyb1ZYxhiVdohE+eZUEG7mkIKNQ+IJqlASgE/T8Q8o5XGR7ERM9GSjSiDR++Zx4nGiVJXimJphhEQZdEKZRSzn8AHKAlrRGEsliSgtNkT/EgMgagKdtNz17X4YWA6nsgqi5JcyWw2jh/94Lvcdj1/9osv+ebpuM7BXPeapGT9yfVcfxl/IuJXlOxl1lq0MXIG5XIezSFSEuhOY6wFYyVnSYJK2BJrziwgrro2oGQTLaR1yZJ8R6JkAf0Ya2seVNb8ZR2wxhDqZzVtSzSJ4AMlJ1GXi6OosjVOLNuUWYmP1GtJMaByQhlEoQHJtWSoa2skx1KvKV9sA20ja11JVVF7WYML0c9MKeJiFPXb5/bcnttze27P7bn9/9WS/eu9n9pgefnVBXz0nT/9Dt25Y7wZ19fuvr7jP/hP/wP0AvZ+bs/tuT23q/Zrg5Rco0m+KhKtrLRIjBDmSIpSBFCL9HouJALKGZq2EUbvojKuQClhTfedo+8cm74V5ZVSGKeJcZo4DxPTIF7ZsNgmSFi3uHOL0q4kjnQN3HNKKLMEggIjEQENVX0YloK/wTrDPEVS1sIUycJiQlucckAEazj7xHgaa0LXVp/4TFEaP0d0sjSdoe0M0XU0hwYdFePkCTFBVdBJpCrGswSYwpAyKGxj6BqRWg7B07gGoxUhRYZHz3CWBE5MiS++vufxfGCaAk3XsTk5Hh+Gqgijq/K9FFoSEj93G8fNzYZ5mvnqizfElKtFUlXnqYCagiQyS5Xh1lRAkpKiiyYLMMRous6SrOJ8mpjPviaMhVG1slvVwnKXQt/FoiDTGEvbWPbbDZtdh+k0N90L1GHk6Z14wbvOECb45mEkzrFaDigBECmw2kpBz8dVJh64MCDLYi9wARsppZBRJc8hl4si11KQUWpJ7IuiA7omSKkqQVGKSRTkuRbQC1uyqNWearUnsRaKksRSLVrVDloTpCEFVNJYa6XoVot3KacVNKZIAsRzIhfe9g0vXt6wuWkpSHLjPAYOh5mSJUFitON8OGNTIbpIyAlajbOKvmuJozA2c0pEySVVka9MLqaCB+utXdkyLHWCBah0YXitb+FimyIJEilqqfcKMeKKWNBFEjb9psNMwpYNIUjxJGv6bYcqGVUypURSChyfJlpvQcOr79zy8Xc/4otffY0fZ+krNLY4tEqV+Sifn7MmH6uqj7GUnNlvG777/Zdsbi39puXd2wO2tfz8p98wDcIsbnvLfruT4kZIpKA5jzPKgY9PArLSht3tlhQ02gIqgVLYpqVpMvv9hhwGhhgoFbAHouihsgJd2XCGWtiSInquSe3FumxJzMl817JeDp6UKnCoLgAlK1KMUlRYno1a7DPSOj9WtnrOxJLW5HvJYjenlKqKLJBTJMaF8QtVH6OOWyPrR8rLCK9ZfSmcLvOzkAVM4JwoRLAwI6lgMluJiZkcK0B1WcMVtbCTQWe6RlStal1wLe7J/ZU6RpECrFmUyqTg4horFqBRbKFcY3FO44Op6nygci20aFG7KrXPrLM15yjFqRxEsl4ZKZi3TcPxMEApfNxajm8mHqPnOE/4CE+HM13X4mzLD374AYenI9Poaaxl2zbc/PBDsirYruF0nAVAlDUxFP7gH/8TmmLZtC1ZgXWGdtexv93y+PDI5CPBg+sVfWcxShOGR7745YHv/+7fZr/dkuMoUu84jLKobEhZitQmzeQ0s9m09Dj+2X/1B/zqZ7/gJ3/rb/Py4x9iTEO/tXz/B59wPPySX/2//pjy3d+icYrWFLIfSZNn9+qOMB/57LNfcjw80qrCPE00ncOWzKZ1zH5keIikOlaPD4m3X33Ou49+imt7rJ14+OYzbj66w5UGyszoI0RR5pnGAWccp6cj3k8426KVo297zI3m3bufMxF4sb/h6d09MYx88vGnfPHVz9jf7nh19wLbbNjf7Dl9847PHx9x2vLxd77DHDPHhzOn+S39zRZVMq3RRD+RGkPfdUzDwDSe0LpHW0cJYvlYksGLgxglFGIcCOcThIkSCuH0hC+QlJMSYLVsKloznAa6LtM4x/j0KBYfKrLRmjAOpHmDsprD4Q3vvv6c83ii32woRXGOM3f7nqI0oSkYNF2zZTweMBRM1xDCTJoHymQpY4sqjs4m3n71Jfev3/Dq0w9IxwPH08B5nDkeTsTxzG7X47zBbVs23/sUHSPvfvUV7969ZhgOjIc3bDrP3/n9n/Af/c2/wR/+4z8mh0yqXpYqi8KjLwFntSjClIIxilBjd13nD6rQNIa2baQY4BxKaeY5yFxtG7G8KYXt/oaQBfxlnBOgfLEC7goTKQdkQRbmdy6RnAOqiPXs8fiEUpGYEl23wzUOpYxYw5XlbKHoNhv8eCDngm1bbl82jOPAeDqR/cjhzVviPNDf7LDNFoWjJAjTIACkmIjB07QNec6kaWKcJ7HOQDPPE0YXnDUV5CzWO267wTYN4VHjnxJpLKhUUCVgFcRpZIgZnTUnnvhNbdpAKdBxMAABAABJREFUjlIJv9jdip2Q2JvWAvMVyCKlhC4LuHk5R7IC4I3Rojxi5VyvUGLfHCMxiv2Xn8XC6QKAWL6nFs1ZFDy4FNdzZkU9Le9TVNCC7KFay9prrNi/LDiikovs79WOOK8WrYaUM3ESsHGugCyKEuBt1mRdmH0ALeAbOQvJ2VFVhaZF+Wm5sHpUWMFaAoqXe3BOgH2pFPwkIDitZM8dxoCPodqPJMZpYhqlaLaqCNROyuR1H1XaMI8R7yfpS3WtebMAUQSULCACBVfWWSgB/e3jjo+/ekX47szpxcjjcGYa/BomLT5Ui8UeFbzzHuhB8B1wyOR3mbGZmIdIs21ojoo8RpQFPgHdWwHAp7gCs00FYosV1GI5dWnlL/jp23CK9bVvI5jq3y1nqOXGLpgJVb1pLuCNBay9/vUa/15IDdcqQmoBo3GJs1IWNT9TbcaX8bEQZ6jPZ4mVtBbgQ9c3aCv946MompUc1rMURay+rBb1k1QBFGJ1aWt8pskpEkIhp/rA6xlwVc1a7+vqTheA0RWg5L03q+XdSzy3/NkC3mIt4quq3qq1wViwVkAjQjAxNI0TMpKR86w2AjQJc7XEaQxtJ+ohfqpq0UYK0sZUyzEr9vMp1PP5AiQi0naW7b7FNMs9iBXzPAWCF2UR6wxtK5awUpBWzHOgkJl9rOBGTdu1lKJqPHGx3tNa4iKtA+PgK27rGjx01Yt66Sfpy5hiHX4X9eBSF99Sqt3ROqZZY+RSEJDK9ePRtdC/frH0xWJZWcqVetpCQEAUrJf8wKJ2Vb+l5osuhKNFqWqdYmssWj+zFNCLUp7YeFIuMbiM/xqLLspJerGgvB6D0q/OWuJ8UZB6/OhRAFDpQnjRRq3Wb6aIxZ6o0VSbNwQw5KpaoMTCVUX4StV3JYTUM5KQ9Vj3oeUChaznmGLCFrAZ/BDxKZJKYZy8rOPK0G/kGceYscaIVdzesFOtgNBSIYRMionZR/hV4JufvmHbtrimodOOF+OO04szrdPYx4ZP//H3ac8trtFY3VKKxk8DTb9jt+kpcSbkSNEWlBUSTBblWU0mxwljNR9/+DFv7h/5+osv2N488cEn38M1G4mdX2y4OW45nY+8+fxXOGfY7Vrm8wmNKG4pEvMUGMexWqRXYldRdU4bqLbfpQIzfBk43L8mzCcBURXF8f4eoyzBhkqoq7muikZMMTGdB3rlxGqtqq071/B0eiKnICqhfmb/4gY/jxxOxxWcbI1Bty1+GAmTZ7vZsN1tiTFLjiJHTD2zpKbhPI9Y64je4+cJhcG4dh0DZVVSRNbwmEjzjC4FQiBNEDFkLWt+rnmAXEq1lg1Yq0nBM6tC61qc1nWcBNlTUub08I5hOKGtZrvZEqYJaxRBG1FWZ1E/c4QQSRXAk4NHZUWeDVFlLJHTcOB8OKJbRzNYig2Uophmjw8zm75l1zpZOxuL0ZC2e46uJ0SPHxtKGvjkwz033ZanhwPncaYUoSjqolB52csqQLHmNOUEVNZc2prfA0oUsp/kQhSpgNHiv1zQuLYjRln7lda4RleAkJwPVIlgBDSkSqmqT1HOKSUzDyM5R4qCpu3EzldrUHpVdVOlKokaW+MTLYq/2hBDgALBT4ynE23XYpuWomxViIwC7MsCuDRG8pKZiA8B6t6/rOvW2ko6kfOCUkCryN6RlCLMQJkFyKbkPFVSIoVQgazP7bn9BrcMN29v+Ml/9RO++slXvPn+G0Ib/uJj+l/WChDrz98Av6o/a+AFcH/13t8BPub/u89/bs/tuf07337xe7+opIe/nu2jX3zE7n63/ttNjg8/+5Bf/fuyoN59fcd/8r/9T7j75u6v6hKf23N7br/h7dcGKRkNxUhiylpD2zu01fjZC+OjlJp8XsAMUsAvJWOtk8SLkWSQVpquc2y2LbubDU3jxCqDzOw9qulwvcY0gMpMp7Raa635rzVJVVWQtARipGqBUCVv9JJJUkUUimpxWmmFdYqmM7jWEkMhxIQfFTpYXJPpeyhaMcdEQWMbix8jYsmRKTETZ7HF0jlyOo1889UjdmvJBYZpliJDVqicJblUk9TW6LX4IHYXwi9NOaBUxnWW29stlMzDw8AUxBZDblkzzYlQAsY4dITHhzOHw0zTtDgrdgbKGFAaPwVyDmgNr9884ccs1hZVyUDygFoKI6WQVZLrLQWNhaRrsFuwjebVhztevtxzs3N893sf8c39iT/6w8+J40BBAnJljACbSqoMZWGBmoU1qITh3bU9RjtO58Tj4Q3zOUEX6buOfKNpG4UqBlUmjDakktA1GDdG2ERSrExXCb9vNbVkNa/ZvOWS+KsRxkUxqgJGanJTV2UWeedF9nkpBIBCiydCTTRKUWiRhV9AWgubslR2pELX4gH4MEN+vyC2gJjWBC1ZwFJFVxuPgjWa3a5H68LpcGCePaUYiCLX7f1clQlE2rtrHIfzjHIGbQvT7LGN5uXHNzSNJaeZ03FmOHphH5Jq99n1nlaQWe2nUvvp2lZCqasErFr6uSaJlNxbzAlyqTLS8jxUlagfppmcE/sXPeMgFiIasBruXt3w4uWGkEaMkYVgnjM3L25wTjNOM7u94yFEStSgMv3W8sl3b3n1nZ1Yr0XF4/1MUVIU3G5b2r7j5q5DuUiIifPbkaeHkTevHwhe5l1OWRTUpkgjrhDEUIjHmUKhaS1t19H3PUrNWGNBCdgneAEoKqu5+/iG/e2GX/7sG/x46cNvDdwKXrsw67P3lQGo3rOckLGb8F6v692SlFuS9Ivi0bIWaiOKXLJOy+dbZzFaM8/zapGiysWUQ2wUEYupVFarhAXMh9ZVdUlAfSWrWiiTvUFX9u71+Ikxk0qsfy4qR6IokknVAi8mYYyu834BP9Wqm6p90DSNzM2laKaFJ5pzRFUGpa7jTRjwDSnXn40jVMtLozXWGNqmwZQEKHJMwrgvl2KNTGi19m9e1wO5h2mceFSZ3e2ejbWMaea7d3t0blBnGELm8HTi8OaEsQHvPXMoGGUxKnNzu+f2xYaSPee3Jx4OI9u+53SaGGPmdHygdz0/+Z0fYHTm1YstJz/i50zfdZTsuX844VTk5YtbkjUM80imw2o4vvuCHEYyLdH0uH5HZwwP92/QNnO6/4oSJ3703Y/5/f/23+IXn3/Nn/78j/mTfznyN2xhd/MJ3s9M4QR+5u0v/5Tp8TNuth1dkyEGfvzjH2Lanm9evybMA7MfZWzmTJpnSUhrsLWoM4QJYkFpw7uvv+SP/EC/v+OT7/0EYuIX//JPCKfI7u4VbbdF24Z49synE0VlhsOJx29e8+Iji206TueRhGPT9Xzxq59zcAYNbLY9m/2eYXji7dOJw9OJvgfX9DT9hu12Txwj0zBC27K/vWE+nomnA/22ob/d82L/klAK7WbD6fGB0/0jYYKm6VBa4aqlpvepApY8MczMpxN+mIgFpmZAFYvCorQV8GwSlZM4zDyNAy9e3hBPQSxplGO3aZjOJ8bths5E/NOB+1/8irenb/jgg1d03Q3DHLhvN3hfyBgwDmscKWtev77HOITFfD4ztZZSk/Hx/MRXP/9X5NbhwxYfRrpux7brOD8dsX3D/oM70hhkD+87US/SHaXbcOcHHl5rfvL9nt/99Lv8q3/xOf/4z77k7IEs9meN1pQoheiUCjkKoFFrjSoFqxVOq2qPm4lTpPiJEBNRQdNvKK5lu7nBNhusa3j50acY3fH29TvefvUaYy1m20J2+OlEOAxs9j3NZosyLSlkhtORkidaC6fjidPhAEqxffWSfttgGwfKUTDrGqiUQllNyIrgI7YVpaetvRGrLKO4f/M1bz/7gv2LPe1mi7U9ShuUygQf8XOi6S3KSBHJV1U9ozXWio2LdY6mbVHKoLStAAGpTjWNWAqmpAX8pgNGBZq6Dg6nR0L69n7ym9OW9XoBa4vNslje5bxYaQCIKt8KGAJKSfX8qNZicuNsBQwYAdgjYJqUxaJPW43FkCmEWZjy7xWlv3196mJeVCgVBHzBnqxgIL0U+AVVUorYfVorIIIQNDpr2kaz3TXEkpjmeLGbqvucKAsWYqyKGggwZDx7lIVUVX2WonVJFyCKUkrOUEsRrp5BSy7ECijSWlfgFvhhXoHlYtNKVa3N6HoeLZVIYZ3DWiGpaGNIUeK6nEX1ZBgmOQJUS+DlrCF4kus+pKpP6RVjonTBjob9P+/4G/5HfPf2Y7Zhw8+mz/hj9TPCywO0maILai+sf3UuVelU7JPUzxQqKtSk0H+qcW1PE1ryMTD7CZsduQMzG/qkpZD9Eyj/k7hauaoVVCKKMimVv+As9q3Be4VmeB+S8ReMoeXstrzv6vygKgjjEtjKp1x0hJZ45TLuloGoKuhntcAq9SytRGFj+V4BI+SrscFqRV0qyWIByen68Od5Io9S4NfKyPNFznO5KpOVZU7mgLIGo8H7AFBtyoXQk2JmnqKQSBbmi9IXENh79/9+X74/R6/jiEsfXxRy8zofFtUopQRMHqLYHjatozUt8+Tr/Ek0fUe/aVA646yAB0MQC0OlCsEHsZKq4ICcM9YpXr7a0O2ksB5jYR7lnJ9zkfWocbhGVHPTlKplGpxPMzGIfJxYqmVKjhi3FI5VVXdONK2TZ4TYcGtdwbJFch56uf8GbCNAgzAvNsnlvb66OrWuuJeSC0aLMlPJlxhuAe4sxLDFOnsJm9cnpJYQuoKRVA23WdZ4sXVOKZFXO0VBDqyReCnCpKrAMq5H/PXzXXI5K4KvgoPW+KaCmirgOVf7cb3EUdcxa72UxQ7pEsNwBby6xKYL+O3m3Q3qw+X9cqOL+rIAV69AWRQBCnQVgLUoNCskH1L7f4m9JMZntTNUFRRW6rgX4li1DEzQbVpGL2S2F7cbzuPE6CPRWobTSE5CHoyPmQUYaoym3bS0jYWcGUe/5s9Shhe/vGMaAp3raJWhUw3f/cWn/NHuj9l/fct3/uV3UPeWqAN9K+pCPkSUtnT9hnE8yX6GFfKbsbRNgx/P+OBJYcRPA9ttz65ruNn15DRxfHyNMXD36jsUZXi6f83h6YF5HonhRNdYckwYU7h9sWd/c8u7+0di9GhdCCmJhXeBEiGveT5dr6eAEtWch/u3DOee7e1L+mbH0/GMMQ9sb17QtB1KiZ1wCUJ+0EUxnUesbdCdIkVI9QyoYxKQk7X0XQvO4OhID4+cjycMWizUlMJYh3aW4COJCa0trqoRxRxpmpa23zB5jzYOpZIA+00FVWrZg+WcIMpmKQU551SF4lyEaJOSqF/LfWsWxqFRME4zuWh62xNnj0oF4zTJR8Ls0RlyjMRxZj4fxcYzeGJWTEpTikYxU5RGWwcZovcUEqpkwuQxbQPak9MMMTGfB7IqbDcdrpG1UWHXON+21dIuCNBJGwutpd+DGQaJhbc9n97tOR9HPn/3xBAX+16NtZoSC7GCaHOuitGyCiEGfsgekTMlK2KpCpYUjGswrqHb9mjbUAr02y3WtqTTyDQMkiPQBmWglIgfB7QG17Vo68ipiG1dHZOUjJ9FMa/peqzVq/0vFZR42fXl9Rgz2sleprWWflKQUyAME8Psce2IdS3GOclnuAbvI9ZajDNoJfnnRgtxTytNTomiRI1U1ZyIrGFyENZtK4C2UodKFkUlTarzQZTInttz+41tn4H+X2r+wy//Q358+2OUVXz26jP+8L/1h3z5+1/CDnDAR/X9r4FQf47A/xU4IyCk/wtyjngLfFnfY4A98Hj1nf9D4P8ANP8G7+u5Pbfn9teufe9ffY8/+Lt/8NcSqKSy4nf/y98VEYfabLT8/n/2+3z5ky/5rT/+Lf7O//nvcPf1M0DpuT235/aXt18bpJSSKI4obbCtlaJ7tS+TQvAlUSQJHgMYYV+UIJZIWykgt67j1Qe3KJPxITCOAgLKSsAmSktRGm3odz0pgp8CFLVaE12Sl3pN9qCUAHMKazI/c8W0pIBKIqFsHNZdivkml2qpo+lcw49/50N+8KMP+NmvvuD12zPDGCkUSSQict8hQvRFimpWYYwV//khERcbpKIEpFSoLGNJfOWcJZmVs/i2IwAInyUxmXPGB0/rHKBxpsXazDzNaCNgopRr4FlZq13bonXPbm/45NM9xhrevD7QNRZtNszeczwOEhBrhE2VCyUuCcNU8Q1LejihdRHimBarhP1NT9e3+DmQuo4vvzjw0z/7DD8Vbm52KF0qq9ahtRUHddHRx1b1LGstTdNgnOPFd77PZveKw+ENp/sv2XQJnwKUzKtXG8LsmeaIMw7VJvwwY42jbRtSigzzRBUsuiSnufz7ul1bva3vW3OtNXGwfI68EVBrgl9ryDGvQLeVyY/AEgS8RlUgus6mXzGmkUTh7D2liLWG2HHIdYgqy+U6Y5Rrdc6KNH8UEF7JSxKzcDyeeXqSTrDWCdvND1hncFasZqL3xFTIKaDI2MbSYfA+oFTBuUJKsN1v2N1uOR9n3nz9KFZVOaMQdYnFO+9SxLuAqa5VqpaCgqpzculztTB5i6qJ0XhJ0ir5nbGX+x/Gma7tiSHR9Yabu5Z+b2n3DbumoWsksaJ1S8yiQLbZtQxnT+czYSykYcK6zPbGYpuMcw3ns2f/oqHtb8gp0rW9JPpUYhgi4SmQsjDLrHZQZkBYwn6uBRoM2+0GpTQ+JvwUadsOPyXm8YBzpjLJhSmsSxHgS9fiGsVsI9ubhuBnVJbEKFcJdaVFVSmTV6ax1roWimpBprJ9l/EWQgRdsHVlz7mQQgXsKGGH66qusFiz6WohIOu7Ipe4FjhKXQvEqgAa0xBDIs4JpTXWCHhNwI7L8y9oXa1mGotOipSrkp2StTpW5T1d15uSErkCXBcWvID1KnjKWnz2VY6+XOHelqKK3FPKkRRl/ZAkYLWkyAVUJoa8rnNFFRrrMM4KGHWe6Jod1jm894QYrtYTWbcVpiZW5XVJBlegrDIYq0kxoK085+AT0WuOh5EMzOPER7c7Pnp5y8NpYjwOWBxz9PjgGeeZ6EEbKbo/Pg70rxtub3d0bcMUMy5lklK4pmPXGVCGbrtB64gxBf+UOJwPDOfAMAykVFDZkkMmzJGcCt/7nd/h5sUt9/dvGMYEpcEPM1gwceaXP/sZc5yZT29JfuRnL3ds9juGIVDO7/j8X/yC87sHfvjbf4vD0z0//aN/wpuvvwab8d6RnjqmaeLF3Y6iIqfTI8PwhNIRbaGkhNV1rCC2FlhL1opm0xLOAdN0+DBxOJ6x7laeSQ4oLKmEVb6fAikkcklilZLh/HjP7Ys7shGVnmQUxmnUNHE4zXzyW9+hbR3KGVzTEacHvvnlZ3zy/e9jnCUSafqOdrfh8HjE9J79zS372z3n45FxSPQ7y83tBxzOR9xmS7l/RGdF31uMEsUSpRWkBVBRyKaAMxRtCdpQrCU7S3ZmVYkx1YBBW4fVhWkcyOqG25tbpsNEdpHutuXwzTserWW36ZjnUYox48Cbzw/0t6948dF3Gccz2jYoLLpTFGXJWWNMCzkQZ0+mobiWpDXFdJxP75h85oNPX/Dd735Ct70B3RJPEYPm9sVLbNtQQiTESKM0xTb0+xfcHgfePr7lJ7/zCf+93/stprcH/uizz3gbMj6LzYNtLa21lFJI1IK6qep6MaCqbWvCyJyOkVACASmaum3Pi5cfsr39kG5/xzhHdrtbNrtbptOMyYYUR6bjAyXOOLdF5Yn5dE+YFO3tDdo0+HHm6c0bgj9hTKSURMaw2d+x7Tuc1quly1JMLXUNSzlhrWM4D6QcUUVsJmLOZKPY7m+x2jJPMz4d2N8Wum6Lcz0Jj9OJbtfRtD1KN7RlKZJmcky1cOJEfREj6p3JkEugqIzqNrS3HzKPZ3IcyWnGxAA5UVLAKEW76flNbUsBSWuxeFP1NSrzm5L/nCLHYpW3gHEaZ9EKrLVsd1sgEaKcV3Iq5LLs06w/W2vIsQhAegGDlEV9BUR1cyl+LQCkWogu14CJpRANlKqkVMHDKIg+EWKAomkay0cfvmD/oueb12+JUeOzMPh1BVnnqmZaqgKqMRprjXxGxZtcd4ccscoK5MiLVapSmGoLJYpAYnUlZ8koqg7aCGjeKGY/C5CjHmRzEVD6ajucMhhN3zWgFKd5xBlDs2mJOZHTiRi5xDWlVAAVsFoG16usoAFrqurIn2jcf2EJbwr/Qv+U16/eodB88+YtKWb6pkEZTWkK/JZcD5+Dmmush8JEXfddUY0waYvSDcFOqKwxSpRnMQVlIYZI+NOM+8LS/NhwPo3VNoWq9nEFnLl6vt9u3wot6oi4+rlcXlsUgRZLN5b/I/2ml/ctIIvrTyxltZj+9resLlBU65nljF1B21SAyHILSl2+QwPqSo1zuaeiIcRECXIWNcZQ6hqsjPxbF02sdtMrmKjaKaIq+E17ibNbi2sXEKKoLgsw6ltAsGug0hqwlz/f0VfxxbeB/UtMUsr7sd4lXtMEnzBG45yh7S1d78RysTGUIlZ3Sik2O7E0Dj5hjcU6R7c1RJ/xs0ergg8RPSmMtfg5oI1md9tRShJ715DxPpHSvCwmpJhonCWYTFr6IGexT8uatrUCCKoxXgxiKxzmgHViPRxDXAEr8pwV1sr8sk4TfD375gJ8S0a/1DFXFaaWbr50vXpv/KQs32/MYkm5AHsu77/MlSviwDKmEXDlqnBVWAFGqCKKN8oQfGKxxrwQXEoVSip1XGkWglesanuqLIAmdRWLL/f6PiDp8ssLWEjwXnm97wV0tczHlMWGdulrG23NN+X1PRKf1VhD6QsBpJJLrHXyuwUUqa5Upr+VGyhrrCKXrxe1E2QdX+KPnDLTMJOixRnDpleAIXpPjoXWNfgcJc4qrAC9lDPD4Yx3lq5r0NZgG0fykZvPb/jozYeYjaXbtLSdAOReHe/49/7Jv4f+oiEOkZQTBgFoKyXKh9a1dG3LdDyQIrT9DpUzxInxHDg9PXEazigyyU8c34pCdimakgKQ+PqXP+f49kHi8+Mjw/lMroATUxrBZ1M4HI4cz0Mlpl1yfEbLuUFX9V9tDBhRvvEqAsvYkvgvTCOkQtM1cq/VOtAoVX+iWoNVgHiOgMxVpQyZjHWGMiZMLyo52lpSLjjXEueZyQxsrCUbjbaL+q5mHme6raZxDmd7xmkm5IJtWtp2g7YW27T4aaTfihp9Spe9ybgKjgwB0zRoa1dl4uIMunFVaa8ShrKmlCj2oDGAsbiuIftC8B7byj2ej0e42WGNwfYNdtDM88CQE7cvP0A3YqXsnBMgkbYSu7WOUhIpzKhcsH1H01oohvFwxPtAtgXXOFzboLQlB7GLb7sOYyyUhawk6sXaWpwNzCmwaTXf+fAWHTPvjie8VmLDVsG4mQyLzVkR9cfGWmIMqwp0KlkUyLlWMRfC1Wa7pe132KYjpIJ1LU3TsggHaiD5iSHPuKZFFSERzdNITDPGNVBgHkb8PFBqDkUZg2s3NG2DMXbNM9aIgtW2slwAomGeoVT760r4cl2HtU4UY5MnloIqGYOp5MEiIFYjqoF6Xfdlj5H31PX9vZNKBb0qLf1pnagAZ4fKSXK3ZEw9Zz+35/Yb1zLwfwT+p5D/WeYf2H/AT7/zU5qm4euvv2b2M3TIJN4D/936d/8P4FB/LsCpftZf1iLw8K3X/jPg/wb8D/713Mpze27P7d+N1g7tdULpr08r8KM/+BE/+oMffeusAZ/+9FP+7v/67/LxLz7GefdXdIHP7bk9t/+mtF876gghYbTB2AWcoKR4b3Itege8lwKysMEFtJGqJHjO4oHddY7WOV6+ukXbJIVQn5jnyHn0K0ApxEAuCW0UTVuTgGphcwqghiUAByQVXgseCojVp33NBSmxrEoWHwtKe3auZbvtsa3hfPQcziOqFNpW0fcOoyU5/+plJr09kkdNt2nQ2nA6juAgZ4VR0FdFptN5EGY7ihCrHLtiLVpWte+asKJmi5dUb/25iCXWOERyC6iq6tFpvPcid22kOB1TZB5njLH4WSxL0qwhzaANw3nmxX7Dxx+9ZAwTOXumoXA+zNW2TxSujBZgAVCttSAXUR3ZbLqqLCJqD8enQtvAptd88dU7ojdsN5LINUaSJ3JHCtQlGWCVxjlH0zR0XUcBzg8PvHvzSI4emxW7bk9T5kvBLiXMnHGto920xJg5H0fO4yhFhUoUk4yjqSyp/K2tsY6QbyXGlVKL+4BccRKbpksivI4rJeM3JVFoyXWMa6VIXD5zBecsOdg1aZ7JGUKQrGophRLlTaGEVXnGWCOKYjWpQFkS8VSgizDQdBF1Gq2QRBBSjDLGVACc2KqhM85YYbDX204ZKfKPCT+fMNbQbVqxJmoKTesIyeP9zKsPbzncD0znCLWYsorTq0vR5c/16RWTdFGzWUA1qUqoG2Mx1qKKXsEtwrLPuFaK0yY1+DkzJs/t3YbvfP+W3a0kVpu25XQ68/atJOy7TWIcPedToHEtCsPHn95yevI8vg70veZ0jDi3IajM6RyIOdFvWopCrE6SZT7NfP3l13SbnrZ1nA4H4pywtgJoVtWcQvCZsilYV+iMoyjF08OJrnNM40TftfR9xzRESSyHIHLgFPpNU9enhoIXNbUFcLMk/bOomqGh71tc4/DzTAw1La8qH04p0BUA6CzdRtbZ03FkGCJKy1jKFbiDUlXFIlemszyflEXNw1qD6xrKnEiL7YlapN1FZjyURElpBfUpJc8s12R801qcczUp7JimQJiDFGRWpvClgLYuf8ucVKxFTeocWgtypWCUrrLp8neLhaLVel1jl2KELGpZ7r8uR8pIFSCUQiZiqgy7a1varmMBLsYYZPGm2u2lRflCVQUQJEEKwjglYZyqtpCZflOBaj5xfswYNnz9bmKcEiEUnNa0VsN2x/E80zpD1yqiUWy3e3SITOeR19880GwsNx/c0XcdPhwZ55Gbm5b97S03LxwpFcbziZgmtAY/T6K4RuZ0FGtKow2TD7z+6jPC0z2xNPz27//H7F69ZN8XSihMh4nz6TWjn7m93TKfMo8PB94+vCMHjyORQ+Lnr/+Q1z/9KSrBHEZ6wdNCDOSmRRvDu/sjX799IKTIdrMlBmFuNq3DKiVy9SlRisLZjHEQS6FtoYpiUdLI6fA5/k+e6DZ3/I2f/MdsOsM8HNlvt3S2YR402gmzu9ttuH2xpXOKYgtKGYxPZBX54NOPOH/2Bc2mwbmGXd9zbx27F7coB8Ppkc22Y/dyhyLjZ1H4Oh8e2Gwtm/0td5tXvHs4MZdEf3PDlCN204ua0mlg9+ELNpstwyTJZO0cfd+QfKRtN5iNw2qHcjPFamzv2G436KJlHiktAKBRMQfP0+MTuw9u6G8+IZwj94/3bF/siGHmPB64/fiWFzdbYhqZzu949/gVbnfmxcsGZR3NxrB/8QFNv0WpBoelxJkYRx6+BjfN3L3c0Tcbzk9nPju8JsQzD0/vGPKndEZBhqenA+1+g9k0zOcjJQV8DnR6Q6s7QvQchke2e8N37hpOTwP/7M++Im12bLZZgIhM+HnklCbJzxdH02/Z7m6IPvH07t0K0sm1mLrZ7ej6LTkpUTprmmq9YJimgc3uBZvdTlTr0sA8HJmmR87nr2k2DXevPsapHqsTb9/c405PdH1PGCeO794yT0eKCqjGcvvBd9i+vMP2O4quAEwdSYtqQlLoWFZbyuk84MMJTcRtOtrtnvZ2h719AVmRcubp8Ynj4YkYRtpmFna+tpRiZY3TXIpJZHzMKGUqILUW3YoU2SgCQAlx5jwNNNstpBt8mCnKY4wAbV1jce1vbhJAVCVYVSeU0lhdT1f66rBShAQhFrGQEqv6REoZ04hipKogIdPIXhZiYp7zun/lfLE0NVZXpZnljHopdC8IoOXUKrZqSIH0SrkQahEzib1PEjkhGmtXoHmIF5DUNM80k2W/39L1kafDmWkS22BjDPMUUPZCwDBLnFAVSBbwxQJQqle6Ft3r1QooIC3fWwviVSkwZ0i2LDhzklqsdrOAfDDElIghSTE5ITY5WfOQJN4CUI0UzEmZ7a4VxachrDbWcu0Fpe1qA5zr8wIw2aL/S4X6LzR5FvUVZ+F8FkvJEJIokiSFzgYVgX+1IHI0i92wVotNiqmF5EIcz8R0rmergm0arF6ebwU7RND/EszvalxTrbdiqnFlWfAkUkAsl5Hx7XadX1yjhfVRLFZVl7NOUaqqSbGegeRvKhhjjR8uYJ3r713ADYt6q5zplg+Rl3KRc/pyxhPlnXrvpd5TjRcgY52VQnsRZViJRSTO0Ub+NsVMKRptZH7mXK3VVb2FImC2nAJKKVwjVnrkRHYCCvR+pm0cGoWfKjheqQtAivWWVnBSub7v2m9LoXUZ33IWz9VG65osASgtIEYnQKuShGyVc2GzddzebQQwXQQs6OdMmHPNQUxihR4KUYnlTlPjkpw0jVOINaMSgHQWtQllVAUHSb4jZ8XpOKK1wTnLPE0C/FNieVmKgKNyhhILycTVDpsKBDFGwE05Jpq2gWKIXtTMSlUMMVbWvZwMi0zcGo9yAbqULNO4aRzaaIL36/qyoIhKnVxaK1wFy1ur8XMgVIu0UsdTqYNeL8Cket2L9d66fq8KMKkCcYT0gxjbXgH08jqb1jgyZ0oFLy1AJ61VVXT7dlWxqsUuiKU6rt6bv0qttvbfenldUxdFVKPNlZoSdS5fSHlQKnhGrXtJQgCDBl0VlC0lR/neIvERSq0s42vbUmOESHIBWC2gQ70CDcSasJBjIimY58S7hxON1SgUXWMIQZGzqOu1jRNAqdJYbUg+UV4r+jc3tF3LZtthCrz41Us6a2idw1koJRK8Z5omtk8bphDWey5ZFMacc+SUmMYz7775gpIL/c3MjQZjwFmDUZqiMz5MbG+2bG+2pNkzTWdCnFBJVM5KgnN8i66WebbmdVQl96EkBhtnT0hRlMQWpaRlbNT9rGTQpYgNmFai6G1AFVHnnMYDYRrQuuX2EyEs+BBI1tE23QqG1sagnWGz3dA2Tu7daFQqxBBoth1mHOT6K5ivHmxodxtyTiQ/0e537F7sGU+D5GeiJ0yFZr/DWEenOyYfKFrszooC21jGU2IOM9pqtHHEShbVWsiYxmiatkEVURcsSsiPRiusruldpSlGVJbQCu8DlkRMHmMapmlGl0TrLDrNKKtwTYOxt8QwE+49IXh8GNlv+6u8bIM2Dk21OsuRoMF7j7GKxjpSLEzTGZQow05+pNv0WAree8HGNAY/VcvxHNFFA5aSMufhiGkUu65hOJx5OI54ZWlsQ1ARbRUlCllIFC9Fhanveoy2DOezKFhzAZXbmoMEAVXHlJmmiYJGeY9re4zpWPbiHD1+GhjHGW2g325wrkdjiDEQ5wnnBCTmp5kYPKgEWtFstjS9qDOJCl9A6cu5sBREFbouPikmvJ8wKstzcK2QWJVBTqWiinQ+npjOM8mJwr42hlzUam23rJOqqmiVwrpGy2p1+WlRmvbzhDIK2/Wyt0RRU1reb/R7q+hze25/9e0I/K+A/wUs7uYxRj777LP337coJj0B/7t/jd8/A/974L/Pn8ODP7fn9tye21/rVuDlly/5wR/9YI1nVFH87v/zd7Hhz8MLdNZ870++92/7Kp/bc3tu/w1tv77dW2W6GyPKHc5aKTBoLQFiFrCSWPJouspS9HNiGgM5LlLwBR8Sb+8fub3boLRBm4zShRgi0zhXlnNBK5Eit86ALpSUayqoUlu4FIxNVQFRujL9av16KfznIomdOYn9mNaF03EilcT2psM0mr7bkIaEc5aYC6VofvLj7zP6CftnX/Hll/ekFGmblrztUFtFDBE/TYSQKCiK0oQYq7qLxjqFqgUZUwvdC/AFrcR6qha+cy1ILUWFafK0bUPTNMQ0E46Zruvx3tP1DSmKSooAIDKkjDaFlAqPjx60QynDw9OJkAJKF17e7jm7uSYnLU6DsZGS5Pn1fct+36OcwodA8JkUFSRNLpYYNRhJVJ9GT3GdJOIXFryWpJS1iW7jGL1YXlCqjYVaeMNAKTQ6EVIghZmYCrFpq+pLtaHTGa0LKQSmKWNcwXWGecrkpCTxoqqcd1WDqXnY+hVXEu/fZt2WwmoAVxYWsoytlWmlCmvoXxCmVi7EfC19LNewFhUqaEQrVZOoNaGbr75nSfJfqhorOGlhvauCeN0jSeo5e7Z7x4sXe2FvKikGuRa61koSfJw5n71YDbQt4zAw+bGCB5c+UaRYUCGJxY+KtL1lOE4CWup7Hk8nSp4oUV3s7irLc7HSWp7lJeFSqo1JLXro90E3K4CpjnW1JIrLYlki9hBd1yI2ZFnYoyrx8Xdf8ukPPmTyA4fDmXGM5JiYTiO2EVZbay25kWRM01uKTsQ8Y51G64LShdNpICeNcz0qRx7fTcJOjVO1f+xJYebp9YSxgWH0OKN4+dEOPweOT5EUdS3cFMZhJgaz2vQZo5mniZKkOAEajSPmQCqKGAp+CpyfvNis5Utkeym+XI3PXNBWsdn2WGcIwbPY3SwAoVwZlKiygtx8jBSEXaosLNWJRX1TKbUCyNJq86AxlS1vjK7s5lKLKAL2CCHWApe0GOM6V/SazC/4OdRiTU0gJkjRr1YtBaqSUrVgKaVK80txQGu1XusCbltAj4s6kq6Z/SX5ZrVFa8s8+Tq3AaVFsav2rbCbM6pUQF+CUgIxZ5wWOzpd+z5lsQtKSZ61YbEL1aQcpdjTObHkqBLpizKGKjCNI7MvGGXISdQrKIYvPn/DdLejdYWNM7z65I6z17wIgcZpOtvxcDqRsmUKUmw/T4E2JjbbSGk93/nolqI0XeOYzp6Hb+6Zved0OhFKRqeCRu7JWCk6qCxjwKnC6eE108lSUKR/5rl7+TFN29C1Pdo0DMOZKU788G/+Nq92O45ffcUvf/lLjrNnHke8j7iugXhinj1Za1TJNMVQgmIOAXIhlojPkTAnkh+wVhGTFFe6rqGIxCBpnJjnGWcVU4xiAxbELnE8zIx6oDWeeGeIybPZbzgcPMMw4m47YpqIZEzfYzvL7mbH+XxGa0PjOobTKF6RfUsxmnEcMcqQgpcxSmZ7d4crMJ8PtC/2vPzgA+7fPDBkz3Q4Mu86djc7tGu4ebnndD5hTUMpEUi0u56Hzx/onx5xbYvre3wE0zayVsaMtgKMVOcgWeSUsRlsERBZLgllFabR2M7RNg0pJ06HB+5ff804GrHxyoq7u1vOYaLERLPb8clv/wh/mjiNM8e3D3z1xS/5/o/+JmEcmdsR13QoW2qx2aKLw5iWmEeZ30Xx9O4tWQc++OiO2Y+c3n3D7W5HmidSOrPf7in+zOvPf07JM7ZraF2B6czx/oHGTvyN73+APr7jH/zDP+RJOUrJTIcjp/MjSmWMNoQ0r6BPg6NtLbpkrEHOHCkRnaJ1DmMq27eeL8fhzDSNPN6/oen3fPK9H+KtYk6aMI0kf+T48BqfBra3LZ2F3N2Si5EE//0jk35gms6M5zNaFYrO7HY79rcvsXZLHCLn6V5Am06s1XIRq4wUo9g3YLDGkZOm5IjWCeeqYle1iDNFcWccJhvefPUZxgZu7vao1hJSxuSC0Xktcmo0KYiVMLaIRTLVwaYCqIuPTKcTykLb7XHGMA0zfppQeFE1CYGkRn5T26KKoeueueBNlTFVeeNibaQr8NQ1lhgTMdQ4QCspepMohzNt16A1osKVMt4HUhRQsK4Fe61ZLZIWrIeU1Zfz2GVfXdRfck5r8Xop09StbVXRE0BrIY8RGwXgsVhQt53DtaLY0jc9ISZCzKQ0ikonhqa1lAoujyGSkqqfXRU6a2F+sW9d4AcrYIXlf5fyk8yv5exbAU9ZCsc5J1KEpm3JWdRlYsyoJOcACbEKysk3xZDXj04x4OcZYzT9piOGWZ6fMWhBbtV9tVSSQ0vTVfXdkBn/T4H8n4uappyZBTg1zomiXAXwyNhXSmGUwjlF1zuG2RMCrIeDq1gCJE5N8uWUIkAOVa205fggs6n8tJCmjLEK1xqCrxirXCjkixKSWq6R9XvK1fddt+tXFoCSKuWipFQv+2LldvVH6+cuA2255vXAdn23V3+3fNYVwKmOkZILqSqIlWqbezmzixpL1pmmArSXc5SxCm3kXJViAkTd2DhL8IGUPYtS5Tpvcu27ogghYZ1ZC8dd18l5eBohX2KajMTG1HiCwvr/5Rbfs5EuSwH2EkMvVosruKn20gI0W+YLCIapsWJnuN1vsG1DSknOL2nCKEWKQaz/sqFrHEEJuFEbTVEFP0usGaMod+RZxq6Qc8RaXSsr51WVcI1YrIqipidnAQhtdw05Fw5PixJwqcpJSWILLuDMxRpcLOACVPWMguQ6UkyEOZJyRQ1dk56+PSbrWqgrCAl1bct9ZQdXiTVaK3ICX4SkI+C3BbLzrbGpZA/L5TIO31czLuv4lpii5nIWWdTyPmBnBf4g4ytVle3FXk2K75dYer2qdV1XF+TRCna5jK3VavEqzqjotvXelFLr+X/tI3WJz9b4Ny9jV9U1RNRd9KIMhapg2bICr+pIvaglafkMY4T0sYKS6l6ZYhKl3Hp9so9ZvI+UlKC36AKbviH3usabHlU0OkHwBfNO88GffMD+Vy9oi6vxi6GvtoK6MxAzw2HAWsfsPbkCsQzC1xBClShakat1OIXZTxQgHd4Q57OcZozBukbiwRQwRnPzYk88n7Aq8nT0Yq/og6xBWhOzjGVjNFYJ8CrHXFV+EyknAWkFmWPS7xnlbH188mxCiJi0AFESygScdXImKELGaZo69IyiNS0hRLyTGDumIAo5lfjoQyCFTLvpyamuWUqjG1eBUYXowwq6Uwr6roNSiDFgnME1LSFFmBR+mOj6HmMbtFU4BNAJkGOg6YXIN5wHmq7FGlEGVBWclZOQYrTTOKWZzmPlPMq+o2qcTCkS1xqDNdV+MSf8MOEaTdP3AlBVGpTcA02Pa1puX32Enzzp6R3nx0earqXvbwjThFYa1yiSKpLbRJTQFqWvQiHMEzF62o3DeM98fGJuHbRbUpgFXOMH5uHENJ5RqtDGDckNpJSxqnC3a9ha+OKLr3mYZpS1zMPENA+S+1MKUrmomeVEiJ6ik4yLOt9qyE5BVYCUXvPCEIlhRmnDZrtHqwLKCGEiz6Q4EaKAlKyRMWNsi7GWFBJhmEg5EGKolqlgjaVtOkThLFPyLGct60TNstoKxhjqs3GiulYiKYw1f9Jc1pua5VRWs93vGA6ZaThhncZ1rexTOaOW3Cm65jxKTbaYde1boZ1K8uphmkVd3zSo3BBDpMwedERl6ccUFqTHc3tuvyHtfwb8z3n/8P1vu/2niE3c/q/wGp7bc3tuz+3fUlNZcffVHX/rP/9b/OgPfkQ7tFxlSZ7bc3tuz+1fS/u1QUqNs5WxKokzrSTZb9sGH3y129EEP+Osw1pF07T4+UzTOJpdi7VS7J7nzBdfvuH1G/m8efaAImZh8QJYK8kg50Q1yFkjHujarLZBcAE+GC0Jc2UUwzAyDh4Quw7JPSkBO5EoZLQSRZDhJJK9ptWQFdtdw8sPN+gGUhFAwtPDxDxnmrbBz5IUcY2u3u6iVAGGlCQBayowyRiNNXL9SmtCDIQQJaF7taBrI4lAkCLJYjVhMFAsFEXwHmMNjWvpWodxMAweYxQ5ie2eMZpd60g5EmMghEBKWRJIo8c5R/Saw/EAaJpeU3ISsE+05FhIMbDf3/Lpb93R3/S8e3viF3/2lvGUlwy7sLiwxCiKI7n4mqSRQFprzd2Lntu7ll99+ZpSWnIQQJYAXUQiXBnIlW2tdSHGMznPSCgdJGG3KDwpw+3Njpu7G7788m0tVBm0hpQ8EIVaXSTJp5eCTVlYmqUmCasiQk1ulgp0uwwoScglUi0q5ArIuQYW1fdxlQhdJZlq4qqi5EwFXqyEz7VIAUtktSTic5SExZKs1UCpSVmFQmWYzpMUvjYOYyvQIhrOIZKyJ8VMrCpNTimMbVB6Fgsqo6oVnTzDHMQWZZpmYvQoNOntgZtbKElzPs2oompi31Qls3rluazFv+tE9AUUpirojqqetMxXXVn98j6tVGXcyzxQwPk4gio4Z+g6I9Y8ofCrX75BG8M8JuI8crPrcEbjrMIoYYCarYD7+l1L0/Uo4CllNEihIFumcUIpL0m8FMhJy7ym0LQzBs2UIvPsMVrRbxpevtoRI5yP74glo4303XDKlQFr2Ox6rBXW8RQTKSWG80gh4KOoJVEKKUWmcxBFJFWLZtj3AFxLX0JBZc04DjTZ1SSsqCKZlV0s7NDEMjYVKgbmUayxnBW2dsEIw9cII7xUhp0oL8gYTOR6jboCk6p8uoKcICLfjV5AdxdVjMJV0ShBIFXgkoKSsEZfkmNlUdJYpoVCc7G6K1SVjbp+L8x9qIp4VTFtYQJixJpCpp8kx6GCudQVgOq6uFcEPKnRVLccrHPrNQsgK1f1K9aip7WiGqeNIqWE9wK0yTlhipbfKY1Wlhjkb5XOpKKZp4gpiuAnGtMwh8Rm09F0Gu3g4f6Jt/OZcRgZx0jMkRIVnbXYrDi9OTAfNBaLclYk3lNhv7mloPG+AoPGCWJE60LbWG73HTlAzIXdpiGHxDlEcAZ/fstX92+ZRwRo17bs+pamyyg18+7dEzqcaNpCPkRhimvIMTGniPczWhlu951YuGHQORJTIKdE9JHgIz5LkrNpLE3XCBizFshSLqQ547UlFihakv0xFeap4PqG7d0d+7stSmeKVdzcvhL7Ug3n04G27YgqE3Pi8HTCB4UJhbsXWmaYazjEzO2rD9Elo1MWKzVdyNOILXCzv5G/f3ykdzvsbsOud4yPR15/fk+3e8nuRY/RCqcN83nEjyfCLBYZx8MBc2+5+/AjtFK4RtTErDFkpYhk+l1HqxuO5yeZ78WLxWJMzN5jnKPRFuVnsh8xGhptuN3cst1u6XrHeP/I8fDE4Xhg92piu7vBNS0f/9YPefvl54Sv3vHNr37GzYtbXr36Acf7NygDu9s7Ju+lWEMGY5lmUcaa04mHt6/JaSaGI+F85MtfjFJAUT1aWV5/9Zbz8YGHt98wnx9pOsf915/Rthte7Hb8zke3fOQCnx2OfP7Va05Egs8cj0dCGTHWUOLVvFeFFCfu332NygBRQEMxMY9iK+K12FIVpVerU6s183xiPj9Bntm9+IAQMjkkpvEJPx6JaWbWgZN7h3ql2e4+4OXdC9599ZownhnGI8ZqNv2WrGCzeQGlwc8FmoLpGqxSNE4KSaDpNlEs6WyDVYbZajhOHA+PKC/nqQXkUpSiaIVyDZu843a+Yx6OnA4jtve0KdI1BlREqwatnJyhYsBUdrTShlTECkwrRUoz43Ai5yDnXTTzyROKRjcdKk6UGFAkcvT8pjZbFQeUXgrRaj07KQRsq5SQALTSVSFVA0lUQGphVxR6CtPsGadZXssXlZYFKFt0taFSohRjtK62LYvKiLQVvKtETUCpgveiEluWTaIgFkjWQFWWWYC3JUHICaUzRivazmGcYvYeN2tSMhxPE+dhWotPOYutUEpp3ReXa9FAqRbWSkm/2Voliym9F0+sf6eVqHssAI+laK/lXCqKJpUQkfIKElvOYDGkFWDkrKnxzVJQq6qMWZEixDhWSyhR2klZFIm00QvKBOc0+22DsophCMw+CEBl7XOJHSmWRT9H1FC0/F+LhV1MkeBnjG7IZbGlKusZfwU2qCUuiIhvlgAaUGCUQjlLSpGt6+EG3r09oKj9ocSSspBq9VrG4zpElLoAj5azbrkoWy5Xv/5PcXkfFVO0xCZUDMV7wIz1V38ecFE/99qOWl19FldgjQWEV9bAg6tYh3XOxZjIw4R1ZrWKKUXANynl9RYAsQpeLIGTxFgLWUFnqYPmKCpNIcsTzjmTQq5gmiVevwKlqGrdXiSeUCtwjRV0tKq31Ot+zybuupXlergAlIAYhfS0zGuU4nQaGcdqdZilsN33DY0T2ydrLYWMsaK+ZCxiC2c2jHYWy7GYiNV6OUXPYlEWYpR4r5RVATrlUmN0JYSrCnQqWcaR0lS13QWYorBW1/hIEZP0oczNLNa26qKOkVJV+l2ePxcFs9U6s0icqvKlSK8UqCq+tIy5C/gmE2s+QkBU9XONnLlLfRYXhaNFEeR9YpCqcyrny3O7tuO7vEj9XgEzKVRlG13eK1+x5CG0ABPSBXx0rYC8jnO1jJ7a8hLLX8cDq9YaegFtVZCHquQF1HUcW/eTsuQS4HqyKBbr6jXKrwqAEnPluqaI2tQCPq1xcUhoXd+LxGsKUStbiBoUsR2LscatVhQFc4FpinK+rvm0dMhs3u148dmG26/vaJKjpLrWT4HkI9NJcnCLBV/XdigkJ5QpxOiFiFeK5KEai8qSTbPWoEshJMCKim+OE/OURI2PQt93bBpFiSP3DxFmUecJwQv5sNoJioVcJTtZIaTULUDWaIpkZmrf5CxqSa6CD1PO63IvfbPsa1UJrhQB8ymNaxvZV+JMiqKgU7JmGkTVx1aVvugjIyP9Zsc8TzWPpVDGEuYgakJFlM7WhGOOZB8o1tK2LfPsq62oxjjLdrfn9PjE+TBI/sNatNLE5CnZi01Z16ANnIeR7c0ebRJKpN8EJFPnWi4F21rMuRDCTNSFkDwlJcLsRWVZaVTOzJOcOxpraNsO1/Rs9g6dM+PxTImFcZzo+o0oMllH2/WMJ0MIE4f7t7iPW7RuGYezKK4Zi9JOxrnW5AqoTD5wPh4oORDCIApDFB7vFbudWOESM6fjgTBPhHkEMuNwoG1auq5jv9vQAufDwPF0ZvQzqa6DqURquoGFRFRyEaJmmClaAN5Lri4lUVIWEp3YKtcjiqxhRdSuT4dI8BPaWNkDUyLHmRwCZEWYZN+wxtI1Ddl7fEhiiVrPjdpYbNtgmx6jHcY6VAUJ6fWcqyUBX9rFKFM2ASIleWKaySmirVv3NFlfNOiMbR07c8PspwryExChdk7GibaAIqeLsp5SmkWTWqEoKRL9DCrXM7eo6/kQxGo6WyCte/Bze26/Ue2Bv/phOSFWcc8gpef23J7bX8dW19jN04aPf/4xP/yjH/Lb//S3acf2r/a6nttze25/rduvDVJqnQVrpK4LxCTKJGFOlFTo+gZlFLF4Qoxo2zD7gDGG3aYDpUgAKdG0Ch8zwygqJiVLIOl9rAUARcwi055LoaSCNY5SmbULk5IizFnbOJyz9H0rCdIQSG0hhSwJyiyJF+csRUnCDyroQgE5o4Oi6yybbcPTceB0njk+ndCN4t3jwDR62k6UNE7ngRCSMI6KeNibBpFlL2rt1rZ13Ox7us6hNJz9xNu3B/yQMAhYQ1Uf8VhEMl4rc0mwVvuL8zlAUpSYCa2n34ilmmscqRTmOFOywiLS4lYrdm3HNEdOh4kcM7nIfT88HGuCpgWl8CmRQr4kc8R3immeiG/OnB89REkEaVUq009AK1DQlUFYikZrh3UOdOY4et483BP8xM3WUZzGOY02VuTpdRbLExTRFLTTqKixVgEZgyKmwLbb0LWGx6d7trueojPjKVJiRutMVrqCG3QF9FhyCTUJaCTZ95fYvy2h+poor4UREObREpZLAULuVy1S63lJzAqzd0nsqspCLywAlPpNC9vvCuAE1L6s7NQCOZQ1aSJFrwr0kLqTsL7OkjAxztBtt+SU18RCAZwRpl30XsBVRh6uNppu09JvWk6HE14jNiNZEWeASPCF8fxWijVFri8VKCqTSWQu2eyEFGvWclMFiUniZ0kOXRLZi/XEkqxWSCF2tbvgoiallBI7tRJwjeb+zT1N262KNRBprKHvGpQu3LzYMc4TWHjxai/zxyQ+/PiWvnd0jeP0NPH2/kTnWobzTPAzisI4prWgMg0JZTKlVpNsY0hk3r07cnwamYaCKHZByYqQiiRQlYBmUixibzF7YszMU0IJtIdCoXEOiiGXKGo8y9hlmUcI6HCB3+iCVoYUEmNMtF0LPZQpCMgspJrkFtZciFHsWqSKhVKebE1dazQpRGKKWKcpSRiPKxJISTE8o8gxVUvD+voC8kuLbLqqRc9MSoHViqhK9BcuthfWGooF0mLZk9bhArXAWK1VVFFVsl8YfrmyyLXSAoRcgUayppVspFBpBYAnMvlOLHfGUIuY1V5kUf2r2fxlhhcyKiuSlnU4xCjqd7WwlJdCTBF2dCyIfHSQNcBaS9NYWSiy1EWneSTMEWPMuuapVIizJxhHKaZax2mmqbDZaJ7GkXEMpFLZ8zrTaFOVZOq+lxJ+yJyTr0nRwt3dhhcf/IDxNOP9gEqJojKusew6h2m1JHUD6J4qfFfoNj0/+fH3yfPAF5+/JRopfOcxkNVMngI//+N/jmkcZfIcDyfGpwHjxGJyOA54CsZm2sbgQyKWhLGZrtmw7Rry8YxVGdO3opISMyUEdC0up5CZpplp9KQk+/l+37LfbkBrhvMk9lhRMZ4PnIYj7e2eD158zGbT05vC4UuR9naNRk2Zd1+9xbmWu/1LzscTh5wotsPmlukUUAn8eWZUGnWeJCHszxyfnmgax6brGQ5nJu3R1rLbbPj4t37A6y++4KtffcHLVNj0GznLlDMNgdPjkd2mEyn/BKfjmWZW2LanaWv1aA4weeIw0WLIT0fuTwfmGJhmj/VSaLRtQwmJMIx4pXh1d0vXNHg0u21Pv9/TNRtyUry7P/H2m9dsth1bt8GHgOk2mM2ONLzjs5/+FOO2bPtXvP76a87zSL+5oWtvZC1AE0Lg8HTAHx6Zp0d0Hnl8+5oQZ1p/5sufW/a7F2y3Ox7fveXtV18xDUdSGnBnhZ8PvHzxgs3+I9qs+NUvT/zRv/xTzuPAyYvKZEgBYxQliGqZdQ4i5OxRTld1S0VRCWUNOltiDCSKrCk5U6q6YClK9sJqOfnw+ktOTw9o42Tt9AniSA4RT+SoFSkDsVS735GQE/1+T9uKTd/Ny1dsX7yk6W/Rdos2TQUiCHiyyLJPoxuKcyxmMU3nUGHLfGqZx5HoTxjXYFQj55IsdkBhnrh5eUu53fP0+EAugTDNPL55Q9N2tJsblHZopQh5qpZhUlwWCHWmhMjw9EBcAUqK8XTi8PQW3Sq6Zs98nCqYcqRcFVV/05quKqJFyTkp5wWlIWuyMwKauIB3EKWfCliCKqYB1TZIrUX/ZS+PsVzO0hXQWmphWulFY5W6165okKowKOfQRQjTGEVRpgI3yvtgCbVY1l1UmARMpNFWC/BQG+ZpJlMIUexorK1KhjHVvVXWRK3BOLm6nMQ+jSLgzs2mKpdqUaQ7HgeSXxRmLyCNBCuAZQHZQ1lVKBSyB+RKbihlAbBXxaSi1nOFrkV6FTMph9rH8l0LkKWgSKlUEGHdCAs4a0nAafa4qeCnhPpdMP9QlKrk3CMWhvUEvgKvF/vaUhI+RClo54xrCsZUIFtVgtTqAhQTfJRCVZVKOXsaUrUIUkA8RfhCkXdR1LgqwFnwGFVVgkW9YJntesFRrMCa5fkvbem6ioxYCQ2XsuACvljG+joIr2ot5fK/+oHlAu+uX1TvbYVA1HmlrkA+EnJcYyekj+vYXxRSSoGsqn1voyjoqjZSS6fV3iqFIGAXtah6iSpQ0ziG80jONZYqao2BchK7uHWOIOv3ojVD7cf13uUNsvaq66u++u8CUFMyZq4dvxbiydWXXUD0qVSCQQWDGCu9UDJKiZKztQIicI2tys/Q92LVs4CMNrt2tWyLk6izzFMQpSEKKZbLkTpDUmI3JLZn0jfDWWybU1UllZjosqYIeaCC8CMCUsqFWH+/xJ6YCrCv5315PBervKWAv/xDq0Ut1NT7NrK25SjqTHnpOHU59y9jr9SYNslawUoiSBfAzmLnvI45tY5SU9ft5fe5AkqWefIeeaeOM2EoqKv1tqxjfAWhyjBYxwNX33s9+FdLufW9f0G7modK6fV9Wuu6xpb1shZQz6WPC4vVnCp6XWNLjfv11fNY8QY1/ilUlBqsZC5t5DOMNtW2dNkflu+BxcopxUyxorynssVNjts3G9zPNmzut5jBUlIR21olFlulFKwxAnYKol6US0Y3hn7bYHVDyp4SM23raNoGcf4tVb0JuamYSRmSUtxserZdw+HpCFSgUYYUPNEnVBBLM10KuVBBd7K/5pgIMYEW+8JS15CUsths9R3Be0iidqarUmGKscZ0olscYsT7WOe9WLW7psVoXfOBGUhMwwmlDSF5NpstzrQYZZnHJwHeGiGi+GlmUoVWgTWGME0oY7Bay3fXQ0IIAWssOYpF9DQJKF9bAxnmYQSlaBqxmt7c3HA+HjgcTvT9BqMKnRHlunGOTGYi1XstMRGmGWML2orapMqFHMTuK6tAionpcALnyLnQNe26l6WSKClTtKbpehoLIWUsBWMsymiaraKNmcPpyNQPmM2W5BNojeu3lEEUgx7v3/Li5UcUHMenJ2zb0bQ9RmlyiNX2zOPHI34aMLow+plpmrBWkU6Z7D3ddkuJkWk4EfxMKRFNIfqMVpldp2iK5XRKvH37wBBmIQwlUY7WFaScihAJS52XOYkypEJyc6oCykuUvSCVLAAvynqIrFtW3TMj4/kk++SyruaCKpmSRE0vVZtNZ1uJmZWi3W5FIUkbun6D6zqMa1HKsbADF1AjuVBUlHzhsoBRKhDdkrVlngeCmdBWAE1KWQEZpUgMokqmnUNZQwyenCMxRBmHTkgVxoh6LJV4Jber1vU3+ZmUosRjpTBPA9HPKAPWOpIXCz7ZJ39z44nn9u9o+x8D/5v/+rdcVA//DbWvgH9Yr+W5Pbfn9tz+mjTjDW52fPrTT/mdf/I7fPKzT9g+bdFXDiDP7bk9t+f2b6r92iAlEE/qYooUTGpNQZLcUFKk6zsKPdNpomRRIUIpBh8q221hvyZhfChF8EGUeXJZpY5LLaKiMqokChrnGmKVNy6kC6tEKyCRCozThPhri4KLcoZSFKkkMtVuTpWa4BVWjbOWtu3Y326xrSGTCMOAdYrH88B4P+FnKX7kpGiblsZYjFKEGiQ7V9jf9oRQeHqacA5RZeoaPvnkjkzE50z2BvNwqoAGSaprFMHHWogR5pjRAojJKeOLWFZQCy6nY7WIsBBSlHsqsmGkXIi54JxbiwY+REgCJoJqw6U08zRLwYbKOKsM1sZZxgKvH89slMLPYJTl9qbl9sWW4zlirCMECdSNFeCWUYquadi0LSl5VCnCE0oClnEuscAbFiYUQQJv4zoa5ZhOmaenI42TwnxKkZRm5pBIFGafeXv/mhA8xiBACx9JOWG1pRRNKgGIlGIqZkAGqlKqKjSxKtXAJT2wFhVqokChq5w3VYb8mjWpUJU1Kq/nmvhkHZfCglwCJEkGa71QVtUFiFSTICmxysH/RQlUUQbIkmgqCmccUJiHAesaQqiAOS0S7DFF5klYZ0YZus6Sc8Q1UjwLIUlxZk34r/VBmXtV6mJhtVKo6kesc1QYsqXmX9RVhy6J1wujdgEpgViErZ9dW8lZeJK5vMcILkWY/dZqSvZYZ7HO4BrNZtsyh8C2cYSYGE9RElQ7IywwZUkm4hrHN68PJJ9xzqLKUhQzaKMwFrxP5GhQGjQZrQ1t42icIcXEw2lAYUFFSk6EsCSVpNiac2EcPTbKWpZSWftXHiBQMjFHwixWdUsxB4WAwLKGmtym2ljqyl63xlFqIQUt1niZiwqYgOb0WkCT53UB9SitUGkp6BRyBcWJrWAtJFRBsZRkHDkrMyZmsV/SNXmuavFFvlsAgKpQmb56ZaHnXCrYTUACKaRqg3EZC5RLHy5jYlEpWCZUrsn4OpAqq7YCWMsygZWsASlBjuhSMBRhkGpDUXEFw8nbC1lVu4gsa0Ou41bXe8yUmuADnd8fq7KXSfEiRgGVOWehiF2TVhZjqmVOruBbxBZBp8x0HDC5xZqGeQzoAn4IOOWwuqAaYV/6aWKz7WmalhQiu13HMA4cjyNZNRQTefnBDW0Dqck4l7CN5bsfvKLrGobjwNdvnjhPs+yxA/iiKMYxn+/51c88vbaczwNz0rSdgxg4DBN3H3xILoqHr16TpoDWjlQEWKiLwqhAmoRxKoxnjfeeME7MIbPfbpgmTwEB1KZECrOot3kpGJcsKn/zHDAVuOA9pNTglKG1lkZp5nnm3bs3WOd488tf8YuXP+V731eEd+/45rNfsX35ilw6nDY8DgM+R7KClCOnwxPbWyNjP0/45Okbh/diWTTNnujh+PREt9vg+h6T4Hh/T3e7IzmDdj3NruV0OnL/+h7fHbjpPTd4Pj8+EJob8njGNdC3hjLPhFiBgNHiC8ynET/M2HvNV+PAk58hZMppgptMv9+TCpimgZQx2tJtd1gjlkoPj0f67a3YgdmO2+98lw9PE28P3zCfTjRN4TyP7D/8AKML7z7LjPcPfPmLP+HHf/O/w9ZuOXz1mvk2cXenaEokjgfiMPD18TXj+YFd1xDmmel8YhxPpL7l6fDE3d1LXr16xXA8Mg73hDChVCQHzXAu3G4NHzR3hMdH/vjPvuCLwyNzmTBOkxVoX1gsghabEFX0qs6miDhnVnvXtrUon5nHCa0yzlY7rFrwzllVmw9RwRiOR8ii7yCFaynmpRiYTgM5K5xr6TYvuPvoY7TtwIhKxG5/y/b2FtN0KNehVLOu2zkl/DxTSkZbhdGNJPmVLCQWUXXKPnE+P4GaeUGiaRNG70ghcz4fMI1BdZ2cpazl4c0bCqLcVhScT0/EEHFK43Nit9sTyGCtgGNy4vz0iCmJ1jnKPPN0eGI4PtBYYW/HOVKsIyVDKYbf6DRCXd4XhTtqPLCoM4oFmaJpXLXcqEV8xHZFiukCel2AtAoB7iglCiRaXc4hVODSogBitBT6qLa5a0m9Kk1mioA21MV2VBRb699dga2XG9JGFGebRuzdUKUWXbOMtSRAq5QWVQ05ZmmtRQnD1s/Rhbaz5KIYx0COGSr4qmkM2iriYomnlFiZ5lo8rzHA+zZIqo7nC1ghVaDSVLzYMWvZe/MKMFCkkgkpYbUUWWMS61NykTmdlzOKkf6o0ooL6HjZ52NMpBQJWmOsxWwLbqvZNA0+SKfHGNHGstvt6NoOZy2UzDfffC3AJ0SlNhWx8VFKVIAWQPQyNrQy7G5uaJXmdEiMwyQFy3pOL9XCFa2Y/zRw/vgsxXpbz09JwPXWGnIS0LfEu9UqZVVQleeWr0AZ6y+46url5ytQzfrWGlMsVnQSa1zFGStOp4J46rmogNj5qOUw8y2VVy6WUlcYjcvfL2cuWP4AowRgHnxY45JFVSxXu6sFTGS0jMGcxXppnrPE5n9hIUhdYUXU9asyJstyhUvs/378s/70Hnjkqg+VAPAuX30pOnN9Zqs/5rzsDaJ6p42maUSZuG0bsetB4X0khVLPLAXXWECjjai1TKOcJ60T9bslThSrriy2XEW99xyNVlUtRRRuVhW3slxfZlG7AInLda4xYlnO7mrBrcn91PkoQ+galLP8UNfXBRCGrBG5KgTnLKAVAX7mtdC/PJdFqWmp51MkdhDc1UWB+BIXXh7UtWrqYqG8WMwtRJTLc76yRq/zQcacuogpFckhLYDWkq8ILzWGXUgy62XX8XQZO+ry2Vf/vrz/8jxW+o0g1CpASSaqupr75VpleRnpl6UWrSS2UNFIv9U95mo5vhonlzPN8sZlTpq6zi79UQqootAZmqOjf+x59fYDdsctN/MWM2l8BZmEHCloNKCtoWkdKaSav1F4BYLfSXS9AHog45wAWF3jaDuD0YbTcSQqhXFCcouJNeZ7OhyYTqYC6hbim9hOurZns9lwOB6Yxqq+XuMsow3WWlmbq+U41D0nJkpVtUUJ2c6gSDlW0glExB2XUlbQL8icW6zyJKa1WCVWaVOIYgVaZh7evcM0G1xRnB/eEBVY16N1QwoB5RZbdfB+omlaUdxLUc7CbYMuqpK5ZNxK/kriEOsscR4l/nRWLEk1Qs4rMB6PGDWDzZwejxS7IfqJUjLOVYIcRRTJosA7c8xMs6iYz8PIFGZ01+KUQaW6lhgre4/RKJJYtLUNiqqu3iRsCCjdoFzDdn+LnybiNJO0xceEaRu26gUGxXh6YDocGNuWm9tXhFAI5wGdwbaWEsRu2I8DKY00jSX5QE6RFGZSBNSMH8/kNIuiZZ6hBEqO8ixTxupCpztUmHl8HDjMMyEHmatG8q7LviSA8rr2laqUta4+lYSkBDgeU5TnaSX1vQD/lv25LFaNGZkQ68aiWCa1WMdJrkn3lk23QytHykIqcK7BNULKKUgO+nqvjT6QUhCrY2slZw1ybpXNX77DJ6Y0U4i0XcHojpI1IcySz3EOtMaqjlIgTBHXmJq3ESXoFEK1GnQiha1EZboAfpopi8J1VWOKYcIYISWnnCSGlgTVui89t+f2G9NugBaY33+56zo++ugjvv/979N1HeM48o/+0T9inue/6FP+0nZ3d4cxhnEcOZ/Pf/kb/+/A/4irA+tze27P7bn9m2lucuikyTb/f37zX9bW2sn7bX+/Z/ew47f/6W/z6vNXvPz6Jd2xQ5fn/f+5Pbfn9m+3/dogpZSEfWKNRZUkUsDOMs0RiiSip8GjrWG73RFmXyWyFeM0SZG7qgdZJ8n1prJbgGpdJQFqXAoSWZOLEiadFkZ7KqC0WZNL2igwUMikEjBYjNMUlSFLcX+evAAGluxlyWij2W16PvjgBTf7LcVGToPn6X4klYw2kWILtjgRQRgCwRfmcaJtGm5uN7gXlkIiM9P0io3raTYtj+/OhAHmKRImz91HO2LJlMPCkA8S0M4C1kg1wb8o/+jVmqImFKuEviqFc/ZMIYqSL3Apvoh1w2mYaUuLUolxnCUIz6KCElPEWVGc6jYdIXuxUcmGHDVWQac1+TQQjGbc9WzvdoQ0E6dECBPGtCLLHTzWNtjGgYIYA8NZ7HO0rYm5nMhJ83ScAYXW4vmudGUEITLd7UaEvOfZE2uCR6S5JbkUQyBrxVdfv+Px8SDgEasoGFyT2e8aPvjgljfvTnz5xVtU0qLIUsENBQT4wJLMVGvfQVVvuRrra14iF4TgGClFybMrilgi2kgBRltJJCYvAIzCQl2+KAdJ4lbAdqilSKAvhaqqmHVtiybXIReyJEOXJGkp4H3EWIWPgXKe0UrTtGIBN8+zJPaKFAJsY7CNJZTE8XDm6fFIjqomyZfPXrqk2soU0EqvkuJVjEauuyZUVxs9crVfuSqiKLWClBYW7AJ0WYs7WRicIJL2krhfrqv+TZTin9aOUmCaPXebPf2uYY4JtGEYEtN8ZtO1xADn0xltFaU02EYTc8S5jrYVIImfhMlsXIdzmt2LDU8PR8JcbdSMyGQv9xdjxo8JyFKEsJoY8lI6quNJwFQ5Z0S2X1QY6qgTJq0W1rOxFtdCCrG+fymyLrWBhbObSUkxz4GcC03XrkUj6yzOWPwklo5lUT2wmsUmQIhvqsrMy1zQqhbbqmrDCpRiAYbWuRsLPslzzVyuEaWk6KdKLSyCNY3YhiQppqYKQqMqZIQQr4oCZmXhv8egXybdCnaT0a7Nor5VGcBmSdhKP4tdRh2bWtSMdJ1vdeLXAp8m51hVkUq1hJM1Zin+kAWMpLMUZ5XSNMqQa9EnU8f9Yn+hqsqJErWnEhNzmlAFnHO0tsFqUUlLRdZ5vRQwipZidQl4CzpkUolsO0cIkcM0CCNai21h8jMxJ8ZpYrvpaVwj9gu2YLRFo2nblqbpGEbP69f3fPydPTe3PefzyMcf3KJ14fPXJ1KC3W3PFD0hKKbzTHfTo2MhjJGmKioJWz7RdxumMMk4z4VxGOibhk3fkohsbraAgIBzTISQmMKJaZylED7NNI3DGgG0ziEQY6a1lnmS91ijaJyh71q0MwK2BTZdSxg90bR0TYNKhftv7nl4fOLDDwae7h84vn3D66+/5Pbld8jZEOaB8fBE3L8EnZmHM03c4CxMx0dGU7j74FP86YRpHd12K0nlUpUCncXdtIzDgDWQDWiVMY3DupaexDd/+q/4Jj8yPd0z655PfvzvMx4HUoIQItoqWmcwVs5Go/ccnh74+vGeXd5iQ2SyhQ9/+7vYkDnfP9Y1vEdHsUzKIaFTwLUOP8xk7wlhwCqDdluisew//JjD8YGHz78m9DvKrqfZbtB8DCHy9qvI09ff8M3+z/jeD3/C3abh8d09Q/DktvJ4Y2Z8fKTbQddonsJMyZ4wj2LBYCBPJ/J0EHuHMqOiJyRPDoU2N+zVDnU+88WbI/eHA1OOhBRQ2sr6oYTxrpDCLmhSyeQQxRKkKHLW5JKqeo1cW8qZ6KOcYaoqRyGv1lWlUFnNUrjPpdTatKzJIogj+4rbbNl+8BGNvWE8B4pSuK6ja/coIxZSJSogIrDFQomRp3dviWFgf7uj6bakolHGYhAAawizgExC5Hj/gLGa/Y1G5ZnhPKFMoen263pj257d3QtOhzegoO1alHYkn5gOZ1IKjOOR+PRA0zQYZZiHUeyuSIzRM5+O5BxoWk3jWhSGOc5MKUExKNx7YOzftJYrEHRZu81SvI5S5NPAnOPFDi6DqutHIpGrOo3YIclnmnp2WbYqa0VlZ7FakrMyaxFfbJjkb9VVpbrqVNT/V+BBJVKIHd8F7Ls0YzR919L3DdYasdycI+MUZH9QBZRY5aDEejbnTMoJY6DrXLWjLqQcCCliraPfNsxDwE+yrs5TqCoXGl9SPSvI3rQcH0u99gXMInvUBaawnm+LAJJzyVdA8wrmqe+JMdf5tCgOXayNcj0HGgNN24CSM2wIoigpMRui9mA0yloBQ3wnEjaR02MgFysQilz4wQ8+5Tvf/VRAgUlizPP5xOs3r1eQAkWR4nLuEmUtGSNyz/225cc/+jHWNbx7+4Zf/vzn1QZWgcqUXO2Uc2H8lSf+RwKAdFZizbZX7LYdm40o6r59c6AkcwUmKWsfL+2CtVhRQkBZwT4XIEe5AEhqDLDgjFQtpqtacC0p13ii/sk1cWE5N10/SGBx26IsvVHfu54ta7+Viy7T8sxDTJcxUueINVrW7yLqW8tXioWOKDNEn2vsehVPXKbYFfzo6vvK1Ris/75W/1mVZtSFAf8+vkutQJKiLu+TGEPepLXm6nS5PovrtUFpRYyRnA2mGMZJiubzJOokbeswzlJyZpomUWar50axcc1VCU0Ro5H+19B0DWb2EreXUlVXa6yU0xrDlZyrupCq+9rySMv6WJdlZn29LFZhau0TZbQAZdMCzqhAGaBUYPD6kTUOKxSsEovp5WxtrSi2LmJKi5rzAmy79L1aH6yMX3UBhK3j/aqz68DJFXREHZ1LHC7fw/rMrXWAAObW53wFgHuf/LKopa2/Wcfp5bkv8dUltlhm02Knt9giyjKxAMFUBS8sN3Z1DdfrQEGuvyqULeOsP/a0xwZuBTize9zx8t1LHj5+rHO4rGCz5dku36CVEiKAN5Az3dCxO++wyXL3zd06hpRWopwdtjTFoYrsRcbJvHWNQRWFn5MAu4soigvgpqrKFjl3F+rY0gJ+a1yDVpacAtPoyUVze7ul7xyusfSbhvPgOZ09zmqccRIDx4JxQqQZBy9moQaCnzilQNd3tK5jHAaZD6UQfcCqqjSmFc7aVQW9IMNrmn21K834WRSGjBaF3ZQqsSTLJmgqucdohBymFCFl3KLmXKDfbMXavaoe5xAJRc5o8+lAcDN9vyfFmTJlIds1LYZCDB7TNFW9JtDtN7gCIQZc19LOnmm62Khro7FdQwy+5iwVBlEkN6oQpgPH4cC7MKGVpnvRorUVkGQGdqLipivgLsaE95K/ozFsjUVFhdu0bF2HHyfmaaJtO4y16xxWOaFLEcWfIopSYqAn+ZikFa7tmaYTx/CEaVsBwAdFv78h58g4HDg+PGCdZbu5RaHx55ESJHZSSpG8p6goluc513xPBQgrUZ8+H5OoROUCSQhBuWSsMXTGQcg8nY+M04woJ0t+IS95pSWHkMpKclo86CWmkLXwsk2qCr5jVecspQKVVFUHXNfmy956vW+A5KG10dimFTs32xG9WBZ2rpH8phb7RUkeyMawnMdS8Ezjmaa1aNWQMRSla25GkXPEGIVzhjl4og8YPZF1JsyiNCZxgV1uC9s2tCSCnzBa5n9rHKkCHNEQQ1gVI6MPQqYrGZ8DOQZKSXI+1QIyzEmeV9EahSVXu/bn9tx+Y9rfBn4A/Mn7L//e7/0ev//7v4+1dj0DPD098c//+T//tT/67u6Ov/f3/h6bzYZvvvmGv//3/z7H4/EvfvO/+P/5Dp7bc3tuz+2/tt19c8ft69v13x///GN+61/8Fr/8vV/+WsBIlRTduQPg9s0tL798STM1/PCf/vDPqSLt3+7pzp0QzZ5Rl8/tuT23v8L2a4OUcoEQcmWWQmOFaeHnSElZEhJjlIRCKlit6dqGpmvZbbegMkZrGmfR2hD8TGoS1gRCiDjnhNEVEuMUViZirKpBVmka5/DVwq2omtiVUj7GKIyVJKkzmrbtmafIPHhKSWhTE1dFZLS7rqXfdITgeXicOU8D01hISRLVlCQqHE4CNm8SfvaQDVqL3V1Tk0o+ZMY50vaKrmu5fbXjzXzkPM588eU7Hg9PaAOHYSbMHmsMMSexa8qSSNML7z1nclTkhQVek85LEjfnIrYlaFF9UaraN1SgRIIyeUop+CmQUy2MV9ZajAUfPE0x7HYtd82W83Hk6WkUD3ZdOIWIo4EhYTkSfWI8wzgMRCyLtVS/0SQErJC8RzeNqJlkSEoyd1lJQkbVpLa2CmddLTCW6rcubDJjLa0xdH0PWhOjr2CbKFL7yrLb3tBaw93djlQym73le59+TNOD+tWXfPXmgTIZRIWrFluW3GRl7ZtqZC8FzqX/JSH5fjIUSWroFZ8h+ftaUFNav/c377FDl4JZzlL85gLake/OLBlKSay/X1Bcku7L50miTpi4KPAxoVK9nqzIAu+6An0ImkKVQvBeCk9KkWJldimwxkEJogRzVUmQ/gCRktfv3dv7hQO1ZHnWYkPOi8KUFuR1oaoyyZipZC65v1xEIUBd90+uhS8BCi0KCkotqjWK83ki5iQWQfVvtFH4bmZ/u2G723O4H3l8PBBToe0a7l45+q0i58DGNMy3DcfDxOwjm03HdtcTnCgtaSNJNV0Mw3CSpKuRpbLrDGJlFglJHowU5BYm7HK9WmT5S7kU/UplJhtF5xpSFOUZrfRaOItRkqxiayfFmJzLaj1hnSXEIGpKylR1q8u4WJPnVyzy1Yamvi6rR1kT/KLStTB0l0RdXlnnUscql+dqNOhM0zja1rLf7xiOA08Pxwouon6uWZUZlvln9HLovcyZZbwrpaor4kXda2XEVmatsVIwTNFDqUWG+omJgjIaqlBWXXLeG6/L/ANJXkt9JtciUiJME08Pj+SQ2HYbQgtt44hPJ4bsJaGrlKzfRSTgrTE4LYDLrCW5p0smB88sJT2KEgUi51qyElDmaYw4q8VEUTm01bStI8aZrjWUUGQdI5FzZL/vMMaw3fQYIxYtp3HCz5EUM3HODEfP5D0vPthjtGOzadjuW9p9R9tYNufAw7sDp4PsoSYZcoSSwA8j85hInaOkyBc//yWbD/f8zd/7Pb76+Ve8++YNziDrZ0wkJQDCeRgx1oqam9QVSCkz+hlRNiwc54Gu2rLGGAX8ZkSZoG0aem2EJVwyKSrmNBNCpDUCDlCt45NPPmZ8OHGm0KjE0+sv0I2jcRZ/foBwT7+9o9nuOd0/ctw9crvbkY9PnIcju7uGKQS6/S3dtiOeT8SU+fCTD5lOR96+e0OsjOtsNM3djhKDqK9ZTdduOTw8ocqRbXjk5199QXP3gs1uK0oMG4d/GJmGQYojKhHnkfMgQKzOGva7LS9e3ZLePmH6HR995yM2uuHx/olh9lgjlqlFF8bk6dsWbS39VovdrlLgrNg35AzG0HQ7fDjy8HTPjfsA17RMw8CL732XkGbC17/gq1/8nHbT88mnP+HObnn39h3T1tE1W1IcmYdH2R+GgeE8inpk0vjoUTqT/Uz0E9Y5VFHkWAglo03mkw/2tGh+9sU73j2dCGEmz545FEqZCUWAsFZrUghMccIYJ6B1U6qKHPhQqmiBKNZordjtb5mmkeDFGqFkUYc0xiCEYVGriiEutetasBK1DKstTd/w4qMP2N9+QGv3jFMCY9nd7GnaDSVbUEb2n3W9A5BiSxjPBH8k9YVAJBuH1RuUatBkSol0W0dzdISSSXPk+PAOP0ViDPT7LX3SmGQpSpOApm/ppp7hdMQYQ7txsu+1hhfNHlDM+UycTwzTSPFZVJmOj5R0pqRZVKqCJXpH2/XCznYGbVr82VPSby7zqZR67qlWvKUoKVTly7m3pEXdTgBIJhtMLhgn663Wai3yRx9IJa0AaFPZ5LnEBVlRzyuLXZuuVrsIY3ypRBXZ6rRZACOyT7qqRhFjuDorXQARWitiipxOsk+nJGA7rY1Yt1VExQJOkEKaEBPK8nqCjFjnlKRIKeGcodu0lOLxU+RwHDifB5QutfhXlYzIYn9YBJ7wXnKpglqucQYVHiB3sKISKrDmIlpYY45cr/t9wMky4WKK4AtN69hs2pWwUlBkJcV+XRR58qjOojSkTmxdCmE9h3zxxReM88QnH30scV0pPD4dLkAHrau9k7qcaXRVy2AB73s+//wLlNa8efOanBLWippEqmq+C7BAo2ldh7Oa3b6jKFFU6rse4wpTdugHAcyqVTVSvQewkL6sZ9+lj1dgQ333Vact4JklnlhBDss5fz0vrqiS9/u8Anj+HPrn+pquI4Gr+OEvakt/qOtAqX5PTBlNrOApOTuKUKvY3kA9oy7W37UAnCu46mqUXM73uYiyZX3Hchvl6nsv13YNTqljev3n1b2uMdVlVJeqInoNhFkstUHOJ4t6cIiRXORclyqgFgXBR9q+oW0dKipKiUQvZ3zd/7/Z+5NY3bI0PQ97VrebvznNPfdGnxmVTZEssixIBCnKBlggDZuACVuCZh54oKkBw4BnHhnwyCNPDRiwAUGwAXtmTjSQTVAWDEqwLbJIsLKarMjKiIyMG7c9zd/sZnUefGvt/7+RWWRSrhSDqrMSN+Oec/9m77XWXutb7/d+7xvpeifYQqOJ0TAcJmLI2HSKv7tC3qvWWtM0MU8Brcr53dRxVwvJUMgq5ULL+bTOp2ovtjBaSowrcbkhBgoBQcZJlfW12jDWHpLChoDW6qSeVg64uayVuYzHN2Fq2R9PxLdcrmNRXaoEGk7fd25jJ4vs6cOqRaU2dlG31kqUlFMUO8p6/qzXVNeAet2L3bo6nzP5F/+zkOLK/dbPqKpSuc6gszOUrnehOJ+CKFWGIxfCQ16uRSW4eLFBzTAcDqSYWJmO3/7i3+Dl997wWn/JYX+geWjpH3rWd+ty1s2LcnMTHdu3Gxm3qNBBznjL0U7JucgYTdIw60LGzoqUPc4ZwX6U2DLGKHuO9zNQlL20xliHImGdEkJI0GQNSSeOByFHb7YbjJXnJuVMBI6TJ5QisuEYy75sIBbCrK4EMS12hX5CW83qyQWNEjurFGRtrYRNXUhH8zQXAlWu23I5uy70SiGxOVeelWKVVRRyKNhLKhZ2Mo8MWUuxZS7PnlUaHcDozHS4o3EdSUUaowlxICXD+mJNTob9w47thZCvpuAXsrTWRuZsFBKvc47txZZpHIrSeXlGWwtVVdcIJmK0gXBgbROHaSBZx/riotyzPO9+ngjBFyXjQAiidNw6C6ueZBQqCQFru1rTtR1d13EcJyY/0yAExOCliFQOoxqTFRlNqgQapG+0MbimJWaPioEcZf/EWdZXT0gpMg47dm/f4mxD11+iVGScR1wWa78YZzKewy4Qgy+2flV9LJEVxDgRanFbeea0VvSdpbGWu93AOAt5JgQpZkhZyEqpPJaaghEkGV/po1js36piZYmIlFpIC/M8U4tWF2JnNsu2kooq0rJulCVLay1nrr6j7VZoLcS8rBRt22Jcg1TNqnfxuBKRpRTFNjXMJBMJKoK2aNfIOp9FoTCrjLIKFTUkhR9nYjyKepMzGLPCRF0I+oKlOusI04Sf57KmahIB62TR8jGRkyhvaSNrWThOeD+gkCK8kDTBi8KrKHOLWr7YvvHYHtu3q2ngPX6BpPSP/tE/4v7+nr/5N/8mTdMwDAOff/75v9RH393d8Q//4T+kaRq++OKLf76S0mN7bI/tsf2a2nd+7zu4yS0/22D5W//nv8Xf/w/+Pl/9ha/QUfPk5094+uVT3v+T93/h/c3Q8OFnH0IG6y1udr/wmsf22B7bY/u2tV+ZpBRilCpzJSQPsVMpp++MJCNzEiunrPAxk8LINE5stivWmxVZJ3yI+NkzDUcBz4oKSNaKMSSGYcJPQUhOnSMkISz5OGN7w8VmhU+e4zQJQBKkIlprK0BfSQAYoxiHkeE4n1XSJEw5kA/DyDAeRf5aa0kQJIVzWsCEYDgcJyFFxUTykn1VWIzSkqhNWiqhdYszhuEw4MfIer3ivY8uOe4nDg9HhjcjVitCjsSQsLZFoZhCWJJhWukFdFusGorKiZA4sihKKbH9ImaMpMiKTVN+J7EfgyhXCSBQXoOAatPkyfeRlDour9ZcXHQolRinSEYJeQVFspoJxUxmTpkcldixWCXVaZwswE6Vi1VeXoE2C/hdrajklipCnxfwQN6r5B6p5B1R1UoFABz2A8F7Vtdrntz0uJVUP3/98g3PPtiw2V7QNB3+OAoJQ0O1wpOvFIKIUcJYi+RiW5UXQFLV0sYCOBpjSvInn8nMsxBLYoiSpIksYIu8n0Ulp2C6C1HllyUYcr3/P6VVjLomjSo5I6OhVDLHmJhmqTBURkOSamABNhPBB3LSgEbpLMC8LmSOqihTVZuUXGdKicaJVVPKpWKtkpHOEgqpWqPUpEq9xrNxri1Wa4gzNSlSJFHtQwSoqepMSoktWUwCZPkpLgmTpnXknIgRsUZB86RxuN5y017hR8U4TozDSN+vMQow0DaW29kzzzCPA9M4ojFcXjkwiRg9rtVsL9fcvhmwNi/rICiMVeQiG5+TVPjlApBL0rICpyJHfrIFsaWPErYxGNPSuKb2IjlHYsiMw8w8R3JU5TlL+DkW9Z0kMtwKdC7grc5nz56A7irV50rsHJQSkliKCTRYIypBKeVSYSdkvcUORMkMSzkKacAIQclYg1WiCGEbQ4h+AbNW6x6QZGHXdgzDRPAi4a+LFeFpUisBTcv8FkC5LCa1MpJT0kFrkdDXWioiYwikTAH28gIsqkLeqs+WKn+MFvW2XCono5exJMXyTGeGw4HXL18Sx5nvf/wxf+vf+x/y0fUN/5f//f+Rn7z4Eh+nso7ZkvQspIYslaBaSaW9Dx6FEAMT1dZIEslTDIy7EaU0q64l0pDQdK0lH2eafkUfNYcw4ueZ4eVETrJut23H8RhwTSYTCVHRmY7Gam73O+7uHvj0+x/T9B23dzvGKXPYBb5+84Y0R/bHkcPgOYwHLi9bLlrHMMzcDwNN64DEOM4C+KIhK6bpiGsyXaMYfWJ3HOlch9JwsV0zzYEQA1YbISqlhLOSKIsx0diGPIs1QSVvGqNJOWObhsl7VPZSSYtGGSN91ncQI+tVR1SR/cNb/DyRrOXFF3+Mv3zD5DMWzfZiw/7hJapVfPydv8Kwi7x5/jXjdoVVCWZLCkJkMFpjjGW9WjNME7ZteO/Dj/j6+Qt2Dw+898F7tKsG6wyzeM9hG4dqNJsm8Burls+eR0zXcP3Rd9DJ8vbVA34agcj93Suev3D0qy1NewG2YbteQ/CMccbkzD4HthdXNE0H1rL94H3Cm7e8vbvjeDzgrOYwH6B1eAVmu2E4jIwB8JHGWqxWJBKuMcSuY9tfEY+BKczEmNGbnvd+43tMw57btz/n+R/9mN51XN18h6urnrdvX7M/vubh9jXGOQ4PO94OA8EfpYIWiYuCTyST8XPAaiGYoTTGKfrGEOaR58PM2/uJRCKHmSlkxowQ/wqByLQNzjh8EDK7tprWNKQcUMWKQWsJEhQnVRxrGubpSIwekqgr5axE2aK8xvsgsZBShfgKzhnMao3tVuTc4IMiDAMZzcXFFV3XY51YKMQSsshna7HHSJmhWN+lcOD44MlG49ZbNq2QrMbxyORHlEmsthuOB8W0m5inW0IYQWe0vSSsnKiQGiHI6JTY9D3H+7cc796g88zsZyGfzIb9/Z7jfk/KIxeXK9pVx3A/MDERmchqRmVDmD2zP5KZQFuaRpNDIusk6+63tBV9hCUuEGtQ2auEDyt7WY2oUs4k74lB4ZKl7US9bxiFGJBTxBpD5VqkXNVD07Iuy5ojsUpMCa0VXevIyjL7ohR0RoqQMDuV6xD1hqrUUu9CoYqSQ3ndEvMge4Ku8YBhmsKJhJVzUaksBCyli22J7LPGGKZ5Zho81mb6vqHtHPM0E30qzwhURlElZ1VSyy/EkrkSRcoPAKoSSypN5JykfzrbLUqGJYDPNWNXyAIpZkIu1ig545ym6SzeR1QGWwhh2hmmEPA5kn6g4aeV8MByrnnz+jXTMPLJJx8XVT5PJdVTzw21qZMSYv33nOHt7VtZE+a5rCdlti1nCbm/OAfCEKC1ZETJKmXFi5dvWW8a4uI+tciILnOj/kflE9nBIMeNhbixkCko54mz4TifZ4ullSgoparG+k16SCXjoJZzVSWUnB8oqhLYN4b/F5rijAxTX7UQfU5n0dq0UYUEIOMfQjrZWnEilFdFmRRlPsrMKf2nVCHGlM+uZ4ZvkGEWMsovu/56PqmX/M79nMY3FwKJFEWkd+aRnDlO80IIS4XcWFgRMSW0j1in0VbRGbcoJQYfmQrxSalECrEk4hWTn8XWuDwvrlWLBZVzDSmGpRihKq8qBcaerPXIp7NktTQ6V5WqxA3K2R9dLI2sWHJlMk4XEmZMBB8JIS1TuXZvTTzXRPzpL6f1Yvnp3GaPOgZqGbtz/OK0nhT8oj6/5d+liEMvz35V3lXI2S8VW3TXWiFYhIA1Vgo2Jr+oXtb1bCH8neEJ5/NI5dPRe1kjOc1/rapS9+kMkqmqYKd1UCWFTqVnaj8uB/O8PHsKWO96NDAMg8S8ZH747Df4H/V/l3/8z/4L/uTzz9E7sxDRFvvqelWqWFsrwbUWEUBFORsj6jpGxsBHj9FaFJi0IyVFTFHsn5ScQasaHlkxA8ZGjA1C8GkKgSWrgicl/BxwrWW16rm93zFM4IxhnGeCj4J/pMzsEypmVAcqi52ztVbwhBQwzuGaBsj4wwDGYI3C9Y79wRNDRBlb1hhXlFxFHSz4gNEaZQv2UNZGnwKhqDOf7FvrM3WajylHtDGEFMjaoBuLNYrkZ4Zybjzu7gnTgFaGrC1Xmy2MB/x0oF2v6foV4xTYPzyASljriNNMCB6lZdycawizJ6WIa1v6bsXD4YF5nmjbBpNORD6Vkiin6si6NYxTBGvYXG5pmp7DYeR4vC1rV+Cw38EGmm6Fc42cxxXoKOq1k5/RXUvWCl/Ub1zXkY6ZcRA8LOay5mRZh0iZeQ5oK7GTkkVbbNd0ol9t0FkxT1LsmFKS4s7tFu8npsPI3asXXFxHjOsxJI4PtwyHUQr7smEaR2Ly5CLzJ+qVYiWrETxFl3VEaXBGk3zgIRyY5lSs2+TZi4X2U9dIY63s71WFM8sZX6eKkyLKr5zwRSE7ntTrhEQs65HEZqeiqVT2p6pMqK3BdT3WNuRkmCZPyBPGGtq2R1uLUoZaxEnZpxe8E1ARYijELRXwYURbS2u2GKUJQVTqjQHXtpBhniZ8nIjJAwmLJTWGlGxZa0QVK6eM0ZlxOECaKZWGYCxhiozjKOqrjaZpmqJq5REXySyFo2V+xDBJ/6qy/qm8WN0+tsf2rWkN8N8H/l/v/jrGyB/90R+Rc+Z3fud3OB6PHI/Hf6mPzjnz2Wef/Zld6mN7bI/tsdWmo8YE8y+2bEtw8/Obd3JoIEqtf+f/8HfYX+9RSXH58hKd9C+87rE9tsf22P51bb8ySal61yutT4c+reWwbcR3XiuNdS0pJPzspZoqK/b3B8IciCqxOwykoHBW0XcNCrNYZlUFDJG6z4xqFmWKUECmFFivVri+Z3c8cH9/lENnIe+EORJmsTRKaWYcZlHlyLoATpqMErBuwQAVVSIYsiTxk6edGqbJl6rmhNbQty0xKhqjcFrR9w0b15NNxLWa3YPl9u2B451nc91w896ai+ue427CDxPGB1IOBTzXGGsloVRkuKFe0+mvJwBaQEjnHJmaTBO5eWt1SZIIyAmJOAcQYWIhNWkBj3JWpKiZZ+DBk8KRfiVVM1olnNJsupZ+5Rgmz/3bI36GhDmB8rW6rcjEL8BvghRiUVpRQkhQta47L2CEj6nYbChUAlsIN0oJ0SaWirQqdS04rIxeDDN3t4GXLy2rq56YDM+/fMvXL14xDIHx4YjOFbTUUpH0jYRNKtditIYCDMdQwQkBYCuRIUWxH0mLGs4JBK/3XEEMOc4LuSIjoE6pUybmiCpqQgu+nnOx2Sikp7O2VGWewfNGFWKRWlT4UQuxRxfbtaIAkDPaGJq+xYeJzjmsN2LPEIt6QLXBca4kdXy57lOyzRgBvVFSrZcLYFpB3mWuFpT4vK/Pq19zPCMdyRtkVtQKVqVQCOEoJbH1SVp6VGmxxlIFhIwZtJbkNkHmkS6EoeHouX1zwFonlZQRYpw5PET8mGjahhAnHm4PPNwdUbmS7SIpemLwPHm2hex4eJjoWrHSCXGUMTBGRtkqGgvzFEsi04j1mBKrvNP9C7lG6yprDihRf1NZC/gKRBLOKdquE5Kmtex3heCTkTUs52IpIYBiTplYshWSKJCEx2KlU8ZFxvRktQdi11aTudXq4HzMzt9rtME5hzLn1YmIXYaPhGkmB0TGf+3IOdP2FpV1IQ/NixpZzqdnPZ0/DFASPiVRV6wW1XJdohIhqhGqqPI5xjlK5b5RVPU7ncvaExPCQkzkaoVRwbgk/aa1AKfWQWNdIbFmEoGHuzc8fPFz2rcPjNNeqpONPOs+JawW65lMJmuDL+ScknEqlxCxVtM2FqMVxoLtio1IDDgNm+2KpuuYD0e8n5nCJNdmBdR0EcaQuL894tqZft3R5Ya+6wh+5jiN1FRgDBnXWKbJ8/Llga7R3FyvGVNi3E/yDAfIc+S4C+ggSSyfEiYlYgjMPrO+3tBuGkzI/PwPf4ohsVk1bNYdD1/8nJACm6Zl2h/xKWNbh1aGoErCo6gcGqWE5GbKuqESbdMRY2L2kTDO+HmmsQ6rRWVJ6YxtHMf9EaMNrWtpjGLaHxh8QCvH2+dfs3/7lmx7vv/f+re4WV/C5z9mvL/n8PoVl+99F208b+5vmeYDq9Ulu4eBOU2QAn4KojYwT4zjRNtu6Ls1L55/zbMPnvLMtayNIxpPjAHlZ9y856Mm8PbLL/nq/oEnH3/Ak8st929H7m7fMO/3bG4uyD6SppnL97e49SXGrdBADob0MvH29T2xMZjtBp8RRUVt2V5c05mGu9cvefv6gWxhip7rJ1c0q1YsHA5H1u0KHSUxMezvOB7esP3whssn75PnzMPtPcNu4sXXr7m8cGyeXLHb33P35g1/+Lu/y7NP7lltnqBC4PlXPyNkMI1GY0lJVCKdXWFXDSbDMA2SSM1RYrMcQGWu1ys+XG24vz9yPyemMZGUImLJJJLyS2LQGbfYV1jniDkzziMGLQn3lMha4kwlC1MhZooiiyQYhAiYCzkhLvY2kqRLiiJRrFFGsbq65PrZB2zXTzjsZ+5ev6VZjzz94ANs14JtiEjluFjFJbSxgFmSQ9YaSTSOAykf0E6zaQzRHwkkxuOeEEdcZ+nXG6bjxP7+AT/t8GnAOkWcNNPYCyVHTagIw2FPjDN+vGe/u+P+jcU2DZvNGqUcw/2O6bBD6YljuGfSTqxPXcC1LTmJ2sQ4DXg/cjiMOCfVUaI4EEgq8G1tlYRWrbqoCfGcCj81FzKqkfgsSpxvtCbESDgMZCjJfoUtikqqKCyJ2mVCFXWSlBLe5xLuy9qkENsnOX+Ikl4uTKmatIq+zi/Zk07R7CkCystfq3VoKSpQoFJmGhPep4W8Uq1K1JmqYEoRpyxta8kqlb2wYYgzKQAuYx24piP6XAjnsobOUwBUsWat+3NV3Hk39j39KPdilCrP04lkpbWcJ0qEyzskfk5kgnrzmWKb5/NCshaVVyEnWWdEJXecCDGLDe0midJGZQ0V5kVW8PbtG1arXuxIStxY2SdK1SKGGuCUpHWJPVWutIVyeSmLKq0qCg4LQSGjvgdKw+w9D/cjXd8Qc8bP8HA/MM+B6OMyP6n3fkYKkss6xcun7j3FNvKdlbRRCRAnuxoFQq6spJx3zoKnOcLZZ5+nC/PZ/8nZ4BuHyPNP+YU8Y53Tp3PNSWHmbJ4u7ytnmVztcSiEHknwLuQThAiRSpyV4VSwgiqEvBMvpqqLfeOy/9R7Pld2Xd5RE6r1N8XaiVwLeU6fLGeck8qVUqCMWEMqZcr9amLIDIdydhEmmRBCguxNzjl8kMIqP4dChJK+SzkzTRNKNWQ0KSSiDkKcrNdf9jY5/xTbUiQxnutZs4Sz52NQp8tCPKzzH1lD65lZaV1sohwQ3znn5iKNdrIpO5GLWH4+/ebEqzsRdCrp7LQc5Heesfpd75zBC1mB5XNPcyQjCnEqi6KSaQR3aIwtBNFcLKDLFFUUks/p+5fOqfPsnARX51G5V0nAF0VZI/uAkLnkgur8rvfbHRtWDx3H9XEZ47oe1fs0KFbHjqd3T7DGFIUXmMaJF1/9nDiOPLx+QB+srENKiAFlZJf1JKVMUqpgBOVckiEjBA+93GeWghfrUCkXNWBDCmJpNYyjrMNWYRuxlQ1zYvJSYGWTxTV2ITX7eaZ1Dudq8UfGBy94WIxsVg2uEZtOrRV5jkXVNzFPGaPkzEhMy5z2PpAbTecc0zAxxSgWqaueyc/Mc6BpHSkEeWa0XvaeZS0q86PetjEGVazh6jOd8sny0ZSCqpyBem4LYj3eN65AVEkwmyh2bhnN9uaS1fVT5nvHcX/H8f4OfWlwzYoYE8dxJMXIMEyiquMsyXtGL9geRqMwaGPxc+D+7o7GOZx1gnGVYglLZq0Dw/0dr+8eUF2Hs444B3zwzNNI03Z0bScYJFJYpKwtyusZ0EzDgaAi681aVOoKZqaVpet6IZUd9oR5JuRI13dCvMRJX+eMLkTrME3M0wHbOZrGoVWDc5HpOHJ//8A4DDRWLOFC8Ozv98QEq/WFFCDME5Eg8zglsZpLspZqC9lPzNNEzKLwJkqkstB1neWD60umYeL2KPaaGUUupEvR7yrPmBbVpGrlmkv8LnNeoZKQaowVNbFULOckAJQHW4qeTta2FMxOlo6yuJQ1Fq1R1uH6nvX6ApJmmj1+HDHrHpQ66Szm0+qXy/VWFU+lwDrDNMA8T2gj1oQ5SoFdDpGcPKkUaeVcMEjvBUdRmawT0Y/MChQehWaeJkKYUWTCPDEegyjTty3ZGIKPED0qecKYSNMgFsYKbKOBRnCoEAmzJ6dITH7BJXNRJHtsj+1b1RTwEUVS7Rf/+cc//jEffPAB0zSJxeOvq/3Or++jH9tje2z/zWsXry64+fKGr3/49Z/6GhUV119f890fffcX/w1FO7S0Q/vrvMzH9tge22P7V9Z+dbs3n7EWGmugYMYUVY8qYW+MxtgGT8BYQ9+LlP7ufsfDfkcqMtBaGxrXYK1FW1HnyDoTR6l4tlaSWSFEqWjHAFEqhwrYkJKApxWo0MoQfWAeAqgggHTUpbKlHmQVJKlYNNYwBy+kngjKyOclFJPPhBxQWip+UhLFkmES6XsTDbuHkRRgdenARnwwxJhpGqlu0UpzfDhibcN23WMuNpAju92Rr5/fMc8RrYwoLBWbm0q2WGBXpZYzNYglnFikaLQRsooio41lnmPlBJFTqS7OgEpCzcqSxKnS2DHD5BMcAyEkXGtoWgGf5hTIk6hNWWWIwtwCCtkrF/aAls9HpaWSMRYLGoVGJYqNGqBFUUQVUDEWQDsVgDsWMCkmkXYWC5hAiqGQnSSZbgto+dVX91wNmZg8TitUapinaUkGJFQhSknfKU2pzszlVvSiNJNTXpIbtQIrF/CyKkWRC4BRX8MJkBXQuPSsZBwKqYoydwtckU8AsYDdklQVlZsTiJtLhbuoI8VTtWsWMEaA15NthC4WWEbpAjxbeW+IDMeJnBPDfiqS2EUlqxCBtDY4Z1Amo7UjRYOfgpDesnRfTGKzVW0zUkoLsWWx6aoJAU4JhlQB6woSGyNMlEI+WlSUSg9prYXokyvQVMhuWUvVm5akVa2sdU1NeUgi0zmL1RqTLQaHcopmq1G7zOFh5v7tkX4D0+CZBo9KCe9lUhorCjgpw8PdUGyfDNPxSIhSgawUZKMWUEyVYa3kq1gIhyIydiLH1XtMWWTXs5Lq137VkrNYTaSQiF4zBpHqNs6y2hrmKRXFBQFYvY8oY2gq6DqJnHzOQrBURuTz5dLkegy6irIJEdScksMKIQeo8pymWAFwvawlOVd7DEngVEu+lCDmjNGKprUCapa11XsvRDOSrOFljqASKVWw8ZRgzKkQhoxYDZAiuvRbjLHsL0ZsY2TJxhiDc+CLpHuOhaRZlMVQkqgRwmMuAJ8qhNeEMgajFa11YmNmDI0S+7GjGtgdHvh//P3/BFDc7e6ZC1k1RS/2c0lWVGthipEU5fOr9gYlyTR5DznjrCXmjHIGbRNt19I3Dc4aDg/3aKSKeBwONJ3l5tkak+HhzYHw4JmTgOApZ/bHAW12qKzIPjKGTFCZOQTmOXJ3kMqxVrfkFDHtlu21pW973tyOdIdBSHmjWJE1DuI4cnl1xTAEdvsdvnPcXG1RGsIcC86v2DYt2jqeXG+ZpobjENhsGoZxZJ6kojnliFWiUBOTVLheXl7gWqmoTl6IofvdAYxlDolsZExCSjircRnmKXB7t+PZ5YreaYzrefLeM0ie43Fm/d773Nw85ebpxxzuj6S7F7z42ed4MhfXn9CoBh9Hcph5c3vHxZMr/N0tbzDE4wGjAqvLDbuHB7ZXF/z8R5/zx7//Y8xfdlij2d/vmHZ3KKf4dK2It1/zzz77nLntUaHhzdsHHr5+wLSGbrth1V2AGYmz5+3bO7ZYmjajMUQfGQ8j0/FA319glayB0xxIOdMY2Ucu1mvSOPDq9SuCDqjrC1pn2VysRF1nPRBsZH9/z+vnX2BsFhKqNrh1S2PFyuH+x3f8/PaWp08vuHn2Hi+nA7u3D/Sb12xby8PDQLPu6duWMHkGD+9/ck3KopoU/MRw94bb1y+ZoscSUTmQsmW7gn/7r/6AD5sN/+8f/YTXL99Cdrj1hsZoxsMesiSaVGvRwOwDSQG+EAdzqe7OmeQDTWtorCP5iI+iamNKQtI6I4TxLIRurRRJ18SexIhKHkgaJ+pU2q5oVpd0Vze4tWIeA7P3HO4nJv/A9sJIRbxyJe2nSpwpqpHkgHOKzcWW4/4NYRxYtQ7CyPjwloQj7HYEnVBuJftmSerFIJYOMWfGXUaT0OYeRUuYE7uHe5SJtMYShh2H+5ntxZZjOOKj+Lj2LuOnkTlEjNNoa7GtLYRyJ1aTEaYpEKZIDqJmloEYAyF5vq0tpyxV7lovZIGadNeVnH0KhHGN7C8KGMeR4MMS456IwJJolmSuKIeISklRFP0GQSNnsVdVqby2WChXMsM5eV1eXwkI9TwBZEkyaaNPVnCnPD81IpLYXK6tXkcs+4cGvM/kPBOT2MjkJLuzkJUkZh0eJlRRhGoaW+yiYlFJySyaAbU/T5dR+vEbP5Sg3WgtJJmSkZd71CfRw7P/ZlWT/fIZZUuAco0EsQ3RRohJMSeST9hsQRsarZhzIP0G4oqykLootkqyT79984amaSVGPCfK5PJ9nMhtZwPEYp1HSXCmRFSxnKPyiQyjIH2Vl9h7HER9TqlKGhJifP1M6a4a89UCgnTiQ1AVGtUvEoHU2bVWddxvDMm5YlElrHzzc+S1+qRoUNkpZ32wJEXP/mVRKCvEh0oKqZ96itrLWaYq3CCqNqoo/ch7hYQcC9FGlyqLDMUOMC1ncmM1JkusXm2JK7FD6zpXVbFm40QuWUhSp3F9p9XzhNZ1Gi4E+LwsJKrYbJ86pt5hJXfIUKbFpq6sPouFlzj7KLrOYa2V3xmYJhgOnuDlea9zWJLep3Wiqqh6HxeyXaSKicp8WezeqtVYudVqr0c+jecJC8inezW6kD1FVbba8QUfyfFkv40Sq2hjTgQxUdYpCieliCB6wSJOdtFKLLWXPq4PoNA8Rf34pBasyl+Ws09V5i3zMpdDckq5KNAsT0A5WxZcx1brJYkBaj9EsqwxhUQg/3k3O3myUs9nSmf5NAcqSbD8L2cZkzoNWt/g5gZaFnuqRSU5S9Eb9RGq8zSB9Yanr254+uYJF/cbmiAkJF3W2Zgiu8Oe/fF4sosuZy5Vnre6tqBY7PmW6V+uX4g4gZT0YkdPUUiSeEnsT0MINM5htAWVca3YsXkVGJKn0bqoVol6aiYL9ubDSckoZ1LM+FlU0qXgwjAlUVfy80TTGlwXyCmQQiDOnqwyKQaarmXbttzvDgTvmXOi7RuapsH7wPFwJHtROEdlVpsOFyKuELt2+4kpFlUzq5Z+zznhin10VctJMTNPs9gKF4KrNRqtNCEE2tahETKOD4F1KazoNxuM0QzHAVwjttStI28v6JVmPu7Z3b1hcw1d0+NHg1GaGD1N4zAojg97tDHkacBaxTjPpSDD8vD2Fmcdm/WacRhROWMMNCtHHPa8vt0RrMNpR0iKcX/EOou7uCg4iIzFOM2EvKft+lL0BH6eyNFjncaQICRipuybgRzlD2R0Bn+c0ErRuBbnHPM44ccJ1WZSSDzc3aJyojO9KJIaWQuV1az6jsN+T1CZ9XYD0XPcB6bjQN82DNNAUprN1ZUQ6I9DKQCyyzofg2d/d884HgtKJ3GX1vDhBxc826x5+fIexojWWYhBbcM0jaQoe4bS8kymKIrS8pzUgEcUraUAD1Qu1qK5rv1lx1N1ZVPF4llizkX9e4l/BHcw1qGtw5iWrC3WNazbNSFEUsgcdgNtD8o50EYW8FqwWNajXCxjXVEVmwYhKZECYRpIzBCkeDBrJ+8vKpyxxhdEgk/k4x49DqAsZCV212WtzCkS/UROBpVLoYJS2GKlmHOxYy1qdblgw7IPJIyGUIpza5FnLuvgY3ts37r2t4EO+FOEkn784x/Ttr/mRP7v/no//rE9tm9V++YZtzb1p/z+z2lb7Vas79e/9N9UVuikf/EfMrTHlu//4+/z6T/7lPf/5H26ffdrvtLH9tge22P79rVfmaQESELeGJRBbMuMwTROLLGiAHEheUkUNQ7XGqmmaQ2tbom+KIFkAXxj9Liml8poL5LPIUR8iIslDIXEo5UmRsXbN/coA3NhxRtrAUWOmXkUwo1SBoUV4obNJwJJkiS5axy2sYRjIMcKdtaDrCRUc8qlKluTdRLgtiB5sZBsso0o3bLbj9zf3YtShhGVlONxYv8gNj3WZfqVxWiDL8nZhVCgxJouZy2qKAugXYD2WsGsRHnEe49TDUprbLEQyirTtLZYXESCF/AzxwKac6r8NliUSmQlVXbBJ7TJ6KA5hoG4C9jGsd1sWK9Fgvgu7JmDJOEpdgZKSUIopVgA9UjOhpREGcFASTpwAl6VEG9qomOB7pXImmdERcV7D7pWNeUFVBRiEFhlOBxHXkwzTWNxVjNPhnkMcrBOoEyt1BdCFiWxmZOAuikmIQyok7JLvVRJgFLmgyrgqynV+Wf2BGdgrEYITaECi8tnnpImC+5eAHr9jfhEFSR6gYe1KuoihQCxJA6yADjnD2YBUL0P+HkoiTlJmDpn0crgw0zws1x3UaTx3gNi1SVjalAmCu6bBeyJKWBwCxnHFrD9PJHwTpJluc0TcSknUdkw6mRRUSvZ6vtlLlHGKZNUBAzGVAWdailXgVtD9JmmAdsajMmsNw1Pn21xrcHYYtUXI/evR5SGGAaMVthGkXCkrCAbkTlXQcgEVQmuJMFTIdDknMlzwDghURLyUryjC7CewklxawGys+i4ybyIxY4vs73siq1IYr8b2d/uUYhtpSQdLV1nsEZUg4KPzD6grVTF5pwZj0e898xzKGAbaONknphcxpcFjFewJIYryVOX7IJSSuw6UwGNZXUpiRi5oZTFzlNpUEbjjMVaee3sZ5yW5KlzBmtgGmeUjogFW1jUFWJVpUiJHEs1a5JsgVJiZak0Rf2pkMJ0Be8TMaulMtKWhEbOgZR8UahQkDVKWShVp7Kml3muFI01rDpHZxyZSExRyARa1N58ivjDDh8FyDdG7D2rhVtMRZVJgVKpFusuCT2lpPI1pIz3kRTBRENmZh4z3jmOeqRtBgEAU2LVr1AYTKvpu57xbqTt1mzSxNWzrRCUdoNcU7FyGKaRRmsaHEQY7jzJU1RrYL87sv3gI/qN54ufPcdYw83NCjUeURuDcYbjeOA+eJ59cEHrWv7gxz9lPEy8CZ4PPnkP5yzHw8RxNxKjIsWJ3XDk4nKNaT03lyvy3OKPrwhjJKcGmrIfqoDrGzYXFzB7QvA0Tct+Osg8xhT1vCjWcBGG+x2XlyuariEGsNbRNpqrTY+JgWH0TPNMM95z3N8R3/+I6+9+l2cffciLn/wht88/Z912fHR9zVfjjmF/YNN1PHvvA+IxMu0G5sMOFwZezBOjl31g3Si++vwn2CzWBrvbHRfrhlUX+Nokfv6Tr5k2T+i3Ld36guM4YbqeZ+8/ZRwGpmHisB/YNB2H48g4fc3F5gKFZpw9pAEVZzpjcFMkTQF8RuWJOXv2uzv8NOCHERUk2X/38oE8aVrXMO5HXus3bFYb7l685rgfuHnvKX7K7O92hPme4zCgFHz3h9/hzavnDMOO/uKKzfYGP868+fpr/HTAm44PvvubXN28j0pw++I18zRwcbmm6Tu00ty/ueOLz/6Y4XjPet0QvcRnn7zf88mzD7j9+Vum1PLko9+QdUdZUvYc+pY4B0yKpHlkmIdS+SwEHFUSubYRgmn2EaJYOGpraJwhJyEVyz5SQHSjSEEUL7Sx9Ju1qMsExZwiXd+z6le0/RrlOtp2C7rh4sklVnWMx5Hdfs9weyCPidWmx65WZONQyqGTJOZ9DFgtG42zQgCbR08cIyN3ZPa4pLFZkRrDPClcu2J7cUWcZ+bpQUjRMXHczQzHPVrLd5AkkWytZpoUyU/48cgujfi+FVu4kuBQBJSS0vgwzcRR1jBbKtRTCBiKRYMPJCXJkBAkCfptbTWZrXVVLRIybiWNpKKSlTmpTVZyq3VW9tpUFFJyBqo6SSUCnRQqJF4Sco/Sqqw1QiYYRy9nkdJX2oiKilhexJJglySOFEmwKHnIkp3fITapxQJ7oYgsBJlKpqAQRqqSSooJjMRgrmnIPog6XrkHsbCeF9KMkLJqspZif6JQKi3ED7n3X0Lu+MbPAYl5lJYYVvLpkuzSikXV9KTqqThFuJLoK6en5baFF5HxJQFurZGCDGdZXsg3rkWVBHySfXq332H0sXyfECMWHlXZZBfiQPVyAqrt9aJnWooLVFHnOsv3k6ei/FriHlHxk3jC5hIXlUBOG8OiKrX0nyrxSk3ivXt+O7u1s3vNp7lS1YS+Qe6vhAUhT5wIRcu159PrKESRc1Wueh54l+dzIrzUn7P6ZR96eu1pfsWa/wUKKa9MwMWet/xjKhNAc+q707WU+VOStqqcp89JVb/QzubwcoeVZFQJHTU/XToln78h52IbKgVVKL2QawQX0Ms1W23IMWMbLYp6KtF2jn4lJA9tBBfwkygsCREvE0ry1hQiUy7zX+beaZwW0hv1+S8Elar4kvJZP8vaWFXRZGDqDC4PmuKMZJWxRtF0Yu8dfGTYjzKP0OjB8MkffEozOykEM0Imv7u5J6xLQZbx3K3vSFnUYRNpsZEWq/SiXFcPEmW+1YKA5cy7kKrKQnWuvHviEpwIQ2ePrzVGsAtqwYSCcEY+LcUxVQWH/EsKZBZPxzJPzibIO+pbCzyRy1lX5nHrW7q5rYjDck/l9CTFM/WZktnNzdc3fOezj9lOawxixRVzREh7SgpdyloVc1yUbVM51ywEQihECZYzmpC30jLXjTbLelPJTtootEoEJUU4xpRnqhJhbSZng58SYLAuY5VC21bUq5OcFRWQVEKrjK5k8BiJcyTFRFCZ3cOBoFue3vTs7x9ICJnPaUg60d9sAHmd0orNRS8Erd3ANAaZE52MZ4iFuI7ChyjPUBnb1lg6pwhzkOe2jmHOmMbgugaVMjGEYr2el30s53TC04S1Qpgm2rbDaCFjGWvpnCHOE5NP+JzJaeBw2NOtL1DKsL15yty17G9fM+zuubo0bHrL7nBEIWroXbciTIFYiurGw5GQZa44rXFacf/6FWE4EFPGKYXKM+NdJE6e3K7RjUVZK/hl09Cv1igy8+zxIZJTomlELXreHyEXUeay94iFsCpBiQQnmcw8jXg/FYuxQNM1GGM57Pc4I2rTh2lPjB3JB6L3tF1HiIlwOKAQwlcm03SOC7flsNsxjB7terQZCWHi7vYW5Rybq6dio2wdbdtz2O1JKdJ1LcYYwmxJm4R1jqYxKG3x00zTJHrb8LCf2E2BbnNB03XEKONrnBV79xDIIRCjLwVHJ6ClPi9Ka2KQdSCGJM+GNRKn5EJoKvGcQTCOqqCknS2EBk2ICeMcbdNgrCMjRbjWNNimxShH0wiG5ucZf5yIZsJ1LRiL0sUyPYGPQu41y/4qYxTnKHbXakajlyKDHBS26TCNIcdE8GNZ+1Ox3gtUolVdyCRWFNw3p0CIHrLYZOac8cseKRFcCqWQkKqKKEQ/WVtk7Up1hUx/yv782B7bt7y9ePHil+LTf6bt4df78Y/tsX1bWrfr+Hf+b/8Oq4fVO7//2W/9jP31HoC5n3n56cslxk46EV08Ozf8+WirhxXru19OUgKxfHunZfjBf/kD/tp//Ne4enGFzr+ExPTYHttje2x/TtqvTFKyjaHrW7q+FWUFH1Gq2iTkhURhjAEjlBI/e1FUWnU0MZKSAPJicSZkpmmcQBXZXuTQ7Zylax2byxVoGKeJw25gCoHJZ5ROUk2WwdSqmpTxc7FryMV+zkDXGbZXa7TWDJNnOMwoBaEc8hZfpHrWrVV2GrQqFmf2hMMao0kpEKOG1GC0Zr1aMYyB/X4U4H9O5HRcQNR5UkyDJzOe5IQRGxydC5kDRYzhHRC8KvZQAWYQ64J5xlgNWUvRTla4RgCT4zAQpxIMVBCugNOKjLJiBxRTsb0jEwMoFcsh36CzLqoA+9InZ8QZWOz+Uowcj0chIlAtpdSSGNAFYFuIPEot95VrX1eQQQE6E1PEJCVWEGUsqjVfBvwsNiYpzvgpczxo+lXH5ZVlve5IPjJNM5tLqY6bxgGlwZiG3f2x+NBLIlKGoQId3wAwF5sCUUfRBfzIv+S1qtyb0opckjoVXD8lGTSqkG10qX6txImUoiTiSr/qLCpISRWLLun0s5xXIW1wBiws+i1Vol3sNFLMRJWKQlkjVc05S6lUudUYCwCqIGdJLFXgVylFTJEYhVxyGr+ztMsyjr/Y3lGIylJFjQgllQTl6Y82utxDtfeq9Lp0ev5KctKHIOOqFXZtxaojxQJeQlYjPkCYM/Pg8XOgWztWa8vufiDMEac7dAuTn6SiOdtS1aroul4AQh8kGaxrkkyRqkJFUnC2Bmot1jEhinJPrdxXhY2mFcU+BoiJw37AtZZ+1bJKMB9G/JTQpoUoimU5J7LWxAghSWLEWicqBd4jVYiGpuEEtCmzjNWiHlCWOEpSQC1KAQLSmUJA69pWQKqzOQHgGkOMnhjzopCloYC9huBnmYc5ETy0nSOEJMkcLYTRWAF5pNpvSQAXbBWygJBltTFaLAwrOUEsN4TAxRlJUBuDSgW4K09kygqRajiR9QB0WZf6rqGxmraQGWMqSm1O0/cd2liMawQMzknIrEqAb+sacs5EIiElbDZlbZBnTiruy+dGsULIBVz08ww0WKcZ5lmUPBT0XUfTWAZmcgrMIRH3GotiszXMMXO/P7JarVhve5Q23N/vmYYZpS1RaZLKGBcJamQMntF77h8mwuR5fv97rE0mBEvXa3rdEPyMT4GPPv2EeWrRKTPsPd5EooecDMdD4v5hZtVa5jmhraXpLSFFInD3MJB8YtoN3Gx7nly2bLeOYYY3+5HoPX3f0DSG4MXGLqfEbv9ACImmazEx4/1RCAZGo5NYs06TKDS1naFrLR+9d8nsE89f3jHGyJAS4e0dFy/v+GL+CZdP32N7/ZQPfiPy/LM/4vnnP+X99wf6jWXcGYiijHRzeU03eWa7QuWGAUPrOqwP/Ob3/yI///rnjPdv6JobPvnwAnXY8/ynX/DHuyM373/EarvGWkeKCud6Lr57wc36Aj+MDPNMYy3KaLbbS1xWjK/vuDvsaS4vabs1D7sHQPaKGE6J+Omw5+HNK4bjXirH24brZzfkDK9ff43yQtLYP7zh2Lbcv3lLv14Tgufh9h5rjjSuK4p3GWU0T56+x9uXmtevXuOTIxlHnHbcvZm4/uRTeudQIZKVpb+45OH5nvuffcnN9QVp9tztdlze3PDJp5+wuryAqNHjLTe95/mXb/ji5QNptWW1vWCz2bC/O5DiRNs07O7uRIkuKbRtqItQ9B5NROmIcRbdGKak8KMn+EizFkVHsRkta1dMKJPEXjiJXWxGY5uWzXZLSNAkuLi+ZtWvCVFUt/r+kq6/QNkOVMfqckPTbTnsHhiPB3Z+Iu92rC4vaJpebByOE4fpSN81OBTzKPM4+Ynd2wndieJT267xaELUWKVwuhVVvEKmQWVSnFFRVAB8nkpSocQGk0ZnLfYKQUixyUOYJxYbYy2zg1xi3pRL4lhB0mRf7FHxhSRRlRbBqm8vwKGtpmkt1la7VQnyUhLlyKoAYoqqS03ii7Jq2cN0IQVlUVJNOQvJVp1iR6UUjRPLsbZzZCXqIdMoa+/JbquEbN4vSesap8t+WaxbjWa1amXPi5FpDAspWeK/MwZJJSRUokYhHqBZku1Kq6JSqqisEVv6ZhzEMlvUDOVLVHndYjN6HofVZJ2uBLcT2UR+Pks0nTFdUkoYtMjFli1faSEMAMTgS3K4EFzq3ShRpbVNQ4iR6GX/zSkTSULq0gaSwpdYSs4h+t2EV2axdpvnmRRjSdpL3JoLCW25i5KsPxFflrsv8U218xZCTM6axXqsvL4SKrQ2KCV97n0keCV2gEXBoOs7fPC0XUPjLD74cl2G42EiksVRtn7uN62QK2Ejn12jepdAtIxH/WU+vWbp8eWYeiJGKEUhXZ9IQIvCznIN5ayWpA/PVXnOz4jnA7IoLRXC3RlXi5wRxalvXn6V8aUkOdELsa1a0da+qKSgc4u8OnYnYsmpT775XfK8lqcq50JaKjdx9pmqJF7rP53aSV1In51Fqz1zJTFlxKI2pihWcHMghlywjyzqJaYqewphxmglKsyqki9lDTLGFHXodJoLZSBU3S9KHy3PupL1Qqbt6Vlfnvk6HmW+D4MnZmhbR1XcDUHm6seffcKznz8r2Ihenq+LF5cLcT/mwGiGZV2Zmondkx1Zwf0n9xw3B5auXgZe5uTSz98Yt0pEW1SBDIu6kSjELWnw0/gqvZxZYshkLSTMqsQq50Q5J6vlgkrRQjnbLM/j0ncFT9F5mT+6XJ/OZ89Vve5KuotRlEELHkCG66+v+HrzQl6foTu0fP/3f4MuNiXZL+S0Oo9EhauquypUToIXUIlzqlxzIpMW5dHaL6K4JcTAFEXFuGIodU0zRv4tlX1S7N2EWIkCAox7j1GW9crgGsv9biRMUsQEoAoROydNVoaoKJZZoloZckIFQGnmdOSrnx+wyuE6x6o1EDPHKTPNnvW6ZbvtGY6Bh9sjh8Mgz0nKhAAuZrJP5FhwgMWOTUg5BJjtTNtari5XGOt4fSvFcs4I+SdOMxR7yeh9Ia5LUY9gDUhBWAanG8EJc5KiH6vYrhpAcXd/JORUCswsKsPhzR2m7XBXDa5fs/KR3f0tb169pFuvaFYd0cN0GLDG4qzBZE0yPRFodIPTFrfdst1ecn/3BoCLTUdHYjzMvLw/0PZrWmsw2mBMg9KG2EC36rEZnPWEVs5qrmnQ2pAmzzCOJK1p2gZMVbPLoNJSpBO8Zzzu8dMohTTW0DRtmUeR8XgQvDJ69uOB6MUiTBQDhdxljMY6s9g2K2vYXBiO+wPjtCMiKowpeJyzOK3QpVAyRFmbj/sj0/GIVmL7Z7uGy+trXNugtaUl0KqZ427H292A7tdgLBQV/BR9iXeFOJ5SIhelZ1MI7ipHUHqxRkQrQpDCV+0k4rBGF/JfVTvMoIviecEAVHlmdVGXtNZgnKgaGe1wTYe1DUpZsjIobXDaYqzDTzMpBYbDEesc1jmUtsuZR6kMShPmmVSIZz7OEISg3ppGigK1Js+CTxrliGEuSvsZcjwLFaQgVvBA2WNV2ROy3EyxbStqdlot41hJUjUiigXboghN5ro2UVQPl6DhsT22f73ar52g9Nge25+TppLir/3Hf42/9J//Jb55Mvv09z5d/h5N5HhxXLaM48WRr37zK5JJfPZXP+PNx28etxPge7/7Pb78rS/lhwzXX1/zO//X36E7PConPbbH9tge269MUmo6S9M7mtZijOYQj5Aifval4rmA8AWQCz4wh5kGAcxCjIQkEuRWadbrFfM8MxxnQKOshpywWtNf9Fxc9qy2DTF7mhm0zezvR8ajL9WDhpzBp/kMtNNoZQowJWBOCGC0Y3u9Yp08h11gnhMpZLQaGaIQh05S2+VwlgXgW62EmHXYHwuZQw621jlMsyYbDcz0nWLcZ4IXmeuU8gLG1wPl6YAsh7+cNSmVpLYttkwnN4J3CDGp/lIpIRXkYg2nJJEVYxD1Ktsw4qUiXbqUnDNWKxqnaS96VteX7PZHDrcPqCCWFzFGGicqKFPwzOOMsgXoUpaU9RKU5CRkggnPMB5JUargI5IgUlEVi7JiAWgcCrOQXpbKUChJBDksa61JZLGCi5LgJ+eFR9a1LZebHmsFhPvyyxcchsg4yBxsu5bNxSWrPNNtLDdPLwnzzP3DPfOUGQZJRChlFxJOKsQwSn+/S6opuGSSatJaNfxNJaWaPqqe82KHqAp5qbyfYkqjFVarE8iuBQyq16Ap5LGcFtsBBSVhewbmpgwFpE2clAPgTJ2g9Kv3odxM+Q5Vxqf0rchwF/C62g/wbl/EKEkk51yp3D0BI1AJMnkBeM7fe/73BWGp5Jl3iGuiViPJF1F6Eh9xAeHFrqAqKIiUu3NayCPJo5RlGj2vX9/SdhY/ZdKcmCfP1XWPcUJEuby4wLnAw/2RkEMhBAnJTCwQQllfsiQdc65OfXLvsf7dFEXvEwnGKE3J7ZEiS9W39FGdP5C14uFuYhgjm22HqABpvPcYFdHWopJCKSvAVjp7RpIoZeQgtjBGO0l+5/BOAiGEd+f2kgCp1dmqPoMsJCsZmzp+AqanXBQVSiecyJPg57hYAwrxSUg3KUoF8XrdL9YgOauyHmlceW0+UxOoa0Ht75QVKkK1akBJlawxWcB6kXWTJKvWpAjzHPAxSYVujqhKcliej0xjDZ0zNNYSQsAnT9aQtQCjGeiajji/QSlJ9hujiVk+V4BcjdKRGJJYmBpFUkmSGjmxWq+w2jAeZX2UJG+pmI8ZjDxPotahUSoWi4LE9YVYm4U5sb5Y8/RJz+pixfSzBx5udyiTmUPiOATinFl1jZBmtMJnxWq7Yj8/EELk9uFIYxv87kAwiidXV3z306dcXzRMQ+AnP3nOj3/8BR98eMmnn77H25cTD3d7UbwphIA4zXSNxijF7TCSosM2Bh8n5tlzfPCoqDgcJp48WfMbn37IcTfx5kefY7Rm1bbMx4kpDOSmRRMkkakyaLEAUKasXcqyvbgAMiEMWAXX64aPn3T0VvPTn75gN81kDe3mgg8+/T4f3Fzz9tUbjNZsWodpNqwvnvH28x/ze1//U9773vd4/zs/4O2Lt+xffY1NAa0ykx8wSmM3V9xcX7Na9TSu4YOPP+H3fvcf8/bFHZunlvd6zYs80F9eEKymDZ6bp+8TTcfxMODqPrlq8QSaTStkv2nifpjIWtFstkzDyDHc45wh+pmoIqu+I1vL8TDw6sVzdq9fYnTC9i1t1xOmgMqaq+0lKcw83N5yePOG14cdF0+2bK6ecXnzBOfWdSkiW1FSMynjG0/3aceT9YovfjKyOzQy37wnD0dUOBKOmaAcD0chumSf+dlnn5NCoLvacP3h+1xf3dB0PTe94XubS15+8TN+/HbP3G54+vQZuu1hTtxPt9y9fUsMIzHOQl7IGeMkOdI1DWGeyWFE6Yg2EOeIQhNjIviAJ9ImR1OUbyRhIMSW1mi0gxAVwxwJwXM47NHaklD444FDyqy312wvr2j7C0zTgWkAS0Kjmobt1RO61Zr97p5xOnL/4hXOOlbrNcY6Np1DkRiHgfF4QOWMnz3Bj6g5Y/qGKSZoV0QM0+0b8jyTo2Ie7gnzQPYTSs2SpCgJRK0ti2pgEvU42YsTyWfmHKEk27C6KI/mQmTJxX5BnhWVZU2qVc6x2FEqJTaWv5je//Y0Y9TCN9HGEMZC0E+n2ConUZ2oe17OGZtNSchJzJGKaot1VoguWZI/2lR1PVHy6XpH01k5O5gAyjENnnkSa2ilqjrG2UUW9a6FO5JlT48BjBMLOpm3pUgjs6ih1CD+RBOTfcpai2sc8+RLgr4URBhNLNX7mVQCd7m3QFxi5iVyVrkIlRaFlkJQocRzlbxyIg5wei8lLuH0CyF1yf6MpqgbqsVyqhKEKynBaIWzGqzBdq2sJ+RCmjsp5Sgg5GLvqnUh71IG/qyrSUJcRuKHmmiWvjgl4yuxSOKzM7KPOoUJ9Z5OsTlU8lLtEIUo39hOCdHKWt6+vSPNmRAT6ThjnaVtG5rWYRpF01iapJnnmWkKaKuIhai+kImKndzS15Vw80uexW8mT94Zn+XsV84Wp9tk+U2WtUFXhcklpCtkIaqaSpkfZ59yTkA/PzuocsZYrrm8SZ/NpUrEqgS/ExHr9A1Z5EcR1Yaz9y73oH7h/bUk4Z2z7zl56/xMcfZdy9/VO52wqM/UYgghstTnMy3nFKVET8NojbFifVbj4xikmEAbiS81olzStXaZv6t1z+wih8NIDKIUmFS9nBLnxUglM55IWKdLlstXZ9MkL5wtVZ4Xld9V7CJXlSBRGvQ+FrXlKGfREm+rpLh+cYUil3NVte5DMIKcFpUnN7cl5k+4Y8PmbosCPvjifX70b/8Iv6mFALWPWM7nnCf/1YlAdMapKnG+EtJOPUufJmJRhatn65MVKLkWYIgqitwDp3VNcVZE9O6ZQuZImZ9ZlJzJsgZW8lJ9nnIGd2iRZ0Evf+SfBf/p9h3OO7zztIPjh//0B3ShwRohpflU7OiUKhbscn5XIPE++US+LQQoU4S6a+FILuQiOa5JgYMrz1Ntyzpa+k2s5TQhy1mCIJ/dtZZ136FQYr1pLMrCZr1mtz8SQ8CHiPf1WhTOGpzWcgbTFmcMKok6FFrOAilldKtZrxwXlz3kRNc3vHp9xzgOXD/ZcrHtmaaAdWLjrZOQtBzQrTt2+yOzD1glSuBZReZpIkWFD4oIXG57+rah1YaI2LqTIc1FORKWZzbHSFRVgVHU3tqmK6Q8iftXnROCUs7c3h84Tl6KlIxlfXnN1fU1eY6MfiJMB5qmxdgGZSzD7p5xHLl8JuqyaZzZ373FtQ0+zBit6dYb+q7FNaJ43qYeUuL51y/Aj7iVZpx2dL3Dtg1ZwfZiS1aO4SBrTY6RZAxZZbyfRV0sBYZxAq1x617U0g4Hck40Cvw8S2GN0oQU2T88MI0DRsl8s40Voo42OGtRfY+fZ477wP5+h+ss2+2Wtu8xtkWVIqnCNqT4yBGN4mLT0+RIDCPT7FExEqeJcdjJaq8tKIcm07mWeRoY57mQnhzKGoy1tM7ybOVIQ+L1K4/HCgbctYDBD2OxLvSkFMiqrltSGGSsReUkmGv08nwslq6Cm0afMORF9VCUL2WNMLpY/GaFToI9TtMo2A4yV+eUafoVbS/zQBRjDVWTKZNRxtD2vZDkZykgOw4j1lmsFbtQUQgXu/vzvUGFjEqR1GiUcaiMPJMxEIvSVPRjse0ri96y/hal/LK5qLLHqLLGp2qNqZB9or67rJOqxJ91/c2cCisXx0/ymSXqY3ts37Km+edmstq2JYRQsOTH9tge23/V5kbH9/7J9/6F2JKJhu3tdvl5+3bL+z99n0zmt/+fv83f+1/8Pd588ubXfbn/ytvFq4vlDP3NplBcf31Nt+sYNyPbt1v+9n/0t2kPv2Zrysf22B7bY/vXpP3KJCVtVbF+iqAywfuyUSU5aGkB6733hdgiSWjvJeFvrBXAPXliiozjhClgs4+RRjusaQh4jM24VrHedoTsyAfFPIaFwFBVSgrLQ8AZFEmdgGy0lYN9NuwePCEdWG9b2VqTJMNisWYS1RE5lTnryJSK9SwEnuAD5+pAjRVlkNcv33B/r2k6QwierBKutyif8XMQaXROhI3aL9M0SeV4BQEyJVGiyEqIGzme1FngpNSDykvFeCqS7NoorDH4ec/sRfVDm0zjRFFFG03rFOtVxxATWQX6jSXOHcfbIymK5UHUGactc5jJZGwWIkbjzFLHLPLqGWM82sF2a5nHRPJRQIQs9hSVmICC1rX07UpyPmUMv1ncIF7pFbSUdExOaUk86AIkTtOE1o0AOUqq8FJMTIOMZds03Lz3FNMmDseBHAKNbZiOA9oUIkpMC2FMay0WccvBHxYoXUkgURV+anUnsIzLO2Qco1EIaYEK+i8ggJCJdE4oI9ZxIUZK/kaA2VK9paxCxQqM1nmilj7IOYIWlQGjxSaw9l1V01EGVDYLEFy/o1zpAq9UYk6K8SwhcWaZUkB5Jar9UpWFKIrFWIlK/EJf/Km/Ox/38wRZAVlCiFgn/ZPzmc1aUVdQKJxrMMYBohg2z6GAqUDITKOA9SnA5XaNMaa8z2JWYIxl8jPez8yjhyRrEykQYy7kHg+pyN2f9SHFBjIVAFxR7dIK6JREzl5rhTMGP8WillOsGWsijZJ4jZpp8Pgwo4NGYclR5n9KEWvMkqBdkppKCbEwCPmsVmnX5JQ2mhhPh/IKZklCF+nbMjapJAzq/cWQTuhUzmI1U5M7lWCVT0nieZplbVdqAY9jzIzDLH2SMsZYjLGy3iKYmbEW4ww5SdIxJbF5rHaCsubyTiIz1TXRKLHjyNVyDRrXsFqt6boVTdMsayVKyDDKiNy7VZneNTitZc+ISUhYJYGTamJHZbQW5TYUWKeFrORFNr9rW0xr8arYCZWkhlQKRx4edvSNW+w6tdalGjoT44z28MnHH3F7t+Ph4UgKAZ8VRkHbaD75znvYaHm4O/DyzY5sFFdXPZoZHzP39w/4KWAtXG47vv/hFYfXtyjVojy0PuGyRhtH0zhMFLDSmMgwHTBjYrtxfPc7N/zo9/+En37+nN/6i7/Js/ca2k5zSKEokRlMgsvVCt94xjBjm5YQIpqOqCwhHcnJsJ9mLrhkGCd0TnxwuWUfZmzrSApmPzLth6IOp2V/9KKk2JiOgMK1LRfXl9ze32O7ng+eXfLDT57ijzv++KcvuRvCovKhTEPrOqmKvmwI6UgMey62NzysNlw8eQ8/HHj5+Z8Q/cx6c0nnDPdvviLlyGEceP+7n/LhRx+yarZEYxiSJ6sse8xxoKfjsy9eMoRE3/eotuPp97/Ls2cfcXc3sL99ID7sGbSFRnN4eMt43GPUhpw1TdvSdh3DNBPmwHg84Jzh4cUr/HFipRt2ceLh/p44T2xutkCiX625uH4CVmwScoyonGkay/H+gUNKtKuei+stfdeIpUAIJDz+eE9KGqZE0Jk5jLR+ZLPquL685jgo/P6W1y9fkJ3hvfc/pltfsymJJNd3OHeD94Fs4eHhAYfh5knm/Q8uWcWJ56/fkJoNx93A9Pw5zfaC3q1YNS1hfcHDUZONobOyv4Ls18YW4D+UvdxIEhUtVgt5DvjJC1BvpJJbWVMF6wpZV2EM9J1h9hOHhyMKi2saBhKXbcNms6LtG7QzRS2lrLcIEVJrjWtbNuqSdmg47h4Yd3sebt/QrXu2mwvaxuJ0pm0dB4SckgKYGHFrjXGOiCL6meGwxw87UkwcdkfmYcDowKJwKMt/UeEoSQUlVkRaKyEohigkZmOW/QSE0IyWvd9qIR/HmEmlUnwhf1JVOgPWmpOqz7ewqWrrljPJh0UtIqtcElIne1IyJW7LjGFeYjJFSdyTyzlDl75kiR9QSuZYIbuJwl61syjxY6qBSLk2Kvm8ZnxEqUkscRXzLNXpTeuIMYm6Z8xLxXolP8jep5e9MpfChxinZT/VWuOsJLCHw5HxiHyP1qiikOBiib1iGd8TK2CJY3OupLQTGbfGA5UYIW+pFJFKgGFJTOVq65UolinziQiQEsbqYptnxN7HOUKMqBxwTpG8Zi4KACrnZW9OJaZWSay4s4Z8kVGfKPhMku3GZmxreP/ihu3mkr5bsd/t+elPP5c4mdOZz+iMdqKqUu7kNK/OSCBVTWsZ3Lz0iCTsY2QYvJz/1CwWtDovagIxBmIwNG0HZI7HSdZhEBZKIfovMbA6RdanKzobB07Ewfqb5bp/GRHnLD4+Z8qdE4ZQLEnXXO0Pz94vVtq1aGT5iCW2P79KITjKpDgp4gpzo6oVVVLRO3d3diP1voQMn5aJpvKJdFPtblIhmYN8uUongtL5qeG8P9/pN3XSKDtv5wUkp/77RveWNRMlY67Lupp8RkXBBArPhKgymYAC2WuR9xpjJBevMnGYSSGU/pJxrnH7+Y0oeKdw4d3Jkss1nvVvkjcJCafav6XlrpeEc+U35bw8ezlUG2UWa0qt5b25YA4piVJvLkVdNUBfFOaEGYTyCuXPE9Vna4uS9eM0s6mTjETmDDw49cfZs1lWrbJO5qK0JH90USYNIQNhIZvJ/BQypFyy4EDyXyEAxSjkZ13s0VL+ZhFSLdao5AWZ45d3l0Udx2GtW0huuVzs9nbLb/0Xv8Xrj1/x5MUVl/sL2ceVEKC0kmIr2fvL2ayou2R1KrCQX2lRDU5CvmmsYa4W3aqOE8trjNbU2h6lpSBGsJPA5cUWZxtu7x+KLV8ZRyVKuJebLfPo2R2PhEnIv11nhQwcpWBLK2it4unVCpUFXyBDmmasksI6a4U6S1GBPh4HYk5Yp+iMZb1qOY4Tx4Nnu26wNtM1HWGYCl9CCjXm2YNS9GshEcWYyBiMTeQkFoSFiYUPgcvtCn0cxTPLiPr4PM9lzRM1XZDnxCiNsQaMpu1bfAiQLKu+4dnVGpUib97ci8qnMTRWE5Ume898OKC0WK9OYabpe2zf0YULyJnj4Z6HNy9Zby/p+pWQ68OEH0foe5rVCtc0oC2RxDyPTH6md4peZfaHEZ8MSjvI4FY9FEtUpTTzMKFkgSFHz7jfCcHaiYKjFL55pvGISnJOnccj0zgyakvKiSkGjFY0vVuIvV23QhkpwqlEHmsER2qbRuZsiuicybPshxFRjQsxl2I6yApmL6ShVd9jnWEaDvh5YPdwj1KKrt+Iwuc8QUp0fUe/3ZBiZppnUtijUuSi7VEh8+b2Dq8UShuG48hxmOn6Fa0xXFxcMkwTc5jRWohFuahpV8XtFEMpLpPVJAPKKHQWi+kUxKpQ4kF1wpc4WZ0pJfZvMQaCD8ua4pqGprGliOu0n4hSZVzW8lyKBp1rMErW3XkYGdIB1zS0jawlelHvF2wPIs4UC+OC00jsJWSm4IOcG0inMKCipLVarC6kBXfMZe1VsChrvkPgrC8vcUPFuBZ70SzKbnWrOsf5Httj+1a17wB/A/i/l5+VFH18/NHH/PAHP+STTz7h1atX/IN/8A+Ypulf4YU+tsf2r3+risr/ld6Lohka3Oj+DK/o29s+/OzDf65l20c//oh//3/77/MH/+0/4Hv/5Hu89/l7v3CefWyP7bE9tj+v7VcnKWmLNpbgE34WAMS6Bm0hDQPzLDYNRmlAE0JiHKaiPqQXEMcYAan9HNCtwTUOnaUqMQSpuGo6h3GGw2FiPwwcd0NR7ADn3ALeVLLSot6CADZyUDT0KzkYTrNnOM6SFAmB4TASfC4VyIASyWtVCACpVsOmzDjOHI9jKcypVXGaNHuGYWIcFeZgafoGZZqSqKBI/eZFZSQD3kdyDuRkUJxUkJRhAd8ErMlLdeg70u8FFz8BsELPSgkCAn7FKKCUUZmm1fQrR9s2KAN919IDx3Eg+kT2sxBekIOoD1FUmhonAFFMhDmQQkZph1YWDfS94+ppx/a6wdqWF8/vuH39wDyLQkYlsuRCGvNhwihD03dnAPJpbi3VWpywWwFbK2YqJ+V5mtkfdtzdG+mnrDAWNJmUSvXS/kDKAdsZtFbs7/ckL4ozfhaVAlWqs2NSJeDSJ0C2fp+qVlSCli5kmXxSg3qHgKOKlZs2oIIkMVDLQZ9C9HCthTLeVlkieZlvqQCVVcUHBLStRJGiDE9WeUlkxiwgjbXyKIdQLAFLcqE+G9qIElSMkVTsGs7zItUiTqkKf6syb2XShZjIOkEslVZanmlJPsQTweyM0PNNNaUlOVuD3MySfMpZwF2UkDyUPiMoZYVKmhQAncnJY60ClSQADBRyk9h2YBzGZtYXmu2l43iYmIZMmD3GWfqVozsa2taIGtwUSNEKSB7TkpRURZpE14QnnJIoStYNsR+wyz1Lv0tCUpIURRWrgkdoYlboJCAa9flGM00zGodFEcp45DijrSVWCz8FVovlXMpSMR2LlYcokhXVIvKSJMmUCuSzSlypKM9F7UAtqhTV90bGKRW7CmGo5ZIEQIkqWI5JrGtCImQZt6bYUKpS2do0DfPsydkXLM1gjEUSFknWFKWIuVSyGyPJnPI9xpglWZZzKqQiqQY22qI1OGPo2gbnJHkqCSZV9i2DaxpZN1OmcwZnDVplGitjHqIkQFAZA3g/E3Ig6wxG4aNUGesCfkcfiXrmg/dvmOeZ+7v9kuhFyWoSQyTg0Urji6qUcw5twBnNe08veXa9Zt01fJXgMIw4bckxMowT49Hz0XvXJJV5eH1gHCNt57i4XjNPifu7I/hEp+HjmyuO9/dMw4Q2iePhgewnHKFU9geclkTPfn8EFRnnyP5OoSN8/4ffwRhRxdofRsKs6VxPng9oHWis4+WbA1OMKLfGdhYTxJKqbzpM84x5GLhc9TinmYNn3Xd89PFTdscjuXEcQxSlkP2RVdOx6jp0RiwEM2TTkK3DGEtWiYurCzbrnr/4vQ8xfuCnL3cMs5DYNGKRMh8fePvV55h55uL6GV274qvXe1R3zeV7H5CdA6t4eP2c4e6Oi4truusnpFdvuXt9hw+B8TgSx4HU9jjrOOxGXr56zs37HR92l/zxH39GXm/orp6w3jyhf/aEEDOvvnrB7jCzO45Mb17x1dfPJVlwf8txGLh4dkN3eYXhSHo5cRhGdscj67bFR0mQv375NTZB7gyb7Zq2E8BaGUvIhjkaUgzE8cC43+P9yDQNNOuWG/c+85T4+U+/4GJ9TwqaZCn7XgPakBPopNEB7oeJ7vqSj1YrdsM1L79STPcvefPVV8TJ41a3+KBIc2TV92yfXHFxdcN09Lx58ZyXt1/gHxwX4ZLPXt3yk9d3TKphe7kmRMthH+mfGrbPntJd3bA+DkzTga4zrFdrxuPE18+fc9jfkvyReTiCSuSkSCSU0djWklWLn2fCnEhaEQyYopiSQsTaiC2gu7WGzil8UsyjJ2po20varsUHjw0BkwPZBJQV4ncqxM4QFfMcxJonA6ZYM6SJ+9dvOdw9sFqJfYtGEl6u7VDZc7Hq2GzWeG0IPpFjQOeIn0ZCmPFhFjI/FNuWQkCqZGdEFYpyTykXkogqSkhGYiKddVETShKjGkPyibkQOCvZL1PUJzWSQFTInnzOHviWtZzO4hQqsaEkGJ0T5ZFYEjEoWXPjSVFoiWG0WvZnpUQJxaiTnZorlnJaK8ZxZhhngg9U+6+FqF6T5iU2qQSPVBPpWiykjdWFgF8UKus+nU9kieVMYnVJMKcl0RMCCxFACAu52EBVUo8SooSuVb+nPtJGnyk1VTWUQooQOYB3CEpL3FkJBMu/1Xa6V62WDFdJxHFKciO2us4ZmtYVknYSdSHVME2zqHCESsorcWMW0ox1FmUkXqjqAVob+Dcy6k7R/GXH9q+09B81fPj8Y9wfdPgh0LU37LodL756CTNwkE9OOeGDx1m3KH+e3c6SgTvFn3khiCzanyWm8CEyezmjisXbMuKinuY9cRfQhaA1j15iRGrfqOV7C4fqG+0UZOuqyKKWmbJc25I+PAs05ZoUJzUZxJIPlu+1RggRlPg560o+kXlnzCKTsFxzFUBVpy+VOKvEZClnsR/SJ2J9vcbyoBXySE1wViXN0x3nd29laTkVYmAW9YjleSv9ApLErXHr+XguZCnqGa3GqmffU74slbGpZ5uF5FMHqRC3tD57jlQuBUtyBtdasARRA1ZYC641BK+Yp0ScZ2y2NI2lX3WgNMlHhqNfzhF1RtSzzTvzs1x1LuP3TuK43tPZYykW5fm0diD6vHVcqpJanR8xibrO+naLGd2J4KT1Qn5RquIMEt/nytArzxnnc/Jsvi7Pl6rz8Xyk1RIPn6+Jy1w6v69lDqpTccTZ+l33uWphVc+QUgBW54Lm1NMy1nLvSEHQ8jUadavgJ4Vw9N2M6jJ5lcCwFJtoLfZb5QhSyK+nRIM1ls20Yf3HK4xSuFKcVJVolSoqViotioZp6V9Ay3mHeCq+SjGhXGZVFI+CF1XqlDNWG0IElauqdCVhyvy0RrPd9DROQ45sVysOh2EhMswF/zIMdH2DMpkcwKeEMxpjNX6OBCPWd5uu57gfiLHar0ZSVkUtO5LChLUGq5TgR1nUx2LIHIYJ7QwfXF0RQuK4HxnHAEoj4okJ1zbEBHNIJGWQusdQyGCJzXYlNl1C5WKaJnIrpLH1uiOmjCdjHJgMDaKyrRAFmpSTbNhG1Pb8PKGMYbPqeHKxQefEq9sDwxTKORvmHCQeOQqhZ7O9pG96Bh95eDgKGaft6YzG9R3D7oHoA3mt0FjmvdheBz0z3N/DOuFKMcdwOGAa+PijK55//iW7OdBt13SrNV2/Btfgp0DwM5P3hBg43h1QKHKYmKYZF3qaTmIjFZNYmeUsqptZzs0xBIbjQFaZtm9xVhTtbdPIfpAVRhniLBbg4zgU/NHQX16SU2b2kfnuHp2luBGncbaRdaYoLOYg+4tuW1zbYHxLRhGiJ/qJh7dvOTRHtGtRysgzoo0UiTUWMyrG/Y7b4475oHmdFYdxJlqxTbtYXzFNQgQPBmzbsm46Wj+TiTSNA8RG7nh4IAYvFrG54C+q7OdKC4m0qLKnXCzPChfzpAiolnVXG42mKlefLDenaSIri7WyH9d9uCqY5YqRlQKInCXWcE2LKQVj0xjJVAtbsU53qkHlQNs2RJWJxW1AVNFyIWHFs3W5WIAmIY/VvaKuVYLrpGWPOKnzFTy1EpFgIWqdVF4NZokfyv6paxz57T1LPLY/580A/xPgp8B/F/jvgPlNww9+9AP+wj/+C+ikWa/X/ODv/oAf/e6P5BzxmjPy9GN7bI/tV2kf/OQDuv2jFRkJ+Az4+8jW+LeAa+Ap/xJZdTmnXb284m/8vb+x/PzYHttje2yPTdqvvJzmkPBqQpR8IEcIYUaZjGsblA5Moz9VZWUhZOTZE+ZEzBqrAQLKGBKGlDXWWRpjyDmiOiXEol4AovuHPS9f3hc7EFUIPwXVynKQE0nnAiRa8OX7Y4oMw5EQBKiw1jE8DJIomH1R9zDE6CEqfPZSta8lCUECYqkkrSQoJVXXYY4kIhhwriHGyGF3kMpKLao3IAmq4mZEDFI5mmKV1BYi0mL/Vg7KYgcSzsgi0t8JSeihwFqLdVbsI5T4pktFs0YXEo61hra1dOuebOA4DKy2HX3niDHgR0+YIxgBLnMSuzkyuPL50ftSxVwK2nJCaUO/bnn29BplM19//Yq3r+8wRnN52ZOyYpw90xRRuUiQoxjCgTxl+n6zgMtamAyoLAQsa20Z2iRFyooFgFeqAgvgY5CkobNkrUhErJHkSfCB3UNE7QVMCD5AANAkJWCzfH1GJ8QipILUC6AqQKU1FlQFxksFc04lcSXAozojOInikC1zIhWbN70k05rW0HYOHzzzJKQNXQh8MUvFVI65JAsQkLLK36NAGQE+jaJ1Vir4YpQkmIamcUWBq8pJC2lPEpliSYXS5BxJQRQdai1yrUzNSZ0IRQVUVjURGj05m6X/gJIIPQNE8il5U6uvziubq0LBOVlJl4tNxSosl4SE0lbkvWN6ByJRCuY5o62msRprG4L3AqbGTNMquq5BGemXdtURUxASn9fc3e5xTcuH37lBpczPfvKK/S6URJ+h2uhpWwDkQuSrRMiYJGFKksRDCqkkxIrymZUemSdRm9PaLgmzSnQURTqN0YkcCiGuJiwEGYcUzwiJhRRX/Fg0mawQa4GqsFZO3eqsnwpvZplPKEl2yi90SY7I71NIQhKhqjaVSjpiIUnaJUeRS1Jc/r2sy7kkd1TGaAdkUXsq1Y7G2JKkKHMnJdCiPlXniDUW70OxhulQuoFsQGlsBtIMzJLIIkgiTRcbAjJVASkXQpcowTlB8YJn3VkaI7aLxhocJdmhLIpE0xus0aAzSSnpax2YY4YIziiwogJ0f//A0+sr0loUA32MqJDQTYuPXhQitKbmN1RK2Ebxve9+yNOrDa/u7iBbrq42qARz8ETAh8zt2z1GabZXPW2jGX1kHGfa7YrGwHbV4RR858k1TbD8+E++5H6YSfPM1ZMt9wlW08zsZ8IcadqGvtes146nN2vaVcvzrx6IIfLkWc/NRU8cFV/97Jb9PpRk1sTTmyuUbnh4GBl8QM2BwyHjrGbddxgVefrkgnnqmIeRt2/vub/N3Dy54mqzpm9a3uwOHGIkoem7NVZJ4vo4HJmmGWstrZOkxDQMTBNsN1u+c/0U4z1/+OOf8eJ2IHkPykiFci5Wgc4S25arJ8/o2zX7KfH8Zz9DJY3qHL/5V/86xxcv+fwPf4+3b17zycWay6sN4zDQK3DR89Uff4bbvCKHwO44sHaKD25aHu48z1/fk44j733astk0KLsiekdqLKuNo3Et09wyHI7E/cBMottsubi6ob+44vLiEj8MZBSznyAqtFMYMru3bxgOO6bkuexFktyteraX17h2w3pzSZgm7ueZkcxqs2Vzfc1mu0VFRciROczcfv2G+TCyvlmTXUfr1sTgGeJM3h8JOdJfXKCzZ/Qe63qUXYEyxPHI7etXbG7g8sn7mG2Hwsj8fntLmhNpnkn+wO2LPf+fn/+Uwxhg1aFdZnuxYn2xxd8d+frFa7q+5cmTp6w3a/pG9pDRJ3zWuK7FDkpsMK1l9jOZhDKCsiutadu2rJ0zKYqSHLEEIEnWqGrnAeC0JL+skzXwsNsRs8Lujjy58Ri7ItJhuw1V9U4pitKlJAesdaAatNmy3q5JiH2EHwaG455xGAh+wvUrnAWlA7v9QFAJHxKkSEq+EFiEhJhtErsMif5K4kTWHFlxZY2NKqGdxkV12lurtVsWcmRMWRKbOokKaBBirLEWq5LEsEVhSumyXqNQ32IQVlK3kvQWAm4+EextUX+hqjmKypI2qiibyo2ZGr8o+aRYlIsUqlgXK6wzGCtxkJ8D0+QXhamFTL1cEUVNQ+IhY1VRBZXr8GeFDVopfKyWRamQPCR5REn8iNCPWvZGleuGfCIQ5VSx8lwUUW1RSYxndlTqdH2mjHHKhMhi9bYg7mdMjUqc0lWapLS8EGPK/asTiV0rURpIhYhVY8RKdqlWICFErDUYJzFliqLopa0WxcNCAKvEF5VOSf6FPPTbGf6SgstMWEUeOPC1+ae8d/8+3/niY1hn4v9gplMN88HD31fofyJxS0iREMHptoxZtRU7jak+s5Ktc6T+kfiUEq/WuKkQ1shl31b4EAk+Q6gP00Il4VRsUedTecUvOU9I/P7u62vxBbrOhTN1o5JMrKpeKBayWmV3VGUHJbnqpchgifkKgWiJnc9IgTWOo/STMaI0FwsZIsvhpEwt+cBzTklVpVGaRZFy4bKcxfn1rL5cWO2PQmJfevWMvSJHbomIz+P+TC7XxpKERZ1GvYaW1b6rKn8ul1DIrufzfxmzcolJy3k0pURSYkupirpdEcdAO02jNUqJEso8e1IWiyyMLgVb9c7U0teq2s7Vdaf2U66FKhQVr/q85vL2cg5JlPNkXu5bqRK/l3sRK/a81IGgMiaYhTSD0mdjI3F8VmpRPBOy7KmPTyN+Nvcq2UqV1yhVbPnO5lU+derZLS/P6tkHLG9YiEvqdIaBk6KeKsn9akFZbYoUJ1JbVX7KhY4oFkuZfA/q/2uwv79CHcT2lU4sm/lhIP+tibjxgsmUs/1J9SkV0vGJ+KaVJslRoNh7a7Q16BQJuSqdKZpGLMl9iCdMJ8v+nvJpbU1JlIWM1nRtQyjKXtPsMShUISMqpbBnfaw0PLnasll1HOeR2Utc3LRiKRpzxmhLRjP7maa1OGsJwTPPHtc3gBCg+9ayXfU0GHa7I7ptxC6ua9ms1hwnT6NF1ciHROMsfWPYbHu0gYeHkWlOmBmUSqy6HtLMOE3FEjuxXrcYbZmmKHZWFV/SmsY5nFVEL+c670WNPKeEmQwXa1Exn6aJYfIC62TZoyc1ix13EFvFrnFoxArXp4hTDdtuRavh7e2O4zgDqnCZRL03a0W7Fluvtu+xRnPdrxm9Z7/bMc+em/efsrp+ws423N/fMu53XGwvihrUSlTHcua425PTA3OYMRqerFp2tw8cZi9nyWnCrVb4lLFRo6ylbTRdn4lBlJVTSMTZ4fpI27Y0XU/T9WLDVyw8p2nGNY4UI2GeiEGU6kPwkBJN27DebjG2wVgnxKoZslFsLy/QRuPaBqtMwRkzYfLc396JumUWjMeimIIXdbYMxhlIidlP5XFWC0kyxYgl0jWGpl1D1oQQmMcJlSZCDGQijU7EYebNFKSgJERM0kTmQi7zTMNI0zaijlwsIqdxRo7jaSGpq6wJhYQp1NpELthaNmZRiqykVpVqRHVSD1rsbMuerJUi+Jn9LmGskyIJN6O0RdkeY1yx1dUoozAguEUhjmor6oAZecZyiPh5ZppGUhSlMG0dKimGcSZRiFTlDCCK0RpXTH+XYsbFgq8UjZXFINfCMyOxpop1baz4lOwPscQAKddzSK6raJm/NTaR9T0VHOj/HwWNx/bYfm1NAf9j4N8FLuVnj+c/++v/GcPTgX/zP/k3GbcjX/2vvoIOGIH/JfAf/Rlew7f4rP3YHtufVWuGBhPNv+rL+Ffbfgr875D140X53QXClv+7wP8G+AiJz9Ovtmc+kpMe22N7bI/tF9uvzvnMLJWXfvIEL9VixkkVcsqRFE/KGMYaqd6JCZ88OSaSVTjRRy9gwkyTMxpP13ciCbxqwETGcWQYZpJPCxBR7Z4qkO4kYwQRus7SrS0+RI6DJ/qELlVaOWemMAnAlFOpEhV7OK21vCZS7JEkoa4KqGl0Qcy0HG5ThJAlodB2DoVmnmegKtEoRG1cDsjrVc96LXLTu/3AYT+UpEcsFTwiT74onnAmPQ5Q6AtVFUXVwSggsTGa1apjmmaGOEs1vdZYpwkxMh4HbONQUbF/mJinxH43Mhxnnr5/wxwSh/sDh/1RAM+cGIcRPenlGpyrlnUCGN7fDgzHr8jKczyKfc/6omW1bllvtgxj4PbtjrZRRY5cszsE/FCSAUqTiYuUfa5kn5rU4ASEn0BqJSIvqlTapogPEWs1rhVlFK01IYgiSE0gKKXJZezkd7oQIgqZQeUTIKkyIr8swGZUsVgGnoOyGWdtUSVSRZmpgM1J1KxEgElII0oGVcYvJOJBJM6ddUWhqAB1ZW7nmBcwUpXxrlhwSgmlRULeaEuKoQAvAuwNPiy2IlqrpVJK8gwJvchRG0Iu6jRLsuUciJYxoYKqiJpQHau0JEuK8ljOpeqaM/JR/XNKQFTwXS0eICURUxR0UirELq1QWpJdSolFVirZBvl++ewUMlP2DGkm50TTiGqCaxxNZ2lasbsyVnHVNfR9i8qw3+959eJA9IZpmPG+VNBpBaFYFcpkwxqLyrr0lRB8qupADFkS50qq51SVzQ7v9kOteIOM0ZCEYkTNV/k5FKl1qXKOOcl6mSNOWU4KVVJdKLLw6mRhUBIiSut3LAlFxelsAa+gPaWCV1U7gbxIDORzy5pi/xELUS6nJAoIpCUBeEq0xCWRAMVaTmvmeRLFJaOXtQ3yQr6b01w+s7xXnfru2Qff4y/81l9nf4BjEoWQ4Efi4SUvvvxnjOMtFJUtHeVZWuZuTiJdT8Zqhc8JZw2N0egcsK7nYrtm3B84TB7vI04rPv3kfUwM2BjplGLKMzEFjLHonKU6NSRCDOz3B5xW3Fxf40Pg7u5B7O+MRVkh0pASBgiSNeTjqyf84MOPeHH/lmQM0+QJKdFvOvzOIxWUBmU00zyhHhQKh87yfGudccbxpN/w9MMnPLm45g9//CUX64asFc423Nw84bCbsI2jaRR3DwNHP3G57bi5uOT9p9d89fULHu4HAprdeA/Zcd1scViGcUA5eP/pllXX8fbVgORoPCklpimR256uVRwfJt68fMA2BqXF+jX6xP3PXvCdD59xs93CPLO/3TEnAzljdWbyE+M840MspFiNHydyFkj20++ueba1vHz5ht1xRttMVoYYZ7qup2vWNJsN7z19j4vrSzSZGAPf/Y3v8vT4Hr//ez+C4CFrPv70hzgUn/3RH/Dq8y/ZPn3Kh598iOnXjLMn+0Ca9szjHsfMNikevhj445+/4MO/8pfxSHKsXW+5uL6gaVYobdEhMN0+MLqM7VY0TwwX83sklVmvevrNNdZaNo0DZbm7uyf30FpLmEeeffwhznzCw90tz7/8Ej/PPNts6ZsW02j2u7eMx5Gk4cl7TzHG4LqWfrPBmkb2Bw1PLq55/eIVd/dvedjfMbWGVlmGGFFYtNGMu7eM4wGVIzqLxVRMYoeg5pG8vyV3DZsnHzIMM4fdgUZDYxp0HGE+sHaRh3FAra/pNjf4kBknTUgjOQYa49jf7bl/fc/FZoVWUXiQ2pbEoVQEiyKcVPzGWNY6FTDWorRYQ1qXSEGIqzF5rC1qFsaQg5A8p+QRGqhCGSGlTMORwzBwdRN4MIbV+hrlEo6Oxjmsa8RmeF3UDHImhUjWGWMceZ5lw8agjKFxnayrsSEmL4qf84HhuCNmL0kuXdd4Q9+vaF3meDwS5vmkfmfNiZhSiCVLpbIWQlEqFrnWmRKXirJSTLL2+pxLirrE21mSa9powUgL0YeSXLf22wsmSWW7xDUhikVxrWRPkaLslzElqS4EC8poFyKIrrEkC6kml7giao1tHMZo/CzKO7WIYlFLXZok6bU1SxznnME1ktya50g8IyIDRd0SyFVp8RS51gR1TSQWNsyyPxbu65IcEhsmVWKgvKjB5neuUP6v61uaxhGTEGOnaS6J3EK8yEWxJXMiMCwEpUI2yfqc1iHPQFWbKbFpIJCT2OlqVQkdiRjEvltnxTQGwix7IQqePL1knALjcWKutgpZLGSjOn1+Je1mo1AmM42h2KoK6f7Nb7zhe6++i9pmug8MyTc0G4P772n4WSZFxThGifPP7queI2qs/812fprIAM+BB1AXQodJxTqn2jtL8UKNR07dePqc+ovTvHhHAajMh5PtWFrIH6r0O0ritnr0WL7rnGD17lVT1W9STCVGFvUPbes5OS4Ep4UUXpKO5+SP5XpzUWBIZ9+Xczmj1zkDlW2ST++WT9Kyj6Qq0bR8w9kY1M9R8oS8Q8YqfXJ+ZQsxvyTJT4SWUz+r+r6z/qxEFSleKs/eGRlo+QZVb+fsbjJkH0k5CnnE6oXkrnVVHa0qfhnrDNYYYtTc342EGVLMFBG9QpZnsYaW4gdTSDDnZy3KmpTPks+nf6tz8dRB3xxFyj1WC810sulDkZTsuzX5Xu32KKpZVY3pZOf8LnkLlZn6ibkVnKP+TuZTSfTDyYawHjrV+RlELWtfVixKv7/0fnJexqquGTnXYqq04CzLHKqPX3lfXdvrx6oM/KfQ/EHPX/rtf4ucLA+Hmawd4ziSv54Z/vMvOfydt2ifuXh1iT5XlFVqsZgiZ7GIQtYKa7TYWGp5jey5QjDJKdM2DV1j8OMgYJvOzDGijcEgluCLnWVKTNOEM5quaxnHccFBjDGoQtDKKS822OvGsWkahnFmDKKwOM8eq0T1bvLTO/dxPI6l2E/6L6WEM5bWtly0Det1z+s3e5Szi023QhOK2oo1GrBisU4EK6rgMSRRlUyKOSWGIWOKHbpRhmyg7R3WWLE3L/UGfe/wQTALlMJ7UZLVWuGaou6mhMQRYuLm6oLWGbE2mwqGVmLJlIuKd4JodOGCKawyPF2v6K1it98xeelvVVQMtVEYa0Eb+qajtRarxTLdGcVlf1FstQbmYaKzLZc3TwHY3d+yf9jRbzaYpiOhCN6TZ7EGbQzgJ/Zvdxynme2zp9ysNgz7I8a0rDYrGteCMuSQCMNIjgltHNoajG1ojEKRaNsepQ0+SBwzT4E5zsQYBHN1jrbv8NPE7t4LLqkDWmls4wvXv8RFraMWkymtSVpjlMGSaYzBmGumYeRwPDDs72mNRRkjBDwFOmRSKcTRWdE4w2AMyctqEoaBYwiwiSjtJMZLkcYYLFqsitPEHAOq7WlXF+QkFn7WGlIKdK0U+43DSJgCIrIcBRMyBopCdVWBrlaKQrQEbbKoXCex5sxKLbaJWQk51xqDRuNDkOJalcq+UmMkCF6s62MSxVSVNCrJWd3gRFVca1HOPFu/FFkUqLPMzVzWiX7Viy1xCAQ/iQJXkrkoVuOqWPqxEDeNkTPoablXZ/uX7BEoIQxXUmclmZ7wvVTOKWUPpRAlVSVe1u/T6JwXsnkue1lVsH1sj+1b15ry56wlm/i9v/l7/PZ/+tvM3czuZnd6zf8U+D/xZ0cu+i+BnwHf/TP6vMf22L6FLbgg+Y5/joXZv6jtbnYcL49/hlf1X2MLwP8a+A+/8fuH8t9KfPwPwU2Oj//w4/+aLuyxPbbH9tj+m9d+ZZLScRzRHkkmzoHoBbDQStQx/JQIIeNsFjnpJNY8KiEHHiqgpgTwKH+IYlF0OBxoupa2a0g5MIwj4ziTYpHJz6cERW3OaVwjJIL1pqNbOakGvj8y7Gcoh1LnHL5UsWglh61c0DJJjJfK9VSIBblCsEKYMFaq5EJIBC/y0NrI4S5FsfHQ1pakQ0nuF3C63/R0qxYXPe26Y33R83B3YBoDsYIz5TCsdb2mBXUTMCqfgawZchSveJQoNUVfkjyoxS4kkJeqIz+J8tDRz8yTVK5dXm+4ulnz9cs7Uo4CAJT7z0myKEaVg682JQGSSUS8FGmhbSpe9w0XFxdcXK/pesPxy9d88OyK9bbBJ880Z8ZpB7b43RcwOyHEmUUpSHpvGeN3AXpOwGQhHkEuwFlNJknloFRTFZBay5yNSxJLymFTmXf5vGISkFOLKRhuUacpIETm3QSXUvLqTCrgHVSpaRDrFSgV0sXCIEZRNopR5qXRhjB7qH2QT8mjCp8vwLsS4M37wG63k8+u+YdiX3L6+WRHl3NGY6gVVUJUsnjvK1XmndcvfX32/lRUfeqNn0CQ0mu5JHi0IiSx11Nnn7W8r9jfaGsKmFLIUkWefxmBXBNj8kdsGPhG4k+JyganJKDRir5t0CTm0Qv5MCW0gXEcWK9bLq9W7HeeV8+P5FjIcSmQlcZooFTWCedFiITylULYifEMLCqVmMYKkSlMQeZXTqXyTO4q5iwgUBK9I20U1tqln+McTkShnIvaUSUKZsihAPSx5mXOXPPykngIKaKr/cH5YplrhZ70W1QKo6WCNZf+r1Ys0t96SSpoY0QpoQB1nM2Nk01cLnZtCqXs8vsQEhqFs3YhopUyRhm2dKr0q3X1stwr/uJv/WX+Z//z/4A/+fEL/uSrA1/fBf7p7/+E3rZ0r37MNMvz4pTC6pLQpli8OQdHqYx2GpTTOK1orRBlUgiMx4F13xJzYg6e7BNvX73ig+stLZFtAyvjeL2LNI3lctUx+cz9w37ZR5TKhBDoXIMzWqwfbAFEs2EYj+QkwO/7l2vev7jg88+/4vV4JORAQjEeJ65WG26eXDJPU1mbICbN27dH5hDR2rKyhjgEjDG89+SKJyvNly/fkPs1q9WWw3SgX6/54vOvuNsfGceZ7brjYqMYDgcapdjfD/xsTkwxs3Yth2EgR8Xu1ZHYZK4uLsWOQUmF+OQTE5mo4eb6AnRmvxfLrHEeub89MM+eft3QtKLm4kNmHgO7g+eyDzy72jKPnq/vDgSlQFnCIMCv7GWZw37GWUvXOn74nff56HrDH3/2OTuvmZMQDFQUoDc6oG/ANqIqiMY5hV0ZpnEgHGc+/u53sK5l/2aH2mauP3iPTw53/PyLz3jzs8+5eO8jmnUQS4rdHbvbt2y2G1wK/NHXz5lz4vqT7/D+dz5htbrg/tWOOENME61p8WPicHeHypmmX6EwzIeR7fVTYvZiWeksMWeOx4lhuOftmzuaRqq8V02Dyo77hyOvXr1l9uBMz8/+5Oe8ef4a3TVsry55/70PoGkIc2CeJvIYGMcB029waAgD2c+s146YNhyf73h1e8u2b1HasguBpAw2JjYbh40GozLrVYexDTmMqKjZ3ZbkjTI03RatM2Oc6HvLRUjsDpmXb3ao9QUX73/EevWEaYxYY8kp4NyEs479fuBwv0djOB6PKCtWugDJzxhtmbMiodHWMQ6DrB2uqN8pjTUKqw2+JGTIkvwlZ5ypJPewWMCkDCn8/9j7k2fLujTND/q9q9l7n3Nu4+5fE1802VRWqVphJRMDzEDIymCKGTCDf4OJjCkDBozA+BcAM4YwkiZgJsAKYRJSSSWlSqrsIjIivtbd772n2Xuv5mXwrrXP8S+ySikqszIy5SssPne/95zdrPZtnvd50hXw4xzLMrO/r5akLYmX52+hOGJjXPQhojiTmRNHVUjLiiaTFNRm+xzu94TxkeBgOZ85vvuO0zqTs9kbuELwTYLhsrSj2wDGIZikbC09+QxacksgV1y7t9BA/U1GotsYIorztr8hGHOOGsh4HILZiw4Uz+CF9WLnnWKJjhh+Fajx69K2goPO1qJcz7UNNKGoB7od0M79jUnE0Wx8+6yTziXYJNRKYVkM2FwaAMx+28/la4LHjk9jRBLnGkChVaTLFQxza4vkUja2l155blIc3Ze4givMXrL3c22OWpK023vSzuiWOGvMNgYi79e3PjAwrhKHgI+BdUmkNZFzvc4/uT4TbJdvf+8Alg74wJJpYvN2XVKz0a9AEBWhACUVhIoP1k+1ySWHIOS8kvMKFLOHcnt+romw7WF6f9psoJGFEYLj9bvX7Ic9dTIbveSV3bQjfOnJoZC0GovvTX6u/7nZQt+70/VD7ecCkgSKbJNPGhjGOev72vrbpIjb+DhHiH6T1u6XNQmZunXy94E8Zunegkr6c/RxvfYGH/RVTxxuHDqbH3iVYmtslHJNkvY18iHa5Lb1OWdrLa3peu/+ie27Nw9++2B6/bfzjbGmJ0j1tvd1u660637ft0M6G4/NtS6pvBVa9LV087nt/9zI3rSJfsvM1OfFbWK3F93wvWe5UaLe+q0DjNJixU+lgQrFGXh2iAERR0rLNbFMT1S3sVR7vqsMnGw+dYd9dWkd7/scNCbg2+6/nfL25paQN7u3R1j6uFufv//sia9/+2s+/aNPqd5s7VIKxRVOD0fqVHn/xTsrjrhlgMLAUYIw388s+2Xbp69d22IS25i1QoMPfFFsbfVztT9wnws3AMmtIIOrFNp1KK6ymu6msKWvHBE2ObRtw2sxAB6Nqfmv/faPefN4z3ffnXl3zPzBH3/L8Vh4/O6RH/zHj5wPL+zmoUn8uW19eu9bcYrtBTE4RNVkMH00aaqUcMEzDpGqC6nA+XRmip5pHEkpMYZofhrCNLTYWc7mu3pPjCZvnVMieCumcxgwxOPIYmwrQR2HMfDq7o7nlwuXnChN5qnkSqWym0buw57cfDGTgDQGPnHCGAcoSqEyxUj0wrv3L2TnGUOgZNvncyo8p1Njh7bYgdaKF+P0PR8XqsAQBlxdSLlQ55VLUaZpx5s3d1ZU1mQ1wwiZzDBMOFcMgKeCamaezXZ2XiBdx9IK+qyoYwyO+8OeUs/MqVhhT+3zzCMeUjb58Bg9bx733B0G3r17YS4tPqHGgOzafKoqhDiAc3gXKCWz3+9Z00KeV4ITPv/B5+Q1cXo5MoyeYRqIZ8fx+Mz5dGJ3/2j27bqyLrMVUorjcjqStHJ4eDRWZa083t1zXhPP75857HcInrxk4uAZ9hOqsCyJYZrAwboszGll9AO5GHg/F2Oc6udrzYXzZWZZE1U8w3Sw4siXE6pHwhh5ONyjrlIUasm2ds8XJEZcCGhaoSbb79aCiMcRSaXgq41VxpiLhiEY23jJVG0Srk121pgnE2tauLuf8NVzuRQ0OCYUCcplhuonxsMDu8MdaGNhBEp2+MZqbxxFSlrnBiqr1Ma+bDaXrSPfzsOSjYneO2PfxDlccRYz5cp2aQW0VsjUCyKvR17dzpUesyp5xfvB5okWY2NVeyazhSz20IvYbI6Va8EgxiYdvNuK3UTV2LCTvXvVTEGvQO72H+eutnIHrPaoqQEc7eD1zm32aD8N+p7qms0ceuxGlVLNMgnebcx0tX3fSQPjd3Pj11g++mP72P6k9sXvfUFIf0Ka6//Ony370QlY/gyv97F9bL+G7Wd/92f843/wj/k7/6+/8wGzXo6Zr3/ra5bDwh/8/T9o+bk/ub374h3Pnz7/M3//a9088Bv//I98/o8+5+/+H/4u7374jofvHv6lPNbH9rF9bB/bX8X2pwYpuUZ37vAEJ/igrdpDW4DGgAkEYzlyIaBrZl0z4iEEsaD64KmN8cVZvhLnrIJ5WVbm2eiDrSLUHKxcM71KsIdzSynUWkipIGrfDc8WxJ3nZAdo8/QsQVGoKN55C7Y0CSMfAA9pbgxKeLsXbIEzez5LwKsWvJgkBTSJLfX4IJh6mAEWBE9aEk/PR56en4yZxDtCiIzTRM5ncrYgvN3DqjZLtgT+xiyDsQ50qSlaAqTUjDhPVjjlE6U2cIwq6hxVHXM28IFHGdSzuzcK6/l8Zj6vvPgjdzvP/U8eOR0T3331RMmWLHC+6berkFNpklVgUUqrsBYnjEPkk09f8eaTR6rAT3/2FU6Vu/sdwy6iyfPu+cTxeCZotCCpXunmURsf58p1srXg7laZiQU5W+jdqj9b5Z2F8HwDbzggN4k9CyTvDxNhsgr108uFlAzE4bxsQbvb1unotUkDiDMZmk4H3WUveqWUuB5gvsq+oVZlK2JgrioWVKq1mkxiNcaXLTHQA9obe9Bt1e9tt9hz2Zy+gjtMYvDDz9ZamxwK7fM3wRIBHwyEZixOPZxtRNnb+23XvoKFbCy2CDOIMQBYpaZVigVnckGoBZI7AKZfr1cKG7jF+rSUq7SZapduaZ9v72NBnZYoa8Fw5zyKJe20gWUu5wvMJtM2DHC+LHjvmXYjyynxVT7y9tuZ+bSiNYOatF9nazJZP6GKyTQ2vUBjHWnooC4H5wPGuhCjMRs0toZNwk71GsB3siUd29TfEjqCbGA4uMqtlZLbXtCCcr1qtO0NzkOt+Sr9UbeQvfWnZ4t0SZdx6NkD2gNsLAe0YFfbY9s67CxSYHTwojZNejLPEhdW3eg7tTpqQW4XLOnaI2DcsMI5WyBbwggDw4EF/73CX//tz/jX/taP+fZp5T/6J+94OT3z7uffWBKBgcEldjHgBmEahy3hEUPANZaTKTgkRGOREWV/uGddc2PMgk9fH6glccnK8zlxf4Avvvghzimn44X9qgy7AV8hLQsee/f9YWI3TTw9PTGEyDRO5FLJ7f1FIfpAVfhsv+c3Pn/D29PMVy9ncrmAWFBXi3A8nvnk1SOPhzvmkjm+XMirVTOGIdr8yIXlmJkehN0+8vtffsO5CATH27fPnM4rAM/PZ55PZ9ZUOF4WpjEyxEjNmbQm1lIIw8in93vuQqIS2A0RGYRXr1/xm/tHLscT795fYAyUojy/JEwK0QCg0yHy7t2TgbtCZU4LuQQEIeC5mw6cn2f+y+MLX3z2ih/9+DOKKN+eZuj7qcC026HVZBqcE378xWs+eZz4/Z/+gpdFeL6cDRhXMQYcEZNBqDDGCectmJ1TYXk58eXPf8Ggnjc/+gmHXeA0wx///j8ljkKZTywl8/brr3n79B2/86/8PeZT5un0zH4XmZ/f89U3b3laL/zwt3+LcbrndFw5Hb/Cy8DTd8989bOfMu12RD/x2Refcf/JK2qB9HTGxYD3kI8Lz09H5vOJOI4s58R+P/Hbv/0bluCRyvnlhZfnI2tKfPLDH7Of9qzLwppX3n/7LU9P7/AIX12UNURyLXiANaMq+Ls9Nc2U+YnDMLCsyqKRu8dPrCrcr7h1ZnJwWVfGu0fEDUgIxKDENbEb7zmVFdEFlzM5XYCFw+4N+TJzXlbcYcHlJ7ReiHcP3P/wN3n9gx+wG/eoRtJ6lUoCGPYn7h4fWS5n5vXIfH6mjo7dNBKDo8ZICgPFWdIp1EqajQlvni/4EAkytsRLwDsMFF0qGUhzaqeUNoaN2uwC+6/3nmEXicGzzhdUn5n2rwjRIZpZXp7J2aRCKo7gIiFEci4mOZYzcQjGgDYM1GGAuSV154V0WSlFCIzkupLWFVzFeUsW12pAl9iYk7yD6jxFTYItehAtrLkSXcA7k8oqHahZK/OccM4xxkAQofqeyAaqyWmiGalCVbeBer2jsfg5ypqbXOWvZxPXGX/MhnMOOlvSJunTEvm3Um+lmLypd24DpbEBfbrNbmdNLqWxVvUkZ2N9bbby7TmsWqmpsSMCsuQtCV9rT/DYOZVz2dg3VcTkaKsivifFoOTSEey2Nj4YCtkSSd734gI7gL3rB3bFBQN9GruUUnIxubrOWNPsU21yeR24sknrwsbY4hrQTXtqS6DLvZq9a50nrrEcdhuiASmqCqZ6a6AjLUoMNCZSRZMSfOD+MMEdzJfMy/OlMVBc7cYO9DafqvfHFSDvxPH502cMceB5PfLd2xemQyC6iP9DB9FzvlzIKePwxnAjH+JobqWE+8+ljYMVC/RRsE9c2XTs3fIm7SZm48v1GWMMiMf2lzWTUzYfxJnvp93W+pUZb4w13zOdb2aE2YV1+257uibv693NZBXa/GMbH5sx5eab/cI3N/zgaT782eZntTn9K0/fbX/6ejFgivSxk872cJWP2T6t3V8Cbv2k22fUq20qzZbtz2fAP7u7u/0sN77I9UG355UP3v/aMV02rKd5TRrY1p/xfTZ5G2x9lVwbwEIIQRvrlzAMkYrn6TRzOZcGpDW/xzkrCmmraBtVRQ0QyIeJ5A5EE/nVcdpYrNr7bZ+Q7dvXd779WdsL1VV+9rd/yle/9aXZ6SKUWlCprLuVDvTqvvD3C1w68OxDuZ8P58N1LNXYhbs/8cGY0KbD9+fddb12kb8NZNeYj4Ftj/ONebVckSmtr2Wzu9vg2ziL4P428B+aj7jfDwxj5GEphNHz058mPtmPuJ8LTj8himwsK/2NN/+q+SaijdOwrcMQohWwKAzesZ8GznVBcVyycvCO3W7HfDk3f8j21pzLBkIK3jUptkLOK0OMjOPImtLWY14E5wNT8NztJ46XmfNat+KR3qdFK8uyshsHvDP75XJe6RKNXoxhRqsVecXoOZ5nlmpjuKa0FQ+lUslN4lydg3yNR1lRixXMjSEy7QZKVYKP4AQXYJom0MLpeDE5MTVW6aWujFPYmGNri4tYAZP5BN45vAghRDQXnp5PxMHz+uHAq4c971/OJp/W1kNnNXQiUAv3hwO7IfLd22fWAqnZEIrZFWIIEJswRa9xEoXL6cK8zqCVaXfHclGoQl5nLueEEyXjwHnW+cQwekLcU8pKHB2+KueXFy7ryu7xnhgiRYU0rzhSOzcz375/Bu857A+EYU9Kq0nAOyGXBS6JvGaWnFkHY48fx4GHhwPiA6qVdZlZlgUQ9g/3DMOIqJKrsR+eXp4BZT5fqG61GGHOeHEG6vHJ5E3XM1NjqE/JpMujjlRXGByEkknFGIq8j2iFYT+iJbFbCzkVhIQrK1kzeZ3JeaIWoawL6kqTal2R6Nnt7xn3eztX8Si+jd/ezrmcieNArQV/ES6nTC0G5grek52imtv+amxQBnws5CY17yRYzFH7edEAtdueXFtU+WpHqmKSbzfnHmByegV8iC1MomhJLeYKzkeqiLF5NTtKy5URVLVSUrMrS6Wu2eI4LhD8QEoWb7L4ptI3X3c1YhicpzQ71jX7N3NldKcxkncQUy2VSi8qvrFRRMx+avukq7Sz385HJ9KKrVrBgPuoafWx/eVpUoXf+se/hbuRmgbgDPzbfyGP9LF9bH+pWxkK//B/8g/5T/7Bf/KB4V995fjmeP3Br2/o6V+sCfA/Bv43/DNBif/qJ/8qf/Mf/s328b+qHfGxfWwf28f259/+1CAlwwQYa0QpzX9qjlYpLZjQKuZxQhyjVXBpRZwxHuExCRws2BK8BeVEBB896yVbhbwYKCg0itslJ6RLKkmvrBTSqo2pA1yq6EWvTDqiOO+JcbCgT8loqaRq1YLBV6b9wG4aqBTmUFnmQl6b7JZeg+q1NIYioVUPGSXxmjKVyjA41jTjYyRGY3c4Pp/IuVpSUpVSkpE0YUwZJXVQVKs+RDb2kQ7h8b7TsNMCmI7awFW9AhFROvNirbUF8ByIVevgLaEwpwLLsYHFBjRlyJXd3lOpvDyv5vgClA56iPZMRRlG3xjGTerOGFhA1XM6r/j3Z949vfD8/MKPf/TGmGKi5zAGfv6LJ5MHFAMu3CZ87JLfSxz0wMAHQc0WhhDIVChqzkdRzqsBGwxA0f4vFvhNKYEvxDgQY2jSfC2YVW8Yqm6aQgONWSJtA+kUo9EXDAQhN/THPfnVk5RaLWixSQ+0zzhnVXvKbaD+asiIvwbxv19x3JNT/dO3bEcfypdYuwX+2L8tEO29o4oSYjBK+HlFS88LfNgfchP4rC2h9X2zy6kBFrl53xicMVehG9Ao14q05EAPWOdsz1hboqB/1qqBOwtF69ue8FMaOKyByZyxEoVobD2lwHLJ+GBZ25oraU1E75mGHfMirCdPSQG1rC7iPFpM1kUbO1MVtnnUWYaswsxoyV2T8VvX2pLcPabU/ue6FObN/NLGktTmFS145UNAs27AvFINbJdLogMV+xooTdbsyuh1HRGrPrTPug7qlL6kZAPOUY2NrWG9WiBMmuycSc5Y4WFn9WiV8FvQzpkcpnhLzrckQU6F2i5oAfjG8takRLy35HLvS6VLw9kzlibP6RHO5/d88/5b0us3PK0rP/jxjv/5/+y/y3/671f+L7/4hyzngT2VQxT8GBtNfxPQbAl/hzKEAJpxKqRceH45stvtQI0hcBr3vH68p5Qjz5cF/90Td+OJcdox5cJDUpZcSVmRWoneQUtiLMtKysqyXLi7Ex5f3XO5XIzVrSpOIru949NP7/jF0zPvXhZbh1qRYBXJWZWshW+fnnh9d2AYAsucOS5nO/cWh/cDcRwYx4HXj4+cXs5o2FPKjCuJnEG0UtaVtWbSkgzYURzny8zdNPF4t8c5uCwLdUnMpeDjgNNI1cJhiExeeX5e+ertiwFHXo68f5q5XApLjngx4F4qC1Ir024H3pPTQvDw+v4ep8J8mjlejvj9yLsl8fgIf+0nnxO/fMu748JqKpWUYomUEDyvHvd8/uYVf/izL/n2ZWFOxrxXq7ELTMNgwKbHB8b7R0oyade7MTEv77nUxFoz0+efo1E4pwtpcIS7HaeXZwY38OoHv01KnuN3v+TbP/o99o+PPNxF9t5xerqQy8KnP/qc3TTy/HykamCII56Z/SB8Fh745umJr8/fsLz/juFxZJoOHIYdC5mXtBCKUmrgu6eV+4c7Pvv8U6Yhok6Z08zp+Ym0zIRh4O5wTxwn24t3I0vNiHd8+vmnHN+/43x6xk8jZV7IOTN4T6qgLwt5uRB3jt3dHrcomoRxd0AGz/39RNTCmjOiMIwjyyVD8AxDYBz3nM8Zt9sh6zPry1uW9ci7r7+EYvNnSgvp2xfOy0yeRu7vXhF3ziQKwo5hGPHeJB2NFSYTBoXoGPcT+/g5X/7xzJzPVM3E6A0EgVCKATC833FWpZaFlDMZoWBshy64JkfQQbmWsFZsT63NOBIxIHBocpd5WZmPJ0Q9QQZelsQ6ZwNrDybjRVXu9veMQ2ReEjmvVIVxP+JxJrMZHKKFkmEYB9JayD5y/+oNd/sd7995Xl4q0RdwuQGRDESkatIrwTuzyaolg6BSc97sZkcHnRerGlcD4FUpBDHQRq217TfO5HOr2bfBCVmxfdrBGAM1LaTcOel+neUZeuLZkryWjLe/1Ga/dcBOPyev51g/89o5BZttuImtOYfmKyAJrmw+tX6YiLfH6ZJtV/uqbvaX+RUOwblAB150EDJqNo4XCNGjVJI4K0IozUa5TZBxtfics8SRc41hVk3COBc7m514q7ZfV1RpIPkOHMck2TZgyK2tyLXv6Ln8bsuw9VkHSxgjSh+Ifg2lF4eY7G6zBasVkUjOOG8MJVravA7GOJrSuoHQQQ38oQ00oNKmZoNwbDgSISwjw5c7znXhZT6TUmVSB18r8rUQo2zAAJpdxgbiEGR7q26nyPfe6aaDFHgSeFU3YFPtIBG9AQzdfD/nhMch3t+Ao25H9E9ut6C4fn/t95AOvLhlULq1//U63i25KFxtu+4TbMCcbXRlA3voBy//vWf78EHb4+mv/q4BmLYe7n3Y5oVrzBXa2X/63OuTrr/c9+6x+Xs3P+8MZW2GNPDBdd0KvcjhQ7+n26p9fmzP3wbLfn5loPrAA1MrABC5+n/bXmA4jAZg08YUbf61E7ftXUqTPcZ8qQ7i7z6PNPSO3Pp2G7Co+5G6seL2l5Cbz137rr/kFdzUE9XXAoBmV0thPlyA5r/c9Nv17x+ux+2ZrnfiFmB0vYD9p4NlbzaW7hBt809uNyBsjtz864O9AGWTG+p7v7G+Fnu/9tlGbHfd626ftdsIk6CSOV2emcsrLnNhWSuffHpgHH+ILEeen1/wRYjOfLTg/QeFPvS9fkNgWf+mnPDtDCi1kDOEaP7ovGbmZUFzYoiBECNDgTXXxlLSAVl2ZpUuV4UxLO2GiUEiORmoxTW/czdFllo4rVf2xG39tCm3NLbJaRiQPhdFoRhwwvmAC8I4jhaXceEKjNC+g5ht0qXYcQa+EO8YxoEhBtacqBVj/Qr29VwTMQqjD+Ql83y5NCm2wrJm1mwAi3oum3Srd+YfOgmN7aYwjpHoAyVl5mwgKXWeXCuHceCh7Hg+zaTGwFNztdhTY9ra7yYul4XLWlhKbXuStHlj6zaMA8N+b3ZXVXKqRE3kUoCKHyfiYWfPpUJASSd7l3E6oOopS2J+OaG7QhwsBijrau+wm5imkXVdKRVcnAgOgiiH3UQOgbfHIy/vFubTE2Ea2cURdcKaFgLGPFpKxWW4u78ztq42LuuykNaFEKwIFCxGYIWRQs3K4e4OLZnj8zPeKZor5Lyx5mgt1IzZlUNEXKCSG+jG4QfPEIxReVID6mmFXE0WUzSyzplhl0ETdRZcNkawdT4jCF4ybk2kaiRZwzQiXsllxWUr9HJi8oelZBCLm0JFXGXaRSgDp9PaGJYMzO8j4OxMdA14V7NiHL1Xq0gaE5EdBfqhDXh7FmyHvm08ndlMFdzoQWBeFmopxOAJ0RsYynlicJRaScUKcX2MTSqeK/i2qhVNBVirAZsclbVJDFqc0Ip/+5nez76NLa/F9XrBV2dS6kAi5aYYrO2NKgq+xQvVsHm+gUCl9Y+dq7b+rZDzlmn+n2/jfGwf269T273s+OE//eGHPyzAPwb+0Z/xzQrwU+Bf+TO+7sf2sf2atRorz5/9JWVC+rNoj0DkTwQphRB4fHy8iSJ9bB/bx/axfWz//7Y/NUhpGBw5ZWqVa0DcXQNOIQjjOLCuiXVNVK3M80JNuiWMawusBXGWcB2MnacoLDm1oKsgagEAbdXSQwgbZbXbgCE94G5V6Fb20qrwHICBJFIylhURkxyqLeFhchiO3T4Qhsj+zpzf09NKni2Q4TszSC2UVkW83+857CZqLRxP79GyMl8qoYMyVmNCqtUq+rQUpt1AKpWUc2P6MABDKlZdTzUZtVKb1qtjq+7slZ6yBeSMhjwlC2KWanJzxhBlQSQcaKlbgL0kAzWsZ8/wsOPusCctC7lkvvrqpQVmLBFcezS2Qm4VSk6a3JsY+5Vr9zAmkMDzy4WX00zwwhgj33z9nm+/fMfD4wHxjue3FyjSktL1Gtilg84UL1Ydj1xZZ6AHpft4W1W5q2KKUap4B+M0cr7MjWWq0quSVWBJKxXPulRSKqgKRRSPAU1u5fb6/Vp2iEJFWhW9E/lAMkS0GihGPCnnjULae+urlHILLFRCjBvAju3yzkAMLXitKrQnx2TovhcMFtmAObfB/A8/Ircf5zaocEulb/TUfkvKxSFQUyWv5SZQ0wFcZesTJ1dWpQ+CO7VuyRYaE4KxH7AxVIQY8M7ml2yVjxYkFNho+vUmmbHlMHrVm978sFF7qypOBVoFXUqZwUVCMEDa8eXMNE4W4AMchcMh8DScW/8FUKEUxWNjV7b+1xZEdtekSAtQO6cf9IWqVax1VquK4tFNMqaD2/o8vrVhOxDQgvK1qSEYuNPmm7StVluA2G/zcGO6qpbYKdXWUq+u/2CeiCU9EQNgqTZGptpjZ8ot2E0wICJVNha6XnVXtX74DNj7izhUbA92zhLzlbqtdbCqwus9Pky8lGpzUJxyunzDd1//Aa4sHM8e5wK/+Wlk/Ls/5P9xcORDJapnDDAG8DSAIrZ/OGfPEWMgzSsheDtrlkw+HdnvJ2oufPf+yOH+jsfX91zSgi8LT+9OjIc9f/uv/YSvf/kVv/+z91xyQpwSgmccR2q1auVSQXzgNC9IEPaHnZ1fKTEOnh/98DWlJuY5EUTwvmL8diZ56nEUZ+fr6XRhGh65vxtYU0ZoQdt15v5+4Hd+6yd8/fOvOL5cUCewJjKV4D0Uk+Jx3hN9IKcZjzCOgcNhahXgwugiiH2u5Maw5aGmgpfCt9888bOvn4g7ePP6kfxyprpMXpXzknAiDNhZWnNmFw/EGBiiJQWWy4k4KA9+RGIkiPB8vvDJ4yt+8yc/ZHx/4uWSKM5T6kp0ymcPj+yGkd/7oy9JqhAHggetGV8tce89HMaJOjqmNwfuDo/Mx5Vf/PEvuXvYM+xGDvsH3nz2Yx4/+QQvYgwIoSAUolTOa+bhix9TLwvH998w7uAQ7jg/Jb55euaz3/kxf+3v/j3C9Ip3z5l5Vfb7kfTyHfX8hN8N3HGHjoF3373H5xPL8Re4UhkPBw6fvuaHP/qUu8OBd2/PSBVyWvjlV9/w9bu3tn3UwuPdgbrbcVFYkskSjuPIJWc0V+7u7yjBtqfLyxMheLxXHl49sDvck5Py/OR4eHVHnCaGh4F9W3+v4yP5fCIlZX/3gNOW1AqZRVeKFjR67j55JN6NzKeJWhI1zeTnZ+a68HiY8AKXlyPHAnePD5R04vztiXU5s/vxjhDuSOvKy/uvOL68R6jkdMH5QvSCLpmcjpxe3nO+GBAxRJvPWtVkMWslREF9oDjh/vUb9uOBy9OZJVeUCyVDCMnYAmgJ/2bqiBr4eYge15L9gqDrwiovxODwYYK8sKSFWgKlRJwfqCmQnDLsJgTPvGbuDjtqMsaxECdcUbwLHB4fmSWiwfP46p7l+YnLspBKIqUXqCbfW4pJt9R+PJbKEIJJOeSKdw06oA1UHgOCbvahlw610Mae0hgT8QzBzoNzrlsSLi2ZmhXnYdhHavHGQirapLh+PZvZmsY+tbHtdOm3xhzqm+RZr0jP+Yb1sSf5W3/5YJX1YGdvqY3ts505PQnVwU92fukGfmADX/TEjtvO6Q6UMNDBlfFz80WayeKc4IPgvG+y2JV1KdTck/9NFlDVskRi4OoYrJBhWWeKKjl3u8EkxUQ2GAqqdv7Uqsa+1TP4ziQROyinA/k2cNStrXg1B+yrjc1LMRvANVDSTaa6yUAZkrjbJDVD8IEYIlWMXep0WhrQgo0BCnqS7RZUrdtYS7eNEeIyokc46gW9U6L3nP/hzPnfuTCWARwsZ2PWM2Vu3cbu1qYyH+CWkefDtSDN8ZSfCfy2NMyUvbv33oplPrA37VqlKrRihdLerSd62WRYbp+DK8gCbgooZJPWsulg57Egm9ScPeeVSVSbjWz91cxkhY11pr/jB2CND8f+A4/hFvyyfWb71maH/7PATdv1qoEWOijEeYeW79uS7V7aWeGuIP4OYNJf+Uy/RwfLNTB8Y/GUm/gDzUf5EHjIVVlMbwBW26Vv50Tvs/4UstnbXkx+seRCWsvGuuoG8zOH6Jh9ana2ASK1Nj8Pd9MP9l6dkegK+O/QyP7W1+e0n7b/dl/4Zr+6voVc76E0ucn2XtLv0Rh35XqdWut1HLpvQvO7m3+1MTV9r7c6WA7aOmzfu06lKzvW9rybW9V9yC4PBZt8YZuYnaluGy0xubgOdLwySMl1T+sAtZseB9BHqP+9wrw8k+cTeVEckcDK3/itH3B8G1jPz8Yy5Ixl2HcgQ58Rwg17X+txZ7GSNWeGGHACy5opKgzDgALBCTVnzrnw+vGOu93I1988kZrkvDg7k7w4cslNzsnWw7KsjGPEB4+uxiK534/EwXO6LOaZutoYwGyf9moMKIox+hVXGMdhYxBCWwGTg1cPr9BcOZ0v21quN/NYGsOjd54iZTt/YvR2lhWLWZkEqIHfRO0M1GpyqEtJnM8ra00cDjtcUHTNgDGg2lqw+EepFSeZ6E0OPoaGepLKMDRgu7MCmBQq034C7zm3PrdIgdlc+3HidJxJpaDe48WYsWrJjVUaogsGrHSwuzsg6jidzsToLG4TAtO4Z9rv8WJA0sULJScoNnf9NDAe7lme31PywjB4dK2cThdkiHz2wx8w7e9ZMqyr7d+Bynp5IWuB4NgfdsyXhbVYYchLesJ7T5gmDvc7DvsdscloGytW5uXlaMopEDIAAQAASURBVLHPau/LEM2PbIWY3pnseM6ZIUbDBg+BvKYN8DLESBxHnHjWZQVR4jCC90gIeB+oGq3fUjKwfAgt/CdILeSaDUwdHfs7Y4JKWpGakFJIpyO7MTI6Kzpb14LsJpRCmk9IWvH3jnEcQSslz1zOJ4s91QIUKxKtUNJCTguaCqu/Slx2m0SL+bPOG8toGAamaUdNFv+zQsIG9mlsmM3A2tTMBPu+NFvd4l5ALZS8EAfwolRNrfDAikJDGMh5wYXAMJoMbwjemMUbG5p3xiwemkRoTsYU5bAC4DCM5GSyb91HuJ5pTZ5tK0rVTa6wnx5WHIedv+1s7eD0/v8N2C8OJ5Cy7ZJBGsNUbeeUWDGu1mLygP9sM+Bj+9h+7drh/YHdcffhD/+PwP8CePozvtkK/D+B/+Gf8XU/to/tY/v1ar8F/FvA/4omSXxtv/Ebv8Fnn332F/BQH9vH9rF9bH/12p8apPTq9T3rnLmcVmqxRGUYeqCikNPCfDmDBIY4kHOiZjb5KhetSqu2yNswRHywoIw4YbcbiTE2pqZKWnOjm4Y4BKIIl3lugffGtiJcqw6rJWpc8E3lTbYEh1W3A9705o0+PrOsK0N2SPC4YMAlualKtGQ84Ex2RxVOxxOX07nRXAv7aSQEYZoiKVdO5wVxMIwRDcq6ruQsxOgJwSMSOL7MiJg8Uc2FlHKrXrHKcIeAl62SpgcKjcXF2IiulZRWiT0M0ZLOzfGutbJeLhY0ds4qvKtSUuZ8POKDcPf6juVt5fK0sC6pyY91h9ibsy++BT2zBTOBdc04b7IHpWZErGqI2vq+ei7nzPHlPaiz4HAHR2hBapfQg66J4cRRHVZtVMo2vt0hN9CRfQ9NFjjzWNDLey7LpVEZezzK3d0edZXjZaGsimpCxRmIAgt++hDMIe8B0haY7pVWaKetF26D3yLS9OzzBqai0uTgTLrQ5oca7X+tRrtdDTjW6erhyrKjbSx7TuE2ILAlN+jh6/48dXvea5PtGW8TF11jvoOVagMT1Vw3CbuqNqev76vXa6pJ6SCWyDJQXEFLqxzeEhoWXK4NyNLnby1NDsWZZNQWP5fr+/RAt0ADPrFd2xg0bkLx14yGJXLUJCFyqZR5QauQ1sx8KSynC94pz3JmOZs8jzSa8Fo6AxYInuAjTjIheHJJzPMMGixp6vy2f7HNC7s3tVHFiyDYz7b8oXONKcgC0tISYR0gtL0PVo3scOTSWLN82MBYW/CoJ89a3xoArv0d2ZJntGTFLUiptqSe60xmPRDGTRV+ey8RvyXS7F6NUcn5awVfS5L5xjpmbEw2T73zSLCgP9v7NrY46XKI1+SGc64BTm1X+KM//CP+d//r/z2v7g68+vQTcnW8e/sd8/GF89v3TFJJWrlkZYjB5AG939gp+hZZiwEvCw5xBujJjQ5+jEbBf7rM3B1GfvOTT4g588e/fIvOiefnZ374xWe8fb9yevcOp45pipSqnNeFUuvG8lK1sOaVz14/8HDY4w/w6s0jP/jsDZfThSBPMAQul/MmO6nJgpxJlSXbPprWxDRGarExCqLEMfKTN498+/MveTpeyDWjyeZvETifT5ZMa8v+YTcyeAxUBayzUfzvxsko/jUzRHj1+ECeE+d1YZ6FP/jZ15wviVEVtyrvvvoWl2AfgzH2yWTr33vu9gNlTTipKIHBD8znBRcG9g97o/evBVLmdAks+YnH/chhEtZ55TRXqImH1w887ge++fo937w/cV4XQnT4MLQ9xBgQgxOiPxFOEw9F+I5viXHi8dVrqh/JJTLh+O6P/5j53Vse7w8GvFwTcTfx+PqRn7x6wzSO/Gf/buR3/8P3/N7v/RGaEvOq5Gnis7//tzl88hlh9wZ5VYglo/NKmT4jlzskRg4h8kUpfP2LX/D4cOBymZnnmXSZKWvm8s1XPP3xhctaWfHMlzd4idw/7rnbTbgY2E8DMQy4GI2BgIpXz9t3T0QfCPuJcf8pvkBejCEq58Td4Q7vA2vKDLuRKUaq92j05JLJayWVxLqccV5xfmBNiuiI8wYuu8wLKsqnX7zhfDwy74RQZ747nbicVn759TPf+GdyreSsDPs97nzBI1zWZPN1fcdyKaRVOT99zftvviKtZ0qeiV6JQUipMM8r1IQmyAJaioGyxCHVbJxhjNQsjGPk008/Zb+7o75xnI+J92/fMscjabk0IESTR2mA1FpWkEKMHihN3sGSDjXPnI8F7wZDDdVMTZ7CgJ8863IilYWYF9JqcsXrfESzgW6dGy2J4AM5Z47nE4hVj2eEcToYQ+Zpte9ooWrAtTN0Tck02BoAMOfCMA0MQWiEHPjgIRs7hHOREAQvt4yNrTJeII4eLY5UxOzr0MDjWUm1oKJMuwGksqTMUm4kdH/N2rQbm4ySJaKkSfDegoFyTu3nxpDVEyhbcrwDG8TA4eI665/1m/Nu8w1qKWy1FV7wBCsa+B6AZTszVLezuoNdbs/SzeYRA0tok8PxVVoi27Jqt2ASpbOpsAGV1mp2dwdix2A+VQgGNkupmDyvN/vZ5HktUWsSqo60JISeUDJgRWe56QCHZtTe+A3tncVsrQ9gLdKKAdpZDq0Pc2rPf5XVqaWS0ooTGKeBcqmkuZjESGmUHp3JiiuIwAoR7BFKqVtfHg/PfPnXfs4X//QLas3oUtB/CPm9suqFjR1MLKt4tdOviTx64k42uMcHScitiWz2u2D2e4yxsVrlBvAxf3AYAiq0PQe4Wqd0O1mMWvMKDuk9+oEt3W8t2yc6aLGzS9LGrtuOQksstsneAV/ddnLNhjaOOtjqLuT6KL9S9HDb+iLqduWtkd0m8IcuxocAmf41irE1XGXM9HsAwN5j13XbJcqlseB9wNrQ1405QNv6sUfTbc7o7TO373Z2mttXvJVZ42ZMPvjqbbe0fUBzbuNTybmaxJ8ojmTyRtJ9xnrdIxrQw3VAmZMma2v23vbsG7qm9UcDm5jtXm7mcH+Ptr+0/WT73sY01cexj/21iAJ08+Gvg8YH80PVEv/SFkwjvr1+juv3bntP2njZrbUreV7nUH/Q7YvXi3b22I3NTbo85RV82OdOZ2E2P97WwRVg1ffv9mQ31xUnrP+dxDf/5Bse/vhAjJ5ht+fp3ZmXb79G00rAijdy7X4aNzGhm2dve6iK2/YNqXb2BO8Q7yiqUDKH/cg+Rl5eTqwZlnlm/3jg/m7P+nSkVIje5sNaSov5cI37FCuym8aBYXKEELh/OFgcQTy5KhUDOItK89Os03rMQZvv5p2xvDhnsob3hx26rpwuK7mxkvVCnJzrVeJOrTjODdH2GLHCpJzYpOtKAxLtx9gYazNZ4fk4k2tBVIkqZiMXZXDewh3ijdVFrJgkhj4HFCfBmAhRwjA2GSvzB0pxnObEECrBG/tVXTNVLZ5xNw3kdeV0XliSsfJ479t5WCnJ5oh3gls9sSrrkgFhHCbwA7U6PJ40z7x8l5mGaHGPbFKw8bBnHEY+3e84v33PL9aZ0+mJl+cjtSqpwv3nnxD3e+LuACpMRkOI5sIQH9qk9sbk+vJizF1OWJfVWHVypSwLl/Wygd9SGhjihI+eMVgBXIyR4A0sQ2PE8QjzktBoIDcJnug9lMqaM6rVAEfO7Eg/RGrKxDhQHdt1alHIGVUDIymOjFjBjXOUaoVLwzggEllmIbgKaWVNmUtamZeEoMb8qcI+RsAK/zQXym4k5wDqycuF5fxijK01W0Ggt2mRc0W1MUlnhQZkN5Yx15jMG5M8jnGa2B8OUIVShPl8IblAycniXTe72BafUJP8c82e3PYorZS8oLXt4Q2EWYvD+Qi1kFIhaLRYYi3ULBRnha4+RDbWOoU1rRSttu8A4gMxjqgWYwSjok1W0sDLxvSHeJQWU3PG1mrMss0ecL4VS5gd6t11f3e2qW1AreCEWi1euRXStVhT8dX8jwEk2z7zsX1sf1nat7/xLf/of/CP+Nf/nX/dfnAG/rfAd3+BD/WxfWwf21/uFoF/C/7O4e/wt/7dv/XBrw6Hg8VqPraP7WP72D62f+H2pwYppXVlXRPLslogrAc1scB5Thagc0GavrgF710QarbkjY8BtGwV9CLeqni8JRUUSKWQcuV8XljnFS+BGIVhNFm2dSmWcLoBNLja2Esak0R1BlYSseBHCJH9bkSprL2apgWZShHqUkEqea0bfbBmC9gU7c6lVcOJV4iBzpzdq5RyKizLSi2FgGccA2HwvH/KpFwYhmDJrSb1obVSamrSUg64rTLuDD8t0MeVrr+2gG2vfuwV5iKCb6CqEKw6LOwmo50WYXfYMS8XtBTWuVr/hNlkhzw9EryxplSxan2htnix4H1oOBoBZ1TMgw/sdxPH04XznHBe2O8iLjjKagFK0zaHKrUxB1kgyoiTOjuWvbdz7loxKlf2GZPHsp85Jww+WJ+JUS8P04S2KsQpOu73A++OLzY/om8gEmP4qWpBMwSTBKNVkluE1irO3Pfj9fZMBjSzIJ62hMRVhu3KVoQqm3CZk402Puds1V7OADullu09DHQkG2CtB2htlWlLSlnipA/XbQJEtQdqWzKsV33axPowYVbVqsCqUrzrl93AMBZc7+PSAFKCVc+pEHxAcyG1PoWrTNwmodeTRViFVk+WifMWcLyRGbBAe2ebau/TqzpFcFi/49xN0Fi3eWE0+RUXBmKMLJcmq9UYxaxwzhgr8lpY5pUObKrJEjxVM6ItKUyxRCWuBcINIOfavFRpP6MFhquBC7UB0cS59n+rbLPPYHJ+zhgIiloyT9pkKy0A7gVUTS7Q0xKIwibFJlKI3jVQlj2nzWuTBepU7LWAw5JsW4JHdUso9LbJKkqXYzD24h7zbFPT/i4tgduC07Uay4XbiOyqIezU5rZztOTxFeR0ndQO1yqJaWMqtc3pmlnPR/7T//x3kbzy3/rX/jbfvV/56o9/SZDEp3c7YhCWeWWcRhKFSiXGuCVRLWhv/cHgWdeEB+53A0vKhGiggCgBl1dGhYdh4LisHPYToxO+/fY9y2Xls092vL+c0QDOVdal7QFUhsasVGpmGCP3rx4IovjqOC8rT89P1FIJo2d/v+du9JwvC/d3B2IwwMG8ZIo6clU7q7RyCYU4Ru7vIj/69Ae4XHk6XxgPA58Nd6S8sKx2XqacEefbnioM3hN8pWglhkgMRkXvpLGeVWW/i7x+c0fIcDpd+Pn7FzR6LvNCEiHgmHNGm7TfGCOH+x05JUqxcwwvhCGCQnCOecmkrLw/nRv4z2TnvJtBK6f7kR9+/orDFNu6iDgX+Pbbt7w7XkhaEKeUquR12di9ighJlEJlWIV0OfL42We8/uQNw+GOw3TgzZvPePXZD3HOc3p6oVK5f33P6+mA3D3w6s0bG6cl8+bxc0Y/sbjAoomUEyqRN5++4Ue/+WOG4ZFvvn6Pnmd09MwucIeH6PG7CS4z5fGe3W7g4W4ghtdMWpHLibqcOR7haT1zXhcIZ4Qd7jAx3k0Mw47ogkk4iFLSalXkyFbVXFuiTlCTyBXbQ9eUGcST1PbGl/nEuJuIMhCHSKRVFU+OKTqcN4nCyRvYARmsstzBFAOjD5T7HQPK6dt3zJcXEI8LgqRMqolyWXj67lv2e0uE5Evl/dc/5zy+p2Th7ddfcX56RyonclmZoicHm0e1JXqj85RccNn2CPGe0UeyM1nfUsFp5fL0Hodwd/8aEGJ8zfklcDkFimjb3zxBhafnF+b5mUpmFwOliAFzBEqqVOyMzqyEMOCcI63G9JJTJqsyTQM5RIpCCCNlrQb6EEcOlSqRQGR+fjZJjUFIaaY6wQ2RoUzMS0RZCXWg1kQpiWkYNhk3EUcUIaGsubAfJ0bx5KKs1YANjoA0ELdzUMWRVdlFb6D9qqRSiOJwFZY1cZLK6Ae8g6yVeVk57Ea8q3inlF9jJqVSTN6u5HK1szoYoYGaLWPOZh92GSMD1bjt3ISWhBGxIoW2/wcxEGypSk4C2cbCO2mSt5WSt2z6FUzRk/G12b4tUW1HvZ0nIRrDQ2nnWvdGtAolY/ZBY8QQR2M2sTPeed9suGtFe2eh6ZLNtba+aeyxoTE0zbMlnp1vTJg3hQxXwL1cwSp2A3u2D1Jy7ZVbt19BG40Bpxl8FQMZS0vaucZ2GmMglwy1UnKlOoE1N0AAaGOG7AAIxdgJNltPa2N1vAIRqhqY+P3vvOeTn35CSpX080p4a+daKdsL9cdvgAjdwBj9+t0/Ndmrzgql/W231j9qYCDrkFRyK2CwcQ1OGGJgXpcrgKIlDd3G5tPAGM3u6JJ0Gz7je/N/m699bGptAJPvAfhVt39vTywgOJzTjWGpA360o0o2x+X7b3zz7reTpKNA2ozQbRZdE5zdRtv+3vu6j3Gbi64xGm/31SuL0a/0vaPZ1kKpNNZgaRJxsL3c7RirftAdHwCsYBvH23t2ebW2WyC3YLfbP9snagMbifOI85TGjEuFzn6zSbOpUnLZ1tLVrdkEA60/tD9d791bEI7tQ9I2oCtDa2Vjymp70Acd2X7mxG9FIRs4p/e7bl2z+b1tWOzz6Cb7Y/ZW7w7d2ES0I0n6vNzep4PFbv3Qvi6vj9nn+4d+/XXN2u9c++yvMq51IJ/5Gm57vw87RLa+upXV235O5usff8nrP3jkYT/hx8jLy5GaV6bgGaPtu1IVCYGsZfOD5TpQgLGF5VKgKoN3pozt/MaSLKo41RanUMQLe29xhrfvX9jFgd0UuKwZH6VJsdfm3ylDHGyeiTBOo8XU2sE0Lwu+7TUhOIKLrKv5p0MMBpht557JOpmNlUohaGAcA9MQudsdePf8hATHfjAWqLUB8nJuNqcKTgx8VR3G5NLAKd53AIU174RxigTx7OvA0+lMwtzB3JiBS71CHbxYcR1Ki4NY9zrf40DXNZbWRMkFk34vCAYoCh4e7qZNXj5g5/+yrMxLA1+JrbjcGBn7PNp2AgGXVmNfOhyI44QPgd24ZzrcEYeBkgppXfExMEw7DnFg2O0ZYrRNbClEPxrbkhSyml8eY+D+4Z5pd0daK/NlNiZ0dQRvRYcagvnzy9DOWGM+DYCvBfJKTolLUFLJZFnx0tisoscPA8EFBGOlVy3Qeggntrbb2nMiZNVm8hhIiM4UBHamFyE4A3m7BpIpmnHBf7DOnbOYVFFjdvQxEJ3JEufoKfNKWmYosrHeaTUwzHKZ0egMpK+wXk5oKTgXOJ8urJczpTSQUo+HdAA27QxWpeYbZkuxdXkFQ1ZqSqzzzDjtCN4x6cAwepbLZYuXAARxpFRY1xmpxvTpBdJNEVVtMofa+myz09q+m9Nq50IO14O/KrlKY5muiA9IA0mV1aTsarW5LN7hq8d5T63O9vQqqFof+Jv140UomD3pEYKP7Xf9LHSbxdfPAaX5T9WizaUacNGJFV4kLcQQrHhKTI46hB5vqx/s5x/bx/br3tQpv/tv/C5/6//9t8xE+I+B/+LP84bc2NEf28f2sf2VbRG++59+xw9+7we46v6rP/+xfWwf28f2sf3Xbn9qkNLpZWaZUwumWOVF6tXjNYNaQrymwuV4QZ1u0gFVGrNMq14yGtpAiB4fAy4400mXSp6bHJUK0Qdi8AyjI0THbj+Q04WUizlXTpBg7BtaizFphFb95ex53NCSFlEYxz1jyaTVAEWoMQVM0RiIYgyElgRZ5pVlyaAWvLt1jqv2gLexBRxrsSCSc8TBnHijUY4Mw0ItyuUyU9Xoq8fJsVwKtQrQHPVatnuIs6CCJfVpyRGrBuyBea03QCa1AL9LlqBLa2K/25kshNaWnJsJQVDnrIJ9SRRVUs4gwu6wp5QTtVXaQcVFz6tXVrVXi+CHkVwXLpczosK02/F4t+fNJ3e8ez7z/v3MslxY1oWeVALo7CtenI0JtOBWo/FvQI/oHWMcwGW8B1eulfGgLDnhg2cgMniPUA3QUQreBYbBMa/JpJjIxBjxHqZBOJ8Tc9HG4GRsPrkWJEhjLerSY1cvw7Xnv6Vc9o0NqFbrP3tBNpmIzjDjO/CkJJy3SrZemVWL4tXkXMQJpdCCk73i/Cp3twWEhY1+v0e2P6Dm7yAPuQKler/1zzrnAUve1pbkRrVVK9atcq7Pt9vq687O1fvGpABtLpZSNukTq2TzH4z9bTNJslbxvSWWuAE2XWUibpNvPYDfWQqu1fxcQUQqzJfEsqZWRTfifUuOu/bMtZJLIcTAvK7ktaLFgjCmjWKBPkuIdbavsiUpHbS1CVqqyQ/czA/Btb2hNtCPBfZqHxO1qlsnjkLZAmoGzLFnsx/Y50uuLenq2rpslediwMZaCr5Jh/kWJFcHJVcD5wRjmMhrsntjwfuiulUJG7PYbQTKZAg9eQva932GnkxpwWnXA74toVdrT1LVrRpRFas+dxZEFEyGgBaEdy3/YUnKtv6kGp26Kk4TSKboQq4Ln7ze8fnDyPlSWQXuRuElm9xMZzDroVQRIQpMIRBorEcUxl2woGhJ7A6PPDy+4pM3B9487vnPnp7YTcJf/80vAMe3794z+YG3r44k53j9cMf94cDxfKZU69/dfkQqHJ+PqCpJ4XldWasyjgOBhJbK5eWE1EzJicsZ/H5gFz2uwO6wN8IXsUTHYS+c5gVU+Oqbr3nz+MDj3Y7dkgheEBdQdYze4XcOP0TWnFpS23M8H7ksiSEY0PduP7IbBy7nC8/PxlM7jgO5JI6XhU/e3POSM++eTzjvuMwzS0nEECkpk/LK8XgkhGDVmIsFgh4Hz8u7Z8IwMY07og+oV2MdWEE8OIlAZRgiNRcLzleTy0vV9n4JQkSNZaXYWOVcWEu1RekgNgBXLplUMvN8gnHgi08+Y//JF+w//xHBBxb3DXcPB3ZxZIgjfjcxxIGIR71nujsgw4jWniqsTapvz91+j4jHlcxlvpDyTKqKOEU0s64XysszLs3s3UpwiVAcnwyRi77j+PIeXxb+/m/+kLffnvjPv/yKb94vsDtw/9kn7O9fM7gdiDP7pSSqOJwLBB8aC6VHLgmnGLCyJXEuy2LV8yKkYnvtMAygleiFLIXz5YgGoTjBK+xiACkMu4k1Ze7uDsYiGRw1OHJx7A/3hGFEvEeK9IJsHJWcF1JyaFX8MAKZl+++JAw7TseF08uZZT4RByF6k7zqrInapHKCB6qwGwOuGFhk8FCXjJZKzSsxjCynJ2pZKcuZtRSmcce0E8b9I9O443S+GDtASsZOKXvm5Uhwgq+ehOKwyuVcr5K3CRpT54oTxflATYniCq5maq5c5MRyekYVxsOBqBNuGhmiAbN208i4GxhCYK6KxAEpO4bhjuSFYaigR5aCSVqKUPCkouymgYyyFEW9Z3RCcJPN+QFqOluSozR2UBFSacBVcZS0cjkV3DRhEFLISRl8U5zJwjyvTMNg571e7Zdfx5aW3GT/7FwpahXdV6nbds4UJWneEo2GR2h2IbChipwlTqWxUjjRBrq+gqGdcyYrHIydKaqnlrzZd10WowJU/RDkzZVVA2nSbj4QtLa9ysAhVU3OmgbWiAPQwMQll2vidQNU0FNJdi4WUM2bnJULvska2zryDZyUWzLZOYcPjpKKyfu1n3Xbjlsbbrtf+5fIhs+yj14ZbzRXSuvgKtWSV958ISdQSjbMgpcGeLeEeLcRY4ys1Rii+lXFGQuhYPgvFwK1McSBEEJkHCLD3lN/o3LhAk+QL5lud25TWlwDcX4PptABCs2+8c3mFUfzt679kWtBfl/w/4bHe7NpnFhy3+x5IdeC93Z2+cb+Gj2sqbYxa6B7NfZQETGpx9qZnG7sqi15qh/Yfa4BEm/BN+JacYfqZscYeKU2gJJch7cBMVxbGx9IbvW+2ezTPhd+NZty2zu33/nVudP6vEkCfpAMpbNjdmAN1znY3lvb31V78QIGeO73un141euzSAffXZ9Lbj7fv/V96IreroN2327ry83nr+Cd6/VyLk1G1+FDQKQxgTrzpGhrWZxQkzHTbhLiog04hvnrZjFvc2JjbG7/Ua0NnHXt5ZsV2QAV/c2UK2jrug5ux8fGovvzdoVa9YO9blubN1LeW3FN9yfltq/tZ7WUK3CH7suxjdF1JNie0103mg/Gqv9lWyvNp7hC3dr7Se8RuYLznGxzoDYJTbm5+u1MUSrZZZRi5wyFUhPlbuXeP1jxXHE4bwwrVW/84G5ItPcLjY2og9l8izvRAI7DMDBGz+vHA++fj4Byfz8xjZHLYr7A3TRQBaZpYBoGY1HtzOPeG7Cog3OAVCupVKpzjN7mXklAYzPXWslN+lYwqUwfAkVtDkT1rC1GtKaVsxj4so+5tsIKUUeM9t2K+ePGLFxY1wRiQN0YHEM0kMnlMm9nXvCe8/FCiMHe4WwyxLVJ2nZmxFqNmW4DH7f5MAyevCZyqcQ44p0j2DS/MkqLFRMFf8MShsXpsioQG/O2bsDaWq8FTaXPdR+2Yht7V/Nzxt2e4XBH3N8xTjvmy8wwjOx2E4LgQ0SCb3EeIcYBCWEDVxqTmOKHQIyRGAJlXSAXUs3kWreCp7ouZiunBR8cQ62oU3YhAgu5zKzLwuPdyCB7vno6cjy/JRVhOOyJ00Txo0n+OVvPpVYrKpS+VgQtwlLztfirAWm1MfaWasUD0mI5wRm4hlpNht07onNQtYGBmn89mH/ofIDGFo2q9VGX5RS97mZajYE0BASLbeTlQs2JWmGZEzkloGySx8bWZevSYj+Y7KdY0VeuxihkLJK0eBqgmfVyAm0y8g1cNE6REKIB4ErGqQHnYwyUbMBQL0KRGzFOC7TaziJlmzd939PGrt8Z5KpCySs9ID1Eix26ILhm44c4EoKtDZxHvRK87QVOKkJmzXZPLzRJRIjREYNnKQZMMgY3jzYQfqm5ScbZDtpBorVa3FFzpaZKQbYDqLbXkxaD6Xat2875X19/4mP72P6k9vLmha//2tccXx0pv1/g9Od4s38b+F8C45/jPT62j+1j+7VoOWZuymVQUY6vjty/u/8LfKqP7WP72D62vzrtTw1SKqtV2w1TYF4MrFR6pbCYNJi26mcJAR8C67rixOGCt8RiMpreoQXal2VGime3H4lDAOdxvXq4BbrHITDuA4qSk9uCVWCOV2lsR84LeNmcWBGHeDY6XEtWZEIQQhgZhpFlWXBiQKPLZcaJN/pq35xqka3aV70FI83hq6Z5Xq3iuyTINRGiZ5gi0TvWlKwyRprUWvBclhkJwi7uQCOXksyRlLIlPsyX7E49W7JJvVHHe++otVj/F5OL6uwnFZAWNFtYYIrgzaH1XvAOiIGX5WzJkMW1oLG2ZIdV7TvnGIZIHLzppHuHjw4fCznp9owxOB4fR37wwztefX7H118fef/2meWyslyysUSpsTo53yqyRQgBpilYshvX5CsgDJ48eigWnAwx0CuDSymsJTdmKMhpZYyOGBy7cSStmegiJSq73UipiUGE6TBxOESoFyor0VmgZRiESy5clsJlSZb0cDSK5Q9yO9fgrROjl0Zx0coKjcHGqv6QxqQjYKAfEHUG4vHOgm0hkJsUmjSpPpwj1yYPJ/a53jZWGKFJS9UPHw62Sn/XAs2dYeA2SP8B0Mp53GBrKbcKYRHf3uFajdvBQlfwE1ZJrAqusY75YJWNHWR0019X4E4Ls9dKbcmGft3++a2vb/59e02qtuSEJQmctwpnC1g3lqE2/4sqQmbaDUxxbAmQwuFu5NUnd5xezvziZ2/Ja9+z0pYocAGcKqV20IBvMjHXJFQP1tjYGh3/JltHk15r/7IEic1xEb8Fu3rF+S0g6zpeLfB1w/BggTp6lpaayyZ/o87AT1o6qIvbXByadUuCSEu09QpjoDEcXJ9FsIDYYTRWoufj2Vg5tMt0XOfaB/NUxOTktrG1ZKqIJc19qzDu96iloGLj55xrFbSygdKymsxJqJCztkp7IY4TP/rJjzg/n/n89UQh4c5w2O0sUadbKbit2cEzXxabIQIpw36M7PYDNZ3Zj54lJZ6OZz55c48fRi4vZ5SErx7vPdMwMQQLnj8Mns8PE59MA6dlZc3JxqQUHsZAHCOpCGl5pqTEj9888MlrxzpnUonM58LTZW4MOYVhjMTg8N5SJym3pFgNzKeZL796S9HK3/3bkTE69nFAnOLXym6ckNrkaRxMo9H/p7yyHxwmYRjwHsbo+eyTVzx5x/O7J757+4x3geP7E/jIJw/CQ4x8+uaeISy8SCWoMb2EEJDgkOgtGF+VdE4EF2AtDD6iGeLgiG3aem/7vBYlBktYTNETnFVlQzbK+1y4uzvY+e8qQ4xUV8kkgjiGMBirWPDEcaCoktfEy9MzXjyHV59zOq0s9T3vZzEZjDUxZyGGhbKu+Glg3I0chomDBLya5ERWJVERL8RpoiJczjPjEBmHgTIMBFWcrBbcFuHpq58iL7/kkzvH/Rp5Pr1wLisuRMpuYHGVu93IMM+Up2f2deUxzMznmfXr1faRcEd0I3YwWrZUy4UQrLI8r8LCbGC0JhPT5ZfW5YL3gWVeiDEwX1oyMizkpHz33bfsHg/ItKf6QFChLJmkics8M8aRqkpWQXyEmvEu4vAmVdYC9LWDMZsMiLG7ZFQLJSVynLkcZ9bzatJceGIM1FwscdBkNhAYdpGSM8k3hjdXIEDOyZJhtZDSgg+ees5oXplT4hSiyRgOI4N31LygWklNCkJrATypOFwtFLW1Q0tq+Co4VWpaDbRSElkLh/2eopZ0czjSspIEXFlsjxscaT2zO+zx0ZFOK8EHxiniSmUcPeO4Z3WK+k+o/g2jZl6mdzyfT3hWxmBMPblmXIjGmuYFCTsmV1mySWWFYWIYPKkKVIdX3xKQlWUuTDESNbPMhRylgVUCuZj8BZY3omTlfEl4aSx737MTfp1aLSbP4YIx0lW1M9wykVdsg7YElTjXpJut4tzmpDEG+LbX55wRNYCm9CSaoV9bMsySOSH6zebtyf0OlN/AxFtBfgdbtIeSzuRhLCniIDrbX0uTvq1FSV2qriXRKD3BbRd2rjEgtRfdmJqqnXNVK04NUOW9sRJK7WBzS4wae54QvAcculoST6WB7e2w3mz83hzQZepuQe3G4AkdLiDNKFLtoGLX0SkNxGjXXpoMnGHnrqAHaWe5NOYq85kaeNlbArnfUtTAdtPoediPfHr3wO554qvf/TlpyJRUDb3bgOPirnapqcmab2Q2itnL3gkaXGO/6Yxc3UY1BgQ3G0uK3ki8BO9tfoqxFcUYUC14gSEGhuhQMtC+g/k0qSi5y9x1Kajtfs2puAHpbMlNtPVN9wH7OrixfzdGW5sjePNxnTOATweJdIv71oa+zS1K/xlXf7a3q0UoWwJ6s+NvgRrc/BxbYx4xFo+N2cm1mdDt1273sr23gVU2q9fWdmODkptn6v3V+05ufnb7/NvPb7/Dh7Z1t5/763QWNHFuS8aiVlTQATr2WWOVCINHq4HwhyEw7gbSmnh5vmyS8Gi5Pox0+76Pl9vuqdsj9fH6kHH2mhi+8Y+a793jHB8O7vc/fTuwevPZPjfsDtyM2waKo//uukf17+u2T+j1nnIdg34b7ftP63/vxAC+64ph0mTboz6Qa6QzImF+zfeuWUrZesbdjDM3gKIOILydeyDUbExRtRO+qhCXkd2newIwjRk0MWdlatKPH8wysb2m5txAUeZvaYXdbqAkNpDQvCYDowST7DYGZ2/P7APB24MEYBc83kUDpBcrAKIqUYSxxcYuSyKvxvr05mHAibJm0OJYUjYAUDu3xiE0phQ1ebFqZ4/WysvLTEqZh0ezU8foDZypFZFgDC6NkdKLIBK2/UuDxSZM/lyYphFRY1o/LyvH04xTWJbE7rAjONhPBpxel4S4xqrXi7B8O88RarZBMf5uweOQqk3OqhD6eS69SKmxItLYcoUG9KpWwNFmiPPXoqBaFRccQftY+m1fScvKjLAPA7XCfFlZ8olwSZSU8TFQdDGAnrO4ZgyB0QXqarElFEo7g73zxpadCiV2SVsbf9GMihJcJC9n1tM7JilMPlKbvLMAEk1i3kXH6IRymfE5M0oBLei5kKikUAhusP2zzf9a6sakhhNUMu7mjLExlsYMZOvKO99Y8R2SC7mYzZ9KNhbaZnu5xiinau9V2jy3OFNjH+MmVsL1vOjMit3WqobMNpCSCnldN6CrM5p3ix2V0mzCa/yhqNmRWisS3MZ+eJVLBCikpbHeickkqghT319qaQC1srFfVjqozSw9j9t8Id/26SrtuYuxzht4u1KdFdXkLglbFQkmwea8ydIbEt7AjZ0VzYfQ/OIBN0YDJa0LspqvE7BYT6oVFddsDwXx+ODRWkmlgPN471qhnbTiNLOvc674GPGi1FzJztaXxV2M0c3IrewsW1NhCFYQ24H1H9vH9pel+ewZzyPxXcT9X92fr2Thd0DmI0jpY/vY/hvQpMqHP1DYP+//Yh7mY/vYPraP7a9g+1ODlGqTHRCakwvmfIkF0Z0zeu+8GhApr8kqMXolbQ8sO3PUTQvdgggp5RYIVkQ9giOnlaJKLRl1Ee99q+JqFc09KCtqFfXBAC2lNke2FoL3rRrW9Ne9d4xjpNbKPC8WSHETaU7kbBS/aU5YYaxs1VrOq0XDcg87G22xahdps+B4LhVdVnQwaYBlyVb1rwnvPbv9DhVttNOCeEuwaL0azkamYw66YTIMiAU9wGmBQe8bJb2Y9IU59E2iq8UQU7Lkca8WC07w0cH9nvfvj9RaGccIJbeETwv2t0BqWjI5BVyA+8fIboqsCZx6ojiid8QwULNjPi+8/+6F48tMzYW0FASrPAXosllggJl1nUnJWfV3FXaHO/Z3I2cpXC4no+6ONj1vq+GHGFAvnJelUVyLUTVXOJ8TwQeTTynC435kGia0wGE/oNoDa1ZJWAukeW1JLGdjKbIlpzptfg+iSq8kbyAuk8VoFPVVSSkhopZordf3BpMD6MTU3jljCSmdEczkPEqxxJtV+jfq+V4pil3XEq23yQaT0UM6N1ULYrdgjcWXexLKkhkxNhazlozRf4bfZgF3C/RaoM/+vlXpy1V67YOEBmyU/LUFqDvT0q0UwVW27fqM/TOuS7/RKrO3BMmV6ltLq/xrQXSrznS46Fqi1t7XmJ6U3X5ivx9xohzuA2tQqILW2ACUlWkfiXHgdEqsc25rLVhArlofGtimgQLbfLkmkxTwrRK+sWnl0jvTgJRaWde17ZvWL6XJtgXf2JCobX+zfvAtuFmapGO/b/AGfKJJC23Jx20Mu+SdJfN68ik0titVC9zBdRxFlRg8QZQQY5tD18SkcgW9ddaGjWVLpUkcfZgcuDKRea5AOm7epfVXH1+uEn2qTTqn0b3//JdvOYyBv/GjT2DN5ByoWokirdJRjFWpAf9UHcMQuMwzEiIuwrqsxAC//Rs/wKUTL88zwY+8fn3H3TcDJY3cP9wxaORcK2/fPYPC5w97/tt/7zc5jFNjcirMWYkS8GQe7kfCEPnmaeHdv/e7PJ8vLLkQwsSrz17jh4maCt89PyM+crcfjA1FrcIxlcRlreQCl7XyPC/k9yebx2kla7bzN5jkaPAeCcIYOsuFjX0UxyCRKEJV6480J959+0RaMyk7vn4+8e37lZIrn37ymoek1LIyoNwNnunVI3PNHM8nckr4wfH69R05rVxOK9oSxbUUXPD44pkvZ1L1BCcs62ogXR+MSaQWai1Mw9TkMi4m71qB45nUAJgdvFmrgY+dWlXv4e4AzrGkQlHBFeVu73lzH5ByZJCB+1HIlwXWmXKqyLCjVHiaj9SXmeiPPMTIHAPs70glUInglfs3n3KaM19/9R3TMJMbKxsKbggUCZQ1E8rMjz4buRvgLgwcdnt++vWJ96eF06nwg08eeHU38PbpzFfnE06EwzDgNSF+YT1+g8SF6c3nhLsd3gdK8ZRq0ny1FJaUcFWN5WddkZxQ56jtvKhqLFLLYoC02sAN4zii65mnXz6x3D1Q48jd/h5XKkPOnE8njnIkDiP7aWcMjstKSSvUBgJpgEe2NLvb5KeKs8p5qpLXFaEa04RCWi0JstbEMI0GWmjyHDl4RBzns1UWqyjOjf3EQrwn5QaipLAuM2WtFMnUEMiXMywL87IYAMFb8qK2wD8hMA4jcz0ZcBusQtwZCKGokKsDYkvqG6djzgliRDWDatvrBaFS8kpJF4oP1Dwz3N0TvHI+Hxl2E9O0Q/OMDAckOtw6k9aZ4gRdzwSU/SiklFBRhsFRq7CmhPdq4+aEopUwjuyG0c7jeUbrSm6JzjEGvHdorszLwm4IVi3dZB6H6HGYrMSyJHbDCDe2+K9r2/LSNziKzqoggHgaQ5EBMWqtLS/eUvHyq+yK0GQs1PVUvNksLRGmTf7FGCzNIuuV//Ycup1rHcghPXHfnk21Uots56gxG5UmjxHItRjgRCBrYxzZWAzNZ0FAawcZmG2gPfffkvfVMvKASdXkVpTQbdMQY0vMtrXqLLl/lee6/tHxAlTdwvSuy0u133Vw9QZzEOlwAVvytRojqDgcTUrWC+MYmecV1ZbA13q15TrYq9khazFp2GHyxgBVQdSSZL6xHDx8+Zrp6z0vv1xYf79Qs4H9tnG/gdOo9vfPjYkLqEIYBit8SdXWn3YwNu171gv+6NCvhPTDjGtAfcshVlJuEstqUidjNKY7FIZgkn1OIIQmJaTGYLmBY743t68T/jrX+zzuYLYNZKKdXaiB4r6XH9zYiprfZ/ZOO//FwFaWBK7NL5QuHLyNr/NXJhjZJgjbM13nwC3w5QqAqsXYKTrLp2vFER/e5YM3bn0vG1BpYybu/SN9nfQ12WzZ/jyqVxm3m/7cTqubz31w5174oVfWsttxkP4dERoNSkvUygdgPmorMBHzT4fBCrTi4KhO25puIA+UEE2+J63FpCXB2N60J4Jt0W99fDXcra/7O936Sr2wAZMGQ5VS2ju2d+k+mvlst73f/tslzGrfL8R81w58UrtPl4naLqLXvr1lwXXtzw+Yfq8dbGywYkAlJyZV1H/X94f+lNs+pC12tIGPbsB3/T9ycx/DjvWrNOvl+vKC8Mkv3hhurPuwqqS58PXbJ37w5pFpdNRiRXHR3xT7tP24A+2cd+ZftD1Qq5LWlcNhYhcFzZnjXBiHARV4OTqGMTKOA7jCy9Fs3+gdn7+55+FuR8nGnJgx+8ShxGBsR1mFn3/1juN5JpvmGuMwsNtHBGFZE2sujEM04M7GjGsS5x2UxWnhPK8GrCqVWjJSDOBhbnZn7W1szspmi3ts39fmt2mtrPNq1lIVlqUwr2ezo0IglhaRqJXowA+RQQNrTg1opgxjJHghrZlsXu/GVuOcgU6WtBhQqYFU/OYz13bOGsuZ0th0ayXlZONV1Qot/JWZvM+3GIcGAG7szgreKfsp4CXjNBH8gJeK1gzJGJgQAwjnNeGcJzqHLxWmiaoOVQNBh2FAQuR0ninVocUAObVaUYSK9TmlsI/C/RjwAn4YeHdOJkt/WhjGyH4X0Vp5XlayVqJzVFfxAVK6QC3IAMN+j8m3tXXcmI9qlx+lNLrGihSTaVXv23mTKDkbmCoYaBYEp5V0PqM5I7G9s2/yxKVQtBdJtJiVVrRJIaI02fXrurS9nS0+U2tjLap12/dFDTSnxRlTP8FiUe3cK9niuTkb8KzWSnKbpYM4my+dzb/k3O6piDdw01wKghiztv++1KSxbXocteS2uXTQdbMNG2i8A3rsbKxtnimU2pik+muZ6oCW1EDQFse1wo9KDCMFRyUY6IkmwYaSM4hWgqfhXpsMsNi7lFIsJo3FO5xz+GGw9Zrb/MXWRmlMgIjFHH073wSzj9V1eUsD3JfGgnUbp/7YPrZf+6bwm//4N/ni97/g5dsX5N+T/+rv/Iu0nwL/X+C//+d7m4/tY/vY/oJbhb/xH/yND6TeBMEX/xf4UB/bx/axfWx/tdqfGqSUW5SjrmkLbOIa8MU7k1co5kd2ySIRR5XaAv3gJWwVSCFGsuZWdR/JSVlLZr6szPNqzBBqskTlCHEwoE4I5siXnK4BLnolsrE+9GraWhSJwhgHcs6czwspZUqppNUCHqfjmZzLRm1cijbQzJ4SlDWt7A4DuWZOx9lo/NGtWrsWNQmhLkdFT9oLx+Pc/HFznCcd2E0TOSViNCd1XQ2oUxsFucWH3QYIq409x2mlaGbLa2wBu/5nS+aLSZoZT49Vqc/nxBAcfhcZ8Bx2gVqU03lmzSvd4fbB+k9EGYfI4W4EH5AIw87ABw7h9cM9P/jhay7rhe/ePfP+6cLb7555//60BQe9Cw3cVVpwoIMgaMCR3Bx8wWEAtNPpzLwkzpeVGAKtJs2erwVZnMOooC32RS6lUaJnvPcEEXytPL56ZLePPL8cyVVasL4wxZHohbdPZ+bFQELBGTX1vCarwvNWKe+cJaBccFsf13IN/nUwiROT27KEgvW7VU/a3OjVwQZw8a2Sy3K4pVrVnWuJBd2Sblegj9KTCEqMkeprYwBqIJDaI0B1C7RbMLEF+1rgp2qDs9VKXi3AZ3OpJ1UsaNtZk3qCyn7HFYzU/q0ixm4kxvDRZRgsMGNrtZZiAaL2/e16f0JVVr/+BoDxvlUCWvW9IBv1fXuAFry29ajUFsHxVg2aDeTlnclJnk8nnFR2+4lPP3tkmVdiHACHFjidnvnsB28oGX76h9+gs60iHwTnIjknnLqNTUqcSZS4FqxLqSUkW0Dcbb1ar8nU3odq86YnFDqrkgXJZKPNV7XPWpC8Nhpz2QJlVuWmpLXYfN0CabLR6ps0yjXvY1u367mIDWy1gVAF7vd7Do1hiA5+bIkNEUuQd8DelpxQAGM0UO3V/QYGuAXKdbBlZ1iSJt0ClqiUliQ0cvOWbBADbTonrCnzBz/9iv008pNP7oj1wqev75pEgW9V4bJNkxgDn396z9O7M/iA5kJdVh7GyPn5zGEvTLvI8+XCN7/4kjIvnC4zP/2jP8YVx0tOnGco6nl6mfny2/e8uX9A3IBEzxgT0QvH55mvvv6O85J4ngvneSHVzE9/8TXffgO7uMNHR5TKeUmoCOPg2U0D+2lkN43GWBcGxmHk8eB5OOyB7xgOnt/5jc+4E8B5zhWOx5UqnpIXpLTAf61IhVyU2LI26iMSBpuJpaBaebiPzHnguCoSlYcH4fEQyEXY48hLZlkKX75/z2GKJC+kmnh6d8R5jw8TRU+UdLE5jFCdAU00K7vGSlRSoZaWIHVCDBGOF0Qzl9TANaWQUt0kTtekhM6c0iTQpnEwUEGtaLFAupfK5XTm53/4hzgZuP/8B/gh4Ksx9JVc8C4jJRPKSikO8QNLLuRd5O6LH+B/9ofoJSNlZYoj93cP7OMOUWXJC8fzkVoyMShrqjzUhceDULXwzdOJU/AM3hFxrMHx5u6OfRz5z/7Jl/zBz9+yf3XHQ/Scjmde1gzLTHArl+Utp+ORT37yG9xPB6KPVhWcTI5skMQUHb4WzscXzpczNXjiYUd0EYdQfJNTmlcG7xmHiTiAGxznWtn7TAJ8cZSUyVXwaSUAUQriCj5GUl0pZaFLbXX2jYoxBQZogEqP9wHBo76QayEENSB4Y9ZUj7E8JkUwFi2tQl4Lg3ecl2KsYcE2n+iNYSCGQFpXS6x6QUtuQHCT2NNqSYXSE7Q+mCyJq5a7ICEuMPrGZuhABs80BoYYt+pjVatoHj3EMbDmQtRMGIx2c5p2AMQpsBth7xKkZ8IAnhP+sjDWhbheiBzZkbjkFSmOtCz4euEwFNQFSloZKYwhEMQSlz6tFKnsQmCcdrgYcU3ibcBRUiUVSwcOfiCgTIMQ3NCS48o0WJW1IyEoUwwEgSUZEMdTwClBfvWM/XVpdZMQrc18seS2iG9AiwaeFjYArIi7JvaFDZBhhQ/tjKmKR6jFAEI5V3IqV8bCCroWvHdbQlZbwtXOw5Yk61nwZmN3W0swu6SWdt3GXthlRlJKm/1S0c1OiDHSAdMhmgzzmvKWwNukV/XaNx0YYMlxoawme9ZZQgKYpHOtOGdgGdtrZUsA3tojG8SnMdWY7MuW1qPjqO3W3SbEfA2sb7pcqsn9eHy3dQeT7inVwBlol3pt/oA3oLA2hlsfGpACYRpH7u4mcskMf7Tj4T/+lLfPL7w8XVjPqSX9GgBDamN2uQJqNhvJXhTB2EvTmsgNyOecN0OnzZ3O5uAK1EtptqQ9U2lsvt0uEVWmaSIEx7quFO1MNpXQCkDWlJqtD6HZUgYOsHPP7Gd73k26DeyZ3JbBpYviGAORsYoIbLKD9UY+r96AkqTNUUvKcvUBWp8YCdY1Wdz/4htQqf98s8v/JLDRBuS7+WdL+GvVbTybLnWfWNu8+6D17/Krv9fv/+xmnauqJcBvwFMd0PLhQ/WvXv/epef7+rY1cPMy/YoNTHOzAsyGbWPlGltqWq0oJYbAfj82JpJWWFNhTQuHux21Ck/vTh2C0QCQBhxv9UgbCMe3BLExF3apu1vGtxuQ1Tb25mW4m56T5pttDFtyXY9br+nNe/c9IjTpwtJlmz68RkNXNbte6eyqrs+K7mTAFUyGgemnMeK2URU6IK0//7Zfdc9T2zWkf+IGdMS13+TmPrpdu13nZvx98rz55evbK2xT5XRe+M4f+cEnD0hVpsExxEBnq/rAXxVhvxup2ZOLFX/kNTMEwRdl1cxhN6CXldPRxr2UyvF4Jp3mBj4uKJ6SleN5JgRvTJYh4LTigtnOx+PKumbWaiyJFeWyLHz1zUrsNpkzvyoXxXtHCI4Ygu3P3kFjPI7es5tsz1Cn3N1PfHLY2XhLA/8XY87SbHOtdlazcj1zKjR/m82vi0HYTYF5rWRgGmh2iyeilGCxk8u6UqsxlJfaYjfONcZyKDVv+7A4W3O1KFW9AS9raeD3xkDnPKTSgEm5nZUd3GxzptTa9rM2j53JtMnNOUmLRFGV0/MRcWfiuGNHZRz3BlTWBtQVgZLMp9ZKrRbPiYc9fpxa7DLjEIY4MoSIF0euxjiacjYmGzGAysGbdNi8LqgqU/QmP4YwDJFpGJjPiS+/ewLnmYaI5syaMjUbuLbWleIuHKhM4+5q25QOXDYbwQM1JVIyf1FiIAQDuokUY08tGUmwi0Nbz0Lx4KXgpFz3YEBLNhBsrbiybudG1YJu8u1sOxfCFjPof/oWLxIsTuScmC/R5oFi8QZuWPY6exGNObuzE3lnvohJ/DWKUd/2D0PWWVwYtmKqWpWirs0AA35a4Z+B1rRgP3fSfFiLs9Rml5Rit3ANWCRtT3LB1p1rwZfoIHrF1RUvoM7h84yUYuyXKRMRak3XM6GsBClNEs6e3wXBmM9BcqZgBU5dbtBJl+Sz/d5C2rIVsYYWE9Nq682LEEIgkdFK+7eQpdsb1eKTv3qKf2wf269nU/it/+S3+Af/p3+Az/+SgAMr8PQv51Yf28f2sf3FtWEe+Bv//t/40B/52D62j+1j+9j+TNufGqTUqwNzvgaDfQt65pTRsjbZJaHWpjnfeLDFiQFneiJAhNyjg2KB7+PLhbVU1sUSb66Xn4hD1ZFWAyCE4FCHBTWcg2RBiJzTBo4QromHZU7kUAg+UHImp9ICFFjwKKtVOLqK1fdZFdL5fCGEwOvXD7z57BXn85ma37LOmeA8+30kqQGi0lpJrWrdQACWTOkJ81LMGc5zZa0rcXDs9oF5TpTVQCoxSkvWZgN1hND02NmSF9ocT2lOuzFO0AJJYnIInaq3VjJC1WxJEyJTVcZxoGrm7m6Pi4HLeUEQ1jUbO5D3BIT9fsfrN/e46DitZy7rwnxcqUvlkx+/ZtoHwn4PbuGbX77lfJ7R0qRWnPVhLcbK4LxRCfdKT0sQ2DgZiMsC5TlXVD0m6eA3QAVyUx1eLYngvQGtzuczwTv2+x2DF5wWnCho5u27swG71LHMK69fHXASeP+UWLNDa2I/jY11SCl5xVJcPbzVg1dCL8Hz7e9WTc8GxMMJwzBsAYragmIWMLY5rLWSawY1mSvX6Kmb/oZVX7U1UTvAo723iPVRpdxI8xkAzNug38Tpvxfw3QK/bBXPgpo0Tk+ObcG6Dha6BvA7CMUYiXpFWb1Jrtg8NXaL9gzQEla23ntv9nttiRrtce1rAOT2fr3fFRoTG1uQyQBaFjhXV4khIE06yTtPrQVRowwPITLEkd1+YL+PaB0ao1TERwM03b22ZMP792fwCr7JZQX7f0+sG/tUJVdjpYrBU3LGuUTOPYFqgDUDzgWmITInCzZ752/YqNiCiB8ExLc8z7VaD65Jql6tp+3zzhsoU7H8nXpsfMRk1pw0WveePGx7lXPOhlEsEGfjYXI1ydk88t6TuYIMnRMk9oSXIP0CCnaVujEmmUQPjVnqWuXvXLD53BgpfDBmNt9YMVRkS/yOIoQw4Z0yhIEsSqnC7//8LaNz/OTVSHEwxrFJAzXWLxzBK292O1xeOAyeOArzsfDFT74grSe+erlAjMTq7f7jjionvHNMfjBJysGTmzzM+8uZn375nuO5cDzOpKIojeFPPDULLkRwVg05ReHVXdubXMBHD0VZc+WSZvysvPaROS/U5zNOjKlOFGRwvHu+UEplfZn5L/7pz/js8Z7HVw+g8Ho3MowB9QNaC8MQ2e92CHC+zNzt99RlIRUgOKOKTysOx7oU/oP/6J/yh9+eGabI3/ubv8FPXr9iOV+4zGeW88yyFAYmnucF5ybECWtNuBjwceRpdLy8nNDijM1mCJzOM2kxENHgLInlXQMpNUmeec2kdMa5aDT3OMYh2nx1ilS1IKoIKSuXZeY8ryAwjr6dGUosjpwjx5eVkiEHh9+/4jC+MobCvLJcTtR15fCw4xD3vHt+hqJoWpmySYamtZJ9YXe/48eff879OHJ6fk96+w2n9y8sZSG26uA3j8JuV5lPK5oqL2va9rg4OEjK/+d3/wm/+/PvSEvlt6Py8GYPPlPLwpoquwliqNTLtyxfJu72j8hobJFalVwr3hsNv66J+vY9+XzmnDPD60d02tkeqjCFgegcQR0jAS2BOJ/YucyDtwRDOr6nOEeoI3VdsLz5yhD2eBcpkiiDI8TGJug9EsCjDBJxYWAahN00ctgfcH7g5fQC2SrCwxgsOV5t3eMGKhBjNJmNkvFB2Q+OkgfGdi/vjWWiqMf5YOPnO7BO2A2+JZRNTlVDbPufo2QDy+/GARcCEh0e4dP7Ea8K2YA6wzgwRGPKKwphiKCW4CiqnGazW+JuxLuAhLBJt4oTBhJeTFIjzxcua2EpmVUUHSNFDDwSnWdU2B18O4MjtQ5UkkmZqRA1AgMZAyvTk8dFqdkSRNTIZXCck9kHo/cMwZLkh50lwILz6Bi52xt4NTbG0DUb8MV7JbiwATV/LVtLDm2JeDqgwH7WmUrtfGtnfZdmagn1WnVjB7yaD0JVWNdEaQBIO9N6mt+uWYoaCKTZ2B1sTbF71FbV3wEgPSGbc8W5xl5Tq0l4dJZItCVU21kqHQgAiYRzjmka2R0mY/c5XSjZANixybrQbPvSWKM6WNz6x7PJ7mCsPaJWjR+iI2clNZbNDhQuTQrs6k/RDIStuwzKqlfG201urH1U6AlaNptD1DKeJoerDIMVoKTcikuqAcEsaSbEEJh2o50hJZFLMb8xw/5hIkTHoDt+57/466SXQkrJbkh/FunQjDYe9rMOMujgnj5BOthLEbyPm63Z33uDcyjo71Xc7whasfPRWZJ/Y+wF0Mo8JyoGgC65ME22v13mSmmFEDF0iWqaFOUVqv5BQLMDKzrIRDv4Y3tdkzRuP6t9DbTv9LfobEvWHbfsNR8utw2D097d0ZmW2v7a7PJbgM8tLqNLpvVntn68ZUPVrVNvYCfbeEhfYzemon54A25u0Oz9vq6uz9AdBpXvveAHL3vzxw14aWPKvRmDzbe8lVZWA2psbK7SGERVG6jMJIO898TgidGj+I0Z1RiqKsPOfjfPJnN1y4jkvMO1dahdVkhpMogO1+IGVp/Q+5nGSGQFDLkWYyL7oC/0g/HaQEM3e+SV5fQ6Bld8mWx9o22M+3zs20d/hz68Da60jVUfm2uNMc2/LptMYd9H+nXhCijqMYHr2r/Os6uc4HUvuGV0GuYBVzziIR3WD2QhX3/5hnHZ4b00cKHHSwBng3qeE2+fznx6P+HE/B4n1z2mA6rGGAiiZJTdEChlZbcb2U2Bl9PMmpVJGwg2hBb/obGKepyDUiGrFZO9nBeTBSvGoNrBHfa+Vu4i3grXnJhs8xgMaKPOfLtcMqkk1pIYNKKizOuynZU0RrBcjfGv5sLz0xHJhd00Gru5CLsxWAxJfdsHbV6n1WR5XfPpVJzJzNayTZ737458+faIlsqrhwNffPoaciGXzLouaIHBVYJ00HE0IK+A+EAplfliIHdBEO8parG1DmcL275p88w5K5Ba1ibZ3uIovjHYbKA6zIaqVUmpkLS0QrDuD5s9UNSRs8XiciloiKh6PA5cQUvGyPIKh/sDl9mkC12tuHUhOmF1SnWKD8LhsOOw27EuC6wL6XxmLhnfiu5GVwl7Z+Csav15anEdHAQfeP/+yFfvnjjNhcMUGQdBXAWMnU19xTuPaiafnqhpJvhgkrf0eIvFThyQLws1rXbGDgOkwfa3aoV5oYEiQ05IKzwJuhJdIArGXoTFdEtjenfiIAvRB5MZdiZlRl/jLebkwIoUnBCDseyGODSAWd3YGlXVxlqw2HHbp2Ir/lOE4AWtZm8H0wLESzXwmBPU+et+0p6pl44JxmQFHZxtgLwu96ptrQkBt6OxzOpWfIe2924xL2n7T2pFeS74dn64jTV6iwthoKRaoeSlMesrONcKNFqhGjAG2XZSY+gq2/sLFiOoUrf1oWJudGdSB6EGx5qMcT00UKOTNlY1bHtoDG6zN703O9rAfnWL+31sH9tfhjYdJ/7N//O/yXSa/kyvG2O0ffOf1f5vwP/oz/SWH9vH9rH9eTT95//67t0dYQ1UV3n59MXiOc1N/K1//Fvcvb/7l/KYH9vH9rF9bP9Nbf81QEpWUSHNuQ7BM0RLTqVcUHWUTYfKgn1OzZHtjDClWJCxpEzyDh+MNjullctlIS3mJPvgWzDYHE42Gl+7du1gJRWyyHZ9RJCqxNgC9NUcLc20ZIU5qcM4MA6enDPznFDNjZ7dIvauSZrUnClpIa+Jy2mGknl8GDjcHzg83vH+6Znn90fgttpbrXJXzNnFmaSIqtUJSRZwwvq0UlXJalX/PjgkGVVvzdUYI3DXAB6dSpgtGIrv1ZiNYaaKyVA1gIo2gn9xwjgF7h/3THcj3k+c55VUKk/LkZoNeDGOjmEMCJBy4jjP7NzIfEq8e3umJJPE+/rtW87zCQXWJVESVDy1SRFZEFkxyFromQ4QS4KKqzjqFhCtzWF3IuAV7QHdBt6wcLeBHXrSSVHWNTEOI7UWk2coyuiVYZyY18L5suKjI5fC5B1TEL55PvJ0rgRV7vYDYYisRZkbs4l3vlWceauYbgGMLbQdG4BHXUtKWdJKvLR5iiUpaqvckvZvbdWmXWZE1eRoBGzSWYV+yZWSOhNZ3QI8tSWXDIBULJAoV3akvj5umXp6cPS2iYQt8C6t+qx/+zbY2xmKOmCqS0Jo7eCWLXW3fX5jbtqC+1Zppg3g6Ghj3OLPNEkWA9+5D65hs76HRTr4qWmodHmTJsFmpPIZqeBcQHxlFdtLRIyuOqXC5bziQnunolCsotSPMO48794eefvle7R4Rhcoo10vjoFaC5ptnva+MVm/Qi4tISMWPKwKKp5qNddN5qpuW2NnlUm1ElqixOa6bglEk46oSAt20sBJrgWlO+uJqgWytUlvOifUXoHf5qhWY0XxOAqWHPcoRWpLIEa0JFtlbkBdIVfh5ZzBK3GK+AIUe3bne0DQgvgqFuTXNj+NOcsCoyYvo4iHIKPRqvsCGvEuU11FZUCCBfBDC7QVJwS1d4kVnES8X+zAclYxeDlnzvPKOO0Iu3vCMKK+WrKtJX0Gr7x6GJDseHwc2AVh+tQT9iPHs6c64cund1Bht9sbK0sLuk5hMOBh9ZyWmdlVYgzs9nvEBYo4/OSYhoOB2FRZU9kqyE0201NwTNOAtvGL0SpFhxzwXrk7TDgsSaGNsTB3Knylydh4vn535HicCV9+Z8AyVUteRIcPjnEI3O1GDuNITivTMDKKM3DGOOAcrOvCYTcxhJEwBApKumTSknFkHnaBqAOyn1AJ/ODHX/DV1+/ItfLDH3/O3at7ht2AOM+7b99zOS92tq3Kt8cTz6cjac4cl8x5nsmtYjeXjPiAj4FaK/NlICdI6hinSBwcOa/kVAyArJWaawOXVGpwhDiw5kqMFsxdc+Ll+YR6GIaRcDnz8OqOH376A8o88/JyJqcLc1rRS2EInjEr+XRCLmfmp3egxvzhY+SThz3P/+V/zs/OiR/94I7y7ZcMJXD36pH7/YHBJ+54wc8nal5Y18UAI86zlMq7p2fevnvm+fnM/eAYHiKfvznwuN8TxYN3hDBSgDklqijn99/A8zt88KyqzKuylGr7Zcm4UknLyul0QYeIe/d+S4SOY2Q/jkTvQZTYAJEv5wtuF3HpjBdYLysaAiKey9lkUnWMxLs7Soysc2bNCWFhWReKLIwhWPV4rYQAP3x1z91hx7Q7UAUGD/MSOZ/P7O488fHAGAI4R3XepEOysSFJjExjQBvIfZyCyRa0/bADCkpjb1iWhdDPEK0mmRMGijrWVHAVzi8vJAq7cSC348SpI0bPoBWSUhqAyhglW7KqSf8uBdZcSOuKtkRLFWdAkOpQMRkE74wxwBgPPbnCutr4XAYBKVQ83nmCv9mfu6xW10dRzP4TO22rNIDNDVDXiVC9EibBFWOMM4BWaJXcDu/Gti8oIYQmwekaKEwZp8HYAwWi+/VNKlgyxE5uVTbZW+VqS9eO8NmAHCYZZOcfG2OpSVLYWSnOWHRMfq1LXVnRwO21bv2JznaEdkBw+1X70zX/oxMcGVlr3c5838CXXRIx5yZPat++go9rpVbzNfKaoVamwRPHyDCOXJaZZTbAa/9+Z5a053DXudz6sDSmxLJ0+WmzOZ0Tm8eqGwii21PXHjB7w+Zsm4Stp4wt9wpEuJ1JImL+3xgJg83BlE3ibsmFWs1e8cG1RKVJt6w5E2KgpMp8Mbll54TT+ULKK1Idv7z7JZ989RmqXRY8bnKJHSHSehN6bb80to/2oFXV8NkifPb5pzgcX/7ilx02Q7e1pNnm+tftvUot+BCg+Ry1Kt6BD55cKikbqL/WSmgswudlZUmKhybt5cjVNSnBK7Dbd2mfnlxsj+u6adtBYR2s5G7AJBvqpvkTnXG3JYBr/w7991dp5s0P6QAc2o/pQK/OsuHM9NxAWXozU9o87JJBt+Ci/onNjr1ZWs2WuyLJrs/XoDfbVzoUsN9ft89ffZLtHfr62AAk/b7X/uqyxTfT4orS2d6qB53bdZq9Co3JUxvjqFMK3a+yLb1IBSMZbc9jl7N5ZTGI+bxwOc6oCl48NTR2rl6cotokldqabX7UJhW++dGwgfDo41CvfcZ13l/9ve5LtT7ZJLO5smphqXABXGmJdBpzkiqijrv3d0hpzCfdLwTO9yfylCkO1NdNvk7E2FBpTKq6MbYqKUP6qiCfOEIEtxor7eaPtr1y9zwxzAMdQGB+jvkTtVYevnwkJgMZOfENsGH7zPQ84VNEvfD8xTM//5tfUUJBqueLP/wRXtpZKt5iVAIV1+x+4TKv+Fe7Bj4bGgtavZnWJts6eNc+EwgaGzN45cCO9PLM6bJsspqdAyo08GN1xnRaMo2NN+C8JxfAmeyTa4UWWurGdJvbnlJVTHazsQB65xiib8rsuj1X7TKRzcawuSRtijuWtfDMheN5sVnQ1qd4sZiUt8KNMRqwW0SIzorHOnthLRbzGeLQQFNCWY1hsJbMGOzMCuOIOMfh/sDdnJjnld1+ZHfYEYbYJBFXlnk12Up1XNbEJa0WLyxqzEG1bjJeFd0Ko4prsZOqrYjLgV6ZNzuwsjaZOTs9fFMP0w2olFIm52Js2jmx98LD/QEHLPPaGKuaxZlXgjY535zI84Va87bMxnEkrDPf/PSPGPYDMa/IsjIOA+M4EbwQWHF1MZs0p41RuCqsKXN5uXC5zDiEw+S4O0SmGDF7RBmafZMbg3zNC+d1JnpPFZtnuYHB0YqrtUkTJgrgYmhxC4sdxBAI3m2ARO88OVeKKKqR6pwB6hUkBEoyIKX3jlIiBCs+SrUCiVoyuRZik/C1CVnZDSP7MRoTdQjG1OucyfRJYQy+PYeBiZS2Nzcgrc1/KLmYLNu2p7U9T69A89oYWU1OvsvUG3NqbiyCNZkPFIJHROjwYhE75814VwMvtYIwtvexHaKzAtdqbMJZhKaJvq2tXqhlRYxu831yUZID5/p+7vBytR+2W22H43W/pcfNGqi64337niUeXBVKVjIFJPz/2PuzYNuy6zwT+8Zs1lp7n/Y22WciM5EgCbABKImyJZClNsqlKlulJso25bJDZUc4osJR4Qc/OsJvDj84/OQ3P7gccjhcYTuqbJdKCofLqiqJpNlIJEGCIEEggUxke/P2p9l7r7Vm54cx59r7JiEJpAgRtM4EL+/Ns/dZ7WzGHP8//r+eo1R77apEKfpMWwwsgPd7G1rz6WTiTbtpP6BtXs2888V3+PF/+OMIqmS7Wq24vr7+Ax/zC1/4Aufn5/ziL/7id/+CAf6NP/Dhb9pN+2PfJAt+8ssatfy8CC9+60X87H/P7zx85SHbsy2hDxRbfs/n37Vl4OvADwEO/OSR/HvXp9sf3+b4yT+dTPT6V19ndbX6rp/d+fAO3a4j28w7P/4+P/ff/DXCEPDB8sX/4ovPWL3dtJt2027aTfvDb98zSSmEKm8sOjEbp4Cj5LJUk+zGnfpdU0k3NLCxbtzQRNo8CaXMdJ3FmMJ2NzLPQTkItixMdet0A66gMfS9WtY4SvXlVoKLGKs2C7UCq6SM6zxSqxEbyaLkTDd0DEcDw9oBBbnaMcZrVcCgWtdVhRgF0SzTODPPI6sjy8nJQD8MjGMghsK4ncmBmj/VRIAUQ85JN+o1cdh801NK7HZRkwAtcVIKOaj9U9d1BKnJGEoF61gW/ZwTKSm5S1VelChWGqgASJPAKaoi03c9q+GIaUpc33tCTEGT7kHVgHKCkjLTbiYEo8oxBsZNIE6aGBucZ87qZT9NM9M4UbIwdANGOpyBYJqaVU3sVaIKS+KlKuvkRkJCb6xkXH2vvdVKNGOS2i5o5veg/kkTaM5Y5hi1+tSIgs1GwFhShlTU1g8jbDYj6/MTxt3EbruF4jhad5wMljnA9XZHypqg8b1KpKeYmIP2HVmIMEKKLVld9lWaeguLz7smBKUSM6Qm1fJiGyelJYGqjV3K5AUgk4OEdO2DovLZtOSg+b3BUVnAzqqsU5OJzXqkfSc1mW6a/DULsam1w+8vYEolA7aEJ4fJ9P1F1PebF+uw0pLvDWhcEvIVONwjCL/n3HtFqPqbrWi82PqEMlSiFlktKYWI8Q2M1LlJpIDTRMx2M1JKYhh6TXKK4/pyg/eWMBWm0TDtor57WCqgDYZSotKOTEtuVnuQqjBlnNXfyVp9Js2uT4QxRlQwWy23rHMLWNX6dVOKKJQFDGrV1tDsUfQ/rXV1zLPncKEJMVufobOqzpJSJIaIFEs2moA9Gs6wThinEeJcFVxEk2MUTIaUDM56BgCbCUYtKUsWvBv0GkolEIqpYH9EOSZRq8WNKn4VEYz1WikuFnCqviMR7zt8tyZhyHSagEwTJCU+9s5ycnTMk+trcIJNDrVZjFztRp5erfn8y89xfmtAxOLcGjEeJIFkXn7xFm++eBfjDRdPrnnn7Q+5c37KF157no/fv8ejy0syiZOTjvXRmhQ0Gb8+WnG8PmKYJy6uArlEBmu5fXxE7yy73Y5kSq32NHhTwSRrSVHXS2OU+DmsOnLRSl4pSsrzrqsqKRDivIxfsVZJZtbgrK6Fru85OjmmswaH2ijkoso1c4qEUogzjGHmwhZ24w7vJgZpVmtGk97jBMbSOceTq121Qb3mH//m23zzW8d0pmApOO/x3pFy4eLpNdsw8/6jp9w6P+HkqKd3lu3VFdY5lZNPhicXlxhnOOpXOvcNRzijIMfQdaQYSSkxpsjjJ1c8enRNKZkcA/2wYug9uXeUpEng7RQpqdoiJqtqW96wGqyu39XdVTUMM+sjxxe/9CY/9MZbjI82fPtrvw1+4IXXPstwdESXO+IuM8UdhMRXv/KbPLj/CZvtJb5f89kf/hzrEPjab/8meTxlmCPT5cS6fxnKBtsL03zJk4unjBFKmrEmI9by9HLH9W4mmMRw7PBjYj10pGnkwW5ksxvZjDNJLHEqTFMiUIh5ojkR5ZAJWchi8KXZVOpcswkFSkLiVIGrpIQ57zEVBHTGQFMxcZYnfYczBpOUOBlCZJqq9aY3DKsB2/WEUJiIzNcTMU7gIjFBnDLzOHE0GO6eOjpfCHGHMZZjL9gkSpDrLN7q+hlKIZRalVznsWxytbdKiBimORLr2plzUVWBEKgRIzmpba0m/KMSA8qWEAsqgGOYxh3ZFOYpENo6YQzOO3oBSYlkhDwGKMIUdK3RpTMTM4SY90opgtoPZ0GKkk1tBVZy0fOqfWEmhKRKTINF9RQsuVlDtXUv5WrdahviXglZjXjcCDcaX6g9mKrH5QIhJaY5cL3Zqa2LKCGltHijxj3W6lyfc6FzDt95tRezluJ+cJMoOae6/sn+eVSicotdSowLQUPnxRpD5LyshZDRkEbnVEmZWOeZUhqBthJGnlFNUBWghQCSG1+hqiSlPdGoVMLNAnzBYslmrcV1DucUyZmnSMiTYmlFSSi6ZWokIVPB1IjzQtc7rPNK8kkQQ6rnPQD1Gnmhxm4NvIdS9xWH+4k9yUgr4i1Z8kEs1Rji+ldB+9sChompe5a8gF0Kju3jS2erXXfKzNe7qoBQqvUdSoypZOWUTF3zi1oMJ7UyscbWghcd59udxrf3X3rE7XefxyRL1/WsfmJFeC/A49Zz9knMFpXvY8gWrarl2fN37/Dyqy9zdXnJ/XsfLbEvlWhCgfKSwGuq9ppirPcsCwC4qNiWvepXCAk/dMQQCUEt+Ly3dM4oUStEpVMZwbiq9pFKk0M6uAU5sParP5HDcLgs4DroGBGaEq3uPyhCrWXQJ1J/T7eASxnBPkZv/aeNKw5P+OkEcVW7oYKrjTTSnnSpoHFTijggxSzkIvZ7kv3ZlzPrWZaOxqe+w9L/n722+t/tfK3vt68fPsw2vy+PtCyH2+/yD87Vnld956kWx7S7bnuZ9v0QAgW1/VP1D8M8BYw1ansaIQZVRitojkDqteVK/FDl57xcwtL3TJvv6rsRWd5IrETOUp+fOXje7ek2YmYpSkIatgNGDLcenOOjW165TZbzR2f7R9reSREFFUolMlld43IuzHYGW3h6+4q4Cviu4+Klp8wlkCOM277WkhgoFvO7PwKbHr4h+B8qvPD6O9x62mFinY/EqlVeKdhoMcku81NT5W59teRG3LF7guUBwXSzucX19WeY3+spP39LSStm5mn3BDm/x9Hqgq4fNF4yde2pa0Upme0UOfdrjk9WFbT3mGbjR6bznpfunuO9IWV48vCCECK37pxRUmS729CUXvrBEze6P3XOadGDNcSQGUuqykiOVd9R0khJLQNg6lpVlZQoy9xgKinWOUeMdX8vWuRkjapx5ZxIde+8rLHIQkIQY/Bdh+vUWsy0daH2o1iS2vTmTEh1PQX8AWkwlaKqOrnUfWYmVoL94yeXjOOMN0YL0kSVMxGNQ8cp4DaW9fVA33tVIw5B1y8RwKhKUamWms6AcZUsp2QvapyZc2EKge1mIqWoxT0UXadszT01O+LS1lYt4lHlHFEyhj2cnpVseH5+xKufuYvJwsX9x0zTyPDcGcP6GGsszJBI5JQYN1um3Y5pHBExHJ+ecnJ2zIeP3mM3Fo69JY4Bk3uMLZAKxhZ2uy0xVYIVSoQNMTPNkTkljDd0UhWhBaZxJObENMdKjmnqi5BJdf6oy01WgqWpBO9G0JlzU09MddxrgYCr6mEs/a2pfdd131R176Kk7RhrjqwSh6xzFLQAi5oP0OJKJdeloAqnQzew6jQnWFLBCRrfZSg1lnZG59q0EP7rfdV3k5L+fE/C1uvOZW/jZ6UqSdU+rfmwAhJVyagWd+WYSEWJ7QhqvV3HlTOCaXGVaLWW8qUKIolGtE8tB9fiJUp1E9DZuJF9gMVmV+Mf/Q/vNPecW1LnYF17Jh5A9hP1wbrYYkCpc2Vb0ZsFYkypqo+GhXC6XwPb+sZCojKi8WPbq9iFUX3TbtoPdssu87t/5nf5wv/3C7jgWB+tufWzt7j+uWv4Jktx7vfaPv/5z/PTP/3TXF1d8cu//MvLPvCZ9pPAn/1DuPibdtN+UFsBNzvOHpwhRXj9q6/Tb/vl427X8erXX90rsh783vpq/V2JPeN6JHaRe5+9x+Z8o6SgL71D8IkYOy4vntt/OTr4f/41eHwM/w+wfyXwE//aP+RH3juphQ3Ptn7bf1di1D/3NguUYrh377O8886X2P39Y9L/4lWNQezMN299i/zZ3+D27Q/xfgKW0Pmm3bSbdtNu2h9S+55JSiqdX2plsiXlzDRNiyVPKxYxtbSw2SikkJfksFoAQY6ZUO1TjDWLvZtaaKVl2yVJvbFzrQJslfa5FLx4nDeIk5oosczTyOB6oGiFfE3ULZL4BUqIkCJWLP3gmccJU8FsxC6Eos4ZVkOHtYbddqxWZYWrqx1Pns7sxkic58V2zRpDFQ9eKlsVcGmVKFrdW6rNBLUitz2nlmy1zuG8YxonVR3JCrrkUkkM9eGklDAu401flZ8iKatajTVWSQMpk0pkt9kRxmnxVI8p4TpXVYMKYlNNUjjmoEkfv+4pZEKOGANHJ5518uy2I+ujNZeXG8ZtwJQe71VxoBt6aKQwAU2PFAyaTEzE+g4tqpKlz6HkjPiCNxazXjNtr5mnsSrU1FeXs1ZWWU3COStEq1aD69VAKWmpgNpOc5XJhzkEVXOplbdH62Pi5Y6SAiFB0PwmzsJ6WIFU8Oj0mHGKbDc7VfNIuQKkOmS06j/vE9uak9HEYk0KWOdUih1UBcHaSuCBFDUhp7YhkOOhNUSzxir4TqXbSTWRJMvowDtfExwHRLyDP8Az4EAjFh0Sl/akJrNsvD59DIOpUpcNCMhLRVhLWDUwoh23JYMWQtUBwJpLrgQWfs91qjXeIYntsIKr1CRYxhmtIJ1CIpcmRS01GaPP2No91atQcN4xDJ5bt88Y1o5x3nH59BKS5enjDbutqreEMNWqVVfnMAVUDfIMabKgFcQpqT2RtYauU9n6VOecrJOiJvdr1iiXAinhrK22dKVWVlfYQWoCsc6nhqZcZVE1LU3c2s4u72yeg/Y567SyMkaMKMlBEHJUEH9wllXf80OffZ2Li43aX1mIzJhQGLLFu0jOM9tQ6IYVqEC5ku2SVqfefu4uIRQuLy7q+9L3m1H7LrFe36UFY3MF1QrOg8sGk8F6z8nZS7z2+guY0nNxnZgpRAmQZlKykAKfefU5/tSf+jzlN4SLRxvyPIFkUtgyUYimJ6Udg1eihBIDCpDw3nPr9ISzo2OMDaTJcZ0yx2Hi4skjnmy2ZOmAQMmRHHaQAjFMbLfXeKvJeFsrTcUInTOcnqyZQiAawbue1bBCspJAYi7MOauaQ1FlvpYwnEIkzoFxiohzWCxRhBiFECPd0C1qSq4SukopZDJd37FyDitK/JmmCesdcaJaYFp6bzk9OoaiRJVpnik5kULEOE+2hpAzMQemOFFiwBohSeE6zkxB7Va1/+iwmufEOEfu7yaOHl0wdB0lZVU9cgr0hzlW5RfB+14tXYHOWa06F6HzTklrYohBQDwpj5ACp6e3OTnqKUkVOZzvubrekRHGnZJijTP4zjH0HkHVpnLOmJQZp8gn737If/p3/q88d/clUoqMl0+49drLHD+6pOsHXjm/xVt37/L882ekbDk/O2Lw2lfGy2t++R/8I9565TaDDTy89wknQw8l8+Tjd7ifCrtxwkqhhEAWVUicQyCExDgH5hhV1cwIpIBFlBzovPaJlJiSjn2izqHUhDadVwKk71idn3Hn9h2wDms8w7BWsCgGckhcPnrE9eUlR0crOmf3wNIUiDkzl0jeRa53dfOcI0S1kd1MQYt7rdB5T2d7BUhMxASgqSEWiDkR4sw0Wi4vNjjfsdllppAI1d5XyRMRcsI5VWrL1T5ISXuFVIRQ1yidp7NWPotQklqf5JyxIrglva5J9ZSUgJFyIUQlVsegP/OdwxpDLJWEgpJzdiLkFBXgELVdiVHjShXFycTSrAzQ6mMjur6LUZBhsSFTa5MsoqBGUjDIGiEEsEbJS6rGsLdbMAUwum4uGhgCpV1rAxYrAEJukHI9a4E5JCWC2LSsgY3sb2i2maYCuKgV8zhV8ImFrPqD2BYwXpGYqniaahywB2CWFbz2yZzzYku1WA6logBRVkWkpphKjc8W0LGC7Y3csFe6rOtsVcdpwFKIWdVQi1qrLVdV9gnqkhNkJZFZZ1Qdg4ZU7e1EjLBU6WsRht73NEXKmAix7n0aQUloLsDPxnB8Wj1mfw97y9jlFqvqqq3jSGoM2Krt6z6l7u2kyGJTooSjvaJLI1KUjKow1Lm+iMYjxu4Vo8RofxYxSs4oojanUpScZqDrLWRLCBHfeaYpEOfM1WrLOMz0oVdg+k8L/BUo9wu8B3wLeAAkgTktIKOSDet7LYWTo2PefP113R+uerq+4/r6WsdXAVzBvAX86yCD8myyKEHSe0djrWWUMNheecp7wheic+g4xUqk0DmE+u5854GMsYLtPTFmQoi1aKENAiWWK3GlLOtBqSqutS6gvgdDU9bS6UOJBbpnPZjLaMSWAwjzgOAATTDoEGipSmY1nl/6XP17KUcouZJlDsZxbkSeekbZa1rwTN/9VDskYLUj1D1FWyn2e462P9gf+/Aa6nS6/LQVQPweZbQDMLsdT22AdE/X9nmNAAQs9tSyPwkUfZbOGVZDj+ssMQXG3YQUYbubiaFU4n6qqh5GSbBpTzhp/fUZUlGu76uSKkXq/rXOmIdzH7S9GjU3U/dzEezsOXl8wupqxen9M9bXayXs0OyQ25+yV7+tbW+TaRb1MKn7H2MKPnokCs9/MiAMdP4tjr/iuffJOak40m6FZLBFiceCKm5jPea3DZtv/2k4ecBzd9/F2S2+8/huYA5XlFb1VdXtEFWiau8rNxt0QZVmRSALKQ188OGfpMhbdG6gRDhpe7AYuZ5f5erqxzk72TAMd0He43rzHr3/Dn03L+o8SXRfZU1Z1tg2X4oU+r6j7zq1myqJLBByIc4jY4ik0uL2mZIjVKJGCDPJGgx2IYWq8pTQOUselLRlrMVZJZ/nSl4pOev+s46VQ/XiuSoH6htqSru6Zhmr5ym5veM2/nWt9M4hpeXmykJckKgj0BpDVwsMlPiRFztWHTSiKpSoSmCp5OMCVT1P17RcrTsbMT3GTAmB6zHgvV5DrjGQMVVdJmresF13QseEq7k21+7HCDFXZRqUpO9sx9FabftyymonnLKeF1UAlzrGnLM1b5P1HFl/Z44TH7z9Lpf3L1TpadzhOsdqPMfaC1ZDz61+xcnpGqyH3NF5LYrKKfP4kwd0RITIPM1sgtF8z3TNVdgyh6jzUVMdA2KKi6porHshEUMmaf7waletadtcpf1bqrKPtFnCGprMm+09q9Va81FGrZWPqIpsuRDGkXE31ryaqTncFmup+k5JdfxqIkqvOes1xlwQK1U9XpXTG7kzp0ij2jWVuFIyYQqMBWLWOKtZvel8qMfW/afRI0kjylbSDaqwu8zl0mJ72VujVqJNm+W0mLMqYFL77UKuLovVZmG//kjdQ7Tcaz6Ir5oaY4sxP004bmuUsJ+r6yUucUiuZC+h8X1rTCt7u7b2/9vv0o55ECcva1mLJRrbbjl1HXc5a+3WpwnPNa5sz1pzgrLYBeuPf3D3Ezftpn26PXrlEZd3L7n98W11HfifZfjfAF8Dfh74fwFfBbb1zz+lvfTSS/zMz/wM3ntOTk64ffs2Dx8+3H9hBfxl4H8FnHzfbuem3bQ/kuZmh995XvnmK9z+6Dav/9br3Pr4lhbzZfkXXheG7QBbeOtXP8c0rfn43lu8cfk877z7E5R5gCcvPfsL0dHWxfQfFt75j/828yvf4Md//B+yXl8uX+u6Ldb+PtmItW23p/zcz/0s7733o6oQeXCPM/Cb773JV3/zL3Hr1j26bscbb3yV1eqKz3zma6zXV3+gc960m3bTbtpNe7Z9zySllv9rubHSNliVANIqdJTsoBXwhZbUVTlg9U0v6vWeUeWjfW5SN2+5ZRwbAKaJllIKMWhiJKXMGCe8d/SrDme92j2gpBRvHc45QtLECqXgvacUASnMYWZVOqZpJpfM8fGa67KjZANFk7W+s6yPe5wD1w/sRss0ToSQdIOZC+pup8mzlvQBanVMAwz2yjNizAJGLcnZ+kCbLLVulg3DqtPqrrpBnKdESqLWP9mAqB99KvNBgqlWRdNE3KvtSEpEEhZDCCqNbkzGdQqyiXEUAd91SJzx3tCv4OyOZVgdsdvOTLvA44cbcrDYOTJOEyUb5jlinQcLearP28hCWks5LxV0Mc6M86yVcGJJMZGNQYqw7jq1NatVkrs5EKImQRRwK/SdpzMOcsZaWPUdmzQjxtBbYXV8zG6cmHYjDpV43YYR67Wnp6I2DN63KjzDOE+EHOh7TyHiRPDWa5JqChytjwlzUPn2mJCSlBSGJiyMMUsSG6oKBPqulVygFZSQCTGqOlQTl6IStJbksqqeCC053cgtewCuJUxVZSop0Cl6jpSySpXLvnJ5AR7aOG7YA3sikLV2D25RapWVkivyUn1IBS/0mM7axR6ikYoWhaklkSPPEBShVXnuE/+NHHWYILe2yWDn5Vz6gY5j4wO3T1esho73PnpEnrQyFDJWLMUKvjN0viOljLWCtTXBnQqPH15ifGZ17Dk/P2boO3y35eGDLdcXIzGZqi6gKgVhzgy9SvCnWG0gahWuwjeaHNJno2QlngncBXEOyahSCRXEMzpnOmfxrieXTAiBKcwKJFQlFWu1ilGBwkKpc9QiW47gXAX67b4vNdDSWqtgpYOT4xM+/+rn+Jkv/wTf+tZ3ePv9+8xhZCQiIfL6Cl5bQ4iRJ9uRkHo+njKXIjg8BUM0hZPTM66ud6yOE9O0peSEqUpODUSjJtNtaem5SGcyvfF0GDpnkThTpol1Cpw5uA6JezuVvo+p4IpBJgi7kc+9/jqffPSEB/fv45wnAUU82Th24zVpSkxpJMZdBQeEec688+EFu63DsuP66glX00x6esGwvsvgB3qn2byjoedo3eFcxHWOk/UayMwlUbz2w9FYQhHmqKTOoeuQomoYVtTajVQJJRTmmJimQF75Zd5PSYHVztX1MCpxQd+TqXOxZ1gNXG0jBSVfSKFxaQkxKokjZ+KcCHMk24xJ8HD7lGmeEGeZU8JKIYeISU0NQ99H169Voc0LfugZek8ymc1mZJqDqpAZSygG03uGwdMNPdMUQBzJCNMYK+AqUBzTbkbsDoA5FTrvsChhsJRmP2rp+yPGWQld4zzx4b0HHB8dKZHOO1ZdwknmaD0gJx6xZ4hTZS7vNGzZjTtySUxzYZpU0eHJJx/x9MF9bOc5X3dcPXBs718wzhMfH6/5dr8mGMMYYfN4wzRvKczE8Zq3v/JbjE/ucjSsYIYH5YnazsZIiIkYcgVpNU7JUVV0QkhMORKLWrTq5KXJfItwtFJCjRQh7QJTCmrJZYTOOZ0bSwXfcqFfDfS3z+mGE5x41kdHzHMgzoHt06dYf4VZ9Zy/+iK3zs8rsbknzol5jCCG3WarSlMpMY074jwSpsB6VgtbMSjRLGbyNBEpSAq6+oiQUZAp5cx2G/nkwTXFqAVqSJkx5GqpFauFVcR7i3eGxZKp2ViiVdQKQLRFqILFi+VrTfor6l2tTCFlJcspsVnn75CUABvGfAC66wwzVyWYJX1fiRSpZFX8rCSXInpNUpRMWDJKJq0gQarKhYWMcYLvvK6vWe15cYZIJqYGriWo62jOSc9DwwnanJwPCC6l2u5A81BtAKKIIRdZquvnmOrzKpUtsCcDq7KHxtG2lmqLMXWu+GcQBH5A2h6CqRD9QTxBU5OooJV+fkDSkmb7pqSikj914Go/Sou1FmDpADCroFjMUWMNpxZCrQellLCi1jaNoAJ1/a/UAlWZsLqvKYWu84Q5HvAzNCbwncMYVaGNMdfiirysC6Xsn0j90bLvWoAi0bgK9qBRm9MblNVss9oealE5sEoAEYEUG1mpwl+iMWYOaYkZn1W/aeO1zn1G/zsvpKqiBQQGpOgaZq1FUlLw00G/FpzriXUu3U0zJe3VrwoVFKug4ziMXJ9dUzzwGvBaofzXCiVZ5DHk+2q9IxjsTsg/lymT4KznlVdfxjhHIi2KliEn8t2CfA7kh8C9bjC9gaRzh3OWUIsdrLF47wkpEUNcVHZT0qINqmpiKUqWb+8hpkSuBGEabUCsklViwvuOLIkQUwVZ90puujY2VJFKPqqziLT32ohGreCgdZxn481nMMxGiIBnyA0L8aawjK8GVi77l0+RlfYknQNQvLA4ejcCzQKUNuC0jbvWn5dj1H2OkYOf7Y+179y1rx8SFJfn9Syo3P69v/39PrydSyffqr5WMqve4Z3j4mp7YMPdgF+LtVoAkOv8b+rcXTJsdxMyge903+6sxdjAdhuYa3y0qDOh78zVtWJv66jPfpnC2v21eX4pZir12qvyTdZCCYnC0UbVIm9/covV1Yr+akBGIVdihhJiLcbui8n0kR/0heX0ZiHR7M+/B8OVvFQYd6+yefLneOnFz5C2l9i8gRxZdxlyZiWF273BkhcCzy4Km3jKxdMztpefJZus8ZEYTk6+yfPP/zaUoGtpgVa80+Y4u+86CKpquNue89H7P8H19g7DccaUyHEpFClcxcKc8rJOjFenPH10wm7zJS6evomzP88rr7yNFLUIU1vXRAqBHJv6W7WZL8JmG3hodnSdJUxbphDZhMgqOrzxWKmKjdbQeaeqUzV/YY0QSyabshA7M5VkU1T9VmohoHGCSFVarkMg1/1CLr7aGTY7dlmOl3JeCGumdlQjRuezmA7eodR9qFnUCVsxYm7Fh06VxJuq9eKokZussanDtGCsQ6RQJGO8VyX0ojm5WAnhLTwuxmCtWmQW6p7IGEJM1NALQRUNc0gYqypNYpoN1kHUIII1npRVLSnnwmY7qt1rVaH0DgyF3hmssxwNak2sKjG6n9ZiQCUGhajvI4fAk8f3l/2a0LN78pQUExdWuPIdxlhCUcW07XYLZEqJbJ9e8EmcWK97JAu7rOqa5FQVRNvcrXdbaq60FC0QUDJOnc/anI2Ss5yv+ZaaI2vjQ5XFDM+o3onBrXpcN2DF4bzuRXPKpFAJx9bgVz1HR0dKGrN2ydHmXMjt/VdVsxTUys1nVUxsceyyBmaQkharwoJQqWx1zoyEkEmVjBtzru8uL/GeCEs+Y1kTlshMliWJg6nxYJbaf7OU5d/5gHgN+/ixlIIkQVouqtRcGEJiXzhb6oNeqD2yz2W1cHtfR1i0j7GPa5ee3cZ+rJ3dSFWFYom7Kj+TJV/Enix8GCUuZKn2LOoie/jUNC/TCF5tH8GeF9060PLv+jxacCKyV+i/aTftj0lrdrlXd664/8Z9JRR9uf75D4BrVFnptw9+6RHwvwaeqGXnl7/85ZrD36shYoAfA/5N4K+gCkrDv5x7umk37fvWsiqr3v7oNt2u482vvMntj29z++Pb9JseU74/6tylwHvv/Rg/93M/y2ZzRs7fKzQtXFy8wMXFC7z99k9hTFWKF/jCF36en/qpv4+16Z9zjGfbgwev8Y/+0c9y//4bPLuvfva8pVgeP34FgHv3PgcUfuqn/h5/+k///d/X+W7aTbtpN+2mfff2PZOUrBhsUzWqhJs9Yaluqg4S2y0JItaQcjrYvKYKwmiCjazZBmOEYg2Q9gSOUpjnWTeqpZBt9YpHlUOmcWYcZ/qh31cMh0ykEUX2xImUiioHDJZ+3TOFwhQm3agDxltIRiuBKoC0m2a6DCFH5qCbUu8dYU6UrBVC+91hlQ7Wm6cBBrnq+hqjQIDxluZdrr+ascbgbK1sIpFSUtUJhGmaAK32WiqlW5IXBQxSSXVDbyswJc/IkTYZelARByNCDLlWDau8c8ogZeaFl09A1EYFY9hsZy4vrjFURY+S2VxvlKDVvOJFE7jGWaQCQwpgarJiGmeVPj/qWa16ckg4oPNCRJN1fe9r8k4IMQCRrndQwVAqWDVPM94Uzo+PtPvKVgFhYDdu2YyRkqnPM+E7T5wDISXmUJijKjLZUvt0TQ6FGHCdB2uIKRG2Ue8lKvGl2YGcrHpu3bnDZhx5UlVkjHUVgFSgUSsBM6UkBcpAgc5Gjmr9JSVaNZNKsO8THJog1v6fq6KU67R/ltzsoWrSzrkDDOHTyeaa56/32fpDI0Y9Q06yqg6lCh/764rx8DqbXlitvqoJTkQWqxuKVm2mnOs91uuyNRmbK6eBRm6slaqyT9g3RSpjoOu7amsVMMbQW8tR77CScKY+K6OkNCMG4xx97+vYn/GdVavIWm05TTMuQz90jCXz+PGFqod1UiuigdQAHFUYKKgyVgxzBdbl4HmzjHFTk87WKkGgJYLJ0PsOK4bdONIq2zBqnSLsyT25JjGNqO1Xq6DV89na17QquylVNbJSS1CqFRtQpJIuVU3gRz/7o/z7/8P/MX/iyz/Cb/zqP+HXf/UbfPTwQx48fcxxDPzbf+JlPnteiLvE1bjj3vs7/u6vfJtfu9xyaZQIWowhP97QDWtOz1ZM4zW7zUYB+DJXTE3ns1aVaXJRO7dUcNbwpVdO+PIbL/DJowve3V7yxosv8BNv3uWb7z7k5z+8ZPZrShx59aXb3Lp1xm6e+ej+A7abDSHOrFcDJ0d3GI4tUgrro1NyKkSpS4q1mtDPluLX3H3+DKTnco5I2TGYgRhsBQaLKh3geboNjAm6znP71pmShrbXyJVaeIiBTCbERAgJrNrOTfNMSYHr651Wl4aZXO0PduNMij2+dxytV3inFl7rlSflqIpxBZzt6DrHPCkJNJbEdhrJOescNs30K0uc5wpWRELKxBiIKVKiEBhUsSFlTFE5f+8d0ntKs2vMSW0xTWQuEesEvFFbODGIcVhnVVkCSBS8c2Rj2c1BAYw0Vel4S8xK6hqMxzmD8RobXG8mVd4SXXdCTiCGzhiOe4fZaaI8RLi4ikzTFu8tW1stPHLGO7U0tc4h3mCtcDwMDH1HKhmssO57nnvuiNOTgbKdeXixYQ4gKXD56BNcBlLkg3sz34mwizAXy9CtCHFLyZGYE+Nu5jvv36dzliE5cBmsVTKLAd9iF+eYp0nXVZ+JJTLPiZwNIjOpCCkrEGoNdFQCnDWUkIhTIoljjhEkYUsEHJGME/BDT98PDN0RYj1zEYpxOCeM48TF1RWhBHbzCNeXDOsjjvqB1fkt7JSZxsDQD/RDx5HryKJAQnGOEiI25QqHKnh38eQpV9dPefLBPWJ4QC6zkt+A7NfI0RljN1Csgqrj9TUhFsKsYHvOSqKJZIIIOYWFrKOAqK3J8LoWViXBUoyuwUb7WohxScpbY7ClUFLBeLWmaQl11ztcp/eCURXLeQ4Ua5RYVdBYMlaypBEoDnGWEhMplWodpzZUtiqvlSxqlyIQSPv8fqkV5KaALXRdT9f3jNtRyR6i672Tik7mBg4pIKCxIpVsklF7TKm2wGVZP3KN4xZiDo24U1fohjodgMqpkWasErEUTFCiyQFL5geuNevodm8L4Yb9XqJZbQG6R0Ao1eYS9uqu9RfUYquB15WH0GyvGpCa2pqMvu/q/6cEtKAWw9a5ur+RapdSMFUtZom7iwKC1pkaMxS1miml2vyJKhM1JUnR/Y9FlWQrVrxXsKxqWIc5sf2733+gIVyzImG/HzgAkJY+pL+xEGkEjTlbrKLECVnO1VrbO5iFMLMnvS/33uJGRSHVeqXouG2AmJjE0UkHoqR6RJhDYprmap+r7y/MoQKMSrjbnYysN2vEiob4Igshp0ghuYS8ILjXLF6cFrIA5oeF8vfg7u4WJyfH2k9qHHL+4ilXf/kSPq9WECJCMQq+GoFV19GI1M1XOCQlp+q71v5jrSWjVkqpWgg1W8gWqzVrPuMaEUWVNaUIpL2CnqBKg6vVihAju2mquH97p42s10DRNv71ejRuVlvDZtGy1w5lTxw66EKp3g8UOFDNSHUOR1DCf6mKn4ekJGnw6MHYbMdqQGbrI9LAaZ4lDxWW97KAoxz8u91H25sc7GWW/EK9LmnzZHn2fvex8v6+hWqvVhVtpSrQGdF9YOcMRqp6R71eY6XucaTa1+u7tU0VFx3rOao6mHOGFAq77bh/R1YLHhrIvDwuqEU5jZFRCabtWbdnUG9EYP9+K1lhiANHD445+uiI9eWa1XZNV8nyS97DJKKJLOpyv6dj7B+S9iP9d1uHDxWuDkll1gohnnB98Zf50k98mZdeu8O9jz/i3kePuNpesRl3dCnx0tnAa3d6TIzMMTFPifc+uuJbT6/ZIgR9EMyzwTrPHH6co+PA2cnb+q5zIkuzLzrILdW1sCDE6Hly78f47K03ScPEZc7kHPjMi7cpMfD2J5eMXUcMgfW642hYIQKbcWQcr7h1fkUhs+p7rCk4owUDRqyqJx6Mg1Igi8MPPSdHnqclUnYat5VsyZX7peuxY46FKem77LqO9dAz5cjUiMfV9rwVtlH7Xc6JElW1Lqa8zCGNwJJiwnYab1srRKO5HJGDwkDncLXgJ4RIiIE5pkqOyUtM2IihOR+QUCohN6F7uFivDanznTXLuyhZiyyyaPyVpdDEjUvt23IQjuSDeSbWfGIphRJrfF0/d8ZSrOYKrTNIiHWdyfs1gboOWx3HJWih3hwLuUSc1TE9m1jV/ZT4YjQwrYrLan9NzUkYYzlaO/rB4wqMU2CctdgjzCPzNGGL7rE2VVkzFMGI01CzKFk5psT19Y5xnnDZ7mOSOtANpQou6lyUU6pxR6kqP23eLQuZR3Md4I2h85ofyDnp3roo0RhTLc/qbOiNYJ3Duw7BUmoOp8Wd4zwTUkSSJaRAJNPJQNcPSAKTIVrd/3au2R4eFFvmvJCfcymam51Gpu2G7cU1MYdlns5iMdaTfU8Qvfc4z1WltFTyVlPdgizlYOTrgrNYE7ac1EJk1zmu5WRSJf+3KcxKe4ZVRaiuR2o17BYiWCs8zEVVcVNONQDg4HhCKyrQ2E6/L005VdD5tC5sdYTVeVQLRdtUbOy+CCLFFrO040jNNzW70LaHqFN5XYRL+7CdouyfmRbw1e+xb2WZQ59t+7W4xXeN8HTTbtofn1ZM4cmLT7jz0R0tevq0qsq6/nke+OnDX0TJR/8BvPHgDe7evftMTv3Nn3yTj/6dj+C/DRzBzeC4aX+sW4HV1YqXv/Eyb3z1De58eIfzT87Vmq20Pd/3t11e3uW//C//++x2Z3/gY8zz6pn//vVf/29wevqQz3/+Fw+3kf/MNk0Dv/iLf5P799/8fZ/f2sD5+f3f9+/dtJt2027aTfvu7XsmKWkiwJBz1ORd3Ri2VHgpDQSIFbTS/zZSN7VZE3qaWNXNYkaa7nyV1ZYqebuXLW+ZjqaqVHKuSVS1MAopE8OuVmjlhTiTc9GkRT1GTomQJwyWTVRblEKpldNA1gSedZmjI00ab3eBaRTmORAqoceKnrdUsk8GlsxmkWVzZ43TjW4uavpQWCr4RcyifiSiFlHOaaVRESUkSYE4B+Y5YY2q/AyrnlJgmmZVZJJDCkNZKl2WyiPZV82mmMGBs65KK9eEozG4TkAsxycdYjNXlzvCJEzThpSEaZcoORDniBSnSa56263aS6xTsCImUk5LtbRa4VlSLkzjiPMWbz0mJ9aDmrv0x0f0vSWVqhrSOTrXq62f91xfaYKpGIMpMLiOzjoeX1yz200crQZ8J0jnmLJAUpISRZVGcrFMIRNzrXYStXQY1p6n22tNLgRBbGHdO87Ojkm5cHl5TcmZruuYp4wxlpOjjjBu2G52CFKtvTSJRgUkrHEKIOaAFKMgvjE458jOKiAl+kxKBYtb2sdUFQRNXufapypokKjWNgruWyMMXad2GfN8AGqwJ8+wf1cFqZX7ZQEOECiyr+q0xus4KqUqPpma8Kl9uCU2DpMbFZhKB+pILbHuoFYfqxoBAjlqkrSpGRjTrCbyQvbaJ8pVRr4bOnpnMKXQGUtnHPO8rYpTFXwj0Pc9IpbdbkJEKzVFDNOkiV0XA33Xs72amHbXWG/JxajiyG4iJ9Nuh66z+v7muDw342xVPNf5TO0KD8CRpAkoSk1DFb3/nBKmM3SuJ9pESFGl2nNNZlWVLOccwzCQYlNDaGO4gddtXLdxvgcNTCN5YdSWqhTEWKx1dJ3l5Rde5y/9xf8WX/gTP44/OeNLf/pnODm6y1d/57e52lywKpmtv+arH97j4YcPuP/wCVdXcH87VeJUUoWPDNMuYq63HJ+see7OLe6HkThnxDq8KYs6l62qdtZCZ4V+cBz7gRdOMy+e9hB6vvL+h9wbTlg9nPid79zn9q1zfvKHv8DZKvBDP/QCv/wr73CdLWVOdEx87q2X+FN/8k/Q50jOG64ePsIbyzjuCNkyRUNCyJKZ5oBd9eSuV4KjN/QmQHHMKTFnSKiinDWiVgxJcEYVfpwzmJShWv45BKkqeikVcph1PtdVhkRhfXysdmn+AjETYk2V0gfvHc6pkoUTIeS90kwICTXnU5BkCvNCQigZ5hjZTjtCjNVaUhXGogjRaBK8GLCOqjqkgHiOgSkErHcYK5UhkNhurykhgVdgq8TEOE6kXFV0opImJCcli+YIVIuFov22JJ2jO+/oxCHZapW4ZJwRYqrkAgQnRi3PcuTJkwty1MQ/KMAdS8SSCVktlmJIpO2sT8QKWI0RBucUwCiFYh1939OvLjheWboEV2NinmZwwhQtJSUoMzFVlSrfY/yaxMS43ZBiwfqO07M1824mlUyUwtnRCu+dEm6lYHIHYnBDhz1ZsdnuCKngsIQwVqDTMUW1B6VAFLgYd5ycrjjpOtYnK8x6YJwi86xrtzo1ZFXcsI67L7/Myy+/RikrIrCdJiRnQJP54zyDLeyuNlxdXnLruefB9lB6UoQnF5fYwYAXjp3l7OgY5zqM6Xj4+DHdqefs/AQvQhgjzz//Eue3TvmtX/o1/vGTX2TOkUwCKTz34l0++8OfR8jsQqIE2D69ZLe55vLigrQb8W6Fc5aYZpyFkJTIlmviXCphIsakFYkixFQtBY3gO43tml3CQq8wIJ2ta2apsUXE+k6tLktUtyREVZKcxpNGhGy11xnR/l5SoZSEcUJnPWkXNEZc5k2pVZe6vnrnadYkpWTyHCvAJbhOEAd+tWJl+mqHOBJSoLMWP/TVwiPruiyqNJVzxjolKoeYEMkLqTQ38N0ASa07mwJHA/eaLUgMCuaZ6sdorFWedq4qX1Lnsk+jDz9Aba8SmReA/tNwyb7oYa82dKge1MgHLXqq3I/9h1TQqAXl+yMvJJBF1lJPo2tyCnU/UZ453z7RVYsAcsFgmHOzMqyAV0OfqICiVwWWEBMxasyYS417OFDKbE9gQYiW01XwU6+9ERkUcmpKAwp2I9WyxUh7ahpTomMsxrIoJWnhw564tL87BaNbXLMQFBqqWahgKIviDkDJUu2Y9Si+s4iBaQqkKKQ0k7PU2Caoki55scGVGotuzrbcvX+3PvesIGy1ZWkxD+h8IEZUQawUulcM/Kxw+ksrvLdLjGasYf2lHv+TGj/Oc94HsAUtWjCG3TgTQ1T1P2PAGlIl1NsKYLf9joLlshBVnDEaS8a54bZILhpv9D2lFJ23i9pxxzjjjKH3lpQCIYRlHsipFdhQiVGm7q9z3UcWMrLEzbnuI0kLrXHf36UCpdWqb+lQdV+9t9ipiltVzbGtXwcDto2Eg17yXc4HCmpKU1Rqe1Pts2JaX219uM73RWrhAstAW8hKBz+TRr48JDEtRAf236kIa0HV+Urd67Rxo6Q9PbaVoiqYcaZ9LZdMSdWiEbVtBY2zReoYzgVjdU4PcyTFUMednjuGSiCr84C1NW/RLAPZ79Vp+4lnsult0OvPTAHJhuPHRzz30fPcubiDn5xaCFYF6pKh2P0UYozgnNP8y8Gx9vuHw/1Efa8iyxzxaYCirTsprnj66M/x6is/wXMvPofpB158+TP0fs0nDx5wFkYc0JvE4+2G6XrL1dU185y52KpNVUGtIHXZn2GOOO+4/8mPsuqv6fxHGFG1WH3V+r7Vzl4JxdYKlxdvAK9w1KuSz9XljourHZu7t3n66JqQEq+9cJuOxIsvnXLxeMPTEFifPuXs6Jc4On7Ai6+8zMmwJscdOUeYlWi9203EKIsNUkxJczjeEXRywZqMqQpZSUoTO6zLmtS9oI7fkII+1yZEJPWzqqSUS1Y1ZdGCr1yK2r91HXNsKmKmPgep77g+j7qelhY3JCUZtfcZq1qSdoBq/5RitZw6UECm3m89viqO6f1QVZCbNV4j64kpqsoTY81ZaN4ixplUi6xUyYqa/6gW5M8QEaUW5ygJylYSSCyaQ9N8Wx37zVIvF3LSNcYg1faTfc5QSxCr5ZyusyUkhEBT/DZGcNVOUAnGVosjOkOHFljMUePhVBUbS1PWquPH2I7iMnOosT9Cv+4xWfM/WcAZoe+1eGixKiuqrKjE/UiILYcHxpRFSTunOseJqDpujqyMp3hHL5p2CFWVZ5kHBYoY/DBwenqGtYM6TdccUkGI1ELNmqPYbreLgq4YD3VfGlPAiqXD4oyh6wbNq8yqGOy8ZT30hFnXdesdYTfyzjfeJu5ijWMTXec4vXWbo6M14zQh4ph3EzkGxnEkzAEjBuet5kxawV9uD7tU7WrNP1N7WilU8p0qN8JepY7at3N7KFbq9aj9LFKVy3XRqX1eqoJrPVcNwKTJG9U9m777pvytvyvS4tTDvB5oNqwS8po9K1UZ0WjeprOq+B9iXPItzlq10KWRidsYrBacC9m11FVZWphWOVFNCeogdq49QGOVsvSXNscXpO45WRSd/mWA1Tftpv1htWIKD15/wOd+7XO/v18U4EvA/xn6/2W/LzSpn3V/s4O/TRN4vGk37Y9dkyyYaHjpWy/xI7/0I7zyjVdYXa2UmPQvuW23J/yjf/S32O1O/1CPW4rlV37lr3J29oCXXnr7eyIqvfvuF/noo9/PfFGwNvLii9/mi1/8B3zmM1/7A1/vTbtpN+2m3bRn2/dMUipZs18qe1lBpJaIlFyTSG2zVjfuFUhMRatVNcEqSyJAjIDoRs85j3GCjUrSUMlqW+WdK2JT5aDV5qYBOOqx3RK0RgrFAlYI9XtaOanJiK5zdKue7TwT5oB3lqN1h/WRkjJdVX6y3uNCZrcZaRthqs0PmGp1VRNn9W8xjVzSnkVN6IuqbzjTyF2aSTCiCXIphpQK/dpXAhG0zJbzThOGYuiGgRADac57wIC8J3WJQJb671rRXdqGtajCQE3ENsn7EAJFhK5TYD5sEiYabt9egTU8/mTE4rBegXmSkI1UcKcSaVClDcGQY6ykjIJFE1g5RySrVYsphuyrHVJJnKwHTo4HUjHMZKjA9vZ6xBlLdzTg7FQVjeDYeYbecTHNXI2zKtT0Dr+yFGNZDTBvQ7VkMJQgDEeG3naM08RshFTUoieVhF/3+GzxMXIyaHIq5yqNnIXzow4/eK53Buc7nLNcb2aM86yPe66vt6RZqyKtNRSrQI0gEO1SGaUEL63m0gpmte6bk5KfKsyzT8ovVhz7qjcpQklJwVtrq70U7K43qrZU9km/ms9hsQVAKzSLeo4tIJ0gi7cwouo/pajFojhDiY0gg5ISakIjlwYPsiS0m11PKQWxdiErWWuX6kcRMN7UZ6xJkFRQ1ZdGujG1L9c5Jha1JfKu4G2Hl4LYQoj6jrSS0xCLYCSR4z5RHGNinmJVWlP5+DIXYirMUyaXGQH6fqAkTWZqktTROQ8UUq5qUSjgk9Gq16Z0RK3otNYsyeGseue1CtTqWIsJV63XDoHVBoxoFaVHMHhT7ZSgPlsLRUmSNAKSoKCgmEpa1HdErT7MWRNgxViG9Rl/9a//Nf7q3/w3OLlzqiSs9RF+WPPgkye88+63lcj0/Dlr/wKPvfCVx0+5/+iSbUzMDdhCQX0pGfLMdpOJp6ecnd8mjrPO87bgug5vBbGWtR/oB8vpcMTJ7VNcZ/jaz/88v/pb7/Bn/vyfgjs7fuG3vsk//No3iDly9uSCFDPrcMXvfrXngycbzt96g9OjI37sR9+k2J7ToxPe/867rLqCczBYz9XTLbODKQatoswGqprX/acTYZq1ctILYy6EkuhMwaZIkIIzUFIGAs6vEGewDvpuwPqRLmamstV1yopWMndCiHulrVzUgiwW8MMKa65wnSOLqhjkNCoNohhMEeYEAcFkJT9ticSYmObIFANzqLqAJYMTet+p4kxNsGMEWyvktUIYxAquAoQJRwgJEYsTi5D1/YnQOw92R86JaYoM6x47KUnHi4NZ+6CCJ4U8FwXbXLMAEKZRK937lcNbp/clhpIDc0gK1OWildfWLlXeve8W8p1D8FVdZ1ssWtQsy5hQyX0FzaeYmELCVfKk84kpBvJl4gEKWOYKmvTrAec7ilHAMAu8+pnXeP6FF8gBPvn4AY/v7chJa47V1stisfSdY7UecEaYc2EbI1POdBbKPFM6w52zE67HiTAFOttxtFphxfF0s+ViMxIbUVoKJ3ef4ws//gWm3ZZP3v+EXczk4zXWdjz56D5xGnEOorXEkJlCQJJDnMM7S5wSV1dXXF1eEnYjKQeepJF+3eHdixhMVckonN4+4s5zd7n7wh3eeuM1fvjlVzizno8+eML/5f/+d3nw5BFf/LEf4rNvvMY0JZ4+veTIeu5/8zu4vmcerxUIKIIfHN1RR98fcSodNhV45WV248zjTx7y5MEjLrfXeAPzPOLQ+CRbweWGIYuC/I38mpS87kwhktQGL2kMQVSVEpFCyJnOe0pSWzfrnBJGUyZMUaWpjVDIGKvAT45FGQWSkFJJ2aKEIMEQKfRdjxRhDDOd85SslhnWWJ1bc67WWLqIFqm2GoD3FkIki9Ct1tw6OycE4fGjC1VjtI5eCiVOjDGRRFj1HZKE3ZSgGCx6b7EUeq+xYCNgeNH4c6731huYgq45Q+dIsRCjoZhCNxgERyqmqgYoeTBmDgjQP6AtA1YQY2EhGCmp6BBkg6YetAfTC3uATz/QeBsOQEOzj7FA11AFopqCgIKdOedlTmrECYCSyv7Y9cgLTlaB+gYwWWcX601rjCpaGAXWbCM7WYPJhTCrHHlTY4wLOanF8/tMmhj2QNvy+f62m5pSPeAC5IIC/9abZY5th2hkdKGuVzkTUlzO29RhZUHPG9i5B5I5eEclp0qmqWTxaqFnVaiCNGckC+uVoxjDblPt2Yxoochyy5XsUvTvZqdXciZLRrcGsnxeUOtdjblVfaHEQn/mcD9lkK/uFXtyhnt3HxKr+oiRBuhBZy3OGcYYmaK+G2tVDbCI4IoWeGj30v2V84IVS0wKyJc6f1mXMd5hS8akTOeU/FSKFuSUDKvOYpxhjmYhGc0hqqJm5wjzTKn2c9KAU6n7zFwViCsLat/XWXhkzUp2sQdk/xlLP2uPvO5FpSrA1n3DNIdl73o4EBcCUdvv1gOXqjK2tLIHjmlFGNL2vgfdWWRRnTts8qmBX5av7wlLLXZe9gt133E4hlsMsUdfKwGjNNWvgsFiRdebVjBQyFDzFClmimlwrgLmzcpdGikoK0koxbxcbbNwbQB5m5PaWN8DxfoTfa+yJ1jUe5Vs6Dcdp5+csbpacfTkiGEasNlWG3VVT8XsFaX2t6vzq6AKZKXuUw4+3ecR2jNrP9o/vfZS9XMjFCz3PvkSr77yM/zIFz5Hv+oBsL7DOM92M/Lk6WOsNayGjlU3kKzhUZp5fHVFSJmw7E3bJWguI8XA5qrngw/+LJ/97C9ytLrQ/mlFiWUiOOOwVuidYxjWhPST0Dn+ydsfcvvWGf3pCddP7vPrX3+HVKKSeO/d48gLl08f0vX3eOmtb3HrBYtIYDcdc7w6IsbAdjtxvFYyf4mF7bgjlljVXdqjyoRYmEOApOtKohBLwaF/Up0XK7uw5lyUPWaNqn5bW6kMomoqImrLqYq/TX1bT5qKFoCYqv4jttm6adFILkqqSAVi2ZMkSlNNSoWY00JUyrVPWGdVkbJt7+oabGhzi87rts0bdk/QbOVxy1LRCg1TqepMSrBIuVpkYhb791JzUo1gKVIolcCaSsZEIVktwoP9MZVoVANLY2p+KWOMW47b5gpopNx9nq717MohVmJLLmp3XOdZYwshBNjVnGX9n3Wq9qUxra45w3rN+fkZxjjmKfD40eO6Z9oTTV1Wq3Dv1E5WbVWzEsgQTE7kAl0tYAlzwHhdO7xzzCEx1kJJqfkcYz1nzz1HP3RcPb1ingLRGnw/MG1H5t24iP9Ya5XAJJmc9B2CKpeO40gMgRwiU044b1ifHNOs5ckZ4+D05ATfee7evcP58RFn/UCaM9/89nt8dP8ez71wh1dfeZFYFYalFK4eX+J9B5OhVMs0aw3WG1zfs/YdThx5vQYxbDcbps3IdtwiQDYJISE5at4KFgLNfl0oi6qaqUpe1H0gqLpWSknHaIsBC1qY1/JBhWp3eqBEKG2ZrQncOkeautculIVgjtWYj6o4bmSf22prZCM9NRVxclUqNKbuiZLaoA8d1np2u1n7IHXey1qg0dZ85ywpQtOYk9LuTynAmjOQRfEy17Wx1nGQSi1kMEJo66FtFsqVoFrzBDm35eHTK/VNu2n/f9xehfA/CJT/qCyKswDv/NQ7NwSlm/bHqxUwyXD66JTPfPUz3P3wLs+/+zynj04x8dCr4V9uy9nwS7/01/ngg8/D9+Eattsz/vP//H/E3/gb/yG3b7+7FFR9t2Ztz/vvf1Gxlu+pFV555Xf58pf/E87P72FtXPZeN+2m3bSbdtP+xdv3bvdmbf1bE0RaeaMbsVwVVOyBBPShlZSxBmpir+XFWnJDrIKQzjm8V2JEq+zx3mNNlVUvKq8PWnEkdeN3mIRv59PrMVjvKaTl+qCwm2aC7mgpoGSVpNXO2ELOqrK0Hnr63jOPM6mq1rRqGSkHScqD84KSrcRooqElihthJBeQXFQFQlqFmyZcvbcMQ0fKme1mUnsqbxGvSZlIWqqvh2EghVStQg6fua0JlHY1NdG9bDKr9cpyL4LD6B/RqsS7z91lOB44v7vi2+/cI3x4xd27x9y+e8p33n3AuA3YnJFslBAFS+JE80a6YTdGGHeBGLRqMtcHMUeVTi5FCBmyGHa7mZgy3foU721VZShQInk3K5BdLc1cZygWlSE3mfNbx9w6P2HOgafXV4SQ8M7hOksqhd4IVtPCnJwM7EJQVaSshBxvhFVnGFZrQklcXu7op4hzlnXvOVodsZlnOq8WQ1kMUQJzyMj1iISERRMZuSZBjDGLrYixZukbmlxwQNKEW0o0HQDtJFq6nhoJpb3HmujU7mQwGMRqsnSe00KWK/uBoN+n4rVL1rr2t0rYMbUCS5qSddYaSmjJvproVJRFkzQL+a6CBAeDuaUUDw6wdERNqLePNDlqiibtW4JfSlGp+/r7BWj1zg1MlBwQCiEbVSBZ2I967/MctQreKBBWpOzt04zQeackBgtOtB/mmAnzXKvIq8VihjDHqiCnFltGbO3riUXtCYNIrYyu9kFGjEre1+dEFrXAKkoIsweVObaCDKZaU4qpygoUrLc4Y5mDyqUjFttVu7eUKwBhkWwWufVEIqPJNNesXsRz+9bLfPkv/gVu3V0jZHISHj26ZrPd8fobzxPzjnfe+YDf/J33dAxaiG5FkA25Jtu1YL2lCE21RjJcXF5z986JAuu24KTDiMWSQXoSaku2myLx/oZM5PGm8GAb4OsfMKzXvPz5V9nOE9tt4PLimn/y7be5fXzGeex49dVX+cKPvcXq+BYpJ37ta9/k+uIxu8un3Lvccby2vHQHPvPDnyWVyNOn36R3Tud4KSREiTUz7Ea9li5GXEngHVhPwtA5y7rXBcoawzD0DF6rF413hO0OjNANPZ3tkGlW8KomLeeUEGvZjCNzVKUYSmEcR6Yjj+08nbWklAkxs93NTCmTiqILOUd8p9Xg1ju8LfiYKbK3Ac0p1jGsleQIGGfq2qx/h5AJc5XMp+C8I+VUk551HHSGGIJmTavqw3oY2E4zhUgIqnojonZEKUacU+se79VmYrsZsV1VqLGGUiLzlKqSnE4NnVNiElaV1JztlPRo9/OVWEM/9OSSFUTJZbGQMEgFVBTkUUqDguZagaprTUqaHG/J+H6w+jx9h3eeccxst4kYAk+ePObpo0s2l1tSDAo4pMg47jg/PqK3hhAi19vANFWFugr4H3uPlEKcM7Y3nKwHdjlh+lUFAwqr1YqYMpugMcDaWyRPbMYrvOvpb5/iEJJ1CB554QWmeYeTgliPGMNu2mJLwee+vtdCZwQvgi3VKrQYzs9OuX1+gvgOA1Vdz3Gnd8h2x4fvvk+6Ginbme98/T12l9ds4o5//Gtf453372HF8ejxJVcXF3z87fcBpxXslZFxudnw4PEj1keJ3h3RiaFbr7CD5cXXX6fv19iHDygxMJQ1eR6ZslFCzbij73yt8p5U9TLXtHqpwH+1cNKqZrXaKFltIUqmKiwpidUZtX0LU1KLp0XRU5PpJSmZ1YquQzlBQgEOi8F7R0o6BoZerRalzuk5zRinFi+pgnidtRrjClhvlcBY48gYI5aC9YZ+dYRxK1LMzNPEvL3CdAVbCjaq+mc1QiWluIABqdr+OmOq0mgBpRwiWQGTfujIWa2nclIwTmzBOo/rPN46ximQgs513lvSpGBG49n8IDap6qNGZFHjaZZljYD7TABR/5bmn/HsT/XvBrDX+dsYqXG79i/bCiMoDTsGtLBgUWIqTWdywYfreqqKVc0Gp30hxrSoOyiolSnZqsqFaaopGWc82EIyUuN2WQDsFr9RSViHd6dE77Korxwm8g5JCY3A0Y6rc60WiYQQFYw2SqBXJZ5EU17yzlXFsL2aBu1YHFKjGsFrD/IuliftdyowZhRDZn10hPOWYe158vSazdXEet2xWvc8fbolhoSpBI09Bnb4Pg3OaRyo1pKH7043VWKaUoce5tH5E57PM52sapwrBKtEkhKUoGRMA3tlWb9FYBi87sPITNNEyhrPNcsU24gyFLrOVeslqvKo9hNndB+YKExTwKaMFYN3Fu87QoqqMGmVCJWjgvDMlfTQ4NcDgkuuKmmffj9ijCrwVpUQDt6YLrRVh6zul/UdHXSg+qClKkU0Symp6+7h+Zaxthxg/7tC2w/vFc2W3lrfy/Lvg0Txfhwc7lPaL3+X1Hn9gZEGFut3m71ia2qhyKLit5Bs2q3n3Ax0SFUhJS+knf1TXGIRkcap0QKF1h+UhahFUChhTdVd8mI3n1IleleSgcZUaZ9DqPOTabudbOk2HS9+8CKr64H1kyMkytLnjTGLmrRIIyaapX/onmT/fFNVThGj82ID5jGtWKl1hXqcIst+olFdK+2MkuHBg7fY7X6EV998g2Htl59vdxMhRM7Oj8gl8OTJJbvdtZJcrDBjyWL382XR4x/2BWN0nM/zEbvtqzx/N2mci8OI7nn0urPGA1jCuGW7W3MdIVztOMZyfOeMmDJzCMxz5OHVJZfOcbx2/MkffZfX3+zwq4HT41O+89HHaqs2b9le75gny9m6w/Udt5+7zcf3Hmgxmakq3fVRGVGbp1iJM7rfMYi1pGKwptBX6+OWH+s6S0p1nxurGpGzuh+2VemornG5qmXnlKoKXqz9Ly0EJVNJvqXAFPTnSTfzywLRiEbGGp2/ajGGFsTlZQtfhRn3Y/qgf+7nhUIjRuaUqZwjsKhaZVWelFJt4cQRUlPxKpRilnugWs43tS8l2Wv8r45kzUK1kSeqmnAtEpRKfGpz/CGh11hVfk+VzLlXrjmwDUT33rmUxZ5yCSJE7yUmHQHGSC2kqgqElWSSc2YOM2HeMu1mUi3SoxRiiAydp+u6aqNX2O6Cfl7HnbOqDBYrUdhbQbwqY1rrKnnE0nkoBKpOM8qVn/DZ4foOnNNcj7EMqxXWOQoaC0vXEWPQWLdYSJqjUnHaGjfUPuOcZ71WJUJjhWKgEzjymn8brzc8mma2zrO92PL08RMkw+Mnl2T5ACuGGDPb3Y7xektIBVmyOBovbccdxnWIcSTRfauIsDo6pvMD5VKV73UPmJmZcAsZKWs+JiVKilq0V+dPRA6mb1l+hgi5Lkoth4uAmEJTxStB82C2Et+WdaRKiJtK6M2Umk/VGEun5IyzbtnDKElYi9RELM3+T4wsxG+1dGzjrfZPY1WV0TsGHF2n/SuGWed9sQshS1reIZclB0HZq5Zrp68Fhm2NRfdXYnWvRFUxbWtIU/JuNvWl1MK7RZ3tpt20f4WawAdf+IDQB7qxW348r+Y/wou6aTfte282WM7un/FjP/djnN8754V3X8DN7o+MlHTYcjb85m/+Rd5++6fg+3Y9wnZ7zkcf/SRvvXVV80ffvZUinJ5+74V9XTfy5S//x9y9++EfxoXetJt2027aTftU+55JSiJ7eW61LIjLBroRhZpsbLNxOpQTxzQ7KVOTIRaxhq5X+zARwVuLsx1Tre4pxmKcqguJcXin0vlGDDtGchZCyAfJdf3TriWHsFhQ7ZO9WoFrnEARwpx4+mSDMYV+1eH7DmO0ysgaw/HxiouLTU00qme45ArUdqoQownyotdZKhkBoKhKzlLdTMYUrVJrVlFi1W7Oe62aCruRHAPJCMOqx3aw2404b8gpUjJ4W23n6vNOqRG1NAFj3f6znBSErjlMTZLqW4IKsg3HA2fnAy+/fM7pySlhTtjS8/TBSA5SxZIKJ6cnxHCJyZHeDWyuJgUpiuhxrSrgWGspKeKtoe80KT+HuGxydfPrlBhmHNfXIyKefiiUmFmvB+bdijBPjLtpsWxxxkJnmHIihEjfO45POq63G3COrvMYcfRe6/7ClHDOEOeAcULIkTnsyFmwzrPdTTjfcbw2pFx4ehlxxlFQCwkD7LY7ppIx1nK06tnMIzEFtQVDE36ZRMlaXZ0qkcxaSyZrqv/AUiHTaov1HFKr/Fr/Nc4RxSi4mlU9ipTIaFVZKZaSDWJUCUWyIca0VMg3VaNcVKnLyB7IbSlhUxNjUlUo2nvJpWClKiPVBIhUjfeWAFxIVeRFqYea5BTb6h5ros88C7Qs9ymahFomIadEgyalT9mTtJpiQkqpEpiUDLKbCqEUjHe4DpVJPwQ6akV/y742cGuWRDGFYfAKMs2JWIRpmhcgqpSigLepFdbNKqMqFLXWEv3OOkKMtCSQzm2WEJRgp7YulVEiaoEm0ualRjCx++o7o2CHd12tHq4Wjy3LVkq1ryhYEysoL1AsxipBxIvOQ0EcRTyr4wEsjAnyLvPONx7wS7/8K7zzzm+y2T7Sa+sGbC5M86QKX12PH1bM2x2UhJQqMS5ATcQV9Ps59Lz26gv8yA+9gfeeJJY4J1I2OJ/pO09nDcedo7OWywcf8+B6w/sfbfjRL77Ccy+dIVmYN8JXf+trxDjz7/9P/ye8+PI5uycfsnl6za9+5W1Syjx88IRpu+PNz9zl4cPHzFNmfbLCrSwr21flvQw4tZDMYMn4rqd0HYVM11leuHNCjo4Hj66ZyAyrFWfHa7X0E4cRT8maPI65MMVMSGohd3w81HkgM4dMMZ4iME8zMapN5zjuKAW14xBhSqmOzzqSnM7FkjLFqEJgyWo/InW0iqkJzbq8GSMLUVNZr1VBw1VyqFi6rjCNqp4UY1JSRFUWmedASnouXZv0GpwzhKBJ9nmeiTHSdT3WGU2SiipFTFNkvprouk6VvkrCOqs2AkFJSjnHqqQmeOO0CjomjANnLLkU5jTW6lUWkMBYi0kVkF3mMeq6ykLmSDGC1TnQW3Aeur6nZGG73VFKYrUacF4tXLx1CvzmxIfvf0jXdVBMtSSrynEGjlYrbp+d4iRz/9ETNtuZOQi+M9iUORo8XefJqbCbJi62I33fIdYhqO2d9RpTZFMrril4Y5HdxPtf/x36oxM4OiXiFnuxYAT6Nca6arfZsdsEnDVMUZ/TbtwRtlu8q1ZOWRPjlMLTJ4+59Vxf11/D083EbnyowFVK/I59F2ImTyOxt1jb8+j+Qy6eXCCuZ5oDcZ4IacYaBf7JhpKFeTfx5OFDdruZzq0gw+npGSklbNeDM7z08ktM00i37hivruguL5k3W65SIqFAujhwLjPPI1YKuSS19DAG5z3OdeSoIGRUhAaZ95ZsKSZ8rwBsypEclGBtTN4n59HnYpLV6vhYFVicjp+CAmclR7phRYiWaY5459QuDvCdV1BBtHI+G41/HEqyzRWIjjHhcu0/Ujg6P8UUS5wmrgZPzoFunDFPL5jmbVUSSISUKois61QIGdMp0JhSIkWrxK4SSbkQcx27KTPNEef0eRQgJY2vrCjgEFPA+2pJlCHL9xze/xG0AygoV3ulUpYYpq3Dy3f3HIs9GYIWUwBonGPqfgT2yhspRmJOlKbyVvaAuNqSBmJQMDS1svFPkTP0eaeq/KDnA1nipAY+pVwY01zBTIdxGku1/VDnPeM0V+BHaqGHLFXt+yhtD7w121gO7hmo88cBCNUAZlGyoq1ky5IzJYnafVJtFku1S6nxiRKt94SFhQRUY8j2KkojFLVH0N7HQjgVXOcYesfxycDQ9wrKYxk3kZL299L3HTlNFXh0qo7GXu2qFYEYEcg6dp3V/WBT6mjXq+pWBsSyZWTTX9NPK8gF7x2dd+yMEGNcErTGGLCq1JlywVUSwRwDGKNzgpSqdguxqqbkpIUWeh2xxtSWECOmWuvmUhjHXC2LKkkALV6JFej33lVbl0zOtR831Z4a+6pl3d6i71BFsymXtiYiqNPefkywECtye52AEudEJSX0vYsC+6aYhURnSnvC9b1Lw9afiYIXsF+JJ81KiKVP6ntsBT0sgOphH3p2jMsB4ebga1XN9RCIbmpi+2ezVwkupe1tWufdnzuXZo2jiighanGA2lIXUmZvHdXagRXQYiOfFeh1lRSRU6lKq6qa19TfKKXGcJVs2FDfOhykCP31wO37tzj75Iz+YsBHT7P0xKBKGlWB7fDJiFGVtvbMWt8uzzz/Gl+JkGBRe9k/nfrMTWY5QzGqjkNVAC7Cx/c/y0cf/yhn50pYT7mQIzx9tOGDDz7kydNPCGFX5wK1TYxB4+SCYL0nVKvM+iKW+yjs32OcZ+59/FlefukV3vjcxziv5JWcpY5JnbudgLe3uHi44uLqinEqWF94/qVzvbckXF5sePzkMW+8+SZ/9ss9n3ntIWF3zcOHV7z/+B67UVUvb5/33L61ZjdFvPeIE7qh7sHq+1aVEanEBIM4z64OrNXQMXSe3XalCsAp0HceawXEokyeRrtXy9tc6ruobyLmRMlauCBGSTY56rozh6CPrFrpqiJKqfai6J7QGKQSWhfdrKYE05704fwA1WpciWl7dV9ZyCM6f+U9ka1UImW1uYoxVdsssxTFtTWh2YQrqcrg3F7dT4zOZSHkpagrlVyJxFWxKebFylCkzjOl2a3uSXaa52rKa2W5L9FJY+nnbV1T0rLTJ9CIr+bgWRiDMZZ5DuSsJDvv3bJm1umIaTcSqzWgDuua4RElRfd9z+Atu92OKSRi1PnD1jXaWatklyTMIWGdwYiuO2LUIjvWd75Uk1FwGLYXF0zbLabrycZRMBCjxqjO1XGsql0pQSkBo171xJTIIWiOyRimkrFUm/FxxFivBaTGEGLh8nqLIFxcbXSSLoLkTCoR8Y4UI08fPcFYzec28pa0nEnRfphTYR4nNnKNtWon1/luyRFT4OjomJxi9VgtjLsdMQTmeVIr3krCtAZCs5Wuc4e+O81v7Umhur41xSJjtfBGibN6jlyqMpLUdSHXOK/s16Vc49RWDNTWszbPOmuYclzeXStaLBglitZxJ02t2zSrS7VpbOO2UHDeI71DcmGaVV2VnDHjzBwmVYnE7PevdR+fcqYRCUtV5bdV0TFlfVam5p1y2o933YfL8mwFVaZtz5S8J+/ftJv2r0obj0aePv+U5997/o/6Um7aTfvntwKShbMHZ7z+1dd547fe4M4Hd+h23cGe4Y++5Sx89at/nl/5lX+blPz3/Xw///M/wzx3/MzP/AKr1fhdvyMCp6dX3+MRC2+++RXu3PnoD+8ib9pNu2k37aY9075nFEP9r031W2eRPLfq/0JMiRgjewupfWIeWBL1ZancythiwVvmaSJniNFqpV9UX/ciiYTaz1jj8MZCyaxXA533XG92qsJSExyt7XkKB5K71ARF3aA1ifoYtVrNOK2amUMFi2OClLHG1mqSJp3NAoo54zCuq5s/BYlElLBijGA6tSoRKlHBVlDaCM54rZqj1ERf4fJiWxNRhpK0CsrbQn80sN3NVUlKqsKLkIv+u6lcNWKS91oNo5VuEVU9sRiLJg3UeQdjYFhZTs9PuX33lG7wfPjxJ3z8/iOMODabEW8Nl492PHl8jTGWOKsSwW4a9XxWE2ymKVrkzOY6kKM+O98lrC2sB0+IqiBEVckoyXC9mVj3jtMjy3owTCkhUlitPDHMOKPAkhEhl8Bm1Cofbx3eW67Hic0UGVbHmEqO893AOAZSVa3JQH/UYy2EnBhOB9IUmap932pl2IVZrZMMmBxJCZLtMM4wmEJ31DPGzHaKrAfHyWlHMsLlVSbuUgW8alI65UUOPKeqpGCUCFVirIkEcJ3DO6cEHBFWqxW5JHbTxFQgx4IrhWIK6hFllERlNNGcUoZSLSWApSK3EQItWk2/gDmFOUZNUlqrBCWBZtmn/1eWSj9VghI8lhC0ilNFiuy+YqwCZYdVl20Mmkq2eUbliT0usSgc2L11gY6z3AZwBRGSJriTJRlVdbnaNluVgrEWh4JGBqEkyKX2NVGATCpRQ2SvYGGkw0ghTFutHps1OTR0PbvtbklISTm8L0NJsZLzWBLAxmpSU6RK+YsqHqVqI2SMrco+CqRq0a1BUEArxrQAXgAxJZzr8NaDgxzVJoCsRA/jBO89nff0Vok/tvO4vq8KTDDvIh98/IiUR0zY8Av/4Of4nRdf5umja77z9fd5/4OvczF+wjxOzPNEQW05e6/WVf0wcH7nFuI9u3FU0k1NGgtBk28pIiUzzys+9+Zr/Ht/+7/LJw8+YRTPC3ef5/j4CGMGxFhMiRiTePLgCb/wc7/K8MF9jtc99z/6kG++/S1SACeOMexY+4EVjp/6yT9JSD/K0wc7Uvc1Pnj/m6SYuQyZB/dGzm/d4s6bd3GdYdrNPJ6uuJgmJQQVS4mBkgLFCNkK/VBY9wbvPEYKfe848oK1nv7olOP1ipPjntWR5fRWj8eTy0xnDL1xbGLi8mrLcTcouBUSuzkSmJVUUBPWYW6qD6WSNBPiLXNVTkk5UUy1+ySzCzMhBULRxLT3HucdzlYAVlTFY04BnJKSDOCcJ8yRWMenlKhkO8l1LJdKUIJSEjEFwGKsr2trwVuL73slDa88eKHQ175ryLkHOkQM1gZ223khxuYMcVaAQHIhp6TrWVLlpWKi2tyhxL/e6xyzXvXMJVDCTC6FaZ51DY1pUXlbLFKK4Dqv62dRJUVqAnaeBcFyvO6Jc2TVD4zzBBVg7Hsd484YOm+53s7EELDGkVImpUBTqtheXnN/mnFWrcBKrjXA2dBh6aRAUQJWSJHtGBnGiBM4P14BMKVAmGbsHFgliFaU6DXPnFiP245sIkzdGlkfV4UWVawqeGKG6Xri4umlkhxyJsbAZnsNYcbmQpbMHAOXF1fsph3X48j65AxjgpKJ+mOkU/XBwVmswLBacWF17Fo8vWRWzpOLZbXy7J6MTDmSc1R73gIlC4yJ7dOnlDkyi6Pre6KHeYr0J6fEkOhWa7JJFKeKQ533SN/THb9ADDPTOBN2OwUlZK4KSjoP9l3H8ZkSfMbtSBHDynuMdWyfXFJKwhiYw6TXg1GgzyjZXG3cKonJGF3KKmBbciFW8CUZcNkt1qO5JLrOgdU4JYsqrzmnwGYUKolK7TlIlTTb/BpKYtpuub54yjBkpM9431FKZn1+ShFDutyQR7XuK5KxLiMpkhA6a5GoYJGqRqr6xpiDqio4gxhPsUqaLymhQmiZrne4bkU3HNM7h8Eyhw1zTKhQpcYD1n7/kz9/0NZIRqXGHOUQiDS5WkwcWBgVFmJAi+9b/AB7UN0YJUQWNBHWrDf0a5kcK5hVY0oA7xRMn+dILocEDJZjU8qeZLGPYFD2vyykklTJcrYpIlbATvcOFZyq59V4vR67XpPY/TPJWW2EG/FCLV91z9DAt8qZUFXM+rCandU0hkq6kqryo3sP23liiBXTFVWSqvedD62sKiBqjCzA8EJWN/v7EClYq7fiaiHJ6qjHecvl1TXXlztE9PlaEcZdZLebK1CmaqIh1b1jVUWSZqtS1CKvVODbWFVg885UMLQscz2lMM9aHJHPAu6x1AIYJcLD3g5PwcVcLYP3CqhzSswx41xXj6nkjhgSuaiNakHnOTFaeOKsrzbJukY7V+9LFFeWksjZkp2qezop2M4RcyGkjHeGrldVpWkOxLBXxVpi56J78Aaatnao7GUq6bPU+c87R6EQUyRC7QMFghJLKILplYhS2G8DDscXsicCGdkrmrRYvYG9FdFdxnZjBDwzlur9NMC0jaSmpPZpYuDBIff2Z4fkivqC9gSBPeFFx4P+/kK4K/srbM+xVKKNxKZQRLWYbQ9E6terYkUlMhWkEk/rcyilWuzq3iLXPZ41qmgWKsGkkY5KAZss3dhz/OCYWx/f4ujqGJddVV1uxR3VikGgYJa++oySs6kEI2UksVe+2VcFl0r8Nsbq/Zg9udE2YN/q2u3M3orQOIfvPNYIu63jK1/5nNrapcD7336Ph8fHjLvA04cXXF4+ZIrXy16GuvM0RvDO452lXw0gQoiREGO18dUCOLXSVmsjLRI74vjoZxCe8PKrv8XRsedoPSDiQGwF4zN3X3yeb3wj4j+4h7EFIfLhB58Qo+4HW4GKLTM/9vmRs9ufYd7N9Otr7j/4BHMpXG1mxlGQGHnp5ReJuy0ihs1mp+rLKdV1X5Z9KSKILXRemEMrwoPOCQkB43G2Y9X3XHc7upWl76yqPe6CWhYjTCEQghKRNGdT1ZmkKg7VPpxqh871/dqq7LcoEbJX9EolqQITVQXQKImujeE2hnIlK4rR2FpVfkX3+5KXeaiNM1WWaZQyljVKxFbiVCs4UJJnJuM7i6/7XEDjee9pQ2ye495SqrQCuzpe6x6q9V8q+WKJG+q0Ya1BrCPluMyLxEJMB/ewrL11XJmq1JrycixVdU50Xkk+zlp9l43YVAuqctLcQEyREGYlTy1raVX2i5HdZku0ut/bK5zr/6zo3k+1vgtziJioxCVX16NY91OkhMuQ67PNOeOzwcZEKjPRForrFlU7Q3tWQgyFPCsx2hklb85hJsdYSa21ECvC5nrLbhyxvkOMYY7ag5x1SpzJpZIDDTFBto6UitrYU7DGYBFVOdoVxlbYVFjIfWkOBHZkGwDwpu5TndenYbWAQ9XxqppPMvTDQBEtZogh1PFvanAoSgyzFt93WOPIMWvuWAzGWdIcSaj14F5orOaoakFdbkTkSiSihWgtRVb7YgGSZJy1WqRYclUEsyyOAYWlCLGkRrw27VKXWKrU/p5SIs4TMyA2Y2y1j/MOa3tVe8pazJdz1GPnTFF2HSK6XjXC1V6d1tRiJ4smgY3GJACp4LzBGYt1HdY6DJmcNXaMWQmhbYzftJv2r1ILQ+Dy7uUNSemf1rbAVP99wu8DUbxpf2itgB89x0+PeeV3X+GtX3+L577z3B+ZYlLLC3jva8HZvnVdh7WW6+tjfuM3/sq/FIISQAgdv/ALP82jR3f4a3/tP/2nEpXOz59WQv4/28+x60Z+4if+K/5Zykw37abdtJt20/7F2u8jpJBnEl+laKVwqcQj/exAtlxqssGwAI5Qkw1VorbEXBPQpXrOW2IImsizjlhUNaGUatvhYNV5fOfoho7tOD2jHHMIHeyTK/qTfcI3kyo4lFOpFaB1c5dQcDcWre7OMM/zQsgyRtR6RxSEHeeCyxbrvarB2JqkyNSKba3QtU6VfXIptWK/VsMXrboMISwEL2sNzmil/rjd0XWGflhxsl4zTpNuOjFKUIoJ03u0alQVO5xTIK6YTBK1t2nJM0Rqgt+yWneqYhUjVw+eEneBzflALAW/XpHSzMvn58zbyL2PLhinSCkj3jqs16rhrrd0Q1UzyBlTq5uS0814SpkSM14MnYWwENSqlHaY8F2PEcF5Q4gBxKllQgU9VkNHSpBzZBg8xRgMAVsdaazxdL1nnEaOesPpyZESbLwnzSPjNJJyYTvuNOGXNWFqxbEZr8ko+GCNZT0IJmd6Zwk5krBkHN3g2KTI5RjIRVj3A85ZphQ49Z4pQpSiajqiVg+5FJxVO4himhqRJk2a+pARyCoXxBwDaaNkpzBFBENvLGe9sOpstXUoeGPYxMST3UwKBWMyxvqFEAF7gpAWQGVE7ELks2IqsU/9c620aqyygAqa+FNQyoqSgaytVehGcDUxtU+UVjnrA1DFmH1iL+9z5SorXpP7rSkwxjNjWY9XwYtUULsrrXwuqDOGKt0LnfMUK4Qw6bV7Q8FUchi0ik7NT1oEIc6ZXZkwmAouB60sq+pJve9pCR8xUiv46n/X69rPMaqUZKRZV6qth7XCdrerIEIDJnNNOCdMqwQtQpjVequRGE0lQYUcwQhHJ0cMvqPve/rOcbTqOT5acXZyxK2TE4ZhBdYQo9F5LEc++OB97j24D3Okm7e897Wv8Ntf/Rrb7cT1xVN211dch2tiHHX+LRBzQmTL06sLJUk6hzGO09MTfKdVluMYyGkiF0GykHNgt9lx/95HfP1rv8H/6f/wf+OjR4Gf/e/9W/x3/ta/Q7ZHSrQpmSyC9BnrB26drPkbf+Pf5N33PuL/81/9AhcXFxXcsnR3O6ay4Tu/+22Ob93h/PZd/spf/cvM8ad5+uiKt7/5Dr/x87/E0UnmCz/8Fmaeefjhlnfvf8zFZiLkiDUZIyO76ZLHlx2mTLxyanju/ITrq8S0Tdx+4YhXX3qBT64n/NBTrMe4nhQK05xaTo/OF85OHJcbo0pYKNgWAJXJV6s/fMOsa2LP6FwIMHQ9vbPM88gcZuaU69JjEOOwTu1kUkqq7FHBYyOGRLUwtZYgCXKzedTkodFXjvce7y2+07GZkyb7N9dbwpzJWSvB45xqclOrl3fjiLMd8xTZjKowZ6xnmqMSNAxAxHtL7jvAEnMEmyvRV7BOkF5BOSUzV0CsM9o3U9JnZb3a3kxqh2eMpfO9qusUtUNIQedSa4taF6RMyBEBuk7VKqyzdJ1n6C2nx0dcXV6zG6Mm+MVUu4/E8aoHnxnUmFMT0xliVguvXIEgI0JMOp/6vqfMM0YS3hR6a5CSCSmQSMQYiCkykrh9+xYnt29hrMVOEdPNuH4kzQnXeaxkQprZTAkXZtIYuPXCwGtvvcrR7ZcopSOFic31xHZzzeXlE+598ICn2w05RnzveO6521w+2XF1eUERrdbeXo+42TKs11w9eUIphsurLWe3b9MfH2HKgDUeimXKht2sagzeGxKOEcscRrrumCSep1c7nm535BDpqvWoAPM4YbLgEXLwPAk7chQ2m2tSKWydZ86B/roj72auL67JKXN05wRsYXWywgiMKZFzR8ka08UQMWLYXG+xYpmniB8GjvtBF8f1GoCYAkXaHClLZT1AnKMCEkkJSVL2cWdKBSNVDS9D8kqMiSUzxbBP5KeIs0IxSj7SvwqRoMcUwdEArmr5gZBCZL6+Jo+RiUtc51itj1l3t6uLohL4jfFgMsNKMF1HyuAo2FAIkigogU6tYyCKcHxyTLc+xUhH3I3MIZFNQpxFjGeKkTSNUAYlt4ilYMlFFTljjsT8g5xAkQr2LIwIfb5NBaLFM40Z1AgL9etLbF9jnqKsJHJqpB8oRtResLIbcv0O6DpsjVFlMqtzSYgKAjViUDtdqyFvCk7P3EMp+q4XsohhsaQrLPMvFRQLJdUq/UqgkqIEoZJVqaeYRfFErUIaEKv3tYBn7XGY1ieNxtWlkuPnfYGGEaptSND9hXMY7xc1FakGYzlnpLGNWoxi7J6MBHvbHNmTxYwVvLNYpzHXtB3JMTMPVkVcqwLFyclAipnN1aS2nMTFSi1Xco910OxzTTtHHXe5FMgNdJfaZ1o3qARMq9crpgHoGu+dXhzx6PiRgoqVkWOdWY7d8Mim9hFTpHNC13t9ztZQciRWBeGQIjkoOGo63d/OMSx7YFVKkmrvrUoKuQiIxXrLnDNT0HXHW4epFuoYtQrM1eKPGmfkUuPjBuCzJ+W0Z9D6qmLBanUlUosZEGyE4VcN/tsCT1QFzHxWCD+eGT+TyXWdb+cpB6ShRlTSEStLAZJII/HoetHm1Bany8EQVsUxqaqvrfCJRTm05L0CxTL6lvGuf7T7lTpGqxaSVAD8gEzQrrmN1qZ2wUI2UruBJjKTUiOuaTGAFUhVQbhuIpZ5QM+hBSL1odT1R1WkbFUEOeAI0ZWOYbOCAuefnGNGw9nDM1xw2NlWgt5eYa8B2kryqQVOSdS26WDvVGBRohMxzSlsmY+aqoaIEm51vFoG7+m7Du8c3nv6ztN3jqHvWfUdznm1IsxKqJKS+ebbAyk7DBGXAhcP7vHgvqq1zeNEnCemPJNzrOOg9YXMZJRUYGrRkfNKOo8xVFKTqgHqa8qkEAjzxJPHD/n27z7E/PzbfPEnN/y5v/Bn6FYrilIhALh1d6QbPFbgM595mePjY77x9jvsNpdVcURj0xdevUcKE9dPB4bVipdefoEXXrlLCImLJxfc//g+Fw8/4db5GanvkWL55OMnbHaBmJWlYCSR88w0T4Q4s3KZo1XHtAukOUHfcXpyzDhprJuNINZBUVJ1dtqXjEDfCeNEtRE/IDHUPWfrj7UDIyHuyWh1rvLOUXIil0RMVeWnKqOJMdWKXnNPpFRJHXslLqmMjaa03BTGjDEq+SxKXjP2YN3JuvcPoZGLpKpcQTXarWqtarEZQrVubqrrrXhRmac4Z/U4UFU820dKAtvP8VJJJUYLftB+buq+iIN4x9aiOduITnXeLNKKlXTMNjKMs7aSnXT+1bxTZi4HClLoXKqFi5rH852rhYg1vqgEsiWeQcllxup7otQ8GQfrslFSY67nMk4tlTvnMTkjMYON5KBqPKp6pZbhpQglztgeTm+dMhyfYdyAFJimiTBHQpzZXF0x7naUpLZmw9DjO8fm+lpVekSLP1IK+L5jniaoCtPWOXLfk1vODYiiMXdbSwVPavduBMRUi/dASAlXi2ZENO6LYVYFYQqj5FrYackihJb3sfqcwhQIc8D3HnFaoDWYjnmcqpJ/XixPs2RCCGSjKlwYg++s7tmd5rtKKWAsKYaD+LH9nZc+nutkWjIU28hyOrwyqmJY02bE3FQTyzLvWmPYK483UnpbGyvRtOWR2l4kBFXOIlDE4Lyj61dQqrVcncsRJSSLEVKpoy5GfaaFar9eiyWL2q77bkCMh5yZy6Tq46YgRsdlrEVyvq1Dlfwr6Py01z6/aTftX6EmbQ+o8/kL77zARz/8r7iCyg743wJ/H3gbXR7/MvDvAv86h+n9m/aH0fbLCH72nD1Q54E3fvMNhs3Aq7/zKsNmYNgO3/dLkRoTHra+7xe70PaZOdjPfLp9+OEPs90efd+v9dkmfP3rn+f119/jz/7ZX/qu33jjjXc5Otqw2fzTr83axJe+9Bs8//zH+/j8pt20m3bTbtofevueSUqtyqi1RmIoRVVO9kmxg8RmBef3Cfx6oArqU61bjFGgNMwzlIJzutgtctc1cUGOWAHXVcDTgLi6uYs1YUuzJ9DEgJiW9NsrtuTcQEkFVL03OCvMKVCyKllYY0i2JVhNTSLUalaoCRfDOEVMTFqF2HksjiRZbUWK0B8NeOcZdxOkJrVbsJ3FGs80zUt1pdTzWlPovF7rNCemsKUbekKIGARvmiKHyuinpAlm7yzGaeW/EXCd3yeE6oY2hMAcInmT2W6UMGTQyr/iEsWkmnDObLY7tlczxYD1hpJYErwiwvFpx/ntIzbXqtrTOcdq7XB9R6ZwfbFj3iaYC7a3WKvXk2sqS5NCqr5xcbGlGzrWRz2+yib3g0WSEmTmOdD1HukMpVg8hbUf1GopzpydHTGsOjabS8Ypk6zHry1EQxmDkqZCIoVIGAKr9RrvhNXxWhMqcUc3WFKIGOc57bsqoWzZhMTFbmaeEmIMl3MibSdWfUexQnfaY0PCRQVpnFcruXmeaWogxnhiDFgjdF5BCaSKShkHoiQgqsw7BXqbeePFc166vVbLJiesh557Vzt+851HXFxpJVdMsY4bW5MKpdoCKVDfiEMls1QmYljsUKwxamcIS7WjIhggpuC7TkGf5Akx1jGmxLic8lKFdqjipIBRtb1r1WeVyKhVllpFmlPeV5WJJkJbIjEv9gplIUIiqhAh1ilpyzq8tVVyPhJCUNKRUSDBGa1ez7kQY6iAoVBis9AqlXCiYJbBkGJTkIFWqWmMXYDKpnzVSF8tydOeabsmMYNWC6dMKRFnHaXa3OWSF/KiEUGc077hDF3X4f1A1/d0g1Y3975n6HsG71mvVhwdrTg9XfPyi8/x+c+9xQsvvsTR2RnFDuTgKVieXn7Mz/3d/4T/4j/7f3N25JllBzHg8gaxI4mpWgc0yxOV5jdSmHeaOE3Vosx7X8FwYTX0TCEzT7G+o8K0ueY777zH3/nf/0fc+/ABaXUbzArolYSzpOIM57fO+Vv/3r/L7/7OVxjEsj0J/Jkv/df5+OljHl9fMG53nB+d8COf/zx3X3qJhx895uP3P6JYuHv7BU6fu82f+/M/wxe/+KM8+PhbvHT3eUqc+Mo/+XVMSHQJHAbvBgYzMl1cU456hhXMo+Xo/Ixbz60ZOse3733Mrdsv8UOvHfHKi+eYEDj7xrfoM5hsmFNku5uhZO7cPuP+46c4ayglMo07NptAyGCyZY6JaZ4XUMB5p+pzSS13SNWAoVCVfbTacwwRkYJ34K0CF4JaDExzRAmOqlSYs1crKmtxYishTYH4edY1tOs7nFewR5OlDm89yQmuEpNyMUiaMRiswDSOrHuLc47Oq8KDVAWw3XZUO7STlaqUlMQ0BaZ63UaUMDsXMJLpbMGjloaIkitdJRTFOTDHxOX1NalagGrlvxIgrXP4ikaGGCuZNVBAP/OOrvd0Vhg6x8npmuOjjltnp5wdDXz8ySNKSWRRi8RxHEmzEjJjzvpsrCWGTIclx0wYIaN2fJFUE9CaiLYYBbMNWO+YQtSksAjeGLy13HnpOf61v/QX+JEvfIHrORJDIlzvSCninefdX/0tfvsrv8G37n9ITFvW646j7SVv3Dnlcz/2Q8zF8/DBUx492XC1WbHqhN2jSx59+DGbq6dYb2C6VqumcYvJCS/1/cZC3G64fPSQmABRi7tpa7FBEKNE6a0ZmaeAkYIPaguY0WrgE98TSuF6mpm2E0hEfAZvuHX3NniHREHmREiRaZpwtmfz9ClzinTWkohsK4kgTZE5BuZ4TRI4Xh9DVDDaipCNo+sHnfvR/mXFME0BEyPjZkcxgpNqWeG0yjdFBdmUAKRgTxEqOKLV4E4cMSblx2UhZCUBZTLb3Y6jYSAbmGKmE6NrbiU3kDMRsMZhcyaGRLFVkTMLYqySBVGyuYgQ57HasThisMxFycDOrdWel0QRjVc77+idYTur1Ya1DmvSEvsZhFgUCFNbw0wySpjy4jk58RgL3jiGoaMYC1FJisNq0PdExljonV9AxR/IVsGdxZqlkXAWonTbazTygf7VgNvfo8zYiCwHAGiKqvKwKLM1daPSSAqZlJSAorZNVEJyu649Oaddo1QgSjGcvb2ufq9ZjUhVFVX7WoP+TEFYQ1NtKAeEimabHJMq0hnTYhJ9WKaSaLx3GteFqHF4PbOxgql9v/J3FhKJxtlqExlTIaWAdW5R9LRVAVUqeN0IYgqCNUJ2Ueu6YitQpvFr23vMJSFBVZGk0QeMKiK0/4UQtSjl0L6sZl8F8J1lWHucl6rYKWqD3Sk5bJ4iKehYNGLrtT3TCxDRuO+Ts4ecvv8cvnMYgeGqVxJtqbYoKWGtAys6x1Pw1hOr8ulR3+G8YQ4TMRWKqLqZOvmowkHJqg6YYsZ7hzUB13mNfyclhBVRoLR3tsZAhjllpkrMEBGmlCkhq9qTAddbFmurGlPnRuSoBK22/9Y4YZ8MVkKJEiRzViUZRBUp3K8Xzn+553jwmE6P4T+xXD+MfPIXtkyfKbXfasdqfVYK+3O2PX4pe2XhgzGs6hf7oqG9pVgjnOn1UtWJm9oxKGkqH4z7UvZ2Tk1FTRXFahqhNHUz2dui7T/UEVnnhXa8ZTpp8wBlIeIVFMRGTCUMZFJRpSHdVR0ooVUyoNTbd6PFGstqMzBcrci50G17zh6f6rqUHMPVUJ/L3oJKRNW49qpolYjBnshoxOg+wzbyUd1H0e6j3mHl3BkRxFqcNQsJyVqH7zqsk4Vk4a0CCs0Ose87To7X3L19i+PjE/wwgFhyUuLinReOuXhUePcb36LvLIkA2WDKDCaSJVZVpDbPNhIki6Jwe79tbtH5p66lUYudMgXJiWk38vXf+SbzdsNnf3hHEQNoUdbhmF8NM3/9b2750k8KpA+YdoHPvXnJ5WbLdh6Z5hkpiT/5k69xfvd1tpuJp4+fElNgGFYM6zXPv/A8zz13l6vLF7EU1i+seXT/E+R6i0lKiRIRvPWUmMjThOuMkhfFcHJ+wtFqzfW4xTrP0dkp54PjdOgZ58Cq7zVez2pNnlJi6Dt2o+Z/BCVLz3PUNaDObbFajNbOghGjMU1TVcsHpMimFJwSqVTCYd2Lk+sS2Qh20hT+8rLAqcqW7N9Z0RikFO1bWLNYyGMMyehamHIlNta9rdS5J8ZYc26qFl2qqkvIiZKjrmVWCCmpcnVSok5TIcx1nbdGahHQwVyDYJwhJ52v5hgh5WWeyCVjivYrYyt5JJclF5EXApbZ/5FWAOEYBt3vXl/v2I2Tqi/X4q6c1OqvkXid17yLKY1sEuu+WoshVfVWyXrUMS2mLOqHTaXa1jnAe8cLr7zEq6+8As4RY7X8ixFjLePlNQ/e/4hHl0+42o2qUGagl8Ird29h+zXTFLi6HpnnmTlYiJHd1YZxc00hk2YlKZY4Q1biETW3R4yEcSSHuFicphh1LsgoAajEhdDT5tyUiuYKncOJJWQtwMwpk6wqdvm+x/ed2qtmIaZY43pLCoE5Rprdb2N6SqbufWeNp5zFi6tzt8ZrxjrIuj/IMZMlVoWsqkYGiNglVjR1/qGuqUp2ayS8mu8ueyvFmBphqZA0AUrMSdfXml8S08j1SlqTSm4wVQlZY0wlyqVKamq0pUWlsGRSnJc4K5VEFFWQpFn0Arkotdxap/uhWoTY4tO2trDk7RuxuM4FqJqZWCUWG1el9YuSsqyzONFxhKhl3A/wbuKm3bTvW3v3J97lrV99C9Bxc+vjW3/EV/QD0P53wP8cmqMsAP9H4O8Bfwf4t7ghKv1BWoF+22OS4ezB2dLXTh+d8vLvvgwoSenWPf255D3h/PvRNJflnvnTfvbdvvu9thgd/zy1ov8fe3/2bFt23Wdi32zXWnvv09xzbn+zRSaARCYAAmwAkaYoSuEqlWS5CYdCdlkVqocKvVSEn/zgd4f/A0c4wg6HXVY4LNshh1wqOySSFlkiJQoESIBoCCCB7DNv3v6ebjdrrdn5Ycy1z7loKFAGAZC6E5G43T57r72aOccc4ze+35/H0Dqzs/PDLd12d0/5z//zf0TfNz/0NdYm9vff5/Q0/nkc4tPxdDwdT8fTUcePLFIyVpIB077UGE3OaUsamRL3IJsiVSqlaNr4bgVOVZxR5PUhnidJSkq1EGFw3kliJFak79R9qWBMFVdczosSYiEinfOSQBAhgNMiNtF1D2atZRzFfmvCHPf1z2JdlUkl4ZyTDSXS4eiMIY6JpCTdIMmpupUusukcgwg4rJmw7AalBeufK2Y551TxuapuzhXzrqFgGFPAWrDK4J3FOkUcYBgDaT0I8rkRm6ISI0pLUpskST1jDGFMqALOKrRKXL60Q8yF9aYnWy1J+gRGeaw1WJ3YPZgTS2G12UjHXJKE0JAKfV8w1qPUWAt2kqjRGFKSa9M2DmcM1jbAQMgDvnNcvnaJowenqKjxriHGUbpzEAFM1tK5pHXCu6YmeOT6i61LkvOeCl3bMowjM9/irGfWGQiZphh2d/fJiD99KZrFTkvIGee7amUVpYCrVbX5MwxjEM93o5m5ht15S8yR05M1ezsLFgvLerNhCHDyeCVJgQLGWIaQSRnGUJNq3uI7j9Ga9XrDOATR1JW0tQozRjOfNThnsNYxRkk0pixCj6I1rm1QpZDSwCTlsxpSXNP3knC2KeC1ofOKsXWgDXkUAY5StaNqei4mwVDJFKW2CbwpibH9/23R72IRTl6XchHCVanBqrEiilIKZTUqK0m+Te9XE4mTQBHYCpSmwmSMuXYS1s+qgqWLYketDRj5HlKMkXs8J00ho8RASjpJS6aQpKCjNClGcsl48ZZiDKEmwrVYv02FgKRqR2btyq7IdmMscer+rAWJCYMvhQNTmwXPbalymWwfJNleCBirq61U2J4XY1ztjBbxkbGm/r6hbRtmnaNrPTvzOfPZjKbx7M53uHxwmauXD7l6+ZCDwz2UFkKbc5627ei6GW3X4RczlG4p2nBp54zxiuP6X3mBdzbw3dNHPFwmQkisY2CTB2LJxCICDlTm4PIuv/TZz/DG62/w3TffYtOvhUJVBUYiajPotooqs8KpyE7aMItL9t0O/5P/xX/J9Rc+xq0XXwbj0NvikCS6rLV89pc/z2c///Nbm71hFMuz5fqM5fKItN6wt9gjhMz1F57lur7F8YMH3Hv3Pt/81te5fu0mL3zsZT726qdBtzx8cJ/Fjed5EUf8zhs8MI9xWjGfzXnu2Rs8d2UXqzLvvH+Xe6c9Sj/g5uGCk+OeP/jqOyhn+cRLL/Diszf4hV/8NPOSKDmwPH5M1zY0Tces67CqMHOK/YVlMy7IeSUWZ0bujVSsIPF1YW9vn35IGCUdveRAKK4K8ITs5YwhlCx4dyWofNCMY5b/UsQ6SAMiTNFQUmYcCtkqYojEIVTBrd0W3nKp81OMeKdR1qJikvlda8gGV587Yyxt16BUpZGRsE5Tyogqhdnci6jQyDOjjcNamWtLyRgjItUQEzlltHJY16AQq1G0JEG1Uaicq32CJgQRkGgl8UIc01b4NGtboV4kEQeXWihM1ZI1p4z3htW6p2kdoFg0DXPfcLbuyWRmnWMcR/phhKRAF2KIYsFiG0lip7Rdx1Fiwdl4QyxgtUUJjIOYI2erngBYhF708kvP8/zNa6xGzdlyw9w5di8dMm872lbw/N9+/S3GqIlRir1hM3CcAsopvvWtb+HaBe3OZTZDIeZEGhPjcsDkTBkjoZdu6Ae5p2k8cQzEkEQM5i3aaNIwcv/2bYrS7F++TOMt1jsa34Ex9ONALpFFZ9DeE2NBxYTTimwsMw0nOeK8xaAZUyF7KTYc3rzBYu8AVRzrR49ZbpaMmw2oQuM9cUikcSSpc1GjrUWLPI4MMaHT+XUvWdaOnfmc9WZEqULMYuFKLtV2UsSB3ntyCFgvBLkcYi3e5kqaK8Rc8MacF81NkY71aS2r824uqhbC4taGyzkNCWIpaF3I4pWGFa87UhFBUCkixCh1bYqIoNAYTQkSIzatRmkPSZH6DVknsWt14J1lNQZCKhQCMQYcBt+1FGNQRWFUwthQ1xVHLoqx3xDSiEpFhHmNJelSbXQbchHii24sezs7zFPhbLmEHOhax6LzP2p4/xMf2ihSnKrrU1RStsX5SYwkuoOyFb9Mr5wEEKr+8CR22lrF1PejkionegtZooeJbpcRaxgRadcCk4IJsXJuq1QFDUojVmtVEFAF3pNoBwoxlUpkglLZM+i6XygX3jPLv4oKRF3Ue9TvIcU1PdE1ahEqF2QzUwvUk31PrtZmzlpA9iS6FqFEpCR7opgSOYhl5tT1KM0M1YqkiqeUlgYIRbX6ojDrPLkItbVUaxnZd5lK7yw0rSMjcZe4sciVi7nIPKhMLbqdC84mIb1CyBrWaLy3WGuIZcRYw2zeslkNqDyRMxJbtpVSW0GUolC6aild2MZ1ItgV4oe2YlHurMUoU+cCoR61jdjO5GqV5xsho2otAvYxJ1K9TtMxp5QljlUKZyzNwsresg+0TYP3YqGUMgybMN32tZFAIuiUqujGSJHQacs4BhEtwvnanjVmoleZKp6cKA2TrZBSGFe7bKpYT61ECFlyIMRq51USBo39DUj/mYZdTVaJHGuhlfPvSS2i5yf2D+e/yu1fnvjL701cT1ZV1O8+UbRQIhCU5y4/8SxMc8I2wbAVIsFkwz7RUUrde2yPrZxTWVGTQLHeM5XslIsIyUq1ytwWyOuck5MIDCbLwJwSGk27btk52mH38S47j3dwyWKyQcVK37jw/Scqlp5EU9vzoqpI6lxUKAc+zR+yR06p7pOUrrmTKtoSJYqI1qsgyTmLtfKrs0YE4s7hncda2YvPuhmL+YzZrKPrGvn86X2ME2GTtRjvUErwoPu7nmfmgZ1n9jkOhUfjmvUge7SQcxUEl63tFxSMVdy8fp2cEvfvP2C93pBzEgJpvcOEmCPz57QT9CRcHjDB8tprz/G3/ocNB1cW+LarP7e941AUrt6wXL3xfCV7I7TsnAkxMIw9cRywwDgEfNsy21kw9Gv65cC9D+9grOHS4SF7+5dQygiFsF2wd0mazYZhxNQmsvm8YX9vgdew2QwcLzeEnES8bQ137h8T0n0WixnXDg6Yzee8+ILHac3Qb+TeNwY9WeupQuMUCk/MoFWsAoVS7e8kLyXWxYa86alGZXUfIbmSXIS0XJQm64xV1fZJScwiEPNKd2U61zImAaQ0/KUqDjJPFBqnZ1dXIZ/SGrLY8WqlyJN9Wi1i6fpsl5KqgE7yJdYosA5tVG1OMmhdiYFF1n5rZIcvlr4i8jD1WdX1C5hqUSfCJi0WeYA0HsmaFiv93Zq6PuVp6ji3iRS79Yh2siaopGiKNDN4axl0IGbZN+jasBhGmaOyjiSqwItzq7rJGRCt5PtqRcFcoCAK6S5XYrIxhp2dOVcOD9DKEKPMU7OmxSzE1l2jWC7XrE9WpFSnwVwYh0Aic3x0zGzxiPlOJGS9nYdDH2qOMMt+Kgf6HEniH7wlP2mjpieSfrUSMY91dPOuWtAZEZfCNl6y3hOj5GBNjWOcIKJQtWkrZCgGUArXNuztX6JgKCHS9xtyisSUZB9Z8z2lyP44T3Z99bvmHIVOWZsvFHJ9nXPkPK0l0tyqCqRJ1JMyykQmdxbrhSiUq4/bFL5N89YUXzLN19Pv1RSylm2MoFDkOmUrhPanzDkpVB6jvF2HJsG5CPIlBs5KRMGTSFAbEV4JKSuR8si5pZ0mVkqSiGVTvYcsFlWXtSpU0nFrTyr73ZGcRBDnnSUbORhtLSgtjYQasedEbDmluVJj3U++qPx0PB0/7bHZ2fy0D+FnbzzgSYHSNB4B/3PgM8Ctn+QB/QUdRYRGO493uPHmDW5+5yY33ryBX3tssLjxJ2OHdnGINbChaRq891th0l+GMZ+veP75d3/ovysFV648/FPfo5TCZhN+3If2dDwdT8fT8XR8z/gz2L1JoT5Tu4RTkA25UVsv7hhr1FK9xKckbFGKHEtFkUuXXy6ZnNgWjLZJeAMhJRjGmkxRtRhQyRRG1e7WuE1ATsm/oqqVltZiz5SAMtbOHkkGCvF8+ixTrebUVkOllHR0xixEJ+ct4zAK5tgIFnrqUmOiwJSCQTopcxbPc1exh7EWWY21tJ1s4NfLDeMg5JqmtcxaIe801uK8YN2NNWibMbkI/SKIfZgUFTJd22CqyKZf9ajc0g8RZ2rXX07s7C4YUuTkdInSFluTlkpD4x1GFw4O9vBzx717j2vHpiRFY4b1qiclhbWabtGwmDfkDKuzNWFU9EPi0eMlVi9ovSSXUwGtPf16ROtM0ziUK3iX0EGjRrFoK0q6sax2KAwnZxvaeYMrHq/kujfWbYVw3ja0fg4lEsMIbUtMiaI9J8uVnOcshAOdEmEcsdZLR5AzNG1L329olIdq7aKdZ4iFFHv29lqa1rEoM7IC7TuuHl7lzbfeQxuLxTDEkeV6FFIDUEqibQytk2Km9Z6YCuO4xihwwquWDkQNxhl8Y+mHyDBEciUgKSNkCyGrRHQl7JCLWLFpxZAKmxCY+QaVM84ahrGnbTt29/bYuJ712UqSh0qTSqFU4g9aBE+p5Fq4sILHLlMn/VR409tCM6Ume4ESMhoqJcpuk+nS0V9tLLbCJqiEfSG+1IxMrklQ4DzxrxIT/luKaLr+fKmFL7XdB6la4Iu14JJLxiQN1K5SCs45FOcd50M/Spc5ReYUagGofo4kokSkgZ0sK+sRTtYIWgG16x6znXNKEWuOrEBNrcxFkoBJIZ2PzuK0xzUN1ggF3RiLtg7rPcY5vHfM5i3OGtqmwzkLOZIKbIaIsoYhFparwKwduHoF9vYW7B4esLh0IBQnbbYd9HKKNboU4vqUW691vPjaK/zf//e/x9f+4E3u5YZcHJjCpcuHzJsFpQTQDUoV9hYNVy7vosvzlDyyXJ5Rithb5VQYhsjJ6YY4JEpOaAqLMvK3Xn2Gj75wiagbXn3mBtc+8XGKnYm9G7Xru94f8nuNUg3agPXQALsUrpZdCtclCTjCo3v3+eZXvs58PuPm87f45OdeYLl8xDtvvskXfuf3uHL1Ms99/BX2Dw85OLzMuDrh+ksv0fz+78PXX+fR4wfMFvtkFHcfHTEowwf37jNrDM/dOKS4wtHxGeMQsWjefustVuvAR196gReev0JcjVy5eoWPH15nPDvilZt7fOK5G9x65hqXzwbev/uQ5WpgPW4Yzs5YBMT+TCt0t4sxj/Gdo+la0Jp+CJQY6GPG6sjMOVprCFYKNUaDjlLcDWOmKZqujbV4YQghbS0zShHxZjKO9XpNKhFrDSGOlChWfdZY+nFkGEMtXHmhx5BRRop6MUehZOTC0AstR1t5bqQLVdHNOlJIjP0IRQorWqVtcbVpxDJkHCJKW5RXWBwpI/doTmJjaLT0witHMGO1L5nEhlEK5SWx6Qf5mUqW00bmxJIykYxpjBApSqYLmeV6xW7XsLvTsurXnKwT1lhsI+t1CfLMDjkRsyKOAWecFEKKoP2NEoFxiQltLV3jiWOU51ZpijLcunWV65cvc/OFF3nhk5/h1o1DNicDd+7f51vffJfBtGRjsHOPGQLvvX2bb771Hu8/fEgoBWzLul/RLjfceedtrl/a5/KNgQ/vr3nnvbvcvXuffr1i7Nesx42QJFNAG7FDEqoZteDEtrgfNr3YW4WBfnPGfjuj6xxFS4jX9z0x9lhVaG1DLkLfGXOg36wZ+g1mireKQmUoSbHpB9wiM/cNzc4u3cEuJ3cfEsaemAdcigzjSD+ONFoT47nFZqniiWEMqJKxvhGro5iFTOW9zFOpkMli8VoSjXfkIdVCbGYcN5QcSUOsgla5L602552+RtY3EZwpShLh0VRS0Eo6rnMSC8WkCsXIvJRzFrFcUYwhESmkmIhJoVSWNSWKCEEXab4uVgrXKclza71Ga08cC7ooYgiEUWiXTWsYi0XrgvdNtaKFWefpUIzrQNgs8Y1n1s4xvqXpHHEY2Kw2xAzt7gzjLUGJbYpvOxSWYBOmEjNMLKw3YnWpYyYN448e3v/ER21uqISHPLWv10LQRTLMtqCv1Db22FJikALghBM5F3OcRxsirD83q5D3KFvhUsppa7Uyrf9VC8WkRiq1Q76Uar+kzylFk5pCVcqLFJrYLsgFoX1NtjQi/KmFPS28O4lF8vY7yPvrrWhqsjHL+ZweY70Wit0YhHihpON9IksaqzBGCl9yzHnbOc+2iUJEGdbauncSG0OKPMumkvIoQqFLOdMPYy22nZ8HKeBC13mMFwKFUiLsF1trETaJtbLCOoP3QgEIYyAliCmz3oyEkERIlWvhWptaCBUin5B9hKiUE1sxYikZXRschlGs2YwTK1ShZZ7bCRtjt+LGnBPYiRpg6MfwxHmW4m5CO7+lchlriQjZVwRSsp+MuZBDpG2t2JFSRTbGM+/mHB2fVrG8JpIYx3QuMNIFZ1Wl6Wqxv7GFIQeJ09EICLHuiY2If1OssWtFfyotSB2jhexaKnGXSpkqSsiZJUoTiCoFs9Sk34iYv6tpm4agE2EY635Yrt+5NQ214WNqRGIr4pueL10bcSZ7p60wiErtQlFK2tJc4fy5LqLmO9fxlG19dlskLucbdnlJLpPLVRWUiQxDvKNU1QVNxFe2z22posVSytaWe/o2IjyQfaUNFr3R+ODYv7/P/r19fO/xwW/PgZrul9rwdE6ePhdFnk9lejtDnVPhqqXPVuhV6rMjz6guYJRQkHQVFVljsM7jm0aeYSv7yK31Qm2OKigRYGgRv4whMYyR+QzapqGZdfiuhQvHdT4J1nMVBnavNOxfOWT5R+9x74MjlkWI0mjoZjO89ZiSQFmZ+VShbR3ezUhxpPGWUtK2GSVnIV7GVKrAqWCJXF00vHh1F+M0z18eeO6ZPXBdlSBO55rvOU4hG4nLqsJR6PBABxT6jaynx4+PSDGy2F2wd3jA7sE+Z6fHPLh3n6P7mr3Dy8z25ly5dg1iYu/yAf7DO3D7DicnpzjXoI1j06/pY2KIkbPVilmzjzbSgNTXPEEaRzb9QNfNuHb1EqRI2zgOrlwWocewxnvP5f19slI0yw2bfiSkRBwHfJSGqFIK2jeEMKLNiHGuCmQLJQdpICyyH5OGhZqrMyKyskrmV5JYP037iFzXTbHNknXHeifiyCyxRSGTYtnakOaCUIkRsdVE95qEuvIsyroxhmpDx0Q4F3GFNZZSRbCT/ancL/W7avDGIhIgWeOVVugs+b2JJqa0QpdKWEt6m1PRuj4jWb5/yiJqoVSSma4CrSk3UYWNkwX3GAPWKJwVYmtMGVVkXs5a5g1VELEIVBtWuRu3gLk6H1DXQGusUOay5EVKhm7Wsph3LHb32Du8wt7hJTyak+Wa5bLndBnI2oDVOKPZnK54+PCER2dLhhBQ2hHjSA6JzWrN6eOHOAV90pycrjk5XdJvNpAz/dhLjFxzQ8ZIXGCqqG0ys1RQm0MyTmliGLf29cZYYn12U0qkELBGxLDW2W0joJAeyzaUquoxUsxi/2Ydyji6hSEOI2roax7I1BzUJBav66eqs7IS6r5KmazknKRS535zLiIDMJVCqiuJK9U1JaVIDFxonJXcVqlz30QE386DEv5wLn2d9kly3c32uhdMnb5zkUa8nAuJmrOq7zHFROfi7PrM6KpWQqZhYzVpgjXU3Ne07psiVpzWGJTR8nxqLRT7WIhjQOtC0zZo46VJSImgLcaMciLAUwqhUxkjttm6Ct+NkB+ltzBWu8gfpEp4Op6Op+PpuDDeBv6XwH/Fn6nC+B/KaFYNdrTMTmc8/43neeFrLzA/ntOddRdk4z/ZMdGRvPd0XbetxfxlESdN48aNOywWy/+/32cYhh/D0TwdT8fT8XQ8HX/a+JFDCIWqSZFYxUgiCpi6KqckR87nSVSxu5kKCrKRVVpvN7lQE9iVlFJK7UYCxiIWLdbWpJxWWAvOacYgNg3UY1JAMdJhSpkS1+cZzpIjpUjB1jnDZp0FpZ9F7LDFqmtJnGptt+QZXb9b4w1aazZrSaKXqgqQtVySDo13ZAzzeSPimpihyK/GiqVX1grjpfNVurgReoSRnuAYEjpDNoXWO3ANmqGitqt1EJIQWcw0s0XDymk2y0QhYq0jhcSs2yGUwul6w5BB54yJid1FJ0meWFjMZ+zsLjg+PSL1Qtxomwa38JytRiiCIm8ay2LhODjcJcVEN/c8uHfKMBY2m4RWAa1bsZOI0sXT+JYQAqZoGm9wHs6GgabxhDRgvWfsRUyWjXTmpVIpCKUQx7EWTQzaFYaxx7k5U7d7HBNFG06XK1LKOOPEjkEhtB+d2Kx6vLfMmrYmBMC3HjSkEOnXG5S2DGTa0UFOzFrPajOSjWcdRrKBdt6yOdtQlTqAdO4ZpYghsYqRnZlCa0frO/I8s1quKUph7GSzEVFjwVixP1JakUPGkIU0UxQlyHPmvZP7MiXGrAjFE0piSJmIp2ksY39GUXBweZ8QJdmxPFtCSYK+Rkg7VmtJZlVR0ZT8t0aJ9UiWgqwUXwohBUmoWVtZRbWIm6WQD5IMms6ntUK6Usizmy5Qd6aZw2iLrl1YIjxStfurVNqToMKdVpLIy0jRjSyFkZqtyinVwoHYRGIM4zhurUy0MTg0EIXcUe04puKmqWIwkWyprX1ZqW1w54G5dKrnKp6SC6+ZCiwyb0GJYhMkHZNiCaKU3BdGg7UObRxKV+sFb/HO41yDNXZ7PmylgqQonW7TvBNMIEaIwxnL4yUP793h3p33uX/neT79i5/BN3Os9yg9iavq3GtEGLreDAx9JofAchXZ9Ikh9eQSyTrjjjXdoePq5V2m6pPRiq988Q/RGBZdy868A8QKbrlacbra8PjohHEslBIx9LRd4df+o5f55Keu8d7XHrG6f08EFFTLjppcfHK7M1WdzteXrUBMGSlY6IhrDa9+6hPcu/uAr//Rl+l8x60XXuCTv/ALPHrmMW984xv89n/9zzi8cZkXP/5xrj97k49/6tO89PGX+eDdu3z1i7/Pyf13cH6ku9Rxf3nGzqxldXLGt7/1Lrnd4cr1A84ePWZIG9qdBbfff0i7eEBRI2G14uHZyP6la1xqPT//2U+wf/k52sU+z+wWXnzmBjkOhL6wOT7hmMT9IdBvAsvjDR++UdhdeK7uzxh7KRynoCFEUgychoQDrNI4A523RGdRrpDOejo0NB0n/UjSmlQUJoPOIgodhh6rpRhlnK3FSUMaJ4pbJsZACIGSwXlfy4mJcRzE3g/p5Pfe0zUBh90WfZ3vGMfAxMBvGyciwwyrdSQEEeGmFHHGQcmEOJCVIStDigWlRWCjtGXcjNX2I1FikgJwSduktrMKlJeuzwu2K0RIyPMvZD/DOAbaDkiRk9NIP4zMuo5rVw+xJ0s0inbu6RaesB44frTh8dmGUGoS2BmMs+RKZXSighLbsZwZE6QYcdqgjcbOHB959UX+xl//azz/sdfYay4zDiuW7Qm6aO7ePyKPkc0QWB6dkDcDp4+P6PszmpmIlrLORGUpaO7fP+Ff/vbvs3/4Brnd4XTVswkjqEhMI4aCtYpYbX9CGLHaYrWqFCp5olJKcnzGkcJIvzqh917sXUxLGQJnjx7RhzXXrlyhbTzFG4op+NKQS2A2m1crmyqgyCKsJUnFJY2RISXmXYNpPL5xHA2BOIqATmHIGEwl22WVoWSs91jncdpgvCeEAdRAsZ7dnQUmgzo9I4wjjVLYIiLvMYYqRrCkJESuqThttCWNYStOSTnhnCWH2qmsjdgH1qJYSknsrUomJRF7pBCJ2si7ZilmUERgONbCdAmFTBQCQBJC52Q/UVKpAjKIoRBDBnpKsbVjvwpqjXRSy49mjDb4xkDXMGsdZEUczkhF49qWdtZimo5mPkM1kf4kEMoIVeSqlcI4h/UN3rboUJ+Jkgh9L4KJAjFEUij8LI/J6qhUeyltDJOUQfYN21dKRFFpdWUSIZQqbCjnAomqUqq/reKfXKSjXrElrkjjQ/1zTrUIVa1s6kI10VDYihokDhExkdxnxmimelxJVXBQdVNCYKrmxlPFrcYcttp/xRBrsaxc+JxzQRNonJdmipKrgKJSMlFIMdhUeyUklkkqb9fzXAuzWglNyk7FWSVxTp6KvQqcVzhnGLUijBljJxufgnMNuZRqd1kFK7nQeOnAJxehtTSeYewpKdc9mwgnhjFJjIVQnbw3dF0jZA2vWa9GYqrPX8ikLHTKCjOS5pCU68/LMzUOCWuN2O4YQ4qVXmDUVjIz7dNyFdtSi3wpRWmWqK+cRPR9CFsyz2Q1NlkPx3AuCJzuU2MNkx1xGIVakErBJo0tlZQYZa8ScqKogvWWMMQquKmUsHrPpFTIOaAsKDTGOJwrhBKEAKXlO+SJrqP1VksnVmLTvSSxr0KuOwXYzSQlVq+plLoHNRhrSGGk3IZONWQrN8g4DFUkVs9DFaVNwuWpcUCp82I8035eiagg13tW6Wk/INTSSXw3CZ6YxKT1uTdFjlkPmtnp7Dx+vPA50xyymfeMvgoyDVUgJHOu0vUev1CQ1mqip8oMoaqwggTd2QybDfPTOYvlXKx0cqY9bbFrK2K3pLdiyXNKl9rOEd9LUZI56/z303cFtgX1STClLhBoJ+SN5CeqOFIZtLE4Lw0O0gwltsLT/KEnYUQWOiMFsspkBSlHUlKMm8BmtWR1dspyueT6jesY62oT13mkrlBMW7lxTMRYJDYas9iW5UJBRFljv8F1mtm82c4xAMePHjPRa+ezbis4CCGITXAYSUOqz1TCErl8uMtHP3Wd4WyNSz0xGKw7n4O/f5zney7+ts7qQKFpW9arFfsHe4Qhcnz8mONHj5nPF+we7jPf2efo4UPuvP8e6jbsXz5k79Il5rv7vLyzwzPPPidCpgcfQhro5g3Lsd8KJ09PVygzSlOKUhLLmZYxFfqzJV3nyDFijKKb7dB6w+Hlfbzv8N0uaM2N2RyVI6VA2IyEHFnlQh8iJUHoH5KMZtFZTFEEXSi5xhupIACejK3EFqcVYMU2NibImdZ5NkMkT+LFKtxDVRG30ky266qK/fQkzKk2ZyUnyfW5c5GiUI9rbqzU9cYYudsnCpJ2QKX31EYk4+paTqn2dmzFjTInJrFEZFoHJxGiiEByfa9S84jUny1KyH7a6KphPv+fKvJdUZOAV4swRkukGUNimXqctWKlq8SK1VqD9SJ8HTYjmz4ypnMSnBIVjMQTdU7PNb4Qak05vy+1opk3vPixF7l8/Qbzbg9SIYQejeJkqYWiHhPjEFilSB5GxmGDMgVXDKUIjVYpCCHx4Z37PHp0iulmjLEIsVuJ3fwUB+Q6p0xCQWvENngSSE5cbG1qriUMpOgIo0K3mhwSaQys+xVN42nnczJiBytrlMFWse30KKoyzZJ1Ta4iJ+01GI3zQolNeawCYaFkTfPlJC7WSoQ5RmnsFMsVKEqLkEob4hggjFgU2orlbI5JLNG28wHb+Xdqvp3GVvyW5R6TYzgXuUuMUZlvpc5/taHQ1HNWstoK7lKun5jl2SymrjfTPF8fvunepoqfUkzkXO9PWWwlr6Il7zyJYI02KC/PmjGaQJJYROna2GvRzgqZOBRCGSWHrCtMsDYBWSPEyFJkvSkxVZ1ZFZ6VbUD+dDwdT8d/yOMm2x6AHzi+BBwBV35iR/SDRwETpeHY9Y7LH1z+weFjHSfXTljvrgFEuGv+PXIoBUwwXHnvCna0XH3vKocfHG7/+eDDAxbHC1RW2NH+1IRJAM65nzgxSerEf3HFT0op9vf3uX///k/7UJ6Op+PpeDr+Uo8fWaQUoiSZTd3wxyjdpiK4kNdMiX+YErviSz8JBEqWgtKEe5/EA1MyeEqyTcIErTVxspDRCmulW7AUxWYdKCljarHRWfHwHoeRGDNWSYef1UoKS0gXS0qRECOlFqukh79gtWVnPkNpWPcjqZJ5jLHM5x1Kiaiiad1WzIAWkcbkU5+VCIhikQQ0VmG1JRWx0BkHhfcG54102ydJsMQiBCnrXO2WKZKA9A3jZiNWaLYmQWoXVhwjYcz0a0kK7ex5wgj9EEgZ+hDog9irdV0LueA0eKMozjAGKTA+fnTC0AfapmVntyVlDbla2jgHRUnn3Wbk+OEJ3jtC7DEm03Ut41hQZUoyachivRV7Kb5YpfHGopWv3X2Jvf0d+j6QU8I0ltnc0iZJgjfGkdJAKorl2fpCR6jBWId1LaUkxhjIWf5zvkFrKbBQCy8KSCGwHjcYJRhv4wy+bQhjkI13SNiuwbUtIRRUyIxDTwL6Ycm4HvBecbxcgVFigVAKuhTaiv63TjpXfVNx1ykxbzVaN5zqUJMpCpyjlMJ6KYVEoxTz1uOdJJ3XfagWgZKsU0AsirvHPUernpgFo366OcU7zWoTaBpHLIV1PxBDFFuKLOIY+QwBOUnxJYrgRiq9gq530kk+juO2qOOc2z6/KUmX92QjYqqwJgUpxkyda7ZSXUDXInElvaha7LHVdqMmnUJKNaFZO+20JFhIU9FGkqI5IZugbbJ0KmScdy7nIp1pIHSmSUx5kbgwzSWqFv6+z8aCat0DNckkCcnt+yu9PQdaTfYvkLNYpojVocMYJ5+hpYhmrca5lrabYxspXhsMRll0Aac1rTXbQp7R0n2vtaLxDdaJIODS/i67uzOZE0yDbmY8uP2IPMgzKPNGxBrLbG/B4mAfbRV93/P+G4FWWT7cZDZ56vKUZPLy7IzON1y9vMdkp6NKrW7WBLacWsPZesNXv/4dhpC2XYK+SBJ5zJrvvPkhV+ceTcfelcskq1EqY54wFfh3D7F6lLvR6oRFcfvt99g73OOzf+XnuXvvEd9+/VvsvPceH3n1E3zub/wy3/niN/m93/3XfOOr3+Dqzeu88sqneOFjL/Dcyy/z/Isv8PjBh9z+4Lt85St/TAzHON/yaHnKGEZee22XqBrW6yWPHm1omkvM5h2t01w72CfMGh48PuJPXn+P5XpN4yyf/PgJ1y/vojxs1qeooui6BR5Fd+Uml24csGsKdvmYjxy29MqR3Yyj+w9Qfc+w2XC0XLNSltFljIlowBnNMAphz6KYz1tcs4AHJ6jHx8ScGUtG5YwKE5GwkLRQa7Q2YptRE5nOiaWbUQZNFRNOSUlrtwLKlBKr1RqbIcZIqIXHoqDEWG2K5Blz1mKtdHC3gI1yubytRAZrJW+hFQZFGFPtLE2s+zUxZ/RUHNRCLRTZZxEClFIiOKkFWFPvTI2Sea3GGZKg1azXAylpZrOOPQ2LLnP11i7PfORSpYsUXGtQAd7lEWfrkXGsBc1JADURImoivGkbEQSPItgMVNpJBoXFKEtrFpSQWG8ixnpms45nPr5L07QcnW4Y1ytYr/jqnQ9wYyCFgaHfMO8amsUOwxg424zYmFHrM3Zaz+5+y4HbQ6XEyX0F40ZEXkbLOqFlbilJyGbW+SqsFgKUVoXN2RI0tF6oCDlqTo5OWS3PhJg1LDlpWy4/cwvTLvB2jvUdTnnCkAil2ljkhDIObTRd26Gyo6WDkHBth1aF+cE+bt4xxkDjG/rVhgz0mw2l3xBjwDtLN5/hrCfESMqF+byhaTvabkboR4qxGC9F3jxEsW1FbDu1UkKK01r+rhQabUClrSgjVAu/lOXZMMZu7w+F0O1snVZSBq8MJQaxfrEiwsi24I2ljEJQctoypEgk4ZyW+C6KVUksmRQzzklMG2Nh2Ii4TGlPv6ki3lJQ2le7R81kTYRWOG9xbUeJsg6OMdFZj7OWkKTb3CWFQZNLYowiGLdNh29nON/grCeWiDIWnTMpbUBputm8FpJ/dklKuZIzpvt3KphNxdJJSDSNSRAxFfWnPUMuebs2n79W1Tii/pnpPWthLoNytooudC3on4t1dCUMoFQtFFX6ApzbNUHtpE+VzlULcmoq5ioa76EWDydSkwa8d4jSTUQuaiIG2SrOmmgHleqSJx8RrYRSFgEKKVIFO9KcMXXn5wk+UcU10mhRKU4hSlFrAgUUEWvnVEUvde1tWktOSmggCmISulFRYtdKqeQ5LVRSiRMzm81AikKx842T61nEKs5WazlTaU19KZWcENEq46wlVbEgBSFkJEXSpTZ8lCoCN9s4s5BpW0+MSWiDVuO9pm003qhtbJoLIralFk/1RNa1tZAoRM6SKzWz3gcw2SSXSngIaHQtuAtRKSfZG5NztXGy5FxtBBHKQ4xjFVMpwjhK9TpO9+j5uRHUvsaYKsssGW/FYnhQ5w011KJ7GOP2+XDVJk8pXe2k2QqBCpBfg+W3I/2HCFVOwRBHjIHxUsL8jzRlBmEUC2pjJ7qK3Cx6EhVVQrBSeooQZf2cyFRpam8Qaukk2Jmuw1Qk0KqSg1LG9w2mWPYf7GMGzd69fbEdT5pmaJgEZltR0aRFUYrBjYxKCq/D7obN3kZEUfVzTi4fMzYjQzPIeavvI8etaNYNl+4ecPn2Zdp1i62W0NO/n9NTJ3Iz8t23QqXvjXBL/W5lu1fJ+fznp7lsmqsmMW2pCFqN3gonVLUYs26yc/N4L2QMsfdWNToSCx87ieu03s5v095NG7GWbtuGpnHS3KEs2jhWZxtKqrTqad7QCtd4fNehNNy9e8jJ4zVWac5iFcRQxR8lM44D1ljmsxbUOTm7npLqYFfv+KJ4+PiEvh+2+0BT5J4vSnG2Gjh5tMRmg7/coZ3MhvpPqzD90CHz+fXr11idnnDy6IRC4cq1y4SYePzoiLN3T9m/dMjlG1fYmc955423ees7b9LOGvn7K5fpdhY895GXuHHrBqcnjzk6egRHPZDIGE6WkcP9lvncs9kUzjYD63XEty1h2NB6h2kdwzDy4MED1kMgp8ilvX0O9tZYr0VEFoLQmgDXdNj5Dvs7Bp8C+61lMwSUbxmGkdT3lJQYxkBPhZ3ovN2rTkS4UmR/YWZO5s/lGibxbrXY2qKAyJXUpbc5upxEzGErTUkryc2pgsTnRmzp5LmRxogxSC5pss2EQmIiLqntvCCNQPVx1UbuAyWNPikVKgy0ignPxRkxpe1zNNF2QG3tmyU2kHhQhElqK2xXSD5tek4pNdWQC5t+xDqHtxZrCk1jWOzs1PNYJFenNetTS4wrxpTOhZPb+a0KT4qIpFwVQU3xTSygsogccy447VFFEWMkF1mru50Zu94Rs2JY95Ajy4ePOY0RcibFgFLQOkfKkyAJihppa9GxaVtAEYcBnRMlBTHhnmiQVaSWc0Is/KbNXo3HU6LfbKTJsgof+3Uv+cMQyGNPHja4rqWd7wAGrS3WONYsJddbbVhBxNWS05Nclal7K12bZ2ZWGs+sc6QYtznjGCIlRZnnnMUZiS1STlgr85tztQFHJZS2daMYSfncLrXU4LJM93UpdQ495yTlaos3CdqstqipQW86PfXFk4hHcssZU10Ecikop1FZEbPcAyAx1hTzlixNKJKSK9vnr1Ab1nIQulMEo8v5+qBk36/KhbyaVmLPqUWklKvVr6kiwVSJT6rImp1r84bSBmOq0NUaSJMdMrI3KRnjLLpMIvmn4+n4izd00thgST79u1/8dPy7x98D/m/Av+WiflPCu08A/wfg8k/4mOqcvDhaYILh+W88T7NueOHrL2BHiwmGxdHiT32Lzc6GsZO8yaObj3j0zKMn/v39V99ntb9itbeSvzhPB6CKYvF4wUtfeYmPf+Hj7N3fQ6epVvGzIcqZbNwma+jJ7v0nTUz69rdf+Yl+3o9zaK357Gc/y7/4F//iQpPJ0/F0PB1Px9Px4x4/skhJhEIW76VwtVzGrQBJKY2ekuApCaHowsZQIcmzVDerIiCaugjPN22yjk/+5tTEcSFlRd+PQn0wmjBGYhT0v4h5bKUsWfSOl01thJOTDbmIkGjqyNLF4H1DvxFLK23Ou2piimJ1oiTJqLQQIsIIyuRaCEukLB1VzcxXkcqCs9OTikS2UnylVCR2EYqCNoxDkMR6OU+0tK3BKkuY8MsYutbhGsPQB+IA87ZFGcgmo5JC54y3DWOfiIBvHV3n6JVsOpWKrNeDFHl1RpWMbxzeGZyzjFHQ5ylmEV1hwCbGVDh6fIZRBaWkFcxOtj8Rxl4SFENYSUJAdr9oLbYQBoT+VPS2SELKlJRoG82awmaIpJoAi6UwxkzOmllj2Zl3tIuOBycJ084wIWGVEWJRipyerYDCbNZQcmHWenY6z2ZMRBKmWnlZq6uHvdqK2pri8E1DHwKbvscbj2s8ysLO3oIcImM/sNn0dJ1j7HvQNWVsLKBRQTrSnNVQErOupZs3YqthwbctOEsqkWaMjOUIpxwlJRS6Jh4y2ighc6nJPlBNoB6o59EYRzFwFiInvQgFXGtZDga1DlA0jXOMo3SHOeegLQyDFMNLlqKFd44Qpw6yKoCqtheCczc4L89MCGErCss5b6lFqsoIJHGlqxReBInGaKEfqUmMUhOOFesuiQ21heZMSZ2p0DN1lJVaqKMKmYy2aCVFqZRiFVeYbVc3sC0OTMn8SXyklSaTK4HNMOG7t53xRhDnF9/H1O747w06p7zj9rNUtdqwBrTDWulQc9bhrKNxDX7Wsbe7YHfe0DiHd56mcbRty2KxizGW/Uv7HBzscniwy6WDfZx3GOO3uHJrPcY0IuByjq6b4ZpOrLPqN5Wu+gkZXrbd64oCeeT9797hS3/wBuuw4v3HA0lrDJqk5PyzvbIapdJWqJQVoLN8V6brrUghU4IkaYup1i1J6FWxd5zeM2Td0vaRgwRFp20p6Afv0Z78y4sbpakLXLUtN158nnsfvsu92x/wzLMvcvNX/grvvf4mX/idf81zH32ej7z6CtdevMFb33qLP/zql/mt3/j/cvCHO3z0lY/yyqc+xe61G3z6xnN85OOf5847r/P2m1/jd3/3C8Sh8OyzN/ng4V3s7BIvXpmzv7/Dw9NjPrx/hCLSOEVXbSbOBsPDkxXP3Dpld5bp13B0vCT1GW1WpKHHNfeIbUujEzYOzBb7tLNL7F/b4fmbcGAys6s3uP34mDsffMiDe3dYBceYDa4peCXzFhRGBViPMQ5vfC0OR0n8JrUtBheltoXjkktdJ0WAu9mMlAxWGbQpDOMoz3+1S7XGCLWv6+hmMzKGMkhB1VTbyRBHtLaVgphIY6Ik6TYOoXaiGl1tD4tYLFbsvwhHhZw2jGIREYskp1EKZRQai3EOlMQZIQSJI2qFdaKDyWvV9v4IMaOKEaGGG3hmZw+lIv3Q442DmHGNp2saYgnMdhy7+w1lecHoAAEAAElEQVTlNDGGKEU9ZdAEYhHyjc0KZT2Ndqgix52UZGHG2PPh+x/yR1/4I06OE6vlmj/+5ndh6Glax0c/8xovPfciJScaq/jw3j36sxNy3DAMgTFr1BBpGrHMyEWK+8vTY1IY0b5h7/JlGu+JeSCpKGKCOFngyPxbqvVtqUV755xQfoCUMuN64PG9u/DgATkqwhgZx56YImnd0M5aIUztRGgSSjW0WOkARxLemYJvLfuHl7h18wanq0jaDISzM2I3A13YX8xpnGdMEac9/WYgKzhbLrE50/cbTMkkMs55xmGk7wcpNhgpUmxG+b3WBmJEZVmbjLIkCto6WlftJLxYL2ljcEXs3bQypByJUURLKU2CAvlVaxHnTR33Q6nkmZTpc0QVoX0VnbBeOrRL0ZQi16jkgp0E5cjniUi/YC1khKaUYkKZQmZAB6HpaWNw3tE6D9my6jfCA9DStVyKYdhsGIdeRP/FQxZqZEgJn+VaN22DqgJYecQq/a+S/pS1qCBrRqMKTWcxqZDGyM/qyJPgpApmxnEUYaKa1oGJqnJe+JvoJ1ORdKLQmEp2nIQRcCEpOBXcgMmurTBZj8kaNzUkiOhE1/mr2uD6KVaCoQ8U2NJbc5nIPpYYM9MnTctYzpWwoKYVu4qmQdZtLUUyKSiJaHyy+hqGQQTVVWRQmGg/VAuzKqSugpVpWKu31r66xgPOChkyRrlXnbUoDUUVVKW0GW1JUaxrtDE4p4kqi3JKZUKIlS4gF8MYg61irpSLFBFznfuReDbnwmYT6jReqva5nruMWLyFQMqhxpqI/R8FrQrtpmF3ucPp4bFcU62EmFEyTllCicSUGQCUqmTaTCkWZwzz1mK9Y9VntHUoZUS4oeR1/TiiQMSGpdR4uVp0U7Y0rPMmmlxFbYpSCUQxJWIU4ZeujTJN4yk5C60tigVrinErstkWgwXJtiWcOme29GGxe5E1N5OxKZNKv7V5VVWURhH6hzFyfxmtRQg0hVI19FJaw65m/E8z/e9k+KKIA8IlBb+Y4FWF3ZXvjhJLPqwV8VeMIqirAqp88QMuiPa2z2Z9HlO1F5vESAqxqVFJMTuZ4aLj4P4lTC/kIpsdtogA7fwpVpTqoTOJCbjw9SjgBodJsp/oVi2X7h48EUveeOMGyUVWO2tODk/o2w2qKA7uHmCiZXE8xyTDRGZjKt5z4bMm0dL3/Dr9ftoflDLdM3qb/+DCzzMJMbfvUbZ7FpycK200zliapqVtGnzT0raey4eXaLyvz57cf41v2PRCxOy6hq5r6bqm2kOa7d5A7K+MiJfqnkLEeBfO9RSmq/PvMd0/JSce3eu5ffsxMY2cbqIU+rfn6VwUVi7ceyDzvOyhzoUkgIiD0ySIEEE5ZdrHWfploXOeYRwkL8P3nMsfOJ68LtNompZnn32Wt996k8X+HpvNkkf3HzDvFly/do1x6Ln34X1OTk+4fPkKL7/2Mc6OT7l77x63P/iQ+3cfsHdph6vXr7PY2+Hg2k32D29w7dpznB7d44PbH/D40SmXDvZIeWQzZua7mp15Rz+MrJYrHj4+wVmFtyKQjUWx7hO+GdidezKa9RCIQ0SpSCkZVc7AHUtDXCW1ONfhjWE2m4nd/HzOUOD0VMhY/TgSSxWh6HrOBP5HKBqN3AuTEHcr4KjXwlSal6o3dDVEBFVJRylt1+5pD6+U3pLAVJaGAmudrAOq0tf0ZFmazq+jYmsHN8Vopcj+Om+f9Upiq8pEa2TtTynXOFrk6KWuMdv9AiLcm4TMTNOWuvDM1ntE5tIal2vIKjJrHc4KdU/SYfIaZ70If53Gt5aQRcCroOYh2Ap6cs5itVWbn6SxM9dYEtbrDQ/vPYJi8a7j/qNHrFZrvIJ2b4ebN65TtBUh6TCyXi0hBSHaZyFFqTpnT9qoGCP9aokyBte2dF1HKJFM2j6Tdau2naeMMZUSfU6nn56eHDPDekMcBnIRK+WYojShjpCCoyUJiUE7skq0rqlr9TTDybzgW89iPsf6GagenRNJW1S1s3PWVTGvJQfZj4wxUlLa/ldVObI3DbHeT6rG//Iz2lhRtE1WnwitHaUr1V7OgzHUZhhNKpXuraol6bYZbZqzCxM5T/5YqYFaqLEpFYmZiiLVPcj5DFmFSYjofMoB1xS43MN1YcjS1YNShUISy3Sq7a4WWq1ShlKiPJt1vUFL81CMIsyixp3SbJjrPlJiTW2F0jldmFIkttrm01AonbcUdEN5gkb4dDwdf5HGzuMdrrx3hQ8+8cFP+1D+cozLwD8H/lfA/wZZW18C/kvgfwoc8ENyvj++oZLCBsuV967QrESM1J11XH33Knaw2PBnpxTNzmbMzmYA7N/f56U/fmn7b4XCz/+Ln2eYDzx85iEfvPIBZ4dn6KT5yFc+QrNpuPrOVXzva7Pvz8aw1tJ1HV3X4b1HKcWtW7domub7Xvvw4UMePnz453o8pSg2m+7P9TP+PMfe3h6/+qu/yhe+8AUeP3780z6cp+PpeDqejr+048/gGHu+mRdqjWdIUf5+EhaYmoSoBYBpk2YrcSXltCUsTf+pWqxQtesLOE+81w47aqJtHBNKyYZU6ynRWzf+WdE2nvncEuLAahNYrw1xBN94KIm26dDOMPRLFLVIgSRFVd3kDeMgtgJKkpZSxIhV7JEBg/cGpQr9pscGQ/aJHKV7OsQgG2kN3bzFOrvtamsasd8KYyQk2WA7a9AFmtbhZ5bNekTpwsnZkqGPNMYxqJGkM+1uh7eWtBkoZOZzQ+uNANIjGGXY3XHMuto57T3jGBjWAyXDZhjFeqDaUhSV8E2LsorNeuDswZoUoVgnIgUtnd6xyDnPaIYwMvS1YJMDYDA+k3PEaGjahtXZGZmCcZZxGAWNrTKlkWuUYkaXzMxrsV6goH1LHwJhuQKlmHUdcRgIY8A1HpthGMbaBeeEXqNKpRnAmAohCAmibR2gaJuWlAdiFrJWjpHWN2zMiNaabtagyJR+TciJIQWhX3kLVjoFhfww4+joiL39OfN5QxikuNHNHIdX58zmDavTgX4M4k+fEzmM7HUNoRajx14KuM3M080ce/sLjo9OICvGdcQYi68FJW2FCjGMkZynjlnp+CpGQbZYp8lFs1ltCCGKqEBVIpHLlFRo20Y6D1OsBB0p/kiOR4phkyhHKEOuEg2ky1yESnqLATW1i1JmDen2lyJjnUYudPMrpQWbXvKWUjDNH5Pox2ixytjaQ3DeuSnJEiXJuRGk4CxipG2SWp23tAmlSX7VtVNzykiWwrklXKUsTbSnySppPp8RYuTs7EySd8ZuE/ylSPe/NYIYFzqWoWlmNK2nbT1t67h0aZ9nn32W61dvMOs8167scni4x+7ujL2DXXzXYZsdlPI4P0dN4i49yYW2eAP5fdH175GrPyWUVSU7VMuMaQ6WLsEEJVFi5MN3b/P6N7/LyeaM+2cbnLVoDOsQAI1VhjhE7t69B6oKTrG1uCEJMsnladbrvl7DjClGiptkPIkXdg2f/viCq53hO994h/jMq9zMQqwq1WpBXSyc/ZCxLegAqIwqcPvtdzC28MzzL3B2tOL9D96AdwtXb9zkl279Cl/54hd57/V3+eTnPsln/+ov8fFfeo23Xn+HP/nqH/FH//oP+MYff4sXX32JVz/2Sa49d42P/dwv8PJrn+KXf+1v8vjeHW7ffZ/xq1/n7rsnXL+04MqVS7z9Zss6bHh8ckqMisYPlGK4crDg3sM1zht2F3PKasNO5xlM4OxsyZAifhRSwqN+zYO7xzw8/Q4Hl3bY3Zuj88jufMa1F17i1s1DnnvmCs8/d5Pm8rOcnN5nfXyH+0crjo5WjGdnNbltUcqSa4JbKSiVxNI4y7QNN1ZVIkVFt7tGbNhUIiSZm7XWOO+q5UftttYaNGhryUpEF8pU4uAQcN4JzSZHjKmFrZTBKLxVqJKIlYqSEGFZYw05JsaUKFmSpDknQoIxZLGhyWInUIoIgYd+kLtfaawRioVCivgxZcaYxNbLWiGU1Eqa1mB1YubBNRprW9ZDgkajs2JzvGG17GkbT7fbccMa7N0jzpYjTreEXmKUUkT0ZJPQenKUwsMkeBE0fuL1N9/h+OiID49OyKvCO7fvsbO/4LXPforLV25x6+bzPHjwkLe/8QZf/uLXOX54h1A2uJpsTkmIHllByIX1pseNsBp6IorVOLAzn7NaLdn0PVCwTjD+4xjI+ULhqdpOQRVgU9DKoFJiWJ+h0YxBkgJKZRyZcViTy8jDO7dpj0/odve5cv0m1w+usjdrsFqRs1hwGq1xrWcxnzGmkaIMj5dnON8QiCKeKdC0HSTYbRcUrfCLXWxODEPEkOjTyHy+wClFiJlxveZsuRar03aOtoaw2ZCHEb/uxEIlF4Yw4JwjVHvV2aWO5Wol1kQoEQ0gtqnOeVrnRPQcEzmJqEsbEUTkasEj10CS9WOUQhHJkGIiqIDY1ilCilvRk4qJgmWMCUUglxoT6VyJgRBiwMg3IuaAcxblDLEEQi4oZ9C0xJKxxVJwDH1is94Qx4EUI6uzM9I4shpGUs7szBe084ZZtyBGecaMrhSTYUTFiOvmaN+IBYhS+LaphMT4hKD3Z2/U/QTV2kybJ+wkZAnXGF1tZLbFfVXFsxNkUW0LbiLekB+W+uqF/YR82BOCg5zK1q5aVWulqUBPoTZByL5lDIkYNClV2mLJWOtQWpFiYOLBTUUsFJS6d5iKuFPRKOeMsWZboDfGgBJCZdGaUkUeFMjx3FraOumUn8QuJqetyErl2i1fCTKNM2iriUGKev0YSFH+PZHIqmAbKySgIDg856QpoaBknkHE9M5WcXYtZIpFndB1U85SAAcK8r3QihgCw1osRrXWFFXF6lpoOqXGMjFLA4S8SX0N0ulvipBop4YXTaV3KEgMYJXQfrJQy0QPKxGTMkIkS6PQZJ0TSqVYPxpM0VXYCCCxsFYS51EFkEL8LVir6/1gyTnWArOmpLy1lkYpnBWhbYmBVKo9ilZiQ60nex0hafWbnrZzJD+RmMB6w2zmcd4wDqkKddkWQxsnlMJSBbWlFKwTyk7Teoa+hwIpyPGp2rQh56TSGRqN+u8q1MdFUFBuKmiMNA2gKCHW+bFaMWmJy4X6cKG5qJyLURRFLKJQF2I42UPYjcVlz86jHfza4XrP7vEObvCYYrbWa5NyR00x/jRHXBD5qCLExUm9cE5RYbt/UGraf5yX2XVSmNzgh4ZLDy9Vu7onBUd12vgeoeM0bVQx0YX3nCztn6ApKQVZ5gDnPSmlLc1u+k6ZKaVxfm4n0aXzDW3b8MILz7O3u8NsNuOFF19gb3cP5wwH+zvM5500PHQt2lmM8Tx+fMI3v/U6taumTm8XFBnf822o8+i52Of7g/PzP0nMv1633P0w8+jBY4YwsByixJMoYq7iRoTItlyuqrCFKiaYrqfEnNN8PQk7ZH+gt/u5mS5cv+TY37MMR2vOjs9IcR/rp3vi+w73h4zze1EpaWK7cniZr7z7ZS4d7HN45QbL0yMe3P2QWTfjxrO3OD055Z033ubw6iH7l/fZv3rA6ckZ9+/e4/TxEUcPj1hc2uPq1avs7V9isb/Hzv4+1555jn65ZLVe8uDhfTbrCLawv9NxnEFpxRhGhhGUEkJk5z0xBJQG5y0KoeuaxjAGIX5rZSCMhJwYNyOnyx5tDPN5i1JCx54tdlns77HbOebdIabdIVIYN0KqWm5GUh8qJU6jchValPPbQZtpfy8z8PYeqvtLVQWzOeVzu89p/4DEU9sdt1JbClOmknSU5CEmspc0J1XRN/UztRxMqtQxlDoX25ZS4/FKhyqTzbTEBenCvFNKtbCv30UaDs+f61yq1WVJaF3q3K+3AmJdz6uxoJ2V+SIVabSMiRh6aYQzitlOizKazWaQ5pKit+I+yYHqbWxSpu+1fcAKm03PBx/eYTX0dH7O8fEpCTg4vES32GGx2IdSOHl8zP3bDzg6OiKlAa0yppKBJkFNLmzJWDFLE5EOIylFUohVmJ1qLkfOY4yp2tRNj8x50xNFxGEKRU6h5pJkP8G0s8+ZEDJqI783rsG3Hd1Ox9CINXWs14EqHnPeY6zFN564kfu5KNDWn+eR0WhfaW+VkCrrpFw3pYVgLg07mX4YoApjXSvnOA4jKidpzAFMilNgSaHgWyfXs4qgRNdTSZg1ZkhVbDbNWcbU9SBPmZq6L0eurZCCDUVVkW7N26Q0Ne3WPQVyvaY5MBfZG5ktvTHLnkXLvFpKjRnJpBIlR2N1FTxJc2tOihRGUpRnPZZM3/eklCUHaqRpsW0ahEJb6vorRNBYRHxujK45Yol1hdRZUE/t3p6Ov8DjZ0k48hd+KGAB/K+B/6T+3WcQcdKPe9Qlc3Yyo1k33HzjJjuPdpgfz7nx5g260w4b/wylzH/PoVDYaLEnlvnJnOf/5Pk/98/89x2mitg///nPc+XKFay1vPzyy1unjMViIY2tdUxxyRtvvME//sf/+Mlc/I95PHp0yL171/7c3v/PeyilmM1m/OIv/iK/+Zu/+dM+nKfj6Xg6no6/tONHJykVoGRCiugk3aLDOEJRW5HChDTXtZivKkVHkP6SyCgXXqeoRVcqfhhQSoqXKaXzpKC6WMBW2/xaqQVEShZUcggo5ehmDUUpTm0g9ImhHyk5kqJsInOq4oqpsKHE5iWMQTaoUPN9U1EoEUfx6pbEsBFbuyim3mlMkGF5eobWFue02OIow7gasE4z22mxswWg6FpRNr/7zl36dcQ6IwnrEvBe6C96NGgjyF5UoWm9oHz7gdZI167VGe80Y8gs14MEHXHEGMtipxMsuILZvCMMiTwIQcAqi/cKbQvagfGaNjfkqKVbSSmysrJZ1dRu4IZYMiEXinakkKTYrMSeDhJGC0IyzRqxbFEG22pyGCErms6yt79gdbZh6AOqkc17IjNSCEOBPmC9IwwjIDSHdl5FZq1mPl8QhgEVFV3jsa4QxkwcE9QixLApNL4hxEFEMFGK9cqAcYrWezSG6zee4aXnb3Lr2iW+e/s9vvjlr2I12M7SLqQTbOxHDIrdxWWUKqSiWZ1tiClzcLCPbwxjjBhv6bxljJEUM7OuRc/Eoq0fRzYrQxoSe/u7NDONsga9dvTLYZtkslaDypL4SIlZ64imMPSDWClpkQKElBlypMSEVVqEXynT92tBS2uDdY4wCr1k6nxW1bahKCgpC3JcTd10Bes8RteiWe0cm6weJiEiNRmTs1iPqNpBW5scJYk5dUqWi/YI5xtEBZL0rO+HmmxUzulGF4c2k5iqFh1q4UXeO9Wk6pNkJF3/fbKImsSVkzArFyk+5ZykexIpuihjISasUmSjwRqcsbTO0nnHvG1Y7O7SLXZZNAuee/YqL7/0DI2zGKVYzDp2FlJIOLh8iaIV7XwH2zR0uwcYtwBlORckyXneFg5qUeC8vmDrOSvn5w5F2XZF1p9X5x17Gc/Yr7lz/yHvb3r6zUivDdoburbDhshmGEmxMMTEo4fHCIpd4V0rlA8yWQnue+gF7W59AypUcwMn1gtm5GBvzsHCYWxPH45ZPz6hFI0qQmWa0tB/tmHQtuP6zWf517/1G3z7D7/D5//6X+MTv/gZbr/+Dl/+wpe4+tzz/PKv/hLf/vq3+W/+yT/l4MpVPvcrn+PTn32NVz79Em9+423++I//mD/6/X/Lt7/0LZ77yLN84lOf5PmXP8Li8CZ7V25y42OvcePZlzncu0pgQ9fAoptx42DB3Cfef7BkNfQYDVf2Dzk6fsy7dx+ijeHSpT1Mo9hpZsxmCwpik5ILrAdDiJkHx0soPU45Tk+XLE/PuPvojG981bK/2+F8x/71D3n55pznbzzLCx9/kT6ckB7e5c6DM946PiOpRzSqMGtnNA5KSWgHRWU657HGVcshEVaEWBhDFEvNnFFabGHCmHDW0HRWfvUNaxKpyJoo3Zdim+hdQ4iRcYwiciFTykiu4t2SpUCrCkJjKlPhTSh2qhZBYhThlFIOrRLeSfE0hiB/XzROO2a+YdNvCDlKF7QWokdjHC7LXDUl0GOKpJhkPfYGrx1kOD1bcniww/7eAuMkKbU+W3FyvKZtW3CakMXmJsRAyLAeBooRy0ihVhRCjBgtxe6SM6gquAsiJDguZ3zjy1/DmpZs4eVnb/Haz73E/t6ct99/n29+9dt85fe+wOPju4xhSQ4B28BOMxV5E7GALgkVgzwrVqEzpH5kRBP7RAqC7ffeCH2ngg9KhhgzMQTGMaC0EPmMMSiT0TmSQ8YqDcVUIpCs12hFGEbOHj9iaU5olsc0tvBg7IlhhSoBVQWxOSbOlksePXrE6XJElcKYBmyGVCLGLkgxY4wjDgE1F2rgfHeXsF4xazp0ihiVaZoWUwqNdeT5gsVhJo8Dvt/gW0+KEZsKeRg5Xi1pimLTrwgxivBbgSuGiCb061pgy0KNSUJUCWmk1HNRzLkNsVZCJDFlsi4VUYwpYK2nKBHTKm0gJsYYhWbpRPysrRMRwBiwRqy9cggipFBCURILoUKMkIeMbh06R9AFrRzz3QNmfodhNaJzQRnH2eqMftUT40hJgc2mQBYilJD9oB9HSgjEKPYnswLeNqRUWPWBXedAO4Z+EJsMbYljJG56sQj5GR1bi5VcSTDWEHOqc820+F0QNCt1ocN8Wg0nKxuptj6xwqjpfWRtnKwynjiGcmHdnHRMpRKSiqoxhxYhPDDoBFEKe1QqU6oFLCHcnFvGTTEc9c+TSnd6frfd+UXsHKVwK7FUThKQjHHczqm6EpJiEOKq8xbtRKwptrKW4+MlMYjliLGmioYm8YZGVRsgVKl02Urj03W+VQVrqpCyUjVzTiit8Y2IfqDgnRPBS5ICnkZjTEHpUudtBcVQ8vl5L9XCCiUUI61NpWAUqJY3096raPkcpSVet86SsrzOWEWp5ARjNLPWE8ZADAllteg2SyYBQyqomFFGKKYUsTAzzqKQgqCvYhKVxA5JGSl855RrUb6IfbgR4W1RyPeq1jUKxA4GxWJnl0t7O+wuOh6dnnD77l10EQs66yWmTlGKko3v6h2sGKu9Wte1GCtFZ20UylghQ+Ui9CsrMWpMCR0UOUojgnGVoBkMcUxCKYNKCy3beN9ZTdaFqBLqI8j1UpkcxfapZCEVumojG2Oo97aqe3IpvMrzds6IKEphRo0pmsXRApsNs6MFs+WMbtPig6/Ergv7AFWf0bq3n8RBqu41Sr1rxK6qbB/Oi5HkuSWbHIOu8cu2R0FO8PeN870D26L1xZ2H7CfU9mer5mCbp5iEEBNla2rMEDGeFMDLFJPrSpiZxB91D+KMwVtH4x3drKNpOxrf8tyzN/n1v/arNN5BEdGc9w5rNV3XslyvOBsHVpsNyngeHZ2y2fQo7b7/i57PdNtvNuVPvueM/OATVV9fMMSxcHo2cBoiMSRiFS021qFzEvpYFkF5Wou4WmivektJKxWnm1KqAkC5r3LOcv2Q/a+zinljsQ42pWfoeyEX1l3QuQbrR99XxJgIMfPap36Ot994kze++V2uXr/FwfUDus2M+7fvEh8fc+PWTbrG88477/D+e+9y/dZNrl2/yt4rL7M+W3Pn9j3uP7jL8cMjdhY7HFw54PDKVbp5y+KgY37pkJ2DK8y79zk6PmKx8KzWgUU352DHsdyMrIdAypFZ42m9pR9GHhyv2F3MUdZhimFmPW0r++hSIGZNbzTLzVAbwkQsugqJzRB49PgE7w3eWkx7zP5ux6VFy97VaxxqTenPGFY9jzYjy9VK5note4Cco5BXVa6NTrbe0yLaSXW/P45RGo7qWptClsKdqw1ApoqN80SyrHdfPhe55pwrGQZRjF8USnGR5jXtdOs8U+OCmHOlasncq7UcS74gllVKni9yljVLsRXiaG3QpWzFnlMOIk5iYi12WgolpFgbmLVNpVLJvme93kj+0GjylIessWUMiVzzmroKn3PJ5wKr+mW10lWXW4gl8vjhY6xZkkphsTfn8Noehwe7rDdrlmcr3n/rfc6OHzOmvtKEwDWToKXmN6owhiKiUaUUpEwagwiyk+zztJF8idaTva7EKk+INxXyHXORHFpSkuerTRG53hulxmRhGEghou2GkgNrZ4hhQyFVQZuc5zAG+mFADWL9nNJYPz/jXCvrjbbb9fciJVhphVFabKutQyNrqyoF0zRQCuM4irBHaRHlFdgMgySwcxZL8QKpCKU9aiHCFaXISW2FVyLqTSIqrXPYlgpeE9BKFVSS+1wIjRlV45zJWk4rSCFtnQamvI2xTs4tIjQXiln16Z32KdOzXwIYsbZFybPpG0PXzshFkceINrbmqaPkAnKikAljeUJEm3K9H+pzZ62udnaKEEcoTuKOVLYCypylsShWEvLT8XT8RRnJJInGVCHrpyK7H/vwwN/4Mb5fAd97dNTcfOMmdrRce/sal+5cYu/BHt1Zh876qeDswlB1jRTKpttauT377LP87b/9t2nb9omGCYAQAu+//z6np6cADMPAt7/9bR4/fvznKlACyFmTkvlz/Yw/zzEMA+v1mr/5N/8mb7zxBm+99dZP+5Cejqfj6Xg6/lKOH11+bFT1K5ckU9t52pkjp/NipCTMBSmuSsGg0MZt7aNUudgRPRUyS63Xi+WQ5AALaC1+4ap+bk2kCXUF6TDLmZjDVnA0DJrVZkANhb528frG1u5Kdd6hVaR72xpLLGlrkeS0wTWekKLQfVS1VYhJiEDabH2+vbd4l4lREvpKFbpZQ9M0UmjViiEEoUyoSEgjmUK/KZSU2Nlp2dtbUNiQSmK5GQBJtMQo9B/nDU3jcVqKxISALQVnFNZ68TMviRAGmsbiOw9aioYmyXltG0OOGUoEZUhBzqT3HlRhGCMuJrqmpSykK9koWA8juUjyUVW0fIpJ7CSsJLjTWLAYZl2Lr4n/nCKUIAnpLIjy2W4rnaKNJ8dI48XqBRIh9lIMXa1JSQQhqogVmfOaxbyRZJlR7FzaJ+XMZpVwCJVqHHr6kIhorJIiX4oZrMcZERDpAt43ZJVZ9Wty1Owsdvmrv/rXee3Vj3LjcJfPu8TR8L/l/e++Id1VvRQ+KWKlYI1lHHpSTjSzBq8VxRWGFBjWPc4otOto2zlhOMEqoWppp2icIpiC85qmFiGOHp6wOh5QqWwtmzKZHDN2Ev7kgvWaYSwY5UkqU5IilUKIoErCOAnY28bh3YyUM2FMUlzJ0nVudLWu0KCME+R/FSBN9DMpskk34yQ2kuTEOZloEvoAVag02bNM2Gp1bnGi1ZPFgAtj+/cXO5M5/wzFeQHCGIUxjhBSLWhVodK2EiFdkNTCwpTIKoonkm5pwshPxQKU3KtKkqj9ZoPViqYYlDU0jaVpHPO25fBgl1vP3OIjL7zASy99hJvPPc/s0gFdt8ti7uk6C9lQJnedIvPYZPuojK2kNqHiTLPfhTPyPbl28+S/fd/rK0lpm7KfKqzSaV6AMEZOQ4Irt+jySNc63v3wLR6fngBCkEoxM4Zxuihopdn0/bZDvFZ/thj+XDKojCKji4hPklJ8927P//Ef/SEzp1iGhldezBQtnZbSZ5t4EiD/g8cTvthZihqLw0v8yl//j/lXv/H/4f/1T/4RP//5X+GVVz+Bm3t+73f+JXc/fIP/zq/9OruXd/g3v/MH/F//z/8XXv3Mp/n8r/wyr37m07z0iY/x+je/yR/9wR/xta9/ja9//U94/iMv8sqnX+Hjr36c3d09Xv7Yx3nhIy+zHnvOju6xXHUQj9izid137/LenTucrk5ovBeLxT5y794xp2drsgFyEtqN9A1DsWjjOLx6lQ8/fIj3nkuXLqEwrPqeUjKb9YrNZgXacPvhXd75jmFvZ5/F1RtcPpjxkZs32b3+Mr/26oLyyVd47/17PFieUFZH5DBy1G/YjD1KWaETqUTTOHQCo0GphClCJ4k5yC2lEyUm4hhouhlt12DdSCCgYiQOEIZB7BxKwXsHUWoJzjhKTJV6IQXkkERsk3MmxYRRCpUL4xiJ9S6OITERRkqunaJaLrDRtk4BGquhbRx9ypW8JFZW8jowRege1C7gkoWcN44TYW3AeUtOQjW5ebhHyZnr1y7z4MFjjk6WbFJkSImwgVIU/aYXobWWRLzSBYMRGxItJLcxFhF/KfmcTOR0OcJqjTVC3PvO628wm+1wuHuFo9MN9965y/sfvkcMa0oZCanHO8tON2MMgfWQGWIiFykOGatprAYcc+8oJLFcskYoKUhRwXsn83soxFEKMEohgtRciCVRQkTpc3vLqUNcuoRFWJpzIoeEcZYwjry96flAtxw/XpOTiKohEYaBkwdHvN1/h5wKYRwhJ1zTYGcdaWeHMCSMbVAIxWezWoo4qAobSg+tsbLGRUmmF5VZ7O1QhpH55cukEAhhwKIImwG/u0PuA8Nj2HEebzTJFFzWzPY2hH7FyeNjklZwtibFzJAHvNGYWUPrWuIwkqptT+wjWSca3dL3QQof3pB6oUpCokSxFZ6oJYlC45x0w4u3Gs5qvNMY46HX5DSglRXRUb13xn4UopiRopE2FqVb/Nxj3II4bHAlMfQbNsslYQi1dJWgGHzj2N2Z4xd7lAg6wulmRSmJEjNh2DAMAylrvLcYDYU1Yczk2BOXQmAMw0ApP7t2b09YreSCsWLTW7ZWGJJQ3hYHiwjnMOdWSqK+eDK+2JatRf1QP2cqqz5ZAJ0E11Igr9c+JXlmlIiRxqBQUYQqEgtOtJbJ9upchC02s2X72VrVuHlb2JXCYSSRY9qeA62oDQGVClEtTZwT4aGsu2J/PQm1chYKUAxyLE1jaRtPT6BQGENtHshCgBManNpaX8u/ZVmjFWLroSWuSymK7Z0V0qVWGl1PrDW6FuvkPE7N9U4LDSomITxYY8GfE3lCjNX+dxJ36ErqVBTxX6s0FsXqmSX5dmQ0mdXOGVK8q5oECk0jRTVtjKy9xlQIUybkVC0TQxWbasQtTIQ/3lebTK3o2lbEOEHWJ6U0OQahbFRDXJAYGCXzaarUpskeOEQR8S7ygl9d/hrXmkMWumFoMv/17n/Dw+VdiZ/ieeF+ErcIZWvaMyswZWudZzQo7bDWk1KPVjJvK6WEdqcq/aQ+G5v1wNgL4WpbHKdsRWRqEgIYhUqglJHiTa4MMAlctvQ1a43MLaVsY2cpTCtMVnSrDoVm/8EBLjh2H+5ik8VHh5poIhc0JKVGppPo6Xt3Bd+7TxCRhJpkiDUePX/en7BpeuK5rrcm50LGi0PVZ+28UYon9htbgVKNyeXfzgvz33fMWyHTJMiT445BaDmmKNAaa5RQLNqGxbxj/9IlDi7tc3BwwM7eHq6d4WyD94biLLiGvh85Oz6VDUoVX4UYJ+kmKHN+3Bdj5yeP8vwinJ+pH/Ka7xf9TJdlGAxDyjDfwdZ49/j0Meuhh5rHybmQpme1nuyJinvhL5notKV6Hcnpzugi9J1NKrz+1hG3bx+TkuLyi6a+qwifnhRd/Wnj/N/HceTunbs8/+Lz/Cd/53/A7/32v+QP//APODnb58atW1x/7iZ3bn/A69/+Bi9+5CO8+NEXuffhfd76zpvcvXOHZ557jstXLvPyKx/l6o3L3P3wHvfvPeDR0SM+/PAOh1cOuXL9KvP5glk358WPfZRnYyamHt/s0c7ucmmmWS43PDo5Zb1ZYzTS1DWMEpekJRi1FQHJ2i7rRkFjfcOs61hv1njf4Kyj16OQgVJksw70WlHWa85OFfeNw88f03Qt+4uWrt3l2m7HMzqwunKZk01PGjeoFBliFJJ0KVXPIfOlVkoofaqgMKSst8+Bqg0NsmYKqc6YDFGsw3Oln+Yia6c2GmU0JBGEq5KrqFSey1znB0kN1XujQGSyh1XVQu18jd3uVcsFSzgmUZQiq3NLOpnQi4hEUOcxQZ1aYhZ7+hhrjkELYbDkzN7ODKvANA6FYrUWgnXIQovNVXgs60H18Kp29VsRVr11cym1wU8mmBATIUaUDpKXIHHn9j3COtGPgdBHjo8e0/drFImUI0qJWFgryTOmXOfnipQ2WlUStWNrtaqrlR91nqv5iZyq/Wq1xJtirpTF6k+eUV3zrvUabefO+h5KbM90TqQYGVYbYiikONR4o56fYeTs6Hh7LVOMNc7QWG+lYaPGQc5Uy8waU+lK8jbFYoyjxIiyGmKWBjsF1ntQlW6pQKUsjWfAsNmQjaExlqyq1W9INCkxbjZCpswwZujjgDQLaIxzlVRZhVMxk0oWu1tVRWlGbYW46FxjtHq+i4jYrFFCcKz7CV33vs4YlC7EWLZWvXLJRLyUcpYt6pRXq7bE1jtiUGDk1o7jKJTL2ngrz5WmaZyIuLRBJcnVpxirSC4T+g25Wp2qRohVuWhSDvK9B9mP5/Szu594Op6OHzTe+fQ7fPa3PkuyiQfPP/hpH86PNGYnMz77G59F5xp36sxX/uOvsN5f/5SP7Mc4iuSjTDDs39tHZcULX3+BdtnyzOvP4DeedtlKTPh0fN8wxtA0DdbarYWbNFCcj9u3b/NP/+k/ZW9vj7OzMz744Emrw77va932JzvW6xn/7tj9Z3esViu+8pWv8Ou//uv8w3/4D/ln/+yf8eUvf5lhGH7ah/Z0PB1Px9Pxl2r8yCIlq8BbO+3xKUVhTEXVZ7FvUUqS1dpIV3TWCmcsttKIvDXVwuRCwdpMFkwFbQ11T4/WpRKPFMZZsZcbAiVHVJaCkWsaVps1KWesc6AtIYr1WEIx321wzmKtYr0ZOTlaC2HAisDJWIPYG9XkRlF436LCyGYcKhI5b7u4Vcl442i9ZzZr0LoQQqbvYTbbZRwGwhgxaNq2xTjHcrmGkslBc3x0Rgyas7PM2WpFjophiGDYKqFTiMQoCZnGt5KLUeL33jYtKhVMgRQUx6sVVIs1qecGQp8JiK2eFS8c8Bl0oYmaTT9I4kKpmrR35JCJY0aXwhACs4WQX9arFZu+ryIdcNbgnCekTAyZNGZIImLYbAba1lbLGY1DRGlt61ksZvU4PethxHaeUpaCJ/aeGCWBM1lAUBO7KWbBhGcY1pHN+lS6tMn4rmXMhdOzwLIf8U0jXUwIFajve7z3GKXRXkQTgkouaOsp2vDh+x9w4+pNjHKcqlMWOzPGGIjrRNkkrHeMMaB2OlIu7B4eQEnkrFlteoZRhBpFe/oQyf0a8hJnpbvQzzohSyzm7F5KrM42rJcjcQ1xA94ojPUMQySrgtYNWiWKRu5LI8UG45zY8GXpyhWfeCPdazESk8M5z7xr6TdrutbR+AZlLNZbKQjFzBiSEFaGQEllKzpk6sbLFa2upm6wKP+s1baDWpJxicnSTYYkY3KW4FmsPX5IOryc2zFMHWdPUJa0kS4JNeHkTS3QAOm8sEctgkzUhYmuJG9SQEmCayrObZP52ghdqQqqChltNFoZWt8w321oWs/u7pzD3Tkfe+FZfvFzn+Wjn/o0i8PLWNehsdsEYynVzsAqcOfFO4WIIWu6s3aMTmKkPy1A/1GD94uinwvnL4sNTKMDB/sLrt+6CWbAzjQfPnyPMUZUMReKO4Wici1WnYvVirS2Ts4a2yKeoMUVWUtBwpTCByM8/HDEW8eVK3Nens0oFa+vCkLf+TNsSuotiSoZrQr71y/xt/7e3+FbX/4aX/zdL/GtL3+d1z7zMX7xl3+Bt77xOv/mX/23vPyJ1/gf//3/Pu++fY/f/70v8f/4r/4Jn/i5j/Fzn/sFXvv5z/DyJ17mrW9/m3/7+1/i3ffe4t133+IP/+CPePnll3jllZe5/Mw1ZvNddhb7/Kf/xUcZ14/ojx7ywntv8fZ33+CrX/8mzmu888w6x6J1KGVYpSTFzSQF4yFEdIlkHdjf98zmLeth5MGjY8ZB1iXjDI025DwSsnTZrtY9fd9z7+SYO+2Mt17/AON32ZnB4f6Mg2df4uc+/ixXdE/Ac+foiPvvvcPDR6ccrwdygVnjUCWCUSxXA8txgxqjFHeNYjFvUElRosZZz+KS5/ioZ7Pp0alQGk3RmjGMMu9V4Y+zlhRiJftIYaVk6Shpmk7WxkztXi7kEM9tl2zePvOpVJFlEv5ZV9f9kAJjRESVaHzTkCrBIyQhpeUwUqaCXzFCD/LuQiK2wxlHCoH12RL2d6Q7WCVcY9HWMPZBbDVnFq00YYioUqQGnmryF43JhRLGLRmQHKq9rCHkWIVCkZwyJRruvHOXx3d+h9a1ZG0ZNgOb5RnWFIyVDtVMpm1blNWM6yDkgSJ2ms555s6TTct85xJDrN3A2hBjoO97cs5I2CJ2DtooDKYWAvV53S6LwFRXqkgo6Qn7nqmYGlPARImBxjFi6FmvA6VkjDZSWA+B1f17bI4eCwEpiCVk0Qq3u0PTtjjbMW8cm2FERaEtxTEQQ5QOLhIxFlKOkBNGR1IImCTiamMNje1QSrOzmDEuV5hZw+rxGZtYhbI5sn+wCyFSrKG7esjewWWyUizvPmTVDwxnxxhr2DnYZ3dnlzRGdNdhlWVcjyQSc9ewPFmy7M/QKZHyWbXy9dLtnhWdazF5ZMwiMpJFpGztJqKyWCM2VCGKrZKuNiDBVAuSLCK03fkc0zQ0O7ss5vtAx5kaWK7OWB09ZH12Sh5HjC4YA4nEGAN60xMSaIx8Tr9hHKLEvMkR48gYMpqGsFGkvCZEAOmiXq/WhBAv1ux/5oauRbOLh6i1iPIqGmAr/NFa1eaGsrVpnSzTYoyyrtYC+1TIAaRwNIUESHwjXfG6kmFEEKnKZC1rGGOQgpIWG+hcC3UFhWtstY2FEBL9JmwpEVTR9/Yb1U5Poy0g1pFKUUUjYnFMKRgjFr3OGxRSKIwRnGtJSeYYhXRKamMYxoA0a4iFcEqKcSyMYaxzaxYK7HTecqlCIhHao6Top9U5oUCXGmOPI2iqvS+yb4l5K7yaxDUYiWOMUcQYJWar596YSjOqhIGcM857lDHEEAghCIFIi32OEJXKVsijiqJXA4/3jmmKI5okyWyAIgSoxsv3MNYQklCZxE5HUYycm6l4vZWoqIlwIyOETAiDvA4RyeVSGEaxFtXmSTF5TNUqSalKNJK7QoT6lnJbsXpjSfPK88z3dzCq52D3Evfyh+SYIGS557KsR7FA082gyL01BiGwSlypZX2IAcpYrVplH0A9n02XRQw8RlJQ5FBqYVp+VpZfsy1a80QMrLf3xNSwo4xQtUrO5GwwStPllhQie4928KXBJsvBw0NMMjSn7ZbMEVPeis+m2E1u71KfDVlbJ5FW4eI+4EmB0iRYuGitdlEw9KeN7xXqSKh9kbA6kZCK3NvTX37fT32P8KeKHEvVJD7xI5XKB9P3mPYbQlNuZl6sZmcti67l2uUDnnn2FgfXrtHMZihtUZhKrZI57PHjM+CMJ8Q4286uHxRL/zj2Exdfe/FnRJR3/HiftgksdnZAJ7RVnK1PGPrx/HxtZWFVZlNzKpMwCWSPf+Eicy6OQvbAFMai+GCT0RtF23r2vKlz+oXz8e+xtt29e5dbt64z35nxH/2dv8knf+5V/tvf+ld890++w/6lBTsHOzirufPBbRZ7+9x67gZXrl/jg/c/5M3X3+b+3fvceOYmewf7vLy3x41bV7n9/m0ePTrh/Xff4/7de+zs73P18iF7l/ZwXUPrd3n+pV1uPf88eVizOjvl0vEj7t55QEyBGM+wpoqftRLRP5OoA0KUPEqRjACusdDDuu9RtfFOGYVRhrJtAszEWMgxsgkjeuk4O3Joc4xzhtZBt7PH3uEhuz5hUKxjZnl6zHq5ZjMEQjI4Z4SC40R8OuZIzkHWCwrWGJRVIqbWBussOcB6HColpoDWlCDNbiWkra0cOZ+L52suIMaI2M5X6zVV1/oktGOqZSp1b1nqHKMKpAKu5jNKEZqzYrJqN+SaT9gCnvIFIlxRWxLUdIuZSiYFob6mmOT7VeqUMZoxZkpRQrkriVCpQXVphykjJYkI+bPSKJNrikLyH7mIvWmOIt7K64E779/hwYcPUEqIg2GQ5hZrFKl6ceks5Kzt3qpMwm4tzX7aYH0rVncJfCvnMlYhlUL22JONl1b6+2HWky6zriNZla3AE6Y5Ur6z0nU91JkUMzmei91QCHW+71kloQcZJXklYwxJKYy3GO1ovJcpopLxLlK9VBV9kzI55UrGTlUMJLG39y1FZVzjICV8q+q6Vih1jbPO451lYMB3LV3bEkshj5FlLgwrsfq2ztMuZvWeVxjrIGVCTDirKbGwGXqEuztum3V1JfGiNcZY2YdN90XNC+XpXjGVVlib07RWpHhO6aSIA4CponftPc63ONdI/i8X8rBh7DdVHFuJmfW+SjmSB0AbDHIPpBhQRVEmumWS9TtboWrlXNczVQghbAldT8fT8RdpnB2ecftjt2nWDdH9BRHZfQHM/87wwjMvMKu51DsfvcNbn/2LSWxRSdGuWlRR3Hr9Fr73uN7x4ldfxA2OS3cvbUVL6t8nsPsPYIj9qMN7L3UtY+i67gnLtmlsNpvqXFP4zne+81M42j99fPe7H5WG05/CcD+mOeCP//iP+aVf+iX29vb4+3//7/NX/+pf5Xd+53f42te+9lSs9HQ8HU/H0/FjGj+ySKlxTjaTMYndykYKMpPIYPI6VWoq/p933CSmhK4U5YRMbpgS+75x1VLMYq1hHEdiyIQ0YK3COEXKI6UkUBlVClrnKqKQDpW2ayRBXqoVSkw459FGM46B5dkasrA9SilYb7HO1NdLEmLMGbWSzmNdN9ApJoy1zOdzYgw1qSpFSqsVxsDObss49mz6gTRKIvtsXIIz4gWuDH0PJCmUFG1ZbxRhSOii8K0lZyW+6FE2sG3nmHUW46CbSQF27ANxFEuMSGKIg3T6JIX3jSRLFYyjWLYBxFGKOc5plBNxgXEN/bpHI51NMcqxKSeigNPjU3xnabzB2hmrzZpxVBhtSCERcqxkLE0KmWwyvmlrAkGuo6oklfnOTIocMaGUpR9H1CjnrigPWtP3kdmsY7WKlaIhhX+ltViA5NrJm8EYh28aslacLNcMEemisiLg0fq80y/EiDamdg1HxjFJd7JX9OOGL3/5a3xw+4hf+2u/xNXnDtlpLpGCnH9dyR5FJZxVuM6zGdeEfiQnI7YaxjCmTIwZbw3WWzb9Cu88ylpyKTSNwzcWp6QDrx9OiWNktuhwrmNzNlB0wTUNuVhCv5bCQy6kJLjtkmqhqSbkchKhnWk8zlm6rmFvb4dbN69RUsIZEbwNIXK23tCvN5z1K8YhsOnHWlhR2wTUlOyTrmkwpnZbVRJRyvlCgkJVwUp5spCgoObqyUW65CSrdIGmdEGQdF5QeDJprS8In6aktzEWl8/FTdvuXFHwIZQ0SVhBJiOfPyG3ydV6wOj6H0KsspbFzoLdnTmzbsbh5ctcv3bAy89d45lrB1y/fo3Da7c4uH4D49s6XZ5391WdUk3JS0JnKpZue7SrmAo99QCfFxx+ePfzv2tMP1ee+LUAWStAE9GcLde89fZbJDZ4b0ibwuHeIUUVxhiJCWKGnON5V3gVq5ElKWj1VJysxfiUpdu0yHOqlcPMFrhFR9cYdg/nXFq0KIRmJUS9P3s3jBSQNCr1KJ3xsxmf+twvce3mM/zeb/0G/+//5z/jY595lb/9t/97fPeN1/ni7/4uz33kJT7+c5/hP/sv/i5vfvNN/s3v/mu+8kff4K98/vP83C98mtd+/hd46ROf4K3X3+QrX/oKb3z3Xd57523+8Itf4pkXnuWjn3iZlz7yMpevHLLYvcJi9xoHz77MRz/5V3j+1e9y5+7bHG8sezuKq3uezXLN2ShzoRQEAifrFSmMDAlSsWjjicPIehOIEUIJlDBKktaAn3na1uK12CdsQuZsc8rq7AjwvDMEHhyt2Nn5Yz75sZvcPNjDHd7g8pWWj778MT7xc/v0sWf16C7Lk5H7ZxvieIbHQiwM2hDGSHEFoxJJQbGKRGR3vodtPGmjKUWzM5MOlxgLqUQRI9bu4pILISYpjEYhIqX6jJv6PIVqaWC8gSSED+91veuFSFgSQvtTIl42o6IYizJO1v0UcDlXEtqUPIeJ/JCzFGBkvrEoo9BWydyjpYDhnOX2o2MoCdcIoSrFAlkTY6EPGa2kOF61VFVAWNjd8+xYyzgUTnspqHsnot6YEqoISUSK8lKsUzGwHkZ6ztBO6H0xREIVROeSKCVzfHaKVlooH6Emy42In/x8zhAVatZwZe8KaZ0IY08ImUePH9Mvl6SwESJHERGmqVRH6UoWcVHKkVSk8EKRcyiWWkbsRJGEtPyaqvWSIptKWCqRcZA4K5vCul9TRhitR0chDBljUN6yOTthZE0aR/IY2KxPCTnjZ3PCEMjeimWAaVCqUolSIabCOIyMQ6T1mT6uCTlijaZfbbAohjGIELkfxYYATUyI8LZp0SHS+Ja0F/GzHdRyTYqB5dkS13ixENzbpbUdaRaxXUsZE9rNcf0OhJ6kDCEFdmYzUslo6+iMw/Vrosq4pFktl4xxoCCWU+NGLIFzEpqVViI6CRGiyXhrCamgjKFrPKpxGGuJYyL2ZyyPjxjWp9CvIQ7EMKAbxMYqFbHZUpDWA7mIHVUMoxTKgoZspciEZiDitQhMh5irzbJB5QApEH+G6fZGm61gTgRxUhSSUEBVccMkLpps3SROmWiB23hAw0QfFKGM0BMmgZPElEKI0FriFHkmyzbGENrSZDOmMc5U0gCVJJgwRsTJqc6D2wI8pYqXatGxWlunVBBJ0WTdUUlCdU7Jky0u1V5MCemsaaxYGIYoghsUQw6gYz3mGksU6jnThCCWKRQwSs5FTvJ5UmyrewAzUXKkCSAn+daZqbCryDlJgbrGZCKekb1TSnUPpy3i/FnQ2hJCREM919SipVy/YTNgnMEYhdKuCjynvSLbhKqiFt2V4cOPf0ijHEkJkUpVqyjvxQZx8iuJKUGqVAKjQTliTHhnpfGhSCF5isWmgmepAgpt5LiKUvSjECmUNiLGqsc0SZsmC5q6YAjlTgldd/PGhi/8/hd5/dtv80uf+wwvvvwCO1/fpbwMygp50FqhiGitME4LXbcWunMS0X+qgi2rNdooYhjlWdEikrHGYI2uVm6q2u5JQVZrIWgapdHWQNGkGKoVLNVOsGy/O6WgspwTh2H3dIFPniuPLjPXM27G65Rc8MkJNTNlxhAJITCmkRRl7/P9tNRzC7Sc2YrlJjra9772B4XBF0mepVb9y/e8sNTXXWx0ePJY1A+MsbWeSLXnRJjt66q4UB6tC+Kpi79WccNEHFGqVLGipukauq6lbVt2dnbY3Zlz+dIOn/jYy1y7do2r12+yd3goRMHaDHC2XPLmm2+wWa/rZ0zEoIufPIl0/iwCpR91/LD9xLnoLCNxy+OjIwpR1qtQ6NqZxGVFBCepikTqiWK7v9s2RZyf7+mcT/eFEHeUWDl1Hk2h3el45tZdjL7J9yso/gzfXcEQRk6Oj7ly5RBjNLeef56/+z/7e3z3W9/it3/rt3j9m3f41Kc/yc7uJd5//12WJydcuXGTj77yEfpVz/vvvsc3v/ZNLh0c8txzz7LY3+djr+2yXq6488EdHtx7xN0P7/Dg7l0Wu7tcOtzn8PCQnZ0dnPPgPH6xz/7l6+xfPuXk9Ahz+0NWyzMu7TaUFBlCJFVRS6rU8BQDqShSFjFQQRFj3s6Xpa4jWgmtqPF20pESYyGmwCaOlLwGpVmtewp3Odjf4XC3w7Vz3Lxlr+042L9MVBCGNWEzsB4SYxqxcUTlqjWJmaxAadknFqPJtdnHOkdRmlzAGrFAz6lUml/eii6o89xEaSvFkHIRaqqeLMyEWKO0lnig1Cao+ryXUihJBFMGhTWaWFJ9Lg0p1XxSff2UkmD7dFXhYS6kUpuulAhthawqpHJjLEMIDCECmbZr6dqGnMHGCz9LuiCDlfveOEXnDLpo+lHEQdqcN2htZ5gyafZkrU0hkMax0lupTWKZXPQ2ZhkZSUkE0ClVynydl7S1cq8o6BYLsWZNssYPw8gwDOQYtrk1puey0kdFyKzJKm+nhUnUJQKyqTFMjn2ysctJ0HxChRRb1JRKpecJ3TuNYi1vEYFRTFU0Pg4UlVhL4nh7/MqIMNMYS5KA8InrV2pjRi5lS9COlbJUxiBCnLrRs9YSxqFmn+VMamtJBaxSFGWwvkFtNpBkrdNhxBmLa1p821FCptFCdYpjAOsgR7G1HEectVuRkjNiXWeKNK/mEClxpBTZF8eUoMQaC01C/PqcJRFPKzRZy71vjam2iZDGQOgHhmGDCiOkSMlTw6N8v5wzKSmI47YJDaCkWAV71RI2i2gujvL8pSpSMsaga2x40cLx6Xg6/kIMBV/6O1/CDY5sf4Y3xBfG+rfX/O5v/y5f2fkKn/zkJ3nttdfY+T/twCtA99M+uh8yCugkc4uJhsMPDmlXLS9+7UWaVcP1N6+jisJv/FM60o84JqeLtm23wiRrLZ/73Oe4evUqN27cYGdnB6DWbhJ3797lN3/zN3n06NFP+eh/+JgE3D+N8YlPfPPH0ry3XC559913efXVV9Fa88ILL/AP/sE/4L333uOf//N/zp/8yZ/8gH3x0/F0PB1Px9PxZxk/skhJa10T6dIdnKaurSqeyOTta0KK1UO7UDCEELYCJbEbmKgnhaZ1NK1n06+l68nCzP//2PvPbkuy874T/G0XEcdcnze9KW/gDQGSIEBCAuXYbJHS0prp6em1WvoG8yHmM/Sad9Mv2NMzPSNxWqTIIbUoNh0IFICCKZS3WVXpM689JiK2mxfPjnNvFkAKomtKzL1WVWaee+45YXZs8zz/5/cfQVJ4X1FZsUGIMTEaC9ZQUMliK+Mqsf1KKRCCwlQVMWV8Fwl9T/IwGjWSiKo8vc9YJ8Hp+bwnF/rLaGRKgD5IJmOFEZEAt1Lg3GAdJwHyZdtLUKipZCOIpmoqmqYikggqUiHCkm4pIiaFw2nFctEPLnf4XmKjVmeqyjAaN6xtjBmPK2wtiUetDEcHM6IXGxzlMmsbY5IPjBpLVStiilSNpc4Vvk8cH7akpAqZScQI2toSuEloLdXZ83aBRWOyorLFez1Gln1EaQMYoWYlqSYWWIfYHUhiOJFVIgSPVgpXj9BEfPQsQod1FcknmqAwpqJrJfjSBU/ve6RIJwOpCCaMJFMKBrmpK5oGZrMFMXl67whhsLtRxBzwweN0JQHokpgF8DFBkMCNcxbjLDF5IKKd45Uf/IDD2x/w+S98ilHlmDYjSRClICh7reh7IUz4vmPZ9hhds1x6hsr+DFSFklHRsH9wyHQKpmqoJzWz2YKxbaANTEY1uxd2ycrQzhdodUy37CVg5T21EfKD91EqVrMEa4aqU20NdS1JJqXE2qyxFSpoDvcWxBg5Op4RogQ5u24pQSMkIRQCpcqeUsl4Yr/4I1QjJRXQ5YenRoNBaDQE506ER6skFR9NGMCwOlSnfiY2b3Iup22mVSGENE2NteK1nBaLVYBsCJLFWASRwogXedBw3LkkPY1ZxcpDiBADFiG/6BxIfkHWgXysoMl0+5rm8i7nLlxh48xljGtOJSSTBDCVgmzISEIfNCpL6GtYg6/IYApAktnqr3zheiKMQilSFtpUVA2zXgQO8+WclAOucmzvbDMajcjqVIA4DQniCEnsuXIhhwwVeep0AjYlshIKXN/2HC+XtN5zqKFGsTZtSqBToVSp6n/Iwu4/3lZdweiSqOqhypx//CL/9L/5Z3zjD7/Nt174Fn/8+7/Pl/7hz7G5XvG9b/6Q//Cb/45nPvEcz378k5y7dJ7v/On3+ZM/+Drvvvk6P/cLX+DiY1f5+Gc/w9PPP8fbr7/GC9/8Bq+89Db733rAay+9zJkz53jiics8+dxzPPbUk6ytrbG2tctnfvYsn4hf4FNf+AWWR7fxe7e4+8EHHMz2aZfHzNsZy75n7bgi+sDBMlM5K2RBJWLYmBIhJfq+Ryuxa4p6yWS6RtU4lnOPi0qoeE7Rh0jsenq/YP/ukneY8WC6RrV2h/WJ5tVmgl7b4uLZKVcunuPyxy9xxSTqdEA3i7xx/Sb3bt3CHy3xOqERwsts0YqwR4NBEzF0pcJdhUjynlJKiUJjtMbaCvH5FKqQdYbsPc45ags90t+VMWht6XtP54Vy0bWdWBMAbfBokzh37ixx3jFbtuQgyd6mHtEV+8EYU6msVit6ilbmxMrMyGshJ7q+5+Awgh4zGTlmbYbeM64syYjgarLmMGbC0d6Cw/05MSuxOQCs1igdaUaO8xc2uLy+wf27C/o7ewTvyVGTtKbvAz5EUBpnjUivswgYfOfFCgmNShHJR+dVBWok4bXM4/JcGEk+o2mXnnvxCDOacqaZsL25TWoghsj9Bw/QtgJbE7qevtiSJUSkZaylchXtcikJPmVkvVQG4SFZLHafJXFiBgs4GbdihsZJUjAnSYbI78q6L+SI914IjjkXC6XMfH+PrhWSymDLa6saW9WMmhGNTaAsjavofcCgiJ0n954uJbqul2E1SZV63/X0IWGCzFVVZXB2xHH0dF3PYjbHh0Tbd/S9Z329QrmKrZ0zLI5n9O0h7fGSMO1p1mqc1kXwHqGqiT6ha8fGZIewXIKrCCQchnpUU03GqADrJKyzxIVnsViwbOek4FkulyzbJUZFFJEut8RscEaBlrnUVa6IpBWhDxBbIkekeU9aJpaHR7TdgokKaDwpexIi5sudWG+QQaUkNJUUcUajsxDHgs4oxF5x6TucEaF77zNJKUZ1jc6RHDw+/O0NkgzziiT7KTQBoCS7TgsQYrE7Kr95ImpRIgyQvIvsJ6w1WGfwoVgOa4Wzrgj2ogiZhzW8K2SxJOmqkAaqIpATKSmsFisxSQIGchKRT+0ySSdiymJjo7SIQXOhMjkrFlvDsZfxdbWjGJKhsEpWxjLeibBR3mSL1fJA7hkuTgwB70XMr43Yag6fmwarHI1Qv5yjrp1YkhpNQoh1XdufEDUN1I0T8pHVQpHNCeM0xslY2XVy/gUKQc6SUE1lPzQkk30IKEBntUo4kxPBrzKxCJUxr27rCQ0ugUp0kyVedyhEpA6S6PY5yhiXMiZJ0i0EESmFlEoyd+hlJ/beSksCH5VLMQz0vZdnNcp4GFc2QrHsV4s4KObVmieXJKzsg0VIlHKxNNWGDz94n+O9ezz+xDW6aU/1jCVpGWt9sRceyHYpRUKICEknrgR6ALmRRKexlrbtqKoKbayMk73Hagsh4ZxhvDYBFL73RZgg918IE5roJYmdVabqLKO+Yu3+Bq53bN7flLkVTbNo0AglzlpLrEQQO+9mq2cuxLBKWqdiBSzWQcNcM/SLE6HS6Yf+x8eHh/3Dw/8e7uGwiB7s2U6/axgnhufoIRnC6f1E+bcxsndKWvZbp4/v5JhPf0Fm2P8Pz6lSZvWj4fcra6iqhqqpqJzBqYTyHbSa7bULPP3UU+yeu0DVTAkpsVx03Lhxk+PZMcvlssy5g6D79AE8fMY/ugv762jDdRz2FpAx9DGzXC7pg4csY+VoXKq5FSdJ7FyYZYPtVblGefD2KkcvZJuTn8eUhUgYE3EplLOcEs4KtW2QDP6Fzr6IY27cvMmZ3TNQ9nH1pOYTn/sk586f5Y/+8Ou8/torPP704zz25FXu3bzLjevX2d+bcu7iRZ567mm27u5x/b0bvPyDH3Ll6nnOnDvDZLrGU8+vc+HSMXdu3+SDD26wf3+Pw709br5/k42NNbZ2dtg5s8NoMsXaiq3ds2zsnuHcpass5kfQz1keHrJoF/S+FWFyClS9IXqx843ZEZPsHYbHIuVMTDJ2GK3RKqIz1HUl4lKN2McjFsaxCNF933N8EIjdHFfNsZXlwCqUG1OPKrbWRow2d5i6CpVbdIwcHrccHB0SFp1YqJV70flQxsuyb8+akEX4qXImF4HNapuKKjQ9Q1ZSCKGMwZS1vjWyvkwyma7mht4HIbKV8dMaIZuSEs24pjaO+WyBVGIUcuAgmORh+/fBQnl4xNRgjZzFcjP3MofVtSVESL0UQRmjVlT48bjCt4HZvCf6eGJdp1UR2SiaxrKzMSX1mTxb0nZeCs+0PC8him2rVmKIPsylaSBKliiqHrrwMPmqcn2SULZYfUYhm7cepRPj9RF13YgFZ6El9iWul4nFJk6EymqIKRlTbPUSGonLpNVzm0+Gh+GPYVxfrW/kogpxd7CmXfHVSixShG4p5xLjUsS+pwstzOcwCNWVwjgRyY5GI0gWq4UoqDJyLUMslodR5ushRhGF4GXQq7nVOUOKsk7rux4fInHZEmPEWvkeVzeyF13OSTEQOl/ou7KGCyFgnHymxP5qSBVKG0wtc6gxGlM5KYaJkYk1qChWrn3oyUVAp7wnpyiFCVEscY0yoEQUZEusS+692OORZd0Wcodf9njf4UhoJXLznLMI4RhoTEX0WorLrJGysVCE9LYsvUKIKCVVijGK+C5liy5KsB8vMn7UHrW/3e1o9+h/70P4C7Xj42O+8Y1v8Oqrr3K8dQz/V/72iJQyjI5HjI/GXH7tMqOjEVdfuQqISGn93roUynEiCX7U/vw2FAJXVYVzDufcysJt2ON84hOf4Gtf+xrGCEV6NptxfHzMCy+8wO3bt9nb23s0Tv85zdr4H3/TT9BSSrzwwgs899xzK+KmMYbHH3+cf/Wv/hUvvPACv/7rv07f938l3/eoPWqP2qP2d7H9xCIlcXWTDIo2RqooUz4JPsRUbDPEXsQMFlGl8nYIAKYQ0ZUr4oiE9wptkeCxMeK17RxKaVw0WKPo+754cZekWUhUriZrQ+6D2A+VyloRJ0HwQmWazzr6LjAaWSaTho1GhEbLNpDQBB+YTCpJlISISoJxPjpayIa1YJ9TilSVg1JtDYCCZevxsSzCtKbzS6xJaGPRMeBqSejqCME7yBZFQudEVZlhl4/TmrrRNI2lGdUslkt630vCQmV85znePxJilFKMbQUJ2r7HGCPUIGVIS0kaxgAxiAAk5kQzqjBZDwXINLWjqRyg0EpoGK6y1NZRrVtmiyV96/FRSFLaiQWAJGcp1c2l2kYL5SKGIDZkIVBVBmsrYs60PkDIzGc9SQuBKEXocxSEspEQjHMGHySIJiKcihQDfcoFYywV8iF0KzV22y2pakeKmWXXMR6PqJoG6ywhJqFbpUjOGucyo5FjsWipXCanY8Z5yWZvuP39b3FgDetrYx4cHhGyRieFQdEtA+3SY60hRqH26JL4MUoxn825d++A2tVU1uB0JYlvlegXnth5VG1JyrK+MaVyltl8iV90NNbhRpr5vIXgSVHjTIXRikpr1pqG0WRMGyNdH4ghynMFhWrl8V1iPuvZ25+RstAYUi62TAPVCEq1qwRnB5yzLlXjpyuS5dKqQqEqfXuVcFAlSHUi1jtd2SgCopNxY3j99N8f3rKcVFVoXYRYSKBsqDiU5HqpggthdSw5SUKLlbhKnfrUJFWASDWCcRZrDCNTseY0a2NBZo/GE65ePse5czt84tMfZ/fMDuONbc5cvMpobb1cD0kcZDRJiWhGRRiqHktWuYisitijWNAMVjClVG11vj+u8vsnJyudBAzzajyS87dZic1TlKSdSj0htEJKaAO3btxaWegpEqv8LggWvgREpXD1FGmG1YuSKlBabB9DJiboQ6S2ji7B+s5Yqmyzk2P8M5NTP76p1TlmMo6kMuQlyc9RNFTjKV/6h7/Ic5/6FN//5p/wx//hj/i5X/gF/t4vXebFb3yH73/zRa6/c53P/vRP8/f+yd/n+c8/w1s//A4Pbr7ND773Pa48+yk+9vFn+cRnPsnjTz3BW6+/w4vf/BZvvfEu1999j5sfXue7P3iJixcv8ewzT/Hs88+wce4C41HD1cuXgfOk7lkuPXGXD99/k/1bH3B0sM/h4T3olzBSaNfiEcrCdNyws73O/sEx+EgOQmLrg0eR2HtwhHUaYy0uS3VpIqB0zWRrg+nc41tPspbDbk4V5/ilxlZruIMHHH8IL313BJNtdjYzVy+d49yFZ3nqYx/j409c5M6HD7hxsMdy7wF112OCRmPwIeFDhzHQrI1o6orYdqTxmNaLUDMhFbHRFyu2ql5VRSulWLYtyRZxDEjwWyuss3Shw3tB4FtlcM7ibEBZy+7ONjOO0Q8OgFjEqTI3OOeIKdEul8QScA6l+2mF0AOLFRM5E2OmDYn9NKMdVSwWgcmkJleeiasxlaWqLFtnGrZGcxyOvaMls1mH1QGjIRkFOdHPF6xfucBkVGMszJaBe0fHdN6LdQUBlSM5ZiIQfCpkHbHKzAlM1uScTkg2WaxMeh9wtlRIOY1VWoSjUchmRkUuXjnP3/v5L6P1iHv3HnD9jXeIL2fuKi3CIyVV6xjNdDIlxUhlHdrMmM8WZGKxSBWKU1VbIV/GsKKgGGsRLFEqlbyKumlINtN1rRBWEqgIsZfq8ZijWDN5jwcO9w9Q2tJ7oRWOmlqC4khlcpquo3VkurGJYSJEDedQIaKd0CdsZYRCFCN1Xcn4PB7RGENfqJBt39MulzSVkfOpKmKK+OxZzhekGJmurbGxsc5eaEm+Ze/OfUkwNSMR72TNsushJtY2JgQVidqwdXaXphnTH7eYxqJHDd2sAwL1eEyfO8bNhKk7i58vSCGSVCZ0S/r5nHqxELpW8lSmRSnpv0RP3wWOdY9KnuWDY2xVsW4qlA+k6Ek2Ys1JwqapLcFL0migZGUv5zlyI5IRklTKmdoKdSAluX+NdWglJLOUNM4qOp3lBv4tbSsKaxEVn9CSVgoIWVeWdYYu1sshD3MqDIIlIajKfBFTKqddRDNlz4AqwkY9VN2nlXYoKbHQzSGCOk09oljCZaHQKE0fZQ1mrcZVlsZKojOESMaSUqZyptBVMhRLnq7zCOVAApHD83kyl1M+JwmJsrwQUihW2hqVI8YotNX4DMnIekKVBLyxJ7OsUhprFdbqlWgrRrGBzkrEAH3bFWs3hdOmiJ+EIpsGqxWKXCGxsghLJUEsCWD5PmtMWccrIBT7PLHuMUrT+yDWI4WMIUlhKR4I/oSO6cmran+5t4WSaU6s4YJkVvF9JOlCacgQcyzrlVLRa2TMTLmI2oslUox5ZaOXSSXZK6u8GLwIubLYljonJDQhtEqCMmURnKNEsOZDwGxBpsPlQB0196+/TbupqCvHInfkrCSpipC4AgNhSPoqxuCM7Kl871nMW4yxYneuTEnYZrFcjQlMIitNXVUYXa5vCCUBqQmdWMyZ3jLZX6NaVmw92GRrvs4oj0lerSh7g5goZxHqJeXpfWS57EpyX+RxphRknC5qyEWQooYE/SlKzo/Yr31kHXiyb5BrcHof8fAvyiU6vRcpH7iS8eQfswdYCSIYiEeqjAVlbV6ew0HIloGsTn33Q4eRpSgDsXEzTmxwa+uoraZ2VoivzrG5scaZ3W2uXrvK+fPnuPb4k2zu7NL7wMuvvcbh0WERqQ1pe1BZn3zhsGf4MW3gsT50jH/p0uD8kb8Po8/wkiLmQVAUyUkI1ikkjo+P0RSiynA2Dx3OCXH29DcJGU2dvFgEIkK8kz2F2FxqTG0pTpUf/fCfuA17itlsznzRMZlU5NRDoRPtXrzIf/Wrv8LTLz/FH//JH7Kxvcnlxx5ndPcBt2/e5J3X3+TM+V3O7F5gY2eL+/dukvslH773Lrgx5y9eYrq+xnTtKc6cPcfdW3e5e/sOs9mS5XzOvQcPmHw4Zmt7m90z20w3NnF1zbgRKg95m7B5htnskOODPXy7oG2XkFqiApsjfVS0XmG0ZjyuiSGB9wgxLa1IlbkTETNKRLZQxOdKY5yjaTIptiirCTkT2hkuKIKxKNvTz+HoviGahroxrE0s6+tnqKebXN2Y0B8tOFq2LJczsg+Qio1o1qQYQCWMq7DOosq+0Ggp0JAiHwrFVK3m+OGZTinh/YlNpDzEElPQWuaClGTNilErevKorqltRbvswHv5niKCHSxeFazsZBOIzZlCyHNDkQZCyUxK0XWeGBPeiZVdbTXZKepRJc9/Yxg3GauWzJeeeVsEZAqxClaqCI8z6xsjUJmudiw6L/uJ1UMx7OMLcQ4RqOjV/Fpmqjw8YfnkXMpmXRcCkmagayWikpjelSsXqesxISaOD45Qt+5wOFMrkY1KCaOQuGsRD5Iz7bIt47vcNxEwaUwRu+UMqVy/FUm6kJmU1riqInjZ1+Vh4liJZuSMKcWuAgISoXDmhPaYUoa+xRmLVhlbV7iRFcs7rYCIMjKeSIxYl7iQiLastVJUGwthK4nAGzMU3xi0ESFRjFGKba1hNGoIfQcx45c9LVIUIkThVNbfGWdlbk5kbFUxqqtCzI/o2kmcDY+xVgRUyhSxVST6wAjIORJ7j608IYZyLb2s6YwilqKx3kdcBB8XJKVorD2xolbphMCUB6tksajLWZ6TmOOKOC7XQq3m1WHvFlOWPaqSgpQUi6hJgfoz5qRH7VF71P4K2yVWa96cMwcHB7D+v9/h6KBRSVEva3Y+3GG6P+XKq1fYvb7LaDbC9vaREOkv2JxzWGtXwqSPipKMMWxtbbGxscHly5f5/Oc/j9aau3fv8ru/+7t88MEHhS7/n4mV4X9B7c6dO9y/f59z58499PpoNOIrX/kKu7u7/Pqv/zo3b9780T3to/aoPWqP2qP2H20/sUipD4GchKxhlC5VSRqlTLHnkjT+gI3VWkMIDNVeRsrmZLMYbbGckuqmvs9UlaVp6hKvUvS+R2uFH/zPFdjaMRk3tF1P3wnmOBcPh+ClqrTvA13vxZLGVWSdMNYRM3Q+ox2oYvdgnGI8bdjYqPF9YDHLpCiJxqpx+F42wrI5l8rWoXoyZzCuJvcLck5Yp7FVXQhBEeULsSBogoKqGbFRJbrWE7uArQYksFR0WSdJBTdY0PlISorFrMcXRHNtLWvrE6nM9UIyyaohIoKoyWjEwcGMmDx1XbG1MUFZTZ8jPkSW8466qhi7iq6L5BTxPjJtRtSVwedE61tiNCz6DlsZmmqEMhYfUgk4aJwzkCXpaqwhxYxOspm2OdF2gZhFDCZBRwnWWGVZxAXRRyrbkIwEZrQx9OWegZFEkYIQBzrFCfrSFIzxcikULK3BWofvwQ0UqvU1jg5n9MtOKunrGlUs5EJIjEc1Win64yU7jeLSZElWS27uRQ6tQlmFNYpILB5mJYBV+rWxlvF0jRB7jMqYVhH2O1St0WPDuBlLpVPfszxsCb2nmwRsUzFvW2IfUDnju8C4acg+UZkKN64gOdJI4WMi9Z6Uxfpm3nX4PpXEwkkgWaOJWqqiNFK1NtiIKKSS0EdfLIKy2BNRKjEzDwkIV1ZsSAzwJCNxElDOJakiCb5hQc3Jn0qjgRMrk4fbSRXjkOnQJ8E6DRqpaDRaixihCKWM0dhK6FAxRgngiWJGPndVFCnBmaqyTKsGrR1raxvsnNllNBpx9swGV85v8fiVc0zX1hmPxzxx7QrjyRhbbdCmmj4pjlvPwewey2VL1y2IXYfvO+KQNIyQ6LB2xGg0pWoM9WjEZLqFcTVxdSwKoyjiBAl0aWOkXw3o7XL6A8GEh7Z8q7D+qas43JME5ZuG/zJSwXrsW46XHc7WGNVCCiI2wRNzD0V8shJZrZJAp9IJQ3J0ECytDjSStTyrJg9Ur0RlEpXOWEuRdBXCACcVrT/aIf68tINcB4MiJQddIPt7tD7QbJ/n3NXz/FzzVf5/v/7r/Nv/6f/Lz3z1F/jSP/oFLj/zJN/+kxf4nf/1t3ni6Sf53M98nq987Z9w+/oHvPz6H/Kd/+e/5gfPPMnXfvGrXL52jU9/7qd47uPPcPuD23znW9/l5ddf5fbd+9z5wSFvvPk2f/yNb3Dl8Sf47Mee54mnn2B9awvdrLF1acLa2Qv0s2Me3LnPh+/+EPf+hywXR2R9SGLMyFVMJg3nzmyQc0AtwfWazkQZx8nk7IhJk1OgEpc2IkKs25hOObsTuXt/j1xbXGVZbywTp8lK04aO+4uOrn+A3rvL4Q3FO6++RzN+i3NnJ5zd3CGPNgn1Fusbiug77GaNzxqbjvn4k5c4OlywvrtDVWtqbbGHM5oU8CnReU8MEHIkDsFnbYr4SBKmpqnFqsv3JB+kTw2WAEbjqpoYQYWAMQrnKsxAjwDGo4aNScPxfEbohTS1spG1VpLlWhesf8T3gagkmT4k5leEhJRYLpfE7DHTmiZVzBYtapm4cLbi8oVtGhxKPeDgcMlc9WgS1mo2N9cYV2MSnsvXdpg0Na+/d58H8zk6KoxSOCxm0GrGRKUUPRFrCjVEZ7HZ6z0+ZqxxK5qIRknwuiToGayuUqayljhfcrR3n8P9eywXmZn37J7f5anuCdb2tjg+nrGcHZJLEmU8nordZ9MQ+8gHH3zA8eEBy+WM2fwY33oZd4wmZ7MaKJ1rqB30viclSUTP5nMMpiRzNYMY23u/Eodlo0BDSIHQJXLqiDljnaVFxsU+CIGkn885Xh6xvpixnC+JqqIZjYswQQQRaI3GUTcjjDb4tkdpzeJ4xvHx0Sqhn0Lg6OCAlCNNU+OqhslkTAqZ2XKJVZntnW3myzn5OLFcHLO3v09dNyRtQVtUCsUGAybTNXobqBvHqJ6Qe00k0raBZeupalkntDGRDdSuQtcN9cjiJiO6eUteW7JtYD7v6ZbHGCvC2G4xp+oiXd9BDqg+ELoFi3aGLnSDEAIt4IyQcnKWym5nLaFPxAS1FdGHiGQilXNlqkxUlSWR8F3E95HaWMiBVNbSrrLifPW3mKoeUy5jhKz3h6TlIFiCU6nzU7TGVbV+SSrmlEQ4XN6di4WMsaYIaZBkYdm7pEFUwTA22SL8zoUMK3OekEZVuf7ynForR6WKWCOmjF5pqkRI5SpDUxtiSvg+kpMqAiKzItHCKZvGPEiBQWlLVl7mzlI5oGKx1SQWMY4IG4211IbyfKRCcxrSlzIWaa1W1lYDSafvPQmxw7ZayK+ZRI5iIZSVJWPIKVI7R9v2K1HSqHagpeghlsIBayy2JMBAkuSVtWX9DCFGkhKKkDKa2jjQ6mF7GiPXKBXryeH+y+0W4UwuCeUhsZpiErFW8MUeza5E4korfPaEHJD9BCUxLok8Sv/R5kRIE3xcLXO1lvunjYhtq7qi63oRbKqTooqBWuGsQT2liNkztrDmPOA5ajPdAtRIxs2HrIBkwcVA/XRVRRqIChqSj6gstj3WWTnvPtImec6jk2Sq9wG7MJigcd6yu3eG7GG0N6GeN+hgcctqlbi2CpIGH/2qz5+QbmTFlU4/fasEujxHZMVpm0JZd58Wx/0kyYphP6FW24uVvdsgRfnIcnf1jAxH9pDg6XRhxJ8hUhoS+UWZqJUmmxNx1mkJzGndj0ISvFVlcVWFtRVNM2I8nmCtZTJu2JiOOLOzwXQ65fy58zz15ONsbW0LNSkbYoZlF/je977HgwcPCMGL3U4hGkt+X0imWrsijNMY66iqBmUKtbiciy52PjJ2DraMf9nBPq/+UwrquiZnCu0w08dIF2Kx6dSrvYqIIUT4MYjUHroBnFjXDQUqq0KY4f85o1QYRmUG6pUmYbVQIE9u64BxU0Xc8mNv+4+eXelbMSRufHiDZ555Qj7Kd4QUwdbU4zGf/OynWZ+O+YP/7Q+5uX+b85fPs7a9wY3rN7n14S327h1w6epFLl68gu9abn54i/evf8CdW3e59vhVzp4/x+bmDhsbG1x97DJ3b93j1p3bHBwd82D/gIPDGbdu3WS8ts7ZM2c4u7vDeG0NrS1uvMbGaMza5g79suP44AEHBw9oly3et5ioiH2kcobpeETv5d7oqAgqrmxQRfNjiiBI7CSjHgT0irXphNB5odRaQ2UctVUrMmkbIiEsyXlONzcc78Ftc0QzqlgbN1g3IroKW42xxqNqRcxWLKQ1VFqjKydzSwgohK7ngFBso1LMqx2s1iIeTUmE9FlrWQ/nTIxhRUWWvilWbiSJHSoK2VObleBQa01TiZ1q54OsCVIsPxuET2XvnfLq9xSUtTlFFCXvWZHHMWjrpPit66gqx+ZoTIVGsSTExEL1pZcqbGUZ1RU5ZZqxpXJTDg5bWh+KsKXQ/TIr0Y4u+2SlWQlTFWLlOtiLnqj+yjVhWA/Js5RywmiLipl+uaRt5+SYWLQeWzm2trdQzuD9lK5dkoLQ47WWNZMrYqX5fM5iPif4ns53K9tcEYadjJdojSvioFxsdGOM9F0n71kJT4u9by76IjUQ9xIxFQp3lvVgCImk5LyzUkQlVuC2r0khgbZCki1rPK30il6FNmijSWV/GUOg66RYUZf1pY89XokYTitJEJMVfSEbVXVF1dR0SxErL9sW65xQ4ZWCKIV+OIWrmtU6z7mKpIpFY8wS08wCnI8pEbLYqSll0ShcVUm813aMjIjU+64XKpKG5EUoZ0MUYmPOkDw+BRGXZRH2RZWpjCrCZ+kLWmv0IAob5r9CP3RGr4idQ1xbp7iydpf4UBExG1bzzaP2qP1da8EFkkmY+J9Gg/8Lt68BDsGT/021so4aH41xnUNHzbUfXsP2lrPvnWXj7gbWWyYHE+DhNf+j9pO3oQjTWktd16v56/S6ua5rptMpTz31FM8++yznzp0TYWtp3nt+4zd+gw8//PBv/Pj/Im1jY4OUpKDhv6TWdR3f/OY3+eVf/uXVWnFoWmuef/55rly5wm//9m/zB3/wB4+ESo/ao/aoPWr/ie0nFilRKo9zzvgQCSVwbpRgmrPOpBLhswOZpSQglFarzbhB0P1S4awKal68vWedx9qa8XREU0kwNAZJVGqnUQaqSssGXEnVa9SQskbHSGU0vlhYpRzp2g5nRSyDksB6v8xUdSUWLoUEslgEgvdo7YQeYwLK5JWgIuVALA44Ve1Wgdy2W5aqJ8hZLCXqkcPqSj47Cm2qMhXKZBwWpTTzlMjoUs0toZpmNEWrRN8HlIpiRWUUujY4ZDPZjCtsrQl9YtEF+i4IkWgZgMzRkVBmxuMaYxRGJZx19AtP3/ZSnaXF0k5lReylIlljWLSRpKWSSGHQykIUewNjlSSGQ8SajDVQVTXGa2KEduklmKQUfQjEFHFaBGch+WKHE1jonpQ0MWWWXqz4pPgqQxY8NDETvQQvfJAqo9pZEdgovfJGt9qSdcRVI7K2+JiZTkesrY2pJ47lPbGKEFeEQO4z1mqUE9rBUKEWdeBwKQYYh8cdflyztbWGaSr29g/RSTFqalQlYqf+XoclEpYtxhra5bzY5lVEnwhtT5ekLytdsVgIqaT3CesCdV2xublBO58BELwi5Yq+90SfSLGj95JEApit8N5DULrYdZSYclQJYql8XwX4xSYCJQF2hz2pGGaooDtttXHye8NCSsSFEnxe0YAApU+C+up0xX2pLlcrAZNc30E4cLqyOiepPBtEDCJMLInxkpAyxjJuRpjK0fVdsR4Te8humSQohMaUZ3uImznjcK6mqsUGqa5qIcT0nmVI3Opajvb2uXPnPud2txmPGt5++zqpjxzutxzME/MQCcXyL/QeH3pi8JJEKpZJco2EOtTUDetrU6nmbBqsrfEpAxpnFBtrNRfPb2GMpg8KYyt2z19g5+xZrKsIITBfLOja5Sqw19QjxuMxa5OGphIKgDYWV4tlCdFjXYe2kPWUrCYSwCQX8lrP/QdHYEA7SL0ErXUhREhMLUlypPSDlCiBrCJKIqNyQnGCNpegd0JF6RNJS3AsRbETWPY9y2VHnzM2a0xOZJMKTakEm4fOi3zX6eTUqdQ0p5MRylQYt0ZoPbE9Is7voSaK8c4W/+if/TK/9+v/jn/7P/+/+OLXvsRnf+bL/NL587zwza/z8p++xPtvvcvzP/UZPvHpj/F//O/+G773/e/zrRe+y+/91r/l8pVLPPOxz3D52hWuPPUkl594nC/ffcAPXn6Jl198iXfeeof33/+AW7fu8Pr3X+Lqlct86vOf4elnn2H7zC6umjLemtBsnuXSk1d5bv+Qux++x/vvXefm7QfUzZtEFakQMtpoOmXSdyxTLJW6HrRCVxbrxB4rhUCIMudiNOOxwxhE9KAVSluSMSQL0+mY9fURh8dzui7hfaRrjzmezdi753jLvY8ZT5iMLWsuY1xDcFPIgZ0JPPXsk+jRFs36lKkL0M05Ouq4e7Dg/sEeh0d7zI8O8MuMx9AmEdg0RuGNxgeptIwKlLEYJUmBEFMJRBsJPgeh2alS3d3nSEyBSCx2llpw+z4Sw2CdkMlaxIgWhXaKbNRJoNl7Qi50EptpGs3W1hSjDW0vdhndYsntvsdZy7ipmWwIiaRqhISHAq2E7rF7dspjl7e5dG6NpqbYnLVk30GfSCqjcsZh6IhSjRsTlTWosr5hoEtKVpyohBaoySIwUIrKynOTUfgkVgWdb1FGcfPGB3zv29/B5xHjzXUuXjzLpz/3LL7X3DpeUNtElTWdTzR1w6iqaNuW996/RTaOvTs3eXDvLiF19PMl3bIjabCCiyKqjHOanY11us4zO14yn80gRHwMRF+q1IswPIVMRiiSQxU1GVLMBACVySmQ+kjOSuwVVBQr1yhjZj+fM1rbJuqIVo5RNSIselIlFJJmPKI2I3zvydrSLlp01SDahQW1tcyODuj9kr52NNMp1WiCUYrJtMYpw0LD+vY2OSS60NK3HTF6RlWNbWoUjoCSCn/tSE0lSf6UCVWF1RkTITSZUSPV10uXcFZRa8NCW5JWkIV2FNHUTlONHMpYmonMsbqesGktZKlazz5QTZYczmZipZmXpL6jzUKI0CrTJwFbaSR5k7IkyqzRRETw6pzBWkUOGaUMlfX0ncL7jK/EfieFRBs9tliDaf6yieu/vjZQDDLF+iMPIoQS/tRqRTXRhaSwEiepE3GtHjpk+dmQv0sx0gcZW1zlsKYk8JIQYZSUhmONKvQDKVAY1i0EMEoR82BhlQkhYvRJMDElIdtoa2SeSmXuDakIkgzKFIWfgqCQ95GETJuF9jMQE0IKDITIXCxwhRqnVuSVmDNWGZQW8a5SIsihJDeHudW4CqVySSyqlT0wShf7E4V1YhWXIkIHKPavMci6r+9aACFi6CIY1orohcQkogRWgoUUJemrlcbHTB7WCsrIf+U6aoQWmJO8xygRXYWSIAuFCqJQCPhCCk0ExFAIDjHhVRRRds74GIuwXtYtR9Nj+kmPO2zIMRWBq/QTSRJKX8uF/KCVJqtEbSy52AtVlaWuLcZp5otQ+iVF1CW0DKVFtMY6cF6R30t0QQTgnQrEaBlVDm0Ni7ZFZyOiJiPEuXa+xJDIQdaWoe9FqKFMIXpEEQjHhM6O2EVsNIyOp9S+YWdvmy2/CfNEDgmdrYzDQfZJOUGX/Gp/0OcMMnKXdbqsxVeapCJez6csA07W7kVcuxL3DHuG4Z0nz+FH6aryuflEkMTQd/JqHFCc2n+cFryc+uOjdtTDe0/vfbIanuO8StwLBdihjV4VNykFxhoIefUZA4HCWo0xYnvnXFWoYEZEecaKlVDKzGKka5dM19Z45uIV6rri7v197tzZ4/69A44XHbfv3Wc2n3N4eCDPY4wrC6RBbHly/STeUVUOZ+W7lDHFYrGsvWrD2nQkMZBCAhpP1xhPJiviV+97YpA9O1DOwxXikxS3oHUReWdICW2ESnLlylNcvvI4bdvx/R/8QCyRYmCx6KRoS4OKmkxCcerwGZ6/k/4wjNsne6aPvJ/yPK22r4OQRFrKGe8DcbhfuQjBYWUncqrDrPrgn7mfAO7du8eFi+dYn4xIRBEJd3OM1aBrrj79JF+zht/5rd/lrVdf58pTT/D4U0+yt3+P629d582XX2fjzA4XLl/g2pNPsLG9zQcf3ODG9fc52r/P9pldtrfPUI8mXH1yyoXLl9jb3+POrTvcu3OP+XzBfLHk8MEeNz4Yc/bcWXbP7rK2sSFCiMpi3IjR2pTt8+eZH8+YHe5zeLSg6++WhIjCUezfrcHFKGvJYn+utNAYi3aDnE5sz6w1aDus8Yp3pTJELUm0urb4YOj7KOu8mEj+mK7VHB2IUMdWIpK1RpFMTcqeykTWJyO2tnZQdUNlFTZ7KQDsIvPlkrZd0vctvuvJKLGFAzQGqyFoGfdFZzFIDHO5/yeCt1gEnYPIM5ElljSsK8oaQew608p5sGwpV4KkIQiiYCVIRqlS/AajRojsQn6X57ZdtlBiH33lROhipHhPxEcJRaauDOsbI7YmNbVTtFEETznJf7IWkL1NRo5ZF6GZkJ/USkQ6PDM5F/v0JGNczBThv5xcKuOsFJFm+n7J7Zu3GI3WCFmztj5mfXvC9s4Gs6UnqoQDGfNROCMC44PDGcZVGGNYLubFajWRgsxFSkvRRkKRDTR1JUSqrsf3Mt8k4spib3gWc5J7pIwutEUl6y7kXGQIkLhkGs4/QVKKvk2FrBuxpsKNJ8SksaYSgVtORIQWW5tGiJkUIRpgnCPHiLWGvu3xvkdpsVmzVS3kJaPQriLHRD0ayWfEQEw9IQaqqpLnRxtiUihrheq7Em4pIhmcw+ZM1hGUUBK7LLRdWwhRWWmG4q9UerZxDpOVUFaNJhhPhQjvfN8TfcBVEd33ZWxP5OHcC91enpey52PggJf1rDKyTtJK5oDSr4yRvhmTCMuNQu5BBh9iIW4/EiY8an/32v0r9znePmbz3ubfzBdeBT4FfPuv7yuMN+igqdqKc++dY3w45toPr7F1a4vRbLR6zyMx0l+8DeTW04Ik59zqZ39We+655/jFX/zFFeUY4Pr16ywWC9544w329va4cePG38g5/GXbl7/8ZX72Z3+Wvb09fu3Xfo2u5Df+S2mvvPIKn//857l48eKP3FOlFGtra/zqr/4qSin+6I/+6BHx6lF71B61R+0/of3EIqUhYTCkl22pfhoSCNo4wfFHQfSLYMBKACEVDPWqokOvqmaMEkqRMRJMCCGymC/Y2pqiFRx1S7IWIoEgDMRagQTj8YQQIkeHrVRDu0JX0FLVbK0pOHyoK0vXerRThNhDFrpT8gGvyqY4d1hjqJRD6QrbREJKhEIHQElll3MGTaK2JQCtQRmpimmahr7rSCliU6brgxCVyobdWENVO7yP5EghLUAm0vkehaKuG6wWe5POe/rgGTc1Rivmx0tiSPQdJZErwWRjdan+snRBrOystWyPROSg9gLLJDZVnY/0vaB/lcpo1YtNjxIBWIhBKBcp45ShCwGNJWtRcWMNftEWcYoEvbrgKdEVqspJhXOUhItSEpDo+77YXFj6EAgxUZlCzCmB2XbZEoOWwEIOaG0lUZogawnICvrdoFVNH3raLtB3PUtncEuLbmr5bOtQVqFTxqtO+iWJnAzWOlKTmEwnLHG8/d5tHswSziamwZKXmdpVTCaOrfUppjLErJg/KAv3mMk6sbYxRSWFzpreJypjUNGzPh2hVUXbZLrQE3xHaD21qVBJ0c0Ts5mn8y0psap+kih+eijwPtxjrVUJmEjVt1ZDhfBJwkGXytqMBGcwhVwBJVHxcFIv51OVhB9dZJ16z0eV4g9ZOpwSOQ0VzqoEbaRLmPL5cqDaaPG5Xw0uxU6tCNY0qvRHuR5aaVQRJ4TQF9s9SdYOtnDGCDreWotWVqwBk6brMzF2tJ0IEWwllmRedewvH3B8fFwsdgzLRUf0WQSZwhuAItBRJXguwcNCCCMXAaZB371X6AhgTSMCJi3WL6OmYv3dNSbjTXxQeO8Z1a8yHlUYlVkuWw6PxN5RrqMkFZqmZuwMtQXnMrbRTMY1NZrNWnPhUsVke51ozrF19gnWNjYl6eksvptxdHzI/HhO6CMhQqQv95QiOhLxUFpVCEkSV5WDSKuq5UGoJNcmfoSw1PWCtO9j5s7+gl//ja/zwWHFlYtbXL20y8bmeepxxcriQdSrq4p9kXxKxS8PJdZPEg4Rg67Xscox0om8PGS57GjOPsZ49zx//1f+CfHX/y2/9f/5Dd568wb/5Jf/Cb/w1Z/n/NYFvv5Hf8wf/vbv8fYrb/GZL/0UP/Wzn+OZ55/gtR++xMvf+h6vv/Q6Oxcv85kvfJHHn3manQsX+MWzO/z05z7Ha6+9zp/86Td4953r3N/b497hPq++9Q4Xz53nmWee5BOf+jiXrl5jNB1j3JjNsxO2ds/y5Cc+y/37e2zvXuKNN1/BpI7D1tC3h6haxsWRq7AOfIpka+j7ROgSTktf9j0yZjlL1mK5sVj06JBJEwURfB9wWtFUjnHt6HxPWxtmCxlrk+pg2XG4zBwgz0yOiqQUr7eJqK+ztrPGpTNjnjizzvbONtXZyzz52Dafci1rpmfvwREHs8St+8e8++EtZvt3Uf0hITlmwRGywYZMlQOxFULUkDyIIWNyoq5lDggJ0BFtFCGJFVffBw79MX3w9IU2opVYoIIESmOIUsmsoarEopJlJBZxh2QhElolKqdpGoexCuV0IZFobt49op0F4izjydhKUzkjYqmYmc86lEqMjIY+UmvN9rhhNrYc5YjLGmU1I2s5ms9pi1BHG0eNzIGRE9sClIy5qgTfswKp/c5FjJLQplSykjFaceeDGxzdvoet1tg5d4atyefZOLfLzpVLPF2tsbm2wdrI0bZz5j5Q64o3X36NH3zvNY72DlkeHZO7JWvjhnpzjb4L9B7atmPWztE5cm7zDM8+9yT9zPP+B3e4naWKOYYOkpAaMuCLtZHSItDouhL4LokDCjFLF7qCUmDzYNsJOQSWRzP6RQ/GEa2mqkaMqprOd7h6TAhCZ+x8oPM9VWPoU09dj8jF2shqje9a+m6BbxOL2RGmbqidCJBG9ZisE7sXdsF72nbOsp+xd3ePrTOaiTWSRDGVCB9iQOsKay3RJ1AnYpeqqaXIPgvds7IiwpdpKovFsTJoI1aWOoPOCqKCrIlRQSU0jGoKVimm0WObhm6xIFlN27eS+HUiKlFaoZ3DaodWQeZ27WhqRw4Jo+W4CNAnWbfByTo6pLyai1NOxW5ZM4ywfxtb/sifuiRshrlnsGfKg0i67BtOrOGG/cRgm5WKiLZYuxTNc0wZ33tGowoU9F0oz5oQdoY1Bznjig1114ZCDMglEZoxhWxgyxwvlCuhM0nCURKoOSZJUmXIBKFCKi1rYKNWlkaDyCrnwQ5bhBS2KtKywS7NOlIQyxRdKu2VHqi1ZW1thCJBEdvI81fICyAU2HL9cqFCiE1JuR45E0uR/op2ogcxmDrV3xQjZyWBtkz4fEJpCqv9nRSIDNa2MkSUivwEhnLdGCzdoswTPpyIUbSCkMo4KesrEVCd7CFRxU68JPBi2WOaMu9oq+i2W+xBTc6ZXvUiTNG62PDJfkIVGyClNApDTLEkqwMhKHovVA8Rt8n8kzKkYmk3CGF0Y8hfzri9Cp80+wczFipjYqLOGgJYY2VuqiuUkaRwv5DEZk5y3eta9gejmZDimlnNxr0pVmnGx1PscUMKCbOQvZerHHVTsWw7+i4TU88pOFJJzA+CIn6kmnOgh5XHDhHq5FN/H27KIGr4qI2bWn2u1np1j05/zyCOkOXfR6itHw3W/5jg/Y9+36lj4YSi9JA8ZZXUL1IHpR4WOxXC2FBAobXGOYezVbGZLv2oPLvynQMBTPauqvTNkB3vvn+b2/f26bpeaCBKsZi3EqsYxINZ1tvDsQ3rnIeukTrZRw3jnlG2CJqEzmyNzGfONaQklDhr7pe4RMaHQNeFlVABKCIrKwQNDVpnjFM4Z7EoprXlzO6EC1cuMaksoW25d/sOoV2ijSYGT991+L6XxH2SmMXJPRsiQ2V9z8PXn7JXKCshVso0BstAhSqCtVgEctpo2j7w3gfHvPzy26yvT9naGDMaTajqBnRejSNDLCIzUHpP7y8fTrWFEHjl1de5dvUK53fPYKMmdsfExTG6AVzDxcce4x/90j/gT//km7z0/Ze5eu0xzl7YYVSP+ODdD7h3+w6HewfsXjjPhcvn+Pgnn2N/7wG3P/iQ9996mw/tB5y5cIFz5y9QjxvOnz/P7pkzHF4+4MatW9y+fZd20bJ3cMDhbMaHH95ke2uTs2d32drZoR6NRBRXj9moRmxsb7PbB7bO7PLB9Q/IuaddLLGLOSA2pXXWqEquaVJKbJmLvdlA85RYXZlHlQhz+lj23MVaM5VnrqkqYkrYlOh9QPQmQtD0bYtnEBLNyUiRy83bYOuKybhic1yxPm6kSGJ7i00LtQ5k75ktPW2f2D+cM58fQ1iSk8JbhxfFDi6mIixdrRJkXEtJ+rBRZSkq1LvkpR+lJMTAnIZiytPPmvw7pRMio9ZCHlSaYpM39NISH9MZa6Q4RJmTeEjXR/YOF5ikCHGIBahVEVAIiRADzjaolNBZCJkjp0lRk7LGkHHWShFULIJoJVbQOZ2MpWlVYDY8QwOFaIjNDgedy3WRudN3PXdu3sGaPWzVoPI2m5MRG2tT1tcdrhkzqhykQBcDWhn6+ZKD/WMW8yWh84S+xypFNRlBzsQgorGu78kxUFWKze0NRsZxdLTgaDan96WqMytW3LTVeeQSi5J7Sh7u8cm4oArxaiWzKWu8FAJdTOQ6o5xDKY019mT9l8vXZvDBY5wTipaSOT5Esd3NKROD2AJG39N1rQhCtZB/yZlqVIl4KnhCH+iXHRpNPRqhKyH3alXmPDLGDOH0k3idNiekcK0kFma12AbLNaHQo4wIBrPQtMgZlUv/VhprHNop0BarwLiKtl2icpL9q08ldpZXX6atRTOQkRTGOqwqtDEjRK4cBqLlMM+qFV1pmPNTSlK8e3pMfdQetb8jLdrIvWv32Li3AUA3/msWWkyB/wvwLxnqCf7T2qnHVCfNxt0NVFJMDidcfu0yADsf7rB5ZxMTDKPj0SMx0l9hk9h9Q12Ls8pHcyf/sfbqq6/y7rvvPvTaYrH4z0bg0jQN6+vrPP/88/z0T/80o9GIF1544ScUKP1l55g/vx8vl81f8vMfbl3X8W/+zb/hK1/5Cp/61Kd+7L2uqopf/dVf5dlnn+XXfu3XmM1mf6XH8Kg9ao/ao/ZfavuJRUpKD8FvCQxGH8jZFGQ+K1uB4b3WGTISBEkxSWV0jILhVUMVoQRLgo+EkLDWYCuLUrBcdqgslcohBhJgG0unNH2XaVuPMoYQeoxOuEnDeNyAimiXSD5R12Pq2hKjpw8B11jG04aQAjaD7yMpJarKQWJFgtFKE3xHU2uSsnR9gCxCi0QipBLMCYGqtmgrdm1NY6UysVdi7+B76tqtrCZ0OV/nbBFpSdBTK0W3XGIrR+8jwS8J1jAeNaQsBJKUIzlkcije9VHQvNpoRuOGWGxAtElUVUVK0PvAg719zpzZpnJLvO+xRhNiok9eAjvC5SH0UsnrBHQlm1wl1hJoJZYHfSuVdSGXoKAIjrTOUulvzMqqT5XJOoRYqFlDUmeg7ojYQwL/cl1SFFR0TgmdMo2rhORSEkkKw3Q6JhMJIdK2rRCevFT+pJhAGfYeHErfyBmVoK4cOitm8yWq9dR1YjrSOG3ZOXuBT3/+p1h74x2++Y3v0LdLYptYdAt2zqxTV479ozlb61t085bQeZq6YXMyYry+xoOjA0a2ZufCJiEbfEzE0GOB4+MFyUd8p+l7je8D/WKGX0a6XsRVMZXUXKaINPJKzPHRgH/OxV4NqRDUarAwKEkI+Um5fUMwv9Bx1CBE0Q8Jk8RiQxeEdwkV5ZOkp4KHREynfwbluR/+rk7CGKoEjM2QuBgCHaeC8lLlLwEdp4utE5L0PhFW5UIAk6yj7wMgCTwRrEmV8xBsREn5aAZUqX6uRw2ubnDOMaoajIb57JB79zpS0lRNja0sIbbSd3NJSDDQHIoYMwo5aUikaqWQMGMmZAncK6VJwZNVQutEipqu6zk8XKL13VXCSGsjAa4kojTBuxsGnL1SCteKeHNiR6xtjFmfNNjRmMcvbnHtsS2ccxwfaojj4hHmQVmyruiz2KT4EOmzJ+uEKhQQKVOVAFgEch4q6/Mq2brKIaxG/EE4VyrzVBmH0kDOUqTU47XiD77+DV5+8zpbG2PO7mzy7JMf4+997ed44tknyM6QMUINWSWtTOl5gUyCPFSQSOBSeowRcUBtsVaR5pbFnZs0k7tkNWFt5wz/8P/wL6gm/54Xv/U9/h837/GP/sU/5unPfIKLT17hhf/wh3z/xR/w1v/0Jp/81Cf5mZ//Gb74C7/AzvZ5/vSP/5gXv/0iP/zh6zzz/HN85vOf5Mmnn2K6ucHnvvRFnvvkx/jgvff4xp9+g9defoO9vUPenh3z/gfv8u3vvcjFi1d55rmneP75j3Hm3C5106Cqmt0LI37pn/1zvrr4Bzy4f5fvfetF3nj9Bxwd73O8PMCoSM6SVJRnoyEGxbLrmS8XpNCjssxHWpkizJTK5sWypRpV2MpiCzXD6BIeVRrXrK2IHjHL76iQIEZC6lj2LXsHibbP9P2Y7tBx/8YaWt/GTd5le71md8OxsTalNyOazbNcufYkzzx2ldjukzUsGXPrsOXmjevEBw8Isxl7Ry1tTlRAUIq+W2IsVEroMk5lRtWIxjYr8oZSGVWS/t4XEYHSOGtwxqLJGOQ50crgfSykOIO2AWdF6IoyQpPqOzY2JoSYcbaiUlJ56jvF7WNPiorxeMJ43LA2rjheeDofWBwv6PY9N9WM9d016qZiPB5x8cIFzipDWPYsu4TShrpueHC04LhdCslQZXxM5JLEVgz0iBPRobGGRCIruScxi/WXnCNiXRXgqF+Q5i2z/ojj3zviuy+8xGRjg8effoLPfPIzPHblcQ5v3OPFV1/jYLnk7Zdf5vq71zluZ0wa2D2zTr22zvkL57DJ8ebr73D3/gOi9+TUc//6HV46DEwmU477jrqusMYwS5BDLOJF6UeqCBVzzoWwMgTQhTSldBHDKjlRqzUYVYQGGYsh5czy+BDve/TGFoddz3LR4UJLRhO8RymFLfS/ru+o6oZu2dHOl+TYkYIndC3eL+R7qoq50ti6oWkaEorReMJ4bUTzoKbtl/TLnuODQxKZOEqM1zeIvqf1iWoipJKu7cHIKCdUARFqpuBXAhNSwjlbxPSa7ITgokmk1J2M5QjxJSQIbY+PmagycSmiJOUsI7dO2y6Ji0Uhc9ZUzjDe3GAyWmMrGxbLjspogg/o3hODR2mF5JI0PvQyX2uFShS6jkIZMLEktrXB6h9vufq3oa2SUIPAoCTolP4xa4kiWgL9MBEySfJqSPALsEjs0VShhpqSJPJBxF+SYE9y/4rdVwwiwlOrNWrGVlL1mEkoLWsQa8SGKReyjTEaW1sREBWxTs6FzpJPxBJKKXLMQsJCaGNDMl/sT5SI3lOS/mYU2sjnaA1RCRUip4i1ulj3luuiRMiaM0KdKwKVEMLKtiwmj41arDOH7yUX0s5wLQU1oZVYnGVEuKeVWNXlJGuxxbJlMm4wOhQymiKpTMwnlt/D/mQQkBX1mIwVZUA01hJjIBchmVB0Tux2WBGuRIRReoKsBYf8WRGCroQolCIYBajMnWu3eey9NVRU7J/dl7Eplyc3i8CrqtxK8BV8LPvVYrFT1rrLRctAHFJZiRg9y/5KBTA2U1nQz2pGT005ny5SP9jn7oN7xLuBtCH2MqNxjTWGtutp6hGpi+ilZmO2wVqacOZol3CYqJRlfb5OTlooKDGhgb7r6bz01RjFGin4XshWMYhdH8M+glPx3pPE/OmW84kgZvWcqVO/kx+SlDz0vlNP8qn9yalCpMF+bHV/gB8TwP3zBEurf61eP0VjHcSLp8+w7DOgJIeR50tESrokhAdxgux5FIFqNFrtOYa96Oq6nLo+KC32f1XF5tYWu7u7BB+4desmy+Wc46Mjcha6jTFayIQxrs4jDxZlnBBhTkGDVklikLXA4GGdlYiNZJ+XimA4oNSClfRH6WIHWZL9w/gwXLMoe7FWKSptqWpHXVlq6zi/u8EXf/ozbG9v4ztNyhUpRPYe3F+NtfVoIbGCJOuWrHJ53iKPXbvO+vpR6WXqlEJudTblgWXVoQaBxf7BJnt7Wxwfr0usIyNriXKPk1K8/pZja/eHjJqaceNYX9vg6tUr/OzP/Qxnzp0lK0W7bHnn7beliGr1rfnUsaiH+tRyueSNN94ixsSlS+exWtHPDqGboXNCKcfFxx/nK1VD04z4029+m/nsmEuPX+Gpjz/H1p3bfPDu+7z79lvcv3eXK1cvs3P+DNPpOh+8d52bN25z/5XXuH3jNmcvCClpMp2wsbvD+s4W1x67yq2bt7h98zbHxzPmx8csFjPu3r/HZDJlc2uLs2d32djcxFUOpQ2usVy4fIXdcxfo+yUP7j3gzu2bzOdHdL4l5wg5rq63UhYyhJjpvSdQROervqZX98uHIDQjq1HalJgBQlRRUGtLGmiB+cQaVWexmA/B0/eZts/YfkkKjm5uua9rlDmkbu4xrhTjxqFMRbI1k8mUK9N1CJtC4zSOhVcczY7pZseovqdte/ryPbnMBSqKhZwZhG9a4bSTfe4gSirPxUCWAplbTHlOlCqk4NJdYyo7Ta1WlHcRfSv6Lgp1NQNZxL2qiIKXXtbEuliMNbWj7XIZmz2pS8xnnjCyWOOw1jAej6lGZZ7uIxGFqipoe/oQhFQvB7SCmnLqrIb7Z7QpzyEr8mDKMt6U2RCVZU3T+4AJHn+r43D/mKpuGE/GnL9wgd0zu+gId+/c46jrmB0esnfvPvPlAm0yda2p7BrVeMR0POFw74ij41mhDGViG7h/6x6jqhGtvsrUlSs/L+u1Mo6shuxMISlKAaJWucy3ww9LpKHEAVSxKhukMjEGusUMV9X0ShH6ANqgginFsoGcEpVWhBjKa5HQexSpkByjCJAK2SloDUoTSrGYLns25xx935FSwne9xLJzxroKnbV8phFb6cHGVuYfGctEOFcI4dqupjTr7Eo4p5QUP6YwzFdlvBriqLFQpLIUNfkQQGk5vihiwpSz0DqMQVeOum4YaYv3MiZo+aASc8sre/KYSwGjVlAEXplhPXASDzo9Vz1qj9rflZZN5qWvvsTj33scEwzvffq9v94vVMA/BT4HvCAvjY/HqFcV85+e/9hf0VHjlo6z188yPhpz9ZWrjA/G6KTZ+XAHnTQqKyHwPRIk/ZW2IXY1EJOccw/lSP6sVlVCKrx06RJPP/00+/v7fPvb36bve/r+b9Lr76+ura+v8yu/8itcu3ZttZfq+56333579Z7t7X1O7SpXzVrPV7/6B1y58sFf6Lvfeedx3n77SW7evEhKP96a8bXXnuMzn/k+p2+N1povf/nLPPHEEwDs7+/zu7/7uyyXy5/oe/f29vjN3/xNuq7ji1/84o+97845PvnJT/Iv/+W/5H/8H//HR0KlR+1Re9QetZ+g/cQiJVtZ1BBE1ppktAR0S0VP2VdK0F1yoWJPECNQgk8Uq5ZVkEqqnHPONE2Fqd3KAi4VAG5WGaUSk0mFcooYemIMoBIxirBmutZIRU0lVe9VMyInQ1NPqRro+g5/MKOeONxYcLp1VZOzZrlsyTEyny/J0TAdTZhMKtY2avoQOTxaAHLe1jpyjmUBIRvaPiacrXBNzWLZYp0IT1KK+L5HKYexjqqyhBBo247gIySpHPS+R2WDsxpra+aLGblUtvU+ir+61uTsAYP3iRQj1kDdVCJuKCQnpRNGZbrOc3TYYXCMRzXhwYxl1+ODILa11oxGjVSaBU8XIzELVWoV/BhCjtpIEMv3EvDVQqYYqjyDDxhtcE4qxZXWOOUYjcbkDIcHhxhjS8WP9JUQAs4J/lKXQFPnS1UT0je0ERpG33cM0G+prtfEnOh8j0+BjCwAxqMGjKILHYt5i9GWGAJGKeatJ/hQfOM1fu4JfWI6GnFw6JmMNviHv/j3OHP+Et//9oss5nt0y8TyYIHS67jxGtErTHJUdszGaMyl3TN0IbMXax7sLzmiY9lFlj5gnCKnyHzekmJJCEWxBUxkFm0oIpCCJo+FKZPFakHIAHlVsWftyWP6o8Sj0wH+E+HQIDCSn2nSYCWS5Xkcqp5XFm/DMzkE9NQJyWDwTR6aLnS04fvz6v+lWlHplbREK7WqxJLgUsRauxJIDVXRqWDWh1MKIRRLuBOrCshYW0sAsVTQKiOJLKn8H/6uUcZhnWM0GlE3DSgRf8xmy1KhCDkL16TrOrQyILwzGXmUKTjsLEl7fZKAM6U6QiwuxdbKoEVQQiKrvmxSRDgxUMFOLA3E7kQZocZUlaVpBnsHw/pkQu0M1mi2NqZc2L3AztktRpsjzl3YZHfbIBquXbaubJKVImuNLkLKoCLjUc200VgSOusSzLTEIjZSJfqZ1OrSDrlE6Qv5dJIYIBfhgkLnItYqxAbpmJKIjWi6sGQ+OyIGz2LZs3ewZG/vHv/dv/o/cf7apVUSgkJQoliAJjq6fo7VE6ydyD0uSZ3TE1XWNUy2WeQ7pPs3mDrNIk2YXnicf/DP/im7j1/hd3/zd/if/+//Ez/9Cz/Pl7/6Zb72K/+Ey09c5Q9/7w946Tsvcv3963z+Sz/DZz77Wf7Pzz/D6y+9wTdf+BY3rr/N/q33ePHMLp/8/Kd5+rln2d7e4WOf/BRPPvMUH77zPi+88A2++73vc/v2A5Zt4P79fd59+w2+9Y3v8NgTj/H8xz/BY49dY3NrgrGGtY0NpuubXLlyleODr/Lm22/x9ls/4P7tD7n34B6LeUeISwI9IcmYX9cNJMdkNCLGhNOGqrLYHMnBg9LEGPABfArYyjJxFc24QfcBpSRgupgv6b08500loou+Ar2AhWtpuwWHhy2aqUTE0zH6KPHgtuKDaox1I7J1TKdvc25rwtaops2WuR7j3Iz1WnOprpg+/RhB1fzw3RuMpmucP7OGnx3RHT7Ady0HXeJ4vmSkE9PJiNGoobENVjmsTjSVhJ+1hj6ICKQPQgATekCZl0o/9T6Qs0IZI56eSuxBE5ZRU6FxxaI0UTtonKEPka7r6UvVqVGGxlkWypKTpwseNapZ29jiE9ee5PDuAw6POnbP7RB9j8mgbc14fZubN+/xyvVbTI6XHB4cc7CUhKGKQonyORYBqIydMUq1u3HmhC6ZToLyeUioxiAiPpNIvuP+rTvcv3EXKsurb73C+7ff57/65V/lY489w/p7H/If/vCPuXvrfehazl07x89++QtcPX+VydY5NicbvP/6+7z97gP6eJ/G1dhxQzNp6PvE/t17+BSorWa0voktCZqoICdQxqIQS0hddIRGG0kEFoKLMRoKfSSjcNbI/KIMMYsNbMoa37arimxjKnzI9Is5pnY4erRxuNGEfgE6Z7rFguViQQg9sVuSciIFTwoBjMJ3YnGguwXzIxF45p0z1KqiGdXYpSH6nsP9ffrYkzcTyiiM2SDFDqwQGtu2wzYOTyaFiK4rVDKE2KMrmQNlHaYwzuLQ4GQuiN4LDctpMJrUB6wT+4fQ9dgS2VeuRqlO7FQqy3iywbILxOSprEZXDlPX1OM1rBthphGjDSYljvYOOTo6ImVwBrTpsUZEIlUchMYZ11TEpAhZKB9WG+yPj9P8rWhDxdkQzMulwvshGUXJbQ3rk+Fcoaw3yppnEKnkXJ6znLHOoAr1aLWuKc+aKpaHInCK5OIFI1QfJTRMNYiYhGZEVlhbYSzEEFi2PabSGCfWabJGkvVwzkJyIGkq56gqQ91YYkp0nYdYLFoKTUeOWc4lJhkjjDH44FcUSiFkCYFoeO5iTGLplIbNF0XQU6xUtAg6yaCMECFQQ5B6KHYQ4YOInYbrdSpBpQaKWkRhqKwhLzw+ChnWZllfOmehCM9jTqv7JksG/ZDQRe5TWAmWTusIUhyIlSf0G1OsQEGIcEI9OhFGpZQKLUqXpKDQWI6aYxbTuVCJqiAi0RjLGmcIIss6KJTjBplvnCsFNEU4KyKxVOaZVGimIviKvYxNlbN024n1bourjz2Gqca8yeu8wxvE7AnLgOsr1sIaa7cnbN5cR920TFXD5mhKSJmjRUffBRZ4fLEMH9ZZfR8YNCi5XGOFFIJkWNndwYk90PAcwYko6c8UA63eU14t10eX+3Dy/lP2bcNrPy4g/1EBzqAIOPXe1fOfh+d6kEWd+szhPcPPh30L0sdMEZ8NorJcEuCntE2FpiHyeGPMii5GVZ8SbVA6P6tzV0oxmUzY2dllOp2yvb3FZDLBWEtKmbZdcuPmLZatZ3VDurBauw6CQsoeVvYTJ2ORWHsOff2ENbRKXoMITxRlz1POlSgEv9V9TxR9qqyXrMQNtFJCkzYao8SWaW2yxmgyoh5XPPf80zz15CWaUQ1MgJqM4ng2o/UZ7WoSmZ2dObVDBDynBD+7uw+4cuVDBhJufqgbnOqEg8fWqa6RgfXNA65c+YCDvS0e7J3h3v0zxGCL6Ezur4i5e5at9PW2j2LFpy0b62sSANnYoO9a3ltVoMsiJqaOjMLqZtUh5ZrKXvjDDz5gc2OdybQhVw3z4wPW8PR9wk62OHf5Ej//D/4+dtLw9T/8E/aPDnnyqac4e/EC0/U13n/3Pe7dvs/rr77Omf19Ll25wlPPP8fFy5f58MNb3L93j1sfvM+9W7fYOXuG3fNnWVtbZ319k+l0yuXLl7lz+zY3bnzI3t4hy8WStu05Ojrk7u07rG2sc2Z3l+3tHabTkdzbymKrdcbjKRcuXuD46Jh7928xOz5gMZ/Rdn1Zd0UyUayuBoGqlj2mLoEjY4A4UGgkdudzRmWNtQrnjFj7ZYqAI6zW50YLKXKwp00poL3H+4DWEaoarSL0mXaZmWkR6mRt0MYwGVWMKyP072zIxlEZxUiJjbWrt9k7WrD0kfW1CUYl/GJODj1dyLQhQIzU1lBXFoKsAw2x7NFL/0nDfIQIUpQWqs0gJIEVqWh45mVdoYgRqsqhtS3zrwiBKqdX1MoYM4pIXWwhh7VNTLK/Nq5iY7rOtK7oF3cxVSUCq0K8xFaorLh1/4BF29N3nmXXErOIrQdY2BC7UQxroVREVaqMJaeet2FfkQuhWAFEfNuxv+hQRqOMYe9ojyfTM1y7eJXNzU0+eOVV7j24R2qXuMaxe2GXSxcuYk1NPZ6gfOa1l19n73AmIv6qwhSq0Gy5lGMmy5hT6KooSrHjIBIebCClUDWrVMbuElfJ6cSiTZ8ILZUqItOcISpy7CQ8kHKhJ/WgtBAxs0VpQ/J+Zenqi/30YNuXUxbrPVk4EaPMA9FL4ZCrK5p6JKR3YwghisX48Ls5F0p+Gc20JnkZ27OSurGsZK2bT9GKUhqKVwrlPJeikCyFH1lnMKaQMsu5F+G90qoI5QxRJdAaVzV4HwmhkLgHipJ1VK5BWbEPNoD2nrbEvOWzY6EqaUwq60FknbMSv5eYkX6kUnrU/o62vQt77F/YZ/P2Jn3zNyAgmYL6KcXmm5tsbGzwpS99iRtv3uBPPvMnBCci3WbWsLa3xtatLa69dI0Lb1+gXtaY8Ld44/9fUBuISWIBemLN9ue13d1dnnzySXZ2drh48SLr6+srK7jj42OuX7/OrVu3/gaO/q+2WWv50pe+xOc+9znW19dX1yLnzP3797lz587qvVevvi8F3A8JiTIf+9grfOlLX5c4xV+gXbv2Pj/3c1/n7bef5I03nuGVV56n62oe3uH+6D06f/48X/nKV1Z5tqtXr3J0dMTv//7v/8TfHWPk61//Oo899hhnz579sX1BKcXzzz/Pf//f//f863/9r7l9+/Z/6ik+ao/ao/ao/Z1qP7FIqalPyCY5J7STBGFCkVKElFFJLNZcZUtgIJckXQksDpXNGrE7y4mQSpUokHVGaakwyTHhrAgNktK0ix5Mls1YL4Er4yy10zS1xTgrJAOlsLrCh8iymxNQjMcNZy/sFJxzgJTxoYdcgnl1RdKadhGYt0uakWHUWCpnyYedVDjXitFYgiveKxbznpwNyijapccYS+UqUFlsX2IkBCU45FrTZk8KkRyzkEySBFSaWkQPxhghO4WMNpZqNMKnHpPEPgYDfeiIvViuKKWwrsI5w7JborNmORdkcQIqJ8GorCKHi47eJ3QyGJVBZ7q+I4VAbSsMibq2OOMYjR3LvqdqGozSLJcdIQRCDKIWN4bZbE7IUT4/JXR1InqJBUnZdksJYhhNygGVVam+E3JPDAHvA3VtyF4RkpAItDKQAyFC20ryKAQJSvqQmM0WqLKIMdaJmCV4mloS1ct5S2gDXeql2gld+ktPNaoJOZMDLPqIQ3O0P+fmO/cZjTe4fO0J7Noa77/5Bnevv4+OC0bjmmg1t2/eJ7WJRdtBBybv0Uc4PGhpu8BiMcPHDEh/jCEQvFSKic1HKFW8iraXaxOCiJJylmTYkBiSGFcur58WIZ1UmKpVwOAk4LGyJeAkiWFKVWSMJViSf3TxdEIiOEFznyQKJMk0tI/SlFQRDpSUAXkYI1ZEpGLtmIaAWSargQj1kYrlfFLB7mNA58EeUpW3mBKkUYX0pYaIfrF40cXiUegag5hqNjsSwWSxfRpyEPJdQA4knUgqk1WU881Sca9KJZwkxhTOmCGWKQlofer4EYGUKHiK0MmYYhsnlaAl21AIYRI4UjETeyAmlFP0Xcf6eJ3pqGJ3a8QTj21z7uI2k42KalyRTE1SY3TegGxQKpGzJqlCQ8iai2e2+KVf+ipbG+vcur3H/Vs3adslXYrFgkqCmkHlU32iUCmS9LWoKLLBtOoPADqbcq4KwSMU0tlgnZIyCrG9iDGz9PD+rQ95++23uHD5wglqfEi8DNcuV9ROoSS9v0ruSNdKJbAJOVu0mjIaX+D2uz9A71r29u/Q9oEz157lM1/+IufObvHv/9ff5Y///e9z/c33+Ee/8ks89+nPcfWxq/zpn3ydb3/rRX7vN3+L13/4Q770la/wsU99nKc//ixvvPYa3//Tb/Dhe28x37/HC3/8DT726Z/i45/6JOfOb/P4889w+ckrfO4Ln+db33iRV155nbv377H/YMHhwYxbH37AS99/iYuXLvHMs0/y1PNPc/nSFRpXY5xjY/ccP7Vzls987jM8eHCPl1/+IS9//1U+eO9Nsl+gksd3HfNli28j46nHovDBc2a0wea4YX58VO5bwvcenIWYWfZextmQIUc671n2MpamlOh0RJPl/lVjmjVF1XciMImKxlmsVvilp/WReT/HuZaUE3nuyIsR/ZkzjEdrhON9MoFjp2n7zJKGYBw5tcxmh9w7qhnbhK0rmq1LjJXDqMjIBMbWcf844MY11ahiYjNTq2kNVFYVUaWiKwkpHwIhZki5UAooFkeZlERAEFPG+0C7XNJUmdhFcpcIWREs6PWJUMNSXBEYqqambno4asnZMJ9FPrxzj6sXznPr7oz9wzndaMrIjDl88IC7swOef/4aW9trrGnH3sGc9+ctlbO4JESVWlu003jvaTsvlBSKRa0CZWTuDz4Sc16JgrTSKCIqRRm3yZhkCAl87LGdom+XvPO97/PKuR0uOEOdFph4zPOfeIzpdMrTn/sMV86eQyXL9qULPLZ9jpuvfkAMGpUTtnJs7055/mNPc+vdG7x3/TYxJLquY75Y4r2MU/JYi82MkFAiulDWqqZGWQfaYE0l1LjoaZoRuVBTvO/FujdlalcILhli75kdHmCtw9UNoe3p24xJLbYeMWocOmUqa9Eq4GzCGkdQNTmOCN2Svu/JIYh4ymp0CrR9j7OO0M4wuqFuNK7S+A4IgdnBIVZlUvbkGKnqCjeeiN1DLlYhSRF9ZjR1JK/wSewGYwLvE7axKEwRyUgSoFv25e9CR4neM5qMISRUKnZc1jAaTSFCqkUsp/vEweExIYpY2TpD1YxQtpL1Q1Nh6xEuy1gbsib6JdYkXJBktNEaU8bwPnQiYtKaqITymZXYofxtbcYOicAMDEKMssbJmaLfXllmDKIIrWW9NFAQBlsKsRPLhWImti1F9yM0xyQWFzJuCL0VLaIYSczI/GWUwlotFkeDTYYR4qkPXq5zZZm6ccmDS4V8KqIVpQeRv3yHDwHrNE48lshtkPcZsK7YoUVF7wNkSep5L2sQo0U05IugMSdVEpHDdw6UAiAXCYPRK9HDkJxVSmOcJeaIRug8Yl2dCsVA1lcifpIiApQi+iiEMJVL0lfEZK0vVtFJi8iZQsWMCWuE9GQLBco6Let3Z1EoEdTEEzKn1kYEXcX2brAFPrG0k3VHCOGUoCUVUSdFsDJYipfvL+KPZAI3nrvBuXfPMZ/O0KHIs4IkqmPM0AsFj3LtQkrkJJ8DIoZNIYmYDaE/pgQpR6yzZU+jSJ1i88Yml/trXLlwlZ1zZ2jJjNo1zr52nvvpNqOZodE1rquZH7UQijWXDRzHJTFD2woRyYdeErsorBHS1VAXMBCpchHAhCLwF2ukU2IkWWg+9Nx9dD9xWiDGiZTs5M+STB6Wf2pYPOfhM07GmOG3B5rP6d3ESnCjeOh3ftxx5cGSOp+czxA/GERpcki5LA3zsKwu16f8LUuxjxR6OJyzaC17CFVO5lQpxyqhTtnzKIR09/FPfILpdIpSiqPDQ+4/uM+9e/dJKa2IvquzSnKuWQnBJQ/WebnM76euvRCnTvYEp/cRK2HTaYHYSqyVy0h5IvjKFMuuciPEgTKDFhFk7QyVs0xGjs3NEWvrY57/+DNcuXYVtCUrh6Kmbz23bt/i5q3bxBTKdynO7WS+9jXNt17Y5cGDSN/us719gyvX3sPaUsxRQhsPtaHrrIapMtYWAWNWYFVk9+wDzpzd4/L8JnfunOPBg21CsEzGSy5fuoHKCSjWlCnz4HCP73z3Rc5e2GU8mYJSXLhwgTt3b7NctOXLNUZXPPQElClmOMy2bXn55Vd4/PHH2NncxHeHLOggBZadZ237HGvbm3z1H3yVKxcu8Fu//bu89N0fcO3xa1y4fInnPv4xts/c4f333+fOjZvsP3jAxcuXuXjhIs9+7FkuHJ7n7q1b3Lt1i3s3b3Dvzh3Wt85w/sJFNrc2GE+nPPbk45w9v8vtm3e4fesuh0dH+K7D957FfM7e/QeMJhO2tzbY2d1lc3uTxjUorbB1zdaZhs2dLfq+Y3//AXdv3+PBvXv0/YKcDaQirvAebRW5Hp6tzGQ0IvmATzK+CvVcF2KrCGNSHB7HIKToONzrhC/9LiuNrSqML8TvOIhLDcSEL9ZnKZ4Q+xbBkhohVeXUE8MxXoPP0GdNVB1iLxeY73WMKhkXbDPGGstEKTSBxhp8yHR+ibaGSlsaoyGLGImyXxWirFBlxeJV1h2DKFbGEr0S9aQSz0oGks6yTw9pNUeJgDgIRNRITMI5S9cFmZ9iZrZo2Vqf0vvMvm/ptUHpCh0jD44XTNYadiYNdbZ0rcf3XtZ3xsgco4rYCtlDpFPk7aHIIWWZxweRkl6NHRJnyLkIfcr8kFKG4LHGMN/b5+4H19lqKhrdoGPPZOJYO7vJaHODMzs71NaBduzsbLPcnxXbPxnHbGU4c24bneD+3T2yDyX2KeuZYYgahK9ioSn9SiOipGEvp40tY1cQoXApjhNqvBCX0KeK5jL4viPFIPbLRSStsiNHi6tHqGwwquijUpJ1ZzaQLDkJZT+nuJpLlZLvSzlDFKK+1grrZC+QkxQndCeDPdYYXKOKWCqhrRSwxhDQzpaYsRQ6ZIXsz5E5Rm6ZKuGvsk7VetX3jJWih7Syh8tYY9GV7A2MM6g+0LUdPoRVHM9agzZWxITGoKyT59FYcoKu71E6i0gxZ1BpdY18lGttCtUypsE+kEftUfs72Xzj+eavfJNP/v4neXDpwV/rd7ml4/HvP87H3MfY+ec7OCcFGmt/usa5986xd3GPjbsbNPOG6d5UCEk/Zk39qP3VtoGYVFUVdV2vRC0/iTgJYDQa8cu//Mtsbm6ilOLGjRu8/fbbvP7666SUWC6XHBwc/DWewV9PU0rxi7/4i3zhC19YCbRzzhwfH/Pd736XF198sRBOpW1v7/HlL/8x3/3uZzk+XmM0WvKJT/yQr371D/7CAqWhVZXn+edf47nnXuOnf/qbfP/7n+LNN5+mbRvOnHnAz/zMN/jo7bp//z7f/OY3+fSnP81kMkEpxWc/+1leeukl7t+//xN/99HREf/L//K/8Pf//t/n+eef/7HWb0opPvaxj3HlyhV+7dd+jVdffbWAPB61R+1Re9QetY82lU+XQ/457eOfeQJjLX3vhTyirdCVjGYxm9MvPTrLxh0zIOklbCmJHalUtsaUAHmpBEoSALfWoFyxj0M20k1TSyVNVminSARCyIQ+EVIs1ViO6bTCNjV9SLTLduXzrnQiJ8144qhHluNZBwHq2og9DIYQI1kJyj+ERO4jyYul1GjS0LaeECJVZWhGIro4PJgRgyRGcxLxx2hcUTtNVRm6BEcHx/Sd4JCt1YynDmMMOWpmhwu8jzirqWqDcRqtLfPjBcEn6tGI0cQRQkula3JWLP1Cji9KsFM26pLk1Eas1kKQiiTrNKO6wllLCJE+RUJS5L5nZ3vK5pkt+hRZLpYsDmcsW09dWcbjitHUsWg9IRnaec9y2TEkk6yVCse+7SFD5VyxTUAoVkaqvo1z9L7Hdz1DhXtOEHqPVpLEIYstXGUkMhCTKaQDCSrEJFVmMQiByFmHqQyKRDNy1BMJPi7nPX3bsjYdk7KibT39vBeCT07oEJmMx9ja4nNm0UriZVw7NiY1Otc8/fynuPbUE/jgee/GDd588w0O7t+l6xZQMMpd1xNSwiRFU42o16TiNLSB0bjh4PCYvpdroYnSr7Ai3lPS99OQMDJS7SrVcBK0UCUhJcm308IRWdiY4gmfSnIKPVTUFaEHuiTt9MoCbrCJMk6vAurD0y5x/xK0Kouk4dlcEY4YxE8nNiI/TqQkAiQhGIhICQYCkzUG3/vVZ6acxRZQSfB8VWlWKuzEPq5UAT+0yBPBo0IoTbr0f2skYexcxWg0wrmKXEROMYRiIagY8OdGDZXMJ5XZaohOEdEqIdIhA1ruhVGDnZxeWdZJEujk9UFsdTqJo4ckaj5BZg8rZF0SJHawyzQKbSSJYo1hVFWMKse4sZzZXuPibs3zz2ywe3EHO71KtX4VrSaQLVlJYFWQ6QEwKCJtO+N4vmS2/4Cbb73Grbt3OZgvaNtA8tCHxDJGOi8BLt+LcHC57MRaZHGMbxdEL3ZLJEkwnqDHJbgneRmF1hbjKtYnYybjCbYasTaaUE0q1jY2+Af/+Gv8zM/9LEpVoAaLNxhoSWRdhHmDKOqEyDWkYtIqeaWgX3DrjRfZv/MBThvqpubC41eozj1FRnPv/ff4rX/z23z7xVc5c/EMv/LPf5XnP/UcyljefftNfv93f49333iLutng45/9JD/101/kypUrLOZL3nr9h7z4jW/x4vdeI5kRjz95jS9+/pN88hMf58z5c2ir6Lolt2/f4Qff/QHf+fZ3uXHrDn6+IAGuGTGajNk5d5YnH3uaTz3/PI8/c41mbY3KKEkWE8g5MD9acOP6O/zg+9/nh6+8wsH+Pdp2RgyRte1N+uNjvv/6W1y6tMPFzXUhVAVPTJmu9yhryDliK0uKkJL09q5r8VEC1QlI2RSbUs9kPKWpx7z//g36EBmPHNvTho3xiJSg6zydSpLQ7pPQ/YxY26yP1nDZ4GqYrI2o3JisNL3viD7Qx8jRrKVrA0FJ4nutMezubDPrEgFDSJm4WLB7ZsrZrXXatuf+4SHzxZzl8YycYNkHlkECxioVmh+S7kxlnNHaEAmA2JxOxxWjWuNqy3LekoKiz4n1rSnnz2/jEuwfL+h9YDSaktvMex/e5eB4RlUlHru0xZmLZ7l66RLn18bc3e/Zamr2btzi9bv7TKc1jW3Ymow4ni354TvvMVv2tFFE17VVIoaOibYPeC+Wi0pBM6qoakv0kb4XCwaUjIfWWIzNGAWqmfLYtYs4pHr3/Rs3OL+5xtq0wlRTMBWb22vUownJaL7w6U/Q9YHDpefNl97g+s17fPxnP8U//uLP8h9+80/53775ffbuXyenjrWthk984TOYVHHn5j2Ojo+ZL46YHy7p5kus9qAivfe0PoMyVFZROYNzFldVUpVbT3CmolvMycEzHo+JSMI8hUAMnj71WKexWgQBIYgwxDmLrSpsFEH3aDwiac1kfV0seqfrWOVISdaOKXh8uxQbigf3iP2CHAO6MTitWfoeYwyj0RidNTHAbLGgWyyIfSCkyGhSMVpbw9iGydqU7YuX0WpKTInJ+hrJW1SCar0htJFlu2S8McImw+H+IaO1GqMrlvOWXDxQlkdzEZVZSZbEGKgnI3SEbj6nDR3ZKOqo6duWWENtNf2DQ27fvksfZmxMK9bPbDA+cx5FQ7/w2NpRNRMs0C0XzNqenAO6nzM7mtOmSFOBS5nj4znLbklVKSyatu/pYxArHwOvvPLmT7K8/xtvu/+3rSJWj8ViTYRBKCWJuhAl+CoLqhVZ8kTYdGItJWKhfEq0UoTNWkRAyMtiTVyWVVqL1XFOIqRNRSTjrKzhtTXElEUck2W9NsgwnJM1Vd+JhZzQE6RPpCKYSBQBUzyxoLJO1uM5ZYxRGCu/1y47Uhqq1mXdZq2Mm8YoYoau7UuCVI7dVVoERFnRt75Y4sr7BwJU38nr1lmsM6QUMErW3j75kqiVrP1AbqEIJ9RA8yzXylkjybJcrCoTkCLjpqYZN4ScCD7gu54Q0opG5Coh2KWsxdbbx3I/RDRGPqFfDfsHkGs6iE0GG76PWmelQrYYxDIpBkz5nZSL6F8rbDQEHU4ETkn2TLqsoa3TmGJPHnwkhkBdOXJWQozqT2yqVUrUpkJbscJ2+w1bd7bZ2d9ku11HJcvO7jk2t7aIOXJwdMyDBw9ol3Ni8GWNXPaaOaGykrG/tpBFJGCdoW37Quig7B8SoMsaXMRbmZMEsCoCUdlrSRL91AahtIf3FIPQJa/eo8r7TxcRDHuA8twMArKB5FHeeTqMMAioZP1+6jk99d0/LuowrKvTStVS9idleagGynIs9AuGY5KLMByPKnsHa4w88wM5ZkiUn1JcDUTWYe0uggVTaEsiahzIwilJHx+slfKJRmglfmF1XeUcym6l3KQhOX2KDqKH/QerRJMqBJLMwwmQ1fZhpSVTD/1boVaOesO1Gmzg5FponNFMRjVXr+zyC1/5HOtba2i3garW2d875u233mHZdqfuygnF1oeeoyPLvTuO3L9HyvfoQl/iEkKOCSkTUiAlocwMf4Yg1krR98WKSezqKX1FxpoTOlcIkmC3RlHVmqZyQgYxFdYZbFVxZnebL3355/js5z6PMZLIWyzm3Lhxgzt37ohQ4mTEWN3nFbakvJ6RYp5rV69wZn3E/PC+kG6yYro2otnaJZua2Hdcf/Nt/sPv/TEvvfoy1x67xrXHr1KPRiyXc95/7zq3btwk9InN7W0uXr0kVlrGcHx4wK0bN7h54zazpWe6tsb5c2e4cP4sm1vbGCeilK5teXB/jw8/uMHe/j6+60lRxM7WWurRiI2NDXa3d9nd3aaeToSSRXn2VSSFxGJ2LBSnW7eZzY7ofSv7fG2YjGpu3roDGrY3p5gMfQwrIQxKlX259LFcxJIpFXv6EgzIRfCaU0RrTdOMWc6XLJYtxhqaEofSqszzZCJZLKViXtlyOmuptEORsbXBWbG3iymtBCO9l7V0LDEIo2E6bkBpBEwuJHBnFWuTEUYpFm0nxO2+E8pvTPiUiYP4cRCjlGdpRVNSiHi9iI6cUTJ/xqFPZ7QzTKYjRpUTcVEUgmFlK46PlhwvFkBiMrJsbE4YTaZsr03wXSSjqWLg1t4RWUscrdJCR7y3d8hs2RZbRbHwVmXpEcvee1gLGVtEYEgh41AYuopJ6MGuzzCajpmOGlJSzGYzcopsTBowBpTD1ZamGeFT5MzONtPRiEUfOD6ccf/ePrpxfOqTH2N+75jX3/yA/aM9UmjRBrbPbrO2tsFitmSxWOJDj+88vvOQI1oX4lRKxCyW0EpJPFFE6IaExrlaYjZBRErGWEIZI6QfyLgv9rOyFhKKolChbBEGqYEiZy1VVaNtVSj4J4LXFAO+72kXC3zfSWxDi7g6RqGPOetkLZS12PD1UnwRk1BZ67pCG4exltF0gqunxJCwzmGMI/qEqSxaa7qlkDedc3SLDqUz1sl7Upbi2hQSyXuUORHIaSvzT/SeEDyp0AAJkagyyiq0jyyOZ7R9izVlnzkZY+yI6GXyNJU8h0QpXpI9tSf2PX0Q226nFaH39N6DSthS5OejxDWdVfz2b/0Of9vaI4HGo/Y30jK4zuFrz19Jl8ti0wagsmLnwx0e+8FjXHn1Cmc+PINOPypyeNT+5ptzjrqu/5OIScBqHgZWQpSqqlav9X1/ag/1n2978skn+Rf/4l/QNA0gBUVvvfUWv/M7v/Nniq5yhoODTd5//woXLtzmzJn7f2mB0p/1PV0nOVRrA86FP/O9jz32GP/tf/vf4pxjIEC98MILvPTSS3Rd92f+3kebtZaf//mf5/Of/zzj8fjPfF/f9/zRH/0Rv/Ebv/Gfrb3fo/aoPWqP2l+k/Q//w//wE73vJxYpfeHLH0ehmB3O6LpI1dSsbY7pQygipZ4oBbGg88p2IA8VdqHYsxkJdGukwhklwS0KgWQ8GqFUJgaPtU42a33AWglgSAI1SNWzsVRWU1cKVVn6kMkhUlcO4xRVY2nqhrZtabuWvks0TYMd6DZajjf6iK1FcBV6qRBWKCqniSnSdh7f9tS1w1WGWKoLve/JSRNzpqqLpVvfE7zYOsQo5YPOWaraFgsGy2K2JIRI7Sx144g5gtIcHcxRiLWN1oqqstSVpusDqVRHxiAWDwoR8lhrRXCllSQHFDRNtRJUoDV98aTPIdBYzfaZDdrgaduOFCR4E1JiPKqorSajhcDRR7EbUKo4aQkJq116cjkvbSD6gDOOalSRVMJqS7dclCovVp7nyceyKZcwsVFi7WJsqWrGUlmL1ZLgdbWl7QM5aYwq1WtKM5nUcj2N+CxbnXHWMFv0VJUkLsmKtos4U7E5GTMa1USUJMdLmDp2ItjATFh2idnxMX3X0odWAgIlOC70r2IHUiwetJPEskIToieGU5Xtg/xFaZTOq2BfTBESpVpfxD0ShBmC1IO+Ra9ERAPBx2hdiA/le0ppqtiG6JK8kj9NIZbpEuxWekj+lQr8HFFqEA7mVbDdGEHCD0kGYwa6kwZVLOkKWltoPCUhUAJlfS/itcxJ5dVQJbeyVIkRZcCYinyqIk8VKpEqwipVrp9cxyS2hkpoSSCCHmMs9agqYkaxP+n7KHSEfHrxP1QYFwLVUN2sQGw/JKhFSiiVCp1BooNaUWyQREg4JBT0CkNehJlKMPDaKFRe5SsGCZTcJ6Wk2lmBMaXazRq0zoLWtzVGO5xzrK2vMZlOuHhhh6uXN7l6ecrGmgVToew2rrkESlCmeXWWrPqetFgqoSNkCUylLBV7cp9LP6MEAgsVQsRsmdAtSKukQoAcyVGqcr3vBX8efKnoLEI5xBazsg7rLHXdYKsKXVmm6xtU9RSwJZlTks5Dtf9DlK/S3zjZqBfjRLmfWURlsT9g/uAG9957B5ciOztr1I89iW62UMnx4MMb/M6/+12+++oP2RhvcfmJx/jqL36Nq1eucHR8n2/+4R/yJ3/wLWZtYPPMNp/83Cf4wue/yO6FHZbHR7z4nR/y9a+/yP69Ozx17TyXz5/j2pNPcvnJp9jYOYO2ihQCDx484Hvfe4kXv/0d3nvnXWYLISO4qmZUj9lcW+fi5Ys88/xzPPvcM1y4cI6mrgXNkOVaBN9xePiAt95+l+99+5u8+fYbVLVh/9Z9fvjOe+yemXJhZ4ORzcQMtqppY0fXB7plhw89rU8416AM+LYVC7RhDo7DZjmytr7G7sYub735LvePj6lrw/bamDMbUxHZJI+uLJ2P+G7gpEX6ZSdEPm0lCG4ztTJYLZXSylRMxmMqowitR9uKkDM+JJZ9IFKBrQgxMLaK7a0tTD0mhRane8a1I3VC1kl1Q8iGdjHHL2d08wXzrmfR9nRdIORMTEFsAYhkpdmaTgi+F0uJWq7tctZjG8fW9hpT55i1nlkf2d7cxHjN9Q/vsDc7ZHO95uKZCeP1CdvbG2w2DaHXjBQcPdjntdsP2D9aUjdTzu6ss79/wNFyTvCelLQQyHQia5nr/FBxHiUQXTcVdeXKvRYLpZSziJOKQFcZg64tjz9+lZGrxfahn/PY01f4Z//1L3L4/hH/79/+I27N77Ozvc7zTz3FxI55+Y332D88oj045rBdsPX/Z+9PmyXJzvtO8Hc2d4+Iu2fe3DNrBVALCgUQIMAFokRREtXsVrc4QmvM5rU+gGxezneYFzNtYzYzJll3m43NGLuN1j0yNqXuoQgQIEBiKaCwV6H2yn29WyzufrZ58RyPiKwqkEVKFEAyj1XWvTfCw93D/fg5z3me/3L5FP/Fb/7n9CeaV195mxu3rtG2C5pasX/xPJPJFmGemHUds6ND3vzR6xwc3qeqRW3L9x5frK5MEgCV1hmlIlU1YrK9S9VscnJ4hLFw5tQpsjLMuxYToO16vIr4+Qk59QK+0Ebmfq0wzlAnmPUdRhn62EsRrq5xGxtUdoTSDh8i1jrGkwlp3vLgwT36xYx+NqWlo9KmMIilcCXjriH0ga7rUDkTeilA1OMao2smeztcePIK1mySqBiNNkkhi81nZQjzQIyeZlIR20DbLtjY28TQsGhbaquZLToWsxnNyII2hEVAu4RpKggVoZ2hXKLtE/3xjNz3BB3QOtMfTrl/7z5tO2U0ymyd2sJtniKmitx6qtqi6hqVtSgyGQFcs+iYz45pY4dRirE1TI9PmC1arE1Masei9Sz6iLWwMdZ8/3uvfpjw/j95u/ivzwjOtIAxjDVUtSPmhO8KIGcAHiE2uWoAQ2SWhe0lsHsJVhnKzjJPOyeqfGI5K/FRjqmwyFVR+0tlrlcYrbBWKrQxCxjEai0AeivWuyEEQgjEkCUGhkFQUP6VorIoUwzju8z5gwV2DLHYiGgG27PB9i1TgE9GF5vgvLoe5b312Cz0XtYCxhQlIQG0dF1fwMPCiJfPKVFQKgW7lAYQFUtgyaAOmZKAZJxbAbOFUFAKoiljNYzGDSHFAsAScFZCipC2KFSEKISNAcQ1AF+UEsWp4XvJNSt2h84sQVsh+CX4I5X7LwCwVR8RHMhKiUCUVAZVkFTUsRI5qVVsVvrIABgbwOU2G/JMrrMLhu27O4SQsNlx/mAfpx2gcLNarGeAFD0xZLJyhJjp+67Y8RV7meV5rgrhAwR7ANZQ+upgJ0Pp0QzbqWXXlu9Yzlfp1Vp7eZyH/1f2oso6YwAeDZ9ZvbsSTpXq+KD4syQuFEBeXNpUp7KeYG1fgw2RWh5jCe5fC/NW57wG4FlP7OfVdsNaZgnQWgKsMkrJc26NFcvNUkyQS62XF22AEA1kAq00VWFFnzp9mp2dHXZ3d9BKcffuPd58861ipzcE9WvXdhnk5+Vr8pJeHme4fvKd5Xvp0u9XwKkBjLR2vqp85zVVqOX1X25ffmcAV5VrVwAmRostkDaGqq6oXMXm5ohzZ3f55c99ktOnt0EZOq+4dv0Bt27fW7OMUquOtLpba//KmmG57Xofy0vA5QBCygVokGMoQMFUkkWy7ohBlIZTiku1QlWQWkrrpcW2MbbESRrjHHUz5vnnXuD0/v5D9+Devbu8+uqrRR1y7fyXC7+175OXd5Sd7TGXzu9Tq0Q/nzNpKtz2Fnq0CTiS77n25lVe+t7LfO+73yfGzKXHL3Pu7DnQcP/ubd589Q2OpwuMc+ye2uHixUvsndpFqczRwRFvvnWNgwcHjGvD3vYWG5tb7J4+xXhzC1PW0r7vePDgkGvXrnH/7j3miwUxCZnJGmHzT8Zjdvf22D9zmu2dbeqqWusvQE70vuVkOuXOrVvcvnWDzvc4pbhx6y7ZZLYmI0bOyDOsLVkJEEbG8lgADFoUk1OUeWi1+/IsClBkc7JJN++4f3QsIA5nmNQ1zgnIVBWVuzgoSJd7n4LkjAS4WpRgyviYMqIYbg1EybwNgCIfEykLqamYlzKuK2zVyLOTvdh2pmJRaC1Z2zJ398TeCzknREJIAsBCVNp1ef4q5zCqjLW6qO31Ml9VjWNUV6SQ6KIoR4+qhtl0wdFshjawNXY0TYWrKyZNJZbsKWNj5O7JlJN5T0KxMR6TYmDRdcWqD3mmMmSToShBS/xTcg0FiKm1KqCWlYW0KtdxmMtHG2O2JhNRY4oeYxXPPPs0O6Mxr756jRuH97FOs7W5wZnd09y7f8jJbEHoOtquJ1t4/InH2d08xf27xxweH9J1LZAZj2vqyQSdDV3vSTFyfP+A4+NjIGKMqFVGQQejEcKdxF9RlIGco2km9L1YsjV1RV3VdN6jsihjJpUJ3kPyEvMVG1mArBWuWKCLeq2QC511aGex1qGVpYhJ4SqHzopusaDvW7L39NEvLQLTQ+Ot3IdBDSJH2bdxRgCttmKyu0ndTMhJo22FUQJyV0YX9aWIcTLm922HqQzO1QSfCrlMiJBaCXg7D0qsTqFxRB9QOpJQAv7ygUQkayBE2tlc1jsq0owsthmDlr5pFChrQWnUAPRXBaTX92KDlxOVtaTg6TpPzpHKCRisL8985RT/9vf/HT9v7RFI6VH7eW7GG0bHIwCqtuLyjy5L3cJbHv/e42LPlmH73jY66Ef9+eegaa2p63oJToJVzP3TmlKKzc1Nqqri6aef5vz585w7dw6An/zkJ3zlK1/5GwdG2d3d5Qtf+AIXLlwA4PDwkK985Su8/PLLf+0AWFprvvCFL/Dss88uX8s588orr/Bv/s2/WSrmftj22GOP8ff+3t/jscce+6l9J6XEW2+9xe/8zu9w/fp1PmQ5/lF71B61R+2vdfuwIKUPbfd2fHwii0WfQEnyuO+lUD0AEyhysSCLwBgT7aJfJiKWTEEL1mrqyhJSEGbIUMDKSVSVEOZvSrKQlcS0eNr3OaOVEXavleSB7z0hKpw2xU4lE5On7yKLxUKUmWpRifApYbIGq2nbDrzI//ehp1uIZY5zlpaEtpaQICbNbNZTR4utK1JOmMKobX1HHzpC6FFJFUuIGhtlcSdspwIG8j2uqnAOQgws2h5tNRlhsDlnyUnQG6I+IMmHovGP0eWuJWEeV5VDaUVIEaM0VeWk+OMDuchDx+LvnoIUgBbeg9GkmKiMWIxkpZlOe2YDQ6kwVo0xWDfYdnk2NiaQpejgnBXAQkh47+lCxFpNIEjiwSj6KMyimCPJz6mso28DSgmDWTLHGaUTioQyiUhcKs2oLIWeVBLL1hpUVJgowJ2NjQnjxpB8pHETsfYg0/ehsGEdC584XsxpFx0hRvog7KDsAzklQrqHTwNiRooggxrQ8OKgxTMAOVKfSAX5nfKgAqSWFg1L5Z3BtgLps1lJojQXyIXYaQAMbPZVkl9+T8sCRIpZ7DzWJDWBJeCI0tckAc7S7kyV34W4rjAI4zalFUM7FsWhoVA0qBssi1MUZn0epP0L8z9GrF4VMFCDfYheJqG1UqSh4KEzZLEbs84VcJKAfJbFkJKk18qUhH9afh9jDNY66maEqysiYvPUFcbpkBhHDfAg+VuvFSlE+YBlwi+Xa5gtGO3kvimLUlqAdCot7+USiGPEXk2UnyTRbZDCiCtAqsGSpqo0TeNoKsuorhg3DZNxw9bGmMl4RF05mtFYklvOUo9qNra22Nza5szZHeomogmgGmBLfqo1RsdDge1wL3I518Ecwsg1XDKJ1SpXLzspXSgvi76JbSmOUHL7a8CvVdFmlfRXw+vLK18AReXey1matfeHMx7o3+tnsyaBsfxqwmpcflIZqDbZPPs4rhrz4Npb3L19yMRdZ2d/SkoNpy6e5p/8H77A5Zee4Gv/7st864+/xVs/uco//M9+nU9+/hf59X/8mzz22GN85Y++yk9ee5uv/Psv8sb33uAXPvcZPv7JF/j83/u7vPDJF/j+t7/F/ds32NzW3L/9Bu+++SMuXHmax595nq29M+yfPc9v/IN9Pve5T/Pqj3/ES9/8Dq+8+hoHh1OOjx4wPTrgwYO7vP76T/iTr53mqaef5pOf/ASPPX6Jzc0JWjusG3Fq/yKnTp3jky+8wNs3rvLGG6/w9T/4Cju37jPSFWGRSBOzHEO2JxN613GSExHLRlbEAG3fY5oK7TOLrhcQoxJAZVaw6FuSSpjK4WPAIpLwIULshcHpbI2jJ0YPxlLVDdYYYidqdH3wpKBAZ3yCrstkFVi0M3RO+JRQLDDGkYJHEdiYNPgw58atIzqvsOYmOztb7G5WjCvHfVXTZ0WMh0xGju3NMaNJzam9syg0UQuz1IbE4cED7h5PeXByggqBrvVsjTdJMeJzIOoeo8TOde477tw9YlpVWFMXNndEOVsU/DRuUuOVhqRpux5GhrMbI67efMDV+0csukjfZ7pwRBtmhBDQStGMGkauoo+Bee9JfRRbkxQEjFCAkYMtVF1XMv73wmA1zmBdeVKKteXNmzcZuQpdKzbHNfceHPOtl3/Mmd2L7F04z+G1loPjljdu3WVix5ycLLh16xZZBeqdMecuncWMK2xMnL98hmpS0fuOne0Nqqqm6zzzvsOGiNYVSjmJMYjLMXnr9DaXLl0htoYYeubTE2Lf0nWew3tHWD0TgPbmCNVU7G1sstkFupMF87YjB5lTxbop4awmxExSYiUVtEajBSRuNL7tyD5yNJ0Ls95aUobxaELwLan3RCKuqgit+IJEpOCZSt3UF7WYFCIheCoj6jk+FStaLeOg7+ZgLaay+G4h86Sr0EEKV1ll+kWi70Rps1105BRwlQDNZtM5zojyp7YWFRW2Bu0MISnGmxtUtWbsFVNd41TCZ89i3qJGhsrN6PwCdFpadKEgaUXXtviuxRpHrQ1JK7E8nLcSY6qMsRUhB5pJQ0TTdwtCFgtcHTUhBvrw85vsHJhpqVjk5oyAOeKg3IGMcaXoZkoMFEqfyqnMP1rWHVoP6pSlkKnEFg6k/2nEMktALgmTZY4RcDNLW6gBoBGj9ClTgNJ5sGiMoqYithvCzo/LOVLhg1hfWxQhJUJZ92itCV5AB6lY/Po+kSxFGUDiQ6UVIQqwJaYooUUWAGPWBZRSbPykmB/XbOyKaptWDKDyQQEqM9jDDGpPq/hEpue8jK9QBdSlRKkOIMSisFGAzhJWJfqYCCdzKMpLtljdZTR9H/GDNZvsdAnGUeUYTeOW38VoARENIPiY0lLxarg3sdj25ZyJ0Re11bSMOwvKYwnLUXpQ8lkDlmRQUWKJUTdi048EwKUM5+6fodIW02qag8kK+NbLfVDKQC5ruRBos4AHlmCvnEl5Tkxp2Y3XgUMDIWCImATAIfHwYG23DtgZ1gIrkBjLna3iPLXCjsASBLQOxVgdfPUMDsQGpdbXOst3C4hML/v26nwGkE3Z2XI9svrcEFuv2ziu1hKy3WqdM8Thci30+77EcKz8EFhniFcVmsoV1YyidDrE+mq5r3INy/F2dra5eOEirnLs7OxSVRWuqog5EYMA8a2rClYnrd+0VT8qvw9kkFy+h7yRiyu1ZlBcHdSrlMpr56JK3y1EELWKjXUWcslg3yQdF6zWBTAplkjOWpyz1JWjcras2R1iN62xzuDqmp3tHZ7+yJNcvHSW2hlQlrbNvPLqTzg5ma6tmXi4Iy0v9vB3seRTGbP22nv7T17/6Nqrig9446Fj/LTjrgGohr1lxcnJyRKkJEsSxenT+5ycTHn33Xc/4MgPr5fWFyOHRzNm8znPPP0k9dY23WxKf3jCRCtyUphqxKWnH2dyapuLZ8/z/e/9iB9+/1UO7x7w+Mee4PTZc2yMx1x79xo3bt7mzq3bHD84Yv/MWc5fvMDO3mk+ubPLg/tiyVaZDLnl1rW3cNWYU2fOMt7cxlUjzp6rOXX6FMdHh9y6eZNbt+4ync4IQdSBusWck5Mjbt68wdb2NmfPnuX06T3G46YoDWtRpqxH7O3uceXKY9w9uMfBrds8eHBCIqIipAK+AQH5OQud6ogRAfshlrdZK7Sz+KIGOFgPyty9Ujcf5g+UI6MIQeYM5wyaTDLyeWtFaTogcXQsuSqUIsh0UdS5An3nl3OPKCqLLZizBm0i07Zn0UaOlMI5x6hxNE7TdZaILsrcnqa28v54hJmIAmwGrJL4c9F3TBddAWSJ8nvtHD5GEqHEe5o+JLou4PuIK7ZaMjkDA6HParIZ1KYgpMB2benawIPpnK4X67yYIifzqXTBlARUaISo1cUgxDAGQF9Gq/WeLNfLaFPA1hQSmFo+z0orfNdxFALaiFJkTIrbdx+QdqHa2KBp57R9x8m8A3VM3wfmszm9bzGVYbK9STWqySYz3qzJZpu+H2Gtpamc3LuQ0CoWi0srF6LkNZWSvrS1u4tRrpBWPaHvyTnTd4HkpzInGE3WiqqpcJUjh8RsthB75GECzcWebJW2IGbJWeUYJVeTEtF7yU2qDqMFzGa0IacKhSJEjzIaFbVYMpfJerAQFWtZiQ8HBT2txDpwAF4am6W/+B5t6pJTFFBezmJDmxXEKDHuEIsJqU9Uf7MPq7nESFAmKlMSKxpry5iu0VioIlBUrbPH2iAKSKTl9ZYwWJFSJHYdaI0pYHwBtUVSDBJflZhKaY2rHL0vsVbJe4kSFo/ao/aorbcMJhhUVmze22Tz/iYgrz31nacw3tDMG06/expAwEm9fTjOetR+bpooQjaMRiMBw/85wCSAy5cv85nPfIamabh06RLWSowhKqKyltjb21vZlP4NaDs7O3zmM59ZWqTlnDk8POR3f/d3uX79+s/69P5SLaXEjRs3eOaZZ1YAZaV45plnuH79Ol/96lf/Qvt75513+B//x/+R3/7t3+app576wL6ktebJJ5/kX/7Lf8m3v/1t/uf/+X9mPp//R/k+j9qj9qg9an/d24cGKSWfpEgoAklkMrP5nL7z6JKEy1kUeTSqMFoVVeUEbIOwUKwzNJOGjc2ayaQi5UBMsFj09F2ClMg5CNglCLMuk0jZ0C48KYqKjy3J2qquqJuak5MO33l0pfBdj3GiepRToq4aurYj+ogPPTknKicMm34RyFESDikO9m2GFIpViRHZXyWnJpZnWSy66tphnaYZWY5nM7Fw08Vuyovne1PXxBhwzjKfL4pFjbCAU0nCq5yFCe2EBRpiloJbEDuDjCm2VQnnDFZVOCtWD6HYZcQYsK4hk2n7UIA9khxRSi8DJm0NylayKI29fGekuCKJ5UQMUkypKof3AWMVk/EG0+kxJ8cnAqrKkdBD6IoFX06YGGmyqDiFXJR2lCJ1AZUS43pMTmIzZbSidpY+RYzWhSELlXHk7NjYFrCWUwpSKWzYiqausQXE1PvE0cGMtnJsjkeYrDk5njPve1EX6fqSvBgKXIVVWQpPWhmEiNRJv1IGpd2SqQ2sfS4VMFLZxVrhwCglhfy1xP6AIh+SHarYsSU1MBGLAs5a3SGtFQCsMUW+uyiODcd9T6AzHEeKScXOIg/brVSRgKUS0wCgEgb0IEkqUgBarwoR60j4gcUafCwJSLUEpEg/HsaAoYIFpFwSVkOxQOTJs0ISMWrF9h1Usla2aZrB9kBrS127JbMBFMEH+rYvz0pCk0WUBgGppbV8tFkrXKlSYRgKdkprjFJkndHWYLXBKCMy60hSz+haEmJKwDtGG6x2kNRSXUQPBQmlS4KwWLBpQ9UYmsayuVGztTlhMp4wqhvGleHU9iaXL1/g7JVLmGYMpiIrSTBLgagn5Z6kFEqNgbr0v1Xy/qcvpEpxhlXt5L3vrv/13hKAIpDV6vUVxf49VbBlSXDoy0NBJ5Xik37P5u8tTnxwG4peg+VEzgXgNBT8gIwjGUNz6gr744bbP/gud6/fxrHg/r0ZO+cvsnv+o/zq3/27nNvd4g/+7Zf5wQ/f4Hf+P7/Du7dv8A9/49f4yIuf5Pxjj/O9r3+Tr/zx17h+/V3u/Ntb/Ph7L/Ppz36GZz/5Ar/2G/+Ag3v3ePPHP+Lk9lVGZH7w7e/w5a+9xPOf+gU+8amPc/rUKbZ39vjsL32eF174FG+/9Qbf+tZLvPy973P75h2msymz+ZwHBw+4fu063335+zzxxBU+8Ynnef7jH2dnd1vU4bSiHk34yFPP8PQTT/H8E8/z3Le+zms/+TG3r14n9B2999gqk6PBWc3m5pg+eqx2JJ/ZVSOoDMfHc9QUFvNOErJKoa2hahwYSQRXTV3mncii7QFF8pFsPK6xVE0mZYVRMJk0pDrR94FUkuW2KHsEMj5AVErG0izM3tD19N7jfcu0a6WoESWp3bdTjJqR/RYHxtGMGpwCHSNHM7h7T5GsZWwaamvAQV07ticbjMYbPLl3mo9p2Bo5UTBMibsnM27fvkM/PSJ0gagNatzgSqyRU8Iqg1MGg8UkhQmZ3CfiBObRkzu4P1d4ncl1zfbONvP5fdJmg29bpr5HZxg7y7kzezR1w4PDY3Keo5wlJksdYTFr8X0Q1Y+oUY0VC6Gc0BU045pmVGGNAClDTIQEvuvRCna3JqScOLjzgB997xXMZ7Z45mNPcP7UJgnNj197nbfuvE07bfGzOdFFzuydZ3eyw8Gde2y4CTeuvsnVm3fY29/j4hMXwCusHdG2x6jOk7GgXQESlOKitezs7bJ3+hQmjUkpMZvOUBlOplNRzkqBvvcc3Dvgxrs3WWwcopQl94nZdEqOnpA7rJNEObHD+4B1cq9SXWGVJhf1xagSxtTQ9vjsyaoVO4cQmU+PiQgYmpCoypiXci5FgxUYBIpynS4Fm6To+qIAGHumxycYp9je1lTK0c6P6EOPGU/Yqio0GtuMsbmoyViL04k+9gzgQKckHkte4i8fEzkqauXkHI1jUjVFpbOhbqDWGmU6fK6oDg6w3TFigezY2pgQooURtIsFfjbH+xZTSbKrXfSQIsaBD4m+6xnVhvHmhKwdfUxo59jYGqGnLfP5jJ/nmoKo9BTbJ5VBScwcQ1lgFIDScH+hFP6MKbFSlOK+0djKUlUWV+ll/ONDIoUBHVLALhlyTKAyCS1jXAHeZg0KIUgYa4l9IIaEMpnoA1qbosSUsUZs24R8sVKd1KYAZgblo6ISo5UosuqlIqMo/ai8srpNSdRAtVZYW9H5vsQoK5CQ0Rrr7HLd4L1f7n841hK/UZSjBKgeV9dcDTGbXBtdwDmiIiQqSRTwujEWVFFBGop3SESRSiFPCTpMYpUk1syosp/yGYmbBQCVkihz1FVF13d0Xb9cO6ZYVOeSkBJ0FkUjAbnnMu8rUarKYhNELsU0JTYycYhpVcZ2lo1DKRwMYK0YEyopdu7tYGJFk2uqXvpbLKAZqzWVcyigKySMkAS8Qmb5XKU4AJGG/imAnpiE/CCLgZWF3ernADB7fxy0AgNJUVqV/S/BQYLCYDjqci8fAFhf37vE9UON9/1x4zoASY77MBFi1YZ+lovtW1qe4xABqvLsDoCRYT/raxFZd5ilqtf6dVyHpZRvT6kYl+8p+xAwTo2xRV2HFUFCDcd+6LvK71ppHn/8cc6fP4/Whq5ruXXrNn3XczKdMZ2ekFOiLUBKvbZWI6+dqlqd8aCGtgSSqaJupAb1VAUIGUpru1yHDNdLKwPZFEDSsI5Uy3u3vAplfWGdkLzqqqJyTsAlRjFuara2NpnsbKGtkwlQKUajDT7+8eeZjBuK6Rb3HxzzztvXBKD0octm6n3//2nbDevaVctrveSDPv9egNJ7txk+/bANyr3797h85TLWutWWSnH+/Hlu3rwp4+Swn7z+3L3//DOK3mdeef0dPvaxJ9nY3OLw/gNcbem7FmVqJrunOXV6n8mnG7a3Nmiahpde/g4Hs2M+9rGPcOrULk89+zFO7+/z9ltvcf/+MdeuXeXB/XucPXeG8xcvsH/mLHunTnNw7x6zwwOxdp1N+eH377Kxs8eFSxfY3t4Wha9T++zu7nHlypTbt25x/eZNDg4OCT4QF4m2bZnNZty/94DNzQ32909x9txZtra2JN+D9PnJxibjjQ0unD7H7t4+t+7c4vjggOh7fB9BiUqztQJ806YQC7OiMhnlNCEkFm1H7wugOBdbeVPW9EnAKMO8GovNfS55IFfbQoQq5CmrMdoJyLMoLMmaXxel5UGtq4D4CkA0p1yA2F6AvQW/EmNPTh1aNfhelIqtEUXKmOG4zUSlMdrgtIDM0dBUFc5aJpMNUUMwkhfwUcgWR9M5vp2TfJD1rZV5SSV5mlQuatdZrLx1AsrYFnJGpYgKmZPcobKiGtWSN3MZk6KsCZQkZJu6YjRqJMZYZAEnG0XMRhSfStySEgKEouRqtPztnFjHqZKHGQA1PgQaK2pboY88uPsAqy3jjW0umTOkrDg8OuLk8Ji27Qm9EFRsY9nY2MC3PVE7+nbO/Xv30Uaze/oUpqgSpdSjjZHYRxWLy4Iiyojy72g8wuoarSxd16JQ9H3PKCdUTkQy3aJjfjKHKDlEowx9LwTDnAJLb0NKH9RaCLQgMQFD/iihlJH8akhkJYq2GCPgnBKbpBiFOqVkPWGQeGMYR4YvoEvOS2ld8sGiFu77nm4h5NiqLgQJ34O1VFbiCGOdWJWSQFuMLqBmBTlHUVAaYqwggCClWZI0MwqlneTaC3DIGI0KCY0l+oDpFkuSZOUcyjiSkViw63ohImp5nkTZMqK1xFmpkBKrymIcAkjKiaquMFZUnvi5XlE8ao/aX1HLUM9qTl87zYXXLjz0lsqKKz+8QrWoqOc19bx++P1HYKS/Fs1aS9M01HX9ocFJQ/vc5z7Hc889R86Zg4MDXnvtNRaLBXfu3OH27dvEGIuq4N+Mdvr0af7r//q/Zr8QA0CUor70pS9x69atn+GZ/Ye3V155hV/+5V9+yKZNKcWnP/1pXn75ZWaz2V9of/P5nP/pf/qf+Kf/9J/y9NNPf2C/UkoxHo/51V/9VTY2Nvjd3/1d7t+//x/8XR61R+1Re9T+urcPbff2kWcuk7Oi6wPKwHjSYJ1hPl0AEIKn66IAXJTCVWLfEHwqKkciH1vVNaO6wrjMaGQKCEkRIqSkUEqUaowW1oj3nulUkiKh9xhtqGrDZNIwGjnqkSgA3L1zSN+KpUpOAe8H1pOoE1FY2MGDjxFXWykK+rAElojKipVkvs5UjaMZ1eQUi62WgiwJvhAzo8oxmdRgNHfvH9IuYmHjyGK4qWusEUUoSSokBgurgREuLGigFCT6vheFKG2KNLMsJgcAyWBRYCzkJInenDPKGGLM+ChgMAmOBejQ937J9FQa6nEj1mM+o2KmC0HAMKaAmUKRz1fCZt7c3GSyMaLvFqQUcLUoCRCLOkfO6Eok9kMvgCSVI7ZYYMQoVi+1tYQg/ushB5TKGG0YVzVOKaxSjJoxVd3gaiMFlSRJihChS4m2k+KwFNQDs3lHThlnFKPasfCeWdcTk9jQKURy2RTlKFjJYNvKYrXGdz2+CyWxYuUaLlVjJKUqIKCVtYRRKyltSfDHtYSsFI2UEguaIYkvCk2i9uOsXbOH4yHw0LKQFZepEjmTwnZfZyQvgW4DwAcpINgCWlKClyGzKlgNoIIYJdElCiuiEjDwX5cgq/I9hnOK0Rf7KL1WcFgVOXJJtGilSMXLXnLPWiS3tcVog5LTE8UiiiLFAGjS8jxa66iqivFkIoXt0C+TLSmmkjNRy4Tn0joCTSq1AlPYY4NqwPI5RpQLjHFYaxk1FaNRLTZWOVM7Q11rmrpm1GwImyzJWFG5iqYZo11D1Vh2dsZMJjUaJfaLRpiBJ9OeGA1KGarasjFxjEY1YOg6jyZzanuTi5cvs7F3GqwSwAAaRQfMULknU4NqEH0Ggyp0zb/IQuqDCmLvTda/fyZI768YPVwaW7253G79AwOaaHgI0vI1VUBc8vsHFAuyKDoNuxjGLzmiXtIn81qBLKcp/v7bvP2jn1BXieu3D1FV4umPPcP+Y8+Ssdy5fps/+sMv8s1vfofpzPPkE5f4R//kv+Bjzz1PpRVXr77Gn3z5K7zyg1c4OFhQTzZ54iNP8Nlf+izPPfcCzjoe3HyDL3/xD/jOd1/n1ddv0ow3ePaFj/HLv/w5XvzEx9ne2yt2I56ua7l29Tp/+id/wsvffpm7d++LzWYWBZbaVWxvbXP5sSt8/BMv8IlPfZK9vS1qV8kzXYCjfe44Pjnm7Z+8wXe/9Q3eefNNHhzepeunGGWoNgwbk5qUDMaBJRJCZt51dCHRLgJd2zObLUCBbQw5aqZHLfeOjmmaisZZGqtQ2pKyog89o4ljPG7kWQbICWcdZOhbD1nU20xhWHdtX4q5itAFYZ8WO4K+DwJgVYrQZbp5x6JfUDWGyWhMCJ6RM4xRaG0JxtF7SeCORhV9UnTGoIylWqonSDFhc1KxvbHBaHOMHY+YKA3dnGkXuHM052R6jGp7gvfMvMeMxpw5d5bQZ66+c41Fe8yZ8ztMNkR6u3GWUSUS+VubEy7sbHN454h+vMXbP7nJWzdvkQjsTUZsb23Q5oROmtAHpu2cEEWtL/SiRqg0JAV9L4DlmDxKR7Z2xky2xjInaEXlag4OpywWHVVd8fiFc8xOptw/OGI8qjDNJk2zzbixOGW5c/sBN4+O6XzAEjE6MN4dc2prjxgj47pmuuiY95HJ7jaf//VfZ1JtYxnx4P4U33XcunmLl7/xHW7ffJvGtgLicI4nnv0o585cZGvjNItFR9/OGY1GzLoFTz92heQgB8X3vvE9TqYnWBU5OjnGtz3TdoYLEa8843FdbIA1eI+pHSkE7HiEtRUhJjYmE4KPGONo255FuyDEXtSQ0PTeE8R1lRgDjXP0vgWjcFnRBk/lDNo5ckzkmFl0rYz3GabzDmMNRin6lJlsjdgYbaLcmMZWzNo50VrObGwQrGG0tUNjLSFafEwQWxbtAu0qNsY1uY/Mpi2BiKkcbjRmPK5pjGO6CNjRiEnd0M46upxpGoVRlnaeiLMZt995nXsPbgEd++f22Dt7nhANaEdlLO2ix/seo2F2fMJ0OieT2NyqWcxbui4yntRsbY+ZzzxHxwuclSJNv+jx3qMN/Ph73/yAcf9n3/b+my1ALdn/rrIFeBMECJIiMQqwTBUwksSnuQBZBIRjjRHbVJ2xTpfiqChapgKmEOtZU14XgGWMqcQnShRJKou1ZqnuOZ+1hJAFVL2M3SU2GSzacsrEovozsCRTSiuABIhKZCmMG2uwTgq4AqhbzWkpZawxVJWACubzFh+SFMOQ+dCWwugAipDvugYmyZSYFKTcLgqZApbQS7Wf5bbr4O0iUKiWsVK51ss4eEi3yz6Xx1Bi3SjXA9TSwngFeF+BreScq7qmck5U/XLCWFn3iAhAAa6ZVQxMzqilcoJisEE2RSkUNagcgI2WST9m9/4WZ989w6TfwGmHtqs4RZdYPGSxFBOSiFjC9b30P6PBGoNPSZTVsioxcS62xOqhgEkptVREi2XdJopeK5DYegw2gICGAugKnM/y9dXu18FEK4BHHvoBK6WxoS8Mcfv6vyE+Xm8Pqxvx0OdWLa8IBAyx2ApMpfXa/ss9HCye89p+P+i4S+vqAYTEqk++LzWRcynOGox1OFdJwVZpBvDdyiKa5b/heMZanKswxlA3NaOmwYfA8dExoayBGQBYq/p6uQLDmkEvcVKythmUjobfpd9aa8RqssRwtlgtWmtxtioFcXm2xKbRgbGiMN04qmKxqAe7wpDo+1QIAFKgriojajRlHFU5M25qNre2qMZjuaRoJpMNnn/uY0wmDoicnCx4++2rHB6dyPhblFX/w9cTH7DV+zZbWzeoD1orwEP9fS3q/2Bwkdyrp5/+CBcvXpJ314Bx169f58033yw2xz/teww6yQ+frHWa8/ub7E0mkAJt19OHwMbmmN0zF1C2JnSemzdu8sqPX+EHP3yVa1ff5fJjl7n0+BOM6pqunXHzxjVuXL3OdLogZc3G1gbnLpznwvkLjEYTQr/g9o13uHr1BrfvHtOHxM7uDhcunuPSxQtsbm5hnAUlii2LRcvtW7e4dvUqh0fHRWVILovRBucck40NTp0+zYWLF9jc3hTVx2IvKMK/kS54ZidTbt+4wYO7d5lOT/CxJacsYJdaY5QV605DAQZFAdLHkk/rgyjeWXn2Qp+YLzoBpViDK7ZjYERpSUNVO3m+inKcLs9NLNamskYvanlLcGgBLQ/EKcUqP6KUzMNF0TurRF1Vy2e50lrEArXYfeWUsFZyYx7IWmOQdYRxAnB0VtM4R1WLVbkzFh0DIUQWPrJoW1IIEBM+BqJSjCYTKlcxPZkzm02pG8to7FBKCAiVkxjEGMPWZARdoEez6CL37h3RRY/Tio1xQypjLDHThyDXJovCo8zXMkjGpTViJuWIqwx145YxijNlXdZ5MrA5GVMZw8l0BmRcVYGpaayTebjtOZktaGOUOZeEdorxZCKqaQV0uegDaMXZixfZ3dnDqprFXFTz2/mCe3fuce/uHcgdVmdizoy2t9jd2aVpJmhlmc/njJqaRduxtb2BMxrT1Dy4eZ/DoyOMhr7vSCHS+V4IFCmgneR0EqDyCsiLAltVxJjL2DsAcwUIlfNKnZIEoVjmpTiQRROBhNNGrMvLODuQN6R/JozW+KJSb4uFrHYCGNXaYawjx0ifE01VYbWGSuw2c0IA8jGQYyCSccVSMPQRH0MhKhls5aiWOdMynxSSpzYSh8YAOSTa6RHT40NC6qkqzeb2Nso4YlJYY0lF+VEpiCHQdz0hRurKkEn4PqKUohlXgGKx8EISdYYYilUnmX/3v/x/f8o4+rNrj4Agj9p/9JbBtY6t+1tcfPUiz/3xc2zd28LEvzlqOH/bmziRVNR1jXPuA9Y9f/ZnB+v38XjM/v7+Uonnb5ql23pbBygppbh58yZ/+Id/yLvvvvs35nv/5m/+Jp/73Ofety7++te/zr//9/9+JXbwF2ij0YhPf/rT/Nqv/RrOuZ+6Xc6Z4+NjvvzlL/O//W//25+xbnnUHrVH7VH769v+o9u9ZZXovSStDYoYhC0qE3thVS4TuBrjrABUilS6NgpTGVCJvl/glKHzkjQfAElGw2hc40PP8dGcGHIBUwS8l8HaVprRuCLlSN/Dzu4W824hSTuriT6QchDFIWfJKi9ZljllQkn+Bp9ROQqQwTmR4U0JChBBW4cyuiTPI5PJGIhkBV3boZUjk+l9R+yhWwT6NordHGJdIKyvAl5RWoAY2hBDFFs2hMmcoliKaK1xToo1SitUUvg+FHZNxmiLMZJsTQj7yhSGshRgYinIaLHYSWIvYwYFnSxqWKH3hCgFEGIUwA0ix932UZKnIWKMpq4bYoicHJ1Q10Weuwtkn/E+Yq2laipsZXF1xYmPgCLHjNKm2JkNdnqRHDPj8QStMs5qqrqmdg2jumJUiXJVzplFB/O5J4SeFCNdm2hDZOF7YavnhAhOSXqx7SOztsVYR4wCRBtyjqYwswdgTSYLAy719EqRI6RcNKusqPKwtDUbEvfAYFs1JPuLNDd5zaJkKOXo1bbDz5RX7w2WcgNgSpouSXZJamVVLEpWufvCyl1ZeKwrGA1KA4qh0LCSjA5RztmUZIcoAIH3Ee+FzV65ovJRineDHYMUmtIaqEpYbBSWZdlqOR5YYyW57hCGmNFYJ2BCpaRPKA2uqtC6IscMSopDzjnqwiSsqhqlFG3bEvo55EzjFHY0QqOoK4erHTHAYt4KY18P5ydAFms0dV1JccJZbI7UlRXmva0wxjGZjNk/vc3e7ja1c6QUuHTpPKf2ttjY3sSNtlBKFWUrKZYZrVHOYuzKvoS1hGFGkZIBRP5e6yzfP1tE7UkzqHEtLeMKiEcRIPeAByyioNSgCpPtL5aUyT/l9/dvs74+G8BeH3SoFR96SO/zvu1K6ZVV8eNhgNKfVxTJQM6R+eyAFFs2t3ZBOaAE+Go4+nDdIKkat3eO3fMzrr7yfVKf8D5weP8mOxubUO9w5vI5/sv//f+OK5cv85Uvf52b12/wO//9/5tf+Mwv8mt///NcfOIK//T8P+P6Z9/kS//+j/nhD1/nh9/7EW+/fY3nn3uFX/rlT/PERx7n7/2X/5Stsy9Rj7/DK6+9yw9/+DonB4e889qPePKjH+Ejz73A6TP71PUmTz79ES5ducivfv5zfPMbL/Htb36P6zdu07Yti97TtTMOju/y5ltv8NK3vsMzzzzNRz72DFeeeozNySaajNMVe7un2fvFMzz/iRe5d/c2r7/6Y3783e9y9dp1TroHHB/3dD5QjQwblcUMjGGjyZWiNobKaNAK4ywax9G9a8JYDQnbaKra4oMUw7QRa4KcOgY7S4CYFKO6wdWK0HvaLqDiYEMpCdiYxTI0K9AklJLEcc4CLJhUhns+EGNNUpraOlxJ5vtkRcY+LiRpW/qb1RYTIsYm+U6pY94pUlLM5pb79zsC9wgKGp1obKZqRmjnOLM1Zu/0Ns455jEw7zugZ9olXIZZhm7WcnqyQd04tIbYtfQeQufZdJanHjvLm/eP2D07QusduhTRi8z9O4e0JnFmZxtnHTFkQoqi5pIjpMRo1Mg1N0pso7xHOynILE7mhBwZVZZcpaXlVdf33Lx3H5UVwYByiun0iAfHU1EkyZocldheOMQ6JEG/6Lkzv4WymvtZMd7YpB5VTI8PePMnr3Bu/zJ1tc1s5oneE/uWFDsyMr4rMtpqxlsbKFehqgq18DTWoXxk5Cxd19HPIykbti+exy12mD844NRowmKxoF5M8ccnpPaEFBH2t5PzVV2SolTrsZsjRpMxrm4wLmOqiqpJ1P1Y7HC7BcZH8nQKBio08xQJpWCUYsYYKxY9SsDDqQ84LWN8zmIPZa0tYy1kH+jnLTOf6cMRo6aW4koCs5iinOH46IDJuMbohq6PBL+gaxeEBMeTCofGR0VWicpZUtrA6S20cUWlxtC3Ae97sjb4HnqfObh/TDebApHaGnxUdIuWdnpCtiOqSc1oskHlAkfHx/R9xzD5JyU2vkZrnNPYumK0scV4s8aO56JmkDP4iPcdIf3Fkyn/yZoaLNVkXBHLvtVcIlYygxqNKB7CAF4FtFgjojIxBgFNxBXIAgQ8IIBAKdJJvFVIBIXFro3COgEixQjNqJJijlYYLao9GSlMKbMC1aolMEbm/EGZSCmKzUcuk+hQVBSFvFgsS6rKkRFgQQhxCeIZ1gshiEW2HuLBDwBuDMD0lPMSpKKL7dowv4pqxeqapywAopwlmlWFmZ9JS3LG0k6Ysl2JJXOJ8USVagVgTuU+itBFXoI2jBHbwVwKwwIwceSY6VKHsRJjp1DIHYXEYawpylSWLnoGRQjyyqpEISB421rGeczG0YSNkwl7B3vUsaFJojarRvLZEKH3sh4iJ1GxSOlhlagBlKIywUtxWGkjsXpRNlqGG+tBTxbF0JwjRfxD+rLKopo73LCseB/wpjzbmfLsln2+T3NGrT47WBoPexKFB7lXAxA/q9Xn5CgrMMg61OO9Edg6wGOlsrqy/F0qBZXLMSiLCoBClGJjGkB4hpSHNYN66Njk1dpoOK/h7FRmef4gIB6txd5dSAC62FMJCGwg7ojVm6gXW6vZ3d2jaRoBH1rL5uYmGxsbXLt2lTfffIvFfIpCrJudccUe3JByJvhYrsG6gbFcW1PsFbXWaDK2WCsZLYpiVeUYjxohPRhRc97e3mQ0qqjqGmNrBmAdAyhMq+UYsQRXLQE7wzpMVoADMEf+N1hLD+ZxK2SWtZrT+2e4cvky43EF9IDm6GjG/fsnS5CQ+sCe8NPahwMnDe2hNQXwsKTrWhFg6OfvO5paXYK13+XxW53LW2+9RdOMOHXq1NqxFRcvXsQ5x+uvvy6AhxTo2hnNqGFlSfXBx/Y+cvXmXaaTKTujZrnaaNsWPz/C2jF2NOHS41fY2t7i9N5pvvv9bV595RUO7h/xxJOPc+rsHleeeJyzZ/a5cf0G775zg+OjY2azBXdv3+PypYucOb/PuceewI43cM0Nbt66x/HxFN9fZXZ8xO7uDqfOnmFrawfnHOPxBo8/8QTnzp/lzu3bXL92k/v3D0VtJgRiDPS+5eTkmDt37nBqb49Tp0+xe+oUk8m43G1N7WrqvYadnV26ruXw4AH37tziwd0DFv0c3/d4PDEn6tpgy5pVa43JGW2FWCbrboU2jnlYLIG6Wslzq8pcrwpg0/tQzkD6R1ICFBaLOol/Y0plHpXBMRVltlweDDXkGlEkFHVl8bmnj4ZUCFlGFVJYFiJdymE5HuVQlJSQsc7oLGDVXgDO3ii6NsC0I5bVutWS71LG4qxm3DQ4bUhK0QcBAcUQ0AVIFEJERSP5BqPIMYotmo/MFJzZ2sSFSB8jO9sNXS/WkKENzKOnaSoq46AAZId5SLGWxykgrmVugkHJp+QxHUtyXk6ZRdvijSWVWDimSN/PmOdhDhLlHq0yyyE2K+bTOaaQTZytMJUjxMjRwQOs0jT1Bn0vsUuMgZQCQ6AxTHm2EgtnZVwhFhpICVcU+Xyf8EmhnGPj1B7dbE5jnVzTUJH6Ht8PubSVmXyOSa5vkryeda7YFCqxKERiihjFho2USL3Eg0YLiHToFylFEgoSRBKDXZpmZaEGK2VCpcu2PhCAlHuUMlit8CmRvcdZTepaemuwRtbAPnhykjWMLradOYki7BD7KJ2IQ1xmZH6NoVxjQbHRt5627VDBY4o1XEqJ4HtxD7VOlJNdRdt2hOBXo7FCnA+UgBsxqoB/a7SJxCzk3ByLpXZ6VDB91P6GtbVwZnw8ZnQy4szbZzh97TSXf3SZZtZQL+qf/vlH7a9VG2L8wZXhz7Ng29nZoa5rnn76aSaTyfL106dPc/bsWb797W/zR3/0R5ycnPxVn/rPtNV1zbPPPsuv/MqvLBWUcs68/fbbvP766z/js/uP2774xS+yu7vLRz/60TVijuKzn/0sk8mEf/fv/t1f2JJtsVjw1a9+lQcPHvDrv/7rnDp16gPrH0optre3+a3f+i3OnDnD7/3e7z1SVXrUHrVH7W9t+9Agpc53GFNhrBMWEokcIipJQcsYKbQrLaCZIbmplZJFfpGnNTqLSsF4RNt1wngmsVjMqZylroq6iWswBpSGkTYoLShd6zTaaYLP5GRo5x6fAlVliyQ/YEQBKaZE3/f0hTUtDFcBQvgQsAjbS1KjiboSaV7JhiRUEra01pau9fh+gass0UMfA75LOAfaWFLUGC3JFqMdCVnY+QJAGq5JLEAdpSjMaEm8DKzSuq4EmJMkURNigpiXLDhdmDsC/CkMwCL17IyWxFth6QoKNy+TnjnKQn6Q2FcFqOGckcV9JSCVnDNEqWKoLGCp3neoHJlMGqwx5JiE4ZMVVltyF5nOTgheKOyVE/sYYyrGlaUu9986J7LPVYXOkjSYzgN9HzhSIpMcQ6DrAos2YJ3Ch47QKyl6l+uqAGVsSfZKsjXGRCJATugUGZRaxFpPVFcGYI8Uc1JJDGceTs5Lspicl2z7oQAwFKh0ydSv0puq2B+sLA1Azk0jrG+VJL0mikRlwZ+LVLjSxCUYSpJ6koIp7Ee9sg2Q/HQBkKgVi3kdpOScRSuoqloSL21PzuV7x5LoSQiDNwu4wFhLyJ4U+lVRisH6YWB5i3JRSiVBOBSrNAJOUkqYCaWYYDSMxw3jcQPoUjA2RCIKC9liFJw/t8cTj11mYzLGGkMIPe18QfARpaEZj6hHNZONCRuTCRrDZDzCVZbFoqXvPEoZEkkKYwlSAQM2o4bJ5gbNeAQqUzcV1jqsccXC0VDXhqpyWFeRYsa6GutcKY5qspIEoqggBDKRQaVhSPJnI0UXsbHRKKvRyrJSDNLSj4beoRRL27/lXnpgQVIBqNFUiL45cpEVq/39uaP2ehHogz8hXTUtz+fhln7qp1c9PL9nG7VWYFsvPRSpBlbP0vpe3ttUObf7d26zmB/z9EfGmMquntO140lRCxn7zAann/gIUSXe+uErhEUHHrqDu9x/8A67jz/O5rkrfPbv/D3OX3mcL//hH/D9b/+I//X3f5/XfvIj/vE/+Yd8/PlP8NRzL3Dm3Fn+9Ktf54+/9l3u3j3im1//Bm+8+Sq/8ku/ymc+9xn+/m/+Az75mV/kO9/6Pn/69W8T2yNyN+XH3/kmr/74FZ54+mmee+Hj7J87i3MjHn/iY1y+/CS//Eu/zHe+822++fVv8+7Vm8zbBYv5gr7vmR0f8+4br/P1P/0mTz/zFC++8Eme/uiT7O7slDlVUdcjLl6+zIWLF/jcL32em9ev8+pPvs+b77zF9Rtvc3T3gGmn0PSYyqC0RSHF/MpJQdEaR+9Fya6u6iWQLy/7wTBHSYjQ9r4oAhn6GEj0VFZjakufe/rkMRgpHFiHiqCyJ0dJqCplSl9T1K5mY1xzcHKC9TCyRhRTTLFVHBLxWLKW/hS0gHk9Gd8tsErABZXRaOPwMZJ8ZNBlmANdzsQjTzaG6chwMK5pmhqbApORZTx21EZj9WliP2Z7u2Zju6brPSEGUm2oTeZ4Nued63cI0x5vFftnt3ji/ClOZi3Tewv6d27S93Nm8wWVragqQ9/KPgYgho2aZstRjRvmJz2SQU50bSyqigr6gBpZUg85GRKBWd9htahGGG1JuSPmDqc0IQnQ1ZX5RmlN33U4nbCVwYdAJxhrsekLmqs/eZODWw+ox5ssDjtmiwWh7ZhPjwTkXAQ+amfZ2NxgNJngqppWtThX0bc9ddNw8OCQutlEO8P+/mlyShzVY2bHx5i6Zntzg6m12K5CO8Pezja9jyx8InSBk+Njpos5ynSorsfXHlfVjOqaZtSwsbXJ7GSBcQ5LxlWWTidMF+ljT45xaZ+QEWZ1TAmiFGhsJXGoD6KmqMtcaTVoNClCNpEYEl2fqKxFhcysm+O8pgsntHNNbUfEoAgEVIj4LtC3mZFzZF2Dzmiv6bqWxfSE8XhMM57QzxN9sT4xboRC082mdIsTQu5QSpRFtbYk7yFFUWLamoiV7SzQ+0QfIs1oTFSJPmdGk4ZKa7o+Um+NqTe3cXaEGm3iqorkI/PDI0zssPWHDu//k7cQgygZWombQWJtSuFnUAoYiqKDgtCAkFCqKIsqsEZhrROwUim2Bd+XhKQWqza9ioOdSigGJVM5lojkKIJPy0KRSgW4oiRmyQVEFGNeqjrkLFa7MSXRN1S6FONzsVxRLCVaBnCQ0nKc5IsaEOQUBZRkKNbHK5D5SoWoHJMVOD2Va5b18NoKGCA2dGZZXBpivpyl6DrEjolizVau92BRbAZw2LC/WL7HsF3Oom5QvhcF1GKK7Y/E2JpIKvtUS/GUGOIqThXkGH0BV2kl64ved2KTmaCOYiO9dbhNFSpO39nFRUvdNzR+hDO2FBszfZ9oVaLr45J8EoMo2w2KmCmWmI0hhivXHQqQQq6VZlByyqugYwkQWiUw12NwWQevxToDuOI97b2AoGU1V62iweH9dau4JeO3XEuJK4vCSLkPiry8J1AUsdbjxuU6Qg0HfOi9956jKf3NFIUTL15MAjzIBViUKSSEgbwkFt7L/vfei6AUA4hvefRhLlNgncNZK8UELbHFADx0rtj6lLWc2K1ptrd2+fjzz7G7u8XezjZVVck9D4HZbMaD+/fZGld85MlLGCtM6spVKKWorBMQcYgFOCj9I6UB2JeXlouuFotcAGMLYKmoGhst+RApNpulhbw2plzgFTBmFaOvQPwP34w1oFpRUF27gD/1N6UUTz/9Mc6d2wc8mQBYfB+5ffvuWlw+tPyevz+o/cUASh/YlqCvDzr+e19b/9zaNuuoy9JijLz99ltMJmNGo4etGs6cOcPR0RHXr18nBM/hwQGnzKmlah1AXvOQXu1dLKYPThbMZjPOnjolgPtkyL4XFfH5lMnuKXb2TvHcJybsnNrl1O4OX/rSV/jOS9/m8aeucOXKY4w3t3nyIyO2tjZ56+1rPHhwwoMHD5hOj7l3/y5XHnuCM2fOcurUPpfuH3D13RscHj5AE5gdH3B0dMBkc5szZ86wvbeDtY7ReIPHHp9w/vwF7ty5w/Vr17l39wFtURuOqSV4z/zkhFs3b7G1u8XZM+c4vX+KzY0NjBXVUK0MTTPi3PkLnD1zlsW85eDgLvfu3+dkdsTJ0TGhywW0IcrUotxT1GbKGDSMgdZYQMDj771Vg417DBKrK2OKNaTYmWojY1soKoLyuBSaQsn7pCTP+tAjFIqqqkTp2Gec0mVNqAuQWS3BgDrrMqcLcEmARV7UwMtYIvap8r7KqqwpJI/Z94mIAE96J2rPRoHRmboyOGNQjBhVGmcVzVjIiDFGkgFnFH0fmM1a7iWwWlQcNyZbxBAJfeboYErfRkIQgoYuedUUwhKkRMpYpakaQ/CydkipWBp7AbYYrfBEclIlxyO2pVlFBFSpC/gpSHyVJLegyEv7M1GRjNjKQrGY67qOCrHm66YL7vnbVM0J0Sd8H0gxspiL6vqwWldKUVWWqqqwzuK7IDFb8FhX4TuPQmOVw9UVY1exMJbY9rR9S1XXBLNAG0UkMaobtNFiO5gywQfatiX7SE4QguzfOCcgIDcixUTb9yiVwRh0EhXF0GdSlPldIwTCwUJ6iLkUAlIfFNeWuUDKtiWuEqUkL+C8jFiso4mpx+tiR5dLri8ncijkX6vQSsBjKmVyDITQ463DVQ6D2PUJCN5JzOoTvu/ISfJRQ44950iOCesUrq5kDgoCzA8pCXGpqiAGjLVC7o1ig2ebGudqlM3L+DB0PcH3OPOwzeaj9qj9dWsqKgEdZbjw+gXqWc0T332CalGxcbDB5GgiNY/858VCj9pflyZzT7UEJq0DT/6sduXKFb7whS8wHo+X622QWHM6nfLGG2/w1ltv/ZWf/8+6KaX4zd/8TV588cUlgQlgOp3y/e9//2d4Zn81re97vvjFL7K/v8/e3t7yda01zz//PO+++y7f+ta3/sL7zTnzox/9iLt3777PLu+9zRjDZz/7Wc6dO8e/+lf/6hFQ6VF71B61v5XtQ9u9PfGx8yUJR0nGU+QOIyEnosr0nccoWxiNlMSqLPSqqhR0dKapJDk4n7eiuBDBd14YjbVlkDne2d0uQJ2e3nsYFtUpEb0wd7XWZCLBe2KfaOoG4wxoKUB0fUfvAzlkUAajFSElfEgYrTCFGWqsgDRUTjhrCzsbUtKorISVi1gTdH3AB2GZOGtoxg0oaNteCrAbY45Ojuj6vihAibUYhW2tC5hJqRXrO2exvEBp+j7IQjjLNQ0+YEvCRw3gGiUAE2tNkTyW4kIoYJwYE7kAjmISFaHoZSFLSeZrJd85pYjJcj/7EPAh4z2QBYjhnMhHa5WpapE1Tjkznc3RSosKUuOEfZokiBmNRgiACEbNiPG4QeWM7z2LTu5n7z05ZdouEKJ0wzQUPgpwwlUG73tSUWYCCRKlgCIoNimsiOz4kApPRTUKChjMmFKAKMkFPdg3UProUECSYlROYmkxSJLDeoFAkm1D4gsgDkUMpZbbSGa7gJokHy8QFq1EYaMkRIfEf86pgGLy8B9alWepbKfVkOBOEjhrSYAPEpSDGpezVVHkgr6wxmJMGKWwBppRg/eB8WhE8J6EZj7vaEO3KprnlXLPAMbJ5OW5m2IBh9ZU1uKMoRk1BQRkhEmpNE1jqaqilqYyo7qhGQnDeWtrm1N7uzx25SL7p0/Rtgua2rC9NWFjUmOcLcUES127YtljCtBKYxC56kG5IBfWIFaea20tSYG2NdpVoBwos0qSZ5DKmUbAQMP1XRWJVoUEVd4PZCT5lIlr75UCKra8MuyzJLZg+feqMMHa3xE4IbEgU6OYoKlLQnZIkDFUBP/cRdYHFxUe/szDygwPb7PW81cFtA/Yx/uPMBTxBrjScG3WoEWSaeXhgs17zivnotgXRIlLD8dW5PJsKwZrjqHAFUElUpozvXuD11/+Bo3VnD+3z7tv30BXFY+/8HE2zzxJViOmBzf44u/9Pl/60rc4mHVcuXyK3/iVz/GZz/8qo51T9LnjrTde5Y+/+Cf86AevMe86Ktdw5coVfvXXfoWPf+ITNKMJt+/e4jvf/DrX33iD0HZkBX3fMt7e4aPPvcizz3+CU2f2hTFMJkXPrZvX+fa3X+brf/Itrl67yaLrJNmYZWwzVrO3e4qLVy7xiRc+yQsvfpz906epasdQFcwIGziGjpPpAVevv823vvkyb772E/zJA2axZeF7chuJsaMaiVWaD4k2wuG9I06mLfVmw2RcoYBF1xJCSWZaASt2fY8uajR1U5fapyiJ+BDICEBWJWF3ei8J4K7tpSheFARTzmztbnP5/BneeP1d7t4/orYaWzsw0FQOo4QRq5Uu41oWi1Kf6EOiK/NGedwIKRO1onIVhkTlFE6LYpMxrswbCTMasbW9S2UcISuOjo9R0dPEjrEJnDm/w/6ZXeIsY1SkNoq2chx1LXE+xynDaGeLjd1dcufxnUdnx40bd7g1m5JDpu07jmYzfBeZdx7lFNZmjFOMdiY4Bf0sYF3N8clUVFuy2NvpgbmbNX1KuNqwOa6lIFFsp7oY6GPP2DkUitnck2Ik6oSt5Ppro5hMhPnftZ5uEbGmwnuZ96vJiKoeEbsgVrAxcfhgShcCI6fJwVNtb/CRF55ne/cs25M92mlH01RMpyds72zTdx3VqMHZGldZfMg4bfDzBfcO7jM9fEB7ckTAU22OuXLlEn2XSKbGd4H79+7Rdx2L6QlH0xNSH+j6OcoYNuoxtrLonFGVYbwxxrctbQ746YL54kT6lPdkozDK0S/meMROpG97qqrGWkPbtlhr8K0nRKgbQ7fwxKyoa7FSSBrGdU3feaKBxjg6H1AOxqOGbt6TEtTO0PtAyplR7YhJbH9rpwkp0abMZHPM1mSTmBW6qpiMNzDNBJSlP5rS+wXaGLrjKWExo+9bIp693W3Gp3axm6dQ0RAXPSeLBTjD2DnIiXpzTONG0Afa0NNsbzKqJySfaGPGjmtsMrTHM+4f3EVr+P/9D//qzxyrf1Zt57/ZKDGUzDuKojCZUinXZwGyKL1UURrmoIyAbyj1R2fEHsZ7idlzglRAbGLzpcgJUcwiFys5UWlaWmaVItWg4JRjKnYetqi2ZNCqgJTiEnwyKBmJpdlgbSNx+pKoobUoYsISKGIGhSSjRM0nFmBQAUGgIPiAMZa6crRdVwrPEjNoUyxPh+KrfpjpTy7bqGKpV6beGGKxCNZLQMpgkWe0XOtBl2VQLAC1UsTJJUbPwzpECnW5II+1GoDcqgCCpLApobmcu6g7yfkao5fF8sGW2hlLkyvcccXW3R2aacPe8Z6Mk97gdEXlpBAei/1QXLMrjiExhIEMYJ1yAbRRolxbyAhyCVO5l0OcJa8tAUyK5f1e3ls1gLFZ9sNlLLX8kUsMuE5cGM5nSJQPuyjx0RK49B7YiFrHrCy3lvWFXgGZFKypjqWHY8TSv4djPAR2KucyWNmtAHgFeFYUUaQ/xbJeyuW5VUI8KDY78lmFL6ousYCYVtfk4XPKBQwvCsBa1HldZAd3+QABAABJREFUhXMWa22xcxyKBIUIVHIMCin8OifW0J/61Ke4cOE821ubVM5ycnJC37dMp8cs5lOx+ykgImvMUo1luCdqWBOUmHd534o8mDLSZ5S2y/XnOqzl4bbWn9733sNrhtVaYH2tsXbz3/cvv+e9EneXj+3v7/Psxz6KNgEBKBlytrz91lWuXr36Aef6Qef/3vbnryf+Mtvk9e3y+tZ5+fLDW/7089zY2OT555+naZqH+v79+/f5wQ9+QIpR5oaVD3tZX6+2XQ6hy3FD1hW10+yMKrbGI3Z3t+i7nvmiZ3N3h43TZ1B6RIqeO9ev8tI3vsO3X/4B9x7c4/z+Lk88+QST7R0wmvnihOtXr3Pt3ZssFh0oGDUTzl88x6XLl5hMNvA+cOfuLe7duoVvOyjzFkqxtXuKM2cvsLWzg3WyllU50fUt9+7e4913r3H/3gPavl+CWkQxD5yr2ChWcOfPn2dne1sUbsrgksszoHLC+5754oRbt+9w+9Zt/GKKDz0+J1KI5BhRRmG1KipqisW8EzvVLBbNWqklWB8l+TallCjaAINamyiYiarLoBokVolFGSYUNaAyzutC+ElZ5rLdvR26xYKDwxlksXNDq5KjUA/lyHIWBWytFKHYk+ZlLqjED0rGUYMqyslqqSiotICgMBpX1zgruY2u98QYsDlhkmc0cmxsj7BYUohYDRjDIidi36OzgNjryURGgRAga/rOczibE4rcdusljxhjIgzfTQmp0FWG1EWUNvggwKbhMTHakHJEFeBNVlDVFp0HpW8hUIQs6uFWG1F/jYmkVkpVCrBOAN8pDtZgkgtOSeYMV9dCgAxip+aLwq4xCp0TWSm290+xsbHFaLxJ7CPOWrpOAEiC5FRYLaAiiTkUJmfmizld2+LbuRApDGJp6RxdSBjjmE1nxBDwfU/vO1HrSpGQEpUd8peylnW1kFF9DPJ9upaYEzrnch5maeOnjSqAarHqHPLCkpuQ+I2cCVFA6SC5QGctpETIYgknfSpjnRHruOISkFMiZgGUaa0JSTIbWit8zCijGI1GMkdpAcVZV4G2ZB8JfQdakUIk9j0pCjmmqizNuMGMxpLzChnvPTEX22BAWY1zFTorgvcoZ0XdXGm8TyhX8o0hMy9z5//w3/8/f+rY+7Nq6s+dtx61v5Utg8qKal6xc2eHyz++zO7NXS68dgGVFfW8RqdHwLu/qc0WgkNVVUs7tw/TlJIx95/9s3/Gk08+Sc6Z2WzGwcEB9+7d4yc/+QnvvPMOi8Xir/gb/Hy05557jv/qv/qvqKpq+VoIgS996Ut89atf/Rme2V9tO3/+PF/4whfY3d19qO+89tpr/M7v/M5/kBXb6dOn+fznP88LL7zwEPDrvW2wrP7DP/xDvvOd79B13V/6mI/ao/aoPWo/L+3D2r19aJDS089dlkVUSGXBrcQezHuSUmC0JC0yxdZAEpN1I0yiQRK6aRyj2kJSzNsOHxIxZXSWBCBG0XWBxhh2dyYsfCTmhKsE/OT7XooRQZSRQkhEn6gqizaZnOTzzmmacUMmi12UDyhlGNRLtBWf7hQ8CoVxIutvFNS1IyVh5EsSUtNUFZU1LLqOtvNoY2hqR06wub1BVRtOjqf0fcRYxWKxEGBI2YW1muAHcA0MbHBTJOohU48qUlbMFz1ag9WsVIASS6ZaSomcYmGBijWNMZIk7jq/LKYQE8ZYeh/pO2FaiXLUKvkcQiLGLGw4EBlioGoacgy0ix5rKwGZEagqw8Z4VHqPYjye0DTVMlGVs8L7gNYa7yPz2YKUIeRU7l2xa1OWWArNq4R7XiXbS/KqqmyZmIWZF4JIZg9WLkoJ4ztnSXUPiff1oGJQAxlASSuLLUpRRiSxY4xoLXKg3q/8dVNJbK2sRCh9aVVkkCL9ilEtxSPJDOUCKCJDToqs87Lgs1Q/UpKAU0otE81S3LfLfQ6JemEjSoHHuWJRsGT2Z1EiMxath9y6Jisltm45UzmxRGjbllHTLO3g5q2n7Xr6PhTGfpQCQmHra1WAdTpjraMqNo2YomrkBEhX1zWVs0UhqhT5FDhjqB3snd7g0uXL1M2Iph6RvDC/RlUlhTrnxGolRIypmIwa9nc3ObW3RV1pxpMx9WiEqRuxxEPGluLwBuVvpTVoC8aCrhDhuHWQEKufykCW91Z1m6G4NxQRBqBQWgMnBXKOKAxiH5ARENSwE43wEofCw3B8YaUOiflMD0zJzCBbUBsoJMH0wUurn8fEzJDQ/6A2FGNgxQZfL9S8Z0/r4Kk10JOMF6sCoShiiC3AYBWCyiR6VJwyvXWNW2++RmUyD+4dcjJf8PgzT3D56Y9CtQOuoT1p+doXv8xX/vjr3Lt3m1/45Ef5zd/8DZp6g/GZS7hRTXt8xPe+/V2++sd/ylvvvEsXIs14g+eff56/+3f/Dk8+9RTGam5ev8Y3/+QbXH3zDbr5CdpkmnpEVW9z+emP8dynPsWZ8/s0lRVwke+4e/c2337p23zj6y/x9jvXWMx7QgrEJNZOzahhvLHJhbMXeebZZ3nxUy9y8eJ5NjfGRXFE+rNGxqnW9xwfPuDdN17n5R9/j1deeZWj67eYL2bQaBpjiL1iHj13b90jxsili7tsjB1JWWaLBb2Xvj+o8cUc0aVoOCjBGeNIMdL3Acr4RmHahhDRWeN7X4rrYqESYuLU/h7Pf/QpXnv1ba7eukdOHmvFam4yGaGVyOerAozUhQllrCUmGafzAFaOmd4L6GRph6Clh1ktBRRrDcpYIhqUwdmajc0tmvGIxhms8picME1NVI7ZwQkun3C6duyeO8Pu9phNo0ibDirLdj0mnkyZTucc9YGjgzlHc8+86+n7noPDY05azyJFdK1R2UtBszJUpdg9Ng0HszkLo2l0Tb9YEEMv43UBW1Z1jS5jfIheFBuzWBs4A30fCFGTjaIeGcajhvl8QSazuTnBaFGNfHBvStcmQu/luVGiPDOAJzQwO2qXifbQe8x4zOWnnmS0tc1Ws43RYnERvMdUwmIeVRZtHFVVM19EAV77wGw65e6t64TZIdpkxnvb7F+8CKbB2DHH0zk5J2pjmc+ntL3n+PCQHDsWi46TB0fM2hkmZpJK6FozaSqU0/i2pW97KWD4njZ6lKkIbUufPJUVKwWlLePK4UPEVBYdEvOFp2rEZm7eJepGCjZdzkxGI1Lo6XKi0TU+eKJKjEcVoQ+EHlyt8EmUMEdNhfcB7zNNXZHJTPseV1u2mjFJgj4m4zExa5KyjEyFIjLvWkIXyX1H37X00bO7M+bUpbPkaofkDSoEdOVQdYVKmcoaTONIXhNmHbpWVJubONXQzxYkq3BbDS462mmLz1Ko+Tf/+v/8lx7N/yrb3v9tqxTPJL7QBWgTYhJVPF3sO0CmyAF7bAYFhVz6sZbXCigi5aLIRImzlSIGsWsbNY6QisVcKVLGFElRziEvATUZY9QS/BpDLLZwEkeGEJbsegqARRtd4vSVvVs59QLCSctCLSicMfJ9QyREAU4M36OqK4xVdF0vSp5aEUIQ9aYyfgjYZgDXZAYUyKBUARnjpJAYSpFNa0qRloK6WcWqg+qSWVpOCXAjBimMpywKqaoolg3AJ1EcLTG1EmWnwY5NKZaJPGMtOSdCiBglMWtGFKtq57CdpZmP2JnvcPr+HnVbU89rAUMVNdMY0xKIlnJRp4ixAKn0ClQwoIpKG+L2Acw1nNMAMMtpFdfDsLZgGXWsryVWFmg8tFYZbNCGgtlK/UgtVVuH19d/ru937Y+HwEjDea3/WD0YMKjTDPdhua/hGGvriUHxZP2Y6z+l3+u18y/Ks2XNsTwuqljnFXUhK0QJZwVMnlPGh4QvVkQr4kleOy1VSBYCMK5cJeDDQrRYV28yRgALw9oHxKataSrOnj3Fs889y2SyyebmJikm7t65y9V33qbtOlFbQs5JaU3lHOOmYjyqsUYJCcfZpTJvJi/v5+qelPuidPlXCA3loigevp/ygQ9KPue1f6WvFECUtGFdMXgtCcDkPSey9vd6LC1tPJ7w/PPPMB5bREVJkbPjnbevc/Xq9ff1vdV+f97ah0lNra8hZPuNjU2effZZxuPxsm+nlLh69So3btyg69r37F+9Z3/y2sOXKQEeQsfueMT5M6ex1nByMqeZNJw+dwZTbYBx5Kx4cPsub7z+Ft//4Q95681XefLJK2xONrHNBDMaQYwcHRzw7jtXuX37Dp0PoBTb2ztcuXKZc+fO0TQ1Xddy6+Yt7t6+Q7+Yk3MUoo6uGE222D9/nu29HarKLWPHvmu5f+8eV69d5+6de7RtX8C/MmYbY3CVYzQas7ezx9nz59g7tSu5gOV6gmWfTjnRdR3z6Ql37tzizv17HD84JHQdUQloRkVRGprPW7quZzyuGY8sWlt8seYdiGCD6ltWg0Xj6t4pJWS6pZBFlvk4hoBCrfIcZZ6JSfIi587uE7qeew+O8b4vBC1FVZVcQgGgDCOqLraiwzifS+4k55UN7TBNUgBcWgnZTJc5ICstuUSlsa7CVZUQI1RCkdDagDX4LpJDS6MTo9GY0aShVgpTGaKFxtWoGPFtTxcjbRfoukhX5reu62l9wMdENpS8AUsQFilR2QrfB9qcMNaRfVxamwoIU4Bd2uilbfdS00wJCCulSCrrKG1F+UjG8UBdV0AWwHTr8X0khpKvYwAer8DkKRQwUwHi5AyTnW2a8Zi6HqOzwjpH9B7jLClDVYicrqqJQYBNOsk8P5+d4BdzyAFTWcZbm5hKLBtjEoBz5Syh98XetycGAel18w7vuxJHCFioKqCrmMX6LWbQWdSGkxIllRA8gjPPxAyVs/JdCtgu+khSkjPu+1hAVhIfaWsxQEgFaA/ElDC25BtDiVO05HclL1wUxJTGWoX3iaQSdVWJwpMWAK/RRkgQWmO1JkQvIL6Szw4pYrRic3uCqkdkHARRkcxGiIUqI/EhityLVa2pHcbW5DJn68pgjCX3mRA9MUf+X/+P/+uHGJP/07ZHIKVHbdkSjE5G7NzZYf/dfR7//uNsPNhg6/5WSR8+6it/k5u1otYnNs+yXv8w4CStNZPJhAsXLvDZz36WnZ0ddnd3AfjRj37EH/zBH3B4ePhXeeo/l+306dP883/+zx9S/Ykx8qUvfYmvfe1ra0T/v5nt3Llz/PZv/zb7+/vLfhRC4E/+5E946aWXODo6+kvv21rLr/zKr/C5z32O8Xj8Z26bUuKll17id3/3dzk+Pv5LH/NRe9QetUft56F9WJDSh/aDqKpGFFmiMFUF1aJJWaEKC8pYgx0AIzEIYKmwltRg5ZCBmLCmhuSZzxdoo2mcAyV+5tYYbFUxazsWnUcZS4jgTCLFiFGaelJzdHQkakZNhXWKrCLBK2EnNZacM13Xk5OiaUaIdPGq4C3mYcKMDL6wa63YMymlqWtHzJmsDFlljucz6nqEiUUKGAGUWFvTtS1KKZqRQztL572whZwoIAQvDKekIPkoKUwtgAVrhOHj+8JMHqjHzqKtgSiJAq01fe8hQ20tVon/vK0rvI+lkJFEYUZLMdYoTQpzklXEyDJhMB5vABmjZVEfo5xc5Wq896iQRLa7LsULAxmDVo7aOpwzWFdjXE3OMJ33LOZzlFL03uN9IPhA8JLwSXlgbBewh0rLBPtQ6JEEdl4WSAC8j0vGdoxpySSXRGsWpaHC/k4fgGxeyjUPCZSS0BxAQnXlZDud6XOP1mIlMHi3r4BJAiQSOyLKd1hTTFqCJqQNDD9h74kkesrSXzRK2E+lOKLKTpcJu7WiwvDHemHEGLW0MchFglvek6JaihFlLdtbG2iEhdj5SF1PaBdzKudwxpGcgN90ZUlr9ijWqFLMQ9jrxqKdwxmNKznM4X7UzjGqK2HoGS3XT1dYHKNxw6h21E3D9s6EnZ0RZ0/tcu78Npiauw/mTCbb1E6zMXZsbW4QMyjrmIzHhEVHisIIHI8qKquoay1KLkYJpqgY70nTwoC0BqELWpSqQFkELKTWEv5DYrQUA7JhZXE39NMo/TMPij/lPZVRefhbEqurrKr8LvYB60pJoqok1h/rhYgsx8kzsjop/WoMNKD0e3rVz2tbB3zl1SvL/ymWfiAMz8x7gWIPf8f1ouH7UwsDv3OtQKGGuutQsDCgGzbPXKKuxtx861Vm7R1OZi3z2Zx0co+T6S0Yn2Jj/xJ/5x/9fS48dp4//IM/5LW3blD/6bd4/spF3v7yS7zw2V/h8acv8rm/+3mefOYxvvalr/KNr7/MtdsP+OY3X+Lq2+/yqU++yGd/5XNcuHSJ3/rt87z12hu89PWv8/brP0anBTev3eUbL/2QP/7Gd/mFz77Ip158jksXL1JVDecuXOEfnz3PZ37x03z7pW/yjT99mTfeepuj40DfeVJKdH3P7HjO1WvX+dZL3+KpJ5/gEy98nI989CPsnt7DWIMqSmC10eyfPs/e6TM898lf4O233uG173+PH/7wh1y9fYPkW7a2apqjQ+4lsaJ0UaE9KB2ptCIZiCkXo0FFzgrrBBSQEoSY6PoFKgs4lZxF3UJntK5ou46uDSSVSQoBEypNymLDaZzDFun/4rxE30e06lGqyOQrhSmqZyFnakRpqa4sKkVyEml/Hy2dj/gkT25MmT6Ksl5CQTLkFOm92Mui5jw4PCQkYac7baiNYndrDFVNIrExsfTecf92R3WvxSqwY8veZsWeeUCdEou2p1WRs3s77G1lbp/MOTpYMK88ytU0vSeEnkVIJCJNboTZuzFib3eHajzic//oN9jf2eff/pv/lbffeQsfenIShm9aiGWXsgW8EURBajRqQBuCLyoVKLqFJ/RBFOu0KqBbiVE2tzYIYUqIiE2eMcTYk9EoA03TcHrrDL5LHJzMOImR0HYcPnhAyNCfzHF1hSqqkL3SbGxvoSYTgu6ouo527kFl2qMps5Nj2ukBys/RKqJN4qByjE+do6YS5rBxpAy2btiuGpqqInUth9MZext7RB04vH+f+XzKbDGjazt0BN+2dFNPypraqgLM7lCpWPREAbXH7NE5433A5MTIyXXJCGgttys1FWIkqyyF6r5HGY3DkPoo1rXWkqOoB1qt8SHSey9FvAx96LHWYDPkPhC0l3NAYZMAZHzU6KrGVqIKmEKmR1j8MSV8EnWHqq7wSuOTAIH7Yg+slcYvAt0ikrqOsauJMeJDR9u2uJHGRkPE4HOgHtVs7mz9B4zpf7XNGCv9Mwl4IC3nBJYgCV0sbsUMJhUcTrlnD005otRGVvjeo7T0cZB4d1Bq6EMQ+2Sl0VnWEQNAxVa2xPAChNJGgUrECMoYUS8YQJtZrG3l0CuL3vW5OqUSnw7gzQKoSuX3rKD3vqi3rmK9zEoZUyklVlJGE2KUYqCWGCXFwdhyAN8LSAitlrNligOwpQBO1mLNGGTcSFGAI0ZpudZZ7IlTKscY4mxWVjzDvhJ5ieOunJBRlE7oISbNcp9TkufIDMqfGDSa5mTMuB1z4cEZtg+3cKnG4mQ9FiJz35c4U4Bkosokz9xw7ZfF7eFqKMSabQ0Mw3JblnZ3y9eLUuoKkFNAJyqvxROrn7KeWFNXWr7OCpBWtotRCpSDrc6wnyVI56GgRj3897JTqXL/VnG3PAMl3i+f1axC0KX1nFYP/71CGb2vmfeABda3S0kUI+q6knVWUR+x1glo1Rghd5S1kVEan2OxYisqtWo42aKc4izWGOrKLcFIOcla09oCStK62B0ZNAbnLONxw97eKS5dPs/GxogL586ytT1GG8d87rGu5vDgHgcHd9je2WCTDZQ2OOdIIS6Bds7J+dpByUtRGB2r5weUrFaLJTi8F5zEQ9vntVceBhMN/XRNLSmr1esDWeED4mBBbK7vfWjvtYyTI587d5YrVy4zGhmgLWdTc+PGba5evbZcu/58t/xTfv9wbTo94Tvf+Q7PPffckgWttebKlSucO3eOg4MD3nnn7Z/ChFcP/5rX/zBgKx7MFrjDE3a3N+h9RPeB1Hfkvsdnh5tssXf2DM1kxObOmLNnTvHjn7xKiomTqzcYb+9z9vwZdk+fZmN7g9M3d3nn7avcu3/I/fsPmE3n3L19l8tXLnNq/xSXH3+M0/tnuHHtGndv3yL4jpgjt27d4+rNO+yfPcPFi2fZ29sV4lo94vzFS5ze3+f+vTtcvXqdO3fuM18sClhI1JC9D8xnC+7cvcvW1iZnzuyzv7/P5tYm2gqId+jdTT2irht29va4NF9w7/Zt7t25w/2DA3zoQSdGVtPNO0Cjs0IX9TyDqCwllcvzN4xPkk9Z5nZiWXcnoABKRbUuo5SRHF0Z50U4dzU2ai3Wimr4iYzBIUSS1rJWKLGDAHYjOSKgIm3A6DI5QDIFiFtOZVAUFPsvQA8A3rCct9uul6xBSgJiQgkBonJEwFpIytG1malv5ek1iqo2TGxHlUX9sU8J6wyTzRHTvqftxaq0QmOM5MJCDEQiJmtIEMk0TYPRntN7Ozz21NNce/Ndbt68Rde1ZJULuCuic1HzgQLQLda2RgA4sdyfFDNd65e2lYNyrQ8Bay05KWLsQYHTA6hVYhZtFKOmQUVF5wNt1xNCpFu0aGuJIWK0QfcaQiQbU6z5JkXFCVIXS6400HcdoW9JvkOTyDnQzQ02y/VLKUtHQhVVb1HeI1V0fY/TFdps0XWtkAJ8X54DIXsGH+TWF1W8ECXWXILOC5g5eLnfWSmUs7Cci+UZSWuxYM4JZS0qiyK7ViUGSFnmG50KmFtG8qHfKAawfIkHEssYLQZRh9LWLs9XWSEGmhIjrvqrDF3OGMDio1jQxQwxilqTillUKPuAsaKeRoz4PqBUKnGpISIArKZq/sJj8aP2qP1VNZUUOko+d/fmLlv3tnjq209x4bULVG2F9T+/dueP2n+8Zq3FGMN4PMYWtfcPA0za2Njg8uXLPPPMMzRNw+XLl3HOPURq//GPf8zv/d7v0bbtn7O3v1lNKcWLL77I5z//+Ycsz3LOfPOb3/xbAVACuHXrFv/df/ffLVW1lBJFxc9//vO8+OKLvPnmm3z5y1/m4ODgL7zvEAJf/vKXUUrxa7/2a3+mopLWms985jM89thj/Lf/7X/LO++88x/ytR61R+1Re9T+WrQPHcWFIDYHwQdh5Ggr8sJR7NHqqoZcJKDLoklZTSQvwUFKCZuk7SN15dDG0Yw36Islm82i1NK3naioWEXwSRiazhKVMC+bjQY3qrELS6Us9aim6zpOph1aO5SBtu/QytJ1oXwDSbSubCQsoB6yPgjRk3MiRin2bWw2mKIYMZvPSUnsa0R6OWBSwjnH/Tt3STFQNY6NzTG5JDttscCKMWCUxdqKtmuL7deqwBGIBcAjydmmssTgRXJ4kF/OA15CQCi6cqScSGR0YYeLPDXYYgWjsyKHgLO6sHlL0iZC7Ry97wihp7IOpw0Zse2qrah8YBvqxhKTFMoXbaBrI8ezHqMhxLksjJMkp1MamLLiVz8kcNJaIaDUaIAo554HcM3DxQIBlQyvUYpVUsCyRi23U2vM12GS1yVpMhQE1s9l3V7PFCaaMVaS7eVzA9jpYXDTUCB4mBH9XsuE4b3hNREa0jhr6L0kEYbz02bFFI5FRUkUrkyxNczL94fjDP1VEnDSV611SzUmEIsSo02xI7RAKNLWHlOUopRJOGfE1iZGUk5iz5ACWkdGjcYqR+XENgctLDBrHWiLQTGpDI2zaFtRb2wy3tyiqiyb45q6qtjd2+fxxy+xf/oMWzsNKc7IPqBCxFQjHn/CsbG1SVNbKpOFba80WINWmdT3kr9PgoxShYqZMyhdtjWlgxTwYU4Kq2uyVQW0MVi4FTAQxcpuSDqvW7LloZAQgcBSQWmoHaQEOgiIEVMwN2u2KaxZWSwBefBQQUE9/FrOHTAHdQICKQBGck5ZrT0vH7a9N6n/V1GQWCvyLYFIw2urQsxD5a5lcWSlgCafHZ6xDyjQrD79Ae+vlAoeOkip1GllQNXgLG635oI1JDT9W2/TLQKpz9y/cYv7R29w6tJ1rjz7cZ75xLPs75/jq1/6U17+/nd48+XXuHt3yjdf/jG/9g8+z+d++Rc5c+5x/vN/usflK+f4/f/lD7h+/T53bt/ki196wI9f+TGf/uwv8unPfJJnnv8Ijz15hR9970d88ytf4/j6ATfu3efawYzr77zLj771bT75i7/Ai5/8OOcvXMC5hjPnLvOP/rNdXnzxef7oS3/MN7/1PW7fvC8J8JCZ+yltP2c6O+Lu7dv8+Ic/5sKly3zk2Y/x3DMf4/Erl3DjMUZbdE5YpXDNJs8++zzPfuw5fu0fHPDOO2/x5uuvcO3Gm9x49Q22Jyfo2GOyqK9BJGqNHllCzsV6FGpb4yqRgU85YbUh9akk/6Xw772o8ozqhtpVzNQC7yO9F8VDraVwaowtxWFRm6uamlCYwm0v4NBUrGpUAUV2MbLoI84aNkc1o8aRU8THSFaauq5wZWzwMaL7LKV1rdBWig5KlyIJAvKNi5a+62nRzJxh8/QE5xe0i4CfQuaEylbUowoz3mDiN5jPWm7kjn62oGtbRlZx8Uxg//QWT5zdxe9tcXe2wf2jE46nc/zMcXiiOF50KKXRCvqTjtv+Aad3tzEPHnD+wll+/TMv8KV2xvU79+hNwE00KQb6vqdrWwEu+ChgZB+pikoQClIAHwUok8fgnCaWpHi/CIyaMYYBXVry+SjQotbUjB1nt3bAG/qQmM4XmAT9bMZUKeY5Mx6NRIfOOloPrrZMVSbmTNAVKWWcMUyPHzA7PiL1LaQOW2m095j5DLvZorNFMSiqWKpRDX2kaWoavQPNCconfGpJBDZ3tzg6PiJFYTV3dgHphJOTORZDCoEUM0aJRWvMYrcQs8IrTwwJnxOmxEg+QoWoysSYMAbIiRA8lTHEFPApUGm5VjEljLOIOpuislbspGKirhzZFZUxrTFaVCSD9QXMAL1uqZwiBuhywFQTrLaYSuOiI4aeGAWMeHxwxDhYYnSQYTHzaOdEaSd5wOD7TI491tQ4BW2KiPVrKZSQ8dmLfa+uP9Ro/rNoUgDKS5UcpQQYI9YXBTSRZe2AYmXLVOaaXJAqAgaR2FlpUTSIxc5tUAyIMRSwklhLpyyA/4SsVWxll2Ago4oqTIz0nVh/CGgyoBDlURRkhv3nZZy2jCGGolXpc31KWCOqoKoAqnzvyZkSj8v3DFlAGovZnJQj1hqq2pUpbYgNVYmjxSJyUKgAKZJpMkkLgEknGW+sMWL9nArca226LiGVkDwosesS1CTxrRlUoUocbZSMqUPMn5LEuDEGIZFoTR0qVDSMuxHbR1sSvWvLRjthdNiIetbUkjqFUZmowOeOlNrlOQ02zENbArmWP5FzXPYIUVJ8COKw3MEKZDSAi4afDyt5rAA9SxjKBwRgee36PaS0xMrmblDTXF/bvBf09N59PgwUWjtQ+QYyhA/HGNZTpVhaxnhV1DVWoKY1QAwrpdkl4GztWi3Xw2vnpwfLJMCYcqy8Wh/JvooKX4olZB5AbvLcaWOorKOu6rL+WK11hhi6MqpYsGmsq3F1jTGayhkq57h06Qqf+oVPcmrvFPXIkVNPjglVirJat9y9d4/p9JDT+7uyTioTnhR/Ren5IZmW4YfSy/lxuObLnqMLiEmMeNbC0PW4dx2YtJ5sHtYUZdxaAusKomsg6zz0mYeT1aswt/TRJRrtobNka2ubj3zkSbROQFfudsXR0Yx337320LP04dt/2vXEe1/PP/U9aaun9OHtQvC8+eabPP/882I9jzwLdV1z9uxZYoy89tprf8ax33+kYZ2onOHe8Yy6qRlNJoToZV4JPQeHB5jqgJ0zZxlvTvjoMx9ja2OX8WSTP/naH3P35j0Ct7h77yyPP/U429vbXLx8ma2tDV77yevcvnUf37fcvn2Lw6ND9vf3uXT5Ert7Ozz10ac5c/Ys1959l9s3b7PwPd39B0yncx7cvs3+uTNcuHiO3b1dKldT1SPOXbjIqdN73Lxxk7ffucrhg+OilJyJSewY+9DRtgsODw65du0Gu3t7nN4/zelTu9TNaGlvplRCY9nY2GRjssmlK49xcnLM4cEDHhzcY3F8ROUWotKSkFxcWW9bK2rOg0qRKWAWAYXEMt6q5bqADClrVMoYbahdhSaUfFMWpXa1Drwsuk9lHFIUm7kCzhniBjWAAotVr1aypqgL6GSYswXwVPJXJcaIaQBVyXp1uYbNRXkxiRKPH+bnqqFSCd8F+h56epRqxfLbOayr8QFaVRRwfIQcmTSOrQ0Y147NkWE+six6z6LtiD7ie82871FJL4esk+MpTV3jQsR2Cy6d2YO+49bde/gYxQpaFXvUENDGiD1bAYeJWrhcpZQSKRRwTlFyFYVaRR8ixgxKiYpB4lJrRIneCLC6qR2NqTmZtQLoV0oAMG1LKDGFM0LaSkGBMfggQNKcEzlI3B1DT7eYk1Mgh0AuaFzvParyJbaTJzSGXMg6osZtjZH42UcZ/4vdmgs1vu8kBowBrTyLRUciCVAnRXLJ9aUk/T5nClBeNLSVymJFiJAPlfgUMihTiopVySfmoqBUwE6SGKTkIEVNdLDVHSyPQTCzKWcB1xagWPSF9JOEYKs1GGcFFCi+hKQoz1Hf96AXaC055JBjUf8a8s+JmERN1GKwWst5FOLoMLLGkssaKEuP2qP2n7KNjkfY3rL5YJNzb55bvr5za4cz75wBYHI4wXVCOH6klvQ3t60cNirqui7EavPQ+39es9bysY99jN/4jd9gZ2fnfZ9r25a7d+/y9a9/nddee03G0b9l7dKlS/zWb/0Wzrnlazln3n333b81AKWhLRYL/uAP/oB//s//+VJdSynF1tYWL774It57fv/3f/8vvf+vfvWrbG5u8qlPferPBCoppdjf3+df/It/wb/+1/+at99++y99zEftUXvUHrW/Du1D271defqCAATiqsgesyx6jTNoq6mdSKl77/GyuhNGBsLM0VoVK7WEVkakhZWi6zssiqZ29G3LYubBKFylyUFkb3POOKsZTWqazYZ6o2Z6eEKlDcYpDg6m5OTKAksYK97L4swYgzbQNLUk12Oi7yNdK0xdlGJ7cwIqEFIkRUmeVpUsYnNU+BiwrsJoi0owm85wzrCxORGveB+FdVQJk73rIipr6tqgVCbFzGLe0badsDpTKpZULMEn1liRziYhnH9D23tCTGg0Rg/FXahrUXfKurC1ReAFZwyuEmS5Slm0W4wVAEphfsWYGI0molDlAxqFMQ60WC9oIIVAn6DzPW3XEXwQe5mQiENCvAAUJHmuGSwnBhCW/JGLqlCxVigAhbSWxB+KVOUDBZWxQsPnUrAuuSuMfn9icgDuDLZo6yCi0tWXRW9h3q1Ygs45fPCEGLHGFeBTWgvEBrDTKjAbClMSVKyS/3K+A6NKJMKtEgWGPmYojDUpvulSABjONxUZcgkMQwiFpSzXJqZUim1qec0Ug5VGJhTrwvFoJGCzyuIqCeAXpR+FPjAZNZJ4SorZrJXEG6KqVI8qzpzeZn93i53NTUajGm0SJI/RCoUjJMv+mX0unN9jNGmoXMPe9jabk02iMtjxBqoe0Yw2GY0qkVtXAbKAD9WAuCtrixwzGiNJHhCmWk4QYikoDHYKa8AUNRQOpFCftUK7SmzdzBBYiwS5fEaKucsCgcD5eD8jORZGYCoJuNLpsiKlgDalHKTt2uekaCm/DLLnA0jJsrKZKx/JwzF74ITMFHJEqU1gmxV2VD/Ur1btzxqy198bErj/sdtwHdeLgMPr7wEpDY+zPLksr8Ma6Eip4Xq897n+oHNf2YZI33hPQSivfaaoWWU8qj/EH97i3s2btPMFp7c3eff6De7cP6LzPY898xRPfvQTVBtnmS9aXvvBy3z1f/0jXnn3He4dzdjf2eMf/6O/w6c/9yn2L55n0S248fY7fOtPX+Zb3/oBD45nAIybEY8//ji/9Plf5vlPfJyt7U2mR0d8/3vf5ctf/lN+/JO3mc0WjBvHzsaYi5cv8IkXP8GnPv0L7J89i7WG1C/o+jnvvPs233npZX74g1e5dv02x7OF2COR0QgAsWoqqtGY07v7PPXE03z805/gqacf49TWFpWthIivMippUImEqNwdHj/g7Vff5Gtf+wrhxg2u375DrjoBo8ZEvdEQc6LtAllrcvL4vqVtPc7V5CzzqNYKWxkBQYZE6DzOOrSxdF2L94nei5pbzOB9YGd3lycun+Ptt65x684DNsYjfO+ZtYtV75WqiEjaOyfFcW2IIWCVoqkNlbPEKPPLUMA1pc94X+IPg6iLlIJIDHGgR9P1nrbvWfSBhOHUzjZjZ9g+tc/F3Zr7d25xOAv0IdIH0NlgnaZuKkxVkW3GKo3NMtfWOrGz4Th9bp/NpmJSKbrFghsHx1y/f0zrPV30xKCgS7imYrLRsLe/xaSyHBy23D+c0/oOYzIpek7mC1xVLUGpi0Uv1gsZet/Jd1OKkCJN0zCZNKTQk7MShR0nheHeRyJZbB1yQpMwRhjf27vbPLF/gdgp3rh+hxu37xOjx1YGXVmcrZjUNSZnsqtIPlNtbVA1NY2rsLpmc3tCrQ3T42OOD4+ZHh7R+xY7qtjY2cJUjtHWHjkaopJnvjYVblRjoia7CgvSV9qek+khrV9gbcb3La4Wi1LvA3274MHBMSp6wrzl6HhKzp7FvIPyfISYGFWWECNRKTYaSx8EaFRrWLSBSKIyCu8j2WrGVUUv0jnUVtOHjLEwqivaViwhGqdpO4kVJqOa4BN9jIzHDbEPLNqeZlzjtKLvA8ZZmtrQB0jGsLW1gbGOlA2xi3SzKe1sjq40W3sbuGqMsiNGkzFGO2JUdCGIPaS2LPqEUpGdnRFGV/RRmPrNyGGNIypH2y/Y3pkw3tjk//5/+j/+mSP5z6pt/182AZbxLAUwMSjAqGLVKDZqRUFnrTafssRWxprCdhfQjBRCxRrGGgGxeS+WZcYUBYQosYRWGlcZASlVhr7rMUjxtF30LG1aS1FzsJoREAdYZ5ZAjxSFADAAlOpK1iIpJwE1K1VsZ4qNZrGp0cXq2fe+JF/dMkYXdQhFJBGDXCcpwBYwphcbHaONAHTU8lIWILdagkvIoiIxFHkVYlMzTN/GFiBLGUhVqWSZcg5aFbVPpdDZkGK5Fl4zPhhjXcV4NmF0b4RGMZ5t4HqH1RYd5XsLi18Uz1Kx7UxF/W6pjLjsDuuxVX4orFkSENZAIjk/HC08pHD03guzFns8fKz80GvvX0M83B5+fVUaMWt9Vmm9vC8rsNLDf69/pxVI6f3HHPZjyrGj3GS5Qmvfc1DLGoBLuiTxB0Xa9XXKaq2ilsCswaowxrhcHwmZQxeQ0v+fvT97tiS7zjvB357c/Qx3jhvzmJETEokEQIAgQUEAhCqiSyWTSKlA6aFND2X1D9Q/0f3QL/1QbbQya7NqWVtZWTchVqlVLJFFlSASZGJGIpOZCeQ8xTzd+Qzuvod+WNv9nBuZhECQEiExdlpkxD33HPd93Lfvvfa3vvV9QiwImWRYOJu/s4zJjlislaYsS1ZXh4yHA0miWyvJ/xRE+QtNTGLhvLoyxDqDMY5BWVKWJUpbBuMVLl55jLPnLoiKolISy4SW3Z0d7ty6xXQ2ZTqb9ZbXSjznlq5jykopS5PIMQJbl5WVzyQFypi8z5Bn9LgSVReHLj6v+HAc2+3r+v1LP5Zzgr8LXD5kDfdw35bJTUKW6m2fEPvWT37yWcbjAtlXRKDk4KDm1Vdfo6nrh77nR53rZ2n/PklKx/vRERU//N5urloo4354xyDfdTwe8+yzz1JV5bF3tG3Lq6++yt7e7kPn7u7fcVvC5T7KPWzRfsraeMSZU6dZGQ3xvmV3/4i2bXHDkpOnz1IO10kYjg73eP3lV/mjP/omb7z3LkTN+bOnuHzlAhsnNlFGMzk84v7de1z74BZ7+0dC5sk2JKfPnOHc+XOMV8ekGNnf3eX9D65x89Y9JpOZYGtO7JK3Tmxx9uxZ1jc3sc6iUiT4hlk9487t29y5dY+d3X0hvSwlm3QuiDLWUpQlayvrbJ86yYlTW6wMh7hsh0gmaMjFEZyk8Q2Tg0OuXbvBdPc+s/1Dalq0ijRBrEfJ9qZCFUqk2NnAKUwuzFJ5/U1KFGRiVrXRWa09+ECI9CqhHVHyxIkNmnnN7t4hIOtW07YLDKeHgTLpdnnujglrRGFTpokFftOr5HQ2qUotuTyqbBOb8nsiPkTaIH10rmBYGLQtWF8dkdoZR9NarK+j7FW7GEYbA0bOpRFSmFaJQsNwPKAqC0qrIAZmdcveZEbdBkISYj5tEgVQaygHBYPKEXziaFLT+AAqopXseRIqk4qz2moCa7XEL/m56uKwoihQ+RmU30uSlyTFAPmSCu6mZA0yRrO+ukqpCw6P5uweToRUpMUWVxmDVUJSSkrJnKw1tioxSmG0w1pDWRb4uqGpa+p5jW8bkkoUg0rGaVliTCEkda0xKIx1GSvUGKuJXgo8m3ouil8Z14kpUpaFrBchMJ83tL5Fx0g9r7MNcJCCVp3Vh7TY/YWYxEKchE8Kq0W10sco2GRMeBLOdopV9ASgBKKuH1O215b3tyGIgicSoykjCoxt40GR1VcDEYVzYm8fEYJSWRQyBqIitB7fyD6+GDicK6So0IpCSEpCbgZREexISkUhSoUxGUIEY+X8aJvVs8R2/r//v/1f+UVrj0gp//E20xqUyOjiasfJ90+ikmLj1gan3jkFwNaNLQZHA1RUWP9IHelvYnPOUZYlRVH8hWzcutapKa+urvKFL3yBZ599tj8OSK7lvffe40c/+hE7Ozvcv38f7/1POeJ/uq2qKv7pP/2nnDlz5tg1vn79Or/zO7/D4eHhX2Pv/vramTNn+Mf/+B/3xLauTadTvv71r/+lSEPOOZ599ln+8//8P/93Wr8BPHjwgH/+z/85L7/88t8owtij9qg9av9ptL9yu7eQIjrRyyl2IEGKKQPYURKDKdH6gM5qCSZv/BMRowy+FcUWrYRc4FPCGYdGqnTqxueKYEXrPakFMP1767bFBUtpBqjxkBQSe/uHxCCb7qoSIGXWeEKIAqwAwUfm8wbjxPNeoRlUg1w1pbBGMRgNiET29ifEoJjPvXiFK4VzBa4saZuGFCPlwOGcI+HBJHzjOThocM6ChnounvSFtQzHFfW8hVhjlEErTTEocIVBGyXgamMIUZF8QhEl8RClGl+jF8oTSTbI1ohVi0+Jtm5wxvWOSkknjFWUlUNjaH1iWBVURSHgTVMTkiJiSVFAgHk9I8bEQYK2yckDlf8OHWAnMuGQlYoAiMSk8uY/ZeB0YU2WiFkq2kjlUUxEUrYRk/vaEXE6We38YVgGdjtCQ/crOnLDcnJGLUDq5erm/DosLNa8zxYXWtO2LWRApgMjnC3EPi9XFy+DllobUlpYy3VV5511yHJL+fydhHnsgDU6awl5XWcSllRJ6z5JIslpCZY7OelOmUqOpkGFhR1cXCiZ1fl7SUJHEnitD0wmcwFZkqIwhs31Edtb65zY2uDkxhqXLp5ie2uVjY0NyqrAlgJkJN9SFRWmGDPa2KIYisWHbxLGVChTokyFtgPI1mlyOWoB2VO2+TNi86KiQdSwc3VXSJlAEEmhRRFJymQCXL6a/SXLiUut0M6irCGZjgy0RGrqweWsXCRaVqieoBQR1aQO/u6UlKQfXR4shSaf36GyfLyMv94Qi2MqWyonSpbs37pkkLQGmABTISgxAMYsDLayhdyfuw/7WRILH53s+su1ZbAeFjZuMseTjm/suqRbSuFYkifXmuZ3yT3Jn/ip/ZcEgaj3qAVazLKsQoKsusUCjLYldm2DLRKH93bZ3d2jbgLloGI6r3nzx29x9GDK5ac/wcaFi3zis7/M6e0z/Os//t/5/ndfojmac//BfR7cfI/QejZPX+TqU5/k7PlLPPWxx/nX/+abvPHmO+wfNbz62htcu3GHl370Ml/4wq/yxDNP8Gtf/Fs884mP8cPvvciffueH3Lhxg+Rn3Hn/Pf70zh3efPVlnvulT/Opz3yGtY0TDFYqLl1xXHnscf7Of7bDD374At///kt88MENjg4P8G3LfF4zb6boySGH+wfcun2HV159iXPnT/HxZz/BE088zdmzp1kZj7N6jkYphyssJ7ZOc+JXz/KJX3qOgxs3eeGFH/Huu69z/+4d3r3+HqZu0UbTTGe0wGhlSDUYklJN8Im6nqMVDAYDrLGS2NSBmJMAZSEA/bxumc2FvDFvWrROGANtW/cqKjFGtEEIWnmd6RKkonwkSQ5nCxolVbSxjQSdIKoeXE9JkhwpLCUUFGgryf9BkddIFWmjwo1WSNbT+gnRe+bTA3yhGfshToliUx0Uro0MBhDbQJMiCkuYTQjBcxATFivWrFqxM2+4dtBSGFgxicrAeDjkwtYmpnIkbWmalsM7O8ycphgM2L1/yLXpEa3XND7iCrDagDeUthSwOtsslCUUVYH3AYtlOCqFkNQIobWuG5r5nKZT+0kaH2qC9wLa60yu0KKaaLUR29gIIeW8aRIlEE0SmzQSjW/QPuB9Q/SRJtboDJCnZJnXA1ZWhqxvbhCiZz6bMQ9ztNPoQtGSMCHS1i0YjSbh0xzjHU6V6OAJIdDULbPZDD+f0MaGIkFVGXRpaNoW7UoGtmTLjgm+odnbZzqPNO0cbSIpNGJrEDNRRZtMcNMUpcZHRWE1PiliK9fEhyRTrda4pGhjJignJapJ1ksSrSdYKFofqesGPLQ+MjdCtAdF4z2ucigFTQhUSmyS2qZlNplQuQJcRUxCoQSxCxk0LVa3BDQ+loxGY+p5oI6RNngG1gpJVsn9KQtLmxK2cBhtaWYts9BgCgXBi0XdL2jrVG+MkXm/qyTvYiBS6pVihNAvxIvewiqTMsQGLKEzWTkmUSpSyDUKIdv66Y7k3a1BWVU1im2K1Q7lRMFqPq/Fmjdbr0DCp7CkuiqkG98GtFE96cdZJ+uTEnKQc0IemtWdapJYeqAk6dopaIoFiFg0o2KmP0Saus0EkyS2cyhMpXFZXYskiWXVxdBG7NTa1ouDbMzpxWw9nELKvIi8SOa1XGuNycySmOdeo0zvdJsUVG3JoK5Yv7/O8P6Ysq7EKidp9ESSZknprLjrJQmXPG3yfYI3kRUD+pBhQTqXeGDRJ3lb99oiBli2eOvet+AXPKQSRI4D6CKJj1Zm+fOs0Bb7ho8GxI8TtBeEppDJQNp01m6qJy493H8e+n4/rfX9XCq8SCh6v2e1IBqhukBo8V2W9xSL4y3fC5WpNhJnd8ln1X+vToG4i/3k+rSNJ2gFStaU8XjA6sqI8WjEqKpYXxsxHJYMqoEUNJn8vMeANRZtCtxgiHGaQVUBmu3tU4zHa6yubWKLCueKpf1EIMTIa6+9xoN7dx4iJi2RSmI3z+TYQJhci2vTX/5uz5mvW7aaEwLYIi49ToTpiEVp6d/d/Q6LY7J0v9PSeVJHCMhxPnERy/ati4sXsazq7vnSF3Cu4NKlC5mg1ObPObzXvPfeB9SNEJR+MVO56UN/H386lolgD13TtES66uYRtfw9E0dHR1y7do2rVx87VqXsnOPq1au89dZb7O/vLgqQeovtxZ04NlS6fihFNI6dgwNCCDx++Qp13YpNWoxMDqfc9jdYW69ZObHNyvoan/rsZzlxepv//V//a1596TUmkynNfMLhDgxWNhivbDAarbC1tcW7773PjZt3mM9r9g8ik2nNvXsPOH/+DKfPnGbjxBZrG2ucPfeADz64wd37O6RmTjObcPfGnP0HDzhx8gRnzp9ndW0d4yqGxnLx0oALFy5y7959rt+4yf17u8zmU0JWpAzRg29omprZdM7O7g7XP6jY2t7kxIlTrK+vMaiqjFHkcgmtKIqKcmvA2sYWfj5h994Dbt25yXw6YWdvF996rJMCrab12KLAWCn0CUHWnBAChZP9tQKUEXJHCp0SjcFrLcVWSuL+SBIVnxhyzLa4cVor6R+izArddjWrLeXCOJ8CPkoBplJZTab7kwfAojhKoC6tRXFRa1mrYwKsFBmGeSMKs6EVvFKDSgXWKApr8CFijMRmnf1sCh58pBE/WJTSKKOZARM/QekZpU5YxH546ArGQ1Ghi0rRTubUwYvCeojs7B7KdY3ypW1WPtTK5ILB2BOKUEKk1VqwUCEwiTqdKF6KYn6HjQmmF/vpSuIOiUOsMT2W1W3Bu+uXUsJqUXcUIrbPMbC0EL0cC421luAtg+GA0pR47/FBkwg9iS3ERESsYHWSONBkXEZri09SlOJ9ILQNMXrQCasVrjRiPY5G24Jq6LAhoFpPCBCaJn8/WXNEVUuw7qhkBjbGkJLK5KxE8CyE9vJ91B2JvZufkii1a6XldzH2Qy1k22nB90JGxbKaUrdWR7kvJhPOU9sKYqQ1YPtxLqr5HmctMQSUMaJirCyh9YvnQXdomRDQE2SVQ02KokgX+5jsUTL0Ufs529IiurKzwsqDFc7/5Dxn3j7DeHcMgPaa0f6of98vasTyqP37b52DRFVVvWJS9/rP2jY2NnDO8dRTT3Hy5EnOnTtHWZYMBoNjx2nbln/xL/4Fr7/+uuzH/wa30WjEF7/4RU6fPn3sGs1mM/7oj/7obyxBCeDWrVt8+9vf5qtf/eox9a7hcMiv//qv84d/+Ic/tw1b27b86Ec/Yj6f84/+0T86RqD7qLa1tcV/89/8N/z+7/8+f/zHf8x0Ov25zvuoPWqP2qP2i9x+ZpLSeDigLMUWazZtZOOrNVYLoNe0IasQxexvLpUkg0FJSonZdA4x4mMiRkVSkpgsrBEkHE3jPQHQ1mFcJn04I3WIgjhnxSZLaFqa+Zz5PBA9mcgg4GBTe5q52IMkIxXLBiE71LOGGAKDssRoKIyTTViCYVWRjFQfBYSYFEPEty2DQSWApzGEGBmOBoS2pckVpbO6lQqvWSubQiW2c9PJnJQik8mMZlbjrMUoTVU4ymGBjzWFF7JG2wR8jGgdMWWBNopxVWCU4fDgKCshKZxzjKpCbGxSwhuL1Q5nrEh5k2jqiNOKwaBC68Rs1hKaGki03lO3gbpN1HWL91E28EjSQ5JDefO9xB1IUYgBnbFIn1AgJyFSEgWcvi12JjED7JKIFmTCGNsft6vyfRiI16oD4aUqWRIeOWml6IHKZTB9uSpZLC4Wtml9z1KWrM7ApdFSzRaikFGKQqq5UkrUdUMIUUC5tER7MUZs6DKJRmWyUUdq0tk6RKecnMgKHss2Rl11ltYCVkt1m8cai7Oi8LScDIlByG8dWUmKirPylkL6Ir3De0/A52RYzLY4hsIqtjZHXL50gSsXz3Hl0hlWxyWrKyPWioLxsMIYTVmt4AYlutQ54dWiKwN2QFIDggeNw1ZDdOFIyoBKJLwQqFLIQ8BLgiAnzlTQJC92aqKoboSgREBpRfQt0bdi/WBUf786VCzlhArWgDPgXJaxVhmS7JJRXcWnEsSzT8x1yYBISh6VmuwoZyAFVMwqSnGRRFNqST0sIsnEHqiTm9nfJdVpdHV2ch2O3iXdPKQZqCnQonCgVoCCBeiuerD1YSWB7tUP79c+agP38yXE/tzPd0m2PmfQJWHytUQqX1EChKbYwcQha+UvjiNvMw/1aTkRoY79LadTeb72RGUg2Z5+1qU1c16wTyap5MSCs1C4NUVRe6azGU0daJuAswWzo0Pef/s96smcJ2PNiQuPc+rKVX5j+//MlYtP8vwf/wmvvf46znh+7VfH3H7niI0zV1jZ3OaTn/sVzl+5wLee/y5/+qc/4N69ffYO7vOjF/a49t7bPPdLn+Lzf/uLnLtwjq989dd55hPP8MIPXuDPvv8C0/37mDTn/vX3+NbuPd587WWe+dRneea5T7K2voXRijPnVvkvT5/mVz73y7z04kt8+9vf5b13PmD/YEIbAr5tab1nPp8yP9xj7/593n77fTY2v8WVy1d45plneOyJK5zc3qYsShnLSSpBh9WY8vEn+OqVx2inU+7dvMELP/oe7777Jo2f8v7717j74IDZpEEZRZtEtUcbSShKtWkkxiCqSsZloqoA2qNhhdatqHrYbC+pE3UtxJnurlWFxRpN3Xp8Ji9J4lTIMhImhAz4ChEpzltIsnZIlWie+5QipCCqc0qIJ74NHNRTIGGNgPsbKyu0rqadTJiFQBsSRMNktse8qShsydrIUM8VqYicWVnj3v0DQuFIUaNtxWTecrg3YZ5Vrg61wxYFpbNMioKoQU8OsckzKDQbq6tsbK5y8Ynz2JUBzXTO3h3NfWU5nE5xpsEW8t3n3ov6ig/oBNoZrBObSVs4UmGEdB1kKowx0PqWto34KMkPYxx1UwsQ7QO20AyGomgRm5AVODTaGlLjs9J/fngsoOWJan2D8YmmFdsEWlEdjEpscqezhjoc4QkQFK60qLmod4k1rFT5Nr7FYjMRQhN8oNUtJYn5vMbXLT56YphTlhFrYWV1DKZgdtTiyhWS9xRlRJcDTJMYjFuavYjSPselKtuZSHJGtZKosKUVawZrqKoSn0RhyxghPRptiMmjolgSSgW1EjUYY4hzUCpiVaRG4WPC5qmraUVRVClN4wNlEEWCgCYqg7HgtEZhiK2nro8ISZNCICaxXZlO51RFifctewf7kEAjalCmLOQZUglVFCRtxIZIR7TLFdIh4ZsWVzm8b/Hz2V9wrv8P15yzonQUxcJQ5ou8PnQxaE84l4SJMRrnsmpk60XdCCHedIkjrTtjYCE3JRTKiC1GypYlaYnAoZQoxMQg5BqfK++VEmIx5ASqX4prFRJpKJlXUi4cUCotEuEJrJP4tmnFEllUn0QlyRUmr3+KqJIUPMSsTpPo+xHbkMnvQshtGyHOt40n+JDVmEQ1yjpJvEUt+4LosxVdTkApLUlSpTRN3fTEfaWhVE6KIRK4iWM4HVKEgpWbq5AUw4MBlSooTUGIiDUNmeKd7fV8Zx+T711Hyj6W4O1iB7Ug8CyTk7p/dlH2ccpClyzLt6GL8TNJQWuz+MQxctIiFhDb67yf6FU2u8hB9cftznXcyu14NNQXBnSKEiyUkLq+hSBqOSZbpklyNuREpFrOqfefWY6HHlZ00h0JIxdG5F98KKqTcy2Sw53q64IoJaeJqev3IhG/iFPlTRKKKkKElo5YLJlV2eNoVldHbG1usrWxxsb6CmVhKQtHaUTxUGuFsQXGWVQmbyUiyopaw8rqJpcvXWF1ZQ3jKrS1/R6wi5mDbyElprMJOw/u8+DefWKQ2FhclDsJ35wkz31NMUhRgc5KR8vXjs72D9CK1BGUWL4P6dhfCzJRHhHdHrTfHCz1Ayne6a95P4C6nzvSS8o3o4thlu/mMm1mERMnEqPhiGeeeYbR0NETlJLBB8Prr7/Fzu5uf5S09P8P26R9aIPxcCf+nPf9JfcTD7927Pp0GMPSHiB1z2m+Bg8TzvLeY/kzN2/eZHNzg42NzYXVLYmVlTEf//jHeeXVV9jfe5D3WQ8ps3bHOnb7cnCkQRWK/cmUOw8esDpawddCklAoJocTfO2J0bO+fRJXDbj42BP81m9t8sTlH/Jv/u03eP/aDa5cuoDW0NQDRqsbrGxs8cx4yIntLd599wN2dg7woWZ3t2FydMC9e3e5cOkyJ7a3OXnqDJubW9y5c5ub129ytL+HTgFfT7h3q2F/9wGbJ09x6sw5VlZXcW4AKnHufMXJUyd5cP8B169f5+6de0yn815pz8c27y1qmtmUw8Mjbt68w8p4he0T22yd2GRldUWUdpTuqXxWgxmtcGo05uSFczTTOffu3ebu3Ts0zYzZfCoEGh+IASFcZ/VLV4gCcgpCKk4xz+k6Y0Ip4ZxF64giW8SFAHlOjyH0Y1xrKJTJeGNc3Ne8fxWuc6ITcoyJHoMgE0IWc6/MgSmvlyYrELat7/EclCjbOudIbUsdZKyGCCa21E3NqCgpXMLoSBsT49GAMPfUsSNfawo081m+D20iKUWjhYDsjahR4T2aBqMSpXMMBgOGK0NWCgNKUU/mWBSztkUHwUSNhtanxdqRlRyV0f023hQ2P84KpRMqX9NOFTABKpP+u2I/pUUNyDpHZkTlz+vF1NbNW0rmOaWkVMyHrCqpkD1pSFLcmkQJNTUNQQWcLnrL0RgX1nKkbOWbgKgyPgkxepwT9f7QekLqiqQCJpPHXVnQ1gG0lTHWegpnSWhcEWhCFNKaFuK3QchF3dYoRlFZ7fZKxmhMXm+1TujerjzHA4gqKEEKaYTglG1KM7Ykxbl5XEaIedzLOIpYpTNBS4NWmCTjQWyTvZCuUodRRlqfKEJAGUXTNsSUKJ0oT6msJqZSygVGCvK8pQSQJEVRLlM2F5D+DVUWedT+Ys02Fu1lJK/dW2Pt7hrltOTKS1dQUbF1Y4tiXqBDl0t41B41acYYBoPBz62YBHD27Fm+8pWvcO7cOazNriJLx5CcjqjNPXjwgLfeeusRQQk4ceIEX/va1zh58uSHCEr/8l/+S95+++2/xt79YrQf/vCHXL16latXrx7LJ549e5avfe1r/PN//s9/bqISwBtvvMGLL77IL/3SL/1U6zcQwZC/9/f+Hh/72Mf4H/6H/4G9vb2f+7yP2qP2qD1qv4jtZyYpra2N0CZKtYjykET63VpDPRcPc11aUJGmSWIdNi4oKsfR0VEG/FX2hxc7Na2XAxDZoFlTkJRs9JS2fXJCZOQNw+EAYzXzZk7TimWbNZaopdqq9b63xDJdVVAUcg8x4euINYbCFkDE+4aQIr4FdjzKaEpXsXZqHR8DB/tTbFGI0oN26IElEiEFUojs7R7RtkKPGFQloW2oO3uD0BC8ZTKZ07ZelJKaSMLnREGL0glbOlIZ8bWHbH3la48rDNWoElWpwqFKg1YWZy1D5xiMBvgkylQxJFQEpTWtV7RNYDZp8c0RKSmmM89sPheyCgIySzI4V5klAVuT7tQsJMGj0T2w31XzyN3qKnNj/tNtyGVh7eQ1e4UkOjWiiI4pK8ssSAUiFy0qHMtEIFiARQubB3psVGWwqfOC7zDoGFO/+Qd6MtIxtaWsMmRzJVhROqnmQvohNvOxtzKwVtP6LCGeEwOhI251QBrdmBZwwiqFdVZAnQgoi48LBagOrOhAbGOtqHpVA9oQaPL5VIdfK5MTZAl0Bk+jJqmAUoaotNgFaS1JrsYTVAAdsdqyujriwulNLpw7xanT26yOhhRJwSziladZMUQszpXUHnwTc2KrJEbF/LChGhdoN8ZWJdp0ikQZVE5ZASm2CAqZrSjkJgvxx3tS00hiSGnAE9qItgafAqTYS7InH9BOZSEqJWSTLpHQgXYZRBb7iMhCpWcZrM6VY0jyIqZGrmGKRC/PfUpBKhqjkO1Svp8y7iSpaKzMYXLzA8rmZ0GLSo3AWR1wnvuQx4PqVZsa4IiU5vIZNQaqDG4viBYd2LRQHIJlciD9N+racsprGdxXH/Hev0hbHDf1SZjjfUq0CMCrsnIawgsLidh40BGsAp1B/L6CvLPNe7i/3c/62O/yUwKxxfsaU2jkJsS8xohk+qK/oMTER14qIuNtGSG7exN2rt2g9TXWGKbzhp2dB7z58gvU0wmnHvsY45U1Pv/FL3Hq5DbPP/88b751nfs7f8xnP/ss0+kcc32NC08+wdbpK/zdv7fNU09c5Zvf/BZ/9tJPmE3n3L93m+e/+ce8/eab/NLnfpXPfO5znDp7ga/+vdNCVvru93jzz14lzKaUwTO/c5s//r3/lR+/9BIf/6XP8tRTT7OxuYYxA06evsBXvnqST3zqWV79s5f57nd+yJtvvZctJjwhembeU7dzJvWUg4N9bt+6xU9+/Crnzp3jiSef5NlPfIJz589TlU7svpRFk1DGYccVF59c5exjj3F4tMP9ezd44Ycv89KLr3D3wR3mbYuPU3w9R0dokieqRIw1Ck3IVqEW8E3AFDIvFqUmKYsrHK6NmKIkRbGMiRqUVYzHA2IbmDUts6ahCZI8t8i8K1YRUQidSuT3fRu67CQxLUi21ortbAfIqyTvDUnWOtUIoaQYlgyLgr0He8x8QJGEzKw1rnA0swnaWNbGAwYrhvObGwy04vasRmGISeNNZF6WNKrBpEhQnhgi86SYTA8hJYyxVNUIj6PZn3PnqEWrxMhpRoVjMKg4ubXO5toI6zSH8xmzeY1KcyyJpg1MG1F1LKzBaiPkYjTtLAhRuREijiilWKwBpTSxTfh5FFC70gwqx3BYYrRj5/AAHxMra5aoEyl5sdxMsjYbFHXboPGkNmRrgJTVCjyhaUhIXOO9xtSKEAIjuwKqpSg11aCQNd4H2nSUwfQClRTGlmJRoLUoWU0OJSFgE0bB+vqQ0HpQqleTdFbT1IF6MhGQwGjWttYx2rK384A6TCmcTFF12+KsQbWBmY+MbcTXgbmyWJSoWmqDKyKxlnU2KUlGpGRxhYZayEDGGkwrybOBjviUUFZTGUXQLSHl6u/oiTiMsbiiQGuJM4kt0SeaKJaLQkaRdUITsEBdB44mR0TlSK5goqBwpZCAc2ZGa4UpHa6qCFESeSpp2iC2FX4+Ye4ssTXEafNzzvf//ltVFZKsil0yWsg22ih8m0hNQhuT70cmuBuDsZqmafr9ROqVBxbEb6AnqYgCE6BSb2+mtZBHFArnLEqLRZzYNsveAYVYrcWYRU7y8bXqk5WdzZvWWbGLJPublESLcSZxotGG4XhAipF53WJNjv20RllHZ18akxD1Qvd9remVonoFwSgWICHGpcSqXMPgJS4xVtbM6IXIpbSWfhpEuSYpyukIEyybd7awybI5GzP2Y9kLNArValE+zYnWGBKeSDINCbHg9t73qp4xLcg6Ham6I3+knAWV/GdWg+n2HHKX8j0kxzzHqDvyf6UyOV8tvadjDnTx89LPqk+NLrWFLVofcy+RVXrOST7WscjqoZDrI5WV5OuhlRDYdI7tZRwuyBQS/0gSM2SL457oLgy5PknefffuDFqpnuyUs8ayt+3oE0sxa/dciDKszcTN4ySlh4lVCz6G7J06+0SNkHmij/k5EJB0NKjYWBuztjpmPB5RFg6DIvlIUJGgRM0EbQlR5UIJUUWJKRDrQDUsuXzxCba2T/XJelKibRvm8ykPHtynbebs7uxI4YUXG56+szFJ3N5dRwnrpeAhKxZ1lsKpV2Uj7x3I5HnVX/djrVcKfXg0iRJcHv399YeYSRZZtTXGXs2rGyMyCLv96GJwpWxb2/+vJ/AvPwuLPjpX8LFnnmY06izeOimPguvXb3L//oNFElB1JKpjPfmIf/PQ6+oj3vNXm1hcJjEuzpX3Gf2p02IrFYR0QFbcWZDGur4d73NKkR//+MecO3eWy5evfEhR6dLFS7y8v0v0LeiQ99jd57s9yGJXsjiHkDqUS9y4c4d6o6UqBvi2RZu802taDnYfEEPL6olTFMMVNk+c5Nf+9hcYr67wjX/zDd56+xrb25tsba4zO5oy3tikGg04c/4ia2tr3Lx+gw+u3WQ6mdE2c+7ducPhwQEnTp7i/MWLbGxscO78BTZPnODu7dvcuX6D+WSCSQnjPfevX+fB3XucOHWa7VOnWV0Zo63BuQGnz5xlc2uT3Z0H3Lh+kzt37nE0meVYMuHxQiQOnqapmU6m7O7uMr45ZH1jg5MnT7K5tUVRiK27yvO7AjCGwbjgwnjEmfMXmM2P2HnwgOr6bfb292h8KwrN0ZMyoVa2bgEdIYm3usTa2VJNkddbq1DGoKMRq6uMackHZO20SpSjfVRCelH58CplTCv1fU2wpMINpKzGnMec1ipbvEs/YqeA081BSmFLsaRpZjV1K/byHQ6hjenXKWsNpdGsjEqUc+zN5gQUKoHPxXsxBcF0so5NjJF5aHuSnjEWm5Ub6zCXdV9BYcVGraxKisKhNPgYxW5NBaIWhdrGS587i7/oo6goxtSTvYLPBEuZ/eX+oog+q1da1WPAhbPUvqVpPWVR5GcyF3stEcNiSqLwmRASUF5XMKLWj8+xVVCYIAToaKOURupsoZYJzsm3/ROatGAnqhsLJELb4n2LcZqYIkVhpeije4ZTVyQo6qcSJgpZbqhH1GiSr9FKChSbTHrXWghWJiLEcgXZpI+oZN+qY1aQt+S4EKwjF9KoTLqKpKixWkH0tAheraJCHIq7YwmZw1iDUiavcTJWU4CgBFeNPTAqhT0xKurGY03EKxl/KkaUdVnFPRP7jcK6gqR0VjfWC4Jz8FkFysDf8CT+o/ZQS6CiYv3OOq52XHnpCraxbH+wzeqDVQDc3FHUxV9zRx+1X+QmTiWO4XCIc26J3PkXb2VZ8sUvfpGrV6/2r6WUmEwm7O/v8+abbzKZTHjnnXdomoa6rmmaX1yc5D9UG41GfO1rX+PUqVPHXk8p8Z3vfIfXXnvtr6lnv1gthMDv/u7v8rnPfY4vfelLxxSPxuMxX/jCF7h+/frPTXgLIfCHf/iHhBD45Cc/SVVVP/X9WmuuXr3Kf/1f/9f8zu/8Djdu3Pi5zvuoPWqP2qP2i9h+ZpJS3XpoPYPCMqpK8YwnyibKJ2xpCCEJYSIFSSwmRT1v6Pgjo+GI6WxCCCkrAmRP9E4aNyW00URkM+pKJ4lslbCNqMF0XurGWMrS0jQiEV1meysfRHLbFQ7vQ18ZVriClEQmOoTIdFrjnMEUUtGdkmfetJRFhdKK+XRO03gUmnI0IAVPYSXJp43i/r0HNHWLM4a2lapk7xXGamzSGCvgR1N7iApXGIqqILSBtm4JE0kIDgYDnDMQZSNuXIEzNicxDDqIWtWprZOYLN2bEFllH4WkUbeeyeEM37YoZWiaiPdCLjGqxmcrl66CN+bkQ1cRRQbMezuGnFhIGEJWJBAiElKRlDqwNFftZFC1IyV1yhbQETxUTnjEjMdmqkiU+71MHBKwGLosx3JyQCmVkyHkxFHqZYu1ElJUYuEZL0oaWQJedVXPILZHAjAYayiLHBhDtqGzGG37+1pVJUq1hBD679fbSRxLkC0nVAT8cIWjLAR0apqW1st9DlkBRN4vSaWUwBgBhfxSxVUMHgF5pAperndOpqVcSa46VrfH+8AcsKZkUFgqZ1HOopxmWDpa33Drzh3u7x1QFBWDomRlOGR9bcz6eJXTJ2tWV0umkwaPIijFoBywulaxtrXGYK1CF45AgtSiU2e1lIAAMQjg29mjdImEDOoolfDBE32grCoZUzqRlChNpGyz081OKYOAMWmMK0lGk3oeSgf4L5NbOng5ZcnssMCbM2imVJIEAjKOUtvQVUDHrEGulRE5bJ164k1K2YYqRZRNSDoyE7W65+IYiK8Ru8oM2FEDU5Ka5PGzAmpIT2iCxd/HQPvlP2SMTfHRBKa/iiRCeujv5d/kawqQgiTckG/eVd8ZrVCdfV8HDHZVp91x8zgWEHTxPfoc2kPfv7+uSZEoCEeHFOMIZUVSFYqwSF4uH0NJnxMOpVZQhWN80nKmbalnM+7e32HazAkZoG4Pjnj1Rz/i/s4ej33sGVY3z3L145/k9IWzfPeb3+K733uR3/+Db3J6e5s7t3e4/PRVvvxffJUL58/z9LOf5vzF8/zSp/6MH377h7z91jV2Dqe89sbr3Lp9j9d/8jqf/+IX+dizz/DY5cc5d+4C737yU3z/W8/zzo9fZXY0YTQecvON13j/jff40YXH+MTnPsXHnvs4W5tbKD3k5OnLnDx5kk/90id55ZXX+O53XuDN199id2ef1geiijRtTRMamnrOfHbIwe593n/vHV760YtcfeJJHrt6lauPP8aJrU1ZfxRkFiXGDllfr1hfP8vFi5/iS1++y6tvvMrrP/kxb736Y27PbjBrGhSinNZGsRfS3pNCJFSawpCBZYOKUZKXEZLyJK3zMy5KZ6XTjEaWZpYphkqOpbOtKXmOt1oRk6LWbVZvklhBqqizTZKW5J5G5mndzfvy20xUkMERgmdUDoRMUjfyLGvLfJ549/Z9TEqsjFYxStNME4dmytnzp1jViXrSMt2d88HUEyK4Qiq2ptMpOnoG5ZBgDJNZTTOvST4wO1IoY6nKAWVZEJ3jcB5o9w5RscXFwLCwmEKxuT7m/Po62hrmMbB7eMRs6pnNGqaNl+fIx75SWNazmKt7Im1W/mvqGt+KioQbiA1CiGLLFBW4wqG1Ifok8VueU0fjEaOVkulsSt3UaK2pigJaT4yI/YIPHB3N0NZhjcY5SeysbA6xzqFLzcr6CkdHUw4nRzRtC0riwMqVGKdFNakN1H6OomZlNCCkhuA9dTPF14E2KmKc09ZBKssPa/b3j4RwRiIomIeWcjigsqXMA2lKO5sL6bfQNNGjTYnSDcEnyqJA0YDWDIox0U9pvdh7eULuqyF4IQ+5YkRROlAKlxIVQpgdVI6oG2ZNi9K6t8pIQNu0zH1DmZNSbT0npcSwtEBExCt1JmYjpORZTZtqgrEk7xmPxgyKAueGxJBooyinOVfQNF4ScPOa2HpCM0MRaOeQdMDYX9ykgthFR5zRMv+Q15WcmxcyMDLXp4gxsoZ4H/r9ROFEMaqLI1OSdbqLIxVCWoyI3Z+xJpNUuiQlmXQkJAZjNMG0feWlj5HopRJd26zimZWObD6fUhIvtK2XxFO2XEspinqXsSStcsIsx3TOQpKkn7UarWTe6OzgQo7DYyYYaav7GDP4THwyGmuzYpgPxFbiC2eFfEqXzNSawkvV8vruGuuTFcYHK6zMxhhsJjnRk8KNkqr7pml7IlfIls/GKHRLVibgWGLsmI0YXaK3u6cdQacrSIj9Gr+s2nPcPq2Lo+U6P6xalE/URye9+lGnRNPtJX5K6whUqe9ZJk/l4y0IP53SaVaKWDrugrQgP+l8b3o1OjJpCdkXk5PUIWSbU6V6ldm+U39OX1Xe4xjTKTLJOEl0MVPq+94Tw3IA1O3rtFKiXJHIfXwo1uzPn/ufUi7E8LLnLiyFtbiyRFuNs0YUBI8mTOc1xjicMRTOUVUFlSsZjwNlaWkbT7dLKIqSkye32D55iqtPPMnK+iZJiQLXzoO7PLh/n729XebzmYyX2CmcqKVQOB17BlOK2UKqK6ZR5IdR5ohjhamKlBTKCkmxixHVsYuxeO/ir7Q07rp/dKOwGzsJYlhYDaZuOC5INf0o7olyQoBdEKL0T+mL7C8vX7rIeFgiBKUmj+CSO3d2uHbtxkOfeah1/Vb9D/2xj7/pr2o/sXyen/a7vLnvfk5kUmi+91ltSnWkq+U9glLdDPOh7xJC4Nq1a4DmypUrxx6zlZUxw9EKBzs7qFCjCgc4FvvJpWKnpV4mpSGJPRlWc/v+PXRIbG1sUVSl3HclxICD3V0m0zlbp04xWllnMF7ls7/6K1y8dIH/37/4Pd5++212dvdFPUe/w5Unr7J98hSjlQ2uPjFk++Qmt67f5O7t+xzNag4PD5nO5uzs7HLu3HnOXDjPeDjg0mVRWLp98yZ3rl9nMp9RFo4wn3Ltrbe5e+MOW6dOcurcaVZX1zDW4Mohp06XbG1tsru7z/Ubt7h7+x5Hh0e0XvZUMclaqGMg+Ia2nnF0dMC9e/dYX99gY3OTzc1NVlZWKJxdjCsFCoMtBqwWFePxCU6fucze/g537t5h9/599h48oAkNMgsLDhUiqJgIZCU6k9coZIrSRne3fGHTlm1FjVY4m7GTpXUgKTlG95zLc6+W5o+FIvjyetYRr1geAYoFXtWNiaxsba1YnoWMW6SomMwaai2YXqUtMUTqacvKsOLEsKKOkTTzHE5rZvlz1oriaAoek9U820zQTDFJjKwU1lghLeXYc4InpQadIlYptIGytGyMSrFa05pZ09A2QUhcbeyng5T3Ud38ppauD0D0Ie+1yPiaA8QyOZLjlXxvurWJfL+qQUGKUniXklwnEuiYcrwjtsYgqkNBgU0Rpw2uqKTQpSwAUcJovM+kL4vLyuOQRPXbQwgNziqshVbAJ9o2SVwfZV9ksq1zPa+FkJ7HrM9qQ2VZgk69mi1K7FBV8qB0JiwFKXTMc4UxFpKi9R6dVI/3haCyQHciJS3ENZX69TyRbXtTJGT7YpXX6i7G8r4FxIGgs+EjF+TKeijn66zbYhCHA4+XNdRGUXS1dhHjxiikKmQPqFCkEMEHUgqyV28DSj+ye/sb3SJU0wrbWM69fo7tD7Y5+d5JNm9tYrxBxYexz0ftUfvoppQSYnNWTvp57Ny6Zozh0qVLbG9v89xzz3HmzBlAiL1vvPEGb7zxBu+//z67u7sf2mM+alJs8sUvfpGTJ09+6Hcvv/wy3/72t/8aevWL25qm4Vvf+hYAX/nKV46N2bNnz3LixAnu3Lnzcx+/bVv+4A/+gLfeeosvf/nLnD179qc+F0opHn/8cf7b//a/5X/6n/4nXn75Zfwj1cNH7VF71P4TaCr9jKv25Y9dxOhE5TSD0jIYVSQl/vJN46nnkfk04r1UuRWloygcMfqFP7aTyh7rLG3b5k2XzyC0weVqxpiS+NAWJtu4RObzOQt5/ohzJldmRqxW+CR9MVmyNmklCkYz2eBXZUEi0raeFAU4ds5SVJZEpJ63uAKKqkCrEt80GAO2dGhbENpIVRgGQ6mOnU7mJJ+YN4HpdI42QnbpQMdEILSBvd05oBmPSoYji9WGyWTCoBpQNzWDqsI4y+HhDJUMVVlRFYXYwpkMoKYsNayFoDWva9o2EGLEOMN8Pqep27y/FmDW+4gzCqPAJ7EmC31VjO4JMtBV4SwqbIUwoBf4dU4W9IOGDsTPRKecUDHZj763bGMRdC5XmXfS3VJd5DJZapEckOotAaeIi2N1BKdOFUkujRCGukQfSmVAWpIKAmbmz/RJlO575OTVUoIgJBkbhXOUpSPGgNIS8Lbe07YC7HRPje4qB3VXHSXJCOecVP4rcE6TkoD8B4c1UkiWcpXv8URIr0ClNNYYQoo0bSOyzMrkCt0O/NNZOUOMxYzWWKcpXMFoMGQ8HjEalxgSKRmMM1SVw2mLs5rSFRS2ZDQcUQwGNCnglKIqHEq1JAq2Tp3m/OXLPHblHOOxZT6bEENkOBxhre2rksXawot6lRIbm05LPbS+lxcnQVBSMRd9xBVyjftkDaJc0dRzXGVRzoglhNIkLc8iRhFVrnpkoeDVEV1SVgHrt8xd9V6MuVJbwKQYAjEEuf9BJLPRQlIjq1ygIJlslREWgZ/WCowA1UobkjIoBNxWdKQIIV1J88AU0oEQlBJCmGETpQZLT9aiyRiLglJlclVHCJQh25G6uo/LeOqrE+kw1OXj/qybwA7sP/65lEL+Ll2fQm8VubDZEbnz1DQi324dJCEYaFtkESaVr41BCHamBzi6OX6RaOh+lmsZEDDOhIZmtod2BaYa93c89ZaUi+8hSQVQSaMIwBGx3mfvxm3u3rjFweEu12/cotCGlarg7sEhSSlOntjiyec+xanHPoY2Fe1swp/98Id860/+hPc+uMP9nQlN0/DY4+f59f/TV/nM536Z8YqFeMj0YI8Xvv0jvvmnL/DWe7fxUUisq+vrPPepT/PFv/0FLl25SOEss+mE1195he99+1tMD3bZMBCN5vX377EXS5782BP88mee42Mf/wTr65s4DdAQYs3hwT4/fvlVfviDl3jttXe4/2CPup0LwJ0UIOTesiwp3ICirBiurHDh4iWefvpjPPHEVS5eOMdoWEr1bnJ9gjLXpJJSoq0n7Ny7w09e+wk/eOGH3PjgfY5299ndP5TvZnLVb6lxJEaDkrJwtHUtSYQkqhzJOKgT196/w8x7ttYK1sYlJEMToI2e2rf4GAlBSIE6r0GddaVShrZpxd60Sy7kZEpKsRdAkJxWlrZXGbyNCYzi/PkzrA+GvPfude7tHZDwAnhbgy6EgHJ6bZ1B6aD1rI4dT1w+w/raKgcHDcrDj6/d5NaDHbRK+KR5sLNPjJ5yNEAZy6xu8a2ntLIWq6CJQUHSYBTaGZSxaFfgtIEQiQQqZygNDIYFq6sDBlWFq8YczBuatgYC9WzG/sERTe3xbcA3EhNE5cW+EiFVKBTKKFGXMlJVrLSmLET5an1tnfXxKvW04dbtXe4+2EWXMFop8b5h2sywxjKqhsxnNb7N6i4qEQm4QogRw+EAaxyDckQC2hgZjYbU0xlHszmNl3XMGsOwGrC5usm89XitGVUltjBYrTiaHZFii7UKUoErVohByNfGGGaTOZPpnOB9Vr1RHBwcQYy4gUUbhUmithd9CyHRxBaXY4R5M8eExGxe0ybPeDBkcnjErJ0zrkpm0ymBxLByNLUnKRivDCX5kRQDZ2hajwcqZ6nnLdOmpSo1WmnmjccVsr7OZg1KwWhYMZlMaX1gOKggBeazlpgUldV439ICVWnxPjFPEWMcK+MVzKBkuLKGtSW6KinGI8piyPywxhYlrioJTWB2uE9ROtygpJk1tNOaP/z//j9/xvn+P2xb/3+soVUSC7dMVEpKlCmDD/iQRFEpkskHJicYheASQ8wEd47ZWIkqqBACOqEUSf7IuJA4NmUQZ7HemGxBJfYb8poPsY/vkiJbrElCVBJsqVdU6GLkTsXI+yBKrlajsDnGIVvPGYl9jcI66UPbyL4kBNnHiBKsWVqCxXJlPmsBTVEYnBOV06ZpcdYSfMRZS9lUpAPFeHeF1ckqG3vruGRxwfXrohD8JObyPvRKqVqL+kTIagddnBGjqJsteAKqv9Y9CaZvH07y5p3Jgj6wTI5J3c9dfJ6TbQ8Bc8eBunT8nDnLqrXJ/JWHt7U5nljq0yJGOn7c3kYuE0ZSvi5dTrpTkeVD58i2ektEn86u0JhcRNEF7Jn8E0LsE8DdZ5Sij2uV7kh6QpzTkMeqzOFN48U+Pe/jluO77nsonbUllc6JyIW6UP818jk7zkx3j4xROOsYVAOGwwFl1SkUivVMR7IzWp4xo4WgZKwjJHl+nDUMByXWVWycOMGly5c5fXqb7e0NYvSikOcKlFLcuHmTd995R9b0uKQs1LHJEpmwlO9hHi9kAqEolmTbH7rrqPHBC3nMqN7aBrIaq1pE7AsqiuouytJ9XhonXUJ7+eXYWUDnPWynKKqW2VGqk3PJ5JulMdi9rSu6yKq59GfqdjSKk6e2efqpqyhVIyqmCUWJ944XX3yFyWTCw60nHkDeYy82CR/63sfi/5+2Z/iLJJU+GmqScZtYusGLa96NzxSzDTf5npE3zd39W+q/0v11evi7WOv4+Mc/zvr6Wv/7RGIynfHjV15mcrhHCB5TlCwKJ5aUlPppqsN5VCYRtJAa/GxKO6258tglrHM0dcOoLKnbltp7qqpkfX2DzdNn0cUAYmJv5wHf/tM/5d/+0Tc5PJoznzdUg4KLF89z5epVVlaGoFqib9h7sMP7797g1p0H1K3sZ421rG9scunSRU6dPkVROFKKHO3tc+PaNfZ2H1AqWW8OZw27k5bB6irnzpzk9JkzjMerQrJQkZQCPrTs7+5x6+Ztbt++z+HhUa/ovCA/Ct5jjUVrh3WO4XjE1uYWJ06cYH1jjeGgEsJefx+6MSBPZgwtbT1nb2+Xm7dvcf/eferplLpu8hqogUDKZA6nlXy3EHtSR0LWI6Mdk4Mp01mNKzTD0uS9guxgfFyscZ1qd09E7aaWhBB+l3Gi7jnJk+SCUKr6OVPem6iqkrWVFWaTKfuHE3wQC2ytRSFSG8WwKBmWBTEEnFGsrg7YGI+pQ0K1iaO65u7eASkGtDHM5g1t24qVsLEZS5VYwuh8KZMQLsnrhdh3aYw22UVSioasVhitKCsnlmeuxEdogu+JoHXd0LaizN6RkULGwLrr0c29Si9sy5IiE3VEtW8wGKITTKc1h0czfPSC53QFailS2KK3v+1JULn4TtSypPDDaMFCffC4XGzatJ7WCw6hkKLNQTlAK00dI4UTEo4Qglt88EJSTQqtC7R2tK0U0QUfaFqfYx4hvLeNx3svewlrevwqxohOCZ/XGI3Yn6c897fei81vSMybWop1Y6T1AefkIvogqk5aSxGozWuWj4JHkhJtVgq01ogKGInCSYwXYpLCxyh4tjZSyOq9FMwYrVApEnKcppWijbK6Fc5hnMUUBc6VoDS6cLiiEHvgkHBlQYrg24YUI650oqrWeP4//6///t89zf8Hbo+IMf8eWgSVFOPdMaP9ESffO8n2B9ucfeMstrWU0/LRdX/U/sLNWktZlgwGAylg/guSkpRSbG1tMRgMWF9f58qVK6yurnLx4kWcc/37Yox897vf5Rvf+MYjwsa/oz333HP8xm/8xofsxWazGf/sn/0z7t69+9fUs1/sVlUV/+Sf/BMuXbp0bBzfu3ePr3/969y7d+8vfY7xeMx/9V/9Vx86x5/Xmqbh+9//Pl//+tcfKYQ9ao/ao/YL2377t3/7Z3rfz6ykpKInhESLpSgVs3ktG30D3kfqusUWlrKyzKZiPyIbKvEM72QcjVF475nP5wIox06+2KBUQluDTkls25SiKAQgF8JTomnavmoSJfYFRmt8U0tqWml842mjkIQ6bLNpPUrFDNBmKwUi0+lMqsQCkhyqPaQZw4GjsBYTI+1kRtsm/FwxnxvmWZ0g+ABJY53JFlGykezIJ5NpEN5AUrSzljaBcopRMUYrQ7JCcBgOxpAcwSepvE5Q1w0h1VmhSTbRMYrte2dHsLA/k+ohQc1EqQYV8SERRAoG75sMQKv+sx0xqFcx6gE9UCr2iZKH5TcfXiq7RBFwrAqtAzB6cDITPxZVpaEPVIW0lutsMz+kSyjJOVRPhOr63PVGut69VwB8UTviGOBPR6CSjmJsQYpif6eVVLjbLHkMMBgMkQS/JA6m0ymN9ZJA89n+DnK/c1JJAZicXBcAo24Do2GFsY4YZ3ifyKXMS8kQAe+MFXAthS5pJKSjRbVfZ+kjSTKdEqWFUeHYWF/hzJkTrKyMGFYV8zriBiVVZRm5AWvDClsZfNJYVTAcl6ytDNhYX6coh9QhsX9wiHUFaxsbnNg+z9apbWxlgUBKLSZEbIpY6ySZF7IkeUroXJUfYlZP85kklp+5lET+PmkwmQiXosqkrYg1mhhaUvRonUgadOHAiq2PyqoKKkk1W8rkpH4M5LEjr3UWhpB8tjGKQYZgDH1STIUMPEfQeToUMHpBbhEiDWhr5RipI3/oPO6s3I++LxpUC7RLz9QEOCKpmYxSNUaxCWpw7Ik6nlxbAu070l6XqEg5gcLD7+++/yLBsHzIn6NQ5djh82wD0ZOil2px35JQaGsJwWfrO0VU2TRSQfCehEbbbqxLwrl7FoFM9Op7uvQdFs8HKDSRqDTRFvhYML+7w9p2xFQjkpJK+oU+gyQRRO1J1DvkWBZdjNg4d57xeMSDOx9QFJob799mFiIaITNcu3mL/cMjPuMD5578BG4w5NOf/zynL5zmX/9v/4offv9Vbk7mvPzqG9y+d5cPrr3Jr33+c1y+fIHR+ja/9tUvcfmpx/n9//X/4IUfvc7hLHLv3n2e/+Y3ePfN1/jsr/4av/L5z7N98gSf+uXPcfnxx3jh+9/j3Zde5MpTZ5mEyI++8SI3btzh7R+/yTPPvcIv/8pnePLJp1hdWUdpx+p6xa9+YZPnPv1p3nvnPX7w/Rd46cWXuX3nPtN5S4yiKOinc6aqxjrHwdE+uzv3eeuNN9ja3OLJp57k05/+FBcvX2S8MsJZ+rVFZTJcNbCcvbjCyQuX+fTnPs/ta+/z4gs/5IUf/Rn7D+4TiznToym+FSKM9xGtE41PxNCIup5SWAWNb9EKnNEMigqCYla3tCmABmc1FkPjJakvz33MaghZ8UIljIq4PO+abAeltVip1o2njZ1a4IKwSOqsbMhgcDdjdBQ3BEAGjqaH1K2iTIaiHBJDQPvAYGWI8poTmxti7VFPaZpIUxUczj0xtgyqghgUOmpWx0OsVuzuHVIHL+pSQaOSIxpLaOZiL4ARIhGaRjvmM81h0xKpMeaIsrBsbo5YXVnHriumgwfMJoccTWr25g1NhJACbSv33TqxrtNWo1JkOm+Y10LGUknhlCa2AqLXXogZMSWMknV/MCyxlZYqeh2pKktNSzNrMNbhrGNtbYzRkgAMPqJtpGmkD/fvH8m3Mk5IGdpIdW/bcDQ9JCgoR0OKElY3hoSmoW4TRTEghsC8FpWsEIwoBE5qok4MRhW+aUWp0BQQNbNmji1EhbK0jsFwSAiBsijBGNp5TVE49g/3mR9OKcaB1nsBY63DH+wjhMmG1tdChDSaNkoqxBhNWwcaJSS46BPBJKzRGETlcVAVBJ9o20BZgFGK2nsaHzBWk7TCVCVDZ9BqxuG0ybY1YhMUg5B2pnNPCuDrOfNmxnzeMFpZZXv1NKPRgJQscxoKZylLx7RNhGhQtqAaDnB2wO708C8x2f97blmFR5GIRp5DlcvGYxTFIG2ECOF9kgSKDn1iX2tJiGmlcozs6WwqFGQyMj25RCx6dU9G6uLV4CV26TSntBbbuRB9jh+zvQkSU3ZRcgwy/whRJ1twkfBtLgTIJHwfAiQvtoNWyCKxlWRS9OC9yiQhIWWInYgkqlQSElcXm4c29EtibCJm5jDGsLWzjfOO8qBk5WjMMI3gSGVike6X0ia1vWJBDLEnZS0i/0WgkJLMlzEmlJLvGpIkLlCdskJaikPo740kfJeCjj42U73Fctd6EgrLsfCfn/44Hh8pjgU3+RiKTsVhSaUp/275s939PX7cRZHFMpHpWAzV91sd64+sU/3R5T4qsrqXAPSLPUleA3Xsx+fiXJlYqrs+5uSo1vhMbnLOLqy0Y+LDFyzlPslxyPdL9uAmk5OWiGR506VIWK0onWU8GrK+vko1KCmskCe1s2KnahyltaJ4JrsfsScvHVVVYYwjpETTeq5efZzLV66wurbJcDRE24Wy6PToiBQiu7t3mU4m3LhxQ+yUU8rkj8W9EdLSstUdvfpFb++cx7SCXDCzsHBKClRnEd0RDTqGgnqYoJSvYfoI0k7Me4so+7jlwpt+qxv/vFG8eGZUp851bAxn8lTXj/78EVQgYVhfW+PxqxdQqqYrGFCUwIC7d+8xmUw/4rxybxdjI33otw+PncXM8NFH+6tpafEnK42RsjKvNsfGLXnM9mO3U8r8UFcii2u4PKdJlfKrr77K2bNnuHz5csYhEqNhxXOf+hS3btzgrZ/8hBDn2LLM8UDGFY6dJ+8fRdI5R44WWw0x1nHr5g22T55gUI5ovBRoqBSZzmbUTUvrPafPX0YXJetbJ/jP/ouvMlod8b/9y9+nqWsOjya88ebb7B/u8djli5w8uY0rCzZPnWK8tsrq+zd45+1rHE1F9e7+3TscHexx7+5pLly8yObWFqsbG4xXV7h//y633/8Aa+HU+gq3X36bnYMJBzv73Llzj7PnTnPq1ClGoxWMdhhr2DpxkvXNTS5ennD39l1u3LjJ3t4+89r3BW3ehxzje3Q7p65nHOzvc+vWLVZXVzhz5gxbW1sMRwPBUI5dO40xBWboODUcsXnyNNOjQ3bu3eXajZsc7u2TdKBtZ6JAkx+3mOP5uBQHaKUgir2aVqIspJUm+IQPQdSsunkvpQXZNHWKa/Kz2KwmDPR4UTd/prSwjO4IUsuFMN061hVMKLpCoq6QSsapj55ZI6o8KlkpuIiiqmiqghJYHQ+JvpE12mX19BQxKqGNIgZw1lI4Iak2rRcsKIJOGpImBUWLErUvIBpDVBqdNO08Qd2iEDJ0WToGgxKrDcOioZ2L3d8s758MWmxCc5GXzoqhgjsmmo7wnSTeTVqeTZ+yCuMSMdhohbFOCEAdF1NpwYVQUiCYix6MMXndg0QgpsisnslzrzVGL2ZsIQg18jxbg9KJsnRYa5hNG5wzaAVtjvc65ay2aYkp5n2jfAdnLUZZ5qqRdUGLOmZRFKT8HbW1eO+xWtPGQD2doQATBXNWNuEUWeVLkVIgRFEDFnK4XAuVVWmtETvnmNffjkCutcZmVSYh0IvSZusjRotClTIGW0g8UDe+j3U63E1bi8rnj3nNab0nFIFqOKQsRKWr8X5xbxU0jUIpgzYWXeTimkftP7mmgmJ4MATg/OvnKSclm7c22X5/m+HhkMGBFFE+IiU9aj9Ps9ZSFAVVVfUOGz+vYtJXvvIVPv3pT/c2WMv7t6OjI0IIvPPOO9y9e5fvf//7P7ft1t+UdunSJb761a9+iKCUUuLVV1/9KyHa/Kfa5vM5v/M7v8NnP/tZvvjFL/Zj+8SJE/zTf/pPefHFF/nOd77DdPrR+7GfpR0dHfG7v/u7fPnLX+aTn/zkMXu5j2pFUfD5z38epRS/8zu/84io9Kg9ao/af9TtZyYpFdoQkiTPZnWink1x2rKyOqByA9zaICcYEk3tmczmPX5tjZUqx7wBqps2V3FqrO3Y1JKy7ipJQhtIrWc6nWWwQDZzMSlaH/EhiDpEISQlpRqM1sznsrk31lIWmka26igdCTHIhtAajIUQvdh6JIVWSdRrrNifuCJv7n2imc5IGKZHXqqjjME6Tdu2aG1JtSQn2lnLYFCBEeaDxrEyLrHWoVRkPBxktRxDiIHWR+qZp6kPCD7SNJl4k2Jf2ZUyyCH7fPUQtChAfAdqy5uEoNC7EyRyoifbi6XjZKKuLUD5rsJskcihJ0Plf3ckhJQTvEpnwH5x3OPVyHzoPPkHUYgiJzjy+JGqdLPwTVcPA44dUAmdupb8WwDdjhy1XJ2t6MB/aWILICpLVmvKsqAoS5q2IZClp9uGwjmIkbIqSFXJYDjA+8hsLmS5GLxYXIWEsw4fu7EtY7mNEa0NxhZMp7V8PyMJjXw5+8SFMYqysihtqSdzOk+zjiiWgpxTJXAk1lYGrK0WDIqSQpecO73JlStnOHnyDIWzDKqSajSmKA2jwlEai6ksQcNwsEI1lEA/BYU1A4wb4F1BMRxlSxKHsHiEcKPI1ndRKi5DUqicXAtZxQwSKaRsZ9clG1TG4gXgJIoKlzUCACst9kNJRWwhJBOrLaoswFqwDojErNQk+UaLUoYuqdTd5L4mWDI/9CSlJOSDTkGAkHorwM5SEpVVEbqCdC0kJKW0EJsyJylFlZOJDrQFpHqffJi+MwCqgdRAOgBVQ9IoNUKpNaDqn+JFwm1ZUns549HVhXdJjO6TcfGZfo7ISkd9kqMv0eYv1o6D/N35Urb5VCnlMRkwRSnJ3qaR585qlLPStRDE8sRYec6755qE2Mbl752sUESUYuHntyAoSRpYktMmRZIyDEar0LY0h1OGzoGJoLrj6JxU7a6FQVSUcmWNclBqinXNtgkUtsTXiTfeeZdCGwrr2J3OSYcz3n71FVZXC8YnT6PtGucuXeQf/ZN/xMbmSZ7/029z8/49JtMJP/zBnxHrObsfe4KrH/sY61sbXHjsMl/7x3+fc2fO8Ed/8kNu39uhmTdce/cD7ty9z+s/eZUvfPlLfOq551jfOMGnPvMZqmrIiz/6Ee+8fw8VPTsP7lPPJtzfu8+b77zBM08/zS99+rM8+cSTjFdX0doyHjuefW6Vxx+/yt/6W5/ne9/7AS+++DK3b99lMq1pQ2A6m2DbGmssTV0zm044PNjj9u1bvPJnr3Dx0hWe+cQTPPvs02xtnKBwi6ReykQ8oywbq6fY+PgJLj/xNH/7P/sq77z5Jn/21ve5d+M2H7xxk+nkiBQ1wUPbCkkFLdWwzbQmNB6fAiETB31S+KRoQ8QtJ5q7CTKTEgaDkrbxzOaNJH7MYozqbJeiSNnCTmGzdSY5qRWDJ+T1w3ZVwBF5RpSspyEGdNA4XRAVzH2kRRMOa966eZ/9WcNwfY11XTFyhnutxwdRyxm3DbPoQUFhFbqw+KQYOocrDIf7E7xSRG2YCgsFlyIug/9KGxIWP4+0sxk1GltVlMMK5yzguLvTcntnhyJ5ijhnoAMn1oecdKvYwRBVDphMZhweTNi5v8fB4QS0qPklZdBGMxwPWV0dYqLYJTRtoI1is0GEet6idGQwsrgMYhPBx9irEvq6RYVsZ+A9vg5ElVAqoFVBM5/hQ6AoDL71pKSIaEIU9aU6NEQFA1URQ01KFaGZY5RicjhlOpnhk0anOagCpa0QX53BaINPkVk9xzhNNRxRjIdiLekDLqtluEHBcDQmRg3REKLHFkNGKwXVwDGft0ynE8bVmGo04GhvSluLtXEIMSe1NI0PWIKolmhDYTRz34pFcM62NK2nckGsBpOo0XQqjd5HSmcxSmOsWAZrZ1Fa1K+stdReEo6jQSUV2j4QmgbjtCSOypLY1ujoqZuANhJPWwX4kKvPjdgFa0R18Be0WaUzXVSsQkLr0UpTlra3L0mZQBBCpA0Bgjy3Opf1q5xAjO0iiOqUj/qWY8AURRmgxefEGD3pKOQCA6UlZtNKEYIcy7dZ/TPvXVS3Xil6MrzE9BJbhCixv0LUd1R+3rRZ9MO3ktRrs4KAysoBIQQhpCSx6QhK7LQUoINhdXed4e6YlaMVtFdsHm0IuT7I/kr2RxGvAjGRVZ+W4qOUFon2pf3E8ch6KV7uE61d5NAlGxfKVR3pYvkc8p7jyknQKQTR7yeW71G3AwR6q5KuHVdkWvrYQ30kk32Wif9dwq6LybvjLNdOfDRho9t7/LtjpsWeRj4jiXKDyXY9kS4xGrI6VhKbJQzOul7NKnUJ3bzuaZ1V79RC9aO3MtSGtpX7rBQ5kX68r1pnFQilCcH317k/VuxskCWqGg5KRsOCsigoTMHqypD1jRVGo7GotFqLLQqMURTGYJVGWbFetrYQBQnI+2mLKyouXr3KxctXcnGJJkbPg/t3uXv3NonEwd4evm17GxsVFwSU7kleFL4slLu6cbZQNumsXeXnGKIUQ2hNynt7IShpOt83UT3qiEh6sRH7EAmhH4h9HCFx/mLvnfK+NfMSju09jw0rFufIN2PpfXKv8kbmo0YamxtrPPbYRZyLiKaoQlESk+PaBze4cePmsWf4Q33oBv6Swo06VtSwhAv0z1VWOe77tbj+/AzPx09t/YOYuk06otYq9yPmvZvIxqjMJu/suhb7ILmm+d8JEp1amHzHDj8B8L7l2rX3gcjlS1cEzwCqouDy5SskH3nztVex1meEbIk0trgoi2siJsW5fwblNClFbt++w8baBtVwTIoRa0RBPMTA4f4Bo8FtVk5soOyAsqz4whf/NsPBkP/99/81H9y4Qes9Ozt7OK2ZTydsnzzJeG2VYjDk8mOXGA2HvPP2Ne7t7BNiYD6dc+2DD9jZ2eHchXNcvHCR0WjI1oltFJo7t29z/dZ9UeNpGva9p27n7B/scefOHU6fOs3pU6cZjkYoYzFGs7Ymao5nzp7m7p17XL9+I5OVGkJMhCAYmtG5MMu3tE3DbDphd2eXlZVVtrY2OXXmBKsrazhnF+tAP/4UzhjW1wpWV9c5ff4Ch/sH3L53k4PDHQ52Jswm0zyHSqGeEIOzmbvPpPHUqVNbWUOTEitkQC8Yj3JmLXZZXdLHe5+nlrxOQ6/E2M2ZxkhpVejAubyeC2lpgZulXhlP5UclZStmi0IRYt71hsje0QythcA8LhelTk1IWG0oS6hDS4iyrmjZuGCUoiwKgg+5wELjifgU0DFhujUDIWenCL7OeJ02UpBnBUNp2sS8bdBEDAETA4XTlGWF0gZTlvgQReFq3jKdzGh8Z9wJYLBWU1aFrAlKCNIx9RxDscRtPMmCLeTcBpUtZVO+LlkBLxqctfi2JSVFSg3WOFIIOUYSS8AYhaQTk8z9kUSKHosQAkXlWXAfHyJ1I9cRvGAy2mToRNSTANoYIMjYKqsqq6gnIZUh+01ri4wfyhhCJVxRieWaUtTzBq0TrnTU80b2SUoUAzsVvZhE0TBGGWiieCR4YWcLGhP5mshxQ+z2xvJ5mxUalbEoNFpLnBpDVqNSCh8i1iyw0OAD2hm5lj5bwMVAUpoU07ExrpKQ4oxWaGUy3vao/cfcdNDYxrL9wTbb72+z/cE2rnacfuc0JHC1E6Ljo/ao/SVap5hUFEVeZ44Xp/xFW1EUfPnLX+ZXfuVX+rxU27a8/fbbvPrqq8QYuX79utiANs2H8k6P2ofbY489xq//+q8zGo2Ove6951vf+hbf+973Hl3Hf0ebzWY8//zzpJT40pe+1I/1lZUVvvCFL5BS4t/+23/7lzrH0dER/+pf/Sv29vZ6MtRPe5a01vzqr/4qSin+4A/+gPv37z+6j4/ao/ao/UfZfmaS0rCyBAxNglkzJ3ghcYQW1jeHrKyV3Lu/T1vLxtOHBjASUGgBXLUx+BBwtsi/U2glgHwnPh7JBIcl8A8DxjpQitaLd721lhA9s9kcZzRGi6WCsQZXFILBJZHFNUZAdd962gy+FKXFB0mAaGUprKIaSKVqDNDWEa8gBbGzk+SJoa2zvZE2aCUyuMZaioET//EkagghCHHGWIV1UuHdhEAzm2dyS67iifl7pyQEBtPZrHWAegcgSpVXh28CfUWpVh083gGu+fMZJIghLJSH8q8lmdPpRS+w35g3xZIIEsUYpReknw7ICZlU1B8y5Sqfrur1GAkqK18geGfKIKnKfRPSl+2/QyfVvvz5mIEppT+82HY2Yl1nlpMR3fVbJk8ZYxiPx8ymM9EIMYpBWTAYlBylBl2UtF4Sh8Zq8WcHClcI0S2J9UWMPgOqKQfjBqusWLe0ba7el3s4mzcQFUVR4rO6WEKkmY1RKA3DYYVSMJ3XmcwhoLiMpYTThlFZsDoecfrEJo9dPs2F8xuMVgYMXEWpRdljOFzDOEdZWpy1OGMYDitiEKUFXSlM5YjJ4oPBuBGmGoAtcHk0JOWBBh1akm9QKpCIaJ9IwZN8VsFCrEuIUDc12hi0kgo4HwMpSDW/MdnOK3X2FTpXyHkSClcU4ITcQgooY0hao5RD5U2z1hZSkL+1I/UA8WJopwxihbYVezehq4hKQU5ESgoxydCPUZ4Ak/lGXsAvjJXzoBZjq/tHJhNIle0yaSgnHFSL2JdpSIfAAbAgKMEqpLInRYho+EPnOPbzUrX2UgJNWqcOJOdXSNWlTCFLSlD9n4fb4nwfHccuB8Nyo+OSygRaY4psrdR6TJJkMEaARGMsqZVkUMpgYkcoTPmkSklyV3BCixCU0tK5u4RjzH/rDMAGkoFqa4P2YJ+j3QcUZQXW4Qbj/lrJnGXzOFq6binK+HUVZrTBylri5JnA4azm3u0dIFCEQGxr9qcT9m9cQ81n6JUtBptbrGxt8V/8g/+Sx596jG/8/h/y5jvXODia8OYH19k+ucn8hy9x/sIVLjx+lc0zV/jK313l/KVTfPObP+ClV9/hcDqjPTritZde5c4Ht3jjU6/y5a/+HS5ePMcv/9pnOHl6i6c+/gTb3/0uL7/0DrsHNZPJnMnRDN9O+e63/g2vv/Iiz33qM1x+/DHGo1W0knns8SfHXLx8gS/8rV/hxZde4YUXXuaDD25yYC0+NAQf8W1D8A1tU1PPpkyPDrl77y6vvf4y337+As987Gk+/uzjnDt7ntXVFdCS+jFodFIkZaiKEefPjTh99jE+82u/wt6DXX7ww5d5/aUXeO/ae+zv7aEwEBTTpiaqhEZT14GIIhBoYkOKijaQq1blGS2sQSlRzfLJs7a+ikqJum6JSZJYptAL5RGlxF42A98dSdpoqa4mRnzIVcFGSVK17Z5pWeMiUYg4TaC1LQaxIGtNwhrFJAX09IhRVTJcLYhDC2gOW0Xt59RNy2hjzMpKSWk1hwc1k+iZzD2qrkkpoIwoS1ovBEjjClQSoob3nmgCVmkqJTYXoWnZnx1xn0hZlowHY8bjFYrRCKs3qIPHhwYTW2xoGKqSE5snWB+vcWJ9jZQC8/mMtg7c3z9iUs8xKVEfTqEFtWYwSTOft1J5pqBtWgINylaQEk5pUkj4GLOtjkVbQzlwBO+Zz8TWFqXxtSfFOtt3wSy0gFgcVNWIukkkFZk1U4ajCqtbfD1n515Lfdiws3NAE0SJKQBGaVxZMRyvoJOiMCOsVgQn5NDaB5J1FINSrIeUJgVP6xuscyjE0iFEqZIulSbQYp3BBkVZBQYroryUUklqA01s0VoSRfVcFJestShrxP7TWEZFxWQ2E0KB0fio8DHmhKkoAA2NFUs77xlWJSopmnmNcQLamcIRfS2WTJnUnEgU1uC9p2kaBrYgNDXzyRHTw32K0tJ6C2ZISoHkAykECgdGSwbM+8hgWH7UhP4L0ZzNhLWUiw8666sAg6GjKA3TabbG7ZOPCp1Uzl+rTOiJmUAnc4ZSXVycsnBn95+0jqiucjLGxwBK9YQQ33pSJgyGGFFZJSt/GkwHEKVMZDJojdi8ZZKJRqr8revUHyCG1Ks4hhAwVtQeJIbMMYASe7eqLrHBsn53DZMMo/0x5UFFMS36YyeEmOJDpE01KdFbtC1yqPla9WvpIjXcfZ+eTPEQL0H+nY4twx3Fv0vMLreeoLF0gG59l98vXf9cWLAMtC0fb6GmpJbu3KJX3T3uFXaW35J/0MsEBpaIITxMUOr6vzj+op/LpKaP7m8HvhdFIWMH2QdZa7IlYMBkm55O9aP7rNFG9n2ZdBGXVHVkv6yF8NjZnnb9QQiMJJWPHRbfoSPqqSSkVqVo20zYWLpeiZQtzw2j4YC11RVObKyyujagKCzOOIxSDAcVzlUoLQVFWmuZj53t94bKKpTVuKJiPF5nvLJOMRiwtX2SYVXlWC+ws/OAa++/x/7ujsRyS6QfOps0dM9Z6b6zEKpSTkJLvzsiW3c9dUcQQPbd2oo1tsi9CrE29XveRbwgb87n7Qft0jDOZKKUrYAUedvb20qy4BQl2VMkWIisxpSPofN+oT/w8bGZC336n7seqE41WlOVA556+iplAWTtN4UjJse773zA9esdQekhetJHBfYp/68nBMo8oFh6OHpvs3jsI8uknQ9D5cfP9VFcpg93Jysn9dsb3ROh+zkoJshJ+E7+TebAjzptp6Im8+qi4OH4PHTt2gcopbh0+Qo9pVLB2YvnuffgDvsP7mGCB63Rxsme79iX0Q9tDbv7qVFFiYmJ+w92CPcfcOb0OSF8oIgx0HjPbDqh2tfg5rjhGO0cn/mVz3H18cf5xv/xf/C973yfvcmUnf0DhuMBdmeH2dGMze2TFIMRp84VjMZDrn1wg+s37nE4nUEIHO0f8M50xu7dB1x67BKnTp/mxMkthqOKja0NVjdXuHn9DgeHc0KIzOcNKUX29u6xv3ufE1sn2Tq5zXA4wmiD1obx2DIcDjlz5iT37j3g5s3b3H+wy2w2JwTf2zOmGIkqEDJZaT6fs7u3w81bN9nc2OLUqS02NjbE7sUsxp7uxpOC4WDEoFph6+RJ2nbOvXt73Ll5g73dBxwdHeVxIYV3KZPtkhdlxqRESdSnrDoOvW2oUgprJOaIKeGcwznbq/iA7D+6uaW7yyFmxSXVrUtClJYwLxKTEu2u3r6m+7SQ1ZIS5cWohHhstSIqRdCKqBXTtqHCoZ2nKC2HM0UbwacolsbGUIwcpTOENhCTWHzOckEmKnMvyUVfSrDVlEnQiQA6YhElx5Qibe2Zz+V5cs5RuhJTOIyRYqMmRXQIqBgxeMqqoioqmqJmdWVECC0xJOZ1yzyroCcfaIPHZPJTiDEr3cnz1raC9XQWZJEcF+VnymghdButabsiAaUzqU4KyJKSdaFb3p0zpLwXDNl23mhHjC11HSDCbCIFOjFEOi1MrTW2KDF5rtFKlJ+NFXX/QEI5KYDNKJCoROf3d4RihRThhqiyMpTGmIBxguuBRSV5RlLKlr8q2wRr2f91klKuzKpZWbFKJcFZrerU45PErUr2YSD20oJJxl4BOMa899UKYqfIpFAh5cJBqWANbUtb17TOoE0gRQPGyOwZElr1fN7eXvlR+4+k5YVpvDvGNpZLr1zCNpZT755i/c46Kw9WUEl95Ar+qD1qP08zxlBVFWVZfqQDx1+kjcdjzp8/z8mTJ6mqiieffJKNjY1ePfatt97i+eef59q1a0uuGo/az9rW1tb4jd/4DVZWVo697r3nG9/4Bt/5znceEVt+xhZj5Pnnn8cYw5e+9KVjuMGnP/1pXnnllb+0IlV3jg8++IDf/M3fZH19/WciKj377LP84R/+Ic8//zzz+fwv1YdH7VF71B61/9DtZyYp1U3LvJkzqT2tj+gkVYrKR6azmqBapkc1TS0gDBlIVEoAQ+cc81lNCF5sWUzeSCvx4R6ORszqGpRU9iuTcLZAqYS1mtFowGxS05gWrRWVdXgPGCUJgqQonGU4HuOjp53NM3iZKK2hnmcA2SiR90XjswpAUVi2NlYIoRG7BpWYTudoXdLWXuw7tHh/VwND6xNEy8BqqqqiKkt8CDRNKxvxJvVQ37wNzDMZiVwlqvUCCBc/d5WlfNMSBSFXf2apaaMVygjA2radh3wnZS9EikVQ0VV3CQihyclQbVE6g/uxA6xVb3clyksZeNOZwJQBHZVSD/zHLLHfVYylXIH6cKKhs9ZbtqcTmWbT23F0r6X+emSASMUsE62kyj0D0DFXPkkXVa6cFiBfJVHDWK467qrbAHpFpgR1XfeqTSiFdlLtXhUFtnDEbHGktcIHz2wyRxsLBkbDIeOhVGRaZ2l8y8HhLEtJd0k3qZqWMYzY5eQKKQGPIsqAcZrxoERZjXVQz1p0gJByVZhSOK0YDgacPrHF5YunuXj2FNub62ydWGc0LhkMSkrnKLRh4Eq0ceiqBOuwylAWlVR+KUPjQ9aRGWKqIVVRoVQpQFaK4BtIAa0CMQViG4iNyFF3CjpEAUQElI9ZQUmSLLHpBIhyZZxSJKOJSAItZsDPh0SMCusUWkdMqYhGCTkpSUJBsOUsJY4SJQ1l6J6uXjWpI7H4QPReXo9RCJC+larqriJNGI8ABN9KhWPhBLwKS0mLLjng8/OoM0nGmgxUmQzwd09sJiX1BKIGmAMTSLU8SwyAEeDoCENdmBkR8KojV8acWOlhXJXHvQrHknj0tZcLZSKlFMREaI9ICqxdeShB8ue3hP9QKpNEBoMjKXgIsbviPYGM6IltI8k1K89eagMhJxZSG0jeZ6Klk+MrQ1KtjCu1SCSQOgJk91pHpvSkmCsgsYBFZzsGNR4xvX6fZv+IYnWALkSxJCHKNIIvB8iVtt31EmWChHLyzGydPEFEMRyMuHX9JrEYgkYSkG3L/u073HjtXU6cO8Olx69SjTb42Kc+wdbGJn/8b77BC6+8xp3bu3zzmy/w3NOP00wbdnZ3efy5T7CyepJP/NKQs+fOc+k7L/Knz3+fm7fuUvuGuw/u8cd/8id8cPsGX/ziF3nuk5/g8hNPcuXJx/j0pz/Jj773Mn/0p9/lvfeusbW5yt//B7+OSZGfvPwu3/nm87z6Z6/w8ec+yaWrjzNaGaGVoyxXuXR1hfOXLvG5z/0yP/nxG7z88o/5yU9e48HOLrO6EcU4LwqDbTunaedMZ0fs7O7z7nvv8p3vbXD1ymU+/olneezxq5zY2sIURnDOBCrbglmlsOUmo7MbnDl1nr/zt/8Wb7z5Jq+88CJvvfkae/fuc/3ufeahwWS5el1obDQ0QQiYVkVSXheijpRlwepoTNN4vA+sDisODo6Yzhpiyoluq3tlP6VABbWk8oEAvCag8ELnU2CcwxWWQVESQ0NUHQEODAalJQXYth6jwKuILRyhSIwHBTEErj3YYz5v0D5xNJtw0DSsDgpZXpRndbRGoSwHR4FJPcUpMKVGFwWVzskQo8BaAfVjpFGIFYTWtKEhhQaflfhilPnUhMDUe6ZH+2ANzg4ZDivWRyu49Q1sWdGqxM5h4GDvEI1nfVyyubJKa2pOnFhD4WlmU/aPau4f1UznU4o2kOpI8C0Rj9GxTxwZI/dp2ra0UQBsksIUio2tIclrmibig8d0xAercU5jQ8JHIWDV8wanNVhR9tApUljNbHJENSxIdcPuzgHzuqVuayGdBVGvDFGSH2U1RDvNvG5pY6AoSpraY0pH4QpiHUilIylNnNe0dYsJmum8wauEDvK91rY30HhIE0wxYDQqmM491YqisFAeOpp2RmUVejpnHlqKYYXTFl+3JKdwhUHVBqM1I5eIc03QGldp3FyI1dFojJEYoW4ksRxiYhrys0NOpGsrFcxxxjx6SqOpSdQxMkwJFzxHewdAxM9n2HLEYOs0IRXUs0gkop1DYck16hSjX1wlJR9kvDSdbW7K5IoYxdqYQNt4QqAvWADyspELHrzPaiiqJzd2xJvCFbRBIh2x3UoYbfqEXuGcJMKU2GZYbSQk7pI7KIy2uMIQY2ftLLGL0bpXMBBRp9y/3rpaMxgUWWEzYkyiabwoqPpIyqQljaZQYmM9Ohix8WCdtcM11iZr0EJqhfDbk4MQJTOfSesdiWAheb8gACSkr8swVmeZREp9Qg1Ub5n1kRZty3/JhN8TlBfKKunht9IVSyxStot/pa6zXZ868kwf6+h8yGUiUuoLKOLSa7qf++U4KR+zO8fCxGtBVev6nXKsdZxAkY4dq+tjv5/Qi6hzuQWf47KOZ5ILcIwxObnXJeEledw2YouLkrGIgxhFHS1k1YeYyRidvVKnMKtUyjbpC3KM8NxkL11YSXxqrQg+ZJURSJ0dktaUVcnG6gqbG2usr40ZDiqGgwFFYYS8aQwGjTUmE5FM3tPLfNYVHY3Hq2xtbzFaWWW8tk45GIrCaN47piiKDQ927vH666/jm6ZXREt57Kpj427xrMseNxeaKLWYB9SiNCHl/UTMVuLagNKiAJGUzK2qVzpViCJpx5wxLKRPu3hz6eckRRbdM6NgoT61pJbSKfqkbAOnTN5DxwVdIW/Q6YGBrthGQS/R2j9PEvPmpxtUpHCap566RFkoRAkkgioAx40bt5cISstt6bk8RrJbvE+ei0WRg/RBLX22k5VNpNhI17UUmf1srfvCavHjsd/FhU1kXgf6ruf5G7P0mg9yfTuZFkXecC6Qk0Wf+ydEZp0l9SgplgncvHmNU6e2s7W7RqGpyopnn3uOl37wffbv30dbjR0mjC7yZzVJdYUlvexu/+VkXGswGlcW+NmcW7dvcenCBZQyOKNF9ScEYlOzt7OPLvfZ2NqkGI7Z2N7iH/zD3+TypSv8r7/3e9x9sMe1a3eZbcw5sbFO3TSsb28zXl1lZf0ETwyGbGxu8s6713jwYFese5uGu/fucjg9YndvjwsXLjBeGXF2POLk6ROcP3Oe996/zp079wgpcP78ac6ePsGD+3s8uLvPgwc7bJ04wdb2SQbDYVb5dAxGjgvDEadOn2LnwS53797nzp27HBwe0rYLK7gQAzFKQZ/3hqZpODw84s7d26yurLC9vc3WiROsrI4pnMtL2eL+yJ6iwJaOC+fGnD19isPDQ+7cus3dO7eZTyccHBwxb4UA3ymwGWey1adGEzM2JftXpRVlIcWOTeupCgcZr+nI0B2xUUE/5y8eXVnzjFqQ+USEVWOUwjmLzbZunV18R5wGsnpOnrsz0doYsTab1g0pJgbW0TQNtW/Fgiz3wVlF5RyzCG1qRTnTqnxu2U+ojCdqK7Z2KEPtOwwuEqKnTQt7QuHTS2HhzLdM51IIZo2jLBxlWaILIbo2QdHOGkLrRWXJFaBFHXTDjohesM9JIzEdbQNJQ5DiNlRCk1DIfs0IdJSVjeg2kxSloXCOuu7UoLugTKGzZWDMFr4hSDGgWM/Jmm2tJQVPUAmrHfNZS9N6GY95Do8xEJWWuNsWFMYKQT1EURmKEis4o/PjrUlaSwFbiAQd+oINoxMqJMqqxBhFaD2xsDgn87l2YsRpDDRtgzVgQqD2HmV0Jjjl+2Y0OomafFFYwd5SR5RfIt1pLQU3PqJtLh5RGUdN3VIi6x4k2hgorRWb9SRrpwGatmU6EeDXWIutRiQs0QchiBmZV0UZNj0iKf0CNxUUthVcc/PmJhd+fIFT753i5PsnsY3FtGaxh3rUHrW/oqYzybWqKoqi+LmJSdZaLly4wFNPPcXGxgYnT55kZWUlK7BKSynRNA1vvPEGv/d7v0dd13+VX+VvTBuNRvz9v//3WVlZ+VDhzfe+971HBKWfo6WU+MEPfsAnP/lJNjY2+tfH4zG/9Vu/xde//vW/NFEppcQHH3zA17/+db72ta+xubn5U9/fKTr95m/+Js888wz/7J/9Mw4PD/9SfXjUHrVH7VH7D9lU+hlXo6tPnyEkxWRaE7zICRfGUA0rlI0oHZkcNrSNVJAYq5DK4AzYIKCjNiI9PBoPKQcOHxq0huFwKCSlFAltpG0Dg+EQ4wxaWYyWKpDWt4QYqVwpm/yyoCwN08MjZgc10UOIgcJmO7IMWNeNKKRYbaTyKwSRezYSZBWDirZtKYylcJZ6PidFjQ9CJBmtiIpO0yTqJuEbL7ZbVgDbpmnE5zuEnmjTVXVmjk6/SdDZ3kEpUZ1Kij4okMrs45tBRZKqXCUyyk3TnWdByOmSCh0JSQDthYoQSar/OyWilG265PoIOUjAGHm/KN/EnD9QiwqzPrkg9xNYSPmHzn9eEkfWyka9s1qIMfZBZ3ecznKjV2rqExZZ7r+zaUjp2Lm75IxgGwswctGfxb9TDDm5QZ8QscZQlqJ+VBaO9fUVSIHpZIItCkJESHCIpVtoPePxmMGowBpDDJLYN9YQgcPJnHntaZqW+VzUFayx2MJhtBOCRmoJEebtnBAFXBlXJePS4UqHrSyzozlNnZiHwEo5ZHtQsjEqWF1dY2N7kyeeusTZM6cZDdcYDAesrg2lEq4oQWeiUVS4ssTmZyQqx2SeSEpTVAOq8QqqcHlsRQiK5OdC8kktKQQB4rTY+KgQEakhRUSkr6P3vWqWKKFJ4lHmBknSBNU7RYkaQU6maK3QmQxgCy0F/65AlVZISjFKEtCKPUOXhAQrQHNKpCSAclIi602MYj3XtGIhmMjEpC65IGO1DZKs1CjqpqaoCrGY1AJapRgkwVO4XiFKJUg6oZ0GY4lJZbu5Aqmm7calgWSBGtiDNAVqkjoCRii2gSFKlXSV2x3haAHILSrMF1nGZeBd01Xw9opjchcgRZTK9yqp3A8F/fk6wPSjNpE50bVkZ5NfzpYakJJHRQ9d5T5iXRPaFqtytZ3WYAXM00kUtGJqiT6KCok2mLJCGZfPkcHIZEDZpb5lpapeeroFGmJocxJSo3WJEL4UpEA9mXJ45wOM9Qy2x7jhFjoNUH1Ze8jXUe4bqSYlOb8KNWGyD23DZHLE7oMdPnjvFtevXaOoFIPRgKcvnKauG167fp+qdFw8d5LLH3+K4dY5YMjhwSEvff8H/NE3/oT3b90j4Xny8kWe/djjDFYGnL3yNBcfewJnE/V0n3ffeYNv/ptv8dKLb7E3mRHwWF2wurLOx555gi/9nS/y9MeeYTgs8X7CzRvXeP5bP+Ctt97lK1/5Ip/+5CeoqpIb127x45d/zHtvXWf1xBZPfeoZHn/8cVaGI1RvdZeIseFwf49XX3mF5//0u7z+xlvs7h4KiJs8Pgn51WiN1RZnSqxzlOWA0eoKZ8+f56knn+C5557l/PnzDAZVtkCiH40CzCfIdo/et9y5f5c3fvwa3/3Oj3jrzTc42L+Hb2ZEI1XcvpUK01S3BCUKR8lJpfLK2ghnjVRDh8jBwQRlygxwt9kqsunXQ2sdVlvauiH6iDOWhFjdtAHaFCmMxhaOSxcuEKYNb793jZ2DiSgc2UXC3xgoM2ittaIalTz92CmMhhAUA11w7eYdbh0c0sbI0Dg8Ca8TI1uRYmQ6a2iaLLlvLMZCUYgiHsEL2VGL3ZrKXmuNbwhRUc89TSuqe62Ped3SDMsS5xQYhdViyaBxtDphTEFVlBSDCleVbJ7YpNCavXt3mezuoVPLuNKcXB+yfWKTtipoI6So2T2Ycv3abR482KGu55LULmB1bUShLZNpy2zeMptOCUqxurHCmfNb1HPPbFrj21osd2OgsBanFXVo0coyP5ozbxsKo8CIlYIzGmUUkcCJzU2mRw137+wTfSSowKAqIErCrRiMGI7XKcsh49V1Jvs1TfCUVUk9bbFVSVmNCXVLNSixSXN4eIgdOpzWTJoWrMGGgDKWjRMnsMFzOJnhNQwKQzsPHB5NMSow2dnl3r1bGAJNXVPHltGgJCpF0yYGVYFWivnU44zGFoY6wWhlxOb6Go3X7O8fUphI0yYOJnOcqXFE5m3CpIQ1Gt8IGVk7RTNvmdUzbKlZKQYcHM2ZhcD6qERFxeGsQTvNyuqQcjhivH2a8doGDospVyiHQ9qmpVBWqtud4Xf/u//LR8z1f/1t879bIYKM75jTw1qefaVFNbRpAjFkUoxeEFGWFyelZC0sCpur4EUJzBUO772sX9nqzRZO4m60zDcpEVKeN7QA/MoarFG0TYOvg4RTKYp6UeriZXqlVFEG7AoGIoN5hUsO48Tqy2SbON963LxkfHcFbTSuNBQTR/lgRPAJPdcYb/K+QEh8MYoSQk8SoA9fc+6uS6bKS1383BF0+uReR9rpr9yi4EC+S3ee1B+n53GohTbLMvmnSyQvQoklQsTyj13Mrhd7lGP9OrafyHugrCwQswpNR2bpijsW+8kP27Etk5qW2Ueps/lVi1RN6glKXfzVte48qidC9b/JY7AbigmJD7VWmbwj+56yLIGEb5usRLuwvulsAovC4Zzpx1DsrDSBuvV4LyS33gpNZXUlZSQGS6IeIsqsQkAqnMEZI0qlVuMbT8hE0aooWalKVoclg2pANRqweWKdlfGYwlVYZykrh9FSRISKmUCkRCFVWwklMChd8NTTT3NiextXVWDMgjAVE7PJIffv3aNpanYePGA+n8peL8bF2MwUGYnPM4ksZUWpfP9jFEUHVD/kpT/9LeuIALLX1SaPSW1RtiOvCMGtsyXviUHLQW5PiF+KvxNihRMjJJX3pN0WJEfdef+pQCzou1gl/+nmDCm+oL+eiSRWtVoKrLqkcuqJSqCW+vTEE+c5e3YbsXhrgALFkL29I37ykzdpmnbxXToFpP6ZWn76lyeQ7pleGt+Ly8pi39H1oysYEZvtxeP10fsJGQ7debp56aE+pL46So4TRVVVLTohRNAkBRxCWEsLYlNWtVXGLPV+sVdazGXq+D1PKV/LwPb2Nk8//TGxJGZxnL2dXb7/7T8ltDN0oXHDIUI5yMcm9Uo+Cp2/a7anI5HaGhU83rfU9RyVNGfOnMM5jSsdK8OKlUHFnZ0DQoJhVbB5covh6jrKDAgh8dYbr/O//O7/wrUbt6nblvGw5PSJE4xXhhSDIZvbpymqghRappMDbly/ybX3bnE4mROS7NOcLVldXeHCxfOcO3+O4WAAKjKfT7hz5x7Xrt1gdXWNxx+/wmBQ0dQND+4/4N7t+4So2Di5xfapbUaDQVYlyutRElL73t4e16/f4NatO0yOJrQ+ZOu12D8zon4mqkzGWFzhGIxGbGxscOrUNlubm0KKMeZDo0l+zoUHKTGv5+zt7nLr1h1u377LdHKAbxsSgUjCt3l/GgXzU0b1hFBjNWVZEGPEak1Tt/iY0NpmpRx5NqXATu6tYEiJ6GNWIJf7njo7uYzBjUZDBkXF/t4+h9O52EabxTqnlMLobqckpI+11SGjYUHbBgojhZz70ylNJtMbrWiTWAVqxBK2zVZrfXGGhtJZVLfGaS3knwQkUeb0QcjR3oe8Fi1wQmsMNiu4C95mclylSFoUjqx1KKOphgMK5/D1nPl0SvIt1igGhWZlWKHLUorgkqINiYODIyaTKW3TyLyuEq60FNZK8aeP2QJRiDIr60OMNoJxep9nP1EGcsZk21Ih5tRNk+M50FZUj1SO08qywGjD4eEM38r8orJ1mfdCEHZFhbUFRVmSoqZpWsGcYlbaKitRFMpKvH7eEHXCOotvA1ErQWJSoqgGon7aCBFMlK0Ude0Fh/aeyeEBIbSQIj6E3o7VB1mbrBUSe4wJZzUBUMYwHFRobZk3nhQ8WsG8icTY4kwSDDmCMYoUcqyjJD5tWk8iUJUFoY3UIWC1pjBSsBhSoigt1jrcYEgxHOGMFIG5ssrrr8pKYPD//u3/+0fM9X+97T8p8s1SGDreHePm7iPfNtofcf618/3PKw9WOPXeKQCqowrXfPTnHrVH7a+iGWMoy5LBYNCrJv28bTQa8Q/+wT/gscce6+1XgT4XtbOzwxtvvMFkMuHtt99mZ2eHtm1/yhEftT+vKaX4u3/37/LZz372QwSld999l//5f/6fmUwmf409/I+7PfPMM/zDf/gPj41jgPfff5//8X/8HwWT+itoZ86c4bd+67f+nYpKXUsp8dprrz0iKj1qj9qj9gvRfvu3f/tnet/PTFJ64uMX0MYyndW0rZdqzELAeJMTe0f7c6bTFmuhKAWISAlRIwoBa6xYFPjAYFhRDR3GaKbTiSjsFBqLxtcBhWG8NqYclfgAvm0onGNlfUBIgYO9GTrBcDxk3jQcHR3RzGtSiISmoUwmAyUpmxQZrCuRegIBRktnGQ7EYquNou5itRHHqZiYz2tR4zCJujkSRRAsh0czsQqLpifKCMi8ANQTQjhKS4Dmsuy08CIWiYKYYpY3VjhrJQkbQr/96kD8nr+gNXrZhi11gP6iUlRngk/Xt856Tymxc+uAvkhWKFrqq7xHEjxkEKYDYzvgs+tTL9OPIkVwhaEonIBYvZoSPfkJFueRajux7OgUkeT3AjSKpdii6QU6TW+TgYD3MYY+qdBdE2cFfCKJFDKIzcLKaERZCCivM0Dj20ZkrGNCaUtRDHJ1UqSe1ThnGY5KQpDku9jeyBiog+fgcIL3qbcv0VhsIVX9Td2Q/v/s/emzJdd53gv+1pSZezpznZqAAlEgRhIARYmaSEnXVthhh68dDsvhIdR2++/o/tKfu/uD+3bfvj3YEeq4HX2jr2W1bNlXpilKokaKAkCABAEQM1Co4VTVqTPtIYc19Id35d67QOpKtiCTvq7FAKvqnL0zV2autXK9z/u8zxM6qsoQomY2nzMeWy7vbVLFXBlrChSGoEEbx7nNDR7a2eGhyxfYOb/LZHOT4WjMcDDEOU1hDePBgGIwwlQlSQsgGL2AFSGCsSVmOCEVFaYYCJirMqEntCRfQ0ik1IlaQPTEzotSmrVIlXKEpPEx0eZ5SFK0XZfdDFYJIZUSRSFqZZ1XIk3ddaikqMpcaaEliWKcRlklVkvGZouwla2ZytVuKcX8HJQoUhmROok+orNyUIxRrANlYKBycjEGj1F6SWLAWow2+KYVklS2GYwolBGgLyklleN6KRdD0oitjHGk3pqlT2oACZuTCgGoIZ0Ac6DL6k97aDYBi1JilbEC1Ml/9omaKNXvMUoSPwZJUOleNWkJ6S8THIkIMchjUC5/LrBKKvTrSA8yr7f1+dT/1wuj94kkkY1XKZByAlWlRIpiN6SS3H9lLMZZUbBqW2y22RCrBiv3Tws5AdUnCTWsA6MJub/KsbJ+C3Ivk4ck91SpEkWu6k6JlAKz4wPe/fbLXH7kPDsPP4zSBSlqlC7IMlUIscmSaBHlKA3Jo0IDoSV1LbN7R9y6eZODgwMODw9RMfH4lYu0zYJ3rt9FOU09rTl/aZdnPvc8uw9/GooxqUu8+53X+PK/+wpvvvsh86bh4u42e5sTjs5qfvTnfo6f/OIX2Nsek0LLyd0b/NEf/jG//bWXuHb9kBAaYvIY4zh37gI/9uNf4Gd+7ktcevgildXUTc31D67xzW++TPCRz//I8zx89VGs1dy9dYtv/OEf8/4H17j8yBU+9/nPc/HSRarBELSFpFCpg1RzdHSH777+Fn/0hy/x3Tff5c69IxZtS4hd9ieKiG2AxZgiqwiWDEcj9nb3+NTVqzzx1FM88cQT7O3tUhZ2SaGTdUDW8KQgKA8xUs87Dm58xIvffonvfPNbfPDWOxzdvk0bO8QgMRFVIiSFJ2E0bG6NGA0KkkrMz2rmswZtCyFHqUAI4IMQPkHhbEFbtzTzmhgizmrhoxmLjwplFIWKGFfw6KOP0p0teOudDziaTikHDmu1WJ11Qaw4nUZbI8lHHdnbmzAalDRNRzPvmC4CXQh0vsZHeR85BSQrFmLGcXoyR9lEihpMoioNu5MxIQTqecfcywwblZZBaWi9ZzZtmc0buqYVJSIl689oUDAZVbRti3KGypR0PqCTxhrpa8pWY60PFINKqta3t7HWMZ03TOdT6BpU25A0bGxOeOih8+zujIhnU6b3Trh1cMi96Rl1bEjG4ENi0YgaUr1YYJxhvDFmuDGgbWV9aOsarxQtiUFVYoigZR80PalpQoeKomi1sbGBStB0NYNBReFKZtOak9NFtlcNlIOS0lkhkw6GFOWQ0XDCcLjJbC6KClorFrOWajzGmiFtt2AwsIR5oA1R7OjaBm8Mk81NaDqiNezs7RFnDfPWUwwrYt1wcnRMR8LoRH14wkc3PiQ0M2LXUvuGqhRVlEUXsIVlWJS08wBGs7G7iamGFFXJxniMcUNOzxbQLujqllm7oDAdg0FFUgW+bfGhw9dBVB2Txzcts9kcVGBcOurGs/CBQSYezOYtgch4MmI4HmI3Ntjc2cXpknK8xWhjm3bhmR6fgU6U44p/+d/+7/lhbDv/7YYQDLtAiL3CixG7Y8kn0jQe38k7zVghvKYkZNh1gn6MCedEAUYpRec7lCLbZUHwQmQoyhJbmLy8idJlUVlSSjR1J0UHhaOLgbYV1QBSJjixIgAlQAWDiyWb9yaYzrBzaxuLYaOZYDuTLWVkz99vWYWMKeotPraZWKFpsgKrTusJYJbnW/Jolgn2TKtYA6ckwdhTkFYAr0LWjZRWyqer1hMHgL4YYPmrtP6J1TlYKaNKXCD9WvLH+m/1tldrTfgiyyv6HpD0fqwtk1hSkr2i0ctrYtkHlmNgRU7qx4ZmvVP9nfyeBLj6fgSl3o5GYqr1fhq9ilH6n2ulKZzD2F55KKfVM8ElkUBpjHb5OxHvhcDmipwAX1fFVaJu1aspLX+HRhswxmZlr5Dvi6j+uUKzMSyxPdFGGYkTrcUVBZPhkM3BgI2NCYPRgKIsKYoSm21tjFb5Ohza2kzAYMXbieDKik899jg7+/uMJ5tZdSTRNi1H9w7pmgV3bt/h7OwY30lcE0PMqmN5YidJ8MeUyUNao1BZ7YLlnrtv1sj4CFHOFaMMLmtN3u9KAY3WKnNMhJS+7nwuY1SteCyZvCIJXZU5/plg3fext3lKQvxJeY+p1sZfyrF0zDapxvQqYPl6M2doee25Q0s7nqXC6RpJKu+JFQrnHJ9+/FPs7Y7ROiuBKk1MAz784IAbN25mO7/lLl72XveRkXrCQspOd2l1P1itOWs3K38nrfVFZ2xhFT/8ySSl9H3+/r06TzI3haSUYqKX/BKl52zZm3LcBcTgM3aTYx5FtmATMoX0J68vqleaXVmK9evt8j5ly2etE5/97LNs7+yhemXafA8/uvY+L339Dwi+YXt/D2WL/oGyLJJBQeqfY0/kSvKsUoAYiG3LbDpFKcUjjzyCs47xoGI8LLh9eCL2X50UPZ07v8fm7j6mHJKS5u7BAb/+b/4tr3z7O8zmNdZodrc2mM0WbO6e45FPP8rW1lhUP9uawzu3effdj7h955jOd5moAmVRsXvuHJ/61COcO78ndpApsZjPuH3rNidnZ+xsbbN/YZ+yLGmbmju373DrxgHaWs5fusjOzjZlWWU1W5WJMbL/PTk+5cb1mxzcusPpdCbrVyYq9SqDQoLJajpGY7MKw8bGBju7u+zt7bGxsYFzbskn7EfYcu1XcszkE3Vdc+fuATdv3eLewR3mZ1O6riXkR6BUJJIL1FTCWUM1EHXr4ANt44mpL2zrMam4xCGMlvXZd9lGWrFcc6KS0WiyAvpoMmbgKo6PjjmdzUGBdSZjE5ngqBBlHC3FTWVpGA5KsfT0kbYTpcSY/FJFUSskRtWK4aCgmYv6MD3OqGFQij2n96JSG5IUNBRWxrvvAm0n+6mYssW9UhitGVSi+hgRJaJ+vdeopQpgSlKEprSirCrGoxHOOkKMohQfPCoIWdY6y2g0YGNjhI4eX7fMZwumiwVd3v+jNN6LelHXtkDCFgVlJfiKKCcKgd0jOJs1q0JH3wY6n1WaYsQ6h7UW77us7mEJIYmFdU/qyjbbKQSSUjhXYKwU4YQoCobWGrrOo5TBFSXeR4wV4buuk8I5TRJCalnijMF3nnI4xGlDUzeiykyiXTS03ouqX+eZnp3S1HNUjPjoIbsEhCAra+EsBFGXcpXD5XlWFg7rCsHB22apNproKKwUuaRctENASIJRiq/arJbsrLzvOi9EscLafP8D1knBpnIFxWCAswXaOIrBEIWhrRu8D9jC8N//3/6bj6/iP/D2nztJybYWt3BcevsS5bzk6jevooNm+9Y25fz7W3arpFDxgV3bg/afrimllsQka+0y9vqPbVVV8aUvfSljiHvLOG46nfL++++zWCx47bXXuHnzJm3bfoJX8l9mG41G/PW//td54okncG5FYowx8rWvfY0XXniB+Xz+A+zhf/7NWss/+Af/gMcee+y+n8cYeeGFF/jyl7/8idkTXrx48c+kqNS3lBI3b97kV3/1V3n99ddzbvZBe9AetAftP337xElKT332Cklp6rqRANhJRVQIEd91tE2bq8I1pTOYUlFWBb4L1IsGhVoBvCqJgokRwkLXdLmyJdvGKEtZDnGVI9lE0pqd7QmFs2hnWSw6To7OqBxsbW/SxcTJyRnNfEFbtxAVOiic0QyqkogE7SABpjNWLFRSWhJXus4TYsL7SNu1dF0nAW5OmCkd2NgeUVYDDu9OOTtdoFXKLu8AalkplGIGrzPBpre9uj+poJaEm5QkMI0pZGBEC5AQU7ZqU/dtCFeknp5A0AOoPXieE/tphdPHTGDoq2GBFdNBSVIhriUxRAlILwtK++P2wJHWiqJwK/IHopCVEllFS87Z35s+saC1JJv678UooIkxDq0z2Pux1vsQ9/est5tbAqapr5RLS/sPnQHisijwMYi6lrM4VwhBrShQuYLTx4ixhkFZUJVFBkwN1krFXdvVpJByUqug61qUUnnjLJV2aJhO50vSTr1oIGmpbHaa2aJGo7iwN2FYQLtocM7w8PlttitHGzxt1DgzoCjHTPa2uXxhi0f393noykOkKltWJYdSFmc1VeEwymBGFluJukjXBupZQNuK4eY2djhAuyqzBxJEIXnQeqJvSKGGqOm8WCgVVmOSAKYJJMmslYBJIeBDoHAFoetIWpTAdE4CxJBtTLRUiaWkSSkImUsZRqMhxmmiNoCAHslokjZENFarLIWuiT2I38uYh0SKnZDNlCX5SPRdrmTLdhZRKpmJvbJBTm54L5V6Wa7aOElM6ix3nkjoshTwOSt7YbUQk5RGObGD08blpMKqsjjhAYtigBB7TlDMgTmkGnCgdklsoSjoVX1SD9AvMxphjQwUsyWGJpFtKnswvp/TxAwmqqXalPQ9rtkxZFWlJZmqB+r7OdkvA5kElOextLCa96mvGBYiVAxexgVKgH4fiJ2oNil0tmMI0HUCTmtN1GJfibaC8RtFIpCSEVWq3gJS92B/VlZaKilFxK7NE1Nf8WpQlChsvjcdKXruvP82aT5n78o57LgiaotSAxQmk5wk8ayM2MylaPL6kUl6zQzqKWcnZxzePubo8Jjp0SFGiyLOrTunTCYF168fMYuBSxe3ee65z/HIU8+gBhNImpvvv8/Xfvv3ePGVNzg7PSP4hpPTGePxFj/2hc/xl37+Z3js8ccpCphP7/D+m+/wu7/zAi+98gZHZ1NiFPl/58Z8+okn+Jmf+xKf+9EfYXtvi0JF5rM5b77xNt997TWGwyHPP/8MF66cJ4aOD97+kG++8C2Oj6fsX77Mk595gk9dvcpgMJH3CQlUR/QLpif3ePftd/njF77Fq995i5sHd1k0LT76XNGuUFGjRUQM5wpcUVEUAwYjUVd6/nPP8ZlnnubSxfOiMKNX4JmM86wEkcdkFyOzkxlvv/0Wr7/6Ld58/VWuf/AhoW2ok2exaJl1rSgZjQqqQixnzo5mzOctGIWzCqsVMYh1QlEUFEVB13im0xmLRStqEkaqnSOaqDTWJAZGY8uKRx99lOZ4xjvvXeNkPmMwLnGFoesCftFhNGDFkrIsS1IKGCcWr74V+65FHTAkQmyoU6LQDhsiXsP+5S10kzi8M2e8VaCDJNbKyrI5HHI2a7h9+5hZGyicYTjMFcYIAS7GgI2RJnip2nWWre0Nzu1tMh6X2MoydgPeeusadw9OSF6qfEtjKLTCmEQ0Go8mYbBuyGAyYWtzk9FwgLIWnxS2chTA/O4Rvp5DrDFdzcAqtrbGjLY3iE5zMp1zfG/KzduHzH1L6SwhJXzUjMcVs7MpbYR5XWMHJVXlpGK3E4WiqKHQCeucrIMx4gkMbcnZdCHWX12iDR7deTyJ8bDCJ89gNKAaDBlUQ8pqwulc3kNaG9oWhsORqFoWid3NMYuzhtN5Q4wd9XyKrkrGG5vEOtAqzWRjk/asxivYnGxSny24d3JIOa6g9RzdvksTalIzZ3F2ynQxRalIVWgWnUc5y7gq0TjKzQkbu1toU2FdybAsqAYb1IsOFg3z6ZRGLdisSjb3xzz+qUc4m3nqTlSWzo6nHB0ccHr3DrfuHLJo5gxKsZltukhRKIZlQV17upSoBpUAheMRg40tNIZqPKEabUG0nB2dEJKnHJX8m3/+f/me/dQPQ9v7v24CUrAQycRyLTY+MQRCCCIWk5SQ7wyiWpkThoo1corKyp9a9qgh5H20UfkdpbDWidKSlgRZNSiw+Zydj9R1g9UwqEpCEjtg3/lMBlGoCEVwjNohG3c2mNzepJoNKFqLyYnX+0gmIWYShqgyxBizioG835VKlJXDWsd83tI0Mkt78kRfXHA/fSYn5zP5aJ2Es4oPesWlXimhP1YmAq0RhPqvL9WClgQOMkdBSApqmehfmaeJzTJr+4llJ6UPadVPIUKl5T5+eTV5C9L3xRiTCTmrw6VEVpeC9VC1/+s6SaknT4ltj76PTHJfF/t7qL73uKt4YtXvPu5S5D6mlGMWsXoEpAAnE7tjSktlBLtMfuvl9fexj86JeomT1BI07AktXdstn6XP49BoSRx3nahMjIclzkDwHq0VW5MBw0LUJaPWFFbWpHI4YDKu2B6N2NjcINlc/JF0JsALSVD2u0J2BdnPOzfAupKLlx9i7/x5JhsbawyVyMnRPd547XUW82neowuxPiH9VUks7lK+iVL4ACHHuNZoYpCke+zVQFgRo5TKRKKsZtTvU4vCLWMEUWlWS+uv1JNw+g2zWjt5JuD0RTryLupjx7Tcki+ffVqpPME6oUyvnlcmBykyh8XYJTEoKbKkbJ7DWufagn5vvrqX4lulAUdRWJ56+lF2tifIHsoj+/Mh05nn5W9++74ioCUhabnfXyMq9T/+HjLSWusJhMtn2xOVeivr1DM0lpSjVZJ0/XiJ+/siP1tSLtP9n+mJfHr92fRKNjm2FyWlQO/JmURWiaVNdI9jJCRG69fD+4oycvFSXpWWsVaK7Ozu8JnPfhatXN6nyj0MwfPKiy9w7Z23GU1G2KGTMYalL/7ocRdRkEae39r8SDGAbwhty2JeY4zj6SeeJEXPoHKcnM4oCktdt0zrjmpg2d3ZYf/iJexgBNpQT2f80R9+nd/87d/lzp17pBho24aEZntnh6tXr3Dh0kWqqiSGmtnZCTc+us2H125yOp0TosQ9KSnGk00uP3SZh688xMbWJjZ7SZ2eTTm4eYu2bTm3u8P23ja2MMync27dOODk+BTjSnb3dtg9t0s1GArpNpOBUvIE3zI9PeXWrdvcuHmH45OzTLYMmfQpEyTzfJZ4kDHyLqwGQ/b2z3Hh/Hm2tzYoy+J7lMV7Fo3Kz71XTzo7PePunQMO79zm3uEhXd0QibmIQM5vrFqq13kfaOpuSfTRSi2nh9JqWQ3ftR1t6/PPcw8SpPyPwsh7UEhKJcf3TjibL6QIqrRZhalf8xXoNYIlsh8miRVc14VMEIp0mZBo87vUVIbxoGJ6UqOtkEqR6cmgKIgpMZ83LGqf+69xRqzKYtfbMYvSvLiYaYw1bGyMcM5gjGIwGDA9mXF8MiN0Mp6tETu7XtEuKk1EoZXBuIKyqqRg1RjRzdIaZw1+URPalhRFgdkQqQpLMSgxhaPxnrbpmE4XLDpJQhsj+zFXOFIMgjv5IEpKhcvK3JqmEfUlpdOyEMqg8DFgjRGlpc5DVPgUs6pWzMn1BEZRFkJScrbAR02M4JyQd7S2QmgiUVUWg84244I7xZRwVYlRls4HbFlgkhDOy6pCJVjM5kSTsMbQzmqariYlISy2bUOIHmulWDQg5zZotHO4QUlRVCQ0zorSUUITO09qPU1ocFZTFJqt3U2ssjReVJU6H1mczegWc6bTGXXbopWoO/UkpdKZXAgbRdm2KFDW4ipRbdLG4soSrQu6psN3Hdpp/od/9t9973vjB9z+syLqJFBJUSwKNu5u8PBrD3PltSts3t5kMB2s7E4ftAftB9wkhjY458RtpCiWBeD/MccC2NvboygKnnrqKT796U+zv7+/KtZPYmf1r/7Vv+Lo6OgTvZb/0ttoNOJv/+2/zWOPPfY9z+/WrVv80i/90gP7vE+offrTn+bv//2//z1qSm3b8i//5b/kzTff/MTOdfnyZX7xF3+RwWDwZ/5O0zT84R/+IV/+8pc5OTn5xPryoD1oD9qD9mdtf1aSkv3TPyItkmjmc6ng6BWCSktoI/WiXVWDZpssn8F532WSAlIBpZQSedlMWEpR7KlEVVzhiWACqakFqwsw2hiRQuTGzQNC8mht6ZpEcIbUnol3e9uw5RzKDmiDpu7EhsNoDbnKMWTbh3kralCtD/SVdd63dK1400ciIUtFawVGidLH4e052s7p2j7ZsNIbMVl2OKZITAIAr1f7SiVoD2b1Vm89UUGAM60NRVHgg0elJMdUZgW25pYQixCyNUTq1VhUBt4zUL+sXVxWC2dAnz5h0fcxLUHdHuzvVZt6OzYB+KS/WmtsVnHqr0/IXD2J6n4rtnV7BgHc/dp3tVSrSbZkuWHtgWBY3Udjsj3eWlCqe0C6v7P5+z34lZQksEMMFIWQU2JIdF3LqCrQ1lBqQ0JjnV0mlrzvBOwxoFXCWE3ddDReJLyLQqqNY0x0PmRsVxQPUNkGy0sAHdqA9p7KaFRdc/H8Jp/58cc4v7fPzWs3qE8XNNayd/lh9vbPs7Gziy2GTEbbDAqDGwxzcgSqaiBjOYl083BYClHIW9qo8JSML2xjh0NRriHIWOkS+IbYLlBa07YNWgV0CqKaFEEnhW8jZLApxEDwMn9jSjS+w4eEb0XhS1sZwyGJjHnXdUsCWoySnLCFxpZFJoIIEUVphckbuOgTyok9ZMoWKqoHPslJy07II30CIQYvikfBk7TOU0NJ/xeNjH8rKg1GG7SxSDFuyikBRRfF1kohVbj9zOqTGiEEIQZpIdaIhcP9FhGCtZucbAjAIhOUZkBNUhbFJjBE1IIUKxJQJhr1yUBCtlFLrLBSydIolKgU6Uz+6QH+hCSZdCFXpc1SwUBs38SmQtaXmMH39cTBqierpEb/u5DvlMqkyB7c12hb5mxMWFWXGgteEjdKSxJPaUciEGKHtY7og9hdKIXvoijUOAOmr5zM1aZLotL9FnfLhI5KSIWyJyWFsjqvAQaMYmv/Ah9+5zXCtVvsPXqRYmRQy3smqmrGZpuNmCBkSw9DBl6HBA/VAHb2OiaTiD+nePv9W9w8mtK2gR1j0SawmNXcuHmEDq+S2prLjz9OuX2ei49e4b/e+Rtcvnie3/mtP+Cju4fgZty+d4vf+Orv8N77H/Jf/Vdf5Cd++sfY293jqc8MuHDxAo8+fpXf+q1v8P4HH9CEjpPTM177zuvcvHGdb73yLb70s1/iM595mslkk8/9yOe5evVTvPbt1/nd3/5jNrfGPPf5J3nsyStcuXqe9965xosvvMq//59+nYceeZTPPvssD1+5wnA0RiNr3+ZOwed+bJcnn3qK99//gBde+Dbf/Nar3Di4zWxRLytvQwz4Vtbutu2oTcNsNuP46B4fvP8uf/z1r/Pkk0/wmWee5upjV5lsjDGSKxKFEKUgGQGTtWFre4PPfeF5nv/8sxzducM7r32b7377Vb7z3e9yePeIcjGnbmvapiV4RWFLvE+EmNAmESJohLSgkljCaCUWjjHkZJo1JCPWkslHVJAK09YrupiYzubQr91ayA0ajTYGo4OA+lrjlMZkm5pmEdEpkjqZHWVhqOsG3wZQiaCzTaiG1MFsKqTuxaxlmEmuKcLd4zNms5qm86KWkWA+a+icA+WouxZrRA1HtQrtHJFI28zQasJDF/fl2roozyS/+7vQsvABE4TCZwvHYDBA60Rbn3JydsTBdSck59Kxtb3Nw5fPk6oBxeYudmMXFWropnRdw0GdcHcaBuOCzdGEvUd22NveoqkX4BvqNnA0bwkqgCuxXUNUiRg6Qpvo0GJll6CwhspJQsG3XmyJXAmNop53tEHWqy4FrJfk0lzVhOjpQmSxaFkUc4pyQZNkD2mVxhZDfBMx0TKwFelsztnhESfTGU0jCk7D8ZBQL+iCRheFqCs1ATcomc8U05M509mUZDzGK0LyDCYD9NASu5Z5W9N2NaYTcmhoPcEZikHJYCDk5pgMpS0YVBVaJ7a3NoiDDldVnM5PSSox2R7y+c89QbKbFHbErdv3uH3ziHs3b3J2eJtXXn2TG7cOSKlGKShLcC6xuTXmvCtZtGJPsrO9QzSOadNRt3XO/SpIjrabMxhWWPPDC3j3+8AYRLkwpUxhDGlpSZJS/76PK1XUXkWJ3upMSP16be9KLhKQt5pYaPmQrZ8jFJWQEs7OpvKeUpoQIGkNQSxEbK2YdCPGh5uYecHoYIILluFCLEAy/4AUI22SOSz7ezl3iCH3e7Xv7d+uvYLJfNahtZe9c2LdpWn9Tsk7jvzl9X37fWweuVb6z+U7ZIzNJJi03It//PjyPHoS89pPl9yOXp2l3yF8rJPr8UlaHpE+6uh/l5bn6q9ldf6e5HXf4fpD5i+sVFtX5KKPxwh9jNPf7KW61NpnoY9L1PLY9+191v/oCUq58CEhRCWdsg1Qfg4hBAonhB9yDGKW4LuMB3yQbSCSBPchZHUKSQSrvJddFYusLLtjSH2URgoRFcW2RfmOyWTAhb09NicbzGcLYhcIwHBjg+FoTDkYoo2lcAOJia3NqsBCrlom+mOicHJNW1u7XLz0EMaVbG7t4MoStEFsZBK+bUm+5e6d27z//vvMF3OJYvu5mfLeMUgMHcmku5SytRtL5aSlyogWdSVStpjJCqIxK4su4+xsL44S1TXh6cuNTTEJaV+vx8z9eFB5S93vq3vSTMwEjl55VC0He+zJMrk4Rmc7JL1O+FF9zKvXBk5aDat8TlEPlSR+r/KzGp99P2Wvq1Ti0489kglKLVI0oFBUdB289+77+BA+lqDtr7ff++eTrycllnOR5RxarpaJjAOsyFO9Hd9KhXT9XP9z75f1z6+pr63flPx3pc1aH7I1U48f0M+/REq5ECnHRBKC9HGRjClt86YzP4O+6GV9jqvVQ6InGh0dHXF0eI/dnb38ffmOMY4nnn6agxs3OD05ZaIn2EGVsZDVvV6SpfL4lXGYD6UMaIe2iqIMxNBycnKTrc0dpnWk7QJF4bBWEaNnsUgc3j1GR9je36WcbFKNhvzMX/pZPvXop/iV//Ff8u6HH9FFUW45ODhgOp1yeHjEpx69wvb2FpONHR57bMDWzhbvvXedg4PbNG1L8JHTk1PqesHdO7d56OGHuXz5EqPRmM3NbSbjMcdHxxzcvM3tO/fY399hZ2+Tq59+mPl8wc3rt7n+0TXu3LnDuf19dnd3qQYDtDIo5bDOsLVTsLG5xeXLlzg4uMv1G7e4d3xM3XZCqstqWSmkpQKy14Gu62iahunsjNu3brK9vc25c3vs7e0xHA2XRUa6f3y5gEUh9ljbu1ts7Wzy6NVHOb53yOGtW9y+c4ez0zOarqPNtmJd5zHayJqa5L2UUm9sqLIVnFiv+k7e43kQ0jN1BAqTODTkcdC2HU5Zec/lJSSuFc2FzhOVlDSpBDolQgKfIkZJgZYxOlt89mpOEZ9jepssvg34mDAhoiKi3Iei7rqlWlJMCZ0gBFEiUtpmS9eAK1x+lwv5L0ZPCB2bG8NsP+qYnUwJWQV3qfAeZc5pJZa8ouLuqRcd89lMyGpGYZ1jY2OCVSXaFShbypyOLQTPIkbqRcR6T1EYNsYlg7KiaeX3CVFsFSNGUcROKkh/QmCp/R5jtlgVjLff3xlj0MrQdmIjrtAEIibKO9QnUTAiSIGLMR5vOqIWdevg8/pnEpGIdQbdKbquoa1rOu/xwWd1ykBCsIeYPERRx/JekTxyTTahcfIda7DG0pHofEeKgmfmbR0xBKwT4phzYh2b0Mu/a22ksMQGUqvlvhrY291kXE2w5Yj5bMG87phWp4R2wd3DexzeO6HzDUolgbMy4X9SVfgQ8TFSuAJbFHQx0bUdxoSM1ck+XUjkP7zxxA9tS1DOSwZnAy69dYnhyZArr12hmBds3tlc7pMetAfth6EpJeTcsiwpimJJtPjzKCZdvXqVn/iJn2A0GrG3t5dVElfx12KxwHvP22+/zW/91m89sKP6hJtSir/6V//q9yUozWYzfvM3f/MBQekTbO+99x7vvPMOTzzxxH33uygK/vJf/st88MEHn9j9vnHjBl/96lf50pe+xNbW1p/pO2VZ8nM/93M88cQT/LN/9s+4devWJ9KXB+1Be9AetE+6/ZmVlJ743CMkH+kaT1N3hKCWlZDOGowx1PWCGMVOS2u1woGyjZnROoOuCm0VfeVZimC0WL8pnbKStCZGITNMxkN819DMWowTglThSspSAkujLVYnjIGkDXUbCEGq8ZKXCuY2B/6kKIG3F4BUKbWsjI097p/CMqmdkgCeva2EkApEZrj3bxcMU0mVDJmk9DEcPy7BwD5RINW6Evj19nBiSeG7bik5vQ7Or1EpJEjPoE0P7EIu2MwbwLgE+3LVaELs6/oEUD5aIpKSgCTrw0FncIVcKQ4rnEYtbdekjzH2OZTcj0xC0yoTU1RaWhf0bPwewEn5e/o+YDJlG7ZVhbhSIjmdcrWJ1qsEhDVi+aTyGLMZiO+6bgmAGiOVZVVZURUlk3EpoEjbMZvXEMFZg7OOTvSw0UahlCgDNXVHSprCaaqqABJtThp2XZTkOIkQu6USQFU5LJGxMZzbGrI1KdFKCfh2bgedIjuTTcZbm2ztnWMy2WA4HmBNQeHKXnk+Ezoso8FEwC5EGtzYIdo5itEYPRihjBE6R+jElit0EDwqS657H4ghUC8WFIWTOROlSi4lTecDikjMyj4pxFyFB40XcKYwlhSylHt/v3WfPFtJcisi1agQlSxTiTWCSRAFLAkhoIxUcGESUQko3FdQEwWY0gkSAQhEH0nZ9sEYGbNd65HhLV8UEa2Uq25lDNmstNUFj7NSuahMVmxSShSYUKQugrEkA9pZGfuuWs7F/tpk3EVQRizQ1AzFGdBCyiwFtQ3sgDIZULUsSzGTVJ6uNrEtsW2WayXGLOc5GJm3GRBPscN3HmcLsT0z5VriYzWvBXYVlSEhHZkVmL62msi1dXkNMXmNa1lmgEgZGV5TYUqibBW6BVZBaDtSkHujnaHzrSTpUsR3MVtohpWaQARtHLpyYPrkTp+4MXLPlEZsFHr1qpSvQ2wKk/fEaLDVmKgNCiv3PiXmx3c5uPYe5x/eZ7AxQquBJKnpUMqCqnJlb8igbRQSbUqomIhtS2qn+MUpdw9ucOfaB9w57dBuyOHRESZ5ZtMZ906moBTDYcX++R0efeQyjz7xNOO9yyhXkrqO17/9Xb72td/l5Vde5u7dM+ouUA0dzz/9FM9+7hk++/yzPPLoYxROU8/u8f477/Nvfu23eOGbrzOta2xWPXDOsX/uAp/90c/xMz/z0zz22FWKwkGIHN495JsvfZMP3n6bhy+d4/kfe4ZzF7dpZjVvvvk+L33zDY6OGx5+9BE+89xneOThK4xGE5QWGJfUkWLHYnrCtQ+v8Z1Xv8tLL3+bDz68wcn0DJ+rLnuSnIJc/SzrUuEqhoMJ29vbPPTIFZ577lk+88zTbO9uU4rTHCpZqbgmoqJa5o2SkuO28xkffXSNt7/zBi+9+CI3P7rO8eyELnq6FJlNG2b1HGVkLbfa4rsOVGIwLMUuofWETpQBsYo2BBRihWCTKJ+FGEnW8cQTTxCmDR9c+4izRY1yCVcVYg85bwWctTAaFkLKjR2dkgrfFCKls9jSUbeRxaKG1NH5gPcylIdVIRZSVclkUFBqjU8JVTjOZjOUTzS5ctpVBZWLVFaUIs+aFltYqoHFGUvyia5tqSrL/v4Ow8GIOipcDLz7wS3aCNbDopmSEpTVgJPTU3wIDGyB02ZFKtUGbQxOFTSNJMrRBusKqqJkPB6wsb3J9s4mlXMUzqGswiTP/GTKfLGgiA1jGxlVBeWwYDA2pKg4Pmu5Oz1jWtfMmwbtRCWp6wJRCxGzt8jZmEykmvq05eh4xqztCCkQoqeIEJIkVbwPRKWoSqlQVlrhlaUwmkHlMLagdI7hsGQ0GBM7xb3FVMZGFzlrasaDkkE1pNUlruirngOjyYCoLIuzjsX8lKQ6YidLnBtZ/GJBOJszW8yZL2ZAR/CKEDxFkRgMRow3NxmOx8RkSdqxsTmkGo24fPkKBDi6e8x0NkcVcO7ShOcff4yHPv0En7p4idlJzUcf3GZRz9Cp5dvf/C6/97svcOfwOgmxhHOVYmNUcHF3B200bZcoXEUbE8czj0+KanNANd4gBMViVjMYDrCl49/+0v+DH8a2+99tCbnDxzVSUt4Hatl3dp1YVih0fm32C8aK7LMkrfRKkbn1VscrXrBCVDkURVGQose3Yam4WYSScT1i484GZVOxcTwWlaTgZM8ZWe6jZR8rpKmepBJTrwAkfcyhQv6/dVWTnJTIBAFyknSZQO+vB/lySmJXs0zKZ5LvOkFJ0Su6fAxMVgprjKx36ySB9ZBvjRF0P2Hi/o+snUw+E/t9vlnu31e7jz5OWhGzUv+88p/Ld30mUayIEPnra/eS/J1VHLS6fyvi0v1t+fM1LsX3sycQtar7aQv9Z9e/08csIROp+/ultcIZizGGsrAkwAdJFqskcZDWWrai5PGYi3V6lS5jRHUpkZaEvJAT6DKWQo7NRIFDkyi1YjysGA9LrLWMxyOGowEKGBYlrqqohkPKssQ5h9YSoy/vRSbyOFsulWxCELXQ4WjMj/74j1OORktSWwqe46MjDg5ukkLg9PSEru3o2pYQI77zUiykJAbQmd4ihKu0HOM9SSlG8Jn0Y/SKwJRZHVl4KCty0avsgHM6FztYWRl0Wo29lIRI1avqIsT91ZY4qyUBEFfEtTw1endnIUKuxrHS6WNzQmFyTBpSWq4hSmcLsnx/+3misvWcytZJmFVt2PeOXxkjly+f4+rVy2jd7+MVMMB7y+uvf5d7947oSy5Wkyau/TvIXi3H2Czndo6Jluo0YnkWY8QoQ1J6aaF2//zrn+HHCT/9+dbRiT5eQ9ZcegWsuIp/1ifm2ndj6GRNiCHb7ylRZu3Vc5TKpLaMH/VXIQtMtuReV97pr31dRUkvzyqPWWJLpzVPPfU0O7v7kIlwfcHXG69/h7e+8yq2MFTjAVpnS23VF55lNde+T3lfC2Rb7AShI3U1TVOzODvG+8TDjz7OZGNTzhMD80VNyHHUYFCxsTFkZ3eX4cYO2pUoBQc3b/FbX/0aX/+jr3N8fErbRZSBjfGYy5cusLe/x7n9fYqyzHv6Mz744Dpvv3NNcA7V4ziKsijZ3tvj4SsPc/HieYqyQKPo2pbDw3vcunkTA1y4tMf27gZaKc5OZ9y8eYd7R1PKwYBz58+xu7vLoBouMRkhyYk1+Gx6xuHhETdvHnD38Ij5YiHvVMjksrR8L+i8LhljscZRlhWj8Zi9vT0uXNhnsrGJszqPR52jwrgk3qzGligyzudTTu4dcevGTe4dHrLoLcdUwneRpm3l/FpIpVKQFVfkFx8EW8hkt5CJKVL6kK0Klaxno40J42rIyfEJs0Ut65bV2Z4+iQqOAmuzSlMKYkWHyvaGovIUEllRKRKjJ0ZFr2xuslJc4SyF1UKOzHGF73oVuwRa4YzC5uKvxgdR/yky4QUt7x8iw2HFYFARoryLZmczZnWHVRrvO0IMgol5T+c9RmkhyCpZ71KCpLWsH1EwOtmT6aUSR1k6BsOBqAJpgzIZE+w8TdOiosepSGGEBGULeS90PjGtG9oQaNoWpY2oK+V7mdKKyFq6EmUUXePpas+iE9JTiBGDzEHBpeU9bqwVpU0FMTMKC6vR2qC1yUpFBRpD4wOtb9EJ2k6UpCtXEJUFY7BaE3yPf1h8l/BtJ7a+QAoJ7YzgDE2L7zxt1wq5KaWMn4pVXlEUFFWF0oaYhKTkSsdgOKYqS5pFS72oZSxVmv3dTTY3t9g7tw9dYD7vmJ5NsQbOTqe8/+5H3Du6R0ytEH81WAfjwYDSWXxMqKyW1/hI6xPGaWxVorWjbTtRhiws/59/9n/nh6390JB8EqioKOcl27e2efj1hxkdjbjw7gUGZwOKuvjh6euD9qCtNVmjS8qyFOz+z0FKWm87Ozv8k3/yT5hMJsufhRD44IMPePXVV4kxcu3aNRaLBXVd82dMRz5of8amteYLX/gCP//zP3+fxRvAfD7nV3/1V3nrrbd+QL37X24bjUb8nb/zd7h69ep9P48x8mu/9mu8/PLLn+j59vf3+cmf/EmeeeYZyvL7W4R+vKWUODg44N//+3/PN77xjU/Mhu5Be9AetAftT2ufuN3b5av7lEVBiorp2TyDqFnW3hlcaSSA91HILUosonyWI9eZpBSCkFRcYSWAjr1ijyguVFWJKzSd7/Cd2EQNxxXWIEpHHvEJN4ZB5XIgLMzskGWdF01D24oKTPD3Wyb0bQVir+wRoAetekCfZZJeCVMiV/L0YH9PTlot7rGXMsnBb590kNhEZwBWL0GifJJ8DL0i92Trg/selsoJjZQy3idgrEppSdxJqk/yqGU/SFlFKhPKlqA3vUx8TxzSy2RAr2qiM7CdaUHSES3976tRe4ApplUVcA8a9wSj/n4KfrKSDF0SqlJabY6XFdXrCZdVEkuqVldgsM5ZK22MJAUyESNk0pXRiqosKazGaRiPhihj6LzPVWtexmkCa0VRqYsJrUtRSIhdBmgioYtUhWE0LNFaZ2skaFsvCawQ8E0rNgauYHNjyN7Icm57k3O7uwwnjslkzObWDptbO5TGMawMGzsTDA6NZjgS//misjhn6TqPdWJ/pZUjBE0xGlOOxthygHFlVhRKqBhI9YLULgi+I/gOowR86rLtiAKatsNliW4pXk1Lj/oYW4zN6jZeKum0dYR8/63VqHxvA0Ek1NGYBG2UxNXAOaLy2MoJ2Uc7UTSJUh2YYkdMCm0smAJtJRnRJyuNcRmM9tmiDnwtamfyjMFqQ9N2NF2Lto6YFIUzaB1o5w0qKVw1kGQIEWsVXRDiXFmUGbBRGfDsq7ENUSmwViq2tQar0ehlQkMquVfJAJgDU2BBosug6yaKfWCYJ4NUSAuILYmHlBOwMjc6UvJCzFp0GZiXhA9FidGKGDq01WKdkQLaOsCS8nG16oF/AfDlT/n9cq6tE42Wa09aJhUUWsDTIFYCxrr8WZ1n8IqkQvIQGmJo6Vqp7NQmZdl3IVRpJwyVsGiIXSO2KKYiaQs6knS+DuXkWlXKBMhMqqJYnn9FkmohtQibwICpSPQ2DVJxnkLkzvUP6eojLjx0HjsYkqImNA3GKZIbkSjQREgdvUVMb2kXmoWoezULwmLG6Z3b3D08ZtG2zLuWw1t3uXXrDl3nmTc11jm2NidsjIZsbUz41JNXufLE09hqQkRzenjIV3/91/nDP3qZW4cnhODZ3Zjw5BNXuXD5MnsXLvH0c5/h3M6YZnrCt77xCl9/5TVe/uZrHJ2eEpJUzWvtqKoRD195iB//qR/nx37ix7l88TzOCDHs1kc3efHrL3Bw6waPPvoQn332Ktu7Y1JwfOeNj3jxxT/i7r05jz72JM8+/1keuvIIk8kYqz06gVJimdfWDbdu3eSb33yFb778Ku9/eIPjkzO6riWm/F5NYj1jtKyV1jqKsqAoSsbjTR555FM8//zzfOYzT7F/fpeiKECJwo+it2RZJel7kl3wLSdH93j/zTf57muv8+p3vsPB4R3a2ZRpt2DeNDRdR/SBGAPaOKpBwXy+oG1CTnwahqXjcLFARbMEwDGiYEFZ8fTTT9HeO+X9D65zPF+AjpSlwRoBnH0nZORhlYmr2kuiwDraRYczIsWfkig4FaXl9GzOdNZl5SDLeFgxGhZoDYWz1K2nGA04PTmlmQtBqCo1w9GAjbEkOxdtYjad4xGLt6QihQITRIkjaY01JYtW9ho+dLjCoDrNYt4QgkdbS3KBFAyhFrsNZURxRiHv6cKUhAizuqXzkphVypCyHe/u9oTKWYx1lNWQQTXA2oLtrU3GlcX7hsXZKcrXDKrEaFhSDTaYjCuqyrCIkVYZDg9POTu6y/HpKdNZS9PKfd3Z22S6qJmdNizmntmiIcRI2zY4o1AqynUkRdt4XFFKAklrWe91YDIq2NjcZOAqXOnQ0TA9qzmcnqGiprSas8UMlRJlUUIxZjgeUkTDrPHYQtMuWuZ1I8tMW5MMorpoCppFg/YNhJb5YkEi0nWJuumwNlEYTdKW4WSDgXMstMLYgnE1YHNri+HWJn7eEUKi2ByL6pLWXLjyEPubW9y6dsh8seDcpW02RiPuXrvL733tj3j/2nsY29E1c7quoawMe9sThlVJMRjhXIlOllkTmIVENS4pByPqLtF5JQmUpuHL/7//nh/GNvmnI7HlSIq27e4jnGit8/4jrhLViqXKJeSE5pLorsXaTfdqSsh7GiWkDqOyYkMCpSmco+wc7sQxPBoxublJ2ZSMuyFLtaF87JjEbkSUCNKSnLNOvpEfpBWbZz2WWLZ03w9We/n1dL3qN86rb90Xnq2UjlbJ94+Rf/K5eoWgdXLPKrZZ60RPKki5D/ddVO63ut+qut+HJ/oYZnW+ntyxJATl/XxfpNFbY7Fc7VW+7H7PsroX33t/Ptavvt9r96G/rj427a/nT8Lc++voz7tu7dYXp/Rnl+2fEGastWK9phKlc6D0kgwWM5ENWBLuhAplsNYSU1h+prc7K6wUc3S5eEbUtfIeO1sFGWMZDkomA8fGeMR4NKIoDUVZUJUDysEAo8SyuRwUqPymdYVYuxgrSe6QC0VQkmxXyjCabHDuwgXKasCFS5epqkreyiGwmJ7xzlvf5d7du6Lyy6oIpX+uIQSJv3oiSFon8oUlAWhZCKMyuY0khJ88LkX5LPd8GW9n2yIi2mrZf+e+C0FpTQWpJ9n0tQDLIaxXcX1WToohZpUUtYzHQxDVyJ5MI3GxWEarJEVTIcmOW2uJMXtbjNUkyuMpq64kVO8nBUrdr+yTkHPl7xXO8sQTj7KzM0brSG+7rCg5PfG8/8GNpRXGx0kZ960vhCVWIGqRavUdbfK0jEvFKfn7upX16mDLZS0/i/WL/JNJSmn9n0JYSTGr+y5n2Krv/YeThyTrLVH2ACuMIGaSQY6BfJfnqRV5EAUJkb/uiVar9aF/KfTXKLFOHr2Q5L+NyYRnn/scrhiwijcSi0XNyy+9yMHNa4yGJW4wWPaDFFHWSgyScZGU4v3rcejknscAIdDNZyzmC5quY3Nnm/PnzpMS2fKrAyX2VoOqpDCW8eaY3fPnKSqxf2ublu+88jK/8ZXf5P1rN5gvFlij2dncYHtvh6Ks2N3fZ2tzglGRo9uH3Di4zbXrB5yeTkX1T0n8qbVlMBxy/sI+Dz/yMLs7OxRZQaGua27fOuDu7TsUheXChV02NkcYYzg767hx8yaHh4eUgw3On99nZ3eXwXAoKqoSidEr7jZNzZ07d7lx8xaHd49EqdV3yzUz5bmglRD7dCbTG2OwtmA8GnPu3DkuXDjP5uaEoizWRlK/9i/v+Oo9kiK+azk7Oebwzl3uHNzm6OwEX9e0wUsRhPdLNXgpWrKkFOnasHyHVc5RBy8FNkm4cFopKUxEMdnaZFSUnNw7YbqoCSlijNjOklaKkMZAYSxBJZRKgvWFBFlJSSlRBtJZObypO2IUMqQzhqLI756838HIWiyfk+4WhaVwGmMgRiWWeyGRTMYMEWSAlHLxmCFDYII7ZnzFN6Ioq7UhalGXDm1cYp4rRYyIzkVQXQiiBJXy4pFx0KoqKZ18xliLs26pHl8VDqUSXdcQuw6rxQLbuiJbDQmJ16NoukA9n9M0NXUj6t7BB6pBgTKKxaIj+EjTiGK7KM6lpV2d0gbvA73Naf9u7e0Aq1Ksw7USklVoI4u2pfMBZyw+dPgQKIwhKYspSwpt5Jrz/q1rRQ1Kp5hjVI02VnDYrsOoSLcsRhVSGqSl+qlxBYV1RK2ISlMYIS+VwwEKjW87dFHgSodRUFUVW1ubtPOW+bzBlYbxeEhoAzev3eLWwQEhtKACvutQKjGoCqrSobTBFQUqKWLS1F1AOY1zBUmJ/Z5WUvz4P/y//p/8sLUfKPEnwuh0xObBJvsf7PPIq48wPhozOZz84Pv2oD1of0JbV0zqiUn9z/88zVrL1tYWjz32GMPhkOeee47NzU2UUnjvOT4+5jd+4zd4++23l/bWD9pfTBuNRvyNv/E3ePzxx++zHkspce3aNb72ta/x7rvv/gB7+L/sdvnyZf7hP/yHjEaj+35+7949/sW/+Bd/IQpGTz75JF/84he5dOnSck7/aa1tW15//XV+8zd/k+vXrzOfzz/xfj1oD9qD9qCtt0+cpLR/cUvA3wjBC3nIWvE7N1YxmlSgoFm0qChVSUpLxblSYqESM9ijtRFf+B43RIv0boSicFRVQSIKIakLaKsoS4s1Fu+hXrT4bBW3tAhAiE4hZqu2TOSJGRTVS8D548D/OpnmY5u0HsDOVZ5ScbP23ZgJDmkd0BOQof+ZeKDLMePHzrtKLrAkKSV6Iki2w1q/xh5sU1kpAtU7C0D2re+T/EvlpSREh7AEYwUYAQnW+y5Za5ekqN6GLy770ZOlsrJKr3CUlbBEGlusCkKMVFWF1pp6saCv4JakjMpVSnr57GIGqICc8E3f9/no/MKNcVVR2YPDotIklVEqk8BASGt9NdfGZAIpUDnNsCppvVQ7kzKxDIX3nfTDaZTV+CDqDVYrQhfwAequw1mpmtbGsqhb2q4j+YDVCmcVZSFEpKIq2dwcc25cMXCOSTnCDTQPX32EzckGA+sgSrVmNRkwGQ1wxQBdKDQKqzRt0zBfLNB2iK3GmLJivL2DG44EjAVU6AhdA11H6lpC10KuMA5dRCfwURIdzkq1d1hWMMozISm6VqrmjFOEIIlVoy0xRFEaUpmoEqMoGpEE81WiRlMVBSZXlVtt8MljywLlHNFLxiHFhCk0okZmsqWaJeEhSdJA8gNWiAypI8aO0AVCG7HGLckyKYjEulTl9TYMCmMSXedRIWHLiqg1hE5IkUnA6d6qI+uISTJJKZI2KOckCa60kKd0gOSIUWfJ+dRPYEhTEidAjcrEnMgAzS6wiVTYrtuWRRIBtU5sjPmalSL5Dt35bB2jhexTOrERRKxxshObJAm1yUkGSCqhlO2pHihsPn8foKzsUtYmlwD7y1Sghl5ZJyewlnNfRk6GCmX9iaEhRY+OkFqPslqs6UDs0/I6lnyErslVng5TOGLqSFqq99FChuor7yXHYFD01R9KDkhfreyln8iJViQltfxM7BZMj24y2RqhnCUpm5NaAa0qoFxeKylBruhX2XovxkhqGlTX0pydcXJ8ytn0jLP5GantuHb9BrcPjjiZzVDWsLU5YjIYMh4McYXl4qcu88jjVxnvngNd0s4bXn7pRX73d77ORx/coW49ygXO7e+xM95hsrXJT/zkj/Lopy/hZ1Ou3bjNiy98i9ffeJt33rvBopVrloR8wXi8yacff4yf+Zmf4vnPfY6trR20TjT1jPfeeYcXvvEih0d3uPrIJX7s889y7vI+N7/7Fv/0//w/cjj3nL+8z9VPP86P/OiP8OSTjzIZjjE6yThOkGLLfHbC0dEh3/3uW7z44rd48833uXc0pe06fOrEUiApUjKiCGFk/bSmoCiHTCabXLx4kaeffoqnn36Giw9dYmtzIvY294/EtSbjUQifDdevX+etN17j3de+w4cfvs+dO3doiXRtw72TBW2M+Ohp2wh4nDWEqHBG0yWP7d+bxmCtEbWysuDJJ59kfvse7753neP5HGVituxBqp+VUPqsAY3FVIbz50Yopzg9rqkXnsaLpWSpFaUyzJuOs0aIQgNn2agGKK1ofMATmUwGjCrH4dEZ8zpSFQVlJdXNo6HFasts5oXwqyNdrmTeKCui93inKKwltB2LNtDOI4u6pfat7Kd8l8HlAu9bqsowHA9o64am9iK1TVafC1GSYh46H+haL+sLiaIs2N8ZMx44lHbEZGjqFu/FImi8MWJjZ5PJZIPRYIBWis57mnZB8h6rNa5UbE8ce2OLRbHoPLO24Wy24ORkRsRwNq85m07pmshsWlP7jnlXY6yA4sYayrKknjdYa/GhRVmDU2KrOpkMGE6EgOjbSDP3dG3Hwrc0XWA4KCT533lUgCaKks7QlUwbL/vCEJnXDaawDLTCloaycCyavF9VHYVT+JhwRghqJ2czjIXKGRZ1hyoKzm1tUu1ucG7/PPXpgkXt8Ur6X4yHlKMJ1msWZ1OKjQHDsuLsnigrjLZKKlsyvzfl2ocfcufwJoWLqNBRL+aZkDWECD5BNRxQ2ZKAgUHJYFBhdEGXNEk5TILF8TG//9v/9vvOsB90G/0fKyCnjgNLcpIkkRRFITZU3gdU7Akjva2S7LMT0PlOEq1mTSUn74VVEjsUYzUqKmxtGd4dsXNrh63TTVx04FVWLVipIknLpOmeaEFPzpFerxNaluSfj5GU5DD3v2vX/vGx/1drvID1eCK/z9YIXKvD9edMmYjRxzB9jLOKd/rv3be3/j5d68n/aa0vqk80srJHu9++bnXA5c9ycNffm/7+9vZl0kl130n7N7fWKyJEzHtWpZQk7z/WVLa8Xj9Hf07dE0fW7tc6aeu++5Hjpb5/PWlZCHL3f1ZrTVmWpBRxWohwMaWsIJHPA0vVJW1EwStEibO0EnWLmER1yWidVYRFPSxEUT3VSmzgisIxHA6FtDCoGBVWktXWYaxiY3tTFJOU7OMVCVuKAp6xVmzGyFZGIeBDoKrGjDY2mWxscuHyZbZ2duWzmcSTYiB0He++9RY3rn9EiCHP1Ww/nCQSNllFKC6JMpmEs0zKR7RhSWjqyf4qK4L0LKLUS4/pHMPmuaty0YnKZACdf5YSS0czsSLu41ud45S4PK48vjXloBgEFwhJ9s99sj4lsd9ZDmqdVYPlWmRMWXlHxrCmGpPPy1IvKg/pTJoyWkhKwoSSjiMEzWWcng919dGHeOjKft7f9kdzBO94+eXXmU4XrNaHdZLP2rxeJ0ulCCGu5i1CaljOQ/IfSq0dk7Xj9US/lK/TLOkfq0+v7+L6Pq99IsFqr657zof8Tsl4W50vEaMXDSMfMrly9TvVqyQlxKY54yYq26wvyVbq/jVEqX59XP1cjp3vQ+pt22Bvb59nnvnsWuwj61q9mPHuW69z69Z1TOHoaTik3u6tj1Wy3d7680ly/SlEsbXqPE1d07YtddugSZw7d47NzR2atsOnRFlYyrKgMBZrDeWgYntvh+HGBso4iIqje4d869uv8ru//fvcuHWHlAJF5RgPRjhXsHdulwuX97FEFnXDrVt3uXP7LnfuHrFovMRS+d5YUzCeTLh8+SIPPfwQGxubGCMW4/PZlJs3bnJ4eJeqKrh4fo+dc7uo4HnlxVf54NYx1aBiY2uT/fPnuXBxn+FgkC3V43JcBt/QtA0nx8fcOrjDwa07TKcLWh9IKWRFwrR8TloL0VNU2C3OlQyHQ7Z3ttnf32dra2tpBfcnxxP5LZsE16oXNfeODjk6OODo6B7T6ZS2a+UZN0LYj4i1tNiKSX8UipRtDzWQMuFQSJIw2dpiYB1Hd4+Y1g0hBazp1fMyNgigElaJivNwUOAKjc+kmhghpCS2nHm/0XReilQSVM5htCYimI6xhqq0+M6zaIR447J6k9GCqXkfl0rTId9fDTijCSmBUegEXQgEnwhdovVehIxjyPsOm8mt4ArBGHxWgbVGL4v8eovbGIW4utpOKQaDgmGZ1amVFlVXL3sBl8d3WZUUWflPFJc90fvle7RwmlFpcEbs2toYaLuOumkJQXCtumkIQQhm3gfa6PO7StYS51xez/vZKvZ+iSTzrBLiTvKiLthbnrdeyFrWyrtc8CpI2lBaS8j4s9Ea33kCkcJaNAnrMiG/E8txa3orTfnfYtESk8SfIURCgkFV4sqC4cYEFZHriQljLcYabFmhlSE2HUkrXOnEZm7RYApFUThil5idnnF6dkKMHVaT1bE8zlkZSzGh8n4CFFEbbGExWa0wJnlesW355f/vD1/Rw39qIpAKiuHJkIvvXOSxlx7j4jsXcbXDevunf/lBe9B+QE1rjXOOqqoy8XeVm/qPbaLiOmZ3d5f9/X0ef/xxLl++vLR061vXdXzlK1/hlVdeoW3bP++lPGh/SlNK8fM///P89E//9Pc848ViwS/90i9x+/btH1Dv/stpTz/9NL/wC79wH2EopcTJyQm///u/zwsvvPCJn9M5xxe/+EW+9KUv/ZmJSiBz9Pr16/zKr/wKb7/99iferwftQXvQHrS+feIkpYc+dYEYAotFTfQKZx3DUYUtHMXAMRwWNE3D8dGpkAmspsxAqSgceVThlnATSTzTRe5e1DZUVPl7hRBMULStp+vEv1yILw2iki8EjB7sUkrAjBWAGpckpWV1VCYmfLz1oDIf37CltPy9AKvr8JtC9SpLapVk6YGwvjqsVwdar9iVb8v5pOKXfByzAnP1SlVp3b9X+iHAX8zVcKRehWIdtFxdT0q5Ol3pbAmx6sWKxLUiVvXn6a3ZJN+QEGUTvQI5U8ge8Gr1XWA8HtM2DU3TrBInGew0Vu5HDF7Onc/XX6f92Mu8v26TVZJQArT35C21VHUSwHnd0iFmgMVYy/b2DsG3lEZRVQU+BBZNtxwXYldYE2P2obeGel5TuYLhoMI4C8ZxdjJbVs9qFCkEnNXs7G5xfn+Pymk2J0P2drezTLZhUJYU1jFyluHAMd7aoSgqTAKUZjSYUAxLhsMCbRRN1+G0xRotljnFiOHGLsOtHQFvsvS+ioHU1MSuJfoWEzy+rglE2owNW3QvXyUPPvZgtVojZ3kB4GLMKl7Q+o6m9RSuRKNwTsCNZeInSvVZQgBxbS3GaUo0ZeEggzJS4SoWScuqe5vHcxQikvcdMbVYrdFI0iChCF5IGYu2RiX5XU+uSilgklQTKi2qB8FHbLbO6GLEKU3UGmUsqRPliwREHyirgVx7CEREBl2SJBqsFYuVLN2NEWl5kkarnNQgAg1wSsoqSkLim6DUNjACSkiBpAJEUKon4vg856UaOJLAWhGQrxuxsIigjCOlAIWlJ+ZFQCsrQH/0EDtC59GuQJkClF3rn8okn1VCordtXE9gskyIrKsVheXfxWqhV3Hw8l9cWXF07RwrCJ0QkLTM75RCthXRsp5HjyLhA5jCokwidAHripyhNP3QwhTZBhC9rCLtiUqp7xMiVy/WmipfuygvxZ581DUyNypL0LK2aCIaB8kCYnOWllXasLTnCZCaFrynmc6o5wuC95yeHeObOYum5sb127z59nucNgt2d7fZ3x2zORywmHra4Blvj3nuJz7HuYcvY8wGwWsOPvqI3/uN3+GVb73BvfmCOgRKrWjrmvPnz/OX/urP8OzTj1FVJUdHh9y5c4dvvvQWf/Tiq9y+czeT6mTdLZxje2eXzz73LD/7sz/DU089JVaUyjOdHvP6d77Li3/4Mm2z4OqTVxg0M/7fv/wVPrx9Rjko2drZ5tLlS/zoj32Oz//oj3L58jlGgyEm2xiSWhKe0NUcHx3z9tvv840XXuH1N97m7t17Yt0QM6mmT8oqg7Vi3yrrtmVjY5Pd3XM89PAVPvvcMzzxxKc5v7dHUTiWub5l0kyeQ0opK1AkVOiYz8746P33efnFF3jrnTdgPuPk+Izbxyccz2vmbQLdUVhHFyIhRWxsGQwcdQAGFTZF2ukCXTquPnqV01v3+PCjW5zVCyYbFaPRgLqp8TFSFpZh5Wi6Ft9GCme5dHGLNracnDScngoYbp1jWBSErqPrPNpohsMS8DhjcK7k9KxGacPO3ojga2ZzT2wTrnBEp3EuUbiCqw9f4fr7H3H3bI4rNaGpWbSegS2xWrP7yHku7Gxx7a0PmTWBs8WcRRPwbcK3rdilOIMyjth6NvdKynHF/LTBN15UKrSh6zzRR+pFQ91IBXbX+WVFr7GajdEkv7s0ziqxQgzIM83kzy4CxlINhozGY3YmmwwHQ5LWzJoF3WKKDTUmBrEYmBSMBg4dEyoalNXM2wWHR1Pu3DvjZDpnOlsQUwAl6hzOFTR1t1QhaVNgczgheqlh75Ik9odFSUqGGCV5OW1E/SKEIHZ1HuZ1g7ZGCEKLhpgSA1ewWCxIRjMqHDEGjNWgnFRhm8iF83uMhiM0hunRjIM7dwmpY+Ac80VNkwIbo4pqPOLiQ48wmox5/nOfY3/vIkcnU27dm3J47wwdOuZnJwy2RmjjOLx5wnw2wxbQth2zkxmzs2NOTu6iYoNTibZtCCowGg7xbWS2aFDWMq4GshYWDmcthS2JGLGu8AHahhf++Hf5YWwb/3RMinGZ6BIA1YpygtNie+IDdd0QvZCIjc3k4hhlD5bVBvvloye7m2QpFiUqwXA+YGO2QXVSMj6aoOdGSNeZ2CwKCvmNGeOSOLNKarMkM8vfV/HCfSSl79M+nrpXrJFi+p+qdU5Bv3/nvn3s9yUb9Z3pM/5rscuqVyv1pHVVo56Q0++97+dWpSUhob8P/bnXiQy9utV6yCR79fv37csrvY+ktH5H1H17+PXr7r9dFAXBe9mnrvdBkZPE/bPPZO3VxXwPqavv1ypWW/XtYzcwFzv019YT5GS/OagGpBgxmkxSynbisDy2D2Fpy620wndByJvOoowQwJumzS5dfVGJKL8Ox6LIWJUFg6pgMKgkDtJaiHfG4LQkpItqgDE2uxoqClugnaVwoigUgtiqWaPZ2z/P5YeuMJxsMZpsiEVZf40p0i4WNPWCu3duMzs75eDmTSkkyc9j6fLdM2uWt00ti3BSnlDr8WqMohpotOxdje7j19V1K61XfdEabcCkHBOa/nerIqDlKOljmyTjSdQpQrbyWfWxj5e997nHelU4tDane5JfjCvryZiiEKzyPlVISnL+GPtiHrW0feyt2MlEBlEME+uyFStpRatQKrG1NebZZ59E6w7ZZyugIKWK69fv8M4772dSTl/g0NtO58KjJGSbJAsqCk0KvXU9eX8dl3Zoin6rtSJwSeI9LC31hF2xmk+Kj5GU1rCE/j6uMIj+zKt1bcVQSms/z6Mr/ygGKRJQMWZCg8rjST6nMlaRoqjHxjx/dF8goWS+9eyQFPP9uE8BN/drOW4S5LjaKM1jV69y6fJDKGWX30kEuqbmxT/+Bk1bi3oxvSYoSDFIQgKHuHaD0ur6RCaN6D1d05JipOtaurYBEuf2zzMebXC2mOMKx3hUMSiFkNR1so/Z2dth58I5jK1QWJq64fqHH/Lv/qd/z3fffpdF28ramFUGL1+5zJWHLjAaDWiblkUz597dEz786DZHR8f4jJMIKUiUBrd2dnj44Ye5fPkSg8EAhdjYn56ecP3Dm5wenzLeHLE9rnjvnQ/44OYRSSnKqmA4HHJu/xyXH7rE7s42VVWglcnzXGK2lAK+bTk9O+PmzTvcvHWb07MZbdsSol++R+QpyRwSBWWVSS2OQd5z7p3b49y5PTY3NsTa8j4Yb32H0L/HZK2LwTObTrl7cMCtg5t0zQJft8ybhnnT0vpERNb4hM4q6WJdjlKETC5NmVg63tigUIbje6fM6hptFYOqEPvOfI8LJxhkT+aZjCqMg6bxNI3He+lfYR0kUbFOCazLBVIp4FxB1wVCSJSVwxjZu4eQ42CjhBgLbG5MiF3g9HRGMgqVRG1eoTBoynHFaDwkNS2nZwt8FOVIHxIpyFogobUh+oRzinJUELKqeIxRLGWDWJd675cWeTGTPvu1wzlL4QqMFnUpndcLlRTKGtBGVoKk0NbiCrGfLosCrQ0+SWGKih6dZF1zhaYojKjxZXX5mAJ10zGdN9RtR9N2EgNknNVYe5+CXpft7IzWYvWp5HkZY0T9Owne4GPM93hlfBm8xJmFK4j53llrSSHQJSEpqSVJUou9XwwMBiWDQSnkrzYwny9o2kaU7kOkDQFrZa8wHE8oq4rt3R12tndJSTGd10znDTEEQtugjMY4i28j8+lcLEqRYpSubmiaOd43WA0pBEIKYnenNG3rhQzuHEZpopb5ZrPlZVJig6hC4F/96i/zw9Y+MZLS99nIa68ZH41RKLZubXHu2jl2ru9w4d0LDE+Hn+z5H7QH7RNu64pJffF4//M/TzPG8PnPf57Pf/7zjMfjpVrMety3WCyYTqe8+eab3Lp1i9dee+375t8etE++fepTn+IXf/EX71NQAomBvvGNb/DlL3/5B9Sz/7KaMYa/8lf+Cl/4whfuwyIAZrMZ//yf//OlMu4n2bTW/OzP/ixf+tKX7sM6/rSWUqJpGn75l3+ZF1544QGh8EF70B60v5D2iZOUHnn8Ibq2ZTarSUFROrFYMYVlOCzRBmbTOW3tscpRlFaqbowhBk+XIkEZXOFQMdG1HZ0XCWKpJjTL6hljFN5LFYyAUYJDaq0ECBYDeaIPq7xmJgvpXmI9g3UpsTrHx4Dz9YW7TyB8D5FIPrj8Q3gyK/Br3VZBpINX3+9B8Y+/IHrA/77KZyKKXhVFDmKMWYG2Si3VjXpCkfQ3V3gqswTqe+s2IXOkZWIyZZWSvjv9dcSYVsoyHyMqST90BgiNyP4ak0HYuAQL+3vXE36897kKra/gzkSyrMIUgxAjYlolaZRSlGWZAYXV/QkhrJG2VuMCwDqX+yoJpl5mvVe8kYoBhzEWlSKjSkhHTdfSZQKbcw7nHCF4FotaVL6MxkdJeIcQmGxu0vnIydEMUDhjGA8q9nc2uHzhPA9/6jKbkxGVMygSNleqahQ+JAbDIRtDx7B0KFVgqyEpQTko2JhskJ18SCqxWLRUoy02z+1gygpXDZfJhNR1pLYlhZaunpO6FqLGWLF76tpW7q8RWW2xSpPxlsiqVyja0N90WMzn6D7hkJLYAWoBJwwGo5WA30hlm9GKItuoWOuw1ol0uVWUSWEUUFixW0yaohpmZSAvQLASgl8KAvb3KgkqJlJQS8Ja51tsYfEx0LYdWmmaRuzUCmcxKFGIQiqmre4tJROuclg0XYwkNFaJzVxIMpasEWu9EKRCXDsDmZSUemszY0QJKANfKltMyI1qgWOEnNSQ8CSGaM4BE4QsoxH7As+qglchvLGITpHQ1TK3jUanBG0gaUX0Ad1XFFqXn43Hp4Q1pYDgqSP5Ru6dFfUUlMvQfwb00xopaWmz2P/Xz/EeOE6ZSNVXoqsMyIU+n0pKnVS7J6DtAKkMVEkRfSLGgDWG2DW0dY11BcZZlNOoGIidJ6EISWFdJmEag3Y62zRYIFfL5yyK2IoVq3uYUs4lZ6JS9FJVbQxalaAKlhZiSRHbBW1zlvviwCRQJt+bsLxXPakKEO6nF2uG1NbgO3wjKmXTRcPibMpsPmUxn3H36Ji33nufrvXsn9tga6NkMe2YLzzTes72uW2e+/yzPP7U0+jhNhrH9PCIF/7wj/j6H32TaweHLDpR30ld4KELF3jiqas89yOf4cqnLoDqOLt7yne+8w6/9wcv8tY715g3DaiIMaI0UJVDzl+4zBd+/Cf44hd/kocfviSWVbHj8O4RL77wTV566VvcOfiIt9+9wcG9ExKRqirZ2thke3uLRx65zGefe5of+fyP8tClh0QKXolygiRdOkKomU5Pee/da7zwjW/x7Vdf59bBAYvFgtYnQhRVBaXknW1yQlEbw2SyKUoQ4zEXz1/gmc88zTOfeYaLly4xHA7l3Zqf2Vpqh161L+Qx6pua46PbhJND3nvtFb7x4rd478YNTmctvmuxWtHGllnbUaCIKuExuKoQpSFl0M4wGk84vX3C9Vt38Sly6fIeVeWIJNqug+QxSuzQFAkVYyaAaWbzBfNFR4oIqTq/S0pn8V7WyO3NIYUT0siNg3ugNeNRxcZ4hAHu3juh7mKu3i1IMfLwpXM0pzM+PDikKiumJ1PmsWV7c8RD58+xf/k8TmnuHBxy3LZ4oNRGKrhPTgnasjEec3Z6xL2jM6qhEYuaqAjNIlvwJto2oKIm+ETb1MQkeytRK5Fx5YzD2QKrE85K4k8lKIxhOCgohxXGOXyCpoW69nQxMCgqhoMhw/EGo80J1bCgMJrgPYv5grCYk9oFTkfGw4LJqJJEg9EcnZ1xNm3okmLR1nRtR911TOsGHyMqJ2LHozHzec2i68SetWvR2rDoEkYnhpWl9ZEUFb71LDrPuBjgu45F11I6J2pgAaqqpKtruhQYlRW+6/AkbFHmV2fi8sV9nLHM5w1WWc7OpjS+oTSGtm2ZNR1VpXDOksyQK09c5n/7v/vf8MSVp0necPvujF/7ta/xxy++SGLB5Ss7WFdw8NEhvm1puwXHx6citZw809MTFtNTLJHOtwQirjTZVkLRhEBpHF3naVMStZWyIgRYtF72OoXj5Zc/+UqtT6Jt/TcbUrzQSkLSGIOzBmUyiUMnuqYTa2cs8jaHzZMN8KI2kJSi6iq2bm8SeuJ6TJhgGJ6O0Yiii04rC+NlfhxWnG1WdnLrAUDPJchvyuXevv/zzwXz9uQMtTrOkiRETwj+/mf4voqwa8SjPhnXE67WFYDuT9nKNd9fZJAyWWhVtLAibvTnkoTberCzHuLInPlYYvjj/eiJU30CWqnluddJRv3vwpqCqhxMgVqP6yIfe3woWMY16/3p95e9omtvuQJiGX2/otb6PV8Vj/QKls5qCmeF7J5Y2lb3x/Ze7IlV3vOZfO1FWRJjol50gMQrVVmwOR6ytbnJ9vYmVVWs4og+VkRUKmxhKZ2hyNZnsj9KWXmuWuOBJLouMNnc5rPPPcvu/r6QwvOznp2dMT+b4ruGg1s3mU+nNHUjfIrgJfksbLA1sko/VpQkh3OfemEs77u8Z1h77ko+r3s1kXyEmKLsEwWaqd0AAQAASURBVLLysljw5L2fBtuT441eWpRr41jRptYGZeztlPPY6B9jFrWRxLMmpJXNW7//N3mc9UTH3tZP4u6Ezsp+oqomUYBSPXlR4g7BHXKfckGNykU3KY/lVZXQaiYqpRiPK555+iqDoQN8vj5HigNu3rrHu++8nwuKMkkpE7JWNzPPnShEPomxkthHIwudEKSyqhNA6vGETK5JQZRTZCKwtEZTKp+zjwhWM+x+ImU/ASMrJGWlXLT62NpzSwlUJvTkOd5jGvJHTvAn8F2bSYImq+fKd2IuvCFb15GJhCuiUr6GnuxEXr8+3jcSvbKTNZrnn3+eyWQr34de+QRu3bjJd9/4Dt53GGtX4RTrBSxwv+VbvtaYIAZSEHwkhZBVLDu6TvavGxubDCcTrHUMBiXDgUUlRdMEUbgxit1zO1y4eIFiOAFlST5yeOuAV779Kr/3e1/n5p3bxKwYVhrH3t42e+f3OHduB1tqQtNycjzl2rWb3Dy4y6JuRKlM9ViWoSoHnNvf58ojj7B/TuyalYp0rcQU1659xMnJCaenJxyfLWTfa7TYd1UV4/GIvb0dLl68wO7eHmVRyGNY3pAoMa1vmU7nHNy6y40bBxyfHNM0rSiix7UZ3n83v4yKosQ6i3OOQTVgZ2eH8+f32drepqxKWXfzt1Vf+NC/X8nFTnncNc2Crp7Tnh3z0bWPuHt0zLxp8b63Z0+iyJOxyAgkbYTAFAXv0c6iApyezqjbjsGgYDAoZWlKkRACRoPPtm8qW32K4nyk7byoV2fLt16Vp8cEy8LinOBr09mCLkjsUBUF1grhtWk9KCn2VIgi5agsOTw6AW1I3lN3XhT4RkMmG2Nc4egWDfPW00ZR9nPa4LuOLiaslThwNl2QCFJYEWV8B5/j+d7eLUlxWV+AGLwUjAp2qjFKcGGjyHaYolHljKj3aCskyBCTKOln7M9ZhysKXFniCoeVG4/3oviH71AErNGUhcVaIXX5EJgvGolvoqgIhhjpvF8pH8aIc0JGbBpRak154MXcl8LK+AlB1oC2E1txqw1N1y6V6bzPquMp4X1PdAKfQi6iFLLboCoZVFW+VzKG6rbJ1qfQek8iURaaiMFVJZ/7sed46omnsTg6n7j20R3eeutd5osp43FBNSip6456VoNKNG0j7/IUCb6jqWtUChlHDqBFbTgluUbye60LUfbhRpRWfBRV48IY/s2/+df8sLX/EJKQCgrbWnTUXHj3AqZbFcUOT4Y88p1H7vu8axx7H+6hUKigMPHPrkzxoD1oP4i2TkwqimJJVPnzEpP6tr29zV/7a3+Nxx57bKnUEmPkzp07HB4e0jQNr7/+Ovfu3ePk5GRZFPCg/cU3pRTnz5/nF37hF9jd3b3vmXvveemll/jKV77y4Jn8J2xVVfGP/tE/4uLFi9+Di7zyyiv8+q//+l8IGUhrzRNPPMFP/dRP8fDDD/8Hzf8QAh988AG/8iu/8sAS8EF70B60T7x98iSlxy4hQVxH1yWKwuIKnT3FJRBbzBqsKRgNhyuwkEiIQXRHusCirsF78UcHjDZY5zDGEKPChw5rpeKvbbOVTMzJSyWkFqVMJm0kUggCLNFbp63AqJgltmNcAfb3Xfw6gagHstcSAAqRs1wnCvWARa/k0+PZPXjdf7dv69XDfdXm91rL9eBYXzUooIS1ZlXkxyrR0hOc5PxCCuhVmD5+PpE/l/scQ1oD7HtFpoRUp96vhrROlnKuV6DKajIZWIkxSKVVvvtKG6xb9ePjQD9IEqAnXPUga18hvG7hhlJL0LgHv3op/j4h0SusrMHUa+fJJCWt5dojlM6xuzVBa1g0NVEJGa5wWfHLdywWCyE2lRatIqGNNHXAFhUpRYalY3NjwmQ8ZHdrg+3JkK2NMTtbG2xubVJWYnkWtcK6gspYjHYMnKFwaplQqMZDoo+Y0pFCoG09RheYasTG3h7DjS2UyXZUsSV1gdg1+MWc2LYoLZWNKUVil/Ap4slS0FpLJVtMhGxpl7KVlc33tPMJbWXMBu+xOekSQ0JbRVQijGPQpOAFxHei4kQMDEqX1QgyoYSEzcQhUkIZIRlpW2LLAT54IKJNHnNRkYIGJQmDhCb5QArgOy8JAJWyjD+Erutxa0KMOGsgJoISgl6KYoMlQL1IXxdKLIiC0P9I0WNKi1IyJnSSPrqiIBmNsoUAVDKAlgkGFIQU0crl5WEBnAJTFJFER0pjlDoPFCQsUoELJKkKBkXMwJO2TpIFRPDtknSTQotWmqRsVgDpUNqgy0I+EzqSFiUlUCTvMzkvZSUlR0qZnEYOQpJaA+XNGklJZnpaZnFCBviFJLRMOmQST5/3lH8LkE/bErsGdCIERB48dCKr3rWSoFNW1isLhCjS7UZTtx5jLOVAgOtk1khKOhMuc15M6QKlS4Tyt+wIy4RA9PhWQHZrC1Al2lT0SlAx1tx6/y3CfMHGzhaDnXFOEupMShIKjCRDcnKJBEESN76dEesFi+MTxuMRPlnqWcPh0W1OT+7hQ2A2n/Heu9eYzWZsb40pnWU6X1A3HW2X2Nrc4As/8Syffvaz6ME2ipK2a/no7e/yW1/5LV5/60NOzxaEFNmbTNjb32O4UfHww5d55vnPsL85ZjE75frNW/zB17/JCy++xp3DU6mI1KDRaO0YjidcffQqP/3FL/L5H/s8585too2old2+dYevf/3rfOPrL/Hme+9zdCwAQukqJoMhF/bHbG5usL29x3Ofe57PPPsZzl/cpywHecwlxIakJYWO2WzGR9eu8dKLL/OtV17nw2t3mM5bGt+QtEcFIZWCvHOKwuLKAqtECnpja4udvV0ef+JJnn3uOR555Arbm5s4a9A50aOWSbL+vQQqJZLyKDraxZx33vmQl195kde+8xofvvsupVagWhm1Ho4XC7rgKbPihdUG4xTKOKb35hwcnjLvGna3J+xsj9FakqeilKFYtB5baGLraT2oKPZSPnia0DHemOBrj0sKZRXTxUKsGUqDvMoMR6czXK62HQyHnNscUzcts4WXytYo7/LRyLG7tcnR8RlWF0znDWfNnLLQbI1HDEpJSNSt57StKSrH1UcuszkY8c67H3JWdzhnmJ/NuH3vjLZpKKxmc2eCBupWkhRNG/CNR6OJnZzf+0TbtQxHFZNxRRsaSieKTD5A3XSioKcUw0HBoCwkSWcU1hbopGkXYnPQoQjJZGtfTVVaxhtjhuMxg8EApw2dD6IS1LTEtkWHjujnTEaO3d0NSaAYw9liztFswWw+Z3pyStOK1cWiqamTYjzZoGtqtNGcTltCikyGTuzpOtnHzeqOypVYq0SlQBt573qxr0i+o4mewhSkEGlyskahCCkxrCp0TMyahsqVkjzKdhqh7ZjWHcYphgNDGxJ7l7f5+//r/xU//1N/jWYOBzfO+PYr7/HCt1/maHqLUekpCkc9D2KLGz110zKfT0mppWkaFrMpOnmCb6X63SZKZ8TaDiAkfBNYdAGMYugcIcoz1iqxMRzw2mvf+Z492A9D2/w/TQBReYkhiT1JJrAbrakWJXGR2Lmzy0YzYXxvjErgGrskK/gY8Z2XRPxyb62Xe3EhwK8SxSFbfEi00BMo1mIGVnte6BOiy/+7n2yzYgPd177nJx/7TE9SkV/179j1Y69/9XsLKz5OuLn/VGvxRN+bNXZRnxRcZ/Lcp5CUspLIGuFivdBi9W/uIzGtX+pyjf5Yv9ebFHPkuCOTC4S7ENe+s1b48fEbs34vtP6ee97TP/r7sbQRXIuh7u9fH8elpU3dqg+ra+vvsc7XboyopGqdRJELURNaxRxB1J+0ynZEoroTfEQb2cNVpWM4GDAcVAwHlagmlQVVVVJVJdbYJWFbG4PNVjku2/mA7GFsISRXlffFAMPBmGo44sJDl9m/cInxZJNeLce3He+8/Ra3rn9E1zQ5to45ps6xoxKy2ooUl23PVndNKPupt9SS8bYsTunHS19gkeNY8pzs4wZFzNZuvUKXfF7r3sJJxmiIQQjtxslYIa2UnVCkKHjDkkwY07LPvcV5L7PSX0eC5TPrCXI96U2vXbexWuzyMumnH686KyMJ+UpUfrXRJK3FdkyvDaCe6NWP3XxvL1/e55FHLuAcOZ6IJApSHPLGG29x9+69FQEv5b13vj5IqzgFISX1VAxSyHQMvezvkjiVgBSF6ycS0ctYAlizTOvt2Xpi0YqUdH8ssRoTKxJSxgxY/9zqdz1VZKkMFUImVWVFX21lTKuESpIoTykrnPU8q0yiiymtrCH7e94r7alMVOyntlI5Pru/snkZ5IgEN2VV8uyzn2U02kBpt/x8SpE3XvsW333125RlhRsU2MLSK8H2BWLQKyytlGxlQHqib/FNK2QN4wg+0dQL5oupYCpac/nSZcpygHOGQVnQeiENdl3AWMfuziaXrlzCDSco5YgJmsWct157nd/5vT/g9TfeEmUXrdgYT7CVZTioOHdhn62NCTpJ3HJw55APP7zJ0fF0TXFGrsMYx2g05tKlizx85Qpb2xtYI4q+XdNwcPsO1z68xu3bh5zNZjnmE1LJoHKiFGQL9vb2OH/xAltbm7isjCOrQa+IGwg+MJ/NuX3nNjdvHHDv8IRF3dEFUSMWtWe5rylJ8ZzYmsmxnHNUgwEbm5ucP3+end1dxqNhxsfWR+paoogMHxJBRVL0zKZzbh0ccOfObe7evkPoWrnmFCBpvA80wefirf4dlNDWErrIfNaw6Fqs1YyHA8ElVK9MLoSkpBQ6JXwULKSfSp33GCcKN3hRYu+iJ3ghWIpzpBZCU8xFmUozGpRoBU0TZO3OxFutYTQoxUIsyH0TpS0p9CqsxTlLCIE2RHwKbEzGbI5HzKZzposm36PEbF7TtB2KRFE6+Z4Psg8LScZOUhBTJlQKIUupxHA4IMROsMP+dz5m9V2FNRpnpVAB1StnGVFLjULZjLJYCdnJKApncVWBc4WMgQQ+SDwVfUClmPGIJEUVg1L26yGwaFtaH2ibmq6LWfUp0IaAKco8JsTCtfWRwsoz7jp5LwgpWVE6S+s7wV0REhNaVNZ99LIfRUjW/Tstxii4txElT1A4Y7Nql0GlJM8XKEtRkjbO8PBjV3j+2c9TmgGLuefe3SnXbx5wfHaEoqEsrNh3dz6vlUJUIgVC8HS+E2W9FHJ/pCBYZmHeDwUhWgWFEO+UFFnGFCms4cv/7t/xw9a+L0lpbbu4cWcD1zoe+fYjbN/a5uLbF1FJLNt00t/73QftQfvPrGmtl4SksiyXDh6fRHPOsb29zXg85rHHHuPq1atcuHBh+fumafjqV7/Kt7/9beq6/kTO+aD9hzelFF/4whf4uZ/7OYbD4X2/897zq7/6q7zxxhtSePKg/Sdtu7u7/L2/9/c4d+7cffMyxshXvvIVvv71r/+FnbuqKv7m3/ybPP300//Ba8LR0RFf/vKX+f3f//0H4+ZBe9AetE+sfeIkpauPXZagMYhdjzZKSErZ/sl3kXbhKYuS4bCUoM9HGl/jvc+VQiJfrLIVG311zdLCQAAxm0kxvhMFktSDCCT6EksBnoUA1ROM7gtWlFojKUVSWoHL6+B1X1H7ccWjnmlsrV19Z43gswLURemjT8QuAU6tl1ZzourT05v6Y7EEQUVmHMi2bGQgXchAGVCNK5ITawC7sRqbSSnr1w59MkXIXVobwa7XkxyZ8PM9YF1u/fet7S3rVLbG6FWT1DKRJ2onAjourdg+fsCegJQfp1IabdXys7G3G9M6E2gE8OgTCv1LUpIlK8Wd/hn2FdqhP0Y+n7FarMCsZWM0wBpos90cwKAoBYBoO5qmRmmx63E6YLpAYSuKsmRja4NLly+wvb3F1qYkUQdVSSRRGlGwqAonzz0lUJqqKkkktoYVXitiqqhsSRcXtE2kMwWj0YjRxojN7T10OcyKFYnka1JXE+palHWAEDqR1I5B7OySACNJa9AGaywpBkIMtE2Hs4UkSowAp7FrBZSIfXJOZl6KScA8NElLLSxJ0kix63CFzpVuFqsURglAqK2hCx1WaXQCnxLGOqyGqFIGWApiEPBXG7Oc/ylptIXOJ+rak3wrKipKo1QkqUDSNivEC7Cie+JekLGZTCbO6YTu5xFWyHs5qWGKMov/eAH92o6iKCXxkTzFoCJpg7KFzC0lfaBPkMVISh5tM7GIKUJSytZnlMA+sJnPn60WSJDE4owU6eoFKiVMNaS3ZYtNDXnsaW0wpQOkujnWHmUtqnTgPSm0KNvnKVKeP8VyTiqTk34K5KZpUD24LijoxyufRQEtyPUpIPUV1IYePE5pZQeQUkAlL2SjpHKSINC1LTZbjoSuJfoOax0xKKZnM2IKVK7AWUNSAZ+iEFxLR+hVo1whSROtwViUydZ42oFyGfJX9LYKaqmAJGMhhpaUPGCwbpKvPZJSJIQF77/9Frfe+4CnHn+UnYv7cl+1luvNFdTyyjCSGEGJ6lVoiLM5zGtMacEU+LrhdHrEydE9Tk7n1HWD9w03btzk9N4pk8kArRO+jdw5PkU7x6OXzvHsc09y4fEncJN9khIw9N6tW/zBH/4+L339JQ7unRFiYHtjwqcevcDpnVPUaIuf/snnePrpRzDWcPfOXV5/7S2+/o1v8uZb7zNdtCviqTI4N2Bzc5snn3qSL/70T/DZzz7DxvYYrQ2h7fjwow/4+h98gz/6429y/dYB81mNQ/GFH/00P/L0Y7z26pvcO63ZuXCRpz/7GZ59/nkuXryEK8oM9qfV2AiBZjHn5s2PeO21N/jjb7zMe+9dYzpfCBEmhFzRna03ncFqQ+c9zhUMhyPKwZCdnV0efugKTz/9DE88dZULF/eoygqnV3YbKiWiAh1zckvnZ5YSITQcHR7x9ptv8Pabb3LtvXepT4+p53MOZ1OUS/jpgrlPjMoCpQOLNnB6VHP3ZMasrRkPK7bGBZvjEutctj2INK0naUVhLNFqUtNijGI4GKKtpo2Btgn4pqPuamLyDAZDhoMiqwMYptMFxjhC9LjCMhyVWEAlxWza0HQecl5wY2vCQJwd0IOS0LZMT8/A9gRLjXaOauCwOmEKh3ZDuqaD4Dk4uMdiEehCS9s0GA2bkzERRe07UbVMEQ2Myop62nFyuqBuWjrfMRgVnDu3CTqwu7XD4c17TGct00WdbViEtFWaAq0cWFEOsUoRukgTO4qyoHQlzopdbNt5uqRJyqCVpbAFw9GA0XjIYDjE6JLFosa3NaiWlFqMjgy0YlCIamehFXE+pw2JpESV7bQTlaRkRE3w8HDG6aLBFYrUedoOytJStx0pKaxTzLqWoS1wJE5mDcZphs6ySAGjLXhR0opekrptEFKBTXC2WFBoTVWWBAWFsTitabyohY4GBURPUZZc+vRVnvzU0zShom4htXDn7m2m9QnDwmB14vhkzqJZoBHrvRBqnEvM5guapqV0Gp2iEK6IlEVB18rfrTGYZJguOjrvKTIxp/Ey3waF5YP33v++e7sfdDv3f9gWkkKA0d0xNhkmZ2OGU5GNr44rUg1WOwpn6e2XQhRrFZnzq7V/nZhy3ztOrZR7Yk+MB5bJ8rT2XlT9Z6C3M+s/2f8tpdWfy3ijLzrIf1/vQ8+hSP1xexLM+nfo9+Grn6xzh2BF+lmRhlgSF9THjiX/yNe2VvQgMVNaOhHdR37Kf2qtsrLS939ufxJJSYglaf1mrXe+//LyHPLvbA+X96B6ed8kPuoLUdaf7/0EL1afh+X7uo9x+mfeKxn1JSb9ce5XeFL3xYbLWA4yUWIVZyiV1We1WtqVxqxKIwlXsTYKISwt6pwzGJ0wSezYirJkMBqwubFBNRArhrJwWGdJSRKEReGwS4VbuY8uk+grZ4kKEharLTF5ynLAaGOLCxcusLG1ye7eHsoWqzgzelLwtHXN9Y8+4oMP3if4QExhVdCSskKwUqBFpVEUdyR2N8oQYlw9mzWyz/JxQyYQ5X2n6skrmdyTFY36YhedY/de/SbESDaHEntjrZcqsylltau4Pg7y/UlK4uVMuE0pK4CqlXIK/djun38msPXErrTEEdKK2IQUTZkU5Z4YK8fLBCyxj5RiipiiEHdzPLa8I0siZD43Mqb29nZ45plPZ4u33srNAiNu3rzHW2+9vSLVgRBo8toVvajk6hy3kCAFwS1Ctj3rbeeUkiIQjKjVyb5E5HuXnCIyOSlP1Z7s0z9P+dt6LNH/dtVWJKX19Uy+1z/RFYFnjaTUS+akrHATJdbXSpNyMZTOcVnXenwunLGZJBbzGmGtkBUSoHOBWa+OijE5LlL06khLdki/Uq/fjBQZjQY8/9zzFOUwxxNylV3X8MrLL/L6q68xKgq2djfRRW9brZefW47L5W1SQCT6Flovw8IYUoSua6gXM9qmo247rNFcuXKFqqyyxaP0dzFv8CkxqAounNth69wuxXgTdAFJETrPrZvX+c2v/hbffOkV5k2LM5rNrTFWKRZ1YO/COR66tEc1KGmbluOjE67fOODWwR3mizoXA0p/tRLL3Y2NTS49dImHLl1kvDGWdTwp6nrOrVu3+PCD6xweH1PXDUQYjxxPPHaF+dmUo+MptijZ2t3l/IUL7Ozu4FyR5yYyH/Icjd5T1wvuHR5y8+YBt28fsqhrIU8siwPzGMp2jP0aWRSlFL9UFePRmN2dXfb299jcmlAWTkgg6+8BRLlV5n6/J4CUZO0+OTri8O4djg6PqOdTou9YNA1BRQiBthO1HKNF3bFtAvNFS915tIZB6SidxhV2SdwJIYoistakHuvJaj7GGCJCFEkRvG+JKaK0KO2lbOHX2+SmPNycsxhNLm5KtK3PsF7COCuWgXn+o8C3ndj8aSkw7W3Zy0LWd1dWSxWpelGzWEiBlfcdZDKgzQqCIWVduygFfykkmtpLgVgQi83xeIDSoloa2kCzaGk6ny12pZDSaiPvDNWr6ilUlIIEtMIaKcDTeY0PSdZrkijFW2txhcMVDmMcKSv2o4LMexWxgDUKa428p4PPak8Zo4mRJqsiamvoWs+89iQlin/B90TmiM9KWD7bm4qqqpd9urWyJ1BCWIohLossRXFR3vHee0JMlNYusQ+T9y4+xuXYUiTK8Yhze+cpihFNK3Fls6hZtHMgUjpD03a0TQcqEn3Eh06KbkLIhChRHA8hiA2s1VLs1yvQKy2KuiGiEYwpZHtloxS/+dXf4IetVbMKABUVl96+hG0s+x/ss3t9F4CdGzu4xqGD/v6EpgftQfvPsFlrl6Qk59x/kK3T/1yTfekely5d4vHHH2dnZ2dJrvi4TXZd17zwwgv89m//9jJ2ftB+MO2JJ57g7/7dv4tz7r6fp5R46aWX+PVf//UHRJMfYLtw4QL/+B//YwaDwX0/r+uaf/2v/zWvv/76X9i5y7Lkb/2tv/UfRVTy3vPlL3+Z3/iN36Bpmr+gHj5oD9qD9l9S+8RJSo89doVeBlrnQDclCXTqupNALwopxGqRVg9RvL1jut9mYQm6okT612iMVvgoIYTO0u4x9qSUHupXGciS74maTw8O59bLOqscEEYhYJABrp640gP961ZocVmhKH+G0APc/cYsLvsQooBmqEzcyYClJEpYAtkpxSUxJ2NwACsp+ZQkcZB6cESA8pj6pAdLwg2skgEKtaxeTSmtgq8laLtKqABY6/I5+iSMwIQpA9B9hXAP2KVMbhKAtD9utrvK91BrgXt6so+1Incewqoi+n7LCLlfRottnAARSazhlsQskbN2haipiNd9yuNhlWRaH7X9/ZZnkaumVRA7MlMI8BNi7reisDLeUInCOZy1tHWDTonRYCjJYhWYFIZRUTCZTNjaHHPh/Dl2d/cYDEsGgwnVoBL7QmUFuFbynJ3xqAiDwRjtLJ3vKJwhqYLFImGSRjvNcGuHjb19BuMJysr4SjGgvMfXc1K3QKc8j7yna8WuLKSIDx5NwiRLUoYuRjQC6GotCamm80J2CaJE5b0oYShtCXlChujljkZRhejJTBnPFyluK/Z3zlkKJ3aNRhv5nFN0oRPSks4VxEqUUGIKqCT/zqVpxE6qy8Tmy4JKLGpPXXdYLckPp50o42ixWYgBtHF0bSPYv5bnGWNEWQG1jFaSJI+JlDQhdlTOUJSFVF7HQEw+20/1IHUi6oQbFChrSZkQEUISG8E8t2Set0AD1Gt/ehIG2AZ2kOQCkGzmfnU5GZFJil0DqUWUlpxAsqFBKQvKoo0mRFEu0sqgopUkjdMQPLHrBNBWomijUj62Lkja5TnaJzHEnlGpAiEcyUNWyzme1hKjkBClK1KvApXt+WSGC+kqBFJoiDGIIZ5PqKKkbVt8PaOqLDomUicEOWWF8BTaDlLEWamAbEKL7zyFLXCVE6lxZTHOCQml0EtrDLEKKwSMlJUTsdLLwGNex6QavJNnkkCpAYoqXxcEBb5ruP76G5SpZf//z95/PcuWnOed8C/dMmW238ef7kb7bpiGIQmBEmg0iiA1E6MZhmYUoYtR6Hr+ge+fmZuRLhgKSSEz30iESEIUh6IINIBuNNqjG22PP2f7qlomzXfx5qqqfRrSJ0qAiGGcRCD67L2rlsmVmSvf533e57lyATMqRaLfGqI2qAix7TDGEbUk+o2tpcK7mZPaFpWt4vpW+uHs9JSj41NOTk7xoSMEz/27Dzi4dx9nDONRzZ2D+5w1LXtbUx67eoHN3R2eeuGLTPevkewGikTbHvP6K6/w7d//93x06w5hscAWChMtn9474tLFHb7+9a/wy3/lK1y6tIVvFtz69C4/eOVN/ux7P+TTW3fosxWqNRqNpirG7O1f4AtffJFf+au/zDPPPce0HpFUpF+0/OQnH/Dv//Q/8NoP3+Dg4AHPPned//Gv/ypxfsqNT+/yyd1Dbh3N2dzd5/NffJEXXnyeS5cuUVU1mlyNPyT76fDdCbdvfsJbb/yYV155i3fe+4iDoxPavpU1PiiUTvjoiUnU/aqyxtmCsiypqzGj8YT9i7s8+fQTPP/c8zz95JNsbm3mZKakuExaJRLJpOCsvUAi0jQtB7dvcnD7E959603eePstjo6PuHf7Lj2K0ikm44LD41MePJhz/3jBvO0YVYZpbdnaqJlORgSj6GctXR9oQ2A6nTKPYgFoUqKqCqrSMV/MaSJYV1CYiPct1hZc3tsn+I5792YcnS7og7wHnNEY5yhLzcW9LQ7vn3KciXzKWNCKC5tjjDb0SizOQhM5mDdUoxEFEWVhY1qzO6q5e3TGaRvRJlFvlBzfP+Pu/Rl911EWhqowlMbRdp5534FV2MpSWsvmZJP5ScuDu0cczuY0fcdkUnL54iaTSUEKmqODBScnc7q+IyWIMbA5KaAPBKMhCtguFr2S+HGuEOUPA3UhZGZXSlV9TEKs9SHQ9oEYNcZYjDXU4xEb2xvU4xpnLYTAYjanmc1RfY/uWkaFZ1IZRs6BMXiVKDdqVDHi4GjB3eMTmr4h9KLEabVmPp8zaxaYwhII1NZhkuJ07ilHlu3NMYvoiUnhoqGdt5ydNWIhFztCghItZKEYqatC3snApK7EMiREiqKgsEAI6KpkZ3sPyg1MMcYGw+Jsxsn8hFHpqGtHGxSL+QwbE7PFgkDHqNQ0uWrdWE1lNIt5y9x7qtoRuo7eR3RhGJUli7OORdthleylz5oOH4TEdOPDj/hFbL/5P/76kuzieifkCFIubghLpVWtdHbxSVktY7DSyQdaIw2R9/Q6/3ewchusxJYKSOe/ukYuWiOvrDGUVCZZLP8+bENzAuocMUqt2T7nPdZwrcN+Xb66imlWRBiWP7N2CfmwkpQcyEY5Chhu6LPJl3Ruj7w6EGsELHXu96u+Sau/LXkVQ/yViUaDjdpahw7nG4hMSwLAueOm1XGT7EWGOGzomyGeEJUI1my1H7qVZUy0VmSiWNlPD/2t9dKyOsb0GZLSKqZ42Ap7iD0BJftAsWwZ4jYZa0avSAgmK3sEWQhlv2wUzmlGhaNyjqIsqcqCyWTMqB7hCou1BdbZTOLP8Wa2RtNKlCytLVBGE4OQfBIG7+V5bm5t8JVf+mWmW9tYV6BMTv3HSN80zM9OuX/3Nr7vODg4pFksJBGOxM9DnKeTIikpsBkGncpkAFHF0FkpKVujJUlkiluMJNuHsXQ+aSLjR0HuL7WmgrIq2ElailWW8XEeQ9m8PM+LQZEokUJaHT0r2PgQ8X2UfsuJlRhC5uypTMARq2eVx1nKRUAqjzk1rBspLeNkqzN2sCRFxCWhb6meoxDraC0qRMtYOtu/rYhwgbI0vPTS5xmNCsj7b9HjqFnMIz/60RssFg2rIqJB7TT/HD2rYgSTlxvPSgFJ9u6ZsoNKWVnIKCm8CCGrWYFSg4qSjLsVwWp93iokptBrv1drn1pfX+Pa3/PzWgeBlh8Ti7mBKKaUFoulvkNrIQISJMkeExL/hLg8ljVin+RjQKPEamn5jI2Qzs5Zv7G6x+XUH/ayK8KdGB9FlIpcunSJp59+FmOq9Tul63t++P3v8cn7P2ZjOsaWJdg85gc1uiAKQEKkimJVh4Lgoc8xVx4XMQRR52zaXPTgsc5w/dp16qqGlKjKkq7vmbcN1hg2JiNG45qNrW2m23tg6xw39ZweH/L97/6Ab/3Bv+Xk6BiIFNZyOmtRWnHpwh7XH7/K9u4GRkG7aLh394BPbtzm/sEhXbbmHkiEWhnKsmZnZ4sr169y8fJFxqOxvJ9jZHY24+atW3z66U1OTk4wRvHic08yLS1np2ecni04mjck7djZ2eHCpQtsbW1SFuVyTKnlkIqk2NM0Mw4fHHD79n3u3H3A6dkCHzwh+qycBokV3mSNxRibFTxlXa3qis3NDXb3dtjd3WM6mQhBkjVyc8YN1wbmEkuMMdIsFsxPjpmdHnHz5i3mzZzZ6RmdF+WpqrT44JnPO+aNz7ZriboQJdG6FJVm2dtE+hCw1kFWCNcpobUSVc8YaX0mEClZ/0OMTEZjjFa0Tc980dMHIbnZbA9nrCiWajSzs4aQfB6LgsmOyhI/KNAlRdP2BKUprSERMNawMarpmo65lz61pSiOnp529Fnh2lkjBKtEVqoWpR9FoioriLJfXSwauhBQGibjirq2GKVpu0C78GKpnfFDaxWF1mLpvIbvxLja8yht8v3KO0SwaLtcY0UNKRJyfKi1FC4UVUlRFkKMBYKXoqrBzt2qgLNCMlJaE5WskbYq6frEbNHS+k4wyJDfESGy6DsyRwqlEHXYXvq3rgvQij4KsRcfadtBDVyUz43SJB/xQfpeg/w+Kyb6GEBpsdpOor5VVjW2qEE7jLaEzue4LEiBpFLynDJ22gePtUCM9L0nAUXeQ3Q+5MK2jNkiZDdiou1F1c4aTR8CPsje6N/+wR/yi9b+/v/n7y//Xc0qdHykjvSo/eVsWmvqul6qJg2uGT/LdvXqVf7u3/27jMfjc7+PMXJ2dsbx8TFvv/02i8WCn/zkJ5yenj4iKP0Ft8lkwt/7e3+P/f39c79PKXH//n1+93d/l8PDw7+gq3vUQGLPr371q/zWb/3WZ4hki8WC/+v/+r9+rkSlqqr47d/+bV544QWKovhzfTeEwPvvv8//+X/+n4/G0aP2qD1q/9XtZ05Seua5Z7JsusTyve/xvccHURsYAAOTpXhDjGsJhRVpJsPW2YpBsBxrNIWz9D5lIF/nTY+AUWkps52h+CTS3ULmeQjAjlJNqcyqKjZF+RxJJPoH0tDSBkApUlhV04D8LgyJksHKLYVMcMgqPrCs0lv+vJ6wyL8fPIHXgfP1v6dldWROsAyqR4gMsoC96adsBNWqmkrOIIAX5M/Lr9YVh0Rqn1V/ZrB3OJ7KdgLWOpzTdH2bVS8cEr2rfN64OnHuf/F1H0hLK+B/2dcMiQC9PI5W0h/GGPq+ByV+yqNxTds2hCzd/NmEAsvjyaGH6ricPFFRxpYVSWutDX0QwpxWUJcFhUnUZYGzouZSFIVULxcFm+MxO5MRG9Mp9XTE7vYmezvbGOvQFko3ylLJibqcoJ0jRigKi9GRqirQyhKSwrc9fdeSdIUbb7F7aZ/RxhRbFjnZH4l9Q1gs8IuWEDp838gdZZJMBGbzFuOcWKYp8H2PM5aUNF0vgHOMnkS24TMix51iwCq9qvQuiqUqgfe9gHqSusI4Q991GJUoyhKtNVVRSaVbrj6TZE8kRC+V31oS9DoDVyoZlE6k6FGxAOUFMMOiUgQd6ftICIq2GVRgIkYL7Sd5ICSUEyKUSgL6dr4jpUhhC1SQSumkAmiDsVaAMzQ+kO0wItYIqanvPdY5lJKkgza56lUnolGYwoEykKxUF2fwOKah+LAHThFyUk+iReGAi8Cm2IUBxCKvOS0QhWSkjBBdUCjliT6hkhWbO9WhtMNWJcRI6Hq0dUKYUtLXmgCIyk9KAkam1JN8K8ompkQVIyFMqQQqZmKRzdeY7QZUyvMDVlXbeR4tLd1UXkPknApNSgEwkvzr50LajJHUtVBWxKDQMRB9gwpA70nK0sRAAipByVCpzTZZiq4P1KUFwe9k3rsSXViiXiU/xS7OiGLWML+xDAkbpdJqTSERUiPvqFSjqIkMVh+S8Ovnp3z07luEvmW6NWF3d1s27GUpiYsQQUslt5BcJe+TvMeqQIwehVQiWmvxXcvZ2RmzswWHh4cSsKfEYjbj3p3bdF1HBE5nM8qyZHtrA4Nie3uDZ7/4RS4/+SymmhBVSfINn7z5Fn/0b/+Yt979CUezOYvFnOOTM/oeNqYTnv3iM/zGf/ervPTCs0xcweGDA95570P+9Dvf5/U33+H4dLYkp2oUxpRUoxEXLl/ml375a/zqN77O9evXKFwJJJr5GW+//Rb//k//lJs3bvOVF5/mpRevUTtPjJZ337/D919/m4PjGTt7l3nhi1/ii1/+Ipcu7VMXYvElZ0pADyzwXcvR4Qlvv/kWL3//h7z1zk+4c/eIthN1NB8a2qbDaCtKgMZiTSnvnMJSVRV1XbOxMeXxxx/ji1/6Ek8/+yz7u7uUhZNz5ffOKmG2ejsIP8CTkqeZz7jx6af86Eev88Ybb3Bw9y7z4wf4vmPReO48OOFwNqPre2pr2NqZMB1VpOSxtRBc5/OWvu8pC0fQcO3KRTZLRxNhsWi5d/cu865nNK7ZGpX0vud01lNagzKwmMPpmSgEWVcMeSmKIvK5x68Qu8iDwxP6nBiOMUIMTKoarQy6tNB1eGBrc5v+9IzG95TjilHpuHX/gGQcVgWmlyb4RcenHx9wctQwrisKK4kxW1qUM+gQKMuCed+xubkJwXL3xj1u3D9g0XVsb464fnGT3c0Ri8YDjrv3j0TFrwv4FJiUjtB6YmHxHfTB03QdfYpZXUMR0SidKE0mkmlNWZS4oqBwmTyMgPR9E+j6uCTaFVVJXVdMphuMJlPqqqI0mr5raNoz2tkZYd6Aj9hCs7u/yYX9TYq6wmtL20dCVDw4PCG0M+YnR5zOG/qY6LwXC1yjiMFTTBzjUU0XZL22SnNy1HJ83FAYg/cNfYyMjCN4zzwExlUBwXPaR+qqwkZJWrjKsbkxweqUSfqaPhp8KnAUKDxd7KmKgsJZohNFLd0F5m2LVx2FSaQuiLWGgUIpzs4WnDYNRWUotKZtAsFIMiQ2gXnbo2KgriqarqPpRdHjw3ff4xex/dZv/xbrapuDimaIcbV/zHvlwR5s0ElcEfBXecX17aHJBIhBuWDJ8Bm+D3zW/nlF+F8PiIak6cC3GfbcpIFEpVZAcSbZDEnnh5Pyy2texgir+3g4Lji/2119b6kMNJzj4btYv8+BpLNUPZK+fNgWbuBk/cdITQwElHzogcSl1o4hH1sRvYbrhVXCUBtNCF724FozqFgNa/kqnJDjm4GM9dB1re5rRfoYRpJi9bchXtLGZEsbUW4YbMBWz/zc0ZfXLvHqmnWTXin/DkUiA1XMWoNVokYqBH4oioKyKLCFoy5LaucoywJbFIzqklFdSSJag9EuF7kknC2EYJFEsVirQc1WCPZDTGSLiv1LV9m7sM+1xx+jHo3kuoKn71rmJ6d8/NFHHB8dsFjMlw94eNadDzn5K30XQ8hjWWXVB1m3lwQ/pbJ1ei6IyH1lTFY6y3GBzuQq4YJIQnToI4n1rBCi1lRQyN/X2aJrsPyWU+i8z4uoZJB9texNl+orMZGi2PAMz1FIzUAUYqHKFuBDJ0hiNmaraxD7M9kraqPz0XMMoBRKS+w4qEusFKBBaZsT1rI3EQu2QUlK4pvlGFXgCsOTn7vC5cv7rAoCDCmNmc08b771JvPZDNJQ4BRQ2cpOiGIDoU4UV0QdV/b+SmkpEEiJ5OW9izak5SyV8SxQx7AeBFHaSilbLg9FD8PkyIrLgwLRct6v1pJBLes8qWm9xXPfBUWKYteptBK1WKVAW1KIKIKQN8OqB0KU56Wy8qnWMgq9T3k8CbFNCp6E9JdUgsGai0xQWicsLUlgae2/w99FgeXK5es88/SL0vcq5vtW+L7lB9/9Dh998D5lWVLWMucxRoheMcEyRslrW8yWiORCkUzyGRS2+76j7zratmOxaEgpsbOzw8X9/WyHpel9L9bBdY01sibt7O6wdeEirhqRlKhIdWenvPvm23z73/473v/wQ9pOrGS7XvpxujXl2hNXeezqZaZ1he97jk9OuXHrLjdv3ub0bJ7HFagkSq3aGKq6Zm9/n8ceu87+/h5FIapIMQTOzk759JOPuX3nHuO64rEre4xrDQkWTeDTW/c5PDnF2ILtnV0uXr7M9s4WZeEYDB4zSgh4UvT0Xc/x0TG3bt3m9t37HB+f0XVB5reK9F23fNdprTDKyNpqcnyRVXYmkzEX9vfZu3CB6XQqJNIlP+mzY3Y1WuVZpRiYz+fcv3+PO7fvcHx8gm/m9H1LSjBfdMzbjs57NFAWlrouBfcwGutMJvOHJTG3qAo265qQhGCzmM1o2g5lDFUhCklt5yGpjK1C12aVHKtz/ZdC68RoVDCuKubzVva5aqUi6azJNsUrso4rS2yCtu9AK+paFE3bGEUxuxSS1dlpw9lpi1aKwlpIUkyqrJBWC2vwuciwcCXNvOPk9Iym69FGsTmpmYyybT2GZtHReiHT+JgJoCh8SigtfRSiqDQtCzgZMGYYCGaC52aFJZMLz1LKykUpF63JHkDGQEFRiPKINVkRyXf4viP2vayXCorSMZ3WuMKCsfiYSEnRdj191xG7lrbv5Trz2qeUqGJh5PtKiSWxVprgE4tFP7yQcpGrxqREH0Whz2lF5wNJa0qts80hVGWBtZlknUS1PiSDQohNIclYcsOaozQmRhlnKaC1KBMKSUkUvIIX2+9EonByfSEljNUYBJ9JMQjeB/ReSEx/+G9+n1+09r//7//7X/QlPGqP2s+tDVZuP2vFpPVWVRXPPvsse3t7vPTSS0ynU5RS9H1P0zQcHh7yne98h08//ZTT09OfGns+an8xbTQa8df/+l/nq1/96mdyi3fu3OGf/bN/xr179/4Cr/BRG5pSiq997Wv89m//9spVJrf/FopKSilefPFFvvnNb3LhwoU/1zoyEN7+5b/8l/zwhz9cug09ao/ao/ao/Xnbz5ykdPXaY8uNyVBFmKLIlsckJKWUkkhwWyPy8HGwW8tMGgbVgwyVZeDGaCUg8lDRmS3elpZqaQWJDaHqUjlnDbAeQHGRBE4rBacMQvns/y0M9JV8v1xjzIDsiqSUogDCsinMgfGQxB9AJfnw8uqG7w7Ne79Ublrvv3WAXa9V4g73EHL18KD8tA78DYkIyTtkgC1XYi2hQ51t13LRodZZ+UitKokFoBQSgrUuH3NQZspJhSjS6tYaAZCGsqHcZ7CqELe5Wlkpc65fh8TKueQCArZqteqvJYlLayaTCX3f430vRJu1vooxLK/zXEIkqZxVynQloyhKQ1WWJO8F+FQClheFw8ZIoTUbkzHWGKnqqwvGkyl7uzuMa6mMHE02qGzBuKpxToCvvg+UVUlZFhRFjS4KTEzUlaPzKvNCAiEairJia2eH8fYO5WRjKRetYhCwY3FG9B2p9/SLjkRWTIpegAmfsNahjEargj72GKPp216S6cYQcm6460XhJQQwhQDnJoOHMg6FAKhTygo2SoDPJKC+1gaVItpAWVdo43BGErLGatCKLlsKKKWoqhJtFMZaqUYOkdB7IawlRegVxnmpkKMEPCEFZmczgpdrJ4mVn3WWQMJ3CZW0qNxomc9d3wnxKor6lcrPNyHqQpLUSfQhYYsRRUpAh1ZJwOpMZIpKKtLkd1mNzEnVm1gdFMTUE2KDsVkdS7XAHFigaIGelDSoXRQ7pFiAFrWg5E1OkHlJVGhD8pHYt6ioMAaR1+6j2JvZiNaWFDshLyRDVAiQaDNYryLR95IIyQkwUiB56RNtC0xZE8nzWw3JAAsIY38Foq2qqyXBJrZuMQ0pH09Kfa5sN5AUKXYkpXOFo6ggmdijoxciXA8qRKn28x6tNV1IzPue0HvGVYW2yBhSStQAULkiPRNZlRIgsSqJCAHOaAG2tbM5yaKF8KX0ErCMURSldE6oRDqZX0HITNpUrJIQkKIQcz5483WOD+/zzFPX2dicomtJDBK0EFwzeIoGrR0qSj9I1achhE6SPSEQup5u3nN2dsqDw0NOz+ak2NE0Cz75+AZ975k3HTEpRqOalALTUcne7iZPvvAEjz37LGa0J2mYxSl3P/2YP3v5Db7zH97gzsExJ2enzBYNIUbK0YTHHn+C3/y1X+EbX3+Jnb0tZmcz7ty8xdtvv8P3v/8G7/3kBqeLBaL+oFEYjCmZTjd44snH+cavfp2XvvZl9vcuyJoQA2cnR/zwlVd57dVXaPsFL33pczx9cY+TBw+Yk7h7vODdH9/g7t2W/YuX+fxLz/PCF57jwv5FITEqld0FIigPqSf4OcdHh7z+2rv86X/4Ae/8+CccnpzRLBradj7wEARUNTm5kBMKhZO1tapLxuMNLl+9zovPv8CLLzzPlSuXGI3qpYXP+UBLEp7nk/VSVXp8dMInH/6EN374Cq+//iY3btzhzp17zBYnGJMoC0s5qtBJkloTW+B1YOGFzNk1LW40YjIeobqOelJSWMvhwQnH84ZkFKO6oFCiIFY4Q7KaUokKXGEVTdPQtZKMK0YFG9MNpqOaxbxh1vbEXpJPTRfY3pjg255OJSqrcVYxqSrOjuZ0KTGajojA0XxB43t2Jo7J3piz4zMe3DnBN5HCFcQQsa6g3ixJPiBOFYHpZMxka5M+KB7cOuLHH37KvJlzeW+bxy5ssTGtaLqeWhvuPjghVQUnxzN0YZkdn9A2LVhDDJrGe5RV1LXDas1iISQwHwLOiGpFSmCszUR2WY8La3BGEhSkNdtXpWm8EK0jCmMdRVUynoyZbowYVTUKAdf7rqPvO4RICkXhKMsKpTRN1zCuNJNSo1WiXTTMFw2zRct83rDoG3odqcsaoiIqefedni44PBGSkiHR+SgAYQq0PlIUFp0Scx9wrqAymqbviCR2dzbRSizbnKvpmsCs6bHaYguLJ1LYCkOkVxpnDQ5F1/coJclZg2E2b0gkSmtoFi2zpkVZxagqaRcdTeipRwU2KmaLluA9oywl3fSiCvXBu+/zi9j++n/3N5akiUGBYyAirav2DHv0NCQJM7mENOx1l8HBsi2T1ZBtoQZ1ojWS0tDSer56xdRZrSlZiWMg0gzXRt7/5usbyElLNaCBpKTy9WXSy5KYpVZmR+v3un5tDxOUzqkD/RSS0upvq8+v9tYrMtLwmbUuWeuVnwJaLXlEma6TVkqwPHTFQyJ+VZSw+pvst1bxwPmoaUVuGnp4IKextsY/XOhxbu1fEqc+24qyIGR1hkFpaeiHVVx2vh8fboPqrx3sxvI7ZlBssApK66irCmctVV1hnaUoCka1xA5ojSsKrM7FE2awj4tyDGMwRhTidAJntXA+M4HJ2pLJdIOr165x8fIVNrZ3MskooVLk5PCId999m9OTY2Ivyf2Uophs5WBQno/J49WIFWtWFiLFbIsutBpZt4e4TBSUNcMzllg1pZSH+fqzyraAS0UahXUGpYTEJRY/MrDCoJCrVkSmoeCBnHAeyFMpgtKDcorExYlI13VLKyQh4CQhPKWhWEdlkpIkfUIQAgwp5fha1JnFAm1FYglRSFg6AQSxRFayd12uS5D7M49ebTPPQhSNZN3yOX7TXLq8z/VrF6lrh1JSDCBrVM2tm0f85Ccf470UOZCVgVMcVJ6EFDAo9AzrUozyTJNOy5ieJPujlIlSQ9wp/ZP7SmUlJeSYaVD7MeskpeWMXOENw7Nem7cs5/P6z1JMIt2Zj5Hi8jxS8BJQMaIzYScmsSBSGWdSDPZHSZRBtFliDSvnyAHLWLPGQyzfVMYM1GAfL6xAUrYWP7cGgYzN5e1IfxnjeOH5z7O3f4GVMq20rm35s3////DRT95nMqmZTsYSuxqdC7sSg/51jEHUX6JCEZdzT95j+dmESOgDoQ/Mmzlt2+NDz6iueOyxxzHGLAkTZSnFBkYr6sqxsTVl58IexWiDpDQ6ebrZGbfv3OMHP3iDP/uz73P3/j3aridku696NOHqlYt87omrbG9vkkgszmYcHR9x6+Zd7t47ZLZolorbuZwJ6xzjyZjLly9x9fpVtra2sVasEIP3HB0ccPPGDU5OT9jcGnN5bxMVIk3b0CXF4fEZh4cLtCnZ3dvm4uULbG5uigqnWlNLHQpqosd7sab7+JPb3Llzj9PZHO8Dfd/mtWD1Xhj+L8RSg7FCaCmcpR5NRM3pwgW2tzYpq3K5nj0cTyzffQnUkqybpBjh5JTD+/e4fesWR0cnnJ7NaNoFMcm+V1sZqzFGnLFohdgtxyjqbihcVZD1gCjLgq7tWbTdkjTijEGlvOaYPGbjoB6b6DtPTEneH85SlxUpRVEpDWKn5mPEaENhDK0PGKMwSorqYheypbHGOkfb97TeU1hNWctaNj9raBdSFDcUu7mqkLUdKfLUWlGPRqA1fRt4cHDMfNHgrGZnY0Jd2YwRG7pFS6cUIZN8og/0bZd5yxofZGU1VpSEvI/y/7Ca8zGviVrp5X/lWWdlvjQ8O/l8SCqTnjL2aA3OOYrSUeTkf4rZSi4MKnX5/Z7JUD4XOFRWCnJD8Hjv6ftA1/f44IUYZCxGmayeJu+4xaIX/CBbmqLEXi3GQFIKpzV9EHyqMCbbrAWJZwpH70WJSWNouqwSa8UeUGsjOJ8Mfmy2IR0Kb43W+N7LmNJi6dr1PTElnLOkkLKtnlhY930gZEtNY4SAFiP8/rf+Db9o7RFJ6VH7y9aslbjBOfdzISYZYxiNRuzu7vLss8/y5JNPsr+/f06Z6caNG/zBH/wBt2/fFlW2vv+Znf9R+69vSim+8pWv8I1vfIOdnZ1zzy6lxPe//33+8A//kKZp/gKv8lF7uBVFwd/+23+bZ5999jN/WywW/O7v/i6ffPLJz/UadnZ2+Dt/5+9w8eLFP/d3+77nxz/+Mf/iX/yLn/t1PmqP2qP2l7P955KU7H/uAfu+P08IIYNTQ9CeW4gRPOLBnqSaRaEzYWglp70CviQo9GFQrsjqHkvAmOW5BoDdDJXErFSOBqB3sAoQIGFV7au1kB66fqhGVJmY9NkK6vXNoNIDvKQz2JQvbTj/0Bfn7kiuN4TwmWTCCoBN536OmZClM5in1cMqUWl53edAYK2XSknyzQxdLCvFJZAdxJpElj5LOSwTPXppnZcYkhGRmKX0tTKopCkKRwh+2fdDAsEag87AYQiegRQw2LWd68818GgF/Ki1fhBy1WKxEDAupnP9NTQBPs+DhfJ8VE52J7GLSaI4ZFJic1QxrUqslcrcojCURUn0ibKqKUcjxtMJ9WgKpiZg2RqP2d7ZwllLYSwqic2fM5rRpKYsa2xR0kUoiIQ+ctZCsgU7O1tc3LvAeGMDVzoZHCGQFgtC07NYnBH9HK1Slg1XBHxO0ir6DDwlElGLxDYKklf0YWXT4DtRG/PZKiwSUUYRfS8Wfs5mm4pcNR1FXSb4iHMFKoFzhpg8KgWKQpSsgkq5L+V8krlQSwDIaoPRDm1tnnBxaTcXYyB5RdO16CBVxEopIS7GiO+EwBiIoCK2MMSk8D6J2kieYyEEysIRvSZmKf0QAniPVQXa6ly8G1BJVDBMSqBknsekiUGSPckkQki4qpSxmauOZVabDGgJQScplxMpPUJQOgMCoqKkUOwCW8SkgJAVsaTKO4FYhgWx/VPKoG2N73tRfhomY/DyX2PwHZjCiV0eCRU9NH6ZRBDwzONKK3PXy/hXzi5NCpTSqAzmDqpKSsWcKE35+tZBX5VVowR0HkDY4Hu0y+NVJTlezGQdEk7r7OYQwbckDzGI3Z73rSSHlKYeOTQFsQv0fZD5mNcCrRXKOnSMYo0C+KaTqnaVhITXtKQYMMHi6pEkY8jJp1zVrVSWQg89kYixDpLC+7kAdMqg9Ej6hUTUmnI0YWN7kzu3PuXOnXsYCxvjHVLXQQeJiCmFPOdDoqyd5GaSlbGsReEp+p7oE8aUaO2xRrOzs0NZ1RwfH6NMwZNPFdy7e4ezT+8wm3f0PuAKjbYaf3BE98bbhG7G9SefotraJpYl+597kt+6cJXNyRbf+rd/Qtc3dO0CH3u6xYKbH3zCj3e3sPQ89cKzPP74Yzzx5DUuXtzkmSef4Lsvv8nLr7zB7Xv38T5bl/YNx0c9b70548aNm/zozbf5a3/tV3n+hefYnG6xsbnHX/u1X+OFF1/kB6++yg9f+xE//tFN9jdrvvZXX+Jrv3aVbxyd8cYP3uP7L7/Jn/z+H/LW62/z7Odf4NkXnuHy5YuMyhEaI0pqyqFdydaO46tfKXns+lVu3r7Fq6++yWs/eou79w5YNJ1UbKpAoqf3YrEaQsiJh562FTLJ8ckxn378Ed97+bt87skneea5Z3n6qafY3d3COSdDdZgHKebkqCR/FEL429u7wO7eLi9+6Ut889Yd3nv3XV77wSt8+tEHtLMTFB3zxRmLpqdRCu0sNkVML6pd1liCj8Q+YbTDOkl8lFWFa6Wq23cJpTxlrdDWYquCraqm7w2bkwnHZzOaRYdxAvy2TYczkFTEmUQXpVK2Kixd31GVUo3vI6gghMuWiAfaxYJF3+Ksw5YFfes5uD+nWwSsqShGMv9DVBSFZmdUc3a44LjvKCYFVmuUT2hlKIqSwpUs2o5E4my2YNEuSEaRqpJOI8pAgO86ooLR1oToA6EH4zTKGQonJPCEQluH9wGtoet6Ua6IER/Ekkf1nlZrrNZYDU5FCickAGfBlZroE6FPdL5hcbJgfnbKvVtCdqpHNdPphPFoxMbGCONqYlIE7+najpPTE45nJxQWJpVlPHKMS8uoKKiiYlNZfKrpUkfUmqaPzBtP33hMMDjtxFzSGNquofEdtRXlwt5HRrWj0AplQFuDiWLz1DQdKiXaxmdiIyTf06seZ0sIkab1OKdJWpZ5r5WsfTkxkV116XuxjUpKxCCGhLuRbBd901NWlVRHAz54CmexWtH5h9g7v0BtsPEFVknllD7DkRlUAHROKsv7a7CkXd3fimKjVsQElYkTa92w4uQMjJ2831dK9se5IIFh374MQFhe63AmY4wQvSUQEALI8NE14svwlfX0/RoFSj43EPcfvk5W17K+B344plj/96CAc+6eHyIUpc8MDfXQfS+7BBj0aqSZTCBJy3Ov+kiOm5WMzpHCVrbQgwqJycnbdbrW8PdlPBAHRZ90rg/W46p1UsJ6TLb+vb73Wb3ppxOQ1sln5/8uxG+tWJKmY04QV0VBXRS4wmKMkA1tJutba7HZ2s06seNNKMqioK6rXEij87tKLNacc6LUagwhgcl9Np5us3vhIpcvX2C6sclkuiFxgUqi1NJ7urbl+OiQn7z/LsfHR4TB1o6Yd6SKgCgzpSjEFa1WCsUxrPo35v36UkWJlIkyOZZbJkyGeSPFH8HLvk0xFMzIu9gYLXjAcnwisWUa5ocMNK207B9yP0s8sa4YpLICyXIyLolXcjyFsIkGglImGel1u/WU9/eKZEQRK2XimlGDTdswmMkKsytyQgQhDGRSVUpJlE8zYW2Y7Eu6XBpic7mnre0Nnnn6CbTOVl/D00k1i0Xkww8/ovdd/n4mYSW1jNvIKj7K2Gxhni33Uso29SkTmch2ZwN3KoIPmWQkKkpJRVFiQWV1x0xCWm2mWMUL+ZcZ8zm/kK2jH2r9D8s+kF+tbKcllpKZb9as8lKU+GhQhyKGlWGdNVTWQRScSZZtk9WRJQ402so4TZko6oM8ZyVEihgjBIkdB+tCNZDtVk9tFaOhQBl83/P++28zmY6pqo18fzJPbFny4ue/wJ2bN5jPFlijGbvx8jZTCNmWXMgBSSdRQ04qYxgZg4qK6MXqW+tEUF6U2Kxj0TQ0bc+DgwMev36NRdMRQqBpRJ3WOcui6wmHx6TYs73bUk0mJFPgxhOuPTFiMt5kOp3yrd//Q27fviP4Ugw08zkH9x4wrhxt27Czt8d4Y0JVO7Y2puzuHPLJp3d4cHSE99liOwX6LnJy7JnPF9x7cMD169e4fPkSk8kEYwv29i+wubXF/QcPuHnzJu/95A61s+zubXL9sYtcU4mDeyfcunGP+7dvcfjggK29XfYu7AlxqChljUrZYlBbjDNs7xiqsuLa1Yvcu/+AW7fucnR8Qtd5UXXPY3awm0+ZxCfqZ0K+aLue2eyMu3fvsrGxwc7uLrs7O0w3pmJ7f+4VsXrPLGe2gqIw7O5W7OzucPWxxzk8POLu7dsc3L9Hs1igkieEnt57OqVQxqCJYonOSiEbLxhAdpvHOisxR5QYPRCzvZkQLUtnUTGvtVqxWHSy5llD38n5tE5oLQtsCMO7K5FUwhqJinwMFEoTlSgWqZRomoXcmxEScdv0JDQxKHk/aZmTSkHpDHgthHitKJzN2JJBK401DqW7JY4zn3vQCmdlXfJ5vxSjYFm6EPui4IfrEmGgpaqe0miTluOPkPL6GImBrJqs8EowKp37zeiBVAo2QQqISlPnafqOZp73I85SFE7+bx3GirpyjGLF2Lae+WJBIrKwch+F01ilqayY0EdrCUkUkIK8mvH9gO0K9mq04LF9iGgna0yMkIzCWC1jQsv7cCB1973P9qxgxV9R1pIo4yj0QnSSArBEzM9cMSgcyrsphYiP8n5e7jWHn6PE3ynbbMYoa6hRZMvk1Z7yUXvUHrWfXVNK1teyLCmKYpnT+lkrJj355JM899xzPPHEE1RVxXQ6XZ5/aE3TcOfOHb797W/z8ccf/0zP/6j97NoTTzzB3/ybf3Pp1LLe7t+/zx//8R8/Iij9Arau6/j2t7/N5cuXl/NvaHVd8zf+xt/gn/yTf8Lp6enP7RoODg74oz/6I/6H/+F/YDKZ/Lm+65zjhRdeYH9/n//j//g/HhGVHrVH7VH7ubX/bCWlvQsXVl9aJ5jk38W4ApC1EtsoAaYlKOu9z6SXdfB+SCJKwG2MEZ/1LJM+AOADuD148C6l/DN4N6giDcSg4RrkPAPIJv/2YWX5tg5yC6guoOESAE86E4WyhL0aYKxMrlpW6qzA+PUtpTErRaGH20DGWicpZd1mskHC8n7sEjQZLAzWlJd0Wl6HzlLsQ0V6DF6qQLUR33ulswL90B8qg8BZySr6jLOafB4JrE0moYxGFb7vBAhKae3aWVoBStWoXMNw7ysFpIeSDLAknAFLMtK6Nd/DVdMxhqykxLK3B4BYJbC6YFQZxmORQu5bIceNq4LdzSmbG2PKUcHG5gajUUldi02WK2rq0RRXlpSjGmsNk6JkUjmcFQDDlhWzeYdVhqowkgzM1dCzNpBCh7Njti9dY7y1JyQNq0W9xnf4fkE7P8PPF4QIvfcQvCSSQ4/GCYChIolBpj5bHCQjql4G2kUQ6WbV07UtSkmlWVE4BmWzrvMopFLOGrcccwKOirx2oshjKOCspnAOawR8Mc6RtCTiUpBkurFWbHqUWmHTxhKN2CVI5VVkab6RDE2ucIwBvA9EIlZFutaDkoqtCBirCTGhk8ybqJJUImqp7gt9Bp5jyFXSOdmRPNoKiFwYi1YOW4xEaT+2kJWTiqLGFg4fPKYoMrEpglYkZVHKEqMoWWgtZBqle1BzhKTUIQQljWIT2INc/xhjzlF6AY5wFkJP7OYyL12VzSk0oVuIYlEAZQyBgHGFJEBixCib7SmGZMoKGAqxxxQloOX4UYA9qbBWJGVywqbNNh4FKLtMJKh8vaukwkDkkLVUqqs9IbRi4ZGTO8RG0gkhEfsuA7+eFHoIUo0bowKfaOYN2ilcVWGd4+zkFGKiHo/ymqhzFTgCjOZEk8qKV1hDSAHjLH2zkMS90ShnETLlsIY5YlIYbYihF0KeMWhBYIlZ6SjhUGackzM5EZEC/fyYs6MDDm7foTCeS9cvo7F436OMgLHaGXzICQUVSVFIYEt1h6To5g3OOIgLmnlDHwKzxZzDo7kEGWmBioGPP73DJzdu0/uesq5EUYnEZFRx6cIG1y/tc/nx60wvX0ObEUlrQtfw43ff4d/8q2/zxg/f5/7JKT7bqn7uiSv8lV96ico4rjz2GM9+4Xk2Nyqa+YwH9w557/2P+c53X+VHb77P2dmJAJUoQpTk13g84sqVq3zpy1/iG3/1G3zuiSeoygpNwoc5d27e59Xv/5Af/eiHTDcdv/6bX+eZp5+kcIn79x7w+g/f5/svv8XhacPW5Qt86Utf5MUXX2B/f4/SuVwJnYj9nJsffcR0e5vx1pjTkxM++vADXvn+a/zglTe5eesuTdviQ5DKUb+yJlVKCLbWGqzTFK6kKCqqasR0usnlK1d49rmneP6FF7h06RLjUS0gesok3LW39TqdQV6ziZg8zfyMWzdu8cYPX+Puh+9w9uAeRwfH3DqbE0qDDR1nZ2dUzqK857hv2NjZZLo1QWvHwYMTjo9mnJyeUleOqrQC9veeoirZ2pgwLmtOTs4oCsvGuMSHRB8Td+8f0nWe7a0J1agg9h1n8x7vI5ZEUopJYSmKiqaVceespvE9noBTUg1tC0tE1IuaGGmaRlwfUaQkFqdlUbBRFDRdJChDOSnQKVJVE8pyxOmDOT/++BZHp0dMx5q96ZiishhbMHaOB0enRKWYzRtJoKXI5s4UG2Ut67oeVYilki0tbe/xnSQbfbbr6HtP13uskf2EDyETGRJiXiCWBdY6US1xCYPGIha0SUPK1gmtT/LuQawINAZXFpRlRT0aURcVnfckDePRCK0STd/QLmbEZgFth4mR0iWmI8tke0Q1nRJ6z2K+YB4SJ22gWSyIPRyeLvCxo3aa+SLho2c8dvgQaINnVI/wrWfRdoyrCgU0XQ9a7DHaticRmdQloQ+0PuFKS1Fo2kxWnVY1Wluxv0ShlWU2b2l9j0uBftHSxUhZFeiUlupqG+MK3wdmbYe1hlFV4EOk84r33n73s5vPX4D267/+G6sfZBO9JMTA+s/yG7FmHlR0dN4HDgdYJcgHdYFz+2pWa8FAVFCQCUmDGshwMjVwl5afXbsqzhN9krj5qIHwsSJPrO4hLflBg57GwGVQP+3I/4lwbF35dTj/w/9eKZWuYq0hohhIKP+xmGR5OctjreysyHGQ2EEPVmisixQOvA55XmZQkFk9lYEgNJzfWpP38qtihWVstSy8OF8Es4oF5DIfVj36aQpLw7kfLnZYxbGrwpXz4bAQOGVvnBN+QcbiqCqZjGqqusA5S1mWWGfFFhslCqSuQFub1eNkHSiMQZtcXGOsWK6hlpZNg/1aHxKkyIX9S7z0tV9mNNnAFqKGS1IE3xNDx+HBA+7dus3BwRFnszNiXkuWtmsDAYQlW0X+nfTS+tr7mNWMohShIIlZYwYFsyT2b5AVD/VqHmVynh6IOABKkpzGmKzOqkTlJ8eBpCTkVaWXKsPCUUmgheA+jAG9poxLUqIuC5moMiT7h7g/WzyCFBfFPPOVYqkqqcQKclDCWs6JPCETcWlRJ0legzYWpXNiPF+LzlhESkkUc9RqLKZBcWjAE7IK1GRa8+KLzzAaOYSkEzIxpmI+gzfefJvZbLYaftmqSEhbQfbbgDI2zytNin1eqIYYIIpd29qcGmoUpJtX65nY62UbuBzvy72oYfTLipWkWEItrd6GppdzVCb/MvLL00cITSn6/AwG1aKhUEORQhgmKFmKd3luEoReLOiME+u2GAN9K0q9S0LpObJqWq51KpMTIimPh0F9BsiqwjIvMrFrqawk2ImCbNuXry8GtrZ3ePHzL+GKKr8j8v1Hz/3bt/jB97/P7OSIyXSEKyo5Tlb5NVawkoRw4QR7yWqy+TmHXuykVYrE6PF9IKRA03Q0bU8IHdNxxeNPPEnfR7q+R2uFKwqUygoJtWM6rtncnFJvbqFdvVww57Mz3nzjLf7lP/u/+eTGbXwUvKYsLI9dv8K4riiLkt1LF9iYjknJ0yxaTk5m3L59lxs373I2m8u6nUdSTILN1fWInd0drj92nYsXLlBW1VKdt2s77t99wM0bN2jbBVeu7XP58iWq2uG7jsODEz795A7Hx3NU4djd2+XixYtsbm5QuGL1vkyRZnZK7z3jjQkhBs5OT7l39x43btzh4OCYtuuWBYhxOQ/yW1ApsdAc1idtxWbaOUajMdvbW+zv77O5tUVVFUtyz5KZtDYDVm/XtPxN8J7FfM7BgwMO7t2mn5/RzObMu54miaV96HtRxdWaRddiSkdZi5VP2/S0Tc98Ibblzsl7wWe7+LIsqIpClC18YFxLUU5Iia73zBeNENucwRpF1/bCTcxz1GhNYS1BhnNWK4z4/C4QgqlGmaxelBV2Yl7/lVq9m+vCEUMkoiHjRilBWdZEnzg6nnE6m4GOjEtRsEIJUbdvOrqURCU9E41MYSmdI/a5oGiAKPJ7oe9X5MOQrykE2QSuCD2r9U3nZ260vGOUkXVepzVlxvxf7yXeEqvIlLFJUXu11mXimqIPomxktCbEgPcd0XvI1nVaQWGhKC1FLSQn3/f0IdJF6HpRdO/7SNv3WAspKnofsFaIVH0IaGMwaLHsA5y1hBAIWck5BukDazUm438ohXOy3oUYcdZitahWCxFJimzEBhCS74XMrBTWitJSHyLO6qxe7okJCpfV0SL83r/+Fr9o7ZGS0qP2/8Y2EJOqqhIC6LAX/jk0rTXPPvssf+tv/S3qrLYMLHNMMUZu3rzJO++8wwcffMCDBw8e2Tn9ArcLFy7wv/6v/yu7u7vnY90kllz/+B//40cWb7/g7YknnuB/+V/+F8bj8bnfp5T45JNP+Kf/9J9ycnLyc72Gvb09fud3fodLly79p3Ghn9KGsfaIqPSoPWqP2p+3/czt3vYvXFiCnQICfRYkX/0s0umuWBFtQljJ9Iv9W5aNzri0MQozkAMG8FIn+r4neKkmtHa1iMa4Sl4IYWGt2jitbMPIJKUBtAiRHJSt2Mcr2Xqxe1veRxIwNpJQMSFy72aJiaWsrLTcIqgh9a+xubryp9kyPNxfojyAVH7lg+mcmFtXexpA0SHvopSAbzFFsWJbey6DHL9UKyMAHAp0TpooeQYhxOVmWUhKS2QAo8C5Auscfd+jtcY5LdU2y+cqiYvBEg9yMLxmEyDXPwBynHs26zKmQ1+pfJ8DgWn93ruuW/bboKIVglg+2STVzdNxwcXdDaZ1LeBfUVAUBbs7m0w3phRlyWQ6ZVyV1HVFSKCNpS5LUYUyDh81VVGRfEddaiaTGlOU9INSSJKEK2hG0xE9louXLzPd2MS6Mo8Rj2/ndPOWbr6g72bLZxwjUvkaFU3XgAZnyjwnEkplYpoWiWvfye9DkGRvzJWkYaimRWwJUkx0nWc26xiPK6rarNTFMsBh8jxK0WKswthIYQ1GOcoyJ/SUExs1xJYuaamMK6wlZbs3tGLRtiQUzpWkpAhB7CVECjvSei/kpSSgMjaiiHRNh3VOqtqCXLMpHDoJKSQCKgiIHklSlqYVxho0KZMREn1KuZ5VKr4KV4NyiG2OxziFVgZblKv5ZCymdFl6X6T/SQZiIKVeKrWNB7UAGpTySEIBYBOVdgAryZQEvvM4a4nek1JA2YLoZUzGEDDOZYxYoVTE95HowSiDMVHANhLGiSIZuU9EzlyIhsRIImTAW8u1ao0qCpSG6ANokSQfkgBKG1nDMiqulEWqs4V0IzeUkympJxGWCQ+RKM90SSME0xQDqVsIyOcsse9JXScks7IkdZHFvCOEjqquMAp879FWY50hIut77BfoGGkaT1GXGCNkU2U0IUVM4QRw7PqsrGTwRGyRJdk1iM6AydWJsviK2oiBFIhdJ+u6DiQsStcklUl5REk4Rc/84B63Pnqfnd1tRvUIW1h04Yi99LXvu0xc03RNj3NitaBNIaBl2xL6bpmImc8XgCTQDo+OaOcnkALztuPe/QNu3rrDydkZVS22YikpppsFT12/yO7WCDuasnf5Clv7+5i6JMXIyeGcP/mjl/mTP3mZm3fvcTpvCSFwbX+PX//6L7O5PUWPRjz7wotcvrIPqeX4wX3u3z3ktTfe4Tvfe5WPPr5F0/ksZR/EGsDWjEZTHnv8MX7l67/MV3/pK1y+fJnSOUkQ+QUffvQTvvsfvsuNT2/y2OPX+OovfZ4nnriA1Yo7N+7xyvd+xKuvvcXpzHPh6nU+/8XP89wLz3Lp4iVKZ1AhSR+6QsYgnuRbDg/ucfP2Dd544x1eeeVtPv74Fqez+XJtG0iyEDE2y+0rjbUW56TarKxqRqMxW9s7fO6pp/j8Fz7Pk088xvbmBtaZ4ZUs770he05ce8cN73uFD5HZyX0++slbfPD6O7z+4w+5vzglHR2xOD3BIhX4c51wk4qtCztslSM++fAWtw9PODw5pqosRWEwSREXAWUVFzcqYoSFV1AX7O1tUTjL8cmMk5MZmkhdOZyzRJ/wPhNCtRIyjwJnNNZYuhBpuw7rND54WXeNpQkdqe/RxmKLEh96Tk5OZY1KYvcpiSyHLTUb1Yjj4zleazZ3NpmOpxzfPeO9j29zdPqA/d0RFzenVIWsi4ezhjZECpOYLzpK65j7nnJaMNGFkI98oBhVEHqKuiQpw9G9Y5p5S+M7YpIKIu9z0tGYpZy5VgrfCpFpUM0xRhL3NpPdjMmWSoUjGSHtprwRDL3H94mFhz7vH1TKqilGMxqPmUwmjCc1VV1itaHvOuZnc7rZnNTPUDowKh2VhrJ2THan1BsbOFcSKDg8WdCeHrM4PeDopOX4bI7WkRQiJ01HUTqMEhsGYzSltcybFh8j47qgawOByMa4hBCY+4BxhtIo2UdozcZ4hDIlfQBtDJN6yulZy9HslFpDkQJHZzP60FNozbzp6XxgVEqiYuZlnRqXQkZtg+bHb/78/O3/a5qQlJaTcpmnJv90nrAj7yNjBpWkYV/5MLFkVR0u9h/DXiYrkZBtnXMSSogJKpNrMvkAlVWs1DKOGC5tnfYynH9JylkHeJag4Xn1I9ZISnLSgWBzzvjtp7QVsec/Fk9Id632xfKvgcU1xFpDkcN5Es/6zS2JDOn81awr2crPK7KQ/EMOkvJeUxuxchrOPxBZtNFobSTpqYckKQyKWUIg08vnBUPcsPYsUlqed+iKoehhSUo5131qGWsMn10valnvt6EQAkCnhDOGojBMxzXjusYam4lHhrquKItCyPtlQZGVlCIy9qy1S6JQRGGzyouziqKQ/XUcCnKyBZBWhsnmhMnGNo8//jiXLl/BDcqiRLq24e6t23z00Ue0zYymaVZjMQ/IEHxWlRGbIIkVBwKRJHJjzASwuIqNhauScp/n7yTwIdB3AVfYZQyehKW0jL2lP+W+lZbYTQpcMgEpq/QMyXKZ05IMXQbzSknhRk4sJyRGWqqOZDWUmCIq5bhRy95/sGVPkVXRTFYDWZL2IstxNcTUg7KTziSjmNeCgRRhtFtdt4rLgiixd8ukNy0qKUvS1gBqxJhJT7CxMeb5F56mHrncB8PcKJnPE2+88Razmewdl/Z2w3PJhSIDQV5pg8rxO+T1MOMawtFeKY4OBLCUVTGUGuz85Bok1laQolg6D6pDMWZiUi5iEBZNnnQDY+R8Ui2xuibZZ8Xzn89xr9as1tboxYItr8XR9/IArYzd0IuqprF6SXAbCD9iY2dk752E4I7KytGwUsEeFIhFGkTWn/z79eeVWI15Bixiec8hW8XB4088weOPP4XSdqBEMaz1Rw/u8af/7o9IKVCWpRBhMjlpqdqVZByFJfFDiG1aG1IMxCCFWDrPh5Stobquo20biB5tLPsXLrK1vcNsPs82V0LMM04zHVdsb4xEeWc0YTyZYsoCFAQf+fjDG/ybb/0hr7/xFqfzBd4HCmu5dukieztbRKOYbmyxs7uDddC1De2s4eDomE9v3Obe/QOatiMhVvJSLGgxRsg+Fy9d4Nr1a+zs7GR7dkhEmsWMmzdvcu/OfYw1XLlykb39TcrC0rU99+8ecOPmLU5O5rhyxO7eLvsX99nc3KIsnMBWMcjzyUoxpEDftcxmpxwcHHLr1j0ePBCrsTAQ4Zfvj0xey3tihVhMD4WL1hWUGR/a399nb2+XyXiEsWa5u/jsOzquzYm8N0AR+o6z00MO793j/t0DDpsFsW2JbUOMHpOgSwHlLLZyTMdjmlnD8emcRdMSCRQuE2yCqEDXpcUZhY+itD0a1xTOEkJkvmiJQQrOtNGisBNEMTulKJhqvn4hoMreU5vzBOaYEjGPd2OlwK3rpDhxmB8DIU5pKMuC0Hn6mDCFY1TXxH4gKZ2hdWR7OsJoKUJo+iDkXC2qp5kBSjBQF47kpQgCxCI0BE9ZVSzmLX3bL4sbYpR3ZsqkKa11LuiUfUjw6+92WecH0pnOe0JtpPBpQHIH/FhIQNBnBaIVxV1UXIuipCgcthAiUEoJnwsxku9IKWCNoshFtEXtcFWVsSBD2ye6tiF2DW3bMW99nvPQeSncc1mpM8YkSuc+0oeItXI9PkSs0zit6H0k5lgxZbKWcw5rpIAlxEhZVqQA81YUqkut6PueznspIg1yfK1k3+OjaCdZozFKERL83r/6vc+M/r/o9oik9Kj9v6kZY6jrerk/gJ8Ss/yMzrO5ucn169d55plneOaZZyiKYvn3pml45513+O53v8t8LkWVQ5H/o/aL2ZRSXL16lf/pf/qfHhGU/hK03/iN3+Cb3/zmZwhCKSU+/vhjfvd3f5e2bX+u11DXNd/85jf5+te//l9EVHrw4AG/93u/xyuvvMJisfg5XeWj9qg9an+Z2s+cpHTx4mWWKjfyVVZVqCvwePibMYnRpMC5grbraZsOkvhxhhjpO6kK1LD0Qhc1D3LlIQi5KORADeyyqm0ASTMQa1iGkAOoOUAJSmVQI19fLrzJFa8IkK5YVlmG6JfHTokcwJID24SzbqmuJKlOtQTvQw6aVcqWJ0tS1sMyuat+ApaKQUthfiUkJbF8yworuSo15upKueGY8f+0POQSSNFiw5YGEDNleGJQa8rXLJLxcr0xDsx5IRw5Y7DOobWha3tilOS2MgiQFkTa2RizTKiG4LMFRlo9jwEcygS0JUkp34YkL0TSeVBWSSmde95iFSPABCplz2aH9z3ESKE0k9KwUVk2NjbYmE7Z2Rqzt7tNKAs2phvU5QiXlWgKVzCpLcZqukxScsZIpXAQVSLtSkhCzJqOJ6TQoVUiJsPx2YJ6Y5v9K9fY2N7ClSOpukye2Pb07Rld37A4PSW2vSi+4Gn7DqcMQfwciCHiIzhbZhCzRzkhosQg1mmdjzRNT/JSNat1wgePUqIaY4zGKIsrShI9PvQ0bS9/X1P/stYsbSuU0WjlcE6jlJekiilxBlGRsQVJWawxqNAuCTQqiR2YMppAom1bVCa+xFyRnqKQibwPtF1PSh6VLNaVlCNF07a0TY+zTggloZdkuivxnZcqQGcJraiINX0vQFqIlKWjsIaubyXZkjS6EJs1FQLGFEJKwVM4Aa5cUUlfDJXLzqKLYmk1ok0iKiPgPz1JzVF6QVILSKL6E/EotYGKu0ApgHtwaGUJ3guxKXmxXUgGlZM7yjiMTSTf4ttITL1UyukKZxzJN4SuR2mNHRci8601Osm6obSAbTEEVBLCU4rS17YcgV2pjSljGdRTUowr8mUEZSwoi6g/yRopn425erdH6YA2JSibbYoSBIXKlafBd+gU6OYL0FC4gti19L7DliV94+nyPY5HFURomznKKMBQVDWmcIRmgW+kmrRwBlc4mfNa53UAMHmN70FZC0YyLTEldFkIAQtJXGnjULrI675BpUBs56gYiKoj9qCLKbqcLhNOObVFmB/yk3feYHZ2wvVLl9nZ3EDpiI8WrSzaSOWuMUKy6zqPthXGleCFwBRTzHMxMJ/PxYZhsWCxWNA0DYvFjKbtUAaOj0/5+NObUk3rA10bqEaax67ucWlzg7uHDT2JFz//OZ589nHK6YRYjOkWkbd/9Abf/sM/5t0ff8rRSUffe6ajkm98/Us88cRjLJrIY597kqeefYy6UvTzGSfHR3z86R1e/sEb/Oj19zk4OKTtGrqh4jQpClcz3dziqeee5q/86q/w0pe+zO7ONk5L8rRdNLz73o/53g++z707Bzzz9HW+/OWnuXp5C50SN9//lFdeeZdX3/6Qk95z8cpVvv71b/ClL77I1mTK4N4iKlaJo4P73Lr1MY8/eRVjFLdv3+O1V97m5e+/xvsffMTJyam8R4JUkSvEHkbmqlSLOmdwrsSaCleUFFXN1tYm169f4/nnn+PZZ5/hwoULVFUpRo5q2COEfN8r65GEysm1iFctqe24dfcBb7/7Lu+/9iM++ug9Tg/uk5qWk3ZOrxJ2XDEpLPNZw9m85/hsTkowHVVMRhbVAyZxcbNi3rTcPVlgp2O2x2P63jObtaImR09hDeiEMQ6rxN6taQOLriFpzUZd4UpD0orFoqd0FqsN8wzYezxVTq5bYymrit5HTk5n9L2nrkqcM2ALRmONU4rT0x7rKjZ3N5iMRhzcOeXHH97i4PgB25sF1/Y2ubi3CVFx6+CMpo/07Yw2BabViGbR4ypN6HpsWRCjIhmFs+C9JyZLuwicnZzRdJ1YMWjZ68XME1MKytJSu4LQRuZNI89CQ0g9KsSBXoExQwJCo4yhsE7slXRCI7Y+KUYCCCgfRDWzDUHWWzRaWayxVHXNKBOW6rLEGEnyhLalnc+Y9wtQkaqumYxrxpMJVVVRq4hRPT6IotRsfkqz6Lh/fEbjO4zWzBp5JmVhWSxkDR2PClKIBJXys9PM2o4uBDZLSyTRkxhXNUo5mi6grWNzsknbw9HZGaVKVCpxMjulaRsKa5nPOxZNh3ORuixZeLHRK530VR/g/bd/zC9i+43f+E1ZE9KgvaGW+8Rhv73c5kIuejBZFTQQvCgL6KxSMYCrw75W62zllNaINaxUc4RbMCSoh+vI/1vDaX56eLQizEjyeVB6WrsfpT679x+S34DKpBCTr/88SUllXs2gKrqKEf7T17VGwBk+s+QHDMc8T9D4zDGX3KC1GCrfz0AokvtfA9XXFGCXSUGzUggZknyDoo5SKhc65D2KUss4YYgRdLadWhJozt33Kn5aFjasgbVLm4Q1shiZcLDeB/JfIftLsYteERmUonKGurSMxxNGdc2oKhiNaqLRlGWFs1YKAzKppnQ5hkTiRpPPp/IeXfYsQiYoCkeKAWsNhauwZcnFy1fZu3CRvf19jCuEQJ/Eaib6jqZZ8PprP+TBvQf5rsQa1eQ4cRh/QgSx+V5XdlZDYUOMid5nO6HMPVnZ7sm8kEIhIbzHFLJtrFqOD5knWfM4j32xqRIiPiiMMugszKO0KGGKrYxfkmGAJQkjIQpLKyJcfnTI8wnZPlz+IKQO66D3gZAJmgM5JuWYLoS4tPtJIaK1wcfBhj1ijcmqGD6PCSHLD8werQYiynAclfs2k7wYCPZrqr9Krk+s0wJ7e5u88OLTGLMiJyUiipL5LPHmm+9wNptBzMSnbMc9dIDsm4Z4QGeRpkD0QoIS8pEQ4oh+qWqsnZXLGFLsKSHKRitrOD2QwZLsP9Ar5a1h3JAGctTwMwyqSGqw3lxrgrdkZSatWdnWBYh5L5b7XxFJPuCDxzqHyvbPKqtdhSDWoM5pNJoYfcYAhFyiMvEi9mInqwfiwTD3B5wh70FlckpMMxASyESFYXAL7jMUseWXQfS5iEUIUy996Wts7uyz/rJIALHnjdde4bUfvsq4rpnUtcSu8pbIBAq5VmPMEs/RWe1YJHaHNVoTfJ+LwQLe9/he1Fu6XogFzzz3LGVR0XYdpEjwQrCrR46djQm+jyy6wGSj5uKlPapRBdYRk+H0+JRXf/AK3/72/8ONm3fpeyEo7O5ucfXKRVJSFGXN3gVRhSZ4uq5hPm+4c/cBN2/e4+R0hu97fMbDSLIOOFcw2djg8tVLXLt6jY3NDazRS5LR2emMW3dvcv/eAVVVcvnSLru7U5w1tLMF924/4OadA47nDa4quXDhEteuXWU6mWCGuZcJeDF4Dg/uU49KqlFJ23Y8uHfIjRt3uHf/PrPZYklGjSksn/FAthmK+aToTdZ0bQyuKJhOJuzs7rC3t8fGxgZl6QQrXB/vWSd52QHkWAeISophuqbn/tERB3fvcnj/HrPZGanv6L3HJ7EkLAoHIdB2QZRIQ8BqQ1XYJfmwLDTOaM6ajh4YVTVKJfo+4nuf436W5DuTrzUEWfMjEWsshTUoIwo+Kn8uZBJoSBERD5b1RhspBmozCUdU7+V9po2iLAxt26OwQlIaVYQucnh4xsnsDFRgZzqiKqUQ8Gze0oVECB7ve2zhwCeSlnU2JQQ/CgnrRHk5oohBZUVWwQ7kHh/ad2iNy+rlfS8KIehsVZb3UgMxcFkgmf9ttJBxhr3Xcp+Q34shDipO+f2SSZzGCIZh3YAh5jU1RELf04eOONieOkdRioWj0wqTi998iHRdi/eBpu0F81LgoxSuiE2r7O+tUfmdJeudNaKU38eIVWCNEks3o3HG4SNZTVdwsKbzxOApjcb7jjafK0VoO7EhLawQq4X3KVhsSvCtR0pKj9qj9uduSimKoqCu6yVR6GdNTCqKgvF4zOXLl3n66afZ3d3l8uXLP9XRYz6f88//+T/nvffe+4/Gko/aL157/vnn+Z//5/+ZoigeEZT+ErSyLPl7f+/vceXKlc/8LcbIv/t3/44/+ZM/+Sk55J9tM8bwO7/zO7z44ov/RetSjJH33nuPf/Ev/gUffPDBz+EKH7VH7VH7y9R+9iSlS1dQsKyEXycmLQFxVgGgKxT1uMCVjqb1dK1HJ7WUyY0ZoLVOZNN9L2pLIYjEvgDZHrHZkQrHIShcAtMZJFMDEKoGe5MMEjKQlDJgpnIyK62s2Abp4gFrCn71MlhV0qlciZQVQQaLgriq3JYKpCAAaBRlooe7dki+KDX8JKCfztWdIScGxCpHwBMfYgbpcjVaGsA/gw9ifbW0CVA5GI+5aljpHFAPcvyf3Rg/XGkkx9HL5I7KAHgIEZXk77ZYWW+Q1LLycxgH6+Nj2Y/wmY0yyDMdxsCQVIgpkEL2bidkUpjKFaIRlRIjV1BWBUpFxhouTqfsbdZ8/tnreF1DPaEoNZPRCFWV6Giw2lGNavoUKWxJWYpHfAyJuhhJxV9piZ3H6oB2DucmItPuE953WGvZ3N2hmu4y3dnBlU6A2hDougXzkyNSs4CYaENPCJ7Ye6y2BBJ98Jis4qGtSM7HwYQeje87ISElkQ4nQtO0QjZLoopBSsSsomWVpigtKYkSkjaRgGc+78QOSyWsMjhrSVqAp7IowBpK6ygKSwyidNF3ER0SxUijnUOpktKWJL8gpJ6yLPNzVbStfCcpcMUo2215+i4QkhUgKXiMTihlSNlCsHCGRdvh+5CfX8igvFR99X1Am4SxELwAJ4l4LuniMrhSFVKZNu97CJ5SIyRC5WSulikDbiUpGqxNAlprARFTCgSfcE6hihKcQakFcAaqI2WLN5UMiQqldom9JYUEqkTrSoB3la1QUoTQ0TU+kzE7bDUhJk9sPKnXKOOJKmBNDRF826BACEpGS4IhkyC1M3ntguj9Mokm1hkJUgE6gTVoW8p3lFS2QkLc2kQNJSHVgloZUIElxTIlwJN8kHXUWFLSJC9WeSGCUaKeNSi3+baB4JdJqb7rMdoyO2tAG1LqKQpFUUzw7ZymbfA+UhU1RW2IbUvbJ6lCzFWUkQTayJi2Qh1BiQlUUgljklSTK40qC5R1hBTyulUALsPDUZIkfQexJ+HBa/qgsNUUW4m947KiP3bMj+7yzuuvEhrPs099DmdlzPZJEjoqRYqywKfEog0o7XBFQWoXGKdJ2qKsZVRX+GZOCD3HhyfMT2dEFZnN55ydNYQgFRGnx2ccHT7g5p17zNueunI8dn2f61tTPrx1yJ2DE+rNkl996UWe/vzT1Bf20LokhsDtW7f50z9+me+9/A53bh8zbxZYZ7n+2GW++OKTjOsx9cYuL770PJf2p5ACi5MZhwdHvPfhx7z8vdd5/fUfc3A2I0WZYAmDMQVFVbKzt8sXv/gFfvVXf5XnnntOqogVxNhzcnrCW2/9mJe/+zKLsyNefP5zfPHzT7I/rVE9/OiDj/jeD97kxscPSEXNs59/nl/65a/xxOOfY1xXKJ1IaOanR4ToGU830EqjSfTtnLv37/HGm2/xve++wvvvf8jB0TFN15GSKHINhGKQ3JC1BmfFItO5gqIoKcuaejzmwsVLPPXkUzz33DM88bnH2ZiMcNYuSZsDsL16Ha6/F3PyL8JsdsadW5/wzutv8OarP+TWnZvcOnjAveNTFouG0sB0VOIjHJ/OKTVcvbzH3nRKu1iATnR9x+FsjnIVKSUWraftWurCMSoddVViSJLoMZr52YJ+EQR0dppxVVCUJa0PnJzNqcoCkwyzriXQUxqNS1meX0FZOMqqZjFvOJudUY9HVFVF2zSUpaIqKmKSxOHehYuM6hH3bh3ykw9ucv/siO3dmhcev8SljQlN1/POhzc4bQMYTeU0pTP0rSQYz/qO0WQCAUzhmM9mzE4XzBc9fUzErHIQU8IVmunGiOQTWjmihoCn1A6/6OliSwxiZ2ZLjW8Cs1mL7wOKiNWSmEZLkqUwYr9oM8ndOStk4JxPj0pnG4we8v5h0fUC2kfZi2hrqcuK8WTEeFxTljXGOiI9fdezWLR0ufJYpUDhFOO6YlQ46tJSV6WoWeJpusDB0Zx7hw/ofUfXeYIX62PhG0SiShil6bqeedsxdoakIRgtexLjmLcL+t4znmwQoxMyWwyUVtH3LYvFHGfl9/NFAzpKYsgnmrYHo0Qhsve89877n9lz/SK03/iN3zxHThn2xrCioAxNgZATC4PONiQxiHrBYFcSo+xBjVnZQQ9kOIaE4ZLgklWYWCOz5H2NyidcESWG76yUetavUIRn0mr/OsRBOZ8fB3+f5VGG8+UEoF5TgF0nBclVZtUY9RmS0vm2Iu3IudeuXa3uf+iXtLzeVZ+T1QdS/pxaHmcg+CjISpTL5/IfAbMGFdfVZx66LqRflslCM1DRlqc7f2frsUT++afZug09oLXOqn2rzw8x0GBfNhx2SEFaLbaiikRpDFvjEdNxxaX9LaJyJFeIMoJzYC0qqRy7OFGt0WKvA0ISckb2oMpoUsgKNkajTSHfs5a9vV2uXb3GdHOTerJBUdcre+gkqqnNfMbi9IyjwwPu3LvL4eGhkG2UqI2GOKjoZquugUSSe2Mo6kiJbJEuRKAVKW4g28gY0Mh7dbC+0lrGYO+D/I5BmW81fowxoBVWS5FHSmLHHYMoEBsnJB6UrM9ET0wS/wsJSa2Ud1EYa3NMEEWBGZ3/vlKekfEq64LPBTPWZjKMHAWd41+Ja7Oj2TD3s327KPZKP1ljUMaInXkMWJWtp8kEBjOoAksRifBaROFWiM4p2+QpyH1SVpqXXnqR0agk4ZGnpklY+s7yw1d/xNnpGSCW02mwfV8ytCKhF/JxTAHtClKKYi0dFErLs9TaynbWe3mOTuJ/iUvIn8mEojTcR56rS0tAM0ygrMIqLA4hG2YFGiBl9a9hJ7UiXg14yKBuwpLMJOf0+d95ziYhLpMSoe+XhWIxhkzQyXZOWqEIWFsAoswp64fGFhaVIr4PkNWEhnkva5nOcYtcpShhDzaFslFQWota1XAXaiBWrY6UYkANarbAhb3LPPvCi9iiArVmCUcidAv+9P/5Iz54/yfsbG2LBTAQ8/o7rFFqUEBJMuaJEkOqbMFnCyfEqBjou56maSAl+tDTtaJQXI9qrly+ytbWJvPZjHkr9m9V5biwvSFWbfOOLvZc2tvm8sV96u0pykhRYNd3fPzhJ/zrf/UHvP3WT1gsWhKRelRzYX+LjcmYpCzbe3vsbE8wBrGrbRpOz2bcvnOfmzfucjJbEAZy2rB2GENRFmxtb3P9+nWxZB6PliQjH3qOj0+5eeMmR4eHTMYlVy7vszGpKJThZLbg09t3Obh/QttHJlubXLlymf39XHyQ4/gYAl3bUFRlJicLEaptWw4OD7l18zZ3797jbFBqzeN/eBbDi0Pl+T4ogxttsdZirKOqa7Y2N9nZ3WVvd4d6VAvpaohHHqItnY8n8pxA8MXF4ozDBw+4e+s2x0eHnC1mnC0a2l7isdIKNtl2oq4zrgqmk7EQ+JKQNNs+Kxfl9ar3PquvapwRxbsQZE74EAhdVj3XCpPfYwlF03WgFFYJ0cWngM57VKLgJ4NCESgWiwalFWVZ5r1AyFZohhQTrioY1WP6znN0eMrJbE7Sgf2dDTaqgsJaDo5POWs6IkrUlazYdJKtoTEWawQPSynSth19H/AhLfFPUiKptCSNkUBpQ8jq2MrLsWIS205tNSRF3/kl0XUgTpOVG63W6IzNmoGctUbMjPlhD5gqSRSTQxArdYFUxBGgKCQeERsnK/FkigQfRG1pIImqhLMGZwzOSPHNsE6HFGnbwLxplkV5IciabLRgl8PYJaZsHStFhjGv44VxhCjntFaUzrxHCk6VrOK97+U9gJKYJb+btdZ4L0XCzska9sju7VF71P7zm7WWqqqWqkk/D8Wk0WjEF77wBb72ta8xmUwYjUbn/j7EO13XcXh4yAcffMA777zDRx999DO/lkft59em0yn/2//2v7G/v/+Zv52dnfEP/+E/5O7du38BV/ao/de0l156ib/1t/7WT82Peu/5R//oH/Hee+/93K9je3ubb37zm3zpS19aEbj/nO3s7Ix/9I/+Ea+99hp93/8crvJRe9Qetb8M7WdOUtrduwCsgM6hrX95AIK1MdmiBQHqgRTkH4pIJOCcZTSq6XtJBknMp7NCuFqCVUMglrIa0LpkPwNIplZ2aKK+lBisnQbAfV3OfgDpz1nEsaqwXh1/7TyKlZRwrhpLa0D7ICkfYlgmFYY+OQ/OS6WnAIQr2WmpFF31puQWUk60rFcKpwGSPl8NJCeTqkrEwzzCssLcrNknDAmRIQAf5ISH48SYzvWTzjZ8Q2XweDoiRM9sNkczVEWvJZgeuufhfs4nflZ2baISlZMww/8zISKR7RcyqJgSFEqzUZVsTWp2tkZs1QWTqmJjc4vHH7+MMg5vNBFNXU4oSwNJUZQl5aiUpAQGYx3aaqnzDAnnKtx4zFnbULhEgaOsN7BOcXw2Z+vSFfYvXqAqS1BiZxF8Sz9vxQpmcSakoNzvAanyjQmsdUQvFXcpQVAR46QyVGupRNPKCogWOgHLO49vO7GIqEpCWslVhxREfUdpbFmQkoIYcTl5oJQAkEZD5UTmXWtNDEKg0VZAbaMhJp+BWY0OinJc0fY9hXaURUEfOoLvca7AD8m/qIg+CeGmFFsqYyKLeUPEZssMkbzue4+2BW3XUlpLH5IQ3tTq3EY7ksoV+irgnMJ7sbATwmLKoz5lEo/YOzhXoayjbxsqK1VfyjqScmgbcdZkZacKpbNMuE+opEnagzOYqpJqNd1iXYPYvCWgJ6kW2EClfUgV0ffEZESZCIuOEZIXoKrvMCrRNB1F4bIlgSjshKZDmwIc9H1PYSuUSTTzBSkairqUOWaEOBRiRFlF8lmxTOtMPoq4whD6gKLElAasRplCxpIyeb4EtLKgipwxlbVkZfuR15gEiU5IZmsqBzrpPP9kDY1eyGQp9CgFvumxxuG9RyGV2c2iJaIoSkf0C2xVoWJiNmvluo3FOHCA9zL4+j4KSVGJtaQPHcrmNcI4XF2TYkBHIVGlvK5r63KCSKNsSVIW8CyTVFESgyF6+tMWv+iwrqLc2EG5Ub75TF7wHR//5HVe/e4rPPe5p3ns8jbOJhbBg3WAxmqLdQUnJ2fUVYkmk0JipKqKrAihcVYRup6z5gzvA6QFDw6P6TvDYt5wdHiEMQrvF3x08za37x5QFgUX9jd58tI2H996wN2DY07nCy7t7PHss0/w1V/+ItO9Kboek/C0pzPefeMT/vD3v8uP3/+Ig5MZrYpMpyVfev55dnZ2GU0mfOmlz/P4k48xspbm7JjT2Sn37x/xve+9zp99/0fcun2HruuI9HmhdlhTMBpPuHzlCl/95V/iV37lV3js8etUhZN5R8fBwQN+9MM3ePUHr9F3C778+Sd46QvPsLFVcfDJbd78wbv88Y/eYu4j0+1dnnnxBb700pd46vGnGNVjBiUvctWqKDhEUvKEfsHR4X3eeecdvve9H/LW2x/y4MEJi6ZhIKz2vcwPVMJqUVjU2mQQ1lKWJUVRU1YVGxsbXH/8Ok89+TleeO5ZLl6+yKiuhymRybuRwa4mv8DW8rxK5m/vmR0f8eFHH/AfvvtdXv7BD/nwk5sUacHG2NFFODo8pu8i9XjEzqigUJFyVOYq80Tf9sx8ZLZoGI1rNqc1zmraRUv0gSZFnKsgSLBXFQVFAXVdYqNm0UXOGs+iafC+J/gOV5UUxpL6ILavhcWatURflKRo1wnRZXOjxpmChFQcX7p6DW1Lbt14wKc/+ZTj5phrn7vA55+4ysHd+/QpMg/QR0/rI9vjEb33bGyMOLl/QhsSyUPjW7zvOZs3tI2nDx4fIwqHJhF1wBaKa1cuEjrP8dEpPiGWCcnQth26AN8FYvDUU0mC+D7RdQHf9zk3sSI0qAgqJQpncc5QVtkOMg72cGLjEVKiLkuckcSNT9D2ka7zdG1P13t5J2mNcRVFWTEe10wmYg1rrCSPu27Bol3g2x7f9ugYqJ1iVBlG45KqHgGW3jcUpahYzpqeWetpm0ZU1dqWGBJ90zFrmiXxyqeEsjCtC7q+pw+RsqpIUUixKdt4tK1UPouKlCg69T5QVg6VFG3vCTEyqiu0Urz1xrv8IrZf+7VfBz5LQhnauX2jHmykyPlutcpC5/XemGxZnC2I5SBq+Egm258nKUliawUMrScaZdu/IumcJymtrlC2q+eViZY74XPkJDneau8+KNasLODWj786lvxhsDs+1zLJ66GznLsW1o4HaUmqWmNnru4sf+/8g5BjmFyEMKiYnP/UQMxSy6+s7J9XfbQ8X1Yt0XkTUhSORKTregby6Ho88XD6F356PLGy71rZXK0NFB5WmBo63ShF5RzjumI6qRmVjtI5yrJic2uCUoao5Lk5W4hdcpK96WArKuPT5Gcq/AdjDNoVUpigRR23KGouXNzj8pVrbO/vM55MsgptJlDFQN92PLh7h48+/IC2XdDMF8QYsqpuJtnkdU6es8wCUYeJmeAh638M2dpWaTnGYP1jTS78WdJKZEySVW0zsWRV3CLKoFoNisYqK/qklUpUJqfJ+RQkUU4xRVY0UlpUH5LsaY0RG6xBwShFSTxrk4+lUiZH6WVyWuvBys3gg8concd0PmWKyzGwHD9KrmvY/w7PJ7N3lmNksH5Ca6L3DKKewkbSYmNncgGPtkuS04BZQASj0daK+rGFZ599nMuX9/KBIgkPlKRQ8/77H3Hj009ISef4drCvytaHUZRtfB+W1kpSzJJI3ovdmE65L7OScd+TklijypTOyqEpZWfnTFBCLftULOETJLEmQ6tMvAkIUUD20qJCapZzMCU+u14AMBSerK2WcbUGDdyftMSSohR+5Jmdsn2Y770o1WmNVrKHkkIW2XdrJQVqA8cxLtcCIRvoTOxMSsgZYoXmRFklSIHDsL4uK90QsoPc/2rtWOmpiLKtDvDSS19me3cfZcvVuwJRJzs5vMfv/5vfY3Y848LeDoWBqBIhn0sptbyXBDhjl9ZkWokScUpicUpM9L6TArgU6fqWtg2kqJjP5ygFe3s7XLl6lVlWLHeF4cL2lL7rOZk1zJsWZx2b0wnXrl9isjnGFAVJa1LoOTua8+//5Hv8yZ/8Gbfv3qOLCW0SO1ub7Gxto4xhZ2eL/Yv7VEUBwdO2C9qu5/79Iz7+9BYPDo7oui5jdvIcFLIPq+sR+/v7XHvsOnt7e1Rlmd+Jsrc7ODjkxqc3mZ2dsTGtuHblApNpTep7Du8c8NGNOxwvGowr2Nja5sKli+zv7WclIbWMJ4Z5POwLiIG+bzk+PuLWrTvcvnOf05N5VniW64wxP5eU8lohz2fAMoWk4zDa4grHZDJhe3uL3d0dtra2KMsiY48rmt5gx7hcXgY71GFVikK2m8/OuHX7Np/cuMHd+4f4vqV2MgabtsP3Yoc2qgosSd43KlOeQqIPkS5I0dF4VAueEyOEhI+BpMQqum07SInCGbQREm3wiS5EvA/0wUMQnM0ak4d+EttQY0gprGGqElfEECkKg9WiQp1iZDQZU5U1i9ZzfHDMfD7HlJrLF3fQ3tP0npBSxsY8hSsEtyolhmn7geAaCTHgQ6DrRN0+xIBQaRSoSFKJ8biidI5m3uCDYIZGizVaUjJfoxesTRvBNmJElDhXW7Tle0Dld6LEDytFRxLZQk8IRFrr/B5MWV1JCjmX/4+i0CtqUxaXLWGddUsVwZjV0UIMgq+EiNXgslqwLWTM+RCW757eB/qQ6HshKfZesCdiouuzlbbO71WVcV1EgWnAcmPIe8pMXu6DKOhL8V+g96LGZbJCU4jyrjba8K8f2b09ao/af7JprSnLkrIspbj8p8VVP4NmjOH555/nN3/zN9nZ2fmp5/De89FHH/Hd736Xo6Mj7t+//3NXZXnUfvbNOcdv/dZv8dWvfvUzz7nve37/93+fl19++S/o6h61/5pWFAV//+//fS5fvvyZv6WUOD4+5p/8k3/CjRs3fu7XYozh2Wef5b//7/97JpPJf9ExQgi8/PLLfOtb3+LOnTs/4yt81B61R+0vQ/uZk5Q2d/ckzh4AeTIonMFzqVyOS293SS6QpeQTJI2oNsRs2eLQWtE0jYBHS/ue8yB7ShJsCmi3qigW0B6GMHMgvAAZfFgH4QcgNC2rqNYJSsN3B2UlGCqqVqD/8Pv1z6wnVwYAfCBxrZOp1s8n9g3nSUrkRO1gpTcAJEoJWDFUmQ4WcsNnHm7LR5kEzEuIOoNRYh03WBsM9yf9HTPYuN4X5lzyhayspBFS1MbmhLIquHfvvuAtubIoPjQ2lsmbTLAYSFUPJ0/0MFCGXAkK8ctRkIyA21ZTOMPWeMLu9pT9S1tc3J1SaQnclS3Y3tlnNN2gIGF0hzEOg2M0roloXFlQjytSL2pGVVFgnCUqhfcBqx0hRSEfJE89GrN98Qp7Fy9gyxJjS1QSCedmPhd55qahX7R0i7mQQ5KoUlnrwAiRoY0epTWFsqLhYjS970Qa2uZKwE6sn1JSdLHDx0gKAZMEhNVO7H4ICesKIiJzrlMCVZBSwFqFwWC0wVjofCe+9FmSushkoqJw2Zot5GS2PAvrClIUlYsUoa4sqEhI0Lc91lp8TlIRwShDJBBUtiSLLX0fCFHAHJflr7uuF5WgGMXbfpieKYmdY4g467IVkCQinFWkqGVMGZUJHylXjWeZayfV0sY4qVYnYguNq0t6r6SYOc8H7QqSjoReiGK2KEg6oKxGaUuIHcbMQc1k7Ck5X6JEqT1iqPBdorAlSRVE3ZM8+KbF5rnVzheUVmMLsZTw3guJSmkhGymFdoroe1SUhMCimWNtTd8H6pEoMylEnts4R+z90hogxYg2oLRYJGhdgQWvEq4aoZIXtwAlanXaOpSyskKqbM2QPAonSavUoZORPtai8pOiIvY9GoM2RtR/lFQtqwAxtJA8wSdiGCwbgoCjIRKSJgZRx+lii0pCCIi9xzpLVVqSD/R9J9XDzlI4i81JrT4EfIq4QtYv4/LYNtkqynt0iiQliYSkDMoVmLICBJTN2RgB52LAzxbY0DM/OcOOt6m3L0qlOwGFgRTx/oi3f/Qqdz/8hM8/8ySTSU3re5SxlEVJiPLsT44XGCdS7WeLU8Z1SVVXJJXomp7COkgw7xYiy07HfLZg0SROzs64efsu865hNLK0i547dx9w/94DtjbHPPfERW7cfcC9B6ecns5wxZh6POLq7pQXv/wUn3vxKaq6JEVPipbbt0/4d3/0Xb77nde4+eCYWR+ojOXKxV2uXbvK3u4eTz33BC889zk2NzcAxfz0hJOjAz74+FP+7Duv8cZb73F4fIwPnpTEUkMpUTicbm7x5FNP81e+8Vf46le/zN7eLtYoFJ7gW+7cucMrL/+QN19/g6ou+eoXnmNDRV5/7VWaFEkR3vv0kIOuY+/iZb78hS/zta98kcvXrgkBA0nCiWWIztnsAKojhoaTkxPef+9Dvve913jjrXe5d++IpunougafBnBWTFJ1fsdZp7FaEiPWOlxRUVYjqqrm0v4lnnvhWZ5/8XmuXrnC5uZUbA+WqfB11JqcOJb1Y6W6FGmajjt37vHaj37Iu6+/xo0PPuTg8JiDw0Pm7RxtYDQpSARchKQNo40R/uSUk7bFFgXT6ZiqdLSNgOsYQ9t5ullLVZa0vkWpxOa4ZjweEXyk84rjswVn87m8h3wvwLwyJB+whaGsC0pnhcQpM4jeR+aLDmsVm5OKwlY0nWe6Oebq1av43nDz03t88ukN5s0pF/c32d6oaZXsCyajCRt1wb3DEyrnuHc2o5qULI7ngMKftTT0hK4nRE3vPTH1TDamGFNwdnrKrG0IeC7s7nBhe5sbn9xi3oh1ndGK1nuUEaWDGCDS432P0WVWjfTZpgasFdJq30llsibJO9IK6dpqTVkJKUkrqXx21jIqrVhhGEPSVpI0fcD7bOEA+Ajek1U8FcY6XFGKRdx4xGRUUBSOkBJtKwT7vm3oukZUbwIoFZhMa6YbI+pxnedspGt62kXLYrZgdnzG4ekZTdugIix6T0tiXJfEFAgk6nqMUQbfipWLKx19F2j7iDWJUWU5mzXM5j1KJ8pCkp59iEKysJY3fkFJSn/t135dYon883I/OxBP4mB9vFaYkBPcsn0c/iEqGbJfh77PKoJKs25JtiLtrCm/ps+ed/3zw2/WVod8Hfn3AyFpvWgjCdltuQfOv1+3lmP9OxIInDvOOYL/f2q/n/+edVzOX925C1bn+nm4bv1TjrnWAatrTGSrp8EcUwmn4iFy0LJP0vlbXRKjH77G/N2yKrFWM5vNJQ7K8dV6ccZ6PLH+t8+QsRj6eS1hndft1SdEicBYzbismE7HbGyOmY5KSfBlEkxVjXGlqNxpJUlajcEWoiqhrcW5rPoDOG1FOUmR1WUHKy0YjWp2dne5+tjjXLl6FVs4IbokIXifnZ1ycPCAg/sPmJ+dcXD/PiErHg0EKKXEUtxnRUGrsqWhElKq0av+GJKlJCV2QimrQg5pXiP9lLIaR4Ks2iXPS2JB8n5A5Tg+oAcils6EnpS/n4m4rBHAhjhSrHDFMkYpiRMH9d0h5k1JZaWrKBSHKMo7IRcnKSWqGzrvbRlsw3P/Ducc7nNQqkk5XJElJNs/anLRw5Lyszy+jKmstkNCGyGMhCh9MHxea0tSkvBWCXRWcRJ5Ck1ZWJ544gqXruzmdWsYf4b5HH7y/ifcvXtflE3RJCX7pRi8xDhJbLVNti8TfCVlMpKCEElKZev1bIuqFL3v0UYS0daJtbPEE5noGEWZWunBCnNQVIpoLMnk+7OOgUxBJg6qrM68msOZmMXKOleIGQmlwnLtSEmOI5bbkaHwTCUNSSzUUkqkMKxpEt+lLIkYosraw0LEJls5DUo2xmhCL+9rpXORnFYMwzGkwaouE+DyhQlJLqKGmJZBktuIxfRymVp/EwgRTMXIdFTz3POfZ7K9j7KO1WqvIPU8uH+bb/1//28qZxiPRjLuYsJaUdnWxhD6hA+BwhV0XYO2Gqc12hl8H4Qog8ZHn/fLkIKn7QI+RM7OZsybBus021tbPPHEk3Sd2GFd3N0ghsDxrKFpWkgK4wpGVcHO9pj9qxeo6iqT2MD38O6PP+QP/+CP+NHrb7PwHpKiLhzbO5vU1Yjp5pSLF3aZTGqMsfi+p2tFsfP27fvcvHWP07NZjifyejwo1VjHdGODS5cucf36Nba2NjHWyD41Bbqu497de9y+cZtF27C/u83uxpjj+/c4np3hXMHx2YKTRYcuCvZ297l6+TI7O9sUVZXfOQNRaM1WFSmY6n3P6ckZt2/f5dbtu5ycnIlyTAiidpzXjvV3k14SpMWqVGuzjC3qsmZrS4hb21tb1KMaZ805Uu3yJSybmdVvh3dnXnebpuX+/fvcu3ub4wcPmM3mLBYNbdcSiThnQUdsXsN0YbEpsWha0KJGXpaOFCI+ZFJqSvjOZ0tZUWEqnKV0LhOOEp2PtF1HCGFJZlE5FlMKGY82EzJjRGmzsgtN4JymdI4gfEY2Nqc4WzKfd6Im3MwpCsNkVEJW+DFKM65F2ZVcoJecBp8J5iGKgnwKpJAyOTdgnCjm+j7Q9R0+BZw1bG1u0C4aFvMWKXiTZSsxkBNl7sck+JoxNmOWsuYOCnEhpKzoJPNMKUWWVhJb0BxPDEWezopCKnlvl9CZXJWWqpQxL6ExM2kHhTFjRWWpcA5nNUmp/M4OxBAIvl+qaKYkirpl6Za2clpL4digzOTbnqZtsxqXvF/7JJZvRitRxDJG1h4vSoE6Ky/2Xsh6omglxRshZmXClAuC8v3+63/1SEnpUXvUHm5KSU5rICf9lyqR/P87h7WWCxcucPXqVZ555hkef/xxnHPLzwykhk8++YQPP/yQo6MjPv74Y7z3P9NredT+27WNjQ1+7dd+ja985Svn1HYGi7dvf/vbvPPOO+fi4Eft/13t+vXr/O2//bfZ2Nj4qevG4eEh/+Af/AOOjo7+m1zPk08+ye/8zu/8FxOVAO7cucO3vvUtvvOd7zwam4/ao/aonWs/F5KSZgV2L2WVWRGAhkMtSUoKtEm5WjKDRCpbi2mdq54DxFz5qIbgOAd9KaNMOi2VlAaS0sNknQGwHl7iA3FmBWSuJQXW7sEOikd8lowEA06fSUa5OjDmAH4ANNavN2XQ+WHgfv0ceqkKlEHRpTXCAA4PKk+BoQtSSrIZzYSwc0kEte6jnitCtWEoODdaEriDstQ50lQmlg1AoSgbWanu936ZaFFKScBMYjQeYYzh7OxMQJa1pML6s1glErL6iVK4wi2fTwheQPYMsGYkWewfMvhbuYKNUcWFvS32L2xzcW+b7c0xo3EtBlZJE5LIXE/qApxY4WxsjKhHpSgHuQplC5o+UFUVKim6RYezcq2dFy92axRu7Nje3GZ7f4fNvQ10rEha7F/8oqOZNbSLBbP5KWJ3b4UopD0kaJsGkWovhAgWISoBQnSKWKXxKdB5L5VKMdJ3HSkp+i5IQjYFjDX0XY9V4IyhKB1JSdJgUNaRuRMgObSBiEdrJ3YThQIVqIsCZ8QmZag4rspaQO8k1VhKKeqqkmt0DhMMoQu4kcHHnmbRQBTZ/KIsJAkdPApRikrYDGy0KGXoO5GWdrZY5cp0VvUSYQ+0ztWiMckvFHgv1mpV6YihB4xY4hmIIUjiMcSssJawVlFXhagKKUuMClc5qlFJUquqZFFa00QCJCvV2qXOMlIelXqU7sA1QIcA6R0plSguoNJGtiDUYn2WFFiF71p8u8gEGwFEY99JPxaO3nu0tvStoSynxNBhdEfwC2KnKcqKrpsTgKgMzhlcYYlxZYuQsl3MkPgUpmjA+46inJB0QFcFGEfoFhASxpTSzYZsRVIBBSl5tApCakMBPjtLGJKW6mdNxPcLrC6lgrdfSLJKW1IAUk9E7N1iD77zkAImE7V0YWhmgcKUBNWzmM+kmlAX9KEXO4OUsj2gpZpMMVosErwPWFfiUxB55LzmRCWqUpqEbxpsoVCuIJkCdIEyhqDEEkrpApKC0EvCzTghwjULwqIBXeAmW5hqTFp7oyU8i7NDfvzaK/j5gr2LO5TGUDlRUVFGU1U1SjlmPlFYR/BnOK1woym9Cqi+J3aS8OlmDSp6AR9jQKnEbHHG4ckZDw5OUCZSuYLjo1M+/uQGbTvn6ccucnQ6597BiRAa+kBvFYVSXNzd4ld++Qs88dQVpjtTcAXoktlZw6vf+RF/+O3v8uMbdzk9nhFDYjoe89QTl7l2/RI7exd54Utf4HNPXqd0im424+zkhIPDB7z+5rv82Xfe4P0PbrJo50JezAqBxhiqqmZnZ5cXv/RFvvHX/iovPPccG5MxRgXEiqTlk48+5ZVXX+ett96l0JGdDctTT19mVI+5dfuYm7fv8unNOyyaxM6Fi3zhy1/ghS98gcuXrzIqKwwqJ/HyWrAkDHli6pjNTvnkkxu8+urrvPrq63z66S3miwVd20oVakoZGB5IT2CdxVgBZY11FK7A2YK6HrG9s8vVa9d4/oXnefqpJ7l0YT9XQ+d3/XKHsB4s5mrttQRbTJ75rOH2Jzd447XX+NPvvsyHn36A92einNM1AiQTmW5O2SxK2rZBa0VZOqzWNIuOPoArpJL+rO3QxlDl90VKouAYC4v3ka71tG0j5KwITeuFGOo9ttBUlaMuS0pnUElsYZvO07SeZBPT2qGC4eB0xrXHLvPE44/TzSO3bj7gk09ucro4paw0o8oxrmtGVmNHNdvbEw5O56jOc+fgVNZY31MWipGxRGcJi46oLSl5ur7HVhWusJwez3hwfEbrO5SCjfEI33Y0TS+kaOvAgko9yQtZsetb2s4TgthCGjMkExTOWkJItG3IClFS+bvcj8aVhYLVmpAiVlvKwmRRDEkoAFJBH4cxM9jmGsgJ6BAUfS4y9yEr9pQFZT2mHo0YjUrqUhLWPiT61tPMG9q2ISWxqrFWUTnNuHRMxo7aalT0tG3PrJnTLlpOzzoO5z2+h6CE2GyMpbCOFAJJKYqiwPtA0/XE2FMVhq6NnM5aIoHN6YiEKI0poHSWN15/h1/E9td+7deXaW44T8JZkYiE7bKu5rIiI6x+NxCCYoo5GaRQ63NXrSyABhLFkqQ0gH6ZuKPWPr9O7klrn1knJa239fhjSWw6F6esM4dWbfmbh2OUJYHjIfLSQyT/Ye8/9KbKCfrze/BBAXYVN6xinIeuSa3ueuCcaLU0SF0pQP2UflgVkKyqdQeFxs9YxeWvu0KqjcWWMZ071sP3vbyXKBe2rlgr9j0DKUktB9eyP5IkG0dVycZ0IsSk8YiqLCgKO/QeMdsIFlajjFi7laXDOZPjJYvSQti3WZE0eLFPQQkJX2vD/t4uFy5fYGdnh53dXar/H3v/9WxZdt3ngt90a6299/EmfZb3KBSAAkgCvCQoUrqUGCEpGE2ZB0XoTRF61N/Sr4qQFGz1yyXZ7JYaogNBUSRFEqYcUA6F8pXunDz+bLPWdP0w5tp7Z1VRl61LgKCYM6IqM49Ze5m5phnjG7/fqEFhEbuvRApi43R8dMQrr7zMZDJF9KWyJFgp9uqANrbsG8ttUyzUSJFEoi72XgInCRAx369qKYbQ5bkba+az7bzuIGfEX7lX7UllT66KdXDGWiPrsh7AK/NTLknhVGy+rLEyXmuNSgLHGKuJRIIPqPL+GrsAcBQUhUSx+kpZCltiAZqkkKnvQEtjBKoUREkCnyzPvu8PtuxvyRpl1PxaVXkXcu4tEJU842IrLPEGjXF2/k7M34J5/y/KtaZ/bzJWKz73hWdZXW8o+j6IgpIlxYaXX3qD09MT2f/TK5uqonTle6N6+b0YCzdjinWdJkWFMTU5R7SKsldKCm0sMYZyhgI3GbP8nqp7YxbleqQILGJNRVYZZTUoQ46+XKoUDMzriJRFwKSPr9kWCna9HbwqAIocR5NTLECdmcdWRKWF+X4nxlgUgwUyiCJWK3vi0JZClkUcSBS8ZY/oatnHqixFIj0oKAorBerLUvgi91dsBZXRsmHCiGW16ke7Aq2lWJ69gEw5BpL3bG9t8+xzz2ObQdlzLp5dSp4fvPEaL37rWxgr+1qriuJOeTesdaLiqAwpeVFcUxqcJadI9vJyRh/F/7wMmxIDSkymM2azDh8DzhrWVte5cuUKPkTWV8WS7HQ8I/hACIkooSoqY7h0cYfdCxsMVwairKwtKcHB3SO+8bt/yH//1oscnZzK2KYNqytDtrfWxfpsa0tUlWqxAvezjlk34/j4hI9u7HFn74hZOytQGfTwkDGWqhILuKsPXOfypUusrIxk7ETexXY6Ze/OXW7d3qNrZzROsbY+YG11xGTqGY9nnJyeMp15jK3Z2tni4uVLbGxuUVf13E5u0TfnMwoQidEzHk/Y3z/g5s3bHB4eM2tbYgjz/U+vyqXKfkAVtXOtxMKzV/+2xlLXDaOVFba2t9je3mZ9bY26cjImfWLO/3gCatHPZMwOTMczju7e5cMbN7hzdx/fTYnJE0MkJoG/tNEMm0bWhrkohxbrWO/FWlQBXRDgvTJG7ASR9xCjSChSTDLHlLk5xkwoansZUeIxxhT4qleoLwp3StR4alsxmXXYyrKzu41Tjsmk5fj4jMl0gtK5FBlaKiOW7oPhgJCirOOnLSGLglDKkcYaKIpFKWQogKyoNFcEH5hOO9rg5RytxShR7M5ZYktosYLu40t9MVw/huoyX0Afy1byfsQ0j9/2sehe3UxrPe9bGYk5Gq3Ko1OLp1n+Jwr5pTgM6JXxi5g+PQ+njcZYN7esdlb2KYlMirm8u/KMsiqwglESe3CGykpRWIpJFGy9x/vItOst8hDgq6yXVIkn6xKn97G3S5Z3tOtEwUqevZ6rNxqt7kNK99v9ttREtbui6uP93LuX/atog8GAJ554gieffJLt7W12dnbuyS/1LaXEzZs3+c3f/E0ODw//Ss/hfvvraXVd8y//5b/k8uXLn3jeXdfxq7/6qz8ShZ377YffHn/8cf75P//n83FkueWc+d73vsfXvvY12rb9kZzPww8/zD/6R/+IjY2N/+kxzXvP7//+7/ONb3yD8/Pzv+IzvN/ut/vtb2r7odm9zX/xU6qC+oCR6QP/Kpfgpti4SQWiyOtninxvhpxKsE7dG1ifH1uV45dKwnsgpeXz6ZMReaHqAwLpmFJ1l7IqgIwEwpxzAjQtXYtaCkDOwSu9UCLKUKTCEelctdiY5rKh7WGqe6Cgcp79sXpbOmO1+MWzBBIBSkkFSy5xjF7dafn6te43zdArSOWUxZJMmwVAlEowYinw31utOecIoVsCtMw8CNh/njZmbjclEVnm17rchfrzX1ZMkopbCVw2TV3gNAFk+mSTNr1VgvSfYTNgc3WN7Y1VdrfWuHhhi5XVAc2wxmlNrRw+ZZLWEAKWzGDkyFgGww2GA0tllKjf1I5ZTLhmSPABoy3j6QxIBRSCzc0tLl+/zOr2KlZbRLnAkL2mnXjGZ4f4aaQNopSV6AhJobUom2jjsUoRQ5K6vZSorSsQj9jvdV6k2I1WhBTR1uB7eevSZ225z8ZaCQ4i98NWjhC9VEFlAdusMVK4m+XehSTgB0DTOJQFa7Qoa5CJOUNSGG3JSmNMXy1tqJ1YtCUFBA1Zk3UkEufPKRVFir7y0sdA1wWCV2hlSbnDGMtkMqWqnfShIAoXygrkZ5QlRUmoS5WbJkapxvaxIyfm6iYhZFzlKG6DpCBB5Yx0Qa0Vw9qRkyQgMgZtHaayEnBRGu89ttIFosmkpMAYdKMEVlIztPagpgKaERExcotigxRWUVnskcgGki8JjZoQJsRuiioAZUYUPXwXUa4i9C6FUePqAT5MqSortnhnLc5YtE6krKXaN0W6OKNqxK4qeVEOEen/SEyRqqpLwCpQ1UOyTiSj0NpBlkCWqYr9n1ISfEeTsy1DsiS8UfIcU5TEGFqSHjnO0CRRQzKaVCrzcpLqfV05CZinkuRJQYKBIZAT6EoTOo8KcrvOjs8wlYFscUNHDpJgIHaiLm8qUQaiJeYkY1GMkqqLUFeV9B8tYJPJiqQzejgooJEhpoC2CZUj2tQSCAytzENKgAaFAu9J7Qy0w63sgBv0s4eMoCkTZmd8+M4bHO3fZnt1hc2NNVwlli0qSYV3yJp6MEQnqcKd+czKxhrEwNnJOSlHurZFq4x1DV3ncS4zGFj2904kgO+naKVoXMXB8QkfffQhlQ7EbDg7n6IyHJ+dcBZmDE1NU424sLvBs88+xNPPPMTK+gbaNVDJmPPm6+/zjd//Nm+89hH7p8fM/IRKGS5f3OX6A9fZ2N7kmeee4TPPPMX66hqklun4jMODQ27cuMN3vvMq33nxNe4cHJREVyqqagbjLKPRKhcvX+KLP/E8P/2Vn+GB69epS6U+OdK1Z/zgvXf5sz99gRvvvseVK5t86fOPM3SagbN0s8B333iPF157j5Nxy87FSzz12Wf57LPPcv3qNYZNPQcQ7oUMJCubc2A6O+bmrY948cXXePE7r/LhBzc5G58QQsInsS0QS8KigmOKBZyVoLQ1GmdrXDWgqhtWVle5dPkyTzz2OI89/hgPPHiN1ZURzmgWq5vlJIMiE8v3JIgeU+k90XN4dMK7H7zPSy+/yPdeeJl33n2fNp6zMtDE6CFrkheQamdzDZ0TbRuJWdN62XimUm2sYsBhxC5UK3Tj8K1HR7GUDSkRg8j+i6VoxjrNyrCZKwuoLGoevs9CO9haWeH8eMpp23H12mUeefBBUgc3bt7l/fc/4nx2zurmkFFlGCpNaFuUq6hHA87bjhQiZ6eToiymWF8ZMBrWKGvozsecT1tJRKdM0oqVtRFN1XB+2nJr7y5T79E6szqsaVzN9sYaXfTYQcXAWO7cPmT/eCxrjywVyMYpUAmlMiipGs9JlBe8D3PLlMrYksgUlS1NUdQplcBa65K4NbImVIpY0sSimiEJDKMF0rZGQCdVoIucIaRMFzJtl4hJgQbrFE3TMBys0gwH1HWNNdLnuq5jOgv42YzoO3LqcCpRaUWtwTmobP+ZjqShTYnT6Yyz6YzQtqQYmIZcKr0TSakCC0gV+vl4BjqzulqTUWKHGBK1Nbz+6hv8OLav/tzPLb1Wy6nd0nogiOW9Ri6F7eoenqf/dirgP/OjfTIlKF/s9xNFXaR83r0/80lAqW9a9wHihX1Yvxbu171/4aZqft7LidTFPehho7kNUbmGjweJ5nuE8qvLIIIqyco+IX/PdefF5yxbXn/aiS4/i4UlGfN9zsdtA/p1v56/L0vn9Gnn329seoCrQGn/I1AJClxVil6ss3MV3zmERQ9SMf975SpGwyFrKyNWVwasjIZUlZ2rcVqlixUTkDIasdbJSuFsIwk7YdoxVhNyRhtXEpoa78VqVuADw+c//wUefvRh6mGNKQlXYxQ5yvro7OyEo4Mjbt/Z5/joCB87sbbCIBa7UtTR23MlsiiXLgFmYuUtzznlYgmcFiBaKtees0A+OS5buul5Qr5sNotqCALz9JBPsQS3Vs+LC2xfCDTfg5vy+3l+v3v1DukvSgCUYtnVq+HknBaxAmTPFGMiRSlsyUhhgvd+ae8rfUHEmYoKYxJ15v77faK6jy8InCIJYm0MSvdFR7LmE4ilT/7qef/LWaOMKceWK01RFCjk9S2wpJb9DWSMzTz22MNcubJTxpkFyJNSxds/+IgbN+6Uj9BSZAJzSCUVuL4fAxQSY1Ba7PlE0URhjCMmj7FSPBLaWN7nYkxWbkRKAW2tqJbGhVWgjK9J7H+yrOGMqchqIT2lypyn5kFztXhX5/BHL4tbXrZcFJBVUX3OYb5fnCMbKZVlnagzZZDMvYxYMjDnXrlFgL4srld0nZ/HJVSJGeT+voSIMq6MGQJ0WOtKkYCCmEtsQ5TEcooFlkuyJ6wqKO+YrDV66NHMi3JUUZXuxwkVI489+hhXH3wEZZvFZNSPXSnyvVde5NVXXsJqxWjQYKwAfDGEOQSgraOfUXwQFVznLL7t5nGbGDzWSRFSzpG6tnSd5/x8Rte1opRjHdoYLl26zNrKEGstsy7I3iYEJn4m45221E3D1uYKly5tMVoZoY1FWQG0Juct3/rWy/zW177BwdExbWghZ5qqYnNjg2Y4YH1znUuXL7G2soJSsj9rZzPOx2Pu7h/x4Ud3OD45LXZSi4JBiXk5BoMB27vbPPjgQ+zu7FJXVen10m/OJ+fcvHmHvdt7GJW4fGmbtZUBGlEHPz4dc+P2ISfnU6yr2NzZ5sLFi2xvbdPU1RxuzvPeubynEIhsMjvn7v4hN2/e4eDuMdPZROJTaaG6TpJxS+AWXeZ/5vO91k7UlZxjOByyubEpVnBbGwwHAordA03f05ZhqjwHVxQZ7ztOz87Z29/jzu3b3N07YDIbUzkFRHogM8dE0zic0XM14xDD/MJT2Vfp1I+zGe2MvPeR+Vyd8sKyTH5DrJSNKfpxvfpdSiWGgMyLWTOetbiqYmdni8pUTKYdx0di96YrUZZzSqGK8q1xlcC1MRG8FFpoLXbpg7qS9zNmurYjkiQ+hsRC6roiR8XZ2ZjWB1GashpnrKijG00g0dQV3bTjbDwr1tPMVeQoCnIU4Kt/FCnJOc1tF8v4JEpTzJ/jMjCtisKfTBGLniZjCOV7AiXqUjBKGRNzeR4x5qIwLjFQaw3WVnNwSSvpdylHgpd3ORcFMJ0l7mR0/1+vxC9AZQK6GGmXYKeYJB4oFqvyuUZJnL7znpASzhmsEUg0FQfX3/mt+3Zv99vf7qZL3mg4HM7t3H5YzTnHL//yL/PUU0/do6IDMgbFGDk7O+PDDz/k9ddf59133/2RQQz32w+3Oef4xV/8RZ5//vlPPHvvPV//+tf51re+9Rfs3++3v2lNa80/+Af/gC996UufOqbknPnd3/1d/uzP/uxHdk4rKyv843/8j3n00Uc/0Qf/si3nzGuvvcav/uqvcnZ29ld8hvfb/Xa//U1sP1RI6dMAJQlqLin5GAm2SmAcwMwrb3QJbKWyMS67pJJw+DRZ/14iPt9LmS6d+rJ6j9Ya65yoB+W0FB4oigu5bMxTsVBbuo4FXFNCRmWzOieFysZzftG5r3mFvoymcgu1oHvuk1K9evDStem5nPsiqVDui0ri964WNni97ZN8fv+hsuntq5X761JaE2Kcf22Zvp9vsJUErMnLakhy7X0ypg/y9VVhKff5hH4zvKQiVZ6dNiIVLJt4URSKKVBVDmMs3rcSZC+VhUZrBs6xvjJie3ONq5d32d3eZNDU1M6ysroCSoAiokAablBRNTU5RGKbca5iZWjJukFpWKkdKUggxQ0GZCX3bjKd0aZIZQds7GzzyJOPsbaxRoyBED1Ga2ZnE9rxObPJjOg93k8JyWGNkaSmCbQxEUKRfbaaHBLWGKZtJ8oW2pBNloB9zIynM5Qy6ATWQtYZ70u1k2JerWe0PGdX7mGpCaONHcSERsCewbChqZz0K2Pmz7p2lkHdSJLeSYB+Op2SAWsrSW76lro2RSJcwKAUPBlJwKQsdm5KayKBtlTVJp8wSizcxu2MGCPWWIaDEZ2f0lc+O2eIEXLMGGtwtZyfxZJipKotPnQoLMFHqqpiFmegDI115dUS+wLjJOmh0QQfiDlRNxKENMCgliChnHsPz0mwPSupAldJtDOyVgKy6Ih2AV2NSaoFWgFjspcAVt4k5y1ykCSBsQNSshjEhk/evEzynhREeh+tqauK6AOmrkFlQjvGUJOzpUtTSXw7K+pPiBpNzmIPl2JHDB3VcIB1DblLaOOQCjyxP7K2wfsgVXy2QhnwOZCzQZd32A0rYg4oZTCuKQkhQAlUknNA6brE2cekEIjJUFWOIuUhylc5oWJG4cgpoJwma4HMkp9RObH7CF1HCpnkM6Yy5Cjglk+J2TigjUj96wqMsoSYqK1mMmlJGepG+qnASY626whtKzBBAWGclrHVaE0OmeAMbmUV6xpiaFHaS4DPDiR5mD05BpSxpEgB5jxpcgpthGoDu7YFxoLKZCI5abTynB58yLvfewNLZvfiDq6pIUFtK7zvZLFutAQSK8fk/BzrhnQhMRuf4qxltDYgeM9sPEMbRwwzjNV0wbB394jz6Smz8QyjICnF0eEht29+yPn5DN9F6tWKdjpmPJ5A0mSliUpzaXeDn37+aR5/5BprG+u4tRFq0BCy5uDGAX/0B9/kT1/8Pjf2Dpm1U1KEUWN46Ppldi9e4OHHHudzX/gCV65doDaGbnzO5PSUu3cPeePNH/Dfv/UyP3j7fcaTCTGnomygsFoSvcPVTR5+7FF++qe/zBef/yw72zsobSVgnz3j8yNef+NNvv3NFzm8u8/DD1zkJ5//DFd21iAFbt465Ot/+CJ/9tIbMBhx/cEH+dxnn+XZzzzBtWtXGA6GZa7RJdlaUICSVINA56fcvnmTV14RZaV33v2Q47MJ01lHipGcglSOLsEDrsj1mwKqWFfh6gGuqhk0Qza3Nrn+4IM8+5nP8Phjj7C9uUlVWea6KCXJtrBt6QPbErDPGXmfUXS+ZX9vn5defZNXXvgWd977AW+9+x6Hp2MqkxkNLJtrKxglykg+iY0PWsa5iZ9JRW1ShJzoSDhjSF0k+CgQklH4NhC7iK0k0aitKCmhFO20RcUk6jI5kRRop7m4scbkpONgPOHqtUs89vAjJK+4cesub7/3IV2YcXlnxNpKTdNUnJ9NIBtOxzO8j/iuJfpA14MIIWGcYnV1yNAquq5jNov4XKr2tWNra504C3x4Y482ASZRm0xtDY1zJK0YrQ7ZXllh/84xe0fnJCUJZB88ukBmlXMyhzWWXJQIldJMpx0xZVxZuykjCd3oO4w2xBCIoSRTC2hhlELnXj2nJJ2MWDHIHCy2gX3Fci7qhsoYMpJYVNrKO996fChrNq3R1lJVNSvDAcOh2EFWrpaEaZR72E4nTCcTUXiLHU4pRrWlXnEM6wrtKrCOpnICLE6mnJxNmE5auhgIITOZtPgu4GNEGbBW1rAhCxRugDdffY0fx/bVr/7cPQnde4Cgvi2tJxdQTv/MdGErMr3NTll+Lx3tL4KUCliUFrbM+VN+XvWgQElGzsEaVVbcPYyUl0AlvaQEB/dc4z1QVknYZhb7iQWfc+/+qgc5loGdT8I7vc3aAlJavpk9cjRP3Pbrd62L2kD+1JvVw1L9daUCP3waPNT/XX528TPzu6mWVWyWPmPpxz6uqEW+d98y/5lcLHHL+xrL2reHy5RSOKMZDhrWVlfYWF9lZTTEGoM1mqqq6G2sZT+V0NZgrBFwpQANldNkZVFK1sg5UizAHL3lmA+BBAwGIy5cvMBnP/8cO7u7kHtlIUXoOk6Ojrl96zb7e3eYTifM2iAJTAViq1xAmrIPoKgj+RhJUYCerPL8+gWMkn2ZPJ4eZMx9lnSeTJ/34cV2kZBDseGS8cw5O1cWngNPWVQ6xPKnfw8y3vvyrGUMjjFgbFEmzgs4ilwwnb5vKlWUn8oausDuMaZiEyr7C+scqVeOKe9VKgfSegFZ6VJIJLCHeA71cYKQ5f7YeRJakryq7GtFlTbOk989emOtXurvPSyU53OHLmtRhSr7NrHFrhrLI49e5dLlXVA9zCzrBQGUbnLjo5slUe4EgmIhqSGgvCh5xBIbMAU80FaKDFLZM4Ei5rCAAksfVjmTsyaRySkUmySH1nbJck0Ua1KOaG2LUpUS6zldYE9Usf5jDjTI2FIKjuTpl+tLZW8B5I6cEgldxq1MT/9lVQIHBVpDZZTRovhVbK5Ved7JB6S4LaNNlkIUwHvpU0optNXzfaIq0JAPsj6yTpdCNNlvpCCgjDamjN/FOlyBzmIIppyTeTdlUIuCLGXE+i4X2/acFmNQDh21MTz9zHNs7FwuNnECPvXMZdee8V9/7+sc3LnDyspIrB4pNvc9vFPmF2O0WM+mLOuMGAnBi6V0lr1nLLBhShFtLJNpx6yd4YOfgyQxZ1aGAy5euIBSVgo9VKadtQWGlNWqc5bLu5tcurDFaDjENhXKWbI2+Dbw7vff5Wu//Q3efPs9prPZXBF7ZVizvr7GaHWVi5cus7W9SV1ZcoyEtqWdzTg+PuXGrTvc2jtgOp0u1M3L+Gy0wtiK0eoaV65c5vr1q6yvrwkQi0KrTIodJ6cn3Lxxm8ODQ+rKcOXSLjuba1id6brAjVsH/OC9G0x9ZLiyys7ODpcu7bK1sSF2dvPY1VKcbr5mEEBvNpty9+5dbt/eY2//QNZWQWyvZI+e5nHCfn7RWkssSGtUr0BuLNaKWtTq6irbOzvs7uywurqCs3Yp/rc0EMuIuzzr0YOmShA92nbG4dEpN27c4PRgn+PjI07PJ+SccFbR1BXWSCFYjDLHZsQKMURR0bFK3qdIFuA0qUVBULFIiz5K4aN0b6xdzK/zuEc5dlbQ1BaH4WzaYp1ld3ebytRMZx2HR6eMpxOGA0fjNE1TSUFBEgXuEMWuuR/vslJz61TjNIOqIkUv6k5R9kcxZepBgzOG89MJUx8KCCQKdmIBqcAYVoYNsQucni8gpVSAs7nKkeoLuaQoQhtDKLZzuqi50cM+Mc6fUoqpxFSWoCQWre8jaIGFdIn9CthWYEzFHCTq58eU5ZnE2MeAgWIRVxV7Weukj/VqdCmJkq73HSkEUggoJfsh5zTGmRKLLAUaSiy5p53Hd0HGx5wJIRJCWrpHcnkJVeaqzO/8l9/ix63dh5Tutx92U0qs1nowaW5B/kMAlLTWrK2tceXKFb785S9z9erVewCBnDN7e3u8/vrrvPnmm5ydnTEej//Kz+N+++tro9GIn//5n/+ExRsIoPR7v/d7fPvb374PKP0v1tbW1vgn/+SfcO3atU8dW2azGf/hP/wH7ty58yM7p7qu+dznPsdXv/pVRqPR/9Qx+jHrN37jN3j99ddLgdX9dr/db39b2185pLS1vfupAekeqpGgvQS3cirgSx/4/tgnqPK/vBTcX1bfuSconQugVMCcj4M2eunvoER5xBhctSQHvnSekvAvQbq4pBpUUCNt5MQk3y8nL5t02bj1svDLlVFKyWelImkv0vppHmCfV1fnRWVqXsSR0VrAENXnNZDkC5TKVWtJSc67rhsUYo1VotuicpQTKcqGk+XjlCrQXvZ42XZhDhkZJYH5JeBMwnjFjE0t/JVjUZ2SIG8u96w/bi7qUApK9VAv+06JTVojNjcheJTufZwN62sjdlbX2V5fY319wMqwZuAG1MMh9cDirKX14p2mc8JVWqCKBDEr/MwzGjUMhzXoipwSddXgKkXsMugSbHSOtfUNti9eYGNri5W1dUxVAZkUWmbnJ5wcHbO/dyjQRw5olbC2BiwxRaL3KCM+8rO2pXEVzO3xEqrc66wNmVisGAwxFkWaGHHW0HYtqsg6ayNQj6trcko0qoSnrMYZR4ow861Y1GVFDLAyaqhdRes7XO0EkImRuqowJQiakSTvZNyhdKZuaoyu6boOlIAHOQWRbU9S0RZK4jlnTTuTJHeMM7LOhKRxuiZ0M3wMJKVZFrmnJMQbV5EyhNiRNVTGFRtIUUjqrZOUApU1dTUgEkUtTdN75FH8KSBFdMooa8AZsViLAes0tR2SFGQ8KoKuGhQSYLSVQ2lFN22x2qIsKKfRg4wyLahzeos3AfAyihVy3ACaeTF0ippsDcpDnHS4NamizymQQ6TrMk09ADLdbCb2DET8eExlG2w9IKtMjoEcJYE/aCpyCPiUOT07Z7RW4dCErLDNAJUiMSmcdqTQMZ2co7WlGQ7wnaca1vTWBVkJJJeCx9a1VEJbC/OkG2jbkFNbrNYqtJX+SZbApkqR3HXkmMA6UAnrFORG3nsVsLYiBU+YTXBW+nyMidBF+iLsuGRlaLRG5YwPCWMV2mZS0jTNCl03pfMdmShKN9mgswGr8cnTmJqcPFPvqZzBYNBaYFWvDHboqFypBNeRFDJ2uIKyFVL+l8SVQmlUTMTQkacz/Lil6yKj7QvYtQ1ySdyonEElQphycucmRzc+wjnL6toqVpWqbZVxVcNsJnZOVV2RfCSUMTGHxLSd0TQVTS3S6m1KnB4cMj6dsHHpEu1kyqSbMplMOTsdM51OUGQO7h5y88YdDk5PGDSa1WFDjIGTswlnk5aQoGkqrl/a5nNPPsIjD11l99I2zcYI3QxBGabjc/70j1/lv/7Ry3x4+w5n4xkz31FpxZWdXa5cvsLWlUt84Utf4KmnHmN1tYbQMTk95fDgLjdu3OGVV7/Piy+9xs07+3RdJ/cXgWi1qanrAVsbmzz97FN8+ae/zHOffY7VlVUJahJIyXN8eMirr77BCy+8yOTshCcfvc5PfOEpLuxs8OG7N/i//9v/D2/euMNg6NjY2OTBBx/kmc88w3PPP8e1y5cZVQ1ZSxLZAgtVgh5TCMRuwv7+Pq+9+gYvvvQab7z5DgdHRyW54AkxFgn/gFEy1xut0VoU64y2mFKtam1FPRiysbnJlStXeeLJJ3jiyce5cukio0E9V/mTce4vqijJi9wDEjyezSZ88P4HfOeFF3nx5VfYv/0BOo4JAdqZh+zpYhSVOyXKc2ezM3Y21rApMm47orHUWCbjKV0O1LWVxGNSVBjQiS6JbFs9cKSkmExnpK5jUFdYbRhPZwSTuHp5g3AaOW47rl65wJXLV2in8OGtPd579ybBdDz9yC6XL2yi0ZwcnXN+MuHDOwd0PhJSh86aWRCLFFFDENsBZ2HFGayuCCnRtZ6zWWC4uQohcWf/EB8zxoDOAa2hHjYMqoHcNgOzsefsZIpPHqsNgYixYuczbGp8CGStcQBGYyqDSmJTYZT8qbQTBbskdrJdK4p/fQJUlCEL+JF6O5oeBDegRLHHaAEabKlQds4WezCFKGiURHaUymS0LtaDBdgvWQZtLM5VNM2A0cqIZlBT1xVGOxkbfUs3m9G1Uzo/I4eOmCO2cqwMB6yNhgxGDbayWFsRo+Lw6ISTk1O8D0xnLeftRBIOIRJLwsNpeP27P552b1/96s8t/qE+plo030+U5Ha5nk8njvrfKhuN5VfwE2BLOfocLloUQyyfw2Kfsyh60Hppv7P4qPLZfeED84RoD1Qp3f9wj1KxdG2Lc11WRuozhHn++3Kuyz87T26r3pBmcT29RQks37I+KdYnxwsAVZQ3UylEyJm50spcaYd776lSBYhieQ+4eEbL9/retrxXY/67S0OmrAfLcfot2/wbi18qd7eo5KhegVb2flVlGQ0HrA5HjAYNTSPrBKctpnJzCCX2KkJZVI5MAWxShhTSXGlJ9ndybGNUUc+VpPRgZYWLly5x/cEHuXDhAs1gKGB1hpwDvm05PDjgre+/xf7+PsG3AkhoA8h40atUopRY3hoD9AU2fUdTksws8EPfN2UZLQnVEMsYV+yNcxabOHLGAL0/nC6KCSFF+m16zgKBGm2IKaKtLklQmSsXfVQUL7pOLGytNShl50HHXkHYFjutGEUxWPbVqqz9xbIZlUlZFXVVL4nqe3bWCHSjKJZt0k9zGZtVeWfn4BwLgMsaRyqAUElBz7vgvJgpQ8kcl0IkgXWMdkWoS2zKRJ1W9u8CuYgKjlZaamy0YmV9xDPPPsFoaBHAZQEe5Wh5++1b3LhxpwQ9ICclk0rMZB/RtSnPMxXLs6JehqynlZZ1T/RitayNlXekB1rKsyAlUoa263CVKQUuiFJP7otPxHYteE+vTJhiwjgzv4eZEhNIUQApCVTMrRNlrLMI3B8L4FSgpVyUk7L8vkqJXJLxShf1q2zIhDLWIOqXBYRKKRFDUZROCygpZQFkBDaQcUObPkbjAEUIXYk5JLEHjAU8yAGjrFhG93bhPXiaEhlDNgrrZAxAZ1HNsg5VoBnKe5qVKsvRSIqB7COjwYjPPf9FBmsb83XBfG4gcbB3hxf+/E85OzlhOBQQ3yiByfp3JoQo8SNkHUOJz3SdFEZYKwVMocDnZ0enNCsjQBNChw+BrvW0XQdkgu9IUfHAgw9KQVMtxT/eB2atJxRVmWFTcWFrg52tdVZXR9TDGl05shLLubv7R/zBH/w5f/7t73B0dEIXIyqLqtL66iqDlRW2dra5fOUio9EATSb6TlSVzs85ODzh5q09Do9O6Lwv8GKZR9EYI3bMGxvrXL52hWvXrrIyWl3AHEhfPTo+5uaNW5wcH7MybLhyaZvtzTVyTLzyvbf5/vu3QWeqqmJldZWd7W0uXr7I1vYWA1fNVbt6+G45MCmAYMB3LQeHh9y5s8+dO3c5PRsTYm8Dl0qRYx/b02U+XcTxlDIL0N1YqrpmOBqxtbnF9s42GxvrDOp66doW8+Knt6W1DaI+Px2PuX1nj1u3b3N0eEgKE8glrpJiKUwo6wcMne8wVjGwYkEfculzPtFFLyrzvcpPEuA15Sw2yU6s12KMRYVc4bQhxIRPkWboaLRhPAu4yrK5uYFRjvG05ejwlEk7ZX29YWOloa5r2llHaCNn4wmzTiBKhXCMRUhIXj8twJ5VGWdsGfsTnU8ko6krx2Qyo+283MssxazaiMqJKPNLPKebBlFCLusmyr3vwdRIxpRZQtvy7vbrlyxqeVoXy8cyDIQQ548m515xrcSO5+vMxbPt1zVai6GrViWO3JNAmXk8V9YgeT7tL6zhFiC61gZjLK6qBFyyEsdWiEJcjIEYpOgyJwHB0GKVXVdOCnAKgKaQ+XwynRALPNYFL8dIC3UvreC3v3ZfSel++9vRejCpt3SzBdT/YTRjDFtbWzz00EM89dRTXL16VUDEpaL8nDP7+/t885vf5NVXX2U2m/1QzuV+++ttFy5c4Fd+5VfY2dm5r6D0t7Bdu3aNf/Ev/gVN03ziezlnbt68ya//+q9zfHz8IzsnpdQ9/fJ/dhz03vMnf/InfP3rX79vSXm/3W9/i9sPTUnp4xDRXIGot1DIRRWAohq0HLDuN3EwP4ZUAPbf1/cOfv2GT6m53PsnlJaW1YoKWCQKMma+9wPmVVw9NJOLrK8qwea+4lEOmxCgRxev7h4yyvN/L9uZLRIUUrnUB54Vi6Ct7mXLswAs/TmJFZ2ozAD0FmyqbH4BrLEShA4erW2xqIvziruUUrG6yPMkRH+PjdHFWk2udf4Ml57BPcmcpfvVB8k+kVTIC6sISsJPKUnW9b/Xt95OI2c5r8qKQpB1mtFoyNbmGhtra2yvrbI2bNAGdGXQyjJ0FaujoVjgaE1lLCnMUDoTlaY2DapLosQwGLC+NiRZjbUWh2Y4GHI+mTIed+iq5soDD3Dp+nU2tjZK4NWgkPs6Oz/j9PCAydkp0+mEGBPWKLRKDEcDok+ECG1oSSEW5QrZQCQfRbVfiaWQVhJIjCDyykAzaCTI0raQJIAaY5xXIhtrWCS8MpWVqkScQWmDDmJCVjkpeTNaAg1Oa0JJPlhr54n4nCJWAXiU0nReElK2clIcRhZ1lpQwGmzJAXZd0XUuiY5QghV90AsMzjiCb9HO4JPYR0wmEwmkalOq1iQpoUwWOx9XYaxBa0TVIvfwX6SyFmscWcv90jnTuBqiQH0xFbsLXSqLlZzzoHJF3aIi5oSOXgLwriL5IApeSiA+33VYrdFVIrsW3WSUnqLoEIUWX97NNVRcx88sxjTkHFFKgCtdaVKbyD6DS2Lb6DtmsxaFpdEViURWmS4Ego/oXJIkGtBSkamsISkBDKxxtDHSjscM1xy+i0w9DFdXiO05caqpazuvlEYnjJEEt7YC6JmiVqeMBWGLyCGiB0OSswIPdV6Kl60lKQm4WQPJi5WAtnYeHBPVsyQqRbmVZDqJlDpIcrzoPQQvQTspJ8U4I6DfrCXnTNd1GK2JPqGzxtmKlFpC6DBOoC2Rlo+S/OsiJM1wbSR2gBHa8ZQuQ10bGjfA+yDJtUqC9ikG3LCRar/OQ+3QlUOFkvwzimyKHHsb6E7OaH0HztAMR9jBBsqtlOTYQiErt2ccf/g+7731Hqs7W6xvDRk5g28TVTMg5j5JJ+NjCFK9XLmKHCKh88y6KSsrQ7Gp8B0pZpIxxLYjhZbxbMr52ZjJ+RTvA8cn59y+c8D+3T26TqwBV1dGhJjYPzjk5GwK1mJ05tLOOj/x7FM8dP0iFy5uMdzYwK6vkVQidInvffddvv71/87bb93g4GzCtPWonFgbDanqiq1LF/jKz3yZr3z5S1y8sItVkcnZMefHZ5ydnvDOex/wre98l1df/wHHZ2dSSVvGAK2KtP5whQuXLvOTP/ETfPnLX+ahhx6krl1JiyVy7Lh980N+67/8Li+8/AZrKzU/9flH2Vlb4d//2n/l5bfex9IxGq4wXNtgY2ubBx+6zvOf+zxf/NxzXLy0i6scpsCuojmv6dX3xPLAk2LHwd19vv/m93nxxVf5/pvvsn90xGQ2pfNRKsyRxKBYTqa5JasocRhRV7IG6xqqumG0ssru7gUee+xRHnv8cR55+CE211fF3qBf0/SB5Y+vc+ZtAT6mBKdnp9z48APeeesN3nj9e7z62lucj8cYE1BRVJIm7ZSoI1d3LpK7xOHpGcfTKSopmXc0KJ2pmooKhUOSrK4yDAcNmUzoPKezjhgjo+EAUqRrPbqyXLmyyfh4RodiZ2uVi7sXOT2NvPfRbW5+uEe2kceurnFxc40uRk7OZ/g2cefwhMmsxToYDQacnp2hlCNkAUWrusL7CCEyHNasrGicMZyeerqkqKuKg8NjZl1AAyEKbGQqhdO6JAwyMRrOzzqi7xg0htH6CgpJpqic8F0AbXHa0IaOpBKVtdRVTVM5vE/MvCTRVIHmuzaWyudc1DYyxgrcaI2hqUXhaDLpioKIJGQoIIYE8gsQ0f+nin2DEgg05SgJ+5I8J5fEt0IsGkIkBIhJoZTB2ApXWwbDAYOmoa4rmrqW+6CTqFXNWmadx5c5sXKKppGAacqB4cgxHDYoo5m1nunYc3I6ZjqdYlVkc3XI//H/+j1+HNs9kBILSEfaQmmnX1vzP2KUFgf55DvYFzHAHEwC5s/wnh9lsZ/pf1RsOtQcUlp8L99zvnKeCzubcrByXQv0YhnIWQZ07r3+xQ8ugCT5sl4+Z7WwUepPeHmPlMvPK63naCe5T6YWO6+i5Nrvifp7lHvoo0++LZ1nv9f4+OfCAkBavs7+Wpe/v7x/XL4HkO/Zpyzv9ZafVH9tWmux8XSOwaBhNBwwbBqGRYFVaVDFbsdqK2ofShQ2BdYQ1YGkBJZRURQdnHMC7vfqpiicrWi9JyW4ev06Dz38CBevXmF1dXUOL6JEcSF0Hednpxwd3OXV732P6WxGv9WqXF90UizP+71pGWcEPCmH071FlqxSUyG3rJXErVgx57k1XF+so7UkaSlztpHMM7ns1VTqlTbU3PbQGF32jgIGaW0W+78s4Kash5VA7bpXzF08lx4kETGOTCiqL+Whyx6xQKG5yDoZZUgpFMhT3jnvPX0RjRQO9AAdxByZ23YVqKUHWXKxOJXrF8ULRS4W3kWBZr6OUXP4RytVLDo1KENC7Je1UlJsUt6V/p1MsRRYGBiu1nz2c88wHMnaJ5e1iXTiips3jnjzjR8gxHwufyJZ31hg1pKrJkaxasLg0HOrplgsDedCzjLFIHsC6XsGUe2IWQCVqjZFhQRsXZFDRwosWdpJPETmLIMqX+65SpQGU7pRykVhR4tFWl8Jq6VYp7+3c6ioV1MrpwiQlahwSVfQQBArO0rfLHbySheVLCuQTCx2Z30MR94H0EriJDF5QKO1kXV5GYG0UoQu4iqHdaKGFn0QAEhDZWUvHHOSephSoKa0BmPm6k3KCeAl75dASujyDrVe+qpWXLx0iaeffQ5XryytUfsYUWDvow/4o9//A7I21MOKxtkCPpm5rV1vd5+ymtugC9SWJP5T1qkxieV26vt/jITo6XygnXXknGnbrqjVZh5/4jFGwwF1JXZw01krIDuqjEmGi1sbXNjdYjioGY4G6KYBI+o75+czXn7pNb72//0d9u4e0RbbKLGTr9DOcvHyJR586Dpbm5s4q4mho5vN8G3H+XjM7Tv73Ly1x9l4Moca+6FDK401YkG3u3uBBx54gAsXdqnqGqWkgCSTCN2Mjz78iB+8/T4hBHa3V7lyYZP3Ptjjzfdu40NLZQy2rqmbISsrQ3Z3L3Dt8mU2N9fFPr5fTORekbxPBGZEAUvULo+Pj7lze5+9vQNOz87pfCdxnWItSj8mca+6Uj8H6zI+am2xrmIwaFhf32Bre5vtrU1WRiOsLT8vneST65VPtFLglUWNaDI+5/jwgLt399jfv8vp6Rity/4rZUKU/XJd1wxtxbTtmLat7Exiv4bJBUpVmDKOKq1EKbmcSOcDocQ+ndFirZ1hMKqxWjFrI64yrK2uorCcnk85PpK99uqKY2NYY6xl2nakSDkPT86Rpq5KsVMujE6xWs0yflutcbWmsorgofUJ6yy+88xaX0Ah2WfpYrOs52seTejEHk3rTFXGAinyRArGMlgthZ4xJymY0nYOMfnQF37Kc45JCqWgzNUIcCSzmcRctVb4LszXrv3+g9JPVOmDuiwK+nVW3xdyUUPUBWLqe0VZDcr6IUsxbUbU6sVBwM4VEY0Vqz5V+noMiVBiwTkXizirsVaU4rSBurJFpTDjfaKdyZiSU6Bxlv/H//P/+NRe+dfZ7kNK99tfVdNaVFbruv6hKyaBWHp96Utf4oknnuDixYs0TfOJfAvAdDrl1q1b/Kf/9J84PT39oZzL/fbX33Z3d/ln/+yfsbOz84nv5Zx54YUX+NrXvnYfUPpfvH3mM5/hH/7Df/ipoBLAG2+8wa/92q/d49bzo2i7u7v803/6T/8vgUo5Z27cuMG//bf/lv39/b/iM7zf7rf77W9C+8tCSvYve0Ct7q37mQ9PqrceWFh+Seu3bEs/0wft53BPH8RZqO2wBP/oEizuQZrl35sH4j8WIO8PsxzYn593+f6cieqhqdzLyUdJSijRCLr3PHvox0il35JcnVQkmzmQtBy07yeRlBJoCfuzdLw+KNFvVpdhLKX1vGrXOocPUVQiYiwWcbkEtkDlT4JjqYBS5F7NafE8l5MJ/Tfm1hcfU63qgy/9sftr6r+2gLJUAX+W4j7lONZYRk3FaFCzsb7GykgSCmtrI6yyjJqG9VEtwVpXyTkX+Wpb1SStUMVCrRkMiEasF2pnGG2sSvChBLnXVgborOhSIlVDHn34CS5fv8ZgZQ2MlSArEqCYjE85unuH6dkpOmdm06k8v5wkCqwU7awlJ8W0a4k5YUpQIYSIRipTtcoC2cQwrz73mVIRqvFdhyrVUwlNJGGrcp0onHEl2CoS+KoEko22pBDQMYkaVLEoMU4ClaIwI6FxMqQYJaGgFT5nUlLkGBjUTbGOSYScaFOSSl4lChJJKWyBBBOenCRpoawiBE/bSrBXZQhJgrSpWDWkFBgOB6LiEKTyDFUgkhSpbQURVJJqu1gCwRlFXUvlpQ8ttnIC4HlfkrsJYpKKRGsJKVI5sQq0yszfnRgleGtKkDnlgKlNCShmaqOxjSaFDlNllCv2YLQFUEokEkoNIa1BGqFyILSeFCO2rtFOqmdzjuXeZ2bTFlcCRdppwqzFk0ilWphcrDdKksVYTfAdNimxFsiabjbDKMXAGmgzOlvWRjVGGwKOoJEqYy2BRFvV5CS2JDm2GCSBEtuWbCyVqYghiopSjigPSlmSUuTQYowj5kRKAnSpLH0tR4+2FqVrCXxNzsk6SgBLLY1XJHJQEKHrAroypCA92iCqJINBTfSiMKWyQlnFYG1A6jRxJtX7wSems0C9UkOE3EW6kIgkXNcRvXxeFzqBxaLmZHIq8KmzGKtkDM4Q2g5ta8AUzfpI8J28Oz4Tp5lqVJMNqEpjlKZaWRG4qBvjTFFfK5pgCgV2lZXti6zs3eXGzVtMwxYP7G7I+B8CVe1QJhFzpGoGGC/BwxDEBqVqapLOtK3HaCXjd/QQEk3lSAQYVNicGVrH6flEMl7KYCwcHB5yPh7THZ+xvr7C9uY6Ux/wSe7d3t4p33zpDW7t3eWBBy7z4LVLXLpyCbc6wo1qPv+lx9ncHvH7v/2nvPzKe+yfTJh2U866GZxNuLl/l739u9z86BZf/dmf5fHHH2SwusGgGTJaqWkGhgu7Wzz8wHW+/eLLvPvBDaadJ5ZKXR888fyMjz7oODk+5s03v8+Xv/xTPP/88+xe2KGqHMoommbI448+yPrmBq+/8Ra//V+/Q86ZD/cOSd2UmZ/i28C07WgnY86O73Lzww9449Xv8tznP8tnnn2GSxcvUlfNUlVRCeZnS8agjWP3QsX29g6f+cxTvP/ee3znxdd47fW3uXFzj/PxmJADKYk9Z8aKhQ4SxDcmYRLEoPCdVIC30ynnpyfcvvkRL738CtevXefhhx/m8Ucf4YHrVxiNmrkN072rjOX0fK/hkDFasbmxzub6Z3nyiWf4mf/tq3z7xZf582+/yMnRDe7c2oOzCSu1oRoaamfI1lJNKzifMA2eyljpO0rG2KpxNNYwaTsMGXzHLIgtY107cmfAR4zOrK4MCSju7h8To8Y2DcpWqGyIXUs3nhFipE0tB5NzTG1YWV3D2MzZ+RnKWKyNuEqscYx2JVmrmZ53dG0qsHLE58AsWLISKNXPWlCRna11/MRzOh2LRWXK5KlikgP1ADaGDUErYh3xWZINkihMrAwbmqbCaM36xgrnJ1M+vHEg843SDJqaQeU4C9NiNQSdjwUqUnMwt2kqSSqUdZxSch+tGWCsVGYrZfHFZqdf7cYgUDgpk+mtadR8nNcUwLaHX1IqyoGqWDhBbXWxuQi0s5bJJHF22lczK6yrqOqaZjRgNByxMhyyuVphnEWlTPCB8aTlcP+E2WxM5WA0GjAajRgMR4xWhmxub1NZaDTEyYQf1/bxtSr8DxJz86T5//CALCeFC4ZQkpvl15eSiD3QNF//fup+4mOH/Njn9cdePvPlPVJ/FsuA0vKfKNFk6xNs85aZAxgZ7lm332v59j+6HQvbM/mCnie4KPchpUXif7G/WgBic02b/PFru/d6FhQK82P9Rec0P7f5eS3uYw/YLPYkH1PVWTqu0ZqmqmiamtWVEVUlakl1XUkxhBEgqXi4IOBOUdAxRkCDknS11pKUKLoYo6iaugA7ci51JXsGW1VsXLjEE088wdUHruOqer7f6a/9/PSUWzc+5NaNG8ymE87Ozu5ZAwLzBG8oc5CWm0rOqUAiip5GyUUZB5jDrkox33+qQqyk3BfELPp5zgLMz2GcLDaXOSVxLS2qOD3slXJRMe1Torl/nvKlmGXeyTHhbG8NJ0pJsUBWfcJYnqdAKX2xjexpRaUqxlLckmX13fc/gZESroBconSnSp8VJSmjTOF/U0moLvqOMaIWIyo4utijx8V5lf2TKklpUwollJ5f9twSbgEmpnniNmex7xbn5IipDI8+dp3hyAKBfrSR995xdDTlvXc+giTXlVIu62z5uJQFyslZrI90LgCOESg5kucwF7l/Ffv9uqh6GTIYhcqqWP0I+JsDolLryjzEAoJDl+duDHm+147l/mdyiAIRa1OsTWWeU0XhJyNzs+4th3LEUtSTRcZQoDulyVqRQxDIvBRgLV9DjlmAmyT9VZUxSYcEKmGMPJzgfc8KYGqDVoYUoqigZCWQtEIUYkMgkghkUUT2fl4UAwJaeR8EuitFYH1sKBc4TdR8QfWAGDI6plAKlGTzj06grOXw+Ih33n6LJ556FmWqftQq45hj99I1nvnsZ3nxxRdpo0evDqmspV8jCiwq901iCpBVJoWINgarHLEA1NqUDlRsILWVfqoAq8q1pYxaMUwnU955+wc88uhjxCSgRlNXst7zYovcdZG9u8e0XWB1dcDm+ipr66tUTYNylrX1IT/xU88xHNb8p//3b3PjzgGdF8XHadsRxlPG0xlnZ2c89NBDXLp0gcGgYjAyVFWFcYq6dqyvrXLr1h57dw8KpFJA/pTw2RMniZs3b3JycsLFS5e4du0am5sbomKpZK0/GDQ89OBVjk7O2D844PbeIdOZ2KGn0NGGYpnlA76dMh6fc3RwlwsXdrh46SIbGxtUVTW321ssLhQZUQ5ylWH3Qs3m5gbXrl9i785dbt+5y9HxGbNZS0xhPm/nYqeecyb38GIZb2OKaCWgXfAd0/GEg4O73BitsLmxyebmBlubGwwGDWYJhM591/nEHK/mX3bOsr6xzvraBleuXuPo8JD3PrzB2ekRk8mYbjzDKkVVV6IeaJSAN21R3csCu/bju1KKqrJFjT1JrCgk2TcbJTGXlCElgau0wftAlxJoK/EppSFC6LzESVNi6jsqryUOYx3T4KXoq4CM2ihUlL0DShFDoo0BU5RaI0ms6cr7CAnvO6yzrBpL5zvaIEUFRIghE3WkqZyM4TaVd7nY5yWxhKwqgQ+rpkIpxenJhNgGMmIlWTs7j/ElxRxM6uddUc4vKsxzi10ZSysnnx3CAmKSgix5gqkEqmPu54vF01Uf+4xeHVAp+X7/s0aLTV9MUoQRQqbrFnHZvvjRWoerHJVzVPVgXlSaozzfWdvRdTMgieKks7hK7KlXVhuMKUWM6b5Fy/32v15bVkxqmmaxR/whttXVVR555BG+8IUv8MADD3zi83LOnJ6e8s477/D6669zeHjI0dHRjxxKuN9+dM05xy/8wi+wvb39qd9/9913+cY3vnEfUPpb0F599VWGwyG/9Eu/9Klj0eOPP87f+Tt/hz/8wz/8kVqn7e/v82u/9mv8yq/8Cru7u59Q+vrLNKUUV69e5V/9q3/Fv/t3/447d+7c79P32/12v31q+0tDSrCUI/iUQVOCowth9T5APrdcWwr+L/49D0lLxeT88PJz1jmpKuu97PO9lcLz4Pk9NNK9yYe8/P3ytb460+iSiCqy18vqQH1bVlG6pxJmCULqg8K9l/dyRdQ8/FE2moUlueeclo9hlpJnOWc0co7T6azIs6tSybcg/FX/cJautz8/UetZlh9fDiIvAh79M/v48+0X8D2AlYrdW1oKns9hM6UK2JOLbL7AFFXlWB0NWR82XLqwzdraKtYozDwRY3CDCl05aqNRWIbDiplKDOyA1dGAQKCbdEQ0GUdtHbrSRB+ZjFtilxitrhG6QKai2Vzn6qVLrKzv4uqKrBeB9xRausmU8fk547MTZuNTUuyk/+oCnRgBbLSxpASztqXtOpF6L37wKQQJUinpyz4Uy4KEVDqT0EqqJXPIJCXPNaaEQtPFgDVKwJ3kRXlHKZzN5OiLDLWT+2Tlmitr5RZrI8FYlbElQBZ9KJWXEaWtAH+pKIRYCSClGPHRExN0bSvB1pSJyhBQGOcgZ9p2hrY1KQdQFmwmq0T0UQK/RoC06KUvDRqD1omgOqpKZHFVXrzLfaWwUmAQaG06nWGxhBwlWB1C/5LKD1oNOaJNxjlFjgpjFTm70jl1qeTOIjGPJAB0UqSscM0IpxVKR1IKmCqhXAsmAJ0E0klkPJkRKm8BI6ku1QZDJIViUTebyr2NSSAuH9C5QD5F1aNWCmUN7ayltqLC1fmZBFeTlapyNNpasUfrEyhO5LZTB4OVNUlIn09RGYyVZHvlDFVToU0jiSyXSNNMO55SrdRUKw05a0kukNHOCLAWErq26KoiKrlnVmewFrJB/AMTEIh9sByNzhCnJ+i6IqFJaIyTJFPAk5RH10agshDJIRKnHTM/oR4OiT6S2ygKR0YRZh3T8w5nNDlHAhqMop1NJTibS59Ogdl0hrUVvvM0tSTDtFU4pSF5OTefmXUZV1lMCMQ2oqsag5HxctYyGjpR09KR9myCdQY7GmJCTVZiSapignCOcqtkKua2Ysbh1na4+PDD7B2ecHr3nCML29vrKKXwIVFZBxjOziakLjKqaoiBpA2z4Jl1IrtunGa1VATPZhP06gDlakxU6BwYNpacNcrO8MkT0gYYjbKOo6NDjk/O2NxcY2VYM5t52pjofODG3hGHp+e8e/OAy9sf8YWnH+LJpx5kuLuJWVvnoUev83/75+tsrP0xf/LN73H3KDPxgRBbmEVu37jFfz37b9y6sc/P/uxP8cUvfZbd3U1GG7tYV1O5mtGg5vKlHb794vd45Y03ODg6JQaxKYkxktop4dAzmZxz585NXn/jNb7w/PN89rPPcunCNivrO/zkV74KueMnf+ILvPTK9/jmn73I/sGE6WjIdKLwMZFnE3L0eD9jNhtzenLE+x98wCuvvMZnn/8cn/vsZ9nd3aYyCkMq86hYD4m0/wCjazZ2Bqxt7/L4U0/w4fs3+Na3X+W7332Dj27eZDwe0+GJea5zQIqRmAI6yHwlVbgzQvAEP6WbjTk/O+Ngf4/vv/km39nZ5YmnHufZZz/D9etXWVkZUVmDzvP4uSSv5tPtshKhFrvAumL7wmX+7v9+kS9/9Wc52LvJd7/7Kt/91st88P77TM6POTudUTeO4WDA9bphmjpCUYObdDNClASJT0EAHqNJPpCCVDQ7JxY8zso9SirhgwBuSWtc5YgYYlYCE8aAKtZq1aihGg0YrKwwOe3IWlFZg8KhjccYxWAg/bnJFRrwMaKR5IXvWpJWkB3GDagaS0iB6bRDxcDKqGGw2tBOWnyX0SRW10esDAZkDba2TM80zjpiDoTgsU5DdnObDKUVlbV0XcDHSAgdUUnFsu9iWYWauRpBzl4Sx0ZhtZnDJUqJAoNzDusSnY+4usJaRwweVCbEhK3kGc6mgRAjzpiiHFcS2CERfJoDTJSUcE6SKK6cwrmyPlaiZqGUWN9Joj/RTlva6ZjzU8tdrTHW0jjHaDCkGY0YrI6ohjVVGGCLYtm06zgdH5PzCdZqqlqzOqzZGNTEyZQf9/bpakYLqGgOzajFfgI+BusAPb2xtHItv6fmNsq9Ndi9xRTQA0sfb/2X7skV5uWE0tKamaXzy8VuS937fZZ+fl5I0B+nX4sXKGR+Xf11Lp/D8r1aPtFyLcv7pDlcQL/OF0gllATi/Dp6gKhPxS/d68WlL+75xz8/L319vv9Zuq/LgNJyEmAZ0MpLnzM3vys/J+OyjGvOOYaDhkFVsTIaUjdVce1SBaBQaGdQRtQhFBrnDIGMKwqkOacCCylAi6WZEmDCd4FkjFi5xkxVDdm9eJHPfO451ta2ZM282HSRQuTs5IQbN27wwfvvMT4/LXClwEOyPygqP8WGrbfJlbX8QrWXHgqC+X5S+B9T7jEFpCh3TPX23ZIEVVphlCr23zLWaI1YAVOmJiXguFifFnUfpQW6VbmAcxR7G0kU62LXJQU9C7BSuE2Bq2JRlMkZDFrAfyPHDEHAKCmq0aCXVAbn74Uq6h65KIzIvNWrQShhWUqiNi9APOTd9j7I+RbrvxzTopP2/VFlEQgSvkruV+4LeASw0WU/m/rrLofQ1sl4oiSJr53msSceYGd3k97mTO5lAhxdZ3jv/Zt0PpSxSSAslbMUnpR3kywW0HP1WaWJSX4HrcU+ucx7sViYoszcWl0pLfOcLu+OFrswgb1q6Uud7K20ke9ppYvdj5Xbo2XQDV3AVBZdicWZFNxk0NJ/STKHKmP7rLm8e2jIReVS5YVC9tJYFDopqkAVsEyrObCUiKDFxg8lgFaOYtWLkbVZjgIbJECZTIh+rmgFov4lgJWfP3ajBTBGaWJR0XZFvSarAusV1ZmUFTkrrFWiMIsS60ZKHKUk/ZWWvbZSPbBdI8pgsLd3h52dXbYvXJZ9c38mSqFczRPPPsve3X3eeft9pnqGWWkwRlQddZbxOsRE9GJ32yukRRI+xDJeJmpr0GhRVFIJZzRa2aI4DMpqMhp8R2wcs1nLm9//PpcuXmJ3dwczGhRFN7H6Tikx7Tz+6IST8wkHR+fsbp5z6cImw7URummoBzWfe/5ZNtfX+cP/9md8+4WXGU9nRJVQUeIJt2/dYTKecXpyyvXrV9jcXMNUNUOtMVr2csNBw+rqCjfv3OHk9JzQwx85k1Kg6xIheqbTCUeHB1y6fJmLly6ytbmBMZad3cvs7kY633L34JCbN25x69Zd6srSZUeImRAjmZaUAjF6fNcyPj9nf/+AnQu7XL58mY2NdVxR8JzPN+T5+wUGV1k2thrW1je4cvUSd+4ccuvWHodHx8xmM2Kxas5zWCnP1cRyeTezikUJLRC1wfuW2XTK6fExt281bGxucOHCrtjSNY3Eaihb0eXFxrz17025bVpR1Q0XL11m68JF2nbC0eEhtz66xeHdQ6bTsVidx4DRmtFwwIBEiALgxCTWbQpFTBGjNdZUMg7mSE7MlUeVETu4jIz7MQqg6qwUnSXUHGRSOS3ekcpiq4rsEyl3aC3KdbkH66wtw51GI5AZOZfCs4SPyDytDcbpYkuW0UWNfjioCUEs30POGKdpmgqUwlaJVlPGViVFbbpX3dPzW6u1gMkx5kUhas5Llmf9ekbmkT7u2av2CQhabAC1FkvO6FEldqJ1pFfBUsXaUtSN5O/3FL3k3tJyCYwqfVM4RiVgahn7eoVNGWtlzZCiJ0WP7zqmEynWMFrjrNhP29phrRMLXEQpMaXIZBbI0zK+GYV1moFz6PuAxP32v0jrFZOccwLRlvX/D7utrq7ywAMP8Pf+3t9jfX39E5+ZUuLu3bu8/vrrvPDCC/dVk/6WNGstv/iLv8gTTzzxqcDaeDzmD//wD5n8GBee3W9/te3ll1/mscce4/HHH/9EnzDG8NM//dPcvHmTN95440d6Xvv7+/zqr/4qP//zP8/zzz//Pw0qXbt2jX/zb/4N3/zmN/mt3/otptMf/3jl/Xa/3W8/2vaXhpT6QHIfvE5LIEzfFkHs/j9NLpCM0gvrtL56eJ6EWETuJdiz4I+k+vBjnz3/3aWkxHLyYhnUyX0VXB/s7oP3/aauaJunnitaCqqlYgnXV4L2wfW5glA57hycQoKXLH8tL1Umq/687rUz6IPA/T3qoayU0jzYp7UAGXJcI9WcKhOjlyRBgcQUPeB073NZVk6aK1MBuTyT+f1Zek7pnnshm3aBk+S8Y8qSPCiBSqMVtq5oKlssX1YYDAfYyrG1tsrGYEBdSZBBK02ljURNjWJltEJlDJW2YsXjAGPxPjGZzIgm05VK0xhaEpnJrCV0ienMM6oG7FxQPPrUEzz02KMM1sSCQWUtMvMpE7uW2eScyekRZ6dHdLOuXL/0QeMMOSSpEEyRpnaknAmhty2QIGYMiayjBOhTBp1LQF2TkCBiCmlu96JKoiQniEjgI+USyDKGtu3ofBAbNKWk8DtEBqMB1ntqV6GcBEdRBYAq/SDlAtuUvmiNI6uEVpmmdngSOYsFxSQkfJQa3xQStatEOj5GghebhK7r6PxMApwxkJEqdKvF0jFmT0gBZySwkclgFSF6YvByPyJkk/FdB1phjMUjlQLRaWxOpWpXgtASFLMoItPpDG0NnY9oAyElMoHcFflyY0iAsxaFEms53SezLMrW4BPaVMQAptIkPIkO4wLYFop60tyHgBE6b0EYEbPuXZqIQSCzHDt0irSdQGm1EshM5UTbReygJgRP1pK0MVoSPq4aYKz0YZ0NIUSU08VgTqFTpmoacq1wpsHkhK0cwXd0rSfrhK4MypjyeRK8V1bUq0zdUOUaZSGpiMJijAMf8OMZrm5QlZsrO9l6QF8hCZJk6O1DlK37iyaHCCmgUqAbd5imwZiGFILE6YzGOIeJkIL0Z7Sm61pmM09gyqBuJPSrNUkbvBfLwYzIqacUaJxiOpuCrfFBLBecNVTaoZTm3CesAaM91mrqpsZPMu1sinU1zWCEqSwqW6mUdpLQUUYzGqzMx1nnNNlUEsT3EZUU2SQJZpIJ7TmEjG02Sz8SEBPtGG1dYW3rJu++8TqWKXVT0QykitV3AaU17ayTastiPxaCJ2ZFil6sTDLMpjNqZTHags+cn0+YjWc0tRUlK+Wpa1GF6EJg1gXWgswLbTtlOmtROTOqK+qq4nQyLRZSmZPjU87Pzjk6PGY67fjMZx9hFBPVxhZbu2v8g3/0swzXh/y3P3qJm3cOabMiBk3rPceHh7z00kscHOxz48YNfvbv/DQPP/wQzeo2xlW4uqaph2xurPPwI9f45ne+y9vvfMhk0pbkRixzQ6DrWk5PT3jvvfe5c/sO//vP/x0uXNqVpBdDHhiOuLC7zU4janpvf3SLWzfvcnRyxLSdECO0M7mHmxsKHc55+9WXufHhB7z12hs89/wXePLxR9ndWqeuRKJe3UMEaaBCqYrRqOHJp3Z44MFH+MpXvsCrr73Oyy+8xg/e/ZDTszM6LxaWETW/BrE78gKPWEWMBmNajJ5hZhPayZjjowM+uvEBL7/8Cg88eJ2nn36KRx56iAu7O4wGzcKOaZFrXkrIU845gdIoDSvDmtUHH+bB69f56s98lTffeocfvP4ar73xKuf7d5n6FpsSIxWYzCZ07UwSbz4wmXqayrLiaqw2zHRm1AwhJKY5knVGDyqxg1QKFRJtygRliF0niZMMXQz4GMg5sdI0XNzaYaAMxwennJ6NQStW1wbMZmJvljSMViuMspAi25sDWu/puoStYOfyBps7W2jj0B4+fH+P0+MJZ+Mxpqm4sLOJ1YqT0zEhRzY2R1RNTTv1NIOas/MxR4B1FWgIvqNtO85Op2Tg5LhDGXCVpgrgc8LZirpqOBt3dCEASsYSK5LtIXmcNkWVgWKxREmWGJqmoesS0DKddBhTkplaks6Vq8govJffs85gTLHDLcnllPs+JGuxuUZfbklB0UVRNEmInYsktmV9LHOGKvaDmaQ8OXuSbzmZnnNwqMAYjHFobRiuNGxsrLGxtYu1Uk0+HXecnZ4zPj3nUJ2jQsePa7tHcaeHXGDxtb59Stz4nrV1D/f0a/qclw6be05wmTJi6dPmP/fJd3WRtMwg6ptqCQpS6mNH+eT1LV9KX6TQr/f7fcaynXJavidKFRKlP7fF9S0fuL/2/j7OQQnK/qt87eMqt/1n98dVPVzQr0tzXoJB+o/9JLi0YECW9hdL/y2f6zzf2l9vX3xSzl0gGlXYBylicM7hnGXQ1NR1Q1XsigZNRWMd1qgC+Yiiab/5rKoKUxJ/irKmVqJM67tA1sXuG4GmE+CD2E+lBMO6YXvnAtceeICnnnma0dpqAVbkykQ1IzKdnPPa977LrZs36LquWEKVAhwtCVsf5DqtlbWA7J8XNy+V3+kf3fwplf1Gyr1Ch5p3uF5RYQ6RILlhgxJLl5TIxYK639c6ZwX0NwZlFs9FG0kwU/awy2rAWvd7dDn/GMo55iRKtX2XSwKD6j4+EEV9J8YoyV7pDPQlTP2SPedinW0EjBdgpuzbc1z0XxQphjkYk0pCO5lejSzN4Zj5eWex+VFaF+vo0ufS4j1USkCmHrrqxyXd911tUcWSK8sf8nsm89jjD3Plys6CJij2emSH7yyvv/Y2x4en8/15Tr3CakRngVrJYrtTHhExJikwSKkcr1wPCl3mspiy7AXKucYySqScMc6SjRJQJRfFwPkzyHP13P79FFUlSdgrY7BOFIJySbaLKFIqBTC2/H7pV8aWvlfWXkrNO6/SZj4kEYMoW2lIvhN7OeMW+2A0WI0p/ShF6Q/RSz+OMVNVMkYllchKk7OoweQMRotCllGKmEOZi5lDSgIfCPyTUsbqjLIJYwV87toWlTTGOpQ1RbFLILJMJoeMNW4+iIkDky7PEog9tCBKyu+88xbD0YhmuC7FQvM5R2OqIZ/9/JfY3zvk9PgAaxV1UxS6YxZV5BCL8nZRVipqZTnH+TgcQsSiCoCdCD7SzlqMkuILCoBRVY6YBISIsePGzZsYY6ibmpSKlZbVtD6QYyRlCD5wFoMois46rl+7yHA1YYZDrLE89Nh1RqtDLl25yB//8Z9z+84d2fOHTAyeo6ND2rbl7OyUBx96gIuXLtBUNc1QitaMsVRVxdr6Crdu73Nn74DprCXF8p5kiYGlKFbNZ+fnHB0f8cRjj7Gzs42pLGAZOMe1pmF1UFMZw92TESen50wmU7rQkmMWCzESxiSsyUzPjvhgfM7RwQEXLl3iwoULrBVFq37eubcJeGeMZXW1YjRa59KlCxwcHnLn9h77e4eMp1NCCPOxXaZQmUf6YIJSilwKprTSqCDwfde2jMfn3L17l9W1Nba2t9jZ3mJ1ZYWmrudqbh8/q8VcLGiMFECANQo7HDEaDLl88TLHp2cc7t9l7+4e5yfHBO+xNouNohULwZSTwEpBYlqN0wK6AsZYHMwVgZTRcxUvGfYiOUuhWG+7mfrnV1THR82AgasJXaQtNtRV7cRSuVyZseBcBRmaWoBc70XRrqoNK+uyn3fGcn42ZXI+Ews6AsNBQ105vPd0IeCcoW6qAumqfsIi515N0eKDx/tIlyNtG+f2lNZoEkWNzlh8jqTkSVnWJb3lc0pyztos5o1+HSnWoRKz8Uqsnns1VVMU+60Slbouh7k64ly5T8LgS3NfP9+XOX8JqpQlnKwT5uBuWduZMk71CoSyjo2ELtC1U/JY4GhVimPrxtEMaoxxZGRM6VrPdOJpCaJId7/db38Dm+r3BMZQ13XZZ//wFZN6haaHHnqI3d1dPv/5z7O6uvqpif3xeMx/+S//hbfeegvv/Q/1vO63H5/mnOMXf/EX/0LgYzwe85u/+Zt88MEHfw1nd7/9dbWu6/iDP/gDLl++zOrq6ie+r7Xml37pl5hMJj/yvjGZTPid3/kdcs588Ytf/J8ClQDW1tb4u3/37/Lkk0/yG7/xG/zgBz+4rxZ3v91v99u8/aUhpU9TQurb8kJPAqmyreqBlr6CuV8U3nusPset6fUN+mQeuZcZX8jBL58PLDbvvVx3jiXp/vFz+vjvKVjI0Mvf+4BvH3Tv/9R9lSlLgfWl4P+igpp5kO7j90epPgElFlR9aKH/pZQj3st96+3nrDUSdCzR65yliianBMZQ1w3TWSTHXqZdNroiMxznKlB9gmR5OT6/J4pPPFdVEm9SWSNw0seTEFoVD3SjGTSOymrqqmJlNGJ9bcTqynAuGzwYDmiaGt15KmswtVjFNFbsTYyFytoiZ55QleZ0MmM8O8MoyzhqUuPIKVGlyNl0ileK6CMVmsvXr/Dss8/y4KOPsrJZAoMxoZQh5o4wmzI9GzM5OWc2nRJ9x8zPyDGIzH1WxBBwWWAipQR+GbczSKCVK0HC0pdTpm1blDF0viMhSi+pBPpTzKgscvkpe2w5nz7Y75yoUknMXYOyxChWSlVdi4rJSONypnYOUzuyVlidsVp85n1M+NZjTCaqSF1VkqShVPIpRec7FAIhtd0MpS0RRRdanK7lHQ1SwWuNBTTtbIoPohwRYkfOTtRzvFh65dxbRwQ0BrTCKwkoQknE9LLWShFSlti4sdS6QqfMxHegPNqWt03pkkyUgElMSQIiUWzwjLFynlkqsqNKGAW1quhiJluNzoocINtilZeCBH1URJsO7TyoMeSuvAgR6MipRqltUjcitgHlDBpLCB3ZK1wjSjx+1tF6sUcYT8c0wxVM5VBJ0bUdJFHY0LpiNGwYn03waEwlsvqGKIoivsUkhdZWKu1yIsw8ySvwgdh2GAfOQZc1MSmsgjhLnJ6eMFxvULmomrkGOxgRwgRjK5Rt5Pn7SJwFtIm4xkhiKMd5AFGAJ0tOnhxauf+mlqRm6FBZqqnDLKN0IhHRRjTMctJUuhY1sq4jkanqiq4VgCf5gA+RaDwxekKXabNULCutCF0vy65xNlFbTT2sOT6b0LgaZxSzaUvbRbLSdGFC5Wpm0wwmUmlDVTVoNDZ3Um1drFhQEaMVs8kUYytiChgtajmqrnCNKkppCpNE/QQtFYTjsyMaZXCDVTIGlbPAXFXDI88+RejOeO+Nd1HW8cCD14q9ShRgMEV8ykRV0WVR2EqzgCowQ9KK2WzKLCSUs1QeVBIVqGpQEVOiGtTQeYaDIbPOMz6bMqhq6g2HDyucnp9ycjbGEhnWNZVd4WwyIfhIioDO7J2e8CcvvIFPgWc+8wA7WWNWV1jd2OIXfvHnuXj9Cr/3n7/Bu2/fJoZEzIGYE9PpmPff+4Cz0zPu7O/xM1/9aZ555km21tdZ324YDE4ZDBvW1kdcuLDDy6++yYsvfo+9/SM6HyWhGCO+/NnOOr7+e19n784dfv6r/xtPPv0kg5UVlLa4RnPtiWf4J08/w+z8hBe//Qp/9p2X+fDmLY5PzvAeMppHH77AL/zUk+zdPOS7b97iB997mQ/f/4BXHnqIzz7zJM88/TS7u7u4qq+EzeWdFiUwsChtGK6s88jjAx546AG+9MUv8tpr3+db33mJt99+j+OTYt0QSzK1zO0xRUKXCTphjcGYjLVJFJeUJnQzZudj9m/f5q03v8/FCxd49LFHePyJx3nggetsrK0WG4971wK5nJ3KvaqeJBsVhoxmdb3mJ770PM8/9wy3jn+e2+9+yCvfe4W9d9/n7v4dsWFAE5JCBc00dAyHK9icmc062gzJe5Qx+BgYDRs211aBJMBZZTnaO+G87WQcAmKQwL5PUoE8a1uOT05Jdc2ky7RdYBKnDKtKwAHjpNJYRZzLDAeD+XrA6cAseAZrq1zY2sKOBmzYAXmmuBUPSCGQDWLPEBPTdkaIicooTg5PmfnM5sYKMXaM1gbURQHAuYYuBM7PpmQ0RgdsY6h6e9KoGI9nReVOlCRCjDilsc4QQ2I4HNFUjtl0WtZHYb4m8r7j7Cwxa/18DZhSwNhG1mwlKx58QGUlNhRzAEbWVs4ZnNV03otqiBZ7CFEKUfgkan8GTcyB1MPDWfqYTj0sklHaYEuiw2iNTwkbc6lcn9G1ienkmJPDuwxGq6xvbLGxucHO9g47WzvMZjNOj044Ozrmb1wrifc5NNRnw3KfoCk5ctXTF8yBCsr3y8K9/9cc/FheCy9QkPmPfMr6eGnPce83P3Hai33N4og5L+0D1Bw1kvNfCurM+9LytXwMBvr4vVkutEhpMb4sHzMWNZ/+uk2Befrvw8Kmprd+CcHPIa48/5zlfdOnX3t/jepj+8R79mHlz+WiEei3i6KgYIyirhxV5airSiwY6lLtrIt9iXOSBIyi+qBssUsslttKg9UFqEwZZRUzH/ChEwgqK7I1AjbkSBc8SSlIsL21xdOfeZpHHn6EnQsXqAcN8jLLvU85EkPHydExt2/cYm9vj+OjQ0IMZZ8qVxpjwuTFM4854edjjp4X3vQwTSwAToxS3KCVWDALkbOA7VJOYvOV1PzmyXhEGbukeCEnsTC22qCNFWVbCkhkJQmsi+KtVpqYc1GlyeWYAhyx1Id7qyzZu0iCOSmx3TXalHe09BMt4FMMst81RolaThaYRayiC5hV9t99cjVSrJ4pSkalEESuPxeQTWOVReVMlzwU+F3eHz2H6/q4QSaLQGaxJOotuVMPK4HsFxNgSlI45lIAoeewkEKcjR577GEuXdkBVUiwApzmbMi54c3X3+Jg7wClrcA1OZGT2AgpUrkvsv+LvsW6qsRAxPYNROlMK1OAeI+KCq2N3IMszz2lgEpyjlqJMlMOkZQUKqY5HKQNRSmoqFaHTGhbXF3AIzJKW7SrSNGLWpIWEDxHL0pcKmGck2FI/jeHGQsBRs4FPCiQEimScwGUclHzJWK13HXhpwW0yWUNZqz0X20UKluS9wV8i6SUCTnK/VBKwB0UMQhgQE7UVU0bIiqDM1Ic4guoYwyk5CFpQtev72wZl8u+vS9sKqpaMSV5N7QA7bpYndu6klG39BfppzA+P+fmRx9y/UFH1Yzk3gAqJ7JSbOzs8HO/8FX+4Hd/n6PjczY3DU3TW4/JSJ5SIuYswHLK5BREiSxnXFXJmJUSuYx7pFyKu0TlTSFFMApN5RLeB0IB8e7cvk1VVaxvrBNzpgKGtaMLEjfKBYLrYuDO0QkZuHJlizVADQZo47hw6SI//TMr7F7Y5k//6Ju8/L3XSHlWnmFkMh5z84ZnMplydn7O1SuXWV1dwdUrGFPhqhmusgyHDWtrK9y8vcfR0Snex3lcLiWx6ZvGxO2bt2inLQ8+cJ0rVy8xGA7l3dKaerjGQ489xsM6c3T3gA8+vMXdoyOm0xk+REiaurI8+vBFHJm9u2ccn53w/njC/t4+OzvbXNzdZX19HefcPXM45KLEKHsKbTQrq2sMV4ZcvLDL0dEJN2/dYW9vn/F4iveBqASyzAUN6deUMYLJmqTkueacpLgoSvypnU45OTrizs1brK2vsbOzw8bmBqPhUID5pUXI8p5iAVAX69BCERqr2dreYntzg2sPX+f87Iy7d/Y5PjxkcnbKtJ2Ry7hAVvgUMNbgjNgoBpiP06lwiE1di/KxFuu42EUms5aYIgqBlWJKRCCWeMOs66iMImZFiAkfA6krCkrGlNia3K/KiQp3TgntFD5ElBX1LW0sw8GASjkBA9O0PKuM9x4fgqzRgRyndD5hK4szsma3RTlMFIos02kroLLSaEOxL5X7F0Kk67zM01qRg+j96QL3KqWpm2quttTHTvuYa9d1cztdAVAl7qLLGiz39pZzNTzKPCTPUpfnl5Lcz1zIpXkRLjIGS4FELvsJ5nMoBXjSZHIuKkrl/DN9OFLizilEgm/pWpiMHXXdUA8GNHVNUw+IMeG7ltnfAGXW++1+65tSUuRQ1zV1Xf9IoKS+aa159NFH+cpXvsLFixfnNnLLrS9E39vb46233uKtt97io48++pGc3/3249F6BaW/CFAKIfCf//N/5p133vlrOLv77a+73b59m5deeomf+Zmf+cTYpZRibW2NX/mVX+HXf/3X+fDDD3+k5xZC4Pd+7/cA/i+BSkoprl+/zr/+1/+ab3zjG/z2b/+2xGfvt/vtfvtb3/7/snvrm9Z95Uip4OmD5/MIeAlulg3aQoq238z1i8U8D0gs/lwo1syZn6XA+nIVNUqVqrpEbxsn8aAi1atEfpcShAdIojkvG0YlkvKZpSCpNotQgFpYMPTBTCiQ0PL96K+FUm00T5IgwEQuSQklATldjqH7qlUE0li2m1Nook9kI9L3vfSvxPOV2FvFIOo8uVQMKkl6+RDnm9i+UjvTWzvkeYWgXKKCEgztqzG11vRFM72kPyqLfZsROwFb1azWFYNKsb0xZOBqsrZUdSUWOFVVrN4sa+tDVgdDxqdjVFbUtoahxcZI3VQEYLhSMT7uiNHTuJqclCRbu8B03DI99py3nhgyzjkuXrjEAw9f5dnPPs3lh64xXFlDKSf3PylS7JiOjzk+PuHs6FDsFxJi2ZYBXa43SQUZEl8kxEAotgtt58lZ4bQRqeMYSSpL5XrpWzEmCdAkjXU1KXqi7zCqkmBD6RvGGpHtt4YQI5U1uKokbFA0VYUxDdZZYlYYpakbx2BUS+jCVFROM5tNaceiGmOUoXJWAjnaIUWDAWs0VmmUqfA547MXgMDPaOpG4v0q03VeADyjSkCmXH8GoiQVtI6EIMFaY60EsJTGR49PkuDQZDo8zaCh7QLWSbJFbmss1g2QgyJqCdKhDFZrVIFFosoSYNUaZ0Xpo2oaSUppxawNZAVa8iRkY+Q5ZAhtQhlHCC2jXNF2U7QG11RAADMG5QULzFmSPtqXKNoQzFCS0CFTNZKM14iFQvQdSoN2FTpJQKvLmu5kgrIzjDEMVlbJukJ5Tybh25auawGNiWJbMGhqYgqE6DHRoSrNOHQ4o9BZ0c5aVC/5n2E4HKJ8wseIdRXnfoI2hllMmDZTG03wHXpQif1A7CQplg3GVJhGkg4S2EoFLIsyLKUMGClHLwkCHaVKUllH8AmDxdSWGFpykoplkiYXuzt8RCsJdp2enlEZDSZhHKRgmbYzbO2kwjYlqeCsGkKcUaFRxtLFGc6JukllbbGfUEQlcqZNZVAmUA2GTGYTtEqYaiB9RINSHu8Dpq5IKUIqEF/OpLajHkhldE6QtKKdTKnqqiTUEqqL4EAbxaCxtOdnGNeQbAH+lAQBR6tbPPnc5zk7PufDD25jnWNrZxNrRa2li6K+5TupRp7lSMiiMhUTGJ9pp1Pq4RCIzHxG1zUmBGa+qPRlqI0mdpGBc1y9fJE7e3c5Ox8TomJ1tIpRmrOzE2azGdoYGlfR5o6QM1Xt8G3H4ck5L73+Nm2c8hkPFy9fpFoJDEabPP/F57i6u8Pvfe2P+eM//w4xzcgq46MkGu/ePeCl77zI8fEB77//Hj/xpZ/g4QceYLi6jq0crmmoBw1bG6tcv7TNd156ne+/9QHn52NC6shIxW0MiYO9Pf78z/6UD997j8994Qv81Fe+wkOPPEzTDLj60JNolSDPePDBB/js55/mv//pt3jllde5uX/CeNqy2jQ89dADfOW55/jKl1v+/KXXeOm1d3jn1Ve49c7bvPrd7/Hc5z7PE08/yfbODrXrE03QVxXLvyq0clRVw9XrIy5dusIXPv8cb37/+3zr2y/w5vff4e7BMdPJjC60pKjJZR7NOUvSIUZitBgTCwQc0T7gfUs7G3N8eMB7773LCy+8xEMPP8TTTz/JY48+ws7WNoNGbNEWgMHc9KUEpPt1gimLsYSpG65fusr1i1d47gufZ//OLb736pu89sZ3+fCdjzi5e4spM4wfY2Li8HzKWSfJwRwEpKqGjs5Fjo5OuXBti4qamDOXLu5wfD7mdDIRq8YUpfMhi63kM/snY9RqZmM0Qq8NiMcR30asEXBytDJi0FQcT8cEa2iUQ+UxQ9sQx4EPfnCT7qzj4oMXqTccbevpckIbQ+hmHEymTDuxrVFaEdKUkALr6ytU1nJwPqbVinWrRYUkKkDmQ+MEkrI60YZEtoaNYU3oWk7OJtjK0jSW2dTTtl6sbbRmZTAEJX0zG0sIosw40AYdMrlt5bPoFSQMIUrCQyVNitB1vapnIqMlyVxUGK0RK1VtwRa4QCmFigJM5AIXGGvIIZBTlirsLMCCqCiCjwHVCZzkjMFZU9bcGmsySctn9Qor7fkpt8/G3L19h5XVVdY3N1lbX+Pi1UvsXtr9xNr9x7KpotmzlHTJ868zT84AFBK//GKf1L03eNOvfVnilPrPyUt/70GgBRQklj2yP+iVVuSIi6RgXjpm/tjh1Rym6mGjTwRu5pDUxzEp5tfdF0jMbZSXKubvCVQVIEZ+fqEGtaS9tAC6UEu20oufnP9cAUVkf7bMYZUkOf142h/vUyCqfhFd9i/zZFoBgHqlmTkwpgv0YTSuqhhWFU1tGQ0qrLZkJYUaVVWhjawNjNHUtZN1b+sBsW/EaXSSdXYGbGXxs0hOUQD8ksCLMZO8J8wSXRDowRjD7s7rF05tAAEAAElEQVQFPvPM0zz3+c+ytrmOq+oCT5TkYIpMxifcuHGT9995h/Pz87lCTa9CRIGSYpFx6ft0Kv8OBRrTShVX2VQKG5a7gMArSSuUtgJhpIhSZt59QNYsKaa58q3RGmUW6hpiX2eLSlKv7mBFTanfhxpJjvsuCJSC2GrFXGzTMgj80wOURpLPRGJJLFtjipZhLolqGdNjFCAr5WIP3sNOqiTtM8XeXIo7Uk7EXOAKJRZCxtoCbemiziF9TKsekOnt+oB5el6JLRiIZa6SfpZjxFhb7ELF1igrikqSKnbg0q9TLInpUiwhAJnYFmmjeOzx61y+cgHVm8bmDKrs5ZPj5s09Dg+OpG+V8VsVWCHH8rnGLGISWdHOPEoXBY+6BmUgyj4+xVDAJSXKfikLaFYUS1Q2KK3oCkAjqihh6fiiUqKizF/aGLrkxVosZ3RMGF1UWolz+IgkqkRiLZ6lD86HXJkHZSjQS1BlGRtSUYzWpvR/JayXSqhUlLiRcSGrWPhygeY67wWa1AqlEsYYuX4ttoe6qE2L2rPc28pa6X/aiDKIFggYreaKXpU1KJ3Ewk0psYUzVv4DtCrzex+DikXxEil00KrYpqMKhCz2TdbK+EJv12jgzp1brK2us32hAlchlsSU8c6ye+kqP/2zP8Pv/vbvcHx8ysbWmkBGUQCpmEDHiO77alZFPUWUjnoYXez7gtwXZ4l5PsDKM02ikjMcDDBaM5nOCCHy/nvv8dDDD7G9tYX3HSpJzCHrYpsu3oEEHzk8OScXRZiNTXB1QNdD1tfX+NznPsP2+ia7Fy7wh3/8R5ycnhYwELrOc3hwiA8tZ6enXLl6hQs7uwwaR21EGdxaR2UdqysDbt+5y+29QybjKSkFiahlBVEKr+7e3WcyPmdvf49r169z4eJFSUCP1mhGApitra6yc2GHmzdvceOj2xydnjFtA9Ya1oYDLm6tc/XKVfbunvDRnX1OTo/56OyMg719dnd3uXDxAqvrawIr0evVqUXXRgOyPmwGjsvNkO3tbU5PTrh5+zZ37uxzejam67yMGwmy7pXTUwGKy7ygNFoV26+Uyz5DFGnPzk7Z399ndXWN7Z0tdne2WV1ZpXJurm7Xj3f9pKBZWmuoHlWSSWNQNwzqhp2tbWazGYeHR+zt3+Hw4Ijp+RndrKVXYvc+CLBfrDPJucDBhnbWUQ0so3pI1wUpPjSGadti7LKy2mJJ0LaBidEMXYWpLSlGsXNTMpcorRkNhrTeExTUxhIJmLJWmo1b7qZjhmtDrLVzZTC0QsVM13p8FJUxcq9oHOfxqhgTrZeiQVXG9zyff8z8Cacsfb+qxEp51nm00QV+FFWurpMx2lor820Q+DRnCDGV2Jou83iZE5SAZKKuFdG9qvrcRq6sLXNRqaPAsbKQLQ6aJeaY+hi3rFl1KZhQefGsycz7mdjvpRLr7pUlmccmBYaGXOL4OQam43Nmkylj56ibhqZpaAby3/12v/04t2UwqVdO6r/+o2rb29v81E/91Bw8+fhn55w5Pz/n+9//Pi+88AL7+/v3lZP+Frb/MwWllBLf+ta3ePvtt/8azu5++3Fp3/zmN7l27RoPPfTQp45jq6ur/PIv/zL//t//e87Pz3+k5+a953d/93eB/2ugEkDTNPz9v//3eeSRR/iP//E/cnh4+Fd1mvfb/Xa//Q1tKn9cv/8vaFs7u/NA71zZZx6w74OYC3uz5cFUPLvl3713+zKklEtwSgKYBVDKeZ7AjnEhc91H0Ocwk+qrfSjB8XJhpaIllXM0fYBfL5JQvY1ZKhtx50TSu99cLlcrL9vJAYsqzSRBKlFY6u0Z9Pya+9+fV/1lPf93r8evtUX2kqkAVyAkhmxQjdEFMpBrnFfM6EVFrjwFgU9SDz4tP4uyKe0TFf0zVOUa5vYBSn5X50WiV5fPqitLU9eMVmrqQcNK3VDZxEpjGQ1GaFszqGsGowHGOlxVoVSmGVTopHB1hVGJFecYE0mtBMAnk5kEq3WFU4phXXF6PiNkzSy2nJ8eMz2doW3D7rXLPPn0kzz1zNNcvnwR5ypyKjZKKtDOWs6Pzzg/PWA2PaWbRQmbpt5yANAGHwIKQ9e1RN+JcoE1tDHSdi21sySd8T7jTIVBqozbEAkpgzZS1Rp6+7ZIRqO1BLY1DltZSURk0FaqXrUuQELTzFXGTIHCfAjiEe8UVlvqqhKFhqqi82IL0HUzalURtaeyAoK1foZzNSkkcgoMGodzjvF4ho9SKQ6QY2bQDAFFF728ezGXoIb03S5kXO1KtShoa+l8S/IdTd1grSPkzLRtccbi5AUEnfApYYxD5UTXdWAtzgrEpCtH8pGk5L5pkwidxymHtYpZ14JSOGeL/YEAUE3tqIaW0LaiXlPVEBKDQUP2EYxj2nms0xgdMdoymwawicGaQjmPchOgJ7PnJjzQVXTnK2i7Rpy2dF4z2NokkwlniTRtwbZoiWkTY6+CkJiNvVShGouph2gHhAk+aLSq5PqLpZ3WUNcaUw9JURHbQNYKTyIlz6ip0Dkym84kwFWqr8mUAJnieDpme2sLo3OxEUukqOmCZrA6RDl5n32IuNpBCvguoU0t9n9GgbISdEwZrS1t21FXljTrCNlQDYak2JWEg5WESgpiz+iq8rsB33nIiUTAYpmcTbBGUdeShOiCJXQzfOfpYmRlOERpQwyZdnpGDB6lKrTVNE0lloo+Mhw4fMrM2g6nNCl4UvSsrW/Qdp4uBYaDEaENDBstQFh0ohaVPTqJ0oIPnSgraQFOspbRLfkgCczyrqko1QDWabrpFFcNUPUG9cYuOD0PUGdAxY6Dmx/wg++9xGx6zqUrl6iHlqGzpOzoukBVOxRw3nYQFRWRrAzOOrG10xWr66NSrawxJtFOp5IAIRNzoosBraSSc//ggKPjE07Pz+fJ48l4wng85uj4mJwSnfdgHWtrK5yfnND5yNrakLWVAQ9cvcqzn3mcq5e3Wd1cQ62tkVXF6d4hf/7n3+S/feObfHjjmLMQmAaxvrTacOHCJrtbG1y+eJ2f/Kkv88xzT7K2NkSlSDc+5/zsiNPTE/buHPHd17/Pi6+8yo2b+7RtkIRKScYaqzFWLBIeffRxfuorX+aLX/wCly5uSbInKxSBlDrOTse8/trr/Pc/+yavvfk2W6sDfvK5J3jkgUtsrgzRCs6z57XX3+eV737AwdmMwWjIgw8/zLOf+xzPPP0EW5urOKMR05vlWZGSIC9zeIqkPOXk5IC3336Xl196k1e/9xY3bt1hMj0T68osYHAIAp6RJTFsjFQ/aW3RSmOtLeodBmMdTdOwtr7BlatXeezRx3jiice4evUSa6urOGtK6n5xbvdsOefz8qJlEjF5QtJMxie899YHvPXay7z22g+4e/sj/PSUs/MJR2en2FqRfcBKDhc3HBFtZufaOjYa9u+eSBJLKXwX2NrZYWNljaPDEz78cI/D0zHN0LCyYbm0vcHW6jqnp1NOz1um0zFkj3OO1eEQpzQH43ERuFC4uiQKiUw7CdSv7a6xubpOe+o5H084unvAeDxh6gNdmW+auqJqHIPRgIu7W8wmE+7sHzJtA8YYurYl9WIVwGBlgLGJ9dUBWtecns1oKoufdRyfncuaJUtCKKREDFI9XDtRTumhpfH5lLbzKJOpq2peRS0V3QpywjpJ9qc2EgIkJe+osQptDSlkUJFBLWuQ2XRW1lf9OlEtkgVF2WR5jamsFog5ZGKIaC3KhBQovmc+enUaa40kGxCPXWeln8cEXZDrRVvqZsja2horoxG//bX/xI9j++pXf+6ef89xn/LHJ+zD7gFjFom5j3NK9yisLjikAkWouQpG+ZClH2D+tU+zNFucJ/Mkdn+IHj7sj9cnus28T+X5dfDxY33sc3qgZK7+Qg8RLa55gRiVo+b+W3np3kgfnn/uPbdOLW7f8v0u5//Jcy0I1DLUNb99S0qySxehyrEXsOjSiKxkbVc5R9NUDAY1tnJUxmFNmts0Km2x1kjCuCQUxYrTojMCNZOpjKEra1mlFN7LOjtj0EosZNsukrIiJEkCxy4yWl1j58IuTz3zNI8//jibWxsCMGPm/c17z52bt/ngg3c5uLvHbNqWPdjSRWpdFBkE9hVlW9n3xpwIMQqoqCQxafRiHghlf9Bb7knRQr+HK8pqZBSmqC6Vp6EXyl0K7knG9GphKSWU1qXf66KqJIq+IcpQE2PAKEMmyXlpuUdG2/KeJFnDay3AblpS6EoZZ50km8t4ngtItFBfAmOL4l2mACMBCjymjSZmKY4wShRR5Z4KqNSrA6UUoYBVKmeBz6OM1WL3V2zC0PNrECBEL+FLCms1xmlSX8hTVGiccxATWYstmC6AjFaixIPKrG4MeODha1y5sl0gnf7FKgVEQfPBu/u89/5NQtsRk8I1A0lOd6JwhAr0roE5lflfyfq3T5xrY1EGSKEUCIkaoCqWdkohVqPWCYAvkkxiNZ6iWFeRSjWqkqy26lWL5D2cBS8qiArZp5TYS0wKW7uSCJd5SxuB+mMshQ+qV6nS83dBFHuDzJdBoBrtnMREshR3yF+lUEIgK4lXxBBQaELscNYW2D/hnAZVgOCQitqwFGQZaxEFZNkj9Apdpi90iAXc0wLOA2Ill4JACMrQBY91FpXkPTMaUtagNUonUVEuEKAqsFPuB74y8crZFeWcJCCa0ooUAk0z4PPP/wSrmzso5xbjM8j99DNe/+4rvPLid1BGMRgOMFrUvkKQPlVVAnknFKY/D2VIKZCywjpXYmRZ1KpiFFXjAgSKCov0/tlsxmQ6Y9a1xBCxzrK1ucX16w8QY5C1bs7E3oY8BbrWY62hrh2jwYDd3W22NlZohg2mrsnWkbrE3f09Xnn5Vf70T77Nux/eoC0Wygqo64rV0YDBYMiF3UtcuXaZldVBUfQK+G5G106ZTluOjs64efs2h4cnxV69t5+U2y6wqmV1dY1Ll69w7fpVtjY3cM6UeUbgxRgCp6enfPTRTW7evoPvOi7vbnJxe4PBoMZpTdJwfHbOrVtHnJzNyEqxsrLCzoULXLx4gdXVUYHEF+UP80l6aW6UeTQQQsvp6Sl7ewfcuX3A0fEps3ZKioEiXFOAvR5eEUikV7OTWKCoSWsla7zeGm84GrG5vsn2zjYbG2sMh4Oi8nlv+z/bT8gZy1wYY+D89JzD/T329+5ycnJCaMeEEJhMW7KKZe2Q0EmhnSUrhRsaBk3DdNLifZB9dvz/sfdnz7Zl110u+vVqFLNY5V67zrpOpWRLtmX7HKp7OYfi3ggI7MARPPHCE38QjzzB5RJAQBiOsY0BY4wlZKWUlTKVqayLXa+1VzXnHGP06j60PuZaO1MCn4ssybC7IrWrucYcc8wxem+9ta/9fgltLbPpjBQjx0cLTped3MONqK3PJxNSzKx6T/BRGquMFvviqmI5DAW6FHtWYyRO8UnWFVtZJrMJBPBDpFutGLoeHyOhxF1Ga8kFWcNk0mK1ZrFY0vVewNMoz8T4NRpjMFaJ7WJV0xelZ6OVKC2N3Zpl3R05RGuk8S4VGDOGICpgiFWl1WYdH4wcktJF9TBJLi6VY6JYK7qLTSNY4/A+rvNy69sun8WTuVg6ytpaYCitUYn1szfGgmvXgBLHKTXGYQoKQDnCyGTp35M1XaGNxbmKpq75p//f/88X7qef9vj7f//v/7RP4eH4KY4RTGqaBudc2Sd8sZj/pzWMMezt7bG9vc2LL77IE088IU2mnzuHGCPvvfcer776Kh999BHL5fKHzs8Px//8Y2triz/35/4cX/3qV38koPStb32Lf//v//1DVZmHg/l8zt/9u3+X3d3dH/rvOWe+//3v85u/+Zt0XfcTPjsB7r785S/zl//yX2YymfwPHSvnzI0bN/i3//bf8sorrzy0f3s4Ho7/Ccc/+Af/4E/0uj8xpLS9u3Mu2XwG3qxVkgoUdPb3rDv9xCJq7MyEcWM/JrdHmdyyE5Tk9rjpGhPh8EDQN/77mIBZn1P5f230A4v/g4l1HjjOWTKlJucssvzlLM06Mfz5kdcdLda4dYJHVIgKCATrcxiTz9pYlCoJZ0RaO58//ueS/kqpkpiR456HpUbLiLWtG5zZ0pVN+3hOWinquiaEsJ70R7WpmFPZvI6fWRcFJinItnXFrG3ZmE7Y3NhgPq9ICpqqZjptcEaS8/Vkymw2w2hFGCJtVVMZw6StyUqjq4YcBnYmNT2Z48MVqERtE7qqSLri8PAEqxV+tSJlzckQSUrx5PVHePq5Z3jsmcfZ2N4ha+k2VSmSvadfnrBcHnF0cMTJ8VIsnlIm+ERV21J8TJLQy1kk4EMSoEFFjBKx7IAhRCmUxJQYvKjISM5IMQz9ujO6shW6QFzZQO8D1moqLZCXMlJAFHUqSdbXlYAMqXRGGZXX1kCqpJzqxuJMUWLSBm0M3iesEhgjDh7jlNheGUMk4IxDJ4X3g6iqpCAS2N4TYsK6Srq5YsbaiqgSMQwoJd1xSokVndJVkbQvyTJrWa5WqJywRqS4tXNiWZhBp1IIsJqu7+WeR+Tp67qRJJxkdQRGyaCyFlhLiYWbKXYTqETKARMzdT1BoQSicQJ2+cGjnUPHzKSqBRxSit5L0qVyGVcJMJKtp5p3mCqCHgA/VswgWxINadkynDY425DiipgVuqpRWQoK1hp86hm6XuwTcZA1wQfAirKHTmAqFqsTKh1JqSFjUDrjk0A+Vis0CaMtdTPl9PSEuhIbu5ACIQXi0GGVxRhHM5uBBj/00jWeIFdiZWK0QFZkJSocGFZ9ZDKfoTWEMDCEgcl8Qg4agkI7TVQRYyTxnGKUwlQSi4oUA8pVAtOlSBw81rUkH9BW42Ogalowihx6hq4j+4xBCiu9zzStQ8Uk91yMGCsFi+AFaFPakboBnSOBRB9k/mlby9bOLiRFvzrl6LQjo5jUVuagGDDO0HWRAZhMa/rTFdNJLfedaahrg1KJrCmdBI62rck5lcJDorYV2Rr6GFBDwnfDWt2sX61IeKYbc7JuqSbbVLMNeehLOVGRSLEn9AtufvAub7/yBnuXLrC5NUVpQ85i7WdjZnG6ZNH3zKY1xmq6CLoy2JxJQZONpq0qKuB0eSIwYynmhiEKQhcTJ8cnnJyecHR6yuHJMXVVF/vNwOnpKR9/8hmrVcfW5oztzSnHx8cslj3NpKFtWtqq4eLFC1zc2+al56+w98gVVLsp89LgeeuVH/Dvfve/8Ob7n3J/1ROiKBA6o7m4tcXu1g71dMpLP/9zfP1Xvs6lvQs4k4nDkm5xxOnxMXfu7fPJjTu89trbvPHmu2LZEHtSLupbypKSYWNjg+3tHZ599mm+/qu/wJe//GV2tnYxmjUMllLk7t2bvPHqa/zxt15m/+CQWVuxO2uYt5aXfu45Lmxt8f6Ht/jmK29y+94hfcjMtnZ4/Mmn+NKXnueF559jZ3u32CPIOn2GLYyKgrH8KZGjZ7E84aOPPuDl777Oa6++w42b9zhdLOl9jw+BFIeSQIacY+lAlTVcgCUtQJY2oixha4xraduW3QvbPP74Yzz73HM8/eSTXNrboa4rubfPh0Pn81nnAILMWOQz5BxRWRPjwP7+ITc++YRP33mbD197jXc/+Jjbq0M2K01jNXfu3efeoqNyLaYC5Qzd0KPrCnKm0padixdpXMP+nX1u3L7PSbfg8acvcXl7xuHxku40cHK0ICpQOlFZsSHQGBKJoCKzpsLUNdONCYvFEqc1fpCC3ZAGoo+o5NBkusWS5WogAn0YQGWapsJUUojZ3tokklgslgynAyeLfr3eWmfEHrFx1LVmvjmhtRNOTzu0U+QhcP/4hJgSbV1z8eIOQxhYrAJD19MtelargKmkIHR60hGCKFWSCxjhHMYovPfkDHXtsFbjh0C/kg7qZKCZiB1V6AN1Zagrx8nxwOK0lwKJ0VJUJzP4KDEEAuQrpXDGyjpZSUyWg5yjKgVqiTeKqmVGCkBGozKkkMTKB8oaWoAZrRFtTiW2OkVh5J233/xC5PqzMP78X/gLwBi7l0fg3DMxxs/ymnGM8IP63L88CB19/nHK+ew1D8bWDx7jh6FJ4/+Pqj/rDcR4ruMfz87iLBY3xZa1QEvj+58743PvVg5SCpWjZe759/v8J1YUtZIRYiqWH5x7zQPXb80wqbPr+0MgrfPXTqszVafx9ePPnzVnyDFSSuV6lDca34+zJhbnLE1V0TaN2Ik0FVUlBT1jLJWzAhiljHGVxMtKVIOssZhyDJRCGQsp0hQFkb73QMZqUEaTlKHrBlELKE0J7cYGO7sXePKxx7hy9Qo7Fy/QtA0Ze3atUyQOA/3Q8eknn/DaK68XqzMBQmxRsZH9nTynORUFpBTlKVRSWhS11lyKkFkUINZQkkBC4+1hjSjVaKXIGgGftCjXqqJEc155QZSlTDltVa617FnP74mtPdsLq2JjlaIAQKPNltJgrGNU3dVao7ISgNoUtbcCHqSU14rDoggnahQpiS148EWxUwm8UrDPAhMpAcTHPb+S3EASpkL+02pt2XmuMitgc3nQzpqQyvOpyvNQ7s9Uno+cU7EydFCsOin14xjiWtHIlUahrERtC8AYaRAKMTGdN3zlq88xnbeIxds5chZFSpZPP7rND77/MQotcTaISk+m2JdJo0oMI8AhAEQqNnrGmaISZRh8X/akooaqdGmeIpU1WJ59ax2DH9b2fDGLLWiOQV6nTbFClnttPX8UcE0pgazO9v+aEDO2EturnMSCTRpuRDFUGblHlBYIKRelDnnuU2laKZaCiKqTLnaAI9CltBZAjEQcBvm2QsBohY/ngNJi8SZglFgmhRCKRRXFTi4Vayn5zpu2wRhLjkkgkWzQqjy3KZf5BYYQcXVFKuqTxkjDmACRopgcgieGhHWuzIXyVOvRmlzJ+px9ZLw5YxBFHOs0l65c44UXv0I9nbOm09bzcSRGz61PP+b3f+/fE0NgNp/ItRFyAaPE1r4fBrSRuS+U67veG6LRRvIO3g9kJQraKLW2lUIp/ODpuw4fA4vlUvIPxrC1ucnzL7zA6ekpq1WH0YbprBFVlW5Aay3FX21oJy2TtmF3e8r2zgamnZTPlVkcL3n3nQ/445df479+5xW6YVhbnTXOMZtMsdYy397ikUcfYWd7G2c1ZLGb8kNPt+o4Pl2wv3/IzVv3OD5ZEGMg5VjmPVGRNNbR1A0bG3OuXL3MlWtX2NrYkjiJPIr24X3Pwf49Pvv0Bgf3D9EKmsrSGM3m9pzdnS2GPvDpzbvsH57I3GQcs41N9vYucPHiBTbmG6Kc88CqOqIjIPuJMjEV5bXF4oQ7d+9x48Zt7t8/pet62efHRErxXBwzrhJna6TkXs5+L/eaw1hLXdfMN2bs7u6yu7vL5nxWoLvPNTzwuVzneHqyip3dh2V+HfqBk9MTFvcPObh1i6OD++wvTjA6U1tNGALHqxUZU/I9ov6UKIqgCaqmpm0m+MFzcrJg2Q241rC3Myf4wDAkfOdFUVCN8atiVIqMJGxRG3V1JTBsIZ1TsTtOOZKjxPApBoYhiCValiYAo0V9UWlNXVdYZ+kH2Yf4IeJDkLzHOaDROo1zmrqqiQFiEtv4vgBQWmkmkwZjNcMQCDEThoHgZS7TRhNDxPu4Dnu0ogBYsu6nKICSNvKCEUpFgbLyXIvNYsZVpaGrk33DmNOVhl5ZF/MIOMGZWr7KAl2WOVfiDFljz4D2Uelf4rKcR7C47JAVZU1QoPSZ/n6WmOK3f/u3+FkbDyGl//XGT1sxyRjD448/zjPPPMNTTz3FfD6nqqofeg5jjenNN9/kX/2rf/Ww6P6/+Njb2+M3fuM32N3d/aH36wgo/d7v/d563/lwPBwvvPACf+tv/a11o+PnR86Zt956i3/9r//1TwVUAnj++ef5tV/7tR95jv93Rt/3fOc73+Gf/bN/9lP7PA/Hw/Fw/OmMPymk9Ce2e1tbFxSrtvNKQ+vk/bkxdnaMxYdxszmq+gDrY4wJ1Dx2OHOWODN6TMKOgZ28t6gXqLLZlU7W0rSHNQbjzDo4HEGo8cjj5ux8UiBHAaqMMeuCw5kC1DmlpnWRo2z4VAGDrCWWDfCY1FecdbRYM4JJZ9LOY3Ijo9ZdlErr9fuM1yinxDqsHQsxJbO97hoYk7NRLEvSWEgZkx6AswKZeO/XHYIZgUxMonw/ssmfTiumbUPbtkyamvlsSlM5ppMJm7NK1J1MJRsErckqU1UVVSkgmNpSO3ldXVlyAm0cVdNQTR11bZlNN6QLKnQcHy/RwwJXOVxT89wT13C1o/dw6cp1rj/5KPV0RqZGqRpyxvcrju8fsH/nDsvTBSlH/KqjH3pM8bZ3SovCRxTbsRglSZ5IpCQw2mqQ7q6+7zFKChFhkOCwGwaGEOQ8iz88OaNzpqksWxtztrY2mTYTUukYjTGhDaA0ymR0ThilizpMJinZ5FTWYlTCaEkqOutIWZQdJJklEtJ4sWVLShISzaQmBC9J1JSxTtRoxH4is1j2JJUlsakNGM0QJGkdQkAnKcJaWxWbGXk2YsyQelRJnCsjSekc5LmzlXQVxxDXhbmqqrHO0PVDuccM5EwotgE+BCkwUDo0q6rYh4jSShw8KWtiytI9pzS2lkJt1TQYZzAqMYRA3U7oVh0BhQqJxtUorWnaDDpjtQYC1QT0JINJoD25mFSgslBj3qBoIVRoZVitVjROQxzQuSYOWWCfbkzEW6IPVFXJrGWLNpauH7AmUE8VTdtQaUtKiq5foU2myoqQoa5aipkgy/4EN7OkEKmtIwXN4CFT4YfAdGKKhLfHqszposNUFcYrht7j6qKeEQPGiI2DkGIKrMZiiINFxUbmAx1JSSBCXQUBd4whhyxCbihUVaNQ6CzFKlsb4rDEe4/VAjXEfknnBxojFnbKuGIpIfZGxyfHUgTKAqgpq8nJErwRW6YcMCmJ6ohW5G5gcbqiaR2+X+D7smbEhHMNq2WHUpm6dqAhZFEgCEMgaoXPGnyEYSkWaXWFnTbMplNIlRSnnMVODL7ryAXyrLJiOXhJ3g+e2hlMVRGpCB4ip9LhWTlM1ZJLl2FCg6lxrebK009y88ZtPvrsDleVYuIUm5M5SsEQerCJ2hgSUSAWDE4ZLD33ju7TTlpSDhzlTAyerBLGWNpmwtCt6KNYNFjrqF3N5lSew973MqdVNbGJ7F3Y5fatO/TdQNqY4aopVbBiB6UUq95z9/Y+t/cPCHHF17JmY2uF251j6ikv/tLzzHanzH/nG7z6+vvcP+lYebFt2z9eEJViz8Irf/xt7t66xy/+8td59tmnmE5ntNahqwpb12xubnLl8gUefeQy33r5DT765DNWfUcKuiRUBxbLI2IcWJ6e8OGHH/Pmm+/y5/7c/8bTTz/NpG0EzzSKS5eucOH/sckLzz/Nt19+le9+5w0+vH3ExmZNfudT2vgJfuh5+vpFru5Mee/jTzg4uMmr+/u8+/13+N6zz/HzX/0qzzz7FFubc0xRclNjofQsspDfGc1sbnjhxZd45JFH+eVf+gVef+MtXn31LT76+AZHRyf0g8JHSeamJAWZVCwHQkpYozBJi4pA1OgYUH7A90tOT+5z88ZnfO973+fqles8/8KzvPD8c1y+fFE6up3BqNGspsQ/+UFAQixHZG3OaIyruHTpAhcv7vHCS1/i8Jd/kT9++XW+9eb3GO7dojs+AtVhXCSpSEiG1WKgstBiUEZTtxVGyTMQBlkflc5MZg3JJ27eOGRxGkBHlIX5vMVUjjAEsjLUTcveVsPu5pTFaY+qHGnIxATRL8gpIGBoFLvHDLq2VOVTbTpZL7PONE3DatVxdHJC3VZYpYjWUDmD0TVVU5XuaLn2WmlUNvSrgX7Zk21i1rTUtsI4zbR1YqUbM87ApWsXOTpYcOv2IbmsB5UTSNMnUfGUgtZACCUO1aKugBIAs6orfB+ICqpalAoNmr0L26K6GO8TR9sllQmh2BNpUbgY482UkhRjnC1KoVI+mMxqlFLSwRyT2FbljEqQk6ZpG0Lw+EGsqrTSYjebMimG9d0tdjcShwgo9bM5RkBIcf5e/+FJ5i/CSuM/5LGqso6J1flj5Py5I4z7mB+ilqT0+g1E9eM8lKPXFmk5F7tfzsE4rHmcB85t/M7XUNM5qmn92nUl8Ww/oVDrxoMHbO7GT6LUujBF2TsINHNm9HYe+npA5eiBq3H+dB/cz63Bo3NNEeP1kz0KRe1BYOPz56uKRZK8kcZaTdvWTNqWqhKrtqpyWCMqg01tynHNGrbIFJUDrQqQ5IqFmZL1DVDKYJ3FVAZrFFUllpY5BvphQAWPMVLwfOzKJR57/FHm8y3mG1ts7GxiXUXGoEajzRBYLk65v3/A3Tt3uHv3DvcPDhiGYQ3YaCXKLKNdXS5NCAJxyS7NJ1G0jEEscfO4byjxd0xp3USSxqIhGWcMdS0Al7OWtaV5OmuIUWMRFNZgSC5F3tHKRRf1JVNAEVMsYVKBOohyjyeJatDOrAsnox3Yet9ZlJOykuKo7N/1Wo1ClC9GYMusgZKMfG6l4tntmzNoU8CKcg5yAeVmyWPhWK8BJVOal8ZzENXj0VUwF5UfuQajBd7aHlKNz7sh5zOgWBRmoliH+kBSCpVyub80pqiSGi3F3aoxPPvCE+cApdIoMD4X0XF60vHh+59AFstOp5UoFBXgLsVICgHUmc24M+XhK/v+GCJJJWxVFHKUFIdD9PL9Kvk5a8cEcMbHAe2K5b22oqIRMxmxOarMmMNIaAXDENAlx+FjEGhrhLmUgFmi7iFgJmRUzKhcLNK0NFWlrNBKIAJpoCoERC4HQRSvMhljJfaWGKPM1ymLXbXWYrmnxb47ZynKe++LShHklDBuVBpRxGQISdRHjVJoI/vm0PUF/s74oQNK3kELNzUMkvdQRoulmRI1rlie5ZghBk/pH8NUDmsNVleMqmXaWiBAEhVvnYttUyrPnFEFLLRkNLdv32bv4k0uOYutWlD6DG5RGm0rrj72KL/wq7/Mf/yd/4CyFmsVrZUmlpQjMXlcY6Q5RlGa07RY3g4DMWaa2jEkRYgRo6V5x1knSH6S+1UV5c8MTJoJ/TBAyhwfHfHBe+9z5epV6kpUgFPMaO0wptw+WgC4ftXTdwPd0KGVYu4jtqlQdc10c8rzX36ayXzC5tYm3/r2d7m7f0DKCR8Tp6sl02nL8eEh7646Ll25yuXLl5hMamzVyn1pBIiaTidsbs747MYd7t67T9d3axWbnBMxDnR9It73LBYL7t474NFHH+Hy5Uu0bcvoaOqqmkuXL7O9tcndu/f49NObHB+fsjKZaA1dF8jeU1nF1b1Njk6OOVl0HO0PnBwecff2XS5dvszepYvMphOsLY2BZ6vsuf80KI2xio3NLSbTGRcv7nFwcJ+bN++wv3/IcrnCB1XU2lnn8QTyzKASJmdRE5LFQ+KNJEpi3vcsl6fcP7jPjc9usbOzzd7eBba2tqhrUdVSSiDGB0KcfLbzGe2m5R6UX+qmpq4rdnZ2uXz1Mgd37/H+jVusjg9JvmcYlihlyUpWucGLwk9ljajXuWKdlmIBC0UV3jrJD54sB04WHkWC0rDnrCvrjsQUTVUzn9aSX1KS+w1eIMkUo8y9RcVvBKKNNaiUqYwr08oYO0M/CLAnt69cT2s02lm0LQrmlLgHTYpZYKYUUM4K6Ig0yhnN6FnKpK1QTcXJcccQPao0ChitCLmsZUUV8UyISaKzMf9dN44YkygrWoEMUeCMZjptWS17YixNpkqVdVKtp9hU5qNxXTdqVEyUe8Y5s75DU8pruzex8Swqn0qRYijxjDo7zzTek+W7UbrEdw/hiofjpzu01jSN1CV+0opJIIohjzzyCL/6q7/K448/LlavP2TkLCqsR0dHfPjhh7z11lt8+umnDwGl/8WHc46//Jf/8o8ElHLO3Lx5k9///d9/CCg9HA+Md955hw8//JCnn376h947SileeOEFuq7j3/ybf/OFHNdPYvzgBz/g//q//i/+yl/5K//Dikp1XfMrv/Ir7O3t8S/+xb/go48++jGd5cPxcDwcf1bGnxhSEtl1dQ7SGceDm+F1Yl7+STZC6XxS/uy1Z3ZqBRo6l+gWv3oBTcbOl/IGjJta2XaXPyux/9FKFynwtA4IVUm4jZ7hY/JyLGrIpvJcon4EhVg3IMnv1/7CY8JePtCoTjRafYhsbpFsRhKrKeazI2VAn123MZk8Xtd1l2rZQJ+3dBuTGueVq7RSxPHfxpoHZ3BYTlkSXimtQag1vJQztdFsb9VsTFuMqambCbPZFONE9r1taqrKMp1OmM9mqChASh8yofc0sylV7aR4kOVzjV3BBkUOmapqaNqa2bTFtRXKaE4XB3THJ1jtuHz1Go9dmrF1YQvXzDC2pouaEDI7OzvotiGhUDnhuxOO7x1ycG+fo6P7rFYdPvo1DNNOG4KC6CNY6LoVMSYaGkm854SrLEEpDg9P2D9ccXAi6ktTayR5XGT/Y074GPAhSxFFiRJCZTU72xvsbG9K4oNM7TQhSjLVOiPWEUoRUyTmTDObiSVFKYyiRY3KGkkZ1XVTLNYMygT6bsDaipSS2BjlTAoR0zRYYwk5E5In9dKdl2Ji6DzWVdStgzxAUrja0Q29dAlzZmGklSuJmGLVkDVGK6oq4/sey4QYNZW15BxKclwxRLGmsdqQ4sAQMzkIuJW9L51sFmNU6cqtS7F1II+JVqOIwaAwItWexPatMohFYyqFKGepncGvFgWEs+AsTrv1M5WyF3UPlcFEdNuB65AjpfLcJXLSECuGE5HrTjERUqCdz4ldTz8MGJPoFkucqwlhIKsen3omTYs1IpFunFj5DcFTNzUxe6xt0dmQEcuCGAY0hrapMFaTksI4S79YorMmxUifOrHnsYaoFIGErkWRyncd0Xum8znJavIwMJvO6IYVKmfa6USSRhFm0xnaWrJOYDKayHCyws1adGsIgycsB6yTDujgA0SNSoowePAWlcTGKOpMINNOpmgnUNMwdFIM8hk/RJKGeuqQDliPspq0LB3rTUXnA/HUkyvHyksho+8HNuYTsjFM2paT5W3msxlaVfhVACWWLtaCMYmYFE1dkXJk0XWQNbEPtNTYpEnDEmUUxk5QtYXakDBFsSCijViphA6sqmR9MJkwdESdsUaLVaGPxJDxocCLamC6oRlOj2k2HZhir6SArFEYbN3wzAvPc3D7PsujE3avX5Jkvlb4bOi7JdoqqAx9Bmc16XTJwWqBbg3kntBFOoAQsNYypIQeglgdqkjbNLS1prLQe4+xsH//sACmYkM1m0ywVy9xeHDE8rRHGdjbnTOf15wuOo5PAstlR1SBt97+mNRnXnr2Ea7UUgikbnjk6cf59Y0drl56mf/yzVe5cfc+K+/xOXFwfIz3niu7e3z20Yfs7x9w587P8+JLX+LChW2a2TZV09C2E9rJhI2NOdcfvczLL7/B62+8y527h0AipEzwPaskFo/HxyccHOzz0Ycf8Qu/8Ev84i99jevXL9I4mS9VNeHKo4/z1y9e4aUXX+K/fvNl3vz+O3z/B3eYt47ZVLPTKDYmFV/70hPcu7/ks1vH7B8d8uZ3v83HH37Ak889x4svvsizzzzFztYGlR2VGgVQKmEHGQNYtG7Y2Jgwn2/x+OPX+fovfYXXX3+bV155k/fe+4SD+8d0gyemwKiAGKIhZfAhSSI9iU2MTQGtPSlatDZ439N1A/fuHvDeBx/wne++xqOPPcIjj1zlsccf4ZFrV5k29brAdqYhcz5gGmOOsZdfPoNrWy4+9Sx/9fEn+ZW/9v/k/e+/zauvvE7z2g+Y3fmQ7VngdMjcur8gJA8rj2g8eNrKEYPBhxUh9YSQuP3pAYcK+n4g5kBlABLJKyKJuq7R1pLCQBws3cJzsr9k0B4H9CmLVwCaST2hajS1MxyfrFj2CWU0be2Y1BXLRU9fLGLE1rNm2rb0eiD4ZbFisKSc6Lpe/mwUk0mNIeNDFujYJ2LfMfQROs9q2ZHTqRRSNVhlpShtIKPLMwTWadIggIUxYgEUgqhsGS2Jea0VtjY4W3GaOkIYCMFLsScm7t+/z4WdHSbTCVmBL5YVBKlpWGPWyiujndP49frBo7VAhU1d0feB5CO6BHGShE1oJ4oTSottrIgsCiARUyakTGkkLWtCJH4Rm/kZGw+eW9kq/FCAZnxFLj82Ag8PJGrUg6ZiI6Qzgh5r1dc10C8HO9vLrLUQ1scb9xqjyuuDVnJqrRCzPsM1NHUOrFLnj1t+r84rRnGGFp1vTMh5bc087lfWqlN53DuMANHZ9uj8ccZXfF5OfoSvHriyBQxSnz/Y+TG+JhUwYSzw6RGNkve2WtE2jklT41xNVTcyb2ixSLHWYIpyWVVVkAMqC3CfQsJWYtmgCySR85mi7Wh5ZrRAflVlBRzQ4H1H6HuUMszmG+xtTXn0ice49shjTCYzsjLElMXmyjqSks8bfc/dO3f5+MOPuHHjM5bLpRTws0ASrjKiUFa+D19Uc421jDCaMaIG1HU9yz6w6j25xO1Gsd4HJ0QRIiaxBVeKtYpL29S0bbNW2TPF4jtTAKRzoFzK4KqKtRVSuf6jeoMCrLFSZlRi95JK3L62V88C0AgYZAo0lchB5pGcRxtKK8X58gCKXVygMCPyM0lUbrTWEoefex6slqYcrcSeTIrDBejMxfpyLISmSEyB4mxGLqquRmkBxJDCNKnMdes9PqQkoIAxEttK00N5TnO5d43scVKQIrc2GowpwNe4B48F4gJj4annH2Nnb0NOaF1uLo9QMhzfX/DWmx/g+0BKCldVpBCJKaJTJgweY2QNQgVijjh7phgmiqCi3GutIWWxrdZo+X0BThW6gFajSjOEIRW7sSyxybiWlUYQZaShIYZioVaaBIiJqqqI0UMGO9qRZaiqSnIgSuA4RSb2AV07lC3qRr7Yk1Ks+JLYyaUoVsaq2Bap0iAjSjxyD8WiVK2yfA8iHqXQ1hKLYhBAjhIvYAzDMOBMRSjwaIxR1kWtsVVF7Et8oK003kgIIscli3IUBmUUPhRVtCRzr9FGLH11QimLMoZclJRUATFJYxNYPMvPKCWqa0maRDQCu6VUFJRTIqbA+z94l9lkg40dh7LV+n7NqKJqYnjyqae48dxnvPfeD9jcmss9oWRPnpMi+iA2dgWAMCnRLXqiymgrKlRBSTOKUhalwIeIVQZR8Fal4SeL5aEpdtle5rLbd26zXC54+plnsEbsBZNOVJWlbUQxa9XFcu0S4STwWd7n4m5gZ2dD8hPOUbUNTzz9OPPZnJ3tbb717e/w3gcfElJkiIF4umDatGgUn3z0EYvTE65cu8rGfE5VV9StwVmPdaJWOZlO2Nqac+PmXY4OT6XpqajjxiBzrB88XddxenLCvXv7XL92nd0L29SVFUhUaap2wrXr19nZucCtm7e5cfMWh0cdSxtwBtrWUlvNha0582nLyenAYjVwcn+fxekJ9+7dY3dvj4sXdpnPZygr11UW31GlbtS2MZAt1jg25o75bMalSxfY37/PrZt3uXv3gNPTJYOPMnfK6oI4sQsMpqKAl2mdT5T5VZX7oYuRrus5Oj7mzt27bGxssrm5webmnK3tTdq6Lir353Kc5dcH/7xe3JG8asZN51yeTNm5dpXFyQm3bt3i3q199MEBTnVoozlZefoYMCmThkA0CmPE0jMGUb5KZIaV5346ZRg8OUsjhCrxRyyKSLayYpOaJP4OfWQIEqOnNcglSovOWlEa8pHeR9CSxK4rR4pyf475W20stXPS4JM9IUgzECqv72+l5LyNNkV1TDioIcUCeyZWcSjrmUCrKVGaMQWoTGtrUYUOY05WrqkoYo4x6JiLLnBV0KTeS1wRZT4cUsT2pqhmlVxdTqgk6xhqBHfTWX63xIK5zL+6qFGRZQ44y3GfxcBKl/yyVkUpsay3WVSfxpiTNRT4sGD+cPx0htZaGqDLf6PF4U9yTCYTvvzlL/O1r32NnZ2dHwknpZS4efMm3/ve93jnnXdYLpesVquf6Lk+HD+bw1rLX/krf4VnnnnmR96/d+7c4V/+y39J3/c/4bN7OH7WR4yR3/u932NnZ+dH2r4ppXjppZf45JNPeOWVV36yJ4ic46uvvspqteJv/s2/+T8MKimlePrpp/l7f+/v8du//dt84xvfeAh6PhwPx/9C409s97Z74eIaKpLkY0n053OQ0TqxP3Z7sVYyUpypJq23yTmXRNeYxs8lyaLW8p3rMXaVnuvsHQsP5+EmlaULMWXp5tHjz2hNzAIpnQ8PJFYoXuOcWb7FddeoJHSN0uuEdMrnC0DnVZnkWJQEcIpnBRDpEs3lmkixCUSdQSnDCDDlLJYqGdlsaqtF4aZsIEVZO687X7QWBYfRt3Y8s7POZy02U7VABcZZYpZisdGGSdOwuzHhS89d48rlLZbLQNdDCJmojcgnGwEGmrqmrmq0kq7TPoNfDrRVzWyjQeeMNRZXOaqqoXI1iizdTM6STGJ11NEvI+TE5b05l6/usre1TbUxlYRDM8dNdrD1qGJSAIEUWZ2ccHywz+r0mPsHh5ATIQSGPqKtxllQUZQfcC3gqHRitVqitRQaQ4hiIZMjPmW6zrPsVgwl+emUxpJxzpGUZrFa4oMoLBhtmbQVs+lE7POcgDgaBSmRiIRsMBiaxqC1BTXex2JZo7XCagFwdAG5nLUYI0oRMUjpS1lF3w9UtsZpUASIYJXDNpYcMz4FIoGuy2vlhVgUP5yFHAMpJrSzZAXD2MUdAqYkppUy+JAIxcqhqmsql+hXC8gO5xqUHa0BpMAbUiJlqIxlOqkIwZOiKUX6vE72z1pL0po+Z+IgSShbCk0hiZJTWxmUEkUIZ8UaUGtN18v7NG1FVU+4d3DEtHZoA1Vj0SESimx6M50xDB70QDUb0HVXOrjFzgwCqI4cNslsQedIvSb4jK6mZGWkGzwNxK4XaEZnbGXK9cooW1FNLTHAsBQbNx96mkqhrKNpJkS/wmjD0elASp62mTOZVaWrHga/oh88IQRUyjSVE9s3LUVsXRlWoaNppqQ+EVY9k3kjif7VUiwRh4GqblDNhDgEUeKqKrAOjCUMK5IPKFNjm7Z08kdREqutSM3HkvTykRyKhZ5R5BQIIZJQ2FpUCWzODKsldTslBlAYutBjTSb5gDEK11YsjsTqadX1pOSxCvqVp66naAvHx8e4abFojBnfL8gR2qbBOkPwCes0GE03eLwPuEqT/cCq91TWEck0zQQ/dGxMK3TO+EHjagHtrKvBGFStGLqATgmTVbGeSJhJLfYdKTKcLNFZQINhrCoMkZPlinbSUrcNdmOHdnv3XIG4rAGIRd79G5/y+jf+kGAsl69cYDaZkkNiGJY4bfApMyhDY2B1smDpI83MMalqwuCJGRpXcXh6gpu01NYycwJgxBQwxnCyWnK6WJKy4vR0yfHpMYvlAucMfd+zWq2IIXB0eMTx8QlXL+7xyLVdVl3Ppzfvc3KyIubIfDZnNqu5fmWL559+nItXLzC/dAE7nQAW3yVee+Ut/uN/+EPe/+AmJ6vAEEWasLKWrdmc2cYM17Zcvf4YX/3q13jh+SeZzSoUiTD0rE6OWZ6ecHRwxHvvf8Q3vvNd3n7vQw6PlnifShpcFLyMNbSzCRtb2zz55DP8yq/+Ml/96pfZ3d0pBTrk2c2B1WLBO2+/wze+9TIfvPch7bTi2Sev8dTFHWatQVuDD5H9g2O+89rbfHTzgIGaze0dnn7qaV768ks89/wzzDdmWKPHdPxZ2MFYfKQAQoGUeoIfONjf56233uHbL7/G2z/4iP37RwyDJ/qAH+1vRgnHoq7gjMZqK8Vfo2UJU46Uxc6rqmrqqmE6n3P12mWee/45nn7qSa5cvsTW5oYo7OnR/HMc5zdmupQYyt8lBVnmrFF9797dI2598AMOPnmX7776Fh99/DEnp0csTpfEOKBtpplPiV6zf3TCwekpnfdsTifUswrfe/p+kIIvGZ1EQSRqcE1F7SzOaiqlOT71NJOKSWVEDcIHdGXZmE9oJ45JbTg57VgMEe0sm/MWnTKnC0/XeVb9knpSM2trVMx0PnG87IslCXR9DznTNrLh3dhoqY3m8HDFaojlmxPLitPTBVlpsWBMUuBt2gpntRRHk8EX9bKMIqc4VhSIMRflEFGzmNQ16EQ1caK4dzzQ9QNVo3HGQTYoFXHOiWpcUcvQxZpn8J4YMyGGorIo91wqhYxUOp7baY0zlm7ZE4U2x6dQQODS/W3OOrOVEouKGCNd50W5sdLo0RYjprKmZN5792N+Fsdf+It/kc+DQWubiR+yIxmTemtgfx1zfx7pewAbko5ziiXyDzuR89sfJT8/HlP2LaOqUVrH+WewVD6bS8695/nDjvuY8TxgDGnP9kA/9FQe2KTAWA89+4si6pjPXv8gblXKkWuYqxTPij3ZuRc/8N7jnuoBFafz+zpGtVVdmkn0GqjSazWEliuXtpjPWoktQwECRlisQLbyny17LLH8jT7hjKGq7doSTBuDMXatclsqlmSVRd1skELg5saEnZ0NLl+8xIVLF9nc3mQ638K4Vqzh0GuIjJwI/cDJ8RHff/N7fPrpp1JcTVls1pQS8C8JHIgRq1+jwXvPWqEnyfM97gtDFEuZWGJgo2Qe19oIxBjkeZV7x+CcFrseVAEj1bqIm4vWkUKJLdLaLkq+T63PK2qNe26xT1bFziuVfY3SEEMqSlWg8qhIpFEFQErFMicE1io6qdRY5dBi46mMrExhVCkuqkpnTRlFwZhcvrdM9ANkI3bnenyeVVk/RxBNUxVVp3xODWlco53VpdECclGz0uX2TFmusS3rVS73urPSbR+ivI8Aco7lshdwuah6qLXisuyLYrF4e/7FJ9nanTLaorFuegiQakJ0vPX629y9fSAhgHaM9lckaQaJXoirs2dFvitTyf0TfV4Xgq2lwPoVKXq0UvSDwAzOVgLMrUEYiddzkZixxogqR8lVKKPwKWKtI8dM8lGUWJUSFVRtSLE0n1jZUypVvl9toFgqiR2gRVsn1yEJzKaNgIpCEkgsTSpgUVGSAolHjLMlvlKkouQsFrZFiUyoM7H/rkRBhSRzUIgRrco+DGlCG/wg95cTtaQcBVhRSot10vj8WUVMCh/Ke5JKrqSAgE7UXIyCypU9obFAWiupKFvghJDQWZqVAHKBAcReLxFDxJTPC0DK+CGAUly/fo3nX/oy9WxD9v3r3BmITWdmWK34/d/5LT755FPa+Yy2FhWaIPKOGG3ootiQEwJdH9BOU1mDQuCryjlRQipzrNNG8g1FKSvEyBDKPi9lur6nH/r1+rCxscEzzzyNQrFcrrDGsLu9gTGK09OO02Uv18uKzW3bOva2N9nYnNHMJ9imlv1WUpweLXjvvQ947bW3+OOXX+F0uZJnVkFVrDxdVVE1LXsXL3Hl8kWm02a9Zw1+wA+9WJGdLLhx6za37tzldClWvevYvSzI1hlcXTOfbXDl6hWuXbvK9taGzDmMwI48Z4vjEz69cZPbt+8QYmBzY8re5oxJZWUvDHgfubt/n7v7R/QhY1zDxsYGexcvcvHiHtPZpMTHo5o8a5u5B4MYmS9yigzDwOHhITdu3uH27X1OFqJYnNd2ZqMqn+RMR6BUK73OdcrUebYWaGOwxmGtpZ1M2NndYXd3h83NDSatqPI9YC/9hfNTn/s7yWetFfGyKLAdHx7RHe+zf2+fu3f36foVfd8XgCVhKoPRjq73LPuBPojVfdVUKDLDENaxiCwnRavH6ALXapyWpoOsFLWTz5iC2KhVdVVykZYYIl2IZBRVZXFGMwyREDI+DKAQW21ESWjwid779X4txij2scagNEzqiqH39D6XWF1y136QPNSoFCnrtMI6K3uHPCrSl/1ELuvEuZgtJVGPcsVeThmxHY1B4hc0BQIWFVaJwWyZ5+N6CRToMa3jrREkyulco7DKOGextuzFosy6KZ817Gp1Lh4ua95okxhiIoaEMmWNTpw1GSvF7/7O7/GzNh7avf3PN0Ywqa5rnHM/cTCpqiqm0ynXr1/niSee4NFHH2VnZ+e/eQ7L5ZLf/u3f5vvf/z7e+5/YuT4cP/vj4sWL/PW//td59NFHv9A0NI5hGPgX/+Jf8M477/yEz+7h+LM0XnrpJf7G3/gb/01LtWEY+Cf/5J/w4Ycf/uRO7HPj2Wef/bGASuMIIfDGG2/wT//pP+Xo6OjHcsyH4+F4OH46409q9/YnhpQu7F2SH+BsE34WsJ1TJSrWJLl0eqQ0FpEkLaRVATTOLdSqdCLFkuwdE/vnT23cJMrrz7pazShNPybVs/hyR2lLWsNSY9L1fK1v3DCfWcEpKletE/BioVU6LktnfYy+JFRFRWG8JuMmUD6fZCrWgFb5fNqocu6ykZXOUUqHixzpjBKV62BtASXGxNf6nM86vM93RildpPtL8ldri9UGV+xLdAEjnDNsb83Zms3YmE24sDnHWUufxFqLlNiYb2BLV6XKUFtHJjOpRfZ5NWSUsmzMGppKsT2dUbuWdmNKXbcYU3G8OJYut+NjVKMJfeLq1hYXdje5fGWPbC37J6dM5jtsX7iKbaflemlUjvjQE/sV9w/usX97HzVEEoHDkxNCGEqCX5RxqqrCYkAlklakbPB9L0lOK1L+4h3vSyJb0QVPCoHKGLKWxLtKULmGmMUCpu87Qkw4WzObz4p9wni/RmpjUSmSVMbZukhPZ7yGnDWVka5Z6SLXpcNU5OWttutkTSYLJKUtPkecqUjeUzlD3VpMUphsiFqUuXyK9ENPSBrvA3VTYaxluVzilKLShj56UZWKUSy+lCImj81JlJtQhCzX2w9L6eRNon5jlHS3GisqXK6qxTZOiX6+1hprpVssIaBAXYsNTgqBprFEpRiCF1gkSyF50jagDdZqaq3wpVu4tgbjLCQpWCknlj8Kxcmyo3U1q6HHVhU6RExtsCZirCOnHjsN5GaJUgEl2RWy9kCCoAndHFNdJK0SeUgcHi3Q9ZSNzU1Ct0Blz2rRYV1NTL5YRziapmFx0uNJOGuISYHOOBJNY9FVJXW82KNR7B8ek7PGKouzmaadElNi6Tu0dRgUoV8VNS2N0Y7aGLKOhBzJaOIQCf3ApJ1irEUhthRx2WMnNXYyxSYNIeBjj5tOUXVLDL3Moe1UEqbdQEyRVGwsVIyMyU3fD5gY8SlhJxWKiAqJlA1DgiEMbLSNWDcZi9YVygjk2K8WJC/JyXZakXxC/piJ/QmrxRKiwZqW+fYmi8WCxbBk0rRkoF+eSIFEg61qkrZAZjKdc3x4QjessEZT6wTFsMu4ikTGmExFguhB1RhbkbNGmywqX02NMhV+uWBSVxirUEYUWXQlEGW/Guh6j1OI7UMOqBjpjhYMIVJPGnoqNi9epppNEE24kthLpb6QOz7+/vf49re+jcqJxx6/gnUyt+7MNgh9UYHSsg4Ng8dpRV01HC1OyBl2N7ZZdiuCSjRtg4qJFrFoXPYrPHB8fCLd/ylzdHzM4eKUbrnCGUPMkeADq1XPrRt3sCpz9co2k2nD/sExd+8eMmTYmswwVcZViq3JJo8/epkXXnqC3esXwLUo05AjfPLJp/zn//htXv3OD7h3dEoXeoHaEMuejY05ylTsXrzEL/3i1/jqV7/ChQu7oBPRL0mrBWHoOTk55u7BPb7z2vf5z//5ZW7c2GeIkRQGus7jKo2toG4m1M0mOzsXeOkrX+bP//k/x7NPP8ls0gJpvbblNHBw/wavv/oG3/qv3+Po8JQrF7b56otPcP3qBrXL5Ji5s3/Cux/f4I23PuT23VOycWxc2OXp55/npS89z1NPPc58c4vKWMwILKu1sH1ZT88VJLNnCAv27x3wg7ff49VX3uLtH3zEnTuHnPanhBTEniAJqJRzLDlqjdGiEqct6wJaVgqtLVpbjK2oXMVkOmP34iUeefRRnnnmaR595DrXruwxbesCK6lzMdT5KCyV30tXvFwqxai2RM70qxWffXab7736Xd58/TU+fv890mpBDh2rGDjpIoenHUfdgm4YmNc1e9d3cEoRY+Lo4Ih+CLSmkljOWVb9gNKKprVUWhGQYhhKobOsZK42zFtH7RyDD3RRgNHKWrZ3d0nRs1wORJ84HVa004YGw2I1sOp7+n4QOxWj6UNPZQ0b0zldHwgx0y1XdH1kCKKQlMikFPA+EosVS4wBncairxb7nFhiNZVRRjqwY8r4wZNyic2MZj5rmDQV7bwh+J6uD3QnAR8iIQ1IcUgUUJyyDEMqxdQCpBiJ5UJIAiaEUDriRQFJIbFrjFEKy1oRhlgKBgJSiVWuQxcLWd97rBWbN1vbYukAVWWwtSYMmaGXAqS1jpwzb732Lj+L4y/+xb/0wJ9HVZ4vkESfSwqft5xQ638/X4BTZ+BNGm2o9PjDXzxuaX4Yf10DOmdveGZlBmeNGOd+/ouJ69EqTq2LbxKzn98nqPU+hnLcs0LT+f3U+pBrRYHx71Tpij8jjFgXvs9O7+wzKyX3bE7nAaTxdWqtvHD+c1AsxVgX38SOzZSfNc7S1DXOWSaTlrauaCrHpK7RRos6UiFdqqoWS59RKajsi5yVddUXdaG6slijaJ3DGIerJa7VytD7nhACfdejnCKFzOXdXZ544jEee/QRXNvgU6aqWprpDG0rUAqVR+gmkIJYBN349DM++fAjDo/u0/Wl+F4AHFP2luvvVsk1ilGAEVHyVevC4Xjlxr2aKVbkIxBmjC0Fy1iUdwXgqSon6wICqpBzUZwp94m2cp1UJpV73awbYlSZUxj56bX1Vi73hVGy544kTLG30kZhrZy/zkqUjxLEnCRWTGqt6qOK9ZYuxdmYxHo8F2CJcg/rAiTJXSJ6gCn6czYxZ8Df2FSkjQA3ctvJvWaKulBGYCdrJP7PSey6Zf+S1iBXjBKTU+xuzDj/KmkGUUb2rikDRhVLPEXvPU4LWKqNNCkoo9AlVpu0DV/++eeZbFSl4aE8A6pASknhB8v7H9zkxic3ySGJ5bWpqJuaFMTqNPiA1mLbJeSMKEQPfRA7s7FYrJAmH6tRI8RSCtTLrpfvuqhJOSf2Zj4FlBLoTKzkKOCmLvdMYjSBzDGRQsI5V+5dAQHSEDCVQdkKnRVksUE3VQXGMVqiKyv77Bxiub+QQnYaYxBV1ttMzBntDIpU1LAgq6KoNCpZ5Yw2rnxwgaaiF0USZcFqU1RAFDlGgu9IMaOyoWpaUJmu78p8oskpEL3Y4omlmzxvxhpygq7r0KbYJEKx7BTAI5MwZLQSFRFtqvLsSUMDWvYe0tgl9xXmrDlNOyuKPkU1Vpc1SBSoPMEHjLNcvf4ITz//JZrZdJ0nKxOLxGsqcf/uLX77t36L+/sHTKctk2lDzhKnOC0W4xkBV2KSi2uNXUPRbd1AzgJWWAFbdBJFRx8DMWd8DHJOxjD0Pb33dEMvsZLRbG5u8NxzzzP0nqHvmU5qJpMaHyKnpyv5Hq0AI8pAZR3zScuFvS02dzYwdbHR1IZu1XHzxh1eefl7/Kf//EecLE6LdZXEdm1To7TBVjV7e3tcv3aVre3NogYWyMGTY8D7ga7r2D885MOPbnDv7iE+RNbKwEqhjTTJGVtTVQ1b21s88tijXLl0iemkPRdKyAzl/Yr7Bwd8+ulN7t8/pTKGvZ1NLuzOqJ18O4OPHB4vuLN/n/uHS2ICU1VsbG+xt7fH3oVdJrMp1hjGb1TeoSzUClEnHNdTxPq8H3qO7h9z58497tzZ5/h4STf0hBQK+FnW23w+rlcF2mV9742Lk1IyVxstKjxNO2G+MWd7e4ft7S025jNRdS4K9P9dSIn8wJ/G36UYWa069u/d486tGxzc26dfLVFRFOJ8zKx8pPeDKC1lxXTWUNWS5/KDp+8GWVuTzMkhyVqinUBK8ixoxjNVJJRWOGdEsQsB8rISqLFuWqw1EsMnAYGzhsY6QogCSsewXhdEDSnS1DViHymAYQiRMCreK7kCKaYCWJfYs+wZlZa5eG0tWv7BGJl/xeacdcrZOkNtDbaS3GCMET9IHi+msI5/xTZO8sIhJtYhWfkSYrlWsQCgozUuKa9VEkfoO482lOcge2vP4q8YzlQIKepO4zFHe80Uxn2NQCK/9W9+h5+18RBS+p9jWGup65qqqoqS6k9eMenixYt85Stf4ZlnnmE2m9G27X/zHHIWtbMPPviAP/qjP3poSfRwfGFcuHCB3/iN32Bvb+9HvsZ7z2//9m/z3e9+lz9hSfbh+F90KKX4+te/zv/xf/wf/027yVu3bvHP//k/5+Dg4Cd8hmfjxw0q5Zx59913+Yf/8B8+BJUejofjz/D4sUNKewVSAh5I/K+T7OsjyiYtpSgbKFVs0EpCRpcutM8HfqNd2ggDne/kXXeKll/Pb9A/b5GgkCSebBJHmIfSvYmoDsB6Q7g+hsrEIN7dpYmQmM7kekf7AW3UegMonfcjjCVFSKUkAfjAOY3/rs1Z0jaPKlKZMdm87pAp5zQG6SPsNF5f4AHrCtadzeXjxSiARpZO7tpYJrVjOm2ZzmfMZxPa2rK7Oadyhqp0n4WU8Ckg+Vy9tgtopxMSmdqJ9ZiNogo0JGiaCZuzmtoodre2sa6mnrYcLTru3V1gck/yp1y9tscjT17Gmooaw/FJR9ION9tgsrlLO9sUGCNLZ1A/9KyODrl16wbLxSlp8HTdgMmZrl+SFEX1RwoaYqmgAUMgkaIXmfRBNu3KGlGqWa0gQmMrYoQuRXzfY1Ika6iaVgoVSjH0EaWgH1akJMkQZw1GSTLIR08MXjr/oiQumqam1gpjNTSGFC2kTFU5UfOKkngzWoHVGGuwSuSWYwKdoKpEPcvZijAMWGfIOqOSJG9XfV8KSko6ubQkiIlFUl1JRzo5UTc1Kmv6krhRI0IYPSqAsw5lHDFnjEZUNowEPs4amqYmJkX0kUhAWXDGMSwH6R0rxVVTSTHIOYMaO2IVYCq8D5CCdI+RmDQNwXvqSUWtND6LTaNTGltXhKFYTLQVRoND0YVAGCI+Rtp5i04JZTXDcok1mWrmMdOBbDzggVzAsYiKjrSYQpqDmTH0PaEfWC56nJtQOYePgWZa44e+qKiNhU0wCnKyJOuwBoZ+QKmMDaBtTTV13D8+AEQ9ZLE6IQUjoOCwoqpqjLUs+iWualEqUxlLDIFF19NMpyU5pUheOpdTjPR9jzaGajLFqYCuaibtHFSRCM+KvusEZmwrlHNlSjBkI1L3aehlLtatgGUqMQw92lUyt8XR+iDhKsdoSzQMHu97mvI65YzYqiiDMhZjNeFkQSRjq0xYdfgsBUydA8cHC/puoGonTOcThhjpu57aWja2Nji9f0zyK2L0NLNNoqnw3pOCqBtordmYTahMous8ySj8MN5X8mtrDckZ6kmLShCCl1KYlvu5cZV0L5qMH5sblcE1pUhjagGtUiaqSBg6dIh4H8SeUFlsPaPZ3kXXLZTimy5VpaQiKXR89P23+NZ/+gMu7G4z35wynU2Yz+ZM25ZV37NYLanrilyKLgpNyJFV3zGpGzKKRdfRThqIkVqLstVquSRbJxaDIrrG4nTBwWLB8njBwb0DdGXYnE05Pjrh8GjJ4dF9cvbsXdhCA3fu7hONZXc+xznFECI6ayaThquXN3nxhSe4fPUybjbDTOdkNIujFd/6zy/zB3/4bT65c59VN0hSOGWsNkymDVs7W7R1y5e+9BK/+ud/lWvXr4oaXIrk3AuwFDz3bt/jv/znP+b3/+t3+PjmHfzpkpPlCuss2qRiJVPh6pp2Mufa9Uf4xV/8BX7ll3+Ja9euUFeVqD4oKXj5oePu3c/47iuv8+qrb9Mve556/CI/9+ITbE5qVFHy+WR/n7d+8CEffnKLO0dLsm7Z273Es88+y7MvPssTTz3B7s4WtbXrgueodHMW6EiWWbr8Ayl0nBwf88GHH/Pyd1/jjTff5eatuyyXS5HlL8nvGCVZrpIqRW955lwB2OQhNVhblUK4xlQ1VdOytb3N1atXefaZp3j2mae4fu0Ks+lUuqHXQHIJuNYkAl8cJbk9xg0heBanx3z87ke8+p1XePvNN7l18wb7h/c5Wi44Xa5YeYF1L+zNaaxG1xqC52TRoUsspDX0vZfO8krjjGI+nxIGzxClqOp9YNLWtE4Ketq1eCKbbU2/7OiVxjqN1YoUYOkHqrqCIbPoPTEMBN+LYoEs6eztbNK6hoPjBSkjqmLHS7yPa9UOf06FM5IZhgGTFa6y2MoRBk9KUQrfIifCtK2kEzwmUJquH9jc3eSpxy5ilMG0Dffv3Wf//gmr5cCiGxi6nqwSddswnU5EFeq0p+89KQYpQDopaoQhEWIqqk7FKqlYMLgC04cyL6RSVMg601QVk0kjqpc+Egfxj9NWo53Fh4AyGucU83mN1jD0mb4PxJikMxvFW6/+2YCUKIWTNQx09g/lXh7BoLM4P3Muhv/csdYKLyWGfgDW+dy5rN/v88no8jNn+5H14c9Aoc8d7WxfM75e9h9I/X+tBCWqCGcWICMHtLa2zmORU+I1eBA4Wr+7PoOU1pDX+pgP7qEe2Cs9cJRyrLMfXzd3SAGsgBlZ/t5psWds25a2bajqClcKzqaoi9RVTcqZKF0YEhco2RmNNmW2NJioJA0cKYO1TiAlhVifaYutLN0QWC48mkiOA5vbcy5f3eP69Ue5sneRGGVt11WNa1pc1RRLMylKxhBZnpzw6Wcfc3R4yN3bdzg6OobRNqg8m8YUxQqVkclHbFZyKayPVigUmxTvA2RErSRBKO+lcyIrZE+jZdWPpdFkVF6y1smeEl2gg1j2yuNNqcp+o+wPrSJnUT2yZY8yNqQoJbCH0gIxpZGpyaxteEbbMK11KfDKdxJiGL/1EiOV4+Z0BiWVA45J0Zjk841gby6WX2JLZ0qDjEBZqth8GaPWINNopaO0QOLRx3WhNqYke+PyuRVZLMEUoE1pHpDCdUbOKcWIdbZ89gJEKdn/ynem0U6AHo3YZMYoOQdXOwEJtCJ6j7OaL33lWS5e3QY92jHJ588qoZImdIZ3f/AJt24fCHRW4kajXYGvErYyYo2WE2dPMUUlUpNLoXu00tEZlLKYSrPqVyg0de0YfC9W1TmTo1jHaa0ZosdoK8VxrUUVNARsVZVnjrXKUiqFeKUVxjmMSqAtzlWgikIWYtWkyrWiqE6OisYKyCmWPYJYHUq6IYhFWio0mCrKWEU5SjgchR+GonQl35FxZkTX0NaQvDSGKAMqC+A72qj5vheIF0Xd1vJMJ0gx0DYNOWd815GJaGPRxRoOEn4Qi9amriXmSFH22zkXB7+8vi+U0WhrS45nzEkZYpZrLGpnFBhP1iBtNFonshIgSqZKAdZziGvoRKN56Ss/z96Va5imWd8T51ewTOTuzRv863/5L/F9x3Q6wVVWlIeKync/DOs5hXyWWxuiF1tEbdbxgVagc5k/UpImrJKHsM7ge0/nPf3g6ZcdQ/BMJi2bG3OuXLmOsZYYA3VlqeuKbrWi9wJ4yBwkql5WG9rWsbuzwfbOJrauMbWoKqWQObh7n5e//Sp/+M1vcfPWHVEAK1OptYamrbHWsjHf5Pqjj7B38YLsEWRRJGcv6sVD4M6tu7z34SfcOTjE9wO+H0hKrRvBtBbFNmMs7WTKxb09Hnn0ES7s7lDXxW6vAP45JfphycH+Pp9+dpvTkyWTtuLy3habsxZd1uTee+7eP+T+4QnHixU+KaqqZXtzm92Lu+zs7jCfz0qc/oVlegwJxv+TPUUKxOA5OV1w+85dbt26y+HRCV0nOYhc5pxUABPhYGSOj1HgQTsCjSh0AZXEUuxMtXU6m7G9tcmFCztsbW3RNrXEwOp89HIGVf239hPrV+dMCAOLkwV3bt3h7q3bHB0dslwJbNX7gI+yZ2zbiroa5/OM90FsHjmLUUJM5d8lLjZai7WfGi0WNZUt97OxRIoyUUoMUZoChAvWohKmwWEYiu1mjmI/p5UmqyRWgk1D33tRcAyJVdeLDVyJwVKB3Me1NUbJFRit0EW5PBfVxdGK1Rh51lIUFf8YE1krdnc2qK0BKypQi8WKwUtThUDLCW2NqCAZQxgCPmTZT6CKCKRAlOkcxCaxqazPpthkpnPKSqMql9aayrmS1xb4KieZ95SWxgeQFGrlLMYqUesLqShLglKaf/sQUno4fozjvGJSXdfAF2tDf9rDOcfOzg6/9Eu/xIsvvkjTNP9dMGm5XPLBBx9w79493n77be7cufPQhujh+MJwzvE3/+bf5MUXX/yR99QwDPzO7/zOQ0Dp4fgTD2MMf/tv/22effbZH3lf5Zz55JNP+Ef/6B/9VJXdnnrqKf7SX/pLXLt27ccyt+ecef/99/nN3/xNfvCDH/wYzvDheDgejp/0+FOBlM4nuVFn1m+5WFmcT8StrRDUKF1cOoVLR8ZYFPg8mHM+uf55EOnzr+Hce53/d2elQ7L8zboQALkkoPUXjpvyWCwyBUQqKuZQksRj6iGf27DLxnVt6ZAo7/HF6xdjlETpKNcM667t8wWEEUg6D2ulH3I9NLls6k3pRBNJ1GHo0DnjjMhxT5uWjemUza0pW/MpbdMSidQKNtoaU1mycajStdzUNU1dkxUsFz05BFxtUZUW6f6k0NmwsTnBGUcOkQu7G5Lss44hQUiZm7fuoqh57PoOj16/IJ1xZLrFin7oqNoNrj/zLM1sG6WKmlDyLE9P6I6OOTw8xC8WrMLAyWqJGiJhiDS1w1Rif2KsxWixjMiAD4mu74uKgSj+6FwsD8o17/tBuiW1oXKW5TCgsnRiJpIkQFMU4CEpjLWE6MmAcxU5BWxWVEqSuCFHjBUlCWVKN29WtE1N1NB71t3LxlpSztTGkn2PqgwhQ4WAPa6tALGP0ElR1Q25JOL71ZKYSvexLx20RU0rKkRaP0pyZhU8IqWfqIwhdZ6gFKp0vHeLFZU1kpzNInedk4AZWLH6AtBIUVobR/IKbRNDWELSEC0iRSIS+VAKggZSDjRVRW0s3ZBLYSWgVCDrSOVa0jBQTxsaV6GNqIVp9NqyoqlahhioKrHfG4LH9wrnHPVUo7Jm1S/RJGy9ws492AGVM1lFgRpSR8oVqd8mLyf4wYCxGFezWg2sTpZUusKYSHaGycYEQ2Z10pG8JKZC6CFFsV+wmunWhOP9Q7rgYYi09YymdZwuTlkuA1UtEMeq89KdpqGxNRopaCkNSXmGVSIMYGtN3RiMtngvnfwxDYy2Mk1bkxNoAvXGFhmNteCPT9FVw7I/pa5bXFtLEqsL9B6a+UwS5dGjtKJfSWG8rgx9v6TemJM6Tx4GjNUMXcLYhsXpMTkHqtqhrIFsqWyFMomQB0gO4xq0isRuiU8iLx67BdFoYi9dd6fLQHe6oJm1tBMnClxZ0batWBX2A1ZlBj+gnKOetDhnOD66z3K1IgbNfNJQu4yPGVVZUjYC8ZjM8WFHbSrcxEAOVEUFzlrL0HmBK9sG50rBgogh4oeAsw5SwCuFqyqx09RgtQISGENaDGJ/FxWm3aLa2JFuyjKnoCCSIXluf/wx3/xP/4HF8ZLnX3ic6czhmpZ2OkP5zOLomBg9tavQSkuHpDUoE1ktepadZ0Bswmqtca5Ck0hdTx8T7aQRmw4Nw+AZUuZg/5CDe/c5Pj1lUou12Monjk97PvnkE3T2XNiZs1wsMXXLha2WnAKLZSCGJHBnZdndnvHS80/yxDOP0WxvoJoJZEu/Gnjre2/z+//pW7zz3i1OTjt88PgY0WTpnN7eRlnH9Sce48//7/87Tz37NNPJBFRCJ0+OPfuf3uL9Dz7g3uKI1157k++99jb39o9IWQsQq+SZMNphSwf0fGOLp599hl/91V/l537uK+zubKJ1RmeLzIYr+mHFjZu3+PbL3+HNN97FYHjhqWt89blH2Z033Do44PD4mMP7p7z93id8ePMOxwuPtTO2dvd47JnH+fmvfYWnn3iC7Y0NrDbn4INzGfnSzCxFa0/GE5NnuTzls49v8uorb/Lq69/n089uc7JciGpOClJkSNK5mlPg5HhBTpnptMYU66ERQtZSTUVrjbEO52o2N7a5fOkqjz/9GE89/RRPPv4oF7a3aCpX1v6RuoazjPQYn3wxRho/SMqiInH39l3efON7vPby63z3tde5efMWh4tDtPJMKifwVgXGwGRSE/sebR1xGThZdfQ+gpHYqjKQDWxszol94vT4hKaqqEQWg6wUVeu4sLnB6bJnGRMZT+0sCsvJciUFmSAqDJW1BD8QlRQB2lkraisRFoNn2lTkDEdHC1Yrz3LVE1MkJokzY0rELGl3kwSotlWxWjWirjEqUWYfsCYzqWtClvno4pULPHb1IsdHS467gO8DJ92S5WIl9g/BS8G+tszmM6xSLJc9k8mUGAKHRwsBeoEUwNZOCq1hKAV6sZwxSkDyGKVon0bVGZPY3tzEaMuy6yQmjBFbIHeMxqdY4sZMVesCOJhiJScqKFrrn2lI6YF79Bzc8yBB87l7vABLn1ceOh9yjyDQuM/I48+f30fwOTjp/H7ic/+ujVmrMjHuctRZifnz+xN5u7S+H6WI9eBH+CIQOX7Mszj/3OP8hXF23fR61/XDzuOH7a3WP3/uuo0/qsq8Ykyx7ooBjUAxzklhb9K0NG1FU1dYawW4UcjzLFVEKPeqMWI9ggI/iOKcMQqKLZUqhdemrtbNH5O2FmjEGAERMpycLlDKcmlvi0euX+aRR64zmU5Ls0jAuJqNnV1s1cjcmOU7GPqO06Mj3n/vfW5+9hnLbkXvB4gytxhjpClF6aKOcLbXi0m6pJUWu5TR2Gdt960E6khZbNO00QJKoqRJRCWMtTLvFgszrTUpx3UDSS4W5EZonbVKk5FqO6Opj7Vi2Sx8jth+6wIDWa3JUaCElMFQbN+sKRCBwBjG2vWjFYMXmKfALWr8n1LS6CJEnVjUpRGykQJtLpbUlDkmjvZdWcAuVe7/cSnVBWwSy3e51jkplM7E5JHASo+cVHEJK8+BlmNZY4r1VTloTqAiqKLgFCK2cgUy02tQabzHrbGEnLBFUVigHfk+bCVvHILHGs0zzz7KtccvoUwq88aoZhLIGMJQ8e5bH/HZZ7fICAwQvKwTYrWXwUhsqRHLr1yao0RRScCXrBWudvSrTqCvmHCmkgagYcAHeVacs/gYZb+vwCqzXueUgqwS0WdSFNjPuKKeFXNR2ohlPpEmElHyS5imYYSZ4jCgtCXEAWNcUUISdcoYKU0oAqMpJXbwComZQ/SYuiYHgX21VoQgKs7BS7xkdLEsRWG1Lc+UQAgqiy1ujmKFqIyGonySAaIARb73oKAuYPFof2W1XH9VYLmsxSLSWkMIXiypUsZqS2XLc5sy2lliyFgtkEIKGeskP6Nlki5NXxKXWGPQJU4TJaai1pvVOQVF0Woa1Y7I8nmyz+QYcFXNc89/iYvXHgGlC+h3Dggl4fuOb/3RH/Hyt77NfGPKfN7I53FiOxsHj/fDmcpYpqhOQoyJYQiEoqAiU600wxlg8B5trVjIFgvchKIfBlaLFV0n1m/WamxV8dTTz2FtRdctmTQVWmV8yEymDUYlYsyyby32kqNC98WLu9TTFl1VUOCt0+NT3n33A775X7/La6+/RT/0ArFmUY+bti3WWlzTcP3aNS5fuSwd2KrkF3IkdD339w9Y9B0Hh4fcunGHo6OTsk6UhgKkeUori9YG5ypmG3OuXr3K9evX2diYi+INsv6gIil5uq7nzt273Lhxi245sLkx5fLuJjsbE7z3nK4k/js8OmX/6ITFaiBnQ1U3zDbnXLx8kb0LF5hNp+W7Ob+4nid8yn8qAQL9xRhYLpbcu3efGzduc//wiFUnKuACKRWQsNiBBu/xPlI5eXYkDimK7TLJlvygXl+DyWTK5uYm27vb7GxvM59NqZw9l69UX4iFOBfjfDFVLLFazJmh7zk4uM/tG7e5efMW9w8PWXYrsX43Gqc1ysjca8e5pUC0fgj4mIRvLE6RSoFxBmcc3apHKYlB1qpUWtO2FSpDH8SmVKsseZQQCSmiUcSYpVEkJSJFCUkraRpMWdY2pXDG0PdewKEQRUGprPNjDnaMPbUSMFGW6DNASY1yhlnU/ZQWq0brLDs7m6iUWQ1BnpkQGLxfA0ojUO8qi7OO4D1Ky5rX9QMhRsmlJ9lzCQgb199JjAWkRRpzRwu4XJ6JqnI4KzamYhkna/p4r6T1/VlgJ1UseosC+vhZ/+2/+V1+1sZDSOnP1pB1QhTqfxpWbuPY2Njg+vXrfP3rX+fy5ctrSOpHjZwz9+/f59vf/jZvvPEGi8XiIZj0cPzI4Zzj//w//09+4Rd+4UdavD1UUHo4/v8d0+mUX/u1X+PJJ5/8ka9JKfHNb36T//Af/sO6GeanMWazGb/+67/OY4899mOb6xeLBX/wB3/A7/7u79L3/Y/lmA/Hw/Fw/GTGnwqk9IDCUUl6pzxKoZ9Zua1HzqW4t/4jKeV1UDq+9SgB/ycJ+P57kNKYZB6lfcfXrmXQtRYLtRilkHiuKBCLZO7YUZspyeWUf+j7ju99BhlJwkir/MB5nakhlc2sXucQJFEyXsuUiorLOWjpfJf0uWGMETsZazBa4UqCVkUvhYR2wsbGjMuXLjCbTEFl2raRzXeMVFZjNUwmLT5Bn0FhmFYNs9mEQMR3gXlT0zSWQSUSmipb2sYy35gQ+0i3HGgaC0qxGiLHpz0mB5567Cp1NSE1FdPtTZq65mSx4t7tQ3b29njssSu08xkhJlanS5aHp5wuj+j6JXnVseo8QwwYkG5UI0nZeTthMmnRSolFQ87kpFn2AwEpJBhkQz0WKoeYhacpxcEhZXzOzCaSqMjJkHKkH5aSFI8Rq8SSx9WVyI7nTFU154o2Zp3EcMZhjcZUlpgj07qWzX8uUENJ5GrrpOsQgaIondEOkY9HZ4yB3gdUSPSDx7YN1lpUEGst7Sw2G0lap0zWSrpnlSRe+hRZLBc4HFYrssoC7AVEFrupOTw5xmVRDFv2AeMMrQX6hFeKrEVFK/gVdVGAUjlTO4u1lljOTRtQRuAaq8XqMAFRCZSls8YPUaCQ7Glq6SzOSmFRKGswxlJbx5AjKUtRpmkqtHYslguaSqwYtAZFRVVZtA3kVOPjEjtdYqc9mAIm5YjKiZx7AWHMHqfHE1JvydpQ1zM0Uvzqes9kMoXUo1TEVZrYdwynAyo6fIxEHYlZEuyrAlallcenjFWRti7PVMocnS5Ekcoo6rpma2OTMPQopThd9mgF81mNzz3HRwMER1UbjE10XQe5qINVbg17VbaCqJjuzAhR0S173LTClvsBDcZJd2gmiRJU0DSzGdpZQObolCQhTUpoI916/ckRfnHMZL5BtjXBR5b3D3FWU01b6tmcvvNiL6JL5zuabjWgdcbqyPFJh7WOSmS+SEOSzkSlGJZLOu9pS9dwbRXZ1KLMUkkirTFiuRC8gG2LxSl9CGRlqbShcaXjWlly0lQWrI4cHfVUbUvOAwyeuplhphWERLdciZz7pBEwkIjPidmkpVv1OD0hhR5cxtgKZZx0nHtPVhndVOR+YLU4RWWNqafUG7uoelKKwrLOjUZ0aRi4d/sG3/jD/8Te1oTLl7bZ2tkma8dq0eP7lRTPMpyenNIFOTenYHnaEdAEBb5bUpFx9QRrFaGTDuHZZCJKZJXCOkfXe7EHWPUivb9/D2MVtjJ0feTTT25xeHwfYzImZ3b2LnBxd4O+W7JcDNzbP5ZnftLgjGFjPuX5Zx/jqacfYePyLna2ScoGlQN3btzhP/67b/Gdl9/h/smCU78iBVBBbKbaecN8OuXC5h5f/oWv8fxLz7N79QIb7YQ8rHj7e2+TlOfCluXk3n1eefNDvvWd1/ngw884WXTEHEg5oJJ0PysF1jY07YTdvT1e+vJL/Or/9ss8++yTzCbTUnBBrn4OrFYnfPjhR7zyne/xg+9/wLx1PP/sNZ5/6lFmE+nOXy4Hbu7v88pbP+Cd925yshxQtmbv4mWeefZZvvSVl3js8UfZ3dpc2yHIf+qBImUu/yOLvQ3Zs+oWfPLpDd544/u8+tr3+ejjzzg+WdL1vRR1RYZNCimDp2mcFOSyFGulk1WtC24oihpDTVVNaKZTLl7c49FHr/H8c8/w1JNPcPnSHk1dr61+1EgzZMofvqgeI1dMkthnSo+Kk9Oe999/l29/6xX+6Jvf5NanH7NaraQglHuqyrI9a4lDTzKG0HuWQ48bU+JaoWMimsRsPqdbDqyWK0iRSdOOQRtVZVApshwiQSkmtaZxjj5Id790/8tcUzvHcrmk1KppJy2KzOADfco0VpTeBKNV9P1AP/QMgxd7hyGgtKZuBJRNKaKsLmuHwKIxilrf0Htqk5lPpyQ0nR+YbUxo2wknxwsW3uO0EevFIWLlwpUicUAbLRYUCja35qSYOTg6IcQgoEGSrmtrpZAaUsTVlZxn1xc4SQB5o0WZwNaa2laEIZOyfG+2iErFLB32IY0gu8JVRoAKL+uQs5qqcqSUePOV935IFP3THz8aUkprhYU1xXOucCa/XdNJD8Tv43ig2eH835/7/QOAEnwBUhqHVuqL5zm+p1IP/PsD1m1wtm8o35NYeuV1n8P581j/+sDnOf+qB0fO609wDjDi3N99UUnpzNb6c5/93OfURd1F9kAGqxV1XdHUDU1TM5tOpMCHKB6M1nGilJSLFRVI/7+mMoaqckQyKSSxPLFaAMQsli7OGurakkImeLH1QoGPmX4IVNbwyNXLXLx4ib1rV5lvbgiMPAQWpx2T6YTNzRm2rsk54fuA73qOjg/5+JOPuPXpZ6xWHTEX+6ks6gYpZ2rrcM6iUEXhSObFECNivFuUfM4V8mIqlk5FaSVmiQWc08VOXBV1CC+FxSwqKkrptb0UBVJKSWymRrAGpTDKlOYA+TtXVDHXkJwSNRhljOw3YQ2Dlh2liMqWPWZMCeJoASWFT4oSg9LyHcSU1/dhTGl9D4Scit2bXtsBpiwf2FqLslYUP8t7+pAKDKogZJKSFUdrLfa+Vq+fIaNHOEXU5pRG8gCxwEzjGqNKcT4jRWct6oTW6LXymIKiIqKxRuyiRy5RVEMMg/c4I59Bbv2inKUTOVvQka/8/HPsXpxLA8a4VuZMzqJumnPDm9/7mJuf3pJ9jKkAWc9DjKJMlCU2N0aRYiD2EZUNKYv9WkL2pz5ETGXBS8yslahC5dId1Q1DUaRSWGtpqlqsuIHBBxSKqjakHOi7BEljrEZpUU3KFPsrY0DLfShWgoqqqYgZoo+iMCU3vih2jNJviJJHSkps3wsMIdZBokKTC+imlSYOHXHocVVR0EnSjKBSkiaqygqYE4shoCnF9JTFXtAI0JVQWDXev1pUtooS0DB42Vsqg9GgtCFE2eMapyEKYCPPVbFcjYGYBGAwKuGckdsfgRmdg6HzoC2ojE4C4blaFJtyFCsoY3SxjUfWcedEQQxbFKQiqjSNCYMi8AHOyL07iBX3fLbJV7/+K9STGXlt+3Zuls8CKv3B7/9H3n/3HXZ3NgQyqBtRjgyBlCLOWoZ+KKpJYoUVQpSYQsl8pnMq8LuFAihYawVsJBZFGBiGIBa7mVJ8FRtaV1U8+sgTuMoRU8BqAVg3Nzcgi9XxYjmI7WJlMUZjjWFzY8be3jaT+QQ7aaEob0U/8Nknt3n1le/zX/7oW9w73BeFuSSolq0MVe2obc3O7gUuX7vCbFNsd0xOnByfcHJyzHTqUNFzcHDCJzfvcu/eQYHVE5ko4BiyjkhOz1LVDds721y/fo3LVy4xadu1/eNIDqUUWCxOuHNnn1s37xIGz87mlL29TWZtgyISvOQ/7tw/4M69Q06XnpQlv7K1tc3exT12Luwym04egJXOIdPrX/M6JgdIpBhYrlbcu3fArVt32d+/z3LVEUIUKLFAPN4Hhl6UybQp0l5lPR8Bu/NNjaoAW9ZV1G3DxnzO7s42u7vbbGxsUFeVQHXjYTLnzvVH5D7L/5+/e0OEk5MT7ty+w0cff8rBvbv0fQcpkxDQRpQSFSFFFJree4rJG+IAp4kp4OoKyr2ZYiigqigYaaPRStTwQpb5tLLSfBDyaEEpSn5VUS8KKUIWpcdx3fHF4jXFePYtRGkUDKXRJMbSOGpM+T7lWzNGo01Raiygr4i3RWonSl4+RrTRxQI0sRoGAXujqILrAmqxjmtLfhywlcVZS9eVZ1xBoRoL4Fzet9hIxxCLAiLEVGBpJflmawxkUUfKZf3T595TAD85zhmkJCppqnxWpeC3/vVDSOnh+L8/jDHUdV3UpN0a2vhJw0l1XXPp0iWeeeYZvvKVrzCfz/+755Fz5uDggG9/+9u89tprLJfLn9TpPhx/RkdVVfzGb/wGTzzxxI8ElB4qKD0c/6Pj2rVr/J2/83eYTqc/8jUpJX7rt36Ll19++Sd4Zl8cs9mMX/u1X+Pxxx//sc37KSU+/vhj/vE//sd89tlnP5ZjPhwPx8Pxpz9+7JDShQsXzxSDHkjo5/E360QhlGQ7kHPkfFFhzJxqXeTLYf37tWd4SZiNUJTAUA8qDn3eCu488DT6dJ8PhPPY5anOLFMeAJ3Kn412GGNxlcNWEkgMnUdxZvugPmdHd9YJIJYd5PiF81qf77mNoyqZ5JzSF87n/HmNn0GVX6VDWTbMbWVonKVtxUJhc9qitaVtp+xd2GZzcyrdhtZR1Q1D71EZ5ltz2mlDHDwpyXcydJ6mqpnNZ2SrMRq2ZhOsVqzCQO8jOhmcTrTTmqOTga6PEAfi0GFqw7VHH+WZJx6hqR037p6wd+0xtnYuUDlDSD3Lhce6itSfcHjviKPjQ5bLjtRFfOgJOmOSFBP6FKi1kSJfY3FGY5VBa4EaVqtVSYaWTkvvZcevRHXBWlEo8glQIk8dSudgRlM7jcPgvdjcxTBgrcFZK0nFDHVdYa0m+EDlapH0dwpdCilGWRyOrMBVAo0pStEGsVUwGuki05bBB6wy+BgYQqCtKowCVVf0fY/ThqQyyUdWqxVV00hiJCechqQURltCkMTJkCMxZipjiCT6KFLadTJUzuBTIGSxdqhdQ1Kw7FeoLNZNGY2tHUonUbgZkhQalMIZ6XBPKtN3KyZVTV1ZMJIkj1GX5Eagthqra7KyaGcYfIfL0u2lnSYpSapmX4oRCfkzonw2RI+PMKkr5hszVkPg+P4x25tTun5B7QwpWax1NBOBurI+xc16gh1QDKX4nlBpEJu/oUbriwwrR+4jPgdCsLSV+OPqtiUZQ3d6itOWbKBbLdFRitGD95jG0PeRuqo5HQaU0WzPtugGj4q9FAaUdNwPUZfkf4czmnk7Bx/wyXPU9WgDJiv6QSx5KmsAS8agdEAr6ewPPlFVlq47weCo2xnNRoNJjmXXU81rauNEvSgktKuk21dnTAMqaTAGZR0Y6X4Ng0fnQFYGY2tWhye4WmF0hFwhdgwd2Q/kmElZUc3mWGcluY7AROSIH3yBaFasBiliTSuLm7SSvEuJHAKDHzjtPaaWZK1RkdPFwDBksvbkDPNWAKvF6YocBKB0bYNtGpIPmBQxLtH1GYNl2lYMXpRNJo1D6yjFB92QnBEFF+tYrhbkPBawFJ0faCpFPbFU9Qb9ssM0ipwtxtZoa1E+yM84Teo7VFbEvhfgoN2gmu2ijAMl8wdrQATSMPDJ+6/z5ndeprGGixd3MaZGO4sxiqaqMErjB88qRGxVs1wssdqCUXSxp60defDEBFhN33VkbaiUxubEZD4tliSRxapnCIHTo1OOTk45PTmmrRXWGI5Pl9y6t8/h8THZeza35ly+dBGFxyrDO+/fYOkjF7YbGqdRxtHWEx5/9Bovfukp9h65jJ7UMo9mxcnBMd/4g5f5xjdf59a9Q7o+4HtPSJmsMpttxcXdC6iq4dK1q3ztf/tFvvbVn6OxFX3XodRARY8/PeHw5JT3P/mUb/zXV3jttXe5s3/IMAzSFToW+bXB2KpYFUy5evUaP//Vr/HLv/xLPP7YderaonLpHiaT84rl8ph33/6Ib37jO3x64wY7my0//9JTPPvkZWbOMHQdRyc9d+6f8PrbP+DN9z7h6MRjXMOFixd55rlneOnnvszjjz7KztamdP6OiXolCdwzoIF11yp4Yu7ouyV3bu/z/bfe5bvffZN3P/iYo+MTUpY56fjwiBQTVV0RU8KXDlqFWMkazLrTWJcucGUcxtRUVU3T1mxvb3PtkWs888wzPP74ozz6yDXm0+l6zZGCQcGrPrcJHJPRoloxhmIFuiLSDYF79w74+N33+OPvvMZb3/s+n92+CWHFplOslgOHMaJywFUZi9gA+RBREXo/iPIahhy8xBW5xGFKUTUOFSN9SFRNzcXtCTrBYgjSFZwRuxJEsWC16vAhEUNCFUtXjabPUFlLt+pQRsoaPvi1fYXvPf0QoBTTnFKirmcMQxBbE6UlNqirCqsyO7NG7B6GzJASdWOhgFARCL3ndNERo9jbUUCTEKUooEsxtaqNzJcps7k9ZTat2L9zSD9It7b3UmgyzkphcDkwFCsaW1mq2mGtwVhRqwxDphsCPnixutAZ61SxmpI4KGfpIo8xo5QhhYTWUjCMMfLmdz/4Qkz5szBGSAlYNz3IyA8wOZ+Po9elsRHSORcXy+Oav3jcHwL6n4+ry4vP4J1STBzv3QfO5fNA1Oc+1+f3FLrY74glkBSPoo8PvvfnQanz+5w0zjNfHOcvmyqFyTWr+Llz+aHjc3sKrRSVs9SVE2UjIyChUhrrKqaThrp25fWmWAFFVIEerLPkeKY4FYNYK1Z1vd7zNK5Ca3l2QpK41KiMrSx9HwhBgBBSxNWOp55+mi9/6QXm8xmLVWCysUnbTqSwmAPDkKRwGXuWixUHBwcsFksO7u1z88YNujCgyzWMORfgWsBBXayklCoFy+BlbS/XcN15WK7ruE+NZV3IebSalBKrLceLERJpbXlujKwlKYMpTSWjjVQqKqujnIVW+lxxXRfI9fP3IWeFyaKWM6rHuVIUV1ZsJY1Sxa6tqLdZgy6yXme1bYE6gAL3jAo8AjaRJW41WgskWW4rq0XdaYgBVc4xo86gmCT2NCMAZbTEJ1mJkpMrIBxKXpNTAfkQxSOtZH+ijC7NIQVKLFadoyXXCOrK6ynnKeBPZWReDTHTrzqaphK1IK0FktMG5xTKaJ56+hGuP36RbBKK0nxFRmUBP+KgeP/9W3z68R1yjMScSUnjjJPXOUdWmjAMa4WKEETdVZfCsbaaEETlalRHaqpGQI0cIMszmVIiJdlnZgR4rVwNMZGIdCEWkEvArZxSgbd0iU0TSomNdkq5qFANaKUxtsLWFpUNIQR0ZWQvGLyobhmB7ZLKaKtQudyf2jDavonddAQ0SluxTDdIfiXL9yBQV1EbSohNdOUK3Ce2bKIQU5rTUiSlTO8DrthGKmshxjVc2A0eiuKkQqAbP4jda1ZZFI1VJifwgygeKiOvlxs8YYzAvyFk6mKR3Q1DKcTLeq61fJfaapy2xKKurIvvcogRrcFasFVNCgikZIzcV0ZUPyl2T+TSVJQz0XsuXb3Kl77yNYyt15N4Prf6kDOnRwf8+9/9t9y9dZvZtMFVtawpRuYQo0UNuR88xlUEL3sqU5QWJY6EFOS8YlGnEoVpsE6ev5QzIURCTPjB0w8DfdcDEWc1xjiuXLtGO52SojybG5sbouplFCenHSfLTpoWKskRGlsxaRv2LuywtbuJbSrQipzFCuve7X2+9713efk7r/Duux+sIZwMWA2zdoJxjqpp2L20x6OPP8K0aQWciB6jE4SBoR84WS65dfsun352h6Oj03VsvV4kGUFhUaOaTFouXLjItetXuXhxj7qSNW189iCS0sDJyYIbn93mzt17kDMXduZcurjFtHaonOg7T+cj+4dH3Lp7wMmyJ2dN3TRsbm2xd+kiF3Y/BytlzjaNJRd4jk6TdYVASoG+6zk4OOL2rbvcuSfrWiwKmn4Y8N4Xu2ixFUslxhcApej+FZ/MsUlTKQG2jDFUdcVsNmN7Z5vt7W22tjYE3BrXkM9BSufHGGud/WF94zLC2Kt+YHF0zO3bd7h56w6Hh4cMvqfWMh8uh0BSAoJaQ1lbcxEoS/JvSu7xVIChMeLSxcowxURWmknrcFoTYi7H1IQsc5Sss3J/p5jPbFFRiBPombWj0qP6ZF7/3HhtR4XD8UokKDbfAkmNVrG1M8VSFHwUSFBbyWHHMgeEIeCjxCPra/oA6D6u/wL1Kq2YzRqGrqfvBQHPWeDOMZ8eg8Cp0uhaYg2jS65ZQVQF6AwFKkesNRVrmH78BtN4rTNkUrEth9/6zYeQ0sPxJxvW2rWVm7X2gfrNT3IoJU2jL774Il//+tfZ2dnBOfcjXy/wX+TevXucnp7y/vvv89prr7FYLH6CZ/1w/Fkdxhj+6l/9q/9NBaWHgNLD8eMaL7zwAr/+67++rs//sHF6eso//+f/nI8++ugneGZfHLPZjL/21/4azz333No6/n905JzZ39/n3/27f8cf/uEfPnyeHo6H48/A+FOBlLTWa5jnPECUsyTJdOnAS0XeXpL6aR2cqtJxOI4R9Bm7Qs4DPQ8kZX8EdS9JeunwSGXzJ5YYiowkL8dNXvDStTNu2EawaLRXGzfdOYGxNVVl2dhqGfzA0eFCEo3rTVyR9lZIx2vp4FSokjCM62t0XskJxs+Yy3Uq+/zMWTfdGsYqRQ5zBnSBvFddVcxaJ0DHpKWuLNPpBFeKC0o5XNXS1obZtMa5mqqpySnhh4BWhnbaUjUViSwKATljVVFgsTVDjFRWbMvEtSWRtSaGSN8LpHB0eMJq2bG7PeeJxx7lsacexU1mGFvRbmyi7bRAYRmSYegWHN4/4N7dOxwf3UZ5h9Zw2K/IXcRpzWAy0fdMm4ZcIKCgoa0cqh/IRU4dFDkKGedToO87+e6tJmbN0AWcsagc8SlLcpihdBgZiKL8pUOS7sfaEPoeFcWexaeA0qLsYTRix2YqRP0i4WrZ3acMtW3AgtMiax18QBsHSOKichrrDL2PeB8xSpNz5LRbYrXBZkU7n0ki0Xt8kk4wRUaXBI2pbIGORM5de8hGEY3CD14af1MkyU1PDuCsFHJiFNuGqq5JIdL3HVVTwSDWOso5UikiBR8BgcA0kkDSViC3xmmSH1gOPQkL2UkHWw0qe5xtiVFkvYd+Qa0t1tbSNW+yWIiFWNQhoMGNjefFKiMwrSy20pyuPDoZJhMLOqFSRikHyqL0gNlYYesF2opyk6JHJ0+KmYxG5w3CqQMm5OyIq4ypRTrcKIPvPcpVBGUZfE8cBtrpHJ8SVifysCAnRdSUzvCKo8Upta1EEWgsY0SDc5BDgODQOlHXiqQSfVQoZWhqmQOWKw+6Isck6k0MaNOQcoPVmb4/le5VZ4lZEmB4z/buRbqwwmSHbmpsrUl9jysxXgwKYyqUzWLBQX1mwaAtRieSj5AFBEkhiRS+1YShA6WL0sdAtzhh6HpIisnmJlXdEPpBlEecIQax9rBOg88sugGyx5+eMtnaAZfxCw9DoM8eayx2MpNu+ATLoxOUq3FKk/JAyiKHvupW5ODZmG2gjWMImZOjIzamc6IKLLogz5Gy9D5zvDxkXje4AntWVU07m2KtoVuuGIJf2wdqo0k6YrA0M4eymdgn3GQsLjhyLcpjcdXLepQyflhhkoBTWVtyPaGZ7Qq8A6hSTKQUUJI/5sN33uT177yG7z0XLmyxsTXHWUdbVzhl6bueZYhEFJOqxmlFP6yIKtHUDRoBPkKMJB9wkwk6K8LQYSpHztC6ilXwDDFiUByfnHB8dEzoO1FViYHjkxX79484uH+f6IOcy7xhUtV8cOMWxycr6krTNg6jLJWr2Nre4rFrl3ns0YtcuLrD5MIFlJuSiQzLju+/8T6//3vf4P0PbnC87OhCJAZZ79rWsLW9QaUq9q5f5a/+v/9fvPDCC9RWM5YecxroD/f5+OMPOVku+OzGbf7426/zzg8+4uhkSUhn6oaiEiPn5VzNxuY2jz/xGL/8y7/A137h57m4tyc2nyoXy6BESp7D+/d543tv8e2XX2P/3j5XLm7wtRee4plHrjCbOtDQ9ZG3P/iEb778Ou+9/xmHix5bT7lw+TIvPP8cX/3qz/PEE48xm0xK4a/EIeP/jXHKGgdIKBI5B/yw4u6dO7zxvXd443tv89HHN7h//z6L01NiSiSkoNAP/VkxJWcpeBV5f3kfiZmstaUTvsK6iqppmc83uHLlMo899giPP/YYTz31JDs729SVE9uNcyf7AJC9BjvWERRkKconRIlO50g3DNy+fZ+Xv/M677z5Orfv3OTuzVucnC7oliucVVQOfBhIMeBshfdBbNu0wikEIvYCIhgtcZjTGusss3nDzrymXwW6JEoh3WpAtxYdvSgnoOl7Tzd4kpHEv0mw7L2on60LImK365wFxPpnuew5WazIOYl9orUMIbIaIqt+wFrNxrzBaFF4urI9w/vA8TJy0nVYA+20JQbF/aJYFqPEP5Ur33jI+BDxRTFJgPMMGrSxbO3MuHJxi5OjUxbLARFqC1LUyKKmEfpYoOmMLTCjxHtigTN0nuVKuqhdmXPricNVAiilooxCTnSrAVHqzDSto2lqvPe89sfv/LBw/qc+/sJf+ItnIA6fi+3H5oUCHp3du6zvXXm5Xr9+PA7jz30OFjq/c3jgvUaIaQ0znRUOM1LQVQXYULBWGxiLOOOc8AAAdf58CjyhraZpHCFG+m5Yn8947Jx54Fhnyqzy2c8rtn5xPyE/eFY4fPBangerRruY89dCbNwq2roWCzdj1sqstoCHxlhR6HJieSSWlaOCgNiUGDt292dBJZTCulri2iSWQK4okYwAWUqZGCLaKPqux/vI9tac5599judffJ7JfC7Kj3WNVmI5JY++2HOdnhxzeHifG599zP6dA5bLBYu+IwcpAEYNKYod7AjkZFWUBUIcZSfO30akHEWZBYEzMkpg8GKtF7OApJGixIsq359CpfL9FSsllUdFpCSAR+HcRqhG5vliSVNuQaOtKGQqJZBRkp8FVaAnsZsR65YzJYvB+9IcoUSFovxsSnJzjdDtuL4ao0T1MibU/4+9/2qSbLvOs9FnumXSlGvvtzfYIAhH8CMOLQ6pC/FcMCSdG+lOP0F/SIqQQhGUQjqiJAofjY74UTQACALYwPbetqvqsmnWWtOdizEzq3rDiDwfBEBUzwhgd1dlZ65ca9ox3vG8Sfp9UooUoxjGlU6ZlZCXdCEYpVRIEtbCSvzkDAQRIiljKHUvkhRGhAlrKYaW63daleRxJCkNWe6PNQoQ8XlaWesGj9VahEgKspa4gUpCXktKCLWypBULs5ypjFhQe59QudidqVToFXKWVDpy8eoWL/zcUxgrhSUQCpFVxnCKjjdefZc7d/Yga5LPKGvkGSMkDrQlKRFU5RixrirCuExOXt6njEGtDL0fMEpoZRn5DiQllnoplfshNMZMIuYzpIssAmGUjDmVA+SI0o4srF5iHNb3OueSfE+Rpp0Qk5d4iLFoq8hBRDfyzIQ+g0YS+shao6wBVURAMZVJsgiQ1CqeEmQOLmTs6L2IY0LCOidW4kmSgNrotVBbG12oSuCDRyURw9WjhsF7VBCybMpgnENZS45RKFwhYq1QjTKlQEzB0HfUVY0udKPlssMooU73Q7Fwt4YUofcerTMGuf9KaWzlsM4RvV+PI13IO0mXQiStMJVZC4GUUmLJZK3MLTGKUKr0C3JCxYS2lieffoYbjz0l4i9Wk/9q4QBy4O7tD/jjP/hDjg6OqCrHeNzK2LGukBqhD55USGfyfSIxhSKINIQYpHwnhCJutqQQyrl7JUiBoRSHpZRYLpf4QrjRWuF94MLFS1y8dIngg9D1GkdTOZbdwPF8iSJTObGgM9YWotIGmxsjppsjqtEIXTVlA5WYHS949+0P+NrX/pqXXn6V2XIppJeUMBqqxlFZh3UV12/d5OatWxLfWs1LWYRKJ0eHLLqOZddx//4ed+8+YLZYFlurvI5FrsW12uCcFEBcvnKJ69evsr29jTV2LbQpqzzBew4Ojvj49h0O9g+xVnHx3CaXdrbE/s6ILdZs0fHRnXvc3ztgNu/JSlM1Ldvb21y+fJkLF84zapvTwklOH/lZkdLDq3kiJ4nX7O8fcvfeLvv7R8wXC/q+X9N/VmKVWKzhyEUsiFpTecpivya2rqh+sneuaEcjNjc32drcYHtnm+lkSlXsW/WZf3967fmhWO7q+s+upTLPZhEXdgO7ewfcu3uH46NDFvM5y8UCHyI5iW1dTFIkJOIqzTAMhTCnIKcisFmRgyj7boV1llHrpCAxpGJhmgkqY8sakzPkVMR4yHprylksQSE0pfXzXyX8tBb6UNcPZa4CV4R9MWUGL8S6upL9u1KKcVNJ4VoUIVbOQm/T2tD3gd4Hckyk1XeQZZWUcqFLrfaTZdFWCmsNm5tjcoz0fRCxXhFTrPctqYi5chYhp1br/aRWihTlzBJCknVFKbQTIZMx6nT7q1ZUphLl0OAqCxn+03/46icf+k+9PRIp/ey0FTGpaZq1gPKnIUxatY2NDX7+53+ez3/+82xubv7Qa8k5s1wumc/nvPHGG7z22mvs7u4+shF61P7W7bnnnuMf/IN/8EOFcI8s3h61H2czxvDbv/3bfPazn/2R89sHH3zA7/7u7wrc4afYlFL80i/9Er/xG7/xYxMqgYyrlf3bycnJj+19H7VH7VH78be/qUjpbzxDrA7Cn6QZnRUXrapKQYJcqgRBWL+OM8mGcuA9836r87paJwxOD2uruXcteFKCCmf9+1NLllQSDGeFResPkBeVA9hpsF8+Uq2D+GKnZomxK1WXKwGVvIVUSAMF569YVSxJkPTs9a/pSZQK2xIIWomsVvdDkhS5HFJ1SVJqbBE7yWG8ZTpu2Wgd07alLQjVetTgXEU39ISYwYB1NUY5lDJ0w0BlYdq2oAxtXdEX0VJVNzjAkPF9R0oJqxyhT3g8OEkwJp84ns/ZPZpTq8yVrRGXr9/iyWeepd3epNnYRlUbYM1pgCJGjo4OOXhwn9nhIceHx/hlIulIU0EcAtl7msriVKayBtOOqUcNvff0xx7nHP28p3a2VAVnUpRgzBAT2kBVO1JM1FVNjiISGbwnE0VQlqGpLWhH1/cM3lNVNdZpKqugUpDkWaSYJAmjBEmdMoJSj4LYH9WmGD5psWZwhkQm5oSOWaouc6mISo6UNRUZHxOzxVIqz42ithVJRXKMrIotF7MOZaTKUSlNv+ip2xofEr4Ebvt+QAeFtY6uHxjCwKRqcKYiJLHlSyYxpEBTV4S+J8bIcrnAIHSkrDLZgM8emyBjiD6KOK1SKB0lsFqsLZRW9EMvlfJZqt7rRoKllavwIRNDwA9irWOsKkFtLVXT1uBQaAM+KXyGo8WMxja04xExBdqmwemIjx6lFG1dQQ6EBE5bXA0hzKnGoNsBZQIQMSVZnWNkcdTTjC+T8wbWOkJQYvdX12Tj6H2PsQnbGLHRiArdjNAjRwpLESagSLZhdrLEd5HaNfgICovOmsH3ElBXBf2tLCiHHWn65UAaSjIkGU6WgZgUG9MxYZ5RWZOTx2pIXjEet3Q+0PUDs3nHztYETWIYBpxtqDdrQrdEu4ypJaEyLDtUyJANrhYkP9qSVSD5hG71upISnUk5iL2gcyQfBZMeOvpZoG4laOzjIKSxvoyL2qFNJkbP8fGcupJnoLXMJXSR2rT4bqBqIKtMP58x3Z6QrGXeBWhaUkg4pTC1Y/fePpttS9YZnQ3H8w5tNUM3sJx7IGH1gvF4gxgSO9tbhCjCPh97QbPnCuccldEyd7Ujjk+OaCZS+V1XjhCCzANZEo6T6ZQhLsQCIyE2alGjulgqncE1FZRkydD1klRTq0QMpDBI8F83mNFIKjyLyGM1f2s35tbTz9J1kW/91XfoY6aZTnHakYZAHyNZORl7MYrdZmUwVCzxOKPJQexkusWSxdEJrlng6kaqwbP0NxUHSioIay2TyYgUA51zDH2PdY62hvM7IkR7753bfPjRXS5e3GFjPMIZjSPS91JBPm4QMpvap+s77u7d54kHl3nmucTmtaso09CMpvz8F3+One1t/uC//DdefvV9jhc9ve4ZQmI+BPp7B+xMxrjdXf74//xDjh884LOf/zzT6ZbYvmjN0TwyWyYuXbrEtWvnuXn9PN/5zpt8/Zuv8vGdXbp+KfaEORHjQJ8SMXhC7Fksjrlz+yNee/1VfvEXf5EXXvg0080NjNZoDEpZts/VfPnLOzz55BN857sv8+KLL/HVP/kOr9+4zxc//ziP37jIqK34+eee4PLOlG+/9AbfeuUdbt8/4t6H73N4/y7vvPU2z37qOT71wnPcuHaNjY0JzjoRKRQhyNnQghiMiqWMqx1Xr1ecP7/DZz/7c7zx5ju8+OJLvPPOB5Jg6Dr6oSckSbhptUr6eoYQ5LusEipKkbNYl5kYiNET/MCwXHB8eMC777zL5uYWt27d4ulnnubxJ25x5fIlNqejInZ6OACSlQgK1pug1Z5IgfRmi1KOtnHcujXi+o3LLL7yK7z18V3efPkl3vzud3j/vQ85PD4hhiXKKJkTnMEpjeoHyFneS2uslSp+5zSVczhTLNd0AsTWyWaxSw0xEsuaaSuHsU4sKBZzVGUxSpFDYmI0Qyi0Ka1QulAgYmTpeyZjJ9Q2Y1BZLFASQcRbCXRJuOYcIVt6H1j6hFKGbDLKOrLOeJ+IXjEMmSFmlE4YB66uyCETvVid5JzJRiyGUg6EkPAhs3v/gMXxjNpVaAuoIvDQQnUTogPkrItIXYgXoSRvNULyS8UyJhWRQt9Jv6lrg0C6MgqDUY5+6Ek5Yk1mmVKxtPnZbQ9bJfOw2KgIudbddHVG0Kdnj9XcvGoPhWfOvOcP/PmZPflKEJjP/P6s+EQ+pBiz5DO/V2r9oZ8ku55ej7xmLXYqFnCrjFA+8/1+UHzpoRwmp6/9ZFudr0TE9PDXlP+odZJSxo5YAjZNI+IkZ6hcIXlpjXViSxmKqBxVznSiXCCkiFFCNROLLbEcjEn2zqZ8tCTmJUmfQiJSEvtaFSHwwHIIOKO5duEct27c5Lnnn6eZTnBNizK1iGSUiBlySnR9x/HREW+89hr37txlMVsScxT7ryLEtmUMGaNQVsQGIUbCIGSF6GWuXYvg0ursKM/HGl2sEy05yf4mpbgWlOUsNBwUawqINaZYUYFsDxREzpzzRJS1ouWlLMIZY4qxWZbkrNZKhDhlDKScIcciZBFSjkFs2QYfIBdBkzGIXaIkU3NGrC+VCKVAKIzGWqEAxUJ2iQminNVjFitMZy1G6WJxp8ha9lLGWHIWoWXwQhgWIRvyGuQ7kVfkiLSmJVG+08pgKawsqxEKhLVCazKlL62oKWhJlBZknVB4hDcldLKiYez9gNUOWxlySjhr0SqtaRPWWLk/FLGPVaASV69d4snnbmAcQGRNScwZ3wWUaXnnrQ+5d28fECs5EaGIAERrKYLRqojUrEM5Q06Byjq0yuQo9oQxJqyxIkgqdyKkUAIfKzs1DUqshGKI5CjjhazpfcLZTF1XJL/af66et1BpQ7EPHXygrSsR1hV7U1sLMQmdC8ErFxtoOc/qYr9MEaTllFF2VWS2UroVypTWIlAik2MgxCR9QSFW60ks8kiZuq1lbBUxXYoRpwoFJmUpislqbfW3EkDmGHDGSGJfC8VIZREKLIcBnUTArJTCx1T6qGHoAzEqhsHT1CLoq5wU1YTyupgT2Ytps1kRVLQlxkzInlqLtV0JSmGtiC1tITvGOABnKCwIVTfFXILvGbQi+URMHnniMg6C97z/7jtsbe0w3dop97vMGWXSz8pw6ep1fu0rX+EPv/pHDH0HxlA1DbkIFCXsJMRisbOT8djHJAKkJM8thcCw7MmAdSLyVkYsCPWZNUUpjS3WuEopQoigRPy9e38XpRU72xc4OVkQQkUeyZxpVSbETDeIGNUilLmjk2PmyzmbixE7O1tsnNMoJ+fV6eaU5154hrZtuHjxIn/97e9y9949fJRYyrIbiDoyauHOx7fxw8CNGzeYTjeK2FQRs2HRBZyrmE5HbG60bG9N+ejjXfYeHNF7v1ohpZAkiggq5Ug4GlguF+zvP+Dq1atcvXqVyXSyLraU85Xh/IWKjc0pe3v73L59l4/uHrC/v+DypW0uXZxSacfmdExTX2NrOuL2vX0eHM4YuiX373acHB2xu7vLxUsX2N7aYjRqhfJNoZStrm+9ZKv15yttaFrD5SsVO+e2OT6ec+/effZ2HzCbL+gHL+IkhEqos4xJEPpPTmld8Kmy2G+SU9knCNEshogfBmYnJ9y/VzGdTtnZ2WFnZ5uNzSmjppY5PJ9agq6u+aFNxvpnai2SEmGuZjQy3LjZcv3qJY7nHXsPHrB/9w4H+w+YzZekGKSANMs6r7R89xzjeh+ldTl/KREZr+lFJXim9WlRksR/i0CwUMcUCqU9OpfC2FT2AiUWrItgWRdr0RADGRG1CRlPr8lHK6Hxao8o84SIl4YQaSpLpAimMkKVjWKfFmNZX7SsywqZflOO6y2tLtbPKcp6NaTEwf7xeo8Bss/QVizlRIhX9hVJrfeBsr+UAotU5ilWsXirShw1o5QtfQS5LrTMkUmuKfrv34c+ao8aPExMWgkzflrCJK0lJnbt2jWeffZZPv3pT9O27Q8l2qzESX/yJ3/CO++8w9HRkRSHPmqP2t+yOef49Kc/zW/+5m/+UIHSI4LSo/bjbjFG/uzP/owbN25w/vz5H/gapRQ3b97kd37nd/gP/+E//FSFSjlnvva1r6GU4td//dd/bEIl5xxf+cpXeOaZZ/i93/s9XnvttVOi6qP2qD1q/0u2vzFJaefcBR6u4uUH/vnU+qzEWs6ImB7+ZKkW1Kvqs1XFMKe2avKyFaZYgpOU34tw6NRaYFXBq0oQXoRHxWpBy7+V61lVR8pBb4XDRYn4hSyHylVlcIh+fZCTTzJrYdMa21y+9+q614dBTqu6VRY7MJAKSMH+luBfCYJlJWIVQf4Xa6vG0NSOuqlpRyPGbcPGuMEoRVs3tG2DsVYCRdZJoEIn6srSNiOGwaONYIOtUzS2wekWY+FwuST3EZzcs1Ht2NrYwFtDDiW4GyJVVRNC4ujgCJ8Cj928xtVLl7l0ZZPxdIPx1mXceFSCrEaSbd5z8GCP2cE+h/sPWCxnkBK+D+QkB3BjM8YAUWMs5VCuxXKidvTes+zBWEXwA05ZTK1ZLHvyEOmjJ+uaylgRPGkNWQK7oSCPB9+LvQGZylmWvSeGRN1UWC3UkUlTk4yiGyJ4CbKYkpRIKKpaaFKm2Dk0jSZZQ/CaxlSYSoL5zhmGwUOSpH/VaLFuShFNJilNiDB0A23lqJwhUwLoVYXve4blUiyrKofSQoWoRyOyVsWOTiyjcjaEkISUlDPWCbJcSFlgayNF4iHS+YDJUjFvjQWrGIZOqiqVoPBTygx9YAiJ2mTqxhKVImcDPpKIhBClSluL/ZytLcZY6etWQciErgenUDpT2RGgsFYC6W3dopQEz2Ox1Gttg60coR+oKkdVJbphIMSKRhuS8rQbo5Lw6snqhHYrgvVkAhBkXMeB7BWkCSG0aLWByo6cNYdHx0ymU3KAYd5z0nVMNya01olopQRsnVN0yxnLwzlKOVxbEWMvgr2sOVl2Yl2gltgI1XhCPwR8P1DplslGg3KKxXLGpNL0vWExaDYmDmMUD44WNFWNyh6fB2I/MKpbqlFD13V0Q6BVMn5d3UAEW2tyjDTTsVRXr5MHcHK0oBnXtM2ERCYgFKxmKnZ2xAqckQRFjlL53QdMBJ8GusUcHSLaGGxr8LMZKUA0hnZUE3uPqQz9oHAqYI0jKgN1xfJ4jsqa2PcYBwohj81mPcvBU9U1dVWRokerxGjUMDueMSw6RmNHXbUczY5FwDUeczLvyNYQ/RKlLVvbF7BKsRyWoDJD1zFb9MQ+cW57gqs1/XxAGWTetA3LRcf29hStYBgiJmsikdF4gzB0ZBUYjSZCHzBQj1r6IaK0xRRRVo5CmuoXC1RK1NYwxCB2I8qgbEu1sYVyDQr3/eHZ7FkcHPCNP/8z9h7scf3mFc5tbOAHvw4axxypbIVJgUYrlK0ZXAKfOD4+IafM0PXs7j5gGJa0G5u0kwltM8aWZN8Q5PvZymKdYtkvyFlxeHDM0PUluJjxwfPuh3f46P3bGJM5f3Gb1mpOZgv6kFEmYw1YY6nahqZyuKrmyrlNXnjmJo+/8CT19nmUacjZQoL7d+7z53/6Nb75jW+xtz9nGTy9F9tQnTKjtmbnwg5bGxs88exz/OIvf5kb129gjQgWg19QWwV+yXy2z/7+IW+9/RFf//qLvPLaW+wfnzCEgFD3JeMuVA+NszVNM+b8pUt85nOf4Rd/8Us89eSTTJp25ZizXucHv+Cjjz/g2996mVdeeh2VAk8/do1nH7/GpQsTNqcjZrMlewfHvPXeB3z7xde5vXtAHy2uablw6QJPP/M0n/rUczz2+ONsb21RC1ZQCE6sNg6cfrAMPCCSc+D4+JCDg0M+/vg+r732Jq++9jZ37t3j+PiErtjcrazuMqtA9mofIMFwIQHI/mIlwBELKYdSlqpp2dre5tKVyzz55OM88/STXL12lZ2tTZoi8JE9xvcnFVRWhRyx2sqshCIrIYXsyYIPPHhwwBuvv8WLL36HD959g8PDQwxikXB4cMyde7ssBxnvKXoish+qrKLSiqqtyj4pcXlrwtBF9hc9VeMkYX9GeF5XFSpLdbhU9AvRJKPofJB1MyVSsVLMfmDZ+bU1Tcjg0KShZ1CJjWaK7wO7swWmgq3tiuzFcsdoRVPX+ChB+aGQH3LIdEOmTwGrIs5VxWZC0S8HhiEUgidonUk5Ifle2RtWhTzTjivaUUNthDqwLElhsQyJDEVIIDYLaS0KUdowLD0pRIzVWCO2RLZxOGegWGCkvKoIj9S1pbIKHyL9EHn39Z9Nn/Zf/dVfO/3LGVH/WXHRqXD/YfrPjzqynKUzrX+2+nflz0qtqDV5/fvToHphJhUhyuln5/VZZPVvVz9fnydUseV6SHMlf9FaBAArcuvpeUKdURSd3oOz15RzEc+cuVeKVSILSeY/dEtW11BGTBEsGytWbm1T4yqHqyoqa6krK9QjY4TcVsi2IkqS95G51xFCkiSeEsqr1VYKIXSmC4Ec8gpQQ2UMTV0Ti51KzkARraQiTNg5t8MTTzzOtStX2N7ZoG4aqmYq1MCSrM0ZUop0iwX9csHdO3d45dWXWS5EeEyhACldBA5Zneb8iwjIFJqTD7KFWgtdrNgw5ih2aSiDUVoEhFJxUpK5cp4TEqtkKIVSIsSBlY1aTlGoTUqJVVpxjNNQaErFqrE8dlX2x1kXi2ptUUboWkJLkiRhihlji5CuWJxlhOQaQ8RpU4g70hG0kX1fDEKzFCsrLSRXKzi4lKLQlILYdsUkVmurZ48SCsVK5KQUEMUCTq/6tNZiQRtD6WeyXuUs1IuUsggnnC422wpi+Zwk1IzV+UzO4kLUoYDpkg+wtkF1ZSzJamCNRSkRQqViz2q1FUJPjKXQSISfKRusUmSVsJUr4yvzxFPXufn4FZQRW9ZcBD/kQI4KcsUbb7zH7dsPIInNb9d11HVNTlJkM8RAVct5EtG7FZIFIvzvPKAxrthfK03KiiGEEvMI6ASmcsQoZDGjLVUtRK0QPE4rYlT4qKgr6T+LXp6tylGoXjEKudRZiTHEiFVyr4wVEoY2Eo+wlVvPsblkxodO9vvOViKIKzOmrUrCJYt4KeWEznIWSTGhkyTYvS/WilphrCb6QZL9CUxl0Rl57krEB84Y6ROFYhL6cGaulb1Hyoqu64WmthLDpYhzYhXXLwesydKnc2LZe5lzYiKsxklOWNdQu4oQAzGLEK0fPNGLsKqtnfSjEMUCSRt8iDhrqJzYqytEWGitLWMjUDm3dtA1zsg4KqQkERNk2dPFSAqh0E2EAqeU5tq1Gzz7qReEMLSW751tmRw8L37rW/zFX/w5TduwMR2jkswnK4GEKrEJSxFcWxFq+G4QOkuC5XJJ3/coY6iaGusqrNblPst4U4B1lhAHMuCHyND367iW1ortc+fZ3Nwm+EA7qkWQESODF/tCpVIhtckz01rT1BXnNiecv7hDszlFmUpmxazx3nPv9j3efusdXnr5NV59/Q3mi4XsowpZrBnVtE3DeDLl6o3rXLx4UeJdJELwGC37qeh7+m7J8cmCO3d3uX3nPiezeZkDzi6xp2JdYxx107BzbodrN65x6eIlRk1bhIGn63Ii0i3n7O4+4PbH9+iWSybjhos722xMakZtVZLeA8fzOXfvPWD/8JjeJzCWum7Y2t7iwoXznDt3jvHKqjnnM1vyH5bcF2FgCJ7lcslisWR//5D79x9wdHxc7JFD2V+kh4oqV39eCeRUEWmqQgw7S1dSSsRBVV0zGo/Z2trk3M42W0VcVTnZK/woCcJZIdN6O/fw/5FzZugHjo5OuHvvHg/27rOYzUhJxsgQAvOTOcvBy78pfT0h5yJbBD5C4U+0tcVpw7wTUes6RlvuwcqKLedUrDVX2kO1FlcrJWPKWIvOWSinSdbCWETrOotdmnEWi2HeD8SUqVuNLUV9OSNFalnOAitnAYpAySeZXU0psljZ1oVQrC/X1y6iplTumyy1Gufk3O+MFCr0K1FFcRPwxU54dZ9zLrtarWTNCrH0/xJfNxpjdaFeyUenM/OKtTIOQoz84Vf/vz/iyf902iOS0k++SZFDRdu2a9rzT7PVdc1zzz3H008/zfXr1xmPxz8y+b1az95//32++tWvsre39xO82kft71qz1vL3/t7f+5EWbzln/uAP/oBvfOMbjwRKj9qPvX3hC1/gt3/7t3+kQHQlEPqjP/qjn3ofVErx5S9/+ccqVFq1ruv4y7/8S/7gD/6A4+PjH+t7P2qP2qP2f7/92ElKZ4VDq7+frYI+q1hcCZO+n4hUjl6rIH0R93xS7fjJyVOtArorMdPqM1iJplbXdPa1QhORz5JNxOoAL8x1OayfVn6u/i7WND6Egk5Op8mB1QedTXB8YkHQSklwm9PkghQdamonQZveBxE3hLQOFkBGo3FW09Y1o7ZlPG6ZjhtGo1aqFOqaylpGTYWzEkzXWjMEj1GaypqSgJCArAQcpOpwbB3BZOpRC1mCShubIwyWHAdc5airmp3tc+yeHDNfLDk8OaZf9BiV6Xu4ePUCv/CZT3Hr+nlG4y3q6Qa6bslYMpGh6zg+PObB7gO6+YLlYk63XBQkfyLGQhrwvdi/ZIU2jrqR4A5WkaPYaA0h0fceshZLoZzwZBbzhSRCJBIMWYJUy5TpQipWFVWhEnhCCFS2IgRfTt6qJBst0ScympjkMxMSXNVGKiLHtmFVqSjWaYmkMj5GtLIYJVWjykhy3kexliOALgH2dtwQoyb5QCZSVRqdLcY6RqMWP59TNw3LFMBo2smI1lWEFITM5Cw+eElOFzWdrSsGL8lMpa1YqCkkWVCw37qSWvbkMykprHbEqIuNhUVpizWOlNT6/moNtdU4lWhsRUChtCVrCaYPlVTixX7ARcghMqQkdh0+kYxQpdpKMcREiFGuW1tUEa8Z66hqS1KZoYtUk4qYRLhXOY3VDvKA0p5ca9pmSo6JISwYbWZU5cH2q5mkjDqp2FVMSXEMsSYEi2lqovLYqiZ5Q1YBYxNpGIhe4Y1U7mkl4gsdSyLEOnQAqzTLlNHOEPoBdBZbtwzKNYXYFki5x5gxQ5fIMdG2G9hKs3/4gJg0x7MlbV2TwsB0Z0J/4vHRUk9bfD+Ql4khSDKgshWLoyOsjjSVI5uRWKgNiapuGLoOCGvhj2tH9PO5zAd1gx1PyCVZZqx0eaMqSB3DTChpyjlyVow3txiOZujGYCpNsE4Sj3VDioGYA/1iTuU2CdnSd5GqlipZVzdEn2hHhqPjQ6zWuMoQosHYgpVPgeVijrbSByrXwIalGtUsFz1W18yPTkTcoqA2jiFXeN9x+OBjtKlwtkYKnCu08tjG0XUdaLFwQmm0iuR+QKuMNhlbGZQzEAyp98xmM1CFFGc9ymiSh37hCSnjaivJsJhJMZAj1E1FIqJshfGeYa6oxzUBiL7D2opUkOmsxbKQlaWdbnLz8SfZffCAd99+D33rBluTMT4HIGMRSpByjk5pnILkxY4qKNA6kVVkcnHKqNohRJkXh+WCWGwTIWFdhVaJUJApKUTqusJUTvruyYwYAtNxzc75DT786C7D3cy5rQkxZ4boqbXDKENdEmQhR0Yqc3wy5+U336dqW2494zAboBgBlotXr/Lbv/NbPH7rPP/1D/+SN9+7B0nTq4AncLQY8Hf2ODw84a0PPuLd9z/gt37z/8mnX3iBdtRSu225WXbExDpMVTOajLh4YZtbN6/wV995ifc+vMd80RecvZABUgoEH/Ah0vU9B4cHvP362/zCl36BX/jSF7l+9XIRfmaSSlR1y5OPPc21y5d57rkn+Otvvsprb7/Ha++8x1O3rvKFzzzHlQubPLkx5ur5DS5vbvDiW7d566OP2H2wz4fvHnP37j1ef/1Nnn/hOX7+My/wxK2bTMdTSQSt1/9PHvZOyUqT6Taj8ZRLly7xzNOP8Qtf/Czf++5rfO97r/Hhxx9zNDtm8B0p6jUBEmReSkmsCEhBCChGC5kihEKq9KA1vV/S93P2H9zng/fe4aXvvcKNWzd5/PHHuHXzOlcvX2Q6brBmxVE6zRysEpTfnyQ5/a8i4Zzl4sULXDh/gS988XPs7t7j5Zdf5p033+DgwR7O7NEvE/eOD+j6BckXm6Qswr/sFLHzxU5XMW8GfO+JOZGSxRjDaDQmhMjR0THRSxBfhFl1+e6Z49kMnxN15chGicWrc9i6AttjiqggA5OqJoWW2TCQ+kjMgcnYMWosqESymlFTCRUpRtrKYWzNfDkjVRZCRjtodEPjRPgTlh5rMqoWIlMIWUQGOeG9OLdIhbYua54hK8NoVDOpWoLPzBYDKceSNJF7HGM4tUguz8VghIxRtp8YsZapKovKGesKOTFGTJmLtnc2aGvH0fGMbFYUgZ/BdlaYBJIkO/O7vDoTlNflH/BvVm3Vfdfj8ROvWYuTzvzkVHr0Q95rvdVfCZXU+tnAmfPQ2QSjWo3f03PCqmr9lDL7sBDp7Ou+7/6c/W+5B+rM2ckWK+ig1FoQ8hDJSYlgpK4q2qahbVua2uKcEysgYzFa40oiWZfnEFNcE5ecLTaEqlyok2RfpQ1JidghZxEh1bVD16u9h8ZoS9u2LPqeIWa6vid4SUJOp1t8/kuf56knH2NrY4yrGmxVg7VIOlUIL/2yZ3Yy4+T4mPv373H3zh1mJydiqZWFNJCSJNNM2b9bI2sA67EkdMIQRGC0sgZPKhOGIOSJM+fKmIVYGoq9k9F6Tb9NOWGUEburAlM0WqinuZwvcl6dI5FEcBHV1LpadVIhSZXXpJIgVUq+ty7XLcUurEVpFIpL1mptt2U0qCLucc4SvcdYKyRXrXCViGdSTkLbKAU7WqtC2FBoa9c0CaW00CXLgElFWKYKXWQtNlNG7kkUgoeiWLHJyyUpqlaFHWAKNUcEXomcNdHI63KMImAp9zenkiXVGozCGUUsogxdkuplZAJSgKMQ+x1jy3WljNGFpBzFyhRrcEbOmjEFnnzmJjcfv1SIrGfHXxlLOHZ3j7l7Z5/kxcIrEUthhoxlZTJ5SKSoRCuXyz3MuVj/abLS6CwSFF/iIjIfACtSj7HlRBNFtKQcMWTQGWsrtFEs+yU5KfohSB9PkbqtCEMkJo2pnNjnhUxMoIxQQHzXo1WhHGkHhfajjS12dULhsM5inCMMXkiM1qKdW5OhV9BnXTp+HGQMKmPIWVE1DbEfUFYsv4kiVhNRj4jiYvJFoGcYgvQRrYTypAwYJZQhsXATqhHaSv/LIuAOMYBSOK0xzkmRULGdJMJy2QsRTt6cGBN+WBB9hzaOXPqJCDcNJBEepJSJgM7F/jCV2JJB7kfWEJSICcpsHoLYYOeUiT4jSDKxR0wr+6gk640pZ3KlNTkkjDXsHuxxbX7Chq3IRXS6smVcz+PG8sxzz5e96KuonJiORoUiloTCnDLZGGIp6NNZ4hERiqA+oyrNZDSROTGLxV9QIlRkFTPTQlBByRyjlJAttdZEHwjec+f2xywWC6bTTUJOpFRjjCYWqy6jtAj2lFyfKfPG/tEMpTWXnMOOQOkKkHjM1ZvX2Nwasb054eLFC/zl177J4fExkYBPmTTvCD5ydDJj//CIW7dOuHnjBqPRCOfqsp4niYcYg3GOpq3YnE746M49dh8c0nXDWiScik2hFAmkIrIaODo6Zu/iA6lKP7cjey3KfIZm1E65eaNlZ2eLu3d2uXdvn7c/uM24rbh6+Tw7m1MmkxHjcc20qbkzHrN3eMzJfMZyfkK3XHJwcMD2zh6XL13k/PlzjNoRZmUh/kP2OKvFxljFeGwYjUZsbm5w+dIFHjw45O7d++wfHLFYLqSwMq0sZFdEyrzWCAl1SdYqrcuSlFZ2pAqQopyh75gdH7G3u8fGxgZb29tsbm6wuTmlrWsRza83MKft7NWXrQpndmjrvUlV11y4WHPu/A5d/zgH+/vcvy9ipeViQQ4Q8oLBD6zdJTk9sxiy7AMAaxJZpUInXFHopYiu6zqGIWBNOf0oLTFXJQI5H4KQBou15WrNpwhmtVLolHBGY5RmCGZtU2uNWEYbLbtKsxZSilDPWSsE3FWcUGdZD4s4MAaJMQsFMhNXAjJVli11utKtaYxZinbqWub+3osgVZV5YLV/fiiOXp73qpB49ZRWdqArei9IDFFlKcytKkfb1gQfyMPP8HniUfuJNOfc2s7tbEH6T6tprXnsscf4rd/6LS5evPg/FEsNw8D+/j7vvPMOr776Knfu3JFCgEftUfu/0X7pl37pfyhQev311/nOd77zUxeHPGp/N9vLL7/Ml770JS5evPhDX6OU4otf/CJ7e3t861vf+gle3fe3nDN/+Zd/Sd/3fPnLX2Z7e/vH9t5N0/Drv/7rPPPMM/zzf/7PuXPnzqNx96g9av8Ltr8VSQkKxahU2q7aD6IlfdLCQZ9B66/ETakc5M5WNOfy2h/4XqXpdcDqlMQEkAvqfhWE0YWsY7RUnkiljBBhcjp977XVA5Qg8+pQWAL9Z16zOuQ9REsq17vyfz/1Cl/VAsv/Nic1de1Y9j3d4AlRMLvGWipnmbQjtqYTNjYnTEYNbe2oKitVg0igtq4rtMo4W61pUkOQwKnOsLUxEUpQJdQcpwxZQe2seLErhfeJrB3jacNy3qFCYMiZ45nQXUJYUqEYIrjJiMuXtji3cYmbTz3BzSceo2rEMg4Ggvd084HlySEf3/6Yw6MTcpQA5ng0YrmYC+rcKvq+F8FBqeyNMVDXjQTZcqKqK0neZAmiBh+K/3tEGUMfEt2iwyIVRVlrsUMoiTof5Xm0bSOCqChCs8Y0WFcO5sWyCoVU9OYsOP4S/kgp07SNCGayBGSlYjlKYrGyaBRkQ1U1EgIyqVyjJUZFWPSMqwpnQDeGmDVh8KCDiKB0i0FjckDHzNJ7OqWxxjGpHSGIhVvMUkkV+sCkbYgZklb0YWDwXkRtxhDJGOMIQ5Sgg4CqSCEyDD3KOJxxBYdtQGecFfJYzoKxH3wnAbkE2UesdSStyQpS8Kgs9xorZB+nFbGUiWuAGMWWp66oU6ZpWoYEOmtqKwFx78GnntY5lLNgDAaxAdHWYBRkHwg5oBoRoFW6QRuDaWbUGwswvgRtxOotk8ihQ6WWOGyShk2s2pTEmYEUe05296nqll5F6pFjMeuJ2eGsxXYDOoNyRsg6KdP3PX65RGkIKeKSFTFMAwZFHxNdCFitqTVE35NVRd2MMGSqusVamM1mHM3naAfT6ZTDgxM22hE5ZvqYqUcVs5MDVMzUdUsiF3HbQFNXjMYjvG6Y9z3DYsZ4UjNpGobeM5405KTIxqFST8o90TQ0zZRsLTEN6Ai6aVDZ4E+OmR3PcaMK48QGwDQVdFHsHFuH75bkrpdknviJkEJPCAptW3yI2BxwrUHrim4IhKVn8B2Q0G6ERpF9T7+cM94Yo4xlueiJIWMay3Rng24+Y3E0ZzyeYBQsS+Iyh4HOi8XDMMzxSrM92aR2FaYW6tXJsiNrT+sUi+PA4Htu3LxEiBpFxDlD9CI+srZltugwRpJpOSQyA6NRi7Y1KcmcNNmYYitdxo3MAd4P2MkEYxwqBiHAKcjZU5kWZcfQjKVflNVnnYTOnjgs2Lv7IX/2f/0ZaMu1i+donMEjIsGmacgh4rMQ2IIf8MkwtQofepaLji4nGmsZUsYaR44ZlQOmUAkq7Ygx0uUgNdg+0YWBZDS1sSyPZ5zMTjianbB/dMz9B4fc39svQk6DMZlaSyX0dFIJWUlrLmxuyDxlLVd2tnj62evceO4xmumOoLCzwlZTYki89/a7/PEf/V+88t13OZx1LJMIUVWErGVenE6m3Lh6lS988fN86Zd+ictXrmCtCK0UAzku8P0Js8MDDg+O+OCju/zVX32XF196nd39I4aQJfiKCJW0MVgjxKfatWxsb/HUs8/wpS99kc98+gUunj9XMPpK1AYqEWPHfHbMm6+9wTe/+SLvf3iPcWv57Kdu8ZmnHmNkDUMYOFx0HM2OePPNd3nzvTt8eP+APsFoPOH6jZu88KkXeP7557l27RrT8fg08F36AOv/5jM/XdmxBFIcWMxmfPD+B3z3e6/yvZff4r0PPubo5IQQAjEFYpAkqVTKF9uGnArtRCwHVAmiG7Xak8g9sa5CO5mLtrbPcfXqFR5//CZPPfkYN65dZWtzk7pyD1Gn1vs0wS2d7ofWeorT/Z0kHYQoEFKmX8758IP3ef+t93j1e6/w0cfvsb+7x+7+ISeLBV3fEXLAOoPJksA2TnNxu0URiUr2N5KNVwQfmc87qXbWqtg6yNqjtWXwXgSHKuNzQGNwTUVtDVqLICrGQNtUbLZCkpx1PYTEkAO2tris6HPGjca0k4oc4eR4him2KcooLl49T6Udd+8dERIk33N0OOPoaEHvh0JbgKoInYIPsp8zirp2OOs4PDhmsRgYbbRcujBhVDXMjj17Byf45KmtJUbou56UvFjUKRFDy/4okbMIUHKOGKeoakdT1eRiqzWEVOwZIv0wMJmO2dyYMlt2DD7zrT//Dj+L7Vd/9ddkr1/68ifPAD8wUfeJoof164rg54cm+c4Kd37Qe5XzxNmzSentZ841pwk5pSRJJK9IZxKCq7c+e574wZeyPk+s/rw6Q63ES+qUprQi8J3VEiqgrgzWGkKIxfLjzFxgjZAnRiPGhYBgrdB2jJZEWsoIAQhKoqokylIqdBto6kpoGEYS2AbZExot9FCtlAgJlMHVljAEIZzlTDcI3SWnsldqx2zubHHr5jWuXr7BzsXzbG1tYZxDUnGRFJPYDvdL9vb2eP/9D9h/sM/J8TFaKbz35ByFlhZETKRKsiTnVMQH0i8kYVhSzLnYOJczkwj6RRChc7HaU3qd0BX6gTw8a22ZhyXxZ7UttN7ynFbqjYf63anoyTorYp0MqhhFl56DMrqcJ5RYqSHzsPy3WMX4KAnSIkjKiPBCKaHYKeUQyoNYbPuYiEoIRc6aIg4Ru7iVVXblXCG+iaV1jLJGyTk9IxZSuSRJS0upEGoLoXhdEUSxyyqpfC2UmdUYIcq+AlVs7FKS8wmSJJUzGA+du6Vzatn7I5RgEQ5poaYoXYRLckaUzZsWKkVa0ZYoydpCes1ZCiaU5vylCZ/+zJO4ehVrKFlwMjl5yI69+zNeffk9YpB+JNceGRYLOW+pjHUaP0QyMj50iLKMGiUWg0liAanQLsReS/YmSrQ7hAQhJaH1IsIJlCmkGDnbaS0Jts57tM5UVU3X9dTOCbk3ga0MQ7+U72lW9CMgBYwxVFVFVIYhRFIYcE4oQTEkqsqSsyTuVxTIrC3G1lBsz8TKzgKK2Pf4fkA7IX+prNBWQ8igFdqJqEXOjoXWmIEsYxxWNKKIOOeJHWMuY1IoHrYI2zJhGEQ0WVcEX6i+RoRZxiqWs6Xsa43FxyCCixxl7QSiH4g54SohLyujMdrQexFKW5MhQtd7Rm1FPWrxg1gwo8D7gLMVvQ/ruYaM0KsqISgZ6xiGAVtsMwt0T4ZAlDnLuFrWmjXZJ7Gzs8MLn/p5qtEY1vS604leCusCs+ND/uD//Cq3b99jOh3TOiu0q8xacOpDEGpWinIG0kb2WT4wFPE0GbJSIuZY9Xst84XKCp8iaFBR+mLICescafAMw0A/DHR9j7aOm489TuUqrNWoQpczSlNXMiZjzDSVkyIIMm1Vsb05YfviFu10SkaXuaIGpekWHR988CFvv/k+L774Mu988D794Eu8TuZFrRXT8YTz589x89ZNts+dwzmx61bl/JWTZ+iXDF3PbL7g/v0HfHz7HofHM3xMp++XIytCoi4FVa6q2Njc4PKVy1y9cpWtzY01xUsVYmJGKHUnx8fcuX2X3b0DQgic255w9cI246aBHOl9YAiBo6MjHhwcs388p/cRbS2j0Zhz589z8cJFtre3aJt2PWd+v+wnf+KneX39MQQWcyE83b23x4P9QxbLZRlPq/PDqU2pWILKu6zmSVXm8lW8E6Q/aG1QxqALCWo0GrO1tcHOzhZbm5uMRi3OyXnih0uV1JmN3Q96TRHsZrGHXc7nHB4c8mD3Afv7eywXc+aLJV0/rM9IaCUW0KVYtW0szhRtq7GsLe2SjN1YhLd6Fb/NucRxcxG/SsEqWSiEppyz8sryUkFTOTSqUIPL2qLBlvfL2uAaJ/uUwRfrSjkr1W3NqKlZLj29L5TjYaDrBrwP5eZJ37bFwi6sirC0wjmLHzx978lKMZnUNJUjRVgshmIVLiJgKeiJp8LnnNfrLPkMJUmBLqLulSWgFG2KdW4IUtA1ahoyMPjIf/z3//mTD/Gn3h6RlP7nttXeoa5rqqr6qQuTjDFcuHBBCr+eeYYnn3ySuq5/4GtX56qTkxNefPFF3nrrLe7fv0/f9z/hq37U/q62p59+mt/5nd9hNBr9wN+vBEr/8T/+x5+qzdaj9ne/PfbYY/zDf/gPmUwmP/J1BwcH/Ot//a9/ZghyV65c4R/9o3/E9vb2j319mc1mfPWrX+VrX/vao/H3qD1qPyPtb0pS+luLlMwqaVQqNc5aEgAlgC8ippWI5+whePUeuQh5zoqUVsr8dLYKZFVBXP7tSiRFqdDRRoIHMcaCpBdxS86lUjSLr3zdVCit8UHQ1TGsDuryvqnYnKh0GgxQiEXDKh69uv6HkgqsLjOvrd1SCQisArxKbjROI8FApSSQhsG5hsl0xGTcsNmOmUxGjMYtzki1bd00jNoG7yMhZtpRK9ZhBVnctC3dMOCswxnDdGOM0kqq2lQhSEWp5MvWMXaOvuuJ2eJ0RqfEECPH8xOybXnmyVvcevwClVFY1zDa2GJjOkIxod2YSCA/JpazjuOD++zv3uPoYFa82HtCHNAYlvMF1hgqZ0g5kHVCKUvXe5yrqJuW5bInaUNOnrqqBGesxRovZS2WaVYO6coYFsuBvhtQKUkwMkSM02SVWcw7qRA3cn0+Dlhnsc6ho6ZuKvwwoF1F5Sq6oSOnjDWGGAYMMG5bQvBYZ6kqh84ZbRwJjY8eV0lwU2WNxYBWdL7DFAJRUkYIRykyKpVmgw8oY9HKYLRU9KbkhJKgEolEFyJLH6i0keeRgyRYlFCOVIa2qfApr4MIOQZ0zjjjxJ5GmWLHJhXECiOBkDSgtVSnO2NIWkkcOkd0+TcibJIqVamCdJCF0JW10I90qbCOKdL7HucMratFWGTA917s5EYOlx1tVRGUJI2tjrTNiH5IdEOHzpJscKOKlDVWqzUhxTlJXte1RiqKoRln3LQHuyh1gQphX/XkNMCgyMMF/LCB1iPSYAQB39QMfc/R3n1G4xqf9domJ2JoRxvkbsCQWfQdWRtCFkHIyXJB1y0wyTNuW5pqg/G0JuTM7qxjWJxQGcO0biAnfOoBxaQdo60i9R299wxK0bqKum7oQ8D7xBAzOicm4zEnJ4ek3KN0Td8ntMpsTxssGW0r5kPEtY30eWuwGrphKVZ72aJsQ1aepAK23sBmTUhCfbJ6BM4SfMSlzMnhIbqtiGlg3GygKk3qhIqUQsT3CxHBkEFD32ma1hKSBKbnswVWORoHlbF0KRF9oBs6RpMpPpdgfU4QBpmnUmbR9VhX0U4a8tBzPJuhsiLmSNu0LJYJ7wPjscG1Nf1yoO8HAplJI0HtmCKz4yVDhM3tKWHoOTxe4lBMNsUaz8dAVbdUxrHsF7SNFfGgNsRBaDxaJ2rrSFaSO9pZXGWxtaVbLshJ4VwtAdq2ZXFyQr/wTCctoPDdDLG0tIzOX4TRSGxjzqyV0kcDOfS89M3v8Fff/iZbmxOuXDhHuzFBRYVN4GrD4kTs7LTOJGXZqiv6GOiHgeBDsbCxdJ1n0fW0tRNCFoocRMTYp4G2rqmU5mQ+Y0iRSTOCEOn7JfsHR8z6BUezEz54/zb3HxyhdKZpK5qqYdLUjMcOH0FlS9s6mkaSHtPRiPNbI5586hq3nn+KenOEjxFrxygzImfH4e4d/uJP/pyv/dlL3NufM/c9/RCISSrOa2fZnEyZTCbcevIJfvlXv8yzzz1HM5qgFRgipJ4wzOiXM5ZHh+ze3+W7L7/BX/71S7z7wR0Wi17oeMmTETs0oy1GO4yraMZjds6d59Of+jT/x5e+xLPPP8XmxqQEsmXvkbM8kwf7D3jp1df51l+/zO69Pc5vtjz1+BVeePoxrlwYU1noB8+9B4e8+NJbfPOlN7l7/xCfHO1ki6vXr/H8c8/w9NNPcvPmDUlimLN9YJXw1Ou9xGkNcEQxkHzHYr7go4/u872X3+DFV17mgw9uc3g4p+sHYgzE5FlTWApZSYEQ9QolQimEGEBGK6GkKANaV1jXUrma8WTMxYsXeOKpJ3niiSe4fv0K587tMB2PhJJyJnV+RpnECiejSgBd9jurbEMisRKHJJIXO9g7H73Hyy+9wjvvfsB777/H3u4eR/MZIXlcSkIaNIqNsWHcVmJZmhKuBMpnJ3NChN5Heu/Xe6tYKr0pFkM6J5KWJFwiY1Rma2NEXdWEYv8wdo75fEnSisZqsJqt7Sl0kTv7c1TtmDQVi6Xn6GRJ7weaScV4WnPp/DaNqXjvwz2GpEiD5/h4wRCWzGcLQoyMJ5bNjZYcFd0yrPeDxmrGozHHhyccHM7Y2NlgZ3OEUuD7zPHRki4O1E4SQd4HnFFMJiMUiuOF2IIu5gsWfSCS0EiixDmL1VpEUQn6IRQqjlhPKS3CkqwM2tV868+/yc9iW9m9nQpM8g8VJq2ER2f322cDGaszxOo88rBV9CqRxQ8UL62EGasc4PdZWavV+FsJoOT11kpxRExx/dlnhUo/UKSkVEnmrRKdn0g7/pCjmOSW8vq1q/thlNiYoCh2cBpXNYxGDU1T07iKunLYylFehnWuVPcLidO5QorIScSn1hJKMtsoTV27MnfKlzslSCnQmsrIHjLlIh5JmZjFOs3VI5584jFu3rzMxnTKdLpB1bRyFssVtq5YWTz6IdB3c/Yf7PHRhx+zt7vLfDmn65aQRZyktSoEglO7zRBTeR4OHyK5UASsMSVJJ/ctIVaaWp9a3fgQiV5sdLSSM60ycpe9DzLPrIVbUSxjtCTyjS02utqgjRG6S5YkaMpCBqqcFcGXlkQg5CLIk8SlnFdLQhiZy30MaA1WC4kuSBUGzlqUFqHVinihCiElZ5nBdbHI8ikRohSkKOR5qGIzlaP0OiHDlrR+EcGqnDFKiCiJQoZS+bTPZsQqq4iy9EqFoVZ3WASWKzu8vCYfyToYU5QxpuV6KZ8botxrZ4pAQytijBit0U4KGawxsqqmXIp0bBEAFbIpCuOkoESxolAVsU5OQrtDzsSXLp/jU595ClevBMRy/SLOiRAVixP462++QghCsUwpCVE1RPrFXMTwFLFikrXQuZocIhrwQXwFY84YZejDQAgenRPOOqytcJWI0uZ9kDOoUiKgAWIWUVPlKkkwB09MiYCQka2xhJSISShhKmfqqqIflvIdlEGAQ5m2tojto8UnsSJTWcaCURBiQFmNzlrIuUSyymhbS9FEluemlYNyvtYZhq5DOSkiqmwtlK6YRWyXEjF4cgpCIVKZEGXPpnQihIAPgZzEWt0ZsVRaFXgppdDWEZPsb3KxTF/ZCOYMrpZ75YdBRM2IrV2K4EPCGHCV2C4FHwg5Y7RiVNcoLbZH/RCENma1xCNipq7FMjB4EXdZWxGDFxHOmXEffCjrh9g2rYRspog6cxbKsDECLNdGREX9chDRobUEP6BRXL9+kyefeR47aoW8tV4zZA2RfhrZvXuP3//Pv8/RyRGb4xF1W4tlVCxWfml1zpERKf1JBOWpFM5pLRZXYjNb7CbLEMgJsbZSmco6vB/Kft9gEFFZ1/V0fsAHD0qzs3OBja0trNM4Y7HGUFeiwMtJSGeuEPistTSVZWtjxPbFHdrpRMQhWKFcYYnBs3vnDu+9/RGvvf4u3/jWt1gslyKqLNNN7Soq5xhNJly9dpWr167QjsZrUZvKiZw8MfSEoadfyjnoo9v3ubd3sKYqpZzKeW1VjFhIOtZR1TVb29tcv3qNy5cvMZmMxAKOYltZbpgfBg4OD/n49j0O9o8wZLa2RlzY3mJ7c0TlZI7tB8/e/hEf33vA/uEJ3meUcYzGE3Z2tjl/4RzbW1uMx6OyXpzdHxT8+yekQPLzBDmIWGnRsbt3wL3dXR48OGCx6Bj8ypb4zF4F1rTKlUBlTUp7aG9lzqyZDq0NzjmapmFra5PtnR02NzcZT0a0dV2odmev8hNipfUeZrUdOz13PCRTz5ngI7OTY/Yf7PFgb5/DoyNOTk7o+l7WSaR4JSlwRtHUBrIq9PqMtQY/eGKUeTKU/k+JMZcNX5nbyp5vXSCbqF0poCjnq6ZyJC/iP2NE0OVqR2UMi8VAHzNN40gx0w+hxP5knmqbilHTsJj3LDqPUoqhH0RgHoYiuhSxldFaaHhlb5NSoqkrYkgslh1ZKaaTkRRXZoXv5ayktJALRcwr3985Rz8MIlZKicGHYl0n93y1p8qlOCsWyqQxRuLYZKzWKCNVGf/p//Of+Flrj0RKP962KsSuqoqmabDWrs9SP43WNA2j0YjHH3+c69evc+nSJS5cuFCKen74Ne3v7/Pqq6/y2muvcVTmjkftUftxtv+RQAlgd3eXf/Ev/gWLxeIneGWP2v+u7Zd/+Zf5jd/4jR9Jlcs5s7e3x7/9t/+W3d3dn+DV/fB2+fJlvvKVr/DUU0/92NeanDPf+973+Jf/8l8yn89/rO/9qD1qj9rfvv3YRUrnzl+WoKPW6+qM1QFTqYdFSg8lDcrP8pnfwQpx/7CgaZX+esjSrYh/VskKrQVhTpZk0KpCJMYoCToF/TAUEZMk2rTWNE2FNoaYvFQ2Jgn45hKYzxKNkwq3coDVyogntzGFolHwS3lVIZMfElStvlvOgtSHLIHWEjjJUYQGVV3hnMVZx3g8ZTRqGDWOzdGIqnHYplpXtWEEa17XNUoJEt5ZSSzmgnRPZAkEKc1kOqJuR1JBFAeGFDBJM3Y1yhq0UfR+ICVDSgEbO+qq4lPPP8XWxWsYY5lsT9jYvoJyIqYBRcyKvltwtL/H4f4u86Mgti5xge+W1LYiZejCgI+JwXti8DTWMKorss5oLUnJqhbKU84aT8ZYMNoxhIA2kvAcYmQ+7xm1NX4Y5NCcEsulVJI66ySwrwPLviNGg1EStK6rBqUVTVvLMwpCKzFGi0VU1igDOUhyNORAax2Nq8hWkUuA3BgN2pGULlWaCu2sWNgMQnTwKWBR2AxJaZJSEsDQpeJ5EKLTZDrGkBn6Hh8zlW2pnKPzSxIZpwzeDygjVmkpBSgWCqvKfWWMVO2mhMpSpZqToKm7mARzriI6BbSrqauaZb8ghYirK4iZqCSI7L0v1cmSJDamEBy0BjRt3eB9j7aGmA3LoaeuLDZlQr8kp0zTNCLcsmKZ50owMmWRbSijBSWfQ6ne1+tERqMMqoJojQSbhkBKmmAtOiVYzqknFXYSqScd2kUp7eQUOZ0ZIBr8cQ3hHClPCCERBw8aFt5jXEWOgZQGiAm/7KhsBcYxhMh4OiXniE7QdQNVLSKp4/kRMUHjxgyhx9U1o8rhVCQgghax2SqV0Sbge+mn7cYmuZfqdNPWVCs6glaczDp8SFRGYypLyp6+O2HW9dRuTNM0XNrZIs7nLDpPjIrx1hjXWPxygKwIKlM1InSy9Qbed1KB61r6xZKmbdEGtKlBJcLQgx9AV5imop+dEAawDVT1CFtV+JOO3vfUI0cqwfnlyRLnpJq6Wy7oFyf0PrE1bUg+czwsuXBuk2HwWNtAZUjeU7UNw2LJ4mSGdRULH4hZM2lq/LJjXu6TtcWGZcjM53M2N0ZsTBuWsyW9jxgrCaa6cUAmBmRetpp53+PJbE+mRD9gUiD5gLY1dTvCtRXL2YksKFZsNK01qFQCdNYyLLsi8uwZQo+xDudGaONomooUPCeHxwxDYjQSgl3se5bDgHU19WSb0bkLYKoiSVGlSrl00JRZHO/z3W9/nf3795lOxkw3N+kGj07gGrGjCz6tLfLq2kIY5JmQ8WGgqWq6ecf+4RyrNaYSipwOiiGITWTlLG3l6LqFJMiKTYzYUA0cLk5IKbL/4IB33/+Y+/ceEDO0o5pRWzOdjIgxo7NCG0VdSZX9aNxy7eI5djYaLl+9xLWnbjHamQpJRlmy2oKUGbojvvftV/hv//WvePu9uxwveklExUBKEWcdG+MpGcXOxXP8P375y3zp//hFLly8hDMWRUQRIHX45RGLk0OODo559/2P+atvf5fvvfQGu/vHIn7KEfKqwlX2ENbVOFczHk+5eu0an/vC5/jSF7/AYzdvUNV1KeZdrd8J7+fcu3OX733vDb79nZc5Pjnm8vkNPvepJ/jUM7fY2RoT4sByMfDxnV2+9a1X+fZL73D3aEFSho3plCtXr/DMc8/wwqdf4Nq1q2xtTiWgy2k4XuLbK3YG5TcRCOQsRIPZYsbde3u8/db7fPvbL/HmW+9ycHRE1y8JgZKYK3ZgrAQRkpQT2zdVkieShDMKEcYahzZC9bHG0k6mnDt3nms3rnHrsVvcvHmTK5cusb25QVO7UlUtdgRyRlx/izP7uzNUpTMiJfLp62Zdx/79Xd5/+22+/eKLvP32+xwcPMDPDjmez1kMA1YFpuMRwUeyBmeEIhFSwvtIX0iTutABYkzEnAmFKNPUlazH1lA7R10ZRo0jRsjOsLU1YXs0Ym/vCE9kq63wPrC5M6IxNR/cPWIZerF4zJGmbUgx0o4ajDViCZs073+8Sx8zKQz0XWC7taiYOJ7NMTW4sSMkw2zW0/cDJEmoVnWFKkLftq2wWtOHQZLrQ2K+7IVwEmSvMRrVQp1AoaymspYUEyddz5BFrG3K3VYpEZHK7RQkmTPERCzWFM5o0IaYFW+/+saP3tj/lNqv/tqvr4VAZy3upNutM1jIX1cplfL301+cioLOvhdnzhDyl/V7ni2sEBGSPk3SFZLA6gyyEgHGcNYOQJXErllXya8Tf6XAQRcCJeufp7UYRc4wJdGZ0/q6ygnhoeKH1b8BiviDM/dLXuOsESvoQk6tq1pE9tZQOysJ82JttHpPrWXOVJgiQjkVc51ajhVbt9oJmSMrUhLBnMqKSluxR9GKEGVPnXOitoonnniCZ55+ks2d8zjnqJqaup2gzOl15KwIwdMtF3SLOYv5wJ07t/now3c5OT7GaLEOiykQkyTscopiK2vlPCa0H6EnaSX77YTMUVobsS1RWciuWYRQzpmS/JPzW/BCHNDayPqtEj6KeGI11xpj1wUfuSRGVxYp8WyyM8n8G3PCrYRJSrGi4CkltJ9cnsGa6kBeW6yllNai0awkGS7HyiJGC5JYl4p2scQT6JDFaENIoZyZtZwhVLHcTCvxkF4LK1AiVhAVXJKkdRFa+XJ+ViQUCa3FOidEL0Qqa04LiLQuoiKzpnZorU7HJKpYd0lBREYToohXNJkU5JqdtUJG1qrYFMteJOdit7gusEgoVUiJZc2xSoGBrHU5aws1ImotFmzBYyrDhcvbvPCZp6ia4tVHPDOjRHJWdMeRV19+n/3DBTmKuAON2HxrU8ao0DCiD2u7v5AyVV2VuIf0LVNoSL3vSAmscUXwZsSiuciWgw/r8S9jvNhoa42ra7mOYj1tymyBUkUMntfWqJlEDL3QlbXDWsukbUje40MkZUXVOLTRpBBlXKuMsVIMo21FSiL2U9oRvMc6J4I4bQGJkRDF1kxZSxh6cgBlkYIWY0hDELtvZwopx8hanxLOORE2hgHvI8YqauOYLTvaUS0impixVUUs/zbnjO97yJCUwgexoFUpC11NyXNXGrHE6wesEZGl1tAvB5l/irjPGF2EGzLnJ6APgXpV6OQLsTcrjKtE/JTCOt5jnQi/9Gou1ivLOSmc64e+kCAdQsWS1Tv4gb4v9u1Wk4PcJ20sn/3cF7h49TpYIcs9JGAtvTTFyNtvvsqf/sl/Q6FomrqILvJ6/5Z8ESVSbO1yLORpEQrqYkfXdWKr55xZl/7kJEIxbRTOOlLZvydRNBbhUWLwAz4Fog/M5gsuXrrCzs45rBViX127IvCU6xaCn8ZYw7htmLQ17ahmY3uLdmOEtmU8qhqyJaeB46Nj3nvnI1787qt87RvfZLHszhRHst7XKqO5dOUyt27dZHtnB1fG3ErAk2NPGDr6rmM2X3Lv/h6379zj6HjO4GMRP5X3Xa/RphAJHW074vzFC1y/fpWL588LtUOto5Vy33Kg75Y8eCBipePjE6xRXDy3yeUL21LopyROuVj27O0e8PHtXQ5mHT5KfxqNRmxvb3PxkpCVRqNWxLZndx/qtEOcKZE8/a5ZBIDL5ZKjoxPu3dvj/v09ZvMFPgyFni2xzJRX10+hBp7uoVafsxbhUeitSghkKyFX3TRMJhO2trbY3NpkOp0yblucs6eUpk9e+0PniSJPWheMrvZtpwfpmBJd1zE7PubevXvs7j5gNpsRfcfQ9wyF1lg5s44vyfoqe7DV/iHGtL6IGIUsmIrIySgt8WQl9q3GKJwxGK0IOeMqx7htCEOgGzyVk3XFOE1bVyyWgUU/AHm9J1HIOm+d0OecscznHfNeLC/94LFaUxkYhkAiYZwCY/A+4YdQlmYZj0bJ3kUZitC8iEeRYsiY5EycM+VelPWkrA0KEWb7Yi9rtFptkGVNK/vNVM4SqfzulD4Ff/jVP+BnrT0SKf142srKraqqtQDop0lNGo/H/Mqv/ApPPPEE0+m05EB+9PWklOj7npdffpmvf/3rPzOkkEft7177mwiUTk5O+Pf//t/z3nvv/eQu7FH737o55/gn/+SfcPPmzR85X+aceeutt/g3/+bfiEPCz0Crqoq///f/Pp/5zGf+pwiVvvvd7/Kv/tW/eiRUetQetZ9y+5uKlOzf9A1XlRaQkdjrKuhNOSidVkSvCUrrA+/DyQRyLmIITr2zSxUd6/c9DZxLU4AuVcXyslUlaghSEbbyFtbK4Co5xIWQJIhasMcohbWOGDMpDlItqyWkYawhwhmrDamCXFXbiE33abJAK8ilKud0QpUD3SppqLWiLaKkUdMynrS0bU1VSUW8M1aSq01LW1liDgxktLZYY9FORDPaWNp2VILBYt/mfcBWFRmpgHXaYJUEMT2RylnoPCEm5nEgk/AhYMmMmxHbly9w9cKES9s7bJ+/QGy2GE02sY2WYBGJ3vc8eLDHycEhR/cesOwWDHHAdxmlAppEDLDs5oQQqaqKPkYxuFHCZxiNxyx9YLHoca4ipIS2ibpyGHIJ8HQkJdWUIchB29mKkDJdiGgvB3qQhAMxkYaBqpbnmaKIzDQGEljrSqJBkfAMIaIiEvw0Dp011tgSgJbDekAqoFrnMJWVmJkprxs8ylSEwZONIqZTO4OcFdlJdbpRUFuHwuBjIqRIVVsheCmDNo7aSmJ36Zf44DFZYV1FwBIz+BAJPqJJ1LWQt4YYwQf8kBi3Ld57kmadFCgXQsiBUVuTE/RDR1ay8EvgRZONKhWUZeivEnXGQUyIE56WCjJEKGVtDUkoP8qAM5aqcWSrCQrSUipxFRmTEqaq6XxADzAaj6gbJ4lmD6QBaw2Lbo7TDc5C6gPtqAUkqeB9Ig4Z6KimiuSGImIoAqUshJasHDluQGwYhkgzNmL7ZRWutajlgFIKj2KIinak0e2Io+OOzfEWejkDk5iMt9i/t0cMnmUOTMYtk8oxXw5EApVNbLSOWZfxKhIZiLoICFWSPEdVE32irSyNgcFIv8AngrFsbG8KyShHnIKuEzx333XUVLRakYIkHHw2RAxBd7hKkoFdTBgnc1HbjlBxQGePDz3RB6xTOAd6WqFMRQyBfjanHo0JfSQs5tDAuK4kYJ8ralujTSYsTyTRqDWz4xn4RD0akUyiTxEdAsFHKlcx62bMhiDfKyW6QaxclIL5SU/ykTxIAlLGYKTVsPSeYVBELcK7DNRtQ7dYUtmAnjh8gpOToVRjGyyJRe8ZgiQFlVE0VUMwin7oMASWJ3MaY8kkZr3HBEpwLZagqqWyjhB78hlhy9AvUFrTd51UCTcjlHGEKALQFAeSj6iUGbUKRaCua4accIhtIKonLY7Rky2ScqX6WcQjqSRMRpOGx69c4cFHH3K0gLZusSkDhhAys0GodmNtaLXFGysUuU6qJnUcYOrosqEeTUihJytBxatkGAZBsvd9zzCqSIOQ5iQhLmLhUVujDCwWS66eu0CKkTRE7uweMVssSYj1RF05KqdIUZGiIZjMsus4mc0YtYYH+4f0Ly25eu0y29evoJuMModk1VKNtvnsL36ZK9du8V//6L/zzb9+iYOjOVklCbh6z97+AaC4fXeX3ft7vPvuu/zqr/06zz//KUlOYVC6xY4MY1dTNSPG4xGXL2zy2M2rfOOvX+HNdz9mNl8SYyQWC05CIqeeFCLBDywWc3bv7vHWa2/yxV/8PD/3uc9y+eJFGlvsLZShqqZcv1lz4eIFnn7mCV78zku8/Mqb/Oc/+S7ffecOv/S5Z3jmsatMN6c822gun9vk1q0rfP3br/DK2x9yuH+X46MDPr79MW+//Q7PPvsMzz73DNevXWVrY6PYwJ0G3xWUjUuSfQyu0G4cm5stG5Nz3Lp+nU8//zivvf4m3/nu67z55ofs7h2w7DuZ9owISnNKkhzPrG0HkpHEZs6KrAwqRXJMKHqCsVjjGHzPyfEhd+98zJuvv8m5C5e4ceMWjz9+kxvXr3DpwnmmkxGV1WczIDyUDsnqTGpGflVSpqXPwaRpmNy6wY0bV/jcFz7HG29/wCsvvcR7r7/MR3fvcHR0wvHRPn0XWXYDkcTGtCUS10k+VKSqJCGCyiVBL4KeFAIqBdqqkfWNjImR2CmWPpAbi10ackh0PtH5AR0TRkmSYLCyX9wYNyQfODoeWJ4sqazjaH4sHLSY6RYdJ8tiaaMifR84Pg6oJOv8RjUidQmMxjqDsg3RJ3xPqV5PVJUjBc/RwoPTjMYtJI8q+04fkiQCsWBysaXMaBQxRLyPYOU+WCVCFltVdGFAG8tkPGJ+sqA7mUvChUTwpXKaH15J9VNvpzUO0hRrKxUR9J5aaP0gG7T8ibd6SMh0dk909t+s32P1fw8HQVYWXjmdKZJIIPZWIsJJ6bRAoZxU5PyQMlGdClYUKzuRBMasrcPWaTtV9gcr8Yj+xJda3xT5N0YVEo9SMk9XldCS6hrrzNqyQyuxDXPWCjkTEfepQgVShbahlcY6uy4kkaS92GfnLFtirXQRzCgiScQCQdbQoRRhxCSUr9rVXL15g8/+3PNcOHeOdjQi2QZX1WjxKZPXx8BiuaBbLDk5OOLg8IDdvV32dvfpunmxWwWPCBq0sYTy/HM5T9iqIkQZG7rcW2Uy1pzatYUQyAghJJZDozaGmEUIqQpVCVjbLsUoZ9uVDYxazd35DG1LZABS6FLOhCsx2+p5r/piQhKsQiLQ676oC9VAGbW2gcr57BkSchHDKCRpqhB7ukwRWOSAyqWIoby1j74IWYu4h7N22IWuUJBaMYvlUYoiDko5yRz7UDeU+cRZOQvFGNbnZOlrhqwpVnF6fS7PCJGEkiyWsSX2zRIsEIGTUqfFPabYlyaVyUVkEbVCBYUq5C+SBGCtNeU7AUQRVYWAURax/JSCJRB75pQiKWa2tia88PPPYGv5d6xEy+VbZwx9p3jllbd58OAAW7XEJMIo7aQ4C0RYHxM4p6ispesDTdWUQgAZC4vZslBtBqrKUmnDkESIZHSmdoYhQFLFjqnEEsxqz2AMOcmztlrs3JRCRLVKUbctfbdEkUTc6zPaQYwek8taUWIrkSI1U9K/KWNiRdeytkLliMrFFnBFCLNC+6T01zh4jHOSxB4GlHM4Y4k+ojBCwlKQglAvUQo/DKQQyTYXslREZXmeuljL+ZghRzIiQrZIgVDwQSwdV8I0xMdc54RREgMIWazEQwjYWooaUo7UlSJlWV81eW2NG2PEZzBJxrE1DozYzMq9DRClNMuXPmbx8vla9tRGichHxKzyYHKMwpZU+rT/KUXGrLt9jtIPrRXqmQJ0GXtKZ956+w1G4xHT7XMkbcvckykTERkZOrduXOfJm7d45c03pIikzNMk8Mi5zBqLLWMtZIVJEHuh7VhrSEajrZxZVhaMqZCUEiLsSKUIZ2XFWxYttFY0dYXystckZ+7dvk2OsH3+HMWsEmetFCkBOWmZK1Ki9wN1ZTBec7R/QOiXjDc3sY0D3cvYNI6N7XM8/8KUjc1NtrY3+cu//AZ37+9KH02ZfhgYEPHdYtFxfHTEzZs3uXbtOu2oLXFHgzINtjZie+8qRnXF5saYj+/scu/+AYtlL5Q38vqMSJbPSElIb33fcbR/yN7Vi1y9dpWtrW0qa09tk5WlacdcuVqztbXB/d0H3Lt7n4/uHnD/YMbVS9tcubDDqHVsTBSj+qJcw9097uzuM1t0HB/2zOdzDo8O2dnZ4fyF82xtbTIeia100dx8oq1+ICJdlCkFkDWT8ZRzO1tcvXKOu3f32N07EBqoH4iRdcFBLnPx6r3TqpBHyWtIusw9kUwkaRG9xRjx5bx1dHhI046YTjdEsLQ5ZTqdSDFBEeidXvvZ88RqTS33EbX+9eoajNZiWztuuHDhHMcnc+7d3+Vwb5fDg30WfU+/7IjRk2NkSBL7tIJHkjhAysXisYgTEeGS0gpdrMRtseHUCkyWw5WPmQhgFMt+IMcVyS1hlVDcO4ayHhi0gqH3hEHElclnhs6TsggM+yGciTEH+iEzT7L+VM5CLGMesM6WIstUCmLl3GJUoTClTNMWyrkXmlvOYvWWEPv6nFb7WVn/Y1kT1pRIVQTNWWIW1oqtfNf1a9JWLPsdfpbPE4/a/19tJUyq61ocKoCfpjAJxGnjySef5Ld+67c4d+7c//B6YozMZjPu3r3Lm2++yTvvvMPBwcFP6Goftf8d22OPPfY3Eij9u3/373j//fd/glf2qP3v3rz3/N7v/R7/+B//Y86fP/9DX6eU4sknn+QLX/gCX//613+CV/jD2zAM/P7v/z7Aj12opJTiM5/5DP/sn/0zfvd3f5c33vjZLOB81B61R+20/Y1FSnoVRC9VWVoLFj4XvLvWFq3NQzZwK4zsCqG7oraQ9Tqw+kla0tlKZ9Y/l4o3uY6CmjcKsc6SgOgKX55SKlVrklRY4YkzgtI3K/y8yqj14blUQyMVXzFLJWaWelZSlgrEwseX0KaGdS1nod3oElwzWlM5R90YRiPHqG2YtBPaupZkQfE8b+sKlRJNU1HXrQTadMWoqYCSmLKaGBXBlyCtMUJpSpmtzQ1G0xGL5YLoE3U1olIW28CoqkgeTMrQag6OZ+SQuHDuHLduXuXyxR2qtiEH2Dx/idHOOXQ1QjDxPSeH9zk+fMDe4TEH+4coH0QkQ2LwHcSIM4auHxh8JGSARCSSjATY6qqmbR3JGmLwVLVU+/bDgNKaqoZh8IBmCEmOwFoCJilGiIk+5DXO3liFtpnlkGDoqYxBrA5AqxWSXknCwqliI2BQWiqAjcoYgBTIypKAIUXGVcXYORGWhAxZU9cS5Fp2C5xRIgwIQr8wSYMPONsSQiIo0AnGjcNaGHxm0S3QWheSlYhuFCJU00nIEH7wZMSuKa4ChCqjokJREVMoFeGCxh+GnhilAl6K2iRpqbXBWAkhpFThezCVocs9lRaiRgiBbC1kwxBFAFUVi7psHcELiaZfeCbTCT5FMoah62mconWSGuy8CJcCCWKWymxnqayicjUqBYwytE4xn80x4xHWVPQ+kk0JXCePaxoqZwTVn8CEQIoeV1cYHdEbMNrKGNsTiZADZEXWiZwDwzLhqh36WUPsDDEElosFRwdLptvbEtz2EIzn5PiQUTXGZEtOkZwTy+UCHzJ2GFiEI2Z9J5+vDfuzDnzAKrHb007ThQRGMV90YjGiFE1tqUYNs5OOjaom95bKtiyOF8z8gLIOHXvG9ZiTkwUny45x49g/PCBGQzUfqGtL5SqM18UKRDM/nqN0pBq1WGfwXSBqRT1qGfrAyeEx0+0JWhmqrOhNQ9VWYlxhLESNn3XoBHHpMSZhRhvM5wvmMUh1ps4kDyl4QugggnUVVV0TrIgFQgSURetIHzosiqatGHxgcTJnMm7pFjPQUI+3GPogwTsfqJ1GVY7ZbIFKgcrA0f4h2TmcNXRdYIiexhgqa1Eq0ZR+EksgcOEDMQaUy4wnE7puhvaGFDUqJyqdidmjnCUnSRgprVgOA8NyoNoaM200ue9YzHty1lSVZjStAUfvI00lRLocAtEoTKWJy57ZIjNqGibTMZA5mc8ZZkt0lPmvdg5rNamfoaoKVU1LNfc6dV2Sz4rxuQs8/vQT7O7tsX9wn8pWuGpE29Sc35iyWA5ifRg0Oiu8DyyHhNKWRb+gPz5BmQbnDMsYICZGdYuxFSeLOUMnFaXZRBptREgJVNoxKCAERlVDNpruqMO5EZevXSEozZ37u8wXA6pY1jldlbXdo8nE6Fh2nq4faOueeRy4/fbAydGMq09ep96eSmJBgXYjrt66yT/4f/+/uHBhhz/507/g47t75KDoU8InL1Ycg+ejDz9gNjvk7u37/PIv/wpf+sUvcPHSuVIB3mCcw2w0uNpRt5rxqOHypYv89Xdf49vffY3dvX26vog6UiLGIDZFMRSa2sB8ccSHtz/ilVff5Be+9EVeeP5pzu1sY40s4Eo1NK3jqafGXLt6meeef4ZvfOslXn3jLW7//p/y/OPX+PzPPc3jj19h69IGX5pucGl7m82Nb/PaOx9x9+4uB3szjo8P+PDD93n1tdd49rnneeFTz3P92lWmk9HaBm5dKFz2FPKnkjHMoEykbhXXbtzgwoULPPfss7z55vu8+N1XefXNt7i/94Cu64ghEjUQTRE5SKIzF4FKyhBVSZoXm1dSIIWE9gFtNdEPdMsle3t7vP/e+7z62gVuXL/GY7du8dhjN7h29TKbm1MJ9KuSI1uVxBfRxProqDIr6UVe9fvVL41hY6vmC5/f5uc+/Sx7u7/Cm2+9zeuvvcbrr7zM/PiI/YND9g8OyVlhrMMoCaDnFBlQNFWFddD1gZQ8lYXNcxsYV6yLYiYxMCRNyFkIYwrmszmzOEg1svJkKqpqjI6akBOLzrPZNmyNJxzNeub9QGUsy+WSQWt0ysyXPX0fMNkDmeBFvBSDp20sQwiEPogYyCjG0zHTnTEPdo84OVpincUUsgO2JBBCxIdIP0SUzlhbkZLHOUVbN4QBFstIygmfpJK6shajlNAgnRULo07WC2MUygidRYTxxaopr6rrf0bbeot/asElaRJO+5jW60QJnLEaW4mOSmGDKsKgVSbs+0RLZz9y/brys1VRhIasTisgVF4Jm3I5LygRvRfKAooi0KGIYdVadEEhFJyKNlZXotbfeSWmIq8+dzVoViqt8lmlWMMaQ9042ramqSsqV5d1XBURlbyGnIXQYq2IjpSIB1ZiKrEjK3YnmbVFNRmausbVTsgkKYuVptIiVjCSbFc5g1VCA1SKa1evcO3qZW7dvM72uXNoNPVojGtF9EsRiQzdnG655GQ+48MPPmL37j2ODw/xMYhtUBYaTAixVPHLXTPImAa1ps9krUhJSLoaRUgJlBBZJZkmhKD1HVVCoiJlIkIIMBRrNl0oC14s1kCLJlKJcETWcCEZiACp0JCy3D+lsojmU6HY5ERlLE5roioJwiyFFAAh+NLXTym8Gnlvo52cNZHrc8XqOqbM4IVCFJNY3aUgSUdnHWqdUBcSUCKUc3Xp6Fm+VyrqM1kvi9Aqy15Kzl1IMldJglMpyMmQIiijCCkW6y5J9Ipjm8QBREyFWFVpUyjFCT8kqroqIihF9BFjFLY4xYViP5dXiltBPEh/1kXoVOaCwQ9o59DKEEnl84uAzloRiUW5F6EcqFYW8BeunOO5Tz1OVSukF4gILZfnF30mRMP3vvMGB3vHpAhh8HSdp25aSWxHyCoxDJ3sk7IuSfaMD17s5UJkSD1D9OtrXw5AjOU5F9pWkvs9hLAWBVgr8/vQB+rKkoP0Cd97KVLRGpWkeGfopfDGWcOy60pBhMIUQatKsRR5aYa+WJUVukkKiaQUlXPEmBi6nqoVerPJEJUt1nkAFpIQgVWWe6dUxla1nN1TJ+JHVe5PinJ2z7kInaTwSxstZzKM7FGIpCDEkZwiy6HHKk30nqxFmEY2xcZNURkNSpLvoQ9YK4l6HxK2EiJw1/VYowuBy6CzCPVikOvpUyJHKXAx1pJVJkSPzrYUpK3mbREQ6qxRRuJTfTcItXHUoHwgxEzwIsKzlcYYQwwSX1iNo5Qz2mpyDvilR5sVUUks4/rB44zBh4BTlm4+5/133+a50QjdjIuw82yQXsazrUd86jOfpvM9H3/8sQgGjYj3mtoSSGQj65TojDJDkPuYUHTDgLGF1g1rmqOtq2I/5SUekKNY/eQV6VzGoU+J2ooYJqmM6j2urrl77y6RzLnz51jtCbWyhfAl+1OdNTEkfIhUMRLILE4SvvNMtjeop+3achPlcE3DrSduMh6P2JiO+au//javvvoGPsoeKRV7quVyzr27PYvFguOjGTcfu8nOzmZJvGvQFbayGGMwVmGdZtS2bGxM+fjOfY6OTugHT06nRMOUI6rYLOeYCN6zWM558OCAK1eucOXKJTamE7lHZbXSWjOeWG61Led3trlzf487d3d594O7PHhwyJWLO1w4v0nbNuy4mrZpaeuK23v7HB2e0PdzDn3PbHbC/v4+W9vbXLp0ie2tLdq2EctR+ESfkDnoIW6RkjWrHY1o6oqtzS0uX55x//4e93f3ODo+Edp5jIWstNozqrWaaB0XVblsm1ai3rIGJYmDpCiFA13XcXx8woMHD5hMp2xtbbK1ucnW5pR21Aopb7W9yQ9f/kOpqPVnlbPF+pcGYw3b2xWbmxsMt65zeHjE3t4eu/fvMz85IfiBk/lC4tJaQ5Z9sbIwBBFfWpPFRrXYrlatxCTyOrgr67hsPdVaTLwIPTlCylKgmKzDJokD+yDxx3bckCIshiWNNpASfQgorQmhiC4VkEWwmDOF7CjiwBziqb2mNYxHDX4ILBeDiMdN2VAqmQ/F7q7QopKQ0Fdrd+Vk3xSGXOLYZ2LzRfRmjBFCYhA7TaMUUYtgdlVcfLqb/T6F3KP2v2BTSlHXtZDwnfuRtkA/qVZVFdeuXePixYs888wz3Lx5E2t/eHoq50zf97z66qu88sorfPjhh1K4m36Gz7yP2t+J9tRTT/Gbv/mbjwRKj9rPbDs4OOBP//RP+e3f/m0hf/6QprXmV3/1V3nw4AFvvfXWT/AKf3jz3vNf/st/Af7nCJWuXLnCP/2n/5Q/+ZM/4Y//+I9/ZihSj9qj9qh9f/sb271duHh5XZnnnPi155wkOBcleLtS4p9tMQpe2hgJzMSCGFdnXro6DJ2lwqwmJqM12hSC0sqaLacS0DMSgEOCP5WzpSJK6EqxVAQ6V0nVuu+RYL0mpHCK5y6VnEpJtWhYV41IwguFIIFRUvm8OgWm0xO2NYbKGpqmYjoeMR6PmUxGtKMKTUIrJ1Y9RihLVVWXPxuqVqoYGldTVxaMwichBhkFsdjOW51pa7Gtc8bS1o62qQkRrKvBabQRgk7XBY6Pl/TzBdcubbGxuUlTT7l29Qo7FzdxozGq3qRyNcaWTf9y4HDvgNnhPg9273K87IhKKnsaDYuTE4YcqZSghLs4SIBaCeo8+UAzGqErhzFSPVpXJRA6BIyW6roQwdW1eMaHQShXEQmMxSgWQaXq0Jc+Z4zYPIQU6LoBlSWB2TSuYI81OSv80OOcYTQei+0foCJFdCP3zxqDtnJ9USkaV+GUYpEDPiRG2jJuKpICX4LrQ9dLH04JpRK1tdLnXS3BD5UY1RVKJVLW9F4S8igLDISQcK7Bak3jtAQ5kwQIc/YsFj3KWIyRqkaMVKw6o7G2YtF3+NBjldhnmAp0EKso6yp636O0QaUiGKwMQ+gkGVOSUWhD0ooYBDfTVo5sMtk6ss+YGOj7iG2kP6qcicNAyglrK4ySe6izoao0UQnO3zhLCoHpaEoKkaETQU+qhUJljJIEepJEUQ6RSdVitGapOmLSbI9GaBXI2hDNnGayRFsRPyQJNYtIUEUJIA4tsduGuEVIiugHtKuYz3uy7yVp0VuOFwfEmJhMGkabY5J2HB8f0DjD7KTDkahMzVHvUZVmUlcczXpijtQp0kdL3TrqeoRzGp868AmnFTkO2Lpl1nvy0DEdCw3kYPcAOxmDEYrP1saWJPN9xFaWo/kROmZmxzNGG5vEkAkKsu9RMTMejSVwVVl8hlFtCEpD9GxvNsSosPWE2Hts3eBdsQ7JGe8XIgrpM62xaB2IqsPZmth5cjYkItVYkVNFio44zMjRk7TCmZqT5ZKqEdpcv1gK0SQZ+sEzRI/RimEYiEOCnGlHFRsbU5bLBbqt6BeB85MNvIbl8QytQpmXa3zO5OiZLwe006CSCJOGzKRxtLUTylRV0w89y8UclWA0HdFuNMRoGOZzptMWpQJHiyXjpubkeM5kc0qDZpkyy5MlbdsyGlWlElEzhIAf5pw7t4W1YqGmVWAYAtqIVUXd1gwhYaoWbSTxG/qBYfAM3lPrRNaimdM501SWbEbU5y5DVfP91YaZFHv8/ID+YJ933n+P27v3mdQj2qZiYh1dDKhRRd9BnA9EranalpQjOXiZB2OkaQyNleTk8XxOUEISrBV0y54ua1xShOWcWfAY7Yr1UGRzNGKxmLE4npOdJhE5PJjxzrsfcefuXbSFyXjEeDSmckbmalehtGLc1ly9sM2FnSmmdtgkie0L53e4/Pg1xuc2MK0jK4diA4WlW+7z0ndf4o/+81/w+lu3OZov8D4Ssggug/coDW0z5uLlK3zuc5/hK1/5dZ5+9lnqqgGV0MX+LfoFi/kR85Nj9vf2eefdj/nGt1/m1Tfe4+hoTozSvyQIq6QS3wpm37qGphlz8fJlXvj0C3zxi5/j6aeeYGNjs5BC5BlBJKUls9kJb776Nl//xou888GHmErz3JM3+dynHufSZkPsevYXPbv39/lv//3rvPPhPbqQSwVzw8bmDrcef4Jnnn2G5559mmvXLrMxabH21J5G2pnq9PXfSyA4R2LsWMxPeLC3z7vvf8Srr73NG6+/w5079zhazPE+FGsOIR+AIsZUCAYiKNKIVdAK178KRhpjih2cRWmxymvblq3NLa5evcatxx/j8cce5+rVS5w7t8mobbBaiSBjLXzRp3oKHq7w/uShciWYyaWSdzlfcufjD3nnrTf53vde4v0PPqRbzpnPT1jxf07mcxY+UBlDpRPLYWAxBEaNZWMyIvpIyInWWUIOJC37s8OZZ9F72spBysyHHoCNjTFXL5+nWyzxKbNYRCbbI7ZGNYd7M2b9gCaSc2Q63cAAtz/eY//ohJCD2C0YS+1k/+Yqs7bB6IeBRGZ7Z4cL58/z4fv32b1/SIwBraM8DmupG0vlNH0fWHapWCfJPd3Zabhy6RzdMnBwcIy1IoY4nnu0ySQ/4H2QOa6pqBtLU9fMFz1+gKPjBfN5T0wD2ghRNCbNB29+8H178p+F9mu/9utroY4kSsxauLESg+gfEJxI+dSSROgPZ84LRaT0EG3pE0SlU2uz8iOtJaFuZIyskuJa6bUFLqw+a3XOkf1/KnYbilPbN2D9GfLxYs8lihe90h+dSpZWRRkrNVP5hVZiKVdXjrZtaZuWuqlwxcZDodeio5XlpVaSRBbBhsJqW66VUikvhKRSuI9WIoxYzQ9iiWpJCbQpdm5KLNdCiHRdQOXME4/dYOfcDpcuXuHChQuMJg3GVWBrrLbFkisTQqJbLBm6JQ/27vPR7Tvc29tjPpthAT/0xJyETMLKyrEIVZIUtThrwRR7mfI9c8prgdjKhsQY+c5C15NkY4qFQFCszASOIEK4U8FWJkQZo2JBq0VYpGRuljGscZU7tf3LJVGL2O1pJbbjRmkSYhOjy9khpkylikUdq1lQkWJ4iMi1ShoqY9fEYiHTSHpQ6A0g+4tYLGCE/WCNKhQ1sWqBhPcBpaQYSAqFijVeEXD4IDZOSkniV2skIR+FWhmiiFzIMhYo9NiHVjGl1xZ1KmexRdeyFpLk/WJIYjNe7LhSlP27NtKPZThIIjkpESxqI+LE2tUyH4RM1opsSsJZnQoJyGK/VxuHUFOF9tTYCq0SWSm2z2/w6c88SVWrMvZkD8VqrQS6ReKV773LwUFHykLGUcYwDAGS0JpUNHRerK6r2uJqoSH2fYfVQqg1ZLSy9DGCUdTW0A2yN7E5E5LGOrFKMlqRcoCYi1gwYIwT+6IYqCpHJrGcd+iqEvswbajrRua3JCKsfuhROTN0A65pZHwAJCGBOufkqxoRKDqjSEomgraxpAzaVKQoJLVUxr3AijwkCAGc1iiVyEjxTA6pFHIlTCWCNrIhxYGcZU8i1uJCQ1KKtWBIa4VAMOXvWQlBMAY5UzZNvbbZCxlqVWzFYyb5vohHrYjRVIkdIKShECM5SX+rnYEsFDKlFd4PpBglPtE6lLb4vsdasXPvVyLCmMhaUxtDVoq+92g0Ve1KDEgEVCF6nNU0TSvUwywiLZk+FNa5QvA2a/I3WWwaVxS61aSfU8ZZzeOPP8njzzyP+oHnibKmxJ7+5JjvfOtbvP72W5AltlJboUNnJwUvcZB1SztX1sxYiICic7Ba6GrD4AmChUPnjEqZPhZhUkwMwZNQYumIxCW0gm7ZyTcoVmaz2ZLJdIPLly8zGontl3MOlYsFVllrxk3NdCLWuraIGqvKMd2c0G5M5GyoDeBQVOTsOT464J03P+TP/vvX+d7Lr4r9Wy6Ckihrh9GWpmk5d36Hxx67xdWrV6mbtohsMhAgBULoGfqevu84OZ5z9/4Dbt/dY14orbmsGwAqi8BXbLOMnBPrlp1zO1y9epmLF88zGU+kIO70KZEJpBg4Pjrhzu173L2/hw+eyWTEtcvn2Jo0OGDZe/oQuP3xXW7f36cfQhGJSOxyMt1k59w5Lpw/x9b2Jm1Tl/MEq5l4tdv5AX9fnSmE6tZ3HccnM/YeHLK394CjwxMWXVfGDKws41Zbp9VatNpTybmC9R5stYdSZe8BuljBWaqqZjwes7m5xfb2NhsbU8bjlrquZB5fX23Z9PytzhPlWhGRz3I+5/DggL29XXb3HtB3HSEMxBDWVLa+JKOcLsLpKLZndSXFkz6EtcgnFovWEDPdEIWupDU+RGIWOuLG1gRV9iI+yIZqMq6JfWTRDUXkGzHOUjvHYr5kPu/wKYqITOn/H3v/1SxZdp7nos9w06RZrrxt3w10E44gDCmR3Appx9GFRMowQheK0KX+la4VwaAU5zAYos7moTYhECRFEh7tfXWXX35l5jTDnYtvZFY1RIDYR9hg66hGRHdVrVq1cmbOOccc4/ve93k3r6fL/aSUCJElMs6yvb3F0AdOT5almZY2511bg7Uyn3ifCSkWfXzGWZjPW6xxrJZynxijGb2QNbXKBB8wJS5YKYkqjTERg4iih0FEbEqJCDxnxf/n//3H/9189Hc9nsS9/e1DKfUJapIu9+zf5Wiahs9+9rNcvHiRF154gZ2dnZ96XOv7/vDwkFdffZXXX3+d+/fv8zO2sJ6MJ+N/eDyJeHsy/mca//Af/kP+3t/7e3/rXL9cLvmDP/gD3n777U0i0d/1qKqKr33ta/zar/0aTdP83H9+jJE//uM/5o/+6I+exL89GU/GL3j83OPe1pvQGGNx4eayKU+l8FAKyMWBJAVE2ciuHaMgqHhycU3nR7jhdUPi8Yg3KdRb2WY/1sxISUmElbN4n8T1vC4+KkVIJYc7y/GE4De45HXTgcectms38dpdKu7KUlJWRgRMORcyU9mQIxh45xxt0zCdNEzailnbbDYCdVNjDATvsaaiaSqc0WxNJvI5KYUyrhTvRrJ12MqJOzqs8csZS6auDJWBprLUVY22lt5azkYPg2eSMkPnCUkxDhmdEhe35px/5mmaScXO+fPs7J1na+ccdTtDUtESeQycHi64f/cu9+/eZ+h6gh+koBES1jmcAa8SKQf6rpfiVcHxG+do6wnd2QqjHE7bIkgLeB+JQ8Q6y3zSMHY9BLDaSWSLUVjjGIYlKSX8ODKMHpSRyCIFFimADyEwjOCHEa0MTdOKizau3biZVCIewND1InBxhfJjs9vEfWhjqGuLzUJoiiFQty0TU9H1I85qlNX0w0hAiubKWlBaouKU5MJbZ9Ha0hjLGHqW3UjwvVAsrCVHcRBWTtNWDWhFt+rwQ8Y4h9KOGAI5egylgaIUKanSFFXkFBi8p6ocKhvI4IMUtabWAVLwrsWbSl07KVgEj8ZsYgTEOZxobUUXAsq6QijSmJzRFoyyUiitDf3QY3PxXhqFeGClma8LqUFbqArSunENwWdi0vQh4qxj0jT4vieEiHUaFTOVc+h2Qm0cx0dnmEYzdTOUD0R6aBL11KNcVxoIGZ0hqkg2ERMtKVT0q5q0Umg9UE9bstKMKZKjR+VAHAIpVtiJZV41GBVJccRUNRPniKsO4ywYyBF25i2jj0TvaSaKYVA0zYzkE8FnlodHbE0mzHcaThenpMqyHCJm7GgbR4NG+RHVWC5du0g1nePHxHLZcbJcomJkYq2g+O2EvjvFmBq0Y7U8oG0qbC2V/MAIVlFVDqcN2mS2K8OQEtFLPMIyHGGTo0pBCFZoQhpIYYmxNZNqRuo9xIAfQU0Ak7GuErd99CxOF1S2xtU1/TBiK8fqrGPVLRm8ELhM8tTK4VwLaGpdsVqcMZlNGbuANY52aklhxWxi0LYlu54+jCz6gXFMWBLaSuOnrh2dH0AramsZvCcEoTMMWWgv1mqCX7G1NUMbKY7FlBhWiWHo0dkTvEFVjulsh4qItcUVqkSJ3429xLwFh9UVIXginmZaC2UiytxgMkQD2okIo6prlJPWi48e7RqqypD8QNVUaAIjis57XGWIFaTkMcMSrTPYBpUfNaPJmawtqpmRqhU3XnqFTjV0B/skXZHqhqFfUSWFTwOTeYWKiuBX6JRwxjHd2eKkO2MYRkaMNLxMQ2UrThZnUvSMIsrZnTXsD6f4NOJzpsriql+pgcpV2F1DDCNDjOxub3PjqjRV7j18yLILuEZRGxGdxqhQOTKEwKr3dL3HZJjUDTkmjh4eM/YjF25c4MLNC5jWEoLH2G3qyZwvfelLnG+3+Q//8Y/4zmsfcpo7dA4SQ4EhhMBiuaD/8H0WZ0c8uH+f3/jf/je+/CtfZm93F3QF2mLqhqlraZqWtnLsbW9x5dIlblx9g+98/1Vu37nHagiElIu4NZUGtcRbxHHk42Fgf/+At99+l1/+0hf55S//Mk8/dYNJ25R1gAY1Yb5V88Uvb3Hz2Zv88Aev8e3v/JDvv/Yub71/i5efvcHzF/e4eHGXi88+zW7b8Orrb/HR3Yc8OF1weLri+OA+p4tTPvzofV57/Ue88MKLPP/sM9y4cZ29nW2q2krbaU1O2YgwyzEgERrGKqZTmYMuXb7Cy599kdsf3eFHP3yD77/6Jh/f3ed0scSPHak0ijUi+suliR4R0pTSSsSqxW2dckRFLwRIY0h+JA4d3fKMw4MD3vvgA1698DrXrl/l6Wee4vrN61y+dIHt2ZTWGcxj+91P1AfXvf2/YQisRQS0s/mcF176DM889yxf+fqv8uGtj3j9tVd56803ODo44OzsjJlxqH6JHwaqpmFIGcZE14+Mg8RVTLdrdiYNoU8oawmjCNOFPGRZLBcsuoEEeJW5cGmXpAzGwbVLE5Y+seg9KWusqThbnZTYm1OMLs5qJWIPbTJ1rZnXNVZLlGtK0riYWAVW4azh6PCYcRyoKiu0OB8xCmlIJy1EFCVi9mFQdH4gp0DXSbMsxrwhlfoocxleqC3DmEmnK4xVbDUN8/mUnDTHfUdMkRg92iomkxYUjP7T6yp9JOL5cWOCkIE2QiQQUg1s+m5rcQI8Iqs+7vVWWWQIlEbx2j2uHnvdtbhIKyUUKmM21Jp17Nx6P5EKRUyV+JCU1jFW+TG10ebHbm6CXCgMm0Mvgv7Hwq8fNfrKP5O1aUVT10zahroSQoY1FmNFALSOY7KFTFBX7tF9qMX9kWMkK4lLUwqUwHLK+8hYrTDFXGGMkb2d1owxQYzYnKX5m4Va5IzhxWdu8PwLz7O1PaedTmiaCXU7wdhK9l8qk2Ni6EYWZ2ccHR6y//CA+/fucnR8SD8IQdUoRVTSDA1B5m2lFKm8f2esPHvRhYRa6D8ZchTSWm2tiO0zm/g0SoRJDF72cykS1zlZ63NY5toYEyFTmnAKZ9y6l8u6L5vTulhX4qBUxmhTyHhr0oxcF9aYjeBg3WB0xqBClGtFK0KJwVaKgiaW6BaURMPqQikS/UjAh0iK4dG1l+R+sKYQM5UieF/meANr8liOZekh12cuWhyt1lF1qURVizAulfhQV45JKYPVQmiwSpPSo+dL5rGPMycRcRd1SCJvKFRKK1TWhUKlhWpbbmKlH79tSowXIpowWpMjJYo7k7KQskREJ+c8U+6/XM5HoQf1/Ygyci5VyiQ8exd3+aXPP49rZD+/vtcyiawzOmlS1Hzw3m32HxyjlMUW8nLMEnWlcizCvoxxYryQeCS5v5zWpOBFEK6BJOL1mDIpJqyDGNYR5BKx57uOjzsT+AABAABJREFU2jmq2jGMPckYfMjo6EUwg0JFifqcbU0xriJFIQ8P4wgp47QI6rS2hFFMKijNOHZC4TIKrCYhe2ljJBpMqUxtFDGrjZBvjD0mSz6QrkxZJ4QSTWpwdS1o1Szx7jgl51ZrwJBTYhw8Rie0tcQxYozGe4mKDjnI/JUzRiWcFvKrsQY/DLIOUYiprHZAxFihuakkYonkPb7EoRordBOpOcnzwRTBKYXuZbQmplya/7nMcxUhiIAvhkxKowh3FERtMK4W2VUOEjOZZR4PKWJyIichhoMSIYNVQp1aE0qUFqp0EWpqLWse1qKXQjERg1sRNqoSca8h6syHH3/IZHuHi5evopxQtf+7ZZWpsHXLl776Ndx8mx9993sirtOGrHQxhSSUhQpbzlvAKi1UN6NZdSuSMvgoAkdna0Yf8CmhiiC3chaUpw+Fll0ETDELibxpGlIKQhfWmkkDRwcHrFYrnn3ueabGYctzdw1Kk4i/SAhy3pSVeW8cAmdHZ/hxZL67hW0sG+qZtmxt7/LyZ2saa9k7d47/+q3/xtnyFJ3lWR6TiEqXywU+jHSrFaenZ9x86im2t4WqpHCgrdRuCn2qtpbpZMLWbM7tu/c5PDqmHzw5q836ZPMcLwKSFCL3xoHj4xMePjzg2rVrnD9/jrZpWOulwaKNYWfXMZ1NOXdhj9u373FwdMyb737E9nzKxZ05s6ZiazKhvXmd7dmUg8NjlsPIqh8Z/MDx0QGL5RkHBw/Z3dtjb2+X3e0dptMJzq0j59R6lfFjS5JHMaPWVuiJoWkn7O7ucPXKRQ73D7l77yGHJ6d03UgIEk22WZMVDKw82eRhEssKRpeXVUX1rJKs3VISol30nqHvOTs9Y3//gPl8xvbONts728znUyZNI9THxzYNP643+Ju2E+sacS7rNGMss60tZvMZl65cZrlY8nB/n/2HDzk7OxXKMJraGsZhlPhZDUQR1vXDKI8Go5jPmkI/LLRM72Vdpg0xRMZR1ivBJGrvmVQ1Q0xMJxUpZXlmpyzizOAJMWBzho2BRGrH8qzPOKdx2hSDrlzHVimhCTor5qhxFHCSFrK3KvsSjd6I9I01EIs5NyVCyPgxEPVja2ulCnEplhhYRRgjSnva1uEqg42WLo6PifSyiJiN4gmk5n++Ya2lqiratpX57+9YmKSUom1bXn75Zb7yla9w/vz5v5XkFGNktVrxwQcf8Oqrr/LRRx+xWq1+QUf8ZDwZMp577rm/VaAUY+TP/uzPngiUnoxPxfjTP/1Tdnd3efnll3/q3D+dTvmd3/kdvvGNb/DNb37zF3iEP3mM48g3v/lNDg8P+Sf/5J/83IVKxhj+0T/6R7z00kv8u3/379jf3/+5/vwn48l4Mv7Hx/+FuDcpgK4jF7z3pQGgNpvGECTuJych22j9EzKOi4tEhEHiuJP4lUcbqrXzf40gNkZcRUYbee0MOeUSccDmtWJaC5we9QG1XsdDPMJDP2oOiIMtlIK00rJpXhcldHFPCSacUiw1TNuGtqlomobJpKGpHJOmorIiarK2wlYV4oi11HVL09SC1qdEmiCuP02mqWoqK44byGQf0dqStWSZT5qaxoLRmaapwGZWfUfvE34MnJx1BK05P51w+fwON566ys7ODGMnuNmU7QsXsLqSanXK9Islh4cPOX5wwP7hAd1yKVnqMTOOI7lktKcYSE5zOnb0o+dsNRBCpK5r2rqiqaQJ3jQWazTWQtM4cpZCZdd7jHJ0o+DpldZ4P5BUos2JHMQJZ63BWlcIQ1JQq2q3iX7RURFyom5boU+5alPA19aSE9SNiGyULjhjTSFvZaw1jCHhtMRfqJSJBFzVkENi6JboylEpKdQOXvD9VhtM1uJcRzb64t7U5JBJKlBXFTEJqaWuWmLygmYGIVFpxzB6QpLmas7QDQshHqVE7fSaM0HOYEyF9yPWlrgDJQIPjWHMcl6cqfBF7LfsVuQ4YpxhOUrMHDqhkyHjUEYTc6SqHWMYySozBEHjqxITpFHELK7YlKIU4wqaXTsnnjWrIYlDvplOGLMnUlE1Ei0Sg6eqWqpa7uvhrKcyGmU0tatZjkt07ai0FKZjApU0fT8wpBXVZMV87tCVJyvFJ+kiI8TIuJ/IY0tyM7rsiKeBenlGXWmGmInDyHS7YegTulJUrkIRIMLx0QK76qmtY9VnzsYFWzst8/mcg5MzJq7BWEe3OqU2QqzSJrEaFqhKsxgWuFERFTAmJsZCZVj4QDOp6PuB5eGCetLgj5c4JIYnW5hMJK7r5GhJO2upW8Ny6Dg79NLkskL5Gry4/WZbU+raEvpM363QztDWLWEJIQy0U81wvCAYmQtCENGkosbVFVEFUuxJY6RfBZJStFOHTyPOtqRg8R60DiSfGb3EcqoMOidsUgTAVRZX16ikMBmcMyxPAtGLWNWrgEkOQ41TjrOTBYenZ2zPJuKsTIlu6Egqk6xlkjzERN/11I1jsVrhtJbXC4GxrplNHTkEfN/jsobKsBp7FstTpm1L1weOjxe46RyrMtplbFSYHkYdWfU9PmbOup6YEpOmphsGusHjK0cKK1IOOGuwKFbdgAqGaVuTsjROxtWSfhyonCN5j7MlpkJX1C6hfKBqthjzgJkbFosjXPBMdippukm3vBQlDbZq2Lp8kZgzv7y3xf0P3qE7W6CyYWbmOC2NHk2iMg3ogK0kUmSMHVqJEznkLGj2bFBRUWk51z6smBpD9D0hJebTqXiQnSX6yBgSy7Oec5fPE8eR2HuqRhNJ2FYz253z3gd3ODtb4XRDbR1dN2BrUF6x7HuWnaUlMUaIKPoYOe4XHHYnhJi59NQVzMySdAIsuq659tmn+H/81m+i3Ld49fX3WCwTo1Z0KUocTg6Mo2f/YaDvf8D+wQEf3vqQ3/iN3+Cpp56iaVpUlrWAbhwz0+CaM1w9YXtrytM3LvKXf/0DXn3zQx4eLxnxoAMkRQiJpDwxCJ1v8D3dasXD+/d55+13+OrXvsorr7zMxYsXaGonaxI0yirOn7/A3//Vr/HCzaf46+9/n++/9jb/7btv8k5b8ZVfeYkvvvwcL//SMzx1fZe79w/YX664c+eAN966xTu3H/Lw3pKDg4fcuvURb7x5g5defInnX3hOnsvzOY1zG7GP3jQYJPBKVisWradoq7BVxLma3fkWT1+/xue/8DI/fOMtfvjam9y6dZuT44VEr6hYFj6gUixUmgwxboiWWmusNigiqITOgZGIMREdPSGMdP2S46N9Pr71Ae+8+TaXrl3hxlM3eebpmzx14xq7WzMmjcQCPtZeKEJx9RMaC4/epXxBCE575y+yd+4iL7/8Mg8ePODdd97h9dff4IMP32e1OuPg/gNCHrCuZnveoExguVzifeRs4XG2l7izEPFDoDYiVFgNA9W04vruhBQ92RmG1cgQFOcvzblxfs6DBx13D07oxpEweHQSws5i2RF9xsdcmk4JrTxbs4a6bkTMWuiNxjmm7YxMZrUaGPoRRWZnd473NX0vYlshSEoDQxuhu4EIm5yrcE5xuuiENBhFID2GTPRJFCYJYtSoAN1qZBg8Yx0IPtOtRqy17OxNSKX5p5QqcQ+f0qGE0LkWEcnnWa5dihgIRORZjAWP7yM+0YhTj/7Nf/cy5bXWcdLrIRE5VpqnZVGW19SY8vcKiBsBFZtm3aOfI42lxyPo1gqOWPYPEg9WDjiX2JTyXKQIVnSJh26b6lEMg5VoszU5RmsrYnkga4UxTihDRXihlSqNJ6ED2BIpbfVGOrOJqRNCkZHILSU0JTT4IA3qFBP94ElKc35nm+eee5Znn3uGra2Z0Pmqino6QSuz+VyCH1mtlixPF3z00Ufcu3eXg4NDhmEUMm1Zx5IkimgIXoTHPpBiLut/K7TaQuXRWrQ8sg4WwWUIEWUkciiWrnfK0si2GLl/KOKArEla4t1yShIPZ+SzjyjISaJ6tIhcchERrPezYqjh0TlTa1GG/CoCCLURrKUs4iRKJKQq0VMUwZSYcco+ohhrWO81lexDIYnwonzdGFueCvmRaE9pQkzyvpOIG5KXyFaVM8aowrdhI+KKJaptfeNIzJwmyhMPpUo0FLnE70m8nE9JiFqy+y3CoxIzXciyIO9PhEmgC+1BITHZmbS5v1KSdaacI6CI4KxzxCxHY5wplEAhoxgjIpU4hkIOk2fY6CVCy5R7OKcsYrAQidnTThXPvXiDqtE82kuUOUWUL4Rl4taHD/n4o4cEDGmQqFhj1Ub0XNWOEIrYRVC3qAx959FG6Bvew5hG6sZia1lvOu1QGoIfMEoiGFXK+DCijGYIIipNKHQU0RFGMaaEdVbWw92IdZbYjYU4BlkXgb3WDL2YC4zVpDAydF2ZU4TyJQYeqGqHNVridn0owjpH9iKIc5Ui9iMxGVBZkryVAgxWWZJKxBRQSWLOsgrYypByRBtHTlr2cyqRYxZCoFJC1CIVuKOWuoJzMi8m2feHUcRccqlpfIw4ozHKEHyi6wchwzn7SCQyJtmfkNHl+ZHLdZ1iwCmhBkXEYGSs1FFUVmI6M5rVqqOpaqIS8ZdOQtQzyFylfAQl15mIuUCNHmdK7SaE4mVTjCqhkHkrlMg6rTV289xKBD8K8a08l4xSEhFtMi5HyBa0JqjEG2+/Tl037Jy/UGh/6wdaiWMkoyctNide+fwrnJ0dcfjgAbqICi2OlMKGfiaFEvPISFjEcLGIFIsnT4Tuupj5csRqSxc8xhhqYxF5pogd/DhS1TVVXYMPQuSaCKl3DIEPPvyQZ599DqNqKmeF8qblffsQGX3AZc0mwCxDiJ7V2BFSYntvB9c2oGVOR2uqWcvN528QlcI5y/e+/wPu3LnDSEASTGXeGIaew6PIMIycnp7y9DNPc/HixdLo0Cjl0EbjaoMxFdoOOGeZz1ruPXjI3Xv7nJ71jDGQddoIWGMxzYmwMxJCYOh7jo+PuXL5ClevXmFre4uqcnJ+i1jaVTUXz59nezrj4f4Bt+/d5/j0jJOjUy6e2+La1Qvsbk+YzSounJuz7EcW3cDR0RkPD0/o+pVQnxZnHBwcsre7x/nz59jZ22LSTgrR75Os1rJCKesgedhrbYvo1VI5x3w64dz5PQ4Oj7n3cJ/DwyNWy76Q9lJZu6gyf6+XWLIm20SCFUremoimSEQlJK+URTw/jD2LxSlHh0dMZ1Pm21vs7Oywu7PFdDKhduYTYgW1Ofq/eT8ha6vH/0aB0lRVTbXXsL2zy/Xr1zk+Pubw4ID9/X36oaM3HT4MkBXOCcUoJM84RHLIdL3cFxkIKUOCupAFs4LJpBYaZXmmjV6Ie/N5Qxwzp8sBHwIxxBKRKMZePwahJmpFbRw5S1RnVa+FqyIWNVrhjBXxZgiM/UAMQhmrnCsisrT5rNY0RBHUyWfirJXnV0wQ4ubvko/EsJGbyf2iZJ8cglAPyZrgZd9Y1yJuXEedfgpSwZ6Mn2Gs49zquqaqqk9FnBvA+fPn+epXv8pLL73EbDb7qceVs/Qh3nzzTd566y0++OCDJ7SLJ+PvbEynU37zN3/zbxUo/cVf/AV/9Vd/9Qs8sifjyfjJYxgG/vAP/5DLly+zt7f3U4VKxhh++Zd/me9///ucnp7+Ao/yp49XX30V4P8WoZLWmps3b/Jv/+2/5T/9p//E9773vZ/rz38ynown439s/OwiJQMpP2oUhBA2xfq16EeIRKCU2RCHtNYbklLOeeNm3tCS1u7NoihaI7HX/8lG79HWO5YosHHI2FJ3TCnhnDiGpSArpB+tMijDZDIhpYhfjZtjko3bI6zxZrO96aSpzXuyWuFcRdPWtBPJkJ+1LdaKCKJuaiprcEajSFTO0kxmUiBUCldZoBTIs2IIkv3dtA3b0wk+jiQfRKoVBQ+8TAPWSpRZTBFfREPKGM5GT1gm4qpnGAeOVgOXtvd48cY1nnvuBpO9Pex8i9lshjMVKCl0Rz+yPDnh6PCQw4NTjs5OyHFgtVqRU8DHgEpC1hnHEa8yOIcPmUW3oK4btuZzTC2Y4kZLwc1ai25bKc4BIYjDVYnNShzUCgS1HQkRUIblmdBtcmkkWGVlI28MiZHlcimFPifoaG1ScYUmxtBhNNLE1Y5Y+rNyHa3jOhQpRKyVxmVbGaxSWC3xDD4Wh1wSnLNKQShRtpKmSIkmm9SVFKaVuM/rtmWxXKJqg9GZ4EdC79FK0dQOHw0hRmIK+Diioym4+RIpWAr6gp3XjDEQcsKYCnQi4QkpksZAU4lDqx9GrLFS3F9ftMUB36862rbB6kQgSLRhL7SlRKBqauq6wg8jtRHBn4+JqpqgdKTvl9S2IeWEsgmVA7WTqIPsNNoYtE5UTYXSDbH3mAoaVRPHxJg7nKsl5UFFbGtJgzjBc4q0tgatSUqLE1Yngo9YK/F8tTPU7cjsnEZVgzQQSHK9IPejTpowOPqhwveOHKELA9poJnXLmD3JKOxECBkhJLbnLT4PqDGzXHSsBmhNpvNLxmyk4TYmnLYEK87U0K/wg0Y5xenxCS434o6OkeBHzk6OCEljlGZnptCuYTUqjrtIipagFUM3kPuRymi2drZp25aqbVgOS5L2+FSR0VSNiNSqtpWGn3Y4NG3T4ruB1TAS+sikluaiCghFYzYjrJboEBmTx9lttI4k76mbqcQMGk01MUTTUaVEpSN5UCKCcJmUR1xtOTk9o3KaHBWokbq4Y7UxNLYip8wYFHHscVbiNV3rxEFsoB89wVuado42Gq97VFXJPYjCkYg6EVKmaWvCYiX3el0x9B2zyhAGaTwqlbFOYn5iDGQVSSMYrIgZo2LMiVDoD5HMarGArYbZ1pzVsicGz3YzZWIjfY70MRBXEcjE0FNPG7SSez/4gMmgdSJng64nZGUIQ4eylsY4EqVYOI5EMm3bisO4qhj7nhBHxj6yXI24aqRppxjXgrZIe0aKgtJWaLAKsJErV29y+93X6MYBMpjUMKsaVuPA0o9oU+GHiEojKWd8zuhKoVLEouhHz+AjKkd831HXFWEMjCFibIWtDTNj8D7hkVgQ5xxnJ2e005a2qqiritrArK3Ym29hs+Ld9z/kYL9jZ2dL3J1BojYH7zk7W4mQqhGBklGaiAhRt8xdhsUZF198gdnOBMalEAmV5pVfep7Le3P+9E+/w5/+2Xe482CfGI2QBrLQC32InJ6e0b/7LodHR9z++A5//+//fb785S+zs7ODwYI26NpR6xrrGuqmoZ20XLxwgaduvsNffveHvP/Rbfo+E4M02mJKRKJ8blmeN6HEx927e4fXfvgaX/zyl3n55Ze5dHEHaxRkg8JQtZbrz17n/MUdXvnsi3z7e2/w6qtv85+/9SpvvHOHr3/hMzx/+QqzFgbtePbpCZVr6H3go3sPGQbP/v2e05ND7t/+iHfffZNnX3yBZ595lqefusne9ha1NUVXJM3vdQQOpVlEWS/ZagamZsdWzHZm3HjmCp/73Iu8/tq7/PBHb/HBrducnC4YRxEF5LCWfstaJsZILM7hpHNxX4sIGyXNWKVBBYVWRpzAXcfi9Jg7dz/mnXfe5vUrV3nu2Wd46uZ1bl67wvkLF2hbEV8apQqp6aePT/z9Y0iNpplw48ZTXL16nS//yle5fec2tz78iDd++AM+fnCLxdmC5D2Jkfv3DN1wJi5vq9meTjk9WjH2kRRG/BBZ+sDVm3t86XPPEPuRZRcJXvPRvRP2Hx7TKjg9HjjcP6aeT9AGVstOBDNkVGmw5BzL+s9ilTT4rDFsTSdCDTMSreB9RIWMHwKDDyIC0ArnJEKqripyzCz7kRATfbcSekllaeoKa0CVBptPch+PQcQuRhfpmhKxRQxwfLjk7KQnBaFV6ArqShoMMSi89+hPMQZfbdz/PCIVrAsonyAryfet1+brmLciXS73y6O7ZiMWKsogpUsLVK2NCmt5U3ntlEo8UhLSy9rRXsRFKj/a3+Ty+s650rwpxoa1eKD8b72fePR+2AiyxAEPxgrNoW4qmqqmbRqM1Vgj1CRthLKjkPnX2qqISGSPJE1nVZpgcnzWWupKBOM5CU1HZSHZ+CKyEJOGCNBTWSePMZFGIZXEFAlZceXCJZ579mleeul5Jltb6EoaHkIYk7kqx8gwDPTdirt373P77l0O9x9wfHJCTkK0I6uNiCAVYYtPmTF4iU+sapQRoY9VRSStNcrpEl3GRrwgSgcRyaOEDCpNaQCNH/2GisL6HJZzkRAhglIiUpB4PBHLoLIIMAoBSMhM6tFeUKnN3jIXsZUIwSSiRRcBZiQXCkOZB0vcm2yeKSKkgDLryD45v9YJUdKs491SJIVYzqkmJaF5iXEgEbVmfTmh13Ik2c8qJRGFqVz7FJFQTokQhXyUMwQfi1FGaLJyYUkjO3ovpBFVDAwKYkglKk9jrNnEt9tyDEJnciiVhBysbTkG6e6bQimjiDeyyiX+Sct7NRmLmExi9MV0JDQn5RQqZmIRoDlnCx1WfmZW0uRVJcbH6EQ7NXzxy59he3cCxHIiH6EgdILoDe9/cId337kjRJlC9FLWEokiNHGuCOIyTW2FQpgz4+jxEZzK+OQLIUtEpKbWRGWprCUHT4wi7Br6QdYxam2YknjtlGWOaiohZPmo6EMiJ01SyPMkRrLSVE0tTWgnpI6kxOQDCmOLSM26jcDIkLDWkbw8U1LMuBJXqUR3Rl1VJD8KuUoloVPlTErx0byjFKaqyCFgUsKoDIWEg8lIVJ1iGMZCuYIcVYlotKAitgj7chaRilaKGKLc/yh0iTpPCTBWzDqxhyJSBLBKEVQq+2VhcsYQUKXOZNdrpvVcryRKMccggqqkN0LGnEWEGhWyly7RedZoJk2NTooxyufRaktEoiHXRO0YgwgrtZCbwua5lIRKrDTKOHLyRfTo0FrEgKGYs4xRhYxmSCETfSDnyNiN/OhHP+Brv/r3SkyheVRv26yzDEoZ2sbyxS9+me/8xZ9ycnYq4j5lZT7VRuLotYFiOhJKyvpeFAF0yuCjlxkpePnctGYYxhKnaahKFGYshj1rLMF7UE4oXTmj1/NGSpwuVrz/zttcvnKZ8+f2ypyRcFisTow+kFOJkEsinNBK5iZ72qFjptmZ0W7torMIXZOCyXTCZ156ir3tKRcv7PIX/+2vePvd91iloTzT42aOO1uc0Y8Di+WS69dPuHHjhlCVCgFMaY12BqfEJGespWlqtre2uX3nPg8ODumHgRTlYbAWfOQcC8ErkpPnJAz0qxWHBwdcunSZS5cvs7Mzx9pSB8sGjKaZaq41jr3dLe7vH3H37kPuHS44XHRcPb/L5XN7OD3BVYq5sVS2IuXMw4MTxhAY+4AfB7rlGSfHh2zv7bK3t8fuzg6z2XQTNbpZ//D4UJsFuIiVDJWy7FjHbGvKuQs7HB6ecP/+PgcHx6xWRaxU4lLXxk1kmVTIWCJKerRUK881lck5QnokZErBE8eR1WrB8fEx+/v7Rai0zfbWnPlsRlXXmHX02U8RKP3N49F3a62ZTKa07YSLFy+xXK04PTnhcP+Ag8MHDH7Ejx6tEkM/EHz/KMK1smSf6cZRxGg+lQh4w6UL20zqiq4bAc1q5RmGkbNlj86GbtkRtYjEY/BFfF8+K8q8D4Wu+mj/45zFlue7UA6LGK5EYAqdSW/WHUaLKM0HVeaTUIwoqiQOrD87WZOkFMt+m7L2kM9LZfl77yNnZysUmuBlTWS07CDXRNC8XoA+GZ+6sVn/F2GStfbvnJoEEul2/fp1XnzxRV555ZVSP/vJx5Vz5sMPP+Ttt9/mnXfe4eHDh5te0ZPxZPxdjOl0yr/4F/+C69ev/8TvSSnx53/+5/zJn/zJpyYu68l4MkCi3P7zf/7P/Kt/9a+w9qe3/Le3t/nt3/5t/uN//I+fKlHoq6++SoyR3/zN3+TSpUs/12ebUorr16/zb/7Nv+H8+fN861vfouu6n9vPfzKejCfj//fxM4uU0qawkz8xQXwim3wtAEriOuIx1KwqjlKQAv1auLSOeFgXk40x5fXSYxuz9X+yyTbWFMezbOCU0iUOQTOO4gBaxzhQkM2+CGgkIqyUklLaFMW1MmzM2FkQwpVztJOa2aRh1rZMphNcbbHaUBsRYjlXSQFKmw16uW0qjBXncy40jXU0iDWOoMRho6zDWCO0IW2Ybc3RRjF4j60cwXucddSVxWpNypnFsmcMmZPlQOwGpnXNl155mb2rl3j2qWfYO38eXddk5cTBGzqG5ZKT41P279/l7OyMs7MVwUeSicSxhyxuQevkM01IwTEX913TNmQrYq3aVFAK3cZYKUBqwYybClpX0Q8jKSbGXqJWdEFGDIPH+4i29cZJiCpOZ2XohlEKPxpSiOis0bbGp4QuEQA+RSH2OEdlpfif0ppUMJbfO6F5JUHxOy2Res6ZklHviEDIGhVhUjVok8EIXllpRxylyTdpa8RiKISl2bQlKcOiG8RpmwUXnXyWbHuj6EcpZrnKoLKh73qsrlAqkbxEFWhlSCrTjQFbKbIxpWGWJDohgbG6XO8ak6Sg1hiNteIOjSGJMKdxxE00g2K5WDJ3LabSuKYhKSSybQwEoHF1cXgnwhBIQySriHYNPkqj2mmNMoraOUxIcp37zBg9eztzFAPD4CFKNF5K4vCMQVzWKYLW0hBTZFKImKwxSWGTJlqLUiNViGxtWaodjXIedCTTS7BENqASmURaKlI3wzTnWfierbYlrwashlW/IsaB7fO7HB8tSUMQ6oVVxAQxKdppy6ACCUfTOHTy+JAYfOL0bEUeEyfdEcQR5xrmO3O6YQHBEHpxnOlyj9fZoowhVxofFQwdyRomW3OWY0fug+CVG42aWdq65vDwiDElvI+cLk+olGHaakIcqUYYxwFqL0I221DZhmEcSCqyHDqckbgmEuhosHUFrRPx1hixJkEKoAPatigaAhEcmEZobTkHoge/6gGPSZ6p1Uxmc7n2jMQkJWdRKqDCiKtaFqPEzIWkMFVNUJ48iBPQacW4WHLaD+KTNhKnVE8Mfgwsx4GYNVvzKdV0wnK5YrXsUHUDpQFrpo5VPxJ9xCZFbWq6sMBYw3LsIXja+YzVaknXdVS6YjppmM8qToJnuVxhkmHwgZA8ykAgMnQrZnWL8IkibeuYtnLfuKbl8OwMXcl7DSETgN4PNDqjnCOGROhXNHWDcZrjxWm5RxWjDyyHka5biMuwrknR050c0W4rTDMhYxCPqbAQtHJCDjpbcvvtW7z37gO2diZUNRynnraqUEmjdEYbiTYRV3emwtJWNaeLY5wT4eliIa55U66NZCVWom1axphZjYoYEz4ktDFkowg+EE7OSNpwthpx1pJ1jXGZq1fOE1Pk1q3bLJZLtNNAET7ExLIfBUNvhfhlM0JiS4Hl9pLxfuBs9QYvfi5RVbU4q2MCAzu7Lf/wH3yZq+d2+MP/8894/d2P6UdB6efSdvFe5tLlsqdbDRwfHfPgwT1+7dd+jevXr2GtQymDcROMqbD1FG1bmmbCbD7h6rVz/PV3X+XVV99l//CUfpQGS0pRXOUhQEqkkEkhcc/f5vj4mA8/vsW777/D177+ZZ55+hmmkwmmxMUqPaGZVbzw0g7Xrl7nCy8+y7e+813efOt9fvf/+HOuzmc899Rlrj59gUvnz7E9mzPfarh99yEHp0s+uP2AhwdnPLx3j+PDIz669THvPvUez7/4Ai+88BzXr15hezalqZ1EsTxWaJcQjsdEGMaizQSXG3aqCdN6i2sXr/LyZ17i7Xff59XX3uK9Dz/m4PCEvu/xfhQhRRFmrON/UonrQCHPWJ1AJwExZSVNbp2JRiJZfejpVktODg+5c+sWb1y4wLXr17lx8yaXr1zhyuWLnD+3zbSppEn4Y0VFtXk/j/1GPf6FR0MbzWxrzkvzl3jh+ef4yq/8MvfufcSPXn2V9957j35xAqOlmkywSlFNM1d2tqkGw+J0IGXLiEIZxWrZ8dFHB0W0M9LYGhWiiCgGTxwSi+WKUXt2mgnNpJFCvVYolXBOUTVtIXY6upAYux6lNLWzGKUYhgEfkjSkoziRFZpuNUjT1FqyS5gotBunNc5pVG7ohpFxHIFIUzmMLk08Kw2tkOX+qJ1h9Ot1rSaGSPSaGALDKJE3mowfxfHvrKKuJxIR9akdj1GIHn2p6IceUYlE7KE230/5uv7Et6vHREt84h5ax0jnQmbS6/3G5jWKUaL8k1SEClo/ImDEuKYRrI+zkDvKV3MuUXN5HXcl4qG8eVMiUDfGUFWWpq5pGyEm2XIdmY2pQ8QZ68g/rYQkJGKrcgRlnyJiGbNpWqtCSgtBxDhVXYNWG4paStKs1sZR0rIYR4l3GXxk1k54/uo1nnvxOXbOn2Nvd4/JZIKyhkyhGaVA8CNDP7BanHFyesYHH3zIxx9/jI+eHAMiinwUiScUp9IyVRrrjAislMIqU8g8IirSRUCRlUQeW6OFjJOQZh2ZNZwqRBGPyGdWGqVlXslK3vdaqJCL2UVpSyQVcbImrsUYWiJN1iIz+bzWcXJC9qGIKUxxgBuji7hTjj9lVe6/0igu4h2UJkehCzlrNtdwJktUHxoV4oZkFEIgp1yEVIq4pnwZjUXE1WuKXUypaIvkzYeUJPFPPYoqUkqX96SKtk1tzEDmsd/LPoxyvtfXNgyjpzIObQq1FiWCoCB0GWsLHSYLESfHRFZJPusMKq9JZlloVuW95RI907Y1IPSJnGTuzkV4VnxEpKRQG5FR3sS1K5Q8s7RGqYiJmfm84Ze+9AI75+bF8BA+IVyETPJw/LDj1seHeBS1deAD2kicdk6BetrQd54ck8z3om8pUcGOQCIrjTUiUklJ6EvDKLTQIfRigDGGqqkIYZT6g2d95CJAzGKayVYoOIRA1gpXV0JyCZnKCuFRVRprLX3XE8rnPfoBg8JZoYqZWEhuRu4JpS1GC8kvE/HBC6WMTE6gk0JbQ3ZCGkoxo3URr5XzqHBC1zGIkUXlItQE5SOKhM4JpxWuqsUAph/Fy+TogYQzhpgUPgUROmkDutQ6CqGImBhjTxwH+bOSGoKziuUotGfnHK6phQqaJI7NOln/Gif75xQCNsm+2Ge5TmLK+BCobYU1ltGPGKNx2tI4R8iZMYqxSisjUetOiHUheFQG4ypCEoFR7QwaEUz1yRNTluskBVByXagkxrOURIColcFWlhQ8KQWUqol+JKbMMA4iolKa4+NjPvrgfZ5+9nlM3ZTnWxHbsjbvATHQaMe53cvcvXtA5RRDHmQ9qWU9olQRM+aEImGUxhhLjKPMtVaTSu0MrdBZ5q2URUSZlJK0vyz1mjUVJgXw41i+txDNlSWrSFNXLFcd77z9NvACe+d2pG5UCOkhyv1unYgzSFITiiHi7cgwGlb3D9lLmnbaltpcLoLRzMXLu0yaivm0ZWd3h29/5/ucnJ1t5oiUs8Sj+4AfA370LBcLnnr6Kc6fP09VVUVQYzFOg3Eo7TDGUVUVk0nN9vaUO/f2OT1diqhqEwFXjJcxFXEq5LTCe8/ZYsHh0SHXblzl4oWLtG1TaO7yvNZGM51XPDWZcWF3h7v3HnD7/gPe//gBdx8csTtt2dqdsTVraesG5yxbswnd4DldrjhddIx9z+EwcrZYcHx0LDFw5/bY3dmmbRoqZzdkpUfjxxbcSpU9hcZlx/bcMamnnNvd4+jomIcHh+zvH7FYdoxeSNa5kPNSyUTdzKhFZKZUIe7kR+JuQIh6SsjjKhti9IxDz2qx4OjggPlsztb2NvOtObPZjNm0pa6cCGU2wvJHx/8Ttg9/4zDWsLU1Z2s+4/KlSyxXNzk6POD+g4eMQ0enl8ISV4qsItNJA0PCD4E+CWc8l+fpYtHhB4l9s1rEzHHwnJY1xDh6vEpMmxrrhDQodEs5YmdNiQ2GpKR2IyLAXAj+mSENQmRM5TNE1hEhiPDcWI1KImLWyLpPORFshhRlnqKQqcpz0hojdbS8FiqnjVBTIRGkCkWIodR29WMi/PUa9NO8n/hfb0j/Qeaqqqo+FXFuIGvRa9eu8fnPf57nnnuOra2tn9ocX69TT05O+Pa3v823v/1t+r7/BR7xk/Fk/M1jLVB65plnfuK9lXPm1q1bfOMb33giUHoyPpXjvffe4zvf+Q5f+cpXfuozQinFM888w2/91m/xu7/7u5+q6/mNN97g7t27/M7v/A7Xrl37uT/rmqbhn//zf87Nmzf5/d///Sfxb0/Gk/EpGD+7SGlNncmA0kV4Io4Zcc9Q3FeqfO+jpoJ6rOmwdk0/3pwQIYPEwxljScX9F2IoEUTixFmjqhVKmq5kTLZoZajrmphGYo6F4gQC5Y2EIP9JOtjaVVkagorinhU0vXWa2lW4Er8waSe0Tc2kdbRNLcWeBFUzwRRnWY4JZy3z+WzjWnXOMgTZ4MYYSSFTVY0IfRqLtgaU4WSxwmjD1tYURWAYEyRL6xzUEm9QV45h6FkuVtKsygrTNOxcvsrLzz/HF3/5FezOHGOnKCWobt+tODs84O5Hdzg+OWS16gnjQChO4xCkcGu0ofMeFRW2cmAjSlUQwVYGUFRVRU5C/amrCq0Uq34kZIXT4tgYx0zKiuxHBi8koFAoRcbrEuE2lkYeaGPpvdAbYoxSeEfRTieMyWMmEvNjNOA94ig3xcEHlbUobQghoY0ixIjJCl05lLEb8VpTN1inpIGgDBhLUKBKsTyEROcTKimJXqtqKQZoRRiTRFUohbOaFDI+SVZqSEmK7VrT+yhxTc7QdYPErdQ1OWusSWgTSblHRyAFFAbXiLs1KylQt7YihEgXEvKpi0BgDEGasbpc71aTTXGXa0MIA8YYxnFEV05cWsairJbiqkqkpBljJGtHJMix60yOA5OmQWVp4FeVIlDiDQGrpMgx5IhOUvRKOTIkuR9jiqScCEnhVKRyjq6XIqutnBAm+kRMCkdxhY8dGU1TWbJVpDrhtnpUNYCKyBEUvDsJlTJ5mRhPNKPPjLGnSobYBeq6JfQD2oLPmsXpiqZyLLqO4A1npwmvJbqsaitqH1kMK/wiMXGa7fmM1WJkNUS61UClM+fOz+nHyNAP1LYmpJ4cB1zTAhWaSGOh9wFo6VVE1YbVqceZEcKIjZqkLRNXoTPoSqJLTBSH9s6WISyXWD3FmIox9miETmYmE7rQQ7ZUtSWEgTFZVosBm0ZxSamKnCMpKupJQ9+tMK0UuvuTkWYm1/ngewRJnsBKzINJirjqCUphnKaaOrQzeD8SkiJnoWxl5RkXK3IYGNLAuZ1tmtoRSYyZEqfWcenyBXq1xKeIbRriKpKGJbmR45zOoOt6hmFkGEYpGCuwOePqKWH05OTxY08MmePjs0KPg5PTFTZrGlehjaWuLVolVE503YrQrQijZzJtiXiSjlTGslotaZqW2bRFx4jSFm1rmkooA2MYiSni6prZvMFpR0iWxXJBHEd2Zy3OZWxb46aWlDR+8MzbFmUMxkDVWEwlVIGQEhpD1TYYExlXx1TWoE0j9zcKlXUp1IJtagKwf3DM/XsPuHHjHNO9mbgmR49XQlRRJrIaeqyyTKqmCDgNIWQmtibVAessZyeeECOz7ZbFWWIcM4MfmTYTJs5irGVMEtPpfcJpjdeJFDNV06JiorKa3a0ZWllyCBweH7AYBtCG08VSYkznU8aYOVn1UjglQwxAZjF6tkzFycN9Pnq/5tKVq0z3dlGxI40eKs103vLlL77I+Qtb/NF//Wv+23fe4OHRGauuYxwzIwlFJAchzZB6vvuXf8Gdj+7yq7/+dT7/hc8xn8xAaZSqyLai2SqiWQPPOcPu1jbPXr3OX3/vNd798BYnq44xZFCm0CQA1lFokTEMdP2Ko8N9PnzvPV75/Of4/Jc+z43r15hPphLXYSwQme4YXvrCZzl3/QKvvfYm3/7ej7j1wW0+Pjjk6YOL/Mrnn+epi+f4wi+9yBc//0v4kHj/44/5oz/+a77/o/c5WR2xWC44ONjno1u3ePftd3jm2ed47vnnuH7tMud3dmgqK2uqx9yujyQSJY5OFVf+ROhv8+0dbt68zudfeYm33/2A7/3gDd56931xgXcDOQY0hbCxxveXNZi4azMxlugiBSiJUFEpi3BJB5TyMhf1K85Oj7lz5w5vv/U25y9c5Oq1azz9zNPcuHGNixe2mU1anLVY9ROaCT++t8zymiLOWH+PQtuKvXPn2Tu3y3PPv8jxyTEfffAh3/2r73Lrww/p+xXHqyNWfcZYy2xa08cELkihPsH+gzOMMnRDTzceCE0gZw6PTqmUZXdnTrvjMEFoi4OX51dlNbZpOH9hh37RsVgEkhJ3sx8zwzgKOTIH6npk2rQi/LKG5D0kEcIthx5ntQg7NSQjpEiVFFpZ6hqMzRiraKxFORFrq5iptMTBGK1pW0dlY3m2KiaTGl8om6ZSTGcNbVXRLQeGPhJyQpmfdXX/ix/S61o3th555lW5/tj8WZpUm+3CY42vjfgt/1jz6jFKqyoNUVUaNps4RKVKjE4GLUIOyCVSTegfQksodBX1qJj+6B6CR3SWx+Le9KM7V2sRFVSVo9lEMDiJW7PSVMiZQtlYUxpEjFbXEheds4h5YxKhlTRHpZFk9CMyKEoxjL6sex0bgVUWIQVWzB/WGEIIeD8So9w7n/nsZ7l69QaXL5zn8pWL6KZCayfnKkMKnrFbcbh/yP0H91gslhzs73N8csLox0K8lc/Vx2L+MFpEDspAMoUAJetTNrHMBg1Cc8qqyHohyqUu5LAo1BERWWZUIQutBZgShWYIRQiUyh5TIWKSmCPKuWJIUeRYxGRGoROFHCfnPSYRQa0JvspKg38dz2et3QiuxMQh0hll5BmfUiYUshWFuiakKxHApceuTQrZIMYgTd9yQYciRsSoErsjBopMEaZpX67xIiTJEm+9bhSDKmKQTMiRjdKDR2Ris76HjBDC1vdhSoVwk2KJZZO1PloVsoLIzmLMIkwojU8RzgWctahCXnCSviciLQrVLwu9RmW5XxKZUI5PGv9ld55lbxVEGYG2sheMXoRRmiJ2iB6y7C1A4VrLL33xBXbPzeXaezzmrbx+HjMnDxf86EfvMawSJmuykqi+FMqeNCvG3mONYQxe9lCDJ6qMziLqsDExRk+MGacVTVvhx4gPQqawKtNOKkIUM5XRpkRLRrQVurIiY7WcczBElcEq/BAxOsr+OYtoz2lTrlupb+gkwpO60mQ/olWFxsj1XsR1yjl8CoCWSLgSgeaHgCaUaEFDDuU6spYQvIiWYiAMAesmsu5MItJJ5R6JMaGzIqdApAiJKjG3CPVLoZJEmScyIXiyRwhCVlM1IrzxXkhbfe+p24rWObqux1QVPiQYR1QlUXWVc6CU0LLHET+OcoaV1BTWAlKyRLLmlFnmDmcN/SjCIV0IQ8bINWeVCDv7PhFHj6scGYg5SCRalHg8ZyX+aE1SMkU8GmPYiGRdZSVOXml6n+hWK0zO1EW4apzQU6IvwgHJwRPxXgalakICckIbx527t9k7t8vW3nm0qSVia/O0kZ2yGFsMs9mcSTPj+Ogh7awRbW+U+Ls1hS7mKDF766heJfUppw2VtTLPJsU4RqpKo5Ii+DU1SNE6J+LQHMr+P6OKIVHmTivi2hypnUVPJ5DgvXfeRqnnmG1tAzKXGGNQRjGEtRhUbdblPuYSEwrHBwdofQ5TN0IB82OZjzTb2zNe+cwzbG1PuXzpIn/17e/z/gcflDqZzFUqQywRlovTI958rePk6hWu3bjGfDorYlpN3lCVRAU7VyKG25rNuXfvIQ/2D1n2PSEmcpa1w3o+F3qTRJCGGBjHnrOzU/Yv7HPp8mXOndsTWuK6NqlkfpvtbvP0tGF7b4s7d++zf3DEnf0jDpdLrl7e4/z2nJ3tKbu7W4Bm1fd8fOcB739wj24Y8MEz9D1nZ2ccHR6ys7vL3t45dkqMWlWMkxux9GMrpazYkMfV+hrUFlfVTCcTzp/f4+TSKfcfHvDg4QGniwXD6CU6lbQRZ/P4rxm5DoqkTqt1rG0qawFQ4mBFqUiMQoZaLpccHR3RTqbMZjO2d7bZ2dlmNpsU0qgpdKXNNP63jPJ+14Xp8gdXVexUu2xvb3Pl2nWWizMe3n/I/fv3CaOnGzuCT0X0aUmU55WOKJUZ+0gYB3LKLIIXcRoQhkjQAWMNdVOJgClCdInghUqkjBg+jYa+k+sTkyFkMcwVk6LWGZeKoF7rYriUtU+IQjIzWgTTSSb6sn4VKpkISwud0qyp7kJEtEUsZ4wQz3KZy52VCEwR82epDbmKHMVY9/j65Mn4uxtaC8W7rmucc5vEik/LaJqGf/yP/zGf/exncc79xGPLObNarbh16xanp6e899573L59+1NF73gy/tceP6tA6e7du/z+7/++pMs8GU/Gp3CklPjWt77FzZs3uXz58k/9XqUUzz77LF/96lf5i7/4i08Vye7k5ITf+73f45/9s3/GjRs3NlCTn9dQSvHlL3+ZZ555hj/4gz/gr/7qrz5BEH0ynown4xc7fmaRErAhGa1dm+sHtykFnxDXRf1SDF4XlQtJKWfB/f8NP5kC/N4Ub2PORbQkxde1e3W9MTZFpJRKYVo2d7LZjhkoGd8xZvq+37hqN24feUOl2KQkeqFyzCctTdVgtcVWhumkpqkrmqbCaDDaorUV1zsBtKZpJ7R1Q1VVxBzQxdFQG/DFRWOcUFjaWYVRhqHr8GPAOId1Gp8UpqmZiEGRoBOLbkVK4GNkebJAkZlOW64/dZWXP/cSu5evMZueF7dx7MjdKccnHYdHEul2dHSf5aKnqjVd1xFDKp+ytA6jEsextRoM+BRoq5raKZSGMXjqqmEYBqqqxlWuUCkSyipxj6qM7wYpKuVEV7DCPpdGWczU1pKQmDtSpnEa731xBIvj2WjNrJ3SNDU2aNBSKMwxkAthKyUpAgnuX85jVVWbgr01RopGOeKMwsDGuZRDxBlD2zSEFFj2K3KQAlsmCX0JRfKJcbUUEVNbo1xNHEZpaJnIcrnYXFMaLVQiW9PnSBg9dYm3yF1PVBBSIIwj2jiy1ri6oe97urOOylQSOTckbGs3bvJcCnUxZurKMPQj1jiyymgm5AA5jtiqwmYrQjbj0FmhtEM7KULUdUvnR7Aa3w2kscfUlm4MRGUwtqYbRsgaoyzDssfWZtOEM1qTYkAjzlBbVdjSrEtRIrNQGWcELa9zpDKKZtqSraHrTqlrQ20N/aIjqFLEbiy6clSNQlcaXQ+gPBLvNpSCr0URSX1i7GpMe5lxFOKTiRoTLJEenT05J4ytiBFMkiZYMJrlyZIUI+cvzEnKU9WGtIhM2wZbRY6OjoneMtuZUXUrVIJu0WPrlqwUZ6cLqsqgXY1ra0CK9Ha6xdmDU8azEWMd/XJg8B0RaULmrOi7FWcnPfo0kLsBZyuMNUy2JvI528gYIrNmwjAOdNHT0KCVY+gWVLYFrxhXHVpbaZYkj3MN2gnxyDYVKfY4FUg+Y02Fnc1QlWU43UfFSEoaZwwpRHIMxBLtlJPG6QqUYew7dG1w2jKerYjBsxoTY7AQVmztCA3kdNVhiZjBE7NCZ03sA9rUpBSpmzmGjjFqiU3UYJxjBmSV6FcrZtMWN50SoxR4Qwg4A7WzdCnggeNVj+87bFuBs6RoGPsRY0S0mccBVVckY0AnWmeYTacsfaCtLcengX41UjU18+0G7wNNVYvTPyUmkykLHxh6z7CMdKNne2eKSQPdMLKqFLuTtgg5DehM6nr6MTDZUkRToaqaunZkvWLoAqcnZ6gkMYV6OiMvT5lMLdk61g1CmXUV2tU8+/JLoCO33v+Qk+UZylWs8oixGXSF1ophCFjXorWh60Zin4naoEIkj5248I0UFxWAD9Ta0KlIJjHmnqgsPke0liiWlEc8CacdqEzfLSSWcRjY2ZuRUVy9eokxDkJUSNAPIwfHZ0SkQV+5QO0qqtpJU2MdJ+MDwzDw3ru3WZ2NPH3TM9FZSE96imoNesvx9Pw6v3Nhzo3re/zJn/6AW3dPWKyEnjR4i0+JbtVzePchL3zmaR7cf5c/+H/e5e7tu3zt61/l6rWrWO0kXszUtLO9slaocLZmPpty6dp5vvf91/n+q29z9/4Rw+jxWWIsYozkGEk5YJJg+cPYs1yccfvOHd5+820+/8Uv8IUvfI4b1y7jnEQ2aOUwleXixYbZbM7TN6/zw1df5zs/eIO3P3jAR7f3+cwz1/jS557nM88/w7ntisYaXj33MX/l3+W0WwhxcehZLaXJ/8EHH/Deu+/ywksv8ZkXXuTypQvMt6bUtcWqdYTaowLJZruohApitcZYR900zGYz9s6d55lnnuXtd97jR6+/yTvvvs/+wRFd1+HDQAq5UCgf/bBEekTKVEJPyBgKSAatAxCJIYi4IYz0Q89iccKDhw/48MMPePudt7hx4wZP3bzOtWtXuXLlItvzOW1TbcRPevMmighlI0jiE+vJR29X4pByNtT1hEsXG86fv8CLn/kl7ty6xTvvvMXrb71Gt1iw0kd4LCerFWFxRu0MlZVmaVSQjQh2pcEiT5h2XnHt+nmapuLOx2d0/SlNbYkD6EqzdW7K1nzC+d1tThcrwhA5PDrjaFwx+kjOsm4dxkTfL0AprHPUjSX5QhXJIg6tpzW7OxNiiqwWI8MgzfB24mhbiZelNIBBmhpN7SQiqTx/FRGKQEKIj4amrbB1iRbKGecq+l4oh2n4lG+ulSpRU2rdTaLMkLJmyz8mMPjEP1UbAdH6Ox5dTmuRk9oYEXJZ+D9OfV031zJirshQNg9qs49Zq+xSfkR+Cj6UdWYux/2I6kJpDgk1yTFpGxpXl/mpxAZuBEolKkxJxGlC9gpWS1yDMaYQ+EoTUcl7i2Vtpo1QibTSBO9lL2SMrKmzuN9doVAlMmMIGwqGHySe+MqVS7z8S5/l+Refo51tUVctWmlS8uQwMvSe5arjwf37vP/BOzy8v0+IntGP0uDKanPqEiL2Wn+Wa9f+WuQVU5LInyB0GVMc/UlOzWb+CSE9EvQUYZg8e0SUY7SIXiQ6KmO12sTLiUkjo1FUzomoKKkilFGs0TxKKxH1ZBGmidBJPVb0ypv4csiFhMGGsJUL5Vfim1Kh70hDfP3zQQRR0Y9CZ7MWZSwpBBEEKVUEXnkTn+7K/jKQJKoaVSIHJb8zlr3BuimpbRGcxYApNJNcRCCP7oq0MQdZI6IErbQIprPdCOOsNugsYlarjLxfpRHYld6QbFGyL0gx4KwuonZpcIcQyx2sZX9nhEC7FkHlUvDLKaGtUGgopChJRy8UMQWqELiclb2T9wPWaokN8yKMMUaBk7pBM7W8/Mqz7J0XgdLjkdF5zbQMmZPjjtff/phlJ5+pShqVNJkoIulSe0gZdJLjSVox9iOkzGRak5DPOPsg5CyT6bqenDRVU2GDRB36MYh4BhgHofYobTBW9jfkjHY1w3LAIqSz4AMxBRIWW/6t916eGWOSyDVtUVbh6pbgg1CrUhJRXokPtwixN3pfBGaZ6H2ZbzQxR/k5xqDQ2BLbppVE+2ht0FWFMpo4rFApCdGrXP/r+K1cvq5KJFkMAWUlEjt6Od6QMiHJvOIcuFrEKSonsg9oLddbDhkqjVJCtXEuQQwiFkDqFc6W6LIUZf3rDAmhkDyillCEneBj2sRWudpAVMRQrg8lIsGcMzErRHuSmDQtIedizPH03UhWhqp2qLye53ShfUsU8RhGos/kMWGtojKW5dCTTcJlocLI+kuhcmLsRow1ZCMiS221CKGGwDhIjNjy+IT3332Xl5oJk4lFmfWz8rE1odK00xlXb16jamu+951vc3h0iDEiFskKTBaSltDqbImQ91A+I1VENtaJUAktwkyDFopSlvgujyIgsZLyCE1SiwGckfPrI+Qoce5V5ZhOW3wceeP1N7h+4zoXL17eCHrrIgjTSlFZVx63GZBaj0rQjZ6Yj9jZmqNrh8oJXTkRZzhFY2ueeeYq81nLhXM7fP9HV3j9zbd5uL9PCGtBa2Z5tmTWNmRGbn34Hmdnp9y8+RTnz+9hXVW00RrjqkLTNCLasZbJpGFre8adew85Oj5j9EFoZeW5tKYrqZyKgSgQvGe1WnJ4eMTFixe5fPky587tUlX20epEOarKcP68Yzadcn7viDv3HnBwdMK7H9zn4fSUyxd3uXxhj+mkpnaGbmuHD9VDRu/JZLQJj4mVTjk6OmJvb4/z5y+wszWnaRusNRuR6Wad9ImllQi1VBF/aaNxVUVTN8y3trhw/hwP9g/Y3z/kbLFgHD0xilBN9gmPhOZr4j6kIlJdR5uqsmQqAluVNqI0MSqOdH3H2ekJh0eHbG3N2d7e3lCQ2rYV0ZVeS/R+2lB/4x8fHYOhqRvqumZ7e4+r165zfHTIg/0HLBcLsvfECCoEumHAKlkjKsqaRAFK6ETr+DStFbNZQzutGbrAYuhFhFrWFK5x1LWlqSrqKhBCZBwsqzSQfBQdNELdH0YvYnqjN1G4QdSLcl8oTdM6lEbMR6M8443VG/FKXguLimjaaFU0+usTn1Eqb9Zma8Ki1TJ3UsT9SgnxMIZPD1Xhf6WxJiY1jfQYHk+v+DSMddTcs88+y6/+6q9y8+bNv/H4chEQf/zxx3zve9/j/fffZ7FYPGkCPxmfuvGzCpTu3bvH7/3e73F0dPQLPsIn48n4vzZOT0/5xje+wW//9m/TNM1P/V5rLf/gH/wDFosFP/zhD39BR/izjZOTE/79v//3fO1rX+OrX/0q0+n05/o8VEpx7tw5/vW//te8/PLL/Jf/8l/48MMPf24//8l4Mp6Mn338zCKltUhkLQhZiytTkgKucw1KlQxu1s7RxzPMi1gJNg0JXYRHKf2YG1p2TbKZLEX3dUFk7SyWTZdmzAMZEbqo4gyJMZGQX9cOH/m5JT5LycbRWkddVdS1xbiKyhomzjGbTNiaz9FOkZPHGSvFpCyimNparNEk5bBVg1UOo9b4ekgaauOorMKkQI+icpbtaUPVVgwhk61l4jRtO8WYTNNM6LueGDxtZfA+4r2g4ZMO7J3f5fqNqzz74nNcvXGDpp2RVUX0icXpGXfv3OJk/4CHByeyYU0BbGTwIzornAKMFOd6H6nriqqy8hmlRNs66qYlRoX3A60zEDX9MEghUykpVBeUemszZ92S1dATBinymcqgbcXY94xjwIeAM1JwtzpTGUMq53za1gSrGce4QdgnMn4UIUjMgTFKsROj6JMUe3PZUMv1I40fsjh6o4rkmKhw2FJs8X7AZGn66ByJY2DZ98SscKbC6Iw1iqq2+JgIPgkpyzmqScOw7InDyDB0mMqRB48uUYAGqBsNRjMuvDQdtES6hKGXsozRInRAE6IUN7I2EksTMylJzEI3jhI/kSJG5Y3TPiNUIo2QWILv5bUrLSKeLI1ja6WhWTUV0Sh8gtQNhHLPKCJtXWG1IsREbRQqBBGsiL2NRCT7SFVVDGHEOUv0EWeFYBNTpJ20OA2npx3ZWbQDdMb7QRqs2UIM+JRRuiWlEaszqrEMSmFcIo4j1o5oN6DrFagABCiNGJUlWiT7yHhqcdUVot4iaYlP8CRi7KlaQzdG+iGglcZUFX3I0Mw5HZaMPjLRjrOzwGxrTrdYUFGLA80ZgrIMORNO93GAtbWIB4PGNi2umWKVR6860lhBUGTlGMbIpK7kM+s907Yhp4GxW6Jnc1bBS2E7eHbmLdpaktJM2prgFT46Ij3RJFZ9IPZQtQ0hjThG2umUGDKn4xlb5+ecHfWkpNnd3sNZocgpk+kWHUYp6nrGsluCTpg8k+t3WkFIdGeJup0Qw8Dw8Ixqq0W7iA0Rmzy5qkQsmS21UVRzzcxNqDrDMAxMdEPtHKtuRVU1xLhEN5b5dMJcGWI/MKRI70fCYU9lNfP5FiFIwXu1WFFpaJwmWS2FaG1ZLFYoA93QE51m2jbUreHB4SlG18SsqI2lmVTYlIVeFhKrfqRyFcondqdbKBsJPrHsRoYwMqwSbtIyDh392LN3fouMRwVLU9Wc+TO6vsc6K1F1caStFKvFCc5YLp3bZfABnxWu0SyORurWoU1mPp+QDHRDEJdxlmZk3/fMtqeQA1ZJE3pxdELylsm53dJQBLIqzUGFaSc89ZkXuXjlArdvvcf9j+7gk0Rd6ZzJxV2cszjQ66YCHzAKsjUkLyLGoYtUdY1WcHp6BhmMrcQZbRRj36OyE8oLBu0qqlqThp4snWyJ1Zm0LFY9dWWYb29x0V9lsThleXTM2cmCEKQpnGJmNmnRE0W0CmuESFJZTYqJrh85OekwiBD36at77M5azFCRYkTbBM6xuzfnf/+HX+PSxQv8H3/8Hd784B6nbsWiG1gNHsbArTsPCCryhc+9gELzl3/2TW59dJtf/83f4OWXX2JW12RjUbqhmVica2nbKU17RN1YtucTbly/wne++xpvvnOL47OOMQjOPidZn8Q4YnQQoVISZ/7i5Iw7H33M++++y9d+9Ss8/8Lz7O3u4YxELintmM72uPnUjL1zF3jmmWd49dW3+cGP3uA7b3zI27fu8vkXb/P1L32G+WRCDB6VEn7w9Aw4LzFf4zjQdQuOD/e5desjbr33Ic8//zzXn7rJlauX2N2aMa0dRlOiV0q8wpo8o4R+IOsaja0M822hB+5uz3nhuad4/8NbvP7Wu7z19jvcf3jA8myF95GshAiQU4QsxJ6UE6koOqIPJWpXBABKKRIRHSMperQf8cbiy3s4OTnk3p3bvP3GHpevXubmzZtcv3GNq1evsLe3x9a0obLSfF5HcK0V4yJQ+ElDrb8RkIL9ZD7lpVc+y3MvPc/Xf/3v8fDePd557Q1e/dFr3H7wAH3wAD+umDSOEDynnbjfralwtVD/tNW0WxPm0xYVNVo7pvMptXEcH3Rk69iatBijuHL1MjdJ3Hr/PmenI86MjCriQ8RYaVGMfhSCBJCTojKGptW4RtaqrlbMticS69Rnsstom0VMnRUhJELKRBLaOXHkZxh9YJ3DJM5oaVKmnFHIOs9oA1lEr8bW1FMHRtN3n15kvn5MXLRZoytVYEcKaywpxkIqyBshzHqf8HiUyCZKelOoUJv9yfo2WRMPNvTUH2vWQIn/CrJ/efx1Unr0e3kdHr0uRUBkDEYb6rqiriXu2RqDM+JIr6sKeQykTZTb2mxh125oZdDGSiMZvRFFCVrTlHlARB3GlMhBZ4S8oTXOiEhOIuIcwQdylkZ+ShnrGibthPlsxrm9Ha5eu8LVa1fZ2tnB2oqM7GHGceDs7ITDh/t8eOs2D+4/ZLk8IxEIPsraGohFKBZCwti16CgX0b/BWEfOkGLEaSUSkEI4XTdatBZxnbYSreRjIIVyzrUIcL2PQlNKqURiCnHNKE0qc6K1lqTl+4x6RANNhcaRVSpEBBGShUKryqz3lXJd6A0tqDRbk4gKTBFRphRFZKJFaJBikmcKQq7RSvr7pkQgy5pY9irWmSImi4QokW05pk0UoAKMlYszjlki6+RwhfCjkPlSQl4kakuJSEFEFrCJN4/xMSFfITloDSpv3PeKXCIAdWnAlmjlJKSYnCUqJyvhEY1BxCJoEXg4KxSslDNGAY8RkpMWQ0pK8TFhmrxfMfGI4NlVFgMbwUTByJJSlHs4i1gxRqG0SFwWYOXeEyJspKpNESjNQEVEoLSuP0jDNcfE4mjg9ddv0Y2ZjAi1RWTtMVaibX0USZMyBp8AWzMEieNyyjCMiaqq8OOIySJgzlrOQ8iZ1K8wGZSWePGUFNpajK3QKqJ8IEcj0XZKbyI+lZJY7MpaxhJrrlyFT4lMJMREUzuUNmQlBpwUFTppIoqkhciRg8TypZwwRKxz5JwZ4kA9qRg6WQM1dSvnXSnQmTBITKQ1lYjuVMKVc2AqDVHjx4x1TmIfVyOmErGUSVkiwowTknA2Qu0wibq2uKToPZisqYwlFUqdtpqUNMYZpm0t4o4YSCoyDB05JypnxbRmDL48D60VsVREYaxj8EWMlhI+BurKUltHP3iZH4tIwjqJItNKPqs1fU0rMW/VTUsMQZ67Wsh0rrIY5xiHkapE5yWfMThQicEPGI2I59b0peDROTGpK5TKhKiwlRKClRaxpHMWbYUyrUAEV0oRgpd4HCVfPzo85K3XX+ell16hnm+JgIC14KQ8jLSh2drialNRNYY//cZ/5eT4DFdXMk9GIVWntBaiixBhQxksQsExSGRtUzv8GIhhkGdSEb2m4FG5GAaTXOOqzB0pxCKeF/FkTBGM0KUm0xlKdzy4d4+H9x7w4mdfkfm5ENetNVgd0UbqNmtSTIiBvh9Byb0U5xMmjaWKMj+V0grGGi5d3mM6bZlOp1y7do0fvPo6b7/9Dqt+RBEZBs/9B/tcvLTH9nzC4viQ15crrl67zrXr15i2DRpdnsOaqpEaoXUijnROM5tNuH//gHsPDliu+iIcSeUZUt5PCoXgKAKc4AOrhZCCrl27ysVLF5nNZzhTxEpKY0zFZGqp6ob59hYH+0fcu/eQ45NTTj+4w/7BKdevXGBvZ1aI9vJs8inImtwYEfoUsdLi7IyToxPOnTvH9u4OW1tbtG2zia189JR7tE4SNXcRXZeakKkqZloE11tbMy5dOMf+4RH7BwecnJ4x9KMIU/UjQfHja7B1FK3E6JbnVS7mgyKSSTkVM4FCR9mLDWNPt1pwdHjEdDpla3uL7e0t5vM50+m00JX0hryqHnsjskfiZxiFKmQV8+0t5ltzLl+9wmq15PTohAd373F8eoqyK4a+K3OOrMljECKhtRajskSuWk1VWyptGLOkARijiWOgL5HQRksM7/bWnG7RceSXGCUEvZiFIi4RvRLHppPUx50Rw66IfikGMEPtLH03kLSse5TOGFWoiknE3WgtBq1Mibd9JKaWRAQ2Yvtc1tG6PIOVkrnZoVDh0yOM+f/nsRbLV1VF0zRCpit180+DOEkpxdbWFhcuXODy5ctcvnyZS5cusbu7+zeSnXLOPHz4kNdff5033niD/f39J9SZJ+NTO34WgRLA4eEhv/u7v8vx8fEv7uCejCfjf2C88cYbOOf4rd/6rZ8awQlCof7N3/xNPv7440+dCG8cR775zW/y/vvv8zu/8ztsb2//3F/DWsuv/Mqv8Morr/BHf/RH/Mmf/AnDMPzcX+fJeDKejJ88fmaRUiax7gWsRUqyeFYbt/h6ow6PiZLUOsM9b36/dqs+KlSrTfalUgrnKhgDMcbixJUohrXwKWch2Sgl28yUIsM4YJI0GdaofygNMcXG+VpXjraxzCYTZpMZWkPlLG1VY62lbuuySRCXl8JBVkRtMcbRNg1WJXGAKYO2jhxziZIJVE0loo8EOoNVinPbO+IQNZk0Bmxy7My2QSV87wkhEIZIdzagTWKsNc1ki69++YtcvXaedjpnMtuiqidYKwXHRbfi+MEdDu/f4/D4kNPFSD8EIgPjqsdqTTOpxDE5ZpwFi+Ks64gJ2rZBpYQqwpPaCo2jG4ZNsSz5QjqZCA0h+Ii1llU/4vEEAmMXUMHgjCJ6z5hKlJIVNL0pOPEwepS2jDHhojiMK6txGnxOaC3xBLY4kBsr4rQxSZFVo0lRnJ+2uHNrZ6mbmmEYGb1EQjSuEgeo1sWZbUrUGZjKkovTsq4bVFIYlVE6iavUGWKC6WxKToHVyRkxAkpJfBOJgUjMmdrVNK4GIHhPRWZMSSLnlCZay9npgqaSgm9VgdKaxrriVJfGjtOWoetJiFOxriXKS2uJWIgJKSoCNkuxPxkYB48PEbSiqRxV5RiDlyJGidAbfCCFxMRVNNOGcRxZnq2YNS1trUFrBiVOaF1c4ZpEVkkcitOWMIxooGksg48olaidYTJp8Foxhh6tLBqNqyxaO7xVDOOIzQbrarI1oINQLJQhpU4ESi485niOyI2qSd6TfWJcGHw/I/YKZ3vGszPq+Tm2zzuWJwdUdsLhuEIpKQQnPxC0IfhM9oHp9gSdNMpY+mVg7AeMs3TjAL2HUWIBa6fJKrIcO6bTOWOAOPRM2lpixtqW5empCLScY3tnxsN0gFGKk+UZOiim1QQVYXc+pQme4WxkHDKtqjjbXzLd2aXeaxnGBRhQuqaPHcl3WDKumhMiDP1IbTX9aoWuK7St0W1kWA6sFonJfMa0dfgw4EMkWI0xCjtp6JdLchRUdwyR1dmKqtnjbLnE+w5rGybNOZb9CV1/xtRpdEo0TVtocxavMjH0jAtP7VrBluOotRMajRKxQI3EGuSZZTxakPxAPZmJK9JHwsoXWlzCzSecLc8w1rAcB3z28rOsRlsnBUdgsVxxYWebw6NT2kozsZCHgWXfo+uW+c4Obrmi7z1+lOhLZy2nZwuqCK7SHB4v0SvN9mRKY2v8KhKjYrka0N0IJjGEyPnphLiKQiBoa5S2oBTGVXQnHVXVE8eRGBX92UgYAzQKP3q0dSjnYDComNietyhbQ1Nxtr9PtTxDZ8XJ8V3s1NG0M7m2H/svonDNDrWr2dppuXJ+iz//i+9z587IfFazu72FNqq4mjOusezMJzy8/4CYMyGJG3Q19ExqI3NJPWXol6iYsMqSfGTsE9YmjFW4ukIFj1/0JJPRSjqCRmd83wlRKVmGRUdjG9IsY42my4b94wUMAbPoyVniZGqjMLUplMOMEHgUFy+fY3drh9sf32M2sTgXmRlFxFG1Ndl7iaV0ji9+/kV2trf5o//z23zv1bfRxwprK7ztGILnzr1DcnyTr3/9i7z43C5vvfc+/6/f2+fWr/4KX//qV7l08SLWWJRymHouZMKqwrmKuqqZTSdcvrjH9etv890fvslHtx/SDRCjEoEmipCizP8ZkumIwTMOK45Pj/jw1ke88vnP85Vf+TLPPnNTSGBayAOqMsx3LJ+pa25cPMcLz1zhuz98g9fffJ8/+/brvP7WBzx94zLv3b4tIpakCcmTgjwPYxAnsh9HutWSxdEBH334HlduPMXzL7zAU089xbWrF9nb2WJSSzMXQKW10EKq/nlDo9FUtcHaWqIMZxPOn9vh+eee4qPPfYa33vyAN996h9t37nO2WDJ6T0gKmyCqCEkaVykliceNjzWrS7M8KyFYhKjR0ROjxwRLGIV+dnpyzP0Hd/nggw+4cPEiN24+xY0bN7l69RIXz++xPZ/SNpWI2xQbZ/JmfKIm9ON+6dJUUOsop4rz5y5wbu88zz33Al/5+td59733+N4Pf8Dd2x+xWp6xXKxAL+hOH9KPgdBqmnmLIrFa9tz+6ACS5mzVMW0r8AalLXUlzcigAauodUvQ0kSaTSJhHMkhorPGOgfZ0kxqyBC9J5FxjWLmKhFRjgP7B2fU2tKFSBcClTVED4tlT/RCwVFWS8QpEHJmLNFxVgulAieNkExCG0oMkcTG+pAIrAgxQVwTM/9nGIVwWoQgZIkSWvfQ1OYa/2SR/hPGh3URH4kxIT2iG0nM2CPxxSMyWSEgoDYkG2muJUIIm2gwiZh+7FhgQ3ypnKVta9qmoa7qIlgS6ozR0uABaagbq8v1LvFNWhsRzxe3fUahtNk0+3JZI+bymSgFRimqphbBokJEH1ljq1oc7yEJGS1kobhoaHcmvPDMczz3wgvs7MypmgZX1RjjNs2PMXj6xRmrxRlnizM++vgu77zzHmPoiT6IcMzJNZijfNwa6L2XJrOzqHLM1jmMkUbkGFLZgwl9JaVUyHSQimDFh1gEkkkEDkk+LwpNNGcR2YjIV4QIQTrkj1EsokQIla+xjs4rIkijNSolIvkRtaVQmfR6X6o11q7jUYSQYUtk4DqWj9Lox4gogTUp11gRI5XGa14LovKa9prw/ShkCVQRBUEstAkRq9myx40YRREWg0YTtaIffBGcJXk9VSLAUPi8pj2JQGIdmGwfo0Sh1p9J+bm5fFaKzXtGyb8xxhRigwJTIvSiRMQ6bbHOEVNkHHwx7RRxFbJmWcfVbaKbDdiqxKkh9F4RZ8i+vHKWqBAyB6BKhB3KkDSPKMDabCIbyXJ8zmhe/qVn2Ds3KfuJzEbYmhEhbswMXeK9d++yOOnLvnjEVi3VROOHDqMrVtGLCExBToGkNCmV/WrtNtHzwScRXmkhSBMSOepCiJLo+BADlauISWg91ooA0VrLOAy4Su6/uq2Iqw6twI8jKkFlHSRoa4dNiThKXL3DMK5GqqbFtI4QJfoKZYS+FAOaYgjKQtkwWsn+28qzTbssscvjCJWjciIIjfkREUQ7gy80D428/3H0GNsyjCMxBbQyONcyhoEQBpxWqJSxrhC1khjNos6MfY/RtTTQsxCedBZaSVLSeG+0EWmZgr4fsJXs41MW4dXoB7m2tEQ7ikpP0w0DKM3oJZ5PZ4MzjnEYqKxBBVnP1LXMAcGPZC3GtElVMfSjiElCpHIVIUlEmqssIWb6ZSdmtqpG0tIk0nIYB4xVG+KSQ9aUSoGqpLRmnaXvRpSKxFFobzmkjfgxhUjKYJ0hl2deXTlyAl23+HFgGEf2H9zjwoXznHOadjpfP402v2YQ8lSluXL1Gr/6a1/lz775LR4eLLDO0TauEF0yCZmT27Zh6DrG0Ze5QcQRIM8ZbZyQ99bRlyhiKGITnTFGobF4H4is6W4iuklxFHpvNuQQ5JquKoJRDP3I62++yWc/8xk2Ua8Zohb61trTsV4XiEBmytnJkrNlhzWNPNOjQSeDMppERGnFbDbhMy8+xWTS0rY121tTXn3tbU5OTqROGCIP7h+iLinOn9vl+HTJh++9x+nZKTefusne7q7cp2iUdhinhfimNcZYnHVMmpqtrSl37z1k//CUfvQb0wNKNOUqCVlJDBGJFCVedbFY8HD/gKtXr3HxwnnaSV1EyhqUwlYNW8YwrWv2tqfcf3jIvQf7HJ4sOD5dsLs9I6UsJENR2BLXMWHlV1m/B/wwsFycMj3YYmdvj93dXba35kwmDXVlH4tPK/Mpqjy7Hl1XWitwhtoICb6pK7a2Z1y8sMfR0Sn7Dw85Oj6h7wcRGKc12T5vyJCyVkuP9inlvMpqqIi7ylyes9rQ0FIMZW+04vT0hIODCfP5Fts7O2zN58ymE5qmpnK2rDdgs2h83PXw3+0pPjk2X1GKqqqpqprtrR0uXrrE6ekpDx4+5OBgn7Hv8N6jdSCGFf04ggFdC90ppsxy2TN2gX4MiPZTE7LUkyXeEalFGiNi0yIAS0merTknjLKF3C7xbanEKgpVUOqqY4x0w0iKmRiyxIVqMGj68nWZE/Tmc0moQmKU+1+oUhlrS1ww68jFLGbNDDFHcg78FKjpk/FzGtZaJpMJzrlP9Eg+LUNrzaVLl/j617/OCy+8gCuk0p80Ukr0fc8Pf/hD/uRP/oS+//SaZp6MJwN+doHSMAx84xvfeCJQejL+pxuvv/46X/rSl3j66af/1ufL3t4ev/7rv84f/uEf4r3/BR3hzz4+/vhj/sN/+A/8y3/5L/9vESoppZhMJvzTf/pPuXz5Mn/4h3/IgwcPfu6v82Q8GU/G3zx+dpHS2m0KpSgsv+rSoIwxAFKENhtn8H+vqEepxwhLqghK5FdTsKZKPaIs1XWNUppx9CVGAVIeGfoeEpIbnhNpiCivN0UWlNqIqCDjqpq6rtiatuxsz2iqGmcF5dy0FVtNjXWaISf6UdxkKWmm0wlj8LJpQwrHVVURsjjJjEr4cRS8dWUIfhDnS9NibYM2FZNJyzgOpBTp+pEUAjUVIXm60x40jKmjsg3XL1/lxVee49nnnmdrvgOlWG2MxQ8j+/fvc7S/z8HJMavDA1JKnHQLVNkkG5WpjAUl0Ug+ZCEnlRgxZ0RQZI1GG4N2DqM1/TgSY0/0Gde00jiL4g4OPmKdYbVaoZRmCLFg0SP9SprWBo0zelNY9KOXQo3O1JUjRaEFCI1CdrsxSqOndo5Qrg1ViEq6cvhFz+hjiacRcZtK4i5y5fwJcjowmUzox56qqtH5kZPK1jX9ONANPSFbgvcoZQjDgM6KtnZUrgKjWPY93ifaupEiYopYa+iGAeUaKZ5rXYrpmcF7wfDWLVr3jD6QChHZGkPlajK5IOHN5hyuC/Egi11FxtY13g+lhFOi9HwmJTDK4GqH8pHVEOlCop1IYVnRUNkaFQMqZvqzJSEFXOUwRorqBo2zTmhN1gGw6npsVZOTwihL9qVRZkFZhQ4iOqusw1lDzgGjMyoFfFA4p/F+xKCEIoY4U52TAvSkUlgtMX6BjK0MrbZUOmPPN6i6I+kB8aiL21wkDoGcBsKqIg87KDOj85GhjygCw+kBJ53Em1T1nIvbu/R+pBs7VBwhKYbFSBwzW1d2OTg6JgzH2AxbWxPctGZcZKyyqNbA6hQwmKrBmkxSUhRtJiVGMCfiqGhtzXzm0MYQ+iXOwMnZMW2tadsZ3Qg+DYSuR0dFa+doRk4WHXVVszVvWRyekKJQrbSOVMpxsuhopy05Jbo+MEZYxMxWO6Hd2iYoQ9V6jBoY+8jpqsMpI87j2TZBBdykxiaN70d8P2BMiXYLCp08E9WjmorYamIcJCprdo4YB45Plpy7tEVdoltSzky2JliWpJDpfCDERGscOoy0pmFMsOoDhpGoE3Xdcn7PoSux+J0enFAbTapqYuhBW5yZoFRmiD0heFTMjH6QGD1nOV0tiSqTo8fWFpVlrlBKE7Q4W7XVzKdzhv4BTVMxpJGz1ZKh76kqR9+N2FoaNyFBnQ02Q1MrjHGcLE6lOVhZ+hiJRGLULHqoGokeSqHj3N6McRDRp7KZ7ekUuzXlcP8hylp2tqeo2jCsAllBSp7hZIULW9SqQidPiCMuW5b7h7hLFaaqN89BBaVIqEG3ZBNpt3a4dvkif/7tNzk7a7Gmpm4srrYkBadnKwYXqNoZ3nviOED02DzQeRhCRYWIHpd9h3W1uNmbCeREO6kIYyTkwOHiFG0027MpSkf86AlDxFWGMSaUsZgcaWzDvKlRuiYqxcHDA0ixxAVmyBOUrpnbSgS5lQGt0Vaxsz3n7bdu8dHdA+paogPqxkrzyUmMiQ7SkLp58zL/8p/8GjcubPFf/+pNPnxwwsomnIdhiDw4POUvv/0jfuPvf5UvvHKDux8/5C+/8V+589FdfuPXf40XX3iRpm3RaJRusLVlZixV3WJsQ1W1TKYzLl8+x7e//xpvvP0hx8dnjB5yFBJOShIFk+JANCMxekKM9P3Iw/2HfPj++3zhC1/ii5//HDduXKFpDZqI0ho3mbNdOz6/NeOp69f57HPv8O3v/Yi3373Nn3/3LZZdRzCGrC3EgZCEwBFixIdAVVdEPxDHgdXylIcHD7lz+2Oevvk0z7zwLM888xRXr1xkb3uLxon7ek0hKksdNqFwOQvpzwjJpKpr2rbhwt4uLz37NF/8/Ev88Edv8sZb7/PRnfucnq0IfgA/FgGGNPGtlsbBep3nU0KDNKNzkZXGWIrr8oyO2qOtwfuerltwcCCEqHPnLnL16hWuX7/KtWuXuX7tMufO79HUNZU14gBGokkeRVA8ipH6xEY6P/ZwV4++r2omXL5+jYtXr/C5X/4Sdz/+iNdefZXXXn2Tw4MDHBV3Hx4yxBUhZ6x25KTo+kjKEa0Ti+MzhmUkaE3fD5ydjuzubRGWH9EvPAfHK0LwpOipKs1suiURSGNCKYPKCqcTqnF0w4j0MCTSiqhYLiKpdXQ+MERPGBIqi7Ak+oQioU3eCG0S0rROKZKsQ2tFQqFMpqo0de2K+APGlS9xiQE0VNYWcc6nc+Qf73isdXYAKj+KheKROOkT/+Ix0tHmz+v7QeuNiE+X36/3A8aIECTGtBE45XIvkjNGCw0oxkBK+hOxbuvYMqMUzjmqqmLaNjRNLVQZVWJSrBFRu9ZEMmEdIZcUrhJxh6wDyh6qCAoyoMtrU/ZWQpTJGOvQRcTi3JoylTZiAFsZUo6EocSCEbh88QrPPvsUL/x/2fuvpsuy9CwXvoadcy7zmvRZmVm2u6zaqNUICWiM0N7AR6CAAJ0SAYcEv4cfwBERMvEB+rS1N0EHAjYIEFK7Ml1VWSbLpHv9cnPO4b6DZ6w3s1otqUXQrULkiOjOrMyV71prmjHHeJ77vu6Xv8jly5dpfCv9yErPSCmxXq5YnJ1xujjl3iefsFouuffgfhUilBqLLQSeLRkopYLZfvZqKtBK1ag7IWvI3BApCZS1sjYutYFd6bshBIiximNE2BODEAQlIrIKzJSSKLd6ro0VCk3O2+gkuX5ylnvHGH1+PFUlVimj614howywFcTVa88a2X/mkoXw41wllApFpPZwMdaKqSQmchF6IEpJhBvInspYUEjEVC4oY2XOKiJsClHiuVQ9trXXTMoSgycUFYnIKlWrp7UWkYHafi8xQ4gQoIroiiLmR58j5Sr8h0dirizH1pgaqx4zMWec03WPL+JM6boXYhqFlFTXYloLx0lrTcjy/AMIIaFN/axoOe8141NphcpyDs3WQFLkeULJQhrS6nxftCVcpSRRsQqNsyIA01pLPKBRWKXoGs9rX/ki+5daiopsW99bI5UiQ0mEvvDOWx9z/+ExsSgx6JCI45oS62czmWnbElMmpoAqCcpWXALGz9hsenLq0YiYxHjLMEY0Bm0VxEE+gzFoJTQsbXVt5sn1mzNYY4XGqTQlBIyGfuyxRuOcJyZIOZJCRBWJgFQm0Y8ixGkay7iRGgiloCshK4QB54RgFmIm1b9vrMM1LVkptEt4RJAyhliFIQrvWzJi1ilFqGc51vi3kilZoUvGKRHYZquqoE6j/IScI+MQ6KYN27RBmSMcTasgipGoj0LXQVVCWRUUjmOQvav1dF2H0jI3jv1Qo3011PvBKCtEtNp0387jRSusdwwxiiCxZJSR60+jMRSysTIXGSVifpvkOFhDH3rGMOKtJ4d4/hzZxuFaa9C6YBrDqh9IAHp7Gmq8a5Tr3llDvxloGidGrUHIN613uLZh6AdCCHTTKdpqESVGIaikGOS8onDKEMPI+7dv07ZTnG2wjT+/tzn/nYjVUJ5rT93ipZdf5v5/+C+cLUZgStfqOm8IFX217rHaYGylU5eMKhJlOiSJfjRoxhxldZbEVCKENbnPQs6MaZRI7cZXglwSUeHWoKi0iJoQOrRVlmXf8/qbb/Day69QppNz0iFYvBMhsapzRykiENTacLZYSwS70TSNPqcKaf2IPui947lnrrEz8czahkuXrvBf/tvvcnjwQGpiKXP/wRHWOS5e2KFfbzg7fMhbyxU3b93k+vXrdF1Xn/kSV+oaqd9oI3Gcxjomk47Z7CH3HhyxXK4Jqcb1qq1wFomVVmDqcyUtMv0wcHZ2xtHhVa5flwi4pnGoSgXUxqFbza6zEgG3v8fde/e5//CYB4dnhBgJpbCNMBWKXiZXwZKpNdiSEylKhNpyteDs5IS9C/vsX9hjdz5nMqnxaefrryoVr7/KH8miTKJNJSrQOqES7+3Mhax0cMSDh0ccn56x3gxiviCii6413zqnl0cEfkqpguFHy7+tiEnrugbOmqwTSkdikojpxWLB0dExs+mMnd058/mcnZ0ps9kU76WWac73C9vn4mN3ifqDwo+t8fYzd5I2tJMJbddy8dIlVusVR4cHPLj/kLOzhQiKWTHEQQRZWojpORWGGouWU2S1yaQshKPjoxWucaSgWLJmvQlChpPZg7ZxlW4mz9OEPPMktlLmuRSrwLlAjDAiNcJYibhyH4sAXHIYY10Wy/faxsVmpep6R+Yvq0VEJeslRa7CTlnn1Gjbz5Fg5s/K0FpLOkPT4L0/73t8noZSildffZWXXnqJF198kaZp/sBrtvuwYRhYLBa88847HBwccPv2bc7Ozn7SH/nJeDL+xONHFSiN48hv/uZvfu5isJ6MJ+NHGTFG/s2/+Tf88i//Mvv7+3/ka5VSfOUrX+Hhw4f85//8n39Cn/BPNj766KNzodLOzs6PRdirteZnf/Znef755/nn//yf8/777z+JKX0ynoyfwPiRRUrbxXOpBWPYuptzFQM96hNsxUjbUeDc2QqPOaDra4WipM4xp1sEva045BDF5bf995mKCQ+ycZPtrhSiYNsEFlesdUaaBk5oM94JXWgbT6C0IcbMkDLaewwZbwsKTc6RIQaUVkwmHdZauqbFWtlIxpRJqmC9xelGaFIU2sYynTaMQYpffRxRSYQVY4xYP8NUzLX2Dc88c4tbzz3DxStXeer6dZrWsXUcxTBydnTMycERh4eHnC2WDGMkl4iNEjFmXCPFviyNBYxmGNeoMTPpJoyIY9c6Jy5mrQglQRDxUyais0KlQusNJUdCyBhtCTGw7nuct4wx1hgScelbRACjrCbEQg4J7RyL5ZIUI944BBds8Y0lploUM1aK6CWTqW7fKM7MoQ8Y7wR3DzjvpCEOaKcwTpzDVNECKuPxeOckS11rnLUMwyjO3hwFiZwT2jhiRX83zpxn21MUfT8y9NWBnAKpFEalaKxjx3ms1ZyenhAzFGcZQyKUKG7gUhhjoCCRVpvQk1MUZ7c1aOXkOyoYw1g3+9L8KrlALqz7QYrJCopWgDSyrWnw1tFYy3pckarLFWsofcGgSAm8byhjdUlhsEoKDnhFH0aG5UguGW0t2jcUYNX3OOcpKUv8XgjkIqIlow2maNIQmPiWzSagrTgdhzHinEGXws50B5UCxRi0MTS2I5nManGGbx0pRvr1wHTumO46lF6gmgFUQRWDUrlWiRJEEcQQZ6QwR5sLFO2wWtOvVzg/IWYY4oi1ntPFGV3r2fSFxdmGxiuchUljWcWRuFnSahiNqkXpzOHxKXEDF/d2Wcee1lkMmQu7+4whsVmtMBbC2KONUN1SSjRNS0qFsY+s1xu0yjS6xXnPerMhKk2yhUUfcKYhlUI3mTCGTFG1aZUVBydnGAfzzmBTZncyodUaTyZraRo506JTZlgtmF+8wDBqYrTkFLEqU0oUF132NJOW1CeULnSTFl08OSSwmmbqUCYKzSo3LBdLvE8QAlk3xALdZE7YDDibCKmQ+jU0O+gM6/WKrOTnpJhRRhNTZDadYUxDvz5jNt9hMxbGEVpTGFaDCIS8AecYhjPQgYn3nK6OaVrHfDaBCKv1Gt9YJl1Lv15RtGGxXjGf7ZLHxGIVcZ1murPDOI4sz84w2aCcYVxvhBSSs9CeYqQxFqxFDULpOTs7ZWMNxheUamkbT9dqvJ6xCSPROzxeIgVWG0iZaTehNBZsRqXAbNaSiyYMAa0d2jWgGspo6LqGfrkkZNiZTxhTxLQeikatEv0mkcclKd/n8s0bKKPO53VdC6NFa9Bzmp3C1StnaP02683A8ckpXaO4cGmP6WzKOCYpQGvHetiAtlXUoKBGBMWUQIO2GWUyJRtyivi2BeNRPqHtmr29iUR+lUiu5oimnRBzZrNa4rWmmzX4nJgUI9F4sxajFGfHJyyWa2KUBp41it1pi9GKHLcNeU/TtBQKH909op20eO/Yy0pEYUkaOm3j5RgUicj8+ldfZWd3zjf/87d458PMZqWxBIaYODha8J/+23f4xs+8wtd/6gUODlb8x9/7Dvc/vsvP/cU/z9d/9mtcvnxJmqDKo9wujRHClW08xjmaxnNxf5+nbzzFt7/7Fh9+dI/lepDmgi6UJI30HLM8X0tPzoEQe15fLrj3yV3ef+89fubrP81LL7/ItYsXaLwRMoWd4Izngmv56nTC9aeu8cZb7/Lt736f9z746Jyct1jBZr0h5wgZ8hhkHeE9OQvVqY8Dq9WCw4f3+fDOB7z37LO88MUX+OIXX+Cpa1fYm01w1RVPXfFs3bJbsVLBoq1BaYd1HSUFptMp8/mMq1cv89prL/HOux/y5vdvc+ejuxyfHNMPvTS2c6lNjhqTVRvsuWSSqo0jql6oCA0vqxo7lwxaB7QehQKwWbE8OeLB3Y95//YeV69e4eatmzzz7LNcvXadS5d22ZlP8dbijBZi0/a7fGYZWR79v1KPB/k8WmfWZ958vsP8pZd57rnn+Zk/9/N8dOcD3nzjLV5//W0O7n/CYn3CZoiMYyHmQNdoJlbioYovpHHkbNXTn645W65ZreYUFKfHK1abDdYoJq1mOp0z6VpWZ72IKyIShaQ0cZR4BUPEecOk7VgsN5wuFqScZG1UoB8kii4EWUdI9LClIE1OZzVD31PI+KbFWBGbxwg2JtpOxEvjJhDHUAVTGdVkTDF8XscPCs9K/ZUqHFJ1P/HIGL914der/Fxg8ki6tP2J26a1Uvo8dkVENOIqz0nOzaNWllBvSpLoEVmbiWCPIneU1kLM8t7hrER6ivDcsCXCbok7qcY+ayPNJFOFPKVIZC5KSdSPFvGCqffTthGujQj3co38sMZK9G4VN543onIW2pnx6Cp2cq3l+eef58WXX+Ta9Rvs7u5g7aPrIOfEsNmwXq749JNP+eCDD1msVqzXK1RK1JWYUPZUqk0sRUoBUhZjgIGiKpFoS11FhHhKa0oSsaHKpZJ8cjU8SAM7VEpVrrSFXMTVrxGJCUbJOcoFZ6QoXKrABaVQRVchUqx0HREynQvfanNco4gxne81CtRoxPoyo86JApzHoWUsIqTRzoroyW5jAKkUI0NMRQRXJZ2f48dFTylJo15orkKRyPUaaZoGrWHoBxEP1SZkKmBKQdVodVAUrYk5Siyc2pIR9Pk1k9Ijw4OoqURRFc5j7h5d6CUXjKpUEK0JOQily8i9QUw1vg0RKhGQaB4RCimlwFZyUJA4Nq1FkAMSBydEqfyYkK7uxZUSEXzOOGMJKZ0LtWMluaoMnWuoSiqUVhjtKLowDiIi2UblucYw22l55ZXn2b80RSLeNI+eDAWyNO5Ldrz//ic8eLBA6S0VeDwnxcSc0NowDKMQnhIMfZB4Hy0CtpATJYxYVWMOKaAL601PjtC1LSFHMWhRmDQtKWchb1Qhu0TUG4letLbGw2dCSCgKFou2sufOKIoREpnRptJ2vOw/63WWs2Ld95UGrdGl0DiHVQpT74aci8S1l0IcB/ykg6hJRchmSgu9Y0sss86SYwYlsW4KiQ5CK6yX+0MbQ8mWMI5YI/SWglCQrPPkKIaWlEVsY6OICWNMxBwxtkMi2re1moL3HSGMNL4BZYkloVUSqkeSOEGljYi7Q8R2nhBHMoWm9ShEIFpKpvWOvhcB3Rgj1jicb+T9SxYxQy5Cs0RqNgVp7OdK+31EsRPKk6lxWpv1Bu3kHHrfUAg0riUlCKVgnEMi2yIVw0zJQgdKWQTpCjHTifjUi5SiSAwXNjP2/aO6h9ISL5kLx0cnvPfeB3zReHYu7GPctk60ff6VKmK0mGbGSy+/xnvvfcxb77zHOEZKjrStl707lUKnhNYcs1CvC6CtpiDzNvVZDJVcl2tcpDayNosj3tsqNin1WpBng1aaIQRKThKzR8ag8EqjG8tiseb7b3+fZ555hv29fbkeVcHapkbibZ+JWoRBRrPuR07ONhhjqpDVEivFSEQW22WEZnc+44svOJrWMeka3njzbd67fVvu2Vy4e/8QpeD6xV0u7sy58+kh77z1NqcnZ9x6+ib7F/bkZ4rSEu00XjuU3qDr8987x3w+5/6DAw4OT9j0A0n0nVWsxDlNyaAoZSQPkdMQ2KzWnJyccO36Va5dvcrOzozGOdHgK4O28r33raPtWvb397j74JCDgyO5YpVGjxI1vJ1rVSXNZ23ODQYxSwxc3284Ozvl5HiXvQv7XLx4gb3dXbrGC6HnsXXWo53qY+IdZWuck8GYjHMe7z1d17B/YY+T0wUHB0ccHZ2y2mxEYL8lKJ0v18pjV6sIbLR+TEeERIpv40jJClQWcV1KpBAkYnq15PT0mMlkwnxnzu7eLjvzXSbTTkit1ooYdyt8f+wd+CH/vWVlfra9JTHY2mp2dnaYz2ZcvXqd09Mzjo+PuH//Iacnp4zDmiGGR+sxDc4qNIZUzZwhRMZU0IMIk6yzjENg6IOsObSibWx9bhbGMYrhtj6ac11TCj1QauMlJ8Yx1PVtXXtW40jKpYr3qiAZWXM7Z0ixrpHr3ylEOJsoOA220uHGQchv28jloj97dJ6M/7Ghqxm7bVuccz80Iu1Pe3jvMcbwhS98ga985SvcunUL7/0PfW0Igffff5/f+73f4/j4mMPDw/NkjCfjyfhfYfyoAqVSCr/927/Nd77znZ/gp3synoz/uePu3bv8+3//7/nbf/tv/7Gxb1prvvGNb3B8fMxbb731E/qEf7Lx0Ucf8au/+qv84i/+Ik8//fSP5XmqlOLSpUv803/6T/nmN7/Jv/t3/47FYvE//X2ejCfjyXg0fmSRkqqFG1WdKKVIoV8Xzbn7pDaqSi3sbx0q5/9dW2hb/L/8G9kgbp2e4tTNUny18m/CODKEKHhpI25Oo7UUf+v7brecxhqs1jjrRRDjCs47Ot8yaRzGWiZNQ86ZTR7ZbRucsYwhE/IGZwS/axT4rkV7hzYe5y0p1fgzK4t1heSMa22wxtN2ipQGIT8NI5txYDNE2ZQqxWQ6w/oGUxIT2/Lal7/M1aef4dLlq0zaDoyUFkuOpHHg8PCATz++w9HBMcN6YLXa4JuWVAraFjRasM4l0EcoNbIiY86Lw4DQp7ZIaGuIKVT8sLiZW9NgVSYbTSxZYqSGQnaKIYnTNg9CWkilCDlBG/p+lNgWo0gxkFImLqSJotFClHK1UBKlqE8peOcJSOSOIdfsc8WYIs44VErkpOm84OEtUiw2RpMVYC3OSsTXNpYhjAFtpIAucQ/icrYZINO1Db5r2axX5JCkCe00RjmGQURJSkHTtvRDQFfHfaPFBRdCYpMSxii6zhH6SL+OhAjDEPGdxHSsVkvSOKBypulaVLGUoghxPC/yoZRs+LWm5IBC0TUNKQZyHOXPlcJqR+McKY7koZCLwjsrpJms6dwEjYESGTYRasPIKitNjiSF8ZikIN91DbFPjKHH2RZlFMZKzE/WmlwbTyFG9qc7hL4nacNqsxEHoZHqWy6axWrAKSViB1UoJTJBE4cNpdRGj2mYTDxu2OB8RLsV2q9RakPNZIEi8XKoDDqjlp487DKuOoaYGFKAougauc76okl5ZDZ3LJYjJ+ueXEQ4RTFoZVBWMdlt6DcrunaC010tZBYwjpgCQ4no1hDWhVnn2SwXLNYjMRf2ujmWEd20UvzThoOzFe0q0rSOoDRWOUhBikEUdiYtqxgZQ2bSgimW9XqDbzykzPHhGVoVVCpoZzg+PmbWTJm0E4nXs5qJ6RhDwuqE84Vhs2ZzomiNxe9cxvcbyZDUhhQKOxfmbNZrlodLrBHk9/7lm+QSSMMCbS2xaLTz4k6OhRQ2aAuqjPQpMJm0DMsVzXQH3yj6dc/pYc8QMiUkZlOHSz3LswXKWbS3KCIxBFIcGZdnRCVCFm8M944fEMaMsY48jjUSIMl9OSbOhp7LV+pjJymGdcSmDa1SrEKQtI6Q6Zyn+JZVGrAxY5UijImsJE7BNRZtYWqnrPse33hyGEgp4pxlDBtsq1ktR1rb4XLG+4Z+07MaHjLbm6OnDWE1MrEKfMvQRzZjQq1EWNBZhxozi/Uaa/J5c3lcR2IYhDy0GnCALpGmmXAWswjYWkMfFevNiNos2KxO6Hb2APPZoqmCUjSYlr1r13nplS/wztvv8+DhA3Z2G9qJOMadd5QQ2YwDhUzOQnJZLhfiUtUFDJRsmDYTUob1MhJCwHUNMSVKykyalqIV0Sc2IYjLGRg2I0pZdnd3KER0YylDJK4GLIq5b3jmqeuczSYcHJxwcrogpoD2hb3dhhgKWmViDDx8cIQLRUQZw5qDoxUXZi3Deo22LSGKwMaZJY21lGxYh8wmDOzOGn7xG19jd/4eb7z9Caenp6AHxpD49NMH/PYwEL/+Cs9cv0ZTRj758B3+n9MDPrjzHn/5L32Dl156iaadoJHj5ru96n42OO2ZNB278xk3r1/lu9/7Pt97613uHRzTjyLQzEVVwkSiJKHq2JTIYeT+2HO2OObjjz7k5Vd+iq999au89NIL7O7NKmnCo72l22m52c6Y7cx45plrvP3OB/z+t9/h/Y/u0i4almdL1qs14yDxJdtGnIqBjMWSQY+cnPSslgsOHtzj4zsfcueDD/jCF5/nxS+8wLWrl5lMWqw2nxHqcN76qwEdWo5DRoh3k5nHeM/e/i5P37rOa698gbe+/x5vvPUO79/5iOOTM8YxCFlCqtnSrCoIvQSgxhKIWCSTEZKS1oaSJQJHaY3JBq0GkjaM44b16oSjg/t89NEd3n77HW7cuMmNWzd56qlrXL50kf29XXbmExH3aiXxdlulSlFsMUvbJu1nXdK1tbLdnGqFby1PP/M0N2/d4Mtf/SqffHyXN77zXV5/63t8/Old7t075OTkhDRm1kOQGAan8VoTsyH3IySJJnLOkKeOTb8hJYkxWa83GCXP9lKCtMgDDDESS8FZiV7y3mJVjbZN8byRFEshpyoqK4GQCjppjMsSuaSkWZO0whpL553EXCECsn4zMo5DpdMomrYll5FU129h/PzhmbfjPMLt3OUtLVHNIwHTY4Z4qPuJc313xduo+sIfLEnUtooIoEo5j3qDQsoSZai0Ot/PaKVI6tE+Rt5LiTDJOYlg0JWiYY0Ih4wI3c+jlVKitTViORdSiJhqvFBK6CmqxldrYyqZSEQIoiUpItagRsE5VdfGnIszYqqNsEpz6iYT9nb3uHrlEi++/BJ7Fy+yt7ePd05IC0qE8CUlNps1pyfH3H73NvfvP+Dg4YFEjpSCqvFtOUv0cclKYrJUJc2VSlioIsJcyrm46zxGT4uwyjojYiMtja+cCjkWihEqbC5FhExqK3TMIlap4iWFkuZmLuQhnzedq/8CylZkJudLV3JSLlRKq7QcU851TsoUJSQirUQMJXNjjQbU+pEJp/4cUq4N7yLCeSXPha242BkRE8YQqjFAnUfgpe0eBGr0Va5NdxFb6CKirZDlz601lVxQnwUxY5x0bscwUFJClYKx9pwTlFI6F2PJRUz9b7n+XRU6nRPJlEThiQlICFelxtBoI+9lK3mVkkmxfmddyUjbffw2jkcLMSynTEpR9ktaoXWl77GNRZR9WOe9PFOBMUQRhOnt/akYx4hWlehS0VgOEVkTi5hhtME5j46RrjO88uoLXLw8BTXW/UR9VqgqO1EFRsPDews++vCAYczEXOPmajxdLopSEq4xDGOiD0KNSblAlGaz0uAaQ4gjrhLNylalW+N4ErKGzyFinSGEkTHEGq3u0YhBZHstrocRO2Yhz6BFFJhTnbOg8ZZQm81Oi0gshiAxMKWwWQ9CXsmA0fSbHmcdzjr53hqcEmGjVgVjCjEGYi8EKtNM0TqidN2PpoKvRpWwGURYVQrdZIdCpqQBpbWQ/LSTeOEisWi6NuJTThjniGMQ45SRpvm4SRQlcfHOaNnzh4EcExhN4y0pDXLdhSqwp2CtY9hs6PuBtmmJde2vao2kpCJrUFVovMS0pQxjP2JVJXZvBSLaopyYn2Iu2FJJdlUoaWViwXtHTEKiQdXvV6lkxkLcZCGlVWpbytBvNmht8BMvtR7AeBFMD0OU+19JZKsuWcxsKqNKxriGkiFWErmiSIysZIITlRDLrJJIuE/v3sVYw8vdy0zsDko9LkR+TMirDH4y4+f/0l9gM458+vGnjAa0qVS0OhfGMFYhOueUpFxkXsq1TmeqICmMhZxTfVwXqUNpgzcFU2twoc4FMQdKFqGbVjWiEUMZhU7limLWdYxDz/vv3SbcfJpLly6CzjivyakRbXyWyNvjozPWK4mkXvUD075BlVSpbLbGYYUaSywi0pDF0HPj2kV845m0E65cvsIbb77OvXv3CWPgk7sPySFw49plWmc4OT3jk48+ZLE44eatWzz11FNC9UI+vzIK14gwVsSiFu8ds0nHbhUrHZ8thByY6/ko8j1SiVIjzZqiM32OxIOR1WrB8eExV69d4+qVy8zmkyosqetoZ5jMHc57JrOOyxd3uXv/gIPDM1Ybgx1FMBhCfIx+uo2f2xJ7R8oYSSHQ92uhJ56ccPHCBS5c3Gdvd4em8VVk+YMrKTh/2qpt9KnsMawWo6d1nvlsyqULexwdn/Lw4IjDo2NW67V8rlxEYFM/XFHlXFOb61wqz4tqRq1rsvqHqKLknlFKYjhTJMaBoV+zXJxxfHTMdDZjd3eX+Y5EwXVtR9v6ujdTlRhV/uB3+4xg/rPryEcrS1kvdJMp3WTC5SuXuHHzFkcHh9x/cI/jkxNWqw3L5ZpSIjHk8/2IsYqCxpZIKUmebVahiyGFwBhFAJSSiFoV23Wf3JcxCLldGVlDlFyQW0ohQYdyIHNWlXAstemYswj8tmJsJf+mKPkuzohhNZdc37MwjAEV5LhrYzE5oVKugtofFHo9GT/qUEr9AWLS502YtLOzw61bt7h16xbPP/88TdMwm81+KN1pay7/3d/9Xd5++23u3LnzRJj0ZPwvOabTKX/v7/29H0mg9MYbb/B7v/d7P8FP92Q8GT+e8Z3vfIfZbMZf/at/9Txe9A8bXdfxS7/0SwCfW6HSxx9/zL/4F/+Cv/N3/g6vvPLKj02o1DQNf/Nv/k1efPFFfvM3f5M333zzf/r7PBlPxpMh40cWKW2dpOd58erRBlNqjVIkfDQxPIozkGZSqXVUKaTq8+aEvJZSiCkyDEN1mUnhO5ftz5LCrpBuxA2tKgLfmm2Gs0IZjTOGtnFMmpaulRx17xtsY0ix0CmFtp7kxKmeYsFbd+4oNa7Bm4qmthatHUYrvNU1piPQ+hZbo22U0TgtApRSoN+smbQN1ij2diecLtY0pqVtLNevX+PFF1/m2ReeZ76/h7Z+W1oljgOLszPu3/uU9ckJZydnHC2WEoOloGhBCIsbTQqhfUicrRdYZemsJ5dIiD2rfgAloh1NonGeXCDFiLOuusZrAyMX1ikSwggImSdloO/JRjMMAWW0RMTVz6pLxjtxkccQMYCphCFvjYiI0FgnhUqrNG3bMsaRMUjB0xSwCry2bHqh62jtcEqfb9TRIjxTSihKxEyOiTFusCiQ2i45DbiuJSeIKtXPCCEHrNa0TUO/7qXR5OUajCWhkhSlh3GEGt2XSi0AaMN6HFFJEOHOtRSj2Gx60hgx2mGUYjqZgCqEfkMaA2iD6zqc9+TAObY55UhREilhlCKO4VzUZ5Wg//1ECoX9mCg5sRrWhDBQ7ATfWIYQ8BrGIRDDyGw2A2CzluNnnCaOCW8lYiJnwbunJI339WZgZ+povcaUCc6KCDCHQAoBC/jOixva1ggIrVBGnJTDEFC+gazIOpNq5JvSGaUsUamK5BdXZYqJXDboJmD8CDpIgUolClEaVEVLSkKecnqo6ReZrCPBZlxWqBDwuztshshAYT7dAxKzmSehODtbklKkOM04DuxPd1DA8TqxHiPGWZJK9H0iG0HF9+sloSRa15LShKPFKdokoeOMPSkMrA4OmXWWFAwxwVhgWC3Z2bvIZjUwDgMTLHGMXLzQiLhPRTabJSU7ZEqJNI1ls+nxU8fuzoR2NuHsLKKSwTvPmAIhSNyDMoXWetykAx9RRjH2a1QHyoFpJugw0JZMHjcY5TFujvGF+U7D2A+0ravRlwnXtGA9OSb69YKYMjuThhIHLrQdxRmSC4SQ5ZyqQtdZWtdgc8eYAqu4QTdS0LJWBIkxFwqW5aoH72iAzWakm87weiDmAWsbLl3a4/BoiW5mRO0wGUyCmApd1zEOibPTBdNdEZHmxQprC9pJkTWHzCZm5k4RcgQDrfHYoulzJIwB7yytN2Qt1+0YJMYiq0g7ncn1vBnp+wHtLX2OTJKhcZ04qcckLfIss1shkrTFasH9a+vpOksYI7rIfesnDudb4jBK/J+yrBcblDUoAsvNmj5KYVUiA5eU2KJMR0FiW7aEAg1o4+kuXOKn/9zXaJ3lO999k9O+x50umGfN3t4ck4vQVrwV9/M4oIvGZUVfRaIqFbRV7F7YpV88xHpLGgdMySjrGQtgHXlTG5FGXNO5KHQapZlpFCUp2nZKHwrrxZIcE/uzKRd3O67uzHnz3Q94eHTKfa2ZdS0XZ1PmTUcKkbsH97j38T3GXMimcHy25OFxw3xqaZ0hpJFCxmpYoUAZQoHNOGKAnd05/8c3fporl+b87u+/zScPT0ilJw0D9x485Lf/a+brXy5cv3GRW90V4qh4//XXOfj0gJ//K3+Fr/3MV7m8v4vWioLHNvvMTEvTLnArh28t067l4t4ON29c5fe/+xbvfnCH07M1MUp0AhShZORCCEWin6q44cNNz8P7D/ngvdt89Wd+mi9/9cs8/fQt5pMWpYRg5K1l3yom845r1y/z4hee5buvv823vvc2n3xyn9OzDYvVhvVmTUyBrMTZnrNi0jW8+vJ10jpz996C9dkhH63POLx/l4/ef5+Pbn/AM889w7PPP8PVq5eYz+Y440QEWYXg6vFivJKYDopDGUtjDMZ6mmbCbLbDlauXefmVF/j+O+/zxpvvcOfDTzk5PWPTDwxxpNSogUza9sLr2qGSLIvENugiUpNzwUJOIlZWGhUjIViGYWC9WXF0fMinn37CO++8w7Vr17hx46kaCXeT2WzGfD5lNmnwVkkc3GNilsfgIOfrx6KEfvkH5SoiHpjP57z08oznX3iOb5z+VW7fvs2bb7zJG6+/ycd37nB2dioRf+NALpa2MVjb4BppCjvjmc8Mx0driY51kew1m81AiImua5lOWsZVoAwjYehlzVsk+jaUROMdk2nDuh/Y9IEUo0SsoqApuFJoW8/e/pS2bRjHkTgGpp2nxCjXYw1FLVkiy4ZBaCiNd3hvKRhKNlVM8PktGufq9P4DdYSy7SNtRQfbX7eitPr788u7bkQe+0FbAkDOEuNW8lbosqWxyop7GxdGFfJsxUrGCO1mS0raRm05a7BWXOxCYpU1v0PJPFrjpYVeUkkTSmgIEmktEV1CoZDmVQoSn2m1EDi0qLQwdT6AUpv70lRuG0c/BrxtuHb1Ml/68pe4ceMm+xcu0LQtypgtTEeoScPA2ckJJ0eHHB0c8uHHn3B8ciznoGRMlkacQZ+Lt4YwopB9VMliOgjVAFGyzDHbWJKyFX+VKgqjQIa4pUZtG5EAMYpYISacfsyoUs/N1vFfUo0CM0IcMTVGDuTZlHPGFI22tkbniWBHSEwiAw5ZmoFaGYzaCpDqtaO1NOy0mGOowq8CsjEtIqzS1rKlBZ+3/1NGKzDeSXS0VnUvK/upVGQGTkkEJzW5j0KNrk1J1gNZYjnREgtXokRGbsVnqEKOQlCS+dtUkpCIeoqukUL1+ldK1fhnGbpG9BljqqhJiAg5BlKWSEhjNDFnjKp/nxLey340hnr8zDamTeZW6Rmr831jCInGG6xRQprUyFo8C9FBK9m/bakOuTY61VaAmVKNw3u0Z9DnF8Uj2k5Big1ZZYwtvPpTX+DipRkoEXeIWqeewyJ7QorjozsHvPHd9yotUeLFSBHTNCL4A7zrgIx3mqwUQz+eiwdTSrSuQSnYhCxCUq3JZGIs5w3fGEZSyVjtyMVJjLfKIlJLkZwS43qNt7pGFUJSEMdA03XEMcneHBF1TaqIUSEUlFI02oCmRmjHiPGapnUSb6ayxMJVQU1OVfiiwWok1t2I8C6FIGIfI8IUVV9XUpCZQDdoI1S/FJOQo3O976yVPWzKxFEELo2TTXhrnRhsTKrze9VxWYW2jqZxQhVJcm0po88b7xJNKFGKKouIrYRIydA0LZAoRdF6J68HirGUmDDKkKJ8NjLEcUQb8G1D6ocaGylrFqMVQ0jYRkwUWaZbvDJCM6sCUFPjBIuSJn5MhVgy2lmMtaicCOModFkyJhc8FmMKZUgiDC9Z9t45opwFLaJJlcSdbJQQfuVDCOk6pwKM51S9GAPGaomJL0LavPPR+1y/fpm2azGukcLQdn1UhR0KhXKey9eu8Qu/8Ff4v/+v/4e7D++zGQMFg28bvBXTmNHy3CtZIk+FUCvPR5WF5uIah3KZTRLqV05RyFZA3gpZc5Z4Sg0UqR2oVFBWaFzGWnCKvh/kutKaZjahxMT9Tz4mp8TlK1cwxjDxHme07OeGgXvrhyKUUIUxJFabAXCVdASpyFwj69NEBmIudU5zXL98kVnX0njNznzKt7/3Oh999BF93/Pp/UNS0exMGi5f2cE7z9liw+2332GxWHPrmafZ25lJ3CYapT3WG7RxmHHAWIWzlsY7dmYT7j084MHBMav1hlSJgNvFjUSe1eu/ZEIRU+bQ95yennB8fMT1p65z4eIFJl1b175Ss/CdULQnk47d3TlHR6d8ev8hx8enrDeOcRRTSkyR88tK9Irs787ovGe1GNgMgfXiRCinp6ecHh+zv7/P7v4uu7tzmqYRwer5HnW7MFPnC2+ltNRLS6mfUWOsxTlfqU+7nJxe5MHDQ46OTlmvN4xBIrRLFStt1wtbLZIIVh/VjPP5+8I5rbJeayoXUn1+hBjoh4HlasnJyTHT6Yz5fM58PmNnZ4fJpMM5R+OFaK7Pv4banpY/sGuob/rYfmK7ApDaoTGWnR15j+s3nmKxWPDw4UMOHh5wdHjEer0m51jJRgqtJcaQasCgCKXb2sQ4CrGomC1hrcaAOYmaDUFiN0WcVEmqREDRNg25Ch/jVni/pR8qEbn5RijCpRTZc1gtxz8/RkmqSzf5vCKWt9ZirSKf0yefiJT+pENrzWQywXuhe33ehEkAzjlefPFFfuEXfoG9vb0/MnJuGAYePnzI/fv3ef311/nggw8eo6M9GU/G/1qjaZofmaD0xhtv8K//9b9mGIaf4Cd8Mp6MH8/IOfM7v/M7PPvsszz//PN/7LNpK1Q6OjriwYMHP6FP+Scbfd/zr/7VvwL4sQmVQNZWL7zwAv/oH/0jfuM3foPf/d3fZb1e/1je68l4Mv53Hqr8iCvMq9eeYhvRlnN55FxVQjUStwrnk8L2x26j3aBubLfbw/OflaTgyTYCzpybXbTZFmZjLcRuyUAGZyzWaXzdeG5DTpq2petaJo0W0gCGxhhs51ilSAqFDoV3LUmrWiSumHStsd4z6yZCeFCgrAFjhI7hPOMmoFQ6d51OdjpiDhhlSSGzOFvQNp7JzHN6ssB2HW3nePbpZ3nxxS/w1K1b+OkcpS2qSDTCOKw5PHjAwwcPOT0+4fTkFFebBJsUpOCdC5vN5lyY5axiuVoyVkzvuBmZaEc396w2G4ZeCn2uRq01vqEkRUry5+IS1pDBOyPxaikJuch5xhzJg8R4pZLIg9CBCvo8JsEaQ+M9/TCw2fTi3EbiEBQivskotMrM2imJBEYcJYba2FCZnMSV0UwacRUHsF6EYQpoGyfXk9aUlBnDiHUWo8RpnBKYbPBtByBOcApaQWOdRBMpoUB5b2kbSw4joWSUtowh4rQWZ561pCyIdtDkSoogyTnfhECMA61vsNox9H0tAFT3d8n0Y0/TtOIgRBHCQNt6MopN3xOGgdl0ilESmBdSQFkpwMwmU5RSDH2PVYU+BPrQY5Nhb3dO1BDSgCmWFCPTnTkxFdarFU2NrNn0kXnTMGkdfUoUW4gxUWIkFUXTSQFYFY9rGiChVcE5RR4L3XyKzoU4imit5CICMevJaaDtDERNKaY2YkvNrbf4yQRKIqcBozXaZqI+5dINg7I9SgmZo7YJUUQIhfEsMp42mMlNwsYSexiMiCN3JhbrLatFYD30eOUZhg07eztMdvY5uX/C8eFDtEfQlSljWs9isaHpDG3XsVyOjIMIcNZLIRJ530AqKGeIVppbnQKtLascsSnTGssYApsEe7sd2mSGvpIGdIZxYBkSVy7uE1eBIfZkEraZ0c0cy9MjGuspQeO9wjUNOxf2CcMKqy05KTbrnhIH2p1dsIphvcC6lknTkmNhcbpgnQveGi5ffwpFIOcB5zvGqLFtRyJgVBESV8mY4kXUqDLWecI6sFku5f5Yjxhd8Faj25YYR5YnS7R2YMQBvH/hIjkFki2sl0tMjbsx2hLCmuVyjTYtw7jhwoUL9Msl3iiS6Tg7eEgzNYyxYdoqHjw8oXFWitVhpGsbThZrpu0Ebw0xjXSTCWfLNWOMeGtZr9ZgDEOK7O3tY3IgFIPSmdT3eNdysFpBUex2DXOrOF6cUZzDVAqaKSOqOHLrYYx0XUczbcRRfrahbVtSlnvSd1LswxR2Gol426zOcKZh1Qc6L4SI+YVdwlCbe66laVpWp0cURmkqhBHvW45PBs76NTs7np1pR9tOSNnRzi/huilqi04/78HXsnIeOf70A77/zm3uHh/QGHGmN84x9Q1Q0M4RUqoNGk1jNKMSGk9cr8iloLzDFIV2jvXpAoUioAgq4xrLsFwTx1EEfFrhtIEwMAbB0cecaJ2n0YZNGNibe7rGce9wQb8ZWI49dz99wN27B0w6y1devsEzV69wdNxzHBMUxWK5pETh+d+4cYmrexNMEnKE6zzSdDbVzV6IFCZ+gjeWnalD+cJ7Hxzw7//rG3z/o7uslyuZP6Ni2rb89Jee5es/8zJX5vs8PFrynbc+4iTCq6+9xl/6uZ/j2eeepvG+rhsKlJEc14zrM/rVGcuzUzabDffuH/HdN77Pf//e29y9e8imH6WRm3MlBgnRUettxJPDWod1LfsXL/H8F7/IV7/6Fb70pVe5fvUyjbfnsWUlD6SwIg3iXv7gw0/51utv89033+Puw2NWK4leGsZe7l0UT13f5f/zf/4s1/f2eef2Xd66/REPDhb0UeJE5vM5V69c5fnnX+CFF5/jxo2nuHDxInv7u3hr8GrrAP7Ba6yW/Usml0QuiRgG1psl4zhwdrLg6OiUj+/c5fU33+bd9+9wcHxK3w8SjZIiumSKkgiJUoRosC3cy/qtVNGSUDu0tLwoujYyjJHjaC3GOqxraJqO+WzOpcuXeOqpmzx14waXLl3i6tWLXL5ykWnX1Di4LV3pMytYRKTEHyJS4rEiaqmfVeiN4zhy99P7vPXmW7z1xlu8/9573Lt3n+VqST/2YArohLXQNS0lKg4OTlksF1gvRMXGGVQuTLqWtm1ZnKw5Xa5ZjSMKmHUdhUzIka5xzNqGnAvLzUiMkZgSIYExivnc07UNbeOxztIPPcM4YpRE2JZS6MdAKkJRSkEIj2McsUbiPo0ypBqDbIziv/73z6fr6a/+tV8476uWbXOqnj193pD67L/5wY3K4+f60b4jn79u6/w/d+lrLdS5kuql8KiZY7TBOUvTeFyN7AGJZXLOYq00jTQiINJWE0oWWigSj5Wrgi/XuERdiUne2RpVVmqkmKpCHxEBKKR5TZFmcC5bEmlmGEaJ/XOGcQzMdvfY2Z3x2quv8eyzz7Czt4d1XggHW/FaHFmvlxwdHvHB+x9w9+5d+vWGkguxpHPCSIwRqA1zDcMoRNGiIIWEUxrbWGl8xlxFVBprdZ235V7icRFhbbCluhZWdY5PtWFMjd/LlQ60Fb2o+jmsMYSUiCEASmLltt/tvE8qppJSG4nbyD35YdIoz7kI0clocirnNCsFj1yDCqHm5YTSppJ8RBihijRdz6+p+m+tfkRDlTWvmDdKTnVVK9FtRm1NO/r82qY+R0QQXamlOZHzVoRmiDFIlMtWtIPQe88bXFV8aOpaP8ZISpHGiSlEKRGbUfdO3nlElxPRCG0z5ojOuu5JIJWIxlBSwjXNOZl2KxoLMdNUkV4smaJFSCbRTmCslryYYtBWKImagjZQkkR2K6jXeiUq6xrFmBPWiQhme/2o2sxX2mCcrc1riaJTBm48fZnXvvwC2qRH8//5DJEhFdKQuffxMe+8d4+hT+QooqCcC42TesU4ZkIKGKwQ77oG37Rslj39Zi10sZpjr61hGCPWKqwVQUBM4JyIUFH1usrINV51I05J3WMsGZ0LVksjOhZoGovWQhmWvXCBlBhTZjrpyCGJ4IuCtg7rDeOwwSq594wR2kXbtaQU6twmIvqSE7ZpQCtiGOqaxUCSRmMoEo0+nc+ALMfXyH5EOUdBxCjbNZDG1hgq2TPnICIdgBJk/2i0gkqLGvsRpYTYk3KibSdyB1iJp6LSuKyx5JIZ+jVKeyFVe4lqogrYxiECAxmHM4ZhHMhJoulSDDhrCFGi1by19f4QmvAYq9gOxRiF4oM2dI0jhoSyhjQOOOuE3Bsinfc0RoRnoTwWb0ZEZUXRNUq90pJzSZQgsY/aaDF8aBGcpiri0sqIqJFCTFIT0argugathNKdAe9bUhzlnFnNOG6/H2yGEWWg85bZbMZXvvI1pvM9bDP57H7i/GEp90YaVrx/+zb/73/5LwzjgCSsS81L9ESqCgYlJlVEnZmkNDmE82eqnKsqboiJorRQXIyCnEljkBnQGnIpWAUxiGBmDEIhM6j6zI/Mpy3rzcgwRmKKjCkx7ebcvHmLSxemXL24C0lx1geUFYF7yUJ1adqG3XmHq6IMUw1zW2FJqaJRbQxWGbzVOK9ZD4GPPznkk4dHPHh4wLe//S0ePDxEYdjf7bh54zIXd3fJqfDg8IyT1cBkvsPTt25y9cplmma7n6DeN4EcRlIYGMdBqO9D4PDohE/uPeDoZME4hhrRWs7XItshRBWhkGptcN4z393jytUrXLt2lQv7e7ha61Lb98xB9uYhsFiseHh4zN0Hh5ycLhnGwDiGSvgT0Zl1mmefvsJTVy+yWY48ODzhdLGuUfSVyNh17O7ucfHiPrt7u0wmE7rJBGdNfe8fEIF/Zt+6XXcVSk6EOJKSGIg2m4HVcs3h4TEPD49YrNZiIIrbdUh+ZHooQmj9YUPVeVQpidCtCze29H5dnyeyR6tiqbZlNp+LUGk6ZTqZMJtNaBovpFL9mV3So++2PUN1T/GD44eVzGVPken7gaPDIx4+PODo8JDFmZg9YgwSiauK0DiNxijLMATW615EilbWVtt70HsRLW76gTFK3LuzYp6KNa6tcSLCHmMiVnNvqusTaxRN42rtRsiKMUYRWVWST6wRvzEmUpRzEGMC8nmksYh+ReD6L//Vb/3Q8/OnOf7JP/knf9of4Q+M7T31eaUmaa25cuUKly5d4md/9md56qmnfihNY0uhPT095Vvf+ha3b9/m4OCAsT77n4wn43/VoZTi53/+5/nrf/2v/5HCvK1A6Td+4zfo+/4n+AmfjCfjxz/m8zn/8B/+Qy5duvTHvraUwocffsiv//qvf66jztq25etf/zrf+MY3/tCY0v9ZI+fMJ598wq/8yq9w+/btJ6LdJ+PJ+BHGP/tn/+xHet2PLFK6dv2mOF7Ko3JgzOKikRgEVYvYj0RKnxUsPULRn7+5euSXkS6XPnfSAFI41hqjqEIoi7WGrvOSO260bAKsRZWMMxrftJKVbhVt54hB0XYNrtEMQ6akiFUAhpCFOlGyprEWbzTNtGPWTCQawFtCyqAt5IC3ltBHtM0oY+iHkWk7lWK/UhgKXiv8tKWddjz11DWuP3ODSxf32dndxfk54KEoYgwsz054eO8uB/cfsjg7YwzimhuGQQgh1jJpPMMghZyQCxHFZhxpnKYfelJOQgUKEWctbWeF0FMsRjtB8hNrgb6Cs8QARYpSOu+8lQZ3qgVsrShknHEEpHjqjMYqRQqRmMUhmmMWF0+MUpTSFlQ8J/fIOXRYq8UNWTKKbZa9k7q2kgiFnBOucWgt0QdUx5DRiqZtJNYuJRwihnONIPTHOBJDwuLwTYNWij4MNJ0nZyE4DesB51uK0RitaToPOaGtFIaWqzVt43BGs1iuJA9+zDTao53Fdp5x3BCHAeMbEXNZS8qFfujJJeOtkLMokRBHtDJChbIOikQcxFIoKmNUYTKdUIomDFEa9DlitaGtcX4lRxoFCcXpZonJmvmkQzee1WYBA3SNF/KJc+Qc0CVjbUMPNErTaCks96MUhqyzNG3LcrPEW8tOO6FoEapdmE7wDZwtewakiZRCYNJNax+g0GeJOmmcwilwfkLoB3JOQsZpWtqmA5NwTWazOMbNEvMrBu02oKIUvksUlDuQ+0DZNDy8s6RrruJml+nPAsMm05fMdLqD8hInF/tEDIJ8Lyh8N0Epx7AaKXlBTgObAdAN3V6HShGbA7vzHU7ORrTv8N6yWq1RJEJY46xHG0U7n7A862l0YTKZMGjD4uCQzTCyszsnJU3XaCByttyQtaKzmtQHzGyHSbPDsFyhdcGpALYhqkwYe6azGYuTBUYVhhjZubDHhZ0Z42oJxpAzeA1FKcZQGMOavf1L6E2mDxsWYUMyEyYF9vdnqNayOluB8WjvaCcyF8Yg1ChtPETHOASGcY0GusmEogvD6pTTkzUFjXOFWdeBNpycnSERCwbrOvYuXKEfVhgLZbPGFkTQFyPLfg1RcP+zecN0NiOMmRQDy83I4uGBiBjUDGciQwm0jScMG1IooApt58gBZrMJWhUmdsJiveZ02KBVwWPox4E+JizSCMzWoon4WcuQM5vVwMzPGYaBxhuyioRB6Dc705YxbNiEiGs6csxMd6bs706JcWB1dMqw2dBMZrjJBGctp0cLojX4kqSJMURiEjrZ3sSwGRKTi/usFxLhFFKSJngWAuBs1qKdYb0JLBcryjjSec38wh6lKE4OFrjZLtefex5lHaAr0n3baKtimrjk5PiIDz+4zbxreP+d91gsBvZ25ihV0N6CUrTeszpbMGkajG9Yb9ZMZ57NomezkViGbnfGerEihMxmHKs4zxDiQOccShv6nHDGMtWaxXLJECPLxRIdEtpqmmnDhZllahs+frDmdL1B+0TsBz78+D6ffnqP3b0JL3/xGXRWbNDMJhPOTs5YrVashsiFi3NevHGJedfStZ08P5Mw5lSS4u0QpVlqrWHiNRcu7tD5jrsPjvkPv/ttvvv9D7l/spKib0jszGb8lZ//Gi89e4P9C1O0Urz94X3efPcuuxeu8ed+9ut89atf4sLFfYnvQKNIkAfSuCT0CzarBavFiqPjU955/yO+/b3v8/13PuDw5EwcrFmaylsqjVa6Ou2tiKV9g+9mXLx8lZdfeYmvfOXLfOELz3Pl0kUmTYMulRpXEmHYMK7OOD075d337/Dt19/k7Xc+5OD4lM1yyXq9ph8jly7O+Kvf+DLPXrtCZxyLZc97H93j7fc/4eHxmdAcTMvOzh6Xr17m1rO3ePbZZ7n19DNcuXyZvd0ZXdtgq1DqUXm01J7CtuORSCXQjwMxjMRhQw6R1WrDvfsP+eDOJ7z97nu8/8EdHh6IoCoEoUzkIsdjS1LKNVZIVSoNqHP6hhw46hqxRi9USo01TmIFjMH7lnYyY2/vAhcvXeb6U9d57vlnuHLtMhd297iwO2fWeYn8lR/JI+lKqffTHyVSeuw4PCZlSUnE5R9+8CFvvv463/nud3j79ns8eHjAZrPBWsXOvEOXQj9E1itxhaPAmsLurGHSWgqKoU+cLjf0ozzXt2KFQqRrhOBVspBKlDKMZSSWInEhs4Yw1jgaZzFanOLaGrxvGENguZLo1XEIrJfrc5FHKVuhgyaEQKHQesd/+q+v/4Hj8XkYf+2v/XXOG1z1z3J1/att5Ih6JGB5XHj0uKl726+Sv1Tnc+n21Z/Rs22bWvX3IrixtK2nbZrzpsw2Fk6E+FauVY0I6LMIoY1VxCQNWyMqPFI1WlCoTagaF2edNNKMIolaCooQUXLMoEttGGW8dY/dS9B6z2Q24cq1qzz/3HNcvXGN2XRC07Zo01QzgAhXxmHg9OiI9997j48++oj1ek1IkRSF5GK0kGNjTELWLNIYjzXGWBpYIhgTkow0zaR5XUVXWp038c5bfErOxDapy5pKhSuVxiE5K2hlyFVQaCr5SAwvNZatRtXkuqdRWprlSuk6p4BSBqUlmmy7dzRGY7T57NWURViypf5wLhqqtJnaVNzOUNoKkSNvCUBVcKOgRj3J59NK6FfayDNYafUZUhBKE8YRa4WKNNQGdYkFowzKaKGdJmnUbmP/hBosNOFSyvmemroWV+pRM1sViUWrbWERbXlPQQkdETmmSokIRCLE5DrNRTFEITB6Z1FWiLwlFdw5jdhQiojItDZEFEaBVbqSsKQBLjE/ljGMsq+ytl7bsqfURjGMkUSp4oIslKh6A4t+WYvYBjDWkSoxIheEXGYcqIy2hRQGnn7uKV7+0gtoK43U88b99uzHDNFw5717vPv2HYppCH0iRYhkvGskFpdMDoWS6/lBxEcoLRSpPFJKIkZAG2wjYildklB5BxHQGFNFShRSCo+iHb0ImQxIhJjSjKs1ISWapqnfT+arYQwUBdYoSsgo3+BsQxqDEMbIFG0oqkicsfeM/Siis5LFmNV4UhjPayhG8GTEBCkH2naCjoWYA0OKFGVxSI0EY0RwVK9P64T8llOWKEClUdkQYyYl+UzWelCFGHqGPgAarUuNmVT0wyD3vJH5qZvM5DmspAZjiggTtNIMMZBClJ9hoO0aoYWVQgyRvh/IcSRmMaelMqKNiOFSjJCV0Jrq2sw5EUeTYRMDMUeclvssxEApCqu1iMmqmE57R9+PGAxG67rHV5UwlmmsCMqGIKRko6Xpv7MzI+WAqkYhY6zEazsrBMVUatSbiGdSFfe0vlLpnEVpR4rpfA6QuTTLfd1I/Nw4SsS2AZrWYZxjZ7bL8y+8yIUrV0SQhj6fix89HxWqSDz1nQ8/4PXXv8vy9IyTkzO8a0RgqUAbqePJ8ZT5ZIwiyiulEAZ5ZtjGAYVxCBJxmitpq2S5VpWROOmUaJ0jhSCE4ShRYwowXmpt09ayrrTjVCJGw3K5wfmWmzef4tlnb9J5zxgzrqlRhOPIMCaU1VzcnTJrvawjra103/oIqKKXrZHSGk3TGNq2JY6ZTx8c8PG9hxyfrXnz7be5/e5txjFw7fJFbl6/zKTzeGdZbUbuPjwhZs3lK1e4efMGu7vzR+R2CpAgR1IciGEgDIFhGDlbLHlwcMT9B4csVmsh5m0p0/U8n0eW1shRrYV66puOvb09rl27yqXLl9iZz2m8F5F+FWPmkkjjQAgji8WS+w8PeXBwyGK5YRwGOV5RIhJv3LjEtUt7tJXWtVhtODg+42yxkhonGusaJpMJ850Zu3t77O3vM5vOmHQtzlshJj2+3tqO80VYqfN6JQilSEmJFBObTc/p2YKj4xMOj09YLFYMwyi0txq5CHWtvhXo5m0NuZybILZavHNx87kBVj0m+Kq/GoOxjqZp6boJ0+mUvX2Jg5t0HW3T0HqZw//g95Iv9aPtJ7av3/69CHKXyyUHBwc8uH+fBwcPWSyW9IOYyJy3OCNEujHEc8E4Sp4Lra+12qLoBzmP2whZpYV6ZowSEZkxVQAshL9U11NdI8LmFCWWVxt1vr6zTkwP4xi3t4sQ1dPja6UiRM+6RjNa8//9V//XD/nuf7rj8yBSUlUs3zSNkMiqwP3zJE6aTCbM53O++MUv8sorr3D58uU/ku60Wq34zne+w3e/+13OzqSW82Q8GX8WhlKKn/u5n+MXfuEXzu/VP2y8/fbb/Pqv//oTgtKT8Wd2vPTSS/zSL/0Sk8nkj31tKYU7d+7wa7/2a59roRLAq6++yl/+y3+Zq1ev/ljfp5RCCIFvfvObfPOb32RZgQBPxpPxZPzw8aOKlH7kuLdte2CrOC5wTgs4d9GybUJJkXu7cYwx1sLzow2lNFZKFc9IiMV2n6eVFJ61UdXxYgV/6z3TrqXrHF1jcdaijUVZcRq1Vku8EZa2aWgaT0ARyYQUcUhRNZtMjGC1OLJMMSJGsUL7GFIk1aKzuA/F7ZPqRnLoBwndMIaz1RpVNN5q5rszvvDF53j+5RfYu3id6bRB21LFQZaSC/16yeH9hxw8eMDRyQEniyVxjMSQ0EahSkZliQToU2S13oizVyvGMaCMwuTEeiWuGKfBoGkaz5gz67UQbNrGYZQU5mKUaDZrFf0YajE8kaNsxDOJOAZCSmziiDaaqW/RSgqWShtiGLDeAVIgT0HETBlQ1krxI0rjRWuFCoJh982EIQ4UpSBlcoo4Y8m5SFMHjbGKVhty1lAkuiSkwBgDGM04IG7xWDPbtYhltAJvvTSQlGUIAzlFfEXCl5xIZLTX+E6aP1YZ1qdLUoiYxqKMkUg8BUPJnK02UuAvipKgteB8Sx8KQResVVAk9iylKMfBWsYUiDnTecukaxkHKeaWGKBoVNE4o6qLvxBiRjlD1lLYMRpUlvi0GAuGgvEiOOl8SxwC62FABSmEY+ShqDKUEJjMGkqlMtkaW3B4tsBbi9cab4wUTEthZieoomi1F6etCoQ0MiwkpmMde4wyaGPpY5Rmm3JYK46xMRemsymb9YhSFtN1qHFDcSN22mGMR+s1kwvQ7RWUW/Eon6XI8UAyBdVgiStP1zyFdjucnG5YDgMpKzqjKIzEqCilJ2rYjIoQNU2jWZwuKFrhXMcwCq1LOUU2Fg+gE6tVBpWJBCyF9eCkKVg0YYxs+siVCxfZHC6F+dEazhYrsB2HJwuaacc4jjg8rW5o2wm2GJaxZwyZ03VgpteU0dBYhSmR+ayjL5YUEmUcGTYRjZY4RWuIQ+b4aEWmp2093necDZFxDEzQNBg2w5pJ48mp4G1LyJn5zpTTkxNSjjTtnDEDpeCsNPOK1ijjKTmj1Io4LhlWIxPXyN85S+M9+5ca4lBYrE7QFryD609dIabM8viYxmVKWWMzqKFwfLqEUpj4VggCGSErlETsMyfLFeMIOKGu7e1NwWg2Y2ZcF9q2wTiLypkhJUIecRbabkYaR4acGEPBN56WyNHxERf29mmMIyyhHwOdamidRK6tFwOtd9LMLgHCQFSG2c6MZRhwrcV4Kw0VB01RjDlRQiCdrWT+KAbfTsm1sNdNPMcHgTAk2tZjTWEycwxF4SdTdErkFAgZ+jHSTRuMg74fmU2nbMbIaki4bNDaMpkY2vlcoiFjZugjq7HHHo+czTrmV69itGer3C2VGiHdqimzXc2zNyJOjSwePmBxvGG53NBNGrraqN0sV6SUCbUB6ZuOESjK0HaGPgTGYUS72ohE3Px5k8BCSDVqsc67vZa8ZVUyvRLnucNgUBwvIgcxMORI1zXEKHPmc09dZ9Y03Ln/kDffvcvF/Tn7l3dxKJwSYkHtqmKsxjYK6sxfcpLiJ9KsV0Uc16tBM0RL0ktuXXTcvLzL//mXv8aVCxf4T996j48PDlitl2zWPf/hP/0+H31ywM/+7Ks8d2XO13/qOS7t7fJfvvUG//f/719x54M7/MVv/EWefe4WjZcmJLrDtAbjGozvsG6J0pbGOS5d2OfGU1f5zuvf587H91muBlIK8FixNiP0DZuh5ECMI2O/5uTwIR/cfo8XX3mZ1770Uzz/wnNcvrTHxFmscvhWyEG+7ZhNO249dYW3X7jDt777Fu99+BEnJwvW6x7rLKenPaeTFabt2Jt1vPz8DfZ35rz7/qfcuXufxWbDyfHAcnnC/Xt3+fC9D3juuRd45rnnuf70Da5dvcyl/R06Z2WNJlX9bf251uANRkmEStSBYhtSGLDW4Zzl0sU9Xnj+Bh9+9CnvvPM+775/h/sPHrJebSrBQ8gYOWdUjWFSSksjsq4xZGWoavyYQutyTtDMSZNNOqcuxTCw2axYLk64d+9TPrzzPu+/f5ubN29w9cpVbt24zpVrl9jZ3WE6mTDxDluFKepcLPFDVq4/tAj7SDRvjGFvXwg1L778PH/pr/wcb3z/XX73v32bN15/i4cP7ksDKgdKgUnr2Jk5MtK0TCliTFcPqzTiJWapyBpGKZxydG3Degi0XqidBY21jp1Zy860RefC6XHPECOTidCjFIp+GDk73ZDR9MOA0n2NOZbvYVzLZtOz3gRpsNaInrBtfHyOx+PnRj32Px5rPkn/q7AlH0nM1eON2PpzStn+Y87pSfUV2yi17bXmrMN7T9P4ujbW1V0uzWuN0K2MscA24k2T614llSykOqPJqlCySCCNNeiiUUZX0Yq43rUq5BrbQhUhlfpritIoQiuGELDGsb+3y61bN3jhhee4fO0K0/meiEqMrJlLJZGGMbBZrVgtlxwcHvD73/4Wi7Pl+f4LJFqFUgglU/UUoGrUlgJVCmEsj+K5kH1PLEWanCiM1fV9SyUTiSFF3PvlPOoHEMJGlCiRmBNKKRHAGNkPyhoiybGopzbV12WoIgBdCS4SM5urWMkYiXgrW39Lzudig1wbmUZxfq5UkeZcLrl+X0WESq6qYgAFOsu+dXsNiNEiSvxYFUSI+KfIHsxpOedKopjKVtBRI82UglhgDKEGNMqPMEVInaRCVhKTSVE1ZkWEPEpLJHRJBWuEhpvSlmxT99FFrmW5Dwopi3GmbCM/FaiSKTmKeKzuV402OOMkJidFMWvU/XhOVRyXE85bQJFyRhsRX20GobqJbkWTKkXVa5mnrDJyblUiZRH4ZAohR3kGaEWocVq6ClJKKaQitCWJmDNopyWGWyd0FVI3XvHcq8/y1NOX0FYi3rb3NkUIfpJnrlkvIp98fEgqjqHfNnjFWFGoFFQiWUMIkLPsQYdhFAGdccRS8MaJ8URpEf2QGYM0b3PJ6BIJsYo8ihy/GDPTbkLYiCBDbX+udqz7AeMdKScRYysRZGsUY46kVBhiwqsASY6zJuO9JaLlXkuKFHIVz8m1L7SNkYLEh1prGaLEezs0FkVMo9D4RkSMUsA3ln7TiyjO+a1dTK7JlOtkvCXRjZQkYiJnxIy0pTrriSXFUmPcwRiY+akQuYYBVQoKiVXXSTGOiSEGtFJ45yXqCKGyqVwY1xvZXxhT6SHyjBtzkZj6rDHOUarYKlbjj/dGjk9MjGScNjhvGZY9ygrdQq5LIYo5YyT+bQx4ZXAo+boxVkGiRxkRn2orwtWsIo0xQo8yijSMqCoqEuGWfA/jjMRiDwHvPEoVIUEaIRIbpQhjQBnHMEScMVinZa/pHOMo53cMIjjQJjGxvj4rRCh59959xhD5atcwNXsY6x/XSkjNhULBYFzLzZtPo3Lk9e9+h9XZknEM4KXupZUIs87XdNSoSKVIJdXfS4SnrqSwnERIVWKdj3WdkhPkookJtDI4CzlGYpH5WhUxOJ6sakS1UdjiyCkxbTuGceD27ffQ1nHl0kWaztNqJfO50qBTXfOJuGpL76QKY/WW0l0FGUNMxGxIpWB0pHWWm9cuMpk03PnkEOu/xOXLl3nz9Tc4ODxmsxm4/tQVLu9P2Zu3TLprfHz3IXc//oDF6Sm3bj3N1WuX8Y2v6xSL0iI+FcF9qAZLRdN4ZrMp9x8ccHh8KpTWGstZtkuYUqrZMFGyEBRTjIxDz+LsjIODQy5fvcKlSxeZz2Z4bzDIM0o3IsRx1jKdtFzY3+X+w0MeHh6zXq0xY5S4wpDph4ApisZa9mYTvHNM25bDkzP6YSSMG87iyHq94vT0lNPjU/b2L7Czt8tsPmU66Wi2+4nPLOIerSnEnOBQGIoyFJ0wWuYK7x27uzMuXdrn6EjESqdnC8ZhFNJ32bIDt4XgR2+wpeulshUPbZeE5fz3Uk/OlCJmhZwjKQbCOLBZrzg7PeHk9Jid+ZzZbM58NmNnZ0rTtXjnhHi5XW/+YZuJ7VrzM0M+03Y/oZSIgPb2d9nZmXHjxjVOTk/59O4D7t29z+npGTEMIo4tQt10jQMlsYWlxuQaK8JQpTXbPnouuRLCRGSccpYIWi17eIXGO0PjhTrX9yPDGDDWYIupsY6ZTegpRQnhsqTzJASthQaXM4QQyHUvp0DqE0/GZ4a1lqZpPhPn9nkSJrVty82bN3n11Vd57rnnmEwmj5Fif/gopXD//n1+/dd/nYODgydkiCfjz9SYTqf84i/+Iq+99tofK1A6PT3lt3/7t58IlJ6MP9Pj+9//Pr/1W7/F3/27f/ePpIqBrH+efvppvvGNb/Bbv/Vb56a6z+N44403uHfvHv/gH/wDrl279mN7NislCUF/42/8DV566SX+5b/8l7z99ts/lvd6Mp6M/53GjyxSkg1MReYrdY7ntdVd+2ieekRT2roLtm77R5abXLedSgquqjpklcY5Q+MMzgk9o20acc5rg7eNNLw1NRbD0k1mbMaA1YVp40AZUpGCRMoQQk8/jjjjUEaDsWSVccYyaVpwCoMlK412BkPBKoXTWjLMG3F+5hIIIYnTsJ2SgxQBs9HcuPEUL730PC+8+CLzvX2st4CnALpkwjhyfHLIw/v3OH54wPJswdCv6MeBMRS0tqSSxdkcAsQgRCElDfHzTXvONN5CioQhSvySVQyrgVY3UArWiDjLentedCoJsipEEjHKd4gxEUKW4hTidCuq0rGAIWRiHmizwntNHBNCK1ZYLcWrvM1AV1W0ABjr0Uoy1ikQ44BVRlDgOdJ4OQ8pJRE4OUNGo4zDOc0QRkKSoth86s4LOWM/iKvWg/bSgCtFSVRXUfRDT9c15KjlukLjbEsYhWq0WW9oWwcEjFGUJE1ycZ4K4ngcAxRxYTaNlyZkDrBaSOPPePohEkOWYr01ssG3huJ0dUtuC3PiQO03a4z2FAwxRpQuOGWlkVWksF9IzGZzwhhYLzYUZXDekZRm3Y+Y1qFiwFlLYxzGFNTUs1ye4TEVcQ8RhfOO1sFqLGANRSWKhsZpOjx7844QFGPIKG2krq8U0SrSKEhpbzy6aEjiaO/mU2ZdR4gjYRgxXcsYhQ5htYjwGteg7Ui/XOAbxWQWaHYAG0CFx2YSaTbmFGHU9Cdg1D5+vssyFHIayWMgqwm668A3qDKQhp7GTRjDBtd6uqkj+oYhjsQ0shkSOYtAyxnB4yutiGjOVj3T1sAggoJ2t2WzBq3maN1zdLYkx4Hp3BOxmElDGiNN61EhE3Milg3WZcDjMaghooyjnU2wFGLsmXUds7ajqMKYMmPsySWyXI9oLE3TolxB5YB2Io4rCcIQ5PwVLfeE9hjvGMOIbzxpM7JZnLFuRNjnXUfWmv0LF4hjT2NhcbJi0ycuXmtwXpO1IjtD8YZ+6BnDBm0dynh81+Lbwiw3lJjAZ3KIhCETBhHqsJQi2t58xnR3RkkJPY7EcaR1lrMSmUxmaK9Yr8+EFGAVuiT6TWAkc+HKBeg6lpsNjQUz61joDaebzKpP7M8d6zyQ+oR2HtN52pLY37vIWESsmnSm3WkhwrRrWcaBmMEoSz+O9HmDd5p27pm0lqEPLMcNaEdKhXnb0i/XLPo12hb6KPOqsQ05JExxrM8GhhjxnWe3aXC6sNpsML4VEeMQaIGZ9xirKJNW5rYkcRzL5YK2scx2dgl9YOg3NG5CM2lZ9j3HpyeMSaGMYtK2HB08wEw65jsXAF2bCdLoqu1EjGvwzZwUz9jZ22Xdf0gKI8kUqA5KZR1t2+GNYuxXoA2piICPnIgFiQhVYMlEEhqJjmqNkaZU0VitaXxDjgNZK5S2+NkM7VvSOLAKEW8bis4olSVmaoy4UtiZtOSyT9GOT+4+4P79Y5TT2CnkIlFGLkvzqQ+Ry26XEqIUZo0Wd34I9H0ga3H0JmAcIksyx9bjvaFpPD/3tVe5evUq/+/vfY+337vD4mzFGAbeevd9TlYL/sJXX+a1F5/h6acusz//Ot/63tu88e3/zoMHD/nZv/DzfOlLr3Lpwn6lgXiUkdg5bRu0tfjG03Qd+3tznr5xle+8/g7ffeM2Dw+PGYaRhDRppNeSpcibIiZLAzyGQL/Z8OD+XW7fvs2rX/opXvvSqzz/zE0u7+7hjUPZFj+1uGZCM91lvneBW0/f4o233+X119/i00/us1yt+PDOfVRWNM/fQmEwruPSRSFvXbm6z+HJMZ/eu8/J2YbV2ch6teDhwwd8+OEdbj3zNM88+zQvfOE5rl2+Qte0WGuxjdAQJb5huxYTUiVWkZQGbXHKMNEyX7Vdy+7uDs8+e5NXP7knYqXb73PvwRGLxZIwBmIUsZky523j841rydKoJlXSSKWFGSDr6pbWWqLklEJrQ4oDWq/o1wsWxwfc+/hj9vYucO2pa9x8+jrXrj3F1StXuHLpIns7M1mnGSGzlEfKlMfaDNsiq/qBX3+g+KoUbdtx4+Ytrj91kz//536ODz+8w3e+8y3efOv7fPLRJ5ydHjFvoXVwtlrTRxEIjv3AGDPGOnwqjEMva1nrapxKEfpKkUa86zTjII1paywkODsbSNTo5AI5yJospMxmDIyjREMZB13rmHZzNquR1XpgjEHc1E5jrAOdzs/H53VsDQ3bHpeuvxcDw2deeN44UlqhanTKIxnSY+e3PPo3GlVFSUIEcs7Ste05LcnUaBCtkEg3I5GmIck5dZUiktk60BWpUgK0kr/T6pF5wxkrQpw6hyujhUajajyyrSKlImKJbWyYs14irwvs7O3xta/9NE8/fZMLly4JMUlrUEIKUkVi0zb9mvVqxdnJCYeHhzy4f49P796lrzFLpRSyyiLiqev0AiJ02B7XkrFGC8kgJpQxElFUDQZyGKuQQtefmWo0X4aM0Ii2wpycRAwWajSJNN2EDxhzkRjcIqLAnDLxvOFY543yiL67FfooY85FNxQoVVRTkkTFSHNNVeKdXERFKRE6KSUiqSpe8u4R9lvmGwMGlFG1YSjimwwSu2btuVhOSDGaXKOj4xixdkvcgqy2FAghTUm8XQYUutRYUyCRCGEQQZg2pFhpU0pVgpjMk0VrtrVCVffYCiWRUUr2X6UeY6PEBEGlhlCQ/ct2T1PFwgUle1inUVVsYLd7+iqQsKhKv5Fdugj1IKQi76lEUGKMwqJpKxE35iJ7KUQ+lLWiJInvMTWubyscdLUhnGrEuK77l0KlkiG0KzRijrGaL3zhC1x/+jLKREQK8di9r6rgLymWJwNvvfkR66EQtRUhdMoU5VDWQp2DS4pY7UhJBCXWaXKNJss5EaM837WW77rV7GSEDuWsgpTIOWJbSxxBqQalIpthpJSI84aERTtTRdoSDZpDJpMZdYZiMShUquQr74QsXCLeWIk1VHI9pSL0qDEIWctYi9JITDmWWCRyL8VKJCuqxhQaEfykKOK9kInjQDByPowRCmDbdfJ9NIx9IMRCNxPSSNGFbIQ6HVIUA4A2InR2FtmaGzkPhhoJVigpy/og90KRck6Og5XvnOOILiK2ihFc0xGGXpKPSRhdKXEh0sw6TNHEZCkkrDNEpcS8FDONVzinGIYs16KV+bltO1KRuYh6rWtqNHhJj+pVRTEOAVvjkaxTqKxYhBGV5bs01kHKjClAEQIupUCN9ClFaguL5RpnFJPWS0xikmhXa4WMhJYak9ZSAxEanswX4zDKWqRrpPYUhfhmvQjJxmriycDJyTGffPwRt5xjumNFxLN9WhbOf1+UwrqGa9dvslouuH//QARqqpyLmZRSGCvnJ6ctVa/GYpkMGoZxG9VZBUoIbU0h9cGUM1ZrXH3mZaQOpK0VYXYUUuRWqIiuMV9JRE+t1ajGwxh45/vvUhJcvnpBxHCyYUEXMVekLbFTiYjUGEWJ8nCKW/JMnU+SbLDph1HWnAb2d+d07YTZ/UNar9mdTnnr+2/zwQd3eP/DT+g3F7hx5QKz+ZRnb1zl8OSU+w9PeOedtzlbLnnqxnV2d3cwWupNSonpzSp7Pucaa/HeMZ927O3tcPfeAWdnSxGv5hpvVkU2qYgQRJUksco5s0qJfrPh9OSYo8NLXLl2lYsX9tmZTqpY0AhFTFuMa7C+ZTabceHCPvcePOTk6JRN37PZDBwdK/SFXbTzaBSNV+zuFJyTKMvleslqLTSoVZS9zNnZGTsnu+zu7rJ3YY+93R0a56twTubHR0bV7SpM1l3yvJB1kq1RzxKf65jNply6dIGj4xOODo85PVvSD0LIFVKriIcfs7ZVoZL8YebRHqbq12VRooRWua1TK5VQWQxGMYyMY89mueS4OWY6nTLfnbMznzOdTplNp3Rtg6skufP9xKPb6JEw9vE//EP2E+ID0XTdhLabcPnyVV544XkePnjIgwf3OTk5Zb1aQYl0Xsy8QxQhdUn1GQRYY4j1Wb+lVJ6vF2p9VG9j01NGKxF5j2MkxhqtWhdtOcuxS7kaVbOIb41R5/FyY0hVNF2EgLuNS/8ciW/+NIfWmqZp6Lruc0lMAvmMt27d4m/9rb/FlStXgD/6M5ZS2Gw2fPrpp7zzzjt873vfY71e/6Q+7pPxZPxEhlKKX/zFX+QrX/nKH3vPnp6e8qu/+qt8+umnP6FP92Q8GX9648033+SZZ57hp3/6p38kodLXvvY1jo6O+J3f+Z2f0Cf8HxtHR0f8yq/8Cr/8y7/8YxUqgRyXZ599ln/8j/8xv/Vbv8V//I//8REl88l4Mp6MP/H40UVKjxX8QQo222zwLZIXHi2Ecy7nzQDvPSGM4uzOjzZySssP0MZgnaP1ntZ7ZtOG1ht8I25nSkZryRlXteDZelcjGCyMEedb2rYhhIDVjpAzIQXm047WWJQyJJNp2xZtBH3eWE9UgtyPSTZr07Zld9Ix6xqmsylDimyGwDAqFIHNapSiN5YrFy7yyqtf5Ke+/hWa+Qy0wyDF/JQD/XrD8vgBn9z/iLt3Dwh93fjlSIwDRism3jD0AVUyWWW0Voy5EMcB7aTIOtY4tVIK/TDgrBFakDWEkkhWkY3CKo9RDo246YcwUqJENZALqR+rSEkIS6rAerXCOqGsdF2L1xaNJqMpOdH3A30/SMHFiPM/k87d4M45Kb4pc15Uz6XgnJN+nELQ6dqiG4/xFts00mSICWc0KkG/6pntdEJnGRPGO8T6Kp+zbTwxSlOkxIIpihwjKSSwthZta1RGEQx8zJCSRNP5xpNKYug3dE0nDugi594qS4oBVWrRsEBOFVsdBlR2dG3Lat0zhIzWjqQSRQUykUkzJQPL1RpdwBsLWtFNPZ6W0EehxPiW1XolP38QetX2GBol9CiJaxkZcyIbh1YWow22bVGA09IoyCXV2JttQchKMT5BURlyoW0aiCNJFULKeAXDJjAmsbuOQcR7TrXEfqQ1Ct11chxjYYijxE7kIo2uKvqznUMbB9bSOU0/joSsmbgGGFBNwOxGihXbvqKgSq6ThRQ2c1/IS8+wbtGtBRfwXcf61KBNw+W9C8RxzeJ0gfMt3kwgOXZ2d+h2W1ZjYL0aaJuWSZOwwGozEKJkjggBqtB0hrAZODwamXS+ushHVus1LR27+y2L1UCOhr3dPc76keNFTxkKxnUMmyXFViFJiCSt0TGhrGLWeUzf45Vj3BZCrUPljAkRR8Z4S+M8/XpgPpviW8XZyRmb5ZrZzlSciUoT1ytUSKRmyqg0O3g2ZxvUVFPIUKlyfuaIyTDfnUBcQdzQo/HzDjs1pDyiB8U4DNhi2JvMWcYjjC/4ScO4lkZrM7E02TMuV6RiULZh04+4zjMOiTAWibsYgzjr4ki/6cm6sDedQ9YoZWh8S283QELaTBmlDDob4gDDesPpYsl8PqEzDofCZ8tyE9jM1rjJlE5HKJnGakaVsa0h9gOb9YamaWlMh/OWnAM73sCQyLrQdh2bTcQahYqKYd2jQsSj6IwmlMxp31OsJ5lIxrIaR7LSuBywjYEyEhYrrJvR+A5nHDluWA7S4DVtYL7nSEMgRAObwNiPDCGxv7dD2EjzZbYzIW4GCkXuEdMRQqC2cqWRE4SuMpnOsGNiXG5w0+m5AxWQ+a5GdbQ7e6yXmaQb2rbleLlkHCzRWFQuOOuIOWGcw7mOpDIxJaG7jJHNJpFUovMWkxUhJVJJZGdotJHoC53lHmck5JGhH9j0I1lreY4oizUWZ6wU0KMhEjFEinH0GKxt2JkW0qV97h885PDwDK/MuTPVlMJqteLotOXK7i4Tb0FB0zi8KfQpUhxkpYhFaHviNLacLHqaxjHF4TvNK1+4xrWLU/7Tf9/hd797m4fHp/SbgY8/+oR/c3rK0dmCK/tzbl29zE+/8kU0t/mvb7zBJ/cecufOR/zFv/DnefrpmzSNB6RBa/yUbkfixrrulEnjmXUdF/b3uX7lMr//ve/z3gcfs1huIGpxPFPISWgSuTZEchZHfQw96/WSg/sP+fiDj3j1tdd46eWXuHHjOhd2ZljjhGpmPa5pabuOC/tzXnruFm+8+TZvfP82n9495J07B5ytB1576RleeuY6s3aXp29cJGZFSJF7Dx/wznuf8vZ7n3J0uuTs5IDNasnB/bt8/MH7fPzhHZ599jkuXr7MxUsX2b+4w3w2oXksLm1bdDdKgTXoIsIN5zwxBlzb0k1nTGczLuzu8vRT13ntpRd5+707vHv7fT7++B5niyXD0MvdX6TptRUOPKKI1GZUrhSI+ueqCN0vJ4mD0ypiiiFri46ZEgPjZuDs9JSHB/f4+JMPuXr1Ka5fvcbNGze4eu0qFy9fYH9/l3nbYLeJJ/VZsy3iP7aQ/YHWQpa5vSgRyte/M6awu+v40pde4uVXnuf4+Iz3bn/E9773bT794DZH9+6xXhuIPcpKxMxmXEoMkoJJ62WdhGG96clG7uuCIpEJNVo3pczJ0RlrrclZM+ZI01lsY0mDkAasUUy8g6woRrOz07C7M8OqhrE/IYZenv25RlhZoTDE9PkqnH92PIqHLiDNuvyoufSD3aHyWOPJVLpFqSTBR0NetI38sNbSeMd00tJ4ab7aSrhSSkRKWwKXrTFNWougQBuLdUaOv5LGUMrSZM+q0oAUGGtxol7AakNWIjbI8qXw1tI4i3dWhOeVTpSSxE/lXDDasru3x3PPPMOLL32R67eekvieutfZ3jcxBMbNipOzYz7+5C737z7g5OSYzXpNSgGNqsLPVA+Y7K9kjsrnQqOt0HIrtDU1GgUtBI2slMSxKSUkI7Ykokr6QZFr81z2Efr8NIQxiJDMiGjLIESnUr9HjGKUEGGAqjFvtVlbqAKZUuk+W9JSkc9Xl5DbGBhlJJ5K29qgy1nmsayIKeK9raIuETNh6mRQ5HwLGa+gspDYSipCuagxlVqbx+KXEhSZ07SpBgUyOQScdZzTgJU8N4uobmTvVQVMuRQR5xcRCocgMclKVSKSyiLUsWLOGMcaj6TkZzjvMFhSlGe2MhLtSIGSco1qqdFBaFJJ54SUWApGCYVLoyUinSpqUhKXprYmC5FKnZNIyHLcnJX9aFHyrDOKKgaQZnTK9VpSlhwTVoG17ryBGlM972VLPkFiCK0BLQQyq4U8lorCaYMic/OZ61y9dQlM/Zzbk1jv+QKUWOgXie9+513OViNYi7GWgEJpw7RtySlKTJo1GOUoRdO0HttaQsyEMeGsxZmMxgmBKYNSpZ6nSugKic1GRDJG6fM9usXStpZhjJSoaduWISQ2QxSRrnHEMIKtMZRJ4r9VbUB7Z1AxYpUmIvtoaoNZpYJG/luog1Hin6xi2PQSD9/4SgJT5DBCLrL2BRoMYYwoJ3UOuU6EkJazpmkdlFFqEyh04/BOyL85KVKMaBStaxjzBmXAOEsKQvewVkM25DASiq6iI9mjqmoYy6mQjTz/FXIvpJRwrcchwnprLElbkg5orUgl1hg3QwoSHdn3g1yrTu47XaBkIVaZSYNrO+I44rTMUyiJsR42G5RSWGXx2oIqaDKt0YwlS9xnUY+Es1EEoQawCpKCsBWpaxG3hlivySLNfOs1/apHWaEgK63PX6fQpBJpJl6OSQGirB9jTjRGhLL9EGi6tpKpDTGO6BpBRxUGYRS2KHJKfHjnDteu3yD5UWordW59XKStEMGna6dcv/kMe/u3OVt+QoxC30oIvZwi8VBGGbSWONAQJZ5vDFHi0zQiOEpB6jFaokBlPSfPB13rgClGiRetc3apwmSZJ/SjGhEBrTUBBdpiDaQ0cvvd7xPSczx964YY3FQNbc6JTd8zaR1N68jI881ZJdeZekw8mh+JGkMs5BRwjcM5Rdc5vvDMVebTho+cp+06rly+wtvvvsvHn9xjGAYu7u/SecfufIZB8+Hdh9x+9zanp2c8/fRNrly5hPfb53UBbTG+Rhpbi7NGDGZNw6zruPegko7WPTGpuh6pRMIix7BQaUH12bM4C2w2PYuzJaeXLnH5ymV293aZTTqs0XKdaU1Ta6neO3Z3ZhwfHfPg4SHHJwtWm8D44JiL+5ErF3eZth2qdBIdWmAIA0cnCw6PFiyWG0IYWFSx0uL0hNPTExb7F5jOZkwmE9qJmEZtrUM9tout2jAFRgiVukabaWMx3uFipG0aZpMJl/b3OT5dcHh0zMnJGetNXyNFc90HVlpSFaUWtRXglc+s/8r5Wc7nUE2lQOlc68YFcmaIiXEc2WzWLJZnnE6nzKZz5vMZ8/mc6XRC23WVeFq/THl0Pj6zoXhMvHQuYFKIgXL7p3U+sVazt7vDzs6MW0/fYHG25uHDBxwfPmS9WJDTBlXCo/VOEqMYRZ47FJn/cihEIlQCspiGMxKXWwhjYBUiCi3iJgPaWXneZhFZizhdTGDWO9rG451n2ASGYWsyrWtsU2t2+fEv/r/f8N7TdR3e+88dMQmokemeW7du8eUvf5kvfvGL0j/5Q8Y2oubOnTu8+eabfPjhh5ycnNTnzJPxZPzZGkop/vyf//O89tprP5JA6dd+7df4+OOPf0Kf7sl4Mv50R4yRb37zm9y6dYvLly//sfeIMYaf+7mf486dO597Id/x8TG/+qu/yt/8m3+TL3zhCz92odLOzg5//+//fV555RX+7b/9t7zzzjtPiIRPxpPxPzD+ZCIlpbBWUPRE2SiWihwX5LKq6P9SXUIRXZH2pRYvSi2iOiPUJG0NRlusdbWhMGE+aWlbh2+9uM6yuM2dExdOqSIYgIJmNp1TCkQs2nJeBN1GEBglGG9tLAahRWtj0c4ycU3F6kbGWDBuws7+ZaadxXnN6uSEECOnizUpI4jkbsK161d55eUv8PRzN7GTjlIsMSTGzSlHxyd8cv8em6NThk3Pcb+SBv8Qa161JoRMVJDTUF3AmZTFnRiyiJn61ZpYnaD2scz6GKvoJ2UMFiykHGUTnRJhyKQCsdSohZpDX1TFpEt3h8Yb0A0FcRk3VpzguRRiyNWxgxTvbHVUUohFYiG01vimQeVEGkZIIlXIOZNTwGuLcRbfOmkKGdm2b8VTRmmsrp+5BMZkyLXorDHkLA8SozNNa1ms1uLcK1oK5cZAVrU4n9n0PW1jpeFEZnm2OnfpWSUI/DEqOu8Z4siQIgoR3zgNRgPOEnIWl+om4V2D8ZYxVQS8kQYmWYpQKcl3N9bSOisFuZJRSTNuomTG20I/9Lic8EoQ830/gDOVJCVo5ZIj1iqy0qQgEQnojC0TkvQ7iRpighIiOhpxxneZEjNhHCAbjLJMWkdMmoIRFLuRYv2mDyhryQXGcWQ+0zjXMgyBIY90SjFuMierHpxmt/NYFKvlQvzLRcOYGOJIrk29TCaXnjAWdnYVzX6i2B4lV0MVKGWgNpNCZDxVxHVH0lNC0aTTRBgXaOXYv7iDpdAHadIMw0gsEcXI3v4uJDi8f4ZrPejMdDpHl4wumcPTDSEq1v2SaeeYT+eM60xbBUJeG/r1gLcNXdNgG0s4OKVzDf9/9v7s17IsPetGf6Odc65ud9FHZmRkZVZWVme7MG4/ztEBH4HOBUgIbIRk7vmzuOLGGAnpGCT7gPyd8gfGWLZxOasyK7vomx2xu9XNZnTn4p1rR5YNdpnvUF8Zx5B2VUbE3nutNZsxx3jf5/k9QxcowOnJGSppprMK7y15XNB0qx49QMiBuqlQUWOUpRjD3nRB3vYsV1tcXRH6xHx/wXbbk8gYLYWz7TJQgsxnKVgC0LUbUu6hGLIqKBO5OD4ZIyojk6rhyvUrl+KONoK2mtwnFJrlMoHpmE8UORnanMd7IApJzCia+ZSMo6hALIn+uGVHUQnrjmQT1hsmzQSrBloVOFtuMc5Rl4RWhSElSjGsh4TyjrBtsRaqac36/AyTK6azGWGzJQyZth2EHrQ3Zeh6zi9OsSNFbTKdsI2JahBB4az2XLw8IWYljveUOdrbJ5XC8fMzKquZ7dU0iz3U2ZLaOULpKFXBVYbtquNlP5BCx2w+JScj9IIo5LcuyaxSdCEMiaapUQFCECe/KomoEikZDiYV1RAIKCpX0bXg/RRbCu22pc0RpTKr5ZJu3dHnwP7BlPVyjfUNaiSo6cGwN9/n/OKUkBLeV6SiGbYtz0+XJFNz6913qOazSyGH0Ai0zEvOMJnvc3B4i9s3X9Lfu8f5xQbjavYnNQlNSqAIDGmQiJLphNVmQxlkHtIOtl1P7hLOavIQGYaOPrTkKBj4AtSTqcSNhEQsiTQM1N7ROE3KkZwVVluGEqXAObrhd/E0KKiaitl8ytlyyQtruXqwh1EWV3mSKljjuVht8ftzCgVnDDkFhiEQc8F6g0pKGjM5k/uBOAiZoM+ZSarIoeJwPuH/+bd+iqtHR/zuH3yXzx89p2x6Ti/W/M5/+gP2FzN++m98lTtHhxw/O6bt1lysztisXvLk6WP+t//b3+InfuJr7M3maCWxNsUa3NRjncUYEWEqa/DWcHhln1sfXeVPvvspz45P6IeOnKX5lrMUcmNOJF2wOVOKIeZIfPGE9XrJ44eP+PSTz/nKV9/na199j1s3rzOf1dIIcg3ThcN6TzNtODqc887bb/DB9z7ngw8/5+T8gv/0Xz7i0cMT3r1zk1vX9rl6OGcyqbm6P+WN69d448Z1vv/ZfT578JjVuuf87CXtZsXL58/5/NNPufXmm7xx501uv3mT69dvcLC/z2xS441QtPRYRTdljBw0FozD+kgIPS4lvK/p7YamalgsFiz297lx7RoffXyP73/6OSenL+naljCMEQFKJItq11ooQioAadYXCiUl7M7lC8QxDtgUsEZ+PkaF0gM69vTDhs1mycmLEx7ef8BnV65x49ZNbr/xBrdv3+LmtavM51OJSvMWt3N5X65iyyu1y6Vaadw4qi829XYrXgCHd47r1yZcvXKNn/iJ9zk7PeXep/f4zh9/hw+/9yEnp6fknGiyIaRBRCspstpsCRkCltD3OAdVZVnMayyKi9SilKzb4hg7Na09Ve3JUT679Y7J1JCjxtmCnxoWi5rZdMJ2E/F1w2QSKSkQYhCBDEXc/T/Gm+Kd4EhrWW/usobKTtR2Ocp42sp46vJo6H4lYlJKYbQQYETEZCXKzXvquhKBkDUj+XKMZtMyzwjZSAwV8lsVla9GksxIs9n1wiRT5LLAYdR4fRX1A8IcrRSpiGhEGUfVTMbXV5ASzlVMZjO0NuwvhFJwdHTI1StH7B0s0M5REFJpjoGu7Vhu1mzOLzg9OeHje59zdnpGDglrjdB/EnLf5fIqNmUkC2TKZUNCKAWv6E4oNYp7dvehfOaM0CpyEdqXHA855saIOLOwo+7IfsIYBcrA+PfGKIliK2Ja2d17IkbUozhHfu+u6WOtRJiUlERkMV4TZRTAKG3QVl9+v0KEVpQy7lGBMZYolVH8wygWyqNwcSdaGE0Caid70erVtYbQlIwRMRsUIZyMl55GiwkiKyxGnpl5jGQTDcGlYCgXoSOpmITcpXfkpjIK43aHRqgQOY6UIyNRXrkUVJGYLz3SV2KKGEQkoxGxkCDy5LOkkTQlUKnxWhpzPzWjiE5xGVUoUVsiaCt23D+PgiqFlrVDFvGSHAAFSl/G0eSRMqj9joaXiCScghQK3RDBKCptsCjCMIy3k1CxdhF+QgHLUEQg9M47b/Dlr91F2XEvcdmKLjA+L0pOxBY++t4DzpctxThyl8mpR2FoJjW6jPGjSqi/mYwiUdcVZNhuehFLqYJz1WhEgrYLpAwxDjgrxMkhFKx3WCtivhAiRpmRbmlI2w5nREwG0LUdZIWrjJzT8aqLQxSyUpH9JnkUbihN7StKiPR9wFgxoFS1J4RERgQYpSDU0zxeZ2NkYQyBUl7FdmkF3aYl5YxB4YxjMnNCigPCOBfvBIh9lyk6UjkoSRELl8S4nAJKg/NejExK7r1+Ey7nYiEAZrQV8aPRhjjWO9o+MKkcOUYRp2QgjTHqqhD7fqzH9FC0mNNGgUOMGWUVtnKkGOm6jhgiWoE1lqwgJYknc8aQQmAISW6wlEW06hzrbc+27/GVpa4rskqYDNYohjTGJubEZhvHz6twthqjVDNGGUqRvaIyihSlHmKtIfZCuRrD4S7FdpWzdFGinXb3kbayzw85iWh7COgs+3JX2zEWTZSZOSdSH4VC5sWsZo0nFei7nj/8/f/Ce+99laPrN6jn852Kgy/KJ1BgnWNv/4if/ZmfY+i/zZPnx6AM06kdxdpCNJI5NF9SzsIgUbdlnC/6KIJQPQoNU9kZEEdyixJDWxxjP1OWtZ7V492bM1g9yk4kZnM3V+/mX20UYUh8/6MPqeua69ev4kaR3o7gFGNhiHE0bMknzWkUz5od2VqN7yFTsoh50/hnZw2VNdy8us+krnnw5AXeWo6uXOHjTz7ls08/5vxixeHBAlRhs2wZhoGuH3j2tGOzWbFcy/pzMZ+P94mImJU1OC1GTT2S4rVW+Moxm095fnzC+cWKYRh2h+5yXZNzGcU2Ba3lWZ5z5uwksNmsOT875+jKFa5eu8L+3h5NUwnxShmM0zLPOqmpLhYzTk8veH58ynK14fjlkvW643AxZ38xYdJ4Zo1nWipmk4bFdMbJudQxN9tAGDpSHISsdH7BbD5nsb/HfDFnsZjT1I3Q243+gbg0tRMTKSjKyrpiJNVZY4kmirCi8vi6YjJpmE1nvDg5Y7VeEYbhMgb1C6tBWaeo8YIe17i57J7zu3+XJ4WIvkDrglaZNJrlVE6kJGTtvm1ZLdecn9dMZ3Pm8zmLvQXz2WwkKzmslXNnvrg03QmWfkCZNZ7B/0YPbHdkNIa6aqivNhwe7tH3d1gtV7w8fsHz589ZrdYiHnQaUhj3UIUYIiFmMqNgcVzHOKeonaPvw+VarCjGCEp9SZtMMVOQ79dKiLoYhfOauvaUrAimiLBYq8sEBPWnPt9fp2GMoaoqqqr6C2PSftRjMpkwn8957733cM5x+/Ztjo6OmM/nfy4Jo5TCarXiwYMH/Of//J95/Pjxj/Ve8fV4Pf7Pjp1A6Zd+6Zf+woi3lBK/9Vu/xcOHD39E7+71eD1+PMZ2u+XXf/3X+ZVf+RWOjo7+wu/f29vjH//jf8yv/dqv8fTp0x/BO/wfH6enp/ybf/Nv+NVf/VWuX7/+P/1Zbozhm9/8Ju+99x6//du/zW/+5m/Stu3/1Nd8PV6P/9XGDy1S2iH901gAYCwsWysI3xBk8ymL3dFlsCtOI4sEN8YG+MoxbRomk5pSMilJ8aZuGiZ1zWzSUFUOa400WEcXlh4LFDvhTQojRq2U0SWcpSCRkjRHvRT9TFWjjBJRUl1RcsZqizEWpaVBUWmN12CNZ9MllusN6IJ1hdlsynQ6p55K9NG1KwfcuXWdybRi6Htenq3YrHvOLpaszy9YrddsthtKH/BeaBfD2HCN4yay7/vLYk1VSdSZxHZkjHbkFGVzPh5rXzu00gwhYrRFWXE+l1Sk8G0yKTJG41k0GZPl3JScpBnvrRT/EZFX7TwWTwzpEtWtFAwxAoqEwmmwOmOI5Jhx9QSHUIwKhb7ryEUi8jLiDt9ut6iUqeZ74kxX0DRG3MF9QCmLtR5dQFOEruSsFMiVAaPpUqS2FdP5jJgHVus1w+jE6mPEejfGHllKyYQwiLMvGTCWrpeHgdFS7Om6VmKirGO5belzluZN7kXg4jQqC8Wo7QK5cihVqF1F7CM5QYyKoqT4rq2XwqKx9CHjYsLpQuUsfRakeYwFZQzDEDGlYIw04jMZVwlmOyI94e22pZRC0zTolIgqSGNFSUGfnEa3aMBaaZxSMilHtDOEIVFXDl9XI+lD03UtQ99zuLdHRO4xXYkIjpyYzef4qaMoS1NPWZ6sac8Gtr2IYA7mDUobksqkkrDOUpKi7yPDEMURrCRmUSmYHij8UQu2EzS7qBhhjBTUOZI2gdwqnH2L4KbE7RqtE8pOUDFSeykoXaxXJCJNY0BFzs8l8mCWWpqqpqmgcQatDS9enpBVpg+ByXSCVppps8d0WkPSuEqYFsp4hn5NPWnwyZJLpB1EBFTNakIsqBjYqzXzvQO0tYTNmhgSxVuCzrRDBzlL1NxFh/WRuqnIMTBpKoqznK7O8AZ0sjD0NDNN3w4keingGsuQC6WPDF1PVwasdexNJ7R9i9+rCUGzPNtQiqMymvniEJ0LaeiZTh0lBWxVYWvPwiX6fsBWmrbNNFUtzYM+U8/msLEYPydupahfoej6AVtPGVAMOVOpgCGPgk75qicNKcMyDDijSVlRyMyVI8VC6hOdatnGlqayVHVDAXw9YZ0CQxc43KuZWsvLTSuxgmTmE0PTKJSpCH2PMoquT1A0vrJsNuO94CvWmxZbW5yG9bLlfCXCV6II+JzzxJywrsIrg/YGp2CzbEnO4a1je74ScZ3ypNBhK4tqHOuzDWHQeOdxWuhm69yyv3dA7FZsNis8UjzfaNj3Y+OvG7jyxoGg5Euh0vI5rLKEPkjBvWSGbS+RkkXhXYWyjkoZUjcwlEQfe46fPuLN5h2UNWM0x9hQHdsc2lqObhyh8jtsz0758P4pqS/0/YB2FRYIYYxg0BqvLEoptrGnqjwpZmIG6wy+lvibbRsIKjOZOGm4RMN61ZEJzGYeFQzDUJhPPLXTrEKkHTKx77DGMKRIcpDCQG0tfuLok6FSnn21T9tHNquWaV0xq7w02XJmu+3pmwltSBxMp9KgGTJ96AkaTDLsWDYpRZlDx6icoCIJccdXTjGtHT/3E+9y89oe/9/f+xP++KOHvDhLbLuWthv44Luf8Hg64/npitnehLtv3KZEw2ff+y4vnz/j2eOf4+d/4ee5eeM63rrL5mCpDM4o5kajnEeZino25eBgj1s3r/Jf//h7fPL5Yy6WWwKBoiJljAoqORGKiJQE0R8pOfCs37I8P+Xpowc8un+fb/zEN/jKV77M0dEetZPntW8WWOdpfMN8uuD6tRu8+6W3+JPvf8b3P3nAp4/OePDkgjeuLfjGe7e5e/sKk8rhCrx144jrVxbcvXOLjz99ysNHxyy3Gy5iz3K74vnxMY8ePOLWm7e4c/cut27d5ubNa+zP5yzmMyqrx+K7/oE6tFYGYzxWF7LxlKIp2mOL4eCKwbtGIgVUZvFyzvnxCefLJd3QElNE6x19ZRdtJWvDkrMIBpBG0U6kQJE2UymjuNyMHKasUClhs8SQhGFgu1lzevKSJ48fcu/zz7lx8wZ37tzh+o3rHB4dcHiwz8HBgsZ7vFGYL9ifx3cx/mnXdtj5oHct5F1z79XPaa1pJhOayYRbt97gJ//Gt3j8+DHf+/Ajvve9D7n3+T36fkvse06OX9C2kayFuIGqqBvPorbUuRDJQr3AMJtNYNe4zwmVCjEGlFXU3lIpzbqPbDcD7aAIQ2S9DgyDvFvf1MReEUsiDEI28V5R1T8+BfU/O3aGhh0LhbGhKGv2rEaR/KUWYXTR7zRlqLEpJ3uQuqqEJDLuD8xIUrLWUTkR2GujCSGO+jR1uadQ7Jr8Y4TN6E6/FI5kiUXeKU+MGZuQRuOtGck/5pJEo7TCY0ijiDsmcJXjxq2bHBzuM59OUMpgvcdXnumkZjGf4b0lxci26xmGSNv1tJstm82G58fPuf/ZPWIMEj8bZH+Qo+wPUhTCRylljJWT60QIFnoUL+2afUVE+GoX2awvs/YE3qJRWs6NHo+RmAN2+ywxgGgzEoOQfYfTEpedRjJRLiI4S1lwGQXQqoxxkyKoMtaN70/sCTFGeQ+7JiOF0AcRkvlKSDyKMWoNiTgcxUs7YYm8/5EEJHlYpCJ7PucrMol+6ElFjk3MeYzUk+uGHW2qZJnzkDjKSzlTkfszj681hEjMO3uFiPLVGNmYUpJY31EEZ60ZhUcgh0WOpdJi0FB6jDHKEn1mjRa6YBnhtUoESLoUlC5oI9eptmUUj43N/RhGM49QF7XanXvZH1MKWXFJ2DLGwEhjUFpfkpCNFYEWKGIMpJRo6kqgVkoibHe0Ke89xhsKCms9Q7umbRMhgdKa2rpXormRSMVYU0hJBHWRgrdyLr/07hu8+/U30WYYJ4Gxk69G+giJPGTyUHj06IIXp+1IPsooLURTa0CpQj/0ZCVUOkh0vcwlrkQqY3FG4h2V0mzbVgSyKeG8AxTe1nhv5VgbOXYoQ0wD1lkohlKEEuaswzor5pmSqSxUdQ1ak4dBDENGCTkyRflIWqgz2mTsKP521oLRtH0nt+cYwe28oouJQhp79SIaJGYRh42U3do6QoqYyorQahgAiV7yVSNza4p4p6FkoXdYQ6WFeKatIgTGWKmRYOw9BI0ynhIiJYkJLceEsp5SsgjO7Rj/ruyl0NBYS4l5NDsAWWSPpih0MZQUSEUiiuR6kvetxz1TjtI0rytLlxJDLiTRylFZUMaNRMtENnL8jTFCrxsCdV3JvaA1xQlhbbnqUBrhxWWZRwARe1i9g8GMtKOC9Z40SLSq8V6a+FqhnSEhIn+tDUaBLtANEV9ZCoa+3UiUWVESy2xHwnDKeK+pGicx4zh5Hg1p3AbIuQnDQMhB6lLGUjRYLdSy9XrNp/c+x08n2Mrjqh1BQ4Snr4RKIny++eZNfvHnf5Z//++/zXLbkWOiWNl5MIqjCmCRAzyMzw6ttIh9UGgrCsthEFKbNuCtlSjQBF3XYZzE2uUi915dOUJKxCyEJq3G9Z6Wec0ohbYaM9K8vRej4nf++DtUf/OnOTrYk+uhWFLKxCRUyomXCLOU0mgUS5SiL/cTl+ZJRhKTSMgAjx2j9w4XU5rKM5/WPHx6wvvvf4XZbMKHH37I6dmSkhJtO5C05uhoxqSquFi2fPbxJ6wuLrh79y6HhwejmGFHVfKoSuH0eCFpMfxVdc1s2nD84oQXL89YbzoSiVzSJWWujM+aPMbjMdZh+m3iZT8KpC4uuHrtKlevXZU1hBvjO43DjpG23jkmdcP+3h4vT884PjljtWp59Pyck/M1Vw9mHB5MmdYVJKnn+KuH7C+mnJ6tOTvfsG2FrBRSoO1aVqsVs/mcvf095osFi/mcpqmofSWmxsul806ytLv81BgPaMbrUlOIuAr2tIMie1TrLd1mS9f2DHEYxU0FNRpQSxkl0zvqZtmtD4vUei7NCDJyziPhlXF9l0cCpOydY4z0Xct6vebi/Jzp2ZTFQoRYk8mEpqlo6hrvHeYHxEqvdhM/+ElfrVn/rJLp1Z7CGEMzaWiaCUdXrvDmW29xenbK8fELTk/PaNuNiEDbjhAH2VeN4k+lNd5pvBKh7060bZ0VsXdIozkYWf9RsEbL/ZgKMSRSKKSkSXEXZ1yE2pRECJhTRuBLCvvfh/L8LzN2vQVjDHUtMek/TtQkrTXXr1/nZ37mZ3jrrbdYLBaXe54/b5RSGIaB7XbLZ599xu/8zu9wcXHxWpz0evwvP5RS/PzP/zx/5+/8nR9KoPTtb3+b733vez+id/d6vB4/XuP4+Jjf/u3f5h/8g39wCQP588b+/j6//Mu//FciGnGz2fBrv/Zr/JN/8k8uY1D/Z4+qqvi7f/fvcuPGDX7jN37jNZ3t9Xg9/hLjhxcpIRESeRAhSx7z4WFX2FbkLEWCnUDJXkaEGSauwTuPtRZfWWZNQ+WdCCaKsCOqpsZpyXBXKNq2oxTZ1DrrqKpqbBCIk88ZSwwi/DHaCMoWKRqREnVViZukkp+NSZpfOYP14opIOWG0IqBohw4VL6gqzZ23bnPj1nWu37zOZFKhdME6K4X5mFieXvD5959xdrbm5dmKFBVdyYShI4coCPcC/RDoQk8uBeOk8BVjvGyQFGXRRkQBWju809IYcA6QmDuly+VevLISoyY9P8GoW6UpWQmpQGlxjGr5/RSkkDgSTBRFIiHy6Hw1Bu813tfEGNi260tSldMWjRT9SkYixuLArptReU9IErWlgZCiRObsHYwhEYCRhgmlCN3FuzEEBYxWDDFRcrp0qcShF/JRZaFkKQ6GSEmKyjaEnAgxo7XQpFxlMaow8YYhgzOG0LYM7RZfVUgEjZCrQgw4K8VpoyWDfRgKRjn6fmDSWCqbySVgnKLPEPoBFeRaMkoTk7hoI4qcFLWvCSkSrSOkQY6F0egcofSEXvD9qoiLa+iFnNDUlTRnYiIMLTEovK9JOUs8B2CMFLFVHo9V6KSoy86BnkAXZskTNGxSoB3kelCjm7yUTOp7bNPgjcU6R9yssUpjY0EPiVW/wdeGuvH0g6ZyhcZaGjQhRwakyWYbC6kQu0xtDVoPVFNPHhKzvZrJYUd2g9yDFAS3lgXxXjSl78kXgf68IU8UZubxtoau4J2l9wZbEikOhKFjyIU+JibOMZ15+qBotxmVtkymDpNh1W3YtCsKhqEd2J9LebOa1EKr0pbNZsXezLG32Ge1yrR9HAs7Le1g8bZBGYmF2Vy8ZFFVTCx0RcRTEw+l9AwOtqknBcVm1eJVkQJ0yOTGsy3Qr1raTaSeTTi72NBve2oqlHKcLdewzXijsIsGTcTkgvZTzlcbpk5cxroUQozMDw+pZzXeinM4R+i7SK0UiUipDNpaYurw1lFSoZnsoXKkxJZ221JiwJiaMjhKv6aqhACBDlTTTGWntFWF14nQ9ayXS7phoGszVePo2jVVU1EZy/xoxma7IW1btr1ce6RI7WomE09ShmGzxVtDDj0pZVbrllQK2liu7E1Z9y0xBdpti/KelBJV7bBOonBW2y3kiNFjlMbYSNTWEIc8kqYM69DjAWdrNu0aUxQuZozTTA8WnJ/15DjQHHoinrRsif2G1aYHXejiBqMH6nmD1YYUesK2wzc1F6slfRqYVJrGZJLuWYbANimM0ywmU0rWZA3Geeras3p5QRgS8/mcZlLThYHT9ZpJUjjjJY5JJXFkGoVZTKHriZsl29MXzK5co+zih3a5NtIyQNmKxdVrHL15m8k6sV6es1pn7GzK7cM9dFHiDPeePIijvZnNIBf6fg3WYaxDW0U10RQ1UBtxcscoznxloDKGtu3JRaGVZbnpiXVFxNBUNdhIHwactdikGIoICYZBGqJWa+bTGfEo8+z4BevNFquVcKGKYtsOrNsB1Jr5pCH0kdWmwyqFdUaIZVkoEkYjIqUR+W+yIQyKi9WW2imcBV/VvPPWNfZnP8O1wzm/+0cf8uj4jHbTcf/eMffsCXuLKeW05cOLU64fHUG35rPvP+fli2MeP3zEL/5vP8fXv/ZVFrPZZflY2wl27sG2uKpmu7ZU1jDxjqv7B9y6cY/vfPdjnjx7zrZrSQgtpIzO5ySdUgxQShLaXggMXcvJyTGPnzzi/sOHfO3rX+PundtcOdjDG4NzBmyNdTVuMmV2sODNt27y5S/d4Q+/8wmf3XvCJ09OePTyjLdvXefurSOuHE2ZTSquzGYc7u/z/ttv8vjRMX/0vY/59NEx67ZnPQT6zYqTk2OePnnOG2+9xbvvfonbt29xdHiF+WzCbFpROYPhi+V0JTF/RRqRdW1AWbKSRktTV3yjtuxfPeD+vYc8n885Ob9g225YrVaslltCiMQYpWm+c4YrTVbp0uy/o6woJescETaN0RdqF8OWXzX7dSCZQOg7hr7l4vyMZ0+f8OjhI67duMH169e4cfMGt9+4xdHREfvTKdPGC81GfwEy8APNgy+SB/7sf776O1nLaGOYLxZ8ZT7nS19+l7/1f/9bfPbZJ3z/ww/55KNPUEjc63xq6bctT14sUTlhimPbJobx+CqgbVu00njnhKwYRdRRNZUIcRPEIMKHUjKbdct206OVXDMpdGz7AUqi8iL2yiWi8l9qef8jHrIOS2NE1c6UfvkHpYRUNgqVgMtmgUQPy57AeUdVOSovsSNfdNQbK1Gq2ohQPoRREMAuisWI+EhxGU0t7vGMVkYaWGMTmpyxxsm5txKJKBEbo0jEvBLYqSJRcDElvMncuXObr339ffb395jOZiIcUbImV6PRoG87zl6uaduB9bZltdry7MUxL46P6btuFBhIwysmiZuUPYMaBYDj8Sn6UizFSC8FJYAj5N7bHV8RR0jsx+7qz0WiH0tm3E+oy2PKSD7aEZF2cSx6FJ5IPJUSOpux5JwIUehD2uhRfLubJ6UJq/KraAkzxqtdEjFylujJurmUDI4IrktjCkZf3sUCTMnEIr9LaaG67Pai8rpZSCFZCItC1JC5R48iJUXBWhELmZEMk2K4JHgUpJmXc74kbSkt11BKCY2VGCtrkJp4RhlIBYaYRnKMQRkR6ilrJDJtpK6knMnaSFwbInpTaXy2pN1RlMZTiLvYbbv7S1IMo8hTKChlB3wYzxmIJi3l9MV+qQg0FfgizKKhJGKS86vGT14olCj0SaH7Smy0RmEyqJQZYhDKkCiEMAac1jjG86PG68FpVN6RbjVKJax3lFx4+523eO9rd1B2kPcuF6SYHpBrt8RM6TMvnyz59JOHYD2mspCEzJKMuty/phxJogfBaYP3lpgghoLKAedFVDbEgSH0gCaFRF2N14O3hBhRShNCT+UNVV0z9IUYM0ZlSonEpMc9u5CVQtdSWRHZx1JQ2uEMUKLEcJdEDoo8BIwaI7dSoVhNAFIfCSFTeytUpyCxcqDp+oESsqyxKosqGY28Rj9IZK8z8v5zLvimwXo70nwyKkFMGYuikKQOoYScaYymZHCuYqc6iSGISF8ZShY6kTG7GK+M8wWjPSZajMqkKPF6KDEnGWPRRa45YwyV8+xMOKEfLud6pcD5Skwi/TCS2OTndjS4mAq1d5gk80SI4ZIQphQUAxhLH4bxmuGykbtbg+yIcyLyghQC1nmh7sSARQSLfqRGpW1PZRXKWOImYsh0g1xXNkWsBWUzvqrIw0AaMjoVUjD0IWCNwhmFUYlMIhYDJYnhSIol5JLwVSXChL7HVxWV8yij6IeemCKVdahYZJug5fwXrTi/OOXl8TOmdYW1+2B2+4k/tbZRButrDq9d5Vs/+zP8/u//AZvVGdkYZpMGbzRhJ3o1owjXWJlPowhfd817bTWuKBFNjlGdmUJRInbISeICtdISeaclGlkbqXWVkdZixvepciFeGiElYnLSNKzWaz6/9znz+TfEmIaIG/shjiLLgdp5+hDENKc1eay77KLTlCpjFJzGlUzJhiGkUQzqKFoxmXjuvnGNSe158OQYa95kf3+fT77/CQ8fPaQoxaSyXJx0DE2NKYp22/Gg3bBer3nzzTe4desGs+lUhLJ5JEvZGqccSgdiMCKi1orae+bTGc9fnHB6diH37SgQu+QIFmGS6t38m4LUdlaZoesksmx5wdVr1zg6PGA2FXKjVgqc1Ai0cdi6YjoXes+z41NevLxgu2158OyUk+WGw8WM2bQSYbz3NHXF3mzGzSs9xydnvDi9YNMFYurZhHAp6pkvVmwPD9jf22c6nVJVXkimxuy0z5djt94a/0QZvyqlyCZhjg7wtef8YsnqYsVmK+SqEAe6bpD9ah6FiF8QXX+xFs24FrkUDZUxIk7tqEBqFDWJoB81xiSrJCaIvme73bBarpjOZkxnU6bTGYvFnOlsSl1VVGN0sB7piz8oPeIL7+uL992f+YbLv9xRJBd7C2aLOTdv3WK1WvLy5QvOTs44eflSBJOmYDSs1x1Dimiknh1Gg6kehechD2LQNSIyjklE5dbqUcyXL9cEMaaRvKjGeT8TYySPxHxlx/s0/3gIdf7/PXYi7R0x6YcR/fxfMSaTCT/3cz/Hz/7sz1LX9Z/7vWUU86WUeP78Od/73vf45JNPWK1Wr2kOr8dfm7EjKP0wAqVSCp999hnf/va3f4De93q8Hn/dxgcffMCXv/xlvvnNb/6Fz0KlFAcHB3+liEq/+7u/y9//+3//R/acV0rxkz/5k9y5c4ff+q3f4tvf/vbrWNXX4/X4IcYP3cXYPbQFxw67DZhsGkcXhyoj2lhQ9U3tqZpKmppGinbee5x3NFWFc5ZhdHxW1qGNGZ3UQl1SOMDgq4qYBGWrlBkFOAalLUppifXQWiLIlDhJnbN458holLZY49B9HJ0SalSIKpxyDGEgoTi6eoWvfeU93vny2xxev4J2NVqLezKXSOy2nL845fj5Ux49ekq3DvRhYLVtcbohWwU6QtKkGGAsjqox3oCSUaWgixA5jLLiBERTYkErQXxrRJSS8ysnWy6ZFDNWG4pS9Cmgsnjd0thYUUUcSruNJxTIA7t9ufF2dEOrS6dRLiJaaLt+dFqPx6YItSUqg7LyZ6My3jm6rrssoogXSohGOWdsKTRVLc1GCrGIk1jlgp1UOFtwRopa3juW7QBGo62j265JQ8ekmVIZT0hwdnoGKVI1nhw7XFJoNN5YcTMiKPQ+DSg8JbToXJh4Sx8TXYzYyqNrS4MXhHraIZ8Vla9JKWKco207rLc4HCpqZpUlu0JSA0UlXOUpURNzJESoK4ltEVdxZh16KjyVNtTGk1UhhERSCl0bQsr0/UDja9ZdZhgGJPYo4/RY2B1jKtS4cbZGU3JCK0VQihgzq/WW6aTCGkVIifOuZTprMMqy2mzwxmHUhKbxBCPRI2HoSSkRtivB9StNwWGywmdQSaGqCVOf8SWR2kzfB2YHU1bbDXmAPkQmTUVTidu9i0JzquYDzVFAuS0aue6KEq8igCqRYb3ChgntesJaT/HGY9qIq2dctBecnh6jGk9dNMSB9rwnew8qYpJi72jKxWpFprCY1ZycbkhpAJvYP9hnfdZTNRpjMm2baEPC116aRAlcKHSbM4o2NH5CJlM7iQVzWjPxivXmgmA81EYw/c4zmUxo2zXdRsQTDHD14ArbNEa46cTEGcL6gtliH2pD7Rp0UWyURk8tbRhQZXTN6oKralJQNE2NM3DaDcxnE4zTQqrbRnI0HFy/BkajQkflLFEndPI8P93gfOFAO1KbGILG+gpKxMQWZTJdt5VmwhAwjSEOa7ptJLnCdFoz2TfU85pwscTqwhB6FDAMa2nIakffdpdEiroR0dfp6Sl5SBTvefOtN7g4OaPbDpSc6XMhdx2x9hjvMUrTrs6Y1DXEQNXUbHqN8xMAjk8umE6maAYqb/GNZ7VacnQwpQ+ZzXZL23b0fcEWabg2jUIlqGZT+k1LozN+PiUB5y9PMUnTxIB3hk0fSENgWnu2m46gwU8mdG2gW/bszxy1qYi6sNwMTL2hQghUjTfSBJk25DRg0yDOXKuY6pqYNNtVT04Z42ByMKNte6EN9JpEwNUixpjUC4a2E6pSitRNQ1EGi8T5XLx4hnY19d6hJNKoVwXWgkapCtcc8JW/+fNcffd9Xnz/I37v9/6QVbhA7U2ofE0xNaGXKACKYtt2uDGGTaISLX2vJHKlMuRo6PtM1poh96ShZdY0oBwSSJIJaE7WA95oGid0iagy3mhM0USkmRmGgkJTO4lNXUwbwv6C8/WKIUjkZYyZ7SZzZtaoMuP0fEVdCXnBZEW32ZK1wniHryQWcvcl9KcBVww5JU7OFH0XWcxEOLA/nfFLP/fT3L56lf/99/6Yjz5/xvlyTYgD7XLF+TCwzpn7x+eoGBhC4fhkycVyzZMnj3jwsz/NT3/rpziaTWhqR7N3FXSDn+6K7QqjLBbPtFqwWOxx88YRf/zdj/n403ucnS8JQeIx8ihsSEVoCClGab4a+fchtmzbkYxy7z5f+9rX+NpX3+eNN64xn02x2qL9jNrX+GZKU8+YNHNu3rjG9z/9nO9892PuP37Bn9x7xudPTnnj1j5vv3HItYM5U+doast779zk6tEeb336kA8/fcijF6dsho7hbGC72XB2dsLx86fcuXOH22/c4dqtm1y5csjeVKJ2GzeKecZrcLe2c86i7RRjLb1VdJXl+rTmYG+Pm1ev8PDpUy4uTvHesV6uuX/vMQ8ePuX09Jy27RhiJOXdehEUu2bUq2gyESxlih7JKyPp5tVmUogOWQeMcaQUUdrSDz2b9YrjZ8+4v5hzdOUKt998k1u3bnHl6lWOrlzhcH+P+bRhUlu81WOzf0dOGj9reUUc+G8N/af+TSmFt46joyscHhzyja9+kwf37/P5Z59w/7NPOH78kOdPnrDpDd5B4zWrbS+NfiURqHmMTAwp4ZSRuIUCs9mUw9mEftlTlgMhdVinhfaS5D6sDOjKoKjxDq5d28dZw8X5lm3747sJ/sH2jWJHU8olU0bnNmon09SXonJfebx3WGPFBGHFOODGWKGUpblq9E6so0Yahh7FTmqMfcuXkAmllDQSEQHTjtC0E8YovYuTGyV8SuJbdEqgFFoLMUnJN6O1ZrG3z61bt3j3S1/i1u2bNLOJNHpHgXkZ5/5u1bJZr3j27JjjZy94dvyctuvotsNIaxESX06iNpEIt/H4lF1zrlyKdsquLV0kkmwn4FGjsOMy4q2MNBulKYpLiiqokUbDKBgYg4vK7vVfkQGUkVdQSo3E18t/IqZ4eU9rbWQrIpZ8URMp0EXonjHGH7zXx/8uRVqYQnKRaySVkS6RZI9kRlKrQoQPfZBIL2U0cRgoSQwQVltSLrTbDlVEzFyyxDwpFEbpy4ggocFIWzjFiCqyZ0m5ELLEWCmrsQjx57IhWpTETo1kpBDSGEOkJcbUGoouZCXRZcZaUpLXy1kiq/Tu3lCFEBMGiUezWgRSKQvFR1lNzELQstYyRPlvOd5ljNODIrzXy2vGGsOOOJzIY7R3wCMxhTlnuhhx3qGyZhgGEXw5IRurSxJSGqk1g0SpoygYVAY7XiLaOIwBU2TOjinja8cQRES1i1tSRq6rmOVuv/ulG7z39TtoGy9niqLGX6oAMikM6OQ4ebHlOx/fI2DRIaOtp+862rgBa3AoSkrEPlG0oaiC0pl64kTkA1TOsO2irM+00Gz7NmKcQqtMiIXQSlwYRu4tkwtp6ChKYa1E0FvlKFnqF9Ygey6tQTlykWvVOUsIg4ijlIYIk2ZyGffJSHvKQ4+ra7CKxlhUESOV8po4GrtgF+cnhFtrJVKpiwnv3eU9FIM0mJvpVCINUxQRBwVVDJt2QBtoKkOOhZwUxVpMyagcULq8ihKNCe0UOQaJhDfgncM3Gustqe9FAJfieE8kchmJOTlTxih1Y0VEuN22hDHuara3QCvYrlvZi+wMSqMA1HlH322lxjMKSXfzl7OOTReAgndy3/q6oh9EsGIrI8SuECS+cpwzvBchiXVWqGkxMakregM5SO3CpCgRgKqQQsR5IfNFxDCh1RgbXRRV5aX+MgolvNWUIFFnOBG7FQo6iTlLazGNFRSxj5QIUYlBxDUimCopkYvQjctocHOjcUXljNGWog2WwsPPP2U+adDWUU/nFC2q7B9czWjQjtnBVb7yzQVXr13hN//fv8Gz0zOmlUMbecaGGMQcg6zLShpJg6qMc5EU3JRW2KJICYpSUqtKQUSMowBMa0hF0cUCOeOLUNBTyVIfQ2hWSQndjQxWG3k9rZg2DScvTjg+fsHNm9fluo6JnoDWCqtlDmcUMecUhe5l1GXEZigFKcMVQipoEqYUulEh7V3GWnmC3jg6ZNZMePD0OU+so/mJb3Lt+jX+5Dvfod1s6VLivO0xRcSqKWv6PrDdbLg4P+ONN25zsFhgVME3E9AebTNeGxEVKoXGYPonU0AAAQAASURBVLXDu4rJtGE+m3B8csZ6vRGR2C7utIioNysoSUjsSgmZPJVIuAh0XcvFxZLzK1e4du2aUETrWgiSyqGdwReHtR5rPE3dcLg/5/mLE07Oliy3PettYNJ4Dvcb5pOayknU4mxWUdXXWMymvDg553y1oR0Cw5AIMdD3HduNiHr2FnvMFgua6YSmrqicxRuJSnvFG9qtCxROWbTWpKgIOsj7rLwI02Yz1puVPMdyZrXacH62ZLNt6YeBFOUZVHbi1Z1Asbx6DVm7IASmnZD7CzdDyWMctWRmkvNOqCmizHa7ZXnhqetGYu4WC6bT6fj5Gura4a2IzkSQ9aelSupP/f8X/kWNIuUvLpyQNVrlPe7wCgf7B2xvbjg9PeX87JTVxTntekkIYFKickI2y/GVQbeMtV25PjLOGFQWkl3T1JgCIbTkEinkUZgksaBGMQqrDaUYmtpSjzGjXRf/zGf4qzjE6GDG6EyPc+4yHu3HTZw0mUx46623eO+993jrrbfY39//c99jzpmTkxM+/vhjPvzwQ4Zh4MWLF69FF6/HX7vxlyEolVJ49OgRv/Ebv/H6Xnk9/tqPUgq/+Zu/yd7eHm+99dYP9TP7+/v8w3/4D/kX/+JfsN1u/ye/w/9z47vf/S7vv/8+77333o/0dQ8ODvhH/+gf8Y1vfIN/+S//Jaenpz/S1389Xo+/auOHFimJC0V9YWNVLjd8Rr/KvTZGBEG1t8xnNcbJJtQ7S+W80HSMwVuL0prKS5HZWcNYf5eC0ZhdrjKourwquiENUaWEAqG1oRrjpqSoIdE2zXQiJIkQKEoRQ8AZS9M0KCUFvhB75ntzbu1f49qNG7x9912OrlzF1l6KeUUT+p7Ndsnx8QlP7j9ieXpO37WEIaAzZAuuspTYE2Ii5YzGEnNCJylOJaVIQ3+5D/XO0/dBiEfKEpO4YzQaZV4VJZyrsM6w7XtSVihtyVpTSsJaIS2lKI5ZYyEOskG2Why9SitSlo2z0lJdVXpEHiMEDFtVDDGIo8wIIUGNG2dtLIxFQG0MMUS6oUcrKZTGvNsAZxGGWUttHTpnEhLjZorQRoaQiGFHcnKAZKwbrQmp0IcBayyzxYKqbjhfbkha8PPOa2zjiDGgi8Ij59t4cc4ZDRaDcZZ221F7zxAGIfgoKEWiGmKMmKxBacIQsMaCzuTSsSsvdF0gZ/BWUZmMNQVfebptEKpTiXg/epmHSJuDHK8UqJXB69GJhEY7K/FuIVJrR18C0RhKUXTbjj71aK3wdjK6AgPaWpxVI/5/QDvLkBPWSI49JaJLFNKEEVdnqTzFGkws7M3nJBTZacgSRWSbCf0YRaSUYjKb0HeRUjRDHNC1QnkjhfC2R+lIM6soxYJWmKywJTP0maChmYLCokLAup69qxnskqwSuuwESq+KLqSCGjzdqmbdOVoqYs60mxW37ryJnUU23Za0XKGqKduuw04nmNrz4uQ5i/k1rKkY+lNsXVitI8v1ANqxMBanPJOpphsCz8/PRqGZIvWBCYUbt2+wPnlBEwsxDZytWqrGU4aErWZUdWKzXBKjocsW6wuzqiLGjM0DikDWUJJhMd1Hm0JlMyEZulzwORLagXUszA4nTCZGIi56Qz+sBWGvDDo7VG3lsyUhbUlkXodTjhILp+crlDXMZ3vEYUuJEZ8N26xpy4AZr3OrxCHqpjXzFAlDh/fN6I5X1H5OlwLt0KNNJLZnVFVD9p5+25JDwHpNCYEhwjbApGlQKHIcyEnRhQ7nLVdmU1IKbLotzWzO0A9sOqGV5ZzwkwlD3zIMgUU1oRs6TDXhbH3BrPHsH+yxOj1l3QY0nsrXbIYe3xSGGGQecEbul6rm+GxNKYqqFEKSuEBIWGNpmgkTW3OxXqOcZ7nZSjOz8lR7c/puQ7teM5lOKaUit5lmUlE3C9q2RcVIUxlSgnUs5OxonKKezph5CzFxutrQDx2dr6FI8zmHTKsLF9uWzkSiKdTaMQyJtOpRJFbdBpMz3ipM5ZjWUyptaOqKbtvSdVuMt6y7QL/upSBuCtrUPL3/gFtf8tTz6fjElWeUuE0VSjlqr7lxtcL2HXdenvLxvft8/uyYW9eusJhOpNFaYFhtUKPTVCvNdNqwX9ecna/QztG2A+2mQxmN8SIAUM6TlQFb2JtO8Vpzvm7ZpIDWsNysMdqinWK+mNGtN4z9BmlSaItVQhVQKJpmIrFFMWKtERFbTFys1igN3mnefvOGkGCiFEqXyzXL7Yq9/YWQwfKIoC/Q5yLRi94QQ6JrE84YnCvk3DOpPd/8ym3m84rFf/mA//rxfU7PNnTdQJcLw9DS9lK8db6m8Zqq0ZydPef/81u/yf3P7vP+O3f40jt3+co39vHeUZRDuQn13KBMhTIe5TYcmALqJrPFjNu3r/OdDz7i4aNnbLYdMZWRFCBRXiHHkfA4NqOLPJuHvmd1fsazx494cP8+X/3m1/jKe1/m+rUrzOoKpzRGW3zjmBtL3VQcHu7z1htv8tHHD/ngo494+vwlnz044dmLM25f3ePu7asc7U+YT2smjef9t29x5WDBJ4+O+fjBY07OLujaFaehZ7O+4PnTx9z//HNu3nmLO2+9xa3rNzg62GN/b85sNsE7O65LuBQ6a6WoqkqEW2kgp0ylK5zz7B3tE0NLij1hGPjKe2/z5PExH33/Ex48eMLLk3PW25Z+COQsVCByQqk8PqelAYParYFEbK2VkDbL2IDYxU2llEBrtBGBe4oDQ7dlsz7n7OQFz58+5fOjI65cv86Nm7e4fv0a165e5XB/j8PDBbNpM0Zi7IIn+DOW6C8WhMtO1fIFkf7l9wFDnzl/ORB6y/7BFQ7/xoLh/a9y78F99r//EecvT2jbFZOcyckyDIMIpkdymXZK4m5CoOsGXhy/JLVTSjAoZ7kyP8RZRcmF84slIQWM9FZYzDyHBzOODmYUFJWdcHb+4+yYLewi12RNL0MEKupyr2GMxTtPVTnq2l8Scswo4taj6MWocf8xFiPN2KBX7Iii+VKErzCjiEl/4f2oS7GY3LtfEM1oLaSaIjE4IIKbnYDXGM1sNmUyabhy9Qo3bt7g4OCIw4NDJtOpRDMrBUWRUiSEns1my/J8yfnpKQ/u3+fp02fEIVD0KJsrI1GzFDRamrnl1X2Qx9hm1CjO+oLgbycyQv2gEE8bI5F3UZreahQ1lSJRYRTRGklcGpdRciJCYhQK5UvRYNl1BceRssQS5SSCTP0FmutO7CX7CTm3OUViTpd7ykzB6FdiqqI1VjZEci6NxioRTglNYZxr7SikGn9XLkKb0lri+Kx1dH0gj104jUFbLd+vFY5X8X0xJ2nWoVBaRLeX4rdRrEmRZ1zOGT3SpiSqSI8NfGnmFSUmnjKSY+woRLFGnmEUEbWaMbKNlAkjaUbljFXqkjCSsxJBhCmQMhZNVHncDypSjMQslNZKexH3RjkGu4i8UjJoEVsVJTFecfwslFEIpDRljBLXWeb6AmDUKFTLaOvGuCQ5sdY7UhQyQ84JrBxLYIxkzyLOGGMU9UheiVHiupyTa1GXwp07N3j/G3fRtv/CvPDFpoFC5YKKhrOXW/7rdz5m3UkdIA49s/09tM8McUPpE8o6iZVyDmUN2+2aajJFKUtKLdrAMCT6XibSWouozHlHjIl114nQTKlRRKqZzWcM2y1upGl1Q8Q6zRAL2nqsLYS+J2dFLHqMwTIS21QSinz5LKt8LZHzugjxN8uxyTFQtoWq8TirSEUxJHkeCjFDiynJarR3Y+yixIMVFYW2mzNtN0j8pK9JOUDMmCyCp1ASGjUK6WQYZ9E2k1McaXG79Uw1Go4iKmVybEWcpTUpBInENApSJhUICaEjU0i9iCpkT15GaqSl7zvQGl83tF1LDEHEJtaCltqLM5aSMtpZuqEHrfCVp+RM6AdS0VjrKUqJoFMJvbo4AyGIoLofJGIuIdG1GYyVa95aITirAiElErDdtChnKMaglURQWqOpKiuihgTO13RDgCgkbmUlcq8vGl801jqMAq812264JCSjotDZiqwm+hhFfKJECEtGjGtdJESJodJOxCUGg1VSO0spSz0ETUxZSIulgCp8+tmnVM2UXBTTxfyVIHi3foKxhqaY1AZ7/To//XM/w//+7f+Di/WGPM1Mm1riBpHaWcnpkphutGHSVMRukJlOKfpOCK5KgzIydzIK4ZwXEmkMie0QxmeQGJ2URuqCSuJJ84jCUlrJcRpJe0aL+PfevftcvXpFaGApM+RwKVKtvKwTUkxgDMMwSKy5zUJIGaM/s8pkJVSonKBkO8ZdvXq2GK2Zzzzv3LlBXXsePn2JdYa6mfDhh9/jwaOH5BQZSkGZXZysohB5+vQxy+WK61evsDefcv3mTerGiaVPG7Sv8NqAGmDoQWuKyhhzhelsyouXJ5ycXtB1vVBZxw+olVjA0hilLJQlWed0OV3GIC8vLrhy7SpXrl5hbzGnrjxWGZSStQ21kImryjObzTjcX3H88pSziwu27UA/DJzXGw4WM2aNHFOnNYtpTeWOmM8mvLxYsVpvGUJk6BIxDLTthuX5GbO9fRZ7eyLoaRoRK3kn9K1R0HopzFEy/yjlUHYkWWrZt7rKs7c/o+RITomjw322V484PT3j9Oyczbqj63tCSpSs5NmbdyKu8RUuhUvynNtF6YmRTlaDowyWshNaj+RvnRMpBWIc6NqW7WbNxcU5k8mU6XzObDplNpvR1LVE3VV+rIP/QMDi5Xp39zc/IDJR40LhvzkKQ5sYOjDGc3h0xOH+PtvtlublC1arFWHoUWG4XI/kPNbeihzXUjJpjFQNSYxSTltSgaquMEbu6b4fKVWjadUaEUpNJh5rDc4WNH+1RUrWWqqqwns/Cnr1X/xDP+LhnOP69evcvHmT27dvc/fuXWaz2UjE+u+PUgonJyf83u/9Hn/yJ3/ympb0evy1HjuC0t/+23/7hxIoPX78mF//9V/n4uLiR/QOX4/X48d7bDYbfvu3f5tf/uVfZjKZ/IXfr5TiypUr/L2/9/f4jd/4DYZh+BG8y/+x0fc9v/M7v8Pdu3fx/kebY2uM4atf/Sr//J//c/7tv/23/NEf/dGP9PVfj9fjr9L4S+VBSHFaNnZqLNA7YyQD2+hx4W+w1lN7w3RS4S43BApnpAIfAYq4wYx3kkGu9KUbeFI3gGy6az9BO003DDR1TSoZYxzWyqY354xzfiQvldFhqOg72az6uhbXVx/IMQr5pfZcv3GF23duyUZ+f596UmFMA9oRC7TrNcvjlzx+9JiXJ2f0Xce227LZbklDxmqLrz2giTFgkhSsVLIkGylOisAWxRB6KZBoQ85KEP1K8P4ZiIPg8bWy5CIuW60E+89QKFE+VkzSxNAK1OjYLWPEXkyJFKFkod34yjKEgVyiCJpGMgGljNnucjJzTpcFfcbigVLyfb6qySmijUSPrfrIEKGpKrwyKKPx1o7OcynwXG7FxQJGM2aaplykiJkVYUh4Kw2TShcg4a0nDgPdEOniimoiDrP1pgOliG0k9pHprEFrRPREJkYpglmvGWJPNopeKfCVuLDJkDWpT5SYSIigIeQOskVZaa6kBN46rE20/cBmiFg7I2QYSmCIEa+h5IStdlEg4tRLKaN1jSJLgc5LtENBYrviMEiBWouDp4s9SRUqZ0dnnzRaQg6oiBTbm4k0OYYeb700pVSmshqcx7oyOksDKmbKkEgjLt9rKdQNMQhlzNlR2KUwI0mrMoohdeLutR4wbNYtaKjxdJsO7RtC32JsoVSGpAt+WpMZUCmzd5iYHg0oWygkVImjoEREJQopGuXesXmh6TtHsh62mslU08z2WZ6c0IYOmz21Ej+2n0yY7deUXFid1HRdJMRzDvbnKBNJrYhCdFNx3vWcrnomU48qmjAIaSJaRVMZSJpN13MaNEdB5oOYNzTI+dNEUiw8PV2zmCwwRLzRuAmslz1nx2uJLjOapp6irMRUzI2j7bYMRaNcw+Ag5MJR0TilCKWjcZr12YCuayZ7C07OLmhGQWXVKGLIbNYDlatRBFJI7O3v01MIOUCCYdPSU1GGgXp/Qh4CVVbkIbFRLVXRpGFgNluAkutvddqBU0wXhoo5uU1EXdjmNfNqgVMN2lWknAgZCpqkMhfthoPpPpvtGdoUbhxe4eLinM3yhKq2NLVlCJnBKrlnWnnv65To2xajDJHEZFpTz6Z0wxqlLMcnG/bmB5RNR2MtQ4HN0HLlYEroIhfnA6GNTJShpERJBnIhmsT1WzcZ2p62X3F6uiWGTHO9wjvLZrshIqSyPWNoGsdZjnR9YNisOWjmdP3A6dkFOWmMSphJw3Q6o8RMaFfYocdkQ06RdT+Quo7pYoH3lrNtYn1xhjIZZWo2A3RDj5lbGm/wJqOsQ9uK2mraGFAFzpZrmtmUeT2hu7igp7AdWlxdUU8b1uctqlgKsO2WKJNwVrM+PaFqPNp5XomUXrXqpKlecfTWXX5hNsWbij/54DssqyW1tdT1BOWdiJMyLLcbQlQM65ajpmKxqKkWezxanZBswrsCOaKL0JqGEMk60g3ivp0aj3awDgMDsKhr0tDx4uSMSVODtagwRtgpxdD3FGUYUk8eG0Bdv8VqPSZuFLp+4Gy5pKkdXd+xP2voLNi6QTuPulixWq2F5KANMSZiyjjriKkw9IEQMtu2Zz1sWUwaZk0lz/rKc/PmVf5f/4+f4dr+jN/740/55PEz+iGhi6FrW5KWCJ3JrOLt23tcu3rA9z98wEcffJcnjx/z/GKDni/40p07+HpGUSK0rhceXXnUUlMMFK2ZzqYc7M+5dvWI7330GR99/1OOX57SD72QV5QhaEvJgZyiNJNzwepMDpEcBh61G05PX/DowUPuf3qPb37za9x9+w5Xjw7x3ozxt3MqP6OqOupqjxs3bvL+e2/ywXc/5sOP7/H0+AXfv3/Mi9MVX7pzjTs3j5hWQrmrJ5733r7F1aM97j97wb2HTzi72NBtlwzthuXZGU+fPObBZ5/yxpt3eOutu9y6fYv9g30ODg+YT2qc1UI/BPIuEsjXmFIxhEAyGVvVNHFKGHq6bk3Jgfl0j4P9I9588xaPHz/j08/u88nn9zk+PmO9bglDpOhAyhFBkowu5zI2YRkjhncu55JRWUQb7NaiRpzERHEyG2NI2RHDMLrLz3j29DEP733O1avXuHHzNtdvXOfGrZtcOTpiPpuxWDTU3o5ufC4d0buUqx8QLo2ImR3551KAgczn69Wa9eocZQPeWUqq+NK7d3n77VtcLLc8ffqMzz75mNOTU2Lf0fYtfYh0nTjDZZloqKqaQqLrRWgcc0KFTAnIui6JYCYPAWc006pwdCAkrO0mk1Mn8Xw/zkMO3BgrVi4bkcYYnHd450YRkKwxvbMSxTA21XcCmDzOkFrLmjKPpBh5CTUKjArGJIxxIt5PQqApReJY9Pglgh0RMb0SoylilKiQXbOgpIy1hqtXrnD37bvcvHWdvT0hCNR1LdHQ2gKGBMRhoN9suDhf8vz4mLPTU5arJY8fP2HoBxQSiw1K1pWSryzRcTqDlphfiVUWcQEj1XYXjbO7RGPKI6zoC/F3sr0aKRXSqEslj406OQY7SFLO8j1jv0+On5W46DLu0XaN4Vc3iYxShLqkxv3NCG4aj/94vEVXRh9l3e2slZhJJYRcPV4XRpnx/npF2nJa4kvC5UZF4iF3JhlrJEJQG1lLxJyJw4BxQl8dgjTTc5DYN+9lPZayCMJSlpgibRQ5R4pSJKXASCiWQURBOcratsDYXJUoMBQjaWikd1kRKklEtb+kG6ScJVavZDGDUC5FRCVnUHY8LwhVbrwWU87klHbbXCEi5SgCr1FcVyjj+xdCk0pRIqUoQn7UQipEZaFRKSM0MKtJMaNSoag8Nju5/P48El2VMdKEVSKo2dHlUhbKjtGyBxiGIPeMEoOL0pY+BbQuFKMoUei+pUj05zvv3uK9r9/BmF2o3i72Vj6VzMmFkjQvn6344z/+PttByMXOKeyspt9uiTliikUpoX8Z6/C1EGxMK4KENnc0dQVKKBRKRZQ1dCGy7SPeyb2YkggmihqFLVkRYqLLQvS0ztL1gyTRje8558K6HahcJdeMUhgPQxfpNpmSIlkrrPVCctOaShtCGEQwY+wYJwgTRnFCiVitxExkLa72bNteaiqAs3K+hyFhjES/5Zyo61qoPojhKw6BhIjGbSUCIFOENjWoOBLGIt7VMMYjDW0EA64SYmuJQicJZcBbj1ZOojmzCJSkrqHoglCDtZb7bjptGIaBFHoi8XKNNMQIWsl5sA5lNP3QI1v3gjWjMAkRDHWdkL6Mr1EpYa1n1Xb4ymGVou8LMSQq68a5SMu8R8Y3E5xXlDKw7QY2q47ptMZaI4QvJFLaAo21xAJdynRDwFuH0VKLyqlgjCJpcHU9mjsCJUdUVCJABNokwa5NU7FqA8MwoIkSGZeUPMMJ1BOPUhnrLBQlFPCcyAZCysSup540xHYgEwkpkZXCVxVhiHL9FdmHPz1+xt7BEW/ZimZSo0dqePnCXF1202dR2GbC17/1U1jr+fe/9e9p2w5nDLWvKUbhtcKaNK7FZT0eYxTKqDOEvtCqKPUdMqQicam5yNotRQygi6I2VsRgReZog6JrO2kUGAMIdVsbiYorCO07jc/p5XLJ8+fH3Lh+HRDyYj8MaKPow0BTWbCGojSV0Sht6Iaeruslrg559uuduLNkSgyEIlSgthcCe+UMKIN1jjduXmNSeR4+eYFC8ZM/+U1ySdy7/5CUo1DBK82k1ty4usf52ZLtasn9bcv+wT7ZOW5cU9R1Q8GIeNgZKiORnww9FUK6qWvPZFIzn8948eKUi+WKEAKFUXidC3mMIcy5jJShIqKllGljZOg7VqslF2fnXL12laOjQ+bzKd7ZS1K9dhZrMsZU1PWEw4M9Tk5POX5xxsVqxWrT07aRvXnNwd6MpnJoVUArZrOGqvKsZhPOLlast50QlTqJSttsRrHSfMH+vgiWmqahaZpRyCMCNKV2T6sxcgtDVImiJF7Q5kTOnhgCOUe8L1RVw3Q25fDokPOzC07Ozlku12L6jHJPFNJuMXKpob4UxF/SIHf10MyrlaLUZZWSNUy+XJNktE6kFBmGnu1mw3J5TtNMmM0WzGYzZvPZGHVXUVUO70RAv4u7U+Pa6M+McT/x6q78wkIuI8+ariUXqRGXommmE+5MbhNjYrPZcn52xmq1GuuMSYi1KUuUMuNayloYYxTDSEEsWQRjw7gWKkXmmlLUaEYx1JWTZ16KInb+KzbUaKrZfe3+7sdtTKdT7ty5w8///M/zxhtvXJo0/ryRUuLJkyc8fPiQs7MzPvjgg9fipNfjr/3YCZR+6Zd+6YcmKL0WKL0er8efHffu3eMP/uAP+MVf/MUfStSrlOKb3/wmwI+9UOnx48d8/PHHfO1rX/uRrwmUUrzxxhv8s3/2z7DW8vu///s/0td/PV6PvyrjhxYpWaUl09qJa8gZS1V5qtphx3gwb+1ojlEYbTHa41yF1kgcgxJHcOUc3lsqJ+SePoBSRjzOWorNznhxd2qhElS+QWsrKHTEfWq04M0NjspYUIm6kgg4jCcqCEMgtQNOaw6uH/DWu3d5+0tvc/XaEb6q0cYh+KJI6AMX56ccH7/g2dOnXJyc07U9IYvkIhVISpM1RBTkQkkSHyBFX4124kyJuaBsIQ89qu9RfiJF1pRJRRziCk3IWcg3SaF2UVmlUDSEnBiSIPkzBaXK6NBTl8V+56UQ00eJkkJLwV0ZwUEXpQipCO1HZ+Iwkn+0xnnBiZPziB43aOPJahQAteI0LYNEtFhb0VQTqlriYEpMWAupJFQ2aOspeVRUpQTZSOZ7jhJ9p4y4/VIm6l1zQUEaSKMrNEWDNVKQ8ZVFDQWNIQ2J6XyCdRL1M8QEToRcadPjsVLwi4nQDZAVvhbBXB8CoY+X7vg0xHEDL3EDQ5JmUFGZISYKEkGQTcFZQxoide0EeR6gHzK1MQw5EkrBaCOfY7xHcoEcIyWFsdCeCTldoqWdlngSPbrH7Fh8imOxvDLmVVGgKIYhyLkpZmxaFEIs4u40FW0caIeE9QprCu12A2iUcRgnEVX9plA5EZfEPOCNwViHUo4cM6H0JBKNcxhn8MnhXQMlY12imUxZqi1DtyWHltmeptnPaJ9AiVtaLjgpEBUFpEJaBjYvFcPg8ZMpOVYok7C1FAOH9VpiC7MU5zdDh9Gei9MNVhsa34jbuWuZ+ykXXYeJkcoZhpTIYaB2NQY4PNrnxs1rrJZLhiiErIQhp8D+XkUzXVDrQj8NrLvAfD4htUtWvcbZWq7LHOj7hvPznr7rKMZgi0OpQtVUwIDJmqQdxTnM0LFaOZJJNJWm73swjlAg9isaJ1ElfeygZLzTeK0oQ2EImpwKxRacdUz2ZjTNlLPTLSkOlEGKaRfbFfP5gsZ6VNVgjeb85TH1dEK7bVE6o50Tx76OuLphKImsMoQOW9eoPCF1mvXZCqUrJs7hsyM5h46ZqXF0baGqFNXMsVquWag9Jm4GasBXNY8/fyExel5RVQ2nFxtiVuxf3eeiG5jv7WOsZrUNaJ/Z35/y4tE5Rmkuhi31bI53mq7dcuAVZogor5nPGzbLLaVkNts11WRCVVmsUsTtkj4k+ghDDPTLAe8cTeOwVtF3iXpSkVKgRBi2AecsMSSiT1yszigJjGuksZoSm82KkiIqFs4untFUci1OpxWxRDbrjmIUzoIqjovthsk00njLvGmIw0B7XuhUZu/oCt45Yo7UzYyUAjkPNNaBSajKo4zi8GBO1yfaVc/QDexfvUK3XTKb7pFcIWdDWJ5xUXn2rl2jaDMKNYo0ThiLngA4FofX+alf+FmUy7x4+ZSzzRq7GXBNLULKWNDKYxw0tWcbYWh7QrzgcK9hVmv6MJBKHuNXpNg+9RNmzrJat2QrxIlGOayFWimKr9mmHo3CWGkdxjhGc2SFcZYGaTIMsWK9XbPadGOTNKMVWG1Zt1vuH79E2xtMK0+OIjiV6E9LLAWVMyFkicwc446IkFIgFcWmt2y2gcNFg1IwzQXnDItpxc//9DdY7O2j/9Mf8NG9x6TSElIkh0zXdjx53BNjz1t3bzGZzLi6OOLli1P+83/8Xc7OL/iFv/UzfO2rX2N/fgjGgZLG4NxUuGpCM1/TrTd476l9xcFixq3rV/nuh5/wyecP2bY9II1NiWYY46VKIuZE0hpdEjoNxBhoNy3Pnz/l4cMHfOWr7/PVr73P7du3uLK/oHFe1lC1YVF5JrGhnngODg94++03+e5Hn/DRx/d5+eKMP/jgAZ8/OubOzSNu7M+oKxF47O9NaSaWa0cLnr+84MGTZ5yeLgld5LzvWV5c8Pz5M548fczdt+5y89Ytbt26xdHREbP5lL3FlHosvAtRRYqo1lcSkxMkhtVZifMNYRBSoxtomorZfM7NWzd459273Lv3kE8/fcDzZycs1xv60BNzHOmV5RU4o5SxaV9GXUUhlzRG5EqDXJWCUiOZQhuZT2Mmm0iMgRB7+q5lu9pwOorOD4+ucP3mDW7euMG1a1e4cvUq88WC2Wwicabe0jhz6fYuRYr545sCRAAyhnFcallcZbj+5hHzg0K/WZGGyLqsGUKGynBrNufmjau885X3ePLgIY8fPeLzBw+4WF5gfKRrO2IMKJUx4zO+7SIpRlKBtpdIBpIoo4yRWGWrDX2Addsx9xXOOYpW6OpH6xD6ywwzXke7WDajtcQvVI6qqqRppV4VRYTuY9DGXNJbd+IVq63sB4wQViXN91V82yVNafe7lALjUEojWqQi4ovLmLfxtZVEPEn0nBb6Qs44bbj95k3ufultrl2/xuHRIZPpZIzD2lGTMillurZls9lwfn7O44ePePrkGafn59JQo4wCPWmYpTHaB8plNJ0a4+jyLqomJYhRIpjhkkCktEbzitAh0KhXwg6KxHuRX121r47jq2vZGCGNppQuu2t5JLCOGqZLMbxSO6ITci6NuTRClFIuI23kCVbIMY5Ug/HftcFZh7VCHyCLuEqIPVrmzVFoIhPAGCBcChSRpu2EUjmXy89USqKkUcTFGAGuxusjjaKnlPHVKFiLWYhmZozHGiLG6zFqqUAUupGxGj1SavMuMlopIcuMpgxt9EivZSReZYSgIbE0WmuJTbKyPyMrYspYpUnk8biNx0OQOaLfHKNEd2ch7Z4n47UrawVBOBilR7GYHCc7Xre7iMCUkhhKdplX4znWWQRLsSRKKowwFOIo7EIZtJF4wzSMQqhSSCVhxr0PCBE5lSiioFH8RzEYLWIsrQvWOQYVSDGgcuTuO2/y5a++hXVCYv1ip1Y+sRIBXZ85ebbiO9/5iJhAa0/WEsFnjKEdRCi+q0OEHFHK0HcDEg3vZI8cI5V1dGkXmaVG00/CGYfQIBuhJnUdsUApUZrgJVNXBucrjILaJ4YogrcSe/qkxpj4QimRmBzdOI8XLQQkrcooSkwiRJRCBypEhn4UylhGWqCRPWXqsWPXO43zhDEaq8Zo2aTkvtcyX7ra46yjbcN4T8h+ogsDVVUJ1do6tFJ02w3WCa0YhFomFJIxlnBUMJYS0daKyD4qhnYQcY3RmGIoY3SQ11oi7cj4xtEOIlx31pOSEINjH1mt1hgrNM9cYLVpqaYTGCmqzaSm73vKkKgqSwxi5igpYpwdxTwRqxMVlkTBe0PfZdq2ExNRTnjnhUIXIylnER8miTrUnaJ4EU+kJCaeUjJKFUIX0UoILwrFMAgdVCmDVhaF3B+FLCKwKNFbtXMSNaaEGFb6iKJgjaHrA5qM0ZrGWjl3fSDmhKuhqhoxdVknRLeSMEVEFMZJVKmvJOY0hSQmN1dhjCKHnrqpefLsEdcOj6gqT71YjFTsXYTpJQ9vpL4otK15/xvfoA8Dv/e7/wdDisS2HUXBhhLT+P0Sx5WLIuRC3LR4VzOf1KQUyUWTxjpWzhlnLN5ITHOXs1C7iojyKBJjmSXfFYUce3kulpEIqLBOaOsFGILi83v32T84EBJ2yThrySmyajuMs0wrjyqZMTXuksC+mxNzljlLK6nhxYi8B60ZYqZKmYI8X42R93R0uIf3FcY95wmZn/ypnyLlwsNHD0kp0247UhhIOVFVnul8TgyRly9f0g0D7bbl1q0bzKYLed+I0dPVBmWs3HtBKJxGG7yzzCYNL0/OeHFyxnbbyxSsFZJwuqMCjdF7CbLOIk4siRQTXdtysVxyfn7O1atX2T/YZzppqEbTqDIap5WQp73FV469xZyT03OOT05ZXmw4vdiy3LQspg2LaY13Rkg71rA3n1DXjs22Z7nest5sCUGoR2GQ6LvVesX+asVisWA+n4uQp67w3olJ7wvNIRErGbIGNdJnrTLjM1eItFrnkezjmDQT9g/2uLhYcnp6wWq5pu16QhShtzyTv0htGh/Kl5JnEQZfxqGWnTmhjNebRL+VPM7bo6kzJaGd9tuOzWrNedMwnc1ErDSdMp1OqJtmjBNzWKMl8k5x+brwhfd1OdQP/llBPfEYOyMOlhwjUUVCDBQMxjkmTc3ewT6b9ZblxQXL5ZK8XmFKHslk47O0CF0qpSx7rXEtFVRBl51ocZwPRsF6HxNNSlgtJlfMjx956L83jDF475lMJjKH/RgKk7TWzGYzvvWtb/FTP/VTzOfzv5CYJELkgQ8//JDvfve73L9//8e6Efx6vB4/yrETKP2wEW+vCUqvx+vx54/f+Z3f4Utf+hI3b978oZ6jO6FS13X8u3/3734E7/B/bOSc+d3f/V2+/OUv/8hpSrvRNA3/9J/+U0op/OEf/uHrqMnX4/X4U+OHFilNZxWV9zR1jbWyqTaX9CKpp3rn2eU9e+/FPalk47kr6NZNjbaOqrJ4q/G+QnXDmMGe5c+qSLGpqkkZnKm4ejjjYtsRcmJiDd54lKnQ1uCchpwwukJbhVaZMHSstgMpaWpjuXP3LX76Z3+S62/eQLma0gfKUIgGus2SZ8+f8vTpc87PztlsN/R9z9BHnJOiZk4QwwBlLKTnLJFvKuO0FLSrqiKXKMWqEDhbtlgjlIqAxqYsbiQlLm2Nwo5xarsie+3FMRhiQluF8UbiGaK401IS2UtJUgR21ehwjhmNIoQ4usEtCkH2tu2ALgU7urjQ0kw2zqJikjieMjrWxuYJiOtMo6hrL7F1SZFTJg+ZpqnBapQxxBQIKWNSQCtFbzTFKtwotCp5jGowMORAUULEqFyNryeEIdJ1UhCrfI2h0G17tDaYsiu+G6ESMUbXaTXms5RL130FbG2gbztKiLhQRCxWDHmMs8slU9KIaE8ZVeRaylnJ+c0ZXTR13WC0od12GGvHfqnGTiYowGpNjIU4DBQg5n50jXtSTFRVRdSBGAa8rwgpk7KI6CgFhWG5XIPVVMbhjCF2HSUXpot92m2Pq5xEQcQBaxQ6FryrSUViskBJbEWQvJpqIhFJsUSaWoSAKRW26y0Tv0fICW0U02YGZNrlgFaaxWKC6QeUkwatUGcg5YGQArWb0G7XWAvtEKknkdlVi2ky6AEY0GiKsiR6dAZ6zbCMpE3NxYtEmVh0NUdnw/6+xRa4ODllSAPn6xara3CKqDLWACFSdAGrwFtU0pxvlrQ54ZUIOKbOcHi4z2q7JkcYLlZs80DfB9x8KoV9MjEEJpXBqcJyucYYjSHTrju2XYtxDdpN8FOPNwMXZx3D1uGMxteKmKGpJqAS1XTKxfNzhn5gMpsync7YrjvCsCWmCboYzBDRWYQxk5ln0tS4xuG0IqaegqGLmZOLLZUraO8xdY3znkKilIC3Ba8Ng6k53Pcs9hcULUW6MGSaakqlDL42DMkRthFrEtjMdO4xQ0eJitAmqjqxWnesN5H92uAbaFOgOI8zE7p+Seh65vuHpJyImzWhRFbtkv1JQz9o1kvFOvTSxCgV07rGVoapT8xMIc4atmEgW4/VA6HdMpt7lt5hTaQPkWQKGCTmZbtBVxOUcZSYqGqNtolJM+HioiNVhoO9CZu253y1oW6mHBwdMHWW89NzlN2nqiaEYc2iqtlst/TbxLbtMK2l8hVGZ/bnU4Y+oXXNkBPKaYY0YLylmk443Z4zbAduXL/G5GAP6zwnZxtKVNIIUIX5dEK7WRMxHMxrlDGsY6FkTT5dY3xifjCnMYqsocPT556pFRd51BrvDeQBqzwXZxeosmU2n7BZrih9IFi4WC9xQ6SZTvDzBVIpVRIzs2vJqtEFqgz7V6/yzW/9FP/xP7acnpzSuIxyhjRkklY4b1gYTxeCRJnYCdvVFl8r6qaiUBhCQo+xclklaqNxSVoYQ4HYJ3IqNJOKzXojcY4lsx0C2UnEJzmPQiqFH5samoHeByZVw3a7JSGRGahC3wdQmnXVsd62TCqHsZqihSThvZPnzPiodJWnrrxEbwxRKDwxSZTaKAaV56zBJYUiEpXm3XffZLE/4Y8++IQ/+uBznr48Z7lt2W5WhKHj+OU52zYwnc24cXXFzaMDTi/W/OHv/x7Hx895+Def861vfYu7b75B3VSAwrkGt/A09ZyNPUUpjdUeb2qaesaVq0dcu3mND7//Kaen5ygtMaNDiBJDUaQRzYjll0ZmN8ZAtWy3K549ecLD+w/5yvvv895X3uGN2zfZW0zxRmOVwzuNXnjqZs7+YsEbt2/wla+8wx/91+/x8af3OT1bcrZsebSY86U7N7hzY8HMFrxReO3Ym864frTP4+cvuff4mPOLNUMXCENPu1xx+uyYqzevcfv2G9y4eYubt29z48Y1DvcWTCYNzplLh3IGUBpjPdb48VzIdeGs0DDlv2tpKuzvc/etO7z33rt89ul9Pvv8AY+fPGe53NAPgzTjVRyPkxKijJGCkoQfadJlw2lsvCvZGBeUiKBzlqZiThAVyUSiCeKCbtecnLzg8ZOHHBwccu3KNW7cusXh0RH7B/vs7+9x5fCAw/0ZlZe4XaMVBqnR7yJVACEAIfQUKHivMbamcVc4XiWePrzH85eP6UvHm2/f5Mq1OSkXqmnD3nTKnS+9y/vLcz775DOePX7C8uyEi/MlSkMfBpabLZttyxB29BxwFpra4r2Rhl4qpCjxQi+Pz7FRA47tVqI6f1yHr5wYHepq3C9IZJ9iF8CxEx1Jo8iMMWKviJ3SULHGjhFtZhQqGULYOcULxr5qcBpryVn2I9PK04VEJuNGmswuosaMYjmthHRpjKLyFdPFPrPpgsP9fW7cuMrN2zeYLWagxaVeEmQFKfSs12tOT8948PAhF+cXHB8fs9lsLylEcplGXjXPRLSvlIhOSmFcl2cRqaRC28v6WilDZoy9Ujtn+EiTGgVPkpwoVKiipOmrtEIZETRIH06RixopHCO1T0lESCki3E9FdgM6S1PNGqHblVH4s4tu+yKJSo8opDKKa3biJmA0oJiRaiAUiJySGFy0lq880pCQaKuklIjuRrHWjn6ltETG7cRAFov1DpIQV5TWIsQAiVdTGjXSnYrSpCwinssY81HdokeSlkURlEQukQs6i2FEoSlJRGOUQlYjfS2LKMxoDVnoNLvpwjoRg8QQX0XgKUTwoSReLudX10QpaZQRSEyYsdLMzzmP+xhpuFszIrKAfhhAKYmwVHqk98k+OsYkcX9KiSHFKFQeKUkwxgqNDUolKivjJGovl4y1EhVUshh/nKlGuomisiPlpk8oqyR+PSUUBmdEDCWHKpFKxhpLDIMIoHLhzt2bvP+Nu9hKUVRCzDpqvKJFjKUSpD5zcbLlD//Ld2lzxtVTVFDUlRDG+m1Lyom2DyKIGgUPVsGlcswgUXRF0Q49sUhMn0LjtKZuGobQi8+m7wmdkGOMd+OzToSE1sprDr2InxSJOEgDWRsH2mG8wSpN10VyEIKJsTJHWOtEBOmEWptSFCK088QhknKQ6EXGfWoGbRzOW5yzaCtN71wiBUfMZfzcBTU28bXRSCt6jDDUilQsTa2p6oqiROCbs5ifrNIi1CmaFLLQWbTE2asY5JiEjLKZfogMQ6a2GuMKMYuYSitHLD05JHzdoI0idC2UTBcHJs5hiiEHQ9t3ImhJBaOcrCGcxpqCc46ce0JIEoUXB7TzOGNRNgDpkgRXSoaUZI6rZP8tdGepOwzbRJ8CVWXQudD1PUpJDWs6nRC6jn4ITKY1KQ3YMf613bT0cRirIIpsInXtKW3BGCeXlLOEFDHWoK1Bkem3Hc47au/x1hA3Hf0Q0c5QyDgnFOzQDyhrpEYTosxzQyKGFltVeK9xUmwQYZYq45ynpAaHiDEHxBhRVQ19klpHDB3/9YM/5v33v84NY2kWM3YhVJdz8eX/AEVhrOMb3/wmL1++4KPvf0xKQcRDBUoqGKuonYjvUs4yd+XE0A/4SuivaoyWunwmKYVF6OkZxjpLxHojPzuImD/2vexCnEGX8T4bpVTGGBGY5YKzlvVyxcsXLy9pSiUVQkkYm+m6nsY7rBaRcVFCpiyj6CWXLLWo0VhW8miCCOOaM2tKFgq0VhqHgiSilqqpeOfuLfYWEx4/O6H5hV/gwaM7fP/7H/Hy5Qv6EDk5XVJVFWvfc7CY4S2cn57QtluWyzW3bt/iyuHRSHETc6bzNc56ohlQStYIRlusdtS1CGCOX56wWq0ZBnnWppSFuFe+SPUsr57jpZCzCPW77YaL8wuuXL3KlStH7O/LOt6aVzG5zhm0cXhfMZ1OODza5/jFKccvTlivt5ycr1ltehazCYd7U2qnLok7zlimTc16OuF8uWazbYkxMAyReBYYti2r5QWz+ZzFfMF0Pmc+nzFpaqrKjyKS8SNcrhN2sbsSdSprXUPWmZQ0WhmstfjKM5/NODo85Oz8grOzCy4ulmzbjhiTPNdKGcXOXK7dd3eAUmbch43C7cLlekwuYREjvxL5Znk/Y9RqTIGub1mvV1zUsseZzeZMZlPquqGuK5qmZtLUQrIa41dlrbbbzu/O36gYHl9fazHdWFPTF7hYXbBeLWlDSzPx7B8sMEpjCnjnmM1mXLl+neVyyfnZOd12S9+1cq1QGEKgDyKGTCNNU6siRsnxeQJSi84Juk3HVimcyYSYL6mcP25jJ0Ly3qO1vjQ5/DA0oh/1sNZydHTEl7/8ZW7dusUbb7zBbDb7c99nKYXtdssHH3zAy5cv+fjjj7m4uPhvk7lej9fjr+n4yxCUQEgq/+pf/avXAqXX4/X4c0bf9/zrf/2v+ZVf+RWuXbv2Q/2MUoqf+Imf4MGDB3zwwQf/k9/h//h48uQJn3zyCV/96lf/L1srNE3Dr/7qr/Ktb32L//Af/gP37t17LVZ6PV6PcfzQXYwr146wyuCNkU20tYQsBSZpMEhBeBeh4KyRLyeRaEZLnIEUW8fFtRIkfCmZkiWWLI3Y/KqSSDcVM/W0oYsRi8bpQuUqCgqtIt5Zck6EIWGNwljLdDbh2rVDTNWQi2Z/vsdbd9/i8MoBGcO9e8/YnL6gMoazZUu7vuDl6RntIBhrtXO8Kmk6KwUx9pQojoWspK3rrSeGRIpRGhwhoHSmjwN9COJoHJsIIWZxfTkr1KUxosBZKQiGKIKoApfHJyWIIRPyKDpSkJX8rDUibkpj4SWXTGUdocjvyinLsUlZXMwh4rRGG0shY6zEIagiEQC7+L7RikyIkWLlvNW+wmhFjGNMgdbkDDHG0YGqiDlhvJH8+KKpfCXUqCTHSxlDCYmoFDkXXDE0tkYXcSQWAjGIUG1SNZQskQxOGbp2AK3pYsBYMMbJ5ygZ5700io0jhYhO0ngxlcc4CzGSd2670V1knJEicRGB1rYb8L5h6PuRAqbp+o4wiCt458RDSUMlZyEjYSTecOgDykqcROgj3lbSjHDqEt+ujaPvxU1b1w0piqtySBmswhpDNZtQcmIycVTKE1Km7Vqs0sQhMXEWcqGqamIWAVhmbCBoSx4y3hoOFhO886SccUAOGRUjqWRi6DFDBKNQzhByZNMOTKoGqxLr1RbnJMbHTyqUdrTDQOMTC2vQVWJy02BnPXoMWlFlzKwbxXpEiOeJtDVsNpb68IBsKtYXLduup/YV/WYgpsj8cJ/pwlO7ivXFBSFrUkwsmprGWZZtT+jBakenA/VkyrAdSNsAsaMy0EwmDDnTDT0xZwYyxMhkUpEzpGqP87MTUjknDgVj58B6dLvOMZUnhozKkaEbiMMwOvYqrK2J7QUVENc9fRuYN55Y1dTTimwSUyyH9govTiNoz5AzKXbs+0rmsxxpzweGEFDaUBtFXTuYTwl5kGugFGwW4V09b1hfnAu6O0RmfkI3dMz2GoZVy3IN9XyGJpFK4OXFFpU2HO55cbfrCWhHjj1VM+fk5Rmmsly7dYCOHZpCCtB3LY2pKEkxm8/FXRwV09kck6PgzTWcbzo8mqOjKd4btuctjYfNtsMqy2qzYe/qPvpsgw4DVS00hO12oK483jpCsBw/O2czsew1NX7qKTqxbhP9AHVT09MzpELVeEIeOD5fM5k0pKTYrtbs781IfaSeTOnjwP7c88b1Bf22l7lQe4kG3XbU00rmkKwxtYWk0aowpIFrRwfkrOnagfmkYrMcCINidbZF5cJ8UrFctujK4BuPjhkqRxoyumqY2Yb2fEnImUjEMxD7Dc5VGNtQ25qzl0/pY4RsiUOBDJVRtG3HYm9OToH1ak1fCrokzLTmYHFEXieePbrPjbffoWpmo8NYXfYSdsVTcX9qlK2YT6bYtmPbbjA5UVeeIfd470il0KZA2gzMJ43EyalM5QzbtrANA/0wMG0acht4udpSeUMcAsZIVE0phW4bCKP4o9KGFDLtEKgnM3xj6JCoLEWWmLcSqL1nb29B13ciWMaiVGEYBEc/mzScna+YVB5vhYoozSlDl3sKBTtGBBmjBaGPpqozqe3kWTg+q16cXbDtAtO6ZjadkLWIZW5e2efK//Y3uH7lkP/8R9/n/qNjTjSstooQEherlm0/iklVYbaYwrbj808+5MWLUx4+eMov/uLP8fWvf5X5YorVUiB33jPfMxjjiNWWrtrgnMVYja8rDg72+Ozzhzx8+IyT0yUx9+Q8jMA5IS+mkkijYFarQE4DOUWedz3Li3OePnnCk6eP+Po3vsq7736J60eHTOtGGnrGYEdxh6lr3EQiG9556zZ/8t1P+PTBU47PW84393j5csbd20fsLabSFFADThUW09vcuLbP/4+9P+uxJEvPM9FnjWa2B5/dIyIzI+dKVhXZLJIlDsJBNyARTV1IgC4oQhAg/QX9KepOEiAKkA4BgRIO2Y0jtkSKZBWLrMyqHCJjjvBhTzat6Vx8tj2qcFpUiUck64ixAsgMRHi4m9k2s7XW973v8z5+8pIHj55yfdMy7AIvhpGrmyuePnnCxd03eOvZc9568y3u3jnn7t27HB0fsZzLuxUF2gqFxigoyqGLUPGMKVhbMfQWbUas8zSzOcvlQN1U3Lk446OP3uf73/uC73/6hYiVtjv6QZq2KRWUllZ1uVU6iHBp31jIk+v5VURboShhw6gijekcE1oHjDWY5GDoGIaW3fqGF0+f8cWDB5yenXF6ds75xTnn5+ecnR2xXByyWEgzZVY7ZjOPNwKs3I9JnyTHo6ThvesSH3/ymO/86ffYds/ReiTqlnsXcw6Pz1DFEPrCetNSWcPBT88JX/0q11drPv7e93j05RfEq5cST2UMtlYoJWvcmBMYmM9rSshsh5FdJ2voF1cjuzZSW0/S0Hj359wW/MWPs/NTobFpM4lc1CthkbET2WiisEyEBaPNDxkejJmc7rffVd02ZCRGS98W8rWRKDilRDASS0a4L2oivADkiewga+LF4ZKLizPu3b3gzp1zjBehYlXVHB0d0swaCkpEfu0OqzXdEGm3Gz77/HMePHxEu2sRUtP+HhFhUc5papzKcReELJRzmRpimjiJlqSplKamJoAQGDUi1smFCRnBrZAnFVmnF3WrYZkalxM1ZyJLlenXXnCU1SvSkdnH42RZ55npehaEbKSUkes/ER72tLjpkXwlVmKKjpuERnZqKuX8irgkgqaCVq+ea23U1HiVRtT+uPJEOFA5T3SrgikKp8WYoZWIU3KKxKmxLcItid4KUUhCIU3xikpPUaplInUJMamkLCLhooQgZPTUsBZiElOzXkRy+/tUE6IYIlKUz1drRYyBrPZ0mqkLOb03hOxRprleGtBoJaKSKZ4tJ4nylRhCOX+SREFK7LmcmxBv5H1caSd7JCdROrkU2ZcoRY75NirMGEsucaJwJbQWMhNJzqeu3CRmmtrhST7/UiR6LiYhoTBFLY4h4axFI2YUY4ychxPKcYwZazKV1pzfPeGr3/gQW2dehfox3USy71JZkfpM6DJ/8iefEbXGGk8YgohYjKxHcs74psZXBmssY9+TmMg+zuK0YYiRFKcINZWwzpNCIocEOWM0WOfJJROTiB2FQJZxTuIHs6np+nZ6T4DSHsWA1QacGKckUj0LMS2J6EFZiavMccACeUzEkPHOUKzBOktRGYem1jPaLiNxkSI4qK2FklAlEQdZQ4koTWHR4P0kZJvEdpMgz1aOse8pSe4n7x0xRbx1pHFkGMF6LyQvMm0fUCVQ1xOBQgltOueEtdVEKNLMlw0qCyFIYucjVhnIClf5WzEmaOazhjEGilIMKUIoWAPN0UxoRXoS1SkRGDpvmc1qUh8xtpBUIUURV0rNx0h8WtgxrytpsmuJJQoxo5TBmMwQ4614qBvCZCTTECPGalSeVtdGk3NiOa8oKTIMiQgYWxHGEa0NSluhkN0K8QsxRSrvaOqaXTtM0biGFArJFvoYsEbEfikm7EwMUTmC0tO7w3lMUlJboKBVouQRSk0pUFUztsNarnuxoGG3k3VjSSI4tEYzDp2cOwWsIZTIs2dPOFguUU5TzxbTbPMD43Y/IXsK4xxf/8mfYtjtePzll5BFkFesQmkxmcRYGEOchL8Gijw3JSvGnBiTPP9Ga4kDLvI1KnNLSUtBxJgp54m4p4gp4tA4a0kqY1DENMo8lorUBb0np8yDBw84OznFWHm3MEUZBmfp+pGm8pQyRWoaI5GHeZr3JrGz1mLayxlM3oswCqUo+mEU8pcREZnWCKHWaN64c8p81jB78pKmrrh39w7f/uNv88n3vk+IkZR7xhAwqrBYzKhrTddu+PKLgfVqy5tvvcmbb95jsZiJaAUD2uC8EVODHklG7hs1iVp85bi5WXNzs2G76yglTMKa/Crqb1LEpiQiGibCWpfELNDudmzWa87vnHF2dsrBckHtK3nXK7BGgdayVrIO7z2HyzkvXl7z8uqGth15ebOl63qODxvmTSVCIQoGcIuGeePZth2r9ZbtTsigfc4M48B2t2OzWbNcHrI7PGS5WLBcLKhnDU3l2cexKSMLHaXECKA1k7i4CD11enerkrC2ULzEJFa15/j4kNXNhqurG25Wa7p+IEapZcinm2/vfxElqdvf76cdbufi/fpokszuyYMIdT3lad5PihSjREy3Lev1RuLtZjNm8znz+ZzZrKauG7zzr+hK3mCN/oH9xKSQKq+OTw5CsVn3PH12zbZbASPtoJnNLQfLQyrjKAnGMTKMAas1hwcHhDGyWq24ur6i3W4xOgnBdKo7l5RIWa6JdQ6D1Jv3dV6VCtebFq8tZSJR/jiO09PT29//uImS9uONN97ggw8+4Ctf+Qp37959RWj9M0Yphd1uxx/90R/xe7/3e1xfX78WJr0er8d/ZXzta1/7kQhKAH3f8+/+3b97LVB6PV6PH2FcXl7yW7/1W/zqr/7qj0wdquuav/f3/h7Aj61QaU9T+vDDD//KaEoAVVXxsz/7s/zkT/4kv/mbv8m///f/nhDCX9nxvB6vx4/L+JFFSo1vMGrvQBJ3MsoI4UUJ0cV7f1sk39OUvK/ISdyf1onrmclt63wlTToQ7L+zKC0F133RW+KtFCEUNBmnHdZUEqUWE0PbA5rD4yX33jznKx+9z7037lDNK2ni4iRyIBe2my2X11c8/PQ5u/Warm3puwRqoB8HxgQxZ2a1wyhDIdJ2o6DFlcJZoRrt7Tb9IHhnq4woirQQErTexyNoktKoFLFFCoGu8tKEi4LIL1PjwTlDjCNKZ3HHZ3E4jqM4YPFqigBAqBFaCoEhF7rtFlUKlamk6Fa0FLZzJjEVs3JCU7DekcmUFPHWklURlD0FZ6QwrgGtDEEVnBV3pTXy/VBKaCRIw6wqhlldU1KHsXLdGm/JWTGkjCJycrCgqhuG3cBmHLlpV9S+obKarm8FIW2q6bwlZs1oKYynEDHa0IZxipoxjKGgiFgzFTKcu23aW+1wOWKsEsx6LihTMEYRhkzRCudqcSRrTVV5bJRmsZTKpjz6nAgx4Fx9+5mXnPHNjJIDSSH3fJGIm5QTqkhDwVjLOEaM09TeynmlgvYVvqqgGHLqOVosudpu0GhSzlS1o6pqQoz0QaL+UkoY7ylK0ceBua+IKUnsotPs2i0lgWbE4FHW46247YacKDlIBM+iEddUqolDRzcGrAJnHO1upBRDSSNJJbQayQQompLE8Vy5mhg2nN4p5MVIUYM0SzBicyYDDlXEdZsCXK0K1fwAvCe2jkpDtgGjYHawYL6sySHgcyLEHq0ThwfH9G0AVdju1sQkLrbFzBCcYiQz5oA2ieOLY7xyrMaevu9pcKzWOw6OD4n9KI7tnOkyRCx9H6hrT6BwdHFEnWC9GhjGxHq9YgC++pV3OTmF6+sd2hq8VyjvaXOgoHBZCtPz5RGqRK43O0I7kI2lMRXzWlzwofZsu4EwDoy5kIYI2uJqxTj25BSw1mONpTk8ovKWkjL9tmM7BmbLA9rrDcYaxmAoEcgDZRxpGk/VWNQwoO2C5aEjDYFUxHnXtyua5oCsEraZkZ0hjiPLMIqoL0sRv80tyULMkWETuVy/oJnXqNTRlIp211GSI/aRWAYaq6WhUS0kZi5p1quWuvKsNivoA9W8ZtP3IjbTisZZxqy5c++c/svHJAq77cg4DihjicVQkqLEwvxgzth3jOPIcu5IupAIxBzRxTL0BVdbZocz1l3Ltu1ZWEcbevo+oFTAuxmZnpQC22joerl/a93Q91twis3VNSkpuj5yfHSIMyOlRLpdJIbM4UHFfOaksTcWKu+pDzVHx8d028CuG8gTJXBxvKCMOxGidYm6bnCVR1GTs6FymsWsYbPako2iamaEPrBpW/IYJY4raUz2NMqSGlhvW548esD9d78ipJAfVCjthxIswNHpOV/52oc8/iTzx3/8kqu257BpiLGHgwNUXePriu2uZbPbYChoIISAMpbFfEbTeIwqOOO42XSEYvHWkOJIJuIqi04SteU1zL2jTz3XfcdGK8ygmDVzqtrT9y1t30vEZslTfJuj6waJrtHq9t5PKXOz2qHRHB7McVbhraMb4+R+LhIHA7RtR3R74p80iWMMZBIpa9phIKVC34/EnDhYNjjnMUpRzSp+7qe+wsXpMb/7e9/m2598yfObmk27ZRxacklsu4EHT59zkQ5pmhpN5Or5E35vs+XyxXOeP3vGz/zcz/DWm29MxEjQdsbiwJL8BmsVSRWGmDgohffefZOL8wvefOMZf/Knn/Dgy8dsNokU940QoaTkIqQGrTQqFUoWUU0IPV274ebqBc8eP+LZ45/kq1/7Kvffui/NhcphlazFmsbifcO8mnM0P+Ctuxd88tmXfOdPPuXh0+d89viKxy/WvPnmKR++8xZHTUPTSFTJyWLBxXzO3eMDPn/ynEfPrtnsRsbdyGXfsV2vef78OU8ePuKNN97g/ttvc+fuPe5cnLOYz5gtapy2oCAh5AKFwxQLumCNw3hPGiND3zGMHVoX5rMlznrm8zknx0e8//59vnz4mO99/wEPHjxhtd4yjAPxNrpBIpdKlliigp7imcRRrkEiSSahRZ4atHtBX06QkkbFIC7tOBLHgaHr2e3WXF+95NHDLzk6PuHOnTtc3Dnn5PiM46MTDo8POTo+4OBozuGswVszRXsBU9NjavdTUKw2HU8eX3HzcsMQd2TXcxYXtP0OWy2o/QxnDMvZnBQTzih2JPydY+6/+7+y2v0cX37xgC+/+JwHnz9g7HtUHFltNuxiFHLFRO7p+0Q/ZJRKGKPZDJEYoKoM8cezXg/IukMj4iQ1Ncn2+wLZWggVaR9rIhQSiULZk3T2bmn5hNXtO0NriTHbk5n2RLbbAr+W5ToInVRrg1KTWCRGmmbGW/ff4mtf+4g7dy9YLucYP0W0TNSVUmAcBtquY3W1ZbW64eb6mqurNZeXz9hut6LlyBJPIjb1QghhOh85xpTz7X4iJhGEaibBz2QY0KpIzNSegjEJrLSR5z/EKKKsIqQOJmpKzgm1F/3kfSxM+QHKxXQ5lIijrZFYpzCOQv+Zfr5SEzWpTHQLNe3NJlGPHFOZ1ucQJ2iBxJAx0Z9eRe/sRWn7WBW0EiEGIgpy1lJKvP1cnBYhWowSHzWrvBhaQmJIkT4MOGMxCsJEKnJuH7fFtMeaKEJJCBkhJXHaoyQesORbUZXSQv8pSklEOULNkeSUcisGi0koUVabW2GWsQad8+25qaJuG8ghRREETS65QsFbJ+83JYQfMwmyJKqt3BKqUoq39zhT/KUyBjNFB5UShcgyjtNtU9BW/j5lEbrlPX1OT3SpnHDGTnF+Gm0UYxhFiIOQkEQYKKLAmAsUEQUZL/MHuZBTkDkM2f+EkOQhy5GispB/lShayyS2s8Yyayw/+VPv4WsRR72SY+8VqRqKFjJeKnzr25+w3g1gLDkIBaToSXBQeZw3kDMJIVIplal9IzHaIOvuoii64J2sTzMi6FOqUM8bIR/FKKYhDMMwUtXVJHTV8o4ASpnEVtaQgGrWYEuBXihgw9ATgbPTI1IDfRcmkZkCYwhFyC4aESz6qoGSGMZACpGiDVYbnJ2EbNNznlIklUKOGZTGOE2KIlLVWu5xW9e3wpgwBoaUcb4i9iNKa1LSkspdohienME6eSlq7fG1uaWAGaMIscfaCqUy2lWUQZFSwmepTaipqR9KJGtZJ8Yx0fUt2hq0Sjg0ZcyMRcTHJY1YJ/UNYz0pRBQiDFNKU0ykhIDXllwghki2WvbZWuPrhlmGPolQLYwRay0hZbQSUZ/3FmM0Y4hYXagqCypPEUgS/RgTaG9RxjDGSG00pWh5DigSma6ExBOLUIJySvJ+yIVUImrMdCkz9oHKW+azudCvkxxXNRGRtZrENiicsyLyKoZh2Bv1ktCTNWgCYRSaX4kFo6xElAG+EnNcjBHjHIRMiCM5RqEOFShF4ZRldXPFgwefcd9qjHV4V93CWm5FEfuhhKZ0fnHO3/j5n+P/aFu+ePSIupJIX2ct2ReUkai5MYwYJeTDGMVkaLRmNquFVu00uY/ElPFWC0ktizDUak2KIm4ySojiw5gYp+fBmImKFyGmSEhJKNiTeHm1WnN1c8Pp6QkFEYcXCiEktrtO6GBGSVRYljlPq1dEnJQyOY+T4U6EL2ShVZWSSRnGMRCVxAPWlcM7EcEarTg6mFNXnuWs4tGzS372Gz/DxcVdfu/3/zNduyPnzLbryWSaWqL4xrHn6uVzhq6j3W15800heFbeyeegDNYJwTtN1Nk4iacWc6irioPlIS8vr7i6uqHrelISVtp+FSQxqFP8KDKvq1LEUBMD49Cx223Ybjacn59zfHzMrJnJO0CpSdyn0dqKAMl6FrOGk6MDnr+85upGhD/dc6lDnB4fsmgqvBERUVOgcZ5FVbGa7VhtWro+yM9OiTRF3202Ww6WSw4OD1kslywXc+pKooqNMnugoiybpihTXWR/pLzB5CzCoInwZq3E91rr5DodLNhut1zfrLm+XrPbdcQUSTlN82+eyEX8wPp9olCWaUk2rRf3Qm+lyq2oLxcFZEqZ/qXS6CyG1RACw0RX8lXFfBIqzedz6qqhbhqq2lPXnqryOCNzvL59FAuvjkwRUmK77djtesZxqr1ZR0xyXY0yGKVxVkjqUCQ2umju3bvg4u45m+2W1c0NN9c3DJ2Q7WIY6UMCnSfxtyYmiadMpWCUEDz34rwfU/3Pj60wSSnFyckJX/va1/ilX/ol5vP5n/n1YiLIXF1d8fTpUx4/fszHH3/M1dXVX9IRvx6vx/9/jouLC/723/7bknzy3xg5Z37zN3+TBw8e/CUc2evxevzPMT755BP+w3/4D/zKr/zKjzzn7oVKfd/z/e9//y/4CP9849GjRzx8+JD333//r/Q4lFJUVcXf/bt/l6985Sv8+q//+msR5evx1378yCKlRdOwd2juXamNc+gJy+u8FVISUhhQRqONFIv15Hbeu55lEywNx6qqqfzkbjFG4nFiQiHFx8p5rDJUtSVGRYyaRoMzimIcR0dL3nnvPd5+/z7nd86pqhnSLJIG4NAPPHn8mKePX/LyxbWIEfqIteLEDiUT40AK4nTdN0viMDAOAzGJc88YidyIKUv0W4qUrKUQprltcGitSFGjkxATjFPEBAmJDRnDwBgjFEhAGiMZEcyYqQgXYxbXnTXUtURb7HHwORViBlxG58LYD1PmCrTdTvDazt+eh9XiTFNO3DsFKdgobaiqmn4QV6R3UuA1U6GiGPBIfErOiaxF+GKNFDSLEWqOUQpbMo2zaGUQl3cmlgym4EvGxi2bZ8/QpsYpz/FsAUVJQRG5lqhC10s02hCDFPdDYN40JBQkcRk749FGk0KQZoCWTflus6UUoRsBpH4ka0NQEacUxlhCiHhfATD0A4u6xmpLPbmTi3O3ruBqNmMYRyEvGUuKBaUswzjFMHgpEiyaORRNiKOUOIqiH1u515PCVRXbbkvdNBKVkeQ8jXWUHHHG4KyWXPFFTTdmFBbvHSUMzOci5MsxYbSl6zuMsQxB6FKz5UKIW7FFWcU4NWFSGMT5VDJ913F4siTFRCwZ5y3jPo5hPiOFSEwjWitOj07o+p4QIpvNhqPDGUYlGhtgkdHLAUOc6puZQgBE9KLKAHGkWxuuX2rasUZVjpmbc71eS0NHgasduyETbnrGtmXeONqup1i4e++Epw8eUTvHug0sDg4IaGJMbNcjtraUBLN5w4gmKzg6O2N8qSFm6uWMUjTVwYLdEElDoNiRWilUsiIyijuS8exipGo8m7ZHeY8qmqcvb6ibCq0KtdZ0mzX9ONCh8MowWyxEGDi2nDaOLhfGMZMbzfnFKbkMeOdZ32wneoymjRHlPEezBWPqSN6CMpANqvTMa0dOlsubS7rVNXYxZ2sHlkfHxNjR73akmBmGmlk9R/Uj9RJAcbPpySTmWp6R2FvisEE1PQpDjIGzs0OGYURZzbjrKEWja0uOlnGIVNoQh47TwwWrEFAx0LU7vPPcPHvEwXJBddSgqhnXlxuyyqgg7tMuFkoZqIl4q9iMLbk4cojoymGsJaG4Xt8wqz3z4wNWlyvA40zFMAQWy5rzswPW3ZbZ8oDL/opuSKzaFVXl8FOEWbfbYvWMvIk0VU1KjifXLTddYukdWgUsCdM4XO0Y2hadCiUZRp3wlbw7MA5tFQ5F2w8oK3POEKSAHkk4YxjHSBczTYHj47m831NkfjjjardmHCJXlzfMGkMzueQ325foocbVjrp22AK1s/iTBd2YGXaZXMTtbbRmyJGDxYwQI0ObqeYzzs4a1kNgc/2Sw+MTlLXsoxrgB5rtKLSx3HvrbRrrWe8yv/9Hf8jNzTXOGGw9463zBW3X42Y1IQRSlOK58TWNc5gwop3Beov2C6yT6C/rLUMw1NGTxoG+HQgklFG0uxUuKXFYJomWK2LrnZrVenLGj5RSqOuG7XbHEGTeZXJljkOg6wb6bqCqPIvFAdaLw7BNI6Ek4t5VmmEYAuMYUEqa6YLyz4QgFLfiFNlD2WyEYHa4oKrnWGOofc3JV9/m7tkh5yff4Xe/9QmPXyg260Tb95Sc2PUtT15kZk0jsat5ZLfu+dNvd1y9fMmjR4/4xb/5i3zwwQcslwu8dWjtsfWCGghFkzBY71jEhrBMHC4XnBwtuTg75uNPvsfzF5cMgzS4cpH4nFwSMYOmQIwoldDZkFPkKgTazZrnT57w2aef8/Wf+l949713uXfvLifHB8ydlTgybbAHNdbVNLXj5PSID955iz/++FP+5OPPefL0ik8+vebpsy3vv33CB2+fcXGypIwJV1lmy4a756dcXq55+PySzx4/52a7o9+u6Lue9dU1Tx5+yYMvvuCtt9/hzbfe4t7dO5zfOWd5sKBpPLVzWGtu6ZFKgzUOpRxRJXJRZKXQ0U4UFoM2AWcdi8WMs7MT7r/1Fl8+fMJnnz7g4aOHXK9WdP1ISkmaDEWa4WUSRJR9RMLUgIf9bZhvi+plQgXoIiJypSQ6IuqA1gEdhELQtVvWq2tePn/Kwy+PODk54eT0nPPzC04vTjk9O+Xo4IDlfM7h4ZL5rJp81gWnhbJBFiG4WVh2aqTUig/ef4ef+Pr7NPNjwihxQSqPVPM5h25OtxMR6Xa7ZsyRw3nDWz//M/z8z/403/vsEZ89eMjjLz8nPHzAsFoxa2qZ11OP8R6TJH7HeSciEZWp0Oi/QmfQf2t4OxUTBTFEKeU2mktPZBqlp6CdKbZBTWtQifZ71ZxQai9WUhirsWVvonhF3AH5I2uFxmatmhpWUwx15Tg5PePdd9/mrfv3OTk7Zj6fY6xD3r3SvIwxsdmsuLlec311w6effcp6taFtd8AkHstRYgunbrBCRAUpRaE2TA2fVMSIIHHPCYq6/TvKRH5QQirdN83URKvMZS+wmZq30+t3H6+2v155anzkiYpjjVwziUoUwVcu08dQZA/DZFoYY3hFnABE1CWfAVNUzC1coEgEUUyRffwb+73GJBY0yDnc0gmUNO61mSLwYrklolkt63329KSpc6gBk0fG3Q6UxWConQfkXEWgI8KvEJKsubOs2UNKOOeEsDYRVIyW6Lw8UWWLkqML4ziZZLRspWKiaE0iY8pE/sr5luwVY8BbK0aePZpkImMVJU3UGNMtJUuoHRMtC4nhyznh7XQuoogCIEwCJYoc7xhHrHXTMQjtUCkNZJkLlOwj0Xb6/lrETDlN4i0RdipE6Ku0ISWJxnTeISl4AYyaYgJFYKAkX4wYIlXt0aUIS9VM0XkotHeQsoiEtKKpZyIwyYFxGKhrj1KZo4OGr//0R8yOHKpMRDGVuRUoKYUiUXIkDIovPnvBo6fXQjfVjm6KidLTMz0mMQKkEPFWE0IEA4tlw3a1wRrNEDK+quTzzoUwRLR1lFIkGnv66fV8RmoVpIKtxABjKyHb5phhIlKoIo3znEeKMoQsgp8xRKHtoNjteowTsZ1FE8aBmCZKj1I0XmLzQhqZWTMJYQpFK+azGYWIMZqhD+QkcoSQM8oYKufJJVCMpSg9ddMT3hpK0bR9R+w7tPeMOlHVNTkH4jhKvSJZnPUQE87LG7IfIpmCn97LOSpyTGAjFKENNbOKFIXslcYAaFmj5on8pTQ6Rma1ZyxCNOtDh8YydDu0UlSNRFx33Six6angFVIT0MAYcVoR8ojSjlKEsqy1RltLHwZKySxmM9nXJomb2wum5vMaRaYYyzhmucaDCNgrOxGmE4QRGm8lhtBWdL2IKdAGpyfhkFEo44T0NInVUiwYg8TPKU1RGuPtROgzYITYlpVEjptJkDZMIspKS70khYhzlkgmjokyiKGqqS3WGcI40vVBvr+xOCVzQVM5gtXEKO9loVpKPKd2Booih0TShfVmzWZ1Q9PMMUpoSdPTyvRK/oGhqOqGszt3+eYv/CJP/5+/yWq9QlOom4bjWSPvxFIo2lGykNOUBmc0Jot4VTkrAjUzkaZVAePIUd6zUnOQ/UTIATvNw4qJojeJNPdCKpnzZZLTRqO04emzZxwfHwktzMiXjmNgGKYY+2Ujcb25MI5FYoKRclmRSZAxBiGPaaHAqcKrr9NCch1DYB/N3DRC/HFaUy8d88YznzV88fg5zhoWs4o/+qM/4unz56SUaLuBEIVeVkoip8h6FRmGns1mw5tvvcmdu3dEKGTlLlHGYTxCwUbO1UZDLpm6qqgqx3zW8PLyktVqQwiBPKVZZqTmk/f6sywCTKUyqiiGIZOuIl3bsrq+4ez8gtOzM4lfm8+orIh9hSZYo/We+uM5WC64Xq159vxqinWLdN01B8uKk6MZh4tann2jsV7TNBVHiwXbXc/1dieirTTSt1EE3tsNq9UNy4NDDg+FWrpYzKmbGuemerKW9dCeJay0CJ+LfhUjqrJGZS3vISX0dzFvVCyXS44Oj1it1tzc3EzxySM5y+ddcrkVGMua5JVs73afPX1BKa9IR4U94XUSI6tMySKgyzmhkiJFMWN1bctms6apG5pG6Eqz+Yxm1tA0DZVzVJUIlvbibT0JqPe+JFtZks4ElVksZlxcHNPMFxQMcYpi00bjG4cKCrpCCoE4DhjrODs54s7ZCZttx/XNmtXqhs36hrDdgRZhdAwRlEYbSDFRmGJj4bZu/Hr82UMpRV3X/MRP/ATf+MY3uHfvHt77/+q1K6XQ9z2r1Yr/9J/+E8+fP+fp06ekybDwerwer8efPe7cucOv/dqvcXJy8t/82lIK3/rWt/jOd77zl3Bkr8fr8T/PKKXwB3/wB7z77rt89NFH/11Cpb/1t/4WL1++/LEU3eSc+ZM/+ZO/cpHSflhr+drXvsY//af/lN/4jd/gj/7oj/6qD+n1eD3+ysaPLFKa1RUZiIibDCROzFgnMSdGSZFCy0a7IJstpw2zeU1MmZDKLYrcWInBktqzQhkw1pIzeO+ZNRU5BYnQShIB57XGqULtHO98+Dbvf3ifs/NTFgeHGF8DdqIPdayvXvLsyUuev7zh6YsrttuOkgsxJIY0sqhrvNOMOZJjElccklefYoIUIBfCEDAFlNcT+l2BVoQhoVKSAmSJ5JCmCDIFSNRJKoFiyuSyUaQciSFSlLjwh72rWgv1J7OPepjQ+llLYc4IxYkJ3S/lfxi6jjQmKYorKd6UlMljIFKoG49RWlxuzpG1NEVFNJbZ9j3kjNcKi5CeCuKYdVWFzmlqECj6MaLRzL2TJmGBxntIgRIDy/kM7T0hROIYsBm80Yyx8GwTSbFmJHK0rNFGSzb62FJ7LwVuDaVIQUtXBqs0WkkTJhW5X2I7krQma0NOgVQSrpkxjB1OwRgHxqGjZE3OEacqnJGm1NhHIRqFKAW2FIjF0w49KYvryFpN0VaKsSlTOUtJkZLTVMxQKKdw2tCNPVpDu92ilMYZJwhopCkRx0gKiZQyIRaKDjSNIpZELPJ3YRwms1th0TSorBiHEYh4b7EaSJmSFPPmEKczYeim2AGLth6TFTEFvDGootFFUabIxJmtSBW0OVLGgRSyEKaSFCVcJdEDqihCCjTekUPCarBO0XeFOCSaRcDNBuxBoighRhWFuPZJ02tES4zNRvP0QU+JCw6XhyzmJ2y3HbNKsd72qMZzc70h9IqEYnawwC8qEoaDgwUqBQ6WnvVmYAga1jvakCnKg1ZUJYAtXF3fkKLh/HRBe7Ui7jZSmFUK7wxeKToiWWcaZxizoQceX13isQx95vBoTl0XqjagvKXfJl683HHxhsXZTBwHnPbouTg9Q1cIRSIl4jhwnTPbdiCh2YSe0zIwtj2jVWx2PcNQsJWlNooUA7vdhpgCtdUsDubsdgFdLFfPV9QHJ7zctriQOKxr6uMluY1o4xirDm0coVes1iuMLdTLBSaJW96bhu76OcvDI8assW6OVhW2ZNIQGIYo4oAS0SGgqgY/d1jn2W5XDLnDOUihxyaorYbjA0LSHDU1WmWcq+k3PaUdmB8t6SLUCwNjTxoC623gaLng8HDBs5c3HBwfU1JA5UJoVwxKE0PBdz22sTTWM6xbDhYNZRgZ1i1hDLTjhoMjj86wa8XFP5vNCN0oOPOUGIfIvPI0RrNOAW/h7GLBetcxtIGubamMJafE0AaMrajmGacSaUjEPmKMNHRCVlQLEUncvNigNFxdrzBlKs7OK5TSjENiu+0JpVBrmC/mdN01cQhY3xBGDUZRLxZCUwuBMSR2Y6Y+0Gjn0eOAMpl2aCkB/KyhSyPjkNEq0afIJmQOlw1aaV48ewQpcnhxF6ZmqYwfLl4pO2NxcsFPfv0rpLDlO3/yJxjlCApuuh1OW4wqqCyRIyEaUopo5bFeaAvGe2IuKAyYBCVTacsqtGgtzcCZ9xQDbr5kli27bqAdeoyW5lsiS+RRDIQxSBSNsdRVzXy2YL2+wRqJf01ZCfUoiSN2DCPWgMqRXBJjivRDuG1Ql4ksGFMhpZGiJALOIFGqJWWSSowKskpgCkpnFrMa6xVWF6y1vHXnlP/9f/smx2dH/L//87f5/AvH5eqGLvbkXGj7kTFHDqgoMZNHTW4Hhn7HZnPD46dP+YVf+gW+8TPf4M07F1S+Qusa1zgObE3VzJi3M+IwCElAZfSbZ5wcH/DGvQu+9e3v8vkXD9lsWomTEWwFhSTN4ZRkfi6FoqGUnpQF4399veXp42d8+JUPeO/DD/jwww958949lrNa1gU608xmeHeXatjRzGbMD2a8/dY9/vS73+eT73/O5dWab3/3MY+e3fD+/XPuni45aCoWiwPm88jJ8ZJ33nmDD17e8PGnD/j04VPW25F+Fxn7ltXqhmfPn/Lw4Rfcf+s+9995hzfeepOz0zOWiznzeYV3Gqc1Vu/9+hLdZCuPMooYRNDnfEWMIylGhs5jdMVyvuT87JB37p/z5Ol9PvvsIQ8ePuXyasWuE8paUlHihqa5VgTBWZro7EVK+7WUEGjURJbZR4vkCa+TdJ5EFRETpHky9j2b7YoXL56xXHzJyfEpJ6fnnJ1fcHJ6wvnFGXfu3OHk6Eji87TGGBGmUDKqUvzsL/0U9z44J6uWe2dzTk6XLKoljJpuTBDaqRWmmS1mIv6uDLu+FwF+GKmd4+0373ByfsI3fupDHj56zLf/+Hu8ePKUm/UNmEQ9t1hv2e3MFBuRsWYiEwzDf+d24C9vOGtEnDM936pM5oWpyaUVk7t8EqFNQ2s1RUJO74WpkC8iDTW540WsIuKKaa3jLGUS4e/FLAfzBXVV8cabb/LeB+9y5+458/kMX1VoI2uaUiClwNC1bDc7Hj95zqeffc7TZ88Jo4gmU0l4I3sgEQwJwbNMQqmcC+RMyUzETtBG3VJ+2N+PRegPiilGbBIRobQ0ecmTVlXJOq9kiUCaxFBxWq8rpSZHPdO5ioCFom6bTWZPSZrIVRShYZSYp2vOLc22pEyk3EZU5Eks8IowoCZRU4TJuKAncVMpSISRsSIOkh91K87xxrKfz6wRowQ5UXk/NfwyeTIzGK2JObEdMzlbMpnKC90ipcyQCtbsBUBAkYhqbYXEsBcw7fdcKaTbmDtKFhqN1dPcKMKxGKLs6UpGFyFUKTQxTA1OMpkIOZHLK6oVU0TcntYkc6EiliKK24k2VSZRmoi7IIQRkFi3V3IuJHIvqykOEFAZq/aCNfl5KcVbUZyf9tcpifTGTDQosuzdnK2F0DVFdqsikXe6qFvKrJo+Wyaql9OGbMp0T6SJeMyU9Cw05TIJqnLJWCWReVoVtIEYIaXMyXHD//KNj5gf16DirUpiL/jcEyRUUaTB8v2PH/HJd7/EG4/zDeMY8EbRjwFlDX0/kuLEcq0qjDdkhJJLzlSVYRgiMSvKILG1INHmhkzR0HU9JWtmM0Noe/I4TsekbtcZsWS57lqjiiIC265DozGxUNUeaws2JDCaNGZ2ITBfarSWyDajDMpNVJc4xTJaEcB0JTKGJBGLKTBDRFcpKaG6RKH32omMHMIoEWxa471jDAldNN1uwFY17ThicqG2BtNUlCCkq2QjJmtyhGHoUbpgvYjOMELgCV1LVVekolDaoSWgjhLTRBCT95SaBFPG7QUpA4mANoWcgwjkSsHVFTFrdDEoCtpaSiiUIWK8h4nOXXvPOIyyptOa+XwmohMrxp0YIjkGYopCMxlHjLX42qHzKwJJHkdZt8eAsQVnHX07zf/WYDWMRIqCPka00ziYYsES88ahDbTtIFTrJIK2nDI5gnUGlAgWxzFgnCEnETDFnGjmFX03ojNCPylgMWCFIphSZhxljWudCEiNFaFAQZFLRRwL1nmKAj0RdcYoZDlrza0AJZZIjAlv7VSfk5pCIjHGDNuWTz75GG0dx4fHLI+OUeYHS3+vTA/Tix/jZ7x5/03+t//HL/Hv/8N/YOgHUBLVZ7ESkzmpW4vV0/spY6cYTG0lIkoMTHI0VonAbgLYCO1QCyHRK5krhulaQZYI9ul9lqYaHUqEmpWv6NqONFGlc1Ei7iuRUoqYuNRMIvmKXLt9fOOesJcnIXCeCHF7MXSZzqWUQlYi+pWXYcZaTWXdJMSHuvK8deeMqq548Pg53lqan2/4T7//n3n67KmQwcNIRoSNJUFOiRQDIYy0bct6M1GVjo8mSquYPF1l0RNhPk8UtX4YgIJ3JywWM168vOLly6uJqpRFmCd8NvaRyPs1gVJaoiJLJrWZcQjsdh3r1Zrj02OOT044PjyirquJkC9rJ13PMc5j/Yjzlvms4fpmzYuXV2w2O27WLbt2YL1sOFw2VE4ITNYWqsqxXM45Hg65Xm+4vF6x62TNn/cxdF3LZrPiYHnA4eERB4cHzBZz6qqWOpjRMkepV7HnogHWWOXIk0hJSHdmEjMmtDLYuaepKw4OGk5OlqxWa65vNux2HcM43gqH9zFwewAVZXqXTGu0fczttIKStcRkjtC367i9+HuK9E0apffEp5Gua/HbNfVaouCa2YzZbM5s1jBfzJk3M5x3E4FSTUvZDKVwcLLkff8OQ+xoKsNi7vFVjclayJUxAomUJcWgmdUYo+mHXgjGkwBv3lQYe8LJySF9d87zl9esblZ0bUdRGW2hsgYdIMcsVE+1j+R9LZr5vxtKKc7Ozjg6OuLrX/8677//PovF4jZS+f9u5Jz58ssv+da3vsX3v/99uq77sd6vvR6vx4/juLi44Nd+7dd+KPLxvzb2AqV/+2//7esopdfj9fhzjL7v+Y3f+A3+0T/6R7z11ls/slDpjTfe4Jd/+Zf5V//qX92SpH+cxuXl5USD/ZElEX+hQynFvXv3+Cf/5J/w67/+66+FSq/HX9vxIz+R2Vi0UnilyE42dLX3OGOZzWbSH9g3AZIUVK11LGY1dV1JcbnrsVbjnEYpIxFuyuKcwlVQip4EUOLgLEXRjSPEEWM9Z6enfPThu7z1/n3O33xLcNCTq7rf9WxuNry8vOLZ8+dcX63odgMhBoYQSVmBKgxxxDmJLguxEIYOlfYbVKFudEApCW0cxisChX43CDq6SPyCzuKO3TdL8uS0IgtmHDJkgwHUVNzvhxEwEAt5KtJrK447iogrlJayt7FmcgJrDBanDdpJQSyryaGbs0SMIQ4ebS3aSEEHNGFIDHnEaYNyCAo/ZFTlKEpQ8LV1OC3XO6RCKmlym0vTRE/O7ZITzhsqZ4ghTS5rJeIrZen6gEkSrTGGTIqBxnu0qSBrTI4czuZkVRgHiSArBsYQUGaKuitZCrCpoJ1BOUHpM2HOMVLws5WXaDlToZWiqRx91xKiYNi10Rjr8dbgrWWIgUyhqitijIwpoCrDEEdyV+R7GsuIOBBJAZQixpGiEuSIK5bFoiIbGLoeiyJHCKWAiviFZYiJGBIGja8dlZHPKRlLyAWGXgqpKaK1J2vFfF5hUHI9kjQ9KuuJMTGmEa8sdV1RQiBZqJxhTCNYj/MeowRDr/YxSN6irZK+QhHR1dlZQxgitq4xVjF2O3AGGkNuR7QSN3FMmSF2pDBSOUV9MsfoRH2QcAcZpQNFTcUvNd0f6Ft/4rDWrB5CYy7osShlaTcr+iEzhMD53RMwihdPrhjHluTgyC94+viSqqnQ48h2t+OosvhJYNS2UsTvTaFki86Rtl1R2yWhbXkWOsYQcaagtaUjM3OBFCOLSnO9WdNGS1UdsKwsJc6gKFzWxKHj4OIcpR0PHj3D1wajK2rX0K6uWc4XoAtDN+Iq2MWB2EGVoTKa3ZDAGCwZg+XJkyu0FVddVVX4RjGOhaODQ9KwplSGFy8H2i6y21xSNTN8Y1itd5i64vz0mEqdcLlZs1CaYb2mFFieLChGM29qLl8+o/Yzri5XOGc4Oj2kpAKzmuwgjSJkvL5aoVyF94Zus2PWzEkpyPtFC7mskIlZMT86Zmxb6pIxXYcvFSFKUbPUXghwSeN9zeGRoY+ZRGbMCZMt3nsG61CzJX4xo+laVts11jgq4zFG4iNcY3l5dUPKiaaa4b1lvvTYxhFHTUmBmYbzZc0qZN6/fx89DuwoUGWqpsEmafRuVh1t7ui6DTon+q1HZ0W9OMDUFX2faA7mWB/YrFt0zDSLY6IascPAsq6IwM0QUEmju4RzIsZdhcBYNL72VMbQh5GYRpZHJ5gcxQ0fCk0zYz4XMWEYRlSlyD1gPbtdT0g9zhi2L2+IpgCWOAwobUlKmttvnN8ltVuCTszrhic3G548v6LxhgrDsy8e4uoFs4NDii6To1RiKWUIkcbNDzh/5z5fHbaM/Y7PHz7j+voG6x0Xp2dYkwhboSVUzoIztH3Poqroup6462i7kUjBOXmfa+tIQ2bUAT+v0CUxqzwle/o4RXDlRD/uHeoGbRS5BBZVxTYUuhAIsWM+82xWihBkbhuGiKrEKWuNYhhHdFFYI02CylpGHaVZmzJpikYaQiBM5L3aVTLnGk0OkZgkJtIYCwnGAC+uNyhlaBpHraUpfrCo+Pmf/pCjZcN//L0/5dt/+jkvb1b0sSOElpAK2xSZNwtcbYljQBPYXr7kW/+l5cWLFzz88iHf/Bs/x1e+8hHHhwc4bbG+wVhH3TSEoUVtLEkpbNUxnwUWTcPJ0ZJ7d075zp9+n2fPr+iGfXM2CUgi62kdBClHzKQESEniGoZ+x8uXz/n88wc8/PIRX/3a13j3vXc4Oz3icNFglcL6Gm0tzlUYX3FwcMDFxTHvvXeXP/n4Cz797CnX1xt+7+ZzFvOKd+6d8O5b5xwf1syaGXWlsN5zenTIm3fP+e6DRzx/dkO3C4ztjpdDx+bmmuePn/Llgy9578MPuP/Ou9y7e5fz00OOjpbM6gpjhcCyp20YJaQbZw3JOmIIlKoixkHim1IkxRFtFE1dc3F+znvvvMPDx0/5/qcPePDwCc9fXNK1vTRtc0JlEdTlSTCxb3RLs0FPDb+CSpMwoUj8kFB2Cvsycs5ZCHFKHNA6GuLYM7Rb1jfXPHv6hOXyiMXhIW+/+zar9ZqT42OOjo5oqnqi9EhEh1aZujK8/84drFXUM3lHeteAh9INqLrCGkMIA323o3KOo+MD+rEnjpHV1YrdtqOUxMKBrecsZx/w3htv8+zqik8fPuTp4yc8ffyIfttR+Tn9uJt+tghUhxL/PHuCv5RRtJ5INhNBDERQriW24lWj6BWlTWuDnxz2uRSGEKS5q7WIgVKZnPQKAVup28bmHsygneXtN+5xenLK+ekp5+enHB4fMj84kCgtpFEVQ2ToR9q2Y7VasV5v+fLBQx48+IIxxNuWVsrpVlAidJKIynuRjDQM47Q3UFqoCKlAHNMtEWqvWDGTqOpWY4Psgcxtr2OKYp7iFWOUyCiKxKAAkxhP9lD76OZCEVJPkvvbIOIvZSYRi9LS8C/imZ+0VRMxQ4RK+QcIqUZplKRJkbOQP1AyL1ttJoFPuaVPKP3KWHFLxMiTyFSL8CZlORf52GXvs4eTpWmvYyfSbi5JhNNWSGEpJRFEKSZxl5gUYIqgy1MMpRYqwO0FVnL+2hg5V2UnKoea6D+T2EgrmEi4IpSS6ySmmixxYUboRSVwK1ZIahLNFfk8ck5CC8oS6Vd5T1YIoRFZs6eJGGXM1Pif4qGMlTieUgpZa/m6GKdG6iRomwT60uQ0tyQSM4m9UpG9ibVCQCy6TMKpRJli3NUkZt43Z+W6TR9eUaA0zcxJA9NatIYUgwjprKIEIbTuRQApx0lIA7aWhvU3fu4j5kc1Sk3MErWXYolhielHxQEefv8Fn33vMbkI1SEMEnEUc2K+kLpDu+1IKVA0GFOx3XQSu5ciIYxURosYSRVCEPpV1JP4r2RiGLDak0JguwnS6NXyLglknNHkmHGTMCpkjTEV3mrITu6RosgxUM1nKGW42WwxVsge1jhC31F5D6qQQsJYIXtlwJSA1ZoQhQgpd6lhs+2EqqaE6GKsRCnWVUWOAxhN20VCEOG+dRZj9URNNcybBqMU3TDgu0AaekqBqqkoGrxztLst1ji6rsdoRT2rKRmstxQje3FjFF3Xg5EoqDgEMT2VhFGFrOT/QjMEX9fEGLCFaa8rVCldClh5xooylAzNvCEEEc5llVFZItsxhaIU2nu8EvF4N2QhM5YkYkhvCEOiH0SQ5KYI9Mp5wiDkJ1LPwUxoVXa5wMZEpDAS8dUU5RYTKcFubEWAFwaSBYXFGIepDUMv8cjeWfo2kLKY0pRx6DRiClRVxZASKRVSlPeM94Y4ZkKW57Yy+paSobMRsleWCDytLHVt8E4omkpbYpR9bYiyHgTQA3QxkpRCRakjoUQgUdUVtbH0YydUtBil7tb3fPbJx/gPfwJjPLOD5WR8eCUCfvVfqaH4+ZyPvvoR69U1//n3fp9hGNDOMJ85vHekcXilm7WGkOJUS8hCrQppep/Jm30sRda2MQi9RRuskvPLiSnSV8TlMYpAyWhNLgk3TYIJWQcbo2h3O3a7loPDQ5lDVL6NzRJTQ8ZoIWgbrSbiK2iZfuSdXKSekZPsS9RetDr9ncpqil+FkhXdECaRlBPiECJGPT1a4J1hVnustfzC3/hFfu+//B6PHz+U+OaSUNZjjBXBccnkMHBzeUnX9Ww3G+69cY87dy5YzBdCldQGqyuJCE0iasoK+XMb8c5Re8diXvPi+RU36w3jZA75oc+zQJnm8T1xkjLRHrdCdVqvV6xu1mzPzzg5OWWxmNFMe3+tNVZ5iZM0Buscs1nDwcGcq+sbLi/XbLYdL6+33Kx3zGcVJwdzFvMKZyzWaowWkeFyNuPlasV60zL0IrwaOtlTd7uW9XrN4eaIo+NjlssD5vOGWSMxcE7r/enI+l3L3KyzEmNiMhQjRoEYI8aKYClGOYe6qjk8OODkpOX6Zs3NzYrNdscwjFP8X55iVvPtfFRu/7tvxsn6RXS70+rtB9aq++dHlhhFxEETDVMnTY5CFGzbHd5X+KpitphzcnxCN+9p6lrIOzDFrMr30VqxWNQcaKnh2SnK1aAhyvytJ1FgCIGcJP51Nm9IOROGMIlgCkZlvDd4u2DezBkuLrjarNlutqzXK8Z+kHhJJ+Sv/dpjT6p9PWQsl0t+6Zd+iXfffZfT01OhdE5Cx//a6Puetm35L//lv/Af/+N/JMYf3z3a6/F6/DiP/x6CEsB3vvMd/s2/+TeSWvF6vB6vx59rdF3Hb/3Wb/Grv/qrLJfLH+nfKKX4+te/zsuXL/nt3/7tv+Aj/O8fjx494ubmhrOzs7/qQ/mhMZ/PXwuVXo+/1uNHFilVdSUuqVzISoq1tfNUdYX3nhBlY6SRuDetrRQfgKEfxY0WxbFC1libb52xWjl0ZKJbaMYh0m466spydLTko698jfv33+DwcMHp0SGubijAbtOy3ba8eHnJi+cvuL68oetHcfSmjFDkIxYw2jKmkcIrpyfFkJI0sIxR4jJV+4JPEcy5kkKrEB2kGG6Nljg7gL0THz05IqURJuQKQbqHkPa9BGLK4lCyRmLOimxGc4xowDlDNw7T9RMHqkLQ/CUnSpFivjZTw61IlIPKhhQCSmXJ5VWamKVArayWeLpSxDFbCtZqfFNLY9iLzzYpaFyFtw6jNEPXk3LGOsvMzyFnQkqMMQnK24tgiSwip64fhHAQIyFHtDXUk0ChqIIzEjNmlGyuE4U4BnxjUYBxBmvt5P6FohT9MKALxBwx1lIZS8yJtmuZzWd0XY+vLGOIWOsoRU3Ox0LWiX5MxFxumw0GEV9QxK2+bzLlnOT+jAVvLG5ytxYtsTymaihoSpQ4oK4f6IaOZt5Q157dtgdlMKZiGDrqqsJ7+RxUjMQsLjdfS0Or6wZijrRtxCqFqhXzeoapNGOIEMErK07NOKBUQofCoKGaNVTK4Mn4WY02I84Ycoam8thKmjwlKJx25NDLxtkoum5AYTk+OWBMAziPdQ7KDqsKpqpYLGeM7QbFSHOYaU72AqVEJmCmDkZRCpI0cFIHl5+s6K8a/JFlcXTEMPRYD7s2YvC0Nx3UFbnyuIWRiC4StU3MFzWLZcVq1dMqz4jGWSk4LhcNqaq5vrzG5czCVWRrSKowaxY02tB1ay4vb2hmSypb4WtHvazYxsLVizWHFNbXL5nNNMZXkCqGceD5VUvJheOjI7SDoj27vkdXnscvr7EGslbcOzvCzGo26wGrNfPKcr0ZSEoxZoUpmsXMMmscu7YnDoU7bx7Je3FIlOIYR6h0g9OGTQromCnGszg7pNttsLqibpZo1bC+3FJbzXYcYBewyhPUiqMTj7IONWhsgvZ6w/J0SXNYs113ODMnToXUYjSxBKqFwdaK1WVHHDPaZ4yp2Y0j23VLaDv8zLCYHdBtI8+uLpnXmovzQ9yiISdYrYUWUFSkHQZxLIbCcj7nZr1itd5SiqdxDZoFtc2044ZSFFZXKG2YNQqLoW07ri6vOVw2nB4e0qZAMZrKQjvC5S5RrMdrzTaMbFPGG0XXdRAVm3bHfOnRtnByMiN3gYPFkrYfubxZY71m5gxlaJlVlsEoxm3LVZs4vViyXC5ZX+9AGRojgp++7YmxMGaYzZbMzw5onGXcbBmGHSEM+OqEMUDc9Qy7QCiwWvW4rJg1Hmctq9UW6wdmizkehTcGiyGGwvzilM3VC1yfqOczmkXN1fVLSIlqMacb0tS8dAzrHVhLlzPPHj/m7XqOrR1F/WBbQUbZuz7tHHdwwNtfeY/VOPDyxYrxekVra4oK5BhISdO1rcQ8lsxQAo0xFDRDTNTOsrSOzTiQFBweH4EOhK4FpLE0jDu6QaIvvKvRPqNTRCtNTCOLk4avvnfO9779Od/6cs3l9ZYUIl3oMEljfIN10nTIJEIq3KzW3KwPuXd+xp3TJW0bCONLNm1LzplqVqHR6FHhvCHnREoRY9w0F9vbqyLEkkLMmfWuJafCwcGcw6ViWTsyGqcN9984x9cVy8OaP/rjj3n6NLNOEh2S+4LSkVltGTX0YSSnkYU3bC+f8n/+9opHDx/zc9/8Jt/4xjd44417zBuP0Q7jDVp7lsqBqbB2Q7vbYRAX+KypOT074rsff8qnnz/i5mbDEDRFiVAGyhRFcPsBA3ES8UhBf7PZ8Oz5Ex4/fsTXfvLr/MRHX+H9997m6GCJn5r5rp5z4D2xmVP5imUz542LN3nv/kP+9ONP+ezBY1bblm998pgX1zu+8t4579w7Zll7Ghy+8rzjMoeHDZf3Vnzx+DmPnq3YtCNhEiut1te8fH7Jo88f8u5793nrnfu8+dabnBwfcjifS8Sim+Kipua5cRpVNChLLmGKlvCkFAmDRMHlKlFSoqkWLBZL7lxc8MGLlzz48hEPHjzh+fMXbHYtwxgIMaJSAvZUjoxR5vbapck9n9KrCDhgolsU9vFU0jBX6KwhBWKQ2IgwDnRdx3qzormZE2PPZnPDYr7g7OyC05NTmqambmq8czS1J3uDs6BwpFhIGkYyBoO2FWEcpVmNZTY/ZBxauZ9tjUqB+WJJVddC45ziVN0IqrS8ObvgzhuntN1XefL4JZ9/+oBPv/iMuFL0uy15F3BKSfPkx3RILKD+gbgMhTUWawzGmttGrvToJwrAJJiP8QeJCOV2Da2UcAQUGpW5jaZOUaJ0Dg+X/NRPfZ3333uHw8MldeVpmhpjLAWJihnHwG634/mz51xdXfPs2QtWa4k8jCEyBarcEoWE3zKJRyZRVJkIM3uRSJkaa3u6UZnirQSSJK55Ec0BvGrqqolEJLSiMv2VrG+ZvjRP12gfP8ZEidrHeWmjiBOdLat9ZMdEW5oatLf/Zv8rTcKuJDE9e/FWQqI8mUwNlLyXFcnaWtnbpq1CSEtmEpEpFCnGiWIk5JX9s5mzxKph9kQpObcY014JRRIErNB5JpGQnoSrsvvSQqKdqCj7PZJRr8hKRSnytOfKJaO1wk731BgS3jlCDBhjSDmhtMQP7um/peiJxiGXX93+mj6OIsJvidkTAipF9oDa6Ol9LutmbSRyiVJwU9xsiBE7xaaHUaJX1ETCra0IRFBK4tSY7nurJlGdxP6FKGsIZ5XEfJvpfslIFE8Roq/sSwpRKRG3iLQI4yxaiciqZKbncS+YAqMcJBHYoZXEqilNU1fEKW5bCAKjCOqswRtHCgOLecM3fu6rHJxUKJUQ+WqeiE17eRyytwhw9eiG7/3x5xIFVtfEGNEWxlDQGEIfwFqyMRivsUbuAqszzld4bxmGgaiE2mqUAguVtxRr6doOXQrOGNBKSEzW45QmxEFicm0l+1Wnsd4yZuh2A7WHoW9xTk1RZxIruOuCUIarGmUAZRhjQFsjsdJaxDfL+QztMsMQMUoo1H2MwqYtIozwRgxdYxAK8HzZkHOS5xNNyvJ5aKUYc0SlgnUKP6uI4yi1CluhlGVoZd8SUoRRKCOJnnpm5F5IGl0KoRupGo+rrFCNtdCDtFaUicBsvMJY6LvIkArKgNZCvxyHSIoB6zTeVZSkaIeWnCLLeYWr5eeNQdY3JSdSycSUsVMtIlHYtS1aW3obcVYoT0UXQgw4YylazA/ea1JSEhsXAgfLORQlfF8t759uTGAdFkVChPNaK6GBAUM3YLzGaDBW4WyF1Rbva7puAyXjrAgftVZC4B4GhhApdWEx94QhEIJEnXkrcfQpSvRbKYbFshbhXM70g8QLK5UkFrAUwjBQimJMmRwTuhRMbUgh0Y49s/kcpUQAarQIRk3t0Q7G7Q7vHM7Je2vTDzjviCnfzo2kzMtnL0hj4qd+tsb5impWCyHoB95h+3lJJhuL9jVf+dpXefryBZ9+9oDcD0RtISVSGlEYiWA2GrQmhVHi8Yq6Ne5VxqIodEkiab2ypDjuFSDklOUezxmthBKVihy7rMkyp2dzyjDy8Nk1QxAieYyJh48e8tF8hq7cXpo+vQcjXddTO0dTz4SGlzu6cSDGhLYabYwIXATHKfOhMjIXG3V7fExzdykiLNy1PTFlqsqjnNAfKVJ7eePuGb5y+Erj7Df53f8r8+jxY0iFwkRe1xCi3PPGFEgDz589Ybvdsl6JWOnk+IS69mglsbdGaVCyT9M6oMYBrSRa1RhDXVXMrxsuL2/Yth0xqokQNIlA92sRUQNOn3sSAXISYUs7xZJtNhvOzk45PTlhMZ9JvVNJtLgzGmsd1oxYY5g3M46Wh7y8uuHy+oZd23Oz7ui6wPHRnJPDhlntMWYisi0VxikO5w3rbct629H2gRwTQ2oZx56u7disthwdHXBwdMDh4SGzWSM1NWdlrbCnPappnYQIaPdrMjOJInNK0/7C4koRIbX1NHXD0eEB682W1c2azXZL1w8TWUlNIus8SZIm0fbtzTAtUfbrilea50lk/Soa7Qd/L/e3Qukk9OBxwPSWMQzkFPGbiqZumM3mVN6LEMkKSUqi75jqmDI3p/1aURlJOchCPrLWT7T5iNIGg6LYV2u+PEW35qyIJNBwtzkjnR7TdhesbtZcXd+w3W1IpRD3tM4ffCD+Gg+tNXfu3OFXfuVXeOedd/5MUVLOmWfPnnF9fc3HH3/MkydPWK1Wr6lJr8fr8f/DuHPnDv/gH/yDH5mgdHNzw+/8zu+8Fii9Hq/H/4DxxRdf8K//9b/mH/7Df/gj04eMMfzCL/wCn332GV9++eVf8BH+941xHPmDP/gDfvmXf/lHpkP9ZY3XQqXX46/z+JFFSs7KRllpRczgrafyDbO6kk13GCUOQPZNxFzohhafJLrLOofWmnGMkBVFA0ScVpASoWhKHKEUzo+XvPnWXd5//z53755zeHyIc0J76Xcjl09e8uLqimcvrthue/phkBiQWBjGJN+7CNrbWUVJmRBbcb8xiZesYehHxhCwWGxl0BlilKaDmpzBe8QvqqD2TZPJVUuJzOdzxhDp+0AIAWM8IO5h46WINoy9OH4UWC3F8xgzSotbueSIUZmSIqGI81QpKCVLIVIracRNQhs1bSyVVljnySFLEZyMtWrChieKVjjniTnhlKC1S4hC/VCOum4Y+h6Hk38TR9mQ5gxJybFqoVvliao0RiH3VFMsRymFoQ3T5yPirIiQdtqhx1vHsm5QTtOGgYSaivABxkxlnDhNSySrQjcMWGNROTP2HdaYyc1pMZO1uqSMceJi1tYSghTnY0pY56TJQCIVWaCOKb2KsLDicgqjOIRc5UnjQN8NlGzQRZNJjLmnxIh2aiqAKIYwYowloejDyHw+wxqF14pkJb6mz3Fyn0eGIeLqGSWNpD6gvSOUQjWvBNueoeQIWjOGwKwSIRd5on0VLQ0JJTEJwRucMsSiAKGYjNsk0QBHR5QszY2cR3QuQrTKmtoq6sWcq/WakgKLeYNKI7oPkxN1oKkds1pjK4lFcVVmdpCoDiPZdEgYorQVzK0jTxz4oYfSN7ilZ3F6zmozEJKiHyG3PcVoiikMk7OyrsR93LUDzfExC6+wSZE2kTLAaBRDUKgexhi5Hle4esSaQhczuzGzsIWZr0lpnOLMQHlHaAcefvmQe2+cS+yQKjR1ja0NqU1E41AGcuy4e3qAqhzXqw1ee06WB7y4XBHaAW8M7aBQeuToaMbNozXzg4aT5RyjIey2lJDIGNq2ZVZbUoEX11uWyyVtm+n6zGLuSRlWmw6zaFAmEnPkYGZoak1RicbWhLwjhJZeKwqBIQ9423AwX7JtW5zynJwcMFtk0J7ZcUVuBzaXW7rthqBh10WMHaidZXHgUI2j6wauXl5xtRrIubBcLJnXmvV2Q581Qy5o61jWjtAPDCHTjYXZ0vLyestiCFTecrA84fnzS9Y3L1ksZmhbQ6XY9RtS6LC1Yad6lkRM5RhX18wqzTj27HaRxfKAvG3xRVGsYasjhwtDarfEbFiczNCup3/a8+Jqy2J5TPGI4LNkyIpdHIV+V3qq0WKiNF0OZjNq7yiuxu1arq5XoBKHy0OqxlHNoaktm3VLGEc6nYgmkVPBK0M3tGhXk1Pkcr3mzv1z5pUlD4rZ4pg+9cQAm8v19EwqDhczlDGsd1u0dhwcH7De7Fh3HfeOD7lzccSw3RHGQAiRkgrjaofqEpXWDCrRR0XRNdvdDegdi3nNncOGQRl2WaN0xMVECZl2teLAH08FWuC2aCiiDChoU3Hx1nuoOHK++JLNi0teXL9gHTqGsaOZz9Cm4rBZsGwaumGgxAxjxDvL0iuGscc5T2U0XRiYHR3j/Yw+a3ZDpC8ZUxdMGuhDQpWEUUI5yaEQu8huTLysnrNbX/P05XO2q0zb99SVIsfMmDR1Fid2JlNqSx8Cl5stZxfnNFZzdH6I8prxy8e0ozSgUk63BdsQRHTSj4M0J/U+CifLn/cDoWRmdcNm29MNgWHMmFNL3Vi8tZwcLqnrinnjuXN6yO996xP+9JOHvLhaE1Kgazs8itnRkrTrRDAbd7io2W5a/ni14cXT5zx69IRv/MzP8tFHH3BxdkRlLcpamrnDuJraNxh9hVVW6B8q47zm6GjB+dkp3/34c548ecmu6wgqioA6M0VEZRG4asnVEbF0JOXI5dix26x58vgRX3z6KT/9M9/gg/ff4+7dCw6WS7wVUpWvrZAFfY2vK2aN497FCW9//ojvfPw5D58858sXNzy/WfHkxSnf+Il3OT88wFrFsTli5hvOjg95+927PHl+zaefPeazR89o20i/aXnWPebm5prHTx9x54vP+eDDD3jn/n0uzk45ODykmc+pa4+vvMztBTKKrBXWNOTkJAtIR0rRWFehSpHomIKIE5zh+OSQ+2/d48P3X/Llw8d8/uART56+4Ga9lbgeJbSSfEujeUWoSZPa41VkwSRQ2otMeFWCL0qesZwl1iiqiLGRGAZCGCg50HdbFssDrq+uedjMaWYzjo+POTk+ZtbUVE5zfLjk4GA2rSUN1iqstljj5PxjRlmDKiKOHUOhIJQa4yLKwtF8iXWWUgxDN6KslgbhMEIq3H/rLnfv3uEnf/onefLiJQ8ePODJ5w94eXVJ33d/zm3BX/zYr4dlDTFRFYzFOnu79tZaSDRKi1AkxiDOfjUZIZjWprpMDvsizbySSSgqZTg8nHN2dsZ7773DW2/d4+jwQKiNRkQycUx0Xceu61itN1xfrfj8wRc8f/5cSBC3aOpXYiAhL4RJ/FIoU1RMTK+aYlZPkY23EUR7Ecu+3XOLS5qoAKBKwXmJAoopTY1siX6WZqTGWEUa4+TY5gcEU9PGSzBG0lybhI7lBxu+U1RvmuIRpbGWbwkFWr/6eXkSHym9//5y3XPJQpGYYhZzTNKAt5YUEwZzG6+Y80RTykxirP11kONOU6yOQd++42JKstaf9l57roHEVkvcjjLqlkSj9xHdFCE57WPiSiFMa38BDwW5PyaB022s5rS32VOfcspiXlFpMtzI99uT2lIut9dtTxlKSWK5jTFTnI/sv/bMwxzjK/Ea/DD1SSlCTjgvtGKjlPxbY4glo8wU7Zcy2jr5DCWzmVwKxonZxqDls1YSk+2wQhlLCTPF4Km9mG4iMmkl9Ft5KRfSROJo6oqi5FqUIhGFOUmj3miF9Y5+GChZYt8pCRUTORYCUYjJVsRZlIKvDN/4uY84OqsoOsi7+Pat+4pUUQrkqOi2ke9+73NK5WBMpCJ1h9JFiZhCagwlRhEZkYQ8XNd4M9E1xkyJEEWjMW2ZMl3qMVNkU5wIwl6Bt5ZSspiHJmJJjpH1es1yOROSlio4Z0QcFuQaGgWZyLypUFbT9yNaGZqqYtf25CDvB9GdZerK0a8HfGVpKhEZCZVGrkMMQUQxWNpuxFcVIUiz2HtpSA9jQTkHaiSXjPcKZ0R84LSIf3MMCKdhomhpi/cikNXK0DQVzhdQBqctJUTGbiSEAa1gjBKbZLXGVgZlNSFEunGkG0REWnmPs4p+HIhFkUpBKSsksBjJuRCivE9CzoxbMZ9ZUxF0Ydd2aK2oncN4zxgGiSVWhWJhzBE7keNUSTijGIcepS02Qwwj1micVpSS8FrWDdZ7KgslFta7Fm0bsgbrxexltKPPmVjkfvXZoouQ7JRReO/QxlDVNW3bEmPAe481HmUK9axhaEVsNMYAWsSzdi+wBbRzdL1EZDmnRWCgHM5lxqEljBE9iUm8tVjn6IYelMY7oW71fQAFs1lFiZEU0yRgzzAmMhmLJiuhNSlliSVSRqkh1N5j3bQ2j4F1u+bxw0fMZ0uJEzP2hx0Pt0PEn76Zc3J2zs//7M+wW214+vwZoaRXc5JzWGWZTfW5VAolFImq1/JeI8u7UZeM0eB8RdGaYQhCytYFYyENWX5qKZiJqJ2SvPd26xZXIm3X0vaZsY8oU3jy+DFvvnUP548kDrNI7SlT6IaRRc44LVFgy6MF6SbT7UXrMQBCrVOFae8wCTD31LoiUbQpZQoB4ywxZ1IehIA+U9SVQymNdxLZZ42mqRyLWYO1jt/5P/8jjx4/IsaMKYGqqXBeC1m9RHQOlKxYX17Rtx2bzYa7997g/Pycw4O5CHOUxVhDpQ3GRqnFqQGtREirVMFXltms4eXLG25WG/phFLrftE6ZVLGTsLtMa1woKqNKouTI9ZVE0N1cX7O5c4fz8zOWywVN0+CsSFm11vhKSD7WyvPXNBWHyzkvrlZc3azph5EnL2/YtB13Tg44PlhMcb4KrTSN9ywPZpz0I6vVjsubNX0fSDHRR4l13rVbrlc3HB0fcXx8xGK+ENJQ5UW8Y81tJHCZ5jRl5BjZz4UIZd5OUY2KcZrnwXnLYjHn+OiQ9WbDarVhtd7QdQNjCOQkE9IPEoR+WIB0+6e3f3e7iVC3OqpbIX6ZjH0qZ/JkjMhZ1nklJ6q6pu86ttst1jqqumLWNFS+wmhF5a0I4yaxkTZiRBCSqJ7WntO9iyYrM8ULG5QpaMrtdZOvLwxmQEeNKdANg+xdqoqT0xParme1WbO5XrHbbhn+Gjf4m6bh3r17vPHGG3z00UdcXFwI8eq/0tDs+57nz5/zu7/7u3zyySev46Vej9fjf9Coqoq///f//o8kUAK4ubnhn//zf86zZ8/+go/s9Xg9/vqMTz/9lN/93d/lb/7Nv/lnRpv+4JjNZvzqr/4q//Jf/ssfO6HSH/zBH/DNb36T4+Pjv+pD+f8ae6HSP/tn/4w//MM//Ks+nNfj9fhLGz+6SMlUUzSLvXWWOCtZ1xqNN3ZqKkAKQt2wWqHLPuJANvwYEYpI5VYaFLpkaus4Oznjvfff5IMP3+bOxTHOOHEfF027GXh5ecXV5RXX1yuePL9h047kIoUnXfIUISBF2D5KoX4YE4pyW5DMEYqFNEZKSWgFYRzIWgpqWhucmZofSfDlxkohUk+F3pSkoFFXnhQhxanhpaeG8eScHYdETMNU1NaUmGgqjzLQpp4s5mBCzjgrJIhCEXe1seK6LPuCthTShRCQUIjQiaIwRtHMPKkUhmFk7CSKbVZVVFVNiIMUI7LGuUp+RjHirtXiaPfWkWIgjCNFFRQW6xXWaAp6cmYKWcAhzaQUIyVEKTjFkYX1DGlkUIlKO5xzspGLcSoManE6W012ijCIo2cce7o4ElPBaU0ZA3jAyudQYpow+OIKjzGANuKwJkmjBIUuYLSDIqI5pRLeO0zK1FPUWSqJFAvFWsYQ0IPEDGllGKM0YlxdkWIUJ7LKeGcwOpFKIqRM1hY13esqK0oUx3DK4vA31qO0ox16TNpiEjTWCXQoG8Y+osk4FFlLcS+kwHboUD00VoMRdH8cBkIQZL7NmUVT0fUdSRusdThfU1cztK9o11IQNU6xWa3RSmhEAUvOkSEHZkbjKfhcmNeeMvNct1vGGDC9kee2SsxPItViAB3Qai+EUOIMVYasEjplchcJV46clpT6gN4amoOGbjeCSYRtTz33bPuREDSBwrE/BBWJpdA/37GcWZ5fXzOGwPHJAf26Y7vtqZRmNIYhJmYJYk7M3AwGUGPEe8iVQemEMxXzZsbzJ88wzrK63qDHhHeJ04OK5AraZNQYGNoWV9W0fU/lKtDy70rfsRsjuUSGtqWqhcpkvWEzJvrNyHwcmFcGg6dSmcrUqDpS2YxKEEdF1/cMIXJ1DSnVaBSrscVvxCE7DD2uFlfiuo2M25bQKzbTcR2dHOAqi1WGhVfU3rDrPUk5QizUU7xQR2B2fohRhRfPr3FuDloTsqJ0kXlTk4aMLprFogGVCe2WkA1VM2d7vaHEASIMNz3bzQ7lHScHM1wpZCNRMFcvWkylWB4vaTdrGDMhjMQxYXLiYDHn7KCByrB+/oKL03PqwxnttqPrMyFAyIkUDX03stnuUMpxtUv09cBmM1LVDU4rZssFVe7JprAadhzOavr1luXJCXmuSAk4XDCuxHmsrGV0nsttT2UT5wuLznPWY8+mG9HzhqQSlSkcLSpsMajRsKwcocAwjAw9mJK5ODtktQ44m/BFU5xi0w3k4DD1MSEltruW2azC6kzjHWEwaF+zPDigoOj6kRwlFjHkiPUO5R05JzbbNU5rZkdzFl4ThsguBqpFhas82WmaxZz1oyu6MXDn7iHDs5d0uy1ffP5d3lTvcHL+BqpYplSUqRCqp3mnoE3N6dl9zo+/4JOPP+bm+gq/vsY6y2FdsVx4fOUoSkSV49DS5pEj5zmbn3K92/JisybPLIcHhyitGcaIUhJhOsSI14XKNfS7nucvbzg6rqlnEgcwdhpMxSdfdnz6RSdku3FDCCO1tejiSGOiVFL8zQjdr2TNer3l+voSfbgkhC13z06x6g4vbtZs1h3b3U6aBkbL952aGN4ZvHPkKUa1FLnnolI4mzBOE3Jk3W2oN4ojNWde1zhlSEpxWFW8/8Yd5nXFyeGSP/qTT3n+/JLaaoyBFAIHlWdWGyrn6cLAEEZCp3nwacvNzRWPHn3J82ff5Jt/4+d4+417UzFZ43yNtRZrLLtqQ7ddo3TBWoMznuX8gLsXZ3zyvc/45NMHvLzeSnOBSGEveJUGPAgFo5BQZErWtDnx6Mueq8uXPHv6jC+//jW++vWf4P5b9zk/PWc5r6msRVtNtdBgHcZ6rK+ZHyy5uHvK9z/7gu9+7wuevVjz8ac3PH/2Hd59+4y33z7j7YtzjmZL2r5j1fV4XXH34JDz00O+9+lTnry8ph1XjGlD32+4vr7k+bOnPHjrTd65/w5vvnWf0/Nzjg6XzJdz6nqGM0YiaLWWZrz2Ii6I0nQoSRrltdXSwBoMVVMzhhHvK5bzhvtv3uWjD9/n+599yfc+/YKnT59zMzlUY0qTqCCLCK7kqZGjbkUJ0rdRt83yH/IIq0LRUyOCPbwkSpMlCdGq6zvq2ZzDw1MODo6o65rLy5fMZ3PmTcPhwZI7F6ecdScsDpZUdaaqM9ZGtOmFMANCTsgJZTS2bgCFKYm6ach5QE+O/lKgqmtOjg7ZXd7QpkwZRnIIxJyZO83b9y748L23Gb6543tffM6DLx/9uTYFfxlDK4tWe1GMNNm0UpMRQN3Sd1BlcseX6V03iaMRwXTR3O47FIqqqlksFty9uOCNN+5y994FZ6fHzOfNbZwaRRGHSNtJ9MJ2u+OPv/MxT5+/YNd2t5I1dUsYYiIHiZDjh0RHGdAinL9t/KVIYBK9TOYApv3PD9KTlJqaqqIhwhpNlm2MxInocnveSmliyqRQpn0KkLOI/jSEKQpIwa2hQCn5XnsKlZ5+ThEHxPT18nulJGaTIsIl60SslKIQRkHIPMYactr3O5VEazJtUsoUdaFkX1FyIk8UVVU02sj1UIhoRygIsj/UZhICZdk/xZzw2pDIJCXiM6M12hrU9GxLuskkaDCT8EoZYozEIgIpsxdwMYndpn0iSk2RxZmcZH/BRJa6FVHBJF4SkVxmipwr++u+JxMUIRSlDDpNZKBJNMue/JfF2KJEcKqVzH9p+rc/1OvKIpYqU+yMMlM8eoyoPErU+PTcUDQpZnl+8iSwLCKAGqNE3rmpcSkCqjg1a2XPXFlHiJGs9LS/syivwFjSkNBGo43QkNWe4oImFCEVOiUtYVPAWQPO0AUhJ+uooQScV3z1J9/j8KwBJcKAovb33z7CJ4uAKmR21x1//MefsekiWItTe2JTvo0UHGMQ4gVQ1xUgz1fcBbzX7LqOlLNEzY9iGLFKkaa4PlfkOXHGQZyeJaBM0YVGWdzCsdtsUUbTdyIKNbowq6wIIwXxSywBbeQ6Wl2DcrTbLcRImIxOMQSs87LfNpoxCd3NpyR1FAxGCWUYmyVuLkutIcRIzImuh1IkOq2PAVMKugjp2TiNdoohZNIYyVFMNbO5nUSZIsrzGlxdMcZpH5elca2AkYSbVWgFu12H0V4Eb0Vi/Ly1Ej9YkEh7VUghCI3ZOkI/UoqQymLPLWGn9oaSZe7d10VS6qjmM5zzUkNAIolSktjgxbzBz2t2mx05KuYzz9BJLFuMBechpELIiqEfJvGcZhcyYQz4rHAzi7aWqlGMqUjkFlYUa7rQVBVjSNSLBWmM0xZXUYxhzAr6jtoClWUwmjFKlKfSoFKkqS05A1FibCsvosGchGoyn1c4Le8NPZG8xpwl2gwhr/ZdLwJPJTRvNz1fvvIiFBvTJFCMyKNdJMbKiAAhhSg1DmeIUShbweqJXKNRzmBCZtd1NIuGEkc+/fT7LBYLLsoFB8cnaG3Zz2qv3kP7poPCV3NOTy74ia98yOOnjxi2HRpFPZvhvcd5OwltDSoGEUwVmDczTLT0/cBQMq6uRTC+J7tpK5GtSuZ8ZzybtsMYqBqHtpqYFFlbulHxYjXQB1AlktKA0ZowZB4/fMzhwSFoqddJbUaEq23X4oyY+6qq4vRoyXrXMoyRcRjlXTiJocskVNJGSKtopvqjXPc4zRNmoqiPMdIP/VQjcpOJTuG0YVk3mAtFXXmq6n/l//Xb/wfPnj7BaokYddbReIcxQhwMaSRHaLcSy7XdbtlsVrz55pucnZ5Qe3dLDXJOT/OhJZoBPRkWldbYY8esaThYznh5ec1m1zGMIpAt7AmOP7yG2QtFRVCc6dotQ9/TtjvW6zXnF2cSvzZfUFVeYnmVQTuwWghaylisdTTzhoODGS+vblitd+zayIPumutVy/HRnMPljHnTkFOijwGtLDNXMW8qXl5vWG1a2VtFJgNad3sch4eHHB4cMl8sqOuaqnK4/TtVT4R0JWsaPcWGy6SfJgOlAu1BK0yxQuOdhIXzWc3J0RGrzZarq2tW6y1t14m4JKlbgfntYlzt49321/EH5u89YekHF7z7BcVeqK6EtqjLFMWaE13f46uapp5hnaPvO3bbLd55vHPMZ40Qpeoa6yzWlum9PoncmexKE4leaSPXBlDFkkuc1pKyvtRaUdUVqivEIUwU/CDPAIpZ5ZnP7qDv3GG92XB5fc1fp3F4eMjFxQUfffQR7777LkdHR38mNaKUwjAM/M7v/A7f//73uby8fB3n9nq8Hv8Dh3OOX/mVX+HOnTv/TeLJnqD0L/7Fv+DJkyd/SUf4erwefz1Gzpnf/u3f5v79+9y/f/9HIhAppTg8POTv/J2/w6//+q//WBEFd7sdv//7v8/f/tt/+8eOpgQiVPrH//gfA/Ctb31rqou+Hq/H/9zjRxYp5SwOGKUE/641U8F6L2DgdpNfYHKCCfZfKU0iUdeekBIpiMO4coa7F8d88P593n3nbY6PjpgvK6qZoyjNdjOyuulY31zz/PkVLy7XhNgzhoH1dkDZSqIHxhFdEgYpPMa0L75L0UZppFCeFTEWyEmciqWQc5LiZ9YSQ6AnN2WMoMT1H0MSF6U1cj4YYgoMYyGkSMqT4zrvo98M45hEIKUSFIldyFmwymM3UBR4X1Nylsz5LJvsQiGlSM5BkOxZUdUWijh4U0wYVaboCIP3DmcKMY70o+DZjVI476itZNlbFFEpvLN4Z0lJdsxaWayW79Vud1P2vEMZS8kKX9eUnIhRyE7GKLRGmoBJTa5fg2kqSgwYFN5WhGwofYQgjkJlNd7si2ji7B6CTE55iqkQ16XCVh6lMtoYxpQENT+5sEsGckJPjSlrNWkIk+tcYjXStCmsnJPPMJUpZkd6E9Z6rNPYmMVFiBZik7UYXdDKiqBOgXOeujYM4yhOJ2fQQRobjfPkohhiAmtQXtx4qZWore2upao9pIBSFt/UjDESgyy0lY2MfZhiH8QNvXei9ylhlRCaDuqaknuKtmidp/MvuKaib0fQAWe8UKRMBbZQXCQoaLxEqF1f76BvOZ01pFJIWPrtiJ5VdKmVSLmQaYeAt4rZ4YBfRoqWiDqVC1lPxZ+s5PfREFcDLx+21P5NTD2ndJbrzRZXGfpuwM9qZqfHdOsVse1YHh6zGSO7dkQbMAdLxj7wcruizZmhG2g6RVYaowp2Zmm3EVWg3d5QLeZcXa9EkKcTg1OUUchmdb1gzBljK8YYySjMkDibz8jjiKLQ+JqCYjaToqqrLAwjekhc3lzz4uYFs+WSk+Mlzs1IKWFsQ+gLs0VFGhMqG1arjjHD0WFDnyPX1y2HTcWhVxwtZvQlcXb3CG893sh5bdsebzKLuSHGnm1nCTFTN0uKiaimIg8dKMfhYkl7c4PWhr5P1IdHJK9pGke7vsZkKKGwalucGTmoKw4WByhn6VopajULT8kdjVfM712gKsvQ7eiN4WA+Z7fbMJsbSqjxHurmAFzFZruh5IGlnhG0JYyR9TBgU6ZeGhaHc2kCKMPSFdptTxpB7Qxpp+i7xKbrqZ1l1e4kpmNcUwZDKZr5vCHlSDObs2tH1n3EGcX2+oZihcrz3ttv0O56Vn0iDpGYC0MIHNQV25sOrGLMHa6qsVoQ/EkVSg4sZh7dJRgjMRRSl2jqOY6R+YFhtelZbzrq2nB+94K206xuWkiZ0RsWswUmKXbX1xIDo5xETaCom4o+jTijiePAOsPVpseZRNGCcre5QD+ShkTWGlVpdqsdOSmqArOjmq7vsZ1h5qSJcHRwjFGGIQWGLjGGkXYYubreYK2477e7jhdPHnF0eIxxcym+Tu10GSJUSkphlsf8xC/+Tcba8L0//EPiZoe2nvl8zmIxJ9uakUJVNaiS6ckMFCqvaMqMMERCzqgh0eVISJlu3RFSQlUGaxs2N9dc3lzj6oqmnnN6sWTcBoYefKMIJXBxcchXT44IuxO+9+UTSoaxhyElYhjRXkSvOWZyLKw3PV8+usTbmsNFQw6Zs6NjhiEytIHKe4YwiYmVxVmD0QGrNZVzZC0xmiklWXukzDCMUDK+9sRcuFptCTHDiWJWOygJbzWHsxmgmf/MnIvzc/6v//xtvnjwkE0M+KRxBrRTZK0JOaFNxmShLqwvRz4etty8fMbli+f84i/+PB988D6L5VIoT8YzW4pT3lqNdh7jaozdUNc985nj9GzJvXsXfPs7n/Llw2ds2x0hFkrKlDI1rAvT//PUaNDonMgxEUPgex9/l5cvnvPgwQO+8pWf4IMPPuDt+29xfnbCYl7jTUXTOKypMdWM6qDDLWvOL0549537fPd7X/Dp955wdbniW999zPcePufDN+7wwVtn1M4QQEhmMXFYzbh/cUoYep7fDMRSiKEjxpFxbLm5vuTJw/8Pe//VY1uWnueCz3DTLRNux3bps6qYZUgWJRoVSzw8PI2GSEiQriTe6g/pb+hKIkBBAIWGiCaolnQIiaLIKtGUyczKzO1NmGWmGbYvvrlilw4oKtk4VWRTewBZmRV7R8Rc040xvu99n/chb735Dm++8w5vvnmfk7MzutWaRbtg0dR0i2Zeh4BxIoBwxRG9xB+E6Km6BcpaYgigLQWDM4a6zrRty8nJMW+/eZ8ffPoZP/jkMx4+ecr19RbvxZWdUprd5Adxwn+/sTu0aPJBKaKQ+I5DxJMCXeYokKJRqogIIkVGH+j7kcvLC1bLFUdHK8ahZ1ouZ/5LYrfbs1od0y07mqaiaSrWR0u6tkEZKyIkrWaqyiyMUhJpYSshb6Uo69Gh7wlDQmlNu2p4Z71kc93z5OKC/X5PKIXGKW4dNZx+/av81Je//JfaDPw4RynIO0wd6KDMoo/5jTbTXQ7/32gjTSYOAWMi9MuzsKZtWu7fu8sXv/ged++cc3x0RNs2uMrO0ZJCcR3HyDQObLc9L15e8uz5U548ecLF5RUoK6/RIgaHQ5niIHKBed2tRFRFeRVPJsCY8qpBdSNQehUtfGj85lTm9bR+RaRMiQiomZKRi4gUtJbPLPGWBaWyiHM57LfSTBFCYuuKiGCELPDq+NWspipFIsKY6UK5iMM+z3sCYyRSqGQR5OtZVGSMwc5CJi3sJSE76UOcmuyMpCkoTVc1UxNQcjzGmld0Cg5iLRHUlMMaHw1WBE4Spy1E0RLTrN5CGsVKPpeeBZwxRzlPs/6qJIkoUcbMwgKJxz5QnUToKifxQJTSs4niUPw57GcpzLFwh/eumkm3EoWnUWRdUEm+L8U4Ex5EICaHLcaVmzjrkrFai4GlFCHGljlGTwvNBaD4iFIanwPGijEDpTDWkkoip/k+0kIcOXQrzUzAKhliKehcMKpQWytCEvR8D4vY60DfRWWckuuklRUhjpb9kDWOqjIMY0DHQFuJwaIoTfQJ5wyhBDkfSfbGzhq+8rV3eOPdW0jEkIhcyiFmqigRXGdNmhL7K893/uxTNtuREjVDP2GMJsaEcbKPCtNEDpGqafCx4GeRlmpqiceaRkIppJCwVkR5WhW0UwQvYsIwjdi6YhgmnDMUlYlawVw7sFZMP8oIsTcAKmU6V1FyRBU9E5wUdn6PGSPUKmKmH0b2Q4+ra9q2wlRWroOy5FiwlRCCKYpxjOQCdWNJOTPEQGMNtVO0VUUg0y0X8zswk2KSePNUcE6TcmQKmpQK1tUUleUZShIR1VQ1cRznuStj60aoflYTplGuRy6MPmJ0praG2tUoownBizHJGUoJWKNwy6UYiKInKll7+TDhKoVNFmPA2hqMpeTEOA3U2mCxJApjjKIT8iNVZfEUyFA7Eb/llLBA7idKLEwlYq0lzDHu2iqJXosSh1SVLNSrXBi97CFKigxDIudI17a0qJn8lQChsHWVo5Q0E8JE5G+0lMRCno1EZhZGJmbBfaZunAhZjIhOhQAjkYRt5wh+T0mZNAnNyGhDGCcy4LOsL1QR05txIsbVwOQ9U5RaSEFIL0pQeKQQsc5RjMRahpDQqVDXQgYOk9C3ii4s6lpqIxlyLKQoIohx8ujZOPEnf/rf0OZrtF1H3Sxu1Emv9hOHWRZQhsXZOV/++tfxJfHf/uAPiD5i61rEOc4RZ2KNUxUhTOSZqG2cxcUkRKUo1MNYhGCYohCQnXHEmOmHgZQTdd3QNs0spojonDEqUzcVt+oFi3bNixeXcj9EuHjxjGl4F9MtbgTBJRdiKmx3I85ULLqGHDN13dLViRQz2ZgbQWoBtDJg1CyeFvFHKpmY03w2ZJ0WS8Q4oZT6GMnDLD6uZdLQqlBZAzToY82i6+jalj/8w2/zrW/94WykkCjVQxSsTJ0yT6cwsL2K+LGn3+8Y33qL27fP6bpuXjNojHPUWs+kQxEJKW2wJuCsoWksy2XH8xdXvLy4ZhwnIc9liWgtvBJfHehAQoxX6FzIKrPdJKZxZLPZcHp2xunpGSfHxywXspa1xszHI/HSporo2lK1Fev1isurDS9fXrPdDlxtRzb7kWW35/x4SVtL3GnOIi42yrBqW3LK5G0kZoklSzEz9AnvJ/a7Ldvra46OTlgfrVksOqqmxbkKZ8WoYpSIvmRON2KqywfCahaavVLkmEhKz/OgAiOmv7quWC0XXG+2XF1dz2SlkTDHEYrQPHOTxT3XBpSaDaUwk4y4+TsitudGxM7Nf5Z5bZlFsJzmd/s0Se2xrnFVRYyRnGuUEprkOApdzzo5/3VdUVXulXBZy7pYqYMJQ9baWluMmSOED/uYEEVcbhXLekEKif0wMkyyjxZyoOXWyZrjozV/04fWmpOTE376p3+an/mZn2G1WgH8D5uWEiOeePnyJd/5znf4kz/5k9fEltfj9fgRDOccv/Zrv8bP/MzPfC5yS86Zf/Nv/g2PHj36MRzd6/F6/K83vPf85m/+Jv/kn/wT7t2797m/7/79+/zDf/gP+df/+l//tRIqfetb3+Ib3/gGi8Xir/pQ/tyxWCz4p//0n/Kf/tN/4jd+4zdeExpfj7/x43OLlLQ1c8FZoa2VGLAsDteMFAJTkWKIc1ZQ8QVULrTOUiuLUgmbE8uTNffu3eNLX3yLN+6fC23HuDnWLLO77Nlseh49esrzF5dcXfeMPuCjx9wIURTkOCN/DSkUybUvYpTLeaJyUjQvMwI6ZhhCQJVC7SwFOd6cMrWp0LMLt+RI0YoQJb/clFfe7TS7cwF0ZTFGsO/GWlKK0mBADi/JThWjpXiujGGKUTbRc5zCIetdau1ZmprKCqI7wpjz7IKS3y2Op4jRs2BKyQY5hECOCl1rlFUYrYg50tQ1k5fzZq1C20IomZKk0Hf4LNZUFFUwyjD4AFqzG0acEaxzyfnmGivLXJgUMcjY9yy7hsF7rHYcdyt2eQ8xQcpEC34KDCFhkeKuYhJBWE4Un9Eh0S3WUoDLiRIFFe4nEUQYhCjROjP3etQc36DIRkRjxmogCZWqFDSaEANKa2IRF1pIUrAgzw0YrcBZqqoiz40OdEEVRcgFP3qmcWK9WEmRMY6YJE0CEbIpXGUJOTKOIw6wpRBMYZp6bAG7cAwlEaM0SBBoFnVT0XtpOlTWUbuKKY4oijRhUiIraWjUVhNTYTdE6uUS29UiEgxwtZlY1ILlj1NCp4pVLeQAVQraOEwKFL+nOVpgKk3YR3xJ+JyxKbJqFL3fsb69pjmCosWFXYigMwqJpWE+nngRePmDgYud4/YbJ5RSsdvvCWNgP/Rkpen3G9brU3LVYlbyLBqt2G62nKxqVq1hoxLDVPDjiLOKjKN2horAfjfhbIVzmZQz++2e0AcqV7C2omiHtoWjowVjVuQp4lzm6OiI3WZP1VRc7yNh6jk5Pub28Sm+JBpnGIeRJ8+es66XUshfV8TYQjGMu4m7d27h/MjLl1uOlytaKqgzbdeR84rnL1+AtlRO0bWWrrJYrWiPVtyqanzKpFho245hn/CpsFgYqnWHTxFtLcooUhipnGM/BKxTlBTYXb4kDSN1u6I7PiaSWS4yfnsFESqrCQT8zrM6qmkqx8Z7VIHj42PiNMGMvh97Ibmtzk8Ydond0LOwNePQY5uKOETao2O61TGxvET3Bu0slymTUs3aFVI1UZRh3IyQg9DwyCwWFcMQGULG7/ccHa1o2pqLiz0nxyusq0kpcnR0xuR3lCDiy6aWY/abHQrL+mRB8ZHL7UBOibpesLu8Zn1rxRhHvE1cXW25zBMUC0ZRVQ3KVhAS1kRObp0RQmKIEyEVjHZUrtCQMWmkrR05ZMYxMMWEy5phE4g+0TiNLoWx7zGqogqGXQg4WzNNO0wdafUS7yPbzY5dHujaBlsrmnZNSp4UMray2MYQUuHZ0xe0bUO9XJBjz7jvqYvC5AUlZHZTYk/m5PgUH3r2w4aYM223ZHW0oKREGSfoLHVX48VaSr+9ou4Urn3VWHj1vxqTRRxVH53z9Z/7Zc5Ozvjut/8bH334A3SGxhgaWxP2A8MYSbNTdIgjXbsgp4gGllXDOPZMVqOKRSlHjhNtpWCU+bKxijju8YMFvxb6QCVCYFc3QpzKhXdv3+GecwwRTF3xR99/yMtxIlWaGovOhVQSfe/JunB8dkTXNSQyR0cLToc93gcgSeE6i7DVGhFMOyfRpGihDIQQyCULiyhFmDIhZWKooK5pl4qoQVUaZ5wQDlxN1a04K5k7t864e+uY//if/4g//rOP2PV79kmhfEFPE4u6wlpLTAELNJXGkXj48UdcXW549PAJP/tzf5uf+umf5t69u3RtjVGGqukkBta1WFehjWYaHXVwVK6mtg3r5ZIPzz/lux99wtPnL/FTnN2Yeq5zz0TKIkKJHKNQF5JmypkXwbPd7njy8AmfffaQL3/5A959723eeOMe5ycnNE2FqVsWlaPNC7puxa7ZUNULTs9Oee+te3zve5/y/Y8fcHG15b/+2Sd89OAJ928f8cbdM1bLmmbRcG4MVddQH9W8sd8yjIHLF1teXG0ZpoF98Ph+4PryigcPH/DGm2/w1jvvcnZ+l9OTM9arBWdnx3RdOzdBLWYmdRhTYbTFGCcibmWZyog1Fc7VBD8R/ITSlpVx4pC/dcLbb9/js88e8cmnj3j85DmbzZZ+P+CjJxdFVlnIh2TyLIBRiIgkz+KvQ5fuEMsFhTxTb8os6FBKmpglRUr0xLFn2F5yfdWyWh2zXK0Zhj19fyTCwN2e5WrFYrmkbWvGcaJpa5xzLBYd3aJFKSMElQJJZbJWmGJIk4JiKQWca3BrQ1q1EuuLpl1ONPWSTx884smLZ2z9iD1d4FzLTbbUX8Oh9Ny4QcT5ej6/zEKk8kNxK1KQPDR+ighptIgCFm3L++9/gbfffovzWyesVwsRcygjJKFcGIbIOHkhsD5+ysuLS54+e8715lrWtTnNwp+ERqOMxFxJU2oWvZSIMT/knD+QW3KWqBjzw5SugtVW1vgpU2YKZcoZreW4DrSmg+gFpGl92BdYZWca2EH09MMNRRH9oGeBz9xcPPB/DvFmMNOpjIilDo3bw3nM889ORdbCNzPJLGYgA1ZxiJbLs5gmpoRmFpfNEL+b2DS5pBhlbpqvMSUKEnelZ4rUIUI5IyYScyApATEEKmfl9yhN7SpC8TPVoryKP07l1XGgbppyJBF4Vc6JcWGOz8wlk6J8Vq1E9OnMIfBRzTHbryKuhbAh1wyKCPTnOLU8i6XSTZzeIQpcgRHxbcwSo3doTOYigpoYE7WrZkJuekXVmsVREs0mwkStEBGZLqQURDPkHJEseqVSmLPTsdbgZ9KX0UZir3MUwZ1C7nXke0ToIZHQpnZoN9Nhs2KcIs4KeSJPGVWsRJge9r1Ki3jCe2zt0EaRQiYxU6VyprKQSXzt6x/w5rvnoOL83OSZQqHnd62cuzxk9hcTf/q9z7i4GlDa4oMnhyxxuUhEd123FGPR1SyLUwk/TjS1iHompWTbGeMs8JPoRUMm+Dm+z8hz5SdPCgljCkpLBA5aSKURKFGIRk3d4CeJ+p6CUG3apmbRiOnDakWMiV2/pzYVKI1tjMSYFkX0ieWiQ6fA0HuaqsIpA7bgnCOXmn7oAYlzdFbPtBJwbUWrjUSXZ4mDjL6QClRWYRtHHvJNDHBJAeMMYxQzTykJP/TkEDGuwjUtuUDlCsmPQp/WikQh+0TdSFzVlKQR3zQtea63lFyIQeJU664hThkfgxDPQkQ7I+vgusbVDYVBzrmxBApTRKiOJuNLlvi6PN8DWqiVuIphCKSScAqq2jGMkWEMMkeqILWKkgkxoGdKorOOOI2QCq5xOKMYpyC0ZO1uBJ9KW7AiWNrG3Q1tRWuNcZY5C5OmExJmyok4C5uEsq1QKWKdQReFj4kQM86KICiOMh84o8gxEnRBFy21oFIoRZN0mN/HiRgiMWRZA1UOpSzWHaJmM8YZgg9MUyDGRNs1xJhIQQjS1hmpNaVMDJG6FrKM9xMxRIy1GGtpK4m7KkpqeWGKfPzRx9y+c0fWWq6We+i/n6XR87yDdRyd3eFnf/4blFz4r7//B0wxYTsl9ZyQyTGQyizCpRB0pKoquW/nGpKPQt4WUVlEmwJRzpHVSgTZfqQkiWQ1RhFzAT2bI7OlNY63z44Zp4h2lt3gubq6xHU1BouZ3zMhZUKKVPUoZj4rP6NtKiGzySwuc3gWtZAzFqXkmVBKSRzvLEjNiEAlFcihkLKhaOSzKEXRYOaakjagbKGqa5alsGgbjtcL6trxn//Lf2E6EFZikmhMbYkqARmrNE6DH3oeP3jIftezud5w5+5dTk5O5msscaBV3QiJcK7JBq9JSd79RlmcdXRtzctLEdz4ICS9V2QfbtYXByFNJgnVrmSmLPfV0Msx7G6dc3J6zNHRmmXXSSyiNthKY4qQjUIIWDNS1TXr1ZKry2teXlyz3Q1cbXp2+5FlV7Fatiw6ichsVIWxBlMZ2mVFjIlpDOz7aTb3JXmexondbs/19ZL18RHL1Zq2XdBUFU1b09S1CMwOAi7FLKJSaKQOXHQmFKkLGmNJSSJaSQmnxKxa1xXr1fImBm4zR0p7H4gpHlZvPwxIekUhu1mrHR6jcqNPOnxNzSLdkmeK5SxOLzmTUyT6CT/2uKoSGr5vbiInK++p/ISra5yTOqT3bt4PG6qqulnvqVcrTTG9JkUps+ROGSHZOUuhlvphzFhbo9We6+0WP4zo4qgqd7PO+Js2lFI457h79y6/+Iu/yPvvvy9G0r9AmDSOI5999hlPnz7le9/7Ho8fP35NTXo9Xo8f0XDO8au/+qufW6AUY+R3f/d3+fDDD38MR/d6vB7/647Ly0t++7d/m1//9V+nruvP9T1KKb761a/y4MEDfu/3fu9HfISff+x2Oz755BO++tWv/lUfyv9wNE3DL/3SL6GU4jd+4zfw/wvH8L4ef/PH5xYpda5GzUXxnDJWCy7XZy9u8LnhoJUR6pKZhTIpMPqJ8+Mj3nn7Dm+8cZvj4yNWy45uJruEqOm3A7vtjn0/cbHZsdnt6Yc9kx8ZpswUJEvcHJyIJlOSpxSHcxbvPcEnYgJtLcZoUinixDKa4CVO7LDx8Hl2uxpD5SoMQJRscG0rCmCrjCJSQiZrTSwFlaMUu5Vkyte1uPG8j5RSqCpxvIQoRJ0D8WIaE6pE6soyxkhtREgTU54pOLOjJwsRqjaWLAeFm+kNtVVUzoGupVCV5c9TlKY8tTh1FUWafU6oQJGMLUIHSFlxMNzGHHFNLQKqPDcstKEYKVLEGGmbhhgCMUShbzQ1xmq8n3DGCkVIF5rKsplGiTAZJ1ztSEWoIJVtGGPCjyPKOgwWVTSJzLAdWLUtXVOTslACUhGMuVKGSlsaV4MqhDCxHdKM6ReUu9JCImi7Vs65UrPzqKDJlJRQzhDCBMFgbSU+8CLu8ZLKHK1nqI3COkcKkX4aUNrQ1i0pG2Iq9ONIjIGlq8nJU9cVMWRyCPgY6HcDi6pBVwadM8ooGuswxuJTZL/31EZhbCVf80HKZDmDbZh8T46ZxarBOCvubqOwKcmfFY2xjlVbUxdFLprgDEfLNboEjElEDzFoKAmtItfTyJQsxRq6zqKSwgJ61ZBCwhmIfkTpwO03FO3xhNKHeCEPSEFG5wNbIJB3kbyztO0Z56tjpiljQ5mFYLAwEKwma0NX1SxXHTEl1FTwV1tcHZlyQu2uyDTUroMYqCuDszW6rpjKyLgJLOqKxJ40RlpXUR1ZKYoWgwnixHz47Dl3zm9zdLTg6iLz4sULlNbUoWUYRtbrjqapyT5yVEuEyBQhlorew/GR497xKfshcu17SiX3fOcscb3Ep4nOrKhtwZcRHzLjuGMylqwNx4sljU6M/chUoBjNMEFJBT92TL3nZN2xXFhyyJRsycqgFw1ETQEqMk2rcbVm7PeMUyIzkeuR2mpsnbkaR/w+UTtNThNdZVBWyXPpLCrDtN8x7gdC1aLriqQUXkeud1Jk69qOF9cjdXfEotZsA1TrJalEfPAQIxrDZAzLxrCsG94+OuX51SUhJVZHxxRdGK/2xGgIusUtKvy45cnFhnfefJNxt+V6uyUpqJTi/GzJmCWuIU8jIcK431HXiuthIF9PpNHzcjNSL9f0qTDEzFo1LDrDZtOjjUQclCyNwcEnTleWFsfF5In7SN8PIiVNGeKEKoVQFH4MBG9ZrM9IxhOMh8pIhKZrsdVEP+7IU6atLEfnx4TLHSFkztYd2sp7cxsnlDIk6wjKgPfUtmWiyPs7aXwM7IYJNYyspkmIKTlz69YRUNhPPcPQo+2SjOJ66jGmsLx1xO56yy5EqkozxZG2aWjWSypTs4tbIPL84QMmHvPul79KU7dzQVSacWomWUhClKZu17zxhS+zD5knlwPPL7d0xwqTAz6Ig1yrQlNV+Bh5+OQZR+dHTI0Q8+racX685vLljmISeqHIKrG53rIf/CwkUHz2yXOePLpicdJxerKihMxm6MnZsJ0y3xsGXBLKRwh7vC4iEGqdFGdnAW6O0PeBJ08vWDlLReJ0teJotaAfPD6OZJ3JSbHfjoSCOJqNiAEEeCLv8ClM5CRxrtZVgCbETGyEiLRadxwfrchJhKiqH0l7EYiuGssH79xm1f08t45W/Jdv/QkPXl7jQyaME8MY6LqWRetwqDl+ByqjuHrxjD/4z3uePHnCp5895Gd/9m/zxS99gdOTNZU1uKoF7I3QoKpq/Dhg9B5dFE1lOTtdcefeGX/6Z9/nk0+fcrXZEVKUQrek3ohJV3FDF1Q6U6I0UGNKTNPA5dUFjx99xvtf+CJf/uAD3n//fW7fPuf4eEVbSQSdq50IqFxN1zYsmorzsxPeevMO3/neJ3zy2WOu9z1Xnz7j0cU1794/5a3bJxwfL+kWDffOV4Q0ERLsx8Snj57xvR884PnllhBG0ibQDxLj9/DxY954423euP8Gt2+f0/fnnJ6e0nUdTV1TVRK164zGVpWsQYKI0owDKPPcWWGsI0ZPlSLWWGxV0bQNp6envPfuuzx6/IQPP/qEBw8ecXW9ZRgnvPcU8twwkH+TX5E8JFTsEPeUZ6HSIbZL1sEZiakyaGlcz7GwWRtCDIz9wPXVJVeXFxwfH3N0fMRyuWaxWNJ1S5bLJc4ZrNOcnZ2wXq1p6oZF180RDjOltGhCEmGB0VpiG6wVMoFZQE7kEBiGnk8+esKHH33GlDcsVgbtMsuVQjn3l94Q/LiGNAOZBXeHeCtmotSrho86CG7Uq8iWZbfg7Tff4N133uT09Fgc9ZXEC2cKKYlQ0U8eHyKX1xs+/sEnPHr0kH7Y44PERpW5UUMCrWeXPBqDEZppOsTHiIhKRD3SXEopC6EIBarcrKmV0hg1y47yLCrSBgBj5nbRTGPKCMmmUChK6B7W6Bt3NkUINyBNa8WrExNTRpUs+5wM9mDGmOk/eo4rVALmwWo995hmEpIqWKVmYZS9EWQxu/uVEvrroSAspCHD4cnQMDfdRbCjEDGQc4cYMrl+RYngTCHX1lonvytlSPL5tFbzu1pj572kCCUiCiWCE2PIJZJylpibJCQOpQ0FLUQeJOa5sg47U5sO1IiY5WcZJQIiuTwRH+ZIb61vhB4yh9iZsjtHumURKDJTmcToUGYB06sGZC4ZpWQvZ4zsL3OS9zJobOXQ8zkLXsS0lZYoVTuTiUsSekfwUZ4To1BZaEDWSCRmKhk/U2OUkujMlNP8uRA622yacZVDGQ3M1KgSSClQytzothbZNUocWl3JHkmrTEqakm44IkwxEIvBaGnsqSIUGFXZmXBYyCViDXz9Z77IW++dS2w5yF6aVwSK+a6h+EyeFA8fPePl5YaYJNr7ADCrNCStKVHeG1Xt5B5NkMYJYyU2z/uRghUajk5Yo9Daoqwhh0iMiaoxM6Gj4LTB1BKdpIqSGEFgu9+zWCxoasc4FPp+L0SsnAghUTcWay0lZWoj913KkIslJEVTG5ZNSwiZKQWh36REZTS5qUg54lSN0YWIENJi8CSlKUrTVhUG2X+nYaRoMaiUDCk6Yki0taOq9ExalGunKnsznxmKCFmNkv17FLJfMRE7E8zGGEk+Y43cz9bOwkfm5wGI3hNDwESJ38oKMpnJ+9nEZdlPEetqnFEUC7Z2HAxgMQYsIqA2TmONprYrdIj4caBtKioMOSTImpAzumqhJPpxZLF0HC07+l6ML6ConcbVNaO3lCgU5RgDWkustPeZUDKTj8SisblIfScVFl1LnPZS37HSlFdK42Oic5bWGaaQSD4BiZwREksKaIRmrZVhGAbadklSUHQgzZFbhz16ihM+JXQodIsOXWCaIpVRNE1zIxbJyH4xKxFGWm1EzGpkTZ9zwKdImAWazllyKtSVxVmpSflpomBBa2KBHDx1O4vgZ5p1VhJ9ayuHqyrS1HN1ccmf/fEf894Xvkh3dEy3WAlVa173HF78B/FlUYrF6pif/rlf4Ho38qd/8qcYX3BG9lwHE53R8vyOkyeSUbWmRLnPllVNijDGgHOAhhAmpmmOmdJaaIdPLtBWs1i1WBTBByGAK8NlHzG5oIqhBIkNe3n5kjtvvyHU9DzTkeZXzb4Xsq8hUzsRXDS1EwJ60ZhiiD4RykxCP9CYisz5eo7Wk3jXQ1ynpiQhTKPAVYamqTHaEOdrW0ogpozVilXreOeN27S//Iu0tePf/cffY/RB3ikxEW3BVYZKz2L1wxwYPJcvXjD0A1fXG+7fv8/57XNWywXOCsHIOaErlXmtkmIghYDisGYSqtKLi4aLi2v2/TgLhw9rlDx/Xm7ezYV5HTaTg1KfmKaJ/X7H1fUxt87OODs9Y7Ve0bQNtbNoJQJHjZwfZ4R229SO1WrBxcU1F5cb+mHkaj+yHSfWi4bjVcuyEcFN2zhKaYVglRT9MPHi6prNbiDERIietI/4aWS337Fcblmvj1guF3RTR1h01FUtZHQjpjij1Y04vChZW2lzoNHLGjCpiNKRUjI6yV7eWEtVV6xXK/p+4PLqmqura/p+JIQDwX0WiTMvem5US7KOOZC6bohG81qqlFfUUDWTrFBZBNVlvp4zqddPnsENjGND0zRUdU3lKlxVyb+dRO7WbU3bNHgfsPMaSB/EdqqQs75Zl4kwWt9QNQHKHBm82w1cvNjQjzuMLSiVRL9r/vruJ/6yQynF2dkZt27d4oMPPuC9996jbVuqqvpz//7hWl1dXfH7v//7/PEf/zGbzebm66/H6/F6/GiGtfYvRVBKKfG7v/u7/Mf/+B9fRyK9Hq/Hj2F8/PHH/Nt/+2/5B//gH/wPxb3/16GU4ld+5VcYhoE/+qM/+hEf4ecbOWe++93v8pWvfOVzf46/iqG15u/+3b+LUop/8S/+xWui0uvxN3Z8bpFSPQteUpaoFvLBjZOJIVNVFVZb2VwGiUI5WnecvnWH+3fv8sbtu7xx/7YgzediwOQD+/3ExdWWx4+fcXl5jQ+JKSYKGu9HUgqkOQ4hpSTOPePmvHiYssR6xBRviusliXuPGW88RT83phSNc4QY58gBcdeQEto4yZuO0qhIOaOMOMK0MWjjSCVgzRxxN8c0+NFjdIEsbrgYI0YdYD8RP82xccrQtC2uNvhRilE5JlTKVMZglJ7R0lLkiTHhKgc5MEwTRRXq2t5gxZPKKCUuQjOjiqeYKDlibUXbNqAUU/AYK+cixihO8VlEVpQ4zcQ9LuQopQw6FawqFK2I3uMnPxe7KxEmIQVhZQXpbyuJaGkrJyjvlNCzu3qaJmmuxExlxSE8RnES5pzJSjGlhJ6tSDkkauNISkhIPk6Eklgul3ifyUWR5s+pcsHUFSFG6soJXQJDip79FGitpRQrUQ1ZChDTOEiRqm3Zbq+JPrJoFxJ5NkX8lEgz/nnVteIaNuL8M7PbK4dM1Tj6aSQFRdU2pJypnMHUClsrVm6FTxHvI/1uxNSaptFS6Pcj1hpChkXTkEKgpIyyCWMzmoKfRBhmjEFpxfrkiFgyJag5fqZQjCKRGf2O86MVu77HFy3RE8YRQqBuHC4WKWg7RR8VLVZcaVMvDfaqcHzHsTxTKD3ObaiIJs1Pv6EgbkE9ZqZngf1UkcqCpjT0PhCspV5WVLZwfnzKZcw8ffyMUiLhYmRMkd00EKLEJ8YJVnc72rbhxbMX2IUhBNiPI8WPmDDi6syL60sy0qhtlzWtyqgx45SiU5l9SqSS2D99SnV2xumdu4zjU45XSzCWEBS9H3n0YmTaek7Pj1kfdVQuQYxsU6RrtUQNkOiMZb1YoMikkFgvKq6vdjx/8YCjxYK6daSxsFys0FaxrA1+iFhn6Y4b9qlwdbWlWy3w/cRmKJQ4sjpaoZRDjYE31w37kGiqhqFEQklYm2mdo8EQdU3bRlL27K97vAZFS56dzFeXW4ZxQNctThfG3Qa/HzlZH+FLIFtDXVVcbEZOz9eYzZZWW47v3eHpo8eM2bC0DdOmxxfDOESU8mjXUPRA23Tcv33K7uolGz/SLCqOly0lJlxTsbu4kJgENF1XUbJC1S3WaMbNwHLd4W3BJ83+xYbw8ScY67DdMVYZ9rsropNmkmtgsWwYtWeJpl107K4u6MeJp08uOF534tBOnua4Q02WXDJDyDx92dO4iuAyauopMTIME32I+H6DspYXVwPLRcc49XgMiiyuTAzb0OOsFUpZZRinhEqFZddRW8uDh8/os8VvJlSxdG1HrgO2a6EoKm3wPkjsV5wYQ6KfItZUrFYr9rs9u6FntXZsL3do7WiWNe3aUNVL0jhQUpHYxspSacU0TqgIb751l34YiCGy345oF4gBhsuJTfAc3T7n3p37FJw4wQ/r6ZmeogC0pemOufPGW3zxK1v+5I/+lM8+fsTd81O6RcdYJjKZbfBU2nL31gkaTdta0hxZcv3RE3ZTQDvFyXFH1oraVAzPXtAPEykFLq4vMMrwcqgYvGddt/iQZgJJIeK46Ee2w54+jPgCkUylE3VtIcCURrSWhvBu6BnTSMwd235PtWiolzWud3RopimKq7oonDNgLZP3+OBnoobGaCeRIoBRBW0UsRSGYeDiRaazVkRBdUXw/oaAOISELVJEvnV6yjf/zt/m1vkJ/+73/ivf+eQxgxeiX+4HcilU2lJCQumJUqB2FX7a8+F3v8uLFy949PARP/cLP8dXv/oV3nn7TZZdi6tbtHPYqmK3uRLXs1bUzjIMlrqxNG3N7ZNjvn/7M/70+x/z+NlLhsGTipA/cpkjzIBUxIkuUSYJVWR+zDHwg37Py+cvefTgEZ999oif+PIHvPXWm9y9fYv1sqGymrpuMUbi1qxzuKph0bXcOT/jkweP+c5Hn/Dw8XMur3v2+0c8eXrNG7fPOT9dcPt0wa31KcYafIi8ffc2X/3CW3z/kwf82cePePpii/eebbygHwauLjY8f/yUe/fucO/+He7ff5Pbt++wOlrTNQ2rRYtra2ISoYW2BqdqspbIuxwCQtop2MpRZsqUjhXWiet4vVpzenLEvbvnPHv2go8+/ozPPnvEy8tLhnEixnQT/4DKs7CA+RzmObrhFdkFDkVqofqUIgJUxdy0KgWtMypmkknEGJnGkd12w+XFksVqzXp9TFu3uMrRdi3r9YIQJsZe/pnGgZNbJ5zfOWO9bFmu1jfNDrk3FbUVIUKJAJoYNE8ebvj+D57x5OULnO1JxRDxLNctt4+7/582BT+OYbWIc3ORa1EOWRlKRDLWiPCCLM6hW2envPXmfc5v3+JoveZouWK1WmCtxN8oFDElfEgMw8Rmjuv43ve+z8XVtcT/pXgzbx2iu0qStQWzuzwlIZcKxQjE7Z7BmJkukCRWa/6dxkhz+dDYFXGS0He01pDl6EopEp3F3CDS+mZdU/KNooc0R1cxN65EnHSA8QgJ6ECisc6irSaFMschCzHoQIEQ0Yz8nJSyCJ5moidKiFQlZbSTbeBBhq6UwlpplpciUSzSCFOk2dxB+SHh1CyKgTwXhYWWlHMWul0Greb1fXoVT6e1xMXJeU+gJRZPW0NO8UawJQln8vylGOfUMCHYCAnjh2gEqLnRJ99TwnyO5+uTciRTqCrHNC9vX4nCyiyGyhhtZjrCHNMd03zPKvl5c2M3xiDvb2uZ0kRJCecqVFE34qSMiNcq50TQcyASG4NGmt3aakKKEt82C6zMTOTQRlFVEj+WUsb7iLYKa0WCFXO6EfW4WTwjwsqM1vKeSnN0dhKMF3VTCyUsy21Z5v1eKYWYAl1d4WMmFXnXKmVIOUnjMxeJNjPgk8Ixv5tTkPvPwFvv3eGd9++h9IEukG6emQNeqigFQRP3mWfPt3z82TN0sZSUiCpjK4PR0DUtYy7sdnvZmwxCP/EpkJKajVOKaiH3ab/v0U7MOD5GSBGVI9oW+nGYxYkKVxmsKqgoojtHwedCJhN2e0zX0i6WxLijqWtZZ6VESIltvydOiW7RUtfuJorb53xDdsw24+brrlQhJ6idYRon+n5D7RzGifiqqmqUVlRWyfNsFVVd4wuM44SbSb9TKJAjVVOjMKiYWNcOnzLWWGIRwZbWIpy3KLKSuLZcEmEMcg9g52erMAyeGCPKWEwNk59IIdLUDbkk0BprDMMUaLuaNE04ralXC/bbLaloam1JUyAhNGxFBm3nxj8cHR1BCYz9hHIOZzSqdmKkmiIpBqw1WGNmArXBUVFCRmmoakvWln43MOwHpv0e5RqMltg5n4WShTESaR8TlTaYrCBFQkqEWLDGUrSIt4oVkXiJoCrD5JPEo1FwVmLOS8pMUY6v5DTT0+S+3I+DvENzoRRDzEnEHWQqaxiyvFOM0nRdQwgbkir0PpBClkgn40gmC+1YFYm3n9cVsaj5HQxNJXWOYZhYLIXsNY5CLTfOYWwtQk/Ah0yJc+2qZPI00TYVRSl8iPjRk0sEVfjs08+wVc0bxtA0jdCt0fz39fkDYU+BcazWx/zc3/l5gg9873sfQsy0bY3RELPcf6lAU1dy32Uo1pBiYnvdkzP4lOjaCowSgnIu7IeAyokpyP2nrcXnxKJpeEUQlfd4SAofPFMKpJIZN9dMfmSx6ITsNkcyKi2mtZAiuThiiuhisLVFe43LjpQLSWdMkfsCrciIuG+edkV4eqDlqTmaVAmpdZoyu63CoKjr6oaIQxGaep4JmdZYbp/f4v/43/8uTVPx27/7H9js9rIOiUnW9YZZZSoRGEqL+WS/2zBOI7vdju12y927dzk5PaZrmhuSkTYW70fiQSSrNdForBVhblNXrBYLXry85PJ6y+TDHF8GRb2iNuYbUb7MqeQs9bmc2W0j0zCy3+7YXG85Oz8X0+lqSdtU8lwbQzXTjITiKPXJtqk5Olry4vKKq+sdwzBxed0zDBPLrmXZNSxaR9d2GCvr7KPlgpOjJZvdnucXIlbyPhHCNJ97T7/vWS0XLFdLVqsVy+VKaq3OSgRcZW/EQmqed42aqYi5zHOTiAwVhUic5ztZB1Suom1kT3RyvGaz2XF5dc1u3+O9J811ZonQO9Auy7ymhHkxckO3PJCMYI6NZSYxHURO5dW8TVYULfN3CIFxHKlmupJz1Vz7tbjK0sYgNWU00zRhnWW5WlA3FU0lokURbpd5HSP/JaJ5RSlarsllz9V2T04jripkAtpqjto/X8Dz/y/jIEz6whe+wFe+8hXu3buHnQlkf9GIMXJ1dcVv//Zv8+DBA/b7/Y/piF+P1+P1+MpXvvK5BUqlFH7wgx/we7/3e68FSq/H6/FjGqUUvv3tb/OlL32JDz744HN/X13X/P2///fJOfPtb3/7R3iEn3988skn7Pd7lsvlX/Wh/IVDa803v/lNAP7lv/yXr4lKr8ffyPG5RUo+B7SWaKuU5uL0XJJxtpaIrZxoK8v6bM3777zJl770LuuzBU1TkQOUbOinjA+e3W7Ps2cvef78kn6Y6PtBSB7aENPsSKVQ2YoxJ4mSS0liBHLCDwFlFLau5zzvJJtFIKcIM8kmZWmWWmvmvzNjnmdHlJpbCxlpYooD1d9sMFMpOK1wKFASNZZTwJQyC18SFIXTQttBceNeKUWaLeKMk037NAacqci5MMYkzl6lZqddoDjLECNVSjQhyvnOXtxJxjKFQNiPUhi1ggL3IVFVlcS+GItWGh8mNBrnDJV1hClI3E/l8N5jjCHEKOQNWzGFCZSisxZbZXz2Mzbck7MU3quqEnHZOIrAKEaM0lSmQlsjcXwZtJJCLEVcZH0/UFQRSpRxDEl+f23tXMCVXPtDil/0QahVWgQ6mcxmv2EcRSRmZrd10TB5L6KxWDAYgprdUFoTcrhxPmbECVu7ipI1w26gqRy6qRhHLxEKWSI3ShZUfowJQyHHgnFJYhfQqMpRckHbiiF4LjYb6sqJg1fJ/TsmcVrtJ0/X1jgLpVLErNldjnSdoaotlYXoIUeoq5oh7RlSomobrFZM+4Fl09KqhlF5TOXQSs6h0oppGKnqlt5H9kNE65qmBq0jqquprCbGCT8mllXDalVTWcV255nCyOnxgsVRZnkyCkFJ+ZuG2Owzk4uiI4RIf1lIZYVdHmF8h1MtfhsZxoElhsY6Hj/dMGSIAT579lIK+znSrhyV1gxT4GixxCZI2x3BR4KytK5m6YxEOGDwMQGOMHjMuqHMBBGtNTF5Bg/b/UC9cBQNfe8JZJbLjmXdYhcLNLDb79CLGm8CmynRFUeaNnS6MKB4enGFK6BsQqkKlyL7aQu2Q8U9WjuqNtLPFILZqI3VmUUNjRGRWjYtJQ4ctyuMUdi2YewDx4slsffUlaFtNHVT2F0XwhAgJu7cvcPV1UumYcDkwpPNhtvnJzhn6KfAfhhI1wqdCzErFl3LqmtoFse0x46cJlK3ZugDOYGKmcvxJWNSbHeKMI3QVTB46tUCNU7UKK58YCpw+eKKZW0oytJPnj4kfCyQ4kwpmMjJo3MglkkK31qaWf6qJ1tNu1hhanj6+Dkvdh13zpakcUu3rFlWhs3ljudPHzLFwvtv3kOtVozjnmG3xceMrRpa72lJRKto1g3aKIY44azDpolld0zvA6vO4mLgauqZVGFdVWwvrkArRj+RiqFbdVg0JQeWJ2vyoZh5dCyxb5Nnveiodcaj6NoTYu7xOfP0+RWd0aSp8Dx5jk6WUCDEkaIkXu6oWTH5niEFioXgFX0/sjpZc2t9hFaKlBLXmy2q1AxRosHsqJiwNIsWXMbHnqqphMK36FjWBp0ida1Yt6dMQfN0+5wUI8Y6NJlb6yV+e0lYnODme/9m/F+MfQXD2a07fO2nFEtX8Qf/+Q/Y7EearqVtKuIUycpgtRKBp89s+z2uqiXOYbVk0c3kOSui2aZtuH/3nKuuIox7cpbCZomZ/TCyXHTcOz7lYnPN6DXOKkww9NvEth8l8sEksKDUApM1hYBOUGuZ0/ZDYD8GwrOXnN4+YbFqWV12XPZ7nDUSXaoN69WKWBBxVpG5I8WEspZY5N1dxUynNUoVUkwMu4lHj6+YIpyfrqjRpCkSfKB2FU5phnEgpUTjHF/94tscrxf89r//Q/7gT77P6AdizFxs9q8a9kXicdoq4HRFiPDk0UN2uz1Pnz3jswcP+YWf/3m++IX3ODs9wTpL1S5YKUFZh6YmjgO2dtihwlqJkzlaLrh754w//s4P+PgHD7m8umb0hZxmEVieXe55RvprKDmRDo2umEgpMgw7nr14zoPHD/mJn/gSX/rSl3jj/l3OTo5YdvX8jluDksiRylW0i4ajkyVvvnmPjz7+jA8/+pSHTy54+nLi5eVnnJ20vP/2bb72E29zumhYdprqyHH/9Ij7Z0d86d23+c7Hj/jeh5/x7MUF49iz8QE/7Li6fMaTR5/x4q3nvPn2O5ydn3NyfMzJ0THr9QpbS3RgUzdoZ3Bak1KUuCljUMmggByCzO+l4ENgmgYUA8sFtE3FrZNj7ty+xZtv3uWzB4958OgpLy+uGYaJEAM5eRFtH0QrSEMpq0NUxKsYJmnqJmngzOvDohQhgLWgVBYaRAiUAm4cGYee7eaa68uXrJZHdIsFXdcx9B2THxn3I05bNtfXXF69IIYef+uEEAJNt8YYiypglCIZJSQVIw+5j3C1i1xeTwzDSNQTsWSa447V2Zr16fovsRX48Y5EuhH55Dmi6qB3OTReFouO+3fv8dZbb3H7/IzT02PqtsJaw5wxjU/yLHjv2e16nj1/yYMHD7m6uubq6oqY0k0jTkRm5uY65znylyLiF5SI4g4N0TLTXmbDPUpLw/EgVsuzmAmQLtP87pXItgMKSp7HgrqJGtQ3cqY51o40k3gOYieJ1Lpx2v9Qw1hEcgWlZ/FRSLOgphDLHO+GQhUh6XAwA5T58xpNLnLuD/Sd7MONGD6nRJmFJtKM1bPISY5Ra3Hf55jmxuscjabEtyLEK4mEQ0Fl9EwgSSitbghWRpuZEiWkpFwyOQuBwcxkoJyFJqWVuhE2KYRSe6ATKK2Jc0ybvRE9HeLT5u9I0jhXShqRBSHzxpikkXroPCsk2ikXaUyjhA5yEHoVeedqZqHiLGaiCBXJGo2yWuYffbh+cx6e4kbAdSCzHfhEyswUDDXTZb0XCtNMjskFUhSaU0hJYosUFAsZRRgizs0RP1oElCWBqSwxeULJGGvRCqKP1NZhlcQLaWVk7zWfwxQD2jpiyoSQUcpiNSidULOYNudEipnKOOpavjZ5MQq1TcX9N8746k+9h9KF+UE9PA3zIyLUCHIhjoXLq4HvfvQJSluMsiQ/xzQpjdWG3X4iFigJNrv+JorI1vJ5g8/ShC2QJy8iwpnkYfRMqAjz/YQhxYit7EzSk2ufs/xOHyTKq2gIIc2CtorKWHTlUID3k5CjVGaMGVeJMcopiBr2w4AuCqUzYDA545MH7YR6qAzGZoIq83OIxJEpodJYZUVApi0lRRonAiZtLTEkGleRfULbeW1lC+RCjiIoWC4XjONAChIPuJsmFotG9sQxEWKkTMwRiGpu5lusa3CNoZRIdjUxzELNlBljT8wweSX1lWIgKGxVQYyYAmNKxKIo/UhlNChNzvK85t0g++es5uimhFGFMPQoJVFsKUdKgjB56q6jdpYwTby8mlitOlT0WKOpGk32nnHqGXxi2bYcr9aEkgnTONdbLJSIVglrHFPJuMYQy0xininaSjtKTlSVoU8SFd3UlhwkFlorEd5YY9BOC5nOGaqqZtgPGGdFQJQjqWRqbea1mMU5Q4yBcRKqDbkw+IyrLaYSWnfKEWWgrSwlBTwihFXF3Ihfj4+OsEozeo+fCYEpZ2KU933WGrTCVTVhHEQYYhQla1zTQFFoopizbM04RaaQsM4Qo+fp00fcvX+HMI7oeoH6C6qCBYW1Fee3b/OL3/wG2+trXl5cYquK2glVruQyUwUVZCWkUqNlDrEOozVVyhRjUEpEE92ixVhNCB5tYLfrRTwUJW5v2bbEGOaagAg5U4ApiMh59J7tbkdVVxhlhJxVIiZbUOB9JLSF/TARcqHpatqqIk0yN4tBQs3xZRovaDQRdxZ5h+XDZ0NiII1gm8gxMfSeUhSLRaa2BtJM7EFhrCZH5vcPrJcd//svfYPNZsv/+ft/SD+OUDI+FHwU4t/BgGC0weoMaKZh4EUIDMPAZrPh/htvcOf2OcvlUsQWxlJVtcyh1pBjQEeDjgalA846KutYtA3LxYIXL6/Y7XtCjDcUrJv38+GzHgiiJSGYrYzPmXQtNZ/Nbsfp2Sm3zs44Pl7TtS3NTRydwyoNCAnUWkNVO7pFx8nRnpcXV1xf7+R+vOzZ7keOlg3nZ0esq07WDpVm2TSs24aT1ZKLbc/Li2uuNzt8iMRU2MdImAb2uy377Zaj4xMWyyVN29I1DbGuRdBtZG1pjEErgyDky03MqS5mnutlzWRyETJtCCgHnZbPtuxalqsFm+st19sd+33P5IM8ryXdCNPVD2/GZwH+zbn9IZKSrPFeiZpKOUxLWcTO895ER6FkeT8xjgNVVVNVNc46nLfEKHvfyjpiCOz3W1L0rNYLcmyo6kbIghz8D4fIXj2vXxU+FIYpSbx8ThQSRRdcU1F3ny/K5a/bMMZw584dfvqnf5qf/MmfpOu6v5CScIgufvbsGX/0R3/E8+fPefjwIeM4/hiP+vV4PV6PDz74gF/7tV/73AKlTz/9lH/1r/7V6+jF1+P1+DEP7z2/+7u/y927d1mv15+bRFRVFf/b//a/8eDBAy4vL3/ER/k/H9fX11xfX/+1FynBK6HSH//xH/+1oVG9Hq/H/53jc4uUxPlpyUlw+1brGakrDp2urbh75xZvv3mH2+e3ODlaS/Ntznz33nN9fc3V9Y4XF5fsdj3b3R4fxPkxDiNj8FjnAHFJWWukMMxsQpbuEDEFKIkSpHOgtOTW6zn3PhcRLB0Qv8YYKRBL1R2QYq21Fow0uHJKkKM406wm+EjyUtCu2wOloFCMJuYCSQrlRktufZ5drvrgwDEabaVASQFtDJMPN04wgKpucMYwhhEN4gDUijI3XMUhY5hSxhSNMe6mQKkOLmktSGPBqFdMWTbVdSvUo6yYiQHMDaGEVoXgp5tMe4zFOUutFDZmVO0YQ0LlQtd1N5s2FEzjKJ/HOXwI1EoTp4jV0nAoJbPfDWglYqIyn/MQPau6JeaEqyqUNuJy0ppx9AwxEUqZHdtJxGUpSnEdOf+2dlLss1aaHWp2XlMI00Sc70vnFLV1VLYmpEQxMEwBZxTaaeKYQCXaqp0d9uJ4lvutYNGoMjvadabESEkaC6RZfOYnj3aWqq7JYaKxFrRC6YqYsrgaraJddjityN5TnCKWRN02nKxaFCLgMsaiLMSSaZslwtxPGAvNssb7wsVmQJlMbRKqSkw5U6KixILPI9cps91vWbSRXCog07RKKEcpY1BEn6lCZGIikKnbivV5pl0GMNNMJJgbWMDcWhNnZ4LwIuOvFyzO3mMaYSgBddZhRo/d9LhiGHzm0cUVdeOkkK0LpdK4Yrl1fES/GdDLJcEHnj3vWS1a3rx9m+1+ZNxP6BRIeOKUcRTun665Gj1Rw/XLC1Z1w2K5wFjD0+0VJYhQcUiexdKwso62bfFjZvQjmzDQVY67R8fUStE6Q/Aju6wIUaFzxBmFRVN1LUMqDGOibZYMKYGqUURWlWPKFpUMx+s11/trXlxu8D7z5rt3ubrYstvvKGnEYNjtFc7VNJ1hHCe6xmBtwNMwBYhOYbMGP/Hs0UMm7+l9z7TocG1FymCUYcoe17TkMeGs4uTOLYk+GnbE/or6+C5JtQyMPHt5yXLlYPKQNdpU9Js9dlERSiFMgf04cO94zbTdE8II2nJydkytDFfbLW2rWawapqDoN14ElaoweXGjX25GVFEcHa0wrqVbO662lzCOuIXj/pff4fHTS2nyl0zY7wlHHe36mF24ZIgjg9/RDo44eCorMSGVhvboiClFUkgoH6BEJhRjiCxMIY2Rfd8zbhLWVVQuc7m5plZnTDHhKsGzh6CIeSR6z7KxODJ9SGhtSSVx62zN5fWeJjvOVjVP4xZthKa1WLX048REouiIChEdao6OV+w3nkW7JEfPfhywxnDn7BaPn15h7IK22VM7S8mRfvIsFg1x8oSgqZqGXAqTTuSQ2by4xGiPbSyL01tM1xse/uAztOk4Pz/i+noijHsu9xO1q7C6oarAOkfwibYYti8uKdues3u3KfP7V/133UBpAFjdcnp+H50zz54/4/sPnvDs4orj4w5VDFPIdNYw+IgCTNdSihCulAPVB1JU9H2iVpGgDcu2YrezoDSrWnNBJAfNtOu5coqzdYcCFrXCWMMYO45OhDr35MVzTCnE3cjVkKirBeu6oeSCV4XUey6uBo7Xmawi0SfePLtFOYLNEIHI2dERQxaqgS4Z6z2pGBIFYyIKEZg654i5sPeeCFTWEIeJmAq7ceDq6pp3bt/iZLnEzhEZKmWcVWyHAasN2jQcHy04Wa1Ydy3/57f+lM12i1OImLVAjoqUFCVFtJKmf8qKy4vn9PsdF89f8OzxE37u53+Or37tq9y5e4f1akHVLqjqmhQ909Bj+1ooS7YnjiPVHNewXi+4e37Md773MZ8+fsZ2L8SCQwMFCmqOJRIzbqFoQfX7LBSZcZrYXF/x5NFDHj18xE/8xJd47713uXvnFouuo6prtK5YHp2gVktinOh2A0fLifOjNe+/fZc/+/Azvvu9T3ny/DkPnl3w8mrHs5cbvvTefd68e8aqrrDGULmGN88Ut9ZL3rt/m+99/Cnf+/hTnl3uGfvANO7ZbDe8vLjk0ePHnJ7f5u7du5yfnXN6dsbx2RHrdcd6uaJqWmnSao2eIxx0ceJaNkFoQwiN4CAWyU4K9bkoTk9gvVry7jtv8+jJcz759CGffvoZF5dX7PYDIcj5IUvsFuTZTT5HJKlXDYUyiz3ULCwvSs8CDYlrOggSUsr4ccBVFbGaGIee3XZL0zQsVytWqxXb/YbN1YZF11FXjgrL1fUVhcw4RhariLM1TVVRV45sLaXSkIOss4ZJBNOVoc8FawpvnZ/yhS++x90791l0f31JSswimVJE8KPVLIBRRq7Ve+/wpS++z/HRikUnca3GyPoslwPBIDD0I9fbLc+ev+Djj3/AZrMhzY34mBLazEKPlCRWrGhpTBVmoVC5iXErOUNSs6tc9hay9j245A/CtR+KAJz/SUEas9LsZN6HgDFCLRWRySzCsoqbLBoltIXD/xchzUH4OAvmeEVfUoc4EK2Iaf6emcRkjMUoRcjze1xrimKO5ZzJRUaENxp1QzrISUQkWZQyN1EgzgjdNaeEsUbEUJSbZ+Fw/RRCAFFajBQoEQsZlBAYjCHOohTnKjnXc38uzmQkrQ0xS1OuxIxyem7xFYIPIuvSzM+nxAtVVqiK2pgbcoRSSoSZpcxEGT3TDeZG3yy6ogi96CDWOuyRpAldSDEIOUcpjJG1mNHy+4qGkDJaKYnKiqJ2McZJDGApQt043N+om2srd0CGfJirpZVZkgibjDWQInb+LMxiOBGmga2cCJRSoswGDussTeVQCoKPYvrQIqJyphKJUBEBq6vETJMnIalYXYRgNVOoSgZiZCxFIr1dpmAgFqxT+JvPBzkVoUiWWcxTV3zhgzf44pfewLlCUQmRUc3N15snX65/6jP9pvDhD54Qg8Rt0jhUTOgpoIsi5sx2GLHGyOdQgFFoNF1TE8ZIW1ekmOj7QOWEhDr5SAwJPZMyciroUli1NWM0JKUY+16MMlWFspq9HyX60VhCjjhXU82CyZQKMSamFHBGYpAtsu9OOeLLLNIrCT0/Q8ZVxAwhyn0fckEhc0RlNBGDKhJhOfmJfpxIqbA+XjAOQoYsOaLQeC/Pt3WaGKOIk3QiYYkZspbYWWIWulFMhBRIVZ7JXLIaTAWMdeQoBqJm0aI1ECdyGLHtkowlk9j3A642qBTnd58hTB7jLBnm92xg2dTEKZBTRGlN0y6wSgwDShe61qKMGLRyytj5XZNLIXg/P7sGqxyqEiJjDgGjYXG0JI+BmIU4nX1PwmBcjS0BFRIxBUqOxClhtLzfjEYI0lgRHpaMToUUMyEXDImmWKHJ+IgOGqsU+zSixjzPFSKmtEbNgu+I0xqrhFamEHFb3VSoCSiKzlQEHRm8RHdaIwSjfhxBFUoOqKzlniNTksVaJcI3pWibljJO5GQwJIwzQp8jC2mrkntRG4N2haTl/o4+kMMkz3gndJ3N5SUhFtq2wRrFbjvhQyShsbYCElXl2G62fPSd73Hys6fsxg3d8RJj7IH18kNz9sG2pHGu4+79+/ziN7/B/+u3/98M40QpEoMYU8FYLRHOJaOcPLtWAWr+Ws7ENEdoAs4anDHEoKiMRFuKySAyjiNtLcQTjQgyfTS4umZhDMM4EIJHxYzvPUpbmqpGlyJxfGSGKbCIB+JlYm0sVWOYxkRKgaaqxAhZEDJmiiJ6RKOQuV7nQpljQeNMGVRao3IhJblHx2li3bUs20aoSvMSoWgNUZanRlvq2vLL3/w5ri8v+d4nD9js9uh5TVEQ8WApIjjNKcq6Akg+cX0VGYeR/W7Pfrvjzr27HB8d0bQ11lgqoynZibElTKggQtScImaez1xl6dqalxdXXFxtGKaJmERINyum5X79ISFNJqGKnqlLEucYfKDf79htN5yd3eLk5Jij9ZqmqTDGorXCuhpdiRgwhkDlEl3dcLRsubze8fzlNdebLeM0CV1/mDg9WXFytKJ1Vt79ytBWjrsnK44WHZfXW15eXHK9GwjJM2aJqx/Gkf2+p10sWCyXLBcL2qal7Trq1lFXlZAO5zqwNnqmTx6EOrNwVCWhGc1rwVKECBVVwBU4MZbVcsnJMHC92XF1dc1+v2fygRhfxcApZNGXb+6EH3qOZFq+WQ8dSJZFKUjqxuyKHBYhB1SUunWOkeA9kx1xzlHXNT6IAbVyFc5ajJHY474XU02IGWsrieKzQvo0GFlTkklJGOrKCs0ulUznLMen8zVt/zrvJ/78cXZ2xje+8Q3+1t/6W7Mg/X/cOI0xMgwDn3zyCb//+7/PkydPmKbpx3i0r8fr8XqAGPd+9md/ll/+5V+mbdvP9T3b7Zbf/M3fZLvd/oiP7vV4PV6PP288fvyY3/qt3+LXf/3XMcZ87u+7desW/+gf/SP++T//568Fhn/JobXmF37hF/j2t7/9mh73evyNG59bpGS0wSgjBTgN1ihWy5rz8zPeeus+d+/c5mi1xDkrztdS2O337IbIy4trXr54yW63ZRgDm+1ATFkyvUuWYjjiREt+unH4xkmiBaxWc1FdhCC+jHNNXyIeUkjihixRmkcKSknEkKjqanaxJnHQGCEqVLWjgDQylJqFRWZuNmkR9KRM5RwxeELO0pzAzYQkiWtASX57Yi70ZiXAJaWksJkyddPInxmJqGEm/STE/WisIxWJfrNKiqJGifOs+IyzFboIEttag641SmX6aZJYupkkYOaijtaauq5IMZNiIpUIRWMrOxfdK8yM+LUFSshUbU2/29LMDubYT5i6xgdBQktMwQHW/8MucGnQ5SQFmuSDHA9RigEo/DhRuRpjDdFLYUPrQp8yPo2kJKWvqjJYp0iTol5U9EMgFz03AgtKZ0Iq5BDFIZsLbVNDTIQsEQGpZCpTMYVADtC0Hfs4EXOkaVpCjmClGNhPnugTRc1OZi2N3rbrUCWTvEcVQ1s1ZBI+TKRQAIPTAAWrIKpM8JO4/ZSHEsGAbVpiKgzDhJ5d2a51uM5SVMGPkRwM7aKiPXHspgBJE6eRGsmd15Vhn0cyiUXdQBKkfFtrYlao3LFsKsY0sGwdlQVb1ZSicdbiE+icqE1FSKDViOkMLgXWZ9Ase5SVRYG6iXeTz3aDq0qG8MKzeZzR3ZLiKvx2JBfDs+cXFDKqKdC00I9Yq2kWFT5odMoirsASR8/DZy+oakdVN4xJU/yIGi1j3zPFyCYkoYblxPFJRb1QrE3FdtdjVSEaOcpxu5+dphFXHVHZmgcPH7FYLtG2xdaWSmmOj9YYDNebgTIlukXDLgYU8g4Y9gMFi6oVyhZapwlDZuc9bWMY+4FMoquO0ZNivxu4DJoQC37KXJUBd7HF1RWtdVw82bJo4M7t22x2Iz5NLNYNi+OK0O/we0+7XmJ04qSDp8/3tMdn5G2mcS3WNFROmgghB0wBFRInxw2+79EuYbVhEyMnt06ZfGK37VmuDF/60tuEGBh3I/tNz9HZmn7Ycbo8o150eLPH5oKOBVM5bCMNjjJGkhL6irU1y6omjhMqZcZxIMaJu3fvcvH8Mf00SlMhOFxfUD6RPbzYXrGeOo6N4+6yYb8bqGzNel2xnxIx9NRdi8mWQuZyc0Vd19giDc7NeEVWllw0ldY4Zdn3W+quJVpF0LM4oDJcjz0uBFYnHav1kovNBt04Vk0rsW7jnpAD667DNRWV0uwi7IbANoycrxc0tuXpdsvoCtvdQKMTcZxIVqEjbGNg2VUQRsK4YboeaKqW7d5LvEqXSaNnHYSDcbLQjGVi20deXm5QBe7fvYWuLJiK6XrHFCPNccN6XUFWLLs1KSYW7ZJhM2JNh+89V5sd9arCrDpUBKctx53jetqwXJ0yXPeM48Duas9UCovjjmaxQmIZ56F+6F8KoGJxfJd3P/gy3dkJD777EYQICo6PV6y6Gh8mdvuebtnRNTXbzZ5hDBhdMfqduFCVJnjPkCK7qy3DfsfmeuRyO5FzpEsFKsuD5xc0JfOF+8dMOXM9DZhGcdQ0jL7Cbz02K3wuJO+JyqBSIeaMs4aLiwtuny44vX+H5D3bGOGsox4XjPuekjTNvAkaQyRVDkKSxmaSNYpz+obOMoUghdcYJeIlB6yybDYDj8tLrDUsVh0pB2pjaV0jzdAsFIqYG966b/hH/8+/Q2UMv/Ofv8V+v5c/B4mWs4amsmhTZE4ZE2HyDPvI42liv93w/NkzHjx4wNd++qf44IMvcvvWGbUTXL/WDm0rtKup6h3TZitrHmtoFw3H647zW8f8yfc+4bsffsbl5RY/eWLO5CwYQjVTYw7ipYMBLcWJnDJ9DDwce64vXvL44QOePvoK73/hXd548w2Ojo5pu5qT45VEN5SWquoIfU9TG5quZrU64t6dc7770Ud89PFDLi93fPeTZzx8dsH9Oyd84e1z7p6d0hpLDBmfEsfHS77+tS9w/+4Zf/bRZ3z68AlX25Ghj/hpZL/f8uDxQx48POf2+R1u373Dnbu3uX37lFsnt1iu19Rtw7JrqZ2bqQuC1VPaUjUdMQVynqibFmWsZHSbgMNibAU5slgVjo6OuH/vNu+8dYdPPn3AZw+f8fLlJf2+nwXL0pDUWYgvs+QLkYocHiYRtyQk6k3N5zqVNNNMjDQBFExDTwqeqmlJOeH9yNDv2VxdUS86NkdHrJcrnLO0i5bBjwyDZ7GYqC97um7Jsuto6oqmtTRdS46FGDLT5FkcO37mGx/whf4eppm4d95x+2hFWzUYt/i8y/sf+1CzWEQVaRBVteP81i3effdt3nnnbU6Oj6nrahaeiMd/9B4fM30/stlsefDgM548fcaLFxeEkG4oPXqm5RTKTACShnOKGaUzRoEq6iZ2K+U4N4lm13o+NJReCYdA5h9jZMtUilCYROAiTVn5OweSUkYjJBEzi5dSkihnIRvNpgkMMMe1UV79rlk8pZSSt/pBMJURMsNs2pDfKr+zzM0urc0NiVahcHNzpuRy0+CeE+VQWiMADKEGvIp6kb9QUkIpjbUzIaQc6FFqphaJAUMXEfgZZqGPtQQ/4eZYlRyTUGXnazTLdm6asjf9OzWLpbII0UrKHKLcjDZCO4oiTNJa9mh5PsaQC6nEG6iVMVrIcknezSGmWbarUIgJIRWJdFJa3p3WGtQcWZTn5/9AGipZRMI+CfnJWncjWnLWEZKIYQ6TjlLS8LV2vmfSTHwyVu7NLPFuCnUT1zrLHMkpUllHVhlUAoSkkwsSy13kWmir0VaEdzEWSpYIVNsafEqUPAtnsRgthCpfgoiKjJ3FcRlrFbkoVHFU1hBKlPhqLaKdA20klSj7VGNIuaBURDmFA7729S/w7vvnM0HpECtzGOWHLrAm94n+MvLdjx4yhEBKEoOz78e5kw/KOkoQgrOpNFkcNxKBhybHxHa/FwGdtYSs5BzHQAyBlDNTzjd7btdajFNU2gpNWAkxLwNpjjQXsWuDdTWb7Y6qcijt0FZjFDRNjUYxTnJvusri8zzXWkP0Qh/FKNQcuZZDwceEc2J+UhScbVBRRGUlBfL8bI4EzODR1mC1Ztx5tIXlYsEUIiknXC0CixQ8KSSpD6hMaxW7PmDrlqIKxggV0RlNSZB1FntUynSNJYWA0iK2m3Km6TpilDjBqlKcnh2RcxLS7RRp2poQJ9q6xThHVl6EFRkR/BWNyvLzD9JppQ123iurOSJx2O9YdEuU0gz9IIS1UiAbVJD39TB6rFIYY+mMlv19yLRtQ8wF72Wv39YNRkmMn1JCujIoYpxkb6PUDZ0thiDrIW1IyHtGa8WkCsVP1HVN29ZMQ4QMVV2J8DtFYogoBW1dzXUQRciFafIkErWumHziynsomeQzVmdSjlRVhQ8JUxkqp1AkwrijaWqh/EyJYpS880dPihlbOXQOhJwZfaCkQtc1UiuTFFHC6FGVoesqcsrUVU1JEVfVQlnSFaSJafCUhUM7eWemMdI2NTFPoIV+/OLFC7773e9wevsOysFidTTPKYeX8w1TWUBoaLRtuP/2u3zjm3+HP/wv/5U4TZS5ftZ1LTlHEWyUQttW5JgZx0neY3miIDW3GANaIRF2g6fEwDglpijC66wU236iMpplZVh0FRf7ARJUtaFgoQQsBacUIUVKtiK+1ZFSFN4X+n5P1xxhFEw+4JoW1VaYUeY5Pc+nuRSyNiJC4hBRiRAEZxFPnu9xsgittEbmiZTZ7Ue0UnSLdhZEF6y1FM0cL6vIWN5+602+/pNfwmjFn334GZv9HiUqKXQR5qKd5zChHIopL8fMmBLPvWccBjbbDXfu3uXW+S2O1isqZyVizcn6RBmLMZboJ6HzKZlL6srRtTXdouX5iyu2u36OQs4iqinpcOlfvcmViPNKSULsm/ce3o/stlu2mzNunZ2xPlrTLRZifqwraiekJ20c1kaSNVirsa6i6zour1teXlyx243shsAwXXB5veN43XG0WogJsCAx0EZxerKU++B6x8XVhn6YiCkwpUSMgX0vJohFJ2KlxXLBctHRdZ3EGjonBDll51jhckj8nc2tc0SuhuKqucaZMGhQBnKiQigAi8WCo9WS680119e7mxi4GCI5H8LV8uFEcvDbzprwVzNkmSPpZuFSOpghZrG0NiJQDT4JVdnIWjJGj5/j3Vxd09QN1goxqm4qYkpUVcKOcTZ3OSorZlypCetZRJ8pKnN6e0W3rkjK0zaadVdTuwqt3J+7lv/rNLTWdF3Hm2++yde+9jXee++9/yk5aRgGvv3tb/Pd736Xhw8fzukBr5t9r8fr8VcxrLX86q/+6o2w8POMcRz5rd/6La6urn60B/d6vB6vx184vv/97/Pv//2/55d+6Zc+t1BJKcXbb7/Nr/zKr/A7v/M7pJT+59/0etyMr33ta7z//vt8//vf/6s+lNfj9fi/dXx+ktIsJqpqx+nJEW+9eYc33rjL0fGaRdcJpSJlJp/o+5Fh7Hn+4pIXV3s2my3Bj8QYiVkakT5IoZuSISUUicro2c1bsM6ScpnFTBGtDDFKMZU8w3RzIZY4Y7ut0I6yBC2o2eYckxSrQWONQ6tMMQqjHClmtDWC92WaGxTyObQGbRABTAlklTGz06jMxWc1Nxe01sQQZRuvpbkRg0cVJbQgsTOTU6SkQqKAs+CsFJZjkZe5E/R7ZR3RR3yMkApGiRu5snp2IaYbURVaRE1kwYRXxlCQyBFpWkKlHda4OepAhFkxBKxRRMBoh8oVSmv6OBFHD1mckqUUjBNXnZmjMXLONwKobDWD98RhuCnqWCsRFiUrMnr+OkQK1jlsSnJdtWL0EYvBGY1WWaIerCV6jx8GlJkdxhpSTlRNSz+M8tmUImktRIOiKVmctkpUYiJC8R4fE13VYJWjqhw5hTkiMItryRjSHHXhtCGMUsxsKiE9DeOEnyMpKlNhtMX7gXHfCw2rcVhjqZuK7CfaytFv9/QpYrRlHDwYSFnRUZPITMMcj1CtGFMkT9D3kdY6nJmLJlNmTIGsZgFWBIshTIk8SDGS7LgeesxCU9ULhu2etQvyOcLE6dkx/X6PM07oTxowiaN1ZH2S0CaAlGyBRCZj5q6RNBEdeTLsno8MU0O7bjG2wTZw9XzDdhcheRbrhodPXlKXwLpZEKZM1VT0uwG/GeicpffXqBJpFiuKhkWsyWnk8uU1RbdUraZplJBOsqFe3+LJiwtKSBJDUUEfPVbVpAqa0tJUIq6qm5akLD5pKIESRhZW0U+eYhw+RNZtw+MXe05vndCyY1IRs2hF1GAdw3WAMmBdjbJqdgM6Jt/z+HKLRrE6P8KphmcffkRbGYrVeJ9RNhP3I4aKUBRXm0u6bom/kqLZpKBkw7C/RlsIJWONUG7imEhOIlSOjpa4ruXq+XNIicYopj4RssbqDotjmHra1RGm6bi8vKTSBusqdtsepR3L43N03VM1Qh0pJTPFAVRAl8DFyx7XWpyxRB/YbXfgI0PlGKMibXv2O6HRZJ1ZrFcok2kXFfGlJxuFjiMLCrvNhhAUVed4OfRMjyOrkyVT1AxTz7o11Cmz9wm3cpzfaTlaWj59dEnKToqA1rJanNA2HS+fP2e73bFarrl194T1esmzl3v6YeBqmDAkjpaWhVuw6WVOwXoUiTEYrHN0jeJqJw5Goxz9fiIaI5lMaPqQiOOOkBM+KlZHS/z2GqrE82GHVYZFVdGYRD8mdF2xi5m430jBEIcriuQzgx9YL9cYlSRuboSj1ZJpf82TJ8/IxWDb6iZCyigpWfbTSLdaoGJkd/GCnD2rRcuonMSW+kRVO+6drhiGiT4HJg/h2UvWjeFovSSkiTIEts+eUL/ZoOz87vshw+ahIQsGUy94/4tfIfd7HsXE1eWGW6cnYEZ2fqJbt6xXS3LwpD6RfCT7Qr2oWa5EBDuOgaJhDIFx7Hl6ecVmO6BMjbWauq1o24ZpCmz7kRBHqs6yHQeG6NEq0nWOYVu43u5lTtYTafLUrsYlzURhGiea1opg1hdONj1f+akPODte8nyK9NmTB08hkoqiaVuSDdTOELw0X2PSQg3ImaQTU4zEJBGnZQoSiWMNT156rvcD5+cnHK8X6JTQ1tEtO1SJIlpImrpquX9P82v/j7+DD/D/+f3/xma/IZVIVgpnDe2yJudImMoNkSTlwuRHXl5G+v828PTZMx48esjV1Tf4yZ/6Km/ev8eqlfeq0waMRRuDVQZd17B3RN/jtEMrS9stODs94fsffsrDR0+53vX4gMQX5Dw3hyWqJed0qHqjVKJkCyVxfRXY73e8fPGMzz77lC996Uu8/d473Ll3W5ZlqxVt7XCVrG+KMWRbU0xN1TWcnZ/w3rvv8N3v/4Af/OABm+2O73/ylKfPX/LeG3f54P136bqGkEfIAXLhdL3k57/+E7z/5i0+/MEjPn18xfV2Yur3jOPAsN9z8fwZT5485M69u9y/f497d+5x6/w2x6cnhKMV68WCqm5QyqC0EYpSEdqfrcCUCmU8hUGiaK0lBkvKkRSFwGYrR9e2nN864713rvj0s4d8+uARz19csO8HIbfEKHQlmIv38kjlomCOAFEzoSYfKDgZcolknUnIeauqCj9FUump6koEJPP6axh7+s2Wq66jW8g/u92e9XJLt1jRdiu6bsHRasF6tcRVBls7atuQk7zXXWt44/gMlU9QVWHRGha1o2RNyJ/fyfTjHkJ4MxyfHPGTP/k1bp+fcuvWGU1T46pKYmyyNKVCjHPjaWSz7Xl5ccEPPv6Ily9eiPhoprocyDvMNARzQ0QqWK3IWc0ED4lPkVgaNbvnZyN9FmEQM0WLmRpzaMy+ImzpmwKqmfcAOQs9Rym5F8rh7TtTSOVHyjq9IM19lfnv9hMgAi7yq/YwIKRX5gYacr8fBFUFyKKEuqHu6DkC6IYkG/Ms7Cs3+yOtEZFwOTj7XxGtKD/0cziIApnnVGl2HwJNDrQlrRU5zgK0IvFxISWJaiuQZ6PB4by3+WewAAEAAElEQVQdKAEHAVgpmTzTSXIMHIQter4WB9JPmT9DZiaK5CLRe2ZuYiLrnsP+rGgtNJIo9KBXRpaCtpaQIjofGCEH6o/6oSaiBnVoqM9xUUYIr8boG9JWma8ZB4LVTG7KMaP0LJpSihCjfN75emqlhcQxTUKOnaPBjTUiOjBz7LYXYVwMEbTEwLlZmHyIzLO6IpRMjhBixmkxFongTIRRhUJWeaZGCUmrxDRHZGnGmFFO4nqCD9RaCDU5FdquIXiJAk8pkRQYXbh//4R33jkIlF7R/QpCx7oRTRdNSRq/Dzx49JIXF1fUixXawrifmEKWBnBt2ex6DGKwSHEWAaVInAJOazGcUDCVlDEqJRTLoR9BO4xT2GLIMZGzxtYtu36kJLnXMBBKQmMoBqyR9agiY2xFQZOKgpQpOVLNAgi0RHHVzrLrPU3X4JiIZHTlRLBsZJ9G8RKxY2StoZQmpsB2mFBA3TVoZdlfbHFWU2ZzE1rMOApDLjD6EWcdKWRZEykoRYnwQEssvVYRrSwlZrKGkrPsYZxl6Ht0UVitiCGTikIrh0YTUsDWDdo6xmGYiYUGPwlNrGoWaBswRs2ErkLKQQQLJTP0Ee1ECJRzwk8TpEI0moSQphRiMKLItdWGOWqoiAAQhc2WFCPT6HFVhc+JtOvp2ppU5LidzlitJTLYaqrGsnCGKQR6H7FGaKlV01ArSwgT4+hRKOqmpmktPhTGaWKMCWM0VssaN0ZIsVBIKF1IWWGUwVl5hgtmniQMIUWUsaicyEUxeC/voKjo2hpSTyERyIQw4YzFkuEgsLaG/SjCOI0IrxUiPLKuws3RomkmexmTmMaBsSjUTI4rWqI0UZByJmShy6VxJGZwzlCSk519yhijaJzFKiE6x6xIk8eZRNtYHj78BB8Cq64mNS3WVXMd7UDXeSXQZhbOLtcnfO3LX2X38pJv/eEf4aqKpq7xw4hxBueEvl6CCPFyKrM4xVJriSuVNXIixsQ4jUyTJxYRZWijRSioFOMUiMEzxMCUkzyLZLQpGKMZQ8RNHq31fB8bnBHqVYyaKwrOGYli3O45v3ebbiEmtzGLMJScZgKfQRtDjpGcZ7JhTvIMzCJkijyLuQBZEX1Aac1E4uWV0HS7rpHoOQK2EtH1gU7kTMXf/lt/i81mQ87wZx9+xnbfk3IQSZjKGGelThcPIiE5/7lkfJi4urqU2LXtln2/5/69exyfHNM1NVoZtNUSuTYLlbUxYAwqeOy8ljDG0jQNFxfXXF0fBD+Jkg0UWfuqmTI0z9Y3BCCly/x+TGxjFPPMdsvJySmnZycsVktWqyVQz+R0g3IKlKJoQ60saq6drdcrLq+2XFxcse8Htnuhy213A7dOjlkuWhGP5UTJBas156dHrJct19dbLq97+jGQYiQkWTNOw8But2WxXNKvViyXSxaLBe1M5yxVhXMOlKyqRHEpewqFiMNsFiGdTO36hkhfSkEZLfHExtA0NUfrNdvtnqvra3a7nnHyEhmYD7HRr2S7hyHRb69EMQexuaxJi5Cr5vWSMTL3xBjQRdZhJQvdKqaI9wE/Cl3JOYf3Fb72VK7GVhXOVlRVRVNXOGdRE1jroBxihKHtKhZdRVEFa6F2hxr55xMM/FUMpRRvvPEGf+/v/T3W6zXr9frm6/+jMQwDT5484T/8h//Ahx9++OM61Nfj9Xg9/oLxEz/xE3z961//3AKlnDPf+ta3+M53vvMjPrLX4/V4Pf5nI+fMv/t3/w5rLd/85jc/d+yb1ppf/MVfJKXE7/zO7/yIj/Jv1nDO8Y//8T/mn/2zf/aaRPV6/I0an1ukdPvWGbfOTrlz+4w37t/h9PgIYxWlGCafmPye3X5gu9vz8uUVm82G/TAy+ERMaXakJWn8zAU0rS2lFMFozwVcKOSY0E4RUpjdQxLxEiNUWKxWEgtgpJAxy53mwrtFI6KfCK8aGFkKNajZAV3EDafLwaWrBcGvDUoVvB/FBYaW+LcUoBghmxycvUqQ4lprtFY0dYUfA1lJDNyhnpNCAq1xlaOkRPJCJ4rjBDHjtEJZi6oMem5BKGNYVkum6NFZSbSYNfL9WZzE1YxdLzni6mp2K0ssXwheSEla4pRiTmhrSGSGacJpwRcXLYVav98zRS8NTeuk+aezuH5TlsK7EdGTtkZQ2HMxIExStDbWzAIyccfXdc04jKwXC1KS+ADQM4lKXMENZnbFRqyVZr7EPmicrWZhVYZUqGyFKYra6NmBb8g+gXXSJDaGtmlRuhCGkaFIBOCyrRHVlQgLUBL9UObGATmT/TRvxBVGgcYQooiEQN04yEOOoAu2qqi1JseCczVT8Gz2I5P3WG2JQVzOKUHXLlE2kRVoCmM/4WzF8foYpTRj8kz9QKVrUgq0a8HllxhZLVr240AOUt4Y8TRNh/KagsLYQtcYFssF0zBR2gV13ZCDFyfjrscWRU6e6EdQnuMTy+okYuwcY4L/4dbMXJQChaFExfOHW569HFmu7zJtM8+GS4IujDlxvdtjU2Tst2RlqdY1fvKcnR3jw8QmTuhi2O8Drmk4Pj+SAnbwHB+1bLZ7circun2GcoVxs2ccJvbB455fYYtmnz1d19E5xZNHL9kGz/pogZkKZ8fnoAuNazg9vUVyEKaBKlpiCEQl4QWuMiwWDeNVT8mJ1fExu6fXdMsFmogmc+En0pTxw55Vt8LERqhQHPGSEZ0mOgPT/oplZzBVy8VVT+lfcHK6QGFYLB2XF1usNdS2BaXoI5ArYgz0RTNcbGi6jrRsqdqE1RFlWlamQuPFBUvCeUc/Tri2RdUVRifaRYNKhb4P9Fc7FtYw+pGrF5GUKi6uX3C8TBjtaVWNUYrrYU+jNP3FJXE7MXhoqwVxbnacLhuch9PlEuU0w3RFHidq13JxeYVTCr8fqAzcXi9IpdCYhnGY0LVjWVnWneMy7dlPI+f1EWEK9MCIwS0W4AsuWNYnx6Q0UHRFyJn1csmzyw1VUZjQs2or2m7BZu+FdLMdcLGwqGtUY7E+ME5antUchFhiWmxRN27Y+3fv4LY9fgxc7XvOjtbUlWXbD5Azi+WabepZmpphP7AJPWdti8kRQhYHKYXd5Y4pgi1zzBQaax0GTQoTRUuxOA49+1Sx94apH1Gt5o07K55eTWy2Gb8faI7WnBwtqfBM+wGra/I0EXZ7NlcX5JJxGoqG3X5g2Gtik3CNY7VuCUNmu/HUVcuys8TsaZcVV9d7Hj15Sr1asz6+DRok92NuBN8UFsXxu93u+OR7n7K5HrjuB17ueu69dVfmkqFg6wpdMv0QcZXD6ELJntVqQRo9m6sdxcD/l70/a7ZtO89ywaeVvfdRzWLVu1BlSZZcSLKPyTQH4vAHTDjCXBBEcMGv4pYfACbgBsgI0hBABunk+IBBrlTtaq29ylmMqhetzIuvj7m385yTuZ3Yskyspghpa+255uijV62173vf590dj3Srlkt9j2wt+jCiVaYSyGGklsohjhwGDcfAYXcQultnKTmz7xMhKbw1bLoFQ65MWlGNNBaCqvzw+St+8vwFZ4sl704DX3v/HR6slhyuekJWDEzkpKgpUGJi6Kc7EkiuRWJZU5Z3W8ksG080eqbxFcY4YhqHcZ5+e2Tfj1ycLVm3HmUsZzGz9BZVM8qcxE6FxfmCv/E/fYcff/iC2+NO4j3nmIDhKKSxHGdhmJlFxblSc6LvD0zPAvvjgaura168fMGvfu9X+PrXvsLFxQXGGnzbYYwmGY9pJ0zT0e+2ZDOwTFCVNBUePbzHTz74mB/++CNevb6hHwI5F1ROM5llLnxXEUpUldEaaZqrRC6J168ih92BF88/5SvPvsLXv/kNjl//Oo/uP+L+xTnrVYdxDW7pUFYICu3UslxuWK9W3L93xpffe8yPf/KUTz5+we5w5L/96DnPr/Z87f0HvPvokq7xaCcUmc60rN/tuH9+jy+9e8MHn7zk6YvX7A4jaTxyCAN9v+f25opXL17y/NFLHj56xJP3nvDo4X0eP3jI5uwc59xM9lJCQdEWZ62sPYyZSYuZHCPRN0wpiPjIBKx1WCOxD+vVmnv3L/nKV7/E009f8NFHT3n1+prD/kiYhA4m9JdT7MMsJSkVMNK8AWm6MEeGSRsHPYscjNHSRIwRbTIlJ5x2qKQpMTFNI4fDjqZpWa5W7FYrlssV7WLJcrnipms526xZrjYiirYa75w0WVQL1bFeNiy7hYgv8ixWCV+sOPCXMf4vf+2vsVoueOedJ1ycn9F1zRyVpsipEkpiCokQAsdjz+3tLa9ev+HjT55y7HsR7ZyoPnPjXM1EzFLKXdMXRHjELNatRYinzKISg0RCS+wXn1nbT71ZLfsENRNXTr06EacJYfSU+6ZOWox6EuCoO+pGziJMOcWNiVDqMzKpCFpEtHL6XSfykBz+fFyz2AQlQoiqhGKqqghVKGAUUDXKzMc+fw9vPLmI2OkUE32KclZaqA2is5H9hTTQRTAjzjaJsar1s3i3gsRgmVmQWWcSUo5x/qwqKKkqPW6jTk3aU3QeoOd92Nx8LTNxSOLt6h3B1RpDSonGO2oRs8XpGp/uHTvvoGouaCfn8nSuTySm03eWJi3YEyFWKTm3RkKIjFZYKzFqOcyfpTTOmPk6i3DnhKWqSs4zRcgcoKhKGn8SDSW0NWYBVKUIvUjVWZQqP3NqRE5B3j1CjJpJHhWcbSSGer7fUkwYbWibFhGUZUJMd6IR3zi5brngG0tMiVjEoJFrlu+Y5ztRI+8X70gpg1USL1OEelyCxLDVnCkpgcq8995Dfvm7X0cgYyLymG/W+ZydBHdiJDnuJn78k6d8/PQFNRtSHChKTCxTiOhSyDHI3ruRZ2DRteSSmIpEDsVY0NbSLltJz6uJtrFMIVALLBYdykjEcZpJu2M/oasiUPHO4bTjsO+ZcqZpHSpVFouliBqNpVt0FC37XFukMV0U6FrRRuGcnaPnK03bEQ4jrvG42ayTUpJrnqRJrIvBaI1F05NQNeM05DDivezb+zFC6mk7B2i810LiTRrbWVCyRFXVUIrs3NIwCRlEOYwtaFXw2kktgyyiKSo6a2LKGGtRVuoczjtUhRALcQy4mdYx9oVaNP000PqKVhnbGAyKKUWsUsRhoEyJlMHamTaiwHuHydB5P4sREv3hSOct0yTPUc1Ck+u8I817/xqF5uoaR2sNOUtMe6mFxopgrqCo1iPFnUzTNrKmqXkWVUrE+BgyTguFbtG1xFxJtRBzocSCU4ZiFd5oxpRF3FUnapWI4FoKRolxabls8M4yhExIGa8NznvGYaTmimmE2KlmgfixHzC1ynfLUeh5CAEnxUzVWgS0pd7FXStVyfOyveREnKAoQ4wBayLLlSNmxaEXQaEymnaxwOlCTYU6xxmWGJmGIFFqSkSaIWfyUKha7g/rLc46hmGSazcLLZXRPPv0GevNhifOsz47l0ahml/ed0NxqhWUWtjf7tmszlmsznh99YYuSwSeIeOVvD9Tkvde2xhyiTgnpJcwBlAwhggaukUH1lKGCVWKiPVKIkcRK08G+jGQQiAliTJUGkLIxCzLstYK+S2hSAqMEopRHyMfv3yN04ZF19ItOt55IPuXGAtFaUoVoyO5zCbJfEcpLCfSzTwPy/xgJXa1yndUWt5LKWXC/sg4BVovIjSbivzzZ79FhPZG8/DBJbc3R47DSIyIaEUpIX1bEVQzrwOyntc0CP1w6HtCjIzjyOFw4N133+XBvXus1yuMMShjcUoJnd04tE0obSgp4qoQ9M6Mpmsb1usFV1c37HZHxhCFXve5aFrRp52qRRKjeioYqSrGupuU6I9Hdvstl/cuCffusV6vWXQLusZjrEY7j9VCMdJWxPzeN7RNw2a94OZmz+3Njn4Yud1P9OMbztYLzjcd7Sz2n1cRuK6j857Nas3t/sjt7sAwBFKW+mTOkWka6Y9HDssly+Wa1XrFai10pa5bYK29W5vJck4EXVIjLvJnRc9iakOa1ylkjdZ1pi9pnHO0bct6s5J163bHbn9kGichK9VyFwUnz5Wc11rULPqeRfan5d4slC9zTY56iqCTGnphFjEpWSvVUqhZouC0NTjnmKYG7yesdTgvJKXROZq2kfg3HTBaYtmttShlUVbTOFmTc4oe/N/rq34mxt/9u38Xay3vv/++xGj+f2mKppS4vr7mgw8+4Pd+7/e4vr5+S214O96On5Hx8z//8/zGb/zGHX32/9eotfJf/st/4V//63/9F3xkb8fb8XZ80VFK4Xd/93f58pe/zLvvvvtnEir92q/9Gh988AEffvjhX+xB/g80lFIsFovZSPdWpPR2/I8zvrBI6a/9yvc4P1/TtE4KgNoyjplh6rnd3XJ1vefqZk8IE/0wEKeEnqOZwuykVUU2exl5qEKYiGkWCGmD0UUIO6liyXdRDc65WbojhY6iBJmdYsJUi/eOGKPEi1Up+GivqDHfNZWkkQVVGVJVM6p+pjMZBQUp7FophpdcUbmgnGyGrTIUrShaYa2BktAYrLJ3LuNT5ntmdlQjQpVaYYwBp0TMlEqGIEWGtm1orDjiQgoI516hZgeUalv5XyWFvTElwWc3zexQrhinyMzNDKTIKM1pRVUa6x1eW6ZpQhlpMsQsxcBUBY+u581z4yUeb0wJYx3OS3FQIgoglSTfYQwSAaENOWWatqVqxXAciFOmaT3jGHHGoEvmOEzi3kXcP1oVSAWrwHhNSCK+8tWigTFmilaYUwSDETdwrhnvPTkncaXFKKIuZyhFEXIiTxlVIIeAWzis1VKgRqOUI6ZA11gM0HqPqtJACiFjnSWmLIVGrVi0DTFOFBBRXa5Yp8FosnXEKRLGQEyJzITS4nrXxpCVRjmFr4WFb0g6z1EWJ9rVhDcOrQtGWRxFike5sj7boMgMU8QooSPkcQADw35k0zakHFksOiKZ4TCIIk9VjsMemyvHcUTY8BVUwHnF6kyzupcxTQKVUMyO9blgIq1tIwKlSdHf9Lz45Ig292mWZ7x6uiXpCdc2LJaezlWKE3fepnHc3O5p2iUxjuiqaLwlZinOrs3yTjiosfTDSMyajKMfeuwoRUvfdAxV6EA1i5BvmioqFjrXSmRLUWxW0swvMRNTZuEtqrEcy4QqmXW3xJiO/nqLs47dbs+y8zhr2O72WKWxKRJiZH8Yqb7SnbXEw0RUmjFWVk0lK4VNIxrLzctrnjx5yKGf6IcDjW2x3jKEiGs6yngk50zjFxz2ozSBjOHm1Sse3rvH5t599jfXOAoli0hQWzhbrtlfH0B5bC4471m1G1yn2fa3LJ2jD5lxd6TrNE3ToUrGq8puTPRD4vLCs1xkhuk1T957hFfM0Q0GQ2YqhaIsmwtP0ZrVYoFtPLvtDUU3xN013bJhtTpnOAzipLaG7f5AToZ3379gORRCGDnbLCm50qfMfjpg/RK3WKBi4ma3ZzhGKIY+ZOKwI9WJdtUwkdhfHchV0xrHy49fcawV7zK+tRzinqoXeO+JMXMMEabI4vKMaZrYH0asMjy8t+Aw7InK0uiWVWNYrjrebPfYbk0zRPbTSE0Zc+lQuRDDSAyBOC5wRtMsW9a2pd9VQkhshz3KepqY0M4zFYNplfysddwOmbEkvvr4nN32wKjg3pMHXL+8Ik0jOMvZxYpjmHin2eDpOV8vhZqlKqk/cH7vnNVizeubHfvbPVYrQi4YM1MVSqFrGi4fnBPHAYvFakgGlssOpTL9VKjZcBgOMo/mSApHShowvrtz6iolru87Kggy/z54/31uhoHrT3q22yPx6TMePzij1RfEIdG2moimhMxq6dke9iz9gjRWLJVsDKuzNWW0LLoFq0XH9jiwvb7mpt8xhoCzCr0w5JgoIRB1pQ6R3XYPjaFtGnzVqJIhJok50BpjPJ3RLFaWfpAG7fe+8w1+7r33qCFQuk6KwiXSeMNUCykqKairmSqS6x1tMM6dn5IjU4hCrzAiBs5UwjihQsBqTVKGYbKsNy2t9+SQmChYp+bIJk0KE2GI2Mbx+N4lP3j6lDEWKIk4Rba3FWXAW4uzcxdZI7S/U8xTqtzeXPFH3x+4fnPFi6cv+N6vfI+f//lv8PDhA87P1jS+xS49vos0bYfWhv64o0OhdEPjW5aLlrNVx6P7F/zgRx/zwUefcrM9EONMUOLUzJhJGkgcVSXPVKVEzYGcI+PUc3t7zfNPX/D801d8/etf5/333+fRw/ucn29YLTvarqX1jhRX9MMBbRRN03C2PuO9J+/w8fvP+MGPPuKT5y95cXXg1fWeB+ev+PLjBzy6t2HZWtQsJj5bLVgtG95795JPnt7jJx++5pMXrzmMA2ka2YXIeDhw8+aa588/5cWrp7z//nvs3vkyjx8/kqbHUt4TvrEzpUKawEYbvBPRdrQRUqBoi9GJHCwpTpSiJGZWKe4vWu4/vODR4/u8++QxH3/8KR9+8oybqxuOh8O8Tk2kOse7AbrO4j9V7no380MnIpRSybPbWs9O9JrmCClV5zlZYYpBJ0XK0pAchp7dbkfXdSyWK4mqWK55c3VN2y7oFguWixWLZctq2dA2EpdR02oWKnimU+xU/WKFgb+M8Z1f+iXazmOtxlmHQpNiIebEOI0Mw8TNds/z5895+eIF2+1ehD7wOapP/VxshgiBRE8vjRWthDAixBihpyglYhWFcCOBO4FZyWWONhNRjtGW09pImVl8Upn3GNJIquqzBo66ozPJX8s5z/Fr8jOf603OIkJFnclFQhtVdxE78vNztAryOYqKNiLySUUIq0oxC3vkDrTWiIljPk8KNefNzZQga+V+RERbeW6YOWUoWcRbpz1Crad7eRZUCVpABE5zHLXAkIRmpdVsGDnd71Xi8VQVcqTW0vgrs/CmgsRcq5PAWFO1QhWJUqsKUohCQJvj2oySWDaJbitUTo3FClmEuMoqcpF33ylGLRehNOla72LqpP8noqA6C8hOIiKlZd+Wq4gAVEVMIF7EXTEmkUPNQjJrNBoRSCotJoicReyVSyFMBa3AWTuLHkUoVovQGNBikBHxTyGXTCHNDcxZEDar4EwtOGMoehaYVWnK5yzCJFTFKM2pjVsL+LZBuUJM8gx4Y0VkpCspJBpjKVWiwwqVGNLpJiTECV0hpiTvlAqQ0RbeefcB3/neN/DtKajuJOY67SdOUiUFWRH6wI/+5BN+9ONntIuO/jBSlBhonDc4XalagTY0xjCO0lwtJaKqwhpFViJO9NpR7vq8RvZgRVExxBTRWZFTlqijKs99LUJfSUkOzs3xjbJXcXcis5Iqzhgwilgz1CKRN7oS+wljNNM04a3MOeM0CTkxZ0rJjCFTTcW2ljJlCkJ19n6ORSwJ0AyHgfV6SUiZEEWYr4yWuoh15BQkTlIZQkh3EWXD8chyscB3C8I4YJCovzKL+xrfEIYAyqDneHlvG4zTjGHAaaGDpEnWatZYqLK+m5Lsp7quwbtCSj3rzRKjZiKPFpJbLrJX9J2IAb1v0NYwjSNVGZgGFIV2taJpGqZxEpJQLRyOPct1h2skPk9bEVPEEEgliRDKWnzTCD0rF3JKaOU5ThM5Z7xVaKdlHxkL1lqm40jIhUzFeE0qkaxEhGSslpi+WO6iz4YxkHOlazXeW4YpoY3D6MJi0dJPE2iLVQamnhgr3nFnxgphwnmFNQbrJFKxVokP7MdAqAWfi9SB0FQt9G4LJKXpQ2G1cHitmYaJ5XpBiYkQElVB0zXEaaIog1UVbxUoIwToFMFpuraj1olpCnijyUWEolYrKhpNplsuUKpQMxL/R8Zai7GVkCacaSSaNmv+4I/+kNXZktVqCfP75GR6mCdM7hQrpdAsFpzdu+Rbv/gLvP4P/w92+wPL4lktFqRRoY2861KqNI2dazeGioioCgXrHGoWLjVeaC9xmujHnmEa0cyRj/P6OVURaOR+IunKou1YL5fYmZqnlVCv1EySa5zMNyFkzi/WPH5wQds0pCh1SmbTIVrIp7Gku/gtmYpP6+dyghxCkjmjqllErITkR5H4Oq2UkPe8xTuHqlWExGYW4GpN17asl2sO+zcsFi3eOsYYxWBQKzFEYpK1jDX2bgFxWvcI1ahSY2V7e8s0jvSHnv3jHQ8fPWKzWdG1Lc5J7LE2FluETh6mkaoUXmmMEZG/d5ZF23Cz3HF1veV4HIkp3RkePifTulv0FmaBEkXiRYvUbqcwcTwe2O8P3Lt3n/PzM9arFV3X4huPNQajW5wVMd/J7Om9Z7VYcnG24er6lpvtjmGceHm143Z35GzVsVktaJysdbSSiKD1UrNcNpxvOm5ue263R4Ywkef3R58i0zhyOBzZHxds+hXj5pz1KtB1nRgfrJF6oxY6ptDEJXKNeU1fipCjFBqtDCULZckU7tYOTdewXC1YrZbsdgdutzsOh54wTaQksZ1l3pOdhEenafN0Yj93phGxdb2jSN7Nq58ncSpZp1WlRKRehB4ZpoCdyUpuFoNZYzHHXqhtTgjzzlncLFRqvAibnZN12Gnt+7M4vvWtb/2f/rtTLWS/3/P973+fH/zgB7x8+ZJxHH9ah/d2vB1vxxcYP//zP89v/uZv0nXdF/r5Wiv/+T//Z/7Vv/pXc3LI2/F2vB0/K2O/3/NP/sk/4e///b/P/fv3v/DfWywW/O2//bf5R//oH3E4HP4Cj/D/eKxWK9br9U/9c/97x8XFBV/+8pf5wQ9+8Jd9KG/H2/HnNr6wSOn+g0t846mlcnN7FIfL7Y7tbsvusGMcK2GCUiOSVw45QZrFMyklak54Z8goyiwgyrnMBf4kQpUkFB2UOJdOog1V54LA7OK1+uQu/swNHEMUzL8RjLRWlqoq2RQoUnScopCd6lyk987NZKfZzZYiWlWs0RjbUJQiFol/0Wg55pIFOYwkmRgzI/3ngo6qRdyB2pCTREpoa0gl4Y1juVyQgohsWuexRjOEgZgirjGkmghRmonGKpz30rBQYKzg4GOOQjVSQi3KgPWOGCXWxHtPCAHnNdYpdsORUhI2K9q2JaZKSoUcJrrG0XpPYw1U2YQ7q3EzMaog34cquOw0NzbSHHuivSGVSJrEBet8Q0yJULI0DVW5o01ok4kpUq3DWGmaDCHI/aESx2lCGiKaMU40ykhRz0o81RgC0yRu0IrGN4ZcI05pcoVcxIGLkuaytZocEk6b2Z0OdS60l5hJSkQ6IUYkC61QDUxjT7dcYK0hJEVJiXoqVBvLGEd061gsHNNRCC2LZUumULPCYDDOE6rE3g0hoRtpHJyvOqZYCCEy5IRpNQ8vLzFkbrc7cp842lGK9EMhK42e4/1Kzpwvl7ROMynPpCopRNYXa47bI2RBNIcxorLEAFqnWZ1tWC9Gmk2PaSe5T6XMB/zpRquqBpLm9tmBcGzBnNOuL0lR4ZqGcQqszBJVROg2hMg4Cg2qpkK3dly9GZlSZtkq+jCCMxxCz3EbWXYLjFH0h0rK0C0sKfTcbI+sVhfUIiKsMAaMgcVyQSoOQmW5NIQaKdqzHTOvf/IxX3r3XQYyt/2Bc7Visznj0+evyGVkH3uON1sW3rO8OCPUyqurW84uz9DrQOgT0z5Rc4QIyTpstyDnzD6PODqcAZ8j/QRN09AsOlYPLpheTtSx4hpD4xSWyJt+xC6XHHOiMRWHYuEsV1d7DgfH+++/Q5kGhnFku91Bqbz7+B5xyCzXa968fkXrPM61XN3upHhEZToEzh6s2N0OLBYb9levCTEzGsP5vUfc8x3xeMtmfUkoIoTURTH1I1MqaG/RSdNcdGhTiUMWIWmtXGxWhGIYtzvy/paNc5SqSVR822J1pU6RmzdXKNvQnp0TNCwerJkOR1ZnFzTGg3IMITGFie5swbjr2e8PKKO5d9ahG8Pz6z3TIXHsexptiWSqMXS2QddMHRVTlag5YxWH4YjHoY8BbSxTzKAL25s9eYKpRDAS5zHWzP179xmmyO3tkWQsi2bBT569olmsqNWw2qxQRWh9Yyz04wGXpUm3XnRcTwGjHAXD6v59pnhk6kfaxYp+t4MYuBkaomnIYyL1kcv1QgScxkGt9PvIdtdTMRyPA9o5XE7UrDn0E51v2aw2HHYHpinQjwPr1ZKqIU1hxvKDUpmb61f0dYWhoWuFEvjmuudGLP2UKI3Dq09f462nXW+w7UqIFsxUDXmqqSjW9+7xvf/5/8rP/8ov8MM//GP+4Pf/C6+ef8rzj57TL3q0VWwebPDtkhgjL99sKaZyGPcstcctFMVkGu1pmjNSn2gWDYuN42LdkD/M3B73pAyNAas0w25kGANxFzkeArEtrFqPyxpbFZOJhCwxp7MWAJUVNlasq7RKc2YMN29uyWiWm45+HPHGM0wBNUdH4D0xZaYQiLHekXZSlIbPcYzkkli0DY1zd036kgrFaLxfAYqSC6ulo7EelY3EM6ZICInjFDmETAbO721YtJ7jOFIyoIQgojJkrbAlz7EBsrZgLvWXmtFZMfQ9Tz/+mMNux/Pnz3n27Bm/8Avf5ms/91XefecRTWOwxt+5e713DNZh9Z4QLE2QpsJyseD8/Jx79y754Y8/5Pmra46HfiYb5NmVXeSGUJVCEUc2M3WmSLNplyLDOHB7c8OLT5/xtZ/7Ol/96ld5/8vv8ejRA842axbe4ZqWpRHn7XLRMbRHusazXLQ8eHDBTz58yg9+/DEv39zy8rrn6uYp5+uOdx+veefhilXj0AraznFv2XHWvct7Dx/w8s2WH3z4CR9++oZDHwnTkRhGhv6G7c1L3rx8zct3rvjSl77E43ce8+jRQ9brNW3rpcHTtNQsgl9lDNSIptI6iReZhkBGY63BuIh1hnFkJuxkNiuFe89xtlnx7nuPef7pc549fc6bN9dsD8e7uJHTjFmrOJir4Htm0QPATPPKcwOpgqLMzY05Pk9rccqXLA24pMkmoa0jpkzf9+x2B7puwXK5YrVa49oj1nta37JcdZyfr9hs1oxTIIwSk7JaLYTaoQx/urH4szUWy/Yur34cIzElhnGk7yXO7eOPn3J9vWUcJUb41CCp839KliaeNidX+SzIqEXIFIgI6fTnetY1yUJHrolWWn5b4Y52c9f8qxIvLLocNQt+ZrOAOlEN9N26Vn5x+SwGbT7gMjezlJLn5UQakrg4of+U+QMzUPMsvCrciW+E4jk3dOfvozR3kc/euZlsJM1yrRQpC8lIW0uuIiioVLRGno1ZsKpmmlKeI5nF2jAbO4ye7+E56izP8UgKQpJ9nkaJ8GaOXKs5yfNlDHaOei4zdcL8KbHkHMc6R3zfNVzL/LlVxDoizDKzME2RZ4OKCKekMVdKRVUj4jTESVZqJXGKEpcLn4tEfSqEfGC0JmXZc2ojZFJrrexp9ClaLnNCZGk9X4MslJXTdbiLiCtCOanItamfo3KlFIRac/q987vAzM3qlBPaatlfBaHzOG8pVCgigNPGiOiOuRmuRHjWeDn/OWcRUhrFsuvQFMZxoqRCjGmeC8tngjctYi7Zg0JCk5FGbNN64hRBILpCGyj67pnzTcOTxxt+6btfx3cVSDMHQua5PyXcREOBYRfY30Y++PBTtG3mKCtDzBmnnXyWlUi9lCQSs2aw3tD3iVwqzjJHrknkV0wZ56ShGkOlVLBWRMnjFPC+g5porJhpZB71lKKpBZxT8p5QhjEVjjdbzjYbMpUxTLRNQ9O07OOBGhNTicRxxBmLaxsSEPuRpmtQPpNjIQWZT0RgZtDOUksh1ITGCqm3FmIScZBxFr9oSQeJjD9FkGkKx5jQzhFrxeiCqSLyHfqeMBnOzlbUbEkpMU0TFNisOkoqeO859keJ/DOOYQwSoaUgB1m3TVMUEvBwFGGtUrSLFZ1xlDjQ+I5cFVkeUHJMpFJRRcjTrhPRY0oz0Q1oG0eumjxN5BLJMcj7Wsn7zxhD1RJLpIzGeomaRyGRtkXWbcY4Ma3NhFSHJk6RSKF1lrbzHMeJOIlhrZYoJhstgo67yNBUMF7WXDFJfK9Np98v9JEYhLhVcqXkKPTscZSIKus47vaEVHBtQz9FCBLZ6eZI+JplLZBKxlQJRtLWkkskhMpCW9CaxnrGYcA6T6kwxYBPmmIVVVlyKHijca0jg9SdSiLFJHNaSlQt4gxKJWvLFBPeecYSiSmLmFBe7iJWLyfBqCJME7sYaNp2FowrhljZHicqQuGadhN/8gd/wvnmjGZRcL6dtYn17l3H/JRrZ7l4cJ/N5RmP3nuCsYr/9T/9J3a3W9Ig8XuuNbi2harot0eqKvQBGuOwRmouRhusclTkHlEW1MLBTeE4jqR8ejYUOSRSiKSYKWNhUpmmadBW38V9FjJVGRGtznO6rmCqkNA6bSAmtknEftYqykxLq1rqNxX52ZILcX6bKa1RRea0UiqxRBHWWDu/+epMuBFBqtIyZ2utaL2DoiQWtRZKklpdQZPmWkrTOPQo72UqFCVxmcWcomu5e8/O3B1OC8+SM0Pf8zI+53g8st8fePjwIZf3Ljg/P5tFmLIWafwsojKGqDRRa0yRKDNnLU3T0HUdV9e3bHcHhnGa1x7lTrwqn3u6F07CqTrPx3LPHfaJaQocDwf2u0suLi44Oz9jPYunvLMikNIiiLbWzGT9U4SaZ71e8Obqlu3+SAiJNzc92/3EauHZrBs6L8+61uAby4VbsmxbLs/X3O4OXN3uGMY0x64N5DgRpp7heOC4H9ic9Ww26zkGrsNli3VmpijOxH0tAjml5Vq6qshKU+Y55SQETUlihZnXUaulCH2WqwXHY89uu+d4PDKMEzFlSp5FT5yo5qfQX+7QRZ+DaM7rpFME8UmcNBMb5f/INq/IHq9og9ZSqw1TwNiAcxONb7DOoa1Q8J2Te69tG5xzIvjPUkc+mYQl5vivxqi1EmPkxYsX/Kf/9J/4+OOP2e12f9mH9Xa8HW/H/8H4xje+8WcWKL1584bf+Z3feStQejvejp/Rsd1u+bf/9t/ym7/5mxKr+wXHxcUFv/Ebv8E//+f/nGEY/gKP8H8/VqsVq9Xqp/qZfx5Da/2F359vx9vxV2V8YZHSkCNXr3cc9tI82R16YkzUkjA6oVVBzQhzsiJO4oiUeJcoCH9EYHNCc+csBdGYIlgLhjuyka4KpQR7r5TQEVpvKLWQkaK5qrIhO+WFnyIfBE2v8a0Fsoh5DExhJKZCzgi5yYgDdYqfRUdorTBmjklLUV6s2QBzIb1Ks8lYS6EQayJGaSSEFCil0BgjP+O7mZxTsc6gsDglNAFlJfYmhInqxG3srLgoSwVSIdYsTt0yNz8UKCzGqBmBbuiaFt813O4P4tzVhmbRiKtXSdFh7I9Ua1DWCf0oJRprRWg1EyJinl3/xggyVytKSNSUIRf244BGcdZ2sqHOoI1EHxhrCONEjJHGN+KERZoApWZKSWhnqFMi53TnCAuzM14hsQoJKVqrKK6sZbegBnECKRQlyTFWBanI9XIzIlxpTUiy2c8JpnGUY6lSfFcI/n0cBpy1OCxFI4j9oWccRrq2o9RILInlckHRME2BQqXrOmkw5UQME95bQURrRVITy1WHdZohBhGlKYMBNm0DqZBypVRNyZUpjVK0clAknJBhCLSdpz3b8Or5a47bKIWvWmhbK4WsLI7cogp+6bm+ORBDotGKtjXk2LDQLbH07PuJxlsWrSLkgbbJdJcTppWIBshzy3wuc1VpUdXqqbkwbQeuXiYOu4RqV/RxYHcYUTnjm0oYe3LRLBcdxzFzPEpD2BvDqzfXKOWwRuGMp4aIajRjVUwh4VUgOcNxnFBKHGWtUyhbuTlsOV9aGt9wSJK1GoeJ+/fPicPEsA8onVieLTkeJw67zPOra6q2TDFQQyS/lMg0v27wbcPWGKqq1BgYo5DA9BBpVeE4ZbTx3Dtz9CFQa8vl/QtevXpGTpHXr0dMmqhhAHtGco6PPvgEv15QUsF6RY4Bqw0XF5p973CN5UwblgvN66s9wXmMb6jKYNoG5y0Xm0s+vd4zxMzt/sBqvaDkQC2FF9sdrRdS0ION5+zskps3N1jdo4LiEA22tfQx0Z5dkiyMcc/52QoVC1YpQk0c00g/DJyfr4mHXoq7as9m2ZKCXC+TFeOUidaxWq8wNXLz5kC1jvuXC1Kp7I49qMLVmwORAw8fPGTRNTS+cuYs3jW8fPkGbTz3L89IxqN05rU/4rKmazyH2wO3/YHLi8cMhz3rhRQAm6aVuJU88Oo44o3j4aZhSiMpGFZ+SQiCj29az+W9MwyFfjeSqmZKE0prdkPCBs+r24lAoW06WqM4XyyIU88wHtElEfsBFg3WOg5jIOXMRmncoiMME5f3L8nHkSEOhJKZppFcCzZOeKNYLVd0TcPhZo+eKuM2cn5vxeEwcYwZVCHHwus0EXMRQWbJVJVZdp7pcKTYwObiCe0SXjx/QS4J7ztWK8+YEot1J+hOKsfdwJs3V1yuL9gsPWHK2EZECFoZso80TjHGkU+ffUrbHXjny1/FNk7IgXzmxlQoChplHav1Jd/69jdxauCj9YI//P4HvNneEAg8aioXJXG93/L85oqcKpebc959cM5Xv/SYPhT2t1HmMFV4dTWw3V6jkhTkbSfNdV8VsRZU25HHSMgZvGa1XDDsR0JOLL0mV2kEpRJJJeGUY9sHhn7k7HzF09fXOOUp1bFUhm+8+wjXNNzsB1LNoMFhGVMUcbCzEtmTssRxzXODMhowWO/xjYMQZxGxphahVxgrMSpClVA8f7HlJx9/Sq4RawxDqdyOI7pW2rXn/Sf3uR0ODKWiSqZQMNpK9NHclD/FFdXPCSQKGUUlxcLt7TXDHw1cX1/x9Okzvverv8J3v/dLvPPOQ85XG6z1dEYKydZI8bw/7IlBKIGNt2ijaLuGe/cu+MFPPuLDDz7h9nbPFESsoApodWpucLdeAiROIxWUzkwlcf0mctzvePn8Jc+efcrPvfo5vvb1r/HO40fcO7/gfL3C+ZZu6aAknG9QxlK1pm0t6/WChw8v+OjpS37y4TNevb7h5c2O68Mtb3YbvvTOIzZdwyJHatYsfcfl2vHo3pqvffUhP/jwU37wwTM+ef6aYz8Rp0KKiamf2F1f8/LFCx49ecL7X3qfx48fcnl5wWazZrFc0TQtXbuQtWbKaCPCA5Q0obQ25CQNf2OMrI/G8S4et209xmzoupZ7F2d86b13ef7yNR8//ZSXL99w3B8YhoGQ4hzFlT9z3M9rSDULGLQ+iTHma15FtFaKNDQxIj7WskrFGIvJFWWFgiUu6JHDYc92e0u7WNAtV7S+ZRwXTFPP4XDkbHPGsOwYp8DhuKBtOxrfYe0XLwr8tEcqhWEKhBCYxsDNrQj1rq5eMw5HoaKkIuL8OQIOpTBujrKb790T4eCugTOLlGZl2J24pyqEmHTqABWhEgFzc1ZTtTReTwKYzyhIlZoVzomb/vROTVninASKpe+ue54/v87UE6VnQVTJaG3vmnz1RJqpdY41FmGVmr9TmkVuRut5bW7vRHBaSxPazI0pNdOYSsp38Wpmbkie6E8FaWSV0ztJSdNVzxHMWs/reWcZp3B3XFY7oQnMBIgUowhwtJnFPDO1o5a5iaruRFFKaYmBVhI3VuXlypQjCkWL/dy5kAauxMslSsmyVxA0j7xTqzTz1GwMOR03SHTZLOGSRjDSwDvl9MlertwReoUiJRfzFOUjwhV5X3x2HUVkZLSI6k6SfqMhRyFAGKWpSohHIYrgwVlLrTIneO8Q2tEsbphJUbVIbIydxUpKCQ3HeicCvJxmUZFCV2aK7xw9VGeBWUliwJjvX5Qipoy1GtM2HPdHYhUCDrOIpyLPRgWqKhgn8U+5yPrRWk3Ndo4Lj0wpY63CWUWuieXC8Y1vvUezkLfXST742X4C5pAxKJDGxPXrI//5P/+AKRaUiUxB7ktr5TxWo/DOEpNQbRWyhz0OAwozP0cGsmQaZmayj5IIrZDSLOqTc4GGIYy0Tku0VBHzUY6ZxaIhx0wMGZRE4oWQCVPl0A8iIM1ZxGTHTClgvMVYy6RF3EgRWqNSCpUyVlVCrihtWbQivqoYuq7j2O8pOdMfE6omcXDphqI129sdxjshf+k6k2AUbauYormLAvRecewnsjEoIzQdZS3GaLqmYz9MpFIZQ8A3TgR2tbKfJpwpTCmwbDRts2DoR5RKkCFkJaKckIUGa6DkibbxIhwr8l6KJRFjpO0acojUUkgx0DhLyUU417WI+ckYmsZjdUOYIiEXmsbRNJZYCioZwhSIpdA0nrbpsA6cVjTaEUJkHHq6RUPrPABjzSRTaYylpsJ+f8S3HdpqVJLfn6oIHJyGfuxnQYbBNZowZpy2ZOocPzbhrMEtGvIUZwKRmMNiyuSsIBSm/YC3IiZrGk+izIRjKEkisbxtGJOIU0opLJqGkkVAZ60ml0SJGZLcvqHIO6h1ltZ7phiEVtb3NJtuJjtXSFBSnY11QnYTIRV4o1BZEaeJalvatmO/35FKkRqHbyFNFK1o2kYEXDbTH3sqsPAeKCKEUhWr/WxQM1zfXPHhhx/y5Mm7rDcK3y0/i2yYFYgnmktVYKxns9nwi7/0LZad49/92//I7e2WIQy46lkbTcmJ3XAkxIQzjtWi43KzFIHVlClR9vvbw8AwBTEyFkCLwMqo2cFgDGhZe2VV8I2nZBj6KDXC+XiohTwLxnKBIUj03hgiV7sjTjuyMXRtS9M07I4jeV5DaC3rjFTybA4UoaFMVGquNX4292pr7gyUnFYVpdxBp+TnZU5//frAMI0YIxQm1615c/Mn5Jw5P1+yH4700ywuQ2iIRs0UpXnCUpyoRnefNguDNDFGdttbpmlkv9+zPzwkxCdcXJyxaFshGFkn85Y2aKVngY0W4a6OUsMymrZtWCwlAu547ElpJjR+pk/6/3jnn/7/6fg1YSpsU2Toe3a7PReHCy7vXYrpYbGgaxqctRjbYKzD2CRCfiUx685Zuq5hsztyc7tjt++ZQmLaRY7TyPlmybJtsEY44I01eKfx1nJ+tuDiYsWb6y03uyPjPMeVEMgpEadAfzyw263ZbDasN2sWi07EOt7jrMMaiZY+XU+tNaoqqpkvblFQ8t0aUIRKUmPTWtM0IsZrvWe9WtL3A9udEKbGcSLFOK8ly901rfNa7XRO72LoOEVOixBM1p6VE4UTdYoQRuaH06JGKakdlkyKgTCNWOewzgtlKVpS9sQYaJqW5B0pZmLMWBux1s1RxD+747QnuLq64r/+1//KD3/4Q66urt6KGN6Ot+NneKzXa/7W3/pbfyaB0vX1Nb/927/N8Xj8Cz66t+PteDv+e8Yf//Ef8/Wvf53vfve7Xzj2TSnFN7/5TX7zN3/zpy5USkn2uU3T/NQ+889r/Pqv/zrf//7330bYvh3/w4wvLFJ6+skL9vs9/b4Xkk+qTDFiVaaWiZQKYYzkFIhTIuNwi5asIiElcUQaQT0rLcIdpWYSkLM4Z0XQYzVqdqTlnNFaiDtKlVmw0RJLIsWJWpA4AT2Ln4o4gnNKWNcSYoIizjQqTLVIFJyRTX2KURohgHfSsCjzRiemSIkZpRJmdkyL00caBdYZKuKESTGChkYZlJJsc8mnnx0uFcI44rSmzthpwT0rtLVUqpCClGS0e23QKVCtEQz2XHCfQkBby5xbB/NxhX3PNEXB+FtDjhMFJU71WrBGXKOpVrKWAkzjLFOesE7igI7DiLMO5kK6ShVTZbJIWVDq5uQIxxBKxMykjJgSViu6RlyXVRucNeQY5o10JuSM1oblckVKWVyx3gnWPGe6xYJEZRhGbFU0zqK9xfqWm+3t3BAUMpcxFm00BokN0krc3BVBcZc8ivjBNGgqcQx4Z8Q9bT2gCAlpVJWK04ZsnTRUZnS/dW52vztKEcfynWsNWDQd6Mo4BbRy1CrXsgGmKTHFgDMtNiWsMUStOcY0u7PBemk+tYuOjMQOpj6SdCGkjLcFv2gY9z3Tvsd1Hc5bcoJSFDHBsl0QUo/Rhjhl+iHiFh7rLWfnS3xVdD6zMJnVxYheRApZovY+J1A6DWn2JY5XI9ONB/WAZtNibENVcHu9Y9U1OCq3+wOozLv3nvB4s8bmxJQCi3ZBGAOrs0um8ZbjMWCto9MGqz2XDztudzv644h2mtWm4+rlyMEoujPDcr1i7G/BarRTpDKijOdqe4upmfPVkrLPLKpHN3BdFbt+kCZ85+l1Ybnu8EGRUsHrQqMsj999RFWVm9sblssNt4eBWBK9qtRUuDg7x609w5jpj3s651haj/IwBkhLh9EdVM9+G7g0hc4vOeSETpo6JJpNARJWOVQxUBzeOc42LaVs8Mbz+vUrOu0wdolvMin3KMA5z3DYYRsz52EmPJWsPP78HrYP5KnSWMcxH7lc32eRLevVgin1eO0xXcvEkTKOjMPE5YOHlFS42W4Zh5H24pw49cQEm/v3iXGgaxb0/Ugi8ur6CpcKu77y3tfexRnN8xcvKFZhncGpFRrF1fUNY+dYtZ6b6x3daoVbLik5ctjfYmwnxJGQaJXFKUP1jpwSx9srztYNdVIUrTn2BzrncQ7qvXPaznGxbHn2KnO122G1QXmHwpByJI0V4yw4ETjlYJj6A7EE0nGgmpbqRCA57QLPr7dAYX225Mm9d7h+85rDUMgq0HWerA39cWSIgToFzASbRpMaw/YwUqvQ8zRgLORq2L3Z0WjFkAKvt5FBS8EwBMvqbMFq1aKMJZXA1ZtrlG54/GBFjhPKdpytO3JNLLzDW8vZ5QVomHKhas14jOzqgbN7a9arnuM4su97+uPAatXx6PEjxu0WcmFwlkWnsary+s2eYx8xrePJO18VYejc4GTGxJuZlVGAbn3Ot3/5e3Ttmv1u5KMPetRtz9VHzxmWnm08UpxjOBz4+PbAetFy3E+sVxdkNwjtZHvL7f5IP/QoU9FdZrlqMAHMYSCljHeKh4sGlOL5qx3HqyNDP7JuW6HplUzXtYRcoShyyNwcDuyHAbtouNruuTy/YNlY0hSI08S9exv6MBGjYQpB/l7OUpDMQo3SpaKVxugqMUFWit12jhWwzkgcqtXUmrCuUEogJkc/JJyGH3/0gn/xH/43hnHgrG1YbhaoTorgrWu5vz6nxTEqiYSpGbDiCLbK3FFSKqdIiHIXByY0E4lHmKYjn376MdvdLW+u3nB1fcX3vvddvv3Nb3BxfoY2FuMN6zNH2y7wTUecBoZjwzge0c7jmg7nG5brJQ/vX/CjH3/Ep5++4nAYiElT1YlAIs1+mAk0SmKXNDMFsoiY4HWI7A57Xr56wfPnn/LVr3yVr375Kzx69Ij12YbNeknjPL6zLJVDu440DKA8xnouLy5578kjPvzwKR999Iyrmy1Pn+95cz1wf73gopXIsgcPzrhYdxinOF8v+M63v8LXvvyEjz56yR/+6AM+fn7LYUgM40QIgd2x5/Xrl3z69BOevPsO7777Lk/eecLZ+Tmr1YbVai0OYKtxfhaLoVBzY0ZZha6ekhPaWFAWpfq5sp/n6IuO1bKw2ay5uLzg8eOHvHz1hufPXvLi+UtudjvGaSTGWayEUCWVknXXSQihlKbqymnKLbXI0k1JI6cqdSesECBTRWUhXtSS0NqScyDHkf64w20bunZJv1py3HcsFkv6fc922bHZbOi6BV0rQq22/dndZF9d3TAMA69evuLVy9fcbneM0yRvppnmmVOhlEzJhVI1xlmqOtF9mIkEdV6ZzdKhuYl0ihMTkoL8XMknsb9i7t4IBagWSk7yntdwar/WuQkkTUsxTDBTgUCi5ED2MEIHqjO5aY6c4/NCQKE66btnfhYK6ZOgTTLi6kxpQKk7kdFd5NrpuCsiwJs3UBL3cSL76PnzT99zJq3ORCBtjNxrSooxypwaT+pOwJSnKN9VgVESxSakBA213EXVlSL9OaWE/pJLFuyOEmKJxHiLoUDNzWKQPZZWWuLS5v/UmoSGoLSYRZTCGjf3ZGfqVBF5kFAspCnonVCERKwkjcRaC846CnUmkCisERGQNpZhHD8TolHvxEEKhTMWNZ+/k3jqZKw4xf/llOdroyXaj5l8MRO5jJZnHtRd5I8xem5oG3RRd0JRuZ7z/kUxvzfkTMl+RO67XOaYrdlIk6uWKNMqcTvaSBPTOieUt1IoESEJC2oM7xrSFEWgPotbRPAnx++sQ8co1yAVYspop9FW0TYeAzhTWbaO7/7qN1nfW8xN9M+RNe7GzPuoldgn9jeBP/jDDxljxboWgHGYZF9WZW+Lqqy7FSvvUbNo2FknZOCmI6WRGGUfabVE7bRLxzRNhJhQWuEbS39MEgHUaLxvSHEELddKaBiafprQtdB4B1PBYsDCUGGKQilW1hCpeO8wWd7NRlUMmtVmBaoyDiPOe8aQKLUQVaXmSte0QhjOlRQDTmuh+RpIGYozsm/EEMZMpyrWemLJUGBMBVPkpjKqQDVQDUYbmsZQa4PRhv54xCqD0g5jCqWk+fk3xDChjRbjmCpIpcGg2w4dk0SXa9nLL/wCVyKNd6SSJD7VWRGPlUSKmW65pJbKMI6klLFtS8mRXKFZdOSSsEZozorMcejRKNKU0W2D9w3HQ88QJV7XOBHFpFw59gcWXcM0TFQUvm3QrhJjmJ8lpKZSlRDa5ucuDKPQZxonNDUqNWRsa3DeohtPZzW5FKZhooSCcZ46gwbzXLtAK5RVOO2ZppFUs5C3sCQ1i1Vz5TgdpKZiNZvNijxNTCkzhCRUKA21ag7DMMfjVRpnMU4xJBEpi5ZT3s1oxTRFmIUfY4wwSG2oZBG3Nq1Ha0tRlTAOhFSFQmMqqSjathFzwEzSUzPdKVeJFsypEIZA0zU47/CT1GyOpaKBxWpFihGVMwGw3mIV/PAHf0yYCl/6quLcWolfVyeJjDzudwJ8FGjLxeV92qYlxsp/+Hf/gf02kA4j+5gpNRHm+Wu/26GVYtk2LG1Day3bw56bsWcYgxiOakWZivHyvDNFWQsoaLRi0Xn6XBjGyPYw8erFS77y/nvUIqImVWSvU0slpMhhGGlaj4+JYwisW4PGMo0T6+WCMSYR7Od5vp7XDFW+qBge4G6uUAqJcVPcCaFNnd/z6rQukbV0TJmUHMOY+ODZS24PB5zWNF6EImcXF3zy8cd429Box0Ca1w7qLk7uLjb2brWj78TYM+jsM2JrSYzjkdevA/3Q0w8DT5484eGDB2zWK4zRKG0lvtSK+DLHSEoBHQ3aRLSxIuafRUI3N1tub/cirMkZPQuxuRMsfU6sVCuoIvNbkTloKoUYI8PQczjsubi44OL8gs16TdN1tI2fKYwe6zVViVHUaDEQ+Fnks9sduLnZcjgemabEqzd7Wj+w8JbGWtrOsehaGqtwWnOxWbJadjw4jry5uuVqu2eY8lwzlrljGAcO+x3L7UrESmsRUPlG3lt2ni+1Pq3XRYCtjMTNKaMxs2BaKU1KUc6DkTWsVgZrwTeNCL8WC842a/b7I4f9gX4YCFEMJXWmc54i9u6i4Oa1wt3iYRas/2lx2OlKzGKlMlNI53uozPdnKZmUInoasdbhnCcGR3COMEWmRiIXvfdCQ3NOzB4/g+N4PJJS4ic/+Ql/+Id/yLNnz37q9IW34+14O/7sY71e83f+zt/hnXfe+cJ/5+rqin/8j/8xr169+gs8srfj7Xg7/jxGzpl/+S//JUopvvOd7/zMC5XevHnDn/zJn/Cd73znp/J5f15DKcUv/dIv8Tf+xt/g3/27f/eXfThvx9vx5zK+8K7jx5+8oBZxAFoj1ILjMKJNpdRIipUwZrQG4x3GOKoSV13NFaqWAqyqM+r+M0GQtfYzV2ed/cQ5ASenaL3LyL7DPjsvbtoiLs4yO4WNkkiqnCopBKCgqhFKkZLC86mwHetMlMmFELVsxJyZuw6VXArjOM4RAPquCBVjoUyVzmtSUdQsCHOtTr0CgzJSoLDOkoPgw50RZ3udi8rONqSUpclgNKpACImu0ZytFwxZcPbGOqqSIrz3LcM4Yaqi6Rr57qXSNI04y1JAo4VMVLK4ppwlxCSuKS2OtFoKNSR80zDlKC7yuZCXasYqResalDegNa4K6DtUaUQkKqoUiIkpJ1TOWG2FUOUcqlQ0+m5z7HRFKcM0TqAEnVyneRMNhCjYbKe0RL85QwyRgsY1LcYanLP0k2SJS78mk6aAbjyBNMf7aMZR3NI5FcI0zgVGSAliKbO7t+BLRvmM84aMuEFjqtIcqRWjzZ3bGWPQGkIQjHUTC7UGcpZWWMwFHQtds2AaD4QcmWJAFY3yYHyDTlJg1xqJoiiGpVtwGEdyDrzZ9xhnsRjWXYMtmU27JMWAco6QJ1yjWaw6KYDHnlAURiXi8YgKsJ1uaVcOt1gyHq9ZLyrrC9CrQFVRni0SmpPL/hRNIo2RsJu4+iRRwpJUNdUotrcHYq7iiI6Vw37CNZZuteRwjJzfX6GsQumWIY64VrMPV9SYcE1HypkhBHToUcsOu1nTjRVbK7ZEvCn41rP0jnHYkaZM02hapQghodoG4xW321tK6qnKs50KMU4Y70gp0FhP2wjCmhAAzTQciVNm2TRQFPvhiMqGq1dbLu9dcm9zyZubA/vhhhR7Fo3HrhZ8+uoKpxPLVuIAVHWYRsGYOey2tN1CXOrK0GnIVQhqr1/fEqaIc5ZUDDEHcq2MxwOeikfRHwPNsqVog9IVrwplPBCOlv5mh/EaEybq0oIxNL6h6RZ0ywatMsYUDle3DB8n3nn8DjlP5JwxUbO9foZxkEtEuxaopKFnuWpYna/RyYLxHA8D64drKpb+MJFS5exiTThOKF1IORGHEWcbWtvgXcEvIauOkmG7i6xaSwqB9vKS4xhwh5H7mw3eedSi4fWLN9weJrzVsNB0G08XPcd+QjnParXhzfUNy7MzUshcbDxOSyTL9rqnJI/XDpOrEOHIPHh8j+12RzGOYsBqzZOLjhun2fYDKe4gR+5fnnGz3TKNmZX3aF04Wy7QBc7Pzvj01Q0pZ9xqTeM0frHh6vo1xmuSioxoGtNRawRnaNDUVKnG0qdEiAmrwbQNF6sHTGmgWVkWxXEYe8ap0tgG1xpa29J0Hb5xXB97cggoDTHuCXNkRJgCq1nE5XRlt91RxxFrEkoFunWHtR3TfgSnGQ47Ygx4rcih8Gq/5/13H/L44X32x4nr1y+wTcf9Rw+wSkSZwuKfJ/MqNDatGmx7jy9/w3Lsj6TxyI9utzx7c8VlXjDmAb1YoI0Q6kIY+eCDFyyXe2pOXN1ccbvfMY6RMU60pvJoteB8vaLxmqvX19z85CW3h0jfHzFKsZtGxinKfGelUaU6yyFOkC1aSaRWSlFiT4whDIHjcORssUDFyPXtlve/+i6Xe4+uC3YZxhwxaiZdzMQOafEJocYqJVwHa3DOzKRBQ9EFa4QGlnMhJ8UwBg59QKmJe4/OeXJ5zu//8DVX2xu6rWV9saBrG/JUeP1yK83+Ku1ag4iMz9YLVFGMY5wjgDSlgJ5dsCcRwyl+zSlDKZHd7pof/GDkdnvDm5ev2d7e8s1vfpP79++xWi5oXYNvxXUcwiDN5sZTjaOokVINzlhWi5bLizM++PApP/ngE95cbZkmiVUtszBJBBGzkINKzRJkprXQaJJOxBwIw5Ht9TUvPvmUV89f8bWvf50n777D/fuXXJyfsV4t8N0apRui7tCmxbiWxh9YdkseXNzj3Xcf8YMff8gnn75mtz/yyctrnlOxGh7fXvDtr7+PaTZY1WG0Y+kd3/yK5cnDS3700Qv+8Ief8PJmxxACeTwSp4H+sOf6+g3Pnz3jyTvv8OjxEy4uLrn34D5nZ+esVkuhNLR+LrDPTmProMh6xaNBGbTR+OSpNZNiJkyJnCPKCHWpaRrON2c8uv+Al48f8OnzF7x89Zrb3Z6hHwlhIhUhbsg680RpEaECp5gu5iZBRWL21GfBHaWK2NGUmQikClpnoeRoM7u0JSanP+7xradbrDgeB1brNcfjQDtTARaLjq5rv/BG4Kc9/m//939DzeLq1rMQPsQ0v6YyJSN0L4UIO/QcAV3y3ARTs8Du8ySlk2hI3/0zyJ/Xmu+oQiiJglRKkatcJ2Us+u53nPYioLTC6JmudnInVREQiWtd1rWnyLTT55UiJAI9/xxz7FnNEa0Mp0AsrbSIbHKRZnkV4eCdcOaOIjT/vNaz2ErJ++5EtdBCIT2RpfT8u3IuIjLxjljkuT7FkJ1EMCkLbVaIRxJ/Z6wRatG8PtdaviNKyb5rjpe7a9BW+Q7GGmm0zechxyz7svkcKyPkAaNkP5Fml7+05KqQjqpQGLTSs0DJfIZpUPJ357MiRJT5788YDOAU1afuIvJqletXlZ6NLRpthJZDPQEvZooNWiIxtaIqRUqyxypKInrU6XrmWaim5GYxtUDVM41XYuzy6XvUk3BN9g91jp/O8zHnOVruFB2Y5whOEekEcp3JLhUs8r5S5bNmeaGiq8YZS4gimAxxEiNMFVOKnuOqS05gjERTGSViDqOpOVOq0ChyjJBhTCOuMWjnSGFkvfR871d/nvMHK5iDL2Xm+4zadRqqQp4yu+vA7/9vf8JuP4I2TGOYxbtQMoQpY6zGekOIhbYTYw7KEkvCWMWUJVJbz7WCmDM6RfAW3TS4JG9RXYsIiazBG0OKk8TzFYVDYvLUTG0ex0lEPcowpTrHI0qkttFaSLlGI+hlefeWVPDWiKAkRKiK/jjRdR2LpuM4BEIdyDnivMVow/44oHXBaVkDqCpC2ZoKcUqyX9ZCjz5FJNZa6I/z2t5oatWUaY4xDAEzP1Mx5jvxJhqMKtQUyEGThgllFConqpNnyRgrTWkvgjulKnEa2W0L6/V6pv2VOSp6jzZCAFRGSkUlRry3+LaRva3ShJholg0VTZxkDmzbhhwyahbl5ihmJIWmMRZnQRmDz/LM5ZwgZ7RzZKUZx4nOObxrUNaQcmE6DlLvMQrrNQ2aGKSO1C0WjENEa0tVhmpg2VhCyXIfDwlrPClN8i5SsGg8xeWZoCSC0dY7rIYxJKiBGCKL1YqcEyElDBqrNc4KPU0ZR64wjBPetFhtsJ1jmgZyjBiriCViVCNGO+T9adCkWihKM6WMKhlrLd1ihbESV9Z0hpyFjGWNmPqkNlEkCnI+JhUkvnOcwmdzidFQhUZWSyYOIzUnfKMxVqONp4YMWu7rFCMGKX0N/UTXGJqm49nTj7FODFjrs3NZR9XPEZXu/mFmv+iGbmX41i9+i+3tDb/3//x/8abfonLEWWbBl8YYKDXR9yPjkHBWM04Dx74n50JKCSgstGblW3xjmYzisB+Y9hMxJpgF9SHJ++7Zp8948ughq82ChFxXiyaXSJrXvKd5cZom1l2HJkudaVlYdo6ao9S5Qrybdz9PwxQhkIh99Sx41HqeZyqzyHm+Tsh8kFJB68RoMsooLs5W3O737PoeMyp8Y3jw6CE//vGP2W+3UjeqVQTAVWg43kkNM6ciIm0+E6LU+X6+W+/c/RshAO53t4Qw0R+PDP3Ao8cSk9w0Hj+/43yjKc6jglDaVDBUFZEqnhAWW+9ZLjqur2/ZH3pCTCIaY45347P10x1tahaqnmJrcxFBeJhGjvsDh92By3v32JydsVwu6LpWxErGyZ5IW7RyoC0xTljjaJuW1WrJze0tN7d7+mGiHwPDMCKp35b7l2ecbzoMFqUMRlXWnaJ74jg/W/PyzS3bfc+UMrlEyiQGl3EcOR4O7FYr1uu1iP4XclxN02CsxVnzGaUShFx5Mt3Oe8CTILyWU2qAEPjLTOaSWq5n0XWsVwv2hwP7/ZFhHIghzZG1s6j2JPgtsxjwdNHn63y3ra+nVeX8A7WKSXZeR5Z5vYoWprKI5T8z95hgsNbifUsbW4KPOBdmeq/F+Z9NMus//If/kFrrW2HS2/F2/BUa6/Wa3/qt3+JLX/rSFxYu9H3PP/2n//StQOnteDv+Co0QAv/iX/wLgP+/hEp//a//df7Nv/k3f6qu9xc1aq38x//4H/nSl77E2dnZFz7Wn4VhjOFv/a2/xe/93u+9pcy9Hf9DjC8sUjoeJlRNWCObzJIKzmqJfKsVagKSON1sK8XbIu5kMLMLtmCdltirWqTAbAwxJKRgpsg50Tgnzp7ZVay1YH9zEld1rtJkoGRyikIB0OJ01dpIYY6KLpkYEpNSInzJUlguOaGMmgVHkwg1siYbTRHEjhxvrTSNlcZS0RjrmGJgChlnHJ12KGdIMTPGJE7X2QFtrJuJNVKAzUWOWykpoDNFlmaJ04qqBfsc5wJqBbRR6FoxBmKa8N6jFZQkLtHGSrEq1STFf8CUSrWGiibkPNOcMt6L22vVebRW7I4ST2OVmYsghXHsqUpid6gFpbRE6Q0jpWSGlHDO0VlHpeK7hpLmBoNSc668JdVKCVH+fp17c7XSWs2UIiEIDcsohK5lLclIfINGoXUh1UxKSRzu2swCnUw1WpDFMeFai1WamhP9IG7OxbIlzuI2Y62IDJRCe0WMCa2kMJBiItdMs+zwi4aiEtUoxsOExdAtFxRdiSmBlqJH0zjB2zcLxjEQS6XrWqZjTzXScBnHiTgGakHiGqxBEqAqrdbklEg54hrHcrUkHCaur66JRpFUwSjLwjaYVhoF3lrW5x2HSTMkcc411jLtB5xesugW9IdIs2gJIZGKZnO+gDqxMJXFBtp7Cb2aKRnIvc1MUzlFMkjjRBH7zA/+11dMxzPO7mlqDTTNAr1asBsOTP3AMQdQ0NmG1dmCD/7oFbeHLdUUxgSN0Rgsxiq8USQVsIBtW6rJHPvI5fqcbb9jnE4F5gZjFcMQGFIA69mPiUfLlubigqvjQJtE5BOmQEyJvmR0Llwul2xvA7bzYBT9fo93jhRHVq0jVoczmt31jqwA5wjFs48TzXRAG2hWDVkZPv74OcvLS7LSLPyKIQl5rVCxzjL1Cd91LM7PuD7eoEm0jeVYHNtD4OF6TacGdvueRadwruUwJLbHgYUztLZwfRhIKeG7wsWDM26NZzgcyPuerAzdYsmDTQvGkrrKum3J05GzyzOyNmxf3aJrQ+oHphjYrC5ml23kkCZChoVvOd6M3KQdq809cj0yHEf63YBxLYvzS47DAPlA251BHhgOR3TMaCfiS50yx7on1Ak3aZxvKNpQa8b5hjwGFgb0yrNaLgnHke2YcCiaAP0o7vVaE7ZEqvZgDFMx1ABXb54Rh8A7Ty54/M33qeOeDsXV6x3H44j2muXKMR5H2rZh5T3jFDDNgo8/fkkxlcuzDelmoO9HlusLlnbBzWFHHAMXmzW3ZkABMRqubg7sOOK6hlobNInrNzc8uljTdhZnhGgzDpFSFqRaWC1W0EpslFEWXzTdwuOzvL8OKZNrJh6PbBbnlCmyv91StWMat9ilY9OtKXnizb4SI5g6cvu6p10tGIZASIEWBSWSY+Fs3VFIbDb3GMcjaoy0tmHZddyOgWmMqJiwjeHYR2pWlGj45NMtbTuiquEwBMrHT1lYz+befdBzyJeancAo7CyWqcqi2zVf+9a3OeyPhJzof/Rj7jeK19sjb3Z7coGz5RJDYYg9OhoaZ3jy+B73Hm+4utmyPx5ZdI7N+pxF1zLdvMZneO9ex+6w4/UxorRjs1hwvrHshgHrDIulJ+QiIsg8u/sbQ83gq5E51XiOfaF7b8HGN/QhcpgmbNPBtsd7R6pV4mJLpZYsggalSFm+szcSTSYNdz0TVk5O60zJipIqQ5wYppGQKodjxOjMd7/zFfQStrsDYTiQdUVZwzCMpLWmDQ2lr0y5olPBe8WDB+fYqnn1+pY6TpArKktR+CRIQX1WYM6pSgScqYxD4tknE4fdjpevnvOd736Pb//Ct/nS++/z+OEDll2D8eI+18bihw5lGip7tHI01olQpes4O1vz4ME9fvjDD3n66Su22z0xJtI8Dai5CA5C64DZQa4qqiR0SZAyu5gYjj1Xb64kAu6bP8fPfe1rPH70iHv377E5W9M1DYuVEYJFZ+n7hjAMEvvSWC4v1vzc6zf8+MdP+fjpK7aHPUOYCM/fkEpm3z/mnYcPcGZuvmS4dynxck/unfPRizf86OlTXr7ZMo6RaUzEGOgPB25vb3j+6QvuP3zIk3ce8+DRAzbrc9brDWebjcQ3tF6a4VoaxSmJYFli0QpJCy/RmoJWkWE8Yusc2eBarBan92rd8uDRfa6urnn+6QtevHjF9e0t/TAyhXAn5hBhBzLnagUSrCXNp7mVQL2TM4nopiL0s3Jy42chBhkjohCtSSoRcySkiWPfs9vtWK3WrNZr1usNXdfRtv5nmqTUHwagSATh3AjUWs1xKSLwZw4DPglkTo0ahb5rholgREwFdY5eyqWc+mQzVUFETmV2/itmUkUpd8/jSdhUSr4j/ZyEQigRAVGrYJT1ScAzH4+aKUX6MyFTqQpVZ/rS3DCiipCI+RuaWSiScxGnvdFgRIRRZmqQnklKcizynU8Eqc+Ls2queOWl8TTrUUXsJIIoEXtVVBEXvYi0uKMTGW3m81uk0zon1TCTnvJMlVBFoqFQ4K1BK8UUgwgwT9eCQk5RxH9a6EvM5zdHadrFUjBG6DJVIYTYOyrEHPt22kPMgqPPC9Gsln1UyhKBNl8ejNIUfYrYnJvMVYQTom2roI0Iyuop9kzEL3qeC2ISkZXQfU/3oKzJUQpt5T5VSmO1xHHXKpFpxhnZ9yVFDRmNRLdVxV1cjDEneh9o40l5Jss6S45Bzn8VWtbnI+2UEXpVrmA/1zzXRuOdJ4fE2A9krUS0xIkMJUYeoyUaNGRkXwJy/FPCNB7nHCFmOY5cKFVioqgJp6BbWn75f/p5zh9u5vfX6VmdYxNFlXn3zzlWXj3d86M/+ZTd/ggVWUd52UeXmGajECht8Y3j5k3PGEaqqqQi37NWjTZzLxgRXghRuBJiZtEYxhgouYKpIkLWsuePpYAyhCTRW03n6EPCzq9kEcgUiaWtlc45xpww1oKGGIJQaUrCG03BYrQS4o8CtKFUQygZm8Js0hLR0G67x3UdRQmhR6DNIqxURpFjlaZ32zCGAUXFGEWsmilWlt5hVWKaIs7JOUq5MPUJZzRWwRCjRMs72UeNyhCDxF4XpWmcY9lY0JpikQjxHGnaRgQyvawZS0qknGldJ88d0lDPteKMI4yZsYz4pqMSiTERx4gyFt92Qq2uEevkfokhonJBaalh6FnkFUvAVIXKoK0mITG8NYKeo5pU0xK1oeTCMSZao5mmCeaGvEFMSL7tGEZ5Hx/6gakfaRvH2cUZxiCi66QYjxNViSAaJ3PJsltScsJ4x/7mSCwJ5ywaoV4r4+jaJaMaiTHROgutokQRv8cEu/1RiH1VobUjTJLl1q0sUUPVEgmai0KnglYW5w2xJBFfZoVrPConvPaELPTtHANKVbz13A57CjDkCLriXYO1hn6aMIh4c+oHnHfkUoipQMn4aoRCYw1d56iIQC2HEV1FeFsdjCmRQhRRtDbEKaKV4tAnYp6gVv74j39ATPCNb3yd9dmZPIh34yS+PsklFFVZlptzvvurv8LhcGD6b98nhwmvC9fTSFQi8nPakHMiq4o2Dt94LlvHFAL9MKI1NM7h2w5SgFRZekuwA4chMWVorGGx8KSUOPZHfvDDP+F73/sOtRqhh5OFnG40uohBT2sj6/2qWLQNKRf6KdA2DdS5hmcMpQhpUeXP4prLZxocoWSe4n2ViKOZqX4nUmnOhYTU/k5JrJuzjnfzPXbHgRwDuSTaxYZf+s53+P3v/wGHNOFUnZdAQqprGs+y6xiHiWEKM5G7Usufjn47CVSkpikko1wqw3Dk1UuhGO32Wx49esTF+QXr9UooebMQ3M+1PG0sVY2AxMGZWajiG0/XddzcbLm53TEMI3EWid1tZj43yizeoZZZMFPIdY7XTolpnDgcDpxfXnB5eclms2a5WNJ2zWwadbIWmGnOKYqgTmuNd4azzZLt7Z7rmz39OBJTIo2B1zdbYkqcrVc0zs5rMKH53784o/Oe3aHner8XsVKQ+nAssnaZppH+eKTrlqzWK5arBV23wPuGpmnw81yvtEYrmQFLOd0b+k4EX+e5XKky05WqxDprMFpihq0zdF3Ler3mcDgIWakfmKLEl59oVZ81y2Zh9OeQSqen8PSv7+6Hu3tV/pVCqK6nNeVpE3ISUKUUCSEwjqN8T+9xXvY9bvrZJCn1ff+XfQhvx9vxdvwZRtu2/NZv/RZf/vKXv7AIIKXEv//3/54XL178BR/d2/F2vB1/3uMkVFJK8cu//Mt/JqHSr//6r3N1dcXv//7v/wUfpYwXL17w27/92/y9v/f3WCwWP5XP/PMajx8/5h/8g3/AP/tn/4xnz579ZR/O2/F2/HeNL7zryNMkrruQpbhXKylnShKMc85SfE4FFCIwyVS8tcAc3WY0KStSqWglsQnCEZANnjYW5xuJDsgiXHJi7qUkcZuGGPDOYqmkGolxQmsrRd0ix0ZR1JKouqAsMykpo3TBKgNkdJ3duJU5ykehtGzoc0qzc0RJca8qMuKCzjnSWMkYrzUTpgi5CCGhIBE7VaEKNN5ijSYbCGMUmoOCorTEHdQqrtYMtmlQjbjyKpV+mrCNoVhNHuNc5I/kknDGcQIxxJhJU6LxLRoLKoFSpKrE7WcU1igwljEnfFUsu4bDIBvmGAdSlGJ4sXIhjBUag1aIE9FonG3oGi8EAmC1bIlTYRon7FxQnFIW4pSus4NQzqUqhRgKaXam55qE4pCrFDm9Q+VCjIFYC6212MbhFaC0uGZzJo3SYGqcQVvL0Adqmui6pcRK5ESJmWos1mqcAj0TplQRUpV3BnRCOYmkUINGW2Y0+ClCJGOMJ+ZMCILqn8YJow3kSq0R65bEKO1F48Q9pedmlFEiqmoaQwyZKQb0KDEQulN4LNPhSBgDTeNYrs/YDkfMfL8b1zFNkWMKlHpgudmQ+oBbLrAZTK2kktntjozHA+v2giFUTOPQTuFMxdoblueRdpVBR04NPxnifaacGg2gkuX2+ch+a1itVrizDfUmQpACX0wFrMa3LfvtDQlQ+wnTKLKRhth4POI3Z4yxUGOirwnbeGqp2LWFUInbynG7RZuMbx2ua+iaFuU1u/6ILg7VJ3Kt7EJkZTXnm5Y4HMn9QKkVu3ZUXWkbx6J1VM4JOWCJ6MYI3UxZjLcMu4mkLdpKk5KQWGqDMw0fvboW97IFoxXKeIZjz7JbcN51FFWwjWYKif44EGthfdHiG4WZHI3zPDhfYG56UpI4qTAJiShozX5/Q6Mr99cLqm64vd0SSmVIBY1Bh4nxMKC0xnUWM1ZKKgxpotbIpl1hfcvuas/63hk6gnMr2i4zjQf66zeQEhWDd4qqCouzFfvrI1dXR3wIfOm9r7D0HSW84VgODFPP0l5QpoFYBnTVlAwpTBQFYcycLzqMUeAsq3sb8tWRlDPHY0/MClUKh5AIrrDKEWsainGMOtJ0nv2upxTYLBdkrXn06JJjf+TN9RXed5wtVsQ+0iwsy8ajpgmNZRwmyFBUZb3oKKqRpnLR7MYB4zSvn+9IObNcNoxTwdTC43fu8+Y2ooyh9Zb99sj7X33C2fma589fEVIg9oHHl2dMaWRIgThJl+r2MHCcZjGtqlhnULYB6wTvXjIpC3WvaTQ1DFwfjrRdN0eSFJaX58RUGHNCtwZCpmk9Z+dn5CrxOUY5ilLoznK4ncjHidCPuFYRqmEcJrrWELIiJEtK4DQsLs/Y70dyKLOQsLBsLXqmCSglcQgPHj+g1ZZXz68Y+h6tYbi5pvULzNkSkOZOnduLpyYugFaW1dkDvvUrv0aImT5Fbl6+RDULws0tJVVwLcf9CNbCcU97ecF6tSCUxJurHbUomsWC84f3qPuBZ9cjOUfurTpWtqUxmbNNy6JroSiWxuK10EbyIXCcAtooNu0SUwo5iijWWU2jDdOxZ38cWTcdqkZSzFzcu+D1mxuqU3R4EcR4Q0ni0tbeoos4yZUz1Ook3lVLw8oYTS2KMURpzqsqRWWtmOKEpmKNpVst+J9/9dt0c2Top1c3/PDZS/74Bx/CNKCqUAUbZXCdxy885+sla++JIUksj0pkFEUxx9iq2Ykr1IxUIZeEQeJlnKscj9f80fd7rl5f8erT5/zCL36bX/zFb/Pee+/QLTqc8zi/RuMwytIYw3YLRyMi2a5taZxn2bZcnq+5/+EzfvKTj3j1+oa+n4glU0pCI/eW4tRwB61O7udMrZlcE7FGQhw4HLZcXb3i9YuXfOVrP8c7773Lo8cPuTzfsF6J61jiblpCc8Rah7Ka9brjweUZTx7c58OPn/OjDz7h6YtXHI49Hzy75sXVgUcXr3hyuWHZWKzTvHmjaLzDNZ5f+tZX+cbPvcMHT1/wo5885fnLW4YpEnNimyf644Gbmyuur15x7/lDLi/vcXn/Pg8fPmRztub8fI33DUZJo1kcxuJ9VsbjjBOSkU5ChVQQoqHUeEe3kdgog21bNpsVjy7PefPkAc+ev+Djjz/l9fUtYY51UTXdiWsymqpkDlZzLJyehRdlXvNVhJ5yN03PkVi6nOKtpMGmVKIaAzmhtWaKgTiN7HdbbrqO1WrDYrlk0XZ/1v3AT20IKXWmqc6NklwKlCqUzVruRCmKcifKETHNbF5A1Dh3SWjq5CA/NWk02trZMT4LOvTc1CtV1vU5SaSoksZiKXleawMnYoFCmo5K1q+1VtJMedLqM+/6Xe8I5s+ZCT5VmlGnSK6K7BVyKdSSMcrcUXZySvO6bP4up9i6Oq8f58iXmuXDTq1hPbvk63z/aGPBzkL0WiVu2WiUmc+NmklUzAKYuc0lpIMijUp1EhjN39Hoz4mmZB9nVcVZQ0hyvUqJlDw3aud9otZCHUHNTcuZTmWNCAa0Au8sJcmeUqLd5vOD7KW4EyzVWSwmUXxK86fuFWZ6lSqyH8xUiQaz5o5KlWcDSknyPFojcXspJmrJWOfl3pzJU3I+5XlVVn3WNKzy57VW6ix6S2m+F+t8zmZxljaGUsssSBPhszrRDWtGGze/exUCyJLPk7vFkIsIWDJyjuTeQ2iESpNDJGWJlva+YYwBNUOBnZPItFgylYCf90TGOvT8uim1MA2BFAKN7UgZlNHztQJjRr729fe4/2CNUidx0gnpMIugP+dyVEUz7AJ/8scf8erVLX61QA35Lh+wFCE6aGMJ00iJoIJF2zvNoRCDmkYoKKUQKUKnqCJwQRfKWAnjhFIiRjTOYOd7P4QINaNmYUnIGaehayw5RWpIIubyYhJy2uCMprYtuRQhpRgRM8i7xJDGRDlRNGqFnHFKqKq3/cAMRSbNAqYYI946WifmHmWFnhVDpNSK76xEU2mDNYpFYxnGON/bEudeaiEpzRRGrIKFl4jScZxk7VBm4WXOpCCx79pqVBIhZayJmjSN9RhjmYYJ3zWootDaY10lpUAaeqb5mTNG9hOu8UxDZOgDJmXOzs5wxlFTT6yBlCNed9QcKCWi5jpIKUmMVzHTOHd33XzrKbFQcybGQAhCrSq1MuaCMdDO7/mQM9ZZUkoiRjRaCI2dR+tKmCKlJFbNgmmKeN/grUYVMa3lgoiKKiJcM2J2C2MSgrUuDIeREBKuEcH6FDNN11DQpCQCyDAGktZcXKzZbo/EaWJKiUXnUaoSciLN9xiqcuwnUikSMaxAaYPQtWfjGUIJ1EahSybESKTinCNOE+2yo6ZEzJmsqtSQcqFtO6mhpYyvImLWVhNrgSRRWkYrsoKUK04XUJacRGVrdMF5h84SdVWroiSkRqQ1MWUkQazSdg2rxYLhONAPI3/wB9/n8nxD6xrccknVd9JEPuP2nP5bYYzn8uFjfuWv/TXe3Nzw8tPnxDAAmhgSXhuhIaGAjLUiqNN6Nj4WUNbQLDq8dWyPA8cxs2gUrfMYlWktLLpG3sVejJDH44Gnn3zCw8fvUlUVgYXSQszjNPdI7WMcJ/LcgCg5S7SVd4RhjjuMcg/bExFHyzui5jL7vD4jFyolIlBQd9Scu1ekOpkyIxgRDd+/POPRg3OsMUwhcnMQgpT6b3+Amudlw0mMCb7xLFuPURJjDxKJe5p3TvGBEtk6B3DWCnW+z2bD0Pb2hnEY6fdHDg8f8PDhAy4vz2lmWrnWDmUNCoNBM6mRScu6yRaLNUaoSo1jsWjFoLI7ME1R1g6nelKtp1WRvMvU/Ge1CFFMaWHwTZkYJ4axpz8cuLi4ZHN+zmq9ZNl1NI3HOYv1jdAurb0TnVunWXQNq65jvVpyfbvjdrtnGCeOQ2ScttzuejbLjsaKGEjVKqJmpdhslpydr9gfe65v9tzuDkwhU3MizgbYcRwYhiPHw3ImKnUsl0va2QjgnEPN9dzPhEBKnnetRYRfKlqVuzVqqad7caZlRnnXO+9YtA2b1YLD4ch2t2e/PxKyXGtVRWRU72bdz4aq9U4oeCJlSvLw5wwQSgTnuiIGiFk8rmbxdalCZ6wqU3ImxYlxrsl7L9/17Xg73o63479naK35tV/7tT8TQSnnzO/8zu/wu7/7uz8Vmsrb8Xa8HX/+4yRUWq1WfPWrX/3Cz79zjr/5N/8mz549482bN3/BRynj6dOn/O7v/i7/y//yvwgU5a/IUErxta997a/UMb8db8f/2fjCIqVKEndkzqQ6x2nlk2CpCPkon4rksuFSs3Ok1oLS4kzNRRpfoLBOItj6cRT3iQKntLhSZny5spY0BVprUcbKZ6IoMzrc+wal9By7Ve8w+VKPFjdLjAlVwTZGhCZKoudK+Szz2xhxGGs0TdfJz81Y7ZgyIUxz804aeDlFohJxlHdGHNZK4YwRQlSRQu3JXGrNZ7FaUpyWIpHSgu3WtaJUJieJU2uXHZXMsB+wtiGnjJ5/t/QN5oi8Io2rO8e2UqQQWTQtaNDeMeRISREVC7bxOKtRpYoQTEkhvnX+zuWrEMFPmCZiylgnm9QwyUY71sK4O5CmKkWWJNdi6b24tlIkHUc66+R7G0OZxAWHURjfUlLGeDCdE6GTMmjrWc4Nk0xBaSPXMQZyTGgtBI9u2THlzGLRoJPGNp4hBYmbUIoYRrQxGN9I8b5USpSC3hSiuKjv6FURNRfOKxIVuFwvKDUzjD1O27n4VAX3rjQGxdgPVKQjEcaCdwZtK52xgKXzHaZRbNWOBo/WXgpdEaqWcIvVqsFbS8oBTyXFgdw5iV0IR3KFxm4YDz1t6/GrBWF3oHVehE8UWmeZxkglknNh6i2+7Vk9Br/OIlqbndRqtgNWaZeTtUPVBBMcbwp9cJjNIzALtn0lhESTKkOJpFKoReO1Zb1c06fAtD3ytffvM+XCRz/5lHWzRGVDqhHjC96v8d5w3N6yfV2pOlOXjlIry7ahhMTFakm3XhOdxERC4WAPTFVL7E1K1L5w3B5R2hEzLM0SozNdK5GA4ziBMZAspUyokhn7SO4ctJrr25Fl6zg7W5Fq5Xh9Q5MDq7MFOUTG48AUJlbtAhRMx8R2PLA+cyyaC5rOsr96hlOady6WXL25ReeEMw3bl9fkWrm82NCPPccauLhc0vgGfbFg2t9wvlqw60fOzhr8AKkkbq63nG3WpJg4v1jhG8/teM3usOX88gKSNMJ22wNjP3E4Hrh//4IcM6ZUNsuO3fU1YRjxmw23t4HOapZ2AZtMv5MoimPo0W7D8RCZQmJ/vOXdd+7jXSUUS9/3vHl5i25a1vcfUUNP66HrpDmRysghB7ZXPWOorFcbpulId3bO5XqBR2Ndx4tdj9ewtoaoFM16SVaF+++9w/7mFW9eX9EYRS6aPCZsSTgiJUwcbrfkCn0/sNuNFF15+fqakjMdlW7piBZSNZhaWDjwBiyFMCXG44Hay7sq54nNZklrDMfbG0ot3Htwxng4oqUGz3q9YDsd8daRURx2Ry5WnvVyDUMklMJ42GMWHqsqsc8o66hWiD+l7biNiRx6npydcf9swfb2lpAnusaTciRHyH0kZIn7evrmlvN7l2w2K7q1I8UJ04AxGdoW2xiaxrFPlYt7G9JxJI4Tw1jwbYdxDatlQRUR6k0hsV51eO+4ue0ZtkeyVaTS03WV9cIQw4FPP/2Ex/59fLeCOr9PVf5sHgKxfCvLxeVDvvmtXyKlzH9Nib4kLDccQ+TqakuMiUW3RGvD9c3hzj0+jRNTzoTjDeFm4NH9Sx6//w45nvP+xYI328J5vebeumOxWhLiwDeW55iU+OHzN+yHgnZ6jqJQ3NwcGMbC+aWhIsiHkDPPXr6itYbWG3SpXKxXPL645Pn2mqIyIWq0qJ0FGqUrzls60zDmQEXjuoYwBXwzx50Ai84yTRNZze/6Wmi8ZxwLYygYBxXNOBWImdsXO24/vWY8RPbbnpQK3jdUCrUkmsazaFpWbcPl+TnHY6Dkfo75/ExEIVGizEILEVFI3zqijaNpWo6HI588/YD9fs+LF694c3XNd7/7i7z7/vvcu/eAVddimwZUQRmEFmc1KQTCaMVRrTTWtyxXKx7cv+CHP/qQjz/+lNvdkRBPMT8i0pI4jDKv0bTMF0rWCrlI3FHOifBsYnt7w7Nnz3j/q1/l5772Vd598oSHjx/y4P49mrbF+ZaFc3jvaZYrUhyJwxHnPN2y497DS548fc5PPviI169vGYbIR8/ecHW748njC770ZMOq65jGwPXuiPOWs2XDL3/5Xb7y6AF/9OFT/t/s/VmzZVlanok+o5vdanbje7uHR0uSmSgBIWESqOocMx1RXByTWdUNwtCN/oJ+GTKMRFe6wEx1JC44EtIBNWRCkhkZrTe7X2vNbrTn4ptre1BCUkplCakqH2YeHuHhe6255ppzzDG+732f909/8Dm3dweij/jYE+aJsd9ze33N9uSUi4tLbq6ecX7xhMvLJ2y3p1Supmlr6qrCVY7a2WVDt8RWZLCVYmUMlbek5Mk5MSuJAik642MA51jXNd2qpW5XhCBriH4Y6MeReS5vhA6wEIMWcogsqhfSjKyh8+Nie4kNQ4TdIrwXuo9ZKDE6L1FcRYQwtoqY4Al+Zux7qqqhbX5y496OggZx4Mt5eiw+LsKWXJbmCkeyQfoKQQn0Eql1dI1LBAfSbF1EmI/bdCX3sFKavEQTGyX3hqyLZO0s14GW5uMjOWFpty0CnRRlf6GMiHVAPQpllreSxOilS+mse4xEM1YvDeLI0htaGlmJtBytxDstYgG1UJPKInxZtOaPApejo/64n1Dys+ooHjnux5ylUBYRg1nIVUJ4VfnY3Dy+xiK8WT5NimmJywaMlrWgZCRJY1NJJE3OmbTEulgtUXR6ecakkslBhGhay/2WZRso0ZLZk6OIuyQ2TyJmCkKYLVnMEHo5uTkWKrPEqli7EC1EtJNikmPShmoRb+VFMEQBlYUKhRKxlHOOWCSaWy0xfXG5HjU8Cqe0ETNGLlCSPDZTSkuS4/I5j2SN5dwZa3CVCFRiLItwQb4daS4v+60QxDqgFJLGtghnlOxXrdFCcGKWPdoiflp0jxSyRLppTS4Ro8QAU6zsY0sOpFQwuiYghBVbV6TZY4008RXgFmJxKRlKJoVM3Wa+/jPv8/W/9gFKFzg2oh/3E/IQK6IYQyWYp8Tr6x0vbx7QyjIHibyxJRCKRARRRByBq6QpPAXOth2xFB7u9tS2QhVNIqN1wdgKYzRhmpiHgrhO5Bpx1kLKEtdV12Qt8wOImCU+3j+FEiJh8lIHKNBoh1IFZyXG8BghSFloVUgEaHYGnGKcIs5Koz4XCONELom6dvLzIRDnmcpKUzeGzBRnqsZQmRbrNPMgxJpN6xiGGVUSulimfiQXaJuaEOVctY0TMkezIvqRxjnmEKkbgw4yh47jRFNX5FRoWiFRT3Fg9oGmbRclbGGaPTEkZu/puvYNMbqyzMNIihFT1UxTklgzXUFTRNQPhBhQusaHLFSnMLFZdxgNSWlC8Iz9DMZSdyu0CWhTqJyoz3IS8vUUAmmMGFtD8hRjaboOU4TwnEhQCrVR5KjAGhF1rVZYDfd3d1IvMoYU5DPoElFZk0IQUV4IQhhOhZgjMWWcBofEz3sUJNlLqEW4ntMiFC2F7EUg5qyIKMvsySng6gpbMnp5NjhnIIn4zCjN6CNGF1mnKo3PSugvSmGcIodEzkJbSTGQtaIgtKhKKxqnSUozTjPOWUwBT6KkvAhgEkOQelC3bqlqK6LHrORZohWq0iIeTZmqrYlzIIfMkCWGkIVil5ZrPSwUp65umOdIiYVpGBYqacQaxycf/xl1U3Oun1GvWo5E5iMPVKnjs1AeTNZWvPveh/y9/9ev8L//f/53vvjic1yMTONMULDfHajrGqU18xTQR4pgSPic8D6R50Rsa5quBas5aR2j7bmdZeLruppcwBDZ1jW3uwN/8qc/QNmap88uMVbEV9MUsU7WeCIqLQzTxL7vaesKu4iAt6sVPgRZn+dFdFVE5KUWR2NlhOIWU8ZUdqHqiWCVIvSlnBMxv1nfialQ48NRRCxUvJgSfowMDz2ff/IF169viCGJ6GV5PaUUztrF8KmZ6kgeJ1DH+qJ+XAMdlwSP1EjF8v0krJM64TgeePkqyDq1H5imibPzM7r1mqaqMdpg7GJSUEWeczoslEvZNbXaYKwTqlL3wO2tkERDTMua7ZEPKu+/rCfeRIJmSiqUrMk6k4dM9J7D4cB2t+Ps7IyTky3r9YrVakVVydxv3fH4HClFoaEZg7GGpm1Yb1bc3T2w3x/EXDZ65tnTdQ0n24ZV7dDAOM8QIs4otk3D5nnD6WbF69t79oeRGLMYcNNCVppG+r6hbTuGoafrVrRdS9d1S4SmFfGTFiKm1kY+t0IWCxqsEhGerGNFgHgUo6sk942zFufMEq0mcY/Gz/gQiIjw7E3d+ihE48+tORTHtaGs5x4Xpsu+My9rbDEqpcWsoUTotKw3tV6Enkv04jxPOPtWpPR2vB1vx3//qOuaX/7lX+ZXfuVX5Nn4I4xSCj/4wQ/4gz/4g7cCpbfj7fgffMzzzO/+7u/yG7/xG5ydnf3IP/fkyRN+4zd+g9/8zd/k5ubmx3iEb8bv/d7v8fTpU37u537uRxZU/VWPUgp/9Ed/xOeff/5XfShvx9vxf3r8yCKl4OfFAZmXze/iPk2BnJLElgEoiRoTN5sUYt3iYo0xUlBLdNYiKCJhrUPkO5BiIKqCdQ6FFLa0tUJ+KfkxtuHoCjk2eNBSyPdhaUBoKRqllEgxyqa/2MVRq4gpY13F8irHrRvWSqMgBC8/ExIxeHIMNO0bN0kMmRAyzokLO+eAUVaoQjphjX1sBmB44+5NEnFXijiB66qSuJHFaaO1FOqlaKyojGOYZ3EIG2laqMeGosZqRSyFaZ5wShFzAjJOS1HMT5GkpFHSNNKkTim/+d0ZEQsVTUgZjaDZxxhIuVA3FUaBUVGQyFry3VmiMnz0BETAklMiPRYfEkOcaauK2jjGFMWdZRyzD0zzzKapabRGNS3z4PE+Ukxh3dTkKRPmQFNVlFRoVh0pF2loxIgqGVfVhBzwYUZh2A+juIuNXKfZR+qqRtlCSoGSMq1zlJiYholshLYDGlcZ6qbBOMOhn5mmSZxLOhNzom7lWow+UjU1haWRphTzMFNrR7Ne4+eAtor9fkczG6qqoGImI+7BHLM4spVEwSWVBX8/JTrbkXqPXmI92tWKphPhzKpuiGNExULUkZwLxjqqteJk3bHrdziVWbmJs6cKtzoSlNLyS0nBYrniVRF3fh7g+ocP+HBK0Bu+/vWnvP7sisN+IibFFCNNU2NKwKuIj4mIYj9MpClxR6FuW6xNDL4nDD1tW1HbFdPgKWMi9jOD92yfdKzWDWE/UYIio/HjQGUN423AJo2pDDpqspYi3v4w08cZpw3rtsJ1K/b7PZUplKbm6btPcHf3hAgX23Ns43j96iXz/IDKmsZWrGtNbTRd2xBTojo9IZXA5dkZw+7AVT9hbcWqbSg58jB6qtaybQ1+tycVy+m6ZfCBL758xTQETNuyHwbWVtO1FatNh0oBmhUnZ6fsrw/UqaFxa8x2zYmCpjJc7UaCKpyenrLfDbjKMvV3jA8at2pxK0eZZtbrFSUZrvd72kozzT1T7Lg/7PGHPe+/9xTb1dRNR7VqoCi256fE4qg7sK2n62ps6olTwDaa3Fu67Qm73Z7TtsE2HQTP6dMt06Q42a5oNlvi4ZZXX96jk2Fz2WKeVqTBcXs3cYiFk5MtTVOxPT0jjiMvvviSfpjYnDQyFxjFw34HqrDePzD3I6YUQi64laNdG17fBu6mmdw4Oiru7+6JOWG1Y9vUpDSRTMX25JxpGjkMPcEn0J6usihdMc9JisnGYUzAaaj0hpIGyBN3d3uwjo3TeAs3/YgKmYuzMwaXGfwBmx1nmw6nCqOHytQ0VWKYoO9n1l1DYxWQyYjI9bytKSjm3DL0Ey9fXaONZrU+QavCzfhAMtJQXlcVyYqoYZxntnnFqqtpuw3MEzlErg+eh35Pbh3t+TkKzThNTEPCx0TV9Kw3FlM8mMx+mnAYrPb0/YHdLjC4irapyFgaV9Fax9CPRKuY7m+oKksxjRTcF2qUzAnHJ7xQOi6fP+f53QsO43tcbjvqHPnep1+QlWGIiVZF6rbGacfdfk8KkaIUutKsN2ua04oDntNugz84QnRcPn9O2Gw53PaA4unJmrWJuHVDddsSDztMZQgxc3t/z2E/oZVEVR2fkyjFMIzsh5HV+pxpHBiHAyfrhtsHRSgJ7Rzae7TKGFOhncYatThQJVaoqLw0oYXiIM82RddYEbsOMykk+p3n+mHg1c0DQz8w9D3DODP6wH6S34MXEoDEqhZSjuQc2RYhs+Ui7uq2FlGpLxldChhpIojIWMQmi2xpETtDCJO4sy2k2XN9/ZLD/sD17TUvX77iF37xb/LNn/kZ3nv+jO1GYgis1qyXSNPh0NOrnqI0RVuMnbFaUTvLetVycXHGDz7+jFevbxj6Ge8DKSdpfh+98VL/lhgdCkpnERvkJJG/IdIfDlxfX3H14gU//bWf5oOf+oj333+f7cmWk9Mtm02HrTvauiXMk5CMnEM5i6lqTk62PH92waeffMkPfvgF17f3PIye/vNbhjHyzY/e4dnZhvU60k8zQ0yEQ49R8PX3nrFtGl7e7PjhF6+5e9gTQyCnSPQzh/2Ou5trXr16xZOLSy6fPeXJkwtOTk/ZbrZ0q+5RrNQ0lTi0FShtAYVdYmpSFIqFVhlX1yLm9uKoL65ijoG6qfj6T3/A04stX3z5OS9fX/GwV8w+kpJQWlKS+FA4MgekiaE5clPK49r6GAmYc5HoZApGv4k0k2aH0ENKKYxDj9aGqq4x1jLPE/3hJ3dTLQL5RQxzbKY97i8yupjHc5GKZFxpJdQcsxQ3j80aYxehVxYxkV7oQ4qyCMSEZHOkj6rl/7OIQnI5UiFAIsCkOSfH+RXqWT5+J3kR30gkGUqR0iLwY3HSL/sJswgl5LtX5FTIKQlByVqhGyF7lbxEoMnfl4a3UIW+Im5ZJuwFvPRIJpK0FYnBVsunUWppRC1CIBQYZQiLoUIO/bifkH2RXnpaMUaMQiKqS3lsxIqYTiKtrZVjz8eYwizRTdooVJH573g+4iIws1b2S1qJyEHEZMDj+RYCb8kL2erY4MyFkBPOGIl0W95LaRHVxBSprERAK6tIQWK8oobKmKXBHxcqhsT3HqN78hKpI0SXJPMgmjnEx+sylQILYUrmehGlOZkhSCGCPkaoiNDJWIsyGh8kvlpEics1bJeo0STXAUcRFdK4tgpcUz0Sl+I8Y+KR+ir3jFnMLjJ7iOAml4JOQCw47cghLYLIgq0kPgcUlbXkkCHLyqYUUEZjtKWuqmW+g1Wr+dt/5+d58s4GrTNfjWGU/cSbK56iKKHQ30/c3E788Xc+Zrs9od8NhIVWOcWMtVYMOWSJZ1XgwxL12hestWhVCMmTwkLB0Y4YMoRI9pGQFVXraCpL8nH5HIoUAkZLlKfKIlQSE4pc17OPhCxmk9oZtHP42cvcai3dZoWeJlKGrmrRzjAc9sQ4o7LE41XLPtw5EVWYRgTKXdMQZs/gA2gjwqmSmWLCVJbaabKfyUXTVI6w0HBjTGjr8D7gjMI5TVU7VM5gHXXb4AeJSbO6QtUVtRIC2KCFBtU0Dd4HjFVEPxEmha6ErkhKVM5RimKcvdQMUiBlx+Q9aRZhv64s1jq0sxSvaNpa1ry2QrskRpwSZA9roGhNVdfMs6d1FmPlM9VdIUUlEVWbBrJnPIzEuVDVEm1ktSIFQ++hqioqq0WIoJBo6mGWiE1dC+E1yXNdzRMYvZBaoGiJl01jZgyZWOSZnGJgnEacrTBa4awiqISra7Q2zH5aBCMigLPGkbIi5YRxhhwL1hZKsWQSRiemyRNDZuVkXTSHRJkLbV2DVsQcmHyQmCStFl2YpjLyNBrniDEVFEVlpTZktMEpqKwjWEuKkf1hkJhja7HGErxfDHqFppI1a0TJPZML1mqqtkF3FSUm5iC1E3zG1jVGa/xCJw1RaOSuVhQt3+McglCuFOR5Yp4SKUOq3DIvOipr2d3f8+/+3X/gf/6f11S1RtkGubHU4/z9hu8iz8eqrnn+3nP+xt/8eWIYOdxb/DwTM4RScBQRjjnHPPtH2pwyCmcrqsYSjRCmnTUi7nI15xdnTKMnp0xdGxzgnKJuKg7zyJcvX3D57JLZz8SQiLEstb2yiDaE5jbNnqYWct40DnRVQ6W1iPGUGABJERaKodLydM1F6kzogioIlaroRRQk4lxnClobYojkJOd5P0gkcPCBGISW5WNiDpHvfu8HhJhl7tJqITtmrDOPYl9KwRmDN5pCZgE/Lh+r/Lnf5dvIJNEpE2NAKSGdhzBxdxeZxpG+73n6zjMuL59ycrqlbeolytVhF7FvNB7vvdg6lEZpeS7ZJbq0bWru7nfsdnvmORBFUfNmwaeWY3qjl1n+udQLBb9GDJFpmugPB/r9GSenJ5ycntJ1LVVd0zQV1hhMZVDZUVIQ0a42MudWjlXXst8fuLvbsT8MzCHwMEz4mEgna07WDet1S4yJkDLjUk/s2op3npyyWXU87Ab2w0iMiVRElB1DYBpHhv5A03Z0q9UjVekYjXYUKxljFjGxWsTREst6JKimLNGlQoSyj2u047Nah0i3EgHiYb/ncDgwTGLEOq6TvypWOv7c8ayqRThe5B8c95dQjnrVZR32Rpz0GAFXJGo2IrHA2hih9AXP2/F2vB1vx3/PWK/X/Pqv/zoffvjhjyxQAvjkk0/4nd/5HUIIP8ajezvejrfjL2u8ePGCb3/72/yjf/SPqKrqR/oZpRSXl5f86q/+Kr/9278tNZUf88g580d/9Ef83M/93I/9vf5LxxBjXKid//WabimF3//9339cH74db8f/yONHFin5JQf82CDRWhNjlEK01mhlSCVJZMPiRDYF2qZ6FCjFmBfktoiSUhG3nKsqtDboBWEszbuybIItxVpiToQom6ScpFGhF9dILkWw+1maHyoXlNPiCqZQOYkWsAvx6HjMHF0jSnLYj02RGCNxaRyqGKisoW4q2qZBLy7nFOfHYrmRntZSqJH8eGst1VJgKlpcvyUtifElkwS1xDRP5KKwlcVZTdN29P1IKgFXObLVGF0tjaqM1XqhDhm8n2m7ltoYVMkYBSSFtRYfA1YLmnnTdkzTzDCNxBCpa8l7n/xMQknxJWu0lu+5co6qruT8a4ks81NCGScbVQ05e8qxEGEkcsAsaGMFKGuxlaGyBskOKAwhYI7O95I5+EAZpMQegjRJoTB5L9QurZhCwBpNUzeMwyTFwKJo6pZ+mPDeS+MDKEQy0LqGomD2I23lMJXjcDjgjBNHnT467AvzPKNthSuSLT/NMz6KE7xxjYjPrBR1gw80psYYiQjSxaGNpjYBqxWkTLs9Yb/vCaqIQ6+13O0GGqvoak0MMI0TT07O2I89OhdUjOhccE0tcRwpgtdgK2L0tLZGjQt5IxUmP1OUwbiKpq5IJCqjae3ExTuK5jyDCSgicHyQf3VToCkkVI7s7iMff9Zj7YrLZxt29/cEKyFwUx8wGkJVxIGcPXNQNE1NZVvGaeLl1Z5v/PQT3nn3Xe6Hgd3DQEmZw2Eg5BHV1jTrDZaCMwW/8+RsGKZA0YFN2zL0gevrW5wGrS19mIhOMSHXzuXlU8bbO8p0wLWW7XrF6CcOHvovb6k0rNuau7tbbNeiKqFbHCZPsRZc4tD35OtE0yqyD6As037icL8nx4wzNSl66lpjaqhPG26HmXkurDen3N7f048DtijauiZMgapx5FxwRrO/uUXHgklwdztwOPRUxrPuVrRNjSoJqw3rbDmEkV0/cBg9m3XHqjaEUBhnDyrjQsJtOoIueD/SuZbz0zOMSlibWJ+ekKLi5PwdrFEchgN13eIax3QYCCWwPd9SphmLZegHqrrj2TtbQsz4IXDdP1CvalzVkrNm1TX0hweqakP2QsuLGOa7SNtpOjTPTlf0Cbq2Yn/Y83DvpGlkC27jqLua4ixnTy8Zxol57EXkNUaUqalrhc+eL17tGHym7VaEWKjaFVut6PsdZ5sTNrXm5fWB9fkFbddhHNzu9kzesFqd4tLIbndHX8T9GIrGdpUUOXNhmhPjNKKUw0+J29sDU/QSq2Msq+2a+qTm1dU1MRXWq4auctz3nhISioheHLOzD8zTTLdeE6bA0M9UzvDk/ITTxnI/wO1u5vJ0w8pV6FpiN24e9igmnKnxMWGMFHJtKqgSefX5Na6qybFgsmPTnbJaOdq6Zd973LpijIE8Z/IcMWeRddOyu+rZbNdYZVmfNLSlcP3dz+iHAUpitW4x1hCUJarCtHtg6gyZzOk7HwKWot5ENRzlEsemwmEa0KcrvvVzP8P3//A7fI+arAxqcdYeHnbUlePkbENIDdMwU28qmnXDs5NT1rWlPjkH57jO19z5GV03vN+tuDc3jA8PpEnzKnm08czTiLKJpBRFN1Ay7baGJLEtioX6URQpZF7f3NGtWtCwHg6s2pbtkxN8jOjBM+0e8DFjXIXWiq6qpLAbDKvKEoYRHzKpgDaZurYkCrWtmA6Bjz95zadfvOL2Yc9hHJlDIIXInNISbxtJMZGNUDO8nxahgBGCCyKCEMqKFPBXXc3gJ2KOqJKO+V6PAg2htkj0miqQi2JWhWkc5fUW93E/zPzw44H7ux2vrm54+eo1P/utn+HrX/8pLp6cU9cVdbfFmgqlapSpMLbHVgPjqLGKxXVsWa07nl6e8/EPP+Pjj7/g5uaecZ4Xgoh+bLyUfKTELPQYJQSLHBKkjIqRuxAY+57b16/54ssXfOOb3+T5u8958uyCiyfnPLt8grEGU7UoNI2yKF2j9B7nJuqq4+zklOfvXPDxp1/w8WevuL3d8fmLW25vdrz//IJv/tRznl5eslo5VMlEX9jvRsYx8dOrFWenLX/2yQteX93Tj5NEPSWhKfTDwP3dHVdXVzy5eMKTiwsuLi45Oz/n5HTLqlsxe1kTNXWDM2r5rJaiMhmN1pa2dUzBU5ZmcfCeaR5QaN65PMe9c8bYn/LOxYrPvjjhk89fcXO7Y5onJm/wPhLi0jAoZaEUqMe1rs5QFtFGKWWJXpENasni/i9a1mtHEo40sSzOGqZpJgaJc6pcJZFDP6EjLeQblvXn0QCRv9IwoZRF6LKIc9RR5HKM4kKahseNuxKjgjZmcYmXN/fY4jbXSlM0j2IjkNcq6hh/KQKx5e3l2k+KYpaYTMpjPJhaDBOlHKN0F+WQAqXMI2EiLxF2FIlK1VphrVmaj3pxx0d59UWw9TiKxM1IdIhe4uiOVKBl/i6FLFiPxQgi4gythFYbQqAscW9FK7Qyj5wDvZwTpSVi2zknCigvFCGKxJKkhTJrlKa2jhgjIQW5/paGXFyEImb5XuWzJ7SWpp1Qo4QkFdPyuimjVZEIlLycv+U7VQr0MVlM68fYGrKI/XxKErG8fBafJGZYLddXLrJujUdBFxBTRmmNsY4SAiiZjq11+EVIaPRRQngUmsk2+Rinpo1m9rKeiGmhNi3fVUwJpc0j8SzGSMpynq2xlJKW6yYvRC+D0kfjiFy3Vh1jywuubpi9Jykx0GirmeaANeAWGkcIka5p8MGjls+sMmhnlzi8BNGBlmep0wYV5DotucheVymUkX1yXoSAq0bzS3/nW1w83yxfxPHXf+pmlsZ4Yp4Kr68HvvOdH5KSIqRpIcUU4iQxdY/Cs5JICay1GOMIMXDoE+dnLevtmskH5lniD/0cSQSUFXHrI9F4lmjNUDJFZWocwSf6YRRhn1b4FMlmCcPJhW61Io4TJXqM09R1RYgBnwphP2IUVNYyTSM6WTCWymWJNDQKTJEoub5gHTKPY4TmN/mF7CJx8NYotAXTWCYv0cFV1TCGiRADugh9OcWEtWYRn2n8MMr3WGAcZe9pdKKyTqhmSN2iKhqfInMIhJAkKtZqciqEJOI7nTO6cmTEBCaxQo38P52pmpqcFU2zXmoAXoRi1hC9kI/qtoYYH/fqxjpW61pEtCHRD7PMZ8YBGl0Zgp8wuqYkaazPKUJ25DHSGE3llOx3qoocA+MwUDsndQAnMa8pF+quJaPp9ztKiOSkSQnarsLHxDRNDOOMcRWFSEFTNRUhR6rK0VhLCCNaG1xT4YyIlGIsQrsyUIJnTiJcV8pSdMQaS1zISiEmjrQ676PQUJQ8fzCK7WYL4x4/RawVEVouyL26kHuM0pQsNKqi5Lk3Tl7qXU2mbWtiVow+YY1h1TowCtvUlDSSijwjWO4h6ywaEdlPfS+L+iW+u7Y1xhTqqiJn0M6QSeSQMamQU6DuVoxDQBm1RAFqqtoy5QNzP4GHqhJKjdIGXxTD3R0/+NM/4Zs/+026E7lvi3qzi/iLnvNzSXzjZ79J/3DHH/zrP0RpR04z1joRYBUr0cS1CPV0pXGN/FljJGJeuYp58szTREGxaloqY5mGAR0zcy6E7Jm9GLMe9vfsh5H1qsM6RIxmNEoJea1kERXPs2eYZomB8yKUq9oanSw6JowPRBJlef5aLc/VOUoksMqZkKIIXrPs8wqw2+347ne+y8/9/C/wsB/oh0nu0ZQoS0x4KkWE7jlzd3/Hzc2ViP8XkWxexKg8ejJlPrNW45whFSQ6+EjTKyy1tSU8uBzprIqUFoMk6XGdAYlDH5m9px9GDn3P08tLnjw5Z7NZUTmHttUSMbxEFmova4sYiWqJmW1lPdO2Net1y93tA/vDIMaHR9HUcpEU9XiMjwsc1EKUFfFyzoldjMzjyOGwox8GTk5OWK1XtF3DerVa1ikazSK6VQaUReuA0Y66qlh1LQ+7PXcPB/aHkWkOvLq6Z7+veHK6YbtpWW8WQmSB4OV5tFKGpqmoHzS7/cQ0z0vcmpAnY4xM88wwDPR9T9d1dF1H23XUTU1d1cszTe4dq/WyclRI7W2JmbUicg1JYaxGL0LqUqByjq5x5JTYdI59V3O/O3DoRzmvKRGzRAtKJLKIjR/vw8XY87gUOy4VM480JqXUspY8rl9EkH6kRqYlktNkI+Ls/0FIAm/H2/F2/GSNo0Dpo48++m+aR/q+55//839O3/c/xqN7O96Ot+Mve3z++ef8y3/5L/mVX/mVHzmaTCnFt771Lf7G3/gb/Nt/+29/zEco49NPP+XVq1e88847fynv938cP/zhD/n2t7/NP/7H//i/KugqpfDpp5/yySef/CUd3dvxdvx4x48sUlJqiUo4Ol6WzVopsqHxi2PTaSlohCSUi5gylLQQEaRSHLwUg1MUxLQUkYJEsjmHMkjhPWVSicwxLBnhUjyz2kARt6qg7DMxSjHZWWmwHR3BuSwFcBQ5JnySIr5zTgoFUQpCFHEHa6WpnEGlSKKQowh3urYSgk8yjxs7ibEz4qrSC5L9GP+QM1lnqtpRSsFHvxTDjRQmK3HJam0x2kqx2xpKBuMqtqsOpcrSOIx0nWSglzkQJ88wjo/O8pLF1VlSZN12xBxJWRoSzjmIkTR7kirk43nJkaIQmlVIZGWoq5pcZnEkGUdOAa0LrgJtFd4HKmvRZKpuTfQJRSEoCHPCZvn+hzjjbEUKkVxZbFfDPBNyJuWIM4JFjkUxpYJLEaXFdd4pA1oRkMa04IkLIUbKImIx2pCVJmewusI5w/4wkZXENxhX40tizhP3uwechlo7rNMYq6mrCj/P+NmjlLhHK+tQJRGiNK5zSozTTOUqKtcy7mdShKSLuKEppJKJc6CYgq8MJRXqOdIoi6tbTNGkWaKDrHEUlUkqUK0r3KqhLTMpR3wMKAPZT7TbNdkZ9gdPij27ONM1HauuUJxinnvCOGGo2K63PDk9o58fUGbi6bvQXESK8WiOFKXHO3hxVAEUStL428Tt5zNt+wxdbYkZxqAYHmaqdU1dQ7NQwpTWRGOxpeD7A2Gc0VrRbFuud7f4MLPerCEWuX7PWtr1OXOKTENmu2oZHvbshkDbVQxjoHEKbWt88eTGkZRECm3bFVVlmGPh4X6HzR7XGXxc8Xo3iGPNKAxRmpUx47qGW39ApYCPhXnsGcZI6xq6RhEy+NmjG023avAzXA975jwTcyIHj6kMJRrqTcdcDFev9rSrNXrylGypbc26MbRtSx+hUgWjLOvtluH1DT4E2q7lZjdgLWgdmeee+aGiqSoe+pFDn8FYrq6uabsTSJmhn+i6FXXreDj09P2EixnjNFXj0K2mWrdEH1HGUZTm1c09zsycriui3xOcRK8kP3F7mFh3LVWEXYiMZE5UwWnDQz/ysPecn50wqcSuH6mV4enJCtetubq6o78+MEwTc9lT1xsOe0+FINNTDBxKzfZ0SwqJeUzomAj9jmAMwyHg6harLXMpkDxt19HVNbFEpn3ApMzFGnzyVFji/QMWT60CxkQymq6t2d88oAZp+uVkUSVxtjmjtS1cRab9hFENBokrkZbiTLva0Ky2bL0i9J5iIxenp4Qx4JPms1dXNM6w6aTYGWPm4TCwe7inrhrGkIWQEWd0bUkaopIiojGWtjY0rWDq3ckJVo0MY6QfH9Brzdo6zs7OSXmWqKw5sN10rNuWvj/QdR3RJ6YceP+954x3O/owcH+1p9vNxJioNg3b0zNuh1dEH7i5uiWsV5QMJ5uWRtXikCVyebHmcOi5ut9RnXds1h3zw55V11Fh0Qr21w/Y6p7N+fnSPD/SNt7MEKXAyckTdF3jb1/z+uSabnNKbV7i51GIXJXm5RdXfPliT13XtK3lpN5QW0Oz6VivTghFM+xm+l0khcTkI1WVSDqj6sTPPDvh7kHxgy9vyDFSN5ZQMikJwWyz3RAGEYqWgkSbGEhRc/ewx375mg/fe0ZImc1Ticp7ddMz7iJW1dhK021auvM1m/Wa3esH9O0O6yy+WuJJi8JahVIJowx3d3v+f3/0p3zv05fc9dPSgJcmtllIKnGJF1AAKeF9QCHxMLkI3U4baTqqJXKpqizbdccUAz4s1IQjCaYUSIvBuMg8VhZhhQ6L+FsXVqsWsryf94nrm8Tw7w5cXb/g5Zefc3/3i3z961/n6bNnnJ1sadyKbl3h6oa6bRiHiqU7jLZGiBrW0LUNJ9s1T05P+Pjjz/n0ixfsDxNhiXQDFke3eiSOaK0f4xpUkQYoKTLmyEs/cbd74Or1S97/8EPe+/BDPvzwfcI4sTkRclFdOaxxaNugbMM0DFh3oKotdW15cvGE99694fvf/4TPPv+M/f7An37ygs+uH/jaO+f8wtef8+zylJN1S1vVrNqK3WFP7aQAf7rZcHv3wPXdA/0o9IUUPfM8cjjsub+75ur1Cy4vnvH0nec8eXrBk7Nz1usNTduSuihRuargVV5oBxZdGUpKOGUkfneeF11KYru6xBKZhh0uO9TJhsZaLk/PuLq549XVa15f37HrJyavSbkQk4gXjtEocrLLo9ZdPTqv89JACYuQQT/GPIh4TJFLQiuDtUYaKENPaRLG/uRmkssqeYm9EjXQEici/0c+q3oULD1G5n1FdFRKgawkguvY0GOJgVuiSURM9Ob6RUHMEuOTc1oi4iTWUC14opKljSTxevLdvBEtvWmwlSUOSqiaZhGeyT2y6K44RkmTZS1bstDSjhSWoxDmq2emgEQdL0Kd5c0oaiEtlYXkg3gtgEdCkNIahQifCkoamdpQL1SMkBI5FZxz8jNJYk1iDI+NKvFwyN7KWbfEuCkRt2oNOQkNiuPctdBsj99lemMwiUuzTC/x2UqBNuVRmGOWeGfn3sTmpIUkpZcGa1iu75IzxRh0ZZeISjnfx/k5F9nP6CICHG2UkJWApApaVH8S47cIBI/0gGMqilZiwPELIVChJPakZFm/zBPGy+tKM+8Y2yTEXqW07CO1QSGNaGPks4foF0GXJfqZnI6920XOVgppET9EI/OsTRmLRluHKkpoQ8v+CVWE71gZjLPYIjFtKScRJ6WAdRUFi/czec7MWa4952STnKIX0jCWulK06xYfZ5pG88v/089x8XxD0QmFEHr/s3KEokhjYXcz8v3vf0Y/TljbELMizAHjLMWAXaINtdIUpdEFkvekIGIv1zjGeRLBXF2JUEcbmtbiqnapO0h8WJg9c1hijIIIgpQRs1RxIsxWpdDUFcYoYoY5zZicyFaTckU/B4xZ6HRLY1/24JYxeVROpAIxekLM2GRxVq61mBJYaSinCEPwxLJEp+ZEyJqiFKaSWOG+n3GuQiXJChQqk8Y6h8/SvtbKUDWVGJVSxlWOcQ6LpyoTUyDOE9YYJh/xQb7HoR9wroZSiF7EhsYaZu/xKWGy1CqMMyir0M4tjWoNWtGPE1pFmsqQ00wyoJUnp8gYhFJmMswpEyk0iDhmDpF5TjRNTVSZFAJWKbq6wrgK7yPDfpYaTfCPlA8fZ5raUUpmniJVK+v4eY4iWAiBkDO2gsMUFuq1WuYQTdt1VLUj5JkUMl1VE5IYmgiREiOVymgSBamPzOPMfBgwTbtETUrNp207kteEYRJBH0tsfIxoI3UJ42qcKoQUSESarqakQk6FOUTi7oCxmnXXUFD4IA1+ETMZMItoNgeMtYSUaYzEm1urqJwBlVHOYZQhh8Q4epIuVJUQEjMyP5YQMFrRNg3Bh0dC4DxHuvWaWin8PDPPQr/WWpOApm2JYaD4hJ88g9aklLDO0rU1Kci1X9cOSIzjzJQyp5uOPHm0UtQOXrz4gicX5yhds9pu3zyEjk+wN9AfjLFsN2fk6PnWt/4Gn39xzfX9Hu092UeUEsLu6/EO4xxWa5quWsSgima1kudsLPgpEvyRjijP3awT27bCacfNrpeoNCOxulevX7L+6a9RtxVVBtLyLMgitNdKEWNid+hF8FdVKKfYVi19HxZ6mtB9jdPYxtG0DSVk2A+ydtGQsiInlrWCkA2bugEcn3z+mn7yxCRz81EArZUil4z3gbvbG7773e8S5mlZ0xVyTByBSErp5TsWerezlqaqiHHG57KsG9Wj2OYx+m1Zq8SSUUnufxCht11iUeUYCne3N0zzwGG/Yxh6Li8v2Ww2tG1Lbd1Cs5NaWQgzys+LcFzqv0pLVG5dV7S1UJXuH3YM40xKbwj8R+HMcQ9xNJLKUi4fF78UCtOU8GFeYuAfhIC63RK9UIacq4RaZCuUtlTKoq0Qbo01aC00t81mw93djrv7B8Zx4DCM9HNgvat5erbmdNuJsbSxWGPw3jMHD9sN1jqmqaYfJ2YfKDmJ2C9HQvDM88QwHGjbjvVqTbde0bYtTdPIGis5sFZibNNR3itiSDkJBae1kB5VpJDp2hqjanLyhFBQ2aE3K5qqYljN9EPPoR+Y5kBQaalxS229UB6hVf/HoZVCGVAcI5ZlLfTn/IsUcl6oTsv6SEwS+Sd6P/F2vB1vx0/m+D8jUPr2t7/Np59++mM8urfj7Xg7/ipGzpnf//3f56OPPuLrX//6jzw3aK351V/9VR4eHvj+97//Yz5Kiaf7zne+w7Nnz/5KhNqXl5f8/M//PNb+5+UapRSmaeL73/8+3/72t5nn+S/xCN+Ot+PHN370uLeYsUaRWTa9S6OERSyiChgtWOKyODJSkWaMMbIT0uYredkcncnq0QFqihHnuoKQEvM8H+FEuMpKgQ/IaWn0qbQ4/IU0ULJEpRmlsLaSpj5Gii4pi8PRGGLOpCRFgLRkqGstrnmsQluNtZbaWcZxxGoryLUk8W6wOOiyUBNyLhgnhJ3gZypbUTsnzUoF0zgughtFDFkw81rKZwVIPmArh1qcdlYbLIW6sozTiNWaEiPzkMgh4qcASgQ3CkOKmRgkCqGkSEmZxtYorZjGCUpg8hL7ppQWsYaSom5Rhso5slrcxyh8ykQ/Yy0oK+SFMM3iui6I85GlIaKEXpWA4gz9MDw2TFAapxwqF1zbSPEsJPrRY5XFac28FzqSqTTGCVEqRiEqkTLb7QYfpdldmwpdV1LUCPI5U8nEYcIUQ9e1hBBJPhKIGGuo0WhVMAs5qtE1Uz8uLnGkqB0jqjhqq4hB6Eqz95AzbdcRU4CSaWrJlJ9nKTLXjaXGkpUg63f3PfPBL2SqTF1XPHtXKBKffXpFILNdVVSuYh4m2mYlze1h4P6ww8VETLBet7S1JZaIcSuUtsTk6VYdtmqZNVjdUrc1d7tb6urA5XuZ9twLfpxH49RXxhvnWkmFaaf5j//2hql3nF0+QeuGq1c34hYOmTo1rE9W9LsHVChk7YhFE/oerAK7uP3SzMnlmvv7wDBMrNqG/WGErqF4Q1vVbM81u3Fa6GERrSuatsWUyGeff87zdy85bTvmMNGdndI4x7C/Q9UNWY8c+pHzdy65uhm5u3nFyRPNxlQ0WYR9VreUYrl89znjwx7rMz5KMyhNHj8aktLUzpKHyCEN2K6laytMCUzZY41FF8P55owhBHJMvP/0jPVqzcPNHcUk7KpDlcTN7Z7t82ecrSpef37Ni1evSQmqqqaqa7oms+62NDozT4Fpyjz0E7UTN6ECnj45pW5boh+ZhwOHaabqOnLRbM42+BCpkub9d99j8HseDhPjrsc5Q589pmk5HCa0Dqwqy8EHxjFw8c4ZwY2U7PHjIIXprHCtZp4LymgsBZ0CjTOcPDlDUZFzZn44sLKJ1Cr65CihkOLEybaTQqMyXJyf4lOAMTDNiT4Kzt6nwIurG9YnJ+RkMU2FCQ60xLQcbq5QC8khpQljWkYf8DFxd39gu25QteX+EFExLrEXDd3ZGSkoctoRY8/tfRAha9Xw3tOWq/1ImwvrtlkiOlu6ekVMYNuKVVH4KaFxbFYtg58IqZB85u6h572nl+Q8cbufKBj248hJt+b0ZM3DoWd10mEeDvg4Y1yDXiJ58ug5uTzjrFqzq3pur28Z9j1xN3FVEpfvv8+Ja2gaR04T2Y/0+wMPhwN3hwFjDNuVwaqI0hlTOXYPA3NIrGtHGh3bJx3u+RnWWK5vD1xf37PuOso04S0UKu52d1RWc77eEHxmuNvTxEitFd6PNN0aXxJx9vR3r7G1pW1PwByj3pay6bL41lpz0m4pz1f8rb93CpsarQN//O//BFtJtM3QT+ymA+9dPuHpk+c8OT8TtD2GOGUKAWsU3bZheJjpdxMvXt+SGNEqsRs805zwWlOf1GzrFbNPTDqQSIxjIM8K5wLeT2gURitMsRhb4UNiOMx8/tkV8xy4WG84Pdugk+fmaiIkAz6ifcBlpBExzuRxZN01nLWGaQwkn7g/BF6+vuezz6/5+JPPuNn15CWOSC+ikZI0xch9a40l5kyImeCFDikOYERcrYSs5rSidg6tKyo0PiYOvRe6wdIkUaVITG0u5KSEYLQ0cTNR3MsoYgg4I+JcSiaXkcNh4rMf9gz7Pfc397x+ecXP/vzP8tFHH3F5fi4xZna1iH9lLqzrmnEYmKdRhL4p0riKzlVcnJ9xfn7Gn338GTe3D4zTLI5/WMStEuHEsn4rqEVkEaAkUomkFIRIMY/c3d/y6tVLHm5vGHd7Lp4+4/T8nIuLc9brDls5Ns2WtmtwO8M4yHfbdJ7VesP5+QnvPDvn088+58tXNxyGme9+/AUvXt/y7jtP+cZHz3n+ZMtqvcY5y2q1oq4qNl3D+XbFdrPi9dUdd7sDo/dkNKEU9ruZcdyzf3jg9vaWp3fPeLh8yvmTC05OTpk3a0K3oqortBWqjFFgKFhlJJph4TUUHTk9bXEl4vc7irYkU1OajNOWdd3wZNPx/GLNi1c3vLi643bXsx8mpqV5nKII5cXd/0awIg5oIX9YrUFb+T6+QgU6ikOEvsVyn2gyEKIn8ZPbVEhlAT88uuqPcdHHeemNQEnGEoeYjz1R9WgIkB9Tj9FnQgwo6MfoNjlPKT52iaTxrM3iLl9etLyh54jjn0ehkF6iekFj7ILf4StRa4/iKaEjqKVxq7T8HbOQl2IMIrh5FDQdo76+8jmQfYXWihQjRhusWeJmFISQHhtRORWMWaLgOIq30iKSUYvwRtbt1hppvAuKSqhpeWmIKpljj9dcXsQ/ZJnfrLYi8IoRSpamqzoKyhIqC9mloBHPx5u4t1wK2cclynoxKMT4GElijFmatwslJC9tVq2F4Kv0IxnAKA25YKzFKhGzhShrUaMljtkem3ELESDnvJysTF3XpCJCLaMNyiwdurQ07kohB48qsl5MOYtZZolmMXIY8hlSRClLTIEjhUuhlvg4g1nOQcpRBC2lCB23ZChZ4vKWz0ARQgZoshLR2Tx5EhL/qRax07pr0Vrz8NCTgNrJtRFDlNhwMjnA5GeM1pQRoeuYJSbdOFCakjPWObRxcn1oi7GWcR7pWsXf+qVv8eSdFYLp+Oo47iO+cl/mQpw1X356z3/4939KP3m0lrjZlGW/YS1UjSPMszRTVZF4Nu/BqIXUpMg5Uncd05SIIVI5yzwHcJaSFM446lbEMWWhOmkFyglh72G3Y7PpaK0j5oirG6EBzyPKWLKK+BBp1x39GBnHmbpT1MpgS16IZYaCZrVZEyaPSoWktdCZUyIFTUbhtIaY8d6j3dLIJxEKcr8XTVc1+JwhF7arltpVTOMosbNVhSqZYZxp1muaytDveg6HSM4IfdAYnCnSkFcsYjiJrTNm2U8UxaptsE6MRRJPn0QYhqJu6kfR33azJcSZOUTCFDBGkUpCG0sIER2yxEnFRNCJbt2SpyDUqxiE/gFopyTSaSHWqZKxSiLiUBJzlyYvxC9biNmQg0YvlC7XNsQUWdWdiO2S3CchS3RmLhk/R0yWz55LxtaOUiJFFYIPhDBTtKKUREHI2HNMzDkKcdppUiwyP5SE0RZX1Zi6ht5DGRknj1INIRbWq5bBe7wPNAuBOcbApu2ECKMKrjbgMyVB5SqSTqicUUUxjjOrVYfVmiF4chYhptWadVfjSWCgcZb9vkepaon7XATfRdG0DU2G/jDgZ09KkakP2KYVKhAFXVvmaSaFgPeByc8oNK42WMOyvhRByDjNNLUVCk5SrLoG1VXMPi+R9oXOimhSaYk7RiVq61CNZpxF2FUZmctcVRNL4jvf/Q7fQuFqi6tXIvT8ijJCHR/NBSpbgXG88+FH/L//178PpvAf//A/4qOY4CR2baYumW4jJguh3goVqqQEVmMrQymJcUwM00hOnlQCkxZjWyoKnKY1lpI1/WGHNiJKSqFgEJpQ0hoM6CLzXkERo5iFUIpVXeHqmtWqMOaAj6JgVTFhSiEWuabCQk5qnSMsRswQE/s5sNuNVKsTHg4DcSH/fZVqk3Lm6uqK73znjxmGcTEGSCzscV7VS2S0UiIINEqJ+GYxm80hLcR3ESUrzbIuUG/Wics8XZYCqVKIqL1YMZ6WDEoosf0hEL1nnmaGfuDy6SXn5+esVyvqukZbi17mHK1FnBuCX57lsjfKKWGUpqlruq7l5vae/X4gBHkGFr5ykSyfo6AexTW5LMXkkslKobLQ9Wc/S+R23xPnmfVmS9O1dG1L0zYS6Vg7bGUxRhO8rLdMjLiqpq5rVquG3cOOh/2BcQrs+5Fxmrl+GDg72SzGB0vbaKw1VFZEc3NdUVeOfhRimw+BnAFViCETkyf4mWmc6KZBxEpdR9NIDFxyFc5ZqVnrN2taEUAvBSGlKCQaV+O0CBFDTmSEKIwTA2jjHOvOse5q9oeRfpqZvZzbmJNQO7PU3796P3IUQz9eTxpUfjzvUgw9EraOajdZk5mF/PjnPI9vx9vxdrwd/5Wx2Wz4tV/7tf9ugdKf/dmf/RiP7u14O96Ov8oRY+Sf/tN/+hgD+aPOEavVil/7tV/jt3/7t/9ShEp/8id/wt/9u3/3vygU+nGN9XrN//K//C9/YURmKUJP/+53v8tv/dZvcXt7+5cSg/d2vB1/WeNHvuMymaw0JcuG3jpDUQVNWTYxEHNCG4NWBW1AZRFr5KUzr1kw/lpTsjRm0oLRNcaQciGHIOKbkrB6adJYhcSMGHIRqg6VIS3Fg6qyGCsO9VwsPhVpSCCOS2sciYhWMMdEJotLlSXLXEmh3dgKW0vBw/soDmmV0RisrpdCuhQDwIgbMUmh32iJLUOBs9DVFYu5BeUqGmPZ9yNaLXnkWZGTWVy3Iq5yTgRHWlmmmBnCIM2RFNEohmnGTx6rHV3tcJWWz4LCugZlEGdsShLTohVzCBiVMdaSY5LG0OJIttpQFAzDJO9vpSmqkCZJIokj1liSlyK5VpCCpzENUwyMUaIIKtdQjCHnxOlmQ7CKMcA4BDQJbY+WnbyQJgqlBCqrqF0l7jcyPsalGSRigJQSrmnIzOKYHyeGfsTYIgVRLBqHpjDOAac1zlkR0GSDM+JSUmopUgUpVladQUfHNM4oBeM0URpxZo3jjHWWxlToJLEMbVtLw2GOOFthOgtEQojYqhHCghah3lQSbSNYvv3DnlVbcdJWzHNEK8HJJxx3wx5yZjrMWKVYbToylv0ccNqw3a4xzoHPHO72VJWmWVkO/YReQbKWPN9w8Y5mfZ5BSxSIFBk0PLZTpZBdADzsvtzx4tPAy9eFp+8+5f0Pf4rbmz13ZUfXrhhaw/1h5BzF2ZMzcgjc3480TYurDJP3GOUoKXF6tmGzWtHvRoqK2JKpjGY6eFJR1BEmZcnWYZWjrRJxHokYNpsTnl6eMhHwD3uU0vS7A6zP2HnN65trnpxsWXcNcfZUaWKzcjhXMU+J2c9YA+89XTFMka5xNK1l0hnjC1vXsN2ecDhMIh40ju36jNfXt1jniEPg4mSLuTBsVqcMcyQMPdPuQFs1aDQvX11jYqA6qXGV4eG6p589zeQ5+fBdhvt7HnY9STlwkf3VNf2QMapju2mY5kzvPVfTwOlKIhRQLXHy1K0Gk8BYprmQR08whZPTU/ws9/z++o7crlBG41pNmyN9v+Pk6RPONzVt13B/u8Mazf3tPWdnZ7RLQ2V2mfuHOw5JLVSVltx7snHQ1WgKu5sdNC3PLi7o725R1lO0RDys1lvKPLFardG0GJ2pTMXDzQ3TWKCxZGsx6zWn65rXL+9o11uhq8RA0xgOMTENO3Rl2e8nupMNqSh0pVmZmhIS3hcqI+dmPwxUXQsUdFwEgcEy7XuaDoyTOaTSkA1UTUvfT6hUqBvDfX9gHGfmoAg50FhLHBP3jKycodk06OC5HzzTPHN/OGBKolKRZt1BhqwUd7s92RmGwwFjNHM/0hjH09MtcV6ITJ9+wWq7YTh4QvAU5WmbDqsyrTKorOj7gWZV0Z6f0T/siGWDcYrzsxUpeqIX57kPmrp2RDKewmH3QPQj65OOatvy3Dn8ScdhN7Dfe8Yysj1/QrPaMO9GxoVW4FTCKYvWhv0YGP1emp5Fc/vZnptdzze+9fM0XcuRWvLnh5FnrVF0Jxf87V/6f3LRdWwquLm5J8fEF9fXPH33jJ95foFan1CIPOwnstE0naO2kKNlu1qzUYrWal6tKl7evaLfP/AHn7yCZDBYVrpmXTlej4F+P9J2NSUX/BhwRRFDJKlArh3KOJw2hBz5+PMX3H/3B3zjr/00/4+/+bN846+9y8UHH3Dx+pq7q5fEw0AeEw9hD0Xz7PwJu/2B6TCRYuLQD3z25SteXu14OHheXF1zf9gvogC1iIYLtdUYFKPOGAphDKQiT12nFdEaLp6ecrld8er1HXf7UZ5vWqONodaO6BJVI4XyaRZCgDiLsxCXlmKyUpqiCkUvdJaUSSiCjxS7NPxzWgrxilJmrl6/YOhHbm5ueP36NX/9F36ejz78KZ4+e8rJyZamaWmsUA1cZXHWMVnHbD1jP5JrhVHi1HeN5fR8w8effMlnn19x/7DHB09KRwf00vxgce4WvQgeihAndFnir4TMMvY9D3f33Ly+5t0PP+Td997l4eEZT59est2u6boVlalZr0+p6pbVamYaD4yDONvbtuL582e8ePGaH376BS9eXvPQex7+7DM+f3nFB+9e8rUP3+Gd8w3r9YZN3bJdb7k5HOhWNSunqSxcP+zwMUv0UAKfDGEO9IeR+4cHrq9ecXH5hIvLZ5ydXbBdn7BZjq9paqrKgtFgJF6iFI9pNBebMwieOAa0M1jnMGhy1tzsA/0wUdJE3bb89E+/y3vvPePmYc+Xr664utnx0PeMY8QHoZJmJNooFfVIcVGqAOn4OAeWps7iSFdFXPwirymPVAX585/crsIS+ssRTKSPFIKj8KewRDHL31fquDKVyB3gDT1goZqK4KhIlI6SPYnKQmtV5SgEWl5TFY7NvVwyGtk/wCIw0EfRj/z5kdJklqjrQl4ENflRaCXHswRpZqEeaKNBQ4pCVlPL+kwLLnb5bIvYYBEvkYvsJY77Ji0CI8pC3jEGozSzj0vTcVnflSUAexF3aaOX+GUtjVXvFyOEiHZikkhErTSV1mi7iLqKwhi3nM/0KJ4rShGXeDbZw31VEC/nTERUIkASIwmPn7FQ8CEKRefo1GeZ06wllkBMQogy2lC0fD9N7cgaQoIYspAAjhcG8l0vJ11uU6Mf3y8vQizKsekrNMSCfK4SilB8l3NslYhLgCXKTcvrFbnGRLi17AM5RjWKwUJlTQxCl40xUqyYUUKUqHSrDSoXCglnrRxfyiLcsrKuSSmjjV1i+BaSAVm+f8BPHucMtTUiPFEKMBSlmYJfSDoSF1dVFVlp5iifo26s7HdTwU8ebcBVBh8CykHRmrNtw9/6pW9y+qQFFR+bm2/2FHLnHr93kmLezdzfzvzrf/NdZh+4eHLGOHgKHuccwWomH2gQEUbJmWmSyDBj5JqqjYjE2ramqhx+DuRFyCviMyFl2gwlLhQmDNYWiUgqmqquaVYNkSziJ6XwswfXMCdFPw50TU3lrFC8cqR2BqPNEkEoNYLtak0IQhGzThN1QaVCYyyVqvEhSjNea+qqoR9GMSv5RNs0rDpF5RpCFLJQnD3OWDSKQ9+jcsbWQoqZB4kSszHRnKwJ08g8B7KS62EeBqFpKEdTWVKSmMMheppKahVKy97eOiVGK62JcYmQVWDqRq4zYO5HinOP16wtIrauVx1NbXHOMI1ybUzjRNO2WOlqk0JhnifmLPOD7E2TTFBOItfncQabWXUdYRxFBGEKMXhcVaNzonJCcqwri0ZTUmQ8jChjyEahXYWtVszDiNIW5xw5JpxR+AjJR4nKyoVSpGaRQMhKIZB8EGGnNvilzmSdocSyCEHkNVTOImQqCaelxmWsw/vEOHm6piLlzGEcUEWE5tYZiIX5SKSzhqqyi7hHREF1ZTGqoHShqVpyhnkOJESLlxbhZfCetqkRcR4chpFqiYdMMZGKUJd0kTgtnYUyl0msth3Ze/Ii3K1roYjHGKmMpWRZ12kbxYCWEulwoG4cdVPRdtA1FcMwLu89YxuFcZYcFD4ECmpZ9sjzyqdMnLzMQ3Pg3/ybf8Nfj4n3P/oaq/WK/3QvwZs/U6BtxdN33uN/+1//Nxqt+O53v4vRlsPQo63m8nSFNnJtTNOMygZrKtwS42q1xTUS8GWd4TANhClz04+oIs8UqwyNMYRSGA4jUz+x3qwXQ1shOyGvF60oyi0kRRimiZu7He26452Lc947O6WrTlhtTxj2O+I8U2Ji7j0ZoVjZEJmDJ4ZIjJF+GHnYD8w+cxhGhmkSIStHoqM8th5u7/iTP/se13e3FB8XcyCPhCVbWTZdQ45COtZKnmdoJZGrBszyzDRexJq5HNcoX5mbl/XDsuDiGB1XgFTSInSXZ4jVCqUz3o/c3iSmcaLve4Z+4MmTJ6zXa9q2paos1tUYYxeKoBbKpzYiRCoR50SwpI2iqi1d13P/sKcfZmIIC1GKo6JqOdryJup3+bNS5IZJSYjZKUbmeWIaRrYnPZvthvVmzXq9om2aR7KSc7VEO6aKFMNiXhKRd9e1bE+2PDzsedgdmObAw37gMEzcdQ1np2u2q5bGuYWi7hh8oKocldU4DfshE5JE9okofTF2hsg8z4zDSNc1dKsVbbuiqRvquhYCuJVaNct1p5VZFlBCo5Ma5SxrWKvRQb5zHwqTTwvdXrFZd6y6ljlE9v3AoZdYOh/To9jtSAUsHE0Asj4romz9c7do+YpwSq6R5af+EwHT2/F2vB1vx399fP3rX+fv//2/z5MnT/6bBErzPPM7v/M7bwVKb8fb8X+Dsd/v+a3f+i3+4T/8h7z//vs/8s8dhUr/5J/8kx97vNnhcGC/33N2dvZjfZ+/aKiF8voXje9973v8s3/2z/je9763mDPfjrfj/1rjRxYp1XVNzom8IOVBMqpzSo/uC6WObl+15KSLy0cZs6D5E4tUSXzTR3cHIP8hRdpCoaqcCI2UbJiOTj+KOIcpGZQV2oCSorHRkCKPjTQhf89LFEGhstI8NAVxHy9RdTFFlDVgNSFGlC7S+ClShNJFnExZSYEjxCgFusVJVVcVpRSqWlM3LSnB5ANalFk4o8hxpjKFetVKASiKCyovdCZlFH6eiCGii8ZWFmXkTC2nihSCHI9SJCLzKIKbxtWUkunHQEHQ7CmLUElIAJamqrk/HKTRZgx6aTDEIpj9pqoWt3nA6ILSlmIMoBlnT45FfkZD68Sd7CpHIKFKJswj2rRUVY1xDl88KQZUcVRVRQiTkDgUWKsoKdM2Ddpa4izUiNkL7toqKTDiLGOI1Frw1Mohbjet2axXbDcdDw890+RpV44aLcXmIMX1yllSjNTGYBsD1jBP4TGmJngp1DRVhXGWkDMlJZquEfedD+LgsxplFLt+pNiKbtPR6sI8eaaQiPOE0YrtyQlGKboc0Vpx6Hc87CdqdyG4+XlmmCZCP1AwNG1FIqMqTVetaKyj6VaSv6wlNmj3cEcpiilGVmbD4Eea7YraFXS44dnTyOpEi0BJy3X+pkgFkNFFA5aSI8XD7lYTyhnPnq1YtRv2h8D17UDtNlxuO3JX88XnEyV5pl3i7MkZCTgETQ6BytTc7g9CN2kdn7y6ZTwUxjSTS6Fqa6wB4wreT0RvyE7zcNjTNg6rwITApnWcrhrudoEhF7Ly6DFRXM3sR95pG4iRwzSy3WzIpufi7IxpTIzjxNMnJ4yTFHWv7q5QO83pZkuKEPuZ09OayycVO7/jYtNhKkMoGdsZdjd3mATbsw19P7GpIpbIpzc3xGRBBUyjiERUY7nZH3CbzGwSbtPSz56rl1fU3Zo1mmkK7Pc92im08Zhmw6QyuTZcPRyotytOTlpUnhgOM/0cuBkTJWpsAdPAfp4oqeZ+n8Annj9z3Meepmk4qRsG63j9+jVjTAxXNzzbVOiuY33+BGsV37/5mC8//4ztqkbbhGpqtqsN7uAhjLRnp1xerrk4PaXtavIwirPcVlw/XNP3PefPnqKD5kmZ6NYnHHaZm+tXnHZn6KZw+7DjfhhJqmJlCrXOVI2jUo6mmkn9gI+B8ydbmBL7MNLHQKUqnpxf0p1t2BWFVRCjgqLQVcMhFNqqsKocVhvmIFFbkx8pHlZrQ9UY4uhplSJpSzQNzkF1ahn7HjMHVo1cO+1mS1Ua5slD5YilcLsbqOdEVzuST2zrin7/wJPVmu3Zlr0v2GLYzQ/YUjhZrXC2Y4qFjz58wu3Va/JcULZmN0+ctGtylOidEBVYy+Z0xdgP+N2ObrvFKugPB4w55+z8jKae0Mowz5H7h4nTrlB1Dqczawqbk0tK1LyIV9w+3LOfB57Vmu1GYhxcVePTTJsKlbZ0qzVf9hPWOTZrx8P+nmmc2HYtaKQRhUElQwkTw909n33+Az76qa9TVTVH1vufL1yKWEAXzWp9xkdf/2v83Jev+O6//0MqM7HdJLZPOhgjr/Y9QWceDj03/UB5lqlUhXUrpuDZjwNFG1bdKU+T5iZZrJLIoxQC095zdfWa+z6wG3u2Z62IdZMiGM00B6yuqVIm50iOij4G7q4f6KeZDz64QC9NDFNVnG5O0H3PPheGNOCjh5JojcZuKvY2cxhHzpo1rtWcXmz57LMr7u9uuE+FogvKgCaLgG5Z+BdTqNAUlUgaXMxklak7y3ubhufbE9LDSPAzjdMYpSmIcBsNlTG0zrE/ChyKemwYLKFXHHvty2oIKAvp8U00LqVQgoiCrbUMg2e3u2UaRx4e7nj9+hU/89d+lm9885t88MH7PHt2wXazoqpXVM5hTI21NdZOpLSQeMTLz9npOXXTcnp2xsXFK77/g094/eqaYRzxASRDSOJ+j08YEZksAoxjjEDKJCMxeCEGDoc9r65e8/LFe7z/wQe8/8H7vPv8XU5OTtiuV3RdjatarHW4ymFthXUVddPQNh1d13FxecGnn33Bx598xtX1DXe7PQ+HgS9f3fFT719ytmlY1Y6uq7k4P+F01XGyWrPZrrjvd4zec3s3cHN7YJiixLakSLidGPoH7m7vubl+4PzJDU+enHP25JyT7Snb7Yb1akXTNBijcK6waqWJpFIilULSFqsd665j2B14db/n41d3jGHCMHMaGj54fsb5iePiYsv7713w6vU9X7y45vX1PXe7A8M0E70mxkxJUdbLKS9ABA0kEeRoEflLVNUS7VAW/s9X4sN00Y+O+5/EcYzAKuWNAAh1JBId/5aII47CniNx6ZgnU/ISCVeOvADeNOUUPDa+srxfzuFxXaSUrBVFOLS89iIMk7cojzSlx4aNLuQSKcnI/Kj0cnwsYpGjWz1z7EiKA335TAvp9atx1CDNLnFJiYDKOCP7HKsx1lIWIodaPpdRQpwxumCdW9b6Enkn7ny9xKkFiVBDL9GBb86/CGwk1kjoTUJjVUpjjRU6Tlqij/RC4eEYVSOmktn7x8apiLQgFYnOskYEVynLa6olxlkhETslg1Ii9HJGhFPGGNIi+MopYpQVY8RimCg5U4qWWNsUhYKkJH6ZUrDWilgkyTHEFCHJ96QXtVdM8pm1UmDVsldQ1FVFXVvmKRBSwjmDXehcOUk0nNHLcWqhAhclJgpdFgqE5K8+NnDzIo5y1pJ5E2eolwblHCQKylUOp4T4F3MWsYwW8p1SCrcQMLyfmVLEmG4xcAR8zOQQAKE/ZAoYqEyFMZrGOvyylhIK7CQE4ZypdIWPEVtXWF2obeKv//yHnJ43sndXx515+XP7CXUULJUMEaYRvnz5gPeZyjXMc2YYPVZXdLWjWMN+FyEn4pxpu4YM+KRETKENfpa9mLKah8NI9IWQxWAh0T2gtawbclIUo5hmj3MS4WRSonKa1llG7wlFxGAqZPxCvVo7K7GpoVDXNUVB17bEkAnBs2prQirkAsM0wKxo6koeeSHRGMOqs/j9TFc5tFEkCtop/DihMtRtzewjtckYlXkYB3Je5m8r95m2msEHTF2IWsg4IUX6fsC4igpFiJnZ+0X4l9C2IqpCtpph8tjaieisRLwXEsoQC6Tl23HgYwJlmH2GlFmvtFBjraU2mhgrDn1PLJkwjKwrg3KOqm3RWnE33nHYPVA5K0Q4a6iqGu0TpIBrGvSqom0bEd1FuQ6jMQzzQAieqmnRlcP4PV3bSES078nR0TSO2Uuk3JQTtTUYDYpMVTvSLI7QME1YZ6mtQeXMGD1kqF2LbmuSn0Xcm4KInowRoW9Kj4I0ndUjCGSeJ7QpVE7iLlWIy8QqlLW2rZnnmRA8Vh+NYFDbCkkNk/llDlHi4ZMjxyXuK0dSKKybmimJKcmnSa5RXVh1a8bJs9lshELjJ5qmo59nEXYoTchC0oKlDpQLKUTQEhtFSvgp0LUN2gRKksMfRo/KhWqlMU4EpmtXU7mGfpgYp5HYR0LJrDedxLW3tcxtSWo9Td0wlYkQIrVzKBIxxoXyJiReVSTedJ5mPv7en7HabLBOU9dH48ObKkRRX7FCLOSisyeX/NLf+Z+4vrphnnY0riEbaJ1mN0TCNDGFmTSJULlzzaP5ysdALAVtKrpaQRaSt0YEwykE9vtJaKtz4OWXr/ngQ7c88TQxJiG+G0MpYhYAxTiLqFwvJhiW6FTnKlZVw5QzvhRZn4ntksZplLZ4H8VU5la4xtEfJmL0jOMya+pFZF2EGDaMIzfX11AyumSSKpiFIiSmPcNZUzNPgdkI0VwvaKq8iNHVUh+S62G5sBchrVrmbPWV/dxxPSTG0GVdtOz5SpKoeGsWAlr07PcJ72eGYWC/P/DkyRNOT09Zb9a0bY01Blc1aG1RaibpRCmzPPOUPDOrqkYbmTO6ruP27oHdbo+fj/F3elnW5TdrtkUgc1TIlLyQ2pSIbvKUuA2RYRw4HDZstlvZR2y3Ek1XVWJa1UKK0ka+a7P87lzAWkfTNKxWK+7u79nve3wI3O8O9OPEyXrFuqtxVj+KEGu3pqkqqqqi6WpCivg50o8zs0+PEc45J4mXnibGYabtJtq2pe0kAq6ua+q6wllZI2hVFsFmjVFCDVPKoFQSMpWNHIaRh2Fi8AFFxCiE+tQ52lJYrRqmybPbS5TdMHp8CAv9WoTauRwFYY+neVkHs+wl1HLXHo0ox+8if2VZ/ZO7n3g73o634ydnrNdr/t7f+3tcXFz8N/1czpk//MM//Euho7wdb8fb8ZMx9vs9/+Jf/Av+wT/4BzRN8yP/3Gq14ld+5Vf4zd/8TcZx/LEdX9/3fPrpp38lIqX/0jgcDvzgBz94K1B6O/4vO35kkVKMCaUy2hSIiZITxjlpZ5a8FF71IkQCESMprLVoZ5ZiVMJZg9XS0FVI8TfnQkiS913KsQcWiSFKrV9bYojkXLAarBLXr7YW7wMpZZzVpCyUHtmiLzQCayhA5dyyAZfiizVanFUpYXVBGUVIERUDTe2wC2665EAIibwUGnyYUNZQG/eIJbfWkciEEEAVglfEkmjrCqcNOQZUSTRGUxlNSRBVwVRmISUJPtg6K+KolMkxkkIkhky32mC0Zr3qiD4QU8Jni6aiVpZ15ZjjzGwEjRxzxPuANYauaSFn5mkmx4hrKjQKV4wUT1IScoQxaOMoSpzBfp5wytFUlcTYaCnwWGuZgyfngl7OtVKKpqkwFJSy7A8TukYKoSkzp8A8Tqy1pSyOTrTCOsthmEkx02hNUVL4DylTiiGXiK2dCON8pKhMKQGtM5rEeNiLICBlmpU4v2c/Uwo454g5YY0BpZm9RN5JIyczz4mUMlXVULmKEKXhEinoOVAZg21bQgqst6cUVTA+UFc1Viv6occoLZETLG71lKnbGpsKMXq00bSrFcMcCNOEMYqm6ShxppREXdWEWHh6uSX4SMqJqe/l2rOO/qFHG0vWmrOT9YL8Nmgyp11h+46lPi0o4xdB4BKTt5Qh8rFxjNxPZYb9VcI1z3h28ZSrlw8cdoHbhzvuH3ZsViucKZwYEShcHSZ0MoTpmvWmxmVFXTUkH1i3a9555x2ePt3y7/d/xowXJ5gyQOKd95/x+vo1fT+xdluchvXJhnXTsDtMbM9b9nFi92LHynU8ffc9+ulAut2zXS8yiT4QM5SgGXLFMMPTWjOPO6bQMyRD1o6buMdXEd8XauexnQZluL7d0a5r1lbTlkTwmX6YMUqBs9JgKAldIJSMH8QtmYtijoZ2wchXznGKYbs+Ja0L19c7YoKrV9dU2tGuNJnAGAObruO9046MkA2qSmNNoSmF/jCibcLnSLEQx8yqrtCu8OTyhC+vZnTRVE5TcsXubkezXaNj4bC/ZR8SprKMh0ClHYNPbGxF0zbkccB1FffJg+o4Vw1zmDjfbujszBxGrn7wmpNNy+3DAyhLZR339zuc6+g2CquhKoXoM2UO3Id7iplAJ2LKHIaJqmrRdcNJ11BV8HDv6fsb3nl2xnrT0aw3fPnFl6xOQY2JNI9s1y37hZJzfr5ivr+hto6QArlowjQxjBNP3nkPkyNVvebmky9wLpPx9HcjFJimSMwwk1FxpnYiOt1sOnx/T8mOEiT2Y+z3NHVNGAPrTUc/zIwqs3944PLJCdnJ/YFWROWJSpO14fX1PbozWFMYDztCa6R5MUfquiKmjI8jtmRWCkIsXM1e7rTieHW1Iwwj1ikOcaKrG6bo2e0DFycNzmiSj8RiMLYSfH2o2ZxuyFoKxr4fsEDT1tKgnSMzPRahbHS1Yp4jcZ7xThPKjMGQh0RbrwERjq0KkBOkTD/u6MeBtl3jb2/4Anj/p76Gq1pAL814+WX4igFXGbqzp/zML/wtXPG8/vxPud0f+NMf3jBPCa92BITuQR6plWGzOuN0A6umwhcHxqCDxx8ybVWTU2LdtVAi9nTLZ+UFu/lO4tEiQjFJilwUkw9YO1MFg2obQtRc3x24v99jas3LL2/5j3/8fUzd8uxyQzmMzOOA04VVrbBJc/CJEBJJKaqm4sQ4SlG0VcOzyzO+8dFzfvqDZ/zL/++/4+OX1yRRBVBSIPqEchqDJhmF1tBoWXvEJCKB6+sdV1cDU5Jmss2JfGw450JI4rR2xmKtQ/lMXrQ+SxLMEquUHqNyyzJ/g5KmAmkRm4KKSxPYRFLKxBSIMeBfzOz3B15f3/D66opvfeuv8dFPfcS7z59xeXlBVze4RpExGNdQtEYZCLPjKDPSxlK5mlXXcna65uOPP+PTz15wd7dnDvKMgog+0luW2KtMFnImSrRMRZp5JSdpps8j97c3vH75ilcvXnPztRueP3+Hy6dPuby8pOsaWS/qmnZlMK7C2gpjKrS2WGtpa8vlxQmfffmSTz59we1dz/XtgfuHnraxrFcVz046Ljc1Z5s1Fydbzrctw9Qzec84Rj757BUff/aa2/2AT4kcM3NKhDkyHEZur2+4OT/jyeUFl0+f8uTJOScnJ4uTvKFdRU7Wp5RY8CERQpTID+tQFShdsXvwTKPHh5kSA6tGGsrbtiImTVtrTlYrnl9ecHVzz2dfvuSL19fs9xPjGJlCIIRIJj2aAJSSZj1LpKBSIvY/tgMpWXRvZWmG5fxIHPpJHGVpZiktC/5SFFobueoXd7/Yvo/xJ9J604tIKz6el0VwggZ9FM4dP780IEVfIyIeKBRtHuk6LAIjtUSRpSRraK3lIj4eR1FHkY6cU21ESJSLxPnoRchz/K6UUqQieyVnjOyGtHo8DhHpLPuqJZbs2BwyR9niEluXsiKX+GhQKDmhSsFqiWgrBbJiESKpRfwlgqiyCLBKlmjkkgquqhZ3liMniQhJRaEwWISqlHIkavkuUhGaqFYSg60opCh0gyPhxywUWbU0fbUSYb80UNVCgxWBkUCiRMCljRaRVZHG61GIpY1ZWFILMWqBmeVcJK47RpyqjiZ/juIfH+NC1Fha40qasiglNBmjMcv1IbSGtFC6MsF7oUKUskQL8RgLboyQuY7UppSXyLssu03ZC5YlWlOIsoCswVMWMpK15JJo6gYUhJQf6bQ+hIUsdbxnZX9aWY3OirwQwax1hGV/KIYP2eeUIq+lcmG1aheSQiEu1BaltUSXLQLHppHodK2kCXyyrvjFX/4WT97ZLGaHoxD1uJ+Q5rE6NpBZBEp95tXrB17d3mFrERuN88g0zVRVhdaFZhEqDCGgsibFkao2GI4RQZnKVazXa1armlfXt0REdKYXotB6u6IferyP1KZGUaiaisqKSKBuLT5F5sNMpR2rzQYfA2WcqasjRVZoTCVJHF9IUFmI0RNTIBQhNI3ZE00ieRGcGSdzwDB6oRFqhUMEBzGIyQcjMZtqEaylsphllvtB4sKEWGGMoUEoTMUV+lH2rMNhQCuNcyJkjjlTO8eqEZFFQYgnWhdsAe8jWmW5vjXkkHFWzGNd17AfohixtIaimacZW1eoXPDzhM8imAo+Y8iErKi0wS6CI+0MYxbBZaM0MUXauiLrRMyB/q6nqR3TPDEipLBpmtHG4Sq5L51WpBCxaPw4S2yigRwTPmoiIgZp6oqmsUSfGHsx/Thr0FUtxMck5qXoA5XVeJ8JybOtV0QiOUhzPyBk7nmKEiVbV7iiRfAxT2gNfvaUtMTsFrmqVcmYEIQqYzUpyCWek0JpR0wzxmRKlucUqizrUy/PKyvzi1FCzvPJY1xNfxDjjnOanCLez6Qi8ZUaRVZqiXFNOG2wGaaUiYtodpoj2QdAamSVq4FMnCM5RCon8ZfyKNMUImM/UTU12mkRuMYIKWHtEgGaRIAf81HQkqmdYhoDOVeEJCSt5IXanbTMm9Vi1FMZUpyJaeb11UteffEZtbNsz86oG9lPyHzxRg5RHv9EgXF88LVv8rf+9t/mj//oX/Owe2A3TNyniZgVRc1kBRRFn3tKK3vwphLyGkbI2SQhZ5MN1izP8KZiMoawH9A68vLLF7z7zjsY6x4jSGNKmCQCFErBT7K3zTkxT57b2wcqV3N+cYLNmTDPlJJxWqGtIizfT0KMmXXlOCaK1pXjbLviydmGz7+84uXNHT4t0c6LCe7y6QVPn17y8uVLidMqoK3EfCoj19Hr2z0ZRS4SNcyynpF9ZnkULWttFgEPj6SkzCKAXoTFR9X3V7XfZREVq+O8lLLUiFgi17LE6sUQGMdRqErDwNn5mQj31xKvrI3DOlB6IaopSFETiFhYjKsGZx117ejamvv7HYd+JMTF8JqX58lXtejLc+ZRny4PXSHNlszQJ/wsEXD9oafvB7bbDavVitVKCKhqIWoa61BaqPlyvrT8udY0jWOzWXF3v+PQT4SQuL7bc7/rcU7T1Y5VbekqEQ2fnazZpvoxnu/QT9w97DkMszyXy7IWyEJWmqaJoa7pVp386jpCaKgqIQZaa7CL0DbF/Bj3J+sIyMkx+4z3Se7jnClGqJCVk5WiTVC7jq5tGaeZ/WFYIu1mQsjElGVdu9DnWNaX6jFq7nhh6MeVNiBr3uWikWvrjVT57Xg73o634y8a6/WaX//1X/9voqKACJT+4A/+gN/93d9d9mdvx9vxdvzfZXzve9/jj/7oj/jlX/7lvzDa7D83PvroI37pl36J3/u93/ux0h7/1b/6V3zrW9+irusf23v8t45f/MVf5A//8A/5gz/4g7/qQ3k73o4fy/iRRUpSyJeCV84iQMpRivlGLxExpaCMFPpTShhlyEXcISklKaKy1KjLG2y8MVLEc1VFCFEMmjFJQ08XlDYoJY4WZ0CViLaWcV4cotaSckEj8SNFAcZilLzuOAeapsNQqGuDKUenFGijsEWTlLi+jNLEEGSDrKXIjDLELBtD7SqUNhQ0lZOCVskFrQwxSd67UVo2qUlcaGqppBtrMEWTiiIWKTRWBlRVEXNahEVOotEKpFBAa3yIlBgwRolzOhXW1uJjYM6RcAgYY3G6wmhB/ecYcVrjxwnnHCkXGlezcjUhBXHXRilq2qaVuKKYaLu1RDb4QAqZw9xjrSUXaLqOgjR8R59IcUYZiWCSRgcopHAhhZVACgmfC7noJZ5ACvjz7HFONt6VrYg+oJ2lqizJJ0IWF7dbYh1sXTGNEwWDz4WrwwFXGagMulge+j3z4kZUErpCiRGlxVGdUiDERIoJUxui0lgnTiaWApStLJVyoBRWG0JM+Jg4LBE+LmuqXJh2e6YorvxKa6pucaAV2E8DTilUUqzbUwqZqq6liVPEIb1eOYZxjzaKddXQWClyee9pqpauazns9mgL29MTSszEKTD3D5xv1yh7oDuPVKf5K4qCP9/MO/4bpRI3VFY8vIDPf5BRteJp7Xj+wQf8uz/+IWMIdJ3i4rTirp+4e9hBo8lWoUlMsVC8xVhDXTW8vj+gc8KlwIuPX9I5zQe/8DVGPzO+usGEit31nukQ8JNitpmuWuNsYR6luRRSIuXI5ZNz/H5mOPTc9wd0nGn2OyplCUax2azAWnb3O05Pa5T27JnRbUcAYppIk6E1a9ZnK2KayCGjncWtNjw8ZNqq4XboMapCF8XTZ8+4e7hlmmGKnjhNHG413o+8d7rm1W5E2YbaVfTZ87A74JyhnT39HOQ60xavYdtt8GFk8p5tU7N2LaVYwjDh1pbVZs02HvAh0gdDE6FRmkMKtCcXnJx13FxdM86GZrWFecfN1TUpW0oJPNGgfaStaoJOWOO43D7BakjKoxZKSz97Pvrop8TV5yUusFSJ+5c3Ij5sW3yZuesHbnd7OrsmNpkhT1Sz53xzCknxxQ8+lznSZGIcOTtd0Z2foXLNF1cD/XzAe4/drjh/subh+kv8FPnyxUu69SnzPGAqx+3NLSoXLt95RkQxsmO33/Pw6p44gymFWmm0g9Xlmi8+f4EqgaIVY5wgBWLIjKUimoo49Zys16hcuJ8fsKow7m+5ePY+/X5EIzGLUSUqUxNTYcgK27X4OUCGtqsgJ1wl1LTgM0XDEAv7qwOVa2naivXZiul+T1E11jUU0xBLxnUd93cPTPOMM5rbfgQlkTRVZQkx8vT5GdNDjU+RelWRs6FqHcZnbm73nJyesm47jDFcbFb43T3Xh5nXN/fkOGHXQtTLGXwKdG1LmDObkxZVGa5f7bAhsj8cKKqizZAnaTzWzjHFiWIK86RRxXB18DSNhdpRtWdMfibc3ZOUwj+9xFkH2lKK/koRW735dzTKNLzzU19Dq5HXu1vuPv6S69uBXT/RbmuGCGHMlJjpd5Gf/daGzarG+8zaONrGcfb+JZ83iviF5mF3oFCzajS1ga99zeDahvv7Azl6HvqeQoXWbqGRpEfsfIoJP0budwcun5+SVeQ/fOd7fPH5Db/0N7/J8/MtGJkNV6sNLgbmtCelgtMa09RcXJ5TSma339MfRmbj+fmf+ZDzszX//k8/4T/+ycc87HZEFdEp8v5HT8j7wIt9Ty6ZVsHldsPsNVEpgtXUzkFRHEaNsRUhJ2yIqOxQWRoLZREDv4k5EiH1sbAtaH5pRIhAQ9ZcSgv1pBzLxwV8iIS4EFlSRulC8PBwf8c0Txx2O26vr7i9uWH3jW8wTp7LJ0/oVg2m7tC25rxuqJqKsd+jnWGaKirvibWnqSucNXRdw8XFBR9//DkvXl3RH3pCgpQVJYnIpJQsAvXyRiCi1NIt0ZlSEnOKpBgZx4mH+wdub6744IP3ee+D93nYvc/5+Tnb7ZrT7Ya2adFWRNNV3VHXHVrdorFUtuZsu+Xdp0/55LMv+OzzV9zfH9jtZ2kY3O95ubK882TFt77xAecnG0xlqH2grT1aQdNWvLrbcXN/YLcf8SGS0sQ0BuZ5YOgPPNzfsbu/5/7igsvLS05PT+VXOeE2Q+scxhmUVlR1hZZHLPVmDcYQw4xWkSeXW7724SkXpy2drSWWyQe8h8ZWrJqKs5M1z9+55IuXN7x4dcvdw55pnonJiIjFKEKQ++D/z96f7cq2pud54PO3o4mI2a5m9zsbkkmKlEhKgiS7pLJhsQDDOjBkCNKJT3wJvgzfgS+gTgQIAgwbLJRkFelyFWUJTBZKlsUmSe5+dbOPZjR/WwffiLl2ykY5pXJa6fL6Ae7cXHuumCMixvib73vf563LXlIis+AYgfZtccNRmPyzHM8gupLl6vUSTbuQkrR++26UFhPDUZAk00BdjBFv9zkKfkwgJCRVEUDUhVKg1SKkQYHSGKuWvpoIZOJCbtVaH8FK8lqLKEwr4cgczyZaywlGLw2cI6lIOLGL4EipRdgnMWKL1Onx9bUxy3wr79scY++WM0T91uuVUn+seKuUyNRKXSLflt+ntBEqapbIuSPFolY546RFHamW96qKCKlyyeRamEIW4ixGyHIARYQ2JSURk1WwxuCNFXpAztJ412qJwc5QwHoRw8w5U0slzmERo4F1Dmm+izCsxAq6Lt//EgmDnP0MIgiruYgUvy6f4fJZ5pQwxlCzUD5yKiijMIsI5kiCMkeRmTUiIkGTa2EIAW0UGLUIo2ZyykuxTIQ8tRSUgVSlkXyMktNWUzjeS3K2NUqEu3W5z7VSIigtlRASRmkh9NZKmgNpWQvsEvPCIlgLSSghqkiEmJCE5TxWkXvaO0NMswjPnBhsqoJY5DzpnCXMQuVpW4lTLSmTQqBrPU0Lf+7P/zyX761/jOb39kk9ig0UVBGlURXTrvIH/8M3/OkXL2hXPZvTE15fPRBzwjlF3ximmJimGaymLviwXDIhC3XZGMs0DSISKYXd3R6nFafPzog5kw4DujjmYZbItwxJV4nc1pUcJY49L3NC33VyfgyRKQZ0ydgwY1FkrWkaT9WaMM20rUWpzExGOSeUnJLQSeO0p+k8tSRSFiGNcZZpqlhjGUNEK6lnrFZrpmkk5koqSQQ440zOiZO2YT9HUEIqCWFkmoMYg1KWc1ASoVNWSsg/JZFzprEWr0WglJeYRNd4mhLIpZCzwgJWKSHENj1t5xgPAzErrG8gzYzDgVLFPNIrULmIOEwJZWzV9rKPQOY/oxUxZ05Pz5aGe8agwBim/SD1D+soZMYYGKeANZ5qKqEmbMp0voWiGHYDMUX6zpHmWYRlrsPiGEOQ+siyf+jahkMaoBQOhwNKGTprqVriz3YxSGxSY6k2MxwGxsOAKZBSkVoMRaLZ4w5NXoSfhVxFqBNnqMqSyhKbaBxzjlArKYy0/YoU8xIlBwmJAlXaMaeEbzw1iLjZWIO1Iv6pqgpZrQi5bpgSNsma0bSNiFNzoVSN8w2pICa/nBiDRGBNIVIsEv/nHSlG2q7BNo5pCrjWisnKeJzKEm1XLH0rwqVV02CK0F2mmMlhxPqWvIjfc1k+owoajW0MMVXmaULryhwTdZwga3JMeGsWSmMmZiX1pCh0I2NBtw2Fyr/4wz8AFD/oOhrfLIv7UajEUSv6rSnF4LueX//Lf4kQR37nH/9jppAYx0jVFe0cc8joAgOKimO96kSQgcZpJfSYxsi9cZjItdIah6ZwcuJQxuAOlhwTN9c3XD55hvV2WWuPq7MIL3POEqmsC9pKJOOffvYV++2Bp+dr2Q8oee6tU5R5ptQs9UZT6fsOYw0xRsIciDFhVx3f/877nJ6ueXV1y25/oCQRxXYrz/c/+YCrN6+JC4mvtU7WpFooWvY6QhQGY63MTVnm+yMgqcCjOVQt4u63+6PjeeJxs/C4h/r2ePzvpRIXwe6RWKkqxFjJOzFgTuPIOAxMTy6JMbFZr/GNF3Kg0jRGyIchTug5EKNG5yzRdEao89ZouuWst93uGKeJrKAWocwdRUmPV1ff7mPrcZ9blAiuq0TBzXNgHEeGw56TkxOm0xNWqxVN09A2Etdsl89JG4u1Hq3GRxGTd55V17HdH7i/33IYpoUCm5nmyGFZyy5O15yerDHWo42R70MrtFE07cQwBaY5kFIhF4mDDCWRYiDME9M0Mo0Tfd/T9x1N09L1rRz1Yl4E+CKIXuCQaOcw1sm+r2S8M5yctKxXnsaZpe5cyAWsyTgjZ9HVqmV/GNnuRoZxJizG0lJkjmKh6B5r8Mfz5vEscdSJLRvrH39+34134914N/4nxlGg9Omnn/4rRbzVWvnhD3/IP/yH/5CU0k/xCt+Nd+Pd+Fkd/+gf/SO89/zar/3aTzx/KKX4a3/trxFC4J/+03/6U6t7vnr1ij/6oz/iV37lV/6V5raf5tBa893vfvedSOnd+P/b8ZOLlJCCd0xR3GRGYQCUppQsYg+k8YaWGLiUMrlqVJbCQC6VuWYyQubIIM5cpSilMC2FbBGaKBEoLaQlbRZ3fip4byVmwBickbeQwrxQcxY36hLVEGMSYUyugtY9OpGqFLpVrWgnxRjrHZ13pDiTIovLVVG0XhqLQgwoi2tYm4JzihgSYB+LfDVnKoWQpLBPXbDwtVAJQjDQVmgECO2pTAnnGmopEhGjhAajlESK2CUeI8YoRU0PJ+uO+/2ewxTxtqXrG5yCMM+YxREphKjKnDJ929AtOeuTS0IzGWcKlZQqMSVCXop6KeOV4L+VFtcmS2NIe0ccIxWFt1bieZIU3muVqIZUihSZixQ9cxLceolJminaMY7zYyRbjInzzTloRU0BZ4RSZKuIz+aYqRi8dhjryTWhSkajaKyj6Vputnshj+SMtprV5pRaCvOxcOQ8Xd/TWC/xDCkC0mRsvTh2Q4E5FUISMZbSViIi0MwhU01B2YrJmbbrmaM0Z4xGiiZJHNIqVXzWQn7qpNGcksYC42HAKUOcR4rTTMOAW/U0bQ8hE2Ig1MI4z9j7Lb0TWs7ucM/u7jUffFfTPdEoXahKLJ9vZQXHLsPRBZVRRTM+GD7/k2vGaUOcIq6PuN2MzVVQ7tVw/7BjnBKN1azbE2IyGKNRpnIYAyqP9E+eoZzn4+fnzHPgej/x7KJH7wOpKLrNGXc3D+wOB6b9TKnQrRu2u4Gziw39qmWcBl69fklvGkL17A6B7W4ktyIgud1GksooYJMKyglVps4z68s1n37SkafCYf/ANEUwmote8+l3zrl7uOF+G6mtx+WELoasNPiecbuncY7xfmLdNFSnSGVk3TimueDWa9K0J4XEVAduiByCFMBP+pa7u3umOeOcY917MjBOOx6miRwCG2PY7g+Upudi05OoxKr44Plzru4Hbh8mlC4oZzjddJACrT2j9x6H4eT0lDIpypDYTzO6ayhKoZpCf9YzPewkbrHJ3G7vODu7xBRFzpGpZvJ+Tz0EpukAZ2c0vUInQ0Fxv9sJglwNGKuIBFSJfPSd51xf31Csomk6XOdIOXJ1taPpe05Oz/FVsd/uee/0jIfbe6qrjDlwvZ0ZU6UQyEEx3h2oemSIibPWk2shzYqz954x50JRirvtA/sYuGwMXkMeA7XVnF2ecrjf8vGz9/n8xQucBmXBNY7N2SnDg7iEW125cJb94joc9gOXpycEo/nq1Wv6S8uHF5d8/fk1Tjd8+ukTbl/f8M03N5yerDixDms1c05Eo0hRUQaoNTKnQtM2xMO4FBwzq/GGgsZah/ewHSInqw22JKacKRSG/Uh3ZjFKsKU5ZbpVz/nTJ7x5+RprDHOtjLXSUxnnif1cmEPhtG15+sEl2/nAfrtHqwZrC16D04gzOWmMc4xZ4if3u0DCcPH0jGE7YouipIn9WMjeMsRAMpUcM3GE1lg2JytOrWdSI3fzSM2RcbelaXtsYxaaxHEcKRRHL7RCWc+Tjz/m+z/4Jf70T74iH4SM2Hee+WbL/n4mJsXt1UDJlTzObPqe01VP03naojlvTxnWib7p0MZQaqbUQO8tH2TDtJu53j/gvVD1lCqo6qDaReAsa3dJkaZp6JoWg2J3mLm+e4Ey8Bd/5ec5WXswUjRfr1cMKTKVyDxNxBhFQKcghEwtGm8blIbvfPgeTy/X/MoPPub3/vs/5g9/9CfM4wPvrz3jWHhZIn3f0FrINtIYiyuJtfWcnaxxWnGzcyhnGA8jhELfnkjBuUhT2zuLt4bkDFVZbIVZRXI0i2BJU9US2aXffinHQ9G347CElLJEUeX8SEyZxsyrlzOH/Zb7uzuur695eNjy3e99l+fvP+Xi4gLvW6xqsd6x2Wxo2nuGw4FpOBDmGWdlX9W2LWen51xcXvD5Z1/y+edfcnt3zzAHEc2UsuwOj/QNoZ080mRKEZFFUVAqKUnRfjg8cHv9mlevXvDhq1d8+PHHPH/+nPn5M548OadtPe26ocSEdS1KWYzbMQ17VrnjdLPm6eUJHzy/5LMvXvDim2v2hwPDmJhjpGg4ud3imp51t6LxMNuZvj3hycVTvnPYMqXE65sHPvviJW+udxymRCkzUwmEeWDc77m7uebmzRVPnz7l+XvP2R/OOZycsu46ulVL21qyVRgyNWeaVcdf+Is/zy8cLnEm0zhD5w3egMGTi0bbhNEZbzXWWZz3dH3H2ekJz59e8Orqmpvbe+4f9hyGiWAUk4aU9duGTYWqlwbOo1jpyD7RaOpP7bD+v9TQyP0Bi2Bn+RchBsg4ijzKEjNY69tnopQjb2whYlRAL2KiUklLk1qrRahz1P69lfuJyMTIfCdR1SLCKDk9CnzUt4QaJWceIzHqtwRJdUESsDjUAas11hihYRUxelQkBu5t9lp928jVci1HSsJxHnhsmC/73YWPIO8hLtFyqiyxdyKoqAn0Et9SjvfMMsnXWh/j5coxJq5WGm+ZQiBGEcI4a9FKnlkhIohgR2hGEoXttJHzkRaiVE55ESpKUzwvjdNaKwYhAYGQiI5vQhlNTgtBQBuJUsvl8bOlZEqVKLkCSzzdcq8/3j+aGDPGqEc61JFYVItEhWmOECe1EAv0IuoSAZSq0qAzWohRowqPZ1OlpZkpsVJH2pbBOC3RMotIBkR4Zo0F5JyZSxVqbzmKzySKJ2URZQkETIi8aYl41GqZUUslF6CIqaXWAk7otXU54+aFllRyolZFjBHjHdY5VJJ7NleJo9ETQmxxVqguceJX/9Kf5ekHpyhVqaRvzSTw+LAdnwBVUUWRJsU3X1/zoz/5kiEU0C16ntGLmQc089KwNVrhrSEH9UhvOEa3u96ijOFktSanzBASq86hYqZWhfUt0ziLKDcIncp6wzwH2q7BOUtaIkWttmQMIWTmECm2YoxmnLLsowG/mJOKtdSc8J3n7NRRUiWGiZgkyqtxirOzlmkaGUMBazCLAKUqBcYR54A1hjhKDHs1UEh4q0mpor0np1nEKUSGuRDyUs9whmmcSAvdq3EiREgpMKdEyYlGaeYaqFbqEsLKVWzWKw5TZJyFtKa0EnFIyVjdYq3BoCTSzkCNcp5VVs4C2lRcK6IhNFgK0zzRtB26yjOVaqGEADETU0C1LcZJHF9FMYWZlCReXplFSE7h5GzFOIxUvcQe1oprNNM0E3Ol90K/KqngjEZbR0iBiBifQoJc83KuqYQyMedIYx0L4AVrGzCFmIRQGbIoPr1S6FJkf9g6EVcVEZXmOWCNwliFsyLAzlkIRb1RTElRtGOeIqve0vUr7rdbqoL12hMPiZqRGOUm8XB3oJbCppNogpiSPOMgkdBaMccZpQy2FFKMhJgJeULrSK0K7w0hiiDUWxF7hiLkkxqiPDMxyZxnFG3fM02T7CWpZDQGea5zqcxxoveWfrUh1MJsFbVodFkijBUYZyXmVAllryx1uZQKrm1EbLOLmFqJc6QqRdKQSKSimEPGaov1FqekLjakmc8++4wPP/qQpm1xTfu4Qv2YZUp9ax6pmqZf8+f/8l/myy+/Zhp+RPWVoiooqX3krAmpkNMtqhbWXY+zmr5tUbnQ2ZbZJlQvolyp/USUhvVqRYmFh92Oz7/4jNPzM5xyS21QKJR6iWQWUb0YAI0SInYIMylfY61m3TcypxmkfuadrEcxU2phHCehb2UhpAppC3pj+eCZ5fJ8xdXNlldvbhiGPZ1VfP/DD/jn/8Pv8zAMQsMyIkByS9mm8U4ocVETFlFsnAPOCr3puN4opST6s4g1T9cqhstlrTzO5I8CpX+pt/Ioajp+W48br2N0sOxtxiGTYmCaRoZxYBon5stLNidrVqseZx1agTMG6x3RzczzLLW9ECgmL6JohW9a2rajX7Xc3d6z3x8IMS0wpSNJ9tu7I1nE1XE/IJuZRzJQKUXmzXHgsN+x3+84OT1lvZGo5vW6xzmHtg5tHMVIfVVpi9aBkiONd3Rdw2bVcn+/42F7YBxnidFc9jLWz/i2oV0oSDllrPG0TcfJOhBzYg6Ju4c9u924kGeFYFlKIiUhyo+HA2Pfs1qvibGnaRta53HOYp1QwTLLfqLCxeUJ3VpMa9ZorFYIkFIDBqULOlfKQojS2mCdofGevuvYHwYOg4hj5xBJCbJajCZH2tbjP98aAQTC+a175mf8PPFuvBvvxr+54b3nP/qP/qN/LYHS1dUV/+1/+9++Eyi9G+/G/45HjJH/5r/5b/jkk0+4vLz8if+ec47f+I3f4PXr13z++ec/lWsrpfDbv/3bfPzxx5ydnf1Ufse/zvjlX/5lfvu3f5urq6t/05fybrwb/4uPn1ikdDzClFypdSEpLfEBOcXFoVVAa4l+kU6BnC9ZSELL4bpUiQpLKUlhWcths7JQkPSC/q9Li0ApOfxTEIuqJuWKNvZt0Vc7cQmnBEdHqjHiKDTSeK+lCup6iS+zylJKEmQx0txRWuG7lqoSzhlx6BmNcxJFEbOQlUBcoCllSi7MYcQ1XihSqdCuOokSKBVvLXNOQnCqWQRUpTLVQqiFtTMLfUmK90YrXNMyh4j35tElKKVfw5wrUcN0mIhjoneOqhLjlMTpbA2+8ZQqMXcziWo9qSqGEIgpSnxbTDhnmcPMHCZyVbRKiBDGGIyWz6NUcQbVxU2cUhDxihJnVEpRMui7jpgzzihMqeRq8KpCjRQnEq9UEq3zWG+ZZiExWW0wzlCozKPEvxkgiZpJbtJFvJUUWGfw2qCqiJ2OTreuaTHGMIcZ7xx91zMcDqia6Z3jZLPBWIl+G2NEl0pKUJko1eIs5KxJszQnVBWhWqHyMA7EKhFABiH1xCxF6/V6Ta0JWw1xTsxJ3KclzWw2K1LNXN9tAUMTZihZcu9PTwgxMoUtKEWIsHFWivOuoS3SNJtTpOwDmT1Pv+M4/Qi0Laiaoc7LgeB4KFCPJYdKQWXYvpx59VlCmXNW5z27h8jV7bW4jKuj1x7lWkpNdC5RY4Ji+ODp+zzc76k1c3LacnN9ze3tLe2mY5wDb95ccwiauxwI1uFOz1EYtNNsXIepis2m5aPLU/5keMO42xNzxDRCPutPT9mXQPLyPbfao2pEuSU+JVXutgfizRsabWm7FbWIW/T24Yamd5x0p4yTIuvC7f0dYAhpYLU5IR4GiWVKA51ticbR9Gt2Y6AMe9q+56zrKA5CmliblpvDxMm6ZX3akUKmWZ1xt33gMCVaNKfrls57Dnlmte64vd+B0kJy6z0xFXTJ7HZbiXbUDTWIW7ozhnblmIeRy75lDjuuX77GGEgx8ObVK3wjsYWETCiZ043F6sLdzQNhmlmvPX3r8f177O4GXn75gu7JhjRP5KRJIWCs4zAlapJia3/So/KIsxXTrKimoVv1+Jro1j1xHJmHAesqXmu2uwO5WoxqePnZN5Bgdb7BloBWhU3fMw0zX14NlFSZxoHzfo3xlbP3z4jfvAJjGceBL78YuLs/0K08nXe0xnB99YagpXB+td3S6TUxFToHN7cvGcOBghDFGu8YdltKTuxDQK96jLXkMEPS7OeZbp4Z9nuGkDFTItaEbgzDYc/LVxLxOOTE9OYOVQzKSmHu9OklYZRIL9+0QoXJsB8moo74ixNWXcf+7pZVb3n5+oY5W843G077niFOPOwO5BiIFbxt2U2RVdfSNQ3bmztUjXSNg7liVivmMBDCzDhrNr1DKUc6DKxahzk54+H1DWEeef7hE67eBMb7kda2HA4RrOEw7PGtQ7Om61Yc9nt5fqwm7gOqKFpjpGHdWggTQ6rM1xOdlzk/J7lXXr18yWEKXD5/n/XJGSzxUfWxrXCUKEkDXts1v/CLv4rD8cP/5/+Dy9sXPExbYm4lOmsqfND1NCZx9XDPk+cXuN7z5as3fPHy9luCT0MMcREHCC3J+Jn1acdUewpVmlVlcZeqBX+vDbZznJz0RJ3xtkGrhlozIe755s0bnr055dnU4xpP5zS2WUnB37QM1rDb7dltJ2rVjGEGMuiCs4bGeTb9itP1CU9PT3ly2vL5yxdsh4mtUZjWY1ShX69FuGYMLeK4fdhNnGw6zlatrKNGU3JkGHZYZ+k0zAqSMzTekKtFKYl0KVkTjdBUai4ybytQVvYFtRzFSd8SQyhxtFMWwUouKApKJZwWgdrDnQiz7u/vub6+4e7+lh/84i8QQuDy4pKubbC2wWnL5kRhl+jIadgzDgZjNSEEjBmxTrPqPJfnp/zJn37BVy+v5d6LiVKSCNmOIuVypIzIn+VjJJxNUBIpB1KamaeR7cMDV2+uePnNSz765FNuPvmIDz54j+fvPaPreqwxWOfpT0/xXcs89szjjjCPaGfpuhVPnjzhm/df8fkX3/D61RuGYeLN1YHD8CXXVwPf+/h9nj09xzYdjYY2OtatJ+XA2XrNk9NTvvzmiq9eXnN9v2WeE7kkDocd4zzy8PDAze012/2WD8b32W4eWK/XnKxWdG2Ddx5rFTUnTlee955f8Kk9Q1eZ1xWZlGbCLM9UoycMMKcGtAVthSpi4WTT8MF7ZzxsB755ccU3L95wc7/FTZqYiuw3i9w3aYmGQIMqWkQG3xZL/AzHvanFMl8Xs4BenP6VupDBvkVvWaKW67dd9kohPyKNK7UImeoST/TjP8tbgtLyB/K71OPeSRLB9Leu722s13F3pZT8vDbmkYJGETrR8XxTF/HK8fdI89OSUkEvAhq9EGmP4irB14irX2LqKilFtLWLuLFinZxQqBWrzXJd36JnLiKeXCqNFqOGnKkksk4bCzmj3SIi1McGsiZpKEoJqSYWoTAicUryXUhMWwWM1mQKVIm3Clli31BK4qOMxEKnnETEtUTqHD+7o0iqVBH+C/Ehy3/Xy32wkI+MM5QiVCJdRcB5JJ9qvdClahFhkxPqmJhHJMayUkkpU+WPpQGuK2ZpvOZayYgbzR4JS0putqokikxrJfFAWuOtI8aAEF6FyiPzWyYtJCkhHAmhSRID5TtX33r9SpU9/UI41VqEZXn5nHzjqLUI/SfJs16rNMAb70QYPc3IGVTEqY13+FaiVFOWQn/OErldkfXzeK+kkqkhU3Xg5//Md3j+yanELrKcKf5HtI2jbEne4LzLvP5mx+//wWfU5Ts7jAcx/KDxygidkYLVS6Zp1Wz6DfMs8ViNt4zDgWEccd6SUuJwGIhFM5VM0RrdtgjJUeGNQ1XwjeOka7l72EvzuxzFN+B8Q6iZbAClsUqjqpDolFrO3FOglIhRGuc8tVp0LYzzAWM1rbPEqKi6Mk4TIOu4axpKjEu9IeKWGG7jPCFlagxY72mtpRrZu3itGGOi8RbfuOU5bhhniQm2yPfpjCFWMT+MU5LY8wo4iaVUReJ+tIKqDCxRZU4J/TeHRNdYUg4M+70Yq0ph2O8lXlEmMtmXeIk9GsdJjEheRNPGrQhjYv+ww/aekvIjBVtpQ0gFtwj0XOOgJIwGZZ1QopzDUHDeP0bVay20NYlFzRjXMh8m5pSxTYPWBbNMuY21PNzvFuKyEMoa12BbS5uEoFZVYRgG5inQ9K3EaGrNGEUYX4xnilGIdcv5PaaJOQQSYKyjcXKv5SRGqmIUjbHgDTUkcsrEJU4yHWO9ykIsjpXdbievQSXMUfbTpWKsQllLax0pyvPqvaUURYyJXDM4hW97SpxRpZByYhgjfd+JSKkqYk6UFFFaiN0xS5j8umsI40zJS12qiBiy6kVQk6qQuju3nAGFehymwDxNrFcNFMU4RTSaEBKtbQnzJHOm83jXUBGBd110tDlmjNVQFFV8cxQyw5Bw5hhTFZlq4g//4A/4M9ay2pzSrdY/1qj8Fp/lWzOKYbU+49//9/8D/kH9v/DNN18y5ZEhBJreMs+FrjH03jDNE13fsu46xjCz3Q8Y48hlof8sgmW1hISiKtZbmtaTcuTNmzd88ul35Hcv700rWYfbxhFixFihcIt4d2KaM7fbLUpv0EDftfSdkG68l9jDEAIxJHIS8naliGB4ISEZY1jbnu6Dlr51XN3eMU4TRRX+8v/xr3Jz9Yb7m2tu7+9JMeG1paZESiJDc9ailzVQwVJ7MxgFDkXWYI0m50V0vOz98kLvO0bQLsVD2deIaunx23jU/Sx12kfdSpU1QRsRDsVQ2GV5z8MwMo4jT589IeczVqs13jmhABmHc0IkTDaKkDMG2eMmg8n5MVaxbTz391sxyC30uWOE9PG7OgrCj6RN6nJKVaBUhpql3rbEKY7DyH5/YHNyysnJCeO0YbNe0bQtWouQx3qP1hq3mFJzipIKYAxt27HeDNzfb9ltd2JyDJnr2wPTlDg/2XB6spKziREBlTOGUhLRF1rvWfcTD9sD+2EkxGXPXhM5J0IMjNPIOI2cplPauWXyjazhzmGW66g1Y42mbzx9LyaokgtUuTdyKtSqMSqjyJSjElGLUVgpsFbT944YN+z3A9vdck1BBFQSPSyix3KMjfzW3vxx373cG+/Gu/FuvBv/8tBa85f+0l/ik08++dcSKP29v/f32O12P8UrfDfejXfjfwvj4eGB3/qt3+I//A//Q5xzP/HfM8bwN/7G3+Dv/t2/y/X19U/l2m5vb/nhD3/Iv/fv/Xs/MzSlp0+f8p/+p/8pf/zHf8zv/d7v8aMf/YjD4fBv+rLejXfjf5HxE4uUQkxLbIkUwBWaWrMQjlQlpyTFbKNQqiI6IBEu1bq4f6zFW03OgZiK6HWQori2hpgLVIU1QueZp4mURSUpB24e0f4YvRTi89LwtKKJWtxdc06oFNDGEOKIM04OuqpinRfkfJjRWkved0lY44gponWlbTspECotCPgsf4+qJO7IVuYZKBGNwihLEX0U1hmEKiDFQm0MpCBuRuWw2jLHyJQLzsCMFJxVVTTOL03KStt6rIa5ziIGClFiCZQhl8TDfkdNR0Syoli9OFXFmdw0DlQhxoD3LSUlwtK4SGFaokcSMc4Yo2m0x2hNTZmgDVOu9N6CKqAiMUaKQhDVFDrb0BhBax/CzGGcMNqy7hvm+UDRYK0XJ3aqxDRLcyBLFF3XNkLLKpVcM8NwYA6RznnSlFite5x3KAVNYyEF9kMglYql0rSOOEdSLdSx0npLComYMiVP6AreWNq2YR5mVKmoXCWGsAQUCtda2tYTw0TbrNju95Qqbt0YArZK4cU6KwtmSaybnofDgG4s1oLOM3PMnJyecog75ppQRhNLIoeMaSWqkKyZpyBFXmuJKYtzc30C2nA/HMTZ6qTAf3G6ogC7/T06PvDx+5Vnn1iUn5fGVkVhBZNNXUR9hSMzW1XDuIU//f0Hxt0JnHha05BzwJLJCvbDyNl6hTGa1WZDRlyiKRXGw4EyB3TnRIhYDeu+wxi4utsSqyKEka3SjMnSNQZTFa313O8e6JqORmlefv2SHCMKh+8NF5cn7IeRfuXIvuH66o5VZ7HdGZszRbeC69f3zIeKP+0JthKmiI6B4eaOISY++vg9VrqyvX1A1yrOz+oZp4k5ZvRh5qJfc31/xaYTHH6lkMLE/WHg5KKllsScVzSrFrUdMbny5NmHXD/cMx9mcsxMZHpjwbci1NNaSGexsLt7oCQRYyYKpfM0WuFsS5wGnLM87G4Jjefp+QW3wxt63THMM3WdoCi8b0gqklLCu8p+njg7PQGjGeeIK4k5ZuYCD8OB9fqUkh3WN/gu8XA3cLp6jqOgVi2H7QNxN3HWn3IYZ3ZjpTlRdOs12s2EOGNKxoWAU4UyBmqIxBSYckbbhmI8bVNonWXTrdntRsYUCdOMcYYPPniPm9e3ZJPYD1sKDa/2W1xT6aZMq6SB9zBPKC80t3mUaLrUwLOnZ6SQeXk/kFTDtJsZ9wPPnpyhbUM2noeHPUpDHDPFKGqcaJ3n5uZA03lOz0846BFlG+YKocDJyQmNhqs3t9we5Pu82ytOzjd0Fyv2D1tWrQOdaRvLR08u2G0P3NxvqSFjTKVqcaH3OEJMJBVp0KgyUUicn52itCYqy34MkCtN49jeDbStZYwDjT3h7iGglSKFkWwMekq4fsWsDf3JGXG3I40jd7mwq4q4VUy7AypNVFV4eXdLqob1yQpbFPfbiZAkElN7w/Cw46s/uaUQaDYXNLbjzbglTRPdesU8BA4xUYjoAmGArgHrHTVXphiZy56SQWVppNmmRy0RJks3mSNBBDRKdTRnz/m5P2eY9q+p/2yH3cEA0K14kjLfv7wkD5XX24lpHHi69pyddNwOBe0Nz7qO+/sJq7QU7EPCGUXOE03neG4vGafAYQ5MYZZ5TUljXWtpOnaN4YQVukqMh9IFU2Hajbz8+or2Ox+waRqhkV3fkmPBO8XlxRmlFO62B3LO4kz14pyeZol86Ls1KU+03vIX/twv8sEn7/Ojr77i9e01l2XDYdjh244wV4a7QaI0dCZM0AaDdjDEDK7S+w6tYQ4TThtWXnE/DdQSKSkwh4mUCnHOQgXIiUql6xztusF4i6qKcQiEKb4VHnzL0XqM7sAI/UUExYGqDJVEPhRCjOwPe27vrrm7uebP/PIv853vfJdnz59xerqRyFff0RtDV1qa1uO9xxnPMAxY4/FuxCmLM5bVqufy6RWfffYlN9d3TPMifFY8CieOkRqqHhv0C5EEIcSkUqEU9iUzzhMPDw9cX19zdfWGu7vv8PCw4+Lygq7vWfUdfdvQth3WGZy3jGODsh7bzLi2ZbVe8eTpE16+eMkXn3/Dq+t79mPkDz97xYs393zy8ft899P3eHbWs+obdPaU0lPNSNe2PDnb8OF7l3z59TVfvrjidr9jjtKsHFIkhIkpDBzGLZcXT1ivT1mvOlb9Gt/0dG3D2aalaRShepzuUFoa5zUmajVoI+Ju5yCoQBo1zom4ofErmmhJJTHNntY6Vt7z5OyE19d3vLm54f5hYJiikBZzxqYiIrFcSPrtfvOt2PBn1/mcc3nbEFvkMm+jJ4TmcYw6XHY1jwKXR9f/ct440oBqXUgAZqF3LvOXXn4upbRQdSRy8fhKpX6rAVOrkIz0sUkj15ZrhoVAkXPEKPP4XozRS2SjEIdSLo8Ep7I0Ua21S59HL9QexMxRlhgXDSkfiQGglHkkKGnzreic5Zok/m0RMx7jpReDQ0p5+YQKxliEtAnWGrSCVEUoVVIh5rQIvDJTCKKyQT7suhCfjgIPETxIXJc2i4BqIT+UnECpJXokLY5+vdCQCllpUq04NELoy+RF6JWrCGGNNlilwShCzoQl4so0lpwiVUmUWylCPRJy0BLDphTOGh6zcGoV6mwW8kfNBevs8t1LzHYoIp4oVXaH1hoRLtRKTSIGk/cjookZEWlZI0IHVZDzC5qKELbMYmjJOWGMJwYR5WhzJA7rx9h0bQyqFLx1TEGMPlqDKvLZNE1LzSKKOppFaq4op0SIVZRQY40BI2adlIqQTJRiiuFRtFVrpWs8FQhhQpfAL//SR/zKr34P5cq3RAT6WzLl4123MBaqIs6Kmzcj/+z//SMexgnrPLXMEn2ohLjbNk7oMI2nUJjHSCmVGAMlZSEXF4lLapxFacVhmsnIszWjiFXjkkQbWW2YlihvC+y3u2UtqWin6XtPiFGMREYRhxFnNdo1NK3Cehj2EzmAaT25CJFZ5cRuGEmlsDlZ45WYZNQSO5SrIS1UYBUTnfMM44B38hwc7/spBprOY859qgABAABJREFUUksmV4exFqYDqkK3OmGYJiHi5EpSBac0mMXUpWTuIFfmPFEXalahUq3BKoT+kSJGK+Z5pFhD33WMuwGnLDEL5VhVoacVJSJhoyshBdq2Aa3EQFELOVVShTlGvG8oxWKcwbjKPEYa79HMKO2ITOSQaF1DjJk5ZUwjhFOVRBigqJhSloj1LCLDIp9bwspz7xug0jYNWQcxHFWJpe/XK9kr55FYMgrDHALTNLFxHlMlBikpS8gRa4XcrBZDm7MG5TW7QYxWJBF5Wq1wzlG1JaQZh2Iqlao1tWSsFjpyotCuWnDI/awlPtE4i6mQ5sQwz5RUsVXqWK7zhEHE2cZptK6suhZvLfs6kqKiprcRoLZqoZfEJBoCxPhlraLxXj6L5fk1RlNSYSqRTEQbjUzNFUqWeLwiotZYwfiGqiNkoUbPpS6GlUTNCUpmmOtSgzM0Tohtu90oIlYje/39disCG2PwXs6waZ5xpZG615iFCK4KKVZi1izLGqVUvn7xNcZafvCDX8RoRdP1jwJc9biAfXtolG15+uFH/OX/w1/i//Z/vWY3QKyV3lhcW1h7R28820MghQC1pXWGWhWpVrquIYdEVoZ5nhhDlPVTiwC471tStFxfXXFxeY73l+hH4QWPhPS29ZRSFwFIFQF0qRx2A71vaPuGWArDOC1LjKLxYpBLwygmSApHDVAplZAjrjqyqKg4P93Q9S03ux27/Z4P1o5nz09B/RyHw8Qf/v4f8fVnX4CWPUhNYI1iLgmbK42T2mEumVrBW82UArWIUEdiIosI9kp5XF+1UThvRWymtFCZQkZ9+xxx3IFVqSMJrVAcELUUyiImrKkyFtl3zvPIMB6YxomLy0s26zVd32GtQWmDcR5jDcVZTDDEYAgqopVQKs1RMGQsXddxf//AbncghCh7uqNQiWXfp+qjbv3tfuj4ZwuFi8owCo18HCS6eRzPmM/O6FcrmsYLFdlZrDFCc9OabCxRG1RJaJMx1tK2LZvNiu3DjofdgTkktvuZYQw87EfOz0/Y9A2tt+iqUdWilvW4bTybvmW7H7l/OLCfRhGxVUVOUWjzKZJyXKLpOpxzNN5hrUToNd6gvCVVJdG7SqNcfdz7KL3QCJWlKIkr1lVE/VopEa8tewmrM1arRUDVsR9GxmkihCXVoAp9UkzIx8/+W0aB/8nn9914N96N/70PpRR/5a/8Ff6df+ff+ZYZ4icbKSV+8zd/8x0F5N14N96Nx/Ev/sW/YLPZ8Nf/+l+X2tlPMJRSPHnyhL/21/4a/+V/+V/+1KhsP/zhD/n+97//r0yM+2kNpRRnZ2f8xb/4F/kLf+Ev8OrVK37rt36L3/md31nqwe/Gu/G/3fETi5SsdXL4Ji+uZ3HYKlUeYxIKQlrSFEji3tFWY7QjxUrJBdM4StZQpRgjKSVHRLwckihK3DdaizuZQs4VYxzOORQZY6SAmFNG14xRZnG8GrS2YDRaZRpvKdNECYKutsZJs6LmJU5OHMjKmMXduzQCS8YYh3GenATrnosCLM6BoYi7yVpiSlSthe6DohpN4zwKzZhnQIo+M4IVfiRLWQclkmvFL45EcTlrrNbEUhhHaULNcURXcWCWPNOpBm8sWRWmmjBa6EIpJ5Qy5CQHU8g4Z8lkqlHMuUgxNYsoy2AoyuI7vTRIAl5JgXaKM9EYtBano7GWWDMr0y1NXkSw5RRGG7JReNeiTYMyAVMzpoIENyQqEoFRS0GDXFeWqEDvDFOpNJsOrxUDMwmFLmCMIuaALhG3NEnMEhOodUEF+fypMIdAKWCcI4aANjJJO2MFx56rRFpME+1qg24sUxhZNw37OVKtxWlDSkuDvELjPVXDNM4ScZgzZ00H2hB0IQI5ZUIOqMZgi6Wi0RV65wmqcLrpOfUdQ0zEDMRKzgNGFWpuCFPAaUA7Qkq0XjMOA3OKrPrM0487zp8rtEsiGuPYjFSAQdUItVKUuOB1hO3LwOsvAvPBoFvH5uIcVQyjOnDSrKQZZ/ZYlQkBXn61Z33a09qWaRxQbi1xW5drphCoVhFSYDqMGNNhMehUWF+cYinYHJlz5WEfiTmThx123WCMw5bE+WrN+nKF33RcPEs01nP9cEBj8R68G+nNhpubB/Yxk/KMmkCbivaOh2mEENicbNi4hsPDjv0YyQVOzp9gT05Zp4ZqDYfDyO3NNYXE1VaEP5tOoiFWrefy9JI6R17fb/nw6YbSe2hWkCa8UnjfcZe2vLi5oTc9XeNYrTylZLZpRmdpdrbeQIjYvmXjHJdPTkjFknYigOtzZQyZ7TiQFXz94hqlDUOMnJyc0rcd6MjNdktjPToWwjjTNZ5xl3jx4ho6w3rVsupatrste2VpYkfXG85P16yaBqUSKRv2aEy3xnaWtoLVsOk63OaUF19+SYmJMSecb1DWkMaMq57NSc9+u5Xif6h4oxmHA7kaus0J4zxzvw+s+xNu3uyYponDIVBTYq0d2YNtG3bjnsvnl8RYWLUbHHDZNcSauNkemKbK6aZhzhPWWmqGs7MVqXd03Yr9YYKSabtCWBoWT56sOW1PuL6+p6RAJaJSpAx7nI/EaqnG0TcGwkyqipwTa++IMXPYz4R5ovUeUzPOGbq24+r2ANWg0UyhcL3d0657Vk7jG4fWFm0Ms9bYVcN3Nqcc9on77ZbmyQW6FuYUKICxhinNEqWSDY1v6BrDLgZu7/ekWNnoBuscVSkuTi/QKrF72IERl/3KQkJDgfubB549/4C2tQyHiXEYhLJQW27vHsRRPlfOz1vOdSbOB5TVECBWi9u0dPsDm65lGAf05QlKZdreUWMl14LxjtYZTIkcdg+sbYe16rHo+zjqIohUULGY/pTv/uqv86Ovvmb7+gFXFDoW5lh5cbPHqobDXPn88zf4Wnj67JJzV4k1472mW4kQeSoNh1cHdsPMIc9gCm0u9EpRG//oBq1IAT6lxDxEtoeR8yfnhGkghIyqipIyw7znzZs3XJyv+OCDC+ZxYvaWs5OGHDNVVd57+pTGOW53Ww4j5KRQpWLq0vRcXMcxVyyO9y+f0jUtX79Zc72/53orUQ5Nr5nHmWHMUsBfGXjaEVNiHMCQSZNQ8+ZUsAr6tuGs7VCpLtFWlWGMBN42GSuVMAaUqjT0NN7Tek9J9VGUnbM01qnSID8W8YFFcHCMalCUEilzIedImEcO2y3Xr6+4/pVrfvCLv8CHH3/M5ZMLWt/QuIaUJxploVhqtaSy7FMWmiVK0TSezcmK89MNn3/+Fd+8eM3DbkeIUfZ2+kjfKktzaml0l0pFL1EjhYw00HKJlBwZxwP3D7dcX1/x5vUbPvn4Y84uLjg7O+f87JTTzULF6jZo19Ku1oQwMh32OOfoupaLsw3vPX/Ol1++4IsvX3Bzt+N+H9j+0ed88/IN3/3oGd//5AMuTqUx6psWazr6LtJ2LRfnp3zyyXO+fPGaL755w8N2EBJCFErF69eVw37gdH3K5mRN1/c4v2KzXpHihlI3lLrmXgfWradrHd56dKNxWuhZRjUYE1FGSFdpERgYYxnngWqhtkLPWZ2uePL0nE8P73F1dcfLNzfc3t1zmALTnAjGSlTGUbDx2HhSj676n8WhtVnM+m/vEaHtyPOnlKYq3rrqy9Iq0UqEKgtNRBmziCskWrlQj5rKtzSAKgQbJfgEjgQjrYTEoZSQhUpZYr8oaMwSk3Yk/MjvMUZTU3qMfRPRzEKvWppk0sN8K7o6fi/y+5ZopCWuC4wQSeTSxGCwEGiNEkEPSs5DoEg1A4tQhoLRxzcKSov7vlCFWruQzY4Uo0IhxoXUtIgLShVylVVCTq2qkqo0aY3S5FrEGFKkOc3yOyuVqqVRTC2P8WdiX9EYtzS4auZo2ci5kJUQYeScppazj4isqEIt0kgDvip5JrS2FJ3Rx88T9Xif68XqrxFTjHyvVT5HKtY6NBBVoqCWj/NtPJVe7kG5D473i1wLmsdzDkuMtFpEXEZpymIMkHNowrsGZRUpRZy1hJyFEqgMpUhUGVVisFCQohTRaqm01gGKvMS8SYxNRlmFrm8b/dYYMpXWO1pjhfpSgQylBJEYFYmOkhRDQ84FayQGLpdM4+EHP/guv/gr30Fbjg8Kj81IUQnKtSmJwVYF5l3i4Tbwh7//GdvDnma1QlVNJNDapcmvZ5Fs5cz+IeBaaaynGDHGY6zGd16IGQpSKeQQJXoHLeThtkUjRNJcK8O03F/MmGpRWqNTofMe3zuMd3SrilWGYQ4oRJRoTMJpzzDMhFwpNUEU3YTSmjklyBnfNDTaEOdZqEgVfNujmwZfDShNiJFxGChkDnOiaz3eKUrJOGPom56aC4dpZtM3ooIzYmqxSqjLoQR244BTTqISnaHWwlxEMHAkE0PEaEtjNF3fCo0rSC3FlSrx7TFSVGW7HUApYsk0TSNxiiozzrPEEJZKiglrDGku7HYDOI338vvnORBUwhaLdYq29XhjwDtKVQQU2nq00xigVdBYh2kadg9bcqlCLjV2oTMXTDXYxhHmiZLE3Hass8whgFY459kdDtSqsaEshMVMjJFGK4o2VG1JOdK0Qj3Js1CYO29RqhJzYRhnus49EupKVnhvabxGK0OpEGPGOXnOczU4DaenJ8zDBFRCiqhSIC1Rh9pSKhjjUDVTs1BGRKMpQqKUoogsljMWWkjYwyxzh0IxDvNSC7JoKo318mwrRdWa9brDzYUQRbxsNdScZA7TkJE13WKgKDrvSXEmBKHDGi3xbSSF0x7TKMI8UyuUBE6pRVyiiXPE+Ya2k/rTHMOyromhLcaJEOQ+2WwcOkucrzGWlCu+bTBlXih9hajEgKZ0XtZjobe8evWKVdvwc90vYnyDteZ/fJ44ih+UzGpVW77zC7/Id7/4jH/6T35X5oGcIFemOZN1IhUIh4BRe85OV7StZ44RY0BZhXGgjGVOkTgHYs3kmrFaipypZL755htOT8/AOcoxBjVlhmHC9y2OKuuPlmtOMTJR2e/3rNctulZClIhrDZSaadsGhWKaJ6YYKQslXWbN8gigyVU+gtY1PD01dN6zHw8c5pFcMudty6/9+V/lprnhT/d/igmGi+GcYjXpIBgllTMqyVpMBWc1rXMLvk+E16EmYslvVVhV6Ds5JMBirVB6iqnLFF+XyNRjjPRCzavfWmuXvbwQKouQ3GolbyXKbTqMHPYHnj57ytnZGav1Cu9FoETNUAy2KqiaUhQZjSpSr6uI8Nd7MQt2bcv9w5ZxnKSuuvwM6jFY9+1t9C1cZl3+KU2ZQqxiMJjnmWEcOBwOcm0rISp1bUvbNDhnhMhvDNpZIRGmgAkS+do2jnXfs94cuL/bsj+MhJi42w3sx4mTVcfF6YaTdYfRCqUNXmtYhOm+cWzWPbth5O5hxzDOQkOthZwi4ziQc6LxM41vmL3DWBEq9a2n1AaUJ+iCsxpn9CJmdmi7iNqV7EPRGa2yxLiVo4hdAQlMFYOsc7R9w+ZkxTTO7PYDh3EkhCjkOLWQ40p+JFh9S8LGu/FuvBvvxnEopfi3/+1/m3/33/13f2IxwXHEGPkH/+Af8OWXX/6Uru7deDfejf8tjlor/+Sf/BOUUvzGb/wGWuv/+b+0jF/5lV/hRz/6Ef/8n//zn8q1jePIb/3Wb/F3/s7foe/7n8rv+NcdSinef/99/vbf/tt8/vRz/tE3/4j20PL8s+e42WHyv5qI9N14N/5Nj594V5FCFHdfFTdrLpJ5br3EGdhFXFHqEnW1FIM15tHZCyJqqQWaxpFLYY5Fcu+XA5X3VhytKQmOPUnRveoqTUoFzkhh2DkDqqCtJuckbt5asdYKMcfqpWiuKLpScyZkKR44/xbVW4loPJpCYx0sueohRIgJby1LgAJWaxQSPcO3mkBKGSoSM4e2WG0pNRPDjLMO5z3RVBE95Yg1QpeyVdxYcSEuVVVZ9R0xzYQQmIPEzRWUvI7SlCyRcd44cIqkpUneLr8zF81hCEyp0DhLjhm0FnQ0CmVbJiQaoqiE8pqCZjhM9M7jrKZz4j5OJchhN2uYIrYxeGsoVYsj0RRiKlhtadqGlKWok2OU2DZdgCSFkOXw7oxgjY8FP1Uy3nn6pkc3jvGwR3skliFXtLfcbWecVqybhmgyFIjjTHWGbDWNFYpSY+W+apwUxkONOKXEyalYHENJBAvOSFyBdRymgHeORlvCHGi7Fr9yxFkcT+JiXqIFFNQY0VSKUQy5stmsFgefJZdAow25BJJKaNswHCJzTZQYsNqRiqZ4zzzsSXFkc9HStQ3X1zsKGes7cq00OnFxkbl432CauAiUjg4nKS7pWoCMxBAaiBDuKz/6F1uurgpds+HZxZrLpuXLF1fotiPEwhgHqlMMU+F+fwCt8XNGkwVDbydKmri7EQqSNY7DNDPMCa13Ell3ssK3HX3rGHY7toeRwzzRNz2393fs1YaV98zjSNlZtiHT3gYM8HL7CtM6Wm/Zbh9oiZyuTyBaVJ5obWHVW4YQCTFKIzZlim/56vNrjHMUpdGmUKPh5sUN7z8/Z18ynTOEqTIl0NYzTDMX7QWTzoS8Z7cfSMPIk/UaO82kceDrYcZrzTjuoG1o1id86FfsdxPOaGlyGE1rHbZqkrH03uOTYp4i827H3mr2u8zKOVzjKdMBXwunZ2tePNyxHyKrTYfREumRdSEeBs43K+5vHzhZn9D3K8I04gOU0vLkvSdcNpZXX79kCIrTZ+d06w6ojOM9035iuLvDOU/frBjyxJvrG+7vHzg/WdPtNcN2Yrwf6Dqh0rXW4GylxsJuGNnPiSfnFxQ8cU4Yk5lT5BATKmTW3mOenHI/Zm63IzVN7PeRVePYhy1Yz1lnOd+ccDeMXN/fc3l6hsmFYZpAGaptySFx9fKaDz99TuMdL754yZOuY1cVN/f3aGt49mTFPDleXg087O8paoTLDXNOrNYNq80p97d3vL66ZXOyQduG1WZFrmVp2lVSyewOmcaveXLWgwoMQ2J3GEmHic0E/abQ+YaaZA3ybYNxlkPKDGXmpIHVuqfxG9rWk4YKJNp1z3Z7QFeN7z1PTlYcppH9biYXy8M440PiYR9pe4ezLcVUhjixUpntnGliS9eKmHWYA4ftlnXTE2Ok3bSsnWEeD3SmwZSIKgFvNH3TY7WncZWrlzuG+y1zA65t8I3D1cJhGtGrNb6xtI1mngzjNGKNIPYtlRQV97s9czuRQoNuPX27gtUJ6GM7WL0lmyzrnBBNDKvNBZ985/v88H/4EQ8hUm0ljYHqOqqqnG5W5JR5cX2H3Zyw8g2lRKLOuAZZl1RmzCO3h3tmVVhvGhpTSSEyTzKfCblEmnJTihxCpljDxXnPw23g1e0DK9fS+oYpzmRVOOy33Lx8jbOO3TTSd++x6VvudgOmeNabDcVCrHu2uwClsF55nAZtFLZo5igihBIrvlq+98HHfGw+4sXNa7588YK7hx22aUlV0faGEGf2NeKdBxL7aUS1isZZjDaUWNntJuZxopbEZtXQt55bdoQwk5P0xUuRJnUYMmEYOLgRtbh9jalCTEoi+ElLxBtLNNUx5ot6/HcRNQlpJlNyJobAfrvn9vaWm9sbfvBLd3z66Xd59vQZJ5sVxjqU1bjO0GuDMoZ5HEX3oQ1N0zDPM845vHWs1z2XT874/IuveXN1w2GYKbEsREuJ963kx8iJUhLS7tSPRfRahKxUSuXh7obhcODu9oqbqzd88OFHvPf+BxyePuFwfs5ms2a9Wi1NhpZ11zM1LXPfczjs0EZjjWPTr3j65JLPv37BN69ecv+w4+ruwP32S1682fLzP/cBHz2/4MR7Cpq5KjCW87MN5ycrnj054f1nl3z1zRu+efGG+91ACInD/U7m24cD++2afr2ibXum0w0xDewOAw+bmcZ71quWzbph1Rk6b/DW46y8X+sMvlS0aohaE0MmpoK3DQaDM46ihZ6w7iNPNmvevzjj0w+ecHVzz5cv3vD6ZsvDfkbNARXUErGlvxWN8bM7Ss6PLSe10ERqkedP68Xdnsu3dEZvxTb10R0kUVq11iUeox7TlB97dNpoaV4XiQXLSywMVf4sgUQOFTFb6EV8U4/RcVoD0lB7G5GmQElzT1K+RLykj3Sm5YxErSIiUkLNyTlDUdLMWoQ2Wi2U2aNA5vjOlEivjBIyqloahDmnb1F4RKRVS15eR6Ewi1iL5VqFRJtzWmLJ6hKVJkKhiqYqaaZapUErihIRh1UaU4WyE6IIdIxe4rWVNBeFaKWWCLeKUgW1RFfGkHDGYJTCGS2EmJoXIoh6/H7MEu1d9cJ/KkKhstaQayXMYYmPrEsUSXkUX4GSGJnFwXuMyzPa4KxQXmMM6CNkqYqAaZoTRimJWSqLECuJqKgqJe8zZzHJKCFz1VLIi7Dp8fdVuS6rjRBJlKIaif6RWB4RNxlr8V4IKbXkxxgerRRVLRGHaGpVBCXxbXIjCLHYKLUI0IrEpsZMWpqyGi19amfIMaBKpOkszloOwwxINHoFnIaf//kP+KU/+12MYzlPHMdbcsWPmSCKIk9w9Xrkv/9nf8ybNzesVms6a3nYDmjnlvjJKCSjJEYQlMYkeYZjKmCE7DKN8l61ls8ppoJSgaZx+Oox1uKcJs6BKSZiTjjjGKeJCDhrSDGC0cy5Yk1Gqcpu3qGNwRrNPE9YZWl9A1lDTVhV5XVLlnlgoaNVY3m4H+T8jZLou6IYdyPrdQt1xmpNBlJhiT/L9LYjqUopM3OIlJjovUenRImRXchCSIsBbI/xDRsjZ0q9zDFohdUaXRVFa3leityLaQ5ErZnngjdGri/J2an1nt00EWLBNX6pP0BVlRKimBzGCe8ljjSliM5gsHTrnt5o9tsdMSvavsN6iZOMcSaGRBpHtJFnKMbM4TAyTRNd05CiIs6JOAXsEgVmtcJoMVGFGAmp0Hed3KupLCKHSsiZlAqNVaz7lmGOTDGjcpTmfYLiK4kqP9M0FGA7jCig9y0xiggwF1C2YTiMtI3h4uKE7f0OrxXGeHbjTFXgnaJteu63E+M8EoLCO0VMEWMU67anVsXhYVzm1ozzHm00MaSFLSYCFYOh7SyNU+zHQM6VaQxYayllwrfNI2FOW0NVioJiToVWSd0BZ7FO4upVlfpVLRCDzBPOyho4zYEUlzNNTMQUURqME9FSzBWVE2mJ+WyVQ6EwSjFOA3UR26ChbbxQ4pLULbQSGp1RFtt6FBKpl2IkjEIW0sZgnSLGTE5J4uRUQaGYYybliK4KvZDHpjkTQuJPP/uc0/NzPmpa2Zsuc+XbGOnjP+vjjGOs59d+7c/zL/7gj/nqxdcoC2JOVDgjtEKnncRDdg1967BahLfVgNWKmEXYNaaJUDLa6iVWtZBj4e7+jpcvX/LdTz9FFYnW08qRKqy9xSm43w1AFjFoWojYKTIcDtSmIdWCNnCy6gghM00T1joa3ZCVYpokJtA7EaUfBb0UKEXERhRY+ZZV3zPGmbvtA8M4oo3l6S+8x39n/ymhTHyZvuZyuMBcW5790VPI/pH8U7LMqSWJacEYhXde1olSZMqDZZ1ZzhVjIumywK2ETqZR5OWaJEr622LVhaz0uJ9a/n/UMn8WhqEQY2SaJsZxYBxHzi8uWK83dG0r84My6GVf2ygR8ca4cPuMIRtZK7VeIrS7hoftlu12zxxkXlCLUOYYQX7c3x7NGEfI0mNGWc4UXSmxkLdiBhiHAyenZ6zXG+J6Reg62qbBezG/WuvRDnKyZOsIMRDjUqe1lq5t2e72PGx3HMaBGDO39wcOw8z52Yaz0xX9QtcqVfjmzkmts+8bVn3Ldndguz0wjBMxF9IxYnJOBBfwjQiJnGso2RNzZJ6XSGmjZY10GmfFwGsXyqZSGlNBWdAZsloonKpitRWR6fLZlFIoLrNuGzbrjmmc2e4PbA8j4ywkehKPsd3vxrvxbrwb//JQSvFv/Vv/1r+WQCmlxD/8h/+QH/7whz/ztYp34914N/7XH7VWfu/3fo/vf//7fO973/uJqUVaa37jN36Dr776ioeHh5/KtX355Zf87u/+Ln/1r/7VfyUB1f9aw1rLD/5PP+A/4z/jkA40h4Znnz3j/NU5v/Zf/xrt0P6bvsR34934icZPvLOoS8FdCvJmOQBLgWExwQKCn08xi8sMKVbnnKTcaQwxZmqRQrAUm+UwZ4zFmONpuC5usUyMCWUUytjlcJzfHm7niNNqKSyCwZGLNDQ1CpWRQoo22M4xDQM5Bqx3eC/RJUoppmlCVREgWatRTuLYcs04LQWWYZ4X+pHBGfNYvKipYNAYo1FGrk9TGaZBHH2rhkxiHmeM9UvBJ2KVouQIi0u5Grc0Fg2HcS+FhiSEKLU0PhRCeBI7rpCNSkm0RkRTtdbF7SWF6VoqqmpWvSfMcq2lZBrv6WxLCIGUk7xOCLTasm47TCP4/VIKtjFCvThIHM6mdRQFzjVoo4hhIMWCaxucMYzjjrwU23MVEY33jhoLc0r4tiHnQkiJqipTjlg0TmlxFk2DOPg6TZgLOichf2RojcNpQ7UwjjNOeXy3IutKHidYmk9GSdMilcwcI1UZrDbEIpEEVcudaVQlzgFtrBSfcyWlURoDSjFMMzFEmlYcVsZajHOEkvFenOe+QOc7rNVMw8Ddbk+ImfP1Bts6ktHEODOXmYc50XiPtQpTKiHNeO+wSjNPE2ebS5Tesupazp+dUcLAel1YX0zoNoEKHB2IPDqcFhcc0tTQITDdF77+k4m7e7DNKb47YTdO5Ksrmm7FPhtutzds1g6N49WrB5Q1nJ842g7GObMfAkErDIFed8Q8oHRmN4+UajlZrUhFgbLc3W+Jpx1DmFHa0joPuUizyyj69QqDYQqRptF89fXXrJuGYGGjFVYbLp6+R9tX5nAAA65vGIY9p11P1xmmly/xrcbblqbruHvYs1INXdcwzgN3tzfEALchEjmweziQS2FzdoHKiZPTnpQU0/bA+WWPXfcMKnP69ISvvnrFbjuxOulx3jO7lvMnF9y8vqHX4DqJD3BNxzRHGm2Zw8T6SUudI95ZvDUctjvuHwamlIi6ZR49D7f39M6yP8x88c0b5kPi5KIn5z2+XOBcy82ww6Np1+e0/Yqrq1vqPLDZnLBJmXSYJZZCVUzXSIFqStwPAd/2XN/t6FTHXApPn50zxVcc7g54ZZjGiTclk3Jitx/5+OJ9Skjc3+8Yd3vapuX5h5dMtbK7n5nTHqsVNibidMD4ltvbG2ZjWK17dJqoNXF5uUG5xMtXrzBGc/H0kvVmw93VLQ/TxHrd4zsDSfPq9R25RPzJCU6LqHI3TqyaFafdmtubHVF5Qpj45PkzLtYX/Oj6K0ouvP/xM0KpKNY0ZOKYaVeN0LDOnjJNM9N+i0dhfcvGi8D0ZrdnzJo8HXi4ghAy1jk2pysR01KYxi0XzSW7MFNsQfmMcQltLXf7SeL+ogjJ+slCLKSkQGvG/cS6c3zwwRO0URjfkqNmmBPGG8I0M4eJMRkuTk9xvpLmyBhmzi/PaYwnhYQxmrP1ipQy+2nCthbXGFKQdaWSubg8J1xvF/f4zG7YMc2Z1cUKQ2Q7Rho8fb/Bniq6oBkOiYLmdh+wTQdK4nLu7ndsvGOKkXHKtG7N1c09kYiuhYv3v4PrV1CF3HEsWavFSamRhuq83dFbS6sdX98GXJtZO8Np15CUw/QdJDkwTDmx8S2+em7vdlhl2dfKNEu0AwZOtcaMB0KpGGfQTprcc5KYg5wV8xwY5sDFs1Pee3KKSZmQKikkioE4RO7uHuhbx0nfcbJZcXiI1AHef3pBbQ37h1sohc1px9OTNZ0dJMJBV0qFcZ5EYKCQhn3MpJIxqXKxWnHx6fc47c747/5f/z1VBbrzlvW6ZbpT3D3MBCVCgqoT5lTRtga1z+yuZ2LIQiaxCmMLjVKw7iilsm00oRZCEaqSV5bxEIi5LJSQilr2ImrZZ5WSkc7+jxd5jg5pdVQpKGncx5gpOZJiZJxG7h/uubq+4ub2nk8/+ZT333uP88sz2q6laVu01VjvadoRYy3DfoeexkVNJfoN5w1933B6esLnX3zN19+85u7+gXmel7iqItf4LWHBMe4KeBSXlFIwpaC0RCXdpMB0OHD15g1X11d89PEnPH/vfS4vLzk5O+Nk1XO+6Vl3rcQrdD3GeKxpGf0e7SymNZycd7z//jlfff2Kb15cs92NfPnqijd3t7z//JzvvP+Up08vaZzGayF8WQeN1zTOSAzc8wu+/OYVL97csh0jMQS2IUoU3p2n73vOhjOmaWS3GnlYTXRtx3rdsV57utZysmo5P5GoOYNGVcUUNNMYaJzGeo2KULPCOo9vlmZMyWRrqD6Ti2e99pydrLg4PeGbN7d88/qGNze37PeVECFqKAViLtJ8+hkdb0UmLOKet0JIIeWAkMDKY5yX7HuEXiKCcE3OSzMGUKosr2KkaWPevmhexEx5eS31LWFfLiJAKrkIzQghf6hlT52ykI9UQeKIlEZbEcHXkkUIZfQi2oGYkmzRlRLSj9GkRZR1fP2YJB5N62NE89JwzVXOLotwqSyimJgi1misMxQkbuUtUUquOy+fS1FKRMHL7wsxLKKrRRT1+Cl/S9i4CI5qLct168efyVnOHMfvxDuh87CQp6yRhuwxWkRZ/Uhn8kYc/yGlJfZM1s8cJNKmsUqgRUZiv3ISE4s0mBUxxIXmIA1XoxaaVankLBFtErVXhAJVRNBjlmZcTlF+r5N4u1oVVS5dxCFKYu1yzGglETWVSkmJb698WguZKeWMRWOsiFbg+GNL6FsuEvNXQS00pGPmU0pJCLdW5kOtNMqIEMsu8eUGsNoJZSpGxiBCiNZ7tDMUrSQqpmZIixFnWQJyWZq9SpFTom06iRr0lm4l8cbf/95H/OCXPsZ4EVw/Xv/jeWL5XyUCB5Uzaaxs7xLfvLjl9dUt1jbMMVEOA9Z55qKY54GmMSgM+90EWtO1GmMlAjBEiZfWZJyypCpE2JBln9J490jqm+aZgluiCDV2EfxVAM1CU9bElGmNYrvd4awha2icNN67fo11kHIADUZbYgy0zuHwjPs9xmqJGHSOaZL4Y2uFRjyNIznDVDK5RhHKVWjaDmqhbRy5IK/ZObR3RFVpes/Dw4EQEt47jLJkY2n7jnE/4BUYJ4JcbUXAI7E8Cd9aapLaifGaOM9MUyCWQtGOHDXTOOG0iGfutwdSLBI1VwOmdmhtGVNAo7C+w1nPYRioOdL4Rp7ZkJlJIkNzQjRTqTCljLGOcZyxypFrpe86Ut4TxoBRmpQih6FQamEOidNujcmFaZolHt04ViedxMlNiVLlzGoU1CxRXCXDbrenadzyzES81zjvuN8eGOaEa1va1YocE8M4oqzBeYP2mnHKHMYJ3TiMdiiE/hZjoW86pmkiZok0axrNyXpNDIkwR1brnkKhVIdRiygjKJrO0bciPMkhQ5lwvsFrg9WQiuUQRKw0jQectdRUaFovojaliDnSVvsowMVUFAVjDXOGKUZylsVKRxF2pSDmtJRERH5xtgG17IMK1JoW+lIlRDm3dG2DNULMzCWhjaNfteQkc7n3ljZ7QpQou75pHkW6pWSarkFlxzQHUIoQZ6YYUMbQ+pacI1OU+7PtNK6tpCiihZASxhiUlTUzhkRNIhQNc6BpGvaHgR/+3g/pVy2Xl89x3epxLv2xPcAytyoghUDnGz798EM+/+JrSkwYU+mcF8GQ1VKnSkLfy2Qa7xgmiUiMQEiQi4hsnVaYmqlzJGkR31IKX3zxBefnF1ycX8j6UCNYxXrVYkpljomUhJ6FgnmaUbXQNSIAiiVzd1PJU8V6S8qFuJ/w3tBYg+0U81wXY4esR8cpFs0jVbHUglea89WKzre8eHPNND7wK80v85H/gD8pf8j/ffwdXm2uqOtCnQqffP0htlWQIYx5qaUuRCoNRlVap6nVSzxiKWREGGyUoaRCSmWJvF0kP1p0qmWJdRNNm378hmSPdFwj6o/9eSlZ/k4pPKTMHBZq0TBwcXHJyWZDv+px3mGtkNq0VlJHM4agtIhNH10wss5aZ2gaT9s03D/sGYaBEOPyXmUfIndOebyeH1u+ln9VWWj5eRHb5BSZxpHDZs84nrI5EUNY27V4l+maJW7NiVBWG4mHNTqidUAZhfOG1eooVjowjoFxjkxvbrjf7Tjb9GzWKxon85I1WuopRmHWLa23bPqO7f7Aw+7AOEdSlnN9SolpNlhraZpASi0xJmaXcC6I4CkEnBOjaNtYmsaJyLtArYY5BrRC5nStFgCWCM6PssBahORWq4h224Vi1Xcd28PAbj8yz5WUeUw6kHTud4Kld+PdeDf+fyMo1Vr5oz/6o3cCpXfj3Xg3/r+OeZ75L/6L/4L/5D/5Tzg/P/+J/97JyQm//uu/zm//9m//1K7tH//jf8z3vvc9Pvzww5+J2Ld/efxN/ia/yC/ym/Y3+c9P/3M++7XP+Lx+TjM2/Op//asLofvdeDd+tsdPvLsoWQ4oZXHtoqVQLPV4RUlBGlDLgVABuUpjTYGIOsxbqpK46OsSViJDnDyZaZaGHiCCDiNI3qMjr217qtYc9geoEkmglEJpiRoR9HYhFYmAqFmoT9rI4ZdHR7a8L2dbnHVYLUWnkAshCKkp5UQpoJwlZ4nViDHhfUPjPUVL9ntSgkHu24aSy2M8nnVO8PGNZzxMhChuYG8tNmca50hKkxC3TogzRr8VazmjluJ2YE6JurifnDIUC/Oc8bmiknzuTeOEXpADhUrRGoxiioJZX7UNpYjIB40ghocZ11gyEHIlTYnDdsZqcQLHmIS+0rSkmJlzpaaEqQVrJJ4u1YJfRGRznFHG0/UtzmkMipJnnLOSq240VRv2hx1JFZRrSGRKnCkpYa3Dag9OSfxJ0DRGQ8kY1YCuJGdxytJgeDgMhJKhFDprqEViI2JKaGdROMY5kJCifl5Q7TFLw9F3PUUXYknYxtI03VJ0naGKc00XJVGEaHSurLsO00ncQhgC4y6TQmC1WsEwkxbE/3CYsFahVSLXSqxvnwddNXkKYBSN7Xm4P7Bqe7y3QMC6e9YXBdMNi4Ncoj5EEXgUKEFeGmh1mmCs3L5SbB8U/fqU1ckTQqq89/En3Ly6xeGohwPEwvZ+xxQLrQNjPa2xnJ2ccPX5CwgVXWHT9+y292SnWZ+saLpKTJVxmqgh07Y9K99hqyHMCVOtFOKcoVuvsVqKjc1qjQoz603H/daxn7asL55QRmjWnq7pifOBl9+85L1PPmXjenA985S4vnqJV0KLOTs7oyr4cP0EYmSYIuMY2awbDmnmm9stF883xM7TWcswjahcKduCsZbaQOc9VMO6W5GnkabV7GfDPEfKFNBa8eJPviTlQG0bTruG2VZoGk4256yd4qsXXzAdDuKAHiPgmKOm6oI18PzJmuvtAVRCGUfTt3z40SXj7cAvfP87vHzzitd3W1YxcrZpOXn2HqjKzfUdkczF+SnWr3GN5ephz5wTzdqSY8XEQrNq2XQt2/0d4zjQ+B5FosyBgsOuT7i9eklXNG2jsaoSbMvu/oAm0nUdtfTM447hppJMg44Kbwr3hx3TPlLCyOappTaWybSovBACdMUaz9PLFbv9A2XMPFv3aK3Yx5FhDrz3wUesO8/tzRXKaNrVCdM0oqi8//H7HMLMm6tbSi0MJTBPe857y9PTDaEITaB1DR8+OyGoSriJHIaRWDT7r18w1gN5MpicOT9d40/WbO8fwCwuT0B5i6Fyv5uYckQpw7rrePpkxWrd8nC3YzsO0DnazqPGGas0FotZC90lKUPMkaf9it5ZPv/sDVormraV4mdIYD0mt9g60bWLMLWz5K0iZaB6nE5EldmNE34cCYwo44mx0jlFf7JC907W0Jyk2UrLGA3T7cBhCnSto/eaZ08u2Q0JbOGkPeX6dkc1FrJhyoq+7znfOKbDjvHhAdtocojsdzti0jxMM11vgUSICWc9SlvGaeTNi6958v5H+H7FW5WLDJl1FCjHq6s9v/vPfkSzPuHybMf2/pZ9HgjTHV13wq9+/3vs93tImjpGbuc72rZjbVs2fcer+3u8a/ng2TNexhGbE6tVy4fPT+lax59+s+P19U4ic6zE80xj4PZhy+WzE7zRfOfDZxgtLvubm60IUWPize2O9y5PMLowVfj66ob77cgn33nK0ydr5pgIKeO7lo+fvs/2YcthP/GwoPytKdJ0doZuiVkax5HdNpLrxMa3/NVf+7O8vnrJH7/8iqQ03aYnVcv2fmQfBvzask8RkzNhntGm4hqJWem0ouscNSTmGGl7S2065ioO6JKjuNy9YjgEYkhY62k6oTAUEkprjFLHhCkpJC9tn0cfdK1LjNEiS8iZtJBG8qEQvwkchgO3t3e8/rmf4xd+/uf5+Dufcvn0CacnazrvaNoO7xq00vJ/2lCrQhuDbxxNO9E0DW3b0fc9FxfnfPnl17x+dcX+MEq0rlKUhVwDfMuZLQKIY8xXLhVVMkobUoV9zkzzxHb3wM31NR998gkfffwJT58+ZTg9paQLjLkQ4a9xbE6g61sOc4d5aHCHllW74mR1ypOLS957fsVnn3/Jq9c3DGPgi69ueX2159nFNd/56CnvXZ7gvZOGqLZcNB1tM3J20vPeswu+eXPDn37xildXtwyD7A9CiIzDxGF/YL/dcXJyymq9o1+tWK07VpuOzXrNNEXmmDkNBe8ccRARZONakkpUlXGNx7hGmpi1oGuh5gReIoVDSiJUqyIiaRvH5WnP6+sVr67uuH/YMoyBORWmOTLHn3R3/7/+ODa+ai2yv1ZigMgVdD0GpcGPueZLfXQtmSMhaXGHH8U2CvXopq8LOUcEffLf9VE4tBCBQCLBqlbEWegvj8+RWgQ0WihGRbBPEluopUlrF1qGeC6kmWO0NLe0EhFNeoxDW6hhikcCUilLlLVdqAtGGkkSJVZxC+lHqEdvz1PWGmJIYgRQYrAQ4o/QYApyHiolLxqZ+vj+5TOXuQDFIo5RFK1EZFMVaonTk7geEcs9Niu17K9R4K2l1kWYpcTBlWLGWKE55VqJqRDnvHz2mrwId6wVIm+tQBGyh9Zvv8+KpVZZh1EG5+1Cu1LUmqhGPV5/VYoQgwjjlUSikSUWSRuNUgZtIIaEyUWIt7VIJBSaYioGja2KKcnnejSusDSVcxbxAEoTsxB+ldKPIrpcilAtnKMoiVTVRmOsI6e0iL3k81P5LRuCUvHeopzckylmUiiUnHELmU/0YXoRp4FI2uCIDTPLubAk+WyNtsxTxNmliUnhk0+e8oNf+gjdJI7UJI6v8a0Ob2HRvaYECcYDvHxxy2effUG36kmlsj45ZdxPGDTEAKUyj4FUJFpOaYNVmq5puLnfQpbobO8d8zRRjcI3HmPluUlJ4p2sdTjj0FWR09u4RIzBNR6tKkrLuVppjW8s06zF8NH11AjGW5x1lBzY7/asT05pjIOlhjAchkXsJnSMCmxOeshFyE4x0zSGXDLb8UC38hS7GF1SXLwwy1xkwC4GKmXdcn5VhCzCxGMs5O7uQaLhrBWKZAGMoWlaGq142D2QQhQiSBWKlZhAhHy26j3jFGGJptTOcnLSEcfI5cU5u8OOwzjjcqHxlna1BmAYRwqVrm1RS9zeMAWJwvJyv+ki0aKNs8xhXAhDHkWmpkzFoH3LOOxwVdEajQWyNsxTRC2R8rU6cgzEoVKURReRuYeSGEOixCQEoaYha0hKaiqlZlCexjrW65b9w4HOStzdGDJTjKx8y7pbEaYJpRTGewDiPIrw11sO44jHkqjEMGIobLoWaw3DFNBG03mH6zRxgpREJEfNHMJIiBFbRZTU9D1ziPJcHKOTjF5Em0INSyWjZ9nTrTYd8zgvtaCK8Q6yWaLtNZ1zQkKrEmOpgdWqZZcGwjxhnYOqH6Mia9HoanFGkVWhaTzjUKlFIrO0tSiCEChTQodZRH5akUPCOEdjNbbKOlJqoVaZB6dQCDFRKXgjBhuFoaiKd5ocDXOS+MRUKso6eitmuWmoqCokyP1hT62KOQuZymhIKeOs7MP/8A//kF/+Zc8GRdP1y6Ty4+cJWZkUOStevL7h5OIp77//nFcvXpDnxJgClcKzZ09w3hKmiEYThpnqMnoROMacmEJi1XUoEmGa8MbQrRtO1y0P+5ndEJnmwO//4e/zq3/2z+HtKdM8SY2oFtZ9Ry2FIQTmKRDCEts3R8YQaZymKEWMMyFkVuuW05MO5z05y9rfr3ua1hNDZArxUbCstZKoWqVxShEjxFiJMVIVPDs/56RvuXu4oymO9+1zftn/Wf7P4e/yR/Mf8eXPfY1Rlk+vP15EReVR8GswEm+pFPMsdDCnLLqKUaxUI/eAVagIKcqe+0iaz0cakdaoowfuSCZa9kI/9p2pR57RYjAQ8d4wFBHaTDOHw4EnF5ecXZyxWm9o2wbvJD79SE1iEWMT5ZypjcaWjLVijLTW0rYt2+2O7XbHNAXZdzyuXXoRr6rHTWX91nVKXHDmeLUpynMcYmAcRsZxWMhKa9q2peQWpXq8k6h354SomBaBsA4WayKNa2jblvVqxcPDloftnmmODENkmrbcb0dONz0nq46+84sA3NBYhzbpkax0sllxtxWx0xyiGHyzfIYhREIING2z0PAanLf4xuKWCPCUM7nIXpBSyTGhlUXpQiYv+1P3+IVq2UTL3rdK3VoViZntUBglgqVV69kfRoZxIkQRUeVciI+q7Hfj3Xg3/vc6tNb8lb/yV/61BUo/+tGP+K/+q//qnejx3Xg33o3/2bHb7fjN3/xN/ubf/Js/cbyaUopf//Vf5w/+4A949erVT+W6pmni7//9v8/f+lt/i/fff/9nTqik0fwyv8yf4c/wH/Mf87f4W/yO+h1+9z/4Xdzk+KXf+SV01j+2v3833o2ftfET7zCUFnGJXopmMWdSqWglxficsxyilPAfFIqUK2VxCjpvUUZi3WqplJyx2qLqUojMkVwq3lnKQsKx1tF3now0XWoFZyw1JiEuaEtVEELCWkPjLCVGtDJSZC4VbTXeNlI4ahyoSqpFCtlJCvJGa1KRCLgjHtkZj6pCHYq5Cs49Ca4+J4iuYDcdaCkappQwSlPigl/WDTlDiOK0Vl4KeSVlKQ4oaPuWGDJzSFjnKEUw0yUXyIWmaQjzTMlJNnTW4H2DqlBCYBwD1UCyijBPeGWJWqImGu8h1yUyLlCUFC5qLiLiKZW2b1FW0VSzNPchpAitZMRbDBqHQaFVoagCeongKbPUnLzFNRZdFfvDREFjnSekijWWHAJUReetuB1zphYp9DWtR0f53pNSxJJwVhoA7KelCZGx2lFLlMblFKg10bZeIheMFK1LBWvEqWW1Xdz18u/S5FGcrFY4ZxmGgaoqsRSsb8V1r42IWRIkndFLg0JrS9e02H7Fw80DNUaK1kxzhpKXiABxP6GlYJZCxjvHuB+xVFS2kB3FaJz1IhQziuurawyGte9obMFbRZ4zjYXWHNg8qeguUFVFcew4isP9SFACjSqFPAXqAPevFS+/qgypIxvDdpi5PDunUeJU3qYD1Rayqrh+zcYY9Dyw343chUisliFkXAerjacoiGQ8mjpl6jzT9R21OkKNjCExThMcquDgncU2K4bdllXbc3qyZhwnGie0gdvbe6Yp0qx7ut6TD4mQI/dvXosormkZDzu5d6ri/nAgxMiHHz4nRokYGGKiX/XM48zuMGCUJ40TvXN8+Ox9urNT1N09T1aeb169YXwoDFc7lNOcX5xyfz/TnAktpJaZ9aalapiC0B2aWglzJmfNbjczjZV133H6ZMXJ6Qn6cGDVr1BG49cd4TCgiqG2EjnwzWff8PKLrzDNhtN+RYoBUzOnjac7t9zc3NOfnBBc5GG75+Jsw/3VG3a7PWNI9H2PwZICnDw7Zx0jZi70Z2fMY2IcZsrhgWIdz9Ybvr554OXVFdYUdnHkMDu887z/3nNhf5eZPEjzP4TIk5MOMMRcScXQtJulwQjNqmUmE+YDFc/8sOfJB084zAGdKp2XZk/JDdNhT+8Mz95/n+fPVty8vIV5orGWw3bLeJvxneOjjz9gjpHtXaSEmWkc0RiJXsuZ99674OHmitWq5/Z2xyFUsAWc4vWrW54+u+Tm7g1tZ4lzYnuYKNbw3icf8XD3hjlHzhqgMVy9eaDtOjaNFPbmQaIa0bA5XdE7h64Ggue0O+fl4YrqPJddj7IQMOz3kefPnonTfy44ew4xLM+mxrYO63pa3zCnQA2BuSZGXSg1c9I45qVxbFJhv9/jvCamJBFOyrAPiekwULXnYbpnvbI8++AZ9/c7QpQoLwg43RHGyGE7ctgFSm5BJ7Rp6dsNU65sTi5onUahud6NrM82jLs7lFK0q45xPNCvTjG+5Wa3YxwTYQhgHYdhZNM7pknjtEeV6f/D3p/8WramaZ3g72vXWrs7jfV27d7r7tfDGwLKIRIKAYmLpKoCMkghnGZOqcgc5CAHOcxJ5ij/hVIqqyY5KAYFBCShqCBUISUhigKihCKc6AgPb25r3el2t5qvrcG7zrEbqlTJaRxchH2S6Zpds3PO2nuv9TXv+zy/h+cf/oCHz75At9oI5eP37gRAOc4fvUMyDbthZLVZEPqe611kZCQpxcvnz2n8gjCMPH33MapkDoeBrnHoMLJqWlLQLFpNffSYm9cvWXaKL797xsnJghcvt7iaGcaebcro1RpjtDg+neVws6Vzjk3n6bwnj5nddpB7uh/YjRPLRgQfoYzsIxzHgYd1wf2TlQiRs3y+q8WKtukoSnFQBVO1RGclifeoOVOKZjhEUokYkzjZdJx/6Qus1it+49OP2ZU9xStUa6kJxn5itVmhlWXVCBVhSAHtPE5rvNLQeNarSq49dUyEKc1iBkBVnDMsVw3TNMekOketCsaEqVApqPI58Q/q95jVbwlF6tYZrdW8die5xlq4vEgMw8DN1RU3lyJ0+dIHX+Lpk0ecn52wXq1w3tG2q1mwKw5jiagL6MFC1Rhl8NYK4Wiz5uPTUz759AWXl9eM00RN5XOkG/l12+SgMifWSTNNZUQYUCTGN8XI2Pfsbq65ubjg6bvv8M47z8h5IqSJ05NTFt2Ctm1w3rFyHuc69nbHZHuM7bFenML3Tjc8f/majz99ycvX1wxD5MNPL7m42vLs8T0++MITHt0/ZdE4jEYa2Q0SZ+sb7p2e8fryku9/9Bmfvthy7BMpThzCRJhG9oct680Zy+WatmtZrZdsNhv69YrD/sjV4iB72Fw52bToppE9tLb4Vs1IlCSihhQwzs/XYdDKMNVEdrLHXHUeb9asWs/De2ccjgMvXl/z6uqG7aFnnP7VCoj/TsdsFADZs92KVYQqJGaIWyrMbchaETv3HH2oRcxS8l1MiZqbViKCy3NzUPbassfTOGco1NnwILFglILoZoSgWdLc4DEG8q0KEGn0GI0xIoLRRp7LMkegzFADETdVaWpL/JtCqzn+zc5ClCwUAkqZ98PQNlZECOrWtX5LkhIiUqnqDQkK5ug1EcIAWGcpWdYOrTXUIu9nkSg9aw05ZREASRYIxliEbiJ0pqqFLBRTQqNFOKg0dqZSSSMtU1GzeKve9vGxzkp8VRWRJwpyKWCVkGZF4TRTr27JTHqmJMmeW6LxpIEpjXSN1iJg1ErLXMwckQVzg1SattZaEaRV2R2XKu9DKUUwG0qBKmhlqUpEZyEWKtIYVUqBfiOi1LP4TCs9697UHNMln3dzGwkVZW+eq9BH1K0QrkpPUD7LN9F+zli084z9SM2ZqjUpV6hCDmIWhDITeksW2koMCSM3NVQ9x9IZvBOh3PHYo5AYcKsrRgs9yhnNF957yFd/8l10czsHv4lMfDNm2VRFSFIRxgN8+L1L/sVv/i5TrqicWXQtFqGMjSVStXwGxjkarVE5Mk2JIRcympgrxoFvjED4VMWgJDstJ5y1gCHXTMxZhECzOFBrg/b+Lja9bRpSTJj53D0MIykVjHfybMdCrpnxOImI1whBSSepSowxkEtmvVlRstCKYy4470gxEeb6QYkJZzTr5QrXtqhxpHOG/eFIHCupn0Aruq5hGhOmNRhroWZ8Y6kachLBnaFSUqUURQiJlMSk1C48TdNAFEqG0grjLDlG+Xytomtb9jc7DjdbtGlordQJJJreYDsjsW5NQ9aFaQp0rWfoj4QpkHIRQReamsEtW3wuqFxxTUdKQr4uMYM2LH3DbpjY90e0qkwlEZLGGMt6tZL7pua7SNeShUByS7grVWOsCIi0ljhHqx1T2KOdFcKXK2hnKSlitaJaD9XK+5Uzq2XH6emKmhPHELBaxAbH3QGtYLHsqChiDIQcKTnPCEE4TAPLVSfkE7TQsPY9IYsBqR8mVsZTU6WUiDFaxCS5sFitgUoYByCzai273RGKQlnNopH6Up1F4dYZvLfynMVKYzvGMFK0xmvDwkodagqFxjc4N0d+IWtJGaVG5ZyRudNKpN8UI1prQslC3HH27nkwuZBTIihmepzISBJKaDNK1jNdIpvTlZC1p4hCRHfGGjHwxUyICVUl3q5icHP0rTKWpQNrRNDmtENVWTeMMVK/K7BYbhimgUhhjELQKyVDKhjreP78FZrf4qtf+zqrk0K3XP+vnCdkDnJNh2sWFGX44pe+yM3VJcdDZooJZaA/HmhzR81gvWGxXDD0o6wVOWGptM4TU2K1XHIsBUVkvXA8ur8mxsTxOKFLZntzzbf/xbf5k3/sj0NVQkWLiVGNWK1YeIdFKJepQiqZMQZScXN8XCICUwqU3NC1HrwQ43LKQoXvtJAYB5mTaykSk6plsawVEX+UAmS805yuFnSN4+V2y2HsWZg1f8L8Sb5rv0dIEx9+9SOOXzny9MOH3Pvdc1JOoGWPZOZ9jvdOCPepUFO9o2sxw6SsM0KNvI231WIcVeX2/FDvTA8i9Hlzv96uEPJfWd/UTIxijjCdpkrOiWmaGPueYRy5dy+yOVlD19G0HmMsGIVzsudSWqN1FEFyinfiXa20zJONp21btts9x6NQlYpgxriVKFXq51Rv84XxuWsuQlqs9ZaqlAhhZBgGhvWazckJOa0oNdO1Ld43WKPRzuGqPJdGB6IKEgOoNdbIta2WC4lxOxyZpkQ/BMYpcDgOnJ2sOFkvaWbDlOylKkY5Wbu9Z7Nastvtudn1jNMsVMqZUhIxTjjf0DQtdrK4yeGbhthEGudElGYtzILyrrUiyEahjNR0mClZJcu+ViuNrhqFxNdWXammSooADmsUXeMJackwTBz6QUSe6a3z/u14O34/j3+TiLdbgdLf/bt/l2EYfkRX+Ha8HW/Hf2jjd3/3d/nZn/1Z/tJf+ksCgvghxnq95pvf/CZ/62/9rR+ZIPL6+pq/9/f+Hn/9r/91uq77kfyMf9OhUDzhCf81/zX/jH9GahL/+K/+Y37rT/0WX//HX+fr/6+vY7L5932Zb8fb8b86fvi4NyUFa2uMHPZ4U6TKKFQtjNM0O5BF1GS0miMLIOUiIh4KIUW0UnPGtiXlRJq/dypFDoBWvjbGSEJcH7VUahanc81SxJ/mKDmrlDT/2oaQ4uweVncHUu0MpIp24tJJM7baaCExed9KAT6NaGXlWmcncy2RwzRKkyTPR2itGULE6UrXNfLztCLkJMXAJE5ksV8XalQUxBFaVEU5SyyZWIs4bnPGGYOxmilFlNZM04zuNYamcdRSGaYRqy2WyqppqUaRUYxGHMsliEMOU+ciryMjrricIqEUQohSDJ8iGktQWt6jKoWOmBS1GJabJc45dvutuK2KOE2rsShjCSHQWodxmjyJI95YxxQDCri5vmbRiBPIKvlayi2gw1BCxmNwvkP7hv1xj+s6rNbEMdMtWqIS4ZSpguKvFrRyxBgYSxQ3tIG2KrSy5JCwzhKmgNKKKUyUnGnahrYkYhAHtDcOSqF1LTEFdJYGifctpSTCONG0Lc44SsqM44QzGmU1LBbkClZVaoT99kDrLcYZTFFsmpasFNU4lMoMacK3DWf3Tmis5ebyhpIVrsJi6fHez42kTEl7nFVsTjWmHSmqIr7VxG2cnajD5P6nKvI2Mo0wjgs+/uhALAumrDDdEl0NTWnYv7ighJGcC/fWZ1hVSaUSc6FPmuo9fT8yvLrAGMeysxAmjhFqgmI0U6p459FZ7oGaJ+IwklUh41FZ0fnMUmlWGsahZzCKGCMnrScrOEwT2ErTrdnuBloccXeDRuMXp/THxOttYLP2DNMepys/+RNfQnWWy90eoyw3r28YD5GkC1iPbzxj37NuPMTMxUevUNpgOs2iW0KcaDpP0BmrC2WKvPPgPVIsTIPhejcyHhLZGYqGGmUO6DYrmsbx4vWWcjhyL56w8C2ffPqCfii0LVxfHqlTZdEpvvSlp2wvbwBFd/aA/S6QqsQFHo4j47DHrVf0w5GuRp48uMenNzvGMXEzHMBVnDYc9gdSMKxPNcerC65fvGK5WLHQS467z8jTSHu6IQ2Bi1c3lJCxi4bWOY7DkZv9kXcennFv2UmTyK0oa8s910ANhO0Vu5sdTdtRGxE2HsOEmTLaN+RYGA5buuWCzrZ4A4OF3c0e7yx5SuxSpirBqSurGHNlLIVSFTYlpv0V7WqFti1Xn70Ao3FY3KLB6EqplXbVMO0n4jARI7zeRVIOqATLpacsGpRq+ej7V1y9es2Td855dO8UbwopZO4tNUaf0t8c0LGw2qyZcFxeXoKubLolbiHrQR0V58tT4tBzuIlcpQuWC0MNAV0KGUMBtuOR/TAw1sDKWIZDpF2tRKRLxfqGdtWy3x9ZLxti0nz26QVnp0vG8YjWmunmyGLZ0edMiBPJee49eIoKPaYUjsdIv9tTjMV0llwmbvYj/SeJhVXUWBlDFbpcqVivOLu/JoVCOI4YFVncW2K1RHm4Wrna7Xny9BF2l3j98iWpBPIU8C6zOllyOEhj6+SsZWoC+8uBVedYnC5QqnB1PfDZ8x3nK3GJ1qJ598s/gW27N3PNXA5WqnJ+dsr/7s/+xzz/v33I8497rrYDu/1Et1HkJvGDl6+IQ0IVGEn8ga98mbPzc07XHS9evGJ3sedweWCKR/zS8/TxY05M4sX3rvnE71m3DeeNIU6Wy/2eHkdWmbPHp5yvO6YhEPuJWguLbsmma4SUQYYx8/LywNI1qFrAOXxT2fcDH7+8wekbHjw8YbFcsD3umFLi0cOHvNs+5OLS0u97dodJGvrazyTDSAgTpSSqU0yh0i6WfPlJw2rR8Vsff8h3dq+oObFcdAxxAquopjDEkaoLphViRx5FMFhywZRKpxXFeoqH4zARJ4lGVVYaMstlyzhFxmFCKYM1hilJc07PotVSC5U3pJlbkYNEI9S7ZoJRQh0pJc3USxEdhHHiuO+5vr7h8vUFX/7yBzx79oTz83POTk/x1uJ8I9ANrbFhkEi3qoQEM8fPGquwVrNaLjk/v8cPPvqYTz97zuHQE0K8o9dAFuLjTEG5jcGQ5ki5aywYXeZ1MXEVA/1hz9XlK64vL7i4fMqzd9/lyeOnnJycslmvJeqkaVmvOlRRHLRE1rnB440Ijs/Oznn0+BEfffQxH3/8govrPbsh8ts/eMmL19e8+/g+T56cc//shOWt8F4bFCIMah6dc7rZYM0P+P5HL+n7RMyJaUyENNIPA027ZLlY020X7NYH9uslm82atuvmRoWh6g3anRC0wWlN4zTOVbx1GBuJyaCQZoxWGlc1Kcu+W2uN89Lwsdbjm47lckG3WnJ6fsrlzYGrm92/0eHgRzpmcY9Evd3eE7MQae4vpZTu9vEiNFIiTKKKIGRuSuXZLa9nslEp8iyoeQ8vsWryM3Muc9zPm2ZcKdzRmoTyc0tc0hgndKHba66lSgSbvhVEabTmTdNPCd3JGKEAxSTxcLdufqMMqELJUWIZZzyRUkIn0kgjUX7eLFKqAoitt+obJbHFpQrFtALKyDmmVFlbVa1oNFpBoqAUc2ydvI9GWahCsFFaYxAqEkricpKS7yPnrDqLp7QIuWYBTy2ZHOcIPYCUUdaQ56bsrUOrFNmnNo2TJvwkcdTUOh+n9B2JyGqDNkriduaoktsYu3EYcXPctp4/S27hHEqEVkZpiWkxlj4GGqdQVYQ+trGoXO8iubWZqSbKvKHhznOl0yKOK7PgK8/vXU75ThBVa6Gk8kYMVyt2jr2TOEt1dx+klLFzfIwQiKOIaLSmOiukX4TuO01Bfr6R2b2xVprFczZPmsUGbddijGbqR6HbAc5ZicOb7+1aAqdnJ3zlq+9g3S0zQ+Lm7mgUn6cqAXXK5AgpOb7//ef8xm99lyFktHfoqjHFEI49NSdqqXRNN3/HOgvwlEQcxkw69jJ3WU3NiZShZml+pyLkr3mRotZMTmmWr4rYwtmCaxReQYqJpCTqtGlbSq2ElEBXrGsYp4RFU6YRVRWmaQmxchwzbWOIOaBV5cG9M5TVDNMESjMeRxHqUMWEYw0pRhojhIp+e5Q5xFqcc5AzBk1Ws3gwJ04XJ/PnqhiHRA6FYoSWRU6gNK7xWKvZHydqjHSlxRnLbn8gpoqzMA6RmivOVs7O1vLZAr5dMk2JjMQFitgpiIArBlw1rBYdu3EipcKUwixM0IQQKFnTtIowDAyHI945XOeI00jNCds25JTpj6NETlqLmwV4U4isl4rOWSqGoj210SyMiLLyNDCNk5Bq0RQFISd0rjS6IadKSRGlFM46nJnpzqOQS0uqoIUwh5qFDwoxNCmFKpUaJ5I2LJZLpn4UMbNSeNtgrexnnLcyv891hikVphzIqeCNoXWOUi1DX+iPB4zObDZrnNUMw8jCQrUOVQuqiMBzuV6z2x/JKdJZMSMVMiFkvBH60zhOTFNB64oWPDcERbGWkDJTiIwx0hVLmjJKWyEnUSlKaGBxrmMZ69nuDlidqVqMgIaKQ+LGcskUCqZd4GrBKaHDTeMkBLtWU0ui1ML1di9kyFLIGWKBWqPQyb1m6VtiiLhSUQactYSYUaUSQoTW4Z0VYrCRubCWRNdaJJW4CrWn8fS7AV0VTeuwxhBiYn/sGY7fY+gHvvGHfwprHb67dUK/oSopZB179uwp2/0lY39ktTrl4nIHWtHYymEcxaCWCr7xPGkesFwv6bqGFAK7Q884RFIIVCPGA10DTJnPPr2molg4RU2GOE5sr2/49V//Lb72B77GshPj3zRKLKo1Fm8MzhqGmCi1SqxX0+KNEOyslzXjOEgkY9s62q65+3++8axWHcYopnEihCLCmlm0WmbRSMkFpWXOdNWwaCzvnFsu946L7Y4P0pf539s/y7/gN7h0F/SLnu8vvs/e7Hj03ce4aT5HVIWqCkrBKqnXYiy1JHIWsVKhYKye90haRG51phmpmTZ5p/Wpn1sR+D2/lxpe/dynqOY9xywcmik9KUSmSahF5/0ZpycnskftOpy1Qtuz8/dQYki4PbNklWbxksSWGWPo2pbtbs/Ndsc4jnN03a1B480e7o2w6s3V31GhqpJzR5E9So6JaegZhp5+vWE9bliv1yy6BU3TyHqqtVyvyKvRRkRLWgesNjS+Yblastwf2G53HA4DY8xsjxP9GNjtezbrjuWio3EWq27jhitGaZadp3FnONfw6uKGOgahNOdKKJmUE1MIOOtx3uOnwOQdXdPgvJ/3otB1Hm1aSjWzQVOh9UyDVBIrXOsb0b2w0ZhJtnP0sFOzEL/gspOIubahGwP9MPF2vB1vx+/f8ezZM775zW++FSi9HW/H2/HvdPzu7/4uP//zP89f+St/5a7O/f9vKKX44IMP+PrXv85v/MZv/Miu69WrV/zCL/wCP/MzPyOmox/T8Z/xn/Hf8d/xs/wsv+5+nYv3LvhH7/wjbh7e8I1f+gar69VbqtLb8WM3fuidhjhUpahpzFzMn92lhTw3G7SQZaoIZersWC4VKTYoBSWJmwhLnkubrnXorAgzhUgrhbdGnCRZiumqFJyzYLXEyBmotaCVxhpx8pOruDS12H5zzrNTT+IScgY9R7EVI8VspTVxHKlhRCMuoMZVvHMoYxmGnmkc8daSMoScWSxa2tYRYyJVxfE4CXlIG7Iq9CngiiCWrZcDYEwZNdOhtIFQIjHGOerBUIFpHCW73MAYgrymOhf+UwHk8Nn4BmomloxC3+GWsRLBZ7QBJRQFY7RE2KiELpmiNMpZSq3s9gfWZYFymhjmxosx6KIZ0kQ/DajhSDWVWhXLbkGulZv9QURGtTIMPXFCkNMYcWAbcYyFXMEasqnsY0IbR0hy0HVVo5XFWkWnNXGMnC03qFqExOU1aRrxRhOAjMFpQyqJqhxVGYxSpJgYY8AoTc0VlaTKoqxjvfQcppFqNOvNCcRAGCfQXkglOXGTBlJJOC0ChCmOUBNFVUIqFJ1o2hVxzFjXolImT4GsKl3XMdVM1pVEwiMN5JwSxlqsM6QQMW2DayyETEwQp0zbNTR+Sdd2FJWFRqQnusWB88dL7DKAjhhmCzsKqhQjsipSSMVCSJRjok4tx62hbR/gFoY6wV4gVrQna7bba0LJ5FI5Tj03ux3NeoVrHP0gzfdUKkoXnPagvTR22pblYoGzDX3qqWMg9BG1MHRLz9lqgW08r657DvsDwzBiTIUori2FQ1e42vf0cSJMEmFxuuh4PY0klSg5YYwTF3oVB/jNzZ7FwlPyxM3uQNqL2jHUnpASx3BksdrgFJgMSjtCymwHpKC8ckwR4jHhrQIS99Yn3H/4kN3FNd/7ze/RtA6/WFKngTROVIQSdOwjTx8/oOrC7mZLVQG7WdNPEy8++ZTrm2tsBWcWDFPhcjuy7zPN0nLcjdRY6NolDx885NXLlzx45wEffvgRy5MV98/P2e+PxCziu+5sxXbfc//+mrJs6a+O+Oq4Pu45s5rjYcc4FHQdOVxcs3QdQ8pcXh8IKRL6A5uTFY+fPSLHzPV1RdceYyrbXU/jGkqopBzp7YBrLXbTkQ9HFo1He8PVdk8uinvLBZ9dXjFOCYqWomnXMe57Yq4o3xBK4DgMbPeZ5aKjVsX1bieRbt2Ch4/v89mLG47HA2deoVojojRbub48cHrvPs/ef8h2u+fV6xvGFEj7yKHvyaZhuVzSj0eGm0CoR5Yn5xz7HVkb+qFi7YD1mq5b8v3vfYIxhif3TjlGESx6UzhdLbjuD1xvd3RGqH21wsuLC0IfUMqwXLUcDkemFLA5sjOGqUBNCW81KoqoJYwTiYD3nm61gGyweFQdudles9mc8+z9ZwzDFl87GufIMVJT4uRsw/Zqi/UN45BYI6KUMWQWjeUwTeRQaUyi7dYMRWKxhtiz2awYYsY0FhqJFFktG3aXUSIrjMYUzdgnjiWwPw7E9IJWWa6mA2f3z3DKEeLEFL3Mqcqgbebx04bG7HAhiRAKw3q94myR0DljGsP11QtOr044ffKUikIpcydTAkU1lrOH9/mJr73H+sSwfd3x3R98BkZhyFxfXNEPidZ1+FdXvPtkjy6RpC271z0vPn3NPkSUgVXS3DtZ4WxikQ3ff/2aP/zVRzzSil//eM80ZA77A3G55GnbEsNEzpWYAnZ29K6WDSerBdvjQMyF6/2e4f6GdWuJFEpRTMeR3mhiiBzHkS988C7n90457o+UYcIaxfl6jbcO13qGIXA8jnjn8H7JYpnJNVBJpJQ5HnrWXcOXHr7DvdP7OPWb/NpvfYebXRDa3j5ysbuCJHuBe+dLtHFc7XbUmRY0xUyz6BjSgcYadNew2/UcQ6QEKa9rY6lZiQihJBHyKCn8xBJFwCAIF4mKuXVCq88ZiivAG7JSld3OvLeqjFPh9evIOPRcX1/x6tVLfuIrP8H777/P0ydPOD8/Y7lYUJXDNguU9Wg7SLF+3qsdj0eU0TjraLzHNY6m82xOlnz08WdCVRqF7kAFXWdx0izsuKWy1Cqxb3PngVITqiQhwJTC8zCy2+158eIVr16+4v0vXPH48RMe3X/IZrNhfbKWqNl2ycZ4UgiMviV1HWEamFLAN80c/XiPTz57xYefvOBmu+d6N7A7fMyHLy54+uic9x8/4GzV4a1E/8YiFIj7Xccf+PK7TP3Ip68iZZJ42ZKrEDmmwHjs6boFx/2O/bJjtRSqkm+8RLvpTIqw6Fq80zhT6RpH13qs1pQCuryJK1NVgTIY1+CVRunEdt9zuQ8c+omYpAF57+yU85MN49P7/xaOCD+acSdWuxWDzA2m+SOf7299RyW6Jb+UUuV3M2Gp1vL5VicFoRWpmTp0K5YxZo6irrOoZ6YioZnd+PPPnyk4Ws3NrCrEFm5FQjPlDCV0oltaa9W3zT5FThILDdKwM7pitQGtiSnK/lBriUPLFecs1oqQpiiIMUucnZoj00pG14Kioo28diEqCYVAaUWao+Pq/LoqIvLSShpVqQglkvn11HJLG1BYY2EWODG//xXks6kzYQF5VoUkVGYC7hyrquU6U4g0taKMCBfRM+GhKjFk5AQxghaShPeOQmWcArdEJXl/mN3+QgLSehZlzfdLUbMwTQsZSqJMDApparqZhtU5z63oSBmJUbVKIadTjVWKUgtFGAdyls1zTPjtvVUqCRFLOWcJOaKqwTeNNP9TpipNydKkHUqcz6WgjSVLN19kmbVSa8ZaLxTfmSRMFvGQdU7uWSqZikOISoUsAjhvRZhqRYgk8YISQ2etxRgv8YBqFp+pxOlZw0/90a/iOkDdilpvnzR5BIuSz1JVJWfoUKjJst8Gvvu9T4QY6hsmSWrHtg3TNJBnQVzMkSlMGO/RVs6AtYqQUCFk3/nAjnKWznuMNoQSIQqVB6dwztB5hzKGfpS4mxhnw9GdE1L2IUOIxCwNeK1FgNKnUQhZucjPnIVjWs2CGGehJKYxkGevR6qRXDIxB6xvMEoEgWo2ZZUoIlnrnYCfgggzoLDw7SyaGbi+uMYag3FOqNApAXINIRbWK4m7msZJPofGE1PmsNsxjKOk1DsxIvVjwuiIdZowJcgIVXq55Hg4sNws2d5scY1n2XVMU0DgywXXeaYQ6RYNOEMYIqZqxhjotCKGiZQqiozpR5y2pFIYBmmMpxhoGs/pZilrzlCBhFYwTUlqC7pSqpBBtZ3vyxDwxqCMZpiCRF85x3EciXUWxpWKbx21VsIwyvNRZX0bpwlnJQZK6crQT2ilWK46clWM44i1iZgdVVcMUGImlMr6ZIOxit2uBwVDCCgKY8g0raVQGaYAUYxDRkHMCYURklpNYiroJ2IZWDYN2llirmhVaJwRwVMIGBRGyboQUiKGRIqJpm0oORPnfUpAkW6JdLJ8EKdMjBGtE6VErHcYJ/H0RlnGaaRtPMv1hpoCsUhMt5nXlKZx5JRxypBjxlqNns/0IkqAHCV+r/GeUACECmqNoXHzhtBotIHGejF51ZmiUhU1Q0iJlDN9CKyahhQSOM2iaZmmSkoSgawAdKVtGxQGFYqI5ZWQH1cLg86Zq+srPnvxCb5xuEbir+6+/nYoifA7u3fKGI78qf/4jzGFI1fbHdYoUghMMaOQCLphnNBKBJxpSBx3I8dp4jaKzDUaoxu8ruwPe9ql49m9NS9e9+Rc6afMDz75CL9ouH9vTVaQckKmmoJ3nq71HMeJXCHEyBQj3nn5N7VScyXEgNaacTuxrorVZkGnpVaRZ6Gj6Vq0EVFQCBL/5p3HOaGPVSX7lJgiYGldw7MHj/CuocTKnz5+kz9S/ijX6Zr/x+Hv86q+4sN3P2N3/8DXf+Nr8FozhSQxe0no3rqCKgVvDbEKLS3P+xljb0WskFOi3HpQkJrq7xEk3a4V895AFtPP/YvbsweKOmdP1yqR1WMp5OvMNI4cjweO93rOzk7ZbDYsFyICkj2MGPyUMSgtyCdThLrGLMi3RmOtRVuJmd7u9hwOR8IU38S738a/qbvjzp0I/FaYc7vBrLcbzVoZ+kwIkeOx53A80J+cSGzzciVUpcbTNB6lDd63VJtJSZ6pnJNQP53FzvGh++WR7e5wF3d9szuy70eWi56T1ZJV2+DsrblE6pXeW85PV6QQuSyZMcq6Xm6jJpMIqlIMxMkRnCX4UaLgvESf1ip5bI33GKOEnGUUzpo74bKa97F3ez2U0LhE5k9ImTFmhpnqWykiVHKO1aL9/7kz3o634+34/TEeP37Mt771LRHq/yuMWis3Nzf83M/93FuB0tvxdrwd/9rjd37nd/j2t7/NN77xjR8qXs17z8/8zM/w8uVLLi4ufmTX9e1vfxvgx1qo1NDw3/Df8F/xX/Hb/DZ/g7/Bt823+Rf/yb/g+U8856f/x59mc7F5K1R6O36sxg8vUippRufLn40xMEehKKXmQr7koqM0OUVqFbeK0RYy1DT/3ldKFpeeVkYacLFALThjBLOr5WAZpsite8V5hzWaGJM4kJTGzQX5nBM1Z5x30pjIQiWxVpzLuRaq1kLzAZQxpJiIJUmE3fwarHF3BeX+cAAU3jdzQb/Qrlq0NeLiLRId17UN1nkpNlSwylCNOJtqKQw1oFGYDBklUXLKiEubjLaGfugpRVGUoaYsBWMtpBur5yK6EaT5/jhRDTgD5JleZTQxzy7zmHDGCFI6BpzTUlgBtNWMUwQlBKNSYWEtqkBSCutEMFR1oQ8BVSqYQoyZHKc5tz6hcqL1VnDyRbNaNwzTROcatFVMtQIRjaYojXESnweVmjRFFXznUE5x7Ada7eisYVSFPk2o6sghi6u6SmF9TIliFd4pWtWiUqBtLFpVKppYEstVRyiTNCyUpsRI6xv0GEhIU544UawhlUDCABqvHGRoVp77J+fstkd2/cBisSLEQEpSTLJaCsYxZXJI5BjorKN4w5HEcX9Fazu6XMlxYswFg6fRirZ1hJxYna5QFEqM5JnOYfKB1b3C4y92tJtxboR9PtpNIVkUGUVBS4eLPFQOe0W/rVzvCpfXN7SnK4ZjYSwGt2r55PKK4+4Gaw0mZ3bX15wsVnR+ie9a+mNiH/dkKq1twSmOIbOxjk3XMOaC8w0mR0blWG8WLNuGxaJldzyyPQaJdewaTLFM4wHnVpSa2B53UAXR37UtpAG/bBniiPEW0PQ7KfiY3ZYchBYyHPak6OiWS64PPffPO+qUOU6Ftu2wU6VD45SI/MI08WDREWshWkdTYYwT/TSJcASF7zM3r3bc7HbcHPa42GL6yEJnmqXHNE4+224BXjNeX6NT4OHphsYbjIdYR4bhiFMW0y84PVsTYmAaImGqxFyp1qKdFIfbtqPfHvHVcG+xwWnHMAZUMRAzT95/yoff+ZjL3ZG2aEyGtlFsbwbqcWDZduh3lxwuX/Py8gKvDdZWjrFSyDSd42y9xJdCaQzWFh4+OKFbn/D6+RWH/ZaHD87ZHw6sV5o6NJR2weL8Hnqa2L/aMjlF07Y8//SC1+OAbzSrZYttFKar6Lrgvc2KoA0Xl1ucbXj1+hX9OND6Fqca6lB59frVTMpqOVt62pXGtZZjDyZXvIfDcOC735lorJOCrQLbtPgpYKzBpoJaNjgvDlmlJnKZePLkhFoNF9uJxVkHsTDUgitwcXXDGDK5gvMShXX/ZM3VdkfRCxFyqoRpHCYm0IqT0zUEz/PLC6zx0i9HYkArEkVRSHQriQuZhohtPcoYXr16SRilgfHk/gPiGLgaMsu2I4eRSckc33iDaq/RRPJx4PnYYx3sjwfuna549vAxV9stqjqWqxXx5oaxKE4ennLfNxxzRrctJQa6bkGjK5ytwFgO48R084qSFSFPaGO4ut7x5N59vNMMu2tUqLSrJTpXLi4v2JbI4/v32F8fOHm4Id/subg4cPbgAU0b4Zgpg2KaEiUkrj77jOVmjV2czOtfnncDMhctug1f/4N/iC997V0WtfJrv/qb/Nqv/0vilFBI7EWeEtvdgR98+Cnr5YKPuOBwGAk10a41y1XH2raEMXKBoiuZe6dn5KQIAXxJrNsF42FA1YnDYcdrKo2VebgqzTEGdEqcLBesu4HLw5EYxV1+b9GSQ+Jw2KNLg7WZdrGinxIff/Sap08fcLJoaJwhG4nKOek85mBomgCICC9Mx/lQlDEa2q5FVTj2AWUa3n/yhGXrWFjHP/+t7/Bie0OaJJamRGkgttPIogHVGpIKaKtIZMIgDYRpDKiqWDaWWh2HlElZifRCCWElRiEF1Frv4rAoIgm/Wy7mRs2ts/hzyQdvnLSzyOnNnxO1Kg7Ha6ZPBvb7Gy6vLuW++fJP8M4773D/3n1WqzXWeSGJiIIB5+y83xPKYag9KVWatnDv3indouFks+bTT57z4sUrbnZHppjE9T03RYp8sYgn3viepWmSxbmdahRiTRaRWN/37LbX3Fxdc/nu++zefY9Hjx5xP95ns1lLLJHSmKalNYaaF7jQw3EvohKjMd6yXK24d++cz56/4sXzV+wOB7b7gUP/KZdXW957cp9nj8+5d7LkrF3ivcwPXhnIina54JOXr+iHkUM/SGxWzqiUOMaJceiZhpbjfs9hv2e5WrLabIBKLJXlYkHbONbLjqotVRe8AVOlaaOVpqYoRBrTYKrCWMMYei72gedXPf0oDTpy5v6649G9Jff9D4dF/vcx6kzCqPWWzjZLID8nVprTtySCbI5IqTNVSs1EIa0UGDUTvfLcjBGxCci/1XPMoVKFnEVpoZXEtil1K16a+7dKItpE+C/fT7pu3H2vW2d+VSIcJNWZ+CNiqttrB4XSRoQgQAwBmM9O80Npjf+cw11EWM5aMQzMjTQ9R6fdNtvSfAjTVRpYVluMkjPSLeUpzM9jRUO+JSQIqUrfvtfI9w0hUZX0jkUcKGchAcHOVKbZrV9KxswIq1pEoJRmqq02loLCawMGykywKimDqmLUmBuHIiDLt2o0FAmrjUTioPCNIWVpyKMVudb5vZWYM6VuxfszFaFWaXRqoe9aZbBaBEmxZqhmvufgVhCVSqVqMFrJzylz7FuW9zoniQErVUhdSkHNQnRVM5miUCBXqlaUmuWsopSIgUrFeMOi7ZjGwBQTzvs7KrCYe0TMJJTgLGdYoylGEynEMGCVxSohpKRSURisksi7XAq+lXitOkfE1FrQNfLknXO+8R99hdWJBZV/70IAc3e5zAIluUlLghgUx13gV3/1O1xd7bCtJ8VKKpraGPbDQJhGEcDVyjQMNM7jjEM7R4qZqQQqFaPdTBgutNrQNpZURUSkSyYpaTo7a/HOMIbIFIUgqa1BVU1OE9p4ai2MYQTAG/kaSsI4IdGoOfYwJXkG9EwJQmliCOQccd4zhMiic5ALIVeJWk/g1MzK0IqcYOEtpULWYhXJOd0RmCuQYmE8jozTxDgFtLXomHGqYr0Idow2ZLsEo4jjiCqZZduICNFUci1CREKjoqNtPbkkUqzkPIObjRKRXSk4a4mjiGUWTqJCY5LPkFJYn6y5udoyjAFbvYifrGKcIjUmnLGsNo5pOHLsjxilZ0MRVArWabrGYRDxpTaV1aLB+ob+MBLCyHKO2vZeQzJU63DtAnIiHEayURhrOex6+hDAGZo5OlUZmSvX7YpqFFOQmMlSemKWyMfOtpAVIQYhpqBp2hZjCsYb0lik7qAV1ML19Y5F2xDnSEehgliJVaoSlVisxDPlnIkx4RvDsm0ZJpn7lDdMRebnKQQIEFOZ45IKnZOze55j7CkRZTRKVVTVGGdorecw9OSEUMGziFHrPOemFHHeUEqWqFwrIraUAikkci6kJorQYUwo47AkEXIpLfO8V5QkZoIxZoaaiTlitWax6og5k7JGWYfPhZACpnF0zqKVIiqFQoxsWkPXiviuKtgfDmjlSCGCVcSQmVTCWk0qmak/UlEYpxmHiT5M2MaTJznHLdYtV9c7FIbl0pPiOEcnF777u9/jZLlhuVziFqtZqHS715tlxkpzsjlDO3AKTk6W/INf/CWur7dYU8kEShbx7W53IIXI8TiRo5BHtQXbGBrjUAWmXEg1Ya3HGnlOKAWvDUFDqonPPvuYX7Oan/zaV0UsbGR+qjPtvWsaYh4oVQRnVI9RmimEWepv8G1DVZrDYQAUi86LCEWLKMwriUEVGp+mjCMxJm6DytTn9vI5F6aaOek6nj24jzeaj5+/ph4Ube74M/wZ/u/1bxFz4nqx5Tt/+Hd49//9RfzOUax8DmFK81pdyLlilaJxRupFqNvtwBzXKnVXilyNuotwrXfCpfnDuRP18LnmkAi+P/cHZiWMQuquOXDs0/wsD/TDkXEcOT09ZbFc0jYt1lqUfkPGFDF1Ic5ItcxMb9SVpvEYrWlmktB+d6AfRyG8z2cHc7s/o765bmZBTr2lKomgvZaMqmUW+ybCHEc/DCObzch6vWa5XJJLxjuHkQxLjBNDri1CS66zI0RSACxt27I69ux2B4ZxJKXMbt8zDBOb1YKTVcdq2dJ5JzVqKilmHt4/QxvL1X7PNAUxws50wVILqSRSiqRkiVGI8c5LBNytwCzmjDUSv10biZZ2swjZzHs7NQvaQeYBpYTIPw2R/RAZg+wfqRVnCuvFHGv4drwdb8fvq6GU4itf+Qo//dM/zenp6Q8lDvj8OB6P/P2///fZ7/c/oit8O96Ot+P3w0gp8Y/+0T/i2bNn3L//w5kwu67jL/7Fv8jf/tt/m+12+yO7tluh0p/7c3+Oruv+lefJfxdDoViz5o/yR/nv+e/5K/wVJjVx8eyCX/wbv8hP/19/mpPXJ/++L/PteDvuxg8tUlJaGrjigFZvHLWAcw5jFDEkailzXEGdC41S6AMouVL1rRtZzvA5idCjFHDezpn3+S43ff7p4vPQ0vjPWRpq3lmJMNAa69xdgbEkKUx552fnsZ6j6RTaQK4K51umccBqi/MaYzQpC8mp5Eq9jWjQBuMbcSSNgYomxChRccaIy8R7pmki1wiAt55aFVOM4nDWUgqeYsSZRiJ8nBzEzW1hXhn03IR01mGRWJ1qLL5paduWKQSO/SgNvVgRso6iaTwhRqw2KCfI+D5GjHHisEWcZ8pYibFqDTFFvFGQC9MUKRoRVcVMShGdM1p7eeetZYqZIUQpHBuDcwanFCpFmsYz5QLa4twb186kEjGK0zmViZwzrWupjaVowMqNcMiRIUTatkF3DqM8ugo1SeoMCqUtmTlSThtUSbPzT7NoFmRVqLGQS6YqiWXIMUmRQ1WJ0vCGk9WS0Cf6NKIaixoy667De0GUi7ApY6l4q+/IFTVXjNesTlp2u4EpZkIfhYpgNdM4sVovMNaDMVhtiKHQtHPT0SvazlNSxTeOPAWSyuTQs2kMy5PE+buKZpXACDVLmAHijAQtxVQADKGfyGMhHls+/P4R03S83AcWpxuy0iQGusUCoy3XVzviOLFaeFrrUF6xG0YurncobRhSxTh5nkDRmsp2t+WgGp5ojfKGy91LLEZaGt4w9D2UwvZwZL+X+2fZOaZRY01COUXoI53SNCdLmsZhYmYksrYbVssV1iW2hwG/OWUYI2VKpFGcrNZZivG06xU1RpbdklJ6jPPUcWB3HOisp+bAcmmYJsXrywu6zZJ9qFyPI6cnK5zzPHj4gBAOPP/0Jf1xy8NHp5gWDsPIsZ8wTcuq7RiPA6XL3D9/yM1xy36MtNqjJ0McI3mKuHWLWS7JQyYqiBzZnDYs7p/TtdKg67WlTpGXF9ccDr1QD+Ym0IPFuzSbh6gyMY4Ze3mk9BO16yihMk0jYwl0yw5lNUlltPfoxYqmwNpbcuxRXsQR0xEuXl9zkgvJOcboaJqGlbeMy450f02/35NKYugFKa9U5GK7ZdzdoJWFLMX/euI4aTRX+2vWJw84OVtxum64eL0njBOvr24YpkoaJwwZv2iYwsSYEvv+kkCmr5mu9mzMgpI7pr2hFke3bjlfefRiwWGs3FzuKMqSI3jtOHv6kOMwcfli5OzRCu8KVzc7jHVsnKekjO9a9FBQU6HrWnZpol00TDkx5kyaKjpWUoFl16Kr5tXNDdZbQp7IKZL6xPJ0xRBGSphQ3rPYPODi8pJ+PNBaTwaUERpCpzumXFguPGutOE6B082GrTpSU+Hy5SXdeoHOibi/ISsLqyXjGDlbNHB6Qgow9YVdP6F04PHZmhwjOQYa35KV5arvSSnjtKdMip6Cb1uWWNLxQM6K1ZP7HI6Z7esDuiRySTx97x3C6HHe8friJZrApmlZnHfEacRrS4wZu7LQjyy85jAUvPYci+a4nWjNkfXjjh7D6qRjujlwc31kCi/AOt7/ytfQ3eJzm25pcDvXcv/kCR9+bw+nDV/64gekY+bXfvO3GVXE+IoumfOzJZv1kpAz/dRz8uiEdW1ZekNnHMM+8Ol+RzCaYhqaxvK95we2N5FSC+vOEWtELxfc7A/kpLm3all6j/KKEBO+83Rrz8mhY5wi+Zi4vO45WWxIU2Gsc9Nh2aFCJAY4XlxzOB74wtMHPHpwzmK1QWvDFCbOzk/IWeI3Ui0cjz0pwTAKCbAqjdGOQmZMI9urLTrCH/nqV/jyF57xveef8psffcirV9eMQyLkyOU2MLqEdQ3RiSiubR0pJ3Gn1TSLkju6xuPCxFilkRlzhlqk+UVB1TmeQSm0kb3EXYNgrs2LCOTNJ4ZSs4t2buLexo4VoZRoK/ufdIxMY6AfBnaHPdfXN9zc7Hjv/fd48vQpJ5sNTeOxbiGELdeS00QpCq2DRCMYiZuwztG2Dcu24cHZKS8fPeS7P/iIF68uGfuJmOPsbFbMmxCYxd63whQ1N9drFdJlqQkzx2WkFOj7npvrLRevL3j67jOePXvGg0cPOTs5Yb1c4psG5zx6bjY3SCytsx5tHMZYusZz/3zDO0/u8+FHn/Dy1RW7Q8+Lyx3XuwMvXr/max+8y0+895CF64g4Dg5OH97jDy06Hj065+XlFc+fX/Dq9TXjOJGMEA+lsTAxhYZxGunHgX6QX4djz3q9ZrVa0o+B1dCxaEWwtGiFtGBUpeoAOaMtNI00+K73E0NUxNKQswjuU+hZLTSm2eDbH79D8u1Qc3zYGyHdGwGFmU0KEkci9J6i5N5QtyQYxZ0bnBkQgYJaCmkm5xl7S2Kqc1/ttj2l5q8Rko6QmtRswpCH5zaqWkRMIqISURNvBENa3PuFmZqTEgotLnYtAqbbe1iEOGp+Xi1GK6EAIa9TzUIqOwuUUs7z/k8aynVuOpYqtCWFImYhm9SSMEYJH+j29SKqozyTVfXcSVRGC+XTSsM+xCQCrduvAaE8FaHUKqtISeIMtdZyxqCSUp4jUPUctySRM9QikV68ce3L/qfMwiI5o9UMqeQ7coJWEuGmUsE4IaxwG0Eydy9zquRcMCjyPP85Y6la35HkAEItMo9aie7SVT6vnH5vQ7zMezI1z58KqEUiqSp1/uzmhmed47uZg9JqQRlF61tSLMQi8TQ1VRpjhZxRZiFekQasmc/Mt+JQYyTqaZqEqJtLlma1FiGCEBIMSmmMUsQsFAyUELWsk7nbGC3CVQo1JxqreP+Lj/hDP/UT+FYLGuiWJkHmThhwNz0ocsyUVCnB8urlkX/5nQ/55OUVrm0oKAoJ5+Rahn4i54S3ZhakKaaYJA5GSYybMnIfAThdGYfAXllWSgQ3fTpK9KjcEKQo68AUIlMQMbRzmpRAa3k+Uiwizmq8zBFFInEb3eCdI+jCGBO6bUlJzvElyXVqo6naYL2nljyvtxHVGEiJKcj5mZrxzpMTEqXbeKZcGVOmneMKl8sFKUeJZY6G5bJBWU+MaSYJW5x2Ila1lUW3ZIwTIYrhSGX5vEISUqZynpokRqooiYdeLRY4K7GKMWpqKhzDQAgS5XULAlm6BtsuUSWRUkUPkRoz1Tp5xlJCVXm9SkNRBWUc2now0FhDyRFlEkpbUkj0/UBbK0UbUjZYb/FWk5ylLDxxCtIwj3UmcBSGaSRNo9RaitDUVGtoXcsYJKqtaRsWS884TEKVGSZigTBGqFkIL6qSSpa4vJIIIgdjoRxgqNGQUsRbR2sVnVGkqohRDCIiglQsuw7vDNNQSKWyOWnpD0cUBVMQ4VItGCPRflaJaE4oM4VcKynLXkrXivIGow19EDFVJqNrRmcRduSaCUnE4q5dUAr0/UH2VxWpeSHxTrdC8tYaYox4Z+VRjJk4SSye0YZpHGRNMlbmq5RZti1jiKiiOUyBmCcWjcUZ+V4i3DeEInMBVaHKLExR0DUepokUAm69pGrL/uaA05o0TqxPGtq2k/XFG1IIWG3xXgjgJWWJtXNqjiVUMMdPgpb4zymwap38bGexpXBzteVffue7LFYrztD45fLNon03EWnadkl/6ClEHj1+wn/yzW/yi7/4S1xstygDqha89bStxzjLME003rNeLFA1S2RprhyPE1OSz9MazzgVxj6SasVo6LwmKk/Ome9/+DH73Z5v/ME/yPnpqdSPSkE7Q9s6phAJMTMOgantcLpSUmGsIkIzpVCLIuRMuNkRQ8vJekHTNRjnKCXjvUXpBmOirC1MQt3MEo2mEfFbrbKOj+OIVZp1u+ArX3yPfX/g9W6H2n7Aw/CEH+QPKRReuyvGP5z54Nc+oB0del6Pa6k03hJiEjOnM5iUCLXciY8r874j/17x6l2sbi1v/h/1TYza5/dx89p4+1d6pmTJ8i0/o6RMToWUEiFGxnFkHCdOz05ZbzYsFotZmC1CLYnHvV2zJFpNzYIvNQtwnDW03rNeLrne7tju9lLHnPdIbwhKn7u96ptXqW7FShWqKnMEnIi+U4qEKTAce47HI5uTDevVmrZraZtGDHXWorTE45o6x/4aI+ehmf7UNp7VsmO3P7DbHxgGoYFd3uw59D3nJyvun61pvUVhKUphPJzfO6XrGg7DwPE4sD/0TCFI3OIcM1yLCO5TSsQUiSkRY5SzcPBCUnOOJjucFcGS9yKWs1qhVBY6oQaLCBenkEgF0izoznONodYKupW9x9vxdrwdv6/GT/3UT/Hn//yf/9eKeDsej/zsz/4s3//+939EV/d2vB1vx++ncXl5yT/9p/+Un/mZn/mhhEBKKZ49e8a3vvUt/ubf/JtM048utvbb3/42z58/51vf+hZPnjz5kf2cf9OhUPxJ/iTf4Bv8Cr9CVZWL9y74xf/TL/LT/5e3RKW348dn/NC7jqaxlKzJ+dZ9LwfbMhdubwuvcmA1oDS5zsXzXEg1U4sgaOscYZFionFGXM1aihXWOkpWUKUppxQYazFODtwpRbQCNxfZ63xgq0phrEMbhXGCMC9Ikc9ooRo1zmNcZQiRY7+nxMpmtZyDAgolB2qurNoFKSW6puUwTuyPEo3UWE8u4DCgJFbKWss0TaSUcF4Od/vjAact2lu0MTTGUK1irAEqhJDJWURIvmnEZRsy1sv7q5U4srWuWCuOT1UKaeqxiOBGlQK2JWG4OYw4XfGmoHLhZNky5MKQMvs4sfQNq24hxTigWa642t0QUpZYg7viXqJmi86KtmnlAGss1SuGMWKdkZgEoxmmSNKGRdtQvWKcCq5qcqNwbUO83pJCoKrKarHBlkrJasZlS2RKfxjnRoudYxcUXjta0xBDjyWhqjRhcsiEmOlWLQ41I/0VgUweJ6GwGE3JiaoL1npKqeLU8o7DYeRseUKaZlRzBtB4b/CuggroWiihsM8D3mnaRcuYMjFmnLFY50lBUYohl0KcojgTK5yuViKeqoVcI8oorHc0zlKVRGGMNpBrZeiPOCRar5RA0yTuPVO4k9mpdhfJkIEoFC00kOX3paKTYjg4vvc7R3aHhjWWTavpmpabw8C90zXjGHDVgLHorqNqzcUUyVGejawgx0COGlXBek3rwSbYrBaY0xP2l3vyVWB9f0FnLePhyK5mvDHUUZ6R65sjh1A5sZWkNdMxs3AZU2EaB/xywYDE5LXrDW1nqDlgpkoTJT6hO1kw9Jk0BWJWnKxPqVpx0i2oC3h5eYWvGbPUDHlCu5Y+KlI29K/2GAuHKbEyS5Zu5JgNNRU6a9lfXuJtxRlFLNA0nrN2QWOvMXVktTrhZN2SYmTTLYjbLTc31yRtsY3npp/wy4auJtQx0GCwDSgdOT95ynGfmPqRk9MFFc04RkyNdEYzUDk7XxJVIVbDbrejMS2+WzGmnpvra5QxhJJQhy3L5YJXNz2uaYi1UkJgmgr9GDhfruioXMVK07acnC65Ulv6/RGKgaFii+b0ZM3N69e0es369JyLMXGomfGYOaQ9hC0mFU79mslWdn3gRHk2S8vaR+7fO+XTF1fYeIDDRFXw/OUNw/GAX3o25wvUoaCy4975GZuTNa9eXnK4PuAaA65yzIk0BIxXPHy4wSrN+dkDjuOIC4HNZoH3Ddeqst2OWLeC1lO6QIiB5XJFe36f9WrB8x885/pQcHHEaMXlvueB78ixsL850G1OUTZTiVweRhwGdQxQJBJy2Z1wYjLH45GoFDEH+uOeOhXGYWSyPafLDqMm1l3HfpowTUNImdY7QgQMjFPmejuwcInFylOMZrvtsStHe9owTlCKYdFZHm5OuHzxkt04SNTYMIJSLKxh01iiNxSjqUpzYluOKZJX0oCIIbLTcu8ShdaTlaFej/zgw5e8eHmBToF333+KNo6zE8ury9c8ePYElSrHmyNtt0T7FdefvcY0nrP799FXmsPxyDFGmqsjh11PdYmr8ZLpE4XJlrJcohtPWTh2uefF6xfYxZInX/wAZ8VJKecCEZI8ffIOq65hN96wcJ7D/S0fLl/y2fWR6RhwVTEN0yyEraxPFtRQGFKlJLi4uWSYAskqutZytmzxrWEXCqbLnCwUTxeezDkf30Q+3e55vb9mmDyn3YKT1YKTVUtjLIvVkpxgOE5c7iMX2xtONgtaY+lWHV3XkqaMQRoD+76nH7WQGFLlwZQ5OT2haz2lJoqC9bJjihtiTtis7sTGxyGgq5Arcsx8dkhCRzSVRdPyJ//QT/Lld5/wD//Jt/ne65dELPEYuN6N+LaCqeQp8mRzzuNHSw5XezanS67GnkOGbCwrr/AhMAaJnclVyBSGQioZZudw1hJNdUukqer2eCFCi1tSjL7tOdTKrEwgxwraiLgjpXk/AFpn9jkTp0C/O3BzveXy6oLdfsuzZ884OTlntVyKCNp7UJZu6TG2J7US36Cdw48TcZponWPVLVh0C9quY7P5jM8+e8n1zY4xprlMftvAnwkf6g095/aXVkKnLEqie3MWEUUYA9vtltcXr3n96hXvvfce77zzDufn55ydnrFcLvHWorVnufKoZSIME1rv8bYhNHs2OXBysuL0ZMnLF6/5+JMXPL+44Xgc+PjlluvtwCefXfDukyecbk7oWseytSz8kraBs7MVZ+sV3hk+e/mafhy5jVGquVDGQgiBYRwY+p5xHDnu9+yWO9brNevVmtVySbdoWK8XnKxXrFctjVN3VNDWWTSZEjOND8TpFcf9KG5uPbHZWB4+XLJa2jnm9Mdz3ArZ65veGLdQr9smF/W2ASbCDCH33N6+s/NfzTyGIrGeRuvfQx7S8709fzOhMymNMkIAKlX2wPqOZlTnxpXQlpQCayUeuc5iKD0XRrQ26Jl2GmOYG4NexE2zyIVaRfRSRDQTUmYKEWeFjFHqbWNPnlOt9V28nzHyPkwhigN+jkNxSmLqEiLGyqXc9eSU0aSUSbnMFNLbaI/5tc9NLlUrJUU089/XKhSvqkkho1XFaPm6xllSqcRamLLs/bx1cr2AcSK+y1Wi9e7An7WgqlCvnLGi69ISjRdTQSk7f0Yz/UYpnLVUDSmLAEK2r4YwThIxTsX7Zo64NHfR1kprYkgiDNIidqhIs19j5Fxw+9nekhNKFWMMbxqyhTJHzOlZ8FWoqgrxt0ojWRtDCInWNXMkS5F4HRTGSBw6CBWm5kooEW0U1sv7WHKZqVyGkhHyV63kVGYOV6X1Hj2j8SoZNGijZ4JxlTN1yhQqJUR5r7Sm1ImT0yVf/cn3sd3nRcXy6m5jE4UmJc8QFVRW5Enx6sWRX/2136HvRxprccYyhETXeFLKmKoIWqOUA6XosxAs6u13z5latPBptcJYWXeaxqGblmmYqEOmWTislujVsVah4iQhWY1jIBRojDTGYyw4XVAVckxyDqNSUsb4BuNmw1Su2CyCMNc4UqxUZSlFInBQitZZKpZjPwgtyCliSWAcMStK0cTjJESuXGm0xxOJM3nCac00DBgta1GuVUSu1mH1iCLhfEvrDUOfaZwnjyPjOFLmRvYYE8ZbLBkVskSIGaHkds2aEAopJJpGIqFSymgyTisilUXn5XNHM00TVlm08+QSGYcBlKZQyGHCOUc/irmoVOb7JhJzoXMeS2XIFWstTesZGIlTRDIVK7oq2sYzHnus8vi2Y0hFrjFWSp4gjagKrfEkjUTYKkPrNTlllt2GwzAxDhGdMtYZjqMIZZRBIuCKIuZC4xqaVs7uu20QEZ7TRLJcU4gsOolx7BYdhUoegwi6jIeiOBx6xjFhW0exgRKyUL+8xzee6TgwjJEpg7NK4u6miNKGcRhw3oNxYCMhFWqueNLcpBNiXec6QppmOlyh5EgomhQSJY0sF0u8MzTOEnOWeTnL/JZKoCpZf2IsjGHCW0O7aiSOOkVs4zDKkueI0fWyIw4j+/1EzHUWg8p61xgx2VVriAWZm1MkG02a62MhIXuylMkxE3JCZej3R65v9pSUaBvHolTWiwVDv0dbw3p1yrAfMNpg25bj7kCMBdu0rLUix8RYCq4qxmmUOo7O3Oy36CyGPeMMunF8+uo5D188QFvLiXP4pv1cGVz2d03T8uDBA4app+SJdx4/5Qvvvs/V9jdJYUIXRUHoW1rP4hutSalSitRZpnGaSZlINPZMgspkuoWilkjbNeyGzG4MjDHw4uIC9Zu/yU994xssFy2NNTTeYowlhETOI1OM9ONI550YFL3cDznJXjrmJNGVs0tgmQqLBVhnEaCiRG+1bSP1o5hQ2hCiiGumnKCIALVPsyBbfJLc25xwfrph9aLhP7/4P/I9/yH/n/wr/Pr0G1x2W6b/zXf40j/5Auu44GTZkaYAWeE0ErtWFMZbmiKCoZiLiEnn/ZDELb/ZR3x+1ZBPR92B+GbN9ef2X/VO93oXI1vluVLckoxEDF5LIUX5jPqh53wcOT07peuWElNmDdpYqLeC3IgpYnxUWqNTIqdM0QZnLW6munrv2e339MeBkGYDx7znu+UofX6jefcnJYKlUvOcZCeCsz7LXr0fBvr+SL/pOTk5YbFY0HWtGB+0iAeta1BO9nhah5niZigl0jaOpnEsFy273YHdoWccA8OYeBG37A8DZ5s1i67De4fRCttYrG7xjaXrGqw13Gz3jGESYRnqLm6wlCwx1DHKvB4jYXJMXoRK0XusczhnabOn8Q5nb4lKGqu0QM1KwRoFyD4qRjGDWFtZrjxta0SQ+Ha8HW/H75vx5MkT/tSf+lP/ygIlEILS3/k7f+etQOnteDvejn+r49d//df52te+xgcffPBD/XulFO+++y5f//rX+dVf/dUf6bW9fv2aX/qlX+Kv/bW/9mMb/QZwyim/wC/wz/hn/A/8D/zP/M9cvHvBL/7nv8h/+n/+T1ndrP59X+Lb8Xb88CIlKfYzN70ytRq0slQjp9OUE7OJjRAz1moWXUeIs1BpdtSauVhGlbxIY6Q9VauiIHFypVTa1tO0DX0/MsVArvmuqWGdmSm+b2IWYkpSAIoZNbuKQ6rgLd63pCkRSsIijS9tROyRS5aL1tA0LSlmxhDFTVylCGSUIsZMyRHvPW3bMI79HR5YzcVkhcao2+x0C0qjgc43ZF2Z6kDJhZIgUVidLAlByEhNY1GqUHXBKIvzDegiRbJSsSlSKcSaiCVjlCJRSBWmLG5oMzcPDJrWaLKSOJGQE1YpjKmUmpjGkVIgxIJRCmuksJVqoRawxolAyRqsdUJzUYrONUwxomvCWU2ujuJatMp0bcVhqMZyddiTY8BQWKyWdOuO3dWIUoZYM7Vm9JQpSg7Z3hqmWMghULRhqJWsItVo0BalNeO+x7pGDt4xkaZM01hiHPEYxnFCFcgxY1s3F14yymqUNrSbFUMIeGsoqrJcthhnCDGTiOiaUaFgTaEayzEmMJUQJSpC0tUq/XGgKi1NFevpuiVd25GrOJoMlXtnGypwHPekKYjDqkJTFWPOUlyhYnQhuZEH7y3wmwIqi8OJIo2XKgQlkGhFBDJBHjP16Pns+wcOB8PNIbA/buk2KyY9MNTCqsq9sO17lG0EpV0SNVf22wNnmzUPnz7mo+efUq0mkticrAnbnsttwCwsj9cTD967x4sXV9RS2PV7dNtQporWhkwh60LTaXbXE0tzQlCJabVgSGWuc2fU9TXn5+e4hWWz6EBZrg47alRMMRCmQJwSSRlSrZSqMTlhK4RpoubEyXKDKomC5WyV6cvIMA64rsFZw2rVkGKk325RJRBCoFrLZrnh+fNP0B5yVjSNxHmN40RJlkUrYqixZIYyMV4GOuMpEYqOjOVArODtAm0K02FktT7B6UQMmU+//xrlDWdna/ZHKQC2jUaVEWUqdmFolx0nXceHn7yG8Rq1XKNzw2bt6adAMo7lyrO/ekWtiZOTE6HBpIpD0awXInh0nlQjsdeEAZxLLFdLiQyIFZXBqEyaemrT8OKzl2wPW3ZDT7taMNbMEAMbbXG6cnq6IS0XqOsDtcL+sieEHruoLLSi5swxWmJR7PuE05UHZ0vW7YrBNVzsBhZKc3/ZoB7eI+PJJRNyJDt4cHLOi5ev6XeF5XKB25zR6APf/e1/SVGJBw9XdE3iuEt89tEL7r97j5PVgjBOXF0c8YuGOI28+4WH/PZ3PyZOkVYbalRUrXj/q1/mxccfcxhHQj+xOd9gXcPx6iARkt7j7ZLNupVmiNeU3YGQK/UQaFGUMhHjFuUcqmSOxx7tG1SyqBSINtL5jmFMBJMYY+F80dFYTWgt9TgQ0kAYCylV2s6yNooUemzniceefpjoGovXlsZW1uslry5u0HZJVHCzO2JzRltFTUIKqLlwvDmSG093uiKWzP5ww/K05YE+YToc6Uvi0xcvaB1MpXC83PH4wT1OHjj644RxS1JJHA4D9/0ZTilCrVQM14c9Y7/nbOlRjaOMEchMIWCN5snZhv14JJTEpx99RNWGd7/4JbS2sngrodGA4fTBM07KUy74Lm71CavTU5qPX/B6e0UNiWM/cdgKye/e+TmbpmWzXhGGiefX1zz74F26xtAazcYvePX6klI8u6mQAdMfiDWx3Wf640CfA6HpGELk6rjjbL/g6b1zVNV4o1lvFuymHlIip0iwEomkrBAvpkNCG3HT5wKHIXBhDgxT5GwMnJ+t8K00D6oyvPPwHquu4cWrS/phEoqIMZSSSCGSUsY2BecM3jWkCCVovvzoHdwfb/mHv/GrfPfTT5muA7kqsLBaWtTSM6bA1X6kRpnvGmM5lki1lQaNrYYcpaGUc2HKwx2tpRRmobZIWG9jnETUwR2lRprdbwgec4gWcEsIybOD+04ZIk09FUhT4ep1YBoGDvsth/2Ow37Po8dPOTs74/T8lLPTU7Rv0Wi8UTTFYZ3DWMfRHMnOMQZDGIW08JBKu2i5d37Kx58+57MXrzkeB1KUgruaKZa1zlTLwtxQl1hXqGgKWVKkpDFWCiknxrHnsNtyc3XJ1eUFz569x9Onj7l37x7LbkXTdazaJVoVNBYwNN6RQkspQegHWrNedDy4d8ZnLy/4+JMXXF5tOQ4Tv/WD13zvsy0Pz9Z8/UvP+MI791DWsKDgG8962XF6suSzF2e8eP2a6+2evg+kmZSSc6GkRA6BOI4MXYc/7Dnu9+yXa1brDevNin6cOI6Rk2nFZtmw6hoWnWWqVUT1WnN6suQrHzxlsfKM8YBv4GzTcLpoabQXMsiP6VBa38X4iUBE3923IJ+p6JWUCPq1xlk102luhWtCxJlzzTDGSnTF3GmrVd2J3KzRWGuIMUnkW35DGWOmJtWZmFSqfFZaaxE4KbnzSql3UR8lzxHS8/f4PMkJBVXP4qYs9J/5lINCobTsJetMzrFW6CB1jhy5FReCkudQS4OOWXxojRHiSI3SFCyQlESh3J7DrLmlklU0Io5AVWl6M8etKflvrmUmogi7KVUR3WgtIh+FGD1KreRZFCXXJaQEiXqss/FCknzMLd2oyNlRBEozrUrJ++CMIZc8x8kpapXzg1JFRAcIZWkIgZIzuhZc43HeiuhXrCVyDszyumoVWkmqQlqrURNnoU+dG3NKKeIUhaxmxHBQcsUaRS4JgyZFwUHVUlBW34nY5Os1tvHEWSRQVcVbO9N/KxKqU0Xkoarsr7NQC3KWe70iQrs4ifGgFInUs87NkeNlbvJWuk4KXTFOlDTHqyOnglTqLMyTn7VYdvyxP/GHWJ62cli4ndPVrSJQGpHc+uQKEgcYDfvrie9852NevLpCYbCNI6lIotLgMBoRlBozi5skN2gaA23TsN6s2O13ZCMUsab1pCkyjBnlNGufWJx0HA4jtVamKJFXkgKu5DyoENHRkPCqIalCdo5YRCRYa0UNA+2iwzpN4y1KGYYwUQsyx9ZMHgsVTUbOE6rerhmZWgqNb6UhjaL1QmpMKQq5Tot5pZRCHEeoQhisRuOd57DfoYy8nSKSEyFRLRpnW1CQqsQMpn6QuPYixI4UguxplENpEbX4pkGrQkmV3fURZTRt1xCinP2dUaia5Fl2CuuEULjdHQkpg/PYamm8IapMma9/6o/UWmhuyVJF1o7GW5SVZ6HUQlYSb6djEYGO0ogesM7mrUg1hsPhiA0jU4oiFEtCfmy1RpdC27UU51DjTMUaIjlFtKuYqqhkUtGUVIlRqCWrztE2DeTCGOSe76wInKcgxOxcMrEmTpZLhmEiTFHmN+uxVhG3PUM/0q4kps45zfHQ0xSHbzwUOB4Cykjs33LVkin0/YRSQl3JObM63TAcNCFEwjDhncE0jhRFsGCsobGWrmlETKFvozUTUyi4W7EniZQGjKrEEKlao6uFEu7iAnMuTDGTKuiqaaynaAXWUMgS9xcrSisaq6kpYKymBCV1Bq2FWKmgaYSkmGJBeS8iuJTfxP/OYt0UMlVVrNU0zjNNA5jKct0S57jY4zSScwQNYQpY39Dczj9TxmjDcTiCVfM8K3NiSIkaI1ZXmkYErBQRAZckBKeUEz/46ENONidUNOcPH2Cdf8NRmik8rumwzYI0DUyHkS9/9St898NP2O+fMwURJ6VUhBTuHMumxRpD03j2hz26tWw2K8iJzjekEIVAhpGIuloJsWdMlTAlQk5ErfnkxUuK+jV+8mtf42S1FGuYUjTeMU6BEhMly/epquK0pVIluq0W1BzjmrLEz+Wj1O8Wi0YMjMheoG083loOx55+CPO+QsFcD8tR1lBtCs4aVFWUrOic5YtPnqK1YXGz5P3jezwr7/PL9pcJ5z3bn7yk+05DP0zoXKiz8FcrRdKyxhs06EJKs1l0nsNv9xu35pO7fdrtxuZOn3IbzXsr+K2f/6vfc+6Q5UYE0UrNstgSCWMmp0QMgTBNhDCxOTml6zratqVbdDhj7+JQDfpOpKRCxOhEzkLVRylaGqEadg37/YHd7iAk01xmgfr82lSZl6zb67+VL70x3YooXtbGGIXcGucIuHHo2WxOWG/WLJcLWt8KkdULjbXqjK8KozXZzubKklBaxIld07BaLdjtDuwPAyFG9seJw5Bo/J7zzZL75xsxAApGD+8srXcsFw3745FhGJhCms3CRfa4pVJVpuRMdoloDXZyBN+IWKlp8I0j5UxMmcY7vDN4a8jz9lkriZA+3UhE9BhGlC403tB6izd2Pke+HW/H2/H7YTx+/Ji/+lf/KmdnZ//KX1tK4Zd/+ZffCpTejrfj7fi3PsZx5B/+w3/Io0ePWC6XPxRRSWvNn/kzf4aPPvqIq6urH+n1ffe73+Xnf/7n+Qt/4S/g/Y9nTK5CccYZf44/xzf5Jv8T/xP/rfpvefnsJb/6f/hV/sg/+CMsdou5Fi975R/HCLu34z/s8UOLlCTyQGgudwQlJQXieCteYm4UKGma1ZypOc2RA5ZaMqVowRynQtM4cbWWjDGeUmGKCU2R4g6FWoSolJPURL33aKXmvPWMNk4uUElsgtHi3FGl0jj5uxACMWdKTvhkcJ3HASihFRljCDEIov/Wra+QiAMlzUy0NLRSKcT+SNs4UsmEFOiaTg78IYHVQoPSWgr/uTBNgZQDTkFVlWKlgWKAUCRH3hhpWmgKWhlSKjBjpUOJqJQwurL0XtDrc0Ol5siqmVHJ1jMZaVx23rNUlalKs6UA+3GU5oDNOG2kUVsrjXdUJQXMDCRd8caQKuQQCWWEPBckmwbbrgSJnAJKJ2qS4vJYkxRhTSFT6aylsYZdfyAqhTaVxmnGXohOK2cJ2pEo+HVDmSK1ZnKtZERcpLQWqlXX4rXE2oUQ6LQhJbnfaqnEFDBVGj45J0qB1luMtnTGUVAkKyjsGAasdngUjXGYrqOvkZGAXbWoqkiHQM2FVls0DjMXZlLN0iyomVYrdC3EIKSQrvEoXTnsBrJCiFLjHI2gNGE8UsgsTzfkaYtTW97/oqM9jWAqumZQEgFCvbWjz8UTAlRFnir5oLn+FG5eQnagGkcuC5rNPbQuFDVxdXOklMjNvsfahgf3znAahv2Wrm2piCDr4f0Nz6+PnG5OeHrvHtu2AX3g0B9pm47zs3sMwTKNRw6HLa3X9K+vidpyfn9Jt1yhSqYYw1QSKReoGde0XPd7Nl3LsD/y6sUF77z3jOubPV2zgFLoGs009Gw2G2LQ7PYHjMrUFBiOEmWS42se3ztlsWi52m7R2fKFL7/PJ59+j/6zSNiPZKeJY0JT2R5esmjWtM7SD0fGMJIbhzaaZrGkazS/+b2PUEZRpsT983N+4vE9Pv70NdZYsoWgFS4Y4tgz6gUPHt3j5sWW6/6SjGMxZJ49PGEYR9xiyZh6Xr4+sm42OJVpWs/FqwPWe+6dn3JzOdIuK2enS0oK3Ew7TpolcYAQE/0hkNLE9jCg+5GvrBZ0vtCXI6pdcnrSoq8rh5DxS48OI6px7HeRvg/ozqFVJA2JMBUMlcXS0SwquUZMhVYlsho5P1/Rek8a99iFZrVcEoeBy8OBq2lPC6hx5Ox0ycLAAIy9IlV49u4TFquW7c3IlBL7cc/1/prDMJKVZrHwlCnTXx9gteTq4pJQAof9SGdg++qGkia00yzPH3Fy75QaRq73H5FDJcfEyfqESzLaGiku94mjjTx+8IgaJrSBYyzU2NNUw3nbcGwNqfXkkOiMZnKVQziyXt9jCpXjcUdIFWvgdOEpdokuUIcjzi7pU2bfi1PatppnHzzl6vUVw4vAsSK0v5wINVHqxKubFzTTArvc8OT8IbbNDCaxO04kBX0IvPP4IWtV2R6PQvXLWZyxxonobb1iO7u2vTGslh3RFo7jgXG85vz8hHGojCFgseRcGFLh8ZMHnHUNh8azS1kc+lGEpZ2VOURrQ44jKorLfHvcE+LEe+8+5vWrC1zMtOdnbO4tyaM4VbMaya4yZZnfYpgwjaPfHTl5tEEZcRNr3VKqnguWt5GUIha49/A9fvI/quj1Cbth4mZ35FgOxJR4+foCZSWeNd1bY3zBGYNvDON2x8m9+5yslnjjwbZsjxdcH4+8DAfidORk3WJbjTlWbJUmvNIW5xxDgU8u5dCxajtWi47NYk0/9ry62fHk8X02zQKHA6cwRsSstUiDNbSRfprY73tevHrNowdnfPDBu+QQiWmExtJ5w/lmyTAEwhyto5RDeUOulRgjmsJ+HOeif6JZPOThg8d840t/kO3VxHU9Mk4TvtHojWe5XPDi40teH2U9A41H0RXwc4NJ6EkWrUVoZZpCmEZ0qTgndJJc30Q11TqLyOd9m9K3FL5ZSD0fMqpsmUQ0QaXMEUxVVRpv7n5ZI027/nDNpx9NHPYHri6u+MIHX+TJO095Oj6l1Mz5yRm+aajFoqqXuDetsc6SphE7WoL35BDmhoJnveo4Od1wfnbKJx9/xuXVlmEYRTiupHeu5vhW5lWwzIIK+X2eV8hCmaMaSo5cxcjxcODq8pLL16+5uHjGs3ef8fDBY9Ynp4ScWC0bvDG0iw7nLWHyxGlAKYMznrbrWK6WrJcdj++d8umLCz789AVXN9eMw8DHnw1cXF/x/ef3ef/pE07XC7yDZetYP7vP00cbxukLXN0c+OiT13zy6UtudkemKHNByZkhZ0KasKNnGEf2x57F4cDmsGa1WrE62XA89BzXS9bLlsWioXEWZzQLJ6SXB/fXnJ51qJooSLTPrRjk882mH7dxKwiqdxdZ735/Gw9dqXeNSwVzU6bc0ZXqTAOTe15IRXc01/n15yJNuFwK5DcRXrc9qtsIt1LeNKiAz8XEyfPBnSBBhCbyfYWIY6zBaHl2UCLASkWi3+6i15QIryRJRcQ3CiEYlBgwxtyJo6xxUOsdLVRrPdPRFMwU2lKy8DZnQdT82zsikBJk7fx86Pn89rnGZJFWnbcGa4Q2I1SBjDdz5Io25Pm6nTagDPo2wgwYk8RyaT1Hw2mgVhFlzDNQAfmMlJKYmVzINc1nuoo1BmXtTHvLYtQodY4YK2Lq0HIvOG2wWkh2WYnAzWpDTgldK95oshbxj/WWMkdkVuaoGiUCnVIKzlm0MuScyVVixEpRKC33UK4ZVWfCVqmkmrBGqL9WzSIjLRSoMtN7jGApUNYR6xwJ5eWIXSah/lolreJb2FeeBZYirpqpDiWR0tygBsIkFChtJVKQ+b7MSeRXrvWQI2cbzx/73/4B1mcNKInYQ909THzuLuGuyZwrZdIMu8Lv/stP+PT5Z2A0pTpss0CpCmSGMVBrYZwCyliWXYfRkMKIsw6oGFVZLFoOY6D1DatFx2QtIHRMax1dtyBmQ06BEEasUcRe9o/dwkss2UxGTrXcUcCMsYwx4J2VuLFDZX2yYRiC/PxacEaTY6RpGopVTFOQGJ8aSSHLnJGPrLoW5wzjmKBazs5P2O6uSftImjJFi9lAAWM44Ewj1KcYRARoJYLQGo81ilfXO3m2cmHRdtw76djue7TSVAtZKREVx0SyjsWyYzpODKGnKo1Lhc2iIeWEdo5UIoc+0pgGTcE6S38Y0Maw6FrGPpEztK1E1415olVCpsy5EIMQHseY0DFxz1usqcQawTqWrUONEHLFOIPKIjybpkCMIihTQI2FlGWecF5jrYgSdQWnClVlXOdk/kgT2qo5Ki8xhMiQg9zTMeIaz8LJXqkoQ8yB5aKjW7VMo8S6Tzkwzedl64RI1zjDfiexZ2M/kqvE0RvvRFijZ+Fm29B0CxptyHWPGgMpZxbWUl2VCGcqORSOKWCtZ72QeTs6mcdKDHTOomrFNYY0TlhkXo9kcok4bwgpQJS5zWkwbUspClsLNQmNbQhJKFBWsdwsxEhyPZJioVotJLgqc0JIkX0fUbmhtZ6uEUJXyZGiIJWC1ZrVRswKaRba1cocNQfGO8YxQkk4pTFW41vLrh/JKeCoeCumLFVkjou54tuG06YhGM2YZF+SZtWKVQpdssSGpiQ/MyZSjMR9Yr3q8J1nPIwY4/AnLTVFmQ+rIptE0TLnT+OIcZaby2u+8zvf4Y/9iT9OzkEiK9Hz7vXzAkqN8x1nDx6C9/zxQ8/2H/w/ubneytozTtQacI2QudvGY1JFWwU5U0KiaxqcsWQDsUyMMRBCpOSIVpW2dVLfm38ySnFxcclv/853+OIX3odaWbYt1miaRuqTY0hoZ9m0C6wyc+QplDJHKSepEaWUSBX6YeRwNJyfb2i9J4Z4J9rpWj8LR6SuqBQo40SsOa/RKcoa6HJG6ZauW/Dg7AFjyIRj4g/nP8L76n1+qf4DXn71OfuzI09++R0WU8tnn37KZr3hfLPBq1sCkoiWJW4XrNWkFIXgpBW1atkf3J4oqqy9b/Zp6nOf1a245/cO9bnf3Mb1Gi21N6GdQ86B/liIc/xbf+zZnJ6wWq0oNbNcLLHGYrWGamY64iysTIacNDpp6hyPq43Ge0fjHV3Xst3uOR56QgiyVwNQIgCUZOzbulp982puBeZI/VjMs+UuAk6u80jfn7A5WbNabWjbjqa0NN5hZiG8NiIKLzmhUkCjiSbinMN7R9c0rJcD292Bfd8TQmIcMs+nie3xyNnJmmXXYo2sG6vOs2gt987WhBDZHUd5ff1ITOVuT1tKZSoZnQzGSvToFMSw10we1zRMIdI2/k6oZOd4WWc0hor3lvOzFbCY95LzHlKptw2qt+Pt+H0wlFK88847fOtb3/rXFij9k3/yT/jn//yf/wiu7u14O96OtwM+/vhjfuEXfoG//Jf/8g+9N9lsNvzZP/tn+bmf+znGcfyRXt+3v/1tUkr86T/9p3n06NGP9f6po+O/4L/gm3yT/1L9l/wvf+Z/4fmXn/PT/+NPs3q54ld+5Vd49OgRX/jCF36sX8fb8R/e+KFFSjlJPJm4Tx21SGmh6DeO5ZwLtWastcQk7iLBMluUUmhtSakIhUZLAb8qcQjHmNBWoRD3caxgjMJai9J1pgUI7l6ITRrjHIqKqQWUIWYwVmNUBW3RWhFTkGZByTjnpWAfEzVLEalUaSiUdGtmyjjXUWulcw3WKFKuoD1FGcI0smg9ula0sXSNwc7oXZShupaSgjQ4c53x9VI8WnUtRTj4xPD/Ze/Pem3L0vNM7BntnHN1uzn9iYjMDDKSzEyRlCWVyyCs5oYCJOhCFkwKuhHKf8C/oX6AUdf1E+qCvBEoCFBBFIoqqlyyrKaSFBkks4vutLtda81utL745t4nacMQRZmNqTMCmYjY2M1ca81mjPE93/NK1rczEltHqTjtsI1k21utsdqQFESVmebA2kkOe4oBXSGzwEk1Y1QlpYyrGmUNhzAzjBMoUY7fdc0qo1BaEUKkMdKJl0vFas1conRmxkLxjqbrpAhdoXEWoxwZg1GGohNWQYmREAtee4yRArL3jiElSIYUE1krjHHEcULPWroHdWWcR5yxhFxxGtaNFOxTSGQ0jVIQk+jwrSeFGestXTa0xjOkiCqFTeOxSWxDftOhrGI8DsQYKTGTlWJKBd1aef1Ksd9PGG1xjePJ+RarVoRwvWy8SxyasU663I+RbncKPjMm2aRSSmOrdO4Oc48rhinPdKuOkBOusdJpqDQlZ7pdx2az4vbmhuP+LSe7wkdf3+I3e5ST7mopKCzWC1iKy1AR25eqmjol3n428/lXmWNy6LbDt5CLZhxHOm85bTxX44GSCydtS3d6Th8CpR/JueC9xzs5LkqlDpFgIl8NryUipFTW6zWbVYdXYIro4R88esTc7zk/XdPPUHQDkwCGz56eoIzmzcs9Ho/zmjxvxSCzbKCP/YE5JsiKpmvxrWV7DmHWtI2lP8pm0oNnJ4wDvHlzS1Wa1xc3vL7p6XZrauzZX24wesXmRNP3gaRhDBFXMmcPzmm7LfurPc5aopopWXPS7OhOV1ADDx49JIWZ3vTcDD3jmElzJk4S2XhkovVGriVvAY3SkeIcxjQULQURvZEiztluzYuLG3zjUTnQH0dSreQYCTcz/TTx8OkZ4zSScubRw0fMxyO7zY43/Z7zp49AK6KCOgfZIFOGddtSUbz+8gVXlzN206BjwxxnNmsHvuNwNaJz4tmHp7ztbzHtFrVakcaBkiP7uBh5covvNKfrhm7zgFx2DLcjF5efM8UZ03VsT7Y86FYM88R2t+LVZy+xrce4jilMhCFSnGx+q9azCoE5zWSjaJ2HEjnGmTklrm+OtA6ef+0MbRxpCvz2pz+g0YmkFKsyE/YHximybjzdwzO6zY6z9QYK2E3Hix9+xjwVgkv85Nc+gKlBO0d8e8U4DrxRkY1rsbny9NkDvvj8BTonnjw4ZUgSvff8gzOG/cCrN7dErcAGbOtxOM6fnlMpjCFy+XaCElmtW6bDzGbdsbeG9XZFGEd049k4T+saYpwoxtP3A4daWJs1m82Wfi7MaYYU2V/2zClSlaZB4VyDXnkerBuckyLZWh3xWWEbeHi24u1xoOaKsYaTlaOxnrdXI1eHPTmDa1qG6xumEPnJTz4mlMjrl5dM40jJgT7PlJIpVbPerNidb8UmRKbtGuowsXIrLuYrhrdXnH+w48GHD7j6/IppEitg2zkmYzCu4dFZx9t55vbmmt1Jy+1bx/r8Ab49EcvFUgKXDf6KadY8fvpTNO6E6xeXpCnz2WefcXV7oA8TIcxMeQS1A2vYnO744MPnXL5+ze3VDY9OT0i5YpCokA+ePGTbPqBRgccnLW+ubzns35CVIgwD2WUat6FtPc4YjrNEYzbWs+s8oSaGOTINAeMcxmuBiaoQ1dporFNcXlwxDGuBqlMGY2m2F2wxzNbQnLSYqnl0foZrV7SX14zHiTBHhjqidWHnN9SUGebAOM3k64E5XrBddzw63fJXfuY7xDnyuz/6ESkW4pCpS9EvO8OQpWDQWE2exCoQS8Apg7IFjBiFupMVulcMNyNVFZqNJ4ZMjXcdzBKLU++ogwpqyXnLvOuEqBSq0vfAhmLZoFcS/1RKlXherVhZ+XpIA5dvA0N/5ObmhsuLa/p+EhPeo5Gz01O6tsM2Hq814LA4snYYa5idZZo0WzJNsBJv4AxN23C62/LVVy/56uVbbvZHMVNUgS0MMq8si4mGBUoBJAKmAkoKsyhDLZmcIyHO9Meey8srLt5e8MFHH/H8gw949PAh4fSU9XpNu2po1mt81zEPPY1vqOst83Tk2A9oHG23YbPd8ujBGV++esOr15dcXe8Zxonf+8FXfP7VW54/fsDHHz7h6YMTzncrzjYr5lDYrbZ8+OwZbz++5fe+/wVffPWKm/2ekKJYV6IYaGLKuGkmzhNpnhn7nuPxwHCyZRi23HRbuq5j1TWcbFrYNnSNxXUKV5zA7VqKPrWAswZt/+xSSlLzEtjoDgSR6JDFcLQYjSjSNFCksnQflaWUGInuztUfh4pACRSqF4KnVkpmWYPcATwyv1L67nq4sxfdWZHEbmOtOIaEcVEU+UViGVksQzULPEVliRkrLJcTUKXJoYIVbk+AIG2pKHJOOGNRC0DovJNpYF7mgsZCyRIXWCtVK1KsUAveWe5sUyWLEcQs0S2qglLSiCDmI4NeCk2lVomnNgLchLyU8KsUh9VSmLqLn1PL94QksYzGLPPSKqYPpRQ5Z8wCKt0Zo3ItAhwWaQQR855ct3b5vQUxclRV0ct1LdCPxJBoxMoUtYIijShVK7QyYiRTmbuEGTGMGHIRaMhbiXstmcVeo6BIvJ/ShprTYjmVOMVQ8gJpGSmba4kCVVqRYpDPfokRz7WizFI4VTDPYoAzRrPuGgyOvowLvLJEBWotloWQ8U0LphCXeDp119hTKzEGdNWkIHF0OReMESixKLlWnJf75zRNxGng8eMd/8e/+hdp1wV0knNHHszcQ0n3MdJ34JKipkp/G/kPv/MFv/v9z6jWyilXxdjijKGxhiklSpHoP9d0hFyoUUxe2khcu1wDlRoLWRUO+16ux1rxXiJnDKBrIZTCar0mhZmudYSkqBhIcl1tNg1KKfrjjMHIuiR7rNGYRk6jGIJYyioYZ8V001Vy0lijCIszY7VpiBH6fgYUx2GCKWJbBzkwDw6tHK5VAvhoiLlgaqFbrTDWE8ZZzi2VqFXTmEbgMBIr1VFyJsTIlIJYgpI0GGmjCSSs1rK/YfQyY8pgjMQILjCmc7Ie7zrPfhgFoKwIWIE0MeVJEVJitelIOZJKZd2tySHQ+IY+zHSbtUCRCpnPVJml+SWu7Lg/MI7LOrYIqOedAPRhTKia2OxahjCjrEc5iQ+rtTDnSpgipRasVbTeYv2KUhviFBnGW4mjdxbfeBpr5V6k1VLoDzRrTa1F7NRR9i6Ud9icBeR0YqRxegF1aiFMCVzBt4bVrsMZx8XVzYK3ZLT31BgIGGqurDqJYLLGYRtN0powjcwxUVSlXTesulY2feZAmCXCd910UDXrtmUGwjTTWINvBBBoVxJRdjwM5FwpuqBqxWiJZVpvWmISe1iaM85rYsx0rcV4A3kx0FUwxuG0JkVNRQw8ocxY7XGtx9pCqBIlapVh2AuUYBag3LUepSreWYm/ajSqFLSCtvFoq6HI89QbI2a/kpnnWew6BWwyTCHTdR0nracfJolLK4WiKsMwUItYVlbrlTRZpCBxajljTUOtkKaZaiubdUeaE/EYxODtlFyFVq5/qxWvX73iy89/xCeffAIUfLMCZe7xl/t7ltL4dsdD2/Kz30n0+yP/6//6/+BwPBJCkvMsR3L1ch+3hrPNmhITwzDQWgdeCSymFV3j2K0czmSaBQD56s2eWAR4jyGg8VxcvJWY+p/5GYyx9/fAZOUZMc8RtVEYq+/hEFUF3DVWIiwPx4I1y/5X47ntR2mmmyO6cTil8EZzsjUYNzNNgZIkwjMSaaxbgNUiUHRI5DKTYsUYxeMHDyi5EmLkUX7EXw1/jX/Z/As+33zBD/7yD/nJ/+UTrvsjc4qcn52QkxgSVV2sTbrKGshqvPXEMZLIyx6soaQqzwdV3j0y7qeT9b4p9X7CVO/mb+++5+6jrHf/yPIEo8UCWGsmziM3KTJPk1iCzs4FHI6Zddcttn2D0Q5xKxoK8izURhoYKwJz5ywNmdoaGu85tA37/ZFhnMQkt1hkBbx9F/mm3k1I7w5YnmNKIibvYqjzElU3TTPDMLDdjex2O9abNbntJAJueQ55a2V+YjTVFVyWKDatDEZLPF3XtayPPYfjQD9MhBg5Hkf6YWLVtpzuVuw2K1atozVOzIvOs+pWnJ+ecH295/rmQD+OpJTu58u5CnSfU8bYSEkCFroQCMGTYkNw72LgvLW0jcU72V+3C/iplVwXtch8Tpv3xan34/348z4++ugj/sE/+Ad0Xfef/LOlFP7Vv/pX/PN//s+lrvV+vB/vx/vxxzQ+/fRTfvM3f5Of+7mf+0PBM0opvvOd7xBC4Fd/9Vd/DL7/4xm//du/zcuXL/nFX/xFnj179mca8FEovs23+W/5b7lW1/zmh7/Jr/1ffo1f+L/9Aq9eveLm5oZvfOMbf9qH+X78Fzb+E0xKApbcLT6VWgoBSydyLouqOCeWFk3ZVL0zweQkC54qXZFQlg7efF9wskrMAMVoUs5456EmSi40TSPd8yXJhq3W5FKJIeC9xRhNroqcJBKgFOlmctYtxQXQ2hJTli4irWRjQxtR8tqKMgVvBcC6i5+IJZOXhXXjDKoajFYYKjZnpmlE2QZvrRgV5lG6fhZ9v14sTa13hFpAL4WJO41zkE7eRAVnwGqmFCAXAZJSRFdNqXAIgaDA+wanDEkZphhIJclmfAjs+8RqsyZTKGjiLHn33pjFCKUJqRLmiFuLiSLnIhvy2pFDlE0EpwkxMhwPtG1zH99Qaua4P4ApPDrbEFJk6AcqCddITvy2aZiGgWgr3svX5uN4v/GvtCFrKZwMU1y6pivHOeCUpuvWlDFKRFon3WPDNBMNkBPrdSdRC8aKan7ZqJ5ywkyJtpXNcGUU7aohkplrwISCLg2N7lCryhyCFInnxNBPhClyHQuddWgN8zDTNBZMYQgjT9YnsK3sp5FaIc4BZQ3KakyWLqRaEg7NCo8qmlgNzabDrRtKCbQ20TSJ84eVZhdkt0axuCGWXZw/0O1soRqYZ9I48/KHM//hdw6EsqE5OcG3HXkoKA99mpmpxGrQxnK+2XCyOSErzVevX1G9QH/7caLWDd/76oaSI843dM7THwaUs1jvaRSM1z1vQuXt/sDNdc90G/CtbI72twNFZ2IVY1maCoWEoWC0Q+XC+XbLdT+gjMdrmIaenC121ZDnQiJjqiIOM8nPuFXLxnY82q74bLykOWl5uGuxriFmULkwTpFPf+8HnJysUAbWZx26wtSPOK052W159XKPbhqyd8yHgecPz5gOR2wx9CHw+PwJTWO5+vI1r95cc3WYUdpRdWLsR3aPVnS+pQueucL+sMdoxZPzHdvtSjbBtOF4fcOcDZkG4yz7wxU1T/S3PdvdOc4pQsycdR3Dm2v6Emg3LdPtQGMKOkwklTg5O8fkmbUWEO3YHznGxONHO4bjDV9dDyjd8sBZUt/TVJgPI6Oa2Jw6Nk1DHTON0RQkouomFqaguL3ao/JMVgpnVoxjT9EtVmsuL64Zc2S32/Hg7CGH/Wt2px43eIqyjNZBnyj5ANpwcRhxtmCdx7ZbNg8esK1w9fatGA9qoT8OrHyHMpVHG0+bCqsHj7g9HJnevBJrQpg43Bw40BNTYLdb4ZRjHEeuc6TGQp3ElkfToEzFecXtYeB4HZlz5qMPn9C0cHszMt0GlDb4xnE7TGxK5eTkjOM0EOfIdt1w0xhClhiKsO8p1tO2hmenJ4z7S+pS2D5e98To8BYenW54/uScH37xlilmaq6kLKa8ajQra9Clcns7st9khhQpWWFwvH19CY2idYbtww2Nc9yMI9OcGV8dcOuO802LSYmb40wfFP0hkZUhxcJwmBnmiqaiVEJbUATG2RKrxnUbTA4Uc0vWDqUjZ7sGauWqn7k8DPT7jFOVlAJtu+P6+kg1ltWZFN5MUfT7gZswMpsCUZGGgmsNXmVsdbStp58m3ry84NWrG5580PPxJ9+GRgpeSnBOFu8JVVu2Z4/49l/4Gb588Yau6/jhZ5/xkkv6fmIeI8dDT+ccpirCYeL2pmeiMv3e5zx5+IDGw2rjIVqet4VnjaGawuw9m9YSAuxTIs4z09RiCKjGo8pMypm2zVRX8U4zzpWrw5FUFdvNhpQCKVb2ZSaVzGrVUatmjJlpf5Q4HWuwXvG10wdElwQocyvmYcZby0dPH3O83XOz72kay2Gc6XzHkA4oXbCNFHivDgf6ccI7xdPdCb/wX/8VvvPJ13jx+jXf/+xzLt8e0Kbh/NSSkbg4NWeGaWJUhaBAzYFaq3Rch4IZFSe7DXnOTClgW4vxlnmI5Fio9c6YBLUIkFzVO7tMKYv9RImVpSy2FamiA6h78COVSpkDzkrxHSUWwnkfmcLE4XjkcLjleHvN8Wtf59mz55ydn3FyekK36mi1I2AYa6GxGutajPFoDNbMKDVRqkIry8p5dpsNu9MTvvjiKy4urulHiYWpxojlpEj8wx2MUpcijsAnAveWurymUpaiQmKeR/b7Wy4uLri8vOCD5x/w7NlzHjx4wNmDc05PLdZoXCP3xZJm0EWi+apaCuyGtvGcnu346MNnfPniDa/eXLA/HOn7ie9/9oo3F7d87dljvvnxM54/OqH1nlIq01x4craj+9Y3+ODxGV+9uuDzF6+4PkhcT80C9JcYidPIPI60XUc7dIzjkf54ZLMZaNoVXddy3HSEuOPxgxPcnbETsErAao1EfDjzZzeeof5YwevO8FVLFbZi+WxrkbjHuqw7fhyxqKXcd/jLZy9gy7tIw7v4QwGQSq04LfOqUirGWilEsZw/6q7RIoulTSmx/yyNBnfnmr6LXVvOu7x03KO4h6fKHaGkJYqr1nfriVLFPafrEsmGXpojFFpVUhRjj9GLWSnFd0VAxHCUa8QasZKgFPXuuO7el1pJLOYnLUYasvzech89ByElORZjcEritmMR04BVkFMmxoTzUiATqEoMHlorsekt70HORawsZln7LNdkynkxRCyxTSGIbeD+s6mEOYCqrDtHKoUpBHmWGIF6vLWkFMma+7VfChGZOC/3OCpKWULK3L3CkDIGhXVe7uvI5+6cI6ZMUZZaC97bxaBrsEotcYHIsWuNRaOW+6N1hrJEselSAYNRFuXk+wFqKhIrmDJTFgOUYomithWjKzFH1r4FD3NKgLzfSivQCr2AXXfNQA4DVZHRGG8w3lBrxunKyemav/SXf4p2vRSf/8B64v/ddrHku2QBRI7XiR/88JJPf++HlDsLcCwYo4g5S8Gzyrpt5S2NF3A+90cwCu00U0okPFf7eYlIFwNfnJOsK43BKEhjoE91AXkDac4YKzazMMm8tSwQXEnSnKER85iqlc43jDGilMGYSoqBWjTKNwIFUVBVkWOiWAGXnHGsGsdNHDCtpWvsArKBKpWYCheX1zStmHtcJ41PKSSMEoPK8TDLvFVrcohsV43EeFeB99bdGmMM4+HIsR8ZQwKlJRY8JpqV2IZcFjvxFGa0RqzIXiyvFkWIkVgVZWk+msNILYk4B5qmk0J8KXTOEfuJWBPGO9IcsaqicqKoQtt1qJJwSmZoIUQ5znVLDCOHKYGyrIymhICtYoGOZHyr8cZArGKlRqxWU66kDNM4CzQJaOWkEYiA0YpxmEgl49uGVbdino9YpzDKETOMKcvrOwosNsXEFBJWg60aZQy7s3MO+wO1SvTeNE5Ybakm07YOrxe4p11T1SgNT0CZA8PdflDrJBqtFqZppDGWFII8P7ShKoH+0IV+CISYWa1b2kZiPKe42IusZWCilELnG2qjSbnQOYN3llzicr1nUp1R3rJWnQDVWWKewhjQDlTVGDS7bUtImcNxwhhFSouhXEGjtBiX50RUcv3VCqpY+VoeUKrSekO7agkpkauiHwLKOJxTtI1l7GdStZS5UJZ4qxQzJUNJYrYpJWKsJWf5HWiLb1r6MVAkSBLnNM4o5lI5DJM0oxmJctNGDEhDP0lEondoY0hzJObMUKLMN2NBGQHOdAVlLEFHfu93fpfGd5ycnvLwscM3Bu6AmB+DlSqgjePBo8d88sk3+eyzL7AXF9zc3FIRSDKGxGxnMWzmSk2ZMUTy7ZFuTnStwzmNUo5OVU69wSDvsTcaZw1zEqgj5YxJmuOh57vf/U1+7md/htPTE3meWQWz2I/nmNhu12glEHCM5d7k7pwjFZimQIoCd2LAC1UtgHHTSmNjrqy7jsZapnEmWo2Ki8lwgXy1ERg7xEAqBaPAOssHDx+wW3f048DJdcuHxw/4bT7l6vwKHkHnGlSt5AyRQlZiUlRFGhFqKcQ5sNp0kCslvIs2ZYmfXDI27+2Jdx/PMvWQeVx997ndx0IA99R3lTl7ZYE/9TI3UzJfSUHiNEOMzHNgnkfC6UzY7litV7Rti288xjqx4dW6cFYWpeIyh4oole7PGasEFGrbltvbPcdjzxyiNJwuT0d1f9x3s0ruj/8dcSX7cbVUVDXExeAfw8w4DIzDwHa3Y7vdsV6taFcdXddJFKM2GOuhZHnvl3mvWsxPxmi8c2y3G479yP5wZJxmYoz0w8Q4zRz7mbOTDWe7lQDCVkEsNAYenu1YtQ3HQaxM/TgRUxbb6LK2KzmRYyIlR4wWGwMpBtlDdg3GWLy3pOTYrNvF3qjv5w9KabQs7+/nmO/H+/F+/PkcT58+5e/+3b9L27Z/pJ9//fo1v/Ebv/EeUHo/3o/344995Jz59V//dR4/fsyzZ8/+UD9zByr9y3/5L7m8vPxjPkK4vr7ml3/5l/mlX/olnj9//sf+9/5zx9/gb/A/8T/xj9Q/4nce/w48h7/1t/4WMcY/7UN7P/4LHH9oSInFliTxA7IpXUrBaiWbtEqhrCGmJHEjtVDUkiO+dFlqozDGiiGmSiyUAjEcaY2ulVQKuUqn/xwDrbXYJX6gqoLWskHktKGiCNailOj755CJIRNjBhIpJYlRKJWcKqVGqtYYJYU7gYgUxkoUnV4KJSVLMexug8cZJx20cWZp6MVZz8oacl8xzpNzxRlNCiPzFKi54nxDzEl+f1Ws2xXKaMZ5JqXMEGZQkJQi52VhHwU4UrWSQwAkgs64Ruw0pRCrIsX5/me8s7SNp9TAnMpiscroKgUsqyXiwBiDMYZhGEFDKhldFWpZ1KYQIFe0caiiJS5rDov5w0vnWEpYK8XO/e0BZcWEoAHjPIpKmROttpSqcFkTciSnyGq1pipDmgK6VoquhCznRYwBrRR+sWPVUjBdR9KFaR5RuUghRcm5tN6sOPRH5jATasa2jhWymT2OEapmtW0wjSVSISiccmx3W8Z5YDj2lJSpaA79wDiEpctVQ8mYWmibVuIudEQV0YQ3NrMyCq8dx1RwqxVVa9FYp8zYD7jWU1uDs4pnZ6dMSTPPM/14xQcPDOcPNM3ZRNUBpTWo8mNNanU5EQoUsSupCnmfGS4q15ctbtuw1ivsaofTHb4LTCUCHmsc52dbpv7I4TBwcXMhV7l3lKpQJJSxjNPAzT7gFdgtaJMoXnH64JQxzPSHiflyxvVHPnr2EKaBrBIFzU1/4BiOnJ6vqAYOU2S9arm5usXZwpurPbtNR+s13ipSFeDEeEUaZ3xbubrd0xfH4XAgThlvtXw2Zeb1TSIpiecqORBTJWRRrd/uj1ireaBX5JiZhghVYjOSLvzu735BazpOXSUVcKZDW3j09WfM48z1zcA8fMH2ZEcYJ7CWfcnENNKdbrl62eNvJ4qTuIgHD89JasZZw+3xBrNZMQ4T+yEQpxllV0w5kFRiOB54cr7jg68/J0TFaec47BNDGHl7mDCd59HuhOPtkfMHW1TIrLYdF9c3MI3EeWa72aAbx7pruT0eWK07nm9PcAr66wNvbwdSrRATpycND043zLeZY5h4+vwhsZ/48ssvoPU8PHlAOkSsK2x9x3gIrHdrUpKohqZ1xFAkiqMU1lqzvxkIYxXrU5xpXEshsfaKttW8enskl8rTJ5nYGBrTsdvuSHNkmiPWOXSJtK5lOB4xqiXfXPPg/BFvmteM08jppqUPkTFmNk2Ltx3GOOa+5+1hYGU95uZAaxW2TDzebNGTZ38IS/ymxGiuS0Nz2nF9/ZLf+Z0fsms9p+uOkCec3fDk9AHT7RW3w0iMMOeMUYqtWzHVzPUQGOc3VG0YdGa9aTGp8vhsh0kTb14f+fTiC4YQ2WwaSs649Qkn2y03+wMOxeFmT8TwePuc9dpzcXHJOOwZa6LZtjw925FqoQHCNBJLwSBRhMdjxahCzI5JG7Ew6UrUii8uDoRiaXcrttsT4rEHW2h3HhPhxeuXdNYyTCM5ZVabBmcMV4cBVRtUjvTjDcY3HLNiurpm0xkII2GOPH7kaYrhxVdXUtwjcr5bMU+BjdU0jYA6m9Zwe31gf5ixpiVPX9Dojg8/+QbaeSTy7Q6rVFQ0WjvW2zPCXJimRGMc52cntL6hHwaOfc8cZvYnI+uuo785YLqGrm346tUL1usWjCJlxe+/OvJ52fPBo5azzYqt1by4mnHWMaaJ25s9s7OU3QY2HaoxKMNS9PbMU+LQD1xcX/PxB49Y7dZY65nnwFev3jLNEttUQmJ/HIkhUEwFW5hujthVy2bbYR87MOB8lQ5UtaUfJ0KA090arTSltGQN6diTYyKrwlwLc6gcjz2rxvOtj57zra8/5ae+9ox/9e9+hx999Zqpwva0pWssKEtULVMe0EWggaK0FHBTpL8d8NbSNA5UYbdbo1Ac9chxP0l3P3mJr7p7nCwGGivggEQPIrB2KWIi0WIXUUss0z3AoLVYSIpk+hojhcsQBi7fvGIejuyvrri5vqUfA8/mmTHOnO1OWXUbtG0w7ZqaA9qI4UMpg9YDpShyRYyRxtB4x2a35ux0w5dfvOCrF6+5vj1KdMpdAaSW++KHun9k1gV0L4slp0IRUKnoTK1iVhrHgf1+z9s3F1xcXPHs2TOePHvOo0cPWa9XrBonXcveYhuLsQ2+aZhHjx+lO3u1alivJQrug4+e8/rNFV98/orXby+4Psxc337GZ1++4uMPH/L15w853a7xzuEay1a3dGvPw0cnPH6844dfvOLV20v6fiTlQi4yJ0s5MYeJYewJ84Z5mugPI951uNaz2a0Z5p5jP7Bbr1i1DVoVGg+blURe6LuMvD+rY7lp3KVw3cWtmTtrEUjs1ALdyIrg7gfuQDUBHO6rZguUYYxZQI3l9yIwTF7WK1otIYfLr7NaoJmKWHvufod8JrLWUUpi1pQSuEmOt7x7AXJBLUYcvdiEluLccg3eFeq0MrDMue++UxuD0wLra2PE/mA0JUdyyst/G4HytNxzG+cEHFzif2KWoltZLFAyjfwxuOvOmERFaYNeuvOpSiKEqmwsGy0RdhUBa0ouS1FP3rf7a2yBu+IdZFPLki5WJTYmia1WawFsYoyknNHGiIVqiaTTy/pwngMojbFiflXaLMddsILrSozQYq5yTuwKKWVQ8t5KDbLeG6+MNlK2LGJrqVosUmoBqZZ3Ce8dcwjkInHT2kr0JoihFhDTzQKskQsaTdM0xCQR1BT5LOcYSTHLmphl7UsV0EU+oeXzL1hdKRqM0oRc0ctnqhf4LMWIthacQivYtC25KjEnpInnj3f8lb/y02zPLVWnpVPvXYzNH7jg7q6RCmWqxKHy9u3Ep9//kcBbtkFri6GQagY0WhvazpNCZA6RYerFxGEk8o5aUEoig6ZZ1s3Gy7OlGmhXLTElQkjkMaNDZLftqClSlbjxxhiIOdB2nqphjgXvNNM0o1VlnDKNl30Ao9U70M8ocs0YU5nmmVgNIczkJIBN03hSShynLOt9xWLZq/Ie5sw0R7GsKC/WknEBzagkKhcXe6yytBqqstKAoWF1uiXHxDRFctzTtA0pJtCGuVZySbi2YTxG9JyoGlLKrNYrikporZnDhPZOQNqwNHhpiZGvFEKc2bQN29MtJUPrDPNUiDkxhIRymlXTEOZAu2pkjewt/ThCShJv7xs5l51hCjPOO7a+RSsI40w/xXvos20tq9aTpkLMmc22o8TMfr8Ha1g1HWXOaF1pjCOFjGtkf4VaBAzKEmeqS8WjxRqZJHotxLDcLjWajLWaEDOHKbBeFZSXqClnrdxXZrFwkxOdM+QYiRqqVjjfsV213Nzu8Y3EY4Ykr8UaByhMhTkGUg6YKsYlqxKd9/hqmSexjyiqRLxVjTKW3Giubg54rWmdIyNRquu2I0exLsUkBrdSCq1tKAVSVVwfe4yGrAADploa51m3juEQuL4+knOlqoo1AoZu1ivmKAbdnBLTHGmtYd10zNPMHGaZB1rNumlQTp5VJSdiroDF5JlpSkyNpsS6gMtV7osKxphIOYG2dKsGnRZTnheIbIoBc6zEFCVuzygxEadELmK7S3EGxHIe50jrDdpU4pxoGsdKO4ZhlucRRUxGRYoCzoDzBkpB18T1zQ3/z3/9b/m5n/1ZjHI8ePwI23h+bFa3/L/s/VnXYK1nsz3h7dsLmqZBG0uYAyklhmFiDpFu1ZHnSEZM5+M0ElMQExuawzgzDgFvMucnK9aN5XqB5pRSEg8W5X5Ta+E3f/s/8HN/8efY7rYSoZcNY8j048R53rBZrGUKTT8MjFNcnqmFEBMhRGJOKKu4zLdiOjTgjcSDKS33KmskJjHljLfSUJhTwuIosaKSzOnFHFgJOWKVZts1nG5aHp5uefXmkubSM4dE/ouJ787/js9ffcbuByeku0jkKnOMqsyyT1uZRmm+MFrjrMV6SzKJaYyUzLKOKMtH8m7+BSyND/XeRnQ/51k+xXvYu8hz9O6Zq1W9nzuJfTET5pHblAjTyDRMzA8jp1nmw21uaXwrz3PrUFmjahaoWGmiEuC7VoUDARG1wnpZK3Vdw35/WIxFaWHF9D2oVO/WFMux1/v55N3puNgQl3VIqIWUEyEEhmFg6AVW2my2hE2kbWU97qwYzLRRy7zHYlMkJY2J8n67nLDOslp3THPg9vbI/tAzz4Gr2579YeB603J2smbdeuzyWVltWOuGbuVZrxpuDvJz0yQRd3UBy1NKAogng0tR7hshYU1AG4P1jhA9MSca52mcXSD0inNKzkf5kN6P9+P9+HM6nj17xi/+4i9ydnb2n2z8qLXy6tUrfuVXfoVhGP6YjvD9eD/ej/fjD47r62t+5Vd+hV/8xV/k6dOnf6h7l/eeb37zm38ikBLAzc0Nv/Irv8Lf//t/n6dPn/6J/M0/6lAoTjnlv+G/oa4rt//XW/77z/57fu3f/hrf/Nff/NM+vPfjv7Dxh4aUan4HUpRS7zf/S0mklEVNvsRy5MVyc1dIEBhIVOZU2ayTLSPp1CgFqJVcIndxD3eFpwrYpYMmpYzWEEMGI4vcnLNEW2iNMYWkJRpC7lOalMr9TavkhNMNRkt3fE6yqd44xxwqVktGd1EZ7z0hBsZxoqCk8GMd4xwAg2qtgEDGEnMmhUTQlWkeMdq+i6lDFvJhDrJxXQvTNAOIHapWpnHAGYvXBufMEsNVqClTtGEoskFhqlnsTtKRFMcZb8SskUqSiAQKlIQ3hhgTlroUZjTWWtAKo2QDRyslimvtCCFItIo35CoRaY33eOdxxr2L2FBS5NDaELPEUllnaVtDDIkSK3np3lShMiY4hhEMxBiIBWqqGGewSmPWK9mE7Lx89jFhNKzaliEExjDQaIUpFWUsvmmYYmA+JmLJKKvw2bBzDUlXjv0sNgHTonHkKeGdJxZoLZgUMFk634z3FOOYskQ3qJqgFI4RvFacbj3HecJo+exvQ6LmTOwjamPw6wbvFGmeOd5MuNbRdY7WWmpKzKpSUyHPBhMD6yayO8s0Dwq6U/cdlBJGIZuNKNFLy0VnqDVQ58KbFxMXLy16/ZDv/OQzvvf9F9z2iY0LeKfQuVBn2XQ/ekUtiT7MjAGebs9AS3e9TlE07bWyWUmn8TzO2J2hI+FCZC4Z2zUMYaSpmilErLNYZ6TAUzWdNRgKbbvm1fU1x8MelQpnj9fkoCRGMVVOW8P6pOPitke5FUPq+f6XL2XTC01KM23raVaWMRxom44hWDaNZ0qVIUiHZE4SG3K222CdbPSlWjneHtnuNqhYGftJNs2amZPzU25DYj5MHC4zczac7Lbo5RzyzlHWLdPYM1+85bTzdE426lVSzGmAFqa5J8SZByfnpOPIvofGtrROc3p+zhxn3r58BdVg21PG6jldnxD3I5eHAzFVVqcdp88fcXu7R8+BBs3xamacAt2J59hfc3MItOuO68OB01Ur1jZtULoj3A40raazmvl0hXZSeEvjwNu3PbeXN6xP1/SHI2frho+enHIbR2ynefzsATcXl1zcTMSxRyvD1WFmfdJRVWHVdqSQOQ7XHPc9aveEui7UHNjkhra19EMkl8T5puHtFFHFscJxenbO4dBzdJXzR+e8fnWNSpqvXr/Ft1uMzox1ZGt6pgLeQdeeoIg0OGrVuMXocnN9cW9FMEasJetNw+H2gpwCP/jyNaVr+fDBinCYmPrIISuU6nl03pDmgRJmYjLMyvDViwt27Yr+eCDkSMVR0Dht6McjZuXYbE843l5BVuycI6VAmBNXb9/y8NEJF8PAPGSsyrSNwXWOrQUzBxrjuLy9ZrVpWKOohyPHMWJ1pN0p+hFOH5zTaS2xTbcTGcd+DGg7s+0UVRmM7dBdQ7PumIcjVht26xW6FlYnW7qupaTIiz6x6hoen+94+eUlcy4klZjmGU2k3Z5wdvYI4/eM+z1fXffsJ8XuXOGVJ48j213Ler3h5dsDV7cHbLSkapjTxKZ1KFXoVobDzZ606hiHAZUzc1Fkp0nzEV1HXr/4jJNHW7YPngg8vBRzNRIZRK3EUZ4Fw3GkJugaT+sdpUSOfb8YR2RT2KiKKZmaAqFqILFqHTdvr7je79ltW26+d8XXz3tMTqglxlSlyKQCZEdcNYRkCX2iobJqHd4ZNqsGFTVD33N7c0P3+CFGW+I84bSnz0fmEJnmRLWKaYqU455iK4N1bMOG7//gBTFWVitHu/LkFNFe88HXn3Fzcc2hH5mmIEWJuaDwbFdrhjxCLUwxEVJlTiOBwunZlm9/8xOePXrI//3f/jbf/f0fMR1HnLeMNyO3Vz1zSeQCMVeKM2Kt0IoQMvubnra1UAvzMLLZbVBG4njVYtWRSRSUJSro7mvGGNRirlQLXKHu4I+6sCNLITjEhLEGc2dHWaJirVqiScLA/jowjQP745Gb2wMfX37M1z76iPHJY85OH7A92WG9RztLjmGJC7bv/pY1hNlQrSPXzLok2sZysl7x4PyMH33xgpevLzkcB3KVyLu78oFW9R5IkiHGTKUWG2GW4msuBXIhp0yYZw77PVeXV7x+/ZoP3l7wbImAe3B+wunJhu2mw/uWRrkF3KpYY3B2Zp4c1ieM7ziplfPzM053OzY/bPnqq5dc3w68vR64uvkBP/z8FR8+fcjXP3rE4/NTdquWxjuKggfnWz54+pCLqz0/+OwrvnjxltvjRMhiHaXI8eaYmKeJphnxzQrrPeN8pJSZME0c1mvW3YquaVit7AIKGpxemgH+jI4f1yzfzfdRUEoWq5AW40utd+eqvochxZx1RzLJZ3zPYNyvHxD4nnflTrEBCSADLAVqianmvpgmEU13wJFEgyznqrozBcg1VktZ5tHcW28U8u855aWhQy/2WEPOiRgziizXpDLEtJyrVho3tJJGhJILukDKEiOmtbpv7ldKOshKFlNSjgnujgGJYNZaIriM1pSi7t5kqtLE5f3Si3WgUMm1SvSSFiOtrKHu7iVl+T0yT9WwRJctRUYlFim9HJdSWmLelBILBEWaGBZDlNY/tpZYoCKFErvNYri1RgxN5LqIf4qYbwqEHFFaviZxJIthCVDOQcm4uyi8xXjl3N06LWKUQovSAGONfL0WgayUwgCtNhQFcxSbklYGicEpYuKpS3xfESCj5IpaTLV5iR+U9XAhFIHvusYQls9Tac2ci1znsYDXGG8FwsmZECLGGqw1OK3lPqaBGilJo0rm4UnHX/rLP83mvAG3GPHuGhy4/w9YkKW7mLGaK/0hcbwt/P73v2Sz23GVDkyx4I2YLlSRCPOYCtbI9RlzIibYrFq5VkGeJaWgKzgn5qsUM7pRWEDnjKaCNcRZortTFlMTS/OMqtJIoylY0zCPEzHMUCrd2lOLFLZLgdYqfOPp54jShlgi1/sj9xGDReAX6wwxBYmez0ZMwgVizlJoLhKD1jVOILmlBhvmQOO9NO3EJPsINtF2rcy5QmIeC7komqZBqVmekdpQnSXFkTz0tM5gzRIXWSDlCFaRUiDnTNe2lGCYIxglAFa76kg5MxwP1KrRtiVhJGK4JIY5UErFdZZ2u2KeZ1nLoQij7MPY1hDixDxnrHdM80zrLNYYUBqFJc2RxoppL7duac6plJQY+sg0ylo2hkjrDCfrlqkktFOstyumYaCfEiUGUIoUJN4cVXHWUXIhxIkQAkU7XNuRxyPOiFFMIfaZxjoUkBaY5aRdk4poq403GGsYp5k5Bvo54BuHCpnOGOKxR9VM1zZYo0k5LYCrAIkpJQGX1dJo5hxoKw12JTFMMCXYbltMFgvOPGeMyVhdWHWGNCfyXKjGcAyBFKqs/9OyTwUoZSSalkLbNKQYCTFheXdvnseRxisilcMUMEi0b60Vb8BUacAaUkRR8J3DlEwcJnKJNB7mBMo7aUbLib6fUEoRUyWVSOsVyggsowz4riUOI0opvDYSfWklurJtG/a3maIrm9WKMEXmmJiBlAq5BFzT0rRrfCmkGDjsj8wxUzUY5WQvrlQ2q4axauaUqGkU+K8IlGm0ompFjZl5TBLHtTxvi9YchwPf/e6/p/GGbtWwcWcobX/szrXMYCrULPfY05NTahbAtG0cisI0B6Z5wmYrVrJ6F+2ZwHjmWaCRHCL7Y4/zDj1lcjiAquicIcn9M9dC1UUAsmrYHw787ve+x8/+7M/QWYczmuIctRbGaWLdNTjnpaGxCFwaFoNnBaqqzCmhp4mYDI2x1P2AQl6z1pWmaUgpsdqu5ZodJ9LSBJpyoRaFtQ26ynmWl/diqolcK75xrFdrfvIbHdv1ii9eXdCPE99c/xS/cfK/8PSzgp+bxTKqJAZSScNpSgKZLYw1KSUxHeq7+Fu5pur9/Kou4Nk9Zy5Nn8te7/20Tt1d6er+v0spFKWwaoHI70Dn5d5bcl5MRYkQA3MIjOPI6ekp282GVZdoulYgHaekiS+LofJ+KIVKiqrzvQHTWWls7dqW2/2B/aFnmGYKWZ4t9Q/8uMyTuJtLvptBqiVwWiLVxBxdSpGYz3FiGAb6Tc/uZMdqvWbVdXStp2kczkoMHErfc+3mfk9bgHHnJV60bVoa77m9vaUfZkLMXFzLcW/XHbvdipPNmtZbmrZBaUXXejbrlvFkx+2h5/r2wDDOpLIAy0XmeDWLCcrahDViPzPJUEpDKZngIrOT47VWU6oBNNbczR/ej/fj/fjzNp4+ffpHBpQAQgj843/8j7m6uvpjOLr34/14P96P/+/j6uqKX/7lX+Yf/sN/yNnZ2X/0+5VSfPLJJ/zrf/2v/8Ssb9fX1/z6r/86f+/v/T28938if/M/dyilOD095e+d/j3+u5/67zh/cc7Drx7+aR/W+/Ff0PhDQ0rOadnMLqL7ly5W6RjKpUiHrFK0y8VXUaAkguOu+KC1bOY5JzYjZxyl1CUTvi553Qq3LHqlI1qRa8GgaJwjxkTVilxlYaqNk267pSe51kitCuscVmoRaK1oGsc0TaQQqFnRWLt0m6llUqbICSiZtvWs1y35EGXTXEvEgFZaIhQwshGtNX6JRbPeiAVIv4uqkJz0wjROGOT9407jvxQhtNI0yuK0wyqNs44+BFKKElFQpduuLp3ceVEHO60xbUPVmlgqpijZfEcMAmjRGevlvTdWNh1LLXjnUcpQcqJrG7Q2HPqJkjLaCSwUx7R87o62scxzoGIx1kFOUtDwHqUNc5jpl8gbYqanYtqWKQ3MpaAbf79JNg4TFNh0W0qJxGXjxBTZWE6LWrxtVvhqwLWkPKOdvldEWy2dk957kq6EcWKcA92mAZ1Be6qqpJyYhhHfAKqgVCKVQkiV9XaFX3ekpAiHA2vn0VoxhpGmWWGVZt/3RKl20diMyop2vaKfJtarDqc0Mcz0s2wmnq/WGK3Y3+5xrsWrBtdZ+uMbdpvEk49g/bigW+TaUBUBlO5GhfvwFtnkVFFz+VXPb/7WW1r1mG2jefXlAW/XNCeVq+sDJjtOz7ZcHL4iVk+8qbRWYZzDhMg8zYxh4GS7JSX44MkH3Nxe8+HplmGc6PuGUAtN5xj6kVCkoxcFKRm+fD2QY+TMS5fv+XqN7Va0mxNe39xw2++xzqKTwboO6wqxVFzbEI5Hzk9WOO1p1lv6PhOmTEmTFCYytNZwstmRUkKjWW9O2KwtV+qWOWtub0aUShjkgvbtmpQVqYBtHcfpQA0JVUBFePT4hFo005DIpXDsB54/fkLnLE0txGGiOXnAwIT1CmLksJdogMePz0nHPc1qxVwS03Gin2b2+69omjWHeRYoME2sB8Xu0ZZd2LDGcwwSVREHqLFlCDPb3RpvMvUw4FVlyhNGw1QUk/VMNyNpnNi2nkpgd7qlMZbLN1fY1YakD4xTpKqOrvNsGmhcg7GeuNlx9fqK07Od2KqyYiyV7eqURq0IDk66DhXXvPniJZTAGCf6VMFr1q7h8u0tzhucj6y2O1TjiWFiSoo0FdCJs/WGN9e3xFR58vSE45i5HnrmLyZUrdjGcfXmmqnveXi2RX3wjK+uDyideHj2kMv9wM1hYNc5jv2I6RwpV7rdFo/i8vKacZ54cHLCsZ+IEZrOcv5ghy8nzEpx0jV4pVgpQ0gH+hg4pgYLfONrH3J5OTLFkaozJw9OCTkR5kx1GpSYzlT2kCPdiefswSndak2dJg5vb6g6Ub1he3ZCTCM3xx5lHbtdy2mHxLfkwtgfuc2BbnvCSbPjwUmHIvHyzQ0ha3bnDWe7lv71ntiPDM4x5kK7aqgx0GHRVe6DySU2246zzrFdr7i5hK01tKqyfXBKonL94i1hCChnSElz+faGWhVaGUrVnJ+c01op0Az7W2qYJJpgtyMPE2lKbDYbhlg4RkWZR+YUONwEOuc4eXjCg80J/e0RheV02zInx5vDgdYISTIlg7OVZuvpnAY1cvX2Bdo3rHenIOUh4G4jU/H46RO+9a1vcvHmNcdScI0hxJm2axjzO1tBTon1qsOsvHRtp8I0Hbm+Tkxz4TgNVBPAtXzvYsJpxcNty7FAjAq1xDHlWjksn9n+OOOM5nyzobOO1klcxnHKTLPm+rhnP/a8ePGa28PEkMJiB1BsT1tyLUwpYo3FhsjFzTXKaNq2oW09U5hpNx0/9cnHtKuWeY7MREKMVApVQSRjvcKbhtqzRGxUjscATDTK8+TkAX/rr/8f+PrXn/Ovf+tTXtxcUTqHOVlRxwmVCwwzWmu6E09jKoe9vM+5ZrSzxCQQVLtZE5Oivx2lOHcHfiz0xr0lsubFPgOlytxMCUm+mIqqPHuQyJOa1QJWVGqUWKmqF5NNVWQF43Rkfh3o+57rywuuL96y//gn+PCjr/MwBk7OdqzXHU27ouRE0zQYY9DWYb0nNg1xnhYLRqJ20t3ftmvWmy3b3Qu+/OolN9d75iVOhKVLWNXMnVmpVoHlSqlovcQVVImoramgi0A/MUTmaeJ4uOHy4i1v377hgw8/4oPnT3ny5AHz2Qm7k1Na77GuoZaCwpCzJuWKs5W1K8wLQPvB4wesveN8t+XzL9/w6u0F+8Oel5cHLm56Xl1c85PPHvLJh4/56IMn2Kah9YrnjywPT3ac73acn5zy+cs3vLm8YRhGUpJrY8yJmKRY43yPbxrC3FDiRBhG+tWK1XpD23VsVh0xbZiCFMGd+bO7EDaLNeiu8PUuSqJSS73fOLDmx5Yo6l3RSJimJRZFC6Ag0WpIMYYFZlogGokI0fcQuEIv4I2ATOWuk15r1F0GLwJJVRZj01IMU0v3fs55ibGWvy1Az9JtvwCbJRcBTZyl1CzTvuW4QS2xZ8vrWqI1Ss73cSAsTQEsRcBSi0AgCORJlXUIVc51wQ308o+sXXLOYk0od0gS8jfLOyuNUQrl5HUXKrpKgVhRpKK5fE737+WytqnUxT4l76Wz0kgR4kzN9d76lFNZPnctxtmcKYuppyxryjs4TKwrWT77LJ+3soYcotx3jJG5o9akGKEqvBXzhWBUClUX646CECPGOilcLxHjVb97742W12eMpSjkHpEL1ptl3bBEXS/FZzklBQrNtS6FYo/xlpwVOcwS8aYUMcf7CMYpBPnMVJV1ZFViMUgJ76RpJKdESBL/KOs0CNOMNg5jDRpDDD3nZx3/+5//DruHLVLXv4P2fjzChvvz+O7TpCjGQ+DlywM/+v5Lbo8DVVuM9nRNZZzme3vSsD9QqqFMAmQJrCXwZMxRgIkCu82OaZ7YNvIMj1piN601pBDJtSB6QyhFse8jJRe6xlBrofMe7RzWt/TzxBQnMWYUhdYWrcWubKwhh4BpHUYZjG+Iscq5VcQipQpYrWl8IwAUCu9bnFdM44wqinlKQJb7ARrjLAtrJfHsSc5duTFUVo1E3MUkdooQIu1qjTUaS6WEjGkMkSixvLkQJkhpYL3uKEFAobyATyEl5tuItY45ZawpEhMeFM3a47PHYwl5AYYj1GxJOdM0DqMqNUQ0dWlOksskaUMaEyUlvDVU0n1U+3CcpClH3ZnBJALLGxZw0JC9xGa3radURS2QKnjfYshkA43VUDz97QGQfZ9QKmiFN5ahnzFGoU3B+YaCxSgwaGLKKApd54ipkFJls2lQJpNi4XjsqUkMVHEMzCnhjKbZrrmuA6lm1o1Do8VM2TrZE1lgB6WVNJeNM3MIeCcG61AKpQaarsE4T60FqyybXGm0wKVzCqRiqRG26xVda9hPB5KSva+1FTCnCB0tzyZtKSmiDRLx1Fiy0fR7sS5XrfBtu5gRA6nIfcLrijeKkOT8HIYRrKExHquhaYyYgVJBGdhuV9RhIhVIMZFKllhNrdBVYK+cMkXJ3pC3msY74jxhUZhaab0DZwhjYP/2RgBDZxmGsMRbSrOgsx5vZR2bU4ScqTljmoZKpGSxqzgv8YfDGKlFAK9QM03r2e3Wcl9O0rFcdJG4uDnijGHOy/vnNKUGvvjyR5w/PMM2jna9Ral3z987yMVax6NHj7i5vmJ3suPqWjqgtRbzXkkCk+acaZxHu2UOGyOlFI7HmZwrsRTiPLDynn0oWFVoG0tVmYiARlQWACxDynz15UsUmm//9LcWs7tQNSFkcpG9slQz+2FgmqIAW/Uu+s2gF+g3FYXRlTkEDn1PSEnmDXom5siDh+c4v+zTlbtm0GX/dNmHsmaxPqZ6D3xNU8Ioy7qxfPD4Edvtmhdvr9A3iv+T/j/zuz/xewy/NUHKkAvUinUGZSxqkmYIMTTKex1TxnqLazylBEp6N0/7A8+VKqD2XdyyzM3erSnujETqbu62/HeplXq/7ZWXuFYWstyQS2KcMillpnFkHAams1NOTs7Y5Ey7EojHaLvcw+/AZ5lPGGsoKUmUYS5YFHiN1RbvHE3TcHN7YBgGWdeXdxHBC4MuZ199d/69e+137wXUnO/N+yVlYgyMw8Aw9Gx3O3a7LXGzZpVa2q7FWYdSBm3s8v7JPEUphUWhFuNR1zaYsxNab7ndD+yPPdM0McXEfHPkOEwM24mzbcf5yRbfNFSt6BrZf+9asRLf7I/SQDMHMdyVQkYiBHNKRL2A0MnIPDYlovcE53HOYa0lZU8uFWeLNJe8H+/H+/Hnajx+/Jhf+qVf+s8ClP7pP/2nvHjx4o/h6N6P9+P9eD/+4+P6+pp/8S/+BX/n7/wdEXL8R8bXv/51Pv74Y773ve/9CRydjE8//ZRf//Vf5xd+4Rf+SPfaP63xDb7B/9D+D/yP/9X/yPhyqTG8H+/Hn8D4Q686Sg3koij1XXeM1oqUZZO71oq1YhCqtUoXrJJNhFKle/G+Q5oskI0WiMkZTVk6T0uSApRBum1jKRgjq0KNxlspFOUqsStWG0qErME3HqjSmcrScV8ypUpHr/MGskIbxTzPON+CVvfde9pYKFmKjDlL593SGXgXXacBWwrESNGiUVfKEEsih4jRjmblqLkwDAM5yiai05Z5EFuCbEyYRX+uwBpClS696TgQUqJrW3xnSCmgYiGkzFwjOUeapiXkJRauVKx1shGWZNH54zYrYwxY6Z5W2hCDKJKNMRTEluCcxB1o64gorLHUOaDQstFXElqLfr4GUQI7A64VMGwYZ1IqFAulJlRI6NbjVw0mW6yT2Jpaq8TKKE0saYFgMjlVDoeJs5OVFC2M4xAHOQcwKG2JccZbw3m3pZ9n2VScBpSzrJoVJSVu9wM5ZlQKuLZBGUU1iinPWFU5DDNr5fHesDvdMB57ShIbmLIdYZqwxrNqW9I4U7PCanj45AznDdNtRtfK154/I86ysaSt49HJA45zkKtJV9brllLks3v18i2bJvDkuefkqYKmAHkprt5BShYp2RekoGCgaDKFcFP47X93wVcXlZOTynB1jfeF090WUysff/x1Lo49r968Js2ZXCJDSExGYhR1gZIqm80pKWdUu+XtzYH+OBGLIpTIer0jlYAqMISJaU74lSXMI17PVCPddN2q4+b6llVuWT884cX+hsPhKF13WhNT4e2bW9AV7QwnpysOtZDRnO42FJPRJRDDSCXTLJv/ORkuXw+sNh5jMzUkzp6fYp3jzfUNdtIchz0pDJy0HS2KlxcXJKNojWVjPX7TgtO8/uqWNFT02qFQNJ2lVRtSLFy8vSDnxGFK3P7wc5xRWF9R1tGoDmsKRnm60xP2w4i3LbEZOF91hD5zstlwnHuGfsC3GxrX8fDsGYc3e0qSzdo6F7rTyObxjn5UNF2DLpkXrz4j5Io/WbOxGq0rm8bitydc7zXWG4zVPPngKXOK1Js9MSV2uqW2M/s4sFpvsWEpompLCiOPH67RxnJzDHitiLHgzjtyMZhxYjjecHs4Yo2j7VZENO22w2qNtQq/cjz58DF6CvRzgnjJcDziuh1Yi1UwhAHTOPo+QtKUULjYj6iaePhwx860vPn8C4mcQHF+0mKoKAfVe7q2UmpaYkIDaSx8+PQRzWbN28tLssqsTlpiEmDr5nDAmIp3kYfbLXlU5Dnw6uULrroNlZGNU8xT4TZqfvB7X3CcJkKYaDcdx8OBb3z0AVeX1/RBY5wnkXFY1qsV3bph126oJdM1nqucGUpi3Z1w0qy4mSZIim9/8xuUGgjDgWmYiEkxpkK73rDdrHg77olaYYohUPCtZbc5oSpDo2cKlUlJIel2n8ipYlWm6Vas16cMaeb8/IxtW+mv9yjTsukc29MtzlouL2+4PYx439BtPNpqpilgmoY8zZzsduz7GZShP/To1Zq+FIzz/Oxf+DqvvvySV68v0GFAac3YF+I4MpXIetNibeHZ+QbrG9qmIRwDt4cDziueP33MsL8h58THzx9xdXPNOEpB5PbmQCmvOBwLP/Gtb7PZbpdZQpUSuFasz3b87/7St/n8h99jDBK5ULWAKSerNdM8kWJkmGaMMpxutoQ0kFJEqUqqlVxhvd1ifcKuWmwwGJ1ZF8NaVdR+z/U+kKiEOaGNpsyBaU7ElEkPFY9Pt5AS1yHygy9fY2yDNopm3bHabvjRmwuOcWTbWh6fPsB6K922Qy+wQK0YU7m+uWHVtExtx+Xtkc9efcpxyHzywTOqrjStxtiCAbRSWFWZa6EajW0arFKsVx39oWcce66uCzlu8EbzU0+f02rLb33xGa+ur+lXkaurnhIixVuShWZrqZ2Rjm1lKARUNdRcCUPEdRLP4a0lxEypYi/RytwXEhbGV+JZFpNVVer/Y7FUfuz7qVVslNL6LFYiDUqVpZgksUa1RI77az6fZo7HPde3t9wej3w8f8wH9Sk5nbLqOhrnsF426wsG5xvCPDAt8b3ohCtgtJNIA6tZr1vOTnd88cUrXr255HjsCUvxSWkt1slaKUvnt1g3ihiVlKJW6V5mMcGoUphKIsaZ/njkdn/L1dUVV5cX3O6f8+zJIx4+mjnZ7lh1jQBKRZGLRruGNE2Mc0ZjsdrTmsTJakd9bFDa4RvLy9eK28OReQx8+eqay6sbvvfVC779k1/nJ772Aau2oWs1q7blybkAJbvtmqvbPd//0UtevbmSYpWqzDmRTCbkyDgNzKMnTzNTP+J8Q7dZs92dsF5tGKbAbtvQdR1N0/6nrAX+REepeSlavVtPKLXEsy3nnV6sO2JBkp/TeoF2lqGXH9e8AwHNApUI8CSQzZ0tLNeKVnfBlOo+rkRqzzLHr4u9x9g7sOLHrU9LLJ25sznpxWyUliKO/A2lWeLMuLcIyPcKSHV33SnEKKDuLANavl5qoSQxKxknMEdczvl7+ChGiRBZWvPFYqTAaInMrpUUBNR21mKcFHEpsj5LiwnAWksuAj4JfGMotVBzuQegSi0LpKLFEFLFFlRyuTcjgYBLxgjUpbTAE0ZryGUBh7RAYqouRURp/DAatJViZbyLY9HyRFEZlNVob9FFrFJixVrghLv3HCmalgIhJDFtKEXRhpzjPaijlBh3jFZ0zhOSvEc1ZZSR5hkpvEcxCOuMscvNU7OAIZU5JjximmsaT4xRDDy1yJolJYknt5aS0gIXw2rdYowWCLzCyW4jkEEpaGNYG0tIebnPgvNOgLeS6Y8Dra9852e+xtmjFdjCfYzb/f80P15UBQ1Vrps8Vd6+HPjf/sMPuLy8FauIaeiaBlXh7OyUIUSO/ZGSJAq05EJSAvCo5c/5piWXgrKefprFolsEnnW+lflelXV0TEUaUHLCFmkyUkh83jRN+FLw65bDPDHPQc5DBblU+kEippRRNK0jVEEM28ZTlUTG5xyBilkaj2rRjH3EOiOwas50zQqjjUS0WkWIhZKiQAd4DsNAVRL9aLXFWLl+j4dZ4rO8NI8Yp7EInDX2A6UUAYWvb8WcZuRctcqhVEVjsE1LSBGjDcUUOusosdB4T8iRGCPGeIyxrNotoZ/vTU+kim0Lbt0Qk8I4MSEejrfS2NV4vJbzyluNaRrGWd1bD9fbjVjNxplcMo2yYDNziTjVoPMCsCmJllx1DqU1U8gYBSVXdCfW0xojMS6fkTJY58go3GKj0hqM12y2a1TOhFSoBMLUo61De4vThjlOGGfIWeK6rXWEEOnzTNdYiT6cJmJKuFWLM4qTVUsqEWslEqyxdmGFCjFmVquO9apjTomJjPHSBFRCZg6RoCDnwNluRU2GWhRx6LlKGectqiZ0LcRquL05glbMOdJ4zzRPnK9OyVozTwLDlMXiaK3HNwI/GNT9AymUCNqxdR5SgqJYdx2+MaQYyDFgRcpCRrNuPDlWYsk0SglsqSpt06BNgyJiFMTlvldSJmeZ7TiTZE6lPdVqutZQUySnKlCGtzjnJHZxjuQCvrUoK4bMogRG9dZKNNkSoamqEqgN2J3sWOfEzc0tIc4YZ8kZSiyUHMSSZ6BtNNumYbaWlAppDhQy61VLyZkUZ9arFkqhH2eqsXz51QvOzx/xLCu2RbPZ7d49b4X6BaN5+Pic2+tz/sJ3vsO//Xf/ln7oYYkou4NKUs7MRFpnUShSiff3xVzlHmGsmEmt81Ai1hhWWkCjw5DJi7nvDh4usfDD73/B0ycfcH66wy2Nk7f9gG9bGudQVrNarTgMVwxhQivYdg2r1hNiZJwDqYi5XQHTPEvcp7EUFBc3t9z2M1979lSgaAtaV7EMVXX/+qoCpQ3WCQSqUEzjyDSNqNrIa7ENHz58iLOG3bDhp77zCb9rf8Dvfvq7xGkUY6CXuDBqJWXFPdy6WKvuTJDGyEO83jfT3dkV39muRNq6QD53DQPcf/s7AGmZ6dVyZ/aTuVHNAmAJAf0Olkop0B8F/pnmiWkOhBQ5rTtqLTjrcdZgtEW55dluDCYb0gKBV+Q+6pxAzUorjDU0jWd/aNjve6Z5FhtaXayW9cdmmHdg/I9BWmq5buUoC7Uqao2UmkkpMoeZcZoYx4Fp2rHdrtnEDW3b4Z0TyKxCqUrWUKqSYpb5ARqrtJwA3QaW+cXBKIZRourGORHCLbeHI9fHgUfnZ3SNxxqFtYau8VDBGsN61bE/9Nzc9ksTzQLeV4m4TCWRohaoKyZmK9d207Q454kpE6LFO4u1jvfj/Xg//vwM5xx/7a/9Nc7Pz/9IP19r5Z/9s3/Gv//3//7/twf2frwf78f78Z84fuu3fotPPvmE73znO/9RCMhayy/8wi9wfX39Jxb7BvDd736Xn//5n2ez2fyJ/c3/3NHS8jfV3+Sv/vW/yv+s/md+7dd+jcPh8Kd9WO/HfwHjDw0phSQLtLKo7HOW7ue6bPpqrSU+jSSLQbjvdo3lvilRunmliYRUZNGk1KL9LhIroJeFYY4BZ8wSV6LwrSeXQp6yLIxzZooRYmXtO6igi2ZOmVKjbNSpijcGKBQloJIikyrMU8A3Vjbclo2akBKlygZ0pdB2nTQgkUnTTJojGEteOq2mOaE1eOcEAlHvFp7WWeYwS2FCS/E2pIjxrRQOreJ0s+EwzcxjJCqJbXPWklNljhndGHQutN4yxkjVi168KopSsuCcpUus1krrJBrAeb+ogC1zTDgrBQXvxUZVlmLjnCvKaoyTrsR7HbETNXUqkaI0VRkoCasVxkrhL0wJ3xjOth0xVAqapMXgk+bAerUilcxhHEEbXIFN4wklY5WcC7qK3SED++ORpmugJlIOGOWIpZKpWG1R3jGHmd224/V+JsZEi8YpjT9ZM8yVOrBs8liqM+R5WIq0VkCtIeBqJc0BZaQ7VitNKoXNdoe1ihClg7BrDaFEDvsj4zTT2Q4dHXM/4dpKzFJMLQVa71BUCJWmc4z9QI0j23Xiw691nDwt6KZIcYoKd5E03MW7SSc8VS8bPYl00Hz2gyMXBzC+JfuGm0PGuwNPzk+ZphmrFeHYU0qm7ToOhxFvLNZ55nFi27VyjudCu2oJqXAx7GlXHaEU4ly4Sj2VwKbKZlTnWlbeYWjIOUlBoGiGm4kwJ5rOcLufMO2KpovS3RwyKBhD5OR0RS6a4/WMd55iYThOdG3D+W5HmjMxQdM1zHFPqpp16wQeDImbdKD8IBLTRGocqxNDqBajVlL40pV2ZSjKs9muqXPE6kLjDLo1ZKN4+rVnrPdbfv8/fEqvC2OMaDJNa1mdnTCVTN8feezXsimjDV47yIY+zMwBwpx4cPqAQuD6+JaSe1TMOAwbawlz5vc//VzU+zlxcrZBK+mY79zEHEb28xFTIGrNEGbSEOhWK7yX+KOzJ085ebojJ2gby7g/sFqtebjdcowJRaU1heNcGftEPByI9YBfdeQC7WlHUpmz8x0+F8I88vr1G9rdmkZpbmfFpA0nD08gy6L0yfMTiIrhcKTEnturKxwdj56c8PLFCzCWs8en7C9uUSGx223ZOsM0BLRx1Lkw3A5sThqqMVzc3lK1JmuBPd+8vKWfEmfblmAz588ecXXxlpwTT58+5Pq4J8wTx2liDDNnW8PjZ0/5/IuXYinRhvXKY41hP870h0geR1qnUa3h8eMPyGOPmSrNzvDVFy+JpbLbrXj87DHjYcKgePbglO/3M+NxItUZhaJVCttYilF8/tlralWY9YqNluLBy4srCBNjhXRxwaPdlpPdOVofuDn0pAzjIVGna9rGcX1xg7KGpm1xxrC/jYzxlpoT3hRyKvhVy/E4ETJo6wl5IvcR7xxffO+HGCdQYsqZ1FjsWiLejoceb6FrNQ8ennD58pLbw4DfJpqaGeeBzW7F6dmOq6sD05hwTcOw73n1o5dUazh/+JA8TuxjpDGVk7OO/YuRwIw/cXz16i1WOdbrltv9TFCwH3tWdsIj0GKqlTEkboeJ4zBgayWrlqnc8Pnv/4hPvv1T+NZT1VK8QSIhHj9/zscff8irqxuurq5oncIpS/IFryv7/sg0ip1iiplVK/GCa2+YQ5bnjVGcnp2w2XhMUqx3aw7XF3z5xSu6xjG6yJwrYRzRxgg8ssDGQ0zMsdBZg06Zi4srVq3n9HTLMIwM40iYZ+Y0YW3LYZp55D2n3YbDGGh3zRIXVpmmhCJynCa+envFF6+vefVPf4Of/yvf4ud+8gMMcL47YU6VfhylYLfEzUJlDhGFQltLyIUyz1SlMVWega3t+K9/9mf4wYsv+P0fvuR4PdPngHEO7RK21TTrFUoZ5gGOe4EWaq24Zb5SkJhPFPd2EKWh3HUDqzsAYom6Uhpdl6iGxZJyX1VYIASBmRabyVK00aIVoWp55ltrsU5RcmSa9rx8OXLse25ubrm5vmY8/jTPnz3j9OyM09NT2q6hKoNtOozzaG2XSFUBY6MWo4gyCmUEujDOsl6tOd1t+erFKy6vbxmnQMqZO+jX1Pug1OWI6/KYXWAlFFSZo+mqqSWRUiSEQH84cH15weXbN1x87UOeP7/h4YNHbLdbGuehVnm/VaZUjXUNRhWKyhSnKUPhcBy4vL6hVCQCbrPicDxyuD0wzIH+zYGL69/mB1+84qc//ho/8dFTHp6vaGzmZNOhjZgqb68nXr/dE0tEFYkNKbmgokD/eZ6I04Trj1jnaQ8rjscjm/WW43HH4WRDt+po2+aPuCz44x8CBt3ZEpZC3H1EyNKJXyqFJa651nsYpix2o0UwJEMLxCFMkHnXxa/UYheqlJIwSgpVCoGQygLg3MFHOaXFdioFGVUVtRRSzcvP3ZmDZA1jtBT4SlFL7LVG1cX6iRQ7a62kIgCOdU7WQVWMJiUtEWvL9yYEONDaLPNCeU/UHZiU8t2XxLBQMspYeSOMRDSHlEhRjqlUgYgkjkZgD1UrzmhiFqOQdEW9Mx3Uku65FyMfjkRaWTHW3gE+9zF2pXBnesp1wQQXQxLLe42+M10tRT2loebltcrfzqlgrKJrHDnLHScrxBqSs8TqVFmjVaUwFRpjSAh4RpHCGwuwOIdZjrkWsckqKQzeA2lGQIm2cRznSaIxq8ag0I0n5cBymgmsZTQliyVDIQZbSJiKmDyUiCrUAhn4psFoWddSKs4qUhX4KaUkkYzFkGPkThqll/hzaw0gxgnjNClEao48OF/xl/+rb/H0+RZl7rQPBe7PlbsjvvtXtQB7mTwrbq4Dn311wZuLS5TxTKGidWDTdWIyVQKE1yJNQGGW+G1lDDklGmvlHC+yvk2lMsQk/47EEKU5UMn4KpCZMxZnBK4vteCMmFLCLOZE47Q8X63F2CxwsJxIpJRpWkepijCJBbAqiCFhnaFrGoGpimw6TnmiLM1MSouVq9ZAvS6UkshG4xtNQVOUWx53YocpWJrGUVNGqyr2TSvr7PVui5sDV28vCKoQS0bXgrEG1zWkWokhsPYeZRSWxbpcFLFWUoJEYdWuqGTG0FNLhCwNWV5rSipcXd4QQkLVQtN61GIWczqRc2ROYr4pShFzwcSMc+7+GunWG9p1Q6lIDNocsM6xarwYj6gYXSFVYsyUeSbXWe5LVGzrKLXQdQ2mVnKK9McjtvFYpcWwqhTtqpX9Fq3ZbFso0lFfc2CaNBrLet0yTSOhFDE65UyZJX5dOyORVkngxxjiPXQ4p0gsRcKVrGaaI+MU5d5rKq7rqAsY2rUtOieUEmP1XApaV062a+aQ6OOA0wrrjDS4VQHacylQMtoo2nWHwZOCAEjzFBiGEWsNq+2aFKRha9UYSs7MYZboKgreWFTW6EYxTDPTFAWc8Q0o2B97bBWDjy4FhcV7j7OWfpjk+ZBhPM44L0D5/ihzWWsrVMN+3xNzxi+WPeOsPLeK3IeqghQnnPWEkJiOArCEmElBU0qDc5Z5EvjNWUPTOmqp9MNIUtB6yxQmmqbBNQ5QixXLoHLieHvEWINvO1QuzDFQKKxbxzhEShSoJcbE5fUtTeNJMROrIuRMLZHGWHKV+DgqxFKYjwMG+Pf/229SlOVZNTjj5PwSSn55piuMa3jw4IxHTx7xk598k9/59LfRKZKVnOvzPJFTYi6VdKx45zFGif0LludApXHy+i2gzRqjK9dXtxALzipqXEyOdYlWQ6FV5osvvmS7/bZEOKJJIXG7P7DdrDBJ7ts5Z4npNZVYxL7VOk8ImWoV2ikKhZIrURVSCcwxcRwmrvY9wzDyjQ8e45US8M16QkzLc9zJ+aIqJRdirDhjQSlizugkzRkaia17dHbOetPx9uqGb33zm+w2O37v9z7l7eUbMGC9pUORAsQ5yfwWiSbNcwGtYYkLu5uF3ENHLI8emZrdz8PUH3gGqfvv48d+5h4BUu9i4mTvq1C1bA4bI5H2pUTGUSIW53lmWtZsZ6endF1H27Z47wVs0gI4SjSrAOEqR7JWUMRiKS9kia22ltY37A8H+n4khCiw8gL53s1O1d2S6O413UFMCu7o+aoUqhZKERA8xcg8Doz9wHCyY9hNbNYb2rbFGiugdc4LeFZhaYCV+abYYWPKjAuY5Kxjs5ZYy2mUvc9+TowXt+wPA+enOx6c7uRc1ApvDXStGPJy5XicGWNaoP1KVXmJwpX1YVlgWW2MrMNCwPuGEAIheLz3WBd4P96P9+PPx3j27Bl/+2//bT788MM/0s/XWvn000/57ne/e2+iez/ej/fj/fjTGiklfvVXfxWlFN/+9rf/o6DS48eP+Rt/42/wT/7JP2Gapj+RYxyGgX/zb/4Nf/2v//X/v7IpgRiD/+bf/Jt861vf4h/9o3/Ep59++v7e/378sY4/NKRkjF506KLFl05Y6baVDfWlO78AtaCNXhpjsuiRl+6RWjJVVRSir08pLx21FTRY59FKyYap0TjnFhiqSBxMrqKJvlP0Ko11UkiYwkQNmRQSzsnGpm9ENy4dQhKDtlqtmPc9MQRSCay7DmOsdM4uu/M1iy54miJt20pkQk5oI5vvylpSCqQ5Yo0iRfm6bzrCFIlxJiZZ6BltyVkKJqvOkzWUCVLRHG4O9CVSi4YiCmylKnEOqKrxxjGmSKMsrW2Ya5YFba1LsQC8t9ItrpTknGeBnVSKlBKxxuOtJxPph4GcRcXuvQcFMU4Y3RBDwFhHymJhUN4wjRMVi9Z2ySmX7qRhjFCrwBWtZ5wmatEYq8VchSaHZeGrwThoraNxjhQKx+NAYz3eeayXjT9rpdjijaFd7yRepkrBZr3AVbd9T9YVqmziWKupphJVxriGphP7lTGGnBON1mLMKhBSJlZRNM9zZrPZYG3BaU1KQYxPWWL5zndrfOO4HkeGKTFni1EFHY/EomjVSjqoTYvzVboU00ynHQ7FVCNOD3z962vOnxuUH0CVpZs7L51p6t3mD5q8qC50ypRQuPmq8OX3AjXuOD3Z8fjpY67ejszV8PrmSGc8X3z5SuwnxrFZt0vkRcF2hvXulOPxyDiNdFa6wzfbLatjS5pGclZgYBwPnGy3YqtqWs4eP5CYnGvoVg3KZd68uWY4HNAUjnEiJQvZoGPl6cMtptFc94kwJbpWUZLm9nbiybMTbm4O7G8zMR05O9nw4UePefv2Vjpx6wqNoRqJ5gpBIgpup8DtzRXrsy1Pzs8wvlA8pFq4GTPGrZhuJ0wOuK6lusp619KFwLptKOPIeHNDu2rpcybFkY3xPN6dCCRoLD+aB+IU0EVxnEdcY3j2wTN+//t7Ygl01nN5AdUUVmePZBN2PNKHAPOMzSNBQaqZs4dnxHkihsQwBtZZcXNzwwdPn5DCiGlbHApTLYfbnq/ywKpdEeJr2pXDOs+bw4Eyg13PNM5QYmSqiRQmDI4+ZYz2NDZjbERnxX6csJ1DqCq4vL3h5cUB2xo+eHjK9U1Eac+us5CkOFiywrYdj3crrNXc3BxxuxZyoTUt+2lmvx/RjQWVON1suL3do6dI0oUpHzl73PLRR0/o90eOw0BRAjoebwaUaUlNQm/WrE/Pefq1r7HuOl796EuuX1yjreZm2GO7lm7bcWpXTHPm69/8CdIwcnUzMu4P7PcjoNj4jtl65lSZbg68mQMPHz9ms4NZRzYnG66vD5gMbhwxfsUXLy/48NkZD589IX51QT+A0ZlcAv2+sA+ROUTmeeTs0Zl02R8CIQZOTtYMQeI2v3z7FuMcjXZgPI2d2e/31MaTS0RViWBprKFHsV2t2Yyy8bxetRwGMd40QM4zMcHqdE2aZ843K2ppGHNBtZYHmy0x9FxevMXaliFmNo1hjJEvPntFZ4ESSL3AlfubyG67Is4JvzsjDQfGN9eMc+Ay9bQrx2mrGfsZ5yzbzjPNI9/86a8zh8gwTwxDpMYjMQ4c+8TjB49Zo4nMpKLI1XEcAs7Ax88f8ubiBms8aZpRzciXr75PcJnvfPsvCBx532KrsO2GRx99wOrTH3BzdcODh2dYIm/e7rHNjmo1Yz+iSmYe9zR+y4PdY77x4TM+//I1U9xjraF1HZvVhhQypjoeP3xC0R5D5fL6mtvra1wt3A4B75qlM75QnMZqeaa2TcucA5cX18wx4ozl4mYvcTQpobeadrfiZtjDMXK4vMF5hbMbbseeq3pgs92wMp7xMKJN5dhf889+418y7H+OnWu5vDoQSyGVxG674cH5FkrGoDGlMh6HxRxjmOdEyT1Wa0IUCGJLx088+Yi13lCmzBdXiXGaAUVJCte1nJ41zC7iVGF/6Mm5YoojzDNFg7MWSiVR7yEOjVoilQpZvbOJUOofKDjUIjFO9V3FAaXubJjvOqHvDFN16bquJS2WTCmYp1S4vblknmaO+z37m2t+8ic/4aOPPuLRkyecnp2xWncYrdDGYZdUMmE48UEAAQAASURBVJnvWaJz1JxQoxFwpCqUsRhtWTUNp6enfPnVS168esN+fyQkiepR5Q62upuHLrDL3ausd6D9XSexZPyU5X8xBPr+yPX1Ja/fvObp0+ecnp6xWq3Z7ba0rVi47gB8ZzWdX+ON5urqyO2xJ4RKjFKs7zrL48fP2d8eef3mitvbnjlEfvTFG95e3PDZl6/5+KMPONutyTmhjWXlOxrbUKshpARJbJvKyJyvGoEl5loJKWNsYAqBaRrpj0eOhyN9f8J6u6Zb/dk1Kd0Zeu7PRQScuwOL7otDC410Zx2ilvvYX6EvyrsC2WIGKKUs8SgSZaSWc1viQPT9789FipbaSBXqrgiltXT0p5jEKpDLYgBSS8PEMkqlmqVBYY4LLCHQgFYC89xHhtRKKZlEXmyzZbnetHTlKylO3cVmy3pLzA85CYxUikAaEpEmr89ZI1F1qZKLIkwzsQgIhJI6o0KKp4plfVAyRhmsMe+ikqhLAwr3cTbqDmosWd7PnKn1LrZbLxaZKMdpjJikFnjAGvk5peTeIRF3VeK60fefhQBKYqOhVmphWRdKbLecJzJLLikLXKDEZGWX+PCSJcLRKCO2nyUa+y5C0GqFc80SdykFSrdAVFMM78Bao9FGCXypilgZ7o9V7E1WKbR1UJWcP4tlIaWMb5xAV9zFm0Mu8tm3jcdYTY2JmAq5anQFlQK5Kqyyi8lLLD7yuxNOGUxV5Jo52bX8/M//HOePVygblsrunQVjocrkSuAOOhOGqVIyTIfCFz+84nd/50dY07Derpn6SELTTwGrNbe3R6YwY7TGL+uxQkU7jW8cIQRiitgl3sd7jwsSe1WqPDBiDBIFt9jFuvUKqNRJ7EnoQt+P1JhRQMiJojRUjSqwWXm0UUxRniXOKsoS07bZNkxTIMyF3M+0TcPuZM3QT2ij8dUt4IbsJ+QsFrEpZeZpxLcN61WLSo5qBOKbUkFpT54TsWa0tXJdNxaXsxR8UyTNE8ZZYi3y2rRh3TQoa0FpblKkpISplpACxmo22w2X10dKLVhtGIeZqiquW8u1lYLc53WSNT1ynnVdR8lRIqpiwheYpontZiP7EIs1SqMJc2Bf/l/s/cmvLlt61ov+RhnFV8xqFbvKnZVtDIlxYu7FyEfAcQswNNywEPQQEp3TOqJ5/hoaIIRk3KCDhDCFZRuMMOBjjPPYTmfmLlY9i6+KYpS38cace5uDTF4w6UJrSKlcexXfjIgvIsYY7/s8vyfhrSPnoxCkjOE0B2oG7ZN8XzkJPS1HiQ3MVQxapqJNRhVFiAnlDCplKDBOM4dhRlvFtu8YpwzK0jipV9RF9KytZd04jFZMo0TyqVrxxjKSJA6+9VQLzsixx3nGaMM8j7hW0bYtjbOcTiLe0daSY6ZmRVYG5zS28XTrNatVz+luz3g8ARBIaGepWrFaryi54ruObtUzDjMpZsI8kYeAURqjFNU2zNPEuD/RtA1N05FIVBzjPMtefQ601gqdU2X69YqYFdM0oZG6VE6J4+Ek0ZJhxreOzjekGAhZYnm1kvfFHCKnaaZxQuMyRhNjJGSJRLynWhmlyUqTjUMkQxlrxRxYUkFXhVWFEDJYD1qhdaU3likWMpW+b7C6EtPM8QRzLDK3aTgeBpw1aCU1vBQUMSRyUtg50q5XKOuYx4mUIymK4LRrDTXKvdE0Qu3u1x3GOOYYyLkQQkBRmedA0/SsjKcYiRVDWWJMaCrbvmEOQs3LOfON//JrQCGpzNN33qVr2gfAjpRINN16Q9u2PH36Dv2q45OPvsmrV29I2aJ0yzyJAKqkQNaVxrdcXZwTQuTuMFApGONwRgRMNYN3hs3ZVsQlKTKcBigSazkrEWhqKm9ev+B4eJ/V1QVai1BM1oxCsAkpEUOQ9bHWWO/ISIx8HCeyVTT0ImisCWUNnfNCzKxC2H755hU5RR6fncl9m0UMp5Vmte7ukwalipQycyyL6FkRQlzW7zJ/mJxp24b3Lh9jyg2lZDZnf4b/+1d/lWcvPwU0TWOwumIUaCXzsEZTsxhslFpiU1EPYqQH6dgitmZZm/3OVsWDxOdzFKKF5rqsv+7np7qs60AiJhdL6xLlVoFMjJXj4UAMgXmamMaR87Mz1puNmL4aL+sJpcFIlc0qhTaavNBWdU7yM5bFpVIGY4Sq1LYD+8OBYZjE+LAI4VW9vwHvz/1zTaV6f+yf21/oKmuvWplKIaXENE+cTkc2m+1iUGvwzi3HLJ93H0tsrMGahpyFABcXAa6k/lU2645V33I6jQzjRIqZYQzM8zX7w4mLsy2bVb/M/gqtDc5YWYct0XS/Yz29PFeSkpBQuaDyEgcXI2EOhNDgmwbv35KU3o6344/CeOedd/ipn/qp/ymC0scff8w/+Sf/hHmef4+P7u14O96Ot+N/bMzz/CBU+sEf/MHfVQiklOJrX/saV1dX/MzP/Mz3hKhUSuHf/bt/x1e+8hU++OCDP3RCJaUUH374IX/n7/wd/tE/+kf80i/90u/3Ib0df4THdy1SUga0qmh9/0+kwKcAa7W4MYo0DIw28nu1YI24mu/jR6yzVBaBU9WULNh/6wy5QJhmjNFY51BLIYAqyPucyxInUGkaR0yVcRixjTjrSsloq+hdizKWTCZTiUCKGec9OWVqQQrV3uJbR66VeQoU5ByNsqSY0cqhFJwORzl2bylKnK3eakrVhKrpWiEulCqFQKrDGEsp0uhIiDNbK826aci+sh+P5CTO6s47DqcBqytOWxqrSagFuyxkKmMUzoC3Dakg5KJSiTlhtDijxWVexaWsDKWC954cEmGSCoO3jmwKTdOgtSHmRNM0lJTxyjw4g0qRGDf5LsVx7hvHME2oIg2Hmis1K6Y5UrUmxIRFSEBGS1SG7Vu0qjRGsWp7pilgtSWQialSSNRa2fQrlBGEvneeOgQa4yg5Yhtx7h4PJynoTgqlzbLJVos4rpJypXENKcrxrJoOUyEWEcJZK8dWMqQiiGWnFLpmnDHkOWKbBoMhV4kvKynTGIOpEtGVFYQYYIDtuoMS6NYdLmtub48cdWEaJh5vYXtpuHic0Haiqrw40u7LM3r574cK3CJcypA0+08Cr5/DXA3NtuPJ0yc8vtji58SrIVHVxJQLk4ZkKzlk0rhje9WSSuHmZs9cNet1z1Qyx7uZPBq6aultYdJL461zGFt5//E5r9+8JoZCU4X2cTiNpDCzPV+xajuKrhyHwutpwrWOdW3IWTGNhcv1GecbzahHdPGEONFvO64Pe0rJZFVJCkIsHE9SwK86ABOqWnQyDNcRrGMaJqqpfN8f+zI1C6ZfVYnmKhj8quPZ8zeUAofDCRdH3n3/ikfnF9zcHBn2I+OTzFgyKReuzs7AWWqIvLm7Y7PuQVuaXpyKL97cYbXmi1/4gMN0xDrNNEExllHBk8tLakoMpyMxzZxterTrKGHkbLvm9m6PLUWcsbWCb7m93XH3+g0rbdBdy3EqpGxwNWG8pkPTNRYaxzRlehWJtdCsN9wMI/UUManyzocfsPVn3N2+4dXuwBkdjzcN+nzFNESa7RaUZvfqBW9uDjQ9XJ73zEUEl2OpWGN4+oUPePnsNek4cHp5C91AaSwr31POC8FnfNvhvcOExP76jvO+oW0st8OR4g01Wu6OJ2YqRrW8enWg0dCtO1QsaAW7wwnrLO8+vuCDdx7TrjaoLNS2ZrPm+etb1JSJOvF03bH2nsNupDSGR487Pvn4I3JtCEWRsqVmmGshUCkWztcNhzFxvR/Jwx1N7/jCxZrzVcMwZ6aUURYSnuubAW81VSeUt+iioPMMcybsjzSNxvueeYholbhYbTiOs9Db5sDq/IJp1lzvTsT5iGsMjy/XjG2g61c0jcU6y+mwJ0TouhU2jozTyClXrFd43zHMie1mQ9cYXr++YZwcSjuOGc7PtqznmeOccVOm4Iixsj9MQlugEtF0ztO3jmkwHE8zxznSrM95cXtkzon2NNNrTywZR+FsveKQBvZJs0sjNrdsGnGOllmIgKUqrh5dcLrdcTgd0aowxxHjGso0k8PM08sLSi14kkQ7Gs2QAhfrntNppHjHi0++xbuPLnn6znuIXRV5x1nHV7/2gzz7+AXXL97w4tMbGmcYx4Rd9axW4kYuMaNyEWEKcNgfGMZJ3OTeM+fKGKShthtnLs/WPH3nEeMpELKmhMy2sQzxJVMC2yjqXNEVUskE6f+wPTunpMBpDBibyAravuP6+S2zMZgnCud7ns1veHUa+eT/2bFxa3zj8U7zuGYuuzWnMBHjicYoxtnwr3/lN3j/gysebzrmMbMfR/LKooOj07IeaZ0llEhICzFvae6FLNF22liOu5lhN3O2WfP//eE/Qf/bv8Unr665ORyYjgnLQjJsFe+cXfI4nnFzfYBoaEbLNM80roWi2A8jwzSTopArSsoSuQrLmmoRHT24mRehyOezpgsUlT9X1P9sMyVUTBYRgyKEvERg1SXSKjGOB168mBmGI3c3t7x69YovfulLvP+FL/Dk6RNWqxXOOjQK61uMd2hr8N5TYhB3clmaCSHgraPzHtu0tH3HZrPi2bOXvLm54zRO5Bgf5lfRwNTPzmcRVX3+HFVRaC2Yz4Ii1sLxkAjzyH5/4Ob6lvOLS87Oznjy9DFXj6/o2hZrPI0TUYHVEls3pcLucOJ4OpFSpHGFx48uOTtbcXlxxtnZGa/e3PHm1Q2n45H9aeYb3/6Ej19d8+TqgveeXHJ1tsVZoYbKuljWf5WKiQprRcywQGioORNTwsREDDPzHBjHkdNwYnXc0q/673Z5/z0f943Hz99TQvS6J+vIfVkRusy9mEWjF81PlTglJQYJgfbUhTAhRCNpfqaHGLcHwVoFvUTd1Cqxb9pocoGUoogU7p8LrfCS/URdaKwg95AxZvmMhfRgtMQtU4npnuok5ymRcSKYiiHIeRpNUXJ+Rks0sUI9RGZrJeYLZST27v5+FgGMSBS8tRSNkF+LAiPr9TlGjKoYZTBGUUR3tQiRNFpLY8xoMRWULM3AkssD3Ug9CF0klrsiMW6lFPJC1hXyrYip7ilXxgoRZFmhLw1OuSZK3ROVKsZIJJrEuyxNz7LQp5REx2mQqDEltClp+FeMUnjrhByhNAl5r6os5AfvZO+WQpTvqWasMkI00UIpCkGa6mj10Gi9V2bKta5YLaSoWuU+SPX+Hlsa/vfXtcp+SC/fuVFK4vKM0KcqCz2sFBFnIvNkWURdBNnTqppx3mGKYpwCQVXSmNiuHT/6Z/84F48alAk8xPN8rjX8OXYF0tJcCK1FMe8zt9czv/nb3watWK9XrLoGkwqnWKgkUtEkBUWLoafEmaazFArDOJOrwntHqoU4JWrS2F7jtKztnapUKyK6bd9yGgYRsKHIVRFCouRE03i8dRQFMWZOKWGsxmOlwZ4qzje0ShNVRGEoJeEayzDP1Foo99euVGKQmL6qMihpMKuiiaPQQGJMoCqXjy6W51Ui5a3V1Gow3nI4DtQK8xwwJbFuOvq2ZRxnoYysKnF5X3RNu5CLCsM04RsHaIyTGPfjOKNRnJ2tmFN4oExXrYkoVr2QlGMIlJJoGoc2jpIiTdNQpxlNXWJbK9paxmlmOg04pVHWElKlFIVG7kNnFnGhFUKRU1AoGN8wxrhck8r6bEtjGhG1TjMNjt4bdOuJMWObBpRmOh2IY8A46FpHrrJ/jVXocavthtNxoMyReJrAGqrROOMobaVYERlRhGiVUyGepqVuE9HOopwlhMRcRPg0zQVVRARpvdRG5lnIUY13IhRuGrSxxCCCsaxFpFVqorWGxlpU0ZzGifNuRZkHYpgp1VCUoSTgXrhZC01rQMEYMzEO5BJZdw2PzlbMuQjdG0UqC6tsnFAIgU5V0MaStCKFhESie3KqxBCxStO3TmoWOcs97hzzaVyMPpntplvEkQa7RJGVkgnzjGk8uiRqFkJOweKMlfeiVvS+peYTIUhkXqzQOMdKV6YYMWXRMWKYpkRIFa8L1cqc5axBlUSMijHMoEUUZpI8X0YZLBKh1nlHXES0sSZyVuiocK1BVcgxUrPQ15yxTOO4vPMiGIfShhxmvLM03ku1I84yH+YsMcXzxG/85m/RrlZ0rad5/HR5V99PD4pmvebd99/ldBiI88wXPvgyb17vKWXGuZacRDSmqqIugt+UEnMIMudYqUfGXEEbShWhT9f3QtWcHSkWDEIqnYZZhOm1kkPkv/zaf8b+0J/k4uIC7xu0luMvQMoF4xzMMzkk8hTp1ytO88CQC6dh5HiaMdpijca3Ij8rOUksXS1Y7Xl1e+QYE9tePn8KQvwy2eEWga01RsSni4j0XhJU6mdzfM6V4RiwVvPk0SXWG272e/70138Y9Svw8tUrMYwqaHrHai3vu7yI7EOMKMA097Ff8SEGT8EyL362rv5sNqr/lcD8/s+WOX6h/t0LZeQzPt+okRpdVQWlF3ETIq4cxyVSbZ4ZTifOzs/Znp0J8bRtMMYu07nGOk8uWtYbJaOSXo5JoZYoVmeWuFlr8d5x8EdOp4EpRHLO3LNZ1T3V67/hGr8XKlXujRJCzq8lE2Mhl0wMgWma6bqepm0knnK9wnu/xN1KBKGsY5WQA2NkDoGUEopC33tWqxalJF62HUWsNI9SK9gdR05ToG8b1quOVdfi3X0UIg/itWXjtqzzNPpBIFblmhdNyVlEeyYRF9qsb/7gklnfjrfj7fjuRtu2/ORP/iQXFxf/w59xOBz45//8n3/P6CNvx9vxdrwd3+2Ypomf/dmf5b333uPs7Ox3/btaa959913++l//6/yDf/AP2O/3/8uPbxgGfvqnf5qf/Mmf5MMPP8QY87/8Z/5ej7Zt+Rt/42+gtebf//t/T4zx9/uQ3o4/guO7Fil5bRbHaUWrZbOnLEqVBeu/uFirkG+UFhKIFIU1SolwyRhFIVOyFMbvhTTWKlKWjOycZNOPUhL3pmSDKY0AhB5gFClJsT+VTA7iklFaXHLGKEg8OF6tsdRU0cYAmrZpCDlIRIPT5CIRAtpoxnGAqmgaIfVY1aKpKGtINQsWOQl+3XvBo3tnqAXGcWaeZlIWEpSxnrpELehGSxQDVSJ+UiDiIEPvGrrGk2KU6qtmKcA7LJ7GWkIOTONIHDOlVJx3NN4DinGUOJmUI9ZJEV5VyDVBgVwi1hq0kiiBrrWMwyw0qQy2KtTizjbW4qxhjoGmaTHaiLirFvpVhzKK4TDgW2mYqcW5pCm0tkFrizKGtnWUkqgl4UwrePkibmSlKkoXjPWgwTeecR7JpTCMI5aK65YmSskMMeJbj8XRWMW8FISU0aS5YNFyrlVT50g1hmOaGKMUgldth7eGYZ7RzhBPE3Ga6foOuwixEkLyigqOKaBjZgoTRgvRq2qNMT19Z8ghYpCIvCkUYp7x1lCtpbWFd96rrB5rdJdAVxSWe1fY5wlKUvIQB7FNmhw019+e+egbB45qy/a994gBxpB5dnfCtQ6bNGkeuL29o+k3nJ/13Jz2bLuOLzx5wrOXr1Aotttz+tZz8/I5wwCHodK2XmLf5oDKM2nKFAw3+yPGNmhrOd6diDUy5ECxLV0p5ClhtKJvezyei21DPg3QC+J9fzfQth06jQylMqbIyknshbUWlU54b6lkDseItYr93Z6YEn2vwUAxC446NeSk2d3OdFRsq2jbBoWg2p++e87NTkgnu92O1rSkQ+DZ9Ir97YxVmXGOHMfI3d2Atx1nT3pca7gLkaQ0JReaphX3aC1sGoeZKru9UGcu2gve3J6oqnCRYbjdoWpmvfKsvBK0fKO5fHzOar3l2bOPePn6mosnT8njSEkZ7R2jymydoskKm8SR6FrPD3zhXQ7HkfXqjLtX16g5suktZ9uebus5jiOn6yN5PvHmJtNqzbap6Dyziwl18KicsfNeisVEzi56wjxjjUetN1zf7kkxctb0qJCINXIcAitveef9K0zKItS8XHMIgbvjgTlNdEYxz4EXz+7Ynp3xzofv0HUrbvM1c8msveEwFXa18rRv+NLjc56/umV/HBlT5v3LFSWeePntma5bszrrWZ+viWcN733xEXc3L3l68RiTFOEwEpMhqszuzZ6Ojjf7PbkaphjoXCcRDqay1oXLsy3UiGsbCj0hR+ZppGRLLZXdcWJaCEGjhqszT68LqrdMh4zVHZuNYfCKmZl5ypz24litWykMnmLEqspxmkjDjNOGUCWaY2UdofUYNLfXO7q+g6S52Z24ODesN5rd4YRqOmmyxEBMmVgr61VPe5i4fXOCohnHBBcbVt5ymEcOw0jb9zivaHvNcVR8+vwV59sNXW+YfMMhQXKw6jznVx2leJoK1MIYjqzO1qydvJ/y6Gm6HmMt424UIqAJnA4jRWvClHFqgBQYxoAylk5JtKn3Ld4ocppZbVe09pybQ6LbNFyuOub5gM2W3nvWq4ZXH/02m35Fv72QJi/3XlpP12w5O7vgNA28uTuAyVzans1Zx8XFFc8+esk0wDxn3uxOzLFymiIZRUqR0ymSU8FZQ9t6Ysh84fElb+qe03GmWZ+zH/YkZQhBvn9fNc5UJm0Ai66WwEgsgUkJ6TGWSpgCVM2r57dMp1/jbNNzO86EXJinxGm4pVaJw4hEzLuPOLtccfj0hLWO9/qWfU2cty16nvAevvb+u7zz+IKz9ZoyZ8KYKKkyDCOnOVJTxqIfYp3GKZBCIGMY58hYEl3j+L73v4RzDeU7H/HmZs/+9oR2BmMr1cF61XJh1qhiWJ084ylgqyZPgcZq7ozmOMyoqsBpyBIh8GABVvdz0GdCi/voJ7WIMoT2Uhd6jYgmSikYdd/oS+gi4t9UFcZUlCoYLfdkjInb28Q0jlzf3HB984bdfsfp9GWhoa1X9F1H5z1maTKWMBK1YaUNRnu09ehxoC5rmKwkArjxlu12w7NnL3n28g2H/Z45BCnEg8Qyqc/IUP/1/9//uuZILXJP1KIpJZFCZB5H7m5uOb84o1ahUq7XW7xvOdtu0Nqjo9BZXLeiXXX44ZbVxvL08RnvPn2EMVZoZdXIv9tsuLm+4ebmmtM4sjudOAwnrne3fOn9d7k6P2d/GggxUZeosFKLXPdcSSnKuq9pqFkR04zSEZsliiaFwDzNjONI0/zBJSlppR4k2g95GkooovfwIaU1ahHrKCWGhsJ9DKFeSD/w0Bpb9N/WGolmK0L9+rzwzizxY6rcO/vVA0GolCyfUyqpJjm+5T5XWlHyIrqpS9R1WZ4LhKSQaybfx6vdr/MUD1Qgax1aK7SyIqjREqVYFuf+vbiq1vtIOYlkSknimZVWCy1qcfWbe5oPi8gqUxAKkjcGa+zy2fdioYLCoNEPJKQUswgols+4L5akKMdfSkYbvXxnYjZRS6NRhF9S5LFWk2ISYpOW/QDLfkIvx51LXpqIeiFHVKHAKiUkJKvvNUJyrkqIZUoJXUREJfJMaC3NeuoiDKKCqsuxKqwxQnmqlbKQO7STxlytct7GyJ7Vaki1LuejKUnoWvcxl6QMTsneLQuRzlmL0VpEVkZTQyKnhHUOrYTGVVgodApCyahcSTktQi0j+03lJMYulUWMI2aLXGW9jdZ4p/n617/Mk3fXKFsWJdI9ZeL+XfZ5moU01XVR1KwY7hKvPt3zK7/+20yl4LqOlCuHMaCtwZQlqnMUgXLbOqYw4Zxju15xOB5RKJqmxVnDeDoSY2WO8qxZZ4U0XNKyp1cMc0AtxK0wRQqFUBJFWxxCg1FKyH8aS9cYaohgRQAYpiTCt5KIUYwm/nPXFB3lGamFOYoodZ5mcikSf6YKVRWoGoqloJnHJBFPdiEOUtFWsVq3TPNEMYppEnFJCZnD3Yl5zA+EkZAy4xQx2tF4h7GaKeUHEZ61jrK8s63T6FSZ54QxCuNahlHEZV1pCOOMouC9wRkRUiir6FYtvmnY7+84nQa69UqIbotYMVFojMLU5V5GRExXZxtCSHjXCJ0yS02iaRyuMcwxEceZkiLDWLAKGgO6JuaiUUEMSibPqKwwFHQr+1utNHjPMAklprUOciVXuSbeaFabDboUEWp2njllpjlQopCmSYVpmkkx0a5aum5FVJGSB6EyoRhTYQYuztbEEJlCIuZC5y3eKobDgTIGlBvpugbnDZttz2Ef8Y1E4ZIyqRgymnGY6ZTE6KUqxrgHiosSsmrnrZjNilA3axBit8xJErUX08g0F4mm9wZjoHFiYqpV07mGrAKpyH2ekhBUrDU4C1OIC1XKMc/zEulYJHpNClqgDDFEUkwYY4ihkHJk3UvNKMTEummEDhYy1VrQ8kwejqOY+6yh9LDyjlrhMM14a1FGY42YB4fTgJ4q664lxUIomkjGeI1vLNYKxVIrKCUBlc3ZhhQjKguFxnee0xKHp7WW+SmLaK7GhKEINSoWrFPyXl5qbinNOG+x1jNXRc0T221PzhEqhGnk+Xe+xbZrGNqO9fb8dxoflEYpS9t0nPxIypmLR1c8e/4p1inO257T8cQ0JkqBaU7s9SSiiyrRymmh/+Uk4h+tFM5YvDXkOGFdQ0qBUAIVES7qKudwOg78p//4n/jwi1/kSx9+kbb1hJJE2FEllreiiFPgdbhlHEZSKUxJ5uFhngGpW3bZo1Rh1XX4ZAlzYNV4XEp4b7G1Umpms27Yrnv6tsEoTQwJiiJpWc/XXBbizyJwUZWUZP2SciWWjC2adbeSCDTg63/yT/HqzTXf/ug7vLl5LcRyq2k6R23EfOgmvSifipgjlGKKkZKXlZsWkeg9fV6Wcp8jLt2Lk6qY8lCfCZruiVD3q7f7SphEkcmzVwFdACWiK5B1cAhFSEPzxDAMEikZwiJUanHW4pxEvxnjQGtKSkvdUaN1Qukg8cBGDLZCIhMRbtM07A9HxmkiLVF7nxdc3f/6nir12eLzng5VFnKnLGZyLdSFThTmWYyjaQNUcttirMNbR9M48hLfiBaDjjEKpaFtG7abFd45SR1AaureeaamYRgG5jCTSmZ3OjHOE9Oq52yzJoQk0cLlc8dYhLZ2L7a29yLzRZglRC7Z693H18XwNu7t7Xg7/jAP5xx/6S/9JZ48efI/TPDY7/f843/8j/n4449/j4/u7Xg73o634/dmXF9f8zM/8zP81E/9FJvN5nf9u0opHj9+zI/8yI/wr/7Vv/qeHN9+v+cf/sN/yI/+6I/yZ//sn2W9Xv+hoyo1TcPf/Jt/kx/90R/lZ3/2Z/n1X/91Ukq/34f1dvwRGt+1SKmW+7gFqLoujprygO+VAvLiQFViiVVG0NB12dCWWtFFiuEYJc5ExLGaszg57je7EvEmjQrZJM10fYtSinmWwlEqGVWQCAElBT+0xhovqNppxjhH0SJCMlqjjWOOCWVgveqYU8F5g1ocsrVA1Qsat2QoclwxF0iFkAPeeXzjiGNmniNKVUqx0hQolTBNWO9AaWKSjPrGN4SU0EaRkziBtdXEFCHD5XYtv15ce8pI0SilgtcNbdNSUsXEStOL4CvXwhzDQ8xaDBJRV6sU4L3zaG0IMdA4h7GKVCreN+SUaLyV4m5JGCW0hZyzxBAs6GWhLoh7rtNOIi5qoW0dzjnGcUQVhVGFtvVLAyDQ2I6UyxL3ZphnwVnnFFj1Pa2TIpuxCms0ikJYVPnWOhqnKUYaQDkkzrsOrS278YhTFu098xxJGTZ+y6rryNOOFMS5WlJmygWMFdJVLszjvDieCt5qtNNMNaFKZePXHE8DBmgbhy4Jawx92+G8Y54iwxDYNEIUQnumAuuVJhMJKdK3mvMusu4yq3cKqkesjOrzcQzl4X8VRcGKs2lWHJ9HXn8ycNgrzt/9Mq5optkw3OzwncbkxFxmwlxpVz3tJqNKoCbN+eUWVQq7w4DF8sGTdwipMoSJcZ54+XrPHBIqTXz5y+8LY8x6Wu9QuZIzGG2hRm7GkRQGVtby3ofvYnXh5fMb1uct2hi8brCrhpvbN7RnF5Q4k3XiZrdHVxGFDVFc6LHMnFJive4xzqFrRnlLiAPr8y3TKE0vUzVFa87Wa1RVZOV5c9hx0TgsGu8a8nCiBMuzb76gTImLqzNSmtBaczscMMahdGG78nz80cfMU8Js19zNI7xJbDbiBDscT7Rdx6rdcopHet/QeM/tbsfhFFmtW1TOmArjMHN9c0NOM23TU6bIyihSzTS+J55mfLVctmtCP9C3Hn/ecbo9Mk+GMsOcjhhV6TrNlCqqdhi/pekb7u6OfHKzo/MN73drOms47HeUacRSOJ0GjocTj1YtV9s1u91I1Yb97kSMieMp0maHbQzXu6NEceoIodBqzdWTC4ytvHzxihwjUyzENMDz5zzdPuLmzRua7Zab62tyrmw2HTYGBmC2htenI/mTF/ROqAUoaLM4zZ8djsSxcH2d8L5jtbLcvt7z6vUNqjHo0rKe4ZPnz1lv1xgSNSbeuzgH43n1ZoddrwgpY43hm9/5CFthzgmtK8ZkVr1iDJGu8TSz5vZ25nQ80JPonKNZndF2cPN6L1GFFx2//psfcTgNJDKKju3FlhQGUspcv76GTUd1leNuZr1a0Z0pwiJgLcNACTNq3VMwBGtw3nDhDDElbu72TCkSrGI/TSQyRjtiKezGI9pItMp82BE6iZ2M08xeQ2M6VNMy64nGGEqeuT0WblJh1g2XqxW9KqxMQzaF/RBpzs6IFIpVHA4jYUwYq+icxSbF6TBjDLQOmlWDaRyxFs7Ot6iUMUrh2obOVm6GG5584SkxH8hzZbteQQ5kDaoqxikyDEeutj1TSkwh0eqO4/WJW05or1FxoKktlYZu5ZhPe67DEYVl88lHfPAlj21XkjNUFatuQ7/t+eJX30f5yPydmRBGrLU8efeSLzxa42PlV3/jOcMwMddb1t2EXZytdYnn3O33xFr54OljUoHr2z1N0/ClD5/w4sZzPHhShRBuGE4DzZmjzhF0IqRMrkLKUSZTG8NpGjkOEveYK5zmyGm351AjhzFAKczjxDRMeGdJXct+73DvPeWiXXFcnTGFxO5m4FAiz+dXXF1t+ZN/5iv8iS+/y5Mnj0hzpCbF7m7geJwouhIVkGR9oSkSTasVRd+LqUV0ezeccK3lw3ff5enFJZ88e8G3n7/g+nQkJs3hkInTxKpvsd7QYMhREUOg2kxjDReqh1zFFVzBYFBaS8RuEYKQWmgr9cElLHNuXSKaJO6nLL+WdYGqilKF5iJy6EJeivISuaCgZmnEl0JKE8dTYp5GhtOB3e0d12/e8KWvfIWn77zD48eP4eyMVjfS+PIdFhF1ONugjDTaxnHAF+g7swhXRIzQ9R3nF2d8+uw5r19fcxoG4rJPum9MyppSRFi/kwi1kHX0Z/EWtWRQhSFLRNA0niTyIifm85mm7ckpkLcbUteglaFd9/zAD36VH/zj76F1RGlwSqK6lErUamh9w6pruDxfcXe15fmLa25u7hjGkdc3B/b7ifPtlnEIzDkAdQmUARGMiCs7L0Kxru1xVjOHKE7xUpdmSCTFwDQM///sBb634/MNnqXhIw0qxOWtl/uQxYGPiHRqrouwiYdOmFqEQmX593VBCnze9H7/lQvlqxBjxjmLUnKPlCL3+b2poSJGCDkWEWHklGRPg4j1NIpqNHkR43jnyIvYTS3OeqFByQ+vRZBu9wSnWhV5icPWRog9KYkIpT6YQRaa6hKZXZaIOruQWmO+b/JJjFkuGVVZ4rbKZxQn/bkIOSUCpqRk7+KVWUhVkHJeYtbUg+CiZCEgKSdRWg/HrKFUtRClRKCglBBK7iO3Si2YhRq0PGoizKoFq+4FVwVrzUP0kbAIQFmJBCxZoo7q54QGsv8UWoFz7iFSXGkeYmJySg9iN6MVdemM1lxoFsHYFCNaSXRcTkKu8abBO0tNM2URFdVSSYI5wFoHtZLuXzK1ivhNK1ItKOQz7kkU1poHsZ2zVr7rJJRdb9xDUzIV8I2YeHIpOKtZNYqv/Ymv8oXve4Jyyw2tPi9Oqg//uzc8ANQE4Vg47SOHfeBbnzxnThGLYRxnnBMSTC6ZlMTwYpqCqrLnbfsGVWCaAxrDtl+RK8ScSClyPAURpJXE+cVW3qML4cMusAa9CF3HlCgp4o1mc7ZBq8rxMIrJRSmJ6fOW0zhg244aMkVlwpTRyH425IWmVTOxFLx3IiqjLs9sxLcNKS5ELaVAZ1rfLJpcMai0VqMRkViJCZM1h9sTJRbavn34vqcwi9lKVRpv2O93pFjQ3jOlSB0yjbdUxUKysXjbEErAGbkO0zwxhyJCvCTR5TFlhnEUMpT11CQ031oLxjpySGg0vWvIPooYrlGEKZCSxFOlKaCpD/t5hUKbBmMt0zSzHyecsWx6j9OaME/UlNCwRPhEem/oGs88RarSzHOk5EKIBVs02mqGOcizpAoqVxyKftWhdeV0OlJyEUFdiXA8sPI94zBgmoZxHKml4pzBGk0MI9UYhhTJI/Ls1EpBoYuQllGaFCPzNEGVAuhwmpmmQEyViqUWTTwNHI9anvmS6Z3UIoYxkXLGOHn3D+PAmAsxZxEEalmWWqPIteJxpAhzmqkoXOPEMOck9q6kSr9aCVklBkzO1KLp+45ShQA9hwgl4715iKzsWydmM23kPZWzUPKUIdWEciI8NFoxTbM8RwZCSigN5p4UliJTFCJbyZkwjmKKKJkQJDZPGUO+J9OpQoyBQ4rEIoYrb+SN0DhLnAK28eQQKApSKcRZzsNqja2aGgs5CnXaWo22jloLvvGUexEqiu26ZRxHrF1hrCOeZpz31OXP7+NDpzmwsY1QZarosWysHIajUIco6CoCTWU1NQVevHyGsZamaaXW1vYiTgK0snjvWW16qk68ucm89/67XN+8oe0bztaObdvwnU9eM+VCmsSAInGkMvejFClGxjDTek/jGqY54pxmu+2xTjEFi9aKnCXyUBuNUUgtLAe++a1vcnN7y1e+8iUuHl9KbOQs32XNcm1TqiQtkeVDnLBVE2chblnrmGbY9C2NtVSHiM5DYZqjRONZy/mTM955vOV8u2FZVhNDJoTENM0PRDm9rEFY1i5aa1KR+mwtEOaE1orWN7zz+DFnqw3b9YrHTx7x8s0bfu3Xfo1xlL2ORMpCzSKSFuFwpfES/xlqWvTHCrPsHUstD2u6eyHgw7rufqVXRbD2QB1iEarXz2J+WVZ9n1GXlvVdrffQdHLNpCjPRIyReZ4Yx5Hx/ILt2Rl939H3PTiHNhqtDNoidUrjpD6iFDEFSgJnWcRbajHCGtq24XA4cjyeHr7X+8g7EdIvAvnfsci8Xw58Rraqy3FXVckL5VPEPnVZe2ac82QntVPv3SLC1Wy2G9brBqXFWGK0RGxqXalV4nKdNTSNpe8bqRWdRLA1h0SMB46D0PBDWmh6td5f3eWrKOSqqDXirMMYTU5ZhFDVSHydFgF9Tvm/sZB/O96Ot+MPw3DO8RM/8RP88A//8P+0QOmjjz76PT66t+PteDvejt/b8dFHH/FLv/RL/PiP//h/l1aklOJP/+k/zX/8j/+R3W73PTm+GCM///M/z7e+9S3+9//9f+erX/3qf/fdPDDg8djvXr7xv3RYa/n+7/9+vvKVr/Cbv/mb/P2///e5vb39/T6st+OPyPiu7/J8H+1RZRPO4pgxSm5SjSKmiHMOVCWWQE4VlSpGixCoabrF/Sd54zHNLP0EKJLHrZfsbJCfl6Og4KsqhBCl+GkUKUtmfGu9YKrJEkWnJUZFaY31nqI0YYmR2bgebSxKGbQqtN6Ls0sqV8SYmUIELS7ZlDO1iHDHOhHoqKQwTjOMM1o5Gq9BV+Z5BDRoAzVJE3ARWmlrHiIbDsOEMwrlW4z2dL0nxMCYJkoVx5/B4MTaLXSmlMhxwLcao6xcZ6OxShOXnbtSYL1GGXF4SmQE7E4ntDI07b1LXTMFISE4U+m6ljwHIesowBpyqczTgG1atLUoIzFxSkGcIkprtDdo6/CdIofAyjekUtkdTqx8gyIzz0GEOLkQ6kjTOFrryTnTWEukQo4YZalKCEtTFpyzMgZtFUY7FrgDKU+kmjGmpfEtphrGOFF15TiexB1dFb6XBo03Uoh2yjHOE3mc2Vyckazcx13vadqO4zAwpExWimk6MQaJptNahBk5RlLOhFo4xVHc8RE2m555qjTO02sgndiuEufvanRXQUlxQQIHpRB3X8kQJoBBY1BVGgUff+uab/76ge7sXYKtWKs4HQJjFhfZdLej0YWgLATDo6vHpJhJWnF3+4a2GsIUOVt3aBK+dcRkWG02uDdHea5KwSvHykaaVcemW3G4O3I8zowxorxiLpZaPWulcfPI9WlmP8wYVznfbIgh8PJmJBTN6fWOtumIpXIME5tG3LuHeMJaxbgPTDHSd57Ot0yzEKe2qxZVHK8PB2LOrC7OmIoH1aJbzftXaz6oDad9YLcfaVaWqLfs9wemwyDNnVPkKx98kd00cHNzx90wcNafcXGx5uXNnsuzlpPJDPuB3WFkrD1f/dKHnPYHSikc54njLO7mxnqSquQxMUdxXJc0Y73m0dkGY9e8uhmYYuVJ09G3lZBhdxrZdNKcOLvsGeuIi51EqZjKetWQwswcMkpX2qbDOst4fQcUhtNI5xree3LF7vYVxnlSVWjrGMnUw4gzsJ9Hrl8cOJ4S/bHB9p798YB2PW2v2awabnaJZrUmjgfOfMtqvaG0HUlX9CBNjvVVwxQHTGv46PkzXr/Zkf1zVl1D61c0OXMYTqjWCb3poiXuI+jC9bijsSuKykzDIA04t+Ywz7SNou8svtXEKWCMYXe8JfeBGApFnXj3ckuplqtHF7x6tRPaWufYH0+4JMK9WCqn45GQC4/ee4puG5paqUXzckic4oRHsbaWahSnKTJOhU5bwjSjTcvjsy2rbcvu1WtiVezGgKqGrlHYtuEUEtNQKNFyOMxsWikORmdIx4DTkTgemZXi8mJLUjOlKnIxZBRn257jGOg3HZ3TTHNG24pzipInvLfkakQoairTNFKKojvbUlo4bia8d1iVeffRFcOceHG7Z86RttUElbHa8e65o28tn7x4zfXhhK6ZOcw0tWG2hvk0QqlMceDKehrt0d5z/eIlx3VgvVnzwXvv8tG3vknKBtOuuHr8DibAy9M12niGcSRrxdOnl1zv7kgqM+fM3e6I8Z75cCTXwDEmSs30jcOzp29babw2G16+eCnNtGcfU7Tiw6/+AEY3oBTeGf7M//YjXD064+76lvX6wHTSHO5G1mbNRX/GB0/f55MXR65PR1KYGZGCinMSHdM6y3wYOZ4mXr6+pvEt3hjmOLPeNFycXaCjYmeO9P2aVW/5sT/3Jzi9vOHZ7RuOITKnmaFWqi0Y5aSIbiquNWAKplUojwhMSqBzljJVjjrhnZBR7o4j3/zmS162O4qWBu44zAxhptbI1ftnXLQ9aoY0K1q/BqtYvXdOCIHvfKSY0y1VCUK/lkJCRN1aG6zKUCopKZSyaKXw2rPeeB794Ip33znntz55znc+eUWYEsMpUKaMbgyNMbiVobQGo9eouaIPkVXjqaVK5AsFZ51sgmIUwkzlc0KP31lzlxQABXkptuvyQKupSJzEfayaiJwUOUtXpCrQqIUQU6k1UXKEXSaEmcN+z+3NLV/88pcYv/JFwjvvcnFxyWrT01iLcQ31voBPJeQgTUzjMWaWebUKOcV6S9tYNuuO8+2GZ89fcnu3Z5rnRXxePuONfG4D+JkoiwfxkvxeoWpp2OeSKBRevHhGjDP7iwPb7TnTOBDjzGa7oV9t8G3D09UVViVKjcSSKalSYsH7RNM2zNNEmGfmacJbQ9v0bDdrXr9+ze5wYJ4jr65vmVOiqIrVy7r7d0RMyHpqnidpargGZ/VDbE4pFmvtQrT5g4vfrUvDqlLv0yck3k99Rju6jzWDJVqk1HurutCArH0gKVUUeYlxuo8OERqPlvtYsGHymUqidnPOnyOISVPVaS1xySyxYIqHv6MXgdJ9Q85YJz9jISZZYyhBDAhoTS6FnIUCoLSIqMhCRdLGSOOtCBEppYxSGmPl2HNOSwyZ0GLuRVywkImWdX9ISUQ2y76m9YaUM6lIPFOpInbSy1WiVmIplCI0S72Iju5Ff5+vj2gj56EX8SHAHAMKjbXShqtVaA1KScSZdY6SpJm9IJEehFbK2Af6klnimnPKC8VAGnPGOuoi1ixU5jngjFBvUopLU1MIbtZKVIs06LWI+UpZ9LFCyEi5UGpGufsmt7l/5VFKFjKU8hLlhiLmDKoSohDZNGCcCMuM0SJOU0oICynTtI3Eo9WC8xZjLWEhCN8LDVJOy3t3IahkoRpkIBYxppQCjXeyZ9YGp8CozNe+9hW+9H3vikBJ3YuRZF+x8Kq4fwLkjSv3S6mwux25fj3xnU9ecn23Q2tFmDNxUfKlacaqShYkBn2/EiKKgmkasFUtBhsnYlatyUrhfIPRYSFmyC7Ga4X1Fu88YQqEORFLQRlIVTi7Ho1OiTGmxShU6XxDzpnjKOTEeJqwViLYY0l4o+W65yjRSnMilSLiF2XIScxHrZNYvdMchGzsW1I1VCzawaZr2GIIk4gAvDcopSVOZ54kbicWLrZnzCkxTBNjjLSuoW0bTuNE13qiLsQ5Ms+VVAuX52eEWaKk5pSWmMcqIigl8TlpiVAsVcgtfdugdMNpDJRcWXUWZyupwhwj3lpyybSdJ9WILlaESAq8t5ScyKkIXcxYtNbEYQIqMSacMWxWHfN4kkjJKiSzRKKGiNGVOSeGYyDGgo0G7QxzCKAd1oP3hnEqmEaiV1tjRYRinZjQYsbkjO8tKQeUUeyOB07DTDVHnDVY47HKMM8jVcs7sO+c3MYFYk3MobBqPYd5phawTiIZKYXWWXyjmU5ibgs5Lt+3JUxCmDHa0jQWbQ05zvjOE5LQuI0qIogsQtZt+w7nvVD8YmHOijEEIVpZi7KGEBK5yLtJlUINmcZYzjY943iiVsWc5N2maqXrHBXFMURUuRfRJrwzxKoWmmOiVk2cJtq2lfdqlci4UhXOeYklXIxjuRSqqkucZBErk5PINKtkrRJTAWdpG0fjDNUrNJWudTjr2Q+TkPWsASVvjMY5tt4xDkr2+ss8Uytk45hzpizrDVUSbTVo1zJNkVOYRWS9PqPEwOF0RBmHbzusUsQxisCvVkJKNG2LNokpSWzvPM0UZC4ehokpR+ok6zODwhmN1pZqPcM48Zu/9U26foUyhotLhW+7h/f22eWWtvN86ze/yf4wsFlveefJu1zfvqH3PakYNv2KdDxJTS2l5T3vHsSw1EKeC0OaxMyHF2FVTTRNi8KQ54gxjraFi4uey/WKV6/fkFUlpMzt7S3/6VcPvPP+O3z1q18VQbNRosXJIr7TuvKt9C1+Vv8L/nj9Y/yQ+tPy51qu0+E4keeCMosZMxXmEIklYbc93hk8hhQKbdtQDbi+pesq1g3kcqSgxHRW64P9De7XUYVSlcQuIuuYRju6rWW9algdjrTe0RjHf/gP/4Ewzmgr87Gx92Jxg66WEgoum0UcLYI8tRgVyPfSl8+Pe6nO/aLis/VbXVQy6v6vfE4AJKrdB2k6uix7pPucxirip5zFMHk6ilhpGkfGceT84oycM13f0zRe6tNaam8KcErEuRVHUQatMyrKOxwlBlljNM5p2tazPxwZhlGEi/k+/pqHc1P39Kf/ajb+/GaqsNCulv3IMAxUCmEONG1H0zTknEilwfsGow1d16C1l33IsgasuWCMxOsKuVLedVbLWsi5hmE4MU4TMSamZW6KVQiXVLVEQH72HYkQvRBqXa6VUELzQvjUVaOqpqjC2/F2vB1/+Ib3nr/8l//y/5RAKefMz//8z78VKL0db8fb8Ydm/Nt/+2+5urri61//+n/33bfZbPiRH/kR/uW//Jffo6OT8emnn/LTP/3TfP3rX+fHf/zHaf4b0bqVyi/wC/xf/F/8JD/J/8n/KWviPwBDQDWWH/zBH+Rv/+2/zd/7e3+P6+vr3+/Dejv+CIzvWqSUapYII61w3i2/qx5cpjlnrDZCCipFCvUqU60WJLyVHyWCIY02CAYdoAomeZqDOEWMoWYIMdL6htY1UsRf3MDzJC5OayXyI5UqdqKFquRbtxSwLZkqFKdcyaViqqgXba3s54DSUlSepkhOlWlKoApt1wCCiM6lkCMSW6YsIRVCFJdh2/dUCkYbcaN5xRTEoa/gIUIg50wqFes8mrrEBgBVsN4xZlrf4QxYq5jjzDCOpFxovFCETLJSXHWJw3GkbRu6ticsaPUY4uLiVsRcSCkzTBNt2zMukQegyWGm8Y7Ndk3KhXEMS447UsAplaZ1nG1XFOA4zsRSmOuMSgmMo7l33SVpEHjtUIjb0mmJ07IV2qZBKcUQJmpOWN9Sa6boiiqFXCunw4nGt6A0TeehVNZNyzFM5KXpNC9Up1yl0QByjbKuzCUR5wltNK5pxfGbMl3bcRxnymkkhZlUJBKw0Y5ohRSS6yD3V5Xmj62VdbvBGIepSo43TRgF7cU5xykwjCdqzJzXljLO1Bxo20K/SawuK2qVqRpxJet7d5j6XI1Go7BUDKpq6lwYXw10bkt73nCIjrDLPNp6lNcUmxljYD/NrLXB9Yp5mAh41queR+8/5f85HQlzZowJNc60RqF0ZHdzIJfK+x88YY4TXjue3e5pV4YfeO8Jp7uZGwXFFcbDRAyG9dqQjGUohd1pZHd7ZL3yqFI47g/0/QaHYz/sCdOMOuvo1md0TSGpTJhnHl+c8fjRlvF05LxZsWosTWsoyZNK4RQVp/2eQGF7uULXSEuGakiTYj5o1tuW2FvMPHPc7TGqIQdp8kZTOV9vmG7uqLkIDalpuVr3pDixXnfyrI8TxcL20RUGi06Bddex2x/JGs7PtoTBEcaANopOK5SB03GQ5pxTpPnIk6srrnciXLnZTXzhgwtOxyNjqGACzVnDprnCOvj0xbUQ11pNYaJZWYoqzGh650EHDkOQ+K9Vw9l2zWVrYOtJGlICFTUr77g9nGh1S9EVt25596Ll9vUNXmsuVz37w8Tlu1fshz1da7FaE4vm6tEVRSvG6ChxwlSoIfH40SPm0bJpO9yF49XpwJwiHZ7r1y/x6hGPNxv20xHVeC63G16+ekm77nh6ueHZsyMfvP9lDrd7eT6jNDd843DW8vhyy6tnEyonHp11zDESUkCPkeOx0vqW0xgwKrNpLSoFri42OKV4+ew5q7MNiiJxB0Pm+nDCl0itlUMIrM9bvLK89+Qxx8Mtr693aO+xRlzNp+kNlMSXv++LvHKe082e027Eas3V4w1XVxs+fr6jbRzrTc/N9R3H48x7X3lKbDrOL3v2L14yTBmtC+9dbfn40+fkAjpXNl5z3B2ZY6HtPCokvLYc5yPvf+UDri63fOMbv43PmU3vuXh8xq5ojruJT1/dkONE0zkap1DVchom1k3HWhvu9id0McyL6/qs3zDuTqRcCKngbGG7bkihshv2fPB4RWMc+0GBdzTthsNuoAaFrR2H24GX+TlkzXjIpCYznkZ8u+GddxTHmxOrrsP2lpwrU+q4myZe350IYyEPO4kFUuBaTyqKs8tzvvDBE25evuHmdqDqFR5PnmdCTLx89gnNZs2T9z4QgSkO22y4evIByguNwRpLzIWPvvmCdWv58Mtf4Pn1nvzpM47DyDwLUa/mzNnFGapC8JVxitze3DGeZt67ekSzbpjTOVfbFa3vMMbiGoNvekzNfPWDc5wamArE0vKtlzt2YyCPA0qL8Lkuc1A10mSf50AgQTJo5disNvSbhk3TooxDeYkFbb1B64bNtkVX6LdrHl+cU0JBFcfh+sDRNGQqT54+YnN1xYfG0bqeV2/ecHcc0MqjGB5EbjoXlFUP1EqrFSVmipLI2/cuLzlfbem15ze/8wkJuSfLHJlcols51l0not6hojGstUI1FjdGxnkmZhGIKy18k7I4r2v5nUKY+3a4qhWlJIboIdKgfiYiF/FHfXBF1yLrpaIR8sv952hpQIQ8k06ZFBLTOHDY37Hf33L4yoH33/8CV4+u2KxXrNpmEb8Xur6jUAnTzGxmFEJ8UUqjZqFyOWNwztN1nUTAffqCV6+vOZ5OzDEuEXBCQlFlIUUtgnZUXVzF0qQoFSETqYquhRrheDxRgdMwcXu34/J4yTRPXIXIVVV0XY/GYGyDUo7WK6qrJBupOdJ3HWGaOB2P+KVpoo3HO8N203J7t+PN9Y7d/kjMIkKvzpN1paZAyhnyPfFTmqHzHIkp46wQM1NOVCVNKqPLg7DkD+IoCA1KoR4cTkot7vrKQ1yGGCOECCDdFWmc6WVdlZfPUGpZaqllnVXrg/Nb9ihyrxtjsVYj3VgRsuQlEs7c04YWB79QfCrG6oWqoj9z+N/HnFQhB+lamdMsa/1SSDnLnmMR3xonQpuyUANSFkGVVkJiyjmL0Mm6pXm3kD+UltTqRZRSlYiiSq1QRNyokb0NyHmXssQqG4dZmt2pJGJMlFqFtoimZCGmYAohLPFEzi9EpyzUIq2oSsgjtWRiSljrSFmIQSgRzVmjsa2XpnBcaGWqPgjCjDE0radWIYaUWoGMqkUaqBppdC5pZkZpiQ5HvqNaK7ou0cFAKEni9ozmIXdlubZhjhgjMXLGSQS5M5aY4/I+UqTl71Y+Ey6mnBfiQSEvRB1lLBWJtXHOElKihvS5GEGFVZqsl++8CkF0gVdBrXjXSOQ5cvw1J5SCrm0JKZNigCyR0DUmIeF5zZ/42lf48EtPUf7+/O6j3tRD2/e+ASwSBYnNIiniMWK05/nrT/n2py8xxtM1DmUqVUkE0JwyXimMEzNQweC8o9+suA6BnAuhFEgJq5UYT6ZAqZXNdkXOGaM1h1HE/FebNXFKjEA1lRQSOSu81xRtiLUwx8g8BrwzqFIJ84xzDaYaQpzJMYNytL7FmpGCxM30XcOqb0khYp3FmYXeXAylVkJRhHkmA23rgYxZnpmSIM8R3xqM1+iciNOMUmaJbU/kgpiWpola6kNcYu8tpUR849AVSkpUDU3fiyCsFLyzTFOkLrE8KWpyLCiNRAxpZG8OYBQlBTabjnGqZBTjlDjbtoQQiAWUzpjW0JkObeBwHCT+zylqTRgngryMwhmDUpkQM945jLM0jaezClojooUCqoAzmmkOcg8Cxlua1jIOI1ZptHdMc6JrOuYw46wIFEtVdH1HVRCLkTgw5INXXU9KCu8cmsgpBFLJWKUZhyM5WrarFSlHpiL3fBpnai6sVy3zfEQpw3bdcjie0NoS5yzCQJQQ4eZEzJHOy3HPIaCrYhoyq64jlYJORQxjVQhkjfPEaSSVSuMbVJX35jwkUhWK5ZQy2hmsbei9Y9V6jocTyjSghAh0GCe0yrSrFV3XMOyPQu6u4Jxh3bdMcyRmQ9dZQojMw0Dfn1G0ZtU2TDtIqRBiYtV5ckpMUYQBnRfqklTFFCrXRdwN1miePH7E3c2OME54Z2g7T7GGsp+YQiTMM5WCazwslL2SEisne8eZgtGVnEXcVUIhZSHhUCvWKXTVhBjxTskzVpb6jW/JsZBCxlhLSXC43dO1jhwqScE0zqy7ntV6xTxO1FRpGod1VsSeVXOaZnkGcxARilIos4hGteHs4pwcZsYxEHJFVUvNgd/+7W+x3W4xxnDmLdY4eb8pR9MafLsi19copXj//fd58+oNt7dHHl1uubjYEkpmnGZ5r1PJWtN3DVaLMcyaQgyBm5tb5ranbT3WO9a9xWqLVhZt1BLtqVi1hqtNw5wLKMv+FDnNcpzDMPL93//9Ehm8zEdKQSgz/6T+E17UN5zqwJ+0X6d1Ha2zIkp2lsIi8DUSndm2Fuscq1WHRVOKpsTCkGdKBd829F3LxjkUEuF3mmaZz5bIvboIZ1GKqkGzzLGLL6HqSmMtT87Paa3HVMXqf/sxPvn4Ez765GOmMIFVuFZiSVUGzaIm1wqdJMo517KIzJc4tvqZWOkzjY6s2+6FO2qZw+6JSp8nD33WRLon94sgSWiD5bPPUfKrWovEupYicWphZp5H5jlwdnbGar2mbRqctQuxXdY/vmnQWkSuWQmh0i317KwlDlfESkJXO/ojh+MgkZU5PwjVq7oXKnF/1g9z8sPZ14crIrukokkpMo1C8ZzmmaZpSYugufZCkcNodBVCpEA9FUXLusNi8dYRQiDpZa2ixQjrnaZrRew3TrIv10pIjxWLKkL6+uxLWq5pqQ/ke62NCPlKfTgj/f8Sob0db8fb8Qd9OOf4K3/lr/xPC5R+8Rd/kV/+5V/+PT66t+PteDvejv91I+fMv/7X/5onT57w3nvv/a7vQKUUX//61/nlX/5l9vv99/AoYZ5nfumXfolpmviJn/gJvPe/489HRv4P/g9+lV/lDW/4O/wdNvzuMXbf66GU4itf+Qp/9+/+XX7hF36BX/zFX+Tu7u73+7Dejj/E47sWKSkthWOjDWbZDAnuOqCqwmkr7hMlm+GaC03bEXJa8Opqcb8shb6asdYseFtFKpk8FWwjTo55EoS6NvbBvZJzRivBU/ddT9c75mmSaI3F5WoX1H8psgE0RuONuPNSKlgrLmKlpTjX9ytSrqSyCH1SRetCTOK28c6LQxrIaGJJ5CjNTdM4Yk7kFFA1o7x7wC8Lhl5y6FHieY050rgOZRZXd06MIVBSwWAoUQpsKQVBDBcRyZSSCEsB3GUljlsvrl+VE1MIxFww1lILxJDQVuOcY7VSqLJg7tS949dTVWV3GhhOAzkW2sZhrV/cfCKkygAVKaJrhW8ajLGMuTAOM8VWirfkUrk5Dmhjcb4hA8paakqg6hINIejsXCCkgGoMjXccDkeG44gxCd97tv0KC4RUUMbhjKbkyhwX9yKacYqYXMSVCMQ5krKi957TOJNTFIqSUaw6R5gKq6ah9EKGapXDtIpQC96KgzaHCCqyalu2XYupMM1RmhIVXNcx5ch8OqFRrDYrcqm01tI1kfPLzNVTg91OKHe/sV8Q2PdVlc9v86tEBaQhcHqR+PS3Zz65qQS7xhiPMw5tG/rWk1IihMJm1dFqz2rdcbM7cJoic9zxencgJstcK8N8wlI5pozpGvZTZrPuMS5Jo6hpOducYazi9esdeVL4fkVz1nO9O5HCxJN2TY3QrFf0Zz1TmvB+RZoi8zRTlRQ+be8Zx5mVNzSmMqjCHCsXbceTvmcYAufnW7xRRDK7w4lwymQUtVpWrmfbg3KemgJP33lCmCPXr2949mzAPNdcPL6g71e8un0jdAoK+2GgXWleHa7ROaON5eLJJRWFUZnTFHCrDYcxMo6V8+0jrLbUHLl9ued6GKS5iOZqs+LR5TlzHkV8MkfiGPBaGjZJVYbjxO76wMY1lDQz1Mw+TPSbFa8+ukZpzeNHV8RDwtsGp+Gy3+A0+MbS9J79aQfVMexPPH68gtaRc6FzllAytes5b694dR148eaOFCa+/NV3MCtHGRNP3rmi4ul8x9XZGYf9wLe/9W1s63n2bEfjM6uzdolfUNzcHOm3W+ZZCCrr8y23xyOHuzsaW3l1M6Kp/Kk/9hVujyMpRK5D4DSfWLeWvvOcdS06ROZa2I0JSyZMI69e3VHyTP94SzrO5PmALitqaWg6ywcfPuE0Zc5WPW+OO87PVkxT5dPbHY8feebrgcZWTmFipVucFUfvarOiWfVsNw4VI3dzZj8VEgaUxrvK40dnPP/kNf/3N34bY4XO0K89jfPkN3sef3DO4faWl5+8kCJ8K/NSypmcKmmM0j0ME+fbDWcfPObTZ68kNrCArhqrHN/37iXHOXJ7OpFtgzKZUmaCbSUSIhfGaaRWEbtcPrmgc45V0/HVL3+ZNy+f8fGnnzKUmdZ4ovNUKlZlcqlsm46Xd3ccYmI4zRSVWV+smIcj+2Og36xI00SZZ1pv6XyL94Y0nYRGmBSralAzNLonT4HbNDAT6DeWetozHo98c3eH6zusMWyt5/m3X9D5Fb1ThDCyPuup1vL6ekdJjk4ptAXsSC6Zi8eXhOlETIlpspzuJu5WA+t+ze5mz6s3t1QNjy62rBvDWes5PnuJjp6nX3gXbQwaz/n5Bf+fr/8wt69f89GrSFYDL25uePVLO55eXHE6ZdrVmiFmYpqYhoGjQhyixjKFhLHSBAwp8pvf/habsw2HeWAKW3Ks6L7D14lSIt/5+A0X76/44+9e8untwIu7hKuFzlrmWDmeJk5LQ9JpQ++liXs4HGAuZCVRsikESuc5u+hpm4b3Hj8WMl+YoRSUldp507WsWwcFDqcB37QoY2lWLaFkeiVClvffe0rXaPybvQgv2wbvRFxdimUOQuKZYyKGJehLNSJImjOt9/zwH/9Bnjy+5Jvf+YSPX9wyToF+7bAYVKpoq9G9xbYOszZ0J0/aRw5HwzBHjsMMRgvFKUucnjQLpAlhrDT4U05Lg1PinsqDylZms1IrFU3Vi2hJq/s0Byos8ZD31BchSdSiyLVIVEwKTPPI8Xhgd7dnd3fgww8/5OrRJZcX51yenS1EBkXrK6pqwDyIUZSWpnxQE1ZbjItY5ySmtWvZnm159uwl17d3TCGQk1Bs0EXiwJYTuaePLBMzIE0daaJkSoJY4VTE+Twt8RLH44nD7sB4PLE9P6NfrSQ+sm1orERmWDTGN6gqTWTvHIfjiaruGyCWrmtYrdacnV3y5vqW169fCzFwghgLGIWOSUgYOYsgocohp5LJaZIGJCKYKbVgtRBf/sAOJdf4M8GRtKnEvX0fGyhNcjnfirZ2iVa7D5S5p7BKc0xrETwphdCzUl1MAkKEUUo/mCruHeTStasSGWalaaWWhhCVh2so4p/lZyhxlZeFlFBrQWktFBPnJJ6nVOL986PkGapVCEr39CUBWxYhP9Uq0T21UPN9JPAS3SV6H3k+70UpSowXVltYBDClliWuTa5tLUXW3SWRUpZPNHYh7VR5p0QxJmi7GCsWgVUucu3EQCIGEa0N3qmHY3ig6RpDVUKBEdptfYiwE2GYudcQAXLOKJbvSuKtU0xUbahGfuYYFmLrIhJSWs4H5Lh0WeL9qpyfMvLdhxAIMaKTCB1kL8NDHJlR8u+E/iTnIgYYoQgUWERrIkKIKVOKxKYWLb+XY8VbQ3FmIUkYlBUhlxFkjkTtkfHO0jiDrpDyEucHci/XTA4BhcI1llrlujVe8UN/6qt8+avvoJskBDsWygSf30/cx+osz4OCGjPxUNjdRP7zb3zEb3/0/OG709qgraYthZwBZ7HK4L1lnAMhFVKZGKZAKZpUIaYZRSWUiraGOS6RNEZEkNZYGt+iNJxOEzWBcR7TOoZpRymyJq65YpsG1zhSSbTGU1ImJRGGaQXaCc3YGYXVlagkhrq1lpVzhJho20ZiBikSYxokNrtWhTeexslzRCms1z05izD7cIioo6JbdTjnOE0jucr9NIWI84rTPIgoV2sR5aBQqhJjQTvLnDMpQtP0EoNWCtNpZgxhaT+D9p6+a8k+EqYg0TkxSe3EGKFnhcQ8BLyxIvyjMOeEazyn3YBSmlXfkeeCNQajoHMNRoGxGuMMc5gBTZoj/cqBEbGW0zK/VtfQ2p7TkDgOE6UkLi7WaG+osdCvO8DgjBWx3By4u71DW8vxMGNMwTeWvMzn4xhwTSPxZbXi24YxBOZpwurKMApF5+mjC/lecmFMmVQSqcr6oWsMjdES/1cUJknU12mYRYjqDMZb4iyR1kZ1RAKbs57TMLPqe8Z5xHlHzZVhnKkh4ovCO02sBZ2FeCYKRxGYWKfpG0fImTHWRagodaq2FUL27e7I/ljRRgk52ntylPd123gOhwHnvBi5nHwWWuK7AKkH1czFpmO3CCec99Q5oaph3TpU25JLJpYKVmjesVZs0y4CoyWGF4Vzlq4V8ch2s8U7x363464mrG/wRpNFSY5aqNGxFE5zxOmMAZrOU0tmDkLlazvLPAkxu5OMK4kcTlmE3spgM1Qs1CxRgFqhbMXUTJ4DU0iMUQQ2jTGkMXBMSGRZFgKlbxrGKTHNBas8UCmmQMm4xmPtcv9WRU5wOoysVg1GRdI8EFKmbT05Bb7zzd/karvlqD3b8wu0txJPrBRPnjxhd3vHq+trjM+894X3+I3f+i12xxGKQmmLdhlyJKdMrJVxkLpYziLOt9aQq8TPDaOmXXciCNSarBXGO1IOjHNivz9ysWqZYuIwZolcVACa558+ZxwnPvjgC6z7Fc5anHWEWghJhGRvuOZVfskH6gvYtqGxjr7v6KzEhdd7UXAVMbV3BrOsK2Te80vc7LI60IbVqhfanJUYz5yq1CGLEHtKqZAyqZaFnCr3XkWRU8FozdlqTdN4NruezXrD03ff4zsff5tXr56j6kIB0hrdWZTXGK9pQiFMYoYMQep8BZkDKfUehiTiaqXRRmiV9WEdUBdB+WfSHqnbqvupTebJZV1Y6xJb+7D0UNyTIWuVNV0tIi6OUepU8zRxPgdW6zVd19C3rdSUF/LkZxsAhQOIC3k0QVV6WX+Yh3Vl0zTsDydOw0B4INHei7I+E1pRP0eOepih739Lvr2SZU9RSiHZRErLcS9m067r8N7jvMNZh7P3cbZGRHZUWIwIMcblz+S+tUvt1zct7TRzOg0LWSlSMqAMVi+RuYv55OFIa13WP59t9Cqg/1+0qLfj7Xg7/qCP3yuC0i/8wi/wcz/3c4sx4+14O96Ot+MPz9jtdvzMz/wMf+tv/S02m99d2LPZbPgLf+Ev8E//6T+VeuT3ePzKr/wKOWf+/J//8zx+/PizlAMqR44A/Aa/wa/xa/w5/tz3/Pj+e0MpxcXFBX/1r/5VfuzHfox/8S/+Bf/m3/wbxnH8/T60t+MP4fiuRUp+iQkpOaKp1JKI8R6XL8Usc295SYtISC9+GCUFmJrFHWNMJUbJOzfako1s9JpG3PNhFnLGffyGQtE0lnmesEZjvHzmOE8SnaAVXdtIcXscgCKF75SIS4xcKplaCrVKgWWaI7HAOM603mGMomkd2kjjDsA5j1EGRSanBNngvBQNKw3KGlIuOOcwyqGMJYZE662Ia6jEXDFWCjOHw4k5SNyVs1YIESliqhbHFBmsIqWlAbKIwmKc0cYS0kyMihgNRSmsVQ+bZbc05+ZxxllL37fiuPEL7p2Ms5rTMJFqxTrHMI6UnGk0bPqWaizDOCEA/4LVFdc6fNNQS2IeB4mGME5c4Aa2Fytur2/p1x1TCIzjTOMbqJlUCmkOtF6iDtAQqGRjyKkQwijxG50TUoiSjXPVmhDle411xhpDiAnjPK7xzCFxucTCnEIgq4mUMlOArl/R9+eYnMAU2ZiHKs4pZyVmISWc0+gCK9sQ0kStCd84jvPEqRWE/O3tgZo1TilKqMw50GjLdtVRqlCupjzzzlPNow8Mph1RTuIbFHop3BQ594JcMzR5SihtUKUwv5559Wnhk9fwal+xunJ50fDk7Iyb40CeC22zZpxP4mLWM7Vk3nn0iJv9ERQ4bdBKijSla+hWK+5udgy7PWGeGClUW3j63vs45WiUYxwGDiVgi8dMCttULrYbDJrGr3hx/ZwPNltWtuX8ix/yybPXpJDkOz/vGOYgAqptj1tbpv0tzBGdDYFA3CY+ef6KR6uOs0dX7A9HTqfAYX9k1Td03RZjNSmMzEOkXXXc7PaEUaIBQk0YDPv9iPOVvnEclmfl6mzL+eNHFAp3uyPOKayqtO2KNzd3DGPlvbXm3ceXvEwzVYvIbL8vTCjsesWq9bx6c8ub3Y7ZKnxXUbZSU+JwnGlXPVfrDlVmjPHcHiIxZKY4YFvLsHPMauLJ43fI05HrlzumGCg7eOeD99CpcvPqGbeHkUZtMMaTx8SpRtrTwEV7xW6asDVxiGBti68j+/0O5St905PnymW/4uXuFWmMDFPhhpmmhd3hyP544p3znq5rgcx+N9L3HX59zscv39AeC9VUVitL3BeGnBn3e548WqG8IQ8TLz99RlIiLvR9i209t8PA44sLHDCcTjRnPZuLS0yauThV3lzvadaei7ahXTWYc49r1+xPM7ZWnr14RSgOXRTjbmR9tiKbjLYNIVdWnURHttuO1rfoZsub/WvWG8c7l5dUm3AaeL7n4qqj7SUC9HQ40ihFrw3ROh49fUQukdNh5P3H75CGQg5wuT5jCoXr44n9MBGA1nmG44yyGm8081j59NmObtXgXIuNlavzjttxZiKjraHOhY+f3dD5hr4zYHtW55esTaTR8O0XkdMceXx1QbNqsUXz/DsvmGqhxkgxjuhadjcnUpJYj8Y4EoWusXTaE0plmCacl8m492t6n3n67jmdX7O/2xFToE4zZU5cPXrEs2cvWfkWlRS2WMowcoonfN/SXfR4U2kby+3+DTeHARPXXF2syVFxOEZW9UScMikfuCpwGhLTOLE962i9Zk6JfusYT4VYFZePr3j57A2vb27x1nEYjqzbjiePNmzOO26HSSqZOTOnyrB7w4s3B2xnuXr6mIqlaM07jx/x+PIRrw4HjK+EceTN7YG7u0DjoF9Zri4u2Jk7jscjpzCTbg8oJY2E87Oes40nxMjsLdoZSk1MMTAOiVw02/UZYRoYhsS///VrrC+MRUvTQlVUKEzHkXGehSqgFY1TdJ0mTYHxEJhncZU33pNC4bAfOHYrIUXWQu8sTkuMiXaa1reEUhknia0pZWaKR7LWfPXLH+DVhtNxT7vZ0inFZlpRCrSqcpotQ8zoMTANJ2k+eYl7iSEvcQaJAjTOk0rCOsU7jy44u9iy+u1nPH91TZhH5oM09lXngEitImrRGpSBtvEYrVG1cJxmalVEY0SEVCWeaMHECJVBu4WgUqWBotRDW/yzBrk0JdCfp3sAC/nwIdKhLJ2HClSh1YVcyMfIHGZOpxOHw4Hd3R3vf/AB77/3HiUVVuuexnuU9tjGoZ00/pWWCF2UEBBLyZhsUEs8kGs8vm3p1z3rF6949fKa4/FEiFGK8Lou8zEPRXo5HfXgBlf6Xoy1CGtnoV6GIPG4MQTG4cTpdODq0RXnl5fEywvGtqXrG/q+x2pNTuWhudk5K1FUWjE2Mz44YmhohgnvPd5bttuWm+sb3ry543A8Ms+zNBS1JaUESWKP70k+942FqqBUcYUXI2TTP6jjPu6r1LI44oUGdB+lIckYy35iaZSXe7UOS2Oo1HuwjDTlsgg5Fn0RxogwQ4RPn3PpK5Y4Z3GgGyPGhpTTw77D2SVibGkQlirHWrLEgeT7a4/8/ZglYivFhDVGKCpWIp/K0ogTwaYQB0pZxFjmPrTLgNaLqEdiu5QypFKwWsRcdTkOrQ1aKeYgMcSmKrmeVYwVaqEQ1KWxdH/F1EIKKFmakzknMopcFuGTvhfolOXaKVKUyD3nnAjBlAhCFLI+DwuBRxuJK6pVoqS9t6A0Y0zLTxZtsLYi1qAWcooijFL6oWfZdJ5xGCV+NSe5ntYsrxm5zx33zUpFplLVfbSe7IXUEll9L0gSwaUIYXLNi2EiSaS0kWvcW4cxmpAKBREzppRwzuNcI1EtennOdEUbizVLc7Tm5TsTwWuuGYsIHELKKBuxRprItSoMimokks9qTeMcpcqet9TK1772A3z5B56ibUSZsrQ/ZUjTl4fnQqFERKYkdiadMsdD5aNnd/yXb3wHqqXvGvqmYQyRmirWNsQscexVyRyz7nrGOXBPF5M3faVicd4xDRNxnoUIHCvkymqzxaCxyhBjYKgZXa0QAU2lbZol9thxHA9smxanLe35Gfv9iZILSgl5JeaENZbSVIzXxHmElKFoMpnSFA7HE52zNH3PaQ7EmBcSk8W5RuaBnMmxYL1jnMSwUpUiU9BVMc8SG3dvagKJX2tXPZXKNAWZL1XFWcc4zsRYWXvFpu85loPMOdZJzBugGk9jDadhYpxnsgEjtz+1FELIGO/ovcFU2fuNIZNzJeWIdpowZ9KcWPUbagoMp4UAM1fW2y2qVMbTgTEkrPIi2ouVQMYGaHvHFCOaQsigtcMQmcOEsuBwlASddxynEzVlQqqMJIyV6zLHyLrzD+++aY4459C+ZXcccEEoXN5r8iyxkXLMHrSipMxpv5cIJWMwTuoqc4o0xtJaRxxHtDNo7/B9Sxszw5g5jjObsxW+sbR2g66Q1UK3HEYR11Sh6mnqQxTwwnPDaIvSUSIXdUOoBXJl07UYY7BecdqPGKtpOke9F3SmRImJWRm8N/Trlv3uQGN7oTemhKpw1q8YYiIu4lMRTcI4R2xjcVpxGsTkhlKoqmi1BqUZKHgt7/7jOFNypfUWi0U5T9dYDJl5jhzGgPdWzC3OM+wH5lLE8AZU55lDJqSCMQtJqwoFUBlLSpGSRICjTcVqjfct2irOtmvmMRLijFEwj4Fuu+Y0jiKyQmKdSIWYgoh0God1hkZbhuOJkCdSFBGfBqaQsClzDEUoX1YRotTVrFE0rSfEjHEKlBFiWeNBwe3tkbzU6Y6nE6u25fx8xRQCaYmdOw0j/+XXv8EXv/x95Fq5eHwlIiUU3jvO1mtudntQhS+8/y6vX73i+atrtNI4B61r0CjmeSZVETbOMVMqWKvpWy9kQ7PEwi4i7xwLKVWpAWpFzZmbnUTP54UuVmtFl0pMmZQSn378nOvXt3zpww/54hfeRymJ5IqL6cE4zcf1E56Ed5nnKIbKKpGijXVkEgWhraM0KYmYdgyJKWRimej7jr735BjBOWzjIGf6pmCAObAYMispBEDugWoqKcn8kWMiIpTGaiqqZLy1PHl0QdN2+Kbh4nzLMHwfv/5f/gsvr1+jtMxzD2L+z4mMFaBiJOZKUUqiHZfQufv2itR99QPB657c+vk9w+dkPr9zvbb8972IRtaH9/Xh5Q/RQudMgTxI/FsIgWmaOTs/Y7PZUDZibHTWLuQhIX4ZY5e4W70oyuW9XapGLYRLbQzGGqxz+MZzPJ6YplmMD5SlvFeWenf9jCL1sJ6VX6j7Xy/7rRqFFJhTpuS8iJUC8zzT9R1d15F9JmUjdWZjHkRgSimsl8hhWVNrkklYZ0gpYZZoQ+cN7eQYTiPTFEgJUpYaZVF1WYveC66W74eFWlWhLtGUWv3BJbO+HW/H2/E7h3Puf1qgVGvl29/+Nj/3cz/3+9Kwfzvejrfj7fi9GDc3N/yzf/bP+Gt/7a/9N+PU7odSih/6oR/it37rt/jGN77xPTzCz8Z//s//mU8++YQf+7Ef42tf+xpd1y3UThmZzL/h3/yBFCndD6UUl5eX/ORP/iR/8S/+RX76p3+aX/3VX/39Pqy34w/Z+K5FSjkXnDU4K47jeZ6hVswSBZJrphjZ5BVYCseSU9i4Jcc8CqIflQFFDAmqwjWOqkQcVJaoAKPEvWKdkYJSDPLnClarNVMMD2IecRAnBF9tqBRyrqD0kq8teeDGaGpJ4vgpEFOh5ojTGu2keG6toZSE1lJsyksBIqYsDQXrsQtVKJRCLRGDovMNsVRSKhhvH3C6NVdyEQS40oJ6n+dMdY5CRVkjjRpj8VYJuaEUqtLUhQoFkHLAOk/JS2HMLptVEnohDqla6dqGlBLTMIqDPGdSFgJDKYrGteLwW6ID8tLgiSkzjtODC9osHbppnpjnEVfBLZECvnHkULBaMd3taBOsqhQJE+K6cc5R6uKwKoUSI8Y6Qg7EFIgxolD4VnG22ZJmcStPU0QZiUMpZUY5Q5hFNNB1nsY2TEry4acQmGNEaceTyw19a5lj4Xi7o238opeTJlSkUoeBUhS5aalzxLcNU0rYxrE9aymqwu5EKpUyBnzXYqoiToGqNXFKPL46p2k0JYNRibOzwgdfVpjVCUwB+xkVAO6JWhWlzdL/zdKQmyI6Wt48L3zjt3YMwdG3G/pmQ996prLHe8ccFPv9HakWxhTZp8iHq8dS/I4zYY5s+hZlDM5brO4psTCFmRAC1jqU1jhjOe9XTOPE3f6W0zyyOw70bs3luidOE411aA3DYY/VmnA6cayFUAJxznSNR7cG69dMu1vKnPiBL77LGDMvXgVqjuQaaH1Hv9pg1QtSmDFJYaIg5BsrcZFdk2mdZVSOYThBY5l3kXXboUvGK6iN4sXhDa0xtMbhjdAV/HZDioWQM6uupdv0gMQGSrSI5m5/YK00pjEknTjNA13TMKfEmWvQJdF6oWhNw8TZ9hG3d6+p2nC+3WCNIQ4TylRMa7k9Tnjb0vqO/elIPo48ujpnmkZev3xN1pXVZU/Yjexe3VBS4jhNaO+5vDin9SN1lZnixMvra3aDYswSp9R0DYebG3yd2bYdfZOZDhOvPrnm6dMt61WPbXt675jjkRgj47Bnu+25uLykXa34+JvPmebINF/z5Q8/JEwt+8OA7xvoKp9+9DHeOPpWoaymJEtIhnFWZAJn2uGzRgfFMCZuOKJRjOFEdS12FTnvWvZtw91uTxki+m5ArxpuX56wduT9r7zLs2/dcHtI3M0DAXDK8epmR9aZi7NLttuGGmdMhadPrvj04+c0W8/Tqye8/Pgjnp+esd2umEvm9m6inSptlkiA2+GGu2HP/jSy7dfEU2YIJ3KO3L65xjvFcIicpj2ZBLbj4uoRUwh0neO027OfJja+IVM41kpKkRoj+ljIaU+/ani02WK6Fp0r23XL7s0dMTbYriWcjgw1MabIeJqIuXDa73n06BG3L+94eX2HaiwqTMxBMQ+ZVdcQQsSoymmYmCtgj+jGomKgNtJ8mKZKddKA8U5jSNzsB6rTfHB2RimVw2nkcBpxTSV6iy0Fqw2rVYOqBTtHVquOaR5ZbVc0cyXXSgiBd7bneOdYW8PNmyOu8TTeE4bCFBP7YeZLX3yfHALPrm/xrSVOe6ZmxWrbs55m4jyRtCZpjXYr4nxAZcsYE17B7e5EMZqsdnzyrd+k3fT0vTxPY6jcDRPewKo/4w6FOU6kmigxMx4CTeM5W3c4qzgeZw6HE7lKZJB3lb5VaDK+kXVHGiN6qzBWnMGuacghkXTmZBvmGKSpXiYSiaEUphwIIUpTP2eihSGNDGNgiIk5FGIZmUuiKI3HcLvboRtLIBFzIM6FcZqx1WJxaGtorKfEzOvjrVBBSv7/sfdnvbZt53ke+rSyF6OYxVprl9wixUqiRCqKEPscBMfFsa3IQCDBRiD4ToCTn5C/kF+Ri1waSABfCBBlOoZjwPCBj23BtsxCYiEWu1h7FbMcRS9aeS6+PuYi5WNFlhSRjlcDiMU9q9HHGH303lr7nu95+fjDp5iSaNqWs6RYGU1OYuK7uFhxdX3Dsxc7VFaosmxcmyhmRGNQBaY5MKXIGGamuWKVxK+sVxv+i89+kifnHT/4+IqXz+8oUeCv4jK+l/hH3ziGIZORqIi2LDENupCXOBzqKRpG7H85FQF+tJiSHhqcq34wL2kkyuahFJElOg94MNYoJXFRVf1QFzQCpGitUEUT58rdbWaeZ+7v7rm5uWZ3f88wHnnjjSdcXl6y2WzQzmJVA1aDNihrUUYzDiMpzthkaJwnuBlnLEZr2tZztllzeX7G06fPubq+ZRgnVBawSSF2p7LENpyKCfKEeOiSTjmgq0ZXI135SxFECgoTx+PAcRgZh5HNdstqvebsvNI3LY0RiAOl8NbQryTaw8eJaZqouaVvWlp/pHGG7drz6HzDk8eXPH9xxcurG3b7gRAzMRqS0UsxMkl3ej3FbMi8o5RKKoWifnK7Hk9FplOsRkqLLWApPJVa0MoscW/Lc6sCCBktlqtc8gI1CbiRc4YkIIw8RnmwJp2i4/Tyu2IQK6C1GBOX7vG6AFNlsfaI5an+UJFpaZx4EAGICalWiZ6ryGModYql01K8Op1Si9Egl8VOoMUMZoxdwKcqZtrF8FCKmNFO8dEssXWpiqWsFoEd0GJKQkvR/vT4teRXr98PQYbSbGCoVaKItFboWinUB4MVdYknK4UUo7wXS6SQXX7XaismpeXvyqu2HGNOcp1Q+uH555zIOWKqXD9qVRhrxKajFWmasAXccrxF3l6M1cRlk/xkz1LKkEuWtWcuAkJZRev88t+yfstKIrdLTSityPkViGa0FPRyKaSSSbmA0qy6Rqy2RWIm7WKLEpGXNKDkIMejjaUucXm5lIfY6YpYXmsVq5xxVkCLnKhK5sN93wrsVCXm+4s//xk+/7Nvol0EXU8yrYehTlXPh2VGWc7nisqaYV/53g9e8rtf/abEBxmPs4ZUZzH5ZJjDRK0S+VZKYesE0Mklk7NAoChZA2plqYtpOKe8REiKTay1Ttaa80hIiTkGrG7ovIOYsIvhK86zNGfEQKiFQqYksZgoY9HWkeZMzZlHZxtiKRyOWewyFKq1OO9RHMQkV5DIzlIfIhqtKVhjSWimGKFoUip4a2XtD1SrOMyDxLKfLG1KYZrmIQ7eWYtrHFCJIS6wqsTAVhTKKIoqxBywC+DWGitzLyPXihQSbdMzTgNVadrGLGv/KICTM7KG1xbrLXOI1DDQdxL5czwcqQpcZ8lzYjoO1FKIKYExdG2L0QlcIRXFYRyZopg5VBUjWBhHNInGOpyppBA57gdYNXjnUMbjjCbnQMmJmCaaxtF1LdZ57m8Oi3105Px8S0mWaY5YJ+vY/e0OozTOyhygFDn3Yy5UMq3SmCobDKVWphSpRRHCTDGaxhk8kIxl0pEUAnVyiw0tE6fA5sJgjGE3RQ5TIpSJxjlp7okz2jj6XmLOYpzZ9j0xzszDSH++pcTIYXega1rCDOOcKEVjqTStBTS7YVyiNyX2bDrKvtY0jjjroCqGw4xWmVQVTdNil4hcowXG0cVAlfiznCUaUQxpAsr0zkmMZs60jWc8HBmGiO8aVE6kWQwwc5QYyRAKXeepVXN/HMlao0mkCnlKdI1boG8BrWIulEma07Rd4FtjBEKsYDR4a1AUUkwMIXPWt6x7Q86yLxdiBmuZcsIpsbEYBWSxiZeYsM5ik6fGSkyRzllWTYPRilACpRqMlfhLVaqYOpVhs2nZHccHc1MII844ms4zh0BVMg9V1gscscTNJRSHY2A/PMN0K1wrv7Pani0zNM2wNDS2zpG15me/8HOk+g1ur6/FeJ6LNKRpT5hPkadyHfdF03i5DhitKApKLtQl4jXmU0Oe7CcmXQkFcpV1OzUTqcSaH/Yfp3Hkm9/+Ji9ePuXtt9/me5cfcFd2JMQY93vl9/kF/Yuk6BiVolu1ZAoqK1JMFFVlfkPBOodCMU+Butx7qYV7IzGI1sueTMlif9ucrWhmx/44SqSoczLPKAI3VwNa2QcgJtdMrrI3arPBec/lxtF6y/3hiDWGL/78L9B8+9u8//R9AXyNzF1Lluu40gZrkSZUlnl+XjLlTpAwAiUpvUS3ilqSB9a4PrA8nEAemSuxwDKnSePpX7n/neBvYXbz0owp0b4hzJRSmENgmkamcSKEwHa7oes62rYVsFspFGLfRBuJstN6sa5mjDZko+Xet8xXvbd0bcPhcOBwGJhDhJyX+XfhpJGq8MoWpV4ZoeSg66tI44c5YcZlMTfGIHukMSYBq5yjaQveyXVboWSup5Ts8SHzKJMEdJd4uyjrP6tpG8eq6zgOI8fjkXGS/XM5P6AUJfPhUn7EgnVqGJBl4WtI4fV4Pf5TGCeD0i/+4i/+qQCljz76iN/6rd96DSi9Hq/H6/Gf/Pja177Gpz71KX7pl37pj7wueu/5tV/7NZRSfOtb3/qxXP/u7u747d/+bf7Fv/gX/MW/+Bf5l7/4L3nqnz58/8t8mf+e/54zzv7cj+0/ZlhrefLkCb/xG7/Bb/3Wb/E7v/M7HI/HH/dhvR7/iYw/NqS07J9LB1kFax21iuq6nL6uKrEkMJBCpqQExSwdiywKfHiIFFn6bUJKsrGPku5V63DWPmy2SwfwqbvfUHJCK5aOYdloTCljjWyg7g9HiSbwnSzAtcZYu3TNRnKujNOMQqOdp2rNFGSRa0xFq5OZSBN1Ygby0vVcaiWjGacBpdzy5GGepwV6UtRUSarIJmdVGOuYUqLrGmrNeCPFQ20tU0rM0uLE480ZNXuu73fknDFeup0VsrHedEbMQ9rIBrQWI1KWwPYFXBGdt1ZS0GlaT51nhlk22rxvMLWiKJQYZJNeKXb7AxjpUKu5oJxmmI6gKn3XYjKMQ8AqQ4mypRBSptSExzLNE0VXdK14beXEsoZ5ltfbWY2zFkHEDI218ni2QkHgFK25OxwYxpGzszU1akoB67zAU8pgFQJi5SKdfsahsJSambPifpyXzPbKWbsipMxcRzEaKEMkockYY/CtJ8+JTb/GIhCQQrpa3aL5LingG0fXNxidoSQOh8jZuvLGo8xb7ypsN4FB2meXQqE6WSSqnJMV6VpWSmO0Ix4Sd1fwzd8fCHmDaR2mb7He4tcraut59t2PaItidbbm9u7IxWbDfjpydzhyHCdCzUwpoZLhSd+x6jvG+x1X+z2hio1HlZnLR2eYajje7bg67Am10DqLRpFVYYgTXWPxruP5y2tqLWzXW+Y4s78a0R6mNNPhMEfH/ioQa2UYJtJx5na/Y8oRMyesd8yl8vTFS6xx9Bdbbva3pJDZjQc2tuGsWXPWOppVQ7iP5FjolCYYK3YTVTGNIeaZzkg357FkGudwquHmcMAi1pSu8+SkOM6Bu/0BYyI5Rox7hHKKz731DiqMhGrYTRUdpHP/YvOYYRqpRnGzG7j+6IpDnLFdQ28tDunirMWxXm24Ohy5O+x4/PiMi7MLmhqJFMJwj2kdjXGcb8/Yl0qsgTfeeYK7kzg/fZxxeJLKrF2hf+tN9lOm9Y79YeLRRYc3kcNNIo8TVRW2fStdp16inqZpJpcRlffMN0feenTGhHT2rzpNu3H0G4+2AWUC1hfSPqCzY5pm6dY0iqZ3hDHRr7esO8f9TtFaR7YwqYCtlRQnglYo39A/vqBUy+3hjrQ3ZAzdukeTMLpyfX3HbpxRJXL3jT2PLs74qU884fitD0gxYltNLhmjHGf9GsrMzf2OznrCh4Gb+wPh5p7z8yfMcyGqSB1mXt7dkY2hzBG1s3z48sjz6zsuzip959nNA89vd2zXlkcXGz764JqzixWuabi6Gbjb7wUW2KzpnWfTNLh15Bgyq7M1hcjh7gB4UvV8dDPQ2MimqbRuxTxbQp5pneWwajD9mm3neP70BW8+uaTZdNJdryw5JF58/DF3+4ExBvIQ6XyltT1xN3IMI7ZzrLotjbPEVBZrA2hdWK0NOSmyqihb6NqOEi2HmKi54qznfj9jTeX+sEdbiyoVh2Z91nHeOVrnuL0diCUTc+b2GFhfPuLnzi7Z3d4SCszDkaIytt2y2mr82Vu4Zs1Ur6nHG1QxzOMRmyq6Gp482WCt4no/MIeMV4qaFOtNy6pX3Ly8wvmGVb8izwNP3j7j/vkV90HRqsrV04+IxvKlL32J/dMrvvfN72ArfOnTn8KvHN97+iEhzOyHmRwEUO47cLqyaRyuOnZqZggBq8XWEFNFZ7XMJyLHu0DNM+1mxZwzpToa12KsJaYjx8NAKBprGkIshJLIRmJfcsyMYWSmoCmsthsKI85HUFWiao3m8ZuXhGlkPwwyj9CapLLMCapinmaBRLVGn+IdtEZnuUZ+5/sf8eabb1KrpraOOWRW2451b/DeY3S/dH9X5nnGW0ffKY7HQUBwo1GpoIzCWo9KUCIc74/41vLem+9wttny3e4Z73/4nDAHbOfo1h1pCIRjII3xQe9vleas7zFTQOWJKSsSBY2YiOTFXeIhNCijcV6etyqKFKMAGX8I3Dh1If+wyeVBD64lXkWpV5FcSomZRatKTjPHfSaEmXE4cH93w93dDT/1U+/x9ttv88Zbb7LZnNF1Pa3vWDuPtk6MJq5hGgfSPBPDTC0K1YqJxrtA46xYElYdm+2a58+uuN/tCTFQshSdBYpeEIulsFCXAotMgCXKotYsoMBSVMgpEuaZGCSqYb87cnZxwdn5GeMwsd1s2K57+nVPo91SuDC03QptJW6nxITTBm8NrbeMsxSu+65ju11zfr7hxYtbrm93HIeREDQ5apIxxBjJOf0QYIPMq4XR/4kdJ8uPWrq1tTYsWRTLawSoKjDdAtLXUrBLNFoFKfIsP6u0XqCXSl5iU05WLLMUnk69+qdud2sMSi1NDMtxqQUAORlaKxBCkHmbsfL7Sklkm9JSnKsskJWWuBYWIyiglZxT1kh8iBTzNKpKcf8El8UUUMos1bpKWgA0AdtPoFymVonuSqUIMLBYoU4FtLQAUElB7xuohnGaJfptaYgQuGmJgluAHb0UEPVy/Dy8lmmBm+RjYayBlMQmgjR2LEiYWNuUoiBQh5yAEl+jtSamAEpAEF0E3JFYuhM4VcTEhMSznrA7o8Q/dbKS1ZrlPTVqAZakqC6LHqC+Mv9OcyClRNN6yKdzTcxNcu0BZwV4LQq0NQ/HnCrMcbFrgcyTymK/UYqi1BLPJICVtoaSZP2jgVjlfM6poo2m1IwqeWm+sRL+XAshZloPX/r5T/EzP/sWxmWqBrT+ERvFKy3D6R+xHWhtyFNhGuD737/hq1/7jphonax5tXdgLcfbHaYicUxzoG0aQpRGj5gSmULKFUymbxzeWtI8c4wzudYF2sj0fYtCEeaZcQ4kihROg6JSiCXhjHxeDsMItYqVMGdpKjECFFql0RjCmMkVUsyUmJiCWE/EyCTWsv1xQGuDaz1TmCQCPEksc2M9rTUYZzlW+Z5FUbQi5YxG4LVc88K3akItWOPQSjOGgEbR+AbnDKUoYspMYZaovVxQugOjeLTeQEmUqplSXfqtFK3vxSSmJCZ82A2EnNFO5gUGCDECGu88wxwYQ2C1auhagxF0ixRniWvVRqJt60SphdWmZ56gxAJRLLNFKbyuuNWKkCQabg6JrnMYlQlTIU4CfzbOUUrCGbEPpbSc13UmjZF11wpUUqqYaRuNo0HpDKqgjdz7ShWgVC2QjnWanCrOW7yVJgerNEVDUhlnDNMxQK1EbVCNo20a4hw4HsUwap0TIMAoYogcp5maC+HmFu8c5xdb5pe3YjGzZgEcNM44vLHsxz0aQzkM5Bwlpj0nFAJOqZQlqjxLrNk4RUKy7I4BSLSN7MPshgGNYr3yhCkRyDRdQ6lF1oJK0/UtRtvluqEkys8avDPM+wNUQ8UwR2lI8WbCG8u8pEwrA8ZbcpHP4XQcGCJsNiuUKmxWLfMcSCExhJFYE2nKWLPAnrkyjxOlVpq2wWAxdjEGFtlbsaZirCEkaUTTRmGUJYYFDkcTYyFX+aymxaynK2hnZS/AGlIsEmWokD0qbbk4O6MEOXfJhVQCtmtwHjAe23akOaG9EiAoJ2oCcsX7hq4xzCkRYnm4tlMqq21DnAeSEluNJdKuWlQMDHPi+9/9A1qzAELW0mrL9bMXxDlyturYbjp245FC5ktf/CLf+ta3+OjDD9FabJlKK7R3aF2ZQhCQimWusAC31EpOheFwwLeeqhRTyDhtMc5Ta6TEQEoZrS21agFkkYhJZ2RuXKncHQ+M3/8Bv9t9FbNRqGJBw/fqd/lG/zX+sv1/EYPAsdYYYioUxau5Q6k0rUcjgGhSCGyUNbv9kRAzfQuGKo2dzmC9wVmD1o4dR0IIsNgNnZM4UbHXaZSS+6vsu8q8I8WEStD7Dn/uaH2D1oaf+/kv8IlPf4Knz5/y8UdPCYeJErPAUUqO1VuH0QUVxV6f5eUU2HkBz+uJOFbLuayXtUMuS3Trq07xV0O9+qee5rfLzz3MS15FSp/mKT/c2JpTZJ4mpmlgnkY2m80SAddjncMZi/Mt2qQHkD0ZI6bHZc9aGZmrai1zHmM01sn67XAYZC8sCQB3mre8An3+cDFMIupOz0OWUdK8WE/rCiuAWQiRqQ20XUuMiaZJNN5JFNyy31gpaCM2N30CybU0fVqtiUnARW8d3jvaxgusNExi40zyOzXnhznNDwXAPczX/5Ar9/V4PV6Pn8ChlOKv/bW/9qcyKAF8/PHH/P2///e5u7v7szu41+P1eD1ejx/j+Ef/6B/hnONLX/rSH3l97LqOv/23/zZf+cpX+Nf/+l//OR7hj47r62u+8pWv8L+d/2/Mn58fvv5/8H/wP/M/8z/yPy6G9p/ssVqt+PVf/3X+0l/6S/zTf/pP+Z3f+R2GYfhxH9br8RM+/iMgJVloxpjw3j3EMVTZaViyu0UTq7VGawhzwFRHKVqy7WV7HoV0ztrGkpNskmht0VphtaNScNZhrBUTAhrfeMI8o5XBav0Qh4ZaHk/JZm2IUeLJUPK7pXJ+toGM2HuMPOnGaagaYzWhSAFANnylM9gqA6lglMZ7tej/5ee0A+8ctShs25LSTMqyAam1QjlDqZU5RxrtoVbapl1eSYVrW1KIzFMg5krf9ygNx3EgzJlSFNZI/ECqkTkm6WpT4Jx0WCtV8Y1jDjPKLu+HksJc17VSDA+zFNobj3OKKUYSmZKWyLmuo1ney3E/gLbEotgPI94ZLFpC6LSlWoPbdIQpoCgYvxgVqmJzvuE4DFzf39PbjqrUsmFblqgWhzFgtWEcJ4zW9H3HECPzOJKIlKayWa8kjqZU0jjjls2/QiVlzRgiu8MeBVyenWG0bC4N44zpWuladR0YSw0Tum2pRfTHVlu0VbIhhcKiMalwGAMh7fGNbOSUMVCAbtVRa6YxDau+xXpDnDKKSOcK5xeZN95T2C5Kq+Ji3hLDBMvOg+ivpfQl4FIdIukmcfi48PRj0Paci4sN98PMeMysdOWyWfPR9T2qJNbrnliSFC2Nw2TFmDKqN7zx5JyMZj4caZyi5pmL3hNjQ1SWznrOzhusbhiHgDaJ3ml6pfnEG0+4aXqujge0Ldzs7jBuBJs4dx2fevMRV3cvGYaJVbcG67Gx0GpLwXI7jmzOt4RSWG/XhJpQ3jCMGZcr8zzRGkecZRPtbNUTcyGFQiRyezvRjRFjCptuRVYNsY40VuN7R3++ZXezo97ueev8EbfHGw5hpDt/gm80d9e3DHmGIdJoy7vvvMn9vMf7BmUcF22Li5n7FwNWBXSz4f76hm3v8SvH3eGOMWSqt2Tv6VY95+szcp4xKA7jTHO2Jg+B8f6eTmn8pkFReXxxgdWZMAZa21Abw/1uIifF5ZNLTEz0KtNuO66z4fe+8xGVBqsLb170+E6xXje03tOoyMWm4/rlkab33B1m5qLRc2AOge+/eIlfn/PTb77F4faW+2MkFKjDTGkdw37Ppm0wOaNr5fHFGXFKzEPCqEKaB6pvaduGpMBhaduevjFMxzsMAmc2ruWQIsQZqwqUQEmVJ5sn7PcHJhL7KZBmzefefY/d4YrjOOOtxTQzKcHumKl6YOU1n/nUm4wlkJXCr7b0VfPs4+ekWmhXDX5tydVRrKY9X+PWG/RsOewO3B/vUTXx+NEZl+crxt3Mi5uXjPs7mtyQa2XWhv5sg/OV7eNzhuygaonmCoqpei6UQYWEMYrpxR1zDZw/usCoyqMnjzjMUvyhg1oDzsHmrKNmy8WTNbtd4NHFBcWA0htuXtyiqmM4BJxxnK3P0Nox7KU7X7lAmSM5K/ZTIKQdXb/iyeWaUma6atmerbk97NkdJlJRrFY9Ocnm6e44ge5oKMR+y3qz5W1VuN0NVKcopfL48oKYIzXEBQa12Gq4v9szJVCNot86PvfoE+SquH72DN1Y4jExzAXfNczJ4JuOPBS2vaOcr7D2XXb3A4cpsj0750m/5sm5Z7te4Z9f8933r3Gtx5DZ3x6ZY8Qow1or8mEmKyn+db7jg6uXrJwm68rw4Qc8OTvDGsWYd7gmc/Fkw+c+/2n+4l/4Ev/yX/1b/tVXv8HzqyvKmHj33TfZnHVcX99yfz+irKKZwRnHHCIvr+5Z+46286gKRRWGeWSsiSlm2tZzvtFcrLdU3VJMw2F3YBzvH8CGWiT+oeRCLnJ9yocZf96yvehwrBinmeM8472l30h82jQFGtewalcMYYf1Bm01YY5QMsdpwOmexggY4PoeVQ11qrx8+pLhcIS3nnC2WtG1nhoLxrRcPNFUo5iHFeMw8OL6TjponWOuE05puuLJGqpS+MZQU2JOmWmXaINj1bb87KffY7td8eHzZ6hWA5r7XWF/nBhjhlwerEaKivWwcR4fLNOcmIOgSqeotlqlGMgCUpy6ojELjJHL8jM/NFF8KEpId/cD7MSrTe7Tf1sr93aqQHslR8KYuU3S/bzfHbi5vub+7p79/sDFoyc8evSYs+2GrvVY62naslhSQGHQylKqpqLwS3exACoa5zyrVc92u+LZxy+5ur7leBwXIESKEXkphGitHoomtQrwwtKBD5lasgBpZYnPCIEQA2OYuN/tuNidMz9+zHg8cDw74zyIEW/dt0iYV8X6Vo5dR+EONChbsd7g50hsEm3raVvPo8tLXry85dnzK27v7pjGibgUSGOIpJTEnnSK43h4nX9Sx+n1FGMYnIo1Mo86xQNLvJVENeYsRfJa9asW/AckDoxRi1m1SgOCWkxfdQGSloi3itgA0tIdr5WiPpyfr2LRThCSMRYUYtmplbb1lMVodDo2IxnQqCUKrpQldu5ki1J6gaoUdjEc1QKZCkbi76gCyZTFcANi7VFaSwRNKRhlkM+OfThaYyxlMd3kInExSontIudCWcAmvZgN8hJhglIYo049/7LeyGJHeLAAKI1zYiUrOZNLElCzyutRlsYUozXG2SXKDWKIoDS5IlHNRbZRVIWqKllrjHfkJB1qAtTJkUhEUGKcZ6xygFjPUHUBHGV9qZUmpYDWCmcdsRRyjGQy1ULjnZiwUqXE/GDdqUgcecxZ1k9A17TyHgExJfTSRGONA1UWM4XE1J3sX2p5vwF0VehSmVPmWComSwG4RolhtN4uwKnCOyNGniRhVY3TfOkXfprPfP4NTCNgwYNNggetwQOfdPqmokpczAhhD3f3ie//4BkYg7IQY8GrSmc9+2GGWvDeUShiRlYGXSWq0DnDqm+pKFKIWA21JlpnyNlQvMZpQ9PKNTbFjFIFZxQOzXa1YjCBMQaUKozzjNIWpQuNtpyve4ZxYIhFQFsnEJJdoptyTPi2IdWKazypCpQbozSxpJSwSpMz1HyCbio5i0l5HBMuZbSS71UsuUaMAuONACHjDJM0xIxhIuSIa3usacTGVxMqZowybDcrprv54XzrrEWXwnyMKCXA3zxMNM5gvGYKEykXqjEUI+BNu2oXqHX5DLSeGjNpmnBKYRq57vVdK+vslLHaglVMU6IWgal1LjgqtnGMNXN1s6ciBrZ1azFOiUXXGIySKOHhGDDOkOZMAlTK5Jy4O2aMbzlfrQjTxDwXcoUaM1hNmGVvQNWKqoVV25BTIUWJ5sspUY3FWrtY06QBzBlNirM0PyFmOOYs53jJKGNIcWbdreVnq1yrwpzoVz3r1jPNE1bbhW1UpCjxjKjIZt2SayXVilKWxhjinLi+vsNYi/FiqEq1gM349Yo8JyiVcR5xWmGN5uyso6TCMMyEeUADYQEmjfdYo7Deoz2EuZCWWLy5arzSmCrRt5RCmDPWyn6Uc4a27cgl03gPtZBSxHd22XuwmOX6Za3CZU2cCymB1YowJ4HrnUXVBWK1An5WFCkXsTkaaFuHdwKt9I0nkxjGQCoVayxKW0qKxBRRCpzxxBDxTctmY6j7g9ivasVbj3WWkjNOGXJVWGVIUeaDaE1VhYuLDQXNPIwkJWDPHAugyVljjFtsbkvU52ZFmBIxZ5IyNCtL6zSrztOlwsubHQqDb2A+Bo7HCbPE1itdxfZTC73z7IcDcwj83u//PqppaZoGc3FBqoFKoO0cm7M173ziTe7u7vn++x/BFz7HOI3EceDicsM0T0xThJBQyj7MGaY5YpcGSLVEyeZamcIskW5UaBq6psMaC9pQVSLMIyfrYq2L0bCIibDUSo4ZTeLNuze4f+tGGghTwljN/9f/f/g58zNswzm1QuM9uUSUymJcoyzm+UjKXmCelBcTkTQKzMNMiolae/oFrhTgW+Fbz5pKmC05Z4ZhYprDg4Gy1IrFyPNb5j+a0/wKmUNYxXbV45zlbrdnddbx7ife5rvbS/7VP/8dYhLITXOyBlXQYL1GW/WwV1oeiHMB+x+iS5XsHdcThbuYG08g0rKM+JGlxckE+RBzrH4I3z0di9YPlk6olJIIi6ksxsg4TozjxNkc6FeBruvpulYipJU0lC6TowWyKstet8TyKrW8BwvI7azEv3l/ZBgGpjmQU/4RyOfBgvlDc98HHus05y11WWqJYamk/GA2DDEyzxOp70kxEhtPkzNN9nhnpTm3glJiMlNL/GulYrUAViaJNc0uEXBN29D3M/vDyDAMxBAlxrAUMfpmMXCWHzrQ/38I2evxerwePznDe88v//Iv86UvfWnZ9/iTjXme+Sf/5J+8BpRej9fj9fi/1Zjnmd/+7d/myZMnvP3223/kzzrn+Bt/429wPB755je/+ed0hP/+qLXyuW98jq9/7usP3H6l8j/xP/HX+ev8Er/0Yzu2/5ihteadd97h7/ydv8N7773H3/t7f+8/0JzwerweMv7YkJJaupVLrkvEhGSSx5IotWJUXTazkY4kA76xkGUVapauGa00uUhpwRgjm/Mhy+I0V8opyiEnlJaLhKzAZMNetGuyQW91FfhpsTvlUhcbkqUk6SRRRqNqoWs8RilCCrRti3eOlDIo6XozRouxQEkncS2aFBM5JYzX0m2bpBBijYaicM6SlWjzWYp6RhvmaaSUjHOWGCOtt2BZlL4S2ZNSwWiLsU66b6KYWeYQsbbBVIVKBas13XZLqYVmyZ8/xokhzJJzrzWN91jbcL/f471lte6ZhkEiybRHGYXTFa9bhmGg0R2mKowyeGUoCrJ3zKkwzdI5Z3B0fYtbFvxN55lSIuVAzQqLoXMdnXOYpQgyp4JVBR0jzkskS82QQiBoRbGKXDTOOnKSCEFfDb5vMY3ozWsqNM6Rs6LfeFCZw/1A13akKRCXiK9123IcR+aQqCliaCkp0TQtcymgHTMVow3rpmUOkRyzFFVUBWUIKaKsYY5Rqo9RCi+2MYRpIBeJCZinwDCPGFO43HguLguPPxEwq3GxAYiZaim3LOdrfdXpteTPk6AEzXCf+eA6cBMc28eXHGomHjLOt9wdZ779g6cY41ifnVO95f72IN3Muiy2gMI8RY67AyFWckgcaTCt5z5M5Kp4vOnp24Z132K0w2uDcpXDLEWmq7s9yreo6AgpSPdbEMRqLIUPrl6SfYHOMk1HttsLDsMdzbpBaYlAevTGuWyge8dhv8d2mpoDF2cbLrcrdscDL17eY51nN99xvloztYqI4np/xOwDb7/dYtrEPk3EFKm60hvDdDUwDiNzynz4/IZhPuI7h86FR+s189U1xhj5TITK3d0RrRx9v+ZuuOb67obzN88ZZzg/99QcmaaJt994A984rm5vibWiUuHxdkOvMjZrrm8OGAXr9QqMZVKGsHy+O2/Y+I62FKYQUcYxHAYen7/B3RBJWbHSjmMNNJsLdnd7nl69wK/FdqYUZF2ZM0xjIgXFxdmG/fHIEOBsbTAaVqsN8SjxkOerNZGCCSOtqehHb4DOAkmlxPEwcTdmHr39Jnk8Ms6R/RD44NlLPvHeW6SQ6frVErOlWRkY5z1XuXK8l8KFMxFzGHG1SlTlLBaXzbpDh0w6TuQgoGVJB47hBtt67obEudZYVznbrHk6XJNLyxwdU5jpvGOOmq5pePudC+6/95TpEGg1PLpYs7+PXPQ9h7kwxz2Xl2v6pqGmiXka6KymBiko9GcN760vKUFiPNThwLvnaw6HkekY2K5aXj6/ompL0hXtFzBWK7pNz4f7HU3v2V6sGQ979sdI7zeUYcBgeHR+TrfpaJqG8TizOltxnEdubibMrNkfrkkqQwtTGInPJ7r1iq5pGA87mtbTO4PbNrjzjsNx5HCcWFlYGUVzcUa8n/jeR1cc54rBsj5vyGViPI5oqzl7dIbKmjFH3n/2gvWdp8SJuWje+8QjWi/n/xyO1HXD/i4wHmFMEILGuAaD4cXzwPnWs+47jmOWqIE5o7SlaVs0SSJB7hMf/MGHnD3aQFQ0aJgjd9fXXKx6di+OfPzhC5q2xXUelRIha5LSpCGy7i2HacB5w/r8jH614uPvXzGHgk6ZftNRY+DjD37Az/zSl/jL/81/zbe/9R22T57w5K23ebxe8ejNd9mcn/O7X/89nn3wMTf7PZ/7wmd57923+frXvs211linSbMYY/aHiWACq9jQN5autWgNGUuMmTmN6NUWUyvOeebWUrIlFMfdfmaaMmlMYlOc52VeUclkbvWeR4+3YBTONFycdcRxIs+TFHu8Z4iRJ1vH5XZNzIms4XgYxI6XMreHo9zXjWZ3OLI/zmJrIXOezqip8Hjb8ka9oPU9vl+zPt+KdeLmDqNgnAMxJlSttF3PPEdQiowipohWkE+2H1UIpaCLZdM1/Px7He8+WvNiuOf53YFbo4ka7MqjYsI4KyCCgYt+Q9N48li4vd5xvx+ZYiZFibAqRVwddYmEEMjrNB+Uz1YparnVyfGcigv5lKkBS1GhLBvzsnFWshRvrbUSd7vMH62xeO8ZxyMvQmIYjhwPB+53e956e8dxGHjy5DGPH13SdQ3Ot1jrMcaR2kiYJ5lyao0yBhVnKkqMS96J9cBbttsN66cvePbsivv7e+Z5FlDloVCyGGeq2D6l+xmxnyzEQMkZVSrozFwzqURCmGm7FTnOpHnkeDxnO00c9nvWfcfl5QWrvqdtPGYB5lAa6xuM07js6bvCMIyM44BvDNZr2ral61dst1uurq64urrhfndkmCa0idgYCTGQcnqwuyjMn3hh8OcylirUyViltSYv8VVKI7acU0yGEojmh5roUUiMWHkoaskc/hQ3Uk9kB4sZiQUGOn1HCbSIEWzM6AVIWzYBynLOS2R0lQLqcszOGnJW5CLXUrM0TqDU0nTxKmIO5O+WLBCZNrIeylkgKq0Uqiqx7XBaX8mxa4VEklaJETsZaE4WplIrc4wPTRtKm4eOfIH7xRKmkBdKKUXbNFRYiluVkONifpJrqTScGLFaGo13jhjjUvwzD2BWo8wCytmF0dcYJB7SGEMqUvisCMRj3GJdUmCtAAVilgKNxhoBLR7suEUK1mqxrMiQv5krGKUoS1G91NN7rDBO4jdlHSeAWlneM6Uq8xxxVtaIYo6xy1otiW0uZ9QSc2eNzCdUFuBKKYlPSak8xF5mqtieSga92JWSFG1LrWijyDGKcQMlMeUpoVVl3Xu++KXP8OnPP0H7xKvTryyn+r+/gXPCymqGmhVxrtwcZv7d7/0Bx2mU63ItGCMxrPluj9IG37ZgNNMYiFmaSE5/LadCnKOsoXMhYATEyeK+7RuLMwbvHQpNVBpMZc7SJDTMs5hki1mihATaoipigd1wpGioTsCypmkJccY6tZw3En2kSkEbQ5gD2krxv2s8XeOZY+A4TGhtmfNI6zzKKTIwh4gKhc3GoOxiTKxybrmkiSWSgoCcu+NITBFjJSK99440DGglTUskmKaAxuCdY4ojwzzS2pZUoG3FipVyYr1eYYxmmCZZ/5VC3zQ4VdG1MI4zCoX3DrQmcTLyiV2t0VbspaWAEuC0b1dMulAKOGWIZEzTMk8z++GI8WaJNhL7Vy2QSqEWaBuJ0IoZGqNROuFtSw4S19g4L+dhSVhVUf0KlNijxdyRmFOlX68oKRCzmL7uDwNn2xUlS5T7FCNGK5yClAJDEainloJWGRWSmHkM1AV+LDmjK5SYKFNC9z3OFmKeaF1DQuEXs6JvPUMeyLVQqiZGsTbZZY9nfb5ir46EGULOnPedXPOToRpDHGaclljc2RicroSYJeI3SjTm9qIjh4Qxnng4svYCr6RY8I0l1kSICRaQ8xS76bwhhMKcC9u2wzvDME4Y7SipUGPEakO/7bDOkJPAgVpXxiGgMpQgexnKCqg7jSMmWHzjyTEhcV8WbxSrTbvEKobluluXRkHFYTgypQjVYqx8BOdpRimFb7xcF9EcpplYQZdMyIWuM/SrXviIFKheU5JiHAPaWYEDsfJZmzOkSNe3lAwhFsn1LBXTeDFELfffw/2BpvWy11fBVZjHSeJusdwcB4wxOO+IKWEMzFoRk4B/mUzQck9uu5ZwnAlRoImoDd/99rfZ9D193/HOJ9+hXXkysNps2fQ9m7MLnG/pnz2jNY6vff2r5Fp49913ePn8iv1huT6mJNe8GIklkXPGOYM1i3Vxuf+EGKnWSWSkMngnQHCpEtkYsgCwYlMUsEOmCJWpRtzBYZQhGWh8Q17M3l8tv8tfNv9veX+UALXOaPICY2clcbBybwdnDCkVYhoF4K4V4wQmTi6wKg1t26KU2OZ6YzAoMW36vMS0FoHJaiZFRa5yPst8Sz3cbyT6U+GN4bzvWTWOIUwcw8y7732C73/vA55+9BRjlnvVArc4Z+idkWv+FBnGmZjq8thKPkcP87K6sDl1uafx0Nzwh4U9y9LiFZzEie052TjlGliU7ENXmXAt0cAKay05F6ZxkPc7BOZ5ZrOdWa8DMfWs+p6m8UtUr0crgzEyB5Co3IgqMudHZeyyt5yT7FN752haz34v+1YxRrET8YeeTn0F+zzc3x++UFBVmkhKLcRQZL5nJQay5kSMgSaKVWkyS0Nq45c56APFjNIa6xx12W9NJhNjkPWaUdiUcdaK3axtGIaBcZwJMaFykojckgVYWiKNX4/X4/X4yR3OuT91xBtIEf/LX/4y3/nOd/4Mj+71eD1ej9fjJ2OcrnG//uu/ztnZ2R/5s13X8Wu/9mv85m/+Jt/61rf+nI7w3x+XN5fYZEkuPXxtx47/lf/1PxlI6TSUUvyFv/AX+MY3vsG/+Tf/5sd9OK/HT/D4Y0NK3htZPBfJT7dGNvsVBlVFiW6UWTpdEtbIIrhSsBagEGPCOU+pmRCkwNU4j9XSRYgyC/xk0VZy4bURjXXMlSkkaqnELB3M1llsIzpuciRX2ZytQRbBkukO4ziTsxPbUamkJB0qKWWoBWfssqldJTYAwzAFUphBKXQtFFXAeYpWHEPAK0spkWIkkowshYZUMikXVl2HcorkE6u24ziPqKX3sJbFGKWQbnG9FCbS0jltFCVGbAYyFJ3JRrr5G+sJPpFrJaaKMqBSxagiCvhUGY4D0zRJVJD36AoYI+EA1oLRVC0bIhhDDDNZa4pObLZeLEumBV2wKOk2iwqjDc44lFOEWSIJcplJThFLxjpLzDOt11RtcNpjTeU4HkEZ7scj85zJqdJ1stk3jQNukE3IWUWMb0R73nV0K8/V3T0pW8KcaL2hQXG27skklNEEKr6VeJ8wjrS2sF6vuL2aOB5HNl1PjJnjNJGWxfa66zBG451FN5VxqoQ5UKuS/PfWMBwnTNNQCOzudvjW063g4qzy+O2C7cPy6VniX5AC5kNJQZ2KmadNCA3JkWfDRy93vNgrjG+ovuXm6R2pVKoecG5FMuBcxWhPQTrpnTV06xadMrWMFDx3xwlnHK7RjDEQp5Fm5cgxcbHdYK3h6tmB6uH8cs3u5gZqZRoj1RiszmzWKw67jLGGRitiTkwp0ySHMopxjPhSuAtXHMLExzc7ztYrPv3T73JxtiXNiT94/32Oc2LjLSkGQhp5cZ3YHY7kEtHV4BqJ3Nl2Pb7RvB9H0gxPtmc4O9IXx2FWHPd3DMow1UzbGFal4W4acW3LT73zFlOoPH95g1GFaRjQuYUCzmg6Y0lTxGrFe598l6IqF9vHdKuGD7//HcqcuL664XzbEqOcr723TOPAVc74qeHqcBSgcU6YRqF7z3B3R+sUfd8RQubq/pb9UTZ9rfGMHz7j5d0t2/MnXKw6jsfE/eHAs5d3TCHw5mZDzIWqDdUosQt5j9LQXm65//g5WStuAvSP38AbS7KG/R52w4RVhbvjmkePzjg+vyXmyMW2RWXF53/60yjfUMrA7i5wc3vg/MnbfPbzn6IzmcNtJofIZtWQjzOH24naOIbphpQUFYNxUB2oXFmfrTnsZg7TkaOxfPj0OdYo7g4TPga0Mkw3A9t1g9UwHjK+bXjjfMPh/sCUIzlD37cYnbgZJvKsmKZK1zSEKXLWr7i8eIuYbnDKEO5mwhy52e958/wSNOz2I3cfvuDtNx/zeLvC9W/x/ve+S3YKbbV0icfIcDxyP9ywXj3ibLsmm8ScFDc3mWOCnEeyqmgrxUznLbEa4v0e4yxDGiFVzpoLcgi4VY/rV3z4/Y+x3nIMgcM0chwO9J1ZIhIzMYOOiSkGcslQCtOcuTzruFhbPkpFYKpa+eDZDZdc8GbXEGvLpBJ1mLG2wzjN3V1hGAMXb65Rc2A6Tliv2I+RHAIxwEcfV1xneGO7Ic8BZR1OOw5TILeeOE24mLlJkTwF7oeRdx5f0rYtd8db5pQxjcEbxxtPVgzHgbLWPPv4lt0PdjRKsXm0oet6xilwfXfPcRqxxvP2I3l/X76YSL6lW8/EwxGVNKu+Z73umY8j73/3ObfTzJwGqqroURjlKT3j7IMLfubzP8P/879+G2PEeleprM4Uj84fs12fMW0Hnl7f8fSjW/76X/wSz7//kvt9pLhCDonGex5dNtRSyTmS1QIpFgGmdd/z/Oaapy9eMh0GnNVgYUgBoxyuTESlKKkS50yaK7kktJUC1HgceR5mbNty9mTL5VlH1IppCjIvUfDBxx/jjeLN8wsumzVTrhjjyVMgDZG7aaLpGi7Wa+IwEUrFtp7NZkWcZ27u7knzxDjOXFyc8egNhWvP8dZjtCGmjHKGtvXEJT5JtWoBKis1a2KQyKhcFJVMnQpzylgqXWtZ+RXvdT2q3nL/ciL0YaloW5Q2uCoQRd+3OGfBFpzWtF3Dzd2R4zEQUqLWUwRBhaQe4sNqVWJTVIuZsFROrcGS5rBEOJT6I6AGD8UJJbBtrhSKbK6XjHWaximMBlUz4zQQ4sw8TxyGI7f3txyGHSEcUWTOzs/ouxWd81hjCSmgjGaVMgxaQKXFNJOzFKWNsVjTYLTHGMtms+L5s+e8vL7heJyYg4AKgiYVMTlwCsB6VVhQC3SVMUssVmYOkTgn4hwJ00RKkWGaOByPbDdn3HcN4zRwfnHBarWh915icI3C+watPClJIaJfSZxESpGm7WjbmXaK9K3n0VnLm08uefbynmcvXnB/f880CtCTsiPkQC4J0k+uAtgY9QDZUBdQR8m5UZeue22lQaHW+hC9VktFL9adUjLanF5/AcrsYmM4AUNUgYyUFlhELWBLqXUxI4kRAMSyI6ZNefy6wAR5ge1OnakSlSTGI5AYa/k5MeOYxX4kcSpieoopU5boNIGfKlUbUIqYM0ZVdM1iOlvsDAopYOcqcSpoKKbgrSVmiXGS10eaP4S4ZDHuVISzW2LlTrElS5GwLrTQyS5UqljEKAICaMR6W5ZCbU6JWsSWp+TFEGBRL40dS9wKWmAs+e+Mb8xikrIoJX83ZYGT1GK/RUvDAgqJlDLyvLXWlJJQxi1GKolICyUCijkFgasqWCuxmClFTJQYu6wUylig0lqL84ZhmqlFYuPsYoRrvdh70VByxTgnRqwYsVqAgHFI1Bjx1pFzFUB1ueaJhUOMWcpUYpY1Tq0Fa8XgGoPYmSqZeZoxVgy9P/9zn+bTn3sT4+NJwcrpKvPqerO8cSzfXwqRVENJivvDxO9+/Tu8uLrBNyvGfVyK5VGK0hqcFtOCwHkS62edlVjqIHaxKSa00mgjoF1OYqEtWZp8tNYMhxk0NH1DGEdUraSYJd5UVRrnmcuM1gWrFLkWuVfnBqUk0s3UypRHQk7sh4m28Vycb+laT0mVm/t7Ys54s9i7auI4VuYQqFWuy0YvRgjnMEZxXxIlQ9+0aB1JxRAzhHkiKU2kYo3CVcO0mLLONmtShsNxQlPFtFyt3OuTGM9yKmgFZ2cbKtA1PdYbdne31FQYjyNtK0VwrZVYglJkWOC4IUSsMegsc0flDHGasUbhnSPnwjBFQkzkCloZ4u7AME00bU/nHTEW5hA4DBMpZVa9FRBOK9BKTF2Ljc52DfPhSFGKMVdcJ3biojUhSGyXpjIFT9+1xONILpmudZQCj84vUNZQa2KaMuMYaFcbHj06x6pCmKRg7r2lhkSYElhNTCOlSLuOMQoMqCIxsRXNYTySNewPA4135Fo5TBMGRU1QhhnntBjYqhLDc+M5Brn2aC22qOE4E4F5TnIOaIl2b31PUZWaZ0AzzRlsRSfLumk5TCPTGFAoGue43G4Yh5FJTVQUbd+JLS8k5jQzB0vjOkyniDkyTZVcYEqFUmeqQoBIY+R6GCsFgYimOOON2JRyglXXs98fMFYAxlQKUwyoWnDGkGuWeKwigFNKURrgkti9t6uGw7GSkjTnjVNgLIXzvqXxllArJRW0MmLd0YZxCtjGSWz9NHOK7gw5kaPcr2KOeGfxyzVbYVHSq0VMCW8M4zBQSmVQAmPaJbY3RrFuWqBrW2qNZA1DgPv9AQcYZ2j7VqDHmLjZHUi1svIt/boh20jMYgirc6CWiLWWdrGkHW4PpCymvloSMcHtzS3f+va3aVcSb//Gm2+jtYXFgoeWRiXvPJvNlk996jP8u699jZ96u+FyteF4DBhdQBeyqnRts0SRCYyhtJNYUcBbRc6JwzBSS8UscG3MiYqWRj8gV7lOlLTMAdQJ+im4547muz3Hn7qjbxv5/RCZc8IYzTxP3Ox2nG82tM6DUswpk1RCFZjGQKqFVddCqdK8YAzWi/lnnmZqyqSUZI+s6zDeCnRtrMD3SmJaTdLLXEpM7zUDeQFts8wjSi2onKm5iIFNWTSGVdtjrJixv/jFn8dZy83NFdM0CVxUxERunZH1GGIbnObIPCcSsh6oalkriIRrmY/wcL/7IYUgr+bd0ph3ioV9VX9/9csnsWbJdYmYk8ZBoy1mmQ/FLCBmzpmYIvMsa4uUt9JEQY93Avw47R6gcL9YLVNejkYptC6oopbUAINWEhXnnGNoHIfDUWDRE8y8zDGrKpws6+oPE0yVBWQWeLaWgkpF4PbFhJcWs1IMUUDvFIhJmquckXuhVhIBbI2hFImxtqemkpwwtVCsWOKstTTesOobhmFmfxwYx5EQIyVBUZpcirRg/iSLWV+P1+M/46GU4ld+5Vf+1IBSzpl/8A/+AV/96lf/DI/u9Xg9Xo/X4ydrfPTRR/zzf/7P+eVf/uUHm/t/aPR9z1/5K3+FH/zgB8zz/Ef+7P9V492P3uULv/8FvvrFr/7IvDEQfizH86cd3nt+9Vd/FWst3/rWt7i/v/9xH9Lr8RM4/iNMSnopLEj3yykWg6rQGHIsTOMs2nFtpciArGtSlK50YxrJm69JNjlSJFTR8FujSCfrkrEotSxqq3T35ZxFZW1EJ620bBCFJFEZTkt0nOhqK84ZmkY013lRJ6MQSGoxGlVOet2MjrKQD3PEGtl4tqoyxQBKbEUxa1JJElOSCuOcUd4yzwFvpQCYYkRr6eJVGRrTMM4BVcUaVXURXbUWg4/1jpgCxmhyVqSQKDXhLRiniaFKDIvSGBLVStHDW01BCh6HcaDsDyjjAYWeE1YpcIqiIq1r6LsVh/1A0popzBjrxIyCBm2pJFarFU4bWq/JsTDMEa0dYyz4plKnkRIDve+JJIZ5wmjF8XaixEhTK9o7nG9obEsMM0kVWu+lU9QZDBWrCjnNWN/hrSfFQooTduVp2gaMl2JEmmiso6wsVp0iWBLaag6HI9p6+rZHaUOIicY6SJV0mOltA07sNbe3d1SjWG3WUrdKhZRhUmnRziecMaJj1xXrpMhksqLUSFGZRkc268zFOwq7mlBGL6rq8GCMUEq/shcopPCBATRqzkzPJr7zrcjza8dcPKZqwv0IpkFXRdto3nr7CcP9kcfrLS9ubzkcZry2bLdr3n7rnJoi9zvD7a4wT2AolFq5y/e0Xc84TOhcuT4M5FS4vxvAy3aPsw1vPlrx/T94Spwjm66nPV9xiIneGrarNXMJ7FLifp5wCUoB07SgEilE+u2KkAt3NxNtKZSSMKXy5OyCUCayMtxe7Wm7jmig327otWPddqQcII8cd4qmcbRO8XI/QdHMxz3zNHK2sry9abmvhvvDjjjOlDhz/uQ9NusNfQrs1ZrmrOF71wPKNxxvr7jsHW+/+4SruztKbckZhv0RlzXvfyQxj+1Zx26YGXJgmBKbvueNty4JceT65Y6cLUY54hSpTWE3j5TWMu2PKOfZxso4BWYiySi8geOcaJTDqMp4d+A7N3foXMgxsHrrTd7bNOgYsOHAeBgZoqXUynqtCVrxnW99QJky6/WG+xQ577boONA1BmdW5Ajzfs8xJNwwc7cfiDXTOE+tilXnuL8buLm7ZpgOJKU43l2z6VoO+4FiNBdnHVo3fDg+Zx5nPnnxJmdqRbPpIcL13Q25zPTGE46yEbbZrOhWG2qNVOXBwRyOeHvOZr3mcq05ziN3h5m1aRgPR3Ja4iB6JwBc3zAnRbdac3W9Iw2RmgvXz+/5vekDaqeZ7/eU5dxPcaDkDUZX1ust9zf3vP/sY1a+49HjRLEN73/8AuM0ZxcbsIb33n1CZOb5yzvOzx+hiubRZz/NDz74GIdhnAdu9zsxp80J22wwTUTVAzlH2seXmDDQe89hyBxe3nBxvuXuZk+tFWMcThfOzntqjcv9rWd3NzOOgc26oXWaxhhubndstz2VhjLf0hvLnAbmceTmhaKsVzy6uGRb9+ynHWkODNHQrdbcHZ7ToJlSJVaH8Zq+04Rjxpgl1vIYuLaTWAUOI2lIbPoNN9f3PL+6Yu1bgq2stysaZxnGmZqhaM+UD9hpj7JbfN9w9fKaYY6oWokm0Dcdw3Dk8o1HaDOD0gw1og3c3N5Qbyx4w6rx+KgwjzpKDWIeiEU228eROUG/6dmct+xf7jFZE2Li6v2XPHYXbN59i2YrV0VVLd6vePeTn+X3v/8hty93OHfkW9/6A8LtUWxUh4CzS1SPEvtfPe1IK8UYsoAoS7H7/HwrcUCd53AYqMkQC5gCq75hs1lxXTU53ZG0JqeKUY7We9AzJSdyiOx3BzbbFtfLPfXm5R7lNbvjwA8+esnl+aV02ReDmgvH3ZHJyH1DVUUulfPzc1KRDXGdIiVlhjkTUmRKkRSlw9k4S+MauvWKdU7QOlZNx7o7stsf0M6y2Z5zOBzZ746M00wsEpFWK5Qkc6V5TqdbEb6xfOrJm2x8x3d+8AEvb+8ZpwmrFCGK1eC4H0Atm+wamrZhu5ZN8TxkpEamfgR6OHVCayWFHRbDpkJTS+IUwKCW+7Vs6OsFz34FI5gFbshZ7AatdTjEvBhKIikpRqeU2O8zIQYOhwPH3Z5pfyAOM+984l0uLy8pqzXWOFJVWNfiu0zIArBk66gpEqNEBVMNOSkaz1JUsPR9x9nZGc9fXnNzfc9xHBcQBZln1iJxDMg9/aGoUgWmKOUUcazF5JQSKctjztPEPE7Mx4nNdkNNiWmYODubaH1H33kuztc4a0ArlBUbjTIO5xpSDJScmK2jsTPBaUJjMK5BuwbfOK77lpubG8bjyDxXdDakPIH59y0sPzlDSzFPVU4N8ic0QwGlVFJMYvVRRmxey88UUdqgtF1e90LJMo/PlIWVkbmx0stnUr2KZslZ4Dsp6p4gpiU+rJzOT1mP1Cod+1pLdGDJYt85AUp6MRedPncSO1jFCKMX29ZieNLKkhZQyWizwFLlwdQk5iABRMxicyhLQ4aYAxRWW1KSCp9WSGy2tQugttiWSlmgJSTerpbFkCTwTsmFWhSKTNVSeJPYN1kPhRSpJYAygBIAA6hGimzGWJx1zHNEL5CV1hpr7WIdENDMOY9WsrarS6QS2hBzRZsKSWITnXEUJH5Ng8SZloKtYtTQRuKac84UVcRiVQQ6WYJZKEXWh0YbeX9yRnsjoKrSKCppiaWry7pANvMLSivCHFDL82Ix9hotBdcSMm6JoVJKSQOIUvhGouhO14a02KsEpDvFw1QBu7RCFwQqpWAVvPPOIz752ccYnx6AOlR+KNCi5F7yakPqFEmoULkSD4mbq8z3fnDNx89uqSjSnEBZOVesYr1eEedA7xqO00gIGYOmaRo265ZaMpMNTKGQIhhToVSmMmEXg5auMCwNQvMUwbDEBFlWG8fdzYEcIo112NajSsZpJTFGNTPnwpQTJsj9Q1kLiB3FNQKsTGPELgY7XSurpiPVRFWZaZix1pEVuMbjlJF1Yc2wwAvGaqxRDHOCqsRklxKt06wbw1xl3VtSouZM027xjcflzKw8pjXcjVHOz2nEOc16s2KYJ6iWUhQxBHQdud8L0GYby5wSccykVPHOslp35JwYh5lStQSmp0y1lSlHyJo4B7wx6FIlNolMUZIaHnKR6z+VOAWuxwld5Xx26zVbb1E5o0sghUTMAh54ryhKcXO9o6aC9w1zyVjXQEk4ozCto2RFnmdiLswpMYVIXqxboPBOM02JcRqIKVKUIk4j3i57LUrRtQ6w7GIip8h5u6JRGusFGB+nkVISThnIYg7TRtE0nViFa0ZZQy6RkhVtt8bbSuM1d9MgkYQxCqRToJiK1hVvFMVbvLGEmKhJYIqSC1cv7vDrjmmYlgiqIjGeJZFypWk88xg4DAOTMbQxYZ3nMEYKAddIgb/tPCvrBUxBzmnvOpxrmAaJqh/nSUxvGTICyikdqCmiG4tTikZZclGkKVCXOLVxFADLeYOzAhMpreRcLpp5jBgtzVPOCGhUtSIvEbwGBWqxhE2ZXams+p6+aTjmPWppKHPOU8ZJTFYFYhGI1DQaFQUuNcYQFzgRb+X+E0assdQQJbpqgV61t2LgKpVQMlo7QonomshZYZsNYZRIKlUKVZ2iqwqVStO2VCaJ+UyRlCO7+73AgI2jIdO2Wq5vWvZnlILjfKQoizYav+ooMZFD5qMPPuKNx29w0W3pt1vsSkAUhQJlWK239KsNh/3I2fac7WbDN7/1fRojVqj6MEdYzIla7GYngDhkiSdUiJ1C1yqWp5xl31ImKBij6W2DM5bjcaAUTckCo0jsntjNPvvNz/Dv1l8nNoG2kXg9PWp5HK3YHQa8b/G9vA+qIFFuJT9AMCVX2ZNcwEYh5DO5FqZcSEWaOWutKCPNdtZaXNNQjMbYhLeWaZopVLxvSDkzTUGigpcIWM3JbilzsBiTzJ8ydK7lrUtHYx2X51v2xyMf/OB9vv2dbxOXuNkUxSaoEdOQ9+4hgrcs+8UCI9flcV4hSg8tfkrm3bK//GoOKw0PpzmiWJRYQHIxbsoMsdSC00Zg8YqASdQFEIKUCuOQJdJwnokhkINY81erFY1vxKIEoDTGOrGeIlC1RPVmVFZkClXzYJWSeZDBN57jcWQYRrG4Z/k8UGUu+qrdoT4879OyttbyEMNXSqGGQLFF4t+SHGeOCe89tUiDbwxJACtjaBuHbgTcUwskrxcgvBiLLZliCkZLQ182aolDNihjcM4yDANhnkmpokolV4HOX4/X4/X4yRs/+7M/yxe/+MU/FaBUa+Ub3/gG3/jGN/4Mj+z1eD1ej9fjJ3P8zu/8Dp/97Gf5zGc+83967XzzzTf53Oc+x9e+9rU/p6P70WGK4b/98n/LzcUNH33io4evO9yP5Xj+LMZbb73Fb/zGb3A4HPhn/+yf8Q//4T8kpfR//ouvx382448NKcmauPyh/EC1LOSlS1a0sIWUpYPeaUXSipyhVMnvLiVTYhSgYylgOSvxKEQxBxgjBibnHCFE6YI3BqulWJFrgVzJWSK29BIRIJ02GmOQbG4tUQnWCtQkm+cKaz1KSwEskQkpS1dbkQ00qiKnSCnpVcciilKidOB62bDOqWJKpWs7jNJM8yydjbUyp0TnPEZbplSQA61Y40T17gyFQphnYs7gPGoBZLSR4kLJshk8R4kCG8eRaBRaQ+cbMJY5RKouGBQlR4wVrbgzGm01KVdSrNwcb4kxYIxhtVpJ12Mu1FhJIQtoNoPxhmlMxDBTrOJuPFKSJk0Ji0I5S1FVuniKYpwDlULnLc5oWDpvD8OerCv9qmHtvWyGpkDXNZSY0MYSUyGi6DoLSTLju82G9bbn5d0dHofKkY2xtF1DKJnjXLh6eUvnGxprKDExhZGkChebFdM4U0tlteqZ6iRxHF4JwJXlXJnCkaIr41jFptO0lGnCao33mloy27MVZZ6xytNsPOf9kXd+WtFsR7CzgBvLB6PktMSR+GUXXr3adqiamh3xHj78zoE/eD/QrFuss1BabDaYGimuwbWO4zhwc3eHipXdccA4JxsI1vDR0xvmQ2S77dFqxHvHNI2krDl/vGGz6bh6sWPYTZipsFp1bM56TOMZxrREbO1IIdB7x7ZrGIYDSmX68w2ddaT7RAqFrDW1FPrG0HuF23Y0a08YCtZrpnTk5d1EyYlxDnilefLWY45DooTI5cWKOE+s1ltCDMzTEedbgcOA3TDjVGVCNuubpiHPmaQ6bsbEIYwMQ6DF8ORsRa6BHzy9Yu0KzsB0LNQhsJtvWfcd0xQBzcXllve/+yHPP3qGqop5H8jeUE1h1TdYmzDeCQx4nBludzSd5fLijMOc2d/DMM+M44huPMN+jyoaYxte3u4YxkjTWVCWi4stl7ny9pMLvh8zV3cTVifWlxvefu8d3GpLoysffvgM11vyDHPJ+FKpKbMvinCIlADrpnDZK3pbOT+7pO5H9sMdk654v+Hx229RVELbQhon7gZL21qeX33My6sIxvDkzTfYH2YOx4E8HUlJ4VQh7PboVY9dr6HrOWbFGAKNUrTaUU2Pt5a7uwPXwwTK0FtLDBNvv3FGSYpqDa2r3B4mMGvirBkOiWIt333/Q87WK9r2jOO8J2OZcma42hNSpVt3mMbiUktrFEMI7G7uaJ3Blgq9JaWExfD+82suzld42+C0436YcI3l2f0dEY1aNvAfrVc0SnE8HAmqsFmvuLnaYapDD/dsVmvG+z0Fh2tavM7UpuN733mfxhWGENGN4TPvfhI/Dtx+/JQL79ndD9yUQAgDx2lgs7lA10IMGd843rx8zGE/M8Ud3rdE7Yk1k1RF+4YhFP7g5T3Hklkrwyfefgfr7wlJcT/NpPsdK6t5+xPvME8C/v30Jx7T+4DKgUlljFM4bUhjxeueMQ80WvNksyVQ8F2PzZrb4xXbS09IR64by900YVH81Duf5NJZwjxxGGe6qkiupajA9z98wcuXO5rG0DktYKeGQ1TEOdLc3tOjOez2bIxj0zquhiMvjgP9xvPErCmxoHqHtg2xwjAFgqo0naOkkc3mjDFEhphRc8BYw0cff4xVhn53y+f+iy+y6tZyfdSWi8vHfOGzn0Ef94zTjqu7A9/+8CkpQ8yB842hbRuUMoyjRLaUIhGaY5LN8baC1Rq3gAutb1hfdkwlyZyinmCIitUWRWWcJnZ7zRwSYQx0vaFtHc16S1SJYT/T2gZTNCVCsZXjYeZ4d8WjzZZP/9TbrLsVfoqEIsaHs82GpmmYphkqeOtQpVKzAq2JKRCq3Ot2d3uGEBhy4dHjC1bO8Xiz5qxvmfuZcLnlsB+52++Z5kDjLKx7tLUM40C1EjcQchabpNTjJbYGg1eWdx9fsl2v+P5HH/MH77/PFCLMivkYJSbOGFStrPsVrXX4jQABte6oKhBzlG7axcSSc5bOYCUGB710jAuQJBtdCvVgnQE5JlXV0sW9REyUBcRgSVpNFUiopVO85ow+xUOUyDQWUhRD0Xg4cNjtOB4PvPOJT7A9v6Tr1jRtS2Mtxnh82xGikYhirTHOUsfFAqXE7iLzRE3TePq+Y7Pd8mz1kufPX7A7HAkhSBdx4aGwoE4Y1g9F2Z3iyk4z4hiCdObHRAqBeRJT3DRNjMOR1WbDOES00jinee8Tb3N+saHrpLBkXYOjClhhLTlFMZ9YizWOOB8Zh4FhSGjTsNlc0jQtw3HH/d2R42iYI5T4k1xUOEFDy/9fNggUMkeTUV7ZlhRLhzwP9iWj9UO0mXS483Du6QX2eQWjiEEg5/wKKlu+XhewpHAKiFsUp0hzhaxThCM5/e7S9g/L4ynE5gRiU6CKpahSMXqJY6rL+mmxJNUT4GaW2Loij26tRaNIOUtNbym0WSOGhIeudsUCcAkIoxcAq5SK0lI1O9mjas3I2l+RikAJKSbKAt5YYwTOKZnKYoIoGaXNUuCSCJFSqpiEwigAltYP0UMnWKcUsQHUjEQ9JQFSqoYpBmpRUogGMTIpgXrkOiDmMmvE6POwnlqMEM4ZnLWQF8DJGjEOqOXYUFir0UUe0zaepnEcxwmDhlLwWixluVRirgzDiNUSl1JLkbWXqnSNI8UEVda4iUwtYnVB6+X0UAKCqROcZOSYUhajgZHXpWnc8jWDaQzvvX3Gf/X/+Bl8X6k6c4rBVD90PTlda6SAe/rYKFTR5Kmwu45889sf893vf7BAbFbsDhSqMWhjiCkyjhMqV+al4Ky1FlvlYSTPmaZxYp0wWp57UXR9g/eWYZiZp4ROEovnWzFMxFjoO888zxJtbjSNs8QYQFVc02C1ocwCEJaloOyswhkwjcX6FSmK4SyVyDAlainEJap9te6JUSzNbevxOeJ9Qy6ZlILEui/mlxDk9U5V4kcl8r2SlWOMlZCD2FPRrFrZR7jfj3gtMY4pVWrMzGnCO1mbKhRd23A/zRz3BxSQQ6IaOWe9s2hdJAYsF2rIxDFgnaZtG0KuhEksailKc80cwnKNshzHmRgzxmlQhq5t6Gpls+q4LZVhShhVsK1nfbaVOF/Vst8dZI8kTQLSU6EW5qzIIUMGbwqdVzgNbdNRQ2SOE1lVjGnoN2ugcNQSVzXFiLOaw3BgGDIoTb9eMYdEDJGSIqWCqZU0zSjv0N6hnCVURVreM4umKocxmmkOxCIgVOc9OSexdnQth2Gm71eMwwgqo7RnGmaM9eyPA4ch07UrqFGi7bRmmBLzGGhWYkm0zhNyQXnFYU7Y/YDKBeMtmYouijBFJh3ZrNYYYxinKjHQOTOWCeUspEhjrcyvcmUYJ5xvFkuNXGpt47BGk3MVgFgbjKtMQ6CEmVQSMRY225bNesV4c4O0kVXG40BazC3aWMwCSmitWa9bjNLsDgNFFYqWSdxcClkLzHp/nJmzWL+3XYtvGoYxUKpiN070ztN1Hc459seRrrE0l2vmOUqcppKIvhwKRjs0AVUzfeMxxpCBpu1I0w7TaYxSOKuZYqaWwta3PDpbkWMg5UKMBa8M2mimEHj67BqjFN5rjDGYxQwVE+RR4PAUIjVnNt6TU2Y3BYqqrGyLrhBzoWkdscj1NuWM9XL9dc4CYjDKKaNV5Wtf/zqX5xdsQmDLJevNhoV+wbqG8+05ZZYGpzfeeIOvPnvJoUzLva/SeoNSmhjz0gwpd/NcxcKol/UEyL8KRd/1xJRAI3byZSSXlmjQSDBa9ixTWeaXhsZ0/PwPvsB32u9gG0uXGn4u/RylqbI/NwVu1Y7WGtq2wy73gpDluto5K/BwCHjveTAIVTEMpZSXvUSJiQ45068zjbN4aySe1FpyW2m7lmkKEmNXK94ZuR8s8WT8EMR9mtUatYAuVayDbzw6p+8a/J2T2GJj+eq/+yrzAjEqwGqDtxbr5HxSSjHNp3nQae58+l95da97mFctb8jJ0HoqIKm6fPdVQamyxKqevrREVWcqReUH66miynyiFIG1SyHnRI6ROM+EEAjnkX7V41yDtU5MacqgjbwrdYlwO00Ia41YKxGoWS3rL6MXQ1FD0zTs9wemaRKbZjnFXsvTfPUUf8jCvvxA4dX3c4xi9yySApDTCQqL+MbTpMysZ6CyWnWsS4/1Vj6P2iCBqrJHX7JE00ojiYE5MqVCCGKat7ahX8m6aJ4Cc4ikDCX/yQGI1+P1eD3+rxlf+MIX+NVf/VWapvkT/41aK1/72tf48pe/LA39r8fr8Xq8Hv83HzlnvvKVr/B3/+7fZbVa/ZE/a4zh85//PF//+tf/EAfx5zeaueFX/vdf4Su/8hWii2yGDf/d6r+jPq5/KkD1xzmMMZydnfE3/+bfpG1bfvM3f/M1qPR6PIw/NqR0mrjopQMelg17BUoVidJAigZKG7RW5JIfYBxd9MlOLl0ZywJVFyW2FqNxDZSi0Fa6NOd5QmuD92bZHI8Y63HOEaPEHRgNOYlqmlofzEmlaInfCIliCs47qlbUqik1kVJ6gKRANMAlJLwXdT8KnHeokCgpo61j23dLDFwUKKsUVCk4JxpdfSpGFCXd3t5zGAZCydRcsVrhnEEZ2YSRDQdFmQpp2YTXWpNCkE7KWvBNQ9MZGmvJWSLwjDZo68lZin5TCjgtenpdCqVqstI4JR1HqQLOoowUXbSTzHgSxCpdvbFEKorDMdE0BucaukaLGr8aYq2MOdP2HWMJlJTIpRKSGGm0E9NWjJFQEqosnU0V7g8HYixEZLO55EqpmZiSdPtpzWqzRbcWrTS7/Z4hzIzTRBgTnXK0jYEa0aVwDJGiHSZlMIqxzjhrud3fUqumsZ79cUciYb3HKYsyhphmQgKrNDVLAdFZAeyMVqz7Dt93hFyIJWMUtEbzU+82bM4m2vOEsizd5wGFhmpQVj1orGVrREPVECs1JkrpePrxyPObgt1safsVSnuurvbYNPHGW49wfk3btMxpYucndmOkaI+uivF4pD1bc5wCJUZKahGmL2N6S+s6mDLPr6/wmy1tm7h41FGr5o2zLXe7kdtp4G5fSapC6xhT4eWwZ4gTm9WabXfGbr9npvLm9hzdNXz87AU1J8Yp4VcrCBJB9+iNS549f8HNOPLm5RuUduJsu6JThlVjUet2iSbxzPPEZuWIJrELI8ekWK+31KyZ0sSZS1AT20cXvPnTb/HN33/K7hh5fNaQ5kCqCnTlbOPZx4YXtzfkMGG1oTGKmGQDVjeGq9t7cobtes1xnhhDogwJEwpWa7ZtB9ZLbhMzuVSMXmOVYxoGVFqgxLYlKIUrkdYonO5QIZOtprtcE6YDc0z84MOJs84z7QcOIZBVYGU9WlcKI4YV8XDkzcueROVqiKwaTZMnbmOmXW1Yt45hztyNM5/cbBhu7+kM1Fg4HuHici3GMgxeFT7xyXd4+sFTnK40fcvt9ZGiDevGsvYN2We2Z4/Z3d7QlQadI95qmraRrU+jGefCZrvGKQdpZtVJl/Pd3QHbdnKdKjPaeW52A1Ypuu0ZOR1ZPVpx3AtYdRwnCpoQLal6+s6SY0eaEod5Al3xjaX4TB0mSs2sqDRescuJxlkabcleMSdNyoXd/R3eao5MKNdQh5nj4Z65JLZnj3CqEHNhNww0Gh5fbnh+e8fZ2ZrVpvDB916QDhOmMRzGAylC1zi2FytMY1k5w5QGiitoDMNHV4xhYq6ZcLjlGA3GFvyqofFajD+mJaqJ4zjx/PoOpRo2W/m+14rhMJMpXG46YkzYxtG0Dh0Lh8OAahoaVXBVM6RIiYbmYktMB1JUfPjsFmd79ndHpppwq5am6Xn57BqlC33rSECgcH75iHE/cjhGzNmW1fkGTSE4zfPbPUYbnj+7Jl0+QilL9Yr721uI0PeOUSWCqayd4vF5z/E4QV1RjObRE8VwGHh5d2QIgdW6wzjPbjdzHAfWjWLK9+yGmd5t0NrwxtufoB4PfP/pc0yB3nlqSoTdJFAz8n7NKvD08II3TeH6gw/wb3+S6gzOKUIcWTWK//IXPkOYJ2L4mJfjC+aYsBZqbSlV4duWKRwFIAZCjKDMEtta6bsOb2RD/+7mnrceXbDuHWjFcD8yzoWuazg/P6NrPHd39zTe8eLlLfvjQMqaR90Z8zijjOY4DeziyMoZiJVhHpiVwZmOZy9v2K5bzj95yeXFFuMh1EIYZo7HoxT0l3bt3TAwhcTZdovThUbJZtIhBqaPX7IbZjESbFc83q7p+pZu5RnHiTDN0hmrKqRETYVZK5rGY3QlJYm90dpirMI7JZc3KimD05pN2/Jzn/4kjx+d8bVvfIenhxtSlq57pWYaY9C+lbgAp3HbTiZnd3sOQ2FKYrKEUxTVK3CkKP0wl1NKCsSl5MUyeJoCvOqSrg8b8CdrhqJUzZwLSUHrLK3RaCrDAlFVI/aclGb295F5Htkf9+wOe65ub3nrnU/w6PEbPLq8ZNX1OGtpuxXGWeZRkZUmpRnnBXRDzZSSqFiM0+TsxA7jHG3bsN2uePb8BVdXNwzjRIwCIVCWiAaKFClqfQCzTnEqAt9DCBOlJEpxxJyJMTLNA8PU0R4PHMeZTbfCGEAVxnDJerNitd5wtlrROktKUWxBTolJwntSthzGHfeHyG6YBZ5SGms97777Jo8fB65v7rm53TENP7kLvbJEaPxwHOBDIQmBVnhYT+hXgNBi/BHQZ4GMKg8FnlfN9wpj9WLDQopIWUBmY5aO+yJwj9FiIZDjEeipLnWykgTaqUZBKVJ81FVAKlUfzEnlAZQ6PZdCzgLBnfJJ9ALf1SLGiMbZJQZO8KhSK7pUjGUBb+qrYuEi5YwpisW21Ffw0GKAsNagMqSSH8B5tdhE5JiqxL5YgzUC9ZzWc2qJgAFNKQLFafMKmql6iRFREuGJOVVqJUbkZD1RS7EwL9F1MRSMFeutMQJIURV5OQesc6SSl7gd+T3vvBgAlFxL8g+/wSjmECTOjYqzctwKiTw6nVO+aVBGntu8wBJpQppMMFgrthVVKyEViq00y/uScsIoMaYAWG0JMVDIUqyU6p7EvCLFvlrEUCXAGqDAe4dxlrwAcEqB1YrPfPotfuEXPkm7UShdl2vkqVArwNtDvNsJ5FOK5UWjVMt+n/je+y/4zg9+gNYCbh+HgNGJft1hjBf7UI5MJjHHQl3MTDEEXOuZkhTXa7VotaxcrMIZB6lwHAeMb7Cu0HVWzJ1twzQnxhQZ5yqfE6uJuXKMM7EkGudpXMM8BzKVVduirGF/OAoEVgrWechiM+tXHYfjkSElgX5tomkcFo0zGrU0BdViZd3sNEVV5iwEifcNtQos1miLItP2a9YXa65e7gk50zWLBW2h/prGMBfDYRypWWLurJK9CG00ymiGaaJUxKKcEiEXiAVlJApRWYs60YuczHteAL0UUUUst1hLVqCXtbYxFpULVSts5ylZ4I+7XaRxljRHQs5UxOalNFAjCkcJkVUn5rEhFDoLtiaJdmscfnkvppQ5bzxhnLCaJSqKJUY2oZF4vu3ZhsP9Hq0qxlnGIVCUxluN14aiC82mZx5HLBZVMtYozAJSohUxFXzjxVSYE97Jc5zmQFV6ue9miZVUmsNxxDjp/nS9IyaYFhgtlUwpUDEYY3CuUIsmhUisBW0tRRfZ94kJqySGq+iCXuwpxiiK0iQ0c5iwWjHqkVxP8GSWCGDncVqMNqkUhnlm07Y45cmlcHa2Zr8bmMaEjplcxaSjlKbpDUop+taT00RRFWUVeQrMqRJiQunKnDJViaGkaT2qVHRVGCMG7XGcsNZjjBZg2hviFCmq4I1GK01eru3USooRjOxneBQThSlGGiN7BaA5HGe8N+Qk94JKxXnPNEzMacZYAcwL8nc76zkeBqoTE1pjNetSqNMsjYApcX+cFkuMkwjFVOgaAVirEePLqm0ZhhmjLAqD8qBN5n53JMwypzbOEmNhmqI0hMVAiJmsBCw1vmPVNNzf7wQqVEYufTGTo9xTUs3cH3f862/8Lv/VL/6XuJ2lMQ7jPMpArRmqNGWRAzEWnj97xtOnHwuAqyTeVGmNNpWU48P9t2aB5ktOaCeQh1ZK4rWUovGWqsVeOoeEUgbnHJvNmhgC4zSjKoxzIKVMZxpKqayv1/ziv/hFcpIYyKftU7ZfuiDHhMYwzoH94Yj3Da1vYLOizc2DUZLFrKNyopTKNM1Y52isXgzeEse3HydCyqRcWK86qre03tO2ck5PpWCMwi3QSs1GbNh6mRctc9rTfV1rhVmIrFKBIuDcdtXTtQ1XN3fw0z9NTpVvfutb7A97tAJrxSSoAePsw+RsCpGYTpb8V4WeHzYqneyaYsY6rTlezR1PKPmPfPF0fAuonqtYTo3SOBRW8QBdKSPmykohLqbSEANzmBnnie32jH61put6Wi92ImMMymjZa4YF4NYYa8UeVqvs+ymLNlUibrUYNL2zHIeBw2EghJm0RNS+Wje9mrw+oEr15Fg6Ae0CtOmq0UXmmyklYpaY6xCTGKC0plRpWmlaL1Z77/HWcoqc09qQldhCUYVxzEwhMwcxc8nxaLq2ZdW3jOPMME2E+Sd3PfF6vB7/OY4vfOEL/Nqv/Rpt2/6J/8YJUPqt3/otQvhPMzro9Xg9Xo/X408yrq+v+fKXv8zf+lt/a6nJ/4fHz/zMz/BzP/dzfP3rX/9zOrofHQrFex+8x//wv/wPVFVRVfFv3/i3/MJv/AJd1/1YjunPahhj+Kt/9a/ivecf/+N/zMuXL39sMNjr8ZMz/tiQUlniC15la6tFySsbSykmycCulZoCjW/wrqEq2fQF6cKJMclCUulXm69aIgqqEr1wjInW2yWGxGCdkU3gJIWFGJJ07hkeQCOjNNU4IOF9izaVmBLOeRrn0UYTciSjIGfpalNK4ue0REc4a8TYE6L8fWvRVmONpyrFtCwwtXVoldGpYkTXhNWGft1wnCdKqosdClTKtM4wlyjQljKEmKlVM89BuumNYi4F6yw5SzwaSoqw3rfElFA1i3I9ZxRiM0pZLBGtb6BmdKlMUbLslfJECm6Bx0Bjq6Fxlq5p0XlgN+wZQ2S9WlFMwTeOohSusVhtpIvNWOkH9FAmqKlgrMV4BTHgvXStxxg4Hma8d7SrnhoLJRRSyIRaUcZgjSPETOsc3lvWrSePM/EwY7BcXmwZxyMxAzNAoWs9KhfG+QgYKYS3HRhDLXB+saWourwGRfJCrSHOAYomF8PxOND24AxLUUNB8WhtH2I8FJ45ZcocUc4usXSJ7SqyvYi05xWs+qFOrgqcilmGpZ8LyCg0KinyvlKS5eo28PRpwK8uaZLj5dVAVTNZGc7PL7Hacbi+5a4ophiwxnK73xOWglnfOA7XNzhnefTOGf8/9v7s17Y1PesEf187xpjt6nZzzokTDRG2SQvhAKVxIiipSFWZUsl3cMUF/xUSF1z7DiSEANPd+CptF5XlIo2xo4/T7W41sxnd19bFO9Y6xyQgk5AOF+xP2oqzVuy115hzjvE17/s8v6exLa9ue7xvaVcW32Te/OSB86Cx6sjFxqO1oQ+Rt8cHQVsTOZ0TvunYbTdMc+D8cCQ4RTkPxOkN5xgpprJxnvnunjKM+N2KgmY8Z+bYc/nsOfPc03nLECP3xzO205zmM3cPgdWqlSK3kyL41E9MIfHsxSVbIs45itWcz4aSPNVE6jQyzyOqV1Aj6ERMhqI0VRtCLOhsuVoZ+tvAPCd0J8X7quE0jHztgw85HQcynhwDFrjY7pj8SCyZVbulVKjFYJXl2QcvOTwcaDYrKCI52+x3fKgdr968hhrZri4Y58S7Nwdso2hv9txc74inyOefvyGbjkPIHOKZDz54zs509LdH5gmqark7DkyHE8+vN7x5e0fT7TmfD/RhItsWrxztypHdjO46+mBpNx3GO16/eUOshpDgfA5UHti1lc3lno1r6Lzl7jxh/ZZpOHKx6bh/c8d5DqxmB9NIzAHtHdG2HN/c0njPzYtrUBPKOMqQ2G439KcT717dYoGrtWG92qBz4It3PY2B1FQOQ49WQhxpfOB47IkhcjwP6PWKqDXvjkcoQlY5T/d0uz1XlzvKNLNya4aNxAg80sNijsw50ijFut2TSuTP/+LP8fbuHW/vD6xMg7MZWyrGWGJ/xjlDToXjmHh5vWPse6xx7HYX4iBer/nkky+gQCwe7wxlDvzwJ1+w323483/uO6jBoA+Jfpo4nE7M8Ux7uaaWwvX1htY6Hh4mQkmUnDg9nNmsOrTpsEqRa+b5/opm7whz4DhG9tsdXlsO/UDjFTo7Qp6YrWOeIh6FWZqiucDYDxhbuVpteXc40VqPagyl7wkD+M2WVWeZ4wxWYVwLFc79gW212F3Hs49e0OVMdg3f/vqOi/UtYz+isPTjwIdXN4zTxP7ZJSvdcb57zTPb0W1X6By5e3XieBhZbSovry/oWs3dbMSh/sUrpnmAmysunl0wvBMKX7Nu2VmYp5GSOso4slt1rFzLYRhJdUbpAecMXXVUZwk5sr/Z0zUt/enEj/633+env/dj9h9cc7Xf8O7dAyHMfPzNl/z1l8959m/+kP/ld/41t7dHhnPP8TTjfeXmZsNup/CTYY7SEKg145sGXZG5v1TyEhdRsqLVnjEFpjnycH9mnBquLzd477m6vKDrVuQMKRfmOHE6jsQgTYGma4gRRqOk2O0s0zjj24Y8F4bTxBeff863vv4xm80Nx1PPIVTuzz3Yym635er6Aq0qt3dH5hioTkscjlF4Zzk8HJmnGUWmfu0l+/WK1mhs6+mcZV9ll9bYS44PJ9IXb5izRN9QEt5rcVQXETbkKNExFYnhDEGhKOy2HT//wcfsmy3/ZvdDvv+TT1DvMmM/EHLlcBqYxshu22GNpjGWtfMEM5OUIiMRdig5TKAeGwtqEXOURVjypUhEiILlyQ1cshBaHik6LKsmtQrZMRXGIrF4LAKMUgrKCu1J6QolMYee21shEz0cTtzfHvj4G2fiPHF9cSmRDV27CDKsXE/OVJVlP5dBtbLupxRFDKSUNGq0pms9203Hbrvi1et3PBzOEtmQErpqITsooeBI0+vLHUFdxC6Pe+aUI6rKc19KIoSJaRqZpplzu2a326A0hBTYDxdsxsg8R/abDd4aVFUSd+XahfYTOY+RYQqL8z2SUqDxisuLFUbvuLy45PbuyP3d6T//RPAnNEqpi0DpK4fQR2FQrdQsMVxPVAVjJIJDfSlwsku02aM46PE88SjaARbDgpB5RECml7NHFfpNFUJsqXWJn1NPfx5jg8RND7lI9KZdvk7L7y5VIjcUInDQStQ8ZolA+yq9CS0RHFUJKUmoR3pxuecloqgslC2/RK8JNUo/Npa1ItUiUXHKPlHOUsoLpWWJaFti5Iyx0sQsGWOEmkMV4XZaosnk3l1oBNZCLUJwygUK0ixGxPy6KpTS6KqFXmcsqsAcA1MW2oPEwkns9WOj91HEA4pqlnni8fUbhK5WRZyUcyZnOVNab6m5PkU7ZeoyP2iJfdNC9dALwSiHREbTtQ0xRiFUJWBpylMqMUW5b6pE+ixqQ5qmpVIl9ogq4kytRKxWNbUqQhA6q1Z1oXkpMBqlJJpPLWSslJeIGaNFvEXhow+v+PO/9C26jYjvn8RIfPU5UEtzculkKokOL3OFounHzA9++AU/+PEngGEYI5VEQS9UX0MYJ6Y6k7JEpY5BBENCMzLEcURrTbdtsNpyHiLGWpzTGFM4P0yEoDDMNI/UkVLo55kUC5Us0XHG0XhPypkwzhQjjeiSejHnKNgaSx4n6iLgLoh4LeVIt/bkFLBGROrTFNBOEXJg7AveWcqyFlhbySGREqw3LQ1Z4ne0IgRNLQZ0pqQoTjy1tO6VmJYqS60hF1TRrKwi1kxMBefkM6sKQkzsNlvCHCkYeXaBrmlIRkSCzjYivq0KjWa93TCNIhwQyRL4pmGrDOf+DLXQuIaYC8N5FjHYqmG1aiihcDr2FG2Zc2Uule1mTaMdcZjJEaqyTHMkTjOblafvB6xrCUFIzEUbjDIYZ6gmoZwjZI31QpY8h4FSFbnIez8w0diKb1u8EdHiGJKYn1Kg85ZxGIkp47JGZaHyKKPJyjL1A9ZYVuuOihC6asw03hNCYDgPaKCx6olsee6nZQ8ApWbCXGm6Bmu+NJdNw0Q1Gtc0DLOQQTSVWILEZK9bHEKmtE1LX0ZKlTpMKZmIIkWpAZUClxdbFPBwkjg0bUE9zrNLfKR1ljkkVuuOlCM5F5q2o2087qbh/nAkp0yNCuccqsLxeEZpTec9TduSimKe5f1KYQZvMErRrCzeO8KcSNpSyIRZKIqtl2dnCoFV26KMxzWOECa0sXgrc7sCHFqo5EucZWUhB9bHNUwIQ23jSKUyJRF01SgRh5SMd4a55EdcIUoZUo5YxIzlths6ayWqvGtZrzsOhyPOuKc12GvHbBP7qzV5HmmrwTmPohCGyDhGioKu0ay7hjkFtPPkIjFVsRTa1YoxidHPmIVynrJQwGrEr1Y4YwlRYiJREt3nnF6iVsXI2A9nvvjiC5wyDIczvluxWrekmIkh0rSaj7/1NdaXFxiv+O1//b/y2SefEpOsLV3b4L0YKlPKpCzXqI0I/0WYDwUlkWG50ighgeZcCFOgAHReaEveL3sFEZbNYalnpkzJQk+vyNqdpgfevXvH8+fPFrOjkNnPpzNup9msOmKKzFNgDEnqjt7Qde0S8RUptZCKQpuCQupwOWXO/bDsQyvObiks4mQMDVAUNIvQ+XTq5bUZKCWJaJtKLbIe1lKk/reIV8qCP7JWsWk62ueexje4xvPygxf8+Ic/4kc/+rEQ9nKQ6EIneyJnDEknilJL/PNCSVrEjl/9Dos4+lEw9bgOfnWdfDx+fPndRxPBI4EVHjOq1eNffPzn9OPSK/uueR7JORNCZBpndvuZ3S5S1msa77HWSp1wEbZlKrU8xqkJNevRmFtKXoyu6ikZwHtL4x3nc88wThK5XcpXeFBfZSl9KcB6FKk/vmChby7npyrXnpLUw0OIUn+tnkolxEjTFlLMpNbjjV3eByE+iiBdBJohpqckhFoKiiyEJu9omoZu7uiHiffj/Xg//nSMR4LSfw2B0j/+x//4vUDp/Xg/3o//Lscf/MEf8G/+zb/hL/7Fv/ifJBJ57/m1X/s1gJ+pUMkU8/T169ev+f3f/33+wl/4C/9/S1N6HMYY/upf/at897vf5bd/+7f5zd/8Td6+ffuzvqz342c4/tgiJXHb6iUn3SyYe4nsUFqTclxiyipURcosheqF/KPlofJegixiXpyji3PVWo1RC7pfa2pRpFKpJWKcFMhjiIvDWKHNUpyvi8ukpAXVXP7oQW4ZKS/0JK0oS5Z7LfDYTLNLEyDPAcpSpE7imHddRw6BUsSJvWRIYK2VQleW4leOihQiFIV34mqxxqBKAWdIKAoFYx0VwzAMrLuGkitGWfYXG1KYGY4DMSmUdmhlsQZW1hJiJMZE5z3K1CX2QQqvKYm7M6uEqVCzJWvNNM7kqFitt6ScISdSGkg5oxtPDIXTkLm42aB0oeRIGANRKVKVonDjPFVVOmeYxwFlLF3n2WzWzLNgo3VVWGMx2pJjxDonQoEU0d4ujciyRMUUvDNUVRlzwTciejrcHRiHkZACrbc475jHIM0WZZhTxjrLfrVCu5aQI3OYUbly6gc6ZVj5lto5qIp5nImp0rWerm1J+bF4mVE5k1OlXXXEmpcYwkyrNUZlOhW52kU+/LjQ7mdolgJIzUg2u12KCgmUXqhKZXGuV+aHkfyQiaXj+//bO4zdcxgT7wZYtWtiHsixcro9cHibybqy3m9QVVPLTKwzxjSUahjHmc57rlY7Vt7SD5Hd5Z55TsQ+0JqWMWvMpqNbWfoxEOKA7zr6UJhiRqvMnEA1CZMKNgXWu4btekU+TzhtCXHEZMexnxj6A13juXl+wdu7e5RbcXWxkWdoKLgicTLHqef5eodxmts5scqVxjVo06LSmdXKEGvDu6nS5cTXvvOS26Hner8lh4i5XHH76Rvmw8xnnz5gveNmu8Upg3eGw92JURnGUjl99gkpzqCkKOfbjl3T0DjF+KaHrMj1zGbdsr/ao50lpY6xKF5/eo/Bc/XsgvvjkT5mDqeArQc264ZuteV4+8Bmt+KbH39Afzoyh0yqGpyi6Vqe7S4Z+8Tr10dylOfbKctm0zEeB0KtrFcdc4qc7s80Xghg3/uDn4DSXF07Lm6umeaG8dgzPZw55cD+ZoNvLHfvevx8RukJ32lSHvj89QMKoQHknaVdt6gcOZwT2XhCODGnyKdv7qhxwPqWh/OAVYaSCuv1mqSk2Ny0CuPPHA5HhlGalO3mYy4/eM7nb+94eBi4MhtyU1FNi6r3tFZT3AqV4HQY0CXwwddecOwcd18cGXqNKrBrWubxxJwNJYx8fHNDXa/wbUd/Hyid5dn1hvrRcz79/qeEFDGm8uzqGZbM4f7A9VWHKz2/8HPf4Ftj4uHdG+46uH17ZLXdsGoMF89ueHj1jr4fpeCaFLd3Z/rDj2gayze+/WfYrfech56bmwtW3nN/98CoAsp6fv8HP+F6v2fTenQNXDzfMZw0MRRCqHz8/ILh0JNKoGbFZr1l7EceTg8YteLyeoXvHIe7ARc7DAmVW+KsUTphtGM8jzS6Aaso2kOayVbTbtd04whDwISZuSZMTqyMIY8TMc2sugadLSZN7DrDuTrynDkODwzGYlqD22xItfLu83ccH06sLtbsleNrzz7g83LLwzSjVeXu9SsShtIo6qrB7lfUFFm1mne3Aw8PPbVkfLtBofnxT4/08xm84mK3kRiC1/dYo+g2Hm08VWtefHTB/SFwOCQe3r1DXz9D10rnNcqvuLm+YLfb8If/7oeEYWa932HR+Gzo55m785F5qlzXnqnf8+9+/0e0ly0f/OI3+fjrl2wvLjm8OfC9+GPeZU3fDwzDzDhObLqGtnH0/UCJmZASWjysxJgXgp8mlMRnb2+5KZeY1rPe7JimwJwDYc50jcd4QymK66trSoEpDJz7gTBKpKyyBuMcKVSKCigtNImQAqdh4P44UhAx0zc+/pDNes35NKOsI9fEMPQMXnG5WWFLYa6K4xjIOnLZeTrtcBcXHM49X9zeU42QEG+mC55//SP8ZsOF96y3a8jSiDscTgxJ4nxkTxSgCPa/1EzS4to3utB4RU4SUXLuZ2pR7FcNv/Jnv8OzdcPv/fAnvDn0xJKxyoqwWMNq0+GMQyF0ipyzNFey0IKo5angLyILhaqKkh9TEB5j3B4d2EJDkBioijFf0jgVsqaqatBYSoGhivjHLujNWqRZpJdYKmstJRXOxxNxSvTHE4eHO07He77+8cdcX92w2e1o1x1d06AwgIiTa0pY90h2MSQbiXF+Eig5q2kaS+stXdex2ex49fodb2/v6PueFNNTYxBElkypS2G/CuVmaa6UUiAVjC6yl82ZHDUxRMIciW1kHAfO/Zntdkvfz+yHQD9OnMeJy82ObdcJze3JUW4BzzxlhmHE6Mh65fjwowte3OxJQdE0maZt2e+3/3mngT/B8SgEqsueSS3inCeRUSkYpCFYK4vwri7kVvV0jxmtqfZR9ITQvao0NZVa7PPqsWklpEtpLC0CnMc4kUXQ8xi1VaqQfSoSgfFIaHqsAeQiIqHH6661iAhiES7pJfakZKG8PQqGUGCsk/izp+dIGkfmK38HXYVIVuScYow0U/XSPLRakx+99osYKEYhigoNQQs9IWfiHMhFgTI8xuFZLQ2qUgrOLoLvXJ4IVUIzUUIPAigSXpRypmSh15Sal+jNKCIvI1HPIRbazoOqEk+SIKtHQkWRaDmEYpWW6G/rDM4bdMpP/UizUJ5KljMnVZrFymgehY61VKoWEi+LcExIOIp5oaDlkpf4OE2O5WnukX/L0DqH0oZUyzK/wRwjDmmsYg2xIgKoUnHOYK2IBYxZCAVVhAPWuaXZVxcRBGhVsWQudpbvfvebdJtKtY/niboYH/ST8UHkcUujUoEqlTRn6ljIteUPfu8nfO/7P2GcIkPUOOvJNaByYR4mplqpuuIavxiJMvlR0FMkfsxpTdc0eKMJsdB0DSkXckiYxpKqQjcOaxUxZnIG6xwx1yVGsYpo1RR0qeiS8a1BOUcJQiZKc0RXwxwSKUw4Y+jWLcM4obSjaxtp1OaKqRBKIabI2nuU1sw5iQBFW7S31BJwXpOrYUhga+HqassQA6vGy7/VWsbjQJozp+OEMpp106BRGKOYx0BSikRlPh0pJYk4EYWxbhHsKGIfZd6p0mhvu/USd+iIFfrjiMbQrVrGORDnwhQymmlpzDfM44RvHBc7oazkXClV7k1rLaumI8XC+TxTi10iKDXeGeIsYijvLKkU5jEsa5/m9t2DNMA7Q7vqSMlQQiBNgblk2pXHWMUwBGwOoOTrUiLnfoLlOa6NYuMslMKUK1UZSgmkkjn0I5SINpYxCFmsFiHyFGWZ55lkFcoE5nkmxrqYvna0mzWnfmQaA03rwCiU9eQy4DWySVjMJ8Np4OJiQ9s4hvOJbDShCgHSUBcqTKK1Ftt4IZnVQkiFVWdxV3vmKTDdHqgavJW6xPl4ls8B8G3LZvOCqe+Zw0zfCwG2aRztqiWHzDyM6JRwred87pnmM/0RVts1m9WG4+lM02ihaoVAqhGlHYdTT9t5EYBYjW8dqkptYB5ntvsGazUhiKmsbRtKqsQ4IxoYRdN5whxQypBTQBVDVYYUxCgXwrzU0CxFaYmvKhk6j0cTxxlXRXBtQOpoFcoSE9taR00StVeSolRFCoEcIlgNrmBRxGlmmM9gDN5p1n7FdrURIjEivhpColBIKuC7hlgTzonwrZ8mqQlag3NSpziPE0pXjDF4pUhzYowF58VkhtL4BjrdcDwHSor0wwgVjKpoZ/C+YbeVz6A/9iKC1RWd4Ad/+APCHHn+4iV1GnmuLzk+HJlC5NlH11xud3y4XpPnRI6VuR+5vbsjhsQcIuuuxXuPMRkmWU/Ucp7IpZIp6GUfMkyTRI56j3Ee3xSmMAudzxupGVZom5aUCnYRwYeQF6osWG+X+mjmk5/+lOura7SCmBLjLLWuh/OZay9kz5wKqARK/o1pGlk1DZuuJeZCyJWYC9pWGmOxjWFSkTEE6ln2ICm2rJWmWbW4hWZVSyUHEczNMct9YyRKTsygsjdAyf0i2uW67M0krnBWEWs0N/sta2/prGazWfPN7/wZPv/iC378gx8xj+NCbrTohYxZlj+KZY/8RzBJT5ykxcDwtGOUWq/6yt971PA+pu/KxnJRJ4l4lCp1ZBazhNKKmuvTD2j1GNeryCkxnMV8NU8j8zQSLy7YrDc0bSNUducWEqde9pRFtMbWUqtGF03OmqyE1F8WkZJdIuCc9/heqEpzCE8U4C9Njl95yV8RKi3vgNAvlQiuMotgL2dKymSbRQgYAk1o8D4Kwb5NhBRpm5bW+cVMXJ7OFApLzooYErUmrFWsVp7dtsNoSwgVY52Iud+P9+P9+JmP7XbL//w//8//RfSMWiu/93u/956g9H68H+/Hf9ejlMI/+2f/DK01v/RLv7SY6f7Do21bfu3Xfo3b21tevXr1J3iV/+FRa+W3fuu3+MVf/MX/IsHqn5ahlHpa3/7SX/pL/M7v/A7/6l/9K+7v73/Wl/Z+/AzGH1ukRBXhEGi8ddSSxaGjoZRIiomSFTFKo5aaaJWTYrOSIn5MghrWRsMidjLGSHoGCr0UJrxzOK8XxL5imgMliiNUG6HX5KWQ67TGNpY5BGoUh4+24q6lKqz1xBIF1Z0y3ju6rsU2WsQlSRogSmlc6wiTYMEpDmv8gs8FZQ1phBxnjHUoY9BOMQ2BXKXgPc4DaBFzHaYZkxIlRnKKNG0juHFVca3Ge0d/zsxzeHKT9edZakZNS1JSoA3zhLFGfkcVBK81kELGKg1aiTirQtt1VKOYZyl4+AzKiWCsP51wXpO8JQWhLjkUnTc4Y3Ha4T2UORMjuMbgirjnck3EIWGqJmtFjpmuUxgMJmeMV2QjMX7FOHFtGYNyEavNgr6GtvGC2i6ZmCJTgqwqvmkBRSkTlbxQrxIlVTKZ9WZDu/KokDBo1m1H23YcxxPTPEgTr1amFPHOkcZJxFQKtDNYpVFK4ulSgkQi5oQzjquLHa8f7igVutahVKLThot15OUHlW4fqE58X+oRCfHklV3+uyxiOaVRpZLvE/OrCVVWfPGm5/Y20V0YkvXkPIsb33WUGglpgGJofMvP/fzHvH1z4PWrVyhboUiTqyol8XixcHwI9OMJnMKahsv1HnTlan+Fcp4p9IRc6VrLxa7l4TgQ5sB+77l4vqEoz/2xZ7/d8OHLC37y+T3dfo2h8NH6mjhm7m7PzDHzjRcbtK40rccbTZ4TMUdIhuP5jPeW9c6xXnekmtjsO9a+JU2Rw7En18CLDy85fH4gVBjTzIvDhLUdm1Wl2jMqZXq7wVqHn2ZsTcS+Z3/zjCkpNrtMmApp6NGN4tmz5zx8cYtvHKttQy4e0zTcn+849QHn4WrXoZ1mnBJpjpjGYmvi7nakXa8pWQl+nkwBPn17pHUT83Di3A9cXW/ZNC2j09y9vufy6oIPXlxRVGaMJy5vLjne9jStwfk1Y38m5sBmt2e1amlyJoYZr2Gz3vJGK6oqHI9H4ly4/uACdKZ/M9CuOy43O5rNmrfvDkwhY7GklBnnwIuPPmTjLd//wSdMrBlOUhyfp5lpniAmdK1Mw8izqxXbiwve3PfEMbNZZcbzGY3CtY5M5fO3b5mnCV9asqp89slP+ebPfZP1haefLB9+/BEpnnm4PxNj4uA9Lii2GpqLFWMcsKVys97B1Ug1E7fnEzkXXn74gh9/9pphmpmNZbfdEWJiKpnz8Y5Q13zzmx+xX1ly8ljjWRnNPCa00zzcn8lT4PmLDxnzRN9PaCWEoecvduxXG15/fsv5eCJVmOcKOaNMISnH+XjCfvIab/3ijG7xvmF9ccF1gWmInMYTjTaEIZLSzDRkunaDGQcOc+b73/+crXOEMeBaS0gT69WWVDXTXJlDZLveMNqZdDrjrVuix2Y0C01BVw7zyMuXLxhOR4yVRoRvDdZ2nEPh7jzSXW4Y58g8RJxXrNY7vvOND/nis1cU63h+1aDeHbm97zmPA/vLLV4rjGs49gP384FGW1rfMoxSDN9tt4SSefnRDbev7+jvT7hS6ceA2m75xrc/xE8zOUncpjWeFx9+jeHtmWEK6Kq4P565fPGMOhfu54GmsdSk0CpRQuHhPmGUp2sK8xD47IvXEnehHevWMz9MvDtNKBSdaxmGieoND7Vwfb1HnzIhjdQ6cnXzkm//2Y/56asvePf6wLPdDduLS7797W/x2at3uP7MqniqyUwl0hRxpvtGaHxqabyDJBAVpEGrFIxh5O1tYbtZ8+zZNf7lM05TT2MapjExpUAMEag0jf9yN6Rm+jmQUqVtFCHOxFLISagjWguV5LjQBF69vcc3HV//4AN2l5G5JMZJGjPn87TM7w1GQYgFckFXLc3HmAghEfpIaw2NttwfR85T5aOvPaNbNxglQvBus+Hjjz7Abw88HM9443g4nAljlJiUJPssq8D5RkQ5uqKXSLZxnETAQebjD19iO8/3Pn/F7emEV4Y2a0yR2KRaCtZU1itHosWGREyFOUCuSZa8JCKTvAh0VP1SPPIYgYZeWu+lgFoonEsMw1OyAZCLNL+U0tTl/wq5ojJLpBVUrUkI2cQ6RyHRz0fCXWAcB06nI8fDgQ8/+JjrZ8/Z7fdsdmu8l/2FMQ3CxGBJbKsQhbqjjcRgxWDQSTaF67VGG8N6LcSjN2/ecH8vDbCcNLVmNIlK/uo2QGg/taJrpVa1UHQkSlRni8mVnDIhzLRNS1zoSsM4MM0jw7RlmgamcaLf7OnalubR8a81+2cXfE1lzucG6yI3Vx3PrzZ0zYppLBif8E2mcX+6C49ielcLjUaaVnoRGYnJQMg5SmkyEtOFUWhVoGZyEcKKVoqydKtEMAeLP1/iRrRGG3G51yIRbo/NHonLE4EJSFSiXuhH5CKnDC3NLOoSDbc4zkuWaDbrLMUs5oUir0wphbaGnJKIT6pBKzF3VKRZlqMI940WUZFQXvJivChiklAKlGZOGVVE9FNzlkZjFeGWtdIIC1XIP4+0ohCyRLRZS00SOZZTRhmJXyxV4ax9ohw9RdUh5wnvrAh/cpHfWeW65VwiNJiqZR5TVd5ra/QSdWIwplLN8j4ZIWtqreXzjWJSqUqawRa1RD8qtJH/jhjZUy9nKmkeK2LOT8ItFqFbyZlF34QxMpHXKu+9UuqJ1FtVxfsW4zQUmYedsVhrmVMQ8pn8MGmZF2pM5Efykn6M9JPIllIqhbJEnxu6tuE8DdS6xO+pglOw2zp++Zd/gd1lQ9X16ejwJQNChJhP4qTlK0qlTJV8TlAcP/zxZ/zu7/47sA1FW0rJyzPgCDWTS4Sqscpyfb2n7yfO57NE6JTHeVjWyVwq85QJcZbnShta36JUpWs70IacI7kigvbGMM5CmmlbTdM0VGWY5kDrPZtNy+E04lqPorLzK0osjGMklcLFpkOpuhiSFpJNKVA0cwhyjzRaaKuIecUZS0lZagBkNtuO6TSRqyKVTJgSWjucB3JAlUrUXgQ/OqEp5BBoVitSAdc4cqqUEFAGVqsN83kQYYU3lGrQ1jIOAyEUjKmsGjmfx1SW6HeNrpVxnLHeC8kmZeSpUhyHGWsSOQRCjHRdgzeWaGA8T7Rdw2bTUamkHOhWLfMYlyh3R4pBYg+bFusMplYRO2rwzjMoiRcXWkml27SgqoiSnKX1DcY7+mEm5soaERjFlNnstnijubs7EmtDDMv8mjKJZT9dIcfIqhNK0HkK5FjxrkgUfZW5rQKnvienhKmOoiqn44H91QW+NYSkabsVbWuZ54laCgFAGVytrBvLlCtxDux3e4oL6K0lDyMpJbb7DXWcOPcDJiqMLSLCmOKy/+rZ7jZ03jJ5BdZiUaj8+MxXzseBZ80KQGJbq5i6Gm/Z7zfEMdKPowhCs11okRm0I6REPvZs1lsoUI1E0/u2pc2FmirjPAkRSFkRMOvAer0W4iPwcBxonaUsgthSRbzgXEOqmZAynWrJWuKbalZCrikyd+cQMVoTUqJpO7xRjOOE8xZtFiFn9kwhUq1BO0Mc0zLHK66uriiziIuc92il6cfIOAU5lyzkn6o053FCo2msxmjL6TzQNA5XKo2TZ/Hh/ohWijxPhNKw2m7Ztp6xl7qZDpHVdovDcj4d0WimeaTtGqyxTHGWGg/LOl0yYRbTmtVCBD2deuoy51uj0VXRHwZSTjjrZP3WlTlLhO9nn/0UFNy8fI4xhavrHbcPR4lLnjNt67i4umB3+8DP/8Iv8P/+1/8aaqGoSiwZt9SrjNHUah75dQv1U+ZKtMyd4zSTUmK9XrFedQsdCSiKKSZyLZQi0Yam2mW9j0KKqrKfKLWQUuZwOHE8nrm42ANCfp+DUMkOp56r/Z6mbSXWcl4IZLkyzQmnNd7KjBOTkJiwilQSpRRiSChgMJqcCuOcubzc0XRehMpAtZb1eoW2hvM0LVHNkGN5IiaJjjaL+Bktr/UxPjcVEV+VjHeOFzdX2LbHdY6Lqx0ff/CCf/1bv0OK8emMYI1E5qFkb5xSXuLJlje9Lme4r1CFnkilT6Le/52uSYTri5BJvieUIZbvP+7JVRFB6qPYvC60VmMsyiAktVmEkSGIAHPaTazXG9puhWtErCNETiMb1kVf9KiJfyR6ap2FGrVE3Fqr6FoRqDZNw/l8ZhhG4kJVKlX2FU9iJfWlQOnpnqzL61BCZ30U4Jcie7+cEnnZv8YYiDkRc6BJDSllok945+W50hKLp71le7HBjZpKoPGazcrTeA9Vo3XGpCp1/ffj/Xg/fqZju93yN/7G3+D6+vr/8L/xXqD0frwf78f78eWIMfIbv/EbAHz3u9/9T1KJmqbhr//1v86v//qvE2P8k7rE/+i4vb3l9evXfOMb3/hZX8p/tfEoVvprf+2v8fWvf52/83f+jqRlvB//XY0/tkjJakVc8u1DFMcPSlOyFJ4b54lLIcZaKebmWnHaoHUl54q2mphEfELVxJSpFuyC/wWWA3ykouSglSvzNNM4h3WGlOoS05ElVV3sJRglxR0RPRVBoC+OXIXCKItyFmsMTltyESQ0uVKKIP9TSILB1oppjMQ5C2lmnJjjJE2OWphiwRQjDjdl8W2DMlCKRmlDDJU5zjTaYwxIv6MsTYVMmKclZsySK3gHjff0fQJnWK87jIv00yyREsUy5AwkGq3IRTPNM94acTTWgjZmyYL3xEnoB0Er1FxRRhNiQpUWXTIaoQvVkuT9qgqjIcUgrKecGIeJKWRaB7Zt0bWj5gQkNAqrDWGeJZLOOuJCpzIYdJZiHkajUaxdi2o0qUYyhZxgToaiEoaK9opQCpSMsWCcwxiJ4ZvHWdxQU8SiUUZzHgchRFWJBdztd/z4i8+F7uWALIWNXAV5PJZI4yw5a4zzmMZJZJ3SnI4DrWsoakbVzGptubmsvHihWe8nlI/S/VYF1ELS4tGIteSNLcKlWiv5VHn7gwems+bu4UByl0Ra5mOi22lAYmokStCBVdRieHn9nDLB/cMB6x30YHSiWbWElLEO9Fox9JFzyLTFokxG7yDEwDdu9rw6nNBNR2cs5MrN+pJpmLH7LTdXW47HA5nExjeUOREOkeftln4eGcLEmAt5zHhdWN/cYFdCTrq5eMZQCsP9mTKPZA1+29EohQe8WjHPkYu15WK35d3tiVN/QOnKqy/ecXp3Yve8opzl07szWwv9PDCOkXM/gGmwZmLbeB7u7slKk+prsJ523zHWM6EfuepaXm731D4wJk3jVzhvOZ+npXEcuby6YEyF49sz/XHGlIBbKfy6JWrFeQiYChvX8MGzZ8zjSLPdYLRi0AVy5u3dkbaxPPvgCt6+Is6Vw70lpcBFo4kaQqdRsbDdaYJtqGqNMZ4+FC4vNnz88TeYpsAPv/djzufEtrOgNdVpnDFctWumTWF7fYN2FoflO9/4Gj/9/Jb7U5DXUy0qFFIqrHc77k4zcZL5MU0RtOVy2+CcIo2Ki2cXKGW58A13MbL/8BpX4ZPPXrO5uqLThsNBHPvp1KO0YkyWt3dHagp0rRBg2kZDmPG2o+lWzOPMWRsunl1x5a8Ip4FxHumDNEU+fvmSmgsff+0ZRSVeuUQpiXbdMR8TF9Zh14bbYSakzOXlJYXM3W3PQ+lpWkeIiXe3t+ik0P6Kt4c7piT0mlavSWNktCNTDtjdlvVuIwVxv+UwBW6eX5HyFa/fnln7xLprJaJpkubYbDRZabarDTNguzVxNPzwk3dYZyCMTMNEvu+5uFoRp0AZ4erqgsP9AVUybS30J0ghcXV5RQ4zeM3Xdpd8/ulrhlpYWUWeZrzxfON6x52Bu6qYQ+DubaJrLN1mzXA4oQOUbDn0Z1o8TZx4+OLA+dhjmo6350jShtV2wzgNeO2xtuHz2yMpBTbbjusXa5pGMxwV/elM6SwvdyvG88D+6hkb13B7+46+FEycuH9zT4OFaLCmoWk8oe85jw9YF3HK4oLh8HCipvJUhN+uOq47iXV4CIlxOpJSoWqLq5F14zHFM/UjKWYyQqNonUUXw5QylIlatpDBkklj4HzsuXmxYZy3/PZv/i8c3z3w5777P/ALf/47/OQnP+Zwd2QYRqiGcQxYDM56adiMM8M0UFPFOSt0LitiAEMVyketnPozWiuury7Y+x3et5zcwHySppUzDRdWU8m0/gXvbu/4/O0dUwjEOS0pnhVjFX4hb1BgGCYa6/He8cWr17TG8PzFDc2m4dXrW8IUpcEQBlZNRwwFoyGEwDj0GGMljsdoXHGEOXP3cKLS8/b+wN3hjo9ePuP6YoN1LYd+4NnNBe26wSbop4A1jna1Io9QlvI+Rbr1KeZlfRcXf1UQQoZS6TrNhzfPuLja8ZM3d7x5e0s8T7hicI3F+EBUmY3TKKcZhpkpZrp9Q6LQHwbmIUFSEsWGCIWfSJgsruelGb+kKS0xBY/xUuUpMk4JekiESlUvxuklfquIc7guBfmUMqAwVogqKY6cUyCkmX7oub974MUHH3Hz7BlXN9fsdntWq/XigjYY7SkZVNUYq7BOkVIiVITKk0HbgtMaZQy+aehWLdvtijdv3vLm7R19PzDNEBcajipKGuIlCw2HRyd4fRJs1VqXuJKMzhqyRMjFGIgxEkNgmiaGoWcaZ6Yh0p9nNusV6/WKrmmopbLfNVzsn6PUFVolrIXGabRyGFspesaYiP1T3FTQy/6MKkJ0tURcPTrsjdFLrI1EjLEIkfRyr0gTUT8Jj+AxBk6zBIpRykLzKkIxKMv7n5M8c9qoRaxknihfj/s5hRyS9XLj5vJ4I0ujCKUl4kNJFORjNJiSdDSMFqoQC/Upxoyi0DhHiYmc00JfqqQsgracEwpx3CuNNNSXM1bKEhWtluegfOUeyzmhlEUbcfcrLQKeGAoYhfMOpcWkIeI5TVzoAmYR+aSUMEbLPLE02ZQCbQxqET9mFKosooaSUNUun5cIch5j6qhKxGZZxEu1ZGJJpFyxRkRgCgc1A4/iNDnvPYnSFtqC1WpJRasSMY7CawtGoiRLlWiaXDUSLVlRVj2RdLWuoI3QEpQixyT3yqMATUFIEu9dkPmybTwPp5PMN4/be7k7yKUQl6i8WhVKV/QSA6OUYp4jVluqSqgqMWKXFw2//Mu/wLMXKzBLDJl6JCd8hSi3COUeR62VGqC/H0mz4iefvOLfff+nzAlqFsEGSsTGWsnZU5qmmvVqTUkwTjPaGCCiVcF6EWJoLQaWEDJhEYmpUtGNvMZ913KeZ7Sx2FbEd53viDGjW8+q9cxBBAfeGGqu5Dmztg0hRWJOpCqCV60q3WqFdl7iq9u1COqmQE2RqhSmsRgW5p1ypFRondDAhiGIkAo4n3rCEPArwCiOo5gBYl6oETGCknjBxhqmcSIpKH0PxmAbSyKSQ2ZlLZumgZiJRWGME7JUSEsEZKbzLbFU5iEQ5iTnZ6eEwhhlPVWAN4btekVKCes9SkHEQa0M44w1mtW2g76n5Mo8ilmnNZqsIFtZ/3yjKNpSlUR2xyyR57vdnpQK93f3hFDwTsszYIQE0llHchW/6lBaop2u9juJcZ2zkJPQqFQpueKahimkhZoiIj/QdI1FayhR0a4bQNFpw6gL7bZDA4djj29bnNJM8yLkCAGDIhbNMAbqIv6oqmKdZuojRhm0c8teRDFX2F9ckseR4TxIBFItbFYraim0rcc3BlQhzRO2sRI9WRXr1jGETIiJ7aql7VpiysxTQhkLVjFME+N5xLqV7EfDLBSnYjBViIapZKpWNOsddYlpcrZBOU2zWXHqA6dxxFtNoTCNE13b0VlDHwJtI2IjYwymeoYpMYaTCNKnmYoiuETjDOMU0NZILSZlrBJyz/F4EspJ4wkxst7ImWueI94oSEJlWznDqvOUmKEW5lEELY2zUnvLFWUNIc3UIsLC6TRSsgikp2U9NM6jY0ArjVGWORZyjhijaNfyntcMtVTGYWDVtRJpWhUX+x3TMDCnypwiOmqGXMkJdNUiEC2FECeqEkK6zYYcM3N9jMECrTQr77BUEoZ+nJY42yUiS4M3TuLSKCKeIQt1zsg+cE4JYx05wfe/94fkkrjebunWDZeXG774/C0/GmY+/PgDuu2K588v6U89H3/8db7/g+9TlpgrozTWGqyzxFSWPbnsCVDlae2QSbmQi6IfBtZdR9s0T7XLNIpoRxlN03ps1jhriTFxOvcSuZmLIAUF08arzz7j5upiWf8KIUSsMYzDxFHJ+73fbenHkWkKsi5mMSrVR0E0LERCWdeAhdwI8xxJqXAeJqYws9ut2XQt3jshKFnDvtmgUEzjTKwV59yTqOdpc7UIlqjyfpQsJtVahUhpi8Y7z4trz3rdcTwPOKX5zne+w49+8IOFxirgLozUh1PKGKepevmc50VE+BVy0JdxqDzClL788knE86W4upbH88RX9t+LgUI2I1/+fF32diIyy/I8GIl2TbEwlkxKkXma2Wwn1us13WpF27V418g+TUkcs5x11GJShVo1afExyp5M6FzWiUnXWotzlrbxnPuBaQpLDOGXr0ehUFVOdTzu9urjOejLM1eui4heqUXgn8klk7OcL1MUE3GKmegz3iecszTOgQJrNbtdy34n53slpVvZwxaE2K8yWn0ZMfJ+vB/vx5/82G63/M2/+Tf5+OOP/w9H+zwKlP7RP/pH7wVK78f78X68H8sIIfBP/+k/BfhPEpWUUnz88cf8lb/yV/jN3/zNpfb4sxs5Z37rt36Lr33ta1Lz/29oKKX41re+xa/+6q/yT/7JP3mK4X4//vsYf2yRUq2JkiXiYF7Q76jFyZorxmqc1jhrnqIWrBMxUKXQNq24MlNE1eXQX6UhVRFXTdUGpSshRdzSYCkp4a3HWE1VhVgqacpYo9CqUnIhhcw4z+IQMlby2jE0TUtVUoTzzjNNkTAHahQ3fkkVUsa3K0oqZF0JOUqhRFuc0dSSUEjUirbymmIWAlKKCLVBWxFilUpOUhx3VqNUpvENcn51mJJxzjwJsVByUA9zgKKIc6FEoS1pW7lcr8hTYIqBKUmD07i1NNGokn+uK9Y6cWiFIIXPxqCU5e7hiHcO6wvGC6EghsCzm2vIEVUhDQmtFP3Qo5emS8qRlCPGeHIBlQpKR5yxeGOYSeSaCSliW0fIlSlkVqtWhExZonIoRd4bJa8pYVl1WohGVbOyK3IcUSVDMlTjuXmxpWY4nichI3Ud/TCjKXgnDdmqDed+RDlxAd6ej0wpsPINp/sDChHUKVVptaVmhes6qsoM84ieKxaNbhohLWmYS2XbOi62ga996PDbQHWRqjNa1ceKydII0aiqlvJQBS0FQoZCvEtQNnxxiNydNH6tWK+lyey3LUkpSgTnW3GdUyAU7m/v+OL2HevdmnFpMl9dbphnxRwjpWjieaYxDc2LK8b+TMqV4zBiQyLoCaUyK+fp68RhGPns1SuGqcdtVtwPPVkZakjkGAhTZj4PtK0nlEqkgtXEMrH24rA7Hk6srEXXyP39iTgECgHtPbqp7LYbHm7vmV+9Yn9zg/ct93f3nA5n/OKmnlPP/uYSZz0pJt7e3vOgC8pWYqokq5niBFGzNg1ms2K336CNYhgm8lxgjFhbadaeTz9/jVaaxhuMdhwfjrx5dyLFhK6FeJ5YN2u2G0VD4nTItM2Olx98xKtXn9OHI+Np4Hp9QT8W+tMMNeJ8ZawZXQ3JOK6u97gx8HMffMjtdOA0nUhT5e4ukEmsdytiqZzvjxib+ea3f57D/YBpFR9+dIP3iRQj3le8N8wx4Z3mxTc/wCrL3aGnGsNwPHLx/Iq3X3zKiw+e8fVvveDh7S2nh4Gvf/wcu2lxfsPzlSd/8jnNyrPfXfD9P/wR1UDxjv1+zXFOHA4nLi5vCPO4COEu2HrL1X5Nt/asuhWHuwOttZRdS2MbAmvG40TqE5vVjmkY0b6QikI7xakfSf3AbrNBpYDzLZ/dn3h9dyLpRK2aq8sLnt1cY/BssqepHr/ZkLXlMB1R88AqNqhcGd6daddr/OqS8dWRXCc+fHHBNPUYb4mqElLP9dby+d1ISgpDYQ6KNFQ++ugDTscDurWoIpEYN8+uoSR225ZYN7z64h7vMjfblmHqeTdPbC/XVBd4eOgZTzNXO8+2teTTQJwKL19e8+aL17RGGku7/Z55nmmWAvZ4FkKOcZa2qYR5JIZKTokPXnp2+5bP3tyTVcP1zRX9Q8/bN/ecUsB1hvMwE5OhNYnKJH5KAAEAAElEQVQXz1+gcBzHE+vLHWY+09dC0Zk+TDz/8Blv7w+8vTuxuVix2a2Z5jWrtuHli2vuphNxsOy7Hc8un1NS5vOHn5JLpjeZoVZigjD3bF3m4mJNPkiE1OtQcMpQp5H1do3WIvI7o+j2VzzcHaHxJA3VaJw2rFoh7lUnc9e6WfHs2QW6JD57fS8FV2TdTlTaVYvXjiHDWCqpJsbDiAqaeRtRWnO135CU5XufvuYX9t/ku//jn+PqxQ21Vrr1lvbyOf+X/+tfYxoL4Q8jd7d3TDHR14k0zjSbFmsbcu2ptdAYjUOidkoqoKHrWlJIpALHeibXyma7hhrxxvF8u6foyhAm0hyZ5oF120n0l3VMIXHqex7CGYUU2Dtv6byThlyIDOOI8wZvFZ99/gW5ZJ6/fM7Xn73g9eu3TAFMVeQMYQyMIVBKwVrQjQidcxbCR4gRM1umkFCitCDHRIzXvHj5kpuXzzAhsO46Lq92jLcPpIOIhr2xFGUk6kgh7wESN7BoPCQWQYv4Y5oS1sDlbk33Qcsax6fpNeNpwBrHuu0E/58LtXWy/I0TymuU1+hcqXlkriLK0Y+F9CXORSOCc3FAi3v5q82e8hiRVB+ZN0tvQst/KCVu78cmwiMNilLJdTmkaHk2vVkaMuOZd2FmGieOpyMPD/d8OH7Es+fP2e8vWK3WtG2DMwqMBRQWhXEeGwMKidt5vA69CDca72ico/US3XN1uefzz1/z7vaB81miOop6uqTltdQnIssTVUpeObVqiYZAaCA8NkPC/OTeHoeZoZ/Z7UbO3YrVqpXYCefpOk3beJqmQy0NPWsXzQeFVbVoNeHNHx+U+ic9ai1fxqtVhK66xHNUKkprjKlPkV+wNN6W+8lau0ShiUudp/PEo9N+od4ssWks908tRaJzFhGciMbKU4xcqRVyIeUk16K1/B4UxkpMmRBkjZAEkkSyLXgaIZBZaSBWVReCjzx3hiXeDp4i67R5PA9IjJrSizBPISS0pfZhjDTZrLFkoEonTGLb6vI+II3FRxpTyZVaRMinNXROKBSpZFIVMoPT7hFOsDyvoO2yv10i6awVau04h4VKVRZSB5SSWXcdjxGQKSZQUuxRj3CpKudGrfWT61+pvMwHQsmSyO4s9KkKMReJFylZPsvlHlh6cTI3ViVCiFopgFNOIrlrWYgphlXXSEM7SOybcSKIlthJg7UOlCIEMSMoA0MIxFLkrDPNKBBBHRW33EdmieGKOaHyIp4zBmUkViwVaJxhv7P8T7/yZ7l8tqZqofZ92Vv4UsWpUIso7enDgFjJY0HVhncPZ3733/6YVCVyy2iLbqyE2BShR2m9hMYlIWuehwHXONIy93Sdl+i95d4uIWG1wa47YgyUUoXkUQrZRxQFYxwxJ+YcOZ3OpBTQ3jGlKFS6XKg5klMhzRHrNHmhPWCEIuGMkIOnOeCUQlGWGPKMXLysWa33TMNIn8+0qxXGWKZhWmjD8uzlmmm6Vp6/nBnGiWmhoQmUST09u143aO+W2LuFpJOBmDG6YnzD8SSkUWvkXpymQD/O1FzkjB0Sznq8B1M185yw1rPZ7Dj3J2KaiSHS+ZYQKyEkQGF0FTJRVRStaVctJiautluGOBFSIKfKmKU+4honH/k4o3Tl4vJKBDcWtrsVxjwSWmSuzKWgjWK932CUCGDQijgH2nVHfz6w2azZX26Y+oF5Tlzs1mhvMcazdoZ6PGGd1EnulrjZarQI19PIPAWabkXOiZgSSrd4o1m1DusNzjnmcRbBXmOx2pJxxDlSY8G7FlXlmlCaqkQsPc/LGVJJvG3MhYfjQEbmCecaurbBWk+ZA65qlGtQxhFjJsS4EAqhhkwyBdesmdOZkGc2WmG80GaVM8wpsO48JSumLHuVlAs6Kazz7K19oqblKPdXrSIq3e1a7h8G+inSNRKxe+4HvDesNi3DGEiholXBW7mmOc60mzWwxHUh9TJfwSz3WkyFuNShnBYxSEoQU6Gj0nWOKcyMsbBdr2AWc8SpFDBQUyGngrEVZwx+s+FwOlGtxrSWEBNRVeYUWLUNmsL5NKGUYt0KjdRoTdd4lBNaua2atuloW8/h/sQcI1VXapJ9YCoJUwud01QsY0yMYyCQUCVjlMJ7T0mVKSVMI1F6RRsxvxlZS70xmEWoUmrBKkvXtmxWDQ+Hk6y1WlHSUoszGm8MShvGFKho0jRRQiXpjPEareD1qy+4urrhuX3Gs5sLfNvQ9wPWWnyz4YOPPiZMQjtq25bf/4M/YA4zU5nRRgRFLAIQWXMf11bZn4sQdyGN5sLAhC8SAVaBzje0eKGalkIMsl46J/uwJjXElJim8ERyPJ+O1JwlCq2IGDnEKPWPcYJa2e63bLs1pkgtqJYs62iuS5ypEOqpSiIl87L3ryKaSnmpFS48npIy2+2Gpm3FYFALq7YRsms/UWvFKEVWwi40Ri1RuYswetkwyOolC3LOQvfx1nC5WuEwHKriz3z722w3G77/h9+jHI8i/DIa+HIvpa3GLDFsqYogTVbHZc/8lWa8aJYeBdrqiXb1KEj6o5vM5W8tJCb9le+hFpKXkp8TwqAYbs2y38k5MU1ZarQhME0jm7Blm7fkNuO9xzqLfaRoKrkPtdFL00o9hswtL0Nisc2yt7VazhZt23I6n+l7mXNTXuhdVQTbYuGtyz6XrwjGHoXbhfJ4iipqiZwW4Wle/qSUiDHRNIkYG6w1RO+xxoqQ0MpZSi9RyFo/7UpwzoBKaP2+OfR+vB8/q/FIUPovFSjd39/zz//5P38vUHo/3o/34/3490aMkX/5L/8lH330Ec+ePfuPzrXGGP7qX/2r3Nzc8C/+xb/gcDj8CV/pHx2ffPIJ5/OZ/X7/M72O/zOGMYZf/dVf5eXLl/z9v//3ubu7+1lf0vvxJzT+2F0Mcctq0hK/sXwTra2IaoxG8+gwrZLTjhzuU8zMZUZR8dYu30s0rZdDVcriTHGGmIYl2koKr9Y7TDUoU4k5PBW5rdGC6gVimBfHtUNZI30y7OI6kkNqmGcoS7G5KJTVX4mry08HYaOlaJdTpsZMKIVUBOXurMQCpMVNbHwrjQ2l5cDpHDEk8Ap0EccTUkwIeaZrPKvVihBnTv2ZGAvWesAS5oJSWUhB55luiahSyoArtMqRcyXmRGM0GQtUNr5DGc08R2KKOCdipGEYqLlAI+5a+ewijWtISYrEj8UnTMQ4S8lLNIbVGONxxmCrWdzEmRQSzarB1sp8HHCNxSlNSgmvDCpl1mtxQVplqUt8AlpTisI2LVpntIY0BqwxKG1Z+ZaxKtbblhwi83mCXPEaHIrzFPFenOk5RhHYBHF/j2Fm71r2qy3WN8zzhNIKUwpuafSaVJnmgFFfNgVCzdQwc+1FZDWnyLWeuNwVXDuDkQKiWorjXzYTAPTinKryvwDJEt/0cPYcTzP9OWN1x+7yOadzZBwC6TSzMisexjMxR5SprLqWaAqv7h9QxrLdbKlZohTOp5GUNKtVy9xHhhDwOrLZt8yqcBwmUi54KvE4cLnZorwhK493DZvVmnrIEqfROJxShFgY4wTWko0V4dQYaZWnElGbjrXt2G47lK0cjz2n6S0aTSoR3TRMpdAajek0dIYpTGxKzzR39H0ixMT1fs88n0A1ODq812w6zzkm5lkIWqat7DYNOWrmKaOqJkdNi2W96rjY7PjD7/8UQmJ/0bG+2nJ6M1OmzKZdcx4Sd/czvu14+aLDMLHq1rz86ENCf8/FhedTPaNzpX84og2McxKKl/HcnU9onUllxuAhV1KJgsMukbvbI8o3OODiYk3TtPz47TvCJM7l5vkF831PyDPvhh5rLZf7FdO7E9FM9ONIGCZCCGx2G2qKvP7BJ1xf3xBzxOjK2niGhzNjn6i6I00zOmVKDBze3pLnmXkVqfNMQ6J1mts3b9it1uxe3HAaej754o587tnc7NGrPQ/xDQXQSfHq4cTu+iU1jHz+2VumWslzYN02mNZjg6AqVetoNpbOGpgzq66DlLh/d6RRhsOpR7eW48MDh77HdZarzY67w5l+milv3rJpPN1uj7o/kornYndBjYnPP5k4n3vadcfD4Ywez1xcXfLy+Q2H2wM//uknDHNgv9pgjWXlDR998wXdw5kvPrtF58x5ONOklrkUnF7x6osH5nnm4mpPnUemc2S1btiuPK+CzL290oSiSE3Dt7/xDeJnr7g7zehppLEVZSqmqUxTpI4jvhSmHIEGoxJpDrwbAroxzCVi2zWlFo6nHqUMcVboxjMMEeZMa700WsLMaZw4v35g4xy7jaWxFu81TaM4PRyxyWGsZ922XPiO05hwxvDueM9UJq6fPed0+DEpnmnLiuvVlilk3r4+4deeZ8+f0Q89dw8nQqmsPrihf/dATobbw0itmZU17D/+AMuA6id08ty/O7PuNBcbz9XNBdo4TvdnQqmEmNC6crXbYQqEMFGSxDsOKZKrwmRxiGtd6FShs57iFM8++oDPP3vNTnXonJhDz0Y7maNLxpRKVIXiChvfkKeZogu2s7x69YbLzYY/90t/DlUt1m4o2vH1n/8f+L+bSv3nhd//t3/Au8OBKiAgHg5nNm3L1eVO4lEWuk4t4uZunaHUyhQCc4g0yUu5OGXSqsM2HW6JgWqMl72ItYzThHaeD54/I8bI7Z3Eo5acJLZ2KXBb54QYaUSkMs2JwWZev30ghcrHz5+xXzWkORImxM2eIrA0FMjUmlCqorSsL7FEwjFQUTTeE8aZt/cHbOtQVXFxeQk54Zxh3bU822/JMXF3PBLzJKLwlGnbRpoXFVIpWGtkrwZ4Wwklo4wlFUWaRSzx7PKCtVvxw59+yrEfSNNMKAXbWDZe01gntDklhLQ4ZkYXRcRcwBi39NaXZvHSaaiPTmIW4Y4SsVLOIvyQMviXzunHFVZMw/Xp5yoKqkSfsog+KoUUM1YbjDbUKvGex5wIsxCJxuFMfz7z7PlLLi4v2G43dF2LMRpv7SKUqBin6bTBWtkrheCEWJcipSSygsZo1o1j3bZsujWd/5zPvnjD8XQWaoiWe1Mve0q10GCehFlFIrWEqCTOcq21NEiLOPhjjLRhJsdIDDNDf2K92bBer+mHE7vdjlRXVFZUJdETxmrazolQuk7QabRSRP2ntwipEELSI+20PjVyRLCgtQjC9WKJl6ae/GypIg6lLsRO6iL8E5FTKdJQ1ItIotQqogOtRcSHfOa5Lh71pXH2KDpPWaineolZlOvVy+e2CG9yfopbK0UtsYb1S3f/oqTRWowTpQhlLD8J1uoSSaWfmorKWnkelHx+1hiJkdL6SSwFS8RYzQv9wZFzkmjshQoFmpyRjp6ucs5YzmeSXSdR0bVCrkVidpb331grhKokzS1t5HmLMUoWjJEIOKMlQs0amWdTTItgrMJyjqlVqBhKK3Q1i4hGxAogzW/tLKpWUohLJJwi5SIRzaXgvBcRpNKUlJZYP3mGtHESe6IgpyJCNyXxbamCayylFHJIqFIlyg8RcBojTeFSyhJbI1FMKWcabWidX+L6JMrRVrn/lm0/KS1UkOWzlnOlEDhyEaJa1xj+4nd/nsurFUoLsUXUp3+EB8FTO1Y9Nl+Bosl9QAXD4dDzu7/7b0kx0262T2cfNSe8sowpomqRecxasq700wRK4xtPLXIvhVnMDtZZcszEOWNUxjeWTGWMEoltlmesaxrQiqoMxliJeZ+XZ2MR3eVSJQJay3nceEtJEs1YKdBYvHI0XqgNYY6EsUctTXRtDalWrFIoq6hOk3Oi1EjNlhAl8rFbNaQcUMWgcUI1VJqwUMa0Am0rjbfUokhJVpeSwaLE4OIbbu8OkAumdfjOM/eJnCreGkIqIt61lnbt0CScc2y2G3KcKK2hHmVej9MstKQsZJWqDGMIKCXPplZGBIZVYgB1zQzjjDIGA3Stx1jDQz+SU17EYi1pDJSaGWIUQlLjSP1M0YaQIjmK2K5pHLUU+vsjq25FrvIceG2I00wKBZSjJLn3yZmpHyjJY32BlDDLXmToexrnaTYrQowczyNlDjTrFm0bptzLnVoU5ynQdhtqTpyOA2kRPThrUdagcpY5zGqMVzirIRWJEWseI8VEFGhq5difCVOgqELXtoQQKSDi76Nhs1phrCeEgDUNrRcB5DBHMBVbGw7HI6vtmlXbkUNi6AdiEfPVbrXGW8N63bDaddwfespCygpzgAht2xHmmTkEEbS4RJiDfPb7Rh7LXMhRkYGsNJvVGus0/XxAginLIm4XsXCOM64iBCuthWpXK0M/LgTtstQXLDFFtIpC9KuKGApeg64iGsspUXLmNAaMNnSNIVUkAtaIi1alKMJFremcp4ZCrYaUM6e+Z7vb4hvHNA2QHSvriVWiGF2yQl7LmZgz8TxC6zGqkmNhnkRw0zqDaRuajSOee0y2jFNA1ULXGpq2xa8WCm2FkLNEgXkrdcFSIMUn2mDISWp+U5SosjlglYgcm82KHDNljngt94tTBo9lKknEyFSKKUKlTpo0B3744x+wu9pyOp65efaM/eUlGgfK4roN3/jOtyimog00red//d3fpaQs++UsRjhrZU2udSHwAFYbFJBqYY5xIUIt838uYC1uIdkZJes6fqEDlkLXtbS1EkKk5kW0ryohzvT9me12uxgMhBiZUiZpwzRH6qFnt1rReUdOkVgUKVYRp9T8VI8tyxygNLJWK6FsP5GGcmGaAmrZB5VcFvGnzAOrxi+C7Mo8C20ypSzifS2xrE9RxssabDSLiEv2EDmJSNc7y9Vuj9UWrQ226fh//c7vQBLSoNGy1s85oa1BK000EiMt1PIlvo36JYF1GfWp6CaLsdJ6Ee6or35bvlJ/9Hv/uy8WIqUIqpXco+pxHyoxmzGIQDSlINTTENhst3RdR9M0OO9kPdSPe8vFpGsVRSHC5STUz1KWqOBl/2+NGHu9s3jrOXBinCZSylTUoktSC92yfnm9/97reNJu6Ufhv5w9cikLoVLmkBQjwc9454jR472QgBs8FfskVLJGatqRhFGy10m8H+/H+/GzGI8Cpa9//ev/RQKlw+HAP/gH/4DT6fRf+Qrfj/fj/Xg//tsYwzDwG7/xG/ytv/W3sPY/LpMwxvCLv/iL7HY7fv3Xf51pmv4Er/KPjvP5zOvXr/+bFCmBvNff/e53uby85O/9vb/3Xqj038n4zyApSTHWmEfniMSppCwZ1yjB/pYkRSprDN4t2P4sh12t5EbLKSySjyrkY74kIIsztpCiZHNrrcgkVIaShKykrSOrSoyShW6sQ9WKNU7KvVoJ/rha9OJuKTmhtZHmT4yY6lGmLmjeAloiDKw1lBgJIUohpEocgDTpjCDCQ8RZKUikVAlhhqppvWO19lRlCSmQYiSGjDUSo5RLZZwFhW6NpcQgBQ61uMVacdhVDSkJ8WK76Yi60PcjfYjMOYMFt12RxxmvrCDtU6RohdfgfYPCsW43hCqo9xwT3kvR8nA4kUuBnOi8XzDBlZQKqmacb5aiXGa7dYSSCUFBlZgKbaAoTdGVpApzkoaJsQ6UJmdxqqoFP5yqUKYalsz0UskxgLfoqhimQEpQoziXQ5RCiTWKXBNzihhnWHcNXmtUlmKJ85aaIl4bzmEiZ3AVrDHMOVKzwnqPWTlSrpQkRUiKkqgmUzjNA6ttx94Enj0rXL5s0asEOlPrvLi4LSCIdUE6Ly6pXFBYVNbkXpFHxf0DzHqP3VXGY2QeEs47+jCTUmU+n+T9rJl0ChACduVpbCNY9RCZp4CxjmGQRqsNhsY4QkrM2dCHmaAyWls8UjQLVfHm4VNWFx37ZoWbM5GeddORY6EzjuP5iNaGq8tr2qrIVOZhEMy0tjhd2bQrLJ5wGLhaN5ziA9TKxWXHp6cBXQr7TQdZoY3i8sWWN68eeDicWPuMttCtN+KkxXCxbzkMhTfnnotNi23U0qhImLZhOI+0ysE0oRpHyJn7hx6VC8a3VKcIKUhM2U/uGFNiHhLDcEvR4nq1S1Ther0hTPD5T99xcb0nnx9YVYd2hsPxFmU8LnWcpiN3D3doA5e7DffDSFAN1jU4nXm4OzB3ij4mxnFkjUJFy7CacdZRVGTVNnz9xQ3fOw80zZY5FqbQE7+Ymc49GMXV82dEpXCtYbvWzEOmhMjrT14xponVxRbWmjEHiq8M93fM2XKaCs545mPE1zPzODLHzOXFmhoynhZcZbx7K3EsBlRj2O531BR5dn3FeDwzn2fmWEkpcL5/wBnHs5tL7t5kpmy4uz/ytatnrNqWn7y5pYnga+Hu7oFmtyVmiYo0XcNwmri9HzEpoVTict/SNpocO4Y5oHLi1Wef8fVvfkieRhrdsjWez+7vGA5nLnYNl/sdp9sze6dwRJ5d30hz0cGzlSOOE7lqVvtLDqeCrp7YT6isGdNMXhWOCtqmcPP8mrdv79m3HXfvTuQMb94OHE9nVkqoc+choZxh7Ae+/72fMvSBVed48dHXeffuju12RTMlts925DgSGkPVBu/WxDRzOPYoY9g2Hdt9R5xnQoGxKpqQ2bUtxzLz+vUDei6YpNC1SiRJBVIg1cwwOXabLU4pbt/doVQkzJGL9Yrx3QNJVdZrw81qz6GXqI1wmPDGMabEDz9/ja4a5Tw5JjZ55nXfY1drtIOhP/PBR8+wvWWcCmONWAtORU6fviaoyjhXvNY0KnE4J7I3hDd3bFzLu9s7WNbslYLn+w3eGt6+KxznzPE4o22k5oDBElG4uZBTZcgwDImqjpwOI3GMdF0rRMIw4r0n9YEQI6tna7797ZcMn7/l7lQYQsRXqNrx0x98Qbd+xvXNRyilAWl0f/1b3+L/+f/4v2Gr4v/7h9/jdOifIgyGceb6ak1jGw4PR2JIKG1l3dWPUVGGdeeotdAPPcfzmW6zpekmbi52XG62jKqKYHZU9EWEBc4qXJgw7hptDKfzSeLS5kCMibYBv+xDUsqMwwRoCooYEjHOaJV5fXckVUfXejadRUVpjKdcCP0oFJelUK2KYUrzguqX5mGg8PyDaxrX8PqzW1a7hqtnl9QcWO9WfOwMF2vPF6ZyGiNzFIFeLhLPEXJGxYCpFW9E/LFqHEPMnPtIiJnOWzyGbr9Hfcvwxdu3DKeBOEucT86ZY+7xWuKoVFBQKpWCcQpdNE3TClEoRBGGlC9jLR5Lakp/6VLXStYfVF3oMgv5RjAzT8Qcs8RHlbwQch73dyqjsuxLAxLZoY3BakXJkXE4EWNkHkb685nT4cCLD15yeX3Nfr9ntVpRmpZqHdqIk9s4LXQVY7FOhE45W9mzGCsNi5SoKLabzM31DYdTTz9OEvOhZE9b69JgUdLML19tJPBIkVp6Dov4RhvgsaGQIinMzGFimkbG/ky/6lhvN8xxIMZLQoh0oaNbd2x0i08OqywYoaw0yqHNn16R0uN7oZT+SpNtuRe04Iprgbx4xCUCRkwJj+8bgEWTa+bRFF8W4dDjLxF6T16ISUIUqhTZyhWJB1FaROdlEZkoLS57rReBulpiVLSShh1QikRsxSwUIxHI8ERoYiEImUWElLMYHapSQvRZIsgeI86Mlh8uRWLfHudj7638TM6khYygtUSrlQopJSoi4qnkRRUoz5Excv6qPN5nGu8thYW0scRyUsE0jhIzZjEd5CzNOrOc2RQab1li2EQ4Yo2QJaZpXqJhhOrB0rstpZBZYkOWrxsv15Ty0mQuRWgItVIW8VIq5UnABUKfehSH1rqcGWvF2LI0/SQOCa1RQIwS9e3y8lrKoyhMIjFTkbXFOYNBPUUQidAxY7TEkqcKpkqcW8rSolPGyBmxVomHMgv9K2eh4eWI85ZdZ/nl//EXePHRJcotSs4qQtqliyx/HukICK1CIfGWNUBNin4o/N4f/phziCQUKRa01Y9JecwLmW/WhRqzUDmciDadddRcFqGb+XJdygqrDLEUUlUS1b2I5owS0UMG+sMR1zo5+6Ys0eTWUXPFasMcJpTSdN0KuxDQUoxLM1ujVcVbh66WNEU6bwhFinhtaznOQsRpnZN7VkO39vT9JHHmpqA1WO8hC5HQt54pVPo50HqLsgqVCzkKvTfGhEVDSmAMuVamOUKtaGPBQCqZeVJQR2KRn41xgEXkpbSIEL335Ainw0C7ailhwiHCxWkeUNqgiyMkmaeVFhrUGDMZgzYGoyQiLFsRNMUY8SiU08QqpqCqMt5adusVdyGiVEMqVeJAz5kUAkoruvWKrBCBltPkmKm5cD6eiSXh2wa80PmqgTCNpKIJScSLORQyYXkmCl0jwlaDRZlKGnsRMCjAanzTUGthteqIcyCFJGK+kgnTiFaG1apj7Cu5KsZxZtetcM5y6EdMUTRo+mmQZ9M6qtIiRiswp0KMM1aBsxpnwWrPMIsIZBpGnFUoMjmKCSCGnnkc0RV22y0hJIyqqBJoXEdZrwgx0DYriULKBWscBUtJVQhEQYhNMU/ophFiauOoSmG1xtQilBoK93dnaky0RjGnjNaGROZ4PD9Fet7c7BmHQeIEa6XzmqYxDP1I9QajLChNnKOYipQIKHOMlCrPWsiFtXNUVRnnmYKBorBKaJqpVJKSdSxFIdZ4K8LDeU6UEjFKoWZFKAVlFZvGL/WWTJqSaD+04TRMIpQxVmhWFMZzogCrzZZpHunWLa5xzDkwZSF7alUo00ifI2NMGGVxGqY5MkRFUoGuKMIcpN5nNBZZhzabFeMgkfIhCD3MmIrCEZe1JMxC8J1TIp0jKiemORDllzOHWcTCZCFUGdhdrlhj6I+JYU7Mb2/5/JPPaL/+TQ7uzNXVM5S2T3sC37R865vfEJos8HA48MMf/GghsGaMhqZxTNNCensU32Qhl0mNUijvOUtU7xwTxokQc7NeSXSieiSvQdVGSEGLoEgpxTCOSzRX5e27W549eyEkp0VkklMmIHvNUmcxHzSWYRwJSfYmrTdST80ifo+LUPhxT6W17I1yXkQmSc4FphGzZZgiVUfaVYPRBmUL63WHd4Z+UIzTTLKy782L2FvWXom4NAr0cnYqiyAv5yJnGSXR2Be7HcYYvPf8T7/8y/zO7/w2MUViFDK/V3aJa11EYRo0ahGTKxH5Lf9ffVTi/HvC9keh8L+nQlqETo9joVgu36vl3/+RSqZ8SV9ioRgte5OcAnPJ5JRJIRLmmc12y2q1oulavPey3mojoKjlZ63W6JwouqCSiOZrKRQlwvZSCioriq10S0R9iPFLE8eT4H251q+85D8idq6LSL7I6ytqeS1Kfl/NiZwzNidSDETncMER24ZcWiEeWjEFO2cxZok6XiKGhSL6H44+eT/ej/fj/7zxXyPiDeSs+A//4T/ks88++694de/H+/F+vB//7Y0f//jH/PZv/zZ/+S//5f/kvKuU4qOPPuJXfuVX+M3f/M0/Iqj/kx7f+973+Lmf+7n/onXiT/NQSvGNb3yDv/23/zZ/9+/+3Z+pKOz9+JMZf2yRkrFSqEZZ7FIoM0Vcuo/OmlwKcRJaj3dG3L0UEbQsDpwSBMWeUqaGgLVO0MgpkvOM9wa9VLm1NihVSDlIDFMUZ3XTWEJKFKSo75zDLzEm8zwv7mtxkpSY0VrwxeKDK3jfoqyh7Tw1iBClaCmmGAUlZBrnyFkabq1xqAJTP5EFNySHy1qF2JQqQwqgFJumIcTM8XQmhyiO3MWhE1HUOaKNOL2Vbyip4CwLsloRS8R6jQG008w1MJxmppSpWpolEUc6jxgFtbGEAKlUWuPRKBrTMucB22qumoY5JPp+ZNutGIaZKSXQUmRJFbbtmqrhHCNaies0zPK+nIdA0QssWWmJ56sZaz2utZRa8K2jlkwsmXAaUblQXZbGj6qC+p8m8jxhnGSxpxgYU2G1bsmpsNu2dCtHfxo5HU80ncc0jmmescYsOPAVrTfc3z9IbFkqtK2jek0pEOcRbSxNUVg0VVnIFqccKc3c7PYcx55xDtjWLwW2kXUY+XA38XzfoH2gmIyqQtIy2lFUQVctfQX9ZXNBZQVjoYyFcKzcn+D7nz3g9h9yngrb62dUpTkcBhSerAu1hZXyaK25OwfOIaJrYpgKqrEcH84472iaNaHJ6DQDitXK8XAKHOeISZam8RijWe836H7g4Tzh2xWNW/H67S3PtxfsjOPN3QOu6bhYbbhZX/P69QNhDMxK3FVMmUSmeENNCZLiQGLqe/7sxcd87ec+5g/+4CccThPr7QVTFcGMyprhfsZ1hs6tOZ2ETmONYYyB0xy42K2wJS1zgOLh4czFxQajFb4x3N/3bPYdqq2YpgWj2e4bTmPgfuxR45m1dWwuLnn36o75rqCshpq42W2p2rK93NI/HJnnzF0dSSnx4rnl4fTA3etbrHNcbDVTODNOmlIVfqvQjWbjW2pIONNwOB9pXIdzhWQMU5XIKFcNxWtOMdDMhvv7kcYYSq588elrzmNhs9Y8WzUcSqXPQtToLOzXFp1WnI/iJHZtS9WOz19/wcubG1rbcnVzyenhwPkcePf6LQ9UrGpRKbJ9sWU+zzSuozGFKST82jGcBk5zonGVr334nNZX+oOn9R0lzGxWLWGcuD1NzFPPtpXC8cXeY1rPFzkTq6Lb7Jhz5fzuHqU1/WGgTxPXX7vm6vqai3Fmu2qY5oTP0DrLu8OROSfuh5GmQMUxzIlhnhh9S/vmyBQK5/jAj378U5xv8BvDcRwJn35BjYmGNZ/Ot5ymhI6JBOyuNqipUE0hbzIP9wOlRpptwzhEdKms24ai4OF4oowzaZh4E2aa62vaNDMce2pOtDvLEAqX+xVX+xU/+vyOt3dndE68uOwoc0Zlha5QZohl5uLZjtqtUBYObye8rnz8wXNiGkklcN8H8pyYUsJtWlxnaLzm0q9QRXN9fcXn7x6YjgMkicO83G/YX+xRSvPu9S1zLpAyzlaKqQxjD4Nn8+waq87ieq+WbtUSSyDkTMqWFxcdMc0kVakmcU7QjxU9Zr6z3hPGyOtPXnN3/0ACpnGi1Z4xT3RbqKalPww4W1lfr5hvew4PR9Z+xWfvXnHbn/BVY52j0Y4v3rzh5nJPs7K0xYtwlsLDecbYwna/ottsCOeRdWdhnBnPJzaXHdO6JZ1mVI6EPJJi5XK7ljW5aO7e3rGxltgssUkF7t880JuBtf0Rq1/qaC+34n4uilJbLvbP2a72tL5jUDO5ROYQiWqm7RXbzZr9xQWn84lxmpf2rzRqIVNqpfEOaxrGMEEKTOfIyVQuVx0r61htVlyuWt489FRtoERUyay6FZu24/U7yxQT85ToTydySAQFpvMUBTlXhkmi30qJqB4650nArDJ1njEL6SFnuaa8NN9zirJ2K42xlhBmEpUpJ5oxcLw98jZpqvKMYaaiWDkPurDbdGxXls3W8+ah5+6h53g4kzKMwyRRP/XLeKZaJPpBIncLSom7OpVCt65cbBs27QfcPxz57NMv6PtZBNchkWYRL0SVKBW6zUoaLTFJQyd/Gd+m61Lqf2o+6KeGfCkFheztSpVYVuBJLC1ik7qQlniKfROXtcTX1Vyoi+ipFsiqYskLNapSSyJOI8clTrfve/r+xPPzifnlSy4urlivErlbidPfKrw1WGMwraVpCpO1pBTl84iGFCNFadnfaI2yms1mw5wy51PPPE+QF/c8ImKofEmpQUkjocKXFJYqDYW6CFh01bL3KCKImsfA3HWEEBmnIJHFY+LiIhDSmlQyuYoQYdV0y3sujXTj//TGvWmllqgKaYqLMKhSMiwYI2nW5YzRFmP1Eh39aG+Qv5cEGfTkGNePJNciDV1jHqPCvoz9KFXufxGFIJTRJdJNlypnHVEbkXLiS7rXcj8ruX7pAtVF2KSxVj1FsTz+HaVAFSEZPT4LVhu59hBF3PN4faUu+2uIRaI1hCBaRYySC06bhcYlQqsEQrLVj3GIoHV9IkaVIsJxVUUbk2smxkxaiAG1FgqWGpK8SisUpkrFKCvNSC3PgTaa1goFLYS0uPHTQpZ9jHUD76SJG3IWcZnR5JAkdi3mRWz4SBCS16K1kUhv5P2nVhEzhYgqlWoW+hIimko5UVMSUYXWFFVIpWK9pZZK4yzWGUKIhClgnERhppTQjzGRzmG1ZpwmQBrG1pklpmwxtiiFLkrCaZSBqjFKU3Jm1bTMMRCzNOSNkvtlYw2/8ud/jg9e7FA2U3WROzbXZR4uQmep6nFyA0THRKrUWMlzZZgq/5/f+x5vbo+EpGi6NRWYpwgYoUpZcEqiK8eQCUhMVUoVZQvzFJbX66SZXQAUzhmmkGUvrzXWWgwK33gRd84RYx3GOPp+ZN20NNrQjxPaOhrnWbkVfT+RYyY/NkOTiFerceQiv2+mkGLkpt2zu9pxe3tgnjO+aYlVBDNURZzSEhvvmUMkK4l7zFlMHW3jnuaAqhTTHGlbj1IiKh6niG8cylb0Et3kW0OImSlFVIw4bfCtoT9P5LFKp53CqvFCnmob4jyTc2EMkVIqa98yzRNjP4g4oFGkEIiz3MPGCwXKGwulYJRhjjMmW7KGorVEv2kwRVONYi4ZmxTjmESoVCrn45mQKt7B2lnmGgkLvcRqaJxGtY55ll61toaqNKfzic16hdVGGt3TRKAwnHtmEJNNyfhNQw4Jow1WKVKpeCckrJAL1sB21eF0JcwRayw1J7wToe4YpMHtnZDEutagrOZUCgWN841ENQ6j0NemKGKlRrO/2lOy0LhjTIQpYRVMIT5Rj/Ic8LYhL89e1Ao9BGouhJS4f3jAO4VvJcrtfOopudA6w1ghVJkjS8q4ugh8UsZ2lhDSUwSlbjRxEmKu0oqQZC5Jj0JW72l3W8ZzT00V46BqEWNfbFv6MTDFzFwSjZH5XVWJPlRocgjYztGsOrwWYWEKkXXXCu2GzBgjKcoalak0mxVKVxpryIjYjbkyh0wOkURBO8161WKdZR5nTqcJVEUvUZu5FuaxopuOtpGINarCaIsymhRnShEhd7cyzDGirWLOEY1nDAHXrFBoxvNITok5yvmdDGMCtKxBcyioMuEaTaM840LCm/PMcRgkRkxrrDJoCrXv8c7iGiHNlSIClFwTSilWrYckYs7OeqaQcLbSbFrylORspMSQ1bUNlEJSMA8zXdOgrJZ4de344R/+gLVfU7OitS2r/UaI5FULSc52tE2Hs56vf/wN7u4OvH7zmrz8DmsNjfcopYkxLKISjV7m2bqYJ61xEq1KpcRAqIXkLY11KKNprKFHEWU7Q45C7Gz+f+z9Wa9sW3qWiz6t7EUUo5jVmmvlykxn2thm2xiDXAgDEgfxAywbxBU33PKj4BbbEggkEDIgkG2BjwDbaZxsZ525yjlHGRG9auW5+PoYc/mwAW85scHMJmWuaswYET160Vr73u95vMcaxRwipcLV6ys+2n/E5957F9e49fmIqESLRqVKVQWiBODzOm8OqeKcldDqZ2hDpWbRjyIh8KpkzpJrReVMXhKn44DXnozQdrZtR6lV1Jx9i3eapvWMc5RCQBSNZl5piWqd31RJQFPrii1fw965gDYSWDrb9vSNxwI//VM/xde/8XU+/OhjSpKwcwESQsRSD3P7Iv9NHo3qYcb3mc+p/gB5UK0/V9f0/0OJpn7m/x7/Xq381odi0krrrOXN7wBROD6Ez6krVanIPSbGSIiBEBY2aUvXb8i+4KzD2VW9+qC+Ng5jZD87l7Rq2NS6Dlpnl1oCcdYa2rYBpdaweH7U8D6EsT4bVnoze/gMcekxkpdRVUn4u6qVQJpJ1uHW8HJKEvgrbSY3DW6dw9VayVZoouVBp2z+dBa+3o6343/V8f1QvIE0Hvzar/0a3/3ud7+P7+7teDvejrfjT+eotfIbv/Eb/MAP/AAvX7787/6s1pqf/umf5oMPPuBb3/rWo0ngj3v8zu/8Di9fvuTHfuzH8N7/ibyH/9lDKcWXv/xl/t7f+3v863/9r/nKV77yVl36p3j8oasYTetJWZQUqVZKMqSS3wSJYhEsda2y6TNB3ze4xtErWExmWhKqKrS2FC0qkloLzhlqyRQtxoqYZHNFs+rLMaSQ0BqatqHvOvQSWJbIEgO5RhpniXMkxUC33cmaau1aijnhrHQzNUbw4846iAVjHMbJphdV9knQkEuk1krbWJY5skTRZimt6JzHWUMIM94oVGdpux1FwXEMpHmRLWRVySVRjXT3VlPouy3GGqZ5wmuDazRFwzwHTGOIOeJsQ0iZ28OA9RarLf3GE5Mo187OO6FFDIE0BmIsUpxeAkZL95x1DrRhnGemKZBzZR6DGEF0xeiK8RaPgyJd3Wcbh1GVeZlxxuB6SwiCna9K6EG1CE3LmEqOkWmZSUnRWE9jGkIVPUpZKUoX+3OqNoR5ZkyRrZOCU2MM3bbDWkM18r3kkDlNC9uNp9l0zCmiq2LTOOISuL89MjQGlF6LDpUnZzuIiew9p5zAGZYiGx9d48gVhtOA8ZbTOEII7JzGtg7nKtud4d2zmctz0NsMRqFKkuLSWvBUpRCXiEJhvNC6as7k60p8vYDyjLeKmxtFd/GC7uycMYzknHGNZXt2xuvXd9J9rxWFRF4S5MpExlbY7BuULShvCSXTxgA5YACrK03X8Mx3bM8Kp9MghDAn3U26FDqtqFoz3p54/8UztIaLs54xThjdUQIsvnI1HNDRsN219P2WoCLj7TX7psW3HXfHgaXCuCwch4lz1zEvkRBh23q88bSNoSpDrAUfDGFcyAVSjFBF4aRSRhnPHBfG6YQ3hmnKpKSYU2UZjlAt05hodKVUD8VgGsVu1xGXiRQz/bbn7vaEcY5cZj7//B1Ox5N0Z256aq08eecZ43Hh/tVrmu2GSOHb3/2IXePYbM4IDowyhDDRbzo+//n3oRRub+4Y54WQRX9QXWLT9vS9oe8bpmHGOE1ShU23pYTErmtpuw2nGLgZ7uk257iSiMvMaRgwrRCGbKkMr14Ta6HRPV/44nt8fHXF61e3+M4xxAU3Bm4+eM3t/S23Y6YzGt9ZfOsYg+HixQUfTB/TKY0qgVILZ+fvMJxmnLZsdh7T75nvr1imxFLv2W9arm6PlCxclzkFPvj4Y3qzZxwiYTlIp32Ad3Y73H7D9775Ie99/gn3r24JB0scI6WfUfOCq5Xr40BNkathoN9vqVPlNEZqsVyc7Yhhki7/orgZA3G9lw/LyJOLHV9onvP67p7T9RGLZYyZOZ5QVvR/vpWO3tf3I2dn58zTQi4LOSSePdtze3fiao7klOjOdmjd4NuGzbNLbq9uKAravmU5DqSc6ZqeuWaUgRRmwjIwhcr5pmUeTwSd2O3PuL655jQvbHzDcD8yTpHnn38Hc+453F1jnGe/2XIfFtRSIYE3im0rXcrdpgdXWA6BaThRciRpRayG995/yjjMnO5PWK1Fm1gSlxtP21pa5bh9dcNu5xjvbgnLhDYNVUW0zZzt9+RSGYcDN+mA0ha/aTnbX/LxJ6+ZsqUQuTse0N7QXmzoiYyHE08uNxzvB2atSTFz0TakcisazMay33uq6hhO9/Qbz3GujKcRS0NqFGfdhqkk8lLJGRqnmKcMxlCVKDfH+wmA3cbijaJtWi6eXnIcI/cff8L1MeC05/Z2IkWN6TydsTRtR9uf4Q6B8zajIhynyBAzH7z6iO3HLV/c/VmMayhAniPT7YEwBVTV9G0PKHJciDkwzpHCyPnZjsvLC6Z55DAMxBipmkddU1WakBOqgtUa7z1xWri5u+Hp80u2nUPHhmkj2rAwZXBe/ow27HdnmGHAqUiOopAzRqFixiA6QJUqXePZ7DeoXJjyjFaaRil0lY13awyNtczjhFGWKS6gCjHI3CmVQi6FJSSUt8RauL0bCENAWUffb7gdJp7sNlxebOg2Lf2mw21bbLclxU9EFZGrEIHQ1BIxujBOM8f7EwpDu93iGkMB2k0PIRJColaht7x4fo6m8OmrG66ub1GrhmOYA3MMFC8/t8wLJVViSISQSeUhfqBEabAWxUupq0ZBPRJnKMgOu9YS93gA4KxFkPUfJCDNG9JOWekmVCk0PHR1ey3zSCk2WKCQ08w0JWKaCbNQlU6HE8/feZfLp5ecne/ou56u6dDKoIziweFqvcc60R9EpbHaUupMSiOlFM4vdmx3HS8OJz759BWvX19zGGZCjBLQTtJ5Tl0JUrWspKCHgMsDJQZ0kaNGqRJmNgVdsxQ0YiCFQBs6coiEcWI4DZydX7DbBzbDQjzrCZtK4zzWOQn68yezUP7DDONEh/TQna/Wv39U4+UHNYYU0UgI+eYzSjCh8TwU4x4oXRJsqHWlXa7n4cN6Ql5emgxQFWutqIpWUlEqRXRgWoIoJYtyjIc/u85rH7R0ds2aGb2ScJS8RwlPrWSnNQxUq+g9chKS2lovwxqzat9WGoZRGOeF3BYzJWW5AlSlUOSbXUNGzklBLEYJOygtAQ4hWUh4S0hGhWl5UKppnHOUKqqztnPyWUOmxEzJKzEhpVVbJWQj1EoYSvmN4g2oSmhgRisMWhQ5StH6BqUqKSWMUmhnpKir1GMwsVbZ4NGqrkqVLFY5bXDKkOpKIZLYH23TgVLklIg1441eVSsK5+2qp9MYJaTTEDPeG6yzpJUA4Y2mpMwyBaJZw3JrUbFvvBRdrSFUCSOmupJbjRZNUQhoYwgxQs40WomyxsCudfzMT/4Q77zYof1aMF1DBKzXvaqinANEz7feG8pUKWMGDHFWfPubn/Lxqxt80xKSNMwYa/FNwzjOj3ofKNQkwadUKrpWnKQnRLVdZQ1DlaKl0XL99bbHtaIgEviDXHu6VFEAKkWaA2fbHqWgbR2xRBQWEiRTGcMCRdN4g3Wiu43zRGMqxjrmEEhVlKghRlpjV+IGEgrVGmP0el2JZTtH0f7UUoTw5FaPpjLEAjHNmJViVop85hwDtWpRGypFrUb0c0bRNKJJKqXgnGeeg+iOauJssyUsQa6J9TrvthvikliGAeM9hcrd/ZHGGLx3ZA0auV6td5yd7am1Mk8zISXy+t7RBW89XilpzAnTuv6rOOchlzVMJ7TiPC1Y3wrJJyWhOVsJ0OpaCcMoekblODvfcRpHhmHCOEPMGRML02FkXiam9TgYZ9BWE52m27Qc4hGr1htTKbTthhiEROgag3aeOI+kVMjTjPeOcZqFPEIl1cLheMLrhhgKOS0oo1EZto1HN57DbWR/1jMPExUDGdIcMVrOLVFJiloRbWi8Y1wCpoCzisZbCc8pw5wKeg1sxhzxvmG/6ZmcYR6X9fkglIAEUDWpFjpnmIeZUhRtZ4hhoRYhEKnGEkNa5wkK37TkXNi0nhIXplBW0pplGWecM6CrhC1TopZMCEGUVdYwDCO+6cgpMk5BroFUiHPA9y1d0zDnQq6F3juKMsxlEQIuBWcKjVVYLSGeFDM5ynpHacVcYLMVRW1YwqqgiozzgvOG3svzIyyBVDIuS4h/LvIsgUzb7VFaEeMiezlZFKLeO1JVjNNMrorTONI1DuMtujHEY8IZK+djLJSqsAilJ+WIMxZnkGdNLhQN3mnmaaFWTTEVrz0YRUgSnjRGQxZGYqkVayBMAaOMXK/eolViv98TSyXahdPxSFGGHDLTFDBO47TGorGbDTprvC94a5mmyNe+8S2arsffO1xv8c1WnsNFdOdpke+/bVr+4k/+JL//ta/x9W98jVKFDNU0jrZtJFSXRGEvWlZWnZcmr2o0jXpUQszThNkourbFG0t0PF7PaCOB8lJxrhFTXC4sufD7v//73N/f8aUv/wDnZ+dkJQHPpAK+azGsjZ0rXfQhtKMAa+y697o2BhShscf1OS2a2opCnpNLTAzDzKnO+KaBBUJItN5iVoKW8QbbNFSGVW0b0VljVuIdVd7LOM/kXLFW5spoUM5i60p/XAlUbedRaou173F+cc4XXl/zve99yNe+/k3uj0eKepjTy/GpRSho+VFv9ibU/zBveJiUPfY48Cao9RCYWn/6zfxtfQ0JRz8El8qqF36DKXoIYWnkGfPwerXKZypLJhcJbYZlISyBfrOlbRuKd9g1rPRIbnoI7WkrjQ4oiipkhHQvz3bD2dmOvm8Zx4nTMDDPgZjyOp+V41IeFkePqau6fniZX0hoa/2cq162oCTsXYXeVHKiOC/UxJRIIdC0kaZtcTGTvaM0Mj/Wq5rv7Xg73o4/vvH9IijVWvnt3/5tfu3Xfu1PrHj+drwdb8fb8b/bGIaBf/Wv/hU///M/T9/3/92f7bqOv/23/za//uu/zr/9t//2T+ReG0Lgn/7Tf8rXv/51/upf/au8ePHiTyVVyRjDl770Jb74xS/y4Ycf8p//83/m137t194q4P4Ujj90SCkkQf7WIgt0bQxuLQZIx7i4542WLqlcCiEVjDNk8orrzVjraFqPzYZxXKQ5pBqcs1inBE9bM8Z4cpJgiFLiTfeNI+fK6Tiu3S9FtCyNwzknncNKkaps4vt1IwEQ1HvJtMoRVCbEiHMebTTzLJue1hhirI+LW6U0sVSWVJljxhhF6wxaC666Wqm25VQYDiPdpqPGQC4VaxtArzhkjXcNUZwSWBxts0Fbzb5vuLm7k87nUnHa4rRjVlXAPVmz6zqsqpxiQuPQpZIqHOcFXYWKZJV0bmWlOS4zaENZMk5VrDCUSaUSS6GmJBv3TUNYMss8U0ul8w7vNFoZdM3kVHGmRaNY8rIulJFCQUnSTW172tZivaYzFps1SnlyjFI8RDHPC2GO6MbhnbzefrfHNpaCYQyBOc0cToElBd558RTjLOPtLa1zGGeZQuKwLNiq6KylpkRjPCoWTqeZ0zzjvMWUQms0ScM8D4ylsu17+kaRY6Tb9lKwyCcum8LTfebFywbaitoZqpPurZLLYzf9YzeXEcVfyVAXy/jxPeomEb3nmzeJIexIyTHFSEgGlRSXm45oKh8vJ8aYyBWcVqL704W0Yuy/8OKCu9PM6ylgjSMGuNhfsNsWYs6cjhONb2m9xe976WYvlY8+vaZzhu1mw900UpViLOAaR7AGu+m5vT4yTidGFShLZONbrGkYjxNZwZg0dlGkmGiMQc2Rtt9wezdyPN5JUUdbbo43GKPIS0tCrtFTdRQlgZhWVS6fnnN1GljuBnA9/dmWoALjKWB0y3g/cpyP5BTYbB2mt+jOM9yNbLvK4X5kTgWK4myzJU0ndp1G247dxbuYUlDVMgwZoyK7rhXdzjJytnVErZlvj6iUCR6urq8o1WBSoe89m7Mtcb2njNNMjbPQqGhAa/q2ZU6Rm5sjcxDUzn7T887ZOcfTSGMS5+fnvPrgtSgKp5mFgu8cpsxcffsVTy72xK7BIi3QrijuXl0xDxMlZzZNwzEW3j3bU9LMk+0ZhYGr+3vaaNgaw1IT82lmSYnDp59wuT9DWcfVzcg0LhjjcdkyTwunIXAcZzyFixfPWO6ODONE31oygvUPZYGYOB0rKUI0AJr4+oDJmWVYOIXMzWHgudUYfeT6IJ3jz16co23i9e1CDtDYLeSEJpPiEVMjz955JmXEaGjUjiUseAOvXx+hRNrGs/Q90yKBtmEY0HpGGc+L3YanfcetvSemQKsaGmeYMHTbJ9wOYJrAbrPh9jBjlOF83/Jk33F3fcdyvGez3/L8yQXzecvxeIdpW6aY2WxbLi/PMLcnzruGtnV8dHXPkhV5LmhVMd4zzhMYOF3dYrPCp0waAq8PmZGCr4bGge06tMksc2LTO7wuTARwHVufeXF2zjEEPv/uM7774RWnAMM04a3meSco/VAql/sty35kqoFn2wvu80hIA33nyFpzN0zYTcu7L3ZctpqPXw2MSeGmhG01jDNd2+E6Tak9F+fPyeOE3xb2nWWrK1cBUqq8/uQVddX9NM6T7Mz5fkOh0LQdtjfcXt0ClormmWvxSvPtu9cUZbG6sqjE5mxP4xQhJg454qzFzYnWWiiV61dHakjoNLFrHeGYqLYyh5Gn/R6fFa8/uuXWnvjk6sjmssXmSmMcpzByHy2v7u7Z31zz9FmDwoAxXB0GYtEYZTHW0HWewoaYHCkXxhAw48x+27PptjjrGcaZaZyJqWCdRWmNqoZqCrFIAamUQuKI7TuePn1GrhmtQeXKEJNQe1DElRxSq1BEtNKksrAEMNaidSXkJA8KdaLxDb5p1zDBTAiBUmCaJkKI7DY9S5BCU6EKlbIWSpGuWa0UJRVOYQBjQDuizVgbKKUKiWEYCPkcvMX6PVZ7znYNzt7iTeHZk5acXzOMiZSlKxtlqMh9L5bCk2cXqFxpVOVst2WaZuaUiEug846nF3v6rqNtWuA14xxZciQCzgmBxjaOuUJNlViz0DTgjb9XJlJvOpvXNuDyoDuiPoaC6kq7UepB57UqHtSbUMiDSq48MnUkdGadpms8pVbGOT4qLpQGVGQJgXyfWJbAOEycTieG4R3m+TnnZxeEPpDzhq7xEnQoQj/xzmKshFVKls+klWZ/thd1Vo6c7Tbstxv2ux0ffvwpd3f3xAWiUoSUJSCwZoYU+rMfeZ1r1lWXxVoLkY7oqqGouHZeJ2KYCWFmCR3jPDEMI9vDkf1+R1guCGcJ33T0bUvbNv9LFxYeClE8RNrWa02+cwkQGatRReZgpRRyFo1JeSjYVAkkWWfQpUgjwJr8Mdqu2o1KqkIaKqWsQaWVgGIMtUpIY63yoLUsgI3REnxCNFdUobE+dLULGUyoKflBw7YGgB7oS1rpRy0d6+8ta5BE6EMKa4RoxkqHQa/BrUUCELVIoVFrsx4pUTYabSSuVCu6CilHaUXjLNM8r6QuJBykDEk91LSUKLhUJaT1uiqy1liS6BxZC3RmVd0sKYHS1JyF8CppQ0oVOgOlSPjJWGmGSAmqhHoeGkXkXlhX9RFCpJUbBdY4KU7mgtEWa7WogpQEnpQylCxBLY0UX3MSqqbRQl9omgZtNBVFrIWYA2HJpJLZbnqU0ULqWTV7MRfmlNAonNayLtMGciVEKUobo9FIYKcgIYlUK846rEW03V50kbUEznvPX/zzP8x7n7sAF8Fr0A9hrDckr8cbl/pMqTkr4mmBKVO04duf3vLVb3zAHBQ6FXIW5kLnrTTD5EjMQmqTZh69NsUICeR82zEviSFltBI6Vtt0eC8F67BEjHE4q7HermQ/OA4TTkuIbU5yXYQqJOWsFNo55nEhpkBSohvz2qL0GvwAQgGdJRxolAQSrPNMc2QJstYuSjOGCa3Ba0tRhaAkVCvAvIpRSME2RFIIoB2+8WSEBqaVNCYtSRTqzmu00yinCVPEa2kwSut9pnWekgKNUyjt8N1OiC9VE2JBqUxjLTFFSoo03sh+wryIitPAOI5UlNDRvFnfj1wPMSUhD7UNYHggVqVcmKaFlCsVoTTvWlH7GFVo25bhMEgwKyYSFe0MisR4N9B1DWoNwWEUJsMyjKSQoFa8sSylsm0aakl0vqESGZcFUzIbrYSgFoQWtAwDXdOA0oyTaB+V1ugiofYQM0tM2FpptxvSvBBjwq2kM6U1qWQohbBU2e/R63N9XNC1kkMiZlHtGQXWBSH9hEzXe5pWaNhLgJoz3naUEqlVjmHrLW3fEWNBJY3WopZKKTMuSeYfK20qKiVUulLQxmGtpXeOYiNzzJSUaK0mZYWyDpwhq5m+8cRUSSXhraP3jrlkapko88ymbTEaSk2EVFFKE0ql6RsJyJZM37Uch4l5CQgCqmC9lWCBghQilYxdqYBzUes8SULVRSmcd6SYMb7BGEcIMldzztNpaKyn7S0KxW2aiSvxqWss1ot60ihN3zUcxglvwGl5DlgM1tuVMKpoty373jHPgWnOhCxzBGUKuiic1yhr8G0PeaF6hzEK6wz3KoC2TNO0hgZl7qXW63W7acm10OIxVs4lpQ1eK7bWc38cCEmogllllLN4K0rVWCqpZBpjyFFoTfMcyLGicqCx0tyktWjLbLU4NGlJ3N8emUYhzWol8/Pbmyu+8Z1vsTnvOZ0GzmwravSHe3+IEkpfA4Q/9ENfQpvKt7/9HfmeQhS6n7EYY0TzF7M827Ve57QP85Uq9+IqyjNlFpquo2p5nusCaQ2jP+Rk8qprfZgeVCoff/IJwzDw43/uz7Hf7d8E8nXCGrs2C2ZKlAbKiOzZtK2HUklJgtDoBwZpWedY8s8pJiKQUUJSfZhDG01KkRQdaCXa5DWk17jEUANd64BJvpMi7/9BB5ZzIOcZpVuctqhaaZyjGC1BqSSfvbEWs9/InNo4NpsdL16+5IOPPuSDjz7k/nCgFFCSaxQd9HrcHo7SOpN6bGKoK3EV9SbA9PjT9SGUrt48gx8ev+pNsP0hxFXXF5U88YP6WebwtXxmfq6glEgIeaUqZSE2hsBmu6Hve5zLFC/NrMbodS1UMVpUdqVoCRIhEzNrHU3jgUrOnsbLPx+OA+M4CcUVtSrpCg9tDg97k//VZ//sQVgDWVoh++tIs0QpGZss2TnSGiJeQhRFe9eI0te5NcjvHrXMb8fb8Xb8zx3fL4JSrZUPPviAf/Nv/s3bgNLb8Xa8HW/H/8vx9a9/nV//9V/nr//1vy7Nev+NoZQ0K/zlv/yXKaX8iYVCa6189atf5aOPPuJv/s2/ybvvvvunMqgE0uD4/vvv87nPfY6f/dmf5Xd/93f5zd/8Tb75zW++fd79KRl/+JBSzIIJt7Jod9YRYyTlsvrqxV2NUThryRlCSqgInZWNfOc9VFjiIhvNWbqdQ0mUXPGuk3CRtaKACxnwErBJovCQi62A0oKt7nqsdywhEFMhF1jmGWvWYhBSoMgpQ8lYFDlDMZoMkGWBKooHCyVijKGounZqJopKaFtwvsMYuy785fWXEESPkDUhHTEuk4siLYZN36MRj7mz0tE6hUBNBWs9Rmt63xA3HbenE0KO1swh4K2hM0I6uB9OxBLIRUmHTnBS8NCKFLOQQMYTh1qwtWHbtYIRrxXv1y5hpVlSINVK1zZsNx3LsuAah6qKGjJt21KtEHE0UkBJMWObls1Zz/3xDl0qU5goMdE1Pcp4rDX0rWU6HQkrxaHkzKbtKanQOMM771xyHEeWeaEqje16wpTJJEqMzCmyzDO7fkPVhvt5oeu3eKMZhhHnDM5rsBpvLMdppio5/lorvNaYmMEb8LJRQl7ovCWXyN31TOta+r6j3yg8muf9yNPnBjYLugNskvJpfei8knNNKbCNk42pDGVWnF7PvPr4nif9cz45GK6PlZfvvuA4RhrfUfTCacncLwvD4Z7WaLpuw7hEKIrNtmOYZu4OA0VBTZn3nj1jia8ZhhHV7djuNpzmIzUqHJ7z80uK0lxfXcmGmS64zqIdjCFgTUdIE0pVzvdnDMPM69sTcwicNVta17LYTDaaBJxfnrPEkeu7SC1JaAAVOm/IJpNrJE8ZEyVoEGsmqkqDJ4aAbStnZy3aVKLpmeZKuF9Q80TXWLzWLKfEfIqM0wlwVOeIYyBNkd1O0xvDcHfEUeh8Sy6GIUW08yw540pm6x22a9nutzQlshyPzKUSnePT05GKwZXEftuwVENYCm1jcW3HeBiYpsj77z3l6dMNH376mjSOpDnilUY1LRf7M27vDzzf75mHheo1i9J0+w1b0zFMle+9fs1+c4GKlasPXzOOgWIUTW9IUQll6KyhGTwhZDZ7RyqVzz0/5/qTGz58fSQpi+kdxMzLZ895/vI5H370bZZq6M97fuDJjlefXNP0npACLZpnlzteX90Tc6XxlbYzpL7h/rRw9WlktyxUa9hud5ztWj789ofoWpmGGUVLHSLHU8T1DabbcLbpuT0MbM92zLlwurullMzrT68YU2J32ZNKYlwyrum5e33NVhvOLnfkTYc5d4z3d6hSyDVydn7G63RHXiptozmGQKoJlNznp2qYTxPnueFJv6VuOm6PM43TvPf8ksMxEENkrhrfb6hJ8c3vfoLziiUrXjQt7z1/RovCK41JM2kM3H7ymjo6bsZM0Qp/GqFm+rOGrt1yGjM6VT761iecPdvw8nNPuX114DAE7oaAUoFt5/FNg8aw7bYoXxkOA8cl0HYdp1g5HGeyqTy72HHWt0zLwjCPHGMkXN3wZOtJMTGFG1wpPL3YcX7ek0Li9vrIqRSctaRc2SuLqYbjPBO7xMWm56Ore2Z1xFvY7Da0RnMaR1KsGOV5uX/Ck41iOlTGkDEl8O7lDvXE0m/2aK05DYnp5kBnW9zGEUPk5jqi25Zd77m7PhFDYNPvSVPk8uIp47hgtDx7SYpnT58zhcJ4Grm/H+mdYWMkyHp+0dD0z/nw1S3DmEC3tF5TcmJJjtMYSGXCb3vSaeE4ByHXBcW+73ly8YyLviUMC6ZzHE4z4xgJJeFazeX5OcYUUWfd3vPB179Fa7fsLi5wfcPnf/QH0a0h/cuF//tr3xAt5LYnRcNxXJiXwO3diWlc2LQNfedpnGeoE2lVm5WS6RqPtz2n40guFa0s0xD59IMb6gLnlxeEnNl4cHbVGE6FJS4MU2RZAiEkSlU0jScnKWakIgVKYzSpKlK+JubCy2eXPL044+b2juOwCGVITSs4Q7rIY0yoVKB1vAnlQCoJYyzWKKGEOMdpOHEYJ4xz9N5wmgaGcaGGd9l0XvRItVBU5uXLM5483fDq0wOvr+8ZJqmIbHcdpSykPKLVjrP9OXbVbxq3wYTIEhbRxCnDbtew6TdcnO/ZbFs+en3D3ekoHb21orOiGsApiqugFukMZtVirRvbosdlhQWJtkJmZxVNeQyOKKUfu6GFPvQYb3rI81CVqN8eu5RXXE1O5ZFa8xCCMNZivUVrSCUwzAdiWpjnkWk8MZwGXrwYODs/J8QztpsNTdtiqGj1EIQxaGdRpeKbhnMjr6dUIecgHf1K0zjNrvd8+qnj+uqW+1OgLhHyIvooHnQM61insutkgwdFsSiZpLtaKbUGbDKlJCkmhEDTBnJKElqaR6Zp5Hg8sT87Y7vZst1saZrmDzu9/2MfD2E/pfSqxjDrZ6yPBSQJy0izQFGis1FZaESf1YKlnFeFjARBcpZinTFOGh4eFXBrBaxKYKbW9byrRQKJa8FSrbSjR6JQXtcd5U2Bq5SCWgu1tUBdAye5in5QGalm1YeAFIWc66pekTWTWQlKdSW0ynERkhBVkcuC0vIeShYNM1XCXdrIa6eUqLqux9LgjCE7yxzCqkZRlJwxWmHlwDLH5VHNprVB5/VzKKEweGMJUdYKGoO37g11QL+57nLJZMBZi3eOlEXXpaqi5oK1jqorNa9q7JU2pbXBN455mYX+k0Wr5YyT0JTWOKtJIazFXPnM3jrqSvnZ7jqWEElJyEzaWrn3VaHYpCIFZe8cdVU6yZpLEaJQ8MzadGC0ZomJmpHnBXLPle9XguaqSihBzr3CPCWsNrjO4pyib1p+6ie+zMt3z8AnlFNSnVaf0co8DAXamJV4ADVBGBLDcaZzGz58feQ//NZXca7HWI01jqoyIReWlAjLglXgGlGxghC1YkqkRYq6NRd2mw2pDIQYUcoLPTAtgISOmralKsU0jJRSV5qFFgJlKmjlKFU0gG3TEGNinAIpZxrrsdqSVKVoOR/atiWXyDSXx2ur1oo1Ss4DhLisSqXkKOdgAWslwKEN2LaR60s7UqqkJUOMOGMwSta7KWZiDIAUkktMlJTxjccpJXo/hNBSqibEJOHBWjC5YI2lcRbvPbZmIatUKNpwigsPdNqmNSQ0JVWcMWhriUsgJjjbbeh7x+E0UKKQuQwarKVtGuZ5YdM1sodhICuFbTxeF2KE+2Gk8S2UyngcJWC5UmhKKat6y2KDEFzcGsDddx3jaeQwLELksAZKYbfZst1tOBzvyFXhWsd55xmGCWsNORscir7zQs0pFasRzakzLCEzDTM+J9Aa7zxt4zjeHVBAjBFwEAqBjHYWjaPxnnkJ+KYh1UqYJkotDMNILNKkZpQEC7VzlJJYTjPnZzuqUrS7lmUaURWhdraeGKwQWAqQC7nmdd4gDWxzSvLdK8O+l6D6YZnZ73tqlufsHCLGeUxNnIaJWUvowfrC3m15cn4GKZFKlLXKNDPWxJQyoWiIGfJE1RXvPCEu6KJY5oXkFJtdyzJFjqeZJRVCEpq39qKVNGhca0kpsYQFrTXKWFEspkjTOvq2kX2uHIXgFwI5R7wVXSCl0HUtXWdQznA4zEzTjG88qRSZG2KIKQmxt5HGwTDNdJ3DWsV20zLPyyPVsu179n2Hzqx66Yx3ik27Eaq4saRUSNOMd3LvMc4y3B0pWdH0jkBiCoHGGWquOO+o1bIsaSWGJQnqe0UIQt6bJqFCd9ZgneHp5YZhXpimQKmiOVZVnn1TWcM1tqCrZlkCyipCkn3GftvQNdKstwqTiamsYZKC847GeG5fveJ0+x5eGZxp2O73KK3pdltefvE9lFV88MGHLLHgnOMHv/wljocDr15fEWNiKBPWGLyzWG1Ij82WBVUUzhqsaR61WWoNJU9DgHog9B1og3nUViIEyJSFih7L+rx/E6I+DSO/8ztf4Ud/9EfZ7feiJJ8WSq3sNh3dGj6XsJDQWVWQeTNr+KmuetQHoqQyRvY/lTzvVX1DBRvGGbTCrWTAJa6Ky65FKXkeFipNY+g3O+YpcTxNhFApteCchZrXRoxI07QSjNZgrEMZI3MUHlStlt3O0TQNjXe4xrHZbfjyl7/E69ev+drXvs6r11dQwBlZA5S6fqb12fnQ0sD6eK48rCfWf/8Hhn7z7z+TD34TGpZR1sTPm3YKZD5e5K+P3ztKGl7WZ1vKgTxnchaKfwyyn9H1HTk3ZN/gnBP177q+0+ucXuaGFe89XgmpDuT80Mi8xFvD4A3DMKxEcyXzzTUsXz/7fh8/fv0D/+Jh+vGgFpaVVl0bjGWuZK1bG0AyOQVyioQQadsW7z3ZZdyq8X073o6343/e+H4SlL73ve/xK7/yKxwOh+/jO3w73o634+34P2f85m/+Jl/+8pf50pe+9D/8WWMMf+kv/SW+853v8J3vfOeP4d39P4/7+3t+6Zd+iV/8xV/kvffe+1MbVALZkzw/P+fnfu7n+Omf/mm++tWv8qu/+qt84xvf+JN+a2/HH3H8oUNKSotmC7Qg+2sVhDGgtag1SpJuImWgbRuWJB2PjfUYa6T4lbJ0pYa4dsdXcpH+nnlRssmtRLkC0jmXKVgtXfFay6Z7LplSNISMqbLJVFJCK0VjjVBvqnQRay24+RwjKQeapkUX0YDnJO9jiUkWflUxzbNschfoOs226ygo7g8Ld0NkHhdUKRhb2e9blLHy+5Qcp85rYhRyT9EQo3TrSWd3IevCrhOVzOvbK+Yw47VjSYVUpTKz1IyucsMjZ2LINF1PqXB/OLJrLZ1VTDVTdUFb2UytVYoCBSW4/UXUYHVVzuy05fL8glgjZI0B0hTWjRxNdopUEzFkSopY7VEolnFBI91c1hicV6haiGUhZce4FKoxGBS5JoxpqFqCYLpU8tpB2vueohUlJlJeQ245oZJi5z1nm06KN1UTTxO+a2k2PdNxoKuy0D9NI2OI7NuGU5iJ00zjHNoYcJaiRanjjKVdOx0nl8BZwjywtQvvvVfZbyu1WzC9RZkKJUnnswJl1xu6qo8wJVUVdYLxwyOHjw907SWvZ8eHt4m72xmtX7EoT+8ru7OOooU6cTdNlDBx5jXvPbtkCAuKwjAnsIpcK59cndhM4FpDnRTLMPI6zpymey6fnIGznMYDU8wcx4mu7emdprWaxleOaebqcKTGxF26x2orGsZlxgKH44FQQHkjReF5IvcNfdfz+feekUIiToVN5xmO92A1cyikKfDi2TmXqnB1ODFXxTEkcoTzjUc18GTbY/d7vvHdV3x8d42h0Ox7io+kZIhLwhVH23fsn2wpceJ+ysSMdC1rzX7fY51nvj/xzvNLtHNcvb5nmiOnqfC5L3yejXd0KI5txzCKbkoDu4ue4TRwN8yMQRQXWjnKCKpUXjzf8aUvPkfXzL1vCKeBhsrl0wvGJVBTpamap+cNh95xfTvgqqZvNkzjLUPIKKPIhxtImaoNauPZbzx957h6fYMrlr5sSGegdeLF83OmQ8BWi++cFFLmINSNp08Yj4Xp5oqXTy4YiqGkwHI8UEvFKMNmt+eT44GmWC7bDbUoWiubY91+w2GJq2qhp208aQ6EWujON1x/5wOm8cSUZp7uenzrsE7hUsU6w9nTc7b7J9g0YZ9sMDTcnU7UeeDli0umKXJ1dWK/9Zw/aVGt5eZ+YrPfUEmEaeTifA+2Z54zm03HZtdx9fqaVA1aizLO9ZqcBnyjGVOg33V0jSXGTGtaOqcxuy0fXh+4H65Y4gwp4JQlGo/2Dce7e955ec7Z5YbDJzeYEphyoLYtvlVQEt62OKdYlgQh02rHJ6cjh+Ee5xS70KOd0BbuhyNpXnBdQzGes13H8fZAMoZOe1JBnkHa0PaWkhOhJrx3GOsow8IyBVTjORyv6c05c87YxpNVw6vbgdRmjsFSsDy58NSauE9wSoFz5dh3jjHMtMbw4tlTnHN88OoTfI3o1rKkwPH+wLQYSlVMZ56YM42XjvF5hBQzt9dXpJopNfPx1af8wPvvM93dcX9aGJaAjRNlbqAUfNvirKMsmaAmutaRC0xjFJUbCW0Uz863GN8wTwO925ES5GzofY9S9yzaQE58/vIpH756zZBgPg1YXVjiAMqy2W1w2tI2HVsVpcCWEo33dH1HQdO2JyKw23c8e7rjNgbidKS/uGQZTtx9+iGbvkU3Ld1myw/9yJ/BpMgS7vnk+oowVIxqSKYSbSbkzBKSqAkUNM7S9R0qSFG1PGzIpozxlrAEQk7EIOq2aQm8uj3x5MUFP/ADX2C6PnGMGV7fcvvRgWGcpXiTyqP+SFstGp5V/5Qra5dzWZ/Rjv7JGduuJcQCMZJzYonShbvZ9DjjGMcTdclYK+Hvvm1RdUIrhXeavAwcl5moNPMSqUtgdhpnFSlLd/A7Ly5x3rK/6Hn+uTOePnlCXTKNe4Wqhdu7SshZCAWtJcQZoyGlgHINIYmep2tkHqAVoueIGVUTTy92dM2X2G22fP3bH3A4DYSY8MZTnSKFTNc6fBU9xhLk2S5AJQlRyF/VSsORcoHmgaDDGqqoqzZLNAUP2q43/2OlYqm1cCGFqhBEvVSBWOTPKKSzvUZW5YQVgsx84nhIhDkwTQvTcOTZi+eiydmfs93u6FuPd4b6MPdUBtdKZ32Y5dg5CzEoiBlHpbXQN4p9r7jYdXzw8S3XdwPjLMck5rR2d0iBpJQiCkWpOkiopTwURKTworVCmyLFqppX4klZFSSBPvakGFkWUaKcTicuLi5Z5uV/iCf+kxzy/ar1OFRYKVwo3nz3a/e60qvSZFUhGmNQ2lBWvbTAfFYdcV3LYaWSE6iV5PNQ1ClZzpg1r/OQDZNgW1WQFLoiKrNSpPtcKyEJVfX4Z0opovwt0gWvWOeHa7AsZ/lMrASDQl01L6LYqcC8JGIopChEFNFZyzpLKSMFJQ1OCb2zZDk+ZS3OalWpSoJPznlyyQzTSM4JowxpJSRJo3357JVGyQXjHLXCsix4q3EaIvKaag0U8XBNItddynENkMl31ChN17aioXsoFOaEQe4hRQtFIOeMKogODgmbKGUeQ2jOyNxewoVVmlK0Ek5QlkJrVUI0EiqTEDmccRIQK58JqhVR5XhjaJ2TAJculJAktOg8KQTsWvUMMZJyRltDyIkSJYCkjEIZTVWiJNNaY60lxEQU5BY5R7bG8DN/8Ud5/nxDtXkNKCHptYeCoXqsrq7fwEo4iBAOC/NpwdqOj29O/Pv/+Lvc3w20fSVjcAZ840QhqWBJkZITrdHsNy0hZxSVmCpoKXWexohPsp4myfk85kRIC13fgDESRCuFEJM0vxiF1QprKktJzEugrt+bXgl3OYsKe1kWafLRQuRQKVKtwTnH2a4n50pJVciRYQGESFhSZtu3dFTGEEhVseRCzdA6OeZ9Y1G+4fZ+4DSNQrtsPNVkShHKoKka6xxN56k5skQpKJdSqErRtA6tLXkO7DYdShvGYSblwhIT+/MebzUWxWItMcp+gwJ8KyTbOWRijnIdKk2N8nVuNw0X5xtULczWksMawOhbIejkikHRt5bFasZZtOXOOWKcCZKwpc7TSo3T4A2NMzhrGEfRz9lq8G0LqrDdtMQlo9GrKrNQY6ZpPI3viKESp5Ft1xKrppZEDgHWZ6lvGk5hwVRNZzwV+a5RYBvPkidKySjtMNZQUibXim094/2BFAMpJ/rGY2wjIYQiz9Wmb/FNjy4R3Xs0RkKSKdA2Dt803N8POBTOQtO2TIuEg7xRTClijaHr2jXIrej7Vor+Mcn7yXJNoxJal8dsb+c9hEjvPZaKa1sOw8LhNMu9NwdpTMNgrBOyS450m4bxPgibZA1cW+9lL6IgKtycVhKY7Asdx4FUAnvbr41mhhTyuu8l4UDrG2rOzCHQ25YUs+xL1IpxVu6l2q5qTpnHxDChjCbECV0dUMi1YrRljhWdFmKILKHQtg3OKUBLmCEnGmcIJRGKomlarNbMcSFkRFNWCzEm5iWyxIIpsn9mrSHFQK2OZRZVey7TGpUotF3H1jsOd0diquS0oEe5hq21Qv+uirREfOuganKuxAeij6o0VmNbL00Bmkf9r8JgtZC/U6l03kKuTKFAgRwjOst9U1lN6z3UQO9FCfYQZPbWUVXF+0xIEpLdbhpKzIRp4etf+zo//mMtU3uk9R7XdqA12/2Oz3/hfWKYeH1zLcpDPD/2Z3+M//Tbv83N7d0a+JH7gnMOa80aRC7rfMJIWFnLnl0uQgOkVvKpMC8R33iePT+nUZp5jswpcbg/EUJcw9SVktdg9hpcOQ0n/vPv/Wf+7J/9s+z3Z9RaWRbwzuCtBFfyeo1SyyNdVGuNdRIwjrms6xKFN0JhLLlI+JZMWGbRaZdKyaJLNEYJCQpRpXov1MPzJxv6rsUay9LMQGUchB5VzPoc9nb9HXK+5yIURwn4v5l/pSxzem81l+c7Gu+5vtWcxol3Xrzk/OyC//iffouPPvqYqiuNt2sYO6/H/RFKtD5D5dn0GMt5pLY+sIZkfvjIvaqVBz+cvM6636fUem7WdZ5YiBW0Xqmf61lbayWzrv+07BXklEixMKY1gBYjMS6kuKHtEt63Kz1KSI9VrcRYI+E3tSokrdXUdf6jrMVqCWo5C21jOB4nTuNCiGpV4QlRlsdZUf1MaOkhmfTmOD1ck0pJAPuhEUABcZ2jlWJXcmshBFHZdV1PapKoAd+Ot+Pt+J82ttvt95Wg9Dag9Ha8HW/H2/FHGykl/vk//+f84i/+Is+ePfsf3pubpuHnf/7n+eVf/mU++OCDP6Z3+V+P+/t7fvmXf/lPPVHpYSil8N7zEz/xE3zpS1/iH/yDf8BXv/rV/7pR8O3432b8oUNKtRRZJOpKSnHtflaAWZdGirz65mutxCC0JJRmGmeWuIiSw3uWKJv3Vsvmb0rS2VprIUZZUqUi3cYgoRusbBIbo9DaokqhYoi5MC0Bo8Ao+e+ZTI517SRX5JLWgkGlKAgpYqpCl4px0s2dsxQlYi7kItQE41o617HpWo7jiY8++pAY5fdv+46maWHtCi5JihQmaxRF0OhV8ONVC0q/MxqrNblW6YbVmkxFW8c8RXIWl33bNYxxlg2veUYryc5MpwFrNd46bOtRYxalQi103uMawbCHklDKkuNCqzQazbgEjJYNi5QTwShCTlgFGNmkK6XglGMJCVOkoJjyQiITUsQZS++2jMuCbQSFbL1nSYVpmHDe0FhH23YM40xMiWMtqJyxXrzmtSQykNaOXq0q1Xr2Fx2HuyPH4UjPSmOaE7lETC+qlyFMdNZjPex0h85FitO5EnLk7KzBOUOpida1FOu5vz3ivefs/Jy7u9e0auHl5Zbz80K1gWoVpSSMAZR0E+dSpHiqHzY6QFdFjZXD9czdJyNd85Tvvc5846Mb5twQYsXGRNEGVOLu9RU1ZqZTZS4F125wm0tiVcQEpSpC0jhjpAilDfdhwRZorWcOE3djwjUN++2OFGBYMvM88/T8gmUcqSlTlSMmTdaaTMKpSs2V69sF7aCkSo6JYj2xZFyoPD+/ZFGJwzDxYvOEP/NDT/j0k49YFss4jdSVbrC72HKf71Faseta+m2Dand884NrFjWx3224uxt4srtgOJy42DquTreYbc/lO084HY6kqqhWY5Vh33fkcUErj+0yWhf2+47XNwdKcUzjgi2Krnrub0ZIiqo0vrVsGsV8fc0YE7Ea+t2WMB3ZNJ7x/ggpswC3p8TGZi63PffjhFaVL7x4ynx9YlwSxymjteU0n4jHe/quZxlHvLfMy8IcRTnS7xo0irEaYpjxXbNqPzQhKrbnLS8vek5XJ876LdPxwHhzZLKa3bYjnRaIC/Os2T854xvXd9hc2fmWMM4Mw8RxuOa9Z0/JCYxR3F4dGMeB8aA4214SdcftcKJRha5t+Nx7L4jVMivLbhuJXmONxcQkHa2uw3pDCIF3XlxwP45c7LY0m5YYZuZaGJeI84b9psM7SxlbPv3eB4zDiabzPHlyQSxwPJ7QKrJ5eonWhvl+kS76Esm1JSaH8QZtKwZRX7SbnuPpyDhXaCypZubjQuMtfduRcuIwwuvjUXQ8Q6VrMrksxJToesHAl2J4+f7n2fae8eaO73x4xdlFQ7O15I8ndvsdu31LtQajD8DC/amSponzZk/IkRpmdpued1+eM9wcGQrMQ+D2cGAsC0+bjloKre4o7cISF7QW7ejGNaLebDTjlCHD8WbgqpxIOtN6R6MV+92WGAMVRZwnlEp8dD9xGxf6dkcJCddU+sZysW0ZSmGeRvZdTyyGlOHirEdZzZOn7zCOC0NYKLlF+0RrYQ4Tt0OmaHDKchgCr+4GnG3p2oZYZrx1GDyffnyHSgv3pxlrNV1bmYcZXTMKcF4Cpsf7EwwG37Q8fXoON1fcXN9xdr5Ha8V8OjGlQDaKWhTH64Hb+yNzSriVVHHz+pYSC95lJp2JCvrGYpuGp7uWjVLcHmdREbQOqztuDgPfe3WLTon9eccYM+ebDpcLbddTS+Dm/h5jHcO3vkEAPvelL2DaLZiGH/ix/4u/9d4TvvfxB/ze7/weX//q18lXEr5Jy8yyBqDLNNEEjbeWvu+Z5omSMvP6zMUYlJJQai2ZTOUwnjjNC8M4sm09Jmu6857nT/ZcX18zjlBJoiNBaCmFijaGxlt849DaME2LFC/HiaubW6Bwtt9zvtswLjMpP+hUAnnIazdxi7KiE/LWoI1oZACqkWB4SBnVGCnSrJSy4SQhmyUsjMvA+fkZX/jiezy73JKThWIx2vLOy+dgLK+ubwnTAtXSNnsJ7EyZ4/GIdjN936MV5BjQGlzXkinkWCmpoKrm8y9f4ozh2x98xDBNjPNM2xr63q0FGxjHhbvDyGmaiVF63etD+Hed/ygKeiVwUP5gyOQBmaSVFmsOaxFh7UJ+CDi9CZgImSdUJUGGqvBOiiYZISqpUtBIkKqWTFgC41SIrxfm6cQwnDidTjx5+pyz83POdxu2uw1t21CspvEeoyX4jg6UIkoroxRt07IgQfiqDP1my0vraJuW85sDn7y+5/54Yg6akJIEMdZ5xQNBCiXapqoe5sEPxSeFrmqdH8ufyUlUgSlFCdktCykGQtOwLAvjMHI6O2O32/+/WAr8MY8qQRuKzDszrHq6N4vomtewTK3UnMhrYSWGRC4JrdVKCXlTrJKi0kpxWa/TWqWL/LOKEAldrP8zQhyqrDq2IKrih2DGQze/NbJcetTNIadDLtL5rkqVYMuKV6pVgmilStFHa4PVFm8liHo6HslZrgnvHNpaUFoIUespoouEgR7mokoZiiqPhCalpQiXkxyPQhV9S5RAh7MW6yyxJLQ21JQlPASkJaKNWgOXBpKEK1StWGPQxlKQ9w+akjNWyfkYi+gUjZbPmB+PuxyT+kAhW5ta9Eo9yCWT1zm2URqjnVAorBT9rDXkWokxivJNG+xK7S2lEARDhzbqkYJVgLJeUwrAGHznCPNCiAGnVp1Lks+inJwIISecFo2W105oLimTi4SlmtavxIOMNZaqNfMcsEYoRMs84FXhR37wz/DOix1VR1jPJVWVNDis588bSsN63VcFpTKPieWUsKbn6rjwb/79f+J4ChI+zWuARRXmcYBc14YXMM6jfUuuolWrVZGL0MD0SsWac0JXhHiUInMuQlDyDSWvIdRU6NqWnCK1SPghK0VlXb8CFJjmLNdJkfV41YZcKiYXNu2GrEQRtvU9T550nE5HUtYS9kPeV9N65mlewwUW5y24hrvDSEKC4PMS6ZqWFAKt10wxo5yj23SEsFAQ+pWoa63QYJRBOzn3fGtFI19Eu6irwlbDPMVH4pmzGm8VaZzWYr7GeU9KQjCOywK5koA5FpyqdI1jjgkNnG960rQQUyVEuSZjWigLOOdIMWKMBFPTqtl13qz3pJVsZq3sb2QhrPjWiSJ3DKLkXRbiFIha4b0lhwQlk5Ki7VpuxxldoTGWnBIxJkIc2febNeSrmMaFmCJxmWh9R1aWOUYsBWst+/2GUjWJQuMzWQtxSq2BIG2ksJ5zZrtpWWKi8x7jLTlHcoWQMsZoGi/Bmxotp/sDMQasNXRtQ7fdMM+BmhPaWXzfMg8zqmrGcaZgKUVTMVQS1mqgYL1Hp7Q+VyUQlWKkpgpOYa1miZlpkbAd0YIWbV9ede1d54Rk3bacne0J48gSM4EZ3xjUAgpDt3NgJRiqdSYmCEtg2zq0NdQUMVqx2W6xwDIHtDYsy8IcA671VCRYpCoUI4FkIY8rUR4qwCpCKZQEx+NEXgMTXmk6J2HXlDJKK3IOBKU5TTOm8XJ/doaqDJ1zzA/PphTw1pNSpXUWbRSd25Cr0DtLkTmj9UAtLDGSS8Y3ilwqh2Gm1op3DRUh7hhliUvmFBIhSfimaQw1Jcl41IJ52L+LkdNxxDonmtkOxmGShhvfCmkoJ9F3KU0JmXif5LmgFKZCnBe5r2NEW7meo0opGu/YeIOtGmul8c03nhASh2UhpYKziqa1OGfxWrGgaLqG+/s7/sN/+i1+/M/9OKkWLp8+xbed7Cv0G37wR3+EF8OBm9tbXn38CrTiJ378x/mtr3yF6+trMpWaJKhitBJ19KrfzSlJ9NfoxyDwQxgnpkQsmWWRvc1t21EU9F1DmGaWRclr10x9cJBVQMlcL6fIN77+NX74h3+E7XZLKZl5lrVF33V471FKAmh51cdShGAqmmOhN5p1jqNlg0tUdescqCCaUIvMb0KIQsdPMr9q24btdsvZvkdXDdVKs1TbopTmOIykeRFqpRa6e82ijS0q4ZyTe0KR42KsBVUlyLUS7Lu25dmlwhjNvCw4o/mZn/6LfPd73+P3fu+rEh5fG1Dmh2DX46FaE+O8ieeo9RH7UJN4XE7whiL00CQg46FBQsmasKrH1yq1UrIEoPS6J/YQRnxYeFhj19B1ESLkLOd6jAshBPogQaW2EYWb84667mM/ED7VSkqtRX6v1UZ25lOlIkTdrusw2tB4x2lcGCfZM8mlPlKg1j6HN5+r8jh/LiuRkvVzPswnCxWVKzXLflwpQgVzWchJOWdiSrShoQntf3M6/3a8HW/HH21orfmZn/kZPv/5z/+Ri8nDMPCP/tE/ehtQejvejrfj7fg+jNevX/NLv/RL/K2/9bd49uzZ//Dn9/s9v/iLv/i/RFDp/xSi0mfHdrvl7/7dv8tv/MZv8I//8T8mrVCdt+N/r/GHDynlhDb6sZALgqkNMZNzFhy7WTtOlWy0lJxIqVKUxlgJZDTeUg00jaXkQgqJhy75JQVCkG6UtnW03pLWri2qoqyYW601CoMxhiVKsUYZgzOWXBJKi/agpox1jrLqAKx3MC6A0FaWHPDGo/K6mNdK9GdZwkxOW3Ku3N3fc3u8xXuNtY7tZsOm87JYrpqUZGO/bT0xRMISaTtB6kPBO5imSHANFoPWisM80yhDt21ovGcYIrEU9DThYqDxjrpkqpJuXtVYakxgIdXE3WEi1VVHoQpd08AScd7RNZ4QC2Ht0Mk5Y9bONd/15BVbbkLFOAUr4nuYJ9qaKbmCNSxZChG9N7SdgQJ3x1tQGk9HEnG8FBRW5URaMstpEppF2zHnjKqKHBJ949BGdg2Mc4K5VjAG0EukbxxhkY5zFQKJxH1I6GXmOA60jWPbC+lhyRmrNLpxlGlGo+i6TopZIVJNYamZWDKEADGztTM/+L7nxQtQXcU0hqoz2EpRBaUrCqFLqVrXzisFqUIqlCGTj4nN7jnf+OaR//LtI8U2bDYdxmo22x2hFLrGY6tjGkeqmdCl0HnHZttzvL+nc5b7cSLXSI2Z41IxvlJz4P56pG9a0VM0hlo1N7cjT/ZbShqxVnM4HZnGiZgTnfM8efqUbbuhXsB+03N7ewU20jUblhIpzrPZbVjGgcY6zvcdr26vaavl9tPXxHnk5nbg4vwp2vfQFDbnLdO0sG06Uih8cH9gt2144jNPdo5TzSzDQIyBw+3I+cVm7ehv2e8vCcPE8WZiSnB+3tE6TYowBQn6uNax73eEJTKdJtKQ6XcNpSo++fgK3bTkXDFGitLf/eQKQqRrPdlZXBV6R3SZ02mGWDGdpt10NA5OVO4o2JB5fXuH9y39bkNbF6ZhISRDTpUhTJiU2Ow2fOfDo1wrzlHOoIyBaZqoNfPOiwvCkjkcBsIyE+4qc2tod1vKMmMbTzSWp/s9joab+yO1jNwc7nn5/IIX+x3TklioHMYR0zl23Y5SNd7Azd0NU1h4ctYzxZn59popZlzvSSHxydUCqhATeO155/0XbHfvMYfCcHvH7emW8f7IfJwoucEbj3eFZBtSrsRjxniPygGWyEff+ha+9WjluF0iqcL7L59jteHj737KcBwJRlHbLUYpPv3klpoLjdVgW8Zx4cVmj2oNn1yduDtesXGejWlQKnKcT5ztOxpjGYaAQjpllW7oW88UE69v73jyfE+7a9BjYNd17LYbxtNAHSbOL3uevnPB1777muVu4fb2wP0x8PnzJ3TOcby9RZcJcHR+i24Mr+9naCybfc+TJ0/QIVDOzujOtkwfXnP25Ck2HrFaMZ2O3GvHk4st2bbkWrnodnzy0WsyGT1p5pSoRbEME2bTcb7bMx5PKOPYnu0ZpoG9tcxTYFkypxSxtqHEmc12w+fff8knn75mTophDrRFMZeKawyvX91RnGXXGF6ebbkqlXkunF92fPvjGWXBOMXNMPDi2VNUXkkQCmKc2SjDvvN88tENTbdFn8FwGilOqE9JJcxG0aaBZRqZRofe7altx7QsjNPAJu6IGdrNlmoaXt8OaFXo+gZlpJh4czPx6v5EiJXOOi6fnBFzZBhnshFSkfKOy/OeMAbRwZ73onVcMru+oWrFk4szvE18+tErsi10reV+Grm/HnA4Gp0JY2CqC65LzL//Ndre8+7nvgjGo2zH02df5PLpe3zpi3+G33rx7/l3v/7/xVzf0i0z4zAQYyKxapeUonEWazaERTD8sVTIUbRBSsNKaLEr9e84jPyX3/sGbb/n/fyUdy63vHh+SdtbpjBxOg0Mp5m0iHZGV41uLV3bokF0G1EKa7enmVAUsWqeX+zZW824RJYwP6ohwhLpO8/Ge2LQmFSZ4wBA23WrBqKSc0Un6aTPKcrz3DakKsXo29PAaZzpNzs647m6eUXrW6y19F2HUaJQujKa+8OJXDKu9Wxaj5oCc0qcxhGDwhojup884bQlZliWRM4J5wwXF3us01zf3PLJqyvGKUjqwRg2G0fnHBqNVoZxFhpCKkK4UlpINarKPJG65n60fgwcqZVso/RaAKK8eRaL30HoO0jxQGiHmrgqGbSWwr0o2aD1BqeFopNCRhuNazUpRGJIHO4SyxIYhpHT8cTT50+JTy8p9QmlbOn7HmMqloo2lq7rqXnBG5knpiVzf5h4dXNkXhZqiWwaxcX5nu2mY7fr+PjVNVd3J05jYAlSoFMqr7Qe9fhZtJU5bK1Ch6pV85CGkUYByS3UnMkpkl0kxUiKibZradpAiAvLMnM8nv6o64P/aeNRtYZaPe8VYyRwJPqTVVO8atCk0LVeB2uAXGsJ/aMKFtEw5/xGKyhkg7oWizXW6DUs9EYF/SY8Iq/50KFuVu3YA41AKym2PRb7lOiQiWuaSEGqGVuNFJ6Qc08bDVqKxFrJf5uXhTlMjwEh7z1upTTI9ywXhrVm7WqXLnv1eJyqhNi0kfNfwxKF+uG8rMNCWMi1olNCl/LYPPL4xlZtmejICnN4Q6WquuKshZQxxmCNBFKKoGok8IUcE2MddaVFKVlWrUW3KgrMNSiG1qtuT+HWcJmqsCzzGtCzlCLfdcl5BQ8JNaesSiZjrGgoH3Vy5mHp+Hj/ULoSM6h1TZrW84lVQbnkgkpJlG/W4FeiTM5rcM1YKhGFkG8o63ooybVXVuIAObJtNT/xf32RH/mRz4GT7/pB5VdVeaQUsKot17qhEGFypcZCXQqu6Xl9NfHr/+4r3B9mnF+fvV4Uns6uZFkipIRSEpjzzhOWGfugqyNDKYSsUF2FXFimKBSyWuT9VcU0RfrGU0tGa8USAylIwdtqTb/pcdbRddB4xzyNoDPWeKgWdMU1nhwjRmvaxjLMAVs10zCQk2OaI23Towxgyqq+ynjjyLlynGd8Y+lNofOGUAs5RilIz1HCzUrUgG3bkmMiTIlYEk1rsVrIFynJc0FbQ+NEwRpjpMSC85aK4nQa5XutUtgutXJ/HKHIOVQ1whjLlWIKYUmyRWAV1jmMgVArSy2oXBimCWOl4GxJpJBJZT3nS0SVgvOG++PyqHKqLdSQJWRTK5tNR8lCW8kpkedAsgrTOKGRWENRmr5p0MowLQFqZJoXdtuWbeOJuZAqhBBR1uCdp1QJDk7zRMqJrnGkkhjmkZgr2hlyLszjAkjzlFGG7X6DbxwpQZxn5jAR5yBr6WIw2qJ1pazhtLJIQFvVDDlzvL3DWINCM+dMrrDfbmi7lvk0E6ZALpGm65inwDxFQkgrzUlTrcKlQt82TLNozRrrMEgxf4pByDzGcpzXBic0KgqdDQfTEqi6oJzBVnlO9N2GOM9CJ0mZi33H4TAzz5GFzDhHvGvovCOGBXKCGtG6Y9O3pJhYioQo95seXSu1FOzekWLCxobOWVCFmjLTONI3nt1+wxwDfddyOg4r0TFK+KhUahEqYtN1UAwpRnbbDSnLMam5CPUrJXl+ZJkDnZ/tCDGwRGnkoojusrWaMMzEXNi0ntZodl3DNE30XcswzpSS8c5IUM2uNCclc6yUEjlH+q5hHEaWFNlse+Yg82ltJDyEM5iaqSGQQiU1jqLlvjJHOQ+t1lTAtS1zyKSY8I3FKgmjJKqELHJBo2kbj7ZrkHDVSxYFzpnHvRjtLboUpinQtJ66qh7Pdg33t0Imkga1Itd2FjpfSZmb6zv+42/9Dj/5k38BbTRPnz3HWL8SxjZcNh1n5084353x3W99F6UMf/Ev/CS/+Zu/yTAMDzwemSkoeS5oLaHdkuV8qKWiq8xZSn1g1yhSLdzfHZl8oG1bGivEsFyFZhViICyRvAbBSl2DQ8aQU+Rrv/9fePfd93j58uVKxYKMZtu3NI0XEnUsPChrcy4YbfDGrkGaQo4yn9TGYJSocgXYU9FeSHg1SYi6VEhUlpRIQ6aiJagfRS9ntAT2vZEA2ag10zSLdlWD846yNg+mlEgozEpATDFhlKJWJXrDnFciveH8bMc8e06nE0opvvzFH8Aow/e+923GcZR5Dupxv/mBJqmUYtyNvHr/FU8+fsLudvOYVHogXz5ilupnVMJ/YDL6mR9a1xcV9UgegocAmjzQjVY4I3PDkuQ5r62EjksWOmbJa3A0RPqwkDY9tfZU6pvzZyU8GWNlSqbqY3g5p8JxWFhipJaM0SvNy0hTrPeGYZpZlkTMK40USeTL9FcSS3r9vlFQU36cu9XPHJMHWnxOkVIe1NLlMUybi6z9hDb4drwdb8f3e2y3W376p3+an/3Zn/0jF5FDCPyzf/bPuLm5+T69u7fj7Xg73o634+rqil/5lV/h7/ydv/M/JNUrpTg7O+MXfuEX+Pt//+9zf3//x/Qu/+txf3/PP/yH/5Cf/dmf5Wd+5mfE0PSnfCglmYC/9tf+Gs45fvVXf5Xr6+v/LlXp+t1rvvpzX+XL/+HLvPPNd/gD+ue3409k/KFDSm3brFhsKao43xBSJIZFNqy9xVlPSlECSuVB7SFhHWNlU6GiBNGfxYVdlISPQiwYq9BGYapsxpe1s6giiGVRCOiV0KQwugIJ7yxayaZeVRbvPVopQlgELews1mpiCDRNQ86RgnSpphxFCVcVJluMtRgnm7MKJV2sw4KxjidPnkIx9I2XxX/JqFroWscSI2OYqVkSlK61jONIWhZxslfIQXDUyiistcRcIURUihhpX6OUTARaK0EV5xyqRmyFzXZD1XAaZ+K6waeQ45uKIHtdLuhSsQh9oyq5GVlrmJaF+SainZNAFhWtDDEI8r/ZeqiKJWaUt0QMvgKLQjv5jnVT0EU2G1LMhBxQRtN4x7bvWE6z6Ls2LcZ6yhyYlpm+6+l6T6EyzTMlZby1nMaJOSooG856i/Iwx0gKEW0sgUTfOvZuQ2MtOUpHllYVrS3nu71srJ1mlmEmlkBBU1kE9W40Mc5c7jLvv/C8/64DN6M6A3aldWlRgFAlbFZyEfR2ltBSWjIMhfHVyEZfcj1bbk4Gv3vKxbMLDseBXbPjNCwY14BzqBDw2rA97xiGiVQS3/nWd3DW0HhPigWjPDELdaXWgraZojOf3N7SuwazRErV6GpxesbmwmEOHKaAURXfGKyupOVE13mebj3ZaJ5cPiUumfvjSNGKpm8Y70dchNrBRzfXZKU4HSWQMMZESYa740wqgWlOHF/dcbbp2O/POIwHxprwasv93T37vqeeOW5e35BL5ZNXr5mngdoKnv54c2LTedE81YW6LBjXUqrh9vqGzabB2Y7jMqO3O2zfsQwLZ37PdtcwT4vcG2KGXDDVEPPCvm/ZbzfcLTPjcWRrDe+/eM5vfvx7aNNhhoXPf+kSkK545Y/sbEfvNWOA6eNXPHt2zjdvD1ArwzSTtOVJ58EaxnFm27a8ePGE73z4KVvfUI1ht7f0ttJutnzuBz/P1//z73O4umEIG/rLlrbTOJ1kQ/b+yBQOHMaJ3dYTiyZWz5ffv+Rwuuf2ZuDFxQUhFuZT5pPxhra34ByXTxwuRZxuyNXStZH740zfenQHpyETUCyHazpvuf/0Br/bcTyOzFrjY6KkiHGKZZl5+fyczaaj22z5dPwI37eopuX2fuLm6h5jFF/+4S/yRF8QUuDp+RkqB8blSHGW47KwXSTUWbJ0wC9JPEclLIzfuqfpHXOO7LoN5MgyB0zj8LrHbT0cR2z13A4Dt8Blt+fisuP5bsP93ZHGdzzpd9zVO2IphDnQKsOnH33Ezc0N77+3Z7MxjEOgOofbOO4PA7e3CzUF9tueUylYDRvfchqhb3bEcAvZMM+KVze3tKcRZwyf+8K7ZDJ308KrV6/JKRCPiq4z6NaBUmx2W7bnOyBzdxy5fXXNpjOcPdlTlWY+KY7zTLhTnHWODuj6hqNOuLan9Q1hnKlYSsiMp4FxLpiaQRVaa4kxgrPcTAMozxN/hu8tU7DyTBKsBI1rqaFyPIyy0e8dNhvGiujngoSFaRVtoyAaaus43/Rc3d6CN3zuc8+5vbohJOi0Re82tH7m9dVrvvedT6hZoUzmbNuye3bBEAIxzqKrCJGm2+CjZkmLaGDCRGM9n3vnPe7u7jHMmMagVIN1jiHD08uX7I6VrkA4BRZVieXEcJ+4O460+4auQKccY07MNXNMCyUVUk4olQmmcP3pK55ePKPZW3LV6xzAsd8/5Wd/7v9DyZr/+Fu/jcqB29MtN6/uOQ4TyshmchGOA1ob0IlxnCgVNl1D23jmmKQ7PEtHs3GKkBfScMsnHwe8f49u26G9Ypdbdtue0/3I6bRwdXXHEhaOQ4aa2W862sbTtS13hxPTkohlIZc7dIG2sRQt8xaNBChqVUxlhBxoG0uIkZCykBdiwCDznRQzeZpYlu6RIGSsxbce5x3OeGJI/Kev/D7Hw8jT/YY5DxIoMo666cj1DOcUfe8ZBtFlWi3h8VpZVQWBbN2qH8nMRfR11hu8bskpUQtsNhu6vse5ho8/fs3V3ZEpRpSFxnuenDucdhzMzGEamWIQFdPaPazXAkqtD13kqxKiSufvw0adZCoMn1XGPVJuVsKN/NAaNllzTKVmqAqNXj+jJpZCThJegYJWFWUVOS2Mg3z2eZ4YxxPTeGKZA89ePF/niYW2bWmdwzcOVSuNVeToubufOZwCpymRciXFTAyBd55saTtL23l2+579qzs+fnXD3WFiWRIpJ0pOonF7VJ29KVxoLYVKVrWdWEUq6jHgA2FZ1qJNJsQFN0/0/UYaAP4X7hyxxqwh/zUzYyx51TjL9+vQ5k2H+UO+Rq+FF6VZCzAKs54fZV18lgeq0RpSe6BwPawn5Gd4XICWB9JNVVREXwIKyczotfgOKYsS2mi9aqcT1khhlFrXAvQaagI5//QaxjP68ffFKI0Ufd9DlXOTNZgHFWc1Ka+qqapofINxWsIX6UEZCCULtUkp9Vj0irms1DBE/VUrhSJqnQdV3qqSdl6CIFL4Wxs1AIUWigBViKq6rkVaJIVUJSCQclqpH0K3MVUoTjkJKanxEkRKpaIMq3AOyBJUxAgxQFUhl5ZS1yYTaWrxzpFDEvqNs1IoT9LZ753DWUtVVdZXpWK0JoRIKgqqo3Wi80olr8EnTabgnKF5IBkUUYjLeSJaIedEUZxDIlchARFFq6qVkHl3veYv/cyP88XPX4LJooc2K8lJS9pSPaSS1gIyK+GmyGKNOESc7hgXxXc+uOL2MLI9OyMsgcZKA5DShlo0lCzBuVZ0c6UU7u7uhO5h7EoZM9QCzvmVolCoqjJME9ZYdCprAVOjVUJX+e6XJLo4oRRLsdI5Te81VUHXdZRURTWqwHpHnCO6VKqF4zRRlRLlJpWYiwS7ldzbYq6EYaF1lrZpREVFxWCY55nGe0AzjROlVk6nQcI8VpMKLFPEWy1F9pogZbS35KqYx0WCeThCFqWsthIgaayVwG1cA3ilyPdRREneOif0ppSIS8RrxX6z4cPja5RyqJg5v+gQd58Cu9Boi9NCw03LwGbTcjMtqFoJKVOSprdyPcRY8Nax3XTcHU/4lcblrcaZSvWe/eUZN6+vmYeJkDyutzinMCpLg9eyEFdtl/eGjCJXw8V+yxJmpjmy6TpyrqSlMKRJSERa0/YNJmchqFWDtZl5SUJrtBBiJQN5mXBaSxDfN4QQSEphipA1tFGkFNltOpy3OOc5xSPGWbyxzEtiGGV9cPn0jF535Jzpu0bYSGmhqEpCoWLEO0POAaUqpaqVcqc4nmbGWa/PQYWmklIBLeFB30iw2DgrNOh5xmnHpnW0radrREG1bXuWMpJqJczL+h4XPv30ivOzDusMJitiqtimIabCcJyZ5pFt2+C0nCtd23AICeNadImkmGltw3E6UqYF3zo2XUPXtiw5cTyN1Cz6N+ZK6wy6VLxzWOdpOyc0mNOEqkJXcY1lmSOFymlesEbTa421hrmIgs5nCROmKOGFmjPzJPtutRRs41FF0suxFqb1+vWNY1wkPCc3do02Dk2m5MISpLnPrvdnUXyKYtM4uY81XuhJfd+SY2TKie22hWAYloiq0siAN0zjwHCaMEqa+5wrbBpL9J6co4Sx1/uUc55ck4SjakalyqbbkJLokI2W/TmjLLEWim1oNw2qDDTKMk0JdGGZJsKSSErCx621pCyB0jGIqi2XzPH+jk8/+ZCzXU+YJvqto6xzLYUQ/Z4+e4lRlvLNb7LZdPyFv/Dn+O3f+QrHw7DSdN5sWKuVSpRTIEd59nhnyUXCzKxaX7Mm8WNcqCVxstC0DW3XUmvCZ0twkRgy47iQYxBdHtLsRq189OEH1Fp58fLd9XpZUBWhgq5TGq0eaOhAqYQqallQ63xDYRUkJPBd6gM1sKzaQaHMWWOwK7Veobm7PxJi5nK3Ee2uln3eohRt61GqYq2S7yBnjLwZbJF5Uc6FpCS4XMuDKk/2ho2TIJVo6DSbTY+1huNhYBhnPve5z/Pi5Tt8+slHfPOb30KrCaui6LJzpq40R6UV0+XEsJzY3Wwfw96PdKH/v7mnzAfrmxngA8kKHkM+D+Ql3kwZ34TP0eu5IKGuWt6QnCRTX0hJyI85y1ogxkCOiX6zod/0yPRHGmuN1qLFUxW9XjtLyI9BxFrXRtDW0XiLdQbvLG3rOZ4mhikQV3JmXVWEj3UYBaqqR7oWWciTev38fHY2rNSjOrAWoVOanDDZUdxnXvPteDveju/baJqGX/iFX+ALX/jCHzmgVGvlK1/5Cl/96le/T+/u7Xg73o634+14GK9eveJ3f/d3+amf+qk/1P367OyMv/E3/gb/5J/8E5Zl+WN4h//P43g88i//5b8kpcTP/dzP/R8RVAJpYPwrf+Wv8Of//J/n3/27f8e/+Bf/gnEc/5s//+kXP2Vzt+Gdb77zx/gu347/1vhDh5RYN6VLzjhrKVEKK845tFqVCypTEX2KdUYWQrHIhrOXBXWImRRkAVeAtOKRvXVo4UiDlg3rJWRRvFm1dsGoxwWmVqJIatoOhZbO4lxQKFKO62YxzHHBZE2Ia2GhZgkKpSxY9YIo0nJmGhPOJLSq7M+EjlNVYZ4deU4oKrtNR+M047BgXYN3oHXCOcV4mGn9ljknwpIIKa4qCoO10j2kUNj1M8RcMVXLFqgR5LdZN3BCScScZYO/ZrwxGGsZ5oW8dixrLRvwyxjAZHzjCKlwnBc6b9l4TwiFpcykNK9dnBpVChhFWruoMwajDaVEwpIopWJKptFGwmkVxmXG5oyKcXXOV0IK2FY2LWtByEG1Yp0j68ppPjHPUsAxVJZ5QjtDyRBDpqzYcTIs80Te7PCdJk8Kt/FQoGkcBYOxhs470hRJJTPlgEqRdJ2wVrq/2tZjqmcJUvBrDDw531Cy5t13Es+fRlSTqA0on99sTqyF0vrQfaQNatUs1FRgydQTxDuYdeG7372nJsO+6whzwmlHSYF5DFgH9+mAaxxzVrIVbzytN5xd7MhJc1gCcxhQ1hJ0Jg1XbGvHO8+fsO92fHp3QKO4vbqmaVpyDtxNouCYU8Q5ONt4PvfOS+5v7sgpsaTKOEWuhzta7zDVcn8IbDvD2cWG77x6LZ25yqMXi3aWfd+SakZT6VqDspXxsGB0YdsqdIosYSEl8KYhpcLdOLMJhmbb0LQeZ1tOxzuO4cjWbTjfdJwOB8riqNozz5EUHK0vqBR5/50L7qYBkyo/8sNfxG0bfn+accpw+ewpc0jkYeZs0+GcJiuNrhLsc6VQS2E+nqgpkXzD9eGI6RoMnjwX4jCRauTi7JyXF2csSyaVmbth4u72wPXtHdnJ5trlfsOYIdTINAbpll8WpvEeUwNosM7RG8t4P3Hx8jnjqwO6VtquoW8c8+3Idt/iNxum5Z6QK3OJuBbu74VkMV1kjrnSXZzx8adHhk9v2J2dczfNhBjYdWegC59+eo1VhfP9BuNapmEhU2j2Gza25Xha8L7iysgnV5/g+wtePj3HjIkffvcdpuNI2Hbo2zvqXAlBQpZ3r19zc3PHl5+fcfliR1HX9FvHchrptIKmwXctxhquX98yVXBeUadAYxVKWd55dsE4LpxiABb5brSi7XraHFDOUEyVYqhS9LZh0284f+aZQ8Lc3hDjwuai4emzJ+SsuSfyjW++4t2zPRjFFBfuDyec8ZxKJh0XygfX/OAXP8fz956QmsRxqly9vmYYEk1qOd9vKWFhniJXVweKgnovm/53pyM6FnrnCMPCMRVOtxO7XYPylh/64ruEZcJhcMZxez/grOP5kyeMx4GcZ/7cD/0ZPmi+y6tPP2GYI8443nv3GaVGPnk9EKtmMYo8jUwx8c7LF8zjyOai4epu4tWrG4xpMTqw2W6Ieeb6ODDMojztu47hFBmPC+Nx5OY4oo2i7T1KQWc1qnfY3vCFl+9yd3fHzcfXbBrREV7fHrC+0hjRdFijGWPkcDiyLKL20LuW4hpux4VtToS7W7ZNy26z5TiPHO8H2k3HdneGClk6kBvPYQqEaDgME6TKftfSOMs8zsxqBjS6hUYbtq3nvcs9qmqisnz8f3/I3WmEOsICQ87cnm5ZhsjZWc/ZVkgMGtFULjWLwqNpqJMQhlItvLq55b15pNntJKCBqGhA0bZb/sJP/RS+a/j93/odLp9dsnUf8Z3vfiR6WGCO+ZH44ZUihARG0TYOqy0Z6e5ehkECflmjrIWauD0dca+ueHa5Y7NpidHQ+J7GbzHtQEYxpwlVMtUIxl87R2MbzpTm9v5ECpFTyXycC2f7DbvzLZfnO5Zl5uruKM/4nCkknOtBGVIpWKRwfphmKXimQEmVmApN4+m2HaqCVdBaizeaqhRjjVzdXaPjwtnZnuPhQEbjnGOz3dE0hqcXW25vjnzy+l7Uu8Zi10APWhFLEa2ThlxFJVVyZrvdAJVpEY2IdYZ33nnGpu8w3/2Qu3HCNxZFodqKKi1QqDphlio0JqWo6U046SFksc78/oBOQSlIqWBXek1Zi/xakjyijWB9hq+6OAErKapaaUuqsCyJorUUpQzra2VAchLVQFyWVXWQWJaFaRyYJgkXp5hp24bddoc+2+I3Df7/x96fNVu2nWe56NPKXoxiVpm5ahWWhYWwbDiFN8cCW5ggguBqX0BwQRDBPzr/gTsCMAE3BDjCYYzBcRxgYxsLLMmSltZaubKaxah60cp98fU5c9l7gw32sc12tghJqcxZjNFHL1pr3/M9r2tRSJRqyIbjGJnmSCmJFGfalcV6T9tYWg+Nb2h8Q7fq+PT5NXe3B8YxMAeI6aHpnaoFPisUMPmhS194B/VwjB6iypQixkjMCb9Yd3LKhBBp5+l/blXwxzGUomQ5D4zSFKTIJnYHvURTCBpTEBuJRYw3SiuMldiSXCSqoi7FpXuLgdFmKYLXB6gv5wUg0q/neqjPAmAK6yVyJy/FIVR9OFfEVCCNCSUvUXAskXSlyhy6QqGQSqWGitYSQ9U2Tgw7gMpG5pWA92KFiTGhjVnMURJnFqeEtY5Ui5gWSl4KRQJpFV4bmyRarqKNenitRt3HlBjyEgsjp5IUdLVWhCTrsPvklFwrNSVyFjgrl8qcJFbaWyumqeV+lbM8w6gVVZREvMXXxola7yE7uUaNEqCmAnMWSEbl/ABY5ZLRVi/WJ0gxAIslScGUAineOyog57hAj/LZ3ttJKJUUI8U1GKuoSQqilbr8foE4nNGyjqVKfB2FMha0FpOHtQaFGDer9JBIgwqJr371fd7/4AJMkUhKUx+sC/cFz7qASuqelmMh5XKBoMgTJArf+tYn/M63vivHdzFa1JJJUV7LXALaaHKBuhjqrFE0rqEUxZzEdIDWZF0oYcBXy3rV07iGk5kBxTQMWGupJTNHAUZjyWgDrTNs1hvmUYwruUCMhTFMmMXkNM9ZYpU6x12Un+koqKzBSPxarnK+OyuGrzhntKrYBUZLMVEyy3qzMOWMywnTWIw1ON0Qw8ScZxrtaZ0jzBM1GXk2pkLNGmsqqhS2644pBVSpXF6do73lOt1ilKbv+8Vgk2i9xGAtn4hAjnLDIIUAuVCNZZgDylo0RqKyg0Q6tU3Hpm3JqVBqYoqRaQwM00TRAjGKtUji5lPMEmOaJPpHLzFaWhu80qQp0m5WhNMMFawzAieOEd84jPPEJGv9VDPaVuY5AJXUdsxV4lgPp0A8jvi2ZUpyTfquAVUZTgOG5d5jDClIVK1pPE4b5pAxBlKNHIcjxndseo2KlauzNSlEsrecxglyJRcgwnQaGMeZy1VLt/bU/YjzPSlErFJgpNlLa02cgli+jMbkgFVyrFZdR0pJwK5aUPcxjErTeUeIUeLXshjPTCo46zDagq2EaZSoP11Zn60lVlBp7vY74nSkdYZUMjkm5qooSmLWbnYjl2cd2/VaIJci0aqn4wnXeqyTiNwxZnangVAyNozIXRmmGgQWrJnxNKHQhDlgvaFvPY3XpChQaEyZkARuTikThonNes1Zv+b65Qux1sSCs5btumV/HMUyo5RE0qZI160gS5PdkCemWexcRovhrihNKoXhNIpFy8k1EkOh5khMiTHEJeLQ4LTMn7OqrNe9xAIeTpRSaJqWcZgpVew2MsuW56eAFokH+6A1hClhUsbVCmScdXKfHifhMnWH981iQG4Z57jsG8n1YY3Ge1nHTCFSqzzXdVEYpVk3ntZ5CorpFBjnRMqBqc6EJNaycZpxyrDaNpSUFtC3kGul6IIxdrH5Vb71rW+zWq9Zn53Rrh6QWe5hDaUU5xeXfOGLhRdPP8V//guUXPjV//CrYpNSLM/Q+wZMs2z0i6nRLKZDFltbykkwGC2ASMqR4zBSl70qhUS2Odsw2iD39qgfoNaKWNRRhmfPnlEqvPve+8RYGRajX9NKjJh3mmGaibGQSlnmJbKuvbcCKS3GLOGYCqUWUpBYPefuzVoyH7NaP8Atc5w5DdA2rYCDy1xba0PfdTTekrvM/jjIvh4SQ2vq6zkT9/MUEONlyVhlF3tmlr1RrfFNw8WlFXv+6URnGs7PfoTz83N+7T/+qjQ2qAIJgTgr9PueH/n3P4Iqrxsb6gLncA9XL/vHdQG51P2LgYfmhlofUOx78SEPsw31GZtWkXXY/Zu6L1S9bq5QUPODFTTnLM27UUAukFhQ5xw0DbpxSwKBzCMLhpgLMd1HPieZnxrz2rpkLMZYrHVYPzKcRkJI5KzIRdY+9R6eV5I8oJZmjmVi+3oOLAeIe2yp1kpKEV2NNCaXuhg9y/95Hv9mvBlvxv/00FrzEz/xE3zwwQd/JIDSr//6r/Ov//W//u/aIt6MN+PNeDPejP+5UWvlF37hF7i6uuJLX/rS7/v1Sim++tWv8oMf/IBf+ZVf+WN4hf/tUUrhF3/xFwH+TIFKSim22y1/42/8Dd5++23+4T/8h/+XoNLl00v+9//v/45aGkDfjD/58QeGlHJaijpaote00lLkq4W6RCGoqrDW0TRWNnpzQemCc56Ulk2OCjVF6aRWizpbG8iJotQCQCWJYLGaUngomKlaUaVikO7irmvISMd8yWXpEMrSIbZ0oxtjUEphjJFNfSMbEyknTL5frEdKBW0cc0rSqX5UtI3HN5bWN7LZWWQBmmsFLdFvSlVyEjvRdrtFKUeoBecUhIpxTjq1SIwhUZNsWoviuVK8JedECIGuaWRRamVxGlOgVtFhZwV3+yPznPCNp5DBSsevypmLsw3aaw6vjhTlOcwRlWdMVcQcKVrhGi/vPeWlWiLdUt4q0BrtZCPTaiTeT1fqrKR7r2a0lyLMGCJFKXwnnYCgpQssZZz1OA2YSuscvTeygaYqjfeyiW0Uxou9ylsjm0i5UOaIcRJN0ziLttC0hrvdDNUx7AdSCmA0XduSS+E4nvDO0XWOYb/H6EWlTETnQDre8N67hiePCu1GNkJVA2ixDNxvLNxHjtSlmGO1FCdUzKipMt4UQlhzPVZeHhJ3h4n1pmE+RTCWIQRi1tgyUyk8ulrhx5ndOOOU5tGqofXwg1d7DlPharum6SzOVEKMxDny9KNnvPX4MRfrFde3t7SN42K7piqF6RsilSZ5eu9oG7EoHO4OUDLHuYIXI9CYC6pMqBqwxrNeWWxjcNsVOczUbIghc+417dk5d8ORUkZsSngFQ5rZNC1TdhyPMxhxU3UU2G5ZX2yYb25wRbKv27bl8rLhfL3m+bMb0I4xFLTPuLOOeZzArqk5svKagMe1K4YxML18xeX2goMdsC6SThFUw+6UcF1Day1Ka17c3NJR8FvP59694vb2QCiaTz55JQr5MOGdREKNxwPmesdXf+R9vv3b32OMAxiHbTxDmLlcbWh7y3bVcBpGkm65fX4nEUWuZxwjq87RNY79/sTJVILTnH7wDHLkVEYaYxlPI4ep8OL6jottjy6OVa8xsXA6zdzFyLq11DhKBENIHEbZcJrv7ogp8bkvvs9bj67YH+745NNXkCS6aDeP7E8z71ye8+Wv/gXu7nYcjj+gVMvjDz7g4+99j3euNrz1+Ipnc+Du5Q2Nb3nn7fe4uxu4Pe3YzxNP3noXZQu6lSjFTz98SYqZx48veTkWnn58zdWjM+LpyMf7O3JtcO0Z6y4SjWH76DF3d3ccdntKqTgNw27Pu198l2Irz5/veXSxZb09Y3d3I5FnpyPnmxXbZoU+9zy7vuHyrMcmx6MnF6RQ+OjDp+i+p6rM9fGAbyx3+x3GLBEgDoqXaJnd7ogphnmo7MfA5faStukZXt3w6mZPcYbLt99G3bzicLhlmhVd4yg6UxvFShl8KkRlQDtOU8CkQB4DSmtCilxcXHKaAtN+h187AhliYv3RU1RMdKvX8On6/QtqUhyOSUxlm46XhyPHMfHxR9fkDE5DIKNOA3fjiDEWUhDdvaoYIwXZVWOpIXH76pab04FgPLbIg7nGxN044FctnTGYaWTbeE6NYaRwHE6kWmhaj7eGUjOByjgFrocBZRyPVj1Fe2odaKyhv1pjjxP7Vwc2q46xd7igaTq4vtvTOU3fdEynwH4/ohvH6TThUaw2nkerNYdauJtGzvqOyUmcRY4wpUyYRj5+umc/Z+Yysz6TZ7/zLc61lCawXVtWFprNI9I4MB73uPWai/OWFCPbR+/x/NlLQk5MhwM/+M7vEKfM1dtP8L5dpi0KdGV9+Zi/+Jf+EjcfPudb3/8+3racb84IJZBiQlOIIcpkx1k2qxVzCotlpopxDWibBpclCqwsVpZSM7EkrDVcnF0wnCZeXt+QQ+Z8s6FtDMZkhv2JORfcErlCVjjn6RrH8TRQs6j5E5UhzTTvPGG92TKMiWMaJCYmFo7HEa3dUmTQ5JRpjKFpPfucGBbjSU4jai602qM7T8qREOR9rBtDv7ZMKlL2e0qV87brG9Ztx6brsLrHYggF7g4jNWfSFEgqU5JsVd8DBYnEFEUhvj9WKR5oQ8qRGhPWW95+csXlxRmfPHvGy1c7jscBjUEXjSoKry1+ZZhtYIyZU85kyaldTC/LdETdG2qWaK/CAp1L7JQy94C6GJXuF1gPlgzqQ7xBrYu1CU3MApqUKnYdo/QDYCIWHQ21krNE8QwLaBSjwO41ZzbbLYqCtVDJ9E0LFaYhgpLPyM8a0LRna87XLX3X0Fixm4Cm6+GR1vR9w+7sjucv7ri5OzDNmjkIrBZTXl73vU1ikSDwuoDAZ/5XLfabnLPE2iyxXDklQvjTCynVsnSyL8U4rQSSE55FwJdal0LgAhzWJZpCIhAllo2KzE0fQLf780M6v7XW1FyWEoxeIJ/FGLRAJBqwRjrU72M9lL43OJUHGEcMTvJJyGf00H6/FL7kz9QF/FnMSlCZg0ScGaPEXGaX+BDUg+FJLWDVfaR103iUMhLbZoCMrF+qQqtCSoUMGKQQWDIYoynIa3bWLHFTUqQV2GqJuFKI1SOJXakqiccsBVSptJ1DGcU8BJQyzLlAzGhko6Oq+zhrHsxOD14KrZb3IyYs4XOkQYMlqgUKykkEVywZC/I5WwESY0xLFKKR4u8yJ3eNkmaLJQrsPvJFGy3X5wK8scBrWrtl/SfXvLWaaU5QNXGOYurKsu6sSOOF0QbnNHGe0UrWj7Vkas3UNPLVr36er/75D3BNBbOAj7q8bnjQrzc4apV7kcZK0TBXVIQwFHLyfP/j5/z6b/02pyHifUeqYnwKuSwW1Uylsu16YoI5JbRS9N5iDOz3EyFVusaLrVhDWgqKh/2RVd/Tes8wjVhraJc1oHZWmomsxGdbAzkn5mlG1ULIUI0BrUmlQk2AWHm8N2ijH6LJVBHwtGsUbdsxhkBBYga1qsSc6I2YEEOQ5hBdq2w+NA2+8+RxRFeBIay1tK2lbTynwyhwUq4oUzCtJccsEVg1460iY9DWiXHwNND7lllHtM7kUKgYpljRSxSVUorTOGGpGK8520gEWa6Kw354sKTJM8cSQ0CNE08ebbl+dUtcgDBtNTFnOtdgnabxhhgSWVum4yTXgnGkJNeiM4Z5DgQFqSjC3RFqIdaI1YYUInOG0zDRNbJv4L1CZzFeTTnjrKaWiFZiTQtRoLA0jZRSOTvfsFr1zPNEPQwLtCkg2xwzm67l8vFj5mliDnsqitV2y/7ujnXnWfUdNWWmQexb6/WWaYpMYWJOmdXagK4oq8kZDncDJVf6VccpVY77ka5vKCGwmwVkr8rRNA6loOl7qoIUZ+Yoc6s4TmjTsNr27PYDU5LIwZyzmEvHWURWNLi2IY2jwJ1GYbzFGs3hbiItsNc0zSjdMM+BXAtOW4wGbxTawDRHvI1ooxnmQNs09P2aHGbGcUYbhW9bqvfU8UiMCYPFODGxWavwCASlnJfmvRihREqw5JoJ2mKdZRhGpnkGq0gpoRhoF7NSppBSoGtbmtbSBEtIcp6WlIkFymGCqtEaYs64Uhmnmao1OS73teUZZIzEdJqiyDEzTyOxQFX3NqXKHALaWKyxmCUGNDnDnBIxi93x3nyukCbCUuE4TuQsccMoQ0HMe9ZL/NR4mACFdRaVAhZFTJEpaLSqYlabIspZYkzkWPCtofUeC4Qw0zrHQtaSQyLlQjKZ/WFknCVCzHoxbFUFxji0CTgROYH2eO/ZDTsKlq5rxPTje0qpHE8nPvze93hydYVVhm69pmnk/dzDGso6Lh89osyR7333Q95/73O8+PQFT58/l/v/At6mIvtYzjq0ksjXnBP3c0mj78GQ+09H/pOLfG3bNFAVaRyJIeK0xa41fXUCqIWEUq9jUWuFp08/YTgNfP4Ln0erlhogVvl5676ncVDSJKBxqcszVJhYbdUCt4M3llwyUxLMORYxVttqJeaVSk5JGkRVxXsNFsZ5QiHRm9oYsYI7h7eeaiVqd1BRIKacJTkR6aisy7xALcbQXGTfy5RCVWqZeyygkrM8fnxJv2o5HAfmOfDk0RP+4tf+Er/2679O2O1orMTGxlyIOUN+HWH2uj5/H/e2QDkPwPrrufM9mXP/vP4scCQ/gdf/f/l6mV/c/46lYQAlQPsCBcn3yNwvJQGNSskPn0HXdpSmWSyOlbpAnTkJ3GSs3N+yAucsjTdLdLnATIlCddAo0FbTecswTJyGiRAhU8hFyX7raxrrNXilPvPeHibln53RCmArpJmsr17P896MN+PN+MMOrTU/+ZM/yU//9E//oYvF94DSv/yX/5IQwh/RK3wz3ow34814M37vGMeRX/iFX+Ctt95ivV7/vl+vlOJnfuZnuLu741vf+tYfwyv8b4+cM//m3/wb7u7u+MY3vsFms/lDA7L/qwylFF/72tf4+3//7/OzP/uzvHz58nf/OwqT/myAW/+rjD8wpGSMdKbEVLDaoY0iz0H04b7FWYnAsMZycbYhpcBpGKk1EWOgZNl0NtZRlGxmxBil41krjLb4RhZqqWS0WTZ1WWJAFugp50JjHd55pikshSVZjFm7bL4YTQlJjEoLTKS1aKtzybKoVYaQMloVrFa0naNmzWGacc29PSgQc6IWMRmhl8iFZWFf5pm+8bimoSq5+DWVFkWZJ3KYsSha73CNIdfXMRPSjR1JsyIjRbmUk3TghUAFvDYCSCWJP6sIDKYXSKsgXU+Nt6yallM4kmpCZ7PEOTgxMKiKMoaaC95YjFUCmM1pyakvhJIpyuKbRjpLtSHkRAozNcmE2qFZdT2Dm5inwDx6tG5x3tC0mbhEsaUMnTVs+w6lxSgQ5pkQI843GA1VFzarFcNpINkkBQQtcT7We+5OE+3K8NbZlnlO7HczqWayN+hiGPYnvLM0yuBsw6rvub2+A51pWsglsD1zPD4LvPeewa4yqslUV6kqo7JUp5W6X63fb1yA8ZqaCjpBnQz7lxNPP00832VO2TBaz5FC2B+wKGh7UsoY66hk5tlwfTtwt7sjxUjTbHhaJ2IYKFWTNEwlc/vijn6zQhvD7XwgN56X88i6WuIc6LpOdPw5UaaR7bbneNKc9pG07diNJ+5OJxqtcE2HXTmMgsOUiDWx2XaknPnBR6+YJ0UqAVLEWUUqiYy8z7PNBudb4kGKsJ41q7Oe0+2e7aMVKwcpF443B94+u8K1cEjSudquNCvveffRY8YYmEqRDlij6NeerrOYfsXF5ZYUMuPtHfNupCjZyHYxo0qgzjOHl5k5GoYcMNZBgou+J8SjXCtVMx8Cq5XhYnvOp89vCOPEk3cuGMeJ9WrDat1z9njN9dOXDNOA7RxjakizYuNbstHYWojzRP/2GW8/uuC7H39K4x2r9RnH/Z6oFV3radqOR29ZVEzEOBHLRJ4m1lc98VR48eLI9mrLFGZCyJxvV6w3it3tzPdfDihreHJ1gVOa4frI2aMz1q0jxcCjx1coVVBp4vlHn5KJPHl8xbg/iVEhJa62G5TzvLobKHOhty26X4EG13TE08jx+oZhGrh6coHSFpqG1PQc6jVNrQzTgffevqTGxMtPn3N3OtGtOlKYKLlwmgJ2D2GcSFPhGHecv31OZxvUasvtyx1pPEHOxJJpG8fm4gzbdGzPV5xOt1y8dUE4DjAnunZFLor1qidMkd5pLpoVY1TUmpjuDuxOM3dhYNPIRuc0T7TrDeeXGzKwdo7DbofRnrPVGW+//Yg0B549fUlKldpl7g47rl+8wPiezllUObJpG9754Au8vN7TUvnobo/tNxgrcNV7Vxvu7va0tucwzQwhE1XBrzuGaWbbed652vLxzTXrtuXy6oL97Z6744l+4/jRH/4hnn34gttXO8ZxBmXpreHwcsc4B1rroCSmUqnVMOTIabfndn8iz4kpFS7fumLTaS63Lc2qpTWKk87sPdzdSnd4t1nhtGegMo0jnYISDD4LkGFMIwUcK5vPKRdSEIuhchanNKpKEaHtenaHI6EmFJl5THzpi1/mRfuM2xev6PoNq0cN77z7mI+evUJZx2E3oKJmCAO1KC7Oe1wppJo5TSNzCPilQ3icJ3QWUPhuCFycX+FuA31baeZKDQpfYLzZk1IEVbm8PONyveL7H75gGAZuDhMb17CaDM7AaZqYSqFUhcLy8fc/4TREsim8+857YIxEOi0F6tX6nB/6ypf5rQ+/x3wSE0GeInMSeKHxnnEcmVLCa03rpLia54Be5gxi14jkIkUIpQUmnsaZm5sd85RouxVoCyrSNAbrV/TesXYdN8fTYg/SpCiFZe8dq9qSc2EOhTzNaF159WrH+TrRdx228UxhJqeC91qiHlTBeotfAJecC1o5jJaCN7mSpkhwoIPBtb3EhjYdvWk4vhpp+oaUZuwSyWO8x6RKGDK7cSTkwKpr8I0lp8rpcOJwHBljkBinKDCI9w7VdVQlsFBZTIqtt6ha8NagdGW1bvlzX/oiV1cn/vN//Q4vrm+lIOMMrjqUyljdUpXEWUxlAdYpizVnAUe0xtol+qk++JUo5d7+oh8KBnoBRXStUtyq98ah+6KE/DnmSqqVWrLEDzcNVPmZEj9scN4QYxbzDYkwF3Z3Eg1VS+by8pKSIjlnpmnN0c9i3tHQrz1f/fOfJ4XHjPOJnGeMnFFopGBoq6XTGuMcm77noluxWW149vyaF692HE8zY5iJWZHLAnLUeyMQKL0ci/q7F5P3kLVZwK0UgwA6trw2AP0pHEpJiFIuFa2VWApyWYA0i9GyUNRKIP1SMjEmAYCWYs89hEQ1UuAp9wUZOTcETFFLh/xniljUBQYS+MRo+f6UXv9cuc9qlDYUpR6KNAr5WqU0LE0R+T7G6x6U00ucXVXMKQoUBMSUKYWHuBOxSWWqVovBSCAEY+zyMS+RMUBNEllmkIYLYxa4idfrCWqh5KWItpzf6jMmA6Nl3l9qkUgi9bpwZ7SASwolhgtrCVnOpVL00smv5dzUSyFuAQaVNQKGpSV+ZSnWVSXvRSG/K5dCyQkWk4GpCuec2MpSpiaDUxpt5TUUJaBhqeC0onEOlBie0hJVo42ReZRSeNdIjOr9/QG9AEyGOSSs06xbR86FaZbPuhgl9r8QMVph0Bhtcc4xxQnU0ixTC11n+MqX3+NrX/sCtqlgq0RFK2meeTixH4YcW2XUYlBSkGAeModj4eXtiV/9rW8zFwgocpjRKLBO7F7L/T4nxTBFpnmi5oKxnkNND2vfogQmGE+TRFFay5hmMQPlhEdTcsY6sViVWqgp0jSOEBVhLpTGMqfAGAJWL3GTXiIKxbZV8N4u0PggBeial+vnvtlHU0ulbbzEN4aK0QKX+NZxGieavsFpRamFMAbWzRpj4bBQftYbvDFsVmJBSlXivlBIo4XVKKfpOk/JlTRO5DlSlWHOQSLoyNSUmYeZnNUD+EVRdM4txy1TqiKHgvOarmk5HEdySqw2HSkmvGtw3tH0nuEwEFJEW0MslZIVjbEUrdEUSiq4dcO6a7k9HDHG4H0jcZyLlcs4R78Sk3EuSQrXKeE7R46V0yng+waQiMS28TQepilzdxdBK9Z9i0ERh0DTt3grIGC/6uV8K4nT7kClsFp1xDkK/EsWC5gxDFOkZvDagnVwb+8LiTCMxBTpVy1C9BqKccwMWCCmwHbVQSmcDkfmGLDOUUqkFrnHqblSYqLkSkwZ3Ri6rqV6iVYToEfgilILTduiraVtO6a54LzHWIhTwigN1ovxcJGVdcYyR7nuSIXhcGKMM0qbBVatpJLxrSOXgneONM/UUrHOsu47mtay25+Yp4BaDJXTeCIm+XqbAm3rOetXxCz35jkEYtUYZ4lx5myzZoxJYMlaCUWiirV3IlfLmfPznmmJMDu/2JJi4hACqWQuH20pMTOPkbvbE7mIWS/NgbxEtVqtGULEKUsqlZQCx0likWNMuLZdbI1yz3bWkEMiGiVNA3OW92NfW8NrCtRqOdWAMxJla6wjIfOoSiXnis55Mchp1GIvV1qigecY0RpSTFycX9C6nuPdjlIVXduz6RrmIiYpKqgkdtsQRozVNNaBkj2v+6hRsSZCyTJvn2PCtz2ugblMdI0hzWKVSyGQClAK1nm2mw37uxPH48AwJ6oBlw1eC7ARk0TAHQ4nfuc73wUs5yVzcXmBtXoBhmVobTm7vKR59py73Z4v/NCX2B/3HA5HOYeMIdVETpmKkkg3rckxopREl1H1g51H5pkC4edcCCFxtzvgrQclQLpsL1pQFqtgYCIh0E6N93ZReHX9gjlMfOUrX5VGSCWGNb3MC9quJWax3OsHEEXmWMbo10agJYpWOJpKSZViMkmBqVrWV1VgqhwKc04YpZjK9ACwGWOWeO4swJ5S9J0nF9mnnaaZEpe5wDI3MdZIowOQFtBcKYmZk2eJxLdpDdvNir7vub7ZcbPbc/7oiv/tJ/8/fPOb3+TTT5+SEqBkflAepKoLVFPvn78LNF0lWpKHf/8MqPQwJ703KvEgPrzfG3yNYcujvNZ7I1F9Pc9cYt/Q8ncscLxC1h5hnhdjpYDWOfdAIedW9qjVPeQNZ2crthvZ+80lClB/H2ldKrpKzLFXGmctrXW0vsE5ifKe5khMYkQsCygt7+s+2va/MTFf3rxa5jJ1STxAvz5mb8ab8Wb84YbWmq9//ev81E/91B+JzeLm5oaf//mffwMovRlvxpvxZvwxjI8//phf+ZVf4Rvf+MYiufjvj6Zp+MY3vsHLly+5vb39Y3iF/+1RSuHXfu3XePXqFX/37/5dVqvVn+jr+eMcSil+7Md+jM9//vP8i3/xL/hP/+k/MU1/eht6/6yPPzCkpFWVaIUqG2wpFVCVxlsoWbTu2mCUYRwmqi5MIZBjRpGxTtTAU4jMUZTM0mUHyjiMc3SdZ5pG6dI0FoosgMuyOLLOkWKmKNHxp1ygKEIUhbFzhpwknsMqjTPSoV1SIiQBf7RWi4UHYkhoo7FWg6rEHKWbV1VUkRgCWVhqtpuOaQqLocmgTSGnzBxmlPYSz6EUVlcshiFp+vUWnRRhnkhW/PJljpRa8UZhO4G9qIqUpPNGaUPO6XWsRZLNhZoqyih0Y4gkypxY9T2qUahYOBwPWKvoVu3SXalo+pYGR52kS3TWWTLnlcY3nmADjfXM84gximkKeONYrzpiTMyLgaKoKjEok0ZXi7UN2Wp0Vax7L4vZ5OjWlpILrpEYpv1+zzglUBVnNY31lFBI40TTeEwWhXGtkbZrwFmOYabUSuOdRDDtJ0q1OFtpvSYrxd1+4JhGNqZlbTw1V+ZcCLrgvKXvG3ROPDkPvPtuxnYT2AIuS1dXNkBEGekeV3xmR6LIJkAtFQIMz2ZubuDpSfHsdsbanu1bj4n6yHQc0G2H8Y6wO5FTxjtDjpH97kDMmovNlrNtx2qz5u7QchonVlZAvLvdCW8bCoWzRgrgp3Hk090eVQoXF2uyrozHmXmJb5pPhZwUEVAOooKusdScIUjHZactoSpizlgsGsV667gbjnTOs2o91m3oVxvuTicer1d4owjWUGNAVc00F/RxxFfH7m4m5IAhc/3qFdVU+n7D+mxNKAO90aRhJgeBFZSpvHchtpvjeOR4ODEen3F5dUa76qmHxPWLPatGQ5xxbWbKhdvdkcsnl1yuesZjJAwjNymiVWDVGKap8PT5LbvtyOU7j5h1YX11yfrsjGF8TokJVy1vn59jcuDl7R67PqNxDWqozOOeputw1mKB2xd7mkvLaT8wFYVTns3VGc7CcT9xOhpM2/ByP2K1IaSBy1VPbxuu85FJJXwaUUo6u3e7a+rcsjnb8v7nNV1j2Kw7jsPEh58853Es+MYR80zTNJxt19ze3vLy+kCqkc2jLbM2XH/6iov1hs12xZP332aqmY8+/QSGCR8lUskqzyloPn1xx5xm3tKG1fk5aENjF8jKKIbdke7dd6mXl3z09L9g2hU4z3GOtMBF4zi/2JCuzrl9fke6GUlDoH/rnPV5z0cf/oCtLbQZim/RjeNye8nhdMJXy1W/Zq09g0o8GzJzyaimIRnLzXjgkV9zPO3ZDRnjDGE/UIyhWQrPq80Wf165uthw3B8oKnO13rLZrhnmSEnw3e98Qr/qKUVxPA6chkyIA6X10DtAczjdsjp7TMkV54CaQVviKbA73LD2hnPjyTFgveKtiy3f/sEnrC+ueHTeUA8D4RQ5Wzc4WuZDYJ/2HE5HWm/pq2N8OWOVw9nCEI50a4suhakUHr/3mDWa07DHlERbDON1ZH25wq8bnj99RdsZNmeOt7aeq65jCIXOGdpHa84/eMzbjy/49m98nzBO1KipjWN7YRDnAbw6jriuF8tdWjZeTSErQ0kQwkRWcLbdolUmz4m6vxN7gXaQMs8+esHWrzC1MI8z8yFy1rfYbMlzICrDo/MNd9e3dL5hLAlUoX+05uziktuXO06v7ig5cbPf88HnPk+aJnbHW56/vObZ81uaxnJ2tmbj13z0ySuq82Q3g3Gs256XL+8Y9hPeetRa85Zu2G4biYRVltX6jIrncDiyOw6klJlfPOfsrUvOzy7o1466dKtKpIDh/S//EH/+2V/gv/z6b3F3vadfr2m7Fa/u7tBVkZ0npECMgVwNTdPSaEtBbFjScQ5N28Is0BBFCmCfxMBmm9imwnrVcdGfs153Eo0RAhdnF7Tdiu6s43i35/rVHQWFdxbvHafTQCqRlBLDJGZJhaJxhvV2s0QACFyldEZX8I3HGSk4hTmjqsWZjGukADIPM6UGTHYYrfHe4BqLQZNjZUoSlzfujyhl2O0rjdnjO4/pFFePz7ApYucAVdN4OaZzkkg2qsTgpCxzNOsczntSjFij2axXaCXGk3vzT62FJ482/OiPfIGPPvYcdnekWtgfTgxzZg4ZZwqNq6RUpUt/MWAqpamLIee+wVkvMRlamddQ0bLRXkohLxDHQ2iHUkv0loBP90UYid2QSkbJkIxA0QK1aBIZozXWLT9Ji00mhond3R0A8zwTp8A4BtbrLf1qRdN41r1nu2lZtx7TW+boxYwZAylmcow4nTDW4UrFxiSd6EVzcaZQyuB9y4vrG+72lWkOxCTWBYxeTDFwHyW1pCM/GFru/3z//kspLJNJav79F85/UkOxwDRLwSgXWU8Yc2+1kqiUslh1ZH6eH7q5jVE4bwXQvI/947XlSGmDc4aUokQ7LVlr9yBR4b5ItxQAlaJkAcPy8nfGqCXuQhoD9ALx1FIWI4IUe9xiBJJi62KOQN6T1vfWJsEqc5J1QuPFsKKWAmKpyM/N8nkvr0pirZXEcjnv0UWRUqRqKTiWlNG1Lh35+iHGSmqP8vdyPchrLUqKiXUpVCkrTRIlg3cOZWX+O4cZrRXWW4m+UxKZZtCQ5OdlKkYtFixjKFphFsuaUkrAfa3xzj0ULuG1UUJnaXzQ2jwcJ+eMFAq1kXVZrWglBqB5niXuiyrAlTGULECEtdKYoZSmkqUQajQhpeWzFLhsnBMVjdEV7ZREOM2JUCJeSdMDpQoQoAremIfo8q98+V1+9Ec/wPoi5iR9b1eQ34mqD3aCh7N8sSsJXArxmBhGeLGb+JVf/c+cThPNek2jxPynjEVbQ54CpUjBu5bCPM+UomibhraxeO+ZgiXEhF8gt2mOWCMgUWO9GJli4jjNUCViqCpIIZPnSWJoolhOCiIUkUhMAR5rks/WKi0NNrUK+AX4RjPFiNUaZyXS2vmGKQZW3gt0qJWsS6qA1ComDIY5Scy3UpVxHKhTxdkG33hyjTgNNdxf61JUXfcd1rrFOhtI84mub7DeUUNhOM1iBM4Zbd1yPGa6vqf1mhQKOSbGUlBIfGFKlf1xZGot3bonqYrvO3zTEuNRiuZVs25bVMkM44xuWqxJqFjJccbaJSYJGE8zptOEKZIqGAxN16I1hCBR6toZTmNEK00ukc45nDEMIZJURZe0nEeZeRogWZq2YXOucEbReMscM8PhxKpUjDWUmLHG0jSeaZw4jDO1ZnzfkJRiPJ5ovZw3q82aRGV/2ENMmBIXG48lFEUdJgFtlMa1LSgloJkxEks5Bex6Q9t17A4v0dZLQ1MqWKA1mrZrKH3LdJyYckItAOb67Jy7uz1aFTQFt8TC991K9jxCZtW01CoRtqc0Mi9xlH3TMCbZn8klMYYAWmFrEVuOdQ/Nbf1qReM1RmnmMNM4g+3OOE0zzlgO+4EQEmmJMjoMI9QFFPWGahS5JGJWtE0LOYi4S26gjKeJkoPApDlTKXRtS8oTc8ycdSt0DsRRwDKjDDVFwhCJMcj9X1vqKM8Cpw2lSpSaVTCXgvaWy82KEmaKW6IpT5WkYL3tmY4juWaxETWa874lpYKqhaZvwFsur7a8/PSaMCfiEnnrmoaaBPSZUyYt86lalhBlVSlaUixLLYQcaXxL1zbEOWByJI+ZksVkNw0z+7uDmL8UjMcR7xqqk3PmOJ54fHnFcDjijCamJbDZGVabNTFmTrsjKRVOw8Dl1RW4lpwCY5h5+epmMRBqNpsVx53cmzFKwEnXUUrl+maP1RIT1nUt1hqaxpFyoW17dMoopMnwO9/7Pso6vtI39Kte4CAtILFe7tu+bXny3tvSjFgSP/SlL/Gd7/wOx9PpIW6vglhIc8Uoh7NO5jOKB8hcGYmByynLc6BUjsOIy5nGFZpW7nveW5l7pIKisN1sSDXjrGW/O4hNcQGvh9OJZ88+5f33PyAlCFqjtUTvNY3HGkMoBWPE/liVwLzGWmpansNlMUNaiYXLqYhhfbGVWmMFHteKrBVpiWHOqVCTRs+ZyWSBl52h6R3eWFKM6KpxVuZitU4CJwPkIuY9Y6QZ4b7hoFa8M9il+eZ+YlWqAMKPLrcYoxhPJ9ad5fx/+3/y8vqL3Nzc8cnTT3nx6objaSDXLKDQYgRSC/j2oAdaAKH7iOn7ueRrkH0Bee7nkur+32TWsriWXs+9H+bdC6z8enIu55J5DcbfAz8hBLQeJFJ1iWb2TcJ5L/tSVksUudVY5clOU4pbvv7eZpSlobMI6FVKpVQNTrFeyRzM2olhHAmpLrFzMr+u+rU96mEydv8//2cV1XLPK4uF9g2k9Ga8GX/YoZTiJ3/yJ/mpn/qpB2Dzf3bUWrm9veWf/tN/yuFw+CN6hW/Gm/FmvBlvxu83/v2///dcXl7y4z/+438gG9Hbb7/NX//rf51/9s/+2eu57p/g+Oijj/gP/+E/8Ff/6l/9A4FW/3cZSinOz8/5e3/v7/GNb3yDDz/8kN/8zd/kww8/5Hg8vgHy/xSN/4EZkn7Q2ZYqGnOrwDhZtIW5oJQhpirF5RLIqWK0RRuNc2JESimJijgH2fhyDipM80ya56V5z1KWGDi3FM6UlqgGpTVVqUVbrbGNI+SEKlBzeeg+z6XIpm8W3bB0FiksHqOVlCl0AawUJ7RmjItau1SMlUKd0Q5jxfqUUgRkM6ZUiT5QVaAns5ihFJCiRNspDLUmbCPaeEuFJB1TWle8t2QgTDPWLR3zquK953A6Yk3DMUyoXOl9Q+MbKS7HwBQSPgS0VUSVKSljQqXfrFAsx3iecU4iT6qqUgBIkFKk8Z6mceQYxCylDdOQyDqjWWwSRmONwjpF08iGpbOWZtWw3x0psXDan9BW4byjP9uw35+YQ+Fmt+N0PKCQTp8wR+IYsc4vMXliZsixSCdQ1zHMAWssXdMwzzPjkEnVEwaJDgDZFHryaIu5K9SY5Xc3Usw4W6/ovKPRkcfbyvtPFN1agatULYp8iYFZ9N5LtMZDqEoBYkFVTZ0h3UVOt4Vp7nHeALekpKhJ8cUPPs+LV69YbTasuoZPylOOp8Rq3dN4z2G/pygYMaT9QK2VYYqMqfJo2xFTWDqbFVkZhnGkFihKMY2BVddSClI8VZoA3O0GQih4ZzEx0OA479e0fYczhpu7Ce8127Wn7I+kmGlWDdRMUzQXrqVow2GOuBAZTzN21XKaJvxmw5D2vLq55mxzTjaeXGF/PGFXHeEw8va2A6fQ2zPCfkBNI8c80F5d8vJuRxoj5/2G03BA58Tzly/YDxKF+OhsTa2Zdr3hS39uy4cfPROLRoDD8cTq8QWrbct645iHxO76hPKKQKAzli88fouhBPbHA2dPHnNxcUkNhf1p5G43UrVjCIG7uyNto7h5sSMFy/oKzlYtYxnY7xP99oJC5OnTF7SuIydYbXpWpkFh+Nz7j3j+g49477232J8C80mKRbfHmW3nGObI4/ff4dVhYGtXPLq65HQ4EueJnGbuKozOSEeukjgg63qCnrk9Tnzx8+/wdpsxteHZi1vGaeDZ9UvefnxFOE7UYtj2a8yi/Q7HExfn58THZxh1QYmZYax87v0LplxIIZBrg6o9MS5xEDFRcqZZt1gdSHHg8TuP+ML0BQ53B9565xEKuP70BcMc8fvA+nKD947NesumX6FVZdzt8FhWZytubu8kCmCc+ehuYMyaqcB4GLi7ecl53+F0JTtL0YrNZsvhuOejT65RTc/5qhD2I59+8opmvcI5iY50zrD2iv1xZD+C0RmvAl23omrLzeGWogxTHAk1gfHcHY7kcKRfr3j70Tl6mLm5eU6qa24HmAM83l6xXV2zXrV8EvdiJZszVUnH9rpvefzuE7RrsDWSrOdA5u6TF0yTARJlKfpe7+44TCtuD4FaM85WxjBzejlSlQFnKacRlMeajquNoVeWFDRTiujWYHyDc4qVhSfvvoVVmr4EnGvRSuOHRKcN3bZjmCPGQs0TV08uePe9J4ynkac/eM7uOKBKZB4TThfW5x3ON6RjQLee65trApWzsxU1zwSlmKtGJbG+mFbTtRCOlanCMA3EFLj5jQO20eQ5cVKVpnP4OS33o4nGB676zFnXc+sM/dmKIUTmw0iaJ0KAkhXjNJPI6JPm7dWKi85wc3fAe3DacuYb/Lbn7voaVTRdL/a5xnn6pmE/zJQwsfaK9mzFi5uZwzRwmgbcd76HioUvfOmHWJ2dcx/7VlRhe37Jz/zVn6JJhf/ffxwZhwGDdH6XJJvpAuLAnCshJrabNfM8MKXIqm1Zay8Ws82aGCLjEnFRq6JMgWPaoWtB92JaCLEwjwNmmPDOMZeTRAe1q6WIZShAU0TfP48T0zSzywfKOtM1hqILvu2wTkkxXFvSFDmdRrL1lFI5zSONb3BGCWCqPdF5xjSRYmI+jZz1lxhtiUEgaObMfhrx6y0bb6EWplIlTm/V07YdFo9eb4lTICzPg7HvyXWg5kIichrHBSSuNM7RNY3MGeYZYxwxSoRq4x1OK6xRPHn8iNVmzfNPP+LZ8xfEyVFxGF0YRzF1tN4wJzGypCRGhVIWaLiqpeO33LM53EfB5SxFyQVvWYxXC7BXKqrcfz1QpbCguX/OA1RiEhtUBXTVAmGQF0OOWkw0YrccxhO5FOYpEMbI8TSx3mzp12vOz89Q9YzGih2j8Z6qWrSpeNWg9UyxDqrMQ0ut2DkyokixoIyj7ToeP9Z0vWdz13F9c8fxNDEHRdRK5hu1UsgPHd73BZbXkBLLO1tMUrVQU/3TvehUQL2PaFsgIlUfIjgEaNESC5iK2FHKYu5ZuuPvLQVQpfi1wDIg9slxTMvxMg/2ImO0RLXc7ycogX1STksHvyGHIOfdYsdR6AWkqqiaX3fbA1oZ9HIPkqrkYvDSMr+lipHALK35Eukm9hMxXS1dtA8fosJaWTPlLGYoKVDJLyxV5rwojdZVlmVa3oxZjE0ppdfXxfL3KQS0NkucdcUZK7acKtaRVAomZ5SW4m8tkojsGgcUub5yluO+fH5aaCpKlsg4Yw31Ps5NyzleVUXVKodSy0xba4W1Xo6s1hhvYA7UXIlzWNaABtc0TEH+fpwmYgjyPcuxyUmKr1oL2FSKAI9GaaxzxCSWE2ukeSXGQqmGHBfj1gIQrXqPniRyGi12QlUrrfc4o3G68sUPnvAXvvI5mlaDqVL45f6aW0rbi6ViwdLk55ciVo0EZc6ECY7HzH/97e9yOJ6gWiiK87NzhmHANR5vLft6kLm+dxhjmOcZgIRinCJUsdbEUlk1DlUK2ixxiQs8em+ck7gx+wB4aiAD4xwpeYkmKhmNpnUN1lm00oxTpFqFd4Y6JynOOwFGDYpWW6pWhJwxJRNDRnsBp7rGE8vMMI40TUtRcg7MIaC9I8+JtXcSl+c7coiQIqFEbN9xmiZKzLSuIUaJoDueBkLMYAx946WY7j0XVw27/bKxpBBjb9/ivMU3mhwL8xhAQ0YamM5Xa2LNhDDTrFZ0XQe5MofENEuEZ8yZcQpYA+Mwy7NdQ+MsqUYOc8G1HaUKNOSMpRbwjcNriS0836w57vYy14hyjGqtjCHRWEPMhb5ZwxxpvKPrO+Ji0qk1MSVIUfYvyvLcMNqSlcTHX5yv0aaiMRxPEzFFTsPAuu+WphFN4zyqyDWdQ6DrWsqqQdEusVBwvtXEWim5oKuBaiUqUtV7dQjWGorKlBLp1z0X6Zx5Cqw2PQoYDidiLpgpCwxtDN57nHV4Z0jzBCnj25aUZpk71MLxsCcVhfViUpmnmTQ36FofQFGJodKchplUCqvtinkaCafMHCKrVU8tCZDzlVrElJrE5oWCxnhSKoyzRLTHmNDGMoaZmiNKVfpVS2ss0+lEKYVYHeMcWXcrnEPiJufMHAQqqQWUNXTek2pFN6ApGG0YVWY/BbnvlApKor5TCoylSpxbzhgr8YIxJGKM5KqwSuxvKkPfdGJ5K4ZhDmKd3m5oSsZr6PsG27SYBcZ2rpFnTcz4xhFSRhlk7gpcPD7HGMNxd+Q4BJRWpJigFJw36MZBFMtkjoXjNNL1LdoalBYApiJ2JWs1xohR85CKwIFhJtwG9NIkOByOGCv3SJvlHhVCopsjnWuYjUZ5C1rMpY21xJAoRVNyIpAeosJWjWN/OqFVwTkBXRrvSFUgwrb1D/MIp8VEWnLCUOkbx0jhNE1869vfYnO2RaG4uqx065WYiO8b1ozhnbfewaL4Xkzkqydc3e05noZl4iCg7P0cJZfF5K4VIUpkqF8iRO/nzzHm14WJXEg1oqgo7wmLnSenTC5iv6pqiZE1DlPu5x0SR/38+TMeXV3S9z1hjlBkLV0o+Ga5h2sxrZeqSKkQVILK0vgpELbAvlYeUSVRapVzwTuMFuD1HhaNebFnNw5dIVcxlPpqJC7Xyl4fRaLf5N6SSaWiFpgmpIyq9wC2ElCpCLyUUQ92U2M1Vlsxn2rN5eU5U+fZ7/dQK1eXl1xePuK9995ntz/w4uUrvvWd73C3u4PyGZCI13jR7yGIl9jg13CRzGvun+d1gYt/78R1MSPx+h8eYtAUD8/9LFfIw++8j34ruTJNk0T1xkyKiaYJWOdp2kb2krWSvWNjUMqCknMIldGlUKtce1TQi/k3FtnD1trQdhL96rxlHCemOYh5Mr9eN9SH96AeXvrr4/XZtyvQnaqg/hQU1d6MN+N/5aG15mtf+xpf//rX/9CAEsDt7S3/+B//Y549e/ZH8OrejDfjzXgz3ow/6Mg584u/+Iu89dZbvPPOO7/v1yul+MpXvsKP//iP86u/+qt/DK/w9x+//Mu/zBe/+EU++OCDPxBo9X+nYYzhc5/7HB988AF/5a/8FW5ubvjOd77Dz/3cz/H06dM/6Zf3ZvA/ACmlxIOat1IJy2YySMeUMpWcsxhH4qLyLrKZKR3CEmNRS4UsXUVq6bQMecJoUfmTocZALYlkzNIdrFFVuthUlUgLZSzKakKUrsySYZonnJNN65zy0m2saZpGumiHUWxHxlHqTIqBTMZZh1GyoK9aoYwBo6nIpksMEY10FxpzvyGeUVhq1VAqpWbGeYZc8I3FKUdKhdWqRxnpQDrOouK0zlKq6Lz10mlMLRgrXbylBKyVzfVSKlZLx/Q8jBSkoJdzJqWEVlasErXijMNn2SSZSiVljdIF671MiFPCVEU1RiAwY4gAShNn6Vxvu5ZpHsmx0DQOZaDtGpSVzrtaCyoEyJUcZYH/+OIc7w1d07GPO+aQ0Vh63zGlzKzuF+sVbS3GFLBKTE2psL08I5eKVZrOtkwhEnOmMU4U9KcjjXOk4NBKs20cSRuK0axXLdUowhRoTaX3mSfbxAfvKdp1RHkHNkqHeK1oW6gkSjUP3eSy2aioKaIiEA3jyxNm9hwHw+1NpF1tcV0g0zKNM6fjTEXjiyafAqVUVr3YLo7HA6nC1VsXXO93HIfI3XiitQ6lPXe7I9or+rM1sWRCEl22dw6DYrNZ8eTtxwynQcAub1DR0uRM27XkWthueza25TREbDZcXq0JYeLy6oKSE4f9QIyR/WGP9pbxmHjnrUtwhdvbI8o55pzIU+FVqhz2gabtaLoVplpqgtqvKcz88J97h1/79T0v7gbOuoY83XF7nGnblrZVtChM19I+vmJ/PInB4bxh02rG40tcrjza9mgFxyGha+DMGs4eXfLpq2sOuwGOGb32XO/3jKdMu/ZcXLYCRs5yHcQ003UdrbbMr15x1bfEaaKUTNu3pDgx1USsmv0EOU28f7UiTQPjeMKvO45zorWWZDxjUfTKYnKkc5Z5nnnx9CVpKozjiXGa2TQtrJTYaKKi6bYYxN51ezjSWEspkXFOdJ1F1cQ8zuhlc/Hxk7c47PacdR7fyAZh73viMJPzSNM6Nhc9xmY8imQNbz9+i1c/+AgUHIdInG5wjWccJ5xR9JuOqmA4jlyuzun9SKGgi+X59685HSPOWjbWoU3DeDcznT5h2zjs1tPZwt3dwNnVBccoMWTs7ziNE2PMmDgy347MixL+ex+/pLYtXeN5tG15dX1LWxUuBiajuTnOnHKlaTrCfkdImRel4p2iFilIvvtkw9PTR1gDt/tb+kfnNLonjTMb39C1ntMYeLJdy+Zmjfi1563N25yOe2pIrNcbStVcnnfcXhemIWGS5u6QGatnd7Nj3fTkMXPSE5rC1cWaVfM+3/vwKeM4MtfKtaqkbPjql7/EFE48f/qSFy8GUgpUNdOvVqQEx2nPunGchsCcDJtLTTEa1/ecbTZ88tEPsAo6ZZmGibv9kdYo2nXLaBSkIur8nGh05WK1IseJ8RTZdlccDteM6cgQE/F0YrNumcNMKnBz3NF1nufXd2AcXQKbobWaacrkVtN5R2sdphhCSsSSpYtZaUII9K2n7TqmdJLnm5OYtOHuxKfPb8nGkFzFdx6iYhgniXSbJ64erdGqEoYk8Wlp5NMXn5Kqo2rHZn3OxsDddKBtG0rSrFsNJRFCYayGT9JLrFNcbFZ8/PIW1SnG6cRm03PeeO6OgRwrWjc8vx1oOBIzHMYZpxUxSFRJ4yyxiBXou9/6Dq9evuDH/1//by4uH4O+D9UCrzVX2zMenT3mk/kptSSBXYzEiJYUUUZLMUlphnGg5CjGCg+tMYQstsF+u5ECyzBRkMJ/zIlwk4gx0zYNSlWJPtD6oTtXa0vXKsYhgTb0my2oA4GKMytQmuM8Y+eZxnViV1CZbt0S5om6xJ6VDPtxkvffNBgLxnhiKZQqgPbKr6g1UULm5npH23d0bSuGoyEQQqLdaHIMGO+oGu7uDtzdXKNT4tH5CqXAe49RivPzLdp5Gi+2gZwr4nopSxxXQhcpSEh3blogrkjbihUyUtFOs9Yt/Rc+x9XVFR/+4BmfPrvhOE5s1j1NDIRsiUkKjKdpJoRETIVERaExy2b/Q3ezWiCmJWJBaSmACXT8GsbJeYkHQoBviYSTGKJaZFO+LoUaAUoyxogN5bPffw/8KF2JKbDb74ghMU0Tp9ORbr0hhBmqFFq7VUvTZpw2eGdx1qF1JYSCQuJrymJ1yaVI1HEwtG2DdwrvDat1x9l2w/MXN9ze7aUT2igpgmUEpl9ibx4yG+o9mMQD6FLLPSxT+NM6Sl6A8eX/p5xlLqaleCUglny29zFuDwWjxUhwH2tGkYKLVoa62LmU0nJ+FKhK5q33P/cBIln+u2SJElRazvH7yLeYeYgfyblw/23GWpRSEi2GNE7IvD0LJLNE9En0kAB2KCVFx1qh5CU67h7Gu4db9NLRLhaLtBixjBUrSCkV592y/qgSpQOfiUCEe9MrD9dFpda8ROotVgXEnJFjeihW1QXwqeiH80prg6liPRKxXHkomGktkaKqKqpeTBxGizFBKcpiTTLOknKUdYyR42KdRHynpSCpsqwL5fOGvmkxRgqe0ziTcsYajbVWrgUePr4FLBQoKucMBXzXCpSGFKpTlnWcVVIQzXEBSJXctxu7RPppg/eWqpQ0feiKt/CVH36PH//a53FtRRkNujysfWVPJy+ly6Wat5B3teTFzArxFNDZMM+Vb37zO2LdsY6CJcVMDHLnM1VRohwP78TKFcJMrdCtW8Z5ZoyZMQWcNqAM4xRRVuCYUqvYFWoRKxkK7z2rdS9R5TGjrUYVjS0VZS0FMSJ7Y4mhoKvAw7lIJGkphRAiJRfmElBWE+fMZt2BhmkKoDWpRkyqDKUSgsRfG+uWtTvgPJXE5dWaT5/NnKZAay0lTYwh4azFWNmU0M5iVx1zkEg7GktjFekuoAv0jUUrCFHMEo3StOuGw2mgzglCRXnNMM+kULDe0LZW7pX3FsqSsM5ilSKdBjpnBQ4qFeMsJScShYyWeLGa2fSOGiNTChhvmZNYLYo2xKokareU5bzLnA4DJRdiDMSUaYwFt8C2BazzaASmmMIs1uSSSbngrEGxNFsV2ZfoVyvCHGitkWfKck+4h5qs1fjWoUzFUClasV6tGXZ7qkKi+44CHqck8afOS7xkmgKta6kmStxk1Rx3IyEIwOuX+Ms0JVLc0xiDagxOV6Yp0vYdIRdSrTBPhJTFwJUi6EyeAas5nkayknL/5WrDcDphjcJUaRDKKHbjjHeemhI5BI57aL2R5ziarmvRNZNOM7kkTnHCeoGQjIa2ccScaJ2hcTI/ts7StC3KCRTUdg5tHc4bUpwZTyMqQ64wZ4WOmSZEdKmEOVJrxTnN2eWW69u9xFkVyEVxHCa69Zrz1jCOE7vbgRgKSmeUhsYa5hTwVgDLORYalyXmy1pc15AOJwFcjIdSOR5HVKnYkCR2NmWMMuQisaedsxhVSaksBudCzIH9OJJCwGlNQUzkcxYIqWrL7jjSWQ/pHrSpFFWxjcUsc+VUszyTtbjTcs5YpcQamCSG0TlNWO65u9s9IReqkWeetZ44zws0OND2Dr/Eg2ljQBemeWScAzEXnPV0fcscgjSjWINJCe1Y9p1kTuqMom0c41AEjnRQkqZrHJnwAPFNsVLyKFHJzj488XMu2MWQ/lu/+Z+lAWycuHh0xeWjR0j8mnqYlzTGsupWTFPgvffe45OnTxcbzgLCKH6XCfHh3ls19jN/L3NswxxmmceyPFdniS1tvIBl+v55fj9vqOCsRDLnKrF8oIgh8O1vf5sf+qEv0a1XhJwwRtbbKSa899SSyXWJ24MFkipYZzG2Lveaz0SuWbk/qloJk8SFtb4BDTUVUswYL3OsisTappTZ70dyjpytBabT2qAAZw2rvsNYzTwHYhXz7T2wwwJAaVGFisFymfuoKg2RpcpczhjNatXTNI7jceRud2QOCe8d5+dbtts1b739iO9853f4zu98lxgTudQHC7/M+3iwHC1/fABzHqbTn5kZypT69b9zf2YojbQyfAZUkonmA/yulm/6bEd2XV5HrfI8KEtSQIzSvBlTXJopKqU4jJNG3Xu43hhFJqKqeXgvDyy0UaSiF8u/nJPOWdrGcxpGhmEixEhKYuksC3h6jyTdryl+bwd5ffjH13OuN+PNeDP+x4fWmp/8yZ/kp3/6p/9IAKWUEj//8z//BlB6M96MN+PN+BMat7e3/JN/8k/4O3/n7/DWW2/9vqCPMYaf+Imf4Jvf/OafipixeZ752Z/9Wf7W3/pbfOlLX/ojiR/9X23cf2ZXV1dcXV3xwz/8w/zcz/0cv/RLv/S6CeHN+BMZf+CZkmxUycYEAAWMtqQiOlmDoWkNMUdiEH2vUmUpALDEJkDKFa0t1oCEORQJpFKgzLLZrcA1finmFOwCRmmjZXGXonSMOE81hRgzU6oUFp11hpImKSh4A1URQ8IYh3KWqgy1KLabFTlVYqzUDFeXF8ScmU8BUw3aGayunIaRXMGiqCkRSyVnRSwVv/YoYxmGI6cx0xiFrZVEptolLz3LZoZvPHGaqHnGOUsuGWcMBdmYjFMUQ5WGVd+RQ2GKGdU2pCoqb2UUBk2nIOvCOCVqCrLRqixTHFn1Hh+KFFmMZJ3XnGWDuoLpWw7DhLEOXSBVRVUa3yrGecBSudxsQGuGFDgOgb5VrNY9tRTiHJmnGbTl/NElrnEMp4E55GWjHmzrMSVjTctxnIEqcFbKWCrKGGLIeN9hlaWmmbbpOJ1O6MZTKpLbvhRRlLdkrYlz4Pr2yClVVsbTWkPxjjDvqTVwtWl47x1Ns0oUUzEmUE2m6iJdoYuyXQNVG1RNkBMle+nmj5V0G6gny4vryidPJ46xIc8Hrq4eMwVIoxSyTdPy8afXKBLGW1a9Y04w1IjB0XUdfZgoMbHdbPniO28zh4Cynv/y7e9y3M803jCNJzabLYrCHBIXj864efkUrTtKrbRdy7rf0nhLnhNNY7k62zCHmXwaKVUK+2GOdLlyyDPKibkhzQGjC7ZtmUNCk2mtJVdFdQproGktm9azPTvjvG95+vQV8/OZUAN//ke/zLtvPeG39bfZp8RdSpSUUcB21eJcghA4nGZux8g8J8IcOb2aiCXhux4VZsbTEaU0hyTQYm8K437P8XbAdY5I4KJfU8ZMrjOrtaPzlieP3uLpR8+ZauDddx9zuhs4Xb+iaVteHg7UYqBoetfSuMr17Y6ztmG7dqTZo0JguD1Ss+ODz71NcZof/NePuFyvGULgMB6xumHMEZUmoOHJu0949uIVwxAJ0wRK471mzAVbAy+ePqVxEhl3tlmx3TZ87+NrWmMwRE65Yl1hOpy4fnHD+dWa4zBQU+LjH3zK2/MjTA2kOBJOCt90zCXy+NGG6xefcrPXVONZ9Q2nceRYFe9se1xtsQrWmw3PX16z2jTc3Nyw8oU8r7g5DsQ5sD1ruPIXXLQtH390zav9jqaXDSt/1lGN4ezxJVvf8vHzW4ZxYDicGEOiao33a/Iw0rQNrgFVG4p1XD4+Y9M2YByNaZju9ryaBy4ebbi7ucMpT9c5GmdxjcanyJBnbp+/ZDzsOY17XKNoXUPTeVrFEukJh+OOWjPTZNjd7rm4vCDXym6a8FoxpYQKiVXjKY1mfbHFd/D89hVOe37sR7/C7e6GeBioNXGzvyGmwmk3sWlb0J6JI1otEQ5W8ezja6qp+K5ltS34ds3t7lZ+h9K0WbG7C1RlgZkxWOZQsEPm8z/0hEc/+iPcvtyzvTonpYFv3v6AnBS3p4n1poWUOFtfUGwgR8N0kuuj1Ik8vKLkyMXlGU2MvBpm+V3Wslp5/FmDyTOqsZx2I0OM3O52WK+poVB15ersglgVQWuqk/hNWxW6KnQBv7HcHfaMQ2K19mw3PbnAKUwc4kiKmRAicQyc9T3KFspYGBK89chzduE4jS/xrkEZg+96DrsTY0l89+NPeHR1iVKWIU5Mp5nTcAIDjde4UjjsTgSf6I1DGYszmpotN3cjm3WHLxVdFV3jeHGz45hnAX/nkfO+ozjNFCdQhW0rMOCrw8TL/ZHzRx+yWXXYdo1WUmR2mxXvffmHWH37++SnldNppNYEyIa8pWWO4wNcU2pdYkycRLGFQKxKbHqjFIbz/eY5AiOEaQZ1oOkcfedwWRNDBaNQ1uCz4nSaCKMUWFYrT+da0phAVy7PHW4aCdPM8ThzGhO5HDi7WLPuOqiZkANzygyniNaei21H5wx9v6aqzBhmFIa+gb5xlKLYnQK3x4m3Hl+iKsQq79mTGMaZu1PFO0ecM9VUXt7e0jeWVdcv8RmVrnUYKtvmnBdaYK5KoZSEuQc1ENuRRpNrloiFJFFZupViq0OhDKTqObcOrT3eej765AWlFt7adHgVud2P7EfLfrAMY2aeJsZcyUVslmWJyLrfONdWDDTS4XwPomio6jMA08IJLOaWvMAg9yZQWDb1H6IZ8lKsMNhlF74mKbSqxfajSZSSOQ0CrA/jxHqeKTmRSySmme12y6rvWXUd0Wa6xuKdpWlkzlRKIVfBr7xX5GUeHGMgZUtXMtMc8dbSOMd2s5IYi+FECIk5GLIupJIW2EoWkvcgknRWq4eCQuVP98JK4owljkwKVgLRCGQhsVLOqaUBQc5lpeprAGuBlkphsWwtZaWqXnew39uLlGwM1HvblpLIGaU1JWdKzZh7uEcJRFbS8n3WyPlRMiBRclSW4pqRhoalutV6T6myHlIFMZYUMRNo9AJgVUKIgEB2qhZKlLVRrRJzrLQAUGEpuKuK2I2WoidyxDBWU1KmliyAUJUCbV1sEDnlB8uQc46aKylXlDVL8U7eo0bsREVViXMpYp4rSp7Nzhk0lVIEWtb35rJc0VS0scwpobPAopJ0ozBWrK2aSucblFKEkgkx46zAMw/2iJRBadquE9tVjA/xcCCfgyoS0SZNMBKFVnJZ1pJKYneMWIBKzljrxG5rDBK/lx/iEpURI29OmWEMxFJx2orZwWhCnlGq8CM//EV+7GtfxDWVqitKZ6qqVFUXk9LrgjZKLddhoVazxChBHTNEw2mA3/zP3+XjT15StKHrVqQMJQk0q61lfxhlXWy0xJeXSqygEEjL5kTJhaZpuFivF5DA8vLmljAJpJJioGmk6J2XxobxdEApR6VincG7RorUWWCmvvGknAkkgTSinFu2VOYqoIVcPxmlDMYZWctTpBgPYLTEE1pDYw1N05Cc4XAYycdMJvPoySWb1YprdcNcKuMCxykQQ6wukCUadIwC65RUiCo9FOlVydKohGZerhuvK2maiVPEOIEznPPUJOtH7wzOaPrVisPuRKqZzWYlFsFhxDjDMEr0KbVijceayjhOBGNpvSFni0qZeQpiPD1bU41i/2onJp2cmWNAK0OSTQhAYq2Op0EgAZVgKTrL51o4HQ9YI7bcxjuapuNuP2K1BF7GUtEGUggMp5Gua+QeUgr73YF1WqHIlBxJWSDKVAr9yjOejoyTFNa9s4QYCSg2Gy9ABLIvcTyNYt6YRryuVJsY57Cca4beimFovx8Z5hPWaYnhasSm1aw6Gm3ZnyZiWCL5FjjQtx5VBWq03qCrQZeKbTyu8awWmNNk2J0GfOuJYZZISKNoWou2SqLQUiJluH5xB0bOKe8NxSixyJLRyjBNgZgirfccD6PES1nDaRyW+ymolOislb0nb0GtiCkRUubsfIN1mnkYqbUQ4r1V07PyYI3jVAOKQmNkfjxPMzEYtNNYJ+f/HEfusdi+ccxDIBWFVpWUo5wr88T6rOfxo3PmYSaj6HvHq5d3Yt/KmSlonBFo1lqDQkDKUhVVJQwTKUa6rpHjVCvTaUY7ATyapqOmKCBLroxhEnAuJxojtlHfOJwSs3NRUeZbSW7oqoBtDKkkQlii6VyLWuLq55JISWDUlAsqC8SSqzTo5Qxd15CCXMdaW5Rx8m9U5nEkF7m+ywL8zlNY9v0UBokMPIaE8XqJa5U5wxwKxlbccg/zxhPizBCjzAWTQK7OW9LS5OesJk4Dv/Gff5Mf+/G/SFaa9XqFbzsxL6LAaFbnZ6x2e67vdljb8MH7H/Dhh98nVTnPClBTohaIlCUiTe6zKSaJEFSalCdAUeqCt9zPY0ohVIlcbNtGZnVZnqHKLM0PMTPHvDTVFZwRk9o8R77927/Ne5/7gLffeVvihXOlThHjAl3bLM9jAaFSLqRUaUuDNzKH19qSihiWjFZ4a1FaCWwYIrXqBeJf4DMtsP18b65EIPI5BMbJsO66JVq2oq3GK3C6wWvNoU4LIHOPAH0GAlr+XBcAvRaBpZWSc90hJj5tGjbKopVhtztSFnCwbRTb3nB59mOcna35ne9+yOk0MEwTuaiFHRYj1D3bjlqKEwt0pR6u1HuA6eHB/plvuIfrf3ch6t7tygI+qYe55wIBLg0XWokhlJrJqTIXidlzLi2Wo0IpmZRbnHd465ZmVbm/GW2X1/faPKu1nP8Nimy0GMiWRlSjxUDrnWMYJzEd50zJZYG4XhtZ+T3v6B5uk8Xv/5VV6s14M96MP8i4B5S+8Y1v/JEUgWut/OIv/iLf/OY3/whe3ZvxZrwZb8ab8T87bm5u+Of//J/zD/7BP1j2Xv7748mTJ/zUT/0U//bf/lvGcfxjeIX//bHb7fhH/+gf8dM//dN8/etf/zMJKn12XF1d8bf/9t/myZMn/Lt/9+84HA4cj8c/6Zf1Z3L8D5iUpJurZCnWaa2xzpLiTE4FYywpJ3IWpXkpWTZTlHQiK10pedE2K7EUKaVx3lFDIsUom7NK4axj1XeyqBon2RAx0uVYssTNZaWZQsJZ6ZqrS/FBKwVGos3u11TDcMI5j7GWkjOn4YRRCiPiIkKKGOUYTlHiCZQipChmG6PoWsscMhSJtCsVUSRTGSdRhRsNNVeU1UzzLB30xhFiIlfpRLTWoBaV/jBNaOPINVIkxF5grFoYp4wtBa0yOLV00grk41DoXOlXPUUX5jBJMc9JHryxjgBkLUKBeQ44pfHWoFRljhk1BbQVLXbIkVRFEW20xupM7xs635JjZB8Lrm3Q1tG3UmgYOTFOcnTTHLgeRkouOJ0YTqelMCfwRayFnBKtVdQ8EZKhZsd4mh82kcv+iLaVU0jSSU3CL8WilCshV2wurNcNU46MQ6CxDQ0eoy2uUdh15fG54f33NP1ZBQum01S1GL+0WrqUpGCp6lKzTEAtKJPE2HOcCPvK82eaj19EZrdmCEA22CmycQ3n7z/mbhyZ7iZyTGif6Zqeu7uBXAzDfqR1mTRleu/RK4U1Dde3E2EemaeXxHnCaEjzjFVGjjdS2M4pUZShlMzG95gJ4hy53Z/YnG3QaK5vjouFqVLSRNs4hmnm5njE95ZSM9FUQtFsnWW17ggpszIG7S3HNKGt5a1H54zhhM6FZx//gOMxkLTBecWqM+Qx881f/y5pCHTWCWhXoO08rTNsz1e8/PQlwcjm3Gk6SmEmV/q+RftMb7achhHjWhpvcTay9S3f/PanTKHy+GJDd9aRSqCMEacMKcKrm4jWA7EWUiiE3Ylt13C3q9y+PBKVZp5nNn1LVp4YJI7L9ponm7f4rd/6mO99+ylWaZRtcLFSSiTlif0csNrRdz3JGuaYMGTe+uJ7vH2+4eWrV5ATeI2zhpocSkWuLjs4FS7PLsizxBUed4GcC/tToGkNl48u2B/3RJuw257TfCRMAbShW62BxP54IlW72IsSfW9o1w2Xe49Vlb3JrLYrYk4c9iPOGPzKcTqe+N63vscwR1aXHWrlaLeXTDFyt9vTaU3v4NHlI9CK2b6k9BblDeuzHt+2rJsVpUYapbGxUuZAKRqtLM5mxsMRqmFTPWtv2F4Ynu+PDMeRXjm2q0t2uwO262mHiXc3K1qVCWiwjsvHa1at4/bFLekQybmyKw3bszPcquW9y8fopuX26Sds+h7TtSijCHMgWktxLa9uBzZeYgwbbale403lcrvhuL/BbraYi54wHXn59DnuNOBDJbqW3iWm/Y7L8y2qVn77w2c4ZdjqylAy1zfXPGouOZwmdofA48tzNo3n/S+/w4cfO15+dMPFZcO2tZwOmffffoJmouvWNKuW3/nwOdM+UlVi0zo+/+4jnn3yDG2dxJbmDBraznI87XG9J6dKShNUw3AcOHvc8mp3QCvFo23HXmVOJZCCQqWJ9949R1fLtGzYjvnA5cUKf9Gj5sj19R0fP/0U7Toevf0WqvUC3qSK1RK7E6eEVoYQBvoApjQ0rqGEyv/jL/wwL15d89u/8yljyqgGVrVSTgLZjfuR7hK2K8e66ZlyxldH6xreefuKpx9+ym4YsUWe+8pAWOYIqqkSmaLBVHnWmUZeXwgF13nOry7ZxDXPXjxnDpm+77m5G+g7x3rV4rVmc7Ym9A2HYeLqrCcGMQ29vDnx8ccf8mSz4sn7X8T03dLh6nj8wef5+s/8NDd3R37nu98l14h1msePzmh9w4vr59TDxDRGQk1ojIC6WjZsD6eRpu/FLNF4EpU8ZSmaV4l1qLkQtlu8NSRdmMpMR4/NEtERsoAWNUfqNGDRD4WdzcpwtenY6crhFCAVQgnEXSLUjLGaVBKnYWA4RSwGVSODVqRY2V5sMEY6aec4o2rG2QZtDGGa2e0PaGWYc6JvHGGeyTlSlCGEwulwwjeGyTuur3fszJH33n3M5qJjOE68uj2SFfSrnkcUbnaReUaKKynglkiHksU+6JTEpuzvjlDXrFc9XePQVIZ5opRC33V84fPv0Teej188BTPyweaM69WOfSq8OEb2obJ7dYfaBVJWUCKlWoEYSnkoAlirlwLGZzuhPwMoPVh4Xm++53tzpxLIgqW4haoSB1KlMH7//XWJedBGYhVKTlANuUamlAlxJsRASokQA+M4cXExcnl+TtpGVl1DKY5cPH3f4JyW12CMxOQ5S6c6tM2ooNBRU3KUbnYtQOx607HZrHh5fcvN3Z7TcWYKEbLENwmcdG8GYqkp3BuUlvf1pxhUurcN1AXAkHWChrK8N6UfwDMpDi9Ak7rvVl/mc1r+fN8Db5YosJKLREkhcSFuif9KMaG0mJNKXopiVSw4OVW0qTijHwo09x02Wr8uSsUY5RrUAgbFsBhml3NSIksMhCXuDIGtjBaDkLNi92EB7QoSd1epAksukFBdTFJpWfegDSUXyrJ20lothUyIKaG0oda8dL/fGwoKKYkdRymJM0vL9aDNAhwtNpaqqpik7gGuUlDWkO+PrpZrqaIwRkAvsa3lJWZPoJiCwEJyLQoI6oysvUqRteI9NKAUJCoxLf0DOTGkCkUKejEGrHHUKsX5QqXWiNVQayIXBdWQQkQbLcl0c0DpSohybTgKhgWyqRJTo0vBN45UxBBhtcViJE7QKEyj+MqXP8/XvvZFfCdrSonZy58xLSwmsPqZkmVBjpYqlKSoc6bMleNB8YOnN3z0/BWhalRR6FRojKHZ9kwxkSYpVGotx2yaZG0Y54jVlpIqThu0A6Us45RIKZHTsDTuSAFZo7FmsVDoxXyhNLUWGutQSQr30xzwbYNCMUxRDL1lMQxZQ0iZMSzQTy1kDTlrGiPx3qXUZR0thW6lFKu+JZUItXLY7wgxU5bzxTtFTZWXz+4oUQxExhpyBacNViuatmE4DmQt71HsEnI/ds6ibMGpRuLUtcJYg1FyHF/eHEkZiURtHaUmapT4v5LhNGZQaYkwquQp0FjDOAWmUyCjSDnROEtFTEgVAeNWzZoXL/fc3hwkulFbzBIVVEoiFbHcOGspWiIlNYX1xQWrpuF0OglR6ZR8f9FkMn1rIVa6tqNmaZaKk1wncygYp2n7Xp7jGkzjCDk8XIfWeyAzh0CpWu5xuQhE5AydFXBs1hXXOImmmxJaKRrnCCFyd31HyBnfOZTT2KYj5cw0z2LP0bDqelCKrAeq02A0vnFoa2mMp1bZvzClElIS+xUaawrkxJy0GKurwBjTHEg5MU+BrumY5/DwXG60ZrXqOAW5z2o0q3VLngPTYm+equz7tL0Aln69YT6dAHCNJVeoQ0EbS9IZlWGYM8pK41mpikrCWYOxmilWbNewNZrd3Q4dA1Z55qqxjSfPM85rGm+52w/MMdFbTUqZaZ5QpuKcZ78b8d7RWEe3cqxsy/XLHdTKxnvynFFK411LpbBarbndHYkhk1RClcL52QaReRsyiVoyRoH1njgFKhLPVSQfXp45NmG0RKdfbNYUCqPKxCy0hfWVtm0W048i14hzGt93WKvRY2AaBqaqaFZisalAyUGeMUr2Jax15FLkXC4Ft2yinW1WGKN59uKGmCDVxKZpmIeZVCs5JEKUuXiD7KFpBPLZbtbM48gcs4Axi1GvVIm5NdYJYHrfY5YKRS33h1hQ2mGcmJiG4cQUZqw1pJwoFNrGoUqlcYau9QyTwDhGiZX0kw+/h/vhL7O/veXsDHy/knkGGtO0vPu5zzFMgU8+jrz73vtstltevXrG6XhkmkaGcSLGQq7380x5LshzLVGVEmObVhitqVGg9bJAOVnJXql3HnQlI1aeploxHpbXkEtOCW+tNHymDFbx/NNPWK9a1ttz5CUUQk3UBRiFujSPZkoSU0/WihQzXd/JnHgxQMUkzxqxMCrmMMveq5BF0lW82IhqVcu6KGONIoTIPgkUu141VFU5TYEwR7SzdK0HVYhRrr9SZO5ujJL7Ra2LBLWSYmaqgbZrsFpjjSZlubcZrVmte5w1uL1mSgPb1oG3HGPgL/34n+eHv/Ln2O8PfPLRp3zy9AWHw455GuWeXu4dSPfgkX54fv9uOOn3jmWuWH/3egP1OloXXq9J5FmuXq9TlMx1KWW5P5bFkprJOQkcX/ISTRtp25bSNnjnsFVTqzxfrNXUqpHMvUShYq0V81aWe51EY9/bfRXOGZrG04wTwzgxz2Kxv7d63q+h7s3yr+fUUBco/bPmqDfjzXgz/mDjswalPypA6cMPP+Q//sf/+N8ADN+MN+PNeDPejD/O8ezZM/7Vv/pX/M2/+Tfx3v93v1YpxV/+y3+ZDz74gF/+5V/mt3/7t19HQf8JjVIKv/RLv8TFxQVf/epX/8yDStZa/tpf+2t8/etfZ7fb8e1vf5vf+I3f4NNPP2W32z2Y9N+M//+OPzCk5JxGG+kESiGB0WSn0AbJ1k6VXDNzjKRUsUXUwRpRChuMZLNTiEGK+uu+l43jLDEJWjnp/AViDMzTSElRNvyRnG6FQhvDGAK6Kja9A13QFemoT4laM0rXZfM+LgWGjPcNJeVl7VUY52UzTRXmGJjjjHUao6QzVGeLNtK1Y4xockG6h6mZqgolCxBUxbxPYwym9dQ8EmtBaYtVAmv5RfkdUkQpS8qVmpNkx2vFcYqcrz0laoYxYmxGW4utS6FNycZB5z3WKKrRrFpHjJq29di1o+RIzbKhG2LAaEXnPDlPzDFRqkalgkkB32i0KlytevKSde86BShuxwPOWLbrDu9aYiocTzPrdYO1hqosKSYO+z1ZK5xryDHSeE/vPUppbk4npnFg3fU4KxaBrAo1LovjFOltJReY50Tne6iVcQxynpUAVqEbQ8kZpsDKa1TTMJwCkYL1jvH0irdXmg+eGDbbCCZTbQFbqKqgiqJkiTmQ+IW6dFRnqhHTlhoj5TqST4rjqeHjZ0dS7TCuYRhHalMJYyaXxO75K17td9S58OjJI1xvoVaejnscM94kMoabmxuuVpp+1bGbEy92E+RKmmeuLjbM80QpFudX6Gp4cnXG+cU53//+x+QGmn7NcXeka1qyTkw5kHcHctPTrLwALCEKJEchpMKL24F2boEWrSeMKmys5YO3H3FMhd31jma1Yp0sVmnED9ZwGBKHKZOUo6jKo8szPv/OJR/+zgte7g48eecR+92Bm/0JazuCjtzsR67mnjIlfGtQc+CDJ084jiOmZj546wkvbq+5HRN3w0SjweqZVafZ9Q66hmHYcUwrGtPQeM10CtwMR676c4yuhDxilr/fH0ayVuA9+xfXcn9RhYuzNQOR0zhSQua0j3iT8BvH7X6PLpZeGz799BneG9q+oxTHVrf0bcspJ3yr2GzWbHzLx9/7mKw0yjdQM48fnVNCZj7NXDRbnh93HIfAo8eX7E8T4TRineKwmwk4nlD+j/berEmWJC3TfHQ1M99iOWuezMqqLGhghqFhGhFAkBGEHwBX/M2+gB/Q0g2CCLRIQ9cw0AxFUVWZWbmcE7svZqb7XKhFZNKzdM0IKdTQ+lzVEifCwz3cTU31/Z63avqtQaeMUYJk4N3NPb/wfIsxilAku+fP8bxDzjNu9Pzwh++wsn4G9qsNqVhckqQk+PLLd6SsOO5HskgkAu6gsFtBFlCsQfYDJU2M44i8kazPL1j1O/y053DnePOsY+gG7q4P2EEiNpqZif3pjs72bPuB1dpy/xDYXZ7zsD+itOHZrueZNpjVFq01V9c3aCEZgyPUU36Ki6zOd5y/eo1zJ9bbC66uPSlP9Cpxud2imZH9jlQsF+cbNvp9dloy5cztw5G72wPdMLDerShCM02B777/kjjNSDOjVeL67gGjBefrFW+v7nj/vRf4mPjB1R4ZMyOCbf/VdO676wNeFS7WBt1viVmyv5m4uZmQqh6oXF0Xtr1m0APf/fZHXL07sD/ODBqmaaq1WbsBIzQXyrCSHe8+36M2ApkD93/5X/A+owQYXZhi4TR5dA96ZRjWG/ZX1wydYrPecH+35+3dLVOKpOQ4Uz3rsxWpM8zOM7mRRCCXgpKmhnxsTxKFYX3G5aXm+fkF3//ki6rWzxGioCDxOTPHSG8MXZK400TOcHHxjF/4xe/yd3/3A758d4c7zmx3KzbbHksNOhahOb9csQG8n/BlAGu5CwEKjNOJFAs3n10jUw3JpBJ5+f4lSiRyGnnz+jmKzJ2fkbYwhmoz6qVhPkaO48ibV+dcDobNbkP2E9eHI+vdCsHAdndGzIXZR9aiAFWJL7LksusRKTFJwf5+z9/+4B8oxvL6ww/Q2kJWGKH56Dvf5td/9Ze5u73my3vHNE68iIlf/Pn3+dblGf/b9z/mNh5IQRAihBwxotTKRFPtHsE7+s6yWvUApCVsW3LmNJ74+ONPeXZxyYvXlwxDT6IGBaQuDL3CB0AboovEIhBGYXSdhrUKfGc5+VpZIVW1U06TQ5tqYYghE2bP5DOdUUQhifGBIhMX52vWqxWHhwMn7zHIp5DA7Byq72pwQPfM3iNENZMIkVivO3xwnMYJLTXOBQ4nx8999JK+7wmq53YcubCKZxc7jLHc3x8YvX8KbaRUAw7WWpz3lCRIEU7HCW0UPvollCAoqW7Md9bw5s0Fm3PFlze3/PDtFS46tpuOVxc9XVha2vIeNwdC0pQsSCXXOqgl/AHVSln5ahr7q+llvgojPSKW6gyWirCnmIFchpoLGUGJ+enf5pyqvUbop5OLkmvAXuTwVLfrvcc5zzzNzNPMNG05O9twtt3UkHUurNc9Wpu6gjXLFH0RGFPD+lIIcqp1G9Yk+qTxIdP3A5vNms3mjqurO+4f9oxzNd/EUsMS6XEqfXlOHjct63P0tefgZ4w6rFCf2rQEaqSqE/iPBzw1NJEXy9BS6yiqlVUq+TSlnpaDJ2OqwaAs0+GS5XUvta4mhrjUNNeJ+Br1E0gJISUEGYt8OmSshq78dPAI/7jyWi81Z48psfho/lnCPtHHxfaw1AcWiS7y6eCoLAePogAiL9aDTCmSXJuq0UIgjMG7aqBA1iEHQT3wTDmRcq2Ky0vt3aMdKaRUbbNkQkyLuUoiM0+1bKUIrKqVIggwWpJztUpJKRcrULU6pKWSzyi1BDNqXRu5VmE9BpcGa58O+6SuB8vTci/SG4NStbYt+ISxNeyFqNYz7zxZVEtvzrU+XKt63zf5QIy+Do+IerhYRKnhjpIpCdTydo0xY5QBCmG558slU2Q19uZczRxGiRoeDLUWSShFihP/w899yL/+5e/SDwVkqv9OlqdgUq2ZfHzT1Z8pZLVdsdxjlalQvGB2kr/9ux/z40++IKZMiAVUfYy5CObTyDg7Siqs1yukqTafQ3BICkpmssjM08RgBdYa5pQ5zbE+zzEx9N1SVVjtuQLJeujp+577+z1Fg9IW73wdsJGZkBJ5dhRtUKYeRLuUoSTkXIM8p9mjk0GgESIiRKKTit1mhc+FeXRoY7B5CbxRb4Z9yPiUqyVYQDd0nG9X3N+eGJ1jvVnhnGdyHikNWSRGF1klQ4kZpQUiJ3brFSFEJJmzzZbjNDHHzBQCWhRkSFgtcFaC0YQw47NBCYXW9SB+mj3D0KOAVAJSC6JPOB9rvbtWzCf3VPnTd5ZIqgGplAk+oWSu9yHOIYrEGMnxcKyWF2NQRdEJjdEKXwpKV0ORVZr9/Z4iJEJpKJnVuqekWrfY646Td/glMOB9YAoZpQTOJZIorB+tFqoO16iaceI0zTxb26VmUdCtVyROiBiJIXF/d0IKVYNR2lKKImZJKYLj8UQuAu/iclXMJJdQtl47ilYIbSDXA/NplJi+x+iOFB1ujmyHFVppptGjDGAEkYALM1ppOq2r7a1AKdXQ4kKodbqrAZcLw2rF6XhClrq/kkoCYWrYTgg2mw1+dnV/IQoyEVEca2volEIqTchglMZsVhhRLSWHyeNjwocRbS2mN7iQWGvDymqO04zqNc75ahbTGh8TiMLF5QXXN/fYLJl9rRTTUiyBwIkxRIyRdJ0lR4lMgmmO5OQpIjFOkWI7uk5zeXnOYT8zjRNujsSY8DGQMWhrEEBvDNNYB8KEKkxXt+jlM8kogSuFWCD4gNRgOoPzaalj7GoNbfA1MCcUcw7ozmCXz+dpnshiMTkqRXARlkoxqTTD0LMbVtw+HHAhLeuwem0qQhBiWmq8DNHHWjGoNJfPnjNNI7d3D4wnx25Tw/1FSUqOpBgx1qC7Anl57a0hLBYXUUINjZ5mSkxLRWjGWMNm03HYH1GqY7PqmcalWq/UEKwooIXmODtWa8VgJCtrsQJu8h4tq5UtUy2CswskIRDL9Tzn8lSXd//uS36QMtZoipBcGIWxtq43iqTrej548x7Hhz03+8CwXvPz5/8KkQLXb7/gk0+/4OE0kSJfM0HWKbiyfKjklMgCjDY1ZEas+56lkFPmeDwRQ2K1Huj7GgRLSzBEGYGKkEW9bgWf6t6HrpYjUQo/+P73efHmfZ6/fI0xGglLyPJxPVJ/jvexrn+MJkVPETAMhr6r148QloJLUVfLOQuiSGRAP1XvstTtVgufyJIQIk5GXCmMsyfFFZvNAEIz54RKNSymtWKcXB3eFImSa0C8UFB6CUOVelgTY6qPZ6kyq4bUZc0m6p6n0htGpzkeR7zzSANDrxFGYbtLVsOK73z720zzzDw73r59h/OOzz77jGmaKE8CpMf7gsehh8eV6uM69R+bk5563f5rljXp479PS/UwsFT95n88VPBkdiqLQaze78ZY16sxRPre0neWYk29D0LVUBIFITXLknkxji2UtAxc1IBXygqtC8ZorLWcTo/hukKkrqnrUi4/aq14WqDzeKf1f/M7NxqN/0v+qQ1KMUb+4i/+gj/90z9lHMd/gkfYaDQajX8Kvve97wH81EGlDz74gD/4gz/gr/7qr/jjP/5j7u/vv/kH+f9ACIE//MM/5Pb2lt/4jd+g7/v/Zn3dv2SEEHRdx8uXL3nx4gW//du/zfF4ZL/f8zd/8zecTif+03/6T9zd3f1zP9R/sfz0xbgKQlr0yQmy1oTkKSz1CCmTqHUUiLrBnWKdWiy5YLKmW/UoVSeIpawqe6g3RVrbekMc46IXToTgsNZg+wHnArObkQKEFKRcbxydB6WqfltrTYi1873rTQ0GCYlSelH0Zrq+I+c6RaqUIoRIKXXiSgqJkRahqoL/eBzrZHunSTxOGdcqtpwEwQeSLGgjUKZu9GsDlIxR9dBAULDWkEIkek9Micn52iu+TAdtditULhhhcMFTCKRQaxSMlKTFwqKUwnaWkjKn48R2N7AdOvbJLXUWdTPemo6uMzghoVOorm4gZxUoSZJCIYaAlYpea/reMnsHIYMvKKsYVhZZBBTBw+EBiuTl6gXj0eO8Z3u25fBwR2cMc0oIGek6g8gKDCDroRG5Y71dQ8moIpCDIIwnuk4TvICc0EYS54yQnm4YiLpO04cxo4PEiIKSCat6tO1ruKAIKIbRzZytI29eGzbrjJA1wCFEWqaX6uGtkhIhFZTloCnXjS6hBHmWiAOIWXFzL/hfv3/L/qQwOrK/uUPaFW/ef0ZSHbdXD5QY0Ubz6vWOXhse7me69cBqMOzWA1YrtBn4ySfv+Phu4uzyjNPsyaJWOJw/X7PuLPNeIUXm6AMyC2yxHB5GbGfRuuPqYc8cIqbvSClglcTNI6eQcLFHkjjbDJAUq5XF7LbIlEmi4L1HysQwWDQWGcAUUJQaihMdvcq8u3tgO3ToTvDhq/e5eXfHHCJuTFy9PeBOJ4wBLRRaGHKaGf1IITJNnpUuWJ2xRqKkxHuP8IVJFiaXKEHybHfB2WbFF2/vOYwjRVo6aXj+7JzNasU0ZsYpcGY3xFRrmnojefPeGdYUfBakznKIGZHqIZ+yGdNpgoN5njmME24OrJTh4XjEJ0cvFRs71MOG4FB2RSRzebYhRc94mikRRBS8vrjk4mLHT374MZMLzCEyusBgFNN+QolMyvD3P/4Sc95RZCH6wG6tuD44tDIoAy8vdxAdnanTxcEFXrzcUjD0qzWXLy8Ix8CziwvOtmfsBAg98YMfXuGCQGxXFJm53K1QWrFanzEfA9IaDqcR4sjZboPe7cAptILbn3zJh99+nyQk0q7qYUD0WCFQ2rB3J/puJeuJ7AAAJQRJREFUYB8UlxfPEcOJ02nk6n7ixetn3NzeYdaWojWTkhyi5+VSA3Wc9gQX+PLdPc9fveDZ5Tmzy3g/kdJELJnbceLzqxPqLsKrOjF/Pd9QiuW973yHL778Cce72xra2nTE4z39vWBle8aQ+Ozzd4wHz3pzzsP9A+Psefb8GetO8fLlBR9//0f1s3yz5t3+gfOhx42J2Re+/4NPQAnmXKtltFkx5sz28pJOWkrYc7q/hqh48d4L3tusee+s8MX1dTVx5EAsiRwsn378GdauISSirhO1dpjprWW723DYn3CnqR6oiEARAtt1fH59w+V2AOERneWs75E+Mh1PbC4tVzfvGEfHZrtD2cJqOzBHMNKgckR0mq3ZcvzyAVNgd7FDIbh3HnTdOBRB4lLk07//goeV5Xy7QTlNjIGr6R5lOjZdx7PNmlwiKMX27IL95FAmc7w/8uUn16z7HdZ6fnx7xB5HOi15MfTE6PGpVqd++81rzoeBo5t5cIGUAqooHk5HitJ149mNzOOIyQrcmiLhODpuru74ufdeMdvE9f2RmcjZeuBMG/o+UZThdDri4nNOD/cM2wu2dmB/fUfKhdubO4Tp2O22WGU4TgfW/ZbLs0uuvviS/TxxN0bQmbv9HXf3V7x49axq8JcNW20t/9Ov/zJXx2vk//5fuHp7zc3dgT//3t/y/stL+qHDTK5WkuRMEQJVQGrFYEy9jqaCn2ZM39eQi5KookgxVYuKEng3Mj0ozl69RBiLnyIqQ99bphNM3nMaPT56VtuO1XrAnxyzc7X+tdfEmEmu1rbu92M1r8garvA+Mk2O7qjZ9h1KLiHvMONOhZIyo3NYqegElCwYx5m1lpyvBoySPBxPSGWRqTBsFCtriEfH/elAKgKtDXfTiR9+/DkX2wu6YcPrTmBM5my9oe86rIKDG3FOc5wSyWWKzBTBYjapBi2tNVroWv2QHi0fEdtbhs5QZGQoK95/NWDUindXX5DTRJgDcU70BrZntm6Wz0slWK6VEgUg1XqmryaZy5Ntp2YsxP+pvkCIGrioAaevHChPtVmPX7scFKRUX99UUw2I5fuVVMMaUtTKhZICfi48pIRzDu8cwXtOxwPH04752SWX5+esYiaEwGa7rVVeWiAyJCHJIqIf+6eUrhYcu9SDqYiS9UBXK8G673g3dFxd33E8TXgBMi7D0I+mqapPWgI6gp/pKUtRw0lQH3ZRNRhWJ/SXyg/KUssnn+xYYjkAUotZlCU4Ur5WAQfUYYclZFQkFEStLVSymhlSrga4mrx7CgylpaZGCoVcgjmlFLSutW6KJWAE1VBhao1cDQEJcqqVHTUsJFBSPRm7gg9EIdC62pO+XnNVcrUtSZYAl1wsWWoxDMj6/hbUgFZJ5clMFGL66jkq1RAkFlNFzKkeNqaCEgqJqJWJogbulJKUUivouqWisFZ7L9PzpVbl1ffEYh1QAqkFKqZqFkiQc0IJ+WQ9SGkJ/VQpVg0jLYdps5sBiTUrYkjVXtN1ODdV00QpsNgleFzCi1r5R9EYaxFL5YrQkIOvz2kClpAW6fF7aLLINQARCjIJpAApEkrqxfi0hBRLfc3/1c9/m1/5pW/TdSz/Xz08//pB3aOxrX5M1HuJxwofkgAHBMlxLPzHv/hb/uGHnyGEwrmEUJbtbiALxXRykDNSSdbbDi0Vbq73F8ZIOqNQskMqw/7hhJurYcHHSBESJQXdylSr31wPVH3KiFJrwZ3zKK2QWTE6R8wZpZcqGCFIMeJzQaaMEIXOaigSaySys4jMYthKCFGW6j+FyNRrJvV6JYtCi8JpdnRaIbXgbLNjPE219isWTkdHCtU6LEU9aC65Wj4KtfbGygElS73GCkGKGRIEQQ13ZRhsT2cMx9OMC4EiFDooVkOP1YYQ63tC6Y6cwfuIlp7ttkPJQkpU8+BSYwUCqctiYas2MxcjKdSQ3Ow9MUe0kFil62dKighbQ5Gr3tT34aMFJgs2w0A/dOzv7gkxE3MNJBspCC4iRb0G3d4fa02qEMiU6KwkuVTr/xSs+g5SrauiQI41aFyQaGMY1gPZZYa+p7cdHSBk4PZuJCaB7gyIwtAZhJQY2xF9qnXrIUD29J1Fdh3EGtic9kfOzrZkIZC6DpvFnOqomJS4GNBK47JgGFYIE/A+MM6R1XrFOM0oo0AqkoQQMhLBpu85no7MvjBPE1kIlNCUDFOIlBzIFFyMBBeYfaakA4PtGPcTMcNqs2V2Cj/NiKIRtj738zTSGUOWinGcGMcZpQwpJuZxpqxAS8Vq1aMWW0k/DIzBkXys+08psx8npJ4pAlyqdV1KaJKAvuuJIRNnT04erVfYvuO8G7i/fyBTqpUzB0oWzJPg4e4AqVp2pOmQIWJktUClAvf7U63dEtUaZLVlngIhZaTMhFIwXY8siuAnuk7j/Mw8J5SuwV5tFSEKStHoxaRnOoOJGTd5BmuwShJTIaZYcxGpXlfdwRGnWP8+sgJf64bTYtqyStc6OAq274guQYxQCvu7A9poervi4TgyPxxREoauqzVxUhJCou8Mzy/PmNxMzIW4rMViiPickFKTS8GHGZFqCI9knkIqK2MYrGV/mnExYaymUxIjBanTix051yBSqX8j0+hqSHz5HtpYjDIkX689q9UavOdhmvAhcfeTzxFS0P+b/5ndboPWGqR8sjZuL3a8/+F75C8KDw97UvAY3fHivQ+4vttzcoEU6/U41SUFgmr/e1zk5JTJcgmpiHqA/Riur+ubRHCOwSh62y3W+IKRkqIlkw+kDD7U2r6u7xC5vl8ohU8/+YTP3r3lbLvl4vyCs7PzJUy7/MBSD7mFEKglCFwDNbU+k1JDNTkXzGLoTLFWxQ1992SAjCmjRDWzm06RQmEKgexmjLYIUXg4nYgxoU3ParAIEp0xCFM/+2fviFkSQq2gE2K5voqvDJlf1TlTQ8RLiAfAWgOloNCsxBolLYfjgRgdOSaSr8H3rlN1HSN6rO3YbnfkkvnORx/xox/9mB/+wz8sazx4tAmxrO3EkwXpv1q6Loc2pTzGjJ6cistAw+NXPpo68/L0L/99SSk92v+f1hGp4F3dZ04xkVMixoD3lrDqWeWBztaB1WzrIKqUElGqkawamh5/rkDKx59fECkhU93jlkKglcQaxXGcmOdq5ksIRJFPvxePv1d5+u0ajcZPyWaz4Td/8zf5rd/6rX+ygNK///f/nj//8z9/+hxsNBqNxs8GpRT+83/+z8BPF1SCeh/wq7/6q7x8+ZJ/+2//7T974CXnzB//8R/z13/913z00Uf8wi/8At/97nf/8eDvf4c8rvu32y3b7Zb333+fUgq/+7u/y3/4D/+Bf/fv/l27Ln8D/NQhpbpxXW+86xyuJIY6bR7jopg1imEYiHG5AaNuuOdlAib4gO0km/XA/uAIMYIRtUYgJELwdVMfgdJ6meatdiQKTxPMMQSMsstBBzXwQwECAlDKEnMipYyUQK5K4b5b4Zxb0nE9IURIibPNlkjdRFBF4oMHsRz0LFYH1ZlqWSpVye4njzKKVOpGd28lY46MLmJt1SWXVLvqp8nhphmj6kFzynWiWMtlE3qZvlEajNY4GRAp1Z9VIJSCRqBFtTIhIKGYfVysRrJOxqUAGaSE0ddpJSESg7QoKSghMqUModAJjSgF1RvmHJh8xApZN0Wl5BQiItdu+gCsOwnJc9gfCWR6Mlp1CClZLxs6Uij6XlN0rScTCVZqgARD3yGKYH/cI3Jh3WukgnnMNQASE1EXBq14c36BsZZ/+OFnTIeA6iVdpyEn/BQYTwe61QpKYKcCP/fewMWziOwydBmlMkIvG0BPkoE60VaWgx0tFSJl4nFCzpo0S47zwA8+ved+gqItd/uReVK8WGm2veU4emL0pJCwRiNVnQaMIRD2ma2VVdmdNHHRjkc0wldr1Wq94XC/JzhNiII8J/qLDYfjDVb03BxPJCUYujU+joQ5cna25vK85ygiDyeJzwm0ZJocZrC8ONsSvee9V+fcHA4c72f8XA1cL7crrATn4eE0UkRGJginB7p+y7NnZ7ibe9aDJeRIR8SIRNEFqeH+NBNFrbrZP0wY27E9rwGodW+5exeYjxPvfft9djvL1e09V8cHdl01feRp4nRzx/52IhG4vtmz6iQSw7QfObtYsd1uOB6u0VFhCnTDwMXlGbttT2d7yIqHu1u6fk3SlutDoKPw4bfeEGZHkpbgJnSXOF9b3js/Z388glYc708IAW9en+M8DMOWkztRcuJ4f89mu6Nfbbi6OfJyPbA6W9ONO/IpMN9dcX7RUSjMEkSkThbjWXWGs8Xm9frVcx7yF+QsePbyjPdfPuPgZ9z9CLEwj4GcJLvVUA8TfWG7vWCejxxOJ+bTiWEj2W0uGH3m1bde8fazL8An3GmmNwqbA11e8eLZOfu4p5jMsN0yPNtyd3XF4RT45MefE7Lk4BPPdj1ro7m/umYlFb/4nTecbXfsx4nTPHPx7BlvbyZCsVxoy66rqvwXbz7k6vYBKUdu7+9rzUfKqPUW5D25BO6PB25vj7gYWCnPxWbDdm25eO+M4AteZD5/d0eOmW999F2+9eacm6vPuDocSUVzXhJvXuz4/Msb3nv+nCwsWW+hOLQS7C423N49cPf2im9/5w1+PlFi5OHBcRpnTG9xqXDz7i3ZKe4eHnjzZsfr51uOxxO31/dgDNvVmoTm7GLLtz88Q5TCx5/e4EaByNWoQa5VnMp0uFz4/ief8eryjJfnK67uj4wPM7oIwjzSlQHRS4btmv39gbvbCXWSqJVmrTXzFCiiY+jXXFiDKIkvbjwhKrRIXJyt6Yc1OdUD9N2m573dhuu7W95dT7Uiyjv8NPHq4hXKJ0SRaNPV0AL1cO7Lmxu+nMe6oawysjNcbDfMx4mXuzNON7ccx5Fie2blMEYTsufoZ/7m+x/z/MU5z7Y77vd7XFbk0ZFOE9JYOisZdgMueO584er2lq6XvL685PrmiPeBYYDLV8+QFx2ffv6WOAbm6UQu8OrijBI9V/fXnCJsXl1yJh2ExNBpPvzwGW+PB25ODicKU4jcvrshlsL7L16y0x0fv73CuxoyPR4PPJw8WsKdkdweZ+ZcN2l7C8TA5z/8CfGQePOd7/Dyg/dqWEMqLl684vd+//f4N7/+y3zxyccc72+4dxPrzqI+fotHEFOtWytFoHIil1xD0kJitCXnxOk4khBIaqCHlMgZttsVr56f4WfHzd092vY1PO0jTsl6MJsy5+c7Jjcvta6FOQacS2w2A52A4zxymgOzcwQXIGdSrlOwcTkkVUZQZKqH9YCk/r05H+lsz6rrSSEyOk9KYCcPncV0HVob7vdHDAJkYpCKUgQxC5wPDEPHpte4FPnJ7Q2vn8PzrUEJSa8kam0Jo+Hy5Rus7fn7j79gOtZqXuc8RWe0KFhjEEUyzu4p7KYK1dbnI0EUqI+CzkY+eL5jt1J8cXvFzcMNh2PkxeuBtRUEnwi5IHJAZIHCkFIhzOHp0OjxZuDxEKHkWmVVDxa+MivVQ4elYvgpcFQoy9fJrx0uCPH4dSwHG4/hpEd7Sj2AIi+VTyXWsEsMNYDuHfO8YXKOaaqv58X5OcPQ40Nmu1nTaYVRFi0VUsVl3acpuVYKxlirE61UaGUwIaCopoiu6xiGnndXNzzsj8wuoFPGh0AU1copRP7/xeRLXoxEy9z5kyHp0SxAYakEM0+vZzUjfTXdnVI1rthH01CqhhpE/f45VXOQyI/mJrn8TVQj13JuR0npyeBaWKpHBFCjKwi51Iw9TsWXGlRSWpNitQtpreshZCl01tZIS5UpVDvA48lVEYSYkbqG5uXyv6VYrUtJyBomUDWUEdJiK1iOwgrVMJBC/fqYM5laEyiFQC2HUCwHfVJKksiIkpd7JJaqnfq1SkhqAEcQU63BezwshPw4Q0JY6kgEGSMUUtTnP5YCiXoPswQ9E7k+biFqHZCs9xGUpSUIMArICef8EnQEKWpFnJGyhrSWQ94iSw2rFDBSQ2EJMNU6GlGqASoJiGHxMuSy2Kgk235AKcXt/YHoUg1YqWorijERvUcZAyR+/sMP+df/47cYVtVqgl7qe6RcPhOWP50l3Mbj36asVXPZR0SU5CjwyfDjT7/g73/4EwoK5wIxCFZG0mmFC4lcqkVYqVrLJUo9nPQ5Y1UNWFIEOdR6rFwkLtdaUG0sbnZ1QGipWNa9xfkJLRSjCxQploqmQIqZrjcMvcGLjPOCVGrNVoixhuL7jpISm3XP6D1+jiSf631eZ1BATOB84NEClvyM1h2rVUca51oLXzKKjBL1PSkkzKEOAxUEbo5IrbB9R0oJqxXTqdY9bc52dL3iNM2MfqbTFmsMJQb8OONErLVlk8NoWcN43tNJQ9dZvB+ROSNL/Wwdhp6uWwJpReLmCaWXQIurj/FstyXHRBaqvhdVpjeWTd/hvAcp8XNAiMJ20xMTGG3xqQaT/DxjbYc2lnGqph/TGVTfUUImzieGvlbQJ1ENeMvmBFYrOqUJPrLZrJjLkVIEw7pjt17hYiTOtfYuhrpe6Uyt2yMWbLeEzH0geI/pBNb2iASb3Ybj4QCxkESslVMlowqshw6XHUUWtO0wK8t8OuF84uG+hph9Kqw6jVGCaRyxQvL8fEvXWZyPhCXscxwDGUWvFJ1SGKNZbc9wPhDjSIoBH3U1ZtueIiOiZHz0zJOvBh8SvZb0RqGtJJ082mr200SMAdsNvHx1AQ+e0zHVwF+IPDtfMc6ekqvxOwlbb9hyxHaGTGE6TWyGHikKKQZyzBweJoQWGG3YT2MNqPkEIbLdrskIDvsRPydMZxBSU0TkxfMzjBYcjhPuFCHOT3tNKdda1ywEh2lmzplNZ/Fe4+dA7c5MlAhDb0lLAPSwr+GKIiRWVTMNUiKlYugsVgiOREIqGKUwumA7WxOcpb53d12PKInTHBipA2sxOFbDgM5iiVlKtK61gJ3V5BQY57la65Qiq7IYvTydNuhSmMaxBtJlDYpoVcMbtw+Haj1arbBKMqVU97tOIyDQVqCNRGrFOLvFkB1ZrQZiKhydh5Lohnqvfzxk5skjqNY4q+vg3+ymOmBmFNvNlhg8WinWnaHfDTwcT/iS0MpwuD8Qc6bvOtbbM+72eyYf0aaQUmD2gZAE8zhCzsxxCTaXzNu3X/LZJ59ihWG93XF2eYHS1V4upeb9b32LixcXPNzcENzEaRpRRqO04M/+41/UgLwvNXRGoeRcg6vU67CAxVRUlzBquaYI6vVjux0QLDbUXOpaNGdSrBftnDLGWJRSxFQ/DygFFxJG173SeTxxf3fPj378Cd/97nd59fLVst6pPzOnTNeZZRji0QyoyKnW6kJdT8nFoBVjQalS10i6Dp9GH2poU0lSlMtwAIil/rKzBkHh5BwmF87WHZJqhZRKkJNCSMtqvWZ/HDmOvtYq53r/ZXTdllayhmkzVEtlLqjFdpdTXNa5GiEzgy2Y3YaT1+wPJ5yrdu/NoGGpzEMsAwxFst6s+cVf+kViCPzoRz/m6/ajp1DSY+gYngYhvm4TelyKPgWD/tH/+/RVyzd9/N41XM3X7inqXUiuoevFCplTIqdITLXaNMRIipk05Dr0uvw9aK1QsoaVpchAWh5X/fvLJdfPXKlq8D4n5BKMUkqhjeGkx8WqVIPlOaVq8Vr+Nr/28BuNxk/Jb//2b/Nbv/Vb/2T345988gl/9md/9rM9fNRoNBr/nfO9732Pjz76iF/5lV/5qb5eCMF7773H7/zO7/BHf/RH3/Cj+29TSuH6+prr62v+8i//kt/7vd/j137t1/65H9bPHEIILi4u+P3f/32cc/zJn/zJP/dD+hfHT29SQi3TQQUpNcHXfo6qmJUgRT00WPrrc6kb3l1ncFOti9FKI8ikZWMvp0LR9WYpuFCnZ5YJmpwLQtQJ41xytQjkOgkmqDerqZQaUsoSSUIbjXOOlAVZZWLIdEYidCG6SJgjhTphAlV1Tq6bnLlklOoQqaBUtfsEkfAhg9BLf3wN34QcyRlWXYcpIHPBh0hGQU51Yi2WuonW1X+bUaQCqdS77BBqwEgIELlOtmASQhuGVFAyUpYaF2lN3cCPhZQ9RRR8AREiCEHMtbZICShaU6wiu0TKAqtlnfKcA73SSC3w2TPOE+v1JecXl9ze32K7DkNByp4gIzNwGj19zjy73BG8x3tHt6pWKK0kUklCAD8ldFdV79ZaxjRDjKikmWbHnAIyVaV0EYJpyqx7yxyPjNGz6s+INpGMrfr2Y+bq4ZocA+erpTZL9fhcSMqz2lj6TqH1yM99qLnY1t+bIYKtVieipmRFERGR6maR1PWQyhhD8oHiEoRMiYkYLJ9+euLwINn0PegVwSmc89j1wNvriYe9Y04TNismlwmvNzzcXT3ZLC4vzwhJcPXlASknpBR0uqPTiue7NXf7iRIVhykzGs/Qa7adZNUpTASdCiFF1uc9w9Czv9WsRM+m2zKqQs6BQa8pWlHKiAwRd5o5ngJbGzieHNM8MeiOLAu3R8egNathhUgzH7y84EfHifffPIeiOR339KVOmN8eA2nKiBL44NklLkhu72dkLhyOE1MoXF5s6LTCqh6jM8JY5rlQQmRjz7lJt3TJMM2BU4bb+wO9kVU3nxPKaLpechg90hjcwbMzFrkyTLPnX/Ud65Xh9estHYKHt3t8ikQpEdETc2IeHXYlAUWKgn0IiCK5OO9RncbFRI4aFTO5OJwXXN2eOHt+SXIjJSZc9Mi1gW3Hw2Gk0z3H44nrNPP+q1d89uPPKYPmw5cXGAk+SX702T2r8w2inIgus7OS9dmKh7vAmV7zwYsdbjrRn2+IR4Wd4O14w+0cWJ/1bHrBvD/hxsywnelsR3QRmTNf/CQidcf63LA9G/jyE4W1O06nQCgj68s1w27FMcL7H/0c0zhzsd0x9FuUn7g7Hbk+OqzRZCPRUnA+dBz3E5/dHdi9uMCc4HQ7keMVl8+ec/Zshxwk6TSx3Z3xcByJn9yQQ6HrB/ZC0lMPWG/mE8PlmtWzNVlY5PUDRgRcyIzZ4G5HtmdbRuXZnwKqW2F14LC/ITzr0GaDtB5/nFFOMDDQrxVFBx7uDownz6qzpPHAWa/pn/XMCELOXH9+z8PhyKw0yiVeDgphFcZY/DsHnWH34hnHuyMdin4FZ89XvL4cOIxw9dkDg7TYdc+Dz9yNJ0RKGCs46xUvLnbcO8PxNCKA+f7E+tmKdS+ZHHTGMmH5+y9OnK06JBFbFB0KLQ0xR7718pIv7h6Y54kx7BFKMVhdX+M503UabTPzyXHaz9WgM03EyTEfJsYxor7znOevN3z68cz1aWZLwvnE6WFkt7EkGUhF0knwc+L25oHhbMXKdKzp8fOJH//4J4ScCCWjkVx/fseb5wNru+I4eg5ecDtPnA2J3cYi5YqhW/Mw7bk9OFbG8kuvLzlPhh+9vSZ2km5reUiFQywYZfnOq2e8/8EFZk74hwkxFFYbzfVUr6/TnLkaT/Sd5cNXll967zWffXbL7fGeePUA/Ybnu3MOt/X56gbF9WdvSbFwOViUgDEJjvPMSiuM1qQx8Lf/8I5DzmgNPYX7h5n5pDj1Bz67mXh7f+J/Od+w2a3JKSKVpu/XfPvNh3RzIK0HZjzPLi6QrtCbgTOt+eL+nqMPlLFeS2uAtdoxcqFuIJc6hS9KAV2rirJ3qJzRynKYA+skePHqgpwjAosLGVFGtBWsVcd4KozHGWkUqkiilJzvdpQCD4dbcq5hiuRrWCWXGlBYbQxFeExXDVluDjz4WmERUmaQBRMzKUROsycJjfaJg6+H/zLCkEu9XhdJ8qVO3maBVgqrQaHJImJMrdELvmO9XaFXkb7v6PSK6ZCINiCkpest7nhAolBFYIyFFBFFkEPCh0BIhew8KysxVnFMAVN03ei3mmJ7Bil5bRRhzKT5Levi+fD1jsFlvp8nppLJpZoYqgGg1uDk/FUAqTxOLheWg3H1tXDS4+HCUhEhVbX1PJqRxGPo/qvziMeWA0k1/IhcwzHGWmIIuJRJMvMYiy9LqIycKCUtB7eZFGvoPTjP2dk52201M8XOsO47+uWgqKOvIedY7TQSAUpQUq7r6pwx2tTqvB54dobRBmNuub19qHV7QIm1IqOIiPxaSOtnlVIeLQX1Ri8tVWmP6//6NV+b4F5eGKUkqSzBwqVuq+T0ZFGqE+SSktJiEODp70EsU/nk5VhILFZN6mucqeaCWvNSai1UypQkKLLeryglQNYDohS/qneD5XdYzF+51ECTKDXkohdLS07lydwEtZIllVQPrZSupqZSiJlaFZPzYhCoh4hiMWQVvhr+gKUCT36VLZJSUmRGyBr+fnxOhZAIVevhyKW+H0S9jyIV9GJ4SbnUypfF4sBiTXqsqUuxmpNQglyqNc3agb4fmOYJpXX1n0ldB1kAHzK6FFaDXYI1CW0lIVVrQX1/FkrISKXIIqOUJpRYQ1dZVWNVrv9ZK7XcS5VqeciekBNG92RVKKpWySVfGN1ISYnOVDOUkPV+rMiEtgqtJEo6nl8qBlt/b2EyqBrMYqnJQi7VckvwDUCpGuYmfZXCylnx8OCZp4LREiENKVUzkDKa4yngfCLmgC6yfmasDfM8ElINyg5DRy6C09EjRA1oKqXQUrLqLJMLkAU+FIJMS5WowCqBLAK1XENsX6+jbpIYNFZZgijkMmOkoUgJJSByJvmIDwkrEz7EOhAkNWUxoxolq2WkVEPi3cPIdrMCJME7NIWcYXSZrAKUzHboSVkw+YgoBe+XgRTVoZWoRiuZEUoTa/cMVvWMeUIXWSuyCoyzxyhRzai5VLuhlrgQEVKhXUJLjTD136y1roGpbYcG3NERSyYLat24KEQfUUaAkeQMLmcogqE31XRcCiVLRC5AJETBafJ0q4Gcav1rIiFMtRY751HS4JxH5MBus2F/f6DXkt16qPsWWXB3mLF9hyieFAudEtjeMk+ZXhq2654UPLqz1TgUqVV3KWFmhdWC6AIxFEwX0bKGJEUpHPYZITS2V3S95rgXKGXxPpFJmKEGqHyG3fkFIUT6rqsWlBiZvGf0qVrWlrrKXiu8i+znmW7VI73AT5GSR/phRb/qEVpQQqDrOmYfSA8jAoXIgqINY8popTi5GYyi0wbZG8ocMLIaWnxWCJ+RWjAMAz7WmjJjLTkFgpsQSJTpiX5CpoIpGr3Y3WKcmee4BDULMnh2vWbUGWkV02kmObcMpcFKmxrYHDT4iHOZ9WZdA6whY4xAGsVqMFijOY4OSl0LxyIYfWQO1V7Uq7Lsa9Qgak4F5RNJeladZPT1GqS04ugjc4p0WqHqFaeaxUph6C1aCMYQySEy51ojWWtoa62l0TUteTrMNeygIMe6ZphOM2kF662mC4YpxCVUmvChIIxBKUjZIUUNGro5kLsaNq9lYYrT4UQppVbuKs18ChgJ23WtEXYRXCrI4JBasFKmBm9E5DA5Qkqse8vF2Y6Huz1eVCNhkOBdzWttup6zbc+277hyAV0Ug1W4Uu1tKRXmGNG6YDvFi7MNcQ514Gaakbaj7zaIUjgdjygjcaeZfQi1jnAJloSUkKmaABWF/X6q+0kCOlmfmzIKTqfA9f2Bh5NDasX5s7PFeCMRQrEeNqhtJBjN2mjWuw3u4cDZds3KGO73B1zO5BDgqzw1IBYrpKhhmyW0hJDVeFM1RmitmUshucB61WOsJZVCDgURUzWUy2oHT6GucbTWJKAzmrVWeJfxKXA8nHj1rAaTCnUNIWStTFSqGh5zzjgXUMvwIxRUqRVyKWb8YlXyKSNCQCIxSzBHIshPAeUa5lJKoERdm0hVw0SHU8FYzaAyvVYYbQhjxrtESmBMR3QOikCU+j5YLqI1BJsyKS2hGzJGqzrEgKwhbykoSiOFYFA1LBxdouTARd+zFoIvE0wp1CBRfqxhK5yd775W5/YYWPuaR0g8rh+fFqJPrydLNfBXZlf+UVDpv/YPiZqTQshlIEIK4mKclF8L7JdUg8ue+vqknJ8aCXJO9LHWuNaKOI1REmv08rfNk5UrU/eW65q6LB2/9bEqqShK0HcFIdZIpRhPMyEGIvW+ptYH52ZSajT+P2CM+Se9B3+0+jYajUbjZ5dSSjUV/7/g8Wz6Z42UEm/fvv3nfhg/02it+eCDD/65H8a/SERpq55Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPxDfLfd8lgo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPR+MZpIaVGo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPxjdJCSo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRuMbpYWUGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNxjdKCyk1Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNb5QWUmo0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrfKC2k1Gg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNL5RWkip0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FofKO0kFKj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9H4Rvk/AJb+IQ1Ch7rQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -64,24 +72,13 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAAH/CAYAAACxPcr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9edSvSVEf/qnq5/veO6wCzgAisihLUDwKRGUXRCayCQkaCRIGEMcN4Rwhh/CTTTigJBg8iEiIARXiAqKiuGJARYmeuIDBeAQcjBIV2QWGue/TXb8/aunq5/t971xGZjH0Z87c932/3+fppbq7urqquopERDAxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMXElga/uBkxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM/L+N6aQ0MTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMXGlYjopTUxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExcqZhOShMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTVyqmk9LExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExJWK6aQ0MTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMXGlYjopTUxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExcqZhOShMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTVyqmk9LExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExJWK6aQ0MTExcSXiWc96FojoCr37yle+EkSE97znPZ/eRiW85z3vARHhla985ZVWx8TExMTExMTExMTEpxe3vOUtcdFFF8Xfb37zm0FEePOb33y1tWmLbRsnJiYmJiYmJiYmJq5+zLPExMTExMTVjemkNDExMXEA73jHO/CN3/iNuNnNboZTp07hcz7nc/DIRz4S73jHO67upl0t8IPKa1/72qu7KRMTExMTExMTExNXK/wygf9/+vRp3Pa2t8V3fMd34O/+7u+u7uZ9SvilX/olPOtZz7pa20BE+I7v+I6rtQ0TExMTExMTExMTVwXmWeLTi3mWmJiYmPiniemkNDExMbHB6173OtzpTnfCb/zGb+Axj3kMfuiHfgiPe9zj8KY3vQl3utOd8LM/+7PnXNZ3f/d349JLL71C7XjUox6FSy+9FLe4xS2u0PsTExMTExMTExMTE1cevud7vgc//uM/jh/8wR/E3e52N7z0pS/FXe96V3ziE5+4yttyr3vdC5deeinuda97fUrv/dIv/RKe/exnX0mtmpiYmJiYmJiYmJg4hHmWmJiYmJj4TMZydTdgYmJi4pqEd7/73XjUox6FW9/61vit3/otnH/++fHdE5/4RNzznvfEox71KLz97W/HrW996xPL+fjHP45rX/vaWJYFy3LFWG0pBaWUK/TuxMTExMTExMTExMSVi6/5mq/BXe5yFwDAN33TN+FGN7oRvv/7vx8///M/j0c84hEH3/FzwqcbzIzTp09/2sudmJiYmJiYmJiYmPj0Y54lJiYmJiY+kzEjKU1MTEwk/If/8B/wiU98Av/5P//nwUEJAD77sz8bL3vZy/Dxj38cL3jBC+LzZz3rWSAi/Omf/in+zb/5N7jBDW6Ae9zjHsN3GZdeeim+8zu/E5/92Z+N6173unjIQx6C9773vSCiITyqh359z3veE5/d8pa3xIMe9CC85S1vwZd92Zfh9OnTuPWtb40f+7EfG+r44Ac/iCc/+cm44x3viOtc5zq43vWuh6/5mq/B2972tk8TpXrf/vzP/xzf+I3fiOtf//o4//zz8fSnPx0igr/6q7/C137t1+J617sebnKTm+CFL3zh8P6ZM2fwjGc8A3e+851x/etfH9e+9rVxz3veE29605v26vrABz6ARz3qUbje9a6Hz/qsz8KjH/1ovO1tbwMR4ZWvfOXw7J/92Z/h4Q9/OG54wxvi9OnTuMtd7oLXv/71n7Z+T0xMTExMTExMTBzCfe97XwDAJZdcAgC46KKLcJ3rXAfvfve78YAHPADXve518chHPhIA0FrDi170InzhF34hTp8+jRvf+Ma4+OKL8aEPfWgoU0Tw3Oc+F5/7uZ+La13rWrjPfe5zMAW1p2d+85vfPHz+e7/3e3jAAx6AG9zgBrj2ta+NL/7iL8YP/MAPRPte8pKXAMCQcsLx6W7jucL78tM//dN49rOfjZvd7Ga47nWvi4c//OH4yEc+gssuuwxPetKTcMEFF+A617kOHvOYx+Cyyy4bynjFK16B+973vrjgggtw6tQp3OEOd8BLX/rSvbpaa3jWs56Fz/mcz4m2/+mf/iluectb4qKLLhqe/fCHP4wnPelJuPnNb45Tp07hC77gC/B93/d9aK1d4b5OTExMTExMTExMAPMsMc8SExMTE59ZmJGUJiYmJhJ+4Rd+Abe85S1xz3ve8+D397rXvXDLW94Sb3jDG/a++7qv+zrc5ja3wfOe9zyIyIl1XHTRRfjpn/5pPOpRj8JXfMVX4Dd/8zfxwAc+8Jzb+K53vQsPf/jD8bjHPQ6PfvSj8V//63/FRRddhDvf+c74wi/8QgDAX/zFX+Dnfu7n8HVf93W41a1uhb/7u7/Dy172Mtz73vfGn/7pn+JzPudzzrm+y8O//tf/Gv/sn/0zfO/3fi/e8IY34LnPfS5ueMMb4mUvexnue9/74vu+7/vw6le/Gk9+8pPxz//5P4+wsR/96EfxX/7Lf8EjHvEIPP7xj8c//MM/4Ed+5Edw4YUX4vd///fxJV/yJQBU2H/wgx+M3//938e3fuu34va3vz1+/ud/Ho9+9KP32vKOd7wDd7/73XGzm90MT33qU3Hta18bP/3TP42HPvSh+Jmf+Rk87GEP+7T1e2JiYmJiYmJiYiLj3e9+NwDgRje6UXy2risuvPBC3OMe98B//I//Ede61rUAABdffDFe+cpX4jGPeQy+8zu/E5dccgl+8Ad/EH/0R3+E3/md38FutwMAPOMZz8Bzn/tcPOABD8ADHvAA/OEf/iHuf//748yZM5fbnl//9V/Hgx70INz0pjfFE5/4RNzkJjfB//7f/xu/+Iu/iCc+8Ym4+OKL8X//7//Fr//6r+PHf/zH996/Ktp4Njz/+c/Heeedh6c+9al417vehRe/+MXY7XZgZnzoQx/Cs571LPyP//E/8MpXvhK3utWt8IxnPCPefelLX4ov/MIvxEMe8hAsy4Jf+IVfwLd927ehtYZv//Zvj+f+/b//93jBC16ABz/4wbjwwgvxtre9DRdeeCE++clPDm35xCc+gXvf+95473vfi4svvhif93mfh9/93d/Fv//3/x5/8zd/gxe96EX/qL5OTExMTExMTEx8ZmOeJeZZYmJiYuIzCjIxMTExISIiH/7whwWAfO3Xfu1Zn3vIQx4iAOSjH/2oiIg885nPFADyiEc8Yu9Z/87xB3/wBwJAnvSkJw3PXXTRRQJAnvnMZ8Znr3jFKwSAXHLJJfHZLW5xCwEgv/VbvxWfve9975NTp07Jd33Xd8Vnn/zkJ6XWOtRxySWXyKlTp+R7vud7hs8AyCte8Yqz9vlNb3qTAJDXvOY1e3375m/+5vhsXVf53M/9XCEi+d7v/d74/EMf+pCcd9558uhHP3p49rLLLhvq+dCHPiQ3vvGN5bGPfWx89jM/8zMCQF70ohfFZ7VWue9977vX9q/6qq+SO97xjvLJT34yPmutyd3udje5zW1uc9Y+TkxMTExMTExMTJwLXE5/4xvfKH//938vf/VXfyU/+ZM/KTe60Y3kvPPOk7/+678WEZFHP/rRAkCe+tSnDu//9m//tgCQV7/61cPnv/IrvzJ8/r73vU+Ojo7kgQ98oLTW4rmnPe1pAmCQrV1ef9Ob3iQiKmvf6la3klvc4hbyoQ99aKgnl/Xt3/7tckg1dGW08SQAkG//9m/f68sXfdEXyZkzZ+LzRzziEUJE8jVf8zXD+3e9613lFre4xfDZJz7xib16LrzwQrn1rW8df//t3/6tLMsiD33oQ4fnnvWsZ+21/TnPeY5c+9rXlj//8z8fnn3qU58qpRT5P//n/1xuPycmJiYmJiYmJibmWWKeJRzzLDExMfGZjJnubWJiYsLwD//wDwCA6173umd9zr//6Ec/Onz+Ld/yLZdbx6/8yq8AAL7t275t+PwJT3jCObfzDne4wxDp6fzzz8ftbnc7/MVf/EV8durUKTAri6+14gMf+ACuc53r4Ha3ux3+8A//8JzrOhd80zd9U/xeSsFd7nIXiAge97jHxeef9VmftdfGUgqOjo4AaLSkD37wg1jXFXe5y12GNv7Kr/wKdrsdHv/4x8dnzDzcWgA0xd1//+//HV//9V+Pf/iHf8D73/9+vP/978cHPvABXHjhhXjnO9+J9773vZ/Wvk9MTExMTExMTHzm4n73ux/OP/983PzmN8c3fMM34DrXuQ5+9md/Fje72c2G5771W791+Ps1r3kNrn/96+Orv/qrQ2Z9//vfjzvf+c64znWuE+mP3/jGN+LMmTN4whOeMKROeNKTnnS5bfujP/ojXHLJJXjSk56Ez/qszxq+26ajPoSroo2Xh3/7b/9t3LAGgC//8i+HiOCxj33s8NyXf/mX46/+6q+wrmt8dt5558XvH/nIR/D+978f9773vfEXf/EX+MhHPgIA+I3f+A2s63pOZ7PXvOY1uOc974kb3OAGAz3ud7/7odaK3/qt3/pH93diYmJiYmJiYuIzB/MsMc8S8ywxMTHxmYyZ7m1iYmLC4M5H7qx0Ek5yZrrVrW51uXX85V/+JZh579kv+IIvOOd2ft7nfd7eZze4wQ2GfM6tNfzAD/wAfuiHfgiXXHIJaq3xXQ4Z++nAtj3Xv/71cfr0aXz2Z3/23ucf+MAHhs9+9Ed/FC984QvxZ3/2Zzg+Po7PM33+8i//Eje96U0jnK1jS7N3vetdEBE8/elPx9Of/vSDbX3f+963d9CbmJiYmJiYmJiYuCJ4yUtegtve9rZYlgU3vvGNcbvb3S4uCjiWZcHnfu7nDp+9853vxEc+8hFccMEFB8t93/veB0DlYAC4zW1uM3x//vnn4wY3uMFZ2+bpIr7oi77o3Dt0Fbfx8nDonAEAN7/5zfc+b63hIx/5SJx1fud3fgfPfOYz8da3vhWf+MQnhuc/8pGP4PrXv360fXuuuOENb7jX9ne+8514+9vfjvPPP/9gW50eExMTExMTExMTE+eCeZaYZwnHPEtMTEx8JmI6KU1MTEwYrn/96+OmN70p3v72t5/1ube//e242c1uhutd73rD59nD/spEKeXg5yISvz/vec/D05/+dDz2sY/Fc57zHNzwhjcEM+NJT3oSWmtXenvOpY2vetWrcNFFF+GhD30onvKUp+CCCy5AKQXPf/7z4yD0qcD79eQnPxkXXnjhwWc+FWewiYmJiYmJiYmJibPhy77sy3CXu9zlrM/kCKeO1houuOACvPrVrz74zknK66sS14Q2nnSmuLyzxrvf/W581Vd9FW5/+9vj+7//+3Hzm98cR0dH+KVf+iX8p//0n67Qeai1hq/+6q/Gv/t3/+7g97e97W0/5TInJiYmJiYmJiY+czHPElcu5lliYmJi4pqN6aQ0MTExkfCgBz0IL3/5y/GWt7wF97jHPfa+/+3f/m285z3vwcUXX3yFyr/FLW6B1houueSS4YbAu971rivc5kN47Wtfi/vc5z74kR/5keHzD3/4w3sRjq4uvPa1r8Wtb31rvO51rxvCuT7zmc8cnrvFLW6BN73pTfjEJz4xRFPa0uzWt741AGC32+F+97vfldjyiYmJiYmJiYmJiSuOz//8z8cb3/hG3P3udz/rRYdb3OIWAPTmrcu6APD3f//3QxTVk+oAgP/1v/7XWWXjk9I1XBVtvLLwC7/wC7jsssvw+te/frhB7WklHN72d73rXUMk1w984AN7bf/8z/98fOxjH5vnjImJiYmJiYmJiasV8yxx5WKeJSYmJiauGvDlPzIxMTHxmYOnPOUpOO+883DxxRfvpSb74Ac/iG/5lm/Bta51LTzlKU+5QuV7hJ8f+qEfGj5/8YtffMUafAJKKUPUIkBzH7/3ve/9tNbzj4HfWsjt/L3f+z289a1vHZ678MILcXx8jJe//OXxWWsNL3nJS4bnLrjgAnzlV34lXvayl+Fv/uZv9ur7+7//+09n8ycmJiYmJiYmJiauEL7+678etVY85znP2ftuXVd8+MMfBgDc7373w263w4tf/OJBZn7Ri150uXXc6U53wq1udSu86EUvivIcuaxrX/vaALD3zFXRxisLh84ZH/nIR/CKV7xieO6rvuqrsCwLXvrSlw6f/+AP/uBemV//9V+Pt771rfjVX/3Vve8+/OEPY13XT0fTJyYmJiYmJiYmJs6KeZa4cjHPEhMTExNXDWYkpYmJiYmE29zmNvjRH/1RPPKRj8Qd73hHPO5xj8OtbnUrvOc978GP/MiP4P3vfz9+4id+Im4TfKq4853vjH/1r/4VXvSiF+EDH/gAvuIrvgK/+Zu/iT//8z8HcPLtg08VD3rQg/A93/M9eMxjHoO73e1u+JM/+RO8+tWvHm4kXN140IMehNe97nV42MMehgc+8IG45JJL8MM//MO4wx3ugI997GPx3EMf+lB82Zd9Gb7ru74L73rXu3D7298er3/96/HBD34QwEizl7zkJbjHPe6BO97xjnj84x+PW9/61vi7v/s7vPWtb8Vf//Vf421ve9tV3s+JiYmJiYmJiYmJjHvf+964+OKL8fznPx9//Md/jPvf//7Y7XZ45zvfide85jX4gR/4ATz84Q/H+eefjyc/+cl4/vOfjwc96EF4wAMegD/6oz/CL//yL19udFRmxktf+lI8+MEPxpd8yZfgMY95DG5605viz/7sz/COd7wjFOR3vvOdAQDf+Z3fiQsvvBClFHzDN3zDVdLGKwv3v//9cXR0hAc/+MG4+OKL8bGPfQwvf/nLccEFFwyXGW584xvjiU98Il74whfiIQ95CP7Fv/gXeNvb3hZtz+eMpzzlKXj961+PBz3oQbjoootw5zvfGR//+MfxJ3/yJ3jta1+L97znPdeYiLUTExMTExMTExP/72KeJa5czLPExMTExFWD6aQ0MTExscHXfd3X4fa3vz2e//znh2PSjW50I9znPvfB0572NHzRF33RP6r8H/uxH8NNbnIT/MRP/AR+9md/Fve73/3wUz/1U7jd7W6H06dPf1r68LSnPQ0f//jH8d/+23/DT/3UT+FOd7oT3vCGN+CpT33qp6X8Twcuuugi/O3f/i1e9rKX4Vd/9VdxhzvcAa961avwmte8Bm9+85vjuVIK3vCGN+CJT3wifvRHfxTMjIc97GF45jOfibvf/e4Dze5whzvgf/7P/4lnP/vZeOUrX4kPfOADuOCCC/ClX/qleMYznnE19HJiYmJiYmJiYmJiHz/8wz+MO9/5znjZy16Gpz3taViWBbe85S3xjd/4jbj73e8ezz33uc/F6dOn8cM//MN405vehC//8i/Hr/3ar+GBD3zg5dZx4YUX4k1vehOe/exn44UvfCFaa/j8z/98PP7xj49n/uW//Jd4whOegJ/8yZ/Eq171KogIvuEbvuEqa+OVgdvd7nZ47Wtfi+/+7u/Gk5/8ZNzkJjfBt37rt+L888/HYx/72OHZ7/u+78O1rnUtvPzlL8cb3/hG3PWud8Wv/dqv4R73uMdwzrjWta6F3/zN38Tznvc8vOY1r8GP/diP4XrXux5ue9vb4tnPfjauf/3rX9XdnJiYmJiYmJiY+AzFPEtceZhniYmJiYmrBiTbfEATExMTE1c5/viP/xhf+qVfile96lV45CMfeXU3558Efu7nfg4Pe9jD8Ja3vGU42ExMTExMTExMTExMTFxRfPjDH8YNbnADPPe5z8X/9//9f1d3cyYmJiYmJiYmJiYm/olgniUmJiYmzg18dTdgYmJi4jMNl1566d5nL3rRi8DMuNe97nU1tOiajy3Naq148YtfjOtd73q4053udDW1amJiYmJiYmJiYmLinzJOOpsBwFd+5VdetY2ZmJiYmJiYmJiYmPgng3mWmJiYmLjimOneJiYmJq5ivOAFL8Af/MEf4D73uQ+WZcEv//Iv45d/+Zfxzd/8zbj5zW9+dTfvGoknPOEJuPTSS3HXu94Vl112GV73utfhd3/3d/G85z0P55133tXdvImJiYmJiYmJiYmJf4L4qZ/6Kbzyla/EAx7wAFznOtfBW97yFvzET/wE7n//+89orRMTExMTExMTExMTJ2KeJSYmJiauOKaT0sTExMRVjLvd7W749V//dTznOc/Bxz72MXze530envWsZ83wn2fBfe97X7zwhS/EL/7iL+KTn/wkvuALvgAvfvGL8R3f8R1Xd9MmJiYmJiYmJiYmJv6J4ou/+IuxLAte8IIX4KMf/ShufOMb44lPfCKe+9znXt1Nm5iYmJiYmJiYmJi4BmOeJSYmJiauOEhE5OpuxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE/7vgq7sBExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExP/b2M6KU1MTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMXKmYTkoTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE1cqlnN98La3vS1qFQgEYKCKgHmHhQoKE4gFTRqICCSE2hoa9G8RgbQGQUMpBdQYAEFQAVQQCBBGlTWeZyaINIg0oDCoAQSgiaARgwQQIQgAEgHQICLWWoIIo2GFCIFoARFQWGAvQJhAVPRpWkByDJIGEUIlAlNBseIaab+lCUAEoOBotwNRBaGBqIFBgACtCWojQBrAhCoVXACGQKpAmraNuUCkgVjAhSEQ6wewSoM0QWsCIQKLQKr2b5WGKgALo8kKIaBJAzNDVm2jCCBSQUQAACGlFQMgatqn1iANRg+CgCHEIBsZtrFrzcoWQW06CAxGa4ImNh/QIFLRADQBlhgfLbsRjD4EIgFIABAIBSBvK2z8RMe8Ucw9gdKdiECk7QMx7HF9Xno/gV4WICDiXq6+ABGBUSSeJy0cTVr8LYKgo85v2Pu5fWRtVK8/adJpL2S/e3sQ81REwMRGKG2/FYP+AUFIbJiarYnkXUgEnV3U+wCxIqv1357x9SHiTQFYayP/iiQ31d4lADFZbH11egkaAA56eR2EZvTrvpBBV5s3sLUf/ICiYf2ntKCJ8wf7C0LSXzmA/qz3pQWBU1Ohs5riU4F1VUT5k5dFQB8ynz9OsAaf2ZTnh70n1gYSyQRHGvFor9PI3+kgG3/pbXS6yvhsppWXxakuMMVcsJWnbQ/ap4kASuNoa4mg80+MiDYf8hzWNpLNhdbLyv6xVo5YW3JvT4L3XfmfgInA4vNK26TtJV03AIRKrI8SE5zB7DTsP32mw2hGpPyu2Xec6FyIbY1S0InY+JRWDEFDrdX2tqWvbdsDnceBCCSLkUTg1RAzduUUlqNTWHZHAArOnDlGqysgug+BCGCdX0x9vRIbr4XNP+PJnV/YfkcMXgAuC46WIxQmlMJgWiCtAiA0YRy3hoG3tBblEhGYGUSMZnzXCcuwfQdAbSvE+AMLKY0LQdj3RqChQKSACThCQ20rGjcINVAjLLQDLYuuvFbRqvPHZnsdoUlTLsMLFhRAKqpUHUdRGhQCmBkoBVwYBEJrSrO1rkpbCNjGlKxs4YK2VhQGWq1obQXByiJCJYCKzvW6NtsLC6jq+0wAbIwLfKx9b2EUZoAayOYtF0aDoEkBsIM0QaEGyIrWjtGatrNKRSXG8Rkxti1oqGike56ItokEqE2fJ1L5xDZRCCoIKwo1/Z12ump8jTTB2oDWoHKe7v6xOnUqEzh4ZEOTCjDQVm0HQwCpylMLqzzRRDkDAascmzzDaR9WzlFFIMyQ2sAk4FZ1rEUA8f1Q9xeda+MmIc4zbC/z/3WRGCeUzkPFZQ/pa0jpZDzb1lJD7etK+p4bdaDLZXs8TVRsFGrRvozOz5s+SCpL7ssXJhaAcOaTZw7WdXXju7/7u3WsAJMBVU5jYqNvGg8fo+DKErTnkE98vJvt13Z+QKdFvEdZxgIa0Z4M0eVHe81lPAAq65joJCYzke6cWh/rehCx97T+tHv2yo2jFNuEiBqyRCCiMnV/U+cWwegjNMiYLpO57OJ90f/Tvmb0FNvTyGnsgjsRrAtabxor/4WiD74GkD4hJ3ycKfy5kI19f3TaRhEuq8cONsgTw2fUn9pIHeNPr2foB4FSf5zgW3HSyZFlyZPKP4RcYl+bRluSNFQmu9vPTr1cb64jz8/9b/vrXSbSs559RS3GFwONMx239aWa0nLECW+AJM5pI987oU8+nrFIqQtmJ/cSA5Vd9qaT6LZfQmI1J8qf2/F30Xe/JZ2a2xkZg0XxoPGNPcphSyPatiHztVyXT/Ek/1Ma94MN9l8oDWifKGOVyNSm2Pv2+rlpO1L7+1ygg2+dyxlgn/rbeXTgkbOVtqk0WAvSmCb66L/cdRL2FnXW1+WlVCb5Oh94TedFZJNQYh0ot6P8mb/v59OoEPAzbmpR/Bu6FwKICrgsqpMjRq2C1ir87K40id2098L2XJeBiAhC4ziaRK9nDwaYCpgZTFD5vonxBpP77EyciyGri3xv3eMHMDrYHhfyZ9ofmGP/V76m+2wBIFJVBjG9IBPrePJGJjQGFuPm7QL3fdRor/tbkhFDVjQZQgD4OZj8LOE8wPYHo7W0YJxdH+C/m1AgxPoIfE1JHMOdhrqjcHyQ6arkVLqozGuSjuiZVJrpC6FySNSb91HXw1qtzeSuQc8kAqDaWJjeh3hYdM1klBayV+ZrEusgeIbJK74GKPayvsm6XEFQ7YyfCdIMCw7U2aDtgHZ2HGQUH2e0mIaUpiRvyhH4ePq/UUSXQdLn8V2a46NE0ivL/57EOUN+S7v6wX0md+Ys+MEX/+BZv7868Cd/8idXdxMmJiYmJiYmJiYmJi4Hd7zjHc/puXN2UmpmlFZFWVVjjSsFiEGkji2hDCB1HGnNDIYgiBSgJYWcK1/gh/tkVBc/9nIoIUKxJQIBg4nsEG2HQDv8q06gxeFUWnO9CsgO1GgNwlBDttThkMYgtFbjwNni4GtGviaoqzoXEQkK1Bjqba1+uG5ND4dN23rcVjsPNtRKZshmM5iKtsmVLq1F28UtIk0dEdj6yWR9FgHWGoqQ5o4H5jQGsYMwkykk/NDsBNocutmUPjbm7pxDZpVRJURXGoTRE+I+L1aQpDnj49IVM64A8fHOhqF88PfDvYir72MamOGQTAHRD+rMFHOoG1pceeSFpGP7oMTdqHhcseoKAslKV/1Zgo5b5XD0MAw5uW+Dwi20GBJl9fZ5e9hGzhSEUEedrmahsb1enEgvg1K/kuakq4S87aboCWNfUsGEEtQHqdM3K/y9bi+vK6ezcmXzwqBEacjISnrBFcHo5OSOAfpvV+SEAcIHyz6g3vFN2wEfm23DfG5RmiNRFkbeNjgZhUYxY5zT/kA2aGclmRUUc3ZQlLWR7l1Z1p8ajIoxjhJ9CgWhr588nUWMmeQejSq5vlZkr6v7Bo3UXP9clP+S8zj0dR99Eedzbtje7CfRFih/dOVxKD7VGSPGLdU/jJs9yzZsZI6UzZWVybmhr00CqPS+WyVOUy+beTGDghoVmiiPg0D9FVwJ7e0Td/aF2yWCx3JZtHebfpJ5h7hzaiGO71oqA+7U4jwV5pjlBgX7nZMhXETMX0aCHm7AF/XWUeceVve7UgqKO7goEdFqQ20VVPR5Ed1jiQCp7hyifWitgUXAIHMCdgq7q0AL/seFtW4IWHzPknjajUDu5OhOAq2aUr1Kd44hQIS7LrmaI6XRyHlJzJGYzhz7tT6njsBg0n0+taOUAnfQlmbzzpwVWlV5QR3EbVKDwLKg2FgJ1KgkBDAJ0FTe8b4BJicJVPYg1p+iYyRBSZURqAnI9qDgc3C+p2uzudOBOTr7zzAI1abPiPtVdVkI0nROAXADAgOo1Z2OgSapX3DeY860zECrw96hvrjSDWQBcbGllwOYA3nngy6L9AJpeN6NW3tlJ17qRry8H7mcMhRtDsbaBJMhwuiUZZW8t+a99pqHljrZnVf9900/IOHA7bwxjwVcjiUzNBrLB7kzj+1ZoLCJuROYUHcGId8jNmeRgY7uCJsmenfwSTJifNPr8x71Oq0/ouuBeNuvLmHk+Ubo+2afb0hzAUBLBtZoUqqX0rnL20FJ+mtuGiNsprC/nlrT5QHtj8sCXf7oRmirwfdLyuNPSdzKclCvN/7uG91+4/Z+729tf+2ipzWG1FA7uA/EPmyv7LXlZAcQiad8TW6eFIon9Pmte0t+/2Dhe0/vweb1ll75okXIpWelqRV2UmcPwc9KQwNdA3Cg1f1ghLTozwm0+UUS3aPM/adDXjy3Grb0GwdhW4qXPDyZ15kk54tzaUEY3zeVRBGfGs3iPTlAm8udVKkJMb/2n/tUd6HLe35/tBKvcL79KZJgGLs8pC5DxGOdLx8YiYFHZHL09zfnz6GEEJz6X+R/uuPzWOtYx+jstkd58k9NRueCYhcKVL5tYL0T1J/zvTXta51OfY8Y60zONyE3U+xbW6poHdaj2DLS+QfuqJT3xSRnRXEU24K/47Iz7Peowy57QQQucojY2U3UOScuJRFM3jb9mzkU636fHZUk2suq3Ouch7SfKsNzam53fgp6Sn9H+Wfa+RN9hnliHSP4VqYdcpkkl+t6u6A/M0LPGjQluyBARu2+l5OQvpMnIfm7qovwyyj+tXaRoQ50HH2QdIHNnbNoK3D4vPWChj3bHYr62cPXVHcwM52oy4Ahw/S1Yi0bt5/EB/XzrW6tz1lfldIfTmNzeEfPjGyPp/n4fUqM7PI4Z+Y2QaVe37iRoLfsXMqemJiYmJiYmJiYmJj4x+PcnZQa0BXbAKCGJWFBRQ2FJzOHkoDtQKsHXi0nlPl25iml6I3+bLjVB+NQ2oZIKqYgaH7I9M8J4OSoBEExp5x++zgpSexETaGcN5VM67dOxJQIcTtKCBrVhYIey66owgN6MHdnHb8l54diN8qoMdPa1Ew5JKYYalAjrEVigEgY06yTSmOoe5gbxos76aDfRGK7ze02HCakSFBQZUNhjYKBpIRBOhxvjAoEUeVD6AD9wC6ARUYQM46GYgSuY/BjeI8OolWlv218JWkKtkd0AanFnK08u3HrCixX6PmcyEosTiFTsoIixiX+zA4C/kpSTsR53owqRBZNJPVjMD5KUmQ4OSnGLxRZYayRKDvTwBUlIOTr9aHh2HN0sbkWY5iGX5w+STcR6kWd7P1z7nX01rqiqY9yd/zISi2K/gZtiJLCyt/1oscMlDFOB3Q1Wc2yr0Iho+H4YlYf+VTJc/VQKaEMc4WaO/z4LfjhDR5odxAxjnm8Tnhh07n87Mgvx6Lj1VBk7rfJlbbivMZoP+p9t+sAyd4lalgNA7qtxXjfVXf2u3ibUrO9Mhnnh6/l/egFYzf6GMqGnvt9GImkb+e6vJ8k3YEn+LopuwuZkwaNxkTyZUO9TO/feGsc8KhjnYf0ysNhy/ck0shCvCwoyy54WKvHYG5dmSpQpyXvoEUY0zYlhwZzONHveNgT1bmIUXjRqEqszrUEoHCxiCOikYPMYdbp2yModbq7O0ujvr6a7TfKlzSKFZPuaaXstA9BQwDwqIK1990moCrX9cYxQfQuMGm0IbBGXyzWpwbSiCGkCnmYUw4XsvXMWJiD1ahjE6MwelQmo625W0FqhSr3NcqUcHcwYXE5CGmPIiwgCPu88GhCNieYIFLB5JGAbC6iWKSV7lQGIlRyLstojdGqACggaWCLgKSRwhYAxaIvCpbdgiYaQak1QWNBXUn7JWqsQuor8WKGrEWdolxSkArmBjcIifE+EUQ0LWmwSC0FGp1JjTrNZL5Cum/axXoda2Pq5E54ImA2l7aIFKZli7gpTR3Xvd3OO8RlPC8zjLxK93As0cVqa0DnmLPxuHGOKH6zXv110X0t+/J6fYPVUtTZq20clAZWRwDcqU3/Fo8StNkutg41W6fSayYSv0fne0C6se5GRieBjb3LQW48RJLlJMuX6bmQFASxQUmfAPpe3oOsfpWFfV102g883Xm8lZ13hj3bv8/J7VlKAGlAKewtgwtFlKglMNk/z7v4J8G7m8rIz2WDqq/nkBGlj4FLclujXCcS+pgFDbIMkNuWTPxe1NAPqz+VuTlFDPtLnxj5GelfDfLqKBv1T2jzPGIs+5r152izpmzupD3+ZCf6LAPI3qf9742skr5x116fc/vF53nn47Y3WJuXBNs2nYhDjxxoRqdqbzdtHiJfdxs+eWI9l9u+k+l28l/7dSuFD0Wd8LMEJ3kxu6z05w9RM/P/KNG3nb0W9fm2/9nZ0B0yfIXvR1DaMiT97MQ9YyNLb2fTIWf/zFn2WkjbTw+vkpORx3n/6f09b0vDy8GBffWQs2+0ImS8LancwUOfHq5AUdrjQBHddkuJzI/C3yL1O/ib5HHMretd6mWpXEbsTju2x0VYbZ8+3rE0m4mxnU3q6Ls5C4Ft+vocTnWl/VKQ6mjdURXxOYZ5SaRO9S1kPm+dtonBcSZXB6XcT6DrtWBnBvTzAijOQ/mCmTrS+GZFUa5ocaaH44jmbjcPIUIofih0yth3mapRnykBc6+8boGPR+q1lcM2T8Z1KdFWsYujo6MSgbngkEwUZ/nNZskEVLGI8ay08ghKHH1uJnNT18V6wzzyJyhkVCJGE9trQyboslEMQtDK9uCgkek4vblZ35Z/6wrLTifqT5B9QNFnwqjDOQe+YdR3nptlnOzA7c8d4l9DLflccPiJy5EksOkzbZ7b7gOH+emwN54rGSYmJiYmJiYmJiYmJq4gztlJiZcjvf0ugKcyAMwJqAECj0bAceiOaApNDeDC/UYLABCp4QoAyG7oM4Du0WTVuMG3uUKCQ/FAHk4e6AdfU3h0xyk/flmqE4IZBN2hRv+m1g292TGpWsozfy6MbLWhMJkHkEWNIsJCpKlIoAf7RqRGXb91ZY5aIhqNgcTTMOnBWw/+qiBjEKo0iCl+ikWa8GhJZK5BbA4fjUij+oTixQ6glA/6gEe/EhBQBRTGla4I71EwgO7Uw2bElFCcMUwZ40oguIoFSRNrcyY7km0Uo8OBOJ2X3YjlxgNmtu/dUUbniMX9QBN19HJjFkcEKS8cYbiP2+i5vo3RL27WJ8egfpPdy7P2h9MFjG7dDATyJF3uCJdMEuGlI6HMiRucXof1adBDntDuLbY37wdjbX7XFEbZBqdk3yowQouo+hzq4zQ6mOT1NI63GmG9ONmjNXVyBC3HKEhkyrHOU3r6tEwgXwujamYz7KPWx5rua6Z/1ctWc2KztC8+x7IC+iDFkI3bXVGb+pqfFWgENVd4tq6EzbQ8SZmeneu6rlbGn971YW6crCQblOdeOlm/AGRDbVbSZoV+r6ePX18RFPOnp2zzdUoDhenAuHYyH1bhufNOp8GosPN1LKmfqptVxawr3N0wGzNtby0ar/IccXlRASByx0ZXjG6/ZyzLAuLFlMqqCK5VIFLNELkd994fch6vmloQM7gUNSpESsqkNGaLZmQKcWliqYwEoKLFskBWpRsTm5NAX/fuSKSptBrc2UbV7xT7rad1ElQwBMwFhTXdWmFGk2aRcjSVG0hQqHQ7ABdLIdqCvsprCYUYVdQBeuFFo+tseB8RUKiAi7knW/QikO4XxCXGxaPo+L7VRFPssaXfRMwlkw+U2pYmtSU6m1OS7eE6nwuK7augNhhMgKZOSsLmrGRjZinWmkcHMr7DzKjrGoYUeJqNcoQmjCaMYuO8oKEIo67HWBsBy6Jzvonldqhxy5kjBV9BK0ZLT/3KPv62cs3B2lNQhZxlvey309UwVkUsIpP2u6cA63spc+ygsOosJVzfJ8WjVG3Ws6/l7MDrvNKd3YQwOv1CPxMa95ye+sTHu88nlzldjlWHolRiMPYuN8VypS7yWiH9O+vf4DQceyr6/ud1bOu8hkLnk+5lMeax8bkpzvhL5vfk27TzzPwdJZmBEJ5pYgY/ONfuz3m9+ZZ+7G9eIdK0Cjbt606f2co7eSPvo2COiUnu0EgPnTfpnqHvtjDMAjDnfZsSIQ+FAc7a5A6rYTaOPZmGiHrew+i2IJy0ejo88diQcVbq/RvHM1IqA9lnLPc8EZzSe05fTw0+lNr7tp3KToihDX1d9akfi+awkLBph7ZlXE+DtLEnd+33J3hcbu6Bug+vzrM0En1csdc2fzedXeLfrUTaHbBjNeX+HyQ2YTTcnq2N23exof+hccs8+hC9LmcA92qXzXzK59uT+OKhOmTzuezPrSQAHJLHZE/2G+s4SK+0lk/KZ017b+x/m8/j8Xk+iyHNKYz73cE+bttAh1t/ZSLzZeXDZ3uwP3aWDxOfGZ2rRieZfRqQnJ0+/ZvNnEd293GZz59z58y09xwoLXjqCcs1P+WjzCaTwaInafktZkku74QRT7+aY08MBRnfs5/k8n5yvdnQMVaDye57Y0k+LH3eDg43ZE7rTOhRplvIwHFpJO1NHuXH26GON7GFbuQsGi4Fqh7QHKcZPcQsLNqnR1AKmdj1jZ72GMOC9cuAFsfHhi1LKmmNkrZ2oL/LK2lfZxSoDJ7OHmnehNxAPf27yqTaeRVd3Im6z2+2iysq47outc9kEj3vuKwkYvqdkIv0IoPrCmLMyeVfG9/YZ2LwU+rlNGs8zVyQtbtU5/Xujmn+pr5gzlt5nyafo/6619P3JEp0PoGTDO/2+Q24DpL8d2/TZs77O7L9YLP3Qw5dkkPQJnP3wyyyf7rPj/TTE9SJExMTExMTExMTExMTVwrO2UlpYYKQG0qBWtd06GKoAwajWUQA2OFbleyWLX5QYhCI7Ja+CEgYzIIwOpoyraGhoISRrtrBjJIRrLZqrdTPSiGs1W74gyEpYouFRbBznhomPZJIUkPqEbYJmAp2pfRDPgHCokZer8FztwjF2+FQUhZ4bCdVbzRUjybhBjJoSrVCDC4a4QDoRk5Px0KlqOJlEZQVAImlhPFTdcPCahqude2pVKzrYYiBh8HW203ueNXhh/8eEsCVA2rcYVMEddWWG3IZJc7I3QnEju1WfwulEtLn2Pu7mSZqNAQ0vXTHZsQlirRxWcntipGw47jzi2xU8EaSsQWS6rVP3KDpioFkQI2oDBgx3ghzhRQ6/TfOIjFH4coiiu+zM54gp/cale7J7Sm0V3EDeyg/PU+S2tDp051K+g1KV3uEcT4Wjb/fHeNC6bin+Mbe30Qy1uB8IhRO2+fzH2NKuE6X8W8ZSTWMudsU3WBNbtTj7li4LVuiby2Uf4PxMJe/aU3MeZ9T1tXBSA9XHvnAJzVSem4bpSOM2P7PfuUYJ2xXqLlRM77aU84L3NETea55m6LrW37ibUrzSyQ5dWTd2/iuftbbOEy8gdSbVSx9XH0lRH9ofEbBfc25AhUjf3JFqCrBMx15fy1Jd0YZjJdenN9GzWNEAkIxhbjeeHUFtzuq+a1ngphDj/Jfp7LEWNgtZ3ZnTlUau4NHKLDZ9uyU+kGIgEIaGIY95ScDTSPqMFPMF+LOC61oePov5qLxXxpZ9ASNd1Nop52mFYIVpezUScllB1Gl+FotfgwXQApKWUBF3KdHadgaiNSpiIBw6OKygMsOzUZnaQ1iKcKG9HTMENFbvctSzCnHjArEmmpOAFQ11C+oqPWMDWEDoPt1ccdX6uNFtOgYu7RA4qGjNCoVGCxdDijxL1mZfS4Q/Ba3TurCOk9b00gvUqFOVySgUgBesFt2AC1oxBAqkGq3tZs6CTFpxCmY41nzqDE+Z9wJ2wxSTg8U50vNoiuViGwF67/AnU3ZUkcAfvMZ5DKCWKpWjxLUnTYY5uSHvr+zyW7SNF1XpGiw74IWcEdZq8wMEy3JMcrqkwOoTd647e2cI/hFcohPfEGXf3q/dYO488nM08LYYo5awaAEqV79vssBebN1/ttlkoyTDKrXJFDQRqOdado9J4XAjXHqKJZjTThlJWT2HrlBn+lD6bzE0i4bmRjdYaeFp1fnXR6dSeer0ZpzZIw8JqlPIW9RpAxTXtzHLnjm+CLciY2A7qgUaf56nzjmom9s4tQY9m51IrUy3ABq6y0MktYFokge2HeQQyJpzGOKL13Gi/5kuWBPxhudzPO8DxmE0MfCaHOi0zeNUsbZDWpe0UZGcIoJx1rdfzNLv8Bw4WHzhgzE8Hfy2k1v+WCf1NQD7ehlhsR21lddHj0gkh6uZK9E/SRmb1Qg245jX660t0O28Wf7c8HGvLHxnGxe9o/Oha8leRQ+77aNQDzTeeVZJ9B+LXHA7bz/pFJiqAlJQs9lDUX0lp6lTNnSepjehwT/XvKwZyTZtO+VqWFnIXmu5fKod7YWebsuvyTbIdIZY+SlZ6lY8h/jK2dve587mRePjySnMiDNKYppm6d1/8Z1Lba3ZQcN+/ugz1i0257LpaY54HPN95xD+1ZMTklOqZvGqt6DwnHb26L7at8PYv5oZX1vi89y9WIVZccb/dybOV5IkSgv9FFRDRkP73shU0lTymlt4xR7KCFE/UzigdfYWY8oLi9QLGiT0eApu1PZUN0auewcfbQ17ReOYJdOAPgFwF4uYqv0eknsfGY7k9/LIvaUyNaSpL+LdynPB4ETery44zOnf+bngXBSou6sBUmXFv392kcu69w06lKqLPQfZJc9ZUNDBB19dHwvG+YegLgAkPf6LHcH7X1f6PSIyx55jyLEBTwtNa70xSP7jKOXnZ2A/S2fI1122bQv/tg6F0n6SXufbuv3hncesZXFXI4Z65fNbxMTExMTExMTExMTE1clztlJSVOH6OGFWSBcNF1FaxCpoaQUDQsEooIwCgMgNocaz2cez1RN+QJGtVRhavJXg6JGwWErpx/SAfQ0cHbw1VRt2g59r4xKozhwwj43oxvMGUjUGOmGLzeqqgKg38YCqZONVD3cNmsns6aBW6Wa0ZgjihSjG+o07ZoqJMTqBBCKEECjN0H8YGzORrWawdDKhiorol1aeFdGmS6ghdJBlSlsCoo4irIqa2DhmvXWtqe1k66A9ptLVrsf3jWSQVdcqW4gKROTYk+awIMe+Ltb5Agfo1JQ080xe/mCuLnmdVmnw09AMDgJRJQUIYBs7rrSyLUsjKRgcdUCm2JBQmEX75iT2vaGFdlcaX6jLSlUotfUHZZ6ZJQx5Yfq9zjVkYylZuwG3CCcnJ+8ja6qyNaCaMCW/hslrtNSkBSooUvUN8jWSSjXnPadTifeSDWeIsNc6MrbrAnqBrts5N20/yz6lWxgy4+FASd0Y95WgBrCUOrKuA7ufA8CdZorB6uPsUSmA3cSJJqPBuas4BxLDiVX4mmUxpaGB80cF7rB7LCXO5+MxYPWLI9dV7flmpSmXWHpdWRF236ZPVy7DSlstsf83UZY8NriHXIuyXt1I8rWKHcQp4T1wZSalMecOEL8B580JT5ZBJDcEZ8zzddvvKmGcd0XLBKF8wGiPle8KdKs792BRvdUW3tkewdE0yP05ag8qHlkH19P6mHk/Ybvx8nw5Q5K7giT50ZL8zVCvVABUCLKB6SCLT0ePCGawJyjbFsxHkpcgh6ERUeMWT/HYt1qdtNZx7w2gaBApQI244PSg1iwNvKtS/moOS6VZQHzAkmRlNBqd+LBEnutwCJkMYOKR8JJUaUKq5OVjW2rl0EaA3QEiKYwa3IMiO5NKsOoAx4LLHISAc2MTkzgkm4FV0ComVOyhIMBcef5YRxi2+tqX2etNTSrG01lEyrd0YmLRtAqwmikkamELBpjIdRjMfmsaRRCiKXJQxKRCgSeYs0cnWzfpaV05x8gZCoCIKwRn1CUl7ZqhjCrX8fOKoJE2lW/UZ0dlHSdq5NeCwNP0eiM5pwU0pCtN3UW8XS4zuNsOZA6jVsFALHdrwYKRlOyGENssb4R7erSAvqY+lJHSnmBvof1d+MbfwHbfTS12H7rDHrcM9MT2332mgY3JsJpAWcWcAekvIGRGcXI6BMGU5PXdJ/sOxORR+UaiI9h30pjlcewP5KcM2Drru+6IUPkn94Zdz7ro+NChu0MbixLRjNvosrsfa9tLveAQkbNrc7OwZL64fT19yJqoM8zcSeq3kfnfbbpRaNc9o22RQU0kJTyu5RlLpW5Q261tvtZbnCspjz80ume6DkslVHQ2aNlbt04Yv6Mt2+Uag4hzhipxLM9rCTaruWBYPv1yvBjU8dJLlv+RpZlZPhmW/8wn53vHqjR+xIPnNRp70ia0vuG5G179+vr81H6HBy+H3nbyfRIz+f5BaSeZ4qe2LHUrlG23JY1lpHXtdEv/UBaG1GS+L6n7+dvg/NsXzsInwOE7TYz9IHS33vtzpvl5gw9FLnhq732vU/800NPj99s+PKwZ8rwxNgYXfSSiDS6hEWHT6Rf7r2k58MBcTg77XH/A/1KLdhGI0vss58DO+/MbhG5xtTVVBBZXU59CfmG0vfuAOHPmJIEAOwMk2STtIfGji3jOGz5GSUSd1mmu2QNZCey9KL+TXYx2TzLY11ZL0LEIaNxXCwyeSKFqcx73Uizvq+Pez7QdZaWwtifFoGnRu7p7GDnDXdu7iWrQwz38j1gZqt2RuIYU00h3WnnTjo+RYL6Fi1372DttKQ+Twa9Ejq/d1kpnKrt6+1OQxxu+yFbk5LH+JtHQxQ7Y3XdJtlhoqsPyAbUZRp3yKJhX4pxoP6zWRRXlyEQNEN/x/V8TsE9GYHgcznWQHxtemzne5DUxsSrDk7/aJXxDCVQTF3J8/vg9pYwtnXYCQY2criQkQfmZ7OTJ2H/t7OXOzExMTExMTExMTExcWXhnJ2U1DiraU4Avf0shdAY6shCPaoNQaMiMetNJk0bA0T0CYsAoAdNjXxEsOda68YoU2D4cUssldug9PXDaFICUhzq/PBNqE0PzhA1RBVytUlXSwB2IV4axPLON7LIDKzPsx3oiQAsqgBpAjWAskZcoqbOUVVDXIDQ0Mj6zDkotR0eW4MQsLYaqdO0VU0dUEhQ2I0VrEa9OICzKUUsXzzpe+HIQ9AIVSBVtngkA+8vszmauVOUKUhEAFh6HQAgQYuUTEkRZf+r0TArPSUiCqjRQ5AdgmL4knIIkNCXkUWQ0I9Tiz3Vm+sU3FhPArE0U3HYdoUUdQWDXjBKykvawZ2zQgERIbz7HMvGRVefRU0evWFQ3Bk9RBVTzTQlFEYmVepotJVOy97d5KbhyuRsHPJ2SIq8AOCQ8tzuwJkmoqdSDIUQdYVU1+XYPGw+AUYjbzdGRWGDTsNLy0Ydd7poefKkPuv4UNaYxFj7mo85Jko7HQN1YsiKZx+hTJdu+EbwiU77bHhwU7VV7ga36LMrtbrzWSdDy8Njj7tas7enO/A0jDceJdqm66Fhz9js5AvdWjfawufX5Riow4En+KC7mMCUqU54dD7F7hzmg5MM/E67IW1Sp2JoEtGNJpH2sas+u8MdRKesl8s6zh4JIqJRUOL9Mc8AcsZFAFnEPHJekOZlV4hSaq9Y2lGkct1JQp0slQey8Z5wJQWhBV9oAMCs+6NHWhJzOiMCeAFLAaDpzYQqBCsIHkWJ9eappTdVx6FqgfNsjxABk3SeRe5wS9AUbV6nRjTU/jEamqqIpakLLRMIdpsXDYXNKdP3MNa+FlHnm1WKzguf/7RG9MGlFG0T1JFZgxc2U/Qfaao2G7/CO6VVq1irmBGggVCtOwSPeAj2aD02Qwio0HSqntK1MANlMcccNSowkabI29lUYoTTgxoH1KGnWT/Z9hGmos5IaIClgJNWUSsAOoLICiG9HdyagLkBUpWe1j/2vZwAYR37fpuZzamoAbJqulnzCvIIWqvzfZcbRPd3oQZpQPMoTQR4SiYOJyjlCWyyS12Pg9Y+R0QqGA0LQfeSUnS8TdbQdys87aKQzTcSWN69WG/OcbIzbG1q1GlttTlva6+R0U2HV1PMqXOUSDMjgfT9CgxPl+t+emKyjs5D/1CiODRYlKq+u/lY9LXua08XvK4J26fE14tBbJ+k9FnwCZPGKDtUOl/26KAIOUR/9X0mFWS0p1R0d2pKotB+A9Lep21vvSHXPJDFbIg9wOawdbI711hEVGmWpiaz5cEk1IsmlRfY5cmQc6yuEA1dxnK5Nwr2kjbPIyaPbjnK133Him0kooL5iz1KmMsRPRJmbrQWHL4DMU8tqlQYrbs8QgSQp2AM+dCdj5JL3Wa+uMghcPkl9dl5jvfBeINPPs5luRwBFwsI3Vm1yzR9F3Xo3O/OwAhaR7lp4e2/b2UcNM72dZKXgEfUyfJyd84YSw+HBAQJVJYOuW1v5drfTliTGezLLP9J+nf//fxXnt1bFwX0Rh14dyvPU7Qg15skZHdsAm2e2bTSBjocwjdldNnXaZQXLGxu9rmW5/m2qu0XYu/vYW/J0vAcHaygL+f++kj37QjvOSdtHGZyE5yXqMjbzxywPhD5eTG3N9UZLN0HOD1LadCl77fZeRVB/fTZZvPIkdf2tpMDJDt0oejQS5kWXh9tPt2WNI7Bdp5mmSL3YPwtt4U2dMwRURJj1Uc2ayjXfHgtpL7afPMjyKHWRJQkr2VTb6/d22V7yta50R2wYm55ib63+LrsPM35XUSPddnT3omzqfhcEHMvb3EmH9too5n6S5mPm24sogmTc0Ubk35LpnNDUumuhWKHgJABNQI52+9OZ3f6UJmgxAzrqbgbBhcvqeY44/3goHVQnoyjmRztfSO2yx5WqUZiFAt7qhckc4QqsTOe186xCXR9JgB12gfsYqdehGjO8wmIlM82PkFvopjhSmK/7ERWTdbncbRNS/ZLfV1WFdMxQl/plyh9jO0CZpYlyN5zuTYutIiorAaAknMOGV10D008zaaI3gGzdlr78oLM7Isi9W2LxnjqObh+055l6hc/9MO2X64/7lMvzjK+Irbz3/9MfDeoO7q7HdLD5CjYRGMN+sC4rxx4on+y5cl71Y1ywHiyOLwvjsUlXnK5T09MTExMTExMTExMTPzjcM5OSlzMmFpXO/AXkBtPk/E5dMsC9BtMdruJ+40dV9R5KHqCpa6JwymjygqIRmDSyAxFjZAWuanBFTPJcK3nVMQBkc1YZ4dySgogFpjStKFH4dADaiFY2hZ9VtvYD6nupOHGFUBv+IgZhRGRelRhQqTHZwawWxasZiikpoZVPfBXVdQIgVhCiUiA2pstchOhQEhp4MEehAq4uZJAIyBVO8S7kqTfQOqH0/C3AENQIUnJJEgp59ANakoLG4ek5Bc/dIuociDp3fRFSQ4K+eaylWCKhhbp29Lzpgxh9ruBfjPNjs8+D8OgpwoYdSo7pHIW04yYTqA3zBR7/hyCJt5uT+UX3Ur/Sv/VPlUtCJPrisnart+OClFXsEn8Tam8PeVIauR+OhkzWlEeBOmKw63SN9MO6XvS+btnDCL08rNycaBJV20MyprsdBXtY4y6q6xMtjVhziCQrqjq5OCoTxWyZthyPRYI2aiQR80VMd1wSFm/OihT98Pld5ptDUOu/CIf/P64Ptev1wUtiSiiRezRLbd+UKwPiywN3ebdjfHblYfehozoj/OLQxqqeG3zrivPw6jjBp54oPdPvw1FK4jQ3VCMX20UlM5j9uqTbTv0n8GxKvpOwbt7shukG6uUyOrKRER7nPP0drt60vpmynXfl0DuUKcOSvpe0XSnVKxPK5o59ZRCQTNdrqxTvPY25TmjneTN2Nv+pSYArT1Sx2l7mYDCvjYIxfZYjhRLBEnLXyxamDq3+r5oNBJ1PCHjn010/XEhUNGITVwYZTmycS4gKljXBuAYCxNaXUG0giwV1lIYIsVSDKjM4RnThASlrrZPVCwF4IWBUrCUJdK+EQhtsbEST4nGYCqoVeDhgloosAVcdN5q+jCVD2Rd0WhFaQSiHVrdqcNPW7GUBcQV1I4R0Rch6pRst7yb05p91qtxQFrVyFjEoDI6MnFjlIVQSMBgtKpuOSyW6swiKhUfv+UUykLhHKeOUIBIhdRqqWDN2Y1cXoDJcjq+Yulqna9zUbpXAcjS0jZSWqkjeo01kpJamNyGiNTozt0qV+h+D4s+6XswxcJtlsa1y3eN/L59lx3a4ORgrt/OK9gjcJoxKJ7zZarOI5pSDkFzCKHB0wXDHOP1TY49KDFgoTCC5uhteU8IziRdRoKvXbg8pOtZI4JJT4WZjMv723B2ivJ1J8P6vyai83GKtCexE5tDnH/iTHc0JpPJYd2tIgyLBLhhGOjbjTuRh1uU7QH5nBJymWTehmD+PQKhO/EkmSeNTeyrPjG8rqF9VrSfQwiRzhA+z1NpILKoE6MwwcS6DkyY93rCLofUj87I+zw2XuVp7nrUg16m88X+LxAOZps5meXnoQHe+ZOcHWTz3PYLOvjWBr4vG3/ZVBDy2+DE4jII4js//2TBLfOOLqsmxxVCFlR627eHglTr8Gj+TjL38P1cXAyNLtDmtX4oSI1MX58Nm9E9EdrNse39LNIbuO/gIWcZxkzrk+s9QKzxtaDJ/thH5XEM6vOUxqcOvO+F+xre/z7P+r2vJX+27xi3jZ6aO7Uf5SiZjofvtsSVvqcebNTw5PCcpN9PemtcQSN8TW0/O/z0Ffv80BgP6963Dvtjf4YdcpKTYekerjJxtwPn6TinpvMB+efbc3o0NbgQwvEv83s/R6SBir0RiD1TyGVbSzXdVIem0VKNnaM32R2evJF923Tnc//evzCpyC88ZAeZKNfON2RPJ3k27z+gxBqJQc13u96vfCZPr2l/2CKrpjTV2ET7pIguq53VaOXF5jhHf7RtAqoq36ozvkZI36ZsI0CTuzl9xNrvcq5HtO6zRJ9lk81EQgam1uICG7AoDaQB1GwwNLKpuPN68NYuR6vcLlFPOmgnuZZi/rBFX/J+dwdnl7/6MBEVi3rv+6ZdpICEI5T4OugzG10v6hKX6SFtHws5Cxv5zSedRQT2sfZtVHWLfQr1fqbd0h3Jfb2xy/VeiL3Tt9SQWfZ2THPeMmLE+EsfVuR9Bci8vPMX5/eHdsVx5/AK8u6/92XwiZF5bZ+3RiWZK6/5g9tBkpnyyuuzZWJiYmJiYmJiYmJi4srDuUdSIlc2FI12FLpbP+z72cpu57DeUGcQFrL4PcwoYgYIu43P1LBY6vjW/IBXtY5CQBOsfmPfTs9++xfQw3lE3xBLMlIsWgAIJdIvuUHXFUtAsUOsmHJBHR/CZUEdokjsBlW+SVksNYpgcWMvsxk03XgBMArUbKYKI70NpgqTshS7OdTCIEVSINUVWwJAb4+rk0ADk0dnqmoQZDemcFKyu4JEwGJRDASqcElj2ZVTrpkCCCWUVxH+maDWVTCG4+vWS6domiK3jEQoeVOM9D658q4r3Yg43fonMC82Ts2MdgxhK1MQ8yCc0vzQDcDDTMNu3tvUSCmPkJx3dCxGkwohzBPxnL8Hr+ygkhrJmSkrwHvJrrRzBxD7xOZVC6NPVwgN+sGD9g7Za2cMy0Ftq41DKq/bMqgrdrxsjBXmetxRYa+Kg23wGmJKRB9D8RZaEbEgBGM7u1aIgg7RQzfwGt9x5ZnPEy1tVGKNbZPB2Js/z90LZd5mCeyVR+iKpDRouYrBMYzoxHHc0u8EUp8VAsSt8aB5KNW05HDw8s+HBiP64Wsqt/RQ+4d0I/5S/N7Xe342mV/Su4jv8rp0Q/Keai63Af3dQ5QjU1aKiCm7tRZXjofTQThb9b1O17SvWU0fpizezeDcaQqCp8ECFUvlxSBewMtO5+16BhpwRsDFnUNFI2VY1A5PoypueIAbNNThp8cvcJ5tDsLkUXYYIgxiTS9WCJpujTiiNxXuUewKL1hrdxrVwEN667fUfuMYWExhbm4kzb5gbWdhxm63YNkxeGEILQAdQdoCYaBgBeoxGgkaLbb+GQsv6pzER2hSQLTTXlHDmfUyLLvFnIuOsZSKo92CUoqNh0YJdCesfhtb91+AIAujNlOSm9aadIgAblgbo4qmuNsthPW4onKByA7ryuC1Am0FcUPDsUbHQgWxaHTFtCerA5hvEDqxhTTK4lJ25qijTlY6B4GCglKKyQ2scVtatfvCBC46/oUJkKLRn6BRoAqrjFCYsR4f276o85lJy1SSeEQklVVQ1AC0UIFHKIp0l9RAopEyIeZ0BUaTFYA6mgOARHo8QW3Vbo2TOiXB0uI2AYhVRmsCT/xI0D1JvCzADAU6tzRWlfWFzMXQZIOQg2IjZnhEGzKHrJjLsRfTwBtVhOzR7djbETwqf2a8L/MLgvXcimjuDCMmv/rOah60Yu2E9CifRXp9YQCk4bNDv4vJRlrm2feSqxfGp4gR2Uzh63Pk033r8L3X5Vfp8rG9TzrF4hmNYmcGLyaTC0a5yKOEEWn0qfz+dtfIjknk/5issY0eEc97b7nLqIgSXH6XXpHos+Le9VkOS/KPirASe4w/lSMi7guRXrPNRXdssu1p33/IZWyfuyazbcrrv7us5fV7/2V8HH1NbMSwJC5RDP7YrE5/GegZhO6ygSR5QETngY1hlknGptH4+Z44SMFTtjLO4IztJTj90p/AYVoPk8Cbstf1zoe6nDmQZiPq0P53+xN7aOZey/bku97Xrdzr8uXWyQvbvgyN6mvuxEacgJifhysY25AiuWy6vzejD5Uw/i2HZo9+M9DK1sRBeVU2sulYFtFYg+z9m1u0XY8yfL7dT87a5sED7kD/TvzmJByadJ9aCZcPP1dbjUMX9ufUiTVvHh2di8a5ntdeH6PxE6K+D+SUvjEf05qOORVnBrHIjr28eJJU9oLxM9WpFIv649FmBK4LMSE35KNYu5lQac8gjFGrnWd3HUemgcnNwx5jjk6xZY57t5coqUDO35BX4svb2mn7M5NGYWcW88cuEBRNpwxz/qcVzS4n6Iu211v6YnU3Uho01Pid7LxUmExmJ3iUWm8W+bhFFB+oc1NRfRa7jBJt1vOTauL0EoCQoLH+XRuhVoBcR+oxjKX16KVJevGx8DOrbUjQ4KRswbOpDxT0POC6OHekIhJQ82hvOo5dXxaN7/Uhyw2E4TwufYz6MvD56TrEvsCUlunCWcgbCLlmnIJWbzh7+VqQmMd+GQUt8QLnPynlnfdjn4/6hEOsTxoov5Wltr+M66B/ZWWFrP4pIFcdokR3cgwZFNS3ucQzBp5IZ9vn+3PjKKWKJyYmJiYmJiYmJiYmriScs5NSk9UiJRSUsphaQlArqaLclP+qY/SDqx/Qq51xRCNHwHK7k97mVwcdhDOQWS2Bpg5GGu1Ab/+7okRVIHrDiPON83BOsEgAfsgVV2gDdo4bMhN5lqlQcIM0CgJreGKRUamthkMtVDPi6MlQW6rtdAWBK2Y0pDVQ11UjHZgRutnhWqNSmXNQs7v/ZEYXa7SrxLphB3rrP5wxmh3u/W5RMuynQ3mETG6dLnH7TQASv8mFOPiHAT4ptcTKVnO9RJtDUyHe9qQAjYNwv1EFmDIwbtVL6O6EJE7PTgegj0coW6CGaGkVsLDWpu0Y1ApMqa3wg3t23EJ8Nx7MxRzDRoVuKF6SoSi/0/X6Es8NT2yNkabcSrpBVS6C98rXm2V9/lPMt17m1ujnysfutLNtcVeqjG13Ixu5vWd4J9qTFLFuPAvdFWV1j0+EpGTLc8g1pEx6ozT6tKk00S7muSnZ8pwTS22FRJNhHLOheUsRSU48SEqvs2AYK388vbI3LmcxKsc4hobygKapHXYSGvqXpx/1ZyTV0R2VBvVgvETp41ByZ8Wbfx+kP6QVcyV0NCX49wm6wK5hy/CPtnM4nk1OeVm9S8m0ndaN9mmkmUZ2M8e3ps4cfS74XE6pm6wsd7QRm4/M6jjDtFgIfQbtjlCWHYg1ektFs32T1CckzbnWGqhtjfLmPBK0V4ca0AKP6OekYYsi6M7BkYYAyhPZHDqE3aGP0dpq+xOh2G3hajEBuahRoUXaI7GIHj50eVCUex2VBioraFmgKVWPsDRCXS06DxgaNH/RpV924LKA+RQaFhDtIFUArOoCzMeAqGGgQLAwsDBr2Z5eQN1i4BGRPC1rrRWIlLSWkksExfbPhQRHhVH5CB458LgQGmlAq0+cWVHPVNBqqTFkAZqmJWNqECYImkU56vOuNU2XC3NQ4tjMuwOFzy/2FFdUACrwSEea9rVZ6jrq6RJ4wbIUQCxyFQRtXbXvhIjA1Fo3lLmzLzGDpZkDDptRweoCNC2a8XVmtvRsBKKiDt/OT8SlQ0FtTSMlidI/brUDJvepI10jdRKBp8/1PT5FO1RqKhtogKWks/XrIfPc2XzDJsgXtjnW+dqO71y2y/sm+nMibXDi6PuHt1WMxl3mCf5/Ik+2vknf+Vy86fts2nMOOkT4vqzMNAzh1OWbayIEzXg3g9L6cPdO5/Xev4gCyLlfPdpb/FDCxTNqm/UvLNIpepkZapS09gkQzi/iZWaOliQARsz5/l3aZG3/0WLGMex1UzwqkCHlsJ8nvN0x7vZ6k85z856dDcxhGHb5KNUbe7Z10yNnqgOjbAsx8uZ+HBZH8t7dI0D1PTaRa3xHnH4Szw3j3ImG7iy1kbXyG7n86BOdIGf0OsJAGofH3j6XX7YRJA4UOELG5qRO7z+7x8P6Ocf38ZiTG9lI22Z/5zaGzCUIhnZ2MTaVOdJmX04+6cXtL2ldJflGmeDll2mzu8tBeQIPlY488GwlX16t+/M7VtBYzkaW9M/OUnKve0OP7BC24VQnlJXnXeYfByfdoaYM+00fptEZ4WwtOGvhn8JT2+YO1D7poeGpcdz3a5c4958bxjK73uJkwlKe95mXHMK4fK3R23SwVpTzgXCu5ZhzxAwqRWX91tCEO39Ou5L332UHMulKt6HBVciciNxxJjtE+qld11l8a3twXA4y5yKXDaOvQrafa3WeIpliz+5r3Vc7+W8CQMzdh4wfse/r6kzUnNfrgQ6QHsVWI4BqdPguv5lbkDu7RG9dx5Ra5fu02BnMZESxF13P5o47mn4WcVHB9zchvaggTDrca4VUsbOIj4yls0c7qOPR5tp+5CNqUev7gGe+pDTxKGzdUcfmKQFITvxskaf8HC+iUU777Ke4rDa4UJEX2eVTnXeJr6UzCOASnWiUTCu/2fg0iKW4RmLGNio+l0N3ARuT/TUXo5i3of4l8sVX70sWF2D0BiEcpUbJ8HLgegORg295u4bzs4zrbm+fNHltkKnOwtq6A/uIXve4/iYmJiYmJiYmJiYmJq4KnLOTklmFAFRwQTIasOVT9wOzK5bFbsPrwd0dKdgP93Zo97QyoTsld97Rg3wNYxrMwFftyFRQuFjkhhb1uqokbtNoq0KRor4rFpXJD9rkChu71Wz62+aGaXHddFY8NoCK3VpqEeJZbzY3q18gwiishs0wEAgsVQ6DWB2S9C298daaGkHZDsG1ujIEoXDxG/dM0DrdsE1GLzMWsxkc8plWFTiufEH0sauClNahqsoKJyvDj7j95+bQK12t5OVlNZmOKbu+Z/MOhrFr1m2QGkrVoCOh0PJCKEfbag1ZzxBqEZ9LrMqsOIaH0a+Nig7JvUb01DVCrqv0OTMe8k0pRzQoPcJgRBsl6bYuscglrgyDKyizstQNeOk2n+RR6s/0YscebSPguINFtJV6fyJ9GvV+DDYQoli/ZHN1cK6xdgX/8I5vFDLxaXgPbhRN9v4YVYeGMkYjUh/nXIb1IClxRwUgXJkaNOhEOXQzmYIfJV0Zu+pto+xJ86dt25+ptZkjIOehOHRBOE324Ud86Mr5PAaU23A5OqlR96kPh0LU2zp0xRnoth0xudIcouF5z5aTF/OegSz3h5z/jzxPFawWmSgUcFvnJFPKWrozEUmpnjzSjMBVzGnUw5DpaYwA0r1GNEqRMIG5gMuCZVlAIHAp4N0RlmUHAlBFsKJhlTUUux58r5kCnEEgtig4JNFerXSHSGFA6lgTt7CZAIueAxyDLLWZYO0TAErrKqvRSHc3KkmZLXbL1pyDyfab8Ge1CCAijGJOykSWz0sAkoaFK7gco/KiEYjWYqnIVgDNUssWVcwSg8sRdsspCOtnWATAAjqukDNnzOFUu1mbaPQmi7dDBLRqzjywfXOx8WaOW9wVgmOL4MZrxWKRi04tC7hUtHWFtGPsljOghUG7gt0q+NjHLsN6BkBjoDG4FXBjNDlWGQFah6dkqCKAsEWN1HYzLxplqOmNaYKKVcTUU5GSuloJutK+FLJy9BkqNqe4G1/W4zOo6zE8vopAnbeaNDAtUKc06mn5hLEspcs8NpbiRgtWR0/mYqnsjHd4uk1Rp+uGhiYNtTXUKsneRiF/LWSyV3wnajhxnwx0viCijsUiJuv40lcrhPJ7uz3uco068OqkdkOtp/wKPt183vY9s0c68I9sf8r81PeOti/3OEMjL2+zX7dk2PBoA3kNpt0P3VHGOU7fc8JhjNwhPlqn714OH786QdLTiSUfvSQz2HNmSFM7J5lM1J2nPeJi33aCmLF1x1jJMFJJPgjOOspgMR4j7bvMI/0ZlwdtTnudYTj0PTv2sbxJu/zdHVCjTz5XUvXk9bnEEm0mZMeqLBt5ednZO0rzNg71aGcS+fYosZUh9YnkqpXam8cmVi8deGh4clNJtDKPnX/Ua4nWbWWKoZguD8Z+fUA+82Ul6e9NY6M9vc/5e5M39mTzbcsOlLnfouApbjwf5abtU9bHQwVFu0dZd78Vh7Av957c6nGeD8/Yj9F54nIQxV/eG7muTwNOIGI+M2/PGl5/l0VtjR4oKZ/rztn5a1PCyW23Jzbj1R35UxnUn9373nlYzK9/dMv2nty/5IOzzMvelv2PaPjmwJMnnrcOtoxgZ9G8z540TonjUf6kyyVeXm/Bdl9An+eZP6t0CJCnOSNLx2v9SZFQhYAKDof0fCaKy2oAeiSbtJdZ1NbOm8xpXfJguJNwRZcvLc3ahiJxeQgSaWydhCq/dn2OJNml6/QAdf5XvuHpyiAqgzJDdY121miratT6WbWYWkHPT8QqJ0evBRrxMtiSn3n8+onHi0/rJsaHVI7Rzd8uteiZwjKo2iVGu4JBAk2/3EBkMj8LlqIUWqVBSC806qUUANJTEse5FeQCUMikoSOEXl4x0kYG3bhcQ/ujRHB52WlvDnApXX0TiUjBMUVjf5PYHj2FHUU5SssuzhJEqp0PI8a7/atzt4U+0E94fdKM/JRsmdhakdD2pu1H29fLSXJC4uF9TXOfgKlu8s/S9uI+z3kN+bNB41EZkerpHwbfz3v6SUK8z7lOkYFPet0bjr/pTtqHD2CfF1+RfWliYmJiYmJiYmJiYuLccc5OSoWOQNxApAoJgipZSlEnEvM+8h8aUUDUINPIgiqL39x0BwNz7gHrhSpqpgDQFGpi4ZXIr8+YMqI1c84R6c5B5DeDLMoL3IBqEQTsIBbnbbHDMUEjOIQBVg/q7IoTIjPqEVjiLj9Amsak8GJnZVNqEOCGYjcg1upthBkRuqEK0JDSbnBSRZgeO9mcv9ZQk2jjhahHDiBEJCltiKZCaRZJydvmCsDxhmczxYkrLbojjCvuXUkTymTvZyorztGD3i4rLQjjAdcdA9hUQaZMImuTP7V1RrDT9KAna1lhLoClGBTWyB6hRElGI3+tm1xaUvKYgswcFpo0VZok4yNkc/gP5RAQhgH0dH9hUtg4hgRNkqJ+cEKijSJVeFAAxjgMykVXgnrfCPD0Q9LnQacmdfunjw3c0Q6qlBRGpExx2puiRYaXvd3meBjGMRoVOFv6ZY1PbhkBEQln4xBErvXyN6LvIx0ytgomV/j18XdFoPUXXQk0liIn1hEOgqRK1fhs1F9t5k/q14Ea9zvR34t+bJ2cKM2jzbr3NrkCUTb96Dcft/3r4yJICsdU5yHkZ3t79Zt+C9L5DpmieezqnvNYqm7sG4XSnWw/iMhHYzdGmocuUZJytDvhdH7W0nh5XWz9U54mrpxlAllUIyqe7qygMGvUmrKAuWApmu7quBBaYRQp5hzV02eyOakwL2bQ9lQKZqSgBcSL8jXWNHJAsVuwgIg60UBWXX/SgFah2SHM/UUEBSXGy5XHmb0zoM69rGmaBE3fEDZHZN2/BZ5KTiPQKN/Q/xYi7HaMxoJKDbUJuFVQqygEtOaRFgnLcgpcdii7HbhoSjq0hvVMwwo1eLAwWqtgluRApTGs1mN1wvK9OKfuIiK0WoPHl5gE0BSn5izpzjZSgR3tQKsAtWKHivOo4cyOsQqjrgRatY9F3GGs9nFCQ0XVNkjTqHywm99N6U3ot8OV3ronCRHq2sBiTnIW2VLnnfHbUuCOdq2J3sj2+WDzWWU2S7ElahyppJGdRDyFBqtzeFvBZBGvpOqcJR3nuNFtC1EgOK4VBQzCMZiqRcoUrGKrj9zxjtWBjBmCiipV1yHrfGcuNsdbGDdiHlKw17SevX/2ob3EpJGkAPJscWk2q5zhUf/88xxhr/MZF2rFuIU5nYasYvxjY8g+FCkvnGvhDnw2Rj6W7hiS3vH8Xbm0PQdZcmlA+p/XYJDJ+DDZG0Dwav1eP8nypHiELuO/0cfg3bqPs/S5IOEBl/aDVCwTRaph6UTvdWY51lqp7/lskAPPpOmCPle7LOxnFMCtmN4vn0p9XCnJEU6HtJ/7okjyxdDWLjrB5frs2BIyghzYT8XHJM1IkYFOlGgyiDlZFInmbBpoFwIklYGQPw/LQdG0A3IJNu/06BejI31uYMyzLCvB5fU+UULe83c6Ecb2xRq0UuLZs8hGw18uQ+6XPTzpa6ATt/d86+RysKnJnS9kxcP0s4U0FpAX0RbDmOYynS4Hu3SooOhXcMWDdW74bqzF7djAIqzKCW+evR2X93ReJyPJnf/4N9tO98+C5rKZ4xvh9VArYlmNL6S27bd3e+0oj04ef0nPHMTGoWl46hyIfGItm2ZHNSeWR/sUzqwyNykcFPcrGs8anVdImgs+EmNdYzmdLNuOeDlivJeC76TdIn533q3PmYO4pXVjSyNqYTUtcidFbNfOu8RSGkdnbK2S7TveT5W/Q64iwKMF6XnGlpDr82IPEo16TB6F2yJ8o5/HMusU2HnC2J060ohFMiJA/KJcXB/azH7rSxM9xxA0fbKoAwxaS7TXt5kXuyxikUZNd1bXqjKzjaindXPakpGstp5KfqRt+ifOE0aehpBXCBbFFHZuBOklwyoQWcFSsZBGFoVJr4j3/WzcZSSPChjUMectdRLyFM0xOfsYwPiL/R86n7iISXD9aJ/LXm+fJ6oOo/Se0kZ1mtT1RfBLUOqA5QI5cYkx3WqFhjotkpQSMDbl3lbrL0F1n10vRn3bsDme599+nTSUPfKMA4xnEPRsDMS52SjFBF/qotRhRpX29HjuEFLhh7ZR2q6T/df230mbSN8qE8EmJiYmJiYmJiYmJiauRJyzk5IwqbGLAL8BRn5rigilLJB6rAdCN2xpHjSE+wWR50ZD8+/c6EbFE+PAb5sTMwrtAIv2IE2VChXVjMmAaVD66YpUeaNGVk3vQrD6tBS4UwziwDqqh0Bq9iPLNS9M3uwwgFR3NpGcag0oxU7EQrCAF/6nlu+3hiSFqbY0NHpQt4O4KTpa9M+UAtFONVoTPPoCmXJGnytFVRytNbTWLPMPge3w2ZICrt/Cpui/WKM1THVXhERkB/RDdigi3PkgHWZVDyZJYeFaOzL6N1MeaIEUKf/6mFI6Oadh7s4D5O2QXo4puYgsAoOpn7pvV54PXUmmRbpyICmzQ2mZFDfeWfeaGtKWaTnukCH2eCi2kjLam+FzwRVNkPGmtCvcuuLG/vX29sYm7agqu1RfZQopwhC9IuaB2NqI/ibFTFJ0xbMxqbvhsEehGBWSXcHYy8g35Da2g4QW3+ccPt3JxsZL+lyx1WD6KTcCeyVj6Vqurasw9HqZXbmllVIvwgZz3/kHMR98fLrDTJp3TtZkuN5idCjMzl69vPzsECErlMdWThqH/l66cejdtCUl6M6CI0bV3jDntm3P7UlPd8V9vkHZU5b1fiuRnCc1qXBnpVHxNrYmK1N7ZD9/z+ohX8sMQVMnIBHjz2YUdgW+rZu4iUu6F8Ki0ujz7onDKKVARMCFUMoOzAWlMHa7HZayC6fUVgiFl1hjYnRkYYA1Ck8VMWcntp6qEcJTh3IhjcRUdgAYC7OmPisaTYfLAhHCKoxWBagMWovtOSvUoaQBqBYUUdeSskEZ5qkrkrmQOdjoGBI1dSY2XqR+tnF1F62umkaJSVOPHTP4qIJ5hbQVx2tBE09bWVTpzQuOdgtOnzqNZVnAC2sEKmYcnzmGrBW7ssNxa2j1GMw7LFywWyxlKTPW4xXu+Evk6e4IcUPcurfYniRMWOuqthYwIIxWgSYFoB2aVEjTdK1tFTRqWJixlIKVCi5jRmMGVbEojQzIog5n0P1pIajjmPEIJkIV6G3lJiZz6P7uN+IBRhNgsQgtTcIVGUsxJxv2MddZ4mn4mBkEnX86nwhVlM7N+E5BVWMB7XRetIqFYNKdgBfGugoYR8Ej9da1trmBQCIoLKBW0VABqVCHOMTtd6AMa5fNyFEJKEUdyVpr8ACHYWxx9iI2dlTDKdDlDt9sNGUuQtbsKS10wJVUBAnnVwSNMysZI+4B4cnre7RTmqPqka8OFohuDPZnOOQtiv0z+G7UlWQc0F4pg1xk+xtb2zcSwTUOPkbkfFMAT/YGX6tNZSFBSQJC4vup/9mZQss2h26Tt5uxe0ZRQ59mH1T51oruZ4HYvE0u5Pg96kuykacdROzJ6WX76fthyNBws6u+16SPZ98bBZZVUenDgKew9L0oC07s8iEIoKaXQsgjN+gzLerv5OuzCyYfdkcd36udnj6vsrPHQeOdSz8hR3WawuWdvD9DjZoj6fYdDrq80cNvdUN07KK2JlOb0jOxqSXJp+/AY51drKGgRY+ksZWeTCaMCAX9M58zTgafa4fgPLK3w+uQ1KCtCXJPIotebs8N/YtMHqvJy5fu8JiEx/S0zaN+kBj7EG+NrdwiN2Nf/s8tkGH09pHn4Ei1/ESfe13OwcG39msjuGxzUhv688NaSeN2kCMHi+/8o4vs4xsHhu6ElZc/OHCJIT/tZ8JtwUNpsvfJ5dQ6fmprYJ8AWmk/3+3H7xjK26smNdr551mblOqwtby95ACkvcDbbd/Rie2TuJyQPklnfS+axolOHs3Zebnt/f43KCIPuQxL5pjExHp+MD7TjE/DZR+ExA5QtTVLEXXbLwtp6S4bwy4glNifszOPOy8JCLVB13/l0ONBVtjpxPZf0b3I++0sPs5iGlExLg/Y3/1BoEebdOqbo45dQpSml/mYq+nA9OxDdqNR7JxXCmO3LCpXm5MXEaPWBiHRdNZlQWsVJGQRmroA2vmnX7Yk+NnPz9gevdOns4hFArfxFDHnLypocTmqqZMS0gVJZqxgNCILANxM9C7BT8jPTJTGMG09OnVtjMnTeQN+8ZJCb0Ro0i+9kM9lNv2ZUP/c+q/lq6whNm55D1Y9n55HNDVc0iOSOVuh2NTvJTiJe+BVsUjztmOHvjDJxWnJAKwRsfLOkZyW8ur1y5nk8wmuO0Js0jnoF4ye+kMS60nrPuZFcghM6Nyqz++gGaUnTKbsbk77+2jwlCRLjCxmf3cb+OvJmxhcp6j7gk+qszw/MTExMTExMTExMTHxacC5OykVVSpo+pWdGdTOaLoyO78U1oP32lQZwsVuk9h5TgjgRaMe9FO0KuFLUYVIKe7oQPb8DqUU1FWwHjdAaihYXI3KpjjRA1uzQ74qHdB6KrhQLgjigO6HW2nd0YiIAEt94kp7V/e4sqRAc8uPCi4lREFRJVEDhNUVo5G+pRUICNWP2GjQiD0FpIYUOzA3M0h6eosGQXeKKnZo12gBIlafmIKBCFTIolnoIbpWT5VGKALUOPtSHESJ3PmLkbKhwfOiaFQSVVb5TSx1mPAbZp7az5Q6ZAoVU8ZlRwtXwEX48yAhW1/7DTr4TSoxZYuNk5bkqhJHVqxmBaHE4Rvox3ViHgyPYuOYDY89NVh/itw5xhVozaMjUKrPFHuu9BSvwWjkv4WClZDiR2fVQ9BpjK6EoIHTNytBu/LDaN2qPsccz3RFpfddlW8jTU3JE4r9/IbRy/trmhMd5pOU42n9haKrl5kNaJB+I9IN605enYtbZXM3CoTCKZQ5qQXBCwY3kRiTbmQiS9fXb/uRGcNH56FeYeib4M4XofdSZaWrn1K7c0SP/jf2/ib7L9p7Ao0p+ixRt77RUwzFSgz9a48LEeqxKF/6SycR1dHG8ThkCIipHk95Q2hTal8j1J+EO8a1JpH6IPiKKwpd6RfEt/fDICTWXLvp60YFkkjbE26cbgAQAFTCQUk0HBGI9GZzYVXH7naa2q0UxlIYSznCUk4BgEXhY0vdRqjtGJBiKbgqSFYIMVDUYYl5UQeWpvNJXWBYIzMtBcvuCCKE3W4HZo2GU/zGcNlhlQVnasV6ZkX9JIBWwTiGrJeBpKGUCtAKTVIAW+tq5I8ISTB+B92vW4UpeXvatEgPQEWzQMDchEXTf61VcGat2K0NhVc0OUbjgnJUIMcF63FF2Z3CcnSEa513hNNHOxQqKIs64Rwfi0ZQogVlqQAtaI20DwyALPpOAwRK+7Va/jC7bi1cQCioxxXwyEJkJoNdgchia4EBXlB4p2O9qKMcWB0dduU0CldIqVgWYMGC4zMFx2uD1ApWcQVs6f0IFaUUUKwHd75ouoc3BkOjGpEZVdRARVibOTTZGAgWsEVdEjSUpYBKUUcf22vZzQJU1MhEOhrF5CWNOchgOtZx5CMc12NgFVATCO3QmLCiaWQqEU07SAL2m+pFoyJJWwERrK3GeurOwRWc5gmzGcpAgCwoUEMRs8CddMWidaJ1XuwOihImjPEzdZxCGIbckUNLMzMKUfC+Fk674w4Ie873Gt/jBSYPuqzkzobZE92V+6x/D3JDsL2+1+cobYBFxRSXb+sBY0Pe/zu/E5OX/Ht3zr3GwuUF6Jx0/tzTlXWZUFqKXODv+r6W5R1C8CeXvYboVqIyEBdNG1MtTXQXRcJdH30P6q4rYYj08tMeeMipgIbxCZGkB6FxZzJ3bk97pHdL3/PNusuv0c60JYd9LMY+rof0luU5Il169rmpsoA7KMnQ31g7otJHGyZYl2kCG5k5G1D1zKj9cSfSYdii4kOyY5LremUYZRJva/5eti/1sjZ0ilW5WZ/aLO/ICe2LzyXG5GxLcXB7EB+b+CPVseEDB+WvTsutU9IoZ+b5MjTmQJnY62Y8YYOZzcInSoVBQgmRrLfDHXNkeCEk58vlZXndnQBrmOskNh93+Zq8vJiJIRPHsA/tO7k6L68bnA+08YDsfrbebD8Z2h8y8uaZdEbJsrjvrf5H58lZPt5ykTzS+7/2b9NzZ/Xs6nLlXseGQtOkOTQhjMmOnHtbmAx/DYxnr9K8RkaancvWml2A+uSXTsfgucr7I6GY5+Yy/ZI7MzNbijdmu+CmaXddVnH5xlmnp0fzCDlxtifS9Gjizrddz6LnF9snWdvBdjmx2BlL0yQX1KaRheoqQBWNzqobNtwxKvLpSnR2s59lYlK/TIS0x5HSJM4k9q6IynArqWxKDQALBFVpZ9OKSS9rLLuCXdFy1BGLLJ2x0pKKOTuR6oPiPGmyidKiWCQkd7ZxFk2xX3Pouvwd42JEdk60MV1M72RyI4FQqIAL0FhlitoIdQWasDn7OH30HW2HwPdnn6Dq8NNi7kSd3tbWnXZ65D4OmcTHf+TG0L0avX4tjqP/XU6XmJeNTKYgQFBs34elwFOdMqRBWg1ZXN2FWqSWi6hPaS15muOsywjy+JOSPkuyRdezGcGoz7+BFTlPlc5NnNd2ucEfNd4y6N9SFTJyT/8inrc2DJfNkBxIMzb8dE8U8rJ9L9s45AbPHYSkkVc579P6z7bTTUxMTExMTExMTExMfHpw7une/GAH9vO6Gb88ZZs6kYgIWlvRpJi5s6fvqCKqiOF+KGytorDeoPebwOEkIwJNI8NgrihFUFeCe8/EDehWLZCFGsGawEJeu9JGbxSrTYrssO83tzStE5sCUp18+qHRjWvhEuW6JuuCpuWhUAKyHdKFNN+86tYImmKHzBmmgZk1aoA4jczYLq7gMBMjWSo0qCNTKHJM4RSKA0EoSVSBo+lkiPVGGJlBWZ22zOUnDG5anjSBWL4+bdXWuavpLLD8b8O9JFduhJLBbx53Tyc98OYDsKA1nVNdMazE1bSCPdaKzrkexWg01KU2bBQZorGy+zgQ9QjYekUtnH8c4YAVGjRToJsRLTtZpcqt+KwxSY5a1l9s2k0+PWTTDlPmneSoklrrU2FU7nE2gLpSpbt7xWdEXsRGIZVchkwhc1hP4aUKcvSd7Myz7YeYUs0nYhhPLDz8GIXC6Wg3M722oJcbdHztdpogKXe2EYsOGWycflFzKFHTuo/nvS1WriT69ep7n5OBwONH9aV3kiNXGqMNmmncsjLLnaYGRTByn3mYY66cDLNGdtwEQr98ctvage84zZuoGP0GZHcu7dFQtnM6F2DG0dQwCYfJxONjHY/pvHxt7Zftw90VnnrbFKC+QnTOkd4zNk4NWIo30AJwAaOACoEXRinqkFKYsBSNYFOWgmIRj3a7I1Vyr3YrGoQqVaMrLUX3tCoQ7NBawUp647cUvdGKYjeAoQaK08sOzIJlpwpwXgiFVRm/K+pIW3aM48Y4I4xPHjEuWwj10ssgtYKWHVpbLe3CilY56MpcgpZs+z2EgKYpTCPiEvueLSiAOvcQQCjdCYAYa1O3FawVu8saTlUG71ZI/Th4BY5rBS0LdssOp04d4bxTp7AsOmd50WhCTQRcBMsRo51ZdESYjXf4fqk3kzWVl43jQgA1NBtjEUDMGajJCjcCoQDHxw1cGCgFxGo00PlSVHZgbYcIUGjBbinAkeCTlph1RVEHHUJ3VrH0fQ0EyIoCjYLVQFZu7fyN9AY3kQAMrLUhIod4VCJmSCM0qipfsRuY+o10NRB0owKjgorOS3XAERA17EgNXcLmcLMjUGO0ooYzRgUKgFrBArRWQ45R+WqFRrvUCEetQY0g5szg7XInJV2TzWjY4NEgPZYamTymMkznBS6XaYQY61PwH7Yb1+40764E6jxNmf96itjEFjJfF2c1ZmRxXh92DatbWtM5Ced6+lyPD2hzIO073XAw7rfh2OwyCXp7+xoyPtj/RNxy3iAcLq+hiLhw1B141CFSIgKrCyVicqdLdD6fm8AiCXAMpsvosfWgyweA08vKIT/P2PmFumwBmAwVEU6NztQNqSLdEYxc2CBKz+s3PeJn/2zPwSTLv6mdvRzp/vCwNYD+jst7PnfJ5NxevpfkqVS9Luufy0su1Ys6D/V2dXlLs+FSpH0cjWojuosHkpyTHClk2/XRuY6yPOclxcI9VCvt/xn9TcJ1/jI/3If58DMEp5CenZKMOZbt63e/qXnN5jOUf+rTaL933OfmttCTcIA9ZHlchr5e3ssjDfPa2j61j40z/0mQDcF8chwmSH/2oOy7eaovz6EPXo0u68OUPXF+n0A/ye04h2HyNhysY/htPLc4/7Q/Nk+Nz+2X4meAzpf8Cdn83HI1pPe39N6n4OWN335Pt6XtP5IGkg4+cLaTxab8cxugfFlj30FwpE3yF4lWBF2GB/1Nd0xSOUn5rDkKkclRFsGG03dLWbT01kLn05rptBgIfZ01tXkkaUJvh++hICxcIsK3+rK7DkkjuBIAXpRrLaVgbcBxIdQzFVLN4cbPBS6FWd0c81PXaVw2Cz6SOaFzRokIQEFDj2YjggqVNdfjBmoFVFTvRpX0HEWULonoeUxgEXJs7TCrvEURTchDarsc4hKdR5mWIJlv7QLYRQ1zore5wkxotbmAY5+Z8485/BDriVOaysDcgB0TwMBl1NCkgJrpGbjLnp6eWduXdVg2NyWq7SuBOl2Vhl3q1onhelh9wmmv5OC9ZcxMcCelZjQrcSkPLkYj9LAgsOtpzEFLmkfG8v1XkCSRPn+lS04e5am7TrYQGSke7vtT3lWGC1fo5QI0+O2E7LLZ32Md+96X9RCxebsDutHZCTHIN4ln2DstVUYxXkCP7C0hf3Z+stkTUn+j/tBpbJ4VIE0c69Og2Y3mTUxMTExMTExMTExMXNk4ZyclTSmmYZ5BmnOcUbCQGlnV6idAbaDGUGOhGqGaGehgURYKcxg1u/OARmEKw3JrkXJNRBUuUhpECjRw8Boagn7oY1WkFAKJRipi1oOdG+VE6qjfooImno6lH40FsDQmdliNA2icl+0dP9E3O2PrKVcNZm740KgXrnD3dHkwxyS/GVfFbyerBkQjXGi1zelBntLFtE12Q66JOoC5Uc9pr0YVHzMOo1sY3qIP/QDtCjgCuhOTK2A85ZwflFObwwBhB91R99mVKKG0AIGoOwS4gq3rzrR/rSXnA3RnDDKlAqKErrRAjKKVnfrSCIjUXa6kMcVeP/C7cqIf+fWrHtXHJ0O/zRaqH2svwUOTEygiLXm6j20UnlCepE5lZ5PDCn7p7bFXxwg2eQgEAOutMHvu8owG3ZEpz/qh+t5W5OdU2edzbXy8K8yyhYdtLYfBz+dQ6l9+hcOCbbrRrKjb6q83/RyU/Ok7dzo62D/nVVnhn8dOZPvK8Iz/7uH74zvC3lyIOtnn2MCC9pD0Xtg+4TcHu2GqjS9GOibnp9K1i2eZHoNxwuqleGdDU3u22RgR8nN9nLOzgKdEyoaUwfgzzEcKHnGwrQOVKP7LVisvt7WmKc3ElNSU5gqxchNawHSEUjR9QFkYXIqm3LJofounZWDG0W7BqVOnweUUjtdj6C1Uu2163CDsamICYQFhUceTJigLAzg2p5sG3hXj9QtOMWMxBykwo+wKmBinlkWj6BFhWQg7Ac4jxtEO+DgBl4FwfBmAxqC6M0VwsXFo5gjVo20oqVJIf99+WgNRgSUYA5E6CGv6InUsbK1Bqjr+NADHK3DpJwV1J2BZNULPSmhVFfa7peDU0RGWZQdmgIrgaCF1UF5UGV6YsNACWRYI1EADqRBZ1YkGxxBRZ5pl5+nEKogKFhUmUNnmRBNIa1gWj5RFIGYclQVlKQAv0BQSDVQWSKtYaMFxPcalq0A+IbgWGNc9j8GnFzAvuOxSAnEDc0GtgvXMcVewEwE4NvuHzm1q6pxB7oTGuq8zUaRVW9djSKvmxMYmUwlIB1oNWCBAGCtUtgknLwK4LBrJiS1ZXNUUfwXmRL4KmCzdHulzBaIX4tEgVDU1RtMQkW4w8XQW6qAkqKs7XOls2VmdxItFuOoOyM0WJzND1mbRnwrcnbaRO184Q3enEQ5zge+xLi9G+jST4lyWGZ0f3Ik6MYi9fao/G58m/ubRmpyXqcHY4hKQO5XD5NDOZ9znCEOxBPcqkc1eG464YVAwCa3l9h5yGL3mgjzdpvF+3xN0G9GzhPa5y6luXOtOP2rs8xv1AJCNcWFU5FGW05v8bBcs/Ixgm6s75thwqTGyAMkh16eWy4PDPgaXESRNInf88f7BxZnYdvclq2QMi5Vi+1B33e/rYpAbvI/5Y+1QdxrvURa8feO27TxFNsWP/QrRTPZ7sOkOQozMLQ2jabTQ5JUu7yOXneSb2LoJCMP4Zu30KBHugDbU7k2zv7osMvamL9Rs9Izqrf4oa2A0/t0+fQbWY333D7t7SKeT92JwlDfDbrQrfvd5kWtKdZPTdvy+21lpGJUO70eWVWl4d9P5TW8P/ZWauvntXBBLli6/jt5f5yG9um2EocMt92Lk5C/P0pZPrWd7lcbecqiOExoytMnrlwPfH2rh/hrYFt/XWeg3tk8L4BGVz06A7Vy7nEc/JTh//tTQz/rn9PTmbGK/edd9z0hTR0JSYrDJXMwavbQ7gOg67c5DFim1LHrZzc71vm5HniCgpvKciMrBZHujR8LRrVT3UwKwEIGKOUdZWYXJLv75RQ5t/VJUN3i80+TRrREgxdKsSdQVajLvefB02uynFPIQweUCp6Pz9h79x6N2r03XBsMjz0hcQiisqaI1hbPJyaw1U+jLTJZOR0iPOq3yrckSdib0syZRv8ioT8XuC3W+JyU69LnCrO2KSOUFIAGjoVJFbQ2i1WIh4FQp4B3j+Nj3N9UfVokB7mOeHNy37nmx9kN/4c7v4iTt8gCpg5r2S68pNOOVRBzzWOno0VoBDh0oAHIdrzllic1l0YsRHh0zhjStsb59mexvEU+zTMY+iOL9poh8HJO6UciPel5yWW3DZQ6scfE5620jDNGU4r3t1uiCnX+9x9K6TAWTCZ059P02twvBODaiWS8Cth/FIrt8HnrQgfMftTlNTExMTExMTExMTEz843HOTkqqYDZlB2lUjAKAwBoJqVY9QHp+9mZKEAL09KP3zZv0RFJE+ptGDGCk0B0RahpC4KLKnAIAVFEWVRavx6sd0rS8JuoMpaY1N7RqdCA1pgKL3WyS5lEWzNiHGgf4OCaKqctdEReKE1dGxINwI5mIGkK7IsCVQmIOPbU745DfuoI5sHiJZP9zHEhNPQRXhNUqXb8gngKoj1Xz1GOA3bpyBYsqv9SQ6MoLV4IxPMWIqiv67Zu4cSNAY1NKhvYNcGcvNZwl4wYlpepwevfISz4/9CebQcmdegC4XTKeCX0FdaWgwIxVlh6GSJ2+AKBsDt+ubGuujHclgJjSTvVQcOJ3py5XeGj7YbfdXGGXVktMDjcCdeWQ60R621t0yJ7ZKgsi8hDF+LohZ98BqP/BxGjSQpE3aE+86D0l9Rh5YJyTXekSBglKysMUPvtc1cGqwHJNVX5r0GoeVCq5mrMborKyXCJKU3ckwlDY4HREvpai49E32rQsO82MSvo0h/bmRMJG2SX5aVuPlPtN4+9n0yXt093GnmxNbRVYHkIhnh0btXWK8tuFGkXhYOfO1rgcZ2moc2vk7ErtrbL1UH37zmNeZldyd4VuNvhTKF+9wq6YD0UpGa9uZlCgglKOUMoRlmXB0U6j6TBZlMCmzjlL0dRCy7Lg1Kkj7JbFbkrvwmG0NQEX5SrEDcdnzoDRbxnvoGlUqznm1NqsXI3yswiw2+2w7HZBq0KCwnrTmYhQGJDaUKRitxDKKcKldIRLmXDmMk2FVqtGSSpUAZyBoEFaX/PN+AlZWCEiwEMSaVoJTzGmDrlKf3VOQnPjLllUxYLLGmFdBadZwEJAWXBqd4Sjo9O41rWurSllpaDVhh2zGgwEWAoDsoAaoZwSrG1FoQW1rahr1TYXRq3qbNOogkgV7cxFncrIaGfRDAG2lAoNpSxYlgYmdSwruwXH2FmdAmYBuIG4oRLQ0HBcgUvPNJy3K7jOqSMUFOxEHRtqExwLgIUhVQBJDmBtBbV+C5qLGqBqa3ZrXmWVAjbpSWlIrPRqAnPn0dvmi0XmKrzou7KEo0dh0ihf5tjZ2qqZBI02wgWlmSMzEVpjsADSjiHSsK7HqKBIrauONM1ugJvzuO+TRHornX3NaYoSIoanwKi2DqnB9liy7wGPagNYZDEVCOBOKu4s586szQxUEeWwUaRwVXnUZMCUqtSjrik/MKuQRzzsm7fN4843fN/zSHZkchqZo1TnZzA6AFyc4fi7vn/bf77PuJxI0NGOPUBiz492iX/mH2XemXnqNRc9tYa2k31MzRGexGXJ3heXj8ReEwDuTx5yFZCoYZR2Xg/f11VmZXLnHz8X+FsJMSd8fAh+SYDI5dQkpPpZhrq8mNvkW4vPD892N0LiORe4bNhTr+AiKuw+QsjMPRKXPSQIOpi0PMpadtZxBz/KlY2jhnAgi49s9rncHuuUNu04jHwGIfj8TbKK991pYXMC1l59xh2xncK97KCo9DXrMnxv3zhCZG026SJq9jZ6g7Ks18cknRHiCRp8rQZ6IpU5fL6VEnOfuvOeVbl5lhJNDvMBl322stihJ3PZ8dcg+x5+4yQOtJXn+zxHJ3R0JfHjQwXKoR4cJPZQu/PgQ+Ueonwu7XLPNzR2g6BRXfqcOXeMjpe+tjCsj7G1h7jJudc2/p7Ly1G/Nusq1XSYNl0K37Z2W+vhD87S3rw3nO05jHQ4/PS2hYd4yWbC5HH1pZfbYucJgm54koswJwVmlU81air31GqESOUGqLMzE6FYVCAilbcbi+q0rH2q2xBozmVz4mbfv9zRxOU1vQTojjdMmirau06kjkns0WssTRqJgElwqmiasjNEOF6rpoGGtUdU/vYxCqqRdd31hcg8xB1pfd/se6/61XgvCf3iBKMJgcXkCGKgeLrtxc4dSmutrsFdyAszIFVjhjao3CrmSh97IasDlqXPAygiWmlqO0uL56ngrMtilxNFBKUULEtBBaMJmwhhsRqLRkYlagATqjRQE+wWlfCpwGR+QW2AiEdjctmyOyqJRVbKzlQt6Sxgsi9MbygQ9NRuXd9J8AjD6qTURJ2NAHMvt0unDD07heMXAXrJ0sokiij2LHZ5lYAqWkZh1zTqHhqRGYVifYQcT6J66OQctV2PkvRkzBbhSWAXGPremWfkOMeypOGby2YPTHrHJCgMz2zll/gc2NTfL1sG5bOAi96f0bVIDvykGOdt5LdRZjsLzz2wn09MTExMTExMTExMTFwVOGcnJUEDoahzDYtGKiJW4xQIVDS6g98WpqJpPAppZIomflDVCD/EPa0MNU+BRlaTxK0jPaeZUn23oEBTi0hVRUpdK9aqhzkOPXMD8w7MBGlVDYtkt4dbA6iAlqJRAUCav57MKCJdqRDHVtWBoIgmflPFgh8Ee+ohPUQSmlS4ka07Rphj18LqdFMJtVVTbG0V0HpI1TO15Zphi4BjB08ujFb9ZrQZ/2q1uqQ7VlmoAqW7lt08+oXRNhRq5IY2oxcQfUKoEYAx4otFQBJrOyMiFjGTOQolZT1RKCFGw4CWFU4RBE09B3eGMkWLvdGjptiR36JRCcFu8aW6yIz+ogomEljULk1vo5cVc2QGU0aJBD3YC7cUNog55QrSUVnfP/foJDovu6FUB4dCp9A/PxSpZ/jcb0BKGotQRvh4qcLHQ8RnRX4eB58voehxBatFpAhbQR4Y16EcVGRQ9EVSeVtDSTj1wOdbpiOwl1sulFHp76zhjhd72WGSDoWSK/Py+HRlU1d6IQon6vM56Bbfbz6PPmUHTXTaO9EEEU2pOzWl4uSAzmsDN9BHm+OdNIdhSr1o7TgGnf79LTfeCxAOfyPdqdPdSs7jmHWhBFfUSh6eNI+zQpF6VJJUfDbsbe9od2P8uGa2fUS0DmmuUPSNPeKXha0HkfIcc6Bo1me2G7DEC8pyhGW3w+mjHU6dWrCwpl3QecUWMr+ZkpxxdKQKc6GC3dERal1RW0WtwLIKamuockavzzJDGrDbqdNIra6YdT7XsLCAizoHlVJwtNtphJ9FHXPLQuBCKAups04DWAQLCfj0DkdHBR7NZLU0qVIJgsvAqLqHie5hIOWRUoruqzBlOjW9/U2MKk0jKwYTVuWwplOToJlGOSQUYhwVxhHtUMqCxgtOXetaOO9a54GXBcergGnBshRzlFmgSWcrhI6x7ASFF7Dvh7UpjZaC1tQZSuUOpTOM7oUXnQhs6d0qq0MOqUGlUYFwQ1kKTp0+wu5oAWSBtILKTeUJYrTjy3C0nAId6XtoVR2fsOAIFbvTBOIdPrlqlCwtF5GWQ2c6Q+gyi/DkqVx1jEOpT7ZCxeYpa0RFoYaFNJolEaGQOo0vCwELgWSHte0ALEADFpsnTXOxoRSVZUoRHWI+0vSCTUClYBVSx/NVHasbESoXFFrATbBCoyWttarx1Z0bQChlB0IFUM2opQ5jHkkQ4chkzIL9Rnzz7cNSshWXsgBIROR0HtWSE7M6EPa9NPYh6TwK6DfdnblUkXBoEpsXZPGcPMWoCxbu0mAZeY0HG2/tzCV4EcNv5rfg1doWS3sBQMjuvec9ybxulDx6AzwcIJwenWEPvHCf910zMUaDAfw2fHOPHQI8UpLLN+oi6qPgu5mmDHGDGVxmi72kP+8bUo/ERCiFAJhzo+jeXX3fy7KAp5yJwfY0aS7A5Zvu6bKDUE+fYkJAS3LaYPcG9fOE1etRj/QT7s+bPB7pDl2WpT53BgGChp0zZAZA+pppXV4LOvsz9nh3gvJ/+tmCYqwS3dLPPmoU8t7weHp6cDB2uSGVpE6Ngn0cmPN9uEMe2RSYZHf70M+mWc5Er5OQIjfAZV3ZtDXLSr0j2RjfZdhDfdl/d3AuS9Pd5zaRy6L6gPLELmueE2gcsSSW4iB96eCv8ffhWr3RY+n6UopYFX3xvzelSB/XgT9aOf3PzYvGH7IoOzx+oB9bqTycnA71brP+gp4EHMqbfXny/qGWbc+NuaX7T58DDpyJhrbu7Sc2P4bPY0IPzwQr2eDE+REEkfGpPPmd+pt27Z1BTi78pNpTWZLmoOtb0OckbX56q7y/m/PSQBXyz9jSCrM5spgzuJXD6bIf+fmE7KIC1GmcIRplU4BGRVNKu9zBtp5IsFhaUI3gDRetlHew73N+SdB0anC+YinkXNFm+2Rhc6Ih5XkVhAp1foIISAoEq1HdXe29LtMDmrMUTJ8Ve3gw7ZyEW92Z+/u2O5KelzQaKKMsC452O1DxVGRsZzhtp4jW0+SM7tkWLcqlDLLLmJ5eWPVFJiuYXFuKdlxEABZz4AJECiBsEYRF5e2iDmgqyxRIRUTwlqayMtMS+4iydE1lvVjqvQYCqravke7HrqdSBx/jS87fBDFnVO+m9EzBnG3c7B3hGCOGy7BijtcMEU1nrvQm23+aXfyzuRpzpOgFAlLHp2bRYrX9Os5+5qdWx4CDfWu1ixEtaOLzLEfW6otQ9+HuPO5ys/SvfRVumLQ7SHWhYFzb4/53gG/Emu+8ynlRyEZRgjkOuT4pb3LOa+Ds12SRgRdu69/u0/6UbEQLGr49iMvfiCYmJiYmJiYmJiYmJq4UnLOTUq1iV/ntCC8w4x91PQwVCAtqbaE8cqOtn0ClrWjst3gsGA0D5PfL7SDdAI3G1ICGaiGS1QhXLEKMuAGZ7Barl9MAYbaQyFZHschJUuzmjoCKRi1QpQy53l8P4BFlQQ/hLOkQKOps4o4GYS4x55iuvCwWnUgAamjh2NWj8yiZ7EBtt7soKV5cm9XPqmqMUOWAnoo10oU5pVg7/LSvv+pJ2fykQlHhB3LVX1HctnKDWDerpZQpJFZOV3yoMTjpCgmW1gWDA4Ur0q1QS8Fn9HEFoH3pRoNsVGCilK6uojsqkYViNkOp3e4SeDso9OHi8ykd0DMtw7EpKxSI0nxG6qgr0ZzE4+fNlEfEBCeQK8Y9MpOEZibIsjGMxFBuFKadloOqZfjDtanU51kyDqJ/E8+LlxGD1ovCoFDJc9/mhvQ5ofNDn+uGN59bFDQMIwPS9JDe12iO/SaW26ErnrwciTqcRwH9xrGrZPzbfCtWho76x9l9J32fJnQonpJSZ4zqhOG7YS1kTbrT13ifcUy4YbYbbA601yoJZW58lJ0Pg3q9TpGhnBxhqKd7AyBZ0dkVW+6Apu9IH8ONgos8IMhIpjS+qRVpnvvflIi251AVXWvod41pGDPtS69j6Av1uafdMEcXIrRQFPscVidGpoJl2eHU0Q5Hp3Y42jF2O7/5q3NdzABQSrFoRuosxguHsp8KgdYKhjqQHNcGHK8QVocEIVUOqwOlgFpVx9rjhrpWFC4QrhAGeCF1xIWlqLM0A6oKtgg3YKUSEwo3HFHDeacEoIJPEnBMGkFHaoEIo9UVTGzmAHOC5c5H1VhTUHhRJbQZ41tr6jwSTlu63rjsIGTPFpUZym4BLTvIcoTCRzh16jSK7eHLTqP6AZqmrElBbRVrXYM2DQ3Uit4ulgIhS8kGxrIj1HoZ6lqBImpEYTXsaFo1c0xmxtoItWqEKxCBi2B3tNitdcayaCo6jdBDOF7PaHTHtqCiqZGmAWeONWWDoAJNHbiOjhacgbnsnPFb0E2jKjZ19OFizgbic16dlNaq3y0QsAjWpunrVHHNcAdmguaELQQd5aJGA8IRmM4DKtkoCjRKFsC8oAAoLBBuQFGH1iIFDRptsK7AcTvWRcILSkS6bFqPANyUH2nALDM8uMMPCOpoQmhCumeLOR13ThDP17Za/yVSdHkkwOa8wVe2G2YsJUfnS+ZeEQYKnbBNfOcZjd6iAoG2G+2w4UPEjEnKg7oxw1wGXPgZ9lQYj0WSeYILDX9LpIrtsljwyw2tfAcL3hZVWd1JPjiwq11j4HujbzM+Rj1NWr9dHnttyDGc9l/Y0ULUaGpnCjdy5pF0huT/EXTOco7omvaELoA7fft9e2Yz0FlcWB8ZvRNgUp7noUKaE6mMVHpEQsq7m6Ab2uJtT5mC7uzfy+kyjUfJiFk8bMwURA3ZN9ForNGdldzAuRVO9bOtqwQw0j2RQsvMIobtyZLeiggGdhDq9HfJb0NBFzJi93fnN+z5WYQ85c0HEFEbMhlTGwZJNDtWI8kY0uvunXd6dRnpMDaC07DWCYA7Z/rf2Smzy0bw9gx1A4naB+s9JANv4z8kt/+9cnIkzH35LJUZZ5Bx/E6seRgr3wT8Q3cE3I4rDe8ehPOfNFQ6ZygiuCWKbnpytoI7bbZ+Z13k39AOnXJ5tA7VtncegeQaz9rCeC7tFfqsrZuN8G7i/4Ge7XGAzdrdljJinCkp9TQd4i/2hi/Ws5Z8ti+yQ9l2VLedTKNARp9YvII+ff1iSm7n/vmMtuPihHXHjsJYCmNZ2KJb9rEQIxGZHqFYNCNYBEAiAVGFgDTCdW0W8Qiotal2xfsQ9eslA43o7fokcwxCP3eoAwzBI/6RyVyoylRFAJgczVJRSHBUCKtFlmzV5D5jsqHTQl8HZLo7ZuXt7lAT9I3hcN2J6RaZTXFIdqbSS41UGOACpgIuRzp+zfbroBlrf2F9h+sw+/lbx7hAc6/ZCLL2PYI3xQUCHRt3/OEC1OaOODbG3J3bmLeX23QsBBohHQKwaDQljeJrLWvQaFtFIkO7NG+3O8JLP/tRn38CwLMDqxq3mb5SfJrbdifQM1Tf49wxrzADWADp8le/iKB9Uqo6IxbwUmyh6XdVNLaXpxYkky1ct6HTvbcC5BFRu8NtcBmCOnf11TYs31GP1+WLWJ3m1N7FH+lrwArzS1Qhy5PXYb+4/s/ntCk+B96axYGMdF6Iy1omK+i/vU/77+7vAwMNvGmyfxGtO/onrrinx+qyxVj6xMTExMTExMTExMTElYdPIZJSAZodgJseHjUMtd3eMcVCWdTYo8qJnnJjYc29Xv3ms+YJ0cg7HsUIfouJ7HY7TNlO0HRsK9pqN63AKMVSpYGwqi4ByAoHdxDxkMpCEHYlP8ywqkoNQjWdhAB2g56LRiEgPwiTH/Qt5Yn4TbMWB9pW1cWquqOQXTFjVkOieAxpcYU72e9VIwc1sUvlBYRmhkiytGlsiqMGITVKWu2mVtDjKZE6DqniyU/VzehSwslISI1yFFECPNqBKiE4TrvZUSIddW3M2Azp+qc5C1iqF/W60ttZghrakG6v82hC3QgIU4p17YlroO0gTWxKM7uV5/4JOvqWbqhqf1nTwbjJ3g/rzIzaXFHYIt+8KuW8JTZOSYkRelSrjTV0lN2O7wd/ETPvk5VNNtasSnAtogQNw0nKlITi4btMbaNkoIEmrmhwRyn27yiSkSBHnHJnIR8YckWjG4IIoJZUqoRByUM+PkaX/pANeXYqcq3XoLJ1ZyZXorgS2EpPmpAD/juhdMtfCFxht1FVub4p1ph0GoZ+hzpNjZf19wkEXWee5lG74ONMoeDrHjpWdHIGy7f2xMY2+tCs3951Lw7Ks6LfnXxheHPabY2Pyp58sSKUcMm2hZ72BNrPPM5pDGOEE410/ltfzLir/FLfGmzqVlZ2oFJSaEcEpG1NBuDBgBgK/jTXAIB13Xid4eyUo6uFks0VcpzK8c8tjZs70QnAsMh16ArGUMhyAe8Yp04tOO90wamdoBS/6alEbk1i7DSoTQMVgIrOG8ZqSmpCYwaxRvprRBpVqQFYgHVdIY3VCIAKhhoBBBXVJnch+79oVKNq+waDUC9rKItGpBEqIFGXn0IL0FZwFZzmBbQUYAdQE5ypRZ1smqabKATbg4wnQ9S4YcuGmS1VnRoMGgR1jaRkNo9ZozotC3gpYNZbwbtlh92pI5SlYHd0CsTXBi2nsNYzWBpQlhXYVZRlB5IdzqzHKEXQjqFjSQ1yLHFLl46O0FjQ1sv0e/GUDJpOAFRQiEG2txdis3E0kDSUhQHSdGgE3ftqrWBWR57WKBwJFgaOdqdw6XHFmU9WCIAixVIR6LzRdwsWAo4WQVt1XbbSIHVFFIZi+0FFoZQmDzqWJG1UpHMx+he0ao5apcItJ0tZILygHBU07MCy00hJKBCpKDuNwCWokJWBtfWIinYLvdAK1IozdUVFQyUClwUFDSwVK8QiF6l81Vzu4h0gFWiryS8lUgUqb2r6vQAQBqFqwjhzEGBaEKk0AE15wXmfK7FPNmkxlirVaBQedYhK3uYwAwCVkG3ymvfEcRBC8TYCPXpacAMjP9wZUYK/eFoNdWLM+5OlMqUSDu8gmMzceTAFT+TEeN3RJfMr5SAszveSESZFpskGjmssIlpC3xuyud0Hj0jlS3d87s7kFhFhSE8GK8cNdLYfkKT6erUEk7etOjcUCqhH6YoZ5m00JANTNJvIxsbbjrRPoctigxymM8DTrmy2qCg7nOd8r2Tq8wb5tdGI5xPCnbK6YNXbCJuPEfEp15+6l/6Jn5Lri/b3wXDHnSxQSP6bkH2fERQPY2T+fERMn1R/yAT2QO9LCDz9/VT2CErtS+eq4Z3eBiDJSFbwKPJ4+d1hIfgHjWXGpYfNOjjo7JB+uhzp8pDPl6jZPStioXShc28GJUfHgSbIo+B8OclaNk+FKKZZjP+2jwc41H6dAwU2E0eGF0S2tZwAZRrR7u2XyiIoHh1bsFk7J9bhjk5j2TGjN95qXeJOi2QgUR+zcaxk0wZ3SOjlHJjZxqryPCRsKjyI/W9p8/n+WB+se/MXbYmxP7nTB2kNxB56svMc4HNzv2W090t+Yf/JPG/39SG5dbL37vCpWAGWBrcUxq6ogxKR8+E+ihGRCH3fYirmzOS8poUzie9z+p3zLUnRKbU8jn3BeYXqrgqrs3/QtAHNZFse+qLO42yO9wzth+qRCBDWVMAg7avXRc6vKPVJ5WEiVj2CXe5T5/S097sDF5FFYzfHZAbY0mCzRXwl0gsMKic2UFHZF/BjZ+df2hftFROARdO7tdbUQV3I1Hzcz0PkkT5bj3RrdPY0aWTnXIJe4CAAzHqxwOVVQsVifWqtqo6PXHej/W7NLp4wsJDqAysBUgSo1kbYWcz7BU/npmCLgOX7bax7G49m8zK28HBQIpTCdlHUL5x2+UPHq6G1Aqlpn/I+kOksm1gqdIvCZOcx1/m1FAF9aLtHZk/bsjq+JZnMeHpLnxF6BCaxDbmrMhJzIbFDyrjHZ17rFwni+9jgMPD7ruvQijjJ6AOjERn7Mvy7YUmZUYmgr+hD+8AoDRENH+v7B5n0+GCXC2n8emJiYmJiYmJiYmJi4krEOTspMRUApoRsKU2VXUWUZqc/5kjDogZ+WFoyQA9tZojzw58QqmhUHY/KAHKtZ4Und2diUF1BMEenAixM2BWPJmDOKKQGrKYxhUKh4SlCiATSBIuqLdQY1tyQbYdhu63WxHK1U7+JpI4nHuK5QcKRSA/fpVCkTWhNLGpPP127MgbSVLkDRm2urGMzcjGaRanKUUAglnYMfgusJoV4V555WjelM9RjxXQXducKgB2ow3Dix2o/CHejmmavMzo2MWVBN5xmfWxPWZIUoK5Ek6RmNUV4OBiksuKcL66fcGWD39RyhUO6E+RGRyLAabw5cPc5W/oUizr7Tbfs3NKfGZWflE7/7hg1RICJdiEc+OJ5GmkWZdpPv/EWH4SypitLxjbYl/6CpO/CYDHoKYYyYu5vKt7erI3oVlbatg/bG/mhKc3tM48ZVXZ5bTr5XL1C0a7UTosuEVrSaM/J2hNXsA3tGx6Xvn4OKLe7AtyNF+kLuCJI+kcy0lGnYr6B55ERaChntB9l1Zivk9627e85zRzF4OT55mOp/T00j3OL8lv9BnGac7GCpRuMAUSI/r15iM2EwziuQLR7UEIHP5OBBk7TeC/mb4Lk0sW1mNFfb7Py6G4w1uh5nsqTwgDuLzAzlt2CU0eMU0t3e6LSzLlVHd0aGgiLOp2Q8uidEJaiN4tbVQcLFu9XA9oKaWcAOVbe1FblzY3AsoKlgiqBmkXMIXUYKSDsiFHXamuqaYpNIuXbEKjD5gIixvGxu2wJTjODjwoqCSALWtV0ZkILoK4o8Ogiy7LY3ufRDwWlsKVktRQRIgA147G+lykty65YhDvCbinY7TQV3XLqFJbdaU1FVivacQPRih0JeNH+ShMUaMqIHanzbasF0gg71nKqMC6tBY2gTjsrUFcAVOyW9gJZAeEVIEGrpihvGt3naKdRnAQWwLEd6169SETParKoLNMAbhVH1NB2QIWglEW3qKoOPK2qQ9IiwLVoAS2iYwNA1gb2yEwoZkgSTRdBBPCCHTF2rBsgCSCtgWkHKTpnatNokGzGIYiNC4n6Re8KGhYU2mnZDZBWQK2isOC4VlQiCGu6vbIQqBQ0ENp6jHU9hqwaZWgpjKXozXxZ1XjA5githheTCUzRLy6niPF50hvUnpoEUINEddYQKQL7+lQjlK/9CjdSkZJN66JuFHLOo+vYHKjIpQUt332Ss4MAGiUeqkYlTSvnvCPzDzfjbfYrN/5Q53kjn+7yWDcgjnw96iMkw353BOiOoiOr64ZTLc/5ZaQBu4aCQrZyJyNJfUHMAQAht0c/PfuZR1X0oXKaEkd0K0lluvNSiGO+D0jfo/XSgu4vzcY9dnsrujutmFyKNOYm14YktRkHf3PcUSm27ByZg8jr0vJ6ZCTjC51EUVZPJ5z2OzhdXNYQhGRjG6EeSVrI311cS/Kh0dwvf4S4S15kkotiPaPv/+bAkvfnSAHZm7yPrdhG+eKA7+UyluvrHulz6X319vj+5Gssrdr9BviPVLk7HA8yUuIDUc1GwtqbF/lPH/ckt2TDomyfhxoTR1Gtu6sMjRkq7T9kr737j6rRM/HFaOzIxySVcTIXSmv9nJEaPPBCAX0qxTnviD/J5vrW6eeKtPEsz1P8c9KXvZREv74XnKVFkuaUrfHRZaiP1+Ez0+F2+yzqNNJnDy3Zc9lx9nth/C3x5LxG85naWVB/zHmjoH9DoIEXnAPyVE6rJvdo27f4O+g+MJmxb4ClBU1SSkqrVoqm3WXf4+05zQDcdVOeqkydYko4bdQm+9Epm6DV1dITk+rsRPcNLa8BjUFiydOoXwdh45nuVKT8Rq/wuBOInjc1LfVqe/dC9hwDHtlWWrGLdbZXGq9QHZtHlqX0s69rEk+J6+PSCU9crM2iKd6KRWgtDC67uBRYa1UnJYvIaRKqDUqL+ajp2QSFCFy0ojO19f2U1GFKHdGNUqbnc94B1yOKngfYhI3mKdmg6Yo1fZ8y3Fb1LOKRtRfWiFjaNz8rqobJtwMGYWcOWm01vadF644dzWUmc9Am6s7tMcekBBuNSKOuGBPTaxGMrmSRaotJLCq3SfMIus7etK6ymFwNQmurOXqZ3GHRwtQhy6eshPzTf++sWslsNRNM/ud417kA7PvgWy4jCuwyRVqaUYFtB7ZGO/voDCdkPqKQvUJ8QN9OshzkZWSRxy9D9hKt5VkP10cJ/U2kz2PW9ueCN2e5y99JfGxTzz62vNlrPBfuPjExMTExMTExMTEx8Y/DOTspkR/OZY0bTGqIUmcaTU+kEY6I1UFIUEGFIQsD0Jv/BbDw0+54ISilmJJFHaFc+dBQUQg4KkWNdMuiRippqBaJgAthRwShClkbRJo5QjWIlwcK5x6CKdhbUyWDpWpp0MhIxZyeNM86IzspCOntKoHe9uJCaM0daFSJxAygqNKj1hpRBPQUabev2A74VNBqgcdu1nRwqrwpqmnAahGX3KADo5kG2lElvx9y7b6W/fRIT2o2N0Jof9J1ON6ePcNLCP2Qj6z8IDXCm/KiNY0+osqZFOo4lUuAOUl1Q0DcgjRFVygIwjBFcejWz9QRDDCFH7tCrxum3JDVnZ9cWYMw8LhRwZVx430mCq1IGItsnpmvXCgEovzhbVPucHZusMgiMX76HdsYqI+EK/66E4mgdzGUDxoOLBlVJYasj7+Nm5WRlb1bxyqxd0IhHsYfV9xlB5GupiAKah2EJEJ1FYsrVlzZIzEO3UDbnw86UKd5LqvT342E1vcUOWzb7xwFrNN8VJBnp59Exajfne/G8pyqCAVbLqcr0HrbexkeIH0sU99V78JDBu3ulCjDO31G+rNIY5pGMT5HzLG98RRTckY8EeehKSA7lb5egrYdfX6Rx5mPOTwqxLrTYagkMw+J8U5rPvUqntnMc/3hCnH9nNluqBqBBtr6ovP/zaDLpaAsmr5rdwQUqmDaWZ2rLU11qlXWbGlFZcVSFhwxY7c0XHoMtGNf2xUiK1oDjo/PYD0+A5IKJr2RiqIOwdIaNJ9WVQeqhSNCIETQqr5DxecAg8oOgKYUK6VgtzuCQNObCjQM/6llwa4skMXSbdUF1E5ppCYARCuWonNo505KrA4qy+Kp03wy6V5YmCxVhKYwWJYCkBoOIBWFCk7tjsCL4Oj0EcruPCzLeSiFcVm9FKAVaz0DOlOxowWyMGqtAI4hcgxQgchpAKewLIRdEYAr1jMA4RSWAgDHGsmoAGU50vkJTZGnqdEsF2lVw9BRYSxFx7I14LhVMBqWIjh1BJQjxiqCpQCXXtrQmHGsmehwerdE+rrj41VTtPGCo1LAhcHYoYBBpxitnMFxY2C3QKSCRcBFHXwWPgJ4NUeaBYQFjIpWNXWbcIMwoYKwujNB0SR+SmfG0Y5w+lTB7tqnILsjNJwGyaLOV61qdK5jvQ2tQbdUFtjtCpYdAGIcr5qujlrVNCSs8lATgRBDeEE7c6zRqSJyJOLvSho1kmP9mlSyNpWLKqmcY5GZmt/KXhhUdQ9E6w7hkerBHKJcPHFHHE3lYZJB2ruygyqZoaiQ88vuYEvFZESR4J/EBZ3fteBFLrd0HtHRnP+xP+ePUJeJErdTfqeRRr2NBN873enA9wrnk24wHEva8vt/Ghj34Oi/f5O2Bt0q0vOFbE3bHPHiyI2tFIGTYM9ombqPFffmCOFXzPHVZFAwiJs6SIpX7U7ntJH/XN5IZqUYmuTU0S1Glsow3YSXvq/pPPM90qeQvutpnpH31CClxFzRvqY9mZAiKviagG/F6PKJyTkum4wjgoigYPPPqdcNyfsj7AgKyOYZcofCLNfYmsG+I3yU54Z8a5s/xxvZIMYHOFAW9X5Qp4vL00ilZItp0G7TD/8w5MY8PMNvY4NiJqU577KJC50e7VblwUxIX0Nj5/xvkjxSJ2PLUzLdugic6sjTPn+AbsCm4YFDbdjIafERYW+iHCpmeEyGL9215lBR+2X1PWN/khxo46FunOXrse6+7j9VVr3//HaF6WfOQ7YUOdTIs13y6G+OpWSabGb0FUTika57kHTxAs4TMQ4HnVvtfS6evXZlcZI/+RT6RQfnbj/njKURqSxdijopKS29/wL1Ko+OxvoT2z8KMwqLJq5fyRiwXTIQddxu5hjSJN0/8n2iAY08ypF+1SwiUG0aoZWZO5mJoJEhq7W99D6LRQ5iQiHCDoAs0DZJQV2dH1RE5KO8V5MX72ddClk8n+eI9OzmNHWHEU+Bp85KmoJaI2WvygelaeTNpjo6sRx60qqx9gJQMTleaa8+zoxSjgBUPYOVFnsAIOGwLM0jqaNHmaWCuIinhAeRRmUtmtMa3BqqAGtzZx6lo0bUgl1UVLmbsWhBIVurhpSlQZqlWIavGTE62WVDYkCKqqJa7ToJVjmhmbOVywsETe22FEJhwW5XQEuBQFOBu1ziFw1I9EzB1CDFo1oBcHnFI1kBMafEos+rh5M6yyFFZNc5ZrqytIYo1gKM7qrrheuuqKUnVZaGLyO4jN/5lvNjHVbxt/pqFSA4dsy7/v320tcogLuQ0JmW+ERBl4lGvZQv07RPxCs+TlFZ52uDrm7cxrpjaLwVrUkfems23TmH/W9iYmJiYmJiYmJiYuLThHN2UgKTGVT04Fg8r3pod2Dfq7LElRHqeNIgbU0Km55YiZnVuYfUHBQhmIlRaKeRDiyqUAMBrDe/+FgNXn6Li8waHwp0uw1PFnIaxR2XspFJD601OQz0g14Pu61GPVMRh7JIIxhwUaclAlvaFr01xhYFoJqhozU3SolFHLA4HKb01kBUFh5bxBy9tLyu65Wg/yrucpXUkyJhf/WbUc0jH4XSzxUMkg7h9j7MJGcHX6eD2PtxEE6Ks+HQnJS8cXgndWnwdGiuLItg4mGk89QoqUd2Pu7zzAhB6XlQ9Cu+Jp+L/X2yNH/6ut3magLPytdCQekEsHe9GWZEs1ljj9HYVKI+xwajIyWabJUI0n9SdhraRr3pyk+P9CCS6dHfIfLQ5YRcxJ5CRTDc0NY+tP6l/0sAPMy3DF/rrxtNbp+PsLblwUG0K9Qfseap60r2QKED1ogRpk6SXEavf1AV5e9ifozPm/4HHo0iEWQsxxRoOYT3XkQMkf3yDyKnIBvXTdintlRIhvf9eULxr+y93OfPoUb5mh/6tmfAkJjPmYb7jljpjdy24GFeVq6mR3uI/jdTlA+07LeGc32ucPQ5t1XLeVuyQtDplA01HCH29RkPkc/MWJYFu6J83iPdaWrNFWxRZMwFCMAx6iqWAqBAw+FfBmmMWgtWqQCfwWWXXQZQwZnjY6xrwwLCGWlYV3WSFcuQRRUAGoTMudL2lrZbwBVYCpkh0yJCkdarStAFy7JTZ59SbEcDjgUoteJUAY6PBHJeAbWGM1iUPlQAOobp1C2lAKszVPMw/QCK7ier7V1MALHo7WYmS9nVTEkPEI7BXFBYcGpHONox1vVYU4m1qo5VDHXQKQJCC5tNk2N1Vi6kzqBVUOVYFfmFcGROSSsJ6s7Szoqg2Kis64raYLeT/dY0A9ip0r3anNbdE4SqRqQqkHXFERGOS8GZWsFCKCtAq4B4RZEVrTBAO70hv1sAFEjV9cHQcaqFUbmBZFEZgwto0chZxAzQEQgFLGzOcPp+JUEVaFo0UWciht7C3xUBU8WuEE4vBDpiVLuBzWhoTffr2hjSdmDWaFlUBLudgEvF8ZkVbRWgHUPkDEAqHjYI1lZRpaK2hlVUJlMjmK07Df8FKhxR7wR9bbEA66qyEbHJSVXnaGTiYoY7vWu7LQUF2t5eSGzOZmbUCsOFADBHdYK5U5oTdOftfR9qidcP/MR5le8vUGksyyeDATKcKySMxNlAMRhKiVLR5qSa5CZtmmCMwOS/5lRhhzE6rV5DkcarmZETnYRGTpdh3PFXX41IEAS440xi5v0MwOOgdtlCfNoClH1nZROxps8TWNzVkOl8P/Upkc4TseNthBmXEd0pp38utq/1Tno6N0h3NmBiCPWIsfA+eESHUQwYnC4k+hBLNslfPT0wbG9Rfm+XKYIeiPk9kEZ6DXm8XFaLc0HMf1+nJ8lIRtQTpq+mu/ZHuguOQELup0SQ7uCQZblef55X/ULIUGN6B6mszgdcFvWxcqfJYBGH+hJzXguN6FPRfnS+lByV+pHiHNZ3nFGGUUSWO7scZvwL3qYQCpEjfAUthvL6WvVqh2oyIx2/6B8PhD+BaFmwGxfa8FBivZcPH4O96q4Y/8xra/xi7NMYUwP2+8m1nq01JzkbnXih4oTPT4ZgPOjJ9ttzIvf+c/rJ/rubc4jvaf3rA7Tap1DMzpPG5OBb+98dap82bfw5SCnUeT6cV6XnPbWZ87EqnlpZeVzwYOizFWKRSwtaq6hV0ECQpqmiQSo7i2jkSk8vJgBq80jTSgyNxqndIIK5rWu63yZ6BuJgmz2Fs14S8IuA8J0YgOm6LJJqIUErBKkNjQmQYqNc0S8QNU3X7K20VNkghGNVlof8nBgrR1y31R1TPP21SIPUY3XGcgf1JmhUB9mqtRVsjjUuh4o0qPeNRgkqRKjEYC6REk3bRZBm6bebE9eH2y42NtuXrL3SoDpNFshaAdE5sIrKM60JqNoFpbi0Z3Ol2AWD1tcvQ9BYxxtSbF82xx27RETEsJy5IC6qfTU5pFqDKdaHdFp7CkHRVNRDyrMGCNuZsxKI2falFimy13XV7M52pvN9TJqdkyU707WQzyVttBJj3tejO2L55YPebqCnr/fXpF+kyeWE115frN3PN6/67ril54n+9bDWsf/ZiV+kPum/LXcOe/xQkCIwbQob9FC9zfuVpuf8ve3evNfogz2amJiYmJiYmJiYmJi40nDOTkqufIAd1DQtDrryyA79YupuZo320EyhjNYsJRxrfntTcjAx/G4NPB89YPGDJZQ2rQmakBmoBVLN0YXVmCji7YOeoEkgsgIoEDS0ajnPIJayTJ2jqjSLrmOviqey07qI2FIC9dzr2p2mDi5k6h3WKEoEDdHcbyP3m0GqLBLXhIQimEjTBBGRRitwBQc8aLbWV+zWv1gfwtghYhGTxIyy2i7X5Omh1DVmrpxUpeOoHrXXTB/ZHSEQTgNRAnm6rvFWkv5QJQSblk6aGZrtEE3khtOGBrvZlcI7qaLCx7Mrw1xJT/Bb5Xp7zo/7agi3OQOEckLTMdjh3Pvnyhizi6aZrn0KZSJHn7SjDKI8vj0iixtNw/ihV8P+f/b+dsuR5VYWBA1wD2bp3F7z/u/ZfaVdyXBgfhgARwRZpdK5Rz2atejSrswkI/z7A24wABfFQtfV8LUrySXzlN2drWZXYDlpUxt0iL8D3CvFXzTrkmcM/O/IPdckuMMkPft7XlL1bCSaqEMpD+X1nWuRW1GXY2IJLolVfa/EGt+Z3fuvaYov1msxj+/Wu63HtxL5UsmWRweB2jrL+drHcisIvNXpXtfIV969d/V+dZ0/HaDqaN21/kXYeYNB7e/ivWhAlnUhDaY17qVPXmeSxJ61vUh0pdf1/Ws7Xyt4pUN1sA8k07Y+Emygt74X7LXhXl1E681NHOsWlAx5pRjigCue5gCeGHYS1A7gfTkAGZhKLzePxwPP84m//3SMNWEm+F7AeRrEnwRyxXEuzufljjMIP7YIDq/TIItWsToUhyrPUj0g+gOGB5bpVhzIgMgk+cW5B6mS0nqahSdCxc+fJw4VPA7gb0OwpuPnPMlT9IP7rZ0RVtRqHq/Fs9oXQ7K5kQxkca6ZG1QcbiRLISyCxSkdnKdBx4EDwGMYxP6B518/cX4vnE8HlJ6L/FwY8leQbRiODvrE15dCx4kxDEsAWQsyR1mXuwn0xwHHgbUcz/MbCoaTW3oinPrAROGDxOSnGZUsGcrWSar5/ulwPbHWE+ucgD0giLCuy2An8DSD4ASmY8xBa+ehePx44PsnSdB+LhLC1LCmwPyArgmcBrMnzE7MOTH0gIzJufDtmMrzBkHaCjV6nRHJSmZINIevE75+Qv2AyhPAgDqVVKKKE084TvikVflQo6LjPPH8+RPn6TjXT+YnVDr40yOMHeCLigV1hn9bMZ8cVtEXeMaHx7LY4yVD6OYO4QYNeYZhdUOuWamc4tkriHBuFU9hn/bcK6y8ilFkZF5Jbtxc5fRAIrXvJikhSn4h96TVdkVz8pIga+8QmtNf1ApuflF4eLPuznwjOyQLRPq55HvfSf6J5d7ZztOrgjlmRFMkvVP9/qekpK3nmNQ277n3Rv09SDMS56rbpd84E7hnp3etlOHK603l6Hs8S3FlJZ/tU2srIffZR5m0zjrP+cfTKD1DOLbfwUolent7N6fyVTDLepBIKuUZqKQJT3k7qU1oMmcf+8i37hL5TZNHZPe/wCoE8iZhAelbwLHbl/3prf6X8GtyP8NRdcnu6zOzxvr2zV2q2WJZ3M12gdgkodZSBzb5xGsu5bwpeeYmr3RPA53slGvy2tNNMt7TpZqbte/y5p7rJcFij/pV9uy1Qu+Dnrbo2a8fVQZ7J8rIiuaLcs/zpcSWXxpRtDtflt+25+zul3QZ4l3Rq/z4i5f/O1vZPRu5ffar3+/P/XE591n9zyrUP5f2RK/A9d7VP3/fJW0yXObdvX5/mn7VSf/8rfelyeWJ2ivuk0mAt+7ZehntXvi+jN6Tv6t777M3ebxMT6k57Lfv976zX859Q+pLvqOSnnu4xiyxp2pb7gLbS7QGznC6w56xdpzk9QypZUbyUiFeSQCBpzUc3PaME827w4COg3cHEdRJFuT5NAzTCFUnsacmxuUOLDccAzjinkVH4R4YSxqKLSQBWNHveF6duMmtUcc4zz328xQH0wuQCGntGveNdRpseYUgJpnL6O0nPO/AQmCVRc/WYdBnTll5aBLIiTORoEVPphJz1jx6OeQTGdGrjjJ+zHlhwX1yOEQXNv2F/ZAHMPuSsgll6PAUNRTmdKpLGXPhAHiZkcGzzZxYqwND5yYoiZRnLRYbuJQhxjVmc3pVgsODpUYvpgsY9Pyr2AaCDnrk4jwinivuWKdxDCwMeuDRjrhXLN/nZM6fqF4RYgWX80b2h4XxbdNBelyVwEFzTZZhgbdz/TK3msFVyt6S3vR9r99a+34Zt8STar/Nw09yDNu8zqekn6mRU4kpb07Duo+0vew1a9RZ4dlXuD7Uy5WeQT9v7nvhXR74pE/6pE/6pE/6pE/6pE/6pE/696U/JynZgqXlF+ISm5c1T+8uCGVCgJlQuBJUSeChrnSiGGME6LIIJgSxqSCW8Mi0QqGhDmARZDBEqDHGlmG4hgCpReiummDNqovj9vQEkKAS3hQgcE0FPJ/V0FQybroztA2v5HFJZplpDXauBahiyAirolRcR5sNVFZFbAReyC3g4+wtlIeMBPCQBCwwhnu6xJ66r8rpVcbici8ysHxVbHYlGoTyLpRAWABgxGeoNoIwnFsCSBKX7STpeAP6i9DhtvsFkuqnuBR7c9fMa25ajGu/SLf5gQYyJICBACCQ9ZYNcKZyLt2Hl2VSTTalAr0UgUCSLvInw2F0jw1eZXaSTVfgAIFrhAVggh1SBC4+IJ5EpQZAXLABuYCTqcQssLK0v9dQD9uSXAp0yXGVBBILn9hWZzdcg2U5CsAqKz3Vqqc7whqv1MwF6uwxumWMAJmyjjHjcvxT+Zbg0watNsjSPV/sfGIsylvbBrOqe72P0s4znUER9Noe3X4JwDhiH5LdzrRwvHVkTKsgYWbfoKwUywuZ9xLvdc7whHYZC6Ap3l/m6LZ0z/1LLnl760uportnIXMvwPhC4EoQbuOD1c5SWkr+Uz3b5k3vKy8Qrsh9+VfksY3NXyZUVSnXrLf2Vwe2nu0Ku8tWU0OXQCSQYfWultH01kKCBbFgwGGWe/SJtQziCrMTGAoHwW2HYNmCLYKyP0/BOB+AL5ieDC96CtZSGAznOuF2YgqClEGvPg7dpAdhmIWv44E5DmD+wPH4XxjjwdCkMR7H48A8DpzngkAxB2BrAX7C1wqPhRNmim9feAzgbzLw1zDMw3EuwJ7CPjFBmVSHq36IkDAMwNcKcu7AVGF/ICy+g1RhOZ7hfWiZ4zgOrOfA+dfC9/MvPE9aAasuLAh+nrR+Hh4kDzH4OjBsYP3DAHWYn9DBcGjHmMAgUWphQOXAOB74+W2x/3MsoF+YP7gmM0SFOcm9J9b2VHU6xATrdMxvx/wS6AREF+QbOCw8Ox6K8wmITozhmPMB14HjQW+KLo6nLcj5xAPA19cX5pfhH6fj/PsJ82+IPzF04pAHVBhfb/liv2OTcFSB6QISxKgEWGtBF8fshMMfPI+XPwE5AX9yPNn9wABknJS9wEfOb8PzXPj+dpzngrlhTAFwQj3CzYFk7ZyLy7b8p0K5bdmCWp5/lGeotFhFNCFZzmqdufVFyjnGCJMChtCl3KQZFlMkCCaUOcYYVIZFeEGRVSE5efRTuWSr7WsCCBZKdKn1jsv+ur0j7HNTK4xYPk8PO5tGsvOrvLaZ+pYhhLKF2YrtU0oezM3To70A+y3DUZRcgCZvxOZcitAXRcV/VpKX37L/GkXEkzScX6ecU4JOvdvDeWZ2m1DsrV+9zi7K717yJJXlgk706h5kBGiet1o9kL/yfPNGjtqKqpCMS7G+yfdZv4sCyb08mKYMlcew4S5ztkbXGZzy4eWjqFNrb5PPUhHeR4Rkpx1OJutXdcqeqbq2oUk5r530vaY9ZV1Kvs27YsrsbcAv+rXsfKQE1r5KuUR2Pa/hz+RaqZJXbrl1Wa/uEf09ifpGXwpa//ZBuPVC5uu45Fn9dck3n/HW5iab9aIu5byTo1IOfLc/3Nvn0YV7L8ysy6NlW2dZmT6VWa92T8H1y5In23v3qr58Ie3rlDXbl/eW7d7omV0XRg7Du+L+lST172sutd4v63bXRW694Lc1vcvoHXP9bp9Egus82Cux75XvZOQ/SfeSX3sTb+qdZXWSJeq88ranXl990585ty53lvtjr3vPbYN6aYH05+rjVn4Si2onkd3n3l+WnZug1nHiZJugtHGnJGxVfuERUhNHcAvjAcB1xDl3Rpu0QuK6M0y0yyYQAXlu7GapMKTvHArIhI4JGRMCrfsmw6iFKaGtTZyNMGqcVxr/kQwzhN6URNI71L7H9L28yOEhY7pje0EH9hmY97KsuHuRsAwO2IAtxTod5t8wEzA0GRufBhQkrSggxOcEAjvDeNAMonGuamBCcadyEYxjkAi/KG8uM0BGhL4Lv8hxdrgLXBK7AwlkBnxH1DilLUPUD9BmRJczVjXyDvk6nyX5nnLjGGEc6Y4lBvte0edtDjoAGCRJcGEklrggnJjFCk+4FoYP6oBpIYio3SiI4ulJNb1QCQBfvCOsRSNOW5tIXf3goLzmIU81b5jugenyYQC+ZX/EtcAjrGuFeRbQa3BM9Hb45LnF8xiFNe1zfK/i69l+MSWosy49oNX2kQu6Yav3/TRD8NYEThnD20dyO7W8naKvh8VOPZ+dUeXxchDe3pVbtrcdsPrh/+Q8/KRP+qRP+qRP+qRP+qRP+qRP+tP0xySlqVRYMvxNgBOiMCimyLaEV4aCgxEAQLgBTvCTXowIQmiESHMXlK7KDFDDCLDAVsQyF8CxeKEGkIqfZVTeQeMyFfHKVrqUtrBJTu2S0gMPL8eLVvuYEF9x2RsQH8BwiJ9IbzvlXtgFa60NqMGgEgpLp3cgGbItxESwor9Ug+ZkvARqxLhzM3pbkLTICkhXwytTWmoBAFh38bxgh/kRAinI+OymjFcPY764gripeMjwdQTDw803gLR2E7nfgvPeaxFKLmO1IPpngwwJLm1yVAJwtivjQJFwUqEh0qKqZN2TYFJqOiQZyUVD+ZlKpJFvRBuiLSBoMcpbCt1/jxEkLROkO/MCHVLhh2hTuQpHKXUQ03aopsdvpKG+JhTrAMKriTTAktaNW2kF2TWPgnf/NqSgxkWKZhfvxroLT1smaa1I0h97dCtQ0jsV+/EKlhAwJUhKvCvG0xrBK97N5UXLvD33u1Uc13+QnG6KYCDBM+YpMYKiMR4x3p518JwH0qbntbwCs2oe+qUPvYIORhYN3CEYqjeAJrya5LhlX6dCMfKQmDf5M1GoHNOtoJRSwrH+isTZCHSuWhsdOHrrfavINe3DG7K0iQF+IQjG7tUArwa9N8DPfUN674lBGxCk/i0UU46a95nftly0a9t8D8PFK1a2R3Y/aRto/rrDdUqUIeDZkgROuIdHPwAXBTJd6cO9WQ1beQQcQwAxmE+4PWtOrgSNoZDFcAkiwlBgEPgCVB1zDii+8LS/4Msw5cA3JKxeFzeQIq8yP5hECAKOz9SBH8fEYyqOx8Dx4wf08QWMA48xSZBZJ+ZjYIjiZzRvKPD8/glbC2YnxhyYh8KeCjsNz58n5OE43DFEMOfA6QJdCtUDCOvXHAsJq2vulQGyC2AwKiZUQGPUBfUBMVpYuwgWeD6cLjhd4N/f+H4+AftBI14F54QvelPCF0QnRA1mJ8+XRe8/HmSaMRzQbwz9gaETQw3Hl0CHYEKwDsU/ngvmCjf2jTrwGEEIXLl4F4BneCIaMDM8dXBsnoaJE3Bg6gMiwCmAiWAIFQpzKMaQAOy5rysWBhaWOU4Z+ILjgOEnTqgYhgMuA6rA6YbhCjwNqvRGJSKQwXnx0IFljmU/sfwb5zohEJyhODqXY60nxB4MlQaHmXK+Lp6KqsIwdG6w58L39xPPtfA8HedJBcPQA1gLBgsLfYHqZH2hEB0wJZlZTg8u1YKMkJuEh5V7eNzUgSlCMp8IAK4tesai0k1kQH3CfEGUypLT8mxJ3zRU4pmA6y0swLfsYkWGkiA4cVsQmAp85bmRSjDfcmce0S4MpxeyhcX+pLLlliQl1Zkde1WeJp77WC2asR9T1N6doW79vldykbENseeapPe327kpQot3MHwgvQd5yJD/uUlLfNnknR1WJmSU2N5zL88xKvkk88hzFXley/Z+BRotiO6zjylkKmzr8is5N55JCaB3ZoXh8/qb5bX4OUiyW2gdlXNrF5GSbHiHDK9h7l5toFI17h5dEpGQPdtZ763+qfTOsG3lEKMp6rxkup2Bw6/E93iGeWffWpW3lX6ZNsmIn2rIwKh65RQu+bXkiz3GNQnybM96uFzz6Y9ekmAvlZRPwosH9u2hQsnkPIlxYXtzhDexoGS5yjNzrklacueWoHKS7rZtWclbOJstS/dBrT0mZMws3u+tTvnPm2zVPr921uvOUP0l8tKfNdMdVYducNFWQlauxofz7GpckHXqo9Hzajndfrk91KaQtKb+KhWv6zJIu2OuMna+09bZP91Q2wC/fVYufZm9cH3ec4G0PFu9Lr/5yzPvq/j7s+BfJSfd6/L6uuN1Ft2fuL15IRndzrg3JV0Jk+9zv9fzNatcifL+6dorO3Hz3Vhsot2u055P0suSJHXsUNJJKsoRLWfByLs3FxMxLD6v8f5aQRZJb4JI+SLnldT04FSWWp8CwRyCMVIuHNA5AaFX0jkPFHFahISTQcL0OleT73hnMFecp2FZ0TUx0lBRhJ5Xwzhvh5VnH1xlqSDrRYeWl8Lqo7b5JzNIBSYkI6WRn/ueieqUz8qQD+l5PDonwjxjkdikZEshw1vPCahQDhtTsFzwXAJLLMkFU9kGEvhBYosaYCeK8KISIgFJZNlWHYLCA4SYXnoETaK2O5s7xLEEMBeoOyS8KiXmUIZO2IZfNMqgINAJX4LwBpVxxS+zOtZZm5u8o1JOGeDcybFxZ9vXsgg3uOUNASJEuMJrzIV3HB1wnOEdPeeohYFBnCeJLyVuhfRcz9/dLeQor7B0GsS5CPrMNnm2v63jOvBlb7/7DT4raP22T2pKfLtPu2xTMlIswxJ38hyvTePN/pPYR70jzXvkdYwqH/c9TvHOS7b9vUtqOTdSd57XvztdPumTPumTPumTPumTPumTPumT/qfSH5OUdFgQL0ZYdQ0qlsQgtnjJFgBKaIXeCagQ1jERaldeIsMzT1llxg20gEYBdEhcPp2hRkoBoHnFpfLOBQ7D0AFzenUws7rwJ7GF4UviCl/ufEELMc9nmjWs8pKdbpgzXIm4YoAAAUYoWELJsBxQGIEDDyDCUWHgqg2RJELwLOy2igh0htWaG+acBIPq8ksFmy3UxdWjLQVZuoUnKNmW356AeQIHKGJPXnTTIgzhrcHszBxZ36i7tUv5RuYQoEObNEUQaQEwBKUIyTAwl6u3a7UxX0igBAX8BWAlWTzj2g8lgGae2FW4uJZwSoGtREGWLxpu1iU8a0VolfSg9OZeLkkGi36HdFuzgNHk9mrF2eJ8vYag6mN3B40lAMYNlhfoUzlcFSuFQkaGaWF2tTZN4M+DyIMg2+3+2f1Vg1PgXo4vf03iUQNy2s/eD9vblRf4wSHc4QCRkF7UPYdse8/J5t07ObwNZX/Us4K3qXdT/XPpuurh/M1DS5P1Tm8ZGfanPHsFulTzqM/nGIsX4OcOWBH7JFR9a+c7otLvUvcOogGm7vkdc9H3sy991oBNVJtbR8m1n16alv3xkt8VMMw61juViZSiGZb9lKSkrPNuTgJ7ACoUZuntVGKfaYBtbVxWteEWqphj4JgTcwzAM/wU56tBsaLskfvjcpgI3CfMB8NqHROI8+D5DC874SXPk9DbwM+9fhwj9qUxHWM6jkPw9Rj4+nFAjokxB/7rxwOPrweefy2c/g1fjqnhacYHnj5qmB7HxHz8wHLgr1PwvQT+BADF1zGgE/g5HHga/LkAP+CyIhLAgTEUY3iEUB2lhfZlGENpQWxWHgpP8SAn8TkdgE6GgrXToDrYhxAMPaBBBlm+oIMDYaI5ZFiIkLMQLFMMOL50EqT2heMAVAxYT3wNDRLrxNfB8VgLGPo3DP3CuRznz58Qf+Lwb5wWVsoqGOqQqRhjMdyak5QrcVYe+sC5FsYkEH4MxXF8xT6wYLbwUIEN4BwkaPlpUDdMM5xwcr1kYPmI81IZvUHoAUhkURllBpUB82eET6DnoJQLREl00nhXXOFLsJ4GLEL1jy+HDIWthb9+nvQI5orTFpYNuB9w/wsR7w++BiBH7Lv0fCkKmJ9UpjwNJg6FYq0TLgaA9ZWQw9ZasY9OqE9gPGB2YhlJWqefVNa5kCPGE5hrEwYxKhgsiDgAoLYVgBl2lyOQZ4hSftQBzXPMGN2D3ohCqmhk4zxr8iwEJLyDdlg/90kPLwNtrwpvlqW8T9lkCynx3HXP7mdbvlMq3jhGVILE3078y46ZepRWRYE0Qs5/YJI829MDEv+TCAu5j5OtQuYZrbuN4rjy3cstFuA0nKiOqf6pTm7DEmd6C1mdZ0aedReJIuue+1mXF2JAHQiSkFd9m6Tc5k3IwI4iFeVZmQowbq9bMpNoYyoGL4SVnDh1hkYPxt0hPRHsPvW4Q/C5DAPtQegpeSufbWNxlxG6d8Ps6vxccn3W2zfiVT7fpuxlpvuuA8Nzd1k+f3iTSTO/3jc5z1IW8YuMd1maFIhbfffUubbar2s6xzAevDXp9ua1pXv57rfKIxzwCxkQrVJ9E+il7PxSbvZ7P/u7t24PNXHsJh3iMk5yfeVefp9T1/x/11tdLtz/1j1gz/QmN8rlu9ui7w1990eV2cu7fP5L+fvtRK6i5f7sb7fpXAV++Tt78D4Or+Nyz/yfTMr/V1NbX34nUsnt538n3/vH/k+eef9ev8P2Of3unv66N2QeG/sR0ZAjpdrNfXzvsDxLuBfDHaY0fKBRi0JCFoM7bCVuE5hb9qWnmRb7V4DLnkmiK2WcMYTej4LZfUzBPIiFrHVSlshz2UdUMGVhGn6JD5wicKO8yrsmMNWB5SXVMeRc4C7QHdK49uJNMs768r4VuICE9yRsLEtCrltr1SDw8zhr3aCM873PqTiXcrdIcUmDHFaUqMDz6IqU4z4EkDmiHQ5gQuQBQOEnveIqaFSxQBKWaBCkhHMgPWNydfOZJL9ne9LohWuEfTRUkHYVDoQxRDR7SBxvkWfrB0SrkOPgPF9sNY9PEnKHRJ3hQHjq9AgzRwNUQIcHdKv0nORCchKIO+7jgr9tnE+3l3eVMPzL0OS8N5op73NwSMzRktNz7nmTKWzxTupbxqmznQcy36dV6uUwl1gr/WyqncKzD6VhV7W6r2dmHB8XD5UxTpujfJWh8sh+ybXkHVyfb+l3O+PrO00o8ran1YaW8hjbvEPktff9dyV+0id90id90id90id90id90if9n6c/D/cWIElZrCcoHNfhtGShtfwMq6+4wJ5p+RXXNGGIG5eTSniZcFMMBagAiPjixgtoek4pnYuMAHbowcB8ARI2MxnYXLQIBQ6Hh2eMkXHtE8pcVjpv6ijoNSI94dSVMkGkAu/z8hmXXVtYoLWWmjP8DjJmfYIhinWmvT2VayPIDZIX5sBVMzRXAb5pJeOh2Ba6o1b668DTUjHeAT+GpIOTtIWmgMt/UzmSl+tSjrcbcYWJClAjvSR0a+j0WLMzJRADR4D9vORbKB3Tws9fyA2C9DxgSKu3BPeAtBJPTycJvrDZG4hOAlznR3l4unKh94tOlCgyF1pbfJe7QYdQuNRcDOAiyAsIb1n0y5L2hBpG5UGaapBzzu/s5wTlCkMRuYyLV982+CB+tQoXcx27pPWlRysqRLd3LXEpRVUfhQ1oeni7iP7RDSBdAO+mILqnbFt6uajCAWxLN7m0Zz+U8M57O9Z7Of3rixelpli49Kdcc8smeCh8tLUpLVGzCCrNWti4Ukp7rLf4iZtSLUq6tKJ3iwBkZeRnBJHeteFP0qW9r99efr/m6/tH9WlautrLe5swdK2bNLCwmle/XZ8tcLqt7Y0pSuXY2+YIbC3XahLHou4Cgs/I4YnStXkqyDFDeacjEVdkRnsX3HIfYzkB18JtwZV7gA6DKMk7rg4IXfY7ToK4PnjG2MJyw7kWQwfAAfMgWzjGCOpjzhsVrHWSaGMn3J4YeOJQwYEn7PmEr7+w1jf8dIYmsIHTFCIDOhQqB+Z4YAxgTIWr4lz0aKgCeowCsJbh+3zynHaU9y23CAewVsgCg4TdNua2TnDGjgK+d7iHTc5b64S7YxyTId3GAITWuLSKDZlDA7SPpWdZjnNPH2NgiXJM3GBPgfkTKitIq44xB8acWO7AMaHHF4C/wU/HzNAYJwBVfJ8ojxHrfAJQHHqA3n04v8eU8gJJgFsBaFgPx3616A3pGIKfg+36eRrlAwBzKNZDSaDxAceC+5MEn5AJ3IH1dKzT4f7E8/zGub5Bb5ZUCDiC1uOKtYBlwlBwWDD7huCEDhJ23AzfT+B7UefyXIanGdyfQURz+BnW6+EV08I7Xnm68wfMJsb8CR3srPPngNsDIicQodTSUwD3hgM/jeOtKhBTrPXEFIFLWOarVHi4c50xxpv0kweQpuyArFfsjwYoSKLXULJQJlCILEAoJ5o7gvVToQhFNLxzxT6Q8lbMA/avF/k5N5btFSl3M45/BkGBb8L0PptqEyrlx3VPz93R45jeeyuazNXPmiQ51akUipz/2CR6k0vaOYOQ85CkaGxBzvf5IJB01hOhinlIcZ9Iolfkk3JTlyKiKy9K6FACdwVTPZPnUO5gbY7s856/p4fEVESWDF3jY+13ZKNrzmRIFQBYKcMJ2jwB8pzr6sBOHC4ChwBxYDU5K/oKqcZmv6Wct0qWr+yqzdV5+3DKBtR3UneE/p6359o+eZO/IGh9dv3ilZbRS5f+x4us+EKIQi7Fu4worYu8Gn91oOWtXbL72rvEyof3+n4nE2U+WcNOyvPeo9c33wmO2H2+u06inW0w/0kq8fwqSlcZOY/fko3ykSpe2jt7/K/K3uv4bAnvPjHyBb9+vgXmLStdUlPI9q9rSJpMGfegGrNfTLffGgjcvvvdo+/Si2FH+6tR1vD78XxX8dj9guzx65X0mv615+9Pvtsjeq6v3/+zq81lNuW6/ad1/JN+uz7ej9wXbKSdHXul6t4L8gxvayBlkiIotXz3urrX0aHqDEWWGJmlh26EfOZ1fljIeUlWKu8zIl18iO+AtcK7uRqGL8raDpzfJNqbr7oDCAQm9PBLMrxg6Nh5C+C677sSZHo1elr1pN563GexsUMgz1fUUt7YzN5vpc6BvV8IUO0tgrHkmdzltF1GNyCyKjxCvgVx2Dw8hS7AZNWeJKJBlg0jkkGPu+dyiNFfECzCq8keA7iFh1wSf0pOhKeks/fdEN/W8hrf3DtV6YHxNOKNFIUESwXtUfBOcd3yEiLlHOkh+6IPY/7m3DID76XicA+vUALKZsux3LFcsIy4pRmRUIgBEvdQSHik52CJCxAGhRRPFI5VGDEHSEsm2WdGEpYUy9qaHCOMfViGpRwloMFGhdqN8XOnh6+28vKQyDCMOSWI8WVZIQc6QK/1nFvbQWfuQ9eTnOsPJewklixVCOrs6Wv/shNIWzfSJkrlkethCwDZc5f0KmxV+69f7cXYMZNP+qRP+qRP+qRP+qRP+qRP+qR/V/pjkhJ8YozJi9TKuOeO8tAjYNiqskaWINZEqDI3urgeXuCvaCdVDPhyyAhodgWwkDGokBZQCMvjDWqoJBgMIJRg5vSsQ6U5gWcqqcNqKKq86vKloWjKMF+ANKV2hvpQ0bqE8lW6SrYVUJUQ4LcgWqWqQYUEL4HSE4IQJCivOL4I+gR4pXFhLRfIQkCnAA9pgE0o1gsnb1htKQKQilQUkWA/mHnExdmTXNWA4yLsSPsUG6jLPGUrWrqWIoGiTiLJPBJgipqg69cuUJ1583iS7dlAQPZrVKrCkrl7kYMqrwRyGhtLpHkfcFyeT6WYByhRSkMYHKMs2VYHHXOcqg8SowhFWiMNvQOy35FQtgeeDkxq1RFV/QaMJEDqegVU6nm//pnv51A1cKQD9/krQ2lsYOQ1tXkbyNGFZPX6eJsft29vfdKVu3Qjn5/zlyKctWf7u7srbpZ0bxQU17J2Xn2qsJ+inQ2uurfBbefF99DG6lrXXJOZzaXv3G992R/sFUQD2t63a+8D8bm0OhYwt8G6ewflPvWWCNYrAhQpUH6hSPdWl5o7qUDCtf185kZh6+0sK8mXId1KAiVAnftYhWKItqpqgLrZTyTnZJ+SdiL0EqQOHSQtiSrMD/z1D+5Nz2/g+Txh9gQsVcT0CCOOCFPKMHOqijEYQsFd8Hw6bAFzODTCn4k/YU/gH99PfNsJW0887RnElwBcVfH48QMqE0MeGDoADMw5cRwCV4Hogq9vTADiBrUn1E9AgWUKdcUcAhGDm+KM8RGN9RxDS885ggx/NWzh0CQlC6CAjklyrgvGmAS71YEIA7fORcWHGr0pGQFteoXKOU8C7IjQGQzzsHi2j4mnGeYkWYnw/aTFtyiOx4H5w/HX9/+GfX8DzhBv5/qZ2DjPC3tCxaF+hGwikEHFwhqhvAhkVwflHBLOaP2rQRAmyYlKhX+Y4QjClw7Bir1TUh4ACRX0UuU4I0SZL8N50gORBAF6qNZcdQyGbDNhmDwznLZikhu9Ii3Bt5/4loFvGTjNYIt+qVyonHE4ZRlNkpHimBMOkvWWMSzcmBF+T7hWx6GAKwYG3E7AT7gZhirG4HvHQa9jHgqrES4EzYH0ecSwq1vZnutQXUKpYPAkgvkmDWuMG6ucez/XpC16s4SQmOUwPhOx3rZcFDIcNqG2qCLt0OwkgCRjeCgnVLtaIAggoTS7nCkCkFgPdK6nA9ieGlud2t4rIlWf8grg+9lfnJz/YUljDXfqiOf/S0GS++11946/BSGze90B+FJ4CHWevvk4/973iczKW35ZNL+Ser8USlW+VN+nBydpgkD+67YPzpvkjAwhnW3O+0sR0WscowRvY5ohd5vUtuXueDct4oOQl2dgJ8PvFjnDuJRiit/nXO/KbbS3kP3cyDypiZQ3/VakHmzS/7tc+7iXUUM1wtuT/aWey7vTXq5f56fSy9tymLfnPBqaMnCRxm93irx/1FjWy+9k+Zh7l/Z0GkprMxCOVd6Vt2Wk98T1nWM26NKNUbTEPiM183qtvf2dvzf57l2xl8/6HE1Doeug9Z3zXbobILzb4bwW0v2ZP5krfSfy20O/rtdvUyzBf7YX32Xmvqpv2VX9am3+cWXerYk/e6tX6k9zuWwHmdO/VPy/1rI/z2/3Iv/9HfUx3ogH7lPwXbk7v70+thewvm9HDhnGMt6RKFCiXA1ZYZ/t9FyDFUSa5QDOixfrumqXPCP1XzhF4n/mkClY5lAzhts1x3N5eENnOGreTySdbGMMkv7FU3YSiE7MYViBfbmfLMSc3tZjsppIhOPl/WSv+97JSRKyy/7CpzzC7wr7STW8gG9yeo6DY8AssTWSpNxb6DPd5y/3QJZgBrivy54zdFymkAMRtk8xH4LlT3pRcoOvBfez1mfKCXtnjVmi1Sgm88I0Kebts1/amDLsG/AEJcWBCEkswvDVSBwiztokIjnKqMRD1i4vSxJVkd7/YZDn4aWrZAyFr5BNBFgSnmKdspiV53ZWvGQvoWEp7zyDXukNvM86sOgwiyG0C4sThsbzBQGgY7S1pOGxnx2tgRHzWsq6Xkhq9z1MIn9wjbGvsi+CHIb98GWnEGIClGX3bl1rP/vrImygKtB3o732/TJDrt/3feS+97yez9fTa8sW91Sl1Ja0hR5nt8RZ8988Az/pkz7pkz7pkz7pkz7pkz7pk/4w/TFJaciEYEBg8AAEGKoGEVN8kaBDsxtepJWKu7R8QZAItrUMkRIRgg7IS/NIJQNJT2a89BpAd815/RYrsC5JJIDCxGipnySgQmQ13D0b1mmhB9KyWOKFl5ZHGp6g1loRBkyinqFYEVr9uzNKSXp6gBtWXlXDw4K541yLoVh0YijgwpBs9P4QbTILj85EQER3aK1SpsfVVQP8Wfll3CgVUoqGVPS7CGDSAAk+70FsEowqp19DRUeE7YnmNNSxrOClXY8bqcEMFVrlckdvAHL3SAB4EaHyO8kpkoBOYh6RaQ/XsgvJMlNBILTsci+CmQeAkV4wIOHq2hef9w0c7nQFATi/k1wU4yIC9QxreGtbuvKGbOADW7lw7fkNRuwxa/0PcOzk0rWX1AFsRzUakCTjYSMqSSyR6GtPmDXBKqnWJ0i1rblS8fRakwRnuV6btwTZgEmqmDs0U5+LVF39lm/20WU+db5LjUsW2fow+q0P8UV52H6T/u3WXl6UA7WiutYnBkAU20vV/udSTYn6Jc0m5/2lMrL789oP99RgLt/56m8mSydKvSq65BeKEL/9vM7Rf+btqRSmDYoTyfI6qe36UgJmDVH7ZRkFzQng5dcMpThN699SGsiofqYnH8MAzyyLEAWAxnrwPh0qjIDAMQbLHaoYxwPuJJBQoQDAGOZMJM8jDY9BCGA4Q0kNnn2LVqpDAJ301rMW8P19QvQnBE/IUjwhWM8Tz/WE2mJ/DcU8BOoTj0nyw1on5vGFx/GF7+88vwTr+YSvE2stDGfotvRkQ699FkqF6Kv0lEOT1gCDUQoLEUDCbFeFYdfGeOBxfGHoAYFgjCO8NBpcJs6nwzEAP6G+MNQZxkwfMCyoDsoEMTfMBN/L4faEisGxgOfCj/lfHAcRer+KNg5R/NfXAXk4/v6//2+s5zf8NJzPb3rZc2PEBCWIrkGmHuHlCbIgE5BhGHbATwulDcK6mTuamXMcV55tjinAGvQCOYbgazIs22mAnScUB31PucP8BIQE2GULaz0hQuVQrhE4h4BW2wITw2nA93NB1WitrQpfD/x8Kp7nT9h02IxxMlq5CybsBOx8hsLn5K6sA/OYQSQb0AiptyYVFscAFhZOB/AYWE+D22JeTxLN5jFwHAe+1wnVhedyrOUwDy+QwlBxgfUDoOV1Lm+psAMxv2LNbJmAnu485AdVIB04ugNDBpY43BV+SnlxEizYMHri8SCl5X5UgHyGlLW9X1y2o71XRSWCO7Rll63IR50f3VuTS56jKFmKT13D3na1p0CKrG0RBuXCJMknLwfif1Yqggc3T2Qoj21pHrJ9jG0S+dJjVPd808/r+jfeK7k5ZYnYn0KM2SG98ryu84CZaBAoHb6JxdjyQp3dGWI6DstUdvYWe4x5NTvmRCoHuZKFhMF6z7Fj2nVVU6wLUWzCzyazVS2tCiqRqMstve3cw1HCR4XHQ/sszspypClN1K38G/m7T0mkvHalBVyIPlJNrRc7aaa3ra+WKqsqvst1bEOW3gldstwyxauQtPt8K16l9WIn9N+qFPPtneDVJE6504L2/EsCMO9xWcC9kByeXf+d468qdhu3lMRewrzcOiKrdcuI+51fnosTuub5hVVVbi+9CcF76H6V7h6Oatt7aeN13l6MUbJuvxAbyxCnJq/cXmz1eJNPvdHaIi9P3D69nS1++/1yncz55/cn3zXoTVnXWv5h8qa8f1PJN+lVLO+N2Ht1JzNds/x9HS/716U6fa+6Trtrf+Rafl20rMt+P++6lyn7Ls/L+ZHfaZxVHvt95ss6dDJC5rO9uVzPuDEmIJNk6yiWhjh9HxQIrMranojiLu9eBhaqWbbAluN80pvN8gVAt1fTMOyD0vPn0PCTqnG3F4bYVUIorSwJY7wI6VZpAKBHpj2ESaiJMZEk+eoesSKDCNKb0xiTYdHAMMxF5BSJe9yWufg+w7nm5+kZOkOUmSepBnEXjHJHhgP2OhuHkBg1BTjPJ+w84QtIT6eItlAGCdRMUJhizr9aV0GaYmg4CRmW9aN8kbOKs2aq8F4F0IgCggUaerDPRvScxjix1GX0drtDv28poWQzUA4zdgpUFTJ4Bz5PwUkXSTQOiHPQw5OTuBb5PsnYIlKhAQEpgpipAR6yDwZWjLkth6+4U4gzfLMIxhj0Gq7GZy1MNC3dpke9ok6Wvwu2x9MgqfmefEj5ZGMvMTbaT1X+5JrgfYNya9wfAlcsA8QuaxSugcuecxHZQDm1znpH4VSJj9YKyHPq5ezff9ZaiE2sSwWt1bWZOFCGlE0c+Kd7/Sd90id90id90id90id90id90v9E+mOS0lQJq28BdCIvR7Q2X7SeqtsUwsKqqCz0grAY9x5YBP/RdAS+1dXuvJAWUFNKBUd6ZlKl8nEoynvFOk8MzRBwtN4C0ouOMyQPItzIBNbSssqnFwEFhF3Cex8VtQk0i2i1mYQXAgQLGW4uFIZ4wiJ+vUuASOEa240epXbceSlQ504sYaSSQf1XagVARasGIJCAiopyfLDD1yHqm+BZhTYiTMHfRFBemJAX1PB+BYZI2hGRHOlRh+9qc1e9r9zuHnywbZXUQ0PdSQXuJGwlaOTRlgQaEOHSSDrbgGCGfNueTwJgTyAplD6qI55jnd2oApOsSwecscGNF8JGAAd1gZcEOxBKV2AUYCBwTQDg0tpLP3RL8ysAz97vxaeV2M4pgIckMsX3nUzmDXyofKV0qtiEv8jbV71L8lxXdLJd4jkOASS+A+6xx7nmR0Pa86lyUHEpqYG2YoXSlCe1UqbhlykBtw3FVKXqowRE+zsAmtGqE4Rt5LsC88qtul/7HDFDPEHhAOmy3fG5tLG0qBYzpmIxCXVVM7+um4t1bvs9wd7rZzFZX0g/G3ZLZfsF08Kuo9z7Mb+RRNFe+7rqK/Ffgvyt/K38zP61pjC85iXZPy+w/n1+5ce5SP2iVKBXO35HQqwGkTMAP9Hi38gQ6NTYNxAgLapnpPZ3ApVTFXPMiEU2MOd/4fQA5N0xx4DDCL4mcChK8HVqeFOSeD8JggyncBzAcYBnEgQ/fz7hYJiBgYGnD5zfhnOdeIhDHwOnG+RU+NMx5sSJBZmC8QDW+ob4X9EftCq2J+vymAfWOvG9FlwHBIvKc1HoYEg7nosCD+A5FSckJwOHChwnFrinz/HAMX/gMf+GoSELiGCJYo4BqENwYoGWyIx6R282x8ywWZQqvp8LaS/tQYBaTjKKyoSfJ/QA5gig1h2HKKYq9PvE988n7K8T9h2kGGh5sxpDgDGgMnkuDSfRyenhcMqEyIGhChskKElUzkI2OF3oTXFMmC+oLEycODBgh+JrCOQY+Icp/uEBrBvPEwkPRoYTKgeABbMIX4fBfo75OSEYQl9+KQslofxv//XAfCj++gn8/e8Gg2I+OL4HFM/jwOkCWQ4MhzifUXwBcMzB/nrMgzKXUH6xDGfof8MJwc9F8t2JE+fzJ045MY8DP74mSVUK+DOJulR+0buRYeEkkU4BXwYxhuQbuTdEOAuuUWDBsZI8neE6Yg9WN+hwyNg25IBClmEtx5wTthQmZ5yZHO/0gknScSivksScShsFv6sdccsHIoLldtlexTNoLeuc5A56zMwNMT0pgh7XYl/Z6iuWI3UWSyg6UtEY52gqtnzvdRWy6j80jahzyWsxvyA7RLKGduimfuFvQqJ8ypb386nOQWCfMbnn57Ui8lXJ87gZTEgSj3ZeFO58l+dNRkzPXKnZyVOqZBavsuI4vxGH86wMd2At3LNBwmI/+2vPw4uM2u5f+UvKFf3kz3O2/m4yM2u+yUQlqfWzNRTc+7N8Zvf5ZTSyDzx7JSq1B3bXF1uSeC/evTv5443LS9JkE/yiHe/Forc1KFJN5rHzll/UtmSnm1ycn12fu8pQuX9p9FPK+jVxsesurfi6TeQ0RI5jPi8t91v/3TsGKQemLPi7EclCX1vUGt07pb2999Rq/02+zUdvvXiVJ99sePt+3Xv218/3J/bu/zq6/Y4VH1y/l+u4XIuU3bFt6r7v3vf5Z03ftaDXP/+uVVN1+hcOB8HeW377zB/kc/3llq67/F6Fbf9uz71kf1+y/6Q+2Sdt16tvaoVcut8vGFdfNXW21Adp3NH2DAGKYBxrQYIsk2Vwz09ykdH3tmqQLAGER0sdXh6CXBzrzP07J1Sep2R/u+VmJxCh30oSRoI4IcIQn8vqzHQw1JhHGPmpSs+SEQLMwvM5JH6CoX6TXL2NZYjXYQg9QIU8VeQrcajs9ZCGTQBggbNlF/JotDqj5pgYepBA0+eJ8ChlUDzQWCDmvYcntyTNsM+9yO65TnjXDwzEAQmjR82dQejxR8zx/Os7vFuBHgmj3e5WZaRBZBHHYn4MTa+S3LRFEN5R2WireTFgBU6QxD0BeLR9Dt3kK3jcIXEbi+ghkX3OX4UDJJRGb69a4fzGUBzHgIEh4kj+GdA6hwIPFMeAA24In08xJikva933Ic7wzfB4X6CuEap80cBAuGaOMbaHY9tyMvNSiFrDZ6KtITdzeu2dca99wMM4aJ/nuVbCyLWMWNlXXke/g1J+ymarnafXfucWmu1sZ19jUL7iZPe9vGbnZae87qatje2LLd82A4/L44l53nJ85+nskz7pkz7pkz7pkz7pkz7pkz7p35T+PNybahqowEGwQsdgyJInACjGdAgWL+lOsgyVXrQEmmNiJMgQSibzvOzzcp+XcDcj0cl1X27BMCEiDD2jGSvDGYImgSSAiksZExlD3R0kFoQikjfTfVE3d7ikCb9DQmXE7MKKyWi1TCdLqy6TOrSsvwSCiS+c4yQ5yg0iA16WQszd3ehlIi3D3BiepGKcUzEnRsBiRfxztsXifruB0vTuYQEG9LB12YZtTRoQXBIhTBi2Bw7xVMjzgm4CJCAieTEvsCcu8UnIiP92Pb36UKFF9nC3AmASSGcVExoUhI+oQBukyAN1RY+wSGkxuAFJ4ZTY5kecDwHcOeLC7tku7HYRNYLn2CPIZQXmOBDeuzTr5JV7YIMSCs5weV7ziQqwa9A5IL0UdSWAOIkMV0zgDhAIFV8xhxJg6KQngp4REij7pnpwW5HV3BW2K0EdNi+VWU0x1nGtJEHdQfog+CQQt6eN1HpMUPdVgbPzrXZ3zWJ96rV+i8BYiuNL9XqvYXuyAHaGWihx1jMrIxAE+gbcx/rW30hcO5XEe7nkS1HzDfpwiqbik+Oar0gApZucI1XdnXnv97AY3ChdVa5VaQNdb0llVsD1xja3uqYUY9VOqRw35Nb6NlsjqdSNcfL2nu/1+YqF+WWfaKszxvMK7FXR0Wc1JrGGcw8oMFwVGaJMq48idICSgWJu4Qkv1mbUQgIMJLfPoUNp8TlyvxZ8zQds/YTLoveZBZymgD0BGSTZ6IQove3gZEgEF4HgwDwcCsdjOkQNz7VgMui1zQH7pnJg2cT385teew7FCKLL6YJ/nAv+fEKG4CGK8/vv+H5mmC+BLavzQ9wxhmN4hBQL9zRjROiH9LaQihdJQoEUEdh9EVwPAhFkQOfA8eMHZBxwkTrrRSbP8PUNsbPGyKFwH7Al+H465mOW1bOLpa8Z7qvhBW+EBydbJ55/LfgYmIdCBjhmLvj59yf+/v2Nczl8PSsUKMnDIKnGQC9XYUVLq1+FjgmRARhwepCTXTEzpJdwLasIbEycz+84oxYgBhlKr0tDcMwH7FSsI9ax0XKYhGkSZiz+h1QQQeEZIwEAhgbR0/F40PORjgPQB/QcGAOY+hNzAj4G3AXLSIab0f9rWFjHRxiGOC00iGOnO0PnKq26HwCJ6aKY8gWXgZ/nCciiMfNgmMLxdcDNsJZhmWCtEwKDYmEeDCsn7pC1sJyen0wACbGIXJUBjLT85hqeGqEDEZ6rauk7rflpyh1hJ6hRsPAaxfYxBAhM4UHKHZGJAaHcCfnH2pkR58OVZMQ9JdQwJc9CSFJLb6B5rohQpuOcDfvzqC88QhLnnpdnmOy9T4ShWfLzTdZN+UpKrr2fDf9JyXAjJTuaV6mwtBdAxBoRLZWTus8R5LYeZ3ccwioSa4RyiHuOVTtnkGMe+37KiqHpil6us1vamKcyh+KxR5/vU2HL23m+bTk1j1xLpViFCPSdZxFhKMPxjIpzJ2WCZllfdY2fRfLwnCc972jfjTzdROhS9uW5XXkXtyk/k/1S+2pz5JoglvVpbxRnptX/epJL+85fvt1veqztPenTU0kIZNc8Pd/acpJkiEVcKlXjlYTzvA9Kr9rtHX7ie43WcCYB7F2bN6muSAml6PQtCyJvC42k8lp86+fYZ/oAXx7fI8Wm5DrIfFq/+2VUW1l7nfTKvCpDgVaRW913ru+IXfu7N1vby9SID+TaNbcueJP59Y+Xx8q1RM/wPu4vH70vqFdKXr69dNn+pFbs7m7kXN/bRuvJy5roTsauxd7Wx+13edeoX/XhS/KXcbhmskm8dyqcv47ca/mXR+T1+zcVzb22r75Lf/h9b8oXb/O6vc9/dRNAWuXy71rnjsB/pJ7gVsRCLQkmI2QGBdIbMUNP87Rht3kYWVCW532R8qgKypNvNodGW4vkGYnQ24vyl0JwNgMKM2J1Y0jNMYNjuePbgkQ1AD9PwBc9P2snvEaZcb5RjJbq7CQG152u5CQgWDCAWex2DsP2zq5CAxIod+4K4ZaZmBGLNN9jGd6kV0T8TcOv8qMpeX6HtB3GhOaG8wRsKcYcgT06PcebYy0LWTPwGA5tEXEy9DbLsyLWEPNL0vnaM8U0Ide63xroLRW2aj16u4OJKoYPvjMofyLnCWI8QVkkZUqrzg7BRDcpDErZxGXAMSCmsCfg6kGeZX6nhyfgWFFOyRcSuGiuM/Yl30k/RgLZsrekjCK8C7FhgKC8ODFUoRNbjrYhjOYcKEJdEfilySKejSK+uGWiJO+0nSH6R4R3lAoFF3PrBW7Is7ntvZe9xGPue+5w+3yvXcT37vfOo2DKcUUqv5Wz97K9u+fuv/FbtM/6nnwt8M2J9kmf9Emf9Emf9Emf9Emf9Emf9G9Pf0xSSqWCBiDAy5hiuQE6qOQa/Nzyhh6ANl0KL7gvrLj9dGVMXvqoZKHSyAwRnsFJ8FENMCGsh5xuqRnqxHCe9FwkKnUZJolmUjG3jBbzorC1QplPwEKiDjCFDAH8JICEIN44AVuVbSEV6AlRpCBo2ToJpbhgjgNrLPh5llelBLB4lw1FTCi83R3LnkhLI+I4EUKvXYoTVFm2SSnWPICktY4ilRq8qGY4ve0xB8XLuMKhQbyI8cgLPC/5DrplvsLbCQ50sgKApsxLgA2V9+5Db2Vu19MGvVzUJZUJQkX4BkSwySISgE6CjwngZh1ScZPYh3frIWzlV4IRDTxNUs1WGuwCtMppdlOlgNfUbQZoeAPfd6WvIOtG1bDfzqSJ3SDR356neVqZXdRee7xuCrTuTr7qg6zXHfTIZ2qYCyR7p1SQl3ah8vG3zwG45BPzWQiS3uGSyzSKvGtOJ+rZ3qr5F7NHa8xR6+LWWe39DgclWSdHIcc8f9/zzbPcS+1vEFMvJkf2zVxxNAArQTZJxVevfBsgRxlC9/WSX+eQX0K01fxtfdf26l032XWP/qrur75prVVtYWS2srfA+mhL1aX3ugSE67gsm+rCG+HqDiSitU+A7ToeWgAiyVxe9RhBUlx2BsnBAA24XEaFivJlOA7gMRXHnFhGstAxJzAnxnKsRRf7m1il5boeY4RldJxJCczm+QQSM2wZdCimCHQMnCfwfJ4YY5IYdJ6heJj8bwEyFc8lwE+HqMOModRIaI0zz3g+Zr8JSBweKvAhmDpgdT7tOc8waMIQXnB691skrLgDonxXVHDMgTkVyxfDvanC/USwSgFXYCkytATBdBKO6UKfJ9u5FtwGz+VQyliGIxDBWgu+FswUxxzAUBJ9n45vPxnebSHeAexk2eIKjbGFZ/SxRaBagWN+QYRCzlonDHGuC6Ar1icHjiO2njB8Q90hQgt4cyp8ZA6ITqgAx6GwoVg/F9x+AmYYCgw98EQoFSIEoMsm5Q0RiEwIBIc6jkMgc+Ln+AHgC/pUfH9/w1VwuOIp7N61gIFBRVfMXxOhG6ZFMpWKQMYKq3/H0xbEFBMDLoNkvCEwo1ek0Ggw3NqD3r5MqPAyO0leM4P7CbPvWMxcNxpekswdbgxVl+El6OHqzAMb5ZlRORdIbud80ZSnYszo3WjLXeWByGLeWJIMlQqtUADUGdHeyWOkCM5CmaTkhfAeoJJ7COoIQq76/Ky86qSqJj1ZBgFHLGgFgpTfLPIVR1m6dyLJVmblHo//P0ibYAxIkMoixF33utdku5Qd+IxV+6/N9XaebiLxhXwUBP2UAVgG/4NnuM88W7coQM8XMY9Wqk63gotnS8ipnntlGgxcDvlqd7pKyPMPSqJo94yRZy6s9VHmJSnrxZmduVfIkfT9EE9YynxRV4+3fJ/x1mSXOsXbBHshBbdHLqLeHgbWLfsyH34VGV8zvctKaHO8yQn356+yyz6zUm7YpOz+/s5hz7n4PGXmWn9dut7y9G6T1B5wIUvn3/f2VF/lvpD57xL609mv3srsNI9df2/vXXvrnrKXLlSRek169+6vSxDD65f3dN+c7p3f65Lj473eu+2eGfyyyC2j1/pveW95933Nkwh0/Vzi/1vOfdspv0jXJ3//nrw80mf5Lyv9pjtfdsff1EyuH8HfKszfZPvb9NruVpfLXvLulpT/9jtUy7HdXy9T5W1PyP0DvM4hedu265b3rq/CLkfa2txV5PrWPOdyr26kml55p3ehoTO8DvI8mDpI/oDDbKJose3e0PfnJGry65B16nupcPJ513AQW5I81aKeSXwuMkYYHroZzAQqC4mb1L5cIbHoQVOQXmeBxN22Z8kgX0T/uIPYIsDn44zcocPYBu1rou7A9NZJuz56Hbc8CwX1bv6PXBeps41DEWCmypaT1Umkd0EZOZqXF/gkxuR1pvbuXEc1IbLPU8aJs7owNM71JDGjxmoBYRghUHpZDcKRDI6/g7+rM8ybYdEIEWGAJsrwakjDoL3LaYwLwHvfVHqV9THgOnkHOcNIr7whcbrSaT3nRR6wBR/ljNGQz2u6k5S/PO66FT7cEdcsQHgtyRXnDpit6C+PdbE2ftHkNjjDd5d0Fouy9v0ky0EaqXqfm1KfOfI83vM/TsowvMqOKCy5b3iePzLD/WWd7dFncr84tFT78G2/LE/f3Qqt5SHt34vsUPl6Nfpaba+6vZX3PumTPumTPumTPumTPumTPumT/ofTH5OUxAKAD6LAGAkQCJVVsgJEOCAWl0bxCNkCHPMg88gddP8LQOgsl5fMQo6x1kkvEMYLIN01S+EI4g4xgyOUmLZwLgMwGOokzPB5P+blnBd4S6gkrl8M9cMo7rQgyotgKqN6LHve/QRm9K7hAfykZw0ZDmQYEnE8VMNvgJUFUAJEGt6oLIAnIMLSOUGWVNhcbrseoUmc1vR5zU0wNq+VaXGbSri6rAot4ySBIsQle4Q1Xaj5SMayGiNiTh3I28q7TdTYlj30dpGkpKzVlQyTtoZeSkCpPq/8JAIGOrDDQHmE2kqihVwu01VDqS6r74o04gSFND0z+bZJFqTl3P7M3WipB0GyYhyo9lAB4aUoZz4D5X3BcfOWzzK7Iqh/VUBW/l1tS4Al4/14mx75SypdEzh5VZiixgOVZ+Ia2WPeHu3ENs/11J/BeyDD2nyvtlXzWL9LmLTLPOi577WYJLMCjnwrIXf/IeZvelpI1MkgSPQLl/peyUDXtvNXR9lbClCkuXy3tNi7YzpJ50XR1IGkVvQ9zEXCY1Wt1AIW+Lzn8yaeya5DK6+ISn5VPFwVZvmQ3DLoz3dA76YEbn3oUd+tUHW8pFBSX/RWrQ8416zejCMC6R0s3fbTrc61spvoJAFc9mJTKd0JAps8RAKT4utrQkTxHQppDQKHWYCgMRaiJLyUa39bOB4HjmPgKQLohJ8eJKOBOR3gkYmhSThViH6RiDCAOSUdBcI8vC9hYurAHAeAgedzETw2B3xhhisoF8H3YiizI0ivaz2BxTNgugOi0DkBE6wnvRGqps0zQ9d9HeEFbwkgdO0/IICfPDHDU+DTDWfs0wA9PAESHg8dc4BhyRwRgIFJh8PWN+AHYCT3ihjO9U1PPrmGRKAy4AvwE/SyGN7E1gpL3zi3gCM8KQ7ocWD5AHziNAE8ztaUB0wgOOK0swqrKgiLZd2SQhIZHCTbiND7EC17Y6zGgEGw/Im1TsyhOIbCTbGE3lOmprU9oIfiCwP4FnwrQ5lxW6bSSEFZa/B4jvCunHtU+ExMB34cgscBPP72wDkfWH7gH2bAcozFOkAMcypEFc+fgIKy0pz0nOhmeBxKopAAxwAEC2MOLAw4DiCUHzInxox6YAFYOM8nxuBeuM4TvhTncpg9cZ5PmJHIbecqC31zRSqHYAvqK/5MgnV6D2CfmIOE9fSSE2evplLCwjuYOUwAM4m2xdNOol7aEo8QudKSHimXILbaUGRwz9+bqNkOkUu9TFqpUyaEreZhcjcx7cw39QBFukwPmGVRHXuWe4ZnFfQwXbm3Vf55DqARdf9DU4bNyb0Z+VeQgCS8hUp6iOpnS5J/mqy0M0bIcynwNBksxejcp1LZ6am08/BmEQopA0S3l63s4xAwIv+KFXLt7ZK3fMvgJULnPEvCf3gLrXdZn31exR7UvWSEPNsbvkXBnF35iVe/lNTi28gBQAu7i2rrVTCJzvXbg/3rJhhQ9lUkeVv6c+23LvP/2nPO9e3ymoU2de5Vveaw5fR8p8umt8tCSg3vSSzeumCvzxrnVlKOe03DnUOWcM3jF93bpL8ql7k0ea/+vj7TJNzL7+96es/NLbHmPvS7rWQTDd9k2MVKf/M58Nu8K/+27igv/kKefG3QP837tWL3WXqt9EVSrnZsmf21kJ3R9Wt/+f4l/eEW/kZMr/r8TsF8HYo3g/LPwry1R3c23t6TPa9fsrrP11/V+U0dLh+1zH8xL/oauz8h90/k3YNXo5SXOrkXobvRBPcdMM6aEV4m/VyV7y6myQSigFrL3updC+I+gAh7FUYWcU6q0NCCNWmhtkJkLi8z4VVI8hyDlMFb3pkF2S4JDItO1Te51eAWd7g8v8uTUp7TfFZF6CkWEqQWnu9phCEg4UckSFzS9+DYS+MuI7rrIXG+UfZypFdihzC8Wrl+7jsc9zh37MMvvB2ZB8E4PDCyXTP6MO4kaTiBVk/he5AMjeyAjMgjBE1pu2vIGVt22x70SlaJ856eYg2qJObTGMPBMLkoTIb3T4UacK5oqQ4kQUZdMCA4AcQlDQGjxTbPnIYAqo4xBzAmlg+4ACcE4uk3lGGZTYQhyiGg01fmsQILRcilQ4IsNQSQwX6GElPWHF/2z4LBZCE9irsRH02iXN4fipiUWFvvu7rLcZ7kOV3cJCRhbo8fvIYpzu19yuY9ocrsM6rLqG3fkFxmeT6gyzxxvhamGPWVFE9uB4df5agtaWRhbScXuT1X3+zfLvIO2ibZ05ZD73ePT/qkT/qkT/qkT/qkT/qkT/qk/+n0xySlkeQL4SU5rV9UZwEVgEXoMAC+oBEehZdXhWCGgdMZIPOiRXt6sAAvTCosIC/5vGQtaHiQUT8hvojlH1S0jUELMMPCoRNDQe8OEX6GSs4ImyALEYkNQIJiBDjcvS7ZKgpfcVF2x5wS3pik8hTsUBEa1vlUKnv1m86J0+mpIq2yREdQpQI80FAfeF6IDSNuxune2JEujgk+5eUfoVBPD1YJgtBTRVr6sCgdgxd8ieAZcWE3R8SGJ0kHWAR5OnGkACx9AYmvSg2/EJUAhNeq7T8KAWhlSBSOQ4BzSNAriToBXsEhOhv5JS2OEfmxbBa1r/DmqDaUclhkA6kt1Bey7xCKatmf13dJzGjz4A6sdnBtK7ey3aCiMoG1Di5UO6ItyH5tRCpJiy3ffesbVORAbzDuDpyntwZU3ll/DavABvrVuMQ44H16B4S/fObZijshrV649N0tt5h3ez5vr0gvjxYoWYStqE/DKl/quccsiADAC2iTWedobAXNVkzlSL9LF5CpgKS+juT1+T6v7vnkHEAbG39ffuX9Mh+yu9jHXgXkjtzH6EpIuv/MupLQyr83sezWtlQQev+st13ah34B/noexO+6v4hdH1WNtYFaq3HK1Nip7Cg2SahSUcwxcIyBlfPMw/OOcQ7nOYFwh4/pcB34Xgwx+rf/+oHjMXCaYj4OwAbEvjFh8EEvLyKL5FYB1mKoOELARvKSMNTnoRPQAyoOVccKd4ZW1quhZmAMA8gYdIojkx6fEFbTOrBO7j8jPXZY7JkD1X9QwUMklB1KApIFQLz47ujDJwx7yrALggHDmOyjYwiOyTMK5tDBvWstElxIjBVgKhxnnGdfgJCMKzpJ7AnPNWPQS6AOifAPI4hdC4KBOb4AnOxXFYZnGAx/BxlYzzM8B2nUcYZiIix08QTs5HnVSaeG8M5jYfScSoZB5QXyLCWA/mNOTHWMCaxlkAij8ZiDHsVUIRhYJiTeqEDnhOqI0A8KgUFdMY5HKG9AQrY4ZE44FIcbjumYXwPz62+APQAf8LGg48DwAcHCfx0OH45zDMAEp5+ABeF8TNiZ68Og4jgUOKZhHgdMBp6mlOPiGQA4VKBqOHHimMD3c2E9DXCSS+i5KKzO18lwdu5B4EEp1IpUDgGPJoUnQUxSeFEAg+EiIkSjLYYtgVH2dI/nhN+ZA3YuaIQhydAdDBxyPaOrjNTExZmd4bjo0aorGmJfqA0pvQNY7BV6IWB4l5GarJFeBdivGd42yXCpxHg9C9D2OXFUCA4AocD51Sn0//tUZM7c5aOfNLyQ5T/OSIeUT/kmSo5Cbu3d8xpKwXqRC2vgEJ9u9Y0gJU7mLxKyH9idm4ze/hGJcJOR8rwLwSnnRSq/cn5xvCLvIER1bxiCPcRsxiZop9culR0JJ79LEbDE1duZWXXy/NirS4DMbI/PZX571qURqFtndk86TZIJhWOe/ftuA8EOgXiXf/uU7eMVfbEfusom1b+9zdkONHmt1t+WpGpZSopGUh+8yOJvhDs+o004Kxe1t/58baPgzWclpr2u34sYdSOC5Hy4ymuIO8Bux27hbdDfpFKutn5499p9utWHTeDuXVdZXOr924q0bN/0i+wVvCeNV/3fZlkhkf95P/T0Tr6/e2m6f/bnOe1vLnX949rd3nvXVy3///MTIjYdv312z/1tQTWR9yi0PtvGH/l0yyTuFvuPneOe193QR259sdfBnnxSVXJIcjjuT780ptZ/1SuJztcZL0DzpOzt3dz386zi6SO0esCK/XqOgTFpRDBUIUcYD/i5WxvGKmNI3BHiXHEanxEH4+caxJtqn1ePbTEl7m46IiQ2mqzU/jOK2hd5qM5dIDwssQ60LZCIxuphOBd3kC6Ttf7TPIeFHoiGCnRsIzMOY5J7O9bTw7bFPijpbb0Ne9VdaUBoAD2KUkbnGUjCjKqQaAOBizJUduQ1lF5bEXcVnrNxOPsC8oznbGCfe82AmlO8d/Dv9Cg1VDE0PbpvkrJI3K1EtrwggKhgeIb9003eiTtUrosyKBTe/xWOAYYM1+MAoBDT8oClTpxIxSjDiOCE4AxjzD1W2W8cIxV6aNIkvYVhKEoWCOMptzD2JIlo0TIhKx+yUNDTQkbfBkkpK3iI8NL2ipzrSRwnocscYbggDN+XayEOqMy5sA6zdn+RGosMg+45vrIJf9djOfaiMkLtKeUZxz7Lve4c9czL2SL73xIg96fXLfp25nX5tn2z91vfY/NJn/RJn/RJn/RJn/RJn/RJn/RvTH9MUpoHFYG+DK4KjcuXxuWYeARJPDoYOoUklwmU15v0PgQgvBEYjLHGFy+mQLoS5lUygr+FK+iw8lGBOO33bVGxEbgA8jJpAdAgwADWlQCJGS+lDFMiENPwmMDbvQggesBOKoTdFxSDF/iRrqMFQw8kMUSjD6CDalcPS7kERZSgyDpXeENq1IRQBgxlPwQsg4snHit/TXXFTOWdg4AE1gbVaWGHUvxYhsYgYgMgLvMR+10TzEJYF7lujDlSAkS8eG+g7T0CebN2vd9wC1T+BdEEQUqSDSiwrak84u+CbYuX4eJYwR1iQwqg8lK8CJoyTDh3JQdMElDM8HMJBnmNy0WJU8DCm4Yk0NpwhasipPegFKhKUljWL0e8KdwkwZnMs1CVUFjlmvRewGVAK6v36oMAORLAsK2kaojLHZC/k7UuUyAB2TdgR/c6tLvu/uAGbhLCzIoKcAFualzqM0/cusbul8kb3SWffZnvOSf59ztL8nceoaoub9r+6/oEsJbg65uqq+wwjFWrW74139GJczn3JdZkZrAJb5sc925MLi1BB/PealraZ5e8vJUUc8ylzRkkoTLbGEAwtoeJiIoQ+7Dc5n6fGxnaIADSQop5lmn2M4B1niSFlMIkLFVF6enInSQTF4xjQsYBs4XHjx/AEKzYv48xMb4E9jzxfHJf00GAWBWYqkEiCsKRkKAy58QRxJUcGwGtVLcCmXUzA1QHSUrKOmoQMujl7YAMxbks+ove+jQAbZJHqORwEOSdU/H8JuBahDDQknXBMRkDFnMMnOYMr+AM4ZUhJHQIjscjCLL0spiAvbtA9cCQAfNnkHDZ0DE0CEZHnMsWhLIF1ckzWyfMFc91QkRxjAmYAj7weCiOQ3BMxXGQ0PPXecJcGZ5WBMcjwz4J3Nk3KwnM4UpFQxYRnRwvjAhzRw97iH7k2cnz6jEOTCwcxwKGYy2GIHtMwTEE83hgQbGo98D3ADCoTBJxfMnEOg2LghaGMmytwnF4nGciUB14YOF/PYCv//UD8vjCOB3/1xDYPGAL0OcATHEMktQeOuD+hDk9a42Y7+SZM2SbCjBkYQjdeIk6PUIp5+ZyxVqG83zi+fMbz+eCLVpFj8EwgyR9nVinkUPkodTxtDiPcIJAeLJi+DiRnCcMBUhd3YDroLev0IRYKLhscd6VsmoBEnINyegJsodM5Fa/hy80rrtUUKRVdyhRtnLCX/b0JM+4Na9pvwABAABJREFU1SYWe8w+IwwE+CWIWB6EdIkQcZ6W+9jqA747sIWAvWdez9d2xsWGUB4J38pl/xmJ+w2uJJ5oRnpKcEh4jPAgTwNbsZcHRBCRw+L+0oOhJEzyUBJzdn8mYRpIzR4NI3yPnwcpVcDvmXPJ1qPJlbVz9fFBzqUmZYlU/l0urfB/XhJNyYMvR6kIoE6PYiEf5EN7/K8SpuddAleC0q73pftaYYh+aXPzejHApmi3M/iSkbTxQckCfT3dxaB9/2hyrW8xQtp3nXCzl0SXF69VuchiXSbuisDqULxJr/J7W6XVXml57Lx/LUP1Pqi7XD0evdxj0+BOfnpd8+UNKYWq6+Bd5Obeq6/So+yW3rOpfu7jkWORv8ddrsvk7Vk+E+XfSV6Z8+tAXvri+tu1Ba9y9jvZ/P72Xap+18N7Hr+t/+9E5pp/rS2/ff6l5H/1hf3mb6fjff/o5eWPLavVwo+PN5nxd+vkVxvOvYL/LO3n/D5Pcf0htynjL+Xwd92bSFRFcH3zWn7OmDhRkLhDvcsDI/CW1fLm8+bhgUaa11hR6CA5fgyGR15tH47THiRPt50yQ15F20pG8GiX6h6/tgcXZcI9MKLsrDirVCM0FMskOb+RcaD0Dh1eJtPgxYEiaKuAntdXlCb5ZZyhAqQnpJf1GueBA6xLnTvRj+lpEJSLy0M7NlajYRxAHMfC0KTVpeQmSoZS/UcZlJ5hSewX4Xh4yDLZl6I7JKuZ8H4ogPjYM0iy31HzzQvjSi/bcaZKoFwexHqhR153hKwu5S1+RR9bNMljXSY5zkFDhb1TyzbEiPKHCh7imMcA5oCZ45gOGYLlgJ1Gz/o6kEaFKsYwzSm75BFFMCqIW47CNXHp8pg7Ft5WDSvvYQ4M2QYPOdcbNNqW0u0cSbkoQhw66L5La03meo3z5TYmtTM5Sr6r+ZQ7W/Zprb8m31zOtZijrb6dQnvBj5pIsnfIvsdF39UruU7bW7VQdrZNoPplKnms8I7enD/djz/pkz7pkz7pkz7pkz7pkz7pk/576Y9JSqWkRBJVeOExN7oFHrRuGWOUp4nlElY3grWedfXPS9aQUbHmdQwADDViy4DFryzAZgI8dHl9trIFhukERNITyDodK+N0i4JaqwAonBbup1tEdgiSUwG4QYSJkCf0GDUBV3qSCC9DBi+9iCTQc0HARigd6KaZd3WjcgbpSYCXwbLssX2nNOMfy317XxKNsB8BTsELAOPdOZVfgEu6E88reIKODMWTJBYDlbNJOhJJwCZ8HgUgBWzFx2VaNCWLaLtIO8kDbIbvi7mnVdBdYbS/B/al3MwDL0sAqmCvujhbjj/sJT95czHv9BYUuKyl7N/PyW4MEthpYeckgZ0OujelpmcdN3CaoMome7Ue9TamEMgIpVlTVBaVamuZaj4kLJygSQdJd79nLvTERTfkrfZlcdcUnalIbK1Ea+NLfwPvsdxLL7374qro60qdrciKMHrciVp/4TbOUh9J/R1j8IZos8Hqaz/5zmrn7PuXAoz6Q3Lto9vbqL79hULm3RuizVI3gMrIaaNW0diyevcEOdNi3Cs/Nrc3THtPBAidPZfz1vJFbOXvraKRr9zyz/54WY/+OhfEneG4ZIOBu39jHxBEcMqu4N919qzHRXmUlMbspFHGjDU7gvihOgAY1lrBXSCwT+CdlraWCgdMPB4Hvh4HxAfG48CcwDoHHj4DwF5Y5088v/8B9xNmC0RhUR7qhgzMMThsxpCOAobporfCxfBiojBJMpPBbGHohIwBc6fHQdDjIYoQTHB4rWdYi5J8I8XIETgmz+3sOzOAR1/sKkarZ0UpNJYvOlB0Wth6WETT+59H+IjJs9xITFJMng0Alg2oTBgcyyP8F6cYiTEHz9UVhOI5BkwHkqTKtMJKnAQXnQMq9N6kMBwqmHGOTQGWCMlkvuiVyp+gXa/GebsgIjjmF+y5YHhizBHhMpThn2xFqLKQUdaJOen1UceAMPYdztPx8/sbz+UYYaWsboAYztg/xpgY7oCSuKa11hyMLsE+MIAkMAjcF2QAQw3/nx8T/9eXwo+Bb1/4Xw/H13HCHhP/z9+/sZZC599g+oCsifObhClVzguJ8RXZJHLyaATQAYMBEc5OIDAIngt4Pg3rPCMMg9PjmCuAE1LeKj2URdyrVswVKs+8PE46wgNVJ314kKXKy2SsX92UCJEBGQilV4RyiHmXIXYdVN7ASLw0o1xiYWVfTvPamSwxn9xBj2SOWFcgQSoITblvjFTIOdeWyZ6dVNoYMjwylXFCT1GecjX7x2N/FM3PQonmW96p/bSxGMqbzmXD/U9OKWu1c77qH8pMSBjQS0VkSVEq22teMyHOqe4dRcAQgF5noZdAkGONmtce8ngaYPAphtLMfW0fctGElL6kTvYYqy4Lp4yfc01r0tXsl+3xM/tnew5K+atKABBqVJEK25LyY/7e50AqgDuZSXaH7/cuKfvg9ZC+kIva05tgFXWRa145/6UJD78ijW9ZsETQ15q9kEG8DdGVyJ5yZKolt5yXEnRv5kXaLdkQfs83n4q35S72Rbm37Pq6by1tb+znXiWkTb7qfdR/5vfXjUCAunf12v0u+e3nS9Pi9+Y9qsZBqszL+218dl2z3u9r47c+utZPXkbv2n93WXeXU4YteO3n3Fle64LLN/2+VOmFASTtz98MQJ9ur4X+j6XX6uXG2opsH733onGZbG0dX3aEe0G3n628WLtyWwfXXe/6Bp9r6+Dy3K1z5XWUe9793z/t7yKztv9qj/FmWBKee8yvpfVae3i4poHAxHFQjjUI5Yv0KBN7lrvB7AzihrU9Pxoa5BDKj7FbFEmx792jPkmv4SkHed0Lk/SEWtcepN40gNu0F2/njACyjRvy1Ms62YqzwPsZ2M+oGIzeXUHqNnO4GDTvA1UPevHm3+0+IaA8rVIYJQB6QfXs05ThcjTD0EJQGBkcQMi8IcHQSEgA3owY/jguTjEPKMe6g/cLBRJTFSgyHnFS1LyMR9JbrwPmWMtxnhYkqHAxGfVKT5Lbk5E3r05R36hHnlP9vBYYoDSi+HEooMDphgOOA1bjaHBgHHA9GE75zHqHnCIlDEW3ek4DNMujOoeBxHoFK+MAppfJ9HALq/pu3DDmIARo+zjnmuUshGDfM2jset0Xal5XX8SEaWF3vQ0997gwCss61vpx7DPY75mjCwjp7X0fJIkv87uUouQX53adOYWbbbxkb+UpD7cX71txtgvtnC1c0/ORT/qkT/qkT/qkT/qkT/qkT/qkf3v6Y5ISdeSOAfDCGUrz5XkBVIxwZTHiQj1EIOFFSUd4JHCPuN4AoFA94B4KWwFOp342PSHxwhfx3z3CHEgCAwDccK5Uaij8jEuf0lWzQjDGwUueUQlmblTmJsDkvMhZAD1UwCdZIQhZliQZehIwN3qBgkBdcAaow0vgGZ0EMBRQEG1GKsmzA3Zcdbe46AZRyZ2AVkFJdVNGoYYEvDb0E0FDwgVxlhEko1R+NWTVE98oQI1AWXkacbrhdtBai46upECRCziJXT1pF1zVzJ+X+hzH3Y54J+Ee2YAjTF5vxwnQRf6C9CjV6uSpcE2wLQAD91DwptJIAdEiKjjo2cE8QjFh42wJjJV7dAfLSKJaVtU3ENjBilQaFNb2VvkQzc7wSzGfzLPfN1giotfXOyDSySAF9kXdM4MGPnaAv0Kn1BBtEKzGOgHHBKL8CtBfLOPbnNhz8oqTML/0UrFDBNYTsvPMUCmXORS/7HmYFdyPyCUPb3XuRJYEvtq4A9jA7m28vLWje+5JYEdub3hiRNnnXsP2XlHXwKmc1z3H7LzWHxvM73nt3i61mDdSobe5FGVtIk8CV7kHRU7huSnhxkzpzWi/l/t1y19y/WDX5aJ8T0AYtb43OBjrIsDOS5dV9bJfe+1iv6hQlRlWMjtvQ3pDNbz+OFmqTo+BqSaec+B5Lpxk80Bg+DqAH4fgeS6IP7CWwMaAGbDWSVLL+gk3kjp2KLzJc2+FxxoHgFXtJ7GHNc26nSbwdcI8iSEMzzWPgYwswFBTm3wE0QiTqcBiCFYLUFSc3gxlGAwDIxTz61BMUUwVnEoviakc0AjVeloS0gCEgoP7vkR4rVx7A3DBGMK6CL1UqShMDc/nk8/JhMAxpkOGQYdGyDcEochJnFmce2uRwMUwC1TqMBKD4zTDFMfzeeL5HfvGUCgmfGi8/xOQk4SZ5XBnuIY5GeKAe7BhKGCyoOMBN7JW1iKIrxEazIVKExmAi+G5BM+n4OkkrTyGQs2ocDodrg6ZyvBlRm9agMOX4fQFUcFjhCdEMBSBgyQq9wU1waGKCZKDzm+DLQHwBNaCrYnDBOPxhXMAz/UETsPzecJwYmBAInQF9R0WZB8qyxhWb5AIBCraTEg0WkYF2VqL468kZD/dYfaE2RO+SMY4huIb9G7pItA5KCMFecRCMUGPaBmidyvdPLzqyAAk2SrmEKOcZh7rSEmkg4Dhh41jbHFICxznWhAn0UkMYAiPUKu5VxiyDE8C7zD/iPwbwcBzJ889KNaDI5Qjm3ku7ZkMXVbEds/P6XmpwlXUubNlHipmHOmhdJ9M7cB9EZz+s1KumZJfX7TmEdq5yyzhZcwBhkYEgnCfJOYkVZN4WUotbJmSe1E7Q2NvYShiL7k7+ep77pCoJ0jPA5SLMu/y0OkA42ZaeM2IcpEB5LbEhToDc3xT7tzk6LwrSFY+3mbfSEb34fsl4jU5ps7i/fkldRmiDuc4byRHZwe229JbbexIQajPvGpFK7OISRUOqckBF1mpk6D3vKj7xa44UjlZisv8uMpshVwEsuyjvXpFehYhL1SvZN8jPm+yR+Z5Y1GlTMtXXjaB1pfXdBmlIP+0m+B+w5ts47fy3+baKnf5VOrV7MfLanQUmWcrXntWbfCzx0qeu3aSX/JOBSzedcNLupPDUpbGy2evTa2y2mf83C5yor/5eRuRexb7qdt6xsszbf7l3P6jbdqvWVYeRa38w5QbBHAfxlobRRCRqN59X36Tq7R1FO33+vda/m9y2VXZI1WzRu4j0e4ifhnP17omEfHS3jbfN7Sybwpye+7+515u/e4Sq8mva18Q8jgMzc4jyC9BXlKSNFTo0VERciJ4Z7HENCBYKaNZGBjUvdArTC3lA55ZaGOTmBW8G5IkwcfrUZhDJ/GqbItEX0ufKwAUo/rP404CocchxPMDhHNUFAPAKf28yXUZ94vlYcwXA5Tty/6M8wIyGLYszngLw0OIpVN2pGyXZzwABN8mhAcHMMuDq8RetsllQUdxns/icW9yRxnypGcqFXh4Sd9iXdyBNPfSMHZBkspJ9KLMHb+nDAme7xEfDxYYnPnY8ml5944zW9NDcOCUEuSn6AsRr3B/nrKUh/GJMMShOj2+QwRnyOYii96TRPHQgRXGHZZ9H+8PyfbGnLrsC3GOSO7kEnMy9g9fkJDbcn4aEN6IY+0473cGwQnAA6uEL+6F6dE0ZcWcZ4FJF7ijUt696lxJeVRAOSw9WyLJa5sonntAlwcaRehyHNc5lRtNLsnCL7wMsi5H6e00KkJ8fl0FSKF5HNfcz5qUIW3/uxCb0N5EyMYvB83t5yd90id90id90id90id90id90r8n/TFJ6ZgPhiITg4DKV1eBqkOEXoOm0g+DrScV4A6ILSwBfBKo8GUwMTre9bx/85K74oKOMZAeXtJCrK5pFvHfZZUnpBUkkIBRAXGoO9wXTAUj7sgC2jhBlMrSCAPionCn9wQXWszTgU2AMBpELI9LcFgoZagQupYO5RUdX8C78k2ocBJzLDgVY/AIwRPKXws/QPmu06opyQAACryg9459QS0Ficq29gfiMuz0hBDWY50DIpBw6231ToH6nmDGBl41LMEsFIgM67cVKgmMbIs2li8ggYqx34Ps456OqzhqVa8ECkY4L+Hl3GKAM7+0MMuwPATSEgzxBgCEVwQQBESMP5VfI8C/DfV6AFTlVQEeCFOgTHJyroWb89TCD0JECLjpovxgnRuMUPjqJsiwWlkmkN4k+LxuWETQ8toWfwgQJIEO9ncCZtnJHaROXygbSbkSeXI0ckyiRLsDMRIksWud28ut/P1d55UlWJdt2cq6VAaiGco1UDiVd13JFqBUea0ogKwV2OuEwo1+icHwSX3pm/3drsMFsMeeV9VmSHhRQ62bXCtXotK9/rFeq91bEeDiKNJOPfcOWNptLrfm0j8mGPgS2qB1TqkPovI5ByqlRS8btJXHewuLV6UA3AQCEX8XYCheeaTiqzx9FVKd6zeR5wbQSQ69xPyO59UDQG37XRCTRBVjDGh47HMPd/o6MOaBoUlGcYhOHHrA1wl1epWRIDKITOgc+F5P2ALW8wkPQkcOOsOtAecicWkowzut8xn7OZXdQ8ceVWOoBA8UnrtlepPj3JpzkPBh4aGw9l3uQ3PMGiIztnFoRksVqDkcA6crvpxCgg5gPQVTj3CXv9iHC3A5MeaM+lnUQwAzyAR0HJAxcBxfPIOdipYkyrFfdvi5wKQhzvCnKko5Qx1DBespWEIStMq4gPYzPBWe54IegI+Bn4sWx3OkXfWTHqA86ukTYwI+PChaCXDzfFQ5on4kAfkiYclTEYNVpBSGo3P4GCSejYEHuH+NAPHNgSGOx1TMxwN/fdP6WoLEfC5nKAVbUKG3yCGOMQXfzxOnnUGiGBgYWE/H/z6f+BkkMpeF76dDD8NjfkEOh+MfOCNkLFSBM+S1mNvmi14mYyceIpjCczYXpWKvC8ETCob7WycAQ1AZ6J9IlR4t6ZApLPqVChCKHLnTc+/XIN0uswpBmNbUosKQwABEF0l0oPJChmApw2pYSBqlVAjlgfqCh7wVcdcidAbJTSaxk0XoDPFUGgCWYQkt5IDon7R4rrCqSEUF/9IoXyW2Zt2eRvaWm+Q2bB0xJEIPI0LS8QsL76F7/5A6B7acsbfsJLL8p6Yk1OeZuBUvKOXgyH3duda5YUXfNwVwP/cBfhXOR3lmbI7N5Qyv84UCEUJ0ihGOPsbuc+YXyknkqRUjuQ+ufZrF3KhzML6/eEvK/CXnzj6Os13iSaLblv0p9wgcVqFQmmxkXdrBPjNT8LqJMvyYGec8urZBS96qfLPy8V6TqPZYVuF7tC5yg6D1Ykj7UQFmu0kvEuPXx2Tn2Cogrci7+ONScm4S3i7E79aGGo1cU9WMWIvZ19kWvxdXnXipwu5wvt0JEluxeZNlLk3x6pdNMmh9nHJxa8Uvhdso9CrV76x637x4hijZ/Z5dz+m13LYC+5Xgt+m+Nlql2oK57gvv6xD9U3Pk/SZ5/7TnJ5fBaIQE91Bu+6VKzKDnGHPqTxt/MZJ4XbtvK/2rZ3zn9O67y0zLRS6/yviai99/yzb2KSWvY/I6V9/n2j+RP+27KCExkmsme67u7+J+VvP8TR1kE/Nf1mfmiyC5RHgxVYb96t/Reziqn0TDwEyDuLRSWOJ7Y+R5GOT87tnWtvyx0ghPGXJ5LcrqGvnmvptUGLPtqbFjE9kqlfSezt+lh4LDrh/3bqk1kuGz9rzamMpQhS8SrxiqzIEKKQ8eYPnuLgIZIpd9NfZ5FG1IT5RwBHE+9ikX0BiRb4ij2lJnQNsPrM0P3lEinHP8h8DuOG+CWFPYG4n9kCT20mt1yiN5j5Xc+z3JMLa9/HhIlEGu8vSKDeCQfU6Kztq3x5Aw6hAYThCPZD/vfZEEN4myzLy8grIX6CX46RbGnKAnWyGOqupxV1xIExiokPgP3i+TwFvTM3qOHp5ySBWCgcLp+n0cvj2IB5ZyJfkFeSzHOfpxQwJ5ZrNO5mkUhJr/Oe7c3jjjLYwhUpYqrMsV4Uo1tgNvP3kvrX2u7SmFVdYeeiMGXc7X3BUlG1WySp5ZXmMYr7czqL7oQt/l6esj+Ze3PP6VHfWTPumTPumTPumTPumTPumTPunfkf483Nu5GK4k4pDn5TW99yo2qUU1lX8JKtBeEU5vAcsWrWEk1EoiOEWxlJfSKQKnOwKcy4JswSuxpNWSd+sgeoaA09tAuVCOCi04ZC34Wsx3CK3V4qa7/ES65IaHEtwMS2hJPQTQIeVlCBEWRzQuv34SVJINiPDiS48YIiQHUbkLnBAsc0b0UYG7ZgA5JBtDZMAjJI7OEYSqVWC0hpI/L8UZJmVbK8dlW3nJXthEpq3kj0frkhu37GxnulJuQKUkyObpXYGh6VRpYcZ5AUAGAYmVAEhAX55kDy1PAd1DSrf23soEqbu2A1AZqEu1bKA+n6g8AgBJb16isoFTCNyDNBBt04Y6qkdDwpKfYIwGiGFV32uosQ3v5fhItst6+xK4yd+AIjw1sOBOeMmfHiDeBX7QnVt59Qll3wYxUYDY3XPPBo8SgJHARoJgVdhfh5Jlg29v0rtwZvVuB1hcKkxPAmVRWaQGt+Yt2pxoPdMz76SZy+8BhnqObfV2t919nwpgTEDs1s7ExXo4Eb546a0qscCs1qZflIp06V3IbyJR3mfcpULblXjP+5dKuSSs3fsula25LLIOAEQ3mF9r1i95eM9P9ny/9R62r5Ksw3bdnmpIEd0ER3goghRbydBIAG3+I8+Cyodlpnt+ASK0G+uqqtChNT3nmDz3jgmo4rlOiFiEYkCAr4plAzjTK43geAzMg5aoazl+/nySGJueWpKQC7ZpPh748fjCOhf8BEQHxiQ5aQzupeJxbtiCapBGESExjwMQEoFHEDh1aigmBPFNrN4cbwWWwlx5lgnPLR0DDoZQMFsYQzCHwhQQY1g0EjfpZUQVUBjcov+iP4fQq+JQhmnLueu2oAZABk4opguGDsyHwtYTawFTHhgyIVhwf2L4wOOYEFHMYwKH05OPbQLqGCMUCiemDJKcnHyYOYOY7Byvx4hQXiYQfRDg15+wAdh6cJ6pwZWhN4YrDE84BoZMWr7DIjwcYn8cSJhZRHFMihqldzABxgFg4TgEX1+04BZbGLqgIliuwHhA3Eh8tZ/AMKhGaCsh4Vh1kqAFxT9OygXneWLOA3/pA+dTMM4nnuPE3ybw+C+u21MMOieWKBQPiI84E7alsgJ4DMVI0B7AGF8AHniaY63FeWpJQHYsXzB7YoQCSkWgM0KfmcFUMJuiZLnBp0NWhEpzCfLHwnDgtCcgDO87cq6HZbbgZDjIqXAzqC3ocJwxDxyc9xZhMZKMpppKoTjDQmZLi2kGSSSp252EudqhNM+yRry8wP37rOexFWeMRljVy9mRyiur/o2NK/arESTE67kQAe1iruW5a83jzGag38Mb/eelJNsUDaUUjNkjeTZ3zUoS0VNZq6IRGjnPccQcTi8CXkopILyBYnuN6ISD+1l6tWzfn5sAEgo0w5ZNSfLMfLds2I/2NPTPLFNWkHiXL1RQbJafxJo0JkgFZmbFzqOerESDkNQuit4ktox8CSnMSMqVQI+cgpyzvdqVBCUjd7Kc4BfPo0bozfebxF9yHJKIdymw5kyFx/Pr979NdT+KHsg8LmVvedB7H5Ss7+3ZJgKl0rLy28+nOFt1KCGwFd2XrPd7QNSo3R0AuTx/Id2/b3h908kV+42cL6/Pv69gVZPy75vn5fJR9meX3f33k+UXqd8XL3eMGrtd3qusu9eO3Krst5/7L3nz+et7WX4fpVaV9uSWidsG85qp1PJsmcjLY7+uUE97sl7yq2f97bP1IybN9U6XlbvXLSufBbKNr9PH0dtznf7e6tpqdlmqfVz6k6/z9P15KK9/XdrT7ku5ZtrexHz3XpC1qeeBIBrv3lUhEUmE+NRaBlnhaVxl41IgniKx94+hZRhljvBgSRILcRhrsgLlpXmE7LEABFkqOzEhFY+zgncfnrxuJLckQbUTuTpJyV2BCL+bY0mnQJscVH1D8AlJPhoqsPD00/fOy9h6vtvug1FPbR70ijqkg2GwQYIzPbk6+zi8VpHsYRFOKz6DAoN3Hbvsu8QbM4x4/s9z8yiv2uwrhcDV2pniJXO6D56T4flo32sBhDetbI85IBkS1q9rQXV7K5YyKaAH8Lz3klDlu7t18OzwRWKYpmFTruHoq/DsuYJwY+nVSQTminUSyz1kYR7AHIIzhahhEJ8xnxruFWOryvsEwsAAohBMLPe402Z9SlSJ/mGYbBpjKRCR+cyRVyF+FwaMafgoLntKecoLHQOMfoSXUUJKomnwyDtXbmMSjoLLdeUvtnVpf0aOscYuS6LvJ23q559bKr4sizpnc4/pmWycp++9bS0h67HneF9xnAu+86zDJ/Hsd3voJ33SJ33SJ33SJ33SJ33SJ33S/1z6c5KSLobIcCBBfoRnHXqecZzOyzHcK6RNeg3iZyQUiUuE9Fh1KYdrUxIRtDFTOBQSVv70BESFXBJ+eLcN19iBg5CconSLTecU9KYktNQnkclvaC0VGOk5gJb8Hhb/bHPokOhNIb4GPCyOVnhh2hdz81U4pMrAEMc6T1hGMhGltZznBTvBIGVbXSpGfYI1CpQykfdmL8W3JCoRF+UV7yZfIS3Xu+ebDRQm+UYACc8ckU96MqmwakUCSsUpP9J4tiyHPMv15oJ439Q3PnoF3NnevCBvpWFiWQsobxcb3dk/DLTEorVaeH6SHG4P5Xt4vgI2bN1AIYIXAcwm5maZD3NFvpPQRgMhEk74FQbNcU7EMy3tE3x4BQQklKk5Zl7vbSu4KrlpIMqorGMOhLuQas8NQibolgBTKIRkqw0TrEN98lpmT2+9D2V7M4xcEXl2vjUuoVgzuwLNG5DpjbuSwLrNPdxr/jn6x219tQYV/tPbknXrqHP8mvn0Puvv/Dp54IR9Tba+iralYsqRoG35s486bWJOeVZDy1O4T+rFo1cqlwxyG8/ss5cGeyr18/O+j6CsZ6/KRVT9L21r44Wq665Ffq+BqO/qCNLbRvWLbytcv+cte5tgGbGXVx8s0DsgrY3dHBha7UxC0NMtLGgdh8Y6tSRNAjyVFMdxYB4T53Kcy/F8Lpw8XIJwwbotX4BMyBiYxwFRwbInxgDG1PBwYzCAhJUEYIeE0oJhUQX0njQk/YcF4SOUAexaxVqD4OsI8kiGgzDBacCUDDFl0Bl7hBvmnJgTOKdgPWMdWSOXJplVaN18BtEF7vgaAzIUKwkoSi92S0nMWhgYMqDuGIPh6oYuzEni8bm4hnQmcYr5nYt9yvU1UF7ceMDVHjY1woDZE08zqEycJ7kjGZLOYfj5ZL/pNDgWoBOQtKYNy2/jvNMJuAwoBux51tl6GglZfsZ+7QDG9qyC8Ig19QEB8P3TsM5vrOcT8qUYcsBNocfA8/kT7j+x7CQBDAmeI4hgrEvKM1T4KsPvLsO38ww8sGBfC/9XKAkMCpknZB6wJTifYSHuAhEqtVTS4xTJUAbAZOC5FE9bQbC2rWoRB8MtGB7HiGhbJ1x5FosK7Ol1FooIZAxa/Ie3SkYwCY9I+VzUyxZQhGJzACegB9Y6Y145SV2qFfrK3KBqDLUYYR/ggBg9EAgcMjYJOM/frUyISnjur0B6suFoRw2bhwE3K3IRUM6iuD/V3tcUBE12ArbsQYVRO2N9r7Xr+RB1FwQpVZCi18VN5X9gSnmyCErZ56k9xQ5nvOXEHKscH4lwlxLKW2/P7RMn1wZl7rgkxFj2swsAOpFXINw7kIR99rU2GQPgHiHI8Q453lJy37JAZFfnacqiMfXyBERMhKqVxLPVvihZhWt8y51bZtsKri0jeJR9IZqrlBi2Z2iU0sWy+OISDaSekz2HLzJXrvctF7Eejk1s2tnnc/vY9lYZVN6ljMy8bpLGlXwvtzWTK3C/k3zhnkseJbk+Hbh4g7w8t4u+yJ1S9bvKOJv00OXJbGv0Ue/z/rr3Wr5PV2OI3YaLfH3Lxt/mex3sl7/qviBtDmyZ62WiYMu51xzfTCqg1sf99/595lkk0Jbz+5Tjcq3F9YnI/5d5tDq8vFm7e8lEf/Lmm2pe6/hmHv93st0H4e9Ht/IS2aulzVm+stfjvfIvrZbskV+Nfyu2318rt9cyrj9/nS7XmHyr7rRR32wgsA1iHHXO7/P3WuT+9bXOL/Oq4U17veyKSdvXtmFWEv8Z8s1DRsiTURt24r6A8E5ThBUzuFjJjNtjdd4lc5+TXb8M1ZxnA0A8ZeyyWP+8c6axl9Zwehzq9KhurfOTDCUM3wuF2wpZLx4x0HlNbMC5NyX+5CJF2Fdp91lVTE1DjD1nZQS5Kt5zTyMVKXMNh1OOlthPbqOZhMqUWfL+naHKCh+LNbLCOI+8MEPaTFqEgJ01x4QkLwEEgwaC0Q/mvm/rZQgRMjWkvMdmjdYKGdVOeiEXGppAhV+C/1ndzb3k8X2Xj/BwtzMsvS2JA64MQT4sQ1F7RhkEo5OnXCX7OAhsLQlZDsHpPHvzdoMokXM85HRJTHXfo/jf/oz/F3rEb7JTruGMEM35vQm1+2jez1d4ZmddksiUHtctSvcQCEpm64JArpnWrsv2FV1TJ1aSngqsw56/fn8ZyLULeMlM15fiu+r/jXPWIqu95n7aXQ6d1i55rcYnfdInfdInfdInfdInfdInfdL/cPpjktLyACwi0LyY09JLBZBQ7IWlr9UVil4feOHk5fC0b2A5HFYXP977GBd9rRUea3il9nAljLU2zuEOD5fWYb5MsKV5fzFjjHcxL8MuCaVG2q8LsC3WbfHnCqpUAkQyAIT7bTsLYHdHhXNLPElK0cW2MHQNvQQIHEMZYqaAJvNSJgsyrJsXkOEeuE88UyBwgV2hHPPrBTNB/N5fBXpZu2Qj+q6AoH1DloIDNkhMQONKPugKNCCtvBo4AXpAsHCJTbBZq6gMb1eEBNVQvKP61luTC4y+3ucveRhyXnkicFfFgqW3i922gn+yjxPBK8AlPHkF0IFod1rZkSDHz61cUm+A1yUV6rLraTu01gbg2WbL8Q8rMgRAKUAbuxzjqFPl4O27BmLUIxJzYvep9+/q/fx9E28yZI73cl76Ei+/38cJ1c0bCMutIEGmDLeC1o4s68U7Uwd9d0cgiU6XdgUQtqHIbE2bVH6dX79NOffQSVxv2p/1TrwuFFMXpVL1Y35ut77d8z8tBOs7wUtbr8Vrm0N7Tkh/9N5ob2P2B0qSGKEXpd+uT5unN2Xi/bN8PveMJOmlxyO+F3matvaTIJppeSrEcZk/QTWNvBPw9epTEYKWjrEBS4mf5RJDIYOhKVUR9SKJ43SBm8YYRmjJQHItPDKNSRbteT6xnt9Y5wlVg+pErTsPwDpc8lw8dDjwOI4irzBs6mJdyuuUBlC7ghx8Rgi57ENBgrIS4GuGPwWU5CelEyAzh6+woBZaztJLIq2S19ayYISnH/NaEXBbmCIYc0CH4DEmw4c5cJrg9IljDshI4siAyoSp4nTA18JQ4LkWnsswlWQttj/OViiWLEwVnM8Tdv4FPQTza2IF6ehcC1M0wiPEXHGOhQ6D41ng9FCFywnDgs7B8K9I0tIKolOcO+YABpantTeVDkMGLb0dJBGZ0jLYgMdjYM2BZQNDB+x0uH3D/BuSpJcEz3VgDJ6Rvk5IyFGnMUSa2IIEPdmc4TD+7+c3/P8ZmAPQHwet14fhlCeWDHqutJDRXIKySNlHxwOA4emKJ4AlTqXXGJSt0rOSUaGQnhOTVMy+nYAIDAsQp/epCKm7sEpecTg9LLkDOmofPSMc7kDsVZIKuL2XcW0bRi6K+ClpYZ0KDQ1FRGzwGnuprwgLUTtUenfb3isvBGxuDm17c/Tzcu/fMe/jXN/7aW181QaNqBIVytH3fxHQtvbhRnW6bPWptLns8f+BKbsuCfNd/mEDSDwDJM7JUA1atj32eTuRBKJrony9Aw/jcr7L9dG9mSL2wZI5Iq8mhObZ602O9v0wn8l7BUIGjkLpISEL3mcqxys9dMa3Oe+QJKVdX8qIzUuHA2U8kjJ9POhJmOqNvp3z1YORodwe9PbcpZJw4KXvEbLJfvO9/HD92333d5ZWMuHl8TqAXxryfsYnzeFVBmEzXmWOTZDKe09U8Fae9P66tdFvvVZn4KUdt/r3O7G0eS31T8ub6+KVICSX9ZSktJLNet38XZ/JZfx7HTZpo9VH9ty951OFtJrXt6U03o92Xe87UtLvPcTlaqievn1yr8FV8L1LzbvPrulSx3pH2vOv7b2T9C/T/F3ytsT+JL0X+d9nDKDuWLc69b5/3VNbITkf/0mZ1z6RNzm+NvJl3NtzL9eTPhgvo3GrSJ/5Ca68lP2a00tL6gwA2pEC9x2d7Vr7IJX4JllkjnVPcq9w9BJxsfJOwr0/UCvXIMVKbUduBgu5K/EityB+O+AV6zQ8ynr2W06yjZvAEd7S23qQkE8MxOMk5Wzma8ugl67cBiSy2aRIL8Z5BkpZWSjojSjPu5gnRcDyqnf4I68j293prVQHXPh7P8kZ6WxEJ1vUa9TRyz2C52M4WQxPUdt7JkBCkAPwtWBrQcToqUqyrqi7gqq3uiZ2ZygCriiK8B53WRKQwxNr3u9qrqLGiY7kOQ8VxG1SdkfgM1PpNfZMuSMOVlsL6hkWL1oWl6fqi5BbkhCt+bs4PObP6QZ/0qhlTEAm70IulO/T3dFeJ3GrFpRnX/Z1kM2yzSlf5R1AFPAVz+Q8bWwtoJ2RgaG4VN0hCM9YgcsEic5rrTU6Wz8HnUS2wgGwdw7NqYwk0bezOOWGJgbU0FWd+7m7f38n55DM7JfPX06X+0sdGE2sttq29z5vssolz9rY7mfYv3IYfdInfdInfdInfdInfdInfdIn/ffSH5OU3NPaPaz524VPAxxAeJqYHiQjM9hpcQkTOIwWRgG0FJjoVCYtJ7HIV1iPucKFmqgxZoAvq5ATiXBhpfwxhwng6cUgLrcsm1pkjTARAocvr3ARtryAA68rHRXfQwhcqESou/DC0y15xAEYFQIm9Bp1GglKcFo9p74x3WqLWCgQUgFjZY1VihIzupyWABRyIAJgKoJN9nEQZPJyXIqzuCi77OtqAc2+L+uZn6gHmUduV9QNXpV11d39cahPSGjRArmuiqgkZW2FkIZnrpxwBVlJEOP2lwUW5vhqEIQ0SUSSz+3fgSR1JaijRWbYRBF+XsBeTv7sv+X1fL6T73ksgUQft+KA/xGgS68rORa+AUkkjpHjmf4sUGOcVenW8kVMibrcPdlUPTP/AmfuoH/OhQ2SSYVRYb+kC+zM3L2jO6j8fqUg7R5/IBLepfe4FCIEKVINu9f3UIiXd6sL2LM7i58JbnNu/yrlK8Tv397+6GDWu37H3gd+1db7Z9nvTfldRdfvGaLsfcUEjViWY15z7LUe8UtThPaWx4yKdWJFjNpr50IQa3VxIDx/vLQenWC169/25FgwIrm2E9z2An+LIBD+3Xt+UqEevdSzWXaGRhBPa9YYo6aYoFJB2tjGWRaWvivmqcfZJsb1IBCsk96IRAU+w92/ZthRx7IF94m1gvxhERbBDOf3yXPyMcAwW0/uRSZB2jSWl3t0eMohcZFe4CyMk8eYUCGRCAAwNPYknmmmAsWM/Y7npz8dPgi0kwRJsvGIvUnUkMTjtMYkOEswX3UCfkCxNjge4yseVtsgYD9ivFacSyoTOlnXCWDAMHSEByaF+4S4YZ0/MdQxZZLYYwYTMATZWlAIDlWci+f/nCNISgLBhMPx8+cJO59w+8aXC6aSkJYWzaU4wQlaZU+ID6gYnusvnCZBRCJJeSrCC5XDnV6d5uD8OX3BQiEBB6Yo5phBoGI/r7XCMjfCs4FhKai2GYAB669vwAV+OkH8dUa4CmEIjhlyEhhu8fAVG7LW3DaxINwsPKGQU/G/vw1fj4HHMBzzATEAsjAPhoI4nfKJ6cByx+kMMQIFjjHha+J7DXiEGYGQgCQhd40x4CawM7xjGsrLCwCIGQ4lAYrfIchbEwtPiJAAxT17hDJGYIvjbm443bgrOkMHZuiFJFl7hJ6COcQkPHbG2m3ndIZHy3OUZHm9cwxqVxDZskadBfvIjb0o97v8kl7rkq+dcoKkvCoOxUjJIN7bxEoPodLNQz5MsrKlkFDyQimUU+mQIt+/pOX+fzeVV4QMQxte4PLMTmUPB1DrWXZLnLsl191IE3k2SfzjW74qDwE64j6RjPiSsuLIS5lJSvbYkX0kRMyUjlMZ1JTYvueMpccRyzOLbVSkrO/hjSxliawNJ1iSBpH1wZa5PM9t8Qhhc5XvU1Yq55x1pjWKtuccTNkELf8270sm2Od4addqHVYn7bx9n9NbHo+evDSnlX0XG3pdssj8BahJf/dGUFm8kBmyVd4+2W3NzUBEynPW9X2/5bFz2HtGe+cqJre+v8rgW0Gdbdsy2C63KVf7Gm+/OtpXtTa2jFceUnDrrhdx7Ur0yXrtmqDm3HX/7Bm1CXVvf/v8VYJuz7/Zy97vb9cJtFdDrtbXulxKv41T3xt2uUCfTpuA5Lh0OV7fBbZM+9t0G4c/vV/866kWEF7GKc6ZrUF/O4MvpAqmS7xI3Hvjfe/3elyn9Z58neB3TZe+uKz1e32Zn0d++7zeOMS75va1tO9TcQbI9RlpxDtiZTzvtvFe5hXhSHXvY5LhxyD1c89zKUym0AknjlUkZ/F0r7rnuyHjYlXpmeX2xMdOkSAhadwLoHeymgCu2MhQ3m8A5H1CUs7a/UoIp+EOcZ4V3tC9wMrup1yxedcb2pshSG9B0VMQ0JgjQ5fRnacDTiPKoRre13lnHPGOu2MKSU1+mxcZnm3ZicSlhmict6zvMoNAYSvuar6guqCY2SoaTrpA6Y4ovLWjHRTCUNkxf5cHHkhRkPK/bgQiSfVpvGIAJFhaaSRgp8FX7DkxHmZhgCL57D4FJfG/HJO6XxsEgc8ythrlCgMmeM9TZKS/QM9Eqh7LecvxGB+FQlxrbC2MFxIH0MQN06jSUu5F3PGIqQJp0OcBibKNZfSVa0ramSVgOyw9/3cMIMf8it9l+LiN9/mLPNjf95IZGzFTnAa3su8iG7tBjWshgYLCXfr5K9L2wRJ32h5Re/Jvzrld86ga9/kt/0Vt5F0en/RJn/RJn/RJn/RJn/RJn/RJ/570xySlxxEWwItKKFGqNBmepSl8jBdnXyQspdWUm9ONdJITQKUsXVCfcDhcFW6AjkEFD0IprKPcRq8TVIaZbYKEhaWOO8qvckNRPS740IAbAihQSQs1ABHfnc9SOUmMNiyLwrXxmAIdCnGDmVZItw0dBAgCIfECAMPHhCWSh4JDjBfWQEUZYSjDC8VFPAEB3rTjEilh3mTh0ls2qOIOS/AhXuElVgO0FugY1SbewT30XkEYkbScklDuh3InULHuBWejRf2ynX/jokTK27QklCQBYqmgLMCj79NzCJXncwMOkvBcKvzqhl7KYch2Pb2JPzfEMj2nKKC++0MCUSR+oA3qDjQpvRolcHsDtgUZygkFQhSgHQSf9ByFyjtS9HkBEhu3DMwqwdBrWwqr6N8VCSjWYv7tXuAswWXdayiIYBUC72IZ3fKFX/pU2pxw7Lbt9+4gR0N7mwcEYmiNLJfwSfVJA1djXu3a9F4Jq7nydPBKxHrxTFTbRTKf7jna5eM+76qOCSglWO54KbenIhMlHiVtnAAgiXQvfertXxQgVfOvfd7rQOVSdV7La3/m+Ul18i631ld7Nj9/6zFqN/TS36LaFBCFOu71lC7gEiDMjzOvyD/flQBCEwjfxNHdv6mY2/tibRrxc3srU1EcQ+gYP/Zj7ucBoLY9VfXAmBMk76U3Jg+vSoOhPJHhubzOx3PZ7kVfDGcKYIwDz7UAGYDv/UfEoHF+UBmRHpAG5jgw58QYGh6jwnOTD8ypUJ0QecDtBIkTfA8BQM6RJ/eEmAYRSDEOhiIddB/F0AxCj0AkFR4MYaoKC889PKIJ/KoIhgiGOIZoEHwPDJkQETwG998xBIdOuE5aIZ9UKgwHpi4whBkBefVFa+618BgHniIYxwMuAWILvSCa04uTTgXGhOoXfkzBoQNQw1/Pn7AlEGcbzAQLC/MAhjwAKMQnhjvGILlpOMO8iQCGCYpO9DClKhguOO3EcIUYyx/zASiwQPlGjOH3xkzvUw4xhagydN0pWMtgTzDsmxwQeWKtFfNsAMawbSsmpgV4PwdDyYkqFsgCGrpwugOY8AEsEYh84dCJKYbhgiUMm6eqEB2AD4byixCpx6TsNWRiLoblW3B8+xN+clyP40HvSKFQWOeCg+RqDUYrZa29S0kojNKynsTh2FuT+OaU/UoJs06uR+NcG2F97zGzfWXIxwlVgYWsyqkepTpAD2ARjkOSECMQmRFm10sBAk/CYYae4F5wPXdjLSuVPB5rLOWYvS/metb6oHtV2vqAnM/tjOXTSPJ0HuNFOkjxB+28uB+9/0FJa3PGpb/7iRR8M8qfNZCNvJpyiwBi+wz0DIWanhiaXMX9Lz/jfrc9VoUMnLJ8PycEKdDubg1ZtchBcq1XzhMSsPNYC/KQb2JcyqnZ+CylS1tJtLqmuA8ISsmU6jbxRmJGdujuI2l9T5lb9oOl5O8yQLqjjd/v5Jq6r8X71ZzdhxfJo7xkIIWfXd5FwdZoJZK9ItHnuIlVggpBdatB5o4+Fu7h+fUu88lrvveiuhwb8lJNkxyv/UQt7iJypQHCjRGRNLTMr2VQslmJRjl3d6/G3rkNDarMIsFd27GNBiIHl9t0z9q0Xa8Nz0ufiKNV6NJNfv2z/r3uZTu9y6b6LJ958949JVnjKjnfGoLq5nqHn+Wb1zJfa3Y5Fd7kzk/uZKNLW+4Vf0u2uZZ7kb97597f+xW7512+tYT7LNpt62fNtfPf7U+3arwrD0l52WueTd/kspe3at62PQ8xXvL6bOR6q2YSOfdIFckAfnnupYlvx6WRk+I9QYYay72G3xjCgKI6UwIj0H2mCUBjAcrniDchTe7x7S1m76PRFqWnzgwLdjHeirW9cRIBRKFCooxqGGp5koSIZyWJyZcgQ56NyDqyCA+iQRpHtF33PiJ5xwtS02WvFiApWLk3lgfLmJgk91DWT2MxEVQIZE2vu6pQF1iQwMJWhbiWJymdxPABiTB3rLs1+XAZ63KkjB3VT3OzfJYSZnhJckeFuQvDCQXvcaphGBJzSMcI8s+AWRoyoAy4sp06ZsxxA325SjqSR5K+zAIPSOEJ2CHuGDQ85nt4EM7zUWjYko50EgPIvXOvCq8+dxG4DLhrEHkdAisJVQSYMSly/s/BubUgUFeMnMQSHvR55SMByyXks8X7UlvreQaWNOy5L20Uh/Ci1DZaO1jK1aPhX0CTv/tpjJK9SGaLiY7+7LudPtdababEBurMtiKO750vZZqUYTaxq/LrctK1tMvpU5JPdNQLRFMPejv3GlJ6P8er3E/6pE/6pE/6pE/6pE/6pE/6pH9f+mOSElkqApmTLo8RYEjexUMxBtB6/VxWl+NtJaOADlhcOk0y1jeL0AgZQxAlQsdluR5WVENhKnALq/4KUeJwXwQdbECGhOI4LqygZwdRYPikR6axAkwA3BQmJHEMp5vmBPUzsg9xB8cYANKzkjvEDLYWLF1sB1gkAdBYgmCB/iaMxCs3LWu2XxcvhUySZQgp0KuMweDhZWB7I8EG1SQBPqXVXXhDSDAqFXXuqMtvAkMWJBH1DA8U4FABwQlVNLzLAlRAAioJmhKUMBBskAYiADuYCj1ZBGigUiSDCwEJqVQ/o18amcXTM5U3lEELaC80AwiFtFU5Wcd0Y13uqQXNoowEtQRmEOBouetGgGO+Id3SOyBB03Dn7RYeqnLMaH238bftApwvb1DVA+wor0gNSE5NnsNpPVglb7AjP0tvVElncYSSKspPgCPzJ7iFmBs9n/g1QaMAX9h3e65coRPU+zku0j7bYHOaS2Zf53xH/R1wJ7pL6wKbY98hriVtvmjMz/AUU+4FEGssLdxa26Ie7+AZvzVJEgzzXe4lr2pn/CQ6WCBRAvXd+1NNgVt+UqMhBWhuRaBdQbKsfycMVR65yKTqIEB4LsIVGCsFmZer+XKhf1H0ZZs26YvrKokQ2R3bE0p2wlbgh6rYc07nOAf47eCzFmsh5qckYSXalIByH+dNDNBYgVb7hYpzjfpJ4FUGXIDTuXbUSRxVHZCh0Lm9pZDwesLWQcLPCi8gIjjxBBbgZ4TmUseDsadivgtcg5QbS3pMpWc+W3hMxTpjL1YBZJKIE+SSE4DLoicjj5mugExa06YSeqvOCcjPIFnRQSFBYeiAGzCVKLBMhdnJPV4GliyGLotwBkW5yBB14a5/GfeJqQOuozwSQgQmwvM4Nhqdgh/zwI/HwD/++smQaMuhwj3zGAf79kkikE7F42tAoHguhy2WYxBgjDi3SOA59AFxx1qGdQrMH9AxMPQHydSxgbgIVoDjj/lfoK+jk7JEzJShA19fB5Y/YE/BEqWS4fxmiDoDhj6g8wB0BKlb4L5wCKDDITIgBoz1hJ9P+KFwdZgpFhynCMY4IHYCMiFFthrR0/S+Ze44I5SFYkVoWsGIcQGUxCzhOj9l4tsm7O8LQxdMAdOJpwkEC0M5v3VMHMfEnAPH44DqAXsq5nCci+fgirlgsGBVA26C059YbkUuKeKgACYCcy1vABDKayo8X1QUviTWbyNluGHAw5smra6HKCSI6i6CZQYfAnGN0L1eiiv3GXJSSoKAS3oDSGUAQpYYUb9chxZKsTg3UomfijY4hqzwrhmrIRU87lCzFDGxz5M4l32Fh4VYmVE/bl/aPFHF2StJRkqlxxYR+Hc7Ixy38+c/K2XYjhzjUvSJhDfQTaQ3TyI9ipRRymXPkG78zMqbFZCnGeWSkJ0spUuv8y5f2ASwfc5RWaaxjfezM3+RNg5NXmvfpeavj0bKcx7LB7E3pgfYujvlQqoTu07UIJT4Fqd63aVJX0kaqnM88kuvnz33nD7Znp3JfqZksy6q+u6XFALrgyRuZ353aaqXk79umWCvnpJOX96vu9Clp3e/NxGg6pzyRXVA9kPJPNfnL8/sb1s1Wj2LRLGbd3275XJZx1LdV1eBiwy7x9B7v926NEnqO7V5KkB6o7inEqGvTX559kUx2/al/bDvDq18L2rmy/v9o39l5+qGCE3Ku9T1NoTvx+9NenmvjVVfkS/ko125Js/H+pTbM5e3/7wjav31/u4Lumd5b0j/Wm40rMuZcv8o951bXX5Rf7kVfqlWZS772Us921yp8xbYinW59G2tm1u+tf9c5mefL76fF8Q9OAyp8EbBX/fGvFehD2a1kx9lyC2r/bfmTJtU/Ry6Xv/jvAs5IvdQc+NZZhJEpLxHpUxzrQWLjpPPcuLkniyg4cKu/7K8m13POpad5I3r3igyiN+plHcnBCHmclb0zhLKQbmHL99YGLCJmcjzA0GCko2YIcYq0BSOnwo9gbrgXAvLTpw1p1K+4xnjhgp7xq0/9nFH5JP9ie3x13lX4DEqED0A4b2JhB+hjEmmEYlTc+ww5JKEHw37MAmvrRmKrnulUhqHFPZET7CaMkzb+yRkFsR56A7en/NdCBCGIvlM7tMlGwllXZKlol/CAIF9H2MjihMCOx1Dwru8kiTOPZk4jiKIb4MkN1UFnATxMGlhfv3Ikj3+ibS5WTlC7t6fEh/y/ST2SKNkpL3s/XK2Wq7KGKv72Zf7R2EzwnWWxN/qvywgj+jctmq+d1lG9/v1bMo8BiC8v+YKbHLEXtX3k/T1dKt1ir1ms//epr7fC7BZa5eCPumTPumTPumTPumTPumTPumT/i3pj0lKjMMuYOgSj3ApAFELIFkL52mhLODlaoWykgogABahQFLx4IYx4hJmo8Akh0MHlZBmwsuvp3eiCC8XYU1URykF1goldVxmaXUfikQDHIYlBBJ4NaaXixHhwgrslgwDktdklr9WqJQUkOHQuBN7KK8JxvhFOS4iWGvB080yAliFAEXKikukbfqBRfgrkWvsdtmZx8WbgJBVOJS8hEqQiATqVHZvIGbfQbUp1eqa69ercL8Ip3WSo13MscFbWv9YgSYCL3ChMK26JAfhRzJMUfYZSsEpQbJCgRF58Q9Sl+0wK93rEjyAMt3KqhzfghivqGlTUISS0hJkLpiq5b9BAqmxAcpTVQMEyvoM3spp4F0pGLOxm5RTYOItlMUGpzoQifA6xuet0IYNlLQhK/0BPNUOWXYrKMDRC4Emwov8GrfwmxLVq453gDvb4kiwPxGfbcV5R0i2BfotnyD99dEqkDOAwQyzV3k4CKglgJRKIakaIJVu+/PWiflbgcyvYLMEONZDnyS4thWZG0Pb7XzTbuRU+H2fllvyAIqzTOQ8rHEu1ty9My9l9jqkcn+jZ3Krd2s8cFEebAWaABgN19tgXL2q2+tIa1nDzTxgzt1G7WvfUV6ALnk08I2PEaxcBnyf9JLnBsgIhYXXFGL4BpVwAmfQqbEHBTDtAOSE+wnVibUccIPZ9jQ4BwL8FogblnmQooI82EK+wQVuivP8BuAY8wsOkoDXsgjB6JjHYKg6MkZ5XrngXAaPsGjqJGJAGSbOwDBk7vQaNGSyT8RhouxRI2GLzy8IvgGQvGkOHEHYslyzodwZapg6cIwDpgfWeUJ1YegD0AD5Ed6rxCB+Yp0/4effua/LxOmArIXpP0HPb6POWbcTAxIh9bi2h5KctUASsTqJb3YuiCtOAzAPzDmQXkR8cdxPMRyD4RHmQbnjDNKMqweZgPU8l8NwADoZFnCQnDR0YIhy/oBkg3WuCJPm0FMgGnKLOL7tBJ4CjAH4whgHXBTAiWUCxVGn6fI4K83hoKcuKjgWw0vAMaARGmFhKK20EeNtPvGXCcYCpjjGdPgE4Bahdh3HmCTfHQcex8QIj5NzkFT2DcHphgXFicVzQCdsGRa+sewkYSiUGiMUErDFszQ2A0Vwax1baWbXs3sI2G+y1yr9CoTyJmTRfQLmvsHPzBmakJbYTlkIQUSLNW3IMCOOoXHeR7hH8/TxqLUnMcTwqj2IYUMMZYWu+ewmQNTZ73u/7ntkhjUVCVJKhAPsaXtfLMml5A4gKT12yw//uSn6qDw3Rn/mVEiZ5OopJiiWJSe+lz668rv3eZ7RHt9dZYM8o/LwASBUsO3zyKv3JYTSLbEEwT8qPzRlr/yukVbyPgGltygL75/C8z7bx2msSMZKSXASYQzzHL2IatV5rXtK6r4eo5J9gMscL9mz8mhzL2SWLae17K6jgJToqtgwuHD4ZW7KJccuU3o9UXUooQ6Xtvf7BP/bckOJrDVa9UHtAxcxxv23a6cr5i+1u8ukcv2eeb8SPPpTXf7b94ktS3M4rou7e1e6CPeVdqWk/Z17zn5cXt65tvXW6b94J3/fhJyWV1tefTpmtf3ep2/Tm05GmwNynVN4+/Sv85aX9l1z6feafdP4k9yv47DPh188I7e2yf2RO4GGY3n3NHVZoy/r5U0dBai7bZuL7965rtXX9ue+2Gp4++UXqerQJkT7sv58mY6XjQVAr7e8KTc7pOfT97s7wc2Bd2u4JrTsdRXyn1HQaGvfsL3abkMKuWZW3qQpugRxQWRbzQFIw6bcx7ncglSxPLw4JQmExBfEPkTvlRbEk33upMFVeU9C+scJ8o1vD5FiceYFycdBghLg0KFtrCxIGAKG+M62JQHbKm9knUXC4+AeWtaHXoDSw63GeoewnzQ9xa4VZC6GehNVhjQ2QMRICopxMAcNRgJ+8QIsvfAUkbFlBgM9/USYNwmP4DoVMME6HQsk1dQdW5KA7XudyiZoU+AY7XwkuWdPS55fZil3OJZRKjJPox7ehTTOc3rnGsiA6Om93bH3AC8sN0E6r3qJbIIScTz2g0dYQt4xOS9UU5rOUziMbgbn+By8n5Iw7oCPGLPAiwXxHbHAZSfMTmyCs9Q4J5k7548kIygOSd+t3KtcUC7hc+7V73BsOpRcPs2ccoXyXOvnRPydZ2Tcf2OTR8qcHntH276RWFWAtpf1X7tWVrXtv/vMb3JhnngXOeSa12u6n29SXZAy9ns68yd90id90id90id90id90id90v98+mOSkidglKENnEpKciHiChyXVc/n8/e4CFmQmTRDssU7BaxQ24oEVDLsGAk4GaqBVyYqlKh/2wQLhtbx7QYGBf76IgEoCFYW4MNQgZoH4Yjl0KMSlccQkNwT1mAqSqUzAMAwBJXf8gUv97wJNOwLoKZ5rFPRRpfMqHthVTlAEtFUyvD99DJCyCOBBYJJokBiHem5IBVatjYoQuJNd0Md70TfdsWQBoHAbF28D23gOoHTuLzLfje/GhiJKASQgigjlfp8J12hp50hqxLKwPB0ogFeSAIaHu6cu0l4VS0VooVobKKCpVVRAzAjZCE9d8X4IUkc+Z9Xf3fFRikNpFfD26CiwEsXEu5gGyTaKQHTroQMcENiXD1JALI/K0ThagnYgRXk+LbvE88ACFSVZWF39VxIyStQUpaZv0BAdvus5knBPJe6BDKaYwLUHrPLvgI0vY+vipbs8qsF8waP977gVezV0rZbZu9RQM1ZhNceh9yezepu9UiBRm0fKCvDa2/d+m5//lZB4HtObOKdX+pzfS82B92fdQvMS/4iVeUiM/Xq1ucoQLEyCvBU2pzcMzH3PhRwV/M252HkrZCaM/ck7kU6qHYiAeckfwLdTbvEjlZhNFsdaxcUYeivM6xjRQC3IOgqhhy7jeFxRyDwdUJEsOiGCA7DsidEHGN4kJSE3oocgBnsPLHUYa5YER1AlF5sck9bQWiCC75/kkgz5g4jeq4INaqAmDO8WoDcZlYEEBFAhkKcYe0YUmIQ7D65xx6TYbV4jpwwLJgfGKY4zOjRCFQaDBWYPQFkeIiJMSYSRBcgrF7Z5zHyNRdEeJ6KUJEhKljfC0MWljM0miog6wlbgu9FktDjQQ956WhFZKSjKoYWo6NGCBgWbsigx0MVjDnwfZ6YphjucPumFyko/vrHN+AnSFR7QgU4zWGL84E6nJzvDvcTcyhsDJxrQmWB3vhilmeIWA+SiyNCui3I4lid68QweuBRjPDCxfHjHrzgEY4B8LCap8y1lkE9PfA5xhhI4sI6Fz34DIZrPY4J6AOnHzAXnEvhNiE6cQg9ygkEJgsGwzhOzPGNx6H42/zCVMV6IAjlB6YB63kCrphTIVEnO0/Y+glgQcL7lWDuvUkG4GfsneF9i6wemBjcF1LZUGRuSQVI7JcRmtd9BcnL4uhoHvJSrjDBUIZ1Sy9rrim/5jzUqJeDcSYQCi+NMHm5RwTRzTaRAhWezqMZeUbkPuaUH/fG2LbXnCNNDeLACmVRkmCuz1zPdqt9PryIVtkSxLx38sV/TqKnQ69jP3fp3EPq+HepczafBLbcAoR1P7C9u9b7Wg96yPKbWO67V/OMkCyz57/rVSUK7xN5F0kyUsrXuUdpyu513gDXrCKUj2PfjdqZnXKtV332XGF5v5Af0echqj9S2+XtvM1nUl6/tDs/9JZ3zivpMmZUsPXDVuvF/hWiQJPi9ljVR43MdemrLq9uD6B7kty6oN6RqkEsnlZenu9vuk+8ffC6hko+Fals2/BUV2dbauwvWcnl9/LO0ouW9nvs9amL7e/6SzW3TFh7WD4ieY5F79/ucG87xLc0W316mz/Vjhz5JiO+7WLs0d8l97/am/VxI8dlLulJFVuefZlX1zeizn6Z6/d/r+ndZ1nmdU1e65t7/ZbJX6arvAxevbzX+c5ns/R+sbe3fr/mvdfh/b5yIUBdGvFap97A63jJ2yfb5vWavdx+bfNwvya/fO/+2X2M68vLOF8z4LJiYXm/zkfllmPeTHns5t7TCMhy7w2uFQ9DsawjsYkgvdQSS7INItRrbtc7/Jh7kFntjHcEVahfcSogzyO9zD2P98gjSuwoCEb8snkzz7kiddfJu1V6j4bodS9IQovkeZJ9SEINQyELNMfXO4ZgVecRHlf3ESSoCx/6XsE9IOXYxGzcwut4evWB0KDEgTOwlzHT07oHYZ7h4SDprSnnIMdasRuqU0niMYaCNjsrLLGvBSx6h8VyuBhMeP+q3bifCzHXKDdIPBeGboZ6rssZmiGS4SRFOT3vIPea3AeE9c47SRKvksifBCUSmKT2lxFeW+lh1yNkuYQRCL3omgusy9PhF0ni/DFfEKG30BHh0BWTGET9TY+h6YFUVQBXYo6+55E1WXGLgm2/r2Uu5b2qHvGU7VKu3rLfliN8T6eUV4Ay3Kx5xd5o7wgK09Atb9TZG1hdYtnlYraOqPfkz2v78u/Wxn443OZTruPNZezn4v3saJtwO69fTu5fVPGTPumTPumTPumTPumTPumTPul/Mv15uDdMAAZbFp53MiSTN8CGF2eGE6O1GC+GA9BQFKd1jgpEDCs8By3zCB0SwI4HEAKhUjEvWBkWxD28IYRVsfMiqCP+trjOKcL6hxfVEUopEQ0SUlpthacDT6WTBSBkDSRkuxS8vMNJigIQ+RuAxTZruwxegMG8pIaCYkihzlRmolk2SWGSmyzDpBm4vgBkbOA5LuTenss7ODlgtEZjmXG51Vve1sBOTVLJVjZkc7b1v18uzIKwwgsAz7BC0bgVOXlp3n0YeSJB+8xuA+207sPmP+Qgg4Be93y1e/x62U4r+HJ53a7kpbhQDffbV7A4SQ7SERNHMuiQ5Jj0ACXQApc4BhtYlPISs/sSvn8vBWhqJRSxpjrADgJawrIKACuF2V5P3bMOQdH4LsuORpaC84Jdd/JYA3OzPXeUXnJe90xy7m/g/qIsQc7LKyJSf93wlTvY/tKX9XbOnZxjjVgV9SxPZjVWDaZJd+E1v2uiIr1kdDCozwGuP2lz6FrnAuM3slXV2o1G5Yfrxy/tJEnz94hSJ4h1Pd07clOtoq7ISPC78uiKGOG+aunWXoPwmR1r1bhUEL/UL/7pBKh3BLuVnlcCnJOIm5NkSe17cOvHbEPfIy6FSwCx4XFFI0ydzAFfZ9V5jAmzRQBVg7QkB+D0PKg68PNcgC2oA3M+sFRhJ8lS51qQICVBgOM4oDpxGolNafnL0J2AyowQppNjLYI5ZhBbrEKppZJfVTHGwIKHFxvBjJBsrlRowBzuC7JIHuYZKXB94K+nwH1gQDB1kWQbIQmGGEQWhgq+DhJW1jISh1WxVipzNJQFJ8Y8SLIa3MMJUnNt2Aks8SKlMDQePSWRSKKYAsgEnufCOoEJen2ac4IKH8dU5e4vM4D8hSEKnQMAvSTZ9xMCh52G5zKIP/CQA8NP+PcJV8CnE4DXA+InUjQRULmhKoAeGAgvjphIUolZsM5MABkYOul9KcJArLXo0cmE50laYhu9FmmRajRoDMDyhSUhIAhDWUicMXNwzlsQsEWA43Hg6xg4psL1C0858DyB9URETT0BX1B78ncYRA1Y/4AqvTKt5RjjB8b4gR/HgQXKBc+fE/OcYNhDxfn/Ze/ftmPLcSRR1ABwulZk1fn/Hz1dGZKTwH4wAOR0aUVGd1eNnXsMZ2YsSe7zwisIAgbDDAwoQg0yHA7HjNRjDou85ZqqdIINICwHROoqYgk6EoNeI9OebbeUHcb/AJj6LfWQlaniIuXySYxTmJ8T5pBaEQSWFySlDZxzUZAAsUx/4Vt+aJHcQODJVpBCKh07BfI+6l97aysWtTen3AUyrQdwd4uVfC155v27oDmUsl3ee+y/bZE76KrGMr9EAVa8dX+uvWJofdWvIQlYD+p2Xv3wur+okLEOx36XOowZ61OysphMAWxgPJo0ol/cO0np9FBAjhEpB7Yc7ZVzSw0cjec8kL1ySj3YddnN7usP5/r+LIm9DkdnKornQLReVMD+yAND62aQrshf6VzVqAY9tJrUrdzXHe8/anLo4Hu9t/b/+upj/E6ghRxtvC0BqWuzNqdq8G2pHA3YSnl+c3/oXtM/PW6fnUqHPB2Ym13lvGuPVtyf1Ayad1XwePFL90Sc/XtKjDr/vPRRrr0A0ul93v36kteWnu/umbQ/P94TNdrdNcf8Dbm1+2clLc6n/HwZvs+9Xk9yr/u/Kj0TXmTH61v3PP1eq9OxfA+ikB+vrz/PM0LN7dovzjfdp2nKzV4Ku0d/3hfO977o3LjPm2rfqT3/rif/Ul7c3nOfV98AmHHvn7j9BuDHdfTarvP7l7rfP2rg0llP1jX/rvRztUS+neuO8RW0blP9xkCBfb7RskW03Is9RyI6iMhXpG0twelmGQRRQXvS9g1ThRrtD6uYXrHrzboZKg26ALT1qBx709FvQrBJ7cmBA1iFYBs9AzggIPBbM/W0JYFU2oVUIGtH6NUZSCRgSubOZnYS7fSnvXYoTAl+SduVCDZguSZt27+ij55DgEi2JbYnQcKpy5XdRCXZckUAUxRQnrN1g3OWe/d/IHhmMoPB4TFRAJc9GaTPJRKR6dAUYgPhliz1PK9Uw5jeDVjFxNPrX1K/zPqXfU0JLONyzZTFLStzdhWQRamzpAlr61ZlwxIwNbhZs7MuGDySuX4BcDJhcd9OhlwExAMhT4gOAscsMOTiFFQBDFgmkJVBNHWGCWQwKwFLWgzBx36ryPTkzZpYNua0j+Xa3LJea1NM8FHtySW3c12DQLqQ0gfROvmpM9YSatOpHOCmkkWp43Np8DxB2cIBK9tmrfm9/3VVe8TQM65ai/1b7Q2HmGRz9h2RSqXgsMdkr52bdMfSZs22XvhXsvxd3uVd3uVd3uVd3uVd3uVd3uX/vvx9kJLWAUywvAzYkamTaEhQZVS3VjqW8DaQqwjpn0PSIuBQjXRoltHB9yGynMhpLKDhg/eHZBqTYshZNOLAHTMtEQwE4oFW+2xKJyiPvzykrnSWYQhknWCCtO6LwESxj2nSIU3u5ShPZo9ysqGc9mhDCzxxUyLpX4o2BtWBUvK9S7Jfy9hTTog8tFYKCqY8yZplKpPIfESHf4UlAAhpn0UMcVxQgBRU/fqHn09AR/eXETkdgZUmpZyJxYLCA76XXQZnjc5o7OOCNqze6p0/o35JI9Jmjqqxroix/Vw2KfsvGREq5qhfI2USBIEGGW3GzGvlIMm3p0O0GXnkrNse9zO6EmVs6+rzzV5gqsMYWoaTm3NCKvXgaao4vkOypsTafVxWjltH3g2/O4psj00bbl6MvdtAsw3LN+PFyb60OxZl0I2OkixIyWFA6jHehmba27ZJraPzxTmPvebBNiydLa2+rnarGqPZejyP6NeSIxE4Dcd5Wc/10zDYhlJUF74YcKpPYxuaqr2vrEV02Pruvtdrjs9/KieIL7sRHSV7sIgFedU3IFG2ca/sWzf7ddUv31EfnvV4jRR/rWukcfA+Fe+WtO2oLqf8yzurjeVUA1BgAu4bcTy2BdntOT1/j3rQULsNilVjVcBNgCVQGC4D7BpMjTYBAx0MczkZi5Ry5xoXIhxrzlzzgjUd8CdsCP749Qe+XPDnouHTYTC5IEqWvc0HQkSMiHV/a45fOYwFBJOaUZ6pZeRrMNJTh2JcF0QCMxagBeKINgQjFnw6NBYcmo4TB2CMKtaA6cL4GHgmS9Qwo4FdaVi3AajRiAwRDL0QMDI0Lc6xKGadkr/CtXipEEQVGSkrBhuC9Tkxp0LkAZPFtJLCfdceA66AumGowozRvGOMBMcFhhnkGpxNLgQaL4eswGxgUmBcyrRw16DjYv0vBARmBD2pagJwOQ8MBvjCkIHr4w+oPfD8dKxJMJeoYsViirHFPl4R8OUQX9DB71c4wGBrXMMwLoGrQV0wp+NSRnwXj0758CICLgLLtjHtoEFkATGhArIbqeBxfeDXY+DXJdCPD/wZhs8n8KVBHckFX3MxDWw8MVQwBNA5oRaAK6YETBY+4Hi4YuIPPNWBQXBdxIW1nnjOmU4Sg8YEVOlkUupN7hPWMtQQpcdFQAyIlQyUsZ1VNOAX0C1ytW7GJc10E9xemWBWVCEwTO9FDVGFpbxwJIsYxXym2ThkQDBtYzNxureRXoUsi+XsQ3inRaGvTTbDSTrmWpIW7jZeduE49no5QdX3ny/aAX8/dDfqXLXdOQrw++/sU2jdo5Ta7jv059y/MjUfqSchpX4HEuBfu3HpJZSRG0P+AlQ69C++JplPpQAjBJ9FOiM3mPrcj2tfTz1SynEmCZDkNYImhj2atoHZNRvqPTvyfYPaam7y40PfaLVNOqjhTs6YOkG/v3QWoFOOnCreAUq66ZDYn2+dauuDpyO9N6ZvY51zMXZa5uqRnqsATlacdroeV/8E0u7103Xb8770gQD2fKi5hQLCZP+fis9vS/bzy6XUVfnUn1lpcAjx8+vSZ7bL80xtfWvsqV/vxt7HpNfT7h85/ug7XpfcuTzO/vzWkPNU8L2zan7J/uC3T6on3JnU9g18zzlBX657+bSfl7rv9/tOmfm9PndmpXuN93N/aEfVN53Ygdhz/AA0NZj/mHN7oHa/7mkt9458rUjW+VbpU6zdNOl7KbvEHfh/zJOXx95uxH1O3V59LIzfzyBet20Ocj6633+/86hrP+d1jCMX4bHRQu7PvdUiju+lW7XffAIOjrlw1O2cIdUjfSLuMS8dbtvPFGlTUp4PaLdJtpUcF4+AMbcsGZLCEWEIUJ9VFEipwDE1X3g2qZnmXufKDMzLdmrZnoA+xwsI8pFaIGlvoP5D+16gbDr8bqWOBBHErI0psMnSqbPqqjoGZGTKuZVnjlgtV1U1zWhMzyal55HiHPvC2ADxrL2VjQxo24GmXuYr7SwHs1PpTtQbM6hDJFPOGvswz3eJKQMiQUFOPctX9LgV0IzHNmlbGedQBtCUzaGAYTVPVZsFtw1bkAzwwJb/2adbiFUat+x2FZhlPRpQ7xuU0gFXwGoRI2jlQQoEtSASO5gkA16G8oyxRDDz+Sv3cI9ALJ5fBZl62wOq3nWPTI0MDzJ+hlLHU4EHU1Wv8Abdl10TAEQtmx6b3TakWeXLPhQoWZx9K697y7Fy085K/btSIW5do1JLb5lYbJfItb3lV9kTtn0j5yL2P6+qUg3l1i2O/e0Fqf6yIx1y6pTjtS8cc+U3pev28tfele5X3MHZ7/Iu7/Iu7/Iu7/Iu7/Iu7/Iu//3lb4OUHDMj/ZkjfcVC2lA6er9KHVIBOsR9LbLS2GCED5A+oA1c0Dpwu9ORCWCfNAUqg+etpGF2KEIUKgGDYMWT6dtC80C6IEjAQSgc6TBOh8MYxgOu8ICukpE76dD2WOkIczoqJduZB013h0u7EVGsUe7eh9kGlkSmkcvDpKYRimAu72dKdowInbdRBqAouBAPpDRqy3F45QmWmCUHWZ1ogDOh48SFRqLTiFbGpTLqttFGMpquaMpzDMhOsqPuvKm0+Z4llZ5ou6DKqHo7K98O3fn8I51cXbB/k7KspoGC95TRqA27314C7MP8NnJGPzvBZfn8k+6a6Z7KYBfpXC9DKA0JapLGodgMC0A7OX8yqJedLJAu1jTslnFbADpMtr2XrBDJjvBqPPZKCSXRhq97H8Q3O0UbqNOZK12H6jH0fNiRY9/tHYINsrs1My9upxg2EIvXV+PimCN3s3TN6/Y3xH0e3CuSRqoeyv2kzX7UUzH7qBac73pKzbrD6BPVt4cTGrv+7VzWmn9njOW977taL2PId21ms31BvPx8Ledalt3nFf54f8PBspRyCJtzrNbD/uvlTWns7Xf94MW4g7vu3+/I+bZWfnuEpowq+XF7xmE0jKp9Dhrr6+0EkIySBcqYeJri9phosZ80yIkAHQSBOwT0GDQ0iTHIkrdqrbg3qx/3J8HX1xd8PQFBMgYxLcBQhdqCqWKMfGZGzzLfz8JaDsQ6Ui9at9vMsISRo9NnUuiPZvcRzcjPTC0napiTaeeiNhcRfD2f3L8ksJ4BE8I3MCfEDLGAuQSIhSXA+DDgAtanAhiwIZtlTzTZ2BwuC9fjDwQMKwwqI/s7GWiEQEGxgScEBrJNTVkI0wSF0Zg9QUDYRxrblwOIibkAjQeBoia4LoGKwbm5Yc4CTwWGcB/+ej659y7Bc1GmjRwXuxSxFtO1rrVBxCoYwzJ9X3TUtS86MrxAU3CofqUeEBBbiLXIDhkOM+VcUbIIzXjCMXt/BRTXUOjI9HKhcJ9YYPQ1LFNG+YLAYYNzO3TQmQTqYnPSaaXG1Aofjz/weHzgYYqHOWwAMxZmGPDlCCXYxiOAyXXjAC4LQJ/ARakwbAL+heeXw9XgE5CpuFSxzOB+wZfDdTHdrXMsCrCOGJiLDghrPUAxVwAyELrgCxAdqafkPlDR6pLgc41MZVL7Zi1v48rPNG+AQNWglSar9SqFigF2SOZ0PLg7wgXFvdPSSmQDppxzXqDJTLMo4xN4YJqJuWSn0lDd+ko9DyKZyqX2sFaCcsssYMp93y0pyBreNYpI0dj99So3/23LjtDeuvJuj0oBdfZ1JwsNL+Rco65/7pLVf9FMbSe4k32k+11avUyQv6SDL3q2pLzLF5QO41kXQRQPAVqDSP1alTq7py7RAIF+btUYO7q/9fSzu/LK04nV+6j2Z9U/JzMH98Q4O2i/tFZUXVtT8jaH9o3co1+UveOccxujY1ROMEA/M36Yq703b+hZrYtSu0oX3aD9Y4+/6YG7P3Z/HhpyqSKSzuJG+h3630up6sqtLbj9ftN166s4bt7a0K1v+kx29u+tCnmi6Dre61fsuKhr5Fgzsvut1sGuw+tYSQuVXgGpBwMgaPhb3ViDs6db0+xH3MH0Zyntbv996JI/dMUtUOP4rn33P/TP9/LS5hfJmiuHzzvn9Lc0izjW9p5z5yNrrh6T4eir19a/tLanrhwfxHcF+nb5OVfQZ0sAt3W61+Vxv3yHAB0wum9vOkb6dvUZ3PGtZT+d+fruOGTX97aVPJbbh9/rdRz9fnxLj+uP3flas3N9H/Pz6KgCKr7eGUGGbsmLRDMlWyJYowAi8V1KzTXTDgSytabOs9lu0t5jmT5LbcvMqHrWftlhUfxXN5jDo9JA39dpjXmAYChf65ALuftVeuMkEDWpYAiuFQ+mI4tQmLLu9dzSiyrQKEJ2gF6mBINkWjDkXh9B0JISpO9CvdJjEVjeqeIi074pXJA6aHGTeradIChIMqUq0+WyPQXeCvDQ481a5MmOHELdtgOwAogEinuCckUBNU17Ws3fnSpNU55zn2MAZ9kmkOy1nHfFphQQE7ivBGNFy3rJsZnBfqd9KG2MCcYKSbudJBN8IbCSeclj1cjSLmrJDKWaLK8Ag8Uq4C84B+KQbpyEcKxeMyq0ea4VZIkNQbhBQ+AqgDOAhXvy4nngZD0vDtQOTEsoU46jiKdOxvNdHLqSltSoNSE1b7f9ZM/1rYVxjhbgrnS7XCupkEhWop6dTT8Ew6EDbaGb2KitJGx9YK8t9ue5Hl+l2bnJVOe/7pi7HbcN4dBDW77V98dz5Hz+u7zLu7zLu7zLu7zLu7zLu7zL/2D5+0xKM49vMZnFJM+IRcFLB9+Cw7GCD1Y1hCsMk4dEF4QqNMEsYoaIwPKVaRjo9FyL0VchwnzvADJWHhCHpZeKkctM0zBCsebqVGATBNlEAEuY2saDlMLMjkMwlIRgLToUTQCxBXGHrGKlkONApxm1Q+MDQU1pdNBKyVMAq20c3mlGJB3QGcmGtQ24Icn2khHj5T/HNmjR4ZspzYSOtTrEVmo8nt8VnsYL58DlswredOal5/htY+1hHNaxz9RtsKkrN+QJUZFGPOo7kPTI6WAKoCLJIi0Yfd5t43XVZEc2RxQwiPWiEyXTR6EimqKBQjta8QR8oCis2hZWtMdRs6qNmdGGRk2DUWTKvwH+VDWoXYjQjDJbWYeKoipnTRoePWqR5JhVvehgR2xGJV4iXfcG1eT8OL/rjGOyzaIbgFIgwRrbXBT9s746gGBpS9Y0smdT6rJ00h7P6+GjELiNYexx3rU4wvy9+gPoCiCNT1Jf1LPSrpPG0G1g7YUHFKNYGatDgFpbZz35Cx2GWn3G90X2Zf65HcUCICznY7nRPfur/oqjXxNI+GKEb7ajSm101Cx7Pvv6pVPyXk3DdjsXWnAcY1FOLi9raC38MrlJj3n3LwVDrtE0xoIGwZpNt7nW67ecIIG+sMA+Vfv0GNXX/aXSrUsGFOT6RgMHGjSXCLUtG853F8NGZF/ToM0UU5sBTlU6qrYYXKSMqke1y7hbTqZLNaOBjatpcSmrXFB7gPGbC9AEQKxPfHngz+eEiWAg0ygoAFEsDDy/Ah4LpoDJBRsDUGBisc9cOG1lAaHw+QUEjcThwBgX98p0KuuoMTr6ywbEaQBfTxrVr4c22wbHhqkGpg4sXyhGkOEKdcOUiQiHrgsjFGYDwwJDGdkLHYAPBMgkBUzuTbHwMMMliicI2hrxBXlOGnYfTK8QEGA55nxiCPejfAzgA2KW81sRy2GaM0gNK+eNCSGZYxiekxHNACDKNHrrzz8BSKdsq2hfE8V1MTUbGa8cvgIz5/HHZbiuAbsemF/pkHFHyMAUOlkGDJqsSu6Lss9yPwcBqx4LhokRApfAs9IfYstrEcVywfMr8AmCz+Z8EthgSv8EHDMmRABTxccQVN67NQPLJ0QnVBwfShaocT0YZa9gH3qkI4eA8TknpIFwgliBp38lCGzC3fHHl2P85y/gEfgcXwj7L0x3BD6gOigXgqnkMATx/Ezw2AdEVsp7wzVWgsMMHl+wYN1dmCaRnEMGhTIyOxZUJkwpW2YyeFWKE85UI2BHVrp0ci0LHSUmgBmdTHRkDUiC5iTnP9ebQZyAvcjUewFnnwIQLMp8kdRHmcLCTeArJWWlL47U71gRAATyt/6Tsovis8Y/ccKpNUmOUTm89nrduwGBpeyFoLesdo69H6Jk8W2j+fcqXjK5mDbl1tByJN4L+0VL701ZrYd3ufaj0kdOZ+sJ/Gm9pNWZDRxpn2k5l3JPL/1pA105N7viOQ88U2+ee3lf1frGBvbc9fDab/PMkXXbcn7vt7e/q+1V46hpmHuo1GVyVgTFCvai1uXz67r+I/WoalcN3QZDtWp3AHUaiHQDLKQu1E+KvoR72eHsaydiNCPE+chj0vww40/9vtbUBqXvhlctovvvUGz29zl+d7zIoa/mpef3BLi3Oxc11/gzHfFnn0rNs7NI1w4vvXYC689KdBUOwMdR09u//WTZ39/fX/Ou7pBbbeqXiOO+Q5WN/ZRjqt1r02C0vuqlXcfVP41zr59zpadDu4fz5dpvk75/lJ4e2HD+sx/ift834JLc2t2fZh/9BN65VfE3n/+u5rdrj7X/mjb9tS57bZ/PvEPNpH/+8Maa/7f1UO/OGvca+WncXh4VWy7uWf693d+eU+84Bjr+4s5vLTmaEC9N2p9uWdYyJY5+Otf9qwyQDIrIILMNFpRk0AHarqQCX441F1ZWxg6QBvtRsBagmZqUTKaVNnhtkXToGi1Qhf1MNnLWoXQO/me950nRkDs65ZqK9FgB3L9MBWJM/VvnNg9gpE4VUpYnY+AGMgWWVmdf2cVpT0h5qQBMmU6XLO0AUxVXNzskbQCxAiEFUEfbByXZhQQKktRue0zVv7RyVZ4ZeJ7gILoH1lptd2Nq6Rzk3t/IMJ90t8nMxzUwjG1elR64GdKTxVE16xa9L/ckdYc714O2rpmWvzqPHzdEBGYwkIbAsGQDzWcB0eds1QQ1Zc4+Vn2DmiyDDUQt7Y5ZqZLpqYCR6atXAeeK+7ZBLieb7GNALkFoIDC5DhAQHTyPAAhopqqrvtBk4K+FRIAa7cZpgxRBKIFjWiiwtBd7BJprS5FZ6KWBf/yrZFP2T//bLcq61TmjGL5qs0fvjdRPis1d9rOi9IdioscOwEvZdb4zVyVKT0TqLbVEtpw+pFpUWw67W+03R9lT5oQpH+2tvv7BPvwu7/Iu7/Iu7/Iu7/Iu7/Iu7/I/Wf42SGktgnLU6Kx3oCOAfEVHqYsohiJBNTzAj0GnIA9oSUedRiAvh38wakhAowRUmX89jSp0aBHIU4dotWJNcvptTcnaBKThIumTE+iiyM+czkdm/ggEyF7hlsZdSUrjFViLTBAuO+VHpY0CkFFheagsxpWKRBKwTbKj1qBJiww61zv6KfIQLECnl2gH7kp7CoE4iJV9SONpO2kKyOPo77YBJo0iCbaKRE7doomOA+02ovO9BEn48R5eQ5tYGauk2ZdM0zkam6FAsm03xwoKsLWdCR3JWefk6qeKwEtj22Z+2oCKMjy578N9UVnzh2wGmexT3rYNAyKsewjpzDVtg0UdrkjgwAmasUqhhMMQSCCcRjqu0iRQ6baKBYnVrHuy9w/HQvVJ/WwGgsMRtA0Uh2E3ojIQcr4fRuK2+ZyAtbKl1DhgRyP+YJ7ejo8CgXjWr54t+7ptNOGqL0AX63CaTVgBPxyEfIx2H/ChP9XoNEl///50Qu5r05rckw23u8sudzPQnW9LsETsP5OFq9bS3bj9s63nPravF93nQhmh4rhzX9ed3wtl98et/9qIXeCps2Oqn07nzFkqzdJe19VRhf8K3wt8A+kiGeTq8ugujzb4npGTQFXtyKW031UdfvaB3v+ue7im0U6QlruHhY+OhGjD7bgMCEt5zVd/PAbUmJZLBRjGFFGfX0+EKEIG/e9qULVMD2UIGJ5fZPAbdjEq1XQDIkRbfgsu0DhOUCqcwAQbwNDBfViV0A4lZIZpR61TvLk/IQqM8YCqYc4FjwmAz/j4uGjIXmTfec4nHlNh8sQYgRgGc4OJQdwICjKCtkSUaSok4P4nEAELwMD+UGN07pIBzAkIQSJrcb6FESwzwP2ahm6QGUoDv4bQoO/sR6CYaxaGLIheNKCLAGIguMOBBDutxdSwminpaHAHJFPWuhMQI8H9y8yAGIB+wkwhYlhLoPZIp8aE6ch9jdc/P3PfLZYdEay1EMvhTwFi0WESBF8jgTiVGgyDTp+V1nOfE7FAdsXleK7JtA3K/ZrRzAPDBt0IvsjWFAtk/RkQNdi4YDpgBojm3hvK9HLPBYkFC6bno34TgAd8Ai5OcO7zCUzAMPH4QzH+CCwshCxAvpgC0BbiMsyV0dQ+obgQfsGM+lEEnVP2XJiugCumL9glkEVAHArwJBfUOTZk4SJzp/BDQAjENgxgyR5z92QTU+pPmvtcJHDbFGoDgZ0qAgAZjUrnShHgvdtIsgJU2mLOoWZoC2x9rvSWlGOSTq2dPkjoVGn5lg6KF7FKeaQpp3LD1ZSjqU8cZDGoaH1Jj/S5b7Q+8W9cKpWfSAH/0cpHjVEx/9VZYe83930s+ZJ6T2mk9dEHdIzud9RzRA4dI/XDHjvd4M7SQeIA2G+g0rHPajpSsfe21q1Tjp93nSmbNgig9htJdqX7Nlf7denGgdI1NnimayXd2p6Pt327+0hf3vE6h1722XLSdTdXn5Zusvu4/jwdqnUM+Fbkri+2LiqSDD7RNfsGFOixOUE3L9CK0uMgt/6utrTuKFtfjJduONt0dFbrUHcgVb1rP0DO+YLtaO1PQjqdzRYT93lz0/twgqr2RXH0+U/niZ/OF3E0uPT/24vzHdH65M9gqtePBHucTln4Wo4rXlr+u/L6bfzw509PeO3Fv3phXXvo4K+3H910lm9v6OUeP779p8/uI5/X/dB3+7vffvXDvQUOSNmLmrG/20F+6t/8eSzqPop03b//en7Y9objnHt/z+sse5lLP9bv+yD1kvxhjFt6/Kb/7nXa67XrU/JU9jc8U+R5I1OxtdwHbV0qGThT7Y9oO5OINfZKk0W8ZUWC3VSSlVWA2mE6JRWiAUJ+2oJSblsywkieYzsQBQIGupA9EpoMP1AG0zkQUayglsyjfL8IdXCAQQFqSPbrCiRJXSd1tdZ50i7mEc0JrboZjgAh22q2l/YmSbb2Svq25VixYarWnhKASepzOyUZSvfqGSLYh9q9P3Jo+ySbYy65B8shx8GxSeYhIFmmEmTGOqXlSHefRN5X+kfZZCQOIHPEPnekEhASRfWDDYCsdMQ8T5MZfs9hUekUc4A0G6lE6S8VFGp55uMKIXiM7ydrb2SgH+tfTFMAdWhBoPBelf5vPDiuM1P5ijzZT8Y6eebzJWup9boI5xwUzeAYJTAsFBCXnks1XoFME9gbYqSOkJVJUFM4F6z2GtlrLbDBmb2mM8iqZF7PrVJjU8hEjlfv+AEAtnUh2WNaLNV1vcgRwFD6f80r6Ql+bE0lv3d7X+X8Kd87JdwhBzfr5v3zW+Pf5V3e5V3e5V3e5V3e5V3e5V3+B8vfBimNcfEApXXkSpqiAsSEwIal4YIOV/cFdxoyVHXT96ZjsYAbqnROQZwORiG9s6jRNpBgD9F0PAoAyegtRTrYyNIAEbIVRQBiG4QDYXST8mCqRsAPDQZHlL1Kpm4AgEXHczk2Mne5qoEUO2VUcizQ2SveVkgePjPwuA+gIptlSOpA6BCjEVe1aJwFYow846PKOJxGioqCEmuwDoRGJ8+TsuRBu9L/eBpu+KSEVihZCbQNr5rAoooR3xGCIsn0JABigoYAfllU35IMEKRbztR9edivg24gI56AbtNpCOYZ/3Q4VMRZRfgFp+5GOKSjktc7mGajgEf13A2Ekp7LKkaKcJFmBRMRhAErcKS3izQg8A0d3ShGIJsaAKbRqVLsN6zfNqEJlEbJ08ifTk/6yb5bBE6ngo1N6c72c12FgOCqNrRlmxVp0DsMyFmvwGF8lSNaNo1km00ojTAHgGSnBfBtsDmtGa+eWBS4rcZ4z58Cw7BJfjylQDRR1p/junOpxTY09ro8v9vzoPsyx6CMQnc7uOx1L7uveV0u6pzSux/SqNjP+m4IOsfy5hg62vt67W5zoJg9dqqcrm5/tp9/AAsR/U6KnOr3Pb7loJKOmtxztPsR1qC9m/tPtt2sbzv7sj8ohqfqT8mpVeP1EgWfnV58ej2sgjZInn2JQAOVmpGkHQT5fHZSiwZRQvVEBKaCYYIxFAgDYFjpNFVRmHmyIUnKd8fzObHCM23VBYMC6gm+VMjg+2wY1AZUDWMMCBglq7DcF7zlNAGMcjBoUbZLOglMBWba36uRZciLeUgmVANmTL22FiDBPfIywxCF4IkIYHlgzoU5A48EQsm4IHFRLjlBMNfDCDCTJ9ZYmPPJ5AmqMFHWSYJRy0OwdAA2oBaADgbyKtkMSfY1GEWuBMEypUBAZVEnUCHGyQVmFx4meFwPBAainCUp+8QMJgRoicxc3557Mp1AvJd7p0E6rdhcwHRAYARIxWLaMmM/P9SSmcgzxadCcBF04N5payPJ21TSuSyCoQoJg7vCp+NDjVn8TDB9deTvDEFMh6vC1xcsGcBUABOFjAEbF1QMsbzihDmfzdivpnDlXHJ3zGA6iPEUOr4DUDhMvPUrgrot9whG7ks4Vlx4fhkel4FujEAsJ3uRTlyXQscFc8V4XsBliPWF5YaIBZ9Ppq7zBVXHwAKuAKZiQjj/ApkqjTHzawnmAnxRt4CA6QUD3PvFmJovVi5f6jh7h44EvVvLn2EK6CADlwPhC2tNcNeKRKon+N0FMQG1we9zPw5nCgxxRn3DyRZqSHmZ7qfl3muV8minG4Z4azmeKewkgUY3SSkpItNRZcaxcy89tnTb2ndKj4rbPvJXTux/h2LJogps3RjIPaRGVAAUY172R4HPe+9s703uKYdeEIF0OqWDMR2j5Qgq2c97nTI96xBeOnZQp/Lq/XqrtEqiskEl9Z7TcdRbuuTciNIVmDK42B8PvBK2y7zVZpSfDcfnItKp8vZensEOONqTdwhkMxXUQ0vla33kAEkd724N+5zbRV3bik7pufv3hjtI9X324ZGmrnXFflarlLsPjtQop54k3dZ9H+qsc7RzqzJyvuallzNgotp6+ye+X56t7bE9kVhxq3yO79YRz4fcdJh8e6V5jjivLVDJHfi0+/749UXv3P3VA95Na321bt5KGChbZLftWGrV66/zsuZb6Vw/vh/4Jv9eHvC7D25/y+2TrO8x489r/uqR5/q7P/k3f7eskR/a8RcD8K3i8fLB7yv7d6R6jeXrHvCXwKZj7RwhJf/yfafMyA/2k35qVk/T4x19xvwXLztqWzec57zvD7ivkFs95OXbv7td3h5Udfj5+9ZRgGPP2usJUmtqB+IA3LO8hETao/SU03rI8UzRpkqGbW/WaN11O9Yqyv6TVZGMYtJk/tvA4HpZJFDXAfFkhjUU49Iegwp422nf+F+drbQXV+1tppaVIph9uXc6XO4w0u2mLoSKLGymohZbuJ/xNO18BUoR2QyUPEqSCZt1qPOI5b5QoDK+t9K21eooiVIALdpYUkfpdlPvGwkecmzgmIrSdpQ2Ku4fBIRVIAmD5A6ASo1h2itUU6fP/g+NOwgNkvVOmwEEHQRZc0iL9Z0P15qLBdARadtdgHXZc7P4O2uO7YA9TnwlC1SkjU0VEWwjchao892OYHAID33Jfspzlmdfhq/UnbcerDzQMC23gudorNQrtl60/FgDKWu4lWXgghTzUYLKDr2nAi16H1HJYMWsWzMy1fs4L7eIYL8XyEpTXpX+13aIFl35h6DT/97l1LHrvm6+xZi9RcX5xC0Pum29eFpGRT4m6j3/cm96l3d5l3d5l3d5l3d5l3d5l3f57yt/G6RkJnmIPg9OO2qmkq2rEDziddg/UrWUc6XSkfXhNgyqkdFG6dh1HpB1GAYk00PkIVAVkAWzgCGAS/B8Vj0MsQILjun7UGZ5eA4NsgwgkpaYt0HTEf3CAGQmyZDDz0yV9MtAG6GlgE1OQIiBQB9+SeNJRLF0pCHpMADsg2PkobizYbSzoA6TjHzbxuQ2iJSBJqPb6gyMSKYI9kCWdOqlpV6yzbRXpZE+3ynLIVaGtWgKZ9aJDlqmt0pQkCQldaYv8QQbFclQvT2qFg0C8zasleMv8rMC15TRodih4nQCCA07UhFq3Wcb2LGtfGWcqjkFFDjjpEc3INME5UE+I+NojCKADXGk4lI5gqPSueDo8a/CviizRwFregZwTZyG/PpGyshSxoPtIO9e1Rr72Pd2x5fFcjuppAwRRwXPSPhyEtZjvjsYXiwih3TQ27ujv++6yPH+LtLr4Yzivtlxsh5tZIk0UB7U+8ArEOi4u6eB3Nrzem33NY6/D0/GdgLuem6Tz6vB/F7u7635cgdL/c6Z8wpGupNK7fl70o6XUbVeUMbos7aS8rPfUX1csqDb212w63CCnrDvLZazex8e96YsuRv6m98rbc5HnyvH2otJREBZE9r9ENk+qSjZCkU+xgldpy0Xeh1FpHG86lzRyNHjROM7QTIO6ZDfMvZLRcSmAbtYfSBBRiIFKkSa4LoysBPMYBcN+GulwRIOR6UcYO1VB+uVpBaDaF/M5xMRE2EB1SfELsquBHYyy9nEXAsRwFp0OAQGVlyACwyGkMATTxiY4vIhSpBHAlACE5CM+I7NGEfaxTQiX4HpjNBllOzi3yAYK9aCqREoLAKPidqtQtDp4VxAALEZVgjBXZUuwchSFMG6hFx0/vtKJ0AyKQUy1YBTn1kEMKgGJAQSI1P6ZSo9Eay5WBsuOLg7TA3LabBnOlDg61nOFeoJntOr576Q+VFFEBlFbEYWLF+s05Iz4cCCu+PDCNS23IOf8wksT72KYFxVgQv1hoUgWM0NM4BnOC6Z8ALMGTAehvX0BiNIMg6thUb7Lh1YDvhyPL+eQBjmFKh9YIyBMX7hayniCUAUBoP4wNea8CWYsrC+CDonOIj7mmqQUyoU4ga1gGrulTm3n7lUg9Rb2c6ESkUgxNOIrg3iisUo62JQKhko5SQAnWBzzo4o3zJM0aDx3D9FA+pcyyFkyNJk2mFqYmn2y2b+QQa4pwwq3S405WoDNCrtBmWA1kTJPb3vi9KvKU9LhxK2HAG0PnbuB5vh5K/3oP83S+mYGyy8xTJ9ZgWM2PsFkNsXf8t/OQ9qmzp13HIEEQBbOozAWuFKXUl2n2nuR57v0Ry/QGDFARADMsVj6e/RuhbBO+UwTDHv3mN3poctXbjaVnXfOin3JDorKa/6TklGWZHuM3659aCIW/eh9ufS8epeZKrBfc05UvVb147X9ALS4yXSfXncsHWIA9DU8geRTmfKQd5TkLA7HKe9tUdbgNKPfpovshfNoZccHx6POgBKWym6vz9237WeevZ43HXaEmt8zmbEOP2TeOlhPrfaoS0LStcFXkYoXj45dLM+BPaDd/3Put/e8U03TTBFUzNtPTVe9PeqnRyDsB3/R11eWrGBPnedFD9cHcc19fd3yNa/Ati8fnuAsH78/veluz9Kh7w/46ezx/3V8r2xt2feuvhflj2W/6dlVzK+/XVcc065W7v3PG9mk67Tq4z5IeDih7f1qN7k4U9V37Pi2wURL9cgdbYNPu17437dHRi7pejvemrfWyBNx4+yPipEqwA1BSLS3UOHCJOqs1TgU8krx053x/2uxsCDuqdosTzyvR7O21KPIfClOIxkA4I6bRgY0KVO20fJUgdmrILMZ2UZRBBQBnsl41El5zVlwEN4wH0yMK/0n7JnRdp83PfabPlbzMppq8s0el42oEorjXvfRSBT45UkrKAV7C0tz8mOBP6cTN29J5UcZ7rn8AOYW3MqyPTDo2E9s1LVci8n6Ppsd2xS59JZPNoeyOrtfaJAN5EfkHk3d9XsvwKY5egcbMO5B/tOnY7UM3Zrc0dO2yxZrgDVxV4QZDBOAelzfpKCFpJ2RweD/pY7dPIVZJElOyxTQBtk5plXJc9ki3NWlMEjERk0EK0vbPtX2oG0WKTQNoLIudOT4HXvqaGtfb3GIp+8L0+dKhb72Bv61qaiLX8FndK2gW7I/vWWDL1vBMf2VJsAQRxzX2payF7f5255k5l1PW4f3v+q9x5PiPOmtnV9v/dd3uVd3uVd3uVd3uVd3uVd3uW/u/xtkFIdTll4KB3G1GsHsUg7HepwL8Lc4csDQ8ADs1YEFtpBVNTVDoe4tKHX3elgFB5IaccIMiEFmLotmOFh0dQDJ1lTUhfz0B2xYOPq9HIIOgsIUuKhUUWSsvoesRPBCK9KNyBtKNnGZlVFYO2Ip7Z6lJF3Uz+rakab1aF+A3UAGiU6nUIax9zT4RFliMlDukgCw6oyIwEDjFRnpNdgjURQNMgRwnR5ImAYuOd7i6mqDA18jwgSLOQwiUzTQye1SDkfFir/O+fMAlTbeNFn39vJWdqoDGxjJ4ORKgK+rTZ7QqbRJ3oeAWH1jDLweY7zaW+s91WEMtoBCNTY0fHjvtqQUA6V/l4VnRxeAFmV5ssO48F5+g9U9OFq2qnD6IhyaS00VU0cxmY5o7v2XCmjWgEi+j04ACb5M7Iz2okZ+PYcVjnNbVJp2e7m2O8lG9ntzHZF9W0m0snntyGzjUA1LicAbxtukAbIavt2MMdLHfZ43mp3M0rrvkvu3599fW9PXlhGLNwjp8vI9eo86ZY19i62QbFL9Ad32/nPbWhn3PGKnyO57/eJlM2zjHYngGv9eF/Pn7OCQbmlR2Tsbutef8WMsB2WcTzvuDwUGwwkx7PQhmA2Uu/f9XOi9wqUUztLza09V873aNaJBvweVyQ/TUehTnh4Ax/IrqEI3+ArghevlDuxDY25TNUE11CIlEHVGTFbxlbQmI0yforBRgKCF9u8YuE5v1AMeUwFRsfENS5UWlFfNDqrDu4zM+D6BTGDwxCTYA53IJKpUEXwuAbG+MAMRayAfzmGATEcIWQQijkxvz7h60/M5xc8Ak//hMlA6IWv54R6wAaNyxXhq2ZQS4aocDpCxDDXgg2FyCBDTRrZnz5bZpko7EOwwrFi4nN9IUBQk5jiMQbW4lxdM2WLKWYIzAZWLEhMAmFkAsHUcXOSgnGYQuwB0wF/OoHIJj3edhX4SVDLxH0iYqbRfqbROFMD+hMRzlS1OiAgwxTcwTy40uAUswtYZN9bi2xWTJs2uaeiHCpCFqNwgnGItoL7AnxhDIOY0WAfgq/nP6Ex4DpYVwmEKhxGGWtkDQImwTg5Ve0afN9yPD3wpzj08wt/hCE+BM8h+JAHfo0HcH3gEQP2uTCfDoHj63NiSGABWBo5z4HneiL8i/qADPpLEBCrvRXwteCrUqY6ovZeqTWvLWP1GojIlK6otIgUcFrpM8C5trycARMaAjuBvZHA7CA7UzkJJFP1FXgbuaZLl2VaCLTjslgKNXWdYjqIYOqMpeXY2JKJopT7WDHrvIJq9z695Wqkjvtd3v8gQ/8/4VPY7VUp3Qy9TxAA2a1DpQj1CLIRtI5V45TXBUE81CNLtkf7cXmdcwxib0t+DNQGf2zHTasksW861dk9xFtvfGlp65Q1RxLayHE+tsfzwZIyo+873vdNNzt0o1ad84t2QPVe3mpON7D1sAAKXFfOLF5VZxOkUqGtw0LqHWfwxVGnwGZxqn0fkfrC1jNztFqPqPEoYHPrwvXwcxAa4HR2Zj71VGVegA5HbdDAqWMs5NRfsJ/z6vSsL3r+9FffNL+bjtJjjj1mOfuO574+pq54Beq8tr3u2593Hx7OzpJLdY6/67JZ25fm3s8T34XOBnfE7etX4H2/J17a/DrDAzgd6a9wpPOb/eN890+y8VxR8vrl78tNacdtHEo/rK47ltj9Ha+y/Pwq5530OP8wpP+qXv8X5bdPqXn6m2teAyz+DrPfeY75tqSqD6v/flp3t1fcZ+79/IzvC+58yV2YdBvw8pz7iOw9fz/2ZS9mXjecAF2RyNRlwAYWpf2nmY2PPsm5X+mogEgWH0eBLGvfIXCnGOr4AC5rQZ19li8UWAaiBAQhGVozT1fbhdQQHlhrQYy2JTjtIJECpYLEzIQBdRnYCKdeZXaAO8OZIjkZ193TxgfARbBSf6zUaGVvIaO69vD3vtBjVEEfWjsrz6yQTr0X+dlMJhzqVitT5wkZRQu8jmM+B7DCoSjg1AafeKYehvBMk4oa65zzzVqvQerBxcBT0iLaHsqRFxTbUoDpgLVATS1hJM/cAKBYMbHcE5BW9YytFqQgiuWt30bKfSQYTSUD7yDwSEZ8JYO3w+FLsp2SNkQCwyRmM5P3xpaT1wN4ugNPsijFEEAdlzD4JNSgAiwlYGstBxb1whkLUakEY6XNovopAxbTRkyS/5rrFBqb8Qh7bxbOQZQ9KffHEzQpsnV1RAHNY79bgDaA92jUXlcK0xkshtwS7jsc4jusdutuORNk62X33bH2mJoxx27Wr91yqusplAVbh0F1Sv12k+9/bQN8l3d5l3d5l3d5l3d5l3d5l3f5vy9/G6QElw0uKnOugI7MPB9PdxCoAgTIusAjFI0gUUw0hAf1Ad7M4IucMmMYkpCHqT0so4gqEiXTx0kxJaFohZEsT0gnBo0REtFUwSuC6dOONBuidUCPdhQjDSMA8jCcDqyiKhZAwo/opqTWLstvH07rYh4Oi7oYEIQqkIwgAkeRJ5/GBNocgo42SXASyqjVFFCMasM2ZPKcmSwTUDAPOo0K5Hka5M4OsgnJEIK5jn6m4zUdpQUySoefZJ8IBh2n6eCLmEDMNnzUgR85Xm0UAIB0dERkWFX1S86rGkepTuYk7EN7RLFOoJ2souk8zKsrmqpACvV75Xrnx4zEQ0gCBpBGjDiGMo1BZWuEINIJ30wyiCRIiG6rSIHdNqgmwstsRkNFAEWbDqHDLKFqh0OtjKAsay0gI8gqjWIEgWMVXYnQ3a2o/kwQRxutjqjy/GyzF0T34XaklfHnMDo3QOcw98Y2lJwGnzYiRqXpOm5KIBLXdsfvcX73FGjTS1KZH2Cs8/lHeTWQR7/4uLYmXVK2bxaqAsBkU789He0Q37DFPe+A4sVJx5reo8X3Q3Y/v9b7/jOdgxAAazsYX5/3Q9vvRq2cU4c8+v6M02GOvSizwq913XU554I0o1yB1NL++tJ/RyuOOm/Dczr8VfeTRchyFgQCCPY6oWyInS3u2K9qThagqWyMkkbZhvqJIUomRHQqAhvS6dZ8rQ1mTcM45TQp531tZjh2l8NkQDQw5xdiAZX2IcRy/xKoO56fKxk4xh5Hp/FYxLg/RTL4xUDIwHxOMr5EwMYDJheeX58I+YQ9PnDZB6ZMAAmEyveNUIyPgIbgmamNRjJ/jI+BMR54Phfm1xPPP/8J90/MOZNt0LFk4U//IrPhZbgWoD4BOGQYrj/+AUim21JkhKxAx4AOzVRlj0zL5pgiEA9cbB3Wc+GZoBWPgD0UKoo1n5nW84KNCzAjaFcN19BMxbcQyxBI8A8yJVhkyi8HAg6xBVjpK9xXkVHZLo4lAwimMlNZEKVcjzURLohJFhYVxR+PgWcogIvQGv9MkBTnAufAhQjuop9rYi7n+3xCxSHJ2rhmRq1jAk4ZL4OyimkXCG7QJfCvSqP1BfMvgqIUmC6AD2KRVakbmZGFcn6BM1Oa/YkbNdPR/fPpABSmC6FPAAvXdUEugzmgoXgq8OfnFxyLutV0xHwCTn0AuccztSooABRYzih0kdKDqCe0iAzeE0jAswRkpBxxACap7kjrFcWgFn7keMAiWCgAxCKQPQ36ncrEV0ZoO9xn9gES0MTxACinCTLess8T4N4R7ACZw15cEadcIwNlNPD9fF5IvMjXvTece3O0Ano6H/4/UmL3B9Xm7Bsl4J2qVNQw5FHhjDKX/nmmNAU2UFWhUCt5H/lOPqFTpFU/eySYPfco9+1TyjVB1iGeW7bOkynLSgc8t8l4Gfu65hjv+7glG0brcLUzx6GyHO3emm9+XACenB+H0wohCdiqOmwXVAN2ct2jHV6tSfN96SxtZok+U6RTuMcQ977NNtTjCqS0HbJcg61JFQtpOhDPsbvpK41e2+1AMVX0fNgtjbj39pkepccapSfI7tabfrRHvs5p+/P9a72v69Bz/NR2dv/mQSDHLYCznVnX7lLZ76l+4Efe41a72E2zOxvf+tzZrteLfoDc9OX36/qR3/qj7j7ac2vEa1/cehI9f3+oerz24b7iRU7E7bvb01vfrMmxF/A5h/az7nVD3GvYI3yCcuJegx7qH84r5yuP5X7U4zUU4jfPqGuOM+2+/t5Xv39GjX/ta6cjfY9n1YdNil43Z0DJdqT/UIWqQZw9fu/b89/eBf7ulneu7df7jqHfkvEuN+qPrqMcjzi648zydL6M4qtSVwEQ2cx6QdCzKnqfbxATtn1hd0yBgpDA6C0zfHnrAgWwZoqtBBZ53c9rmlHyYHHSBMJUsBUDtQATpo12EEgv6hh2obguK9BLJZlIcw/w42xYaXmtUlrPBZ+T+lZ4tx1CIFCEJDsrdTaJBIBLsShVH2WLRJOtlumv8wAFKp0ZiBKA+2rrggiZOJGM3ZG6niYTk+a7NG2XczJFNwFlBHi1DQzI/gYylxkInNk6Xs0zyX2TN9GeU4CZSoJathM1o80Jm9nqPNNWcA3jbvi+VZMtAsXaU8F7kUC56E1Rko03ep6TsSjth+KZytazygJku9UMAoEniy/nI+dTm+6O6RshDOAIQNyTSdUIcAL4LgOe05NdK4FUnrT3yY5bi08E8AQy9Z4r0nNS4C2H2qYF7RRv0uvnkAW1sdd9aZf7vtvwmmK5LNnmBbiOkmF3oPVN7uc9LXdu9qHU304ZcHZoz+HDBlnftrLzHdJ9PuqbCM1G3uxqKff/rrh9l3d5l3d5l3d5l3d5l3d5l3f5Py1/H6QkzsNkFEgjjQKmaXARWKQBZJWxgc4kJmOxNFI4xNc2+iSQaJhCcBGYBDr01CRTnwUg1sGTfB/ZOniku7D8CVWBiWA9AwKDmkN1JWOFIGBAsggRjFOOCDrCQhht3+gXWoJgAJDUzYSgeBq0skLJjCOgE7kTO4hsY0oAgcc+AOaBlM7mzSAjIGtFpZQTJFMSMio8jRs7Gg9MjYekt1ZLU1OmyRNBpFNB1TDwiwYzZSScYDAFzEgjBE+4CDhCk0ErAIEDkelbMgJOE2DlPjEnDTWeaWrItORQeuJ5UG9jekUn7UOyqeW7yxmYlqdyMiEyMVqm3xNpwwQk0ngVMFFoJDiCVsANwAKNS/XWYrYK55yQMjZUz0tmFmwjAJ/RNOs5vt5G09gpDWv8e2jZYE/DSNlBCFwpc1tAjORVhxmElj+AcxMBmCBCD8NFMkKost9QzdTDALI7u8Fr9XcbLYK3ZKpD9Nw9jDxyGHFKNBztr09upQw5x3dlWKxGso7JJpAXRBoY22nUr2zIFMogtpkN0jCUqVHq3ZvRJ8F9h+GazEBCIGYbsg5DTTmzuid324uVo0dLJMEIm14dZeKJBLD9ZO6Ro0I45lz1qR4Avlhtg2oDVoN9SjKV5RZHX5XMqHamyVRig9HyHj6ronOle7wm7o5LrL7YoEn0cw5XWaZSrHEPEKjS7ct5cnNqcIEAodsoWwxyUdwqQM/ABAZQrmUbw5sRgfN7g96K1QjFuKEjjdIDAjKe1WzwlePpNFarAktocDVhNCnrrkCmidIh3eZYQUAsAmsFVpQzgcu7YDQeH/DliDkhZhB9ABG4dOLjEogYpqcBOQKXUW6qjFw7T/zxy/B4fODzOaEaGGL4NS5AFP+cDr2YUE09272ASxS+vMcGdsHUcEHhC/j8fGL++cTzi0xBvhyBRVCBONaaXG9YkPUFU4VC8TDDr+sC9EqGRDIr2XhA9AHVbAMGQgPP5xcuoYzjPkxw0i8zuDhEDQMPMkJpAO54XHQyLCU7oInhGob59Qn1gAfnHp0LA+v5X3AsmP1CYMAGgHhy3RhBv7THKyQCNgyiAyKGr+mQBXytLzgClxAQ5XBgLZgxPQ+UADfug+kAEgPUMlVdpnUVRcQFiYUhBaSuPZ9zOpzRw2s9obhgSzEEuEYCnQHABbEcc82UFY5rkVlJ0nEjAgwRxBB8OjADuMYFFYPDMZdvYGxwDzYzAqpD8aGGX3/8AzF+AaE5dkwvuOYTay4ybM2FmBNYTxhmqjeGELI6qVyACFaC+CLHdYVA9AmzQIhBgrpMBFkyS/+JWNwnQaAgsRpCRi/w90qLJSBwLHzCUKBJyT02sPzZ8gTgmjJhn4YvalpxQD9kR+JTrq90NQUyi+/Wy/JzjWAqvZQl3HrT8RHpfKlo+XYsUR6TYSjBj8FUwQSnIVOK7f3Di+HOa7/793UrlFPsTMvRDJLIM4bu/bi1r6hdtSbqTkfLfZ9/0Vkm6XiU1k1qv2+nWD079RsC2LXIgSAASNYqTGFZOoWzEVtbiN7COfc8HZ71Uuy9HeB4eX1ce11XsK9rYFveg/01JM8t6FpsjTqi1cYNvIrSa/NFcujDeS5pbVF067C5r0n2e+khIgrFRZmRTH4C456mr+3xrT8EUAxJNcc3c4+jWNJKDy1AHxAZMHHok1KHtZ5Z+9/W3bDPE8dAVHtSG2l82G7fcQvQuBwtHbve1PoE23q89vilu3mfW86H1mQ8wC237GOlkdaEin326ZE7mbh2B/S4Hk+m5izV8mxCVFNqLutuO5CpME+9Hw1AaNCg7Hl2zu49r3YH97pv3beedF/z/0qOndCZV610N2rX5+zTG8NP3H89ZtJRl+9Fau0ez2hgz7nmb5cc9+Der8enPTA3sOtdcv1178j9zbUn7okS3e8/1fM+Fnvt4xib22qQe62+9dvLGXE/r2boOUZ3UNSep3rIq9eanG+sepxzMdfR+S7BMW75r+y7i8W133ZOqW6zHF19jJUUu6OigJ59c8R+dn7M/StrV4Cjkjta9dCuSwGBuFwLBhSUE6l3MWZs5TUDEDLeWJ49HGlTQew9A5utaShwXckALTwrDyXrZoGtaBuMJN5OUJAfa0MNkkw5CCHYZ0XakzgHOyVWzi9+LJBIxkNhuuRrGESMej1oQxMdPPdJgq8SlLRWppHT2gOR9edY1HN5ZisbXtrxhDJPIjPfecDg2w4lgoq1dKd9FDJyvJLBqPdRBo2ppB6bc2L5pL10BWYwyMzEcu+JA4CVLLQ97pv916NsWbQuOJNIo9KU8wyaNs7Y6WE9U5ZV6uJiUL+t39SXA4ABZGAVyfrnTMzxWsqgBTEC6STtftSFqTepkFlYRTBs4LoekHEBYT2WPheQQUFlS4wEKQmiAwA6hZ1VinpkQEeeY0IgQQZjADx/VfGya2SPSqUMrLWrtz0UiMOOALSttEVIyZ7NmsSpHtCUV1ynadN53b9LJkjZiE6ZH7d9qtS3Xqkna3XbMPNO2ZLuvL/37sN+1IHAfeGxs/9++3uXd3mXd3mXd3mXd3mXd3mXd/lvK38bpKQmgK5OjeDBVGGByKijdBp5IJhsngb/kSxJZXgAHSnFGiGetNCqEJCpQKDQK9/jDlnzZixa7XAosJTAxgVTECRijHYPCwxVxBJgBcRGsuUofFV0FAFMGvl+dzDDTh7kCwx1sBdFRSVrsW/sVBXIaCUaArbTJYIOyXKMqwASxqNo0TLDIXmQFkRHQ7Xzw+pZQmNTlAGDrEhMmWMQUQwdrF86MXUw2tnkFw02lwMqGPrAuBRmDtVoZgGBdyoiHsQnDUmLFOHekVqMrPMVWHPhcz4x07gQa9LD4wu+yFxhEASeeSY+okLbcJ0G9XIMHgfwOlhvIAONSJH011ofprGtnr3pvdO44pmOMC1y6QpJA9lp0GQHk8aahoIkB0Mxr6DmioLU1CqcT6dxVIJGIgdMiwWo7ue7yvkK7DmyDZWcR3rUjU4ubwOliJBJZJUxeRuNt9PrjMja5mekUW+nkcvPytnaxtjDchvHs0SON0baX/O7vkT7zw3dyYeVFST7I9rosw20HRsefPaOgMv3ljMvHTXVVa+2lTLCtsGp5tPRgjI+o9relpsy2GRtymF99C+ChqmqQETHSx5jUpVrs/d+/mEkKlapXh95pR71b7ajmmpSV2SvFeNUG3+zD/J5u2mvkXKcg98/3+/chrPYVq82rB6GzjK7n207+voH/0zXKXqKHOPVBsGsRy52AdJQvXtcUAA2Pk/T4drgoaqXEGyDBgQgZSlTUVV0cTsiY0E0HRBBB0IIQbmiA6aaDIETgxZuiCazmjiu8UAUE91yqALDCDSacxHYawNhv7DWxBDDsAUIU58RIKRwWS1X1ARiho9fBMPGk0AeNaVDIYGiqslR5IGJhRkOOBmIFA59DFzXByz75WtOPJfgay18rSd8Pvl+caYyA9OjraB8J1ORYChBSpeRvQfCtHd6XRgfvyB6YdhgEjIxsh5FpjWLwBIAcFwmuB5XymlLsA71BlOmfPOo/ZwpK9YngTIamv0KfGZkLvfoAZEHRB5wXzCd+LgA2AWJAQuBxBPjQTYfsQtzTiyf8DkRKxCysNJ5QZXEoUGHDSKYag0ZKSzG+RQCDcdIHSKKGQucPzTwR7MaeekHwhQYXDK5elzoOYgtU7mNGgQGCNPKmj74jqYWC1wmGDLgQkM+1hPXNbHiycfGwBDFsIXHx8Cvjw/853/+Bz7++ICr4etJo3alqfM1seYXvuYT8+sLmBMegRUTgUxzIakD2QPLyR4pOceanGhRlukYXIee6dxgmXZRIQrMtVLCGCLBpR0dDj6onEPLZ+HIEem0U1EgZjrVuccKYuNkQhC6EFip723QIvebTKcrCbZM9sS6QI99FyKpF2T9KrVjjWYL5zNqeu8VUg7EdGJs6Sm91zqyTfhJPv/7lZt+kuNUn+lR763pJ8D7ts8dDunUH0thSf7KBnTVHg9EpjrEoXKUs7I+K+dM9WPqRbJrtCdv/k0aptQiooHmkenpSkehc7BUqNIBUmGpP+PU4IAbeqb7LOH8tTcee3qE9Hlr6w73Ht1dVvtoAq4iU7gEUVrlXCeoS3sfbeA8mDKUHkw6Aoelw7f0wCBgvN4c2b4CB0aDgUH5nExKsQJPXwk0rTSNkcA+KuJypjjpscMez25rfl66mlS/bn1Ccp5k8qIN+M8z2MZXFJhwz4EGwuccLPD1qSPd9JzUO88xjkOHau2p9dpz9A5wTc35fteWHSdo6aZ8YetTNQ+b0Q3fb+kzQDlZz6fcQOZ7nu/Kxr627r45XPca2jCqo274ubwCVP73yr0vfpeOLI4r5XfXfleOb8+934zbfONXf68d8tLzL18eD/grmf9dl88B++319UNyrt/OOv2A17n1w/NP2Qn5dk9dvNdlQjf7fIvbmjnv3j348zf1+dlNDVfqZ8btPunb5baG8XJgaZZj2fd1l+Z/BTe4BZMECB5P2eF91joAdwWCLdZXqVPwBm95APBFRhujTkJ7EvXOABik5Zqpg41bVbJok1oouo6OAGLRHlZA4gyQce+WcHyigvVKH+VfBNoXqIqsSpZsQFB+70FA/spUbzV+KgfwpWReAT9Fjv/Q8lpVaN8STWYfZbBipg8+4G08myBgCRICNtsv+197vIURkgAEa662/xHww32qgENmF2ig07TJKEwjx1gzsJM2NssUzssd6oHpPPNItnOhADABTZ0XsvVHqRmQ7L2KAu6gbbKovSUXT+8own5vnQSlulQKY8rhcy/l3ie1YlAb/rlqRAJDhFarEIQrRIpni4qNiUJ0QpWM+Y9rEHCmwFyRQaB5nvD931yLaa4j0zLXXo3U89RYt+xDAsISLtTAM473QfKOTkmv1Ql3+cQhcEj/XvcFKpiud9sOfjz1jC1HvolB2bbN6uRO9Vj75hZCL2XL5VOn2LL5+Fd2XZCt2mO/RxQ5d85n3W2cP1TjXd7lXd7lXd7lXd7lXd7lXd7lv7n8bZCSJ8uJQukIDhBEo3lkTuBHnqLBCNjjJJwMOQFg1gE7aExZeTh3D8ygo4gHS2YlY4o2Hl7L1HCCJ9wX014Fo4LIwuRwYXQ7c9qnI0nTaa2arBwLiNnRRCsPn+6scWUDIdtGHiIrwlTq4O6YPtNvUZHdmdNdNA+/meIujSpl9KXHLMjG4Ud0KehooJODRo0y0HkzBQhUB8jDQXaMoRcj1owgJRlkuxKjIcIwgAHYB1PtDDX8GgozMn00rXL2MRl7ANULsRbWohHMnXXzmEAsxAysZ+CfX09MDzyfC8/5BZ+OWE/g+UXQkgCItVM+FNglDU8buIO7WTaAIgzv7yUyEpBRf1qGHK+o7io7iq4skwmvo5FNMv1aRTum4ZBjrGTj3pbamwFiLW+nBuuUY5te5mKuob2hIpiPdBkoOnJAZOTzy8WWrE3tnOY/GnpEl2eNo6LLJO0b1U87smsDa7SdR2UYbUNgtSyi2XV6CBp4VAYQTSBbGsXKEpNGuhOYcmM6AnqsBbsONffbKHxLOVImoHsd+lm3P7bcuTsUTmNzjelL2457vpnhD4PQPbJNbs9oh0IkKAankTCNh6FHy7Cn1/FmGuJsz92jCXtdHIapHAPpCxOQc6t/Gt37OWVE3O/ebFbf+6R+vxnYcIK1EpIk2zVw+nK7/rRqU5a+9F/1IaMOt0FN09oXx5zZ76+1dzgVDkNrt/vs9diMGxwA7f9WIFNQ3RkliLh1aChsaDKBSMpiS8dzGpU9MoqahlNHYD0XriEwIdjWJ43Uj3HBlGmvLuE+ZtdAaKNQsJzteT5Ju/+1AgMJQxWHDWDNia8l8CV4Psk4E5AGlooq5gSwvggi8cACYEag8KWGcdHRHMuxEFjBVFnPtTDdsSJZ8oyOCNMNjihbr0jAzYBxIXQQSPUga9F4CMQC4wLGdREsMx3xRWdFOYodC8sX1IBLgVhE6Zo5TA06qL58PT8hMhCLbDy0OS+MYTC94BOdytMh0OsfGOODjEmx4Esg4wMCx5UArpiTKQGEzp6vNQm0XRMzHSshjiWKBcF6fkF84WNIMyTNNRPArdyL1TBEmSpPBS7A1+dMFhLDAiDGyF9PBhj2RTITIsWeKWakfpVLayWQW8VhxMRhQSA64JUm0oFQzhdN9ksfgjUBUabBRdRP7h2qwLgGrscD1xh4qGDGF74W8Dm/8F+ff+Lza2KuL/j6E/PrT3x9Me2g+zMlTGRqETI3QjKqXgkM8mS1lIwiflwXVB9YIfAZgE+Gsq+UOUE2M0+0R6XOXXOlKKETLKofXQG5kDwth7PAAdeM2K59DL0XcssabEOlcEA67XJ/31DJkgN7/2wZlDpOp5mEpHMr0BIqYoOMwFSyCBDA0cI/Uh9Atl37897Da/+MrVf8W5YWy1sm771ib3gC5B5AGeilH7ZjMXec3D830Piu0+x5KMnQhMM5Wc+8VewAE219qoEoXjpNvS/lPPAy9l1JFFAeaF6h3MdKN61Nc8+rY+i7JdWavalu3bDVjO6cAnHv+VmlHOulZ+29OB24QocswbhMGa0Ksks00xSd2ZJ7gYiA2SilWTmR+q+nc6/HowA5vgHsjkUHep4xbBnZdYMpi7wYFpZmSr5Me9up4Wrdbp2iZhj13+rAfZ461EAAaJ2t6tz378n4Tf+sgeh0TXugjjmFXtd17TEafZnnGt5zd4/ffuYe71PfOUXPTonUMIJ8xqHZ1rz45o2Mrueucj5jT2/cek52uw+/6KF73rrippvd2oTY6wbnGr5pzLe5/NNn8u3b758Ad912f/b6UPnh2mPB/Z1y6tD/oi63uVHj/O2e88y8a7Nri29/lS5+77ufevK464f2J6zz93Wu2VFzsLup5NZP/fitdfd5f/9xv1b2HD6HaFdpz/+4vU5a9p6jk0ujH1b/Nsiuz6l79991qTdRLyF45VhjAWxGp13KLtByTJCAnUOW5SvrvN9MvlJrJdJeQzsT2Xhz70qmUTgIso9iUaIMdUbsJSiGbEyqyeCz0t4HoME9vtlz1zwYZJJ9WrIOLT8jMkgjg+dSBy0QkYg0exSABkd1P4lABvXHyO9VBWYCNe7FpiAwyIEIgsxrfq4MnhuWgGdI2or2/oWooBTqV2WTAwAxjqnvppJJHpWCm+AljgnPbbThcCKSrYfnqYigOptAJ49iY2cfcJ9bMAHr4hW8UXO19mqOEwHLill2WKSdpxmOY88/yeDP/F20dJ0DrBqlF/C60yRDgu6KKpDU26mPN7CuGYIYeEo9JJ+VZ6FEwaX+vbAW7ajPZtdi8EMxKiEKJLfXqRQ6OgMN1AThCyErdWr2i6rBIZCV/XPaDwIcr/DePzdgp67xZD0vfcqOWqQVeFNj3uyYvYPVum+DyLHv7Vm++w7o+rToLDnXevBx0fdH4qZT7yrdyqF2HrLndTf5eY94l3d5l3d5l3d5l3d5l3d5l3f57yx/G6QUEzwgmRC0EUVL7AifeQgim4MHna80ZAB5KqZxwwzuoCG7UjXxDQAWaYrLbJGhPaH5SfA5ZCFiRFAdjNdyqBhW1SMNLYpiNUofl5bhwCCxaIQX5j33KJDLPmRKnsrDM6IpaJSIPHBagj48ohOMeBqwK5KtDEUVXYyMziEIiUadlfncGQVXxr1k4LkZA5WOzyAYKcIguDAG/xYbELN0CAuuh2FcClVGcV1qdC6PwFDjfwiMYRgDyXjEtGHPOeGLh+rAQmT6InaOYaGYfBRYgfkEPr4GniswV+D5/MDX1xPzOfE1LqznF8K/EgM1gcWxLhDWNihygMMrirIieiqCzDJlGqPZLhuZNg8IzFueeToIeW8Ztbx8d2lQIEV4ntQLPIUyZBzn+wAgydDQhsYCM9Bc0kUCBqbRKQstA0TL8Ko970U0naRlbHkxw1bbpRxXBygp/4uGSm2AFo1SFa1ZRl+5A4HqFVH3yfHZvQq7vgVkKUfU/nzf9xKdmlaWNnH3HN/vp8HrBxN0GV7KiNLPY5u8rTgvN51/tXHd07m2HXbR38eP/dN+yL9wINzfsY3L5bTq78vIdBqTbnb7knWxH1735f/KQH5GyL3a/dthXvTn2I+qumxj1/mAekimVboB8477XkuUMew0LO+o4f1cflsG9IrivD2qjPE1R6qPax3qnqf8qdvgmkxIrCfp7Cs9hB5yoQGCgZQLA8CA6AMiF9ezbNlRAyYy8h0KCYI8GXm6DgOswCdlk0hgpdE60givNrj+F/cdEyPzXTXVBHAa38mSr/Cnw0HARAFKIwjMNVVIOIx5drCmYy3KGDhg8oBnVLHKheVsl5nBBvc2CeCPxwUFUySs+USsBYThuRTricxgKGTekWQ8iWTrMRrsEeU4MDx+Xbh+fXDgdMGGYgzFx0MwRkDEYcZB/fp6wuNPiM6e+8+5gADMga85gXgwHYKRGXCuIMuUzXyebPCGBkFkLljToUNxjUHQhyTrklFvIGDm0eQo4QsrnPubC1wU/8yUDGsFPueEZDoDRyBiYS6m9RoOmDumZ1q84HiXIXnGAkyw7MIzFFNopFcZMLsQyTwUShm5co/UBEaTaImGdlWmIRRlijtkugiJAscBUAfwBKCYSzBy/14+sTK1IWlfHOJMMzfXJxALwxbGeEDHBbcLn/7A/BS4P/H1/MTnnPj8euI5CSBfzwXMBcyJWGRYFANMNferCyLG+SdSOTQAnxB1DChCr2RdIquYuDOloDvMLPdKAVmQ0nED6lp2GZ0v7gTdAZhzZjR7gQZBZsdYzURYDsOSkdyKNUVOCc0EIfpqJwwN+5IpQRhFLiXvPJK9DFsGJhBKUggVyKWdnVLSTFFsYpuhBfysZGUCAzcIpuRqgTe2vPx3LJV1tUiCtovmcETJsaWlLteOGnpS+FVvkQ11zvkWezz6MQnZEGS+qxqPUv/2fpM7BKvyqg8c+xHKEZRvOEHfkNLppdsTkGbw4Hmh1KPtjK15EvEyjIf+cPYN5fHutBPA2P2HukeP+wqYX0xJ5VgvYGX+bgI17kmmAtFg2lPJ9Dr5HwE+cYCUSj9Jx2vvp4cOq3luyrERegmZFrPSZjrgwwhUWo5plmlgUp8PytEai93WAunsfirdqIFh3ZkbOkAcQt6n9/EutevUd+W8f9O4olg3K0DgXjJwJnad+/wRxZyGnge75+o3oPJEtZ5U3X3oaK/z5OgIzvFTR+1W3F52qJa772rdFvjrHNufy+vnP74AHMMTqFRXxeuFuF/xokf+ePXx4V/Ixw30+v01rXR+051L5f3+ot897tvcOLux5ulPevfx1Y/fyuvc2fsZatTPo8Zv6vfjg39Tzn5vZ73UIto1+f47tkP+PhP/6g39nM2I9BetkJ/++PmeDLfgyMo+y3DYC5h/1rlr0gKRDJbW39/ZiWudCdCfC5B2McGW8ycgNjw1jTzniBR4JlpmScv4AjYlkDdls+dZSCQDBhrwfLb+2IMOe4MmeKdS0a4EXovSFqYRBNgAMFGmXEsbmyoY3LZ2IJjkPoTjHXsrY/vIvqMYI2UDeDZV0A7JfYhBBSKB51zw9QRA5p3afwOAu0DEm12n7HJVJ9XAMKAZeaN0PbLSeo5F2Zw8GCTS+kR3pfW+sMqup9TvHILlAfGjf0sHWZvF3KOCPzdrdsuVWKA9QxKEswWG9OgBKFmaekHNAZ7lMmCv5p4femQHy9Vg5FzL9lfaeBEGsXovIwHEb+x8ZQcpJuMQwYLBZ6bG9QUPZ9Cf86y6FmgD7sBJbsKa6d3aNtt9IjempAIolb0H0AzSiG1vyzNsdOV9qwMl0zM9cM2Fm6CM1CmT4WmrCRsAvUWU9PqM7NneO/thr3Jx68Vn2XaVel7kPD/E+5Y6kFvdjimU2tHWhe6lr/uLvfJd3uVd3uVd3uVd3uVd3uVd3uW/q/xtkBKCjB4OGqv52QaSQDX9JgELAEYnbAMplAdkn3nQBw9ACslocTImSJ7aK2WBB+BKNgsZtAVE5pmnASOdcZJsQhIgUw9T1yDSOJLnSvcyINEIEbGgMCxZO7K6DSV5oA6kUyjdHgXoSPpgEaYz0TYC1PEwo5UUgGgmXuPzTWjQVyvwScDXmfYgEKAjnGwqgkiAlGBkCpkBkQshAyIGuwbGxwUZhuthuB6CxwU8LuAagqGOh5KFQJW02B0ZjkhwT5rlXGGgYxAoQ4wwZcxBx+5lsVZgquK6DF9Px1wB/xj4ehrmcvz5NfD8Gvj6VKwZWBNwTMjKFA7d7jSW5Gn7MFkxpYlW+gme7E2ZFibSiFGpB9sABmnjniSriUoBhtJ9kcxC7oAllbcjMp2fNFBjGyfKCFSMBsWYg36/Z+QbUNFlvCYyIoz10GTzoMGrujaATRTQoBmQ2SM/UyUzC5JdpQyjjCIs5+ZOe3WaUblejrke0SxUNff6tts9cntOm2PaUFt99B3IIumsS7tRG+b6+zZm/wSiulvQ6bzdaWHKyNPglvubd5t0G51fbS47LZrcb325MBBnzjg0ZT44f27Gwd8wWRBM4XtskffREtpj10aufhIbGirQ2L4LdF+WIVq6H3efyK1vmtkDB/tHN/uMNv5uuLr3W6W6TKOm7Ge9mtXa6NYVOcF0+ayDlacMcGWYvY2cnHWu5xrHUNFGuW5DRK8zIDnZ0nFSwCYzwzUujDHg/uTzLBnx9ABRZh19OSwMMMEw2/ZZAVnpekyLAU4wxgOiBGqsOREQmBI8U8mkRAViRgY85UOfwf1VZeF6GMwS2CgOoPZDRjw/wRRlYzBlHKNEA9cwLFc8F9l2HtcFEcXz8wvwCVsLnow0dDJLM1jE0ppoXENhkGB6NzPjPpFOGTPF4zHwYQ5df9JRowJbn3jYgM4Lwx50dsvE//rnF/785z8x1z/JHOgK0YFhBqYfAkQHFFevFV/AP/984nEBQwFBRroup8HcVwJKaDD3mOlspit8rgnDgMAyWnlRhwhFeEYkYxHjYwZ1xefTgQlcuI5oXAKjixnyuSrFGecfufocIpNgG3U87EKoQtwwEwzFOj3J/oM9d4SJzjrKm/sGwcuAM8Voe+V5dacvk0HgGoJ1C8eakWA5kKVKwPSv4dSbBBiD7IE2JFMKMpXfP5+C+enwWFBfeHpgTmBNxeefgj//GVjPiVhPskpZsO+uD7ZnGfVEOByWILMnFAoVgyf4eBhACjA6RGYwBUY5CmRyXgQmIIusSnAoBh0oCYpa7hAdQESuF2BNx8yIdDEF3BoMXx4zPWQRxzkdLuv4TNEOHcrLA/gBpO4Q7dM4BGbutxyv/loyuj8Op2jtg7Xf5P7bINco0VYy1Y/rqk3/nqWYBnYpHaXm7t7vJdfwBsxi910k1q2ftgFKJYvPEqW+cgNBOXbqTfUx06ZkPeJQBXr8Uv9rpQS1UfHv8sn7y55XD5ICI+cOfHNUl2yJbtjeUfOPw3skcmgdddyq+QFph6d0xQrsf4D+BagUkcVwYKbQYVAjAwcBSoGh3EdNE5SUe9xuYDnfcgCaqQndD6U3VKXrLIgKKsiF81DFKuZWkO3Dr8BYjrUUawJrIZntSu9ORoitAOSc23oHXn4tHalVuxPZUU9JOcu9fZcGHNR6zEGus4xkKslaqz/WKVXJkii95FMXk9x7jxe+6D9bx289tnW8o61yvv2nYIGcoqVc1nqI/Xxgrzn0/b6f03Lp1k3fdO7ut9fnR/XC673f5Vn29Msb5Icrj4p9q8+W48dDf670rc+7x1v23F8lL/f8vuyav77qX9wbr5ecFT7XgNye9y2AJH74/VaNl6CT39R//33q6j88tOfq8ckxZwrMc9T+X7zx/lwA22GP+9mn2nOO5LfnHyKi9om9hvOuuD+74Ry5TxeA03SDEQSg7aLlYJ7Zer3m6/QuL+VYuN4sxQka0Qztq3WjtIMVrqN0eVFtVvGS0yLk4NbSLVB2i2Twde5xBRSyfI6gbB0MUAOSzTpZJhdA+0rn8c32a4KpmrkyDhlMSamS7HxENPFspgzrijVZbyXjqJokkN2hOiAy8FxPspWuZEOF5lgIoMpnGUG5kmxBCKW+eO7VKLDv3su8dEcheKiZdL0gtpvtm8zk1COi9sRkNtr2SDJjsxPIMrV3UA7AXNlPCTyTZF8HPEFP3DsXKlgSYPjPwup5ip6TkmNBYnduPJrMQA1Gq72Lk3HvfcUQlftzBINF+2zeE1ja/kViqxxXS9td9p8vMvlKBrMW4NhX0E642AeSzL2iCmgxk6XdIfceDwLiym4LVYRzrzoZDD1Tftca88wIgH5e7O08JM8a0eeEtjkjgdW+0ApfG7fQfXQoFSgBW6JY485qfkqjLWZyXe+NmU9pVNsLeO0oh1bQ8qtm1yn15KWKO71n1+Rd3uVd3uVd3uVd3uVd3uVd3uV/vPxtkJKZYcWCy+Y6NpBtAmAUT6QxZwgBSpZRQysdsKE0ClSO9Uja5Vg7mofR5zvyHWkEGVYpAQQugkiGiWjDStpUlU5fcYELU7mZBMyE6eIiI3ckmBZOjSy/wRQya602/vTRzIGAwTMyqBzHyBRjkAVT45HVHerlD6VBIhqEw3bRUV6gqINVCbKNHs0MNBBhCFGoMu+9yJURSQboBbOLzr1LyV7xGPj4NfDrQ/Hrcvy6HEMdQw0aTNvnQYfsBtXk+VoNgCKWQa5B50A61WhY8jQg5Sk+BgSMgFrBtHVXbBrs8SCt969leD4Hvv40fP4Z+Pwz8JTAJCUW1hFlTUOJNagngHYCetIuG+1NNIA4U+Eg6+iy6bxFqm8BMsNkGotAtoUMCB7KCD+hwc5kNL15R/sfBv0y3BcLU/EieUSyRNBhjqAho96rySTGVIesj+hIQ4Uj1sqUJNtIVIAoBJ+vpwOzbEM5VeP4vv4G0I6V09DMfjmiL8tukfd3RouoFtM416CpsjP2NYcx5fhlMz91JbFrXMbSu4GFRt0yYspLHWhha6aoMhL/5JTtdVzR9Ae7hVQ7vke53/7OPnTcr/tm1z8cjzfDUlWwrL6v7a0OjP2csx4lF+qr05D/rd797sDJetRRwC3b2HfFSNFjKWWI9zaen46szfB2N8gzwrLYEA6DahrWeirFlvM1dmcLttMun5sGPIK2yrR2mN6qjcE6R6/t2B0FAkX4UTplu+O5xoYBwxxjEKghlk6JAkdkvUwlwQ1OQ7NEpiUIQEFjryD3xc1oYdnvOkZG0QJQ7jlihrTFwsTwuAZl3LggkqnYRNNYu2BKcJAKMN0hNqDD4AuIZGyCBOzinqDJBCjGeqoBQxWWc9OS7j+CMlw0mXiMe/R6Or58YsUXkP1iIrBBcNLQAlQpEIYCUT6fT8yvSeDXY8AuIHxBQ6CuuMbEn/NPPJ+OwDOHVJnKTQ2VbuK6ks1nOgOWlSw7qhOXKVRpJJ7TsZZAhmIMshet9cQYFwKjGa1MHYFJ13EozPjfcsBCMCMANSgekFiAT3zoB9Y1KH9dMMPgvpKNkECuBTDFm4xkT9Jko6LTnO9jZP3KlBsSjoGF0CdiOJYLVC5UJg2BQyVTVjhgw2FWxvSytdOhpKJQA1wIngonq6OmXLgUeC7H9MAIxZVzZa04soJS7toQ2GXQ6wE1IGQifGEuw3SHLrpb4AGfE2s+k5GDe/LQwPVQ4LqwZMAX26UqEF0IXIhPgqxMFmwMINi/10cyCT1T/tvINFOerIWMXF8L1DWzztStBu9FwL8ApB5Rwjp0QuRKnU4AV2Bl+tlK/ZF74pliolh66HObBL5LuQtyrHJf9AYvlQgqh03KJdC5pUo2hAIHb3mV15cecXy+ZWl6EqLk/HZtYb8d/64lpzNqtyq3TLlQm2EvvHjySjVBJcpDjknr67mXSDpuYnupjz4CxE8wsxy1KF3riEgH2imL2g8iMWqr0oHyLMG1o3me2N6e1glOlSKdbMWO2e4pzf1VN4BXc2/eQI572/qZuYnrfknXP1pH5L5bQMbMA93zm6kYdafSGdoMeMMElwGXFbtboBzrzi7v/bv6mvsh2c/UvAFITJnIdJDHEgLXcJ5HUj9VAcTYS25cD8PItLQGMCcwnwx8AArQ1MpUd0UDAc5xj5QxaD7GG2Cmfq1ZuvXxLRfQ6uzWVSPBoYGtA9b4lKOwdNJIQdEr91DyHOc41yQ6PzuV9NLLZLer5ENJqqr/zRuJ/r2/a4dpa879nkOcbt21W7Rlzk0C9QTHbVy63se939g6U7bu8wRu5azp/UW7zt9/v+vYW18sefHD5T+I05wV3/vgp7PISw1//D7786X5r1U+HsA5sa/J3/qMVatqz9+c0K8Puj//26v+xl7STu3XB/w0X39+neRz9q28N253xLd72/7Te6BgBxed3+9WvT4TLYn3Fd/q2PvtvqpZZM+5L0g9OgBZ3bo9N/Z4FONiA2ROkYItU+tnAVz4Dj32kvy80qRxQwEDMLQ7QBGAMcAufJ3iiKJFlWmHUYCZ2pMCocfZH7nnKdKul7KvhlCAgMMlCJYXpI0laEuMCSSz8e6zDYjiwt+7/3In+5CQTdUsmWQBkP7csdYX5spAlQD3twTAqAR0KEyU5zCPBOqMPhcXfmyDUtgPqmlHigwoEwKoSLwTgHru1zxfFgA3KkCuAgsCCHeen1SQuec4M/xIrSbUP736IFMaR6VCw2YjlmTzXZ6pkyMAkGmUp4QK3KtxXlvXSEaoWjcCPRQVaX0kUs9K3h32J5Bjyb42HoCb/UnqOXmOYxMkydgdmpocrw3q7RlUGr7QADYpoFpAjEETBVAS0WZMimQP3p8ZA7oUCRhLGZ8guBC+k3NlsytJtxPNXCoQeKOItfWeXHCHGPEcxwwdzLW+bUyHphktQfbiww/7374ox5HPu8unAiGVvhN9z/mIV4l224viaMa3OvwO+Psu7/Iu7/Iu7/Iu7/Iu7/Iu7/LfV/42SEk0oJXKR3ggcngeRDM+KOgsWg4EGOITmSPdpQxF0ow4+SiQAGlhxWrjT1MxBzIaeaEiXMpKoiqkTl6Z7CoNKBD6nkiHbcm8tACsdHJsh1E59E0JpsmsdhkAbQgsQNMk3TZmRku5kxWqU5fgSHOwWNcC39DIsB3lngfyBU8wDlBHRrabxomAQfSCu8JxwfQCoIAJRAdkXFAz2EMwLsGvX4qPD8WvX4pfH4b//Ljwx5gQfxI0tQJrCZ5w0Aconb5CvBziA9OBGCPtUHTMMHXZBJK6ezkNDZDYnDEC6DAYaMhZECwXXEvwx0PxNYCvD+C/huC//ledqWmsqjRs+2zMPtgThUYvQYDBT5bsU5yHHmhjSlos8ta2qqUhicaKQBkEyjiGZFfaTqoyBAgnZT/HE+wFKedzGQYCJ0lAHP9JGSUPoIcmA4v73ECeNqYeQJMAKnUXut7RVoY2f8Q2XUh2hfs2eksa2towmB8WKCViG2hwGnnrDbEb1mwFWeG7D+YA+dHak3ID2YYj8rPX4i5SDpPqxJciyUD1+lV1yXbunuCooz6H0UWqn+uzw2nRc+Ts8/y9nrKlSAHjgJtHsuYToh1S9XZVS6NTGWvTQt2R6dKkDNshkUDLUya1A+cEUp3tl243P9Vj7uS8knpHzdGiqDjnixw/d+97pHzOyNe6ftOvSzNfnc7Wc4ylJ1GNseQ4t1v63racTzUXyhMb1Y3VL3I+P8ejIlozupj9vRDrEx5kIArxjNqsd2VqtRxxswfEBg3vLgjXxF0l2EEMUBqbBWRbKqO3a7a+0y4gjacj+9vg4elwJivSenJvRViCMBWQC3Y9KEdUEVZAV+4t4gTkuHtHU9slmVIKWHNhecCGISywJoGTkeCr5Y61ZoIs6Ajg1u0tYAiosnQgcHTmXHi6EwTkCx9Ch6uZwdbC8+uJZ/yJ/5qO51KYAYGB6bkXqmM8aOwfFyOkdRidEbm+BnPGYoL7rQrw8Wt0JDYEUDMy9ahCfcGx0gnCfTTcoDpgqgAmwifsYRAXPJ/AfAIhDtMnbCgQD4TnXHbOJ8XgXi2BPx6DQFQxzC+CoVcCoDn2gSmGrxB8roXl6VzxLwDJtoRMZ+oCMWD5M9s/AFtpXCf/kpq1PmHFPiMgyKqoKIVgmPCZ4GwlmEuVgN6Mdg8mXIPYxDCHPejp8UUDf+gTKwJzOTADERmx/uTaUWN6RV35bouMeCdQTsHUumIDcxa7l8Ik1VAZZP9SysMxqBOQEdOaLVHUoZleAWIE1Cn7OcQAGZQ7tuCuCRbONRkKWQrYSDDJ2t9VwLgD5fSS0s/S8YKc+pVCuByzlZ6t9/2oPQHptGkuvByflJM5Rl75z3pfOWVaNNMBsJ08Ja6Rjr8W+bht3f+WRTVQDDvZjSiknKejLJznCarGORe7X4/+QOpWKe/pGNwpTquwv6I/bP3p0IUKiFaOwnYYtu5w6EH5nt7Po/a07ZDyckDKfd9OxRr8dLNwtQ6QVa14iNLJPHzv9we47dSEVuD4Drn1p0DEZkri2iErQTm8UWwbxtSS15UA3oEEKQmZ62LtDCwAEOQy28yQ2T1a74rt8Muu82QtLXYJsktGpy3iozX/n7ozUs9XwwiBK5nfnqp44pMUHlgIP6p29sVWro8xB+ebSAZiUP8sJyPHzn+YS61afCvS4J+tkzQ4/JiY+6pAMaLRFyr7Oa0TSTOtAgUsO74D0OyQiD5TnqJAsj/OO7u9vmu04Y6HPvbyzdkbG0ay9bMev1qxpVYfAxCx76lzQF17X7/yraO3Dvqqjf6m3B76CjY55dC35u2fP6BwYn/Zddnv2lftsf7+ku6B2Nf/XJG4f1XvkeOaY77c3nQ8++wvQcnMkskvbz3PcrH17sg1+X02pLzq81JdvatxSO3v9Ytj7p3LVfZaOnq6u+GlkWen9PvOWkit/pL/ZwVrRnd37/sL0nG+YZ+7jocEOo1VgW+gZVsouVsyMe0+MiBacl4LpwEkI1DJUtb32PMUPH8ce9mW+9ipwmokBHXqQ4RirQJiZ5BByRcVpm8DEFDqgTlXGCiwdf4IyhDPtlBW5Vkf/AwB2sbCdx+2MD03Yul+L+Bk1Du6PqkbZd08HAuK6bnHFNN5voP7G/tewNTGMgQRZFxVExSAJwIwRLK71zJjHUtmmWgGbQKVArznS97jkumYlWm03QFx6saQYqMSsosm0IkBBtz8h0iC2KiXeOs2ZE6iPZP/rYi0gdV/njpGrus8C28RlsCxZM+KnDQKBhsVCLnO7tW+GiSPYljnKC3hnPHUsaIC88RB1iua0LbNOOAxEZGg5PBk2QKQDOaigHilnaViVnaBU9ZS92BgrFTKWmQwlCLlWgKSEAjfHdHyKtemCgNkGmAu1in+Sn0Mr4CEmrap/0WSXAFtumwzXc75ns+B48xw3xP36aG7u/WY85v7rTvYFQXUPgVC1yO63/be6X1NPXmv67N27/Iu7/Iu7/Iu7/Iu7/Iu7/Iu/3Plb4OUxqAhI4PLIUrjNYK5w+EK+IJjAjIg+gC5dhckNAnvpQ0RKkl5fBgmFBmFHkjml/xPSfMTy8kwVCwdadRT2LaFW520MnqtHNwqMBM6YdPAAgBML+dpXOEBTtORvCLyXQsbNKBkyQhAh/RBVoPRPZYHXMfKtCo0ukuBWgBgRR9SSX/NfozDUSUxaKSyCwGD2UXWpOtBI9Jgm8eHwkbABvDxceEfvwx//DL8uhSPS/EYwGU0+MyoAzyND6aCBSBEtoOzWEPUGemFoJHAFc8VZGmIJ0QVyydEgLWeBGM5jVErHJdappVLp8cYwHriMQRrPfCwgQuK/7/8FxB/QsWT6Qpp5NA2nhKvlWCNyP4HI9bdCTyjvaWMIoBaNJNRJMiKxgWmzjlBDc2q1A4o8JB/pFdre02lU2vqZ2nDVNNAH4igMjuVQbaAPZHOIkkHiCoIQEjGmEofV6VSt6X74WbL3oaKevYBVDppoHrVpLO3rRA5zgqsEEjRdKcZsezMNK6UYXkbnwuitk3RNAD1VQVmwH6Y1OdI48utvdvKczID3csGeLx8fPTZtrL006UMpnRIaa03bIN5GZSwb//+TGTkfTt8pOv5DcCT0Z/I+dGjF7v/S5bJy3u0PzkAYrgP6SsrUwOhykCbz4hKIYcjSq7Wwa0c/VXPD+x1gzKuy15//fp+W7ZnOwbuQDm/35MODbl1erK1QFNOC+ezVqTtfkeN6/Ik10/nYkWZd/926rXdVk/n3HoCmJ4MEgs6lDJYBtQUKONxMmaIXYCSaL8YLzivFyOOE+SlItl3gEZgXGSZWyEJvHCub0H3gy+y8xHktWjoNsCX9XxSM4hxz0HtXaAxVkUQqwVjpkmlkdbAdGYSE74UIUZWpvWE+wSZNgyXKoE2E4j1RPiTUchIo7OmvFOmAys3iqoyEjaAr+cTFmn0XQs6AfzjgfERgAemL/gKDDVYpj5VFTw+BvQisGfIIDui/gHHwnx+wROUFLnPRwTMVrLsKUKe2XdGAJ3nSkrDssrg+xQoNiwVxVMWxuVYn18ILISSxXAJ2afEFa4B+BNiwMg0dH9+fcEeFz4GDfrPxWf7YioKh8Eh+BiCUMN8BnyxLivQDgQV6grLNdOtCeCDzIYgcC0QODLukm1QKk2ZwOSBgGGopOFdMD2wwrDCGXk9BqHBy+mEUoGoQdUxVPC4DI9L8LgIhFvgvSu+co8A4Mo0gLkBmSkQFzQEYxjsWggxAqsFuZsoltChdA1gSADFBKUBKB1GpWuKOGwo/OlbkgUBEy6UDXQqLHw8DNCB5wS+5sJjDPZxOHwx5Z9IYAwC2+lUEDoM88FrzWRropFegxHqK1k9ydpIWcLUsJner/S33NMDCf465GlEYKd0LNku1FnnsVemrqgJ0PSWm5I6BT0jzZpY72hVWu6ejH/DIqqQSkubn53scwHJ6PqC/mqeEaL1nyjqCJTcRerOBMRo6Q7lnDlYG2rviH13aWcokG3kTxQgrPbg9NoUu1m0klT7cuRYZ91yHyqnUQNY4r6PV7rsQOmk6DnQOiZ2m0pv6bStB5i40opxLnAf47vJuiAFmrRMkSqUFWrUnVW4hq9huIxr2zTZKKRV596vEJR71VMla7vSkExTiawPnXkep7ZU2sN2FAOR7KGZ5lnQ6YvgAVODOc+XCkC+vvCVoK3Nzlo60qGj9USod8qpIvdYAQUUY1jOHsfq59I14v6MVsr3DKvzncihciXQoH+XrTsD92fE7bOj5PPuemCtja109dzJR+56nIrZ2fbdBzjr/PL+k8EBUfrnqd/f7ykAGH/fetxre/u3Fzn2uob3nS/98nKT5M+4f7zvPvvrFCy35+yZetTiZUyx3xXfR+1HsfzSWOq0Fdxwv7Dnn7ze+/qm4xOR2+8tx7KyvWpl339nMXp9jkB+7O64zcU70+shk/jlTx3w0trjmm9f7/rf6vhTtX6uabf7p6rcZO1Z3fj+tldG2wLsrGJpc4GoQuusm+d8ym0kkD7TWHUwW7Q84Jm1Fhf67BtIdldJhnFEAiiyX2qMu6vOft71kGqDYDOdB5oRsJbGeT6rva7k/loVuEDbRsRqUNHCDubyFRm8uBqEK1LgXt31TnnE+cqdpVgqC/y7ViBPLNCg3U1CoGJQSWBLIM903PMUO4U0kOlClzcIvoQd2Qyjx9NjATB0gFTagDw6AV/2cSSrbM0GBtLtAzlBN2Tj1GboKWCYimS6PKb43jDTU8DkvFFpFt3aNJuxL+/aAVXI9awNtEKcq6BsNgmErtSAqTMQwMP7+tySZ9wCDXkHBEgvGAUwjHZAM84xsnh5W45Ky0MF4rXOYIBw7BmIEyCPMNouEcIUgpqMSL1zCVDAJo/I+L6yUMlNtkoPHgHypQ9V9rY5K/CIqehcmC673wP02kTpGsE9f4OLtr523xN3nWo+3fe1tIm+iH0cM+KU4QJg08fvC28y6niWvwjW75I4ddYfN653eZd3eZd3eZd3eZd3eZd3eZf/vvK/ke7tAY8nVLwPRBpFCE1jjELI+NNAC+PB23jIXu10AA9NJm3oAJgCxgR9YF3hybIEIHPB+5IE1TDFGQ/EaSzIOoRPGGj4YKQOncCezu05k1miDLmLjrHKmw4AjKDP34L18shDq/NQWcCo9FIwTY0I1nym88KBYilYgY5cjmTiKSdNHtpJVcz0bogBIH/qgNgFMYU9BsYYsIsOhceDjkRT4I8Pw68Pw68h+DBhFFasZAeSdIqnYyAU5pkGwugMQdAwUkCsijQnIwNwjQszQWRMa2N0DKQR41lp/SAErmX3qAoMQYYhE0w14NcH1PMA744/P7/g4ljhSWONffCODTxQJa1zJMW6jgGVwPLZ1wsI0CiwBk1Ph6G/DTlojMZ2YuSM1ruxdZt8ykmSxr3Ke48NDWqnEQTFFrCjngOdKg8Z8SW0KWAIMJOh7Ej3IWlU2kGubT7NUs8kAK3q3caaVyNXGsLagC6eaegCIumExUijHSDq3XbJtFOMgNcXfIvgu3H67HlpQ+lPKdbKlkrjVJoHZX9xOj2iwSc/WE6+Ga1/NOscBqoyMdbzA80ilPPulYL7HM/TyBZRMmk/q1jj4ri3hSDKQP7SF3Vdt796kf2+Dcbycg8jMwuLWC3lKHj3X7UnIZaHc/OoOwpUlddnVerbb46xEBQI8sZyJcD2xCEZFWT3bTt4t5O1IhfpnN6AJsjZX9thI6rwWOhY59scryhl6XYUuwvnCoEA0wMLZAzUCAxXmGqCUQlKARSiD5gOpiCVwJwEBdHoToOong70QGctNDPYkd5hphwgsMcRMQEMjkmQVcYyTZs7oI9Hs+OICGAKM0uZRyOoHowWlPdkqIBHRneSTQ+yMB6GkAvruTBXQI3gPYfg69Px9Qw8n+D1OWZqksw4dJBEvkiQwAMnc+FqxjSFL8MKxZIH/nwqLlEMC0h8YYjh0ouuaXUoFNcwPD4+IDAghP02BHMJ1pfAnxPhTzgCwwMywHs9MP2JmfuBmsHUeq/NaZpzectID8FaZEdcyqhiuQzxDDAdBPcUU0AW9zwRhdlABPB4EFAmSvZEdzIQiXAOmRjUBsbHAPCAyILKhOBJPaVSw2Z9CE4AZBmsVmlGXbsrPJL9Kh1BBMwY1B4IueAr8AUClD1ZT1YY13TqGlh07AACVaYhjbVwPRQfYhi5L831xOf8woLB9eLMrTSpAhrzA5CVQAZI9w2E4CqVScYYMXw6gVAYXpSV3L/UEVjs2wiY56bnAU1gcOT4iQA2BpmwhGkH1RbIw1NJuACY4su5zqZntLRXuqqSRWSzq/Qa3o65Ah8AgGemTiNIL+EYjgIeKCqjhAfT/5WU0iDQGj1+KyPTN5OH2AbtAOkoRLEVbHBoRLFJbblb+s4uLyDkf8PCNbUgUuCzDe4thwiBxDWa2+9y7scv6gfyRvY7gPYyoacaGmEDoBh0ai+QcvAleKL32E6FtR2ZG8R0AIgDfZ5pGR3lgK2vtev6Cqw42XGk5mChPs5617tedJNXfSwkAUrJHhGtc2ZKN1OoKcw4X0wJSFIJmDJtI88RBcKN3T5UQIG1TqMBAh5zjy5wtkrN30pHjNRD2R/hi6DXY+0V82w5FLf+BALps+tUWX9cV4/FfE54AWBu+lZpDnmvlDMRqYdzTz/H+TwB/KBt7s9uCk/s33OOSP7eDspDvau3sKrHO4/rCwhTc3Lrr3K89wBcFINEbNBT9eV9ruR5Igqs8L0dDQjMMyF/rXmwdf1cKkCxW6Yc6jksewzOPot9YLv17ckY+/3b7+Wmp9cNtzPc7e1dTof1rWKHg3+PqLxedYzLHp97fQ55Lcc9R1+f0zSATpd0v/uliufQ31iQtn59K6XHV0ViB2zdPz475GzvltNx76I9n/5i2wmcsuFox8uJbZ+r9lo4x+/GVPbjC7/PlNcz5+/OXfvL+7q5XV1rthZlfSP7TFLEZP0MJ8iRetyE2ECBQCAFFi3WvgQcJcNNMSb1awINrN9nbk6cOPad3T/aUrVTeEUkwKkYgHLvvDHmHKs7juCeOtNm+xigVjFuDLzzWanRAAaVSQazAZWui/24mSLrfy0bsfW14iCsMy5lkmEli22zyIXfmNoFee6yBC7VWOY2zMDLQNk1ipXVARiAWAxYFMmAuzxfnYDFyJfd1kLw7MO+5SCqRX4uaV+Mna4sdiCQSdkd+PxKRaa5l9IGZbCLwTM8Owf3WZEbgzHB/jleDggMxV4IyXGPu66CGg+l7hAJcuZUd4QQduZxrMVAjukp85O5FmkrDqSunfNct0wIIHX83DdKpppmMBnnrkTpEwFJliPtRZH6Vf3d9ar1LMlDdQCBc89lWugKHsz7M33eOPYhLvu9p4WAqbu739CshLXV1x4e366R3jNzxef0lLR7v9hRUlZySdWGUZ+9AEojzy8lO1DyG81quQMAD8FSa/rQl85ggnd5l3d5l3d5l3d5l3d5l3d5l/+p8vfTvdmFoQpfk4fqyDzzmGThIQd/HkXp8KpTjRkNKQaHB6l5O0e5BExHR2FpMuYUtVGk8U0ko3CCUf+WEcC+/DBpOdO2yIXAhCmgK9MQlcNdVhqJDqu3jkxlVwZtsoMQLCOwZDDQOAELx7FQMpJK0LTd0GCaucNw0QZCofMUQlCPpiPFQyFyQeQCpJiUPhBK2iq9FNevCx8Pw+OX4zLDYxgeQ6BYeFyOIQuXGGIuAn4uGinghgEyQkgyhPgSYDk8nRM0/inTyjjHyWPyXD4ckAVzYLkAwXvEi+tEoQ4gDNLGFg6MrKADMh0Vagq7Ao8/fuH/FzV3cgzXSuYD5M0b4CNARp4BpG5W2FAwVUGynAQdD5CMeHp1ZDWz0DbOqJYRKA/laaGq57Rxs+sCOjvrXK9l5CmbJR3rTBOR96WBviKHK7q+nGOQjBaXw2iWBrtOM5NsT+41n50AQNe0R+U95QRqw0exRJUxLg01NwM2LSUNIEI5uHxHRqepsOpfbENFKd9mxQK/tMFDjq9Pw8o3KdNjcMTD5dJJ61AZtML/0nh/ay+Ov2UbXSr9WEEtf6xWvqQiQsv4eTQXm12hIJvlzPzpeTWuaZR7MfSf9a7fK1VQ+ps4nvcqtPGJz9Bu9+27NESXobkX3dHyap8nEIaORDnqta8vI3873dKQfDrfz7b1SoxDJnrNlX29N5hmr1UAbVwH5DauUgbg/F2O8S9QUrGxMe1BRn3GNuyVUa6dlhmpqxHwIJDkupK1xYwG4hFgmkrJ53nhh9qAacrIXUswkY3R01wRyUbEdaYSBCuIYoyRqQnYc4JI57G2sXy5A1bsWBmdG1vGFMU9macGHMJUV0K3/7gC4yGIMDxXIJbiMkOYwuyBzzkRyT5D4/6Vvhunc1vZ1/oy11caul3SOW4DSW+HBQFiwOICQqHyROjCYuwwxjB8XH/g4+OD+4SOlKUAsAiSDgKhKj1bILBKjsLwtQRqDzweHwm+XBBdW7au3U9mdHKojEwt9oFYAvcBBl5Ppv9DMA0ZqPeo/sG9JRY8JgYIWDURuBmQYMKBgcsCOgbs8YBdhue0dKwLMCZUHnjGTLbFgQISUK4ohg3IANYKQAYd+SJAOMyEjEtgCju7LoQOwB9QPCCxoPGFsCfGEo6HzAZFFVsi93SHJtBaYMASfE0Cd0wynWDNLQv4IpBc8ISA+gh0NSCL8/eChWEMOmwiDCNWApbpLpiz9jg6PhBkYXT5gpkhIkGAqrTLi0Jw5VoY6SBz6pBBmfJgCDqmO4YyhcMCAdu+PAG5BAC6M5qeexmBTN7AkC2GmvgO6fLLPQgiCG/3GvVjs70voPSW1E90AyZLJDbrTyvO5Vw4V1ag+Xmagea+awm2LnUHrPx7FTLBjfLUoLRpwGGolF8FKi3E7ZbzpUtERM6HLSvLSVc9qeW89Li9PxUBPlZrL9hA1rpORAkcF+Hai+2g7/10P/lwVNbm3l+hgUfHnsf7907e7+VD+vuo95WehROkywlKHUUy3RnXO12t3PNUjHqpSabpVIwhGMWWlOcVTXbPhgkEmcHUJIMcEggoaMZCHP6uzd6QOrMlQC+pp9TQLKMNCgewP939Us/oTj6chXU2VDWEAdd1bcDWc2Y6zb1KOG3kmG81BnnWaPXu0GFab906E9mTcrph66vnPKjO2HrS1pu2zrQff6vLoVOVM7/1XwAvqMR+B8HY3vtbbhPdbflbtZBrpZgZJfX7fvcZnMBKhxz338akK7E7pVpw6FldvtWlHKo/avRbnTnv7Tnw8y19zc9/3C/bCvJvb986+9bN91j+vfcAv5PLr5L8+z3y02O/depfvDvbeHv/MZ71we/rEf39lmK4d9sLEOjb3T1PXwfutVLy8s39ma/npn9d9jpEy97vz6xz5gZBHZs+7h+dfdc9f4C7zjGrs4aAclRCYFopmJPJMYEmEgFogRTqXVynKptJTkWT9aglDWVro3mxGegq3dyxNx3bKO+RCrUqKSN9Xq5GNoiizuMpowtoY8Y+dBEsN+rrukHwizl2t62i+3GnA5e0CfEK7X2P+1keirLyXoAYKCpwDRoNHlcR2Lgwxmidq2Zu81pG0yECWLlfUP7LymABMerhmrO+zpHhWB31UHNfIckOalX3/F71BZgc+8yNTPFdu4lFsm2KMHUygudOTf1ACTSODE4rdlueLK11CJoctPdBFQEqcANb70F4pmeuKacQTQAyDCIjkXcOBZlyNec7A4S06x7JElwBUPxbMNO2JanL9+zSZNjKdcCzVtnUtv2NtTWyrkokiJ06fsByraFBXdU+7i+zllnrF5vdunQVTV0nUIymzWqpe90g0HpogEEuwTy7+6yQ6/+bVlCf13etS+6rWqpI2TPQIKlz/vRqbX3rWKsSyaR+6KIc2Axc7Wnb8i5iq3FdhVvt3+Vd3uVd3uVd3uVd3uVd3uVd/ufK3wYpqZSj5YE8xfHgo4xqcXUy3GTKKojTSRUEpdQhiGwPBtNA0frSwcZc8gRKYLNPgE4IGrEXI2gsoDrpCE5mIkgwUj+PV15pxnAh8tBJEEuduiRNFIz8sXTce0ZhxVo0lMQ+uG6gA+9TMVRaOclUCO6bsyQyNRgNTJ752zfYJhIYVAYWtQciLkDyv1DouAgieijGB/Drl+CPX4I/HgO/HheYmX5ltDPft54LNgyOwNMdIoYrI4Rp2FHM5ZjwzAJRhrly8hMkYOp4ZnQ/8T9MDSRG1ijxBXSENI1RWPmdGB072cIKW3NfIDhnIGThui788Y9fWO5MGeTOVCzY4KCdGi/H8XTEIx2OAOiQqd+zTdVsScdN0GDCg7on8CPaCHA6nNJWiIoMpLFJkmz6MFTT9MjauENgfH4aMcqetw2rNBiRTjrnVH6uQyALWGvRsNOWjmjD434vKdXr+wLRRALlCiijSS0uSGNK3stO3X18grNqmXBpledmu8VuoJWQWx92g9qcchi+C6RzWJfP6Oc93qexe7Ma4TA+3gwvL4XGoNjGqNfvRdCRnNur+ON13g4fudWr50mZ0eNwrAbXxCtY6n5HvQO3a9qBXZ/5HozNQlBPYmv3Z3JrR7myT+PV3ehUxqn4Pg4vffHa3/tv6Xvq4afR7HTWbrAZcNbkfGYDArHHsP7ZM0p3B5Tdulsbt+fhJS0gna21fuLumEyr4yojZ5DX/iHANZ6QSyEyEaBM79Ry7mS28QVAsZYjFlNVqQ0y32S0NPeDhYqcDlLD7bmq3kxuxajjKyBYZAtSherFlJs1XjpQAiJyHnqQmcmUwCiVYrYRjHhCwzEkU5OqwG0gQJkMMWA+0zD7RLvIg9cup4zxCODJ8QmhcZ5DFAi5+G4VsuRJYGXdlwcWnCxVCnz5Jy698Gv8gevxgevx0QbwFXQ5uAMzgVMQR/gEZBLe5AJxAlnMLlyPgWtYRkALVC72jyzqJgggVhqMMx2ZAh+DbZpPLruPMbC8UlGls4c8jdxrU9YOCYg7LjFMISNXeOAyxdCADoUoMKfj+QX4JOAqTAgQUoOBrEyuxvm9FpkXNfUSKVEQAAjksUEDs6kh1MjsZAYFnSTiCvcHHvIBGFOZLTDNk34YEJOpLr4WVpBHcEIQT8CUQGaCgSlz53MS1Jt7oVrqdGoYAYhORosrU4eup9O5Y4blirVAYEQolgtcmCKYwLAEG6QqASVTFAFddEDYuPb+44CoYU06TNYyuDtM6KbxYBpaEaYKLlVnCTjn4ZwL5QhBAgVTXyy540Svkeks5YNnmsYtw5QOuJQ55x7GfXdLJVUyjEb+D6nfbAZG7L1bCpSczoNyWuTzIRtkWTpC6RJ/sT3+v16KmcwPR1oBd4hZSe/P2vfQ36JFPon2AiGdWTvBWqagyfFAZPDAsV8meiP9VJTDXnBePl2TqbXvyZ9AZPqNculm/XIgTiARgxD4LsR2Ku1BKzai3KtzC61ZlVIXG9RS8yPohDrfzYFPgJ3QUQrLBqbMSme1mkAHMAbwuASXErAYybqnUEbiR2DlGuRxxnlea/aN7JvwnONCfRDFSrRbQZU90694aZM8G5rVJKAzs9jMADTLhktsx6YI94DoSrD5KhhjJGNHZP0PyHvrOBtkVHMG3c9bByq9U1BBB8ccrpZlv/dELp2q/i10eY1xj1k0o4Fg64FNnQIca/iYETd15tTvUj8v3bv6Sj1B6aWWHzriTc+OnoOv+mr3b03QU82/9UY1JLDrJukw3fPltUnVNz+JrJtems+P240v43KM8Wst/7psgOFfXHHv/zjGrUb3Nq9+85xvY3g+sIe/tV2Oie8P/8bz737pmiHxMubSzu9+f62vs067dXgd9fNngTtua+i4Jrq/4qUNPzfqh2pUK7DPAn9jhG/tw03+1jq5AacC++X74L6FfD60U2ulXLvX6v7yCCaypD0iIGulPNvMQJsR75gA+fgIgpoK4VAchDzHeM89gm5yNQVIDtPtyro4cv9IIAMFcMu7U571fhPYZ9pETigOGR9O8jtZOLLitu4cOzcqry39Bwy7iQoYK8FcwYTFmoOdmhSSdwr3QU/bkWit/2TLlCtTgxdTTsGTWDf3gDsDGZnOzckOCmHgYjJNSadOLr2uApuEQKxsG+d37SW5rwF4LsdeZnttdDdnZ70Cc6XFaAXz5NXZ53UmWou9uFmHaz5zvpTNKbuidUcp1sAQiJCVHFp7LlUHSLE+JXuhBwBeG1jH2VZpG3UCdpgZPbBEkn2rdAP2LdUBTpQT8Fv/8IyeadxI/Jr7mPfcckSnTo4FRDF05nor4B7gzc6tCTTTHIN61l76fCZtnqlfS9pBK4iglucxn7c2WOObshbSLGD9hnjZhlMu4/bZXR79KAp7Hu253VWK2lP/Wjq2nhB7ALLqVTPc3/4u7/Iu7/Iu7/Iu7/Iu7/Iu7/I/U/5+urcEBa0g6MHrIAmDx8IQRWXnWBFQUxBDVMlKpCOGVJJuuKKpgpHlqjzsSzI1MLpmkQECaQASoKI+5wpEzHTkkdJZwgFfCQrKaB4RhHjmqw+I76i2OpyujIrv6BaeoBFSzt6yFZQhKoB4AuJpBCHDkK9oYwMDQ6Uemk6SNNZGJPhhIDAgwjQwkAdCHkzvpgIYYENwfRh+/RL8xz8E//Gh+A9TSDyx4gumiiEPSCjmnJhpaLB0AIc7XI2GewjblUnsCQziGH08HunL8E4xpLIgdtEBIQKTkWAhoLymczki6HYzSaOUJs20CoYOQByuZOSIZ6ZlkgBUcD0uPD4eTJOTBtS5Vhvbm/48n1epmwJBdgnkXNRNHy5Gw4evgJWBrSwXKENWDn6Z8FTphPG6ToCcm5ZGEjVL1gNsZpfwdKzy+jLE8N642XxVleCGMuz5RBudjrkdqpzfSHuhnAbgNEiUAz7rHy8MOs1nLgFR3wa0uMdiZYdsow6ijV2SxsNtFiEAcTsNtI1nr6xFXY3DQF5O1vO7Dfx5Me9W43ucYn+R6/F81w1AdDPEH+9DtVGSyi32vBA/nIHfyyuwikZqbwPRNh7WHK3aOuSHZ7aBu9pdxqbz9zR+EdhXzzjMYSVrKk1lGqkrehDwNki+tuHeK6/AsMNQSSs1Z5mg23J/1mlUP2RkGZmT3n/PhLrl+3hFpehJxxZOY63kmsp7c3rnXNgg1d20ZPerpdppYjjeZQyuJpRDNISgyRWUZ3MuzM8no5jt4lpcihV0Mnd6OuEeEIE0nmbErjPadPqmzU/OKm4PToP5lXtcuBME6+lI6PZlVUuWQzDUmg1urZV+CMHqeiiKcYKpxRYQC7GA9efCjIVJnBQeKtCheE7P+/l8j0UjvqxMjQZEkCFKMRASGINpP8PZxxcIJVMh4GUMxUimi+f8gtpIRpoA8IkxAmN8ALIw/YkRyZiowNdaWFOw1sTn/CfmfMLnF+wCJhQfekHkgTDFUEHgiRVMxRdQ7kEhiDWBeCL8iaUC0Qs6uLdcA3gY8LUC5tRLYk2YRQKSJcfXYTYIS/VcdCBLycTqtLYFcIQCaorPryeeT8fnZ96mTC9BWUQZQocII5gfD4OLEFCToCmzB5YvxBKMQSbLywhYiuEY6sAYcCGAWFywngkYcMXyCUt2Fck9evnCMxbcA1MCcwncBDOI/rtMseCItbA8EEsACVxGILLawMp+vSLwGApXxZ9zZWqFT4LVRRC6GPW8FHMNjOsB6ITM1In8ifDPlKuc88UedtmAmqZDitHyEROiTLNIYB5xLQsJGHeOlydIaa0Jzz0XEgdjozP9LECwVG+LB0jaBtPOSTQrUgAJhgBEyKDlkkxLuqPXTwCn5f5d0tNTVhYwlGt0y8VTpknpwPlXb83+Ivf+zZ0KKtFEb7tBqSuLoxystf8XuBOoPkkGgvou99FqteR6LCBZOxiLnRWCA+2EYgHovlbZaXm90O3JiNGqShx749nf2/FfTiI5PusY9nIY991eG3rOqzpvnON/XB/AgfxgqTQ6KIBSpo1O9i411sGGYFyCjyG4LHBlahMHWT6kWDVLv0UBj1gHTxlXLRRskHpmOoFosVVG96WmrsIpu3IPO/v+1JaSOQTY8xylB2WIiQK+kp1JSq4KrjF6fao7pi/sHDiH/t+KN/r6og/ZQQa1PhPsX+pCNRToutf4nDpxqTkEfVUfJMjg0On65zmmh17Mtrf2xDcVGDEd+TcgS/04nPo9V+W4KPaP1sDrqwZlSM7dqtaxPs/7Si/dWiIK+tfMDn1Df4N/Vb6dKVD9/BtJJy+Qmu6js75n+e2T/nXdurOP+7eX9+aM/unuXWU5rrufDer7/q7H5y/q9ePZaAMc/nfaW+vxX17Xj/w5iKTPMPsAcLxhA4U2FujQ9WU73GsefQvC6Gcdzy4bTAXK3f49+jT25bfvzirnepT9Qd9T/XqeJ/qsidhsSkLmRG8W6wI8l1xM4Kr09tf7XG2VFVzhsYGJN5CVOJlBRQm28Qr+yL1TgE3VmrI8g7dUpNsSKfv7AMX8vkAyNLEynsFZSH3Kux2Wuu/JbiPJpE69ikFWEQXkLl2bDLQ3AKWgT5AKApqGDTBYgoxGGgxWEFkwy3Nx2/40Gc95bmccojMIwid8rbZJKWjrCgjNBHAsZ+0bDAWm6EZMRDhZktL2BRAMs4ExRjtnUDtFn+8jgxf3GRXHmEfbJGofynOc8ny31ko7kfT+mx10iAnqiWTizeBMD+zgq7xF9mzVPLeIkPWw7KJFdleguGYWKjsQcjVG6kaofZap4SLnF+RgiAYni2bqcJ4vAF9kqKXOIQ0MFxTQzxCS/R6KlcxPQwxLOE7FdIu04RKklYBsSAcoUd+KPHdsZmAvfaa0trTlLq9AlwK35XotsS+5ABpxJLjv9QfQsgB3p0w+ZEs/+5RyUtuvdEDvfh6fpT0mpcfVNvgql1OK5vj3fKtqdC3+z/bHd3mXd3mXd3mXd3mXd3mXd3mXv1v+NkhpGB22GgDTqtHoiEWDAYE8AUGmPBGBZHQWUwfxgFw0s+XMpzNH8hCnnadcVSDqTJETkVS6o1O1SSiGeqYbocOCcbk80A1oOmOPA3Y+NzINGCPx61DJw7qpIJLloqKbdnQbj/A0CBFks8KBMMAr+p4p0ir1WBumoTvVUEYuqRiYIm8A8guOC6J/QPUDMi7YBdhjQS3w+KX4xz8U//kH8Icu/IqJCOC5FLIEHk+oMt3dAsFbgKWph5H/C4chQkmOHKLwBTgcc01cNkBnSaZ+MFJQiwpkSJ67g8AwBwIGmGCuCZdkZirDtKSRTCSj+RZUJFkm6IQMU8hSfPz66Ln2pYp/fn5i+mqgE2udjDqqeWD2fYqWGhfJ3x0QptSTBCaokNGj2WmwDcPbicj7JUgjXVTLAkbTuZzz4Ui7VZbo0HasFiAnsA1xAJgmsZwKXmw723QqGU2o0i5slow0RCSYitYdFIzBy6EpkqwAAPRoHzYbQAFYsmMOA60i4Nk9ZfwqVqZqdzpgvAy0G2iUsVw/ypBmv3lJVVHWufp4g8nKeHK//rDldTkjUGnEOwAr3f6XV54fyY6ib/tQvkROq+HplJGak57ju+t51L7fdWbFegVmnY3bLrqUlSmjWAXWoaYqf0S/E8d7f3ISnIClMqi36T4Ow9kxH7vdEcmUl2/p5/jxfOw1U06Flpv1nN3Pva7LFFhG08OZJbUmy0TdFtyjLjR9o2JkHdxzgA0KEqGxuFMd1FjK4TzMFpejQJTvXAuYc+GxFjQyJSW4FgPOG5T942s7YzycUpgc/TenH22uOdHEs64GJLgolAAnFeBhBi/mIgTWdEAtAb+CWM80onqm9CGjkPjAUKbqMpMEgiw854KBjhIxyj5Rw8djQFXwFYv9FJKU+oeJNGjQnfmHIzKdwsh0YXQ+jEwVoAFcahh2YYwPLKfR+PP5xJhMCfHxmLAAPD6BICJUJdOOKifWejrmcoJq1pMglMV0ch5MMca0QouAYVIzYvkkc1UAWF9Yz39CrRh0Vm4pDwy9YDKgcuEag/N4/RNz/cmIahAE7O54fGw5sXLOEyDG5/ninv94PDAU+HoufH5+YT0dvjTBz4tgNFUM0QbTMnI48BgXwhQThgAdKApvsWOp8RCTvGCiGMOhV2A2QBuwAaz5BAJQyZS7CZKJFQlKIMh7iMHMoJZGf1PAEiAMxTCCfiKjzzWN4PAFXxNwYH4uTDhZjHLtLyhELwwBrkH9EPYP6jnugEx8fn7i+XySYWdOpkpMsMjAgGcqDjpbkq0yAvCF5/yCRGR0dzIlCcPYl0+mGfRi1CxwGPWzlSlruacKyPRZ7H0ZpS2B5U6Asgijw3NfULHcM73lCf2BggIIpG/kEOT1o65Fy7sGuBU4Zgv6/rH3uxK6qaumUIxDb/13LDV+quk02SoI5Vm1JeV/CMrDdDhZtpNpO6ulOmjvayCYAwhidpJhp4A727HHSjVAOPe6OgtU2sHebUVadfJy8tZ3VasDcNJ77Qn8wN4vT/0MXvpIP+pwREVt19gAn9LdBEwyMwChTBZhmhoxgQ6HKRnYxhBcAxgSGIFjPwOBWdl2tm1Rt40NwGmdNtkseofOOUlAWAKeAoAITIqN6QemqkjXmirTyeBgcM3hqZTIUE0VmoC21HyZniZl6MjTLQMeAivZEArLXHt06SGdyqyVq62b7Ws2YG2DEWpGSI+ToACHNbE3m3ANuiZYaw/0OW9SDrSe9aIn5m2CXQ+ul1fAXK6APHu37teor3xX6akZwCDF1JKXNXRMam1uQEkDj+plQOOBNkPnvUbl0H6p5Es/7N7fuuK3V2199/bZvrcefT79GLHbe37q535iH1DyrYKXdv2gb5+Vjf3rlgnY8+Rb47ZQ/F6zml9bzssxn3smlTj8sWew72s5uKFfr++8v+fYsG7PO0ZK5DZu3+6rcyO+l142fe9+W62zOgLsz8/KoveO/ZjzTRtEd+4b20EvaOc+0D/RZ1i0DDiv40OkFua9Tbfq5TrygISjeJEiAyq0nhjne5AyMpKdvMBSbKxH7Rn1fv4euaZdkPY3pqHuvS/Xf699EeAI2mtWL9EG7265xLac2cMJ1snABNuskXclh/YVFCNfz4OUrUcw2j5HbwCVSgWlWXZ3JBO6QLBgFqknJJA9u8lL5taoplmjwCha4CikHSf7mboYelyZRpRBj9SFGUzkkWnaNGi7VAa0eLKlIyRBtezzYudR2zpArb1iCQxUkGSx0gNr8SzElGob5FUAHhMBRFPmH32X6dw82WRbPbHofStnDQRBxvs8m3pEzp+yNdXcYx33Isw5EmRctAJrceA2cDnPLpzTjr34ArGKmYrjsuYTnWpaFGsFxGhL02a6uhBy8T5xMqnOWkP3vbVla9K2Sm8QtP3NeLYqYHrsLhlkSAG1wT9nX3Sf1PNQeuLegSTHft8vaNmSazA6nXQ9pa7bm4JUf8X+bl+HQ5De5Xkcl+wqly3xh31McPThu7zLu7zLu7zLu7zLu7zLu7zL/0z5+yCltMbLhWYioqMpI5VCMBWIYQh3TAFC88hPz07/zmgmT98+ARvhM1krDqYJFQQWhh8O4zKSBlO0YTHFjMIAX0mHTdYDAx2BcwUkHbcwx3DBXA4ToeEajmY+OQzQKoZMTX472G5wiqWDCqARhQf/yvnu7keKsQ0a0MwjTxYlA/ALIr9g4xcgvzCuX7BLIQ/g8R/Af/xyfDwcHw/gHwb8AcHlgc9ngXQCldbe05gaMRHPAOIixbgoVAae7ghZgDl8MlqMfg6Cd9YiAE2FqYpEHDGdLAL6wFpfnTbPBekMF4zxCciCgywN7o6Rjmq7FGGBsRTr+QWocd44OpWMO/B4lBGUoCl5Gg0x2OmQ2mqmNPqEBPsSjHiTchxFxRHxJC9OIwANNQHEwgoAKrCQPuS3y0QBiWJmQkaF47D6SqfDiOD3gYrez2g3lJPG8jbvKLJIA5oYHS+eUdllmGD0OA0qZLgu6AjTXnSkeygqdL3qy6ZE06z7YSyutCfVUkngF5uU7BTtgC2ATaSBrYzY+T9VAvMOY0d2TYP0AByAnHIY7Mj5uN3Jd7HfcNSLzBiaTkJkWwJyGFDleE/ZEzdAqMBjcbSJEY28lxGgadiTbQzu2rWhKN+TlOH3yHXN9m7Hz7Zsnr/hcEocoKhzeqGeL/vDeoZQupU7XooOP42grMO9X2ow2uHaUmsBsJTDR2NDACSbmUh+b204PA3uInY4MKqWNYstHxf72dXWNIwTqKM9Fud0YJQh3Z8FUixZVwZjyYhgGomLgUVajqPq1CwTNY+TYSZ2xC6deQQAmu5OD2FarudcuOYTwxRLBDIGLACyn/BasgAKEI4VZF/4MOXeFgmuqH3MLQOTaSx17DQDnuNKJzDBUqrFjDVQ6Qopd4GAQk3a2KxmUAuMq9JJAGXUbxYxLAgclyoe14WHGHwtXBZYH0pWHSjCF0FEKftNAyIExlxjYDwekHGBq0CgeMBswJSgFBsJJsJ2PiwA0xcuXdQNgn2P3F892B/hgQuKJQshA0Me+PQvyHjgui6YGh7XB4Y9YPZg+gFlXykmYhmeTwfmJzQCKwTP6TAHns+JX78WrsfCHx8DNi6YfsDc8PX5BOQX8OSKXCuYdk8JViJYxmAwYssWEmTjUDMMDTznn5jueEYBUgmyWUGQpwaAWDA16Nh6xhCDiRJcowN4KKABWRxrCBAzgGCaP5MAiRMJ6NYgW6XPL2gMRDLgSRjrMDgHKDIEIy6ELzzMcJnABnNBhSglTc6p8AnxL0wswAmUevqT+oALnvBkCADECEqotXVdzlR8Hw94fGD5f0DkwufXP2H+BcUkCF4EMnK3M0nwEaP3VbmnLlBXkQhEkqSIKq4QhCw8HYAMLAWZliJZz8r950HAkUayRAKApZ7a0gkAlWQCmCIdRgGBATqwvKKoDbMisZXgfE0nzcp0jgA2SFuQThzKU6Y5IUijsEnFfODcnJKVc8MwIQcIP4ACQ/Hac7f59ysE3J2wg9RRal+FJxOVpqOKzik6R1ObKb+RCABHeO5TiGz/dthsHFft/xvasH9KsmPKBuMgrxXqShHeQReRDkAuLdm6V76z/q127S/LUVbTIut6glGk2onct849O2+U477aQ6EogJIq03tyHxDAgPEx8DECwwJDgQHHSGWrUxLmWSuSEVQ1zxTL4ZFBB+lgdh6ICIb30pGQaWJSz43IwJNS37mJS8710qNL167+Uc2gjtS5EGStLcYFMuNxLKAB8XLg/z/s/e2SJTmOJIgqQNrxyKzumbmy7/+W25XhbiRwf6iCpHlE9dTsdouUrBxWZbj7+TCj8RNUKBRN7ZTo1rc67gyl446jn3RPO/7IZTTiVJo4zKij7zRmSvFStn/i6Ps1yPd433bSPtKs58RhLz3m8L7+o8qL6bLvwrrmus7Jj/rV5j5Ha9m+qn/uhilSzibb2dF2ddXcl9bY3rPwmCPreJDHkF8ttupRjfU9ruHbE/zjFx5KZPZ42c5O+t+ulc+zwC83s+f7ReR61u23naDmy+Nyvz7sOQaLAPd8/9dx8rxDnlmjfy25P1cv/EIKs9+3Uf7mt7W+HlVJrRV7fmhuPebUPsMdjKHfP9fRD7841uuM+Zsq724vks++Fs8O5zX3PrLnsq1rf29Pe/7zvCm0rmjsk6ieUubUuVvnT4MGkYK0at7UGmTi99RY497vR0U0wGtvEGaQqJ02j77RL1ZzWwcZa7pEzVTaY02K1RG1PtpSh4RUZcyA1kyKSbRTejOEOWbwmQFfaShN9SL5iAqqcGEp9Tjai9wggtI5QplqLJIq3a6zsGWR7mQ/6dxV+tNuek4QO6RNz/94du0AClsKuFFRqcw+nv9JXCH+w/3KjBrTzQPwDzhoH8YAgBdtnOBZp3lHpVmttTyNduqIwXo6iTgz7kWqr1Fp7isYIEPPD/Cc5Xs8Oo5gHFeIQ/KcVSTUM82xFfklbD3bSk2uwDV333u3lFkZg2lLuak5CWUMWuU4KVwhM2A5F1nMAdnRfD4qoj73URdJrjOvM7w1mHdEME15jEDOW4EbZSQK+6m9SPU1NGKIRtX1mMJ20x735Lyzta5s8jbWB9a095N8WXNykz9/2d/K9rQ1UvecLMNV91gk+TXntUevfX7brSd3+LnQ7t/XGr3KXuvO1faX673Lu7zLu7zLu7zLu7zLu7zLu/w3lH+apIQc0rFwqWno9FuBZWbo5vDeCbpkwtqlk04QMA9FGMGYZgyAO1PF0BmliLJMTMlGl2OKqR1C6gO5ARKn5DIVd3KdugrvdzgsmgAFOXvqKOgmIsg+SG6wRvIltvPKF8FhosCJrR6VAA+nSLh4C25KkwJgCiTiibAhw5HWAftA+ge8vdhG3mAvR/+D//35Pzv+7WPi367EHwCuOeCR+IovgVqKYityl1W0lWPOic85mPoAibQB63LBGR3amDw8e1O0GEg8mWZo6q/eGgINkUZAZxhiDh6yHXQOtQvdOiCHaDiVnnonWGFNugvpQE5YAFdrmDMAT1y9Y0agvy68LJWu5gZuYIykikKBjgVuNP0+C/Ujm8yMoMiUYkKsoz8VjRbZaILhhQIIhlSNCIIUiLBP8IygEtjx9D5U4PkBbOT6uaAB3+Q7rD4TLGB0sKx7CuQYoQjLA28lyW0DDSkpa16myCb13gY2iJPW9xiBfpKMinC1nC2qZ6X22Cne1O6F0p4wdTXA43VbGK0BK7pvOWLrU/o11jzcEdgN5Zz5NZKb3/0NgnI4i/ZLBd6qQlk40E6Vd0YML9D823sxAyXrvgCphanHbqfcDgX7FRHa116dIGe1QhzNsKMWV2tq/dFYX8D1Wd+j/qtfdgX371goJlbEKL+x1rtF7gKWM20993kP/bPbO9WH5/jYY2LXU6Sv7895XHA59QzHWNqgfGicw2wpNTzHoeD53ON9FfkzvrdVaG0oUZWRgXsYvr6+8PogYJ/pGAFYADmpONe6YeRO44YJTE/0LjIsJprU0gpcLLKIuSHn4PMIkM8Iqg/VUzjVJppU76bInmYNyNgpYVwR160voLe3hn41zHtifH0BEXAHXq8Gs8DX+MKIgUig+0XFPADjDoxR2R4cngGDo/WGdnX4dcH7hZSVsJRKGtPHlaOFqSFcijQDM26uibeh90CLG91/IJ30uRc65h2YBsAbcn4BAF4fH+ivC1eHopU7wl7o7QcsEs0mHF+sazCFxEyS6WIY0i+gXYAZXwfb3V8TV29AEsSf5sjmmOMLmF/oTS7CBDoS6RM5gPEVGPcNAPh4/aDyzhj4+fl3WEygNZgxfRsHoMjdk+pIDUcyRAPSgYFgKj+jU94alYWGiItZqkZzcJ8YCYQDjcRhqqLQgZ8zgSJJWeC6SB78jMDnmAT8m+PVG15XR+sN3l+IOZGTVLaZQHoHrgm3gQgB++mYRhsnUiqUFmvNbq3hoze8XmBKuo8G+B8Yw5Fz4vOvT7T5iRdueEuYs69mBFJpEloHutERNTHQO9Nd3D+H5j8JlLUIcX/s7CtriHkjY8Ar4tsMUwpdzVwpPLgWlnJM7fFhSqOYWGSMtffJ/jxJmqb5x3WGzh83o1MKIiold8VMqTsZd42Qt4a24v48QALmMnNoLSgSvvYOrLlnmUrJ/K9ZTM8DkfXKYN8Cetof5B3xmjP1fRE+IbJTJs8iZqVJYWsfZqOJhqRbmewcO20bs+2oq7W4LqC92Lyi/zmOnmTm+rxjpfNdeyWfg87ieq/GChaZZ23T5VAF0xRCDrZynG+FzdrXDFCAQFojUa7S8jSDX4b2crxejqtNfLihAzCRTkcw9VpF/8/vtpnuPZc6ks46Rxu5Xlvcqsr3AwWZLOFO2o4hchMOQnvt79XOyCJV097xVoQxTXcRhCxz0Y+LsAjN6d6pqFo3mcH5VL2T1UFew0X292GvLWXObQqua7AfbSkKlZVc6XRwvFqEAuT+3HOk1McPKyppI/1iuNTf3+y91GuLIFZ3MGyF1TIF66B82mhHZ9T4rLXK9ofWZ2oFqvOLff9Ifnu6b3ae7oRfX3184JevPfyudYd1q7Kr9/WrUnbW5tFn3/rg2/3XV44/f3fs+PXx8vGePZpidcT62PrMeZ3z7PWtnqcN/l2VF7n7s5rldw299yv7tb/+N+V5yUfrPp7x9+PiN3X5B69/r/H3Wjz98Pl477z/848aEEf7r7HzJIfa4wlqVuhytt//3ne1PnLqb/IDlWkYMAcbkKmNCBJEtyItTuGzdY2IpJ1nRXJ4zu19/8KpNtEw6hn0nFRAFYaEk/B09KxJMRiJTdiAiKM8I6RsF9d6OcaNTNpOdUZx4SCV/q0etLrBpfzqrYmYffabCeo6AoHIQt3mH4CRCQ+DR6JlMihvaSU1zHVvtk1rDZdUiiqIUJKmex/Q2lrE1UAFb8niYMTZ0UbE0twTRRLzxnaLUGpV2Xl1pkibMHPEkMKSESMFqNQ6BlVoi6R1Uqyrv7LI6nnuT46wSp126G8L74okwdksVyq4nEnydTOYV7pCoIJKt03DgE9XvNyQgqtJNanpvAo/6yRVdrWbeRDXneoXEZ6qbaoPCjtzN+EGbF+rVHExeaacN6jfGotzTLV/4r0kz5UVVcqOQNgmSJVdVqsH14VtzxUGvFaIhb8UpFC4W62pey9e6XKtrv190mrCr8VE+zeOQb6nxHPe15TITcHftdmj5RGEV987drdzr/lXVmV9l3d5l3d5l3d5l3d5l3d5l//vlH+apNRgGPdApFRfFlDgK5KnANnmlPit45vO+sh0NEsqTwTTktW5z5qj6zwVY+qA5HIKTTl4BERbImPS/eMQ0YUH4ZxTaeUMvTVkTrTWkSBpKMcXkoJKGFCUTpqcjzq+p8ghCUWrFQCI9ZPHPh72GBUGZHNJ5PuSYXZviJhUx6jGTEOiweyFyBfMPoD2gXb9AFpD+3Bcf2v49/9x4X/8reGPDvzNJ15B58EdiZGBAZciER26Sw2qUsIYD/pf94S3htZNh3FFUfWGkYNp1ZLEMSTT9Yw02CCoYq1UNwYVgwpsgVR+3NCcClqYcqbNgHdHu6QggoGJkN/E4M70PQgBBL2jJ8lqjI4KgW4DlXYoIh8pGqiIEOuAXZ6LObfkuLshwtd7jHjeRKbMM3W8I0yUswMwfkieQ2kaROjRp8Aoe46ViBCI4lhOmZSjWagjfwQilFbJG3IqEtxOYLTSY2zwNwtMyO1MQ0IpGlZDLBDKRNzglNIgjgJO6jm3WkYc4MkGZHeUX7XEgl8XcFNOwR0t+73kqsKOUOecWm5XKGdgvaFnKdUw03d/rf/3O7E/Nih8Qnm/AunPa3wn/BzYzfP1x/VOlOi49+q3WkdO8lABUfp+fSYhefO97qz6nYjUwst9Pe/ul1/RrAWko8YKYdu6VsmMV5XMj75YOJtA5aONTvKP2dnuO7XUsyobVN3gvh3trTa2AxTWuOF8wqMOZ1suh2ICJpJiEVGXMoJA1IruJ1Z+ENWqlTR3Q6kf75mwrxvwRAdTfY3s8Gxo3vY4M7axt6P9zr43kFQ7Sh3M1r6REIg/tX8yyRcYPg2meDOCtEw7R8IQMpE54ZXyxRIzhsZ952sp4Na518GoLnHfga+vG5FDUcMNrQMjmXIzap3WeGjOlFjX1XF9UB3H2kXClJ4DyT0GApBLFcPM5Cx1wF8ITHwl8Hknrq/Ej48bE4E7B77CALyQ3kVwDmQ4Xh8/0HsHGhRFy7SjEzedPZMqaXMKoM9Bck+EQHeC794ciYEww50XxifQ8hNDEd5pQ3vKJ+CDe+2cyJwI70rvR4mQj4vpIcZkarevz58Y45NKUl4KWhfmHKA64ASS/ROyRVxEmXLGsI81npxjsjXHmI45HRPsbyCBOanO0xMTnzAwdd89fmJMqk0aShWTEdc9E9GglHqgQpaHQP+bY6c1YPrapyw7wgfmzfRu3RvbOkDCHqjiZ7UWRGLkDRvAq3W0mJj5EzNv/P3zC3/d/4Ecn8gcJPelKVXvRMNLTqMbc05QGYZzurXE6MAcCWuuNBqKLA+lxBiBOZl6LudAxo1F8IQpXTDrOwEqXJntNBko5UI6drivtxXNboBUYTjfzRMhQuFezkVkcSzVQ+5PZVScNo3WREvazIrsXiTR9RmukQkqr0GXNtv7k535Rf/VStpKu7aIPmawQ9Vu7/XAakNo3Tz2IJm8a29in2CR/pC5nZ22+6RIDEkja/nmSbYw0OTIlQZ0742GUmKAovBhSfsZRRQ5e6v2qG9OobUrHnvnsjtzPXHZAbU/I7cZl1nrBQ9ZWeoP1uGtA26w7mgvw4+Phh8vw2VUUKI/UmqylXL7cJiV3VSKTVXzGdyznHlQlIKHqgkzJsZq220D1rBf5LO1R6rHtFiU6UkSGudzKpeQ+WkjcC/knNPiFbEI3SQ2ds6FkBKGalL9uxz3eq7vJJuqXSRg53yv+ZqnOsLTruNnt+1ZCgfLdDva4DSUa4zhG0lgt0s5pnc96nvVT2tZOcbXGoNW4+gwn4/X17WONjHZI2uM6p+Hdfm4567Ddo3iaFf88kqNuHy+cFb/+yOvatc6vckw6p9vNvrTPj4uCjva43enll/rrBY9Xvp+r+MscHxvV+kf3ec3JPpa99b42v36u7PIGqO/nIn42uq/41p2VOmcFb+r55MQte/57UnXszyqcZ5pfuns34yQ1e/H+AVwkvj+8yb99Zoyr9ZX7BjM69z6eDZb+4bl2efn1e15KzVypezi3rY/V+OHKskJY1QexWphGrtnsBTHqAsTOybYLr7HpNWeAOy9b9kjXEOWIuGq0LkXJyr1p6FsEMOZWmoF8ql+7qDaaJC8MWegyLzuDg+STUPPVCI3qT2kcENvvgIbMoEVJVKLkB1PWWfBoxGKyDszMQZVAz0G0kLEogS8U61pTjAdXKlsE88MBQIEJpoUFJcY4rLX1I5LkWerOgKGaQ0zHD4mmByb4yHmlCJt7DYvwkwYMicMjXa6cb+dc2LMgZhTBBsRyaRinEvaSX1lhSWVXmXCLNaetPp/LYHOwEnU95B3/xIAAQAASURBVERksdqJuLe6AjJ5PBJJrdIdT5LOXWeXSj/HtuIZvOyiWm9c+3y1Ja+noCPkVgnNTVAqMt6UkissQJxw4p5QKvABxFx1reu5qz0yQPKczoKHoumcMrBqzmyjDDMUJCu7tRToa42o12sFLdI34MfaYTCLvcVb1afGMMe5gaq3S6XxsfbkakMcX1vvP66Fvd3FaZ88d8GznK/VmLfnRHuXd3mXd3mXd3mXd3mXd3mXd/kvL/80SemeANIxb0bczvikzC4upRaRo8Z4GJ0xERgo+WjK6HbyDySZS+fTTu/iirTxDhganVKlhKPDup9ASyYVfcCD/xAe1NzR0hExUZGFTCkQaAZEY7q0iESH4q2Dh9GHo9wKuBZAjDqc1v1D4IZjJlUR0qAUIyQPmRm6E0iYSaeArVQMHW4XzF/w9gPWPuA/Oq6/Of78N8f/+FvD/+/Pjj+b4YqBHEzRZmbo1wsxheOLWJUZlFj2oHJAGgwvzEymlpHTu9QZLHOlHgISvRNoCRRhydDC0QCYB7oi3oYpzZczRc+cScUNRTbdg+1cUWWVn976hRgCQBoVHkKOqkjgen2g44LdjqtDUe4/ETMwpwHOcWJKbRExF4EnA4h0mMhJc0jpJll/eGIGlS4MkCSIMK8CEa3eJPBh+kA5pk5H4VJUOkCIIukU+AdIKWxdn8QoRMJNhC1zzFkgk0CufEY6rVtkRXnJwWNH5LTkzk0OtUofV3831TesQBTHItlFSrSBz7DUDJKAY113lx1lxkczIA/CyD+JZfyi9KM+WDh0Xb9awU7wvNoE+A7S13vfCTR2vgeCruXU/a4K9L1+v0Ny1vfq7fX5gFk7KvlAjR73q7p/B4u2NPl2WjzdKmznDTjWZ34lBB0P9OibVaty8uAYa0c9CEBXbULr3gaH8+yDb46LAqgx49lPCYGCvsbQ97Z/gG41V3FgdaejD0dbZkX8xh6fYD32fTiXAsGUl3rWWHO4wN1aF5jaZobhcwTsa8D9hllDa0wLGkEFDQsoZUClyuE150ikC8DOgF1UvLEp4qOU3KbJ2ZoF0mvvawKxrXbFL9yTqcKQA611EVYC7gSOuc5PPYsj7lvrKt//+vqCYQAI3PdEIvC6LvSrc7+pPS4rxQDbqTnVcX68XvCrwywR80b3DrMiQSk6V6lPXX+PoPLFmX4kYfiahq+vxI+fN9pHIDswnWv69XFhTmDcE+ZMb2YYuPoHvL9wT18jP8ZEQy4CU0fHFR2BL0TQISFZRw0v7oOf5iTX/vxETtou933jvkX+cgdTxjrGnchJZY/WGi4z5PzC59dPfN4Tnz+/cI+BZiRVZWrP00yb9xeo1kO1j6G9rblaKScsAmkNVCCkE6e3hq8EWn+BaUQDOb7QzOEY6J1OrMENEfCOxAup1HHdDfDEPb5gOdGso7fAzCkyH3u5HOrhRiWomg2TDpNbqoKGiRw3LAZ63FIb5JC3ZiLe0u75mg24HZFfSLsxhuPz7wP3/RPx9bn2onuwvT86SdcxJwITcw6OlMn5MVNpLS7DSKAi6kuBLWIgIpiSzSC1IgPQRQSeax90l7oXTHZTR8yh9UDpKuSsIAnZ1++cGNvZ4UYC3ko9KXVQW6Mde63L/XdRwbd347kn1dpX610qXYrofit1HP0ltsmn/4Jl0vCkEtixV0PBDL72iljnhb0hlININsfh+GbXl+0GOVaKNC0a9DcH76kOWP1Z47/8OgaQeGm2+uF0+C+fVtRMOcu2n/L58rLx6jxz2pyVTiuWHadr1W9Z65eiQEAFVQZsUEnJr4b+Mrw+DB+X4dUMlzla0qEMjROmUMRKB1yKO/IJ0z5dadBk/6lhvDmKJHKOv+1M1t6qlbeGuCGOz8iOMpKnveyRZdc825RbslPtoZTldPZchHvbc3bbzzeSsRTAGiM1brbjL2WflE26RBdkPJoGTo2DsthP4+lpMqds1e9Do76zrN7DjjntIcheLPVV1mUrcWrtNuNZNs/58izf7cxqm0VQq/Pt+R07qqp+PIl01S78/jHWD/u52mo94+M+m9i02+60CW335T94ot+dA2ytpbvV1nfWcswHW9SHb9c55+hq7uNze4xXOx3r9S81+m7pn6//oz/5nSdBqZ7v2B8e9f5dW+W3X88xexrbOHv1eYXM37YzP3sS0qpXt53OYXpMguO2Z5DD8XC7xo/7/r5l/2Fdftf9Kn6+920tQh061lTaayLvYI+LHxyEYxwcZ1jbFgAvy2tHAsMAs4BjwhuDpfa6cBKJgFKMRm41IrMj/Zrm8B7P6yS0nvuc59VaEUWIr/5Rinuxnx97UI394BkBRsxhDhL4qbYT64yHUvQs1aGs6+zHsuS5qSnNG6Qi7dgNu/C8wj6OtXt1ZL1ujunAGBMdDdYC7gNwYlcJIHKs9bNyjvGsS6KS18JVaXyNRP2OhNlcaZsfY6ZsCa2nxFcYFJBr363xxmumSEBUHWL75EzMcWPMTbR3pLBKYUnmWu9jE5VgqI02I4W/caDRVmpIkFzUlPLZ0qlUmwy6tDSORRqWexQn7Y41fnUoD4GoXvulnp7qxtuOrb5KpeOregeihENFdgoY5rYVHvPMVz0yDDESwBdTJw4nJhzEKfLcy6tNoEBKnfc9TxwNK6CksNGy9wrbOtfbWCRx1nNniE+sfXLZa8Fgn5petS4ec/i5P9QHi8j1ray9a/+INa+BTRh+bqx2POu5pVY66WObP66FX0i/7/Iu7/Iu7/Iu7/Iu7/Iu7/Iu/9XlnyYpjUjlnQcmYuUx92QOmKtfUP4smDFaP08gQoc7S6bN4QEWS6K3UsmtY1AGekn+Wh1UXYdLyJHEqKMCfSqNAJWKeDykc9RWMPCs6B9iJpgJdH9t6WUr6WZF1chR7KDTz5E8tFcdTCSnZNoQGDAlx1wpjCr1GLIBIik1vAC8AP+A9Rdav9BeDa9/+8CP/+H4X/+r4X/9zfFvl+HPcORt+MRE80BrwE8opR4m3AjEpBHa52GZ5CESvBqQTNOXzLODiqmaSolRwBCBrTNdBQAwOipW7vggoLbIOHQOVHqkXiBNEnipuKKu9G69OWZOZAM8fTmS6PQMfFwO9AbLQIwbORo+vwI+28LV6C+igyWUFiaTfV0oYYbAEGE2vbXlfDnxXhNC1g7iUTm5lnMxq3X2qd1bQ8ZYgHupHwDFz9pA0qxUcgYOPKW4QvJPgGof36OBF5FF7bidIhsoNLii+OTmTEpgZ8mxF8gh4LJEB3IB3IwgzAVaQkIHKSlwQZwih3G4z9V2hgKhDoIfUMlWnmWB1BWxWX1wxqRvQMi2ZABqRBYEuDtvlxO0L1JKwbCwPcI3yKkYvoXK6C7lcKtxgA3QPyKIzaRWfxCuFjhkcppVXZ8R398aBicqdCoi1bgzMwKNarc9RQsgP4HSZ33zl3vpygfwXCl10pTyJgtk3sDcCVz9Uky9mpD8O4kjXDP9eO56xrPOx2UOML/QMs6dE7jP/V9dx7SGKbqUjkvtDbsT2Y72dDIQhFuIqJQBfaUmgPqXJD/H1zT458ALn+id6a4MDQ0N3i8pOuSaJ6WQE1HOWDoVeqV7ywLOA80IRtd6uto2BPYnGCnKScx6amyXWhHAFKcOrlPujam5AHx93rjnF+574r5vOm5zIINEh9sM6Q2XOcTvQDOp0unaKZIByTMX65Hg3pBgik80Kc+wDSOBmRPeOtwCsLkcEUx/avicgf/4DHxkg/eB68dPZAvMQaWlRKC7A3EDGCgCyHX9gUzD5Q3j80ZzA/wC2ovj5uML1oAZjaB4TNkDJPLCLozknoEJuJR8IqjgBDisXRiT0bRhiY9+kYQWA2P8xOdff8ff709GPn/dVDFJ7o2GUlVsJEBV36bD0BHxxfkyjPtggopQ5kA2eBheV8fr6rj8AqxL1bJhfH4C4+/o3tA6O73bhSHWtrcXeqMdUPtlzEBz0Vs0X5sxtesiQEqNKGcg5800JHOC+QtpR8yQkyYNzRq8GdzK0ZMw75hwtHBEOP4+JmCDxOMRiOnwGIi5I8abO20kIxE5YbiH1JBkwZVjrBlT9bXamjKlrkjbMY65nmZI/9ByEWgA1WZ0PQfQpJI0g/ttZCpthcuWiTWfU04lDXutL3PZnufC5thkWUApJOUUdJCcVvtRLFuD64G5LYdfrRtrGdWzLfdqrWu5bYh/xVIpSRZXQZarlUNQqSwhm9zqPa3laXttrIh9t4PUkzj2vtqjsfYFIBF+9Fu1lvYw1k2tKrvmVDIpelCUG2qprZrssYPwt4ivWDZc7blLTWLXYN9fNVs6mjpHoZyYqD3M4egAOswuwDsDCLqjvTquD8OPD8OPy/By4EoSOcNyKQxRjYHGqMJK2CfLvvMVoFH3XQ48YI1FbaTLLFs0Kq920i5lQMC33bJsbtuGo/bxnVIuthM9OSd5A65piwEFKZQYR0PvDiQ1IDInkA02cqVAZRWOtMhlx+0HW320jJKVYkljlwbyOuOinOnLVjvmYplSdjh/6+/TRLLjC3Ww0LkC65zCs0S1LT9TVlfsC3G5PtRLvpPyyw6yR8rFs8r7vKE+q7++24b2+NJ+4POZ10vlBP4NSSX3Pc877mv90qSP+3D6/SNjdV/EHnbk03auGq5HQZmIVhXcc3H1w1H/tTKvBvmlnnW/0xatPtp31M/H67suvz9T/G8eXf8+g23Oej7v//0e+2l+d544vmnPNY/X0vurGX+3V31/ft1jXTN/+exJZsAxP7UsrXsW2WVff60E66V111LyWe8f470+foyV+kit14SFtB5Y7WMHOQ9M/UzySqD5AEXqHAamSKO6T83nWgvOZ4Ve33VbS5VRcSbqhapvVo0dmXO3S521Sn3Wi8DIdlpjToFqEYExBklORVqqPQ/cV9J2UACSAQtmUql0353DG+72kiFqbuu+PAaXDcTv104UYWtu1lbyFUBOoEXCe8A7EHljTuy9PYNnLwDIiUoJ5jpzW+1t1qlk61RGsmwKyNhkE6y2KwxKhx/Rb91N2CD7pFrqalQ6zWCQ4RwD95jE6BbhXbjGwhc1D7LOfkXUJanKUCr3ehbZIJ60o5rRBk6pHCV4TszJMzCHPq9FxfGEBwN22EPn3Njj0dGo7FV7X+5AqCKCVyDOc41m22k7hSlN3uKpm60zC4LYlBBgBi1KxYvT2aTAb+heZ/myAUBsEIlNTN+qkCTMaVguhrIsM53rGNenwBPZrU0p/07SEyC1f4PwLNoaVNM6yUl8fhfOXcbxqdR0FhLubdkXablS6i5bN9cshMEW4Z1bcK538NhrzvPEsVb8n28x7/Iu7/Iu7/Iu7/Iu7/Iu7/Iu/0flnyYpZUvkVNRsADxMNSoF5ARKmtYTkQN0KgBAwosIgcSMxICkd63xWG2MbjZF15T08hj3AuxdB3KEPcCUBluyvg8gqcApqzQ8dFqNijZz3qOLXOPe0JqRKBIFeJX0sA7MzmtW9GnKoW9ZxKAU5NPW4TJTQs/NYelo1mDoaP6BxAfcf8BfH8DV8frjhR//9sK//8+O//Xvjv/1AfzNHR9fE5/mGK+gt/iLzu1EIFuD50QXEDgEaJuRCBTB07Y1ptcz0L9oJkdyOq40RdckmpQveje489Cd1d/umNPgFpskpHtFJqxdSMI8OkDTiUyVgg4kcLUXDIHpgTsNgYa0WIdrZMBbh2VD94ShyD0DX1+JEYGCFBZwZlS02Of8LPQWxX8KUwqaAoeMnVrOBTdHqZcfnrMFfqWclU94GEo1QUc501Ad5BlTmigDWjelwMkFtnhzpVEi4NHCFb1FWAGzlMAgUlxd+iBL6V4cf/xsKWIIMl//btyZz255YoO5nuqhLJUFxG9HXZRawAJXnujJqt13J8P66Abkl7MEAvn1HYLKhnKZrfn8/Pqej+seTyIRh4ELuEl9/sTFqpWe9VzftwPYqbbP3VYbK90qAjjG5Y413y6W81oPUH2R9Y6xfF6bXxLgp/awep8A9gN8t/19bNhptfMDkLIa52dHGo4hsNbis/67frpX4dDJCNIi+Xx3cCyHz4mzWzk5VC8vR+CGrKtdKsVOFT+eo2TlQ2sacqJA69UsNQeX4pVIs15ku4oWDRQRteZ6WqOqDybcv9C64epAWqC1Br8INse8wfSZdMam2SJ/1r4Co9pSGolOMMOVTfNBzjF3gfJU7aOSy0TrSuFlpohYRiFTjY11nkkyU46BCD7b59eNn583SRxJwo6vBSOVqk31S7ZfE/BO5ZJG53ZraI3OcQ6nREUjNwCtgWqKABWj6JoAnOSO+xbIjYFXY9sMc/yVhvia+LiBD2vAdeM/8B8YtwHZFHo+4d2A4VQlBBWHYgymXTPX3qL2sIb0G80C1o11NofZi23dGjwCn5/ctxA33A39ZbDGuOB7BKw1dAN+OJOn/fz7X5jzE1+ff8fn18TPGQAGLjegOTocrTe8Pn5g2oV5A2YXWqNjiGC241LKVEaSO7wl+kW1KyRgzfBqiR8d8KshRKC+Z4dFwizQ/IaZSDLW0PukgmJrmPnFcTxJPGt+wY0pLNycKd2QcszUHqRIZyS+ciAgx8jIRfBOGMIbhang6D5hbRPQW3uRLD0TFhOJL2R2zGgYERjjBndJJ+HDS5mFszrjS/OkiVQrNSyviPu2bBBmQZnIDKp1iSjV0JAZ8KuDue0AzyFHmWMmSRkBRnE7gPAg0TJKgdAZDe8gAa7WRzmJhnGfTxmLRSpdc19KchSVC43PkD3IecZI+b0c1s/ycWXuPQQokrNcmUoLyD3BFxnyX7WkSVenlG+ws1/AcKhQYZN8oCVGexedLtt/ot0IywpKOevqlYhjL9Y+uWxFXVPOG16qPnfui9qJDPge4U7S/LYhuX7v++ui+2fd+3DgnXepp3Lte3nWw8oGc1TaF0OjY9IbsjcSlF6OHx+GP16OH81wAbAZYNrEhDduj61SVovwVaZiak8tZyhtnFytXM5NPn9qL8I2Z2yZwnDns8QygeVstFxnrtoRop7VmuwQfsml7sGUomofEWGRuexIZkZVPQ0wa+jXpYb9AiCSZAJpyaCbsmMetkm1xN6Pa3z4en+TjQyptXNf5zC8l31bKkRnj1fbs11r/X1WaJ+Hfdvnaks1wcrkXKSnFQwQz/tBrx+1Q83EXX97rDtPKw6Pb3570jIpf7ll3XSR8n4xeet5TyP4fGdfeLWODjO/nkaO75W9+u0+jzPSeut5lWV/7j+OemL1wyLdHVf7/lvNqef9NIoSD75GPeoaU99KPe8mqOln1edbXc7v4fHds61ttX1dfx0Xvg2ALLv6GAZnAA2rcnZerRXfKrI/8Pgrj34uYl6Nyf3B789o3/6tcVFzdD+YVf2Or9v3B8I+p6l7n9fC3ptz9aupvpvoyg/Eutfag6B5C8AiYJOk8Vo3Tel0q952TJZzvBcOVWfAXLctkt139ee1U6JsdrfSLTpaT2ckAwPVDAmPrVIz5hRJCeqx3TZ1DkOiDhTa9iaylG21SZgwkXqNlvHer9txni5iE88jwjtC5zad2dZ8N8PQefQFAzIQ/qU139eC2SzZPSIBAU7ME7lVi+pMZh2WVL5aKnbNYd65V9boLQMlBm3Hrr1C65WloYPP4gDue1DBMwbJ8qlgMZOdzgGK1hrML6WzBswVqIdY59czTW0p3BePrbkpcM9QQlcJ2fRSznIpta6gFOPYIpZJ+yziOMdCdalzAjjeTft11Bg1KPiAY4sEaY7hyFL9Aki+LsXxuj8DFYPSxZCsFDKZqpmEI66vAVvqV9jDT7iAMALwgal6XKpI3EvdeDJBGGbtAK5JVWuCgj9hQSzBnutJkdTO5ZnzRr8ce3Dt93v0n7biXkPW+gUIz4y9fJ1r17e1teblsj3y2PVsrRL4bfkHL7/Lu7zLu7zLu7zLu7zLu7zLu/xXln+apDQx0doLiKRjMwNN0auBxOc9GPmfg4fjoAMMZpg3AEv4inlxTACwkEIDD5v3PZCKpG/emFN+BuADlg2AI1sqZYsho6LbNxhija6LyJsggDfcMRhp3xxNUbezInSSp/w0RzojbiHHkSeolBOTKhvyvJkOqelASlHA4UxdoVOkm6J4MtG6I5MqBt4uAB9IvGB+ofUGe3X4jw/8+PcP/Pv/cPxf/wb8X390/Htr6DPwicB0Q0Pi6h1x/YH8/IIPYAw6lamWMyn53IBQKhqC/aSFwTrK2QdMqikYcF2BcSdGYLXVZZ3pZdwxLTEbgQaXioQLFJomx48FIwENSGOKM28NlskUMwnMyZQyrRssEnMEPOlgtck0dRkC65rB7YXXn3/DnUDEX0jcQDiBkSkwZhKUCkWpcXTVQV9OkYrEN1/R+GbY4JlACQBMyRME6lMOe0Zyx5LO5gchcICgSAHL1f9hJsc8/9fbi8pTGcgYVOAApGwxFfFFHGKGnBXGiLfl1PFYgH4B8qpK4TIEkVa6BVN6wXLOERyx8HU/OrhUdwFKDhEVzJEPdbMCYKp+dXeBPeUokqqKFxC6gHt9hDATqCJS7bkdgvxbIC/q4bHvd+I7BinQ1IvbocmfBYrbctoUhDgR2BHMRdTbVX5E9+bxtwEpTRkUyFr3k9IODvC+wNrHZ6sdCqASALVqb7vlM5Pgt4kQt55D/clRznGYuRWBThzfcNTyOW4qKhJW0u8Fem3w+Ol4sQPo5jPXawUilzR4KYhlknRUYwwrSvhoO83fkh13gdBeDXk4XkrFp8DLLHC0iDQF9IXA2QIsgUW8YHsF2jRF4wKea6awTilVGA24hCFjIt2ovPOVSExcrxv9I5Htk0L30SiYRsyTajQJ7jNEWdeaVOosJDg4bgDNO+CGGF/wDHS/YAACgZETPQGPlIN1wpvBMOWHbDBrGHNi5sQPDzQ47jHw8+sLf33+xBgkZbgrnWp2zQkSWe6viTY/4TBcAqZba3DvmME0db0D1wWkB+4JmAW6T9BdfsEmSFq2QFpHzE1hnTC01hFZ6ecccCosZQJ/DZJ7Z/zEx49E+It7eXZgOHpCYx7IxuhaGySg4JokE7WG8IShIeICvn7Ck+Qps4nWHe2j42sAMRNjTiQ6kBeAmynvGhU3rn7h+rjwNQbiNtgI/Pz6wt9/fmLGwJwNQ0TVmYHwhobO+7vjai84LsTVgEnb5CtKmZCkm2GGV29wA7omp9mFLqdAaq17eQIt8JXs0+YT8CkHSEPMwNf4C1dr8EYVvx9OQvXPmSLoTjRPppoVSekeX8jxBWskDI2YmHHjjhsjEkBHhtKTTsBaYFopslSCBAHnBtBiqXWN+0ZmQ8AwIjEnMMPg3UlujIYOh9nEkBMsIAKBd8CY1rdFoPWLUlNSgHQpYU4pa2Y49/KkMywhkvBNJwgdPh0zB/eDTNjkfjAz5RADohnJfSIoVRKP7RQo1RmSYuhkqXfL4+NopYZU1mrWGlYuwoNuo/WdhGUHlAq2UpTIfcbXKt2cAbC2iAiL8PMvWpZj0gHMcppsG4WkUK5ILjLWI2uTVUIw7vFh1HHVDgIkU6QAWCpzgVLg3JYT7ywPXKxVv3YH7c+1V/A6Caw9qaq0YvHXvC27ylCeQb4lQvFj//RN/jmUnco8/W5L8CV67rhnXlBuSwYkdKooXS/Hx0fiz5fhjy6F0wTtaaOiAAk+jSTU4FpXRqYjMMvL6oCnSX0oZU/svTtBQ9VAcYFZaR4jqIxWmkomFaVy7D6I2bHSra7rav6UopLhCAYo9apqo8oFnkVUV78naBPB4a2jXYnMr+VAjuR1i/gUmm/HlZcduikItmxUQOpeOCghp72quW7VTgB2+rdnwEGu0aePnUabnqdSjNP2ye2kTGApU+RBj9e4OQMeajCdtn31T33J9IE90vdvZSfTwb86Czie/5n2LOsBcJLNWQ6bfTfpvlMezfnNsN31t+ffxyf/sdLQtltrvlUd1tj+7few2gaZ63u/pF3LXVP79u1f61Hrjf36sW+dtPcee5AW99e2Bfv9DPP9KfKoYZ0nzsttV/m3Z/u1Ws8nym/PcjIW9b79+oDP+mJPsdVHdcPljN8zZs3MY5zb2q33Jx7jeA22cy2retgiu+zPnQ2+J9BOoZS6ltag9Z3diutc96gTT2EztI7khHfAu4hO2RbudLbxIk7WmgcRHYpkFlLiK1XYYMopb221U2j9qHWB8EcsZfKUshADTwK9sVUjAveYGDGouLnmUsJSZ3KdDWdIRVXrfxG2GQBSZ8EgwdW0bkmBiWuvAjVMg6ICzHIvQ6cq8LnvZgZmNMwkBtXbROtd9lTy/rIpiAVi3d+LXGYgcammdtkKtSdk0BwVU2fOXKmPocBEKrKyOGifDqVPtgTuyfaMnLT/NI5WKlmNR27zJDY1PQNktyZky+o5ar6VihIxl5o+CYY0FDl2r7WwucYQ1e9J0ym7p/owa+MxnoPdG1ZK0hRB50gHmEmsrgj1DJKBQD/2N6e3zu8rdW+NfXusLQlflnPEtsyLTMRn3QT+h1K5ARaFn9Re7BrrE8tAKPnBshslz0wMNJFe1xAOhtCZtuzGvXuG7rPGhj7DWxTRUd89cLy9X9ceu/enWlq3/cpvPUnQ+zrrVa0ddVbYaxXWunJewp6Xe5d3eZd3eZd3eZd3eZd3eZd3+S8v/zRJqbcX06C40RsAHnrmSBGFBjIZFdM7353YIBD5PQUC8IA2ReIhMWNgzIR7A5VxSR6K5EEyKi3MkpImoDxmwpuO2RnISYDGFVEkrwTQdtolN9GlUtHtOuSRN6IodEs6THVwjcp7I8AnZig9F2V7FyCsCP7JP+DOqB/KCDPtmvsL8BfSGrI1tMtx/ZH4498S//7HxP/8w/BnT1hMfMLwCcMQcGpS/Hl9vBCYgBvmPYAGdO+w+YXMiRmgcy4dKbUB1+HYwtBbOU4EarmAtgCdQ8GoK0OiNwDGiLFsIiAYna1zjk32SQOcJJzUAdyTIMhMHYct1uGdTpkJCxKLPG1LKYcB6bjahT/++ADugftLYFhSvhzOCK+7cARsQJE+D8lrF9Gh0jEIsDEzKnOhcAdFGcUGFUjUyYV7MQppowEr6lJRhO0kdUTCPNCtoSHkWDCkUbWiZpHoJZhKybbB6JJohz6hZ1igDcGaRe55AAwCp4D1+4K6rMDfA3gtvLVAaoFCmwK4wdBSiniAywtTqTmKBarkWYMaBwvdPeHjrUqAPO5wfOaRwmwBQcB+KFv3eSgWHc9P0GhHJa4o/AKNHs6cCiHcLfh47qMnj5d3HRbI5ao/r3cqPRU4eAzhx3PwZVv9e47HAroKWD/7yY777PL8e83FqsfulifglVS+yMfD7k8cvq313ulHePbF7tBSKDsRsQXN6QK/OJjW2PVqGXU/QdvQvoLcgC3U9ku9qsZ5atSJTBWPe9V6grWuQCBwVqorA/A5kfmJyBsvBK6rM02aKfFlYq9BqhedgFy/Iia86Tm9wFQl5MzJNVzjMkACYXogmGOOoPoQ8G5G57zS63wYNYY+P//CXz9v/LwH7jlIhJTjgWSwpjEEIryRUoEzTGcqgtYNcCkCorJgBGYOJAwxJ3IOTHMMc1xL7YFESaYMqL7ZY8Rag/kLgYYRX7CYMHR8jYm//rrxxxfwt3+/0GwAZlQmREOiUeEmQ+qNQHcAV4P1qxY5jMn0dmlzyew3N0UaM4IaFogWeL0COQCfHwgErtaRSr93z/9girxhwOj4+hq48wthAyPLLCqnEveN7o6rU2nKzXD1wMDE1/zEtButG17mgJNY5q4oZTeEMco7M9CcfTFyAIN7eNqAT+AeX/A2MTNh2WRXBWJQxbA1R0Njn0fCY8BtAEZ1IYNhxI0ZJDnP+MIdwJgi5DhgaZhz4o7EnKQDY0olELSVEF8IMxgaWruQ2TGn7RRNbkqXx6jnOxJuU6o5L/70Ihg3TOSKfrYxQHpT0BFSBNMp2y9uOmmUVqE1xz3jSBFZRIe21vzKEJWptIMpwN4MloGJ7ajIHMAiI+19tiK3a92Fpk+N73ONjSzH1Xbu1N4D7D07ayHV+rWdf/wsnY1rtGl7KhlI7Hv+Awf7v0JpIlTVblTO5O28TqYRxF5/l0MGAFA29Xa0U0WA77KtSRCc3x3vxYNZ7ILl49F3arNXPbAd6qf9uE0PniG+px+y9VzbvgGw0nmcOyjTENcZB7ovUETc1PXF15Kftsi3DKzg+Yp2e7uAfiU+uuHVOEcRRXiXM85rXAVaMxRZNhT04E6CXObUfiZlMKXjqb2tCERrHKecqKtnfLUlZJu7UmOxaxzmVERAhNIZ0iYwpRsu+6dsA7ZR3YPkvyxTK3fdihRV6cHNnKTP1jCNDnuJqj5MKjys1t2nsqqWM1432XP/sDTrHw6zvWawHTQidJatUuuV1ffKHlu2KfftCsLge77u4yKox+HE37U//q71RE/9MBPt+Ibm3rr9us5h49km6gC19uA3Zdtz53zattXTOl3Xe1zjeKhVGXu8e9xp3e9RizWHbJljhrP++3P/uHy/bq3Dvzzuvk7WfPhmg5e9fOwhz3K+k7vv8hyhx37zn1X7uOK+v55nPcDp3rZvP5/3+uXQc5Y9fJ4vPnr2ua5+J3o9jqhHIMv3ZzxX+H1yrNY+1nk72unRfzrnVd00LnfAA55jdM3/vRGsOhxjOo+HqPNYno2yJunex+bUM44BpMN6rbbtESTFepgCimoNy3XOWe1YwVFrubJV9X3i5pq0nkQ2+k6RxS90N3im1JMmRhT+d/RDza0aZVakqeq7IrFzfffc+34kMaHUPsIgFyBMe5JBBG8qpGY9w7oG10d3BTVCa7wBkA07A/iAoV1qG4TWUMdSuNGikAAVkpoUw4P4VhCYXF1YtghtFNrNbqkDyUSKtFvPEHPoOpPnyGRgXyCQRpJSUYdYC+KdDN4TucQBz0B6YgTJTWaJLuX4Itycq0pqHNtMBZUGJiVEhfsZck6shK9pIkuBezOw1a5q6EbALLSnU/17psZFBJ8/EzPLvtaKpmYugjfHzqYVGkRENto4qbow3VsRiKSQGXV2Zz0yXeutWjFKNanGSgUbzG3PKaUyhbUSoXT3pul62l7c/1xEMC/TBgubXi8UmanODbH6VKd5rZN7zyz8sUymsv0Lv97rVq4Axir27be1dgFLLf/El/YanGqaY18+S9XxXd7lXd7lXd7lXd7lXd7lXd7lv7H80ySlZo3g3oqwcgCNB3TXgXQazF7IOeCtLWAdqSgfT/ROFZe0kLKGImCmy0GWdISCacU8QSJJusBrHpxd4IQZgQ4LkYCsPBBSaUlT1BFAWd8dIZTB7wGgM3gm3Dqad7gxRRDPmTwUm1QwIlLgcjnA6VRk5BdVlVgPnTDTAHR4dphdgHWkv2D9BVwv+EfHxx8Nf/vh+J9/dPzNG15hsGH4+jnRvMPaBXM6sy0mcpI09PU55IinNPPLE+NmWhoGAzWkXwJfCqSTvrOQLvdyfjCmrXtHtwZgADnRXNHRSAwzOpVNB9qgM7RAI3rMqVrQjYAGkqPFm2NMOkcn+VVwAENRVGYdZnQkZjodsUmH8o9Xw9075l0pABX1DVD6OiV3rSinIoMUSOAukprILOVITCRaawv6zgK0OCg2ycMbGOk9Uen0ADDtTAElGhOOTVTi+LNFlHEpPxQZyj2QvLTmFDYgapCKE+hgKoC/ADF9jo5kW44WAqMboDCluzEDWlM95dwnACnQhvmuOJfVVm7Lf7vbwgBIpht61g0wJ+dLDXuo8kWgoRzIesbE8Tx5RIAWaLXgdFvOmMJKCqwj8BZSpzpg7N2RCyze0tskKq2LCZiizHu1/waXd/RevdZQjqQqRb6Ri+lwLNkCrwrwWr5pokci/tkJkwtcr74u5+VOUVJ1XmC61ijk4qiolMx/oWD7Dmx7X+ONr9W4OiAvkTu80vOc7V31wzEe1E9ssYChVSPDjodcxDDYclwaiAjuaZiavyIf2kFAU32RTFUFAZt1Wc49joAl554iqQloPefSJtXyOVzqJYt4WCoYfJEpRN243H9NNAz0/OK6Z8n0O1aRurnmHJ0KhjFvlLJGpa0p4kSB7S4FqKm6d+ce4+YIORwygvtu7+iN4HvMgEfg5+cX/vr8xC2lGHc6sh0diFvtI6DWfaWkswCsM/UB+ylWKriZJM7mfcNaIuFUiwKA1hBmmAa0BNVx5JgI9SPTiCbcO1qnk51R5Jc08SpCtuEOw/2zw36wXh3ak1rDHBNXD1zd0C62U7sutNYxx0DeEzmCaY6UNq+1xv3dDDEHECQqeXOgGQID1gzdGnI6xtcnDDe+xifVHeOFTGfEKwIzJ8wblUaG1hVKkqHZjrBtnrB7wGzAjfd8uePyhqm0SQ6g0fsAmT5cn4cAeBEIpiVTS3wF5vjElN0RXzcVvkBiVTpTrgUSA646Ba6m9WoMZAvETO3jwB0TIyZImtJqFon0hmZdTo4JJlIzPQ/3FGsNrXeQkNyoUDYn05g4k7qNCeQkic1bpxpnODxjqRgiSU7gSHDNWZIpmGJC6Z6UynFOw5hsV+dj4tWp9GjhiOyAd0RSLTMm7dKEYQadGmYQWXBihK3I7Aym8E07HGlaJ55OVYP3xoUng2mEgeXsgJVjoxz1e23NBElpKeeWG1U+0/V903vl+NO65FqrS6Hu2OO++xn+tcp2ALvLEVb70tqnANJrpKYAhx2EiJM8xLW5+mRfa7WB9qRN2hZ9OmrP0jV8O4WwflDpofaK7QBOwCpdbyoV3U4zWl2+VAw40FFXXJZC7QerXrGff/X3thuohtDUHpxraUzTbK3Be0Pvjld3fDRHh6GpTWLQRuAao1QqIvWaU900lp2TaI37iDn3sAGmgXkOLZ21vIjfAQT5tgk+PxUfePaS6SzFMe71iGWl6dlrXwcsGZjhLodrzZHVVk7XnxvnNeq+HC/sLyqRZOjc4oarsU9LuVRmiFIJiTRSPrzTIjVsW7SMnKp2ikRUJIWUHbc/ob6u79c1T5usBm59dpsca5RoMLgddlfK5jq+s8aPdpc8Dgl1vSqPc89pB1d16j7LvjUUuaN+qytqFYdOauddzpujFBtO8shui9zjQF/9ZU1bc9XW3R4dYrbb7rDhzb5d4pdLbluWNcn//As1XtaLsmXte112e9Zzrzp/e7ajFX4piyyZeIydVdd127KT82ir87PQuin7bw34fHzuey1WU/62xjVx92g5P7xJpd+b8lt7nfW347PH2PnHZZ/zanz+psJrD6oxtIl/x56A3aZWx7mzTt/OEXWfHfyy52zNWwBrn94NsS6IBAOUPICcAW8MPEgDHJWiGtx51h5jOl+cl9MeaecY8KMZKwW1ztel9AqsgLs6r0UQI7tj4p5T9hlW+s2tJ1f9ZuuRaknbbSAiR1CBiWQVIzHeeW4ibqQ+MVfAoEhINWu0Di/syQozEdawV0IpkV4ivhowjGZqkmRPZSeqbXtSbQowEqnqjCxSK+vVGMjhprP1k6y1g8US1kROGoEZgczB81RypSQJHmo/GrBe+1nW2GRfupSBGRensziAUpf0SsGa1f+AFU8Y7P+IAEYiXWrgprPZBOulYLiMFDallHNau9MqBTkVsbyeV3Y7eFzhEy0CGecGtw3tkwo0LGuAnco6Vdo4LkymfZUBopxbtCmUFE44pRIEphTCkuPLtVeV2rqp7dxLbV59X/YYeH1KxqrVzJbtgjSSwjn61E7sy5gM2qFyc6qfC78ujK8WMQXqrh4+bVqNT1T76eam81gtNzXrtD7tCoOkM8tFDiulvJRamZfCo4ZZnRtqKVv7vuGo17u8y7u8y7u8y7u8y7u8y7u8y39P+adJSkg5CMzwujpGGGaI/ONM4xJT4MoB4LamCHboIKTDoMth60YyDYLqOAGjc7VR/ccykdZWBA/Tv4l0sQ7HyXQ3C0ByRHSkAa3LOW4mB9YN4IZNHsAJApCAU1FoVKTg17ozXZhH16E8MT0JuktRKqwim4gEMOLZlzy0BeWeYR1mHwhcSGNKhv7R8Prjwh9/NPzbh+NPM1wTJOhMwIzJcyot3NWBxjwpuGbg6hNjvJAZmHMACXgOjAg6XKcDfgHG3OzWSAZq7ZKjN5D5hRwTL2d6lqu5HN2G1re7GGgYcKZUiXulIVnOt7TlQCmQzwWilHbQR+9MT5RM1XI7nQspcMZcYBEcmA0RjtfV4VfDj6sxTdEIuKec4gQwUkpGCwBb6cz2vyRVKOGQyEjFaVtEDVTk9ho2gskckdTfyYTGNQG3yFjEOkM5CLfaUsDg3lZSAy8iQM4FbqQnYla2lnoOCOOIVcedqgR6JhLoVkqUhTZwwhXYQBnulGoFHbK7zQqAYNoUS191Z5ouW2kdlgw0niDxJhkJfLQiv1S6rw365xozcwEfO/raVjui+s7Kq3KSU2pd2s+4gGWBc9sxTIDqrOvKuFLPWa8fXpCq/37WJxnLBCY+ysL7N7kqz0excp4xqrMA73qgx+WKeHY8N1/e5Kz98llvW38XOelXfN4ff+0I3/N+p7OVY6qi0594fJHM6tmP5qiHl4PfRFI5HzPNljx6ta9bO55l12lB4NWvKbKjt1X32mj8qKRXHTQmat14jB3K3qmPuI6Yb/n3SvlWcxgwRdgaUjovcwJzDLyuoQw8JClVOoRMkmuKeARgpSvMSFhSLah3OSBTEadGogKB4nIAaG8T59Sb46MDY3xhzsT9deOvAXx+fmHE0PhjpG1YhyVTaCEDM517qEFAt1KeusNaX85cOkWYVm0MtndT2qBmju4NaC+EudJmUQ0ITkC6NRFbIIH85lvtxAGg0wqIRDagXR1X6xgO7dmBboHWJn/2Fy4baPYFa2wTEpuHHAq0TcwvmNqLRIdBR0U41e+SUdtzJl4vqgvdX5/4/L8/cccnyWly3l6YGEo/erUXOl6YcWPmAJOHdbhTrfD1+sB1XQhrIsMYLBwXOn74BbiL0B3IKZvGaxJx75xhmF+OeQfCB7IlpotYO7iGxGQKtZw7/VjrjYSbOZgqJAwdzvR7AaB3zGxgHgzAw5m6I0h6pqoM95+rX1RqzEZy+U1SVE7qWrk19IsEbGjchLGtHUmiVDakdeTVcPULbhMzFZWOIaI327l5wHvHnABm435vHbOlNsmOyzrGuGVfXrgAZH4BKGUXw+UcbbS5gIAjgiSlMQZyGiPaXfZmTKaNUvo2GMlCDntELRdp0t1lA0Dzm20WUWtEEe5CToxzvYHSUdreA1wbswVaGtPgpZK7xXYvxjIvipBpmt/nnox/2bLsK4iUp/bjmrxJplz7uHGaHJR2pAQrh6idF5WXap1CloNM91Z/mftykLEfDqcMZPvJWVeCrIdnGtwHtNfImVSBFDVWqI53EJuaw4JjqwhS6+CyHot773Jyo2wvPxyvvpzKex8weDf0y3FJQakjpfIku6U1CTty7W0O9OYKvCCRskjqUYRUBKbUYJvTObcd8ql6NDQHrNQlEFgp6ZwzsBzUZrLl9L8ZVCwzdfgm2dU+Z7uzDxuvCG6ZdLbxDCYVW2g8We4uU3N7c677zv10ql9N67OsnudAPVx0e4ycdtmm6CySQNm2VZtlK53j1tf3Vs8vm6mc31tFAbB1jkCdp+s8YSFFLhxZ3+K4fK0/5zqEX8tx9qify+5dajam84TGPYqkk7Sb8mi/08DF99/xn76+72uP+u7Lb5vwWfZivc8rfr77fP7jWX9XvYeDVkes/+wJ8vHX8xO7e229tuc7sFJZ/a6sdf6ov6kd6vy3bmu//Pu7+j7OH8vuqL9r/J1X2OeD51Pv98/f/0GTrk/Wsvqs1VkfnN15fOLXRjprlMfnHiSi8/PPB1tfPs8d+3PHeWE12DHOvp3TWP/d+pugpP4+6mzHZ+t8UsTYiIC7UqXp3FD7zCJXPPoDK/iD74vY47a+wyWsNrXDklBz1JrilitFHFWISJyZMffY01mfaj8676PIRfptrf17HtbZpjZqragMXsAO9jJnKlOmexPGhk34cgWBmO/7JDaJp8hTCACNdhlTEsteSwVu+YQh0I1BijsYc+MXGk3a0xosmwL86qzM525Glc0IEuvdncpTtxRLtS/XGt/AVKc0/TvPWQruSqFnrTW01nle0Hldp1EAwAXZlNaARezGmkQksM117pkJmJhw5lTFX2nKXCreoe+h9nnaOHYQrAy51VJNpCPmGTzaBbK7FLCovgoAzaGUq7Vp8T1vjbZN8jwuvUT4SovGc7M1Q29N69/UQJpoRWzTudXdFNRjJEk58S7o/Oeab5D9A5vqcQbmxvk52ezxWDxJioJU4AsrSdkqa1HKBGrMnRasgee0RYTCwmQMtaef++ox5489uraRggKRmyhsyK3QtGt+bKxYdd7luba8y7u8y7u8y7u8y7u8y7u8y7v8d5V/nqRUkRdNB/wZsKZDfBFRmivNgom0QfA+Yy6Qh9FTBusNzRvTc+j7xEZDwPPAVBqwNMPC5s8Id1AeufDh5eB2x4Tki92k/MMDMMGXS84zR4wEMGHhTEMSAzmT6g6VNsAJ0OdIOTamABMAkKpQjgOOcwZMS0mA9CveN/yCtQvpBu+O64fjxx/An6/EHz3wAuCRGMb0Mfb6IGnEEt2AP93wZ3/hMwJfY+Dj1XHPgTEDYzBS2vEh33Pg9XphVlocS1gDWu9w72rrgLeOWekQXFHLpvYzyLGSmGMiZzC9DCZcqRlmyT17p7R2u1afpTECC5PRd1ZOOFSEl2lsuQgyTHvWpIqSafDW0ZqhN/WVg+QigelzVpTzjkBfpAsAc07QqYMlX17OENiWFEc5w0Sy4+c3sN0UvX7KLRcwbHKY6PYLlLHG56LjxxAiCfRytoYxrUkRJqxkiw6Ap8CqLKIV61ZZrQi4YYE8D4DWsJxCC3AtYN8LGFqNVqgLHhDGmgdF2vFfMYvcYCRsA79nP1Q0XEr94gHnCux5KvocoKDq9N3f4UU4OSpkVshnVW0DO+XUqhbaajpYgO3p+Djrb+sZdL+V8uIAso9oUl5Hjrqq/flZjQtDpcXabbbqvrqBH1hO7bPPRJ7xcsIY9jN9Q+AL1Abqq9868gDlGeVtj+/Z+uKhWKf6ukiZBfRVK+++LsCuwPrdrluWPgX+7fHxHENY0u/QfLBSUNL4yQL8zkZcGJwASBiovGcLlD8eFKVKFVkRpIZSL6FDl/cOSfCHkagxI3CPG30AH68/AB+Ycwro5d5JgsNEhKKRF0BK8mtkIjBhXZHNqPrE9omYK4Y00RuVMTIG/vr7F+7xhYjE1wjc0zEG15DmBm+G1hq6v0h+UZIyixqtiabUY6v3M0kiCqyoa3onuXYlbKVdSGs76hiKrIWhK0K7GUlByERrxtR4yfadmUC4AGT2u3uivxzphrQL82tg3J9S/Un0GOgY6C3huJF2waJjJMlVzQzZDd5AkswAAWJ0pDWMCTRvaOa4509cbaIl8HkH/v4fn5jjJ+4cYOaGa807zyFHAu0Gk2qOWwcQaJejXxfVEu1i/wcjxN0MmInLqThFZ8qN1ki0u0G26hxytcyGZi+M/CKRyh0ZjjkmXM6DRYKLRASVvEYpT85cEeuBiaUSEY60xvQOI5fzKSsieQY+x42P3mDaey9FnkfnVjUGx1W7SLye2dCNe+6dN4DEZZO+hgQiO9p1IQK4vxJzgIZOTLRumOiIOdBdDnAjcbm7IaUUM439GMPhfiHmjRE/EXHDEWiNRMAZiQ469mY6BnLNXQ7PkE3kTJM3B+Y9aHvmQGJy31TKq6w8x7Uu+bEPimRRjvsqU6mAI/hf2bllP4bJttS8LreFBbbNupw8cjwkbeL60koPoc0iMxbv5V+2LCPFFsG6UvtVtDcVEZSm5nyY8/fEWt+3k+skuux96DAtuE+dTqSD/XCm/OR5QqRpA6iOd5CVzZeKJTK1tnF/iXqmKPXNXWUzRrjvyj3cVatuu5AkfxItaOO05Tz0Zmjd0BpTNDeE1IMcw+a6bxHJ3YDL6Nwc4iq2xnShkeU5dpAtCtrlrZIu2moLd6mdYcrG8uW8o+jDdt6fKog5J1XRQs7AXEMaDGA50svqPFGkCQMJ/kWJKnttE1ZEIE/Ifn5aIibFNdhOofewhJZd9TxX4GEbfrOfll159KUtS/Nhjz2G8GGPnoSb/XnVw6r/zs+XwsN+AA5T+2X+fydfHbSr88HX3HjyHrig7HtXW9t61iIk1HzlmrSJ5/tZ9v1LOeK7GWr1zNUO36b8QzHieIb9TN/b8nmBatvdHmXLH3dfbbTb9myOsjG/Vf1bvfZz1hftbHbb/bt5EEXke3xwrV3P++2+OJukSEv72fBLc3HY5ePv3XqPf76Nhd8/9Vmfo9q/lPPbj7b4/jnbDfwghWWNm/OrRbCve3wfG7/bDH+ZIKijyXn9VZf9xx4Px5w/VZLWGldyz/WVPMaV7Xqd49/2hyAOLSImWphUB2/ucet+It1mnYKw1tJFfJMNwqvXeBRRBgCMajSCzPiJOfF5D5KUwHNPolQPobUHstGoUDkPgkVtb5vEVO8VkVJt9Vx44Sj10VIsKnXCX4eJASsYxYznJ4hAso0m0D4T1tQcxGVEkoopJew74ZHIuPHqwl2E3xXh1nV9rv0k+xcxHSK51HisoBIDMO6Br3siIxbBa8JX3TNOwopsEC0IpQZY4ysLf0mlYC82trCGvRDwe6EUY4sUvcjRwCyiaUopsho4cj1LqQdHTm6pUrKq9TPV2ZZ7zVmk6Hpf6lYRskPcAVS6aJBnnXV+p02eZiIvpdqN9nqroFQFRroxUDBGEauT4JjFGgvEzXbwYetqKm+YwmsJSxmQk2M9SFozLyykxhvHbgTgzvTXBytYG7DtAEThxSvg7bQfcO6Rz/laxHmgksTVvMt1DjiBkdTG+A1Z01DQQmq2lPMSm7D0IPrmuWc99793eZd3eZd3eZd3eZd3eZd3eZf/zvLPp3vrhjEmGhqu1mDNcVfasXQkmtK+TYRV5NOg8+kEKZIHwhiJ8NR7UFpvRyQP8pCCxRRwwmthn7EhMk1S1pf5z1NgbcLTGZWiA7t5EYcMsAlvFwyBlgkfqQMxnX45B2Y4nYbe1sl9p5rggTSzQAkSo0LKQjxENiRcKd4alUGMjlEY05y0DvSeeHXgRzf4nMjbcDsQNujAykRvHyRXdYO1IDhhiasLhBmbfGFgiprmTVHPnfVsDd6ZXqw5lYBc6VOad/jlGHc5d9iOFY1GJ/rAGF90eE+Sh+aI5fSLHGiecL8wMUl8koR2qXVYJkIKWpGBew7ErMgn1s8EygS+BD4AOXid1g3eCCQhsaSoObYKiFHEtgCaLGBNgELouxW5xLRVbYF9vpzGuQhBBHvKYXKAvyo7QnCPjQILmTZKlDopfzU3pv4xw7iTCmJZKYF8ObR3ZCwBkvZEinU/KmMUIMVxKNUPg/hEcQBnkp1+IMW82E6FVsBpfYgo2FbA2dHsBHVNjjh+b5NVjqiuWd9lX642LGDmO67yi1Nhf6bAylXVfH7PDIxmW1DsASbrWqc6AYHfSsOyySq55r2GcG5QfdOmzmbkIIgzvUU5BdOQFjDM1Rup94Ut4SHpLeLZg+xjtttVb/l6DauCBYZVGz2dabtdI4pgJXDQai7t+9pxPTZYSaLb+l5dk6oiSkfn1VBymtczi8Bi1Vf1XTuv972tazxoLqUvoHv38Y5Mred8OKWrp2yPkxq7BhGHau1YfR9gmpiUgtqUY4B1inW5RNpUgCYjjcfnJxoS1r4wjXuPeUOi4f7SCPK2ooTZf/zu1amSMyO4V5ojEeg16hZBScTN+YWvzxtxf+Ien4g0jHQRGW4YOp2WaWj+gtnFtF0OXlUkHOrokWyFUnfKhGtq01ERcBto3gAHWuvo7UI2Ei8GDKb92OUQIWOiIoFJWDILvLpzTYZhQsCydxGVJpWIPhqu1w9MdHxOKcjkwNcYiC+uncjEHH/BLwN6R/cPEqBBknDvGnNDoH/n/J3ZYWhwB8a4gUZJx59/Tfzff/0dY0xEkLBiYOR1v16YIzCXT4EO8MhJVaRO0ol3oL8uoF1UK0oSfwOGaA67DGmN5LDkvhwxMWPAmshgRiIdxR5vDNyAJzK8MilwuN83LMsZEfCcUlXkOPI0XH5pBkyE5qgniW1pRbwbQAuq+mnXyARGBhqm7KWAd8cwA+YELnk2GlWZpgEIPsvnuOEWeH00vK6A44JFw4hYal8AyUCGwIyb0cpe6VSZnvdqhj9eDr86br/w9wGMScdRxk3S2ryBnEgMRDpMDhXUGqO11UCbas6pJBGTf0eyKwNMfad0FDXJDWDk9Rxa4yEngku56yTFcJ+hL6gtx8xailKR6LW+am23ZoxsTyqVVfRzKQqsNGJ4FqbiKjKTHfYP/mVLpUcWNZ4WhtZcK6UEkcTMGoqoCRxk8PLbZKq9cqVs4boCFJmW6gC+9pUVcY/aJ0/Hty1/E51NZddtu2ibI3u/OVVfiqe9CDBKsbsJTvXdwxGESqUq52KG6rVaTfep+dG2/aAUn2Yh0qWcUUG1gEoPC0ymSjOuZ2FSkV3qoYamrNmZYEpsk6qfN5JVpa5ZTl/avlr3ZD601hFzk/LqOWtfMyQibizfbG7yb+3nCSntaixXeu9l2x72QSSDJfKQO9tkAD73chxm2eWsN89y2H2+TZpH/zz77Sz7nofBsSrhDyvxtKv2GFjKlRpjpSZWF62xWXY3n1+v1X8GEn1PhQW11y9cquOv73b078g92+H8q929nNmnjZX69FHfZ9s917F9nlhfPprTnvfVz51qs+ry6LjnGeK35fn5X/sVx5no12/yXLwrUKn+6kq7Tc5b7VXjl3Q9j2Lf/tp15djRPdVW9rvvaR367aPZGnnb1v/dQ665+8+Uc8x9fyd3W/zmHrUP1tq61jp8Hylst5PY8lSkOl9/jrmH0tFxuFiBGHto8q72K42v9u+lzlP3WOcJPPtjVeJ7R2zicXXGEUuhpya2BgNiBu684XOutbv2grWGunA28y3KpzG5HvcgjtjZXyuVFKgsGYGYY9kuDF8wnIpxxGqIkZnUZWR5aM5/e+Za8/IZCAQRUheOIiJQBUYWQak6otJSVSq6ygjmRvWnWndMQQS1h9IuN/TWAb8wJ1OZppGEM2FSqKQ6tc1Qm040KctCir2lnlRdvDAFONwaSU9S7h134p5fmCsgU+uoxVJEijVEar2RHVHd4onWG9yVSrnasNq40SagCWVrfZwRj72DSj3EOgHVEU77N3MHoK71O5cqXtRMyaxhib1b18jQeTxSmMpEumzj2O21N4+5gqsiJ7zp3C48WLdbd4kIEZTU5yjFp7nnnR82H6bW5D053aiQ3zuDi+4ExnCqqiKQZK3xObW+nnjVrrswM9RPrtNerVB9WgSm/Y7WvU3UqkC7wiz22rDX9xN/w+O3fLyyt9Jj77Zdx2USafH6Zeex2hk2JvjP7gDv8i7v8i7v8i7v8i7v8i7v8i7/b8o/T1JqdPhZJDAGcgTBCYsFcKfSjXVvTLXmdALWYWsKTbFGpCEDGBbojSBHYDKdiNmOPNf9DQSYx2TaGl8Hx0RTOqpcYIuLFFQYWMCznLA6OVYaDU8Fz4QiUqWM4McBDyBoUQfwqpGZ0pNIFGfaAlp4yHNYdrgpDUr70E+DvRz+MrSeuDzRMtEmcCMwu8NcKlQO3P6JBsdrdiSALw/MSchgGuA9gQg0gTUXWUjI60KMBkSi2wRABzT7kooDV+P71l8CCQeakXA0KAGE+5POxq/7E/egjLXBEQO4R2KIkmOXU6kJQMQNGAlqOQu+oOR1IDBjIGIgRyJv9lWAKfCQnwQuMqXUBHyYiD0ZiDnpPEks0KskZwrcL/lvtBOEbQKsShmhCDUiLxnbx0UUMpGUMhRtDcOM2O+vqO4GZJCIY4LvzBcYQEltEvIciY5ESywiUqkqFFFFyBwaDGmOkVPXDZQaEZ9H8GHmQm1JVCLiGWo/QwHb9TthjSZgeErOGzW2jdMjVroNkUwKPColGhjJKAeRqkqBNwRYHlevb/J/lTZrIzF1gQXGEzSJ4/cDiLTCZ33ddwHiBkGmJZsPFEpjRSxYgLjAqAKXVvuCY8ufSM2uxfNFAyMK17dtrwnLUbSIPbymm22FAb1lJZkjRLYAI4UcAkqfUsAWu8CwHRjnfZ5lqdZV4KUcuGcPrkvISe8CtAwEdDk3fD0HU5ZVFz/V7WBY117Oc6v7HaAssB2L+j0XYFtDnNSCM7KxOFSBUr3A0Tusd6VF5HW3klST8zZjbIUVFPhdyml0rOIX57+g2QQQbaXJGkjEnPj6+gnvTqUJb/AumlHwAtEd3V4waxqLiht2klpiSrXjiGoNM1gDru7IHLg/P3F//sScAzFuDRnNS3B/smRaRWsd3jvcLxgcHolmnRHFJpUYdw134+aTkJIU116mWE301uClCiUVhyZp/pwhn4djAkwZIUdJq3GXDfeoNHwTJZW/VLFaol1Af3X0jw6fL0ROTJF32YwORMN/fAJ3GDATZhPuN642uf+2Cxkk2Vwi3/rFTSrMYfaBiAsRJHH9xxfw8/ML8+vn2n8y6dwwC5JiZmJEkUe0BgNy2JBI2z8c18eH0qxRHXJMktm6u0jCbIwYdIJMBEYE7RQzRjcrcjhiMk1R6yRJzc8Ngg+SE+BjrfVNRDNaQ1ptay+AibChMTJu3PcXxrhhbaIpE6EHlRYvb0c6RmhMOUY6rubwBqA5fF7wMIz4QmSjYiUmvmYgb5KHhhxfNqkYCQvgBdx3IOfAJYfCDMolXg78cXW8LqC9SOId1oEvw1cMKktlTe2aO0YCFlJteZAslb6C27OjoyOdBK8Jrp2ZThJfilBqXOu4fxwmc+1xS2KMa38zEuen0npZpbJCUlVx2Rpa5xJLbdGMxmQWkUTtztpyraZiGZ+nbJ1ESsmJdc0VP/+vWZpLASBSpDYZF2vX5WJsRdpwsG/XM5W9ELJJAFpIRWSpvWVtcmsvwyIdsZ+q7bj3buLUUlfS/lvbnSl44Ny3Kv1H2RNbrc/WFrz2WqSUrmpdP54JhyMdvvZ1XpV9a6Cj0qxzXXX+1y4pKXmutCQzACrBqvoOkaWBlo2kPBSpVGkJqx4o24rrVLpJOa/OUaSXUUmDgRIco7wRtzGDIeBGOx4RiEliJ9NrFolZNusUucxEgnKeJ0jyEtlmKSjpnAiSoZhiJoFZ5wnawpaT9sncthJvkU+bW93H9LMaKEBZEcu23kpbZcMdKhgPUo8UEs+Ll82jz8ZKhyybzGhDoOpZZ4hl1Nj6fVMC9Bx1Xmbnr1TWlU63Ph1WugyHffiLbXu2x7bJloMdB6mv6phQbXQO+kUJSHdc5vZJ7DzeONpxV011zePV9RHTmeZ4y87v1Y/VcL8866rXUVeoLXPVZzcSTZDfXOhQR1OL7fG2RsKyXI+v27rX45rlWD5IJACW3VH3ysfX9hh7dCawDfvjs2vM1OM/Hmj//jxNnO/nry89iEO/jDacvWvne2tAcVCdbfeo9zGXFqtBVz1Tou9hdNzRzusV+Qa/tFeRjwy/NuP6cNkA9v0asZSL+BLXShzn1HWPNbZrL9GqKSXxmSRF20yY0r6tgCQrG0Tft9zTyKodqUmUa4/NNX5rlW+Na2zcAzGHUhPr3G8auQ9iF/aa77Iyk+0ZsdfOUv/ZQSa2vlt9UCQfL2VnzcOmvtldSApIHgui1zOCZJUZRW0511PNYdc5sMhNbmihtUI2As9iwEgR/CZg5sTZNNZSB8UGpWcrwm7ZKAkgmIZuBPA1J2LyHHZY4OzHtfckCVB5kop8d2NLqp8b7W+HyMciFvXDVsnaDwq/0fmjxiK5xRwL6Y1kohzci4ajlMqKBFvpXUtt2GSTnIFPa/QnnynmkEpw7LR2aWiHfbWWr0X24hhqSkUb2eDpmHPSOrfGMRETQ/ULpbBDAhYkGRkSU+2kRLi066Gzq5nwImLHkR1hwJAdxKCg+cDwSk3cpR4J2W9r7a09EG1hkGkhNXnZSYhtObWa7k9S61o+Ns1Qb1R6Pd076x5Y/VX4UfX0tlNk335bxFbg3blTas9Rx6y24/vPNfhd3uVd3uVd3uVd3uVd3uVd3uW/uvzTJKXXdRF8nIxujmEY0wHrTHcTjL5piuRqvSuSeaJcD/1iKpSYAzHBQ7L5Alfdug7HjtZ25GzmkBQvlA6H+cYDiiRKXwfbcuy4N0b7OKjwowOpuy1FCEDXtIbwQWggDe2iM4RkqZsHbTO01jHmxMwkGDELIKB28HAeJC0N3i4AF4AOb3/A/IK1P6mecDX0D8eff174298a/vzRcBngTif2Hcm0KgBeXfI7mehweDCVykgqUxhSykYkY0irB11qEeGOnDxwpzeYXwCA1h2v3pkSgkdy+KvJqebwIvLMQI7E1/zCPSfGcLXBBKIjwhBo8EZyz9WAyh5v7nQKhoB6gRs8RNNpYDPpo+48G08kru64rGF+fcGQTN0yDdYarusFvz+ZIgZs/ybiQjkgKx2KmS1ncMjRD5PTdqHYJP1Q3YepYXJOqmgB8tBvFTANmUOFBlIyoILRAqwEFBXJxK1RilwgVIZkoo3j1iCnbaYi6DVrFkgtoLNIcFlgKxbwuKN+fQNdUB0WmJpoKx0Tx5XbhmyjPm9Mg7SiGBNbLaLw1LqmG7yiyoy9f/oQEmpXqVrBpGnhTCtyRnhtoBlMg1d/HGCl6bXC5QqAW1h1YqXpq3luphZd4CZgrWHFhn+rL4dHEYGseFh4ANO6FwSy5rqXb8DJ9vPozkjdo75L7LgIMEct1JdnWU6FdfNdr/NeZ7q2Arc4duIA/vHtl4OAo/WkXDa1Hq76LdLWE/nahKkNPp43qb6rrxl2Pxbitx1CBewnMqdSaR1g3gFW06m8QcB1VyfZg9dsq0/dfQPBAjpLGaWUI6juUeQwB0Rs3A7sXPXM4GdnAeXmdGRHoDfALeAjSOawjt4chgm3Gw46Htp1ce8yw0zH5IqPSKoKmYgX19WRmPj6/DvG118YYxK8j0olV4SUTdZrzdC7ozdD6w3ABZsTed+ay0wDak0ObzhSpNHmpvSf0Jp6ofVL40EOcGto7dL+C6XJa+itoTddt3V4azB0koHnTTKrxlZ39q81V8oux9U7DJPkmQi8mgF44dYK596lIkRw3FsHrCsCnH13f00gbnx4orvj+jRcHbh+GPIVyHnjh73wGca9bZKwxUwPnWQd0OHs6bic77k1jBhABPrV0aT4cvVEvxzeLqZsK8eBUd2we8fVSA4bEZCkFWw6PvwH3CaVEeWof3VDxoVsH/iaAdgXYAMxHRYNaQNpN5oBjhdghtZfwNWBGfAs2sHUXrTXtDkn7A45tBMrb4jNBea3bHA0jW2Oe6YY7HiZAPf+gYwf+PzMtY/6bLC8kXEzaj1BVZpIEiSk2DTiRkXTX60j0TBmolnDhUDPcl50oF1ok+R4aw6zRoUmNzS/MOOLzi6lpqRjytBwI5PkrUCS+BfATOcYvjoiA96b1KoSmVTALJvCJsl0tWYrCwasFFwsAf0eyRRWxY20Sg1phlJlXLaQHAObRLzXuCLeU60Qx15pe8GtTx/rJmTL/qsWKp2Fqshn2wqpRc6y7VxbqWa3shRQ7RrLWbTWfgO2+mXZA2wfRsvTDivbp1Q7AcjpI94ZsOyPalbH8aeVbUuiSqUfyWV/5HbuGZYdDLdHepQaC1E2AL1M62G4jjcgG8w7mEr64ntdqaO74eNyXN3RsetcQ5OkPSxn1iJ2yQleZBTG9+86JZheZb0Rsl9EkKr2q9Q2ZX0WUZapZERElf03J9U6ENovQo50VNv7IsSWhgOJm1j9WO3mIOG00hCtKXDUvZsjjOvflLKltY7WEx4ksBsOco0ByG1HQ+1nsKVaWwSDM6BlEQYOp3zVs8alPqxqPoloa/iWIXvYubaeu2w5rePYDkmOnVp0VJ9MEsx0XzsmyTK5z6WjbNO6f50B6nnW2UF2IarZ16ewgw7WwH8ubLsLD5tzt0/Zrb9LFbfWv6zL2iJdbNdu1eto9xo7q0N3m+/mP/qv7OajzReR5LAylwVq9nj912vv7i+bh7/uhjDkPmskNlHyWwPZ0Zal+LO6pey+de+j0W2P1Wf9DPmt6kvlr+r7y5MdzfRL2X22ziNroD2/v57nrGp17v+22B5eZ/s8B/RxHlHK6tKFOdaJ/b193arSeeY4KGyo8fRUc8q9Nqz3ql6btIa0RUiqi2eKZCPcIHG0nSUV7kREWoENstNWYEvsegJSRlWQz66vgmMCcJ2DxxiIect2LtTOjvWCi15hEFTOK3IRVTtzjlUPLkW2zlS7XWuv2PaQedfatWk8bm3thZF77S1SLmDcC1H78IThwE+S6tOVRpt1LrUlBu01h4IBOkll7iWBeTxnw1Kgkok8Z2BCmGLYSkHmL5J+uzfZiLmUeCEFxKzNdwXWkVjM5aiUA33teWznwsFynfEsiVsxCIbtQWKcxnYkVdI78czQwsJgTJ5VAtqbZQtB9nBW6lYF6pDcJTyg0gamUoWbrbFbKuBrliybVOPBmBq21DJrfDsbGq4+RmuwbIhBO8JFTnqmTJO1IqKXiSQ9YzCI1V0kZdp2Dl6/KV0dCW5N+ADbF7Kz+exMf10Tau8E4PnDSKRDzcn0laLNFCxlUp1k2/ixDqXwtG2wFKb2XPpMc1d1wkEYrH157X/6XevZuc8/17ljTzzW77Xn1Cf191rr/qn1+F3e5V3e5V3e5V3e5V3e5V3e5f95+adJSr2/EHljhX1Pw7wTX5FMT9IaclLVJyIwF9mCxCIXWEbnsAtM0AnIC1BpK++9uzO9lU5aE5S8BnRATd+pg6QYUKesSpm0CR28TsIURe2wlMM65VBWKoiZiZyDJBWeRrGc/ZOVJRGLalE4Ury1ZrxVNBQxA7hgdsH8D7T+B9Ac7cPw+sPx44fjbz86/nwZPmB0jJkr7UEKsJrwAMwaPr9uhNKLDDfcGXhZojeSkVortYaG9nJkS8w7kXKIklBG8L+3ToAmAE86C60BzUisur8+4Z6ABeZIzJGIMYERiAF83UrFcX0g3KjyYIk5v+DWJRsN0HleQKpAjGQaI0puB8ZwzATaj0ZnfXdcNtFePCh/zqRD4fVC6+ybFqCiRqYUDkgcM/jK/86ULEU0YYkI9MpnHzVm+LOISSaFMPMCBLBVklzgVyPhDoCAk4po13hxqfscAVHl1JkIOoeTr7l3OmrZhLBwhC95GMGqFfWI5TMrR0I98y6aW8mxngLkCZScwHWuqMxQhDwBPAI/jE6HMA5boEbBrQ/NfTxuv+bEwqjSlkOLc31yXsq5ULLmBZps6KYcKWqDfALaK+oeRdQqVSUpuNUYWWlHCqTfANoidy2wpqLSREo7VKo2arMj1zIlQy7w8PBgPQHaAsCkdFXXoDLZ6R5Ue9lqbH7GbNcVB9Gsmuco5VB5Onri8X4efQXLx/WrrfzhJDrb3tc12SyhvvHlNEgUWI6jJ0/iV4otdgL8tW471eIE6p2R7EUBW448NYAvctgxUKv9pNbAVFJ1v1LYKrCcoGGlE4pKCWT191nNagemCKAqxia+JozKEUjMVLIEBzwAtxsZDhsT8TUIMjdHzptE1RcBbQdI9nCqnkUCzS+MCPz8+XeMz78wxydppkUQrGdJ9ikJu1w53Ay9d/SrY0xTdOXQOl+APDRP2b9hAfOGZheaAPHWLxL8HAJqDxKm1pNMkBD1MkXiNgAvpF3YTMIvwEICGA4LkxOdgLFncn81YAbV87pTOcdfP3CnYY6BqzdYA15XX+M2Bvs/QXNlZGIM4DISta458cMMaBPeEmZBNZ8IpnZoPyQ90oD8ojqUNaQx7Wqm0th6Z6S75uerd7y6o7vhDo5Vb44ZVC58NRJ6W7u0FgTMJ3Ikml14vRyIm+Qn457eW8ecJK41M6Q1wD+0/la0Oz97tQ8SovsL0xVZPEOpaA1FBorg/p3BlHYZQ8SoijQ32WkOQ0PMTQCv9KXNJ67WYa8PjP7C1yedPNf1QoRhZMAh9rEl4FSCrHQUzRNjsP6v1qQ4CWAyHcPlhqsBvRtJEtaB5B7fuuP6aCQ73QGLhjlvpu7oRToQkT2miIHcW1mHwBwBD6D1RrVC8pM4aBrtuwg69xbR06m55Ok0g8dk9HWSnF5LQBGfg8sMnYvlItDafCxPUuSsPRuQSYEVxVwOoFqCKh2s8oSEVGZMfz+cof+CpdTsXHIvlkCMxMipNaSckEobskwRg/yP2M4v2TbYe9ip/sJP2lobtvNMV5AyT5ajCEClkvnFcb/WfRHha7yse50GHzuz1oZta+LhiKJDkqppFKVj39aajEqxRu+XLtBg1ljPZmgX05f0RhJlQy5SeDkCuSUGD1NmGIO6A45EKHVb1z5V+6hMN9qJcsB5c+2FT2c19x2qfZbTfxF65naeld1Y43dG6hhFOz/LPMLT4RxRTjrTs5SdHyQ56ew0wjR2eFbjvh6aj6nnIEmy7N9y6ldKwTVPVzvoHJpxKAQdA+S0kbGJB3l8zH1fp0yq0xY5vYCP/ucgkcldARP7tUV8U3+tc+/h3FwOTdWrlGEfjkc7BmXVVLbsYWli2W7H9bgH6UE1Zlda4v1U+ytlx9vRHsc96s9frrH+qDGgz9nZqPv93y2Cdlz/UbVqk+Op+Ib2vtUqWmsA7MMYfr3mb+58/ni+vMfUSiv/ePBa687r2N4v9L3dGHu5eZLg8tvPXYmy23/9zHPdWuviaban/fLxVcX/dCOqlq421IK6rn+u4Xu9R+J5n+NT5xio4fj4sF7cq6NGdZ0H8a2dj51kt2LuMbx7gO+chMG63ToftHWlVHW/c4mL4LT+XfsL1w+K45U9wmcISwZ8Gal6xCBExOhYe6oZiU1I3ceJHYyvm/ZTTq09WRXf5wmN+XWm1DM2J4E9gkmCsVThql1yPy9Iys+DhLPWK1M9q4V8t6PrXOl1XkwA3qi+bbUnlAqgLWJuqN7scgYSkZBrO02eBnU2R8ygMrvvetV+XFt9BW7N3ORWN6p29gHADdEN406pVGNhU6kUX491SbZBnV4ji+ArtSd32ez5+EqNoi2SRPwR7svmcLVnYbGnXUNut87vZshsyJwo5VEzKr5CQYhhFQATFVnFXk2giPwcvxoHkHLVmiK2nu+xPx57CM/fnSnSQeXRUi4KredW+7HOmQkR9ELtbYWm6H6o8y9Ja1ZqSFZqsrtNV8CbxhDMFsl8138T5gjn7L1hLRuG4qDp2XQuXuuDrWDGxYpCkY2/zf1akOq9peCUz7Wi1hlg2cN7kalxvtcXTvNjf02t1blvCwCV7u/7tvUu7/Iu7/Iu7/Iu7/Iu7/Iu7/JfXf5pkhIjhDtaB4AJN0bA3wM66DFaJxGwxgOvJw+YM0MZbnY0nkT6FymnwMhScpkJtFYAcxOZyJAzEcH3Sbxh9ArT6picStD3KnLKGOGOROoAH4ViIBE2hbEVAYBpvaiIxAieOUNKFuDx1xomCOhX3vcElqN2OataRT9fPCV3wD4a+o+Ojw/Dnx8dHy3QYmJEwjMAT8xJ9YZxT5KI0jGt42cALwOiOyO3kMgZuBOIYNR/eB08cwE8BHESvTNYrGEW4sJDfkukTUwMzJi4MWA5EPMnvGFFvs1xYw46OFi+kJ2RWS7QPGwAk0QcV0oKbybQaWLMG/e4ETDc1vEFA6wj0/BqH2BKqUA2IOdAxyXy1MCP5viPBLrANbkoFulkVk4vpQaZMdGyRJ8JeGWkFI8ELSSVRjK3ykxGStmDYzNAZ7p7O4DJAuslda4xRNlvgkGt9V+wcwLKpZRE9YYOYIzBOcLQcKWaIYpJVRcpjQnkKtwiC7wyw5xxgBcbAD4BXnYTASaO3Q38Mg2aCWTJ5bzhzegIqhmMhRVzbFm1h21cShVbQNyCp6rK7qu+GxjO9bUCwiIL6NkgKYP6bUW+F5kQtRIVUGMFIW3Aa8Ewdd31iVrvak0qMGm/vsHn72D0CSLa4z9+wJRqxVAO/8xY0X5n2dc8iXDfoPgV0Z8L5C3HxiYzFaa7+6vAPSp0AEVmqfuuqFG5MIssxeXClmPv+cy7XZaq1PFINRxLIex3gNcCOfVPXa/0y3IpKmgMnsQgcyBLHWk70bzmMzhPM/2o61zPShEsEyEBYJSoa7wYtqOq4Dv+x7U1kDPQpHi3QU4O6pgEkhsME1QcvO8BgyJ5MdGcCkfXlbh1rR+vFy4LjOy4B+CNKTn/+uvGX3//CzG/6BDwxpRrMZXWTo5jULo/pHxRUfmRXBfH/AKZpLnmTkZs4Ti1+U5/6iutIiqtgkMEiVsDz9DbpfQHrhRaTON6tT3eyFNi8ktoTlf6ArKW6BTH5xdVIOyikzpFHlPKOvMX91gD7pxUgEoSmbjthwiKHTNIGDPc6G3iHhPX3wc+/njhy4G/R+DGFEm20ZGRQOAD6FLbsiJCNiCnnkMR1Qb0qxQXaffU2tM8MOcAU40xrdI0Y7rZJqfPCMycyPEFb4B1pqW7cypV2pR9xfE6M2D2qRQEtM1aZ7tbM9wa+1HeGG9AGOaQWlTNn8a14mqdjhpN9hmBgGNMwOTMSISi0gn2e0uk6jg1HjImIm/aVTlJFXJHZOCm4QaPiRED0wzNP0DuhCm1asJSEcwOoJuUjth/UCqSShHYHBiRSOu4Xh2wQeednsGC9kJvhxKiJW2GMUmAAyOjwxLWNBdw7AP0YGjZqb1H6jCN+wRNjyL4YhHNYVhrwXIOwJeaz6lqaCIF2FqjUzatXj/X3IO4lPU3RFD6Rs7+VytlNxR5x1uiZSCmVKoYnq4UeLJla07LnqpCs4HtE7nbAkprVe29zZDtRbLUPEydTuTUW6l8Nd9hRWjZdy0yVFouJS1aZ5KySI2i6vco0s5J/DXZBbpmWSFl3JVNpP2XDjGnkqsB6Ryv3h2tG67maErPG1qPq/2YqZuqsHIh8pyl5+dZTSmWEzhD6ZeiJirin/Zzczn9kItIBtlMaaEUqsF9D4nMsZynAcgpvslhGQPwcibLXrRQ33I9QqVhca5LJFry86FgkxofVuql1hAOIEMqeBNmhum2lC7Yvlyb1wWWaX3aOzUIyg4q5+S2/zRRsR2F+jxqX2V7VVDDtnvPw8K2622NvyMFkO32rgR4ZRcy1d9JuVn0KNYiwWtV32nlqHpX2WvNfozvNtZqnzVGzjbLY3zv8/+2pUztUvZprnsczbab47zB8XRV/zrrrCvbHltLWaru8e0ZcHbtt3vgXKeBw7a2o22eDvQHEeG35WzR52u/fv0gWX5/79Ftudaw399xLZC/PN+zHrbbHbnut9a/NT3O8Xpe6x/cG1jnn/Ouv9zddo8+6nR+4Lev/77pH/282uccUOy3fX7CPvt+u8ZSzFrPsPGWuia/r7PDY5ydT5rHvDgrvQl+6zU/g1KU/s2OOsUeN7V/eRjSHTOH7DtH6yQJjWQgQvOGMSbGmFRQUvpJkh2e9gbH9raNqp5Tykskvi/mz3OI5e7TRAhjqL3Waps52gSYlaZ6KfnoudXSDQm3QKXlovJyQ6kx1Z5Z7QVABJuAed99pJtTzacvpcaAPoutLFif5dpRRJaNueRMtHTAJjE5CyoEGZ+Dz2WyJWlFFobE7T5X0KaDe5w3ptAL2ysMa1KE2hpnskGM10jTGSGmzgi+Ps8tPERmwlIh5vdDbW6LE83nK6Z4rg5NGVi1LTLwiH3poPpSnSfY83usV3+bQXhdkblVn9hrdcQ+D6QUywuzDdnNpf4EoyLSTreYamu1TWtAY9pA4l8191JzsfYig9sFd2EPyeereWFWwbFA1KIzSdJb5NpaszU5M7YSVuFLmaWunShJJMafaJ6VMiLq/hBxqOzTmj+ptes3668qcyqCPfbr+j33KrYmcfXr/3Y/e5d3eZd3eZd3eZd3eZd3eZd3+X9X/mmSkqUxilOEF2/A60WFgq8RK5J8EpOEOw/35VsPHVItmD/dnAoWRZIA6sAs2egMpd0SMUSp3DogYg0BWzdHUwB+zLGiPjIBV5qQDAEMAqC36rVBWeQAE1BtAm8LmEnA0Ag2AEpTIyeaPCallrLSghiVpaA0KemdjuQGeAf8Mlw/HB8/Gn5cDVcGHR1OMlcTyWjOwOfnQFdU/5w3HA3RHTEHgIafc5AwlqBj3UkO+BopWeWkUxJUKGrG9EMGIAeJVyOUOqVBjrMJqA6YUsMSoBQxMYOASloAOdDQYBFAOO56fiRihghqzC3vbcJzImMwr3w4ogVwOdJvWL8ATGQE7jCkv0g+C4fhC5fd+OyGbsCnSGSZqWhpo4NRUtJLchwEk4CKCstFeoCVuk4NgtwggPsCgYBcDkUUaQMl3bwj57eKji0J6TrWUxadc8DBND8pFS63tiS75yRA1Ly0gejwykmnnQvwKsdzls5zlhR21WE/VhELThKIuRHzcUaslcODwIzRse91LaW98Od1TMpPK7LSToD8AGYLADrB4Y0/CSzc86icspucUmSp+iyv4tjAYYHExG4U+ZlTafw2gWahzwKm/HA+LVWj5YzUkxwg80k8YlqfUzkBv3zuOTaq8dXSepvP9gSol8pcgZhW7oD6ZKkZ6HqPPi4C2xn5CoFk5YCrtCWH4+jEz8F7F1hXAGsBlgeKtV7fqfWEmdrRftgAWzsdAgLpV/T3AjRFEqo+rouqotwBuP5nWrFbl1JSzcWUypFrfDJStPpTIDEEbgvZrTFUI6D2pxTZ1mBM5VbtIWd0SumPUbgdyCOCtRTeJuuDBVYS1JwBeExGgt4Nrwa0ecPjBtoHDF3pwwbuzy+MeyBiEAy22DLwoMM8C9D3rvlPZ+y4b0Cpt+a4gUmFoixwXA5iNrnk/NEIyIPPQ9JnVmgrskNqJ1SFCqXV4pLqsG5Urplf6H4tIhVB6A6IaFKpjtwaRnKtmPeNV3/t/nDZAN2l8XNpTpBwNucXmFahC0SfHCNGclN4wHMgR+CWM+P1lYg2aRtIwc77taKX7zAwzVdizgH3RoEnrVtXp1Lkq124rguZXXaQw2Jy36ZEHhIkd5vIBsx1OhEWmD4xx0RHkvCGCQPVh0hCY59HJoYcBi6gujURBhxInxhTEeshKmer1HJUpfFy7DTuYb03uDcMdMzJ1LKJW4QBABFUufKkP0HjyRAwH5zT5rjzBuJGswl7OeaYsCmllTWvOtKDJHS8MGissR9nYMYXXs0lnOQIa7jDcMfEGJ+cCxkr1V6zhF+OCKpJ1SoZc6y1gzYJX3dzjBxKy5hoCBHKSOSz3mAhorjWk5hFaNzkIQCwJgdBmtJKcK2Olf6LpI/TLapFVKT6xEopeSzDqPWytk4tuTPpLPJjf42DXG3a/xPLr/GvWWh0YynISMGukRW4VAMyJTjmufbc2qOi9u/aHnbDodp+22tcF61xvS5vtKUpdTQOUgyWjbX30DIR9/7+IFoUSRs8P6D2yGVrHFWD7T2o9j/UmQZ7n9ONt7Xjeh4R5ZVa2JsISpXOMyFF2lxtYxpLs7ZRq3XeSGpUW4yItZOwDnJqrmZPmZi1Z2/bbD+j7PBllckeKruvmGTcBlVXrDnCFkuN+bnvLfJUaqxYBkyE/WVfSSWhCPYZPMvM8KVmYTEBNLjWoOaGOeVkXrai7FnYI91ROaeBUl2oM4baenccu13z+1SClDGkBz2JRL+Weq5FkjreO9udjuCyNer5bZubZmirX4vIk8vWrepsNYxjCK4713P5Yx7k2cfnxY7eXPOxxvcxX9YUApQGSN9cafTUFsfzaiXWHMTuo6qijDOzfYFcT7PJKA/ymdWZa7dQfc+yHM21ENjuy93dqoL9cr9n/9qjXa0683QafyvneeTcf9aFDoLc70bSc615vPOtruf9fvf5521/c6df/lzErfXls02q/zY5ZT1AYn+vlsTfPNy60lHn7+Sx335hjc3jxVVf3d+Ofq0ur/PU3s33Laof1uFGa7/bGhd1v++9zWc4+vhRzz2fnwEl50MdV8+UzZ5Y6a5zKAihAd7QOlN9ZYQC9048JI65fNg8Wi8WHTADMQf3iCBOss+ouerCEaa9wnZH15r7GHtqx33W1/ePs3uRvImX1bX0nax9J/c5NEtVSTbdMYdL7Sex+2zXSbSacx9/jOm9kaWRrNIAmvW5+8isLVWjc1yXDXOut7SzaaO3JnVwA+2KUKralWu45nZik2M2oWit58ukIG4aWUQbtllE2ZUkF9V+zb0Eup6eP0QWyiLacLyTfCgMQNdYBKrnUEatsEw9V3OIe61bgGa8M/AhE92xgkZWSl2DzuO+FMWopqheW6JVQwpckHKYSeU9RX4i1sQzLK+z0sFDxPDceKDV8x2jlurwZQMkmhWZXphymlLBPRY3nHsRyyaSrS1G11mk8Vy7xrc5szaD44vnNfT1Y6mo9eS0Lta+d+4zeVz3Xd7lXd7lXd7lXd7lXd7lXd7lv6n80yQlOvQdCKbvYOoZw8u/ADN8TR3WJ6Wfsw/05ooMN+TkAS7NEJ7oOlxvyWWguRzFJknsnGhgSo20BdGjtQsNTll/AwwhJYOGQWknnfUSOSt9BNV0vA6BAlebObw3NBuMMlYqAx5gYxGc3BvGYESay7EHEEj1OnSb0n1JIcLshdZ+MHWM0cnsl+OPPy78+UfHv/3h+NEm2gQ+pwmZSAIHIeUm67gnD/M+GYBl5ni1hu4X/hrAyEBThG3kzUO4DsVuE70zNV9OHbAXAUSORoHx4w60NFgUPUREoHtifk3MCaQ3zCSFoBsllpoBlzssFY0ndM+m4Z6MVG9zwttEA53kFN4g+IDLQMpVADGVGsVgr47uDTY60gZsTLw+Xnh9fOLvMQSssH8qHz2dOibyGMliCfW9VHTKEfRUuSFIMZORb9YEcFPeQ84wW2BIJh0liyiSJBlFTJhxLJvtFHLudGoY6Jjs3qQuxv4kHlgqRQAj61LqEobsdPqTJ5Qi3xjbUqpk5fgqgKmcS+uKRTLSP3wkglMFGAFAOEEZSPUD4XJs5ZFOKuGoVDgC4wowYzcI3lN7HthtCCgzC0nXm8avPYGhqrgR5JMf+VHYpYp0A5ZazErZtjocdWWBMCcgW8AklgT3AoH0TKdTuF6vyPZYz7wj8heR6XRqotSF6sYH6PWNSLbBpiIc4dG/eaBN5zh+RHvXzwPcXg64A8BEYqVRIUio909ADbHqGCvaVgL1Al9LdShtg3HbuWbK7GbH2MPqn4o6XuShjdGhIg7FosFyDKevMbLuY7vf1lApVSSlWzSTtL75iuitCGF1Bomx6/uCo1V/js+at7pvAZRmIvOJlBhTeyArFUi41C3odOc8rojLezA925c+f+eAWeDHjx94tQ/8x+eNGF8oLReSYVPrOEk1VPnRCEoSUJuLWDtvKk8AwAymaLWmUSiiRjkVrBSC2O5NfVjpOnlvwEdQKU9EDU+DB9CdpNnMhhk3YgLDgV5ksElgtznTvFb0b8IxJoHq3hoyDNYSTXt479x3PMthbKp6kYyBcia2Ulv0RHbte9mpsBcORMP4Slg3/OEfGG3SodAuOAyv7mgzMeaQzdOQmRgxasSggUo9r95h3jFm4tUMkY57TsSEUuM1tpPmkUXAItAzFIDeakEDlALKs6HDQPOAY+cOg8UXWku8rBPAB53QzQ0hGwSx1/+ZE1PgOfuqMVLdHGYXOjhurFE90GKiySQhb4TjunWlmEqgheMlMtOMgOcPgfsdrTXcGRgwuE2qMSaoZOltKSvOSWfTwITNRM9E6w3tSqWJ7fj6clTKzRgTiZvzCxMrRr41oHPvtQAVo9JJDmtS2Uw6qCrgn1HYA80SH82ZttYUfa4JRJXGmrubKhLpItPItnQ59YbS6oGkj7VpJfcoNyxlNRIDaZFO2alIKeBoTcpSBs2lPbo+B5OSZNTarJ0wT4fev2bhGloR5TLZzdB8cPwvJ9jec0jI07YX5UBjO5icQ5sfIfsOR0oPS6U2xnI+115n3tRmQJFettqPHKx13e//LmccSW+pyPdYNtgRpZ7a60u90JbvSGPufEF2UpLQaNbhfgHWwXRvDmuO63K8LserA91oP0c57nQ+ok9z2yuVyLHWMHeHw3EbHadNNkOIJFR2k5sclFMbjP7j9rXHZYKkXQlcaZ/m2paT72VyTaFQUpHg2e5N+0wpBC1lgWSb0gYhSckil+oAHbxFvD9oT1oHi3SYCGDSYd+6g2nqljVx2Ia5+rle3zamre+UPXSaTCFbZtETyhyFFLUeM2KfJ/gxJauxXGPMwHMOf6rNtS7QaVvkIZF9XWptVq5P2RvqK5k6OKpWVcdywie2XVTniYdNe7aOvq85tK952KTl7P/N0rTnwX6hlrGy+Yogss4T+8JY6c4qDdF+GJSpuT676smXSJw+1tayu4/+WR8/H7Taz47WO1VRz+fM59/fWu2wzTfZ/3EI+k1r1bzLRx12nzzOC2cbfLuUoc4Dx9g/77OH+m/qcT7g95o+n/J3/c5v5jHOzjGqk+yjLfYY/U8uuc/B+yj1m7p/H4vHNe0c93nM9zKu+f6eB7vea6Cs2I7nGS2B1S+GTfzZdffjd9XDbOEa53OZrTtgESZhsiVt7aczdMaOieaJ62oYKTI3KjBhPwgfg9dYa2nhC7UuHUzoXX9bWEJJ2ZomrZkUi0qpp26nuWca/4ZSH9LqWQq+y8bhGZFkZto/WYrsCspwnRVt9Qdg1va4MawzXK3PTN2t4BHteYusUz/VUOZFkHWmxeZTcd2fPNe4FH/MueM2N3ilOA3iHrQNJxYZyrj/uoIwo/A6I2Iws87eDGbYpFpTuljwfKUxQHWsY/wGFETC/XnClDKO48KNAQ61vlRQHmMVAlD7FBHYNcbOPnSUMhUJYRGhscL+oaKtL8VxqG2V+BaZU+OOClrQ3HLjYDZI9dQdszlKhYnjFVjp5pBMmd5kkyS/XzgWx8xcS7PJYKnAJhxjnkSlPY5T0pHmBsyNqbBNtgLWXGrPWw2p+rnWjVj4R6z2NlO7FTHWwMA4YF3nuTDu9XutAVY25bfFrzCr71aInv9Mg5e/+e1d3uVd3uVd3uVd3uVd3uVd3uW/o/wfkJQgMKyh1JSsDbxeAeSEWWLMQKavKORQOoA5JiolXAKInhgoBSWn4wxSY7INCLk3OlkFOjNiC0AypQrln0uxKZFhaP2S/PSW/m3lGAePwr01xOT90nkQ7gYAgSlyz/p8FmA7FHFljL6xhCedu2l1MGa6twwSrcxeuK4/AfuB9Aa/Llw/Lrx+NPz5Z8OfPwY+ImDTMT3psHKHx62DOx20lXS+N0cnQ4pkq+mwdlENIPn+hOMedMorvwS6UTUgYSRxIXG1Luf0gGEgRiDDcQdTQsBJQktriJhUErCG1hy9A4YQkYRgTEbia95Im+iWiGmYsyOkwsPelnrQSMxpgu/rmTjGKp2Fd5MqlmM2AJMRZf660D86/CtgMx+OpQJTOWYKuAWyUv4hFwgBYwS6gaoepSbUBGYgEiXJbQ6mEQI4jm07O5oAq0gCM827CEwkJ5nLAbQi3QQ8OMdcqYnxs41kHSks1TyYlZmvwEx5jmcoYss1t4iwCYQTWCengoZQ/YlKA2JGp+1SzRGg0oxO3oVxaO6Y0mMsNDMImMLKKVTp20KksPVNLMee0YGbRjUUOhjYb5lsr9UHKCARS3SBrx3Icm4QazlBjkInXylbqI2WQ2DHpG0S16lMsa/3IML8Bq8pUKuAvXLo5Hrf1zpR19vA8glQm+r6zeFxAN1WANRym1efsz3LMWhayIgDVgMeBK590/XnclZUmwokPuu9rqOGzwKm7eybDa45dtsAHPeu+VXv+Upfp8jWxNlYj+uzf7ROu9KQmaInE2qTUqFSXwfkuBXgnL7a1wWY1tg4Mb1K61NgN6M/OY6zAHz35SQySLkHAsUL+MMkyVYkJhjVHVLzn6n0nIrxcHzORvJm3vhxdXgMjPsTA/ded1XHMZh6a7WwHAnuHPeRKTW4gfSGLIURZcLketXp/LSKLk7AHO4XmlGtI3IIqN1kGwCwZOoIQ8OMhkDj1/MLiQlzjucxByIuuCKh3Ttgiau/ECaHK5zKfc4lOJ17YGt9tZ83xx2BmA0IR8CRIn/U2gxzhFGdznviWmm8GgIDXcD2FwI+Sbp8eUPrF1r/QQKzTdgXgHCMNAH4gdZtETe7A6/WVro0qjmRKNTMYf0CyZqB67q0ZnaMmpveECPw8WpAqz0aVBzUOGl6npRq1ss7HAO9DdgMtpnmUm8vzDTMe3KMNYLR3QCTIhKQaEp5gDRcV0NzpQGZAxE3LBOXX7gjxBs3mHfc40bPxAxDDKAFRPoLpDnSnIpTBlzmaJeRrDYD//bHD5KO3DHjE56Oyxh9njnRmuF1dfiVtENqflrj/SZtuyKjJQIfvePqF8IdMwJzyn5qDRNNzggSqUzz2dI15xtVVixgHiSvj2DKC6dfIY32bW/lKud6bWgkBAIwTJLCpazkYIrBlMIhCUpNkfObVIzM5fTa64wr/WQ5xkVQKpILcDgqyh6APslFM5DQRf4lS9T6DUMFJZBMQecZ7flEmlK4ZS5lm70v7n0/shTxXI7QkM1b6VW1b6D2XX4nsqyTXKlnuX35sqeqB0qtcKkjIB9KG2m1R8rh5oZZKUfKKZVFTqq9mkQ4fs3XXk2H3CZTLBKxda7dbrBGO9mbo3fD1QNdKgEup6cbA0UowqA01naoGJTtXE5N26pn9X6U8tEEVWGTKagTkO2aUmNSzXNyDoEBH5Wyz2WLA0yvSN9Zo21awRnqVTpxAzAqpUUYIpg6JhH0fWfNiVRK08QiTkNkDwMSTSkc+fqQo9YBmNrPxrYDab9i9fXJzmBTyRFYY+V0CGLbJvLRYqk8VVGnmsYeNOeLqHd+rMjxy6aqoVT2oeq7x4otZSra6w0lqWYZZRatUXqON2RuhRGrMbFrUzbnaZHm8cuaWw+zNcvqR1bbfFP9Wf1VLwCq5L4n6piHRZ86bPM8rlbkq1pba70uO7AI77rVw7zW62Vfrrl99kndPfdDV6c8GmTbwc+uP294tgI2mfFb/Y6QiUVsXG3zy5WqTQ6ySpXHmeV4wMeZyvBY1FCniHptHRKO++fjqs/ym4PS2WZnFc89Abv97Psz2H7Oc4Se03BPo4McdDwrx2qNut+0o217fg0+POfDo6+1FzxVY2r8njvVtzY7zjf7sF39UISFY105zvd75hzzwEVqXWuDRnzdLkj08CRJMyMxMUsvCAD3Zqv/jocMA5rVnqxrrjSnuv/6YtWpoVRIq88TvtarSurppv3jeMYiG3EfMcQk4R02YWhIYxDEDCqZLnVa41l7kVHBs2Op6cJou3udG5O4XanvcLmmypSbr/TX7Mum9+caW25NyroioRiDyyo4hWSlzrMgQorf1RxSRLWGVNua7P0mhaco20eKWO5FICKO5DrXZ3LXd0uku85CQIQrGCa0x2qNTgOss4UzAWs6p3HktDoLm2yPRXROEfaNWJX6shRWM0nQoaougBEiIgsfNasY0jXeEGDgWzLegAErqXZu/EwFDwC0FzKpCi88mmdc2uCltAXfxLhYc3LPw3rWwoUCTGf9akwZNzIRY8j+gzBBEsdi7vpYEkMoe5WXr2CrRvtU692yHaQeuwIdof2arbLn+9oYfV932QTHGlU/D/wH9dVKnfdYdr7/jY0NAgsby/3pd3mXd3mXd3mXd3mXd3mXd3mX/9byT5OUvgbThLnz8JatYcaAdzow59eNV+sYc+cCZ073xMwEgs7adMcIoJuke61RMcGAzxlSK3JkA2WqddoyKQjNAvJiIq1TXtkc/dUx7onIqQO9IUTm8Mb0NBGANfBArjQmBZpbc1zeEPdg5E8BFsH0LL7UQQos3rBTHd4qMpngA38WqcXc2drXgL8MvQF/vBJ/zIafP78Q88Ydid5eArcNYyTmnAQlXM7GnPBJAMecyk/WkmkyjIBMdlNKBce0DpvACzfuoOMGMzDmQGsN3RKIia/PxMhrpY27BCFlGiYM0yUSgIbugF0imxgQqRQ0UQo/E3MAX9PoiHVFFt2T42GkJJlvmL94sEeiRZDo1j7g1nGJfDEDVPNJA5rh6h3dB5qFQHk5kNRuVG0u57ycyQ64nxBjRWXPFQHlbmilUJQQYUdqQaHoIndYa6iUgGZMOmSY6A2AJMihdEvNkikLDXxujV83iDTAITUmB6cLOD1zwLvULIrwcoL1Cz/NPQJDzoYFVzs22LCaQPNBhAvSsDiulYEKKJWgAn7X1wt1NUVKGphurqJhK5VYOWML+KsI/vKTFBhd08lhzjSHmViqNwVHw3CkFDuA5ZL7OLHmRaBYMO0RpXbM4/X5/fciogmgi9NZWY/LyX2kZavnEaCzkafndSXHYQVIH2260vscbVNAaMmtn84qiPjJP10gIdMUFaBla3BsQtHq0OWYVCpDw0OSPKud1xiz9TmAoOKZUmdHG1eTbqCfDlZscM1I7jTUPKrhXuCh+mg3g545wIRxux0MRbgTqHYA5EzBeSguYT/buqy+m2pHQYerL4hj5gJ82fX6tMgjS9HFADrytHep4qnEotsJqf3BBUxOEl9LUWkAMLETzbk+/PyPv6ju59y/LBudxEZFwDQSfukwISBvkVyPJv2TY05IKE9EQoLLdKq/hIUmSRrmSFA5z13fNVNqM1trFFVxGtJdJBUSnj6lFOQGYADWAt5JIujeCUpfToeAHxHzgAhKJgU6XtOvrhSuXF+aARNUCJqT370+LlCY3wBcuOwDzQcGvgA4vBnJxSGViWbwHpiTTvyrdTSlPjNciPxCIjHNMO0GLJSa88KcU+mWaq+fmHEzZR9eiCjHLEmzvTunZQAZgwRjvGDB/cDbDWtJcu8ErKWU7GofYOqzboFoAPKFyIb0v9A9gX4x2nkGZhi8Ncw5aTOkUnrkVMpQoLUmougFSJ3q8+e95jSaA439R/WTiTlI/Lsnx9jXSLwGMCwwkwT2O5x22LjRW8PERAPJXJE3Pj5+IO3C1xgYkN88gNkCANPuWXJgupz3M3eqp5SdA+1RvXdc3fGVia/7C+P+QjOlsO0fiDTcX4E5Jy6ZYdO4904NtvRaf7luTIRUyUSkbKYoeRKSl2MpjGkXG5A55Phkv4cUbcpRBq0E0gJQZLmRJLwcwymBvb23mz0djbUmnengXOunlthatPCvWko57TSpI2WPNGfcvh2pO8qCEZGZnAO1q5w5S7UQ/JsEG8i+NNlEprV8kyyLlLLoxHJootRVACDbctpUhcvszN1J2zFq4lQbHWdFHOGHjlNDEWXVBscT8HlKWQ0lKLD3zyLleqNd04yaoUMaTpzvUk8zPl/Zhjxk8HXy50lopT0I7V1SkbDThjMAjtZJJMqUKkQOOWwBJANWInfUP1PyRP0fIfsZup9jm2CRJPyV6zsiZdNLQcOlUqT0ZiEHaCRENOYAMchhWOqwUnUwKPhCNoar3syAXMR1W+PhQYquCba6LBd5nu1zKIssQkH1rfp9mfZ77Oobm3Qo1TUsco2te9J3zXN2EchKJSKP8Vy2ozanvSSspWaNyF/LUh97Evk36WI7sxehq2zZsskgInc83lAVDqLRaqLT/v1HNaub7b9rvm9i2V4DoP13rb/m+6t1hZMEtu5hj7vb4/ciVOXjnYMH9fyG+vhxi2/P9jhGfC+Ptan+UR2P/syq12PtF7HV7HmNb0ERuzamulZ9dcZZz2TLvtyVqwp8mzf/6HnqjHASrtbGddTp7Jejb+vPh4/+eLPOufbognw882ON1f2eZa8/JArs+bBufhC1niMBOk+IOJv/sCXW2mKrn9Qedd/1TCK9rHud9bbj9zr/POdJNVNISi0c+LqHjs2GUtNebYfnmlMXiWM5CqU4q5T0VVwG7VKLseM6Chhaqbs03sjNYhtU4FKo/qWyC2yluYiUqlwCqOCseuRznbEVsBaWa523Mj4qAErEGZJJQs+ltd2L5OgKBqi6Vx+Q9M65SAVD7r9SK9SexE+TXJWOlXKs7p8AKjVfgMGfm43ehENpzFoq3WjyegWBibTEIcfAiErVvdtyE3dSJOZ07q0R3MzcJ89zHDRAbgXKzJ0Slv+JwLPUseocSBJzQNyeBJbUk+Z7Kf3VAA2p9BJ5Y/9UKsJM7YkwYG6ssZR+LWTzrb1afVnzUHhiVL1F/soi70LBSlZBRlN2DAExl+pTmiNu1qnUvQzVJhufynqwMvW+rfFnkNqarGbA2q/OtVs2jj6311h97pjlhT2xq4/7Y+/jNAme3977yq4fFlHpP1nP3+Vd3uVd3uVd3uVd3uVd3uVd/ovKP01SijCm5MBch+PIxExGxTalfok6GBlgSZWYkNpK5GDqFm+YBYKkYQbTdliSZDFhGJL6dQDNqOxSaWtGjgWQVsqlmQFriQ6jMtEEZgzmNk/lW4FjTkbrFwgj8QyWnLg6WINJVQBDojmVAQgKJkwOi3W0E+Ayy8lVkVAGIAcf0w2tO64X8LoSHYk2DTmoONDdcWcQOGpUfQjj8XeEDt7uVJ5wRvgkbjAqrcF6IGZSRUigzbTABBDuaO0DOb4UTQ2Y3UB8UTlqAJ9fdKgNmFLS8DifI/EzErd1piOIpFNEB2USkoZABB6kRwRCqfggtR/LRMTNMQLHTCoYMC2aCESKhh9jEuhohp5AS0f6C4kLcJLaLjN0pNoCaiuRWwpo0PiIDPmFNC7dmGpI6Vh4f40IawJI5nICMoWb1E9EBktQ6SsCgBv7BVs9KOHozdAbiU8GQyqyPjOkElGOHDkagmS5DbYaolJVQWoVeieIcAngIcISkigvZxYdHSSvhDw5Bc7sqEmSEdwrirtxPgpc3P4ROhuaiEsbyjhR4gLnBBzWq5mLM8QYw7bJCALOuKTYErAqZyTwJL64F6lF0EmBVgZgHlDNqZhUICORGWyAv64tkM2s8M4FGm5HTqy6VKog3flYB6A58N3pUXeMVYWl6rDqOw9nmK6nMbPvpO94gdKlXuBozaWWEGjNMYKqKm77mdO2E4g/FeGqubFVmLZH4JHqzuZub2C36aMUwFYgW3VcHs6u/b1NnEtU1ObupgOky3y2Te0zoBM1JJXuxpRu+7O8V0Wfup/PR7B3gXtpaz4ktsrSA6JzY9osfS2LAJgmdSWCzCSHbNINL0MwtVSMmAqgJoL2Ef3uYh1MOZX/GhOf98CdDkbU7hYkAY/UrRX9qMhNA+f2zIm7niGdfZl8AAP3V8QtzltXO3GuhX0h8wfbWGThkQkSMxt669xvXE5zA+L+wgCjcefk2tFR6TAN1qWGGOCa5wbXfScS0VjXqzkuhdZGcC8r0h4V3YIRqVyoV7QskiQdc4P3DpcaXWuxFJwiEtYM7EzA8wW/EmiJsIkZHcCF2QdgCRsNETcSIcd6KXgZRk6MMdA69+OIImkC1hOBgQBVJTkX6cxoeKm6BOu5Xwd1UNb8C7x6R8DRrJHEaRM/PwMxOnpzeGf6W2+ce1TjCsycJFjL4RIzt8MChtY7DA3ZHPdkCgfvoCqXkfA6wzAHmOLJGVUc2uzHDPRoQOswOSW+xkDmYKreSULCxERrAbMbvV2Yk1HTllR3IQlzIvLmzhVAouErRI5LIOaAZyDbRPNOmzAdNxL3vDHmxBATfUagd4P5xPz6wpg3HCY7JZGhlIlGZ5cnkLOILPJNSS0NUqE0dEa3B1DR/TCqhXIq2dpe4pjLwYbXvMy1zof+XvtxgntgRWCbTNdS90QRb8rN8lzj9u/4jdP1X61orQWONatISHvPLz9n+Z2i9oRy1MizW6+ZpBDYRtwdSTzZhv4vqjQzl5+9nPOpfcXdOGe0X1rZQnJylvrrcmIDi9h27neVBq4cSPwhYmbtryiSd+3P5egSaQBc18vx683hLdFc5540pe6pVDEiEBnWul2k4Ci6uElBMIs8x89B5JLTjUUXHA0kR4P7lM2WALgujPKtzhrOpjmwSdIjQU1BPhB2al6AaV5i79G5bSru9epntnD5T8G0gGV3YNmbBo4FjhcqMJXNZEZS5Sa8nkEAuyxbYjnCk/19sAZPW4hmVB4KCFhjtQhE2zGZ9f9FOIjMZa/UOl22ePOT9oQ1VrYz8my3WO1fD/W02erGGlcVUKOfjxS2qWewSvmajzYqG7zG86/LT67bLtM91ze3PV2DZD/GHgv7SocdWY1Q1xZxwZ6v6Ur6zx/XewY85PEr73Sm51qVPM8Ta13ZNVyf5y/rK2e9q622/YndNb/Y1b88PM4eyPPzVhd7Pt+DjHQSrJYtaeu/Ui1lax2Usm/PUQEdmyCa60pHZfZT5/7M+TzfHfi7z48+/tYQ+bjWL7N2nR1qDuXRLJaJR3Mf97XjeR6fyd3mhn1W2eWkbkDzXatV4Qfr3aO+9uiuYxzZfgatHee8OIb4Wk8W6S9FEFyftTXvYKB9GExzFUIW/GzCNYZ2C7Orue+l1l77pQW1i2m/ZPG9IMPAYDoGcqxRo7OOO/cjN6X41Vpa729CkMHmnsnpudJsmzDB1DjOWkfVBiSl+rK/VjBWrVFxkESwSatrHXYGOkRuEi/ZOwyGTKkzmTUGqDXaFxW8yUpAzzHXfQRVaJgwILO4PWuNdPV+6qwTexzYWgVst1mApH6JlRfJq9qhyEAcYsbgBt/tx/Hoqx04r/TMxxj0wg6gs+s5lEz2j+oWKRsh6jq5bEHX2ITSrYewxJkTpR9VHB7ie4DReEfZLxz0daaINe5rLpDsLPsm81DKwhrbI7dtwfOc1gYkco7H+gDZrQySMtWn5rQtYtXClbRXm2SM93xn4Eztn1HturCPbUsUHTSOhWOvmHv9WXayHXvNqttRzv38sX+sFQTv8i7v8i7v8i7v8i7v8i7v8i7/3eX/z97790iW41pih6RuZFbP24UN2N//+3nhXezuvOnKuBLpPw5JKbJ67Db8BmgYocF0VWVG3KsfFEWRh4d/GqRkSipgYOG+Ge6UuggCyeRAZy/Ljr0GmKEFfCEwYuUV+FKB6QXe1T0v2gZx5iwNrSzXgPgEy24YL7LpJGGpGrIamCruCMRagDjMmF3cZRfqKl/Of+RlXRRwhcrEUIeGNpBKJLaDAegL9+m8OMEwjrrgB8igsaBDMB7AeCx8XI7fxoVHAHE/oTpwYdAJ44HwhSWAyYBdBFyZDTJCicIGS4rBHGbAGAzihj+hcgFhiOWAeAJLjNwjBoSRIcBBmuZ1AzPL8UUBwwRZMoUl1aYLVhgsmG2GwcCwO8FivoryWTJQzou2u2OIkkVJHRPlHOMqmGaWrTiGpEPG6YAJcSxhIHOEYoKBZbWBx+PCw554KuBrA6rKibSzxdMZU3Lo0QCGCi7R6RQQYTmWWBmYLKeGgIw+NS7Sa6FZaFAZ4ZYAmmTXEIOp4LKd0c2gD5tIZX5r7iOOey0GPQvEsFYF5sopVIFQ9r1Lo6UT82Q+Qmh7HlWVYIFXT3g6Tg5nZDBoS/Kg4PxQqAnuCrJLkF0IUDMGgbJfUd9DyRNA8NjJYoT2e6hqu0HL338GcAQ5Vuzxn0w/nkCsAkIJJLPwcyzpVHTPcn0FwDrekS9B8a98byI19nJq4sisrc/I8ed25pWHrAKRZ0BEIEV4RKaSKFCLnA/+5fmVpdeZeEKGmAC6HN+jwRzUw7F24KTmpl/RNOI557VEp5Orpurof7R+TDerHOsm0uM5s7jr3wICdOLoR/R6KSQdxSdYDel8PufjdM312DxalprV6FtAocoxerKZKVLHi9N5mPRjZ2Cg9tyLjGQgWtToPDz2aiSQsPubVPCjsoxLRwWgpu1wrNIEOIKD95OnUZGuVHm70SVId2ZnyQHXZmRmMrCCc6tJVy+hqJKi4Z7O1dRnuDhvCojwnCFYlADQRhPmXKkIGQoTJBtaWegF2CFwa4wqkaVQMwKJzECKQzr3DcAoVqgsT2CqcGcwHhDMlcF3d8AJWCJQOoMIVTrVABsX5LYEJ608qwPjIrgZMIKt1HBp4BqEUi5hmQQNgS7KEdm50nYZTiCAGMIJuFpLAEyo0gpY4iw/Gwtxc/7zMQTKRAULbkR8YK5A6IRqwBdlikH02vfAEgqBqgDqMLtSpit8j9T36aRvZ33gsgLPDkQQnCPDMWPRjoEjYgKx4AIsF8wlWNOBFQT9xMTKQMkK4P7piIchYpIQDJz/IYJ5Ax4Cu4TMRgKETcw1MZOtyzCz9JvjugZGnXG5vcMT3LsEQy9YXCwzYZm/7ArBgMSNIY7QDAh5wJ8T4mQzRBB452uyRIcxEDKnY03qbEsg/JKVZwZL5oVblnMgoFr1wrwD93zS2hNmzUeWnOuTPqMuoizjWoGe1Appo0SiOsroqHAOymDeejb1ZYOb6izMErFbJ/61gwqlvwiGKXB5jXOff4JWC/AEoYYfihM1m5HBMgLTIywDPlkaOaVbZetiSbZNq7Ik2SSTE4qZDyKoUnNdAiiDm2k64FgxlOEpiNbDnkGvOic0WSikgs9c1Py2NLMXH5+2x3FGFwOeGUueXJrAWb4ECsFI4DkDoTznq6RtlY1ptp8E5KlWkFHhQZ4zApt4DmjajxKACUv5aAiiSnnzAE4du+0DJJObJMNrySgZqwos7UBkNFUccsAjemiCXBv+kLj0bbOXXaNpR24TLNrU41edzEqmueelz86T2eHFLk5Z2Msg9TDIXr60cdLu8S2n7NEGC5wglRMMVr0s8BhfWIkE/IQfdnwFRyt4WVHIthlbJhUiyRx72NPsd4HVBBBve7rkrdhMeu+IQiO6omTNyUH81ZNIu0yyT3j5QkrToRJrQo87Tz+vzsDoeZGcq9PWTI2YZYWSfaWABEe/6n17ubfPooFO33rQXcQBXoqj320PH+P/NrTeE0Dfx2Q/GIHj1Uc3zvvEt87sHrZsne2UlZce5c+OGZZjz/ZXK4EAWye1sO/Htyz/E+agP/rpK5hWvn1wj1W+fblAR9+/v0Pt+55Yn+27zdH183PVn1+7tOVzyxdKzW8g0fkDKo3jIcfY+v2SiQRsmgM99QxV2qlg9nzUveq8M9dKVyJLut7y+XIK05lG9HKv3kM4tFGdm0i+8PKBCc/VF33+smPrTyYJ1nNUt18GnWwDVJIHj/etFdUk7yt5nz30JUu78R60S3/zuQCyFNdOSCwdT9ubn/fwThZDglG0QU/VZ/ZTVeChqdYXyoMhljo4AJZ2iwYLQwAdlkxIvG8RgFJzRx2lSDBzF2WWtN3ptzhZ6coPFFJ2hicYnmWhkSzfEQssKycv4zmTvyIEEgLT8mnudaA/j7ZyHUcCgYQ327RZ2gjZXwjvfLliba9GnmWdmAcCfJC6xSPgk59pxlQRDNnv9/RBGQIQ3m/I2FRgr0CmBkCUJbd3stWeu9rL5bOMonMMAG5t13sU4ySzRQUCUyHwWhS+FkQIULNkoUyCY8LwUtaKtSnSPq1zr55DH2zaQX0m1HLvM6412ouO2U3yrP31N99/kmd5y1lpj3j5SJd/++V57/Zu7/Zu7/Zu7/Zu7/Zu7/Zu/7HtT4OUxmCQXzIjF2tlaS1mmZDJAkBe4lWVwTlxiNLhXAEa1Z0LQgCSAvoJXzfgk6CaYA13U0CHQjUyAYuMA7Lqkmn01kMYgIxA6EAMA2SQ+SAEwICLQbLktxxODJY+EYQuiA34HHjGTd+5aWblj8z2iQw6RmYx0fkSQSAX75cMpocY1AbCABsBG4LHw/D5UHyqwnxhxUAks8yPa+AyxYon58gNlw3Ih+UasAgbQjBMAQOuy/G4LiwHBhRzAeoMLmNMDDD45TPyIg3ICIR84p68nF7XwqWCZwZ++VPldxwwvRKApbBL4ZrOgSWIJfh8CO775hrQW4OZtOLtfgo6HVZRQ2fmlMiAmeAygYZiTjoWAhmsVsGg1y0BWA9cnxceD8N4kh3EFBD3LFVVZfGiy9p0NnHslCk6VdLJrAwAmAzMXFc1e3WKpdO+WGWKvSOE5QQla1YYGFwwGzAFS/NEwt3UgFjJVMWAkYcjPB1oVgGk3HSiUFPkojTV93aYVXm3mQw6O6xTMR8C26IdHSgwTLoNkQweO9h5/B3McNMMrPtaqKAAxyztl0WUkymdJIKmLl+r9kQ5UGQ7ZIWlsqTWCThYI3RncB+e5WJTov+n9rA0kKgcxmc2fmWDnxmt5aije69APDX3p+M6c/hkZ/i/ZFWXk/dUmDUnFeDpaIM0gc8rYGj3qZxRzdLwEizZzlLJuagXV3m97YuuciBkSKmgXcmCZsZn/VsQL+Xe2mF+OOjLcybQ3k57nujoeg10RK9zeoAP+ULPjSTQRRJ01w74zBx9BYGd62f9+x2Dqv4fDuycYv5fU4aUeqxYshAwHegSAD32HI9qOh25z6wCvgAg0Q566p4ar6cLO9rBrVoBtQSdFlAtHdc8UdDrXMGJ5G/L/h9O/Xa+btkUVYgaDAa13MtJw0+GQufvMyggwvMLqtBhMH1Q1ixSN0aXByAgk07WcQ0GHHA4gQ2wa/AMSXa3GQ4ZBk1mJL0G7LpwjQHRAdhFliQPiDse4NkvWavIbGCEwXQgHPgSAHA8Kpg+FKoP6lgBzwf7gGWAw/CAI6A6ISvgGGk30AG/1oQp8GEPDHHIZQi58PX1hXUDEIOrQfDg4siCYnEe7BMRg0EVAcK/EHHDseAhGHZxv7pQ1rK84sBiKCLLxokGHqaYk7LjEhimPP9MsqSDQpMN8WMIJiZkUQjHACAsmSoxCCSAwhIIq5h4jMH5UDIyCYA1J8wuZnZL4A6HL7IRiQ2WtMpyhZ7Z95aMNfd06BTACOqwMSD6AHwhlqd2DnxAIfOJkIX7698TtOvQGJSd8UgmSDKciJKSRQT4GANXCDB4vqovLB2IQbtLwyCTMrosMH1h2AMaCy6Bx+eAR2DeDl+CGwrDlSyFZCrkGcnSFyILaw4ABGgZRgYdtG1AD0BNMFwJREAkqLhYA3iqKBiQaxRM6b7SK9Gwgj4P+hTPfS8qLBFYzE9b6zRoqcAnGwR1nH9/wcaSKEi9I20Phktmuaf2LHaXDCYy+BYd4OFZEShOhQ78VqAyCuyS9xdwD22mmwRIedktdS/geV+BTAaw7ACeJptDRj55BrBPzc6aMhWyWPbSy5bkeLrvBYDpgCEyYMm/h1aR3HyfAtAsXaMKswQxumMzfBFEpJHw/QTr7gBuykzKIccBmG7QFhk4UbMGMSYPIAK+KgjGu1nEIAsDAIwAIoGz2PZmJLBfBM2hUQDXZkP0xYSYsrNFc99Fn4uco7IR2b82oSTP2AOUUjLBM5X7TCt8qgYdlqBWMk+0dZJBXdQfBRx4sQ1KoH+R8LwDRtufbRSidugr4KFnOkHMcfZXk01VinVC2y4o2WurPQpoJmihr8+WbVZn9WHPlvzXsDp9oOy63cEehxZ7HFfhWJMty/WIHmo+yCuxpOandWP0ur1O8wHuOR922tLZxz2zeU+rdYz6/dmfMtYlVfIBpord335v7ZmXZAccf9+wmO9y8QquP+8Mx9/k/Hd1IF4+fXwQLwP/fj/5pdU87PnmWKRlDzjPkWMucPys/5uPTNunt80h66+r8U/G8XL5+rV9l6OdDPI6F9/D6TWemsaKw++vf1/DP3p5D+NYm/2eBg6IpK9pw38Esvt67PF959r9l/2w/ew+kwSZStGydTIOFnBw3yMDxXJV8vi69wO7BNnux4ueyi73HTRB8LXPv6/XeZ/u7xUQNu8doqUjNqgQIglsyztprzFe+qVZfrXK7VbJM5ViEs7EBOHdx0s3oPIC8l0vZ8AeESDJ2k4ZJ+Ot5ZmS9yMAosGSasmMu/XLQN9FWcMXJiN1eEDMWD5sJttnePqEDvCJStq/1iAf77JvATISl6xr+6DIEkg7INJ+gtLXCic4H1kurVjDeb+u+0SyEMuCr5qNPgxRiYeHwCcAi3us/U5IAK1UeeTFtY20S7C3UwCIbyDXQIJK8wx7AWyt9CkKrTlZBLh7+eFAe5F3iNHP97QJkL7QobLZT4OJkCEATHuayx4M1Uz4LBkG78gqZLTNs8cTresFCFewHwl4I9CcFowX42/OhyajOlAA+1qdwyCsGQtgQzE3uLk1Tuu0rQNrNc+fN9j326fO35eyLND2/4OWfLd3e7d3e7d3e7d3e7d3e7d3+//c/ny5N0wgKZUlmNWjQuaXOQNzKdzpEE/4CfS6ANwIYbAGixc0oReVrAIrsEIANcQABgxwMhM8PRADuFST7UaTJYMXP3hSA0MIBjooiFWdlMGiLNfgxHoMSydGOZWSPcNEADOyzQzFwx6Yz5vlEkKaHSmwoDrogA4CY3bJh4BrYKghYBksEEACjicAIEJgMAZC5w13wR2AK3CJYehgpr4EFIOldNQhpukQFqg8eJm1G5eSqUjMoHpBvyZZQpxlZzCYXTXvG8+JBFYFw7uqGBdQWcjDV5ZNuYFQrBiABR4ImBpuBRAKFYcMgSQAZzkDG9MdoQOe4XQGRpkxd7sjYBC9yEhQztIxYBcde5sMgI6jC2Q1EFU8hCUH3RQYBhvpeFjpLhWCBioDsDOEk21CMpuqym1UHftAlUJjR+O4jbd8NPCiHLOCymDr3godiGoKM8MYg0wgWAy4zSztlqVaIlYyWlGetYIE6YBgn8r1UM6C6gNZiTK2132VpC2XlNSKsWzvLBIYlc/MjDcVdPmeiHLscX0UmpnyWTKjAqnfHJTF2EMgR/k3NmCjqcJzbRugdQQEiqIcxbpUezv3UEtHzwOd48W2I3E6h23rrnyHtnwgnUbpbM3vdWAxnHKOw6nWgYmzlBha9sqpQwBbsq1oZhLW3PIRdJqWfJYEyRGcyX4UTThQAbuUkZxTVZZ8ITjM9xrkclfpHF9FX7/ft+cyuA/yiw2Uew0NbUCfaDvXvvv3yc5TP9zz0gHiI36wZaicrtFAm80Ssvtazngycu217WD/4WquIN0u+YIMwkbPjS/P/S84o44VIPZDlvbzpR3rgh0koFSnzsNItrbI/SpHzIL6xEHGFu/vpRNbco8n8w1iQJSAoLkcLnQ4SwQWEnwj7L9ahn2j3JflS86ykCjwBEC2N80SRE7nuwCiBjGeOcVWYVZsMsnalgw8tfYRLJsZYLlTiEAWkgEx500V42EwdahdEAWuxyMZlATXGHBNRibwXCHLEhnCHo8rGSQM4ZoAUwIndWU5TjV4DEAHZBgeRh2w8IUQwXX9xrmS34EHsOKRc7sgLixPCsOnPWAyIZdghcKvkeFswZRATIcE2RuHLei4EPogqCsccz7J2hjAUMuzNc/ji0HrFRPwCY0BidXlXIcRmAQo2XfiZiBFhIAnJSsVneiLjvwQLJ8YJih6yYg6XwlKW7GA5bhUEIvsKJF7lSBexXLAJ+0EVjRTzBnw6Vhecs5yEJQNJ3AVChcyUV0Pw08f8GmYC5k9TLDRfTvi+SSYSTdLFns8uLYA/xSAgNAnTByfj4EF4HlPAqsGYMOAYYi54HNCzLIUG/urAD4+fjRgxX0BMTFl4lLjv10x7zsz0TOw4AsqE/ogOFht4F6rAcpzLiAWps8EgK7WtWvNZCuciLgZUFsEpMVicLF0m3vZDjzvKiSxAiAips5/RmxES/+hn7GDDGeW9WY1kOPM/Ks1T2ByHmfU8uEMKpG0a9sQx3miIvBiafPU3alrSycjWCq5wKgI2o7FQmcV/KzziFsl5/Q4b8oeSyA1P6o7fMRIWo4oPy+bzwaSoSYFgT+r2IRey70VI1MBWvqQ5KTU6DskBQQBeBWwdQLRBY7laBZby7OKwccgkCAZk0SLhUPQ5XeFJVUQtOcRedfDMWEJ8HJdmKtMJwZWNdkFciGSxNObhZZB38BQnkezAVBpz2bwzlG24mGnCT9XslL8hxW8r7M5+tyXZNTctkoFuRnQzP0kkt+pMe4mkGYmRf79uy16sumKIEvE5HsPm6/F7duWbMjhYRe1TCJBWlpryJ1DtsNi/si5yntxYD/ntIeK/Q89s9sG2yH6wwbFMR9xSF7bbDi/dcjr/s42Ib9NbGQfjo/8Ajp5AdvI8eOt8+pjDQQpYE1s+4dzcgBj5J/0t1s9N/741/3t1LEvP/vjp0UbS/n3EwjyT9/y/SmC1yWJrTeBfd/9wx4dHyzbrX5coBZsu7ZHWDqqhXKDLLs0II6lrjk7wTdnV+SY0/g+g9/7/E0eXn6+Za8ZeltHfHta0a8dzxI5/tJ3jVPG9rz0hpUCyG2pP59bSTMvA/ze7VqwA5RzAnEC2GXo5PhenzkleXvNan3yesT7NvYe36CtvNeKEBjjpVv3e/Yd80j6OO0Mp12276rGnSX7e7z3EmhUrEjSbMnJEHMwyxWgm4RzLGMvzu+vY13UI8FDHE4DjWsvydbhzUJba1bbTwmINd2MTgTOKMH8teQJSqnUC6ihcoE872YqIxlhAR2At82dvs5iTISx38JLoIoCee8JkU4iKttGreaEc+c+yRabtmAODcVuA5MsRQYgdtm6qN/X+rVfCKgy1FDNu4r284vNJ5LrvuTRe71TFJyAp9JDTdeFAusB7jMZt/kt2sKvx8I+E7eOioMF13N9PeW1WMdnLAKAtM4JtN0Vh20gWruBtlJpXrqeCXKKLG8HBTSCTKjF6BUEkocGxmBZ87L3UXOZDJTN8HcgryKZhSmT6X/SZB0+5i8O/w1ljMAzrq2D4Phvdn+uTemeUzucdsCe2G8/lbIN8EtrtfdivPz6uXd7t3d7t3d7t3d7t3d7t3d7t//I9qdBSqGLII68cAcca07MW3BP4OkOxyBApjJ0I6CX0Sm9wIu9I6mVkRk+LIUxnRf7MXgRXgFgKHwAYQkyqExHCO/8LpCVJT+UgQn3YHBT86KXMQStALAyWFHB3ZC6jk9IOFwXBAtDmB30fGZd98VLI/ICXEHSAEFX4QQS5V0SALOAyCzDi6r7BOYFfzomPPtruEOxfMJlwYZlSRzPouQAhDTCKyaAkew2Ai3wjQeU0VoMdWDdCBlYPlkGZwCKhfCJtQSmA6JXstQkLbRzffm6dHwpM6EuM1z6YHDFA8CESuBeMwFJjhULHsBzTTpcjO6AWIHpyeKBSIfPg0FbFeAKMkA4yLijkmVhLJ0uzN6+JDPh1CDDMB4DZhMyC9TD7DGPIO12Orc8yoHg7bC2DNogv8cLvmCuRvxw/MftvQIAKgzoFNgpgiV9JANWagYdmmA4IGIh3Lm+xaaQjpBywkkw0A4UeIdgJnnxCtBLQKDazqIumRSxzPrf2Vyqsp0YAsCM+yYDp+XAaceGR8tuO8TSkRmS4MN24MqrI78c0/R+oevtlRMr5/jIs6QTMz2s7t5MSFwYOjnLgVWOY8k1q761Az+bZnm7k0Wpg0XtRdbD4Z+u8syehKT8l5u3gYbSzidNYApi+8brfVV+T9IRykfyZQV8qYD/y+q2N7X6UYAkefmM5Duo40AHWpVzQjm5CCqrec8I7A5o4JibXG7KVYGZfP/qiCRvH3y6Aw/HdkmNHExVALCzebeP/mRBCJTzn29V916rMxjCoGcxP/D7f5RxX87net85l/W5yiKMLFmY0tyU+QWCqvKOJXsRuxRjO757LmMzQmR2J+dc23nasxfUVUgdyb3n6czPd0lkPImgpqqj0m7GSPCZbOBUpNzzbCVKZNgOons6M80qezifptJgqALyiS6EMPjNnxkmKriR4JZwgi8WdfYCGR5GsRxq9iWDrM3+lnrJhN8rvaxCxkERQahDRpbh0SxXGZkdDcNDCUpZ6ljLE6R8YYJMUK4BWZz9ywQWF88V4/mAGVh4ZgB4QO3asiqURiCBvrZgMLh+Yqknu2BgWGA8DKGD5dB8wdcTvm46mMN5Dgad/zYIvJ5rQj3wNReAOzegIyYd+uEElpkORNx4zgkdhiVBkMxSICYiDM/nguLG02eXXHBhFjZgPJ+nw5dDRkB8kfHEKot8Qcx4Pq0FMQJwZgDTI5mpWB5WZMGMm9iEekavAXsMQJz2iT4Iuk6Zhi+4T/xjTVwGlqRagCkZpcQWliyIPAg8QmRwY9I+dEfgCzIAMYI9dBSjzRf7L6MZIKffEA2Wxx0D91yYX19Ya2H6wlzPzCSn45/n8wQiy7z5TUCSCEIMsQJqBAGsRQale07MdSdAneCkHDEiFua8IbG4jl4Z6AeQIMp28L2XWh/X79BHQWTAonXJGZR9ed7Wb0Cx4Pw1W7GpFsATkfPryPLCtLMlA5CK1O3K0sXu4H6OssGB1q8dfDkClQkY5vVk27kQybKRkQyHCcJW5T3H8xnNslJmgPQZ+GKDBN/vUkHBnbZhiT3r0zUO26sZJKLtqMggqjQgQMpEgdbznYkejsASQcDSXgval+pko81u1ll7Ao9DVp5dnOQAyIRGIxgavCGtDIBzggJ7JMa7kKf9tA0fVMWWgLTdFCJQvTC0bFWeex4KYAKnZPi2uYgCOtidJMhWoFnmk9RxzVxWAU5k+eUUqc10FQLxZOIYCrsVM5MSym6OfjdQbMAFFD/tp1p8bkmuU69zmXYvFl9sW/qwH5HvbdbPCrZnv/kxJocU2xgfFS/l8Hb35Hxd22CHAYxt38XRzW2xxPGxesAGB9R+KCBQWW+HfVE9yb3ycsdA6bH9Dn5Ouy+pPfPXxeNyzmX+vg3cba/Wt6guN4CzN+rrcPd2Pugj+v2vrzyedXw5joGcg9oG9fH+lxd+n2iO9gTeyMtvju98n41jQPsl+aqDQaP0TQLhTlxOHE88RZ1TsmWnbe5vMvPaj3j98KtUHX05+/w6D2dfXtio/ul8vs7KK6A3V23/pwP2v7bXd++ubknsdckN9jr+73K7QV+9F+v+1KCIniz0Bov4w9mtd0SgE52k7qpyPr++vRNS+uyJ7HuDh3RLdU9MZN+0x/z9Vr2XV/oOJe1n61dSBkUTNLITcDqpKhMfRLMUVkhhM/leyb722n0De5Vc1++SuVaTealBur6TrhSKKpe86g6YSWwBAOmbUChEF4ZmKTUBkzcXEMhS8iGta1hWNDsd+yyBOkvGmSVDFaCyeKfXTBpwZ3l6ePrZUv56HhcCCpZnTgbKYvIR0H7OczpfikBgJXMrza7SBzw/PMtnuxQgWA79nEzNwc8i7Qzq2rxPFAvV4W9bCVSuuQYEhaySShBo2RaYGUTJ7oRkVe8kupzT5Tw7NHo6+SwDlhebUa6Bsz8FNF9Oewxt59OvzXuXdxJlgYWAaGZC94Av+vI6MQwbsLUTjOgPcNlsVEx6LD405HyDibCeY4vTzyyc87LxTz1QOroFdO/Rl2qbh/I+XWIoHwx24lb2EnHomheV+BdOeni3d3u3d3u3d3u3d3u3d3u3/3+0Pw1SuiywsMgAwHRd/HwKvmbguQRZ0Iq0wQAeY2AYs1HGBdy6kv6WobNKFA8JLCIrEBik5r2AMTLAOIDrClwSkCnw4AVW1+RlTgQzkOVSeOEPZwDUMoC/lkNceZGtz4UAvrpefIhDxXEhL4PTu/SMJHuFxITCAbkYUA8BhIxQoY7pAhdFIaOSFwImZDsyAOYBTMcXZpbMGkAohl0MRNrC0GDO0qPAUwAW3QBLJvQShClURmb8BNZkYBTDMCRw308sdTxkMPgZwBBmFgWA6U8yTAwjsGUGL8tABjqBywZmZjerGgYCU59ALKiTLWO2O2tksPwEzgCQAq0tZnYHWabUBCqOUMfIy7kzCgVk0GCJAqZ46AIsWJLvK3Cp4fEYGNeArQmZKQd5SR8iGf+XZBYyggDSIeNVDi+Y4USHAS/gejjMox2J6VoJAHxL0zWHYJOG65Wl5QLQlfO6QGaFmX6ZrD0PZnpLgrwEysyupJCu95eTIdLRxLgRXQhRXsF0IDEjX7MkBufEk3a8S3upsCQdNuAnQnIv5rMy6y/dM3RApeNCar/4Sl8+/62ocbXHkz/PkheRTrcKGHp4P6ucjeFVnkyPAGN+J7SDYAw2RQeMykdDkFPKnUb75gpsRj96ZbxXv/f6OggYy5nBBqzQrdQB4gxaJhQIRfet8hpUEKDZfLyYRSg2G5Bysj9JAsKgvbZaQYV0zEo61DW9c8WQ0wGmdBp6O+bKR7aD24aac2Z7Iku4dLmuBplR1gg0sXSOlXM4nYPFwpQ/KEaLeieDIgQFcMK1hBvweAGmNVAM23HOkqIFIOKEsqzBzvzke+hq5mpmwDmdjacDtOZThK5frezK9PydQejaKZQ5lp4Sp7N3lxYsP346gZ1yo9lXskewVwWWrHkwMcpXeIMSq4QPRGCyGfvI/kE2pYgCM+0gZgTlnSV9+Fn1BDZk+ctag3BBWILd1KD2kSxDAEBwaO2nuXJvi8GgrXscYClJSGdlawO6DBpGp7QggwSRYyVISCIYCFdBGB26qpoB9QntEqmZqewCn8LzHUDogAwhWNUHSO/vGJVdPQyyAItPjCvwaQPugikXAgLTG1rAj/AscbQQQyH6gVhZis0cCwsrArdfEL1gFrg0cCnP06XM7PX7Cdw3TBbuiATdENi61AlsCQfWEyIXQj1Z3hRDB8utYaWcGEuUraDMz5RrgKxKYJY1cCcoQTAjoGFQCNZaWAmWQgYavibBCOqUbEAI6L2fCaQFFhYmAis0nd0ETGkkmEa5D9QFQweGGoYpXAXP0NSpDpfJcEJMLHd4AGs5fAUuI9BELmAKQUaWDCh+s+wEsDKQwxNSS69NZpYX25I5d71j4V48c/W6IEvx/Dkx1xM+f3YgQGLB1wRiIRCw+rdniUYLEBHFMrcRE7q+EBG4p+J535iT4wkBVngrdl/RzIsEIvKMhB8Z7B1kyDIViLY94AHJM84rsFO6LPWc9JmXIJM6Grp8Rekx7yzzv2Kr8iARCcZ3AnJmEFyzi4sUO0eWKkPa73AUgFUPhtUacbGOlnJPriKWpiz7OmiPGUBbFAVsqBNDmxWvAokAA1oSaS80yAS0J5V2W4OIyoSrsiRlX+Q6FUh7B6Fpm1YAqkCj7E/u2WQzZMkaAMHSIwU0qBKgakqwVDFPAQCqrF7ZvmRxCKBLwRUjRmQkT00IRtUMazl1immBi2L/zDQZMSLlO4+VoM1TQT+CkzKoWZkdZTeGQDASTJQyUnMFzTNx8bw5WBppvvJzzZJZtm4FtZOBAxrJRMcApCsTKyT3oIZg5Trz3bJtIvQVAQUk36LG3zZoPef2dSeWTKddfwy9Vhmo8z372ywiNR8tQtv+bZkuuwt9ZpQ1X50vm7LfJvt8KWt5y5s0oLsfU39Pk+4kAfsO9ggcdvrRCrRUe+p7+z7PkT+UHl+dbT0bG2jTc8X7xPHT4+kvndx/aXv0SFbYwz2+UnOHnlMtc/T8fW/gPZqzs3sesG1plPRij/v4M+KY85ohfXlrv7qZNvoZ+711n9jXlhOwc0juL4sa55d25wDk7XgLxPmhyHk47tnnnNTY+u6ADZ56WYB9acgvyctzjg782vejV3L8l/eg1vI49+KRMfbtTlGynffOU+9I7Lt8LeKxgK9Mhz3px1451klOcN85FdnPYn4R+tj8mPvSS6qpO7OeltQ4W2ZLX36fJNnLG1sqpL+XH0tGui7tluPfJeBKxs95TZ0ZNTWVQFSnIXp8tdYiu689Pz3Jkd9Kf0WeEBK072SjbFFJU6LHnyoYuPIM4g1f8tyohVQZx9lHO0OlkspK9nkP4/1M0+eQgOW6vgogQeXJ8uGci5Vy4FkyueSkSvrmsYzlgcDK8zN/KHVG5lyWJIu2PUlE8d5/EgWQAZmKUlnQb1OyEslmFCiGZG+g0ZE8VPfxZBh1FDhpg/Mo/lU+PIDU4yr1/5Qx5X4rW7FYx7fejyxPry0TAel9oNlHyoYjUKyQ+8xY4fStWklTzXFgoWwaMoatSbAYvJLC8vz2BT90ngTLYtd4DinOu0raPC5kl4r1ovdL4Yd73ydeWtqRVKcFMuLn6tzr56Sq9bqTIPZJfNpnrcVqv0ar6jgf9m7v9m7v9m7v9m7v9m7v9m7v9i9sfx6kJB+45AvujjUN8wYCE2EZjPJkQkg2Gd76DKbGwKOs7ZjyBGMouhb6dRG8IsIyNqNo7tVhOjHgMBl09rszSKeO6YqH8n10kBuDf5gMfIEl2OZi4ANKx31dxEeyjFgCD2IJlgNzBu65yOiUwAbry/h2ilT9eJHA5YERgrUUCAKQQgagn4AZdJBNQRLQ4aIQA8ZQqDxg14Uwx2M4BpKZwJM+OlZnA/tcCACPx0gwFuAycPtEeMBg0GEYGp3JrzHwYYa5Jr7Wgjv4GXGMCDyXZ3Z54EMUMwQzKmAx8fvX7zC9spTdxFoTsTKT2QeGMCP9GgxMRqx24Xk6D65kAQogA8ORpTAEi3VOoKIYNnAZEkQ1MMygAxBfsBjwENxKBibVwJUxTVHL8jLlmAOKYhmSjBwF6giWMgKiagbSUSQJGypHQWXGgYEIgrjSoaMFMmOJjaGC63pgDIcps+AAIbCh6d3TWRPpPMMODERU6cBiKknZU6QjLJmCMljjTjmo4E8FqWIJwq0dcuWMtHISqiWrU6TTEu1YjASZbV/wBh6dzmv6uF6d8M2ok396OwoFUSlv6V1ph/rh/SxK6wpIRjKGcSnKsbSdoqrbCcV4jjA7LaosB16c6TXPAEGMzP/bTnlNR3GkHLYLJ8FBqrafUECldP4UeAnIYB/Suddzkk73kqsImBkQtaZ87FprdzLbdvyi6eorsw/p/PN0qO7ATMptBle9SuLJBnVVBLWy6cqhtR3i3xvdbA3Wyunt8ce5TOVFS2d8vq9kurzeLJ3Fj28nvLfTuMYfqV822Gc713egIvuSslDPKx9zl+XrPZg0+xmMBhZe2EgqeHz4NUPiZe5rvrokS0l+JJhIrJnN+FlLHVdATcWa3s5FroNjKB3hfFq61LOEmscuV5C+1pRXR2cVV2lDsdzfkixwdJMOEZjy7Bqi+Xc6qMlelOtpGRAH19GahgL8jkjqXQGy5I+C4Bczx2VGlpBca1PBwxIiEwGWBE0AlScABgwSX2oELj7vZHkiS50qzzwbdGQPFYL9nKApGwN+pcSuLLtWgYFJdiIydhhYtmwBobBBe+UaitDAWhMGwPVBwDQU8E/IWhhZBikcLDe2qCNcOCfDyIzFhHbHMJ6xLNMWWP5EgRWI9aIzW8t5LkqGqCqVkeyGHg51EAATjgFguWAF3eoihYYcVIpwqA7KWWVOC8tRujtikkGoQEosiQEGR5JVxuckC03bUQHRAQH7rgqEGUQuqCseY8DviSqXOkQxstSdgv+OPNOGGFRYGjecrESyFnz9jmEDqgOulG0XyfHnfoPlnl8MGl2DgDoduKdj3pNl9OSCWsD9xloO+N0BjlggiBsswagyABkENa0ECOUawwXwG4KFKtfJeAVB2KVYJdeS81xgygRBJVOco7dRMgNKBwh2MCZan1SQqWwItI4tfR29twvg+1du2mx1WU65gKFKULK86CygAJ8jGQrVtM/3cNqRzXSTgcEqfIPSlcKzXMsireB9lMVDxs9isKlSccU0cMbDi5WugJiRrD4bpOD93chAZlUV3kfWcVJmYAgdYKvAExChyBQHhKTNmQFVzoN0qZsAiRtUjCUQJVgyGQkMCm9mptLJ4cH4phRjlYAlIItJIG3d7L3qDnSrkCm1E0UKoIu0DzOguFClIgXAapk3Sfa0vilkQE9KTmr8xRqboGnoDn4LASsiQOgGTodwT6hZBow1mRAJlCX9GpMIVBhKVHBNV9qAJzCpzvteP9kdjWJyOpr0Cqf9l3Yfdphwf1Y4pgqyls1rZrAs/133CRVFl0tMe2mzSvJ7/fyIDU55fVnbEDg/G8i9c/Yw0j4Cz8scR+HGI0H8lF/tb3Guysbc5lrNQM0lyibOp5XpSCDe2fHYkw+gGEJzIXr8tZ8KpL//E98mYj8WUnZyfHvnHkzv1roW1BvbVCwwxzF3cc7x637fL69XlG0aODvan5U4JCqOpJI9T72mp13+Mo5Tlrku+tq9tvfOJBmgplrqI3/QjrFkZ84+9PoetnN/pfThH/U50LLy687JftXgz2Ec/W3devZUqKPO3h0Cs1vO6dHVY773xPd9vcZ2SHvJT4/h+/y1vPNTqp36hLIf+Jq8f8XWKZI6oXA8/dpjtK2LXuQ7z8YEBu01wEt/cchqeqMAMHmhDjwmGUjq2AQU9zOPdZAEkqSqkLKXhHcb+jLqi6cuEQJ/8/5Rd1QBfTZ1nqrIfmYBk4C8m2WSRQqM1Rmf4Fstf4lmwlEYWIpY8rzNr0bp6Ex+xGLaQFE9qTd4hne8nMtMIoEqQngHY/KVQpIxsO6lpTOhTGKxRIJ6r2ued5WIgkgQ1L4b7vmxPJ8oCV1qXkD/YO3TWLnumixOPOOZeMjTUVq+5Uh+EXzfllu38/MWGwBe/i+6SSIB/ymhqUspS4ZKyHGcgN8sPZ7mneb3Iv1G1OM8e1jWORCeZ7yNZhjlXGrrwa2fCQwbygQ1QAgIi8j5451lrpUgon26kUgpzzutxJ1kuC3W9vwMWSJrROj1F8ix3+sXCfRKPdZ7MDdp6TMpGXo5pLZuE6TPqv79ovakBPA4guVI8vtDpf9u7/Zu7/Zu7/Zu7/Zu7/Zu7/Yf1v40SAnlnnAGHcMUvgR2GS4NshRhYNhFh40owgbG42JAMRYgGbxdgaV0fJqTzcHEoHoxDhQLgsja8cU4Esnpy2ijQ4EFDB2AGsIE10UHjC+HxJUVCRwwwITBkCUEN8ECJsz6Vwh0Be7nhK+Au2EBGXgF4AKRBVHtYAqdGMhyKAOQgBnHNq4B4IGQB5Z8wHUAY7CkwGPAPiTpopmJNcxwDWPNcw1cF0EucwbWkwHEoRcCLOnli0FgOkKifTnlpKGDngCOIZqBB7rAH58G+VqAkwXAZcFFcNkDviYCN6B8x+0KxQMCy/J4yOjagNrAff/kxVnKpU1gjqbnU1WxoAQXhKFyokR5U9chLOUHgQ3FABmbHo8HnTJmMAsMS88FfmDpE2KCj2EYCQqbCa7pLKn2WiKdcgPabB5ZKkRIk10Oncq0X0cwSkWx1mIgKmspFFOPKssSRjgk6alFCXYw4/oyc40AAFVnmZJy2NPblV2UzjrnvwMr/cOiO7sd+d4OYKVHgslWyfwDZQAms+qKcUe6jBYyDpasL1YZZwCEmXnu6VTLPpbrpgAQhYEBtrPkDBRUUymHDLP8rRxUCVrQ7H9lfrsF40ZHqYUq29cO+ep/vaoyzaudgBmgwRrV/5P2H0V1LtvRdgYQihmmhvUaWAgUa9Uus7GfB8QuHQOAmXzSndcMtrIsnADptKpg6gY+oR13PXbEMaYju7Lox9MZJqhs+j3ncTi8yyG1M9N/DRCQRS2DpB0MiN438MiMxz3/Wwy2zPDd9ZE9tnL6FjsAnaCWwSLpzyMd2LVLuWYFLhIAxcyQDs6aFMnAa2U65hqVDpB0ylamdAWbOMDtQNxOdiRwEegMyexbBd6R+5GyU3JXa0dnq4LsHaQ/2tmQ7Fck3f699xyScSXZlVi2QDZbGAiyKPdiBbpmzryB4KhcRjrPTaFjYNggYE4EWeEtdzaBIBEFUEoAQTqDx7AE7hkchvCcI0WyuHDmh9LRL6ULc3otS2JyPAaVBx42ACyYGnxxPk0DFgzYKun4cI0BBIE6lziu64KEsSScCR7DECrAGlA3TL1xrycMBKuGKyIGVCccEwhgGHCNEkqB2QMRAjPAbOIjBuYX4M8nBF8sfxQB8ckwgQCwAQmy/q0oJzTgPhNgLVD7jSDfSDBB2kI+F66c7zrDTTRLnlE+NMXunmRlUr0AN6wsRzuG9n5VZY20QLAcnVwQZZ/WkpTXBQKZCPy6lycQksDhBQEsQWAQCAbBoBncqW027OLcL8e8bwaIBBhZgk7HwC2OIYA52b1ssJxa5Unf88aaC3HfQNyo2Nm8CQAhUDcBfgqsxQNm6ML1MIReCBd8Vca3CtQHFAPPNXHfk6XuwHK6c02sSYFVI2jb3eCLY69ydXMG5j1ZgiMZAMNZbpH635OxcGGHISuHH4Bs0G+fQXXGQJjYHsfvwD1hxuAKdcouPfnCtiHnvwu4EMcZ/ddsgZUgRS5yqPT6UnYO/ZN6HKqAaZ91gNPOFBzBux1EI3AT2GBcz3OuwATUJZyrAhRagmIBJMNbBIORgSDblWB/H2jgakFKBQJxybKftPEX5BXYXdDTtHc6uFx2CZBzkNFcQjdZyrHOwrI5kxWPwyRASzJ+zLLQOX2ulOuc356yIFjJ12pwd1mjFQjlbEfacHkeh0Ct7FCWWfE8d0QGBA6pcicVnBPqkBpbhKeNJ824ts/XsonwYgsVy1PUErQ9klZGUJ8qCN7qEq0iyaRVe0YTlJafQXc17c22WNBQ/wB2yaM9dunPH7ZXzeI2Z3Nu+2N9n+Ccnfu67KM84FFn8mvAse25ZkYBCmwUvYBZMhbVd/RzXu09Rn33Xsq5bbu9FqAfm884bI62g/mO8/EvP9tL3OPrV+Z8v9rr/cuXe0Dp2raP94u41/fbdwC45q9l9dt89N1q920vTRnjex3qlS+sp9HwEnxvtOmOe0jb80CDE445KkmqMtQ5msOu3/MhfQ/74/duQayx7t8XKLavB9tiz3mS/te5Zt/PIwRSr33rQ/zBu1+X/p90PY5flB1+gNpqTRMwUaL6KtvbBue/BPvlNZvSP98MlN+7durv/dw4ntpz0kvRSiL109GHoxtbInKPJcNP9TuOmY/v87gVyl61464bKFDEIe8iaPhg65PaQ68sZfH9vdiyCEnbt/ZG+Szy3Jb6fJxztIGLpU8k2W94Hujrmh1kPQUClxp/vePUB5BMIiO4luAuJhUUQ99mPo6dYBJBplHj/AeEACXJ8zuUtoBkWTEHqsxeHHqhk4oOrV1JhkMUao4w+tkSxo7lTNDsxCfkoMQO3c5P0+dTemPkWRRAMjNF6zQBgoza5aeoVjYn5WDxrMmzrZL06n5W5fuQLI3uBMOX5NbneWx5yyK7nGBIgH6t1EHcN8UAxrFWUlqxIZGBe50qvYSFMmBAsVojWS/rbF/uXKOV+0JpTxMblHZSbF+GR6SvN8sCph9hFQNVJrpEsrvOYmftHRZZSk66j3XGE4gfKH8X7cLtkwPQpW3pO6i/H2dDzmK07tlnwdk6yax0cZol1Ct+fH73fH+5PvvtH78eJ+/2bu/2bu/2bu/2bu/2bu/2bv/h7U+DlBxPyFIEDFMCSxwYD6g7LiMbDlyZ3Q5BjAEZyvJtypuSx4INgRiZEpjpKCB1v2AIASEyFBoLsZ4QUUwIVjE0REBDGWiUrB+uAleDX2QnGXIB90ywkrH0CRadDXmR1ovZPVjVBwBizPC3YIBOgIUM5goQwfI0Isrg4UpK47WY0ZwAFZELHoYFY0m3iyxKOgZ0GPRa+BwDcgNzGcwGVB2qC9cgexTE8XEN3LEwcwXCZzoGSD38tSZgiqGAJ1OLx4R44I7ADI4fAYgRUDFEYI+BywVYLMXyXICJYZlABwO/NlkWarpi2AcuAPAbK1gmLhYJiCaEzDxZbmKtxTIKEMxFJqrbBRiGmQ4dswIgOEgLLRAdGFcGEWRBlYAVVcEwMm55ZgyTNBsQG4CyLAoknQDls3PPrDygAAynm08amFIZUul2LD9bPi+hE0Ax+lRpJkkmnMrsF2afzTkxLMuZpZMvpIAIGbjy/LcBTPQqp1P2rR16DDZLrj8CyRpAp5mpAWtt92o5MjPA3Z67w2HKv54BDb5TlU6TbrLnBjV75XQqEAcEVQ4ovaov/ns65gCXIyiYby8gSTkaPWkG6HyOzrTvDx3u4WrtZOt+RTvZOnACOpvC53bUCBmLVCzXuxyb6OecQTEthqp+D9L5s52JZ9kzQTngpH3HUDkYqw4nqR7fqyBAFLgnszXz76/MAfWOYt1I+aBbjO/BAVrJn6O/fzhTI1BLHz3A0y8l7cjr5c35aEfxL61d5Xs+sy96OBMl50mSfeoMuFdAUHJC97x0F1/6i4h+drMM5biL0eIUqSoFEkIq+E3PLyiAUjnvJYPnxVaFOGQsMs+0x1WB4r2e7AMS6OrwVQHq2WWfotbBwHI8VWKovYzl/CcXSEVHqJkWKiM6yk2fjnUCKumk5eB5doYIdahpggR4LqvyHF/Lm3HNVxRGgI84SveEkPkplPJGYGSkbhwcUAI2HGT9MaEjXFXppHcAg8U0TQZcyZhnSuAU2Z3smJMB04ssWO4Z83c8Hga9uO5f7oggM8ryiTUnKrMXMiBGFiLRTwKshAEI0SwMoEZGp0tZ+jQCP9fCHZIlvwLDHVgrfeZC9h9EBgYcgRtr5XtMoRhwN2BoAp0DELIOmmln7M55k6Eqz7rwaMr+kl0y/k14svZInilmV2cn14EWtrCeydC3VuoIgZlkRrDT8T4z+3wxqPH0QEiy8EmxMwksOFZRSp57YDZyoLQNGYs2qxkRcMsX1IDld4KAB2Yo7jmxZjIlieHpEzEnRAwKS1uGAZiFyFKEGS6LOuOTmUgJFLt94SttpS8nU5+BLFn3mqis7CUOX6tLPU4PgrZ9JphbMX0mk2ICKpzMNB6z9WSkjqCOJCAmSkfUlk17o3V4q68qk3VQ7uR8ViBrn1Jbx0q+hzpmgz3/yi2iyu8mc2VRK0RmhwsQfgQ4dZfYjBOYn3pac0IFBbYtgGACgiOSdUCwVBNKxPPHVBPEXfoMrWtDhMywyXAoohnMSvANCgQUyebGNXEPMsgJIBZISta2WbhaCWRVwctplQx/6HOxWKEyacOSoUHthbEOM7CK7UDQjBDFtFM21yo5ybMqAJbTJF1Bfq5sAH5uVfC7SmdJgqDAs5LgpgHvIGDq0EF9qIt73kOgOmAChK9mKvVkc+LZSQa9AgKU3V1sVA45GDeiwYxpDfXZrFZndAL8joA2A6XUpSvyTclWwftLlqrZEouO0BPNlsffDvqXXbJtLum/dfJIPa6D9+g9C5EGiYkgbf3oZ8rRl3qylyLJdUAcACXU74CCau/Xp31/2NkNzs+xRhqvGzCeI5P9Shz6q0dU04TXtu3i+kj1eX+7dVr9re8vsr9TivEbCKXsxG3fHqsXL2/dRmz+9bQpf+28/Pq+74PD92ByrQmOAdc8vyZMnPr/GM2xXAW+qbmoDu8uVdx+B6il7YQ/OgsK0NFBfwAFjtyB/lrxU3Lw8nNgAz32v8+x1L35fMiWt/5sD20Hzfd9CC//fpkr2WPZwvjPzr7dpy1n+07Q+6bmODt9Tl/dFOPcADh0ytn/ep+cz9vjp33g/f0TUodMoHj5EfZ8RAJuDxGhvpANHjnviS4vYlMHDZ8h1du973tnvMx99rMAnQ0WyT+SRZ3sRfW8ekcrxzZrEMVkvOeyZEETjd8AzOx8l5KDJoMhEHkmb90p+e+AI8uatmqSZGjPGe0kpzxrc0KZTMY7WCVVEKhb5VEdxcRLva57bjFyQqSXH3lcKaqkme0yqUIbG5pJbAmELp9eP6kYnGg00NYH4F533g2YKcYjAqXlZT966gdP31Hf4w4pRt3vxPs+TPbPZPtWINY+b5JjHHXPY2KFN2tRCS5Ng0zKiJKhVxkD8px/0VFkRWIJwdhsQJ7M2WBf45Cvkv26v4c47rUIair26qQZ5F2K8q+CZuguv46A95iFQEz6VleOXQ+ZKUUcAMv2RQDg/dvb5oq9L1vPHnZO/m+fAcfZIth2D+T8IkqJ1thrszWwNRq+hw1b3tpy6z45t34tTjMqvdu7vdu7vdu7vdu7vdu7vdu7/avanwcpzQxkueHpgSXGC52OvnDG3E4GljgxBJjNcg2WS8srLCwyQO2RLldnOQ4VyFKYT6g7GSXGgxd2AA9VXAGCmB5Z8krpbFcMIFi+pBznEQIdF0SUF0xlBr+BJVoiAve94EsAFlkjc4BpAk/YR62LfQU5EZvNKMrhK1n2xKAYEFxYegE68LguXOPCGMDnh+FzWGbJ59gFYNkZZ3BMhY5lcThuzHVDcGEuwIMeDweAMCzlfDNrecHXwu0AYLgXAxeA46GSDBIgmMoG1lTMAL7uhVsFY3ziAcfwn7jlxuMauAZL6jDwAIRP3F8Tdo0sTZJlc2RCdCAm+xCi7aSwLLsQcIQSZqQhmC5AMMNbBgBZYIYzEPJAQOGTDg+FIERxO+CiDPSaYmR88lYGQMtB1EAMd0CVDEGZSV3MKlW2Q6Cce+TvTRNcVI5Bjn/oQHQGFBlAJNlB1FnyIFYgLPJz2xkKgMwByYrAYG60c4DOz2Lc0ewT+Hmcgc2UP1ECpZKVI3bSenrGDmdlOzjrfelslHIKebKBCIra4QyJ7jJf6WCv7DKRdHekc1O2o0Qq6JLvrSCZJ0+3aj6naK+z86rbeQvsX3Urx1ZHPASFsiknDH+ec9yOl3SyRLGIoB3ONZYabTmakE70CkT1fB6O/O9BnnrGq0tHd0AB0RTwta5iSpaGM0AQkf081rL6ls6n6sc6mbI0Paq9guWEDDQLQE9l6hmc2ZB7rirwIYKm1a+SelIfiA0gqkCKFrvSsf7nIrZkCYP62/GPdmo34Opw9lKENJ2VBcRKIBdqzMerT6c40AHgXc7vCMIVsxkiMyyTGyMZ61Ic0smHdu6qZemiAiCiyr2lsy8W5ShlSpM9KxbXhM5fzcB7OsrFEB1YDJb3UoeuTAWu7N7qRkpS5NyrVMmFylTl3zWD0GM8cH38wBgfzSKxVmAVaBepZ0qUwEA2y3SCIOF0ttrQLNm35XIYAbkmBoSSZr/WQjMKkY57gpUAlwVYQPTiOW0sHcGKRmQFKp2pZjBVLL8BNTxXQNUhazK7+Rr4kAF/CMHRT4deCsRK9pwr2UbI/GjDIK5Alv4Jo+7e4DMF/Im1boRMwPj5+fxiOQUEpi8Inrg07aKQDdpWgQ4BnGDdcEPIgsRKRkeBY+EOsi3Z2HswgoH5+54ZiMigig6ed5YglWRDcdxYEZDxYHk0AQJPsMTdSHlwRCzcUzEnCBhwgnbuYpqJdKwrweYiiyAxI1jdVbI8HAFEjxhwFbiTSWmtO4MoaRMG5WvOBXOHfQjCFMtTEJbAZNAGEMWcEz4dw3YgQiIQYvCVu1cEEoKfPyfEnKX91sIlgcmjEdMjS92xnJuAgCRVAj5EFfdM5s48kwhyWRlYKHDECf7jvvUqA1Fls/pook5RJfBMEsiNPL9bh5RubnBRK6rUr9Rvr8DL0qnU26+g00Pf/pVbZqE7WF45ipUOIHAXex4jZd4Om0lRgNWyAcouAaqiS4CBLl8LmncOj0g9HGkLajOqhKUZ0cAnBkQ14SoVwlPhHmgLRVNTZ4B3zuhAcaTxopJBVR6efY4gRy2IZh8p9lgPfq/Pq1CE8lwwsdaNNpRMp+oZHMzCaSJAMiTwvGLZEoKsAoA2EF/yfPJQxOIZpgIGvXOtyE6QpfEMGCopg+j7luhAQDCXM/4nI+2dYPKBMAlDRKAm8OA9UuAcW+QZ3TWo8lxdm3GJFstho+XaSJ8/FYglYNaEICvkEV92Ts196xHh2ag73tc2bQf9ulMJVzhsurLlO6xctlye123HprkaKLYs279IIFqXKwbaFt5WHKgX2mTWF21StnHfBfpnOVdH4LK+05rl/FLZ1pLzULZ1fa7kuw1PyTkW8MRK7PC3oKdg29AdpI4dmD01F7+6O/X6N2TJIDk+W7qvgrwvb32xCXvk8u3Jsm2pc4/ub/zaylbs5/YE5ZyUDDV7bhzfxcv8/MHTXyfk17/u3rUNf1rO6Hd2P6Ns2hOcUiZtdPC8X9Tyv+8Tv/ZPfv2OnP3Zf+99k3PjL/NR96vzkd8Ge77++9487r7N+tbb6ThDY8997f/aZ1K/7CvJXv9TCkoviNQt6qVTL338o/X4NjLu2wSIFCNupUq1PsK+4xDwsU+TzW7DMRFvKnhZozoy81mlK3gGbFno+7Lw6WQe0pYjMh9uvWlZnpdJDmSFLWB96N7X0f+n3/DcOblZ8p175+vBHruxINIyIr1+NSf1vWhQVbF7a8kkrHVqs+0l+Mv7YuKIlXaCKpkEDcAKDDGyiIcDmQxRrI4cgjYIiUCpPZ/whMEGfVsUvQGfN8pXEM7fF2i7WIxycmgXhTFBNGq5CJiX0jWS91sV6OFb6MsYNrhW1Zhcp8LqxSmDFJ+UmH6m57u4XqW3PRyrL3ql6/rGgt473b/0A9V5zizFZNSkfbFQZdUClYzgWKjEoWI6Kgb3SFbfcEBjy4SvKosaLLEn0SzS7iV325b3tVgKu/w/uUk6LVCELOrBPUN/eAGw9l3cE7iugle9+qIPKOsNOu49WALT2rOx0iflYf02n7Jnuu4GeS6LlG1a/uWjNxHYiS14ASWd9sK7vdu7vdu7vdu7vdu7vdu7vdu/qv35cm83naUrAmsOOBR60DybKaBVkkYAFVwC0u6rwJQ12E0ZDBdfUKejf0EwAwhhebBwwKAwUzynA18O1cC4BGMoZDnLzSXtxAqy/ugkqMYi4KpYlekEgemgn1gDwM3SYi5YUNwr4CuznlUgsfDxeMBXwBaw5oKJJ9OOdamCFYAVhgACF+G8KN/nMaD6QNgDlz1wDcHHh+G6ApcK7AKgT9yq8AyWigKhydSwIrOkLkSwvMmcdOiZLjoVEJgrIDEx1OEyMe/JwGMMYBmmDoKGhiL0AWABOpN94cLjoVBZEBdYXBga8AsMpM6AwTMwOaBLATGEGdYgwxE8MB4ChEHwgYUbz+mI/BxCcYnx8i8KYDH4UswLVSgjAlgMEBK8lOWO0hmiEmTmMsVlhhGCSw23BlwB8cDIskUEH8XOFC52E6E7RSQzyiswIQpdwMxyNwrh+mY5qbUo15qsFVAl04UozAbGGA3ucI/MXMzQljDzfWVwig6xhYgFq6CzAnAyNixUSRk6qDSZVbbDooKSCzV7ogn0SgfJSuAGg+R0qlTAGkCyMaWT1hlEgipWMBBdjCOk9Q5UIKGBOMmOpumoqeAQHc6rPk62FjGyq6AcqgUsOVyTIdBQ5C6DmaFo3aPWsgJ4KohYKBBUZPi4nxZkQ4mUKQYiD6e0CMsHgZ2MpI5nR7iGdNiBfW6YxtFKV3wLWUQ9Q/bv6CSMLqMlHcNwANqlV6h7dvDGOw1RmuXKkY7DkGbfqiBkBWbL+VVu9SgPphQ7kR0drmBAgah6kqjGDyAbQR2cRwJ3tL+/yy9klmIvRwZBDkdyeGXQUoK7PFs+B7qD7lojKYe4pw4PHKVpck83O9cG8NRkb8BfOd+iP0MxSxlvRinZgJ/qT84TsJ3z3D8EDjVAqcLXBWLScsASkqTjwTVYCQwr/6holgQoJ6IkUJbAzYENlpOcv1DQkbvqGQGBQnVgCLOaXQKiAyKGYYphwLgGxvWBYRcuo2f96Sxp1Yohg3WV6x3NAkZdamoZ8NeWBZYftSwhJxgyOiALAdkGlWXMNMt+QhhIHsYzX6vMqw5cF4PxPskc57i7ZI+o46GGkIHnXAhxTFlQKHSxxJ0Mw/InNAyCgdt/JzOiWpbSBGYzthAsqaaAGUIMKoZ7OiKMlWOtSuANPJ+LQCMpeQIuFcBvzPk77PrAnNw3ViXY8ABMADEs/4KkA140KPfKMgWqAUw6yiEAluMxBqqsZ4QkwAaY07vshMIgbiDmkef30gTlSAB4AgW6guGeT9yTTIpVpsEz7dwEGJplAAUwIdsjyy4Olui1Ab0uuBNM7AuYzyfWTdDTdIeaZhZ5Zk/rwFCeEUsGgIH5nMAUwB3zfgIy4UigeUayXAJW5IhyIbCIbZpkg4JMTFkQDeggW5eoYVyRzEqDa3MviDhMWGaWDDBbX881YaXHFu1TEcpsne/iBLF4BahOB39p3g7ylU7H1pXBwNda3NslQx27OYPcSOYcCCJ1wWbI4OcK2LuTBPbv/ootFkfLM4xAPgaGt36F1dlEXdSlRxQJUvKep/CV4IhiPNhnIc+yaFtHcq9IPRqbOMBryoKdlAz4QJXn1nHOWQU1kRZs6cJ8ALvOs9cMvWYhDol1gJD4SoI1CxCTfS97Raq0qQFqLH2pgmGCkSApNQASWGlzSQWwReGLzG9SwF5utR1ktwzypb3AbvPvyz11+F6PWIEVkqjhfFCyPqnSLmelt0EAq6TNu3L2tOYqA3x599E8Z/lzyoJDEoAvyda3ywJWYFHzMJQC5+S5ipAsMZNMnSbbnqNZQXAiyN7Lc73slQIRFRju3Md5/rewHJ9D7vE2Gw8rsRgcpH6jueELTJyBdNV+fgSSEeSQhRqnoNlIIpj44WnbIEGTtI4pjyyBxzk+46W15qedRsbXMuSk9VKKTIM29+BOmyr1UtukfJS3fdVT9jJDUnOX9tMGzH+zL+t9/f7Y/fjWz3q3YNs02jKSdlRsEOiei63P6+fdpPrHPkXUKM6+ovf2/rugbIUNMqt5zye8rAtan5+qqbXbqSsiDlYxeXk37zwHSCEfUbC617JC+5ktqt23tHWOfmwQ2jdQl5zzhbZZu4fNKMWP9DWgz7/oO+X3fp1ApOOnh86vYZ/yWcImLS5So6lrz9HX10flHjj7n2slu9P9+G8d6mfUeF50lGzpZ3f3mrzOH7qfDepAMQjtUrC1/6TW5rATer9kvxWv89MfdSl8HeqezWSs/EDqiLoHmQnUeMfQ1HGqBJf2neWcl5YBaZ0D6NFf7T1WuhAoVkRtfAYJD6V1YI1SgQYeFbhKlKVcqwxsuELFG/TBrvAMowkcvYAk9uP9jGynyHsA7TGt8qsCaGSJY+GKawFvjr1RZWBFFMMEgIGmIP0N/H7Jg2PFbHYpJPsTbUX6Bk0kS41566UADkbtnLCo2zJB+Ujdh5QpRQGQeN+qMrJlgy1HJpWhzy4mmNYdu4D4NZelVyi4uikwc72cfmSMxPJSzgpAHWuxVF0CtuDpn0vWXoHC8l6gkuyN4FykqmJyQNqWvSfO/X3s97ZvMhFwpfzWPijmzQJxA8CaPHuNGS3cR8cB1/MlWzui9FraO6ziJ7k2TE59seUFbTt1K2pWbH0i1feXYzF/3wc80IC3en9tgPMYLSH65Zx/t3d7t3d7t3d7t3d7t3d7t3f717Q/DVK6b4JyXAaAi85+08ycung5zzJlgAJqGOMBFQKLTCZUJsi4c+F+fiUDS2AoM46eyFJuQiCKKDBksjQOlC7tkHTMTgbNEEAMTA+ELsx7IVaWsEFgXOkwyItzAasMApjBb8WwB+jGZskTU0uq6GJVMAYLwzB8wHQigsFQQAkVCQbhRDTL0hhML0AGZAx8Xhc+Pgb+9mPgb58TwxeGX3DjeIcYLgAiCheDxDNL2wmgD5B5xzESvDIuyeDyZPDAHevmGKYDWAR7TaHjYoRhToM8Bq5hEF/wMKheMBGMfzPYPbDmAzYUv30M/LhuPJ90kDCxaQBXwOdPRCxcMaD6AZ/KnDRn+ZkbwcChA6aGoYNlhGTBYzHIPAzAJwKT2UpzYblguuGZQQVbN0FsylKBmqw4lxqdTmJwLCaxCdkwypEsUZ6SzLtPTxTjJQLIwBAgZCHgzDIDACFDRGV6C7Kyx6BDZIBOKqixLKGR9cJ0B74CggWHJYMKA3F05CHp2MUFCOMvLZlXEqxFxw6D5S902OkcC5yAATqDGFiYqCx0g3bGPvuzM+bb4YJkCRHPAIxDSWe1S9LlZxmvyNJzEhDZc825kyyDV6CT7ZwSG7kmAMuc0WHkxTCTco928GXQK8qNSvBDZSLSyZSl2spJIztjjUErBpAtUyqLvaKce54hG4gkGXdLDtK9l1mo6RzDnjeOSyEW6fjPryRbTYS/BBvNMhgn5UBUqslaVxWEDBg9p6ikPlugg65RHvl8B1Z4Pz9yfLlamVGYzsigB0y1w62oTLsKZFepL/keVEg/MZm/+MPIALkJ1zKc4EzkrGp/jsJW7yE4MSeqM7gBoEA50cExxJbpdiDnvqhAaDNnhGc/D4YoqcCx9HsqqJgC1O+jrFQ8jyVhSsYD2ox2hiz/qJ7B6UhZ35npHqud5hVgkyp1CmYZQ6hHHQrXtfdIOk5ZgTCBXMb32EiQqYIsI5llqSJ0VC5nKR0ELhutuzBYbu0SJbNRlqa8huHx44LYRXY7T52kBnNHrAU1yo/L1kFiOf2SADkoQaEmiLB23kqWlVthuGzAbMAj8GHBs80lM5y5/qaCRwJPJRQDCrsGUOVR7UJInrbKeTG9YBDMdPY+HheDEhGINTHlgo8L7oK1BjTPcrMf1M3Xg89SYMwH2YyE5ckus2SKU9wREL3g7jB94ONDMUyxlmDIxNSBiAmZC5dcQNxwDbgOnhdDIPrIPaIwfOC+J+hOD8AFYwgtDx8wNcgHQQyICQLVBIoFMwKIPKij7zXhC1zbh+JjDIhMwAViA3MFIm6s5ySzExbIuibwzA43uRCa2df6SBaVyeeY8TwQ6ijzwKUKN4Xn2B5jADJwr8D9XIh5pw1Ae0lX4GFK1sagDfeQJx7q3AcRWHEjlADktRywARGWhLIMDBBjmBnTmmGWRQWlFniIAVgEuaZ8ruW4XBMDsWCycAdZniwz/gHgnjxPPAKxCMhwLLinzRvRrGQEajjCLXWUE0zjN4rxUPLMYbAnAYVaWdXOMmYRDXrZAUZ+f6T+d3eWMo4C7HoG2DTLo0pnO58sGTVTL/r8L9ZWM6hSbxPjom3XFZCc+g5cZy37ukBKde4IkycyGKRq0AjawRV0EeG1RCqOtgNVkVEiFZ6zy41nvhZTVgJJUKwMKX+euq5MNOHJqloJFPl0qfeutPc0y4nQBpQCm/f5xP9I2jU0jASClANFA+yuy3BdDnOHJOCZtgtLMiLQTFQCyqTkwU5gek8hLKNa7rs0SdlxxQroFViEIUKxQjGGQbIcG4rBTwPimowFgmEKjIU5976AVDDuhiyO39Xga9t1xUaqmna3JLALtD+qLIuo8a4FJ5NusBzkirIBAgruvZUMFhU81zxDIATJt82hBzdKmqP7FlFD4Hc3PKPgcVEGY8o5CCqNtD2FN9pdJphrzBgnbcUGVifoe5foKyACEjQXCVraAKVARskRHZ8ucksKbIWq0w6UE1iTtnDbhQIceqY+t4PPZUsWQmZ/tmzA2mcNVNiCTotbKkQeFc/ub9UzN4iqWKRK1nOe+w53Pjt1xKkn+/VnZxKg0eAv6Up0vS1PlpqNguP/ZI9l6xz+p5k4onRN7K+3NsHr+4E0tvJdewnQ4PiaU8juaD637CWRfbOp9dqspqkDAy+AmNiT2HPVf8oxHtT4CsZe+rRHUE88noD9u2jC19oqvwCl5Jfv1nzsn8X5xrqfydn3b99/7cXL26r3/Z9+fd0ON/gt9qT0n313CBwf2I/fZ3RJ5ll2KXVeysH3cex1q11b+/YorybnGPad56U8Xn6vSzrWHB579QRbNnBI+eQC/VgqFFGBDt3JGCljlSAW7ix5miPsHZh6rYAVJ2iQw6z+J+imxpqMRnLcI7WW6xif1N89oF2BjQedxMjx8txnEuPW1SR7Ld28FWiVNuZ7PZOZhHOgLLnMjDmFyIKMR95DKTCOLAOmSF+nZT8US8hQHzHJbB2aoHSB6SM3yWGLRiWxRJavp8JSFQJSXKAyIJY6wMs/m7NWerV+4plAKpksgkokYeLJioC4vzAL58SU2qb9htXnafkVWJ4w6EMsOQwyrIswWYnJHFzEFcCanvfq/G76gyK/5yDjlcoCbajKYKBPIGKzSDHTD1smSk/meapp6/UulG0a1cc9mfcF9PFI+Lbx1XqvNfhbCiCFTpr0BoPmvkudXScx5bYSv1JXlwieZww3dfbtODNLR8TWw9sfsXVenbW1JwrguJMj+rB5Obfe7d3e7d3e7d3e7d3e7d3e7d3+le3Pl3vL7KIFaTYblywLYHR2hQrMLvgs592E2kAx55h9AEEGmYiB53xCFCwnhgGfgedcmIIMRCqGDsxgsCiE9MxjCDwmxBfWCrgPLP8CL6kXwhkEUFHcd5B9CQvuN8KS7aEZZlhiprOEIQgYdDAg4mslA/Rg9nwy1VToOsCMag9m6gsGQskCIVDIAGTQSTJGQK+AXcC1kFlJvC5KZuRHsISLYCDE8TO+oFkOaTCSSlafYHkeMj3cmMsBnwDIdiWZVU82iCyVMR5wvaDXAwML11qIMOj4ACww9EKMARHFuD4QP574mIrnPbEWg3BhX8lg4biH434GvnxCFljSRhWGC3YJ1rwzewcIW/haE2sFLAQXWP6BeDY6o9ZXsNwNMlM42XC+5k0ZYrUflqxLdoFynIUKNDOdy3HQjrKs39BApXSmuZdTezvXCYygl2zYSGfDYga6GQFseaG3IekMmQifUH1wpWS0CzJ85aM5DyqZgazCtP1kt4HwlxJJ6iKyHUH57/Qo9L93oC3BL/S0QEQasFPlPyrbkF3xzQKUzkrOz+6bJnBQsk+uknJ/OIhjj4vBswye5tzvDNj8TDs1c64DHWDYTltAxPrZfvxmZ7tth3G7XYSMWCv3qOQOrWBvwWU8g1PMjF8opxTX5jULXFonWAOV8pOoTNUqNVahgBdH0OHwYTDLWJ4yA7QSuXQ5NyJg2TchUCRidSm8kgcGyHMNvzuXYssL1/NwNKMc7NK6kWUFAMjO7KaTE3uNuwWD9+EZdN3Z18W4UM61cqOJnMGPdGy+dvFwiqPXt+dfjg+0O/2bM61aikIFtmtTUZYqEPAaXGFANTrIEu2kjGTrKT2e+1LK7ZfBwuxLdLCcDuraFhEEorD8ASno6fxNB2TKpaSj3g5GKfdAqKejnE5XlvOKpNxPJ6Oz9FGkjjdNUItmCYY8S6ljAbsu6BgE6hoBxdMBD5aMXCFJ7LADIAGWFQoJOnvF4FElOQG4kynEV4MxxjBAR4Mpr2EJwiBr3/VgsJhl7Qx3CGJNXGpYKgSQBin91RSmvxE8pYYhgqEfIGleghtTPy53iF084xVAZsKSoYiy8RgOM4HZg0DjUPB8uQjGSV0cCXT0LAEnS6BBIBGMwKdbBXM+sbDgaxIYKoYxBhwTlwFmD0QMAIq1nhghiMUCptAHEBOIGxYEfYflOeYLC7+T3Q+WQA7qe5YOs2QBJPPcsIuy+7iwQhnsIGwZ4XcCCwt0BIQ4Qb7p3A5ErkmylwTPwlgLsgIGScAlEPLkeGJg3oKfzwVfAVHHXA4zsnuFCqYaRIA7S3t6TMglWBMIM4KUB8ekl2MM3Wxp0Cw9gWQLnAnwDCwJ3AjYWtB7QsXJ6ifMgF4AZsws2etZwtExLss9LbhXvYfytuIGxLFmYE2Wb1yLQNEKgntEwtkXmqlNQAbPFXBW7QXOQECuZ4EMAOpZns+BAoIGgCjgQurt4hmqIIaXPZCBjcrUpgaqrOoCtv5FW7L5FXymgRWS50TZN30mR+oDZEk3Bqx4pqQeSRuOoDTDEDJjck75HZXNQFg2j2qCkDyaOZJrIoCMDtIQCF02S/T6U11U+VDPfVWBJtnMWCaQYjPMgFqd4dIledLGQZ4/0GQ8TWCOgmxAhtTJq89e37E38JSiFURb0HJ/c/ANWZZiHQVW9mdFpI0R++yMmg8GqLUCf8qElOSfyCpyDNiZsQwkkHayTOigPeZrIWICQnaE0MAKx2qmOA5EjIHW8EW7KM/nqLXNvctF5X2CAJP6ZO7FPlr3/itwg1fpNqOOBwosXfeGtD1SbjYDjDRe4sXWKds652xjGPh3rbVOAEDZUptJZqUA5H6u/p32LtD2UxzBVVaA3HYWbfxTERy2szTcbhtkzc4Qh01Wi5EyXTbSAYDYAK76fY2l5iOy3MzuRXzrz4mdKTu8QEVlW5+25fnvfg4Pp92L+vcf2LPnT+Tb3+qqVfNyvmrfBY67Aw4LVV7+6Hfv0pTac16gir3rZa9rFOCsHnOO9fszq2+HFhGkMe/JxOvfnsNnRRms5/hf3vLa5FzE11+8juO8G367C9bY+zPYSR3IsZfcyvHfo9s9T/ufe+8KjnefY6n/fLuL7E99H9MhZ4csFPCTvywFI32P2juV3+vkheOuy9/WuXEOfp+FFBPZv86Hv7AoAqi7aJ0pIjjW+egUtg7UBLr8uhb8FM+1ZDWUYvbJ/ydoXM0201Ge3VUat0VADj2pO5mkzp+AEIxcsl7T2vZAvVdL0XayRMlu5a7koYEAWX807yPnGpOth2c5hGDzBgs1EKue9V1PHaBIFyDBWqK0DzTvIwWdKuCYHkk0ngYt3aebjSp7B19kZXL3VCw1dk8GWcs1LX9GlY+n75K/W+lDAyRtI57/iyWyX3xh3jqc5eV5vyWLctAele0fCnFElpVT2T6EKBBOnYWHzYzS72ln1dmbDjFAZ36fazVXbbdoHal5H4EKlqQdHhtoK8JytaK0dqDBXDah/6XKdyZeCLVKdYaGIJNFHFr3BZNk3c5xQTppTHLOWa4OZUL22UW7NEv6Rb4j8OIjq/3IKfKcszr76hQ7dWQcPyvQ1B/rMOk+77HWkSj/5GdROgZbV/Ru/aPD4N3e7d3e7d3e7d3e7d3e7d3e7T+w/WmQktiVrCG89TiEF1oFApNOBmRgQQVmDsGdtb6VQKPlGOaImBjXB1wNaz3piA7D56VATNyYCOEFVIpUJQjOISOHw4ZC/EI8J5ZPMAuWdNN3zMy6HBgwBr+YfARmqAIDgrkccy24KlwBX+jsMIgihjHYdi+O1YNOADdgpUMh50PTEaFicFwdPBQz6BhQC1yXQGKlw11QJSQq4L0ycH1XCREIYJ+8uC6WP1nOzH9OvcMwsTJDa+bN3gHEJAuDG50aNhT2ENjDYAO4dOBhH5grcOPCuC4M+8BlF8doA4Ib656Y8yfu+++Y99+B+GKgEI7pCzEXsBTrDuAa0KEwDFw+YR8X5nTMJXBV3F8OZoOz3MzzDpCYS3FlRltgIWYACYpZVaYtAivHN2JgjQv4+MJ1G64JiAemOwOB6cArB5FncLwce5FBGhUQUCbIQDtZXRoYk0F/6XUFZKRTiqsPxErgCTDXE6EXoAdFdCBpWtKRGZEAFAZHCGpSFPBBJAOzHcxMF0w56dLbV84KVWUFkPQ0hhRAD+n8q+ytaBr2FeloV8t3CpCAntNZIVJgJc6m6QGKSQec5Li8Aq/paKwMsKJAL4dTg3va6VqOmKN1bGGXTjkdu/V7vrCYGAjS0sriwxk4RDuVPMMJicFIR1c6YJEhXjmyQSXBTpAOHu3xbMdRTdp2v24n4BlcYB84ni7VEcIyJ/Ti5n73lJt8Yjr+yuGFdHaVo6zd0R1cQ8tJl6hx9koziJj+483gkGtUTl0gdXA59SqQjNdM9vpeZPnNKoHz4g5rWU5gU2ZMFqX9drKh5/N11eX4Xe4jHNmBL9+pzM6aO86pnsNs1rLcW1W+ruW6YG7a858PRXn+WFqxOl0sBznm1DXFlCLpVGZMfabzr0KP2mtQ8qSNm9wgKgn+kE5SZ9XOnjhmm5oIhg2ewZURa+lE182+AQRi0TG8JsCQtrJ8KchWxFJx7BuDvgaVZAfMM5OlVhVr3QRIpT71CMhyuAwEJhSKW0bWU0pmNjWofYBcZjx/XQj0vadjPAYUWWJCn4hk9rmEPw9LtrkQliVTxRDDHQ4Lp+41gl4I7BWoDpiReUpwYegFtQkBmQUjHDqMYGuwnOmcgEkAvqCx8LgU93piXIrpLFNJZjMF9ALWjYgJG4LH54N7fi64T9wJtBhD4M7sZADsr1Alwwz3ciwPrDUQIHhCwXJzAbD8w6UMeMcNYEKN+3PGwr0c95xkYsNE4Ob65d5ca2VJhGAZUgkAGShIYFosh6yfCF8wFSwRLNcEWUYysF2YvrCEZ3nEwmUKgeHpCyIsb+dwllETgY0PAjZg1NuxoAAelgD4kcEQF57nSoAfQQkCdWaxz1iYMSFrQe8FscDI7VDBNQlHLIIVVXn2QZGldB0LPAPhLE8XvrCWY84EVDVwpf5f+zP/XWDgKB3DLHZVwOfqfV4tgM3cVlnYkjZHng2eQfUQfqbGwxKfqTPyfO1ARwWJUMww9tcOKpTizihJlC2D1HcZ8BaxHd9OQFIDVaLk1iE6CGaJ2QE7gPadF7tNMVHmfaJA2Cx3iwQKJ6hHeJ+hLlutv5HAxSpNss+EIPDQeUep50qNtWwSswRNl41X5xNov6Wo1Bh4BlS5HXSsSFC2YsVmCbSSCO7dnFfPM5zznAxKySTkUcxstBNVApKg+pAKqqVsep3dHJcpA8BmgBplznTAIVhhWbLMsvxyAplC4D7hfmOtnwTcOu80XbrWQebcoDIko0UAQ2ECrExMQQYB9Tg7eRfj2TKKySLXx/NeJFYAJDRzhDJTAmILI0sMztj2FqSAQgXm9r2/WgZqrfM/uU9NE1TYtsj+s21IxeZCcfbZQ3jfScbScVTorfXvdU0bFijTrwKKkdtmByP7D8nt1DZU7K/J7m9prmK2gpT9j5ffo2zn6mBIT882RyXBEAAOkH196VVdRf80GlCSne6XHJ+NPTg5vp0j2/sw/uj7R/+l7MZ9Qakl7vk5bNJz/AVU2iBScE9WP76NNaQVINpWbmDKfs33+wNQYJi8RxzWc7NeogLy+Xzf87F7fLzr+zzgHOvxnTiB/jmWo39orRV/0P9W9+fHj/EfPelH1hx7g1VKtxWzVolmIMXjG4Ng3Rn26+pvdYbU3QJ4GQqOH+SC7ISQek/sOSjAhPR15NtYzv21z+zX+9o5FUwiOPtVoPxendzDLDuGPjfjAATyAefdW7ZsRMl8nCpj649O6mkatvYTlJzVXboSasLrbpk3e03Ak5YOLclK8I4kaFyQ7MeW4JsNkCrQCyAbjJwli5stLM9SFd17LQQRiqpcaUIGQFGWIYbQKmbCoZPtDjwTClS2ovR5TU+eC3mHpY8jGQojAby40R4F4bnf58JCsh7R32UKLEyIKUz4nSqTGXmmIVmnydLOMyhStjnXW+bLlmSiSQLH8rMaAtjYQKJKsurzK+f5YNIqnebuyeBZIKOyw+os9fYPATy3mZiSgF7wztk7WnhmS76Wmu0AKCvBQAYAoky+FOs+8fwHhiXIrGQ67zWNWdsbOJkxI/dV8mlL+bU8AWQJ2AbPvdMGrzt+nYAFaC9N4DU6L8BR3gDy76UIyr+39WGBHmvLnl6d/E6+oZZpj+z1PM7jF33OROy/f9P2/dnXH/fbXp/+/cx8t3d7t3d7t3d7t3d7t3d7t3f7j21/nklpMYtFg4E7SAZCEPC1YEoQxFCBmKCymxUL4U9EBsbXWmC+/g1AcJlCA7iEz32MZHwRh6zFDOOorFVBrLw0SpZIG4rnFAgGdCyoTgb9pUpvSF/0hw6wigOBIn6TjSDwwHUFXCfgBDfQQcKsHJcFn4G5PNkYyLDDDDcyK40qVQH6Lgws+SbqgCwoLogYLhU8bNC5cy8MAVwMzIq6AV28NM9yViyYsGTJcuB2hZvBdGHYhMQNDYdNhY1P3CuwnIwTdM6RQWItwNxxxY0PyzGowsbA0AfEBmwMfH4+IOOB6/Pf8NBPrPsnfP0Df//3/4Lnz8D8h+PrXpjL4VPha2AuAWRA5MHyOdcNxEWWJP0JPCfMLuhlCL9gJtDh0MHMp2csXKq47IlPONYK/Ky1uRLoAZYJuteEw2DywI/HB/wR8Kn4KY7A3dTbFNF0cPmmf95X7nRqocjS856uwrI0KQOigisZOxwAMoNdRZgEfi+WFllk8Ql1BsZRDiLWql+LlNwA3QUrg20eGxDRXtcESjCQf0JByrGWjqFidEknYn3blCWcTueeBMuhFPCo+tEBm6RWH+UokXKSpZNxFfgrHVcumXTN3hXDGD2Nrw7GKlPDV5EiO7yCONoZau24SWBMO6OqQ9WfdkjKpndvh7O2062c+mZJwSXp8MPOKt5um3QJJcvTdyaoyqRDPpcO1/TOwssrlFN0OLDKQdR90i6HVR40svYshCjXyAF4lfBb6Xzb/S3P0nb21o/LifYaVPCWdaPe1pKonZ8PMFBJ5obYQ4oKMqSTsT4fh7wWswBpDHLe91yUM7SaVAA4v1tAqv37cgJWpuB2tqmW833PYf9TsB2uFUhAND19BVikKOfTSajFHJYO+3Sb9nwWa0lgOxpfA2ynj6/6S/r/ClJJeQM9EEJWiPTE0jma08N+TKhZz19y7XEcCmiWMpXaJwkQVk2GQcJZ0AAUpXNa3GF+g0mwyailDkIuLwjyrNJkTkJlaQvUBsuKDYKUmBl8kwlGQWd7go2WF/BEEbJg5skaNGAyILIAdRAOw0BzuMMuBrkRZCe8krlu2IPBfR0YorgKuDQWMIygWOR86YAtQaxkOJRAxA0fi/MiAhucR18DiKvLeiqos8ZjAKqY7tDnxIddMAm4LcBAlh9xXNcFlwtzglHtG1iT8iUgIEeD82sG/FwrMVp5TsQCsgSqiFG3q8PjyTNpACEfGAYsuSGYzZoDT50QE6qTZeJws+SpB+ZaiHWT3amCdKEJhE5nfUW214JdfJ4DdPK7gKWT8uwU6pGbtdDwUMNDBOEEQ1+2ILEwZOCGY0pAL6UdBMX0hU9TXKp4JFj7ea905C869d2ZLT0Z1CGQpMpPZVAiz2dOXWCIQHQAD01bc4M7QwQmhiWSZ06Cjio4qApf/LkkAAoxMuj2zKxoyunyRbbMBOZ7M5ghg2Ujs82D8h13/sn9U4DpUze5WJ/lUAKUAgk8rOBGMqktbDthHRHQOvtWBkFadx5Agr9k8zz7JIFjqEBKnh+osn5pD9fvO4gmrXQDQPhKfcWfawbmTHuqIO4HY9ER1IsN+FYj06dDoOaQLF9dgbXSFKiyaZFwV8/s+tS9mgkRZ8kanrEMZEEy6Bfg/aZshDK86hySDfaoc0RUWF5EjaA/5elsHhs4K4LAov0JTRbEaH3esBjNe454ls8GyxCGIKq0cTiJr4IlGavUDMv5MMgKNSwwceVhiirdZ4OlHu16kOnNJxALX0/DfArW109gMYGFOF9NJtMEDgnIuJpgBZJeOVQMdhnctT4KBO9Izg0Ey+C1J7sHAVbH3CZDJss5ElAVhgyyR5t2ABpYjvpvmT/NooIWxs20xB/1XSLX8QW4XjkxL0CFaJu83lcxyQq8lgroUOILwuKlR7ukTNsT9aFKXIj9rBc7ShqQQIam4+ERfXdB2Teou8GeI44fqBK1eyfo/jz6iPrVvjrNzHNUsp+2mVVzgmXrEUD2OffL+NFzvZEXPbzsRw78+JKck1vvOQZ3PAq//K11WfRL6vX9qRxzxPletrJhSzZqrs53Uc4S0BFoncf7cIEM8h2vqrDegu8vfgXz1BfOcuT7IeeI6+8ccfTH5JDzfS5+78e5JtLP2b2s5/3xSbcBgXU3jt43dXzwjvXrePOLOd7jDPk+1lPQZd9NtvzKFp/zvvZNBl7YrXqfbYBS3Un+cLQJQirFUK91r4QTPz68T9h6FcsJ7y7xPpHr3WzO0n+U7NCI4bO9ni3Uf4osr1V2i2jf+3jWaTK+Ggo8e0L+Xk7pqH5G20WAJCtTem8kIDiSw6r/Wj/gvVcl2UBlADogwtKpJGZSltQWhYnllBLEtJz7SBogtO0tHlcJj/cqT89xaAQ0EaYhAsxFH2kIQkHmoEMGJciK6rEy4SyyPDCTMwucLihgTU6QAmlMIE+vtheAyNJqAjf2EQmyLxFk0pmjlLHlPbsS24LoYRStaa/W/k/qvjxPEsAnQnMt0meseQ7WWeQRgJdPrRIgViYUOcu6BbCweD8KaZ8wmSazRBy8WTCR/oYGZfUZRR9H3yuaDS3L7wZgoTTvUp5wMJJm4dkc04bxUM+efsXj59BDlr39OAVtKvauutbh0OvFfklFvbj+ddz0WSP77MRxbgINoAL2XpJKNDx0Z2Tf5OWZsdf1VOLv9m7v9m7v9m7v9m7v9m7v9m7/wvanQUqqF0QcHUoRBj+Hkf1IZbKkmC+MkcwIzrJwYgVmmulgH3zO2plixYpwpVPAfTLTfAmavl0AUcNCwNwgY2B8BD4lcE8A4rDBMmx0FDDQpQmmEgAXHnkxXbCRV8hQqALXNSCZRCSSGdSZCRv6AVsTz7kywY3OlQApmkIYACE7gEB1QZTAjjE+8fj4DePjgY8PxY8fihELKgsfy/HzZsasC4O6ALBMEMtxuSB8wdVgYlBXLChMBx5qGDCsSSYDmGA4YMszIWrhToezQ+DTAb0RKnAbwDA8dOBDFToGoIbLBj4+P3H9GPjt3wbL7PgH/vPXwP/4b8Df/8vE/PnVjicdhuvHgzFGYQb1Q+jUuN1xPT7x0MCIBz7+LfB0QCzwcdFZ8jUXHhbQuGHh+IiJaYGZ4C86FPLeLwMKYK4FuT4gjyc+Ho4fcyJkcuE0y+ih6MwZrOAtPTPqO9uu5C8gYCaW6YDAYDZgWZ5jmBIolt7GgDPjWQQww1wLyaud93464E25TiLl5AHu6cxe93IMaFabk3aelJNdDKjSZ9KAp8wAKzaLwAtd+HYwbAerQrGWZ3a7ZlBGO5CwVpV1o7NMtEqAJAAqQQNkCSgXexwBP3Sf6TxMh5Cc3o10yB/gIUFSZ0O65Epkyrs3m0J6ThI0I+nhkupDOexfwF4st/KSwZvrv53FO5hrGSgqhxlSthFkxFie+XGBTXt++KJqTgOR2JPTyVNgEOqLHcwph952E4EqjAw5Kg1QY/nHHPFORc8M/Xrer072F5BVObplf7+c9e18KgaPdpi9BrrTf5l+uJUZoztrtfxr5cCmGDqdsyAIQsDvoh3M1c/XgEIgHbkZpCYgjfv7xdWf666qWWInWvYqu/SY3SNsAphpl3ECatvy9wVYqeAiNDKR9yVUtoMQYu3oE0SX0quSg9rgN7QDmWdkZAmiIEObMHC83ZzF2CGIIR1U6HJOkqw3CDq7VbACsApHZ/98UYaJpVlwUXyYYTwCpgMzQRdjDIgOligTA/I8E1WYGXRcUL1SrxLIAjBQrmZAkNEolGBJBv4viA08xgXFg6AOWdC4sxQeg+7XdWGJQC6DmEI18Pm4cD1+QPAbRA1jMFgxzDCGwxW49AMGo02hA7oMvrjoZgb3LwCrnbbjeiSQmqBnA5KFRTFUMR4X7nDoWngMA/wLMR1+DcwVLe9rLZgq9OOD6b42Yf6APwHMG/AMwAMIfQDywDBPgHbg9oBFOueDTCGmhlDFvAtwsrDWYqCDtB/UPT4x7wUVlp37uC4AWZpq3vB7Amsyc1kFIlf57nt/VHY3baXUw6hyT44xBoy9p/2wHCvLTrgCz5iYcMg1YBIwd5bKM8rhMIW6Yd2OSw3j2gyEtydTlFdwYWW4ifaUiEFM8BiK5YGv+4vlFLDI9OSRWfEAgiAixMxgmxKYIAUC9maqU72SiWztwIKCvZrVp3L0R+9dd+oLeIEEBREG8SrPkPagLDBzPfX3CRoVjo8khtKBRCRDUsTccYEMLiGDD57K90WnV5C3VZG8BCn+yk2U+pIzXyZ+JICWe7zZW1JGW0LzbC5WQVHqirXII0VWRcmgWH47QdvoOasAbIEkMqCkAbU83CMabCMN9CugK20HLf4U0uG8BK3NeL1qkoPM3C9GSp61DgTLugEFDMm+BSeGH02grQhEBkH/ZrBLMR6CEcHAowcZTsu+QfY7dU1n90fBbuqd1MMElnqySVFONcGwEdRlQAa5Ep9DoB9LT4pJslBU4DnBpgZcH4slq8Pw4T/w/Lnw9T8X/jFnnuFZzrvsTxGQKJT3N7L2EYwroVBzLPCcp7woLJxA0GRPHcuxFK0LmgEiavRkyhAbgC2MkexSqFLA8mJn8W+ZAFCWRY6zQYItX9K2pGaJvC7NU8FGHJwFZUfV11EEOAVwkv65pv7yLB3cdsgh1yibFadcHtZT24RoHdXW4RGfbHWSnZaWyW1jtp0EIGQb6/s9KTUZ6JdkpKtg6S4V3F38xaY9geecr+g7mZTxWYCNCoZHAb8LvHEqx6irAHISDnVa8xT1q+xD9TNePlXlHdGWer0iQY7Sk9APazatTMDqZ7Zs1Xh2IPr4Ed/1zezf9nT+O+8XKYqb6aN1676n7LX453eJ7nPPIPJcqvfHMVe9UuiD7FurqWwA0XEXCIm9rgW0ibrLlQ2dQIOO2u+ZeE00qRvPeWDmBBVScPd0L1UfyCer7zGcIzmlzuwGl+1J6b824LbEQeVblzYgF7GfieNde91j39kgx3fR393MszUn2dda/2I36mMxQQy11+vZpcsOnYIg1jic2nIo/X0q0gyhagIkEzXnUPfs5jPVCHqtUZQ+aAAThIlSQnZYUd4PRPlcgsSBKgfberLvjTTiRGjDjXFBcEGEvpkq1TaaeagSDildDk1gTKXoRMrjkRiV1LfhAclEkSoVbqZwoZ/FTJuxE8J7jwia7VpEYGNAXABZUJPEBmVSAwjY9WT/G8Iywu51MvPu1/oZvJetTExg8okDXvJCtsKV5c0okvSHFgjb10oGpfp/cD5P0UT+rPVE3avldUPVXyK2nAV9S9MdwA1YJglGAKAPdmgmCeb3eG/O0tMJ/ln5863Hag/us16U/goXT7xmIILM5nV2RpWc9Up0LWZp2ae1RNp1VbqzUgxyD6VejYicstKztf/oH2wQkQrlOM+vAvtuEy7BsrHt2A0cPnXF2aLXZ9uTWyOfn9t+oAIBHmuVX/j1VHi3d3u3d3u3d3u3d3u3d3u3d/uPbX+eSQnM/A1JxoMAgIUQliBhpQaCDO7FMhe8TBqBGlk2at0LYgPXg47lOVl6Y4Kl4KqUlkQFx4A1I8uP5aXSA9MB08C6F9aaGCPdz/4B1YG6VsICSU0CFWepEBfcrpgemcLDfHmDMjgqZEAwz/IZYwAygKUIXQy2u2JlyTdJJ0sFASFgWQEFYIbQAZcLYRf0xweuH4a/iQOPhfl8YsybBVn8g4FSM6xFlgpepDnG5RlsQzpxXAEne5GPhYiJC4KBC7IkM6eTqWCx39MNfiskHB9YzG6OAReDh0In8BGA4YbFE397BMYI/Pz8wm/D8D/nB+7/eeEf8kwQjpDlCWQMMlmwZLhi4HFAbaRTenJ9dSL8hgrwbyNwA1iugBseHvBBZw4Diwz8+wr4Ytaz6wCGYMgTNgX3euIJhydTTNwLK1Y7Fqo0WXlV6jLv5dgLAYrNylMG1HBdZMJSCVg69N0XlpOxYabzhpJKOm5m1Ol29ChZMXQCkiwP68jmLldR+l0RIgRhqRJzJQQQqQqC9XRQIJ1yXpAxZTUoqxxKdM5RJlULGAVUEJj+Uc9sOeFeQGa8AfC1djmpQIM4fNXe3M4NsrxUTQp6pUKEQMMMDFZgrJ22Xk5WpGOmwDkKD7IK0YHKoGOxUUgG914CKeV1SZYijjed8wg0NX9+bkG3v7mz24Bi7uHPZctQRwiATLWjHhAGirgnZfv8DznbdOqaa1m+M+/sztIfEoFr0Ckbyn1RwbWI7RiNdP5FOnTPIM+Z8Sz9mR3sLOczHXDRrGOVoYo96m+eqQK9vGY9i2iXrggUICf7mk7e1Or8SQGNskTW9l/Wu9PpnP04QUQvPVTZsYsKQp9BiY3KoDxmIJrjID29ZzmD9pujnNt8iUrNfQZDNMtg5f6LaEEiAAEAAElEQVSl07Qc+wyWs+cLBKwiP7MyyEAdRYcrx7mcgJ8VVZrRoJFZrBJQ4cZdOS++aoa4x1YIVg5AkYDKKLDZDQTBKKYDz5VBVxMMuxFyAUqwkWRwJdRTnzNoXOUTVu5PDIHfGQQW6gxVg9kDgoEVLK9qY+AxHtDHD4xr0EEeFxAsyxQB6Mg5UsGCQvQBYGCMgcd14XH9DY/Hb7jGB1mYhgNG9r8PUwALIjxjXBZCDOJX2gYzM6I/gJhwn1AVmH2Q1AoL6/nEZR9QXIBeeIwBeww8feL5vOF6w5fh6T8RYHkjSCDmQrhCxgVH4BJAx8CciqcTGKQuMCU70VSDmUHuheecWCswkOXsALg8yWSiAthFWwuACRAQ2hqegZBguVXLff8YBhWWUwsY7udiqTGfIPgoRS8Z9OZyRJY9WmtldnGVfwqIKTwmbn/Ci7kGLGvHDyl+Lsfz6wkdF8QJZIgA1vhimScE5qQczaoAGdLBsedy3JklHkFwFgP4CRwUnoGOBI8qEGulFplwDawAx+w3xJ9YfkNkwEYCslbpymI+UiDL1bmzLyLAQhCYYQmYwqsureAWjDYjz5VBVjRMmAnW8uMc4Pla+pqBFn0JXlLrFUsQQx0MPLA0nkexR/H/mgFFPwLpBcTm2sSOYUa8lLb8Kzae7ZmbbgdNi2Dr4wRtryhQCJgMUCBzCHzRRlTjmZbVSFiSDegyrnUwewTWAgNqISzvgbQFBV3erwKXCAIIC9ywzzZ+pmwYlu5Nc6bAsQk42uddBbkIyJGQlosKZFUwGHtGduAVCebWep8ilAxslwJYjjUnNJj1v7yA0YIo5gQfqKBe5P2m3xZAuAAYybRAO88ySEuzxluuAwQJuQvI+Mgz2vNM59lu8BCoO/x5A9dimThMfI4FeyiepniebFVS/z/sFyWLrwj3MLCBxASgOiCOIZHBSmQQmIKjbWunPgxskEvOqWGQIXRMJjYUZtAJkHpllsSLzVWrRfVWgLO8H0LS7ksWzdjjrDtzILr8HEFRp7xJ2r1ljyCD4Vw7b8AJ+7G3ftrMXTZ4A+w4hFonfj9HlXZA5Bi2XYfWX9vW3cAcQYFrtG7fh13FjtacHXu99kTazIcxuO1YIEFyJac96YdJX3Z7jSLHWRNddljabM0CK9jj3KbvN5s0+40/bnUvKQHYnzwnYD8bLyt0rhj/VQHzIx8BBUp5TfyQttGlf7J7WX8r9tEQQIqBETmpjf1JGZLvz/n1IDmm6TC35eXd5zpyWgrAd9j0Ihsc88s7Xu8iuwWa1edlJs7/fm+//nQzGm5ZP7v9Iu/Hd0+wWO/LY91+fe/eWXvcSDn59bPx7Sdlo5ydOxNg9i82OLKfVICy/Ln2pyPtyAQN1s9rT+/t0mxbpS8LZOko9tn+cnJOOhQDpWuoWmgDNyNa3ceA4/+1rxNYrAR3IpO0Ag4Ik6zEDDIuKPYZ3R3R3E+tp8iaREZWJbhXLjKI18GczEpZMCyB0vm7PM+4iisZpDmwtSZZ083QiSLKexFnlUkaBCkF1DztcsOcN9wzsQ5+6CPavKoE6a8VhXNMvVX6iGe89ATm3GWKJtlZFzaLVZ3NzMIsIA99tAtR9kwg8+14Z/Uslcd+lN5ArRhlLIKAwvbL1P+3ZmY3Fw6BhKUcSB5Rm1UclKMg2xFfE0A47Z4sbVsslCJMzCl3ErAT9w640D7TgExO8rbVis3Ik9lVgiyvALKMNrBru+99Fy/7WFoOOTe0kfosjP1ngehpI6TvGpLyk3oy3XH1PKqOZLzqs3H3qfWvoNkDBbH376Fs6deTfu6pfc4zs0FUf6SK3+3d3u3d3u3d3u3d3u3d3u3d/oPb/4tyb1+YkbT3ccNGZoZqQI3ZiljAPStjh05n9wUXZ5mYYJbq8ol7ToxrkPmmapmvdHIoXZ0REytmZrZLR2dNFQ7H84uZ77x0ssQZInDPBbPIsjV0YquwBBXBOsJg8yDV8qWMbEjeY1UDNhTI4BszlQRDH7CPSBaDOx2zdM4sIRtPQGA2oEknjSHMhgrDioEVF/Qa+NsH4M+J2wTP2xoUFTIAB64xCIC5F+71E4C1I4U+9YlYgfW8eeMUwNcGHkANcIcuMgroh0J8wUUQSxDrd8T6HY4feMgTsN8wHv879PGfAP3AXBO//89/x/r53zDkd/j8wvCJx2IZHySjQpQDSoCR7AA/fUGG4oJCgv8PBC4ZGKpAOGZw3hTAnGShcqVEagQeVQIjKsuPa+6iMFUMC1z6wPpwXNPxGZ9AfCHiRhizkqZXJrKTW8sDHpV55+14ViGwKNqhUyUkJDPfbgYmQTaqNVfKnGC6YmFALGAx0mkZzKwfgQGBq2NJ0WQnc0CmQUWsLtfkyaiAYlsQSScYS6IxQz2dLhWg8HyeM9BajqTI8dJZb+mkimQuSu+U0jFCSnhmRZqwFKGHd7k2z5JOlXmmqgmK4r89mK3HMnKeLCYMgJRfp1xF/FlmR0o52PnzzW6VgCUpYAvnwbPMI0CBU2DTdIvsQHxk/yv5DOUcbhoehlHSmdMZtgkkqhbtIKt+vWZJF+NBOyVD0oG0My612HE8GpxU5UAkacbdhYAbpGPKlI4xSd1YnqqUnnIcaYJdKDvZf9nZjKhxJ6hKpMa3HVoVLPglEflozU5UvxVsRxrd1ajohnRgfjvIVeKYy3LssWQL91E0K3/9rgBd5YSUjLJEBLxKpa2olURIHE74dLBFcrOIpwNUD5awHbhEO/3L91eBnMWM4AxQirA0aWqN7W+V9menA5IAOM2sVTpsCRQCnGAPwkdr2sgSEZLsgkJwa3oQlyJBWJThCOrBDjZKsgeyFimmAyIz+8BSYwyGs6yWCEG4ADDdEXUmmmLGpLM+bqx7kTVJk60pgBULfiNZ1zhqtZGZxBcl1aTLEeljQD8MSGamC4NA5vnMdUsdIAEb3L9jfOLz8QP2cUE/f+D6+IGPh+ESg5jB7YFLH3gIz3FJxqY6ix4wDAvEWlBSHGHOG/P+wo/PgTEugn5iQX784H4NQ8jAGEI2xmUY1wM///ET9xcBTVBHrAn4gsFZbghAhOPxUDgEc65k2klGICWT30Lgnjew6HhfmPAQWADXWrjF4RK4bAHrCwDwnFUGaUF1YcFw3wEESybZRXl3ILPZBfd9Y4bgXsk8owTLSEwEHCscy+h/lyXwe4Fl5AjeYFm3JxCLJJYhCF/4uJh17hFYT0ckK5+uQPgNBAsGWoDzYwn40J9wFUgszPWA4AEMhQ/qTqwblwRx5HBMVNmugee64QtY07HWBGLiuoTBDhm4l+L2gCyybrK8YgZKIAk4IlhlGFn79nnBfacBDGVZq5nBmkAC4OscBvfQLY6ISZsGgpDApRWk4dzNlOkMb+Q+s9QpZGeR0hcinWFfZSo0WUBWgicL6NIwngzmIDSDPBleVunA0NaDf90mmDx3g4G4XDoA0XYPwWQ7tiOg3IacpToywDU9z9qckZAMYvnLeVV8TOHemepVunUVS9oRDO5gXfba+vwGmtHxG7gosaV9ngqQAG8Cz/1g3zIBGJJbCRACQhwrKoP/sEkzo18r4ggGQkUVY1DHmyruRZC6aJ4XDiiMtoQ4y3UDBHRKBfR4ByoAOnGx2oOIQNqTaTdaAtBzj0RMeNxYYRhxA7gwxn+G6AfUHoA6ln/h59fvkHgi7gkNpy7Z5g14A0Se25zIGXEEHflu9iv3UrBstJdxVqCc3GgEDtd5XXZaBVkJqTHQhvUIDNdWDgVqqZJpkG17N8tH8FzfH8i9Koftkt3RlE8GEQmy86Nkkofw7gDaG5wWR16MEuRZYHXulw0zqJ+dwcd8cUTrnRpKmZwnGL3G9sJytJ+ebMH1E8n7SAJrcn1C9pf6Z4c+2xZ09r861gCWenbOa45jg8J26HmDRGqs0c9twywF7Fdmppd/tp6p7kXagt1PoOejZHTbzYHSxed3KgmjAVYvvz+/e8CCWrdwPIECqtQeyL7237ft2vijA5S271nYcr8XCHUv3T3M+S2ZqYB4xHEXOCYNPQm9Juj7wbnW31rs2eh7QX9Hj68eSjn7tYFFtfZ7VKXDS463ba/9QulZ38Cp/cucu+OtvaezXwX+LrBR493ymSXLNf99luwH1Se7f9/hhfLagzzv6m6yGYk4FYIXQER9t+a4fha8XdWgCnxAENGxF5G3uqhEiGTnzrui6rm+kuRlBF14lc4VQWjOY6SvA573ifx9kCmogMdyrFMBPEMdkizdYga9LIFEZCrSKKCN9PpJ2RFKpTvGIEPRMNgYTBhAlZs3qI20p5Bl5LZMav6dANmUAaTPQ+gnAgSxgoD/WjvJ+2edlTnXK+/kBFhRv9Xch+ykLIg0oyFUCDAs1kAAKFCNgMyhKXPus+XPwPsCfQRMiCELqSM0kx9STsr2DKmENt6VM1UMXc4YvEuWPm4ozpIeCzuSCQesLw5ITl/a3wUgXlnOmYl5AaxM+KvPQYBV+8e3LwEK4MHeae7o8AQYcWo990TZTjxvM3khHCNdmbQPMpHJS/fRX8Tz+TVxSmrjJdBTUhecunkddk0lACHv0VqaOPJMTXRVAeA8d+mqk65svqCfma+rc632OL/bQEg/+to7vpRj9rT0QymOtgPO0ypefvdu7/Zu7/Zu7/Zu7/Zu7/Zu7/avav8vyr0tDFy4V7RjQCOAlYwxsbCWwJdALeCYCCfowUMRK1gCrZ07hvUM2AjAJwDhBXrRATtkkDlgZSA2Fhk/YjtuVl7QbQw68SMvbgFEMrGYAUMzAykEEQOxmD1Nx4gwG10d4oKhA5AMNGgGcvOiPsYDESy9YqpYT7JBkPJ6B23LcSxC1ojLLpgormYSGIjL8DEGPj8e+MdPBiOX31gJ9sJy3Gvisonhgud9Y046Pc0MigdkTPhQsiFMgcnAxITawCK/My4EZBhgDrEBDcX0BY+JtRxf//4TP57/jvHjb9B/+wR+/Ab78Z/w23/+Afj/ifn1dzz//nc8//s/4L//jn/8+8LzJ7O1K9PLXTDCuCqWmeLtkZCk5Q7AHAqHxMgA3coyFAwgihrWvFkmRihLPgvQkEFcVTI2hULtE3gEHvdiSbylWM4gjYgWSRYBAln+QXXQSZCMJ/SB0wkmNhjwNoMN0n+bEHA0k/ljzoU5V7KKCQF0FSxBQGRiiLFEhidbSwbbCLarDMPDsYzYToEC0mQmFzPRk91IIimoke9k8Dea/aHcmtLOFKKLKqM4gT9BqEv5edPHSWYOBMwUsoAlFUzbjAPl84aRjcsDLfddxqSAIDgDE70r+PfDV9KZfulscndAK0uejrwIb6aobhXADaTjM53okcGgcsAUNTnAAJDXGpTjsLL3XrN9gcMJW58v2nfV7cQpzxQC7QeXZEuQBAdp6Qf2y31lcPQcPwFp9XM61NB++dpL7K+/OMUKavXisOp2Ovj3yDoAIdr9p0NO+jlnYOL1eXuOyvm+gU/bYUbZOYMEsp+bmX3F8nQGFJglustkRJX/O/sR7KfDd4ZpS1g6JjO9suR/l94rGZRkHeE6a8lwBl0ieDYVQGpHVGsCc869wth7Lsu9W3NWzssoNoEcLs+g7eivckYMPAjj7GLoQHgiLPack+mtQFfuQf2WoMz0d/e5ByEgcurIca90zk6IGOJeaEiVTBS6TiISnCIYeuFKhsQGB2QpFzOD2YWPj4HffntArgEdF+ZUOtox6eBHjskdQwyGgcfnJ67HwN/+9oHr8xMfP37DGAO4FBaKx/WJsAuPz0/qKiGTSMmyp8Nbh7IkZ5BV6vExMOST4BOtsqiBKRM6FJp2hahAhwI3MH//YslNCIY9CNCJlTbITJCt4zEUYo57Oh4qZCnSgXjezMQ2QdyU16UZwLGBtQJrPfl/ecICcFeYDfgUwAVrLigWxmCJPVXFmhd83QTSpjPcUi9ABSIskYC1WCrCk5EjnimXQUCs0zlO8OsAsDDv3wHcm11PWC7X+DLMlcA2dWABA8mqmYFJl4VYChWCq6AOF8f1EKgOLJ/QYOmpWCwfvJ5PAjSCAQg1w/TAXIF53wQFu0Aw8dBBgHkGw9Qd4gsaTuYld0xfMHugAr0Rye4p0fsJiNzri/MTgcsuTF+AOFQIKFoiUCcw0MIRYugwlADId5aOcGFWN8sY7nlZUSDDDL3lAehr69toHeZ5gpeuKUCz5/ETrU+izyyelSpbR70GX/9aTVUgYCk/Kd0HJEtOAq7TmiHumFn0WuUtPW24KD7MlH8wIFgWR51fmgFDsiLVCVYGUIFg2TdJxoYK+NCWZ/a+5N0gP0k5jFqp1ONApap3qc6CW9d6AWgAoYqRQWwWqxNSYReYO45+ZbAWOMq3GVwNQxfLb0/agh4r8TOxz0GjHmUJlw36EChgi6ysixa8VrBMGbh7Kd/CAdCEbpkLsrStCXOH4x+IYYB+4OO3v0HF4HNi/k4G2fW88fVcmPe2A3jOZH+cdpMV6Pt4P822km+eSZr2KpNQAhFkHVBNjgwnCAhIMCDqvN3/Vw2Yce97lpxe9bvce7vc4AYgAQVYo9zRjs+SRCqwZENlXFYJSovSxZsVtOQKKduMsSerbCackLmxoP2OmprNkHQ+SQ5bu2ya6EB82TnsstBm8M3UgJJFRN+983Hd1bK59p7Cofvqj1c70IthFWVG0Q7dtmbd+0v+t23Yxlz2pzVFrUP3/Qwa7/moOQCAKq/do5Ace9vJ0b+LmqvTxuz/pP0jONayPh/9WfYl9mdOU/rYWi1M+bOW0fx1Vwk75aa3h/SfVco6aqzfXlnr2bJ9duebvd3ls/7oWOlL0CENL3OBX78n5+++/XJTZ9HW7bmRvjOf96k9BYeukNeR7rU8ftoLuG2F10l9HX+XDUQZ1Rx7gYhbLl5k8ZRhHHfi6G6e/WmGp/xl+wv6bvp9bx7zkQ/Sb+tW87hnEajLqrxcluv7x9S0bt5zxXlnH4uFt9nrzr0aTIpD2SlAUcXRBtJkRsx+CiTv61sPaOpRU8U1lPa+KnV5UTQpge21U2nX0k9nl+FxKcYYWa7a0iclMDEgy8dZnquaF6bWIrnGAQcJlra8WJodDkBHAsgU2MUBa89pMm2WDBhBxCncvEOTbXck495yZ1KfVoKW0tejacMmgIw+oRy5r0xYo08sQmBq2cn0+YBAF4HALLDWBgiqbj1NOVAmmWYJ2AYSRs57gk819XCBzyTKj8VMQdGAhuSVQlo+vWRa8x7f9+fap5Gg7trTmexlfM7ym/JJhG/uUX/RdZZjIht7+u6gh8znudbshMVEmveF1AlV/o4y4X0PKEwQ/RurupmlCcmyWlvTIQRZpx+P94dTgXGfaT635iledEHK1YvNyl+0TXvuN8TLYSGnYB8HznluFciVShw4fvlu7/Zu7/Zu7/Zu7/Zu7/Zu7/Yva38apDSuC46BSJCRpcMVYSy5kEFaVSdzkCPrrbNu/AqHjgHBamdnOds1GCQUOOC8LM5YUDEgRpdM4fMNgqxFn6wyDsPDkgFmpVNaCZZ6DMelgjWDpUXEsIIlt0INCsUQoVPYGMwwvdJZMDHnE+NxwWAQjCwtJ3hcDyy74e64fUEc8EWHiBTjhSjsSoCSCR6SzE4RCDey75jiisBHEMTiqlh3wO+ADoOE4hEPfDxYrmbOBOOEQwdLq8VP4NLBYK+TzSeUQTnTwdIaYYgQ3GsBahhqEDGsJfj3f9z4WE9I/Fc8rgv33y78+Nv/hv/lP/3Amv8r/v5/PPHf/v4P/PffA//1f0z842bW2hDFh2myPjETawzBlQ51SJKdRAAxm/XFhGAME2D6Yt+t+VM6IBIC3AkwmDphCZRRsc109OEInwyuZDDSxgDL9yGdEgqENghFmkZZ0kGnm/ljXBiX4TEElwFDWcpuITAX6bnpqEGyK9VVngAVk8DQgCzHegpCDavYljQgsgBMwMsp3q5XIKQZm/ir7RQfOgB4Bs/QDgZVlnsqsEUkQIvB/8rGT8YhpTNj2AVJRo9QQDP4JwCWMBia/pacI83M+iqNlYwC0KaNBso5aWCQNdkhVgBmCbYpYE+WOUuHcwWAKtClTLPjhg868SL0cJBlEEvpVKsk9nJO85nH54Get8goo3sC08oBjCDbVkiX4GlfDrCDJ4oufcJMzWRZKsez0DlVNO/lxCUWI7ocDcE7BOaVI0oFGOkdXs6AH9JRxaxGT0BAuUC9x71LVxwBjXIE+v5eZ0JnQLAghSmE2O7ycsxtJ1lhmV4+JrmeSLBmOcnZkXRAV2nAApllhuvxmNfI1+FIO37Qso8KGvNXJsUudX4pwVMSQLEyHUGLXQqEP1a92tm+O1ags5LBdMonk1+EkHEvHfgdkK55IPKA7y+He7KNCXTv/Rxbl7vCnifKBfsfgmRMqYDEdqZnwjAA6nxVzbGNQ8bPcUvS+NMJqYx484xM5qQCfYgITMiSoy5QY0k5MYXahcuMbG8xqJc1IGIssSCGoQORLIMAIENhyjKwxo2BSz8w7MLjMnz+uPDj44Hx+MSwBx7jwhiGj/HAGA/IuHA9DJcFLmM/au0kACwghmAuIbiGxzGudHA/uUoYKzBFcH0MMgKB+/P5DO5hUagZ5IPsho4F1Q8YFCpPeMzcVxmKMAAfCsfNUpkXyzwgM4QthCVbb9oNthyyJpnlVFk+IgTmZFWsM0VEMeQBvQKijp+usMuhmhnKxQ4TLJt2g6CdEJbKkkUbzYzABpMBF8W0QJgmeI3vGjYoD8AO/iTjGSLP6HFBLAhCjwzUABjCs/KenmRPN65L8PE5oC74Wr/jOQMDAXNL1hCK8b0clwAfNhCi+MdzspTv/JnglA+wfCL3oi/PwJZDDRiiWELbYSSj5kMvZmkXwwCkWf8QwXNKwQz4DJCFMACgojDLMzpAADsUmLNBkaXPVZkdz7IVtEhDrfUkGUjwqrsCya6XDGVrJaNhZNZ4gSIygILUPdk3hGbZOcn+VnCpzs7o/faXbEaGTZ770bYJh6mtzbschxRTYwU/weBishNFBpa4EwlMlF53nqdVcvQMHRKsIdiHJ3L+FBSjmtO075TMCr5Kx2+wcttBkp9HncUj/77gvlIn8b0RWlUYEWZkRIsq80xZob621sks6WkwG7AEw7E8KHW+GrqMUogQ7566ADGh4P5H2mjhtC3QZW4iTTGWlA4Eiq1V80zgUegJEBGW4AFNuDnJXBj+hMg/yJD3240fvxEMeY8L/7if+PefN+4puBPwLwBGlc7JGFzFxgtY6HkuMxCZNoT45oeMOgcFMOl9ER4Qy6AoGMjUCigejFF2DYgE5J5gGWWHhoGMbPye5z5GlKJEGz5VKkg4WQyuWyZMSHFTbXDS2TZwhYsnLZYsi+teIBGhLEjthlVffL1PoADm2ECFnBstW6iBFijDtJlV90arZ/cDyHyR76mAZuQeqG7XDoz+LPozO5nneIP8CrJKw3kHnytYm/bV1hM17upDoGiO2vaLPcdyjDvy34EDgNajlv4b1z8tze5n2cfHHJftGQdCqH/+OjS8jKPmMkFrOWlaSQwvkxMvpnrUX1RwLm29goy3pRSOtUAlbOQcxDcr+rwvbEFB4xTqu7maxyoAL6v7R+2w2V8+GsePkl3m5bmvfeRcyvHNY2z/N+9uANHxxL1P4qXrUod5t/PO9PIE6o+6v6LuWNh7+njXKzjrdT5apnP+X244zaqy3x1If0b3Wfp98fLofTcsewe1xnXcYf+f14wqx6mt+pCMwDj2bTEo9Xh6X5xzTUlhYoagQcIA7xRiZB/KOd7XttStIclmqYkZSf2ixvtEJLBTBm1eMwy7YMpkRlNL+44JAWLGxAur5EQ9u9rrtqKYnvb8FlhwBYHuUucOdp/nRPrHUrdeCVZZgWJx1QTQN2AlopNpCL6lT4X3QM63graS+ATCIR5MWgOAYtvxOgMCQyLLCSekSYxAJiXTe6W2NeAJ29dV611nEfIcLru5fBIlT5LgJBXeJ3sdK3Gt5zfPnALMBUW7mLwDLLVaPmYVstyLCFYs3D4hAItmRzFL940II/vn7lgr0AlvyvtopA+l2Aybmzr3TTMw14km2IDBkug6j1JQFNhAr9iJRM0UBdA2qANJvO/1XT4uAX+ViPWq+1I/noDJ/mWe/Mc5Gcd42P/jgEBsUjoc7+nul0Io6Xi3d3u3d3u3d3u3d3u3d3u3d/vXtT8NUoprAK4YYoh0iooyq3w6mQZUHWLJrqIXhhmAiXvdEDU4JJmVAkjASaxgxur6v9j722ZJclzPE/sBpEfEyerq23Nn1iSZSSbTC2m//6da0+zO3IfuyswTTgJ6AYD0yKp7p0fqnq2VBcuyzjnx4E4nQRAE/vijIRLZpSods4msbBVW1m85e5E4amsGQE+D+/2GdovAlRqtJ63xtGQtCKeziSJHZLrGkS+CsJFFe+B6Q4DhAzka3RsuDbwlxbMj6vSjM8YTnR0ZyUwQxUFwueN6oL3T+o1Df6L1G43GcRz8dG8cFkfix00TzXNjCMFYIIOnPyMgYJLBGufWGzYF/AywlYMcLSiah0SWNBaB297ohzLm5Pw+w6HRjGlBN6wWjoSnNH75ZnyOr3j7F47b5Jf//L/yh/bBzz8N/vgfGu1/O/jL/1sQbpzjO9ODilh6ZDBrsZWo0tOBPoZF+QiJELWPzCBuUTKmtRbMGhZu/dYPeuvM0zjPE9Q4Dgl2CW+ofEZpB2sYA0Pox8HhD3xOPu7C96fyLGYmAhwxyskwNrPJCoJo0m5XEKoJxyEcB/g8I4BrRsN42uA8Z2SLu0SZOomgPRKBoCGGjzOyxvWgeRSTiCDcBDIjLX0BK1MqPX/Rpx2h8WKJ8c2sIMQ9i8GhtxYMEAASgfByLJbTIoASnk75/CmJISoAz8VBfXWeVlCk6qeVI0UT5JOuZMoZGhmGLeiuL2xMnhnxLTMji5ZaKCeRvzjk6z7XrNkK6lZ8Z5XeKMehCpI1Yso5urNjNwBMc3zci0EpyjouBqDllNtjsVkVlpdyOaNXVn0LmFZrcgmqRlCt5s7M1xxI83SIpyM6KcqLAt2Hvdy/3NGebBG7KzuAu7Jey8EmsjIdVa8AmHRW+Q5GrOeUAsOwnvUaANhuMdt/lYPaVz5zBoViPK6BnO3UruBWOc/iD1V9yegMlpxiQapwwPIhhwz5puaPaxeTVwSMghK+HuLCfMQOFnj1Of/pcoTvEk87q1FW8EdfepT9r555gnbFMRsr4EDK0gIUVXDwElhUKZdxdqnAK2vM92dlBf/SmS8EpT/hmG2a4MKmWVI1gHC9H9tJO8s/6slkkcFELZlomDlTnwEilvDsS29IZi7jA1CmlY4Mx3JrAR51EfSA1jpdO5psg0dXbh837refuB13CizS9cahwZ50e9xpN+VxwMcN2iGFNyUr9AWDHZGwfXRhpu68daV1eJgwh9E1HPUi4QRXhPMEsjxp005vDoch1pnqMBU7AyzkGTAJkGxj+qAYd8SDRahpMhUpfPpkDgvWH5mgE9PBsBv4HbfIlEaNJoNbD0DppCFizBFgC2mOzWA1co8M5QBeO6dNnqOCiEaVADGbeCMAbLQEe3sW3ZpgA2MEM5NryI09Q2/YiKCOxHO4gc+UWzOcyZyTqcrTnefpzGE0mzQBe07Gp/B0Z0qApFprnDP67CIBSicqPcxpDIu1Kw2aRy0wm/A8BybGPENnun2GLSQC7WA63PsByaKmCUIq1aS9ALchz0YHd2wOxjjDPkkWH0mwEwlkEXO6xtgg4GPQJOYEyUJVpQIt1p4kWV8jQJzmIZgFeKwg0GKoSOBzgCsaBey0DJBhFfhbqjGvsYPoxXn4uw4qSJUyg7Wn5d5s7ht4qrVv6HpmK2RYBvNDZ++nXftI7kWa15p5l9L3TgYWcyuMHxG8il1Ns1xNyFGoaQ8gUYKIVvncZBqrvansmDT81r4iTVcJHSqbP2WmQHIQjHNmFYCSdZ0A2SuiB3iAnbQ3boegWbp2A4D33mpz5h7ZkuE2ZCbY18IEGdMiOFhMPbYsptyjGqrBYjpHnvOo6xjinjafMKYx/cR7p33+wrd//Qs6Gh83eJhjAt8SwGsJPom9AcA2E6ZkoFaLJS+TYeJhwnbTBKFlxLjsWCkGQAsGvNq3N0OcpjxtC9bye9qCba+33D8W84ntfVb9ssbi/b0u42qxLxfIJoq3eNq67saYniWHk8FKJO2UkHvPpAHE0AL1UrJlqUPi/ssuW3bT1X6rz/hiU132YumfJb07QE0FX3M9XfXOfifPE0vd7EBp4R5+zeomL9/fLHLbqlvXWLqsyl3XQaXs+bKQ6rUak5JeuTxCzKXAOo8sOzX3zJfaXTk+eMqm7GtdfrkAKfZYX99f37iMZ83b0hpSQWS9zJtQ5rz8xjV9jeMGwrzMo4c+rX2m9pyX3l/6JK8C83KnWj77c3EnuUS5/Ydv/hqI8+Plf3hPfv1ZuXxyfe0iiPvXBKddv1Nnjsv96qy2zzf1UKzxKxG7noWuPbICb730dAtAfbzGpuaadYZkydlKsKj9bZ1pU/Z9z00QytR1WOfKfT67nFGXqO5+hRxd5PZFfV3uJ9cnkte1DKHvC+RwGYE4o21m1dI1JiD5nl/6UN82n8Q7nQAj1rqOFJfST3MlTfg6zxmg2tN3EgytG4QktH6ntYMNeNZIkOiNfnRUiTLPDXqDy1SFHOSe0tmyFmfprQ+PYpHKaZyWwPEJlVsTNoEHa6c2ktww2TQtbYgCgxluts9lxcRJ+CbUhYEFY3p1VElQaOgQkk3eJVmyJc7PBVCtJAvHY58xdknXlIFpxvSUdy/d68nsRJ5Rw6aJs4MtVswqzVY6z6r0bspcAYtDnLwyI3CPkrQlmtODsT36ZYxpSJapcwnbpJIULQ+D9d14rZK05NWO9NiLiwgy/FyG+wzQWQHDM8npmji01ojIeh5hg6QcX+WmN+BxryEoIDjLXstXF/jIL1fbazQ+VQlRNfdrX3k5T+T3L/tM+efqUeIstC9PzfEPavh3fZZ4t3d7t3d7t3d7t3d7t3d7t/+/aX81SGmgtNYA42h9HySTjn26BWBGjojriGOccegNbl6cJzMolsLBPzJ7yB3nzANkC989GVhw8LhwHPymZbkZImMeyJMeY54gwX5zdE9MRTjlzmGYRxmR5ZDtkW3VhaRF98gwXvTRLTJ0ZrAiVWZkZFuBM2kYrQvSe5VSz+DSgasiXei3jvQD9RvqHbkf9IfwGIJNjYrtPcqtNDE6zrgZ3ZRzfHA+T1ojM6KNLgb25PPzGaCZUxgjWAIsfDvc9EAkACgHk+Mx+T6f4E5DkTmQEY4DNWV6BCy/jifHn/8rzYzzn4Sfj8GXOfn6T0/O0/llnDzzIGxYVBNTiWBl3nx6MDIoSU+NoNIRHel4qWxmj4CNe9JtS0bxIksqWD4EaY76oPUD3Hk+IwhuOGOedHXuj4Z44/FsfI6BaQazkq1GPMouGOHUEWm4zPTQJ9DCJ25nPMsE98HpEzJ4E8GpADqFW8kzwVzAYFI5UxPRCEA8WqfJiMByd+aobN2kea57E3LaNMuokc5KaQukFJlYW+TL2VllgMacGeSsbOjKciMy4bNZOUaWg0Q2bXg5as3Taakp03q5cZWDaOmoCodXBLRjLUYGX1uOXC8Hm6aTNTPToXw9GZTxCOpDObPCYVeOpR2sgsqslgoqyL7Wauk1DMBjOXQJYBlkILA+upl6wsGruE+uzc2zIl+UDhRN5x6A6GK0EdEFvCqHbXxIl/7Rcl5ZsEeJNEwiSD/HqCjG9e7LOf3C0C/bCb7AP4v63CkmISUD8zZZAYaag4xwvGQkpwN/DQsXp72kKzCDfhWUzRj6uvLKoi2H2aWPAisgdwk5JLhrB1vrGpK6bZXISap0S0csXoBWu3yvxs2idKjKnhPSES61/i6eeYvPmpWsBJuMNPZg1HhQYB7YtPnFlFR9sJSJJWzJjERmv2dJqFy1MbQZUKlr+R4PX8EAXV2uQOoCY0mURF0ygSSgwta1A2eS4Dx6sNaYB6Oa2AJJWbKrhdzNLDHwQAidqBYyPwOFQdOG+WRMofcTeCZwzzF6BIFbgJuP/oXb7cb9EI7bB7f+M7fjwOST3hq348Ht48aXn27cDuG4weMjfh5dVskod0/a/5KpDGqqYNpoCtMmd1faXRkKzcPp/3QSPBBlxpoJR1fcGkeClT5NmdqDgS71LgatH8z5xGaMRSQcB6PknAHUndMY/kT8TAaQCEZ4V8QmczrDYlytCY1g51EMb41p35mW2dF64tOifIFH9rTNE2mNYQRbomW5B8A1WZUIcKtqC5CBBRhSXcLGwpk+MA/QkYuD3Lecu6EEq4glS9lwyzJ4MJ4RDJiuq7za9+fJeU5660j3KFWryunfmQhGY5osMNznHLmPtkwV7wHusTP6NhIwlx72AhQNSYbNzDSPPTozpp1YL72tbbD2nnOGM3+M0hlO65I2bDy3uQWIqsBNaSu2DNZgM4EEubZ8M/y5xFx6Al4sgy+2ggHGqq7kwQYUJJSaFk6xphRrXqFzq3+hM2bJowTjWfxee/bvr5nosmuyslraDKEL7QoGIQI2MV5XYHBISujxLO1ZtlTCjGKvShuH1Pnu1E0tgzyN3P8rYnUJTJfe27GmlC9Pba1y2Ut0MURuwyL2G02p89SVK+q0Yl9OHn+izGCBjVzyDNWSnSeZYqUH0KYptCgpxoSp0ekA4W3Azzkds4M5B3hL1lpLGRqoRNBznBEYBIJpE9IOlCzFZmgXhidjQLEMGsHmYBkI1GB8/Tw/I9T8hK82aHNyns73AZ82Ke6HGCpfY5GnqTW2qlmCTgBpiwmpmI2sSsLk54sioOy1igoXiEVWSb8JGSIXD8B6a+CmNLUMk7OBCmXTlvnzYjOS54uUQ5t5diwZTtC51x4fOoLLcl0AJWp9eNrgEZzUdf/UU2HZLdsDavwyCSIDxVHZ7MLAUsCg6ncGXAu8s+T/8tnqc/1d4JcLPu/60f1L/bvYfmutSoEnyhYrQFfZaCVjdf2yUTdQpABVcumD19Jy9nz46kLsIbq/e2WwCjHa9uNi2oMlV7tDl/m3deW1vK8f3YPgr3+mHSppV297ftvRUWLo+u096JcpWfZoJWHEHjZXJ/a5oP6+dqfm/mo/b7v/ZfaWDOQYXaz468PtwDx7DNf7lyZcriFrXF/m7GrT7ztkvzcokx8+X/d9ZaO6Mrz4Yqz98dz1m8++H/z1PflxDGTL/rqZX+593SjqXqm+Nk3b/v9VjtbAFth1j3ddaz+7L7FdrDcvclh7XfVH1thenzFswh/6zJbJAsDEa7rOVKWW6xlC/eWsrIQRuLKCrjLiTu6xgKdN5DP0RZ4fK9GjaZzLWztW6fTWbjQ9UAkbrbdOPzr9UI4eQFTt0BqL1fAy7NE3f53aAlXWelEN31vOxgaeSO6JaXJo+jccZxD7bJR9DZ9QAKJszdmWt2JslrT7LYBdYsFj7Jp7V9iK06Ks2U6UATx8AEiAvFfSFekHo3SmRKnmnCPzSZU32wNS/0sbiyrLlvNbtgG+vhsgsc2S+bJXaQG58wyfMkDuW7W3iTh2ZvKHZuXzTM6IRwzG+PA5RmKWJXhbhAVimj4XGFBT11Sf1ppcLJYF9AwZsOzz1VcSa1aypOwex9o7FxtcPrNdnn3NsoQ/scBTS/BSJ1w+mFNwAQ17zY6vea1P7lmrz190sKypv8zvNRmruvGjXnu3d3u3d3u3d3u3d3u3d3u3d/vbt/+Ocm/3qIimTm9wjjNK03gFp0/Kxx+ACkDmAkFMLLKBmNgYwTQzgeXUF0ZS/IoFdW+AIDTqj5OgjcIQaTHDVHbqM2icEbo3ZCqViGKzDoag9DiYtQAdOUR2URMqyCDN4jk5ECJjSXtkLnuyUrg5vd/Ro2XN8Ya1oBkwFNU78IH0D+Q40JtyO+70+0E/bsFy1CY2jDEFkYPeHqg4965gd+TzF/qA3j/xMbCzM57fo968GPeH8nyefPsKpx/IDUQn3SPw13tP9iq43RrBbuHMIUx5Aic+HZ2d+6HMfsMQnvbJ9yeM6fyXX35h/PKd77Px50/4PmYAoZAI2s0sP0KLChYY2lqCOYTb0ZgEa1WfEVScIphHSSGvkle9uF4iyNd7ZG0PsWBhsWDwsjFQDadJZKWNYMti5TzRYbE0oAGU8ZmHdy0/QVB816FfKjvZJuPTsoJCZDDbHGigsWjdI7gzEljimekMBLwMZBqHVMmzcKRpA2/OGL4ytF4QR6SDTUDVWWUUCYeyBm/UckbPdNxE1lqsH83A8SU3l4BOlSMpssLrGpre0FhbFr7OmU5SKpMs/mvpuReJkhnBI5IARMK5H+VEMhtteWbTAaTbSVwlXiKr+9UnvL63nCLBiFUOouXI16I3346iKo2Deziv0llVDl25XoN0wDFztDSdURUxJuc1gJnx+4LehP5RD9lUwYbtMa1nsXTErWzCYo+QHN9iQwo2LNqNaTDPM5ywVd6CyDTdjvR8YoGXMoZcHMIXBycsd2Ksm+W8Lqd2OSjTqbiuXd7yGNNiEVgZyLV2ZOdEyiVYVCxB11jOzkzeGaYrIzkDI9vJlkGrDFyXa713yWfwHJNiq5g/xAjqGtvhvRiRygGXzr3NRFTzHoxn2orGPhk5RNecUOtPQ3+oVhmpLHNyYUzRds3GLhYxC71iMx3NrPGu0gsiSpO+A1Ryde5WvCBLG2r9HmtOCSduLYGWMtIlWHTCkd8CcIJj2lNXBFuVtiiPEBnDVTbyO40DkQOmIfoMXdli38SF1jTLiXoy30WQrPlJF0Wac7vfERHu9w9ae9D6B8fRuX3ceBx3Dmlo69yOzs8/feH4otwezpeH8nFXjgM0A/pHKhGhHpj1/Es35G+9Vbi9VmMAMSFLgZmjp3G4MoZiHvt66yf9PGje6MUAdJ4R5B+fiCu9HVh3nqOj+sDmJ2bC9zkZc+Ay087pqJduaHQxvnGCzlXOwWic5nBOxBSnI250AkSEgGsLu6CYQMwYc+I+sHlmwYdcAy1L7yIRHpHYa1VaMB4mWCHENdaMIjAmoh3couyCzyilkUEEtwKJNCzXzDlOhs0IbghMU7xPbhpr4vsJp51pdz1wV2ROrAWoAekJVsiSnD4xztQ3R8ihBxBLIyIElJxmHro5Ip1pwpypowpMkfbjdFt9dpSuR9hyud6Zg5bjV5ox9EyCn1N/VFQiSkhV4CoWp6sw5w4AFIPgLoHkS2RdJEFMGTxRyT3MF0ChSn3s4I1SsOmS8dKz+qoMf1ctWDRJVtIAlnoGHBFJHRbjnBs+AfSs5yOD8MF0ucMutdMJVya+DW5ycqvf2xu1B6WmEKDOIl7nEXL3SMjK2tPCoIx9LsGRmv9Kj0sAhbS0TtU0gSUHYZsGY1qwGWxWvVpf0BDtSI/oXO8dPaKspqoGaKdoH3JfVunBGEdHbQRznmmUQR6GMeKZXVEJgJJNwVDoYaMoeR4TDRY8ichWo6FZ8tBcKYCeuNBVcO3JtjdCX5phz8F4GsOFc+b0kgHZHNNiCfC0IUJAiHu2BHcSActgKSIBSmnViSAtr2pzX7NluU2ROMv5XGVljJnniTinLkw1Ya+WvbhBc1veAqwdQvViF+WebmNSZbgs7dMQ4DjzFDsd8YjLvlqnA3NELeyc3NvD1qyAacl99fMHEBJ1r+yXQME6JGXs2l6BCRtws667Ll0W5DYTqw/m295cZ4CyT3MU1zXkOp6vTdjjEDbcfqNsdqnAcnVuo5n2NS7gjzKP6/el79P+/M2uyFpWL3J2HXeAKbbOJMGGt7sSgIuU3rrXGvGwwyN5RF6SJ8o0XGxeL/0quz/XQ8m/aO7JhI5MOb0Gx9e8XlTnAijpj+MgL2JyBTptKSi9s6dB1vWXpFyu+euBziu8DHpJzStQKP9eZ5nreF6vcb2T7Dnm+tMvn64To+y/f2MfjZcucuf7+zEGl++s9y86IxfN/trWf6vvsk5BOf+Xc0dtgi9PvIEQC/ogde6+rP+rrihjwrl8tuapJjBkViULY655L1tal87Wtn0GSw+WPK7fa18UoMDXLRNDJl5JLxcQ2QIi4ZkMV+MQ+rmpZGnNHiXctCMSQKTWe5w70ka8HwfHTZHu9INMeNy2gItcwLI5UnKdv/VorMUpiwgoTIz0kYhC61vWHMU02ANVydJ1rMSrOQN46zPYS3PAMe9xTpwTA4ZvQGoWImUxMrug7smgtGUJyibyGGsXxAcBg2fZlsXQDRdwoxdjU+o21T08xD4czF/BgGz4kk/JDe6VJC2lJOdQpi8ZqTVf7Mm7VGXq6AIcixeZYJxh0w5DBSm26uht+ijLfyGIzDg/eiQfuVnYkcL+zI/rO9k/qT3tos+Wzlt3TabG8pvUOHmNF7GupHZRv4oXlYhUANslb56+vx/2gcwVjqdd+54s31AlUyFVUrDm5lU37mtebefsM+/2bu/2bu/2bu/2bu/2bu/2bn/f9leDlI77DR1G9+CUkK6cc3DvQZ08rTMtmHKiBEEcvdQnKlEGwDkYQxEGPrLsjc9gxTDNjNIERdAzK+YAHRytwj9xaGuiCU5J+iKfNHOgMadgIw6ITYkgm06aNrBOlZRDFG1HOvujdFw4T4OdRwlmp1vP6xKsDOoOw+DogNGacdw0nPvD8Sa4d5QDvd2Q+0G7H/z0h594fNy49YPbo3PvAzsnlmwLosJdP3j0Rmt37n/8mV++f2d+fsee35mfT85DmMNxu/P8NmF01BTRjjfjcSh3OWgc4ThRo7UHLsJDwebgVGfaDTsmJgNvgHS0PZDbDW3O5/kN+/7J+a8nXz8bn9b4nMDwZMmy5RyNoHc4r7Qd6YghATQ9Sr3JBL8Bjd5hmOPWQQ3tEQwXGczxpEljMoJJogUoDlPsHJg2jqZ8+neUQTtPzu/BKPV8GllxJbLfaREQTEdHBQhFDJqjrWXsSyBBBm7GGE9wpfWGW7hwpjtdW7JGTCzpxpW2qKoDTNTSqRSMV00braVTsgmHapR4eAkkZBY0xQCRoAyNgFDTcIwEqIYFttGg+4pgXTJ3VMZWOcWr1Ek5gFo5mWSGQyeDIrXuzDNjr9BD6XBvbfvpmjZcNitEAA13+bYoTePsnLMkck9/jy4K/AK+EKUS5ZolTsZ92nLqV7beqmwmJJ08wV4RVw2njoKbvAYKWg+AVDpYbTmswyGlSZG2Au9L4+hyPCIBwhDJDMwWDq3pBayULAekSUOvC/QiIsGUlUEySQBWa4r2zhTlnFcwihWPQMxZlWorYM1ynrKCK049n64gwQrOZAnEJSDpSLw6XMvx/1JioMZU2nJyFtCoAB7FTCFyyQRegaMAs10DFuFQq2/vwEY+aPZFWaC0dEaHs70csisXl6BVfw0OyLrOLnGi+ZmLaOdz6gpg7DHS5fRsrVEguCgPZoiGs7K1zVpW4xVrbA0xrOdcnnBasYnku2g4LVWUXkDPFUjRBKil/EuUFQ1Zr2BG3SXnWpON5eJ8DGr8FjLXes53QA5VJcqBaYvrtyjf1jX0M1pBgRav2cjSii2YSLSFvvdcwMnM5N4QP5B5cNw6x3GEXuyNx/3G7f4T0r5wPG7cPjr34+DmSm/Kx6Pz8x8Obl/gds9/GtDBF6fpbwSS1trwPTbXdnWzB5OKc79FYGScoTf70ZhmfH9CvzVsDJoJPoxf5Mnn+WT45LSRrv6ONl8OY1PHOZljop7B/yaYnSDKPNtyRh8JNnAPwGqUKTLmDGc6WYqgLxlV6AfjHIgHSDTKzTniW2e5SDIKZZmGdMarNpikDWWp22+plxoBzwYswVNjBnucR5CgN2XiPH1GMESMcwUUwF0Ynnnjc+KfmU3elCaNYEtSdCbLjAtND8iygdNG7iXK/dAEP3c+vz9TX/cAG80Af0n2E1GO44ZZlNsQCYZCKHswA2DudDuZzRHvyRRFMnJaME5mTCKAIoKrM7McllkRPyZDVbI06qJbi7JYUWqKYH3yYntIUIvG3iUkUCdtW7diAroEX6hA0YU5RWCVXpGtBwLw/PsNK2iLJIN2YYebYmSuQNohtdGzjJ4ANi04e8pQlHSO3f8CLrqs7wqiGi3mVoGlqSUZEENh1x5b+6kV6Idi8YlOBqCg9j3N/aclW1kFZuOuZfMsZpS0Kb0RbJzmeO4jqlEe2ZIVzjNoptqiBGFraO/cjiN1RqMdytF6sDJOZ2RZ0SadrnFGO9qd53liY0Qp4z6xoUx74macT0tbOJ7HCOaz4ERNZJcEmApRugAajATTWtoMttagSIMmiHqs5Tmw0zlNMa/SKKXLChyw9zxddowEYysSe2IC2DwZKFQq6BfyIglahBnANwcrXSZR1gfzYEulYW5MLNbvnKukc5TaLkaBZXFd1rDUVh5ydynTVjJdNq65BCsvGQwmGeyooOcFXJLregNoSRvHU28LZCC65Voo4ELZIZsdqEYyfhe2zQsVd47D2mJaQfJ6ebZJe0iXdvF1bumLrc3WvC2QlXgCbNPeX6tNqNJFeIGm6gzkwRbmMdfIxc5d+QMXoDwsQM0CuqXNv+3a/b0r89JiE6rX1oB5PvJ1DGX9lEo6WMCPfZ4RqjywX8zifPKyw+QCFLnY55o2rl/6W4WE110udvvqktao7nOMqDCpPWWf767B56utWnOe29y6o18+e/lqPt9KAbm8vKhC9/zU2eTa55i4da7bQKcfxnrNiqxr7nkqeztnzev9Pee+B3PJGeslf5GnNY/rqa4gBc/5ltdrs7rKBfZHgdBk/ZG9LlbUOndm/4qJsc4IL0CqJaf11Cx2wBqx0Be6bdoah3zmYk5era4Pa28F3X2usVoyIWu+c+RebI599iqgVD0Hr6yyGuCNq19CJNkBc4GE9q79MxIPqYSdtVg6ssq69fCVaNg9rR+0dkO00W7BAN9QmgR763HTACd1obc9pmtofvj9RxKZH/5cArD0m5C+oDgDShfmwvnGPIyZrJ/WYvgdxhg8XZgGplnuzWNeak+mFeBnIMnCLZqszaJhL3glgF1soDrXS/qQ5t5rS8sYJEOjBrA2xU4ptsI4w1tpJQmWJbNKEIzzAB4JeiVTtX5jhGYJUA5dJTxsj4stgFixjrL6Uiyp7mDDkzkrbcJQopdrtyW7AQ4tZrk6h0T/xulhg2sl3F5vGPtgJTvOBFPVjhHD4DlHAc6ebmlGFQgx1nfk6+YmsIB+vp8nb1nPX7JSV6kziBA2RSm+kjtPIPkCPcECxS5BraVecuF17WW0XBSbLJvgaku/27u927u927u927u927u927v9vdpfDVIK1hCQYcsB0Q8Bn8wZATqRlln3gwDvKD4CzKJ4MAOoInJgREkHr0NtpMNgBu3W8ywejiFap3cQD3CMR5wPxWmtJ/NI+MdmHfbSaVouPpEjA60RUNUM3Elv6NGzfn0w1dxaQ8iMrhbODSwOfybw0I6LMY4G7aCJIQzGadinMAnQkLYjgBG9048bXSSyj9vB8bjx5csHhylfnpNfnt8ZJnQ5uPXO7f5Abs79y8H4euf81hhH53wefD4dG8Lzu6P9Dscn7uHsaX0i7jQNcIuLgNwSjGVoPzluxnMI83TEB/f7gbdbMOcchhx3+PaVz88nz+EMiyxuxyI7WgWCHykBI4a3oCpWD6ad1jOoMSwCS8BsimsHGRzdwXt4C2S5pWg9yp3NdGecBq1bZkYp0yffz+8o32g2sW8n374++cvnExvOGMZwY0oSaVkc6Kf7yogGx7JUjCaYJLKu05log2GKDEAIQNYqaeFZ6mj7r0UbxkQ1gzyiTEAyOOGSzyjB2hOybcthOS2LWnhkWhcdeDhsBGZRV4dsN41Am2dwzCEABQ6TSE8v0IZLOebLgbEd61VaxZNFCXekCT5l0VuHI7gBg2JsqTJmxQZTOBXKV3MteaAVyInsxAJumO8suvKJRAvH1B6zosBmgUzKAWcv7piUw1jsMe6QDpdycLYM6NTz1/jFVRxbwZWrEy38yJuXpPprvjP5Ukni2qO0kjuWACvyush21JNOZREC9NSEcxpmA/cJGdjOB1uOz/W8VeIuwYKLzSu/FAGPAjaUp6lKGlU/4nv7fS2f9AYppaOunOLxmMUCwcXhvi6xvLqSTjlfTtx0jC6wTznc0o1ZpQfTG1+65eoWNou1KBoK36wCcB731e3Ui3Fv63vxcy7nenkrA8gYTnFfiDZAGiIdJ8piCRIsC1yCDiKhe6vkD3uOxDPwrSnj2RfSeV8sLUvqMyBSARTEFpCughUSEe2XgIxUwM4tmUlqXQfLYDhYNT2zsXlOAccCJFCOSzeEGUFoFVDHNUBRvRcLWENbAgMIpjHVYE5ybTR5IJbgVwFvihw3tN852i0znT+y1JtwtIPelOPmHN14HB3tB0dv/HRvfNzh/gFffhJuh9ArCCJ/jdtUXn78xh9bphPwJupwU1oPJ/YcYEO43Q6eT2ecjS4NPyOsPafizXCZnIAMwX1EMCBBfUeT2MNojAZ+hqh+zpHYoLHKQOCCtASPxq6Czbhm6UbVzMKuUk1u+MzsZQuQjIkGk6KdOAPRHroFYAaA18wZ44wghQjowXSJUly+hAIIBpLeD9yUYY6K4eMZQYPUl2MOThPGHCuT2ZK1CTNOEz7uisqkd4XWGD6YBnCgZT+mHehWtkGUYNPWeH63DE4FKMAyG9l90pokgDb65JrlgbOUZgQTgoXR0l7tLdhUXAo8rExRmihGlMybBmMUw4olcCyBswn8iqx5WesymA4lACUINs7URbVhFNuA4/MkVzxOZNlXQCFFveIliAcbYun7vftlwCn1VKiW329gIcDEBQgC0la3NOQ9g3OSbDPFquOyOaMigJMbRZMNjqs3CbuhJ4sNWUZlA15XiCjZdWwFaVfJjoopUfZjBopqbDUtqgqGaQaXpPazBIzha78sIEqBPgqQOkUisCppsySQZhpIq2BuglKlDC1dc916o4tymHHOI8oGegTyWgvmiKMr8+yMp2AyGCLIdHBlnoJ2Q31gpjQNXVO2Qj1PMdxmhZ0w/yzK0EgzvCfIVRSaEexQgk1L8E9bDB5hI8TZSqumXpZvDbXyeu+MlSOkjhBh2VcISIGJST1RQbcWyRV5NiwaImfi/gRPlorhnGNyjhnXd17sTM//FSBhmX4JXJG0o/EqWRh6PP4GEtwftgQXsEzZXPkeUEDsZTu5L4aistE8ZXKXO9ug/Gp++a2CoQXuKDDFCmrWfljrQLY96DXEFwDFiieXHX9ROWH3kypvfXDfRfZzbdBNgZOkyMYuzA91A98B3LJlS43U+zXvl4Br2d9plq5ero8sm3oJ37JXfd+MFdD161lhj89WyftkUW++xIAvI+XkvNnlnQyG+wUUtaxLqbD/fuZ9pkgjcimxEORVzji/dWXkXD1aZwF/Ga/S0fWs1/7vdSD52Nc+8hv32fYxZc9drvYiRnluzF93T391bpTL+9eza50p1jvZp7rGnr91zQuoKHbk6tNa7S9r9loO7pUZJYER2d94+bpOqi+VzPNj2zbAlcdkJelcBmWdJGSP77rGywv+Or7rZV/6pqBWi30sC9b6RR/X2q39cO2RfpHH8qw4YfuknnE8mGm1kDsBLl7nxIt+KUBIqtQAkqTfZINRA8wU30k2WCZN4PAsU6pC78rtCBBwAZSupb5eh/66On/92281eflkSU8ClfJIlYRItBYMnzPB1TFUR9ic7qBx9kOVaSekv4NkAoxEkigJ7SJh32PgM3ys6a9c+r3k0z0xseUvCF+O5j66/Dupu8zrDNv2vHqAf0mdFCyrKUYXYGkwIfmr7Erour3vyPqubPpCQFY56nA3hYQFGMvWLhJXDi6pporXmdnL99WWDVcuArnsYQXCjcSFy/1zgxCtfeOS7CPXuU5bXGDZYgruFx2R8hRgpNjDrXRz8qDWWWJfM3VVLaUa+rzWC5ufQbGdeY7HdZOpX3/UL2vfXO/75UNX6+bd3u3d3u3d3u3d3u3d3u3d3u1/TPurQUo3gtUGHJ8BghEEG5LAoDgi9d6S4j9PVa1Fhr8U60ke/o6OmsGM+uJBd6zrEGZi6GHAoEsL1okG5iPBJRFAGnOks6JFKbOZGdZNFqOASo9AMRG4b00QjNbCyag9SicgQkvmnq49r6VI6+DOjQr+d6wJUxW005vQdHL/APt0Pr9PWpZ0QxVtSu8aZcpkcJ7K57MxPzpfbp1bV263O58umH1yqEZ5PXV+/sMHdh98vze+/uVf+dagtTuMG5/f4Hh85yGgM5guelNwxaRFyYN0/GgGKpQdOB8IIhGwcz1oh9Ju3/E5cIVPdz7PJ8/z4JTt4DOJgGHXKJPgI4EIIkycdqQjiUEXy2zbzjki4Id0EAv2nHZnJtuByA2RE2yixx1lou7BlODK9E9OvuJ8Q87vfP7y5Ou3wS+fk2+fkzniaD1SjowIPjYBm0/MLMuWhTO3kr2EyRwjWUaipAgGw84oTzcnQkc9grVXj4H5pKnQNRzI2giHmztMZc7GUFA3zNK5k6XnKhjjLssRUctGcjyL6tpJp5wngCjXiUhmM1dQObxK5OWXg2gF2crxXOMgVZJr4kRwNRwftuBMZjOcUemMDCBXZMsJig9HWsN79mFMPOg/tjNTSMrtAIxEeY7KZI1A2vTIstvU6OFBMXOwSxZn+j9b9akca9X84l7ZvpoVYFhBkXxdV8SiMt+JUnsZGNMEG5WzL0rvKCMZNRrhdHSCDc41nGTFfOPW0jvWUgdJZv8F2DIcZDl3FRlb8MoEpOTDlIM9AgCXgMl6AipekfJ0ycpdpYYu7lTJ8jXXC9SYSY1Hefdi3MoxXaXEypkWV20vvQknbVzUzNd1Yzp8j2v2e5U48nS4XtJYfcljhA2LZYsM6orue+++z/AQryBGPE8wbIUMRqbuAOmMvFOw7qUzUSojPvaj5UpMpiarrU5iPAP0kM73LCezJ2c/q6mvNVhzVtxSO8gS2acLM4KAhaNdZOAebBIWEMYMvoZOMi8uM1vl5goQ5gQoo8rQOJMuwfrltrObI3gwce0xvh7Ak+Gx/ponaBKnabJLqSLSQTrt6IjC9MHwRpeD6UbTG0hH5I4idDEeohzDud2F+0fjcRced7jdnFuTzZ70Q9zl3w8d/Pe1cHZHwPzWYE4YQ7gNYd7hPAWbyqcodzpjNuTTUDPcT2gdPw6eI/R9c2gYfijnVMRbsPGYZYnNhsoj1vK8sFFkCUGZAViMWZyc86SZhu1jJyOojrYHXjskc9hIQI1k8N+T+cHEcx8jHeqxdkMvA6qYKWqRge+pt6cItBp3QT0AP5hj2hge1/UEyboNPMtJSdpdT5+M07hZR/u3DBj0YNY5sqSrJ5MGxrRBVJubDBtEyavYC+P6E9FJAFmyvAGOjSf0hvQMROQ+EoBlQ9UTFJVxFnW8CTZIsLoxZgCoTsvxnWeshVxHZgVLnLEfSpZc9dDew505C1imEWwhgyEWuqQWdu1fkV2fgZx6jQgmRWb9DjwtZgqBZhm5XGXG2FvI77AFc1nKk23TpcAntXdUIGslyF/2K6GCTCywxgJwpF0Vv2d52i4EUGkPzHV3gQ1mLUC25ztetg+yWIUWC6PGXrxi+BLl7JCwLVqyE+zSiPG9lkF8HLxnSZJco8GaBEwYZ6xhaRmcRZItJfbeOSbnEGZXjg5HCxatKQ33M8v0KD6dWz/g7lgXns/v6NMZYvhUWjeaTQ4Bzf1eE9xRvKm7lEjaFsU2ltG5JCTEiXK42gL0j3gyLhljwpT1KYKdqRiDfI1tgA1ZJcOLkUoz0CnFZLbYNsPG2sCG+keWIQqWOcugnmFYlr2WOTmfg8+ncU4PwKKR9qtsvIvUXFbJ6T3pNZdlYyyWConzcZS/9JRZ3SAs9pjCtv0jeCo7OOkOriuwusEyO7j4W8CTK7hiH13ivrI7vUytstcW2JGLPZU2cn3vylxJ2YASq3d1RWWDvyvYTNk6ee0FBWPZRLWmm0b5PV+UiFfdkH1fHa39rJ5nQyY2WweXscuvXe5Zr9f91xRdzxKX7/sPf7/YI34Z2Bom2dfcQKNYDQZLxmtOAqjEPtckyL/+VdA9zlgXAJuXPJTOuTzY5Un2PPrlWWTZBfXZqzysr1/GZMne5TN++dwLy+nriPzwt7++8ysZ+63PvnZM9PKaEPpggYkuBuRVhq6BfYrZTNZaXp+R3WN57czFTt+AgYSS/vBkZYfb/qxUts8VFKX7vLF6/sO6u4zN0ifrDPfr0d36qb5UeqB6WjrH18/S9/WeyO4L66yTV5DXvi6L8SKDtWcE4CoSAj3P1i3HPc63E4gknjBvNM+xYV9rT+Yy9Tz/BetfMK1LsHMiHIfSG7QWPpqu/w5A6W/clis0hSDJF3EDM2VOONN31Sx8oTJz3MTxlszV4ZxBk3XL8mIiF9ud2ANFHbe59m/PjoSey8QmbCWchdthMv2i90snpryZh99nL58sE0fqqZSppeoLTi6SPq6QpwIc1/ccFttt6JHYHQoy5KvUnFMAnEpkmj6xKcEmL2eci9FgfG0Ee2mWtlu+n5TJwETlpCTY1LyS/xZ8/UV3aItzdSUq1nPE+5Otc3LuyjbIx59eT+H5hLYSy64gpZefFz0bNmSupWRCr+SVeq6wlC46tGzXH/xecZbnh88VMEouzIp1P97t3d7t3d7t3d7t3d7t3d7t3f6u7a8GKfVK7haCwl8EmemMz1QY802Hne7HYLTxyl50mkXWjSW1ddegO/YGallOKx2SXYxFrJvZ65VFFldsQWc+L4womuATuDBCRJ9uveMo2rLsEgm4UeU4jsh20gjW9iyJ40TZEW2NW5MEJ8TrH73h0mkutENoR6N9CMf3Zxzajx4OA5RDBblBV2cO45evg++Pg4cOPkR5tMbt9gC9RWG5IYwR4KHbvfPx+CNfPoR//mfhX//1ydMG/ab89Ic7tM4QZ7ghHlHEKEXi3Fujt4ZmFjlJj9xc0Y8Hh2vSEzdcPzn6E/zJaSfjeTLM+fY8+e6T3uDIwHyThnk4CdTDMRCB+WTccKM34dY1Mpw84qfnUIxgW7CKaGgDgk1AWwaAPIAzTWASQDdpBuM7Pr/i3558/fN3/stfTr6fMGZkcgOYBO10nfkVQVyDmtrLOR5OtZnutAhaekAs3BmWwADdZ3uzcvbocsjEI4czMSijS16DNasJCMGCEQ50x0cyWbABE54ZsKqSDEy2gpTkWsJmMmBYOkuuwYL0J7RdXkGkmHW2E1oWA0U4/NwrOJ5lAiQC85VtF18PAKFKjytrOUvK6bP4yiKncYFhfDuaclwj+zvkJT0lwCXgIuV0C4aKVs+hDlWKDqhgXY1phtDWNTPRjEWjvxzHcgmKbMdQ3bOeQtVX2QbJTDnRnJ9yyraegZss9VG87endsXLc1hyXY7YRa1I8WBRwzjEY5svni9Y6yqG9BJ92ybLtzIrgbrLBrKBFfS7HzPXiBGQHjorp5+KURF4zmpdTeY2QUCU7XmMI8vIlyfnBtwMySotpymHN/Q4CLJlOsV/O9GQ6C1mvcnZVArCeNYaqApsrMLX/l3vR9S/Lyw+8AGkWLEH4jCBjghO9MqyFLDNT8hEBW7JEm80sO5QAjwBf1U1DTlcpv7ygm+84BbKDmzbXGIj3DCrEvaNswooMY0aWhpKlEzT3ui617wnQcz1KAAoFpKUuJHOTPTJ0FytBgp+o4IVrAD9aMBzafOLT6P2Oas8gV+wTmmM8PQCJsTcHqKxJ46Z3oKH94HHrPDp8HM7trhxHBBUk5fLis/2btvDNerAI5b16F47A/WATvn93vn86n2c8t/ZGOzvTg8Vn6og4uTfUD/z5iVgEp7V1ugjDJz6jtJVJyk7rsd9lCTURYdpAcI4W68Z84j45pyE+Oce4ZEVnAdacqwiCZKBNYy2bTbpbhM1y+arYDmZqBtCt9tKQSVVNHGAFqQtQkqEEi5J0Y4INi9JuHsxDpY/cnTFGst10Pu2T3ge9w+3+QdcJEkxMIrcIong48ueYTIlgVWSewyEwbTBGMDVpRoGcAT4D9GCecujgFtnrNHTGmvcKjln01WYCrMwpgOTMZzafGULea7KCuDGOLNBClEH1ZGcjdVYGCiaIZXmN0lcpfLVnurAy0rGyEVglXUqZLna1AoTo1jWL3fB32qJSyQU06bGfOyz7hALTVqAkv7vjVbFWHaKISM0HFTTLPSXH0q2YHGcAYGqvJey11z0otUwCCgLoA6VUhQRzpL2yysgmuFNVE9edZx/0Uk5k5nfCnpieyQMadmCAlUCaBoNYT0a8Ko3DBqG1FiMzh3NOp8vkSCYwbYroPXY0J5gbYplw3G70Lnxq49s342kn2oTbEc8zCTZIWfNTzydRMhG/lKbK0sStx3rCE9R1ohIlQc85oqw1MM04PRMGVBAT3GOPq1IyC1tR7HIJ9qoAtpO2dpaOc5u1m8YcYpv5CtaZJIY2SkRG2eqJzcE8J8/PwfenMWwzqoQYvoLecyjWuASQJdlELGVQvI6d1CLfJchkX6fm0tM6rUNF3WOt8wi/R2LAZnxwB0zSivF60vrisgGujE3L7vEKVm8b+DJakDJeFvoG7OwduK6/2Jkum0PYnwHm1LIDL/fbV807lH2U7LCxnjcovgLaC3hzsYkrsFr2aAEM93j7Gs8rsN/r/yKvr9dx5IfXl+VxmaMro5TLv3ENL0Br2TGs+akxZl9yXf6qVyp/wdczsq5TZ7e6lllABNZUrUB1sNNehDjl9fIMNaZrbPe6ksuwl+z8Chjnl2ukAr8CXV4/L5efe2zlh5d+9Xnfq93z3H3ZIdZc19/XM8qvOnrdZNZd8nq1h/h1HK7AsnizEnCue5VfRnI9s1/64nXGzBW5yqnFfNccFeBvj5/s88TlQUvCruN83eP22G/dsUGWXHRNyXw952Vsa28s0EbtuF4pTRtcjez9WMK8TJnP9bAA9KUAZa3v6TNBooZIR4P/PO1aFmNhqmmg5YssHSLSkNboR6MpkXzYpfKt1j7+d2kvcsCL/K01qSw7expha5Z/ZtYAhn8BIZPUfC9ADbshzr91bkl21fgCsO3LYu8JC7KcPGHvlv9gA2ALCF6y5as04dKJHqD/2nuKGU0vOiJUsq9OOJIMhjUO+Z7XZzdoykzqT5bRV/oW0r8U8j5tgji9eSahOsWGX1J6VQkFRq+9RPPewbwOy2a3AC4JBai7yHTp8EoQIMfPWcCmZdPXmvCtF9YeJztJoYYkO7cUbq3ldf71TMbgMi55TfPaVbduXnv8DzJ6nd8lmzkekn6D2OT9x2+/27u927u927u927u927u927v9zdtfDVLyWTlhcVgx96Acdo8MIQsgiE+j9SpvYHRVzjkjQOCe2a/hcPY8uGrV4fIIWFbQOdhSHLeTkZ/t0qMsWQZ6VQRvIBrB6oaE8773ADhYZmY1iYO8NHoLdh0RQfsN6TeaNrRDbwk6kgMQWoM5I3CgTdDeEWncpAXgSJRbuzMd9NboqhyPe7IkCPgN4aBrx2+N23Hw6A+a3nhO5Tmdm2bA2waP24N7jyyfczY+x5NhwnH/4MvPnd4fSHP+yz/9E8f94AON4KlFyZHmjwCyeIzb0YUuJ0frSDswLIBAgPTGmBJ9E4vqa3Pin5Ovz0/OMxz2poIPZ5wOHTrKHFWiJDxGgtMISu0IkDitZxZ5HphVnJs+onycTGRuoEs5XpsILh2bk122wRGfNAbNBs/Pwbdfnvz56+CX787nkHQwhPfD1fB0YInDOZNNW3oGh1qyKpC045G5Howqlo6XDAVYgnmkWBqiZFoc6+O7IkqUhtIMXAlr+ucnSLBhhP+i5fMk80I6X4Kx4uLMuji446enY9ZWCYumlRlXn4XeNIF+EfRpF0+cqiTjD8HokY4NkrUjqsiFJ1y6ZrAVfITzazG1wCrr5bH0A5DhUYqrZ3kp81jLzzHSb6jB5pHZbe51OU0AolDMTqLBiiZU1mc8F2s84OrsrkB7BfhcgjEhqOF3xvuiFqfAHAmmunjVKmuwgjZrfNWJspfBkEZld5pkma0sx5L9nQRoZKpnKb8o0xTlV0iwRjidTYKqXNuWn5ifZCrIWhA/ZvYmzwae4I9qRasespXOyovT7JolbLPW8HYAIlHo7sXZXdemxr4AQ3GvAr3ta2QPL4GJa/Z7zSMZoF4MIFKsWwsVmE6z7ItIrLdcFyLFsaPrmtuP23Zw0J21YNbcZlm8clauC8zVp+q3EOwU5WVumneU7bgvZ19yhlEgpXruKzBJtFGYn82McgkIoKwyMlU+x/J9jyCGtCgHxqXMh3swd3mWmwl6NEBinluLdRgZvQ6uqad7yJtHOFQXk1QEkbXJAshp6xQSwmzyHMIhkfFsDNQVIcoY1XW1ReBA6bR2Q3tDuqK9gR60fuP+5cbxU+P2cB4P5V4VQS+yFz+v0au/gfM0J6VkAjL7N/ctCEDA/S64CifBBvL5GbqS0ejaODkRBHWhecfaQNtB7kD45xPnk+MQbDjag7Vj6gESIBxLpTNLgeCM82T4mYZYhm69JaPHRFqtVQmgnCcUVxtmgzknNj+xDBxPc9QcUaNrZwQyPMqcpZqv8mTnOSO446WDYk2ZD6JUbzAv2YwASJRG3AFAM8mSuRH6MJvYhFkZ/NMQDaBcl4b7wDxA4lXq83kmR5IH4K0YSdyEYleKdaYJFFB85v7oAc4zmUiWJ6zoR1Q6jZJbasLTjJl2ZOyKG/BVzCoRLY85Lpa5AnFcwQ0VxPAEHa9ypOpZXpCEymqGGuIzgm+Qzdq+Lfe2BJ2m/RprVxcgQrXhxVza9n7w+2uyyjrFWsugp/iyspwIeGrbQAbRWBdlOxTrXn0+Lp3MS8mmUSX4gBUZKkCyapWD2UDrpYIzoGcUeDxfE00waXxQ08YNQGBDVBdISTXkRBN9Kuq01N2IpE6Mf4pHqWRp0c1kPm29ysaC0MHjDEJTmjZ6O2gtWBqL0dQBt0nTYzE4NBVGBfvy3o+PHgy5X4uNMsusTMttsi97l2QNFSZNWyyFte/E3hoVvcPmQgVmrI05jWEEe6Hm3pIBSs2Zs1pDdYarfUhIhjDf7DY5mWFzZ3m5vN7ahdMuxcuWrYk1gnvQomTmcM7TsrR1lp9ZgdU6J5R0kKw+dTYJIHLt3QuUVgJ3sTcvhKmwzhNb5hYEPG3ii+mec+G4zwwq+yolHaVvqyzVxSZe9lv8XWeTC8pkPYOvvuSaYQPew95gl8qpL8tmTdECVay5gmBcTcIH33bkKrm21tl+dr/Yt1XWLwD+TlGQLFs0L1A20gJ5IWU8vwD6SzdX9wvcsoPCBYC+2tds+b7I3RqnAuqXvKUu8xrXq7m7bM69N4qwz5AV3b+e/WofoMY6gXNrDGqvvszvunvNh1d1py1bl6D17p5cXrs+7x7r69hcZe3KNLRHZw+XXIT5ClTad6jzxNWW2/18uZhfv8NFxi/z/6Inft0WIE/2SMjLaEBZmUs2zS/7xOXZ5PJsayz23fVy3Ro5IFnS9qKqy8i+cNoMss+7uS5+GLzV/z2HBSYh9wPfbGFX+ao7lsKsTvheNytzwn2P0bJzoqCdrDUO6yxZe+L6m7UGq+RpAUiKff0C09pjWL6PZBiTBAaHvRC+uaYa7IOtob2h2lHt4Yvs0O4Brm15bP9t6fjNgf3/uf3m1XIYtQUfcM+FHMCcmIfWozZclFYOv48nw6K5hW0sDgTouaEJvIWZc2kXwFj5OcL/JEsXb3u1Iczcw2Tvoyt5aic5uQXIv+RU1rovlmLYcNnUkyLALqkusNcPZOk5KH8AlL7a+3nZNvg+R1vpKo9EWTWnfD4t/Wq2SvmW/0svZVF99WnPVss9d0lyvLt0cUCE6oxfoKH6viZzf5TCS/B6MrRTPzye1WtzvVh5G+V12Q9SXxRorfYAX/tT9k+LtbO2+8vevvTD3tCve32VC31Rw2uT/tuui3d7t3d7t3d7t3d7t3d7t3d7tx/bXw1S0tbTi1zZ5BHAFDVa66gr7p1znMw86KpEXuwKMYhgEgdbmQbSsMyIUgFv6UjxKFUG5dxSMuGIMYLCuN+LqwnKodt6/N4sDom9GHyOOHAePZiVFLi1G60d4dQ4DlQbrStHb3Q6XXuANtqk8cBGxIfb/RHODxR6BJ3v7ZZBX+XIIK07+HCafiByA25wPOj9xqPfo9yNdvQWwaQI9E3GeXJvUertUA8QlQvIBBr3L53/6TCOo/Of/V/4V/8LrR/49ydNI8ggrXEgqB/0BiIjgWSWpeuEgFCcwZTRWgCK7o35tfP5hM+n8TnCCa69c9hk2mSaBktSD8eDe5RA096ixNCc9JtmfyUD6D2Dk8kq0xoND2pmj/JIAVIZBDl3BXhuwXLQDJmGnyd8noxvk1++D355erJa+XaOJuBtVikG8qCOEDTYGX7UDLSoITIRKh4cTjCQDW4gHe3lnEuHEKQDQHYmp3kEIFsXnAgqz2ewLgxXTBQ5PEodVqDUuZIRhdO/tQCdeDl+d9alELJSDsZB+hEzqCYEYKXYCMo7WAEHFQnWCfMc32C1mXbG+9rCAdiyfE/W1RAV0JaZZS0YWEgwhBfAI3EUZCYcQmt9AYzKIenKKpdDAsVcyNIo6Rdz30FiB5EN0rGiHfcMNGa5I0vmD6Qyv9NRtwIey+OzgiFVQieEjsUegpD6Il3VknqlKZrOUNywkd8peUCWMypEUjIg52uOwLOcVlFzR1G5un/Jr0rpz6QXzyBTiOF26LrbYhKLvl9c7unN8nJ0Z9uAJV1yhYe/qwBjcf1ymMt2jkk5obf7vcLuy3uY/XqN1NT3t2MxnIcF67EFaoon2NmggqNNA9xAy/uMdCYWgxjLgR7XScr7HI1ycHuuEU3GqgDqCeIRAQ8GoZbjlZMpsZvpBRBRA+A5MMUkUYxqxSLoyWCjqX+MAIQ03eCiAgWKJ0ArViMVF3GX3CtzvESToacc2xngT4Yi0SiN5G5BWpT0UeaT1lpglzzLmRLgL9EW+qDFc6vEtWIKA+Rx9DtJO7iAdmjHp6zn6y3AUL01Dr2hTWnaud3u3G6N29Hp9y/c7nceX75wPx58eXQ+vsD9w3n8pDRmAPoKgVEOakov/xBI+5u0y/XkIk+E7GuDA+dLSCOfX4V5dHQcgHIwMH8iU7n1hjXF/OT5nMiIErHSghVD52cAHhNUMscnF3Qicz4TjNGgCT6iPIPYDlR2VfrxwXN8T8aq7KcGQ+KcgzkG06Ik2ewFvmm4WoJbAqRhnuwuWQbXxTELzr9Qh5Y2n6M6OedM2a6MXQe1BExBAAeEMW2VixIPuzBwhXHP8wzWzFtr0IN9cyagZ5olE8eRQOHQt+Gs77Qe+tM1Sm6q9gAoZ8BDvXL9Byqhm8aklhcQ4HObhjRBp27Aqk26CswoGzsl2K4KPA0FppfL9S5BzlJ7qa8iAB82cUDKE0RQ5Sjz+yFZLLs59IOyrOkCRKsu61rELuyICX79PccUVMKuzfIaK+5ZgE/yuUuflhmTY0banpZrNMqQKKayQDlIBONWEHnFcnKONe2Fi51YMX6/6PmWQGG56KGlh6XsigySapajyb27qdJo8VkFUUMJIJ0hAdSUKFHjGuu+JxspGWSzFC6fqQuiwCyukbDRRKOXmWhRdp5NC7C/9Oy/01cAMG0aVW6PL6m3v/P12ycyDLFJq1IkGqU9A+AHkaaQjGO6wZxhn2kGXyMAO2ewPA0LUGKo0ix5WDa2R99q5ZR9idgCA2GWZ5gsp6qyS7No2uBSe2cAeIJfKyY++t1yvg2TYKNjGDaMc4GoKnjIXntcVvV1yyngMBuksv6VTbmkdgdtyZfXZfaX1lpg7flx07JlhATYeciPi2wsR7HlLgRLbV25BlKv1bNkaHLbLtdHlOsnWGAe35HPLUV7cW57Lu2M9YQ1juJRSnCBujaYvpSok1FcHJPL2Jc+1H0mEq52aI2ox4GNOvOwnn+xbZbu9R2QX5CUCvr69b6+EzN8j2J99zreYY9vQYnvbvtUkEK3LxCHpk5xJ6u7vt6/ZKH0wlaYde96/QJCWc9USTphT+7Vv6/+Osb+q1KE1/ZaFu31tQWk+fED9dw1Cheb/PqJdQ9KVztrEtc7v26l8378f31+24379Zzt7MW1P7EA60xdF4hhty23fgFseTER5xwsgYgz7J6bWue7V8V+Vf32yxM4l77LRa7SPirgRV2/QHk19MXgsp77YhTUOU7r4H7ZAJe+kMueW7LOZc3XfUr31LxK2ZBxRopExCwPT41djVuxIOV5t/YvYzG/1l4qGucm1ZaJg8EU3lRp/Yb2jvbGcRxx9rg5/SYcR5ZW/zdk+t+Sq79l+21JT59CvjBUMFW09WDQVVCfWa5UcE1PwDTCeWpYy/lNf0ztPeYGWZ64gEbknuFOMnlvRumVKKgNw5gz9HeBdWxaMBYRTESezISxVemrPi6mr7INNHSqF0g577UYm8Rhgfll7cOeCQmbDTvA7Z7n7rXlShV6zjLnFomfixE77cRgKAfyrBO+wwKTxhpeu5B42kW6/DcFnKX2A7k+Z6xvlTyTULoin6WA8fV3rvsfGbFf/BgXudkAUHl5z1InbLa2WH/FFr0AyPW/BB5K6qXSWy+samsnuxg1b5DSu73bu73bu73bu73bu73bu/2d218NUrJGOGTNosyIk2UZDLcR5+M8jEpTtAdz0hxREs59RjkNjazaOFdZOvMriF9OVkEsg7Pm4D2Cc4cEa4sGeKI3oXUy8NMjGKvCcRxxEK5AtyjtaEiDQ6p8SQAjWpdkSCFZlm7c2o2uSuuGHh2VjswWWc73G41G58AOR5pyr8hAE44mTEawSg1B/AA5MA5Ov9H7naPdaHrjdrvzeChdw6mg58m0yefnoB8NaUaXdnHAHUCnd+VP/3Bg9mD4g6/nJ52v3Mx5joGKcDsOxCe9OaoHzY15PoOFIWhJIiDpzpyTfjhixvw0Pj+Nz6l8H8Lz9Cy1FY47y0ydMU/cwmmOCz6NZ4PbozOfA5XBocJd7zzPid1aMC/wzOzmGU4m4tDeOPLAniAhtQvaZeD+xOeJnMbn15OvT+PTnXMac5RDQDfdfR3Yp2V5Cl0pp+GMUSaGukX2/nKwRxAkmHQ6G0hkex7qLG9+AWFUQCQ8A1a02UaUs0AwFG+C+wifnKcvXMKpXsEHSflcDgW2U4NkiggEnSRrhaTPOoK1ERLNQAFZei2HMkhV4rlBkkKcNSblQFTVYNsQxTXoxCuAsrIeM1jQPbxCI4FMkt8nWQ/KGWkW92gITXsE4MzCAaWSZVBSj+DpVIzse0u2BJuRoa85T1fHX5Rd0/UXldWepX+snK4LnHPNPH8NwgSIY1N0F3BGL4xZUp9Px1U5fQMAlQMuMRuqJScVrJfFzKEeYcf15BJAw7pugGaC7r6EYTumjJz0uEfON6Uyai2soI6sMVjOs3K2b3FbMZD4JTOIJX30Rf/jl7Fb2YtcxvTSjzVR5RTT5eDPYQpHKBuIknHkFVRCJNkS9rwVG1Y4Ay8TwvLVJbvIdvK7O6235YD3dC4WRXss84abrOzO2luaWpYtSFDVck76YmQq0KSwfP4hS5IlBcVpLRjnWmsJKhKmzCztFoEH2wIZ8iWx37XMqIySaZnvmqWTgkXFlv7zGiOJZ6xsWrdnSINGSVInSl+aZtjSRxGFIR7FFkgAyMy9X7XhqkhTxoSjdZocWAbCu0iwL7XG0Q5uvce/486tf/B4/JF+v3H7uPF4dO4P4Q8/K48PeHQSrvpvBRX+Hq0csjVyJR07e15UOBRQOJ9wPxo2lTEm53nStXPcf8J0cj4nwxvDo9yq94bMTrPGHFFOyYZx3O+Mc6LNcGJftRGANhMNkM90zhm6X90uvYNzTOaMEqrBDBO69vM8mTYCBDwGgmEui6Ek4sARwG+tM0Yy8Eis5TkHgiYLZQY2fIIP3E7MzpA5a8mM57HHazq4VaOMReryKIEagSKRiXljWAAo+jTkPINZsAX4zoFhFkBn6auMIf2IvbNFMKCpYzYCNHfcGRPGGAHgMUM8AUwJTG2qIH2BV50qoOQUq+CcI0s+hqzjBRW5BAvEg8nKShcHKLCC4WFHCBDsRuZZ0sOvu06FJUof5/6ZurB0ZJUGkwLIaADAqLKrEns+a//S/xFxt/+vm19AAJZyrEs/J+sYW4eWLg8MbERg1irIjaJGtRh6VsDHN2g0VOplH9ZraakIdhVzhONrr4KaF8jDAi7Biym1SSV7kCfrlUqBl+onSNuMeF2DzQjXBdxW1QzUJtC6AnQuRLnbACQ5WbpQe7DAJmitq9LSLgsD0BhjRnC3yYpTiV+D4Xd6Vz4+OtMPhj/p+gQjWRZJUFbYyptNdK75q2CcmIUlbI75xM6wC82EMSO2ehXMAGx4rhVLhrFIfEATDnUK4sbUYFrDw46O64ya1JyncTEBEgq17HsHDPPQiTajVPh5GueIUqSVfFOBebnaUylbqiWD9SwReH1dcFrG/WWtZ7niJfv1HWdrBE8dsG2pklvYJX1rnwowUK0TWd3Zxt366AuwYp2P6uJFiVSgl/xeASPXbGmZJJpnim3rrLW91pOmXUIdm2gexzq/9u9FGjYjlGV/AoBWIHZHXkaLZZ+vwDgXOIzs57rGWNMcW1eRy//rmsteXpbwb9mzeYWyoal7XfpSAeAcpSh1JS9z5uIwf7RzXm2fdf70TMrIF9eVc041+1oA5LAB8wnX1y62zkW+r+CqFbN+kYvXzxaQtsZF8nW/ApV+HD/f9nqZuNHVy70v+v+1/Shpcnld2Iey/Yx7qe31sB/z8sIakjrfvEKaHNk4nrU3516jdQ6o5+AyeHvP2cOd61xyv5Nr0tN1mGWP6RrjWlN5Zs1zboFmY641Qct5lTqXvIxwXKPGYTNCbfDEAgSz7Z8ABSarWU0nCShNnYnEvjo9QKFYnlsEQjcWmKqsn2JBltWnACdtVtgohZpjnX7DKGHdAqzUO63fgj2pKdqMfmiyiXvmr/1aov4+7bfW8o8fqXXmNAcatBaJAdPCZhSPcxXSmEymBROjNo8Kd2bBTm/GsA2gw6ukWex5W3aEmYtusYl72VGAO+eMRNIq/VaacGaijfn2BYl5MmmXnANsG2o5uajzae5DS8YE3GIdYPmvIPqyfDblwIqn2aMbb3uyFMZzzbTVsImOTICrPQVZpUkh/FSezKgLX5e2nLsjrV3KbGaSW5UzTb2hQiSRWLCkL5akEgMNv3npn7XPXHXpeh5br2/w7lV2fPuWuMzdukrpzG1T1DovG6ISdcsfWr6XDWBc3pXfEtd3e7d3e7d3e7d3e7d3e7d3e7e/W/urQUqnP2mZlb6yZ1cGp9O7YnbGgXnCyaRblHXC4/ANjs1rVs1EXDifMxxvtDwsGdoMuib4yTY7ikpQ3NMWw1BrilmPjN8jHDQCdPE8cKbjRkGlR9CgSWT8N6foknt7RPC8RWC79yNZgTpKp98iSCx+IHIgXbndPqKkQms4I8qndEe9gd8Yp2LSQRtPbhztQVOld+XWlZs2jsAjcGsNm5Mxjedz8LjfFovGPjA6Ijfa7Q/8/POdb+ed0f6F/hfFPwef35zhYGrcm3NrM8pH+C36aE+e0zCNMIePk6eFw6LLdz6/fuVzDqYdnDjPecLIzGUi2BieZmNy0qbhE0ZvUcbFO4c3jIF0OPSkc0QJIRVUJmYnZgrSGDpQlHGC6xGAGDnTrzERezLOr3w+v2PfPvn+9cm378bnpzDGXFlT5o6orfN8MEoEy1DTKDcTNNbB4OWE4yqcbRmIaWQphcxI9HDoDJ8hF7R0xkQAxosW28KZ1wqA5AFecKtM/Sz/Acj0xQoWpWmKLno70MSDEQGciWfGVWa5STiFLEtrCMEWASStNfTWloMp8Dmyrl2ui+kz2DQ8OHwqda2y0gFuGmUyRGIcAohzzbKtLNHINPN0bIlNaNWfCGTVGAVrQbEYlU9ScWaUrSDGTURAIwvQlhuT1wy6Hymy2X1vEiUPF9BISirKGbadasUmtMughZNMk0EhfDtZsogMiKPI7LUiIUuuaTJ7iXiWzxOgLRYsUraqZJ/6XIG01mISZzIa9fLgezy3iKYPPoUeMGuUo5wsebnjTJ5AustzlXNRCHeaeLAPXINp5bxfwVwh0rsT7GKXAEgFBH50wl4CwfHWzL8LwJUOarEE5HmMqXPph2TcooCDO66w5FRyPHyEHGd/LJ2DUX5jO8PLUR36QTPolSWWPEF5ToBMcwzShb4CZBG8MMQ07ivFjHIp2xNIwrXmWM8cDv1yiqpq7l9tjbMHEgWTcDqrK9giB2BOS6CSpbzF5ScE84tPnADBiCoiBxSAouZsxgUjGNqQ1Ik2R7CiuYLO2AtFo5QblYFroEbrIdtoiyBA60TYPnliBPoB0pzWlUfv3LvSj87j487j0ej3W7LGQetGO5SuxRWil7X7W+1v6TX9rWttvVkfKfm7Nfi4w+cDPocirSF2otJp3hl+RrlVhMMn3JynTfy7oc/BV3viLeZmmvD0J9OeMD4DGKHgPjnPGWvaJjYnlWVsHnbCWV1z8GnYHLhLlnwYTIzpkwqY23Qmg94CwDNsBFBCWujyNmP+zBYr3wTGVHw6PiYiE/cRa4/UfyJosQxZ6PQ5o+yoJ+uKECCdsMeCWejMYInMibnThyLthA5PnwzrgNB1ogJHezBnxy3ARtMc3Gg60R4AumGGS5TIcg2DVIjNsWnYom6hh7o4nzbBLABSCsOK66hFwMjPyCpfwZwK1IQsRBWHCICI22LmCVGxVVrMExAd4FpL8HUF5m2BczRLaRVTi0qB9TzqlbB1awFksvBEvlX3X/ROv7s2bQabWLHqSO3fO+xthP2ew7ID6H4NxpC6nXjdfJEGVOmKsFk2gHkHZTJom0CkmLcqC5KBMqngVO45DsEIkWU/iwEi2SiFHewKhkfd109wGaJZkqZYLAL1KKrB7pqfLfstbM4AM02L8w8IJi1A0wjSQ/frEoG0VzRsMzNnWrBMld20QlIioAfHvfPwAGA9nzDHZIzGtLRPJEC62bPYG21koDL66AlO8mkIJ+M8IymFOJ8FqA9QXcH1sm3DpgOziWuUDh8WdljZKkNm7FdWoD1LWyjCg5JMXDazj0rskwUosABszvGEMRjniHKb85LYAMsIWSVock0tNtOLvNbH5fI6UuDW3PuFi/7wdY2rptjskSXAey2sYPI6O0Q/6ryyvpb2zSo5lvctxqe6Vtzf1xG+9Jkg68xce+IqiXYBC722ABFE33U9w4JEpE2+sHyyflm2vK3xqT6vJ2ezWeZ1y1zMdSz7z6X66nzBkq9izSg9ssdhPYWsLsTc1lrOPufJL563xuYyCldgSf2U6zhebrSuXdf8DbZRcl282OV+uZD8ug81PnsshJlXWBxKckmoIMb6JaruV7v6csM84+0+XNg7LgPwWrLtMqd1fWHNxTojyPptfU9ervHv2XrX50l5u8zjMlQu99mylbMpNf/+GwNdDyD75+UT13Wcy4TrXNZ+HUN06Uj+8ItACwRrcY5RAeRX2effGIcqHVvlnNfj1vSlf8PX3Mca32op7dzLeoQt8/U8tY7WyF5kqJK1JJOnas3sZw5mpDi3xTVLN7nHPrhUywJO6GLSW6UPc5MQieTHnvtuaz0SP3oAtCUTEGOP9YvFBLWSX2Xq35Ovv0X7bXhU7cQCNHWOXoldEoD59DsF9EZpmQBQfhWNisuRxJXJh9NyD/U4N+x9yhf74CpBbLsXBWpKzZdCZNhl/gvIBJd17gFhC9k1ppTNIuCXBDdYCalx1gwBlbSea0RKR3uVPk7fEWUblA7KtgDseSVxYZinfRJsm9pIgFWyHWnsV7G3ddx1X6z0pYbtbiuhDyJZYaZ/7rL/rK0utYtfAPblG0spNMvzcemCfNb4fUvKguO+rLMN7CwduewCv1xTSsZjHYk4rq99/mGjyPdSHuqSXOyLd3u3d3u3d3u3d3u3d3u3d3u3v3P7q0FKjAEcaGa54yQDTZSu8jnyECv4JKt9NSQPsMYuudQlMmVngktssgI3PUmJbFpmrfbMwPIELyhoy+zhyKrFwxct0lCTeL+zXaYrACFYb6AHt+OebBbG7dYwGq3fuN1uHEfjaDfut0Y/QNud47jTe+M4GsFo1PDu3O9fkoEp2FJut85NI1P6HAT7Qe+RwUOnyxEZ4904Iv4WDgoAEY7e6R3G9GADSEfMPifGGJvcuH+58z+1Rr8bH3fj2y/f0Q9jDqWb0/Wg9RORyRxBczzPyY2JixHhSEFdOL994+lf+fz6nfMJwoPjDtOEOQTtHWFi84n4oEuUgFCBkxHBQpzv3z8ZlTHM5GwdkSd8g+O4cRy35aHSFoEZIAOhSS+tzr0Fc84Yje9zcn5+RT6ffPv65PM0xgS3DAOI7EP+1WmWx33L4Exlpov46m9rSYuRny8nh1oE+VU1y0+wHQJcggakT9Qia5Dqi5MOogA7TAugU1Bkx9Uig7KV+2e5KbcjYjsdmjYgMus0749lVns6SDTLVwXDWbyoV4e4gFvCMtIp0+R4dcx61MJxT9YlqVITCgkwdALjsFwvy5FYDpm4TzBCpTtQKijjy9lDyk8EbP3iqH511hfFtvPiT8mBKDdfgqDKsSOVYXxhSLKUO+nLKVbfhk3X7/ncO9uOBSy65qKCb4aGZAhQyYBPxsfQSyApW9GEa5bcw52mgmhQvE+LkPOeO12yJQAz58QcSfaiOX/IzPPd02vZtksvuGbk7XFNp5ju6yx3lQddf2QfOhXQ/dU1fP8dJcyuc1vMeTmFEiCrnW2+Zar+K/kpgVCZ6ArsFPCNGDONAFLMVe0AbK+4lwNOyC0p59wu168Skuk8FVYfPZ2Wqi3KrEGWGvKUKc/PhlBIZr1LBe88ExiXgzDAni4BHjHxKOflVfHEcR9Bj++KeJShE+mXwFs+6dI5KfCl2sRjzyZYlDQzV9Ub6h3xFt/XGH2tkiZVRshb7r0QNPmNJi1lMEa4F7uLBBCkq9AaWdYTeu8cR6f1g+N2Q1sEEY6HcHsI94fy0xfhcYOjU9VQ/h3f6P/AoEKJXv2Zek4aoMbRG8fR8YAk4RMOvXE7jOnG9/GNcX4DP2PHFec4OjJC1ufnk3meEThKQEHlrffmnPaMUqvjDAak0u0uWR4rAZYu6VSP67bscbBGlM6LjN55npndGyCDeD9BSBoO/gXUA3w687S1P5QdMq32qyfOYMk+gBk2z7UHR+A49f/ijouBnVP5nMIQo7eTZgBGI4F8qvTjhrSDdjyCmXJGieEAuDvTvwKfHEfYozCY05AuUdJWG1js5SYWoFCEjq6xV4JNbFgLZjGPUrSWgGOZuVelWBQwoVhGY5ONAOCcM1gAbQcXQJJJNBZ47JMlXU7XRjsORBxL1kRNdsIKllCBhBy8AHPWvilL7/6e4wrql8fIrkvqWbWy3y47lpH6qDaX+F/YBsUOl3ZZ6lkTD+afpJOwBGsUIFUSBLbn8Lon7j2oSr9WUGuDUYAsVaPaUSFZyZIPRhqttywr2jh6y1KJyX6kUa5Gstyfq9NbX+cVUehN6aIJMkpLp9ifkJT9GNDWZYnHdb9sIsE6loE7XgJTFV0LG/nLx4PWIrD7fJ7QjMMldYRGIgAeZeRyjmJvmpiNHHvJIOmMtePkWGRw0ur+EWwt5rC5KAh8MQpO22fHWFeOSzGcNXrroPl3K9SXkFhJnNAfzgwAlCgzE2R8GueIc2jcNmE2EoCnwDan7eRlnVeAcMvrEsdcexsEke+qLHKVddZYQJ2rtfu6YjdDW4G4drQyZLmuIev7ZUEtW7Gu9RIEJcGNdc9tF15lZycVvOqWFeyXzdK5tOECzoQcLCCa++pz3FrWuSOfco+FC8WCGn0vEAUXm20/7zq77KeNUfC9hldg23fQ1a/f8eu41fPUZ30xP629tuRAktW17nnpxS7Tu/tb++Pq9xXkIxexWPP3Cv9/YYvyMNQl5fTKlFUgD7OwJ68BaSn7uwLsFgH76Iot+6Y69crMegVX/djkMu6vYLY9Br5HKSb78tkfrlhr6Sri11GW2oGvEgzB5LP/WtIrtQ5fLyh1by/Zl5e5qTWxNUD1rcan7nNdj6/Pstbl6nvKmC8NfHmmy3xdNMleW7z8XH0sNpi0HatM1uUKuQZsj5hfwLYEcLEAEPGlC9iw+p0sSdU/p0qmBsOeJqRaq/9VfqruUUx8TiZRKOt8JGHXiiQzVF6nzt8tp6a1lmdmRXuwixczunboHY4uHF1o4qsvrxr299EE6lgapMjq9EwA8fRvuiiHB8BleJRwFo89VgV6O2KvnOA+8EAqLXbKYqwO7PPMPfUCYnfWuXeLnSw9Ha+nfXxZU6tZARhDQU9qvjMxleu+WHvGutH6071sMKc4NpdfYH2IteZK19fes8GfmXpkceaIj8fZXpqkDHVEb6CRXDNdcW+ZtAXuJ3DSM/PWfeIEy3bp1wIjxX7lyS6erK3UHABpd1j5x+oZ3NOnl4mIv6Ff9hj55RzBAid5/f5DWwlZrVijty7frKV7r0N2H5ZOpPb/377Hu73bu73bu73bu73bu73bu73b37L91SClIxkwzpkHR4oxROkQDEB5EGpJn2sSmUziVp9OdhniNG6szBYRpfVd7qCcOI5enNK3OFhWVnLXBF1MWhuoQGt3pPVwkugRwS1ty/lk2un9Rus3jizPdku2JNE7j/s9KaJvfHzcOA7luD3oegSA6X6ntxsuDe1wu905eg8HSoOjt2REcp7DQBsTWbzbUUIIaI3bLQIDGUteTckgr/ZgLoJ0FkEdGhvhrPnp/oX+j43eP/jf5F+xr19p7vg8kzkp2HBcPqFPTD7AT+z5C+f4ZJzC59mSkaAFg5J/It25a6chPJ8zyvK1G2OCzElH+X6e2Ji4GdOC3cOm88lELAiXzjmDyQHhecZYt+NAm3O0YDqhNRSlESUE2gE2P8FhyGT2gWqwSnwOOD1LcV2COa3fgsskARTLKe7hNAgfzUSTbEUy2K6VZeSsYEBrkU3OTPecRRBpBcqkXCAxa1HaIxzZ5f6LzHNANUus8RIEi2BXi6CyRb+1nAi+HQKqLTPqKgNMmWOmrzAcfr1rBliFVpnzkqXJVFYGrWr0z3JMYk0YTTWZO4JFRj3HcAYIRfOxA9YWtN+taTjGpkUgWISuUY7ELN53JIEVHhTTySiVA7DkOoBMkdXnWuPkayxUG/hrCasq1UMy16ygRjImmO9SUR4euO1nVQGPwIJlkLiCkSLhCLyyLpBALUEw2w4zbRGQnDOcrb1lua/FSpVjXBQ46QhkMSpIOpKzNJY2xhCaWSHE8vnTiZxjNvyEUW4kW4F/sQA9VUCqnOo/ZjbvEkKb6WcxAGx1s/9+CXhtR/suD1COOknNlIAXL7BOzXd83l2qYs7SZzu4kcGXfN3TWb8yaUnK9QQGVLZtBP3nS+ZtOcMF36iX8p7ns+sP43MNwL08c/2R9PDTHSyd86qpD+KK7sG6EqxKFfSsgBlbNvK5WwKVdvAnHIW7LIgjmuBGZclpgd0KNKG1X+b1tWsGtLNEm7QsA5n7ofZw8ut2h2oG7bW1DMBHSaHeO/3ooMF8VOUOb72jVk7fkNUO3KTT9eBonX67cRwHvSnH/eB+v/Pxcefjy8HtS+P+oXw84MsDHi1gneXU3jL3OwgvvEan0QM+fopyAMLBswljxMancmM8B9+fT0qO3SfanIfeV5Wi83yiOIdo7qHx0/Lz2EBs0CWYtSTLTboDTZMtLvcpVZoe2Bnp1eKTjiDacC7lOyEZ/EDQANHgoWelJQJVCIK93GsgA8zB0ndmfMMgwQ8VgusJ2g1WpSZHlIxyTbD5zHXc8l8Hgl0w+gjUPpSApNZuPD4+6MeDfv8Dfnxhcuf0O+6N8TyZn5+4fyD+HZ9fcfnEpqA9sqYxo3mFWEB84OJYYH8DEJ2gRFVAo9yu4kzLHTQD3KrBOuVuSywjUEcE8BItU+vxGmS4BqUlS/OJhs3Rcj9vPct5eTJeegTlhhUnxhZDSYBV6ZWlX1uLQNXvtEnKy7wEgr2ClhCyT6rr0Eyr1FaNr1gCk5CMt8naM0OvZQB87VEJXE0GTFl7SAa2cvwDIBzSvErQUH2TmKfUk0YAkGr+VJKlNdnpeu9R8jLtg9aV1joqUeqz9b7KfYoKvZdNygrUFgjXMgCe2JU1ZgU40DxLVJDxuqMrLD1/VaUv+ANC/z/uH2i7oe2JfD4jqGkRDPUsBaNSZbu2rTjnTFaiLLNGgquyBKmq0FuslXi4FkFJi9LgkMCiOuvYDupVeNu8Sn5V0M4C6KUhU2KejFSXoLd6kokE4BeZqBinWSRheBFKbGBI2BUXeV02adklJVPxM2zzDaZZ+kLqtSp3nID/y6BLPCqFGyp9W+ZK2bAqFSq+flmWfRSA5d3fPf+X3wpsUbYnssCVBcNYAVavPmSQWgvIsG+tqW8W0REFwqkzS628HKcaz5yvkutYg40C6QbQvM4pvvrNKoXNAubE77rl2Xfguh5/s7/uhbPAS1zeq77mM4QttVlWrwCcAt3U7z+kACyfwyrNlv0sQBbuPxAohV+l3lvJACVrSUUllwlY8iZykY08r0jcW0WwFxyQbF0AaT/Xm/9OIHpN3uXXsr2p4VYul36x3Pwyb6Wg9n2vi81XP0velm38gw12ufHlEvv69XtNwZ7lH6/BOhOUvXa50r6u/NC9VSZKLvqDPUd++V5ebQMs2GxG194V2AKnGMUKM7WnXtbPDdoiWeocZK4VvYc37l3HhjrbIrC3uVoVsnBU6+lF8nyVJbNyjZOlQ2uvXQzT7DOm5Hk3b5oA3SxzWsyBztpDCwgobN9Iy8SM3qL0b5W9DTbaRu+N3oV+CEePZIeu/qtp/r02IYBVYuUT7ExLhmZJwO5ZJMrK9CwNvvREnRnrzClrGQgXO92ue0zNYclQlqFO/4OgkbRgc/UxdF0l8lwlN/dNap+E5KPORD+B9OVK7TFL+iNRKDRQfH8DFOM5Qia2Igt5s8tzrKycsO3zkYKJOP1PLeyt4zho/UDaDW03XG8Ym014nk/whnmDeVIgV0uyMit21up/6ZelHBJQVCs7PyqZZSjFFk4tsRqH605UY5s6jEzwqrn8UXiW/Rx71ipvWOvOr3xVILqTxTLjLz5fCufa/p1t4d3e7d3e7d3e7d3e7d3e7d3e7W/V/mqQkp2GSZQsAcCN1pzeK7twrlJDioJ2hluwLBWDwBB8KsOEYURZo6gnw3EcoJPWex6oZzpFG8Lcjk8kg12RLSu3G8qgK1HCQ7ZTR1tLKujIxG/tjnFwux087p3b0Wgt6tkH0OjO/XHj9uiodh73G4+PYH649RtHv3F/RNCsHY2jK70nq1MG3aOfcaL74NXt53nonuWRxmkVYGI7rgVWaantDNtz4QQTUDHT3Pud//inB1++/CO//PKdP3//xi+fv9Dd8e/fsflJ653h3+jDUFP8PHF3nufJ8/NkegBcpjfMI1jYHMy/8zgyICAHRzswOZFx8jh6OPrdkAnnOTnnAKLc1kRp3iJzKZ6Kc5CFVEBtclij4xyqDBTtSsBHOuafyPzKzb8x7eTb0/g84TkjOFRZpPQIDGrOfYzZ1aFbDkNJQE3+7gGGa4n4co8s92KbaHhWRWqbtEfSiZJOBrd0KhT4BMnAy6RKbRRg4sdzfjl5qotVDoFL2aoXr6pk2bCmybbiIIqlrJg7MoNKGpVk8X8FRGiXAMCwncUic/3uF+ej9wS4JRhDW6xN8SjoRAbVQRC35ZjqPahQbBraWzDN+F4J6/op28FEkwNcj+2+xH4Frer1csBrlcm7OsIlQVi+Pr/cQCKwyuqkA7VFYEQsmLvwCwhEfDlPVzZhOYKRVQrvmj0u6aSNoP81sJVrO1kZyjkfcWsLtrQMpIhcAVOsoGSpgqaKyaWsm6fjOyMeC6hH3acc2Tu4ty6Wzr1yfq3gTYLE9rUq6BTf1QReSWYHlmO9wF3FwFSBquWUTxKB2CjSiZqKs/xiarVWcv3Wuq6gVoIlogycrOesUm05YRGkTmBAxXraJVArIqsc3gLPrfDAdjxeAw4m1S/NknLhzJcKXhpR8oC5iVXqlhXwyvJdooqPYFlDNABJrmvdUv+0nj3KokILZ6TGvlsBqtQoVPQwyGhkjZP2AnSFng+sV5StVAKoqy2dub2HjlXQrrQjA+qt4xVk0Ng/A0URt9LmyNGQ1jnaF/pxcOsPjtbQoyNZjuF2dI4uPG7Clw/hpzs8jhd+nd91E+CGozdB7uDDERraADdchG8mjCHAweTGmQCZaU+GGWOeobNT36toMmERjF1m+BDcOnMOVI+lp1UjwOk28ekMD+Y6nyMZ2qLU7jSLzPaUQzdbAJDSoVpsSHiWyWQFO4q1qZzmltnb8RxncjMpyoFPjeCYlLM+vtv02PtQ61ma9Yjn5ggx1yyYqAfe7iA3VIPZ8ssfPvjppz9y3P7I/af/gN7+iLcPTheez1/49sv/yvgeZZzO5xM7Q2dYi1JVw088gSVhA8zYSzFOO3EKTO1ZojSBXz4CmJsZ2MpYLIhCBNNJXR9jZRlo8dwze47f685fe0YTRbtkgDBZfyQYeDQDGZZ7YwXnps0Noi39IC9aixWM3LWCf3ctKo0EgEUyQBU2tNEySWExUjq4aMjadIojR4yQcTLZIaW05BopYEXssRV0K7aQ6kiBDsw9AZiZ126yWANWyE3r+glyp2XZmSozoyvRQrVK0LQFYj5uLYOqwabUMuAaQdttQ1xDRAVyyB00dGTtqfIqXT/wfVAghv9Wm7VfEwHOe+8cP3Xmxwffx4yyz9PxcWJ24ijig2YTc2NYQx2wZB/0spcFMsFFi/lBo+BuUR2F7Ga5GhdcAlA5zTCb+ZwbGBK2UQU6ZSUj5DYU++yFiUfyXOoY4ifNRzD5jmCsDYDkxYq8Bv65mOK+56CsztKPEIFD98D2UvZD2pEFMFi20iW4i7ABAfXBss3KCk4brNiHlvjCBuBczol+faI8YCy8C3WyjPtIk21kiiQrkLzYitv2y/tfxmiBbuo8se5w4YYQFhtRJVTUIgxQQhV1juuo17kKoGzmZBC9POfruZjLGMjL+9cVtCY0X5P11g8LJYdklQGsLe1yjtljebH/a+69+r99ErLG4Hq3WsQ1AnV2CYCmyQ5cv+4kLBvaSwbwJSP79W3DLjt6T/+WaSHOrnWeyDu+fvfSibJTX8ar5nz3dq+QSz+89sHLTFzuIy/yn5cvW2TpvP35y0i+zKX88Bm59ObadVnIqisI8GVBRamydTYoKM8ep+tzbl1yeX+tpdch8x++E2fMi+DKpa+pV3/NahKM5qqR/Ce1TsuvVPo9B7fkJcC4CUhkJ61A+Q/irUW8tifnMn/p8xDSy3E5+KSu0DyTlH6UTEaqRB6Hlbiz+peJRa4e4ETtWVa1B5OrBitOlFEVWoukv94KoHSV7+sY/2oV/e/eqo9dHJowRwCyRTQZNHN1S4A5wZJVcGJ2JtPi3PuWr2liJtj3ClKqXXfp7PxssbDWfmJmCfArGb/ql1Qwl9JisZfVnNqSVc/PLR3C5cRaNiB1rfSXmbCYW1NXWSYnFiBOpFzYiicjV5VQjtKCwTqs0iPpcyXKPOj9QT8+0H5D2o1hwjmejOdfGAzMBjMZI6+yb255vpblDyqJmvmslSRZz+vuefaydbaXGk9ZcMKtny9jE/cuRbDlV+QK/mL74gqBtpwtqY1FflgLseLrjLJAuPsO1aOXPeTd3u3d3u3d3u3d3u3d3u3d3u3v1f5qkNLnOCPDBqfRwsnrjnPSVbHmMEeUajD4PD8ZHs4SzTrqzRSfzmcShaCRTRN06ZZZV3kILH+ikQEmIujMxN3j8CjQtXPcHogPpifzQ2bRigc7j6oivQd7kR7cjh4MS62jvXG7f3BrB7fjI//u8drt4Kef7txuB/fbjcctmJxutwPRcIhcXGjsvy5upzxcXx17re1D/QqBvHryllfq3zoYmjjniLSqexO6NH6+d366f/BHv/N9/onxNJ7fvvKcf2HMb9in4N//wvdzMFtD253WoLeRqbwJykAxE1ROVKMcw3NG/vKckRXdxXEm0qDJDZXJtBHBAXfcG2eyRnWE1n05pyIYYxmIVaYQwQ3t2AC3gTEwvuL2F/T85Nvn5F8/jV9O42mOSYNkZJkzD/u2wRhr7NyYNrJkTJS0mQXSUVbmoWRJtwLBhGPkOkeewd2dmY9oViARZrlm61wvghXYwlllD5ZjN0teqCpzjvTNhLPIMhvc5iV7jfis4bSjY+dAaBjCYEaWevmJFqgiHUMWwbdwju8AXQWro0RWubeynBfb2V7O9eq/0pKxJ8t6WI6R78BoBUnDOXJxDluwgWxnZ7qrssTUYvi4+Hh3qYUNCFK203o52TyAEtMrLyydrc4OIDgZrI6rNKm5kXxWyfEgg40w53jxdAY4LR7SLAOm+VrToAI3ikkjObe0AHEN95jjOS0CzunYW6UvExhHPqOVg4uZII5cSwLuGkmOXs7h3ceS5+XhzmBQXbecXypR2qic/1sO4CpK5bi8uPkTHNRy3JIRQiK4biYZcE859HKyZieTir0y9GO+i6GvJMMJtihdcxlBz/VI9cQkmidBT/V9C9r3XF/R7SxBV0xouoFOy/d6ccwtUFXNffpSBRbLRazpLG2T1PqSu+XKelTJgKmj03AGVoAEnRS1f0yAoWTapkv+zEAtM3QEbc9EyqIlaKmtdRzgjEN7lENQSWep0KUY1CwDvYJoASSM1oKdo7Vw+KKgTdJJLLTWI/DQY325gqnjXZH7HT0O9JZsStLw1tDWg1XpODiORlfn3uDRyxipuf8hSPQ7aNe9uGSjdYE26YeAwZG20UkFzqNcbVfDmzNscE44p+C0lNWROgOmG2OGc3zOibhhTLRZgmt02RQhowESiH1w4jZQd8Y8E/PpIKljAhaSTuxQstNtMbdMH+kUl5Cj3L8DKLD3jwBgQgWgbCp2ejD8tUHrQpShrDWmqBygDdU7wZ4UwQO8RQkPHTwed1QeHMcXbrcPvjw++PKHP/APf/pH/uHnf+Tjy888/vAT3B88z4N/+q9/5l//+X9heEtb4jviX8E/QSdznjE+zAj8JFvfXMGSKDElWfrVBcaEOWCOwZzP2LdSt0a1ONnBcvwF9OVui50PdAV3rqwHAMdxIJClS8LWkEJZlK667OXX/VxTZy0MGJdYkbbsS+z58/ezdH7Vhg3M9fJsGeCZjkjpZxJkCiPLSVM2FqGvMCefmM2EsT7568Dwxe5QrfEvEIlvO6PsO5EAcXiAyrZqEjwDoyugniXcosRbBMVEhdYbvR8BZjoCrNST+aHsjR+t/B2Ih41yffnx+jjrw7++1vrg/sgPN/K9Z5cdSuzrwRapfPCBeeiY6SduJ+P5Ffs8+fSRdkragES5l7Tssn/FphR98RlCbh7B1qi8mJtqa1QZ4JZGurvG3hpIyzxLZAC8EkTcV7DcivLACQA9E/dP8BPGYJzO92GcXowLe3AXQIDX84RqggbXu3VejWd12SwgO/7rF0amAoCn/FzBL+v8EGOY1Y+XTK5TgGzbpMY3Dxg5nZqlHn0Jxrpffb7Mo3qtGCkkWRpq3lKaQldekx2WeVWrNHpRay0TcPDXa2zLsl7dw16sHxtJJUt2ajZaBVH9CtIKneiXV1bzYmlijZtQbDC7LwUyfU1oSFko3So1bltfrfNEnW4WeCN1+YsOf7WlS4IW1Gt9fNuZoYKypLlzGXlZ8lUgfksG1c1GmnLirJKh6+8KdHvByGp8KhGh7NxfM/G96Bb/jV+zn35hj6r3q/wT+fsVCPiiki5ngerXHrSL7Cw9/+M1NrBqyVIJ7A++lXrWutDrHNXV9/myil29vL1pxJY+9pc/fPX12vfr2qi+l4XvpTtKMK7jWfRLbGiykAATKxatlGe3rT7wVeZx+5322PgF1ECuh9JlTjLx1d5Ze6MSCVPJLF1l3AIAJUseY91mWXPqNh4JEinHqht8Ukc4yfOLFFtei/04+cjybB2JhgFgipJwTVjkua/td2wUwdLJwbazVnuszdR9Kj2SFKYz0/MUvtgASQejcKz1DZQpkJxDlmwlwbsLcLrYj+JcHoSVeQb/AUS6mIPFF7Bl7WkXpb1KFFOlQfc+4anvY5mkD0YusleA50tikWqUwBMJX2+AkI7U7FluMOW590ZrR7JCNm5HsOE/Hh98fHzhODrH7cCbMk35+suJ/TLCbjYPRlmLM5W7ZRLuJMBXW3cH0AgqyW7pLwldG2eTGIvlZ6R0d+hnF4pGEriAomJlp464SEOu/2Dm3ppg7RFZlpHUcQvcfDnDhm2y95crK9ZVKf3I7v5u7/Zu7/Zu7/Zu7/Zu7/Zu7/b3an81SGnYJ9MnKj2YgFDGHAjwqXm+MqXnoWyOMxwkF7aLOQ2bHuXPRAPUkqV3zCbT+nIIRskETSr/CAYo0FtkXwWbgyN+YkPo6hFEaKAtgmq3pjR1kIE3wbtBj2Ch9htHf3B7HBz3g9txo7UH/ejcHjfu9w8+Ph7cH42fPu487ge3fmRJjwhAs46b14O5UBCJ3/CQZMtj7PJ+kg6yq5stX87PrL/zPoco2o9VxuDzeYaTpgsfqnwoeO/ML53pD8y/8v2Xk3/5z/+Vf3n+mV++Tc7MjPYJczhIlGx73AAGJnDcPphPYxgMFPMJTVE6qDE8AhvSbrTjoB83GBGInQhjGviABupnBt4bRz/SgTbSwSoYZ9Znn5j/gstfOOyT8+vJ9z/P3eftHU4nzGZrqewiCvQmASbbDugGEs6PFWzFI761gBVQad4BIkomoWRG2mw+cc9yK6h7gnaidE440wKMUqCQC37iIivJNkT03WGXYJCdOY7JKk12tE75kK2Yf9K5EoEQS+r0BHTYdmAEwCHWXGS3KRXQCz+yrfENEGE5XXaGnGq7lJTLMUmWIEunlSLYGBRgppz4Km2V9ZAW5RtcgpnJLQdIPYNF6ZBH1jhYgnvCr5aZX6uUxisgpcqr4THXNjQTzHQFFSMr0RIgJcGG0IKdywtUld73nQXHGv9i1/CkK2na0HT4BSgn+q0ZlDQLz5Qb+HRchUE8U5RdjDVunn+zs9inzxyvcNhVmQyYy+EYAbpkerq484PtR7mCmUoUw8lNOiC3ToqW404ByGI8X0tt5BiU405krcsAgG1H5pb8i/7M6/gFoFXBe7exelksF1EGZ7kIU3/IvpxXECZo8y0d55ZO14ohVRZvOFqz/AzlUMzx8NDDwV4C0jR7L+hy5hu2exNawStzuC8nY1NdYMph4ezs0ooFf7ERQjAVhq4QcCUYd2TphZiDnt+J5y25wyqTNILMmmXdmkb/jIH4gY+Y7aZCbzl+QakVWckS+jgyeufK3GxV8o3InlaEmwar4NFvHK0jMqE3EsvEcAMaehzI0ZKdSehaGdj/9o75u2zF/KbJdqAJIRHFJ6jHPmBHw5/fwcMZbi5Mn3iyIVV5m+kWTDluWTKSsDUqQDUrEMnKyi2A7ZwRdAi2o1gvURVC0oaIwL562G0gS7eMWcsmA9YumAs2bAXlhQBJiWwmOlBsCnMAPmktGIog1lXTBnrQ9IEeP4M8EP2C6gfuHSUYLI+mPI6Dj4+fOO4/8fjpJz5+uvOnP33wH//Tz/yH//ATf/zjB7ePhhyNf/6q/Of/5RP55wRlESXx/Bz46cwJ48wxYQIz14XtgAzB1tI8IBW33sEChM00xBtNGu5jBUq1SkA5wYRmnsxXW4eFaVt7jOxYAULvnQI848WIE/tv0NBkOQmJ+a1yJhsYkaAMYTFuIVXGgyU7xfz0e858XhnltB0ItQjOxeNU32vv8B09STsibLH8VNl9aSu4eZRkVlnz10Tz7MBl72IFx+J3y1u8ZqRLgo9XqVFdMaA8nxQz0v6nGv8CpJQlM7twu0WShP7G/Kxg+l+lCaOP62zwepG/qtUOrGQAMG8/xgQJGexLr4H3tFcxZm98m/DNnpzDokrkjJ9R2iwC272nTScNIdgDIRNV3IPlFgmAtk+KgUOzjCoFnvIE2FKi4CDx+WAvjMBmsRWR+2KkEJyInDRLHfE05qzSObIGbwXVy3aRsu1C/hZbq+8RXECKK/hFih0ISmnUZyrUuOxJLqxnJeZS+iDOAZoBzXr42i0LeBNf1YudvcEv9cllf9WlfP259L7iK+ipeORqZGdXv+u6qd8Wm1QhaRzqDLzkuWzylzPvBlMUQ5LLZtFcN1tj/fpH9D2BEfl5EYkSt3Y9w8TDLqCPsNg+wvCtFRegiUUMkmdtKVljj8UWGVnXlaVzy/bcfZJLGVDWjNW4Vj/TXixZBNwT+JbAp9JVDgs0tmTxsg3NshMWSGTLWjyO1y9rvCWTDFRYurSu55fvvMIg40OXj+61tOz6OBdtkJy8zKlc/t57Vj2nsydhjzUv195zIdcLr77Umab20YvOvKyHktV9/StQ6zrnl0tfBl/WqzkaWRJ0nYlip7/0J37XGpP6ZiHj9kpIdrhXqamvBXvMZlxJuOPLMO/Sk6+DU6u69NxmU9pltPazknugrDNvVc6uMz++z/qLQalGxT3PMUAyLxeYbp8RfamHJrLOLi19HJ6JXEG6V2tYgmkpGYHr/dXvlxn7QT5+h02bZLn3F5VPlV4zB585d655Zo1zglWijO9vutkqCXyF9dXOUWzgFETVE6BklTS3k+WWlCc4qbUWyRHAFtv4/lp7OaHu5dPxZePWMy5fhW99FnZznidIn5p2ogT5A/SGJOOqe9jWohKMlU25ZUm3fhzcHgcfj8aXnw4ej8b9prQumArfP+HPf3ECyFxJZ5FtK2mLWibfem1lmYRRY1Lru3SCaOynPi1X2VylD3G7sKbvSd7A/AVdpRZd/QekTy/kI9h3t16+fvNFX0r592Ttha+r4wLz9fpX4MO9nt/t3d7t3d7t3d7t3d7t3d7t3f6e7a8GKUW68sQ0QpJNJ8qkiWZ5kABDnBl8iNIUI8q2eSPYL+Io19KzEaWriMMgUSIGibI0AvTW6Zr085I16TNDvWlk4KtGqTANdBJRYosAHUmjqUHvHMeXyF7WTrvd+PK48egd7Z37/YPH40bvB8fxwf125/548OXLnY+Pzsej01fgXP6Nn/vXyqD33zrUlaPr6qxF+O89/wnQRfEGw5xBi+xkMz4OpavgMhBOuvyC+C88voB/PPgn+TNig+d3+PYdzjmSBUaR5rTbwb3d6DehT8OPybdmfB3G52zcbxP1yfhU4Abdo9yNGOod0wbDOUywVlnxwcDV3GhuSJUpOicDD6IGSDaSr4j/gsoTfQ7OXwbfvzszyxRRZbhojDloTXDrDAsn4KEdJJ0tKiGbZuAzMvlEo+CcpvMDIYrMlWPPwYMRA78wyjiI75rvgoApYwxaIwEiVcKl3BeCag+2mwSIODNZDiIQoBUIkXASRtmKfF2jRBMiQXteLkgJ6nN80HpknmPpaCHYjrg6FvIhItg3M46QgbIMqHaRAOt4AJEaBKOTpUMyKLCCZUUE7TdcweeMMkC6HarMvFdrEUyUeH4RTWY0p5XciwRVt5KAsgJ1ST5jynw+TzlKXXZpkeVk9QDw4SOvm3NXZVraxVkj4eh3aVn6zYlyRSER5iAaJWlqzenlGsNj/BpVkiECJNoj0/A6ziFbBeYpcEE5E4XTtmMQCYYPN7mUjNv/VKKMU2WJ925ZBgfmzOy5VdImWT2kHJ2yHMXlEK5A0fKtt9cAcNG0L2eVQwGvKkBXsuGwmQgWiCi/R4B6Yqp0BW6uTvqYpwBdpXtwuVTDKxcOaM25C+e4gFgyouQ6y4lfDnu8Ii3h7LRdCyBFMIIz5eQVBUY6BlsEcNRxD6BQsDdUkCjmUiVYPcSDyahoIySZoDT1DVpzKWuNNg2GLZdgfgqnuy8nfwUBChYUGaSxNlQS3OhxT9XQK10arR+0Ho7d1kLLWQUbXLNkkUcpN+nBSSCxPmJPP3BT5jCkBcBXUtcE+0I4rJsGM8j9dnAcSm8SbH00tAWo6Tge6NGQHiUbelMeXbi1Km/67+12v8MWk87xUI4x8TkX5f5EOG7KFGN8NRoHk09UD3qbHHPy6c7pinvjYDDVMYHuJ4pwCowEckQgriHAcwwsHeT2nBHcP8Npbj5xmzSELh0jwKT4iUq7BGHTWT2jdGyU2+orACUYPiIY0jSCdav4lSrDJmLBkKXdmXMwOQJYoMbROo/7B/32E3L7E7eP/wva/kDvfwL5ALmhXem3zj98ufGPf7jx8eXG/Q83/vQfPviP/3jjT/+g/MPPnS/3ABoPhX/+5vzlazAiSRPkUOTYgS5tDUxRlyz/m8Fhm8EKWYBSjbHqXXCixC3fT5oY3p5BwjI7Pg2XT7Q55j0Aoi2AULTSh3NlfQf7g0APUFNDODgSOBZr1y2AEw0hmJ4yqOOCMHIv2vowgo8sxpcqTSOeTDQGxdt3FCCRzU73e2wV+/UKwkjtR9nnKuNZWeSiKd8JTnYgy/VWEEZrT/cM3qySILIUfDEsxn6kK/BTu4QSZ4u4aZbURBaQJmwGjQz9DIpqa/Sj0TWAz60fmcUfmfwtWZOixKUuRorfnp0dRPwRLPzyedm/yK/e/I3277y/hpwYu8Ay67ILzGsfCt5OeCKciESZ2q6xh5zDOUeALWNfym1YG70LLbZQXJ3Zgp3VvKFJv2sJeFcPYffpiCumhprTXPDWKPCHpj1b9oFAsimx9tg4i8U5iDmYw3g+J8/hlYawz2QLwC2UuVBDt+ww0maTYiti2RolZnVWoFhXo0OQ6/yFaaiopVL+kCojXHNToM+S2zw1FLiKCCT6Nch5kQsvw+8F5CDrma8BTUnAfpcCD8VcXQFZ9SVPIBMiiNm2mWQfbYvtpP4XQeQEYpKAWKhPQQIBSdC3FwDPWcDpHIDL/OSCv8jxenrZIxTYoGXsXmy/NflhLy4W5x3uLVD+brlGJfWJvAJIkNJLvvvsr/eKpIH8fOpz9+Tmknim2qbjnOahNPU6Yjs4HqUtIesRB3tojWv2/RKGfrH5hSyRnYkskuw2gY9LxiP3y/heV0b+3EOat6wxyUD+hVlqAb4ul9hJP/tjMbYFFJLV7zXMF8W4x3bf8zJTl+7ue+8ZfTkl7HfSX7XlVK7vXloBRurC+9mvn0lJZMH9dMtljDtLPte3RRJgkoCnkquX/aNK2LOus1irVrf2WbtA7wtwQSjqStio+1vtgfmdSAwJ+2Kdp9e8bBhFsSJxeT/eiL3UqzRrrvPqa41ugV/qOgXojXwjXaXjYm89gmUp9/+mcLRX2Xrd/P5bG+X/fm3PObQmiRnyxRxnTVA3fDhKY2TySGs9/BF2psjKWjtGnEuvLDklTVry4deyu6QfIsVfPPVSzHGw3gskI3fIUO04njoUihV0J7jF/SewS7de5kIFt7DAmiZI0uJzqlE6Ofyzd/R40G9/ovUvFEjJCLtKmnA7lJ/ujcdN6Ydy/2h8PJTjEHrbZQAdeBp8pi5WlfDdjFq/Emf4ArSmzq8xkmQCW8zc4uGLzCTaAmOLWCQMZRJb6OtMmHDlwhvKAvcW23OtobJv63PuyXhYCQ7pT0qfS4G6SzeE7iD6z94Gw3YJnVJ+t13iuxIDL/d9t3d7t3d7t3d7t3d7t3d7t3f7O7b/jnJvxJktz1FGADWmO12288YFpoB6ZBeLtmAOGMl6I5GaqRKOexNLx0OARpp4MAK0HgfAltiBOI5hc9ITuODWcG0gt3T9KCKdXtTPOK0YfnrjaDdaa9xuN/otsmxutw9ujy+0x43b7c6Xjy983G58+bjx5SNK0pTjZbf/xmFNfuNTP37l3w3K/ni/X//NcgzEoZt7W0F/kUlkGD9RvoP/BRvfOL9+4/OXKLNxTuU54JzwfcR8mZ3h/Ol37l24H6A3GN3hAHme/EEEkROfg6dO+t1pY6LTmE+DGSVt2oxyMZiHo1GgSziRkJFOqolqlImIA3v8rT5Re/L5y1/4/uev/NOfP/mXXwZfT+EMz34E0WeWz5q+HHpIZGW1lllnyVoiWk66iU8CZCS6aPBtxxGifIA76jBmXKucZ4hkWZV0zLUAJMS9gmK6Ag/uAeLzdBYkt0X4yMtxLxKZU84KwFV5p6xmsgJ4qpWdvQsySGIhilXGCOdyZWNmXljkWJeTNj2QKm1RsofcBO/0dmgF01J4NAQqq60cTy1ubk0RU4aPZFSLby8na3jMMrs+HDBcHfbLeSprXIv5yjIjUFvbLuLy5SCoa5YWiOCOk2xD+HLAVHxBEaR5BLJwhAZWJZvCcRQAF8emLWdzsVm4ZcCuJa26X/qTTzwxGgFqDPatGH9zZc7IcC7mG89SS5bzZJnFFzGBDFJkObmK1JQuKse5TYs108LZFSVwWH2v4FWQQpQXfXvp/AWMlD/NEduZt7U0wmHOcqIuYBO+GHZIppXw1dsu/3eVPzb46lrKKD5V+Yj7/xWKdGJvKFEs1qNKOvYcmys4tJiNVsBAthMRv4wnWTIjuxhjWeC6fY9YhxUASFAIFSoqp+wlX1ViLWuCVzxLwWmOaSMyXaP8aW6w2VWrYEYstsuzCm7BbOXVYfdw9Nb9hHQwOtqCtUf0wOlAX+C62HN1jZuRASoJp+1wQx3u0qOf46TdQv9qJ3V2B+0BQGoN4UZvjcdduTUNRpHjwe34I4/HHznajftNuR1wHM7Rdnhol2yq9vt2jNbaOlSRm2DDYRj33vi8C81Cbw/tTDmI4H6PfcZAx6RLgLsxxa0DNyaD2cLGEVI1STD3mE2GU5Qz2AzZG8NAlEZHJMAE6BFgx0DyZEm43GshVLoKs4Kb5kQoISk0WsJeJcCDc87YK1uUWvAExsY+6NyacxyNj8dP/MM//CM//8f/E3/4T/83fv7T/xPVnzhuD1q/4er0m/DxEP7xj53/+IfGl4fyeAg/fQhHD8ZFxSKYkqUO/Qk+JvcOj240GQhOOx6M+cTnwEbEN0Qc42TYADOaGrFlNdygq+KtcQ7jHCOe2mfYqB5jIGrYnBkcjIBt4QPME9KgAcSVZM4BIsgGCdjszNz/QAPwFAjY0E4+M7ZsK7hX++N0jz3WoNgfI5gQ/6aXbWOr/BUS5T9+K5z6e2kjxatACQAB0KgyMezXxLLMSdj4S++vvTf2NKk9InXtAoX6xX5Wdrkoj9J82lI3uyTza4IlCLtnlSMVsrRMMiMWO12yvYq2SKzIwKn2KG15NI3Slv3KdPNvtf899N0+SxSIsbd6TVLiR/zzAf7Exsn5efL8NhjTOQ1OlyxZGd/DZ+Cx6WgL5kNVZSagomswCiRCjyGGetgewUAazAuKR+njtJvLlihAR4B0Yl/d4T7JmGKWWPHBeX7y/D749hx8fxqnCcUR8Vu2Z9kqq4SNhOxYWiWvJZnSulLdn6++SMrlxRZbNqPDLn2VVv3CNpXe3dcq4I8XaOUiSzEe2yy1AoO4LLBjPlGa9RcGiASDrLLUlL1Y1yyDccVj0zZ6BV7EuG97dV/l8vwhaFzBQvu79bJeWLN+Q5cJF9tnT9cCJGUrgM2lC2EqFTDo5dppj/54PdvgGC/ZLnNWtr1eHQu9Jpce7M9cXt6gt8tZqPpSIhjPUzpe0zys82LZ7/HMJbe+7uqXm12u9cPY+UUgK5Gszsu+u7Sffz1DnpcuKqvWQk3Q5cr8CMt8YQYSfvW7LcN+gyxKL/9qZ7sO4Q/Pck3+uQwH1P5RXS5736+f2fd6Oa9cerDGKQdoM8esEdnjsNYNCw95bcWU+fKESyeVrOwVuoW9TkpxY2MuW3qDSfIZ1mXlIoey5ONlGCXGRNcsVukpJwCeDUTzfFlrH0rJGc7WAL7StIRIWAlApoXelAAshV5ajo2wA9NX0wscpQ3Vg6Z3WiY89E4AYXWP9e/8+PDaUvaEwJ2YEL4zs+AubJE4ZTOSGSxtofL3iBMAX8Jmj19bauKZSW7lb0rhKxZeq5n1pZctkUpySa5zLH0y6TuaqeN9pirfe2X5S16USAGQIHx4VgDbsO/swoAXlcyC4fc4Oh+PD778/DMfP/+Jx5d/pPeP0Ik97TV1ehNuh/A4gqG3lRi9aIxM3LoY8YpHYmAydItG0qwnS5TV/31GwoHHWUmVBFnXPh57+Zi2kj8Wx3KynJYPj2JA860jfI1f+Bia6hJjSVkgbY9NTLj30vA1pZ8RWwkNlt8vm6D2i+X7y7XvOS+subxqul9p3Xd7t3d7t3d7t3d7t3d7t3d7t79p+6tBSqeHv6CJY/PENAKlrcchKspURAb4dtc5PuJQayJB5a8ezCWwMp5FGo5yZKazUIwQhA/MIjg+Z7iUJ5JZ5E5HON2zXE1kMFacp/WO6oFqo7dGa53j1rj3FqWweufoB0c7uN0eWav8wR8+bnx5HPQkT5Krk+i/AS76H9/CCdQVIrCoBFTiO2pf4fmN5/Mb3/78F/7yT7/wX/7lK3/++uQvA34x4VRnpoNaZDJN8HME+4+BtMYUYzbhuN1QtwR73FGeTDN6Nx4I4258jslkcp5PZBhqGuUfUJoEuMH8iRFB0ulRmgQnS/p90vw7jO+Mb7/wz//65L/+Mvjlu/GcGs4Xs5zbcJ0F3bQFCKYywCEdIHnwTqBUZcpWzXvJoGIk4UcWuBKfi8BjBC6DfQkKORRgmGA9kAQJxWM4JHChHDqRNXzpi2oEYtLBHSVair3G6LRF1482Wl7DoxZeOlGA7KPPLJuYeJYqcVbuicj82gwqTjJRZfmvACclxMZlOb+lhWwFACrKw0mVlhMQ6TFGufabtwSlGVMsKby3s1i1pVNyO7Bt2pJkCliVNW+2H91X2cOgc8+x8PVAy8mDeN63MtSjbzvnvrLRy2GbmYqNdAaXM9pXIMBsO1lJFoRycyGkTDraOhWsav0AH0Hdng5Em5cMW68Mt+i5zTWpzDlegWLui51oO5ZkAWci0FrAnwpeXJzQSyPHuCwHZerwckmx6Nd3BmS+wyr1d5mj5czK1+ecK6DgNe5FZSXF+CAvc1XZmyI17uT6ie/UGo7ASXmfq2Sa5Zr2dR+n/OSSDBAX96Tk2riWnlhjehXBkvvN/icJNlzBPDxKE1afc6zNszxiAfmKYcpLV9dNku2jShTlc4UuujovL6Ad0SwJGOwr131Js1THCvoLwTInDtMRPxBaABO7JssMIIZrrEHzifsMAJMILoOGMF04p9F1318cZI4AiQI0ZaphTQlqG6HLEYwuorTjFuWOgFvv3A/hcYeP+y7b93+oiELOtwo0jzGeA87hqIHYyd0F78J3mUmqpdgMBhF3R8dA58lpn7garR8MU+ZJlEfVE9Asb5m21KzyqLHPRBhohIypZdnA0lEjAZBRolcs5s+KOakc5gWWsdRjBcoUwbLMW2sdN2ckY5vZpFkwFCHO0Rva4eNx8Mc/PPhPf/qJ//v/4//M//X/9T/zP/1f/2e+fPlPHD1L9/bcPzQyj48GN6k9OBODV7Q6XfdpI4gJXTs+vmPPgZzO0Q7mcfL1O5xWAJ6J+ZNxfsd8xNr1lo73gVnI5fTJmMbzPDmfI/XXQJiYjQr3EAE3W4wQloAh0QThtSPAzGljCGRJNl3PJFpAJV8scCt4iBe2ZgV2SheZewDQ3C/l5ciSn1kKtgITFSDmh4Dj76wVwEEp/Z567sdotRBBUF0DwoKdVjk2Isi0gtBEYDqGswC9FWR9BcJG0CztgAS5mM8VFK14kUiwOmoyADYNWdYWrKXB9KBrPnrLUoa9cTvaBv38LlXcD3JyiTXnnwRA6YTz5DwHz8+Tz+9Pvn2efD8nz+kMl5yTCFpu8HjazxLvB1thgW9Ye3RLBsDWYk6sESVRyWQDM8TSPs11Jbp5HCTtjiojKxLMT8oJc+Ln4PPT+D5gejF6bDtygQu2hZIDsCN1C2Tzw9jlHTeLJBnssytYhA1Y+gH8sKw02ZJ6BYPUVcJy26wov2KsqT5dgFFlW/nlGX8963stmUcpSq8OUTZg2tQ5PGWvVcksv5jkZI+XrYqn6exrqw89qWmXxTq1XScoy+tuXTfNuM7Qj4CiNcaXP8scqgBuDXL1c7HH4Pt5ZX87bhHssjU+/nLden2PtdTcXbawkpvS9yIb7CYql3HTCGo7lAZDk6k0bcWCDMRnhG2jpp3tnkCCGIlVovz6nLlWllwvYbw8nFyec42HvwrO+rvGQX41F/FUr8CiZQcvQE/YHXsuss91eb/Od5VI+3G2S9ivfa63bbOK/VZz4XUIXkFam2Xo9SEWK9IPT7yBjvn9mv+X576uRV/fqf3JLzdc5Zb2tK5d7Ncread2xN+XcwHXZ0k95I4VS2Y9/+rf5Q61/zrBepMg4HAlFJC31k/4P+r64imXajQ0/QBtyW/pjmD+Ic/4Mxhyah3RCFR96IryuzTJ0nAKR1+WxFqW/0c5Viz/RK7PKH8qyWrkyP+HvX9rkyy5zXTBF7C1PCIy68SDSEpNtdTq2VdzM///N808ahUrM8J9mQFzAcBseRTVXaTEvTP1uEnFzIxwXwc7wGAfPnzwUN/sCiqhbBr+oaUSWvjjThDtpQlCy6Q8R+gIzPNDYWB+XvylYDfLPWbn65qPQmC5I+jDM5Hq7FsFVpbzuXAV8rrp77n7SqgrlUzq7B0+1daUl+eND887v/7VC7/63Q98/OF37NvHSTR9t5S4n7nnn97/3Sn/O+fgGIjHfKIpx5HErTnvR5ClQy8ZyXc4J5SFrxLnKBsjz2lGymKl/y8UbWr6EyfMRFXv96cCetzDF84xKSxv7m85b86E6zwJUHte7dvDFhZRCWhzg8o9bNr1NUEf7dEe7dEe7dEe7dEe7dEe7dH+pu0Xk5TceoIIeeDyhm5tBrwKfA3CiEQ5DbM43I7MqAl8IY5nZtCTbNAMaZdQ3iEPbgaHxSEv+DdJQMnyb+7OLuA+6N1h29HNuGyNra365fu+BTmpPaFbo6Xc76bCvkWAoeHsOB8vjW9fQkWpvRd0+OLaGYatDLo8kEoH3vDxidunz/z445V/++nKjz8e/Oufbvyv1xuf34zjyC/JwOQGGllx5gfHkZSGUhAYC+y1BP1QjTI+Koxh9N1opgw2zBTpA7sObr3RLWScZTea7GztGb91bKR4iN2AG8hPyPiJ8fbG8enG6yfnrbcERJjAZBA+qieiL5pKBpYC3BbaBLIs6q3NvgtcQPDuuArDImCqvoCigj8LSKsyC56EpFL3KmDFifuHSkL83oZn4KrNsjkBGiawIwu8LJACKRBbKIn0Iga5x4fNktwjrQaEUgESWeCJSjHtyD4pLMLns6jUvEmgxZPgUSWdJlodoKPZYNu2LLOXpUAGzBRRjbIdh8c6LzAtArFtgojmKx7gFoFbPJSsZqBWmGDQAl/W/BeXOQ+0tYSPWAEoibnqXlmlOt8dd9ruiPQMRkrMcwnFI0TAMoNZhUHPvkyi1kxGrJI7krJmUfalMHQRx/sIvO8EChaZpUhoNjwUMAqUzGtLAlErQ7eA4px7Mys8/lfzxlW+Ib8Uf2TfRfZkBFaD72Xz+hPcqkDGvITPZ56gec6HCrjLDK4ArlSGpBRAXkpBGchfwcGE7BycgUgj1FMqyOxz/lqqCFSAq95RKnA5iVE5r/PdorRZAPR6d99cbwneagYXhVSOynJtUumLeQ2vsjbUEpQZAFj9U+s6Or/GLqfW7OsFqkY2qcpJeaz6LBfvsCCKRgzvnN2d75XD7YCPyKxsbSDeA8iXjSENz03OZQQ4jUwSYrxarH8fQneFRpSosggYGBrED3OGXzFazHHpwI7TkO0Jl4a7sengqRnPexBTnjLbNYJPX0kkYbayP8ySaX04w4TXtx7EUWlhE+SG9VfGuNG9M3xwO274ccO9hyJVlg1o5uFbmUAG910CLB9mjF7kmFBOSm9oldXNyTa8rTmaZTEPi88FeB4KIyqOa6jE4ULb9gx8AB5zZlMNctQgs6OjXOu8hjpNjQ+Xjd98s/EPf3jmX/74kf/3/+fv+P3/9Tu2l++BPXutQhhFIckAHmtdWcXiPDPqIxTCYc5bd95u0PsN4ZXLfjDsgOsN5ED8wEf812833KIEGhKqfMMcE+NIpTyGc/TBOAbjdmQw4gYeCkphvzdGESA8yJHaFG86x7j2FVItMWybZgmeHkS8MoupHhDrKAJJIj1/XSSMyIofwxjDcp/Nkrx5A/PKVE9lgiRSRmBk2bYvsXn2bYVGQy0kEx7KYGYQraJQ0/87vda0m34mgxRxK+9FlJMOdcSys3YK/EaftwpWxZciiaJF5b2wsXoiIrVQUpK1L7UZNA3ruCtcNv3CCUr37fyIPv93AB23G/04eHsbXG/G2+Fcu3PtRh+r5Gz4yoOgoIFgDFukDE3lDZKM28sfb5I+taCeeqGeK8qJ0m/d6SPUI0RBWhiLJhqlGS1milsnSvceYAfjODhuRu+kuqrM9/33lkrF7dbOnHNVcl7+mT6bsT08pTDIAOL9DdwXQfvsw5XHkKeQ5fPn8ywR0jon1LWWz7hOhnJ6wPIdSZ/L7/bd+T5SZf5O5x4pf+d01cm4WWP+f2pFcF+lc9bPw8+vZypF2XJ5cjbVos6HWYHY03t6PTtrwTXJwwbT93r/TLWGl7MWfntZ83ejxxr16vD8hJzJZdVbZ9u0FKPk/ZjUZad8Z/x8frMUein/zu6ehApoJ4nHMomlbNmkd65HuX+n88+XSz7HYBJvzvPZ1/fPZxS490s5B8xPfTwfo/q8LjnnFYucc+4/oIi5d6XV/K5HZn8xffnT4OTn/US+m2pexB4qp+eqZVRrNgj4p/c4P8ccW19T3aso6/J37jvxtPrPE+5M5DqNw1JCymuE0xQ9dF4X1eWnzbPeyt8/Qv3S81rn6wDmgQWJhMIq6qlqJKFCSOEK61p3peBglTSXIi5K2HHSE0wfiyxpHWfzfEQJcrm5sUkkTW4aCkpboyonftXNvXygmOLDQtE7fHnFRhDozfsky1sRaMqO1di5pUp6iEVP15DAeIo0X8k+pRrnef5dzyQ4W/pZcXYfduS515Oc65lM5rnHxH3WRe5tiaWj6+5IJhdo7QMIrSkvO3z30vjVdxt/95ud735zQfZaJ+cL1/o+/WzevhZt7ROZzAUc5hxH+NmhPtYR6ZjdgDj/uHXwMf1HLXtBnJPiv8DNohBAEZWKwBX/lcmsffdMUBIttfN4Ni2ft2zc3OwhMLm8lqb6lNQutaiJ6UHkdar/w07r6fvTBHgQmSfJcT5DXfH/vMc/2qM92qM92qM92qM92qM92qP9R9ovJikxjihrkYeXYZ3NHdNtlu4JuWanIehoVP6ciNGSXCQp6V+qH63FYVYJidwmkYWMRVaLmUE7qbc0IcgYitBoZNmR/Ldqo6myt41tC2LS1nZUd7a9xf10Q0WjDMPTxofnJ573jadNeblsk6B0B1B/cRGGAqryXwkqwQ0hyp5crzc+vb7x6fXg86vx6TqyxJviMnB69O8w3DuHCZ2QL1YbbL6xSZRIwZW2bRzjiLGIiFmMnbaoltVvTLkec7zBIQJXha7oLshmaGuEMHJjdId+ReTAeWOXA+2dT58O/vTJ+Xx1himmC2yFyr4eAWIm8cXtPvBUGdWeZbxmOaf8TAT1UolGg4TgNhKUz/nmK8NREVwVz0z7AFxiLCIzXBHXmOuZ/awJvlW5pwBzA17uPQPZ9ayJGNZ6UskgbYKPAUSkTLWPHHeZ5UiEIi6Q2blBdGitEWXPQvXCzRk2iLBcycJLgrJF/EjwKsldARTqDFSYD9SVpsroK+RjVDDAaDE5IIOpM1uz3jMBRwFoJalNKoJERv0o1ZCc8+vvkmOzgOpFSpIJ1ga0Yll6raHoBFskSWOSNsiGI66h7qDRt1YAudTnmfdXzVxWSXJcLcu8a9jLHG8F6z3IBDCzhkORSEO5xkfEA3MsbYwEIFlg1gmwLhBqEm5SfUtFkNYyS9F4XxZEktyyeihVnRJkX3+vLMgMEJ0CErNE2mTDFAC/wK0al3ifCurp6VF8KWtV8OUEpxf4OPHGueBSsaBYYqfggEyb6PM7Va6gANKftwrGFYoapWPwk6KUGCIbXspkaSNazvWcdaegd8x19QL8WvblCi4Oz7JvFfSmlFZWqZYyeLFucg5W7xXAmwHD1nTuq9GTDbcGDFQ6jHg+tY321DhUGEfI0m+ZwWk4TbZUEom1aTNmGP1TWfpugmsEEvatsbedXRtPTzuX/RLqXlVKyUB1S7WZwb4pl+1+zXxpO+z/tp1iYqE6F2WM+nCOAz4dnSE3uBnH7YrLFTRAcBu3IAthYTc8CEqCcdmc7tBvxoYQn7K01yuQbDZSuSx8rui7VAaURreGsCGpgGJZJi7sKUkOVsx6qPyIoi3KmFagE4hSpqIcqWIZxB5jjI6IsbVYAxvO8yb8+kX43bfKf//Nzu9/cPbLFegTFF/tXOuk7LYxQ2ITjI890IHDhNfDeLsZ1+4cA26H8fnTK2+f/0Q/XvHbGxxXxnHD3dl0A++5bmNNW5fZHwzHuuE99hyzA/djBklqbzSLUrSlpFaqbp5KVyKape88y8tUqVIQTRUkDyL0EMelpTsQ1yZLwuKxx3qW22yiyJZ7eRT4OClzSJb3mHGhmfjuQqhFfaFtFrFwSYWLDHClbS3VkHjH2IuDQOGQ+3nZI0mCE84SZEqfI9zUFj4AK0BaZUhlhnY0y07HfRxyTcZ+1TTWh2r4PKJV4i0VlrLUX9u2KC297Wythbord9vvl9feB6jnn04oKBk+4DicYwQhaQzL0ixBK9IWJWXChyqy8bRYiBrNlSbOIJXN0t4IchLSKl9K6KMHMTgcStwtSmAWeUAllqdGaTBVwtcfHZGR63gg3eg359ojKBll/Ug/l3Qzyq8i9+qlcDp9mewsAUyKMLL8nPq9e82dc7+WH7PIHFI/v/v+dKemr3xHps5+UtH5WZVQtvNT+a3yF8pXI/cYz/ks68WDjFdleVMxqJ5GZdEpzr6gr0dnkdl9vdNUaZ0n1bhfEZCo5zl7e2lfZU1Diixda/382RqUUwC6cIL1NB7vntI7lSxx5lTdlecSn++7PiJpd6qlxZAipfuak7OzaiDjiVXqiavvVkBZ5rNTU/3OT52zT+Kd3JJUwMn3rHPK6f7nOeD12Lku55x6Z5fKW1/vWeNef56JQecv15tU8P30/KeP1pmbd9+uf5zJbnN8cX5+r9o+16oUTvOwhp5335+vdp4nP++D8+3mq9QllozT/N+p6jf7KftDYMpBybl3l4+VnfuuB9ccKJVlyc/ejfV83nWupcYrky2qrSLxZwLKyQ6d1lLYCL0bx6SOEASYIpvHHFPAWyQkeq4zrfLTRIJI3UdOT0Gtn+ySUKZuqdreUiGpse37qdRq2pbCPhREbJ5X/twYfk0tYBNJJaUgvQyD7hbk7jFiX5PCc/pUQa6Zrmgk3glR5i3tqOPTNwJSjUhSudtPa/M0xzTLmHmMuZB7I6zDYd58rrTzBpFtWUA5fYg00ScbX/icVkKp89TgogAHRZJal48HnfaXtP1SFtYTcsr9MffWwFaE4aGsOEzoQ8LPOQ5GP7DeEbOJxYis73qSi0IAKhMQ3WOLsyJsMZWmVoJXJOFpdtjda1CYSu7Zxbrz1CUrByDtMC6zJFxhFrUf28QIc0QFQKPEvMqdra0xl9M4kfvh7Fb7ShfUoz3aoz3aoz3aoz3aoz3ao3017ReTlC5tC5hftlDYSdKIEmoxLo5ukdEq5nSLwJ0kySUy+yQVRgTxFtBESxjJLUuCRek2xyO4YBEM3fYtgJE8/Io2GsKukUY1iGBEU03FjMp2CfJSZGI1ZNuQy4WX52f2/cLl5ZnLZefDxw88v7zQtvhegYjRvsTDWQI9dbinasZfQ4Xqk/Lpk/I6Nq52TfUfZ9uUXXeenyLAcnvtOMoxYKCYRek90c5TN3yDq/XIRd8ugHAR2PeGSRDKogxGC6Ao1RZICMt1Y9+TaNM22uWCtAHjM+pXRN7A3zjeXnFeOfpn7F/f+PF/3fjTVbllqZYiKTXbknQETTaGj/j5pqgdCXK0efivKmgqwkgQwCdgPyZgF/OGqcJiqZrSWiqbJKBGzmFtMgG8pYigmJEZ9kFmEi1AO4gIEGVdRg91HyeCcKobgSSF+pgCKo2RYGpcZ9B0BwtCQgEXtDYzLIO0AjMAIVsEXGzlBEe8b2cMm8EKyTJYlYEXzeb9XGRmcatKlqaJZ4pnC6DJfEwFNZCQHzeBJtm3OXVTSeMMLAamGlloFUJcGWgJRGUwUgS8peKRe0qU5y+0SgZVUDmAry0z9cfIohkV6Mm5El/N58Qj07NpwXKhokAGcrIv0QDuGorbOAHNASgZTreRSgLk/UYovUWELdTmCFBqcn6q/JtDZb2Xco/lO0cgzOecDmAuSGh32bal9+UJ3mcm3rRuc7w9vp/KQZDS41bhnvhTtwjiFRhXAfUY1gLPdF4zAmM+gXTLd5UJ1FfgqECzDHTMdD+ZilleaYBacKdMZbMZ/yLBPSFLnLDAywJyU9UvSo4WOWgBjVEuUfOdLfulLpLjVCS7DFiKLwIBsIhrVOC2vq9JoCADoi3mhkgoEJa0g0RwTE/vGrZE0BakpzFi3yuy2lTESqWPlvNcc3kPHGvOLoOmG7ptjMEslSOq8V66hQpda6juSNtoLcukxvDRVGi60/Qp9mJp7LKxyYXL0xNbewFXtu3C1i64wPa08/Ky8fQsND2RFs8T8itqItD2Fop8UhnCyi474/bK8XrD7EbzA/WB9Tf8eg2VHI19ptFoNsBg+I3ay204YxxBXsxZFeTG9K8kiEj4QNSS9LkxZIuSfuNAbNBomMOWlszRCFxgkFnwVaKgWvyMDCJFMMhGKKZZEfHEcFXYNmQTTKKU3a07/Wr0t4Pdcn+YQVqYtvwUUlm8KJsfiYCKzKkRr6eYQHfh7Wa8XY23t8Hb643b25V+veL9YFiPXvQggnUre6JYz0CJdfoYDEs70YIwpqpUKU9Ug9TuG+b9FASochhOE01ydtgJSWXGCAcEWUgz6OAGmzZcoqzGGOR3sg9otNbCPuW4K0YfgyKFTnuQfeNVBkmNIB1LfPULXk+qmvFTnfvzWS0R8akKV9nfQOweGn+DzDhPYtedDal9FCjVpCoEVja09pMitroZsiklaaJapSiTOObpsznghrIFKTCDqK0psiVRad9o+3Z6pvN54ktvtdflnmXQb8JxNPpooaabBKEohRelnMU9lcrO5dTS//KBj443FtHBYhPeFITYo+JsmHZVQ7nUKhBq8bmWyjguguqGqCGSJd04cA5GD6WJMQ7stfP52rl1pkqZlx8cDObcbmu3JvdTP9ml2oFD5SP2wJpDq9+QmJPFY1iqZjnzipR6us/JEcv7MG1lqTNMpTY5K14WLZz0h3R+bxJUqmRhkgUW+bmm5ulu5QgjU71R5mPFnAh/vZy/WmFVGjeCsfjqxakYlf0jU0XrpE6UDpqUD79mH5BqQOVf+skPq667I8ws8km90pQoml+T+U7zQnVWmPd492wn5YuaE+u2S7Fi7VtQBKXT09zNsTlOp9/HLVeQONJZsm+9/OcokxTjI+mvr/tX3yavEzdl0QV1TVhfvjd1xpo3nuH95TunL3lXHur83PMdT+9T/vbpE++t4FQJzq9YKcDefXDda1Js8lnLq7n7tNeZNHv5NN51Zqhxv7vPyUXxeYF382OumvN7yt33F1GpLnGyAXfvJOszrElVa2Hd53SP05hM21JzstIx6lmLBHSyb/Kuc8NMJOEulQHXc3k+ViYKniyMk26PGkoQraNUlUAqBnuSnwqDqbKOUa6tVJKKyDd359gPSByENr8T5LKWSulhu/d9Y9/J5MITAeu8vL+KtmaUrQEld0c2V44RiYXmHRkW++BYJKU5dm6h6jN6rvAoCWcjVFVrsdlpjvrdXIpO09YSCxPAQhm77E4m8Tixp9XBsAiQVUZ3zpjcU7z+42TpJf08iDmT59WeCrVH90hotBPJ793Cvf+J/JnPnLs4V7KSyWeBXQ0bHH3QD6P3zug9qwiMaQut9vxSma99xQOPmutOJXzKxBKmiRbN/iuFcYgye8w9eD211UadKu/Vb7L2+JzxlvdepmSto7pfOmNzXdcIzPuJVLVGzphH7SeP9miP9miP9miP9miP9miP9mh/y/bLlZQEGHlkKVUkN0YGXEWDfLFa1N82j7IO2kLDpKmirvRemdI+QRUBBsJhMjOmpO3x/S0Ai+ED9x6BIOCWtQBauyAKw4IA0H3wwo4M8Kx49bw19svOfrmwPT2zXS7o0xOX5w+0pye2530BsqdMuy+tnUGidbyMzrchHNfO6ytcbzu328Zgp5OBTslDrxk7jrNxIJgqhmK2gUVZrmt/zeBYBMg8AwP7Zec4Dra2gR+INwZBXGhOBFYN+qGM4WzEwfjKgXvnSQaXFuXo+vjE7dMnbp9eufYbt7c33n688W+fD366OjeDjmewwoMcV2BBArauAUhoU3qWsBFZ2HSA0tFPlgGS/GZi0AHcRq32kNR2IlivqRYRwcnoZovuQ3VlRwVQqhNckSy9YuNg2yKgE5dJhKM1tIJekGQJaNsWAUqyVFyCqNpalJpJhNySzDRsEApiAUg0VfBBk1Q1ImTpVSNTLLLyIqMsqmb1CECzVIIWoCsgLcUkIuNMpE3wwlO5Z6QU+STBjBP4nkQdy0zjClJk/HsC1CoR2I3gUZBaghyTQcMZOMhAQAVRErgvmfKorJJZhakkIW5LPUhGqLGZJsjmwEjVoby2Z3kvOKNpOX8m5SeCdSm6M7I0E+b0VPhonqXgBHykXLiRweUE1TILzhPQa3gqNGmIKnk+t3sGKUrqu7SBwla5n0CoOYgJeE+aVV2wQNwT6J7TUrUlqBmgcIgwVabeAign4SjJPSv86xTcOMk6UyHFYw6tSZa4qidamOvYTyU+RSbhCGQqBckEZAtw1SzDEiTXfKsE5yqInS8ptZ4j0jMyAFTqatFLRWQs0DfmSa3rkmOXyiidoGxa41PZx+qXCHrKBEUz55giTY7sF0kVpnpvS9B4rakFwodCYf7YPUFXhSQuVUkQGx6ANgMd1wgIiwQZyVuquVisixZkplI5U4lyXqqKNgtVjCa0rWEMujkvstHoKA3dLpg2Du/s+oxpY6jTNmEX4XJR9svaX6e9uZNQ+PJbzW9z6DaC0NIEE2WMDRtP3Mw5js/0t09ggo4bZq8ZHOiMHkHY0TtHv2apslDMudqg54ofJABuPcq2FZnTPdUhdZJjVRsdSwKvgLVJIOjmmEVJg00DkFZz3AbDo+yVtC38Ow3FJRuhvNftxizT0DqCMQglpYHRHa6jcz061+5RClBemCS+d8Hk7MTzv5iSKgtDj54Wx10Zh2HDsNsrNj7zevs3Pr9euV1vvL29cjvewA/wjrsFoSrX/i4RxHcNhb5hzpikF2U4oI09ywpry+CM7PThMDIgPMckv5+kBZEik2XwLVZR+J8W5H3RKIk8RqwxwbOk2A7EHj3t1MixQoIcmD7GyDqp4YMLTbcoLQFREtCjKLN/wYsprGru4bk3iyxyQhHWan8qEmvFmLTIF9P6rk8yzxNhTwaLdBZKEFDBW4RUeISmG90tiGptw4nyq01ib9G0957+VJMs8dayDFyL0tLbviOtpYpmtS93LO6frfa72IvHGIxuUcrSBTOZ6gOlSFS+IF5kDplKlOWDhc964H2cznyWBG1leEeHoBL+6EjfJUqmjPQzWaVNPJSbut+4uNPouB/040a/HhzXg26DPox+G9y6cYxYt1WaFfdZ/jb22SLDTS0TSsF02iFy36wgXrkT8xvhn5Rqic9erfnnM1gL5Z0tW3cmPdV31hCVPyczsL9cU1k+VZFjNP0UdYpcWcIMRQZLfYbpY8Tr+909YKknRWzTp1c5+2wSG5aiR737PbVjvYudAtpRYjYDollCvr4/L0jZh/M+cpq/p75SyWc7zeWYhunT1fPWr3JMJQn1VWp3vjRMv3l5YunDiZyeKS3Yevj5mUnqmr9bJC6ZbxfPO/sm19mwoKB5ZorUfo57qvCSaj41ToHPUL60LD9x3fc0LqfudNfTJ/MNKnjNdNPvx+f86Tmu59/VfRfBqE4KcQdJ8sL9+eUukcHf33ER19Z5Yl2PHMuiW9XapPaNeY/zSrofuxrBGosi0sy9tcbVc5wpj1vnGVLmVe7/XCZm4RM1RybRyGtmxf3tdLEiytXKiyUS+IXMs120OaJFnnpvWuBEilpkPdHVV/ez3oPjLo6IRYleE6aBKaUWr3L38T3zKNFWSky13ki76ATGp97y91us2Zy/UZ5YgiiS67xs6nkGfMm77f+xCYm55HoWYaAMj2TMwwbeR9SBcwtfFw8iTfrn7qF26j4SR4nPBsFGskRZ4ThxnggzOZY9EEAGKlHGu7Czs9c1EptwH7SaU860U1FFOueyOUyitzOsxx7shC/AIjQBScYS3EfiRYLIBrSfdxj+s5/8rJ1YNmXWx+H534EdN0Z/4xhH+ugHPQlKscZzV0/bp0n4DE5eoW2nPQBAkiRU5+00fm5ln5JolglpNlEaS7XRfN70N1IsKfu5yIxGiloC5Fkk8eD5zvlkadzCBYk1beVXS9mAstHpy0wy1Ve9qh7t0R7t0R7t0R7t0R7t0R7tK2i/nKSkoaIgHqEp86hM5Oa4QqMOx57qRxkUz8CQeJbXMug+Qv2CCMR4ZpaIhqrEoECbIJ60FoBHBHEjgLZlFq9LlOFoewX7N8zj99ARiSBF050+BruPCAptytO28SIbz09PbJfLDG6vE/oX2k4B/mpBiHGuN3i9OjcLnSAc7BjYgGHbJPaYwxgJUDRl2xujK5pBamkwekMSfFAxzA6kXbj1jkrn6AeX5jQLEMWB0QejH5n5pBx9REC8CeYd7TeaDKR/5vj8ic8/fubzj2/8+OMrn2+d16NzezOuh3MbQWpw0QlfFHhdxI0qhVWEg8B2ch4WsNg0lYQSbBcYJd/sLQ7iQgQdUiK9gDPHSyEaR6L8DUR5iej4mN9CllYrBa8MxmQGYGvbBG8mDKlbpnbHfA9VKhCxSaqYIPiIsj+eQHpy8ygSkFPZzAFaqxDkI5NF9nHFpU0w2G2RrDyBEvEoP3Of8RtA0sgsOoUo5QYzk2+MMUktC9jPco0SmWRuhmv1V4HEJ9BEA7wZ5qkOkZm7nDO0FwgehMQNMsgPCRb5AqolA4qimSlaFymFmncy5xUcmPPLRvZzosFRtwrcU9FolfmRml+e7z2ynFky19wcz5KWbuAZxHQ7KVB5ldcTpAlqLd/JFrheYHsagVIsiLWgE7Sf2bwe0PnC8mR+N9FoyuZ5Emvi/S2U8fCpQFRkNe+l5rTmyfsSEBUM8gygeALdhZsFYa1AubNN8/kOOVSpiFSofAVr4qNRluVsEVewRLNc08Rdk+Dn4+cg/10pOK/nr2c7BQy8pngSHNxSIZBTn5fNiP+2jGXAyl4lwd1ZGiUBw0001hqSqu45n6u8XQLLSMwdVc8fS5Yr1PW+BBlrWJRIsmGMDofc2LTNUqq0kKJqIlxOpQg9FU/EHE81MScUflS3TF/2vK6jz43eB/SDve0JtCu0Z4buWKqfCW2N+M8x5q+q7bvwvCtHh6FCe954c7gdjTeH6+EwGvb2xm28EvTGBMGPsHXH7RPDjygrMAyRVCAawujQu9H7QDBcYr6pA70nfh5zQ7ewIQq4hg0a1onSqBVAz8BGHzTf4vcS/hfAGD2yintPdSeyvNyBkPvAnHcWanmSxF2BXQn1RMiAZxFs/oxP9e+4WRUIqwBwd+HTK3z6NPj04yuffvyRT3/6V67XH7keP3EcP9H7Z4YduB2pKZJ+jgMu6e8cDKtSVQp+SQU0o23Ktm/s3klpmNz3fAbQBVsBmAxMiK99pGwnpK6Jxn3r82QgCZSmDZVSZalAgeR+biB1/dzJxNMuhEKTiqd6X226eVdfvviX2qYiIuS7lvJO2rhJSPLlr6S/Q9pFnX31bt+ovwsxxutGoGuPzgeJP/KeKhFQUs19nzZJGO4jSiKKYYT6XfK3ERWaCFuqD2o7lZ5ZD/hlNvlz/8h+J0nmuf9GcMwyCJ7BQvUsGc30l5toqr1IxBRFsBEBaSVKVJqPSHAYPdaqJOnWRvj8HgROHxbxWC//rPbqQbOB+MDsoF9v3K6d49q5Xge3YUnKjHiunUjZc0/185/njahC9blxz+Dg6p+1Z53nnVCKpF6+g0eQOEhHcU3PdxDPMtLlB6WvKdy5QCwlnLiH/GxCSfp+58/E40iuHykfZs5/v7vHuQsmr6feOT/n57VD+dT5fbOfX+t8T0qJaPk/5iP98PqRT1s6SSWl8JedErQEXzZizoc1LiePdvryP5vmXh+flubkQZ7szvk7edabZcWps0N9d82LddaQdR33NdekLpnkq9icc+BrSpXiBlM9qZ5d5j3u/d588LUey9O6G4/6fO5dp6vUt6aJLD9cz75tTYjzHnMm+GSf5nmixmy56fdOXyn9nu+3nr7eJX/viwS43vv0BnNS+/Thy89/32YfTjuw3uP+THH/rbt5AnEWyI8vusx9X/zZfxZ+kH061Wbyfe7O4X5SCcoflvqKy/nnlmet+ND821yHea3ZRzL/bXNu5Ht6KShVZ+XEszUR3WCIsUmSZuq5Pc6OeQJLC5bn1JrbNTfcsdFDtVKCVG8G3pIk0QfbRhIwI4nOpSVh6X72nmCFf2f8vuwmuWU2cvvcIkmhu2IykhjUcBuY9aWg40EqdhPw+p0n/hMTuoSyLDGWmGeBDWippyV4K7WVqa/qYh7+b2ASMR4TO0nFwzn/T/aGwlLMMQaVpDP31kwyQ/O5ktAT6lsaCRWc7HjZzve278/6MvB+DRpw63A94HZ0brcrt+sbR39jHFe6XTE7MItyt0VDje0o0Z6ys7NfIApkQ5WOF5FM0or+91wvRQ4jSX5FIq51KL4m8VTFnmYtFr7nmbw6u/aSqWrozOeedP9Mnlrca6tB5ryHlY1Ym9nXt44e7dEe7dEe7dEe7dEe7dEe7etrv5ikJNuGWgEOHtk1wULKTJDCLwooKmnZVKdIHKHbwFTYkiAQMFlAGeJOy0C25gHOrZNRA6zKY7XGpkJzaN5QUVod9NiJUAGIGLo7skmUNbk80bbGpgG8k9nPx6ZsrZLATsAi74DNL7bFcVNV2Z8+crBzM9jEGccnLvuGueTPlIuBXSMTy9qgNcnAdsNFIl4tPbL7h7MRebPDBj5uATgwcBpdBLsJLsphN8YIdYgxopSJZVBOXXiSg3a8wvWVt+tnPv34mR//1xs//eng02vn0+Fch9NHlDGKI3ICqSIwD/M5nURntpFWDSJOGV85/xYAeh+8a1OquYC7kMSOGxvStnl9IUqU4B7S1pSyU0icm1kqiQXIThIK3BtjxNyK8k8B4KkKgwjujp5EllMwAJxN49nNPNOjoiRcPGuuE5HMmI4yMSkkzbyQMEuhacs1uwWhrWdw2c2ytI9TGaDVX5HhnGXMRDDrUT5nxFp184wA1X2ypES9h5QkeKgpuSXJR4TJaUmgRzKYoywAy6v8XAI35wBHZLXaBHc9umUSg+ryAZpqls8Lml4EyypoEmOyAp5hj7z60SPAX6AT+OxTr4lK9J+JoeaM4VimvYYKhrKlOkNTRVtjuK8AeIJvBTav+f3ztR68rwK4Cqxa83gFUPIbLd5xXniCiieg+QTSS84vTwhe0SSzrTla5K27wMaMaiTuxSrtYaw1mCMyoy4TZpTCLGWVc6uxp4JWNku7zRBBzi+VRRQi+8+dWTYu1LnsFLCIB50ZjkKuXTJYUAD+AgpX+ACS9zdLgUT/1fMwA21N6oNnktwC590ie1WbR1kc2eb4nMfRz/2c/00FK3dEg4wLESQmSQ0OWVoh3imnW75y2gVXbBhN4xlCna2Bh46eSpQ2ctlIqTdsdJo0thaAqHHh1g8u2473A2sbIgdbu7G3ULhjU2bU4ivZXf9si8UaJnYYuzjPTWCPfZYDaI22b/jrHspKDrfeg+Q9ehB6Y5NEXTmGcfScggJuLeyqdawn8ShqLIbNsCjfEJnk8e9+WCrsCccxgvTkI4jhFjY0ym4W+dFR2SLw0D2JNxFQsBEZxMOPE/kxyTdWxbMGbIq4sktjQ7loY2tC26rQwF8xzonRO0G2/nx1/r//evDjp4M/ffpXPn3+X7x+/jeur3/i+von+vUz1q/4uIW7mPYH0SDNeSj+hQ1XhFDLa+2ZhrP5wMTvypZQpD6YQeaWdZwkiamVKe0VMDyXSHAnWdb4qH1MQ33Ay2cL21bBpNq/TRxLBQKGZamHyDxvskqQulaWc46Zh43DiJKhX2qrfoDcZ0473XLBCRsddtRWHQqKOBFk9FKumo4hpRSpeiLXpE+xLh7EKG1Ky3OKnGZslOfNspmprBW+W9hGzRKYWwZ4XARXZUgoX93P+hV0+hpa7Tsty3wrccYTO9h9BxmM3Of3dM9D+TECjEHCjzHV/L2hszQyFP1pzH5yl7Xnean0eHJUat+zuW1sPmAcuHX6cXC9Htxug9ttcHQ4imDpJ/8nXm4+Q8X81mAt30E8VVFcMqmmnrPG0aeNWlZOauIuO4AkaaDIwz59rIoaV2C9fJFFJMkHlCLnZBlO8swTr4OKLsWDWbbzRKg5+XdL6SZVTKavnmMjNc/Lu1gB2vmOeTYw4qxegeWKrc7A6mku1TqMAK0tspSvEl9FTDoTbOqad0o+9VRnkoxMyzDJUEL1rax3kPnh+IyX/7gIHDPoSylkrjc/33COsARplJprJ6bEIoacZlg9ej0sPokqNbVOE24GnSFLZlU5YpdZ/rPUFadKZzqp61Sz5s15Dp+pL/OxS1V2de18l7tBmI+Y95DTi85Rurd98zlEJydrvfT577KuXXMz18iZtDSvWe99etuVmFLzmtNv5ykgY/A5O6dilp7eeRGmT9Nn9uNaqzn2cnrRc7/mle/7K8d9dgxzDc21kxdxsuyTyOyH97PSYa73+0WT/TdX4fqVy7rfIiUtP6jsiJUdlrVf11mvrlWJIaGmV/Y6zpH1IZcg88a5JOxifU8K+6PhpQCX6zD2kigv13SLPVtWP77riq+2NRH25ACbEUeug1Sl0iTcaioiSZJpyr+xuYaDoJnkmFrXDvi4r4LpSQCOg+vsx4BxQ/OzysVFmoOnXaqPLsyo5nco6Rf5Njctc9JTYBrB03KJc2ygN434c0sMKcrM1+Hxrx9ozz59uxpv18H1euV2e+PoV/pxZfQb4ziyj/L5pEhCmaCW5y9Ie1qqabKlnbKpZF52e9nOeM/pyWYiGNQeWXZo+QtBbvK5Rh1JvDGUr7HlLyybwhzj0CXLFIBMNo5zh1Dq0DEXFiG0iFRxX+732kd7tEd7tEd7tEd7tEd7tEd7tL9B+8uUlBqIDZo0XDeGlfBuZEBvO6GMMQLE6GarrBNR7gYF1Q0lSB3mRs+D14Ym2WJDm+A+mEQUj1JEQyRKKjTlqV0QeQqAEdj0GZGNtgnbprT9wtae2fYPPO0vPG0XnvcL3+iFy/YE2wVrO66Ny97+A8fe/+dbHYA3hKfLJQKTbTD6B1R2RvvMnuOBRgDxKhvYFXeluyK6IbuxSWfXxiHgKmw8McYV0Z5BBcG8MVyhG5e9Ra17A+UCOnA7QA9svKEqbDZoR2e8/Ym3241Pn678+KeDP30++Pw2eLuFWkI3p7tFQOp06G7SKAUeNRZYhi8CkDSO3hfQDgsjSFB8AZMF9sZ1nZChluwfkyBtqQrqYwLdaEaQzUN+KYF5UWjawEOhKrIIGxUwi+zB+HtrKwDgXqpE8V+UDnF8RJkL0cjMGgkUhNpYjnULQMQlCGpba2zaqNJrU7OpxfN6logTC6Cp3YFFBYJ7goae5YMcc51KLKv0mjEs1dEmeFmAsqT61KmPAimJgEDhuHN8KxhiaScC9EEyY1YDILtTKSIAu6kaIRVk0AB3TthskcNAJ/mkKUEC6w5oKGhVwGiC44XtapaPyAtmMEJFlvx+rcF8V599SSi3qWCmsO1sumEQBIIeyikB4kafj4x4iwhDwgaes4vrESRLH1YATLNvRNdD+QQtWwL8HqCjQ2s6Afl7RYG8z/w/C9UcbfSRykWJLM4MYu4JNRN/TNA7ZMdl/nuC8FQn+/x9fD/V0+pdPObHfMYTSL8CEjptQQ1+vZ+2JLllUF9UM8s7QUIVTiJUCSSmZHqqvYtqqGB5ERTqg2RgcAVmaz7EyLR8lrpf9U8CspLjYqP4e7StJSBZY5/2LkFq0SRgSZTZ3LYWJdhaBu+0ZYDXJhAZAKWibQ+756GF0dqO0xhqOAdDlUYQ6bRtWboI9ktjvzzRRNm0cdmecFdajpPLHqqKKlz2HdOG+8ZG46LOy76xkZnSZZy/6l03morwvCn9cK442ybsbWfLdarSOCxKI5jvjGFBOjKjeU9lwwC9VRvdktxrIeiziTM0QGu3DawniuxTHavJUuOw4RgNyTq3I8sUmPVcL4qZonJhZPm3PnqSBCyU9DLQEQGKY9rVIIA6Gw1h0FrOhdZ4ahdetp2Plyfa/oy3F0SeCSD9L6QqzeBbzN/bDa5vg0+fPvPpT5/56adPvL298vrpT/TbG2ZvCINty7KzGkTcpsrugvUea09BmqNs6Wfu2Bg0E5xSOQqiXwXjVCTVPCE2MUPV2FsL9URC8XEQ9sesz2ApojTREN+rMm3WsbFIzRXTnOEXjf32VmyEJjQX3Hc2ibGUJJMNi/cc7kHCqoCFl5rol9mm8sMpMDqJk/k/pVLHLO1K9Sq1F2h+du5fFbgVr5x2qkQtnPwOkYj8VQBKolSuJEE0Sn/W72MeiGyIbjTZ2dpOE6FpY5dG0x3RPRX1ohTcV2/aJESS9qYIG0McHzsuDeGIpBUlkxg09jkfOQWzA5qjMpJ8F6RBIZJPPM+FwAyMDTM2lbQ7AC190I6qZflDR80QM8Zxo/fB7TBuN+d6GN0k1CbOc+U8FuXHlb9R0ohUoH75fREhLus1nZrl51KEwzqDTQrSvGW4OzLn2jkwi0TQcCqTZKAwniHV6MzSj5F5PonPkUHOOj1kQkCJudb1c29wXz6y1Xmi1pkskl75XZrB4RWgjO8EycVSoWO95CxBJ2mfqk+pdSeIOGIyy1HK/ASTtHP2QMvPOrm/FfqN26rMv+NEyTMyoOx17+rsFQheihyVjLSexU99R87s+cP5HucxL/LEiu/P+07iwPmadaH13He/PH2mLoFzumeaxDZHPd6hVDfnM+R7lW2VKgFez1bPmap2OffiLzID6edWYyQsX3mVoF7Pvcg7s1dZZNE19+f5/F1X3J8p5Gdd9L6PVq+vK1WCQQ7a/e9+NibrwuWbFnGtrn9+hvO7ZK+tjrl7QJ//O/vCz7+ptbvm9R2p67RPTkwjZ2sRp9+fu85rag7Sue/zXHLuLbnro/i7pppkXC3L18/zYp1jMglxKqbHmKkGKd8YGD7JRKpFKoq9Y5ZKJbCYSDSpPl/n8qaae2v4tU2CHKypUjz7mP8CbZqawgEiIaCJRik8qVKbUXo2SqJCKBxmEgN19lRMmOq9QdrM0uMCVSp+3TfXm5/mzymZT0UZBkxF0fV7KRXPwp9mQqCfDGNgR5Po5vHcmoRZkbXvbK2xt8Zl29j2Cy4X0CegZaLFLx/t2teqjRHn+tEHx9G53Q6OW6ffjlD0ymLORQCd5GHz3GdZZiUfIxIG6zXlREQKItFStSbXwko4jMS5vF6VPZ3zIfpQE1sIHNTnvI9pcp8ENv8utbbvtsB8SFljkOX2cGYVhKUeS+AT/yUW16M92qM92qM92qM92qM92qN9ye0Xk5SOI0vbmKENPBVV5uG1NbKQGK0RwIJEAKWyqcYkHYWM/20YaFATxGFLcMxM6GZoBsAqg1naFqQRMpu5CaKOaGO/bAGoyA0QBi+4bAxrXKxx0Y0mYE1hC7Bj31/YLk+8iHIpzPkd1PG1AR8qzlMT9OnC1Tt2eeHNNuwYaBszcLlpQ59fEN6iWsMBuGLeE8A1mm9oa2A3EGGYIhLBbfeO2M4YNw4fDDP66ElAG2zScb3CeMOPzjiu2GF8+tMnPr3e+OnVeL06n27OzZReYKdGYJY84E+Mg5D4jpJsFsQO1cwIIkqbRQdMkHZmYxNAbKionEG2BPokiDMlLe0+QGKOBikoM3+1JWhvE3R1SlFJqWxC1ZY14lsCLwl5SoU6BBtjgXVbKFngFSAIwMZ6gcAtFDcKbGhZwowE9NTZ9i0VW3wBjm6ZlRZrz7I0zBhjrtsCA6tGPYSUdyxFXWUpVLFT2Zr57p5qQGTgQcjSaplxlmv9NEFRJ0hYswRb8hpPAcv4eoH/8VzMANJ9gCDeYGU1q5yyh0Vmubci19SargzdpZ6V8+QsZy4ylQEWIUbmeKnKKXM9S2RlUGPfNYMMoarVNgGPkpa4n+o3JGEpIwBRCsdm+KGCP3iAR61VUCH7oykjy+RVW6YsxkWr7NAk3OXnEqgsYs8k/mWmttR8VIkySS4lTVDoVczZOwR/gfjn0jo1bjV/JjBffVGAYI5jBXkqwFbPGy+d5WTq8264DDzJO6tciUxQ/s6a+wqAhEy9zNI9Xr9n2RJJoPeESWaQ4ATqpg2pdw07qhNMnd/Pm8RzxfqxuYIE1aU0UO8c14tSexFkiSFwDbDXVXEl1NlcYCg21egyWB81IOmjbKaxK2ytBQBsg+OkvAROk6CY7JJFptyYiloI+7ZTgLW2LUprMkKiX4SdnY0PqFzQpgyPtOCyiX8hdeXLab7mwTC43TpYi/Xq0MxoFqVQNxF6E0ZXRHbEe5TvHEYfR66hsOfqEbQZoxOo+AHSQXqQUbrj0oI0mvPZPZQH8VjnVrbYg7A0RhFWR5DbxsCHc4wo2+fE3tB7lkFjlTcw61GCwUORSVPdb4hFEAtQd54Uvnve+P7DhW8/fmR7+QHbf8D1I5Kkn7+0xYpV+g1ePznX18Hrp898+vyJnz79xOfPrxzXW0QcsuRj21qspwT+R4+yrpe9heJHkjTDRhnGFVFlEwuSjypGKC2N0dGmHH2VVDBvqSJ6m2Umx3B6Eh6HdVSy7KtqZpPHKhQN1cRQsAsyWM0iTyVD9wji16qtso/jVJbU7MDp9GGYNbKKxgwchi33UML6QtvoNoNW2qDKnFIzTyrgmduCBxmkj7I/EHsEVG0S83UeOdsVszLipTCXtldYPllsViClsBVlZlO7IgOuAhZqWpLB34EzUmUnziqNS9MqhPa1WjdgxbHUY48QN7xtHD6y5OSOMMDDVm3bBtJDCKR7+kw29z0tJ2uqK4SfGCoBgyD2axIng5hUAUGNgjfgB2OMsI/dud06t25RXtrgSIKSIZDjEgTzdZ6oMTmTf/30s9x142dF+HGmD7KCujOazFzHvuba2uvjAumOTN82PrPIpbWvm2dAsoLGk+ixvNz37Z2LPf1fqK9LjN9pRk4FEpEs5bUucEcczHWCr7U4g834VE6Fcww0o7Wl6jGfcT1oEYXmj7OPLf3g5cNXP9W367Cen/D62xoOO//LVx+cRmrdt56iJnyd7WZgv+yEnPqMGXS+a8Lq4xzwqXwJ8/xBPvcaW35235oP6XxCO59Z789B8Shr7lXppSKc1XlAzve4C/LL9DOFUOsyhKrfPVeFnEewBlVYA7n67/QhzjZ5nie9FDpY/VPLpc4HvvzfU0etp67Pn2Z2+e93/v58tCKl5fybX5Ic0/M3qpy8z+SDOSf9/ChnCsRJjau6+F1XnOfiXavHrUev64jc9ecifsnqt9P/egx8vl/6HnnCmGeqvM7s+knirbVwJnXU9cKnqiyjeqJ0Z4AkHqW6dJzrzvN79W8p0+Ch1FK4TZk7d1vjnuUQNf9rsoX6pwgup/fCmSSQn/fuF9+mIq9kSbF0kZKTGklMHkpagXtqKmbF255V1NayWp3q80BouBQ2k7Mj18K5hFmp8yx7mtf3k0+bY4WT+/bIz+W1p+3LhCRn2a7TfmrYaY5HwtalCc8X5eXpwnZ5xtsTzgWZ3tVf2L9SSW7QDzgOT3LSldtx5dZvgZHNfhRa2ik72agiEeuWc9vOtnTtsWXp41Qf81Oz3NqZJDntRpaMOxMQ8eXD5FY2MRqRKtuXY1aEQi8Ccl3fl409EaAKl7PEoYJcJvks8Uzz+6z3f7RHe7RHe7RHe7RHe7RHe7RH+1u1X0xSGodxSwBhV4kAzwiFDml7KJ0A+x4qSd47mwrdIogXuEcjDqsHRsPbHmAEmpK+gCaZKTMkRbPEm4BgiKfsrxLRgua0zdAtDsYBcz8xhqRC04DN6d4Rdrxf+dyETT9y0Y3taePlpa1SXf8FmgCX1pDLheO6IWro9kTbhe1yQ23gOmjPjecdNhv0N4vyMCKYRZbaIQc2bpCASMlimRjjZthxsBFlVIY7wzt2vNHUUK74eGVcr1zfbry9vnF8Nj6/dV6PwVs33JRjKNcxMMmSaBKlYwJkzUN1gq1BAIlA6siAkRClNSKbyyb4GAf3OHDb1E/PjE85Kxk5VaBdNWg/ZkHOUQ156UWMKHQ6yGAFZlQQprJUXQIwDnHlJJvohvugtVJC0hmc8Cp7NbFyD0KVR+mZIp8oofaluiVpJMIWEVBjkjk0CQZiAfCN3kGitIaNniBHozKsIQCyCWoLuf5ShcWZks8iBbIsANm9ghn5nBJ/z3j3Ap8CVUlQh1AxmlHIBdpHuSNNRaVAQLOa0QoU5VyfQUlJ4lcB5kgqQSmIMUsFEj+bmc8wAzQFilbJkfnYRXzTykC1E9AsoRrlBTxlv8Wn2CQD1RJy96Ixt8xDMcxTYcOJdzUfqHuWvgslHagKeUnw8phkQRLIz4wElDwzHD0JdywAWxNAcyobPgGpExx9H1yIcZAqfeSOjBoDOwHVOjOOq4SchqTICny4znvwrl/n/E8lM9EqJVoryub0maCrC9ByHi6wNAiEDW2pxOUj7904RVIm0O554bAZkvHvmEOTeCWnsmoplV6Tr2IQK6i3wP6VOaxkwUSqvEnM4YInE2SuvyWprcqxWKqYibZ8pqXU5TainKl33FsCmxCB47iWm9O2PQIVliQXdzZ3hBF7pBjG4LK1LO9oWXZOEd8QEzRYUAwf7LrhGMM7l32jtbSALmmbFHWNckj7jupO7wZEMDo0GL/y/bawX4nyam5Oa8LuAa6Pi3J723jFo9rftmG3K9d+Y/QoUYRAH5YkoAOs1MAiEG8jwWMs7AYwMGQTJIlowz1Iux6EIdMKQjnIQCT3UqLEW+9BSOr9AO8Mi+KtZ8AbHzOoEHYLVA1SDQUNm6XaaOrs7eCbF+e3v3rm17/5Fc/f/QrfvwWe/0NdbA5vV7i+Cj/9qfPppzc+ff4Tr9dP3I5XbEQpPBehbQ3RNktRbhqqmmPcYu9vsUe4BOlCVaI8Vw/QvzXJEpxJlNbI0o8AZa2dLAlLksMs92XNfSoJphGoGUEqdHCNkqpjjLR3PciIxDWC1JvhIIvAwTCb5M0jFa7cndFzPlSQgQrAgLgnsenLXlviSdqUU1AxA1uS/Y4uwlUxiUOVD2rvjZlegcog/6oEvfZMEEdWEJ7akwRizNpS7BOJuS2W5T0EIexgEM0NV481iCA2GCrsqRChTWh5qvoaA6Xndt6v1QVaY7SGmNO2LfyHXbE6C5JE//R8jzEi6cBDTdAkFMQ8g/6aAVkRwbph3aLMN+GTizhYT9/qwEdP2xUl3cbh9OH0M7El55WXG1g79GmvnqoG6fnElizznVvu3Vbqou7zrIHI3KcrUQGvYG5eowa+iBZI/kzvnmUGg9+TnpAUNs35Ox98HqRnUH4SsOuedfYp/3YSQYwih8X+K/O+orWW1ro4JwD4DJrmWcyjXHLcq+hAOvtkEldWN5xm1MkHo7q3znh1f727xhwZP/1kHT7m+1ZfWhEu5j1k/t+cW3mN82lidf+82HzaO4LSHKUaozwjlj8nyz87X3iRg9b3obzcsy2U2dfx/Syl50GgDMXD3IaTlB+l3lbpz0kyyf6Zc3W+YtrB7DiXLB3O8t/Fg3hwNgTn0VsaVO/G89Q/P//bye+uQZtr/t2cPg2FzF6p3xdp6HQuyPe5U0ma3z3N4dN5Z/nj9UR68uHnHTiXXjuTfNZ8XvZj9UUmKfzvgvuynvB8NoD7M4XLIg7WHijU2vb7fpi9V3Ofu3lXzzyf/+698l5u4Drt4iSa5Dl32h+vMa2VFB6q0zAPtUglS8BLjWkq4aQN8iRYeCaDhWp7rin3HBNw11BYbvnMFpNDxddzftUt/TkPt6+mjWpUybYNttE4+vJVXJxuAx9Z2hmfZVKxMUlMIoNZgMyzn4XEPjzJpwKZmFaJVW4eSYGEBxR7Q/iX5jIxsDHy7G35DPk6d+uMwjWq7F/tm4FXeb6TiqRS6eDD8zMfPj7x/PLC9vwB2s7cq/6inl0Laww4OtyuznELJaU+epRLttgnhdwXZfkGgRkKzlhJgzD7URMjHGORH0UEKZJ82un4vGbSoM++SPnxuF/6pndWxc9vUb5L4nKnvarMyP0eVGSkaEG8qnMK677U2DP317k3/wX9/WiP9miP9miP9miP9miP9miP9te0X0xS2iSzd6SFtGwdpC1xfa2s2DEBnJ4BFjXPklDMA48TksMqLUrLOLhHADNIGFGiR9XRrdEkFSbU0S0UHswGrYF5j1gOStMtSi8UGUQjqDdwLqLsaJJ1lCbOrtC0gsIwQe2vti2AatsuPL98g8kVLjvbfrDtr3Dp8Hrldh3gg4sPaBVUMPamNDP04txu0I8I+u1tp9PZtg2VZ4YPxnHFOVAxLnIw7BXpnX575fYaBKVPrwf/9vng9dW4DUJ1oEhCRCA/ABTN8kRBWMCFptDHoNSLFphIyFyTkFiB+AnOqJNljto6wCd5p7KJIqhUh/m4nxHPZi64hLJFIxSReu8JACuMUHOqHHEZQTCRttQM7C6oUPPeUmFJ2BLIcxv5GSVYACXbHeCPaJQViR9lYKDKQGUgpGVwKDK1RpBFEpgwswQXwT0CeLhjEs9uNosAYO5ZOmhlz55B57iez/JWTZOIU1naIot0YglgZ0Ye5viooEKqHYkH1pjBxQBisg/lVJ6gpQJIZYIVeJLoSZQhYtqXICJVICzA0CLtBPmMAEDFE/iPsSkg5y7LG04lOXz+TlTn/cigVs1Tc8F6EoJaqHuISqpsFTBUpDFLgk/ca2Q5pyC3nXs/Z1tm9y3QWifAiDhufY6/iuIDavUgMtXUFjC4+j91Je7wbE8AswhBEQiOQFepbuWUmpj3OdP4/MyBVa+MUdyjTCIVxFkBCAq0zpbJ4fmcOXbzLQRJ4lSQCZhzKG5jSTbQCe4XWDsDjV7guSexqQJQCa67Jxk3CUgedslkQXjVf5qKHVFSzyPIOedQtSCGzF6vYKElgJyTqwIVKsK+aV4iS/uJhm49JLmulJuSQGkeBEm7UWUYNLOr3SQUKXzgfkXcUY9yg4KwaUPQVB8psmeA1eY9SF1NQFp4EuqI7LhrEih3uipjg10b+/bC3lqo3bhHObSYAl/tjmsGr2+DPsJGbe7oGEgDdoOt5mEQSwadYUcqSDq9h6KRuOOHoW64GN0OjtGDsDIO1C0IUKoM2Tj6CHvRLpgJYxxRFs5GlIrTUL5qGiGD0bPEgTljjCBIpTqSu9E01PlGBiZirY1McG8B3KuCRQkJ9454Q13Yd/jmWfnNdxt//4cf+M3vf8fLb/6e5+9+i+jGXze6odNxPYSfPjk//eS8fR68fb7Rj1xP3lBV2hb7HhqlR/dtJwqBRGZ3JwPBlmRrCZvcROll90TiHcVRt1hTqRwXgL+Fb2JZukqJcmC0qL4nRQLIQLZJqrDEWh6WilYWRIym4ZUMi2DgyD0gyIYStx8j1es8S/b1DCQreEOwk/8Qa3OUgkbtjV9oq3Jo5yBrKDVIlkiMz0XiQbp1TgTTK0BD7TkrWFx72F25ktwDZoBNWv4791BNQnCMSGwyxvSxpLbWChoDuTsH2WbTKCGoRYX9rxLSOXlAEmS8bX/CtaFj0NrgOA5cI+o3hsf+mQphKrEuqsdUY4wZnvtZC59ZoqSc44zR07Z4KP/YgfvAemcclqXdBm99ZOlZmXMgloam719+QQXxKkAuedaos0SRl9Z8MoIMPknK6UKWGtMsunImW8wuiz6Q9Dkn0YgV6NN8mjF9G0nfonxfyeByvIPMGZUBznmzE81ZPEO9enrw8iF8+tX3qpYrgHn+maQiW/gksQbrPLBITzmWpbYpFZiWU9+efMJ66rNtyjEqG7C8p+U7Zsev93affUr6cEV4WAHf1XPzITLgPP2NHBPOfv76nzkv3Kt/87+793rnLc/bl+0nzoAz2HuiUkhRfPxOUUkqiO0ySRtFuPOqLZ0cs6kE6uc5bJxc69M8Kd+63rbuW9dZLzD7hlLEqfHPtyvfuS5/Ihmc+C6zf87tXKXJ/fQslN3OAZxfrN+teXvuw3rJpQR2Jjmts18dTCaxp1aUr3kR161EptMzFyknLyes75NnI879nxvbeb6c/1aPTp3Jqb2Ju/ldjxkEOZ3fm3jGaZs508fk1A/crfO0XmWPfF2vrM2cze55IL0zOPPciY8kTrVUTs79ewRGB0cQW9FpNxtVUjL2Xq8kmkxEOpeQMzTOvtLC/5wGKUqsuwpt24I4kgmNsx/rVb6yVuNd6qeQZYKT6e7imI7YY6g+q0ywWAOjp89aE8vCpzGS9J7jWoSjmAtBlB9uoR0peX7L8zU23q2v7GNbmIDbIs1Dmqj8TjxGJfsl+Ym1fKN0WyRxqYffsG/Kx6ed77555uO337J9+I7t6RtEtmVA/ooeHiZcb85xy77q6R94lKt13aCFMuRSAzztHdWHctphZK3PwCzr+ZavIRb+TC2+SZKealmZkKdBQq3kTFj7S6xXn7bXvWz/2sOKrL3mfxLW8meWak2TGDv9ixOZcY7jyS54EcEf7dEe7dEe7dEe7dEe7dEe7dH+du0Xk5SeLxngMgsxBDaEhmsc8iIoFGVemhluS6XisikDC+UQj5IZTZNUkeAqIjOb2fGpqpFIJl4hUo0DXcu66mojSwoN2DZMBNfOtmleOxA9FQnQZHtCtw3TDtrZKKD1DNZV+2sPw//PtAU8FxzW2C8feNIGR5aZwrnZZy4GTZx+Vd4+f8bN2JqgCmY9gpfDEYuSexG4TNBr3Ngxtta5jhu34w3vN2QMxvHK7frG7e3g8+fO59cbr7eDn66Dmymh9pHAdkuCy+goG32MGdA1WcHDLYEUFZjlI4owku+dBR6QqB2CepRgcRX2CSwnuaPJ6aBfAKUibKgm+cFT/Sbnp0om7tUZXtb8VokgbtMgR8R1A8wrskwAzwtVFLHEzRWfEblQUfBUP3FCsaLUpCOYliQjc7StjFsxj9+7ZyZ7grHmASbJClBEPNc4SPJDKtX04Us9iixlhkVQvdZhARVCqpZVSTKlE0QcsVy7zWHEM0alvshCHyIzbhClJTyDh1XGLAJapWBjOdYqIE1P5dkE8R60yAl+l0pWi7IsVMZYgG/x7hlmynJ47kGI9FL78YSUM4BdzWc5nspgPgHsOb49yzSJawzn8FmOL7LnJBRlqhymZKm7BP+RIDJF8KGdZMbHfHYRaAkMz8drMdZKy5JahrQYnZgvgyE21dDO9s6IUohN2wxGqEZftBafGxZAHtqXqkAGPcpSF+pYdlsTBS3iTAXfzoE31VYrgsVsklnybsmj1zPVNRPYsyxDmgSnCSgmGJ4IZK7HBABhBqjNK7hX4H8SjOKGQVgsIq7NXNR8YuGs8lQLQ6VlaUpDktCrCN1LZUwmoq5zzuc7I7RWBKR1r2C9kP1bQd7TfT37osXbzGCCpAqhgrYtS6Zu0RcG1oV+XBHd2PVCqaIF6THXSwiJxPNb2Dm8ZSDGlg8gMe+3dmG/bOwbWeKtOijIyt18lhlgddvX1TLIWMFWGw5JeNvMEBv0cWP4NeycgVsniHRlk5jEvahYJqh3fBxRpsw9VUoONiX2F3N8gGTJTvMk3UTUALGeikcbbjZLXDYNNa9QYQiCi+d3moSq0LARKmYCaJvjI5QSSMypBrApF208qbAL/Pa7b/nHP/yWP/7TH/n+H/6J7Yc/0i7fAVsE/f+6Tg4VpWsEFPDBZd+4bM/s2zNdn9i2Z7bWYyWOWwRY8Gnbi7CMNlRS/UaUlva79gkI0vvoR9j1UnBM+yvi7PuGHS0T+cOfnYvQwEbYLCHsdqghSgZw0l4qiA8cTXWkVBB1khRlWTaDHL9F7FRpsb+r0o1Q3ToF9x3SXo0MDH65QYXWMqgp4NNHb6mcuAi4oegRAbmyhUE2tlnSqbyqCtYstaT6ffVR+B/NwQXaaX7X/lvqSWWfg+gefmCNbVVVisdpVCDWsmTdond/5eeJd/+uhIItj43uoOaobbTsJ0M4DgiFqrk5YSPI7WISameeBF0BtxFkcjfED0bvQbwzC6JePxjdOLpx9MGwUFDKUCtVEqj8ITcJ38pK7bHKqdbeH3/qiVwRZBdOZbR8fVaFKieJLJIzOWemEFL2WvmhIpp9EIHNOsPEdUG9yPF+InWErx7+0rveT788puea9fn/M+g8iUKT6LRGNEha9Qxr/q8/02pUXDOjzCJBXo2g99q7pV7GqwS053kcfJbBPvdL+X/UkWJdY/qRTP8wcIHVB/WZUl12E2ZRS5GTv+7zOvX8576YvXcuczefqX5QdkRmv9936MkHn+NXZ5VU3EpfMtRpanx8+sPTgZg2Z43NTHKZ1i2IBOqaZcnrPHqaq7UTnN9JtE7c8+eL3ja7jqkU5ZIlEkkiwmnSsuZLKWrVrVbFrnty0iQWzXUqMzg/r1vkt3ffKyLN6afrd/MzXsOdZIHT2qhfzBklGeivfWLN5rL7fko6uJtHc3xZv/tZebE/Y+PnPYQprDTnpK/RKJsyryRr7r27dNKtVt9OstXZbsi8BjhnEsnP6WNQ58L6xOz7JUu39uU6r9Scm4s0x8PsRFBfxDGpdVvrIM/19ax+fk+PvT+UdcJni0SmmD+hLCnzzPKug77K5qeB9kpgMUdSVTPUokPRNMxDnH/HqHOoTHJZzXHL5IQQk47SweK1P/u01YvM4jRZPpfgcw54qkwHDamUmQQkzhQx3FMTeM7R1uJfpRY0NwBhJpKJOlsmYny4XPju249898P3vHz3Pfr8PbI/834F/qWdG/ZSUild2HZlu+1s244dGyZK2wIVtnFMPMSnzY5p25IMLJDEu+yf9Vr5d5k2wutPcv/XIKFhATUs0jJpTEuVtb60zpv1PmXvHJ9nhfmFPAOUkt78pZDEsEVPsnzHuavXes+hv7dxj/Zoj/Zoj/Zoj/Zoj/Zoj/Zof5v2i0lKrYHKTmswm2Sl2wABAABJREFUUrVD9QnLTNltb+imtGY0QtJfLQBlS3WRAqeaktmR8TlvcA4VhwCT4NYYw3lSiyyszLShgElNkKNdEHbcW2a+x0HdhyNbKuEQ6jijCzZaEG4iXvhf8AQWJ2kBtia86I4I9EPZduXy1Bn+xsGBj4FsF5oeqA/MBnuD22FRysQE9MKxGcdxpfmNcfscENlxY7x+5vb2yvF2ox+dfnTe3t64XgdvN+M2BrfhHLaB7gGA4rj3CdzHQV9iYiSPwhiUUkrhLp6BuibKGB7ZXknWGF4lPwRtilmPQ71kwGIEoLpplLwJwogi6klMahFg3xrCoGUQrBQWokTMFiVbzKPfWiizAIhq/HuC4YOtNZo3SstLdEtOgyWYniQGtnhejyIiCLjqVEhoRMC4aSxXFY2SGZLwZgIOJeEsHgG4m40MKgQwpVmWwDAOG8k+8JSqhi0JE4WZF5ASZbUCNK/KQaXg40KU3ssvmWQZMgcfK7BTAasKvFeGnQpRAi97vDLQtcBnAngOhaK4luArCIUU4hnrXoiyWDCDRxNIjshQzAsrglISqzIYpSpZkmcB4RWAmcGtOcwLoC4CjuYYuQUBodsIEGpsUeqEKsswFmBGAP4T5T8ZpAK0QJJ45jPbUDVK/YHQRDl6yJfHM2oS8UYOZAQUAyS/h/nEo8+KWCcJCiOOthMZS4LIhVbGXv5MzoEIXaVzWGNYuFeQArMfpQIG9d7kNZOII+f7Fjia1673yPkFa3wis3ZkSRlhStePEfsANqU6hJpHhCKSR1mmyOVdIHvNMfEe9/OWAahtPuMZiHcboa6CINJO76bz/V1amIPqP5FJnqi1QgLSKhYKWOJTKKGyNx3JTNXY+9xIwpPTVNnaFuV5WqyVPgZbC3sVpBWL/T1LSO7a2LZLkNyacuBoTJ0kLsU7lSJcywCDJTnOPezb3iIQK9bwYYx+gO+zlMGfDZR8Nc0zaAi4RmmUW9hbOzocV1ofSL/hfmBDGd0QGWgTxlB039ER/pK2Lct7LUBZOpge9FTD0yNAaIMM1oOYo9YJj8gIvuwAlD5t8xYEc8LPMjG8tQl4N3wC7rGeHTyIqUlJShh80IQgNTWlXTrfvHzg99995L//4bf88Z//yK/++M88/fofkOff5P7y17YMPLmxXYTLi/Lhmw/sn17Z9888Pb1gTxeEZ0QM63AMx0dQF8K9G9CEzVNdpDVStzOyznHUFEqpcdogxSTIni6CNqdlKTHbc99G8XFAkgUHxP5vykhlxFJz8Qz2hk6iYJNIJBlYsFne9lSRgQi6K8OWkkn1i9kK9J8Js2UHtZQKv9R2tpW1yeXPyL1NtIjcZGCF6KMKvmRQeQVq8+fVD3lZ9xMZxTxKkBHBzThnhAJGEAmE5koRWieBbEqAhN9TxFszw61BZuLfKX38l2tJJ1NFZMNMaU1pVv58xzWVP8uvqaDmiHEapSYggsuB0PF+C99mDMZx0I9B7z1KyJjTR5SnHHk2iMqWLUr/5FlnKWednlVXMgLlK7D8kDp9nMk5kpPGUwEnzhQrMlgEmzORjQr0VTD/VE4MYq40Oa/GIE3Vvo9L+gqnNv2a8v883bg6J/v87lL3qXdcgct1veVDrzLARbIpLZX0t9OXPwc8xYuOvbo5uiApYBXgrs+LLB/Uocgs5SN5Bl3x5e0uIlE+eZ1vau3XXypgnmOILpJHlLtuGXi11ZdzhKdHd/evIn2cm5++y11fnv/p2WPr98sPzd4c+Tm5m4asoPF5YuZ7TDWsIsX5JDA4HqRo8Wn315+wSr4x/Va7f7U1UnUOy/4J8klhKE6vXqrNpr599kN51/7ctlNnp7Sh5/lW8+KupNq8zqlvgCLgnW/x7yeXnces7EO9T91v3WbeLpXQ5vNIff88x0/XosZL7n4OeU7yOtMI2AkjmP59+PJljd7dJd8kr0MRe/Nzi0lUTzKLRMnPuiHtnJ9/J2t9yfnjp3/k5aMrqpRq7pH5HpXkAuR5ok18QmaiVtr9vK7q6RkoWxvJhEU8rcSg6MP0BzKBcakqE1yOrCA9zfLX1iQScsIVTGJ++n5jjFT3DPXlwBAAKqmoLbJeqkq7tMCVVNN+j1lizCGVwGOAzbKM8VT8SYJSOmihkB9KpVDEsNzjE8eNmxZhx9a8y/nvWSj1vA+Wj6aq6ObsWxCUfvjmA9//8B0v3/1Ae/kW2hPQ/oyx+cWdm3eMpLHWhP2yobcLqj3LkjfwLcu8RiJkJJaUvbE7ErNoKQvrPDeF2/DOLue6IUtzlkmZ9k/X3nRW8Pa5Vy6LV1ao9pGy31Xib54D8kOTdiRrOMo+3e0Zp3vPg0X+vLDkR3u0R3u0R3u0R3u0R3u0R3u0v3X75SQlvQQoLIMtSRIuHeWCiLBt0HZn11ByGT3LNJhxs8rWEJA4MLdU0jUbHCkdvWlb2bc+aK3hEiUvDhGkKxfZGceA1jgyE4ZhETyDqE/fB94uESSTkIFwV2gtyAEDvG9s7QlVyfI3/1WOYQWOx0FUyUDMtnNtSm+Np92w3mh2jdJslxs2oo9GV6xHuYZNPcvTOGyOthu737C3z7y9vnJ9feP21nl9u/H57eB63OjDuN0Gx+EcJnQXhmXw3ONgH3h8y+ydIIBYlvXoGRyoElz1StISYDNCnSBBrlJRUW+ZdLRgPk0iQ1SXWxmhcRBPgFILYIwgL07KlUMFxGaWkzkhAV1AS4K1538Tcs9N4jm0sjaznE5gb4ukg4dyFTlaEbhQVBqjswJ4HmXAYk3Y6RkCrbCQ6shZbEHCITOksPuAAaHWMwqsskFJW0eGqyfwUWoDlfW+CB8FMC4i0GnuJcBbYGriq0GiCog9xtg9QGcTZjQwp26BLlKBQE8yyzkYALgKUtm+9UwJ6mwtFJUq0zACxjaB7npJFQmhGrdQBRIN4C0B/3PAdwYgklQSzxag1vAKSC+ZfM++O25BbimyJsDojg0ySJpDWX2X4HXFflqVKsxSQOS4haJWY5Z5mOhsgYwZoB+2BssLFF8A8ATMJjAvMzk2QGCnytLNT8fEZioLiMxb5GoF0VTCslMsJmdpqiCtPmWuJc/5bFWOjVIXkgXeJfi3yEs671EKRefMVPWE8IUscRhBaakQTY5hqXjZGHNeh5KcUVnE4FOlZr7LJBpJlLGhVMDAXe9KuMTkqABIBRzAu00U01O2XzWfbXTO5ee8gnzCBCjVz+oFhTd6BudbzSq69VB8EmEMR7eBE8RF0QYquI+4X5L+ROOd+wBtOx1jZ4uybzKC7EnDhmN2JQKoFv0+BtAYYyDsdyDtVxlQSPMxzLl1uN6c62vUVDuOzuvt4Hq7cRyvvL3+FGPnho+Dy7aBK8ftGnZZg4AmbePwDnvD7IhSXxYlLq1sopAlUS1Ij7cb6h2jI6ps24ZgmB20baebMkaqInjDuaFyRNkIE/AN5wY+spSnAAPVKE8nHsELbTG3NxGeVHn6cOHpWfjhwwv/7Xff80//9Hv+8X/+T55+84/I83cZzKig1l/ZBNomiHQul4227ez7By77xtNFGU8b5hv9UMwaVQKtW0ea595vSPMsZ8dU+dAWJGBtsY76GFFiyoIA27bG0YOEVipI5h4EzQGztOwyMietn6X+Zx5k6lC5CzvSkwxug1xjPkugwobImKGcyuAm3wWrfbDWfFKEvYJNYwUqTnvll9a2lkpdfrZ3jiepQzQIsk0GMssPRmnf4ZXw4MuPEOY+NO1r7kKV4S8n8sZwImBMBvcypV1dwYL0O0U5vAgWOku8DjOkBX2c9GMkSeCnLee/QFs+1wpsZ3AxV3eTDZMI/okOaFlC2IO0blXe1zoqY+5BKoMNo/vgdr1x3A7GcI5u9GGTnDnCFYjkhVqP6cvJjHSnCqaketl5/cAiYcc3p08xA/+Uv+MskhFzJk1f//yzIskBRfI8BxNjLtj8ic95VIH6pUp0cvNnYLhuIZJqleLr52VVKxhcwWMLmxL/1vUu0UXz2cLty2SJ83KZQ1z2I89E+aylWtS0FE0j+cFLnTZ9RU598fO1sOhC5QfM8Sgi4HIyl/93moe1zp31bDP068v/Lvs8fV35+efnn7lw5xjLsqBFtpjktHnv+nvOo7QFZCKWpr9azzvvW479/FmNIfNs4nXfUzcGISTSXmaSRbn1JfV76tn3r1hn6rtEgtP5I0xqEDYXselEAoS1XwFFb5qnxrrQn2mr63zOlfnzconzSvMq8zvVc9mLOT/naT/PTQinMTqdF+fz39uFeW7x2f2nP2VNo3Ofrjdaa/6078xZfTd/63N5/vTTNUTu5lE95ZxP8zVOz4zxM9jqZDPWq96vQT//DNLHy5c8EZY87UqUV31/UVnuxcluWJYFEycImz5AIpljKnGySoU7mZcjTv3fIO7fzEBt2oEoYZ/Ku1XitqW/g57U1r7ONofFY5/rFkf2MWyW/T16kJPGODAb0b9JSGqtMfpgkUNDmchQ8IGJQSptMzGH2rzStmY/Szi4IEX4zH1SizS/iEaSe4TKSPxtkWhL2SfsbXyu1rIQZMiGsCnsW6M9Kc9t45uXJ7777gPf/vA9+4fvYXvhbGcWYfUv7GGp/bSeO87KrQmqQWrWpvgQxlg2IRKySjUq7Y6m5ZG0e4lnlyrrGOFzBmwjk0dYJePjMmu/Wv1JbW4AiTGwbLEHMmS29u5Sl197NqerVSfZ6ZzA8iW8Vh7xLlbEtdVt/s52PtqjPdqjPdqjPdqjPdqjPdqj/a3aLy/39mEPcGxYgvXCMVLnQUPO97I3Nolse2fDrXOo0DPCYEaqH/VTxklo3QoNHxG4aS0P2H2EaIU0Dlfwk2KGJYjTYXhHtz2O2rph6hid1nZ0M+Cgj0FzYR+XWdoMOqFk85UjHNXOQNbpgOoeKhbjOBhHZ/QbWMf7lUszbBM6wjCFtjN6BPGO8QmXN1ShMdjagd7euL1d+dO//olPrzde3wbXm3Mz59qdbkbvgpvO0iUgDAbmg8aF1iJIa4BKZip56jxkUEPYEqALgGCSDzQAltZaZNBKEDVaghaWgErI7fsE2jzBm/h3ABJDPUrcSKk5AXTMCpiI640qyeSgvg70tABMpIWGe2UaikcQTsSTgCShKOJOZJwnwJ8EDvMDIch0VfZMJIgARZQKUCoAwyKRzGzbUopJCpD4SEJJmxluDaeLrzInbQ/kY/QkEIWyQxCY4lpF/oh4h+I9yE42eoLDeQ9fQZ0FEJcyTcJLRpB4EMQWEF2EEZ3ki1UGpIhRBd4FcS2/lwiQjSgxWco65hlIyizmyjZvrUg5MqXNa05F+UBDyOfI9WPVo+ZTeWettXh3zaxjs6knNdde5fz20bMkXppbSaA22CUZyCCILMLs01ByiJCeNl1lNMbKUjSTBLkikz/KqoRSUyBhQTQJ8KnKWp4IUKXvcSJfRRZswu8eWdsRfAmFloXaF2ktbPmKKJR8eFoiScDaq1eWvXXOeJmzVAuEIjD6SV7kHFzQUsAiSwUV8Fj4ZQU9pO5bz5QjVXhdBfi8+qX+7mDj9J3oL7NcEyxAr9SS3FMpC2ZpuwL+ZfZTTYNT2COnWK6A+c6LCFfKUzkftJFCTUmQglI3o0BlkaxYF8/bRwQvI8CYSnnA0Ib2juqOtVhnowhPbjQc11hjodxls3zOYZ1mG3IYmw68HZg3bn2wHQcuV1ReafKEWePoB86WQbK7aMpX19zg6HAb8Lk7r7dBP64ctxvHMXi7vnIcbzgD98/4OCI7N/cRcdj3HRHhejim4E3otxtwoDqQAWJCH6Fs5OKMVPvyboxuqUBH7hWdjYHIFgB0ZmRbH4gfiPUo5TAyc5qwEX0cSYSKPUndoLSXNJRi9tb4uDe+fb7w8dsnPn77wm8+fuTv/vAbfvjd79m//z3y9BuQpxzZIDtj7ef28//cu7g7oyvHNezatnW2/cr+NNBmSFsBmXAxPRUVyYUe7+CEUomSaoBbQzdBh9CPCPioONKUkSWY1I1dBTHjsInnR0a7Gy026EmgDRJT+LhSpOwM/t5sQLdZptUz8BDCeUl+mntbBiaTbLTIvrEP6Qzn1fdt+uTl/yzlgb+0z//va7qFD29p10iyZKm6iNSUib+3Fv2pEiVSyyeIORwKC6tcKEjW1YktToNsN7I0qGfZUC/fUpgE5Tyj+FTzk7R1oWrpSdNYJVc28Cq/Gmwaz5Jwf1kQ7QtsZR/k/p/hE3RGH4weQVO3wRgHQiiWVrkr1S18V/H00UJ5t2VigB0H49a5vh3csqTbGKG5MLz8G9LXSO9KYKoLpF+4HrL29gggTjIbSUjO/ddTkaeuNclOlVRQm3Zdqzogn6UIyZMwQCoplA98Cg763SUWUalaBTupb+X/VLKFeKl3FtmmPKR6qHoOueuX+oRIBITn8/tS0KjI7ZmQY260ItRPrzaf6ZTAwfm50++QUqBKWybzXctvhzjnrJKn0x+b59UTsSrX6dltq1bvrPP9T+eFSUhdxI/1DOXh13MuH/FcFnDtI6fhzHtO/5j7sZ395bzzctcL+Old10v5u+suQlxM6Qqa5xkHx4dOcs5dH8+ptcZmEuROfTBVUmZi2HrOOTS53te5q4b+vYE7z7n7vUdPa2stp7CXFayPRznP6PM187swy2/Ou9YZ4W5erLE9f/bnbb33VEeRIhnlmSDH5r0pn8SjemdhJiG8v0d115xCd2QiWb87qa2drAGz1FT5CtQczt6281n99KRli8TnGC67tdZn2UKtLfHE0qtxqP2syo1L+iRBHMrzUp1P84xNCd3VndzAR2qDlbISc83OhCd8qvqoGuIDcWUY0Afb1hMfUNx02vc1Nn92sL/slutzeJR+7sM5hjHGyJKnnTEGffRUpo+SqJUgVZMs3JvGMTIFTZiEeTwSHmqShWJQ/NOSBezmp7kqDMuiqkKoxGL4SOJxkplim9ScA3Fu9kosQ+bjxWwqde04/+6b8rw3ni8b+/PO0+XCx48v7B++gf0DtBeELU3LvR39Sx2sOJsL/YAxnKaOto62QWvQY7M6T8SVeJC2UrJPS4EbmOpKCowR2nNl88ySGJbnvbNVgfJNioJVqy331VNCwpojkiqsQQKXtM/hLy8ybJnnOgsspck7CtLd35dvVf9On6Y++L8zpY/2aI/2aI/2aI/2aI/2aI/2aP8J7ReTlIZ3VKJ0zNaUUsapQHWDVFDKElPDaO40iAwcC5JGzwweb/F5FYkKTDYS6hXcDtSjJFvblzpGb0qzUKlRlSivYA00DofSQu+5AtbmgzFu8dwqtCx+0qRx2XeaRJDKnzZo//67fz3tBMbmOd7cuR2dz6+f+Pz5yuvng9u4cjtujOMN9WOCZeIbTSKz6bBrEHueBB83dhvY9Y3PP37ipx+vfHp1fropr4dzu/Xgu3jDLbKtZHeG9Zm1JTiW6hxQ5Ui4iwGEAkgCGa6r/JdIZM87zCxZbbiEAlFgC4rLSJUlzVN/Em5SmnxrDTCyGguCsaVqCBblXEK1pDL4AvSpDD6t3xto20IlKZ4yAlwnko8SgauhGvebAGyLgH8CFFEmrAgWQTRporRtg9Gx3gGfCj9CgBGqQRQ0N3o/Ijia6I9RwT6hNZmEKGyEIk9Oj6YCee8gXymlwWJeijEh1a46cPUgGKUimeQ7R6WyDDzgGQj0lCoH1QSZzEFClQULIsZ8l1zTlsCXWwGjQQaqbPd4eM/nT8WXkSBmRJETBCvAJrP2khB5wvKjL0NuK4iW+WxizkjQR8gyPxQYVMEjo21B/on+TlBqRJmxAvmDmGaYgIwkkYhhck+UQmRK4hewbomQJdR3emYm+BcE0Y1hTnBQKlATZJKC24t0VUGjUIgqyKyAZ6EyMQMoLpBMaS3tdkrRp0zZqSTbCXyvQEyWyPETGScC0Cein8+nWoB42qMgR5BZ3Quor/UeKmapvIEmsWehaUnpy/FPMprmOpesDXAH7JdKmmf/vSevLvsavAS/67c5M7zWX05XSWUnIogXfdAS9JcJIoouApgQ5KRYG7FmSV5b2ckKGMRtBpimIpgzy+7p+h6+1usEMj3milvaTY++jfJuByKDKmcmNMSEpjvqUR5Tie+YCYcbMq682Ib1C70pogfbdjBsx0b0fx+ODflqucEV8LsNj/+6cD2Mtz7oR+e4vXFcr1yvN27HjeO4chw3eo9SRiqKurOJYLLRxaHd0qaGz4TD7ej0UtYifLBQ20qSwDBGKY2V6hYxttvo9O503yKQMzrut3h+E6AR6klHvlXDk0hce4fQUAlC9ybCyyb88GHj73/1kR9+9R3f/Pp7fv2rX/N3f/h7tu//SN9+yybPzLobQEzyfKG/KKggtYXk2j7YWufDi/D8vPPTtiGyAxuCsjXlamEr1Pf0MzqblmVJ20aQZD39VJXG/nTBzOnDaLJxjIER+65QRFGZa7X8giLZeGxJycOYEqHg0HuW6ciuQKs8ROwNY5D+KowMOnlILK0AtEcpVsv7NyGJH2kjSxUPyTK2cT8b9rNe/VKaJSFJpdHSvPmsrZZWOwPAwZezrNQae6GkImvuPmmLZZINKqBTQVz3sIdaO4iQal9x8yBK6fIbzNJPc5puaY89ym6qlsd3sv9hZG0YbP+RsiRfYDstXSfIrtfj4Lj1UD2yI97bLMcmVXO9fM6GF1l/k/D9RhCUjreD6804hnC40p1ZHjx8z7x9klpqjyoi2yQu1bOWv1HBeATPcmB+8pHnq5WSVxSJnJ5IkY6iFFuOMaD5b5CcT74IMp73n2eBCl4WmaWUF8uvjrk8fBGJi5RYc798F8k+qCiipm+LVwme7AsB8bxjPWfNT9b5q56tnibsXHlui/hSJYQ49UwsGA1ifwU1Pa5X54tzYLp8jXm3PHuV713jWd+rtTWHSSTVZzOgm+f7PClSilHla03CPae46olkQ/pCPn2/nD8qcQ6yIlzYPCvVfjR9xWTWy/x7vlqOXdminLzrSURS6av8+vmSszxh/bsuTe0D86fvo8U+x2kG0WNE57PqVCa29UjTeub75c9rXFIMZL2z368zm+/P7Pu7Z3/PFvFar8pMajj5CUV8uTOepzOS+3zKdcF3f1vlz9bcXozRkxGjyLA5ArXI6u/RiXdmXOTO0swzzLpP/W2RtM4KVKtf3j31idE61+VJGuj+CpIu1eqJRbxc36hxCbWtfE5Z674u6rJIwpO4VrMz6kZPexpXXglJfnettHm1p6ZtkiyFVddWKZKex+9cwh/SLJfq60XiLGWIJz6Ra9bc8t+AaCZxyVeP4RXJfaRyaigphYKujWMmIIWakqWvuAgoTQSXxjBHm6UScBDbIwEhywtTaMIy1KHwYxPTnWUKPecInmWRldQELW2hNcfTZtYaD9bTye4CUfo09rtNledd+PZl4+OHF54/fODp5ZkP33zHy8t36P4RZF9Wcu693F3zl7f4hqrQ1Blm7Fvjsl842oHIjShvXYk8kglJq5xyqSgLOvfz8kvjbL5RCQORPJA+BnlAyL+Xer9kct2ZgGjkHkLipGlnw8Zbqr2GfXCZCFfcI89LSBLPsKm4XGNUdjx8nLOdOvnM08TG55fi9qM92qM92qM92qM92qM92qM92t+u/XKSUt8YRAa5aJACsrhGlGVQwbqjskWgHKfJoOWRVqWhrQL2ccRFAxiV0vHXBVv1bhEMHRk4CHQFUuWjIaFM0rYE4eKQriZcZEdRvAfKZOLIFuGJrQEIt6vxfImjWh297gClib7+GbDtS27vAgqHOZ+uB58+3fj00xtv187b8Ynb9UBGlFxwdQYSSht9sLWNfbdQKZI3tib0n268/emVT3+68uOnwadDeBuNjoRylR0ZPG9BrmDEgX4L4hKmoXIgjniUvhIEaUIv8ocIbVOwKIXVMghfoEqMj6FJvHFy/qjggyhJg9IxhMbWNFSRKmAhAYw03SZYT2XooWgTlCqV4NCjpEeABjqz5V0i2B5AQ4AaQYAp8oCkco4TgV5HzCIwX0jaSb4+JLQN2STXTwAQbdtCqaGX7HaSaAK9g1xbW9sxs5A/H5Hhr/kc4iBmeNMZ/B75rLhx2TbcBetBthJtKfkNK3iTKi+bRDbdqJIdMglc4EjT+LSciEtZ+s6IEhGHRShIW0vJ7MwSp7I9WcGRSbgpNQmJeSOkWlsGUixBU885N8XRFrC6SuEVEJ5l3ghFjsJag2QVCjRmqV5xyoorAFqkMVUfEjgugpDPoEllDeosyVWz2W19L4JgRdCL91fNAJ2dlXLIcj5xzbpWlbOZ7+gLdMZDmSqCtgsgRiLo2rRN+6apbjNLDLBUCKYaggdAV/ZFE9yfAaQMNCuheDEDARPHFAoMCyi7ssGzDxLnn8QLkVhHFeCQAu8WbWuSHCWAQ8ez/2QCftEfmnMuCYJJFlxBnAomxnqzyjqteXiXlV1AYZE5ouTACFbFJGZpqr2UsoekrQhiW5Kd3EK9SosgFYtCpYB9TTW46N9SkJrAZI25Z+Zm1sEslUMjyFFhm1oGe4JkBA3RDZGNpo1926gghbaw4y6NrV1Q3ZJU0Giy0XTLoK1meQjLuafZBxtBfiky2Y4NYRzGGIptPrM/q31pW63/O8BslGCTyHruRHmAIdhw+u3AxzWJmB5kolEBoh0bBzDY99if3GJPuB0BnPcRJeQ6WZLTjrDZHmV03SRB8iP8G5w+DjTH3LJE23CPckvDsCy9gXXMM8taY/+zYUw6Syo1FYF8bzubDD5chF9/+8Tvvn/iH3//A3/4/d/z63/4Hd//7u/59tf/xMvH33L5+DHusYzatBl/TUjBXWjN+fghFLxMnvn0Knx4Pni+fOZ1e0VkR3WL9aIKsuf7kkThLGdCkP4EZ9dYr7YLwk6FBnz0JGY2rIia0hHpsVaH0dTB0oZolohL37TK0PZuM5igwJNuoUCI01O5MeI3PcuHKSRBTcTTP16xvxnLJAgYFZjAfBIvIsBlWM43syjV96W2EAOMfW2Ur8CJbETuexCkIPcoSysZhPEkqXrufSfHtwL2pYY09zTKT8iPV4AoS3dUuFnzXKIQ6jtFegkH4ZRdbukdwZF+s2YZrPJPgLmvf72tiCuhinsbTj+c3o3eO8M64xhJfh2EWm6OV649tKHq4EcETY/OcRi3w0JBKcvbGIJr+h3pg8wAHbCIABHsKxWs9XNmqSK8/I20mXI/FkHkyTPGyeeJ39nkLVSplbCvGVxMHzX24iA4zUVb/pcIMHLd+vQ/Sgkn7iNBMsjHKl/zrNRwJt/5/J7N++RLT3+gCDzTB0x7IhpnbfcgOVQwNZbPWWFhEYvKH5fZc4uUNe9d9iif2a0IX9VPzOeZ55650ScW4HX4PxGHakg9fGo9+dA1M8QjgaDOj+slnNNHTz/Oh8mPzveT1QdF0prTrdzA87w5EXYmSQ2ZfJNJAs/nLDJL+J1183sb4eXj+v2cP5epy1lyNwdOXZn9Wf8+9dMkmcS579zc12dJf7Rm2dzLff2kvlN/F1/9Xe82OT9y/lb00r1MU/4pq49FUsn4NMXm++WzxLxa7152fs0rXxc7jUH5+DUe9UyTEnQiB0n1ZxGf6jt3ZxnWefW9q3h6+Ll6TnZs0ZuKmlWfOc2XU6+fz1vhb9Q95e7Wc1xOZ5q10Nffz30r7759p+CCT6JmqVIXeaz6da2zfHaN/TnUYSNhUHSmYmXiU56f5L2Ni8eQJHTUMEaPJcbS8vse2I9PVUY4dTH3K/cLaXMOcjdnoqR44Bk2fPoqxXEJm5KEkeK9yBakdgaVvKU4LTtxpE/YrRJEocqor/2qxlsoJ2cRa2oO+STRBBHpnT2EuQ/UmZY5LYIApXmWVZxNnJeL8M3Lxrcfn/nhm2/48N23vHz3HfvL92h7Ydv3dwYg218xnLW2VJzLDltTWhe6NVpzmh60dqVri9Kwo889XBBGllBdNJ6Yi4UNtEoiSFTDLNaMJdFPkpwX/Zzl9Oap653NLiJZ4gSF38Q6iH07t+4oW5xPU/ec45qfP+/t5/Ns7X+1xu7G0pMsbgsTubcyj/Zoj/Zoj/Zoj/Zoj/Zoj/Zo//ntF5OUPn36jLUA2Par0DwClzQQjQwbs442Y9+DODIEUEd9Y1hD6DQJkkkdi8xCZjgyVkJyWhvzuwHsjQj02qD3A9mETRpKHNB1b2iLA3aBwOqDi+R3rIMJ2oVdd45x4/W48Y2/IARALi0yjhZw9DW3OEx2hLfuXIdzHXB0p99e6ddXbq+d22H0ccXVkDbwPrjYDir0trN/6Kg5+nZjjBtvV+enq/OagYphRvdQSBpkpmaKGJExaxONwEPVo8+gQfRyKhFJSBe75U+sCEQLxMONEEgKkDNAqyhlNUaUjBORLGsTQFqTepCcVOJZNisDuRb15zeN7LBVvinAB2tRZoRU/+rioYqgEoFej4wrcYkf78T3iKD8AuhkEuWweAezBE2INbBlJr4DI5VP3CKioDBLgrWWQKZ5ZLW5x7VVp0pZvB9IKVi5B5qRmbqegJdASkefQcjQhgq0K4GPmlEJvkd2+Ea3UsUSEEM0SqaEKkuLe9tgMEKVwBzNLOVQXtpy3IiycxJg2SjJ8QwMqoaShdmY8vLxMCMCWyNBHJd3cyeevLLFJMF4y7IxFRDxYbguFR6RViEHlAyAuU/ikrmztR33VMKgpCCqPJkn1i1U7nzlHp4ly4MQ1XANVRM4ZcgVSBxMkcwoDVByWIKISUJABkvxPsGzzGi0qLGZih/ZF77gJiPInYV9u8yVugDuKh1XXZQlP1wyp/KUzelj5UJPBSCvdZ/BOg3SnoScXpRb0pafiXkTAesEbk9AvBThK0MLKi1VlmyqjbmUIoBnn0WfShEmRNY71FyQWI1FdIKRqmrZp5q/s1oD651n0Tcj5pTF74NY6GkTYp/TYA5lkKBIUlpVhnKsk7DZgpRoWKq4SCgKWBCIVsxGGFmuQcRBPVTPtBEkjAoWRFA9+k+DXLwr0kKByeXAh4dKnVpm9kfWaZMgXJkGyVhl0IexyRb4+LZh3okyBD3UFAkVkk03tl3pozOOC2Moxwho9F5N4Mttp1APNoQ+4O3T4Lgq/YB+RCmGt+sNPMqGHVzpWaqiidDTFpcYoI8jwPBueO9YP7geNw4bvNng1geMAx+3KEvqPhXmYik2XKJc2SwFZEEOPDyVeSiSDqlGEQGGYbH3RlDnyJ2YiBXbiDFsQXZ9VuO7Z+XX3zf++Pff89///vf893/+I7/5p//B82//iF5+hcgT0t5Hvf5j47opfHgRNhVeXpShzr/+JKh+oOkHtm1D9x3pDcsStfSBijFIMrwHyV1RtiZR9k0l5vy2ZTmpncM6voH4wa4N80Eflb0P7hEEcoKUN/qRdrdzmCQZLUrLxfB6ku41TWCVCas8dGFIlF0sZbmmmhnyZz8oAxCjirla7nUjAxOGefhiFVCACNZt7cuVKjuOW/IZNTPRLdTtlEkkhTCVVQZnxdEkwzuev6/zRAZ4MugmqYwnuoKypYSoSW4xi0BcEZbNJcibVXvztJeohD0fqXYlJnH2GR3dtiyhOUhtiK/Aqv1lzWGSHzseypU2sJ6KSsOCRE3s8RhR5rgR/0mesSzKQB/dOYw4Q5yDtVQgPLfrciLSj5j+wCQtn56wgtQiYIuUMAnBK1yX3415UySVIPwlBd8l/ax1E5k9UQFDKfcwyLq2VE7u9jZZBKOleEr4VnfkGk7vTb5PvXudmTJIKutzFQxefbH8PK9ziHm59XkxT78izws5vnF5nQ8j6Yed3530z4tUXWoPVep29dTyk2T++/yqRQDPJIB6AVnEjXpjr39Z+TBrzEoBVtIH8jmhFuGoPlD9tt6l7Py5NN8ixtfTxxQ5PaNDldyWPAN4deIksOSeEa+05krNvxzaKFvqp+C/vJvbNReo0T9tsdFTRQZfxDUWyWp1R55RKs3kRIz3FeSeP0PmfF1l3059OvvytEaK9LW66efjcOr++Rr1Y+c8NMtnP33aT7+P5ZPrNLUk6znKZvi8WN3a57vVvMztJUlCa87eJQ+wCIqTuDUHRZjknewXnee5IlWexrBYeJ5ExZN98lqH+ffY5taanIrSznyHNXP0rkOL+KPnZ19dcz8Q+Ytae3jtx+QQ68kWMV+myBOrBDe5hheZ8t4erhczgSZBZIqzdH0qy55jiSUZW/P5zJ77bWOnG1z8zlR/8e00xIwRpaOPw+lDUhk5yzCPUFA1HxhjKrW5+Nxva58cqcLplqWgbTBsZGJC4a221vJcSGv3mCp6rJlR5tQ8/Js5UzP5ZVQZ4xqbIu3OqziFJKkolw2eL8o3Hy/88O1Hvv/Vt3z84TdsH76DVmqs52V/nuF/ZWfjmaSar63CdkSSnciOSEv1YUkbXpti4JVBhtVpM1vO6UrMEk1FU1c81+o5Ac/OOIn7XFMOqfZps588MTjx2q+y/3LN3Pkx9T53xoVJSF62ssaiVJuKjJw7VPnO5vP6q/tPRM5He7RHe7RHe7RHe7RHe7RHe7S/UfvFJCUbB8Oc1pTuQYh4c0Oa0vYd8UFToW0yQb+BMAolkzhMa4vyNaVSElHfUJpQa4kz+QRnXaPUhSKzdJKnwgDe8ZSIVlFUDGfQxw3ZNnqqBpgY3gQZDR9Xnnrj4i9cb1euN9g+POMlUf3VQBz/TlvIZQDSGgpJV++MrWPS6f3g9e3G2zG49RvHiJIMjCCNPD0fPH0YjOMnfLzRXw9eXwef3oxrV269MphzrC0UgEKW2lKNIMt2AT7y8J3li+6CBWcw02CYgOyIDJwxlUEiwH6fB12B8AoK2EhgPokAwwtkCwCs6R7grqfSUNtD+WRhtHdAo0pei4agDHNEVgkAlQge+ikztQC6MfLZJQI1ngQIm6CerxIGBXCS60IGgyjHJlU+AYjSZwkYAyvLKfpxby2BjVhT6gF+tCSA2ATGU+lhFaIIdYACZup+qSRTQCEpHy2ZrljlIUJ2ieCyUJB8gKiqEspLCdyLCOrCRqNk6jXXKB6lHAzyvX3GCrEchQJMLQg4lXk8wTBPQFiChMEMNFmJD9Fkqfd0G9EnIwElqbmpmQWXKE9evvgsKhXo91SsCUKJ5lgEODTmogzFoBwsT9qeFBCsiLQJElXm/Rpzn6CiU6V94lqLhGShTmGpyOMS0t9NY47id8EGRVJpYgHShSmWya7MSeqx3ZOsE6CzVpZejsUCwCuvea2LuHYBbpYzxFf35vsFMc1Oz3R+rnOWffw5xphjcsa/J56XhKCZjXjKLBQ5lVkxAylVKc3PrPVZwYpQNcrJYAHAm8hUnnGXjFHpRHgDYK/gZcxXTQIgOK0Vcppk3FQ7qs+5C96NxO/j3fKaQhAkisgoRMmSlmYlbK7MdWySJL4muA/MJEiesrEzTXooEZpDU8g1aePIyRHkl1CkS5DUBM+SbmNIKCZZp48r3ZRjbOiumAyuvfF6g6cLvOwyqzR8mTtvAvdkoRQXbh3ebvDTG3x+tSihertxffvE7fYn7Dhw74z+Ggp6vePe6f6GZRbtOCLgcDtuWB8ctxu3441xvAYR22BDObJkZgxMBjIzwOi597rL3FsCUxcslUCwVPLIMhGR4Kz5uVg/5O8FB+tJCk8yB52XvfH9N0/87tcf+cc//Ip/+uff8bv/67/z/Ot/gv0H/FQ6EZF34/jXRY3Kxu5b2Vr4xuCbbxv/v3/9gLQXYMvNz4I8Z5ZkzsjUR5VWKidJ8VGRmNJJHLQkCqoqWJSQNSz8mBEl34oYNsufEOSkCAZeaFv6EJaKiOnruPd13yzNWiRQS9U7lbADwX8eQcQtm2a5j0rLq4S/IVja3JG2PTpMK0iCp0ral6ukpEkGEUtSlhPZ6ipLmTEDLW0Gdsrf8DndivxaTlCVzoj9lOUnJSFj4OznjSL3e6udsIJ/ccfwTSyz4XNPV4JM1V3BjI0Yt947WwP1ja+DevlLW50nfJYncRyaMfpgZB+NEX8fIwlnWUp4E2NXw8cVtwO7dW63wdGjpNTkpuS+FveKRAA8SP7TE0kbVwHWs0LJCtUvQlCorbRlA3z56KUAE/9bE4rpG07yBcTaqyDfnD5rjy+rWv9cV+OOlBBKMpKOZilA1VRc5It1j7Sf5RsKM0hdhIyzysEkL8jql/qu6vp5PdciEJ1IJOnvqko4xZ7ETl/+XfWZECqK6+ScqqPVV37uh+oVn//Vc5ctPAdSp+2dBAfmel1jtfpu9r4XGaS8yPxibUVez3VSb3GbP5+XoeZAXkfP88LnWCwvmTV+eXaJLiifeH1SnPlOK7Bfc3EN03sFnrMC1XrW2Ccm4W71ODPZoR4sfdfy1U8efthBS2Jo+Yu+nimm1ZqjMn9R55j87DSla26fPnr/PuTLnvwGr3PdqeVsuPv3uta6xvkuk6BYH5rzdj7xup6s74Cf1ljNodO6qWvUeWJe1E9nlPXjGONMgjrZnDpDzVOYncpBzteRVZKpxtZzlOfB575fJ6mo1leWiXeYWJmV4mv1xjsi1/mNy05GiUmbY3U3pYjfVfJVrJe0BXW1k60Me1pqPoF5tErqyBLrdQ8zAr8rn8EtCTtRbnrYoHfl2DK5o+Zp2YwvrZ3G04n3OwbcunB053YLHzAISjfGOGIftA5JkA5/Ps5hQTSJEnDDAmuZvqRF0oibBw51sleTbDSlmpKk4jLLmi0Fylg/ClQCFM5UBYy5qLl2ITOMqE19lklzZ2vOy2Xjmw8XvvvmhR9++MiHX33H9uFb0Bcm0XDiCP85o1hrYGs57QSenuD1uqHbjsgWP8x3KL9EZBH8VDTV+4p0KAsrxOlUAtLq6IK566xCYlbu41S+LgimTqlwGqO/J5L5aUzW9+KG8cCVJFf226cq1vo+p/+d/sFp/JH7Pp/ryL/I1fRoj/Zoj/Zoj/Zoj/Zoj/Zo/4XaLyYpPV1alANz8OGzbrqI0G+WZWCgecrEKrhsqET2SmQUVqZJHJB1phYq0jb6kcBJZjiHvL5xAJvqBGVuZliHp91pDZBG9wC36DeQjaM7bYdNG8LAfdC7s+0ZROqdt89vPF0EebvR2jNNv/JD2AQWZII8qkGg2NvOVZybGoc6qGN2xfxg9I5yoQ9nKMgYbG+vYJ+Q48rbjzf+7ccrb124WZZkyLT2yPRJ9RGzUGGgYSnf72NEfXcrIplgUz5e8CE02YgyEQGQIEUQKVWVRpMopRSH7lCOaDknCnwwj4O+aKhJWBJTVE/g3iDLdcTBPoCx+HwfABKldQhJca9gPSGjTWtE98kKeDQlysQxD/PatgB7q5RBjAYiZLa9oRpElyjBJAk8BoTn7qmsskqGmZc8+qBtEkoZPsAU95ZqYJpxhfisJ7FiBjoSKwzSHxRFwPpZgloyeGpZqqoyRyWD4gHQb00ZI6W8tWXcJVRXKiyMOLrFOB1jESakFCGCKYKwIb1n8DbB7Sz3JzNIWVlra7pLlU0jSpGswFWW2EqAyU4gelyLAHNlm4pV4gUUJWiuMuO8BV431SwHE6QATbWbmXWafReBUc2/F5At0b8SANUKkjCz/m2+b/ZByoSrahIKFkGncC+veU+R1hJo1hYAYQNGBbOINSG51jyiEkapS6yAVV1xXlOyDF2L4NxU7ziB9evJS+o8RqPJUhc4g9U1jjWnJh4XDxLXE8lnjjU7gwdeQSqJkooZNVnZ5Oeg3wpI1Z2jrF58LsiTccOY8yTgnu8w7U1lKRuMII2EjH2C6hplIRcpjITdNRU9MghSYy9FWFpKK7DKOhQw2m2tgaYaWZuV3lrv5WSpySAqYY4kyYNUjIp7lkx92kKP/8aIvbFtmc2cEaveHbYMXlkna0ie5PtDTW5vW76XIC0JyxpAqY0O1rF+ZRzC6JfYJ8yDNMKX2vzub+bweoPXq3DtyvXoXG+hgtSPN7zfOI433AfjdkR/2S0IQUcZk0E/PnPtV259MDqM3hmj080Zwxk9VeOAgc5UZiFLZ2QpDYjypSiI9VBVcg1lPiwx9yDbGIA4Y3S8iJpJrAv1iU6DsGkCzQcvzfnVR+Wf/u4D/+O//Yp//pd/5A//81+4/OYfYPsekwtR0shiVlfA8D+l60ORbGtKU/jwAt99Jzx/3Nifn9i3JzYaXRr4BeVg20Bp7B72T/FQ2pPwgzYVttbQ1qA1zBt2JFkRBb0wLPwjxenjhhmM4YgMpBnbtrHpM+aKWpLNrsecIJr7bAV0hxnWPUmOkms4FNOm3RupbFFrNAMkUcZtBCkfMkBU5COn7QrpV0sGjer37+K8X1SbgR9iDloGYysrv8peRR9keDaDrUGWuVffmeUvtYgjUYq2SNPlV6VFn3u2pC87JmEUSFXQ+M+osjl4PVdFn0Ba5lRYrNm+CdKT1FG7zZdr3P737c88d5QRbjTd6N5BWpAUNdZqBLJDLcncGQKaRE3xgQ/jOIzrYQSFr0Yl7tdSCTf8j6SAn1238rlrn68vpn8yuQjl353je+hUERJOe1/ux2sfrWBePVfu4zlnyy9xP4fBM6CqOgkOk0Rfodb0I+bPMrCr+V7zPCFJuDmV62KqmfjpGaWcpySZ1rNWObAVbI7SiGlUavanX1U+hyWZ32bpuPykFjs6flCldotUpV59V9/wE18ky7HlM8cry51tmuR0IUuFVz/oTEQxOfm107c7kURS/3MGy31Ghjk9XD5ekeVrShUOcbq3Z9LGnGfZZxr++XnOLnHUdd3y/KZaTs2hUltNP1uSJJ+08Dgq1uXqQp4+G+vfpyNCvcT0F+fd39nH9wSZc9/X5+v7sl5vPmv16x0VL+f03QI9faIecSqH5L3vyp7l3D4rjaybr2e9a7lW/fwsDk6UVqpXPPv/9UWR85/Mf1enyvxZrb/6qp76Ip/9/WOdfqB6wgjiJ3d9Fpc4rbRWxNrl6yGLfjfvy2l9yvr8vO5ce6sT5fS+zDXo696lKvyu38oe1bF79c3pPFVz4Hz9OFxkklkNUdk/mXM6vpJnfl/vVviS5plTJK4jaSzdCm+yZDG91y78cp2f9yW3+gglpTHyVbzeL/bLmWCQBKWya1N5LX1EGz1JSpmU4EnNdU1MtTCeOPufSbrA9MmoMuap1BRjFcTxO1qjLPvg6fPOPZScdX7vy+0CLxfl+w87v/7uiR9+9T0ff/1r2ocfQJ/wIvn8zIL85zYhyEpPF+HpiSwf2GjS8LbRV429zDCqtRj9rdlhhWmKaqq3KzYATYuee6pLJA0Gkcxn2c+m1fHhr5qnXup49/andS9+xhBkkbzLxteg5BeXfS5iao1j2YY1qqUA7jDnh7jcjfujPdqjPdqjPdqjPdqjPdqjPdrfqv1iktLoR5AdHCyD9IIk/yKISE0jkNua0JOE0NoGDNyNPpwgamTAQTI45nE4170xvEcGfWtskkIO2hjubJIBOUmSyFgHLp/AagVpwbrh2nAfqASBajeldUO6wS4ch3Exp5uxa5uqDl9vOyNUAUBu2xOiRtODF3W6wnERLjaQq6PNoB8M74xuHFfndtzYGoxX5/XNeRvOTRw2gRElHFoC/5s7fQykXTCJ8nqLhBJkEdFBSDhLBEE9wO7eHWRkAI8oNyNOHzoxWZwkzAjmSRRIMopWKSUsSRkTIcYFtgr2k6VRsp472nBKSaVICEkuKSUejUxwaaGKUIHFJkkQMMioFlMpRwjiUwE2GqXdQnUplV1aBcqSOKAtyoZJBJedkvUOElVgd8qmGyKWIGKo2oxhCWAH4KdZYkY0SpZhEXSOkSIIWMIsc1VqMdvWsGHz/Yu4YGYJyJBgiq5IQvafyhbv5RGSUAmQxfEM2kRGbmtZGs8HLiOziQN5HCOAMElFHtFSBqlcwQBDnQKyT1m+FfRJhHUFFXwGRFQkCHWn1XFGqSvwpYmEzpJnZEkZq8snQYRSfJAsMZnl2HwFq2YWs5zL5skcuwKA5/NJi7ksmZXvrIC0Cuo61blwSYWxNX8rABQ8mMaUX0/750nwkVQK0hksmtGA6NfT+BbAroGmBRUhg29jFCksF+nCmfO7OslNfu5vfJKbdAZp1lhO9TCXVNbQ+RxVrqfgtQmWF5lL6rMSa0IjO1GFVHuarzbXUf094s8raKAlrXXqh/VuDdEc0wwAzoxSinAYYdYF0SZJMAND51IQTUu9yRGxCYA6sb5ba0mujOC8p/qdZJDHc/pnzbdQexILO0x8TrWlXYCttZyPgcFCYN+iJFkpbeZIRQVviG9gG6qO0vDRcBqeSohuznZpbBuIWtJWYBwdl463A9qGXHb8cPrV8efCxE8Bky+upb0x4bg5/eZYF8YxqBKWt+sN74bdnHHAMTr4CMWkIYw+wp72DmlnY5L3+HkU9cPYY3wFRDrdxiRM1BSM0ogjiGh+2qd0aVKZj8yojRKSppYFx4L2ZGTWbJYnDDWbKFTVJObyizZ+9bLxD7994X/+t+/4l3/6PX/4H/8v9t/+M+y/xdlBikx7tiH/WW2tcsR5ugjffCO8PDf2/cK+v/Dx5SObvvJZjONm0AWVVEBKMtdlW+qNl20HbVhrtG3jCcWyvrAPY8iNLjfwTs9s9FASgafLM9IMs8YxJEqueY89Vhqt1ViFBhUWz9CUIGI7qaJUtu5UdoOVBe0ZIC97ZWUTiVLJsdYsCGbikOVQSg2kVIqa/mL3/v/2VqSKskGTbC6g4kksL3MmSchN+44xSoVB6o+w8+fovbQI1lX1G01/0TNIHpU9cv9FUs3KknSRAabIggjlxiRZzEpwOGLE+jGDVvt8KhLMuO05wPMl2rf/XVt7dv2zaePmhsjGpkEgMXG0pVquCVkXNcogeuxpqmCHcxzOSPcZDZ8JAckEglIXS4cm1oGuuFut5RmAowKj1dtVDjp90PT9qKDsXHPxFU1SWp0dirx0R16objg5EHPuvv+5lO8rWYKY6WNWic36SgQYhVlhqnylCvXKz30P9xPRIn0JSxJLkQYmCWaNXHkl0xeTKlOTr65J0J/Xrtcq+65MZaP1tmfSTfSKe6q6pSLForqnv+VFSC/fa10tSBeLzFV9MVVx8rNFDvca73zi0xCzyFzVeZ6/e3ctgFTvvJsbwCTCnXzU0+iwDqnnf55/UM97/swpKFz/O7fPCjxbOag5TnAmilUfTNL/JLPEvych7mx7Srb0dI2aIeVfnHfw8rRX8kPZ6He+mpz+Tj1Lddl9eLvWVRGTPG0ELOVWOXVWPM+aB+f5fA60zzGv+XP6nfuaT6cj37rD+dByuvZ8reoYas6cn8Pvv+dxFuG+h07De56TvHuz+Ek8a7H17vu6RqNsW83ZqYRUD/HuXnX24zz3ZfVdqNqeSHV68jmlpl76Kb6SMILoTk5hmR1rntfzwhPiPDPMaLM/JcXkVhIXeW6uhMHab1XiOuaCmOCiWB9Y4TZDGYfQENr2foy/3OZGqGGazPWCJTFpZJm7wSTuhnJ3EfrAR/qcdj4VW+krkal1FBZjNk72rebJUt0sJb41RGFXLH3LOe7U/KsF5Wta39ncHEc3mgrPm/DxufH9t0/86vuPfPPDr5Kg9JFis4kv0vDfsgmwbTFftm2jbRf2/YJwBQa9N3wY0gRhEY5FQ417eBGFFEscq5XStMd5OFRvO/240UefmEzATEG+m+OXGELtxYhhla1w8n1ESgu3bMHJ1nHv27j5Haa3cBSd+zAiJ+LtIm17GlU5d9ijPdqjPdqjPdqjPdqjPdqjPdrfsP3iKEYQggYuyiAOWOqRlb/tDbjF4dmBTmnWUnW+xY8ZeB9ZJicAmTystThOjyox40m4EMP8YJMWAaFRBzDFaZgKMg4Ep2O4b4gqm8PYNm4DLi0P56PHoX7EofG23dhuzsfRsbEztCXJA96DT19DWxl18T8zE0Y28CBeDDcuutNVuGrHNsPeSGAkgjRv1jEZNO2M18Hb2+BA6HiAXU0zyzP/I4IQLh3XiM4oLeeLMzwUckCCtOYBhgwLEk5n5KldIp2sJaw9MjO7SnWR5DQUH5aZRw7SFvgNAaZMcIX80zNriQDCiPeYB3IbOEGgQhpBcCBVK4I01wR6llfxFkFdiy4mipGlBHSRKtQy+BCgTygPjSAttCAFoSAtFB/wkPR2MrNLQh3Bs+xCxKAL+AO8TcBoAr8SoCyiuCqDyrCu4ECUDxNtGXgDkiTh+W6taf48SUIjSGSeEvET8FVNlawirURgXCDVKIRZv8PJ4OmCllUbw4x+9ABKLNVrRCYPyvAs4xPBMUqmvrIC3VdgEJIU5jRNslkGiArEnsGS7BLI9zHD8nPDYj66jXh/q7IcK2utYLr70iAVeJG1LiKlLudI9YXO5xnWJzHqFBGacQs8+2ws4lCUYbAJxecyR2Rl8cfnkpglgrcAzkgyU/VzkZxiOftcR+dAgJBELQIcNbMkBiYgbRaZhp5AcwzQDFxVILjgePKeK7YhnLOfmc+Uz5JoeQB4hlCEnfWMBciuMmuhzFFZ8xTwSdmTCsDAzD7OcROR2Z9FkYsBC/BYUn2tlBRqXgWg3olSQ2t/K4WqbpbBggoqSMxwc0wrezXVmTRmjwtTZQTJfVMWaBwl3hpFhbIMPkpuZBXw0lSYK3Uyx1DdspRE3Hv0EepgmyO6YRqZnWrxzEafwRAXRzfBI0qPSJultJo6IgMfB7drlHU7blewwSZh22678tYu7GxsH3LLvwt+fkktxsqDy8vozuhp8W83jtstlJC6cRvG0Ueq5zR6j/KqvYeSUu8HNuDW4RhBfFCJ9TNG7FsmINqSFJHKORrrbtsaPsI4hInOcpB4KJtJkBPHsPm7Im6YB2h+hrRDeQnCQMe+N8aVp+Z8eNr5zbc7/+3vvuWPf/w7/vAv/8zLb/8R338FPANRemMGI/5To0InW7juwGWHDx82nj98ZH/6hnF94RjKdlH6aIhcYlWPI2xckvZaaxx9hKqdRlChoVx0R182RBqfP71yvRq34+B2XOkj9sltD3vWh+G95xNtVOkTIPpZQ+EwbGTu29JidZ0DpVMFqM+xwh0fg6MfTIuWyksq6efkOmQOadogt9yXMhyVhvdcrvNLa54bqVdwNX0dLEpIRynn3DHH3AwruhP+TlYZXESv+IxI7YHlNyaZRWr/z3KA2CTDhL+jSTzOgB1KH4MGtBaB0Xn88IGa4hoKBcM6DEVHg9HxpqEw9GUatF/U7ukFtf+mbwcgHu8tkaDSzcq1yTGJ+Rn7niFj4N1DsZVSgvRyF4ixW6S9RRYqjytVBmT5HoicCJ9OlUypZz57B8zg2ypZvIgty0bGfph2soL8fvKTSP+xAohyUiCZT7bIEVJqCfkWFXgHz/NMzbizgkG+32L/rFeGFaSswLHG/hQ/Lla9T0LOLJNcT18m+3SfWU4xPzYVK6evEut19X6OF8wEpjkOc/4sHzl4VOVjnhbGJJAshVI//We5xqvU4B1JavrbGVg3O5356n1lzrM5H2bCQs2d7JnyO+s8UWOdcz+9uvmd+SCnA4Wc7+fT60/f1fPV03d2X+V4a5a+IxHclUY7G5Q6Zpz96wo8T4bJ7ChK3eYukM35z/KP67tFVjgRKOpTp7mRvTP95nVLP/11Bcjn3+faqnNG+ryn5zqTD+tcst7j3BUrUcPn8+Xv5h5dQf2lOCLUegdY11zjfv9Os5fm8wuljnW3ntaDrfPHaZ7PixqpsEom7dRYnnojt79Kepnz37Osb6oLne+9zqE6+24mxXCaw8hpvpzHbq5wgLlfoosSMVXf5lxgXr/OfJHw4lQCziIFg8uY3/e094EjeRJ8T1SMVJC0TpKOhcPGOjeq0FVQaYiGSg5zjL+wllMnFDqJJIaR9tcMGyOwFA+C7ygfb8Qc6KOnutIiK/VUTgq7luWFi7guqcRsg1CXFqJkd6onA+6KiE07Pm3ExDcWad6zVPHCPWqt1k57WsES2GsTZ2vC80X59uXCt9984MMP37F9/Bb0mWDFnfeok2n/T+38s9GOrtg32Hal7Tv9tkUSpYWS+qhzdSZ85CYW66J8cWQ+pxJndW3C7Rjc+oGPkX1XCocr0dDSD655fIcjpXrYMkoCWca5cLazc3BOeqgEFU9lprlOpx9SGCL3901nbPlEvuzpgqAe7dEe7dEe7dEe7dEe7dEe7dH+Ju0Xk5SCcxBgpYmgEoCbemYoV4EnV4ZFwFOArgEajDOArAG+SB6GiwjSMtvGzdG24UDP38X5yBJgVkyM4c4TinMAcaY6TGAI0nYglEd8DBgHKjvX4wptcLhjTblcnrj+9CMqsH1U9ktFPpgHunsw7B1o+J8amPuPN/d7sMqGcb3e6EfHbUT5PHF8a6AaAfXNOHoPkgZG9wPXAz06fvz/2fvXZsuSIz0Te9xjrX1OZhZQAPrOJtWkcS7UzP//GfomM0kj2RiHMs0Yp9k3oDLP2WtFuOuDu0esnQU0i90oTFHaAVRV5jl7r0tcPDzcX39f4zDnNKNbJBiCRCiYcczOSSMtWUmuGWwwIwBtUqwh8VxjxNzQvB+ekiwEeMKOAXIph5OerDGOYxFsqSCYa1TV4Yh1VNqsXNaiT89A/vCeyfQtv2M0CDaCrHqedMgZsGktJCLUB56sQi4SdNDJDBQBgUhIuY0EtVRC0RHiOXRGLIOe3BLAF+84Mr8gKYORsk6h15NBBJ3BQZGSh1kB/3WtCHoFeCTk6xrBIhBrdE1vbYKYhxxTrq8qWw92pBHrNeXorskLkYZmcCnANmAK5zkomRSxJdEW8bIMClesaBR9eQGTIohmlXz34lHSGVbFRsq8wRDFZax3ymD1qDHQAJNV7EwSvCRF3S+PyYJhqzrQLKoSEcM9GRUwxILtyscKTpOBIZFg7GImSGJez6ChJbioQCxk2sxGlYxCJX40bVmu6wXE86xEDrYOG4a2ortf1uoa4FdZc4NKnCFh2JMF6pFpyHM+20wKjIiSZgAz1sGVVWtVvhPztkKW7piUnJpRijkyhyUH5zIedT2k3j/AaZoR3ogXpg24RtosWanmdQPYU3MJmPMp1o/Od64EqV/WWbEZFStAPGMF5DOAmWOt7piMABxKQ1KwphIjqgE6UpWsWo6pP0FoZQ9wxCuYLFiCr6rSco5TJXG9zb00NVjDxmom/rTFvQlZgJDrW0FoPFixgq7eg9XMHVxpsgeA009OT0aYoOVCJO6hcqbsodHPk7vcGQa+DVqLfcdvrww/kfewm9vWuO03tg1o8Poq4Yxk4Bce58Lvq13ZG/zxN5fVI/UjIPaw++ncD+G4w3GkjTNC4uk8cQIk3T2AqcfZseGcfXB/D0lVN8/UgHPSAwTWBRnRd00GaGfbnN4T5Kcbu8Z1Yo2TNiIW0bblnu8+10NnJBDcZjI81nquCxsJgMpVIJUMSYCnO3sTfvZx409+9cqf/epbfvUXf87Ln/453H6G+A4JFIgk3u8/ExSB9bVfVWV1a7DdOi8fG7dPHxjnR174xGmd20tISZ3nGck/WoJPBDsDSIe0BCKMAMWeg3czTofjPrB+Yn7SmiB6o48j5q0bZgEIlE0CTOxRwW/eQQbaBFfHe+zdjsY9svo9dxO6B6B3jB7SySOrnEsKCJI5KRMeQCtwrnvKkyarniruY2YZKrWuEr//ybaUzczdLIBcYnM/rORsZksy2ZmJIdYePn2fAn7mfiAYWjY27XNZ4rxiAsBkJlZHyZ+S/AMW+1ZMxWQrM2LuCyAD75I+qbEDm26cdyJZ+CIhdVvbU67F7yWyvz5g/JRa2eL8YyUrxxjYCGC/i2Nlkzz8GDfClbM43w1GMk6REjQJeM7cn/O1pG3N5/KTkoFMslDhArIoQEglUOuhp59ikVy8Aphjfyc4J5K1xn3d05CQEip2h+mB1h6ydvaSxwnAafbWTPqlH0WBcNY1HvYbr3deQIpIKCcjleTejufZYUErNPuz5nGlIcNPEcb095c/WElhTyYkmfsE088Js76ed7m02d/L28sfJUCwxmROoCXBVZeo+yzfS6a/WqBMyb4soMN8rsv5+2IiHnzk+Jk83LD86DItZU7C9s4jQg3HArfUeEmsa1+jtjqLa98yb2Az0+6zT2dGmPzxBWS3UDbLD1qfz7eVuJ54QOgfAF859xZYQBYT08PD+byssPzsuresj30V75jDnwD3enWdc7re5frUyIIK1jtdzwvllfuU+5bLOPq1Zyd44ev3qfEoAMBDn3G1GVzm7+U+Od99FpPUDwvY5OlzL9DW4w47JzOX2XTp52QYw5dUM4/gN3/4Zn05x7GKseo7cilQuvbr/KPPx5lgqzlka82WvSmbVgUW174zG/nVPNcXsMgsi6Mu81ZS5o1kyjVAa/9WooBlBCt2HIjyOT2BTCXLGWfS3jvq0FIG1j0APK0pPeqbOE9FW6O1hiSOfJsY4e9NmN9fe5jk3//F961eDOnwlHkLYtUZG6j9NWJQl/3Do2DELIDVxcw6d5AsGPTcY736Pxl1i5XaqVhEMgX7mkvLXvo8n+KTd3WB0fzxtcOkxh4qE9yWcynBx6rCS1M+vu588/HGx08f2T/+DNoNvuKvl8u/f3/Nv/rzuouq03Zoe2O73YAbzfq0oaMfuVZ0xgeubHxhw6Nwa/Qz/ZqMl9VZI31b80vfkOtSLuBg1+xLz7UdcaPaC0PyT3JuyJT0izOd1WCwNjkidjd9i/XMtZ/Ns0MZolyj19H4ytA927M927M927M927M927M927P9KO2H60FsHwLIgdMcNhXwg6YJfkiN7TF6JAyAYRWsGIgPGjviLSUrBtqiKtc8DsgCaEa3vRtdFGk7boKpcVNJpiOHpHzuQzCL6nO64S3Ye1QVl4OGYgrjFI7xHjJjHnJU2oQX/ZjMNq/sbeemN7bW1ukbViT1v4I2A43X+Kyf9P4WQCUPRo2e1TLGQDfYboKPgejgfnT6OTLBoAxteG9UGZsUg4AoTSvo2xkmtAysx7UTaGFRLYaA+bmCz+54SqEFi1aPQIlryvxp0HvrDTA2VYafdDdUFRXLBLpQ8laG5u8yaOYWh3fNwL+NdRCnJFMiyR+12gQbgoe8XJOU3oJIxtBQNjYfAR5KmR4hZM9kWxJOpHSL2QiGCw0gn1isl6YFrnK2TBREPC9lxzJO0LRlMrLipppxBANv8TpOSloUCwtMNhsTtDnuPcEt2wxOiA+UPtk7dHgGboSeMmFCsHsMGyHlIZVCcbRlkNE1EjvutApIW9COj8ySFLV1JZyi8i+S+j4sQ6UB8tiqANQI9osM2FUeUYngzQQ/JltMJXJUKsG0gjCaiagKx1ZSX7yk24gqffPklknQkVfY3BMU1IECmkT1I8m6lJimWHcaQakmEVidVqQAbJYr1ImqUstUWKtUbUgzlcSeXwKNFTRXnNYqeG4JRPM5X2stUoAZj+SCStjYh4SJaCZ7g6nJMngZyygCncyfRcUnHoH3GcTHSQ7/mRQL1qb4ubZgqygZAOZ4VH2+zucJFrLoc83rhemwmYwi7Z2P/IPG+hiZyQiZN1mBfPeQJywa/AzMhWRI7EOaLEuqEuxnoehESQThPROfLaW54llCBiPAASoGdBDNyv6S3gsAkqrG6GomH9JaiwQJYfErOC3nVUq3Ocl445mQ2fDhFJDTLcC7Ks5GMSqkdJFk5rjdouI4O08kZCCRhhiojAjcyg4+8OGch+PbjtLYJFjlsE6TjS2Nfe+G2YGzYd7AB807WzKWfHx5xbeT9+MNORt739nvH9g0JThfYH9IuP2IyYXf0ipBc02vOcLhTh9wHM69S4AZzDjHCJZABof1YBpUQTdhu+28v5+RgPDoG3Dcgs1xd+dUD9/ET6wnuA0D6Tg97EfOqSYNpSPWkpUwGU2EmPxiNIVxnKgS4AhuWZWd8qup66eiwcw0iL3ABmCojRjTzfm0N/749cafffuJv/jzX/DzP/5T9PWPcHlBErA5wRbLsP0Io9Io1gUllvfLS+PlI3z4+Al//4idH9n3Ozbu2NgYriAtkzEpYZr7/olh3envCdQixmdYXt1Cwi1Y9AxlBOMYsLeoPy/JVB2Cj/BJhyeAGUW3lol1Y1junwkCO83o4wxWT48E8pZ9OYbjpO8ppB1NWy+Cs0VyRHqs5THCbxZJeyoEa2YmmX7Cpc/S9mnrQnoWnEElmam1mOAsnYm63N/Tb3KuAAufXQflpzDnT/i+aTtl7R0LaFfA92CnMCMl4zwBG2Myc0XS3XA6PjYMoY+DfhJ+hxqtDZpeQAIPCc2vsz4/vTPG15Y4ElwhvVMylfUaVgxt6Q7qFkyUKlXYUACyOLfFdULORNyTQQc098LwqqEQCdPvfTiTJaNkJfCopSMEuLE8JZn4bEdSTjbnUSYTS5rVc48t/6B6QtNPm/Ms/fX1jIvZwNc3ZkdOkFL9VNNf8vD5GgW880wSFvNBSlhfED2xTymuxYpDPtPynSZYivD8JP3gWA8J+A8nlZXQlOmn17ooAEur85pngrNmhLAKGGY/FOijzvWeZ4hLH+Uzz7zoHCOZSfNijonhsnm/5faVPxq/9zld0qfOXxb2PxL3uc5zdIvVKAAX31+VlyEkjXH2YzLA1PyU69y7wBDzMzonp8ybzE99DVqq96I8oLXP+rRX+Zu6UX24+iaLVxZgJz87Qf8wD5h+ufZ8j/qxT9vrkzX58glfduGKASIT4fPRa7xZr1zjVWO+rne5R/384UV5+LkmaP46evP5ZUH+yu46TInamvbL1tlX5rl6IcE8+b1SoySff54Q/QKwvYwB1Hom5S11gaYuKKayQ2sfU9YAXQBck7Wrfq3z+vFMyxYUcPA6qjGOeYYIzc283qWASGq95XysifBwjbQnsuzdCpfJ7LuAfabdcYuiNG+obllAJbkPZLwlakuwEd+L1R38e8qG+4mw4yr0MaB1minHCVRBkQj7xDFfgW4//l7r3/vL2scGxaDEPB/gJGN0AFTMjTNjIqoKNLwJw04K2B1TYmQcqHwo5phJvbMIcbCr56prjphvBtG3ZfFTqttjrK5FUQXGqQVcdtsn+L/e2XP6xP68Cbw25eNt49PHF14/fUD2D8ANMn42F2O2H2WU0v4uaxJzbt+Fbd+xbYe+Y21PVvM6n4fUsheALP2OYJUOn9Ehi5pIibXqihz7lJ9uWSBXrM3DjSlH61EidZVgV1m25dK9EyhlWZBSexv5Tu6xWlwWMH7appwdi2EQwvjWDLlCkON3X0Myn+3Znu3Znu3Znu3Znu3Znu3Zft/tB4OUtpdXWnNaBg5UHPMAO8yQlV9o7DWkvMaoQKFOavKRIIPIZTcaEZwGo+kW5ySLwLFoQ5vN4Fk/nSZbsOHgeDvRBupKH862bYjB5iA9WVpE2cRRjD7e2ZvAgH427vcbogN5e6dtO9o2Pn1obFLBmAraPAbAfrpNZmzPIKTv9p1NheYwjkHvjnVQ2dmkYxi3faMzkJFCTq4YexQ5qbNtws03zIrVaGP4yGS70kXZMMROEOJ3kgxCLWT0jABiXCsJZxWvQ5MWYBkTtiZIa6AFqBmI9QWQI5lZxJHhtE0xS6BJgpXEo4KreYs5IoI6GWypw38c9pu2lN2SmcCNir6q8tsyyRKSOJ5AnFaJhGQ+UFXMejCZSDItZYZEmqbEW8vPbmhKEYpZSjIELbZA6tkz5QukJfMVyaaijiZQpYK9muxBIkpPkFQAjYLBJIJ+ySqR0nkZlk3ZNCLApMrW9izxA3AakXydgfiUjhKyOi/l4mQL6biSsPNLP/sMdtb9Mgk9GY5CmqfmiLaYg2OsJAUpPWcUI9JlbRaYRVpWXV7mWVZ1znCLa7LaMCP0MQciqVDMVAHoWFH4CsojCc7Ja2vOq0BweEhheYkARjB3axHwit8HSK8C6bV2rVhwiHEo9i48P5f9FI+Qge8K1mdidYxLxkIiwAgRiiSDj2QAMYbDU5JIM+iVVZYwkzsVuKo4dX2vpF2oPpIKoPlcp0pW1WbwzCmpshq4x7Ei1+p1XGu9Imvtzs9P6yfztalnFSJBVuC6WqtSldvZRx4U7yI5L3JTE9Ggfh8RJK+gHSRrkzhuytZKqk1mvC/2M6ckuVQrIaOgG5pr4lqpKmjO1wx4ArPUvxhI6sVyTWgmw6XWL5nkG0sqUwTalhXHKc9mPvIdUkYJSHqn6AuPd2rD2BT2rfHStgymNnTboW0hjUWncUNtMI6DjmC9YTdh353DBD2Voe+0Xfnu1wLHwPoLrwTzod4SB/AQEP397bj/2JUqlFvkdN2d7vB+OPc35zyCbWVY7A/WF7Cun46PRpNXhjv7rpyngWyovrDtMCwkxBQLYLWBWiXRG2Yhidv0hW2/Ybtx9MEYsbaVRhD4dcyM1vbgvrOeoBejNaG5I+lHHe4oO+ZGa0FjEhZcUV37sHoAbremvDTj4y58+83OL3/xM7759htu334L+g3CBxIJ+LDuft+tVkL5BpXxjDkMHz7svL7e6PsLtn9kvLzj4wi2qj0Bn9Yx75NRyN04jjF91G0LaYc+YNxjvVoCUoLxYNDaLX62BQdWQ/HeAnwvA5oj7OEvjR6soDnLxkgJXYu9wZLZqqkiskeSwMbcc7WljKUFo2jZRHcwEbxJMr/kfBWZjFhQdvCauP4Je6qqq+Cg8qmulzHPPaVsVyZEbYIYZSacFpMdVBJeagYVw0f5YMk4kIR1kyE2rmVoAkgloR34SvglgokCtRQrY0hiCj6Uk5A2Q8/sf+XlpjGe/A778xMepmsCq7AylThVEc5kCsOFjUb3kKGZHzZLyeb09TT3YAbuSvMRYBurPdLyXJhAIuuZtK1H0Tx/EInDYh54YA1bIBKLzGGSz2muKSHAu+GfiV1e9gKMicRgXbpYgi6ABylQwmVs67Nan4szilt9t8xZ+mSZsDRZz4xL+pBrfy+WTiz8g8ppxo0XK6RqsvdcktZbem5lS/zik4vUWarYG3yuq/l7eWRgiJ87i/lm+cWV/Ew3dfVr+m+ZVs1uqUqE2W35rwT/l+xM+rcUg9ZlvZTfFMUCKwEb31n+ZAGWykZ6nmvqVf1yrWuuvXzD2u8mSCjv87gH5njPnlh9WMCucOGUa/PLZwtkVdCO8kXi+R99vjmjJuDSL+RRE6Jw8clX98zJ4+uPD+ASqWusp6z4zYL9SIJHfB0KWP1eK2PZjYchvozHfAIK7PQAeKL8XS7v7dPWT5DewzdkOf8THLTerS51meqP35YLKODSQRes4OUcWGuVOR/k+r1rH1KANrn4/awxzPeI+6x1Tf5MpcZkgZ/muVqEqQ91nVSXLqkXLtgV6Wsvib9aJ/GVOHtent5jHjpe0JI8Q67vzGdZr70667JHNxLQKgUCFZCUoBZNFl/NOEgPoGuLgh9tYHS6xV6i/eS8gwzyqNSiGGcj/QwWWGNNt39++53XkMsQxA0NZ3gAlPoZjLV+2WPca/+Joq84B5K+ps/xDjZww4OfMG1jz31Xgr26ztkeAGDNs6SpBVNuFnC5W9a8FNA0fSKSzVp1sXgaGYdI4Ets7HmGWACnacOJ52gKe3Nebsrr685+u6G3G+gO7JdO/PEdoRXG9TlGSMyRrSldFdWNre04YwKBwDHv4Z9UHMhyL8snV5Vgj/Q4e9f6rqkf+3vGOYqNGVBrEXOVVUyJb+AWMVOYY+lZ1LskTx10+aozZuM2ry8JlHywF9ULuoBXsUZqfVz2jLlpPNuzPduzPduzPduzPduzPduz/bjtB4OUDh/cRMFPWhKUaDJJbKrBhFLEHKFxERGDPKFZAkp6PzBPdhJJxhtxnJ5B2KgO37QhYrif2DC2toG1qK8VRzYjNNT3TN5F4PzsdzbZOEaL5zJBTueQwY1G2xrHOdh8QzG+Gwd3O+jymWEwPITrvvmwsc/srj8EG/walPr9jcU/v11YKJyoxjqOzv39CPaSLZLKdj9RV15QGHAfzv1+Bx8JYiGCFSY4jbYFJXOzg32D0Rskw0D3e7BrqKIthPfO830yGbk0XFpEpIyUITmhwAEagJtKlIs5urWkB68gY/6nKWKKutPNGRRtNTMJUQFLG4YEHVOAZXIshxs+FouOSgUtfcoxARMwFBQtGWpwZdONbhZgqmQjESKBGAFWy0SBALbYdiQlLgoIk8O17S0Da0prwfygkNX7KYEm8dxijmiL+2rDvSM+4gOWtZ4JWlmACOcqmUZ8GvNgkhgGLlv2dTHgJFjLnWEpfpX9q6qXOWKMbjNomTVmkeTdNDjNWQEdEY0EnpSMFqVTEYAtsckEE3GRepdY81dZhGBiShBXJagqCIMDOvNWGSaaQXep8GplesRntZolGEQzMVYJySDoiQCTZQWyT7ahYOHQZBUbEBJABEByfi6fZgZ9MqYcYK0INGkF1t3mexVb0wyczwxVMNVR8z/n2ep1EjRX/RMzYEz5jJT3qznsEQDLwrwlxeIEU8cMPPtK/JLB1fpNBtOASNStPFR9gCkNIAVUJQNl+eoUC9bKCHiynuUlIuiaPOjrWWJM3YGcpypJICMx/6raOGQpa+wCvOGkLcr8aGut0iw5RyNAXiwPxRhYLFc24nEtn6MkBWfyLBMMlsFGr7GlEn2eNjOTMmbrfdEAw8l1DjklVSMSLDAVeB2yBZBFoVtn032+CfWeTVKWao0dOZeFRh8BtNuaxF7bBp0etoqG6AumO4gEwNScniBVk85wZd9vSNvoDfrYOPuNvZ3093cONg65cd9fsC9MkNXLTjL0OVcpgN8H5mImZ6tjcwzM1xz1GFLeT7h353wX7ndnDGF4yLz1AWMIbkLTjX3bQ4Y0EwpjGDZibg47I6EyHBfFZGDe6V3IMtycvyMBblvsI2LctsaQAJOO4Yh0aAEgwySGnC0BZ0ew85mlfSfXdNgIKQudfpqNkTJ0yWCD0NT5uDd+/mHj25+/8POffeTDz77Fb58QeQVPCaKvJBp+383nv4ACdeaP9qZs6mxNEdlo7ZXXl4+8n5/hDHBfVKoHIDtXHc4Ilr+y91JV0AQg2lICacSe0+RGCrThonjzlLMIoD3iIf3ZQayFXBsD954V8YDsASYGNu1h0nQPOWQLgOAgGAGrEn1rLX2WsBtnAXSJe1pWzlfStBLbJftX9tmCXu4n2bpF5X5LYEQAlSVN/nWhX5MqOQPkkgAqCU+XSNgFtQ1S/e9lu3P+T58gJTQp1syJhoo5QNpy7yiNbpEY1Sxa6CPAN002vKdMdcrYDAbOkbdW0J2XXYI1ip/YmeEfa3P9CSWzZ8Ownj5n7ol99HQULBm9wv6J+7Sr7gWeievFXjzSPwGXJe9bflYTR7aN0Rf76gJzr8S8W+xscvm5fz2H0m+sBKHABMsrmn5wJBcTBzxfvfzxCdapXxSA8AKcWaCeBTqebsyF/eQqoeXpc1aisWTaCkgged3YEwook/0qBX1i3rPOXsV8IvO9653qPWpdhSMaDLk59JWIjb/EmM1nLd5LQUhmMmxK2RT7S6yfTH6Wb5P7zEqTrjVRgPdp6ycwZT5U9Mu8j9QRYY7VNJMFRkq7Wn5fudflYy9Gzjzj2fXJWPJsl+TtPEvFEe/yu3wbeejqx75kzaHlP9vs5wCCSJ478pO1GU6b9zvsSIF2zGK/uv5u7gurnwIwkw7nesApDbQ6Ex47hTUv6+/XPizj6VM4Lcfz8ijzfnWW+PplHh/9698760xyBcnV8zx89+vZ5llYUC/3225Avfo6Aaz3jH5Tqkhnws8uMkrrfHR54vlQMb5ymfMwpac9/ZUrIDf/qedY7+fzpc3nJ6aNK/BRrSfxy3vHTSmw0pwfkPbA19xMcIXO58vzYM51c0OTGbLiDvXMqx9kAW5aAF0G4adsuiX7ucyxMGDSm+W5V4lzHB7+tYkFM40NfDQ6A21bmKA4irC3kAmuqf6H2X/9StaYbKrQMzRqJuGjlv9iKfOWcTFNN3uMjK/YiCIwc8Y4ccaFrSdjL57sj5f1JJPdN88XwnTdzQpMM+YzF+C7Fr24Y9OGFeQm11sCVB3BR8aAShLeC3QLmwgvu/L6svH6svPy+oruryD7vK9P0M2P3eZuNP8RiS4JUvAqjG0w4my+7PMCH8EC9pD7buwfeXWR6V9UvEOk5Xh4rO2KfYtc9hGd8s9lSuOKGSjRYDuOOEr4uQWenaxXAiVLWoBazfGa67xGcTnED7bl+jsvuzeNw7M927M927M927M927M927M924/TfjBI6e046V152UJKRgXathGJ+CUxFcFoIgjhnopLGSDE8/DtdDN6AlJCr7sO9VWhR4IjIljTh7G1uEYoh9XhTENaRkPSSlImpfvAxxlV63rj3jsDZyMqe249Dl6mip0Hr8eNfj+53+982bdgZLoFTTFUiOnraN1Pra1nEyq4bvgY9DOCHACo0/2gjzdOPzndGRLsK0c3hjnHEVVDgmPmjNExG2wbIC2U32SEtJUny4g5uilqLeSWfIEvglqaCJ45yFIswiVEvkCm/EOlQEc/UVW2LQNiJmzSkqWGBJDEvELbDAgNCUaDCvYEdXP0TCVqIxbTaC3BBBlVspRdkLYq7yJBHJJnRgRu4rzvCdqzmSAQBPNgSGracBTLoLFqmwHuCFYMWosKRW0SwKQ+CCaVCmqQyccIMkxabSGTY6Schs+Agl4q/T0lFM2CPcut4xJJhYKoQCQ1JoBlWDIlVaAx5tEKYgXYJRjRBiOBOCGRkvJNyeSSAxXPpSme5wGgiLHImtxLorKShsNyLFIyrST2AoTnKfdXSZy8vlRwqWTCiOevVXKJ1FdwZ32ukgOgrZKYEUjaWjBJ2Ug5Q3fcNUnsZSYAxGXKlhQgIAU9KCDbDNsqqAvDW4wjjmomU11movka9K4quhk49CWDI2lnRQUbMZ41XWaA2VOCcHE8ZbLQkiGMBGItUNsMwsHs72lrMunz9TPOePe0TZeA9eX3kQBUVtLGKamiCqBf66Sl2BBkWeSS8at/TSCGAxqyLq3ehUvzmluPCbrJ+FTBQq/EfwIP2yIAMbdgVEtZM0kD51OeoZ4pr5cg35KIajknVnB3y9xJjY/m+EaisuZnZQikgv/k3GrtknOJhLBZ0synLRfZwIRtC0M8fKBtx0VBwZIlLOaEBFOMaSbqnZeXhjRjjBPVF4Ylg8YeFPOSUodYZ6Oz+YZ3hxYgJzHDzs77/UC2G6+yAx7245PwcpMfGQaz2kofOafDOYT7u/PlzRhdGD3kwPppnP0dRThP4xzvmB/AYNg7/XxjHCfOyRgHZp3zfKfbe8znHMNhMZ9F4RhG2zY2CVCtlhzn0QPQiiESrCNuwmEDSPC3Fyh3rTlzOD3AnjE/OyowxmD4Ad5CvtCcYSNsqseevDXh1uDnHzZ+9cuP/Omf/Jxf/epbPv7yT5DbL3FuXELff8AWq3YQgOpxGhvCyy5srztv78r9HuyFw/rsi9a2BIt1hgc7XQogRN8Y9D4QhbYZbg1EGXIDH2yiqPdghBTFJOQbuxlHPzFp2OG4n8FwJMWOYjRtHD38KlIGufbiAtjONHIywxSr2uRPEwv7TYCYPNGjjbJNmfwAuo+QY51JBr8kn356LVimBE+ALZJyrbU/ymJteUggFyAg/YOQcUqQF7U3JRANmZKhU/IobhbAhULIliSnEOvsInuqEntRrL+QQUEbJPDbevh07h7sqwaY4h4yXWN0zlNQ2WH7rxCodGmVdMSd0cf0P0QjTWoMAsIbe3M3j33BA9yEj8uemoCk3JDrnKglTWo+pW+05f6XPvv39++LBfcCCXOZNxfAQDr+UlRazpIvmwnFvGayIbk73urn8d9iOU2Hb/45lJxkJfQuCd4pwTaBAjHXQ3L66t/kSUXk8jx5ovNieVtAKKEkoda71j82E6L1bqvfmInQelafPg0i8xXKyEw2oOxvz/lQIOxKjhZQ7PLt9KkWCKP+O+sOeNyHC5j44LuWT3a5smR/1v3XuzEPwVqMTVLvWn54fOQCAWWxsspkXplgkvze9RnrfgtSdrlYJafzjwEKkuk/a0l72fruPENcZ3meKZz1gWJKWT28YhNfs0Gty9TZ97G35fLMjl9k2nLQPXxuc5vrB2eB6fN737tp/W72+2WOX59crn9b47jOGeu91rcfP1s95pexrwR9Xex6Jqn7xhBdmK1yUsz3Kr97Luka07KFPI6XXJ9lbVfrMfzh2nXu+Ho/WPaq1g5zbtWozVfNG3iOTTFF1gU8x2+BHi93mw9Xv7l2fqznOt+tthjgyk6LKoPwYZJf6asbSMaEIq4n7skKmjau9gA3xNuSW9USIltgR/NgbBWieAcNRjw3w9Jnosd5xF1hT9DPP4aE+3237H5z6B7sSecRtthK/tTCLyfB08OMPo44Z9oIZk7rWcBT/3ScKJyr4qrYijJuIUw51QCwLEamkUf6Le2uz3H3+bzXc29Nb/OILwT+uwx2guBr2ScIedpXotCrNeG2wcfXnU+fXvj4zSsvHz8h+yfghXkY/gO1BciL9dMNRifOSxoxOCMKAyyLfkSKI6riablu9dIfOc89F6m0AJuayZTXju3IJzO3J4Vj3O+c4LXpw0IWNBqeQOoqWiTt+LV8I/aZ3Bdqz5gMzNc+WFtkPX9cUi7jnuu6vvBgU57t2Z7t2Z7t2Z7t2Z7t2Z7t2X6c9oNBSnbvnBrVJfvmiEQQQMSxPthbS2mYYreoAEcGmjPq0DahnwEYAs+kLlOP3usElaAQaSktgHOcBmxICwkw3UIyokEmFUbKujl+HNAGAw1WYVX0ZeM+BtvtBRsHuhl2OKLKe9vY9o12f1uxuU8bH193msisQPuDBjr+mc0hADBiDB+cbiBGawGEAEI6SyRqv804zRgZRLF+5zx7BDVTHsrdEvAT39+2DRsdMWMQcifBcuK0UEZjk+CuMSsGgrhna0ofA+sRCGkt6JZUfSZ+CgAUOd7BeQ7MjBG6WsnMFMESTfmukBqUFYSXFZCnRSJM3UEaZCA/lLIsgy6RWNEWwbNR7D4u4IYHrQ55IbxE4DTk4UYPqTvRlJVrWx70Lc/7MoMDmKFNpwQVIsi2gyeDUQLFfASYxxKoFMFkSxmrYCSzSzBPYEq7VZVzJDl8BVlx9mTaMV/BzIcZJMzrpYpZMDCNApHEuAwbhGxE/NSdrHCPIKvN4KU/0E8P8RhfltxXAZREJCS0zINJCpDWgj3EPQFaY4K2HkIoJV1Rz5IMICUUEixtCYqYyZyksJ/B5whQqUlK9BTIRqZMj2dydEmRFQOXJPgqq/NgBfFmRrSSpCA+Yn5JMkNlLM1zPk4Qjtfc8/r/7Kv5X1uQnuvvbVyShDOgFqGzktPzHN+ZxP3elR6TClUtmL9J2x/J8QLsRSZZvncNcRKEJQ/PPyUgc51I8fVLsl/UHmGyAq35SMOKwWRBktQ9wW0xf3KYqMB8Vc8XE5Xk806K9coc2Zq7K3mQUqbZT7M7su8KGie+WJxmUHNWQUZAtORNpdgCZzBVZx8FAC3mlxRtllYisuByuuyAbvnzYOIx62wueAvmQzxl3aTR+0lTz+Bq2A7VsKljwGaD3ZyWCc5dFTwkfELELMBO9Ojztu0ZZB+oC94NawdHjzE1P+D2gpx3zgF9vKC6c2sh6albpjt+pC23klbzHxfeD+fLu/P+7vS7ME6jm3EeYH3g4w3zk+7C/bhz3u+c58lxHPR+5+x3xAd9nHR7w/wedq6PCDybYd4Q2Wg62G9K0Y0Fm5zjoyNq+BA2FbZduN9PhLB55gG+Cftg9N7BB9ZPhhlnRLvDDzIPRqHRYy7amYRbEXY3G6gEhPKlOd9+UP7s21f+xZ99y5/+yz/hl//qL9l/8S9A/wjhFSbU7w/Qap8jwM59wPs79AN8DOCkj4PzPOnHEQxfvtPHG9Y7x/GZMU6EldQN/yRXhxFye+qoGAND2RBt7LuyNbhtH9j0Bhj9PDnNeO/vDHf6McA3hBEsgCXxROO8svvZwLwAR56QAs/dfclHVCt5yEiSMPcCAB+2JFfNkzUDCrxUHxQ8wDQ/1TYMC3RLApX8wbeZYG+7vnzM2XC7Yv+MNVD2FAriJdPvy7VdjH2e8rcJEAhmMEdK+pUxASrBhJn2Z4R0tBM+naWkrpvjm0di0JhSKuepucbS/kPYyr1ljuwPDfT7L29++VOAf/InGkm43j0hScFY6F4J55DAm6D5PGq4xdw1W1Z3MQZ4IeaZAABYa8OFculFUo6GAh1osBuKZM1MJdw1WdMi2VfrijwPBOPT5TnyHco5nX5qYYDWkSKfjZwnNUXTN2SBxctPWCv+EXwzk4S5FiZ5b50UMvlbPkH5WHAFG8yMY5J3ypzrIA+gqfBNr/0+Hz7OWJI+GOWvrefwa9KS5WNOcNI8w8ezGQXqKp/x4v/ljatrJ6NI9omtKpI5/8oNm+M1L8ZcUwWuuF5rfWD56bPQg+v4lU9Q/nHOCS5tPUT1DFcvIr4i0yZPqa58PpnfuV7vMh+++jM1EnkYmMCbOt9Uv/AIQJFKTs+LLjaddY+akevf+dF8D8szEJc1K8tX9nGZx+t2kje4TvFiBZr+XM3X32YF84UnMKfGlevZ4zqfvrpGnokffjT3RcklVGNYZ5Yqknt8rOwtrmyx9VL+W+Z1/GrNuesbrrOxz+9UEVQBDdaEW+Cd9dnHz13tZPXN3A8vAFytVSZr5k157osVrXsv2ztnU/SUgEh76Hp3AvydbKAPgMV53YoL6uz/OmurjTiTN9Jit5jFIslom8A4h0lxW9t9num6dXyAudJEYYQfvLWd1oQhwqmwb1X4+Dvmze+pTWvgAYI5TjjPiDXYGBFvMbDhKUl8JJDd6b0zesRTzKIIhATFmA3MOrBAsgv812gasZ6FjGvJtD3WDDJy/7OUcSf9FJngxQBOpW/pay8faX+C9Wkxf661HC8d+zPsCi8b/OzDxrefXvjZL77h0y9+Qfv0C9BPIBsPLG5/SIfIs5hxxD+B/x/YOKOP8wwlDtazH0ayzpLx7IqTSFnp+qdcjGRs1Sju2TahaUNlwwng9hgDrNN0z/FI//NiI644qIoXYAXkzZHNDz34y+RedLE5c77U/u9VELfG0i/fjfmRv/qpO6zP9mzP9mzP9mzP9mzP9mzP9l99+8EgJT2jWvw0BXP25sHGQrDf+NlponQnWI1EsTOTbd7jwGMwiKSfZ/VP0t5EolMzSuvKOYy2BbtHE6c1J2h7OgxjmLKz020gbUtNewtwi1kEAzq83D5y3k+6CqIGukHbQIX3Y6DWUe/gXzCFnowWtyac2zecG/jmJJHPJVz029qPG/z4YS34jwbw3geHdVwHsjkhFXIiHklj4RYgL/nCEKdhdA8ZC0sGJrGQ9IrDuGHjjMN0Uh9blmQ1VTYEQ1FtnGey7CR7gJT8kYCr0K1jhEyQaASYAtDgySzU6Bbzp0kAbkqOKqQ6LBO2yrYHC0dhh5xRkdGoWpNgthkZLHWETSpYFkdxjVuvwD4BMon3blAgAyIhvCVYIg7xcR/cZoDX8/Ntj6pnSdYhTeDSMAKU4AGuahpJl00DOOVj4MPYJBluHJwt8jiS62UE/5RKVWJXVXkm10zzTXouNWdrUV11Woq/mUVYUAQXZduir1U15wu4D4Rki8mAcYF1zEYGJROQlcGbCqLEjFwMQphQHB8RUJUAoaAkPdcMtuctaFv0U0/2ggK4CEBrqGY1dGWw5OuVGsFay0B9MTd4Bj89E+8lM1agoJIg1JZyakXP4xU3XUH7YrJqGknvFYePv8f8dLBUFZrJggK6GNKKP2guZajxjQ+voPmwCbJAhN4TGNQaGqGuePME3phXFWCs7XjuoM13RgK1an1oRqQi6Fn0/TP5VwMjFfiq4LZkslBX/+V8v4bxZ4K9huaSNJhB/ATelXzKBBaQTH01/u5TdiC7Ij6DT2r/GHOlQGf5NSrwfn2nmi8zoTgDs0XD3/CUYijbIVkNWsDKmWdIaxzBxJHyEPEucb9gMRIEcY2gMi2rixPAEHfNoHewVkQiMNaMSrFgRaJcNXQNFKM1TXY5QSTkqBpM6oAAF1U1ZzKnuUZlf46dOmljnM0H2+jovmEquDQaLfqhNZoYMhwZHTVQFbb2ip/Q5UR24+iDcTe6K69s+PnGUHhpzm2/cdyNe4sU9DefWrAnfi9B9ftt5s4xnLe7cX8Xvnx23t8Gx3ly9ANVob8rfj9hfMbbnd4a93vneDs5j4NunfM8sH7iNrgf9wDvSkhAhR1oqHbwG95B1dhFcNkSA7GBneAln6QB4LUjmQozae4a+9kI9qCQT83EhQeIzJLFBIRuyjlaMPtl0qsS9m1Tdml8FOOXnzb++Nudv/rzb/m3/+Yv+Jf/zb/h5//q3yE/+z9h8g1Q8qaLZe3HbStQPzLZ837A27vz/n7n/v6ZcX/Dzzt6nvjxhvU7IwFjmNNi1dFUwu9EUJTWNgTFElTq5tzaDd0at9vON9/svH58YViAMdyE0Qf9fKMdL/Rfv7NtB8f5BaWFb8rArFiCHKWxSQCjAhAreX9PNRJfUlHpr6jLo7H0AChbJ9gsMzFcdkoSJFE2FyqRAY8X+ok1G5GoKTaouWcmeKhkSoBKCnkBUHMfExagdmVSEkgKRTwDmVgr12T1WxQ2SN7TPc8O4sgosqZMRpkxDPbtFuyOCAzCRhq4Qh++/BTvwZqSr9sErAVQVFP9+HclfRZA5PGn/0e1kio+hwX7GgGgC1tQwF0B3RCEZifSlG4DE493t5DBvV602FcWW+ECx8SuBy4STEq5LCaLgZPA/ASTXHyTGLfVX7FfyrR5eF2n1kr6X4VIksV0egUbzSQgMMEb8RcKXL1AaQUVTp8UoQ4H5dMEgGewWCAvTEHOxckp4JNOADX5LrXWCxAUj56gTJZ/GPvDmN8X82Sc8vnsVriGS2ZyvlOtsZTKKtxI4J+C20PqehTpVZ5T5vutfq8xrlk+JbDdE1gWzK8Ps77sZJ1XalxcLjJO8wWY6DicAr0gyeSiMLJ/xAKEognmmlI5F92/9ALj3+W4zufKOTuXbHZO+aUPzq/MpHaddGqfW+O+7JZI3T3PGvWeUieBdYtiWwofIe7/wKRR6/T6rcs+sR5TLmeNfNaah+XfXtBJ/tV7XyW16gzE5T3nWFY/Pbzr9WmuIBy5gOeW33qFev5uP3HtDwv4c4H4PZjay8Nf7v3YZJ5Z5lno4df5nPWr7Ps1LdZeVXNnlRat3xfQ6nr1eNSKBzyekx/fqgDK61n9q7lVgJIr85ZwOSNBnEmCQged4F3J2MUqivKHIpQHB4Y6ZwnLvhTrdPyTj1MAzdRlq/URdWrJuucCJoxuyJ7n2gFGD6/KGoxBU2ja6D1k7+XM8+jmawrK9Tkvz//1j783CtfXW/O5lpIT7El9OP0k/jmMboM+CoSiwSw7Tlw67jA841wlH24ZnyhGQrOLLH3skKphJG1Ef20aZz3ziN0w2XjTZ08GJ8vzuVNk1znm9fmys3MfqyKriHUEu5IsNlAex3UDPuzKx1flF9+88qtf/oxf/OoXvH77J8jt5yDFosS0bT9qezBI8Z8CKB2nc56D3k9snOmsjPBRRxaAjGScTTBxnX4ei6vaZT1H0aVKY2vKfmts+5ZMegl6NKH3KLIYRyeitsW+HHK4voZi7eu+irIk150gF38y9xNf5ofLr8p/Mlsgp/ku045QJHqr+x4N5bM927M927M927M927M927M92++9/WCQ0tEP0A3tkdAXAReL5KqBN8UzMA3GloGNSLyQDAJZ2Z9HJ6nIhIOPOPiZDKKm3bGRyTgJoEfoynda2zCJwHXEFga9O5vr0qR3z6KhSHvc2kYfkUjSc2D7xjmMzZ1DOt46chhoR/QLrQn7bYc35+OHHd1bHMj9WsFaodZsl6CH/IiH7ocE1DXgNZ8pmGfejztfvrwzegRJ3EICCm+8fHxFNuV+jwDQLsrn3rG9MXzEAdtfOOh0O1EP6TV8w63TRwU6HNEeoAkP+u6mwpZSK+cAN02mJcMlZK02CRYO1QigNK3+zWCJCK0Fo8fZ86TuhASDC803NjQq2rcI3m+Z1mdKbTkuA+mgWyQsI5kfDD6bbBQ+JuABionTLZiQ8GB2EnH2PVlKTDD2BNZkRa5sCNtKSEgEUUVbAChcFyuIK64CLRIG27YhbijK1lokciQeyqUjGsGmNpSjKz7OXD0N06QxV6c1TUmNACtEgiiYIlrb4/4WVeU9q8ur2tfNEoQRfd+azkB68Ut4Vs5Vsig6zlll5iR4LYPHGlXs2GBKbBCJ+pi2kcBQthkM0ZTdq4pQPNisNhGkJVtLJjm2TJQMj8SwmKOtZSW44kMnYIsMpra6bwFSEgjjHknKYnAKkGWLYlQieVFrf8bbMxBkHkCxJVdWVeC+JN9YYJjsHErmIyPBKRUkM/g1p3smUGNGBdglYrjF0rMi6rOSlUjCKJoMVywAl6+K12Ird80kLRW00ktyJEFL1ZcTOMO872T9caKS9ZL4ylhqBtmSeh7BiWSnCjPRXu+t2mYwVprM546NoufdK6Idz6ZSSYAMnPuywbGc8jqTsWsF+pjPWlIJl3cjgZUpl2CMTF4VH8qgNXBrARBiAekCXGQJLLgmiMCT0SVGvNH2TIxKMMTFNVrmVypplgF30UxKwiRT0gAoSWuZqLRgvNjC3iMawEcyYd/IhHOMs7aQfzOJpO6mStsikK9N2bcXRLdgNmzO1gIwbG7c0AjwSrz9pgG6dOucZ0e4sTXDtw2zBiacvbPflH4Sv2uDbgdnV+4HSBPaGYIAN82E20w6pv/xEDS9Jknkq79fW72xkNx53E/l8wFv73B8Hrx/Z7zf79z7e8oFdvzcGfcOfmf0LwxV/FBkBICT3tkcOo1unixyjU032iZYyt+96MYQw7YIFm+t4aYcNIa3lGfsiAibZgLfWsrrOsOFo49MMDjdBZGNMe6xej3AsFFQ21ZigZJ+8CmtFPPdeRXh00355bev/Os//4b//t/+Bf/mv//X/NFf/Y+0b/4l6DcIWybe/umB6kf2izU+v9tXClvWEd46fHlzzne4fzk539/oxzvYiXvITB395DjvmHWUAWK4boDSmoS/mn2gkmxWoqBG23de9o98uL3w8iK8ftx5+ebnyBbV3u/fHfz93/6az2933t8LRBZrA99DstNCalhRtkw2dBvIpvQE6pcvrCo012BIzISUu4cEioTfYw7DPBnQ0gapFxFMgAVmjqwl4yUTCGD/jLH6sVsx3onrYtrRhChlAizA6+lPFANO2vby72OflDmTgAn00PSTnbSTnsUTgFjaXy970ObOJmRlfVr8YspzCIlqDVB+gXU094MA8lpKgoZssg6n6+DoPQDqbtzYQtoxn+u3DpPUk8dffuQU3j/aPBNbvZ8cZ2d0nxIzloDWtgXDRu+eRSNgOogd0WgoIhudEeyJAj7WBmYFVsJyDwybr5k3C1m/xeYg4mnjwksNVs3ltwRQIP3h3ENrz6jE34QUSYGN42ZTeo7ym0jf4gKa0LBNWx5ZgmNr+RF1wq2+k/TpkQIXxXMKVWAg9X8CYLBYiXOrWpJw5VdNTyz2ZCB9ivhdyIlddsXUvnZPvzIyzkzWJi1AQyYoL6CqwWVdieQ5LO5jWWyxEqDTQFFSVTWRJJ8/ZBWXxzknWnxg+WjEGg3mxfh9MYBMYNjKrU5mz/AjqyfkYifDllRxQD1n/XwVCXw1JtOf9PmPzrnzuJPNOVX+qITvG921xu5qs5i2yqePfO2W+lwUCqxxrz1yXXEBI8O+Xq6T97+amytMisdPxjM4D9ebv/b1/PM9L1+36jR/vOb3LnT53MMzfDW/VzddmEtyKKZfLY9XZw6vTHDB+oRfHuHqN17/WFb/euK5nHdXL3G11rPVvX39fd6tEEOTPq5dvvR1d+X6lJrbda65PK+H3SymWSmAWs6pef7wr/q+3jMBKxP8kOeAuk71RCyv6pXLWWva43hcneet/B4JHs0PlOy9E8WO6iPARxhNg51y5No0IqYU3ZYg1QLc5Jky5kiCUUd0nvnAfMOGMwROAx+wFxnUWjpzDkymmd/S/rE92C//GiacHY4hjMMYRzIkWWeYJ/PUwLvgo+OSLKcuhPpyFARJFsb43JuiqEgRdNvm/ofE3mAJohFPAJlrFkSd4IuZyozJ2hz7hCTQu6ThFScZqmutP3ZWSpXV6qzzbtiChnNrcLsp33668Ue//MQv/+RbPvziT5CXb4Gd2hQm8Oz31H7LSv5qfGLcQ9Ybxgl+OvQz5fUifj3wYNBN5iupDQ5wabnPXOXg0sYg4aNrFEJsurHvjZeXxn67Ybox+uC8d96Pd+7H4OzJ0CSWcnMZU0/7ICk1G8Wjua9KFXOVeUhrlH7Z3D8nMtHSDgTgvHwiLWbq2hO5mp+Kw9VJ+dme7dme7dme7dme7dme7dme7cdtP1zuzc+kV94xU8aA2ybsLQ4vo48ARviISsjbDRhxsMpD7hiW1cVV5R8BnxXEzAO6Fou+Z2C048NpqbU+xskYOwPHWmM05WbKEOM0YU/WF29wjM5ti6SuKnmtE982hiuNjssZVUy+Yd7oQ/ny5Y76Z84PIwicPii3m6zD9W/pozrs/UFTCl9VtwyEblEZ9P7lM18+v/H2NuIwfD/IGATWs2pHjLYb3g3dBJUdEw35E42ojmdiDIV+jgwsSSbROo0Rh3RdAbygrPaZbNMMzIs5ISOUVMktgCuiEtVLxOc9gT6uUb1c8yLYshS1YHFqN4nYvybowsAsAByjwCKqnL3T1NlzLozIeiQVcwS8bDgjZlUEhiQSSU2rsrrkmaKvRWDTLXXiI6lQ8kjSE3iSQb0KWmsG1lyLYSUYw9wT/qG6QEMiIZ+Ugfi2pRSaZDAtswlNtmAZUIFIB9EQ3KOSvYA1umXluWxZhW7YcFwaGgjADNJ4SnN4gopC1sOlRTK1InxeIdAIfFTAk1zzIhmC9cVKFINYLEY6wUpuHpJqMWJRRaiRrO2SSVxKpiH6TWYwJhmqYCbv4//xc4qOnhq3SBiJ2wzmBEApqhVbMi4IAYgL1p8SO7lK6EgmnDwCxJd1LwmGKUrurwP9mkCTGfD19dwRZOLhPpEMiQDtSpOQY1VBwpyUyfQDARoyM8RLWlPmvCpLZhdqonjSMQOjlQz3tM3Lvq0EhtRt629yZQTIymphRsckvyAy62SZ4WGp+6wAWVV3ivtk+CEDbpVEg0vCfm4owqr4vWQw8npujhOSocNiroiviv7aj7gE8WreS6DAcs3EaHTrwYLUMpEghdGT2S+a7+1uiI6sjt1X4kFWYj4oqKSgl5QRFgnQRb2rkwmLtBMzWF9jSLIySczjIAzoyaSW8w2LxPslUCni+Z2GmXN6D0DnPWy3bgPRPcBJHkwZqluABYkguWKIdKS90h3UB7trJjVO+ikc0mhy45CDXTe6bJzbxud7sOCxy2RzylB4ro9aVynx9LD+vpcy+t5vHAkJsTt8/gJvb8LxnXB/69yPO0c/s/J5YP0d74PzeKPggnYckWxIu9l7Z4zox227YSfBLrUV05vQRDjpdGnACwW20Kb0oUjbgR5SA+qM0eleTHjBuqHa6GMwklFmdJsV2sUsU1Wy5lcZrRZEklQiFDYxXjbj06vwF99u/Hf/8hv+m3/3l/zir/417Zu/AP1IimTkGp+Zrf+i9rWk2Q9rsRZP4O0cvH2B9+/Av7vj79/x5e07vhyf+TK+8N37Z97u75znAW60raFmE+ws4kgnGJREE9CwAca+B3vS7bbz8ukDv/jlB37+YXAfzt/9+gu//ocvfPnuC+/vAYIaY+B+0rbwYU2cfkYSqWkLCVNk2jsHhpfkKdNehYJusIbhuecOY0ybkgnBuR+B0DJhUAl/z/22bEaA+Ux+2kkF9w6uuLewYRYAd9dIzEWCrPYFR2gUyKGkWTOvl/vnSqKtZC7pt0F92Nxmcle8kj2WSZwtwNcFVs5EkZXvKvFDqeuULbcRYHmYMnTmZ559wGznPDoM2G83cGHfYdv0d/CR1Z7zBzxH5G0f/pjJS3MY3RlnZ5wHZw/gXD97+izJsGQBYkY6YMnAIQRFRs7aqByZe2r0Y9jumRQlbXnu9wHeW+eAGFaf18nhZv7l635LR+KaiF4ewmVPMZ8MoutB5sWnHxJ/Dld2MinUlWXNP0v/fjoyeX4QFlBl/jtvqdpSmtknSAByKVCAkHgHzX6Lrsr/UkDrJbe2yHQkmMvyegHsLrC1z9eNXdunLxGnCsc0PJFIjnv6P4KMevtMXItO9k3/ym+ibN/0HK/7QtguT3+zOnaxYJEg/OtexAQarstcx6Q6r/zbAH5OVtH0IWvNXZl0H1ramiWptXzfuGX47+WXSPar5P3n+6Z/Wywxc6blnJm2qn50sWGrT67ejax18JXXMz9//WFN77pTfmiNhM+zT73cFX6jec61vK6I8PXePudzuQrXwbzcY356uuY1ztd5cR0Hz3d/ePvLOFxGbQ0+xfIzZ8U8Q+ZHpySff3Udn++3mIh+y9yggDNxl+mTX/oh+uTST3LteynqsctbyzxDX5mN5jcEitWsvlG2uPxhJmiznnH5IzUFhLKX663i0vVzf7Cn00Rf2NTi8UtKPS2dG1N2OtdqnbUFDeZpGXNtmzlqBBhx7vLx7iqasL1whFwHSMtPJMONaUqhAQRLZpz9OsMbIWe9+lclC7z8ayt0XYHrD1L2cHXc43459whhGJwn9A7jEHo3eh/JemrUCPjosZZGzS/Devn6KbOWxWOqGgAm3ZgccL7O9wMJcBILAG5z7GTaF8+5GqCox33Opr+SLE6Tra3O85f9s1i+JGZb7XkqwTrfmvPpJvzyY+OP/ugjr9/+DLl9ArbvzbfvLad/Yrus6P/M55IZ8jSOA/q9Y+fBebxzP945+52j3+m9mEujoFA0fNA4aifYN2Xlr36JirA1pW0b+/6CbgLSuR9v3E/nPI1+9og3DrvMsdyXk1HbJziKFU+p2eNprS62NdZXgpudKYdIjt3CKObk9cufqahOzc5VEPS4gTzbsz3bsz3bsz3bsz3bsz3bs/147YeDlM53kA3TZHgYSjfNopiswLGqyjMOKnAW//SxGD0cZmLcicC+iiC2AgehgZ6Rm6YBDTidLoap0lTRPqg7nKMzWkPbznk6fUtGHzewwXDBTdnUsXFy3IUmsKvS+4HqoL85HTgyOTiGZYWscb+/8/Off+T2GgCPWetYEbkKBlzLOn+sdj03Xs7lAzhwjj64v52MY3Dev3AcznHvHO/vwUx0vmMeEjLDOm6ZbJAMQKgx2sk5OibG3iQSczIYMoIpQ5Q+BlX9j0TSQlTpZoxz0EeAfYYlGEoi0aoNXJLVaMp9gSdLkngUKou2mAPWpzwH4ogPnBbVmuaoDDAYSXXttgTFjALExfU9UABIViSZG4xI6ksGZlQruHeiuhWWiUr6QrCmiDu4JkDG0JS2WCw1vsBANoLJoe1ZEayz0hdCpmt4MAkIxPuqgnnKMEgwm5jk2ojn2VoAtgYJmogwKS0r9jopXWbBgrRtDZ1qeNEHIls8cwsWpdF7jguRCKdiIV5fJAKlTsl2VUVzXpIJ2LsGYiFAUEnd7gXAysBuSNuNlCOrYBjBJJEVgGPEd81WwqQosCWoF1ARRrKQWAbSp0wGca1i3pnBHc/qtxlUrzBzAqIycWwp81XMNBCVoJJzpvr061imWyUTLgvXLskACUDLSh5EP0pjmhezCMZCyMpN9o36VoKILPtD0QT0ecpwLuAULPBoBebdbeYUqjqvgqcP8fVLbKzCjcEIUJ/IalECBDSTD1XJWalZz+9Kydzl84jNhD4lcVXXQGayEstEmxfYaQVPo/N1rrNp31ISyyjJIJ9zZwbLNasLM6kY4d5iSAoZEs25F5C1lnHgS0JdZUo6tkp6X9MMokGznwFkt5Qh8ahirTk+g5MqqGyItIckjrsjTSnoWjGRlF0ePUA0lTQzIRNVnsFwBxPcTwC2FmvaPAGFEvb7/Xxn21r2S2frsN8CJDpqyagiOmAouu3IaLgPtAm9bzCU/aaYvODtxvH+G3p7QbyhvkfSxT/j44bpK5s3xBTfoe2w555esLaQcIyeGLnuNenBKoFba2Omlz3kDSzzOT0Zer58Me5fjPPuvN3feLt/F6CjnuBsuacUQIPREHGOcdCPO/jgpDOSVU2AprBvW67jGGMzUBvBXJYse2MEsDtmWLHGBBtWVF/HjAq7OKh8lkljEImMkcmOkXtFFZpXnfmmO6o7arBpAkQzFb01eL0Jv/yk/NUvd/7tX37DL/7yG9rPf5EApR1Wj89591/i5PxWgNLVbv22S8kKxJvBcQrffdf5u7+98+Uf/oG39//Ed7/5DW+ff8P757/leP8C3mnSgz2xbbBt7N7ZtkiWt/0F92B76aOzifO6N15ebrTbjuwb93Hwv//1F/7aBqdBd+Hsg249qsc9YMC6vXD0E98K9NlRM8TCzzhT8s3HoI/wGWIPCXDgKEUJI6XEYnyLJY2max8shFJtKsXG4QW0NIxV1R2pimsC46fXfMq3hC9YgJhK1MSHlr0cfTxMwQnorWQNK0kltV/6VzPXfbFPpN/iEjaxiYRNNAeM4SSzTAvQRDIfkfviTDAnEMV7gH6tCYyQvjaCEaoDQ3skfjpAp3fl5fXGtrWQjOP7K2zlD3/sA8Vjq/ubh4xXH4PRg1HAxmCMlIC2QTAsdRBbbLmVCE/AlohhMnL/TN9lJKAJvlr/KxUXgPmYx5ZMnkuKK+fKhc1gfv0CUuaBbSyLVZg52/RnjWDTlNhHkPX7yzqK/eTRF6qEYeX0Pf2TALjXXl9jGIl7XxN8AR8SoF8+0fQVvHwfWEgGzx6qMxvBbJRzuPxxuTyl5GdK7gdqr7yC41ey+Sq/W4+il3Umlkfdkkh7mEHl/8YeM+UYc40vAHy93/K2J8BIw2eud6xHWSyrst7dLp/J3ispKUt/7zqz8PKRmP7vZNiquZFjGl2e54A699T88DmK83xTL1MFK191zBpXap18vbadolebElqT/ei6D6z3uV5hAjTnmH5tVXyeS4qJpd5ZvABKzP33+k5X+THJe9lXe8zkV/nqtWrmwHVbkvmbGgOovr/OXl+vPX+3AERrza+5tfzsBaKa3394vgsA48Hw1lV8fmaBtS8zds79Wkc++3iBCHTdP//0/f5Y96y5NAFIDiTjiUMy+13G59LLdZaei+Mrqr4rGJFkCJSlg5rAqJp36+sFMCKLefDreW/1c53R8PC5pBFg4JqLEgyPzshCtBaAJosChtZAGLNPS5JaVLA6+5hjo+PuybAUMls+esR6DPBGAbbdFZOd5g08C9wUVIuZtnov+yi2rThD69oLFthz2Qog5dOiC82c3iVikH1gA3o/6eMIPz1l25CUWXcBaVTB2mDAMOp/UEUFESMyS7AWziZRaEXFXop1ucYiYz8ki1ZIxsXsW3GACZmKn5P7chZwzXAPax+TrHqLMysUp/Mshmvwsinf3Bq/+LTz8rEhLzeQPWLHs6cvxuyf0H534YNffIBLW9M6QGSn8P7WeXt7w/oXzuOOnSd2vjP6ETYcy2Ck4Kqoh0qAl312eWCB3FpjazEfe83Hu5flCCbyNLIuERNRD6l4E8k4dTFJxthZ7W9V9JBnwlgKa4AsWVnXuPo8DxTI8uvfPXT/dC0iDlpz/p8/Us/2bM/2bM/2bM/2bM/2bM/2bD+s/WCQUgUaqtIRF05P9gmJg3IFTlRgHD1+JhmQrtyAGZU8tpKn0Dg4jzyXRRwkD+Zb8PT4AFwxbak+H8wvmGWSIwAM7paBkQ1GJpkFfDh6awloSaBHPzkRfDjCSyQk/Avmnf22ozKQt8EYOx9fX9ANtrHx8vrKri313z1DQ48MI9+LPf4Y7XJqNAKk1Lvx9nbw9n5wH51ug9E7dp5gJz4MGyfDTvp5YghjOKMLeGOr8RVDFV5vG8MtWbIyKOQRZFIlpNySGUdFsG6ZXJesyIoDcbEEUYVDCQhR2TDXjDl7yLI4MxmBxc8qMMQ4ZzLEPBiQQkoigoFVzD0Dr5BJoByfzCZsk65LMiolwIb4CSbolvMame+CKAUjElG2lKMbFiwWAXIYNG1ZCWVU+dICY8T81xZAr+ZRKWci7K3FGhILWT4RSm5KpbFvsQ6LGaelXEm8UgW/I/EdFW4RHB1u6CAiSiNkZoyRciqRBF4RiQBpmFcVVvRRaxtj9FzvOsEeKCQbdcj5ZZAkGI0sQF6z4j1Za1hB4ao8axLjPSroOwMqWfFsJWFUcl06k/aQYLOUNtMp+WAJ7ljAlWL1iTxNJXvjhlJ06pfgzQzd2UipQMm+JeR3Kuh0SdQUthIyKWr13LYinYTtqL6OPlaCXSLSziK1yCOgpKokoUT+LP9LAW0yQUMwd0TsOZKwkpJ1xb7iM5C3jIhUoP3BwGTAXKHgIdeqvvp3YkPi73JlKohfzBxiBj+vEg0rh3VJTORnPKtCr5mFCszFMCVwaYwJJHTXeS3VkLRyljxQrMc2+7BAbrGHRfC1AHKWjDaQ5qKeXWpcWnZjMmmF9svDuEqybERSd77sDB7Hmqv90x7GoBjCKpEZf4znnFJI+Y96vqB77IMqSLKDgSLaYt/MBINVdF0kAZOXd0An2KWPwSbBngidtu0cZ+zvzkEbA3do2w5N6SIc5ohuNDaQjsgb+9YQfQGMrgO1jowN5Z5SPhtHbxgfcXU++Ae6CNJB7k7fYWvZHwqOsbeAid2Pjkpj21KqMjFWJf1w1py1GN8+nNFhdOHzZzjejOP9C+dxcJxfOM8v9POO9wACmQQQSARUo99NB8M7YiNlai1QJxpyqc6N3qHpFutbBZGRlbYhCHYcB34O+uiRGEigEV4Ali3YmswyuRx7rXlVintmSSJ5UXuBE8yRMacUV0WG0/TCwyOGtM7rJny73/jFh1c+fLihH3a8vSDfAyj909o1UTjGmLKalrb/+8wEpD2N1f1+h+9+7Rxvwne/eeMf/uHvsP4b+tsX5LwjdiBi7Fvs1W2/YS3EX1+1gYUv5DYQiZUvLeWDN2H0zuiGc6RMg7LphqiypV3a9g1TRW63qIJ247TBOU768c6m0Efjftyhj2DUIaqvQ6YhkmpjrAr5Pvyhj1rJnXr1iWYyixyxTLqnvfeUAwk/uPY8MvElk43pp9haAgwh92kh2Ii8fJqZMmSmi9NePianCvBw+cncv1cCvj5Qskux18tX14n7JcLvuvvFIcViPy8mkmB48GRkyr12pF814h5nD3CSthZnBHHcG/u+o2eAENu+hUyyFCA337uez39H0u1HbOmhYSNYIM6eZ4mZkbXJRKm5T9qI5HIwucV19FLZL+R+5j5B49M3THvlWaQQCWLNhFwlR9MvyLNASarGxJeU7ysmjgT7p8xTpeZwEjyUe13SO5Xkmkx7lIlJLyBRvI8gyRKUQ5LPNcHmMH3mhFjOL6uULa3f6RzXdd3F7sn0SaY7OZ9LkPTJYq0XKFeTxW32mRB9WO/g5Y9I7g8LpPGwthYCJ+ZCyS3V2apeNQuMwNOniHsUi1SttbLmkK7TnM/Rb1OyxssPJRyafIzvAVKy75VL4jfHpPaUuqcnoqjWU+V14z0WuH0Ck8JbW8n56djnv8pOyfKjp4/2uIjmsz+41TUXa+SnG15+4XqXGsuHvmKZhHWOYjI91VhKnms99wvk4uNLQm6aXIY6mTu8oDms+9Unsv/r3BPP8riPyWWc/PpwedXpt8+fX03xOlM8WjzJM65crv1VR1+/8/0L5M994Xa+sqkPYJX63G+5SJ275l3rTJHngus5ZrEgzQU41/LcW+acq7PF9V1kfbbmxuX38xnKfs1v1QTyx+/k52KqLR6/AjFUrxYgcc75Ol+6z3cJfzNBJ3WPotjSLDzkq/temhP7hhZbc7JHTytZEplEcVCEbDZMoDNoGCobWMuik7JtDv0A77g3oMEZzzByLZYaXcszI8n8phKMjiNtZtWKhT2qsQ4e5wlgmzK7IX96njCGBJB3dMzO+d8JNPHwZ2KOGYutmLm4C+TrBKAqTd4cZSffwyM+5BLn4GFw2pk8VjHjar8UWpxj6tnnfhrFNRl6jbNFGIl8pgIZ1zyUlOcFpGBUoGJs6rxo49Ya2jZcQ2689r7r7P7ntpozV7ax333l+K1lcUo/HRvOeZ54PxljEPEfshhGgYZ6sGsONxRFUrYvihcXKLakEfvoNM+CnowduEbsa6vDqTZky7iAxx5tbnQ3Rj/jTDKiUBQnGehJhrOcQ/Y4Z9YWEmfcB5bHtL867abPvX3a9cs6Dz/p2neC+O9nzJ7t2Z7t2Z7t2Z7t2Z7t2Z7t2X5X+8EgpX1/pQ+bLBaWB9gxPA/ysiifK1CZLBaiyagg0LYIPJzdaNIywLoOP6P+MIMaG4Kj24aboE24bRJsPloBxgjwagb6K3AQybD4R7VlwlppErVaccCPYPvoB2dSWJ93ywNrQ3TLgOEG8s5+vnL2k5eb8/Iaz7FP0YYKCfyBDnOXOFIHzmG8v9253995P9/58v7O+zGiostO3Dq4o+LBgtQDeHSMI/AdY6AjaJDFlWbgw2gOiDJaizngsLWG6MCHIhY/bxLSKmeBV1TxERTcURWryeoBQqNtAqYYIQ+0iaAZmD4tABWbNswOSJmNCMT0ACJUkGzGsj2D/Isq3KWhm7JVIFbiGkLKuOXJvqTMmmwZ6BWabhG8aSvIgzQEobVGUxBN2awEDFwlk1qUBUYCUSX7LJLT0kDN2WiIKJZAO0UwjaAVqoy8prigaiiNpsptC1ro0Qf4iISRReBiaMzvMQw/HbSFZJ9G5r6psCcT1hghF6fqjKpcJ9bJGPluGa2oBJNqwyOjhNqYgCZPBhpBss9GBPBKjqz+aRLV9+40aTSJ+/WiUsugi3oEirr1WY1dVZ/SZCYfXB6TkZbacyXzNVejsKReMulRbBURmDGa6EqiZ7LIVRDLqs4MyKvE+xYbQAVh5WrP8r8RYIyk7IgSzYuUR/wZ1WBbKtxIBgRF5UGmLaqXSQRDdFck/iNoWsxCLRMBBpFguiQ/gl2gAFuZfF1ZkbjHqGC7PQTzBU1wW664Wlde6y3Hv9ZLNV+fXVMhQU883GIGzOO9y8KlXScYombAlAp0FwzxGghdDFfR5ynnllgSEcuUdUTktO3rXdKiVEyw3j7GJNaRM+KX+R6VSBVnMno5WXGciVmpvUIkgbYRMA4gVPZHysM1vSQbM1peLH5LMiQBslbgvvhOy/nt1qmwtroGG5Mqg3MmukSEbdsCqCSRTFUNWv4KigdrkQQo2Hrs3WwRRO+xjjXlXM2d0QY7yiYb7lFVSouqUTFnvA90b2y7cxzvYHdUXtjbK/288/4eIJxhg5dduanSFRDDVRkS9u+WYFrzxuiwbcG6ZGRc1ioJK7jG2IweLFg+lOMO5905jtj3zvM9JBeGBbNerbG+Yx5sdi4JWLQAXbkPhAHJujRM0D3Aa1sLxkaI52w0usHGRh+ON8O3jvmeQL/GeTBZ70KWNb7vXmxKg4aDtKDy2m8UsMIsbO4wQcQmSNJdsAaijV0a7sqG86KdT5vy0jbafmO0D5i85Pg+JtxqDVyTgj+kXQFKk4FGLmyUv6PVnTy6lnEamiCJYQFqQZTX2wc282BnvDVU4LTB+/2N4zywfk47UMxwZX+HWYDbEuxWAFXfnA+vO6+3V/b2wuvtAx9vL8i+BVNkd37z9pnPX77w93/3t3z367/ny9t3HGPAGUD4MUbusfHe5p5yrpFY1xaAhFF2uRI95b/G5jtz8p62MJZhgpVqr3vIsOaH/b9snP6QzYPObc6H4srwyVxSP40/2zX7NKWUrr8PY3adUTnTLrInsQ7C3idnpTLPLyoFgM69QlZaLcYu/hJ3XfuDqgQoOJ8pwIbBlNWIM9JIaVFkwn/CjjanWUi/+SbBEItc7vD7Suf955vP/waDUrBC9GCVtc7ZOzZCTsY8/T5fPnclX4P10tNH8WRNCrtP+WQ534Nrp4DlA7d4c0v/rfaT8hFqz4t9Lj8pmTDPzqrUXDGOIAVslvT5i9VXCo8b8yaniZP+UXyIGCvWmVQKFMTc3yOhrZOhsMAcmiDmApBcAQO1LzN9O/I88+iPTVC3SyaztR4DEU3gvE+f2WdHZE8UsG4mKMtWRJ+oNrSwBpOKTy5J0FhDZkIUr1SKm1xz1NF39X0yoADTRi0HMNd7AWdyoUWfJ0g758f0qxNwfwUjVWJcRPBRhVLr3eISJSGd/cgC4l9WMfNskOAU9wmNfFgZ9R4TqCELFDRBVHPs1v455eCoeVAI4nxcWWuvJm0B8L+WI/M59yz96gKQkPf86loFvroMe02R+f7+2Cfld+fXs7/XNa5by3WX+W22avazrBe+fm4x91xHZl1wgTVl/bD6+bfe+wKyovb89RlZH5sdcn0evzzBOrPIY8fNuZdjU/OyrlAfkUvfCt/vuMlyGtddNj/WseZ7f49dyiuOUndMcFiyF5ckdhzWcgwvzM1lC+ostuZt/tcLuCDTdk3W3q86a7EoF2g65qxorat1Plo4h9W/5oM4DZUPkHEILVBUxmwMdOOB6a4nSkOGIz4mWXHz2BM0GdnG6BxngLyjQCzOSL18AVl2XXOcZ32MZsFP9bZf5rMQZwxiv/QhUfwwHBsSMRizeS6s+IhnEYi2sulhczWLF2JaDvAqdqm54glKir6KAps4xYYJbKgazRsjmZoKMCzYtAe1hsLdKcnVkf5QQ7xd5nXuA7NwKt6lgFqxzyri0BA2TdCORgzYaSyE18Pk55/arueIq+/7j1/x8gEnGc+dpsqZcyC2+cZtu+HjiIK6ZDQOAFgBmeJ9VsHWuocUg/O0/VFsu+8br7cX9v2F237jtu/BTpzP8/Z+5/PbG58/f8eXz58zBl1xKrIg8sLkKDWXyhPO8j9bgOCvDXadIS5bTwJ9L754VQ9c7PXvZq16tmd7tmd7tmd7tmd7tmd7tmf7/bUfDFK6n/c8VpYGNwyTYFdIRhlVyUKhCNqbxAE2GAR0BoME2FoGuxE8JYxUg2FmkT0rYzgulgnKxqYRCDYyoOBEklBaMl2E1EIIMSkuGybO8E7wGQSQJrTGkyEFQ/UFHy2krgDvjnGDdgZb0Lgz7oP99WD0V+xlQ/wF3254UzYlgxx5mPsqqPSfb/+5UN/lEzOxE8nY7tDNuR+d+3EGA4SdjMPwsXHYwfCRh2zjPA/MOvjAeiZUIguID+PsJ8OccZ6Q7B/dDBuwtZeQvNIIJgVrkgV7kEU/V5AwAlRgMUno5riOCIJQIJJi2YooTrEPicBWAf7muJ1YJ6uyyERsjHI3p7VtBlycYPaIM35E+iqA4gTLTPVzMEMZ3XvEjTXARwVk0gYk8bZ7Bf5kBiBVb3GAt862aQSlIOigYwaiumeS1GmiCToAPBgXYgyrolAQaTSN4MWe1dVT0sADILXtgjSnqQc7lsHQWpMeQAdV9j2AVpaPrBopsJjnAZwI2SlFW4XkDe8hylXAnFHgRPMAHGpUgQtk5azMmKy2+N3I4I629hjkjIheyLJZylGpT+BLBAgjAD8yiVvJCvPFylaJCskbr0QEVBV1VAmOBM1oJMW8qlkruWBzPlyBS56BUKUlC00GcFKqRCqQWckkWQFuaQXyEoLNpieVfrBjIDKlerSkDOvf4mjTvL5dgtirArM6oNZZWcwCQSELnCMea6WSPJFUnF+KIGRSIc00gVzSOVnhXomlHImMaVcFbj5SrREq6FU1uVmSKYv9J+43ctxWMsHzB5IgML8G0J2AKLlNKT9NoKIlK9CsBhaCdQ0N+KwWLCIrxmu+eEm8LflBTRs0KxIrE3lJUkT1fVS8FjGHpCyD2UBao+Rh2gziS1QFO5gfAcpsAQqSDOiW+J3kHBHVpOkf8VJVrVxzwhKgmPsiLWtoU9tNCGCq5X6nFntqBSsnAC5BH+hGSdiZD7YmWenpIY9kA9cNHQnx8gB3NjOavCQoWTK4ewa7kSpjCPf3O7Z5JGPHG1s/eNlfYeT+LZEkHAb9NF5ebrw14daEJh57R7thEmtsF6c1Yoy9gQ+2l5LIVCTBHi4gLftDYp2MHuCk+z2kXXuHcRjjeEdGyC40hdEC4CUjKmwRwUXZvAeDiDvqsOWObMmmhXa0CZtsaDIPmrWwe655/Z3WTmSEDyND0RbB6HN0hju9n7if9D5m3gkJhq/2sqX/lXZMir1jAfmkOZsqLprSqwrWCNnNlrIcjrXBCTB2YjNMWsKVceOfk1xora1kWyW3f2cTCqqx7cK+GVtzXl9ubK8vHG8vmJx0wGgMCfDy23vIali/AwESUsLRdQYMD7AfLeR/tw3VGwa0Fgn7Dx8+8vM/+hn/4s/+jD/70z/n21/+ER8/feTD6xb9aM7f/c2v+b/9T/8v/ud//+/p5xvfffcbvvv8Hcf94OxHsM6Mkcw6YXeUYCNzt0j401lsgWUzFxA2EkSGy2IonHkxKolYNqz2akspipJL/mm24T2n0oKquddsS/tdjIiQO3m0qsn3y2enlGhRJXp+f2Key0eJC47011vuk1YJXim/OlkC5vzPscl1ZR6/n6tDJP3OggbvkWC1FG0RGDLQBLXLcLwNrAXY1YeAbWFXtQXzYb5KdM78V/7ssn8DE5TxW5s8/On7n5R5prC0HuYe7Ek95CRJSR6zPNvlRm3D0rewyz7Ehf0tmejcpvSWX5JtdW4zyi7ENRawYMFECnRRbISWejM1D5T0RS/gngJ6gEwQCsmERK0ZYp9YUik1oWACJ+QKVwkwkOTPV9K37u3rfwWUyneJWoSwz5NJ7HEmp4FPZlq3BYC5aq9wARBfxzh/Z/XeCdxZjI2Xgpo6yszjTADySbZWU5+yqIVVjyIMm0CZYpWyyQApq58KmFOPll8q+eCahQuMnh/MtTq9aZmPm8MX10n3dmFHcl0uoLqv7+VeaG7YvLPPe8y/T9c6vd/JRMT8TPn4DzJa9ULLlV+3mPal+iSACRMGVWeWuuScSkKBKkPmqvoV3MflOfI6QqzTAkgh89rz3pf1Mbv64geuN6y+8/m5azf5VYq01siDPeKra8hDV/vDx8If/9qziPG9/mS+cTblcVU+PsQas7XuWaea+at1Fqn5JvM7ExA25xVrPhQobp4Lvm+BC3wybyffe8N8CFn9QYEOEqxZ5vlyPpsTu94z7ZBQ9i3jCaEnxcXYzLHyZIM1v/Sp+yz+KTtSazHY5lYRVvzMEL/25/U9ri2+S53fpfbTLGxkMGLjXTZrOOpRVGFe6zfYk4sRlmF0O4NJKJkOt3ZLZtEbLh3Dw/8zwdWQFqUimvtBa3vMogQpBaOlx7tCFpDkuTv3/Qn4KpnOBENFeMCmPKmNYGx3H1EM5BbnM7dgTqYAhC0djzrjpSj63OZjb4zCyuTInmdYS2hnzqdLjKEY1QwLmVYL22HeJwNUSfhFYVzaHKu5MqgzftlRBWgSoLI6s9uypmXrpHkyJSoFyqynfJj7/4x2BYH+o59j2QNV2HfoN6X3Rts2hu3IMJCYh90MtxEA7WHgI1ZD+j5NjMWKTcQqXCeLqVsuvRasmR8+feBXv/yWn//sG15eP9C2LeLdREzt7fM778c7b29f+PL5O96+fOF+HMFO6ZYM47lAykm9esEzcGLrx36xVdnCHvnl8zkic4Avdnj+vubZ9+3bsz3bsz3bsz3bsz3bsz3bsz3b77P9YJBStzOSaA5SbDMWlUjdgiVg3xa4oiqTXCKorUlnHJH9nmfgADGtoL/PimmzTiV2zKO6aNsb6JasEiAb4B3XFskqG2y6xWFYIhA+rAUrhEvQ+raMg+TB3IhkjpiCKdKjwlobMA5Gb5xitHFHtg18Q+ydcVf6/SPb9pFtf2G/bWx7MFLcGlMa6OuD+EMM8xLIi1YdtL4T8aJ1nUo7Jfky5iFdc5wHb1++cNwP7ucbx3Fg/aAfJ+fxjtmB28H9PrLKazCOe9ALDzjPI4BKPjAxTjsz2W6cvXOcJyVbZjSsn+gWoLJznAFckjqsjwB5eQDVXA1McekgyjBQLJm3nGAnYlZmkzIIIp6Vb0AlM8zZULSHfMuwHknnfmYwnkzWR5g2kiadUYHrDGYEaKeSuTZBSS45BxNQIhERY9PGSAmPYRF4PK3Ad41ti3cX65nIhwJbVeWdSFshRqu5vyr9zSXmaq4NS1DDvm2A0ceZ06CEFCwBWDFnhjvdHZ+U3jm9ksJacDaEnjJpohuY0LaWybRYy/Gs8VwRB7RZzY5GdWAFwWc9u6/Arac0oBfwoZpqgG6AlhTv0ffxrhXtCkCY5XyP/6WyY46L5PPF83ix1ngEKa2STRlsbRpSV04lei9RnFpx+XmvZZtTRSTYuoqdq96x7FaAOzI5MoNHwWYiMxO2EhERBFrPKDlHK3BUgSAbnqCRFRqPYJRlMHoF/+t9SloRyATpCtvPIKLPN55zscbIM/BVI2bZnzNw5ZXrkJBVuSREEuO0ElIVNJSKS1eQOZ5ohu5n4HIx3sQzZYA01+CCkeXcqC/PsYzkmxSoSCQAOyMDpYkiEtWQ7hJPkEhV5XrYvpSKc6ICuSV7UT13zePopTYBUk6tEZ/vH1JxuZozqTOS1UYEGgNEM7luqOyoNOwCGDM3GNlvCcoM5oTKzspMzHn1zXCs6QRRqcA5BmIn0oyWoOCWoOBIPCQOck6KsFFeiQGgZFxaBjX76MFI2BIIOTp2SkSBbzvIhvQThoBv4Ww0S+BdMvGlHVP5yP3ojCYMaXzwDeswzhNV4T0TC1Gh/Q4itE24NQ3GOwJc5QJ6+AQh2TBebhsiI5L/7SUqqRWsE9XODsdxcH9/5/3tC+P8hwApmELzAD8x2DZFt0x0pbyHZfB9HMGmJC3ZiyTsaZOU0jOhu00wxNE73SNh0N2xJowhIRdQfWv3YCyRTh8BKm0t7FGAjyKJ0gv8NiKFEKBsSXaxSIaoOq01eg873VN+zHxAE/QmyFbMfz2MbXvwVnL1/X6SCv8l7WV3fv6zjeNN+PWXG/vrB/T9C5se3KXxbs7djP5+Z6R0no8TkZBUK1up27LvLRPA4oKdg32/8fLyws++/Ya/+Jd/xf/w7/4N/+ov/5yPH26gjeEBuv2Hv/s1/+Hf/7/5n/7v/0/+53//v/Af/+P/zq//4R94f3ujn/dgGgseQyxBXjZifxiTtY+Z8AAoOhdPVsIrUGekHTev/cSY1dUJXi6/Jf46FgjgJ5xUMMtq9ASWQoyLRdVB9JEHuLHYanLzuczIYKQqFks8WRDKCrukoycUQDQ+1tIvyIS1FNPq8gnDovuE2BYbXvgBAZOytI+THVRi/QbYIHyAGstiyhvjQGjhK3oUaJidtKaMHoA5bRutaa5bDfCczFRlverD3x+af/WJ3/YhX/8pWFWsjZhvvXd6PwPwlyxKYxhYyEUHS2YPNjgk2Tqi4MPcM7GX4DqYTJiWgP9xSZJZApgl2ayGJOBlJiDzs64Jrl3r43GKx/WKaXHOtfz3BChDnDla7JfF4AMWkuOw/Gce0nRQfmLZ2Dk/PICz8zlkzrcFU0jQcUpNy3RRsx+87ONih5j7er5ZSz9+zob5kD79lKsvKxNgsHzLKFSwC4MbE2Bfc8YLmJ238WRomSy1+WbhslefbhNsVGD/K+DSs/8Wj0P9d625NZIL8nQ9/5Ytn4AnyiwU+OoCnqn7VR9Mu8D8THVfQfKDfZEsoPnqOfLDSsxTuzwvxDz1uoGToI7lFM97VWL/e3vr9e/l29czX9h+HBZkpnorpyZr3Gaf53jIGrjVb/WseY/l/8vl3VcvrbtdjYo89M/DK1w++fC+X/1uvf9v/XR8QtZaWAv/+3vcOkVc3lXKZsRe+/DN6tsJmJ13eZBynH08z5CXR2d9rabiw/6bZ8OSk/S8eM2yYlhdsmhla6bFmuv60gv1+HM9TN+02M5yrjDPFFX0kTayQFS13vM5/fGFWb5fPJMVMkV8Fj5J9fNlj5Y5AGHp+d68z8mXxR3DDUEno2X4OJbMhhrnO9NgCSJYnSNmFddpmzLkRHSP85g5dAPvEfszRYJcNjFrgvQA/LWUilNtTClOkfRBoijGRsooZ8GlyoZsGzo8WYsijjOs0/tB7wc2Towe4KLsEDNHxVKWWibTnextMr0aI+4jIc05ZUxTQsyKPTf3R0s7PxJE6snCbBSbZ+xxsYfK9Fu0wGcpXYYXCDlGsABQc5bO76z5R86l6DJPputg33U7wU8e29c25MdvVwuzNzg3kE2R0H0GIj7pFSOsmBassxIBQLKWO7xefZA8f1kUmbV95+OHF37+y1/xx3/8R/zsmw9R5EIU/R3nwefP7/zt3/wtf/+3f8d3333H29sbxxnSc5asTQAiNse7Yjk2ZfsinhpWQea4xXpbdqTsul32xLpg7MJVClAexmNM6id8nHi2Z3u2Z3u2Z3u2Z3u2Z3u2/x9pPxykdDp7ywBQVmYNH3gLmprm0FwRNSwrgSPYG4d6zaTQsEiOYgFmkJRrwYE8k4lWpWEdsCJJKGIR5NedXXf2VhJU68DlwMik/9YaYo71geiG+86RiYPNQ4qBPSTpWhu4vdF7R2xju904uzPe3jF7hXbjOEDvwWRzu71wezlo28nL6ysfXnZuLy9su9BflLYJu4YG+dch2dkeTn0V9JGHT17iyAEWEWW4c1omMnsPBoEvb5xHVPEf/eDzly/46fh5wHkyxhmgpOOkswUBszo+BqN3xJ1NNo5+BamANcWs4WpYP/DR6WJoZDppBAvIPMwaIaFnoN6SQMWCvUoiaSwoeMh9uQRjUjAo+WQI0AyoqOS88AjuR9W5YWdnnsEtkkkhfRXBd0v5CHVmsnYgNKJy3rWEnuJ3QkhBBDAgA1gULkAzRKeIyaIlJ8B3q/AyA0rxyLgr2hq4oZNFAiphoqKRoK7JYc4YI9iRqhIuxT+0BSuYDM1ASnxJJxDQQg6RyMt5Pk/VDReIZGTQryEM32bwwlWw7sE04WSlewEKqnoywCGqrIpsU4Z1LBMbIXEV4xFBvaqcjGBQm+DF6FPLSnuvYIkVmFECqHiR5KsAKB7SGitY6sEO4xmgq4WTTAwMz/kXSTIyAaUqEQiqwKsFw4tequiVCF4axWrEfB5YFeCSASPP+yq+/mcrpSCSiecZpNcMJHskqTOlJUX/EpFtuHw/ktkSwfV61vqdg6iiFX+SAv8ASYEf898fkywJnIlptVh2VpRuhRSt0CwZ7xer1fDYCugmGqw6K4gdSd4MtTJrhuf8Wb8l1+g1cBYPorNfIqEZQLaaXya5D4igubGIbJkszcDflC1Z7EueYyMSweqNVhmOmCMj7Fbsb20mAcWIRKAauOLjMjckQ4Be9kozON2ABJwki1oq5AQgs2SihgWlm40MPjdWQkkyYBnzQrMPxQkmC/EpoSpi+HC0vcT6TVsQ0keVGLAE9ISslY+UMpIA3GAedj3ZFoQAHProIBuDE721BGV0ZNuikriNCFqL4t4RO9lbY98MayfDOzpO5FBOu+Pn4LYnA130TOzTtx205X2dLz5o2wtIyNVt245uN04PmVMfzvthqBh7a9z2we32guGctvH27tzv7/TjM/fj7znGe8gzMbhJDxtsgpojW9j3pi30xxrIvqM2OHRgW7DlxRhsBFi0o9pDslIaXRobxqaRWDnNaBLP1wWGB/DWe4qgqtO2LQCeo9MwGi0TEmEDpQ2Gn4gZZ87tAoCEvFjsJaP32APGibigOa74wNi4H8rblzv9/dc03rim1/857Z8CTFrAQWUT58PN2F9Bbw1pH6B9QtoZ+n736BfXhkn4MgNPv0bTpgRjpLRkYMm9Uxi0prx8vPGnf/EL/s//w3/Lv/5v/0d+/rNPuBm//vLO+3ff8dd//Xf8+//wv/K//If/D//b//q/8d1vfsPbly98+fIlwRwFDhoBFJqsOuAjbFQkp0OatSWYw7xmdzFH2ZTsjMSyYKYUQ4aZYWNgLDYfz7W2gAHATFb8NJv7tLgX28ucctOujTCGcwqVjyVxjdoDV6LMZ841kpwLQFRJmjqXePapOGj25YNsntclPbfhAK66xriUzAoSfmW1StRByEIKSpPG6BagRt9waZwQ+4AoW9tQHbRmtG1j3xvNNrRtqAltK4mafK70C5YfwVfj/fVp4zHRlO5N7h3BRmop4+Y2OM9gWiiJkd4DKetjxJnKHOvls4T/4+m7Y8VCpYwEuGruyZEcT8bCAqbXE6aEYfmbtReTzIPzOq5T3naBUZKlaSEEgGJ1CAm9+tk8qySopObCIhvJ+yWL6BXwPk9nzoO/J6RLJMWUc+VdeRwGjweLK/kCM0XSu8Y2bF/5mOLl7+d+qEua8OqH1vy7LJjq3PQVa36nFJ1f/EwurC2XZ3poIos5xS9e2mVeMcfEp7u2fl79lys8E+TX5zdbf54PMJ/Rr/RlmTQvW+cP4J85f/IhrpJZ8fUF5ID1Oy84QH1/PspK4tfn3S+OcQJIvC4aB5nvgTZqeEpOql7vQszxsJ5l2sOymGtGSdnB8te/HrF8J53AnCu86dJfFzsyr77c3vX5y3cfziRlsf1ykTku0R9X0rGaZw/z5/Lo4jXklzn91fNVjyxgz6XvcpHKlPv7/ma4riVf3WD1tdaYykPPRFyruPS+erEyFyIFBqhnyT1eZPbZ9OPrrDA7Y4HTlrlfNix+NRcCEYuIa6jGnCt90jqLzPNHXrf2yuucq+n8uF7XuR647NFps/IzMl91FXiFfQxWJyfPjnlplVpTF+HfXFsFKi6fLfphhLfgllhtSWKZZHJPmy2a9nz0LHxcZx272MXoIiHYRKFLcidl32n90/bFZJNSv5Jxn6aDzQ1TxRB6F3of2DiwcWf4kaASAQkAu9iWMaSwyToHx9Y6ECbDUf2wSbD9Cj59eqcla1RHxRlV+JeRn/JdlCxuSMnx8EcjFlKWoQqt4gzjsf1k8ZrVpDDBJaMUVyP1YM8jVjKG0E+jHye7HdA6wstltv3T2z/lTDHtuAeT/7aHNHhrO9osWC71yHcaaz6X3Fs6TQEEHfnqMm1GzKVBk8a2Nz59euHP/uxX/PzbX+KqfPcWMdr+/s6Xz1/4zW++8N3nL3x5e+dM1qSzBzuvF+tkjuHVRte6rFjJBOlzLV7Lv8v6zQIo5n7xcMlad2FNbDIu5Xr+Z47Xsz3bsz3bsz3bsz3bsz3bsz3bD2k/GKSk2y0PP0GJKypsFDOMzEBc5FOXVEElFJSKN2mwT6jA1iIRR7DlBF1yJPW1tQy9hMa5Eew/bdtoDhsDHULLQ7VLlZeMoIIWiWD6KHkTwTrobafpxr5JyntEcKePYLVQO9g0MsXjvaO+0/3kC3sERZLJ4MPNaO+Dl1cPebRxYxsd3Yztrnz69MpNhZdNaZF/fgjqZK9FLLcCVKKrojk/cw0i9u6c/eAcxjFG/Lnfsd65398DsOQaVc9m+EjpBFf8FOwAwRjnG8MG1k96V2QI9Ez+OLgKW9sQc8bpBKBoAEprnkl/grWnqvZ7gofM8BHlRUqyYbUXVBtmHU+Am/sgRrVF39e1MhhSyYZImkQg0DMFG5WCG14AE6IyGc0+thRNyuCMSsugTARfqmpPJcAc2rYci/UMxdbjCZwxD+YjpdHaBio0jG0TIJjBsJBlahvcJJKLDWHfb8ncFQFw85DqGT0SWHtrIJGED4CMAS3koixYBIxgwmjacp4Ey4wiDDG2pnFNq+BUzJsxg6C+5DhMUp5BJsgn1o4HEEBajlECedyTmjwm8ZBcsyToQPawERm0KiCMWATOIrDjMHJ8MnHYR4DdakyrujNYI2JNzABbJYwysm/e53wdHoCbCAIrLfuZAr1ksi0yfEt2CCEZDahMRT67zmBOAWckq9iDIUWSLatWc8wpsxija9BqBZAknwdKGiVXeNiqZD5Joa6YB1TFaFzScj0js2515aIyiF4SicEglLZDmBIndVuf4xDXCSYfoRJ3IqQUYUmhUdie7Lf1DElMEYlAqTcgExP5qbz/fG7N+TQTLBmqrgQlV2aqxJtd3nsG6KhAt4MmG0P2u1cgmgiaa7ImzNSEblwBUhWADEauAKe5BP1/mGAJJh0n5PgqdDdj922B5oKXP2149rHlutaIP7cEKrV9S0nEPeSgetohCoDlmPWZhMAlqj99JSfrHURT1k4uiRcCVFisUCGbFvMrqnQ17Iob2nJfbCBnJH2NRst3aNoQWtgIARFlnMaGBvKXTOAPQJ2jn+xsqCveGpWQFA/JBh+ODGccB9ueYz92fB/cxxHvpYqKsWlDTmUQUjn7TdnUsPOO6sZr23F75ThO+rAADnok1UUc2wV6h/MG+8a7Nd5PuL+9cd7fGHann2+IBXhF2hEJgBEAxIay6SveR0gDqLIhIX26BaC3jwCKMWIOiAiSkmPBtCWcgXiE3tEeUpQ3jT5r0mK/fL1hPng/31OmYYRkZD9pwpKPzLm97cKmQuvOMXqA9E4NH8DDrwhfJ2GrKuABHHUdnN05Dzi+GP27N176d9DecX+lPJeSSFztxwtcl/2tyu3bi/DpZ8o37zufP3/ifrvzrr9BPEDvxeDS+wjGzJRIE4v93M4Rfikbbcu534Ttpry+3Pj5z1/54199ovk7/4//6/+F33w5+c1v3vjymy+8/+Y3fP7uOz6/v/Hl88nnz28c9zv9PGNshs3ETTHkRQLSkiQkWRM9QIzBeJWpBCnAFMmKGMxeVDKO8EWCJSntvyd4JH0v8QKc1h5IvJ/+eOPzz22aTIqkfRMJX37OsAIMlN8sNf/mrgM59yX3Bi+LWRJZy9TPJEv4NBfT6IRfSPS91nlieuG27lj7ksvMKbat0UTnNQu7PazeMwEPueYVDblMAhiKNkQM2wJk35xIeprSNkda2JGb7wyBTeNe1L5W3eXVJwv8VX+eIGUK9BPfsWH0UWC58N3NAqTUR0+AuU7Z3mLRCQeMBF97Anfj/Wwh5MEvFkI0JEfHzPyxbEqc3abcb62dPAu65ZtJAp11yQfPDTgdFPfaZ6sP4l5G+RKrAxZ4mzWP6hkig16W79Kv5SNGp8u84gImFbPIAhgsgEI8RjxnzLX0I5JhITD5ZT+W3Q0JotivW8pWoevu0f3hh4o0FE9pOdKfa9OvrfdQqfO5XHgYJEF4CZ73SljmkHpOPpigMmcB4R+SqVQMIM40ngUHXv5RftDEWMxVCRqgWNFgDoQVf3AOmk3POP5dKDMSHLIytBRgZc5JufjmOe7hlyQ4EibYv/qXORcu7yorWZxu/2IZkeIekTWvpiUSQu3pKj53gQ/NZ9IyPci0cfUUBQxgAaPmkwRbllx+cvUHC1fz8HOvP1585AfQX/7c/eFaE9iSz1hdXiCG2XtXH7t+X98JVCDXVtijB1AVVfBGbR31dl+Nd63dy/uvJ54/0Zpb1LOXhasfrncqYzG7KJ9H5ncXAGSOyfVl0mZ49mux59RVpst+eaeyMFLd99C5egFEMW1PMQNWMQgTcFCMqJfzVc1GqVlZbz+fasb2Jtgux0RnAcHq+gnEqv/l+aImSBSG1O/yYgmULPu58F4y74UDQ7FkO2wa8RFJFm7wJeftceaP/xWYJCW8cpKr5mzrguhgpFRc0zzvioYUrG50C3ZTAGzM+6lKbNjmaIvVZq4hHX2OCSifzoL0vKlNv6ORzzoi/iNM15yr/LnkuE2uL9UJmjEG5B4twxIs2wDDWxZm6QYeYPZuI66rIWkW88FQq4Kh9KdyYKUYfK2qSaswyuaeWb4ZUvGqLEod4KfHuWsPcebHdf6wSPhDtJqv+y7cbsJ9b+iRe7rP2RlbjGVMs4If6bdEPWmOh7RkN44/S4v3G2PwN3/9N/ynv/4bjm70/MeTJamPKKQZ3elnD/ak8sOuzN2Q+5lT6LDahWq9zuebtjZXsftiuKsLpiF5YDf0ArRdrWXZJOEPNTbP9mzP9mzP9mzP9mzP9mzP9v/f7YeDlLQRVd6R6FKNQGvIr+Th1JNK+FKRYz4iYdeuifVKymeA1EYmWIVhi2HDcFrJMGQsAzLIOwYijeZbBPnHibvT2HHvuKREkEgc4MeA1ripsAmz2kjQII/xBhA66mbYeeCu6HniKpza6Nxot0/sm3B4R8eG+3uwEZ13tlej3eC2KQw4to13iUSY7srWSMr8YFtoGbwxIuBbklomJJBhMAYz0DGGc7+fjD4wPzEfQSl9nhzHyf1+0rYb3Q5GPyZzQgSAByqd4+z0MxKj3pU+EhgAySpDFAm5YcOwzkyMYUFBHWAROD1ouJs0UMMTHBUSOI5oBHJsVEJ8n+A1knmme8jJxfk5w7TmDM4ZHI9OCrrjomAOQIWm1FdJ/I1gHCJBRdoikWJK24EEKY2R12wBdopEkkwmkt5tJi0qwCwo275nICnYdgLkFqC9boa50NrG3iJ5aNICeNIyqSLJ1JMBh5BbaGjbERmoeFKOb3n/mJsjg9UqzpaAgmGR9CwxLFUPNgAzBmfISgGiOyEtYwF4yWROL3oV95kcmuAsYGstA00OI6VZJJLBSKP3MwBnqui2RwBUKhmbgdFKcJgnc0sE+MwrMVYApQjoxCKvuswMliS7kWcpX8mPWUrWhXGq6tVMKpiHFJKXJckkrs1w+WKCYgUGy26NWVXvCC3BbjmXLW2TXCqpSTsoNoPKEZDVeX0S6FQVopr2abI0JGAkAmAVTC3wTNiNqtQ34s9RMVtLMxNJQMmJuceY2izZrvTXNdUCeFWN5newGaJWsm8zW1xVwBS71kykVHltJTeWnQtmgplRYDKBSVx3ApmmrEuCEivZiTOr4DNwXcG3SiaYx58rcOvOZE+olJLhSAxm2IwEFUnakZoXkewL1jHFs1p3S4mPYnDIBKtMKBETaKU5B2VVy4uGfI8NWMmkwlY2mmy0FmtVUEZJ6nhJXuqC3+UalpIropL+Jb+3ApCac7AlSGkljmwmHZxYT9uWAGI0mGEIII5OdrF4b/eQFov+Tva/NvMmmbxsDNuw5uzAy+0Fub1mEjDsvklDfKOfkmM94EUjGdmFM5mjSNDzZiHpiTQMON6N172x3xyXzqkn4zgZohgb/ehgPZiKGozR6M15lzsvt4a0nXGHozvv5+A8BtYF7AQ/6ONk2wJEoAwYgp47fTgkE5kZAULO9T7GFsHtBMlg0NoWa3oYo39B7IykCPDSQoJub/DNpxb7+zHwfoYs57Zz9jMrkw+GtpCP8GJsAnzjHCP33AQJBr4gV0dPP2wkiCIAx2hImJ0mdFeObhyn44fgx0Buluu6sVpZ0D9U0DrmetvDj0I6bXOcgzHuEbfvwjg1A/0H5icQ/lMQhYXNUIG9CZ572xjO+Q79/QvffX7jP/3Hv0YYmDrWQ7pjBB0gwwfHeXLcB/0Y3I+D+/GO+2CMk+6DPpL9irDB1/SLX4Aekv4dknIcUwqybIkmyMoYnp8JR/DBJgBzj1PRAGnOBO41Mf4TbLJs/oIFJKsAy4bhDq0kLck9JfDGkYT1/H/tO6yE6EzmcLGTepm6kbBxnGHBs0nKuE6AGMF+5Zfk0HAQi8RQK5BtJZxr3K97cIGSHbwniDZtlDZFWzJhtgvDqIUfJQV2tGCsGxjSBLkUgnjuNZXUddJnnzufQPqA4ZZVUiqYRz1ZM91HgpQs2OSGp5RtzrtMbgbIaqBqnN2mb7aYpWqP8su9AkDv6fD5TLDaTJgNL/8iz5M1dhNRkQk283UYJLyUGNOaDzbHu4Y53n+BClYfcVknkmcLnV8s4Hv5MvVQBQCs/s8hD59v7u8FmpuXn/2+AMUroa9azElLOrZARHnTuXbq+bxm6Vw21X8L2NAmKi9XWp0nLpcKMI6kfx6/UInPaoIqH/vYk10mx/6SCF0QnvKFmX6sy/p7zsparpc+zIUj8HBhSdAaLLC5e9rKx3Ue8zmfr8ZrMpVUMKEA9fWdGifhCtYvAEV9YN5nPqLMs0CdXHQNODavH7PPEqAyz5f45bmvNlu+6tMCCfAwj5l/Lq/ep6v90Cba4fKjume943yi+GWMT/RXPaPVe/tlbl97/3u6b5c3mveQh1cs4EOdT7j2t6w3qzU6b3yZ97FeeLx+Pttc+XVeK9tf5wqYZ7N6m7z5TP/PfYm0P3nciT56ZMyq7tY8m9b3prrpPDfKmpNpK+T6vPUusi46mbOudiAWBREDqzNtnr1ksa45dZa69k7ZBLnsnV/1oa+1ilzWQwGhc24FcLTOuXH2MBNE7XEei0yWw7L1+IJaBDjd00dKJqbcJ5qkNFtV/+V7hZRom2cvx2h1bqnYUZkEC/bEeX7NITAJlh3VYC0/ZSRjacMMfBgwQi46/bfTO3sL6WyzAOb09Nnc4jwvlz2pwLbxXAVEj2cr6W6V9BPRCb4Mxuk1L8wdsxMsCixFhO22RzGHNhzh7J1+9ogvWpxh3Fuy9EbxgtkIv6WANrQ8v5B2Nffe7Onq2wlGnvM2fKJhsWbOMThHAJetC5qA/T/Y0eHS/Ht/AJSUYI4xdSvfC0aH3m36OhFHCOYpKR9R8oKS4Oj0p/oBxjufvyTregGPnRXT8CWLW2eAbinxxoVdvHyIevb8wzSB+VxX2zxjIEBJmgaTbILBrQBJtjpk2lOZ+/PcKn/bXvJsz/Zsz/Zsz/Zsz/Zsz/Zsz/YjtB8MUmpNZ5XxZEyxEYnKST3MPPxY96Tkhz2TqZEABUlt74gNhBTTyGqVqiwdWZ0UB0kPKR3poQFO47SoHopkaSUUNJ9jYCZo2+g2kJEBm/PkpTsumsHQjWFBgS9ubFsEV/o4Ihgx4CDlzOQlkqV+0M05h/N605Ck8oH4DZGDcYbUmB+dfX9l33b8HazBpsZtb4zRV6Cnkgz5/j3lLYo9I1h/U+LDLOiTzzM4Vsad43jHTein07vS94Pe38DOkGk4e1b834F7JLi80chgYwt5NHbFzx7SXRbsAMd5MEYG0aySE3GAxoVhIxhlMqA+8JB0a5bAswgCxeG+E6GnSCiIkLrrq1o0EnFxkB7WJ1gkJL8kYglW943Eu8wj+AohikpWlmdgnEwAqmMjaZtVIvjUglEBs0wSZLX7pEjPav2Sh2sZJBNJdiEiwZXzLgKKKd8hG6cbpgFyMYxuzpY04qgF8CAroyVzCcGYtCMiNGC4oLqxazBoCB6BbmOyEmkmnZ0eoUSVlH1L0FBWo0dVWAaYzYNJgwiWheRbVB4Wa1FVqzet9R393FqLsdOQDaqAVgRZNJkeMuSsgnkxIY0EupXcXg6cXJkQyo74TCxpylvMhBpZOZ3jSzI+TfDRlBeI7w+vCkOdgelKCES8OQKqI6vYSNtkw3C2oAjPAsLhCb5ynUnICfjI+1QUeL4j4GYZtI45XlW8KwiUQemKIH+dVFOSWSCTITNgKWmHqx8lWJC8gH3kOqz+9dW/l+cKAGDO5aKwyAe8gl9KNmRVMa9EXlUKc3mn+vm6xpjfu/5j5skSsZIAzF58jGzGc/slmZSJJ9EJWKqxdQSkZcA+E11CrHWVObcsk7OaADerZKNn0DgZFLQWaiayLd8nU64JvKrAZCYVSm6lBlxgsgyqxz8tAEskMAE6VznUYBzMPa4SuTmWWnKDxSaQyU+3knmJuQklpVPye5rBagsGlxHvMVUWOWMv8lX9XFWy1h3dEowsYX8sWfKkCcjg1jZebhu3W1RBuzmnvWHqDDa672xyw3AOHzCUIYr3I0BAIjAEG8bmYTtFBlsjgCHnzusZ4Jv9dsM4ghlPXzjuIVEk3NluoH3nUKeJIf4hQL5D6APOfmBdGaeAnwFU2jRApjqwwG5xHweKsG0bw4whnvRkZ7JRtZDBxRjdEHFOg6Mb7+dJk8HWbnz8uPPxm4/86he/5JsP3/Cb3xz8zd//A999/i6AVv3g/f7GqeCq9B7j0MeZEmHEjushoxoEJYrTEHlBm8/9WmSL+TmMPnraaWPbWvgcNN764NfnnS/d6EeDM2RKkcECKdWinpnBH7XNhCVCN+Ht7hx3GH3Qz3ewc8rVvt+PlEro2DhAy5aBi3BaSNBa74yu9GJnIRishji7CC9tw7cAEPchjA7NDLeQdDssgBl9DLqdjHEQEm/1rMVKs7orgEVhO20YeDCCDPPcF6ti29M/69g4w7/1TObV3keC03KfK+BEseatZO5lH/kJtlYJ0bLUEnsUmQx9mF+VDJeVPIlkr89PSSaDpkMgtcetuTqTyPUR0ifIvuw+wn6qU3tqydy4GyrJlJeMAxOzYgTDg0nK2AZwvJK2Y6RdLqCTNCAkHIWT5i3YML32qgBHy1CwkFqxMdh0CzDqiDUvFMPOYkwh30/yJUeezSJXm2lmt7lvjBFnC5VIYo1MWNooIJEFA6qN9LksE5wdtzOSm5Pfweb+r02jSCL/F/KfNh8yAK6VSCvvPRNtF0CfRcZs2YJESLj3uEogghF4vH75dzWn/CJHJ5dZMz8S59oHWaOce+CFIYA55gnOtXlDyoEvkI1InUsvfio13+oZ0oeu87AnCA6ZgB7IQgc005ET/jMtZFxXvgKTL4C8ptQPCWJ0hFBRsoX7spJBvvitFsn4okKWCbqIe5UPViCwCUbKhWa2/PhrX9XaId81QAg+mU/XA6xka4GnwqdMu1Bj+vV+NN3H/H0ByWplCzF3ff2c6+fzGec41AytIZnJX5l/XrOKOVEupQM57cqOl+VbTFUxnx/BpRMMNdE3skBxrHm+3n59bj3JHJC1J1Eudvnn+XJ5fphX89Vn+Npb5lxOGzf3nDli9R7f991/a7vYhfV3YYJ3rte5ADVEeLh3boSPa1jqutczhTz8p+4ZgKjL+0/gTm1XMueHX643gUuzUCAtohXQca3YmD822QQ12YWK+q/GHK7vtqBLy5hUPyzjlMeC2BsV8kQx2VkWGC3nRNqe+UVgSuNy7fv8+zTTvtbipa/r2lemO7NaH/W7VcgIYZul1rSmfUy/LWy3gw1EjKZCa7DtexbgpL/EiCISN4I1TuZZLOxQAmzznct+NLKvpN4k4wjJXocUM63jYxUp1TtaMerIFoByr1N27E+Y4nYSNNKOezI/JcjJMdQt2J1ZoF1sJNtcjJclOL3iq+4BhFKEtr+w7xsfP73w+vqJ1hrHe+e7z2+4nFmsZ4zR8fOckuXFgl7jGUVClnu6P7ADaa7xkviu+Wrp214WEKgzXDjdON0ZJlEXkW8o3yt6uFrPP0xz4Did3gOQZOMKEArJZisGKbf0URZAy63O9pbM5BBj5UiCv2RERFCTkTlASbldehaelpyeFQhtUAD5WD4J+L7a3uu+N32cVcDJ/PECZpuPWaR3tciz92XuWt/fSnNvcJ7t2Z7t2Z7t2Z7t2Z7t2Z7t2X7c9oNBSnvSFFdgWTKBG9IVmvJcEejoPQL0gQHRC/t/MiZlgh/iQNtHB8gEfMiTrCBpJNkEaM1pBEjEUe5nZzAiNp5sFKZVGeypUQ/kn0WcI/Pj7qB2B5St3ULy7TDOceZ7WbIRNLR9iGTGJqgZ+35j327Y6Nxkg9YjUOJOazuHCG/HGy/7S7BQbI3R4v6btui7SuZmIEYlACJ9RNe0JsDIqpgAJoUMg2GjIxz0PnDToBEenTEMPTVYpcZgSEi/nPc3vN+xcad3BQkpGZNIImwZHL97R1qEYM5unBZJPhtVlRrJljEMyUCO5uH4HJGUHdYnI49ZyHE1JUBlHu/lRGXZ8AVyM6KymJQkIxMf7gPr0U9azF3olFWJuTAqDBxJHRsRiEoAlGdlMqZ5DYnrS0N1Q1vWutqJCgx8sZRIBeYLmBFAimIUW9VtATaIROOG6A1RQobNPOaxtpiOI0BFL/tGHzEvmiq3LRhLTATVPYCBTUEbYwi7ghAsNDICCNiAZgHMGBZrka2tdIa0YCnSDUxDGmYMWlUoAtBwFXrvBEX3yESULwBLgZsSbKK6ZbIUhnf6UYm7jdKzjwB3JgazJCsSDauyu6JkEZdcwUMbRfVUxZoRRAvmFlgGIiIqqyrckSYVb6ekTBLGFTZsxLNpUKDMxIPZCMBeXn/yIA3DBE5jySR40KiveG8GciNOTbF8rWiQT0YPPKvbuQT4JYBdKiuI7JkQRTIseklOx5cTvDUigSoIPRmsyHUSklcZfK6+y86r4LRpBN5WMrjGJ1625Ctm8sSX7ZJ5vQrGKSWROANfDsGG5awA+SW87jbvWVX+MzEw+0MyMcCcM5X8qyrsqSDnK9HgHmFRdUvWgrpvyIgNi2rXSJLlPbwYqixBmLnHtAzo5z/uJd0TSWlP8JYBapcA/WQLqaRH9VsaXumRhGywtX1Wt6q2sPsRqV8fp835aR4AnpHU85UQjAQ7uK7El88VEHYbyYryfD+TAPmNESAModEaAcLVWC8BtAjGNElQVQxXSG1ZytggA9md2wb7bbDdjLf7O/dkAdQWMkLn2VHNxKuEgKzYiPWVgfjuASA1Nw6CUUR6+AK0wdEHt13Y/TXtkiGHBSuSgNMZh9PEaRLgoy/vO2y3AJHaifhJVTCbdbY2MBGGKSqDYcLpzi4j5J3M6cMZYyBmSAKMzRo9q2LdoB93VELC6/XlAz//9DM+/eIb/vIvv+Vn33ziu8/G3/3Nd5zDud1e+UYb/TgY54FuO9Y+o+9vvFvntJB7CnLKjngHE7YWDCs+EugmG0MHTSUkYEeA7yDAxyFbGsxDL5vH8HuIs76dyvFuePoYTkfYp519DHH/iC0D4+lMBMjrMM4O/XCsd/r5zhh3hh044fNUsmGk3lZzyzE2RpOQptQG1sIXw3DbMR0cbnQ/YXfEYzzPTOgwIpFwjmMCOUaCN+TCGhjAtAIPCmME2BqygjkBHn10zp4/H4uhZiQDToC1Y98SEjwhJeATibzygarDSlKuEg1T9eon2FR9JlCAabfisJBMe2XzDSopOJVGmDnVmUCZDBG5PyyAqM59oTqncs+StnWBCUaCb9P/zIRqWXDJQgtsYESxgmuovpTkSUs5MusebGj1bLm3FhhFI4uNNwuwEQOThkvDrLEVg4Qo0OkaNkpU8MnkUzZ8ASVyp6GYTiLZuJJZcduxqvXd6MQaKYDsmNJaUqX5GAHem6Alqz0ygNfhh4fgUdzHZxHDqPEVL5JNKJ/D4hmmnImzEnPuuBgFwk7PPXOemRTMe1gCxCtvd8XoSW6ek1GAsmJrPy+bM91LX0nBMnnF2lTzQROUxkzo6jwbp7MS/X3xeepKnueJmFj5vtUnMclSxlCCrUo991qZvm9142IljpuoFHOiYPVcuWYkZVdDijnGGXdctyw4iOIQd3A11OP+Jf8zCYkgJrGVVLCstUixgug8I9V9ZtdQ3b58vLhFsg8VK1n59VyBL7X068+P+1Jcc4EbZ0I3P+v1naIcupwn1nrKs2r5nfXduk6tPQs/S68Tru7iPvH2l2m07BFrPBPifrnXw/FhPqTI5VXqcwlI+5ot7NLJl4VRs1JAHC2Jsnqn9NPDY3icx/69LvOHZ5gPfRknr3ecf7v0Udnsrx+1viMPl6Ik76pn4tGub7v2w/XZ3+axlIG4nm3W3JwAv0tHO2Xn8kwzH4o5b92vc1LmflP2+DoRLM/WXN7vEQpQJ4vrc1xH9zLf530CkLBJo9jUUJ1j+vCu+R45DeYzF0hlPZRznXQ1XtEP1Y9eyzSfzGc/IQu0XWdGkVpfUMUli1Uuf2cpZ5u2C61zTcJ5xhn7b/oGlnsBBGt0VHFZAH7yvQDGaeVa0PP+ku8iIgyLWKOzRYyIOPes2pqI84hHHEgUzk5KvmXxVAJcRCyBK/m92hctz2ESfRKSwW0W6cUaTR8y45mW8dGad7eXGx9fP/Ly+sLttrFtcJ7O5893Rne2bSPiEFueATpoQ/vBeR7BGE6cE3ugVKOMUGQyMIssMFbq3WecNubRCnHEHAimqQTCemO4cBwjmOy9E9G1kAz/P7LN2V1AW/MooBs9/PGMn1kCzMtXCntvKesZ5++wUSkPCHPPict6sIgRtmEUS7bHvaswzJ0JfErnI8d/AbgLVFvM2LWneQIQzYr9yuZLLvs9lykTMjkfNps87lFr77nsU8/2bM/2bM/2bM/2bM/2bM/2bD9i+8Egpa0JSJvFkJ5yS5GA03nWiYBCSzmKFegyQLegXhaJQHYfPZiKRWYlZ+TRkzp7BsuCVUkJgNM4z0g8K9hpyWgTgWtpnon9FiACLO878A5f3h2/CbJFMjQS9Z2RkgvnGEGVnKdYEWjawd9pp6Pd0JfB9hryMnY0XF8Y/cB6Z9t2uL3gCPfjPUAkW4PWItkqKdEyBuoBThnunA5NGsNIiR0QH3jPg31W8/Refx4hyeNCt8H9vEewfxBJMwIYZBKMRWMMojj/xJKRxzjBGmqGeUc8PtuHzeBDVBSB25KjmrFdi2T2GMUhJJSklTuME0CQpohsOCGx0rZgtulu6GBS+Nv4/7L3502SLcmVJ/ZTNbvuEZHLW6pQaGB60LMJhZzv/3EoHLLZ0sMGGlX1lswM92umyj9U1e71fA9AAQ00S4RhQL3MjHC/iy1qanqOHrWj3IfFXGlZYsx9z0N8ZBQ3DVJEKQk5MOfI0IcvtZkIFKWCE0H6iez5IHyoBFgZkzdBGnH2LNGhGehf774CVTMVvqqMRoCWqhug7CPKJyGhGlDZ0xHribms2miZxaeqdFW27cJUobWGVsBPO1vf2JoHKc33CEK2WEc+jWkWalx5P1dh7HvOpQI0BTJjvkkoUTmZ+eVgGiXszALsthHkrzGTiKWsvjiXaWwq0KIk25iWYlmSwe8MnKy6V6kckQHLQy0+LEUQoIRD8aUUiirodwSS44sZOrHK4vcF7KxgS6kw8VVAuMaXCOxERrtnYFSosgUqiZ15vVeAPu73tHupalH1V7TIKWUTWYEny+u3iHAteW6RQwWq1KLqyiFTH9cOsh41yxchc5VCq8z1CoaRKl4rO88LcziizXL8+wCC+AowqP4OBQFVOcX4z+GrB9hi3UOkL+JPgUBB4qqg5iGjXgBDAbAOlPR/ATGrT/OeCw9Y7xnPGf0dZD0c3I4MeSVLlZadqL9ngBgPQmaskygfJU1xghhUJW3qeSsAGCDeV+jKqQ8DOC5i4UziZKoXecXsi1yUa8MdJQClmCYxP4MsmkBgrR+poH/OqzLbOU+qFKsUmE9le0eLYGdCdHMGObgFsB1B7VAB6brFupsO9CBWtR72TgSlI9YYY7J//pl99Njn2AJ0bQqqSXR2fNwRdlz7gipCMNEwNbqGasd9j2kl5mxNER3ARiNsoiGMWxBWpIfNE4TGTH9lY/IFYTBybaOG6ohAv/Wws9wiU1iEOWIMULAGwzaQfjBBhCQnEaUwc1/beqdvjZf37/j2+9/wzbffcL9Nfvjj4I+//33s4bbx9PzMy/t37Pc7Nib7ffDp82f6543PvWe674hCbSI0aTSUXsCIwNRSmbMs0xTP69MJBUKwBJunTRqTLmWrrnjuW69fXrH7J9S/AN8c6/oBGT1Ar3+7lvYQkBZ7UxNjjhs2B2Pu3O939n3EGjeYeyjXlNrdbnuoZLb2aCMsaKuGYX7Dp0VZWtH8tzM8SJ82DUlgZvrAZpB5GXbYWw/7kGYDcGySJKXot2mOjR2b+/LJVnZ8AQiJGkpLwqPFeAukP5vKpWmvDtW27Kn0WxD9BWj+59RUWqpdFaASTmWRwaMd+0DRSqo0KBz7UvmBVoQXYfkNS/3h9Ge6IdmvsvbEOHPY2kvr+odfCy6e33OEIIpbj7OIzyAET0LZzCiQtS3fQ7J0W0zAkcMeAKVL2EroCa4Gsb1IJXMMitAe5eKiFxYxy30VsLL0e81Pe6k7boNSzwFyHysQLfzfiScBL7f73COq7AyclZE83Y4koViBZH4Aqzm9y5cxq/5O/5MZapvmVElncjyKQHFwCKLnC0g9ULW5HK3FESoVQcrvEaT6lpnkbVlzIW566MjY2i9Pky036FJHqX1T1tySKDGEhM/iLRRN0zAcZwmWPxPPZ/l+nmQHocrwxu2dICf78plD2/EgLolIqA+vZ4tSo1ldMOxdJXqIohIkSPMRPgg51t5Qy3LURvrsio3wqbz2FpIsoILkea0IOfm1kx9X4+indfFVv548zVJWWmpY9RupWIPnWBXRgSDjrVOfrTm0Wvn0UtaD9WlBjupFJwtT/qbXv2RxxU/XrTE85svhk9ccPZ7t8JHl+K+ylF9Vqmzi+TnrFc7KSUWK4Rcl8pZ778fcq1YgOukHe9mN0zj4+net/+yPmnsn3/Z4wtKiqZ/pwzM87kYPPbj2vTUmcozN+vTRCWu+/7p663FGqNGt73x9X68nE5CHkfWawKfnPfvynucEWeplwEN5t5qf1Pp/GDvSLz3IGuc7HE/7y7OVPDxHvW+RmH3RMStxJ4gStXee9sWypkW0rN+JrP2kiJeVeCY5ByTPY+dRi1c8bFucEUOptRInPP1p1VQ6yn6K5axIKlxGOfA6W2XfZl+ZCfue5bAztiMmqwRn5XOYE8T1TIKpeRo+gq855y5USUZ1iWQzyefS2APDd/MYM00ij3skbVWMAg/ycGRvIKnGLdqzrOrEGakMHp9P1zwTbCZlhCTPRUHGzaRLlH5p9N5ovXO5XiMBchqfP9+oHKimje2pR/8Te4tNY98nX26vvL4KPh2XmXEFDf/YdZ1nokyZL1XDWscqER9ThOlhT8sWKL72uvDLMinGQ32x2R1aJKh6rp9fenP//VoQe8Nnnkk6nxaK9cWZDj8iV0rGVDLEg5TFSBuJz1oG8Z+MZZPEIs/PWu2rFHm3zhGAJYmtTLnXfir5LBnP8OhXT3JZJYY9kAvLLNUGU7HS6upUQre1x558nfyer/3gv/fovLW39tbe2lt7a2/trb21t/bW/v+x/enl3uQKzWiyx+FthhLCpEUGiR/BDhGiXrtAQ1cANGSUI/DTmLSmoUZgBYy3pZpSii1NEoRQyVI3us5Q8dkCpVlBo9YamKb6SGQydw1ISqbhQxjuMB31xt3uoJaAtiwVHlB6h4HT+sS4I8OC+KEvTA+Ch09H2sR10LYLcr9jBNjSmqRCzkbmXiPJMpj3yValzgSQjqFo30KG2gybd6bfaer4iEDP677HodHvmDXuNrjPHd8rw8kY7PhuQTRphniCtuY02zMo1IigTZQe2cfEptOirhQqys0dYyINGu0I7Bj4bFEKQIwWsAhNNjSzerQ5NgWzlgHbU7BWnNYdZNJNGHsA40pLoGLidMwEZKdplt2zCnDE/wwPwg0SRKkCY1ZgJfpERQPwkQhCCY4koCdc6BpBG7OGKjSf0D2zkQlgogm9N0Qym1I67inLLYrKhdY2RKLcUesXBOiZ3q0o6k6/RKRAtXFpLea1O601tn7FmiB9Z+PKnEGs6q0z5o70K5spW9tSjWBiE8Y+aXPS2mCOifSNvYWyyRwzyp31AfOO9Mz0tyi3500Qc6Y4E0O7LNUpE2W3kUHGCMi1KounqQThQUA0i2zCaRaZc0IQhGYG0cUySFIqWRGQ15xDMeZEgFOEOY+1b2RGZIJOknbALTP+tEEqc0GWzJAwEpKKWkGqkRXwaRlkbRqqX4ElhDoO+VnVJHtUwKqC3+qrKpnmWnexzIZWNDDxABzMEm8vQoGX2FISlnoSQMgAZT3PmfBzBImiPFlmeGd5GtMgGGqTJBVKEA/DeOPjyAIGzZhVBs2lwsUZlC95cz9srRNRuwrQUkE0y7HN0HhBp6gimiEzC8UqWaBLrN3I3m1Hn4rn+Era+ejg9b0EwUoiT6oDS65fNQKtxPgYqQakofwWZT51gdBBpuus0mcJJIRCVt7DSykhbJUnccgkM2G18J9QsvKcs5Z9rbIobNUtmAfRKQgnFVgMzo67QU/VuBlkBR8swlHsU0lirTHzARZAb1NJUDxLlckAcVQrICprXIPQ1KAp7XKht7CvewFKKXsvYohua51qSwDQQV1RV2xElm6AFxmo9gCU7zfB7gOTQWtPNKI8HWRcPHuvlNz0sjF9rIC/0mLfIuY1xFpztkOdyzRA296YFqUX9n3QzOg99uExqyznHfOdxgW2K633YB7NyVTBemcfPRJ/RZM8G6SXV4dta8jtS6zTET6HaigoyeUZ7cb18sL3337PX/7FR17HzhiT+4S//+PPyIRLU66XRn9+4vr0nqenJ54ujUuPuX6/GT/88IX/4z/+R/7LDvfrfSmYbL0xRmOMnX2MUKGzKEU1qXB/2OgKMov7AsTmnGutWa15JDOBd6btzM+fafYJaQmey0DoaSf+e4Wsy4jHXGsk6DT3yNA22OfARyhf2hwZ54+1KAlO9dZCDWT6UuVpYrjfcQnfR2ULsMJTyXNa2OlUZ2oeSpfue1hxd4o6g1dWfdisOZ05JZXFwk82sSjVZwMtP1g7nl5hAAKp+Bao8yoVY8kWKaWBQi+aCmJBrl/gcPoeq7TXn20LxZmy7eKHWiNJOlogS71Jyj0ET0SK3UsVINEE9mzt06f3z+8exAmWnTpg1tqbijTbjs9Uf2bZldoDcWVO4gzgBUpFGeTz3p0PsQjGqgF64anAlyVDxBVsxJ4u6WO1KqkiaeNDJTGpQ3Ge8CD9FklpvaAEAqrZBaEIMEJlb8b6GFbwbSmEJahW5UGS8OelcpoEV03APchzByAPWTY3VSGU5LFKqllInt1caITvEhidpmrSYWUSbo7rJ/nbls9BljRKwFAUT9W/I0mBBQR6gqPHHDgT4moNssgNkpJX4qd58gDile2suZqlcrzOsbKwx3zIBVAjcQbSLO1N9mCRRESiDLWm8ykiSUbSg4SQymmafaFFPtL0rTXUYlFBJHznliqRqrJKXqo0Wp69nVA9CfDdMNUcx5RCSZBVU2VjWvgwwU5LMNctfW6WzwgCU0CDCHeszINwQ87o6jA/T4QTQe5h78l59PAjIdeHHUOFrBjBUZq5zoiySELne5zJ+o9qPYfFKILMGgc5PrFiEn4i7tTcqzc+EQYf7V1RA9OOrekn5wdYzxvzIfeQ9D+r8+Lxi9BzXLnm/lFiLm0fMW6PSrA8kJvw+o7Ukl82ytcHnXMXAgf4nvc4iFzHvlZks4e+LptdP0kbX2NyDJE8covqCf0YwqXmejxlvSJrZE7d7LleK9a0bP8atKOTiiK0rrY+WvO6SKMglVRzdHGO48kQHZc6+h8WwfLUQev5l4Jt3iPOHEnKKf/cQwk7xvurnar2z7OtDOOVa90fCKInemPcX+PcoplsEOqQx3oSL2VuPb6/5k8qwpI2XNcL5zlNQ6TIUm1RLPfDY4/2vEq8R5U7ThKuBPEzF1/4wHFkj++oIARZyPNd1t5ElINt5OdXnEnCPnYFGqJKb0qV/fWc0+6RKGMjztxC+ioiSe6dp37KvlGh9Sj3+e7pHR8+PGM2eb3tjOmMe8Q8mipbV1pv9G2j942tRxJDTfd9d3786RO//z2ZGJLxG1PMUkFbah57JDf4o8W1jA0UMakSacIOHvt/EZSphMr7nT7vyLbnOjrN3//uLVd9xo5KgciSjObpS02L90wvf/kX+a+Is9rpTXIvMFsrEfNBfSW2MVtrKwhHxtEftnyX2lNAUr0Sqhx0rfW4ZiYsyMnuF4GunmvZdtZYWRniU5ect9tjH/b1u8cklbf21t7aW3trb+2tvbW39tbe2lv7129/Mkmpsp8qi1VQjAAVLTNFWpMMSsbBKeDmOAyOkUCOKmaKiLH1TmV+m4XKQcSD8pC3AhQR+DFmgLEZhJlmNMlD5lKMkMyKGZHJMhviyj7zsG6dfUgo2JwyXaTVwe+kVMEM4FGM5oq2SUtQQbQjw9HZYDjeJk/9CrsjmzNTwrf3zk0bqq9ZimlwvQhuoSI1JKSYIyDSkK1hN6MpNFGmgc+dTSZz3HG5sntn2o7zCtax3WBM5rzngdZDRWnsYM7cjW5G84j1TjzeK4Mbqp4gd4zZHJNhI0pceZC3mseBOuSgA/4PsMihWWbAaUpTx3tWiaE5PNSu9FDO0XyWfY6IdVW5Ag+p7iDfeCigHBHaACoyQI9GZp4lTNXQNY9AVoChaQZkVPDWmO70JkEKsDtzOK4TF2N3CYKZSJR58oa6Il2RFspcnoQHS9BbtWPSaL3RSgVJhdCXyoB5rhklg04itLah2ldpP5WOtitbi6zHtnVeLkrHMIXP/boAsk4ndZkYLmiHNnba3Lm3gc09stAtiFY+Z4yRhCKKy456EDTG7gkigTQqFhsZ/O6gkhSMCPqt0g0VZMtgyxFEzcyuDGQfpQIzopOkocr0O7cjOxZC4CoDlZmaXdntngHc1lLFINWsKsAm+VyHxH0phmTwV+UBlKhgeZQvOeLOloyUet9VopEgxBzAJlEGMSM95rayRZ1T5qVXVmuUWZyc3smqTBpJIitSFyvASvU3leFYZK3SVYAVkM1/ewXNRLOMVoG+5PUqYH6owlSw/wBYCkwqMPUI9Mf72/rnAVbGH7r6uj5/DvKzQLZzeZUot3hcI+ZGBp2RFRA8PhFKDCvDuQLicYf177Ze2xOkzf46XnzBDApr/iw9A499J6OJQYDM50kE5NyFia3J+r8gewVRKoBjoUvLeR8ByxizHWwnVCZikCogLLWGs8SoQ6iqqaD9ABREhMaW87j6IR6zcqch7EPbOiJblDfK4KxSJIIsbSVFfUmlIRtsbly04R5k5VjrBhJl3ca8Ml4VUUW643ZDu0HruCgzy3m2tJUQ5JsxR5ZQsVAlmrcgb8qGI+wEuKqb06XR6EF6Hjv3KYw9+9oMmTmv5kR7DyKuKj7CIoedMXZx7mbsczASYJ9zoDboEiVj3Zx9HzFOLivo3NoTl+fGu+crT+++4eO7b/jw8T1dBpsDMxTyuk+uLxvPT42XdxfefXjPdrnw/NTYeoFAMXl++5fvuT4ngQoDDRBj318ZYwca0oVJlDhrSdiwtAXTBrvdl7qMNsGn4LQFIFvO0fs+eX3deb3d+fL5M7fPP3EZP8D2I8iVItlxWhP/8vZ1sPvXr/ewOxiMEdng0+B+DxUb8SCuT3N2smyVGEqqMNpgjCybNau0Uez9ZbfHHIjeg+jssRcqyki1xyiRmkDG8IMkqrFmJ5Pdwqcym4wRqkzTZmbIB6mji2BRKxYsiVIhuxeEd8oC2VqjJgW+zRxHoYiYUXLksM+xtg+Sypx/5qDCA+AKB3PIM6Hh2DspwBRyz6p9OpIhhPIxSZJ6AaEn+FQOO33C0XPvqz0uS7nUvlq+S943QNIkPwhpZ1nEA8qO1bvAOpeU74SkCk6Sh8yMMUb4RB7qcqgnednB2qH0oFGWMdyfmBu9AZ57U4Kz1Z9B8HaqSqynWoJiRKmvhtGYPoEdvMH0KH3iSbr2WBehFJZ9YZ57QfoYXqVjhCp3Vuoulv5KaLyl77iIL0fz3D/jvWIHjnldYGcBdOkUnQiM5JjPVCQqsHyBfalcsEgIfnSTE+VyYzyL8BeUzkWc+5rYQp5Tc46mS5nKsx7rVgpC1IQgfc2hcCETDF7zLUH+2HmD0CRZGjic7zVLKeJAKi4Gmb/FK+Q+jcQcawJ4Q0RpXRJuj5LScULL+xbppEUSiqaqxBQhyrjGWVuyPBNutARrPeUaA5wuz4KDpLHOBpLvf/YFa/1RXKfHuXF6bz8G7UBU8aNPT2N6kEt8Aa2nWx5klXpGkWVrHsvs1DMct17/8ZiAC6wvTzLL/sXZ9kTGqKktNR9P/VIJOHWfJGG61DsW+ai+lPMpiUfHHCzi9qOHfJwNYBE+T/9xP83pE4hdvb9uWT7tSaWM4+PZl48U2eM7aRvOzv3RjfkjX2vhUB6qOVVkyNPYnAb1112TtBtrzE/3rmc5/dxPJLp1Vgq3Iccw95EiRHk+lwgpDb7u62mLTgN97pBfuD7yQASouVR7+tE7p38CpQoY19U6a2SnLtWzLEt80N9Y57Jjbhz3lFWC7dw/eTo6PWYKE+UZ11Cy9FURHGsdyDHGcdvoK/OIh8w8n/eMv6nUaS3uEnuIJvmFUOhWY/pIgn3s2WNO1EMRPcraz2MO40CoTuMTaZHQEcSShmdSkkqcDWxGCfg5Yw8KYpGn4k0NWvkt4cuIZfkud6aHUuG0Ge/rHHE0PKu7eZZcL7pKxnh65+X5Sr9caNpobeN23wFo7ZLxUqNpJM9dLo3LdaP1SLTTr+ZW24S+vT+IU6HTxL7fQ+XJZalO41liO0vXVezCfVIl2WteHqvFo7wrYC7prxu3+85+v7ONV5rfEHnCH0pI/2s0/+rf8uv/krWdxFjkfjPTHVGiXO9kj88Wse9k28n9/fC5AexQOPSDNBo2u/yWwwd4tFuVkJVzIePpRba3ZNFZ2jfH1jpqp1gYZYOWXTwRUtfdznvo2ohYduWhG0///jUy41t7a2/trb21t/bW3tpbe2tv7a39K7c/naSUGTSqGmr5BngG38QTwqoSQwHeq2Z2vkfQLjKLnOF7EGPIkKUcyh4F0laGrGeQRRIkVNWvAlHKnI40Y85XQOmVie2CD+eWMvWoQNtpQsgb5/FaFZhCa9Ed6iOAqCpVkHLXTUKFx+dkv9+QNmh0xDv0Ddv3CHrcNwpRMbtEACszsrCB7xNxY3oQtpp2AkC+Ibvi6qFCEoXgsemo7Sg703emXTG5YXpD5kT3HRs7tzGZvuOu3F3w/Y7Zjkvn9T6QRgRciHe6aKPtd1QD5AySRAR3VYNYVmQO26PMCVRWT5WdU2y2yP6WBPDdmGPPOGyVUqvgueBjYjYyQhClkxa5QARaBrKJ+2jOGyMULdwn3rYg8mSASCRm3SjUhAjrWmb8BsEhVVpItRki6L5nBlOoAAUgqe6QZf+0RYY3EgH4KL8VwGeU0Kgs5wQMGogmuO6ealOKto6gQShoIdsdkRFl608IwmUTNnHwDbJUUG+N21S69yDMqS1Vpsocb7vhO4wJOpOU1wYydmwY0pwxgvSy73HPCtIEgBbBEo3uD+l4AWlBh2LJfmfptFwbVc4juUwRKPYKj5RST469hBpUzPcMPSdYHNLsLNBlqdtoQYyOJmmqssSiBKQuYKRAOzd/yDQ9AknxVPXA5o6NILX11jLol0oFCfAs4NcHKpaEhuivFvSxCGRxApg85xxKlbCcFQbO8davgICi5ARWlvL4UuoSvgBxWdmnyspuPweXqSBZlDoJRQShyJjnsFQRm4IMauuZBMUSbBQhVQny6gmQV3BScszNj1KNZ+CjgMsVWC8SWray5fW+hwJG7CP1blpqZAuplgguJzgqmeXohLpPgAb1oJm97EW088ycnUgqwElrpFjUWscFPGvakUUayEmlK4gnGfzMfWYROiQn+CkwSCh3aZFjCRKvTWPKJDgLEuU4beQqqmBlXEtKqS77QjUASJWymgt/WWFFT5tVe56hoWbkRm/C1hr34cyxoy0V8mYE7i1LWgkG2plpZF1iLxmWAAUTvAL+jlyUaQF8ixL7MoYPaO603kOFZOy0YfStA8bOBA1yq9mNhtLmZOyTvk1MGpEdvQeRqQXUPm6Tmxmfxr7KnrYWhKu2G1tT9n0PJSQ6KhO3ewThp3PbB/exs487Pu647QEuAB2HfTAdXAXpYR9dGx/fPfHu+SO/+e23fHz3joGg1pl3h7bRri+8PG+RsS3G01Pn/fuN9x+f2C4tXZNjggSwCVsT/uJ33/D3f/cbfv70c+z904IA3TfcCfK0xZy6pUoQcwRYPiNrWZrmLJ64BigjgOSeNt24z8ZPnycfPg3+8MNPfPfjH3n69AOX6yfQb4HnZTmWgsIvMIbHILb7178/2gNI/Q+2ZWXQfGrtDfpGaxudKNVa5cCkaYx7ZkgXYAbOqGC/hLJgk1x77gzbEU2QIYl25srMPWDtQ+JgwpyDfYxVGsLMosxp2esE5HrTVGfcT+tSD2KhFHDotCJGV/nAKillZHkwKSwk1Vhs7WNxqQMICTt/Ivn/GTZPNSotG537LByu+klLJL91/D7U4mpPjT/nLAUSrZ0+Lpz+B6uPcoDWnlP/PHyGaDPIRAWuFmh07l+xJOYIC7ROHFfSj6gyfbFP1vNrqiAeQFmVrsE1/epUfkvAF8BU1n4W7oMl4adIHAkuE4SGmLfxAuH7lK9nhGLExLxBkvRJcop7kO081ZUMTSBz4ugi+B4kbKVLqLRF2RqWmqAXebj2VvXCa6nSJatEnMXzHepHOV/Wuoh5EOVQyb0xfVMPv69I9GdlrkVqsJOqTfRo9J3Yuubhva4Zd8zbw5lcvhJymhceRKxV1s2T3AU5LsQZMhNx6rUi8SLn6Jr/tVuHL1PCNuHSBKC8fDDJ/kjCjGZ53fA1YkMRaUiWbRcXmgOV3EOd2nOszPAZZQtFA8RdKiyWYPTM+TuPdRRjujw/iNly+CF4nP39NLaHUUjVuK97/fShOmOkqpxRpKlKcMoPrxsWOTx9kvzcmYAez1v9cNjUwzCtk8PDHIwxrXv5evcYY3sgxEja88XtT7LRKu1H+vQrhpJkHI45sV7Ky1+u9eOLXLV67eE7cuqP+sihfFP/XgQZP/ov8G9/uPQxJo+w9dflYKtX1nvgHIA/p+eS49FyfMo2LhWp8/VPr3isiF9vZdvP/bDmeD2FHPd/IA+EFaFSFIpkFr/Kt8rrHcNUfZV2+jwP5bEbi8hS91unpHpUL0LZ+RM8zKt60jWDTrao9gXqHLrWXJ2DD1VhT8Jc2ZXj/R7vdV7Jx6NGJ0dfx3mv1Nwsy6cGgavUCMnEnzhTxRmzzqJVGi46133mfkCUcrY8w0jEaNKFDTG0Zb9ZSRZTU9Enx8OSaKuSapnuSSIM61clsCX3j+lwt4FZxThDSck8yEHVm9pSSTfjDxCxkTlHlvWdSfaxw9bPg7ScTgpo4+ly5fnpib5duG4t1X81yzt3aC0I2bFdh1r7Rblc2iIj/0OtdeHpeuG6XRljXwQqsUZlMUra1FnzyHM9ll3KpLEivEjGTaQSach+G8J990h+uN643u7o0x3pE7gsO1/L+Ne91X94bf9D3/inW9h6FSKpp2kkFmYSmLkvK1x3SW9k+TphKw5iT+yJtWbDaa89vlKCPNeGpIpm+Cgzzv5JpCubemxBtWelV5vKrweJs97oiNU8lJSsLjzvRfnfEzX4qz/9odvjuYx/eX+/tbf21t7aW3trb+2tvbW39tbe2p/W/mSSUgUWsQgwi2WQn8j0dLEsJxAlMiSYDnHo8gg+qPY85GXgcgpBHCnN/pmB1yBDkOBASNMWOWYs0kMQnyIA0jWz9GxEgGXCnJFVZQW694aMUAjyFsGbpsLULBjRI2DhJngSFNwmIpPWLvjYKQl5E8PpiDgDDyKICa0pernR2iVUi8aXKNlDxwwuDW73WwTQNcqZiYYEtU2L0kwtDpBNQH0yPIapYYjdItihE9M9sqLFMUI1weaOjVBokszQLrWHOSzVRpSuQfyyuXPnHsGTzN4Z+TmbASyjEmVwUoWlMlpFQ0Uqsq081Z0aTVs8bRFbCPWBUM6Juu9S88KERkt55RHKBSoLlGmQgFSdk4ME42OgW8/xqWCxo5WVLLoAsBUUtBinwixm6jCbGWKg3mkueBKu1Bq9gcqe928Mj7A7zlIa6Rq17UWivBSmSOugjljMadeOZpm11uJPaZG11bWn+pLSez63drp2tAcB7onOZcwolxARInrfUIFhEx8D9sbtBn0Kt92iVJ8NdGvM4eChIhVkvCCHzbFnaTFBpEWpP2IeBHMrgF5jrgCMJXnOLYhYEdD0I9CJgMl6VzM7gqjaEKL0XhAAfP2fJNnCvUgPpLpWEImKkBYY24yMNuYjWJ7Z+/G99cMFaAUfx1eQCLI0nHsGGjlk5pfw0xH0ibhvBDob8S6WJWDIgN0KGlcwdJVOEKa0BfIEhiMLOCv5f7NBlD4hFbnSBkYX4kTZGIeV0amcyT+VSZeEnzMx6EwQyj/nDPKVF0AkFZY/gtI1Lp62OUrsHQDBEYCXRTKq4GNlpR9g8EFIOgfpC6w5nv0oV1X/jXBoocDxXDEhOKlveM22+EZxhziCiSqp4gcJTibwiZ6AhQw6thrR6IMqRbRA8hXUO9CTRRrKLopMZ1+B/yhdeoCPc4L7yMBmW0S74BEJ0JkrMJykTo3gONKypKpkcnJsnNp0ybrbAkpjDou0IN5qY+s9+s12Vpm/VEeL/TfWj40d2UC6A3uWo8mSa5uD7HG/qZi1JMPuoS5HkOXcGiOJWFEaodQekvxMkmu0ESTTUNobJuATE0dao+E0NfANd2FOw2znPgZjgo8ZZRxnlCq1vL+q4v3CnDEPjBmKO3OCDW73L4z7js4Rqjg2oQfgwJgBnIig3rn0C8/vvuEvvv+Op3fPQQaezvXdM0+68e27F54vF9rzRlPldjcm8O6l8XTVUECJFXhajXL6G2wNXp6vfHj3ntv9E/1yRe43Wot+9zFwC9WcOZy5B+FKCCVGTx9JVXHZYl0V+RYHCSWgmzdex4WfPws//Lxz+7IzP73ChztcY04u27GC74+t1u2vt39ugLsC6LGKLx3evSjP7zpt61mmw3m938LHc4/3Ho6krR1lKxHEUtkvEui5z5F7AcwsYeiQypJtgRZuFqSk+519vzPmHmUxPG1PaDahSRzSpkk69BPxIm2Xk/tOlJKLtQULufYE/NJuFTyirTEn8bCU2p5TFJGyy2ecoQibf65tgepexKLT70pCCdIHJwDrWhtryzhAwsVd9SRHCECV7UyMUnUJtER/JZFnfSD9IEBa7eOptGEngjqa5VsC2J8FWJaySJI2SDWnAm7jmzHmqgVysQhO9UzuQbia6cdIM6I0MzG3FYpw3zQU02K1JKlaJqsUqskqm5W7IZZE4+CHn8hukv6YJPlc4rxnMwA34eT/nHwKTYASYm8cqaQZly/yzrEPl/qVL/As3vtQn0nFpjhkxFqXxiphIsfwL8L8WjFFWI714e74TKC85kkRavyM3dX7ncpvUabuQFC1ZBYTbK9yXQUkFqnCE/wOlUVb1w9htUMVMS6la25HGc4iSduyMRDlc6uEZfi0ObdO/osWECpFXk5/TJRWBARt9OUIHKVf4vPVp4ZPTZC9fJc8/1QCTYKtkdVQ58C5+qZ8QU8bZSpZIjBpe+IHEYPsM6/spPL3aj+Mjl+qMssESMYKSrHi8JNTq3Jdj+wXSi01+z5PdL+wK6wZ5Qfn5xcEkcMHXgBzLqtKXCEJRZIT7pGwz1pHNXfjOs4q83fui+rP9XhlK+P3xVM+UV7yemkr83zk+ZnDMa7PHvZ0PdtDh5cPGu8i6/rHmc3dV7+UFVUpQF3qJg+X9dM7IGUT18DlY1bf//rOdpDOMn60hqv697RB/gNtlUp7eP6HDzx2xul7Z8Lrse4eX7RG5Tgnne92vnz2nJadldXf1RXr2+f71Q+qHF/OnTXe6/UPNst6HoqAkba4fJLjcPewnKgEkdPbFQkj/BJb1zi3RVQiY20SfmgeQnDJcziWJbYg1PxyTcnMZStrjcc7OlXWfanJGeBV5jnXklvSjzNFxWfYJfE4+3iLWCOhvOkZ8yxVnagGH+8V79vyfOVBKCqPxhzzILOXVI9zkFnI2FiQpITeOr1vXLcntiqMrpcAAQAASURBVBbnn92gX5RL37hunadLR5sm0QVuI1TBe+dBxfBhjtbSltjPtq5cLhfuY2OfO9omapNmHqR6T2JzHJBqucb4ploVaXdl2ZaI5S5quAgmjX0q+4ySej4siFntYeP9R9s/5sP+c08UxySO/24dLhfNJMT4RJV4o/zyCrelz7KeKRN3IGz9UnGuHhBZxNRQOCy/LstSp1JlJf8ei+tsN2w9axAPj7LOa5uruQTLslTHrDiGln+Zz8XhW8lKdDs6tY53ZX7j/vCPj8Zbe2tv7a29tbf21t7aW3trb+2t/be3P5mk1HsG4c1C7cEj2KAhDAOeP8zDmBtRIisDHOvgRfyhWQLDksShokhPsodbBiMEsSARZGGMFayrCK9ZZbuHypFKS0Ah6sHPSsyUfD5Rpo2VSRPA6aT3js8KvvYVeglCSsNmZodZguJWJCbHO+ziNA0wzMaI90ezlIhSBA5zsDFAlX2MFahvqpkJnIQSkZSdnpGdnPmo4hObWRqiTVSVfRj7ANzpouw+cNsRGuINnyMIM+5ctBEDODEfKQ8vCYQHcaWUV9QdmyMC803ANQlfe1zDG972LKOSZaA0gtlbf8JsZ5pHqRX3LIflC7iIQHrIdJtYENSsVJZSel8zhKYN0yQ8tZZ4kDFn6kJYAVWKSgsQSaALmQWmGTioEmwZ+m7HHK179hZl0Jo2ehPERxB5ctq13pMwY3mYz8D/RgD3XBA62mYE8qWjbUNVuPZG3zZEg9DWdUMlSpVslyeQFjLlvXNpgrYNpHFpMQN0E8ZMlSOJ0oRuxtx35v2V1oV23+M9JJ7D5mD4QH3Q2GgysxTQnsSoHnNMD7DCmjBcaDg+7xmIMcbKmg5Vn8omNB8UGcinhRpLkuM0VZvSYoSSUgE/EuoCARhnMEVYhJUCfEhCWQVv2kKLchyXAlMQJCt50iVKOy674yc1nLy+ZEnB6amOpYo5NHIdSswNPIE/6uIgSbA41JOC7FXZpUooo1WJmHVtAWGCHQBaBaCOsgIsDO8c8I9/VdbiKYhvWaKQAxStKNOa73n/syqWal07ARtRXAv0UTRBqIp/1Zge0MepSwq4XIpTCanUeob1Z5i+BGaQUyDsCM5xwCsLiCtQWzP4VvuBL3DvtFNIw5kVyQfRzGtsoXqXgKE4tHaUF/Bgrq19S1LNIi4R88CoORdqgJLDkz3AKi9kuS+5hfqXbqkQlqTctMlWAfTKhpSTmhdk9NBy7wqFNZfIAlZtVCnUsJsZtFwRzfifJOGvJ1ApEuWu5u01iE6nMSxALUyj0volFBRsBhHVweaMcpVmkKBoxOOd5pL201EMdg0Fw0QI53R67d1ICHDMSdfKeE4QVJzpQm8b+xxI7imxpQtjdubY8RbEIrFGJ+7pHjar5Rzcto7tk31MZEZfR9lZZ3+djH2w73dk7GH3Fbp1mkf28nZt9OtG042rNq69IyPsr24ber3y7umF79498/H7K89b7lVm9Jvy5T7YtkZbBKXTAqL2qeOn26Z88/EdHz584MvtZ17vr+z3HaZxm8ZdDOmNpsrmik9PcmYAU6r5P+/xHJe0jUgqZBlNJ66d4Rf22THfYAh9ALbnWkqglQQwzk9+Ij5WkP6fBhD+iU+sKRhroatwuQhtS3KkahB42wYtSqVioZC1ibHLTHtcxIyZfx4m3D0z+5PMJaSved8x29mnMcfAxx5wlgTBSFuAeVgQlKDlug0Se+1rURrU6S3mXoA44auEBQ9fE4KMfZRMjTK/hwUk3neRQjQJmUGMsiJgFaHTnVVa7M+0hUsQxjKfOsu3wddgyCK0ctjjhxJLUleAB5BGD3Jo7YCiiTsVcYCjl5fPscDe8LGslBFIcbkqZeT1pH4iMsfYipzJsYueSgHAbppgbsstL4lP5qC2CMpIljEVX8S8cP5sgUdFGJglyyOxbrBjnwYJBTgc9wF+UCMDlKvzUwF1pHurKJPdJqHGKNlXUdJGa691X6VqSIvupzGpvTDIc0nYKVIDQWARL/oKC0xbdkwaFvJ4y384l9clz6OVxFAdESUwTyoAkqMgZWclxQ7DMBQ5+5h8x18Os7foH8utOBhYHPPg5JNEKZ08o5QyCDX/CuoPkDvSAgRt6c/Q0qfJHpbwGVRSKakVYUmXX6yqmYyQZV9bqWyEj9Oao7QAaClliPLhDJsT01AUFp1BgJrhv5tZjlOWPp8WY8PZZ7GDCAahjltxAHeasfydOhPG+qy1ziJdPJBb/Pxzr8m+fFwpV1XqzJGesx+nBecEph8zNEgIfqxfkUaR7YIYWOSgJG2dnu/BReNILCh7VX+XtDsVI3mcZPks6dcu37dKbp0m5Sollz5ckSLx47nqv7YG4TGRgYf+pY4050dZvyi/v84UJ1pNEhryrOSegP+xMNe5RU43Ot94/SjPQKfFtf66PlljxHqGY1zJ9z8pmT789uv9UNaf5d+s/l1z53i2x+9En7rI8X6nuXm8V5JE7RgDYNmFmrf58GtPO5OYDkXEsmFJ7PWyP5rnulJXTZ8m38FOvkDdsxR8zvNfVU73YO1v65VkRd+OsatngKXIFslu4+Edqox5DUednZCyATma5qgkw+8Y6uoemhHOQ8XhNFSG0NOa0rpWfOmskLZsnBnQIxZVvofGe5lbqMRh692aRGzS6zr5TC6SZCQP8maeNZtKJA1kwh9mEbtLhWWRRm9xttae8U/ie2d/RVvj0q+8PF24XJXW6jfhuzYJdftDSe00eOcBgqU4dbl0rtcLt/vG1nskMmoPte0q8+ZBPm5NVjxuqWLn8x3KyTUX5PAJJMjQ7o1QhYz8OjGD3Cse19Mv22H3f/W3hz/4T1znaPLwt+CVO5rJgqJK61uUXtaO2EC1s3x1nzGn0w4+WMPs/0XOTv8KP+LBh/JSEHXLJh0xjbL7YQ8yBWH9l+UbebkXeE38+mT6F8A6OwlrO1nXK3+n7E+6tdmzp70u/3NWkHxrb+2tvbW39tbe2lt7a2/trb21f6v2J5OUkJAu9gWIJNaCB6CS55dpIBplWywJOiqStbgLfCFKJ6kkMDGBScvDnmYGrJikShNUGbKSzBcJJRxpsg5jbnGMmzProqsEqQJHfOATTBTBkOn0loc88nPii0TgBCigqeozp6Mt1JBsegZ04rnGfo+qZhmwmjdoOultS6Unx2WnadRoj2dXxgIRIthLlneIMluKa8MU8IGNgSWKs7szd7hu0EW5jVsoyswM/E4LGee5YAhs3yEDsZkzzJ6EncoAn9NTASAznyiyV5Sni2BMAHVojO/YB5G5PhFGfjeCGNMPyWOhLRBFVbFhS5EAj1JzeAIzqhkc8xWMBYvyKRWAkXguzdi9ua//Sc47NDLlASL7O0DxyOociFfJjQisG3OBBCJa8XxULjlpLZSrpsUzCiAN08huY+uLdNWTdGZsAUTqxtaVrSVg0EPBZNOOiLJdLrQWikpb6zw9XZCt4bbRtNOvRidAdvR5lVnDJ9PvjP3G/XWjXzbk9U7Tzr1FP9zvN5oKO87uIV1eY6uSRU30CJD6iH7wzIhUBdst3scHQc+IQIcojCQSVGCjkqHVK/M+Aq2zSuJ4ZourghjqGZD0uo7k3zkC6VJBHFiB3gxK1vqHsA+BXSR4W8E+kaWys8Dp+AYl0T7MIwioVZKnJLZZZX0056ZjyRmRVEqTFeREA5QqMKeUpEKCP23MAnkycJrB2woQVVD1AFMT+Ej7e4SwohNC1SH7KwNd7mMFFqlf+QnQrro0sGx6W8Ht03zI4HtJ8p8DVjMz51dWZQYxffgKrnuVC9Mjqz5iejlnTmBJAS5CZeKeiTOS3ZLfmdGvXdsKWMYYVZBOVvZodEsEpFsFwJPJtuLtbpCKDVrfFcngf96DIHIGAOlrbiaskEBPEsBio0MaKBGs1SIlCQgzA/a+AvTmniSfGQpdOc6W4DX5TJl8uxQvXEsNoN7J8pn60ecu0Mj9MIiv02Dcbgi3ADhlA2YC46QCYkj/T0lyMY60LdefYzKQVEWcrdRDcs0gdI/yWRdpQdZSR82QDlgAAvdhiG5RCkiCMGgee7GY4WOGQpIGkOsymTbZipjnCtbZVGm206LrA3Aww0RoKLYH8dZwpo7YIzKz9XazpSKoLoj2DPJuXK/PPD9d0FZB7S1AzA18u9LaEyob1/aOD++/4ePHzkUyAzvnxaULW99onQxSF5imuYYKUFvLn9acD++vvDw/cblsXLeNrW/Y9YowaU0Z9z2IyV0YSTZ1c5p0xAdIvE8kn8cejnhMJ280iTKn8e7KHDBvA8YAu+N+J2WucD8R+b4KWhcpvEgdtVdX6a7eTkQ+L+t7vPJjO4L19a/e4Omp8/z8zPX6TN+eeHr3nt2MbXvCxh7PZJZlZ3POuzOxkwpO+q5mQdbdZ+xZqfwY67ut528FHApUKc6yQ6SK3vTJTHtbWfLOzJGNeWzkfTXGYnoBklGGV9JGmltkopudsu7nofrj4CaMAiAchtf7FmwCR0m9P78W/keCVV4ATvwm9q7jzwKdo1SKrH0pssNjjjwSFNIXOG5GlS07lFh89X3Z+SV/4r6uX3v2KsKUoGWovkgotFIg0AH5PrgvUiQjqUkU6ksEsIyTCK8s/8jxSKAgxlo0zgjuxzXCizgAa8t9uvZuPFQfymUyydLaYrmXx3VC8TWI3yqepUeKLOBLNcAYaxwKdA4Vo9hk51mVKtfHLwl0h3LT8hfzv9PmSu4wn6GWqQJeJJpMCvAqn1fvdvhwtdeRa2MZnBxzWTOj9skkObgvsHw9e/0OPwb+NIPr3zH+udZWaaH0UURYxNMydouccNiKh2uLFIK6xkikwMYkYUuQCjSJeEicK1qWBtLW4vcSZ+jeGjQF6QHIttwTmiYZp14rfNY5duZojBn7QCk7Qag+hssW+6WLpX3zte8fhv0A9IN0UqqqpQJ3AkDLPz/9/egTWKSU8gV5HJYHvLrm7nqGsy08/1uObSbn0wHW1uifn/M0nTjmcH133RZiDspBNvTyj8uH9TPInv231ESXlaJIMAf5NH3bWkd5zXrwQ8no1J9eP48XkLoex3ce+uixu3Dn1GMHjWKtN2pPl5MdzDETIWkpX3kM5+/5+v165zXM576S85fWWJ/VafjqLnIar/qSr/GRU1+Tvv8vn+/BN6vXrH6VSu84PdJ6hLTQ59ep7+V7Fn/psIVrQJc9r2+uM43oQfrLT1SJtV/M/ZpvSdpf9zEiea1Up5D1TkUWXb7J2tnamudx1M09On+fwkVA2QyhlKfXhlh7ZvbBo208jWP+fp0XMaYIYmEHXeu5Z/I28vtWvpaknWSdh9xzwytCXxGB3djdaNZyxJKoUn28bPRB+LLK1pyR+DGnx3lPBJvOPiNRMs6/INJWPLFpjxLzeQQIFbwW55vWcOl0bTRCUVsyGc1dsmRnkF6vl7bWyLE+vpqrp6kvRMLp5dLoPfaF3hpmfSmMrzJ1pG/iQTqSh/H+ysySfVk2gIzJZcKNWRBf3SbCzH1A16yi5uT6vi+F4Yp1edqWGNZQrwyl9+Ma8viff7SpRknty9ZpraOt07YLahOdoX4+3cHHml+ePs6xBuINpqdSlhtV5vZY5/Xh075P7WfxTrV/4mUHD+WkWiII6Wceqtaxfh5J857zd21D1Do67NyxvuIHS6mbTAauvZCTLfunu/StvbW39tbe2lt7a2/trb21t/bW/pvan0xS8pGgglSgWZEphExzgjAZKHNGHL/cmFPj0J3Z46oNqzJtCTBGMlIgXEqorIwRBBofcfBHJcqypDytFlDLBN+ZQ7GWQPlMgkIFr9mBjuoWhIxUDqprhZJFcFKag24R/G8TNrniYgEImSAbTBVc7qF+pMbu4HOCKbNJkF9UuY8B0uNgqoYmaKUiAYx5lsDzKImzgnwSDxNBh04AmkGqQZ05YR+DORX8lbnUh0LNSY0sazexHuCjWASs9zEZVs+zr8ADdKYb97kzXbDZcB9xX5sIqUyFU7pONm5xoLbI9p4JIpgEoQU/yBmltiRNGRaBufqOeQGmp2ytBEtA6UlMM68SbZZKRmc2TAREhk+2powsmdUy2FkZpxUotiSUKVFeLbLpZgT26/QuGnO18IIMcplHiaDeOiioOl1BLEharso+B9et0aXhBDmhqSJN6FuQxbbtwqVdadsTcmlcN+GiwiaNy/WJdrlweX5mu1zpvdMJaWptUSqtIcw5MBvcXj/xet34fLvi8gnJkga7G5sKcr9jbtznnanGbs5ehAMRtu3CbViM+balVHUExpgVNhkBpK5gchLYAKdlYDWJbwk6BkExg7+tJchYId1SgZhUnYIKf1VmJU7eo2SxD/KZn9QmKtCIk0o0qcZjpTgRAZ4KIFWZiVVuIufGtMHWs3wPR9DbMvhEgqaKLvlv5lzXCPW3KusymRkPLWUF8uclHS8ZpCI/F/BgElNIsktl3ssRDA51sBNwkn8P4l2QDkQaVRaoSEme/e5VViX7mJKyr9BhKjwVaBqBMY/+T+A/ujXVs4oYhVAlMcUqyzj2AjM5AmvVLyrgoQi3wAT3JFMWgJhzgiBPlqKApIpQBQzJYHZSYjOomTaJKk2QgVepMi0VfJS4tniu+wOIjXI2E0yYXiVUNAlMjrQWGbJpU0LNLdXzknTZtIOR9p8kbF1yLgQJqMrmuMc8KBt52MTGiiQTpLQuMLAsnxb2M61ulgoMuztNllqZVDBVG3NvWebQQ/ErF0rXliCr09L2zQIHpIKyuQ48xlfZ0zZEmSxtgktnEO8o7kkMczobzTUVChvDRyhBIYzhCaInWdA9yjGMEQpO2hgM3KJkndiMkpnA8Cpn1LjZjtuN5oLRwwtwY7cZ2drakN4Yu7PPnS/WspSDgDT6ZePleqFdLmwZqKddcQlysWwNvXZkC3W8l6cnnrpyf/2Rn7eN989PPD1dkjTXaNuvRHkfkNXznzkXFZ7ed7799pnPX96x76/hV6CIGNI3+jaR+2fsviNzo7uyzx0BNmSVMDKxKBvmUcCzVUlbbzSFIc5ud+DCMOP19ZV2H8jThLYD28PzlRCEmXMfzqdPcLs7t9vAvLPvRhOjy53eBu8uzvcfrsi7Ky4tSlbKA7zwK+0I5186vGzK06bo1uiXJ/rsXC6Oj8Y+NsZ8ZQ4jfIQkqJnjrpB75T4sygjajvmgyjsEMS9Ae8GTJOgBdjmolR9iTI+yuLHaBy4j1oRJKtgEJyD0vNoqlxwrzMpZTos5098peKGUxGI9+DwIV+5BCi6T3ST86CY97bfhzNxX/nxRBZ9OAey1z8qZUVowiyR4xUHIgtpvPG3cORM89gYrpLKAUqt95/AXltpg7a2SCQVJIPRZ9jBvLEHUjTmruLQkjkkoBaSiUyk7VMkZFbA8N/Wl8nHgf577U5BNNH2bKHUTuGeUqRsFG2WflSKkkMTAJQdhHNYkfM3yw0apyMjR3+E2WZS2TMCqlLha7mnMiYtByz2v9hqzlYgh6ffXHmAEec+XUmuet2rzr3+lr7lGvRylNQ+qbDSHr1ZJKyelwYThF7hWAGBcqvzQQ/HjwPOrH/UgQyQoXf8uX+RBaSnnzVHkWE778zE29XdKsSiVENbP8x5LqTHHq0roGbHue9NUruKxRG0Lf6S3IAFr35AW5USbQJMWAGzv9C3+VGlHWTnNPYIklZkxpjL2xn20Y+8mywxL2NIgshnM453cSeXU8EFDjUTyPFDEt3rtg0gWS9eOX65+9tWd1aNreGrS5KfLY3Q7gbReq+Cr/l7rnqUEVGSZ0yMe54Saj0UAOpmFh/kAad/z8sGoyLVdT7Ke9DRPOdlClr0pclP8ytazBJHjmGtlp2rmiS9Pn9pVznPwPD+Lf1HnoVPXA0eiwlqPp7UbL/X1WSTXsbDuVeTZNdZ+fDJeQY6xRh5+v8hi5/c77QdFyoouO+hC5VqdEzXiF/7wbqebPZB+yo7IuuN5Tdfn/RirNc/qvjUHeCAIBKH2eKejH469Cal+DbtUJ/C15pPAKO5rbuGaao+ndXHqs+grOUauiJC1vsr2nb7woIrlDhLniSIIV/e5WJyHRfLcGb9Y/vuJYKZ5i1Nx+EgMSIfQENQ8khmQLNNa8zLXhMQZ0WzkXqvgE2Yqd6+1FMkOsTzi3wfxI+MOdVaLw17mggiaSSTRZ5qqS3vucXkPEdRtKaQJKZHqM+JonsTgFskevYd6na6kHl39pU2hCdobrQnb1ti2BuyYKbJd4jM5R5bw22ne1lz6RTs5T9Lh6bnzcn9mWvitTuQkuGScUwXGoMrfmkfiikrGeTw9Wa8ZnTM1iUqVzGKUOujGmE6fTpuSJcMfn7XWXKmu33fYhzCmYTO3BzOUEbHUZny4Ni4vF7yV+r3zq++/fsdBGPTYH5WIZWjrqIbKIFsk1ohJxpEdIZI75rTDVvoxx/GD6KlrlXG6Z/7fWl/x1pV0tXw4Zn4+9o6KjZXr6BwqlJaxjpTPXfucSBLEzmv3tP+tWHO+x2HrZNnTZbfWa/xav761t/bW3tpbe2tv7a29tbf21t7av177k0lKY98jO6mCaDYzyA0sBQpLYkMCqyHtEGo7GQyJgMUGxIEYd6RlUNEauzlN7ZRlrQkeCUiPAG7TPFg2RCxUGVSO8ml2BJ3cbGV4zhRcEGn4zEDvCqQYNF0BSDMHaRmk15SwD2BiuNM8iQh58DTLMjUzDr5jzAUYIUFkcakMYM8+0lADUZA5IYM5gtOshShyglvKRDwINREEMMaM952ZpTTnpLdOM4e5B4ihLTK2k/Qz9sk0pW0RnBUEG8bwwcCC8DQJYEznUpVQySASHckgDnoBBruFgkDXzqQycXwpHImeAuAp0Q1FRIigUAW3JYNIQQRpJ8CEI4vdEkbSUGtqKivbSlSjjIVmAI8IelHzQo9gpmbJtQpuKJrz4hzAzb97ggca4I5q/l2F3gMs9DljvPLZhAArRZXeQ0GlXxrtstF757JdQl3psrFdn3m+Ck8X4bo9c9meeX73juu7Zy7XJ67bU5CNMpA25sDnZL/fGfPG/X7l86dX2qdPOMKmDfmyM/WGjBvTLYgBsycZgMiuTqLHPo2teSqPwT4tAAifMGMezOFQShJEEOTIlC1qCAnOHcHsdiYqZfCqsrUQYVYZtQqGx0UOMMckyBXBiwh8a3IELgsczHXrtf5XfCXmXlz2CJiW8hb4slluUQKKpjE3ijyYweGaF3MOXCL7scKvFSifqdziK+CT2eVpRwIInSvQ5ZaqTKpBsKys+QquV7DdMhs5FT88CX6HsTvWSvXlQ8Y1h3JABJAjCCaWtloqg89XEIy6RgXBMjCbhjbLchIghBxB93OwXyrAJp4y+lCh/3rmr1utySIE2SJlnYL+emQ1BgipiBWkHf/V9YGK+TtI2qG8do2DmUUm7CmwLkbYDMtM0RrpjBiqptpf9Y1X6bf4X1PFk1goFmBN07b6tlUHRqQRJ8BJyf6O0nvRP721Nd7qRMA9wc3YJrK8Ykv76vmuaBIcZI2Redh6JK4lEsDAwBapT5vSvMVazbVef/cstWMmyQMLA93EojKoW4IrmmWEIsg7x0REIyA+nEu/0Jonvu5JKm0EGdRCJakC8DP2ub5dEOJ30+Iu0yeq91BbQjBR3HbGvAVJREIt8YbTsKCO9JZ2JcjXohtNG1u7REm8rlFi7GIEvyhKNwqNrp3t0unXK9ul8f79hW8+PPHu/XMAAM+X3FvKYpzmtjz++/i9PP4o5+3lGb77zUc+fb7x+bZzNwftyKsh9z3IA57qP1NSOY80lIrKDLtgEkQCcVR6lMwTUJs0mbm/K8OVG8qYDb9t6LwQ9elaxrXD0u8ot+nst5373Xh97fz4Cq835fblju03/MtPXOaO6o1vPyjbb555376jPb8c4/orwe9DQYBlx5tC1wDrn69PPF2uvL4KT5eOjc7tCwvfm/vEbDLHYMyZpA+WPQtFr/AdK9Hf0r6UCpOqMn0uIu6cB8F1nhQvjEGVCnKTVGoLZzOs7khFvgS8TYKkUzBdKge6BfkpFJ2MQqFiDwkgDQ5icflQsfh9AVG+AG7lz7VZKRuU8swBeQZBMctJnudAbbRWBFqSWJYlraIlSJbArnkQHGuvqT8kfU8kQdPFlgv7BVnAaiHtZfeTsBIDmT8+CNVlX32Gf+jpmyJEyWJSoLNUkVYJkGMOHmTXJIMbecooMrQsEBg5bHO8WxKP0wHQfDar/Tz9U5Yybb2brXlTKi++AF5b5NljZ/Zjz3TNctAx52yGX2JFGbLwmQvCcy9CFxSpF6v9Ip/DD39Kqt9T0clLOSDPXbV91hVPwgoHH4HDpHr6PScWQw7xQeU4+z6pOXUqhyrHBVfPywO3wPOZ8eM2yxta4yLHPFzt+N4qF4asJIlSJxGN/6m2LOUWJV+1Kb1FqbetK9um9LbR+8a2XWjbFmSlLBdXR6NSorIZinA2LtzvO22/R3KLNGSfoCMJSpHsI5q+ucfo1flKC8ClpludJ04/r/WylDKOPj9G2FffHuf6Irb46v+HfXYNdC6DXCfrMw8TRh7PHautL4Of/PHzc3kt/2MvOM8f8bLLGnGH0z4n64GKBFDKZvUOwnrFeoz8jtRZ6fTesu57fpmyXcdDHcrGJ7KRn5/69G8HX7Of9b7HJ0+fPf8iQfcaCK9FcOrkQ8Eo30KOFVwDulyg4z9rPS1CwlpfxzssYuHpfouckz76Q6ec/r62znr+NS9P87D+LV/1L04lTq2z29p7jueW+r4T540a12OS5n20dh2APFeEjVUt0t+xT8TX22mWnfY9PwiBrM8e+1mVInyYO8CSeTr18RqXGg89kX3hsA1CEDxqNTvL7sV1jiSdda1zn1k9m60SnxBnCSTtfNlyd+aY4cutd011qZl2l1xnOb6esQ7VgwgZRMDY8zzHIEpOzxy/TKoj9jtbFi7vaRHHaxL90jx2pKMso4PEuVlzvCMuqDSVIJA25elp4/npyvW60Xoquuf4rfE9psuf1k5rdLs2np6fuI/wOZ04R7Jnn2c+mLdQCo1za+4T2b/imfgipXicBFrxJGen4rwowyX8qSn4FKTnzD4tIXMYnklmFgSu3WE3DZXXMbD9FZ0DscG2CX1Gssb28sJSYP9ndEdroSx13TZG35h7Z0okGkrGODzjtZbJbxGb5hgPiQQG4PC9WZYv5pId+0TEgk421g+CbLXw/2tNHP7eWXlREDTVPtf3y8e1+mcmRfipZ/y0Y+Qfun6d6/1s17+2CW/trb21t/bW3tpbe2tv7a29tbf2b9T+ZJJSZM1IfuUgnsQZJrOBVAOc1HZIKouAWAJg4FUuShSVjktHXGl0tAl4HOCbNGwYeI9Agih4gn7TE3AF1GgNfA4UZXpbgR/H2S6NMfcInLI0OJAVfMiDYALImOMGrSnaWwTG20DlEodRIkslFJsi67mnusM6NE4YPnCfWHyD1nQBCD6jfJAqTBsri0bFaDitdWxkeHCzRUjCBDxoQK4eMtyiCapFoMUSyMWDbCELZLHoByNJH8p0x7WFgos7YwxEAiiehGJTqc9UUCICUFFj3uI2tNZgTqYdGdxNemT1+cyMdCCVUKq0wpiGZPkzGgG2OBEsqeCVlaJSjLUjUAosMQEi1qc9yjLhzHyHC0XKUErmvOkBaCXfh8j6FfrWwI2uB7inWZKjEapLkv2FNVzjpzYjazzKLWwgmkpPgtBClrop2gMwuGzPbL1xuWw8vbxw3Z54vl55fr7y8nLh5fmFD++/5fn5HZfnK3270CUVtU6S/kVw2e2V+23y+edX3r3/icul83O/on3H+2f0FsoZn34abO3CbI40YRLkjynw1IT9fkczEGJzj2BhAmCeZKYIrjlzRJ97gksrcFppYs4qVxKl1k6hTSGDKxHIaZqBliThWAXB5ABoi5zlHMoSMU9j/FZMXCoTPrL6FqgjFegNZSV3mGJJavHMJI9M8Zh9BdRFkC1UwVqWzwgiSWlIQRBTmgrTAtysDEMVyTkVajlVJq6lApCJY+qVnBh2MWZnKnr5Cu4aqcKUQfYgpxwErAAYjyAsSJLrWq7F+lgGhTXGSJUM8B3jU/jBCjzqAUhUdp3kfCDHSlCYERgOdZJ4hlCSifUXlc6K6CZpf2Vdo1rcqq/7PZAWcu0W6eggSklm8WcguNZ3vQ9yzA/q3UoZydeNvYLn2cdS77zKo9Q7yernZVc8yA1RKlTpfcvSKwcY7gijVD4WMGBRMspGBH5LyKsZIg08Ar+ttQMsWzZgQQZHELveMd8p1pCuoKfVLMs1Zu6YKpKAZ4VZj8xYSVKrrxKukXnaUvVF83+xdjaVtLfRR01bAJcS41+A75yDmeU5W6spEWCPkWohEgTjhrC1fsx/IffUjTHvATbQMdtTcC3syLQgJQnE/moTvUSJm9Yb1+sFVdgdsI7QWeUxCBUmJMiW2oOsJptwvTZeXjZ+8xff87vffc/z84XW0848BHQfkKx/dhNx3n/s/PZ333MbikkoQPXPGz//9Il93unN2eUTTSdNE1j0yZw7eBDctixZWMBj2YOmyqU7l+5sfUP0wpDOzeHL/c7LuAcfmWNOGaGmNV3w3ri0jd2EcQ+1pnm7c3/9iXH7I59uN7a502bjj3ymb867f7fhbQub8ScEv51QdXl5ET5+vPD683teP33L55//wOfxY6gneagP2QwfLng+SUjbOsJRmthnEkKLZm4BhJnPJFCEbSpixDGO5fWWmlv4poaFyletEWER7VVK9S9Ie1IZ0lkezqYvsKK09MIGRd+0VCYxHCTWVpR5ZGVla5bvcgWxs337821hkhukT71UV0jbWqyyRQ45+nyRtChyk4d/Aiw2e/odqc2QYGVb284JqjlhODF2MXfSEJ8B0hbqSUWeWVnxHGBswbDqQXKVh2dhvWftO6Xsc1CTymJ4qs2mLVrA1Tp5JZAWflEpAEXmf9gN8+zTVNrD435V7i3spxzlkhZqmHO9SCU1P33Wr1ilT5xDqYrqi7hHdV3Bcl5jXTWB8wLhb5zGfanqSDlGsaa8CC31fGe/hCQwlb/J8j+peVESN+XfwfIvzy6G6LGXVdHsBiciSvlKj7ZLys9w8pmds/+Z1iHmR36/1Erq/+L9goCkWddVakpT+6mkHxJqvE2V3hvb5ULXxrZ1tlROulwuXC9Xet8ysedxlq1BbAJbzDUzZ7tMLvuN1pSb7mib+P2OSOyj93BgkTZpzCyt6ksRQrJMjrvhKmGXaiyLJOZJJFgqcocPushKReiQIn3mypWDoBTnhiL6HOuxXi/W9UFcOc4TLJ8o1g7H2BH+tGQJSDkRStZ11phykEVZF11kjQKW494ZJ/HjPUsRbl3zdP8FaYssJSrROLOHqTuTlM5Emkefev3ttM5DB6zsWPjHOOs9Hz5/fuNaO6dzHad9s1RGWc9zzP/1PA/+vpyuVf0fzyRrnOTUh5yuneN9Au9/3eWq/fCXJKajv84/OGxqvbocNz995vw+ZdePi7rXd9ah6ujHtHc15qtP5TSqwlIUCgXxlmpKpC5e+QP5jVQwMzxiQ2KRgCV1po240TF3ZT3XMX1P4yDrxX8x9+vf69nXajumTdOvS9MdtvPcd0W6fFijxFn92COPnotHLkWpw8Ye41rJNZ4xpaOP66xdfb2WZxFgJdTl2pLdszVH6pnK7xCPMvDaU5U2xyFiprG/+GJlOkhb+3iVvZfW6Vvj6bLx/PLMu3fPcW9ZNz3m37+4HXNe1Xl+6Ux7F+MvEvuDdPb7HgkNTqqCVjlQP+w3sshdfrLl5ReFkqhkUlbER00aexKeWwZk13XTb9acB66NMfKy5jCMeXvF/caYO8wBDjdRLs3o147oNcaSf6yfnDNJsSlcrsLTU+d+v3J7vYJ9YYx72Py1h8iyyaVAJrm2vSaoB9naa80fE+ZY8hXLKB+kBra8gjXPw2uVtjppfXLt1yfvF9I3WaQ9cr4ca4Fl448NYqk059VyhsbrLBPwK7byrb21t/bW3tpbe2tv7a29tbf21v4N2p9MUlqhMO3gQZxx31ewsQIfFeTSUwAA1QR1nTkdbVsewsB9huJNa5gn4YUILLdNYDbmyjYtQkpklbsFwcEtD2b045W0DpbOtqUShnRQZQ5fQQpN6Wyt93NoBaJ6/LQRtc97j7IoKhkskvh3g1QJiiys3SaiQdAJwKqFmlRm5DdRYOJzZnCqZQ9HKY8x9zgEi9LcikkTwFsGS6Yl+JoofJx5I4M/gjBRrm3cb9jMgz8ziDZOKFqosO9RzkTM6Shuk2EWShRx1yRaNKYb0jQVBSQYBy1VYFzoEgCQeZVKiowyV2FOp2hiVVZFBeac7AyufUObMmTmoVjobUOareD3mCNLS0QJgijRRoAITdkSzN/FUXOawfBQkUBz3izCQ/w9xFMaTSOLOEryhNpJzI+GmcS4q6DaCVAjSHkkIaOpcLlExrJLfP7akrzQG5ctat5fLleu2zPX68bLuyee373n+frM++cn3r17z8v7Z96/f8fz0zt621ZpETkFaKGCHgIKjY3rRXl+mnzYP/D0tPGHp5/YfvgZ+aPRZXBzo0+4cOXaB/ftM2MObvfBbTd8THprOJ3dBn1r2C0KjESQPNRglqJOE9xbMnqibJ+2IIrZNIyJ9C3XlB+hUK9SFqzApWcgOmksmaU4QgEhIyYV8MYc7aEcY3MmMeoI9lQgVyxsj56CkxWErKCxiuBquI1Y/V7BobQPbiBKTwKKWQnUk+ARqU4SijlFiAnVgoNIUiBTKc2pVJ/UWGbmJqyfx7pLpooc6gZhe1sSlkqd7ADC5BxEXkFcHogddT0NtAnxx8BwAR1FUKnftZbre4adOzAFXzaotdgDNG1CBMds2fTaR7xASni8dwW8PcdTItxb/V/j/YtW77oC5prZmLl+RCg1v4dnyX3KT+ocBfRWaUnVhiSDRtRpWbqRtCMBNAqiPZTTROithZpBuwRYeGkHKOnKyGdjOj4mxs5t3GLujxHzSTXIqTitH7Yr1OaS5DdjjGYCxpqlUUXrvapsIDEO4pgG4TIm8ES0r3dXif1OBaS1KI2moLTMYM4F0BTdooQqc2bsvjFNsrxQrEnN8mkxDZNEYKHSVKpP7r7Wj3gE0JEZyiOy4S7opjQ/CGNBBPNYm0B0fJD9eg+VHBuOWZSWnRb7QBPjujUuT1eeP7zDLFUPzRCfLIWTXOMiSus5V11puvH08oFvvvuGv/7te77/7iPP755orRbDeW7+t0EK52tsF+fb31wZ9h3S4Hp94qftC9gf+Xn8FCRnG6jPUH3aC/izXBuG+j1K+zhIM+YwfMY+1tRpOuhd6JcL7ekD9/bMTa88tW0Ne72jolwFLl0wGvcJP7rhd+f+4xc+/f7v2ccfmP4T+/2Vlzn4pPDpcuW3+xXmF7zpMSd+tdXu05LY6bw8CR+/g59/vqC/f8f0D+z73zNHKCxZE3xriF7YR7irZpa2Ov6cw8o4Bncj1R0P8mWAt+ELgmiPslYkViUF9MT4HDBflgFMsKBvDTNL3yfm7bCBzchOt/L/ksguUuWUhGPHrDvUAJR/HetsTxCui6QyWql+/mvNv3+rJjyA6MIJvEngkwPGAdZevsBYEkiRo1Ro7USlgBjAT/idrWuqEp1Vakhgy3NYNW1p+Yiy9u8C+VRKOe94nlCE0gX4sPbh2pdrDMN/LRJrrasFrKcNI0k/xc9Y8zLV0SxLzMRzhD+xhtwPgDsITkl5kygFXUqNMQB5jyzBXEe2fIED9ApqOm5zkc9FJnJWDsn+jz031CbcUlVJzuu8CCSe1/X1vSrTU/u2SuW7xIpQTf/MznPjAALds3Re2pUDMMz1lSB4+U1QSkl5jlkAXpYTP5HuyxeDQ+HIT/Mo7p1qIVqfP/qm9mQS0xQpv7R8k8PHF8KXaq1sQ6jIqWgSehsijd472ja2rXHZNvolFJO2tnG9XuJMsvUoN/sLeyD1/+u9Pf2zpoJeNy6XzrY1vmw3Pn/5Ahj3Kn++CY1Ga8YYe5wdp7ETqnCSxCTzes+kyD4QXA7/T7VRbAErQh5B1HEs184jaHsQi35l363FVWOX9qDKe9eYkW5hcZxqToW6SP6gfifyi0t7Xad+X8/ihRenHcg1Qb27rCmCiB4q1adnOPBkT1+cX7TzuqoHWerDpzUiudbWeWLN6+xHP3/aT9fLlzndyX/lb/UIcjozxEfqnfUX43Sciw5LuJ7nqzssQsTX9zz36dedciJYVVnJ9ZHTP84JGAcx6aQCRJ07/DADZZRP/VPzeqn51DuSokRpezXJNbWnr/Pbw2sde4ekYmskt2mqp9UeGglnkHM4S6i7hYJ5HCMz+SjPtOf9su615ksqBC27UHvzmjf1TtEfnok/pZa39scazzXHJYlShz1Y/V/3UE2DD36aDzVfNbas09jVvvnV0MtBTs2dMH2mUEQXjYTCmmeHLV5PlH1UYxNn8Wms8tZFRu89CEpt2yiFJvtq8h5EVT/EDNOXuFyeeHp+5sO7Ky9PG9qPs3GNzfEe/0pNhL7By7uO84yqcr/vkXA3HZtB+tee5d2I8scguSca+DjNccdTPZQjmoqKh5rfdoH2xJBnumwZh3x8Iy1vQiTKKbuHyvttcvv0mf3+GdWdOe+ITbQJdxXGlCAtbRt4+5M7SgiS0vUK97vQto7JxvSOW/nREvEnKZI7D3bY8UyOzSLrskw1h12CUkGl/CIOgvVhb04TWepc4Wut1ceq3ByE7YyEMD+Sbo9br796GqHjDuVb5jqsRVP+Yu2Za3xZdvytvbW39tbe2lt7a2/trb21t/bW/q3an0xScpRpWbYlg/qtNXx6BmcdSlY2AfeQ+o0D+0wxHDPD2ektgqaR4ZRkEI8AgmoD2WniuAaAaJnRE8G8mfdSfOTBy4XhkQWqUmXb5FEyP8kArbckRkTgoUkD9ZQoB5pgIpgKohdELxmYySCbxbWnGKS0tftkd8dnKNOoS5QbmQORdiLuCKbtIFisSKYiTRlzYgjG5HLZsDkxg9bqYDowU9y3UAzQmWBqEH7cdkJzIkhF+9hxU3z3yISVhqeKlFi9jtHFwSdj35kiTCwqbpgyaaAjyrdZZPiYR8a/qYcigVuWLiIP8UXAIst2zSBfkQEnzxCVhVrGrHKCjSCYnKSbzZxhUfYnCBrRPwVGVUCkjtSaGOTEI+hVcyCDBTNVvkQUF6P3uQKBM8FDGgFq4cHF0lTm0QpERik3V8/Qr6Ha0QZolaUJVazWO9fLE71vXJ9euGxX3r9/x8vLhY8f3/Huw3e8PH/Dx48feHlJ5RVKVsQobsCKpp/XpYMQamPbpmzbB7au9MszUXphpzf42aF5Q9iQ+w1XQ+6vmME+J0MmUQYrVVVSL1pEuI9a1zV2nsSsng+QZQMkCHnqwhhFlqsgi2ZpkJhvmsBRyYcXcSjmhD2MZ1w7AzIZFzZ3JrEm9BQsVilQI0CfAjSlNcR9zdsIGtuai1EWKzPTrCyeZmm8CN601tJ+RdBRxQPkJjJWAwBwyLIsgYlHgGeUIpVNTFsZ1dWfI6XEC+yofjvKnPnqp2lZStJLNUCTHJad9QDiepZVzAv/SpzJ8tqa98VZSgKrfyiwP8lSVHYlK4BbQfxzML9CzZV9Ws93luRfAf4kClUupFcnrXlUQesKdB/vGEHUHOsCrqgKIbZsxGErSpXCKjR6ulYRLQ1XpztBwKTes7QVIHQWFJUtCHItVPMulwtdO71f2K5XtsvGpfVFMBsWgWAfjo079/0Tw3bwhndhzgG5lwXRwdbwlYrTtCJ0lZIWa84jAQ5WR1gGPN3D7ne2AEo15PINQaQnGOdIi/2Llop7WXatFVgBoLoIjAgMsrSje/z9NN5VQtDcY99pMRbmc5FcSbAllKRi/rdUcGtJrNrvY83lphKqauKgtVZinwoac9iuuP4M9bqnTnu+YK3xer/TRVFXkA0VDZKVeyjfqWNjMn6+YdvG07sLzx+/5Xe/+Z6/+t13/Oa7Z/omK4ifo1OvXC//CNj9M9oZUHOUpyf4i7/YwL6hyYX99vdc+mdaC4WvvnUusnFnZzrs98GcO6E3NxB/pXGJdTSDlKWA+kBxrs1590758N0L/fkbuPw1d/st9/uVp60/VA8TgsADSZi+wXgVPv9w4w+//yO//6//Fbcf2eQV7l9AnU02fvgEP/38yvOXiWznMl3/SD9QwXTj0oV37+D5/Ua7XvB+RfSJTS9471gRlSQgD7fMbk77bAQxbvpcNmCVS3AQaTh7/C9JlodqoaQipCdvPDZmlyAlSu4dRQsZ+84Yk92CNIEHmdfNEkj0tIWnEl0UYHEAujN9qfp5rEUWOIGzlCqXYXT+xfPuv0c7gBx/WCvrj/X74wsLYC8xnNrrfaRSaYGJsQ5XkgQsVSZtnjYozytyEGYCfJS0UwUsCaVo5eWzHE9KPkaUil4ElgSB69xRfpsqoaLQ8o4FZeVeS5afzT1ruifRNvcsD1K95B4806YquvaARYzK3c68YHaH3lKxFVRs3ce9SMO+nglIFbEAtVn396/mlacfZYuAcSryFX5R7VFC+v1ZJmYRI073TR9kPbUfn6P6B8IPKV+MQx2jLjMTRE50Lf8M4nIRt85z7hi7Gt2DICY5Ni7HxHT3ZQ/PqpDhpxyKX9MSai+mQk5JUR5tn6zpcnq2A0BvUsSmTKppnaZBhO49CEqXrXO9bGzXJ67XF7Zto7d8v/KnqjtO7173ym5lzXGJs8Xl8pxzNv0HJffrEefZMVAMGxalwS0VTqtUzuqjuKjZQdBf5Pt6BhGCGM7yb0kCj3uRAc/9Xo/+OCfLgzyoc8c6/zW7uAgaay7UE4Y9dinf+dFGwbH3r/f046Pnd/NUw9MkwKqGuk2m/MQlc57Uz+LatbaPc+5x2cPXfVA6fbCf+e9K0MDXBY6x8TXX1xaU/XfMkuqLg3ZVhJz65LFyDw85tqQzcefowK9H4pxw8UiiOvaL+K8c06W+dxqe+u5ZCUnOH/jqOZaX8eCPnBQn13XPnz/+K6ff8vCej89+fs7jXtUPZTfOxEXPsvQtSjuqon0L1WZtocgrxxnOZyg4mu34Ht55+C2lRi0Z91kOD8l1yv8d56Q6b6x3Oc3t4/u5T2TJL831G+tBj9kjrHLa8Z1UNm36aPvyvHmQoHIk3NdnEKHKotY4q5+SkOC0Fx3ziXyqIorJ2mvi3StV0OeMflq+oa0xmw6l7FilvumCt1A0bxJxxYakamf6GxU3NWfajlqnXS9sT088Pz/x8f0Tz0+Xk4999jK+nrP/8vZ4poDLBfAeaurTUxGa8KE9YijDMs43DLOB2Uxlq5n7RFvlxeLMGjq9XeF6kThzXa/I9h7kHWYXsv5ljH0OwMmkYdPZb7DfnS+fv/D6+oV9f0XZaT5p4gxX7rvy5TZ4ug22C4fk1j/VDxw93BX6Fkrq2hvSO21EeWu3TGSAcK9r7aSx9LS/MZcqIeSwdccWccRgytp6Dshpa1w3Eg21wjgqBEnXs0TvmWBf/tEROILlf+XPvDbzr/bBcz+cDW2VyH2Iqvp5L3trb+2tvbW39tbe2lt7a2/trb21f5v2p5OU/MgOLaWLUfXA8t82xyqx5HgoCq0SM1kmziPTPDJZBe2RV6IqC1x2lNYuIJPWDDFF5nEIA4nDm0edeE91jSh/NhHv2AwikkuoNtRJuGV2rKmmZHYGFTq03sFbKEmoopcrToPtgvaJSapaaGeaMz2ykkOtYjKAMUN9JkoWkFnHHqCYO100D5tJlskToXtDrMV7kYSZaQyB3oS5T8SIIjhmDI+sNMxWpqpblhURYxbI4YqJ01oGSGRGffg5uGhDzREGdwYmxnDDZgAuM7O23YXEMDALIpTjK7tv2khCRak8hZqOeP6dGtcKJmoQYYBSixoWfauuTAfvytY6c87o65iEUd5CQjVBJJVtNIJeYwaZrUtkH+/FmcpAkWY/SUbFKlsw+i9AzTlCncPzPdAAw9HMzpdUUWqaYJRnkE0xD9WOrhtbU1pztHe0XWjbhev1mct24eXdM88vFz6+f+bD8zMfPr7nw3ffc+kXmhwhz2gZzF0RjCMgeixOCl1AUC6Xd3z8pkUpMYwpynSF9gXbhPHF2XUGsDChDWMMA5l0VYaxwKBpDtqJ4nCxBmcyDt2LIBfA13TP+KQgrTNnzHucJJMFdcAkbInNmaXXIj2xFUGEJDZGRCgCthYENRbhhlC7ynm5lNxIsoocpeA8Jm4GJgVPYqFKkNJiRiiivmTzETKbMNf0CnTHuih7FcSGCAxFaZUMAJkjWUrMEliRHKtSvChlJswTzMqxLkDdK9h+EB2OeJSs69nBTjqCS2Uni4gVVjWvccydWBsZXJYislTgLK+2gvsVmHbwSamRHeUAPMHSFZJfz17A7QINErSM62cgOANptlQpGiuwn3vMI4B0rJAiHOErlp7qKBWE1wwuV4ZnKCosQSTkCD6ycs5X8NvN0SaIFNkhlVbaFjasiDSqXLaN6+XCZbtyfXri6eUdT5dnni5PKMKwwRTnfp/cb5P77TPtHoTXOeA+cs6q4GMPapSHHV3VB4BVGDDtUPR9KF/IArQqAhx97h7KeTDoTULpLkP0AZhlZSCL8nNYQ+l43li0B4GnNeZIm70izWC5vzdi76V5lPJMWxRgBTAnW4+yaqW66Dhti5KaVZZHxPLdwjJoA9dQRpHWs2SX53jCbbxGCdIuDGnQNp56oze4tFTA8oZKo6ty3ZI0oBv+Ohi3G/u4hXrejDKdl0tju155effM9999x//w17/hN98955o5+njh28esXDbjX97KrsefvSlbm+CvlMrY85Og1rBpTN8x7ky7MezG7f45yEhqiIzU7Gm4Kd2FrQ2eL8aHp8Z3Hy785jfPfPzNe15+8zsuz3/BdfuG3i5B/qR2nyBtGFHu7X6HH38w/vC3g9//8Sf+9vd/x5fPf2S//cRV71x1YF3YXo3+avz+px/4+OkHXt4/B/pehNx/tAdYd76o8PQsvHt/4fp+4+nnjtwat92TtDIxifnrNnOVKOYjyJzuCTDU78A9y/967Q095pwetlAaSQgJIKcAgOmpSmWTsad9sLlKpcZO5OCpNpBlcqF8rAOlCQGR6t9a5/GsYZ7O+gOhyOBJ9Pb0Y2qtyz/Sp/+/b4/P9qDskbYgSP0HgGnH5oeI5hai6XtCfPkopUbuZWhm9td+g0eJaDtBNHltl/DrFw6V+9MiP+VWV8IqmntcOpprXy4Qs6y0SJaPTgXO8BurPPLEynU6kYBMWKWOD5U/OUg26ffM8LBPPeqYB7lz7dsJDCOpjGlFfj+Ar9pDnSPBJEAwyxkad3EJkt6ad2S5XCl1BFvPZDg+YxV4lfwG4kBRe26cjaqEUT7uiaAdfVtui633PEh5cZ0DiK7yzotgpLKIhWubByTB7zMoX/vltBMJXqME9on+vZJO6rvlw1iuvUrE0Hq+HDM5A6lS54h8dqmzSJ2rNdWTom+kRRKPimYCRGO7RKmgy6Vz2Taenq7067b8g8c152dk8k9qKo3L5Up53o5E6XeNMW3qWWbPwQdD0/+VSO6wWb5gDJdqkeri3B9KczEuVcU7zcBhe8+nHg//UHP+xLwqWnKt29M8ym+WelLM0/zUIkOlculX9ywSw1JC47AVHE+EnP577m2Twz6sdX1WASvTkX+en9/XPlXP+Cv23A/VqfpMEb9+0Wfr+aH86gfc2evdHt/qmC/Zh7nWDti9vn7YpLPPc+LiPIpx+Mk/PT3j8UyPP6+eiRDA6e/ycMGwwcdgnfyHf2rif92/pwc//+7sC+U7PLp49Ww1347nqZSqpa4mR3+VDcxbJCkxy0a3UE3rfaP3zrZd2foly4aHpR1m7PfJPkYkrLih5nFeNyilm1Xi8ytTcDxn7QU5/9bbnwfysGfrjeXRPtYcW6vSg0Ql2o792EsVNUrPV/lB8npOPNMiiBLPdHRofNZOfajr5+kLVEzSy0f32NPSudA6q6yzVTyrWaiR+7INEdfoddYTPxR5PRRXe50xtLEPw257xktCfbir0nqj9UbvjafLhY8f3vH81B/nUJIVo9d/bc7+S3y702CtvwtzTMb4ss6Pqs7WiASNOTCf2NyjHPkc4V/XTqBBwHILe9zE6Q2uGzxfO+/fXXj3/sLz+xf69ZnetozdnZ/q+MckYk6vN+fLZ+fT5zufb1/Y76/M/YZqRFp7OFXIUF7vxuut05835PLEr4e1T77H6j9fZ4qmsF2U7drYborfhN0qia3+PEjSX+/pNTeXG3gya7Gc9DRqUp7R6Vvlr+b9ZsxROMzfYdN9nS3q+kc1wrzqWoaHDc0VmXvjYWv96A6WlfSiOp13nX+G0/DW3tpbe2tv7a29tbf21t7aW3tr/4L2J5OUbCZo24K8EVlT+XXRIBgkqmIprSxyqKeoZm6g6ZIDd4y2R5Bi7OThfuLtKFdh2hAmW1PG9AzqBemlZVDdhoUMM3kY1IFqZACHgkseGluc5kRGgBeuobDCRA0YmfGknSZCE4vMGh2oBkCoDm77Chzc75NhrOD0fr/jCD1VJiwD4I0kVpFZbnXAzaCMs0X2r2qWsHMsM5vMJuYDNYnyZXMyZGTWZQBrfeuIhiSxiBMPCuaCM4muawF2z1sourCFypLdmUlSMiNISjREG85IkDiD8RbZVBFwqlJwkoC1YCmJLC7YmCsrfRKfU8kyKdOoFKUA+pIEZL76Kaq0zXjGvH/lJ2UFiggEzx2ZE4YxEEwaTTtjJvlNgnBiUzLTzWN++AzVrmFMFVxS1UNSclwoKRZi1inSKstPmFluqCUoJm0DuYAn2SyDVtdrY8vSb/164fp05fnlmaeX97z/5ju++fY7tq2f8w55DAv+EwEpif/I+qfyvD3TPn5PS0BUiPk/ZXCfO9fZud0U7YJuggyneQQEdRyBahWlk6TCROFVggAlcgBZpQDgloQei5J5XkF0T3DGJMlOBbydYNcMNNp6mwTaMnhmfgI4EjhUd1yqVFoqtcAi1SHEmqggqQMJFLpFxp/LoRoV5UTiuw3BLRXa3EBGBCebpCKBoFgmhyrDwwZgpbQRz/wYZCLVETLwlbHIKN9ygBOWpeFQyczYIqEkObGwgopOhZWOPqz5mrYhbI0myHao76yAOFm25dx/qYBw6sQVACuiUdjKLAs5DyA3gu1layWfc8Ya1sp4LWCxricHiFQrIevPtAowF/CcwWeSjDi9aBMJMklly4ZNMbFTicEID5plZQHLsUfDZq604rTammBjPqvNKP9WAhPmqdynYWsulwvX65Xn5yfevfuG5+dn3r//wDcfvufd8wd679gc3OaNHz594acffub1S+f1S5QpvN1uRHiwM8aNrSsTwyzXZu2pUtL4GXy0ArkCVK9xdyugLcsDiQdor1JJzainiqEZpgnSx4JdAVRJwNUtwOPpUUpi0wzwr7ioIdKCGGkTdUN9J7JDO0iPDGQJBZnpIC24KlFKqCE9ylq4OS0VUQah4KCpsGTDcR+LBNt2g/uE7lyvnct2wdsVQ9halGttHgpJaOPp+cL7D+/49psPqBuffv7M344bn3++BXDtxvPlma4b1+tGa8qH65W//P493318DqWHBd/kPvYLkOYfNdh/UiuiXxnkL58mP/z4M69ffmb6K85n1G74jHIIty+fGPdX9tdX7vs9FLksyEmuE8ZE6MiMDHztzuVJ+fZJ+KtvN/76dx/4i9898/77De2D56cbbbulH9NyfdceCLfd+fufJv/1h8nf/fHG7//wAz9//pH908+ovzIud+a4g8OrNvRT5w+/N7775pnLdx/oz9d/4MUziC4FgEERPi4NnjZ4ed54ebnyaeu8uqX6WJIbPMr2houRKmTLToTCyyIDkMp0xI1UWhDgEsQSYO6KzcH9Dj4ndx/hS9XD2YRTucAwKxbrTyyJJWWLD6XCQuaLiFFgmnntgr72tgJCDpA81qV5AfAFgJL29bw3/Hk1P9kYEnxZ5aLLxyPfuOqQrZ8XKhP+YF3rjGNGyS9JYbNSQyRViWpu1X6TZ5uyYGvDjlvG2MwEp4vyFi3OHEmORVLFNX9fZQar1JlNtJHk5vys1z4ZNwvbWmBX+FHFp3DAUrGinUgTlmSaeH+rvyRxKMkt+atSujA8FEsJH8JO1iy+m3Pfs5eXalDuwJ7EYxy3SanW1Nj4eX577CNqGokBqTYp2bnL55jZx54+Ur0OMbNrTcQT5Dgk8ancvRxYnPT7cy8PQlWqK3mQ0muOxSSoDSzXcirNmsCUozRQjIPnfhd9VOXtBF8lg6OfLEnFx2FF8t2KjbP2aqmStDEC8etaE0EGd5U8h0bihIiEolJrbNuFfrlyeX5mu1zDUuY2U3Nfzn30D21BDx86fqgoT9sT+ly+X6wfc6PNVMuKrkaKH5cTKinFacJq/eUaJM7sB9FDjolGTgAO+1+ngxzm06scAG6UQZT1Mzn99vzizlfdsPyYQ0HHywYveYnTOavsbPkASXbyeg85zFmsz0jYiiOlH+XaazOVOuGGNcotYc3/Q/XlsJHL28g9weUY6PD54l5FTCq/+yFR4aEPaiXLcV3KgBwg/Oo//+WcirE6Ga38dO1jRU5ZpNTzKBTpb7WaSLau80BKWr0T1/Fcg3DYx4PgyWn8au376ZpCreTHFzr+qqdXOv2Y8tMOQn12W60ngVKPqZ36+JjwNdG1jLYmOWnbOpfLE9t25XK58PLyjuvlma1vRMLb5LbvfPnyyn5/Zb93VJQx7+tZ5szzrtY5r2xkPdFpyE6Dque3zCHzsn9lWDj9O+3rA23Wj3c6+jmuE7HFWHNNyjbWPdInklyLziq1hihCZ52FziMjtSZsqSKpxHOFvUl/r8jmRtqN9OmS7CSqobLTGiK90tryhHokOvatRfLZ0xWfxu3LK8N3KCK8xBkk4kXx7UYkSWxdz5ykeIPTP2o+/ZIId4zRn95q1sdYjd15fb0z9sEYO9Nv2Lwzx2DMnTl2bAxsRLnsIo/XulmxnSIDiuOpJPXUnKeuXLvz3HeQV7p4lg2/Rud7JSgcY34fzpfd+XyfvN529n2w73fUJiID88G0SCDaUW5ifLncuNxvXLfrr3fHLza+o/9EQk2pSYxPKPnX3MvveOw+i6yagyLpZGTqW87JOEfH0oi9LcrDZ4jcHSa4JXlwplLS8mmPgV92rWz/ihuzyqaS/V4Ld9no03liESbXt2V9T/xks+rWtbSLrFh7wFt7a2/trb21t/bW3tpbe2tv7a39G7Y/maTUWpQs0wwgNIJUZEU0EOjSme6MytSqAJJGwMztUExwnN6jNBRktmUGPtpsSGsr6KcyI+NcM7BiFVSJQ66kUpC4R9mHzB4TAVpmV4msckVNkxDQFhUCIYDRpp2SL/YRZKTWO5s1urTM7iLOrSI06VhIz8BwNu0Mc+aM4+IsaelEhEVDvcKmZya3QapFiDsk4NB6y2jmgHx/n5ldP0ONxkrJBmG/ZcaXR8AjFKoEfIaKEKCtYwOaJIlAwCXl+6cg3rIMTBzcG2QJJadKkoSakyCqEbxgYjMAh1CUESQzkFQ1y2AJTVoARBLlOVTbCqTSdJUOcyrAbTGGLRS3unYQZxpsW8sstlISyRmlOT758y2VXiyDs52GZom/BVRNg97WgT6UtuJQn/n3cQ2Lfm2SSkDidOn5XHGJyNoLFQ9p0C+dvgmX3tjaRu9XLpfnCDI+veP9x9/w4dvvuVxeVsDwl3GAfyg4kOGLfyRwcN2e+f6730S/tM5uxu022bbJuO/s2oGdpqFa5XMy1OitxVi6B7FljgBuE1A0FQTDNYmFHpmEZnOR47SF2ljoU5WCz2kNZ4APmcwRczEIZRoy124H3kZkMc6HSEoGYIwMzGsG/zXXUylQsMhRXRUvEpToIqoUqFuBQiWAbp+wFB4SkJGa4yI531hlR4J0JDkvfQWR4vJyZN6XehT5S+wYxwoCU6WxjuCUV0Y2YV1VJUtk5lOfSotUMEtVi7u0glOlOhBA4BHwWsGtAhlWgKqeKOfdAwhQ5dKOrOZzCbK651FG5Zi/BSVF0JhVbm79TFIFyS2Bn3iOpgEWe9qhvAML0JCI2ZUcv+Ucahlud5lUibKlnqS2yIYJNz6UtwowUmiypQ05MnQ1y65cr09cn555fnni/fuPfPftX/Dx42/53e/+Hf/ur/4d33z8hsvWmWPy009f+C9//wN/+Pv/wo9//Dt+/PFHPn3a+PTlJ9ALcnsFlyCEaoFzlspYR2kh1A/AwHVlJSNkBm+VCNIVjDXVCBTnZDMPMKTGNParFv0mmms/xhozbEC/tLSXCq0nuXTStyAauDtNr8hsC3Rp2hGNknckCa+1Rm89FBeItaOt00S5XDa2FgShfc4EaqP8aZRa3aGBSqfjXLdn9KlxvWgQJLkyRbB5p9FSeU149+GFb37zjt9+95Hx+c7v/+4P/PTzZ8acXC8dm45IEKyaBCA+pzCncN8HP31+Dd8l59dlawmW+wEy/aKdoa1/Rqu15sL9ZvzhD5/46afPfPnyiZ9++D1fvvzA/eef+fT5M7f9lX3fmXdDLAgsTZQxU51uzlDHwmjeMSaKcL9deP0y+fLzzu//P7/n6jeu95329C37h48o36HvP4C8gLxH9JkiCbgKU4ThjdtNuN2d17szb4Mn3XH5whw7t77FXmvCT23nx083Pr7e6c//2KuHkkgY3UcYykeQLDbdUN2QtkUJYesMaexz0hFcGrOF6qcXCcA951xnGrQWJSyiomyQmJsqwwP4m/tg7nvuBVE6xct6iS4gGUK5yTxV2oT43FEPgmWfmiR36rSnrc/UTCnlikeb/gBQCQE0pJuwSuX4w6f+7NpS5lpYSSnenWxQvoctYDO/S+5na6kde8aZJDLFQ1HOWhLO6nMnIhI1LHleeVi+scceH42drkqoBXG2/JkcYwp8jb0pbOfx7KHck+VH01f3/J4QyjOLcGCZpIAf18wzVRUcFaJ8Ye3xJNFrqT8skr0uX6VK2y5fYD0b6W6m+uNJjUtcKaXFNXCSPCxtyIlARL6NUwS0Y4yCvA3LM/IiTsX74R52ouavyFKWrPI75Nw4RikcxfBf0pdcLJkDyCtlGurxs991kUNqMuZ80SIRxTjXnC2fXFKZkRM5NcYgPqXpU1Zf1RxJXDNUU9OvqD4rVcGHEkWp4holniTLnlf5p/A9tn7hennhcnla+38+KedJ/UgAOTd5+Kv8yo9BuVyfeCcxtsOcOaKEokyLeSAW4ngaYzhxVJ0WLnqqpIbPKOkjV/95jYmn/+dFETpmlsrhZxZwC7rGASzP1ayy75K+dOLprAlQBMD1nrL6apUjJ/39Oi+evpCco/XM6xxR3yqySZHbKvvhZF9iqReYfFbosNP988/lQ8vDL4ocskghtSGFm3/sBb4e8hcjv84oufD84dqsH0Q31dic96XjefzxP4/t5OP/eqszSc2D0zliDXxN51pzX91nzfV1ydpQvr5D/nnsmcus5BqoMQ0bUJ89fW9d8Vg0cZ2DIHc+3Mn5BvlnzZOySaGeFH5x752+bVwuF56f3/Hu5QMv7z7wzTcfeXn3xNY7OIx98tPnO18+f+LTzz/y5csnbrfGbVeQHdlD9XzaDHL66gU7PctD960yo2tf8yJaH89fSkXxjxNtX857oq9zVa0zyRhKfVXrO7UXFnFRY48LfyoUUMV12cpSOKo5H2eS8PNrzqp2RIVe9lKPZBrLM5XNSHoQCUKmikQp6N6RVvZdQ0mTsB1xjvEgkF03xJ3XT1+4v97Yx2B48q205kr0txHk5DGN+33w08+fopyfhArT5drp/cTy/AfbP/X7X2uHXZsmfLntvN527vcbt9dQLBp7kpZmJoHYaT2mLbEsl1tke5G2aGn7MG4In5jM+crt9c7++UbfPrFdL1xfrmwvz8h2BX0GvYL0fJtIBNQGIg0ygWZOgUw2i3LHqfDu0FXZB4xpXBF+EWr4ZRecelAyXhwx2aZ1TsyEGsmSilUukdibQksq+zLndLhh6VO4PpTGjYShKuFrK+4Qrmd+Luf+kZAglCLk+bFXJCYNlB//OPbLr8+hJ9t3mGU//bf+VnvAyVbV+voVc/7W3tpbe2tv7a29tbf21t7aW3tr/5rtTyYpKR5lClaYNo9KSQKJbKE4ovXW4xN1glsAu6zgIpClWgL4NZzhg802EGV4kJMu7rgWOBuhghSKp7Jl11nMsuSSNpQAk5VQ6THL0mlClv3SzOCKA+JsypbB5J4qEwWQx/VnkDBEMTkC/j5TVUoF18pozjIeomzScYEBAXzaCJUmIpfYqiSUTFpXfFgAvkNC+cZ3tPnK6h9zxr0sIpBRkspxN1QjUzm4IooTmVwtQ1LT9tBtkiq5l0F8N5AGFuQTiOzoSPdxpmQYLslOInFfSxKKjVTayVnhUsGv0CiY5kgqWy05A7eU6yfnUyiEzJkZRVJDGs9nNqK0wTVUrtQHYs6wCJB4gvONmYSqID8VSBjn+VQg0ZqXiouz2wiVI1rMao1yRu6R7br1FrNeo1xHy9JCZEb4tW1oj5+LgulMRSyl6YXen0OmfWtZDuqJdy/f8M2H73l+eneKn/5Lgk6/3ipY0bdnPn6jfLkPPn2+8/plcL8P9r5zuRj7HiV72hWMxqvcI6DvUMQIpGWJGmOyI40kGMUaLPBUNKP2wQyiyWNpB3PBTGOurWAMSEu1NULFQhHG3GMOVwAx0MEYS5F1DWnHLb3GGELhKMGJAzxM4k8ykzSDQ1LzOxUPKrO0wOgFdnkWCByxhkwmM0ltCxLz/NYCUMKmzFRVeEBF/JTRLAfoMiqItcLoFfg+6Tdofj7/d4S1SlnhyKKLd7cFBq73OYW/ztjFeiY7lDg8VRk8QRbJoKXn8xQsUETQ9dx2ntt+AA15TRdd1zZLgpdnZqEESRLWVME9AoCUIkNE+ZLUms9XwKzHHJMi2D3AEvWIGmZpAdiR4+pSGfwJXlDXD4BOpUDlxqVvK8v56emZjx++4btvf8tf/dXf8O///X/gf/5f/gN//e//gueXINxgws+fdn7/+0/85//4n/hP/69n/va//mf+7g8wtGH2c+JJk/stCaWEGlyBsLZKIaVtK6Jejt/6bNrlCpPLKpMSJYamBcEX5+gHlXU9kZZ7dwD2XeVQQsp9TmbY9rZdg1Q691Dv6VuUpEkgtTVBm6ctIEleobAkAn0LUKb1KJf37vLE89MTW99oumEm3MYXbrcbt/2G+ytKR1unN2drT0jP8qjTcOmhfEXHLOZmN2N8+cyPf7vzh//898wxo7ybONPCrs85ufQt19HOGGBj8MMPwv/z//jCf/qP0PqF5+2Jb7/9yL/769/y7v0WweYTYH38106r85/Rcn46MBz++NOdP/z4hR9//JE//P6/8NPPP/D65RP3/cZt7Hy53bmPyf0WpRkiO/rOHHvYGsmyY2JBlBDhyz746fOEIfx8c57+8Mp/+i9/5MPz73l+ec9vvrnyl7/7wPd//Vuev/sd7eNfYs/foTwjbGz9iZf3yvYzbM8vXLZnNn1h8oV9n0zuCMZgQ73h8oL09wyecGucTNCvNllrNjKVd4dPX5wvr0FifepPPD+/4/P1Bbk/4/uN1jfcBnMGGVE09sLphrcghzBCpWuOUnQMxbphUd5CSgWvpPBckuAaIJ+lXxHrVEJ5hSDqHeUXcw09lOs8ARJyttEce0OCAmVFZRFXjk6qshCxluLvgi6Se33mz7Ut0up6Rme9oh9wCRAgUX301EVwAMZxCV/+d51LWn44yPa2FBdWGaeaeAszXrs2S1Wh0hjkTIU9ANljrMLeigimEsKtBPn1IC4b3YOkWf5EnWNqbiSV9pgbpz/LBzCJa6unckjt885pjz58Dqe28xkl2fLnc5Umy7exo5NVD/+ZBCW9SMl+qHfVuFQiw9lnOYYmPm3nT+QZgFKgPIYxP38am+zLeA/Pc0R6ucdmfgxjXWfdbTkQ+fNQUmsti6J5nG/mWbVLjusHPH+6UrxA7qzU6Ke6UJQ7lSQwInL4ojP22+hbSZJX7eGhuLZplQSM+z+WyNLjuYPlhGoLktL1uhQb/nVOEed27GbbduV6ndzvg9Em1ibeOjQ/wH56+PuMINFBqm3WVdJjViOqwzlaRDrS7iJrPdb6W2t3+e0HsSHmSI1b3Wd5phDVok82uK58fK58Zeo5j8m9zlRrRzrNrzrDuflD5y8PPtfl1/7+umf9voiA61mO+Se1tuuanC4OfH2eyB8tldujlYE9zgOxXnz9+lhzX3+XtbALJJfTSaL603/xpcfv2jLmuQ+uBz6fUSo+YF99v35+3ONM4j1KR58oee7p05cffLoNGU85sRsq8ULOY0adBVgA/smynJ6rmsVZomZOkackzyX82jXC7ra0AdpaEpRe+PDhI999+z3fff8tHz++o22y1pMbfBjO50/P/PHvN374UfhJo3yWmYDfMG9Y2v+Yv77mj2cfVcIInOd5+Rqk8h+npSWP1ziPihx7uEESh4oofrx0KbquZ6h9d5VpS+WkVGkVDTKfKhFX4iB6IhG1UI9+1OzD1vKctm1svdNaR2iMOdnHnTkPhfN022hJgNKoOp5qszl3DSzjTG47cw/FqlWmfs3tOHdEWftUxJsjYilz8qPt/PwTodjUN67bhXfvX/jw8SXVWnPOijzMk/M8O3NR/vH2OFb33fjyuvP6euP1y2du9y+MsTPGyH6JP23MVHMPtdLwcU8jLbFfW63BGaq9u01+uk+2L8Lvf76h+pmnrfH+qfHxwxPP799xefcBfXkH7YqwoVzYeqN10E3p20a/bXi/MC1jibJl2VOl9Y22XZB2ATpLkewXr75oppz/Zu7sE/YR8VBB2HqoEo55Z94H6KSt80D0t6IMmzmvNYjVEntcEbg8CV6eaokP9rTsffXi2mp87QWSn1j+Wv30ZPvWOub4WbUH//+879ScWTf3ZWcfzw7n+Kx8dfW39tbe2lt7a2/trb21t/bW3tpb+9dvfzpJqWmUlbAg7dgJhFGRlPyPw49k0OAU3wsCjcV1fEX0MvadgUi3PYLTYphKlAawOBBOPzK54gxaGcOWzxQBTjsFlMTmOuyJZDBYGhCljgyPkjRVNsqN5veQ+2+pREDH5s5uM8rLSWcS7yAeB9Euyp6AfmRZ+1Hj3knQIp6jNwkATKK0gU2LHB1p4DOyazGmW5apC2ljF0Hd2ecM8obIytRpXU/lDgyXxr5PVC3KxKV88XTL9y/wYSaYC3goVZR8s1lmvGpAO+aOuNHcmUmOEoE9gxcRwPBQ/ZC4tiVZIJSIQqGA6aegTxCsisxSn42+SEKa7dEPLYAmJdWjrAKrE0sgVxgwBzAxbaHiJMpW5TYIENFPATAjgAXJn5vG2DbtEUKYoR62bRfMhHlz2hZ97nMuMkPTjrQgTrTQbMrnin7U1pJktXF9unB93nh+d0lFEznm9L9qiwl47Re+/fANn376xOvPn/F9x26v+HZhXK8Yk0Fj906TwUaPb9pgKgx3aBE0bQLqxthzXiFMHBslhVYKCQcxTFWSVKGg0UcV7Ak19h4lpkSwUqbQDoQctniWqlLNKnyHvHuUkzxltKdSlp5j62m3KnRIlqusklhngLCyhM1skeYqw9PMM39O1vcQQ7GYm9pizqT6wuLQeJZFzGBehc+DTDJBSIW6yHQlY1pAEhIDGKws63gHf1CDOF71IK98DVIXsbI+dwTzMmPPj+y5B4UFifzPFZfM9VMkoAylscqxLZWoI1q4pPdF1n0iPmaQBEU9kf/cUuEtVbjifSQD7JIB8HygA9lKW1/GN0pNFs7l9aTrsTKj1gwpgqm1tHusca8+qn0tAuGpWkeMe++d3hvX64V37z7wu7/8S/63/+1/5X//3/8v/Lu/+o7t0kAmpTDx9Hzlu+82fvPxiaftgjTnyy582QWfA7Mb05R9xAa6xo0gGMUcJddgDYtn9c8Zz+5BMozM7AT8KjMz38ucUOvKkngqSahrLQlNBQYaw2Yq3hk+BrQgF7VmqR5j+AyANkBUo13iVq1Da44zQhUiQ7AmzrCB9BalDy6d7brx/uWF7z9+y/fffc83337D9fqCTfjy5Qt//OOPfPrpJ+7jZ15vd8aYqDrarrTmtBaB49su7GMyR6jhFNn4NhoXjTk9XJjTI3NZRvalMiz2ytf7ZNzCQn65D37+9COXrXO5PvP89MTPty/05wvP736bgd+5Fr4ve/4YNf9TQYUVixbY98kf/viJ3//+j/zh9/+Vnz/9wOuXn7ndvvDpyyufv+x8fn1l3Hfu+y3ABCb3cQ+/ZoGW4YcMG5gIKs7PY3AbE33daVvnb38Qun6mbT/xzUX4Hz5e+au/+D/59//+d/zub/6O57/6LXz4FtVvafpbenumXZ3+bFy3F65PF/ydMl4F2jPPz088b53nlyc+vLzn+d07tvYOketa379891MUvcBHGsPh9W5MV5DwBV7efeDT+2943b8wx0B8ZxOjzyw6ojDm4Mu4s9tgjJmKHjDGwMYIYCxtvkuQtEvJI57HsgyiHNxN9xjvAh/qx2YlDYCNJFwWqOBnkP1MRuWwi/WZkx0vcN1SVSb8q1S3TIXDRQ5Nn3PJFPw5tnrmbKfdhnT8EuOrzO7DDnOy8Q9qd/nd0oaQ2kjz6wHW516+FtcB9qTDskqZFZ50qAA+wErp42hhkZyhJQgCUJjdIMC1Foqi02eWSg4b4eknhvKj59nJV/csgi6eSkzVB6k+WWeONbfAKXVQgoxN+r1J/nEBdV+ArlOga9hO8fIv0pa5Zz84SAJyOXf1ZNAClKunTY8rfYSZZc4Si8tS0Mczh0t2kAIOsgFQwPUC0Qj1KJFFMiqfJrDzM/UkfRWScJU/cycAVz0gOJFSXs2+ynKwFHifPkFZheWPSQ6UFOEs1zo1Phzn3DwceqpZQhCA23JlUmFEkxhAWwoevsYg/Y6ts102+kWDbPxQcvTfYv2HEvD1cuF+2Rh7B5vYGHg+j0v6zSg6S7k2zmqQZLkkp2up8tih6OKPVLa1fteg13stElk5+0UWinNCUcjW+OR8lHN92vyl1NhwVsXyY1zr7U8+vZ8+s8i0py5f6/fkXy+y4boOx7M/EG0OH/mYb0e3VJzlROU73uf8akUq8dVlqz/k+DHH2/8JbY3F+bv198Ne1P3gl2eRhzvX/lkLJ2/yQIRY71MfOxPe+MX1D7JWvqU/PuVhGU5zqUiB+f2z5//45OefHJ19/PTwWzyV2Gov+2U7keyoU4akcprSW2PbNl5eXvjuu2/53e9+y4cPz5lodWotVIG3/kzL2NiYMGbsPW6DaQM1jaS/mcloVNf4mnuH2jkPfXGeZ8er/HLGLBJFdS2Oe5Y2jY1j7Vf5W2SyfKZW+4cdBN6mLWI2rVSYJBWcfNn6mNOx73iqq0VihLBtjefnKx/efeD9+3ds1wuhVOu8vr7y80+fud++cB/3lRgXynCKSCr1WSQ8TvMoTerpWxqMPHsWcT38L1slIcP3cHxG3KtKkg8zeguCkjEZ9gVX4eX9c+zt1cdePfk4d/657fBD4Xa78+XLK6+vn9n3e5R7G4P72NnHDCWlmQSljKVGIsbjslprxmLf2j2TUMZA1GgqfBYJso/CS1d+/OmV9y9f+Pabz7z75pnt/QtyeUbae5CX8EFaJMxo6+gGFSvofePSosTedrmwtQtNNyK5SP/JXjmbAicSdSJpRpc67rZduI8rksmaIkY3cD0RF90YGfv0k00pQunyGWvs3R9sxENZ4Voz+YO4x2nMHEqp7HSr0yZT683P04UHclHuBetjTsRq6tqniy8Vx2Mj+YUdfGtv7a29tbf21t7aW3trb+2tvbV/7fYnk5QwyXJCRQ6K4LwSwUY8SwtJyMAXyYR12FF6B7KsS5U+QiOLtkuj+eUoB5DSuAaoZvk4nxFwtxklvapsklfGlQCaGbZJLtAMNBtQChktAqER0KwAYpYtExg0xj7ZtsZFnhg26I0VUDWPd+8ZgLonUGVJiqEdgdKZJVW2PPw2CRWKqcIYRlNwU4wewSNmlqOLa9sIlQqTUzZhBjOHDdydOSIA1LVA6ThQ2ozAwmSugI57ALpVvsrdQRtmAWquADuliqL4DBlsPDKZJnFYj3N6EtdyqIOgVOBEBHTmTJKDEoF0I1WoPGq3I0u1RbUFccPyeS3IGdG/zj52lMZFG+6D1p2RBKPhSXLzo7hTlFyIIFtrbanMRPfOBGRiPnpwuVAPNQ3RUD4a01ENsEdkMoch9CDfiGJbAvQZ6I5wSYtrZt+03rg8PXF9fublwzvefXihqbOC7n6UaPjXa/neIrw8PfHtx/fcv3zC9xv79YoNZ/pgcsdlYgKdGWNhzra1pcwy3OO9tSGmbK2AlgjStHaAep6lmfDHDF2p8gtZYlAcTEteXSkNpJqD4p4gXIDJeNG4ZAVgwubk+PkkSIuEZkKSO1YA3kN5S5NsdfQSVIlHy/HwFcSJDywcmAA4zTzWrnqW1QoSpqdNNEtiVcXKYwItlGApPpWqk0uQQ7yCwjX/i0RlnAP/FZMqkA85yFTVzkSl4KdUkRgSqE3AsjhFJwCoAq3nrPUzBnMOuJViQPR1AYtnsDGzF+UE2K1nPNZABK5tYSA+oRRfxBJzzwjb+V3j6kf2dIGza2wzCngAG05IUWXHLLDjAJhXoG6BDwn4tgiCVhmfKruybZHt/P79R7777nv+5m/+hv/r/+1/4X/499/TeyJDXoSrfOrmfP/bZ/5X+x+57Xe+3I3b/jPzdePWLrS2RfA6SbhVmuAYkwJW0jav+ZGKH0momiuomWvBA3C1XE/mOZchgeEkCloE2U0sSot24T5HZik7ao5uPYXxJrii20bP59Ytyru11mm9szLY3UNBIftS0uj2JjxdGtdr57tv3/M//09/w//0H/6GD9+8y7Kt4YP8l//89/w//u//kd///sZ0p7cN74rKFfHBmK+p8hS+RhGHA+je+bwPvtTQu6JduY977IuuuDdsEvunG7QN6bH3zzkYIsBgt5/5dPvC95++Y8zfBBlWwvcxqiRCjMcBOPwLmjv7MH7++ROfP//EPnfu++D1yytfXl/56fMXXm93bN8Z4475JKjP0cexnxvJho75XeolCp92pbsibuht59YUF6NfnB+Z/PDTzn/8+y/8v//2E//zf/4/+ev/8SO/+eu/4Pkv/hL97j8g+hva9oI3xXpHn67ITdgcLr3zcrnz4UW5vGtcXwJUV+3pwz0gXo+vHb0X4EPO4TnCbxCFy7Xz9NT48rnx/O4dX27f8Xp/RfxGUmexccPvg/v9jtnAmTSJkhI2qzTIPBGP0u9xXwQCn6GoON3Ao6SYmaXKUtiwILCmApMlkVCiJIib5P5hy8LIMj1pnVLBDGQRUdyO9V4gBwXCefhKRYaAcwme04b1Z9oOdzaJF8tgP+Zsy+EarvOEJwJzTB053lUSJEJQrzKzi4IS5Wu/Kk3mflJjcLLvTmDjIuImNxeOsidY0WiPF0tlrfqR5TVIADrAPjhmQ5J3STWfvF6Jsvi6Kfkcpc4U19cWZbd1KaNKKBRqqFLEQ6xNPt+53ijHYPnEsfEKgkqSOqjzVRG4sgNOgBskgc6ik/wXJLPc5XOcNH3+sE2++n4ROagdOX2ffA7zKqMbBLFSnSpnzXLtrPJBHP5nzpr19wLp3ErZKM9OlucfCsgPcnSeLtdcK6Wpumep6EnJfgnL7sd+XYk05Fm6SGwGppjG2ShI/bYIJTHWh92GIDC0rdF6p/eNbbt+RRz41wcUz6O9tc7L8xM2RygYz4m7pI9yqKUu25V+t7nRRFcp5FoThy+XSmKlHkdRliQXXa6TWvcnx/RsOZoEwaH8ZPdDzczFKLJakZPWO54cx6WGR52kjjVz/tevw+I5n6l1xVp7j8Nz8rdJEkDZoziYnGx/frDWo8b5iCQF1PWLwLQIdJyuswxJkQnrKUqpZdEYHsgzq+U1ZV3vsKRe71Z+3vmFa5hOZxLk4VdfjcH5eb9+hLzbr6imHLOoyIJ2/DzHo54dedxros+lOvCra9arff20p/Hw1c1IpY354VOvrhDWnlfzWNJWSqn3SJIxrk88PaWK0vff8uHDE6pLm+noxuxHUef9xwvTv2Ufk33eGLsyq1SaTsQ055px+BR1/1wXHHY7CJKZpKI1r/M85sdT+NEdD+dQyL3KWftR7AVg6aaoZEJia6sTYwVnHEdbJttFH0XJyzpXsRwKkYr5JNFLld4bL89PfPfdt3z/3bdcLtsqnSjAy0uUavth3hkW1/civCTBGHEsVTnVIx5X51U3Z6/381RVlyBeWsYko0BrdlzGpFRD8Rlz5h5KuaJw01fu93uUy9ZU4/PwQd0y4U1z7vw3mPnIEYwkMicSIfZ9z3kz8HmQdM/WumxO9ffDfMl5MIxQLHVnZkJalAI15q58vht//DL46dMr3/7Y+PjxmecPL1w+foM+vUf1GWnXYN41Be2gDXWnYWwNWiOTUvKZar//x7ol7dP6q1OijLQGvSu9a5TwG9dIcBkd90EkBhhFXq64p3Ik5YqQ+9upLKKfb58xoRMZ+/h5kZvyJyvuUhqSZWviuhVnFThKM67X88O3OiWLOmd/6Gs7LGv8Thvn15331t7aW3trb+2tvbW39tbe2lt7a/9m7U8mKTWLkDBapczi0JQ/RbSvTNwCgMWd1rZQXYIVvGgUuUCZBRKb0aRF4N4DJNgauMThsE6UkX2bmdAi+AIiKnBch7IIrFRJgqb/X/b+7UmyJEnzw35qZsc9LplZVV3V3dMzIzvYxS4oeCAFeOADIUIR/vUUoQgfKUJygQUWu7Mz013XvES4+zlmqnxQVTsnsnp2G5juRQsYNlOdmRHu52IXNTXVT7+vRbJC49lSLshPljXD111RcVYP7YIF80sfSpUWAAyQKqxiE1QFlWEcpDkindA82HkycVp7VUb1IIgUqDaopaBUVAalCmKDsXaKCVIqZoUxNoZ2VIjElwNxugbbjGRSQ1DbqMU/sw0ozQNSnnjwPtAx0B4gCOvo1pFSqbUwxCuHBoWi5oTl6p+dYeNIgk0qeSOkJywSpB6UNnX5qkGnlRMFCXmsCCJKJMnlEOgrDVc4cqk6kUiv26Di7ATaSoCPjGriiUepUBeGemKoYHOCS4DDEGGIV2dZ0Xi/FuwpLqFQa0UoSG1OuW3GtnVaaSyL0FLCRQpWCkPhOgbnYLRCClILVdSBBsuJdmosdwun+ztOd284nx8p4rKIHjC2GcCMJ/5ftpL/E+20nPjmF9+4BI4pHaNLZbWNe9mcOl2qv9cwRjcPDJpxKgtVB6NCHxHcbq6dICgtAIyjdwc+LAeQTwDIvAq8Ukuh4OvZk2w+V8wCVKDBdDAI4FCs09pmgmqCRsywkoxiEWwbmbmTHXChI3IcCYjaAzzZZtwbl4rKSuxJzV8E0QzIEVTzYXfilinxqCFZmMkqIeEhSmsh8zHYZdni/pMhaLIUuXFJIMoxQSJSQyJDJwvOy3mzA1mI5/VEtv/Wqc1d0jDBLHuKwt9XI7E0g1puwPaE0kw6MN/Df54BzPh5ISjL9+Cm/15IcQErmVSZUe49GZKB0Ejg+P0LluNRo6rWkjkifo+EROkAG2Qi31nb5p0hALc+J5KdpPlnyaCzV+Q6UNHncQ0ZgVIarZ24u3/kiy9+wS9/+Rv++p/9M379F19T24xe81K3xW11bZ1vfn3PP7/8NT/99B0//XDH5XzH5fmZVhe3EbZRpNLZZlKnBCvgZFoRYcpniifiay2ouv0sCcY0Zy+YWQMLicXiqEGXX/O+qerzSyP5WlRQcftYTFhqpdQFEWFpQite+e3SBWeXbgsZTqH6/qkAW4AEIxmzLCxL47ycuT898s03X/Ov/tW/4J//87/h4fHMvsl6/33zyy/54fufuFw/sNkKtXEdzjJYx0ZthlQHsUgt9KKsCjo2D7wLbNopFKo0pBhqW4APm0u9NqPUkA8ggFmmWPd1ta3QlgVpgx+//R0//OINj2/fcVuV9bKxrRvbtnF/f+aLLx+5v1/cZvxeu/4yUXb8u8sHOQPL3fme5dxQ4OPzysdP15BmiL1DlWJKm2tZpmSFagTxS4LDA4gmho4VD/1XNu1ux4pRb0pX47oOvn2ufP9h5btv4Z/97j1/83c/8Zf//Ce+/Jv3PPzqN7xpv+Hu/kvO97BczmzyBrUL1p+pi+Aezka1ldaMssiUAdrH9uf90BVGqLeagahw3xrP1ViqcbcIb84ntrt7rnd33JYzz5dC7wUbwWYoBVlOLFYpvWPmq3xTpZVCP4B9Yodw+x/VxSYJuiaA3DZBRRaAa2y309NfIUC4ImApG5xA2zLtmakD4pRgNjvsCbmRZkLKwUt7diognUyQpmYyTD9LMPx5tZLOn8j00mPHxf18B2X6HA1ocuz9lknk6E+Jz4OgEmkWi/GJdZCJKJPYY6KPnalwZ2jMaTjZXMLPTYmzuQdLjT1ZZyJJJI5FkVyFmBsBzkadgVbEQQXlAEAQLJ49x9MT5iIlCiwiORxSNwn2MWCMKBqx2OfNk1ZG7r0BhQq3PefYnqAuhyQVTM090i/RPYGlDo7IrpI421kArL0vAgQSZzTic8KefN6R0cKh2+Ozknm2F35Fzn/0xaXnuPmftl8oDp3uuzH7Fdn7vCBTwkfEvMYl3lWoUUST9/Mk4hFYgAglGZQCeJ9ySnOaluLniZIAfAugZYnPJHhfQmrV7VObhT4E+D0Yl6rv+6U2l8M5naleAXRIcsJn/+CP1mJ8zuf7YNw1uikDYdgAGcjmvrlUlyrVEvuT+DpUFIu5aBAMW+5vkKzJ6uttH9LwdSwSvbG3SbKTFkhpsHkstd1XTf/LgtE1fe7p1R+SuAlmmWCfBDVIrmmfIft39yKiw/KJdRzzLj7q0yZ9YQfoyWfDM6fwcf5//ts8ekjAIOz47nvMZR824bDIXtwn38Tfcn/X45b8gjUqM/L5gYhB7F7ay/eQ/SKHzwn7Tvn5vf6xGWuHvsqx3c85s39h2up5aTl8IOz0tCNhr/bnl/2bkiO9g3hgt59wsFnHHggb/HJwbV4njzYJUCqlBACnUALc78UPj7x5+wVv374Jxl1+1s97fxilGm/f3vH8fM+njyfWdmKrK2W4LzI4zIXomBJ26XidI8hzFhjg9mnuQTO2F+9k+/fmeS/B13gxTh4F086WWty/Fn9/STCQMIuQJH7nMm/xfPg5LtlivR+z76oDTdqJxzePfPWLL/ni3Rva0kBerqlaC3cPdzxdLtSxOru54XGAKEYqxc8qov78Pdh3ZtHb7MzisuXmzIQWnLEyCydL7EJu51J+3lx7m1qFvm08ffqIqbJuxrZpFBjBsjTu78+c7prHzIzPZznHWMHLueFNDXq82xid63rjcttYt+FmTHK8YPLgSY34bmxGuYgyDhxnbt+zx94XZsGS7DHIAXQUeuG2FfptcLsWrtfOF9eNd71z/vLK3ektl/KGViunJtja6FSEPt1bwWB0pClSQWou7LSt0+RP9ryhzpw0wz8xD5vAilHEaLWwlMqpNUZbsN5cClxauIMdSqG44xDFWcIwH9cZN8LCju1xF0vLHK7K5PeWw9oz2+1fGCiPq0avH2yc74np9gSgzGzufy88K/ncZsTv4h6/97ggxN72R/QfXttre22v7bW9ttf22l7ba3ttr+0faX8wSOlUizMbJYOOEEkci+Ctn6qcKr/SildrJf2/FEGcNgjMKMUTgMbYD14lq2VxgE7Q7Foe0DKYU6vnnHHZrZQmU7zKyFTAXCIudB2oNQIrGVyMA5nnkFMGTEAc0GARTV3Fq6hEYKm6s/psihaNCmBDrTM0WKZEaLV5Jb0ZNnBJmhYya8PAGjqEtjh7VJEI/uOAnVNzpqVhzv6ytBryb4bpoOAgCE8ou/yaFX8PNGXIKjpcO702ry6NmA6o36dWQW3Q6sIYzkrkxWwZkDXXWycDMj7GyQKQtMYt5oWa0/wnfbCIUFO2KcgcJAI+RbySrGTwME7utVasegBAewQ8nI/ZA1tm9E0pU94gYmFWgIaWMgEwhiewDE/olVqjWt3HqBSwbkitXrGFgZWcMOTFfc57AM0C0tYEWi3OICGgPQBMLRIeEcyr4rKBrZx5uHvk7du3nJYTma7cAwm/P/T4x2qn05l3777k0+XK8rxyXgfresK0sq0eiK1SWNqCLSF9YxXdlD42BA/gDKc3Q3EaeRmCMijLguJgHTOfYxrgE1UDaZ5JiLhIqzID/WYe+MtAyRCf0x6QLFF5qR7ysxjTsVfJeiIoejGYX8ACnOOhI4+XSiS89wCz2j5Xnf3kEOSTTH4wASFZtTksJFty3ouzZ8nhupnALLFmend2kxrgn6HDKyQPwcZMoM04sime9IykaL5zSlSoB79m0t8sEpz5DDIT3hm4yrcPixtjEKH4CK67TMxBHizzEWOvDM5kToJjsvo2m0h01yGgemRaUkn2j515JqWO/DllLouRYEwsElN7YBRLGdBMJvjfpVQ3eepAJZ+LOMMe3s+m3gPJTLGDoXzPy4Ch+caEiDo4p1bq6URdKu20cD6fePP4hm++/g1/+Ze/4e6uRR9Frf1BisUOz1or/OLrt3z11Tc83H3FafngicgiXm0bbF1lZqC9j8YY1JJ97304bMx7+fsXt1YCDoyIhL8UaoBsy0zaFgaDhgRrIPMZwtpTS2Vpy9w/BSiy0IrQqjM8UDyYW8SfT0qMl4RJLQ0wKoXT6cz9wxu+/MVX/PqXv+SvfvMX/Po3v+Lrr79wCbaSc7zGOxqnU+P+8RGTxdm2WClUdDh7YC3CEntAynFaKVy7MxL5Bjh87ZlivVKL0cHHtgmlgdERfBzUOmjIg0ZQeOud813hp58+8K//v/8jao3b1df2+dS4e7gDqdytnbv7JebbgUngRUs2sRjiqLS9rBvf//jEt7/9wN/+h7/nH779Dzy9/8Tzp2d0KLVWTtrQrQeArMQ9oGsHdTBMFUEnKNuieloCtFoY6kCmrkK3gTCgFm6l0NQow6VOWSvr9szzrbNuxt/cbry7PnO+f+JBv+K+nbmVE6MM1moUCr27POjSYawX9P6BsrxBbAXdsJJu6J7oAaN3eP+00VeldLcP5VQwbVSFyqBVuLs7c3c98XBa0DfvqHpjW2FbK2tvDF0pMrDeKbW5LG1XtPSQGI4q9WAqc2bJZM8JocspI7EFW4jlZuNSn+FqOptIMjnI9JlSGjhdGdUt5pf7VWBY+HK5f0wQbOyl7mpmIjr3qbDF5r51MuRN4/tn2kqcFSYWF5nASZ+/e8Ldfxv9OQEEBWZfBdAmvpDgkcOOCpEcjJQbua1oJt5j4RXZ90bFbf1Mvs3jhIMpsnt93/QL5s80Ezvm9hXx5JXPq9hO5Sj9Gnt1XFeNYGFIO77vbsR+v8vdlD2xVQ5MEpI9mzAYC484WICCtcoyiRi949vpoXo/AD6eEPPCAwm7LLFcfXz2/VumbG4P5oUYK4mcV9pBCxm3mUCzOYb7HpmfTyCUzXNAzJIYN5tgiUNvub9RfQBtyoolECxB5N5LTOYIv26CYfIp/IxWpozsLoe6nykTmGCyg9ztQNyY/owl41k8jyfqa5xDfe5XKQeyx/CX43ONyqk2zqdlglH/pMDEz8xJEaG1E7WeqKVTiu+9OnJWpyUMMGB1qXFFg9kz/POQ8E0W05m3DRYqTWB6Fskk6D1nzJwiDrgG74YjK5fqcVTzZfLsmEn2BF7EtROcVOYF3dcVmVc62qoE7iR76+4Xh72O/ffo+7m/fGCXIfsD5oSKhw6oyLRjWPrCEr5VmdJD6UfMoUsnNs/lL0D6O/jyZwMu8+b+bi/QQ/u3jvj7HZK1/+98Zsm/7wUR2SdzjRH73KGffUnluLC7CeTP4y0OgJqfLwX/nIaNmECr3FMOnyHOIHMLlfDOEnB6BAQc+jE7PWW/yny22EfC1k8LFUyyIs3Xd8TJpDp45rRU7s8PvHl8w7JkvODF6+ydNn8o1AaPDw+cTvdIeY79LwA/Tp/qn8wjRfyXXk/uZx7P299Q5DBOsj9EzsySGxRlYhskgTgGVoJjSo7XC3Bm3GXfvw4jIrnn7APvcYB9jWMO4DzfnXnz7h3vvnjH28cH7u/OtKX9DNx2bM5KGbYr9p8aPoNq7CvFY5cup+3P0keeJ3bGS5HizK8RBxOcsVtlP8UDE+zYR75H+Ai3wXffv6f8+IQzdleW6oxQrUZh0Yu3eDnRD6vS30kjvqlKH4Pny8qnTzeen595vj6xrjfGbWDD5a4rYOJnQTfeHIDS4Y9I3in73te2F5LFx4Jlymd/2LiQVJN8fxPs5rJpfYD2wbttQx5WarmwyImNhYqhxQsyTc2BZMPXTd9ucG6gHRsb0hZ2qe3d1qjCbVV6VxjmjIkFSvOYccHP2m1pqC5sY2NZFsTu2Yoxhrh84hD3C81jrhkjFcmYxC4Bl/KsunfRPmLhG6Sf4f9lWS3Thmcvz7Nj2pwDW9Mezwp7bmlrJc3uHD6L8drt8j6FdjOyG1DLB/kzPk+8ttf22l7ba3ttr+21vbbX9tr+99H+YJBSacmIAwTIxE91RlFBdJuhcLpX6JQC21BntbECQ5FiVMnDvYCMACDVOGj5YVqTySIOx1I8mbOqZoiCLJxMhpNZIRugFKSERIci5gdwjwcGiEX3qjyNxIYXbrmcghlsmzMqFBFWXSNAHqxMGoChAlsfUBYHSElhsGE2qN1oRegYjOLsSSEnAZW1d6fubwHsUZdIqziLwmYDFaO1Bp0IgjhIY+ueYFRTBhpJB3XpABsgitkSASAPUFQlAu0gKKIehBkaoQRbEQWR4rJrFKw4u4wfcgOgMcYe2SKqaYezEWkEbEbQI2eYQHEpC68C96CVqgd9p9xQjK3ENb2CuFKqQ4620T14JJDAJ40rm3jgokiLhA0McVYlNWAMmgyXeDEYt6helwLFAQmlBJuXDpLQpor4rWRgi8+tKRmgoN2QJVJBIXPgAXMPMEl1hpG72nhzOvN4Ok1Wpz3O98cPAMx0ZwYKEZblzKmduSsnng2WWthKQyg0KYziFYAlEt52WugyqKPQVw/G+dJxMJ5L6JkDuEpBNBIVkcWxCAjXUiJG70ldm+ttceaKITTpngDW4TJMFsxjiFeuBYhlRKV+KS7fV4KCfujw5KA4q5cnCgPE92JeJSjHZiJZ1QOpM6sQQej8nEZSxCyeL5JiYxhYcbBiBmktA6iRMCFowqMMv0actZTiEm+lzIo82BkWquDrWsoMektIXKb8m1kmHG0+uo9D/NsyEbyzVPhnnEGgRPA9g12H8Nj+/sxlHhWMEkxMWSk89u9IJlt5kVjYL39INs+gLsgI8NCLQHJWobMDp1JW8JDQFb8po7g4gEbfiYTk3nwvfxtP7AxmgluCEUUKrTgYRrWDVEQqQ4PBIPrEwjYVcRCUtII04XRaeHx84KuvvuaLLx4cvEuZwfYXa3wGI32u3T9UfvGLLznd3c+EwtBcJzkIEfhU0JFzt5OR5BHzMsfC5d963LDOvj88hD+jeB+pOgua5JxZKiKFVqDbcNBgzMOdhh/akix1MFQpRR3MVWAbV6q0GbQV8IrhVlhOZ37xzVf8n/6b/5Z/9i/+hi/fPXJ/Wma1eM5XgwlWwmBdlefnFQ22N7MtkvOVzQr9stKlMwQ23RiqbGPjOlbWrVOjnteszLlZRQIIeQtfpVHqiXNxuQef6554UO1UcdBMvxjPm/DThyutPXB/fuDuVKkMymPl4X7h7ePZq57xhJS9eLOY50NYV+Wn9xeenp7p643b9YmPT8/8+OHKjz+853p94un2gefbE9vtGdUbeFdT0ZB38j7SEgBxYPQRzFs+xjYMpTPU2HoAtcyCRc8BC0Xcr9MCPYC2Fxvoalw/Dj71G5+eVn768T1/9eMT7ZcfaOcvKOMtdXyBcKO2C3q7MvpKX4Tbdna/5faJ69Mdl48nTqeFevcI0qI/PHGx3YyPnwbXm9FvG3ZzW1HuBKuKjca5Cf2+McaZ5e7M/dsHhnUoytOn4aDtVWCr1DLQutG3gdFR3ZLKzy192EiKMUwDoALYiASPzWQe06ZZVMu735YSD5lU164zEQXDExm0tDoQPq8ly1JIJhLPMzSBFATjSz/Yceb3LOeyBag0GYr+lICFf2KTkHFVgkEBpk8gsdkkO2jK5k6QUCbLY0/17T+ZTHbA8QQqmZBSvHsyJvcrmf8uwWzgyX/c350EKbm55gvsCZwsoMg1FA4XzsA4v+l+xHCbBTKB1A6COlw7/J7MIO9gKKXo5Irx64sXc/irBAMY5tKV8Y5HObIEBOUjQkhRhu22uI9PIQlWoPClZPYa6fNPVymsIxaJ0QRlEHLQkoAgZ8nQMeb4uKSOTlB37mAj/bOZcItxnsAC9nuSALYyfV05PG/6OAl2M9ml48oLUNOe8Mv1LPZy7CeYxtyXSBkxzcR/zL3JoBPnugS7F9n3dd+CLK6Fz+lgPST2JGe6DEbCGv8VH7elNVop8+n/pInEF0tm98c8ee4Sys7eWGPPiT4MIHqJc5RJccmkbtOn0QCMJIMa0Y9mRi015l+OQZmgPX+uHfgnh5+5BLID1N0nDtBFnhHiZdLv9q+FVxvXTPlhIh6w+8m5kKJPsntmApkdPEHO0/m36U/7V46r6uAr2j6cFvYwk8t+uTwHffYQxwRzXlGOv97B0JL3PO4Vu8GJTk07mp/fV5UcvrLvjXOjPL5NnJHSFu7vPl3cA2iI6PvY4F58djcShw4i+1Pm0+U95PD886Pxy/lcluBX5rnQP7cbZe//LEybnRWXjut9tuXusyTOnQlKTDDLbsXi3cq0H1IqtS0sp4Xz3enFOeJny/wFoM2f9XRutNPCLgl9AENkH9jL8bfoJ5OXfZSAsf1nxhG8+WKgc87MfTgGI+iHJf69y1v5tUrxdS0lwV37TCs56bE455S5TiF84FPl8e09v/71X/Lll1+ynBtL2UGgcy7YcR9zk3u5rIyxs2Sm7R7hfxQGOiz2jIhvhQSwRExunw7mxS0xFghxHi97jEGSgdGhwzkEBiHUzIzBIMZQoYqxnO6DlfXgLHzWDD/PbqtxvV65XG70saGj07eNtXeut5XRB103tr4ytINtOX3CPz3s77LHCCz3xbyXGQ7SYp7r8913gqCYsxMs7sxvpu53XEfnunWerzeeLhv371bK/QWTM9bvMK2IdAx/jwFICybhOti2lfVWfT+slbnZxvxSFW5XRYdgw7Ae8YaqwfZUEWBpBR1uV+rSaLrgECv/vwo+jigiXugygeXo9FP8fR14rNkX+UAJ3rLcRfeRS6DljN2w2/AsRjv6PXPhpZGfexQvbfpxXNPPYQd1ZpvPY2kHw46nz/3aXttre22v7bW9ttf22l7ba3ttf8L2B4OUTIS6nFAdIc3lcQiVgpSKGrTiB7WhB8YKgVrzQOSVMENA2CIolEloZoBtpoNNXNu8aLCqVLBQd9cxg8umDkShNJe3ocahTScYZDI7xTlLTUM2Y0Tiv3uAJAABXiEflbumDKkgA4vDqWlUbVqw6GiAMDCnHxaXBqoCxnCQj3k1lxYDW5GyANUBL72HlJAHzwcOoCFBAR28Grn457LiLuTeSnE5HYfyeMWXJ1yCVUYNU0GqMFSd+SZASjYcLFFqBSo99VUgqp5kD+5GEtGGH+5LREjH7FOdQJEMHpdaJ9uAC7D4d7euaFkoEWwqWf2kLkkkEaCuNRLwmE9Zw4FGGVuLgMnoGlTdnVIrxZwFY9ObgwzioO2sWxGDCQrxTCp4QsXRGxmoSkkjitB1IHVQTaBXrHRKU1o/oQibCK3UkIY70c5nZGmUpVKKcH8+s1Rfdn/CdEK0vTrUfDhop8b92zsergvPW6HTUDnR9UyP2vmyFXTrLhkoihagF4o2tG9kwLWWGmu2znlimfDCpd9aXcikbsQiKbRIoNtMHnlkpMyK+FrL4fcu+ZjB9TJBPQ4e8eSOj2UtYTtiTXtySKgZ/Invm2oAAj1JUsTntOk+9q5q4hJXnlVSBzZmsMccQJcB3Jl0y7iRQMqTSQT2zAwLwN2sqtcIZGYgSGRK04jVuY4EvGo6K6gjyL0H1TMx8FnoSy3WU0IkiPsl0Ej2RDmH5yDsDXvwMasgNdfdvO+ccjNRl7/J/s3EUgbHhTLvY58H3g+B35mceZHA2PvXZrJ2r17e544ncFX9+y7/F3OvZCJfIugtZOWhMyPkM798/lpdTsDBq5VKdcm0dgelUU+FtvwnVvchGQ+K1EpZGqXVGcR31rydjdCCjkHEqDUHK4LDY8S4xHwL1qUd1KDBPhHjK8XZ40rBQgo1AXaDYP6KeQKePKwtGPBK4XQ+UZv3g9QYR1PvIxlgHR0uCbnebtTq71GkspxOvHl3x69+/SX/6l/+l/zi6y/YtpXa3h2C7/u9PcDr47Rp4bvvn/j444Xr9QmzFRNhHUofnXXbsHFhE2Md3WVohu+RDiR2cGORAIGYYsXlHcwEKerAQxHGWH2OlRF9qi7lUAfG5jKDtbEsd9S2IFXocmOzQrMFqSfu7kHEGY3c+Nlh3F0K57Yqn76/8e233/HT+x+4XJ64Xi6M0VlvVz5eLp5U2FZu1ydu641uV0T7ZFxR8TniFDVjX4iEH9UNB0vGPAmmFA37l91d617FLrXukjxq2HDQ9KXf+P668uOnGz98OPG7Tyvf/PoT7cs3fJI3fPrwBX1tmKz07YZtSq3A8sBda2zbMx8/fuDxfuHx8Y56PrkfSZmW6zaM9VZoZlArT6p0vbJsCltn641SFs7nwvVWWM5n6u2Oeneljnva+oUnQaSCLVQ6W7+genGpzRHypOJSEYWCWGH0AHySwDQcLBqJhSIhAxLzaowOppRDzmDa4zSSAfSYybnobXXHddovT1wITugywidJOZE9uf1zy5IAEHAJSAdrlJ997s+nGTjLXUo1TRdhT3Ba2CFFSfqFZKgEnbge3xKCfiWvb2VPHPrM3hOsZQcyWTBmYTirnwXjQz5Q2L5MF2VyKBkyMgm772PxTAlKyT0/JDQFi2STRGLLEEkwTPoZ+Z/3lCXgSfZz0kwwS+53Yz8/zbxVgH6MmVgVtUP/HmeSxP/vPqMzog5X1Qrwr99+B0DucEvNB/M5DeGfHNgocuTjr5asRTv6A7N9PBLAxxzjvJ/s7xm6Lc5OZgHUDFaPmCATZGR+TvKlqbvPasf3mBPIjzrmQMRyAA6ldHZ2tOY6nz/b035H6Vun/QtJI9nBX/Mb4ci6nxfzsMrOwVIiyV0KJYBKtdQASf1nbjEPSy0sd41lVLq6tKZRUHMpH1M/QyYLpgClEmC98MViSqYEVcre5W2QAGlKSGeSvs1LWzjlC6dv6PZCJgjSpsxs+vLuB5Z9Ds7v5Wse+lZ2eeZ5z9kVOXcOvrA/1PSBxQ42g6PxkhfXOhaX5F32T9hnP2Oea5L9ZnbAof9kfidWeGJnCVD6y2E9/GnTJh0T2OT94roHL/7wlPlB+ew++7UmA9rB/98f/7OdLgEm8YGJhZldnk99/Ioc1uBnv/s9f5vNjKCII33Que6DneYF4N8+v1f+brfnkp+D+ezH55QEImaxnyQw3veIfWT+400CUDK9Oslz0m5nvZPLtMES8bF8QNPDKB59DjnuD7abPaIAIqW0JX8fK0OyAChB1HhMLt7bZbMDfLhPq9lHHsPKM5q3UtyGLMvC3f0dd3eFx8cHTDtPT088lkeW8+mz8YjnjUdXg+dr5/K00W/bLK509TX3j4euLrelDl6fe6/tgFNns9QJ7IjZna8RZzgNgJXbonJwfHK9SKl+PileIKKMAPo0zBS1zrattOpnThLnFldQE9beWa+D56dnrtcLva9s2+q+virr2JxNSI3RV6coTjtlAdAM/2ACW+IMpsc4xrHw5IUN8XWYEnyEH0L0VU6qBDMPU1Bl7cbaC7duPK6d88OKLjeu/UIfJ98v+8A2g0WQ7jFgHXC7+Zn41Ap1qUhzn+9oW3OnbU3YTNhGp1injOJnRPFY47IUhi5sOpDakDqQeqLowIBqBXR4wYdpMFVl7HNM5qkEG5bwJyX6V6RgMkimv4xJup+0F8fN+X8wW/nzY5usSVOW7aVdcjtyZOs+7ief25P9N2n7dlP253yieG2v7bW9ttf22l7ba3ttr+21/e+h/eFMShJAjeqBDa9CdDkzzKhS/dAekkEmGsn9rPv1/yuRGPBgh85EAcFYoDaQklX1fkKbxORRsuwV6c5qgJSgzZeg4PeAx7Aewd4I7kT1VXInaASVijj7jZnLsekYMHBJNnBZppCkc2k1RaofefsY6PDvl+gXBPqmqBZaEUrz5JcqoJHcaBIHSgc72YDSBLPuAY4xGNYdBKQVK8UTiofESNMAdIg5OMzEAQ3SkSWYX4YDvsyEbYyIP2X1vjNjiR6Dan7I9cSe+aE7Axjm8l+CJ3HzKO2AJk84yPCqsiIepDIzKg1VUKku2mUgRRgDTFochv1gPQPxSORZG21ZXNZNN2pmAkNCZQxnFkCjzzadciAgoM64JC0P/d5/o1vMv5CkQIPqeacRdyU5pZaGSI1n9IBELS0O/AMbglHpfQtCmQDOjEHPUFUpLKeFdlrY5R3+08HGP0UrtfD49p6ny8LdxxP9tnB79kpEG4qM4eCc4iAxhksidjFObWFTAxssVaLC2VmSQk/BgSwCZsVlGQLAobazTuy090bvq9uPGmAxBqUsqLp0VQLIhIL1TsoJWrFgImAGXmstTkZhDrMopfkYSQZdoiYuEgOleGBRDZcwi0DrrKsOyauS0jIRXNRMXonP+1pKrIcM6toMVh+TGhlvcvCj929Wsnl+RRDJyu34nwiApj1KNioOtmAGx2cw2T87AYSTFrxEANXfsIZWnWaAeT5l/u/+3gnwgwQrlRf/3oFEe4ArE8FAyG4lu5QAZQbkvGOyajpsfpGwN3vLgJ2zlTmb1GRqiqSi5xC8Ol6KgW2YlWDciuTgIfgtsW+9SBJEMHUMB5R4P6Zt9ARFKS5X1oqDlESdXW7oYFuf0N6R0/KPrkOJF0pAqZmx9u4sLsEIZhb2F0KFpoR0nrmEWjJjZGDc3BZSXApRCiG1ZtPuixkScoOlONCK0ihqyNhC0s4HseQeIF7Ru7RGqZVlOVFrm2NbiDlquB+gxtg2wCvHjQXszPnhji++fORXv/oL3rx5ADqf3l841R/49V/d/yzZ+qJyUwvbavzup0/8wz98z8f3P7Hdrs7AVwTTlH290fuFdd3ow4EMzrZknKVww1jHoIpLt9ZQyRnqfgcBUh6b0dVBLGVxW3E6OaNfLYaMzlIdECIGtSyOQarKsjTa0rhdbnz3ux/5+P4jpSzOhlgqDOVuqRjCp0vnxw/PfPrpAz/9+APX2xPX6zPrdmVsndWUdbsxVmNsK3rrLL1QaIxiAax0hhbtLq/UR8d0oFtnDKWPAGrZcCnVCFI3qVgUHWtUhJtqsElKACucusVB5i7d5oDHyk9D6XrhyQbfPg8e3w7W5YnreGKUO7ahrE8bi3kCqizG04A6NnQMHhfj3X3j9LAgZ0O4B6t0gVEqpRkLSjsVnlbhdhmIDrQrQ5V6Fu7uFpSFLoXLunG9bBTplHrP0jqjG60Vxnql94KOgg5FR7D2pckRPFEmQhmFTX1PcIBW/H0MT6qEn+oJKwddH1PmezIibVPM55ks9DVsNkhmGeMgH5b/WSaH/KcJ4nqRG50J22PmwoFP/1v5GH9Iq9KchabU2L8zpWq5cRySXQnezY8lGGjv2Jksk0yV+4edCSWBKAEUCps596fZdZlEs7jOfks7jsPchw4DlldIX6XEcwdLiyVIZyblmaxLyTSzA25jTiQT5ATYRjIU96/yUSczaoCZ8tqmO3B1yohEgth9otwEvQ+9f9znsnCa/MwXfp1lktjtDSTIwP0ZL0JJfy36ON9WJEBY/vP5H+k3HT0XB+xJJvzdCSKZmGx/aI7gZELyVySkW2T3azIxLuEDpMcG+7OMBK2YBXuXkRiS/c8AfsX7HZ85V1uIk0//K8ddJBlC/D8fLwWpJLAqnyfBS+BMvEeAR5F4xwC+veRC+M/Y/BhPq41Wg0XWxJkqBjCMog4AnmsrfBDHHJYA6YV8kbh/NQGbHE9KNb6/g/BnMcxBRsuZJY9n950V2QttQtXbV0Zcx3tQSwLt4vUkgaHHM3K+eq7jHQa+n6A/813Y/cvZcsqL+Pn1aGxm8cB/ovM5zL/D/RKslH64vPhOPg+76/3CDrw8r3z+DvPx9276Pb+Xw9PF3+IF5xo52Ij8qc3rHK9qLx9knnv+keeK/52g4PnZOL8dx2Ua0By9/Syzs03JxNe4ed1f/Mi49PJZdrszpScPZzSSPY3cu2X2u0N8YvzUYy59rPRtQzjxj7XPAWMAfaj7sLYD0TXA1hZG7QjAfdHnec2D3Ul7m+e8/GzsYr5v4UWL/quQns5zZP5v2MFSkj3JzyPRqRGnO/S/4Dal+H7ooKaFtizc3Z14fHzgdDr5Gu+CdmN5qJxam+N+bDkFRoen5xsfPz1zvT4zdPNfatiYLGIwZWzdz5SHPUWQYDGPMzH5XjszYARKJwtON2dOl2A2nfMZnUWXEgV7JRjWnaXO44vPHy/cLquv6yg0ETNa8fjJULiug9ttZb1efe70zhh9PpPamGcGU7IMyeOMqs4CFaCbjPtZ/uwAUoKMjfi+fFynltLSc70d19Q+25KhuuAxokt3INjNjPMqlKYM2aB2hgp9C6lQ8/OrDShq6KK0ImzVz2m1AnKG8BcGOKjXHDSrVpC+x6xUfWMoYrRWWUw4DaVvyhBF6NSyeB+EPVBLoFIwXwJHo5PSuw5g8sIDDb9Cw8dIHzVjKTsoyV7M1d1DOtjqw+93H9ptCvN6++lhWvqDH/255cy/v/SLD3vEa3ttr+21vbbX9tpe22t7ba/ttf0J2x8MUjq3hVW92oRavdIbqMXlZFRBVBAaQ4BakDGQUj2xy0Gap7hkipSCZXXUUEoTlxpD8ShnJLfED3hmSq3B6gMRLF/xQ5VLVvmBs5MU+hCsE+afLwHAKRmwVgekaCmRtKh7kEoNzYr0CByKVtc9F6/+KUQgxMw10ktFakWH0dWDALUEkAkPVGlXSoUiGokIi6R493O9WoB4QoJBzVkvopUMBEUQqEbQ2hPzjbb495alzGCE900JFqxKleoJOxtkAEEjKKbigfaKB5F0dAdJZPV0iaCJ7JIiasOZnSK45AljppREjed19mpnMSlWqQUqHmTJajpPOAT7UquUKlSpCM6mpL0z+ub9kzHMCLZYBAdmNa5FEFIT1OKVyJnYn/Tbpp5gx0jqcWcKL9z6CEYnpQr+3FJo1fwzKS1QjIJyKoVFBElGpUhClNqQpWL1f6uKJIMERQxhWOG2wbrBGFCt0sYeOLJSqWbotrnsolmMUSawPKFfm7BtWyT9PcCYzFNkcNeMYZ6YHBTMKhBVzDnv4wlLBI1cOsIoA3YJG6VHsAcJwM+wHFJSDs3HFozi7FfFpakYBMuMs1iIFOdtE4mu8eSQ252605VnICviiplGqNUTY7XIBIwwA0N4P34ejI61lq1IBoFSAoxpy2ZM6kWC5JC4/XyEM3F2CKDnmnLmOI+SS3GpOokgbq11D4ips+4k+8NB88bfe2bpjpkCZvIugUD5zv75SO6F7J+qA+a8RUWmlGln87n3YNt+n2NArwSosUQFrwfIMyESVa7x+5wb3j8OJC1FqLW9eA+L+eCkBZ6kyJhdTQnHeCczByyMvqF95Xp74uPHn7g+bzzen36e6ZnjdPxXYdvg6enC8+WZta+oDnrvEdh0sI+IMy45s5gvrEzGzPk3k/s+1rW0GdxMJizMgb9VcHm7EiDd6u+l0a9VxBnpSmFp1QPm7URrJ18uar7Wg+HJtLhUaVT3ShWW08L9/RvuHx55eHjg3btH3j40B1HVB07tka++fMuvvn7Lqf7+zjKD56eNH79/5u9+9zu++913PD//hEhHMPrVZT51NWwD6y6F6gF/XNqrZmLaAWAVoZiz60lxd6MPl4irxSV0Csmatc8fZx4aU96mUFhK4/H+zN3jPefzQl9vrNeVT+8vfP+795QmnM5n2p2DVJsad837YFXh49PK09MTT08f2fqV2+2GmdK7r1GXlhBMGnenitXBbXSGnrjpSt9WttvKGBtjbFNGKhm3RDzZUVjc9qseJKcIdidnVnS3bk/Wx/IMgE1UI1uh2sJNHaS7PXU+9ZW3l2dfS+eBnW5crsZYha3CcrlHyoqdFoouKBc+nj7xof3I3UPh/JVAaVAW1IQerEUVaEvjfBaGPlJ1ZcjAJPacSoCPlFO7o5U7annmtCzodqLKiSEbKpVusHald19TtVW3iQHMUx0MVdZtZevbTC54ElkS/+dJbXdyIq+bwf+w3jOR6WtuJqBjHTqbznD/L8GF7IALDRuVtpS4xwS0+mI7JNGPn0/bb/ye7eHPppVy2L9yv8D3NkrY+AmcCTmN+c67nSgyvxV944ZaTSl1T39LJIOcqS3AutFPeWfMpj/uqeJ9f/JhsH1/w59xJnklWF4MijhLmR211WDOg9wnS7z3nqQKq20aRC/ho0ol8/xDYi+IZK+v53A5JPdpl5sRQvLTPCmH7ECN/Jy/lpBymuUwFtkPvg0rJFuE7snXma5NHyNtR879tB34LXIffQlykMO+Ff2Q44QXXKR0b3ZnJtB39p1I7gYYKH24zNc5WDbPBrhvl9DyKMYokr5vJt494ZzzM1kjvX8iwUmJZ4+zkaTnkV3otmUyS5qDxouktLg/t8Q+FNMsxt3XSSHfq1ClUnCWDSmF0pI1+D9He7lW8mdq4yAV6AA3gzg7EqpBB79xsvflOTD7zX3eUgsjC4OS6Rain5l+tEEk3WWfTwKBCMDFxf1Mp2rOqpy/ju+7yd7lTiVYCSHmTbzjEaoxZQ6nzWIyhEjMHzIhn8v04JPNr5pN27Hblv16ORfyOkd//1icsK8bm7/LsbEctsPPJgBKEqhp+5DO9Z+HgbSuaUXnUPiZLE8sn+83IgcFsn383K84XD9/tn/xsJ8evpvjlTeP50+78ZKxbH97mZ1ph/GcnbKPj+199xJolH8/fO0wBvmzBCbu7DH5eZsyd6RtEuYZafrqMfCKIqYUU2wM+ti43a5cryuqjyHt98Kh+HmLNdi3wXpzX2ZEbGeyyM6+T0nsfU4bQcgZHbbvod5KshWn/c3Xg2nT0ubukpsBSnItN6oUB/UHE9yLuaxxIox5kucbZ3OtLMviLNVtCfnvwdhWKAunZeH+/sSbN3e0/0icpW/G89ONp+cLl6dPrNsNU2dRsgnqNy/804ZT4/ibaBQjOutTrFvbQXc69iIllw4rLMVZ5koRL7qL/ndGLnZ51ejHVgvL0qit0nvnsl4ZfXP/ohRKK7RliXWWRXU+dtsw1rWz9Y3et/0MyV4MZbhE+bk06MZtGH1IPHN3VvJkRWf3L2sNfyDeNVkaif1pxyRp7Il53nYfOm15xlLScCrpCwk3NcaqbKNTi1KqwuIstjokmPkqvTtwawv7fGud6/NKbcJ9w/fG4vFZ0/BHfOD83N+aF5BGHDXXiKqxrXufCeLn6+H+KJa8nS4HmLHOtDUWoC4HgSlDewC9JoQ1bHBcJUHqEWPzWb/Diny/iyKpcCJf+GgHUNL+0x3wlLGCwy/nQt93g5e/P+53L/b91/baXttre22v7bW9ttf22l7ba/sTtj8YpIQ4sCZpbQs4AEZwdhGcftlUnNnADC3O0jHMD+rggcKKBS1/0MOronTXgcOQkKbx6qQaJC0SMg2DUgWzEkENw7RH0G3x5DMe7KlBWqMhP+BwgjIPYDWCcyLmB0myMigAQWUPZhZRavUD4ejOmuFJu+HUvYhT2NtClQRWRQC8eCC5lRIBJCimVDZgePS++zNtw8AqJg1EGUVnAKeYv8OwgZYRkm81ggkjAl5t0lIXESgjpK4C8BQBKanFg90lAEYodQiqnrhTBilvZ6LYQRppIFO+wcyopbC0hayy0gjaleZBKo+rqYO2YAYWBVhqcTauOKz7/SIZgLNH1dZYIqlrQ0MWbzBEPalgARZKCvaSABhPLg31pKCYYFEWmVA3HUpbaoCN/DMaQRhTB5pRzkAkFU1CTq4xclaJS+UNUawuMY8alcbSzpSyIFJpS6O1tgfd/zO0F3FjQFB6X+ljpZhxQjhLYS1CaURAf2f6mQiN6pX0PSvyiwNbdBhWhHoSSErpkkmUyqlVakiEbQabGqMHG5cqjQVpDo7ofUVjXY8oUdNhaPU1ZwbNKtTCNjbogqj3/2QySjCMOBgwA61ZCYjs7AZ7cCeCxcJMZg32ZAii0ZE7849mEXfEl2eYJ+PHkpWYHmQqEcy1COyVYyC9FIq+rMKWkAWZAaNMJCT7UACuIF/hEH43gBJSUPlgQkpfWEhdHmNbu2REfjZAXZaVixZoqmNCRI6vO2eZmSefUt7iELmcFfJm5tWWut/VEg0he9VzLQks2mdyJhfntcUBmBmIk7DxaaNTQiwTjc5MsadcjoCuYwI24pmRIPffyXCgSwmg7dCCWsXG4LZe+PT0ie+//4lvf/uJL758JPFP//iK91W53jY+vv/I5fkT1/XGuq2TFcClTjxIrkH5LznHLAKYNmaQ14c7QbH7nZw1LpjPRN2Si2I24gGDmaF4Mre1QjktLiVaCq3VkHZ1Vj4P3Ha2bcRTev+WWrm7O3P3cMdyWjjfnbi/O1Fb5XK7ImLcnR54e3fmi3cLv/nN19w93vlcmsnc/cFHNz59vPLjTz/y9P4Hnj/+xHW9ADe6GKMDrJxaxfRM386IeNIBc4myZP6qJQCzrg/E2jdfd1IiwVImw1KtbrtKmIC+DboNaNWBzepyDP36RDsX+rjw4zr4dHmm985SjHM7czo1tq1Tb9Xl8QwuEfzfhvHp+cbz7cbz5ULfVkZ3kHVtwl2rlPNbRn3D46LcXZ/57rv3fHxWLreV27pyu20O0oq1VMUZ5NrJ5fb6iATy0ADrCu6FyUwy1EjO5LpKW1aKMMToY8Q1cMkJ88plExgI3TrX9YllOVO2DWlXqrkcYFsqwyrXFVq949o7shmfLp0ffvzI+V3lDcLpsVDOD6AV6YK2KQ5LOwknPYM1Fu2sz4Pr7YpZ5/kCl+cbt8uFKp1aO0YnJQ62rlx7Z+vmsoAdT4R1Z526jc37ZeuMsdFHR/safWWB/TBg+JqMteZJH7dZOteQBItkMKFEUij9mdCBCF9FEakhNRh2PpI5u10KRpe0fGY+CAm2lN0Xc6W/ALzIFGz882yxT7vEnfuIu6ylnyncJ3yZJvE8zsufJyONW/RIepe9Ut233h3oOll1JBJsh35y1zMGJPYgT0rp3P5k7qfpRfrTzbwbh/00Ly3598OmK4fPh48+/w4QiU+JZNl8F8nxPiYGndVWkq00fBKfG5k5DnBIJoRnEj5ljmN/3J8AB2baZHvKMcn+3dlsYt/OJLqFvKjU2OKTCSMSuLKPqREsuNEHJfylBN/t95QXY5Q5vdnFkmCCeMe8F+mb+gA68NYHzDSYeidY8DDZ9gsHkCPAanHjCfZgn6vu+zD7O4E3uwS3TKZgy8xmUYzixSSF3S7EHHFvxs+OIgmKCuDsi9n7J26HGx27yEFew4tPzKg4+DeZZDX908km5v8jEl0ZY+bjGrKC1c9wZk7OlT5prTvrykgE3Eh2D+/vuTa1RDGVxZEw+jzknrOQopgzKULannzUHcToU07TlSZm61xLP+sZCfc5/bHZfZmcZl//n/nv80rTzc7fJajI//2iO+3wF2H3vV8MX9jHg/3xdZRftsMnXzI5zbUaH5VYr/P9P7vfz5ik5tvv3z969C+twcvusFz/fP4L2W3JC3u9g4qOr+pfz3vlB+L6x7c138MJu5VnksOAHGxnPrPMcbFY1keGJItfyGRr9q87WENTIco/WxSCUXVdV663Gx/eP/Pu3VvuH5Zph1/094u/CKMbl+cr25pMOmOCMYpIxC6OpTEBYgn7Nudo9PkstEk/hR30IeCsteQ+Ff+ljY+zpAhuwwPJlACntNNp/7NIChyQUoqDk1qrLocdhY/JdLwNB7Au1WhNeHi8py0tn/LlnIm+79twMPp2YWwrfesRR0yZ3yx0Koj6s+S5ZDIIx9ZXckRU58lUJJjUD3tskdhn1K+lRjDJcfAlFNUbwzq3rWDq8asRZ5cl4nbuv0YMEI+xuhycsvXB2jvb1ul9RNzDC6paKyzLCZWTg+77hfW2st462+gMHbMwwt/DzwqQ+1qwACVYRo1Knf7pjpXxd07mwWlhJrP+bmMdtBqgJvVZpAhDB7VYnL+GS6uLn1+lwAhWPZXBoDJUuG0b7VYozxfaSSjLnTMsWhzEa8R2qrEsgqkDwLU7oMwlnJXRlb5tYB2RzWOghMyzGr0Peo/PHtjmcww0AqHOihzg9wDyzsWPx7N3dtUIWE+gkv9vFoJOX+ZnoKN9j8oZDy/90TyDyMuvHP6enufBhnFYm/KfYvZ7ba/ttb221/baXttre22v7bW9tn96+4NBSrIIxYzS/dBSMLZN0SJoLSg9AhZ+EBtiTh9sgstlxXUETLdIvugMYDtIJAEtI8651SuaakOLMyG4Nj2YlZAP0AOtv/iBXh1Y43EVfw5EvOJSxgxm9+HSBhLP4AdyDwZYHCxLLYgpow/MXDLOE8YenkhAhcV7mhS2vlEhwDR7wEcHlNJAqlfQhxwDfQ9SdHUQTkqDYEAJabZaqcWZhRA/3BbNSJChYhRxiZo8GHvc0oNBpSralUyIZFBYAB1bVKo1v15QUo/RoUewtlSn3bYZqvMxzSCdORBKLBMm3gdVPPhlI4JyxkxG6HAgVFuag6+GhmzD8P6MA78OQWwgdAcFFaGr49oyUSTVK/RcTs+fuYihuof1pHiAbikRAEtARPyfx5Fsl1sySAEwl4xqMa4uDyHV5zxaGOp9UQzOKpxCHqdnMsQMxkDU3/Hz9nml7D+5JbPDHlv1gPw2eL6srNvgpkaPERzdmUQskiA2JXEcjKhiXp0WAUoVKEsw8FRxhpkI6Kl4MkaWhfO5+Rh2B8fUOjz4NjpQg1Wi0HtjXTeXaoz+L6JsA0ow/UiB0o1iFS3mCWXTOa+yKswTChEUyq6O4PXORO7jkoG+jEMbRrEdWKQRoCsUhrqdS/BMJoR9nuyB7ZEJjblCYnwnu1QEfoIsqIr33zFZ8tnsiFfYA1Z7+FXmz5JCfkoFSYA5LS9qET+OhCB7UnIPMGeS9JBUCMaIvJ6zS8j++3hCzS/lLzKAFt8/smfMsJlZyNscgp/GlDOZN5iJgqwi3/uWTNAk4wMexM7AcjLH+K2TEazG/ZnAQcngd/bEHAf/fcrG9e5AoRqsgn10rtcbHz5+5LsffuJ//J//A1/88oFf/fKLqOW3F9fZx1RYV+Xv/vZbvv32Oz59+sj1dmPT4WwY2W+aFa07q0cCJWBPWOWG4V01wCpGOfSXJwEKFiwuuicRQwqnLjVsoweDKTBQilVKsM4I4hIUIkhZKEVoy8L5tLjcWatIa6hUbr0gm/CwVGA42KcMunV+8atvuH/7Ntgk2OfeoW1r53q5cbl94vr80ZmK+oaONcBjnSEbrVQswLW+p6UkoNHXzWdKvG8xYVVnbSjLiVorJ4wugAVTW/GgeRVnAVSpLkUwNrpAax21K0M7H59/pLSKaaPUExSjVaEug2UpLK1wd3dPcyQo2+3G9fbMdaxcbleenm9cr9cAanbaUlnqiYe7Ctr56dNP/O31I/35iX5R1rE620SF0nZpTUYwCtqeWK8l0keTmcx9oWHFMTNDwhezaTs8xh7Sg1NKj5CXc/9tmNJVaeJJj2GFVpS6FurWORdluas0aZRWoIGcbshpoTRh0861dz58vNCB+1Vodw+U5Z5qD3QqSOPUhFODUy2oFq5bYxud621jva5s62C9XbBxY+vv2cYzw5TbduH59sz1tnG5XlnXlfW6BTPkiASBm4zRnaWx62AbnaJjghiw8OF0YASLGSkb5XMugS+5D83VGLZ+JtWCISqlqVIuIu2QWAKcbO4nElZuiraEbZ+MHrHBObh4HKTC/nybM+oF8MeCpUDTlidzze4TqX8pfPpI8rFXi09mwZCANTjs9S7zmlXwIgS7T6RkMnnEEbyTW4pN/3IClCZIQB1sLD5uiu52du6BwbYUfkUyOCkWLAq5c+77ws6YFb6UZeFGzKeSP489Ife5YMnIfR0JNowExs0tKIoVwt7nuSdlrxKw7Z/1Pnag0pj7aQKR0Z3FJntNLHwjJPym3L9TdjX2LtuTmplM9mOcJ52FABSz7wpl7/C93MT2fTqhaiXWgMVEEnaQk6+ThGFojJEz6HjS0/Z3CeBVsrvkaM10X7p8Bx/ycNpw9i+TOd+OPlGy5YjhoC9iHpNgRJd3HUWoZjSzYHtzWXIbndA3nnPyP0+zw9+M0QdbV7ahdBM6znCrs/+ZLBFpxWJF7UxocclSAkgjFrKi+1wU2aXV3V4UUJvn/wTwpw85VBmjzMRxngmTmTLXp+MUoyDARvjLaccP/nb+6DCW+3ljmuWYA/nQeabMsd1BOL7H5nz2H0yAqR2vv7Pr7f2f55XpRftvcj4S5+uwO8SfjrfZ1w3xrOlLv/D/f89ol5msjp+a/Z5vxKv/3n9Mgz0feF9r+5zKj+tnYJm8Z0yceK/9d3mqyH1zd4tzHn3uf+elo+Nirc6UvMFLRJUcvrvbgGlHJRm5Zb/u4e+TLWheJtaH2TxbeGGbA8PLtnG73fjw6SPf/3DmV8tXnJd2ABb8rKdRhY8fn3n//j3X64XeN0bE1JT0UWyux7xGzl+QiJnso1pk7825vUn6J3s/qDErY6akWSWAIoRPavNZypCo2NnPlaU6W20pLnmWbLnJ1jfUr1HUJa2te9GE1Mr5/szdwz07dOizXor9xswBKclWi7hsmxcf6WQjnfZEHIyS/oGq912CtiT2YDUmI+2O24tZHCi0WqK4JPxGxX3pnR1NkS7BNFwQ6txfwJDqZ4u2NFptc59cbzeGKn10eg92WQ1gfRGP3akGcO2JHiw/YsXJFGsUJokzCxpe4JkrK+OJHoJwn7PUtI8JLou+DtuW4BbvG51LSRN4r8wzGrE7JKNdxhrKMESFKgOCfSvlzkslYpUNM5cW3baOXI1FoW2dsixQ76B4weupeRFpwTAThjYE81jd6OhQ+thir13pYwsw0mDrq6+nBP6NkMXDpoyimUTBh851HfR9B3t1+Nlh/e1WS2a/Hu3UXIVpz+z481xDaRHl4OfY4XrZwgYcTN3cWw6f+c/qWry21/baXttre22v7bW9ttf22v7/uv3BIKVizpoiwzDrrsNeqofSu1GlIRVUdNfhFhALaQJTp9ONgH4pLt+FdRShD4OsQCEYioBCpeiGVUMLLBQYQTEfSYedHaeT9Psk4wuCDDyoJSDqFe82vGJzCHTxgIBEkJqxBw6HuDyMgygGpRiiHnhMLXpUqCFPNqbUShKRZDKpUsQPv4T8lxeL+iF3lOZSIqp0Nn9y8YopE5dSSxYmxzF4napLr1WoEoAwkFFAlW6rS15EhZAgiApFKtumFHbwQpXmyeuoXHMWgoJRPDEgEtINBqqU0VENVoqyubZ9AJ5KMF55smCAFUb3Q7nPH69y9QS47cGZnGyGA5EigaDrxiY1kn2dBYMIXCAenEIaRcVBQ2LOBGWABetFxl8lgBlBy17x91fFk74jkrvBzFIqFHVQjRYPnouCVINqDBved0C1Ar1irTBso28X1tVoFa4Nrp8W7MtHxjhTyv3LYOYfvdnLPyOwPsbGp48f2G4bvQ+2PthU2caYElPbGLEevbpwzKQODj4zD4qVxVeq1IqK0IJxxTDKUigUqiwgldPiILm+GVbgtDTgFCxgMIax9UFrG1tfWceNod3nnRQ2sjp6w3BZIlOXvsKgRaDXqbYB29l1RALEJJ7w98HMBHRQrltxBrjic9SXpsvxZKIzK0f3hKMHfUYkHTMx4KXY3ummwyXDotowE4KSValRDO6Jhr2C2aJMc09XZlokWNqMkKXwNT92zRcwSywUe7UzM0AmabfmNTPmb4eAvCeRoUz5iz0DIiBtVqNbUtZHsnmXMjiG17KCUnB2gVyOAbxJCg0yQCkzEGcRTPPPy3zPPWEStgUHkyRN1S5FkEE6v7fEXpDJy5QbAA8slyJBUiV7ebM4EFHpDBTKwpDCqB2tjXVbKZcnTk8LP/74Lf/23/0P3D0KRf4V33z9lhrX8LEt8ezCehv83X/4nn/93/8b/v7v/5anj+9Zt6tLd6kHTnXEWEnS74eMp7pNVyt0NWqxsJ0lErg9+tl83mTvR2JLVVhVMR3OUCCVuhRYXDrVA9Ldg6+lhiSOeQWrNZbSaOfGcj7TSp3BeRGh0rCRie/Otj7xbFdKrWhbUGm8k3e8eXM/g/H/mBk7LZV3b098/9NCOd9zeljZdOUyFta+xrsom3V03BgDVr2y6XDSGVMIYOuUEmnVk+8IMpx5cBXxuVRC+kCdlK8WX8N96+gQut4QcWZEEUGqYRSqLph1l9KzQrEzpRTu7s589dWXPL55y+l8Rruhl41vv/ueTz99z3Xb6OuGrjdutyc269hFeFLhdzF+qBs5KY1235ANGCsDoxX3T7YBWbmsJg6kK27jRBqlKTUACmrVgb+CJ8inpGYw6I3uYFEc7DVGpP8joVtQ30OLOJOFdFRgWwe9G5XCKIYNwUal6UarYbtpjPXCTQcXG7z/ceM2bvTryv35kfOXv0LeNKQvqPm8qih2Fq5X37PFDSDrunK5fuK2PrOunbHd6LfB7Wllu93Y1gtjvaLrLdiRNgqdTmco/l5DYXiyyhP/O0uLswrsVdIm6RslI0UA4SjYALGd+VImA18JO+L+VdpVt+ojfMUAuavMJJlZgC0xsHFgxkvg/57A3ZPgwaCU9vPPtSX4awIL9n3QdAeNzj3TdlhA/mYy/GWSGBxgTvjde0YoTLn6eSRQypOZx3agrl86E0Q6r517UGxIfv8ise/kE+1V5zvALAEG4snZBLxIgo/yXWSySGVyCWyyX8zb4r4SUpzZM97Z2PvPz0T7M4W3MvvOcRBlL7UX3d+dPQEdRwPmxScojl02yNIvO4D82YFexH6QSc6ST5Gyr5m4M93BIoTUDjLBCGXOhtjxNRNsOSbev7Gtx63T6U8bGtQXo6AJCvFTpPuDMQ8k/IFdnu7gzJgEo1bepCTJpQ9xPGaCQ0r4c5JTIAZgAtnmEhek2DxrGgTXHZEUHgyF0oNNtxhjK+hwG1nldBi9P0U7nidk/t3ZXm5YMCmRbL0xrmoWMjphK8PfN2A60OYuWwLVfe3HTAkfLqX7JKS4k3GqBkPi0cfO/h9joKXSg0Vm2HAm3lLc5ierqDHPAkwP3Ad8+vqxN+4Lwvt6gkFt9zknwGgORe4JOv3rXJd5t31tyfxd3GLanfTZE7j1EhA1O3WOTTLyTQAUv+djc4YeRld2Gfd57fmVeLfo9xdZ7wQEHqfIoc2aGct3jOulrXqZQd/v//Igsc+bw1PNRzv2Hbst+/yqP2vJ4JpXiH18nwcWktLs+0D41fm9vKqE2fKPpf3JPzlcI8A6I6Qfi/v1JhZncT+L3K4XPpX3LIuvgW+++YrzqbEDXGN+AL0rHz9c+P67H/jw8T232zOjbwHKDh8m57Ac7FCc6SdrSrINvuijl2v/2J+W5jUPtYLvtYVgJ5fDZeKsNp/a79mKg9kl/Wr2fUim7+nrXums2mmtOfhEPIbz82f7+b+lwN1dpeuZddsmYEbVQfc53hqFIar+96F9rikJEKXHB2JzLjtYmMK+huQwt4M5PpRTI4bhEtJZNOdOt7xkk1SB0ihSWOrCmzdvuX94oC3VXcshXJ8u/PDhA/12c/nxzcE03eZplgR7CV48WJoD3lzu2qZLkADHF3CVsOdzRIrHypwFzEFF6NGyHWybhg99nLK2wxGP60MQn68VoHgBgXg0UEv4jKP4maCmDFylK9RWudlAafRtcF42Wn+gPTRaBZUoOTQHi3V1f0qHg8aHGX2s9H5zJuYxQL24c/Qx2dxVO6ZRuBrxhwlUsgQgaVQhxPpKW267r7nvg7m+YpqY9yHTDu3feGGRD2vUbZEe3LT0u/KeR9OV9icvEONlR+A/c3z81n8q3+K1vbbX9tpe22t7ba/ttb221/bavP3BICWv3PTES5HCGBURDUkVl0jTkfIxBWGvlHb1nAISTAdlZ+WomF8X1/fOwi4rEkECZuS3VU+MF8Tvac5MdKxOLCWq/axGANoD2Do8+CNi1NL2YBR7UMZZkpxhyaw4gMYfxpNDRTwQY5FojyDPrNp1tAAVB2+NDHCbJ5irdO+PqLbzJGHc0wzreghmCEinYugIaTYDKwGUigC+xXuV2qilMMxCT95oNYI9JSrjzKKKyw+fY0QVKoJqR0pll5IomFVaEWcIKsKdFDYGVSpSPaE2Av3jQWQP9HbttLZ4xap5qN6jo/7ZWsou5yAezFV1OmqpIY9gzk4iEqw1YthIiTfDunlQpXgCthYP9JVSUSKxY4INqAWkLh4EjPlsplMGynFXipZCC32mFkCGxH5MXXcRWnP5tlKimi6q9Jsohe5jJZWhG32r6LIBlT6eebr+xH2/py1nkkZ7hhRmgPuP14QMxgMo2+j0baN0o6rRBGe+ckgRhQYCygZ4NecI0I2JYCIhhxTsLHhyYCkObMjqx7ZU2rlSS2MpJ5bFHGCkjcl+FlPCpDhN+W1lWzdu68JtnFi3G9u2IvRQt6kM80r3wuYV7+JzjwNzUiYFi3jSwnRQzRgH1gqvTNQZasac9rtgeyAr9dRmZ0bFvWagLtd+BMLNgjHMYs2NyXpAJFgy4KQS9ObxBEkyfxx9D1hnkg+cMUEgmKdk2qq0f3u4SiPY5IGznZUoZV08Jr9XsL+oj47rlBIJ1kMCRiPAChYxK5mkYEXEZSoBMlk7k6UDU5myWzPhIf5emRzZg/2+3j6vOrZMUITd2APZe2pHzGXiakhhYhYgAIkxCMWBGrYrUqCThQoo6omGBLaYWexvae/8PqbmQcuyMXrh+vTEe/me37YzS6uYwn/1r/4FX3/1luWcFbHGbeu8f1r5+7/9gX/7b/49//7f/Xs+/Pg7rk8f0NsVRqcwMN1CZtIZ53I6ZQA5A+G+4+4JGQdiNpxJyRP0ZgPnmlBseGi5yIi9xiDYkwrVQcc2nBHNKk0XlqVSF1iWxuPySK0LcloYo7sNqXUGoRMsaGNFrKJUBguVipaCDeF27Txf1thPLZaJ7xVzJQjUxXj79QPfrN9wXZ2CX7fO5ckDydiIKteN0Y3e3dY4K1kN2bZKqy3ANoAptTSPIwerjhbvv76lXVG2LmjZvGJYTxROnALEW7Bg1ROIytlaFmQIpS2UsnBezvzVb37DP/ubv+Hu8ZFNXJ7CPm08rxvX3/2Wp/dPXJ+f6KsDM6X43r3UMqUwXZ1I6Doc6Gy4bJkV36vV52ZrDQe0VEp1oBo2WDwL7DO9eAKp4WtpxJovwQK5GA74FSLJJA5SiwSOhG0VlGIu72PBtCTSYAibOlth751167ANalXaCUY583wBTveU9QZ2oY8Nu++Mx46WM28WoS6PXLWxaqVoYXRjNePTbbBuym0MRjHQjb4+s66D9XZlrCvaN3Qb2GpR9Xxl9BtYR2xQzBOBppv7sKpYV8SqA6lnpN7Q0XeZElyaKX0vN/gpoRk+QqyxMPoxt/3nyS5Qw+aNIfQ+AqzR/ZqTbWRmc6LP0zjujAyTLdMNIZkXnXvSn2kTCDZBgyPzl0X/sst8ZpLSE3bx3uJgS4uL7WcA2VkKDwmZwEJA+OOzb14Ajw7Jdyz2lz2N5pf3zdP3mXwRv1SyEmYOKPcTv03soZn4C9DaTDbtm9yLPwWX2cU4sBTKTDK9ZGKKRJPs/BgT9JRAq5y/dujTPAPB7KejvFpK8knZ318iC3+ULlbLPfww/9PvF79fleJel6So9gG9IwSAIcB8cU0HasWZkUyk56rYfS9gBw/lO5D5P4uXyzW5j71Ls4QsebJ2RDenn2HIZH4SybUV/vqkuMrJGPcqwYQhgbU6+Fscrl/Cl05bkSNZMpMdBSNqDlozKibOurmuK205U88JUtrPE3/SFq+pAUqS2PMTsSWxn1RpIV/V93xtPmZ4nZ6c95+5fawBbGD3SYpQWnGGFQpLizP39B1yDXufqrkEnY5BH0rXwRidUQaje+GMBRtKspnuzGZlniXyRdPXTZsLUeQwTYd/zt3ZOBcZ0yIY7JKJ+a7Tt90nRZ4Csiwh12+eQV+wvMn+cz67bto672ubayD9X8s+i9vPIqHwdffn3J9tMskdf3acE3tlxFx3n88Z/zN79iUgS34PukkSvD7N9RzkvT/mjbIfDjaA3Bt+3tc/kw2dz5H2ONY4B0Cr7DY+7Ugyc+e8z3fL9U122XGaxp7E/L7M/kiGX2e06Wy3latc+Fiq+2uqvHvzhrv7s8dMxGWXL7eNT5+ufHj/iY/vf+Ly/Mx2W9HeHRhjuffZfKAi+5vboY/n+5D7BOQ5zQEXu2/i82U/285+kFwxfsaSInHujTNGqbTF7d9Sm8uY1QDtZAGMMJ87+02KhN9dJvjT42nK7dY9rnWIbP4+ayhVON2dOd1tjLGhY2NbY1xQByVFId6UyopOyfGuwezke6bOPrAsggpbaFGYlyxSbmGcza0UgbR1JrgMt8/IZBPyuEqd/z0+PvCLX3xBWxYU4dY7fWxsvXO73VgvV7Z1mz5pTZ8z/pxM2cY8H09Gt3i6ZBisTivvdmiCsAZ14s5ybuQkJ+YEOBOSFwsm8JaS8z58V939JIm4jcS9NPZACyMriIOFDqBXKUaVjd5d9k17xZbmBT3Nn0UR6iqU5YyKMIZ4zGl4PWoHZzsPOy8A6sxJow+2LRgLdcRZUTHrfibXZD3NiRBn9ZyzPuQvmI5fglAPa2936+ZnRbI/NXyuwzi82Otz8crBthziyQfDvJvH/btHnzcfYAcoWcz737OQXttre22v7bW9ttf22l7ba3ttr+2P2P5gkNKpFjYbbGrxNQ/kUQRRD5qqdT+ES6FKoWbgLoKGxQSiAnwMjWQChwCgS5mNMY7suJ5wry4VgOrUaU8JDZdOUFqp0AdSXV6KAhZBAEGoDQSdFcclQEdgM3mvAT6SkhUsUCPoMvAAjlezp6zGwE9+EVhCInDi0m1WvIre5QTwwLVm4NuPiYozoZT4oUsTRVUMGxRzymbqC1jLiKolqZFIqAa1UVHKUGDEgb9SawReNRKLKpTlFEHQrAiMoLNGkBxcPq0uwSBkkZiJ6ktRWlswa7Qi1FqiGil02CMIvPXNaZonbTWYeeXYsThnhvdKCbk6ryU2OySOcOELtYEFEMGZrDKiVhEpc2pLK7Tqh3DVoJw+BOawlFYIsJbIBChJYbIG7Qm/glpHVJFSAhRX8Eh3Q9XY+srlWjmdGnXZWEfncjPak3L+MDidVs4naDWrXQ/B5z96JGAPWA9Tni9Xtt7Zto3b6lJFVkBaoy133C2GjSvUwTZ8TWkfDPPet1ivtTREDJPKspwdpFQKVgqn1liWRjk1zqc7qlXePJwRGegAqZ50KhJVkBibbqy3Z/rq8j1P1xuX64X18sytXKlF6ZsH9lSVupgHjajYEMbwNSfFf85M3gUg0MyBE5H30UOSr0TyqFgknmM9CoRUlwMnErBSaszPnciClCV08EMhk4LHZGg+0gzvhn0McUOOF7QjE1xWvGZYagauPC+wC2hIgOpmdDkuGVWh8SgadPxTMoFMthzmnu2htEwpTKBezFm3VwEIK17pKFlpegD3ZOInQXgpu+GJkjLf0eN8bjOqBFglg9P47/ak6J5QyBxlJihdMiQBWTH/k6inGFmNX0LSEn0JqNIAZYIHbzXo3EuMq5Qy19VQB8cYFkxCN0p55vvvfgemXNdnfvzpe371y1/zxRdfcfdwx1hXnj4987vvP/Dtb7/nu+9+xw/f/Zb37z9yvW70zYGE2rdMW8RcsjlXZY8jxzvPiUGNPnE7GWsgxth7TjBKSJr1SJLu1c5iXmVLa1gT7to9D/WBu8eF5VRZ6kKzArIgS3WAiWqAghz8UYrQ6gICrQqn1qilxg4mmA4ulyt/9w/f8/j4loeHe+7u75wN6jC+MchQCstyRy2FPm5s40ofndE3er85Bf8YqAq1nlgW9yNGyrhgM/npgK3YZ4shqqgVp+6XFRvNwa1to9YWG4HSFvG+LWdQUHNmIBSkekK2lTPSTtTaKNVZgE7nM+8/vueH9+95elr57scfef/tj/z43Q+8//iRfrkCFaknahFqDQY/PCBN7C+m5vcCNFgj1YQagFmHgoUNsEhsD+NUC8vi8nbDjSHDhC2key0qrUt11kEZhkinFd/3nSnOKd9qrb6XFgsin1g7tbCJJxh0eMJGh/sMW9fYQzZEjXKD0q6sywPXeoeOMyrGNoxefT9q1djuBC2VpQGl0tfCZgUrbjMpDizQzdhW47Yal0vncrmwrc+styd6vzLGhWE396WsO1jWvDJedUxZOzOXucC8qtp04IyVkdQ29wHHJK07VPmHUzaBnQnyMAevqPkaHmNEJbcz8LgkYdq0lClO/yTZG8T3tEwXxrUsnORwyWbyY5ej48+2Cbhkh7l/B0TyPxJp6bfE2aAke1eeGWxPnKT0biZkjnuWMwKELbHjPie7XZgWlv0atnOMJGzSZWoOWR7JPj8kQg1SkjX3zLS9CR7wd49k0vQJ9v2Pub/7p3d22fDT4xrJnLrviTr9jkkAmInVOKMA0X87+NhlWg7ytE7p6oCdYEvbYcD7mPizBWMpEueWHIEsfmC3kbJbdYtOnuAt4nORlA2T7ylTayRgw5P0+1qY7lXI0mUZwvQbLBOzZT4VsAMKBVJyZ4LAkVnAkCByEQfvF/HfpTzmoSte+CrgYDkLptjARs37Sw4ECcIizoXxvBZDkOdhhFaFIi6Vum5xvqmG1E5tLgH0p1/z+w3UlNu60rszsPr+m2u0UEqjijIIidrw3xLQmgOYMyDBPaV6/EBKwURocc6TWljaiQK0VmfBTc7rUpqfDwJksPWb2/eurGsPEPPmzMnFXA5pxDoqOwxuPpzFnPSM+1ybBiQdR0xJ0of2V9lhQskssrOm7b/fzYjsNitNVdgD/8AxrX3wi+ZH5LPf7ev/+OGc0cc+2z9l+wMkm6rlq8vLj7Dbyc+fZ++V/drT7483tXl5I+ND8+Jx7xfMyr+nHdfPz57j8PPjc8q0x4d3evH9o70/2vZ9r8i7T7UliW+Jg8Xzy2mbcn7k8+Z+MBn34qxmFvBR9QKWrI8xBsaG3K58NKXrxm278vHDo8sHLycw6NvGbd24XC5cr1du12eu16vP+eF+zdAEWNjs+2m3DsM5QVizV3eZvwlwI8/XQtLBOYFQAImlvPh+DprUQq0Ld/VEay3iJw7EdxpbP3WrSDA4+92yMCoP0R6fmnBS99208/HTE9/+7gceHu65v7/ndF4OU+MwfoizEw1YbyvXW8RF+hbAms9secF92ugE1QDYxDzJNTXXGB4fmOVH5t5EiS8ZaavDx7P8Vr4dQKVIpZQ258i2DT49XVi334X8srmM8bqxrSujdxgBaKEebI1NGyQxfxMQnH4UElLYQsS+5rCF/+pn6sTrO4A451GZ8UiwuQ8jJRiALZ1md2c1GX9yDzQmTC+mAvjczPNE7iHSCRk738etG3XZKPXENhZsVCjBPCoOmHbp0OZFnogz84dPn35iMsg5qxKMYJfqfTD6Su8rZiMKYHr4q85ADv6Owwc95uMBABZxDYLNbJ+H+3p6CVA62t7cf+LnO2XYPmfsMPf0aD9/nxWVn/08uvbwNPndI5jyP2aRX9tre22v7bW9ttf22l7ba3ttr+2f3v5wJqXeQTpQUBVcSkbnIcswKHUGckyy+t/Ig5zHvSOBqolCcuaSgSGWladCopRcmsfBKhoAAGXMg6/qcGCR+ncKhY45xgdnRPFDt0uxyRFEoDoT2aVGuMHy0ElElR0AUyPZmcwoGmWhmmwsh4D7bax+UBUQax6EyUO9GLU6mMJEpxKIV9oUl0/LYLkUQngKYzgYawhlFMR6xljoalAGRQulKksEfTLW6n2UB/Bkc6o7SEEKRZaZBAAPnCPO8NSDypiufggvRhVPDBgdpGEiLg9TvUK6WATXTVhOjW4gqlNCQeNAXCNQM6JyyROhiyeNRUImyZPazgqBMzgl0EiVpTVqqzGdnB+nBQDBgw+RjO0bLYKTnouMxEwJHpKcq+KVa7VIJPK9H2tQY49xQ5qPrXYPrBkd6o1zO9OHIvUGXWjXTuPEc/HoTzmtyPkjD+++4IvHBz4PJf/xmrz4U4Hb1vn49Mzz8431dqVvG5fblXVb0TEioDIYdKfVLh443WyAFqQ5g0QGXwvVGc9EMRnUpSGtsrTGw8OZejrzcH7k/rzQSuHx/oHWos7eCqfljtIWNu3c+o2n5/f07cb1+Qo/PVFK5VSF1grSNrhuKB2GwPAxLQgdZrIj2dd0BmMdqFEEtOxykp8HuQWdQScPXGXCKsFFAWaKoK6kYRka8msvE0Se9N4TFBmCEynzvl4xOyYXl8xEVgSnzBPRYyR7UchcqAfRMtglvATkCFklfmSB8KrKeW2pAarMQPVxusgMmpvGGmAP+JdySGiQSbWsbH45CydzUtiieR8OyYDf870M5HMYp8k4EN/RuMasQrYR92PuKy4N4skunw0OMpJaKLWRUiGZ6PVkpScQ+tA5n2aSAbyS0zYKSovAnQdoK30Iah8YujH0xnV74tOnD/zd3/49d/dvaO1Ev91Ybzeeb898evrAp48f+fT0xPPzM9fbJ7Y1pBhHVI0G+8/cM/Hk74g96Bja9jjwXumdEqK+5wYwx6qDc4sDmjIBUKKPaissy4l6KsjdwuP5DW/OD7TmkpZLW9DoH2xDBGcq8EGiVme2q8VZ08DQ3qmtMnDGoq0bT5fBv/k3/xMffvyRX//Fr/nLv/4rvvn6K6/SPaxMA7ab8tN37/nutz/xD7/7gU9P77k+X+nbioh5ElMkWJSGA4hkD6RXYOsdMwtJVmXbtlijI5KqNRZgCdlQxVgxKQytGIrVgYyK6dWTyzN5vSD1BKUxVNmuVz5+/MR3v/uOf/fv/gEL0N3J/Bmuo2NdYVMGg+GbMsVOwbrhwE3RTi1tBvnDNLnEaenocJk/B0l2txUKXV1aVkzRAn10B61pAIg8ox9bmydstjGCRU6nJIL7OIS8YPgGw21LjZXqKGudybnelSLVfaYx2Lq6rOjW6NuFp+dnHt6cWe6/4lavSFlo9waycDkVantGPzkDVNGVtRp6OrNwogF1FKpVioIMv7+YuExo9yTe8/UjW18ZurL2Z/q4OrhBV3RsLu1hxjBn0tr6wKwHYKkHu2J3ixCJBw6SnY71iiSaASZhq3eb5r82sBHL1ufATDEEwOMITMEOYJHPbKOEU2luojKlQyYcbX4nkon2GRPgn1GzYD7U6CPLqm+JfU1yi8ldOPcgDolW0smeG4tXw+/AB0t0yNz3ZU+WBZsBO+8QCQUydjk2zXNIfNITsTKfaaZ8ZhaJ/T3ms/vuk58vmSiNV5h75OFJiDuOWYafrB4OHvJ5JrFfZUpqhyfM3V/mjw4V/f4509z7bL69BcuTS414sUkmsdKXTjYpY/dZ5nBECjnPH5lczPHxe1gAOCzylhJjHs8lcXbMuR/PY+JAyfjUft8d7UUaLgdm+7NYnK+Y/RTvoQk823u+lATMeDdZMvnIPtpShaJZNGEHfLnFPXMa7KCII1OqsYPjnSXRkFL9PYw5p8UiQR3ylDIKzmbsxRZl3ajLlXM/0erdYTb+sc8V+/USQNPHYN26J3HHCMB2p48ekjiDYb6bqOByyqb0YB1Jn6sc5owUMAmp+FKcIbcKy1IpzdkQz4v7F8tyYmk+F8zC3yiFof4st+06mWhMbkgReo7t1sM3H5PMK3tNw+fQkIKb4BLTOe8TYPDScY6xjj1hB/bJzgzF8fO5zPbVbiQQX6YlSsd5YoXCvyWKaKbhSL933iXmKvtesa8POE77tFDMzyr7XGL/3ovFftypjld6OfcmjiEtob383bFlkYP9I/P36P8f7/jyfjYBgXNPjD588cQJErJDol9k/xO3d7HtMgGGeVDLpzwwoc0+P4Bp0sYlUPlzBifClzCBKg6SqMnSHX2npgzbMOv0vnF5uk4gvMc2BkN97a3byrYNtm2jDy920ABVasapcuqm3OEc5vDx5liYx65iXGX2XdrcfUxyYZSwuUV8/bbmhUylCFSh1MapLtRaKAi1VKQUZxgdfe6Xk5EMmf07ezj6UlFEPcYzhnG7Gj/8oFwv9zy+fcNXX30Z0vJz1AEY3fj04YmPHz7y9PTsBVtjB3GVQvhaviuOkUU+Mvd1B+4zizNIX44As9bqe8+09TofwUQYapQShVsYZp0sFvQ4QWEYzgC3uQ+pOvj06RMpf9ZEaRE/7WpUc3CXpj2rclhTUWyTvpQkBPfgb+Wubhb2T6NwK8HS/qkdkCRxLpawJ/v8dtY/PD4WhWFH2d7dR9vtkU9J2/fAwrTTKQkv5nu7Dj8Hr31wOgunk1KrcrVC3VLWs9FNuanCtsUuY1hzucRFBBl4INVDm66sJ37+U+uoOXvt0M7QEbGdHmvJv/x5MVWC5qdfa0aehee6P3oJlqsvbXSMmO59c/x5/tC/lp9JsBzTh86rTjv0eTvuBzDt4ZzPhw/uxRSv7bW9ttf22l7ba3ttr+21vbbX9qdpfzhISTeGDbbuySwrI4LABdUVk45l9aMqWjzUFyJDZHW3BruOBBOTqu7ZaonKWysz0VKketV+xuIyeB2BKMMJhJRMVHuiqBIMSwyaGMVqHHSJ7wbjU2mgrj2uyWY0S6Q8DTfGiMpaD4RkgEHMcCmtQyAwtOtB/J5jMFB60RmIH6NTq1dzTnalOBwqg1olKupDRSYOqJKJjAIpPUZSSJu/g9lgiAOj1DxAIQYlqvs1JIhmqZRHZZ1liOJJZjFMN7I6CDW0x0E8JF9UPKCuDFprWGinuxSWM5VQBR0C1lkKUSGbVVRet2qjT/CEx0CTNckpvSdoTIjKMWd6ojqYq8xgnzOZbN28orYKS9sT7+B9bqps2wimBIt+8ABycolkUtIrtaKLTBhDg5HK0O4Ba7GKlI60DR1G7+r36SesCrfeKFun3q6U2jjfwe0ifPrwA4/nhdZO/PETCt6OAWBV5cPHj3z89MS1b1ys89RXntaV27qh20rfrly2K7cxnD9CnFFIxQOVNZMKliwklWUpOPGXIMU4t8LduXG+O3H/cM/D3T1ffvGWx/sHHh8eePvuHilnVIXWTqjBra9ct5Wn549cnj/yw3ff+u+XheuzBzY3u6AD1u0aiYuC9LEHtpC9so+oYg8QR5XqABbPc0VQdg+mZRBJbMxgbCOAjFnlLgnySHYAm9/LYKxkctUO9OYZvIqgXikWE9mQXDOR0HapmQhkxVo3CKYuX+82MqCuh3eIGWSRBp3Jc/9OOdjXMRyQYWoTQJTrLYNlac+SLSDLGicbQ37mReJNp/07Brayejni9HvAOYN1wYqA7ZJr/gz7usay2jSeS2QHI2UCxzJvYMHQ50HytEUe45YJRvHfVf+6RgVpSSYDnUFGnekScSBf2E3BE3BDlVE6p2VBDU7mLDdDV/pYua0rT08XWvktpTWXLO0dHZ21r1xvN27Xzm0d3PqV9faE9u5SA2H7dnp777YxxlzTRLA+ZQE8+T+CpatQarJCFJfDlIIEe1kmE6q42OP5tPD1L77k3Ve/QIrLhlmFVs4srXG+e8Pb+0e++fodz6vxD7/9FuufONfC1ivrGKwjQBjBZlhLxbRjBtvoLLWy1BNSjTEuPH8Sfju84ru0xhdfvqOU6nMtEoLbavy7/+kH/u2/+bd8/+3f8/T0get6gaK0ViI5unqfRIJQtcd6awg+vqrKtgUzTiadFKQIpxMsTRi6kCyRfQxOtQG+3w+7Mmyj6BnTHmAFl69dZWNTZyAalmtasb4iTyPo/I37CrVUrqqgDjgeIt7fIReKehVwN+EUe7wyqCIhoWZsfTDGivWVPrwCfNUtZPZKyGlqzOlCT1BacZD5GJ6c0rGBdop6IkARaki8pawqAktrdPFnxgoS0j4JxCkRkB/VAcfdhjsv4Sc1lLEpt23jaRO+6Mqbm3B+uOdjOfPwqVI5U5ZCuTtxaxfk4w9Iv3G+/wJbC6daaebz4XK9OvANT0y0aohc6f2Zvl3p25V1vXFbr5h1bHR0XbHhib5hwZYUbFwaie1ZAT3GDvwwCTa19AUSFKbBzBiJNHbgkts2C6fVwq/RmSRMBriRIL6hBx8oLZ9Nv2pHlxxt9jSz8VmY8ji/LyHx59RsROIK1PrcT3fg1cDYzxPZOSU7iQPjjGfCZnLlZeKd2RVp/z05Z/OXapkUCwAYu3s9mTdSWi6AMplyD9yCP1vIcGTW1+Zg7mcVt2k5k3zMfD8PP+H4DEj46rl/+k91eBJy1sqXfU8t4QxIOi2kj6N74n5eK/sp+iPnsW/+8QTB9CXO7ro/mwWT2S4dF12Y7gtZcOIsDt3v5KR0fl9fACCKBsMeoi6jbJkwI55DkjYSMweGTzm3YCXzpzowO+U42c4m4Wsw33xmZuMsJbP/zSJJLju7UUpfOpImziRqcGD+nddhn0dGnKGEmTAGB5pLMv1Nv0vcwZYEkfWdnbKNYHhQetmQDVpVxlZYr1dnK6zLBLP88VsCA32vuF6v3NbVJaRRNlW28Fcwl0vqozOCOSlztSl3DgFQyrWH+yrphxWBFhLcrTWW08LSTtzdnbk/33E6LZxOi++daQ9w8NRQB2mstytP5SMgbLVTNgcBDAWXie0h25QFV8zz9ktw4/F/C7vMpuy+dnxkz/HuaeEJ0j/25ot5aNMn2WMfsIOi9kT2nEG5GKd5tGBmC59dXt4srMHhx77Hl8PDHME/8152fI8dgJPnm9lPu5EjXgbS/89vzCy6D7yv4UOvzJfbiy7sxa+PqfbjG+3PdNgiXgADj883gUIJZJwAo5f9NS1bMLLlvQRfu7mnCCFNlX0z+0nmPjLn0hEIdZg3KAzUJdjKDuD093LAiA6PX9R6gWCEzfPP0OFzfyg6nNVFtR8kqnTGcMzS7icAbx//Y2/nmSrHEmSXnZp7coCJJD/h/ufSKvf3d9w/PCK1ztgRUpz9szbu7x/56os3LMuZb79/z+X5I7V6Qc0WUo07sZnFfPJ5aNUBpbVVt+0y6N1wSJWzKT88PrAsbV+/MQwfP9z46acPXJ4/0bfV/bZgfLP0DeMsMfdmPYwf/hnNYqA8T4jMtV7EpVUnzHoCzKPPo3DIJcMifmAOQlZVbAxKdXY4C543B8AEY60pVpyFOQsyXIpP9rmZ6Jv4ncRZWOcz+6+GqYP3R/eCQHMA2NyXQnr0yDAYo4Gzkeu0T6Y7+D7nmKRvkvZBPJ40z/oaa06O1/Wzbu4d6Sz5vmpeIIfRFdQqNlZOi4I1bjX8BypWzpiEdDpQJCSq8TjrUNj6oI/uMZksG8s+ifO6y79t7q/G+FjsdZZ9pSH7fFhvybAth7WVxTG7MUto3kvrttuOw7I8/mPa5rD5HNayHmyj7J99aeNf2tcjG+nxL398hvfX9tpe22t7ba/ttb221/baXttr+3n7g0FKwkC7g4yUjdEjiB2VJIgxRqOUEzAYxYMLVbwqqRRPhhrBUEGChOL6khWAfkRN3W3wQ2UQSs8KctUygyWVSolgm0U1iQRn8BSxUY0gtdBD0qlW84RF6MVbyrPJXumm5klFiQADIvOcrUjIbITUgXrSotaKjUycF3ocxEWGH76lYhT6FlW7opRapiSA6YhniEo69QSBJ9uz7Md/X0Wc0UAjgGCe8KI2KCdEhLYIRZ2NpQcQrBgB/jGQhg2l0vygaxsEtXipNQLFhS7KGE4fbrIgVGqNpKoCFmOSUkJ5wMaCsSNq1E0j6VMwC2AUSezkc6SZg7UwYV03RndgjEh1PEN1dq1aShzGnRmqtuoghurgjKXVKQlnwyXD1BxsJggjgzqWAXM/7NsYwT5ewQiJh0E3CwBKA1uC6ckc1yaGrkZdKooy2JAmdG7cirE0ByhdPt3xdH/h6fGZd29bVFC/DE68iCLwTwkQeLCpj5XL5Ynn6zPPl+cI5Cu9D2dJ6wPbNmRAUUE2Qzo0CqUsbDpCfsNZxWqp0BaWWijVKEvjrp14ON/x8PjI/Zu3vHn7lndv3vCLL7/h669/wbt395zvzk5ffkgqbGPQdXC7rLz/6XvuW+XufM/7D5/49KlhPwrbJtgQ+najmAeCtChDnD1HzeX30OLzLMCEaoJamZGYGmxv4yDx5XNXIRjPigmiXk08XC8xKLQzpi0UaSExUjynhPncNCVhOjOArB7RtWQhUPN1jaGRDc1kQJ1Jrrih1bAZsTbMg68SMlX7FIk5cgg4+0o8xP3Z2Yj2KtgyQ/1uzyUqRD1omzT/drgFYbvz31l9l7Iqk31oJk7zyy+TAWZGy8ku88rzu3swTef7SAS5d1aEMvunRA18Mk24JGEkvXBgU62NpTRqaxNIY2PMO3uIu5MsEo0EoRql1JkEyWRsguFUOzIKo3tgVGygQ+lr5/L8xNIapTmws+IR5Wu/sW0aUimbg5E2t7GqPao3I2A8jFIPQDzLN49AZCRRathAnyOewEvpqloKYrg0ZnUA7lIbd+cz9/d3vPvyHV9/8Y7zm3eUdoLekaLUesJEePfVN/xf/rv/M//in/2S3/3uwv/9//H/5Mfv/wN13Hi+3VAJZoIEDJgDVooU2rJwujtTW6NIYxsXzLrLUNhCqcL5t/f85q//kq+/+oIa7zi68u23H/jbv/873n/4ntvtib4NRFMWVuce4wHhSNKoOaiMlVoKrbUAGZaofI8lH0wqpoaOm49dqegoFDlhDDQlIIcnYbVviA2quVRFWRrFKvVktGVxpiktjHVlbBs2BkM3KIUnC4B0EbcbpdJqMjgNsB42wKvPq0g8w+oA29vGbe1cbzfWyxNjbNThyZVTbah4RbXpiIC8S8KZCTJ2YCPqQM54ewdoF/9MsiupFFhcWlWKV7wPhR4+U6wKf74IyPfh8nBmRPLTl6mVQmd4bv9poQ7D1mfQG+f6lg/PjV4L75YTtnzBooZVWKQj8olWNz7JBTVYN3i+rmzbjW29sPWN7bpiq6+fvjrwaGxXbFwY2xXdOtYHpDTD6IHv7mCdTOxqj+rlmVDzP4YaUvz5CZvkjCbE3NOwRztIKbNVu4Rb2LOUQ7EEgym1ECqlYZ/ndWSCbeFoc9mBHLtVOtjJnQHvz7dlgjr+iyRWpsHMzP3oYJXRyMOU3CLJfSJBOIJE+mlCZSV759g/NpOvvkeW/dwx/3cHxGZyXSLp7QnF2GOLwJSrmztl5pZnyzODZbKOQ+Ip939iTLEXQI4sbpiAF+TwPQt/JCgHDkkmic9MqdfZt8X3ixIgpOO7yw7umQ8Ya11KmUCdBCtkolEi6epsITtwyb/vgA4vSPHrFyuRkPczVib7mdd76XPsfcshGf5ZJ+N7b5BRvEy+QSRYxX1ejecrxd8lpOrSJy2hNVfciAbA188bCRp0Jk8L2pEEuaRvtScC53yKPpmsKxZFGFLns5dc1xogOBEo1dljuzq7K50hRi1C7431NljaYF037u7aHLv91BCT50U//S9vNv8MCVwdzlS0bZOJFXV/N/8tUqixvxL7bRFjyAFoFkxVBHst4gUtrVSWtnA6n2inM3d3d9zf3fFw98Dd/R2npYW0r7x4I8UHX9VY16sDoxeXwbpeS+z1/kJLa3TS/Hs8wNk0PCbABKb420+Sj5lMjzOE7PMz/1fmRMx5vK+0z7AgYfftMFQBHRTbCxwkPeB9HRwGJWzM7vuD+4hxgI35ll+Ewwo9gFGmI364+ItH3X8+++bwMEfkAzvAaibT09U/HkrmtY432vt3NwbHZz7Obr/o9Dni1zs2abdnx2T7fI7PAUqSPWf79yfow+1gsqo5qC6KHqqfD1CbrDOCg4f83XcQa+4z+Tz5LEebacZk9RaCnUWN0Qe1HtibzJ9LLQoazJwF0tINjzPKEag0e2T/79gL+Wx+fmLO0Szo8mI0/1ZKZbm9rJyWk7MnnRbO5xOnxaXkDRyIE3O7nc781V//Fb/65RdBX7Pw299ujPXi7x39VOMdPdzn57hWhLrsrOOqHnGRYKXzJ3viw8c7zvd3nIpTlg81np4uvP/4kcvtQtce/jDRX4mgDR8KL2hL1lrBGXpqqcEqLS+Wys4YnCztaQ1q9J/GmO5ApzGcsbOIxysr1Qv6ajC6looiMIyhJSSJfU8f3W2p+zH4fkZuLz6yyR7cSoR7zebZS8egd2eKGmMjwTWF3I+zpioBhbE2k105dz3b53EC9YQ448R8srnWEtgV51nd7Y5fT/ezvx22LgkgXLBWO5u+IlrYNvNiUx3UYqhWNt0wvXHuZ3/mFrxW4uy7wwo3YKhEHwyXpR6DbRv0bUzyI8cZeRGoaY/ii72PJ5iLAJ8Rzmr6ZAd3L+3iCwa8+He+8w5wteOkmh/PXtyvlv2fBjYB/7v/8dLP3IHduTflt3Y/cTcIP98JXttre22v7bW9ttf22l7ba3ttr+2P3/5gkBKjRDBxUJ0P1+VdrDjdsA5KKwwbLJFUMAWNwLAHbgcZZsNGJJNbHAJXhKB5r0IToeBJ1ZEVOSWALkXo81BWEG0UGRFkrEj1g6Ln+iOQhHqyp1RkOeNgmA2zzQPUUgJsMzxxhFdmAWDCpuABf3P6f/EgllqnAE0j8FgMzFmEUHMJNCn+XFQPckihlROlVNR6BCe9fyWC5hZUyXsax4+/tRmmBbXqFUFVqAStdMjxSTkhcqJWcAb8E4JTiDecUapEZd61j2AFyqRY0hkbYpWkYLAOQUDhh2/UZdlYMHPZNpGdqh4RxlgpJQNyGTzz5L/EAd5kobQIhtnOUlCtUFtBygJSGd3nmldlG62cqOJJk2FGqSePw5ZBWTxRX0VYpHqQDWGMipXGsnQQZ+YpJgzBEykSrDVaHOOFUWjU5sFiNU+0KpVkl6lSnArcGsJAWsFswbR6EAhl40arlbV2bq3ztNz4ePfM+f4jbTnzcH/vAYMZrMhFZ8d//K9qFgG89XrB1hu23rhdnrl+esbWTlOveF63LeZ4pZhSzJyJqzQfwwUPmlFdymeptFOjBaW51MbpdObu/Mj9wxe8/fIrvvr6K37zza/41dff8PhwR506Ti/faSmLP+vpgS8e73nz5oHH3/2O7779ju9KZbtuzn6FonoPamzFqwxbBF+rKTQiMCYgTs3tGIQRybBKcSsDLB60RUNSMqtby4zWCgRIpeA4J5uyL5Kgu8oMVok5R5z1gVgAIVBUQs4DYo2VCGP5mDsbx4JXg3oAaWcK2kFPM2AlkbjOvozgtmZFpiSgMiurM16W1jdTFwHcjMd6+TPz9/aX/WzcDuHsBDFFIK6KVwLrjJRGtSQLHjCFumPGZlJjB+nF082kT5kBQJfGjD0j30YIAGgE7MWDui4h4D9KW9BKVOQvC6UtSF3c7HVl1R5sdBsr6vuWFJfzO8iqFameOJLMbfgYDjW3vx1gATMP/PZOWxu3ydJUHeyk0MfGFrJcRDJiC5mUZHcaAaAiAq9qRNJSXb5UjCqFFhJ2UmokTqBIQ6TSfVRpbghppdIaLOcz9/fveHi4YzmdeHx7z7tvfsFvvv4LHt5946wIz+95enqmF+Ff/ov/kv/6v/qX3N0J7fwFf/k//4aP33/L09MnrtsNRSkKS72nlIXzqTkbUDFOTaAtFBq9d1YGMpQ+OrdN0O0TNv49/59vfsH/of0r3g7jctv49vsf+e3ffcuPP/3Ipi5xepoSBtUBp919jW10tt7Ztk5X4XyCJkaTxmlZMHw7631QgskvY79jBEjHfO0WBRVlWzfG5iAWT1gszj5QjVOrSIXlVDifG6f7Mx3BqkQVtbHRUBlI9cRtt05BKB23JRNYHMyUVShlcelMjL7dnLFrKLfbxvW20bfO6N33v5C5m+uvhD8WIAcpzgC2JzaiWpuKV0ZH5XYr2FCaeEZqAvPCDkoxiimVwtJASqGPxZnZwtZQhDKibyXAjjX8uGBkGSrcxLB14zYGRc68eewUW6F1LnKj3jpDlNE26Ct365XldOamlacVnm/KWAe6roytc7nd+PB849PzyrolaxYuudg90VACNtzVd/AeSfQxUpJIwr8olKJosGUky2dJYII4CGungzFPWFDokdFIQINpshTITMjse8Ce4Cm4jSwlq+ETlFnD/zNMvLqbkP9N2+Ng2xrJl/CfiOscErJ/bs2yuB/mfpWJmZIIrBL7EWSOxb+bPnHIWL7IEhLguWT68g1sT7CRQ2YB0tmzYDuzhCduJndWyiLHOO25tqAnk0wRjtg/c39MRo34aMyZtEN7y/3Y5vclZO5UEqCWSbwAL1N3kFqMtZQEa2VCmcmWNxkaib3UD0dQ4p3VnyD9d08qRiFKcZ8vc9QiMQfjyZUA6GUhhz85O3uH/16kgOpcE3ZI3Pk4h9xZXCIBWNMzUdsTauZyp+mzHYEd/hnZ54tp/D4AMdWLS46wCKGGKxJMgJH8lqJe8FBLMNLGs4mg6iB4BKRooGPS4UofwQFhzsAUiduSdyns4lwy/3RfqPo5UBycJxrcw2IwBqVURjd66Wzrxq3dKNUH6O7u/OLd/mnNXvzV8H5f1xtjW4NlYtBXT3o7aNv3MmejzK44AHQkzhLRNyJpd7MQx32vWhutnWjtjvPdPQ+PD7x5fOTh7s4l23OeHDOokkAVoVRo9w8OHD4/8enTE0Jh9DiL4mCOMqKvSsAVc+8rgkmdIDSNeTQlOINFLAudZpo3lmQylE4JHYn5wzw+zmee75KftX0++DtJ2HW3mkbeM9bdizHKdbMXfmWee991mEBLXzqHc0AsOYuCDOCwvg73mUcAmXNj2ry0V0dwLuzrO3+W/5Pfl+P3IBP3tr/A7Ndc6wmwmlvBZ3vCDpI6TpTj28gBYyX7+LKDrKY0HOAg85Qzc0CJhGRZSm27bdJAHseAJ6ti2IdcDzkf5vnLXMpLLBwZ834rEmByKfTBDpqKdZQg0WHqRXkxX5J5PNeiS9jnvInYnOz7qcQ7l3D+sg+QvWv9MyX6QaIQoFDaQmsu5XZaGvf393z5xS949+5LVAp9vfL84QObKnePj3zxhTOnWhHevHngh+8aWzBSuyyz0dpCkVPED3xilihQKZQAKFnIYbrcsPYNVPnxp4LVhbdtwYZyWTeulyvrupJsXVkMN6w4U7o6MCmB9xqSoE4OXg5+ovt0Y7JsHs6yET9JW2QagFSC1UqzWMELEH0PiT6uQq3OzmwxJwqFkVL0JfZf9ZhI+iVzrRUJRqQo1BKJArwtCoj8aYcaPSTFJ+ty7GtH+5XgMJvvFxZIc82FTcpzwHTW0p8K5iY7LE1h2tMqvh/n+SAuFMvd5/+0f4RUaPS3KXQBZUScuLC0wWl0qlWkqMdgx4Za8eINcaCylcLaxdl/h2E9+syU69a5bd2lqqOgL4Fn7p5HjFYHgyhSiH6ZMrW5rURPOK5L0+TkJrHHd7Lr9p1k2qKEG9lnv8vvuQnOf39m5+yzjp+213ZXRV5+VcImvpSx47W9ttf22l7ba3ttr+21vbbX9tr+pO0PBilt6gHSPhQLyYQxBt0GzckJGNaxUhmizqcebA1D8xDrYIGUl7EBRiRkVScoyIPRwbIDODgoip0kDosZEDc/oBbp/tkMfqe0jQjDHIigaogpoycwqe9JegwtwbQSgR2LgOMWATAdNtmbwOg2UBsspVBk8wBXyKh4QN5CQiWrIoXWHCQxzAFZJsoSVXFSjCpKKwWzSlcNaQp19pkImAuVMeJQKgSwynwQpFHriaUuETQSSm0R6PT3uPXOtt1cwk09OCIhU2dBEV4EmuD04mNFNRKPARISU7r1GbjwoIlNGmkiMZHBDEzYhuu4O2sVUxJLugMJhILr13ugU7eO1MIwQVqhVWfBObeFVpYIvHUkAwgZuihexVcN6C41lBXb6zboalCqS7yIJ4h9HvgYeWBOsRLBlUiW+SF9BDCthJRfC1CbByl0DDpX6qg0heVkqAi1L9S+UtcL5anQzhWapx3/4le/4v58N4Maezj2f02iIYIYETC59cH7jx/48NO3fHj/A5dPn9Bt0LeV27Y6OKl3ev43BrN8THRW4NbafKy1IHXBkygLrVRPLrSF8+mON2/e8O6Lt3z5iy/4q9/8Jb/48ivePDzseT5ySX/2g4iUnJYzv/z615zPj7R6x+iF67WzDmUdndtFQJwVrJ0ahlFDSsSrGqsHnDJKlOC7IogGy09UTO+dbVM6a14n+mBnetAZuJ7BtwwiGT5nyUBR9YShatgsp0p3ZohIG2TQP6k5pIdEF7EG9z6yiOBbsNLoQf7L40+HLMce/Zq/JyofJcB6BKOTRlA6A51JQ5/VnymdBUnpf5xfNgPX+dkMis9AbXwu1w1pB5P2XqoHKjPyGZcrEXCb4biQSkrpG9Me0jpu04/SbyKz7DcC7b7X1FJpp4Xz+Y7lfEdrJ0qtiBrb2mG45OEwaE2gO6BhBgcjYTCii0txJp8ivh9qd2Ydr9J3kNmyNLpsHsiPpIbPrTLnXTd1+n51EO0g5mKOcbCEMBMxAUYrwVIQLFFSmzOJyZ5ct7CPubbq4kDC83LifGos50ppJ+q5cX9f+dUX7/iX/+V/zX/zf/xv+fLrb7jp4O/+h/+R/+Ff//dc9MYXv/4aTsIwYCksi6Bjc6CHFoYpj2/OPD6+oZQ7pBhshvbNgT3DqDzTN2UdhbEaRTfasvGsN6Qo//3/6//N9//uH/iyLaxSWFflVKCxcloKfWnoVtiGcFs7t+sl7LcwBgx15rf7c6GWAcP9hq6bjyvCkMHQzuQBCADPTQEUtDO0svYORQOAC6WYA3+JJHcE4l3WrdOvV7Q0qB2jsHVFa0GtUA0ag9aqA6yD4aqrYmPj2jeQwrgV1jIQudCaS135HltRgWGeAFbrIVWg7leR7DvuewycCbBSp5TFsOA9GsFsgbPRecIg/AcCuDOctSP3EQcyj5kU88D3ABmRDHEWra4jsBiCxvMpzp5Rwg51M5cGLEqrsLz/xONSeHs+09oTo/zAeulc+yOMe2cabB/oFC63wu066LcbNtznu6wb75+eeHp65vnpE9fnT1wvT/Tt5lIe2tG+0TeXJhoSPknYbCniANPop13u1UKKI9Ze+oW5Hg/yH7s9DiBT2uNIHimWlDGRUNKwk7vkwy51m+s3P2OREEtwqttrl4rLPSL3/Fz3ticx/gybxl415Z5hJrOm3Kg7p2R1fX5wyrPFvrgDcWLX+GwPymTY3CkDwJcycjMRY9nzDl72b9Q4Y6QNiP4VZsLd93AHAKZbs7Mp7lXzmQhMcFFKBabX4GeOZH8dafJneirnUryVXytsk6IB3NyZmkokt9LPTiaqabsEWjCf5pZUwndPwBalxj5TqNV9vdxnMtm+Bbuqxlrx9w3/KX6QoCvDpWUsGEzJz+NnJQsfyxOalqi9AE4cpPkyMXuY75JoMA0mpMPa8HNSJHTDx8ukcCmVKjUmoQP08zYTilUqlfTfvH+UHQwo1GB28GfxmZogb4vkqpBp1vSrpqdjFtdNJrXhACg1hmwUcahnEaMWkLG53RogG8hNAtTn/tD5dDqcI/a//dOa0cfg+XLhen1ivbmkpnZn0ptyU8H4MgFq2ZMTdJhnLF8PJdHkAYwoIkgttFY5nxfO9wsPD2fevXnD+XQKgNIOQvu9r5bXN+HUTpTHOs/NWw8WWR2MzRmMSxEqhSEgNigKU2Kp2M6kGv2QljXP4NnNmQ+emV/LZyHWQXq20+jH4/qc02n7jt72ETSQZ5toun9utyTMxPT+aN4Xxy6ba9x22zR/b/uzzZf77K9y+Iil3Y71a7F+5zk2jdnnzfLb8cnjZ2S3fz97BhLsw+Eu+TC2X+DF3Hj59vPfuY9OgNIO+vpcBi5BdEXcFtbWqMtCrW3KfWqA74cKNsSL+tBgRT08x/QDch+JPSNvp6CT3UsmGG4kkFU+P/uFrxYTcd/XYnxf2MnjFA2G8hKSdWSxjrzoC9/3AmRRhForrS202BdKcb+4VKEuhbvziW++/obf/NVf8/jwiBWh31b+wYQPTx8prSDNB1kNtm2jh/Ru2tTahLu7O1I2zSIQ6Md1pVZjEWUMQYfLEEvpmApbB/v0zHb9Wz7W5sUdVM6nRi2KFvMCDnWWqq17kYP7W+lTOfi4VY/PmSYwsBPUQNOKT6n5QMkPPc7Z4s8szELLfR7vsTKMAP67J2CioA4+tfi+hnRYFTi1hgYQyQxsOLtd17HvXVKYrJ8x9ac/YMe9R+d77Gtbg5Hacnfa12LYNVObS87Cn5u+TvhXOj0+2ZcfuXZzD9/9Ln/GkF62PQrj8USXM8/1LxSXN4y5WdaN+gwLwoJgZ2GzQbery3nrgsnuh2ybTbZhwePV63Bmwm1d2baV0W9oXzHrWMRJTfc48XTbw7eY7KcTqB3rMNbj4SXJQgQ4fCZ/P21c3kBm37wwyYdr7lKTh+l39DcONmD/Tv59H1+d/u3nn3ltr+21vbbX9tpe22t7ba/ttb22P037w+Xeile5WgZOAFXxAOzwALmYUpcSQYeoPKQeDk0ZmHfQjepAygBRanH6fz8M+Z8Z8CU02Rl5iLUJUvKYWEhrmWvde3DHA+mtlpkk8vBojUPlhjM7eWB7arSLH7pr8aTriGCBJxXG4ZAOVgSxE4oDdop5EGMktX0pM7jojCqCDWgFdGxegSdeG1/sGGrbq2RMDKkeMalFOJ0aRRZqaViwBGm/sV2vngw9nailcn93x3l54O7+DfW0QFWKbuh646eLMRiMYWDqjAOYU0tTkfi5VxJ7hbENS5E5B2WM4bIJApTiDAwZ8LBOCQUbVf+uByeiSrZE8EVcFskDNBqsIZlsjUC3mjM0VKAZlUJtweJTCsIJ7Rtmzi6lBqV5QqUGm47Lu3W6GtIqlZBPYPOkg1gkAPaEWB/DmSrojB4pMokA4lBUCCDKcNYVG6AnXPptDVqEhmjBxkrZSoBEQmom9O1UldOy8MtvvuHUnG1mBnk/B/L8nvb7E5EejNAxePrwkR9++Ikf3v/A09OPfHp+5nbb2PrGbV1Zx2AbSa+tnihiIMVopfmcLwISUJYiSDVKE1hAGpwWB0A8Ptzz+OaBd1+84Ve//IZfff0Nd6fTzwBKv/c9dktDkcoXb97BX1auq/K83lwaq9/o12fW65U2lL5CXQQ3IR6k0pLyTwHeUAmAoiYJEVkVqQGGcxKQl8HYGf41AwYTmzjj7SGriIMWRvw9CRKSjYwIviVo8Xj9MF57D2TUOIKCJa6dLEH+Dgn6i7HIykVzlh+/UjLA7YF4D6BnogifvwnkmUHDrEzeA95m+xybyfj5Xf+UHoJeGtfJhPEei+3zkZQKsrMmJJApA+5O6nBghCLBR5FcJOxTJF/JcTkAk/x5oxq/LJyWhfP5zOPbt9w/vuHU7rg/32Fj4+n6xKfLhdvzwiY3ZLtByAWOLHFmrxoVKXPuWPS/pn5IBHIVWNfNnysC+JlMxxyg6WDVEQwrARzLoGeAlkxj/9OQshNo1RMEiREzhFJd1jKDoEMHQoL5Fh4f33B3PtNao5bmEhXV1/bSzrTzwle/+Wv+u//b/5Vf/eKLsMmVc/8v+PYfvqU/fcv1+T3rpw90hf/5737kb/+nv2XdVmoTzrWh0jif70EK1+3ZbewYSEid3d8/8Fe/+gtkU/7tdz/xVDe29YYVpY+zg0+2b7FPH/hQG2W55+7ukdO7xro+8f79Ex/eP9H7ym27sXVPBJXaCI6tsF1KkYFQ6QZDVwcuWqW7soKDVWLesXWsK9KgVpkMj7J4cpoA8zlec51sZ5s21u4sklA5yYLVjmkDWoCJnOFxaQtffHHHm8c7Pq6d95eV6/OVsV4ZfaXrgLLQWNjMWKo4C5BBV2VTZe2BuDJ/R58nNpd5MnRYsAZlwD1114oIY3iVv5igGlKfVZwdsnhSgSpzrhNz3Sdyc5/PBLNBt9X3T92rnE19LWSCxdTBfqVmwjZZFJUuUKVT5YllU9brxvnjhYd3T9jdPbdyx7a+QfWRtcNtvdH74HaN9SBePX0bwqfrxvV65fnDR7bbM339gI1nrK8M9ar5TAZqyAGWqG4X8ap0SfaX0WdSIb4Rle8SaR9mgmJn60m54eMekiwvEs/7ewAVh+3bQYl2SA7rtI0J2M+K832H8mub7LmPlNvMP/8cW1hxn2e6u46zIjy2tVIzCWS+tjMzdgC4KMFwl0xhkcxNipWf+dW5YIwAph3yRhCyrH6vEvbajk7Mi+R57FFT0m/f+w5XjP2LAAdmpnB/h33fzZW3y7B5sUO+8zGhbUG04UnIKV9rFqD8BBfb4XmZ+7bEP/5/7P3Zsy1Lkt6H/Twic609nOmeO9TQXdVd6AZ6AEBQEo0iRUoymcwkMw1P+hP1IpPM9CjpRSQlgoRgRlAQSKDR81DjHc+491orM8JdD+4emftUN1FNdVP1sKPq3nvO3mvlEIOHh3+ff15SGVZClU1XenOi5TQdqLVynI+e/DBfedlSUcSc/Hd/ueOyep9p30o/DtKDbiCcSaHU4uVz8t2jz3QQMlM5IQ94m79hvvXzoB6c+Fj7mkqfaJv/hoU6be7f4otYjNR583KWvrodrPQywWaQJeocsFUfD+2halgYqjelIKYxBTc02IVn/V1cUNjGe/tlQ112nPtypKYNKDbzEufiel0JIpsp2nX4pmYMwsQ8TZvazVht/81t7+vl+OTiUO2cT2fOpwuny4V1PbOsLUoFdVprodyyEfxzLUg8sIyVHyMTa1ac/etjH+e3w3xgno8cj9fc3jzh+uoqxuHf3B6uP5hq5fb2lrV11r7SdKXrirbJy8YaoUwZYyI9J2csawErox9TuXCoGI4+2/1816dpg+Lw8HNnu43Mn32+2RiRrR/zl4PYH+/q52uL+c/+y3nLnb8YNiA3jZw8eY3NUsR/dfsicU2RnRLTB3ZW9t/fFI4GQYGwg/Lz4/TgJx/ITW0kKEi1wdEbUsadPgTpH95Bdv/NcYur2PZ8H7a0zYOgJJVpqk76v7pinmbm6YAItLZwXi4sS2ONBBoijqVJgs6ujm63fA9ivYznNopY7PlKHu0ky3rtdjfL/+02s438kHNsvxH4fKlxPhnvaukDS8Rw4kmM+GxhnmemeQ47JLF3WJQDDdXw45FPvvMrPH32ZDxdmWeurm44Xc70ZeXtV99wmQt355Vvvn5Lay1U64LWIoW2dhQPwqRFrwWmw5Hbmxtu55m3d/fcnRfW1Utkd/PzdltcUelcs0TexCIr67pwPi8sS4uze5Zn29axRB9J2n4VTGUoMBtRQq77mHaL/StiCiIWKls+Oq50l0k6kTSUhODhi5QgHnvSn/v5BSyTryLmUCrTNHE1C92M+0tjbT1KXGskTcX525IUJePc2k0jeXS3iiLIIZFUNcgz5ra85H62m1cazptvW+GzJKM75qVUcaKVJQFzb1PZ4gChMoXJLukLDyKm2lTuKcYgOeesEI2EUmvQlLZ25vPCfLxQ5xmbJoyZrge6Tp5Eoh3rGW+zIGNJKO4q67LQ2oL1FdMVLJXmXXF6X/oVzRWXfr1F3+SatJ0iXdpsdj5p2nKGefqrdrs9sWmzd9vaH2pzO1sYP9l+n/039rDdniL5je2OH1rSx/bYHttje2yP7bE9tsf22B7bY/ubbr8wSckCHC+IH8wDMK+Tg81eo96VhJzosFMiiYOvl4WqmHXQAKEjeFm0jIPSXEsA3w6QFSl+sBew3v14puaHdwG1BjSECbMWZQ8MCjTrIZPtz9G1RBkopSaqFFlqYGhzsFkNDyyrA74ZxLHuB8EyFap54NIsyBEEoQm8HF4cEDUluwWMGtczrCt1nlgtS4Q44NK1RcZWxjSVGgGgvnakzGhRL8OAB4SsHqjTNc+ff8LLlx/x6cvPePr0Y26ffUQ9zqis2OWO0/tX/NlP/4wff/5TilVO/YyJB2k1cbwgo/UIrFEKRXoE512vCIEuHpSx7lmpFoCoCJTuktW9W4y1jTHxLDEHCpwctBHOPEihEYwQVyWZAqhRqDJRmYY6SsGwolEWUGgNrGe0XiiTYE1pRsyX4gBDV4oIc/H5UMwz4CzmShFBVwL0CqnmGuEZUS9Fp/g4dCJDdqYKmDXPUuvx+VpZ1LyEWsiQI55JrgqHw5HD4cDLF889G5EAS+zngwL7oPhfsVJRU9a2cn9/x9evX/Pq1SvevX/P/fmey/nC6e7CJYN0rdHainTPDushE+5joi6xbjgBEF+DhUYthXmqXk5wrhwOB66ubri+ecZHL7/NJy+/xc3xuIuDyL8xxJE0Qom1f3tzzceffsTb+2+4P99wvp85HQ4crq5Z1i0sW6TG2CQ4a5iUEXAs4kFsJ016QFFwYlIp1ZVYyGxEn6c1UikllJmklBFM8kTJPghJCaxpTzDS57CFOlMJQDpBswSXknwk4Co8EURMQDMD0KmCVNgFtMTniASgmtHuDICXkoiYX6lIpZCqKYznIK6ZoNcDID1AtJFx+WEoXS3mq23leywzgX0NjtDbABUkyK27ch27wNkAM+K/e9BOpMS1I/PZQsY+A6I74KeGwtdUJ6Zp5nC84ubmho+ev+Tbn32LZ0+ec3W4YtWV169f8c3rV3xl33DXG9YLPVTbTJ2UQpFBckuFKQdM1UvyBOCJKpRUusrnUqwUcpSqlCBAteiz2C1HoDL2Syn+mVCLKtVLYNbqgGp2aYLLDig4oDlJ5Xg8cLzy8nbHq2vIOS9OeJXqa2MSBx1uP3rJ9c0TLydgriI1HWZefvwxTJ3P/+hn/N///Idoaby7U/qqfPTRE9qlcL+snC6Ny2llvXggV6xgxyuub47cXE88++gjnr74iMngu4dr3r2+5+tvjPeX92Ar63rC9MBlmrHSObT3fP31G37yxYXLeeFyUZaL1x0V1Odz1N/xae/KPFDRpjR15QcrK/1snFujnVZUGw2li1LqRKUyI17mEi+jqjSmctgUD03pzRCihGQR9zXEfY7elbb63LEy0/tEWxrdnED7nsLp3JjfwNKM86KjXIsiWK8QhCaRAr2iIjTtLOvKoq5aWAKELFEmx2RypYe2+h6o6qphJu6jiSszYhLoAAEAAElEQVQXtdadRNB6rKseBNSQwYy5WkqhWpYgCN8t5zpBOh5+Qvhh3W2uZ/Dr5kdgXuDWzP0miL7dSBP32tClc7pf+OLdHTdfveX69hXz4UA9XtPlyMWuubQDd6fmJT67k0yp5iQ0ZnQV2nmhrSfW5URbL1hztSXV8A/zPSyet0efaIu1nD8LkkUoK5H+SvRb2qmhthf2LqzUztZtbW9XNyAh94NdScthBxKQ8r7qsbdsQGTYyXSciAxuI5TlbJA1fzmbjUdP+MP9yjL2jQHOj79vvew/KLHNaACHD3AX0ocqsp0tgOFvIrlHJqko9tv9XmXmoLs66a7H/pb9b0TiBRtJJi8lsu2tCfb5fzSUANi9vWx9YZ4IkqSCJAWkOoppzsf4vrrvZOLgciqeSsm9JRWEAuTr3idS4jwjmXjSo+Sl7ym1Hri+uuHpk6c8e/aM29unHK6ORO0YrK2slzNfv/mar775motd4py4nRdzMFIFIt8356jbbf+cyqaY8CHBLgFBX5c7FZ2YC8MHGP5JLgsbY+Gdlz9XTEv4ZrJT2toIIMW8hFCORy02SkeLVKxlj+qwk+4jb2PrZW7CN4gpQJyx0qd4sCpyzpi5WqKGHQhVuw5UKyid3mIuGKySPlWh1pOrm9xcux+b9snSj/qroM+/pJn7Oy2SGk6XC+fziXVdWNeGtU5fGt1cfa/1HmonWbLWz9Bjv9i9qCfByFD8moqMUnwllVrmmevrW66urh8QlH6xV0iL7PNhqoXrmyvOy4FlmVnPNfxEJ1jk3iR5LhCCAKpsEyp9OiIGoeymNan6GY4tg1gUDLtB0TJ2NseGmM92G/95JlHlXB52MmIUSZzNN80JVeIaOd/G/rU7hW3f284cSRzYSgHZOKPsn09yzY2L2PhuHk9l/Gx3T9nIRvm1Ycq2t4jf/TyFKT9vu8/51DIGWWE72DyYKFvSw9YDY08Z35Gdys3+LBJ9HSTLWt2vvrq64tnTZzy9fcLxcMTEOJ8X3r9/z93de+71nrYWVPZkox2RbDz7w/NSjtn42K7spwA2CJg5NkkoCTL03keIF5Aoepu+QikVhDjD7bqslDFsgsX52ddjrWWszYdUaciEl1JgngpX8+Rlx0b3+p508+Sa6fAxb9/e8/lPv6LbGUOYD9d89PI56Mr79/dclk2hT83jTrXOTIeZqcDVzRW3T55wc3WFXF9zdX/h/t0db96/c/VMViiV3me6GbWdMTVPyhI/r/duEQ+w6M0gCsXklBwzDTUhVVL9HQVt8T3x2F2qUWVykcS0TMXD4a7F/ctub5IcUcOT31JJU/y04yQpt6kNOJ+V91GS1cwp1YK4RRr2JWJN5v+ARCnOvlt6u4QsY+yJI1AAm+8czDpNdfxQJ9zP2QgkbAs8yt7t8n3GWnZXN38Q61NznYzVMGznzlhs8yrP40Dr/ky9dc5rZz6vTPMSKpAVqTNKoTOxdrCMoPqhKnrMVfwt1JWIcdfuqrV+v4xR2u45/YVGecWxtm287PADySVvo+9yzm0vPTzC0T//Te1D27b9fOvwtAt/2dX2Nv4va38dt+GxPbbH9tge22N7bI/tsT22x/bY/tu0X1xJqbp4fSmp7hEKA3gtd4fYPUiCBYxc8MxS/KDkQb8EtRcHq6ZUqLEoZeQBbI+R+ZG7iIzM21Kj/NQ4Q5ur+DBjNvtzSYvSZjZKkfjh2AkplgG4IAKh3ZVtsFB6KpGd6i9SAHoqd5gr4DSN5wyFJOoI9njwfQsOOQ6Y5QTwUndR+qOvhlYBVaqJA9naqKGqU3oEGYp5uaoIThaD1l2OeJICcqDWIzdX13zy4hN+8+/+Bj/4jV/n6vaIBpBbutLWe77/xa/yj/+zf8KP/uwvaG3F1gNmndUaxYSpTHQDCbIY1qkFB4VD/lppI/jRwQMRodhgQUDTrkNla5SOMUEsgtEEQBDBLfBstKxRjwlSy7iudIFa/ZoaJWhICWrFtKGZtd18XKs4aFcONchpZeM4qKFVYT5gzcHWhrrcfwD/qg2hev8JTGXaxlUkJL5BVDDpo+58mZ2Mp6sHD5RCkwXUOIuXWTrdLxwOC+/e3fH6+g2HuXJzc8VUJj6Umc/2VwUQsnU17k8n3rx5w5u7d7y/u+P9+zec706c7xf6pdHuL6y6+hxvzUlmbR3gVQJ+ILQAtYXJA/1ToZaJSQpHJuYyM88TV4fK1dXE9c2RZ0+fcHtzPUgvw4b8G549g3TZplr49OVzXr95yts3N9xd3XB/OHFfF+a5c2jds94nVxvTVG5hpa2hYlN9vpbqv7PeIn5mu4BshOoyGJUBYItgfKkj4JSKPkgJsHMD3Crm9ieD+xAkS8IeiANTQVy0COBlrF+SWBTBZSch5LMGWJCXSWJBAAgiqaoQSkIZSCuFSmbFuryZaR9gm4Y9wrbx2Ug/ZTceMtSCMn72EDRK8D3X+abUYAloPJgBAUIaAxR4EI6Ldy0Z8Ix75HOVMvm9kEEgdUWsLIvigcepFo5XB548ecLLj17y/V/5Hr/1m3+XX//Br3F7e839pfHDP/+cP/6DP4jgqK/hHu+gxW2gyqb8sKmbRG/IPpM7xnZE/SXWVIDYkmWaXEGgiAzp+SKFKlFyJMY/g9i11pGJW4q56oN5CQEJ1LwIHKaZOk3M04Fpniii1Km6KlctXB2PQGFdoZpwdXXk5nbm05fPeCIrX//spzz59e/HNRvXzyr/1r/zW7T1N/nP/8l/xZ/+2e/T1zs++ZVf4R/82/89nh0m/vBf/x7/6l//MafzW/q6YMVLuR4n5XqaORyOvHh6w9//rd/m+9//HjpNvHr7hsuXr/mn//ifcvrZe7Q1LqqstXK/vKdyobaFXioa7DBVG2sXVd+Tq+AqMxoEEqV3aKuyrh2jobKivUD3fvV+hmmqTLVS1f2NUiYsypoi+D5lJQAiBwGmWHZqBekdrDkhuTefI6XQ6sV/3yqqTpTudFa9ODFXhZmJuXgJikaoSIaqINroBQrTWDtT2uVhV/xdXbXLQXBTJ1n1NVQsc+5IdSKTmfeXumHbSiLFZNVNBSPVO4QyVOby/sNOq+wFihC8r9wWO2BfRLDY+7Okmv/jdueud5a1c2rKu1Pj+s6w1xcOtTJPB8p0Ta+VZkJTociBuU5uC2oWkTzQtdLOgqiCNrQbbXUwyfDsau2uvKSapZcyCz78we4AhM+xYGNlqYZhh3VE80stG2sr1jpAkcmvWR4SlvYE4z382nfPY6PUFsO+DUMZgKGmjRdxMsAe3CRt77+ZFPz/11bM+d8hwOl7ZM4RdvuR7ZC97Y2ypM2Yu+GzJHBft9/ENpnAI4lsDbAcCCJTfryEHx8EPumxx7IjDvnjqG7zYdv3cxzINxh/kfEquVcGmDWuHWQc2SnlWQJLMb/KjrSU+0o83/6eqVDlinrxTsRcjzKlPtOdTIiok+Eow1dI1ZDj8YrnHz3xEpSjWw+YXXPz/IbelW/a1zulqCxFCVUEK5HQMIgy2W1O8nE75/6Qsfc9/HqyH3/ZSFo2xiXXzxhy/7t4iTRiPRTCtiMQSQvZLMDrJGBsfrD7R9r9bDLGW/wMWCwOeeZqcohEMovEvFQCpsUJJ2WMd0mFrRzr8b6bInHuRbnvaXoaMSda75Q6oV2dKNQ65/OZUuBwmAcRZ9cruzH8wE7EvM553FW5XC6cz57Y0NpKawu9dfpq9KZR7tXtaOzEo3Thfq0MpSGA8IlKKEhVcT+1yhQqSjOHw8TxOHN1PDBF6fgHBCv74Lk//OteiSfG/Pp44Hx95USrw5G2Ntbamaaw7aauoIUTxTT81lTA2dGScHHUmK87U0Qkdgw7sOvtn3/wGAXJmf7wHQUhy0Vvg8M4N+S1smcfkIeQcUuJCZPjbWFgN/JSPprsxmt3Ddv2H8lMpHyXeHmxjLXsPXm/uXxAGMo/517nZe3jfpY/249lXPHBffNefHDH6MkPUXXb7EYsqg/OOvLg+kkAS4W6jFNMtTIfKjfX1zx7+pzPPv2Uz771KTc31yDw/v3Clz/7gi/lC7opakJhIfectIODDGUfEHF/zp49nC/bVNtbDH3wzHmtoRAc5yyx6uNYkowlMa7+hT2/ulQZyklFqivCSnaTP+ghlLvd1zZq8bV7vDpwdTiwnO7Q/owyVX/mYjx9cQN2C2Xi7d07+qIcjjO/+mvf5eZ4zfs3b7i7/6ErfPceJMYCYhyql7KcD5WXH3/Mxy9fUmph0U67LHz+w5/w5u1rJ6ooaBFX0sQooXRkYaP9bGbu73uQBiJymIQSi+Qir8AdkzAcF1NBaq4/3xtK2dQXfQi3BID05TX8jrrf41LVLOKVpp4EmI6HFcUDqKHcJ5vqLmF3a/g5IkLPuGUsHrP4eqzRmoT3UAHSXRnh/TxLFd9ce2XYlvQdwu8hSfU8uIb/bkvnsv3vYMRbB+E/9znZ1MRKKaTIaBLmBhFIHxJvDOhRbrmo0jqwrlBajI+X1d68tEJLhfeoEBC9SVdPItQeiQxJus29QfvY69JuDaUy29b1ZnK2d8pnDcvpv5YY+J1N3/pzs5d/WRvPxc5m7G1leD8/50vt77GLg/28xXlsj+2xPbbH9tge22N7bI/tsT22v/32iysppTqEZLAu1JJ6BpaFTkPU9ai7bZnAArQIuJo56aRojyyn6qCrZOg1yoUk0B7ZjRSh9ebqRwFaZukjMZdxVps8QChewqPWDNTgqg6d+J0fCLfMMxvSx06uWUcwvSKezWogdQo1J89YVu0RAC+YTYga1ZRSKl2h1oKhlKKUYp7RH5l6fhx0eMDUn7V3B2gqQFu9/Jr4IdlUMKtIMZoIhzohkx+QW58QmSlHzww7X5TzBco0UUsEQwyoINORj15+wrPbFxzmL5kODe0LvUCdcJAPY6rFy6ON4LKHMjPXzCI7Pcs8SalAj/72QJgTJDJ4ViNwr4NIYFgEAdoWsBMc3BPDUmmpRoCHGaF6MMEaqh4s7dZAjFYKC42pHP3Z1HwMxPullIqFCkkN4smqDUrB5gJamK1tSlbWQ0FHguiRJTUISfGO1ghKUbDuPyu1IikLvqY6g8W6KZTJAfR16VzOC+fzhW+++Ybezjx5csvN9TXX17dehmmaGMHuPQrFFjoQc9nqZVk4nRfevH3LmzdvuLu7p7cLXE7o0mhr4bx0Tm1hbeqqXAYSylKq4GrhGxlmqgeHnBQcgHbimJeUqMzzDTeHa57f3vDy+VO+++2P+eyTFxxqefCM/pdd8OXDAHL8RvI943M384Fvffot3rx+y/n1mdP7hfO5BeHogmhhodC6j03ByU1ilaLQeodKEHZ2YJ8RBCYiYy5L69h41AzGq62jzNkoGlm8tKAkgS7IJhokTQ+Glig1x7ifpsJSvG3aSB2Zy9433kcewvIAdpA0S9Iv1Re0BqCFOp5qGUXegMm0d64UFT/XJBxYlC30m2e28abMk+vfggwURKcMpAWRwde1OIdxxOVkF4Aso5/8v1sgbA+qb2BJBtl8fWV4s0SUXFxKZbcedAToSwTna4myIYeJm5srvvut7/C7v/O7/Pv/o/8h3/net5jmSuvwd37jHbeHa05L4/2lc26dpS+UJoMEskOMQ60oyI81At14gL+zlV5J5Cn7PIEe7xdX0xOZfLxrJUtOoqFoUyq9e/B0midcOYvoqSBXlOrlL+dCLeLqZlK9TE+pCN3L8wDTNDEfDm4LYx86zE84zEdKueH45Dm3T67cznkRUurcMSbu37yjaWMqBfrM9dF4fgXffPWOH/70K169fe9rzdRFzYpwfPqUv/e7v8l3v/0x17c3XD15TlNjeXPi9at3/PRHP+bLN69ZloVSjWIVdMHMCcyq1ZUQUYpUDlLoU6FbpavPO+3QeqP11QHU3kbZ0CITU/H+YDpgU0NsU3rI4p42xfzPfSoC5V0bZr6HT+KMmCzPl2XLtCtay2YLLPasUGBSfP9BldonCkLXFUr3UoJIuFDKVGoIu8TeggMtPfqVyOZd1x6Z1j3WuESMXKBUTLxUaa7JYu7/9CAIG4baihAlHyTVDCMLP5UvYrtp6mXbepQ48s80THx3F+sDEUlgw5UzYwcwRduWieyKNO43CmCl0JqxirL0hTZJ2Ngz03TnYxB9VWrFJNQICu6jyIxZpXffB9Z1RXWl9yWAZ6Pg2dU9ynKoGtK3/UDVlUAYJZ8aqdriy9aD+BbApmSJigRKE6jZ7yEtCAXGRi4jgSXvssS9BiJh4WeZk+YkwFRXy0uSeFzHogRH2uIkAdgGXP2yNhcwTdCPATZtvk4QkVIFaO87MDAghgpggDCWJagTkDff22W/b8ZY6vgu477e/wnY7JRHJJUPAxS2bR+Lzdr/2QFA2162gUiFtDWxjuI+MXKDqAORsDHAJtkB13kG0x2hIZWWbIB5SW7y9epzO981SzP6N5s/x+BWxPovStdG690VCrIrPhjHZW30Zj43d0SUrURbnhN2gJ0lKWSby9lrlmNAzunsa/9vPvVQfHzgSyaZmvE9/6ON8XHOR8wPNTQUi8oY8yivFnv/OD8N99vPLaXUUJaAzdrJ2M/dd4nyTjFfBthKvkv6m/G7sCddZNcHZTfvzHHMyb9Tw8dqrVOqsq6NUt3u9b4yz674cpgP7hNMdTcxZVPMI/aPPKeYX6u1zmVZuFwuTvy3Ds3Lo3b1c/0axH7rNvxbjXKYibmm+ti2sSSJ1s+JRKnRUipzmTlOM1eHmadPbri+/sVKRj9o9pf/vUrh9uaW0+lCOzfWS+Mw+/tqbykDuosHbP+Qe2NcUnekFwvFlZy/SSDck1L3hDAlv7vZwG3Wb7M8y1GOvTW/syOj5H6ykYo2xSDbvrG7/87T/mDtjCUq27OM237QmUnm8M/aB+fT3V40OnD3G0sXWT64Vy603aDla33wLvt+c/sQe8LorZjP7Elg6X9vtu6hfd32mnzIPREqbdpUnbj58ccv+dXv/SrPXjxDIhns+hau5pnWlNPSuKwd+jpeb2eVdv6CjGvD9rNtbWaSw/bl4TfEXJPY88pIvPHnLmmT0n6GAu4DgmZK4YowTbOXKYt5IuLn3aFkG2sB2JJ6JEiQ4ucUrFKvbnnxycfUuu1R4MlCp/uF+7uT/8QK58uZN1/9jDc28+rNO97f3+/O3GB05unAZ7/6HT5++YJ5KpyWxtevX2Nr5/3dmbd377h//56194jV+N5Gxh6THGoeMywFpFTUNBSVDFWj08Pf1c3HKG6HPRGx+rUKQGOoJ6Jhw2NN5D66I0u6nY/SyzFmpBpR+g7mZ/XhB4qXtDdPZfD9Up3kXWViK/Ece2rxk822n6WV0Bgzj0kR72ukcmHsZTlXYi1ZKeGX2EMrZL7DhaWKs77vae7/74iqD95/u1+SjQidYYu5KGOO+R6VytjjmXKN5DLfxU8EJ2S5mrn6ea7ntG0jxpHnaY9nbGsqzxqYhJi+BlFrSxKRnX0fJYM1I9i2vdvWWySffcSgdr97+PftR/vzRP54dMKDn+1MtHz4m+0O27sbD++b+5l98I0PLvnYHttje2yP7bE9tsf22B7bY3tsf4vtr0FS8qyhSsVUaNahaICJeDkRCAJHgF3dcw794J6ZO1tNb1eCaFhpLOIBRA9uCqV6+HQoKJUahKAIbKlFZpMMiXwtXhLFI0EWwQjwozSRrbdlBYmVURpuyoOq+b3WtUUWq2C9xwHOgwkixYlK4s9UqiIlsvT9aaFMHigo/k6mXlpEanViDK7SUKU5qcUc2ITiZCh6RnU9mCJRtMEEs4WLdehReohGnZRyEe7O73h//4679++4f3/PcX5KmUDwTLfz2vmTP/8hr795S1vViTV68WCMClBRPHutTGW8szUvIaEYq/YoH+NEHFWlyIyAl7EzMKIsXBzgOzpKqYl5eTZXX3IlLlc3iKzrlPgWcU5EAjbFWPtKN1CrzJNnABY6TRsrNcgA3RUlTFgvbVAcpnmmZ0CdyO4kiBihNlOKINNEtYoUYdEVbT1Kbfm8WyPrTABtmT0d2crmwZkWQZcqylRDwasbNEHWCqeZOh8pl4q9M1ZbWNc73r97zfXxitvb51w/fcbt7ZGr2TO+13jvvq5gwtoFax1dL7R+4XQ+cz537k/33N+/5Xx/wnThcj5xuaws/cLFFi4YS7+gzWjrBSJLbF0brTsoM0XAyRXFPHBUJ383D0hDD7LKVCrHwxVX17c8efqMq8Pxrx3UkA/+nYFokcrt9TNub19wdf2G4/HI9dUVy3pmXWfWtlB1C5YmoIO40kVFkchAbB6/o+NqHq1vgaceIIuY+Rw0XDHNUlkgAT+3La6okYoLOedTFSMiZUU28EoeBprzz/nGhTpUTHxpZLgrVRMycOgqZNXfbCgyOdksw/CpmpRgm2dZFrIsThKbApCKEnMe5E/gM8lKkEFzKfmsZfQPlkRRVwgaMfQdy6EIkaXqgWwLYqd/sIe9rmSW8ZYJnpMjg2feDxkQlwAQ3ExWD8LmVyWDsp7dezVf8fHLF/zDf+u3+dVf/x5l8jIoc1U+++5H/MN/++/z459+zs+++Yo3775xclncvgb60Xsfc2ye6xakFALw7RSZQs4j96riAW3tARS4/fOoaUGtOyhQ6iBvzlMCBJuNrEVQC6Uw8fc6zAcOxyvm45FaCtqWQSA8TBNXV0emIqzdVe9UjctlcYF7mbFaWF0qjKcvP+F3/51/h09ePKdEsNeKsF6Ur756x5vX7ylqFJu51zv+1b/8PX74p3/G5VK4v5y5XC5uS3unB1Hgt379u/yjf//f5XiYef3Vl/yzf/Zf8uVPv+Hy/szr+/fcn0/0ttJ0ZUI99F8WVgORiakcmKfCsUxIPTIfJqyvvHv/jvNyZr1faVGaTWJea5Sus1TliEmsuoK12BsKzaA1A+tMmQ2tPh8FBzDMQilBoIkwleIz2HyPBMWK2/8ukeGsxixAXzExms1od3DTvy+u2ITRY++aq9BKBsdLAAgO9DZV2rqyLEuI9kRwOcgRoq6UNWCIiMZn8L+r70Nd0467aleCeyK+rxZ8Sfb01VQwUZopTYP4FXYyQTHoqK5hMyrdteSw4uTtbiW4AQJVHc5Qz1D2+e3k3W4lIRbWZgizg+5iSFkCuxnamGS2uAbgo+ZqWqMkh62R9dzdzkV3td5G9nmW9R1AAJuygZdzlPgnQYLYB3DSaZaXGWUfyG7ZgvxJKHRCf+5sST6I3wdYMohh+Lsw/hz3IUHu2DMSwMv9Ln6U+xXCIFL9UrYEZOM5VZRR3g12pUaC5DoYs4UsF8jw9mM/9gWBis/1Evsm4CSdGGvMzxDBLx5EmgEe5d4rPTdAv0YAufFNRpb8wHMGFBR2frys7xX5rPE/CSCMmFO5B4u4yh7mu2Mwhj7oQAt1kljPhBocQazX7d6pmMTO/5DxcNFniCuj4eu+ANqFdV04n8+8f/eOq+PMs+dPmWdXTDOEpRmv37zjcrm4LxLrztdIwpRBxhFx8BjB1H0qxW1aJ+11gpdR+ndgd7YRwyDmS/brQ9AuFW9ztYGh3c8kVrxMsxOF3EcQdR+ihlqwq+mE/pEIKRdn5sCyj737kuReyZg2uTR9tSaJSYQsxyYJBoZ96ZZKUn7hFKPaE7S0+0ULTtR2v6O736UFeqf0Bl2wRVGbUV1ZV1fGXeYj89WR+VCZg7DnapFB6jJxEmt3so5ao7VG67C2ld4W2uo/195pXb2kkjktu1sP8LtBkuhUR1+k+pAvU58RrjgiY00aO/Wq4mqzpU7uy/6124e2b5vvVWam6UCpNXyr4v7XVH0tRWmprjF/BsEjFEx3BKakmfm+orkTbHMk7pk+sfuqPgcGf6fEeWA86vb9B9Qm2e0elieFfMacNDH3xhqwDCPE53NO7XpIhM3j3M4Tg6sT54Usa5j3KElxG4Sa/HcaVRkKSdv+Fyc7SWsY3xty1xKcjs1+7pb2bhTj3xn/QXYqdTredPvu7m95/dED+7mST1T2T5ePNvyPIpXjPPPixVOePr/dqRJ5DOTJiye8/Og537x+xV2pTkrZvbFEv6WdGyrcY+7snzWeL/2uUCHbfpPlyuJpRYaPNJLIdtd+QFYNv0NKGUkdpVTIRBaBUl1x1MmOE621cWZ2peAyZoNUQabC4XDg488+5frqOmwdg8vT1o5U4fb2inW55W1XzpcLP/rRz8ac11Ct2RM0ZlEOV0fOCm/f3PHNl1/y/t0d6+IE+tab94bXH0YUiiiKJ6JVcaXZwxRKOZjHvy4rl3WJWEfYJgnVSnElUt+TbBATR3wuk3OArm7LSrHhqZm2cc5P/8IJ2r63uTJZzdGIMbcxnwk/14Z9wUtK5xoSDeKYx4iqbAS8niKfFud8kojlSW3pyvuc2eZbzMAxXoMMvPtz2rS0eWkHBRvlO/d20PeBSJBge5ZBImfnHVkP3yHVzWz4G6k56uRWQi0yHzrP/BsBvQFoJjnsSTj4GJKvnSvJH9v/m+eB7Eh233W/JbUWc23qUIO0zMuK/t99L++UfWJ+hsz+Tfsax47NCqXanFlynkkC5vZaaexzI0jybHgkHxCeHti3YbcZv0m/bfe1x/bYHttje2yP7bE9tsf22B7bY/tba78wSamYAFOAXa5OUDGadgQnNiSuUCIo4XLKHqjyAHZkEgcAaC0ABVkwigdxrHhJL/ODKbjMfpbG6REctiHdXEgSgX/GA5+im8y+B2Q7XZsHYILkNGSfSxwqUxVKjZKlZSLjNgPISNxb/dCokV1pAQ660o/iqkIRooxn90CHeik1cYIW0uhNoDpAUcoU5S6UOmU2uDJNONBihWmqESSp/nnRCMoo7bLw5vVr/vhP/oJlgd/53b/Ld777nFJh7ZVX7858/dVb7k53dO2s64Kqsi6Nrg6W1eJBmi5GLeolbzyy4uBOdTRTrFBwhZreV0ooS4yDbdmCe6VEX/sE8UxV2z4rxRUfpuKgflMnVZnC2runRpWO0bEaZDaFqTj1IVW+/CzeXOVqqojUCPIo2tqWISYupx0xnBEREAHUlRdMHVA+Xh8oFll2Xanm5dGcDxWy4l2xWj1w0htiFhLpQhdorTGJ0DrI5QAsnC531CuQc0P1zHrysmmHeeb9+xM353dcvz9wrBPdjKVXVjVKEFOWrlSFviy0fub+fGFZPCux9zPn05l1PaF9pa3Ksp69LFFzsHbtjctlgZBD96w6J3yppQpOqPdIkCRUkGbUatjsxJTVGqsYNk9orQ7oR2DuAVQgD/72sH34uxEVEQ71wNV0pM5CmSq1VKpUpjpRpiO2NgK+QaNcSan+57keGWQVXI3NIkNyBE9tFHCIMloxfwMkKhF4yqzDfVZ3xLudNEmUr5AM2W0g2cigLAlfbdLqmdEv4vNvADqp3oFFuY583rRJPl6qXvYpQcgMhGkQGtxueulDL+OVQPz2hK6GtIWtNmUD/0wpGd4rYdd3Ib8YaKeEbcG2rQ8iuJYy6wG8i5UomfiQUOCx2Q1w8XUp8YwRGDVwnZpUuzKylN7oA3GiUSlOePno+XM+/dZL6iQ8iOwV4bPvfMy3P/uImz+84jBdcy93May+d/Uoq1QK1BK7SvRJUwfofA9cR3/5ZMlg4A5oQOMa4upG0xSlt1x9r/dMrvVAZzNFu1Hwz85zpU6FWgtzKVBdgUnqRL0+cnNzw83Vke/+yncQM96/u+N0uvD27Xt06UzzTLPOVOHZsyue3d5ye3PkUAWsuyKUKVoq5TDx6Wcv+OTTZ/zqd1/wFz/8jH/+L/4rfvyTC19+8w60DzmY3p1U40Qq+MN//Ye8PzVMCu+++or3r9/QmrK2xrIug4C8ritNiAxwB9nrQThcHXnx5IrSV96+O/HmzT3L/YVLW1jpAdg6UXgOgsyiOGGmr1hfwdRtcADoFbBaaRbqiWpOzk0VBJqrsYWikiKuyBhlI9WyuGjHtPmcVwNqlFkMdT58vfe1oVqpk6DWmKbC9WGiHhx8dbCyc16Vy0XR5iV0CDssoYgxFGVEBqGX2KtTBc9wIF179/klQlu8/yURdYeUR8kJ0x7rpaDNM7U7YM3Xne8FQXZsqbjXGBnIAQZkESInhrRBOMGc5E1x+5YkYUQCYDAazfdbCUuxNNQcYKL5mlFbGSUTw/5o2DgdIIhnynftQQSIcQoQvHX3Kdxm97G+B/YXe7+TERNgSXUQC4IF7Mzk+HPG9tOOJoC9fSg/u31xKFelxRYJ21YCKOlj/0iAhwHT+F7joA5OykslPSUArl9eLaWiTgBMe18CkEoAK15x5xYk+GIx9vZgIITsC/+5IaE7ILAn6cQ1cq8LzkS0IOlY7D9sQPlQRQigZ5TXkPIQUSIvGISbJN7sQJ490SDnkW936kShMXeScGaYeWKD7D6fk1bxuZl+rfY+nstLVwMSZGHzvnRb5c8pJdTedmCV4CQo68q6LtzfXfhG7qj1yLPnV0gRWhfu7xun08La1pGwgDLUdIhXdL9GSbWP/dLwMkqx9+/8c8yfQX0xBGa4kZM158kY99HBJCTq/ZCA7ubXjLIyw9fzvlHZyG0SZz3EoIcPZJC0i65x3oy56YkYBMFDR3+K5fx1++UKhzGH1ZgoD0h0Zoy+y/Om+3buh/vv/UzpqlGuYtuaKxJ2qSza0ObqiqVW5rUxtwtT+M9qDqr7OzDWjkDY+JW16SihbNZprdF7c5WRnmQ0DbWKDQC3ULKymPt7X3ij5csArzFC9dbfd9iAWpBaGYS+D9t/w3Hiw9+NmR1nzLlEefapOllJhCqVLupJDLnfxr6SdXqKCMludNVlT05y75QH58m0F3u/PNza2Md3+8Lol5hND2xbknM3e5nWYVxv/+KWPvbeHj38XNkBzz/Xjft7j18Go0EIP3735TG/99cIG7azcT/3mTgjJqC+7XFx4SAIyu7bO1PN6FAzhtLY/v67F8t9f3zmAXFkI1jkcyW5Pc8229NL9J+XPT8ejsN333+q1sLt7TXzNDHVadgh8LU9iNHIIHWU8H9GWd1hD7Is9N4+p6HJR5ZNPbZ43EEt13b6htsT+lnUY0mllFAK8mdxhaF43gKH45FaK7dPbrm9vuZ08qSn8+mCaQs77GqacxWurw5MVVhOd6zXV0zF/VyZXDX26vqAAU9uDjx7ccvnP/uCn37eON17+WQxGWd0VS9hKQLvW+cPfu/3qdPk+8vaRj/2ruM8sRGRcUXF7Lfi+9Ll4olnS2vDB9UY2hJ7StoqM0bZVIu/2JgxPoE8NrItgx4XK5LGzQmZQ6WY3bTKcmU+M2JfEo/npZo8YVfw5/f8qPABa6FOrvCkYUdGeTazjYhkmbig5Hm8RGKEhlI8Iz4R76hgSRKHKLu2KTDuF1vaJ7/FFkeDzSaaGib6ULU67psJoZKkrUzCyLW872+zoWDoe/8+lhLl6WQjKW+Ki2mTwrtKu2zbyrZ81jAUxkai3cy5DhtruzVPniXyp8M9+cA/2X/lA5u4nQfy7zwwfEbuZbv+efgRt6I/Z3OTML671/jZtj8/eKJd/4+Xf2yP7bE9tsf22B7bY3tsj+2xPba/xfaLk5SaH8pKqB0VqdQ4d7XI/JWMK0WAl1Am8eCdBXClaA8ywFA7ql6ORDyDRoIARGTdFsrIcnLlpgggC0PNw4PBmaHq2Wzgz+fBC89jk+DKZGhAQi2llhKB9e1wuRGUPFjQVQfu4/Gr7llNIkiZ/eekzHFEBiLg1NFIBBeaNZdwxmjiRJyJw0bmioCP9QzmxylRK6WAtshwI/qpeKm2ajKymSc7UvWaIjWqWzgB6f7tPe/fvmNdLvS2uirWYmgLMDSD4UVoeJCnOuoQEs2esTXVVC3woEIp+0BwKPAYWIlsKIVuDZkqbVkoJkOGnJIAgAU4L0itVGSQHkoEzUoEar1EGSxNmUuUuxPxAHkJCe5uUc5BvBxdvFsG5DBjErAo4yNSmEjgUukeTXbAtEZph2LM5iQBK0adAAulJJMo9adkWTvvD8VsoncJkEJpfWW53HG+a0i/wpYDbZ65L4XDfODmqnNpZ+7mmSoVLZXLpbPq6qopqpTqc0ebsrZ7TueF3mZaW1FtnC8Ll+VCW8+05eJjaJ2+NA/8mVGLeJlBNbAJuoPFayjDzKU6GC4lCDgVV72BKspcPdRxmCo3xyueXN9QQ7Hs57P/f/G2lTaBQ608ub7hMF8zHQ8cb2auLwfW85FLUaSsnllfhFkMFUW1oMVLOmntYROc5KKFsFclAqCRGVkZBACpCSp4HxU1Wga72PJWPZa2A7mIdRBBHVcgkrAMJad72LAMWjqwTwAZJTLHRTygLZRRvkXR8R5e7mcHfpSwCWl/iq+vfamxlFsPYxU2OIPhYbPilxm8yoBehvF09GV+ZytD5op17KTOgSQVWQTCyUBoBD8lVFIkM9Zli86NnzHKtJTioKOTxVwpxt8/iFxBKnPJ+QIKtXoJTst6dOMfATp1mpjmJ9RpokoZQWonHXSyFENuOVktoUUWaBloTsjWW45vEqf8vk5ymjgeJqYiXoKlhrIO3ZUFrZIKV4gwzwcOh5m5HqjVSXBSvOTEVIsrslFZF7i5ueH2yS3X11e8+OgjWlt59eY950unN+hN6e0Ec+FA5fbqyLNnN5xff8M//6f/L7712a/w8c0Nn33yEYcnNzAdnQlqlcOLp/zGzfd49fprvvzya0xXJlu4e39hPV9oaqxh9xHhy89f8/b1v4hxqk4SKp21dwdAe8yRUMBZbXFiRqnU88Ly7sRX1iih7GEIhzJzKNX3azNKjT42V/4QYFm7E6V68/EoHnSvMtG6hSIEwzz15tnSDpJKgE6+Z0jsNSUAI6lCU0XpTtwuoYoQhOssq5gKIa5S4c9W6wZQ98vK0hYnaoj4nhR2Q8K+u+qGMgeBV4urP0n4Kk6m8vnQiwS5zMYemevYFLdzZcBV4av53taaUUQ3cpq58ohEQF/bRvRx1YkJLz9WsdilydK6uYeH7+PiZuFXhV/nSjEVSgXFlTVjPB2fibIZoXKXijEJgoOXGUp71HvmM3vmu1GQniAxrgySYNCHoHnYmwEMWrxHAI+9hw+4K0eb9tJBmzZsZPbrUOB0lMN9sLDRaZ0H6GC2qU9GmQuLvSnHMIGUtMaSYFowN/Y4hoZdCoTll7YNL7kkCCTwYM/YE3LSj9gApvjI+HvaZv9Y7jBxHXLuQQLDe8WrMLN5swEsJUgcnsgGWOWzSK6RDVhKha8Brg3AVGAQV3Y7q20Q5XgDDbsyQOlQ7WED2XYYoL+DpgaEz4QSc8CV1RLE27LuNeR6xtwyENmKULmfEskDpTLVmZura66u5uE/1yjTjXpJHfeFvAy2J27kYcoPa7a3S+k7DAJFkI5iIrvYoj9LtSRexyDnMwexSnun7Pp1lDUyY5DBA4AfzyD79Z9dn/6R+7qBtDJKKhoMQkVJlbgg2AlOus7SL+HL1RjBPXmli3oJuRxb4pw0Hq3Es+R82gGpA5x1RWMr+dnuJOFFQSesVrRHiaYKWhcwaEv4mVKDYNM2WyMJVkPXldY6qgXMSa29uVqJBlEpT9GZgCTmBO4+5ldNN3iogfi5N/3V8E3Tfws/qogw1YlDnZjr9P/DKeLnW973MM9M05FaT9RJmGqlrZ0ilVJ0KKYMUNwGBWn4vSUIDlkqVdX3PxPdqYXEfNxNs1yDowTeh8/I9vn9XN3sf5wT8oKwKRbmRpA7Unx3/HzbenIn8uva7hfxh21pjI0ozUgeCkiI+8FXLa+Zr5A/iHXJ/sW3PycxcX+TTBDbPf72buSea9t9wg5sL7mdJ8Z7wCAoIGw2YP+E+Qi7Zy7jh1siyLK6b1Hqw+c2jK5eFmzXEQybi41Pj7jZbjySEDkegYf9lWXyMu5Sp0otcWaJ86MngPRx1LFYX9M0UWsd5cCzD4pEcgVBSGndyy9GIoUnYSjLsnI5L14elzgzF4kYgV9fe+eLH/+EN9+84fp4xcfPn/DkyS316grI+wrTPPH8xTO++vo1lzJRRVgvC31dRyni2PJQ4Hw6BalL/Dri50hXDYr+C2Pr8ak4u5VCoXARQLbzWo3EghyRByX1QjxH8XgW1uNzGn3m5/BUKWU8134N55jE/iT7PVwG6dTQ8D3L8C+1b2XPUl3PL+5xLSlBeFv9fKIm23ki99VULLN8XvfLcwYbGXuTYX/zXBBhT4/A7Yg26ddupJdYL8HuGYQc2Qh5e6uzj59Y+Bmxu43ln77ytnbsoYmy3E+39WvDh9wMxmYv8vHGnWLuDgs4kiAyiQK1GK/hfMVzbGXfcizTbxzjnDfMNxNGh24qaQ/tzvZi0Qf28GcPXOTwQzYXyhikxXyG6IthHz8Yh+EtRixUsJgHW9vmNRs57bE9tsf22B7bY3tsj+2xPbbH9tj+ltovTFKap+oKLBi9GK15ANrLqmioiNQIvhWMTpkji54ti17G4SuUQwiSUgQd1IhyM0lqMj8kWgQ0he0QaUbpHSKDXoqh1hA2ieQRdheJ6/UI+vqhvXeL7PvITCUOnHHALvhBsAMUhqz7qBsvZYCktUbAlcI0eR9YAHa1TKytYWJU3UAnjYNvayulFpquSK0UJlaEqHeGrq4KVTM4UCKKoBpBBg+gHo8zt7c3vHj5nB/85nf57Du3TLMDfYeD8eknRz56ccPP5iPzdMVUL9Q6UXrzAGvIbEsvmJQIrntwJjOyrQSgOYK2Wz16PzBXB3hLRZMUZJ2IB1FroWgAyzG/1ra6yoUUJwQRMuOlsnWUtwRPkjxgVKTM1LlQRBHaUD7yDMTiwZ/IqqtTTPsOdKWK0GqhBTFgrhMtQOBuRLA+g5ceLahF0Op9VKwwl8MGQqrTNcy2SEMpM14bKEBdGr1BOwuXrrSpUeYjdb7ivHRMLxSrXOTsihEyo31h6WeMKVRoFLVKV6N3z25s6wmzla6NdVUul4W+nv1+vWHgKiNrR1So5lln8ZRM5RhgO/TWUY3gZXWugpBBmg7aEYN5vqKUiVpnapmQv0lYQYBiHK4OXF894VAnhIYVgzoxTZXDccZo2ATWHDA3mSKo4souvXe0eEEiaqVpp3RFpNOa+NxHHTg325FLnPCowFRLKOskQO1rpWSwO9byPvi0vYeMwKiRJdViGmrkSZqNwCewAw8jSBV/792fNYlLwhaAyjzPITE/AnihCDJC4/lYwkMpcwG2IBxkoFHH/FZlkAVE8vNhs0O5ZpQa8JVMixKJWMmOcrJRZI4OmXNhZPZmUGwrbZDkilBdsCR3ZJa5ZcWtIILF8wOLNt7enfjJT7/i5bc+Y5q2fjCEr1/f8+U3JxbtNL0EyOofcfWpLCcYmf6Gk2tiLypIAOHyIFCdIEQpMM8zdSrMU+X66uhryAoikweY28LaQsmnVKbjzHw4MM9zKE3E2Bah1uIlSlVZLxdqmX3+qDEbcFn55vMvmabC+e6ey+niJbtCfatGpvX9+zsv3XK38Od/8TOun/4h3//Op/z9v/t3+M3f+V2m6YhIEo2FUg6IzSwX5f7U4XLP+XTH2jpGQcrk5lpDjeAEooqWwnSYaNpZV2VZG715mQZtoVqAb2nzPFOqoTWoW2aYTIgpjRWKz/1mhjBFOaMCxUvJrtrRtbuSEh0rTnxyYkvFohSij4vACMwGoBNlHAlST4t1WQo0cxVAB0pK2PQe68EoU6GLBIDjwEOCKtYLl0unrEqdZtDJS+OFzVFrdL0Qm40LeGisP224eqJ4ScFQJkK8dJ/2NcAY900ys7yblwoyGGQCt3MSChC+r5nhgLe6Ippz+borBsxTZLT3WFuVUaaqtwiCx99Vwz4xABGfO6GkaYVSDqOszmZD/F1Lyr1YAAgSPtdOdcIkCNNJ1tAgm2unI5gVxAr0HuRjC5/QVT6kyFBASQIoAdSgyj6YP/b0nQ0yiMz1zW7mindSKlGGM+yPDagl7F4OcaIx8Sxpz8UYFBvx50qQbrP1IEmEZAcEeZp9qG7yy9uKRBllRhmVPaDjtjbLPInvmcETsFgcW2mMRGuyozf/I8vZ7MGuHtdMoDGu6Gtup3CY2egWD7XNi9jsLVMdfCxFZKcyoEPpirxDAq476GwA65JKFzknMvP/4ThLPIsDe6EWm0khbHMpiVJmGtKPJc49gTjF2UZkI7aV7DeJBATczznME9e3R55//ITjdRmglxTj9nbm6dNb3r15B6UhpVGql4Ya+Ljt7EG+s+X+mkQiRk8OIrjqQ9AvSto44NdJELPU+gCj8/3HiUt7kngyD9xV2J7pYWJJDJM8JBeLbWS4VCUZoGTMkwQV/Rzpz9HNqDusFdyv6VGydQMaU9UrQPMyRmOojA20kCBRWlKzYjYFsN10pVQ/I0qdKOoeeVkXXxP4mdrU7aMDk8W1yCSTLDyRwRTUNvXR3jWItzrsn5mGQXPCWILdFh027OUgisrWp9rD502ylQUJNsDxD/zVv4lmWIDjSQgIHcDqpQC9nPKOVBc+wVC4iyQU321qnDVdOcV0KwnFto0AYadkm2MSe85QFhxl/+Kdw77I2HXy+fOCu/MEud9u62t7gNidxvob5mvYnyS8xq70YOv4ud63h7/58PPDPMqHv7HxX0uDO+YDvp/nd+yDzyYJIN7bdu+SLzT24A82vuzOnfDQ7ml2fbS7z/h5fkdyL/E52lS5rAtv3r7nxf2JJ09vRz8IwvnS+Oqbt1zW5mqUeRiR7T+pzPvzM9wYRJ7d++19EpEgjNco0zZVRNzXGz6D6kjoK7VwrFOQToOAGfNl3H/4itsaVVX62jxJpwiH6qpI2vuIOeWc7qqcz2dW7Z4MaEI53PPk9oYiyuHmhqugfJbsfRMup8ZyaZzPK6Yr9CVI4zDUdyFU6iT8S4NS/JzXNcpPavjRccqV4p/B6ZJuWt3vNHzP6CUtdc41IcuSI27repaeC9uWTHZXLyzug8fPtzGzcV6UUHe3HDhn4MZ+5n2wSd+EHQhbmaQpBVdXCn+n1I04433j4+r2Wsbe5sqGEatlO7enb86wMEKWmYMsvZ7jK2NPzUTCLS4Ro7O3cwJk5DXP+MqmfpnxVYt+AvfXAaPnSTC70W3uKL2WtMixW7PFm3Rb5MOX3tmK4QIa+ySqB37HeCV78FmJPT+VFZMEtCcbGrZV3bRtvm4kze3zlg+0t5HDmDH8C9jI8h+Ytd1nss9lf4ld29thI23k2J81P7H5GPtnZvzu5y782B7bY3tsj+2xPbbH9tge22N7bH+j7RcmKTXpLLqydAe+WncQRMUP9l0VKy5rXIrQrNMsMnxCfnfEgRJ0kh5ZOuKlyvBgnytJ9MgSi8x0BNHugcTiZAFXTkpZ5Ii5RERKIcgXNu6pPTMcg7gScgoW2f0lS4PFwVCI0iFx2M5gRSmVOk2eZW8e+PBDXwATVlxFqmxljNSjog4eIUMtxYF2/34mjomog5JaWXr0W1+dgCOrB0cqHOrRg1XmQYVaZ9bWXKL7Snj28kCd1ANWVFSUmyc3fOtXvsu//Fd/wrk3Og2pUCehqyu1+NhG9pn4WKh1TB186KuXB8uAipceSCJDpQbZS0yQqVJrKP/swDgA6xbPtsWCR9BcHAzOagsuIZ0gQ43ygxluX6kIHaEUCyUfAHGp8QE4OLhPlDhoUalIpdPpWK0sCYIRgSHzIFOe100ctC7IAEeT4JYgRQ1QRMpEKRNSzMszyRSZuiHJLsK6rvS1M88FWYUyK/Nh4lBnKmeKFFYC/G2w9IYiTBQn1pSJ89LofXHwo7uqUu9OkGtrp/cFtcX70wDrFPOyNutyQUqWBGu4Roi/SKlgGkBiA7XuxLF59lJ2uPKGAaaFdVHWVbk+7iKxfwNNgfN6YW33ECTDZgqTUopSUCcQRfBOpGLi2ZymRlXzMnfLJZR+OrKaxwmrhqpXGZmhG8iZgVqfe6W4nfI5umWH206WfQCJZGApCAAJCJi/UYIKZh8E0SwJTFv02AODG+nSg0wBphoUEzpOGC0DtGIAcZDARxmZg6oOXoptRJpcz77GIjj5QHFhA+XdVomD+rBBZcIIEm8Btwx2JtiWz+dZ90PRQBjvLnF9r4LixCZVn3/bRlLJUp/jTS2C/92zgFWVtS+8P73nZ198wb/8vT/kyYunfO97v8p8mNAOb95e+H//83/NH/35H/H2/Wsuy5muzYORwXZKlakedmxkH44g6DSCsxrBTi8d46SEw1w4BulomirHqwOtrbTmGfhO4J24urniMG/Zzg6QhI3sMb6BLyy9+/4YXBkTuLucKGJ88vHHfPzxSw514vXXb7nn5Go5VWmtcbnv3J8XTueFw+HAkUqZJ5op/Vc+4cmnL5muDmPOqinranz91R0//uE3nE4r79/d0Zc7TBda6xF072QYmcktlXUvj9kXRVdX7tHeHBgvGUwuSKlM0+S7t3hpLi91ZsiUZDbf66t0pqIYE92K27L1zGk9o1Z87fdGEVdJJMrBJb/ZfYYepZFwcnBfA7zpEECpzJNnnJcaMG4oJ3VX/+kW+5iakyPVsMhGd+UoOMxuK4efMRdKFSf9anelH9y+au/YqgEgtyD3xSNhmDXMGmUqUaYJ1q5u22mYdUwrvTdXvVAbpOyCOrE0yB5eXg9MG90UKRNJNnYATTFbUSIDPEtVmqHdQRwHBtSJUknqpg7SiWqUty2uipmEHZ/XW/auj4vb4AQJ1CRUWXTYnkG2NBt2VM0Xm4SNdd/DKASoCIOw6ubFNqIh6qD4DrzJEiv55z0hc3iUttlDzzxPUlAAFbYnoqbdT/J73qsMsDL9Kd972u5du6//3BJCEXM8644MOshK8SyjZNQvYeva6abDJ0nQKPGh1AUSZKiYjTKH2bJ/NffY2DNj/IZ6DamCksBX9HfsMYMgQvrzsoG48BDoytkbykU9xgASq02EaucfjN/F9eLZdTd/GM+6I+0oQ41T4928NG2WdslmpM9iMY3kgz/n4WKUPbEka3kSCeJqcsRZp5YAk9dKnRaW5Yz2BbPq95LopwLTfKAbrL3RtY39XrDRB1vbKdJQYp1vQPEAEoeKWnmwjhwMfqgykuQLzbHb9SmSBK/0h9IA5VzxtbOVbDJX89P0SzYcMe9HScJ5knE2IpymbYHYD8Pm7VSKUgVFwo/THKOxfvO8M17Be04cQJbiBO9SJPyfEn6vr5keZxhPOlmoU2EVJ6CKlChRrr5Phv+W5xdlpXXDgmHm624dRNFUyNJMwDHIsux+FkxynWH0tJbx3gxfItdHKVFOVTZ1UA1ClHV1BZNfOErxCzYTunZaP0PEL5zA3wgvw8+wQ5lGYKiQGGaxT3UB+s5+W/iMo0tiPqf92JEYNqSajVREzoJcDuMn27W23yVuvQe990Dz9tX0jm1Mpu3Msd0okyHyevtr5w7zIZEp19X40O71do/+wTtve6n/Ja/78P0eXCIB/QfPneSK7Qb+2Y04uF3ENtOcv9+h/DL+nTGGh1SnQR4287nTFk7nE19/85r5cOCzb3/Kk9tbEDifGj/72dd8+dXn3J3e0tYF0yT1bD7GpmKXd0rFnQ86LF87CMhSxIl0UwllyxLqssXjNDHXSi1Mh4PH0URGqW+y740Rs9ivU5AgrhYoQtPGPFWO19dcX1+jalwuC7r0sGtKb4qKl4asTZ04JcXjQnLF7bMnHA4V6wsmhU5hXRuX08rXX79lWVydrfXV+0qTpLQlMFgo/blyYXeFTxUwJwOXOD/WoUJlcZYQTDYSnr9ixOoi+aOSpH9XkbYoW9l0DTKNkMTojbya61q3aYyPURiwSOJ0QpKNPnVifBQNJ8/4QnopPgcz+cl28x7z82QJQtFIeAofRjPtzxj7sKXtRsPO5SPL9uzBW3PyUKipZiJBxCiSODZsQ+yjsrMHsQ2ioShM7Dv5nS0Bare5ZewkScmyrbkcr+0bGwktb6ZpG3Zr3sc/9t7c7y3mefiH+5Y/f2A2H/w25lMsoUGEy9+PfklC82ZnbXeN7d47G5RrfNx5N0+3fzFeOT43bFb6NeOJ9vtJ2tndHvKhbRxXG8Zgu9kw7R/6cY/tsT22x/bYHttje2yP7bE9tsf2N99+4fDfabmwth6ZlBmAd7JPi0Oil3TLwKQHqwf4kNnAmtLJBZWsnS5EfRHMUikks/ad9KMhUVwsggO41HUjjmbi4OEGtvv1RDou+qJOLJEyFASK+PMSwbfeHVDL43+qABTZMoEsfr/qGvdpfj5W6FqgzHEut1F7XWx33VHGwyJYtJUfIQJhEgiEUDwgTWYheZ9avGMzAYV1NdZpYl1bZPhBWx0Y/63f+Xs8f/mM6eBA3/vTHT/78U+4u3vLspzpbaWvF1e8shibEalcaa2BZXZ0BIOiDEOSx2qd0N68xA6GFgWpYAt1dbWQjlLFA+d58F26A/MWyjRewsmDbk4kY0Q3ijiBKQGNSeboQsOk0/XiIEupQ55aMJp1SGnzkZAcRDTwciMC1hqiTvTy8jFboEHNiXAT+PytrjBVIx3McNJMQNhR+s2JVL1X6mRMs4UakQNB81ydwIUhVkEmDtPk5WOscX85Y6sgMrNKQfuKaqEpqCiTQWnCQndBqLY6K0Kh9YvPhe6kCtOGSaOv6mAumRFXMOogZHRzstYeFDKDFtrfrSszrnDVTVitUBXW5cJlObMsZ87nE09vrweh7L91G4ES83e6XDhf3rNao6u4HPx68sCWCYcyYZFZWqoTwozI+gbOpwWzQrEFLa580rR7hrek5HgoVsScs6gRk4oOat2DkAFClVIZWXm2BX1TjS1DvyWCZColo+Rx/S24lYH1DRTfgqZblqM/XK5//55HACXm8bCZ2Y9qoyxKBplcZKNERDSDrHUXMN+AgK1sWY7HLmwYaiqOMdhYKyPMamlHCXk8V4NzkLFuwE+Mt6g5/pmRQJEB0iJbCSaRIIqWGthFwH0joLeRqlpbOZ3umaeJr778mt//vT+itYW/83d+wMuPX3I+XfijP/4p//Jf/h4/+ukf8fr1VyznM70tmK6orgx598zmVKXWSvH8XLdB8euc9hrExVIrtXpZg2l2wqaZcb4sMYcKcy1MNwem+UipU5BRo8zOPCO1cLq/pzcnJfXefJ72jU5XS+H69nYba4G7y4VWjPnqCop5wL032uqqO51CW8VxgOnAbMLl/j2nyz1fv/qK5f4t03yEes3d+5WvvnjFl198zQ9/8kMul7es630QYTTIVh3T1cuhWQdtSJCWidKLUzlSy8Q8zRSMWh2s8P3CPJN6rg5jr04gqbNwdaioVS7d0GbU1cuXrXrmfgXpCrZi2oCJWrx0ns+RAJIRinjgXZvPI4l9xVSZa5BSrNFEsSJMk4MFXgKwUkMpSlzuEZHqZLLuNlSB1hsPwIHeKPXgvg1Kb+7HOHkbsE5RQ/sKQdxQTc/Alaasm5cfBeo8U4owFWHV5iVHzJXvnMi27ZNjL0ecxBnAkVr3+RRkGy+juzgRqzOIN6Y9bGAZAEYCM631UPSQmJNOWLbu5EGlh30qTnAOIDhEN0YppDSfqvl93QgF4nbYsqRQkC293FzapLBtFsRvH4UAiIK0qCEoA8POplpA621c+0GmOUmOss0GDjW1LWgv8RKb5oUNAML2YET6wjsUwLID8rlFBugt4zPbvTRQlwFlmpO5cqfNjPsd6vFL2Zr2GBfb428ErMhASNjmWxJD2fV7gq1mQZAMQh62AUqjxF8mEYy+ifmRBCZJdVQHQj05Ie+UGfQ2SFHe0p+X+H8+bxl7oY3n1DGmqSaY+7LG++1wc8yiaG76rbbdN0lL+3mwbzmj/GtBnEsAc3yg78C+DdzyJaDYapzU6M2Vc1trvPz4E26fXDMfBNPO/enEF19+weV8h7bma3eAzJsvMciB2hiL0cSJ1YGObsDhNoawEfXcHLi/54JQAQjGqzvheZcIIba96hifJGW7fdP9ZwySYGY0ijqgPI5nhA0xc5+R9PBsmNlSqvddKFhYFosTBiDr86IEbdbQ4ms8CeYmMvwpiflLENERgqhsYCUcgLAXwz/yRIhpqj5ni5/He3dyWQ8fM4luGj6qqJfXVgHrOt5bNc79lqSzIKcafuaQ9I98ov484XBH5rZQ1pCd6oMa0gnVDejavBz2unBZL8yHeVdO94EjurW/4qiRtlZ2Y4gZtjYnSoY6CLt9x9UKPUHHS9JJlEHKfUFoa0PWlY6gxWMTHrcoEQeRB/Nmlzrge8KYa5udevgZws6zAcuxRCUuuld62yBmGzbkgUUwG+XURHj4Adn3aZI4HvY28Xz7v4/xC199+2mcnW13zk47TZLzPtyc9gMku5/s9sqwB9tY6q7Pds8qW58M4zDGY6d8loQI8T+XJJ48uO3D51RTemusIpxPZ96X9/zUjLu799zc3CIi3N+f+ebVW969e8X5cqata8yzICrtykXte3iUss8y8WkzspOjnJrEeTWJRwasa/MYRZSAdtJ/oUQyVMZsoFBrZW0e29mI2DYGtEQS2OEwU6Y61LXv7++9zFtzdaGmLfbvTBiMc4/1/U7D3fs7fvSTn/L61WumIkiZ6V04nS+0y8LpcmZpJ7qukYwTyWNBWO/hK2CbMlGpbos95oMrWosN5RrbzdUk2GBEfKlyCFLn0pVmFmer8LjNfUwxTQMWcyZ8zijHnT4xQ4Vsm6dmqbaaf98c0ILHuaqUoNmXOOf7+5ZaQwnT4wyqfZvPMafdX42iv5rKQFsKExF3dL/F95Qhrqk93KiwjUVQ8/1ITWOuhnKQbiSk2LK3+Ahhs8TX4kO1nyTC9Xzk7UvjE5sfLWErLJNIMt5hFq9QSP9k+MX5Z/G9LPf23Hgelql7aE0G4dHSQu0V1LKfd8lZw1+L/t8FJ5OUu7efW6LW7oppv/Knu2vsfeAkQ5qkzzI6kCTLbby1ne0e191OIvve3khY9mA8BmlMdvcJI7rZ7cf22B7bY3tsj+2xPbbH9tge22P722+/MElpXeNgq0T2UuYcOhzlWUIC5iVWvESMy+gnsKXKLuvVBrikuuKlRWQLaME41GVM3+ME23HJTOgFapSDK6RCTX41sm4ksp8Ml6AOJQyv4tNdFt+mTZ6Z7YDuPCAbh1+hYC0ypKKMGEOauUQ2b6OKq/qM83Fcq4gr7VggdSUyrEw8ezMPvwUDa2gzZEg7W5QuiPOk2hZYU1fGuZzuea0efLk7r/zFD7/i5cdPubox1nbmyy+/4Kc/+wmvXr3lcr7Q1pMHgYKYI8Xl64sUtF1w0FRdMUc8WDsl2QKiNICXsxuyzuoH7VIFoWHqRBBrShlS1nj/RVkBpolaBSdPePii1IlaynhnOoj6z6dS6boROESij1dDxbMILQJbhYJVL9nmxQG3gF2RKcgEDs72Fkpb1YN7rXd6byMIVzIzL5Ajn/NZOiPGUyNIoIrJinRoS0GnQi8Lh0nQValyZBVXwimlAdUDg7MxV8MpTDP9stC7sujFA00FWgNWVzgzlN7WMdfW9UJvxtK8VBI0sNXHpzsxrpuBlq0cSoA9BUGbBy18vfo7ZcCnm7CsgHREGmW+sNqRS194e/+Gu/M7PuI5s0wDINsm7PbHLai9tX0YaYuXKNYv6HJCe2dpq5ezAIp60DgDtrXccDgeKLMwz55lOk0zULh7d8+b6S2n+xPrsoAZTaC3RqSeI5PfXrtGqaEdaKBOjOlq1GkK0qTbwWKgvXtmeLzBABHDzqX9GiEx74QREJdSUG0Pfpe9UQoRvIv5Fn1UEJLos495p6LEFjYNZTIgyVBluwWM0nieBT6CUpZlZeKWkoA5ESDVh7Et2QhNFhriGRhLJROTqAGTNw8iVl5/bDJx4Q1Q8HJbpRTqXClSqWUeIFhvUGwDXR13UnpfaAuc7ytvXn+DKrx794o//aM/5Xi8Zu0rr1+/5etX3/DmzVecTydaW+i60Prqc6EH2YLEiqKcVAQYvTydZx3XafJge0+1AyczFilMUqGrExqnwpPbZzx7eotQmQrMxyN1PvL82ROevbjhZ3/xOeulQZngILRyobUVkYnemqsQlMo8zcxl4nY+QjGW85kvfvYFP/38a2oQS5flwrKsPrYa+5Yp3RrVCqsuUFZUG//qv/5DfvKTr3l2fc1UKtory+rEj1pWlvXE0u5pq9K60JuyXFbW1Ymqa1tR7VQx5nlmmiuHyUHTEtm8SQKgu59AlhZVRRdFRaEUqoUdlM7aFi5qtKVzah3tC1TF5Og+QKzj3jtVNPblCHrjpCYP0AqTTJgQJczcXvuY+WenOlEOXk5ymo8cyhUUYdWgohZFtbntlihnWIDeXcVHXL1pDpBbO1AmD773UDwqM2WaqWIcMFe2MOU8wfu7ldYM1NDWXbVRoEyV3hXRiq4+fu7r+L5ZESaU6VhpKKu5cpWpu06lhuqkS0CNgL9n4sdaq0rr/m6eAW4gfg3Us+VFQ2mjQ6NTJrfVCZY4dtORIJf3AGJKBv0HbhBWcQT+g6xcSgAYilBdsXOoG+RarGS54YHjSSFpIZoAUwIpFu8x7u3fdVdRhi1JQttQ+NpDbvIwM3kYaTfIQfoytoz6AI6KhHpofCbffKjO5PeSiOUkEH+22Bl3ak0WRBoN4qfPgT5s6AP84pewORne3zP3m5wOvjclWWjItcT4ythfNzDe8PJfjLmQALZs397+vQNf/KfxHLLtubJ7hvzzIDsGmeLDaTDOCLL9PWdszvV8R/9sgmN5oVRu2cbcRRl0E4Iaz77dRMjDkewvvpGe8tXGeahsZ6R82OE3lNivBSuGaWdpF/QsNDXu7s4cjq4OatY4X05czr63qDox1DnW2zNJzvlU5yF8c9GwMXmc2NRqavEEmI2AJ6EIYg/Oh3vfx9WAQi2ibCXEBVzFznfuZBp5aS/cpyikOpXb6CxTIyZQNmKJRcknCRBRSVJ4AOOWiRYSAL6MkR1DnqqYMdddLGSbG6BObB9roGw2IZ0tFTqKZF91HeR4iTneBarXaKYSPkqUJ0V9XiVA6duBKw0L5meX6Oce/nDvUQIwiL45rzezFEk5MiaqJ9j4AXe3VmScDSzOGR2jSEeLYUECaH3x0tRBomd/ieyqv6rZz38o946uC6oLpnG2DQWPIkIXhoJzkclLoU/CNJUgfk1gwuWycj6fWJaF1hpicXbSTrMA28tGEsxSd2kTtjnhJatSGTUfdx8fGTyVPVAuuSo2MPzBmSrmybhiLvi9gyyQu6XkVyT//vObx76/N/uRVmv/DGX3jvvvPfgkD8iiafd8Fe18g7TJNt53qH4YmGxEpa2f9s+8Jx88JCjls6cKWS2Tr1dxNUqLZJHsCfcLwn/owrpeuLt/x9IunO7vqNVJ0su6sq4rl+XCui5RJisJSoRPMpyQWLP781CUIhRX3DRceTTNtSfOFebqRP+uxlQL0zxzdbzyBAorTMeJ49U1tUy8+OQJb79+xdvX964mTRAKe8OwsFexZ459T6gGa+uc2sL7uxMF9xUNwoYQflvYRzO0GDT3tzvK+QRff/kN7w8H8sxsBhThOEfSlDppyolJPUq0b2qWSUovxYnDXuK0kuW/0ofzPixjXwyXL2IxkRTYjUv4VmpJYg9DJspWTnzzO/z38Z6pOhSDuZ19y1CBg41U5zG/4gkok0QiypwrDtMy7L7EQ5n5WpQYa38X2RGfYn1UoaJOZC7V9z3x8vVoQ63TOiyLK9/5I20qjiMJyIJQq3t/Muwghk8Z8RhCcJ/UA0aIeZk5GeszIsMR2/Ru2uyb+2v+PmJl7ENj2ZrFfp3kK2GTY7LwAcJOiZ/Fy27tb75e7Nt74zDGNGOQD8mnDzIjY9/xuK6OZ4NU99wsUsaqNj9u3+I5ho82XLnNj0v7thnSzTLnws/JDJsN3O21D+8Ya3PEaLY9d7hPu3/nHzeFutyTHttje2yP7bE9tsf22B7bY3tsj+2/u/YLk5T88B1ZyAHFd4xSPGgpCdRmeqYp1mEqBcfaHDTUBHBKBCmj9JZmxACnPQ0iSwXT5mBMZLYU6hYwwJUlSp2cjBKna3+WUECQDOj64V3yeUYGkz/vVEDFNqUo/FBeEvhRD+pl+YmgpoTCR5QeKxGA7krvNgKFI3u0ZMmgCN7iwQ3RjpUExeJMGuUtEqzpplTXson+cSmNBA9hpQtc1sJ6V9Bm3L9/w5//aPKScrqwtAuXy4XzeaGtFw8GN/EYQMGVh9So2uloZFXPdOtgDZFCF1fAIOrIOyjrQaMmARYgXmpncgTCIhAPBakZBBakd8/e1UJDPJjuIivQO4ghtQZRzBw0roUKXp6PiVpwQpSKT+iD+ng3D3YTpc/K4UCRiakUVFd6EOmqCFYc3KjmikHSYx6JMU+Tq1AUYUZZzbAOq3mpoCJGleLjWz3QMYmPt1RhGtLnTqIr5kD15dRRKRzqEaXQWkFmD9xIF3pxZYdqNQgwhohLnC8tMgyteUCqO2CtarTV515fXd2klgiemKJeeyfiRjqCf1goW5g5gD3WWYC2UcYADdWNpui6YGdD5xN2fUbaQjtfWM8r881MXth2gRki1vdzAIPtgiUZADKj03n19mtevfma8/nCeu701ddenWdqKKTVAod6y3w8cPvkiidPrnj+4ilPnj1nuXS++fo1X331Ja9ef8O7t28pwNkqq5zpAWzVCPpq76EMswd+PPDu3KVcoyHr3iNwFRmdjPUd2YHi5L9851KCyBaAiAYBKUvoZV8kwLgPrtf8QwSUTQpavcThFn2SsKMe3HN8q7hqgEaZpyjb4aVuSoCOWZoyyFZhb70UVB3ldkqSKRNckS1AnUHcrZRNxvViblnHlaksJOs9QJ4D77ZSNwWLUE1KIuE0TUzTxDxPTNOR1h10EilOBJGNnJDIrvXGulx4f/eapa/cn9/x6tUNgpdqPF/OXJYzl8uZ5XyirYuXIxtrLsZe+wjgF4DiAOE8TRwPM/UwI3NlXRYupzNqXl7yOB/59Dvf5gff/1U+/9FPuDuvlMl4ev2Uzz7+iKc3L6AYv/EP/yFPn31KsZXDzZl/tvxzTqeFZ09u+erVa77+5ivOF1/31IpFhnG3hmjlfFlp65nz6cRlNaAwFaVOrtkgJjFVp1AP6qE505lM6OIgm5zPvH31isvdnSfCdqAWnj6/5nicuLw+8fbtW06nM3QvV5bEDC9tKZRQztEo36l4abSgXVCyPFf1PVa7E2VFcAJM8cWhZaYtymntMQZGawH4hP2meemoQV4xAuCQWK9e3lLU10aRglQHY6lGsepAhRTfU+nUYlzNhaurSpkrZgc6ShHfI8wmxFw50EIRyWJtH0qNmLqrQDqx0e87Hwq385Gr4zWLFZYObV1Z24Xl0tDeOTcnCcnO5ypls0No99JrUhGbnYwX2cZqDZVOMWUWQ2VXtiZi9KogZUbE55C/h5MQKCXIqYwSEd0aIpXCHD1sAWB49rkGUKbpsAmhqhiruqRKjPs6lRoghbrvpK7W19zxyp0io+yxlkuoBrgfUNRt2ojja0NwgKlr0IpsX/4yQu7mY7yV30nwI4gAkkCAAHOUoAhIoBtI9QURe+IW/s/M++1aCdQWcdsZhjieVzFraA/7kuQKdioclv0WJezGmwTQxwZlJJaRmfN+n5/bZX9pmm/vOWfivQKg9b3VHj5/bG2CDILSIKiM6bL93cGv/PuOxAts6kzZh8nMDZgtVBKqbVMwcE9SZTIz5VO5Dnt4Dxl/2R7w4bPufyUPPjrmoeWzbu/n7ogwiLxssP0gIMV7pf9g8Z1RGgYCGATYyqlZ+ohBNDFNv01Qu2Bd6esZOYWGkLkKbe8aahd9B7pFT4d/KQpeSNifOcFlRUIBV7Z+SKJzPFMSCgb5WhgKXEnqSiAu9wBTQyXK6qaKiLli1SapBjVAWvdrSuCBG1nM9/mwJ5qLzHu8lhqKjk4obN1LnjqgHH7f9kikokatTr4q4gBw0oH2ZWiKDGb6eD6f10kolSgd7aMt4nuoxfm0RGKLGtQgBWjY3MiKQYbfZ15mPSehL67Yu0OpwxnEbOSKHUEs7NXPlxAL4qX6eXwrb5W+oRD6fqSKiDXQZUXrhLUD69JYl0Y5pm/MX6/l8tz99f585v39iWVtQdYNf7YUihoWpfQmmanzxPX1kePxwJMnT7i+vmZZO3d397x7/5b7+/ec7k6IwZLnHNMtOSHGv4x3D6vtiPGDvsr/DDxcIMuvpn2yGOuc7QNQTnu0e/VBQMgx+YDElOTdVLg27OF8211v7OVpG3a/3VSjbPT3dqf9n4SNePXhz7d3yJjMXuHjgaBRzLnRh/md6MsHbzAOILsnCYPhCkOFWjxBqtbJPQIVVIzhwQxj7XuvmXriUtiL1hbW5RIK0G5b19accN8bvbVQpUz7zQdjmTsRI/FgmiZfw8XHf11CRRGh1srtsyf8vd/+Ld598zVffvmabp2pVp7d3PLppx/TWuPmxXM++vjbrOeF1u/o55W1CS+eueLTN69e8e79Pa15mWN/dw3is/twXTttXUOtx01gMdkSx3Jqhh1zn8itWsfPHEW9v5bF31TVSbdldnXSy3Lh/rSwri1iXr4uSnVVSUFc9TnWi6lhNZXbZcy7PVE0/QPw+Ix3/JYM0UMtdCgX7zdkA+t97JmQpOgg2pjPqZxnrugkeKKlxRyXoOqHOpF5fKXKRC3q5eeY3HbviPLppNvmaQ+5XAn3sqv6mTnnTqlM1VWFW/Mz4RIKt0MlNQguYvtxCnqXEmpK/uw6fHlvPWKm1SLyK76nliT272yL5jxGPBHOtvEY/Rg+t0ioN+cKyLgDbPHCWKup6LTZnM0CEir6JpkA5mTe/qAmbu6xO/uQpmEoXDJsyebMxX4Zc3J8Lve66L8dlXE4eg9tXMaL4zPusLGt/Ly7DHs4nmc8qG8mZptd38eKIMh2u2/abm3ElbY9Z9htxh75oV3e9qf89mN7bI/tsT22x/bYHttje2yP7bH97bVfnKSEsLQ1FFgEqZ7x3pEom9Yirq4BWirFCq15+ZK1e7BaDYia8T3knF0i3wJoTBDCxgF2nIEDgB7H996dSCE4SJXlkYof6Kt4oG6flbhqlgkpDvaKRhZkiexRABmBZb8nQQJiK1FHcXLILkjuwH4DM7olucMDYaquDCGRxdRxklIp6uCpyk6RCeYpAvnGz8lyp4S392dmyhRWFWgFbGFS476t6DpDLQ4WRIC69ZWmC60ppuLZoWKeMWyuEqUoa+9b6YdIn3LV6uLEphhHMdDWnGxkoaAlBeseACq1uFoSQo2+yNJNGkQF7SvWDKuKyUQVL6fUIMBBY64zNchtruxUh9y5SKUWY6qzB7jNoLqiiU0ekK9l4ng4cnt1RFBO54V5munaWXWltQVrjWoTasISWZBSatDRnBQiLunEBEMmXaqPV+8NQVjUCR9FwapBKUxUJwoUi7mQgYAEaDxAZM1YvTfpCnRh7c2n4wRNG5SZqcxgDWudbqBL85IDJl6mT5tLeHcf0956BIdcHnsfaNHIFBTrdA1CUgRTrPtiqqUiKHNVanHyQVuFtiys5xOn+zNff/2G6yfvmK6OTKU6SPyLxjkyDjNihU4i+ebde17dnXh/d4buJC6l0KwwlerB/KlydZh4/vIpv/Kd7/Ddb3+H7/3a9/no4084nRd+9sUX/OEf/2v+9E//iPIjxZqymNIpSHOgR02HxH6pk0s1EX2Fg0BSK9o7pdQA5TKwFY9dBCg+76zG3MzAWoCI+X5mI3ANrqQ2Aqe2y6De9d/IxhOh6xYae/gHf4bswypZgjB/t805U1/3GoCjr/eAPZNUGAHaDSSPbEYLEkAEBR2j90BarpeBNkaAzte+AUrvTlBFDUqW1AslggGWuH2VIiOT/eb6CVdXE8fjE1Q7l8vJiUYXn+voSiqztCaYuMqYIlzWhfv7d7w/Hn0sxNeWq2spbb3Q1sVVA1QJfR9SySnHsVZlPkxcXV1xPFxxOB6d4EqohMjkpMRp5ulHz/lf/e/+1/zP/4N/j//j//7/wL/6/b9gpXF7fc3/5n/7v+Q3f/1X+fGXP+V7v/Xf56rc8Gd/+Pv89Kd/xs2TF3z3Nz/l3/sf/DbvXt3xH/0n/xl/9Cd/TGuNtjTOpxPalWkuUBr3y70DCpYlVztrZMAWqZGdHBmsMQa1FJSVpa/0Isx2xbqKE5tUWZaV8/lMV+XrVwW1lfOl0a1GELr5OpEhJIRn6sqI+1ffqjE8uG7WvFwEIFZ9tgSpqYgGqMAop9jNlSIEJ3eqrjlDwUJNyxToXn7OYG2Lz3X18o+pdFAF6jSB9SDeGrV64H9VJ841FLucqMWYSwPpUCZKmShiTlK1RjMvEUqWBxULQp/Fs4O1dfgwqsb9Irw/C/X9hd4bqCEmXGz1srTWXW1MbJTZMFFK9cB+N3V1K8HXkDrRVYs4+6i4XzEpzNVLwpn4vUvzUrpqHSmFRVe3O7haUTN1JcGu/k7mQL/iZTHRld69VJfEuvbxLAE+xH6WYBE+LhWCwOP2cCOrG6S6immQx3uUfthwAlfBdKKAE7x3hJ1d2bcED93vipJLMOZiliHSDOTLdt8RnE+A3iE2kgznPw6AbUcI3UrEyfi6hjKHBvGo72GIPTCd9p/tHXJfSBxjKOoEcBuUhGHl922U5NNf/gxoM2iquzHO34RazAB7GKXDhCGWtpXl210vARoZyQoJLuVn9iSBDehJcs/2MOD7vlA0wKzgtuSYJI411K8Ie+eTeLvebg/P3TNJInmfVBTZiAtsxBw2JcIkD40X3t4g5sTufcOnyLJhXm4VUtlr9Mcg5OU5RmLuxixTQYII302d/CUJflnYei8v6euqBInGffYSa0jjHGWh/CWx9tJ5SpW00WXxEmlTRv8pPBiqIHEMuxPjkapNfjFXDkllhzxPlqEoZRs38gOiUi0VKw4mm7hSYC48jQSbIq6IN00zh/mI4STTta9RRttdnNYbdAZhMVWW4s03fy/HYrfOu+mYI9oZRE9izomlfci542OY5bV7qgJHvsKwWSXU70K1Jdm2JmWU/vY552owIgyVUBsbmz3gpuX5PZ+HnU3aEy1ThVYk1nKejbXTtLG2xul0ZjocqfPMVJyA99eBSnPupKfcVTkvC0vrrGvbSk4iQRyLdRmls65vj7x49hEfv/yIJ0+fMB+OdIXz5cxX33zJl198HiUOlebFshH159RxONg/0Pb0fl6I0lH4erBhF8ZkiJY2bVMxzgk+PjXIi+k372zF+PO2qtJu5dwbrrrZUOza9nTGvM/9Oh/R9gTDnNE7+7z/TY7KVtpxu8/47W7ft933ZPfvzfxt7zgIjfnzeKlhQ3bP4us/yGjTxOEwcTgcXS23NS9fvrqyj5P1gpwVa9mpHi0II4W1LSOmYTjBB4BMBNK0bXvfoWzPUlyta5pnaqlOmIq1lrETEVdqneeZFy9f8IMffJ9vbg68e3/m0lYKxqff/oy/91t/h+V0B4cb5umae1PevF6ZpyPPXh743q9/l+t55qc/+Zo/+dM/4Xw+o9pZLguAK0KJ0bWNOIGFfZfi411CNdtyYuz2b9XNn6klzsIovfURIzE15ATv054w5InIv4J5XKUniWdsa+6zhTpvkuTEHVLfIMY8CQpo+hQYqbikmqRLP/v6aggVJdy31CDzbuWTy0iW3M3Y4f8m8d6wQWQGnPQUvqWZRCJe2ODhn3qZ1IKrWiG4sp3kei5RkpJxr66wqnBeU+3X92Qj+yz97C2mmg8lxUIBaRs/zbUvEkShsI1sFJsk4LsjBtsOtpV4TR81ldaJWKZiGZpgrzCXLT243bLerr85LnzY9u+WfkB+djsrDpMwxm2bD8a4087o2O75ZFw395Ts37+kDb+dzeZGfDu/N3zGeJQ006k0PJ5p974Wtmc//TZy8M+fCf6ylr5lODoP9oaHFpsxzwdR9rE9tsf22B7bY3tsj+2xPbbH9tj+FtsvXu6tKWtP+V2jqEbSfCVrfPkhVQbZRtWBt24O+Ga5i04c/iIyrEPWOYM/GRDyAI2IS6xvB+kgNkkAySH/rJHdlhmiJYGiDJiZH7d7HKzzZ+DBelc3EQ+Em2wHSxOg4jHcfMfIri02KhbFyXsEZ9X2WVpRoiWypRJ0MgsFiTyYx2l6bQ6KeKDYf6YRlFlT2SDUq6Q4eaqYl7+bTJmk0+m0cqA371ftnd5xtQVrdBXMJnrvThzQIGWoZ9CBDGDGA80uK275v8yS0iDnRHCjq8t1Z/m+UssWyNwFsLu5CohhiLmiEery1GbGXCNwVYw6BVFIIkBFpdQJK65QNE0H5lI5Hm6Yrp9TK5xPX/H27g3WHEhc+hlrF7Qdmacrbq5v+Oijl5R54v3pjjdvX9GXi5ewUS/HoCujFF5T19mwICkleOqy4xtgEvr9LvMO9LZlhpapeokg9blS6oxIYaViXZjXzmzVVUdKgMprDxjKA6jOZ1scIIkShfNcgRlVYW2eQdcl502haSfrhml3pZpSagQNu6tYmDAVH6/WvUxfllKTWqm1uuJXbzSLkjwCZ105tZW393fUu7fcvPmGm2c3PL19EsU2YgbLXx1EGXnAESMJShxv3t3x6tUb7k8XTuvK3XrmdDljap7JPlV/r+nI7fUtzz96wfe/9wP+/t//bZ48fUqpB54+FT76+GNefPSEvlw4v7vjcjlx6jB1GQQEy3JrSJAMQUqWY4jn1IiQqo3MRoGwNfErNYhyYK7SEIHGDHIHmOqKSh4oLaXsAp+2lRDxGm3ss88LoLLJ7ve+Ba22oFdmvwcQqTbewyzVOxzwMGskMG7jjTJLskUWuAdFRbY1HA8UPbYb3FBMiUIrAdbbeP5RwoJUYPPrDHWmANimqLtRSqFWL711dTzy4vlTXr58wXe/82us68LXX73ipz/9EdrvWfqJGoE+UyewdQNbO2pnWl2ZponWPPPZ1cic3CRmmPZAIWTYaG9lkACmqXC8mnn27IbDNAMz0zxxaQvr4iXTrq4OHA9HDldHbp7c8Pqrb/ji8y9RCte3t8jljul45Okn3+ajT7/NpSnv3iy8Pr2jY/yd3/xtZL7iJFBvrvn+80/59rf/jD/6kz+j9ZXT+UwBbp/cgChLa6EwVNAutHV1hcHZSYQxS70sZ/HApDBhq3n5EzfInM9noFLfviNL+iWg2y4O8rYgrqJ9zCVCXc+k05vvmz32m1EasHsAf5RUKzUC2Q6yOkm4ocVBm74uVJkddAhMbK4Ck9vH1n0edvV3V+uj3EK3FmtXRvmWJJku6oqPZhLZ2kl+MBKKOLcOd2f6MnFYO/PRsFqcnLXOdGus6wLmJCxPDScUG/FSMebEu1qEOvkc7grancQ6yL9hZ3uG07W4nVffI30SOrlPVCi1IiVKMswV7TJskZP8oIVCRbgMruzY0udxUFXCZ+thd1s31tXJsFXchkgRaj0QODJKlH7wm0VgvVDDcvRQ3wDQFoCMYzuYtQCQUnEgwXfbiOkBcA3wiwDpwl5IkSBz+Q5B2LMsJ5lEai/huxEntgz7hwH/BET2xOntvv4s3ZrPnixNIfuyRn0AR5sNtnGZBHrS7j1sacOTZOHrQo0oN6WDcODXSj8xiaPeJ3swdq9m8gBH+yVrPUua7IGRJF3Es1tmsQ+8KYE2HozlniDhl0tgbgeuZP8H+WSAQBszZHwmgfuEZfbA957oREJx46yw+S8J7IrtvouF2ofPyW23jzlqDMD1AbL/YM7G9819i726kECQAyReZ3u3IeRl2w6fe76GctQArzaWACquKldisNSq+/1E2eZ4Twdl436RVMDQkvD9YBAndoBXCafEt37ZDcfm75jaKMWNgWgS2cTJhLL1piUJawckjzLeoc4oJf7xv0Y5nUKp1eeHFKY6M00Ttc5cXT9jmgqn82vevntDX12ZVem0OF/WOnM4TNS5UMoMrbKekyQZJR/FVWLTbhrmvkmSHm14Um4DsvckCT3RL3HGVhpqMnBGMwuf3j9SpFBxQoEQJbd9wx1+2yAA0MLEWpDoLUr9xroshVqiTJA5+Lw5R5uCRZZGT+JXGc9tYzpLjIEr/fhepJJ+gqstrl0p64JME4fLmcPxgByvmIY5eHiY+MtMnX3w727G3d09p7sT67rSVFn66mQyc8KZl3IqSJ04Hg5c39zw7PkLnn/0UZTzKkwVbm9umSZhPZ1ZTmfWtlBV/Kwdc0h2Ch37R7a018KDJAWCaDZs086wffjOPnc/KEvFbg2JjM+Ny4SJ2qxbXjJVfXIfyXtvlGPfJNPe2u4Z9kog8dMkXe2eKj+TCrJuS/dEpc3W7qhT49/j1W179v195cM/5zzZAjPDHnjCgSsz1lK5Os48ffaUly8/4frqmrdv3vP1V19heseilwfnJhhW39mCYRdNFS2xP7DtTbLbL/w8YZudj7EqBepUOR68NHIq2LkSk5Oc5tnjPfM0U0rhfH/iD//gj7mc7jFxtWYR47w2mhZMC998+QbKe66OB15+9m0+6o2/+NEP+ebrN3zy4inWO+vSOF+Wcf6Z52mUGF1VxzzwpBsNVbQsgCsefxrj7vNHdSPtr5Z2ftol10USlC/6EfdL+2Zhr5yPl7ZxV/otxjUV5PyffdzN1WYk1tUoGRZKcEMBU1wBScJ77d1GYkCSkzayS+5R+9npN9ecbAZI+Ny7fTt3wrW7f1u1UOpCqWso/tSIC0RiAOKKZcVtb5aj9mNbzhmP/VVkU34PXzNGxvsi1oTGnqPDvxrOl5+TSsHME5oi74JhMMIGuApvjFffSP/bOrbdO/t7pI8QR84ggfo1Uiw5ffNcu+kdjSvZ5j8Pdcci47k2oxhqUAQZyLa4yeZx7NfxZkl8quyI7w+us/v0zgawu+bWNp9rryDl75m+a5LJ2PzP0ZdsNnh7s+28Edvxg+8Ov2mzcdkvD/af3e/zecYT22arx8fHv/+y3fWxPbbH9tge22N7bI/tsT22x/bY/ubbL0xS6l1pve/AGIlgvJfZmCY/4CfYqNpGsGttrshjkcbZSxxW89BGBudlkADGAVgA0yGXnvL2W9QgIq/mJYnIAEcG1VO+2iJApuZJxbIF7rdgtme9TmUKUo2Ow3wGcGvIIisRSDahd3VAPZ/fMnjlIT6NsjBO3ipRbsDBUzWXlU5gai8L73wmV5Px5j9X9Wy33p10xb5MiyyIdRatWHXygUrBFQe83FfvK0pHtTqBCFi7YroyFQlSUWTRRiDbFad8bAzzvh7BEqOWyZVRao15kI/spcEsghOtdWqoPqTUdmZ01SlKAnT1dzZlmmYv3WcbMDFNE1UOzMcDda5Mdeb25gUvP/6Mp0+f8Xd/5x/w8qOnfP3Vn/Mf/6f/MT/6kx+hSxDnemdpynQwqMp8mqnrgcvaOF8Ua8JyuUT5mpzvgqgHGVtmQavR19XLeIlCc5UoEYGKZ0OGyk81oXRDi5f0K/hYNevMkVXfTJn6xLEJ01QRmbC5hjJM98CVKKpeutCJZopLTTlwbJpl3ryPD1dXtHWhFmGyUJfqHavev0aAs1WiRFKnU/yeOLieUJ0EKIa5ylYxV8JZ+0ppcH9/YT6cub97zfvXN7y6vmGqE9PV9QOwdA/m/lyTnOWuNPb6/Xt++OMf8dUXX/H+7Tsu64VLO7PqgrYV6w2TlSqVw3HmxUdP+N73fpVf+8EPePLsuc8b/H6HOvHdb32bH3z/+3z5+c949eYNh+mexS44T6lizaKcmgd3plARsSCfmRRaAtaCZ5uHwkFJgpoFeQuC6OhATapmZSmXDHo7USPB9ijvQwa0LNTfdQANHqSVYT+b6k5i3tejk4I2QCCDqRl22pd3kBxby0Be2d1njNqwPQkSuHn2vrKYw6UIWaUkC4MqAbLZBoQMYgtpfyOwK57JmoHnzIp1QmZlqhOHw8zHH7/g3/8P/kP+x//h/4y2rvyn/8l/wT/+T/8fnC8/QttCj3naVDewr1iUN/MypdobSJIqfPxGdDkIYP6/eM5SKFEe63Ccub4+cnt7i6pxul890K++7p4cj5SpcphmpsNMVeWf/5P/kj/4r38fBW5vnjLLirHyL//gj/i17/4Kf/GnP+QPfvz/4bd+9wf8zm/9fa4PVyx37/h//uf/BeurO8p6z+//3h/y/t0996d7tK9cH6YgQna3a5fIfG4raHdlv0WRWjAxSi2hDAeigjZlWRa6rkGw8TU/TRNWYZrn2F47GupIPcbbg+g+T7QLFKE33/d7W8JuOajZeo9Qp1FKp5awLTuQzcuOaZQdgN6MYh0TDdVGEJloaoh038cWg9IicdpJnFk6q8gUo+d7jU+nAAN6GyUE6X0QZSTKMhjub6CuAFXXC4djo8yukKg2o1pH4LirUsUD/FK8zK2D+1dMtSLVAdkShFrfaw1rWR6ieNk6FCgOZnQJ+5x20TBR31emDCwLxSpCcVU4a5QIqF9aY1Go5eBkp5aB+ABKBnhchk4ithEnS5FRhtfJRi6YVUyDQGK5/DfwUBIs8TKxHucPvy7IyOop8GBlADNpl3rvgyzkK7H7k0UZsLS1aYf2ZAcluME5n7r7O0ke3ZN3NvtmIzrv8zgUC8yVXXrfbJ8rPAmjHkVaRtv9RZywPwgDUrayKIAVGXMm1ZY2NFci014elL/ctzS5SVBKUCFVK0oAPlI2H/KXtaXvl/ihYIMIt/n/Pj4WoGH2lSamsxvLUYJo7FsJWcIgHwUA7iogCTTGHoQT6hx0T7WfvKbrouS9/Oq2TT8LeZ9YDK66Q+zdNlQBgTE2uctvpCS/f/oFQ4mQD/fbBO0gy8+QIOlDtIm9whDjV6n8NUZi+GQJxm3zEUycOtlUPREiCC7pO+Q4+jdL8knJhBAvSybbGERiQ5qPrT93RAlxXzPLGyUo+7Bk1h4OZDszmY1usOLJD/68rhBaS43SMcVLZlooqkih1rDRpTLPR25vn3J1fcXLTz7m2dNb2nLm9/7g9/nqiy+dK0T4WtrHeUHNomwUZMlyt1v64NmzyJzKpqiQZUPBwdiS8yUIQwUJ8tHmnwlB0Iphyx/27gQmEwkFyALV7dMAT2VH3gypl8RPJUrDOYE3EjLEybAVYUq1Wkv7G++mXl5oA5V3JDEpOZuDVLtbo8RZMPaqJpWpVNZ65nKaPCFBhHq8+oUgU/vgb92Mu/t73rx7x/39PZfzQmtrqFqFj61JfC3MpXJ1NfPs6TNevHhOrQ9DJQIc5yPPXzzjzds33N2fvPyeNPf9i5e8dTOzB343Ep2Z0SVt0bYeXLwtNpr9JM97bzjz+Fes8CCW5VywvSAHsO2R21krxzs+aLsb5F1ir/T16T97qCTzYc/v1/Rf9uzb+s2vjNNGPLClLZXtgb0rt2s/tHnhr+/MYT7/KCVZkrrh/xRxYuI0z3zyyaf8zu/+A25vrvnm67f81//i97gsP6b35qrNtjsDwXj/VBgqIuGrpQ2Ks1G+a2z1uQYGKTTs9ZRJQKHwrd3Hroow19nfT2CqbkuX+zN//id/TpkKT54+p8qB3lbu7u+4O12QZeWLn/2EZx895dNPfpXCxP35wnq3cDm95s0XX3F3f8caayBV4VooWgO0JF/HmBbxrS4ystw2aRaiDRXoKDHm52MJ+8/oq0G87PJwX8sB2+3xTubUcd1tvpjb1vCFSg5pSUXPMvyGIp7Q4zZfACeZ+x5dguQZ5/Hw96TEPBcBlZheus0lS5o9MSd6zL1Iy+lJ4bLNVwnfTAXK0im1x3k5/A6c/JsEMfe3d841fo4uMoWrEb0xSO7eL/IgmXO3pnZkb4gzu+bIyYgTWOyHUoSW8a8Y8h7q4HulSon3ImII+btUYtvWb7hIbEla6cNlV+eOFvwjv2/MuSSNpa3y8c94yejgnf9nD/bIuFq8/kYx2h8lZDzU3oKNKQcPxnw3Fx84UJYm06+Q/p3lnj0ojmPcxr3SHIw/ZBninc3/wO5a2rzhO7H5ug+2j21ePOyT6CPZJ1Hs7fO48e79H9tje2yP7bE9tsf22B7bY3tsj+1vp/3i5d6iNMgofZGH9+Ly/tqinFvUse+ZlZJpnRngygMbMoKXfv049Abw6adlJx0ZUWogSgZ4wNTAIsgaJB2/jt+uFuIQzlD0keqAXMq7exCMCOapVxwamTpbOYAMp/qz+MGx1PhppLV0bXE+dQWUropaGYfvUtlAsAhRd80swe0wrz0Pm17OqRgOXsQhN0spOHFBApTEhRzEy+YZrsKjXbm0UygEGEaHAOWz3FPXCy2ULqZ4Votgu6GIZsAHEImAnJNsDHMAPIIjgqs6GIJEwN+DVjFXavHSLwKYbuSIyDTuQfBShDIJNGXCswlRQ6YJxBU8pPp8qMWcWIWP13yYePX6pzy7NZ7dPOU4HZGi1HmiWnGJ7QnWdeX1a+P+rnN9PHK4nrk6VLQYRQ6clhXrMkAVSYUG8QC0dldvEnE1kMyKlRKljTLYIYaKoBFYKmaU7kSWwkTR6v0Za8ikcImAeekzdFcI6dWfXaiIGTXm41DKUCcDaJSpUjEHppsT6w7zDBblGWulzBNI4XK5sKwnqqysopgWUi/KM8SjDFdbySJeilFEEW2UBbRUWlk5352YSuWb+jWlTIjA/NlnXF1deyBkBILYRaizbWUc1ZR3pxM//tmP+dnnn/Pqm1e8ff2O+/v3tGWhioMvRqH1CjpzJUdub254+eIzPv7kE6RM7IMthiuCvPjsE66fPOEwH70vY566lP4ctqIwl8jyxgmHrWvI7idAaB6MLFugtZYMvjlAngF9kKGWImZYGSF3SgQyNTGCADWHpSiGhuKRm6wseeHgSs2AY9wrA+aIDVJfBgt39E63bziotCl/JbCwB0EzGCkeRDcPGCpbpqlIyaTuoRyRz68IlBKlMPdBLonAe9neKzJtBSdKlihTJqGkNB9mrq9uePLkGf/oH/27/Pbv/A4iRuE5f/LHP+Tt21es65meBD4sgtgZ+HRAcZC6BjBioUhXxjPOBWo9UIO0WcPOtXV14qRULhcngZZanWBp5vOmOph4PBx4+uwpp9OFdn/mzbry/KPnfO83vs9nz2/58mef8+rVa/7F7/8+f/Lnf8rbV+846qd8+aPf5yc/fscf/t4fcX868Wr6mtP7N5QK81woF0G7cLosvD/dxXhN9O7ldaZSYKqsrdP6SjGjzoV1WWi9+76mUd6kVGSavNSLMvpBCvS2UGqSyYqPpTitJUH6LAtkJnR1u2gqoSYEXn8MVJQaZL1iIN2zi1X9g14m1UmYTd22CVCqon0FKaxJuhNFukVWrdtcV0QSLxNaFKUOMKGE6o72NSyMYToHoamRZV674cAuEQAvQqdRrLFYZWpuE1KZqUh+1ue+Bvgt4oQrw5BD9b0siHhajHIw5iIUOfieX41V1yjfWJirl8nsWpimla5L+FGKWKVYjU3UCXwmwuw16/w5CAJOqDSUUuhFmcqEqu/zuf+6H9AHcaDE+nbiM2BOEHbVi/4ApDTJMdpAoV5nunWargwlsgTugky2hejdEBl9qDQ4QUncvjxQwEyCQpLDN1Ah8YOcTwOb0VADCJUaC8Bj3xKsSJtVk2zKpjyHCDX8GyfQ6AA+fT46QCmBljk5tGxmLkEN20DeWtxuJzEj95QNCJAdABMAW8lr+OdTQW/7bqIjA1rhl7Vl6aiBolj2dRI4cH87SA+ja0YX7RGYkhcdYNEeHB7llHaAS85H2z3CBlLJ7oeSO+B2hbhHCR9Ec5R2X0uEqCRIle9KguaRpY9s9y6QZVRHScJtixpPuQH98uD5x+TezTO1jSQ1CH4563dzaZtnMQjjwhJ+b4n1tSkaWaxUv5b/0Mm/7q/4cvex0EHOiO8mK5pt/WT/+L7t9xyrYbcWs5SeDNJB9KQ4KcaJjQnYbe/pxtGv2M3LkQtuTKwI0vGzmLovvi4LtVa+/OIL7t9eob1xuj/5/ZJ4KuIEXYV19T1znjq1uvKQlMo8TSxt9bLdykP1nJgXYoLUOt7HwlfMA/IYHdOxD3tFva2vXLuyONmv+tml1BK+kERZcb+Wq6z2cb9iu3kIoYCRc0nGnmBKlHd3MqWPm3ColVIrrTVUm59FQq1QxIkLA7SO/cfVRqO0YAkbHypZ2pV17Ujp3Ms5klx8fh6PVzFHNsrJdp4Yk2rYU1XldDnz7v077u7ecz5duJwvrEGmtgwamKDmZXoLrqZ1nK+Z58O+Z7b1I4VyOFDnaZyxk7whVkJpOsZG0tbHM3ULNSpxEkXGPBhmftgjidKvo3RjvHUmY1mWVczn2w2kpC3b9c2wYZLXiD0q1uJ+JhhpU3drMAkKbEotPjYWKlyhArvbfsZONs4ijLmN5B6/u3baJNvP/7zSWN7DJrD/L0m8yDNG2AiRSHhiqMdMtTJNE8fjDTc3T5gPhY8/ecknn3yL16+/Zl2jLO8Yv+19NhZAbMIxHqO745753ySq59oB250pyyh9Vaonj8nOHpsYU61cHa8ws1BsVYrBNFV+7Qffo7TG5198xZ/96Z9Bv3B/d6KI8hftwuWsvH13T2udjz99SV86h6sjh9OZZQlVazVay3nm60HyHUpxIiYd6zGPY417TMr9RImSjFmV0CK5bJtNSRbajadZRM3yDOojqPgZxedAZL/s12GqyOH2UzXnw7YPOqcqrmGR94KFqtx+zDabbGPx+bjmOWaQcSTntm6fj7hgqp2POZuKZJ65458JEnbp4qUhI545zKIQBDB/DFf6i3vF77KXPCZIRGbqKKmm0oNk7yTVWuumuGSN3s3tb5wjUJ/fRWroH4onvuHXSyXEEuusy7BAFPWkxlQ58ufSh76a7eKuQQDfWaxomQEgg5/jc8kTJbOEbNpRIf2WXJG7/TKJUbIRv3M/S7OSZ4ltDHNqJblpRzKLubv9TrZXg1D8Ytx/86nGRXfxoPj78AW3z+V8zn7Z3tF2/tDDQ0zapM1X2l8h//Swv+LU/mAl8uB5efDdx/bYHttje2yP7bE9tsf22B7bY/vvov21SEpSyiBqhChxAGtxvFSi/vwmL5zgQoKZnhFTt+AH4qpLHl3w8hdRfsCDBCVKL7nqSEZZzbze/RZUV4Q5iE3x0CHrEcf5COhl8CDeaxfo0JTFH2cyfzMPojeEgvU8oHas5GExZLl1e18HxiKTuMahOYCprFUfYX1S/j8D8K7+kGWSYJQRg0H48WiBRpAiSEimFCrahDJVtEgEsVsEwBTocf14hyDQpAS2NqWb0iVAVlPMIxJ07UzVS4Sp+nelexijIIhMGeqMcXWAMGJWoRwe/W2FRA5VCkj1ZzBhwoPrYlCDBNRWv6fQmUpnRVn7Qp1grkdOh8ayGsvlwvvXX/LNX/wFr1+/4yc/+jHdjFKMUo15cuCg9snL3wT4284LUuFqmnn+7AX3y5m3795wd/eOdV2dGBMkH4lgTJUo51NdHUt0I2yAUCyILlb8e60j3UsCaa1MZXJwIICkKbK41YxaDhSZUVm9L0XQvlIC0JVQ7VJzYNnBgQGXDTULZ9510JVaimtTmHIAapk4HpRphmWZOKphNtFbY11X1r6M4GsNgls3odMpAY7UWlmbUftKXVbkoqyv37PGfMGMT7/1bebDgWMJCXbhYVAoQ0JmrG3l7bvX/Oybr/n888/54ssvef36De/eveNyOtHXhXVd3SZ0o8oEdY7sRc/w9jJ8ZJQ//4BRaBZkC+0ebCwgtTIfjgPQm+rMPDtxo1afd8ulcbksLOvCujb66mS6WiqpKIDJyAbP9ZIgxT40W2Kd+3yObFNIVgfgY5qlLz34FqplFAefxJXfHgS5RKg1gviqWHHS6AAtd8o1CXRmybihXBfBUH/uLbA4gsH5T5BAE1BgzLsS4zu0Inb/jscMu55Eh1SYkeL7Qi0RpM/3lS34XUTozfjpT77kfF45Xk88e/6Cq6sn1KmG3fE+R9RLdFp3u0vuUw1KZWQ1U0lVijpNTHWiVpimOUgvHtBLOf5SC4f5wFRdya2UGTPl2e0N57sTl96RqfD0yTOeXd2yXjoXLlCF3i98+1c+43/xP/2f8O7zn/F/+j//X/iP/q8/4nT3hvPF+Onn/zdqmThfVs5t4e/+vd/gk8+e8ef3riTW1gvLcqK3HvtCBEuLZkyd3jurGktr9K5eBvXs02uaJqZ5giIUapD9nNSY87SbAxAigQuY0MxLPIpAxQHoHiCCZ5Gbl5nsQXS0imlDsjZYzLseTkGhuhJaqSBOUKoFpE4YMR+CmFyK0K14pvQIDzviagq9aZCUXc2iiHlpLoJwk2CltA2YoPsbSJJuPcDtJEBlqk50VlO0gNLpq1DLFdUMsyXsqcDkpROLuo9SzNXTVJRmnaKuslfES5gejgcOHWYV1t651wutOQHJujEdjRlhWaE1V7LwV4j9oTsQWmqhTjPVKmuHeZ5obWHpivSJ0l3lsqHILAEuRZZ0973BrLjt1Ci7kyVq1P0AZQLxkrCCE6N1qAkmGOOlXbsayOQKJcXAGiZGs+jr6PuNTOT2rquRpVMMLxermZFvqfRhox/Ua034OOPzSq0P0MCHMpzEUM8amg5DCcnvvYHHhF9jm62LGhWqzX22MM+pdDQUacx8HQ1Sp99bqvuiSYLbgJPtEfbkq7Tlw4WMfSXLqiY2oaN01n53CyAGGE76L3Eb2fbs+wJXqMw/74ClhDeHH5z/sgS/9/0QfT3qMBNr22+U5bcGwT+uuJXU8mtLCZjY8hnDwKa/QtJvtpdIAGuvjCS758733O5juz0899vtvdIvysQGwhfYIL5trmwjbrEW/Tzj3BuL+Vm2eRMP4mePLM66y/Q3/MzDoCLtzi021qXkh+Pl/NzAWFNJpID4e/hHObeHwpDt/Y+SeSdj/NMXlVivccVBBBv+hdTtOQhVRMn1Hsksu+cH6K05qLu471DrymVttLZye1W5v9zz/nThdHc/+tE8MwQRmEpFxYmNtZR8QYoUV1OcJy6XM5dLD9JQAsY7ny/HOhJRNt8q38uJkhYbvZhBnLed+ev+ncY+lufO0AXDzxF+JpGwVzmOicaO+W4a/2z2yJBYE05kMBLANj9ixD4r4vtdTdKmeenMTRE4V4pGMgx+Hi2KUUO10W362pRuqwPv3T/XnwrzYWYuOWd362n7gydutMb96Y73p3vu7+85nc6cL16era0N7d3PsmFrahDlzTSUOLc5kk++/5N2i5JcSTr0cSh1G8saKqClFmrxc0FrnbY6iVyax0sUHWWefV3GWd/6SCSIURjA+TYvGDEU/3+ux9jfxvra7EqeRyQdx7TJuzmZPnJsUIPklxB32rZ9GaHtLnmHzW6Q80t2PWlsz/9g39oIAfsFvtmg7S3GG0k+M0PF0JMU/AyRZ5lBZoiSaq9fv+arr77mk49fsi7K+XLmwfkLeXCvnbkbYzX6azxcJCOVaajMlsHeib0lYi91ckXoWv05VY2b6yOYcTotKMY8zxymmdY7F5ZQ4fESyU+fP+d2nrh7f8fnX3xDX1fOS+Ptu3dexhJXSToej7R2y939Pe/e33E+nQaxcNuE92Po/lnvWQZtIzY4d6luxKTd9jkIRZL+Wc6nnGu5fTvJJq+qu15WdcXRPHfFT4eiHuLxseTTZ6wp9+gkheTzjueTHT0m5rtBKCzt19F+9DOR0jZCSr5nrlmXYmKUR497uUkINVgiBhnnUVfOLKCNVHocImomkYSk0UdxDw0C21SptTDPM5VCDeWpS1tZWtqQiL2mvU67nutoFyvxs4HvXxplpbFCCyUreo91n2qhmxJmkquSeJ97tie0kRtI2EeL2NXmyw1rMfyF6N6gX40xzxU5yo3GvLFOBnc1xyUebqj8jRjqbg3n79jslP9ZyTJ7tpuTSXIE96lyOcdPxrfH33MupQ2M9ZBk8e2T+37b5uf4ev4+bfpuDj4IpaV3Zpvd3EinO9u6+73b4wcXievag688tsf22B7bY3tsj+2xPbbH9tge2992+2uQlDzQ6BLJGgEXUPXDT7cMKIBpz7hlHI4tsnOUHn8ylYi7dafOqB8nt8xf2RKnzJUbtK8jyGyBoAoSQeHIlu9eHqYrgwyAeJkvMQ9IbjXqM5ggkR3lmdFI9esUmCa2UleqAZzKkMi2PFTalhWdQZMSmS/dcFBWNQ74G+BQ4/Oa+dhWo0RRp/eVKlPI50OJw62pA8mluhJEFUPUQWUVD3I0onTdIAP1Ibfsh98VMQ9GqHjoGyk00wiie0C5dc94tcxATnn8yKZdW/MjsFSm6sCh7TWuhVEaqMeYO7nNwR0xKMWBTY3SVR7YAxAaSikTVYw6OwmhBiB6WRdkNU7SmRajGXzytPJrv/IZb+4bX797y/3pRF/PNKv0MmHHQq1GrUeYOrV0prkg5UipxtVh5qpOMF+zHi4s5xMyebm8rh2kBPnE1bNMlao1gtGFSSZo5tlfZaLWyQECyQw8V+iQ4oD9YtAbzNKRMrGuHgCaS4FmrsBkyoHCCg4uG9AXMKWbDCWlriutr4PY5jo7GqEiYelRNq53zqcTKgu1piqKg+pzUeZZmA5H6jqREMeE0NVVPehQZAIRtCidQu+wrvdwN6O98FrfoGfF+sS5CU9fPuOjJzfcVCeidKuhCdQw7ZwX5e2797y/e8c3r77mi68/5/Wb17x78577uzsulzsulwvruvx/2fuzX9uSJL0T+5n7WvtMd74RGZEROURONbAqq9hkN8lmN1sASVBoCVBLgPSgB73pTfpXBEgPemhJgAC1IEGCgNYAqNENoYdSk8Umm2QNmVU5RUbGHHHnM+1hLXc3PZiZr3VuFqAUUCXkw/FExr33nL3X4IO5uX2ffYa2Qi2VWhrjuGEYEkUKu9lAjaUtICOi1HLg+uUrpu3elZGUVhQc0MkIw5i5c3bGnZM7HJ3c5fgkcb29Znu94+Ligu31BdKE2jITk5M9NGJrCCYhb6QEzxZXQZNaKSknRWoAVWK2K1ON5CkG/GSxYGg1vfoFyNRGwlVZQnRelgB9BxQQUoNI4FR1MJW0lJ/RIBS58pADFRa4bCRL2wwNhP57+/P16JUH6bOimlxBwWwWqJdLM/BMfV/oQWTJluEqSpbEkIXNZkNLoymKASoDqLLf7nj54iX/1R/+Aarw+OHb/PCHP+bjT99nf7jGdp1407zE3KP/ks9o9VJZG1egk2KZysOGNB6Tc4BnZtPScEKjIePI8Ua5c3rMyekd0ijAyGGaePyVezx/Dm3XODpOvPPuV7h3/xHzh/DsxQsSwmHa85Mf/4R7d96gnj9lmmYO2ysuXl1xddgyjpk8bpgOO+Z54sd/tueDn/2cV68u2R4OtLn0fSRKw7QyU2dT+xLbrCmloligeTMO1t9JSGmkNBAvMxJldbQWGz8HkAqpZ5vHOBmRx0g7EgQXTb6DKzDTaqGURhVBSyW3ymZs5Jw6cO7iSTZGHiyNfdjGW1EqRWyOJ405MyNkaNn8iNyMxCrZAcXiyivhl9icqgiJKANntrFSDURyMlsQo011JaEkA50zNB1AE7VZmcxhxO0/qFSkFKoDCtSKtkoaBmrZcURjqIl81BjGDUenG04295G5odOOdjgwTTPzrNR5T1XlMDcrK1cVqNRSfc02oxy5AqMMzRQ9EDZpcDumUBu1JNqUUJ0t+N5qz9oPo2HUodYVl1rsT0S51iDvTRa0b+an2ZqFVoqRJX1dWQWJjZG0qOCKa83JtDTbAwN8UrVxqs1IUl1FZgVEqFgGOA4o0MtbruLn4mQ2TWHSnMTrfqIv/eW9VgF5CQDXVSnF52EAO+7LBEnEzJmDFu4TNQnSqAf1O2jl/epwQCi19XIXq3fQbuODpCGAlZI1pUojbAYbp91g5RjAtPxM/GOZX9fWtLl/v2SkdyAIJ0IsuJKDetq3oAC8evkfXYNYRoQT95dXHCBCjcWOFW3ZC51oGWWtYAVKBknVt7416GTPfhPg6VPM11lk7QdI5ZaJBSDzvwcZ0Z/wJnSmHQDvl+43jD15eSYDW5v7P0sSAyyzK/4Odm6y8jzxkn4tWWihsvQcRsBZ7tUwYpI2cfbXQirra4EVyczPdq2DjTaHg/hoAHSQL/okuPG6Tfy1m3Syi/VvkISW8bYvWgmblEyJzva2pc9irYc6JFo4HpVHD8+43FWuzrcUJ/1qkHOrkPKwlHjzfdlUWhKnx8eMw8BhmmlzpaSZqJskbmsapmoXJeGkCdLw5BPp08tUXrPPwRaDTKDAilIcjM6YXYuyaioNWZVIyihFGzX4jKE2tiKzBFFomd6pzw0jmcas8PNcbaQUhE+s/KiTzVLO0AlSyanAvkdU34e9tJ1ie9/MwYhDKhx2FZ1tzyitcXRyzPHxhqM82HnCn8MzpTiUwn4/MU0HDoc9u901+8OBeSqUYv+vtZrylyq1VRd3ajDY9Upr9vPX1ncs73me2F5emapNtXhAuEKCgf1pyBwfH3G8OWYcT9kcZw7Tgf1uz263Qw5KafYMGmpEBHFw/fdYhanP67UdWEiQq1XawXBWREi54Q8H2bXpQlCLPUT6my7n+G6N/Bn6ur3xjQDX9YZdJ55r/QNd/ea1I8X6TBN+adi45V2XLy3ERVhIibY355xJeXAVRreLkmhVOewnXr18yY/+/M+4e+chu92BZ8+esNtvjbyjeuO+uupP9SHBbYaIoNkVZgTGlCElU2j0GJOgdr4eEvM8I1SOjwbO7pyZunYa2O8PnjggyDCQgXv37/Hw8WPKPPPJx58ZabspF+eX/Okf/RknRyPTdosCZS52VqaRm1rZulY47A9cX1/TKq72vSbd2CjWWtxPwftwGadElMJebWgqi7qkRIzqJiEx+hsxJbZu18LHSoLF8HQ1txYFtthTzYf3s3XfI903cGsacb3Yt1eP7zEn6fO++wux3uJMpIuNW74f89t9hFhbyg2SR9/CbVMhYpPisTm7ivlmqkYCi2QhcxhjjYkr3qmpQXmfhPqzXXuw0tMoh9nsmSnZr/Z7NdJy+DNrhVJasQSPasmUfopxVXZ715TU4r5E4pnblq5a2h3nTkoOG7TYjNjDBXUyV3RP+FULkSjmlu1kqPtyzUrP9j1Kwc77sUTNSCgQ6pn439XtZ0/qWZl0WS3stZ28UVpNw8fktS+uf7DYx/BiwydR31PDv+jGLrpu5dusfZa/eOdh+X7YoP5Ma7L6a9dY3au/m/4Fn4ur/9KFXv/Bbbttt+223bbbdttu2227bbfttv3ltl+ZpHSYD6iDdyoDhnEKidazc+iHfyO7WLCTDjJFxrFi8uTNiUBAP1yieMU1Z2OIZ8zHQc+z0hFZsjiNLkVWO3AnaZAapZiCDhjglJNloWatPQDRM1oannm3HOBFhVbs/gaiiauXuEpDrSZPTwBEfkj1UlERROnvGtmK6hLZ+Ps0y5QqXopNIpDThOrPjsWCUJz0JBUtpQNfdlyekaGBZEKCuqm6oo+a5LQfamszsgMIlIImZa42DgYctD6WVZVWqilaNAMRc049cGoy5nTiQWRYqZdXEhGktp4hXz2g0MQDXl05y8agtcjUNVWiLEZMarUyDvQM69ZMucMAyoGNNkqDi5q5IHFdGqUWtFbqXFFR6iQcnW44fXAH0cY8XXK53TMOjQf3Tvjd3/oe77z7Nb54ec2Pfvoztrs98+HagzUbm2lOHGo0WpSIauJjY3Orzo2Ui2W5pcHBhAikCqklakrUbBSglgbLpG0NyaMH3awUwYggU2Vuhf1crLxdKySUWqzvalsylUMRQ6l2bxRdKXIMKdNIVk5hqAw+rodyYF+EcbQMOhRystJEikAe2TRBs6lIpTEj2cZ5OhRqnTlp9r3pAOVwoGllt7vg3sVDLu7f5f7JKUNO7NUVLqYD5bDjcjpwdXXN9eU126sLri5fcXlxyW47cdhumfZ7yqEwT0ZSKsXU10px2fuhcXl9yfMXz3h1/pLHjx8jDD1YXlvhyYsXfPbZF1ycX3A4TAaqYKU/hMRmM3BytuGNNx/y7jvf4M03vsObb9/n1flLPnj/fT756AOet0or19Rm6yHrDG2gpIRiSldVDRhsLffA3Tprfw16RIagYGSJrg3nAWBTAqCjmzmZIkrrgKa6PVoBrBUnZdRFZaDbiCBhACzgHrIE4Lqyhz9zZPAZgOZAl9wMWEVwr6vcJDz4bTbB1Mx8jWMhPOMh5m4/kgjjkDkaN5wcn5HyEdqqkwyF0jKHCV69uOT98j5Pn7wk52NevnzB+fkzDttr5ulgQVgnj3Uw1d9TG6bSJK4KkDMMiU2CDSNDTpCrgQtAkpG02fD4rXfY716yvb7mzpj4B//o30KHgY8+e8U0KZ9+/BHX+9nJVHuyJk4ePeLv/aN/h/Sf/gHP//kVZW60ufGjP/4hH/74I+4ejdy5e4/jk2Omp0857CeurxspXTvZULm62jMOI7Uqs5MitRpw2LRQ5plSJiQnhMzgCgZpMxihRIXsczBsiu0rze1o8yzqUIXx/TUN4AF0K3Vn45YwgleUmmzFCK1VHXBsRnqkVQc3bN6lFoRhI7yqrx+qlQOVDhxbhnHzPbKUymYYOM4jJGUqVtbSyr8auaVXz+kxYyHKGEnPau61C6hU1MvLNAc9bKoY+BxEmjwk69eWQAeyCHNNTMVsr0j19zRfYVaYnVw7VNvf92XHZjNQ24FaBqbdnot0CTpQJrPvVp7QlIqyOEGjFiuh633YagOpTHOjJFP3GlpCa2EcAa1IHhAxIlZNQslCnTGgumHk5lrsB5gKV6u+zquVqLM141nzzfaF2spSMqoGeBPZ7Q4GSKDd7h/VamCXE7mb+0uEj9Cak7DCATTQvjkQkSShKdOalXMNhaMAYZsDFb3sWrdpPgUCCAgb6bUzQv2olzAiAvLSFYrC2exAvNve8Dfj/ksZKZ/DvczN8rtQV1JzWPyZtI/r0hZAAyfLqJd/6Twrt6eqTgoJNsD6CmvQ4ZcRjl+bVlulO7XuGPku0/tsDeSs96AAo3q7Mda+f/bOjN/r6oqR1S6rPrNOtlJ9QaS4OU6hzhSXDkAziXYFsgWkkxW6uwBLrXnBaPfzHZOyTymE0ltMO41n8Oe2ksLxe+ndtAByurp2AL6t33/pTzpgpYgDxzf7VbtqxQLcmfLp+r2WkijhYVgZ3JiaC1Fpeca1P0Jfx73kk4SPQO//xTexHwUhMAhgHfcTAQlatb1X9f3AgOtMEHJaVUxkxPpRWF1IjRhxmBPn15WpFsD+n8FBYCek54HN8RmShHnaMU0TMHO0GTh5cI+Hj9/gUCG9eMHh2cQ07/1+Zi+c4+BkbLdn4bfFvANooLkZgKx0Ul30Xy8Dh+2ziM0tifqk3X7ZPKxNKbX6vr7Y/SA8doJLjFn3HW2eGAnNyb2YvSrqiSp+jxb7vJMYxG1xqOomhMEVMCXZmgnCYWvNCRMHavHzNo06H5gOx+yPNozDYCp+ripJmallpmhjnmem/WT/noywNM+VWmZqKTQv4axau61tri7FoTEMAxcX55yeHnPv/n0/S9m6KnXm1cUlV1fXHA5WRrcvVe/DIIifnh7z+PFXePTgbU7vnrDb7/jy8894/uyJlcyqrjiiiaTVzg4JrAxqQ1OQ+9akv5sWrZcV66tK+r4R1MRo6xJk+Fq6MdaxjsWuJ2EG8XOKrhJBdGVZwuaw+F3xgZU174teXwP55fW/rf4IQq/0J/nljwri5RddtUbwpIfMOG4Yhw0JoZTCXGeKKlWFea7o9ZZ5Kjx/+pxam5WNLpP72kHuC10VFt9BXB0p1NpSlIFUsvsqSHMVrWxk4yTkzTF5sL6Ulnjn7bf49m9+mw9+/imzZtqLF16aWhAplli0P5DHkc0mWWnF2tAKtU48nz5nzCObYeD07IyqlbkWV/mabRa4ja1BSo84QdNFwQ8nsSQjqlgMSN3/8aH3udI60TL2ASf+hJEmPtt3b5u3fV80Yrj5MW7Lm3rJMo8fBmnFfSdZ7fPxP13dJ+y3lVaXTqC76RqpqbDLKtmwv0Oc1f0MsZqVse/3/QafmGiP9oXfthxGlj/N1qe+rtTfo6mi1e5v9iP2Xf9mcj/DY4YVf+YqSKnMYuWwtUnvgk7m8R5KFjy9SYZRL8Pa3IYX27tztpha7BvdP4k5oHTCTiTMxCpcbLf5cdYnNo7Vn61GyVgWX6Ct5l983j4TySO6+j+E37H2EfocCDuw8rtsrYZyMjfc8P4cMVdY7Ex/37Cp/fOtP+dN6+ZzhyVyEhuDxn59w3XVnjixzKk+xVefW95kZf2W91n91t5V+uvHzhD+XrgC69bPObr+9817/9KXbtttu2237bbdttt2227bbbttt+0vuf3KJKUg4ohn8zSvP2GAtROKNGOHrVU6oZ+aI6ic/CAbBJg4NGXP1LHM1taDCynhZUI8qJVkASU9CGGJWAFM2mHcc1AtYOCn7CBJiRerSdnAtKaVlLxMVLKjaZJFfSGyhoJgEsGdUDMR8oqYVL23DGy07KXkJULEVTu8ZIjS1TDUlZ8s6N78YLxkikVdrwgWRDkAAuD1QI42pWpFkpJSptZi8v/SSNkCjqVa6brqylIqdu3kMs+tqdeEXxQmoqQc3u/ajEAkksgO1EXmflPtgY8IjBnxyDNq1QlIPl5RLgg15aYkpq7UWiUNgFgJpyx4kC+7Etdgig1Y6aYqiqS7nBw9oLTnnA1bLphpebCsQUkMaWCQkdO04eTOwDwrl68u2O627PZbpukHfPXzc9LmhKlsaTKzOxxAhTwO1h9a0VoYxLVaRGgkQsZBBDabkXEYTD1jc4SosJsOS3/KwLjZMGwydQYl9TJTY3ItkWZgyqGYFLtV1lPmudgzeImc6oGbDv54iSXDOzSSi7HsvWoBdW+twEFnj2bbmNRaEVWGYTBVjjpbACdZUHHMg42tl6fLYn2aB1NHKocDZNijXAM67ZmmLRcvT/lszIxJIR+jLVP2e9q0Z06N7faa7cU19TBx2G+5vrxgu5vZT3umeWaeLKBfSzFFNM9ALIcDu6vGxfCCj37+M06PM9/+zd/g8cO3SClT6p7Pv/yUH/3oZ3zyyadcXl0zH4oRE5up/SRJbMYj7p/d4e2vfJXf/9f+Jn/z9/5NTu4dc3F9zT89+QN216/YXl4xTTONQm4juY1IwzLYRWhzo2XLwKZlK0XVszubA4wRgLO1rYqV/YsYUfJxTF4yUDzo7+ovJqGeOsEiSEMqpt4m2YK8JnNuazPiaJbJG2p0PaRn1Zlinap28qM9zipQK0uQM0hHFt/yIF4nh3iBEbV5nLo9j0xvK28oeSANyYPGcHJ0xJ2zMx699Ra/8e7XqBeNH330Ec+vnzJPM7UObHdbpjJxfnEBCnOZaO1ArYd4mB4cHVJGhb6W8pBd5SqTXf1sTEdIgqOjxJgqR5sjHj68R2aDyhFpA0ebkdzuUKfC5uiYb//GX+PBvQdcXf8RbchcvLogpwyba9rhmiwDn7z/Cf/J//0/58kXT8lDRpmYrmekJbbTK+pm4Gp7zZAyl1dbDrMpIKEHL21m41PmPVoLcy2uOuP2M5sW2TAMpJztnTopQvveUaorLzU1NQYvNWDiWUHGinkZ89DssalNZCIYKig6G8mnaFrA1eZEKGPDIK0CiezPKMnIaKpi/MemaCu+DjKJTCat1BOFUpqt72r7qkZplaauFBH+hfVT7K0RwAZ1GzEYGUcSTTznWo28lkguSpFA8+KTiFCrA17JiEq1uS3FSQmi0AqD2L7eVFBJ5HEEEoMk0z6qBohLbczzAU0zwkDCVfbU9uIgcFFtjEa3+ZJGs8EKZCPjlFpJ2ihNoW4ZxiPITsYWKw82SOpKbbVKV1ISz1DXJkgTt6XNNgNtIEppjblGBrapF3UwobmtwO6n2rzspZUeSV4SwXjHqZfiNNzcniGlbOX0mlI7UawxDK7cpgKaSdnVJ51iF58D0OxjpZmsShUrFaZeqtBspCsFiPt12Ukc2F5l5eDsPZbsYjeWwlICzEGGgHwDBO1Bf+Ir4pdYAb+OHSwlcRxs9l+oOoHe513Oob4HUUbGzFpCO+HE7+WYRygZ3FD9WIEcv35tDf6tUT9Y6md0R99twgocZ4Hobb4tIIxdQ/rvZdUP8toYie9hzf3tIML1QVs9bYCsksRtsPaPLGS5GNcAqPH9iGXDNS+eTkgiwNHFysZ5Qlb3XzN1FoLSCvQSJ3r08jiyvHt81q8WYDsSTxPvn3o/3RyW5UwTeFbcuDX1/aN1YDXkETrhWQLYDx9h6Z9QFgs1iRRIsKxhN+19rH09qyda+POEb2Hybt5VcmMo43lULRGk1UWdKi0UcfPppTGkzNnRMUPdcZ0be8V9Ybteshej7g8MI4ypIhnmomwPMx99/pQvn10CUNuOMu2pxQkt2edQM7WQ7KQdO+6p7T0+t5J4WdycyX5WLa54EuVyjzYj45iZS6VW831yDlqRdgW+0pZxSpKcKBsDHfsEy/Jbd6AxCDosjQQR0zok+fkY1b6e4izYk3RiRsVnYqB9DiZJXi4u+9nWIV9V6jQx+bl1Ohxcxc7UdtFkas+1oWIkpXma0Gpkp3mamD1xJVRoNOaET3ZxgkKTwrTbcymvGLIwl4k7dx6QU6a2iZevXvLixSsuzs857A9W5l5jTtiY5TRwfHTM/XuPeOvtr/KVx29BFu61e7Qyc311zn63I9dsMQjEFfPCfxtQJ0BGn1q5RItppMWp/6U1221cX0NOnEJWinAxpra33LTBfSUsRA/s2bpSIIu9ig+HzV3+wmIvVPvz0J9vMc43La5/Ip7DvxgJB69/Jp7Tyq1LjwdZOawNp3fOeO/b73EvHfGLj5/y5MUTarlGmxHx21wpriZq/WwE9DVJ1PwX60OJ+St4KS+bx1msvF9OA+NxJmfz5TZHG46GDWk4IR9l0ELZF9o8UGlMVTgcYJANm9NjKDMXF5em1CxKEzgcJn7xs18AiVaFo5OR/fXO+qMkKoVdKewPk5d59n2l1ZgBFlfwEuDrtYj3V9g+Qb28ePjXQeOh+9b233WBNvtJnAn6CK0l92J/kyUZzflIrOSyXGktbPUqwSbK6Zlz5n6VfcMUepwgTH5tQglBwkwpUTXO5Or3i3n6y07TmkC7qNCIfT9Iy8S5cyFGqS4kKnXXsUnYuFWC0OJGEKTVZUyCALeMRYQ0xTKsCCXY3EuYhwtrTOElHLt+tqANr8/wvl/XBqmYwjlmG5LPAYt1SVeaujnuGluZ7QlBivI+qm01nrp8Z212gFVJQfentPZxkWTqZ0Yis+QQs23L2K2/H35DVy+S5b6LLyh93tj0E0+w8tELBbSwpWv7KdrH2Pp4URtcCKOs/P+bLyvxS1bu2Y1e9X5Y2b0bPt1q77SxWpO9ZTVf47lXcdx4bvd+7Cu+3lfP+hc91227bbfttt2223bbbtttu2237bb9VbRfmaRUvWyYqqKp9AOT9oMg4IVV7JwmELLRfvSOYFmAMIK4ggAOfLUeaFJdMr9Y/SxlOzBXV3KKQKidxwvSggggNw6htVa7XhzYk0kkS7LAIFhwW7zcmKkM2EG10RzUlNWJLfmBNqEeEFkH2CMoZ/GZhmp28o8RgKLURBqzZU22IDRF0GEJyFt5sFU/a6K2mZQyQx47pkZagicWkA6lKrtebeLEFj9WNy/xQ7aArSxBBNYqAp2olC2Y00kuHkRPEQb3gHqObDELItUaY+izRSzbbAGLmoO86vcxRY08JKra2CWBYXAg2JPwURjSaEFlQLXAdM3Fqxdc152pbmgyECACB6KUOnF5+YztXkliAT1FmBs8P7/i6vJ9Kwmgl5SyJbdq82FuNFFaLV56b+mHSiIPXh7J538pBZHMRHFwVRAZGPOGk3HkjYf3OXtwxqv9nu3VxJsPHnPn7jG1bNlebbm+3tGasEPYlwIVMtmUrSKQII06GzAcGF4tPhYOCquuCAiqPp4NUQPXiwqtVEQTOUMtBcmjBcTiuXPytTt4Rl1Dq2X/DlnIg7JJRwz5yAgJI0geaK0x7Q8IwvZ6z5RhZGYjG0Q37OaZMs+glcP+mv12xzwXyjyx3e85lJndfGCeLajodAWXHVfLJiQxHeDq6oovv/wSSY2Xly954/E7nBwdM83XfPTJh3z22TOefPklr16dc5gmV2MygDgPiZxHzk7v8a33fpu/9jt/nXsPT2gi3Lt3l+/9xnf40Z/9S8bNhjwOpLkwCKTxmJQap0ND64bD1JjKhJSZVopnQXvgV1Of7xEC6sGzCCbJEnTtykhOxopyIDkLtCAbaSAJSwTNl20QhtBkwTxRy7aMEF5ccxVmTk54DEWIaD34lRILkWMJ1OO2L2Anw63MbiXifddqSqZAQDZAahgGUkqMm2Pu3LnPv/Fv/9v8j/6H/32e/fw5//7/+v/CxU//Bal8aVnwdWBukOfs9srJlq3QogRFTow5M2BQb/I0ThEYhoGcBgP2xg1379zht3/nN3jvu+/ws5/+nOl65tG9U7713d/ka7/9NxAuefXxh/zkz3/KH//0klkb/8n/6w95fP8R+/nAd37rO5x/fMbzl6/Yb6+Z5sLV/sCw2/Pq1UuSnnD/jYc0Nnx+/SmtCHk8RoHr7Q6pVp60tgNzNUJSdSBQxIEPcJWkbEF2EVcrVMTnB2qED9XqRe8i8x4ioGqk1NiLpccrLVtX0BQkY4wsJ05y8nJc4rRcba0DiKJKTmZ38KmYsVKVkWdbg6RHZAg7OUMgJSNP4XushDxG88B4glJnrCBjQqSwVr2wPTxmqgX5myvnRKw1OQnEssS9R3zPE8m9dEHEnmttIInRSbiSAtgXSjUlmKa2J7okmD1fzkYkSWrlMVWhGTl28msyVyvnODZKEooqqlZ2b55jf84ef7YSZWkYzY53JRcjKVJqV/dLXspQW7Kf18bQGodSmErxPddJk5jSZC2m4GjEskYSIxPPreHDaWuqkz9AvUyeuPpKgDEGptvPjNwjXpLJxseC5QEm0X2bpNKztc2OpE4qDJ9HhU487/YSz07v6Gy4QdJ91Q6OBVIkHqiPAL/aWgiFJQKM8vFWz7IPf2UNYoUipvq1Yq2tS4YFUPE6gUhkmZw5COuheOlm3f7tZXDdboYCkUju+0gvdRXzt7/umtTz69VaV+dxxK2DWYva3gIamu8Y49mVlKRfYflvADarknoLgrScJ9bgDsRZgj6HCI/W+zbF2PvcWoCwfoXwgPuz3CB3KK4yt9g+myLxfuIEYFldaw1iLSQCSxjxnyuB1S5Hkw5KRe/EM8jyawkqhM/RMH6y3JF+fopbxflMl2fw5A0jUbD4/at+gThLsDyXr8PVLVdvu5x3kGVsYvXEey2kF/dNVAAnX7KQTePSAQwHWYeUepJIf2aJeWVnoPmw5+nzxqyF3b5QHWC1/cYUmxqVWQ/UInZarNXOKSitwqFd09TLQ2s1pV8RFj/QnqeGSrDvNGl1bkkpIa2SmlLTomgU62NMiXtHxwzHR1xPE2UqPLh7l7M7J1QtbK+37LYH33srU6m+5AIo9vd2HzNU4QhfzvuwudJJANYaJWalev+HLYtV0+j0iMX80c/tHVi2d6KTlBvC0JVnJLvfiRjYX6r5JQJCJXuSyNys/1ErD1+Kl4bWxlyMnFRa7Wf7cHN7qT3E1EJLBZnR3Q593tjudhwdvWTIA60Vrq6v2O727LY7DtPEPM9GkPI5l1xZJ6eBO2cPePjgMckEsMgpcffumans5oGUZnJyXy5nUhZyAm2mJDnXYt1aQ+nPJmCUVI5pa2bR95q2HAl8Q+tjKP3z4RMve5h7hX0fs/W1siF+wdivbwDYdnBxOnF8dDmj2B61WMnla4uNWVmfbqdjnzf7Yja4kyz9++ETdQJkEIckk/PA3TsPeO/bv8HDO2cc9Oe8vLhiKnuazuahujJo71BWfrDfw8iA9plQw7O1GepJmZwzR8dHvPPu23z9G29zebnly8+ecnw08vDhfd755ndI48h8dc7Fixf8+fs/Z7vb8+rVOT/60c/QWjlrd5CmHKUN19MVxYl11EJKE5mBnE2hWbVZfCSbiqoqVupZoTUr8dZ6yUJLBDHfDT/HOTlUxM4O0eNqtsD2OSc7SexNEITVGK0Y795nK5vdz7gse1+wHKsGwdXuw2ruEnY+yQ0xwHDrTJ2c2AZXcwbzJTyu1CdXPJGq+wepL4jluelzrjsEGn6uLiqGrC4b87stCUR6w9ewz8R5PCWnw3Zi/JIchHiSiNDjBgCqtSePhGonDSTZPtXLZ0r1ZExxu+Y+gpP7w2JEKVGR2MW8D5pSxUtuR/yzqybZvVotRnTtC2bxATx0SFdRii6MrgqD5IMcNibOb04/6oPdT68a9lpfG3CfN/GZHvNY+1lBIlrbsJuzIv5uY+vjufbX/fu6+s7aQ1v7J3bv1yZm931Wn9bVL1atk8VuPOFq89Rf+srKhsZ5KK4tv+xf9fUY3sf6uZf3lHXH/MW3vW237bbdttt2227bbbttt+223ba/1PYrk5Tm4gEZjxZogIDknigFEIDDkrFqh2o7ANqhu6ou9cU9O6p5FpSRaejBNFMLGbpqT3OwaBAPSKsC2XgoKJKaBRlJDCnfyLwrxQOmQebBA1vOXGoO+tKsPFtrkcFiRCqLGafVQdMfMrUFsKpLOKY1D+yolW1DBGqzsiopGZBZllOskUkMXrb3MfWJ1hotGfALQlJTAhCE1mZ7prY6qKImqa/qCkQGLbfZMjITpjrQD8likjJ2/l8dv7ONW21WCkbbAJKclIRHQQcqrpAiCtJ6JmMpjVqspABJySoYfO6qQLWS1QFkk/oh5URpplYkzfouSUaTUIqp3gxj7gHJqOJTG0zzgc+efcnnlxfspj3Xly85TAdSi8CbKWDVLExiJdeSVso0mdqFz4EyTrQkTAd1FZKKDJ4p7CQRbS6Tn4xgkLAgTW1WkuDgAfh8mBGcXJCdjKHKvaPMN959h3znMeeffAL6nDvHA++9+zZpI3z06Re0py+hJfI8U64vmepsiirzgdoDUDPadFGvIJTGen4X0pZ531yJxeTos4Hj1dZhlkxrM3lMPdiMv0dSXF3H1mStM0PeIAgzhZyh6ehlDwpjHowQk4SRRJkt2C5ZKFppdaIVZVsq0zTZ2Bws4H+9n5hr4TDvmUs10lIx29CKqX6U6kpSZEpLzM0UwyrC3Caev3rF8dGHDDlT68zV9RXnl1ecX1yw3x7Y73ZMhwOq1ZTARBklMaaB0+O73D29C9IM/KDR6ozIYMo/aeToyED9YbPh5O4peRigJq4vL7i6ugAac2tIxtRkvJSjkSGCXrQoKDQiM9rH0nXGVbSrj0kE93RRkxMclBdsbUaArbYe/+rKAs3/HgCeEwmKfzQ7McLGXQ3EW2XFazKQL/naM6Cq9RI0Zk3yUrIx5pAHylKQPcSDwykzJMt2DjUAU0Ub4WpE5zs8eveI+/fvoC1RS6YVBZkREZoYuYLejxb4TMAgmXEYrAu8VIBqY8jCuEmMw8Cd07u889W3eOebb/Pf+ff+XcYs3Dl9zCY17tw55Xf/9b/Boze/ybS94LPj+3zx5ILxoy9IOrG7esmHly+52m358osvODv9Ku99+13+/Cd/QjkUWt1xmLdMaSa1Ldv5BbVU5oOiQ2UcC6RMqRPTvjLNlfmwp2Kl1zookoShb7C+swg9CB+B7+rEJsGIsdXkBRGWLNQo5dJLUDk5xkqsLXtrykY+aqq0MoEmtzGRteqKGA3be9UVD12/CxEk2Z6t6uU9awGUbPV1/D5eilLEVP1Qsg69hI8BzlDm1kE/FScjezmCnEazy1hwtkwTVa2MS5S6aUGKaV4izlGGCGKnbOUGFVN0NMDElQfFAWxt5NRMkU9nJ7a6Cshg/Z6zz7cqtofF9UWYZ2hJyK2R/DtzbUbgxVQbRa30TfJnqAVEmlOzIA8bGmqko6lwmCtSG4dpIk87SAOSBlqTXsJjLpXDPDN7WR8DJT2z2R0tjRJ94kH+ZN8PNylr7mVbEUjN+sTUmJz8rQZJ1Dp3f6aXe/KSGjZ/FnWYHhB30of/08sFKapGog71Jkn2TEHKUX+nsENhpxbQolm53I6QLHuk/V5Ba/dddfWf+PvN8ggB2EJHgGX5XIds/J1sL24daglABv/7mrBHEAOcUKytuZ22LHnjUOkixuOgVoBrHVRY4TBrUsCvWwtCfsesHCEJInv4HQC4aukCWklX4LD3jPFaaDfLNeVG3yhGZpEUyMt6zsS8Sd1GiKNnIRqwJgbE2PVM9XjuUH5dP5eXgLG7ONmg40+vAVFdlRAnxy1QkpFn/AF8v+9lRHCfsCNi8Z8giJgGSPMLJBZALCBlU7cLcKvTA268T+rnOe2g4Y1s/VAbi/7XxT9QzKcJBYSFSeGvJLn3r9mpFduiNi8Ls4wd0MHbVqvvQ9Lt1TKv+omPUHhtqkir5JSIcpXirhLamOvM5f4S5kwplTIfTGWUuJ6ruuVVSZpWrCyZGolU8kJusPJnugy3rEHUeE/p/uFi26wkMc0IyfY+qQPetMYmCyf37jIc3+X6xQvmduAw7Tipo5VTSxmyqceNOTlpx2xLbdUUMDB7GH0fU9Fg4MWuLn9oX1dCrM44H9scaDiwH9+XSG1RYDlPqHqpU1GKFCRZMoZIgeaKhyTSkC25olQTrnU7Ye8wGwmpWiyhlZlaGrOXh22tUmv1Eli2x7XmZWpD9cPfJMV6VaG2wu4w3SgRVWphnguH6UAthVqbk5RaJ82O4gpY3V+O5V7Z7/em4KMAmZRtbxvGgc3JCSlvoMF+ewn7HXMxxVxpdi5vTqwJ+2cmY9lDQ/WnT35d1ksQI/o+uAypz+0VsO1kkyAerS1VzI0gOXW73dXL3IbFWnMivehyrbhrkDZWy3q5jy/eULxy69Q/tCizmS+be1KXeGwJpv3Mi89eIW8JczlQ22xK2C36QhdbHGoi6PJsip8TF5svbvCHwc71Qx65f/8eDx7c4fEbjxkkcTwe8+47X+Hx44ekzTFHxxvKNLHd7nn68orWhM04cv/uGRXl8vqa6+2Wo6O7fOOb73F18YxPv/jciXkzRQtCQWSP7kCreGX2SilWnrdM1d+tdsdgrVwnEvui+4E+N7STlBbVuz6tJJydFttTWFMfs/i8fy7mmyyqVor74GuDD30/0ta4OTFi7zJbQcz1ZDHE9VVszbmiuCx7VpTl09U1Y+8yN8HJohL/Tm6voh8U1brs9V62ennf1u1iqKOTxJIXnB8l4Ud2xzf8XQVq30c1fLyEEYV8jsW0rNHn3kcN27aiLK1CV5VPfj7SoParlW+2s1Bd1qiA1sZcqvvZfvYJ/paYarayxHOr28pYizHUfd2+5niKhFLlYiOCWIwYofMGMU3DzkScw+br4p8te3rMjzXRsY+vz9AlobaFs9DV5ER0RU688RJmq7pvt/hf2q/72nT1se0+aP9bPP/qPssXWL3MjedFl7sul9duJ9frqJO48LUYryGLUmX06tI3a8t/8/3l9ceMn92223bbbtttu2237bbdttt2227bX2H71ZWUWl0OKc2Pp8lC3j2jTFydKEBBxAL+JA8DeWkvjMnTIrNHGyTxYIB48NcChE0VTX7UFgsYZEmW5RPnPrFs1pSsJJg6GKStmaLE6sBqQKd4INmDC/EZP0E3bbRiB9QIoEaZEekHSvEDcfFYjEBLpkiTluNcrdXf3z6TvVREcvWkGgQSD3LbwbR1cpKKeAauvWeWbEE+UWitA8HiQdx4tNqqo8PQ/IdROsRoUBEPUHIy4FkjcNyql2UywpCVe8nOsdIe0FGcYISYOocYcaQf3H180+AlFZopcrR4JpMDolbtRJu5Wumx7ESnRAZRsgw9+KBVkaQ9CzpQg7kp++mSeTalnHl/MIDbMHfLPGzKsWTOxhFNifkwgRaQbMpHJIbhCAFSKlAqIbLQpKKpdSDbdP1dQckDGrXVDr6LYISNWm32N4FSmbRysYVfPHnJ6TRyfX3N5e6Cj7+YoczcvXfG5eWW893Bgl1SUSnMzOCZn5YR3qBa2cKmDVq1wEWyZd0aaKvkmBO1uNKTlWHS4qQqMfC+et/XYuOfWiEnJ5dghIaqphBCqySpVD0gOiCzoBwYxsnuPW8QCipHXGpjlETKFuzeyGiqAdpQLahOzFqo047DwbL0ihaaKvN0YD7MwECtSpltvLQ52IBQtVCzIjqhVZgOB84vtgzZCzvWxv5wYKozu/2Ow85KbpRaUa20JGgTapuY5gMvX73kanvN8dlDchOur17xiw8+4PJqTykKjFbaI488fuM+7773PR595TvUMvHjP/lDvvjsQy6vHFgVD/yqkwHyQhQLcLqpkzDU7EIjMgwt+OzG0u2rf98D5sKStd0iII26Qonbxw64rrKpV2SV1EuzeXY7BvKFfU0puRL/onAX6k5GHkgLUTWBZYiagRGk2yywzHeS2bFhGDneDBwdDUCiqe0Tl9db/uyHf8p/8L/7PzMd9vz4gx9x0GtUZ7Nh3fQ3kNqDlWazsinfqJDVSrZIgs0wkBI8eHiXB/fPaE25c+c+3/vOW3zja1/lz//FD3j86CFte803v/Mm3/n+v8GXlwde/vinfPaLn/Iv/+hHfPjJh+TW+J3f/R3+9t/52/xn/+kf8PzJz5i357zxze/y7/xbf5395Se8vLqiFLXydFLICm1v5f+kKfM0cdgdOM8DTStaFE3xXhmyA3pN0VYp0kxiv5Vehs+Cxq1rVlQUSYORF51M25oaOSgCvclLB6ip49h2Z4HN4oBGqk7GTGZnk4MbGnIdVsvErhdlYyRBq6C2npSMVMzuBSlpcR5MeUmCCGXzM2XbH0orq3ixqy4mobifYISTymDTn6rV93to4vbMS81FPDdKkgUonGSl4qAGaOVxYwF5NbA79litdm9TjorrOrG6KCpGhLGyeEYaSiJUGk0q45DINNsDc3LAqNKyMNdEJrFJymbMpJSZa2MqjWmaKW2i1tmASScw11Y5lMpcivlIrZFSZRiUJAPDcMQwZIo2pmpEcElKUrXSne5IWHlV69MUoID7ZDSnQCcbg6ahgynhbHSCTHKfyV0NILtq5aIcY5/QRZWIBdgIkkTrZc1aJ2G0IGQ2v0JTSM3JeGYvDayphtao27iVIgmqbrdsUvUquWEbW3EgfVEmsoen28coEaL93YOUIIvPpuFDroADgoDV3D9cAv1L6aooxejAEOrvEoT1XwYq7K8rErKIq6a1RanCwcFf17aoVMScElufDlSGqqat0VCeCb9yAY5s6QdAcxOMWf+9l81DVshSZOHrApIhfc9e2kLWCR+0Q0SrtfDLdw2gLYDWGz3gjxBzpk/IFeDvc74PY5Tcpn82/IQgNNmcq/RkitXaNhuYCeJOw5Qw18/UgULWZaHovsrShzfnVmtL7wcZL+bfmijUiU1B6lnfQ7QD6MvhLkA+B2VlNfP7Pqg3xrV1kE57/wVIb+VYmpVSi33D7ZuqmmqcOe6uhlFdvbHa3PTrNXDVODsnDZIgZ0s6cWK3qqlOVLLbh1BlcwKiGCCd+tgHYY7V3Io5uaxp6z7xPQoQZSqVL548R/I5pUzUOnHZSi81tZ8O7PYHV+WFptUB67Yadz+vSernN7z0Wqy/5qo+ptZTu3JWzPMW54kYeVVaDcJr0GYW0ridQ91uZcXUmLORgHW25IhOQGhQYXY1x6R2Pk/GEjb7EWcZJyU1V3oKnk7rSkuyInI4cbmDwo0mpkhjyiHCQYqXnrc5GyXjaqueOBE2wFVum52n5jJzcXnO9fU19+7fJ6lydXXJs2fP2O+nDiDnnElp5M7dM956+13uP3qLWmY++vmPefnyKbr3NemM2+R7v9lK6XNHvT/XNmSxLsnPXf4DSeYgtbAp2s8Ir9ET+zpfruVz0n8VvoJdY+Wj+7k4EV28LPg4vr/eJC3PLH6TJe4SK07oGjCxNlJiyJmjjflStSUj75fKxeUFf/ajHzC8f8TV1SX7skO1IAQBlk70SsQWY4SUUBaK/gQ7X+WUOTk95vHj++y3OyCz2WTu3dmwv7qiHWYawvEmcefsjJqPePbsBZTCRx9/ysvzc8p04MHD+/zO93+Py4srfviDH1LrzFR2zPMFqR6QVr18myk5h8qRH6lQsVLB8zRbmdDuA9g79HHUWELq63nxFczEtv6OuhpH6xZfua31Ulh9YYWt6rveymNRtb1XYgZKL/2t/Z6y7HEe81oI2PGerc9EFTvKxD6VYs8S/HworiCufY+hfyae1+1oqDhqjHtQpoJ8p90GS7+M2e+4fuxJgqzmjSxKsy3eZekPdbtr722KUOp7ePP1qElXpGHb60xlPJGTeid4EhWWqGem1a6bxMoW1hbJFdpJYsLiu0YMck06DgJSSqHG7kp/ncSiS/8CodwU36Xb7eZbpizvoU5lk9hXap+PvUtYEa512e/jDuHvdDehj1MYN/dT4nnXfkyMpi6Eonjfm/eOaauv2ak18Ynu2/S3v+HUhOOz3Pu1Y0J/NwlXGF183b+gLf0cT3Pjt6t7RJ+snntxxH7pmzfbyp/WFQnstt2223bbbtttu2237bbdttt22/4K269MUlItnuljJ9YWmevqyg1qYFhOYsotEliTqYAYoab17DPiEOyHoV7CwdWW1AOQ6sFTC8I1V0aKAnIG2kcwLFSYjNCEqQWxEIWSQBalFSd4CCiVin13TBnBiUNicZEkyYHRAFU8O0mURMG5FpBMDcLeI1GxSMpyrHaFJPUAW2seKLZgakoZNFGqIJIteEKj6QAY4UBTQ6UugfxmYJmoUikOTncEowdGUgeWYck6iqCCBeQFheqAmTZMv8Gzd/1/rZnaDhpBiurAo4Ba2ZskQBVErZRCTg70oR2siRJGliVVaQhZTNVIUVM4ag1ysvBL9oxlNTKJtsaYMyLC1FH6QpJjppQpZaaWGSslGKQmDExPg2UU54ykkZoLmgr1MJOaoFqYVazcDaCaqG0y3DCJqVRoIwfYkLT3pca89WhHVnViwYAMIxlT6kjDhsrA559/Ak8+NWBelWtVru7sqZJ59uIl5+eX5DyQj2bKoaGHPaDUWozsVUx1hbwxmEATw2bk5M4dC9KWxu76Cm3FQJdWqGVGWqKVRK1QtZAHK+coKKlWnw8BiChFKkaOqTYMTU1aXioyipGgWmEqlapigM3gi1ArtIGWE6kKWhs1VUiZPAilzjSdaXOhzjO1KMcpk0dBWyJLRWSmlYlWbL7VUhDPlC+RfVlgage0FMoBWho78NJaZZpnpijJUBpBkGra0GrkmH0+cH19zYcf/Yw//cFb/NZv/TbSKj99/wf89Gc/4eWr50zTHlphM2ZOTu7wzjvv8Q///j/ge7/517i+uuI/mi/Y718x15nWBnRwggCNMs/Wn1qNLOBQQCtzr0goQ3LgRNAKSrbP0FDJNGmolF5WCbekvXxOlMXxchAAmpJl4CcL4org5eMsM7RXiXSgAxHGnIFKieCil2TKnsFPtrJNMuT+e3zITc3AbT9WpMvKKhWaDEjOHOeB8eiINx8/4Pvf/zbXu8T7P/uCi/On7HZbfvHJ+3z25FPK3Njuril1j0neVyP7qdngwZUKTDXH7HDWbGstJcbNQKKxGTbcOTvl9/7u7/PVx/c4f3rJsxeXzFPhzr07PH+6pabGd3/vr/Gdb7/H2f3H3J2f8+mLC16dX/HZl5+zvTonAd/9ze/ye7//ezz97Ck//+kHbLdbfvDP/5BP/vyP2V1fUa531DJTavMyL2bn1QP8KQviRKQsQnGSgqRk5NnZA/ctgt32rrUVpNk+YUTWypDESoxFgDrKmIiVtdRayMlKliW6GSUhbnl9v1Gh+JqqpTqJyUpuiihztexsKdrJNiiI28CqM41i66pWjCckPQu7NVeH0oHsIKm2EZVsQKBnaNfqVFmRru6QXPVApbpinCkTDqKI+yWSTS1CZLBSHy3ZnitGfBIZzFSCg3KDEWwTVipjyCjZylcmNUCo1u63WAkxU2UT7J0lGwhei4JUtOxRVdIg4RSgZBiUlNVUHESYiwERc4lyoSBqIKz6HthwkgDKkExLqXlZQLQxptzLlNKEMpvSk6gpeZSm1BrZ5gpaHdwLH8RKqYZfY9hKlPgJ0NKD9xkDXHzeaStLySO1Z1BHjyIoHkF8o4kv/16AjRXRwDPIrR9WQIIaqCrJvxMiWLqQSHoM3u1PUxxq89JpGu/UFtCpLQH6GkyOVhz08JJCWn3OmU9VfZ8RFydQtfUasKl2dCVAL+l+lpB8/rvFF/H3D1UBt6kOunqBHH8lJ8U5sO8/IUqtOFJo5DoHyRZ4YU1A+XVr6l0V4GIz1cA4BgCsVEkWAoH0bu6kLgeN1iUvbkA8K4JTQFJx/oh9r2+CN4Cbmwoh/ck78CWrcll0oHb5vQGIy7PrAg7GvyX5vFv0auLRQ21B+94ez7QQlZr3kYYyxgpkBPG1sPINgFBg6SXV6B3R+7B2BYrlxTu4Jqvx6F+PvH4nSa8ASfszSqvR39Hm6rprzU5FgspCJLXfmuJqKIctdidWWXPQUSWI9dwoFdRfRWQBN1Hbf5xY3XHPWtA2oNnWX2umthNgapA6EEGyK/yQaJJBmp89UkwKt3n2Ow2CMBLcypU/twaLZXluf+Tmc8b2bbc/Tl6f5z1SloSb1hpTnWkHTLlnMoUiyYVWGhTfa7zUeFdl8wQR8XKmm6Mjs51VmcH3KPNLtMV5cSEcG5/Z31CN9IR4iSPCyoVNj9GT7gOFEldT29tMCLT169UmtCRIDaKg9vJe2uy8R2uol70yReVEIiNV0HSw/nUy63pPaPFftX4srSJVIFU3WQbU10iScKDf1sdSsomWmGvjcDjw6vwFH3488OjqMWjj/Pw5L1+94nDYUWvpysrHRxse3HvE17/2Lvfv32OeK/vLF+x2l17Cq5JzP3J6WcFVwkoQkpp0e2TkoTg7Ez/o5AKzfc3OKBI7xzo2EDuJuP2QMKL+5+L3qy9q7deJM454QpvbgbiA9q/H6u97ZFgKW/cSK9Vtl65+i50lBYacONls+I3feI87Dx7wwQdf8PTpl5R5YpqUuZjKY/SbkTo9DuTPbTYn9Vfvoq9qa2LcjGwGoVTlaBi5++ABX333KxylDU+ePme/3aOaGcYNmuDBowc8fvyWKTwB1Mput2d7vWU+HGi1evl2J7TngbLdodPET370U0TUFC9b2KDFTkQnRCnShQK42ltjXq6sc09W6R0fJA1T4ElRolzjOj7fvM+QIPrb2l1PB0tQCbsXK30hzYUaql16ZRvd1kv3X5Z9TFQXokvygel+q7+3ND8Du810dcFOhPVdohOMQ7VIvD86yVj7c9oNlsQOwu9yhT/RoGeudncJElEyB0UFydi8b2HX2/I8TmgFsbieJx2aEmohlKNsOxWPvzSqz9NYndpJwr6oVqT/hUCTwsPwvTebXU1LrCDWZS+JSut96MNL9AT9G90xeI2AEwso3jHmiM8DDT1p9z3iW7q+en+qPiMgFOjigqtrr/4S88i2arNNEv7eSjledLnyzTv2fIm+fm46PX6t1RpZ+mnlbcbc0cWHX/V2/0c3pyrLp+Ka6nNy5eKuPdV4W+lX1deu+XqP0t95vSsvipiLSlbEjuW1O96223bbbtttu2237bbdttt2227bX3b71UlKTlBoakBmcwJLZJ0ZdqY0cdIC4hogpWcVGdDW+kk3e8ackYHwQGccqpcDlwtAdDnlnokrCygmKQI16oCHSy7biduuJ34obi63rMnLo9g9TUJa/cAsHrRuROY8loDbyS+exkYSAw9VQUzKyQ7RkYqsDclGAokM8eLBXTygHsFOiexGiex7JeTMcx5ATXVgGMSeP/rfyUJNl4CVBb89ZqqR0Z9+6bwqmFrKOmBS5mL9FyotrZFTgOMeTIoAilqGrQERuZfZyblBMVC3tEoaRx9/rMSYp0arRKDQy6G5AlZkjpkCVWYQA99TwohDyQPpIuhc2M6VYTNY4K9VWlVysvIROSULAqbMZtxwdnIXkQZtZjpsCNWO46PMUR7Qljm0wm6u1KGBGmEqSBpDB3gMwNTSnAAgtNnUtIy7FkQUI9hJlq4YQpT+wQOjCc6vLzm/uGQ77chNSJohzaQ2M4owzYU6GxDdmgUNTeXMiChVG8ORghZM7cjWlSlVjWhtTrMTL/mXTIEjN1oVGoWcE+M4OD1GOdR5Ad5SdsDeA3a1IbWaQpBg6xIjMeYEVGFqBZKN0ygZkR3DkBFN5ALUDe1QabMB+zlvSKmQjxSZB2oZSRtTRJoOM1OCabJ+t7IHxcJRmijzzNAyIl7CwUs8zPNs5ebUDQ6YQplgpCqE3Vx4dXlJ++Qj9n9w4Md/9kO0Vl5cPOXlyxdcnJ9T5hmoJBHu3zvjW+/9Ft/59ne5e5w5kXu888473PnJPa5fXSLHIHnDUTqClNhur5gOW3ItVjYkCTkl6rDx8n2m+tWalfATV71qrXaiWE2KNLzsiAMLitkCsQC1lQtxclNrZqaSui0JJmEjkUxaPoK3Ebv2QFWSzCjJr8kCqIIHioUcMl0e3rUArX2kNZzkqNQsDHrCmDNpHDhKjdPNyPfefJf/6f/4f8KLqwP/8//F/4qLqye06cC0U/b7vQfYC6aiZOu5Su0gZMq2plWNTJGTkAcjBtw5ucPf/lu/w8XFOdtt5c7xwO//5nf4xjffoZYN/9H/8z+jlgMf/PwLvvGN73J99ZK//q99lcNeOT98xtnpXV4+u+BqO3O43DHtD1QV/uAP/t988eln/OKDL7g6FObdjnlXuTx/1RW+mkKZi9sel+AfR9bAe3Nlm9pByeo2O/a15qQbcdDE9tAIptt1rJxFqUufBIHBymHmvm7X5a46BppsTB3y7WX6jLTTmEr1/XtgUYPxvcWBp8qi6BGgWZ+DKdQOpIM/uOWMkiWgHayN/QUxPqkF/Q1ta6Hc46TaJopSbG/NUV4nIZq876xvk2Ra85JqDsKknMGvPebEkBIpjVYCEwMY52LEyaQeYG4VxGyLkRNmgy1aZa5mawWMZJttHzzsKyVX5DAD5m+g7gdFIjQJkhEwRfByb3T1xuoKPyqJ4KLhOER1wkBrtXPUrIsG71Anw/h3q6MIpsqxqANFzQOR5OVdHeDx6+ewA81VU5qVyQwCkM3XKJu0BNBdjMjm5BpFcFAorUCr/kWx7HPcd1mIFw110vuiAuBX7GQpK5xJAELqZGJxknRbg1Z+L4WFoOHv44y2Dt6If0dwRTtWds+ez8C9DvOu3gdTqevgyoJKqPujKd1cG86Khg4rQS/jIGYbkKX8kN3Ky8P1fvn1BRVaW+aD7UZwo5Qa4ecv5BfrF/X/O2HdOre/qay+v4a2ABY1nRjL9TgQk62vjzUYtW4iMR/D5gWAnlb39Bnrl4iR7PQ6J1RInwu6PEgnVa0TCm70zOrv8btQQl0RCVZEF+Kd+3cDBrPrJy8DS/Q7uurD9TzSpb/6ZPR+8J+Fz7t0n3i5x1By9OfQUMLyH3uCSoDLECSkdJNQpVauS1Z1xrUt58WlLwxCJi2UidWStLWdzM5okDzi7NSUOptNjlJgNjVkdR7L5iMNI2cndxBRdjtcvUfJCY6OBjbDSNPEVGb2kykNabfLPicl0+VmJAiZq/mnbgl8KFptXqJU0FBrWqya9XGGqRSmuVBcAcm63Yg/MmQvURZmN60IS/b/1NR4z/gKDHJAty/ZoW+cXGj7SkpGQGpY+e8c59+mTmyKQZD+1J0X4M+zkCzsT/ML7BpGXhLflyrJ1TjQRGLwdxD3oQeyNGCmJVcOTQopU1Oj1mRKNapYWWZXNya5ylYiDvjRL7VZ8gNI3zubky2ybRJUbUxzQa+vKJ8XXj1/DgpTOTBNE9NhMgKKGn1gzJmzs/ucnd21npXEOIwMeWRMCRmUPIxshhNSSmz3W6bDHmlG3rbutDUThD0zaZ48lXxuO6lJ4+8KUfJeolyfr1GVxfZEbESF1c/ss71cIetlH/9e5nES6TYRLzcdNi321xt/EsQV6GQaEad5DEa+z1YMcMiJIR9x/+wNvvH197h8OfHs6TPzbVvt42eq0a37Re4Um/Vzn1DdbiRJDENy+5h5+603eeutRzx/cUmmcu/+GfeON5zefcjLV9fUI3jx4pz7Dx4jKIfLSy40s50n3njrKwzjEcNGyXmkFitD+Pz5C/75P/uvQRPX2wNzrWgtdp72Pb+bcx9jWJKILOblZ7+6snUxBHLTrt+w4eGDqPnLquYjLlqUTuxwMpf0Mbu5L6zJrM2fyZerb2niS0X7OTS+kiLxZXXFTrmJWN16D2qNliL2Fd6WzyMvRb3euqXbVfrZQrrTuZCVibimv+tyXQgSsfVh8s0u6OTiRMzFU4mytSlKRKqYIm4p5ie4bxr3taXVun2JsbJSg+aTBFkk5kEfIVl6LchCHujw8VuIMr6qlz3e97XoriiPh0aipp8zg3gW88j7MRIO1uPXfJ+MCaaLg7/4DQJdxUzXe92itmo9ufpeOIq2YS8DfMOHYvGfdDUV4py5foq+Hujr4PVrrn9yw+1aeUc3SJeLR3fji/2ctX7WmC/h48U7x3Ot3S7hxs8X9zSoSavn1dffY22HZbkgyxwMkuLNfunpEv799QPdttt2227bbbttt+223bbbdttu219++5VJSgbO22HcstXtII6swSyByHZVAzYbHghuBcsYt4NO6qoeTnRqcah3oEktaCqCs5ic1IL0IGrKfrhSz0xSkyaOzLtaZ0Cd3GRqFUUtYF6bfa7M6kAoNDHwJGEgWUMp2oyY4QFLKzlimW8hABDgk0LPruoZTA4gREDTzo/Zg3VR7g7/spEuIpBoSWOe26ksJAMP8BgpYXXAd6RXdcloir6y3+NBurRInGPkpVa0l26JQOCSqRUxieZxAhtraabiJIQMtXWICjBYECGLQEvB1UICyHPCAYiVH6gtHhjVZiW4POszuXpDi6w0D5qJCoMsgdfUMLKLKK0FN00ZNslIcjIwDBvu373L7/7O7/DmGw/52c9/zs/e/wVaX7FB+dZXv8I3vvZ1tjXxwWcf8+nne+p+Yvagb6N5OYTkhC8DQKvHcVSNyWZBiWEJLtQKg6nPtKJMVKaiDIiB6GL9sNkccbQ5pdUdMweDHjzLc8gJNPcSEjkPlGIEndaKjU1pvHw5oa0x5ITWxpBHTu+eMM2NUgsi1UFqXy9qCmgwQh4YR+F4k9FSOBxmymT3IImVMEobxnEAsdJ+gwjJS0OoLkpkWTJzmSm+lsc8MORMFVCdScUCzRIZfilxshkYh4FGgrl4KbEMWhlSQjYjIomUN6ZSUw/UOlPK3IN9c2k0nQz0bI1aG6VWaqk2gtUzpX3ua04M2TIX94c99dVz9tOOZ198QUKY6sRuv+P6attLV2xGA+SPxjtsxhMacLnd8fLlOWVWyJnTs2MePXib3/7u99mcHPGnf/YnfPTZhxz2W46XuJ0BAQ6SkJRaBy85ZWSG1APJbpfEgvPNlW+0eQAzyom4jTQA22kEqyy+wGZ7YCzioGnJCSVs3Y2Al3SypZnx5AFMtxX+0QhnioiV6hQjguWcGTeZzeaUjWTasOGTy8If/uOfcXZ8RNsLpY5MdY/o5AH4iqQG6qXNPKCpUi1DPicvxQRpHLl7fMq3vv4mz64uGOSYr3/7N/jGt7/F7vySj97/Ew6vnvNy09jVE06Oz3j48BEfffIZV/tGmbbst/8xF+cT3/zet/je936L3eUWVJimwjTPlNb48c9+wUcffcm0r+wOO9q0o2o1CkVkz3oJvIaShgGtrlJU3Y7oAv61MP9uK6xciJGOap2gOlgTQUMxuBvfo7QDAIXIklYn6UTQujRlSPSAdQ9stwheRgDUiGbqBKgoAaEODCcRhjx4Vb9GygJajWRXFEv69kB5syzw7PtVaw0GCEUJQclZqaVBE1fN8edZgfIBFCbCjxDPJHaCqzay2sxrKqZ2o8UVvAQl+XowdSRJg5Gu3bbOs6vcZEHTiKZsZFNsfy1N0dowcmL18THSU5PmqnxGKBpTcuUhG0sDKZwEjJU+bJqCleHrutJcrS+nwfpHjf5lC7LRsFK46gHlWqsrAijJiUGlFlKy0qwJIzMLaiVaczIlRl+dQTY0kqsGnG9kZh+7+H1KzdTumo1dKBqVVmzOEeSnKOEU3w0ycgTCgwS9fKbaFm0+pRMPtEUZuSAa+UxQNUA6bIuqq2SubJTYHrsOsMe6CjDqJtYQZO7FnhqA62VrNYBbXxtiwJWSXKXJF5Hb3+XCEOXaOuBLkFlW7+atl/D09a3uDwZQFmBTc8B5UapZ3bD/2boP+Ova1P3hKFMaffM6kWYhntk4uOvZP9PxufhRB8tsU/tl0Cb6TTsO1EHzeIYVmLsoVCwAXr9l2GqNb8a5RRzwlU6sNFWu1TtqAFMOfsbcCFQ3AFJd3nGtDNBBr3D0u48Qd1hRlpwQtXw+ynIvAFnD1BRCiatfY+03BOnAPxd90EFQoT9bW4ZwNU4xtst8VVjms4qp4GCJCP160TeYXe1kvCDMBmEiCAcsfnnvFxbyk4r6eNg9e/839cSW1UwJRY7VFEudOGa+z2YcePONxzx89JAXL1/y+RdfcnV5TQYe3bvPG288ZlZ48uI55eXsdptuMyQU7G7Yueg77TyOnmQTFiGAYtTI0S1UQFJMIXLKjOMxhUapE0aw9VKonryz9LOPsazsJo1aDv297XiTOToeqU1N4Udsn0uteuKRj6sIkrMpGGfpSiJ97wGUaokjmyNaK277nRixtnFOsrHSRTbns6SuEtyqxSPWilQ5GYneEotc1RD3naJsmmCldiU7GRkUU7S0+RKkn0og3/EeVqqt9XLgMXZ2XfMpipoCZq2F/W6HqBEhaq2UUvqYpYSVuK6NVoyEcXF1xauLC6a50JIwDhse3H3EN7/xbYYx88EvPuDJ8yeUciDKsXaSQSirCDTNnRhmPn3zGAW+LqJ06cq+OSFobTsXSmVb/cx/s7a9AjcA7W4jtO/Dfdtyu9DPEd0urBKt/F/aCTIwiJNbsrA5PmHMG+a5sNPGj3/xCReXe54+feaVF8XJMYX+ZCul2U6FSMuasr0+s9kcc//OMcMmcX65ozY4vvuIb9x9g93lC64uL9gd7bm6/owyT5zdOeXqqvLi/Jx5ntlPd/n08+ckhHKYuTjfcr3dcn111cuNl6LM5RJR7DzvDlaPwyCLb+D7X5jypq2f5xbVlxg2n8+qBJHX3Mmw6X6ukNbHzoh66oo+yx4YYxz7S1VTPUzpNdWXvlvixM/Esn/67HJ/DN9/bM9dT4ggBOIk94W0m9wO3tz2+x29BHm8d+wwS8d0Py7e3edAU+3n33ifIJBafKWz7W2nV0XESkVGLC/6qanZUKuS2SyO5bHMFHbwxrmLbt8FdQ6TvUCowpt82kLkC4u9vHn86TbK+7D7TP6VFn5w75mYV0a8tLXKMkY+r3rPrEyCXdP7sC33Ru1c6vrsyxj0/gdcjS9sSozVmjwVjk/M4fDjF5dk7UOvxzn8Cll+5fddz7vFrwo/bEUQer3pQgaSVd8A/TnXj2Gfef0S0ePRwfEe0UfJfYp4t9VF9caFXnvj1+Y4i9+03Hd9Ael/iqy9q9fea/Vze581Mey23bbbdttu2227bbfttt2223bb/vLbr0xSMnAvUV6TvG9+aI7YrmoQY6oF/chQkyfieMkXMeULP0r7oVgMdG03D1w4kUlDmt1CeuBEm9osGJk88GiBDQuOxvOoeoClBqnHggjNFVhQKxMHiageRTPANHfQKjmg0UjVAxYO5tbqp2YHA9SVVvBAucXfFnB4hbv5s7ka0zpo0ZwIhtdrB9Sqdllf1UZyUpa0JQCVIvNOFcnZFG4iuKp20PTe6gBqrdX+7IEWA8RbU/u+l+pR1NVn1LJTvX5QHzGpDi6kHpDKJFKGIXm2qvddzhZ8qypoc4JDwoC9LvMvPYO6tIqmTFZBqhr4qY3WvOifAg7kWukFceKUK8xUaDLQJHN8dMo7b7/Dd773Hif3zrie9hxKYSMj3/zO7/Hbv/ub7GpBT494ef2S3WFCpsYgQvWM5F4uUI2AVrsikg2EqSo1arJ87iwOFEc/VwuCHZopaqSU2NRGLTOzTA7uFmadQQfqXJC2tyC9mgKLEVCEVotPGQ8MNevLphn8nUuz+ZrHzNFm4OT4mHk7c//OPcYh8+Jqx3U5IFJRnMxD9WtmGsUUxLxM2xtvPma3u2R7vSXnzPHJMS0Lu/2Wqmql7sRsQXU2RtJGEyWTEM2YmImRDAaBs9N73D22dXs9GRFlkypJD8hg5ZBqOZBQK8nkwdZhHHvZL23JwZPmgbdqKiOt2d+JbG4PloowlYbKRJbGoUxM88BcZq7TzgNX1UsIFspsiim7pLy6POf993/Mj374Lg/eOOXP/uzP+NFPf8z5xRU1Z+6fPeD3f/dv8O/9d/97jEeJ9B8q5/sL9ls4Ho5IsmE/7yn14PxCA5dKc0LM3EhzQduMiK2fWt2WSXLCaKjYSCfJJIQmXuhFBK0zecj2zqs4U4COWYSc1uCRLvYMZXDCBp5hnCXb2hJXUfMAniSjm6Ugr7oyQ07C6Oo19958k7/39/8+Lz57wb/64z/lyfVT/o//t/8T1ImX51dm11qiagF1daAaNtgCwkeu1jamgZSEzdGGlEeOxiO++vWv87VvPWb380/ZX+744Q9+huYzTqY9x/mML14Uju83njz5mDce3aemmZM7j5imPZe7A89eXfKLn3zGZ5884b/6x/+cJ09f8uryJdurPXPdM88Te21cpq0pvsUzduDAgp21Gmho8606qFj777UDSkYkq6324KSRkZpnmkdMMvl+YoCfyCq4rhgJKiVam7uqIB5c70OujSEPCxjlxJmEWPkXAUkWXG/V9h1ThFNoTgROw0pxz0oXWqY+3W4LUFszO7wC+cOP6GU1UpRBsz24NbX+jOzj6uVM3damFXBVPdCPGnnTlCiMLGml9iqzGvGlqqlXCMVLU2ZyykawQlEdyVmsqqg2EhuOhsxmyNQRDvNEK1CKOunWSSN5MMACJ9lq853VxsaUNmwNNC8tosyoq/IFUSqlTHIAlSq2xyY1MnRxn0BaJ0epOzatOUDl5SdUvRypmKKeOOhv5AgjzJi5bf5MUfIEihr5p2BjqVUXBaJqpTFzHsy21ij7Qb9Oa83UKVRsLnu0XJsDGA6sLAFz+7L455IDlep7WtwbDeB9IU1HSbgorRHzfG3XtP9b+/8DYMs5d7DcrulkcQmVFAUnXYZ/GCWWkLYAwCx+8AKwuAVdYxg3QMHl9eMjHTIIMoTYWu1Z+70FOXQBObqtVpuJRoxbAMhf1xZg1U1QZNUn0aehgkqAKQkr9Ukgm9iuswBh3QmzG/WfB3D7y5hS2MsYz9X3YyzlZp/3vbKDSnE1J1U6gQX8PGJXN8u+Anv6dXqZHPrZSIIQp0viQjyG9FeLK0fHRbfIjffs77bqk1AyDXUaYQVEy3Ju8l6g+wQ3+sdsmz1TvG8Qa9Y/vwnwrUkLrEDXGHsz+cvZKciEcbUUxFfWxLEgtAABQwt9/dq1Fxqc8UQ1TNXqfBSf8X07pf5c1qcN1YxqQjUx5A137tzl+PiY07MTjk837A97hrThzbe/xqM3Htn5JWd2+y3zXGzG6lKGaZmuTo31LTbuqQoq1YlVkKPMNDFO6mc4wElD4nb0cNhaWWSF1go0P9Np7Qq7kdBhpYOi9NHiIxL95aXlpnnu+/hmM3J0dEzZF+6d3eXk9JgXF5fs5j2lzranpoHGCgz2F0zJiEbjkCm1MTdTXtpsjiDB/rA3HydMaPgZsX4w4kJO2RIt1AhgYxo4PjrjeGOk1f1UuJ6UmqqV8cZKiaqrIveioOpzJMrHRcKPWm839/livFofN7rtbqrmx9Konv1kZOLsH1pKd2kzolQtphz65ZPPSVnYHA+8fPmcFy9eMB2srzfjCW995at87Rtfg6S8unjJxfU5dYZxGBiGI6Z5opTJe8cSq1ozJeNWvRRvswQgUwkzQyCruYSPq5GcbxINPPTgiV/LJrYydzfWo/3XPtcJFp2M5J+MfZdlbbrRdXXKZd9TMbKcxXyENG74jd/+LR49eMSf/vEPubi84MWrJ7x6+YRSC7WJi8rYedL88LTad5wUR3LSkysuj0ckgaOTU9549w22l1vy9cz2+ppPPvyUuyfHHGWlpg37ljjeCMfjyMMH99nt9ty7c8LnX37J1fWW/fWOVoXz6ysOh5n9YUcp5v81rUYO8YQP9366zYy94Ab/uS4kRSNdRqLWoo4VJBeS97uutsa+dmIfEj9TLkQMrcs+uVbB0/498fUjLE/mKuAIXThT3Y91sufKzONZaz5DYvTbsud7XCw852WfXu0hrRl5LfoD33O8b5quaVPL3Azr6Ve1uGVty7OIJTUoanOnLba690GoK/nJJMYve2k30kKgF1x9W4QirgLbVvuV3FwffU9dDXwo+PXVtUpybG5Xol96f4a/svKH9EaChPSfL2uv/6jfK9TmPfy77NseVxR3sLQThLSrocczhq9jNqR1P9V5k/3G2vfxxbe98bMef35t7i09s4zzyr1cyDjL728om8JiZ/xd1gTl/nx680+LUcbjLsS22EPjwjefp3ssrAlg8c31e6weYHkvFn/rxvt1/2+5x43rSIzX69f85aQGXf93NRdu2227bbfttt2223bbbtttu2237a+q/erl3ohyYbAcVhbATP0QGkBAEg/Gaw7EAaWSNAJ/cQBs/bCZRJDWDDLSuF/2Q2BaHS397g7UWyDXMv5TiiB364dIlEWZpAfVLPMyDvrJJYlDtUawSHmOQIjOdKWYfkQUP1taECPloR/go6+Wp/UsXwc1okSESPJMQc/qRHrgIIJzoWKBeEIVaiSenD2D1kFHhRSZvxrvHUEDCzQlGbz0jQVAghTmvW4kIxUP+CpUp5IlLwMD3j/VSodlC67VJli2mGe51f51I0v1AKG/m2ABbAsPgljG6yCgmrw8kZHfJKUupd8apObzQRtzqV35oYmagolP6xif1hpJBkpp5FTZTwfOLy749PMvefL0GYfDjiEpJ8cnfPd7v8U3v/VdalbuPn7Ebr7mX/zhP2M3mwy7EAEoiQ6GWsnNyq1JSqHQjkihePAvsTF5d58GGbtE9fJ843hEzgOijf3hirnYeNTWqHUy5YFWKZ6BayQcLz1TjfiUhkSod9S5oYOSxRQ2dnuLLiWUYTzj3sMH7POB3/2d7/O73/9t/sl//cf8/PMPuXz1EmmFb773dQ6HAx/+4mNSs3WsTblzesaYN1y8fMVUJxShJTg6OqINcL27pHYyYPUyN9nmHorWiaNh5OG9B9w7PeX66oKr7YHHD7/Ot7/zPR49OOIwX/DFF0/58fvvs99fsxmVWa2kohEaFGkVoy0BTRhk8Cxh69dhGGw9DYkhD5TWyPPMYZ7NNlW8jIdlQ+rcaFKZW0JLoVa1coWqUGdTTlMIDl2Z4PrVJT/6yR9zfv2S46PM+cunPH3+ksN2SxoSx/mEb3/7O9x7dJ992TKMiXsnJ5xm4Z233+Fb732Hzz7/jE+/+MgCR2lknk2dZ5omdvsDdb9nmg+kVpFSkWrEPAucWrkO468oBPAhRnqjebnDyALN2T/rGa5iGegB6mqyvm0RMxMDCRKmllWBlKz8mGBkpQDIgrNg9lf9+qYYdzSOHA0DOW94fHqf/8G/+w/50R//jJ/++fucnz/lyeXHRsgrpkiGFqQVA9tkIOeR1ITaZkTsnfKQODk5ZTzJPH7jTR6/8SatFb7ytXf4+tff5NMPXrLTLU+++IgHD094dHrKnftnfO0r73Ayznzjq8d8/ulL7t055SpfUXTmZ5884fknX3K9m/ny6pzGzPXFJdvDNVIyVauDbmYTqwy2nqupDKqjiaZoFKCwq1QE2SD6Gu0AUgAKjcYwDL5XWvA2Sn6hrZdg0IIH0UFk8GC+xJZMAIFWSUy8MoEr6MgqAKoGUhk/ysmNDlx2FSCXcej7uSRytv+jRsQKhC5LQoZE9dKgLovUwXFVpaVGJtQjoJQFIKteWsfK5ZjiQEp5IQ34MyimDIWIKx4WZpk7MJ5QqpriUw5QAyXnbBhAyuQhOxjkSm0Nyjwhg5fPTKYWZSpzM2TIrqikrbqKTvP9G/BSORoAnDZoBZXsi8IAUSNwJy9h0Qj1FSNummGKtVaDJKBm1LS2TibAycaqi+JDrQEuWjZ+csA5pSAtGiiR3I9ptVAbFC+FsigzAnUh/kQpkNZmlFBdkJXfYf3YXPGrx9wDYElifp8YmNCBYA+3BxCjsTy8BkQH7GLNhG1y0lNXqySWVpCgAgzz6+jKF5Tlvdb+WQThW4/Ur8Cz1U3CNzOlKodhAghaYyABFomQ3A+6gQHE4yAL6MPiuy0Ah73sks1u3+olNNJa8SKAS//066jDr1FbAz9LaZDlvZdn97NDny8B5NmndV0uKEBKb65LsAJb7OpBnr3xFDEnu3/qc9PtbOtzcnWp1Tite1pW868Td8CJDkJSL68Z7wAsJJz+1qt5gdua+I3fxafAQvqJd1hdF+n/XaanBtZHgJPLemyrd1w/k1nLeGf8XnRAdPUL79BlLFmeyZ+3iwIS5AgnVa/UUgRLNrhxXbTvK0GuEFeoihJWUcZShK4OG4tdesfenAJBVjTVPjrY2jsZetJEfNVU3OB6u+Wjjz7h5OyM/cEUN3FlH5opig4nR7z1zjvMbWZ3vWUqcwfQ17bJs1P6XJGu9GYf6fZJF3IY0FUmbV4khmFjJdb8VfOQrbxsWc6e6tcw0r7vp+iq1GeMgyxjRpRDSx0QrUVoQ0Uy3HlwylfefIOaoJ43OJgNf/T4MbVVnj19vpy7tXF2dockie12S3USduwDVVsvPwvay5AmJ5TkZAfCMSfu3znl9PiE66srdvuJO/ce8ZV33mbcZGo7cH15xaeffMY8T6Tk+1wQYnXZq8Jn6/6Qr//Qbskr5c7aKrWG/yZO9qreL+7jVTvHZVXf/2ze3ohNqPlz82HivD3jcNiSU6KUPbtpRks130WF45NjUhJ2057DYc+QM2M6462vfIW3v/o2z5+/4OmzJzRVcrKyd4fpwDxPzHOhlkKt80Isjnfv5GDtPlvy/dDWZep7DFE+y9eqqnb/s9vf14yixQ1ifsbP3Ka4zxT7gPi6U8Kexd5mRayHlDg5PmLII9NcGObCWUps3I+rdbL0mhbWzPcH3x9zEkSMrF+bqYGKJI6ORvIwcHJyxKM3vkISZTrMnJweczjfkkgUndnvL9hs4PTuXe5zzPG4obWJ3TQxff6U+XBgFpj2M7vrGW2z6T/OlXkqfoZItg8E0UErRr71vV6jbGvqc1NWtuiGv+G9bvZZu03/i9vaX7CzYqiYdz9LQtnKJ2gnTwURx3vT7X93WIgERU+W6nNEb6wtVvfyy3dfbCG/xOcsYSPU6+j/pW8sMf9U1ZX47J5GRG8LYbb7DuaPrvfJUMWzxJvw6aIkMSDJk1Hi/TNR9jV8OIuvuLqwOulJcGMe2k2+k/reHqRgc3uXd4++6KEmwkbJsoZCcXPlF65LAKauOKWoJCsr3meA7+WxPGL/Vu+R8EP9d+rng1AWDCU692iI+HAozHWijQ+/+Hj5tt2vv8yBtOy5K98m/IObHlYQsfz6q9net1JWpXVvTpob/nxcd72WbvqAy/cXv1Rf+/3aD119pfsZ2t9j8evCJ1o/y/LEa9+Ndb/3t+vD5T9Z9pN+DlpuQt+sV59dqJCy9GGs+ZiK8d+VL3rbbtttu2237bbdttt2227bbbttf1XtVyYpSV7K1wCdjGJxCOlKCyZ9jINh2Wv/NAuStrycyTyAYWoO2g9LycsJqVr2pB3UPcDcv5yWoIUHO0z2PbJ2DEysrtpgQRgDEY0wIbiUkAfBBUnVysZpstI1gpeLsVdoopbJqgqaugoFHpChg/NgRzt7pvVBN4KGHQCOwGeKoC0gNiTBgQmCksUkTDUnpQEkGcFArT+w3ugkGCQA5uWYH6VvkstKJ2ldHcWqrekynmDH/PU5NznBDDGlKbFAc9XkZRJMrSUFAUxCbcgDOd6XVnqmuhKWGJDsAGaWgU4DS3HG9yCoOrkKKznQs/6URT1EhDIbgWfI2UDuNFhJoTQhpfHFl0/4T/7j/4Lx+IjSDszT3vrqcM0//cN/yrMXz7n3lTfZ1QNp2KAIc7OSRkaQahSdEZrLhdv81JTAtTTyaCSQEUiaGJMBLtXnmEnLKwOJIW04Oz7j9HRE28RA4t23H0Pb8cXnF2yn2QI7zcq3tSJISwwp94i+YgHCMWXw8j1aG1V2qCZqHQFlFLialcP1jnGT+eDTn3K5f8HHn37O1fmeclAjSrBhPM6kceRYlFIrTUfefetdEpkPP/yYqgJZOdoccXp6wrOLF5TpgFYLOLUKI5kxCSdj5uToiDrPnI0jv/Od9/jqG2/y5z/8CZ9vX/Fb732P3/43/yZyBMqBtz/7kldPXnJ+fmkaI2qlEUgDkDwD3gCA5somtmiaKc20RK3FSoJtEkNT8pCtTF0zclephWk+9EzbUoXi5QZFZ+tHAXUVJnQhEJZSOez3oE/5ZH9tZaHKnv1UaLVwOh4zbbc8ef4lFy9e8MGHH/GLjz+GJDx89HX+wX/zv8Xv/f5v87Ofvs9/+Y//KaVVvvrWu6Dw8Ucf8PTpF1ycn7Pd7zkcrtnvdwYy1GZqXi1IBrZIaqnkZsCJSdE7WU4b4zBYUFtAWnLCyhKwbAGeVLMlUfAklJmyB2dHMeUzW5KuHCNOKEx2vZSycTJSZkgjxzLy1ceP+If/6L/Bj378ET/5+c/4D/43/weuX+3Y766dhLfvAdMsoFnQZMS2IQlDgpyPmOvAMA4cn4yMY+LB/Qe8++5bPHr8mHe++i4ff/gx9VCpVzNZJ84ePUAPVwypwp0zhtMNTz/5mI9fXvNie81BN1y9+DH3H2wo24nrq4njVKlaORV4/uol+30xwmVTkiriKgSqMzk1kGyKZUEySGaXU7Y51bycS3NCSwSKzf7TS4wEEFhLcTtmiiGawqA373MjieTspKMokQWW2SxLgDaTyG7TW0ukIdvzNEXI1BalvgzgzdkD9WnZT0JFwqxt68oHyedTE4Uce3jGxXT6fhOR7sikrrX6niDMs6v2uCKSkZqrl0bDAet4kkYTQX2eDSkxDKP1IVhGutpajdJw2aP7WYzgKE6UTElceUIY0kBqgs5KzUZIJgkqE7RmZBSBMtvaUScuN0KFwt5bq6krVLwMhnimOQ1pQhqEIWfIA5DdR6poUwbJHG+Ek82GKL+2r5XtNFOizJoKTYfeR6FepmBAqZg/UooBM5JCKamRh0VZDSdqK0a8LM0J3IneJ+GfoE4KlsHJGvaOSQQNzjVGsArbaOVsMlWLqXC1tgAzKC359xUnXAmSQtko0PkVehLgAAFk+Rpr9ZcISoE0dFUcNyod34qLsAJfXDnKv9h9sk5vEb1xHxyQUaoTAIJUtAY22goooIP9SgBq9gAL1BAo1PLXKO1o9wiAMMrpSSzODmAmH3/XO/F3/PUFFVJKHcAC+rishyr+rX0AFmgmSu6uumx1ncUn61Q4nx8aIBxxnpDlayhLyTD7t8Z3VFcKQWGv+01X9zcwv6/OcNHje64yKLpcu4OO/RUWkGl9flj3jV1//awLaGZ+/HKq6uuCZU4EKUm77CbxYv1u4TN0wNiB3IUKtjb2srwbXv6G6NObo2qiRsLS1dLXdvS5uG/bC1QGKCr4tYMko2EY7H4tOnqh6i5EBenAcO8rOmRLqC2hanuPg4yBwXcANGX3sYzUtDvsmJ9W5PkLYFHjaG3iFx9/xNMXzzk6PWYqM+cXz92XdmUj9Z6W1m8kSH+NZVrZ2Tpj4xHJOVF6Gz9DJZL7TZmczU4mhDt3TkhyxKtXW/Zz6cosNj+sLxJRGsj6WfGz7SKfQQDjzet0ZhHmNlPmQsqJTz77nC++fMJhOlCruK8ibK/3NGmdnGfDljx5wVSpwFz44+MT7t+7y4tXL20tNSNwSxOSJlKCnAfGnGmlMuSRx48ecHZ8QjlMzJNy784dTu+fQRYGNuSUePXkObvdnonZ9qJYQzG3fC61PieXuQS2X2Un6Df3hazb7bNGOjcitJGAXOkUn0ehXKPaxz+sUPX4SZOZw/bSlHK1eZKRJQJMhz1Pn33J8dGGV+eXvLq4QBVOz+7xtfe+zcOHdzk6OaGoqQU+evgIQXj29AkXFy/Zbnem0FomZleGNUUnI8JrE1pym7VSWVrsnJP/SJYt5bYhiOzRum24sSf6v0TJK1WzIMyFbbbPLAo6En3sCWljGjjOI9///m8zjEf8yQ//nPd/8Qm/+PBzdoc9qgWV1gn1yVXUWg6ymT2IqbgMDINwerIBEYYs3Llzl4cP74EM7K+3lN3M/nqi1sLmdIPqwPE4giSu9zPzYeKzyx3zNCPjxlQ8y47DfuQwzYx5QEU4Oxlps3LY1yWu5XMu9oFMW+xOV05d+gdwH0m6zYxz/8IpChtitkFdkW5xgqSPQwuz2I3+stesqb2xLpS+FPoOGvPZkrfCnsTaitsukTtZ/Z31z2J/xvbqIMpI9620T7GuchOzUiyJrqn2tRv/teLFERta7tXLE/bncWpi35TUY10YaTRYoG5j22q+xlf6+8Y8bpa4EuW4/aDTr01bCKrqNqgpC2lf42d27pQk/awoOfl5DVSTxxVdSVMSoyuC2T7kytu1Qal2Bg2iUHiN3U9x4xxjriyqqRrx1ZgIbitc/a+ruYbvs2rray/qRLGhxhy78dcb8yNGM/bh1Pf0MENB0oawU8sFdO1o/tLcC7/sdYWkvhd252KxT70f+mvc+IdfJ+aDPfvyBvGc/tP+lT7TWeh8dtebZ5AbrsFrPQ2/7PfL6oP9oZZV8hd3zWvX/P/ygdt2227bbbttt+223bbbdttu2237S2i/MklpGAxYy7o+BHkN+DjAqIGFBjxZGBAPCEd5pVCiSQEcenBaRKhJ0Qoi2dAxGlCXQI0TbFQrTncxspA0B2fVS8QY0FdViewjk7YXl9EXL4flgStVStzOyyc1lEIXoLBSNMXJM9o62C9EoEAxgDUCLqFSYoBfa9VASydHRWBJgeIqRhVBW7HM+wjxe6AwgvYW4Gi06qW4nM1kAHj1eLMHfAGCOOVlb9YBw36ITroKDngQhWZA5OqQrh6NUV2UNKw5EK/eP2IKPpFJV12BKElDqT5PLGtQckIpHj5Tqs4WlI654KpOBspbRhji4HgEt5qX1xOxMUa9DF9lArIa7cLmQGV7MDJHPpjCU/YYSKPw41/8hA8+/QXj0YbrwzUXl8/Z7S7RWhCE6gEYcWC9uCpDQfEwfwdghywmXuMB6ijV08RVVASOxkRKhaQFbQZwbSTx+Gjk6OSUyxd7DoeZuYBoIchvijgHQClRgkAaxYkjkX7XM9RcMahJ4tBmDq2Q5pHrn3/MTz/4iFpntA4oAyebDS+fvTAQ+1BprVjAXJUvnzzjaHOKOgg+pIE3336b3/397/OH/+QP2V4dKHqg6YTqaAHzBJujE05PjrmedyTZcPf0iKOkUISTozPO7p6RNgkdFOGI8eyMu2d3uX96l91+h2wSLy+uLFMWKDIyt4MH/KuVP9MMkqHWXoIvbJM6cSfnRMpWpmMcMpvNSNLGXC0rurTqymmA2M+lWR8rMCJIE+aUkFIZZM+27tm1Zoo0xcrkaa3Uc+Ef/+F/yccffsSri2ueXzwDKvfefcg73/w24+aYNx8/5ptf/zZf/cbX+O633kNU+dEPf8jP3/8ZT58/58mzF5y/esb19pzdfs/hMFFKpdYDlMxcTF0rSaKURkspan44sJc62JIGK+slHgA3UoKDIAKazW5ZSQ8jppgyUthNhV520/5XjO3JsQ7oYGXjJGc2+Zg3Hz7g3cdvcpLO+Jvf/zu8ejnzg5/8lD/8Vz9EW2UuO1QqjEDL5CxsNFMSqM4MAi1BPj7m5OSYcSq8+eABj+6fcJgObHTgG+9+DfLAx+9/xJMvn1PGzPXVjle7PfffeMzR8cD9s3scdoWfPT/n5bOXPPn0S5oKx2d3uLx4yudPJiOk5VMev/Umr65f8bd+/3v80z/8l1xe75GpckBIqVKrzyujr5CakWjVS7tJEOeqkXoCFBcPhDa1fSmlZKp4TuSpFFcSyAgNkYakwYlmDmRIN8VOjrFQZi223FvfJ23OF7SrdiDJtlKCdGH2O4sRVC1mbWp2UcIONYJlEiNXGhQhIImKlYhpKqirjKHF+qcD+wYRi6op/6VE0wI5UXUpCRplYwZxGUQvA5DElLxyBzDM5hvJyIktUvz97Llsn7N/FttREXJgJw4CWNBas1C0GGimCm20/aWG71I7eJyw65odtDEuan6GaGGRIDIbkpIRrnPKjCkx5BEZDNyY57asW1Wq2Jzal4LW5qAllGplK60U4AL8gC3x2kuaua8gXmpNFVnZsVbESrGB+SFq+6wBpaPZRidgBHmiRtZ2gij/aYBRgLotnBOWcn9G0pWkCy6gYqTcIE40DTnIHqmPNdIkwCcP5Dt4HvwJdXBpUdxY2/f4IJA6Ak+QRjrY6kB7B/1Uzd6tQK91tjR9ifrnayPUatoKyAkVn67kFGugAylBFjf/LdSvxPfxANRwlUhEvByg7+Fd6cKep8WU972t+HiFcEHAOr+ubZ0VvgBWS8Z5PH0nu4j0NbwQhIJUh/ufyxh2VTD881FqxPct+t3WII2pNiC6KKL5MlBdzwiMNIH0MRYR970XUkIjQDk60Oduqz3FqlaUuv/qD9+BayMHyurJl3kb1NBFQcxa9c+YymSlQ5HyunpB9GHr7yd9bLSf3+ynyX8Zz+AqILIAaxLX9o/S+0xX55D4cNCP9ObY9kPJUnLs5kRe6wDocjb0slxBVI+vtN4b0k1W6vZn2fd65SrVRfFm9bjR/1Wrk9fFfepE8WOQef/NBWaM8Hq9u2C7u4IklDpT6kSrZTnDSvS7k9tUQ1/Pr2nvlRqmdCkxf6op14nbJ+/NnMwrUzKoKfuOSbhzdMR4dMx2VznMxV+urfyBhZTWnNwuYkqvKa0HIBTmWr93xfZ3FGo72AxUBc0+Pwemw8HmVDHCUZSx2u72bMYjmw9aUc3kceT47j30/BJhQKT4mNqZW3Pi6OSEs9Njri92DJLR6cDcGnVuDHkkjwNB3BJNyDAyjEccbTbMdWY8Hrm63lJmV0hNA6VOPgahW5f62o0kIhvrFYQc51GTL2VI7lsnU9BTJyOpgoaKX/hzCINP7wp2lpwrLQmzGpFBWpzFbSZ/8umnPHv+wkqnayVlSFnI4wZUGCRx7/QuD998zN07p4gqJ8cjlxd32e0PvHx1zuXlOYfDjlILpRRT2KoFpHnJ3ZUN86XbQX6Rru5lH3GVn7B15p2GIYnfEAldS7mu8GsXjcAgP1ZRRo3vuwWXzJ2TY7759Xe5Pt9y/nJPHmdKqez3B7NW2nrJsiRe8t1tl1A6sX4YN5ycnNL8TH/3zrE9T20cHx2zOTnl/NUV19s9ivL85Tn7qx0pZe6dHXPv/l3G8Zjn55ccponLi3NqaWyOjihlZi4Hrrc7hMTdu3c5HHYcHY0+/tedAKbuh7SQrpVY762TYKJ8chDVFr+nmfp32Ki+50eZ2iCOhCcQe6MXyOzXiivQfSD1ZLAV/3QhQukN+lIfo9gVktvzpmZTk99zedAwYF40TljWg29CGvZBzUYt9te9g26Okk8x36skCPD+DVlUumNvDR/MCD9q+4YsPaSujrn2TXsnSPiLXgrb+8rOer4eehlOt1dhM90HhUVhPex87MkNuqpdf0U/q5gds3inbXFKi95t5n9Xv0dCqFXZT4tHZfFW90mb9rkXo2YKo+GP+Muw+L3EOTLGrS6beajCNic8R5KMD03fV6Mfl3svs1IkfA1W16T34epXTpZe9Y/PoRjh8Df6aXjlvHWFY1keaT3E3Zdf/1JiXsY9l74RWfWRfyH8Sll9qc/J9f3ihisHZ+ml1RV18fPt9m4T++dW95fVHdZOayeGRXfJjRt28r1AqONFXOhG59+223bbbtttu2237bbdttt2227bX2H7lUlKoV7UMz9ZAodBtonMJ/wzdoKKTEn8tOVB4zT0cLMgXrZFl/IxLY6waiQXJ+M0D2xJcsWlliy45gGUqFWkzYCJCEa0pq7sFIfXJegQAYdIBIuTZAeD/Bl7JrsfryOrLTJw1QN8ycueRcfUWp2YFWfeUI3wgA6KJgc5vCSMVWTKC2Giapfvj6BPSgZk5pw9wFv7AVMkWZ908Kz54dRACTqgiStPyFJSwE+rKjhpTJdgg/epQQxLMKiX9hIhFJnQhLbUD7uBwbQO8gceLUb6Qfu9UxIMb/USLK168MvUXVq1QB5q2byVCpIMnpDI5lZanahkxpyoxQJetU2AsNGBlJqBxy1RdabUl+wPQrnAsoGbgQpNZwiNGe+LprYCNDDuVj2rzkB0AQ/quOpGtf5JQ2aQzJCEqrMp/tQBpkpW5d7pyMOHD3j4te/x+Tbx5OIHJAqS9AZgbaoqSpPodyd+dZUCdcWpSk62FoNAWGqjFSvdYEo2DWFEmclZaWWy6VubBa3F0ItaD5zducd2B9O+UufE0+cX/Ms/+nOeP7+gzqGCZYQBGTLpOPPW177CX/uN7/BH/+wH3B9GyvOXvHp1zn63t88M4kvSAl2aBLKVZDo6OuLtb76NfPgpL88vaaly9/iMFy+eeMkNL7OQbdHWOkMrqFqw38qOBYlusKzCpmhSjnzSpyGTcmZsrgqC0EQppUApiJcVHEmkaqTGUgv7uZKzUBCKClor4uM9a2P7iz2fP/nc1GuGzOY4c37xhI9/8Sm5Tnz58afcPb7Lt77+Dc5OjgDld77/1/jOd7/FNE388Q9+zJ/88b/i/Pwll9dXXF9fUuYDu+trWqnkMnsJwIbkDa1O5KHSXG3JCAjia4deqi2pEUElJwQvUSFBhDQAHc+QbHXJMlwCm1gmaDLVIANfBNWRMT/gzbsn/Lf/7r/OX//rf53/7f/+/8H/7H/573N+fc7l9QW1VYoWKqYKN8qGcdwgVLKMbKSRcmbYmDLb48df4d6dU168fMH9h/c4Ph04TQ/Y5CNO7pyx3R242M+QE4f9jleXV2wvrnhw9y5vff0rnN69w9Wzc7747Cnn56+4uH5FTgPDmDgcLAu6tcpmA89fvuTlq1f85//FH3F9eU2pjdSsnNtcZhQre0h2PgGCamH2sik5hw6VuuJOs31IFVGjOCaMJFkAYfDAelsqI/Q0y7YQUTzIqK31zN5QvkmSFyn/dDOAazYpMv7NDrdmpQ2lFn8WA/9Kq0hxkq7v1zVFeRcnwtZGKYmQ/sf3llAINNA6WVlACeUYIeXRbFRqRmDt4VWzK6HskYJ8nINY6sCXSP/OAmpUK8mIZyzX1d4cG45CZBgH+a6U5r5MQ7L9PdWCUki54PoRtDaTUmNwcL94kD8UlCpixOVaHRDRXualNltjRSpzmeGAvZOjzLQ8JQABAABJREFU4VWFUipCY0yJmUblgEgiC4hmipe/IxlpTWs1JTl1b0UdDEbQKr6XO3FCq+/kimpCXWHJStIppJiXRhBWL1UXpf6sm21M8iAGhJCMrKZKpvV3ie9HqbEgD4WSiXbQQwzgcZ9hIZUYyNHD6OFDpiDYar/2+rv2nF5+py6qjYuNMjuWFklGmxsBxrivF+CYOyH+vQCe3I90f/EGsapfkx7g7+MRdrQ7DKEs4LbV11MHBr3PhFBH6WaEUE8KF9rpSnRlvxWIoN53rYN7v6YtDg0BEPb+ZgXuhJqJN3Xrqb3HkD7SafGvsaHstsD7BP/WojxDnytdVciYegt+hIGDxHivwKZ43rhyf7UYdV1A+ZulQeLdgui2zJ3155d1+NrNOjmxvxHLB70PnKBh9wsyQJdZ9Z/7M6xKiSzPEOSfeCnv5/71tT/g89YVd4KsZFtREBACFO6DHJN5NYav9W3cY7Uv9rHsW8HK1qyIb/2DIn72cBJbEMA6yWwhujmVaymvEzMj+iZshzPNVCHpYneymMqPJit1a/7zjAiU2c6xlqzQ3AaFKgr9PKishgk7O9jp1Oe93ysoXKILwTcl8ZI75qtYcogiOXG53XOUTqlpQ20XNoeSn6e73YqpFecJiINbnxH+vCktc0mckAWu6kcjCFBWBtXUlFLKsLV7GtBuJObTk4FaEm1qkGC3O/DJJ5+x327B96cooy1JTBH1aODuvTO211tyAj3MrjRafMw0JlFf260VaplJIpyenFDmwnXdowLjMFK2k5cCXfkRbkvTak9cZir977aOw4+BRR1mWQOKmjJma6hmO+moIF52rfl1QuVKVam+L2qr1KlRSuEw7Xuf5EG4ujrn0w8/4fLuCbvtNcNwwvHRkb1+Eu7dv8fdu3dQlGfPX/Hll1+y2+24vt5yOOyodaJMVgKuFiPz1NpAB4bm/l/zstg+X3o8gEXlQ8CJKWmZM2HrWK3Xbh9Xezl08lPW1JPOQMjphEePHnJ/aHz73Xf40fYDPvjkQ6Y6M5eJsHHNGaVDsmS22A9STgzDMXkYzE8hcbLZuNKVMh4fUYtydOcYyYnDzlVrvT8O+4my35NzphwNXF/vgT1XV9eUUillptXGPBuxuNXWz0Mvnr9AtXFxsUVqofpY2loLG2vJAWHU1PupE+rXHewfCPu4NsfV7X3qRMKw9Ct71s32yqdZ7Y0KvaTb2oEQ6OT+iCHYS2j/7lL+N+yxE2dW479WUgoCYHPlz2VLCN9usT2RoEi3LRFjC8Lo8ipG4F332eLLoRFDW2y69Hd1AlHYe2eyrNc6fb/U1fxdjYfHJq2rmsfawgdWv8d6bcStlQh9apT6uzHkYv5es9hrFaCuP+G/i/2sj6bboU5EVjtPxH5sOwSRHBDzwrbPoNrEdVeEsbAF8V7rUmJ93sY2pv17Nj+l+2FWRtpHYtnul7bu/9iPdNm3b4wvr83b1ZxY2yle6/tl3iy/6+8t8bebcwC9eZ2/qNn80F/+TMwXWT3qyl/pfudqX/6LLt5ds/jcymeU1X9vrmX5C5854vW9bN3acNy223bbbtttu2237bbdttt2227b/5/ar0xS6pldEaBQl9uPzJTXDn2sAsCl1CVoLmqZ9LUZ6UbtwGuZgQtQGwduRTAUfDmQWnykUWojpwEXgwdtEOopbckyQqJMmKI989cDvGDqF0EaSgZk4kEy8aBhHPl7+EBkdVD1g6FIl+ten++M6OMSxIIHj+O7EZG0QLSAB7HXB1TBiBjNlauMFdM0gkN1ObQrtJZpzJBciSJZ8CwIWxbEsb4UMfJOornyj3jGsf3cR9xSeSMg1CybWP3fprYSpQXoYKdHoXoQsnkmWVNMcStZmRx7di/DQ7b7KP395lZJCtmJL61anlZzta08DCgYyB4kHSJobqSeykCrSm0FyZU6z0zJSs2l4YijkzscH49I2zPNO7a7mbl6UK5awDHmUnXyR8PLOWUn5Hhw1+Z8gzYi2bJqSylWAisPhPRJSqMHtmB7veV6u0UVLq5GPn32R+jRB+ynHWW/J+kMWXo5ryBuNS9lWINwIjZXskfBZp1BceUrX1OtMSQh54H9/tAz4XIqpLxBW2XcJE5Pj/ny6VPKXBgwhZ427klMBoq0AZFGnQ88f/ol2+0rBoqXbBypLTEebXjw8D5ffPkF15fPefXigqM795mvj2EcmcuEkBgigzGsSC3UaUc57NhI4jiP3Ltzhy+fv2AqtWekzrWZsplAqzPFiTVHOduKbY1arKxRSkJzQp5SUG2UapnITU2xRT1AE6UvxpzIOXMyji4pL1AqqVXyONJqpZZKqgq1UtTWQJ0K7TAzjjNlOtg6zAPTIfNF+pT/6P/6H/LozfsolXfefo/fLL9JlRMaMJwccfd4g0jlb558n298812ePnnOn/7pn/Ps+ZdcX73g+uKCaTqw3V5Qa2M3FWqDPG2odaKlmVpnKw+JUpvlXVoZp0WdoanZ0Bv2rNtvermJsHMipiZmKIJZ1aSJlpRREqfjMd/+rd/g7/6t3+HjP/kBz179U568fMKXlxfs5z0aKj21ImKls05HYcwgm8zdxw+4c3bEnTt3ocHuasfu+sAmCydHG8bjIzanZ2zShqLwyWdPuHj6kvPtnmmaeHVxxVwq8/aKjz9XrvY7Pvr0C3IeePHsOdN04HDY0Srstw7QNCO5TbuZ6/NzGsJLbTafUFKrKxU066BOTKxuz6oRkGqtXgZE0GY2Sz1wa38GMKh+rYJ6+U1pkFqzsmO+9yxBZJvjWXxea/MSbYOXR/CNs7n6X3OQMICFBqqmclRbRSke7MfXRkayWukzZSllgiA5MXgmr4lwVYZBXHXBwRRZCLQRvI+9gGZrzLLtXZpQ1UubGQiZshETjU/npEhJNM1GaFZoxdUDkpIw9bBMIuWMpEyhMc/Fy5wt/sJCdPF5i4HLVStUZciJjNCkQmuuxpcAm6OTv08E7UFt3yKhZSW14q9GspJ8kbFsJVgbUqsRSonyDLZnzHPB9CiUlDMVcVIpIF4eDytdWpvQmliJNt+btakr/CQIUNFkCPu9TCnPg/HUldqQdPBpCXLLqs8WX8q8Jvt9C/9EVyBPALlNbRKuUYdQX/LrGJ9hKSwpKn2umpu0EJQWyNh9kVWU3cBn95C6CVvAG7uO56w7UaODES20dhb7ZoCMWMkNB6k6aUMXn0z99xpAo2gH6pfPa7/GAqCsSDMpyCOReb10lzMEFr8uRjv1oVoBXyuCRu/zgMZ/PZv5bv5OcY7AX3uVKW8cEPE1YPOvrc8bPreag18xPYJA2a+zBso6kWbVlz5eSVbzI+x2EHzW7jh91vR/x3o016vdAMhQvTEeC8AUBBn6GMaY92Fff6Mv1QU6uwk6rX6m6znhp57VGnf+yU0imD97f77uh7d+3kvRN/GGnTxo97KRaC4I5u93Q+kq7LB2QFxDqUMWcyHiQLo6CUTT6hkhFJNUF4LUujPSMgB0RRtApa2SaVYUqea0pBT6HzftTB+bLETCQmsK0ox4kkCKnVfzKGwGe4BaC7Mr9oARU9KKgFlbzJUgJrAaL7O6rSoq2cjuErk4pjYo1ZR4JGXzYVWpc2F2eziVzNX+Je3pBaEQaMoVi52PYYmZUFvr5VbFxwlMtdSHhCCONrWzW0pewtXBfgQ/z5saoPGOzU42sdKppczs9lu3wravlfkAVSjlYEqMKUFLqGaGlDg+Pub8/JzL85e0ogzHJ9SyQYbBzsgIyRWLFjkY31taI0tiszni5Kxxcb2ltcZUbdyDnJ2SzYfw1SQlXwvq5X6js5YEnxZ7kfRUC0I9M3QvBEvySV1Fy87z0hqbYbC53BpS1fbyEBjxOd7VCAVXaE5sr7Z89MH7bI5H8pC5d/c+j3YPScMZqnauSa5E/PiNBzx4cI/97sDnXzxlu73m+vqcab9jmifm6WCEGy/HrtXOluqlRZuXw26qXTVnZQncxvk5NPpIFzvY91e5abvCXHV6ifugp8dnbI6O+c5vvcenP/85/+Rf/Am7/YHDfKA0U0ZOTvrIfqUMZFHykNicnnB255QsiSENlLmw3x/MtiSPAeWR5Oe47f7AxauJ3e4AOTEdDlYSt0xIES6uhN00M2Rhvzswl8JcZlqtzPPs9m/ZO2ox1bLqdrKbp2UD8DHXTtrpJB2FKHUadk5Y9sj1uSJ8I0taCsK39lJ8MUav7yeiy/mCPp7Ld9Ao+bicA20yLrtAW+rGuXrhmrjmz+/2Q3xP6EozLPPn5nu+7r3o0gHLSxDn1JhLTYNkiG8imdhnEPHkhey+nMfZpCEsZeGSJIJYVLR24iKy+MHqdkLDnyB8CGwv8P079p0WfdL9iZXHF33bF4HQHZQ4w8R+4CYtfO/wZ2LemY2OvlpinU2DBRYTSBAZPM4axHnpa8+SDvzz3S9fnqPbIfxZ3L9Xd1D7mWD5g4WQv3ovxc4ta58+BrOP89pILD9eU4eis2J6qO9ba5LP4i/zS99cfvDLv19OPcv7yo2HkRvXXp5N+54PWCw5fLx4oD6nF7J0dE8Ql+S1flhc5MWX6+/fB/C1XunrZk2aku77dn/Df96nyY13um237bbdttt2227bbbttt+223ba/2vYrk5RqtQBLKEVERriKdECqWZJTBzgt099VjmQJUEdARAL8UkVCASki1AlUrSyTaIC+fhj2g5WVVnstKygO8CIEIBUBiuokHzuveak0D+JFcnL1w6JogHfL2d5k77OVcet9sGQvdVl8XQ7QN4MvQSzy7zYj/kSWVA/Q5NQPi5ElY0HgRbUqSybl5MQZV9jx76QUEWJclQEDBHvUwW4UGWhKQpOadH/8Wy0LLsX5tamrOuQeq2miLj1sJfiSgmYvReMn4Qj4R5Bp6QdlSR1LDtjFAbo5UBJS3f6d2kwZqEfABHQBP3IeaLVZrRyBUl21y8vGQfYAjAJW5qe2xNwOVmpQBrI26jwxTRNVM4nEmEeOx0xplWmeKdUCj9ql+xutiYHnaclGLtJ8XjcrcVSVVmYv0wEyJo4EtBSqJmpOVFGkGHnksN3Sks3jlgeGZKUJJSnJFTGyB9arB8mTJFq150iSrCRTq9RD8TJnMVeEPEApkwP/mSidVyVzfnnJ9fbSMpNVaDkxlT0U4XJfyCfHMFV22y3lyedIhumwp4ggKdNkJucNw5DYb0euLi559ayQWuY6b9gVZTw5JpPJVdHDbEjLkPpaEDWC0eEwoWTGu3dQV6HajMdsjo84PHlCOew5Od5QSuulN2YvKanSsOqRE60qeTjhZLMhjRsut1fU0qg1uZqZcrQZrI8mozMZgUQY04YhQ0uCDqBt5vT4hJYyU22UQ2GadhxqtgzcauBUK0aGqCTaYISUi1cX6PVPefLlhqOzY+b9jj/+44d89VtfI6cNbz98zL07ZzQR7t6/x/3793nvvW/ytW98k6urSz54/8d8/ulHfPLFp1yfnzFdb7k67KilME+FwzTQmgXPaymUuSClvGYrsXWHUl1ZQlvrpRmtJc9wNSKkZeorAxGIdjuDcCSJrzx8m7/7d/4eH3z2AT/7xc/4s/c/5GL7Uyh7JMEmWWAzS0LGAc1Wfu/OOHC02XBy74wHb7/NySAcDcdordw7vsczXgLCNE3Mk7LfVi4un7KbZvatcvXiFaXNqDTmqTFPE9QDu2z25+KV0mrlantgroXaZqiNA6E44kauFVAD6JqrBKrCrBkCBHU7Ns/VgQ46WNgFWrwvO7joNk86wGSB8Cwwq3agxbrcbXJjAfWipIavi+YlQIJc6AJ6rkhkYE0KQkgyAEzFlOsCzM2CqRAC42hqNAhWriRsqzQjHEbgvgFic6JTRyQjVNunQ2aj22ftAXcNJQ5JVHDfQYlSDVUVac1KlyCMKaGSaQY59RIZrfpcpJIl07Izg6oaOW0uvv+7wk6foeKl1Gx/TA5SqVg50UGyAZA+ftVVsSLbvTX6fukMnaVf3EmwWHvr5WyyZAdtkm2MsfdH12h1kMD8o2EA1YJKNvJWErIMDuo5EdUMurtBQTW24rSqptohDjoEdmQghBF31Rk9ok6wjTUs9DIC6ms/AObGUuKRlPr1Qz0pyuaGf5aSkZD7/t9Rdd/vA8QUIxzHLF/oSIsSYJBLFhWlcCd0+beDw4bvrOxbgP+uKhXOU6hqBaFXQ6HEruhETgjQw9wf7WOOz+OOEeHX8bmzZHjH8waQ4T27WmMpy/I68Z21jfY5t/BIBCGUwST+1X1RkdSJ+Iv3+evXAtRZ+mf1X1k+Y8MgnbDS+8lNcfjDXV1mBfJEE4Aky2i64meAa8GJ6kBq7+zlJmZSVqoJThKS/hFZDgrLK3Rg50aZZWKVddiL18eqEwRX/dWfKn7R+8d/p9rLlslqQkmfz8v3+zwlgLDkpBQv1LJCy4xIlPxIYdftxDFHs4IQq/5zcWkMcy2EAK7ltTGLm9wg2a06T9FOhCUIK/E5/308QwCpsecEFBwdFX3F+t7SO8zfoy9Ckrhq4urcoig0qOLlfPydFEWauP0x1tDs5UYtEaMRBF1Jtuc0lFJj87bnDnVajTnlQCUx9xOr913OUupn30HoZ+noK3E1Jm3VlHySeQhWVtZ1LZyYFntclE3q/S2234Tqo5G83HY3K4csyUtuqV03iZXwlATzXCjzZATphp03tdF0IOUjRmmUemCeCrvdllBqtPKrimL+64xydWlqNcnn7TxXptJIYyY7kasV3xBihindv93PMxcXlxxKcZcmWzlWMZXFWmeGPLiqkQHSNcpFJnF/2GzwkBNH40geErv9Hq0rZZDkypqq1BI22XRukmRLJLE6vUiqjMOIiljZuurKT36+bW1RqrFOX0jQZT4w1cY0JfJmgFb58Bc/5/TBPYY08ujeA+76eUIks9kMjJsNJ2en1Fq5urjg4uIVz54/Z7/dMR8OTPNErVa+t9RmSsPN/JVWG1WcJC3rdWxtqUK7LtuE7+y2P4XPYx/rVJa+JpMImzzw7jvfYL+95ic/+HOmw4HD3GhayO635Za6fSebz3c8DuZDHm1gHMkykiVZefJhZBzMtm5311QVrs63aLHSdxWhzLOrTFsCVWuCtoKIcPCS2+oJQtXXZ/fvuw+zsjvh+rgNXBK4lv3qBincfei0/uyN/l33t6/12H5EeiJd2OLgQrgR828pNO0Ekf7c8UyLW0sL1dbo55UvYjZCfI+QbitjPxTidz5ZfD+ItRB7cTybLn/t8+vmPtlv7ecit5grX+HGu3rMr9twzJdcxkRXe47HMN1rV13mdt+f+pnXb6IL+bgrOfq5INxeS4gM5Z9EqBCtXmR5rb5fxijFfFqTVXwfWUafmGidgNyfebmSgJNjpY+dPUGNTYxwJiyhsb3myIT/FP9eE17icz6n+peWvS1IL13FsL/0sufFwHTCjj9DfxNZls76GW6WkWy9z9ZDFf2z7Kt0P+61l7jpLKy7INb76tpLIkGXQOxXvEHB87kcvkTcHx+rlcvVr93PZ6uzxy8/2Xp+Ek4X0duLo6arp1vmD8Q7LH3b/3S/YnmX23bbbtttu2237bbdttt2227bbfura/8/kZSi5ZT6wdJORUa7CADUyC3aAwlRtmMVi7Asyto6YNMPTOvgfLLAaJQRs4OheCCiOhnHDozioFyLQDJLJqiKBWztgN56Vqi1CID7tZveSEBeguJLEDcAj6VUgPbns7hjolQnsHhAZsmWhaiZkES8ZJASKlARM4+gMAQZS8HLtKXVEVVSKF8MntXrhJ0UkEyUYVkFJcTUjwwgjMCRB3s6uOtZZc3uX1tD1EoKKEYI6tEKseBHJmI49n61VoOYk/RyQHWJYHrA3d5dS+2H5CgvV1v1sj9R7z5TKzSak+UskFc9WGxXdRKcmjrHXAqtqPGgBCRnn0+Jec4Wr6fQijD9f9j7kydbk+w+DPyd49+N8c2ZL4eqzJowESiQBEiKMtLa2tCU1DDjoje96aX4X+h/0FKSadG9kcl60YvujUxoykRCHI0CCRSmAguoqqzKeXjv5YuIFxE37r2f+zm9OIP7Fy8hJKwJMileT8sXEfd+gw/Hjx8/5+e/syVMMMYO47vwHlTFdq7GiuGO+whCkwffGwfLgTOpaHeaGPjHAGOAARfqLLi6usFuMtcGhMC1oBSG0hZCQJMJggkHBwVQhtTZ54OdaLXTlyXlsmmDSMPEqwxmTGxpzIgwgKsUc61gqRCp7vw+QLIAEKBCmHVGrRXzpqEyAWigdgjdFczba6BuoW3GZt6BiwVhlA6N7QOCOm8AETzZbDHxBIbigBXztuJivUE5PjVwUGvY7ix4Qe5AE1Hsdjtcrm9wdr3Giz/4Q1xvtrhar9EArGiLw4MJq+kAdbsxtwsXHK0ODRRUzal8crLC1dWlfdYajqYJPB3g8OAQu3qIJhW1qc0TmxzJOEIwMOBKGdN0gAdHE1aFgd2EB3cPcffBA5xdrfHk4gLr1Q2YV1g1c+rOrULalIA1VQsGHRQF6wbzDGzqBrPu8OmnhN/6J/8Y9/74IY4O7uIXvvEz+Na3vg05YNy5+wAPHpygTISvv/06gNfwM995CxcXF/jRj36CD9/7AE8++gTn589wdXWOzXaN9WaDm+0N5plRa8G8mzDPc+qDcNbFKcoETGTgktCqQNhBiu7wDtc3a4GwpWRgBsrBCgTC9WbGO+99jE8+/Qjv/PgKWglSBGUFrHjC5CRih6tD8GqFo7snuHN4gNNphaOjI9DhIZQOsK2CWRqkbYGd4qAcYHdzg5urLdZXH3sKQkXbVVQyWTY9Mpsarc2DKzeWZqWKAcZUIB68NCIZQXCp2L+eLlMITAeWjs7BDcJqOIdMaeDAUfX0HegOQaHuJG4iaINzz3Sva/BmaUSEjAXGUp1KMivVOgQUYHq+oXkKxwBHms5ksuBjKQz2ICIzQ11PplNa2Z3VBrgLyn3S5u+Nxccc6mSNBU3s62hxNj9nylDvE29iOMEjLavFMRlNqreiwMDHPa0EETsTiukmATBvG0ACpeYAEUtrF6wOpRh7npC/y9eyaZo8cGuArQSEiKO+VABpADsTASngJ6eNtcPGDD4vbCRM10oAWrxtQtXba2PUpKe6sUfZ80zIPLCQDCs2oxSW2hBcAG4ROvYxC0bFwPOajE5FQCvyYIAxTMyVMM+zB/SbAzaC8UhynY1FKdclB8FmLEI9rWrIooqzdMRp62aMEuKsgayAWsAygrPsuiHGIUA/ydCizYMJ7PaasejFWmrBbsqgikgPagTDQDjww+YyDJ0HIVx+jdGxLYAwnaWmRwS0me3XIQoDm8AQPBgDChKMnQCcJ6GDP1ybLAMHi198rVEfkrBpNccn+l4XdQeCUS3YS3tANIrmc3T8+CtWXk5jEbYpELou2aoiykq99yLInbo7g0U8PM2/Gvqh/6r9nWAk+4tVDiMIZHzeGESmDB71OmDxa1a412cRPIqA2QCautUjpgmoz52XegzoASyTLxo+R6Ybie+XbbcqeURqkNEAH+ad9HJg7Ivqe/v3mIsRFONAKQXay2U59XTMQIrrkYFrI07V3IMAHsQHZXoZu1lTTxhLRr+WMIwrhU4aAqteNQ52hzG4F/tD71dQ7PtcJ2joUTVQre/xbou6pX4emJl6TyGWjIWucFnsKYYwjDmyPbVWaBzCUYDFAATiuk7UQFexVxrltcs6DR8rVMzeCPvB7Jfi49HySmN0NQa/0MHqOn0hB+pgmwHzPW8qat1BpSLSlpOzAKYuICTISEVRuDj7qX2+aw1Fmu0TRdBijcg+tz3TXCt2c8V8foFdrbY/VGCmGZODXFoN1iJysFKwPFuque1m4wAmgbAYoFhWfa3S0ModcN7l2lZbLoyjyYFKjXF0cIzD42Pc7Ha4utlASaBMKOKpz9lSxGlgr3x9LGw2vaiYDdSAzWaDs2ef43p9jakcQNZbyMNXoBPh8OgYx8cHAAFlKpimgsNXH+Huvbs4PrmL87MzXL24xGZ9jd28Qa0zdnVGrXaQTJp3astVyewJxNpMfmbN7DFj04zvfM6EyMUSvNCpABUHZSvw6ZOngFZsdmuQ2HoczM0MB8ERoXBBOVjh8GCFAy5ggqVxgwPFxfwJBQYAYxDq3DBXwXa99Ws6Q7LVTZ0dkTpbEFUQ2JlT/b8YD+0gUaR9F3IYzEPh/wgQ5dARMVPcLsh56EY+E/d35tX2jzFcd72eK6OahTSmZBxthhbs09TnPZHrQ7J+DtYYdpsq9LkOOjeeqAlQkTCC0A8NIvVvVj73nC4CILMHby923k/WnyF5sWfnfIc90iVsAVxxmSOFnYbK2gCIg4zx7Dh8SL7X8T5b6FxC5j4NuzqA0P6sYFlKAFqvUp8vi3Hq36cdRwN4zZulbtSMrEaDmdjbPsw1Gq6NudnnpO84OPYUBFK2PXMy2kdboz9HKRyVLfWfbrd4a/zeW6AjwOaNojMZOkA115xoWOiRoR7ACCaLtWJkOlp0ajIYjqyVyzLWLJ4R9hmhs8GGjN2yetKmR/bDqO+6zTq8kW6pAO+rodp/ahnB7+PUitp7p73UHvtLF1embKHfktrki+bjvuzLvuzLvuzLvuzLvuzLvuzLv+HypUFK5BtB0QoVSkAJWj9BHjuZoIG3TY8F+cz5I8480NmMmoqfVgTsdPuwpyKAyOmyNZxYBAsqFoABkQoLxtnn7r+1d+ZGt9Mra/yvRosN0nQf2anZkundzP/Q2xSnXMk3weH8TwCVhkOrekY72/KF89JvzgAAwzfJng7GcDh2rcKYNjKYSMPGOja+OuSxBwAqxhKiDUW9jgRrp3I6FozWnp2CWhFMGKoMpsk31A1BmWR+BbYgrXvWVNUdVj3YbMFIY/iozU4ai8yAnzAmmBMk2iHuIBM0d4aFE8Dp8ouDytwJrhTjqBBPIShkgJjWADAbqCKccWqMGObTqeBiDioRxYpXUKkokznXuTXUnfUdq6UHk2ByGpxsnmwJeYI5AsBcILMFW0spsFBzS0e852dwoWboDLAyZgJKcdfcLJY6qzSsiFCbQtvsDvIC5QkGJrOAu0JQk4kDOefsELGxjzAaDiYLzgskA9hNBNrI5ZVA2sCrqKpgfXMD5hnSdsbE5Iwwh4cNN5tLvHhxgd28NcYMtbEmUsy6M2CZWtqC3SwWfJhWYFWUgxWu52s8v3mB+rzicn0J7ATPnz7DN3YzpuMVAEKTGZdXL3B5c42z9RV0K9jNFZtd9RO9hIOJUQ4OsKkbbK43IJpgIAgLnhMTsBNjxlGgVsVlvcZmfZMpiQ7Z5J0msuDFXAEYKKnJjKKKFQMP75zir771Fg4YOLtg/Pr/9e/i1bffxr/8Z/8S/+gf/WPUtsPOZZCYUBRgn3fEBSgTVtOE+3ePcTAxNjcz2q7hpEyouxs8ffoEV1dnWPEhnn/8Ef74T34Amia88tqbePsbX8fde3fw5ltfw2q1wuHhER6/doRXH72Gq+/+Mp4+fYrPPv4M7/zkx/jkkw9xcfYcVzeXWN+ssdncYFu2IDbQoGX7kNSJBnYz2TGZVaijT8ZAKhF7XI6DYwirVcF3vvUtaCl47+NPcbm5xh/98PeAImAlrKjgwPVDIUAnxt1HD3FyfIqjw0Ocnhzj/r27KGyys9lWvDi7xtXNFeYq4CI45APsbiouLs5wcfHCTjVzQ7N4gSXJcqWvqJ760lRta4ojMga0VitUzT0tZPPYdFV3/BNVEKZ05FYSsDYAExq3yLwFd/tDJIJSpoOYHcRptDtQNEhrGeyNkk5iZ1iwOU0JsmAHPLqbt+tW/4ScuZAbYQpACILVI8bWVY648xnGpAAolBRzAxSTBc1UDD2mE2qyOpjunZg9DSJ5GjNBa+TBRMq+CoBHC+CrB3IYk+lxSDINxUneXOThAFLXYbUVS5MnAubqK7bJkLH0mN6jAAiJnYxmDmYeD0RQMDvA04lJMipEwEI9GDb7daoGejW2BHsfxVqqDhSTCFoKWgSHCADET0zbmFU2VjJ2Xdh8nEsE1qYCLpMF2MoBVHYmp81Bws5eWFu3kRQVpQCrMoEKQwWos7Mb1DoEFsyGaC1kLwLIJlMM8uBzSRvGtb+B0jCcm1U4kKfbgcki2Ky9BuACDJAWNosH3JydJQJebZijHbyuvtYPwQMK/ZPudh+7mAth+ESwwRmmuCBSzJoNFyxMAU4KQEhOEACeEiSjWbaojiktknnJGawWTJqR5jcD1MM9bnuN7AQBHumn2q3vVPvJfES/IN6DtL1o+B3owYXQNWZvf4WL2j8Z6CS365oHXXIjkNYuogNiXbIUYa4T7aZF8CwZAaM7B1BT2tXxdQRqI8J0KxaVdc0PQgaBZMLx6+MdXQCHX4c9UlyWIKeUnOijHNXcb8ReaxFciwBzbH58vzCCRdB7KfcTWV/tb9XhPXb4xEAnPblPvAj9L4p9XgTMFMj9Wj/kgQj0Df0S1+nQ9NhPsdu6xmbi7fR9UraIYl+HLks+73I/4SCfDFBm/2Iomj+UgNYqIuiNnFMDcMttTHh61OIMGcTeE8IQ9vVAnQUQshjeXvMuFwL1LVCXZTv0EDYKcp3KMR1AX0Ka6a/EwQ0KS4ElvgYKIs0e970rkzFE+eDncuB6WVw3iTZM7Myj/q/1faBnQt5Db9v4zfMMopapyYP1rGBC0xm7eevrgutx7xlBRQceOqMRMSxdHUDMmIWwqTvojWI3b6GiuLm+xv3WUKYAOim2uw12dca2zg54MiarAEG3ZuChKhV1F8C1rrQFYb+o72+A3W5GmytUbwAilABpMKE1A1XB11rxvWwBcLQ6wGv37mIi4GZL+Nlf/Dmc3LuHjz74GO+++y7arqFpRQAeAi5Nxf0cZLbm0cEKpXiavaZYse37NtsNWpvBVDDf3OD84hzEjOPTO7h//x4ODg9w595dlMKYmHF4eIg3Xn8Njx4+wPX1GtdXVzh7fobLqxfYbtaWCq7aoRWaKypq9kMKpNsGcVAs17HlD1/XqNsT6AC9k+Mj3L13DxdX19je7HB1fQFik7GidiiJNMCOwOpwhYODA0xlwmo14fDwEFPxPSAR5pvZgFa7CrBi4gKtJo83NxtUR7MZ/mBcY+E6tNsqptk8tbg62w4omZzhtm2uMcNBPjsEArdBaQBuZSegs8eELuugZ3ui+MGSbmOIVRPNDLNBv3Wd6OovRYlCN1McPPE7fL3oLIPWEcHMaGtDt9f7GhQrcn8P3Pdl+tBLpvQcgUnhR+vra2f4CWCprbchb7YX6gcDwyk1qFaMilZFIXGPj6tdwdnn4vqz23ShVr1fU/cG0D6rb+9QBSWAEA6fEoyHA4N5dIAXZXtFFaM9iaEfQ6IyXShCBmJnhLShIu0m+YEOdeY6QV/LWjgNXaYIxshNJfx96v97ekcHv8VUx9DmkDeTLfeXJROzV0wDUN/X9r5+xSBpHx/05+dXOcJ9fekonm7r9DHGS+aU3To0AN2+xnDL0i7IV3RDaZCP3obsFP+Q+g/tcvJFz+630KLdYz98kWy79CyuQ+4lllUfZ/oXNY++4LO4MvdqX3jNvuzLvuzLvuzLvuzLvuzLvuzLv7nypUFKwcICd5oyZQjbHEjpOIBFgd0ZagErTuejQEE8df++mKPGNkIGPGE2inQenCThQACHk8SdwlSSCp1it+w1i+Ch+YY8iMaE2gSlcG42a+z+8ySa70DzZBQQ1N/hKYi0bXHCMtOoAOAI3qI7FmwPHuAZT70DC261agwKBh7yepIxUk0ewFex4B4xO3tQS6e8pYIxx12JXg6QGFF3+cYmWBRK/cQrnGHEBxqFwxMu6ejyMJ+1h8Wd4pzpxiCEWeF19VOdPhbO6wBGQQQrNRhdYKmYjB3EZMCcIuxsTZROTQOSGdjA2IGCGQvugDAWEp4c8EQMKuqH+syh3pqzVbQKZQGkoDj0qLYttIkFyEEWv1Vz4jQPjMRpSyXKYDARoD4/RBW1zmDYqVxq4YzsAQXiAiqEiQGaAWpGDd4UkN3WwC2loHpAlBpjKs3qa54mQM3Brh74EafcMKYccrCBsWDUXYMdVG/utDKnhzRGBN6F7IQpmCDtBmfn1yCqmHezMT85+9T6Zo3Wtphn8dRZ1dpa2NOBiaU5UgOWgRWy20FaQymMooSL3RU+OWesN8e4WW+xu96ivP8T/Myz7+L+0WtQAW7OzvDk6RO8uLnGzfYGDRW12kloceaWWgHdXGOuOygUhSdAGcwFZSKsr29wpTY/iArm2UCJEfhiIhBXc1MJe3o8m5mFC5o0iDYUz5Zy7/AUpxOjygEefOMt3H37a/i5v/xdfO97v4PPN58DO2O/EWIEcwrceccKHDBjmoEDJhzdOYFsGx4+fIg1drjZAnW7wxY7XG2v8eLqCqrAhx+9j3f+5Bh37z/CG299E/cevIpvvfU1PHx0D/fuHeHu/RPcefAtfOs738bP//LP4+OPPsWnH32C9959Fx9/+AE+P3+K9eUL3JQNdrsb1N0OVSWd7EbhEydLYWxhdYaoB2yZMnVjKYzCBvp5cHgXP/+db+GVVx/gBz96F1IrigjAFQxjTTo4IBwfHaHwBIKiyoy7Jye4e+cOprICVLFd77DZNRjgruHs+TmeX5xjxQWrCbiigs12xs36GtvdbGkwWFDYwjZNLQ0ZaTMGHFIHXhEKK27WN9hVg1WVEorY9a+Egzu8iAFXCud0gWoBwQAzJC2do6aje9oAECBq84unyQJUDtxQdLADgaAc5zzVmI9gaRkJ7KfIka7TcOBDjXFHAQfpNTAsEKmBaHKHcDj2VaunoDQBblIzjmjpfXwtawJpAkoKMYeBuI4jRjJI+SLrfdCcwagDQjL1FzRToYnM9gyfi0lt0vwUt9qchFgaFCICoj6Rwm6avIk2t8w9b/2hDqIy8kJyoEqsdeJMPHDQjy/csQ75+qXeB4gAlHqaWiiKr41GuFMMftoAiXXQda2l/HMGp2JBSqityQlCk+h/QSvWHAZBqYK0uex6KjFtNh9FAWW3lYCdNmy31Z6o5IE2B6BqM7tFbcwj/ai6Y5+oQ3ysOw1IYOtBNQZMt2sIMPDtAuhla6eBpq0f++lmt9Uy0G2yonCmDQ9sJVREGpLZBAOwQBUFHUyeznGF9UMAKCMwn4GcbmypBxUiEBTVAjyNissV+dofARy7OtLE9fAFxdgG0M6UJSLNQ9gBFHWOoBPQ65bsikPQYQBx9cCRVTbZDbTPrwgI97Rz6P2ZXeC23u1oxVeoJBiof+Ai5LLkNj8Q/WG/BXNOD6B4X3RliR66cZ0bKRmT/WAoA3tcgnqGoOEIQBoDU6Pit8C1hx1Tv0RbIn7oetM/sHrrYog0X4Ll2GlvTQaMvD+iOgmeIXgwtLep12JkEED2ScxL6copq8FEuZ8YQoK9LVELGj7tw4WeUjJasKxTb7N2xlxT6s5yF+2OAOYoA/4M6nPfpocDnGL++/UjI0NUMAOCCXaKIGeEL4NdAhlgzvHN8TYZ0OhPty+01WGuEmjoHNPY6mn5ehvjnbF/A3p6ZgvuD1M8GsMEoslAWAJo7s0BrQIiB0KTgwwivSV1uy/6NcZFMmhMvZ32G+YWACRNXQfAwWO9gnaAoVjasrYD+R7Dgub2HmP/M2Btk5Az2wvHNCAGxnWg+t6XPf3ipu1wtbnGXCfUuaHODXxxhkfr13A4nQBKqJsbXK/X2M4z5jZDq7Fx9iC8n22pbl/BgTBqjMzEVlf1dS1sI2vGAA5hiY8A4mTVCLBuU80Q/tF0gBUbw9Xh/Xs4uHcXj7aP8fEnH2M938BstnGWhy6x3wsRSOzndLCCNMXx0TFmNNRq63lFxa7N2M5bqBJevLjA82dPcHh0hDv3HuDw6AQP7t3F8fEhDg4nHB6tcHD0AA8ePcArr72CyxdXuHpxhYvzc7y4vMDNzRozbcG1QFqFtIZmG2AEA9CouzT25dL1Z9ddhDLZnqsQ4/7pXTx8dA83N1vU3exzrZpeYLPfp6k4k7fNkTIVHK5WWK0OoCqQaqn/5tpAhbDb7rBe36A1wTQRKtnBpXmuBlCr4mxMAUdzICWMlSqkzkwNS9vX0JxtLWauFcHY9sEeCYWjDEs5TwnyTsahtKP6umG/S4Ir45kxx1L8Yp3UAIyEQ0R9HsX7+1oWP5m4A3HSdvc6q+mSrKLXl92npO7jA3Xfhlck9Ycb0V7P0PfRCl8zF22Q3ocUtmFOqAQKBUtQQH7CbuxFU+CMfbrrMHJKo1ySNdbGzsKo8W5fi8jbuQARaawB45JtviPzVYX9GfqhyxkQ2tTXC0Uf41xfuiVDPIB7qK8hafv5s9WmIkDha1R/tsm0rVTWpv46k+k4EKqKHL+e8i1ATrckmxImNYxzNDA60OQoWLLHIer2gC6ekYKCsKHtz76HyIv6j7Bfhs9o8ayl9Of66X8kMC/qngtQl9NhulsfjnKca8Pw/MFepeG9wwwfmttrNZawSbNfF5VAr1u/webzrTctX6m9q/T2W/ULf325ZvuyL/uyL/uyL/uyL/uyL/uyL/9my5dP94YGhp0sFIGnYjOwBlAgTUEcgQdGnjMjzr0q85RAIw3qeg0gkDuGyPwacMYdgqcVIgulxSlgdmdmbeoghL7RM8emMWTEJjzTvEXwR6yG5nBhA2+kI9kayPCAKlk7Lf2Ln15jC46zUfekc0jDAexbRKZgD7I0XZ3+GHkdE4McuGT57AsWp9lgF5digKym6mkQugMkNpN+uLenKQmAWICftADUT/yq+HuLwpgnKiDW1yIVwYhgxDMFxIymDeSBRKiCJJg63NkBzSN+CvIujGAco7EAJCgaJwO7Q83qZ6cXazWQREnqcQUV+DPJ0/b5qWG11CgWzNak2J/YNvezOxwLGMVP4iprOjYssKHmr2L2wDiDmjmVqzS02NS7IzZOIxfmDOTEKWbAT7umz4QcjEUotDKHmIidbuaR0cbYXrRZ3wsKZu//SB0Y8TtRTSBgpPozx7UFNQInYwgoAkRgw2xpriRPJZv4SCtOpS8ABNIA8hC7akNrFesm2G0KymqCgCBKxgTFdjLZTmvbSWViBjdyh4kBg7Y3W1QifLY7wzlfmaN4Vlxtfgr+H34DX//GN7C5mfHB+z/AR88ucD07MKl5IFeMbUGMEsj8oM2DJWysTswCpQlEk59yFigJZqmWfnAqEDFHs4r3qVSUcoBaLbA/VwPbEQhzI1xf7fDs4gqre/etPe7/OeYJBxR+TgLzBFU2hjh1EAaMnUmqAFzwxquv4fGrj/H4zVfx1je/g9/7/T/An/z0J9DVAfSwQOcGnnfYVrEUHrsNri7O8fz5Jzg8eISf3LuL1197HW996y28/vgxHj56iNXBAV59eB+vPHyAX/zFn8PFs1/FH//gh/jxT36I9378Yzz//HOsby6x3a2xnSvaboNWbSxWjbBt6ukKGsrUQFUx0QrV0z8VJUw6QcF49Oor+M7XvwWaK373X/8Yl+sNChEODjzIcbjC6mCFhw8fYLU6wOZmi6vzM7Qm2G4Fojco2OL68gpzrWgKrA4OAQZeXJxjc70FVHBwYPpunu0Et1QDcajCGN+IQLFm+PyINEyixhq12RJU2damCLiKGOgOfiqVHDDpul5E/KSwzW9xfddBnoTMdRbOPiIHAqqx+xG7fjC5NYalUOXGODex6fTOxOPrHhoiaACYrClpn++tGWMcsSeaEgeAiuNsxR3i7jwNhoIMmjubXTDZuUOTfQ3mYLuL/9nWcxaACufaxB5dCACKBRHYQb/qOlpNn5DZDcvTxAriFVTEtIxa+o4VaZ4GNrBqQeEJtUV6PkJBMZCaL3zMxdKP+XrQGgCxvjKAJHm6TQ8NqNss0noaDE8LCjLgLDwIKCTgyQOnBECsneKn6k0E2FNneJ+AUHhyx7Uxy5H4Ap0gYgJa2BMGvk19RBaghIoFNQie2s5ksrU2rKkdDMBkAbwm7oL3AJy2sDqMDozdJoGDhUWbhVeKg7GAtN0mniBqzGRKgIZtha4j01Yh9eCuibPJLOw9EsE2DzbkMXRAYx3KYA5BYbZKMKUhp6BkbMHSdPT5a7bdyAjACAAUsr+op+mLtiLk102+BYaGvGnWX2OA3tb5uMqDKmkD9vBBTKUIZFiQtYMeociUep21yYcsAhRp57keMgMaPdBG+Q4owF/evP+3XiSDO4ABZaI/nWfA5SDa1vsy2h4Bod7XwyjGVcO/1ud56MCviwlM3q9RB8IANHM95+ojnzqmG0QATIZAbBaXa6YenoyBovwkGBHiOcPnfj8Q8m/rSQx0voqW1/T9BGefZXuBbNsQR0u20iy3A2dhLGrC/7JTRkheNDX2ZCa+sV+MR8UoDXM7G+MMh3FwJIOdyMoOaga9xYoMHsZ4e12DWYhHGejbq96FNMxbdkaK2F/5+0UDjBLgIc3KB9DJuqrvbyP9uK2yHUgUv+TOwWXI1Eiv4JhKMmTKdsjBYCFmm/iBoaizCqEhWJWMpdb24Mj69Gqog4h8XQVgK1SgbbL7AQnAjea8MBHzd0uApyXrYft5ddYawTzPaJU8rbfZXLaExdiTHwwRJKDQ9Z6q7YWFCFdtg40fMhBR7OoZ6E9+iHv3H2CuDS8unuJyvcEsAWKPBSrsvA6OiMC+BFuTeR5A8ENEom6POZjV7SEjqupzOgDCRAGIt/Y0ALtdw3qzw53Dw0GlEyaytOkh5yafjEijZ3U2m8oObzFOT05xenKKk7snuH//AT759DN8fn4OUAFPbMZxixThDdoqdtsNbm6uUMoxzg4PcHp6B/ce3MOdk1McnRyhlIKToyMcHx3j1VdfwXb9Jp49e4bnZ5/j4vlzrG9uUOcdapvdxrL1rBGBxYBA5Lar+MQqrvPc04ICA5yXifHw4UMclwN8fvYCN9sdFJYmvjBjWq1ABBwdH2K1OoA0wW67NbZVLtjNDa3tUGtFnasBTLkYK1adsd0au1atZve0FmBwSYAEgZ0eaJBXV7EBIFGo7aN9hCVonTQYf0YFFuCVhIUg0kkLhst88er6v3/sSxsi7Wm8WbxujK6eQ7V3XR96m3K+dkBmf41oBxrG83IVHmwJq2Ff84YvEDWjYT1arA3out7/6LondJyvKTx2jTeqM/Z0JW390kGuYReazeqgIm8PuQ9oZHCKg5CS7eX+fB+Nrh/Ntoy1SJqkPTdWNQUmxlt8LWBCHPgz7Ju6jqMucgFgTxEg70vN8bP9Rx/TXHICtBT2k6r7JZFKOfezGhCqvv4jPhF/Rqwtw/qTdYyXSpcLUKxyw0riEyfbN9gjlPbcaHsQklVrmBthC2U9NHceDnrqdb0F1fH1bpxHafilbIQ8dcAYDd/H5BrlHNn/fe0MGUf2f5eNeN740sFOt4rlaC/LIA3UPxmsinxHl5aX5/jIvNYX7/5jEGNgUYe4I60h7Mu+7Mu+7Mu+7Mu+7Mu+7Mu+/EWWL8+kJOrsFfAgsIM0PKgWudu7q7KXSGkDuDPHN8YcDvNwvirMyUAWrBGwk5zD/1ZABEyWJi73WvnefqIYDo7IYMByj5j1tH990+8bTAMDxcXq30XgC0m9rxTBOk7663yebwbj5D0Ai/Lq0gXh7p3eWYR0BDAzwOGo8AA7uYPF2WTgjhclRVOHCKkBcYSNBrxQP0lmzhWGaE22iXDkN1VMxZ03YunB4kTy4JkGU3EwjqXywuSnx/wyMoHIFGHEHkxUynQCUCOaZi6ZIsecYAwCQ0g9lZn3qJ8kEwVKmez9wXgB64dVKc7qE45BgqLZc6AoXDCBMU0FAkHVBhELXjAsdRyIfUSBYNaq1bigmAjk1yoDksABS42nwj7ePozUTyEbaw9QGCCt7hJjrArbuWtiEDXMQiBagdnYothZLpgU6h4fZvWUXQZGKkPgaYIBhgQGlCA2PiUVB4C5jFqaLAtgEas7JwlVBAwDUKgIWrX/Y+KLCpoCzU8Ygw3kMIugiZ1CXilDWwNPB2hijB/CBVpWmKtA0HCDGStsjAVGCGe7G5x973dx+q//CLMQ1vMVzptiu5uBqlBlNFRAGyYA20Z5gteclQQJ6n5VY40ZwB/BuEWqaK2mw3ZWQUknzwxVY0nZbGaUUrAqK9SmuLnZ4PnlFU6OjrFtAHYWKK+1Yt5UzDtLRzc72KxphTozHK0OodpAaKg84+HpXfzSN7+NV37+bbz9l34RZ589x5/86MdorOBZAak4WB3iweEhXnnlMdY7xdnVFTDP2N48xcX6DOvPn+Cj997Hg7uP8Oqbj/Da61/H49dfwZ2Hpzg+XuHxaw/x4PF/jO/+6i/jh7//A/zBH/wennz0Ea4un+H8+hLbm0O07RrbusM8s6VPbDafWiku/xUsCqUJyhOOTu/jtde/hs18g+fzGtuLK8w64ejwCIcErFaHuHd6irKydAutCV68eI7NzQab9QZNBNfbisITCjF2uxm7eQYowH2M7W5GlQqGYjf7WDZLUxaBYBU71W5p0dxxywCaBb6CaUvVUhlaQFx9XYm0VAY6lUi14LodCksPUExmSoHLka1DFRQeX1+77F42ShyoRHq3CKL2dSjp/JtBaxoTpFZQpFJxV/ksLbVt6A5RYGIH97CBZ6wZ7LrT53s4sWGybqBDhkgDqwVi7HQ1p/Mf6EEEC7xFWhzK08Ls6QBKKYjgMRcPgDlNjQQAhODjYHoNygneCRa/wg4urTNAwEQePpUGgTFYgYq1WwQVNwBxwIGtv5qBD60NDSzBGqUQLT0Awba+i8uZKpx9yn6PsDzFWuvrSdgLcaq6uJxN7KxN4sADAqQZQMnexSCsDEjgjzK2AEDEgso97Ov94GDdDJ4i0sXG3zKaM/a9dnsmxtgqbdfVVvMzY3EKhhUbMhJbGyhAIghdqT7mJfuLPTDcWkMEiUR6heK0f8/mFIChEH8D6dpX0S7K6yyFhY0lMdvaDM0UJNEGoQCF+DMlAlhDEMI7IYMQMBCW2T6aAGbyoHaw2nSQ+RiIsyY2n9Mx9RMcoyOgqAM01OdNBH0A9NRxIVgZ0OjgYwtm+VgMZnQwgKVdkcFV+Il9B9jEexFhoa9mEQ9gBRiFFNn/Ae4YI1ZjkGTs8wgt2Xhqyn4vPk6IkE8/mS8KY4gLgQp9EXfSYLuLLr7rdRp/HwO0fZzyWctWIMCaff/CwzND0JY7qj72QM81c6u9/rMHtnyfEYj5MeDlwawwy5NZCcv9jJvvvuVYAqfg6yrFjRj1EqXNmfMUMUYxIhFys/2F3djnbwA1RG3umsrtsjCimzrrUYBFYkPS+99Ym3q/hg6n1F/2THYm3RyneIoHnNmBlcVBmwL1bVmOVo4fRadoBwaATK9Gf0RQXBMppX44pg9wiErqcbI+iz114bBjPEF3KCRy9uGUo0UV3RaQlJuIcbOPqTrIKeTYdK2zEZMmqCnBzX5/HJ5gb0+wHuc64UABRGpsr1RLsLkz5fqcbz5qSrY+SbVUoxXNwWf24M1uxuaTT3Hw9CkagLnN2IilIQ/2Qz+qEaYjIkVT7NFjLSbxNLEpkF6flAcfFB/bmB8GgqHsW/YUbSKKOlest1tM02Rg5Ni7iBi7T7O11vbLtmeKTi2eB74JIMQ4PjjE4/sPcPzKPdx/9TFurm/w+fMzWyttg4tSJhyVCScnJ5gbsNntAGlo9RqbeYP55hqX5xc4OjzGyZ1jnN65h9PTY6yOV1hNBSd3jvDW6Vt47c3X8Pmnz/DZZ5/i6vIFdts1tjsDCGmb7TBPszlmOtMOGo363D1GoDLh9PQeiAlVFS+2a8xNwTzhkM0OmMqEw8OVAfOpYLPZOFuWsarOtQFsLLgqilZbgscJ5AxdbgM5+jr2BzlTXc5EQ7eFIPq+ONchAsT39DFHtD9jseYOC8UCjEALDW3reujSxZzs+4XxGaNNEwcl8hrAZTomlx0K68xM43rhFRnsQYD6QahxrcqTVqaX2f1eqp5+b5jzMadD98b63HU5pf0UvihQgGdGmIsOi1L0o2kZSuA5cu4p1BkyTebMVLceUWWIg0lFDCyqtXo39U4PNvRcxRXOKOsH/yJtL/n6hD6e1n2xJvknsaaMbcBwvd9CgLPC+dxwNdStHkKkeFyMY17n7/X3J/g45EZDZ+sgC8Nz/Ne0PEMWulGQYykj63KsiIrU0eP4+zKEAH3amHM3OOIeXyOyajSu7yFH3sqcE0sbXcc+6XfneI2g4Di7p3GfV3Rx+CC7pkvk2F/pl8y/fR5knwyNibfdqmvqi9EoGodnfPdob+W9SFs4azcKVtieQ+3H1oSML9LMUfQboevq/p592Zd92Zd92Zd92Zd92Zd92Ze/yPKlQUrkm/8MrMWJIPJNfzDShFOSLTjZHTyWmi02Pn1D1zeHhoMQ8wjAT8o4YUVyKDRNwERsqpYZHPxzYU/P4RvcwZOUtP2xd/QTqOGgsqA4oamduM8AhTsRrLaSgRXxNEDh1G/D6XqIJssO+QY6vAfswdPYxHtP29Obsx1p+D58w0mMVufuNGXkqV4LxTMKFTux5YFHUQGpGLDEAUZNGkid4SleLQ0Nln6G3QHSmp9gJUJr3joqDugZHDHw+qTDwca+NQEVO5UWrB2WCs3YgwB1KugGijA9TZZqy7tDxJhFDBDEaFqN4h7mMKvutBAP8hYdUhw1A28RGRSFmaAkQ59ZYFTUT3ipgoTAhYDq7dGgL4eloSETKGWTd0uHU6CqlirPAwItUgYRoUo1RpNi4DxugqIHaCQACsDGDCMqFsydJoABLkhGEG3mmCklwBYWGFISGAMM0ECWnoxgKaG0eHpFBRU7jSt+QlnETtxZ6jz7W9zpqX7SubrjromxFnFhT4dEBnpwJ1JTZ/rA0NYWk1OgVTGVQ5/bzkxj+ZNQm0CrYFLFag3MjdFIUA8mtIMVcHiE7eYa7WZ2IMrO3tcmm4dcfKyDvcgBlOHACV3hJ2dbn2wxRYEq4GLpGSydpaVhbFNDAeHFjvHO509wPt/glO7gxfsf4f7jB/jk4w/x5MU5Lq4usdltUKXZeEmDoqFMK9QmYCa0wrjaCZ4+/RQfHt3Bg298HUwT6m6L9dUV1iHXhfHwjXv4+a9/A/+HX/81fP8Pfop//E/+V2w2azy6cx+/8J2fw9Onz3F+cY6L7Qabm2f49IP3cXhygjsP7uPNt76DN998HffuHOH+ySn+xt/6Vfzcd7+ND957Dx//+Cd4552f4uMPPsTVi3Ncbq+heoMVdhAVTH76XVQAOnAnKmO6e4LX3nodp8cHuHl2jv/4//R/xIc//ik++cm7WJFie0NoVAAC1usbbLc3mOeK7XZnKdqqgSzazcbYCVx/NRjrDwQO8BFURQYZm+sIUs2UTZ1dAiA1xi5iBoIBLE64+yn5yDgg0heLcI77apZsQIw4bR2n/8MpG8wrHiV1Bz1HIIQ8fKYC8TXNNHk4LS0oVhLBEME5mx/sn4t4cky1dxJTgjVETIeLp0xhLg48cRCuLFliYn53HacgZdMv2tLpbSlPYM8q6mm4TK8LkaVGhfqpeE8JIIpadzAmK3WWvWDgc8YrspSUhVbQdAK71nVAUaQDqRp9Tx4ssj5qrg+NM8rHGaZbCxtDBCnBCZAMHEgK1ckczx54UWkgVjTrJpeDzswVNogFGaNf1EfehsxShQagNgAGse7bOPZojLrju+tqk7uwQeCBAWMiEjQP4JKPq6dui/iQNrMJXDYU2kFKasKe74DJljTTQQHMU7c9BARtamx97KnzVH2tgrEQUPF20UKHxto3goMA5PemTxVMzhIoYdsIAoQEMpnVAbwWXnRrlxiIVgWs3b5THx8OW8M/G4M+CVLPIMYQRPOxp2E+98IDI5j24AWQLFVKBlaKGAsczBTvsYCMX4tIQUxZrw7E0XwnoWDICZS1yeu0AwCiSDB/qaYN1oHktwIwX9WiUT9n4soglYWQAhSizni3ACX5GL0UNLm1D0j96zZKBM0o323vDPaGMdjbf4l6UQ9Q5lfDC8doFRCZCP2jGJuwR+Lxt8dnYCULyVLvA+rPeundXqEIcC6+H4FQWf+uhzNQPj4q3uEBtvGASU5Un5+ByBsDaAE4Eg1O3R427KnaejtpUaeIr0UnZWf1fZLjSEJKcl5F3WjoHjLwc08vqIjzLR5mtsMYGgFpByoCgJKvOi5/ioFlyLUIUbIcDkosZTe6kcyouiVT/pRBjMP2TvAe9WfEPtSi5rauB/+HwUAsNScr2bh4HweYVriDScVtBSAYYb1uwxpt2zntGAUV+O7Q2skSpozpQpf5ZDaONQW2zqk/I8DiMT4atl30f0iDj6MBNCU/sw8dOOv92YY9dLZZgTIDTS11oDJDSgHKhNZmyNy8H5u3I/q8s9H0NJ63ivaxDoau+HwEJub6A0KVlgzQ2zbj7OYaG6k4wAG255c4PDnC5eULXG832Oy2aK3mYSx18Cqzr1NMKELYVcX19RVeTCsc3b8HIjtwMO92mONgBhGO7hzi1Xv38fbPfgtPPj3De+99iFpnHB8c4dWHj7C+vsFmu8G2VdR5jasXF5hWKxx4Wrg7d+7g6GDC4eoAb771Jh49foiLi3NcPj/D2dkZLi9eYLfdguoO0Bm+ggNi+welYKdhy4g3FRzfOcXx6SFu1ms8ePgIp/fu4LP3P7JFWsj3TYw6V8ytGkCpmR0UukBr6DSfn8FiEzYRws72aeP7eRrGcYAz2t/u07J7luCOnhIxAHjjGOsgo/kCY9+OeRLrl4MAxjVlFG+Fdjaq8Vt/BojSLok1I4l8fE/kE64zUca+qVfN5VWGDw33wgHkjPbFIwBkut2sqzeQ4rDh0jaUUJwI0KetPEJx0Cxss+ZrVPcR5ho62jwAetK0aIjr22GdFIQ+7yamHXT0AxEK2IGCYe2I7nUdP64TWMgJsl/jgF7sB+L99s5B0fsaBuqHP0yEom/68EZ9Qqpiv7wAlAwC0/Wm5su6X5G6Dslrg1m92899j2BjkIca/JHBPt/B8CmKtqdyQemWWkxNWujUUVcCg9z6mpN7+2j/0NZcZq1BaUMMYpBjF59p9qbGbV2uEEtel+eXxgvD44bqpy3ncyvBaeMNY0dlG1x4aPnV7fcsPtdet9yj6O39xKLi4639d9XF3/HZ8Mfyu5D8EPp92Zd92Zd92Zd92Zd92Zd92Ze/wPKlQUqFy/DX8oSFbXwsMGyoitjW+2mp2CKK5VJStcAi1H2pvjFiOFuSb4KJJSmWNS7WftrdwDBtcMDbRjwyBLhfF+YfNlBRMAMpzJGZwCHE6aN+Ing8tUwgQIunFYvNuDs3LY+NdQ2Fy6E7vXqAzOjJY9MuEQyGO219t58bV3dGGvjFPlNp1idc3DnUX2FN0YjCAoX8FKgmm5GKOuOM16kJCvd0ECpiYySACqVf3QLVlrKv05cTiCxtDlNxRp7ZA3LGpCGqQG1Qv59AkNqAqaCJsRClM8pP2RIEtTVwYQfF9LEgZ/gRMlYmLpFuDQg8AfnAU6RA8TeDGFXFAHfh9NEGZksPJA6OqyoomIAW1P4GXCFiY1IJ+Vd3UEs4mhQQAwkQFNrUKeGNUcIC8OZ6UQCt7pw5CeBilPbzbM4jEUERxrSyIBA1AU8rAIJa7VStsVrYmDcRMCzVWK2AMqBUTc7rCmUKgMGEJgXi6QNaq0inZjg4pFlAdq7JOhHU+ABQSrF3q58Ujui297NE5KI1B9G1BFYUB8WJiJ16VWeqivSLlVB1AhXC0eldvP3Lv4rjR4/wyU/+GE9+8H3ododZACkzFM1Otjp7Uboh04kWcy9OcNuJ7mShCG+Yf9/cYcvCWBVLG1irQEvBZnuDpxeCq5tLnNIh/j//7/8XXv3Hj/Hex5/i4/PPcLNdo9YZAcyL4LVoBeZqzvZpBQXjJ589w816xoOvP8Krb7yKTz55H+eX57hpDVoNvNh2gsfTKQ4OT3FwdIL15TU29QKvv/o6/qP/5D/BH/3z38b5b/+veOvt1/Ht73wbP/jj93C6OsXlk8/xu59s8Pl3NigvnqGUCrpzgm9/61v4xZ/9RXz3L/1l/LWLz/D+Oz/GH//BH+PHP34Xnz35GPziObZQ1Nl05CwzoIrpYIX79+5jhuDzjz/CE1I8evQA3/6Zb2O+2eDikw+wvbzGvBHc1A0u2yV284zaqvVDptcQB8IJVOf8HYXAKLBUUA1NqwM1JpdRSUdtrjeuq23i2klxS8vSafhjjDmCjuFfS3CiA2vcuSsWDfPTqD1oIDLINJwxSZBrmKqAhI1ZzYNVPUDtDAImYZ6GwnWTy16uRe6Yj6BjktQ0BVletezHYH5T9XnPZKxGwcjUOjtLlb6egajrjGDM8IAlYCn0LJhKGOKruZpb8E9yLcs+jqnnbZdwDLteUQ8IkAdWTBdaKj848wN5GjON9VMAUKSja2ljoHpdmQ1oQwxmRlMLLFkmPdMl0qqPmY+4MxsIyL9DypS76c2ZHn1PPd5kAAD7MACwxeva/boEAxoIjJWtGEtRMFclfxJ5IFdTdwXrGrRZKjcCyFOdRdCqB+AcaBm2jC3cXT8TOmuPGniVIl3FoKctiCg5x0rx8/MRYIkA1tBPFLp1wQpECPBrMgBEEIQs/YtESgUNgFI49gFoA6EgQFQZ5BW1uYYI5vVgUwYNXb4jjdsI7smAma/9AapQn3/JeOZg45QFhc3HQReYenBWs5i/C/npgtCD1G5XBrPbrevHAGgHbcPtBU39ADjICS+XsBV7cMyBbBn4+WoWvgUw6mwLUXe3Ud2+0bwu+lEjNgTo7efdavjw3AA7dKue+nMQzA99sDTeg/73+Iqe3q2HB72FQ3sGmzFvjYBuXKMdPOV6NR4Y8yLTaEVdtctozIGXii7104IhA1GB6OtlwIvg62HOLf885+JSyPqvw8D0J+X3Yw0oOmHRjtC3PlLDjRkA5wCNxYs530HZP+LLvesx7iwpeZsvtqFnicmBR7hVX0UuillxAzGNbBnj3Os6qjP8pVgHuGB4Q46Vy0TsHyNNnAER+u8pe7EXUUthDF9f492qgHIEo30tVvW9ut0HaLK1gSJ4ziAd2F7MUoKAPbWtgZYCgG11EBuJWEBFEL4BY3/t8gAbNgNQhZ2nlKwuo5xnn/gcibRrjJ7aTkUcDBLp3NTrb2DvabXCvdfewOr4GJdnz7B++gTaDAxsaQ7V9jPhU4jRSd3aq5V7nBjDAagU8iAuZJFykXw8iCxN/XqzwW7e4YAKfvCD7+PkvROcX17hcnONWmc/DOKAYBcQcU4QFoKw9f3Z1TXq3HB09wQnd45xdXWBzXaDWSVtTRXFCR9gKgcoqwPMuxlVtrhzcgdf+8638fT9T7D5+APcu3+KBw8f4umzCxzwCtvrNa6uZtx70MC7azAJcLDCgwcP8fjRY7z26mtYb65xcfYczz57hrPn57i6vgRtb1BRDahIhOqOCibCwfEBiAvqbouzzRqlFJyenuDBw0c4/+wJtjfXkGr7XNEZ0sx2bp4PXX2Mc0xc33QbgQA/QBMAfXja8jDOU3cM4xvz2lLYdss91FywiSFkONVP16Hkch82SOrvKF2Uu105qACTH/g+JFejrCcPz8k1MOqpHdKkLo+Un8cz/OZBd3cAdbQzVF0H1CYoHwoZlhntDx3aFm0fuZG+yHpZ9r11o9UFcf4p7CfvjXxMHIr01TzS3QKjDMDXNDgxkQ5rXDRUEsxE0aDcRA6gLr9W0/YLva+Z7rHboku9EXuH9Dnk+tjrmJ/HGOaLwyZs3ilxbYxp9E2M3y3gzi37JRhTx2vi75DTsf6qThwscU18T/mKvubaH/lUlyHTgYOudPnQ4bJUp1EhuO92WOeS6Q/hqx0aNvRp6oGhF6I9McaLHhouXNjmXv1sI3pdF+AgGus0iGjaZ/1dfT4M9emjg9vj1Z/Y9RA0NMNS1jqAbRiPxaP6gPX6/GklxngAeO3LvuzLvuzLvuzLvuzLvuzLvvwFly/PpJSAneEkebgtpNomlCdzDpExEXmUNdO6gbsjWZ2+u+TmThzQEemtnIVJmzsx7Xk8pC4DgH7SGv43Ms0OOfgGqpk2KzbQEtdoBAz7eSpi7o7S3KLRsOfup/VaODl8E9u05elTyn4bzsOppxcAMIawLe4ZDsXYDsdG1oKr7I4B9ve438QCtn7qTuCADWecmFQscBsnx3xHzuwO0yHtD8HSy0n1dEOxEafJHTAAnImpMI8+CK+3A2xaRQEb00485/Zp0+ZBZRhQisic06SAtNmCxTDnagDkEmAmAiEGo4CoANpQzB3pACELThAYrAamaSKo0lCKWAord8AbCMACzlUiiAqQWJq86oFic3o3Czb4uEpriLhzYnwQgceQGoG25qMp0GZjIzCwDwioTVC0gqigsIG3oJyOGYaBeyy9UaRV8rRSflTZxrG5s8Irk5TN1sdxXeECrc2DGdYu8xYVTGJgQWOQsVO/lnrBU9rBGEVUG1QIqgxhAkfKO7D560VBWlFWE6DRJmf2cLDEPDdjK/K0gAVAqwWVBUUZZXeMb37jr+Jrf+nn8MrdN/BP33kfO/7UHFeygnWmy7s7YuPUN9SdahTOHWeTIYZNiOaAOHXmMDbWKHfEWnoBWLpFVaARbjaK3XaLm7LGzU9vMP/oB9iJYl1nCyrA0t6RM/ZEMMHmRoPIDKEZHz7f4fziHGf/wwX+8T/7HXz29Akubq4wi4I8PZm0ivemCT/+3m/hj3/wE3x+/glq2+CzTz/Ei4unuL75HJfPX2B9eYNXX3sV/MOP8c1vfweffPSv8ckPfooPC/Bzrz7Ai6dPcPlxw+V7P8Wj+w/x+tvfxKM3HuBXf+Wv47t/5W/g2cef4A9/5/fwz37zf8YHTz/CzufEbiqWjuHk1FhztltMBByuCk5WE06OVthuKp49vcT2+hLzDpjrDk3mTNWRAFZFBlxCp/mEhrY4rWnzV8UDUa2m7HYgRneAhr6B63ltfuLf14jmp4yTJUKdJcfvJQqXqa8/AlCmMbBJrWq6VYb3WooH9lQwsPWKGaGyI2lbxtVC75Mz50GzveTz24JYBYCn+3J9VDw1iOl4Dzi4mmHyFKMEY1vSHs5QBy6Z9uF0BOe6qV1PATqALtQYBQdQjQCAiK1POjKc2HiIv0uADKZprDNU3KFqa08LswDBRDXZeuNgRzAZkx9ZHSIwRb4OBFhlmgpKiXQ7E4gN4NIciGgA25bPVSgKOTBYfXx1YL8YnM0WCAo5FWdVM7Y5EFmqUTsbP7BvGVsX54loA79qbVC2dJYGlmYQF5QygZgt1Y8KpFa0akx1hjF2pj9Sa5t2mWew2RitOftMgK8cJOsMWU0DYMzOiufyLp0xyXSdAayDEZMSxLN0So8AObkFuokUG76qZt9bH5oDv2mDMZY5uwOC6cOC2AhwmnviCWpri7crAIAGOHJd4HPIUrU4eM3nkCdRHYIxYU9Zvwb4Hewgrgz/9QAH9aliesXTG91m8BlTxIzB0w54i7TA3Y7uwaoAyqM/N4P2/V2WzkZSn/RrA5hBOSaZcvbWGH51SwRmIkgTp7e7HWzfBogoAn9dBs1OGkBqfmsAQZgi4BIAUcrgUrKSZvwwIlxj/w1sRoj5M+4oYDYIRU3ztgEYcztsBrfZuw5Kdr1ctnyO5kuGoJdGvSifFheOTVEdv/M9xdA3PgI+p4Ax2JVBft+zsPeT5l19/zWCIG0MOwinB+7gewYfR6Zsw2JW9enhwJdg2OptgI8dFFDuY55pfrMPfeFJNU/DT9ehbgnCdTv5Z8E0a+uCjVaso0LSRyPZl25VX/v8jkM48fkYWIwAM3zt7CrmVtAy2PJ0+I7Inh7Ba4m6BWDU9HDqh7CfXDfmfzk4oU8cnJZWRx/LxMO57iNfE+w7DXHpozYEZFPWEIBsZ/gYujGO+iQble9vDfRMgJAHklvKg4gmoCXHwAGy3ABuEx7cfx13X30FJwd38N7ZBdp85ZUyRjsa+2Esw7y0X/26UUeNA+X918fQBdX1Q1MCWkVtQCXCfFbRnj9DE8WstmeMdOJjFJ38II24jTFDcLlp2Gy3uPmTH+Ld9z/G9foa23nrGeTCrhNcEOPzTz7E58/OcLO5gmjF1dULbDdrzPMa25stdtuKk5MTEC5x/+EjXL14gifPznFJhEcnR9heX2F7KdhdnOPo8Bh37t/H8Z0jvPnGm3jt9a9hfXmFzz75BB/85Ce4WL+w0XEfDSZL1V7KhFrtcMzEhFVhHKxsj39zs8N2vYVUoErsMwe7En1vPSjBnEujfZvzQ4E8vBLD2B+IHMb005BjYDqwlPoQ2BWhB+NEWld9/ZmD/su9S67TXUZzD5/P6TKVOw8dbQekzTTKJYK91TYuiINU8XmuXzJIN7281sbalkAIZCeiz0xatstrG8AJzSfADovRy+1BPCd0X84THwsd7hhOTfRnjLZQX0cSIJ96K9avvh/t9mDfD6ZdSoR+ACD0cq9bAsajTb43sedJjm9nTeyAU5BzQBHyYJjZ9QPRXkgOjf3cB06jb4i6/s2UpQyoZGpl+EGacQ/RSxxUge0hurTG6Zxcp5ZwmvA39nHvFkcfs2hngKz798Nzddwz+vXR551CFbGHDMnqcqG9f+M96mkOhxrD7RHk+4a25oVdv3df97K/Fvch5CdAq70KMY/7+t/fH9ctn91r24eogwTj7+47WK5PS4at5fp1GwxNtxXVn1WCBe9LXLov+7Iv+7Iv+7Iv+7Iv+7Iv+/L/T/nSICWF+pEaP8Xq/rdCwwle39ixn3IlZjAXcG5hg4I5gEiUjlSBDjnVOYN0GEE7fmJzIgIo2ASCiQEAyE+kq6Uy86BSOEzIWZwU5iCwajM8iZcDTcI5YM8L/0c/feVBLphToak9gzhOpPoRsAyiczqKLeBpwWhrp//0NO25eWTbWEo63uz3/Bt9U0zO7AGEM9qYMoyIQj1dkBhrkzqQiBgkQOYd93Gw5nVvW6YRMkiN90MDqIC8zQYCUYAMVMBEFjgO8A7BQDnuYGCQAW5cHkgt8K8wcEFhglKDeBq3qBcRgYoBcRgMUYYSGyU8KYj8FJvMJoqtwQKkswX4QI4k8p22hFNrgrTqwWt3GBFQHBS24gk7rVCXEspT19KdloQMGBN3B4oC8Exs6ViIU572vh2Yjb0kTm8qCwJwY+kSTSbNp11NUDjGzh1qav3OzixG8NOOxAY6IEsdyGAISda9+L3SbM6WEvdZKilA0LShhcMsHY0mb6IdPAEoIBWKCdKC2UBRm1qahfSbKEjMyW4gBBiAiQ3wVwA07CA4AMoB7hzfw8+89Rj35Ofwr04f4/ryqdW9sp0c53DaIiF/ETS2YHk4P33YB0c1XAdB7HQ4EMC57vBRT4vRoKjacCAFbd5it9li6+9pYv0kZHqRPDACsjbZuAtKA5QatmLpGC62a0xPntr8OTAwQmtip6VvZvzog3fx3/w//p+YpWC924Ko4sP3PsR/99/+33F9fYHr8zWufneHFxfnePbkCTaXT7C+vsDl51cQrHD89muYHt7Dt+++jhXOcPzwHo7vHoEuZ9S6xereMb7x1uu4S/8R3v/d38fF2VPcCKHJDGagnJ6iFcJ0eATMO2itWNctyhXhw3d/iHff+TEur3bYbXfWr61CtaGJpXrK04XqLEIRmITLbwAYWoNi7s7oITCbjjG1E8GWrjG9uT6Hg+UvAhEGorT0f8agFz67cNayzxFy4APR0lkOEmP7ga9BWZFwllOyHzmkyRidqDOmEXkbRFx3BZDE+oWJsm4G4uSui8Nh7/+LeHo2d0hbKkYY0EvVga/aWf2aBcwbVhb8k+apP9Jtn4Hq7sJUY1EyIba56l1rTHOmZ9NJb2gg1ApQIavPEDC3gJ/kR5Tzy9rU0EAVaD77pAFg61Nunn7S+6kk8CKCsB538NRy8BR9VqUAc1qb+uli64eQHY/F+LoKEBW3TShBLx0YZmDIpgDxysCtMW4I0Brl2KoSCsGCBdklE4AVmgDabE1urVpAwJl8Is2gBW4daBejo872FkAsT6mSwekE5gmYJ1PJWrosORiVfP3hiPD7M0TVUrH4+kYoPXhObrdRSEw1UY4IX8z3+N+d6chAjeXtLVOxNYoJAQxSjdnudmOODRv4IEcrZ8YiaBhMFU67ZDaHatY3xleCZiTX6Qgy+HN1Ib4Rrej2A8H7sJeXAUsFItXmqlNx0fCeuMdAYT6F+myBL7XGD+Lrc/RxMKosQhsZZfFrog9fCoJ8BQuNv4Q92we2j7zrX0bqOVp8368DXP+iB9ZMx0fHhTzGnOnjMl5DCGEY6hYpuPLJ2fPIpHF56CGFczEK/TCE+mM1Rj64OO39sa+iMOY7QCsCtiM4zgTNJSnsLKKhT/3Z3hzD8fR+1qw7DWsr+t4Oih4Xd1t3NKVGkE7un6KNtwYqQDgU84LdRhrmNnob7GAKEEHe6NOYNzS8Og0GNX1laastbemCMSXuUziozx4STEA50YJ5SyNtlCz6nLzfOstSAC+XfW8YKrNfWq4ty37qrR5+y3f18GxWL6n+XKIoGFGjq0J2QzY6YBmItcvHYVGjAJ6R2zTRdspn2TQZ9FO0NYKwiky1DiDBaMYcqLg9L6JZC3Xq67qGneZjoLEHBjqgGPA9lYtAyFJwD1GBcsHB6hAP753gUB/ho9UJdts1IA0svm4P6e6ip6IvJMEIfW53MJ5+wXj2OZnj6mudiaWY56HZYY1KyPW771Mon2Vvlz6uDSASVLX9x7bN4Ou1vbM4k5CDD1QbPn9xjn/1vT+EKGFudsDjxcUL/P5v/w7m3Ra7zYzdp4LtZoOb9TXq7hrzbovtzQ4KxnT/BHx8iAeHpyjYYDo6wOpwAraekvdowv17pzigr+PFJ59hs1mjgowdFgotBTQV0MSAMmgWtCpousP6+gVudjtsbnaYZ/HUX95fOrBLRz94/yxs+0GYIy1xCqCq7xsGzR1zJPWV9XcCJ8en+roTDF23nz0sEyEayzIAnvptHaycs4FGfWy/BQAln6uxpo1yOrbN2+utGG2LXFu121B9vzuyUXZdD5Xcv6uyy31fF5bsQNEMh3jkfJR4GQBPYR2wTRl7xepme3LKnsm1r9PUen/0OQi4XTzsD8UPOZBESkerZ+yFxneml1I1dV7otr5eh1gOgLDbe8MYO097SYEaH8WBfG11plUZV+PQpfYChM2Stjg6xI3gh1tiXxBsT2OdFQBFuu+oof0i8bf2T23cb9lhPm4dMOmA3QSThqzaw1I+F++jRZ8nuMz7MK5X76DeZq/PArTk86ZvLoc51AE13vTsLaVel/DJpd3X1Tr6HUOdss69/6zvfDTcPz4+ZKjerXYPbRjnzkIo428dVUzKPG7/zuQAanrpu14L7e2PJw5t720b6uOdeHuvsy/7si/7si/7si/7si/7si/78m+6fGmQksjsG0UCpDuNNSjjoYBW25grGwgBFSTmiigcG3V3UJAAaGjqoSoVNHdWEEfKJncWkYccPAAwq6azlzJ/vW9ClcGF3GfDsDQqfnTMTyja6TcD2qTfm80RJCRglWRZEVgwT4KtwDfh5nJxlgMVdx0SoALWAgHQiMAqmMDGxuPOD3h7lTxYxrFPl9zMCpoFv3UCVMHpVHJGmDhNJS03+0Ts7EcAqTnoGzxwHYwyNPSNNTxiIAAshRqhB7mIJ5B2JgBxoBOIwAOLVdNmgCMwVNnb70HRCJbAQWQwYAcJgwvQSNHCmayMQgSGoCQRlp+mVEpcDlChaKggTGw8Wc0DsexBWOvLlTvzFSQWWG3kzivHiwk5GIgjYGlOV4GlcQL8JLcohM3pZI4UCcyaJTSgIXzlQAvDCpEfk1MQil3BxhClMHkjYlRpIJ1ApTg4gCFtAk0KlBkkhCYNhSeQ2LlukyPzI5jvv5jkMGDpQQQMA2o0cQYu6ul3jMVq8nZEOJwcgGfsUk0qCq/c4WUpC40Xw1M3uvPXUtSInebzd4hUdzIJpMLZc5qn+iMIEYQFkeZIZGVOaRI8v/wcf/ivfw/tzinOn32AbdtiTsCinWiXphmUiCACkZ34T+c2+RwTdSChsTaR65imdvJc7bGIQJT6HBCpyea2E4W0GSrOkuLprNJpKYoqzq4DZ1QjBTWBMKORAd0CGsLYojBjRSsQFVSxlB2NgLlVPH++M1CfEblgN+9w/aMfgGCAv/XuGk/O3gMz8NNP38PEKxweHODs8hz/08fvAGg4ObyDO1PD8cEhTh/cx8nqEHxacHh0jLunEy4/eYrD88/wNSZcqGKLHa7LKXare2BcgCHY7XaQukMlwfXFBv/yH/4LfPjux9jNW+xqhSpB2gxI83kYQLzxlKMma4USgbS4U7W57tRkC4lAcgdhmAwtgqHuxIQz2uyCFcadvAGG6c7pcHSjsyM5qNDAPtIdwUog1mwDxGShkc37oKMhWHotIFhirM4meaHTFDpHCi/XBSBnELM+Ea2IE7FMJQN+VkfrPog6mDGCJfYlCRmBYYEFdwDXWwRqAfjq6QisjgK0nmLLUnVaUNAa23zUDGis8MO1OtsaZ9FfW8vZQCs95RyM6SDAaWVCUF7Y2uLBfmrOuiUQNJtL1XVFOsL7HGPvHwBojQCaPOWLQnVrKUmnFbYVPpGNtadJgHl8ZMRqzp4qzlL8cA8MiKCogooBa6AKbeLAy5ap5URryleQcEgEOyJNjqozU5m+Id2BymS4JIN/2ugoTAdq88/d8RwMhA6CNX1q+l2bLz7q8Exl188K1dnXhAAEi7MMCYDZRrZYkKg4GFyUrUYajnMbMWJFkwaikusclCDSEBYd3M4IMABFoCLAdeH69gCSPd1kLPlIBrC1/dY8UB2BhqAAiLo5ElqRchEpIUyHRAAlmBXDpsRCjyQgBMh5RS7fFuhpUDcWwu5lDiiDA4Op2LoHBaP4nZ3NLQLrxkoW9lToCe9nuA2qkZIxaxChFG/XGDXpQZwA41iaph48+SoWhST4JvUyeoAl7OwMprhebvHJgEyxx9ganqwdofcH+9NHFgmqdpBHBGADzJaxmwT5RJCYugz7OzoqgrOuGve6rI4B4gw2jeAfIEF68dgc4GA79U9iXrnaHu4KwIkOcfgMu+abVId0lvFpVk8HmfF5HvbsgJeK4HlPPRay1y+3fu51RD6KcwRyiOGgU82hhqZWsBvjUEM+x8HMsW8RX0fNbuuzKwBRlPcqvihwF+1Rr3kA43o9NeeoBvgw7EvXMR34yFlXU91dFmMu51jHYCDkaJDt3mkI0ELas+g2UlzOHgwPgF1TA6TCyUPtnmJBfN8Td5BY9EmfG+prtQG1u86NcVHtoH91w8r2XaZ/OATLdZT49aIDh3DIc9RAfYxcNih0gD9KtKGzA3XwWYxP7GtiPSJ1RhRibLY3ePLkU+jqAJv1BZrb2ing2afRFdHf8fxxboR+XYZ8gaFPxn+ofx9MhQpGU6A62Dvopxbz0v8nuiU1DkiOZdE34TYHmFBgGwYDAJu/oKHhpq4znSER0HYNzz5/lnWb2w7XN+cgAs6uzo3tmgs2uxu8c3kGQLGaVjhgxVQKDg6PsCoFtGJMqwkHK8buco2yucJdAnZEqKioDOz4COCWNpm0igZLm/z8yRnm1jDPW7PXAhCmcdAkgAeSOtSHaFAy0f9dm3ZmnpDpsA9ykP0eH1mCs3SZiZ8AgPH60JcB1tPQraHAhgoOutfUpeS4EjoQNeU9tCMtgUXJYkrDfiZ15TDJho4x+yO4zKjXhoaajf0TzxJni+YAXA4gKu8s++xWx6fti9S1WckEKTlAmwLML4Pe62uVVdP3Cl11p74dF5dsMsW8t5+57ntfJPBlOKzWAerml8p9lxr7NXGBZBVT2w9yJL0LIc60TfncRNkgmH67XutDFcDXvgaoLwvdJxH+rTRFvD+C4dwuNDH3dJ3ev7EH7fOBXaUOei0W47S5EGoLvbMFeQjBRjqBu9GXdo/7GnPO9odFP/ZxDl9a1+M09nOfAss5GJ3EyDqPsmO/90MQMVbZmqyYZNOzXtrlYhjchbSHn6n3Tx++vn4PtkYoinENWeih4dk5zry4QsefKS463ph9MM6ixURZTNk+JvTS9cu6hQ26L/uyL/uyL/uyL/uyL/uyL/vyF1m+NEipjY6CYDgCPAhlG7o4wS7NgEHhNAaxswc7EwQMJGKkvMVBFn7CnQCNw+ruScsDn+5otZNJDIMZGSCBi22iIh1X8HAz2FPVCJTI04INm0mCgzk0HT9cyAKj6oEUiRNIZEwHtHRSxem6cI6S3xebXIGxF0GjHzQdNUA/zdO3pDQEoipUjDMhHCid2tdBJXFyxv6COea7Yy9opc1R1j0l6ayJPamnimGnz1BnBhncbBaozRM69kbONDpwNg0kC0aAmeLkdVMDmLEHs1tzx5UHNiONHdmDQaVZsFsAEQa4ZP+F82yuDVOwHUATOMRswJnqDmgmSvlQKLTZteLU1czGbtBi3MPJkAcZA6DVnQGjIyoCES6A3cnm6ZRUYSnSyFiPJBxMntoIxGgiHnSHIWmgaE1AXDE500eMvTH9VMC5ykKOChdMbExDDAPXWb9GQqLJGNCkobDJdJsBqDFniFYHGDgbFU0wLJ2gKUHRTPYc1NWqsc5Ai6faEezmamNlCAwwNZsLVdGE7MSjp+LTVlHnGVBCpdnmnmzQ6iU++uBHqEcNl1dPsN6cW8xaJ4C21tcN3ZHk/SK3HKsicRLXnUTuAVR1UMftlB4aKZHIxl4IINNXQgaOFG3GOuKOoZyv7jjME8wY3FEqYG5O7W7jPzngTbYzeLI0c0DXkd1RGw7UilZngBQTM1rbogRDPW2wmg5QyjFoc4nL9Qrl8ADCa6w3O6yvbnDw0QqlCQ4OV3hwcoq/+fOv42u14eRrR7jTCKt7dzFvCZ8efh0/PG+4uAHW20uUWlFbhZJi2zb4kz/6EXazoDbXfcmmR9AqMACfO01B6fTNcYLPUXeMRh9GWsmYMyB01jjXSUKe6svvcVgNmAbKelODnkPQ5n7S9aemkAQwRqCntl5PRoGqpREL16xhf9hZhRhAc7Y6C/w0EQPesIF0IuAQJ7S1+brk4BeBeMpJRimTg0iQukUdpJEOXq9LAL3QFIoGVMI0ccaVI5UnBiYjuIwnjINiPXMwXQBefc4SMbQVVImUYQ2c5G3qwC64LleAGggNkSYhWaJ8zWJngGrBPNF8rMiD0M2Y4iI1E9wuUCgqWg/CeiqG2uK5pjOZLO2ardOjw9/sCvFoAzFZzAQR0Og2igVh1eyE2hzcCAMyTZNVS0xuqjPwIWasxPsisKIGnPLVgAFos1SdEErQmaWosUClJz+DNBuDwqYPbG6Y3qVwpHMP9BAXgMnSrMKATn0QHKw8+PYBW3uZYXPAwa4GIPN3MHy9BZgKVCN4BcQJcEvhqR5M9s9T5k03GHAumEt8/aduk7DP97Azoi8ymKB9DF2NIu2WRegi0h6GhvGpMyoeGuWiz4mXSgCwEbrKnzc8LIIbhDjBPLAFZLDCgA3WHRaIzsB8RqAc3BxBtLBjwubLhSUqPDTHOOGGdvj81cEW/goWGyfKU+7dptRsgu0VQpcEwP92P0WQ8XbwerDPBjBJD2WZjZxsNL5XiD1OP6FPfaDhJpmD7myRfrltdqvPNw7GvCG4nDXTTgyxWBwXcAiMNvpoiweQJq1THu4ZGA969dUq7HVZvHPomf5JtCOAMB24MgphtHc5NzTl3ADItzvL65Zrm+8D0mpb2tPLYCWhz+F+oCL7rW9aEDBAckUTADVjMCP45hAdqGj2HcdBBGjKKFOsn65/yXWn11IjDWbIdoqO5mf5zBxMRehBGuYu4qmyHBOTOcV4e6w1GtOdKC81gHUwGNu1cUiIEbLvNpjbYaTUGYWGtbvb2Qb2zzD7wHTFbnskBs8WXh/PPuYBHIuAd9gTiHXUNkaIoHULVjEAiPUpxlG77iC3IVWifg5OkAqVLV68eA5ZKba7a+zqxnVLgSbzztjf1mGSwHe4LdvHqMtgrMWxN/Un5HWaY5xrpVuiCeYf2tjBNaH9+zyIdUm8vaOOIwBF2exY5qGufc8abFS2tAjEEYIlWavsQQFQP1qtgHmH7W4DKgWCCTsVzLsZhQtYDLS7uT7Gmw/v4EAF15/ewR//eAJQwG3GvTcIB48nYHWBXduBRPJAggC4OH9he6KWs6lPevHPtPeipUMNHRddzGljYJSr7EdNXbXo20H3dPCojX1ffYeOH0rqY+1XDl8Mq03o3ABj2PiPTbg10/PZZhvZhQnaMwN+eL5fG30Wtly2oevL4YbUHdEX1uyGSCnWAbGDAl5YWGNtR7slHi7Zl/Z4Y5mNuoR9NvZezB/TRT1NX59KcTgunhNjEG0P0Ndycc6+EzWm42FIUwZyXmhnus05P645LiupFzAAw30VI0KkHiW/X4J91/cU3U52prahzrml9jYDgwqMNV8DWNP1daxB8V/Uua9LMS9cZw4juWAayvU4R8Pr08H1OebDn65WnGXdRzbWKDdS7KkBbI6/+rXDqMXgZftGmyer6vIQcyzavLRrRhnu5fZHSxUx6pj+3mQNxPLm2/bn2LGLfcjijr5+9HnycqX6s7uvb/l+eqnvRg12+51x61jn3JeMjaERILsv+7Iv+7Iv+/K/XQaT6c9VRID33jtErbbivPPOIb7//ZP8/pd+6QZ/7a9d44035txL7su+7Mu+7Mv//sqXT/dG5m9gYg8Uq29efHMZm3Hy01tqDn3bAJqzgshS+zCCEcEDUuiO5r4B9c0SAeDii5Ft4u1e9nRxksE6S6FBzpYiHgSHBwZ9A67GjmBvaH0TDQvY2qZ/DFBF/QLENDhjEsxiZUyr0IPo9kkEPkSAUoqn3xIEwMs29raZlHCgA1Bq7tSIFAJ2GtB8xt1ZYu0PpwB72gIHG4WzSe1aY89RD8p4qoWRKYomZJo68UAmGRuWeGoukDlVjCQogop2otkITSTp/qWJg2kc0OTBcFEPzhODVRMU1XwDzYNjznkGoGrpwVQ6iweTO0S4eJ9boHxi28ZH6i0D9UQqMk8zBuSzSYE2V1QRcJmQoRh1uVVA2cBNcGdWps0Ih5X7A4jJQQRGv63sMk8WICCo3RxpqeDMGs1CzMSKNilKcRAcAcSCMjHaXLvTguDpfwQ0TTmvWq0J+AAAUXJQVEGTBjZqLyicwYwmaA2HiTFUkJ/aJJcnA/8wtIUDEXCckWO63AEbrB+teV9LpqUyen/un2s1cEI61hrQCE0rdF5jO1/j/MVzHKyOcHR0hKt5i0nV5dXmFvu8IlgKu2CogRrzQnid0n8NBy6pIoLqBggCRmr2JoKixqBhQACBKnsqJpd76iAam2xsAAH3F9kccfYaBqRVA9Xk9y7t2sBOTQ9VkM8t6A4TrcC8QmGxa7gAUzGnZ6vGMAdN4JtuFfcOV3j78X0cHUy43u2waRXHqxnHPOP5ZoebusJxFWw+KzhlwvrZGa5eXGGzaVi1hi3exf1yigLCczrAljaoMGADNYFWD16qBZBEmrG8iDrQJoAVoRfjZLCkY1ZkdGZTOoqr95npWB2OOXdGCdOTzmjizCMJQgrHrXuPya8NZoR+chUgE+Z0OmozWSUlP/nv8uJzQpWH1Gx9I0bEKZNGKGZfsK8xCoZW8iq1PJPKHGBfY/cBCLMYQ8/EPLQ92tXXGmk9dSkDpqOYI8cm1Cn6IsAfepeYjW0OgESEIFIEUPO1YQCfUgBaxdMKSOodgDy45ku1zzV13ULEYFYLhLE70MnmO5oHvMnSKVr94I7scK57ujOGpfVE6AmyQGuxtaYQobE/R23dDtapBN1APNDsusOXclVxnc4O2vG1MBZ3BUQIrVWo+JlSQQJqY3wQJ9eHjXNrLZmxVAwYKiKorpjE50sVU6QW0zU5NOyc1X/wJKcuc4U1OKvh/VIwMQFM/h5Aa0WbjR2QPXhlQTxyAJPpXgrmqLCt0NxGCHBwgD7dVvH69MAifA647tcAnwfTjKadR5mmKPowAlK3Ai/esh5YKQgQgF1COZaW+rHbXcY8yP69dtY2r6uB00Z2IwCpr7B4v8k1pR3XPyefu7ZWppIiA+Na+5G21AgGSEhG6qYOQoz+BiJsZPZdPw/u/Ticcg6mKgALwONXtYT6TznQIRgSAb+018Me6zdHUC9A6xkApnj2MKbqMycCkS5nCXaKNWEIzlC8YwhqdlaVqFVWOEYT2ZgEXPT2xrgma0CCanQh8jTUOxkfoIs+UgyBVSD7qvdTzO24I0BxLicZkPIgZs4pb8MQZOx9GG3356edSdmXfRIAiLmvAe4iZ8WjxfjEewODmF0J+Bwax1h8veqgD/VeY1CySCQoALAU19T7PIA1tl4H66b3X+xjsz4GUM++o17HGBuJ9XCQCfH0ZrQADPphhyhRz4X8h/6jMDDynRH47oPuFTFjfeEcVgV8Q2nrOk9dxoxkKQEfvdaawNxkh5IOFqDoE+9HddCu34lg6xAxGz+C3KCQbwf0pCz2sY45YGvD8Bli7xZd6OMqfb7bdYLYiwHI1E9mi85ossNmewPmCdM0YW7Vu1DzfTYHYq1CgmJDT41jDx/xBAHEmpbTnvLescSBKOigs2KNwfj8Ya76fUzRZ9a/w1RxM8T6OoG1CF0DHw9GpEI0W4fx/gdH2G4Lzs8Lnny28i425uOjacJRYdw7OcZUGHMT1CYgmTERcLNraFqwvjjBG3eOcEKEy6s1nlxWzE1RZIIwoEcFD9+4h7/+t15gdeJ7c+3jo7GOuwyJyq3+GXTTAFDpmki6jsYI0Oh98zIgmRbfxboQ0rQYr8UAvqwHEf17iw0w/C+pVhUAabK/ha61tT3GifK7xfYSrr9yvoWEmOyEzKlG57h/COqenrEfY74i9XwQUaZMW02QRq3XKd9pU92v9699bsZhnKhXADMNJDmM2ji4JtJ9dAabP64331EHgQKAUvMDHAQoua9P8/ocoZjnqU67rUcIfWeDpMTmv8kq5WLUn40ub4sxg9nWiPUpbL6ULXSd4SchYpwW6ye5TZk6HlnXXOk1GOE6UDIOsaUsa5owqb2BUS/4U3P9x/ip7+OsfcFYbSzWZtvnvFHfUwJ+0Khbq4snhj0zrM8hQH3eDXI+jH/vG84xiNuX1+aod1tr/Cbme9+ADPWkxbVIebIJMoJPU9n7QvRFhx66CTjYTSkPtOjz7gc3uyDmTX/laM8NmuGL1pjxEv9jMcZmRHUdNU6O4Z7F+/dlX/ZlX/ZlX26VWoF/+k/v4uxswk9/eojf//2TP/umW6U1wo9+dIR57ja+7SWtECkePar4K3/lBv/Ff/Ex3nxz/jdW/33Zl33Zl3356pQvDVIyAAwMYEHBBLLccJofg3xDR5A8NYPchLMCoDI4myJg6I5sByAF4Kgnj3d2FKbODOTpzci/txOfXmFmoMHBQQyBOYtjQ1biRL1vkAutAGd6UAmADOUpttiEF3KCYHEQB/UT6+psBOonS8nZM8gd5woCCoMKo7A5Gy1VkDMFkTnZ2J1V5qPwbSxFoM02rKRqp1sJzmjgp2t8A2pBAHdSwRwJ6Xj1OvfAWYm4HAL0ZE5M9lQ1xhgCGMCqO//cwURxsi1OdSomtrqEC1UisJiuAkJhG0OQJ4EodoKXiSztjRJIJ0/Fp9DWQFAUTFD2LbOPi2iAjwjEztBCnspn2GHz4OxnniAt2C4s2NKUoM5YlIwg7qztJw59DIiGQ/Uu99Kd1BEAy/Fk9TRJxtYylXAGM6rIwCZBNn+aOaCIJ2gzdp/J/Xhx6jPeFUwxlurQAXDMBvjgYieJs8MYtQXozQLgXNzx43Kl4SByZ3GcrGZnFpnKKtkjWAOoApc5gJiyrgpCbQZUaMqQZsxKBEFrDQG2EyiKB/VECSzAo0f3cfrKQ9y7ew9l/Ryff/ZTYGfp92oNR8/oJzLgSrCShIwyBqemGgAjTmeLt5kzqOCi5TKsw5wjABMVI3BCr7upBAvfaH+Ej6+nN3QmOXAA3Gy8m4RuhQUX3AkXzjumhkmBqU04YMLd+wc4PT6F7EyvkgqkzQhAyGnb4Re+9gZ+/f/265h3G3z6J09wcXaJB6+vcFJv8Ie/9S7eu9xhvt7iB3/yIU52Nzh/cY3z1rCeGVwB5kv88jdW2MmE3/70BjdKqNMxdm0L2VVvv3aHpztF7XN05gjXe8X7JDCOGvdgDJiaPiXup1nDcRzzMNYbaMwlD7J5WpIOPrLEirm09EgWuhMuZlLoPUUpJQYtpgZokBWFGqvMQlJgoBI4IM3XDGMfaP20q9+gqslG0yTACZ0xJ2Q62Eaif0QjkNnlmpjBzVKGsAMBIZTPNGCD5j2lFKgIIsGLAFAy5qACW7PJgZSmFyKVToVnx8yggngwrHnyR2J2PRyAlJLBWQOsWJ8I27yxSoo7qq3+Ng5xrStqCqCnrc/BOjeVCQG6Mp2mseCHUk5ZgDvT4QA1A65wt12i3s4owGrAsuYg6AZxlq1iTBumYS3+K4pS3HaJ0+1k64oBjG28I4ArnrrUWNx6qETVg9ce7CwULJOU6WZNJg1AFOrExRUJXCMGcQGzsU1a2tsCQvUUdT09paWvi6AKQG40KQjcCBMUhQmEZuBIYlRlzA3QanKTwAE40A3ka44Hv4cASzj7F8kD1GynSNuoMUdyXvZ2qkbQJIIMbqfFGuzWyWItyOcE+4L3GZtuosgrG88N1TDMvQ5m7/2duiR+RpAtRC8DAaYjmTXXh6zpAALptw+DGn9FsEbQ5wh6HYmG/vz3oBAhmQ0CcO/f5BiRd2Tv+Q70CGC4fcdDgCZkjfKeBAv4HLk1OB6YHILV45xCvxeDehFQpiFC/hs2FEBUkKiTaCdFsDP2S6HdCQGOyUlimtY+4R4UWxxqiLWQYw8WAAbT7B1UEj2jvR+yf3q3hW3MKdxjjfyNuZ/w73wO9vmgXaeOD4+65votfTyGcevzeHheVmXUGb73yR6kYWxDHw5zP1vPph9z9fP3pSJFjpd6P7kiGsZsGKaxj6gMOmkMVHf7IpQTZwrMkNewIymbmemK4h1h+xMlfswusSuYSz7f1smhov5MO7jg61SKQw9OD7Mm+xER4CVKdtxILRTSuEhxRpHaqOvOcT/RWz0CA13CNNaQnkZprGOMd66hGuPlmjBpl+25rOr6QcEKHB0f4eD4CIeHR+D5BjfX56Bm60IcElLNWWnyN8y/ABYAfjgmxioFL4cAuSfsCwp6D2vat0wB8PBnU4zhMOijyPUmYxTd+KyzCQ7jql0dGYsWwMrYrgt+7w/u492f3kPd+ffQtEeJgEMCHj+6jwff/llIm3H17Bp13uHgTsGqzbh4co6LbQNLw5ObS6zajM12h40oqpIBe3XGkQjakzv4V/+g4m/9+hbTwQQlAVpDC7akkCHvH8l299ZrymcP1WN5Z2oKBXy9TUvaxqULP2JdiTV0WY/e55miMOdcn5d5YTLzdblI34qGL4cWb+gaPR/izXeG0+FZ42qIoQ6j/kTIEZesnMb43+qtBIapDu0d9iHcARQjyCb7sqtyxCgtwUG9rdbV2Wt+eAJ9f+TfRLpb66dblabOxk7RJ6GQo2tysVyO0aKvVB2Ij9xn932nvSfbQrRsrwtY1/NInTouI0MN07eQkEJyxm6YrgsaPNVYU0P/9z6Nz8aUuJr3ALbmj/LhTY2+DvuJIu3zAGzRZX9haGvIrPUD+cEaBUGMFesW+1iwuiUIK3QiwkbhHD8QGaNvrHMCr6f2LfvQ12PTsonadSCGe/q60HUCoffPaNOPh1UXujXX3wD3jPJ4qzKUrbpdQ3sGRZ16JfVPuSN0xPhd1p2Anpp+rEdfK3rVbtcxLhtBwNF/fV/V7/2i2u3LvuzLvuzLvvTy9OmE//q/fh3/4//4ALvdXxyLtyrh889X+F/+lwmXl2/hv/qv3sPp6Vf/QN6+7Mu+7Mu+/PnKlwcpuVdUhk0LU3dOhuNZAnBAlEwZpD0VHEAWrBk24+zOHc2NEhkrDtnenfMIUGyhwytip1pk2FRZQJCMJUYNjGNsJe74caYUUYPNhDOmabX3k1GOA2SIDCoeNNXhZLo7X7R6fcPB4MG6wVERJ8lENYOKuU0lc+GIB5zVd50RMBSnqIlUdrnlHh26BIAYxR1Sxi5ifSjiLCGF+0lYIgs8i4KV3VkOB1HA0ttAwNQgagwdZaL0cIk7rEUiaNlPQwaQDeFgdqCTqKAUynaCDMzhyfoShATAmEzUKmK9zJg9pVGBYiKgFEnnDYiGk67GVMAO2gqAG7ujoQdSgOmgQIXQnPUGan1gXgljN2IfK6meKpCdlcnlrTUL6Nr4C0g7yE3I6sbuOCDuqeZsGAW1zShl5XIsLpfhBGdPA2Upf5gnzELQJjiYSjoTmth31gPN+84AOiBLFRcB7jjRbimXgi2EUFgRcDLDc/i8kO5E6zT8hGmaEH+p2FxqrTppQKdzZ1A+Q2Dpmaqzm4gqIA2tNpMLcfCBEJRsvrJWXDz9GO1IcXmuWJ99AnFGmCZijEVwhwsBKgaRIaADVJz5LNPLwOc7+olOc7eFLPlRUvi4BvCDAKBgjGBqOhCRbQjd4B3n8uwOYBGUZKexUWfyk+0qEHY2J7Hgv/UbW/o9VhzQCg+PDvArv/RNPPvkc5xfXVpKKrU0W8yM49WEV4/v4rWTQ9x/fIJy+joenb6KevEC0z3B9Yfv4/SwgD6/BDaCB/fv4cHJIQ7lEg8qYTvbSeCiBd+hBhwQPqA1zhqw3jYoW8q3Vq1P6shW4MALA651B62os6P5GPRADxwgYaJp7EMwufU1I1J/xfJhchGO4Qi00eDITIlwdiwyBh/A9IwHt1Q06egZyDntw2bSM7BSWBrAJXgq9MPt0/wgeLo1lwUGOquDOx9NhQ1ORkr56TwFnXnCl798BmBgqQhwjaUHzBiEW+ne7AIEi8ECvEeR8MgoC4SMncs5AW2sI6Cg2oNf3rfSQvZL6o15rqaThwC1NqSeDLa+1qqNBRuLX7ChWf2DAcmea91EEPF7Muiq6DmPFMGYpQ5EZTawYA9A2gwrbIHC5taNikF6mipmVVAJuwa+NosxA0QeUI5gjgcJYvqLpaGFO6glgxKRHtBD5Rop8sK+8PWQnInDdb3jl9KAIHdUm40jEKmAM+ZZKr0CleJOfHZZZzSfo/bOigQKOpuKNjsNzR6FVRZMpbh9V7zdDpVyWVRxG0KdmUTDNe/znk2yyb+ME9TB1NUjLezBVErbiV6Sce/Hcc4qhvUqxqnfSxjYNbTr/QBcmB63NTJOMTvZoA0xyIeE/BlBOeA2T9B9aQAByAO9fc4Fe18PvikCaOOXZCAiQME25XKC5v0BerD/JPVqtu+WTvhqFsrl1P66BZwBuqygq+gATGSAhQd5yyBNN8LVbfQeQzJ9m32kikxLk+/xvsxbeqAp7PPxew1trXFnpJgFwlYKSeqvDeUZ9ryf0o/gbgAeb3dJ3Eu9vbEMZp/1ii1YJRYXhmDmv4jFDsEIptAELYV+o1jPolDIXgCQBvhPfOcLXshu1CHWWmMHsjGKPUavV/RBf16c2UiZzwMSsaHsfZzzy9se4FobjX552oCuisj3KtldGRwfZ6y9O/YcmZ5Vhz4HZUppEHx/EEHP3vd5r7eZlLo8+XiG3YOwBXpLIdIW6ayzDj7OuR/3PYuYmjOAra/7fRx9jDXAVNGfw96rd3LqW3j9LDCeX+dY5LzKRvFLaSnVbTfNeiB7va+hDvKXQa6DjcTbbXaW6WiFrZfb60voBGw3F5g3V2bLajAoL+ea6OjtyGUXfcaHYHR7nsZrct75eKah5bbTLcCBfzj059h/0f60CnO9TNnQ2IvGs/w90C6TIDi/LFgLfue37uPq+g0c0g207XwNtfS5BMJUGCfTAU5XBUenE2h1iuPVKWS7BR8Kdi8usJoIWO+AKjg6OsTRqqAocCQOwldjbT5ixUMWfPCE8eTDgsffnG3MqLdXs1/7Whb7J8r+oQTgLfVD6AQMkyqA/g6KXIzoF+j6QTcOS8wyeN/VF0xP9zEd781xzY97y7rWHW7SvqcYDZ4Y93xcyNDY6NSngwxratfsSxp0Rl6ZNlK8r8O5spZD3wV8goaOHlc46pVE6BK4DIa9Zc11H0L2S8xjf5fGHHL9RHDgu9tXqVDH/rd+TPYoMtawYNK1eWizgIiRGBsy+1Wkr2FR/+jeBNzIso0Kc/jEe8yn6WPr8zlWy9j7dx2AvpaP68rA/k3+XwKmUu0swek6jEWui31U8irJtNQY1hfT/6Tqhz7iuli/kActVbu+Dgnu9sVSj6Ye87ba/9IPn2qvI3Up6NsB7XbUKO/hO81WKhA2V2cQytmLftlSx6cuH/RAfK6ybMftEnNmees4+WN+WN9isOfIJ9VgqSzuyPV7+C60Y+r7L6qXDg8ZqtN10+DPWtzqsqNdA+c743J9uQ/2ZV/2ZV/25T/sUivwX/6Xb+Lv//37WBi9f6GF8Lu/e4rf+q07+Dt/58W/pXfuy77sy77sy7+t8ucAKXX2Iqiz+KgDiOBbMTbn0W2wjaWL8kABgNYq2NNyhAMqgqOxYQ8nYwA17PSNOy6aAOy05XCWkuJpS2DOUQYByti1GQGaUbUT0KTG4sIUTBYEUE3HjDmFyNOtwB1dsPiniNOQOwuFB5HiVD5AHoizflMoqjtLCiw8qWoptki6IywYGcwhIHlKmxCpRbxPyZmPYGntmqoxd1CzTa8qIvdVMjW0Fl1tp6CcVSnbRhlOTDaDJhUAYyqcztpIcxWMGioGE2EPMtq+235Ks5RlYzBAYf3fmqWrYxgLzKwNXDxEpWpAAgcXie6chSikTNFkBvHkzjT/rDaQOkuVy6wIwKVYGiqFp3QxR+RcDUhBCgdwWUq6OOmmTsFtQUt7ddOWwUPrPGuHSHUGI3GgQT+FpyoobJCT1hxAludABU2MptzSqZE7ZXxeqAU6pc1gLhCdMMGC6atgFREL4hOxgyUi1ZilPSAmNKmeeq2AEOmImlFoCqG2BmZFIYUUC1IbZsoc1kqSqWkEgkZD0ELE5D1PTxcHqhBqyFcG1CwFn6hCmkBasxmhFijQKpi1QHhnVPG14ezjd/Hi7HM0rtDNFrqp4NacnMLkL9N2RLooEXOzk59WdAdrE0mAC2J8PHitFCCRcCApIM11hTk9xfWN8YDYGIm3TbS7dsTnPxMynVdTS2OXmU/I35nO1Jbp41bFg3W1uiwzeDXhziHhF996jNcAQLc4PmhQbihkwZrCisNVwy98+2dxHyf4yf/8PfC9B2hV0dYbzJs1nn32KX746RnqpuGVowP84n/2q3jlwQmuPvoIrSkaAbITaNvhzsOH0Ocv8Pb59/He8zUKVxStqIquLwAEE1jE2Ej9BLuq6VEQhBUqzYIf3r+qCuViAYcmgIiDknwMXKZtypluNZlUn0/cgwpkWKQOQ/OrYiwRTs3RqR2nCa01wcykCKCFJnPGeIJSVDztqXbwCtn6Q+LABg7mOnZHsKdKU4ComKRoDwoayxFs/sKBthhTDQRggnNNJfh8D/WovoYUGIDUHdwiLbeNPVWXtYGDaYTGgLi6jDvLGNhT33XnJXvaSBtvyv62vvBAIklfO9PJT1AtIFpBSAaAa7H6cDE9GGtKgFsSdMQIUEasBzbfwnFezZGvpo8s5QD7HHTnt2iuCYDNG2YCiulU86EXzFVMh5GlaFQPdFCZzMYBGZ6LGbUGQJIBT40AAKU5SDNkUN2Eqe5ydr0VfWsgZ2tdVQAkCM7KSCeUwSNPqVdUzfEP8pP3Hmzw8e9pMLTr9Pg+YinRPkSaI6NdFjGQbNNm7EhkwEIJxJT2oMd4ql1dR0T0NgEkasBeyb4yvRtAQTtFX1yXxPgGn0I8u/8dgR6rjn1mKSBdyoMRIhnf3EYkY4eM1ILdAW/jyBRt8Dp6nw7RyUHmfV5rB1EYu1vvBxUHLpIFeRToTBze/8HUIGQgMvJ5F/2Y8qHxZl+/oj7/PgURIvAY+thlPpANGQQc26QB4owwaTBgtmVwPiQnmVyA3FsoPEjZWV7V9X+EyfKghUdn+owz2Y86RYAvrGd1PZ6goGiaXe262wc8SqbAUtxmQYhZZS+iBPB0LRD1uF2fLlfIv4c52vF6LofjsxUkhEgbSDE3sk0KHadjAKyyL28PW1+DbSXx+ZufjTIR0NlY4aPf4t0xDwLORrfa5pf4PAsrJbDjBIJKT9EZ4yKpD4CgmwlGQmOq6qxH5Gy7IbPRpyKtp3mKOSoOwNBItNRlJJjdcpw1vrX2ZBrYsA+8TxNwEs8BZT3MblEEy5Hmp7Y+Wjc115m2vjMTtHXWQtNbJceSJCLymmt5gGpjDY6ge8hgCgGZvTum9OryEKM7Mj4BSKB6tNUB5fHhYMuN+qKDbglhvxmo1tIv29ZdsLk8x3azhpJA5wZU379EbaJ7ve+jD8kPUY06AUMQO8d9GIvb6jiY/Hoar3hTh+SN9qD2x2b/hOSL+p4swQzWPQGGI+cgCjB9yJutswRixrs/OcLV80c4PTSfyKqYU6LrK2AqilcevoJDTDh751PQ0SFef+1TPHjwBK1WrHGF7Zs3WM+Pgc09PP6ZN3F8tMLuxQs4ns3mnzRQYRwfHOD+e0/w9MNnuPPqC+hUcHTnFKzAtDpArRVzbahNFvZmduaCtGXs4P67eB8HE5FPLgSobwTX+Af+eweCxBgnIAyDfRzjMdoCw2cashE6Z5iJvZqjHeFr1rAWIMfZ706gaLd7A1AAkB8i7M8fZQZw2yt1eLfXc5Eae3IEoKY9yuNHWOhl2DymhX5G1wuhuqNVSovn9P4IO8o/dWN5nOepPwa/Y/cwjTIR3sFh9Y55m/pH83NdfNzreFtfjePX9XYAWlrKnG39/MG5BFKylsb6GmtBHyD4mqr5smRgdh2MoSpRNdXQV4S+r8RL11qRvKevY9rXIOnp0KOlCxsmQPH5cM37sRTDnGu9jjZ25L4peyMj9kIELMBBMYPC5Mh1NN8RtpcOY91tpC6f1OVwIXfxu97qsw76p0GnD83M9/jC/NJ947OtiyOZY46ad/8SONTnDWFZtP+rtJD1sU6jzIXe77qryy2yj8ZnR18M8u/9N8rEvuzLvuzLvuyLKvAbv/EAv/mb9zBaGX9WIRL8yq/8Pr7znZ/kZ5vNIX7nd/46PvvsdYxg6D+ttEb4F/9ixne/+wQnJ8d44403AAAnJyeY5xnX19eY5306uH3Zl33Zl38fy5cGKbEH+pLKFxaAZw+mhjvAt5segImt0fLkt23K+0nSSFuWwCQYmMcCjQqVYDoJUJQFElWBFgxP1UAx5KnW7CnNnZ65fQNhztNQ8xBkDicCBXuACEScJp5hm2oYc43F3dwxQgboKe7YTep2P0Wfu2kGQAbMsL0eQ4iwa8beo1A0UYCKXRyOWba6WCoBRzgIQdmDabH7p2izORmaNghFQNvS0xCKO/D9Wq1oIAfY9A2rgZeM+adqhaL4WGuyWqlvZFWNJcUYLTxFmd9vba8AsRE7EKDhOlKXJZ0tpRx52N3HRKItZOADJgZpdWfFBJLJnL6sgKcKghr4pbrj3BzwLTf90hoIbExSrQJsYybSknXKnAwA0NBcUPJknbeVyRy/jJAVlzl3TM2zMXwQsbFg+JgzWaqJmC2sljrIusKflTPOHDnSzIlfuQJtB5knaCmozHkmv5CDpQgQ7QCaqcQ8c0e1zmAqEKN2QSEBaHKHhJjsaTNwngeMgtWCw4kjE+ouQBTwwAyhUIDbGtAEBAMbqCimyBEHC3CJhjPEQQ7+jgY11iCfh6016Poa8/rGQsciWBGDxAL7SgokOGsMCsSJPzHwCwGd7Swcge54S51j84QEUJ4Abe5YYxSt6VDMKYjO9BFp+iL4RsqpL5QtQB0MIiQeOCMHO/k9DRbUZlIcrQru3TnB1dkOljZTcAjFtx6e4j/7v/yf8c1feICrH38P8/rGxkW2IG2QTQMJ4c4rr+LJj87xe//0h3jagCsFuFmfzG2H7XqHqSnqoeKgVRydTlh9/QHKMdsJ/20DrnYod46x3t7gkIzBjKCdIYnUwaEmM2jqAEebC9qcsYYUyorFdqP71jKYBziATwFpQJmKBTnSeajJ2mLrAPV0UhygQADhzlSrS5ygLcVZsCJAKnGK0YN2IGi1MVQmDy4aiI7U0yaQQj1VqaX8bOl8V7UUinmCNh2YBDh7FkWKynAkwtNeqTN7icISdNkkEWesSP0oHjTx9EgBAgrgF3uKLyoF07SCOiOcgV4bkl3P6zeroJDrdhi7A0hQCicwlqlBoDYXIcaKBIJoBauB7Fqy4iGD3cEWw67bKkfshyCYbe1oMWYEsK2H2tDxC87cZCARc35HylYi9uxqMQcDYEgOeLVIgZKicKR6nUCYABIwB8AzY1IIpjMtFgQUEkCcbVB9bD0VJkcAggElQRPB5ClUSS1gbUu+BXkt2OXrZYs0h0jmMYgk+4hKPz3MZOPcIJ6mz9gHBc7YAzW2NnT953grNyUErbGl2qwViorWKsKZINpyHo1BHLPFKgBbg1QsDaAaXMeCFdrBN+r6S10fxlgTAJ4Kgp2PaOq612cJ+7jBgcmAp2DVYKAkD/4a4IBcNlUNP2DMKgPywpDH2RZ7EWOMcBqwbji77WtSpnyRxSxGgAchAYF2fQ+bMwlmDgByBm5CZ3jlxOxSW3EDQNDni6kM8jFWt6HYdY71M3ArQBiBVbdHRrjhV7XkGfIh0ALqQaj+e5cRHdrVoTF+b/Ye5bPi2flvdFOo3/SnKbKr/RmCDuDrgS9NO7AHmjrbSssxp3xs7Cfgex8F0v4ePxtqgmBESTUYI5rjDYACpOoIHA0wdN8LyNjI2APR2GdjL2p+msoH3S6KtNfZrqwdEgw2jk62J7oEAJGnDgY7+NQclZTdqnktvHbjmNi/Q5/la6jbcj6XaCEC+lIbKWYg2doNt5tj/o/p7MLOs54IYJGDp32MM8gItyFyrLoMR4dEulqgs+/41sGryLEJM1tTOiiqy3Lso5Hbv2DbyD5bKAGXIrepgtlKxQ6tBFuWrQM+GgSbeV4XztxTfhgGAWDqUkooPgV89Q+WomFcrVl9nkjroLJRsgKYnPaZ1z+Jlwb9Z8+XYc7CdWbMTwPc6rwDZjuQZICCUAgx7vGnhulhUhfCdDswHH9q1xLRtJxLbj/EnpnjYIQJT0pmjFl/ZMhr71+4f4HyYvE1hswv4BXpgEzBNDGODibsNmbrKgEyE97/4QN882d/Fg9eOcLu+SeQufozGxB7JyEcnJzg+vkGn773Ke6+/ileffxDXFz5Dq403H+14bv3P8LN868B+Bqm1SH43jF4IrOPmgK72OsxVgRo+wwffPAJVsdH+O6v/Cp4mpzhzPZV6/U1Njcb7ObaOycbHiv3IFCL3zrgwTrD+1BvXzOMXVd8fcwHgQ0QRNfPlPMNwwxIhQdKcLarZ/T9PS1ebHIWz/KXkiYGzmfJoH+HZLnjMqjLj7wWoKxX6Bt7LyUAaLkGQONgAXW7LBhBldAcVA/vi3hbZyum7G+lsAVHgK7N6Tj8RiGvXoJJb9EvgzEXQP9usAbohoa1pl+jLlcB3unfwceIsp80xsSZbxD9R71fySkTQy+RC00wtyaAKhQIUeqb0DkJqE+A0iAWKW9IvZjWYdqKsb4tAY3RxpHFb2RV6uNtupV8vQnZDXamLtvkPi+vJoffzxkJEex1/vQ8ONfn52hjdL0Lt8EHmUek74w95ChjA6sy9cHo4Jl4f59ht+vQkXLa+1w11+jbqWf7b8OCQtR1/jj51P+mZXvzOeOEDM0+2nOLv3UxrRfF+7mP+FjXcX2Cy2TUhIb7+50L69PliF763NfiL6rPvuzLvuzLvvwHW66uGP/9f//qnzvF21/5K3+Iv/t3fwOrVc3PVIG//Je/j9/7vb+Kf/AP/lPUuvozn7Pdfh///J//Ph4/foy/9/f+Ho6OjvK7WivOz89xeXmJ6+vrP1f99mVf9mVf9uXfbfnSIKU49m1B6H5KjxBU98gNUKR2CWdROCaoe6b9oeHo8eeQgTbS2RKbSnSHg6gFSq0KsdkLJ5A5BpR6+jA7ER3px/xiGAjC4tXuYBFYsDvYQIB0VEYdJDb0igyckQCFKM4I93Pt1AMLhY15oYlR1JRSADLwCbljIE5papxc9XeyvzMcRgm2gDt/KE5xdeeabaQj9YinR0pQmDqYK57R3xX9xRThPALiNL+aUyFAaSoWrlQd0phpnLgjgIypI4PiRO7cERBNPhTmzAjnNwEAswVYnUWI3KnDXCyADDsdq83T4Glz5gRAxerKWA2OyWA06I6U1roTRdUDxSGlMgx4OFXEHUsuh8Se4gwtGbty8+/PFRnkFMbuQAzIbKnjmvexDHJGGi4bd3iFs4ncTe1U/KIEKgwUA3wxEQqbY02dUaNMngLOU9HZfKnpJF15+h5jPZs8ZZE9Tzz1n0ikgFNn0EA/hSrNUgDBTgdGWgUJXNBA4V9FAFgw3BhZYj65E8WdRKUUEBoihZOqQJuNH4nVRwowUQBTDKBhSa0sXKjqf7tjkwM44M7g8MKYk1mdaSm+IxQqqOqIL3f+t3D0DKe8TXa6ssjDuKIgZ+MQMdkgFUwQHBwINkLYygFWTUA6o5WSujPkeLdpeFFvwDgAM7BiwXEhvPnwEN/+5iEO9HOgKHBgL6aDFWgqACvK0V2Ux6cQfYG7PyF8eLbF5zNQhTBRA2vF3GYUBV7MFT/6//5LPD0uAFXcf/MhRBs2VxtcfXaBQhOebjZ45+IaV1XdsUwwphhN0EZt1R3D1hkxT1TN6RhU8bYu9CBfgBxNIqkH29iTTQyOaQAozpASobpSjLUmgnfBimXT0FmWeDiJqyZjIs74p83mhCpABRJpQdBlN9oEGtY1jpPCJcG4LmwOaGldv1CwCDowwhsZKa4KO4BpCOQVT5GpEsEnuP/V6l2Ye12p65hwlAa7AjODYl0S053FdTKTLk68BviOYalDMwjk65LpfYfasIFRQ1f1QIDdEClEOyBAU+dKEwcXOtAlKq6ANjLbwtfseEjo5EjrFp9nIMTliVwGJNep4uuln9UlA/taMA+5DsbpYA7nN1kvmu4wZr7QWQF+nZyJIhkuAgzq8lu8v4J5I+wUS8Np6wXBniVCqauCbSccxRM5sxQAlOgzs12K02eRBvBTfD5oN8f83dJ8DcwzyV1mxnQ7BCTjVzfpCLMq4FyV3YNOMDCqQGRGRI8SjOFSFGMptjhn+4CYOz1AYH/bmkXeJqXBaZ6VCjC4faiqmbcpWJ7MNhIwF2DQTeyyZ3ajgw2YwEMdCGbrZk9RSdmM2FOmbky2RcqfQJA/OsDO309jfeHA5TGwEIMApHwvgAAZaIGDtQAQO4hPex0w9NlXsCSwIwNLLjE+9wCkTbUA0OX6OyzEQzAKg5zQ2Lc66qN+SzxluKz/q+hyOr4CGGQ8W4QBe4LOlhMqhf6U0ehP0CEAFik2swcGZZ22qO+VkgQo/s35EZ90uNcyuN/nnU3rEKzb1etgJpV4DtAbTINO+ILWZaA15Dh0Zoyf11kxrPvL+kU/DlApLGUGCQxZBCfHILBq/pr2QbRZo1/7HEtLw090JoiIAiRoPbNIxQTXYQv96UFfv0mHeujQPwEW7esZDXi3Yb1WpK4SB6nJOBy3rl+ssQvdL1BlA2QPAKQAjVKisND3neQWRYyZt7yDs70iRIuxy35BF5VoS6wRTOFRWPbf7UCr+Bdho2VHKjlcwaWcCewsgsmMJmqKM55Bo7xo1ocASMptbwN3AVooiOHKFEbbn/h6rV1Cgq032DC6eDpAYGyT3xH9mL4SGANkBdB0AjuTi9lOXidHe9cm2GxnkPsRmASff7bC9voQD+8XFNzYHHSKZLL8vLbmrQ7AJyuobnB0Lnj46FNs24wbhduQ4inHCa+++SHqZ/8En/zRz6A2wtGdY1u7m+Dmcg1qwKzAi3qNN771HCKC9c0Gu92M42mVB1+YCCfHJzg6OsbNzQ3W12sHWI9z0vpz7Lvos8VqoMN6EtdH/wzb9hhSW2odEjIE7cOmpkHfxnps4P94buuLSoIEum5b6mCH8/i8G1WvoqfZ7JITWhy5iGW7qa85oyIOWyXX2Vt6Or6/rb77zB5sFwo9mChBjOCqcZ6M84J9/g1Lsz+Hst9tOg71zvppzs9xXDszaW//WLrOiUMpXacidErYVYNB0MFsMZcdsJRt6CNEw1zvwPsOQh3tg7jMmLQpWffGvsi0w8hX9xVz0KcJIBqW3/ijr+fa2/SSHMWWkr6gD7qtEP/23Qi8XZS2R4CO8vphXV+u0/2TUMPJggc/bOH7ZNNz8pI8LMA7Grp/aHPWQV9qd2f+61bV+OyF7PqnCzXcBcqfPdiW1OV70dLRkAnbfOiV/vWteg79F+tGjgl1gFreN9Z7YQt/Qcl5GCttn/m3U132xnyVdxL7si/7si/78u+q/MEfnOCHPzz6sy8cSikVv/iL/3oBUAJs3Tk62uJv/s1/BWbFP/yHfwfb7SFeMvC8HB3d4Otf/wgAcHZ2hqurKxwfH+f3q9UKjx8/xiuvvILnz5/j2bNne2alfdmXfdmXf0/KlwYp9Q1bnKpZOogiX3k4MuI0DTsLhAExwglLHYyDcFZwfo+8vp8cNVpzCzRqU9/kxybLA3Nq210L+Hv6J0+Y1DfTBkrpwJrYDHPSzhPixK+dBm1NjC2oxBkxT7UF8eC7BXWDpIXd0Wcb7b64RqB3cQIeccLK0oFZ8MY6vIN3umtBPKcSjRvLcHCog5GyFbBgqdr/lk5KO6uGatK/5zgF/X6Or9rpVfeytCYghOPHxtTSmLGlhMn0KTD2DVUHn8SZYUDV0nNEEBiwlDHMxYPlHky0kbB/BQ4CKCASCCqaB145QA2eFnCet173YnJRXfbS2QYADS1OKLvTSiROL0r3YLojpenokGwohVBo8oDueLqqp5UDmfRFsodMcRhBiZBJsnGKudGEjKWFCSR++o/hIBlF0wYiSyFXpgKLcQug1dIK8uROHas+gUBckCA6MnAXYCnQplJAhTz9ms9LNmar6inZmoQsO5sKEbQJhIC2YOfSDJiqqqUGquJjDmc96h4Qc1h5moXUJ4JWrd1MBDhoyoIYdmeknyrk4xVzCZ0i/2WwZPgYB6cLWduiVDU2J0DSCS8uGxb0bjZKRAPThTWE3LFswDwyMJ0SWBWlKP76N7+O9z99gp9eVQgahBSijEkVWhSiM7gUgIxVZpomTAxMBNQy4dnFFt/7n/4J7lPBi89foKBiQjXZ5gJlAcmE8vBTrOaKpxc3eH4941oIGwWMwaOCBLh7fAcf14r1+hqPzhVUt6CPnoFFsa4N6yZAOcDT7RqfK+GFEq5BUFpZn2XAPlJpkuvWajo1TgLzBKaVz2HfkDiQLrsOFphh16Gmwm2+Du5Rd2T2wBIxez8DSWtgGtnJVNR1VZygLelcDIDUCEKC60c4GEqAZHbJelBPNTZALTDAM7ssewAqQBFKAFwnsqcHFXTHNBdjLRAYOKmfVoYFMNlAOiIGRrT5oSb+5Gm3moCLgJuzR4mNVaT+DOdyrG4x/xiUQKUAHFHkkEMAoqwXxMfApk+02lh5oJrMTxF8JiJfK7y7xE5m90Rm8NSb4uumAmInxzuAB4NTHJlqNBz21j6rs7Fsecd5klUj5qkO/iIEM07qK7JrCZrpgsJhXlVzTAKI1Fx4w9Ub8R8mckCnA9Ncn4vYIqrMDrzsDvt0Pmv8bakQMkAR0pbBM2M11GQUSk4eqFj6R7itYbrVv/fUMCFwBAP6LUAyIZtpS43p0PqJ6556y3U/eYCVONMr+dQIn7hPJsoT9PlKT2M3BhsiqKDB4tKjE9kfY4o3s1PE0+B0h3usLTamfQ0I8F6c6g97MO01sbRzXffAAyOS82BpFSODPCZfnq6GOzglQw0aQecxyOfXhE713ymvp7RVyYOlwd5kfSX9WRQ1/jMCFv8Oiw6/Zdw/v0nlkhdGsAaEoc+60TCCgsbg7uKd45Dle8IABEK0xyCj2aKaa0+CjSJImPfGAzpbV86VtPNCPkLnYLg2tayzpfnnFCM5vDfvdYlSJJuR1duuCWYL2xtl9y1GIUUvgqwU3dr72FQdLd6beivGcOxRv5+i+RgVArIfU5WkzAIvp0T5AiBCrC1DG4LJtdt7Qwd7RWxcAyRtTBmdjUh6mhnqnWV6Jhyp3G1YdFmgWJcGIFkCaFxuJfvI78tXhNDB175o1gDGiOsQ6TwpdZwqkmVueJ0dnqDhWW6LhFx3CxzozBtk8h76PGywge2HXBZGAGfY/jm2TH4IaADEpi7TbNcY+oy6yfhp784cM9VYL+Tla7xui/WMevtyCmoH2Q3LFGyFiz7qiie+S73v82x4rf+0PlwE7eEp9EKHIOze4fna99qZ4mxckl1mbD22T5gUX3twF+dX1zjfdUtKg/WWgJGnS2EHfZgUrQr+5J0jrDcNn7zzHo7A2NxswSpg6muMDRiDj67AIqi6xsHxc+xas9S5Yb0qcDitcCWCw0fv4dXVM7zzw2/jyWcnkDZZmr1me5StCA7un+G1wxvMsEMiT54+xdvf/OZCH0R/Hx8fY5qKMStttt7+8CkJFqlf0eeBD33vvezUQfJ1HP1QtJT70/Au5VraDbTsW+JgHR0en0AChW/AEcCO2ytTf0dUuoN3FzZSX+pSd8b6l3M37whdHWPf9XNcGjYXgAT69Lp4/6vmGkZ+8Ih9X9LZe5aTVMd/KHwa6HPuVlfl5aOeGNb0+LyvJ5p9oMOro7diPxF6NdfHoY25qA6KI54V61cCr6j3daTvRjJQud68xQik6aNbttDq38HHo5wmyDwp2IZCY5dS+j58I+zrjOacsAvtxmUf9oeZaHAOX6zVfa0NeZGX7JSYG7HW2Ef2SwCoXyo6tHZo3xJ02NehOOQW47wYrpQV7evIctL7K1/WBCNosD8t9DaWNnnKWwcW5qHBkZVr0b7xwcN8DBt+cBR2G2opJ2NbYkx6WvRlP9DwsC/s91t9crsnUzby2wAJf9HTbgvmvuzLvuzLvvyHVMb91Xq9xm/8xutfvFz8b5S7d6/wjW988Kd+z6z4G3/jt/H1r3+Ev//3fx1PnrzmYCVgXC/ffPNTPHhwDsBYk77//e/j137t1wZfYjyP8corr+D09BRPnz7FixcvlvvEfdmXfdmXffnKlS8NUgp2lb5J6o5721cWd+iOTq7uMI7r+kmR7ky0zfAQCHUwhqBvvCmCBawgNARYqDljDUkEHG3T1zzNU/FAaQa34/sArvh2mz1tFBF6Oh1vX5y6DaYjyn2lQJlREcnfyMKc2py9KSjeG1QIVJYnkIBh2xcOdv8u3pcMLaNTVG0RB2DpwtQBML6prr6pzlNm6eAcgmNQZ8rpqXqyQk7V32QHLhNICdK6s4A8iCrpnRM45gVNqzcnEnR4vM9ZlAygRgCJj4eAJ3t/FUuRJ+lMV0BqjqnqymBhwyleDkCBNJRVgWrLtEqtWdo1aSaHZSrIgB+QYxENJyZotfR06c/JoJDJM3u6H9WeWkM9CBQsCezsKAEKEA8ASTqZIj1dzi6Ec10ReZGCQQQOtjMJMyAAY5YdmAuaKlohTEUw+Tyt1HKOMluCCmkV5CnMeDKDjnlC04ZWG9A8DMJG8S/aUyzW2mxueCC3NUHVZinMpgD7OZBKFXAmmDrP9pymAEmyMFkw2eaapZKKlAWDk9BZnEQ8ZEUG8mhwMJnLLlQBUeP4GOdMOHhiDoPQnXjDfEqntPhcEgT7VhPTC00kQUoxm6CAkDNNhc6yGnW5cOYqUUFtwA/e+ww3M0FagVJFU0vd1OBzRo0FRsEQCBpVTwtXsCXF+9cz/ukffYQ7xZjZvv7aHfzcz7yNut3hxUXFO+98grrboH24xm63w6fXgs+r4EotNZs0QKji9PAI1Cqm9RY7NFzIDGkVVSt4rtiJ4gYAc8OWGM+r4gqEnfeTkNr/4qmrBh2lPhFELJBBUnBwuAKpYpbq4xvzxx1mGvM91geTodH5F45DykBCT9XZh9L1p8tP+GGDCUFBiBRtIM0UYfYs6Y5JGUJlg5yEE7XjTiNQ2cELdhqcjIgL8HRu/XkZQI+1z+eCDo55YQPxRMwz3iEIQkP1NHbmQGYQWv8SUit0NiBoJBqLNDXNQZ2sAkUxQBa87Q4IUrY+IltYwVQypaKpJsrxifnkneT6KtbrmB/m2B+DL62JA0+MYZF9XG08nT0tvPOqaM1O7oMHliUFCk3xqweQDVQJ9vQuzoLX0AA25gjReE9L1h1m8vXC6QQ8UYwKG2CKIgWB2yGeTy2BKAQDcrKCMaFBbeHzwKotZeJZxwYmh2CljGADYu1yHQTt6STJaiXBuDHYWep2VyFnWCK30LQ73xd6LyTSKzfu12Ne2BLV11rx9Ic2HZaATErnO2UgOOZMN21Cf3bbj4c5Mzof8pS3MiKtYTCpjTJXSkm9kywUgz7iYoEYcjmPGIkqss87QClfj2QNG+ar3ALjjqeeR1sRXgf1tUnyOUOgA8FY1VMlZ4Ak01z459IHZ2EnjwEe0uG6YBT56jphluyf+anNE6iDLKj363DxbVDd7X5NGIYif0YgawSF9SDT7WBmZ4oIgrgIynHapgjl7O0BOnDCZT8NZkLsQaxGlO/tQ6R5vVDIBKVN2QNsfZ1lGsZZe31oqFef213G0KtkN/k9GkYqXPYCBDP09Rg6v+3kM9mk8dVDoE3dNu9gQI/lok/YcUzjT+lzdVGP+H5pCxBikKJ+3vfwlIGub619bIddaHh5jJUz/4Y9Y33ndrWr757mLWyDoQ3eD7HujoIe8hl7jKFZi26Iv0b2tJRwQrenEzjZ79ZbDwoZhveBdq0Dha2vAfw2OdcE7IwQK8r9j6S8EszeJ2e6tbzTSF0ZbYvu0SF9XYT3gy2RAiSVutXbCEvXrbEcBQA69029sRHQHfJCDXMnhiPeTDmfEjow1jWljFIP3f7MRGK0BWOU4/063KND/TC0YWBYGo1af56EHwO2r28Anp5fYxabSxHSj76KWpEzP6/X17i4uECThnmzxfVWcTHfw/tPLrHyOXn39BCvPLoPqRXbreL580tIq9AXM1qruPPoGba0xa51X87h0SF+7md/Bh+8+z6212s0KMrJOd7+y9/D1foYdVvw/NlDtO0htrtD1O0R3vrmu5hJUNXA5J9++inefOvr4FLcjokxs/+nacLde/dweDRjt6vYbHaWin6eu2RrH5fQpd1WkUGfjWCZvl7mbdHn6PuJkB8arlZl3ysMAKCFPge682Z4l8Z60w0RTTkfht11FCfIOUY1YD+9tQvQtHZ25gWrUvjjYk1CX6ZS3tMm877PtU0BVH/3Uo/1HgyBXhhYpncJzuRNfV5r1yqhC2Jf91JRXdSvg87iXgxMrt5HvnlKYNO4nxjmeKSxCtAqjwo5dISOc1uB4G6m0B/dzu0+sWhS7zP1MV20ycePYQc0ZHhXyAo742x/v/VftCvlThVY7MeW+2MRTTbA0f8x7qeAbiOFzPPCRsOwzo1j1fX0y8PX52W3DXRxX+r+YRHN+fbSvM0e7sbOsP/oz1rae2FD9hUyQN69ziOrbL5i0PPp1465g1Fdd6FMcN6ijbf6BSGjMfe/qO+GCZp67vZ7h+eNr4vxxNijsXfsctJtmP4cynUs9MsX129f9mVf9mVf/sMoIoKzszO888472G63OD8/x/l5BfD4z/Wcb37zXRwf3yw+u3//Pn7t134Nv/mbv4nLy0swK772tY/xn//n/x2ePn2M9foE77zzHVxc3Mfl5V1cXNzHr/3aP1qwMX3/+9/H3/7bfxuHh4e3X4k49PD2229js9ng8vISz58/R611v7bty77sy758BcuXZ1IKJgd0Z4Pttz2tmGoGGqMY608Egp1Nwo4MYYwmNW3usOwbos54Yb8bDkBywxVgD/NBS4Kj4rR/BKKBNqTxMAc1R2of9dPO6EEugJIm3Ta0DsyQ1gOn7nAJfiDnmjGGiHCYc7RvcDIL/NRdd+goDNzBsDRBgKfPSxeQAVM8gQ7i5FEAqoJto6kBiyxYasG/MjizNCOF7pJpg6PLN6wdWAZQgZ2qlOqbVfaAv4ILGfOFb56bNCjY04UpwAa9SDaK2LRLOFQsEEw0AFuATLdjbEwtT/LZdRaI7alVwsVgp4tRegqizMEDd465Q6w6ZTyBMuDdT4BFajp3DHE4RbgDGMROflKMEbGDZdyhJINzxB0blvYtHHIeXGIDp6g7liROBrssE9k8ifvdgw1FAA8AbQaqgVQ0LmgskKlgKsVP6tv7iocYRBrIU+NJbRBRY7rK9D8MDtYKTyuV9CVkc1scUBFzm4iB2sDkjqxmgKpORjGj1s4sQ1CfWxbBSLCRn7hWYmcoUdcpkmxbpN1Rb+ncZGANs/8EDiRQSsdamJ4ZBMmTt+HkYyRw0NP2FRWAGU05ndAJDvFri+uk0S8UgVeLV0q2U0HYNMVHNxXKBRPZcwRT3s9ip5yNuY2cEQs44oK7p3fx4N4hVBg//OQMk8w4OCr4bH2Fd56dgQtjsxGcv1hjs9lCZIWKgu2s2GLGTRNMAuxUgOOCxoqL9QWmWkG8QnWPNOmEiSY0VszaLAlWY0gNhpKCeWoQEkBM7zMRqgysRxQYU3IGMcW8vYYqUDg6yyGmhAVQqOt+6jIEyUCtK/7Up2PANccgTit7WikJyR4ABoh1YEj3kOwI4XjU7lYUFbASlIcP41EajmAfe9UOiAhHZawbeZ/2dITuRLWfAaBy4FBcHzo0+lgN2EHqXHPa183oy3QZ+5pi6xCjZG4g62Me7glNbfNfnc3NgE3A4DQ2iXU97A5kzrvdFrBxEg9QIJZD8xQjgVEAVBqap+3LQLMHR8XXYgNvtWStMCQrocmcsRERMXd+C+dvQQSYTWTI7QxPJ+apMJnZWQ5hLDguR/EzvMEEstSuwTQk1dov9txgrLLst7E2mD0hEoHQkHekHI5jx+hBV3FwFPu6HbYGAEgLcJDLngqYgFUhTIXBZUKFMbkl+EVaBh+QDnwggMpjPcbAQDBMIhzlcEBMgLmHAC/F6fLeyASdjI7+ABeHzuhrpyLAd8GCmXZEAltM9mIcrPREPzFXlEKu2ZkBOdfqha2TsQ7qtgVbS8U/ICJjhCTt/ZnvjpPf1pjx2d4RSADk6AtxGyaZkRDzeAz10PJRXuEMuGRfj/ebFSyLl321yqjvX/4ygv5DGfYcpgOBZVAI3r+h+/pt9lXM61FX6vCzL+ZjoCwCi6Y/um6L70JukHuVCNf6M1NEAhIyBHyGU/Wm23vg0heXtG96jc2YGlNCjcGkPLA/NItufxBzINYn7XZyD7R7QJUowZk01ib2NH79AiBmk9Pept5m9vZlENfqFNjaHGvFYs75ZLW+yIt6v2bAv3ckhquWv2R/dntujPTlrWNQblRlAYIMfexpoklfnqNL/dD3gMHwoQ6gsSp4PVIC4p0jQGkIkscQ+pjS7T6RZag45WoYJ2hcEwHVANMKSCydbPEUmDZiDlwN/e9rTqRKNbPY7fjQxENd49DG7blq2+HQ3SE/canmfLbLJM4voac/XEBTopEIgNCYAjj6cwTfRbrP1M/DE21dSpOlv8N/6bN1mDt5jesNINNwGo5iANgNa2fadsPY9PTfo05yQLQCl1Wg5Ps2NTgD4FhzQ0NjfbPB+dkZbm7WICgmJhweHOLbP3OOi3PC5y92YGngiXA1zzhb34CIUKtis5tR5wpFgYBw7+QcO2mYRVEUqFA8uHOKV197jA8+eB8b2eGIih1OIMXJyRp0DNx/cImtCpowpE1oZYdtpAsm4Hpzjc8//xyPHz8GDXMg10Lv9NW0wsHqACfHJ9jNM3ZbRq0zWptzQoxgtPDnjNNjnGGL6a6jLglAyzie8LVnALd1be7P6XWNOnS9i6XODjmgYa1IGR1lyCs4bDazf0KX5Mu8z3Ku+cu6UY2xUDzjdn8PVyzv6PMzwCEvadtxnoSdFG32yUQDi+1CB/fTHzknsj7qINPBnwQZ9CPGvg9w8dCzqfvdxoNmG/qaNzIxIa+jRY+MqziFakYHKlG2Owa46xTt7fXCYd8FQ+5CoqItzuqpfeRDdyykWvudy7VSh2e5PYxRr2ABcE+dBiAzP7q/qwXDX+xvnT0XGGTXdelCOmjZz0u5GvYMQ51sjIZ1vH86Lune1lwFc22x+vVn6eIaGtZDyjreflPXESO4KV5Kw3U0dLo/b2wkRR16YU/NHW1evp+GByztC1r0EZb3xK3Dn1HHrOfYppRVWlyq/n4a++wlbbAv+7Iv+7Iv/3su4eM7OzvDj370I3z22WdoreX3v/qr38P3vvcruL6+82WfiLff/vClPfPrr7+O7373u/jt3/5tXF5eArBlqRTBG298BgD4znd+CgCY5wm73QFOTtaLZ5ydneHHP/4xfumXfulP9S8FWOno6AiPHj3Cer3G5eUl1us1ttvtn7K27su+7Mu+7Mu/7fKlQUoJMiFA0ZlggmUoA/hAHEJP51yegpHuWLENm22QxDevDIVqp/IeTzT3wJAxDEhQyWs/vdRZBXq9RQEuwOi89ORtQ8AinJnjCRjKAAQRYVKAID0ID8ng1kgRb6fmrWpM4doNB4Vt9kQjkObU0e7wZoqgo4M4HHwF9ecooJFOD0MfMndqfX+mkKcQIwv09hPh3qNqzhfiYfupARRyeIEYswyhgCMozuaMi7QDgAE6xBkqlNjao4JChFKmdFAR28llUTuxy+zyMWygLeVatfcoo6AYkwLZWBgrE+WJsNxEhz0iPhYDTXUEhAJgEo5GadafhUvKbsijAQdMkEuwhoBAQiZPAJzawnvPGZBUkj0BZKkAOeXSg+iqIH++Iog1aAAB+pjGiVJRZ7EogPozYHNBXSCFCbOKMY6wpQMSVQfXmYwXMlasJoJCBVUCVGB1psmnSabfgdfVggM2NpbCzTxBgokZiNQ26kBCJnOstWYBHItm28wagrV2kt7kJXyNltLOGZSIk93FQBnubx2eJTGvva4mueSqITyPmg4pRqSDCgdfOGLa/4+9f3uyNDvOwuEn17v3rqru6TmP5qDRaDSSsCVDWMKIAOOfBRhz+IKAAAwRXHDHX8UFEVwRBJYDCCBsE9jmgw+M5Z+NwWjG1kgzGmmOmunp6q7uqtr7XSu/i8wnM99dLVvGHmlk9pKmq2rv97BWrjyslfmsTAMgYMb1tWKrinNtnoKdMKh0tqloZA9j+vvgNThIQw3AMCCWTUuApjOEpzab6bwJgu7ZyaapYb3a4Nq1E1y/foTrJxs8dOMGrm3WOLt5G9++uITutjjuDe/e26K9tQJEI4MZBnWnYOgKvc2Yh+KyC1Q61n3CnbNzzJcXEFH0NrAeA+IlLaHAThU7NR0za8P5UGwdHjEIeijeximC+w4+6A6YxICVICToyMtkOmBIKG+GiAuHI52xpLfJumd8UzhY0fmi2BdV432BZxry2e1+6lXdXhEEOoaVTmyQyH4WgMnis6WmDZ3n38W7k5WolKh4QKalapj8meK6WhzMpYCD/WrIwmyg0BnN94vzuxD4OxaOaHuFAjAgn/GiUyOAmV7OsNn3XmXTbZMDJ5Y+Vx9rCdGMCLWEO9fmnKCmhllggFc1+R1uJUVo7wdYVkvhgQcwi4NnPnKdCLdJoXvFSzWWvWiUoqW9BvnDnyoNTRqkCeZ5Dh40YKiAp6RVxMrdNMEwzCyaj1/cvgrUMxgKCKRmgrzhtGY2vIl6AhrrlQC2jRFBV7ucs68Y0h3AbCDNeXQvKygJvBRbg6zEQEpHRysMWUGHAR6BHmsbAcHfCeYwORshg9HoiHeZHDy1PXzFVMZBoNpYZCpUQEYEknhKXZi1EuJZgwgYc9mrJdJKcGPpyK/Odpd9JEAJoKxg0RZ/DiAyHzn3Lk41e2DBKQQC55eAQIKS3K4z+0p8r1kCw9dv6nMmi1Pv5MMMfohMjAWBa+DWJkQJGT5b/VryOed6ESX5cLUAvFRdCrMbiwwQQNK7TGdcohnMyTkrtj/W+Nw/IJ7NE+XGnoVW2anYD6RW1couCFBO8DySIX0NeHXwhNcjSkSnNJrtWQIeUL7Nv/edaVlaWpMH+Gw+M8Ady3dKWeNk/9kBt0/AVfpSgygQQS1JHkTwNPtIWSoyGtbDnmw8TR1g9o8JBVqbfD2GYhPc7jt/aO0aslQvuBaVYk8UKSvUvc5PBQdjfdwTpwX91QE3IgE8hj97+L0xxis6THKCg6e4jg1rS2ogBSG5g1mV+D6unchFNdhoS9oRoIu4XwgS5b6cILIE6XWidtSCrLRDTdLWcQKkqZe+LDozFGFZ5yVLgqWxGTQ3nnVa60Cmd0F+nwsUp2Xq3OWySHLOqVKWwpzz7WNcAOD4vsWDXY8UeUgdZXun9aQe3BeeRYGvlApTaPCi1u9BPY/oe+UHQc/5FQHGwLzd4s7dM5yd3cFuu4WgYb1eY7OZsF6tcHy0wdQaHnz4FO/ePAZ6x0oF93aewU1wJbvKarXDtRs3MfthsK1nQ764uMBv//ZX8O57N00GRDHFnsnaUMv8BB0YbcY8BHMZ3xiKr738VaxXKzz88CPBo2kKTcbFF9qtAcdHaxwfrQEodrsZl5eX2G53mOfdIuttmbiU6zKwffC0qb5YFSGova/33N4j1uHJNGnzpegqMlT6lwigp/wvsAILvtX9D0JHFxJdsRFm8/xn/Yx/UYeUm5h5NWS4vDmsYCzVyiTFWoZ6uK69uJ5Zrtnysbl/qyo2doHcW4sk2DG+MptGmodGkOauGbs/wFugPqUuXK7BELox9WX4QeL53EuS+jy4MBZ2r449aCepwswmOMBx8RlpqEHHCk5dUok6aR/ok/3mYNWv9bzqULgfMehP/rVXNbG9/WoS8/GhWdk/JReZneIea9kzauYy5wvJy7mKXeTeupmm+CpP5CCD/5HqP95XljFXPlvQcbk+ST2wdy+WkrT/XdV59X0xnt+jZbai+sB967PXtNp4BA33ls9pywrz5ZrYfeyxhq5ymu+v+6pDO7RDO7RD++Pd5nnGvXv38Pbbb+P111+3TKwFnMT20EOneO651/Dii5/B/gr0fu3k5BzPP//qlc9PT0/x7/7dv8Mbb7zx+z5jvZ4XGZTYVBU///M/j2vXruH555//PW2WiGC1WuHBBx/EjRs3AAAXFxe4ffs2zs7OcHFxsciMeWiHdmiHdmjf2/YHAClZ0Jlu+qEwsIiqn4offloW6bzZc5sM8awYvpscnnrW/p9gJwARhF44FADY8f0suTZiZ+q78DjxyXdarw3kIEBXz94DIJwedh83blGAQxRgSaepWfUWL2VlwxTvi5d1s46XDEDWhzyl5AFjGBirbgilpZ9HvF/Smgdt9zajC4eX2GjFHDNxbT7MHB6jBMswRf9EBGjV2WVjpoegCYNGkk5D9dgZ3ykWwGV2jsicILAgpGcOEs9eNclkAKp6bs2dHRZkdreFeEafITF+gqrsM8Rn5gx3x4lvuGflaS8vH+L0Hp7ax+PcOeMeKCM4SWElZuiSGerlxtyRBB1WzsEDrY1OgDiBRKAKwnEX9BRzBCsAtCkzKTAjiQjG7BlqPBhgCUIU2sSBOjAABhSqE0b3UnLaLKAOy3oFf554liUDKgyjv1qmGfHoOoPMIgLtltmlq2JWtcC9iAXRXI5Hn81xDQvETE08kxPQ0SK7EYEYgAXaheW8OP3wAL0LgvjxehXxNOjdx+aOGJer6qZqxjwGZBCeFlQHx3mnPVMUJIP85uQzOq5PZvx//uLn8f/++u/gq+9uoWpaagzKkp0eFPdeKtSDiiWASV6lbhNAVDBN/rlOaAY9cH3QINPAZppw/eQEDz34EB586EFsNmusVw2racJ2ntFlh7YZ2HbF5U6whaJhhgrlaMIEYNKOnQ5cjhljstJRuwGsp4bt+Ra7eQZUsRbBkIH1MBDDLFayauZ4BNhpx9bHa6GGVpzDjWSGDvVyjQqZvHwXAVO0BZ5Vb5oykD+A4Csj6iqAC05M5w8GFu1oZ55Y9WuciZjhZZpYLs5Vmss74VUM7QToVXvoBuEJR3+2ZdlJcIfZHpOHDPQRmEP9En70/EwBAxN4CTWiWIWZfehARNICw7MY0hHu9HLuzsA7ZckVtMvnFHwqLusODJn8lGwTTI05rxCO36nRLiOyAAmsZCbnZWD2fhBsAhAI0xTowuCxB0+9hCPXB0r77vw0Qh8NswwsvwpAJcuSWl+Gg3CBzjmD6XzxUnkBMFCWrkx+sTlqaG1tc0nQTGMipgmTl7CFg0QJkmSsVD1Dn9HKAlmWRcvBDbyeXNC8TIR6RiOxkpWGG2ueWQzQ7n0Tz/gFDT0CXyeN4eVLh2IlHesGnBxNODo5AlYrdGyA3Qpjq8DYYjfOs2SrgAMwmqigd8uaxWyGQ+HAPbMpXRFAZwZ+ELxv4meyY3LbnEfDTkTg2gPhvrwiIBagTBHonWXTBAT22JoRQ1Lv6IjgRADOAwgBwDP7RQYk6hNFylMJvNPWG0ra/qZ8cW3lby6yamA7nx5TXcwGJbnuiKUm5UzK2oRrxRhMDRgwAGW6zTIRMNDEdVzGJRL4EW/78DVGgUJPXgVSLPxLjFYJeQoIBonPc52dmX/qM7D45CrAIWlYP+Prgx9QbLvrQmo/9X9H9GH5zAgacxzg/JaBB0WwmNh8jtbJjtkuo4nv4rHxrCtXZQB3QfAWutK6pWF34k31eW5nJB8advLKu8rMJCiQjxSa3ZxXH3IAFkv9GWFWQbF+KXVboVXLl4HgoQhC8z0qIY+FYtF9W5EUBsyBIjJclECj8H1gOHfJk56U1g9EcG64ruKLU7dGRirSAlX28737PJMSZVwZ1A8FCtYwLP/5oYwRDF7mq/zigEvSJKaM+yCtPO5GxcHiA5WGIVqmz0fah7qcGSFn/h5/9vCMpZU4HEnA9Krsk4+U/LIPkkiqcbqLJsj9aZFD2x/6+IAAoLb1wKeffwpvvvEe3rvXffzi2FNxnuSeK+eWjfQM/Vi+bMXebbc7nJ3dwt27d3F5cYGuM6Y2YbNe4ejoGEdHR5gmyxjZpEG149N/4iWoPIR33nwE5/duAG6zjo/PsVrvMM9rXNy7hoYZTz79TUzHd7B18L/t6YCbt07x7s33ATUgtqrG3pN7v1DX8IzGvme1wRgfXl5u8eKLL+KjH30WTz71JDabo8hgLBDfn/qcxTzbRK/Xa6zXa6gqep9xcbnF5eWll3FwbVXsR0xuQQTIPi+igIzoQ/E5pjSpcP5S/yI4owhgIFD8yQHySduT7yxTnAvI5D/vh4b9S32aWYUEoKxLHTBSn3p3BLmuSxO0b7UqbQxIvLxEQ3cDy5JZqbv5fdH3ar6I2M34/CboT8Km1NeFXXU/28I+0h67bJssatGtruNlQWl7b2RWyj7bvoQHZfihhF7guAP0Lw6V11KmTeC+KfpH/Z/oz37/AwKUNjXsaTW5ks8BWaXMW6w/qAk16enPaHSCgUS265ooVpNgtZrQpgaVCTImBKxI58gkmPbI7ZQgM+Yv+pU2diC6veDBfeVXxyNhB8unaRLLmiqmFNT9Mbwid0kbdqTwoSQopz5TlhT2zyTsiyB92PEsvk3Yh9BgwfvJ3ZrrnL0+VdLkvn8pq1Xcoy/VppTXhQSUR9iv1IfJmFdXsod2aId2aIf2x6XRv33nzh28/fbbeOutt3Dr1i3M81UwUG3TNPA3/+a/w1NPvY2XXvohvPPOR8ADU4888j6uXbuHi4tjvPfeYxBRfOELX8Zjj7135Tlvv/023n777T/0OM7OzvBzP/dz+LN/9s/iR3/0R3Hjxo2yDr5/4/cnJyc4OTnBE088gcvLS5ydneH09BQXFxcLu35oh3Zoh3ZoH3z7rkFKVlpt+Kl/yU24KOYx5wbSnQ/mrBuwSm4W4GWQMt0qtkm0DXPH0JVvNBmwtRNNOoYHzHisfLiTd+/8ogBE+tTMJrvBoJkAvUfGBNsoW5DanKLmFLMSU+oZC6zHlnXBT9L7jjg2xsPLzYlA2lQCXy0BL6peYiBL5/h239/QgMnpKsVN4/6eLBOnscG0gDWDotwAj3Cw9K4YIzfktb6RgCduNJw3KBtfyxAlVkZNO5poAoYWnKGYVgTyWGYfi+8ZOGcWBaYy9g6smn2HZv0z/nBAEoaXyoODAIy2bQQawpyFEIg2dO2ZXcPBTyMcqX4WTTWyI4kqGBSHlxGzwRqfqdPF5lLRHVhHcIyWjB4i4sjyjtYmKOeeqbCHQCyNCCJzlQPJMBTaDc7F7k90MvpcdKv5hjaMx9SiyBYYdyeCjhnwbB5jqGWxcfq31tA6ME2W/WnuswEKMdDHnIECji2coeLB8h5yO6MC7BR97gE47KpQD55udII0taxOexnNatBOMQKHwgAss/REQBZZps3SFjmmwztqmZ0cBCHGp5RfBkRCd3mGF3WvYTqVPZOJAoIJ26548aVv4vyuAwn7sDJzIRuapZv8FekMTqeOBVosgxKQGS8Uzncuta01TOsJRycr3Lj2IG5cP8HR8QY2hIF5HthdzhjbHcZ24JHj6+iyw3Y7e/Y160djIEMEkAnbnc33dlbP4tSw64LdPKOPjkksQ00XYHKaG4ZTA5hgMphyBADaM6Bi2bqQoAIR9NEBBZoy+5jRogaZ4XrN6OglQ9Syqaw3x1B09PkydFOUGITJKk9VSyjGBLwp1EAlkk5pcf4elJnW0uMJcZuWDlHOEwEblnnM3xGeTgsuDY4PNpaJjulwHNNzak/vOiBqwBbqIQNeePCjJbAmnJCu89I73aCeeS/KZNnLUo5d30zipRH9eZaRze5poM5rkGlCWEVHVZa4UNETNiauA0hz1QR6BoCMJb1UXfaMBs1Rwl2Z5c3msIlgVma88xM77pz1hG0JdhGF7mYLXC4ikIq57xzs2tIBLoo2ASIzRNbOl7au6F6yctUEfcyerbA5sMzLLagB23oPxKmzc7d1w1Bz5nfxMbozfiDmQwsfgDwisKxsnuHOiJ1grObgNYLhJqFOHJAGTA1YQ3FtM+Hk2gbrkyPMbYM+H6HPQNct0BqkWZo8y2KUmbfU3zdN1a67DRdbBxmGzkq8qs6IcL2WjI5cs1E3l/18DeLwC4JzEhQAqBh0kLFx6vmQH4KBVCKLXXmNZ9Ujj1IuaTvZGf/Mrzeedb5sAlUC9ly/020fzv3sP08tR1I+X38qcp2AvX9jPDWg5LbDpsKDUTWywABFY1hFMwARQQwP6FL+9oIlH7YWfdM8+Z06HKmPSSLnnwCaIW2UqfUarbLnhs0qvKllPqlfA/Rc3xeR5ELD2gexdxJgkMFqLZdnuccASPrXo/QTwOI7+BorYVvsl72HfY3v4t4McjNwFsTk9VcCbxpzkfxEjiUPVV1RzXjlL9pE6w+DlfxOCBZo5ZlhUP1X/yeyZtbnMbjMV8bffqiA74suJf9L/MP5s5JmOb+Ul7RlHD8PfIQaqq3QJvnIOxHgk9IfqfPmbyetlHNBOSZIEsg9rQRQbJCuVQlSx1aQVvk11qzgXLodc36mPmeRXPYlg7wNsXQSP2Tk7GLrigVxPONwoZWX1FVlOeoEGzATK/UgTfrkAxj+PBIuOZpj1gUdEN8nbf3pqdNjEjjv+czcp5DGEjwUZTS5F+Wf4DKXzGh7snffvY3dVsFyZPSCsN+5LvB1U5204CX2PpYfmOcZZ2dnuHXrFNvLSyiAo80Rjo6PMK2v4Wi9iayhgfkdAztVaO+Y2g4//Kk38Onn3sDZnSMv6wgcHV1gveqY+wqXF8eAAOuju5hdn33suY/h4uIC77z9bfROIBHKAaXUFZEtKeZAA7TBWSRPXlxu8fVXvo5vvf46nn7mGTz51JMOPhpVE+a/tIsFSDetJlybruHayQl679juOua5Y7u7hPYO2s/UPUb3UH1aACJhg219xn198BTXGJLPgq8dgpf3rifwxT5tcQXJw7Ug+ajClsJkLGxM9tP0QtHR8Z3vKWINwv0E+yRx2C/V51LDL3RpnYXoXrFWY0DaFH3KvRBCBspgUm/vk5LzFMZaYo6yF4T7VX2fazfqbU1ng9lQrZrY23CfpRmq1PfqhyYIGOIcC3XhtLAN1HGZ8RIpw0rbzjVcpTJ/X/a/6gPuJeq6hcC5q+ZJg245X3kw1OYk94wicN+RHWBarRpW6wk6TRi6smzp6FB0t0+UB9eZFKvwyeRcRdYp3VuLxOK58BMWv6QZ3BtgAo5J9XqbW0n3jyzk1i/cX2NWvgo5U7LMVVsS4rTfY+qRGHN5fGHwXPOlPuNIqBMJel0Sgn9LuT15bQGOj3uk/OHj9+fH46XoQWjQW6487NAO7dAO7dD+ODRVxeXlJd5++2288sorOD09BQBcv34d165di+suLi6w3W7v+4zr1+/hJ3/y/4sf//H/ips3HwVBSg8+eBsnJ+e4vDzCrVsPQ2Tg8cffgwgwTRN+4id+Ajdv3sT/+l//6490TGdnZ/ilX/ol/Pqv/zp+7Md+DJ/73Oe+K7ASW2stSsI9/vjjuLy8xOnpKe7cuYPdbvf7ArcO7dAO7dAO7Q/fvmuQEqL2OE8tNugAuvQI4HC/w1NH3PxCNErp8NS6h+jDCWEBGgv2SQRbMpCkyE0WwSE18wRPytvfBKlws2cgGFV40FbBZOMR3FeGPiSzPU0APOMRx7Fw6PsOlk6DoUDzEiLiu+d0VOeJ/3By8psI1NPZ4Nl5GFzzo0kMQikMSEDHtz3baMzMFWC2oNhYDge0pGOCJznrSbYazLF3j5g364o5yscowaLRPUOQ2kl/lugSA+CI+yaaNFhVEsu6shJzZI2R4JFGB+bUiEoAVALQAC39j0CSjaP32bJ3hOOFzpkErkXuJucDr3Jjjig6EyKriURGlgErnabwIDsQqa/H4InoEQ4CQC04OpmjozmIQ52HtNPBTQCBoo3mJwthDlWLysNzHlm2KvInRy4GOtLeE8jGQG5bYYiXgJvEs7E0tMmC8KSLNGA4IIkZY4YHsgfTe3p2o967gZa6Wgkn70cfilWb7N55eJYo+7ZJOq3CwTa87BcAdAP4dbXMIkL3nPrU7Ob0j/gzlEAhyo2YE5mZtiQyTfAfQIeiR3QwHbY6/NRp69Ad8JVXbvkpQQZRXIICjMISIohg0ugeyPLHNrA8SgsZDmCcCKQ1rFYrnJxcw2azwmYzYbVaY9c7ZLeDTA2qO4w+Y2wV43KHtrvEWmdg3mI7OnpPR6e4HjAwnWDbbaxdh9WBEsVuO5usDc/A1QRzE8xgaUkNfUQQKhozeFnpQmYhc9VgY/VMX5aKZY3ee6SFbW2CavesV97P9GZ6WS8PjjmAh9ll2OiAZlgrMz/4D9bY8rP29fQws92Qb1pzkKDzJ8sv0YlNcE96KglKzX42wICPZC5toVPUs/ypO7XDZkISqNkEXTugLQCQeX/JrBI2hmVeTJ+O7oCyXkt9VN9lAhisi/YcnkY37m+uS73v7uyttrYPBxarAMNKvBo4qfncM5NC9zJnDEKSLj7+sOemExkMQ+nvGMN0zZ7z3EqLNgcOW/ax3s1eGnjGx+n2gCVUXcsHkKH3DulWcrRR6ft7VXvob8uU6P1VQMcw4B007IplH2Q/kXpEVlb+DQ0dPfS6uh1T5hEYDLq5jXB6EADaBK5/vLysIAA3BHU1GWgY2EwNJ1PDtZMNNtdOIJtjdN1g9DWGDKBdou92EUwkqM3WNrkOaIna4ILK5qp7Nqfw5ZdSOs43cJttZTJaljsKEcp1RfXoEyxHOTKdWoPV1btvslPXXxUkx2x9KfeI5wEFGOEnpGPaivO+DwLtJrhFj3eFzagGhY12cIzMKFZAFRHfbimXriEySBRGKh8f9rkGWKChXxb3OS3DFu5HdD50zbNpVNqCVCm0QAkYoXxM46MFREFhJJsVOxP3FlAReA0y0JfPKYx65S+3uUp9iQW/h0FeHOH3+4X9sz0HeG90MbR4jGMBWtDgypC/OtPc+ywehWUwsz4L0Z/lO4wmnh2sKGsCQhlAX/Yv9ToDfIvDKATupKEq8mxjFoGXizV74ZFEJH/nMzPY6vLva/YAECYZQeAh76yAUQa1l0bJ9YHU8ZWxLMjL9UW8rMyTfyQGWG0BQnbwvI97MZFcP0S/+RrqMBt3CUXaeFWC7rwu+s53qcb7F8MlT1LadOTereiSrlKC8wKw9HbhAQAGvCbNFAFCijJixhxufzXOFHBEtOecpeWe2WexmCxTJQQecf9vXxTutfE5CJsAuKBtyBtJWGm9nB9ePOpN5Ct/rkChQ/Dt9y9AkG7EhNl3zof/y5JV9XW2BnW6joGLy0vcvXsXt0v5hWma8PHnnsPTzzyD3XaLaRKcnt7G6ektbLdbB3ObD0e7QucB9BmT57w9vn4Zc6AA5gFALnF8YuCn7rjmRx57BM99/Dmcnp7izTffzkMkTsghodlTtpMtQoZDW2r+oDm4vLzEN179Bt5+6y380A//MG7cuOFrppz7fcAkf1b9tlpN2GyOAJnQ+w677SV2ux12uy3m3YyEiiz7qMHPdS4X07546UIOvRe63zMtfQtyVR1kv5l7bI9J6gBDtv37sjlR7lUW77BnNEkwHb9vzT7LKo2kCF+/sBbZpWJxXNWlnvF3ihOSeh9+XfgE4esYX+9lqdIQjBRwJXiSIlnkfwD5LYLIdmseilx8B6CCuUMP09YI9U/lKOp+hIznWk/hBbPjXkAx0JHgkLA0fjCkzjP9F7UL5M0W9NrnfSgwPBsr6VLtqZRxLMDGqWKiDyLcawlWIpbBeb2CrNZQmdCHZV+HDLcNaU+szxQSSrZbLo4LtHt5QCJszvLWoHfls2hlj5J+TH9/eUBoh1hfXn3a/ro7Mhhp+p2jL1r2I2mkFjx1tatJi5D0omjK7cXGVl2hC5pouXfxRtqeuDHvI0/xAfZ3sYh7fbBX7I3mPtNwaId2aId2aD94jXuu3W6H09NTvPPOO3jttdew3W6hqpimCX/uz/05fPazn8X7778PAPj617+Or3/9698RpASYnVmvZzz55DtXvjs+vsRTTy2zJH3qU5/C//P//D949dVX/8hBSmy3b9/GL//yL+N//I//gb/7d/8uPvrRjy7s3+/XeO3x8TGOj4/xxBNPoPeOe/fu4d69ezg7O8Pl5eUPgL/t0A7t0A7tB6991yAlHd0BABqbKMskMbwcToJ8hm+I0xFQtuksCRebOzocJDZQdCIAaic3ozRa9sdKCslic2nlUvJUHxRWVkftAwKS6EriRrfJZEE88B3uLOTJT9gGrmaRsk7UGvTNg8stN83uruN4co/rW1B/V5ZAsAuGZ2aIe9ScFeKnsQnqiUAqS4s0VkKgc8A9HhHEV8AznLB0DumQPct+QhBZioYqJgdYpLvE+82TzDDHwzRNSDeLp5R28ElzX85ABpAhCNDTgEQJmNbsuWMMtCnLpPGmCIhr7X8CbuiYi/JzSHBJ8xJgCnPGD7WSfnDARUPOPx2AbKxTG6A8eP+ZQcojWKqAzJZlyTKBDC8HBDCQPhgIFmCMCeIZRUbvEKiXMrK3MMARfRBYipExPKDsfaCTvs9+UlvQ1ILnqkbLmpCdjsRWsoCZE2p4acRuYKmdAiPBLFqCcBMzhpGXB0t6MbV3Kaeo6egz/hGjQXM5hwcldGS2DZHAPHA+dE/PCBDZYRoBkHRUuXNUPBU9WS/AWBDIsKxCMwa6AGMeAKbiAKT73YctJqtNliXIQjIiGC6ACCYxgNh6s8bR0RE2mw2maYKIYvISWQHAVMV2N+PysgN9hu62kL7DGkDfzbgcgj7EAno8ndgM6DPGQB/Nyu1Jw6pNmHvHbnRQOwWA08skjqCRAyUgmGVgdAs8RIp/z2gnQGQ6maYpnKGRQWZSjD4MJCUt9I3NnevFRj3owFQA2+0FpCmmSWMz1Sbqv3TS1t+hFTjjMtlaZLyCIt/leiEzqiXwgXNb9QwDKgRuqVqml+aAGXKdRqYu68TUJjAVkRLXG2Owh1oZr1ayEmW4o4IqLC1QQ2urANVwrtIdS96rmyVB1xwTT/0TnBqXi2sBgkVFUMEbdPDy+gw4ezBTPXsZKKPqh1hHlvfym5t/P/lJ65QlGyuDcbTNAKL0Y570tLHKNEW2J7jdahBIm9C1ZxkLt4+pQBy0Osp6oJktoP41X7rxiGXLstPUU5s8W5jCIZSADEzNijskaDjBp8aiPpfYGQ0dzMxSjQYCLvY/5gUOyDQaRSB2KNat4ag1XDte4fhkg3Z8gp1sgN1RyIX2hqYNk9jrZ5e9Jg58bQ2eYix4x+xRyiscRC3kE2YUcLo3EctO5va7rmXY9sEzi2Clz3OT5pnhXJOTl0IWCYrDnvzb2KTJ4h3Ns0EloNpalTf1lEwGLrPndXWAGHlfzYpJWW/mszT6SHMjvg5Nmpa1EIFKCkyEVQlNlBY+d7sllZoJLM+xuy6ULKH5A+EwUV3geADSjPMt8auZt9T59pkEfcA171KhIC4uzZYp+SH1bZ78T/rHd0DoNYI7MyiaAaElOLbOQQHpIa9fAq9cDyn7LjH39TnxvCsEJQynrs0LPxT6JbMun5p/5BrmPi/au3a5JifFct2z9wKu3+DZSYutlfLvQmYoq4t3+7pYctxVV7iVcv2fa1yC+0xmpIBGtAxdKqnt6Xx2pqey7/zzBBaP0Gv1HYJcC3inUHuKUUdOGd7nYc0zQrJPWMTYuAZpBE+D/JwZjEB+R11vIMaoTuOqd2yNo1iU5+3AyPpVC16gviT/WcZN7ynREbE24JzH3dYv74+gZFHkODTBsqRnyOueDoy9At+gpNfiomRp1xG5XpN4ft7Pzu7JGtyGCdCGJtx1AMo1g/J9ZcSCANspbL9xeXmJs7t3cXHvHLvdFmModn3nFPJDJ37g4dvvfhu3Tm9h3lkmydYm02sN0CHofVgmyKHmzxndyh73LOeaIuRzRX5WQKXh8Sc+gqlNeOedbzuoN+mbtJEFXWPNAj+UIzYTzXloAefjBGDg/PwCL774Ij7zmc/ggQdugAemTOe31AF+LzWPFPG1vbod3jo+tj0XcA29d1xeXuLy8tKuqTXPqi0pQikqBkxJJolLqUcqmC7XOmmO9vVKcK3wAIbCSmqPuNz2Rrkehha+lYAVxjV1jcXOp3QUOWVW54UMal5fbAFvWaql7M9CmdBWChZ94To9bKDTjZlO025WoWxFTv09roOCF5S6Nqcr5f0+LfQn+1D0jvvKpBi/BRC5Kmm+XB2w5IrfdP9SrjWdFz4Lvs/2fjBLPMdpPLO0/XV9l10ZSU8nACUh1jC8vkwRPwjQvD9vaoLV1LBaTZjWK4w2QcfK9R+BSXbQo4LbYjlWXhKsEnYyhcDIl39XLgvahzIvdKh0R75vYQ0pE8o1nQRtXKAQJNiT8wQzy+L5HGPORt6Wcpw0yv0F51wX91V7cXWe61iDCHlb0XlFJZRDGkgZxP3aUqb5z9JmXl1fHNqhHdqhHdoPVlNV9N6jjNvNmzdxdnaG3jvOz8+vXN97x3//7/8dv/mbv4l79+59IH0SEXz2s59Faw0vvfTSB/KO2t5//338y3/5L/EzP/MzePbZZ/ds7nffuN966KGH8OCDD9qhkYsL3L59G3fu3ME8z3Fw5NAO7dAO7dD+cO27BikxSFzi8AA8ocBQAxgAqGUSuDmnQTCnFEEOCVbKE7EDKNenuyw3cy0C25IbZynuTVF38Nkm0bIKDStZ1HiytGa+4AaeGZPo/M4sT+kQt95YzFgsaKZ0YNbT+SP+Nnr4CXstY+b74mS/5vuaFw0awHC6Z9DEgChTOKSSxhJ0z3niCVap2U6qc4mpTEDaiMcnxQOZ3WciN/bqnnIlgEarq3WyTfrkz1JEv9QzDuX6oEF1DucGHdiV1ijgFsRHHipV+vLU++tBX7VTYXQocvxWUojvF4hkuRB7pwWrOU8NAmEGJ0mQG0vH0Z8WYDyls8mBCg7e4ICkrezuoV5GKx2GzUsjoQ+Mls4yy+TUoMOBO+IAJqeLuyYDKFCzQDHYO3rHGDt3WgPzTgGdjCeKM2WaXCYABx0ATdQy9pDX/NpwuThNmnq2KS+NxEAsyw2wKWXA5ZYgB/NWGjBrOKPRwVYdb9WRB583OkMtKwczVPV09pNDvMQZM3WEHnIGUEyOCSlZz4DIbEIwpurIMgop0BGAFnGHkY+hTQ3r1Qqb9QbrzToWumyraYX11CCWZgx9tmwr86yQXfOsPZbB6mIAfTTs+rCsUGo0FKiVD1T1MnvGy6vVGgrBbt5Boeh0gBIsqAPQBBnS2Tac9tqoa4fJKsSBXg4KIe2bgRWbO1dHA2Zh1hvjmzYZoE5aMwDd8MxvTaLkoUBdLsWBRsuyYnTEUye21gJ4ZpnCppAp6HCwKfVK2pXmtE7nags6MviQJ3btfRyLTbB4BiQDAinUgCrsm49ZK194Rr+BbjwABw1NFkxCox30IF7ju4036vw0maCSZWAow+RLy0pktiQcmcNspmEBBlqbMDXPEFdKZjSZ0uY0A3SN4SDG4XQRgprc/qmgTVOW2BJFY2oEUp3lRl2P0MvdptT9oSfCWW2fsvReo6yOLCdIGZxcZ5oMOhxPUx+CusLHORFc3QzQ0qYJwGRrBTWwo46BCT7GQQc0S/G4RVbyr69HAFjmDAb4CHA2bSSuQ0A9Joph9TLBwCAMZlkc4CYLTQBRxUoEmzbheLPC0fEGm5NjjPUx0DeArtCwszFKQ4dAHVjFDGW0b6nLXSkQdLNwwzfXrQqWjM2AWM4Y9TOEa4l0zjOUxvUb+dZXaxDY+HntIuDBnoiEzs41JldFpHvJdOin0BtTlYXdDs6BZc6yG03N5XdWtqaOzZ66AE75d8qxgyfFkxe5xgqg1ohR5meaYyfIn/axI0hj/ecfTgauJ/L+cYV2H862hOAsmuvWyEJVxpdr8spjCZ6PE/H3e0sFKAmCf3hl/M41hxYxDS7OB5ieIpzGX1ECf8vh8pr6hV3buLZZ9Jtdus9n/nFImiy5FPV32halrVg8HFdZRcq/scjNsfGt4tBj6gGOW4BlYFHiR6zjNDsdEr0IrtfAqiz4OaiopFiCIODZMxB6YY8ouvcA/8y674FiGACGNkmDRrp4QKwFpD78PnPg93KPRqBSi94jxsubFry9oAvHVnmx/ksZQeoftysadxXdFHtg7i+F3Q05kthrA5AsA0egko4596DBJ5QvRJ9bjDPXXZWqNZJOfqAqZBC+QtVSLotEaQ0ZJ3htMe3xbwI8QuyLXue+wlqWHANIjiLj6s8R9tLnSIEAwKVABg04Iol3NuzmGbfev4W79+7i8uLCswTmWkBEMLWGqU1o0xTg3DEGdtsdpmbfczAE+2uHZQ42owFVxew6odMuVnvu9FcY4OmRRx/FY088jt2u472b7wfmm6RIeSlUVupmm0glK6nbbJVklD0ggIhlVXrxpZfwyRdewKOPPuI20fU81yLB66PwT9XlqR+o81trWK/WuH79AYzR0WcDLc3dggy5t2fKTPKJLGRJJQlgfoYEkyxtS85/rJ2GrX20CAoBM9x3xrWVd6U5mF8KL+WaC9yDVNVEQQHHJCH7tG3ZyaUGoxxQXyzsoDM2M89wP1g5YakXcs0mZa5S1hIiIjG+YueKLUod6fNBWyIIfgolwz3A/eajAJf3QYOLy8Om5Jot/Z0I3soxA9Imz0iXtDZT7Ly/sKdFJ5b38pBFyJLPhY01UK+LtXjVklesUqxP/Rs1PpzQMEnDatUwrSa0aY0B2xO5JvE5Fs9InU+WUHDUdTamnFMs54LXOzhNwhblc6yvhYnjnpwvXJmL5KCy3V/oKe4t6ro7SUO7hrhJOPf3WdNVIFiMjc3ltyj4MgvOb+X6apfyQ9KokGShZ9LefsemOeXJJxxL1SzLz/Ys7Q/InuLQDu3QDu3QAOD8/ByvvPIK3n77bZyensYB+9+vzfP8gZU0W6/X+MQnPoFPfepT0b/vRbt9+za+9KUv4a/+1b+KH/qhH/JkCv/nTUQwTVOUxXvyySex3W6x3W5xenqK7XaL8/PzK2uMQzu0Qzu0Q/vu2ncNUhoKoNuG05wme8bOy78MD8Spdgxx4AhK5hcgN6O+8W48heSbusGT/cWpb3unDjpPh2ciyI2mej9zQ2dZPUb4wTJbyIgsF3ZqTcNRKbC0/BlQ6rG5q07iMQa6MuCopUTdQAbMbGc6vGybObEmWGkxy/6BMSyRgTRM/qzhWZ8A+jEssG9lZ0aW1lGkc4XBMB//6F56LE7uGxFkP8DGpAlaCpyouU7bRGerTZZNP4NkI7IP0E3Uh9FGnH6WeUIgw4A7ra3sPV5CqHngPeZuOOjAooX+mTloxsh5NaeAZ/vxjTWHyLlqwvJ5FrzW0cNxZP45ZkYhm4n3LbyT9tyRAKVa7guCCPyMMTAVB0trzcuZEYjTw7Fl5DWAzFCNsoWqDkxwRxczyygQGU46ehxmExiAyjJcWQBgwLKseKEtqLLs4PAMSMz0IoCYI9aAS3Zys7szWbW7IxyYx8DcrWTc6Ba075FG3YjZxAAog7I17ARxzpvRzH5n8H14thN3/itd++48lczuM3p3h1wCeUzWPRjLIcH1jZfc6u7ppU4gMKAVQCLl2ZzFHVtIlNUbwiw7psNYxpIn1hRiDmNmkdLuZfUmrJo59tpqwrRq2KxWmNoKdJevHKhkGb2Auc+AKOZ5B3F92GdAh2DMl5h3O4yultlIu2UiGx3MSmR6wwATakmpsJ4E2gYuLmfMs82uTA0sZNeGxlwMn1PTVZ7RKsA1RvLeXW8OdSCAehIWAToSLFTUt0gGOjDUn0nHqp/eZikrUkcVozuHuTOf8kPQaZRYMiXhmZI8m5IDREYBFy4cbBEYUYj24nI3+SPAx82NXduMfyZZYUAtg5ZnKhiuE2uZKwUM4BXl8ezzLI2ikWXKMhcIVCbjXSTIoElDmyaMIZh7R4/MdgaGsCxDnonMdWg6yyv4x2y2TJOXcLS/mbluqGVKXIk4n81GTxkRiO6DmQHNdvYxe+kCD7cODbCZqmKIAayMdmolLAFYoDzLtTL7ISErQw0AFWBbGJBxaktgQohvax5U9s+k8JHOzosscck1h5XzaZYGD5YJcUKHonsfVm0CYPo1eMZ52VjWgWDqoD3TGjEP9rMvHOjDjZXx/AhZMX3nICinz/CSjNZn110YVr2xAasm2BytMW0Eslpj6Aa9r9CHYjd37OYddvMlet9i7h1DZ++fzb94Zr3htk+KTqyZERhcUe+/Abc8Q5EQKG10J32Nxi3WeLQWYLAL8NJwzNzEdYytDQSTP8d5zvmZGSq4jotAYFmjLeMEDEakzqmAdIh4MsJRnkMbjGXzdVqClAgAd3mPQKHbXJdt03sZWCJhw4rG51yHJi1YIlEiTF2AFCKWZRRlvWpM96EPKKhnpKlBy/yStpVrdGAReCo8xMhTBG6qLge/K8+uZFF/rgAJnl7uJxLAsAwWA2XO1Nc6AAgc90mJ4FTOj2J/ZiqYYj9QJDF21+l17LEOMZ5JPueitvS3lCLjmpfjDB0UJOVz7d/Y43B8BQyQ9M5nxPOw+KoE5Fw3lpvCzmrS1mjiY5ZcA9hLNOSY1ycMptBvIZO5dg/tprSNmuNyfaZJ4jIvyYOwJYS/hzoyg+wAosQe6cYpFhXPalTC4nUeCmAzg702rhG8VAEE/m7uITT36Bn0z+eHvtbKZwj6iM9PlisXlxENmoe+ovVWXAn+Us9y30XbYIlaNcYTFkKXOpzbvozTav7r+zty4qgAUX+5AUkQNEyQKgleeZKTnvJVVJCXsEvpVadBgNIXOsl+77J/hyIyMKJertjudji7c4Y7d+7g/OIC0IFpanjg+nU8/NBDuHbtugPxbZ9z9+5dfPvdd8E9SYJBvIytsDwv1xzw/cFs65LB+RnRf4WGPaJeeeCBB/CZz3wG169fw7Ra4fadM1xcXET2oVGGXG18zhTpkXty6n5SpdVMVZGdzmb34vwevvLiV/DkRz6C5557DuvNJtVrqjWEvtvTn8abCWIO+XK+WE0TVq3h6GgDVcXcO7a7LS7PL23fVPi2cEb+LH1PDV9s0GItVdYLSP5NuqDQrtyEqj8RD5EYJDXJUhapaSX6nGsp7teTfgS+AJkJctmHpW1A2JPab/vMD+oJIEPMN0HFArfVSnkv9FVelzIcz4eGjuc7qm6kDqm+lmp/c/59nKrlsFAB+UjRlzE+n123mXVJofmasAtmgv3wT/CccNsJgpKYdSxsbUxo8kJ9X66JuTeSMFa00aH+ap+QejikTo1rGpist2O1amiTHaxSNKiuMBToo2MM9Z++71PzdUpoRvpBig3UqgPqesT74HZRop/3W3/VNUYQM21snnAquqUuJ/jcpGFtuuxUfiick7aQah5oAmjXUfaliPvieVLme+/9OYoE7tb1U/5etVyhX3YzyBQgfS3P2aMrn1PtNLOZUYaSFLr4eWiHdmiHdmgfvsZ11NnZGd588028/vrruHXrFgA7NP/444/j2WefxWOPPba456233sKLL774gev4p556Cn/37/5dPPLII5imCe+++y7u3Lnzgb6zttPTU3zpS1/C5z73OfzkT/4kHnzwwT8SXxn3XiwLxyxLl5eXuH37Nk5PT3F5eflHMIJDO7RDO7T/e9ofAKSkvgGyzYwF/nmSzTeaZUMv3INDs4yMb4DMKGRWijEYNNNI745wLlvQin4LAYojdsSGKk4v284rNsrhtIGGp5OB76GIEl22obWt2RhWvoUb5urACXqMERnCOQ6/rHiO6AhCvrcAPIykdFI5Bqx54FAZ2Lb/BPBSKEwJX0qfsIddIyAsXirNEtaQeO609FIqpLdIBrpIRwsWuwPSnXo0xMxQE3MvA9qtbx0AQQ9tEvTh2UVgjg4rqUa/SnWSu0PZgQzSYEHt9OBA/Rm+lw4nlUhjUnB3EogDyKZwLgDw0nX2/DFrOJE8Rm1T6EF+bR4ObASOeV9VPRhp10bmHgY5PXsR4KXlCEYT61ez6Hh4Rppn92JZPcCCts3lDNqsHB2lidk8YCexxyh82RyoNAamtoYBsVhmjw4Oy5LSxwwMBxoAhUc9wNwMNDF76byhVr6Lzja/2vvbMasGoA4KtEGp81lh4MIdhAb0SIcpRGJ+LOhvHWL2KFAK6GjxMmvW9yzDyPI7ovzpcpa+IHQCoyg3IcjKpELAmN0l2ry8BYqzSQNgx0ARIJimFabVhNV6jfV6jVWztOkR2HMwytTg+oXgTYGiQ2R4KSlz+c19oI+BuW+9TIONv7NMxmAgiU44cd4YXkZOcHF5gdllk2UE0ZoBTvrAqgQzh4YGdFoLIC0kqFFHiIFajF9a6H6M4ianrvCTpB7ZK+VVHJijI8LuvIYTFWAwBk+KAzIdrq7E1fRFlB4VA2EM7eiDQKVawso5KkzG0kmdDnfvUzkNSyczHeqtURqLK9UBtB0sCQqjq8L1W4uuDAYTVIPGTYDVNPlcGfDMMiEBBiJkPwmEwbK593JRolAElg1LIZ4tKZ35RRb9lD2zsnUiI0uJ0AjqqgEwxujhqhYRpjxK24LZuGq4Rg5bl85yMFATZb3CqwvxjG6WlcoIx9J1VEmqCfyowUjaW3uUAUcZWBsDmGD8vFNAZYUZll1s+NoAwW8t1A+8pJu44RCnYe+zl7KzDjWRKGOJCKIr2mpvVRGgXQLBTA2MPoL3uXZqotisgaMjwbRuwLTCTidczoLzi4HdbovtdsZ2u0UfW8zdas2b/jags721B6iTdFYP3ChL6ShtXHMbN1LunM0C7FCc23lyPAPQOVb+HBhi99bsHLE2UTrcSfL8PvSB5Cn+xUKBAQZyrJeHMZlwXVTWPdQJzHy50EMR7MtPU6asj9CkSQQe6msjYiJlfVh+Ltav9lEAbml/FjLoH8gI3uDjagmtD2+rgb4MStfvcyKT1leDL/aFBO0RwPLlVbTTNWRG3c/rlv2pvqt9MMfiN0mdtIAgSd6b1wBRClgk7lnYH/bNOxBzr1wDeX9DDqudxN67uIfJh1f2IP8vQbxBhZA/+1sKWIQiVvT04hFLSXHSLz4nrDOCakAEymKdyLUdgcglQ1OCFP1pUYpp2RLXSBuT3EWwKGlZA8i1r1EmFYhMnDWL64J/tXaz2iAE22gtLyflStV6GxICTFvORyTP5x4pg9wci5EyZ5C8ZmOq+pj2CLlekdxbN8nymyKVFuI8loc+EnyGoGPz/Xzuo8r761hg8htrIu7Ztaw7kmQLG7+c/HK1Jn9dUTM5ahDQxIvSNjiJVKM/tGmARJnhRYAcOceUk4CkSNrN7XaLe3fv4s6ZAX86Adtituj6Aw/gz3zhz1h2S9h+8eb77+OtN9/A7dt37NomYaOSHr6qZok0tT0qQcZjOJMq75HoU86fEeqRRx7BAw9cx9CBb7z2DXzzm69jN88h02aDbYzVhJF3KjAi+SzBg1L1QkTqsfy8d7z55ps4u3sXn/nMZ3F0dEQVmPMuqTc4H8q1RMwD+SblMdd09sFqtcJ6vcbJ0QkuLy9xfn7uh0gEkanNx03+qSyVoFP+nSo7fuzJXgILjIB1N2F6OA/kLfQUaSWApV5FlpTMHwAciOL7uQB/ejby6i3bBzMsdC7HWg2kd6NmB05aSNyXekYjmyvpBb431mhViYr/n/vwIs+uSxSFz2LdSd6qXELtSV/awHJeCl+UObMLBkcS9rmCXgkEiREPxRCD8ZQV/OJd913zcCBiOt/6Q1+reSWSx5NMUUpYAIKuF6/Qcthvb5kiAqwmA+xLaxhoGEOw63ZIzA6qddvnjR6yzf4ZVcrBEwJygbRJWuaMfaPvBWSp5TrIKVlEbWnLluRbaPm956TuyT7W/u1fD5+KhfaINWTla6os0jJ6SBkt88oDOSi8kzdcNU3BayoLH5a9K6/OA5DxycJ2AgR4V9uV676ljs5m/JUrjkM7tEM7tEP7cLXeO87OzvDtb387gEn7ZcceeeQR/ON//I8BZHbVl19+Gf/jf/wPvP7662Wf+MG1T33qU3jiiSdweXmJ3/iN38Cv/dqvYbvdfuDvrW2Mgd/4jd/AO++8g5/5mZ/BQw899IG8p7WGk5MTHB8f47HHHsPp6Snefffd7/l4D+3QDu3QflDbdw9SGjOADBCN4thsvnFjBpbmDgnLuGNlPGx/L5nZh03Vgq/hDHdXiRrQwBNFxMlAbXRYuAPMnYRWskMRLrZhwd90NrozDwQ0+MaPCJXYsFlWmMzu0WDZBxoyMG3frTyTUJzoFAeriFppHOUJvgkYHSrdy6U0C4NFqTdzGqm/X7SFQxLiG3+t5c0E2tTLrUnSwe+tQCMLcFnGExaVWPiL3CFk4CVuds0B0GNvbX1sU25sw0ktme3IHKEKRWaPsBmxNNLqAXt48HeIZ7koWbn43uab+clpOtxxnY5zAGqZLizrhjnRe599PhsiICsr51t7/0rW2X9mE1FAhmIyjnVgUFbDMzCF9WmoAN2yWhjQy06C0plhZXnEs4x4aSkxORi9Q3ue/KLLwJIdOchCLODS1cufMbOXB7ubO8Li5D7nyE/YwjPkDMBPy45F9Q069uABgwyLOxc5wCNkXxWRIqXMu6o4GMhwV2J10ewdYjQa4GloB9qBDq1027FcVXc+EtcddPiZtLXIXiIwvdBgacettJqdTE+nmYSz0spROrM3o0/ns0N2bXTNoxSWhMlly0FjJJtlEGsBcGwCrFYNm80am80xVuuVl1nUyB7UZB2OWgGCp6P0R+gC46957uiz8323rC/MHsSMJx3qZRrg2TYMwCAT0FYr7HrHbjfCMTlswJbpzJ1SfemFTcAWYNk/AgTAeTSp6M57AapxnoA7lxXm7Gxesgzu0NQ+p1NPBFADGEKa87Oa/vT5myCYIaGHoFiAU5p/1llOS1YQiOMAvdwbwTdCfUynp70rAJJe5mtgpBvYJ70RaCIuU5EFR8OvbDzoNlEVzTN68TESk+dypKZoLNA3WRmvZnarteYlVBt6h/03D4wxQ6QjgFkxfcz6ZWOdvFTeCLCgO7GD55nBzHnCZcgyj/n8MyiiBBIze16x1QoMloMkNmCKcJ0FxFxH2ngT/LQ8xel0GgpognkI2AKd8z6vcHum7jCPoKaPr2YHgENYRc02dy8ZNnlWHMXA5P7uIbD1CBp6I0yuh44NfUqPspoUUe+LGAhSVVwmXD6V+nXyQLyGTqcPm8FcArNpZam6GwQTgHUDNmuzKbM2CDbAWGHXLahwuZ1xcX6BeXuBeXeJ3u3ks4yeQEShDfZgAgNTOjAP1wquJDw3lM+4fcB8faE51HmAJReKjUlwNudNgyfLEzz5UHN6W743giTNLql/7k0Uli3Q9YMLhAGruaajS75lYKAAzCJ4ppRjzeAB17X+fPuc885uC5iPTiJa3ew5Pl6g8AD5yG0cLa0v64AyN/6wBGI0f/EgYKAjFQwvNxmu8vVhbAxixXqTOpHIisgks7RPeb9fXyaD9ryCaZyYCP4Srl0CFlOCVAXAUudb8/sIQSrttT0076uAnwQwL1uuPmMwWucc8YwAAMoUfZJ6H6+rTw6WqNqDl2ZQLdRXPI/U5DuWY63PTNrR5jid+Dq+oMxQjY8G8E44iwFZQi2XTflUNb2j5f7oMOUm5l0XXcqW+yWTP3ZOkv6a47f9HG1tBkBHKSsDEFDgI+M7lXou+W3UsZZAbYLLNcbBMQn3FVznA1CW7obbwkXWk5wErtvyPbQ7Pj2RTbjOl60DCMxvMi30iAKLMt/wfQ6AWJfacDgmziTHhCCQlH8rD9Lm7GdYC5PilDfWc4CYKJa1IQtQL2ZO8zvSHQz8exsEv6Lcn41JnylmCS6pF0sIV838SLnr2y1unZ7i7K6Xc/O1u9Hc7EGbrJTAE48/gXk74+WvvYSL8wsAink3lynLuYZmgF9oZ8XG2YeXGSfvk0kBEMRF74ki9dFms8bTzzwNaQ0v/+7LeO21by5411kzONerpS8a16WUd+pXvrUCIePWmGC4TNnNd27fwUsvvYRPferTeOD6dRA4kndLsjEnSpaPK9o51HtwYLUFTXBy7QRHR0e4e/cezi/Oaw9RuVPJHEG7fFgcwuBbUm3nL5TNQlhxO5h72dp/35vK8l0ImRcvXZ5iIW78LIsZ3J9kwHOEzOaoQu5l3x7loKkHbNtG/Qq3iX5PiDifwa52pF+tUDWnPd+fZDE+Lxur2PbET93zd+RsBdiYJYA1QbzBh8XO5zOWPJ/8lfqUlYwjM2xTxCFLgjkl+5E6nBpNYdl9/SWZ2C/WJgGQVcDK/nFeU/CDj4MX9nVTyosAfiBGrNozfI+Chq7iWZTU/RFzZmFTDV/P8HXSvl2D07UkQS/yFlwM2twES5b+0ocbSlej5+oLgrBFgK+pSaNc26XlCKNf/BW65LFyjXUudXh0aXnDHo2/A+21gK3KZ8vn8N2uH7nGE+oQFN5HXFv7x3kN27r84fzBXVWOT+Kissbc1y+HdmiHdmiH9n1vqoqLiwu89tprUc5tt9tduY5rt4997GN455138B/+w3/A+++/DwC4d+/ed10C7g/brl+/js9//vNQVfzSL/0SvvzlL39ffVTf+ta38KUvfQl/42/8DTz11FPFb/NH20Ts4MNjjz2GBx54AN/+9rdx+/btKyCyQzu0Qzu0Q1u27xqkRAdbZpJo4aSrARGJz1rZdAJXNsrhkNE4AcQ67QvfpAe46OAaQ9GmdEB1Zl0SfwcdqF7miQHyDExo7gO5AZMOkdXCcWabWC89Vrab0iZEwC5ORFtnCQZoMtneVu0ZdGioOIBCbPSNDgsvg5WnW+wUvfgOnJv/DOpYbwxbxUwsAH2lNV0+RL3EDDxIy/A0HaIWSF6FI57OcAblbS7FA1+tcU643R3hqG1N3G8hmfHCkwhZ5hUHWnlQ2+ZGwLT2iHfDs1h4Bp/hpag8UAE0B/5YMBrCck+CqU3M5+F7eAb5LMgtfo/1zUuV0YnJ+YCdeCKQY3LnnoHwmmXXYRanloHOlAUbw+ROKY3oivG4F8JDdxRYi2iNl5FyoMgkE2SyUmzKd/nJbw1+M4cC6S6t2Xv3TrwxCwWAKEE1OXDKHH0j+FbEyrwJHIDmNA+ne3rLDMgjlnkjskaE/8/4xE5YMnjtzkl3fKpmdpQ2efB1MNMR4h4TaedDGIJM1UAsC+eSOzEzeAZiHko5RMXUjH4xT0iQYsitj28I5TD13SQGZlxNK6xWE46P1tis16aTevFaOtChwcBHqgbqMAAHMLvOWE/knYHeR5RsasxW4/0yYBNDCbrQaQIDPaw3awwFdrtONxsIgCJUjAHXMRTaDGwG0IlaZHw/KO+ykKXNNOXGdRQBMs35EQrM2t1mTD6/cO99g8JLakb6f3ee+r0idMTKwl4AWABqjFd0wZ9wl6sBKMwJS5+xoTArH3pWnKIr952jQGYUSD5xz2sTDyoiMiVNU6Pv2fU5vaqyzIJFZzYUk3g2m7bCblYLMLmMEsTFjGXhvNQ8ySyFh9WdtRBBH67DxYC39WSrAl6Wc/KhNi8hQkvtgKFmATRVwSAo1cHJpoNHcTqb8jeQkgXJpGRcXM6ZgVEsw9q8cMoKEpBFM5+HrMX5QAsgrQbnXBdoAoKsjJvrFmicKmrOgqZLjU9bE0A7WmsYfQdm2jGstNmsJlbWtKs592dVx2Z7mS4Hcw5fOzF4rKquWxGSaTbFgGBDFDI8a5YaH68nYLMWrNcrrNZHaNMGwAraBejGfxj+M0CNGvoixNvLFypalg5E9iud1zZZeTg/dc4SCOO6TdPhYTTlHDtozMGEDRLAcpoUdX6K9wAggcxujFjv1Ow1sZAjsIs80ATFDBj/tMlBvCa3DSzPK4AsS5LUNW2uDxarVweaO3CS3xfdYxexREnqG34tSNWSYFljdB1pb9SzHTDiGAFKZrorEdhYt+6XbPlQtn2wWg0s2d85JTb+/TtiRpIE8ez6g99GwC9sXMxwaBwGojKTwTJ4xnniXerRRM4915/cUwCc95z7xS/JduSsMh5fWAVvXxlU9kn3eA85VutnoVfYbn+eVIAXbUPh13isljVefiGk4EgbzkclEMHn0/coXE+GbscyeJZqvtKN82YdDFCVJpAoQPZBDqNDlNsM+nLeKKO0qwRG8vMEUbGnSUrng7JO1PgulqRLOolEllAp4xE0D+rnfGcQvfAGHxe63fShBh+kTATuz3UJ8+gtMkoI9V3OO1FVzOhGALsCqVtoK4rM0FgnkKyUXA797mtuzjj30i33T8tMENmEm0qSQAgqQ3kmwk4seQQxjyaOku9QBN+SdaQSKDtAliDlky5UJyhz6zvui/ML3Lx5E3fv3sU8z/G41XqNVZuwOdrgkYcfwcnJMZ544nFM04SjzRG++tWXcef01OlEDirN10bBZ4rcpw+NbLt9qK8FOKIziqcAAQAASURBVHUanU6QQH7fWsPzz38C1x94AKqK27dvF867QiUEX+6VZ6r6ukAR41POVSUw17T2lfHEyYkBhs4vzvHSiy/i+U88j8cefTToIbr3vvJMTnUCKWRvzsi3VMQpvNM04caDN3By7Rj37t3D5cUlaKOj/3xLKrKwAaEXqeEqmeu79lt8h9ArLsgB0AtgAdzXMJKqfA31TayxmRFoAfDS0ictNCmTJMi1O+nHNWJkhtO9x/noF7JF/d64nYy54sG+eLfmw0KngrzresYvI7RCgaBPQu+oi1J+BOKgxCtLBBq+fJ7kcwOsUm2BkE/tHebHkajsaGvmZkAuUGcnE6R+N5o02L6cB36qXhMRtOGfSfYnQWVSDU7YsMoRnNlJTFdMk2U9bm2FLFNc9hHKsbu9VC3gM4SejXWS5htr3xL8ReheXouQzZwI+5N7iqR7gGFVnaZp7zTmeLkmTP6p9LqP3C0Yof5aNK/PawVYRh/L2mShqpXzeFV/X/kg1pNy5RlZ+vl+vZX7/L3sR/o5r46dcl27tpTFQzu0Qzu0Q/t+NVXF+++/j5dffhnvvfcezs/P47vNZoP1eo1r167hueeew4MPPohPfvKTAIAHH3wQP//zP49vfvOb3/M+r1YrfPGLX8QjjzwCAHjrrbf2bP33tj366KO4fv06bt68iS996Uv4y3/5L+PTn/401uv1B/reo6MjfPSjH8Xjjz+O9957D6enpwew0qEd2qEd2ndof4BMSgPiWRTG0OI5tKD61Ey5KxiEk9iU1Q0zNz15OsxKrUwsRyXwILx4lgyNfVZsRYcW57inBfGLrp6+HF4ywE9siXgmDHf2iG3i6dxRz4XRmjlOhypaWwWgiJtDEcvwwAAnAAcNpVMUHgKjE0Z5assBOMziwRO2CgbGAUW3E5VRdkU8GKbuZBqYmpUzq2XP4PTNE5zu1PCfQxLwNGlusMOJMJweCgPxtAZpzQPQ5ljKgHryhu33i0uOvzJ9eSCBEnARp9GFqf/dlTcYPDT+YCBJGMymc0EIWPAsOn14tqzsCuNCdAzU4EZrzfhCmRmseg5bZLVgBjADOTmgpjVAPWNUY7YwjfTh5my3oKeCwACjqbQG9MhrlUFVNdq34eOBQhxQZHMT4QXLUKL2TiOtQLtikpUHIQooSRTSrFyADOM3FetjAJ28D5PAMmmIJGiDftJm7+bfg7SUBANymutc24n0LHMISQcRdYWG868AHhmgMcIF37BP4bZTxOfhBqOvVBVoErxkviZ7j0+b+/Q0eJolzGLQPr7m8tDahM1qhfXRGpvNkQPdTA7HEAOXURW445j8boCTLJtHWhlgzTInzX3GbOmzXC8ZnTqzLyEBZCb/3RyKqxXWmw3aNOH84sKzpjgdyE8QKLo9QT0VPbPbwEFZ6mAKE+48Iio84a7hR8vGgC7LQpmcTiKmRxQYvbsetv6Qf3hqf3I9zIwkzFxGhyQPvyKcs+XtIegS8t48uEtQKAEQ4cD0+0hH+DUWA7NMWYNIRQ1W8/cbWEUEGMOf5+Nu4nqfNg5WLiXAiHs8q6Mb77k+Mp07YR4NO0+1bxk7mCXM+11KFYgmaFjDU+tlHOjoVMqv66OwNZxnKwMoLhtpE7rRLUBPzDFnWYEoG2arJyBAxeIyp5E5TEYkEwx6qaIA79wu20oi5qr7kiMDK7Sl3d8jGA49oX9YdYTdiaA5/bU1s58YYFE9C6DJf4e0CSxpx9PD6tntTD5Wnm3MeLiJ0WTdmtG+d9fTg2rSl0IOOVGjS2sEJJOb045bOVD7ZN2AzUqw3gjaaoKsVpimDVpbQbGy2z3zmuF5fG0QEVhF7z3XKS5bNSxLYDfDiLXEUGG2suZyW17tTVnvdWYT8/WEgjpNAjBgU5SZ+mpARnt1pjuYahi9KuBCIJFp0rrBNRED1QNoU2TtRBueQMABtnD978+MMZQ1kg8Oy2aZ14Inq8bdC24nmJN818L+NS99aGUdNJ4X9JR8XgbtW8gvwTHB35p89GFsC9qQ1D7vYyiydIzrykLHK00AjYiZXZ+VwajgErCQgaVct8Tfhf/CxsXalj0q5WJd7bk5B9dHcblPSAWE5PqcbwUSIJifpFgW3hLq+JTZAouJtUwq/ORljbU3yZayq8g1ukb2sX1gFvnb9kZc48QhCJDoGjTVeA7SPHtkOoZayCtgVpicusVeBsYnsc4MFtIYU4456RJXcS5zSZNXBJoHqadCxxRJrqgZ3qJlDVIHxD5JzldQl7oGcEBlUozB3qWcqIPh/JowdkZ3ifeZfZVYzyL2fKjXhPFH7H+4jDbd3xygpEl8/iDgIGTX+Unqta6XWZ7dx5x4yrT1ycPVDgZ1yosLj5QLU4L3bBXHyRurGglQPJbzw1uFOmkpq9/pnWSVVBmK7W6LebfD7du3cefszLKROP9N04Tnn38ejz36GK5fu45pPZUyZop79+7i9PZt3Ll9GwHM8rmMpD3hazBq12wkyz1H6a26zuK+NwRRo9+TNHzqU5/Esx97FtIazu6c4d75eco3kqbsgcbjycdI/izzQF0Z+m6h2ql0U4lyPk5OjvHZz/6IHYZSxetvvIGXX34Zn3zhhfCFcFpDvlzeYwaFvS2clYIdtJGiC/hjtVrjwQcfxHwy4/z8HNvtFnNn2evkh2SUwki0LEIdpSG3iMNuhRC6Z6Oi/0ibElYDS/rWuXa/l4ET7TCTgfB9jshPoDiQt9wOVt0bc5t2L3wDkvpHs0MpG64Pwk7r8PXyEqxjz2opjsEnBC5p8EZkKy6TSD2n/v763HKVXyM5sCtzxlfJ8m+UefK5SJtTLzTNkaAxIA8U7mUuiIMbZS5pJ/3Z3I/JyD1L7ieKLsqFx2Lci3471zTYAa1pQpQgl9YgzBTNtdEo7xm2n6MEDR35GqnvX7a6N0gyVx6MK3Mcxc7qYlo885xy5Oyc2R/RhSTWTiDAbUGKqzyyoJ3mdSJ1XmgoybMJzpL62MJTYSP9swQg40p/+fmVwfuI92+gLzVXF/drV96SeqfQP3yknOXC44d2aId2aIf2vWtcx9+7dw93797F66+/jrfeegsXFxdxzWq1wk/+5E/ik5/8JB5++GG01nB0dBT3vvvuu3j99dfx2muvfc/7v1qt8NM//dP4sR/7MYgIbt26hZs3b37P+1HbI488gr/zd/5OrEt+/dd/HV/72tfw1/7aX8Nms/lA3y0iOD4+xjPPPINHH30UN2/exNnZ2aEM3KEd2qEd2l77A4GULHAgxYHjQSy1TDlxUlPMCQG4swjFcajDT9CHuyA3brGJNmDIYJak2LgOL3lFB04kJ/eANMIBoJ7tBi03YRm8bUt/BL8r/YZaRgkr2wbLaqAKO9mv4SRJoI24029APWMFZATdCMpIh7H9PbEEj3cm0zdbV3tfhmfM4WPOKaZ4D5BHOYG2zHJAt4Rdw0+Gig1H6GzwgIIHjyvAxDarwwo9uVOIm1kd6mRLWlgwtKE1BxI5sI2lAawvimmavFSTRPk6eNaN1dRibph9CY1ZlXi/WFpt5x/SgQ4oC6BsPRMUYjziPG2JitLB09VLpbkDYmoCNMvIoSBQxF2cY6B5Zi2b14AmZDkxWOm/aZpgZZrcSSgKZnXiiWrVjjGsPF4CGEY4VqrDsDqjhqo7l9yBpMOBD+lsCT4tPAQdaJ7qfQwNgAqfqzx5uwhUmYwxVfvSOYIIQJu3RsF050Y7A4FMwuAxnTYlT0fhj+F8QR+kOVAdvAObE4gaeEV4atJLjymsVBn8NCCdLpV3C42lVYdvBpAAy4bTWrOTzUcbbNZrrFZryCSY+3DaAVNbRQkNgZdYcE/i6OSdmkXKZSf41OaOQYUxRvD/UEXXgZnAuMF5MdlrYkGPabXC+eUldrs59RqZho5ivgtipZvUHKfURYADhFwX6RgsaORgEQJZJBzVFodqwZut2bioB0Q8y5nOXnLPwBOWy4U84PrQT9NGuTZ/JrM8ZRanZLXhZTvNQZgloaycp5BxoQBWzfTccHhBPB8OFlJgDM/8RH0MwTRxfKlHQzciS3UNz4w3IF6VbWCgQ9RASGZ7PEMHHaqM2gBQWWHuist5h3k2nmkYEPXn1HT9wpPytG3BttQOLjzO96P7aVnqkuJcV0Xz6JfZHcr2cIe40THKB3pAIArkERCjA1NrDmp0Ph7pWDVWbAtZHA6Ug0wGrZC8PirAKbPqGOiYjNdVMbUsvZrgqgw4CgAVgqt8HcL1g/I/goS76/WefXCZFJ9ny5DXMQazP0UxUNdtbpeHydkYXuoTDFLUfo5y4hqYIlOkAQfaAFYNWE+K1QpYTZP1U0weRx8A++J6o3tZBhSAJOcts9FI0MbmdX+lwdlahMKMp/3wz+IkcY02BN3zM3UwoAURRtxH+5+O/rQpKecElBiDV4As5x3D157QAFGIeCzf166kcV07OetD1bMW8v3Uf4sgwZKPaxAreI9rsMY1aQlDuCqq4CeFlsAhSpBAoi81C0HcWKMbSvrnXHyYQwpJY5MVzS9sWCy3LJJAf7tgL5ykPJSfjWSodh8FfMA5UsS6JWNS1DGS18YF9Xc+VmK+l2yi2b8iC3FAYzFxSRNe59srZMC5XkPe9N9jbL6eweKGiPkDSdeklROLILjgo6uBviqLMXx/bwU0RbDb78tV8R4d/R3WBX+nf617L68ykWpmCbwhiCt4i/sJH18AVZ0OS6BYKR3D0QULVAZzO+tDWQC5yFakg+6Nxdd9xp8EhIy0UWWNjyoThYdsPpsBymK+60sKCMPLkhLyG51yvpcaFN/nw6BN2o/Kq+CT/bIm/MTppgqJVSN5RZdZkST7PCoNUXVjFW0t40va1T2CsP/+d/CN5sMyu54uZCflD0WHxD9Bvhg0n+cMOXRg3s04OzvDGAN37pxhN89u95nfF6HPb9y4gRc+8QmsViv0ueP0zm28/c47OH3/Fi4vL7C9NBAM+1tBZblmcnvng+QYOvutSSfqEtWkYtI957dJwyc/+Ul89KPPYpomXG4v8c1vfguXF9uk0cK4cP1pPam6aIH/COqm3JoswvkmJjB5QdIGvv/++/hf/+t/4od/+DO4dv0ann76afz6l7+MebvDxz/+cVy7di34hXzAjGq57sgeU/ks+GvPbiZZUrdMqwkP3LgB1YHdbsZut8W8mzHPO3QerkLR3T6mhTxDUhcU4FfVZ1L7sGjJsxXQyBX94vk+WQO2H+3DsvyYrilrUGf4fMayr8tZ5H2Sa/GFfqcOvtrfxSgIcKkiGtflO32nmirJ3y9xZTFwxb6kHmipUfhD6h/+j9S+E4Sp5RICbGSh5+0dlTZ2QxyyQa7higCjUB5S1rRh6nranX1cLPuZKmGpv4X6zWUoukl9DfGMvX5YDxLv1pG+qdC4Sn9EfsZXkpSpPdmX+nshFa72ufavaOEY8Xf+i+/mnO9TaW+ZXPUd1+mL/iNoR32Wz9ujI5/L919ZK+7vHfYkK9YJ2Zf9dj99m/Yx90myR+plb0mffdmU+7w2jM137NOhHdqhHdqhfXCt94579+7hrbfewm63w5tvvhnA+Pu1J554An/+z/95TNOEu3fv4tVXX8X777+Pb3zjGzg9PcWtW7e+LyCY1WqFv/pX/yp+7Md+DK017HY7fPnLX8bZ2dn3vC+1ff3rX8e/+Bf/An/rb/0tPP744/j85z+Pf/JP/gnOz8/xxS9+EU8++eQH3gcRwcnJCZ555hn03nFxcYE7d+7g3r17uPAy4Id2aId2aP83t+8apJSOcZ7iVcCDl/sb9tzs2XX7zgXblHmQsWyUGCDOzZ2ingbP4HQ6X7ip4on0dBp3Bx4ga8RDLM45AXQqtuLdlLKJi7Ij4eNWsDSJOZ904U9bBFFY4s3ylHjA2x1xHoBn4KUPKw+Xp1W4aaVDRGPcQWf/yZPLKgkkavTz8fSk2HsVDRgEFli2CKMBjCZRHs/o0DwobM5NO4HXYJkRLBDrZYEEBjrwPujYGVhDbCs9+ojyXRZTDq8fAESqQzpcBJaRYgxFd5qpAn10C0QPOjIY5GoYw1Pnj/gnXXUNhgpS7yP5kf3tA00M5BPZNMRDVQGIY8YCB1kF0MAcOaIrQLNEGQEcpJN4Zh2WRuo6oDMBDhqZvdRp29rkWVIyOwqAAOMwVstU/uLAAQuam9OwQYxWqmhTs3eKWqYpBUS7gZLgACdn9A4G1w2IZNmmvFyfGB8wyC6UTs1ASCZ+4mlePisdoOGIHMWRGlmBNJyD4UcUAiOt/0PVA/Pi067A0HAKDqVMuwPXgwgmlkx3jwywh8PJSt5JU9hpQitdtl6vcXS8wXq18ixd6v0VtHKSjrLUoejzjD56ZqtSA36o2hgmScefDusbF6WkF/WQjZXvpeNTgu5NBKvVhPV6g94HtrudBSM9oOUaChGAD1Xl8glPKTU8lOKyG3wOxJxZdhmbC0u+k7qBulhcfqU5f+kAdMLUJsgEB9q0yI7EbDUsNwMAbZoyA5Xz+4BalppkJqA4YdXnIMpouqNN0KLEobMamCWPjU7pQVvCbHKgbjLdLcGL6ewbXmJUoZGNYjgYl08NPiuAyCYSZeWkNaxWE6bVhFmbgSJHhxSAEnVe2OKQMQ+ASRmLmN5uOi0DL5xbUGekQ5M6mOxS3Zwa5TcBwWT3eQkYBh9NfhOw2dTtnha7rwoMPynt2ZxMDrtztZfUDDtLvieoqYAYwrFsgtcWJ29Nr0bgQRToijYN678DejvlS7ic8ECrAkxVEeAeWJ8JZGXKvtHVorTBd91LzzUDWrM/Ungp5tLoNrrr7ZbAT/H1VYOBlDZrYHPUMK3WWK2P0aYNhjboMH6xINTAUCv1aRqNWX5GOqYVvm7gnNXAnEQfTX2ytKn308tYRFYgwLMMZqAsAx50oiNMfvAoApflvLsE5MBB500c0OS2hOAh+JsiQMC+l/J+gACtmch5CU5by4xqOULXRqamnO0Ep8Xac/h6jOPSKFGk1AMMPnTqH38nF4xRxojzL1xE+0hY3qvoNmLnoRGi4F8WiPWykqXfTXLt/GFuuaSvoZTaEki5HxwPBeY8d+XuYsAW+xK+9OrLUNK0LjvJ7YkWnbm4hPOffY0gvS4e5q/OtXzse2J+69Nl8dcCeEzu1+xb8Cr3NOTvWsaHPIr6LKcfxYc6yu1oBXHUy5clpEhaifVY3OSTRXkL7TfUF+pIwopEFsnYA6pptMV8f4dx1AAgS49zxch1ZnSrjBGxDmd3NQacmDcKWoLzbf2nXnomnxnB/JhHy6CaoA6tvSrzk7xj6kE4uWBQXjFyn7cPcgwgKucOpeXiSUQ8mUsB7gc9CWyVnD5w3UwbljSpZBySJVpjnjg2AAQopN+gAtnKXhiVRkhejis1+lXXQAAS6FjnLGwHxw+fp3Lffd7jAy8KSEKeLi4vcPfuXZydneHi/NwB85Ri61Nzf8fUJly7doKPfexjeOSRh3H37hl22x1eeeUVXG63sZ/jOxTwTL9jUSaW81zYNoSv0pwgrADMaK57K+3th733uY8/h48++yym1YTT09t46XdewumtW+V6zoWiEN9pntCMfT2RcrAgavRAVJd/g/IrMYbT27fxlRe/gh/90c/haHOEP/HpP4FXXnkFL774Ip586kk8+eRTWK/XKcMBWs4552tMs0iV4kW/dO+T0OugL6xhs9ngaHMEQDHPMy4uL3B5cYndbhfWWUlaLZxX9LPIVarwfe5KyvkL6pTfQmZLf30d1SZbw8YaRwePktQBLcet6d+i0GS2lSpjVdg0yrvvDyLAjEXuFrdzLarItebeeEUAoR8JVM1Fxxdbbvwy4j2C9M2AI1t0M4xGyFOCYvfpTN0tQaPITMox0G5J4XeuL7nypNyWv/PSAi4qhzVCNkopz5z5fbLTLi3XgJzTJla6e1p5hujJSr2plwRUtfKQ9cCQT1XyTV0f+BynPl6ujlT3e0C7pEsb6HQs4hr8s7DZcYfRSKi077ug86u5z7my5vIrhHxV7/FxRi/L6ruoT75+KcvfSa6X19C2XtGVej/63e9ZyavZv+TP5ViuPAD3u6QezqgZnw7t0A7t0A7tj7YxFnB2doZ33nkHb731Fm7evPkdS4GJCKZpwkMPPYQf+7Efw7PPPotXX30V9+7dwy/90i/hzp07HwqQy1/4C38hAEpvvPEGfvEXfxHf+ta3vt/dgqrim9/8Jn7u534O/+gf/SM88MAD+Ot//a/jV37lV/CzP/uz+NznPofPfe5zuH79+gfeFxHBarXCAw88gAceeABjDFxeXuLs7Ay3b9/G+fn51XX1oR3aoR3a/wXtDwBS4n7Gg5CDdVsQJTboOBBmwAlH1R4Ax34L71pNFT1GN0evlxhiVgpRjbJD5pxVz1IBcxiobSTTqY6yceVHfurYA3i2KeYGr7mj18vMecBbhmJaeVBVe4yptQnQBmkdffR0vIt4GThzSiycUt4ROrjoYGCKfB05bogHGJn5icHf4lDklnz0PecKG/0EkhlB6IgWMKsE6Y5wOIfjWUY4CdSzwjSIOU3RzaEx1D0uLcapnmYhHUrDAwU8eZsb6EXwmt5W37Dv+hxB2xHz5mUpxJwOlpnGHH0ta3xYmQKnoyNpDAwUjhELSDYFZBKM3i0zj3vLHLoBnRp6p0N9FJ4i9e16ntJkKUKeIh7o3i8D/ahYQHp0LxeoCh3iJQkN4AFViGcWadIwugcARLBeTUCDp5kvQRB1uQDdE81BTe6Y9P7POrBqDSsRTM3KIV3OFq4tOa4MfAiF9tkDvZ5diwEPfu/iM9xRQmeeOXLptavOKGfNCNAPC+aCDieJ+8nCADIzlI+DnizL9hRC5rokSwml20oNtMV4F3WEkN80Mv60Zllzjo6OcLQ5wnoyUEPvM+ZhWVaa16wSzT4TNNZ1Rh8ztA9gUHYcKwcB5m4AvOoU9XvVn6OwTHLauwGi1MCO9KIZ1tL4dpoa1usNFIrzi3P0ebYMKgCmlgCAyMzekl4I2qiV4FLLbhYOOeoLD8Ixc16jLna9t3C7qZ3OjE+95IDJpRj4D55hbsDkS5kNaQSQTinHxaE/1EvI+RMTaCTOk0vnqPEyZcSBYStPZX9FX5qF8GJbDlR17lb1knzpuDNeaWgLP7DJrWHEBDLSuTdqyg8xtTl5CTUPOWLWgW1v6DPBrSOen5luUqY4BkXV5qlXVT3LoGQvAmCiSMMt3CinzIQtCECKeIahZvpBewQDxsjcOE2B0YzvJ5EMpIajM52/ZjvdCS4KK6npIEghADPHLN4pdZkl6HWerWRskynWBJwNwNYohrtVzNgCcJ3Gkj6lvEZzewF/votcxCgFze1Id55rnvxRIV6Sr4JphqrZStKgOIBDRhzoS4+1wOyDKLCZGo7XiuPjCW09oU0bSFsDWKM1+12mFXYhbvasCMbXgIVmGVU7uW02fHgWrCjViyobtNvMFpbfiSwDLFX6DBBNmWnJ+gwcKj+XkCfyMnnP324ZLZHrRc5//l064WYcCrMti6wphS9UoeIBLF4f66vMtpTjtd8zyJsEYMxD/R/2ncAlthFgZl/PxFrT16/RPyn62aigxcZKzG2GWE1fFnDCflmRD1lT1wG5buUKPblIUYG2fh9yXUDBrHuMmj2HAcPIoqN7D9Fcs+Rio14QYWYsuVsW15Lm8RiRAJbVDJhQ9cCxcy91YiINHNSf8mW3abw15ruyB9fNUvpZEwCJRn+SbmUIZUwL8EPI0hJ0wN5IIegygEdlVGhf7lwEHFVNLzGoGzTEnv5CjNHuK4JVJGfPpINykLqNOn0ZxLP1xCiUyJfG9Ph6gOv+sEVK8FTq9+wH+cP4OFbpLvMLBeH3Ns27oHvrViggvfBc2taqg6L/fEhZq/qCytdptjYR+L7V9yAZcLa+Fy4OOzXcJvBwjDTLzCm+jmCncm5SXo3mtvKpj77PH0Fu1F5UHvK1m6n1hYYA1TQfJMAezQJu4HRa8jRnvLYxOu6eneH9W7dweXHuwYQK4FCsViscbY7x6KOP4Ohogxs3buCRRx7B0XqD1XrC2dld/Ob//H/df5IANqoaBtI7hmcxiRkH+ccyThNYXegRYyy0JG3qf05HzsaDD97AR5/5KFbThDEGvvb1r1lpBurnunYMVVgVKelWZFxSi2YfXQ8IqYzgKS1zxAM4ue5TnJ2d4f3338dHPvIRfOQjH8EjjzyM7XaLr7/yCt67+RU899xzePihh4J/zS6m3mbmvshCwt+XCnXBQwvlF39yDW48vVqvcG26jpPjE2x3W1xeXuLychu8oUU38V0BXvY+5Ho7VXRaF7gsUdcu9118BoVFfXzDD5nFwRVo4qApU/uyp8jDPXW9GnxAf08xXcVmhqxDltdVqvqkCzMyx+u5I9rT+2Yw45qFjotup06k4rH5TevDdcCiH8G+uhjrEuid9o2ZhiFIYF7onmILVWNe+YZRhiBXOkH58Dm8cg1pKwUwtA9I4eVp61x8zB0m5hdYrwRtEkizg3Tm3/HfxTIBx0GPOgnBiLJ4P92V9j0PC+Z4tKyLq11d8rDbKQ43f3wHGXVaEfjvtLliV2Pi+azlvHIoUi6/XyNbxRqk8GnlneWLSSPE/O5fkR1E0FcXfV4OoNoZhTrIOP1inKs0mUsFlt0oYEyt30t+X/T6oR3aoR3aof3hG21F7x1vvfUWvva1r+H09BTzPF+5drPZ4IEHHsALL7yA69ev47HHHsMzzzyDk5MTnJyc4L333sM/+2f/7DuCmr4f7bnnnsMXvvAFtNbQe8d//s//Gd/4xje+391aNNL9T/7JP4nPfvazeOGFF3B2doZf/uVfxu/+7u/ii1/8Ij7xiU/Emvx70VprODk5wfHxMR577DHcvXsXd+7cwe3bt7Hb7b5n/Ti0Qzu0Q/t+tz8ASEkR5QUYXPINLDMWLdIZY7jDrWxiYZsfaZMnUqKj0DaMrdFZKYjMJELQh6IJo+w8JdXMwQF3FMVmNTfzEr0RDLQ8mQ8r48SNneGTzEkoFeDiTrLWLFjCwGm2hlVNVgJ4th0NRwO/rCdT6HQborDAPINf6Qw24EvLzDBAcdh5v+lgZIBTm1dEoUPKwBTNgU5D1UAnIFCJJ8PcIaOwzAiTWPmU0RcBvnT0pwPLHDXdnYEAhE65FQyToDDgktFWIFHyRQLI1bxEF6DqoA6FZ47xs8dCf4m4H71HVgN42RBjyRZjCmedZ3+YmjBhAhgcnLsGDzsUx7I2iT2XifpFGyYMD2RIlJ+a5x2YMYIuoeGOyQZYiSttkOYgLxHo5M4ef35rzZ2JFiS37BTp/AAaZFoBrVkZPCi6ipW7c+edVVVSCHqAtwBgjZUHlyXmaLWa8ac+8xievvEA/sN/fx29e6B9zNCYBwHEeAeTZxxRRKDaxCOOehrfxUF3499uQ7R5Vysnpdq8xNcM6HBwjOBKtJtcJ4pGh4vCgD8u8zI1z2qERfkK44s8eUlnaGMASMzVa2ODA5NW2KxWODk5wnpt2cD6PLDdzsarTSyLidVjAmQCnUFZrgrA6EAvAQ4PlqomWKO584cBd4acjI4MgvnjPGDk7AIoMInRZSUNx8dHWK8b7p7fw263hWiclQVPQIpITUjALw0jENHLlTsNBWgWeArnbThZQxqMzwqXWuYkqmAH3g3FynUEY6bSENnHRlMIJguuejp5qcAFNEzDk98htePkgKo2SdFLBjBq7vkcUAyBlwoTiAqaWFDAgmk29zL83chgZPesWqQTaS9aHPQA5uHgmGa2yHTP8NPvCNBPOB39r8b50IZJgGmyU89zF+y2HX3eAZjNaiUa10/tAtK8fKAq1LM3GZjU9YfLhzJjlQNUwjGs6tnjMr9EE03AbPGZmrNcAEwGom10xg60iTgfiaxY6nYIQ9Fb2rwmEiU2BcNAo643hGX+kBk4jM4tSjEKxPWHSQvLuRJczAxPhp32NUSfYfnpzJE7dABNfe2B4B+4PphgDnwgC8faRI0MdMhwO5bZIAksaH59H8woVcKctBtxlp2AJtNHU3P7pILJ/15PwLW14PhIsTo5gq6PIHIEyBGkHZndgMDybQHaBCqTDQks02j9CDBhrIGoJQBgLDIsiDjdme3PadQwBaCJEYbIgBA6QuMZUWrG8yJyVSZxjdNSUo8w8B+ZX/zdE6/xtdVQAgQoY5mdg3Iaa4FY73hAPtZxq7RfvFLhHKMpA6SDVky2xBpDJEEQDLOKchw91hoa9tOD86Sfmp1o1L/ZkaCtaoJCTB2Iv3dEPwfXmcWUflhblI3m3+VfLIAtyLVmCUwmsKmCA8rz6z+Mhknq4/y+0kuC73IN7/ejgsioY0I6godd2iM4n2OytSwPWMTRDO8Iu2KlCb1DyjVlHZfc5zNwyYAsx6ble/6eGQIXj9i7R5I48YIMOrf4hqATUoTRPonbcowmZgWkB67vhC/IAL0ZcN9f8B6WD0sgHm1xPZCS29Dsf4oTx5CyHVsn8kT8m+AN3mr7EF+7Be+5ffTHevKhHB9oyxyUUwLRNucZygUAHQO9rH/tM+QVMoL3TCcDSlQ32YY6hpFXj1DXklcQA362Bl9Tw/bmPqfUrRDY/k4AAs4aZEHG1gY+8vg13Dja4Ouv38bOCZAZkzgxErzF+aiSTsAohxK0cp4add7goJ49qUzmRGn5DvW5reokLpZyLdcL/vX5+Tn6GLhz5w522x0uLy/iAew390Mnx8f4kR/5ETz04IPYbDaYVg2jD1xebvHeezdxcXmOd997D0BDm5x/CVjXHDecP0QTvAOufUjfGBO7uizbnbKWhK2WHz41TQQf//jHcXLtBK013Dm7g/ffvwlqvsqlAnFAZKWur5+Lnkhqk3e4Dub97FkpyeXPsrK6PiJpMRIdA2+++QYeevhBHG02WK9XWK/X+OEf+mG8+NJLePHFF/FDP/Qn8PAjj3DUoA2gPmc3pfBSmAjSRlOvV1CQUp7ClhNs4TwwNRzJkQWWrit28w4Xl+fYbncYHeAhrlhflL051yFN8rAcfR/qPJDmPRk4/DAwfWB7HFtTj6F+EETBNVKQ2sUYvp+yvf8S9FLBJVrsQuk1FXnsLeKqyAiORbM1iq37zAeGGAvZJjOnmx8MQR9/1+Kxuve9d1aNz1I+pAxacox+mIsf6EAClMKM5Lo13ujrhMo5tGFct0Z28yRT2iJZ8mHtU/Bf6MrYQRc9APePFptY6GOHiexqgklXAqxXsMOXqxUUBCatfQ0jZfYB269I2vA9kqcwlQkmnahKQTuvC34CJG23pJ2tBL4fMGmpeZJePvSgfaxZJOmN6EtpVx9T9BmtlGBvkFho0pANjhNVRIM3F/MfNpaUrX6/ap9Ci7Jn8Y7MCO4P1ryaXdwf7lWKIp+lSoOE5WTsj/3QDu3QDu3Qfr9mh1x72LKbN29it9vhjTfewNnZGU5PT+9r5wDgoYcewt/7e38PTz31FKZpgohgt9vh3r17ePXVV3F6eoqXXnrpQ5E5ia21hh//8R+PTER37tz5UGRQ2m+qit/8zd/Exz/+cTzwwAMB+vpbf+tv4V/9q3+Fn/3Zn8Xf/tt/G5/61KcwTdP3tG88uHnjxg088MADePLJJ3Hv3j2cnp7i7t27mOf5QzXnh3Zoh3Zof9TtuwYpmYOyOCSgWc4ndkAOwhjmaBmetSEcuq50mYadzogIB47cCGVJOft+ig1n3fDCTwZlwD+DTQ4a8bzKjSAStZwxCsVwTzA3Zs3Lt1TnkcT+drFbdAeu5LWkADecnplhaNlkM+MTN40NBhjqg5VjEBvPln+HI6+c/tEo1aMOwPHSSwrHL+XmspbgCY+BIsq7Be14/ehW3kvp7HRghWdGsGDxxAHHxhuF5uGgUnUHtz1/4ss9/ZbS6+cba/EET3FaUPPZQ7sFmmWguQOkocUYhsoiU1JrLbJRDM/aEo53OuKR/KPsmmebSIecgKfzO7TQlkFBLhTK88T+smwpYllURtJyeOacHKAA0jyTGKBDoOhobXg5NpYoamiTYCUTRjfE/fB5zbJ/9rgBxeSoBr7GZHBgWs147ukTPLPeYJJLdGwwdS/T4POsnlkqQAhwYFbhl3BcNwQdmLVHmZ0HIdXxfVeC0yScK3kCfRRnmQd26RL1E/fkHXE5vBJUg4S+sstb0FgJlHBHrkwTNpsNTo6OsVqtIQD6mDFGt9h0E0xthak1NBEYLkoxmtjJBeeZPkY4hO3NGaSfO51HutCBoeXGCPCclS2zZ2nvgNqJ9eFzMkUgUHB8bM7w7fYSu+2cjj3/tyvMbV0cxzEXglKKS4K/qNKiNGM4kB10B/XTowrmllMB2lALctFhWvS9ygj91KhXpxVkzOY8bRO6ujPaFLU7Gj3zhBqfhw/OM79ZJgCxd3u/FtzmdiRCDII4+aoO4FTtKCIMV13GP2L8NYk9ZfgYeMpbxKEPw+SitdQDBmIZEcS0/vGZyBKinu1qDME8w7KXaQfT/6jzFQRoQ9LJq3RYc4wSwSa2xqwI2vnSKF/WmgE5mMFrahKACfIEhNlfpsjGZo8yHa6DmScyINrK7/uZgwCJsYRj2+1EZDMKHSapB1zvKFnRZYF2hRkhVq3ZGJU2kvrZstrZ64xe09Qc1DVFVrsmDeKlBhMQwqx1LllKcFNzvcIMRPDrR3xuoAQG6Vw2qx0mL5jCBkQwyWRlJifgeC24dm2No5OGdnQEFQMpadtgtA0wrOTk1AWTDMi4xGB2KgxIU4yZdsftxSDImzKSDvWU9eGZ3zRh06FDcj6qzlUHNNc55z1cf4Emz8uIhk4mdwiF26jHuYU/y7JEIeSJFBfyC8gjpDPCJtsYRgJEBjyQZ5nfrLTbvi2xn8MUIoCSAVETZDZcFskfGViirKStXNCxrp+U6opKLrug9Q8wA0O+I5+OWGPWcpYfxpbrgvwjWco+yLU3g14MMCfDRnyM95HulYhVd0jNOOVNKifnH1KeQ1mxL5hJoshSZG/zyRRgH/gSHfV9BgNqEYDOFUFpEguFBORJ0m3vulh/BynYP+8du1L3VJp8yWft81fQIxnbeVevvMuen51YvMdXJ8uSInwk6Zv9yH4lH3BtXgrSLulRAOvfSQpI81rKWwJYkfNILUIwFa278ZImT8Q3HHbaNK4/avDX7EYdq6/HoL7FcLCA1PBkvoBriAAXlH4klUeCJaGAMJ2oxJiY3XL0keuksE35e8gj+do/t9sHHr6xxo02wcDrE5qDzNjnOo2pqXPtkl/X0RbejT3b8vqQpSBi4dvK05I0qgBDdR673F7i7M4Zeu/B52d3z2LNNs8zjXWhhdkmYgFsT9Hw3MefwxNPPJElwG5f4uWXX8bF5SV2u9k0VxNfCzvVhYBv5xWf1zgUQ2ool0gatEiqJVghDoyQkrYpW9olv2c1TXjmmWfwkSeewGpq2M0zXnvtm9hut7FeCv0XgWySVRdkzmkp/h+hPGR/+ACOTAdH5Da1gJR9eejjE9y8eRO/8Ru/iT/xJz6NRx95FCLAar3GCy+8gFde+Tp+93e/iscffwwvvPCJ2NNQbgIUua/XxfhVnFklbHG1FOW7Pb4ikCHMt497s9lgs1nHnv/y8gKXFxcYahmRl3bFesYlclIo7R2k6PeqQ3m9LU0Bfw4zKMXhvtq/Vg6exSADPhlvJ19VYCVpx8NlS8yxxnfBkb6+Je8EV0V/yrqYfwK5OFoyV+FtyQFx/IUhQ08Wu0euWzxPcwBx6I96otAsdGmRueim283apJX9d7F/JGDyCucXS/8ABWgxIxxr0Y9kuNDfxovNeboJsPIMSut1Q1tNgEyArABMGDKZrPDQhzqw3/d63D9CNecu9JQzLPdwV/SBFrrdp8X+YGkfl5fknqLSWLXMl2LBu0n0BXPuv3phcZbSZoxN+3rVz7Q/HomfPAhTMxEvViX0TXDshaeWz9IrY6prIq47K9uLLFcayd9Y8tJCH/N+ybmu3f1Oc3doh3Zoh3ZoYZ/u3LmDN998MzLfjDHw9ttvR6aji4uLvf32/ZuIRDm3s7Mz3Lt3D3fv3sUv/uIv4s6dO7h3794HOp7/k3Z8fIw//af/ND75yU8CsExRv/Zrv4azs7Pvc8/u377+9a/jn/7Tf4q/+Tf/Jl544QWICI6Pj/FTP/VT+OVf/mX8m3/zb/AjP/Ij+Omf/mms1+vvSx9Z3u/GjRu4ceMG5nnGPM+4ffs2bt++HSXiDu3QDu3Q/ji1PwBISeNUYfNAP4ZAIxjHLRYAD9yKO28cugE72T759RoHlgmiiRItZcMdWYfUrotAleap1LppjZNO4Yn3/qsF6ewEfQJF8oSreomk4gDQDCATtNH8xFn4faAB0IgTd+qBwHBAiANGAObZjiF6TN2CTi02nHSGKGZzDElzJPZiVsrffu8AhpfLmZqNpesc2TjoTArnM50ZTrcY31DooDM7MxCQluHAaRYEHu5FtAwM7Junnixz0TvTm6tlwHEnWnVmJgBBAG3o6OFIAGkMAEMNsOTZmeiwEzGHu6KH4zHGBI3AOudgkN7IAG5zcIqPMsZrJ49Z/s+CqZYxxq5nuTbjFSspZLFNczQQaAEl6AgggEDdk2dZd+wdY3CSDFhjTg06HDwQSzAYzOnIhfDK+9J7TznyoMX2vOFX/n9v4qQ3nO0AdJ7OpnwW5/gALF+HgOmSMluV0UzhQVE6AJk1qMgoeWAqQKcOYHR3fIn1w4K+hBJmVqvhWVoWmSLcCRpOPrWTeaZ/ErzHi9vU0KYJ60mxniasj44xrTeQNqH3ju3OAvlWUnDCat0821BxNvlYQh6d9mOwLMMAVNCHPas72Ml4e4CB1ixvZE5Aywhmqe/7sBJYAqtVPfy9POUuEGw2a2w2KwydcXl56TILhGIVJqeiw1MxtcmDFXxvlT3nJxUIpnBypo5FHBrtru8iRNtcLnkYVSMUCVUD6Q0GrcQcptNkYAzLhNUwtckzkNHB5ieoIxsU+4LI2ERglYiBY5eltILlIGqZ/fqY3Qk8IQCUw8Ecw3SDyfCKHnZANsY7SgemQqWcGna9qipBfwIHzX9O0IrAU6WgCfzEs/GkomHeAdtth/atv2eUcoImdwEcK+AXx3uCoKnw16oDb5plhBpRksaoYpnXEmQ0hmJqRvvudGY5DssP1aGzdV6aeHlMhB2mmhzDsmGxhCWbKoz/QJrYmJrLw6j2zJ/XJjhoz/RKHzwR7qMIPhtOR2anIRBQ3L4MNOd/T+OIabJMWqpAo+Odc94mL9Vn54hnJRgRaNNkc+39NFkmkMYziDVz8ItnLgk5wgjHNYFZpnA8Q5mqAfpEsGqC4zVwcm2N9ckGsj5CHxtANxhtgjZBaxvoaOijgyVFMWZAZ2D0KG3LcqiRBUk5614aE+QZloOzeRcHf6UGtTboGI+lEtcGMN5URYJ3fbzdAuQZjCGAtsyn1NPLKfPBQ64LQ9eIry/d1lRgjhojAAD6GFkC1h9s2To1+JdrB5QRizS3f83qGGp30J53josoBZgB1NaHXJNqZs4hD/j6pwYUIoDX68koiXiBkj9jfAV4QMb09QJ79WFuBHHXIDtAyjNqlPPg7IoMiEvovATN8NkZxM1nWqvBLJCuJSAZa3pey3750iboGran2BoPhMlCWAjSoKxngE/iX7O5S6sVSynv6x4QgEutfO2SBstRF14ZscfQfVkhkUG545ca7+M+YXGoQevFiKAb1xRJLz6fI03Zid76XmSB3iHdw55I9qcE64IWWvof88tAe5GONE1OI435IXEJZsl1eNLduqQpm/szqAhdMdyE12yfFegZgAj/GU+KSfZDHeUFtkbnlUmrur+0tcmgwC10hnDz6cTi/6J/zvQEfjc+m8mFSp9nbXj1tTtYqWDb2QcJHVmzA+3zeSj6mGdc7Qs/D9tV+C3GnutVI53vByG2juHBEO9T7x337tmJ1Dt3buPi4nIhEzEFIB9w/iW+m1YNq2nCIw8/hKPNBjceehAPP/woHrhxA++/fxMv/c5Xsd1eBteJSIDuyWEJ4KMdC5GPkqP8G9A4+JTqKR4WNGPmJVJqufZTijREgdV6wo989kfw+OOPYb1eYejAe+++i9dff73MRc5DFbma7WZJsLR/IP1C48ckhwgOTcnkf4uCTEnyWNveu3cPL37lRXz2s5/FI488AhHBAw9cx4989rN488238PLLLwMKvPDCJ/wUdH1q9jn0J/WYkKuWHFi0Q2SPNH+CJv8qct3jGXSt2YGpNilW12/g2rUbgA7M84zdPGO73WI37zB6KWsOdmdPGgo6kOqV1BWo7wEsM3PvitE7pFI29hPc710RqSA0Dz7YCNKvZx0cSS+lD6nMGfiMJc+Q78iHqYcpr3stJ8jVJYFStOf0+9gEhP7W6gtUQIUuHUrJHu/WNxclu2D+pA1g+7gAkYq4z0qj38HrrYUO9MR1sZfNMewP3Pmt9DEkOnT8vr7SUKdw3cd9bBPLJL9eTVitV3YYQ1bQYX5ZMxHNgWuwnYEyA6wf7iyg7LpGENJzQbJl34P37jdGFNErY7FPrq5Xltcgr5PUgfZA0qCCWvNZdjgoeTh6fl9bVdZoVWBCXyyBb7ne8ctcbm2cLhgug3VlWNX68r38MPuu5cKFrtK0f/drdd6W1+jCvoU9wXd+1qEd2qEd2v9tbbfbxaHweZ7x7rvv4vLyEm+88QZu3br1B85yM/lh6eeeew7Hx8f4yEc+gmeffRZPPfUUvva1r+Hf/tt/izt37gDAH/jZ36t2fHyMv//3/z6ef/55OziqildffRVf/vKXv99d+z3brVu38HM/93PRdwB44okn8DM/8zP4rd/6LfzCL/wCVBU//dM/jc1m8/3tLIDVamXlxI+O8MQTT0BVcXFxgfPz8wCyHUrDHdqhHdoPevsDlXsDuFlJAzkBcTrISrNNduoc1dlgv1mQmmW/0ukWjkffrFenhTDzhD+PAQw6bXiiUFrzoK+kY28wEG8bbttL2t/Ds8RwozcGM0uIZ1SQOH0/PABoRtd9M3U7PSQyVhj4yh3TUW6Fp3UtINEa++i08RJu5lCxVELDy0NJpOEu2XrKXj8325r0dIdzZtE2oEwE/D1zUbow+WhPb0/a7TkYtANitbIyk4BabhX6COy9dJ7RocHTZfR8cfbUT+8C0qZInc7r6bRg8N0wOj5vfnRVVOP0sYaDwnmkW9kEgQUpR9foa5OpODMqGfKUJB0JFRQjPl/moxvuSBzuIFyBCCujOTO2+DjaQFMryzNUod0Cwo0BFDE6OFO588ROtzUvSabw8mPFUW0l5byAnxqYwhjKeInDY4mxGQBkwjt3HBjQG1ZDvE6Sl1Iaw09pU94Qc8wMQfyAmXosewPKO2d3DDZ3nvq4x1ikjQfSGe84LGZqt8BCnyNASDlg5gs0m0uCAsWdlVMzEFVrzcvnmUNxsxZs1mtsVhNW0xpAw+V2YMYMlv9ZTStMq+b0BtRPEzbnKyvj5U5/Bud7N7CNg4t0ADK83JhnnLE5QJTiW7rrbNB9dAODOPCvkbfdsUY9sVmvcO34CArFxfkldruOZFOXr0HnljmYJjE5kCgZKeFrrgG/GuhRpLMtehz6iPLsWcqakD2iDGV3vgzglPdnANC+xWq1wnqzxjx3jG4ZagQaJYzoRKfBqA5hiadxXkYCD/Yc16FXlACjzBJngVv7PcqTCDDJsLpy2ADYAd352Xq4cH6aC5cyQ30oHhjz0o8O0CA4SzAc8NPQu2A3d/Qxo2nPOcTkuthokYdyu9ugFjTq6HY6n85OSSCvhA6mXqvBGtJZMljkgRcDLw10aGajGRrBVmkSzneJ9+a8jDFis0o+VPFn1XlSBz+77myetUycEhnkd9tbHaZq4J8x4KWSwCRUcZ3xTMPUVpa1q9i9FmsL9bWAzajA+9CwKLcBaT5eXw+wDG3l7whez2BgzGjgcqrU87QQ+e4mzedhwloaRK18Z+ukqXPcPDAPheqEuQ/0scUYM0bfQceMMaycpsgo2ZM0aVed0FdjB6nu/TrO476zegF2KFGnlEGzlbSlwYc1yCEJOrG1k6LdD0wR+jC/y9CnOO0TADe6y4HLB+WSJdfIUQoHKEVKAJ8bluCJ0nfZX7KXOBdl1DgXaAwWLEKermu41BXx9Uwz4KByirTqKA/k6pKGMZGurId3SJZT9CFsyScRylPqBV6isU7g1fuBrPsHrvyfmnkU9hxoCd1LckDaumDIoLMXEU77qgCQpWTV+2q35fPy0RrX+o4CDJ6avdjrpSz+jOx2pFRVNQpENrDYGHCMEleQnP7sEhzNrtcnVgJHWafFwXplP/SK7oixSflbAWbHzfHlaiWA5THnBMrnyqPqnmWWpxxrZJGivVM+Kzu5D5wlQWM2baEa+FGKIPcs6mOJ4CbMFiRic48gEquPQmWNbEkE2UM1QOXUC+qfGy96Z5ORCv95P0fqFR8sqBCMdi32U9yT9T4XOeIak4cSkC/zSSfNuAYYPuazrdNILbtfKvg9m1HsZKyT4kPqZQ2ZzNHk3FfNscgq4d28uLgIRXp2dhYZa87PzzHPPWyG/U5Caqx50m9gfbSKwfbeaZrw2GOP4tFHH8G1kxM8/PBDON5sME0rAIJ5NvDJN157DZcXF5Y1sLGoveuTmCOJedcYsKYRCNmvaZF4yIBrZSyr84SMl0MQVXcEL1t7/Ikn8Nhjj2K9XgFQvPfeTXzlKy/aIYx4nCL0cLHjCQgrc0pdFfrT5a/MUzwopjXtXD7DiGRivATA8MbL7RavvfYaHnzwYbTJDiI0zwoFAV7+6lfx4IM38OSTTy54JFsKS2BZgk66uIP/ht4LuqjvJ/bGUfYdQX8ZgKz8tYq1WKm6ayfHGKrYbbeY++wZt3wvjhqQMh3HPY6JT+Wv1G/LbM1jz3bQR8S+8keZ0zIjAIhzdDEpuijkc3lHXQsGv9L/FjqOzys6QHLPshB9KXaOb2JGzbI4qPaWPBb7H59kfsqVf66J61wHQYMeAnq1NGgf4Pe8YcEj1OG0STwaENSSSj/JcdC8lDnJsnSkUaV3BbtS6sVpZHWxJ7EDJ6TjQh+oYugMaAsfB4FJqgMoB0TSH1n5PXoSbHG/5dm+54Nmuq57fi9ATK6xyFPyHa4D3OtVu7ZooR/H/gX7fIzkMXyn95VVfsiP5BidzymIsZZZvK3cFeszp3FZG3/HMYM2DK47eQAjn51yeT+dWt7H34tMHdqhHdqh/XFv9eAAM9UAwJtvvontdgvASrZdXFzEdfz8D9JWqxU+/elP44UXXsCDDz6IZ555BicnJ1FabAzbS/zX//pfcXp6+kcxtA+0feYzn1kAlF577TX863/9ry0L7Ye83bt3D//lv/wXPPvss1itLDTeWsOP/uiPAgB+/ud/Hk8//TQ+//nPf0f7+71u6UsVXLt2DdeuXcOjjz6K3jvu3r2Ly8tL3L59+7vO3HVoh3Zoh/Zhat81SCkyiWhugAC4U0dLeTIrDRObsbLBUu0QmSDCYB8iOAnJDdO+o5+BUHipG8+7sdzgi8TJTm6mpFl2oXAoITdd4oNQtQwDzLbCYJyAQWW6c+DlxuiQKCcr6dmCB5s8k1FjIFwsMw8z54i4ExfuhPaMR6SZZSByINfY35AWZ7UP3/7zjBgtM+Ag+tnKfSRsbppj7+2UGmNEiRc64DKo4QH+KDdi1CHAyBwakwFveMp8RG/BU34MzDKOxIxV9FbUU0KW/UVj86w6Y+gKdOqYg3DAytn4KbDwY7ibb9DF5AWrVNGmEogKktn81ybRH01+VuOvMTraNHmgO/uD1qBg9g3FamoZaBh8j8lTlmdSz1hm5QMmB8VZcH0KmsSJ7+YB9u4AGrFZa6ssQaBAgKIYsFBVdFVgEsgYEJ2AxqCbGODGs79Y1jQHgNHBJojP6WEReEacKEPozCjJY/YPswKlU82AG56xY9AZh3DOhjOntRiDgQdaZKaxU4zM0oF47nqasFpN2GxWOD7e4GizxhjAbu7YdctY1FqzrFOtYWprAzJMJtfDaSUuMMZPRtMofweelDfwjS3QDYCCMdBE45CuBgCBgRDKF51Jw8ddnIHu0Goi5mScBA9cP8J6s8LZvQtc7ub0sUn+kiVtnF/8vdIIy3CdE7UmE7wk7syEKkYD+kgtavq46BfOh9O8evtpM9K55xn1olcKlYZpvQEwQ7WjiWWvGZ5VRCPY5U5h77eIO+KVGVqaOb+nCTyRa9nMOlRtPNKSjwY1e4M76xXTNHlgdAWRgWvXH8SDDz2HN996FdB7Ji/kf+8P9ZQgM5kACh5CtfABNSCgo6PrQJsEm/UGbVp5ZpotBCPIxWeTB+L5Ys518VO7pt7TAWlyNYFeYqVzW+i6byV4RPs9ORu4no0gJh2f6UgO4JNw3vNJFHSWX6N3ti2yH45SHo3UQgZepEEF6C5zTYBJUu4y1uUA2XiCyesUemH4yekGZSkDaVA/URyALOEpcE3eVHsbsxu2lvXITZ9SRC37oLg+UnVf/lCI+Kl4z05k9kkBpC53tc0F1qI8Zmv27NXUgDZhwoRewDlNG+bRsRvdA1IzgI5JFLvI6Lbn4NZi912vJGhtANryc6dFRg+MJyMb5agDMN1VoYMGNpPgX4LCjYcIGncdEvxGcJdn6kOufwJ85GtOfqcx/y11DhvlB2IAv/gwM0uyGxFkVASICVyTVt6GRAko+4Y2R8r6strGPIWcAXaBynAZar5utD72YVnKEnDha8eYA747/45AE9c9wUUfzrboWdBY4htBHaGXe91zskQ2ETIS6e1/p7668iJE0Dx4gIxAfSQlJpTzS94j+DUyNTh/h9wIQr9GYLLKnBkCt22CvVo5CzqEXfYhcFyKfHfANvzL+rR4H66QMGhST90nf3FfRz5HjJuEpq5kb7ObFUiIWDfy/ftAO60/GZ21hyNKf98HBLQIZEMAYRaTq/MXV8XyJIO04ms34wtBApeXhKf+4D0x/zF6pdkN3gyqlEdVAFVE/51AVUc0H18e8rDWsuO5b45xl2s1A7TcdVHf5r1LXSLUWWUtvdf9egcWECN13Vqyecbassj3UpklwLnMUpKndC5EVfOX3jsuLi5wcXmJszt30MfA9vLS1oK+1yKwwNhIg94xtvzFx+Hrq9LXBtuTPffcx/DpT30K6/UK09Sw3e6w6x3vvf8ezs8vcHrrFPfO7+He+bntDV0f1NV43YoH7eDEZ1Ya8lGcA5LwIUQ2PqeBLoQraaN1tmgLk02xWk342LMfxWZjY3nv5vv4X7/927jYXqI+JcSs8JqEvpCYLyMr16Cpi8tU27UV8bj37HjmQi9jT26Sfrdu3cY3vvEqnn32WWyONvbeqeHpp5/BzZvv4+tffwX37p3j+U88n3NalkXJ3+wXAUWcMfJE9iN5krqNa9v9cRV7AlsXP3DjUdy9d44+3+PEQkQwQTCdHAMArl1/wEoFXlxg7jN2261lF/Y111KjOXBJEJmCrRzugO0nKjCr6B3ogpRLW1meDVm+sY4fhYCkIeWZtpT7ifqu8uy4Bsj1JZa6ifMme88LlqKeI+9L6iljI2Z+NoGqrLW0ift6qBDH9Ya5HNIXAdq28rCwO1LHynWD07Ol7y3fqMEPud5ArBECQKKp1bIPTqPIuI3Sl7JWaFzf+p7M98Kk+dAeJc2ZLXJZpq72thq1QsxiOxb2aTFr1b4U+0p7V4SsAmvyffWaRU/21hbLdUltFUh5dd7L3HKvWCi6HMf9AT/+Er96r79xuyyev4QD6VIoi04Bx7lcAIB79OW6FAj2l5S3JbvXcV39dZ92h3Zoh3Zof5zabrfD6ekpbt26FYCkO3fufGCZi77whS/gr/yVvxKgnrt37+LevXt44403cHp6ildeeQXvvfce3n333Q/k/X+UbbVa4Qtf+ELEz9544w186UtfiuxPPwjt1VdfxX/6T/8Jf+7P/Tlcv34dQAKVvvrVr+IXf/EX8c477+Cnfuqnvm+l336/JiJYrVZ46KGHoKp4/PHHA6x0eXmJu3fvehWQgz0/tEM7tA93+65BSg2Tb3IsoBmAkdjEaGxmA/HBzSby9EacCtPc4DOLCrMgDHeqN9k7uV90qpU3MWAB4JuuCkjy+1rz0nQMKux7uNzxVx/PnmEotNlJNt43tEM8e0WcLGvcOAq0G12aBwrMseQOLwdgdHpIVOEIAQde+S7SabF0knNPno4O+O/SxLN15H5VVdGHOcXSmWJzlAFiZp2wrBzD+2XALvGgZ4KSwDkJp11xIEVXM/gQYKrG9JR2nWg6aFj+JdypvplufJY7KMaYvWyZlSLiwVKRCUMIgHOwAjNcOMcxUM8JyxI86um9vLRauCDSTWDsPDC1lfezRyDI2FgsW4wwlXh6vgLsRCdQc7fSwnnU0CE+LwOQ7p6EtZdYmj0YMkU5KqPxCNkwf1Oe9B/B5x4AVQV83qHAJFbya4wZkwKzlwoc0iE6OSeK8ztgpb9cblu4ZIIfm2iWOYOD5ERAcIZlOfHTeA0BAszD1goMRVerqCOqDtxjWSwL3ltQweRieCCbTrbmjjcDu8EBICscb45x/dqJlXbCwG7Xcbnr2A1A2gptRckdmNZriE4QSsZQrCYfx1D0buCKHiWHPGOUWt87Bma10n86LOAf5TjEiKfuhctNj4bzSN3xSBCHOhKC6qt54OT6tRMcn2ywvdzh/PwCcyfoy3mDT1bTO1F6DOQRXaTtlwAzIPkJCJClBSnsZzi5oMRVgAAqGYA2dTABivNt6VSz+cpARR8Dq2nCtF5hdBvH1ARNBnZ9xGlgGf7eVnS0VHABhV7B0jCDWbvUdayX5rQhmxtfXN8t4gvi2a86oKNhdMWkatiG4mu0ci7JB+HObw2WXMv0sri8sO/2hAlDB/q2Y7dzHpwA1RZ6kC3sp1YQZs4pwTqtkTJpFxUjMzRQTxHU5G7RsOvBleRLzr3fT6+mwm0EDITnNo9zTjAf7XDo9aZ26lvI8+rSB9fzHQEgsInApJYFzJ7YFnShHhleMrMBGF18rg0Iqg6wG8PAS22o26T03JpOGWhqybMyqN4BmWAhH9ow9bKE1HcGeLXvnJfKvFFXJuiLzm8G8gaG39e7Tc1OO7YycLkaWO22aDJBjhyo1RTzAEYfmDswj4F57uhzR9/N6PPOyrxpzq1xiK11glcX8plOGLvc6ByVTMQyh5hJ8wCYr3EgVP25zjAdUB33prvBngiy7EXwMXVQBo+j79VJFODwBAWFTETwZfg6QqJy1GLl5/qSOlLL5wsnfvCiBpDR0r4YKE2Clt7HVsYcZWW5HloGMZn7gNLVoiSk9z84KbNgMZtHzfJAIDvlbRF5/ZC2DEIibPp9gyAxTkEGOq9eR30VX++ViqPk7d+rCz5z/pXynHL9/Zw6QfMysrhH4aXncsGXmpTX8GcFjS67ELYOuU7Ozvtde13TBTHqqsB7WQPLXuEwwC0C5FrO33tfh5YufpP4V2M8MbbyzARk517B7sw9Dfk9KFGD3EU+UxNgcV0sCRZUJCjJFNao+z71Vb9I7BlqqZgYZUxblePUAaaOUrfukT14oKGVso/1UAkB8NhjgqKPON28v3aEciW+13Yd3HzhLjpCNnigQKIf1bBmfzgTDTlHQVfXsdxbe8HVXJOolyFfsGjyWahsqK/DyH+Vt+oaUqBj4OLiwgIId+/g8uISu+2ulPrMNUdVBTlWe3HwHqfb7TdinSZhU6ZJ8MjDj+DZjz6Lp556EkdHG8zzjJdf/hreePNtzGOU7InOlc32oihsUPeIzFbMQxvMIqfeJ5a8lqFLfs/JB6UOZez2Z9ot5dzuqRyB4MaNG3jooQexWk3oc8crr7yCi/NLtzx+8CnER319l4BZ8tuiS4WNlB12HwQ1WOq6faCjj8gPwwXAZjG8vBKw/c03v/lNnJ7ewic++QIefvhhK201TXjhhRfw9a8r3njzTVxeXuDjz38CJycn+bB66C6Xtt73fZ2ni7msunmMnB/3WpRnpU0w3UfQgMYDFFcfulqtIlACKLa7HXZbAy7tdjPAvVpZKwO2DukdDpR32tehsF+RmbS+u67ZUisv1xMjZSs+q3oBUAxfz+Tzs6saOryQ/T76GgnCIO9F19T1itsLTqLSj0RZsvvq+lHEDi/Yeq4t5jzo6PsmczwkPZZrRbMNeVZLY0zWB+pHIICn3qcr9kH3/JxFP+U6puhGob6qXMjuS5CMnRmw/UIXYO6CSbrtKYQagtlf8+DPcD9GZIcOQa8CnnKyzMpVbV+uarg8rf1dLL3iEXWu939Jjsp98B6L7nHnFUlmn3mTYH9YSc/ypdS5WPTnfmukIvc+0CWAeO9NhUdqHxeIVqTO/E7vAsKMIcDG/q4cbq4k9/clGmV1rz730A7t0A7tj0Mzf+PAnTt3cPfuXbz55pu4detWgDg+qDZNE5599ll87nOfw6c//Wm01nB5eYlf+ZVfwW//9m9bCeDd7gPtwwfRnn76aTz22GMAbA363/7bf/uBAigBQO8d/+W//Be88sor+Kmf+il84hOfAGAxq7/4F/8ixhj48pe/jPfffx8/9VM/hSeeeGLhS/mwNcZbTk5OcHJyAlU71HN+fo7tdovT01Ocn59/aMsHHtqhHdr/3e27BilVJWaAg9xw0ZVh5aT8ZHkDlqfJCdqoTq7cyArMgZoBK4GKlb0ZneAEGgMGwQmCmHOnS+QDPIuCdkQGIQEsAOxgKlEPEGrZizEQ7K5RHY6cSPCUDAtYdVVoaxgq/g53Ual6qaoBUWASAxEpWE4ny0fQgdFUHDDjYC2VKJkmmKAK9OEAD2kYYtHMJgoMS1/PU3a5hbZt6iRT9k2mSPc84KAXB1xhsIyNFROCNIh61qQmQQNikrRNQXcmjtExoM3ddN2yBVhPDPgSJ8FGzhPn31JMG7BmzLZR7uiY+8430sPxBwMQAoMU6pmZMq6ovkl3fgpwT48sMgIHOwEWtFYrNUTAlVFx+OljnpL05zc6obxUnQ+pYwQIwnxJrYACfH6kRTw4AH3uuGl+AlXVgHVWkdDBamO2QIOqz99InJ8/y+jDHBTdYqTCe7xsDbwvquhdMfs4mOFmAkqaEE1HWCc4Tol/MDnxQAj5QFQhY0CloWt3oKEHpZsFZpo4yFEHwHT0GGhq9BkQ6PAMU0KN4NlURNA9KxbhRAoT0c1qBZkE6/UKR9fWuHZygmm1xm434/x8Fw7SoVZyS8T7K5xURcfOnHdYQybrF7plEupDFwj0DuPHMWbomNFno3mDQIZEEGzm6VehDCIc/1Y1bmD4nKs6OMkdghbEt7KKrU043mxw7WSNPhR37m2x23XXNxqljUzREVAhASLpzocE5Vh5IwToRpyeQ2GAHM69OuiSQQ/yqN8s/vzhep6Otub6i+AVnmYfGGgyYRIx3dYEczdeaW3l9gWQaQXRGTp21rvGlGzpnBWY7Ayo8coAtBsgMDPSSQCqxMfXFVDtxj0C6JB0dqsCfu/F+T2c3/sdiG4NxOeyxpOeHDNcl9qp+ckCTOFkHB6wMt0JEchqwmq1ho4VdrMFIKAzxG3bxNKj1APKKTU+jXJ76llsvLQidQ7LYarbM6HzXEaAbTyU4uApe8ZgKh+XlcjaBo7TT2lHyc4RdmfoFM511QFusRkwkKaWPUazNAYd9eo2M0BOXm5NuznLZwy0NmAZouDrA5cNwHnJMo2ZXbe+dHFTowRGKeY+PONgd9tlzGE6XUNfBe+IuXQze6CbahkBRKXsKQx0Zx8CzKxio/WMe7GWScd3E3FcimCIzVCfge1uYLWbsW4ztM0YMkGbYu6K7VYxzwO7naIPWBBrd4Hd7hK7vgW0I8oyOL8bsa1zDmszO7gX8FLQ1jeoGjDXxqruTJ/857DxenDW6GSjyjHSoI4MPQjtagYKBu0pxZuOdAeiVsCS5JM8GMdgUwH0QDEhQXQ5hubrDbcvlNPGsSH1J6kRjojJsjK6zVuEXP0ascEAcTfXtPmz+jUUVtouAutK8Ln3bfh6Sii1ZK8R98f62/lJF33+8LUaz6mljGnsU7vHKgSUF6diyFV9WALVMlAc9zCzp9q7ajCWM2cBHbdUwjU4UGudLfYuWngELgMl+JvrxlCq8SwVs8Vck6m/MyJMMd4E69c1mcko9XL2TrDo7gIIhMWzAGYAifI7kJiPZbC6aCspOXlSWMvehr3OIWcXJWkHibHRrHM0wsUtQTUqpRdcEeb8UzYik5lWijfXT1x/zGnn4x52MLMeFvZZDkQ15jSBmpL2PgLky3GRThI62L+jnJY1NMpYbKHBeeQ6nL2RZSXdEiiWxfcLgTO7yedoUoqU5XXBOc5vBDxQIuu+S4eiF0qJNN/j2DWErfGeK+BY1HEg7oUqdvOMi8sL3D27i7v3zrDb7ZKHUXgjmLbMXNHLHBt/r1AZ2iIVwdFmg816hcceewybow2eeuojeOihh7BardCH4mI743de+h28/fbb1o8mRTen3jWQs0Aly3hD/SBJ+Q+SWTgJCFBfB/sg0v6VSZJalk8SmFUBDwQXEOSgUKymFZ796LP4+HMfw/HRBqrAuzdv4Z133k1eKPNsc2jvif3/YtZyhbjAxLiujexVnNvC88xkV58EZud0WYDrSjI27SF8rCqCO3fu4NVXXsWf+pN/CrI23XD9+gP4zGd+BG+/9RZe/trLuHf+En74h38YJ9dO4j0oY6za3NSPlk5VPZuiG1Pka6DFys7pTUApFDi7/Z7peq4zlSrA9aHmWlSgoJ9rvT7CarXG8ckxxujovaPvdth6liUAtvcYtkYywD98PZxyUsvHabFf0U8FIARwczBcc0nMS4u7SCPJsfjanIS8Ykuc1sJ9Zghn3XOYH8DWZGU/VfUnn0hQW/mUa6AElLg2G4ru+r4lKsavHcnJKjwD6a9sZRq1qG3qwBFvCraF28VCzABlU1jLMySnI3goD3ygNAJ+Wsgo768/Y/kvitEso3g3Bil+NPPReMV6z+Jppdp77+h9Rh9z7jmjf9WIjewvyamLDscaox4AIK+EnhHqq/QRk557ZjK0fs64PzN+X35/9W8+r6w/2ffy9tAFXFug2LKwLXL1neG7kiu0yNe1Qo8cr33PkeTaYXlNtWYaejUAn6F7kOuUYM5q//i9UuljsS4rdDm0Qzu0Q/tBbcMPONy+fRtvvfUWvv3tb+PevXsfKCDoxo0bWK/X+NSnPoWTkxP80A/9EB5//HGsVnbwvfeOf//v/z3+5//8nx9YHz7Itl6v8YUvfAF/5s/8GWw2GwCWRel3f/d3v889+z9vr7/+Ov7jf/yP+If/8B/GQYGPfOQj+Dt/5+/gt37rt/ALv/ALuHnzJv7BP/gHeOKJJ77Pvf3uG7Ms3bhxA6qKRx99FNvtNjIsnZ2dYZ7nH4jyfId2aIf2x7991yAlwDZpUcoI7uAom2/1QGDNiz0GS4HxdE/u3ulUVvEMEMrTqJY6ZAwrYyUeOKwBHIsBdUBGOBrSmT/ALD4R8BZz9mjZ9zFTiN2TLswxRinB5ZveOM0omEf3NPzqh0WbXwm4N9mzf+w7RS2IGqeIm0DReUs4WyzoRqonOIvZDNSBUzz5qXQQ+ZuCGjqg2iKziYGzRozRQFcMrAD721DLkMKSSQkWQbwp38vgpMKcq3TEADyxPGDsZi6M1iyLiaJbFhZ3NA530E3M2EMHrmaAWForads5Tn+ul1WzEmU2vkXQJbJ8GcF1jMhOkMGfDHpY1pfJAUZaQEziQVzxxA3m2Bnhpncn6uA9Fkaksz6oLXRvjHBkpMPKejV5GavRu0uVy0l3uEEjSGvkDFrqIXd8J+jOKpDR8YFwakOHjVP7wolJJ6t69pGJWZCchwPgNxRj9tPE7uzLEmAsB2TjmrUHP6r6dZH5JR0n0GYOcUngi4iVO2vDAugyGRhhs55wvDnCtWsnWG/WAIYtvs4vsZsN3MCTg601TFOL069NJLIkWZkqRZdd5DjrvQfwgKcv6AzSMdBHR+9W6k5GBprpJLW453DHHeWQg3XH5piznBF50zMqAYKpCVbrCQ88cAJg4Pade7h3fhl8iTGMgiqwrGLUC87XC11XTnLCHeHkA0lHl9rjSgmzhXYInSyUAVW00YDJNaE7Z5UBHAc6CifTCaKdtFK0NrnuMODD1CZoG9AxZylB1wWNQUrajzGZ89mzIJnOaGiMO3opSjJazAVpQ5oBXqZKLCMNustXAh3EbVhD4hGIcRpqwA3TVeLAGnf6uSwbIKthNyvmnTmBoR0TxAFnA22ykm0iK6xa8yxVGjYt/cWpmw1QaplY+oADUS3bGbz0lmsCzyIF13WmDHRMfgI6bUIGtKv9ZtmvDLiJ63nTzR58SM0avEedF0Nw2jfwWZa5UVwPkw9rMJluVpZzZRYaA1A1Lw9llzcvb5eT67oEk/Wy+TKG4AKyZhMovKwlP68nipui9xkC41vLgkbZTbpFIFbpI05gbo4lrevwTG29CTom9KFofaBvd+gqkMk+65fdQUod89yxm2f07RZ9vsToO+hgeTmNNUWAIJ04NUgF3dcLlk0xgFpawUB8XrqyI2DldtNoZp8l2CMd3wNwkKgGDRT5fCD5i7bY+GQqPCkpC3U5yjVFWZ8i+NfWRSrNr0tghS1fyxoKiKgsPxPPzkX7HyfXaz2Y0hZZV3x97FRyeWVQcZj+jjKP1leU9SKAUs7XwwwlUppZLFsy2IewLedvSTepksH1EZcEi1VoAiTIV5TNsDEZZWX8BTXLTwDHqI1i7wBfCxJEhMI/fLQkz3GfUNd2YCCRuhDxLHY71lZVGSx+3+tfvMee1iTHwIdznNGHocEX9qxkjOCzeA97GYQt9GMfsvf5udNL4IHnGG0Z6TLbaAa3cbVp2jXqpVibuz6JTC+5FQARO9lLAbMqIsXEf8l9Vfah8orS6GEBLNQEIriJRAzL9zEERZM+/J1rsUUWjUJl8QEZqZObXNKXpCq0u4/WiWtHpSFSl9e9CHk7NX+1X267gSjdXUKpINSs6kiuC7Xkp62STcJJS37WMl4o0OcZd+7cwent27h7fu6yne9dyhriO1P/sviu7qcWgEPh6Gwf8Nhjj+Opp5/Co488gqPNBkfHR5gmW7/tdjtczBe4d+8cb7z+Jr797W8DsLVi7HeDZRSRrnTAwNnOsUNHWVMUOmvayzgIthA1jT7znpCPYPqiKwutkkQ2D88//zye//jHcXx8BIXi4nKLV159NYM1mqu3q8/Z5wD/lH0SzoWU/1JXp9wvuB4MkpPPU0QTpGvrds4hbQO5U3Dn9BTf/Oa38PzzHzcARwPW6xWeevpp3Lp1C99+99v43//7f+PZZz+Kp596aqEzUoeyay6r0S+NL5MCNr6qA3NiSC0pcwIID275PNI/Rtlf6hPKVfK+iGBarbBardCOjgE1Keuj4+Jih/Pzy+Af0i4O2Hl/m68PKjA6+19ARZprFaU088tib+qY05xQD5SMSkFvdX2cdsnGzPfzuZntTuO6Jc9Uc5l9q2vQ8vzl1OTvxY6qrzdND+dzpNzghThTj6siNhacRk0O0XhNHtAAku7UxSHV6RAMumleiCiXrHFFDmhP/qhTdAA60a9qe8yBHvpQu+8vu+mf7kAm20t4Juw6/0h6xbwGMRHiFMuT0lcpsn8/8y+FGnn9lVnLeYnfNEQ515WFLvd7lyyBQt/hshxM5QcoFuvJ4E/ENCbfaZmfMha/hhnu61rn927fQb/HGshtEAp0kjb2fnaCqhqIvfBi+PIdKXNoh3Zoh/ahbKqKeZ7x5ptv4lvf+hbee+899N4/8Owxn/70p/H5z38ezz33HNbrNdbrdey9mC3p9PQUv/Zrv4avfOUrH2hfPsj2xS9+ET/+4z8e9qH3jl/91V/Fbrf7PvfsD9def/11/Oqv/ir+0l/6S3EY9ejoCJ/73Ofwyiuv4KWXXsI//+f/HH/hL/wFfP7zn8/KKT8gjfN1dHSEo6OjAC7N84y7d+/i9PT0AwfwHdqhHdqh/V7tD5RJqbWWgXTfzUQqdTpu3flEp0q9NneuLcoyWbCLOzkPoLZ0koyy4bPPPOk8T8Cr2vOEJTIG0tkAKJo/rzrQ7IEWqxMPOsXe0/uP6D+/m5gBITL10G3iXaTjsTELzIg6JOrOyhyruV14NqlpbjkDUBSBV9/MOymHDgNDMO22dt+Ytwhm0TETpzXFJqsVhxTLYzEQyYw6NoUt+ni1FYePKlQ7puZAGLH+GGDCT4SKOT9Eum/hLQsUnXfcmDvrgLmOsizd0uEcTpD4lBt9D8IrA5qWBYJBUPGgJNTBOy1pBHR/DOfXQUWwzAsQL+Ui5ji24LefnnYgSmscjPoptclAHmUUAWQQB38oAsQ0CJjyC5ku3eYK8TepIc0D+/7ZADxjlKDJKsq7MWDHE4vq8wZFZFiBO9VV9ubbaUJ5jawXzPpD55cHwdvUiluRvFaCZHt8KdL8I5MZA8TYfDZpsFqKYqWbfB6n1jxDhqCt1zg63uDayRGOVlYu7Pz8woGGNqyj1RrSLBMR5xwQT0Kjxvd0mI4GkYHmZf3owOXmYowSNFbTIX24HA9F0wE0y9ZjPj0DD/E0tyqzc2k8H0o3UgJhFCN0lWDCer3CjRvHmFbAxcXA+Xbn2YPC++dlW1wWHLik4vNR/FAKjTEBzsviPQhHXHP/uIFs1HmQwZDuc5p+q3CvGqgiHOIuP8V5Gxn4VF23WlYlhem21bSCoGH0Gdqt9JticgBLBQGajNPGdAclWdC/h5ayUpo2vgz6eP8d5DkJ9Z7/46ec88QkwjGdfG0UFfGsUZH1zOfY56XJBEg6IFdtQnOgiZ1c9VOtDnFsMP1l4xWXn4FpEkxTwzRNUJ3Q+2xZa1QQx8pFQu4NRNidBoBf7LyeDlOhDANgGck8neuBhuagEpaTCydzK3bTaeSlIQM4xEwwDjxTKfoAyQ/BMc1RQwGCppZPu5M20kFJ/sVQWKbDUo4sbK6k/tVRHK4Cy+I2mA3DxjUiQITUE/4BTfjQ4cDP7o7gDFYOX89MbfIkPSwNoQ7K7v5c0n5azM9QQVfBPA9MawNAGj1NbzdVaJ8t5ZIO6NgisnGBc0y5qzRuxQGeVA07QH1H3kdpbu8UFuTgeoxgyighEnMjEEzZDyDK+rKNAG0VcE68dBnE2Ae0wPll4WePtUwCiDh+ghG5ZmU6QtO9CXQhfQbMRtk61E/Ze2C9aUtnPuWm9Dv6G+s919VlLGqPdZlgnwq3u/KpoK8M2JI+viCJwIIHJe63dPuQtSUAMqc9tGsJCmGPG1MFu14OFbjg2L33+XMo16lR6lvD3qNIgWi9PlVUtX0oT7vv+xff+5xWGyr78sYbqLhID8n5988ZiFqOy+5Ne7/cT1C31d4vMwto3B/P5H6CvxdZt/FoEogjXewniu5f0D/XBfGqWEcyK4fLpQ6fd5P1oGcY8ZzRWP+W7660Ojxo6SJpJSmf5DPkDpD736AJgnT5HAa9c/AAHHSh9Xn+VdDTSNny8VR05CDPwJWyZNdRKYpfu7S5++FhEY4laRC8UiQzs4kkD3G/iUqHklVrvy1llPs2o9voVoLh/ffew/nFxRWuieFjGchm46ETiIAlOmPdEvzomWAEcZjiwRsP4rN/8kdwcnKM9XrC1Cyj79tvv4PTW7fw/vvvYzdbGYY+z2itoa2YzUvCLtKgq6/LDPRYsyIhmHMf3KJAHChJuZRCc1JsOW9ayeBrjOBDmEza4wTXrl3DR595BkdHa7QGnJ9v8eo3voH33ntvQWfy1oKffE21oHrIhNOWDLqQYT4Nqb/4a31e4Wn+SIheHfmSl60bZvO/9a3XMHTgueeew2a9hkjDer3GCy98Anfu3Mb5xTm+/rWv4+LeOZ792EexWa+Lnqig63y+upxW6ICAa4urk1HHtZ/dZDEWCUbIskyuz3l9+rngaiT3XdybT61hLRscHV3D0dEWZ2d3sN1eovd5MVmD/FTXZ2EXmBUVKAsMuy/sxz54Iu1NgodS/y1nN/V76JPCC9Q0QQQpf8fvBUC1p+figE95GsC9LQIkc3+tUeeRvCmcmj1dnrydprjaY9c52JPL0ndKe/Td/zHaVPhlFZAiSZE5yv8tfATV8Akt6IT4Oko3h+7gkFTBfYmnJUb4JoIYVyiHRepG6p8Yf1Fc92uK2CtzrU7/yOKiOi+L1y9tyZLHCoAweCtlssqB7jPW/ruLzyS+uTKuMkehs3Xxbdr5GHDhb3ZxKX/7f17paf1eay90747l2mLxOpjNuv8SSe4/9Yd2aId2aB/CRsDFW2+9hZdffhm3bt0qOv6DbU8//TT+9t/+27h27VrYjHme8corr+Cb3/wmXn75ZVxcXOD8/BwXFxffkz59EO3RRx/Fj/7oj4b9vHfvHn7rt34LX/3qV7/fXfsjab/6q7+KeZ7xEz/xEzGXm80GX/ziF/H666/j/fffx8///M/jvffew0/8xE/g5OTk9/Q/fZgb10GbzQbr9RoPP/wwLi8v8e677+Ls7OwHHnR2aId2aD947bsHKXGjGhs7Cw4P34BGrKZsvHnKlxszKWVvuHFrzLrgezXb0xKA5O/u8NNzthkemifRBJYFhY56nlIjUIVOIgZ949nudaibUy2bQ3Nc8vPsiyIBP8IN8MJr52AGzdONGq4hsdJjEUB1RwAsrEiHgQKensPGNWrMwJ0Rogpoi019gC8aiqMvb2HgQAVZToof7Ds54QCaNrwbHqAWByyoz6sDBoIvQAdrQx/dTwi6wzXAIfRn8BRtOqliTjkfQ4GWwY2I30EcFJAOh33HnQUul449OuAEzDKgSaRkgJhX8rbxlAXYhw5Myuwa6VyQQnDxsmZXAgHOv+b88me6l8syNiXAR7WerOK01omSoHmMRBD9Yd+UmaxEAO1e4kagjuBRB900z+q1KEMUgbF8dj19QKc1O9lkioCzjhHOkAxQMSkFQT8ZrGYweZrIyzxhajy+mlqAlFqbsDla42izwbTeQCYL1p9f7qzEIBqkTZDWMDXBem2l3RAltDzrlxHZtNPKgv8ESXXQuWtAMwOSaPiKrTzTiKwnFfhXXVI5Lel068xmpg5CYZlHkcxyQnYRwbpNuHH9Go6P1oZyv3eB3v0Z8DGETFumKYnMOcbX6vJGWUiHNEs62RiG82Mb8FJzJuEG8DPajAi4aAHSeTYZ5zmlvi68L66XdBgYZzUZ7wztaG3yspgDQ2espwkGWvDsIq1BsILCgIfdT3Y2k2a3SaaTbN4nz241oKNhhmW/CxyIhjZygBB50+SqsfsOQBOxzFvV4UinOMv0hUz4s+A6SpEnERQNq6lBWsPcgT4Py9bkDmEF0Bu8tCN1g3V6nnv8TX/8NBkIrPecf4R+LnKcvcbo6k7hzHa2uM5llHxDPhUI0A30SZle2Ei4uuY800Ht9p5hdKgGqIXvMfyoOKBLvMSdupyYDlu1ht67ZzagfKgBhOppbTTAy70p7W14YbvL6OR21ccgBoYTWFlHBWlIuvEkcbK1IgO6ysAiHc8+9xL84YQNB3yCMWlXMQiKgWWjU8HcrZTbPHeIzECbAZ3QR8c8BnZ9h+08u9x0L8vgNOVcqgGsrA8tVPZA2scA5Sh1M+HT6ehXBtKAoGkGXZZrNvIES5pUDhzDQaG+PiC2svIReS8NW/ku1gwEjgkWZUuUJkmCFjk31vf0yv//2XvzZ0uT4jz4yXrfc+7Se88+w3QDwzAzIISx0GJJgGQJRYACWbKE7QhH2P+aw/oFW2vIjlAotC9hkPyNJBAwMGIWBmbtvftu55y3Kr8fcq1z7uCRLZhmuAXT995z3qUqKyszK/OpTP2Hkp3HYi8111OhZZ2lu+fHs7zPFtBY81ew8o8FLfPaZMuKhzQHBGBDT64Za0afpKupo9fd1zJI1v4WeQDYIDo9yrbu8hVwe9haPDMH+ozeSievl0RIqNXUF3RzDuOe45xPif+zLcve39zZJJ/XHrF+LW8gi9kfYbLJypiFnWE2ax5XGkXKAAkflf4WbKt9CRsybMqwR9eptsFr63zPpgd6eslwU8DQZFIaq93XzXQKbncfrX+WiLo56piPjhUo3a0v9f1aerINmcxuSLc69zLEDgN83+N60cZnc9vtFRD9SnKkC2SmuWETXIkutl2wR+Xxx87EKMSuy2htLN2IKHSL8YszRU9V7yaOpavOicp5bozlaokbN29hf38PR4dH0T9itdPlPXnJO5los88EaBk2bNCmkGQnPXf+PGbzOR64/37cc/Eitnd3QQTUusL+3hG+9dK38dprr6eseZqJdRwNl+QAb9a1xwQxQZjT54YCV/B/M+LFvEa26FgpAnaP9RVjkR/McZAr26AuG02P6p9UCJcefRdOndrFOA5YrVb427/7e1y/fkMyPAU3BI2NhmR9SwTm/B74e7Qjzg12QEZFWWdrgtlBCtQ9IK4J+bo2vxT7YCulXFvDt7/1Eg4PD/DEE09gPp+jUMHp06fxwQ9+EN/4xjdw69YtfPvll3Hz1k28973vxtlz5zSzYxpXelOxg266bzQZLJl3Y0rQT2v4pdLvcvm6nsIaIDe3AD11cgXW4eL83xpjGAacOXMGre1gtVphsTjCarXSLNwhJ8MmDIBpHCps+fU+ruClHriaZzqeszkOkX/svOR20rrCyC0M7tCjmdidToPT2LKp2/2mUm3uzDbPAFt0cxQvNfrmoVhpWPlGjtZlPahbIfUPqH42mlk2KV9koVTzGLr3wejWC0C51EpUBz19rQFeUrGxHeRQilBz+lmW3qp+Ddn7xWG0eGsvb0ybhA4yGbSuMzcUga8lpGeZ/cVrt5nd7KvH9iKcaJGevkFHf1fuyyapu34aARE8HbZrmr+1ceXnuj/TabP+nrzPpO7zEPRrr0n2ciw1uz6tF+nA2vjW5KjzdmLAjogIlX3STtpJO2l3cau14vDwEC+++CJef/113L59+7vuCxnHEZcuXfJybpcvX3ZQyzRNuHnzJj7/+c/j7//+77/rGZy+V62Ugh/7sR/zcmjL5RKf+9zn8PLLL9/Vvqd/SpumCV/4whdw5coV/Mqv/IqP9YEHHsCv/dqv4Y//+I/x0ksv4fOf/zxeeOEF/PzP/zze/e53u4/6+7WZrbO9vY1HHnkEtVYcHBzg1q1bXhLupJ20k3bSvtvtLYOUHOSTNiseRDQXkm0iw4cGsixH8hSEA0R2lK1K8E8yNSiYwU/Nyoa8GcZCM0GUEk40KS1VYlPMDMlkk07I6AO6rVn6wx3++rGUAEO3CWb71tOM6wDZThZqvwGA4oiS0UQSZVQPLrdWNdOCPgfkZXLsudn1444AK0eR997QfjDQSALPxbN+MBomd0YB/WbTylBZcAxgaMILlJRqvClMrShYx4hoJZyS2xqMCqZB7jXnipUJq7pR9/JX5GX3UOzkq57d8oxE4VgSh6GU1smZhqy0VCkDwJbK0wKn6qTS4BQp/5jzgDSYLMAFAYpUahhIXfkML69HmoXJgR2QuRwksgwDohUKJ5U5WVGKXiN0GjSDl4GRvHSR8ZAFlAlSrklpxjqWqg6bKM8kY62tgagCpOU17PnqWHFQDQNlIC9lKACdwR0fDMZUBRhRsvOLAlQ1tapZg5o6322xyjW1NQ8UkDkGORyVMp/F6USk1cJYnSdEGMqA2SDkG8cZhtkWxlFKuq3qhLqSTCJjGUE0oAwjhnHwLFVlHLSkE4dDDtVLGIojTpyNTMrpHnhuqMwChLTTi5WlZB0so5Ste3EAtlpRWXhXQJkB7or3KU9o5jID0DU20Jjw11gKTp/axqmdLbRWsbd3iMVyKcAMhjqa1wEFJhMaiItJp6B7cvrZ2vF3a+ajxg1lIF/D9vzmrkj2e8lkAcWaEmeclb+yfGT5BG8AIVnpy0XKm7XWMJFkoBnHwUshNVJgGzeRRBrUZ5IAkk1ZE1SrgAVbdYdeZfascSbyiuqt7KQm6ZzrlEJF6Z2chjBnpQF2ZDyNZX0VBiSioT8hzx0smxcJ8K1adqOUSp8bUFUmFa1FZrKBaHCeE5BowzAMkiUMtr6gILwUQvCuu2IF0NAaPE1tYwQ4i2x5aujbAJ5EIsaM5+3kJZmNYHSJdxnvyzonXQ+ShcyyHrRaZY3qmiAqzpfy3qLjJy3BZ0HTFmPUmWEF/cGzbNmshZzLfl8DrJWiGdHI5kODF6zAaNORHhCSZ9dUSs0Ni6YgF5AHCKgYGFDAoKWIvhG1xFoiyOBccH6vlVGnBhoqhsKAyiiMI0ptwNQ88OmhIjZwMyv/BTDHAlUZ9OGy2mV4ALJYUv3IHCQAhMkFk2XJMoogUJgKXeN4AAxg5EAnpbGmuuvuy4ECD5hreUg7BcweYIHzmwduwR6t8qCOvZc0mJo6yWluEhd5X0xXKkshuC2CLfaN84jbovYu4TGX4ClIG6euY64yLWyZ+d1uxwV978qWgn5rrBE0N/5JYtcCrCGggBivyirOtorNgdKI8xy3NGmJVh5IBMyGtwMOXUBzvd8IDoEHsVTngbPqyENKw4j16UFBt1HzmrJgW/N7DeiRxxlfxlsM1Nf3+jj62+/sdnGfXSoa+RjTE+OfNIa4oun6Je6pIPqAfS2bEtMnxPNtDbntEuvb7AwRckjloUJGb4wgXR+UETsDLpeCtpSeZX3yMnfkK977yPGqnt+dH9JMZj7X77uumaniNgvr2ugPLuQyNOS90X9VdmZzwC3UYP30jLyHzpLeJKI8qHT8mRiJoDJZwSb6s9aKo8URbly/gcOjQ6xWk+sBl31Og7XxpV5kkILJRZDRLeTp9s42dra3cf999+LMmTO4cOEChnEm+0ZIkH7VJnztmWdw6+YtBQeXAEYDYtO7zNB9KmdAEnfrrAPYsFIrr0Nmt3WidLk0KdcbujGA/lkr9EFutuf4HBgtCJcvXcK7L1/GfDaCmXHlylXcuHEDluVS1GM824DIeQzEyS+R6Z5sj2wRQClDpixNXqh8z+LX1pH3OX9HRj+CJS3OLfYp8uarV69ie3sb73vf+1BbQymE8xfO4Yd/+EN45pmv4Y0rV3Bnbw9f/vJX8dBDD+Fd73oX5vO5z3OWgT7+5HthiA3frwpbu6lfRF561vS+aKp0kw3T10wC8Lk6SYvV/VDkGZylPLX5Z2RPtDWfYz6fgVnKFS6XSywWy7DftdmBlbBVkoVC0ZcAsx5jW6ytzZASiZ/Unt68P3jH167SrjMi0712SCRsQsR1JrMJmq23BxC5RFgHunDIvyRI3QfZyd40P7ZfyLrP/C3RdctCn+xc74xw2LruzOQxn6cK+/hqjZax/kIOArDKgbLPY9bs+LKHDf9bAanPxrev+pBclXa9f+t/OaiXou+d1bGmG/oHcf7jmHEa6LenQydujrVxMi+9WdNn8hpPwKRK1v32vv6ZG+s/rYF8W+ps3Mcm5/IY1sZi/L8+vDWJyN0nqnPznmzjauNr+FqmzZectJN20k7aXdWYGcvlEjdv3sQ3vvEN3LhxA8vl8rv6zvPnz+Ps2bN44okn8NBDD+HRRx/FOEZIlVkyOf3u7/4unn/+eRweHn5X+/O9bKUU/ORP/iQ++tGPug310ksvvaMASrk999xz+Mu//Ev8wi/8gvuxL126hP/wH/4D/sf/+B945pln8Nprr+G///f/jh/5kR/BT/7kT+LUqVNv6iv6fmpEhHEccfbsWZw5cwbTNOHg4AC3b9/G7du33zGgu5N20k7a3dfeMkjJmjkdrDQYUdG4CMMT1ED/plyGg3zbzL4PTJvHBjRNiw5mdeqY80dP+6T74QEMAlNzh4WXvtEgG6sD0OuFsrzDNuuABDwHP87Pnt0JLMV3mNGX4YIFBDSrkKF+LIDK4qwFa7AMwKTOo7EM0qfWAvQlxy7dASPBXgHhEA+dy9D2qAIX0PxWmm0ECk0yx7ic4NWMK60BXNa2xXKZlMYioT3MYVrALI5MKsDE8O8DACbZH3LGlsYCjmme5WhUh4LQpKmfwPw6pIGAzr+gfTDHrQRy4/RSaxOGUgT0UoqCdcx5rM4Rpb0Eb2zzLd6n5g46fSMJnxQowKEMcKCGncar+nwtlVOViFp8EAQpdWZOtjEFyMOJTF42bWQJfE9VndXmRCPCABLeLwZSYnUwsGb7sYxV5vjQ7CC6XoggQCwbs6+5ktaQZKFBZcnubU5OdRJVSFBe6F783aUMWrpPgSas2bZIgQYkwKuiJZgYAWwx546VZpKyj0InCQII4GIggmVqK2XAMBJOzWcYxwG1EVZMWE2afQZNABo0F5BSKaBBsrUNRdbDUAbpgwbFiCtIC4BBZQ6xlvRTLxGzgD5qmxTcok42S27hPNxUhuhaUkexndAEMybnY1aAidEb7gxqKWuQ06kUnNrZwtnTWyBUHB0scXiwRJ0mWNYrd/bZ/OncSl/N7cmdU9zIX2uV7F3hsYUBbwBo2Sx7pj23uUwxh5YH/lhKUBl2sLE60F3OCMwRxRzM8PKhrBmpqIi8WE0VbWgYhxmG2Sh8pEdAicTpTnbK0/SPgiimJkBOWd3SmUIQsJllqIMClIo5ubVkJhf1U5KfJjWgn43ZfZc6T7AymRzAwQrpXwQHtTwhSYmoOjU/ucq1qQSU9V/tLlu7NocEcJXidZHxpmK1ivFKJjIpJ1cG6VtVD7uVxWLPJKbz5GUmFTCjznBC6FCQlm8zhzrHegbIg5NR9ktAP8r4Id9gZRxd3brznZvpQ3mug4189bBTI4OdtEdqFyiQRnWVSFPTkazyHwAk+AiQ06JV5QHNqGTOWuMD42smdblz6FJ2oJIPGJ7biSPjmYWnJCZUVJYWMKpmFGouu1cgjBNhNhXwDJgNA+bbMylxiQGLFaM2wrwSpmkFpobCVTjZkHBQvaF9seCL20vJee6B1JRWJQAXEqwXAKeHU/T5BtJTXe6BpDR3+neON1mPihNOmaIYc9j8hLyx9W4ldESGTLDVziaPyIJqpeM900Ne5pQSIN7eYX8oGRwKndjZRmelhAnF14D5JZgNQMXp79SXlE0kTmaT4xU7OvlzzV5JAQUAwJAAOfaAu915oONFH0yhzCf95LjcCRogrUPj7+DjnJnQl3RYI3aZvzteZXqV/Nn9XPgfiLfHjqZQyKtYajF3IO9trLe0qkzeOSjGhsC2d2GVsfJAB28YcUym+l8GuOnCVh2d80ic15OPLfRezI/t6zJ4xOdFhLpRGZnXGSIzy7oc4QiOyVrPoCqbE73etWaWYfp3uoW01JWDLyjGYra1DTQOumDNwchpHTuh9e9Mezir5P1t8Gfm9gRC9P4E5CG/3/YZdqnTVOe7qJUd85lknb3Vxmhzk/ufO2H0SM/yV+kT7TnWjwxQCYARpUeqTGYBj66WC9y4cQOHB0dYriKYwInOzZ9jlDIKsspw+SfMVx2tARdIDnAQZG92+fK78cgjj2A+n2E+jlqiHKgNWCwWuHPnNg4O9nHl6lXcubOn940um2VuLKtOIo0tF8ve3PGsZRw0ucb9PGXxpL+HxYf4wuQ/c5Lqep3Z32ndMkLPkNLm8qXLePx978X29gzEjOVqwssvv5oA+GmyEc+xd2+CIbi72nQUd8zRS3ck3ggbYe25ia7OYb4/jsNXWQYRxTXx6oZXXnkZOzs7eOThh1EBOfAyn+PJp57EwdER9u7ckcxLL7+C6zdv4r3veQ8uXLjg/BZ01R1UnndoSWbbD8FAseT+LV9qSU9R95CsRzKpKH3MCSBiIL98uILUbWYygJNOk3cQFWxvjdje2sa0K6eiF4uF+oV0TaU5zllDCxXPei12dOvkiU1hfmWAvvP4k8/CxnHMzOuy7gBKm3TrOcv0kEveRC/TO9YvUt0r67aFXLQeqDstSRp9kh1UIh9LtgW7XjJ5xuQ8n2bbWDZP13POIJs0MUp1gC9O+UCdrpR6FNIyiFFkr6OZl4eRUAbJCjcQoTbCRFXM71plP4HkX3P9bbwa/RU1lMC/nHQp+rXMSbe5fOl4IMuLtPaTPvWncbq+W2P2HZRXegbtbDj/Imi7Juq01/37u1tzr9bWXp62tUeu3WtjIESm/nhMBnZtcEk2jLtXUGffHjeuYztGsTq5m5+TdtJO2km7O9o0Tdjb28Nzzz2Hq1ev4uDgYMNO/eduwzDgYx/7GD760Y96eS/TJbVWHB0d4dVXX8XVq1fxzDPP4OWXX0at9f/w1O+fVkrBT/3UT+HjH/+4H95oreHLX/7yd532b2d7+umnceHCBfzoj/6ox5N3dnbwmc98BtevX8frr7+O5XKJz3/+83j++efxcz/3c3jsscci9vwOaESE2WyGc+fO4ezZszg6OsK1a9dw69atE7DSSTtpJ+2fvb31TEq6cbGsHURWtq3p7/02xjLTyIY0OR61VBDpptMcbxJArRKkY9lc2el0c3CQeSasBBjZDwpPgTmwyZxzci/rhpoNeAFCZCSywBclB65lxDAXgXoumjoYSE/PszmAwyFsp9nd9cAB6pCNv/xe1Klg2VbcueuOFBuQuWota0oC4lgEhG2sVmoJkiLfHPRV4CKWPQYeaCSAijrgYm7F2TX5+yUWohkx/JW6cW+SVcLAJxprANModM5zr7QVQE9yQhvYzUp6QeahKXFlWvQdZA5CEg8zWCtfjGC2LFbCSzmwUIbiPgSJgTK8/JpSuRh4gpMTDsYjCihpUQ5qsKxZSluwfEaIgIutB24MGjWbCM3QppU+R8oYeaYN/V9RHi3K8uyeSuUn9VKZ29Yc8laqBgqIkcxMLOXS1I6QZwfgr3r2subODiqEQYFa7oxrxn/mEBMwF0lHYI4QBpzXNKmJgIaoeAYsKgSUIuUTBinPBgDzYcRsHPw/yzA2raqCTFjLv2mGm2HAOMwwoqAMBTTIqeiiTu2qMmSwUgxKMQHICViBiVHZHGa6Botmf5kkU5aA3YyDI4BfIOWX7POhDCgarG/mMCYrZabOxBaMaEGikhzsBYSd2QxnT29jHAoWywl7+4ea2cpEDPupZgeNmSMwO71ZxlxY138KiBsoyhyBhQo45WEDGIOCIT1nngu8AA8WXSuNpBRjoaIlBNkz5JCuE4+yEPkaEYd0AWspMiItccUDxnEGogFYrcTJCsk/1Zgg4CIF4qhj3EoKSmASAYpL65hsDpkU5CYZmgRcNgigKIF6JDudQb4sR048uCFl41K6s66FgYs7i4kaGANqZbRVBXHF4E7fomOLklzgWI+Sqr8Fj+pcu34lKX0qVTiblJUjYDaOKMMgYNIGTKsKoGr5hwycYJWtiX90miSTlV5bCkzpSYykoTaRYxaYEL0gzyiaRc++q8ye6MMC0aoJ41qWAHzoK824pfLOgaHZMUvGZwqQg/CHSnalWAE7CCmPWftKFArMHMP59LzeYn0yn7IsR5eSzuvkc2RBtsFFrJsa2d7IDm2WTFet6liLAR5GDDRiLA3zcQu1SGa3QjMMQ8Nqmoy7pS82jyy8YsrLADQONIPoeMv8JOvTIjYpAAENzHGJoCxZ5kCffb/a6aWrrqQFmQGOblOojrGATmTiNPshZ+bkPP3qhCeEDRhrpAP1WMYqK0/qM2KSzjKHsPcNUJ1ljNAFSOzztkEr65i93wCaeW2T6iV2GrZ+HZIlgAp+gr9F5Sos6JXIc9c27n4GJVnpTt2nXYASZivbbHH6HK6f2ObIeMwuMhvKZWhPqMSdcQ0hcYgJg34k3Xh0bh1YwmsXc762H4XJcnlfvJHWaWUCJL3H5HL0P0Yl+5EAL/p/ahcFryV6ZKejrk+oTgyLAMrf3YVBJ+X/nL3D59r/TpQ124aCAqb14xBCL2Xy2uZED5MJBJEarX9t3OvzlCAgnPa1a87XLtDKPQe5rPDeB6fmkXsQ3Nc01P7KfGZg18S/ib+LrRUawK3GauG+f33f0p7WyEHwYGaAmexpCTaTptRuFh1IyOsp2w8MoLaK5XKJ/f09HOzvYXGkAImQ0E44e0YXQ6bog+szBU5ERinTa2KPkm4Wz587h0uPPooHH7xfMlkSsFqtcP36LVy5ehWr1Qq3bt1GrRNqq4Bmf+5A7E4fBcoSPNuq/06m+6WXAf7K9CcBK2dBTdBSwjbU4iWI7R5fsdzLAbjskLkhBS+sSTxcOH8ej73nPdjZmqOQZE28fu0G3njjyroojrXnMqEPz+vs+Ofrt2eOzzwfn/LG3aTz1wOrAOZ4hgOIKWSgc0xaHGEDALU2PPfcc9jf38d73n0ZNN9CGUbM59t44v3vx1e/+hUcHi0ABvb3D/DVrz6DBx98AO++fBnDMEpfkz6P96bPGOFnArx0MXw/KdeHJJP7Yl0nytkSI+7pY+yia4HsxXoNs/KQlR9TBREJ9YKHxnHA2bNnMK12sH9wiKOjozho2M2kfGRgG/P5lSK2o607OWzBAPosYNJXjgnLj2ZEib+kN0SWKN8xYs5DKqQrlYs6g4edZ+26AJ7H/ppSR1x+K5FzJssk4EyxwGBDTlEq8TyzCSnxRdbNx9A3fg8dmk1Lf1DarxgHrjexV5N+N9GoirUrHWkil0j3vMBADC6DlAQHo9AgB9ZsBro07KFPuvlbmw//1f7mWLmZIbJc6W4JyWga0+8M1kk2FBO6HqwLYSDNcfeUNM71OYvn5RW7cV/3TX5HtjS5uyT6nT824CC7Py0JX7cZfXWT0SbtCdIegdZosNl/6x2vkyOGctygT9pJO2kn7XvQzFc1TRPu3LmDN954w8u5fS/KTxERHn74YfzET/wEnnrqKQyDJBw4ODjAyy+/jGeffRYHBwd46aWXcHR09I4CJuV2+fJlfPzjH/esUcyMV199FV/72tfe5p59d9s0TfijP/ojXLlyBT/7sz/rpd+2t7fxqU99Cr/927+N27dvAwBef/11/OZv/iY+8pGP4Gd+5mewvb39dnb9u9KISA6APPII7rnnnhOw0kk7aSftn739E0BKFkCRbZBlXaHS0LhqunT3iPi+WvaYkSvZAA3yLAsY247edkGWDUEDadBnMTxcnreWlDZqAMKxaCXTCJDIoAJEWkmOEXdt6P90G2mAFHuPOz6K9wEIR7oF6SNIZ1kopPOFSLL0NPgJenfjcWxS5XLJrFQlv4rQXrOYKNE9gwSgzmpIsDCfs/TBGY04gBU2RtnEtzQ+7YgG6BozuJEH/Iwug2dWkHcMLPNGIEP4SNYfkj5RKWh6ao0Z6qhNk2idtT7a35RooqdRLQuE9J89UG3uT1JeKDpXxi3ma8qbbQtDGEDJ6FFSEFcfKGW6iLyaH9gCywUDDXLizJnTABzq3CvpzLg6DNhK6FgZtyqBLbaFo1kehsEc44lHtR8WLAkHEvlpP+am4K2crSIcjwbGcZ6gCORIuSU5SZd5g41riUQGYHAnuqRkahjKqGAY4V0B+0gWmbGM6uSEZ3wZhoLZbMQwEsZhhp2tbc06w+BasZwmTA1oNKKMJNliiLzkXlOn6bzMREYUgIpks2rsedMwNPl9mBF4JZlLatXTp0WADG2SUmEYdB4auQOTBoCaALosEEGlaEaiEcRiyIacRPjkkvPIgqfCLgQ28KEGPcpAGIcR586ewdZcsrUdHC6x1Ewv3BiswCpKFZHYHHXZUarvLaTlG62MloGIWALyDlg0HiX42ikEyVqkzrFSBPIxGWLIwAxUJF8DEcwFL6ATlSc6pwQhsZesKLaetQQWCaCNWcCVGEnK/A0Fy9USU5VyaqUIKActgDHcGoZBeNZ0TZH6ZNKvUvT0sEiKqtl6imZJi4x72rUigDJzMTauHgRld7a2kEXQwC2jK0dJkDHRQKiNMU2sxnyDZf1rLrd6JzMpPYvrqBbxLQqnOXQ8pUiwQgJfDcQVhRuGYUShEeM4grDCxFbG0zI+cXjHO8e48rN+Z2UzB/fj6tyWyBpDCgouhWDZ8oR+Nk96r21oSOU3h17gxFsGPmLE5x4EJNHLFryRedfMMgJTUz6NALBnRkvvE7kkjgcDTHJhLfHZvG+tmc5sfoZe1kWUBmIIL+f5J8tEVdSYYWAoBLDoqVKsXE5zXSt8zKi1otUJxA2jAi+HsaCMg/xXB1CrsGx6xhtQ7zahSGlPNhtH16zJDrPDnKPNYW08bs81fhG691mUAKsVG9lSrByKG4M+l8QWlA+gnMhMlV3KS1GKxFjSJKmCq63nBiZz+VPjT2NtJJ0O0+0lGWCqQ23+GfCQh9ouYTvqXKcAkpoi/g4LmJEaHzm7ovOL/1v8uaRARYuguVVHBC/V5G80vb4GTNg4lX/3tAw9sV+EVVn5J2jhzceX9JvPZbbT7UeeN6PFGk148yP7PIM1fGU4b2dwe4yqs6GRpoCznM7jynQQHuj2JolfXOYDznNp+Me0AKtISZcsE+BO3yRsdRlYP8MWZ5+gzZFqR12PcNcpM4D0eWvPyHQw8Idzh3dN90Cw+bb5191ZZiKitafn+Yhe28xZQD8ttfg7j9T3BnzMNR0ZED2IB5N9qfLC3uey0Hup8wVKtEoAIH158eB9Wg+IPgKshxqC4+wX0zEdME0MDbhEsWya2g/R4kGr/F6G6VPGVCc0ZiyOFliuJOvn3t4+amtYLhfay+D2cBTYeAmEvPbZgVusNDRAvu3xTFQYcGK+NcdsnOHCxXO477778cD9D2A2yolftIY7+3v40j98GQf7hz5hogYKxlLQlGajlSxXXN+gPa8AiPXQB8SurgpYdgetzlPMDPuQYj6EhpaJ1niEm9gfxFZOzHgHAMUaEv5ZW1fKWManBGA2n+P9738Cuzs7GEex315+5TV8/evPotYp+Mh4NS++NSZ3eUAUIC29ttgc5j52MpKTPs6aaw3ckJZqyAPzGaXnpblzgjhdAYOS1Frx6quvYLFY4MknnsT29oBSCu655x78y3/5L/GNbzyHN65ccTvv5ZdfxuHhIS5fuoQzZ874/OX12OkclxFw30Yz22jdyUE6Wh+qcrbJLQO7MXd4kDhYl7QNxd/ip1H7xe2D4L4gbPR5Npvh7NkZdnd2sVwucXh4gKlOTkoDoHvGXPNpVXYgFlFJpRIBh62uzyWSfaI8FgB1I43ZUjrna/r1OI3pv+k/DkymfM+6lLZ+mb2pc5XWVeh+29OYTRKg9o6zk262B9kBNGdn43vbg1pXPCNyyOxsjwttez1hhCVQ8ica3awnGejJJk7FZ6JZfItlXWbInBbxPVLRQzuJZDmLsM1P3hd2kx1XORit7x/SPebVMppnkGu6l6AHXxJUyWWV0SPP9jqcKPPb5ueeMc/ldgLdem8N6N1zYz/o4AlKMmlTTsXb+75knnazQd5O0htyhsqvXVsv/WZl4x3dvWtjjX2/q6mTdtJO2kn7njRmxmKxADPj1q1b2Nvbw2KxwGuvvYZpmrC/v/896cfOzg7GccTly5fxxBNP4P3vfz9ms5nL2mvXruFzn/scrl279j3pz9vddnd38alPfarLoPS1r30Nf/Inf/JdL693N7RpmvD000/j5s2b+JVf+RUv6Xbp0iX85//8n/FHf/RHeOaZZwAAy+USf/3Xf43r16/jE5/4BB5++OHOfn+ntAxWuu+++3Dnzh1cu3btB4IfTtpJO2nf3faWQUpNHQfiCIhTRAy4szvFNM3f1W04czgmNvca2OUIvpaSt2pSyobNlwNoGZj+GYAExL18EAPuHKfmAeHIkEMxMCIHr1TbHdp4AAlIarCTKDmj0saxMXfbVQNxWd9qq66gKnNy1Db1gtp9+rmd8CcGcwW4ovGESClv9FEgke9HbXPZ74DZT/jr73o/qSfQyv24owQQJ45l3inhrAFJ+I+5oRH0RCuAJllNQObonMJpac/RbD+WkYBtPqEuBoqMKOEGIOUJLZMzsZQSUueMdbehCsgBDCvdJZlsNLjM5uwZwAQMZNmfZL5bZl4ApKXr7FSfZaHxU7qeaaUqnwU/1lajNE5hUNMxs/VDS1W1hjpNkTCeyDOW1DqhkJTaYzRMLfOveZwUMhd+T5ijgUuANSozWjVwQwEL4kZdE+qCUUcnDQW1BbzLoEuWP6ZxA6o4mypXz7oTgZTmuYpKGVAGCZAPpWAoI0opGIeCYRwwnw3Y2Z5jZ3uO2XwAo2BaCU0kaxCBxhHUGmakGWG0x0ORUk7Ng8da2oEAHtSZ1BjqPQWDxSnPAKGh8goojNbIs+VQ4jubRybh0VZFtlgGGgsy2Tq3OW1kGWAEBGLCwjJtMW+WqSKS4lqD9mF3dwvjfMCqNhweLnDn4BBTnXRewrlq/ZR1pvQ/xgnHnBjEWMd5xQIA6q4jVjknAIKJc6DISlUKYE/GbinzG1DIIAzKU1XX7wCwlFsrlg4N7C8Vx1vzbFWtSUYqkJx6H4YBw1gwn8+B1Qp10qx7xYBolmUOeoIlnJussspoJV3TzFbQLHO1gogxlFyq0AIpzQPT5lCWzwad8yp6h8N9ycySqc3GSAL8qBWY9OSxgUoFzMjRN6WnO/T1EZIVKqRiAxRAFTrBQFZCVlmxMl8V06qhUIWViihFSiHWpvyY+DjrDxl36CWiQXU2RLab97zZdQqeI83qBynJBS1Tx1qaNIlezZ7FmmUpnNXNeVvEPbEWHmvsWcOKgpoZGtzDkOwEW6fwf9hKfOXAKEn2JcnYpGvAJI3aHbb2i4FFLTuj2j8GfjOdJ3S2zitUp8T8edCGgEJSWtWDnSzPr40wTROmaQDXCaWtUOoCZb4FRsEwEoaxgFZSkqMM5JnpgCb8wSH/WhguiKwhASK3ZWNlTVNUQsagJSUB06mt+96Ei4Mjis2DgRaVHCoeSrIZxa4siCCn0I9dhhKYI4AdZeBUBuoz2MakPTWET+hNBbIVs1NDBkdL9k4XNA+QntMOYZ8CrKZHXOPAN+1nRBEoXSPzUXweQqYrt4RE76ekm6IIbrlBeFc2ziTsmuiRDLgyust9Qb8cx0o/0pdm2aQXHfPO/l3HdRYJ3K6/sK2nFBwiAB647/tiI4iAnfaM0ktSoMi76jfKJyGHVXtnne8iWwNt69ci5LPwl63dTEjTc9ytFyefMlw+CpGn0gNd/YfdczYyG1Dcafe5deT3Kth0LatdlyUxBQf7MaV/3cZJa8x5ir2rpk8K2cI2uaavsvmHBS1VR8Rkxbz4t7anTO8xnilqP3PMX9CXHdwbT8pzYfMpP5vqMJHX7EAPbgEuhT7TyjkbeXLfoH31vZguAisJy8pDi8US+/sHODw6wOHBgby/RX/IgPH6WAdYuUyPOcjyK1MyAtgFKLoHI5GtQyGcPXcWp0+dwr333YuL589jZ2cb862Z7A+aZoJskj3ylVdfw+HREcqoGTR1zL43TYzprgJCCFvvK/yAidis1e0I24/nDBYmkWS4oVttf5k5DYl+bcOHkn9LPAzXRh2PPPDAAzh37gyKAuRv3LyJf/jKl7FYLOGHVGxAzgfWY6x9ppTh/jubpbW7urkzxe++kgx64DU4QdaT9kyGluyGlEKPYbuN7caeC0+VaI1x49o1vPztb+M9732v3kI4dfo0nnzqSTAYV65c8X5eu3YNd27fwVNPPYVz5852IzI+3Wg2hy4jFPyf0CVmb9j7OdHa9s8OHmVb65my5IdRbO0wDDif5X0SkkafRJaceUUyFu9gZ3sLh0dHODg4kMMfSDaRy0dZDJbtUvptBhZr9lwguZg2aBWfS7ea7r195Se9kW0mo4HLJ+N5NlnYTZCDgjamKZgmyv7CzETaZKPO4IhPQwcmsH+6PGzItTXBSbb5WjBxmORFGMbOAWoehW1nPzoTR+fIhx/2P7G5ROxgVAO1CTSQHODRA15UAGrkBz5NToqvMgOscn/zSI1O7Jnx4b3our72F29OWbKZzCSxg08x9iS11+1Dtx1VTPhem9a+X+fTxGuIA7ItjWCTP20M38n23vzOD+cgvbD702TZ8fdv3OaAKz7m+h7MFT7A/jl38fbhpJ20k/YOa601z5B0/fp1XLt2DbVWOaD3PcrOQkR45JFHcPHiRbzvfe/Dww8/jFOnTmE+n3dlu1prqLXib/7mb35gAEoA8EM/9EO499573S58/fXX8Xu/93tYLBZvc8++t+25557DF77wBfzrf/2v3Vd/8eJFfOYznwEAByoBwD/+4z/i9ddfx6/+6q/iXe961zuq/FtuRIStrS3M53OcP38eN2/ePAErnbSTdtL+n9o/AaRkJ+LhWVk8BECaRQkp8KYtb7Sz81kcMqSb5gQs0ns8aJQc/Nbi1H0ET4tmNJG/0+l+Pf1EBeq8tQ13Pq2UMiEhNoykWWjcPAq/IqzsWvpKM5OYw0Le01r18bcWTh9xEmlidm7eZ6OfgRdAzUvjmVOqtSmCE/ImpVWzyixOIxtPdnKGL8T6QOA1IzDHJ3LguksDz+GYJ9hJagCswUkrh2PXkmSEAhE0q35y2OnYxbMqgb1mp4ohmZfMcaRZfuBBPVX6GhAVx3p1GrgzWCdYgg+DB//NwyAOM3UsqnPNStMwa1jdSrKZc4mhp85IsTA6nsbAYJ4LcWAXFHU4azBb+dXm2oyX1hqKlkETsETTU5KW7alEyQCjfGMvfyBOQi3t1RqapR1N67aQzakBJITXJeOT8EODAEVYS/GRllxi4w+jPLEHV40XC0mGpWLZkkbCOA4YipRy296a4/SpHZza3cJ8NqDVCatlxeGiioO0FJRBJqgwYRhnKGXUd8u8WlBhskxtLGGjQoO6ZySIUmz9EGNQcApRAwqjsjr2lccLBLBUrTQaB/jI1gIIXnbM1nJsojRbjAaLNJLhstIgRi7DWGhnJ2UHIpza2sbZnW0UYhwtK27vH2K5mjwAIc5GDZarvCHL+MPCB9nhZgFw45Vi/WCbK4onexaaHMQEOuAK2RhNnsm1zFCAScp+RwEq8bCKBrssQ5DQTjPJFDuhzZoVSACKjWX9DMOIbSJMZYXVCgIcKyJvVryCAf+I4qR30zJuNmPyDhYQnzrbG+S+2oBCDWMhzchkMtpVmDZWWgqw1R20KiPt3SIvDbBRwFxQKxw4BDRdV3AQI8mSct1E5sFmudYy8kg2Ky0r2SwYqdeR0JlVkRlYs7aaGFeBHEVkqmUiyPxu5Qll3przrWWJY2JAAWjWYwPHWODVSwG2SZ3/BCgANIgajt1YSYg1p7NXVP5EOS6kE8pxHlR0kAFKFOiCuM752YM1aou00Ec+GRFJQi4hamUondet1wZkpup9sfsHC6Q3o429wp4rgGgD+EzMmHUgmYZxZAjwGpiXAt7akjlDFUBqnfR5TUFEIrAs71MfWBC5KJm37NR88B1Dbaoi8h9uM3m4VceWAjKsgd8m9CBSEDTCEU8AYBkvNRNaGUSGmSxllaNUYk6hYQLL3BEj0axK8nVywAcQTebVXPLsAHVbsx1d0hM6HsygLB0/t7BRw+ZQ9l6jt0UHIuNR1ithsyGNrLtPjbewjam/luPeYwOpd0kzAIeYX74IIL9EKRlptH4zevqYIRc07ahiaxlpP0FmS6Z7Eg9s/N76PYnbwFkjuH6wkqPxrdmxJo3yPU6PkHhulzbl0+NAVL4+qH+Y9YvXSCQd4Z5+LPalj9dVfM9XAVo9jqd6YEsa1NrLo+V9kD+BKckHUlnDiT/W9ijIazYfm9kMzeX9pT/bSOFznehs69f3XgbkVFtgfT7S3+sAI1hfdI3nDCmusbjfz7lY9RXOKi/zvPXvCDCqfGaHB3w/C3K+t5tLAiiZzeDv85qsSPsUljXEwGJxhGvXr2Pvzp7byqSL2t7hfbD1TrK/oJSlI+tfIUACJdl3JqehYNyipWGJcPHCRfzLf/kvsL21JRlZB9F3y9WE/cNDXLt2A9O0wt7+Hvb29nB4eIRxGBEpmOB6jVJ/gnYhkX2PijhohDRuT3CsdDIezb6KgBcFj66HYNLKswkNueE8edy/ylMK5tnZ3sZ7Ll/C1mwGEGO5nPDccy8IQAkxTzrJvnp8H8nc8XbIPntZXneMjvvJ+CYe4aJhTY7EiHq7j9MHBqaLZbhJR5d72k8Vo2IWMOPV117DvffdhzNnz8geFYTtrW184Kmn8PTBAfb29sQGpoLFcol/+MqX8a6HH8alS5c0I6v1N8192ofnYRmYj7hpVh3nKu2nrndb+7Q5dgL19E/zI68lTV6pqz7tVzICnBIhyfldqa5EGoYBp3ZPYXt7G6vVhMXiCMvVEq3WTrbI/tLkc0+LjJ8pFH1fB8xmPugAtT6b+mRG0DXbjub/6vgpdJapoXW7LusbSkAS5zV9NiGTPTjTe5mfmcZleibze/ZxpRfGk7s1cpxOC7nvXyXdaoc5nCcQc2L0g/Ifww6X+Msly7Jm3xoIYM2SYHKrNDkYVhtD9gopu7azWJZJJrD08J5TaW3sXYalfMnaWEH54zXFnu8h30O7rYZ+/t3G8fFTut8I1l3Qk7t7ufaRCB10KfOV3dELqQ17M8abaOhjwJvQqW/d89aNP1r7bG38nWTqnnP8u07aSTtpJ+2fozFLtqRvfOMbeOWVV74npdverF26dAn/8T/+R8k2nxS2lKrex3PPPYfDw0NcuXIFr7zyCm7cuPG29fV73c6dO4cf+7Efc7qsVit8/vOf/4EDKFn7+7//ezz55JN46KGHPHa3s7ODX/zFX8Qbb7zRgddu376Nz33uc/ixH/sxfOxjH/NMVO/ERkQYxxH33HMPzp8/j8PDQ9y+fRt7e3uYpumkHNxJO2kn7S23twxSKmUtgKL+B9kaC0jDNjjQa7KDLwNGJJtAPo2lTg+5MjnfyTf97vX30joIp2EK+McGy5wjVYAmBIBJy1dJwNh83+IUjgwlBOhml+M/dz6IU0h8h+HYtN16Dqha8Cp/XtMmkphhpX5kZ50Cprb7JwZDTmhy08AhNXdqDoX01GWEdh0goXS3ObCsFJzmxoPo0JT92amkRPZ50HEV/Y+IJCuUba6ZPVWCO/fNsaw79RxnEHxFO2YjzoAG460EG5mzigw0Jq66BgUcgGG159jLV8H7EGMyh48A1moFhqGE87+Q84OwjQLbWHgdVYPhmvGFiEBVM0WQAI2KBgWaOg1JadBq7ejtgWGIM5/rpGM2xwYHj0MLXrTgmVYt+CCgrVYZxFWzjMTJr5LGL34JRmsrna+0BjTxkFBTwFpNS9BpaMF5jpkxQLMYEWKuSlFnWcE4CChpGArm8wHzrRGnTu3i1OktbG1tYzbM0aaGxdESdSUZjYhmkh1kVsCYJGtJKyCMekJZoTrq4CIwRgoXmYXWSQE4YxHa1BbrrJDMuxQiE2ftUApQk1PRMQ29Y4cdwGFADXlGl9WjVsn44n4eBX254EjzqnMzogCFsTUbcHZ3G7NSsJwm7B0c4mi5cqdjuC0tABSe7aZzbafW81pmFkdkOJ+S85u1dJ45OxkKZELwpjrNHGpkwVpbt5RllkgISuWMrE+uR4ic90WmmTwnL3tGNAh/FniAgFhK4RUAaA2rpsHDYUDTjHkmcy34yLWl7E2y7mxNWPY96XoEkwzAWHQvQUQoLOMouoaFB2SeWwmZF3JSnLmDZ7gZ0BqF05+rsZWUrrOU/h7MUB4pcKdwDh4LCDCAnw5GzQFmA0uZjM7ObhY52Kr8LDRoRiMtkQcFiKXMYRKUSY5ewGV18JoCmBTw2TieB5UrYj8YeEhXruqYPHeEyOLHYLCX0DAHselrkQVFgUPG38XKbDIcsAQfj9KxiC5B1onWRGHGXCR7hohRdS1SScEJZsnWpNfl8hvVwKaS8q8rIxf/WYiQfO1IicAqGfpawzAAIwg8zjDpSehhHDC2AeN8LvqgabYxrpohMssz8h/H+aHXg5PMNWjDEgJXpJXPgTxaAhrkK8FeFevCgFoyP6HPwQVMze0yK0dk/GK2i6wD+Lyy8qRkDSHnJX89hU2Ze2LgtnWAglsOSb753DtIYDNQFfdwR791fiJa0yuAly6V1wWgsut7ktlx/3GzF+O+W5uDfWBc7qIKMtnBnwBgcKzNFnZq0II6qrDzQdcD5dmY+809RH+9vc+fQ9FPC4jFlam/SZ7nPh7//Pwm9utF/gXTOxAJDAP95nXH3ZMTX3MGV6Q3qb1PmZYmh/W+9V6vg7SOGcDm52ufuQxXG2IDpGd0tf1INyK7LvSBrSBb/rEu+/vcjurkH/lr1gEhLtetSzZ+gtvzYh9RNsmwRn3PQGP7XXmedMKC1J7dg3wnqNeGbgUgesz1i/WPk4iyTC72Iu7GaNmgvIfNaBzAGmLogQUBe9dpwsHBAe7cvoP9gwMBPafpsrmUpUHOkTYZXtZY3wOYHdsD8Xz8eqDIwPSFJEvg7u42zpw7g/PnzuHy5Udx+vRpDGVAa4xpucI3v/kSrly9ir39A7fvZJ6itG/ml+gPa1lkZ3/vu4zL7P3ENUQKmtW9B2SPmHDR3kKl5HWt++/Eib4OCICXUo3n5AyToQrYZU0B4dz5c3ji8cdx/uxZDATUJiCdV159raOzVxgj470E8qNelnZ2v/LYhgzgTd2T/5JdATlbOPO7/jOzwuSprYJ+La0DyEJGhCALtUAAFSyXS3zxS1/E/fffj/c99j7M51sohbC9tYX3vPsyvvGN53C0WEiGNj349tK3voXWGt71yLsw39ryQ3XWb19DlHVK6idkX12AtfJ3SQf6BJPTL6T/Gm29XLpyGwcfhd1gn5mvhtFld/FXrwllAoZBsh9vbc/BrWGqFXVaYbFYYJoapla9r5z6bB10O0az77hcMz9StsO6AYbMtXtsWpNEzqIsfeqwurgmD8rudf2yrqU36QClW4gA4UGTC94v73ayH2C+ivW1kPRaMkwIMWd+j3+tc0tpBWT9b35U00uZJqo+ff/nNoMd3rFsgKwHzgq4wA8IMQhDK2AMal9bIWhWEyEJ/u/Y1m2FNE7TNzqxWbtncHFHP3uiyzwKTC0ZN3TCcW0eyEsLZtsyWRP/h/Gkq9dsRSuVau/xz9McyN/Jplm3N5Oe6ChLx/ye+G/j0hCAna533nqTcd3FW4eTdtJO2vdxk6ymDYvFAlevXsW3v/1tXLt27W0BJ5VScO7cOdx3332499578SM/8iMdQGmaJvyv//W/8PWvfx1XrlzBNE3H+Abe+e3SpUv45Cc/iYsXL/pnzz77LL785S+/jb16e9ve3h7+63/9r3jyySfxC7/wCzh16hQAKYn30z/90/jTP/1T3L59268/PDzEX/7lX2K5XOInfuIncPbs2Td79DuiGVjpzJkzOH36NJgZR0dHWC6XuHXrFpbLpZd0PGkn7aSdtOPaWwYpAbpBzptjQAOWWcisbdjc6V9lk0SU4zzdFsw2v6yb68ZNTsUTQNVdBLAyP8edkPJTbclBwmgg1sA5CYhl/d6Wdm0CeGnhTPO+WUYR6POL9E8d2Y0Ydnqocx6xZENibh6Al721OoHN6UWl98UnmjJDYoKl/7a15sc3ieJZ4kRgVJ8HAOqYlUwc6jVTBwU0g4kFSN11SvF+JIeCOQYsvXdDBNijRBzUIRw0L1YiTZ2hZSgaB+C051ee0sxXKMUBIeZUkH4UUJGSY7HXJ2TgF5Fk+TDHhYMTCEJv6OkrBXB4WTYawJBsHxLEJ0/jPxCBi5xAG4w+kEA9EdyZXkiAbwUU/SdISZ+mIDW2cn2MAHOZkxaedr3ojBQtwVU5lw8jVAUq6JTC/Y/G36y5RJT/ZZ1Y1iR2v27NpRrAGGhQR52uTnWOhmuP3OlfCAIwGgYUKtiaDdia72B3ewtnTm/h7PnTmM1mOJpWODpc4vBwH+AB4IJhNsMAyXSEUuQ0NFVQYzAX1KYgIlSUksvlTRgwKPiPNEuOEEEAJVCQ4oCJGypDZEcbwE2yuzSuQCMN+gAVkh2neQYkmScDKFlZJ5cfpYAospSUFMhgMu4wECD8uhyoZRIg19kzu5jPB3BrODg4xOHhUTh1NZNJQREAnDt/dfnYel5zWtlPw2iYg9dkHROhQsqVkc5lS07+CHrGv+aQ9aAZKYgHRcpvQbIGgaSkGRx4Yf0pXZAhnHfqLqUYlzXP+FQKShkxHwg0LLGaGniqmPEMzIzVaiVZ9TK4xsqAwmRMrDEDThWCZL6jARMz6jRhEKiRrHm7R+WcgXcs+OXxQnXGFwYyQFPUismuZm5ULempfdHOscqucOqzz7UBUAUIY3rO9F+UnjGwot1OpShwxeSi6BwomMgd3gRUMnkm65kUDMWaBcp53+SfpcZLuk8ASnJdq811NwjO+wL0FPneF9VS3aF0qcrrXBTczEApQ9L3NjfkvG5/Cw9J1jhrXmKUipY3bfnNDti1YInbMY0DqOamjwhP5hal5Li4XZRB1eAGQnG+lP5G5qBmfFEE9DkfLJgqp/snECYUUa7DDDwVcCmYz+aS6ag11DlDShBOEBCalDKMLFEWhLa1DJF/rtvVBrPSarbuVF+liVd7w2wxG6X8R0lG+cQ2CI7J5oEtoGAaLnR/8IlNjdoEPlOsRk+sCc86490J28jWitmwwQ8RaNJJcpCZ9RGsQT4F9ULtiXUZK0EcCjvSnhdPi/4ouRiUAOIUvGKNBAjpgSFYIKy/0IPo3y+bfhs/959RkofR8nqRv/0WDj42nUFO27C7Ml3YnweVt2tdWw+yU/C2h34TvU0zCm+4pvNBeoDIXuRjZ5ddzoJsQAGzPfJoVeeyr5Y3aTa46IV2zR/WBa383fAJCQsAa+PxJeR9lRvivrgHruP6GfUV7DTraWf3xt8SbC/ed+8EYm67/RGnfhuNj10jppMVPK2ZCHNHbM8RqzP2Oz5mL7VqhgBHZlgE52RRKe8s/rLiPTY5K99ZOSQ7PJAJbcDyGHNiGLcL9OvWc43pYbN0JQudrI3VtAK3hr07e1gsF9g/2Jcso3UKu8pErelJo6bpEeuP9ikDsL35nK3BUkhsllIsy8su7r14Lx544H7ce+8FnD5zCkMZMLWGaZqwmiquXr2Oq1eu4cqVK74XHsZR5a2tmyKlXVvYbc0yIDM74NhkfLBC8HfRww8ig92YRujJmGj71crjZq6SHxyyXHmqA3Gm/byXWFb50GXlcqYl7O6ewg9/+Idx5tQOhkHu2d/fxwsvvJhKtCqP5sVhvyOtKeupC0zlO6DLGmI6z/urjCcAgqCk8Ugn1ZIepWAH6YqDc9NzYQrChZn31XVv6pj5lBhSDvr1117DtJrw1FMfQNmaA6Xg4UcewYWLF/Hss8/i9devgLhhgOzFvvXtb+PmrVv4wFNPYT7fhst6HWNux5gf8l40OWiW7F+73vdw7FICBnozQpCiMDqp3rHTGqAhTVcHflmjvdM127r2TSmYlwLMZtjZ2UVrjNVqwnK1xHK5xDStFASYJs2YOdtG7vOSeZQ9uehQP8xnNFvrL68/10bvtOrlYdhVZhvk/RE523S86usgbH5CXhvBU2R6L+m/4GoneMfLx5tkuh7cFxDjJ8ojBRSxH3ZMMExMdxYi2h+Tv7ZfkTMcIUMEfAqQHSpi2Q95yWhm8AAMLPtuoIBbTXK9b9z9Erxmc9iZAdzdEaRLdOT+gT2N801p1CpEZc58snV+dPz9wxP/deulf/bm+9OnvWiMbZI/m9O405jtccne6GwTNh+Svo+7S/0dLviw9mU3hg3Nmy7PK3D9GSftpJ20k/ZPbybLpIRsxWuvvYbbt2/j6tWrqLW+LVl4ZrMZzp07h3e/+914/PHH8cgjj2B3dxdA2EfMjK9//ev46le/iq985Ss/0Nlf7rvvPvz7f//vnUaAAHQ+//nPf//4mr5Lbblc4ktf+hIODg7wy7/8yzh16hSICB/+8Ifxnve8B3/wB3/QlX5rreHzn/88XnrpJfzar/0azp07t+Freic229Pu7u5id3cX586dQ2sNR0dH2N/fx97eHo6OjlCt6stJO2kn7aThnwBSsvTO0FIerXGUNyPeELQKQYFnPnEnm/npFChkj4Xu1Sgcle7A95vYHYdAOAnkWt2WeyAunI+2USwaSLTgq20WW6sIlz8BVo7LA2AGtGJ9PmtcUcr0FM3yZJlzrHwbJ4ePn6oqMeA4SUO+hzanppfAa037HY4eNwvyflLfI8OyQBm5s8TLE5i/T2fFHTAePOfekeoTw7DAjDy3SXDdD8aK0ymnu7cSQ8EbBgUr4YiqGiDnEgEmLccDIs1UInNWa9XSRBbe1ywfNnPutJExNPcvSaYc46xClE4RSwYfkJZHGKJvEXw1H1HT+Wkg1jJPep/4h6UMzVDGAGdZ0NoozuZeliwXkvlFQXXM0Hw48h3DP2+aqaxqObtVnWxihA4cY4250/VFhFqb+42YlTvJAGVypxgIJfGSOnZb0xh2vK9oiadC5GMdhoJxRpiNM+zubOPU7g4unDuH3e1tjGPBalrizp19HK0IlQlUZigDYRwGjMOIgQg0DM5ihYBpOaGBME0NhQqaAotqrTr8COLL+tBZHiTzFHOFZyefZH3W1tCqyJ+pSlkxc7ZzU542xyuzAjugmWGyi8qAKvp+5ZWqpZusVIsUfRJAHSeHrq1TK+13ancHs5mULTpcrrB/uMJUm4Ki4LxtosIcV7aqmvJWjoLZuWqGBU/U6eun5oFGKTDQgAopvWbjDQ4xQU0hQ9I6YXdCspcpNAxGg2ZiyWVzAHiGFkSw1p3bCvzL4CpioFbGMAIohDIbUXgC6Ry2Rn4SZrVaaSk2VserPLVY0NooWAqIFXxGkoWONeDTJpHbQxGA4EimD6BAQfvenKLyzIEoMl3pOEyucK3IodiCHOiOzAcG6Nk8eawazcpViQD3uQYBXA20KABFm3/XDQrAE/Wjzk8NtlkQHNTQyGRxkYxQhTAMAgYzwJMH4xSAY61ZlhH9zje0woZQjSm9Lhp0c4br3cL2mwHDiAUwVIYhxQWi5KZnl8pOZeUFK43g82Fu2lalPGXRdabK1st26BwYOE+yNkX5T4AVGGd618DHgJfW8+iD6Ms1jz0cit1EfzVqaFxQWYCpy9pQpor5nMBDAQ8jaCigwiilolAFtwlWGtQ1bhHQVJ4vQOnoR5DTuI0nmeHJq2yNd1JB+d550+a4efY0saNUTwljqM1k7wMaV8SsZCYRehp9ldvdphPG1QBYUnAW+LF+uyBa4y0LSIkplOmwwXwy9wZuSyBLdgBk6wNFbLyo66CkR7sdJzQ0wJSonASF4OA5cPQ3d5FSR7+ffEZOFyDWistBwInkUd9jwCVEieb2zKZVPCOzBSXO8UbxDH/e+m9prXRfEqvtwZ0+BOC8Kuxo643juR2fIvpP3I2T032uge1aXR6dXhYmjjtSly2rZowr/+jpkqngy8HABokmrGuGlI75Kd+RD2n9j1jLnD+n3Jeg02agPfU90twir6tMSytzG8F4cmIFoHvteIrPqfQrB7tpbdA2HyH7g4ZZANj6t30IMwKCRDbfTcsaG8giyVu38QA7BOLBVZ9sYZQeBhB/m/O96d5lcbTA3v4+9g/2sVgsBbTdYlwmI3MZ2G4ejK/Mbsk6IdmMsDEq6QPsRQFkGAgXzp/Do5cexdkzZ3H+/Fnsbu9iNhslA1+rWCyXWCwrptrwxpUr+OY3X1S7gEDQE9H+bMt4SpoRV4HX2Tax4LbfER9D/Qe+uk02u3yOAyfR0vc2HQqIyvYcmdxjxOETfYLZb0K7FiyU2SlxxDAMeP8T78fu7rYc9gBjNVW88OJLuHXrdjw4iTaOrqTVaNexz51xK9avSc1zK3HuVwA5gnOSzZu61AmItL6yNSc+jbVxIK3pWHrID4t9B3Dt+nW88sorePe7LzufbO/s4MmnnsJUG65evaovLigFuHPnDr78la/iPe95D86fO+eHJuSavjMZZBK2fawJoubZqF2ewvxktjRi3RWTO07wGAdr7W3amI0ehGp0y5RnWKZc6DMS4e2u5EcqhTCfzzCbj9jd3UGtE5bLJZaLJZarFXJGb8ozlsZodDD7zEplmC0eFS0ZvD6kxCnOs+nJ5lNzL2LgP0NvJHG0/g5K/4qszfIfPUPpR811i81JjJHZsau+jI5bM3FgJx/OSbzD/bOzzee9XvPBho4Le5GTPmDIWp2Mf4iEYEoz8aGqL5RtZ6IjpXj+uoiXecmQRLspxmOuJOlfmqQkkzoiJ3kbc5DsEZPxTjebuqCXq8MsXNfnwX52ay3eF/o2c3PS9S7tulv6h/uvxidZXh7TH+7Zzh+dRY5fuM4DAHeCMi712SEEn5+0k3bSTtr/Q2OWWMLt27fx+uuv4+rVq7h169bbXurp0UcfxY//+I/jwoULuP/++93vnvt9dHSE1WqFL3/5y/izP/szLJfLt62/d0MbxxGf+tSnsLOz45+11vCFL3wBL7/88tvYs7urfeMb38DTTz+Nj33sYw7IOXfuHD7zmc+g1opnn322u/7ll1/Gb/7mb+Lnf/7ncfny5R8IoFJudvj51KlT2N3dxX333YfFYoH9/X3cvn0bBwcHP9DAwJN20k6atLcMUtJcG7BANGn5HAuw2iaXfPusZXtsA89aSsqdR7Yp57RhNUeMbJ9lA0Xu7gA1Pe1D+nlDkxQLmqGouAMQMNev3C2miGU5kmCiBGstXT17wCGCXOq8ZXMmIZwV7nATN487SDR46ikgIPcaEAasThjm7ilGS8vWIM5CGUtDgC8ihbTQmP2UoQZ83SEWTiLTf42blLVCS3TSjCfWGwrHTfGtMTlNibT4E5MGRgmW8b+x+DgoOYoMrBGOGwOAFT3VFV4JVjqzBpptBy2ggEix3hT4BvYwO8AkDhUq8PIXlmPd6GwZQ7TUDpHyQxWWakOJ0lbmPNduCOBKyyc04e1hGMBcUFlBCjAQU0EpAwbNujDVCUyMWqXkl2TysTEQgN5QBiQY30irHLYGrhq0ZgVZwOgHNDQtF6Pvt/JL1NQ3VPTkb2QCg5arg4/PsrPobOj3jcQpPpYBMEBSUfjFIKWsxlIwjOK43Nme4cyZ0zh9+gzm2zO0qeLO4T5Wq0lPTBKozDEOI8bZgHEsmM1mKE3ADxgkSxCxrNFVAabVJFTV0lNF6n9BOKtIZioFidiYDPzDYKyqgCm4teABMFa6aRKySQBDKgHKXIdDUMGY7AsJ6tcT0FQKxkgQI8lEXUdNeTn74JiBcSgYqOD0zhZObc8xFsa0mrC3f4jFpA5UO/Wta1MC/XZCOQWwdTKJk1y1deKlmcK9GcAsKXdIxo9GS+VHc5iTyTpb32RSx3inwLKJMQtQwtYwqd5QaQJwE0CIBvsinidr2PmeAdCIglF5GyhM8p+sFAxlAEZCnVYgkvKNpQjwYaqTBNqYQU3BiQUuAxi6bGHAR1n45o40B26bWAI+g2bwqcUBfpYIIGdr64MMQuvGDbVOoruUEewUcXZtFoZnj6vu2U4hHs6g2eolP4U/JKORqQW7y9aFYEMECEkKquDk3HQQCsdcGzijtYKijutSCsow6lwK0M9AUM4tLFnYTGfZalKmg5W1KprNyERhURtA/qcBWrtWdY+MqkqftD6mjKqE6lAQl2e8YrEEyEFovbOdyqgyGNovklPDTd+vgSwG0CqHnmZWZ4dlCVQwI5FmiLL1GGBkuUfnnUjokWwLIvjaEJ1XUcGYGrCqDKrKqxgxTSssV4RpCSxXQKvwRIlF12VlA5WLnVVQwK2kuWmGT4VlhsilLgR4VdCB2+zziCL62KC2TJgOjDIYT4t+KVrG0AIpKSQM0KB9tc/kXUQFxQFNYht5U9vJ5tTsTBlOPMetGrM/dQwtvSvQ1k4OD8zbGXsHoaueEZkc/GRzHg/SNe4618ASmiGPFDRABrQIHmUDknJYs0ITE6pqfCn/prfepU37zeQlJvuvbFzkv/pPk6vcXxuZRPrbbA31AcwAYrNfE/dHo3gXxWcivw1wHEE817epqxEY1n7kMXYXHjM+URLdhEbwN/d27W8OfeTbmrWBRH/1NRzy0K7rwBV2k5MpGI3XqJ2zFW0EBUXoxdVmr/u7Qw51vjtK7znu2drvPJe2p8jckAO98lvb7J8NbG0hOe2tj7k8TUTXY5gOvs19M3qGzSUkKW4LlNQf1uCxVs9F0/TCTQErREGPdJNSp58/XwuW5ZOB1WqFg4N93LxxA8vFUkq4ma5SWvv61OyNlv2JdS6ZTTfD7Zq8XtCtgShB7T4D3ZRIFlrCOJvh3e++jMuXL+H06VOYz+YYRslweGdfTl3evnUbd/b2cPPmbTQGap1AhTDOBtF/ZXCwOQA/iNOaZBaEr43wY9gREmVMtVuFyCQd90yOsgEIulfdswQwQ+S4Z3zh4JG8fAzMAO9D5iG7yHSVfU5Yu9BtiXsuXsR9996D+TiAAKymCV995uv45rdfTuvZRsp9X9JSsb5RnjioTj1OybjRSW5D+1pafwh47fZEY+daSpnR8jtVCAXzO3Obz8J1fNIHNmdcBi1FTXjl1Vdw33334cyZUzZizMYZ3vve92JfT/eS2tMA487eHfzDl/8Bjzz0EB555GHsbG3HfPpPFb6pWa9cJrbmWy0BbKsvxy82oW1+NaVZ1lcM3W9y4mdOdInH2X3h44q+9WUGZf+1rouMiD6dpivGEeMwYGdnB7VWLJcLHB0ttCwKTAl1MrWXnzJHFtgpiuTOfBrS2rhmTdbZJ2ZzeTnJOFASS4Vi/LbnVTkAakCXPTSWbNZuXupRZZ/5w4zJLDuTzxrbHOja0Wx1Vv7P7OWmF2bAkj9gfeRpLdi73BS0vica2hK0LH8MAVSKq1J+opHuWYDaxK9XK2CxolhTtlfObJbWZMzIWp8RosDlV9bp/ed9yxBFijERdG9i8ismax3QR3Fbui4B2U3nUdyTxxID5vVPwwZI17HpCHsKB28gf6WCN13pawwc89lTA0mhx/duM8IOfyrwr7+zt1XW6BR9Yh/HZg9O2kk7aSdNmumag4MDXL16Fc899xzu3LlzV2RGmc1m+Mmf/En8+I//uINt7EDH7du3sb+/j5dffhmvvfYannvuOaxWK+zv77/Nvb472mOPPYZLly65DlqtVvijP/ojPP30029zz+6+9rd/+7d48skncd999zm9dnZ28IlPfAKvvvoq7ty5013/8ssv43Of+xx+9Ed/FD/yIz/yA5NVab3ZmLe3t7G9vY0LFy5gtVrhzp07uH37Ng4PD08ASyftpP2AtreeScl/a75DYiY7m65bx+YBOdZMQvatBUKlXFXzzyhvFsmcLmkD22RDWSwY38KZ5Q5RMFqb9MQpwGgaANIga3JkuYPaN7ixkbfsKh60pOKZerLDTPaFAsMqNHhZnc7zggR0auKIqp5SXulSzKkUzptwoJuzKRFfx0p6iz3fHTjZe0WaMcJOL+lzTdjHI8PxCcs+lU7O9pt4mX9Oc9MU+GURZgG36D3m+ycG0QABidlzqjqrCIwK0lJ8zcA7RBLEZdaAZgTmhLbNx2POlwoLHpnTPPioVXGAV46sOZl3AZ0o8zVBwFDUWLPfKDDHTsZ7Xy3QCP/dHKDyyCL/scxH1bJiIw0AVz3BrGUA9dQrt6rXh6OBLJ2FrhGCOgo14G7gBXcR6TWNm4/PHeisGahSaSgLqAPxPFuHAvYhd6h6WbtSMJ8RtmYz7OyexqlTO9je2cI4zLBcTLi9Jylex2HAUAYMZcRsHEDjDFtbW5hpBqVSBjQmDBgxtepBlwLCrAiPMQN1mgDN3jKQgMFak1MbEoSPcnkDjygNWLUq6xpSrq9w0dIOsiZaa6n8gbBLVdRdg2aXUrnRWvNyexJsb+4Ulh816GdypOnJaxVzXm6QAaKCgYFT2zOcPbWNYRwwTRV7B3I6nKfmcpN1PVu5MMka1rT8VQZAxEliD/5r4MDWcM6UAgBFT0s6L6swKZ5dAJoNypZm8vZ5sNGcX0i8L07fYm454gBeECAguqJBfpVt9r09HuJEZa4oGCTbFrMAIxkoGDErjAEVE2tJBWaAB8yGEW0Alq0CXN0H2piBWpWvgx4AyZqwAI7yiIClbF3I3BUyaKHSEmZsh5PW5IgFKk22kYFE/R7omhReKUXBIMY0+pNBPq8Z0FKb+RRl7kuTilp2q3xH2ieTV+Q8EA5ueZAmIfEgaLHyeyAFObKWxTNZL6XJhlFAS5ZdrLYATlpzHZ9o3mBrxbyy0LJZBURjsJWf0Tc6M5qC4QRrrLaFZVFi7ujcmmU2CloYg7uLWJmTGaGvEZ81BwyEzAVUZqic8MyHNkMqt7MdBGhQVeeDqPqwJOsfYyBIRogifNl4QOMBUxuAIwYgWeYWy4pp1bBaTmgrAeVNdUJtVQE2SjNO5c4MgVsYhU22BA+TZUEzvZCCPR2Xp3H6ckifB+ANUVbU79UbNODeNSv5RaQg55h6+9yBQK7hGlJkArYueyf9eiNYxjYVfN53C4pyZzcqfVjGJgA+9rWgVpzzmOnb0K/o7C17tgdXSfSUyW0Hu7qNtwbo0Xs4g/O6GbpbW89J63xljWwu/EsDa9kF8g/5U+JzNSPQfxWhLsuWk3We84zKCsp3rZU2sv7k5/rLEs/kMXPqRyhC9v6bHg+qhN41ZCsjAMvJ6HeeS13yXtm/3XhM6q2tyWCvTE/uumN/+F6gm7mQz9kO6SjhfNxRDWnT4D22ObIOypBLL8dclsDpY/2wec4ADO4HCredzQ6CghsNoYjMJyFTWPWylSh0CqS5IL+QPWhoPEvel3i398sO41AGa4nuNvucdQ6sqHZ1lZQydqpMq5PYQLVOODw4xNQq9vb2sFouUSfN7mh0ybxtvAbR7eTzmni8sZYINvlGStPgVQcHUvHnipwTvTSbzTGbFVw4fwEPP/II3vXIIxhnIwoNmGrDq2+8gRdfeAGLxRLTahW6sxSMw4jZqBlsdQ0VFC8DLXMCzS4o9q6Uk7c+GuiVYdmKBDwl4ysKmKs17X8NzAt2HWnzERINCPCrlYqGf05rc8RINOUEH8n2xNrfSkoUEM6fO48PPPkEtuczPUDU8M1vfgvf+ta30Wq/z2GOx5i2yuJjvYnvIa+Z/KvZ7Wu8jPSDoICt0MsBxKX+xSGonE8kMy360pGdbOGU1Tl1seuG7Z3kZcvFAl/9ylfwvscew8V7LkIO/zDOnz2HD/3Qh/Dcc8/j5o0bsndUoGCdKl761ku4euUK3vOe9+Cee+7BMOT9edZr1hfjj57wDVBz1XKordkqtCE5k11mWR3NZmG/x69e5xugA9Yp1fp3ZL6Dq53jeqdyVfo4jiOGYcDOzi6macJyucJyucBqtfJspHlCukw8ya8UGYVIs53Jfc3mLkaNnlHSb7avsXfqIMynZ7T2cTi/CAgT6ocM6LzJv/5dIbPz56GXSRWA7c1tllxDdgZK4hvOfQsb2l/r+s1oASBlsTI+MdlmWL/I7id7CvGLFNRKsI1kbeIvq7XpXq5JplM7HKhrzPdwnEeVaJlki/zCx4y7b+vjdqrwOs2NnonXkWxr56v07RpwMLcuOyPT2lPtIns0wcDJGYzWjzb5ZNJTesB6viN4MuSw6P91SnUc38lva2t7KVsC7qtZ57ZjmuvwN7vgpJ20k/aD2JgZy+USzIxpmnDlyhUsFgu89tpr2NvbuyuyD21tbWEcR7zrXe/CBz7wAXzoQx8KW5sZzz//PP7iL/4CN2/exJ07d95UH/0gt0uXLuHTn/50l+ny6aefxv/3//1/J6CRY9qtW7fwG7/xG/jkJz+Jxx9/3PntoYcewmc/+1n8yZ/8CV588cXunsVigb/6q7/CV77yFfzsz/4s3v/+92Nra+tt6P3d00op2Nrawnw+xz333IPFYoG9vT3cuXMHh4eHdwXw8aSdtJP2vWlvGaQkSsnKk6gjE3ES0RzF3bbR960UDv/YRfr2n0psz8AKimDNmGIOANJgKSSTkgd/fEOuTzBnoQU9SRx1XIqfVPcYuwcyU7CCc5AqSgdIORoDy7D6o8Q1LBAbTfWOBsJgVAO6DWx20sTJOXdidw7OoJEH8tmCzOqeIehn7HSOk715c927l8xBb2UPApSVHIaI/D62wZUpF+BBZMGKMm36MvVbcPcseUZRp7DOObXcK5nT5ND08ZZEQ2blFwEYFArgiAXSzRkFVr+NVQTSsaJQ9FkdLmQzZcFYZj/NTFTsXJLQGgYaMkcKgQZ5p5SSk3lvDEytYjLHtPbTAgyFiiU/8DIBEcBUHoHyGVE4tdWpbyUBDYw3DIMAacztQQLaagpiKaWAqwSuadCgbArEF+cSku8BccxqecRSZC7GQQAg8/mA06e3sb21hdlsjsaMw/0j1OlIAvNDQRlmmM3mGMeCkSRr0ri9hdk4x3wYJXsSBgGH1IrSRqxqxTStQGgo+r4Kxmq1kL4puI+rZEYqkFJzhj8YxwGtEVZ10rEPMh+S9kicb9XWmtwk2DP2zDbOa8hBBuE5L79ADCocWWxYHFg5I4fIPZFltUlps9Yko9lAwHwccXp3G2MhLKeKg6MJ+4cTqgaD+qAlxdosBG7y+2COXLKAHroWJTDDqVnK4BuNotnRbI3AXanN6ecBc+W39cwkDhCz4GFyRoPISyPYJVQC2COyTcGOUJCfeL89o5DMg6RfEZkziPxqDVSUT8YB09QwLVdYccNAI+aj0KbVpQekbM6br28N/CW9UJRupWgOnypyokH0CaFhHApG0wfSQ1+6lhXP5I1l/ykgcGHlRwuOkcYjc/BGeErZK80fAahOz+azJYA4KiJTTJZZ9hwLDJqjeSAC06Dl90wfsD+xoYicZfLMXJstgnMNMheFCoZB/iss5RnlkiogrByUQjjb3Y4wOWgAXpLMUAa47XSUXa/HutlKCcKIYs81XSJfZN1vek0+k3mJ4AehcdUv01zp+hPTwOwHs4EYAgYyAKii6UAeXPNMOKRjAmv2OGV7zXgooFCAxgFUZmCaYaoD6qJhWC5BRcCDy1VFnVZRzawwxnEAMIIn7X8hcDWn+ZpuJqCwlUMlBYiFE8LLgeicO18n28YBnOmEbgZ5mK4MCUTO46aD/Q3JdojgrawemW+4rRBZKSnZQYA59w3sk6wQ5wHYrQi6WNAs99MAv7BAamIyM7ts/WS6ynON7+J5FjzKn3F0ptM/iVqwEFd8HKOym7oStXex4y2CNTZ68h1BGhUcQNCdNCf7v/8Zc9J96POPtXtjz0Dp1rjOgfY5AKfrNxJ0hszvX+4Ku+fljenIfdP+cPSE9X7qBmu0UdmHvu+S0Sn2D+uBQuM7k699xob1e5Lc3+h7BOnMNlmng49NHxPzbN/x5j1prPmVffAySOCBR1LJvUEnxBo1XeBjg8og6su7dP02gFDqFOWHdt2Pca+z49p6z89yrs/gC9VLoROFLs3KaLp9ZaAtXRM6vsbAtFphuVph784d1Faxt7/vWYCqHQZBAKDcHkMAh5Mw0p+yhyHuuEMPZrCzfj922ztStx6HUnD69GnsnjqF++65F+cvnMPp07vY3trCOEpJWcnAOmFvbx9f/cozWK1WGMfBs3CWoaAMA4ZhwECD6iCdoCbyubam2TSFPqVo5kYDWgPuN4Cut+I8oFkSWQ64GI1EVlkZaNY5SoymvBU/bZWafRF8YBLG5Jj5A5gSAGrtCaZvwrYpOH/uLD70Qx/EmdOnxNdRG/YOjvD8iy+hdsAUA0vnp+r06V4oFMoav6Y5Nz41XZ/9KJZpx7gbMBpl3Z6e4frU1g51794EQcZ7jO/XZUvm5zDyss6Rdx8cHuAbzz2HD+2ews7OrvSDGBcuXsCHT38Yzz77LF5/7TVMdYWBBmCQktNHiyM887VncP78eTz22GM4ffr0OnFiTnV92wGzfI1lsyFYCWFrWebF7NuCteN+SZTplG7yWros5sPWIocdk1g1PS/JXHti0huWYdpoy2DMZjMt+76D2iYcHB5huVximqrvJzoAVfdedrkM6N6yEAaYz4zhGUA3lGrQz1aN8aXfZ/6iYIF0bwAr5ZIAo3ZrO7VNoErSb+v8YH4+fZrZuCoZ493p2fIM2xNv2htkejD5Vg0ALxeExiOIrJb9oGRRl2xJVbLskhx6ab5xk+cVIvAwiN9E5Z7RNve2V4kET89qYGLEmo0OMtwRZp9k3linK8fa7m8K/WfrPQ4z5Gcl2nTfJAXqdE3P804E9d1e2WSLZOMe82V3HZw/4xUhH2N/GlNic3kc7xmfcZfl0aYy5G9onvX7+2dRN1cn7aSdtB+UZvGwo6MjHBwc4JVXXsFyucSVK1dQtULBarV6u7uJUgruu+8+XLx4EY8//jgefvhhnD59Gtvb2xiGwa9jZrzxxhv4nd/5nZNsSd+hPfroo/jVX/1VnD171j/b29vDF77whROA0ndoV69exe///u/jwoULuO+++wCIrn300Ufx7/7dv8Mf/MEf4Ctf+Qqmaeruu3HjBn73d38Xly9fxic/+Uk8+OCDm/bND1iz8VuGpYsXL2K1WuH69evY0yy3J+2knbR3dvsnlHuTxlYixpxQJCE2OQ4WXizzmx570p5iIx4nZPXvUjSYqeV1oBs2Bw/4DhfmUOjSJDMg5yF126dAp1arlIjyFPmxzXQHZXaS+MBLCipZ4NQcF6wnjMSJzPZefZ6XYvLxpWfY704XHU8XOCA4TsoD7OZEKRFwZMBO10Z2D8DKz6wHcCwoD0DK+LizyuYyHB4MeJ88eJ66bBtndzoRa1Q9O6AaQJIhhzSAy1VutsBxDj47cMwcjKkR4GADTtfnUa/5Ozz7lgWJW7OMIQYtiEBYYWFlK/vmzpCq73TABwOlgahhKKMAeBgYSAAXU51AjTC1hqlVn0tWR9lKnzNVBbd5wLgfMbcIghMBKHoS2J2yLEANpDTkRhN1bhFxtxaFvgKYKRagcR4w1iP9XktyUcE4DpjNRmxvb+PUzg7GUQLDi+UKh0cCCBqGgkIDxnGG2WzEOI7Y2hZA0nwcMY4DaL4jYAYqGMoM0HJENGgpiypAwoFIwDoFkop8KEJXSOC4eB/NQSqp+pkZEwEYxI3basVq1SQFfa0SsNB1WJucEtSkIgBHBq5p6s+NGl9GNrIAOFrmG5clCGer+TeJZO5IAQ7DWHDq1DaGUeZxNVXsHRxiVTmdYFTZYqcYdd01dQhKEqRwwso6tLXdrxu7ykCgtt6yg1rW6gCC9aF3nTGzlhdcP+Gnjj/NYkOldCBHC75Y0LlpYEWy0FmGNelfbU2z7ltJN9bTz8BymjAM2m8aFOAkK2EsBeMwgEdgNS19fLJJnaFhkuxArZdjHcAVJuuUaBCAWbPMdKz6qWkGtHHAWAYJfpkjmIEylAhmsegvK8ElfCPysBA5cNNfmb2RmcIKsDUZ77rFHN0eKCr+PcdTXaZaxiZ7Y94MSYBS5ktKohZ/jvN57pTLf/mjakk7AfUWDTAYkI70hK5mBFM9ZIBkH46ONQYumk30jQHrACocQK+kBwgMiwSVYqGcpnpSr+CgiXGpsFyMNwcmAqDX6ycY0Bdyst2SehQDUsYQ3AZgSPansKmS/mJOFScINAgYrzYCTar7uaFiBeYJDQWrSU60oS7BbSWnpkfheYDReCHZkgqB6xRySsdvw3QeUhQGeacMyGXZldhtngB7AdDsV9nvzcqfmjNAZQy77I4MlHAa+7wkfhBeycSMyEDYJ/0z7P2R/YH8dmaOKlNrgYzMF7kfvYO/v87ni3q+Clmr0DRlTTOVEomj/8YH6bnBpRF4MCvIZGPQ4PvAiRQCpfsggz2hOi5o3NPdA3zcfYUIzlJ3fwQON50/fMy/MbW9Xs29zk+IuV/v7TFjWB+795Pt/4ntMo2stWO+P65xx6+5P75/6HrL6ZpYSnFVBFXRfWZd57X1kV6aAoAOsMjPWpcba3JRHhEZPwXQoHsl3+PI3sWCyzjm2dR9sLb2IxqPKOEXn/nkAB4EZN9/2hgz9A42vb7OiU03pPf6+FS3dX3VMtFVVoZnnVMQLoO91NjRYoE7d/Zwe+8OptWEqU6p29b3teCl6yX9KNEj5if4YyMoymK3k9q4Lp8peMP2tCYjz507h8cffx/OnjmL+XyO+WwmWQMhOv3OnT00Zuzv7eHg4BBXr1xFqxUzzdYylCJA3lJAwxjPLppTigEUAzPE/snLP5n+aVH61fjH2AgMDGUAA2iBYBO7T//jFmVazRcRmW4JmV6tZbrGfGyCSjd1gM+h6a08d0SYz+f4wAeewukzpxzoUhvjjStXcXi4cJ1vPoRYLyIPm05xN/fWLzuA1nUmr6vOCIz9hPNPXB8ilRNLrcmvxF6+Std1uv+eIUfyTdjFPQ2Dl1kzI1l51YL9w0O88M1v4qknn/LxFBDm8xmeeuop1DrhtddelccSuV5nbrh+4yZu//0X8eQTT+Dee+9BAFKNzmnsIp5UTyc6+Z6yaOl4GVWGAhYtB2nPYibNTIXQeKbiEpVCZhtZwuKMvWPmQ9oQm7IvaOmZvTYSPRzvA+DV/8Yy4vTp02BmLI6WODw8QLVycJ0M7B8spFPfnS9KkkMY6jsS2gFRZlruK+uKq7Onet1u74nPoyOh87PdlTtsA41Pm2XW5LAtN9dOP0OZpzsCp1Ko0vfkPzT+cXPPdC/nr30raYfMZI2IP6oRQCX5GkgyebbaBMSp8lP2MwXgopmbld7cn2rPa894jrUTeXxZRgSt0/eUx+N3bHwPhPjIQHDncJfNvWxz9tgQsFlG+Z1In8L4sLvtO9pgtP6idQ269l2SmKaTyOyDvi9W2rAXeez3OdevrbX+8ERwX2i5+I5dWJ20k3bSfhBarRX7+/t49dVX8corr+Dw8PCuBQU8+uij+IVf+AXcf//9mM1mAMJeZGbPlPTKK6/gypUr+NKXvnQCUPoO7fTp0/jlX/5lnDlzxj9jZrzwwgsbJctO2ma7efMm/vIv/xK//Mu/3FWA2dnZwWc+8xnUWvHlL395477WGl544QX8+q//On7pl34JTzzxxLG+mx/UZhmWHnzwQbTWcOfOHVy9ehWLxeIEOHfSTto7tL31cm/MgJX2IoaU9mL1uChAyf0CFlS3DbF8yhynEmVD2XyzRCzF4uRKubPWqo+UQKPcIyCQUuS0m20qOW0UCRamNYdQ08186qPu8+16QEo75QwL4mxokcnHHJAEcMmZaCJzDmBBqX4TKCSQ3aQFk8xV0QUw7IQzcpDTds5xMlzG29xJ5VkGXCfK5jWyIKSAThqzAQU2Nvx6v3vW9LOmgCNx4MtcttaS8yM5aZOjqA8eugfGHW9WiqcLAAPqKIE4lYuAJ9zBSVF+QDbnxR2tDKENMUX5Mi+LxUpnAGUwqgrNmzov2cp0ZY8ZACpe/qmYwwzi7WErJUYNjIbKQGVGq+zlgAQgwO6otCC7M76CxpoFhNlAMw1Vc8M3hmYZA0Bx6teCk1X73MxZ2WX6gYMnwAarE28iswCDPNgCcWrNxhm2t2aYzwfMZnNQmWFVK5arBm7ibCzDCCqSHWoYC4ZRMiANo5Z6m88xDKO8gxU4SAC3lQAYWkXjSU+Gkpe8mqYJrTXUupLyRS3KWIiDTQLdcrJa0rEr/gF1VbGaVljVCbUyplrBWmJvmqoAZPREObeGSafalkODnEZuFkpXAhJLFit32ernrckcGf8POXNWExlJDIyloBTC7s42trZmIDAWjXFn/whHi5X2q4rc0nWe5UBR/mBmDOiDL42NDwoMrWfBCSvDYX3mxp7RyByppAAlZsmiBJZylmUgQMuUScp8UsenZvVqDUVPrFgJRqWsZxUyPVAblFc0KF0V2DSQg1ea8mxrrFmfDBhRMLUJ4wAMRR3wSu+VZmMqQ8EwjqjTCm0SuVKGAtCINk2oPIUUYkAyE8kfkoCNXF6aHB8H5VkmHRijNkZbAbWwlDEsBlgxvWRgF5IyAQ0OchSghrqnyQB5cMAtCOCqfXdvpQbdkpw0B7c9k4gkS4L5UTUDovnaHcDAIvtluYUjHtATyyQLoXFzsK10zaBYKktcpZLLRRC0tIiWS1Qnd7HA4ljQGF5irFtfaWLCkarl5myOSPm1SrlArgCVBuaifMcoZGVIGbDSZQjZZ0GhyH5o884ADTB7xXSkrxuC6uDIoMVQ/cSSYYxVPtj3MbbkAVcZ2+xz7aDwj4G7CmojVGbUtsJiCdBQMQwzzW43gFHQqmbYaBNaW2HmmQJN85sVUMNpbbRgyHrmBitXacKvpumwwJzoxQiw5yxtrGU0j2tC98ikxcpAFqrxgI7zMZSO+p5kWzowAAHWNFvAeKezNCyQtwYgsjBgBvWEfsx2WR6DXeOfyv+TDqf8t9woPzRbm9g95DZphB3suoaQl6pPPDhhul3Xfpqj1prWEYXqm2On4q5pLr/0Z4Sak+2c7E+TT0GXHJTLwZu0LuNt6Q/2OYwAV0h8oLtU+ualStgfFYGy4CsHdDAjrzUfL2U+tPv1vv6l+iOXaAw62FuNX9PIYgl6V5Ld29FV6eafZUdPAgU6Ciz2ARH86sHKIVPMLOrt2yR9Ukeiw909x0cS4bZ4N9A0E9G17qXeb+1gyAh2GQ6XDUZN0wyc34Dg29QtJRWn8a63AJms843RLz2Nbc7k+8aa51BtN0D2XkeLI+zv72Pvzh4Ojw51T5S7QK6XRVw6JyedG3MLJ3usx244nP7WYQSpLeesP837Mo4jzp49iwvnz+PSpUexu7uDUgbVP4xpOeH6tWt47fXXcOvW7VgvkMyfgwK/qUj2JLI9OAzcaOWtbe9cXd/Y2FurattqCV/ljywqXVdQ8KPpl1atRDcnm5T9YBUSzXiNTkLvTXAhsR1Usfnh4JXMH4bKyPdCMkw//NCDOHPmjNipBEyt4eVXXsUzX/uagP7VDvJ+INluSQ7GFHN87suM+u9thjk9z2w3Z4xeHub3GBdu6D/73IVcLyX6J2hfEljc6N9la0o2BWngwPfe1MAEXLlyBffffz8uXrgIqB1NBFApeOKJJzDVCW+8fkXeXDRDTBOeW61WeOZrX8cTTzyBe+65CFqXL1mWkezhHLxkfMLwbKNFD3m43ZrnBIQw4002yKgJ1GVQYV5bvyb71nVN/pP6j9nkjo5F/k9rMniz5XkV9xBhZ2cL29tzTNOExXKB5WKJaTVtqD6f2+QvcW5JBxPELgWYde+5LpM5AWXsBU3LjCfaZn0d5fqMt80eaZmSMc5Eh5CpvKYbafO+Y3+ntWtihdgbOlB9CBO/OtsKDPiBADucaKCu2ipQGYUGiB9Jyr+ZGGMIUKlAnqdeBP/fOl/1Bz8JcqClt61jXcdadbp2E2ULP+vcGLLrtw329R1FR/V1Uzju42N+OKfHnUFS5ZXj2roWMV4wLXj8Xcf1b/PL47klP9NM4U7u6TwVbL79zf82f3V+8HF3nLSTdtLeCc1s2Dt37uD111/H66+/jhs3bty1pZW2trbw8MMP413vehc++tGPdhl/AIkdPvfcc/jiF7+Ib37zm5imCdM03bXjuZvahz/8YVy4cMH1eWsNX/va1/D7v//7J2CQt9i+/vWv47nnnsPjjz/efT4MAz796U9jmiZ87WtfO/bew8ND/N7v/R5+6Zd+Ce9///s7oNNJE/tmGAacP38eZ8+exdHRUVcO7jsDxk/aSTtp30/trWdSYnbHhDnX5WQ4x8aY9VOGB/H0bthJJWtsjg7dtFog3eWLOcE8YASYqyqfJiJANt2dM0y3WRQbVfJnplNLfnM4N/y0od7eIKepAqek76/m4NQTR+outMfqqH1bnzfb9qsBDQBoZpIYv/fDwCJp0+07yOwoFGIF7fQ+idsFVMkyJXlsZy3YlQME8n57XzhG8olPNu8CA4yKxhqAQxg4Mv8FduqZqcXpLc9evbZNN37SLpDOlSR5YHemmBfVABEenOUGKYsnwCM7nuzBTQdbSNBfi5t50CdO3xd3LDMDXIU+gzFEk8xcNc03ijqxIUH4ScuShWuDYGAn62/RwAMDqIgTarpC5MmSj1sASgyASYAwhcORxsl5DoJ5Iy3jjud70Tl2viJJAV50zss4YpyNmG9tYT7OMRsKWpuwXKxQ6wKNJdNZGQuGMoJKwTgbMMwEhDCbzzGOMwyzGco4wzDOQcMgpdnKKDNGjGE2gADMhwGNgdXRAo2BOgmwpyrtiAgDEZqWRxqKlnCDluXT6ZgmKYXFrYJrQ11V2aDos1prmk2nhfOfNTSvy3RqVXCXOk+WJQnMfYYX4wkrmQVdV1kOsQXI5T0FwFgIp7a3sTufYwAwNcbe0QoHi6WX/fNsGyrNskPeAk69Ay5chvJeBaewZS0p7ug2YEFJjnRb4+L0jXXtWXU0yOFy1EAjyneEEgAygoDOktTx9wMAsZQCY8JAxnsw8Q4/PcwCIGGusKw8rbGkpOcJGFhL1RXUJkEpABgKYb41B5OUZeDWUJqAFcdhALOAZ2qzzHeyviW+IyUbJwU8mCgdhgGk8nTVCFWzLDRWcMQ0gYZBy9GRll4TYGVzOQXni6FYTiUD3ZF85jqBPZhgrvE+YGHyRjpZtARmg2Z8gmWyMpltjCJlG5HAJfZsk3UAUHTgrNc0BaDkdxu3EbT0pL7OxmRZmIQecrK/8gQQYxxHz4ZgYOVY6z7KTtcYr4Gh5YoIRIOuZ7lH1rSuD0nBpvcYOM/huQHQ9LGofmo1dI6tJWY05WHTIwY0sbKb4dNdd42brRIgl7ye7SeBwEWASwZ2FHEjslbW/lLAukVKDY5lBGhwO6zVCVOj4BUaMAwmt0wHBkNIkJhEP5DSrRQPvnlj07mMmkqE2kle42vj6uPd7iJfusiCB3cCOJZtt7gzbiNY9sMSFHaZZHan2YYJ8HxMAMv0vUX9Mjho/T6Ry9TzRbI77Z71AEnI6gjQMEQ1U8n0IF+jDjS1ZyQesnWgGseviIvzmrm7WwYGSQudzBR8tMlNeR6Q6AH/kBNgRuQSdzOTMyPJt6wyPmtV6wxiHm2azDj1HmUeY7hONh4D+aOimwEg94u5waD3Saq8KQ07EJK/u+/Y8Y4bpQajmwV760ZsivKvvdVhY8j7iXWTfvPVsa4yAMP7zjEneazyS6wVNRqQZmvNrvGb0V+wxnscv9hq832f8yUHmIkSDXSO7XfhFfL9UHcQxU2B1FOzxWw/w+SAJwGNy3tqbVitJiwWCxweHuLO3h6Wy6WW50kjSr+zvYtDDoUKCr40yZU5jm3MnLvOidyUrk4/NSg+loL51hwXLlzAo5cu4dy5c3JoQQ/jtFox1SWuX7+B6zeu4Y3XX1e6F5Qhfg5DwaB6T/4bAqRAnp9S7So9nMMDVlUAEK3ZODj2lM7pDVb+KGdEARCALyvp1iz7qu3X7Jm2gCN8z+kZwXRJ10D0EzsA0vjC3m603BAaoQcAnDt7Gu9772MClCd53/MvfhNff/YfsVpV9DfnuWVjjk3xkv7uZKDObVySAtqUr994WWhlX+6ZSpv6Pp5OMPvimMdGl2zpkckn8rGFDwZRcl7XMRMB1LBaLfH888/j1IdOYT6bI8AxDfP5HB/8wAextfUcXnrpW4BlkCE5bNEArFZLfPWZZ/DAA/fjsccew2ill/UgVi+eNYsxQ218+PqSPaVlpE3yGAwoYD7Ph+39Y/Uab5DLnpAEuSO9/nszbeOfpcxgwjshg3OWmo4/ojsQmLrYPLPZDONsxKndU6i1YnG0xDRNWK6WfsAhN/YnZl0AtxmNzkMZfC1yR/TgFpdlnMDQCWCzocc7+yx6ss6z/fKgWBf6bcejGzI43s5pbv0zMpnbv7mjUmYLtr7YvoHiAJPuzeSwYQVogh2OGHQfGTZS01LU5H2R7PIcNnfydZDa4O5/SrSy0uBKYPXZhm6L7LLsa8H/Ztc6yHPZq2LONyW+j7t8LtZ4veP7tAcAzFe6JoOPbcfJWXrT247bJ63bO9i4Av3k6/z6nrP/AR1Ob2u8SV/fvP1Trj1pJ+2k3c3NdNs0yT5ib28PN27cwGuvvYY7d+5slKK6W9o4jjhz5gwuX76MH//xH8cDDzwAAJ2fZpomvPDCC3j22Wfxd3/3dyegmn9ie+ihh/Cxj32so+kXvvAF/Pmf/zmWy+Xb3Lvvn7ZcLvGnf/qnePDBB7uMVIBkVPqlX/olXLhwAV/4wheO9c0cHh7id37nd/DDP/zD+OQnP4nZbOZzctKilVKwu7uLnZ0d3HvvvVgul7h9+zaOjuTg1t0qy07aSTtpb629ZZCSlI3SwCAsu4A5t9ZO02qWGoN+AHFqzTaTchA0hbQIKJqdRNyGcl3vQCf9JjljiEDUQH5CUTN7wJxQyWEF9t/k2etBUMvqwPoc2/Vz6gOH49LHKE8sGuyS8ZTkVDAnL8Wm0kagIIjYdGtGJA08x0mkCMqYe5VITo9lJUdM4NQnA4MQQU/oQx0tOkaGlLvSIEpXssScX57unQAMRnb1DjSAo/RcSaX85DPpi4wHQBPoArGUBTOPURR2skwO5PNrTg1oJoaaAxrqIBSHHEAKwio0gFhKeTENIC5KM6hjRk+VKU80VFhOJQ27YyABUdQmtOLWxIlDEtwFFNzGFYQBQJXsQFXSplARMIbkAYtnV3N4MHnmg6kaYEnmzHjWnLms02bgLBJfkecAMQdNlHwT2tqas4RnsvAk6wiGAhrkTWORGRjHgmEYMJ9vYRhHMAFTXWJa2rjEMBgGgUGMJNeXMmAcZlrSbY7ZMMc4DijDgHEYsTOfYxxGMBFKE0DUMBOn+tHRUsbBBGoFra6kABiznvpj1KkBPGA2EKgIfaapoZQBjMnLLhaSVOXL1YRVa1hOAhijpmAmFS6s0qBpSSs0y05U3eFKKGBiFE3nzupMruaca1VSo+sad7ACx7xhKChMIN0sDWXA7nyGM9szDENBQ8HhYsLewRHaVCMzGhOoEQx60pqC1NzzWySLlAf2gQGkwCDWeAurXE3AJ0qOMBJZbS5w4bgmDkk2OVM9WOwOQ81qJwj/WKcWCGMoeIjDrVgM5ECiLQqxA+Lgw9JTneltyvEwMCmoYKalFlptoEFAccLcg17HGIeCYWsboILF4hA8SSmuRgU8zHwclklLRAyZuIeDD0z+azTBQA2DZttR+CKmJnJlKMB8lD7aEwoRuIiDmLjq2AaVB5piCeG09CyDMEcudQF1ItU1pEFQCIDP3lehWZoMVAHRrcwsGeSa5UMiDGDJSIYIhhIJoKspmIyQsoIpfVoLLd00gx0ne4BgQAv5W8BmHDwymWNcy0kWYDaargCmWmG6IzuqRa8Lj9qICw3hjFcaitNc9CE0s5CXYiEScIgBERFjk9KYlsFMZZKDQFVPcUMpkh3LwAR2kt/0VD49z6qPAkijdCgAtQAECi1Fn0612QBA1MCa5RE0OCiaqYDHhWbxGoEa/GvmlekDKgWoDMKor6qqp0V7DkMRDWhB3CK6D1DZSbJ2uRUFJok+FHCavEOSjFWnqel9G53bXVr3zIBZHtQwHjLbTmfSTm9bBpLQ2YDlihzIIZQpYMZwBKvxdbKV2PkhyqjYefHcyADOrblOtUGR2lKFNIuj6WfpiK5/N3NcjxNZQFzHl7KRclP6WbDP5tPpSfaXP9PH5wK1bmQVuLtaH4rxvwiI8inJBuL1O8y+lJtYGd7njkwK5OtMovc2f7arE3ekfpH/bbrZ9bASP8M7kkW29q9rmjQSA0vJwpXPy9pbcx/NDkfX136qM/3Sp+RXr32j3KR29Rr3IxR0/9b1fsXIYjWtZ3lCNw7rq/I5BeDB2DxGSv7MrnnQE8jZ7cifr/KCA3AL1Y0GjGKK3sfbUnCSKJ7phzwo+IBtHZq0Ml2C1A+zBUwmZz7QfZf1VvVWIzndvFgcYblcYG/vNlbLCUdHCwfZGxBvvTXbGXDYFTFRHOvJZItOc8xfBJ7zRMfe316U+JsElDGOAy6cP4/7770Pp07t4uy5M5iNc5RBS6dxQ5sE5LO3t4fnn38Bt2/fAiAZO4ciss+yJ0mW1FHtBCkTPQ6D258G/Cwqp+s0wcEwLAc+zB4wBmu6p5MMLyLTZS+gs+CgVc3O2pqArK38ttElFjpMDtk+D5apqVszYSeITcFGQrUzjSdNz8X6k/WjnKi688GHHsTj730PdrdmetCJcHB4gBde/Cam1aR60voatpQDG1MZO3lsyEzyjaP129aG6Xte4x9bxyGjbMkHB3L3zry+Q61mIRH3ZskSTAc4cITiaSUBu9b1hq87XftRGkxKg3zta8/gAx/4IEbNDAvIPmprPsfjjz+Oo6MjXHnjdaErazbZ1tAKodUJr77yMo4ODvDYY+/FmdNnwOGOiVGYoIPIPVqT6cxy5IKbyIyBQkb4Y4y3XJaZTEly1ubR9AxllqVQE05k5S3qZaj33GQtgOSl8xkye6jrpv9CPhfmB2QAZSwYT42yp+OGo8MjHBweaVn27nHdH10GzAax203+q1opgwHEOK3/tefofLgaSP1UAsYddsjBv07ykdl1Qxd4IvM1mgy1p5ktnaaLlZ6uFm2tBx1jf+qsL2vK/nOb2zSK8lNNeqfoM5VvzOcFlsxUUn7beCpAyw78MQIzyTgoZ0yyzJ/kexG5xXRq0jeebSqAppmunAbe05VinHl5J1pGS5N7jLJkJ6TZz4g15Ipj7Vm8+RYg5Kdn5D/uIpNznAFG8mzjjZyVqr8tBK7I3+Apf5suXFJCd9kEvaPUrauOjTPvm8DoSiSetJN20r7fWq3VM4688sor/rtnAb0L23w+x6VLl/CBD3wA99xzDx588EGM47iRXaa1htdffx1/+Id/iG9+85sn4KT/i/bDP/zD+PjHP475fO6f7e3t4X//7/99AlD6v2ivvvoqfvu3fxuf/exnsbu72323s7ODT3ziE7h27RqeffbZY+9fLpd4+umnce3aNXzyk5/EAw88cJJV6U2axa23t7exvb0NAyzeuHED169fx2q1eru7eNJO2kn7v2hvGaTU8m4TgDvytIyLOQE8CCgu2f4ZrcXmq8B3Rlq0BX46S59PulOXPdcmoMh+y441K7diflT2HbE65byEEoezkG0zZyAZcTZ7Liiq4ezRe8Ox02+eIwDSfFNnBhOJ3zL6irwhBHwbaoFcdQ6680jngZgl+MbU3wPrDxwUY472lsnm3idO/ZdnhMPOLk+01ciBB+Lct2fAMTgvmKOLuelnzcdOkIAfkzrotNwMgbRsFUWA18dhG+2eJ4Q05PNn721sIYOgqzlZxHkSTj9z+qKbR6AamsVLw6nDC4lvtB+NWbKoQALulh2ptpypyxzSGsAnaG0yVt5IzlMWHvI1Q+GyNieWOYHATRP+JOdggR72NIe0gsvU7zqQOKMGsvJYA8ZxwFwznADAtJqw1PIGlrWp6OlQJsIwG/WEc8E4jBjLgLGMmJUBQykCVJrPMZ/PMRvnMid6ilqc8xLQHscCroypjmhVSrxVjdlq1nAJmg8FTIRaFXBAhNoqWmuY6kr4vDHaJIy2nKqU2/PyY4yqwQGGBktYRJEBlFqbVH4UVJ6Epl7GiLuyWZR4s+l7hiLAK+K0biDBiEKE7a0Ru7vbKOMAJsJyWbF/cCibgMZa0iMCbVZizUrFCR+rQ6/zg0ZgRG4TfnYQk5/YThnuGGA0VAMG6Rqb2uR8bf03kKkEggJMYrIvyjWqLDFntfq5CjhKZJKUs4P+zd5dAdsAnWhLTvfma4oh4BEoAM2dswQ0Yqy4CThuRwzWJTcHihEUdKN6oXFI7do0yxZFFqC+JJ6s71E/Qw3ZypCSghaqHAqhqGxkzbgXmVo0dFikFFvTjGyWOaEQedlBg5GBBbhqjCXBV/asW9YHG6TpY1Ye9WC/KqIuY1chnwMPrbHIZmp2XThPrdqFMVJvGriH3flIeCiy1USGvSgrVoYAX5WSMn8xw7LZGcDLB4kKA7kUBWDZuKErnZrSOfGpqUCZnixPpTMGLGGwZneKLFMMBtcq4CzTMly9ZJmsd1tmGigwHjM5wgoG7JzZag8ZD0LWDRGhFdaSqpazb9AsjwAwYhwtc5pl+UrObc0SQaQ81tg3u9anTfAOe39gPKH2jnB308BEU14TYS1rWR3ksLGy22HFgxPOOs49xptma3qw13lI7jWAASVgWPo68anyeRgz3bM8nbXNSQt7wq04s3lYvkeJ70hL7ILgYMGWDCOzv2KsrDZOAzm8McMCzKZxqyRAx3Ylhf21Pi4nos7ZZnD27mkbJ7upnxcjY858sj5UvzUFeezZdMwNlK7Pewn/lTYpliUbpV9CFnF/HfewhBCRCchkapHiuzQYH0M/prV+JVm8MdDuefF1ttnzlzaCkFfrz4fr8f6etXenvcOxz+guj1Vk/V0vgxZE4vQs+z7zvvW5rXUhdgAbt8QkInEGgNg3Mae3retWHy7HM/xXo1EGYcgnLdMpDBxd+/CxLhYL7O3vYW9vH4vlArWu5LZm9IhrTe56Jicbe8c0xne9nEeyB2NNssrZuJvIDhrFvDLg+2yj2andXTz1gac0Y5LsDSRbnJRaW65WODw6wo3rN3F4cIBr165hqhMKWVY/eVahgoIiP4n8ewEuSQlp1o6pyeA6q6g90FhKmbfagl7JbpW+W6lTGUVVfZ9LwckeAJpBySfK5bUtm2YZepT2YbewyxyG7Q16+10+1z5SYlYzTbK80lk6c+Y0nnzi/Ti1uy32DQhTbfjWt1/G/v5ByCKTq3q36OL4TH5JY7LPjxO4nR2jM58XCSiOVZl+tYNHaf0ZHTjLXF1U688/Xu5z6rzNQ6xPL39mWYfTfsKoGOI3wDaFK65fv45XXvk23vWuR91uNr/EfGuOxx57DDduXMdquUyPDhgjM3DjxnV88Yt7uHz5sgTWZrNYmcavPkzZi9s4ksqP8s8A9CyADJ0CSNcpLbVlw34LWwQJBJrX+QZdjT5e9ix9w2tyvZuc5nO8rjvWMR2EyB4V/ZNS8KdOncL2zg4ODw9xdHSEados0WLskfvS+eB0aOT/aJ+UT+Ua44IAyLnt4GMw+zLRIZOFYz2aHbpu2qSlrOtrTTuxX9bLhDw9ZoeuPTfdmSgLf6H120O2Jrsr2xlRZA72pG/DAK19Lln9gLRi4h7RM63vF4Be9yQZtGZShH3CSYakIXD+qPe5yfOoo9G6zvW+bkxKPNNWyMYVxwuefl7WmungZFUde3//i01X2Deb9s5x6yp+59ypjp8SGE0/3eg/rfPmMaP7DmM+aSftpN19zWzQvb09vPrqq3jttddw+/bt75uA/cWLF/Erv/IrePjhhztwho1rsVjg9u3beO6553D16lU888wzODw8fBt7/P3bHnzwQXzqU5/C9va2f8bM+OIXv4ibN2++fR37Pm8vvvginn76afzUT/3UBsBoa2sLH//4x/Hiiy++KQiMmfHCCy/g13/91/Gxj30MH/nIR7C1tbXpVzlpXSOSbK33338/Lly4gBs3buDmzZtYLBZvd9dO2kk7af+E9tbLva0BONwBpqfL152fuuXVv22PFBtbC6K7Gyud/A0QUH5u74gwhwOD3Qlq4f1wsMYzK9Q5aCckGbBT9BKI6lNMu0Ox2xSKt8GKujXNDiGn6EmD3awlAnSr6t6JyPTgpyNTMwcwAV6ixO5l9V7YyVcQgVpTIECJTSkzGBNIT+Ezl96ZpIFWc46Y86132MWzAATYAPB+Zye1OGbMUUxedke+0kAxpyAi2eeUnOoyb3ZwjjSSaemhDSVLGqDnpplCtG8ECXq70wNNATsyv6Qn8y1IXizTl/IZm/PDspwUK+ED2KnhALvI/2rreYUMgAFyj1BrAloomnUi0wFU1ClUBXhgjjB3AuZyieE+CIczRX/cl5HO/zUBhxlQTBg35m4sWophPsMwjqBxkFOHlbFcTpjqpKW1wgXGxBg8U5acKsZAoDKgauKHRiTZpIgwG0eMo5Zla5L1hor0vzYbd8NQCmqbsJoOJRMHVZRiY68oNKCgoNEKDKDwiOVyBWbGcrWSEm5G3yZzXwAt0SD8biehjQlzcEGCDxW1TsJPRbzBrUk2CrLT4jpHVqZxALsMKSAH3SgLqiNZXwlgPhJO7cwxDkUzVDXcPjjAwXKp61L6TOSzndxdMrMGLfAsGen5685UGSq5E7Do710otgGNWjKgTWa3CLj7PQWtQUtPwa/zRzXJdEZIgFQi77OAK2VUDQxuU4yrSMYpeRmDq/w0UJUDRAsJgI0KqA2g0nz9DijAQKitYVougdZQhhGgglJmqKWhrVYatFLvpzrzJ2YM6pT19eJkGnx9ufQukg1KGChkPZGUipuWK8k4Vgpmg2Z4UjlbdB3CSr4piC47Gdfdl4XQgTeMH6mQg7Q4yebamtCdyHUPuRNYsiflFhm5KABpRNpvkU8DKPqma5wboyYdbUGX1jIfhgz3TzyIInPJzKhVOT6djDdMlnlRu4AEm/4X0I2XfjCJZUEG5032340UBjwzIC1RAFwimBRZ8wj51Jl0ylZoa00yiK1Pps4D2XRw6CDPtKiclW2sHNgsbP1uIM3KRAThPa6orYLKCG6E1ooGGEjLAMLnxcSBlQSFjrHo/OQTaJGxJYSM2HaJQSmeKxdIib0UFgHQHHRcweDatERPAhb7tcqvRhG3Oy2wZCA0scBCRYaODP6yFZf1KnU/O8s12Vph+5F/4WBuC+gqi5Ei/biETWPZHUnXq+t+YgUxN7fnfB5gNpVSvaGni+liL9lBPicxiOgnrR0SuPtalhuhY4EI9kXwUK+k/vd8r/wFvz8+iflClmnH9oj9JVmCkXXXbXubpuMBUcGLelOSm96ldA8BXlq1zz5kdm4MPOsGZk5EsfVNXb/6QK7eaQPqaNkNUumqpbA6mbb+e+rRmv0B38vlW5PwWBtvLICsK9KzyeR7OoKQGGJzH6rvcTOol8eWxSp3gXwcSXbohJHKpy56StEj63CeKZnbDDxnqx7mE994wuHhYaQrXyw2+bylQwvWp0Qvs4P6ubQpOJZJ/RlZLgIU2USNtzgA0k53ijU6DgNO7e7ih37ogzhz9kwqe8s4OjzCtWvX8MYbV3B4dISDwwPZn5HoQaLSHQ1iopT1M9ZNKSXAtWr76NS6TAQgoPLKaG2SjFLEqaRaQ2HLthyA39oqoHs8t33Bgrs4lqZrwIVQkapXmtvGcYjG7M5OXKeMd8EvPrD42N8LImxvb+EDH3gSu9tbfrCoNsa1Gzfw4ksvqfbktSnn9COe77aQfeknBDiWIrPrcOOkDg6QHs04BkCZ9FwMLHwcpvs8k+waYY0PSOnZSwi5QrKHFaAp+MnWiWVVMvmhNBQgjiSgtP12bYRCEhjYmm/h/gceAEOyEIh9R9jZ3cWjj17Ciy++IDzW0n4irbnlaolvPPccrl67hne/+904c/aMzpVlIU/jsHJeBJC7omJd1xZAqUKUAIQJlkFh13TNbIT8UdajgGfRI+I09dl/leALad1HL/oXuqy1/qiMca5YZ4XUD7OPT506hd3dXS9vuVwutXzDMXIs2wBJ18naTV7EtKxcXiQbw7gtMuGkd62ZDP36Z6WRPST4P+993OZDXlqZ59d1TrKtEXNml6r20p/9et/on76fdZ7zs4hSP5qtYTncIGfURCBnoFfuh+to2BrFsY19vwOskzbvM2D8gZijvGeM9ZPlcDzFbO7s/+R4qHXmWI2Yv4fzRvZ5Zh24ud4S1UFrTLP5vm5EecQ6TyFjnewb9tSbvcB8g2yd3rjchmmf8+a3b/Kik3bSTtrd1lqTQ77Xr1/H3t4eXn75Zdy8eRO1bgJ979Y2jiMuXryIf/tv/y3uv//+zue3v7+P559/Hl/96ldx48YNXLt27ftqbHdjO3fuHP7Nv/k32Nra6j5/7bXX8L//9/9+m3r1zml//ud/josXL+IDH/hA7+uAgMN+4id+An/1V3/1HbN/HR4e4g//8A/xjW98Az/zMz+Dhx9+GINnej1p36nNZjPcd999uPfee3F4eIjbt29jb28Pi8Vic6900k7aSbur2lsGKVUtN+LuV92IG2DBPszOqca9c9ydnKwZGnTHF2KiaamLcKpmxxZ5ybkE6EC/yTPHtAFvWPM0gYoEbin6qeF0KefiQ+C0OSzhqNANaqHk7u2CCQxQi22cgwNyB82FZ8H35O7Lzprk1GCGg3PsUYWSu7vrbzhl3PvtpSRKyjygTzLHnb0XgAS7I11z133E9RZUjfmnY5wF2heWLA/WP/dAeGAqngGIY3vTfcAIp8P6acvYWnuvO8dJ0MEcPr555358zAJKoSJBgUoCwmt1PVuSZpUxAEsTZ3izYDTg31WuTmsPfnBzX3DTbEuSPaV5b2y8pVgpMoKn3zYwGBUBS1CLjDA6rlIC3AFWkMpQMA4F80GyHc3HAVwENLScVuApMoAZzwNSgKRAi1QlfiMUv95OOpOWfVjVJdqKMZ8TaiWMwwxEBcM4YsQM07SCgXMEZLZEKcB8VjBVCbzPZiPQSDOXiBRoOrl1moDa0GrVzCM6n00yJrUqDmQ0yW5DlR3MZsAQYqDWCZYBjhkCYgG785kQp+OMVa3EhMkYdyyyrLWiK3QYCrg2jKXg9M42tjT71Ko2HBwucHC0kMCTTKE7LaVvrFjO4nLQxWEK2Jn78TinpDU/lWfigO0eaJkmLccICaY0PTUu8Uny5wtAIrxkm4H/yT3BtqKB4gUM2WTO0AemWekppRh1YlS6E0u2L3CT8nqdvGTUWiVrEQ0gGnz9LRdLNF6ggaQk4TBgNie0xQKtso/dCJszqhRmMDUFrBlYj9Egp/2LOqVlfRYPQDEiW1qtTfi4VimnWBhDdmq2qkDCkuggwbYAIBb/bCjJ6clCDwFyhKPWsggI2EcZxujsZWaazw3p2NnmTGng38HmIs0dBMRZCnnmJyQetBJ6wXub/Jh5MhzoRebf9G1rDoAipZPoRjt2rmNhRtVMajkDUxmixJq8IuYpIwuIJKBpYySScR2XWjd4Nq+B5t9xsWcGwIbzGrayd/oy97urHu3sm/SVn3AmBqOCWLPdTQKmrY1RBpE9Xu61SGalgYoALg0FXMiDxPb+Rq3rcy5J5OO0kr3Q8n4s9lq2FQCbn7R+CyHKOihP2/jhj3cZQso0OSjhznmjRaLVcXzVBWUAeIAi2S9GfxU9Mcc2l8Yn+X26Lk13u81AqlO8JKf1wcbNaoKw94iaZmlAyPVic+x2QLab0qqydyZdne3vu/2klc+bLyOhVVZTsI/jLvTTHfazX0v587X3wHS1fZRtZnJ+JI8A6wMZastmPrQgpsmMbnBd5zNfu/2Quu7f2DoIjkndSANPHwdPh07s+OK4lmmU3+/9W79ZFKWDD9LX+bBCXL0enAv9cNzHsVaRp677zp/LUJ0XF+crZEh53t6MHv0OI+YwNONmR1XlaElcr/qX3tfdpv1nQA/SBDhpWq2wXK2wt7eP5WqJw8NDtFbRgW9hOplAqRst8R3W1xFlegaPZqJm8KsxUdiDpPuJAJD6fbZGIXuV3VOncPr0KZw7fw5nTp3C2TNnsbUlpQJaY1SumJYTvvSlL+H2nduJUrZ30P/Zerc+6H+m603ftya24TAMkrWUJEuTXcM1l1dTPUmMYRAgd9OsvpaetQOFcgCZWScpB/25cRzIUhku5NF3+TSo7M7ymuGHVDKTbNjo0RWbXFiWLLVqxA4C4fKlS7h4/jyGQcbemHH9xg187Wtfx9HhkdMzg1n8sS5vgjNcLpqsWV8c+Sd6/dKvL3tuArXoWAP4pz0weQXq6dW12N8Y7Wxt+ONMeXKWmdoPz7BqF+jdWW0wADRfF60IyP7555/D7u4OTp85I31sjKlJKcGHH3kE8/kc3/72t3D71m0NlLHLZNcA3HD9xnXcvnULDz74IC5duqSn1XXnZnLESE5w2WY2iu13TbY1BSppdcNEIeWRJH1tFroybXoP6UuJSOWZU9b5MAN4Qrb0drtPT5qzIIQJYSc0TFcl866fZaOH6qbZbIbZbERrO5imCcvlEovFwoOTvY7vlBPsgIbPtR68kq/XbNe0l7F9gtujnJ7pQyG/tmt6g5uPvgfQ+UkLZh3omPdy3cxumHOxxjbGv7mI4h3p31igJueFcSvLnlv2/upJTWXfih247ORZ6NM3C/zY+I6/Ji+atW+cbnkcNm9ZyqzJofSezsxML3IgY7Kd84OcBxLYyddm/8JjWm9fxjyRr7s812FNxHrueNc+5QzGtvVl8iHvxmOoMe+9XRPUWZfY1k+94k32WiftpJ20t6fZelwsFjg4OMCrr76KO3fu4Nq1a1jp4d3vhzYMA+6991488MADeOSRR3DvvffioYcews7OTnfd0dERPve5z+Hll19+m3r6zmvDMOBf/at/hQceeKDTf6+88gr+4A/+ALdv334be/fOaLVW/PEf/zEuXryIBx98sKPzMAz4+Mc/jvPnz+Ov//qv8frrr7/pc5gZzz//PL71rW/hIx/5CH76p38ap0+fvut9fXdDMxvu1KlTOHXqFGqtODo6wp07d3D79u2TDEsn7aTdpe0tg5TcqWmntRCOM8m8IKdu9GoAurl0+amhGTvF3PQ0uHtTujNLEfjxTbdsoCJImYJIqW04AEgdO636c4rWqsl4nQ1Hm20Q3TEGDQY2zzpAgDhHW0MHUIKASAxUEZtVfQjitBivbYYBeNAbBBjcwQASshe1MivJuexvNoeCkcYyfrBvxpFoWqDOIAvSJJCMe7T8yZouR4cUzlgtt6P9F/xM8bT2vlPuozzahaAQM68B2cx5lDbq+h53yDmPhbPbxphP3YajIJwlZNksgO46AMAUG3vvH8EqXcGcUD621jAxexYoOzEX4Xp20JL1m6sENZs6SGtMYuID4Tl4H7hbV0RaaqaEY5JKSY9hBXAUUCkoQ8FsNmIsI8ANlRmr5YRJebOsOWHs5OYAyRAyFnnOoKXdxjKi0ICBCaUBVAmz2YCRSK8bUWtDRcMcwEgEnhREUWVsUxNA0jAOAA8SIG/AbD4CZcBqsURtDcQzLFcr1NUCbbUC1wltaqjTCgbwaKzBBKKgm2bmsTIOOtnJOQXP7AaOsj0jFS1VYM4fikA/QTNqpJJq3DDQTMtlGViwYSiE07vb2N2aoxQpV7ZcrHBweIRqpSi0pEQOltqLzN9urSEcd5btyE6Kh8M/CzRyH6AMtQFUojygOlJbE8CbOatIX8YQvhdAjozTnK8GvvAyWgnoYGRuJHKyoHggn1iz7bjzuInzvRC6E+gsQKHWJjkhDUk/DzSUMsI7WQhlAMYm/R5pBM9mWE6TaSkwA7P5HGUcsVweYal8hMaaHYo1w4yUqIjsZywlET2jRIlAADPGQmjqOGw1HMeW+ai1CbUAs0LAODjQtRBAnM7BKu2qAvdMXhXl4XC6y6QNVIS2LNnLmk5yKQVoTZ+jGZHcY6lOZyGtkl9GI+yg+i052RvHKW7nSyryfO2TySGiKAW3DrjJTYC/BtIRHQLLepAcy1l3CnhOwHTDMGAcC6iMkiWtroLmUMCnZddjmbO8JDzrElmJLr3QAnfMycnjLu70t1xPpjtVp1KBZnYzUHXp7mXT5Q0AcSqbx+h9SuQ0sfELPe0GC3qS6oiKUtUOs8BLFdAokwDlmo5b85jpWrWHF/0cYpcpkMlBXbm5HQMv32ZGgctThAtcdHxxK8XHEtTwuWBmzdAVctdtP329Tf/MAAEAAElEQVSH5svsAzzRpY0mYxJamgw0GUYIUJv1iZk125FfDAvbOZCBTSf42+E2qfWFCVbI2HW+2WCU6GN2EfNGX8DrwBx2mwlmQxrf6oe2bu7moEK2xygFxW0thONlfe2lj/2bPGb9ej2oEmbnxge+n3izl3RdMBmRNLT+6fsV+zvZUTG2ZAanD20Zeb8ts4Z963wQe6aw1XvGj65Kp3pAAa1dA3SB/A0iBBjA7ow1sMljrk+cRAbqCBnZd5nSXMb3eURGoQjCB/8cN3CTBWSTsi67fZhxAGVddBz7d6KdA6ZU/4KCfJn+Nv9talitVtjb38ed23cwTStJ8Z7tdlsP+uxm+lVtg0y+lv8AUubgJLfs7ZSpBz0EkgaZBmtjMF707/Vd4zDgoYcexIMPPojTp06jjEUA4CowmRmrWrFaTThaLPCtl17C7Tt3eglOJnXVklKgUSlFMxHqER4lZlEbxmzL1lgzssoTWY1Mk61N9wJiS0a5r1JEN9ZJoc8twLvcwt5rtTp/uLxGZDwilctIh2lsCfUwD+ge2ORMkk9K7Awic0ngRorOAQMKVQHAePjhh/Gey5cxG0exl9CwWCzx7LP/iBs3bjjv5blL7OGTzsbAMD1rpdmynYcNebcuImx95ysEWGe2Zlr01hFKNEn3ZeCo3bKxOpWknJg11LIdTss9bU5Lsz1AzddB7PBVVjbJNLq/f4CvfPkr+OAHP4jTp097KXuG+CAeePB+3HvvPfjiF7+E27dvY2oEqgI0LAh+ADOmacK3X/42bty8gQ9+8IM4deqUrAGXYcXlqpE885HJFWaOEs8k+r+YvWf/2iMZ6uNYk39JX2Y9mm0tuB4z0HiUobPtRLqyayKfQ85mMWJvYyD2tHZR3vceY8yVUjDX8vG7u7uoteLw8BCLo6MAbiL0pPyr0pp7GQ6lZYBQivpQLItyZAPt/Ix5T72m3+E2jV6f+d6eg1C161RzOlGmLrz/zp/+1TE2DnJX8zOsH2sKmPOPsDkkg7SW0nZeVPlL5AcJHaTZDWVTe7vu5NCQvQ4PEHj0Miumtcf5ml1vnH7G95Gl0r5VWbNh7+j3b7aZcOMtpHZYBdGzdcpnsNHaQLAhoG1uN6iQ10gmVLYF1t+89r5j+5O1c4yqkyVI9sBJO2kn7W1rtVYcHBzg9ddfxyuvvIKDgwMcHh7e1fv949p8PsdHPvIRfOhDH8IDDzyAYRg2ZMxqtcJiscDNmzfxV3/1VycApX/m9pGPfAQ/+qM/2tH96OgIf/zHf4yXXnrpbezZO6vduHEDv/Ebv4HPfvazxwKV/sW/+Bd44okn8F/+y3/BlStXvuOzVqsV/uZv/gYvvvgiPvvZz+Lee+/9bnf/HdeGYfBMrffffz8ODw9x8+ZN3Lx58/sG3HnSTtoPQnvLICVpaWPKBEazvXoXdDAnVOd0ptik+0lXDJJKGHljnvZFZCfmYlOLdEW3idM9V7O079oP31NycsTpaXgDIBRIYNg29SWBVyhFq+TZmt3EL0igB3cyU/dZOBPSxprCCS0xQnXbmmObzLGiwVJzaJqT1gbsGZnEiQCrD88GNWj+uWynBTbTGA7iISE17AxewBSUsMnTFI5Y44j4t9vR2mkfK11nzjd1nPkfdp2fsNKSa5mvEDQkmLNRT7ppCYBwDaReuQNG08BrH42PqgLmOHvSdLwBBLH50a+8VF2JskGpHJhloKAiBrdlL3GHWAneCD5JfjqjC9RtQLJOWleKiFOGmxbPsSGkoMtABbOBMA4jiAawZoZaal1qhpX1GkCwrE22DoRmpRQUSOalUgqGmWSlAQ1gKijDABoJZTZimI0Y5jOUcQAg3w80gDCgrhjMEwrNMYyDlIKbpBTjbCjgNmBaNcn0NBagNBwsF2h1CW7AaslYLSbUugBqRZ0qFnXpNDcaV65gdTYWAgoXrKYVIusNu5OtcQVa0/ltGAaZhEFT8k8VAiQywEgqK2XntmU6U3kzBZQMKph2t7ZwaneGsciJ1tVywt7+AZbTZAtKTy/K2mpg5/VIoqay15z7LLJJxBNrfyRjmAR3YsPKZMAZgIjdYSc8p2BCVl7ofJoBOhAAlgEN9H2NsZ42HkilvsIjKIEjgpbis+APgSiBwFqVheayQOW1CnCTv4LPHKxyJyqzlB0kQsHoJbeGUWheW3XHOhXC1nwbNMhIamUv2ykPVPkI1sOjsj6oNrRhULCeAnKJEz2k7CdTA7WmNDBQFaQsl5ZskHVEmA3SKTsVzhBAFjUJBrJnrxAAiROTSwpuNs1mpANsopssoFdMfq3pQg/eur5Syb/uSHXBp7NEASKLuU5lDr1Um/FbOKc7AAdsHgEpQ2pyutf1RAbSNZYiMFfUaoHIAaUUzGZzAJJVq1n6Zwt8aPctQ0L2g8i8G79C+SQFhzhdhwysIF8XxfQRRJ95ZqzGbh941jxG0o0QeQwDPXPi93in9cNBRcqh0FKTpr96ANIARgV49GeZ1PIn2DplAhXhe9O3lq3IeFxsCO07N3k2Ei0JKhdNX6pM0XsyzftTxb3qNesQaZxmRnHLTvosXmKOezvA9ClSQCQJKzabkTs+pfylPVP1Mukz3ZZxu8tKOlm//MUxllh8cj21kMth8HQ2QADRot95ibKWeuwXt/b6Lg4qOAgL3fLzFrJDr1m/HwB3n/ZjzTrJnqKaM/YTMBmT9y2ql/w5a4Fzk122HiimeP3Ufn4+fIzkz0lc6uP1ef4OAcYYW2/3hdWegn/rwTGO9/rV/kF6Z9pDdc+xP9Mo/evcnfUJS/00OZIWBrDGqylMptel/eTaeJDXtQXH0zqOb0Pn5WfkuROjUddj4hPafCkyDwAJMJ74wgLp129cx+HhUe8ACyUZcghwXux4iDMtANsnOm8ig9pUZoBcH4tc0T6LMJXri9LIBFuSH3l/TUWyUb7r4Ufw2GPvxWDl3PTZ+wcHuHXrFm7cuI6jxQJ7e/ti82mGGXtQ7GkUeFTIwUOKhHe7VvZ2stegouNB8fu5aYkvGtS2HxTo20BlALigamnRgQSUs5omMFeZm8aoE4vdyQJaqa062zvAzHwKZLNuAHtS3Z+ycJqdQ0ZX0swXNjPs+6s0m4Cvfd19pzVhJbiGUnDPxYt4/H3vxXw+QKrcE2qt+OZLL+HatWtqVzOyvrCnbuImOGNbdYICVG1AvMz7WUSw81n8TulC7lIEHdfW/Qjo+m0dZaSL1sWa2W/ebfLDI17Wk+L26Hcapcv4kmQMgwuwf3iArz7zDP7Fhz+M2WyGMgKBJmfMZnM88cQT+OozX8Xe/h6ga95kkleaU8Lv7e/hH778D7h8+TIeeOBBLXdIHY2TceFyaGM+GfG5lo0WkE2WAuy2S/f8jRLDWfyGn8l1lC1fM242RGjwAekcrM9rHpt0PclQymNjl+Fud6UsX3allbI/c+YMdnZ2sFousFgssJoml71ZP3kvxThFHoFc29SvRip3CIBkYm0OmA/amz+zl7s9H7+5+RXgx9hPJBLZgvQuhq6J/Xh8Hr41jsthvrzcH+r67jLI1FAqy+x7CnXQ+ihVRjOHfqI1OoPNf2bEyv1du9aHmj6ndG1nB61z06ZgSS6HzUso1r5/xfn3tef5s2QAdjA11OSbCrbo8YY80/uy6QAOwOUx17Lvn+wOXjNlwgYIOpp+obVh9fPkUxKmSPqa/N+TdtJO2tvXmBnL5RLXr1/H888/j+vXr2OlPvzvt0Yk2RE/+tGP4ud+7ue6jOXMjFu3buGll17C888/jzt37uDVV1/FNE3ft+O9G9swDHj/+9+PT3ziExv0/9u//Vs8//zzb2Pv3pntxo0b+K3f+i38p//0n3D27NnuOyLCzs4OPv3pT+O3f/u3cefOnf/j89544w38t//23/DTP/3T+NCHPnRs5v+T9p1bzrC0u7uLixcvYm9vD7dv3/6+BH6etJP2TmtvPZMSQZ335HukyJmd/2PfoeWSSOLTi82mZT4hdR6C2B2xehvspK6XdwkPGMyZIluz4v0S52vcwxos9ifnTamlkdcr/CrNViAADsgGlQ2wMYiTU3siY9LU8c1gIxVWzq01yWRkYCGhkI5bS3aFuyhALxbocpc2p1NfUAcKLJORbUjFYSWnbC0bR1Hni4KiFIQi9NWnU7EzY0YZd0CX/HRmz/zB/kbdyBLrCCVgzdRAHHmEwteiZQDZnNzsPGOnUUGSUrpZOSPfQStNrNsWhK6tm49wJmkAWMveiNNUSjXISWV7OklpHGo6XsIABWEoRq2xgjlIaNc0a084fNIOn4X+AgYJnmaQnromBYmxZlPRE3zqlMluHwIwGNigBO8XW4d65DjAdJLtqCggx04IojCm1tBqCxASxTxTswCslbgiEA36zOKOci6D908CDtKHomWxKiYcLRlbmGNrPqC1CVQaaquoKwK1ghk1DNOIMjDGcUChGRgTJlKgxzSBG2NartBWAiBZ1hUWqyVWR4eYWLKCWKAApQqlqgW4yflAcCAFZRwxVc2kRFKGDY0FnFhkDTADZRhlhXIFWLIplSKAgKpZdiZdw4I6IcEhaEkyA/yU+QgmxnwgnNoVUMzEkmln/2iBw2nCpCUowJL1S0r6Ia2zmB8P2toflsWA1RFlrkoinR8tF8ZwHGUuoRbBUKWd0iXKMhVd17pCLMMSB4jKPFvu3GKWE+2x4jv53rjKqV92Vo01pO+CllokaMhA15fzGghNB2XPKFqMsLYJqxUwDiMGGsEYMA4jtuaE+XzA1jjTMRMOjmaoy4o208CUnqZvdRLeYgZj0rESXJYPVmIATmMpsQUAAoYahgIUxqpKOj0CYdKbamsYigCVgCKZydQXLxn+otSmgBqFF7iVcEJq1j4GUGgAE6OSFvky5z4YhAHEzefD4CZNitbpOoGXsCoKZnPBQwZWUT2SAwvJSStAs5Kuq+CapIQ+y0FXYNGxrpUrDOiRT7AK+GQSmQApZRcmgJR5BDe0acBQBhA1DATMRslmJmW0WLOVteB/TraMSWbrn44rsurYUEUGCrCnuu1CFJnuPHOf/evlE9WyYNXBKKJhFOhNxJqJS57ngU8rU6rrJTKMDTBwTPGpkBKXgKkhmZNaV85PnYPa17wqXlmM2s8USE/ZUhwcrLKAW/PMF1a2xEDJdtTfQ91axtHWUmTZMvkV5p3ZLWADUoac8W4xvF8wHQZO9CWXScp+sX70/TLsyFZlY1QOQG7Wx8T2wT/2HntehYKByQRjxgr0TccvvA/nFSsnKDG1BAY1UFqywnwu2agA19d3axM6UvRxnQHcFjRZtna/0kDsRptXIGxKmx/43zF3G0/rvo+wX3zvACJOn8Wt+hdZDNf1Y9aFxoEANIoXvA29ZzOLgq178msK2ZjM3gyaiQqlDVoabVrqv37YXejro1ME6Gjq4cm+m/FMvwfd3/Y48tfFFbzOu35DLh0JWIYpv9Ptb6TAepo9hstVyz6UQWNw8lP01IL/qkt9zHZPUXmXR6m6gxiYporDo0Pc2buDg4N9TKsV/PaNYCS73gvQHndfy+O5+9t18EYkXHeZKZOJdk851HSbyP0AOpm9hu7nbJzh/vvvw7333otTu6ews7vr2W4bM1ZTxbVrV/Hii9/E4eEBUgRd9zrClPK/cKJ6r6mX/fYlKVi9oWGqjIEGAW6rTmQQpip7uQKxGQtBy8IOAFdUAspAXqatthbA9lYlw6uWnG5GW9edtpCVFi7qbc9TtDS3jtUUsT1IwUmW1dZfzAWDBfibBKeb87cGpLsSbzJ5VAoefOhBPPn+92N7a+78zAxcv3kLzz3/AqrLQZtjXbemAxPhOwnJDldRWRoTEdlugj+cPTf0C6drdUz+UYbJxJw70GnjocbH8XkGj8pXyVa2s2mmP/Mi42zmGMAi5F5oduMt4T8BqFTs7+/hhRdewOOPvx9EcrhmUNAegbC7s4P5bI6/+7u/w97+vpaybipHmqtmm52D/QN8/ev/iNYkK1ZJ5Z5dPuq8WJP9ITuQEQCqyhvbQ42AHF7wNZwpbjqKQ7563bM84+S8YwtCK1XKquD4xjSlSW63udK85zyioX9tAo+Ta4AfTjRdZLoXGXwL7+dsNmI2G7G7ewpTrZgmyb6wXK7WdLbqhkghm/QveQZm1oykpH0Zi/rylIJSFjJ1el0mO09RuK3kZXDOtPJprvvtsAL82SGXlRYUT47RcNIDBQYslK7YfGcjK7OV/W3gm143ZdC1yw22QwPSUTdXkPY5PtREnw3DN/gz4E52fQ62ZYH1JnZbOgTBvHbf2l/hg0U31s2nxi95Lo0YmaLsn4RU68bYyVS7P80F9brXV5i9MD3D3+J9g+vweHPMYwfKsnv8kfZ8dNeYP2K9129KsJN20k7aP3tjZiwWC1y7dg2vvvoqrl69ioODg7e7W//XbXd3F08++SSeeOIJXLx4ERcvXuyAFYvFAv/4j/+IP/uzP8O1a9fexp6+89uHP/xhfPrTn94Atrz22mv4i7/4i7epV+/8du3aNfzZn/0ZfvEXfxHDMHTfEREuX76MX/3VX8Vv/dZvvSWg0tWrV/E//+f/xDRN+MhHPnICVPp/aAYU297exr333ovFYuEl4fb39zFNU++bOWkn7aR919s/qdybbZh9a8mAZ6lhwNMjw0qMyebKTpiaw6F3TmsWi2LB8HAC5NPtfT8ELASQlhnitHGzoLmV6rE7+416dCNcVBH0aljfVHsAYS2gIFmOPEThG7t8UqlxlbeQAWWEJsVqh2Xa+fP9zciOhgAXmLPN+mXPKMm5QCmASukZSg/zMOj8mPM6nGT9Ka2AJwmgrDE8nbhDazyzlDkMw0sTp3pYnTLFg4fu5MhjIbs2AiLhXmTdbMsc2CnCzonShK+shJMEqjXQyySnbd1JZkHUAHAwoCVvYkLCwcE+7mAvc6zCM6kIrwnflOQckICRwuPUIeqTrp49dxbY+DXoGaA9cfwTWOPhkj1oZicB/dRbw3I1afYRoAxyCtcdzyyvLIiMPhKIsJI4LHOlmc8cokeMigoiVtCDZNhgJrShYbVcoQwFGAaACGUcgdqAssLUCgoDlWeoE6EMksWn1QaeJBvKcrnCcpqwXC2wf3SIadXklCqzgsTgdKitgRopKDFAA0OR05CFARKGlTENgwCBJkLV9EHcSIMcAKGgVZmf0chdGdPUHFBEKOCSQsUU4EKCZMo5s7uNkQBuDVNjHB2usH+4wGql5ZeqOrPdSZed+XDnNqA85UHsuICZPfsG69HdkBPBN3B+zg4yAVaFjG0yfzoek7MEzfDCJqfkOuNvNlAkkzg71Wnqa4DDnefLiRiSRysM6wYBKBLYM0ABSf7qu6VVAbBwkywrAJgURFEYs9lMAU8VIxHGgTCOI8AFVAbUaQnmCctJyjuAJOBVqYCsXFoLEJaXpPMU+KlfzTKQCdGJCsZBQCiWca2xANzQgNom1AbMhgGzcZSMX7DSDSbzGJZZLrs+/b3FyhRx57T0/7yPFggzzmTNehPg32YAWVeGcISqASYEeBmBdHuHOzotKyIHeLV32FrYTXrR2PQKg5vGflkDdUQux13zJEet851m82rcgFYFwDZBTpeTZoErAkhsen8z3eNdN70ustukP8PWhepxj2RGWdKmJWKivJzSRjNBkGb+4gQWg//uL4OVqiy+dpJqQnIYMwCuKroZtQaAwn9CmcwzTBgA1tG9kj1Oe9ugADzVzWEcGQ3sxVoGQxlM9JYr95jxbHcRwFz9DweWc7rH5BVlGyBkkpgEIRXNpohgDpJ8UtsiRZb7rE3kbBkyaB0AlewhDh7INmnMij9IeTQBGghAq14uI8uLfF8ScikgB+9/sznW92b6RLbGZGvEQHD3NnY+D9a2X2KPoQLFNWOeSwApw8z/z96bP9t2HfXhn157n3vvm/Se9DTYmgdsy7INlIODwbiMgUACSTGGVP66pCqpCoMd8kNSQKWYiTFfDBjPg/RkSZaekPTGO5+z1+rvDz2ufc6VZcCWZN1l6917z9l7Db169erV/Vnd+qoJsPCedU2u9cLpWPwhX8PGZBSkDFmk7YeyrPVR/gtpVcxaphP7Y/3v5JK9RYlOuQKGP0f+d99AyLL1hmONk+vZIWyDV+cAMKs3Wk7yfn14yF235ceJhiYP7LwUbacq1ioOfcad5OggfHC9Kb2Sh+xt62cmJ8yB6vPlXbIZbuDKWC1XWE0r7O7u4eDgANM0rQ8WRtc0T7YEdN4TPLSnoe990Yl5ZLj8fegEaZ3lvrNyuCkJMIBswfb2Fs6dO4fLd1/GnZfuxLlzBkwil9GNG65fv4ErV57F/v6+rxqLHEMcgD0A6HQGH1UBN5LAkDpG2RmraiYDgAb2/buBiu61RHr5hMGooCafFS6xZAii7+oeXasCk1rFalrppYNmm1asUpPBHDoH9LxeSvCBnfVQ4JdGmkb+s3qg4BxJWawyxaITkuj0ll7aLgQEcCy2sUuXLuGJxx/H9vZWpBJjxtHxCl/96tcEkAFEVN9NwiVYKf0e52nO3+UUnPbvbOGRRdP2tWB8zemtkJdsJPH559AfeN5jrcNeilbT595MGldIKJu3HgyB7kVVW/Mb2pycb4iFpteuXcOjj66wc+YMoJfMCMA4EICCy5fvwo/8yI/g85//e+wd7CNkcQEXjrOT6aCt4umnn8b29hbuufueGCIz9DQPAy2FfCJfJwZaMdsEM7DihtKapl9U1vSx2/jD/rGpUKpTeDz2hNQVr9NPJtbX2Ln9iV4Q53lsG7ai/vwbz1qjbEyk47BOC4XGgTCMA7a2twEGpmmFaao4Pj7W9V9D5CP0vgy+sj3IxlXB0Z7qhR590eYi773zbSvtMXMnR464FLQ3/TWvoRi3n4Vm6zg/bxFPN+72mZzdvvd6MiPWUacXd9tLTPRMTQt6dc307W2a+Q096XQv3vTZycOI/nStx+mC03jClhtjcFnn6+M79zna2SzraG2W2D/3yzv+jbaf+CA+f6MyP/Un8Wb/vcnCNzInp+W0nJZ/bhFQdMP+/j729vbw4osv4rXXXsPR0dHavvF2KKUUXLhwAffccw/e+9734rHHHlsDJgEy7meffRZ//Md/jKtXr56mW/oel0ceeQSf/OQn10Ayy+USf/AHf4Dj4+M3qWfvjPLNb34Te3t7uHjx4tp3RISHH374uwIqTdOEP/zDP8SFCxfwnve853TP/mcWo9/Ozg52dnZw8eJFtNZweHiI5XKJ27dv6yWI5Zvc09NyWn7wy3eR7u0Eowagh2FzmAJmfJLvwhiUXZfQ5wD2yAF2BSg73IDNByWLohLGz2xuEmAQAJjDszNMERTYIg7utRGmdsOpBIAbmJKC5YYZPeqTODKzUSwfms15Zv8zw7BFTeHWnAZuaM4HT0LfH8ThVDA5TcAYCOMqM+s4vYIuIoUBZOycWsKzrSd+uy2XjE9sACH7z5yjAWgSY6yNU97MYbMNlOaRjcwKlg7InQXE/rS0ePno7+AFO9BzRGVqQKMqABSKG1fQ6BxgoJRI1WM3omEgIvPr6mneaJpvkrkhG2b01/6oA924zxxh4WgiN9rmqBBy+dhAe+lmp5OkeLQZKoSxFIxkKRMUYKTphySKCAMoKCRgDLG/azSmxijjAK5ym5jUud/3g5NxLiK/jMOAYRxk/TbWKBqMYSRQVeADEZgaqvJhWRSURfBQaxVDWSAitRS0VrFcVkxTxfLoGEfTEaapolaAaUThioEV6FcGTMwwxNJYClatWSwNUCl6ExJoq0mijRTCOFjaCEZbVUzTJDLMnBxgAUw5C8r4hyJ0rJK7DK0CXER2EeBRX8aRcMe5HWwVWdeNCasVY/94iamGWTMMfpo2ylaIfh7cnq1MaU3YWk1r2EATAl4iOKatGf9YuorivBvy1gyR2pTKOAPdkadWjHWnkgwGVoLxq0WAYIAxiRySSv32sNwGb6ld+dls8XKkHcz7AREpsAcSBQkNoBGtMSo1jUDUMNAoTqBWcXTcMKwmLMYtFCKcP3cWDRVtfw+T3qJtNIAG4ffS1AHGeZ9qaE2iT5VB5XQLB484+mQMBUAbkulW/TkOpiCgTRWNgXEoGLlI6K+UejTPhXJh/NRHinmtVJ7A9gCCBciCm5BLAbVwhbmxVdcf+X4hNKhsjiSdf60p5J984lGWOBuMM+BCZts/h0TAknR1g6ZTVHpT5oW5HkC9JZos4p3unRp9b9D1W6vQVxw3RZyFVN2oHzfvfbvzNWRbkiXyyv0J8IppPPGOVgDWq+6+9/r+YAvR9B1h5MGf643S9r+sxzjdWw9ujv4YH/V6jzu2vS79NzGZTKWC/0Qp0LSB7Lyd3R9OQ5NB9o1FriKZbdI0G6HrCW8xx7r3+mYOkfg95spIbW9aMkrXybJDAXCtK++1WY+wG/y+Vma0mUcmACVZah9mdude181rGqaf9KTvn5l9Z04ZB+q7d8hutBMM9SGPvHVvVWVnkKt+PnSePTsHb2FNNfQPu99NL1zXFTcVXVn671x2GVgBeXr8g+BZjrr0BUprLTeWnUFrY9C9e1OxLrjWqYzRjy1kU982Y502ae0p04qc0meTvjE/f/j680fm48xrrpdtABxsae/m40ecr1LNrnOkBeTtxNy5TO9atD1qU31RjzkRYw5zhwHmhlobjo+Psbe3i729PQG/1AD1mxyyOkLPy9JFCDB3cvvfTljblEz22flqrWs+MAcLIeRrdugjnYVMp9jZ2cbjTzyBy3feie3t7bQvBl9Pqwn7B/t47dXX8NLVq2KoI4DswgmLjtgDQtaLH5PS1wYojuaE9+ScArQiQFrb21wPHIInJLrOoOvL1qakbG5NgEpTnQRQ3AhyvaI53QsVj24KiIyNiLu6h5QCRgVP0U273ABIGjlWYLqwG8GxPKozWI9F598g3wCARP8fFws88fhjuOPcWb1cIrrbVBueuXIFN27dDmpbPa6/kLfGaRycQEh9m9pHju3M+ZVmc+prPwEQ1mbc+A/9A35mDpBGp48YV1oEVztTx2i6f7OdIdYJ5ebie6VLlrGyPrK9pqkOJAD/o+NjvPjSi3jiicc1GqxEWVo1STlMVHD58mW8//1P4vP/8A9YTSsfu8gmra+FfGit4tkrz+Ls2XM4d+as87ONko3k2l9bui0G3q0yZrlAxLXqOTVPcXM57mo0jE1mM0ZRp30lakU6LyRwuukdISXi5awz2shlzWSZ3Pehqyc/u2k/nOkQcDrJB4utBRZbWzhz9gy4MVarlTsYOgB6qirmX/pnchSAplS2dsImssmJbHJsc3qwtHcbF/v+kJ7QxeO/c+z7vjf4Pq3rJF0eyvQMkp8EYVyjPDIF1sfIXRtZDrg+muuztUVptk1HP2GfmFWov9ts2T4fvBRdpFRF9DN/tmlv6ngf8YfPje8rwBrT2Nq15/KoCEm2WFsnjDm/g/xOz6vfDXAhLv3M3uuYLb9gbWXZ+h36e1pOy2n5rgqz7Em3b9/G1atXcfXqVUlb+jZPbXbx4kX87M/+LB577DGcO3cOQC/vmCV93WuvvYavfe1r+Pu//3vs7++/Wd19x5QzZ87gk5/8pM+JlVor/uIv/gLf/va336SevXPK3t4ePve5z+Gnf/qn14BigKyThx9+GP/m3/wb/K//9b/eEGhvtVrhj/7oj3D58mXcdddd31m3OC1vuBBJ1Nzz58+DmXHnnXei1oqDgwPs7or9Z5qmU3DlaTkt34PyXYCU7ABnTrH0IaE/dJqx5YQzVI4KREQWAEbP2b2DKqqNQ70/49dwGdxqILQJkIhCEQ7c3zOHLp18eO2cUd4XfwJ2i87+hhoCczQAPziT3X8TAEdnXSKrL7fVHbnFcFrM2iGDi9szalxLQ7CbWTZui/gQ9VPXZtAyDqKk4w3ogLZGBWDSFEJxcxZqqEFy3EoElkyjKFTMYUlwYzkbkVkNYM37xY1Typ+YS7vRqyY8dZSrgZVSfWpYFqOlGo+h6dE8jYrSwsNww409kpKNdUbM8Uea+s9C/pOPiajo7V14tKzgw5gjgEFl0MhFZsCRX3w2nP8k/QERqTGfQBpyvhBp1ChxDlTl7zIzOlEpGvFI07mV4nQ2E2PxVG8GyhFD+iBEwDAQhpEwDGKUL4UwLkb5uxQstrewtdgCM2kKJk07p30ax4WkrysjCklaRG4Fra2cVVqTFErTVIWGIGyhYMmMiQhMDPFDsATiYVlf42CR1QYMJL+vViu0ccQ4jMAWsJxWIisaUMYCjAu1/JpzJQHRIDzANECcIgIO4zrJiqcCFEuTJqnMCEKbc2e2cW5rAbQJEwjT1HB0vMJyVTG15PBkAasUi3rVFMRi/Gu/Kpe78V3RJ6QM6s4otWy7Y8yMU0rcLGtYecKAPlkudzKiNUkDSKQR1LJjAZ7CDczgFLGNogKhjclw/QwQ/jEDar8vRP0GtITeUi8lrxHWKHFSpYCepiQXxYFAlhKRBpRhxGLcwjQMYFSAGAf7B5iWE1phXY8FoFGpXuErROlpqShLSfcgk6PJRG0BsBgHvbWvUZF0nTeNTMRTRW2MNjIWkNRlftueQ2abDMwy2c21ti40gkE1uoHAhTDovDFkbAROkZ8schZ1/AHlJwkGFDLetiKiEs5Ql8vGn3qTd3ZWiv3b5L9CSxQUUznm0uqzEQdIyD7T/hejBQt4MwNN9eBQ6+R1hAwtsY9YNBrqlJlkFl43CmfDrzvuzUmgm0rjnrcJrIHNdJ/yNW3Ar7wGCwxt62uJwtEInUuL5hRUYR97KQqCgu+EM1oSBChs4APS1DUKNCdN35rA3CpiOoO7gxcc/B26jnQ9rQ3LgDN7f/4zO247EK+PIeYBgEYHm8uR+WE9OQ4sEoQJWZtvBVNZ6roAiEWRPjTnfXDQNFpKFNev3DlCAG0AEQX4rJeBrrv4msi6nozF9IOg7Xzsb6XS921tTecn1+awe/OEZ0/6/PXq9tWYeCetO45as3MR6Hn2jfUb3lb8rbWlMdgTnJ7p+H/DGozPXRqk2kLEzZ1fXmeeG1dU5mMynTfrF5vGaO/1lzs2ZBpKPaVEXz1nGEh/rcexZjIoodOhkYBANJPHvaLRydGW5tu+Ozw8xN7eLg4ODtXRbXLRotXB17q8R4nW5Hpwz6WhM4VT1uY51rOAaFLluvcE1TjkNdn4Hbrp4/LUW7pv7Zw5g/vvfzfe/a53YWdnx+WZ9ZOZcXR0iJevvoxr165jb3/PI/aI/mZCiGBpJrt9pvtbeuSf6/lCIr9Km6WIng2S880wxLnK9trY/waPIkukadeZfC8w3bI1vSSjfGFUYZOdkW1bx1M8siM8sqOkjCtFzn40EKYmKWeLKKZhg3CnNXk/yOsO+SKAq+q6gMlwk+2LxQJPvf/9uPfuy1gMcg5pAGplPP3MFTz73PMawTGvdtGDggDyJed57cRjCBIjh/PXXE57deS/2f7ZPetsbGs9camdL5Qh1n3mJodDr84r3vc9TgPRz+z5Xq6cIJ+0XhcB2k9KY5G+yrnj+eefxzgOePSRR7rIYs6nAN51332455678cqrr6JOcrYIepGe8xlg4dX9/X185ctfxgee+gDOnj2DEB4cfNIJO0sHTH7ZQdZrSM/GDK4NQyFhbb8Q1lNZSDCjLTY+Bp3JmGOtrgHpcg2S/KL1KqymvI/OnshgM5NDbDpftqutj6RLV0YeyT09UQq2t7extbUNICKrHR8fY5omPyMk8ep8bcvZ99JZJOEAmEHtf2ld+J4QvD/fAbyPJpj7D7wzc+2om75u4mbgv7Q+XDTBpit4KJ9h4zJeoknS6zH7LjYM+Nj7lL4h205ck/5oPvPEk3EdMNNA9/d11XHt/NDrZCYMKStDLpe6z2Z63eazRa436s86ude9Vnp+mK8LpPf69cmJx1+Pot9Fmcty14n/Zao/LaflnVxak8tzN27cwNWrV/Hqq69ib2/vB8LJffHiRXz4wx/Gj/7oj+LChQtrMpKZcfPmTfzd3/0dnnnmGbzyyiuSHeG0fM/LmTNn8Cu/8it4+OGHu3lpreHP/uzP8JnPfOYHggffDuUzn/kMxnHET/3UT50IVHrf+96HBx98EM8///wbqvOVV17B7/zO7+A//sf/iMuXL39H+9Np+e6L0XQcR9xxxx24cOGC2keOPMqS/f7dgMhPy2k5LZvLGwYpuTGD7aBoN4ja+tmIIQ4VhHEPsMM7uxHJQTndoTkWdhwsI23Q/Da1G5ZJDHXm3BRDkxm2xUEs72s+eYsQNHdGdG2Qv5NTOYmtU9J3ubVXUyTZeOzg704p77a8JAdWpRHCLMd+1g4jZlNnGXXGAxaDl/c3OcMQhghLL4dsXAB3dBySkcsNQ1oJq7GBIUCwSEEzO9RDADJunvF5SQdrghufxb4mEU+sRkKK7MJy+5WJUGjwuiuzeOD17wBMqIOVlD5IACGbAm5gC+OuIAACgxujqfHQEvZICwLzaax+cIKH5ffbqggnhZHUjF0Meb6guCGBk/OlDIPQWufGjHEBFjD+FIBVKWLAH8dRjOElGc/BaLUq3+t7JRuPk7GkFLdrmFFdgIJmzCxu1DSuqTrDIAEBef8g6bWE4MDUKuryCOM4ok4NheWm82IYJNUWFQy0wFAKqkbAqbWhccWqTlhNDavlhKk1LN34XgCuChCqaG0SMAKJk2Cq0svJGZdwPFWNeAMMtaGNCwzjAOIKrhXL5RLUBtAggLnFuJBbqCwReggFq6micpNMgAV6E7uJg4aAcJsF6AwAthcjzm5vYSgFEwMTTzg8WuLg6Air1nzttOT4b2BJLdadEThS2nHcVHU5qpMT4iqccdkgGY+2zohossfWuD/nvIewrGlFtZp1msUpRAUTm/O8uXHLIyrB4nkkuZ7WEXJEJw55rLb/MGpy89vpItIsNYgYn0UuVe2vRmlqQoudLV0vVBQ0IukBh2HA1mIbO9sNPDEO6yEmS8EIoLA4omTJNs9O4CkgW0UrhEJ6I5tgsYF8UljBbQUS5cvAMM2/1/XVGtqyYRoatsYBZdCdggflyRZzb/sBmQNUDdCe9kmdISTRitTP5lEBbG45pe7yYEy5PmcghWR0SjelbA1aX06c4XLtpL09oi/K/iaLbChD2F3TmjJiecQm47HscLV0dJYmxvagWbFtyWgo8tR0kQAsuYMKEQEviBTp8gj5c9NXMj01yiEVtDb5OpT5Y3c6sQ833QhmwLlKKpJUN8mInuUCVP5nurfWdEkMvkaDLJwAuKqLdeG4k4Gd4hPTFdxpMdN5WBmbVWEw3SV0EQJx1s+yLob+b/fycOgpOsAYRgJjcKwPA+Fq5lfn65CmRkb2/zbdss585IA01+sIRA3I9VBi394jrE+EI7ZvQwGomQfSXMw/kymPyGdBt823+98qJe+XRkP9Zu3ZzHvd5xve6G6vA69Lg3XHVZIXFLyRwYPRqq0Z+z341upcP9ekOhxQlgDL/rXyQdei/Uv9Y7lL+uG8p1E59e/55zbm2ecbeM352j/j7qeNPb/Tg59DXub54/w80vjXBgsnqsmgri+0oV7rIwx4Gc+CbZzcz2hlLFcrTNOE/f09rFYTjo6OBHigFyPyvES3dC9k5FGkHiVxEAJixqcEW+ve146eJr+gojf4aTO3xx7J2s/FYgs721u49757cf/992NnZweuN2qdtTbcvn0Lr776Kl577VWslqu0PoLua8A8Cjrm8TgPJz4TgHIWlgbihaoYDVybXuZQnXWQPaoMRffRITm/2dOy1tZEr6qiN9R0xg31glVvkf3CAL+2l1r/awICNyYMBRrNlsAVnoYaCpgfygDT9EnbrIpYtnVkqZedpGl+ieRs9r73vg/33nOPpgQWG0Pjhlu3b+O5556X84jzRs8n3S85qskak8T6kI75Dp/mr5/TDqzQ1UMbPu9lUQ8Amj9h+320R9zX2+2rKiRMdwnFlVwWeivkKwHdwSidyZutL7LqGcwaVZInXLlyBQTCo48+nMDYpKl6CxZb2/jABz6Is1eu4MUXX8LR0SEsnKkMS8B0jAAT7u3t4ctf/jKeeuopASqpHaDfMTgNRGhYALk0kemdHqtNzkiFi2U/hq1FATTaWUXrTDamqCvAZGmVw+RcFz897wH6febpPIagOPpabTMkIEfYDR2tfz8+TXNpc0t574l3zF60GEeMI2F7exvMDavVhGla4fh4iWmapL8t9P91XSLWb5aBpZTu754+eVbtAZM1cwrbwGntndgbmu9lpk90+/88mhHrGrD9l3tJ7Xtl+hm7CmWxH2PTNdhJjTxfnMam7bsNY0NxOnfyrH+233u7DXXj8+ufJ5kyezToju5M0rVFGbQnk9Hre4h9MOl+tv/kvsyB8n1/vbmu17PenCR2Z7peR1L/eI16MaWzlmaTf1pOy2k5sdj6nqYJBwcHODw8xKuvvoqDgwNcv34dx8fHPxCgkDNnzuCOO+7AU089dSI4qdaK559/Hl/5ylfwta99DXt7e29Sb9+ZZRgG/If/8B82pgN79dVX8Td/8zc/ELz4dimtNfz5n/85iAgf+9jHNgKVtra28Ku/+qv4f//v/+HLX/4yDg8Pv2O9r7zyCn73d38Xv/mbv3kaUen7UMzOfPbsWZw9exaXLl1CrRWHh4c4PDzE7du3cXBw8GZ387SclrdtecMgpWyUKmqpzkahDvDjBsPqBsQG9jMO2QnI6xTn/PpN5DAOzL+TiCkG4GH9TKAUlu7CnK3A7PDIJx1m4wbv+uEuOWI19BObAVkPoeYMyw4jrTaqMusrmQGswp2GnbEjQC9OY2aAAhTWPHW9JYWyyAAWNWgWzYLj5r3N3dzAnG+pJkuJ/z3AY4rE50pXhhmbw1mWeQIMEBcFXrAavloAf3JECKMVWeqA5EBu5oSDGwcAgCmAEeILVdgYFYihUCIvWQSDUljThBV1uAuIaTCEh5shSH0ZDQ3Voy1RIhQBmvaJ0/y3gDAVARsI4kW+b5V1riQaTGGSvug8DgrEsagf41AE2KT0hhrfGzcBfrSGoVi0FZkDi75ijkujVwHE0M5iqAwAReZT+SkcJbRoTQ4cDE0z1QQ4NGn6hFpX0scCLIaCMg4opUhauIVEgMIgwKbWVphaxaoSgIY6rbBaSVSZ4+UKq2kSp/40YeKKVasoACo11CakrE3niAY0ruAm31VuMv86psaMgQfQKM6OqR6hTg3cgEUZNdKPsmlrAAysIjxZG0dUlEHXY2uaNk0AOwCwWAzY2d4GmjhJlrXhcDXh4Gipqffsv3CGG1yu+LoA4KtMGhXDonGGWJFMxkHlq1BRvvBoQ2qor427FA9ifJSZ1UR/neHPVrbd3GfkW6DGX6SALZMrls4pGeBg+4GMuekC7ZXn5ntGFJMhE4ZhEGCO12nGa+Htpo7HAU3WN42YGlCVRoUqFhhBw4BSRkxtBUbV9F8Ddra2Ze0xYzqcMDUGVUbV/rssDeur04Kr0rWQROJiKGhP15kiSaW35PZmbuFMay6vxJEmACpgKAUj1BFXpF533OgSbbb3Wma9zlKKlOZSADyDOnGrg3mT8ZLDxS9btPGZrFcB6jXfp7KBnt1gbnxgIGbbB1JaVd+DNLIBqfPYCMUGACb3IUt0JONfpYP2gQI9pjIOyQhuY1gzxXrfLEWrgUAlmJz0XbebiM5kaWbAHpnKAXeuCzV3LhvoFiioPMFWqqVhI0wCcCuDrSoFocm6sHS1jNgTSScsg7C8D7DpT3qL0secvFKNyEwhY4DmZB8WPYoS3SitYdJGon1GpBOJ/QY6QmbW/aOF00p1nry3AzjBUGLrnTodyfdZ+1+iQcgfdkeeyFLbu3v9zHUip5+AHNecHapLmHOiu+1NNi+hc3HHccF32Ai81zGibzPPZzxPunYsQhpF2mDYensrGyjSGJ10ZMwhT+QJcT2UEolCGoaDZbPrK4OEbG2mVzCnOZw35/sSOr5RQbmhvc2jXq8/3ve/vatk4ivpmiqj58yaasjDiXMB0vO5ZfZ37RzT86z9ZesKyBFsIxIHdGqo42CXSalt7wpH/6xX6WnAxzkD33TrvOusAwviIkFoLHY+sXZsj+DKmOqEg4NDTNPkt5qPj4+dVpnKHahNv/UeGj9QfN9xB1PCu7n7uqNfLp4iW9cAUwO4dPIl5IjUb1H5WNsjAFQId9xxAefPncM9996LM2fO4NzZMx451daA6W61VTz//At44YXnU4S61I9EhzhLughU4C36YraBtGqZIXq06guA6tVaZ9MIyQNRROAl8kiyDmIlOUs33c9FJ6oSQYmB2qoCegT0JOcmvaSiey6zRc8ykH+AEHyvYmja3urReVEkRTW3CmbCoDpIBPmxPdPWGKLejo6yeu3izX33vQt33303xnEAVBeZmLGaGr713HNYrlbex17uEfq1JPSxbcT7k9my/ydJBelTgHusxhnIoPs1VswcjLsWIWQTLzFE35zJKhuNv5r0B9eLNj3NogPYWZeEQXV+XEC4fBB9PMs1AarU1sAr4JkrzwCoePjRRwWMxs3rBgPnzp7D+9//FO699158/vOfx/7RAUjn2+0/nQROQKUPPIWzZ86mgdIaBchnlkIWe1phrZr0fEFiFyvp8k2kic2TZ3wS+2HaIdMjtocmBgcj29ROmoYYNbuY9E57E9y93++RSe66fgmfe/ZI5fN9VN+ejzfNP4GwtbXAYmuBnTNnME0Tjg4PcXx8nLrI3bgCpAJkHUHSfspoM2DJdejouI/fAXGZN9I+4236y/153NImCxerrYet4jS/To0NJcmQTu/PlHe9g90O5n2k4Eyboy7qEM/qyIPys1Omru0RITM7nvWO6ZM+PZle801oAx90383aS/X4GPoNPb2c/uoUhv7RfG4z/X1tRoxviV3OmQ0oB6daf6nnle6cs6H+rl/zrhq5bZ2fwDan5bScFimtNRweHuLatWs4OjrCyy+/7OncgM3y6O1WSim4//77ce+99+LJJ5/EnXfeiTvvvHMNnGtluVzis5/9LP7iL/4C0zS9CT0+LT/yIz+yEaDUWsP/9//9fzg6OnqTevbOLRbBiplPjKh06dIl/Lt/9+/wwQ9+EJ/+9Kexu7v7HevNEZXuvvvu70XXT8vrFEsNd+7cOVy+fBmHh4e4ceMGbt26dQoEPC2n5bssbzzdG8+Pj4A50bLDBbB7/2HaCnsP6fdxsI8oRuEwzQZmMKDe+5kTSi0wdnOWIf3gEi4tgp3+3ehpTucYkhpOE9gJyAdZAwPprX8Oo3FrKXKIgYMM6EHkIxWjAcOBR53xLYEDyJRYAxuRgEw0vZqF1WaGhAXwqFDqiNR2HZDiB2vWM70ZDaT/heDRmDwdgxqiCclw2MTpVRRAUxvg0aW6LAf9aTxsYeHMjmJGQgU6aP9z5Bho2reIOmKRp8jHKwd35R/0ho4ICGEOSuNABRAxA1zVEGDxXtQCoEZvN44ZCEB5uRQzMKkhO2x8TgVLTWfGqQjppPNcgIHUIMoKT7L5KAVjIYxDwVg0ctEgh4Bpqmg1gB1VB2zgKk+lBDNoiNG90IBCBVVvdrbGKBTGF3Lnacwh2PihhH0VxnPibK+TRnCiEQSgjDIXw6AGUSogGkAsAMLWCFQELMY8oQwKsuCKWiccHTdMdSWz0QpaJXBDrAXH6TFAjLEM6pBo6oxgdzAXkshW1AitTijjAuNAWOyMqMsl6sQO0iJ1DrQqwIEA1ACsqedIHSbCPwbKEHosxgHnzmxrNJiGiSesasP+wRGWkwC7YGzAxg7qaG6IFB3NBwiCAjELSeQlNTTbWjYhaSnXivGW/WcrxaJuNbs1jiQ7VN5SrGCT3rbODPDJkBR9AIM0wlnkbrFm5VlbUZayTHw37IAKYkIjcRBJ2hAzxKn8KMJ3LH45N6KJODNnnKYPaZC6bK1B+YIrlquGyg2LxTa2tgTABhbHpNC3oRRgZ2cbtVUcHB2gumwjMGtksQJQU0Ag1xBwDBSP8mSywsBAIXdsHQICQAIHmIDBqA4KAtrEmNAwFWBRBozQcSL2x9pYQYkkoD+dQzYZzqxpGmVOIu4PgYpGFvC5s8Wdowqw87YJeU0QGQZQKPjE9mqVDV30G+j+qfuSmb2TS92BGMUiCpmkTjJNeLZ5EwwxlLP3R9NsGugtpeOy/YlgRmJ0srmpHKUpQKFErA5CUnnS0DjtMW5YJ+d5X7hOn2y5lu+l75Z2VL60qG82OEvbZ8/D1h+rZiDqhcg1Nd4b3ST9i+1d8JSvTZ0nEXGjwR0YFKAzX8i6BlutWMseo4Z20nCSnpawM8LJ3yYvpAJ9hnRXzqHjfLwqH5QfQ8dKPKWKpYPySIB4aZMPWcasKYZ07kNhcWAPWHUt2J4uY1+zKZKuD1ikNm8CBra0RR7LIT2ncydpJqOfrsP6xmDyV11XZLpOeiHpU2RzSTYX3ddvvcLzP52zZF7TWSC/4n8m2vXD/M6Dns+p8YW34T/7eex7Ep+sO4JC7rl8zXtuV5u5JsmWRd8EAlyQnZadbNg4ZE5vr4/A5Un0DplLXSzMavW+zCmVtxH0KYBIPyf7y5af7jnN5XE8H9xvMiSDqA2carSfDY9jPmNQDX7hACK7lsslDg4OsLe3h4PDQ9RpivPojK5G/jz+fK51uJHL6fRy0tMiQos1Y/SL1R6CI8sGk+4bwBhp/MVCvjK7KCrDgMcefwwP3n8/FuOoe4ANiPxyCDNjf38fr772Gq5fv4G93V3kifFZIAX06/9ahNcNNs18LhtG6lcwVnemsOEYP5TYowHR/73frg3lLqr+YllSIYCnWgV0JWxAMOQz5T0kEbJYFDpmp0vTMzQRNP0xQCwRngoRykiYqlxasLO6q0CteZpg23M41Wdp5TidJxaLEY888jB2thcaEVguo7TWcPXll3H16svex37/QBY/8ct8H0s865+ktWTOcUKoCPalc2Js5V1dG1zu/fy6rLfarIG0ONKZwgZnU5xtCb3sNdkSthyHkWhHVYN2UH+QyqWT/Gfs6vKm+TzUOuGZK8+igfDYo49hGOBApaAfcNddd+FDH/oQ/u7v/w6r1apb+HPoFoOxu7eHL3/5K3jve9+LO+64gHxeCLHQw3asLUBTGKpuyprKltnGzA6GGMj4M4NKYh11gBLbndJ6tXOh0a7ALhMkgEeaupDTBgo0dgpOcXnoc516xtCzMYV8tNTT8z1qRhza8HGkPcyyNEAxEll5C4sLC5w5M2G1WmK5XGK1WsnZ8TsW9nFIKhtyHVzsbuTnZNtD5sszdP7QH+T9OLNZf/P+YI8ybP1a5eztO48m2ti+RbmqtA1GlF74OjKQFOkkuP6SGNPOEzzrX97bZHsI4FqMqafL+l6fNlLvHbsMsD7kl7KNF+mtWAMhN4wYbJ31n/D9tWt3NrBOd02KGlu/upbjuW6c/kCSF4lv+grM8s3pQ+4b0PfhT1LHU5vosnYGOi2n5bQACHmxv7+PV199FS+//DKuXbuG5XL5Jvfse1PGccTP/uzP4sMf/jC2trY2PiMX/xpeffVVfP3rX8fTTz+Nl1566dRB/yaVs2fP4id/8iclk0UqzIxvfOMb+OIXv/gm9ey0vJGISqUUPPzww/jlX/5l/PZv/7acJb5DeeWVV/CpT30Kv/RLv4QHH3yw00VOy/enmO3i3LlzOHv2LC5fvoyDgwPs7u7i8PDwFLB5Wk7LGyhvGKRU1gzxycDIUCdiOLTV3OcH6HyjhtDf/I/cLjPzlp94EzhJ/xVjiluStB3yQ27jhgLWkNjyj5vzvO100qNNh1UOg64CjuL4R3BECTg5YfP3etzmbJSjiJRAQjdwE2dgk1Ra4nizfjUFT8wPm5aCxgzbDAOY5HN5BlG5AQriuDTHIzmcQI7C3owZiDm+IRQ3AlMBijrHqcUBnSxNWtNIGXpr0VKsWXGysIGvmkY9UprCAEzWHYe3wcxnMAABhQHLnLAWIcOMDaTGbeMhSYMjz9otw4jAYfNDipxSkxATgAHmMPe2La2Tg3wAkEQOivmUSS9UPKXBoEAMghjHSyHQUPz28DAMbiSvrWmUC2NC6WkZBhSo85+K3PBVw1CD3OazdgBJRQCS+WES4ysBoGEwK2XwPqSPpRSUQRwcw1gUgDWglAEWCWooA8ogz26NC2yPC3AhjMMCYxkxJOMNa+QlwpbwysQATyhgDCSGRAHlFFAZUYixXE2YKjT1A9BKw8BNHWIErgL+4FaVHwR4JBGfmtJ4AGlaqZ1xgeMq4CNLocWteQj7xThiahVtWsm70MhCrSoYkVGGgkLAOAw4f+YMzmwtpA0Q6qri8PgYS00bJyxB4FZA3MQ5oWvXOBuWOiyBBMqoBtmSDXXJsWm8wOrw6GSMppkAwS3zyAY0A9CJrDJnTziATAYm+W3GOx8ThDpuHExGQVuvpPGPyNwE6V9dov4TFE5OBQpICqqGAoujZLKpCmgM8JRruiTBbQJKQa0FRCNaYUwrxmJBcrO6MOpqJe0WwrgYcObMDgDgaLnEVAX4ZnJSUjdKxK4yJMeXkMPTANqQSyEHiBlZSikazY0xDMVTh5rjhTluZBMTGqpGSikYacCiFJ2noincim2BGBBAJahsMVnaPCWfAAWJgGEosGhYDIBLyHs2IgJoJYzBzhm6lpv/zv5dmCJsDy3+goOPyfhTU8YqyxggL3jPQE1IfJvAtlDQGQoCnGGp2JKTxyYpObfSF/4da7vcqv4ujtFSRN41Tf0BALUmgzjBnS5ka8opYoZukv1K90HXE7RvGXgoDlb5vjhP6TomI+Hczcjq/EjrjCDrXnUsB3QByACh4D9OKV2VimTPJr3JdDpYWyc7jWJPDQBaYwOQGb0SMCK2W+cD15WgwElmFBpgi93SDlN6h0rxSGIxIn9F22NNEVx8XKH3aB/cYWod074rwrsHIUn0Qk+NmPTIRJKQi76ufNZdhna6JIIoBPIuRdt6e5+jrrdl0b2MZozE8eWmF074bJ0GlD+1tZbmL3ZFnSETdrrWyICkttIpv7+pLzN9d0O/rQnqgC2zF9acWokXkmfc5t4ApN33sBUY+1TPWX2PaeN44q18niCajSiRhLy7CmwAx5oCALI9bdYhqE5SUn2po3kfku+4eyY7BsECVl+uVjg8PMT+/h4OD4/SHp4nhzG/eGMf52iKofsnelPQ35WRvH+lyogpUjwbTfWpfIHHeiLyXOuj+NDToaf5WIwLnD9/HhfuuIB7770XFy9d9PMF657FzKjTCjdu3MDBwQFeffVV7O3tS+RA3+dL6C/aw2I6oJ0l9dztkT3sc5/2PGE2DouKBNcv5b8S66EU57GhDALsJmDQyxY2FQImrdrHQXSQBkD1LILZL1QH0v2qNr2oks6VhdhnwlJ/gUNCU7dP6vmvyLlvLFDgd6gaDqIFVN9j76vpCv6C0moYCp547HFcvHABo6ajJmZUrri9u4dnrlzBVKuuLQN/dAsn1nLHfrq3pTXhc8L2VlpDxo+2F4J8TIxcL1wX6JdM2BKiHu5+7/jDGTpXkfm9/z7L8fxKD73J6yZVRwRQgGHY39OLUGZPSPqmrBq5mFdrw7eefQ6Egscee1ScC4TEh6IzXr58Fx5/9DF867nncLxa+hQxSUTfTDQGYW9/H//wD/+AH/qhJ/Cu++6TM7mNx8ZtYzGd2wBlnY7RS3R2/U++GSAXWgY/z/kk+dkrS6Q8La6Pu3yN/cB5ZcNUWt8p9T2XnoN7Ho5ZinrZ92+b47Rfw/Zp9s0pL4NudyPXOPwd3XkwjiPGccCZs2fQqlyCOjo6xnJ5jFZbt7fORtqNYx65kYj0Yg752vfIf6nK2Ae4/3xOtzmtvc7+s3Q87Gsx+sy2wfxRXqdroBuOqbd1nfnP9ZCube7qJT13+ruEtU653r6B7t6qycW1J/qnM+/anHfjzEvIhtNdANiglMD6RoiRxh5g+nnXj3TgWgM2EfXZrq0r6bO+/Z5W8Vmvs6xzUN+n9ZV5Wk7LaQFkXR4fH2N/fx83b97E1atXcePGjTcEHng7lu3tbdx7771497vfjaeeegoPPfSQRGCdleVyiStXruC1117DV7/6Vbzyyiunjvg3uYzjiE984hO488471767fv06/uRP/uQHlm/fLuWNRFQiIjz66KP46Ec/ir/+679+QyDIf/zHf8R/+2//Db/wC7+AD33oQyeCCk/L974QEc6cOYOdnR3cddddWK1WWK1WuHXrFnZ3d1Fr1QsNp+W0nJZc3ngkJYRxzn4H9GDp0SCkuFM5HZI4HZrzbSQDiXikB0oOGD1cWRQaoiGFnhfDy5qbzo1rcuj02+4p3DmANA7tr5747LZZjEWsBmS320nGLpE0oGPUG/gzA5g54sxYG862dDONAQ/VzEOMh/1LNSDYCdUMVC1SoklNnSGAuaGUQceojtHCXXQhsyqI30WNzz6BYtBorYUNlaVeMYiwGk7jQM7IZjAK47YbwlhScml/3abts1f8sqGDELq5UkOCXz8jp41Fm3Kjr5KwAOqo9JBRMX6Yg1KjUUDTZIVdTn4WabPVCi4CShFnus0LqWM9jB1urGEGaPB6CJpWSG8FSyAKcbiWMqIUwlgAKpKKZ2JNOdQsWk4cDogIYxGjgzlGmSTakhvxbTgMwFIVMoCitxpZjOBOY+UfC90aoDaJhlTK4IZRsdg3lFKwWIwYhiI+jaIRlBqjjEXbkVvGw2IElYKCEa1pqsNpQl0xaiWgAQsaMAwjlnUClwouALUBRBVlGBToo078WtFaRZsmkQ3FgBtNI50BnrMJjGl5jDoVjOOAcdwGthpWqyVWdRL+s/Up0kAiXY0LcJI9tUnkqEGd1ItCOHdmB2d3dhREU1GZcbSccHS8kshXunYszUQpJKnCssHNHJ5mcQUAat6uzFFxoSURY2BW0M4wGFGW7HcCMKBL/6hroAABWHD5GAvADZtU3KhqDqX1W+jskREaCSjMHHnmKPKn1dLmMlutp7KnKMiMAAO/Gg0KkaeoM4trYyjAUfcRZjA1VGaUJvtArYxSGKvVBOYBwwCUQVJ1WK6/YRiwtb2FRgQ+PnZ5JxJJIi6J6BzAEwe4wveqWJsmI2SoBsSQudCkXyiDOg0twpbya2sii+KGvcraccBIhGKIP4tipDZdB7TAxLs45qZZesx8WxoEgzhChyp0K0WApipPhKY6VmWKQgKCM1BBtxvrvsoqe8zBZfHwEiPApL6QkpzfMnzDnX7CabIHUbRNYI9kAO4ksc9JrO1UyOiiz1t0Rk8d25R3NE3oIEwwlKJpK5v3X4DGEs3JgHhGL+l6ydu409HISjQHeVVUTQtIiH6686yjo9XrMcxSMxIFSrhYeQVRr+knfrvdHe/2e4pyOG9OZVjnmAUQUYdsnZ9UAXw89lkmT9AwvxhgYwdZ2jpVFcDAR8Z/0kyA8uDrMfrsOknSATxKpelkXo/J1jScUJRirKDQVdPzxGucqNRiEAysTTBQlM1a1nklIBsjz2iwXF/3W7/kDQfupHHGSjyU1bhwTsWk2TaaqzWZANs3895zUn8Szwmvpzlbo2/aNN9Qyeuh5xf/MReorvbOwEc0f0zp1VWQ/7IxUfqO/K31YcjYshPN0or1T8QvvTtO4Xe2PJDPbzM6ZAFJ6c8N5I20hqpzKE1WxwIyZmbs7u6i1YqDgwMBpuT0ZR3NAHOeR+qgRGt3GJrMsD1lTiUkPnUBN+s7eXQemB5lj9D6vKy3QKH+qC62vbWFs2fP4PLly7jrrrtw7ux5SbOszwh9TM4Dt2/dwpUrV7C7e1vPvdKOnQONh0ymZoBUl1YvTVdcOMo9V9rls6rXZ3uy8QCrA9+isML3bDAcwCzzzShl1P1zgEV3aa2Bq7ISk14uKJg0jKkDGciAvOSC3wHbzaIMynwXtnOt9kO/a7WCWtOLIANoYNTaJP2bjj7Ej9oRSkHx9FycUiYThlLwQ088gUcfeRhbi4WaAETb3d3bxxe+8EXc3t0LHcdYKMuKE8W+6VIbeClpHXHxSd9Je3UGAqS8hUlOB23WSjqX+x2sLE+CWxDyyAVG6sac59jBL9EUJ3619RsXu2zsUSe7jDEdxsBALtP0aYPA19rwrW89B3MgCJC9qL4gHS5lwONPPI6Ld96JL37pSzg8PHQdqwOWEKE06WdtDd/85tO4cf06HnvscZw9e9bJ62Ixi8w0DllnuknYPHAAVkEqI5klKmgpDjp06qc9lvL8Z5q7Vhc6u8sFypxvdA0e4Tzvvsa8+7EF5PnMTaPn4piZ1KYJ0y5CzAaASPdWyCGbGz/bsaWCLlhcWKC1c+DWsFwucXR0hGm1OnnZZS4zm1VrTgNXW4jW38zn67TGbY/Jl0nmNEqrsyNNvojXy3nu3ou3bb+Li2u2V8LOkf56EhY5BaHr0NHOpjnuRrFG0Dz4+Xezd2fv2D7FHTGwtq5snOmRqGZOyE3tJ8G0Wf/e8Jm3P+v7TLHg9Avn91K0zrx2vQ/pmQ1HjpAZa93sVvHmvp+W0/IDWMwWAgC7u7tYLpdoreGll17CarXCa6+9JpH1fkAdy+fPn8fdd9+N97znPXj88cdx1113vS7I4bnnnsMf/dEf4cUXXzyNmPQWKeM44ud+7ufwYz/2Y2ugsuvXr+NTn/oUXnnllTepd6cllxxR6ad+6qc2ggCHYcAnPvEJPPbYY/i93/u9N5T6bbVa4fd///fx9NNP42d+5mdw9913b9QzT8v3pxjtt7a2sLW1hbNnz+K+++7DNE3Y29vD9evXT1MvnpbTksobBim5A4vygVWiCmTwkt28tEMUUdxgtIM1gFQP3AqkZkKPnhOmTnH4dcrPBgOfAIrMIANxWtvjGuWCusNgnK6Z8uE0HTLNzsMt3lIHuIzPktuVMHCnU28YOqReRv4gHPp2G7Z3POhNK7vS6Ua+dKOx5kbYiA4g3fBlTfvjxLAoNeS0KUVzoxOro5vT3BBgIBgwoPPZDHDQAHGkMYiUH7IplMN5EJGR+rmy4dnm3DjasQhV8n6EGbc23Nib6BZtMwR8QhrBJObdwEf2fnF6NI88EhUBZmiP/iSnGUNv9Eo0LEr0b8wYhhEAoZCkyRuKKB3jIt4RByRhWSuoTmFgmBmJ3DhkRi4OvmZAUnuxRsvSSE5N8qW5wRstHNLMQUOA+xv9QlCdp+a0FHBVc4eCyYeCAYUGAeOQREWaWgWjYmsYQGDUFWNRCENZYFoeY7U6xGqaBMBWxMjNK0YZRo0q09DahLIomr6hokFuFgNAnVZoUxWHFRMmTR9YLaUSK083ARhxrZhawxZGAV8NBTw1HE8ThkJYKABEUjARGgbYDWzADHUCUhioYHsx4MzONogbuBZMXLGsDbv7R1iuqtO/pbQaDUVXTAAqjXdNftizMT9FgCqsc+7rRhdqNl6BHThHMICB1dvUwRNpLfLNPKOZ3Sb3MWuKQ3Z5YzkQdTWyOM3DiClAJRlABXNWvFmjFCnoLRnYmu4bSDzZWoXcKBfjZ0mGxUkj6TgN2YznIl8Haqh1BbvpP46j0qBgXIwAAdO0AjdGrRIhp5AAllqryge2J7FEbiKgjAvhxdYCB2cpn5pEVhsswozObWtN591WO6lzSuS8BACoCjqUOg3c1ZjRasPWWDCwREdr6mRosPUna57gTBPrHDZvQtui6zqARy5BMBAp8Evjr8VWCCJChYJDoLS2/Si1OZKkXjXnXHw/GAu48XNtRza+M1nbGZGdyXUNNFg0Prud3FrwpK8rhP6SbbUM2wNMR5F1b0Azc7o0dSxMq0itZZEP1Dvj7RSN7GRrMztCZQxBOwdTkq23APOlxS9yuKmuYQvVIrK5Q0o4Sx9X53MsFo+0BQGLk+l0pmtwzCukejFg255u+59/n+lsekfTbBymj8B5rtu/oGC8ZGM3D1UGCUhDwau232VnAqVcK60JyIfT3m70sBmH6V2JE1pyHHmqQ3ve92Abgzk9LJpiWmcz54RH2XQZbTI9OVL7N1LEB4A9R5QuBHcozN7zj2Nff9uVJD+8JAEQer6/0H2+iZ49HTj9MIBL0ldd51qrJp0L9EtC2rln9VM8R/P34I+kt2IcJqNzV7pB+PCznrupw5nH7AOjD6VW571IDVE+ycTn9llMg8kGe814FifQs+j6Uf3HHdjsfWTAQfMB3gtaMkSeTasl9vb2cHy0xMHhAQBgmia0WtOcrfMJgzH3zVk3/XntST+HIUvmQLE8Lz5sm5sgO/JLdp6IPRrIUV7W+s1xxiFIRMaHHnwQDzzwAM6ePSPz41HnNOWs6lHL5QqtNdy4cQNXr76EPQO85LZSN1nHRf5T9p4AKHH0OQ6MIQvzOLivnCnOXLLEY680EJsBmbxN6LmzAcMg42uVFYhVVF+bJOosGBax0UDfjQGUBq7sEbpaa14/AxrltXXnLXYqyaUR02QN8FGZMUCjHlFTuldJBacyKQB1ZIIdaYGhEOHBBx7AIw8/hK3F6JF2GjOm1vDMlWdx6/Zt37s6+wTy6p1JpV7ZST81WlRmyMzDXr19YuCg+C7rlZt2sq7N3LzqBCEiOFKTGysZsH1jdWziKX0ecql0KWb7xk3fjehRro5IKudMjNwOpTa4oTVgmhjPPfccLl26hEuXLuplniIR2prNE+HSpUv44Ac+gC9+8Ys4PDpM8jytfTtH69n81ddew63bt/Hkk0/i0qVLkEjNNJNZAVSD6co2HptDCjln5pdGADXGiiuGQhJRqaQIthTnGY8OnfStJPiBxG2mqmR9yM6SIg+ojwCa9gbTi3ID3f7SaWvdtwjB0hcVpVlgI4CVocsm0YXEgJ2dJ3Rsjag8DDh79izO7OxgmiYcHBxguVqpPEGiS8iuTMbQdfo+2yVHWR/pDDEbewDke7thrifGxf6s8zSZDjsXDmsUjL86pQT93II7uuVqAxTFzl8bW/DNZPaQ/ZnX4lp3TYew/TFRa97v/HnqYwbiRn+iftl7N0q5jeRb079OfIn8r5Oedq0i6R5zsHpuNzcxY4O+1vUJiAZPGOppOS0/aKW1hoODA7z88su4desWrl+/DgDvqNQ8W1tb+MhHPoIf+7Efw8WLFwFgo/xiltTQ0zThypUr+Nu//Vu89NJL3+/unpbXKR/+8IfxkY98ZA3wwsz4q7/6K7z88stvUs9Oy6bSWsNf/dVf4bHHHjsxRdswDHj00Ufx67/+6/j0pz/9hoBKtVZ87Wtfw4svvohf/uVfxqOPProxWtNp+f4XUj/TMAzY2trCpUuXcHR0hGvXrrl8PS2n5Z1c3jBIyaIQxOFn7gCitYOgHdBKsjR1JvLk7LLjK+nBKxtJxVAXAAk5KYqxENQf5FN13lJncOYAW/lPswn4oc+iIGTDH8Jx7tEbEqAgH4hJPqH0njss8tkxGX36A35yxJiBs9lhN1HHiZTHbZEa5FYfgfWGH/nBXnyQg0cPQrGbwwI16qIDqOErgGPSh5wGKY+e1cEQdh7Segkww29MEMLZqu37O3HzVowpFcQzQ42BHswIQgxwCSOFG8NapH5zE2SA59y4oRbKbBgz50gYuaw/Td9huKmeY50AkRZhVCDbUAqGccBAEo2jDEUc3BjQGmOqFbUxGkt4/0HpUmCOeouGMrjiaWAEggAdJIoQgUmAE4LjsUgTFjEqDJ3CXtX7LqAdieLEDI3+ZEYehkTHyHc3xbBqToBhGMGsxvtBAIutCd+vpoqGFYgaVrUBTZwmdbWUxhQNYSAkhoAcGipQIOHWa8VqWnlKrLqawFXT4JE8ww3gokC6pim7tJ+W4qE0YFWPsbW1hXExYlgsMNUjoRkkLcZIBVNrwfuU5QyBUDAOAlAaC4EnQmPCctWwe3SEw+UStdqtWoIBGg38YCARNya7nAprKXNKd0USor8p4JJh7GwADE39peAtzpF8krHVxmJR5orxuK6jZoYw5b/u1uvM+GeUMNnfum/XZRpBbrX3a8z4WElRCJICsyhfGVWin2Y4d8lDJreDHk5fXedTXYKhgLdCYN5CawJaao0CQMnw9celoBVNwQkBYWYHHDSNIptTTPdFeUacaQ5+VPCHydi5KdbkhcjKoGLjhkHfW7EA+IbGWCwkFUQhAdKA2SMTyhQmTtKpy4ZpM3KS46g4wB8qlgeCOvzCeWizYXtzEt8dX8R8m9yRzyz6i8lKSxUmkaeKfwewXwg31usN6gmEHJ4RkY06ht7ZrO0nWc6J1qR7SO87DB6OPS7qbM32FnjkwkFT8RlIKXQO2OYrn2FDcTWGurZzuwHysTHMnRQCsmKV6bLAGO78TyTsHLEc0SM8lS4UgAYA6viWXbStOcuyVVv8sSrXpNMxbqdnAgKR8UvoDx5pxB6h5AxLcgWQqAbhTA95lHmzczQZmWd0FXqog9/DmxmgqQCldPPGNo6ke2Yg/6YiwEQk/bHvhwqXfr59z+3rjGeUf9Oqf13fyJtd+m0kFV8AGz6XNUUb3s08FakNY51GLVl+5IqM12hDv2K/7Zz/3NcIhHxVYSPvzS4ZSBUz557V7Ly6gQS5DV7nhdytqHf+cn7NNnmgr2sD/QneW9J9ysZpvTcMBnm0muhNkgxdJxwc4Dw+o4fKdPY0e1ImjYx06+ZN7O/va2pp62ua98RO+TwBzM5imwkUY0tnVZ/GjkwBvuQgSuKRACnOSUzGD94sz/q9of8s6YjvuutOPPTQg7jzzjsFZFCK19W4oU4NN2/v4tprr2F5fIS93V1M00rpFc56uySTpJiAX+18pHuMzWE3vYl0pASSvVRlkUexhdOAKeQZddQ3cJo8M2hEWQY0J7c8YToSowIkeiJYzw6eEjtkQnBXon9juZDSqveA00UCIqGh6UamKmRglu8pRGg8YRjkbFaYPR0Uq55jlzd86WagEoDtrW08+OCDWIwLGGifmVBbwyuvXsNLV6/CLxUYtZLeMwc4+uS4PjGftB7Mvi57qRNbc/vOSZCRbrXnNbZB1BgZ+og3iPHNpMam7SHAHyZnAY9CnWhkssXlChkQNCq1CGFG03kRVYqBwmCuaI1xfHyEL37pC/jgBz+ISxcvqf5ZJNq2k5Zx6eJFPPrII/jGN78h+soa5bQNPTM3AMfLJb74pS/hwQcfxCMPPwzQqHaXEMAnbRUOFLU1l79U2sh9HpGvRaP0hlwz+0ewkINFfS7tzKLPn7CNGF3jNKtz40IuZB7N+7o2LiS+yCBInX/jv1yJyWbfe108pP7kNjj1bbbvZ55nObMstrZwcbFAbYzDw0McHh2i2dl/Js9htpTEt2sX69Jnm53E0ZdNO7g/469SLzfmT6e13ckOADkKadSb1hrUdtYNcbZu88Y32ze1hg1j7IFYve1003NZFm3goJ4gG0s+D2H2dICY+s/0lzQek30hA+O4FhcZ3PaIfj759fqYKnt98FPu4+t/66qKVZ1kVkji+Pe0nJYflMLMWK1WuHbtGp577rl3bIqyxWKBRx99FD/xEz+BRx99dKNsWa1W+Pa3v42vf/3ruHXrFq5evYrDw0OsViucZOs4LW9OOXfu3EaAEgB861vfwpe//OU3oVen5TuVo6MjfPrTn8Zv/MZv4IEHHti4DokIDz/8MH7qp34Kf/iHf/iGI5ft7u7it37rt/DRj34UH//4x7FYLN6wDnFavvfFAEvnzp3D2bNnMU0Tbty4gevXr5+mZDwt79jyxiMpuYUI6v+T38vMIObpLgws4REDoEY/NRaYs5BIQ3Xrgc0P0ux1gkkd22yNa5vkthozNoXQjYQrrM9lcRwh/5MBx09r8lOc3BsO9DCjl6bAgUZw0MeK3py3VF6sQILe4Yj+UnMyFmaFr3GFOU8NEKIdFzL7qOxgXUAomtrNbsZJyiJuOm8kpqaSDTp28HWnalODMEBNgBGs6WLMgLt+A0tpUDhFTJJ580gfwQj6XstmQzdcy+vF2yoaxUX8PSVaTaAoIYsZhcifi4lntCopw6yCbHCT6CrqcTaDXHIsEcEjR0DHb1Ahse8ZGEyMcYOmK6ICDGPBqKCkgQoaAUyEVknTAzSJ8gMGyuB8XJxvrG4CaADKgAKLotEUCChryaKXsPKHpU0SPixu5BwoxlxsfFzkljE0IotG2fL2bUUwUGgE0aDgJgp0tvLVNK1QUVGwEJxUI0jvKhpPQCs4Pl4KCIMGFBBW00qAWoBHlSEG2lRBjUGVMSiIa1VXwhO1+W1lKF8TCKs6OR9OTcZJesN2miTCkfjlBck8jqOAoGrDFo2gQhjLgDbVlH5LAF4W2efsmbMYitzcBxfUChwvK/YOj7GsAlQhZhATGsworvAKNaRbosJYF8aP5rQjWAoGWQuAAO8YpKkEA2hh9BfedhClr9WmxqjslGL7Jhl5JUWkAYSy9KTECw5o0TabtlUU3Eaa8pIh8rSgaAALM4qy8iCUvoABHcGSMqM10lvwDLTmQAFL6yZ7QJW1Qhq9yZpggMluthbUSRxSQyM0PsYwVEzTUrtiKeEMkEuoJCDDidPt2LSRFMu+R0VTyZhAV1Bga+BCGHSeTGa01uQ2M0lkJtuHiAg0DoCC+GxeDPTBzKhgtCq392thLIaCcSCf54aGwmZ0TLLVLJFgkEXyMqNsSscWoLTgQVlfBaSRoGZ3c1AIqNYeG9BY+Mki7gm9hO+KRnXjpnt/elf2c0tLSBtD1DtgJcSz6hpF6xK+iNvyShtLX1dKb4Bm2aWg8tKiDRrwZQ5sdt739+XGCotgFJlrfEgGAnJyodCo7/fRAkwPmacCY8R+S7q/qbYQa0blObGuEaOp1u9LGezAKgK6Q66DUZkhKXRigKWU0GXQ08DGKHqCRc403vOJ6Gjm823G8I6ejAyUsudIdSopqgc4CETpYXwNAY1KWx05u98dfOfrJcbWAQQYGuYNncwjk+uUAL1G6tmYo1Egx2ywKFz2nb3S8ZjqiD3QJo3NnUixpt/SxQmUNUjqn2HTV223Mr1mQ3UumG1tOJTSmkm/zGvoQaNzx2G8miE06/MaAEKbwBhHdrj1z6d92+RZrp5i9PP3N5Wsm6851Vz+v9ES68H1T00/GKyZ1pj+SfDXXMfJE+6XMDAbm+1RtgXZ0tboIsvlEjdu3MTu3i5Wq1WnlWwMiwR00+T0TjTKMiZ3nFIFZIPiNE4G1h2Xie5+Fk5w4Xx+078NAJwje8UtgqBnAWF7ewc7O9u45957cO89d+Ps2TMYishpA/S2Ko7yvf09vPDtb+P27V3YxRtKQ7b91ebVZlo/9Z8yCu4+tX3K9SGOPaDn1dRmGjohQ6hTmwlVX3qEvYKJGgiD9KjY9ZAqex4IU6261gRo2vRSgumgzncKagJDUzTDgW7c2PXBTC9OQLgAJ2nkX70RwiwRngpZCm5Nc62KYtGzcQ9sFco/9tjjuHjHRQVxy3gaA4eHx/jG00/jaLWKVGq2dozHtBaPaEnprN4LPvlcz8mBlUj6iS2F2Xr2pijq41wn4nMlX0pp5lCiOR4J/dq1fdj+6uAiIO/nfF3l+rjvvxcDiIe+LbJJ1xfNn1Upn3Ro36ua0Nj01YODQ3zxi1/EBz/wQVy8eHFt7y+aovyB++/H0dERnn/++RThzOSn/S6XDUQNE531hedfwO1bt/Dkk09i54ykFTca91SPced1Cb0Y0LT/bG+YzECcSQYijYgr82LqmQEHfc4AnzcDH8UIXIuKx11oGO8b5Mm+M7kb/YqWkvDl2AF9/p3gLf0x2+WTTQvKm05EO090nddfzMbUbVJBc9cViDAMhHPnzuHMmTNYrZaYppXYOFpOC82+d8g8bdqjpfa4zKGjnfO0zqfzM4AO5cUxnFz6C6d5XP1nrPShNB/9t1ZzT/c8DtY+zWWE2eeku9F2HnMGY1ukNel/1N/RLw1hs544p8Z8UHpWsza8ypBpXVsnlnhQ6iH4BRVC8GGqhrq/Ns+b2QDymLPN2+ZrbQ0YvWwtz3uri6Kn2QZmOy2n5W1cTGa01rC7u4tvfetbDrZ5p5U77rgDd9xxB5588km8973vxZ133olhCN+D6bg3b97Eq6++is9+9rN4/vnnT9O5vcULEeFnfuZncPny5bXv9vf38ad/+qfvSH5/u5Rbt27hU5/61HcEKv2rf/WvsLu7i8985jNveE1O04TPfOYzeP755/Erv/IrGqH1dRWZ0/ImFCLCYrHAPffcg7vuugsHBwc4PDzE7du3MU3TOxJIe1remeWNR1JygxSFTckOznaw88OlHMBKiQMl0oEyDAtxWnJjBZmBTg+k2drE2egTblJzJhZNSRbWBv3pNyrtc7n9ZPUVNXZ27XgN8VYYWSOCjzumQHHDDQrw8BQ3GslGD9xMBmhK1j+jG/dHV79talaCvJ+oVdIcawyIcYvg7ROVjm6UyC4ZhrROjb4ihmwCUCKdmzZqFKdiJil1NKf+tCZRavrzLIGoyXBJe2qOXvT84b1M0VbYSGS36M1eBXs5G3bMuJYN6uw8YPMuP9JNzZljsTP+2PfqeCay+SClRQENyktUFKBBGErBOC5QikROGopFFRODVeUGZkLz7EEDBBgi74sjW7ozjEXXlfw3DIMa8RuIixot001BKuK85eAiIsJYiqa1iZvdMqa4VT2OoyTP0jDxwlPSHhWAyqDpsEaUYUAZBeRThkFSLNp/EFAKt6bAqwHEBa2tMI5baAwsFg0GJ6ytYBy3QKVhogrUlURJAzCWBaY6gWqTz+wmuPavDJJ6EgoG4CZAMbuVKukZi/uYDcRQ6wrL5YTtrRHjIJFpptWEWoRXhlKwGOUzAUoSMBB4KDi7tYPtxQKECbUVVAaOppVEUHJnP9QgJTxTUEKhNPmRZVyJW/uFZFYtfLwbnYsAdyzKlTA0ZsXqsbm36CSUZHCAU8xp5LCobBTdaE0Lw5j5Llmftwhu9pjJJzekuhzQMdmiTnuDGaqtX7avtPgWJie8/iQPShkkAhmTppxT8AkJWK8WBldJ40aaKm4osv6ap2mQzpahYAD0BrWAbCxFV4HsPyMPoFrdGO3gMDNIs6aro4gqZDRW+6BvBwQGBpEt4nSTZpsadhtYowgA3CparagjYRxGEBUM7qVghYCK3BqJNCWljHGgAbVZlDUBUTXfe+GpGYpGJmkWFcroQqRRdiwFSjgD41/bXzrOTHspu8E+cXOnaxQicCswAGqASYtzC6W9kJVOnlbClhbIHU5u6FXiE5r7R7Mh2vamcBREfa6f+PQpnZiBpocIiz5UDGhb1EkJlft5f7HBq86S0qHm4i06UEn6ZH3w/dQjZSjVra95b44wWqHDqawyPoUC5FozO3vs+dHtvFvn/dgHlWhK7jS3Pced/TYfLiCMHubQMiAZhT/K5jTPgulSJA/NnZ1h0Lf2GDQQzAHVmN2xJ/qic1rvJHBF0fgYLreCQMIn9igDehGdksIR9TJY2IYtKorB7UNoBvgU7oh2UCpZdzol7C1YnHhd6W6y+9zGFqmzkDlqxtQmS3qe7J1k68X2Dweqew+pe4rSfEcz0Z63Mlt38lZ+yUB3NoZuCMg6rP8wR1P3YDxjPL1O1Xjet+9YAOmD0v1t4JwAqJu8yhThOAc5IMTAEWndzKjvukU2kilfyx4qqRZqnbC3t4flcomjo2NtI9G4G0eMM3QZ0j2YO5LFfmP0dYHjjyWW00cSODR971qLrvfOAZzlRaKT6zuUqJ10JYYAQ7cWW7jz0iXcd999uHTpTmwtFhKJtQRnNpYIosvlEk9/82m8du2a0lDPxhD9x6bELgjF/pn4WudZtiCfpDUntTnmOYF540utiwJsZPU7KMra1N+Lpoq3lFk50kRsBln+6n8sqXWZIWAgp4lGliKNGto0Mh5DdEE7eHm4RtNXbB6an6FErIbjXLbE0gMpCJKOGgDp/KBJlCffmyGRL7t04jTg7rsv48EHHtAziJ4LAazqhOdfeAE3b94SVjJe0XUSl6zY+9HxZda5Ec+afPT9V/eN7n3rXhY5eTo4Xy/S0ukWM9mpe/k6nwB5Nc6+AM1aMTk9l3J5rc5ltnWuq4vi8/iXehog9IksHWwPtw8YjKPDI3zxi1/Eww8/hIcefFD5mBwcwACoEB597FEAwHPPPw9Pge3ACKmwMAC2qF7y+61bt/Dlr3wFT73//Th75oyfiTrwOuIiDKcO2llDbD7N9wibwcZ2PhTZOrCmi7dLTaqTctqXhC4R0db217Vd3daIXjT0fZitfXYadyLG9jv/fcNc29/MrtuvVYF+fRgtrHMGNuv2ocxBWdcDxxrE7Oye2iyFsL29he2dbZw7J2f45XKF5fIYy+WySy08H18HQNE161HP8/dk6zvpF/EY1mfCxrlGpvT8hre8b7qn6t/9etVvKeY219uDIfsOzFQ3/Swug/jfeD39LcGcgjxpEDOZwOlZ00E6/gpamezOUsJpOe94+n3OZ9H8Jhm3eUzY8ETWQfIP24PZdYz+VT9vzCZotrTSsGYL7mTin5bT8pYt0zSBmXHjxg0sl0u8/PLL2Nvbw82bN99RgBsiAdA+8sgj+MAHPoCHHnoIOzs7HTApl4ODA/zBH/wBvvGNb0j67HcQrd7O5cknn8SHPvShtTltreFzn/scnn/++TepZ6fljZZbt27hd37nd/DjP/7j+OhHP7oxPdswDPjEJz4BAN8VUKm1hueffx6f+tSn8Gu/9mu46667Nq7/0/LmFyLxx95xxx24cOEC7rnnHk8tfevWLezt7Z3K5dPyA13eeCQlj4ZAyWgVN9bEf5uVndYbE7Ph1uyCelKMo6can1kcq3KWSicwxAFdA777mZtA/cGfikaTsEgF2g9u6ocSowuxWyDd8WlADzPchGE+H5zDKc5aByOAWeC40e8pQ7TDrOMT44M40YrWL21YuhHtp/7X36CJMPT2nB3jSUOIMAQ0FMY2MjsBDLRQiCLKkRogKsdtTzdMcDJBpcOqOz4J4NbcqOL9twY5AZvMoGCGL0sNQ0ZjAYt4JAszyGoN1cL5Ky9qrBGfE1a+YBLHud2+5DRfXJvhDSSiibnY3cBRer6nQStQgI86nLN13mZKgEpF0oiNAywyx8QylqopyNxQTeQGb2tX6hUAVCks0amgEcV0zZRBjPlcg66saXgI6pA3g7ta5xqLA7QQAQ16C7v4vBcCCE0+bwwaBknNQCxpsqig8YhCIjrkxqXwcZsYwzDKPFADT0CdZIw8VIC2UVFlrS4V3DIQxmEHIEmvVivj+LhiNR1oSsEClAETsRj/xwJUiSQjUqBp203Hz2AMzhEMRiMF4BUCNUtfJfKjMlBXFaAFxtHGNGCqmuJqMWAsI8pCIjYRxPGxvb3AztYWRmqSpo8Zh6sJu4eHOJqWkBR6mnJP5UukoYAAARkgKgp+ah2PiiG5obCCBewmojJ34+z4UUOmAZEQMhkU5jXBCZI7QMToLI4shkUd4fSfrjoP5c6oaC6bw8kefTG6GnykuvGQNApaOA0tqlqW/gWMwhp9rTGGorsC2z4ioAqPnEUGh6J0I1pXMze5Iayyp/Ak4y4FIy20T4xqacYaQGUA14baGipIwGY6F+oFgwFPDKgEGtSQP6BAUhq2VuRdNWbK2OMmJRNjUBnnSepIQUFEHrFt1OhdjRuoxT7CkFSGhYE2EKZKGFvFFgNtKBg1daIAjUx65n08AClSRK4UnWWoQyGcrjbNrP1QjrAIXixfV5Z13dgATcKvXfQh+9scHOq0swiEIgtzKk/9BRm8oBEMZNcFKaADqj/AeJ8CqCSgy3C2GoBY9v2w3QbYenAnka8hd3i7SuJ6iqXG8XeSc5x0ryOyuGlFo0npmDXPaNazbOfeZBuOp3QuW0OO3uR7MABo2seIXmKPKEiR09zoqylumHwmKDTfW13/YNcQkIFmmb4bD8DE0VcioCaATnqeGznveJpdBXq5vqh6QLMNmEPPcceaEkvmqre4e8QhVRp87mxMbvEXCbX5ZhOChtzLNGs7aOJvzWhlzwoAtxkfChRSxyZz6KAPk/PWf6jD0faYt2qZIR5EjrKvraBNZug8Z9S96ykJ/bPQX+0TAqezy4aS6Zt0utSo12eAXKQ146vVxH43uNADujUoYgHJi5e+tI5w/B0d2VzSeWntwoMRylM/rg0ujUTlbSeFwgFukoEwe80cZHmuGGtz0TnC0nBWqxUODg5w/cZ1rFYTqkbGibEF4D66HX2OqkISmR5k4O/oGIHJgI/Qed/gjPT+mr4z40PrwwbZm/sQXdbNNMlOoRt1jFdQ8Ngjj+L+++/H9s62AK895Cl50M3WKg4O9nHt2jW8du0abt26FfNL+Wc6C5RevrteRgQ0SmsqnqNcn5EGAVAzvYzzWQ6ARZa1heWz5WDAAladclB6miZvAHIwi1LRFCikfWXVwWoCrJYyyE/VOTE1tLbyvYV1n5FIliop3AYgbVcFctjoEyzO5a6vc07fctOzyZAuaelFicIYqEik1xJMcf78Obz/fe/BzvYChZpHf1rVhm89/xyufOtZ5FSsnjo3hGUqCubm1F+VU0H3vCfJoJmLs7etJM5MC3QgkGB11VPcENPrEUi/RUSnvDbZ5RE7jyYWMz5Kjne338w6E32PMdtylfOw9dhIH5IsAz9c4inBvF5OUswOWGygFbE0HB8f45krV9CY8fBDD/t6bU2izDZt95FHHpEISS9+W+dRL/NYjwgoGGBneui7u7d38fnPfx6PPfoo7r33XkmvbjNhOkgMBIAAnjjRqJCBn2d8wrbmBABeGCilCc8WjvXgW8xMprK3DNgZEQCoua1ntr1Iv5WG873A92pjr258UZyz0/6Ym4kZ7Lqp30flnCc981eii+kR1s58y7Zn+8aEv3Z2drCzs4NpmnB8fITj42PUOqFXFtDNyTowh/IwZb3lp9MZRFdC6mIe45yG82FYv/3VDTpDrE372ZjXSOL1pzoZyZ5p4+C8NpHGkOeuTz03Lz6n8xF1LGKLwRk5Pb6uS3yn9IPzhljH4zp6ViUSR/btbR6L1gjXqmJRrbec2a7vUsjYtTdjf99It/T6aTktb4di+sfh4SGuXbuGZ555BoeHhzg+Pn7HOnSHYcDHP/5xfPjDH8b58+c3yk+zQVy7dg3f/OY38fWvf/0U0PI2K/feey9+9md/FovFovu8tYa//du/xV/+5V++ST07Ld9t2d3dxR//8R+j1oqPfexjG4FK4zjiE5/4BJgZn/nMZ5LN5zuXl156Cf/1v/5XfPKTn8QHP/hBbG1t/Ut2/7T8Cxe7lLK1tYWtrS1cvHgRR0dH2N3dxc2bN3F8fPxmd/G0nJZ/8fJdgJTCCGfHHDMhdk6dJCSLGYG6QzVAbvBIx36vHwgDhzzX1Bhni9SMA+EMjBuifvO967x0ovkhmAF3DbutSQyaZqzVL1gP553jTAE7ZiS2OsUY2TRtEeuBOjufsoE2fQ5GTQArAVtF980IEMY/O3FLnQSSdGM6IwF4sn7pd2UwIkHcomYNgBs3or/972wH5NkmGLf/4X1KsZXc4GIO6PyeGajdYK+8JQat5vOYjVPuaLUpgoXgt3GJk7s4uEGdx2zGj6Chpa4hGFhMnbkOFDLeEl6hYsZ0M77DjftDIZQyCkCiFInYVITGrU5oVdqQ6D7sfGf8Y8ZQWzNSjxpp1Og/aJoviygVBiSJrmJOTTFor6+VmFMoAESMoM7HCkZoTYATQykaxGIADRbJRHixNkYpgzgHuIKYMIwDapsw1QlAwzjIXI7j4GNAKai1YSikafAWSocRjAm1VdRWBeQ1jhLVaJrQ2gSmlLpB17OtC7tpKDxfdVyalkRFVm3VcsiBm8GYit5yXCpbFQcWNQUvbI+jODaoodaKM4sRZ7ZHDEWi2DQGVg04PK44Wq4EhKapn9yJxU0juwTwkYn90MwaVcu42ox1sWIC/BBcm9dqyNlBny0wQKn83VqTCFvaRlReXFYZH9gaZTAGjcTDMEUp8a7WZ70gomTQEtAbg1Eo5FFBrEcMs72DdaXr2hPeZJ1TodyAEpFI9CcnHmekbJImHxG8wmCByiWgjJrtwSy319s0AaQp6BoHT0zNbx7FLshgJgxEaFqnRO4SQjjYlcNAWHzxIsZu09KK8wKpjCmQfbO1vG8IMMP611BRW8NYCrbGAaUAQ8lmWyOK7mHqrND48wJMJe6iDdk7tscTQwEruteBUK3jkPYkfSMSX5octjlLsrz7qUA9SqAhsyxrH4ngNAi+0bWsvGJOTAuQ0Edm8a56saloaS0BltIxGYeT2RhGT3sXInccGJLmiPRv7ycIlQWsSWRgpaTTtORoyryR+8zWai7G39B1EWZnrq2jmfWRyVYM4E4I22JJ9ld/p1Xpk0Wm61JTSn9s7wygV9ab8jjs9xAmwQfxOxUGqMa+nwFGZvTnpD+6Ay7RCqYn6PzaXPqCTI4gn++8Vnq+yU4o58Gm60P1KoI64JV384waRea36UPvTDqG86RJG60vpcIrYMBSWqpzHq2nwVu3hMyO5RTrMDuoAdv31t7sPukk6yw1y8ZC/be9ATfWxjxqhS7Z2E/zG9y351Xal/Zm+nVTyU7AeUv9a32Dm9aabzEcn0UH5R+nnv1IemZXJ/XUdz9fqJxRCQxgHXKzNQa3huPjYyyXK4+WZI4E2TN7eduPZU60nk/iWd3bjH7+QKI//LG0j7jkjOXn502bRvJ2O5Ka8pZJ0PXM9natOKV2IwLOnz+POy5cwH333oc777xTLiOAvN1WG46Pl7hx4wb2dnexu3cb+3v7EmnUK7Kup/nUfkW0JuVjfcAAO6BIGZ0jwXSRLfKIWOjm53DONKR+79d2qPTLjsFgi4Ss/CJgZQURJ3AolQQUVQAQ6XnJ0x/DgP9xGaSQ6PqtyeWGGZwg9MO01mxs/jNNsznMA+zBPt5aK4DBeYOZQU0id45l0G2v4cyZM/jQB57CHefPgygi5zQGbu/u4+lnrmgqaelTMhmkuUsrzUDOM/3DVx5T94mtAd9KU41if7F1zt18R1+4YwTR72cyhvJrBqbZsB7yXORv/fABZ+2Q/uwgfACeSklfdDr4uNi2BIalX7KLVcHe8kfGZMz7E9QLOvh1gwY8++yz2N7ewX333ovGkepL3pVI2w8//BBu3rqF27u7Pn4HJNg61X1HLpCITnF0fIyvff3ruHHjJn7oh57AYrHV7y8EZL7g/IHROT0/52ubWwbAldGIMbBEThUZGyAggJNKRh1nOck7ltukmyHxTJIwZJcmYj2uQ2A36Axrc9b/lncl/5wDLGqD77cGiv0hl4379rqczLJzHAeM4zmcPXsWq9UKh4eHWK1WobunM4dL57X9RErriKbPpj3bxiY/N/V1vVruKGhAG7XVpj0y5CD3P319zTpr2xKvz8w6YC5/27cz/91rorTfbRir6xR6aXTj3K2rFSfoZz0HOgDd6siaaVIlcvdm1Dmh+CqLdcuAXb54Y3UAcQbJnZyve/280wv6ff60nJa3Wpkmucywu7vrEVevXr2K/f19HB0dvdnde9MKEeFd73oX3vWud+Gpp57CY489tgZ0qLVif3/f0959+9vfxiuvvILlcvkm9fq0/FPL5cuX8Zu/+Zu466671r67fv06/vRP//Q0TdTbrLTW8Gd/9me4dOnSxuhYgACVfuqnfgovvPACXnjhhY324pPK3t4e/vf//t949tln8Qu/8As4d+7cxjZOy1uvEBHOnDmDnZ0d3HXXXQ7KPTg4UPvDaTktb//yhkFKAPRQFIccMyJS+h6ACznmdJvE3/La1DAWNxnNICpOOzu4mlUqDsJUkqNWAUFwg692hGfmhOSgIxASMgMGVohHwyhiAAcLj2994bCWeTQJ61PVMN1QkEPQLow/8cuMXtTfJAzCebwN+Y8jHZo5ssUQawYOaaukQ25rE0gNpwK4sfRYEcUg98tmzMAgYgfQFGNGy2SwI/1eDNYBCOBEG5nf4p/1N4TMEKVtdWn6tI5k3Y4oDaWjXQ/4IA3zD7Cli1OaCCiNejCd0cKmm+Rmbr7VZc7IocCdzEMRkE5rkJRdYAmRanPMFjUk5p5AKDT4mpK0aqTzqJFmwPBb9mY8YwZoAFftm0ZosRRQBEsN1zpalTLE+2o49UhOJcZFsNuWYtgppUg/idC4ijGWKioDXAWcwSDwSurbWmxhILusTRhowIBBut8axhEYR1Lwkd0MXGG1WooS3YCBCoYyoKFiHARMtZyqvMNNwUHVAQs2P5zGx43daN8s9Z1+lwFZzAyuwLScBBw1LDS6WMM0LQFmDIM8PwzAzmLEAgVDYUytYMWM1XLC4eERapvQ6qQ+hQRIctlk6YdifZgBy10BKs6YNKqZy0r2+dE/++L2SltHBgyUMbYkwrKzQ0iT5U4YO5k1QlNa7+TyOBt5NZ1jSucg6dU6U7CnsNsk5EopHqWnlILq45D/GeAyPIXykyBLxOYMGCSCE8Xta9JXyiARjgxMWjWdGleWyGpgSRni860pDBuBWnPAjRVr28dXZF+UiEwFtTV44Dc3OOss5Ynk2F8l2lne9yxyVEEh1shdkZLIUhg2FrBerQ1TY2wtBoytYigFwzj4vuPpSsEhJ9hoZcBQk1EWmUWNmgrsYJdLJp40igIHIEpjHXbOYwHgkEQ0os2G57kTw4zArVVJdah0LEROS4A9lV02wFKukGNlZBCNsBF5/12GpOd6sADccZYdk05TecD/DqCFykl3gjCYK/Itc1JPgMUd7MFYPe/NiwOd0IOD3K69Yc3JBVtlPpCDbULTYwXEAJZ+zKNxpPpyNBKjj/V33q7wnAEj451Zz/RnizGzApqNMTGbG0HQid7jeonUE3oQAI1G6H22vdXGa28xBU95BK7MN0kOpL+L65Q9WL4fZt/3tcL51ySswR5xAghZEqGkVCamZ96Kxans/bf+rjNDyP20tyWZgvQmpXdOaNib3Ugdkwf+OMW/G+pc/yTpnenb/ixkEc+of833775v7rycteiSVvWs72a2Y/vM60RnxbYeslq565ftIy4LVMsJgE/m1xjDcrnEarXC7du7ODo+xvL4WPW3k243G81mtAR3o53Lmn6a8hpNn7JxIG14NM9LBqaZHM4vkIlOdG8ngETHEzSbW4iuvbO9jUuXLuLuu+/G5cuXsbWQ1K1ZKlkq2RdeeAEvfvslrFYr7WJyKPreTj5/Pp8IOWl6S6edNSBSMtn+pON2XcQJ2O1x3bwr85C1j9h7bO48YixiT2O2mDH6TRWQ8FAGi6ek9ZaYZxa9rZQUYUh5s7Uq0U+Nz5XXTZeqXF3/b3ZmN0XMhxnUsMOc6UQ+gXO66M9Wq54Pi24x0qeJIdFshwGPPvIILpw/LyB0iuhYq9WEZ599FsfHxzDwtpPW5QiQTt/+2SYghaor/Xecddc8juBXWVM2v70s4MzL/pXablym9zVyVwNg+vtmmbz+idej66uk77Mtwv7O40e2VWBT6b+1CD/9FFP63UAP8HlnANwYlSuuPPMMzuzs4MKFC2HTAlBoAIOwWBB++EM/jBe+/QJeeuklLJfLrKUgk9BSBbdE43985RXs7u7iPe/5IVy6dCfKEPKFk+xhzHUM2eD80gHHRQrYuxTzSMxoLJeWiur5xtNpQp2oUqem81Xh6GdGJWaWO1mL7OifPrNdeNP8cWLEnvM5sVB6wH6d7TsdP6PX3UwBSVO93s68byr/7EwRVZH/tFvRzIzVaiWg3dUSdare2a4fr6P/W19MT+3G7XOwuYqsh2abrQGUTH5Zta/bi6xLp3XjukQmEKf57fbM9MwJ/dz03Os66CJXJoIR8sad9ZbQfLgjpfWxt2yH7PlO8xN8mDWa1xtTAPNCZrpsWNNFTqrLemx7AKVPZkWnvF9sm+s8Lafl+1lsfe/v7+Pg4AAvvfQSbt++jd3dXQcrvZMLEeGOO+7AQw89hPe97334oR/6Iezs7Kw9Z0D6z3zmM/jrv/5rHBwcvAm9PS3/UmWxWODjH/84Ll++vPbdNE34zGc+czrHb9PSWsMf//Ef4/Lly7j//vs37u87Ozv4z//5P+Ov/uqv8LnPfe67mmtmxpe+9CVcvXoV//bf/tuNYMbT8tYtRJIS7sKFCzh37hxaa9jf38fu7i729/dPAaen5W1dvguQUnaO5xuW/SGHyL43O2bv2OsBQPH5phv37mwjgoSMNqMNRTv6XBg/wkjTOfeSMdSjcHh7YRQx55I5Fcwhlw3gvb1n/ZCXU5G4/w9mbNd3/Lxplp3NThen98yoE3AFTR/DpCmHNFqDGUjsUB3NKKmCPgIaYjXWqpO2NVjakTBWFT+wGsAlR5ogSAoiRhMnOwADK/mcQSPUsBnDGISi0bXYjZsE0huzOn8K7tAhJrBER/lkI7abiKwZLhSYZQ4vmGGB0ZoAgnrHbjKuM/stQpCAcoZSNHpS8b6Ysa9O1W0h7pzOaW+aW02dx8TYKZsNmkSeGYicNyXll0RoKlQgDlv5XoARjKbpiTwzDIpERkm0IFLnvpjF3dJRioCCQLI+BjekFWCw9EtFacJgVIkMxSNKGSU1HOlt5iqx4hsRxmEEMGK1msCrhq1twmIYQLVJOPupoHFFbUu0OoEqgxowTSu59VwbpuUKrU1oKwGU1KnJDc9Ww3gWq0VowhLm3tBmxJLCS9aS8nozwIbMD09AIwG5bC0GrKo4hSaeAB4wFsLZnR2MwyhrgSUlR10d4+jwWPqjiJQ1cGYIRFlPyfFVPa1h8Fw4TDJ393Jh3SE3Nx/2a69QyOLOAmVyw+UiGRQggWWSbW9DMTnQHAxnklTaGMwcpjSwtdC84rz22A3r3JquPa2sJXCP90taIrADX2Itpz2A7QY9gagBXMATgwcDVTYLVyYApmapO0R2yArQiFRg0ECeapEg69OMsIUlWYPNsTjDlO4skfOg0Zco7V8OCDPnLyFF4BoERFeA0ghTreDk8GZImpIGoFaZi0UhbC8WWNUqzjx9UmQGEJEKZK4NWAhuGGCpAyXtXTMjvWeklH4LKCPkpCw7AlgARZb2xKKGGQDH6uh0Au7BQ6E7WL+CR6XboUNYMTpzCxBsbtNSrPKMoT1NZmGbDtkPW4C0zIEjMtga443h8PNYTLOIduOZOdhFmnZtq3cgJJ1mcxtmrI790uns+3Tfx/73cCw5oFZRcNlhYdLIW3gDqcU6gNfrvhNArzz/7jCFtW86BJC1N9MzpNPGSyZjZ/LB9YXEi0nJE12OtF6TlbK2TMavyWHf87kTyWS9NFBxitA5B8F1+mtHGlt8s72hpT+ZZy+9Fcvmud+kv8en6blOLhhvvoFhpzqt1vmumVvN/3brZr4xd3XnD3MdeQdPz6atymVX5kfvUPBT1HQyjV6v5HNMjD+tCd/22ffytfopPpN1YF0Mh91qNWH39i5u376No+ND0d18orLjdDO/29ltk66fn4nfGyxCYKd/Ia21/C4Ai4zbM0KSL/4Jp9kzzjEaIWQGG9A3L35ao+Bia4G7L9+Ne+65GxfvuAM7O9vpLJDGz9L24eEhnnn6Gdy4ccPlDTnPxH6MVEfR9LiUvrf1BU0P2qWY9jmx84d+xcJrkTLL2kI6ixH8Y0rnGnve+qD6gp1fpXOmm0sKaz+fmjxmAT0LyJ1QKwOoGAYCjap7MIGb6hpcJRUcy3mgNUkbyAr0sohKMB0jgeV8OQexIpKJlgI9kyW2cZuBTJzUTRJ9cBjknNPYIuoWPPzQQ3jggftVP7KzoJxrXnv1Nbx89SosWuKajCI7X1CMIRi1f6EXaF3xdJNrrfjk9rJOh5ZYdK3ytSBnud8lwGlr32UZ5vqeCKq8/gNMklbjXD5wrNd55ztZ4LpO6IoxSK9+Xbra1ymdLKW5ICIcHR7gy1/+Ep566ilcuOMOrzfOZIStrQUee+wx3HXnnfjKV7+Co6NjHbrtAaGbEJTv7HTGjIPDQ3zxi1/C/fe/Gw8+9BB2dnZiT2MEwNxpauqbSTGTE3qRBwAc6Kh8DYAag7XlYSiA65cB1Op3VvbPor2+IwG6WOep0CtV5mZ9TfUwB82kr6LjG9aDtcqzuQSc0Bt5Bv368iCWxhszVvY68pjsQJ3qymcWSSG/je2tbTSWiM3Hx8eaEk6v62Shf4KysyYHbOf2vXrzwpyfK7ozi+/rUW3e408q3BM+6utsEJkp13p1Yt0nNHjCO/2YNqzm/Fg0zQBodrZLbcxHnnWDuT6/sQ0o2wGuE63P03eggTFa1gE2lLgoE2strcD19tbGfPI8n5bT8r0uzIzj42NcvXoVL774Im7evHnqfE3lzJkzeO9734snn3wSDzzwwIkp3QCh5fXr1/H7v//7ePbZZ9+xKfB+kMpHP/pR/PAP//DG75599ll84Qtf+D736LT8S5Zbt27hd3/3d/Ebv/EbeOCBBzau7Z2dHfz0T/80Hn/8cXz605/GrkZofaPl2rVr+K3f+i382I/9GH7yJ38Sd9iZ5bS8bUopcinq4sWLuOOOO1BrxXK5xO7uLnZ3d9/RKU9Py9uzvHGQUnIomaHRb9Gao86NnHGgMTDLmiMu7BNuiF83HukDJOYZKmpsteOvGlHD+Z5P03HzfX72DGcTYDclzYnV97E/ljsp7CBvXyEd8ZLRr7spz9FHN+qsOSHsh40TvcHI6SyfUZHfSQEthQzMYr0rCkiBG5gZrKnX7DCtjlilU4M5OAHinKIt5iYO0j15mBokWE92ABMGNTrHw9ZvibSS7QY2buMRu/Ec/e2NHv5Tx2bPOd2IkrF9FuGAzBjGHjko+EPoSoADkaTagq1Rlo3dKGSWVGJNAQIGmuv4qRSv2z4vhTzyiqU4ZBSUgbX7dgu3YSwkRnpL2eeGjKYRnQZQqzL/BeiQHCS3jYMXFURGBLuVXIjcGT+Og7RQChqMp2R9FJJoSoyK2kaJPmNzBQBc1OkjNDRaDGUUQ9xiAWoCxrCLjMQDtsZtjNvbmFYTDvePwCwRYyZmLKcJ3Cbnz8oOzYt1LxU5QLBKAjyDYgllC8BNongUSB+Er4uRCQRJ87SaJFJNIUKtE7g1nL1wBufPbKMw0BS8N7WK4zphgoCymAahLyC0tXXrvObwHwASKYmGQdYc9/KwNekpCkWqSl8j8lkz8rPdEGc3eBmPBegz1k12bhmAzgF8On9MM9lZCEWhK6Qy2WVh0VvqrNfadQy2rgosBaYtdjNhGgBAvrcb5UXFr6wbksg7TBKljBT8QjnijDiwChjV1rAtaJY1DK6+9pklPVoxYB+ROp2UVurcIhriRvxAEo1OwzIRkXCYphCEjQNAbQ1F12VrApCrdUqGdbtdL33sUn4lg6WvJe0zFR2nRTprykOENKfyR2VZYzytsGDC9jiok8gAQJoGpRRUjcImeJSgA+ns2f5OmajaqQy0tQhVwrtIzjQZY2u2WfTycW64NzoVG5fxILlrE1kOzvULc/Bk2sF5LY8h9rV5YeWxAByy+XEVaGtyj2fvmZw3fST2Q4at4WhfepNoaq3P7MKWRtaGniNHEFFg5CwMYDI8221zMubfUFyf8/azcmP7sepJxSYlaDivdg48NxkTQJz8jOktCaBkciyl+hNXddAzA9rcCREkctUC9g7Pvwm6sUYnI2+Lu/qMpyI6XI77EXzat2N9MdkcQD1LqbROs9CRrOGG1tUC04eUHpLmyDcQfX/zPL9lincv+M61FrIHNq9Nr0IfCadZqrJrY96snVPm666vol+R67/5s84vNO9Y1yGKX/sxdGMlW27Kj/J9Vn1pRq/XpxOnseQ1qd+ldWpHI5GzehKxYShPU6cX5DE7d6I1xv7BHl5++R+xPD4+icQwKvcXBNLj6Yhg/Ssqc/v5iT2oO1Mh7RInsNNJDlwGBJzSyUU7bwKdzjSjhZ+VvAHXdDAUwsWLF/HED/0QLlw4L5cDEHuGXRiZJklhcXt3D7u3b+PWrZsePSnvW9Z9m7e+v6SbqL6j6V8lHXY6w6dRSxUKAjbik7fq1RpAMwlGfzdAmqy6l+kCVh37/swpWh6X2L/7/YH8P9N1iQjjoLF0VF+zjg5lRBkZrTKm1QSA/XxWm6R7thnzIKuZJ4wagvSAnZAp0SpktfIw5rSM8TW9mEJgcGvYXmzh4YcexPZi1P6TApgYB0dH+Nbzz6Ey0EUOnDm+XTIowMb3nrSnhu6SpjHvrYCfKZjXaeBvJ73B1ktIgdmG2+3lxqMU9EwyMYB1Mxlu7Sk/d9KRoDoO1gp5G2E3Id+v+3UpXSleD1s/bV3Dzrtsiyu1I3yf4PYwgGTeVQ4PD/Glr3wZjz/2OO699940CkaORH7p0kU88uijePqbT4sRmWN/KqVEpCOSCzjMwkeSzpDx7W+/iN29PTzxxBO448Idfh6wcTE4UhE7BYLuBPII5S0zgU2pTlMDFNDHGNV+YfTwcy7RnDO62jbrikpDfanTHa23+SW2l0xPTvsIzzXyWVtre+ds717b3WIPnr+4tndTkpHWK93DDTDmIFTZYLzvtsGLDWbEOI44e/Ys6jTheLn0SIRWM2v6v46WSR5Hn9Pa6x5NNJ7RzPa1LOHyuj3hCLFGt77Obgmt9Ym6GVnfj+d9/s5lTTuY6UCb2+i+Xntsw4dKoAxw684PiTfMLmKLKmaffY31I+zpk9dHN5+E+b2FfkgUHXUdY60tpDVmfX6dSk/Lafk+lForXn31VXzhC1/A3t7em92dt1QppeDhhx/Gz//8z+O+++4TXXtWmNlT4L300kt48cUX8dxzz2F/f/9N6PFp+ZcuFy9exIc//OGNe+Pe3h7+8i//8h0fYewHoRhQ6ed+7ufwwQ9+cON8ExEefvhhfPzjH8cf/MEffNeAlFor/vqv/xpXr17Fz//8z58Yuem0vPXL/Bxxzz334OjoCHt7e3Jp8Oho7UxwWk7LW628YZDSJicid0Ya6AGMOyPDfBEwM1qFp98xI3h2mkqh7mAFNdyCARRr3w5uvWMeIDUM2OmxqU0jgWfcUWbWHE4GB4lagdw8LIWYjTsMCpvuX2XTnPVVe+YmQ3Mc9mdNHZE5N6vCMUrcLs0mR7vJxmxgozDehZEqHUlJ0+WwGGslKgg8RVkcUTUdXJjufFzr0Rf099bApZ9TKGgEZlh04oSF1OhqbYkROnou06OGOk89lZ2oNmZSR7iRoMjN2c5ZJ+OV27MCUDHnr4ORfPaEtkX/ozKACysAoWBiBqZJFIEmnW4bTGDkudvMqVG0LXmslEHm2uhWgEYFRKPSsbkxS3ipuVM6opRICiiGOgVAsOkT54etX6C2BILzydO6zJEMgFoTQEhrKDSBMaAyAWp0H0pBa4TjaXKDFkYBpU0MoE4oKJjQULhgsdgGuELS7UwYRgOwDFhsb2NaLQXQwQIxGrYXONw/wKpVvUEKrGqTaDG6hGurMjsE1EnSN9TKYJK2hSGbpnOAA7Gq3qQmMgCQwR4K6rQET4QyFgxDQaGGxThgZzGAuKIMA2oDVm3CUV3haFqhkUCiGgSkZIbTRuJc9Lv9zJ7yynwqFi3AbJbZwMvMQGWPiOVrUeWvrWWCucxbrHWTdd52mm6tywAlQI6EAO8/UiSuzlSb5WgC2DQGuCp/Mku0IWZJ3eY2vWQqnDlzGeoYaKwZOI1I8J8e0acxWNeVOTKg7brJUGVv08+a7VGabooLqZOqKFiBZb1y9JRZU411Mqk3xJvjsnEAUQBykKgKAokkQWnfYKAwo5WYMmb2ZzIAw9e+0k2cmwyu1fvlFOaQqFwZtUmEt63FiLEMGBSEWQxjBU3rSQGIMxr2UeCapgjLUhLBI0QOmjJ+K2nXk7nN7/Z6BexzTjKKg1d8TVDI05gFqOMn7Xm+Borv7zJXNibWYaWIRL5Vpr+9Z/B5YAy+ycbKmO1N/k7sUfJ9Q3akaa7RRDfb161/OXKh1JMdO8zVI0sFJWOlWQQMfXgGCigSGSjpbPP5yDRwEC6n+jsH5uaySW8IQ36vFkTqVwG6yvw074qPPdVjst26YHIwdC/9J6XP0c4g9D75N/fL1gFZG4a5VlnCfaf0Y+qI4QBEnoHqN9CIXDnO7fdORgcHGP/qaiFb+NTT+y1X1rqm8+iTlaXL+licV5Wnbd/qPLMnNOxOQqnYluTJ/UzT5I8yuve680cCCeR14ScS+ye/sqnTvr7zU0nepT7wnCbIWnt6a3aOMxLAI4nEeH0X5RkZ8jjJHxQQSGvYP9jH9es3sH+w7ywa8Lo54Tjas/NNWivzFdLpMHNa+XLIa4fmVPWHg9V6mU3pKdEP43dw7D8OPE0MIduSwbuok/HjYoE7LpzHQw8+hLvuugtllMilLaQL0BjTtMK1167h2y9+G7u7e2n2yVSdmL+8V2mnLTW5ixgfkO6ZtqHaWPRv41EAqqOG7gciQwbHOLnrQvxu/KT8YXu5SdhIs2Tp7JQvqIAbMCGikVqUxtwXu6gyDKPWpWmFCwA9gZVhkKi+pvsDoGFAqyuNpCgz5Bd0dCytxQWWSCXdYj6TPJJpF16QZxHjtVTlDNXfZY5KIexsb+EDH3gK58+egYC1hA6NGw6OjvClL38JN2/dCnq5oIh0cCG+OLN6zO+aPI35sRe83gTssN2kWzQbwK55d4yKY42EFJpLtQRm6d7nEyMwZRFtfBePnSAoZnKG02fU/ZbYet7QXJ6b3smJrtzXbfaKDCo6OjrGs88+i1or7rvvXf5+WI2k3Xe/+104PjrGt198EXWaYKCVlvqhu7zwi97kEN1InBhf+MIX8PBDD+OBBx/QNOmxJjnxWt5XTf6ZThXnJ6ewPwvoCVP5bmhF08FLnQRLxxz2JJcPLteFjsQ9WC631cvv2f5H8r1Zv+LjHuS2tv9xbFnBE2k/97/zpjrnoCT0YDpKcFRUos/n88Rsf3VBgyRPQAj9RMY4LhYYFwucO3cO0zR1EZaap0zm4NOkB3R6xWx9cS84uvMEuLcGxr7M3dg3l9hfO5urECT6mfsGk0fZ7vv6ZUbx4JkNXZMuR99tjBvPKzP5tanOmcidyaDEWZ3Kxv3X+ll3Fxboop+5XqB08X10fu7l16MYz/7iJOtKL98NNJcX0rq0Py2n5Xteaq145ZVX8PTTT+O11157a59nv8/lzJkzeNe73oUf//Efx+OPP45xHDeCCY6Pj/GNb3wDn/3sZ3H16tVTGv6AlQsXLuBXf/VXcfHixbXvdnd38Xu/93t4/vnn34SenZbvRbl9+zb+6I/+CNM04Yd/+Ic3pmUjInz4wx/G7du38Td/8zc4Pj7+rtt5/vnn8d//+3/Hxz72Mfzrf/2vsbW19S/R/dPyJpZSCs6ePYszZ87g7rvvxvHxMW7fvo3bt29jmiZM0/Rmd/G0nJa18l2ke5sVc2p5aA81wCcjTtaZOB96eHYEZDtK2w2y4gfVhgZw7ZyFloLHDLxec4oaIm9DHOV+6BLIiRhK1DVL1iVts3F31mfmOLex3YIv6eBd0uFUDcOtujHLXPvkIBP53d1ejHD2EekBlcOI54aD3uRCbrAKU0nT9CEFYgiWzEVmxNT0NEgAitqizqrNFlJnGPt45QzOEKgBefu5eDoATiYbKm6EIlJoAZM+2/T4HXGwLVQ/LClTcXOHAAeaGbgpDtbMSp2i7ecxc29rTIxBJc9hjMUMRGWARiwReg5lBIgwoQHMmmpJ27fzvt6WFXZuEu1E10VRRiMFJGEQOgkuSPqRQVJy+7O6Qb61JqmhioKuzOgl2QT0pq4Z4czoTym6Toxwa7EdjiAjjEVw1xRNpvywtQugVpnDMpDOm/CQGVwBgMooQAdiLMaCRWkoC/mMBgGCbG2PaDSi1gZMwGIxYFVX2D88wHS8xFRXmOqE1XHF0dEBWp3AjVEb0NoE5gpqFcRNgGIscyFYMeGNoRBQSbKvDQMqBEhWwL6mja+hcseXQhMOHCDPb20tcOHcGQFKTRXjUFAGYJoq9vcnrCaZ74EYRAMqJoliA0nxYPfH54556YPSzoBLEKCIzV9OX6YYGqjNSvh0Pg4vsmYESZ/425+HG4pBIxpPnS1eQIsR9cMbJCCSwWniAZVfRIQB4YYkQAA0NKBRGMckIpMtYVnnjav2WoBlzZxPDE/xQRa5xJ2E8Mg92UFL0FR/uvaYWI3Fg68ttn2GBfjQmEE8AFXmZSzC57VWBaBJ6kGLQFAaVOIAPKpsqk3JNAgAEoyBirRdtP6B0aglp5YAG6G8YPOslkjoQGTuSGieb8cLHnEANI2J2aqbz4lUU1loMXHF1kjYGmWMZuwPzAN7ihRdLRD4HbmMNwN6swZmEnZQBpMlVbwNmQuZeBtVYCqKc47zPksqzuxYCEOvgFbYncCjmZ7l62b7T5O6GZJOkQwo6kROe4a1UpSvGyxClkVUIl1lTEWiqQXiyrle9BCN1OBORPLAO2R/ZwcjpL9CEFvHjEj7QV5PRBGCO4KBEYwKS89q4wCSM8zqQW7TQGnZMJ1JLSOeRzqB6ngOrjIi+OdGZ0ovAQa8CpANEt3DmS1TowqAG9FlL25d27mzsf/3+omBrYMm3qKCjCyFLHTvBmukR+NK08ucLhHlyJ0I+hmZLDZQQEPwnfG5C+GYh9BdC8xpjCI8Vkyicq/z+XqBgnXTKrDMcG/9won38rzR+nP224bnQ9e0GTbI+OyZtB6iLts/cludEp4+peDRLP+6rusMcfdiGkrWyNZlqP+crUnkZ63trNjmJYF1J5y8QbPuxFipqyZAkYQkM9nWsbzduOH46Bh7e3vY29vD4eGhynVO9Ld1kgfF/Z+5zOaX0sfhfM10yvSb/04dLaJf+lc+q/qrmR9s3es+Rv1Uzp+3Hg/DgK3FAhcvXcI9996Dc2fP4uzZMxhogEVJcxAqGo4Oj3D16lXcuHYd+3v7cbZVWemRiNyRS55W2zbJYNdIs4r0mfE/s2HAY7/NZAsykMuqjTc3QRopib0uA+TYhs9+sSTGQcxyqcXG4HscK0bGeLJIJFzIJYqBWIDvCpyiQhgGAtMg22YDhlJQuWK1WqGpI9+iWU7TSvZslv1d/lO9KoEzmEM3sQtPkiqUdCvnSAHHum8lnQJs1BFdTO6wMBZb2/jgBz6Ae+++W9qqAI3Cf7U1XLnyHK5dv4HY30UXbgxNeZXWju3bLsjSjmAfzcWI7zsGhuDYa/TdKDOhlZvv2Sr9RTbNc0mm/THZS8FzM9BC3sMI1l/jKV3Pvl6l77bVha2Gox95LWt7oW/GONdoYLqSywerx9ZLrLk1EJv1Xpnp6PAQTz/9NFbLJe5/4AGdBk51SUrixx99FPfecw+efe5buPbqa3qpIq2dRFCJxlhAxfiZsZoqrjz7LA6OjvDEE49jMY5JAocMi30reNikqkR1TZflZqOyKams88lNzsSk+0Q3g8GPDDtDcNjl1miWP5LvFYrkqacTZ8RbNtf+59rupmfpWRu+HqzKVH/PlifU21W0vvWsDYrTdpvXVknPcv9e6uM4jhiGAWfPnkVrjGm1wnJ5jJU6GeK8YXwjv/fLNneS1j4mYGYfy6/afsPdV1l/jebX9wtbT+vFJsfOO2nt8rz/m+teRxyd0Pe+VYjd8ATAktayjtO0M1rsv5SEnuuUpC/zjNaY0TYjlZxFaAOPbRqB71qv/0weI9FMN+210LCvRr/fQEbv03Ja/lmltYZbt27hlVdewcsvv4wbN26cpqcBPBrGI488gve///24++67ceedd2Ic1114zIybN2/i7/7u73DlyhW8/PLLpzT8ASznzp3Dr//6r+Phhx9e2w+ZGZ/97Gfx7LPPvkm9Oy3fq3Lr1i38n//zf7C7u4uf+ImfwGKxWHtmGAZ88pOfxAc+8AH8yZ/8Cb7xjW981+0cHR3hj/7oj3D9+nX8/M//PLa3tzfrXaflbVXssvOZM2ews7ODe+65B9M04ejoyFPCHR4enu4Zp+UtUf7JIKW4WdMfvsIZo0aYdCCN2+M0+1tNOuo07Zz52RjVwhluEWn6cyj5Oc2iPEWEB8DSeYB7I4o7BdPBOv+08cytb+YMjq/cNOXtpk+S7SH9zqwRguKQXwxc4GSdGXKS40AcbJauST5tTUx2U40UIVRIw3lDb5jKsMdhACGF+G5i6XGHmhrS4hZr64yVnXNNjY5E5FGV/GYu2z+J7HqA5xY0DUdGEce//s9sakHj3mBGasjJ5hewAH8qa9oeCtrZgV3mWemktrtxHIReOj5iBSsAAtNKDkSCAZB6ViQMkGhcrCmWInURFSjEp2j6NqgBUt1H6hxttj6IUGiARQMZEhivMtxYLs4PGZtFHmosjroBhNoYwzigUEFrE4ZxRGWJiGRGE2JRcNqkgDQWAMmgaRUaSySUQkCtEySKkczRuFgADKyWSyxYokAtxm2ABrltWRvGxQKrtpJ0bOpUaCvGUV3i+OgIdTWhriZMqwnL1RJUWcAfzBqmp7nTllmi0Nh6kzD4FlNi8DXUeEKtFdRIo2qp0ZRTVC0SkJNFXYPycGHg7PYWdhYLDOpYmZYTaDHg+HiJaaryvlrmrC53XpOsN1srbnxN6woqy1hTYZFhppLNKd+c8+YwkzWcQB3FbomfpFSSj91u7plR0NNydXbazQbATdkX3fRsji1OZlIK0xsg69P6UYrxvck+u/lr4FVrxN5XgFyK0GYgLNlHKpg0jo+m2yypXgP7WOoIoatE/WoVKIMAFUphgEcQT5imlaa2U9rKJgBLm2g8YIqgjL9hQHGwVeUJE6pGKTP5pvKbLZ0VIkKVyaqi68/2NpsZJcegaSGcB21+oU5BEvxsayu0SlgsBmwNehOalSMUfNxsnwDCEWo8rNNAPhfyjPGvfEcgyuAQm5MMENG5sArTvm+8yKkNn/l0UCqcAE9Wh/MJYh3aXJFufGkTz3qI7yUg3791CmOejLeNNr7vKO0tjeWMH+yZ0F/ie2AIx2I2DHsaWnu2+TtuxIfmoqYCJkZRHjF9wOfphPRfne8TkVbOdaZ40n+6HpDed70t8X/s19mYnhq279P+H+4+db7Z3p0AWDZjXRuuA7GDF7VD8qNrz8aSoyqZfDYgOye5lMWxzA+rHDGhY/uAi3l3Cpwsg33cM93IwGMqCLxd48H5s95Bo0Ma99uu0Oz3jcPg2UPpG+UBczLbXhSPMSL9Mmbr0arWM0Ou2+VT4rsQHSf0DR0PqGrgaz/v8fGuyr20n/bFGuydd64huAyL321VbXQ0zc5wubaOhVLFMo6Gw6MjXL92Hbu7u6i1+R7uaynrFt2utT7mDR1LdbGCNAAHvswH67VxPyUGeM7PUN9mxx7zXuT6af27PCYiYDGOuPuee/DQAw9ia3sLOzs7sad4exrZE4zj42Ncu3Yd33ruW1gul7ra057FUDkTZzmry1jLPnEwEEJvsPOE73PukNS6PXJkigBjLajMdI7TOox95bJML5eIInYiQcEUKYeURaOzsdle2lpzHmXIRQOCREgtCoIYyiDjUadwATRKqu53LPVPrWKqE7gKuFwirFbXQcChR2ewT4gIqyzWb3bCy/zNdrWko9vzoX3Ik+++7z7cc/mypqmTfrQq6bf39/bx0tWrod9z0NsuUkgg26Zzvs6xpgPZ2X32TcIW9EDNteILqJdxm6Ru2lYRwIbZPg8KOr/OYguwc2yksfxSnZ0snnXKOsSxB/R9Ed3CJZmLAtOd5cwfqbWh/cip0BI9O1lCXd8NhMQQ/v7Wc8/jxo2beO9734utrS20OsGijjGLLeH8+XN433vfi7/f28f+4WHoLFBZ5PuW8BBB0w+7zsh4+epV7O7u4v1Pvg/nz523Lc3nPsZMiaxJw3ERlIDfXn+Q03UUZgyDXIoqHgE35kx0aPZ+hJK0rq94tzr+NSnDa902O5jtc6lZL/kMIPNm89LvH74mkl5G+f0s62djjHoCJJh2mGiB+k+snXWq6W/zNaprfxgIw7CN7R25dFZrxTRNWK1WOD5eaooX7uarqyS1lGmd9SHXGzj2wV6HR5JT6aNM02Rz6+hHFEulm+qYgJMif/iJqxMz8c5mZ1qSGcYLG2SR1d0B/tNn3T6RCxFm1MHJyB5aZzb7PKpKvUaSm69T56zML4o4l3HIHKvbOZR6/dNepjVGPC2n5Z9fmBnTNOH27du4cuUKrl69ehrVQcvOzg7e//734yMf+QguXLiAc+fObZRtJid3d3fxzW9+E3/6p396mhrvB7z8yI/8yEaAEgDcvHkT//AP//Am9Oq0fD9KrRV/9md/hueeew6//Mu/jAsXLqzxQSkF73rXu/Dv//2/x3/5L/8FN27c+Ce19fnPfx4vvfQSfuVXfgX33XffCbrVaXk7FrPTb21tYWtrCxcuXAAArFYrHB4e4vDw0IFLJ+nip+W0fC/Ldw1SWjvMAt2BxgxzNDeiOTiAwJoARs57kSCLAynjhp9sJMrFw9t3h1XpR3dU9NAhcfher4z9AOj3wPzgTekwp05zs7RQ+gyIQ9wGA2JOaeaOY7AbeYE4THKLKAw2wnwjvDV2x3GBOjHJjFWEiHKlddIAMzQTSNN0NU2VZAfiZExyA62OWybT59qNRB3QMiJNkNHaHPAKyUm2O3+2JWenk5QI2SEptGggGhwQND9kN+9/bxxp6ZBut4Iz8KyUAioWspwESOB2JIKk8m1g1pBFljbInAHO+olXGjkiiYagfSkEy/wmoKkBoEFu2Q6MQk1vAavBjQqIBhiQhCGulsGNbQQuAkfySE0E8DS57UMMmfLnuFiAUDCUgnEgUCmgZmu1gEYAXMAamUhu8Uo9UxNHT6w74ROFmAiIqhG46o3nMmAoIxrL7BcQxlJQpypBJgp7hJ7peCWfaz+rRkQqRdI5FDKne/M1Y9E/hjK4gY4ZII2+0aqAhwSYJ3WwAl4MIWwRfbgxKsttdnNlFQjEbGcxYmuQO6vDYkSdGKsqtxaXx3JzcapTuvEq/FzGAgvF784lUIAaYQZQNTNTNrKlW93Z2Jl53B0gvXM1nGbKfwSPsGM36+NGab6jul4I2Yken0vqqVRfWmNzp770UKLZzCSiGgnJb8iuG0ZjfNEPdgO29CGBg1oYlHuQhIAUK9tepfKNAtgn+LQGGqzvAupjBoYyoqB5XI5lFQNK0UAvln5uGEdwqzMjKUudLGQeC4EGGe+qNpRigJMwFrvh3IkudVWVNcQSJcF4Kqaf9Xa1TJjLcRKHS2OhAxhYVUZtK9RxwNZiwFCKxGFRug2D8E9tFmmAdL7ZaT9wQW1Vbl4rX8mWLr+MpSjQKfiWSNLBwXi/CDgvHP7ssr1LQWY8PdeTk/5AiP1L/K4WLdFWNSPvs/4CSARrC3Bcs+dY0gI2sIA7005P1Fy2Ft0UmQw0Z/23DlfXL1RQQSI16e4/Sz/nuoc/H+O11Ezsz8mhFSR1FGgEvVJcj7H+Wlo7X/+mN20s4kzmlvW+mA9icy6FXiDVJuCy1bThbyrhnPKoRR5VE4iUb0nXSI4FYe/kBnYeCmBicMb6MDOgVPZ1G0HMQwfChjkuk6zyNvWHsygZK61T1YIsJbpYXRlIEA5nk61ZP8slhLTLvvz526l0XU5rbePD+XtOn2lFSX/u53WdP3PzrDzh/JBlseuGqb2NVeWNm9bWD2DzaXNHyCDC4MCTSx5dOMMoZA6lehhdGhEVfipDkORU38sMsTAAS2uMvb1d3Lh5HcdHx+DWkp4ddJnzuLVptfpzeUxrdMqAmjy3aaY7551pHb4CY7F5G30L1o+1h04wxvnq0vEaMGgcBpw/fx6PP/44Ll265PtdPz6R9cvVEjdv3sIrr76G3Vu3sFytvNc9bSiNhTxasKW9JtUb43xYvG+kc2AyWba7FMnN3jCZS6E/zvX8GHyMpmi0VQG2Fz0v2PmwbJh/o72BlhjIe7MvUd0PWM6QRcEPREV0MIZHuGVmxxwXq3tqES1JZ9YiZ1r8HNN7SXUZJZLoDWxgFPJ+5Tlxvd1kduIXAR4FIDmXOy5cwMMPPaTgK9ZUy5KOblpOuHLlWSyXS03BnuYOCKC4t5Npa2sqJGXOrJ7VB59GbChpea0DCgmp0U4mG6n86RPkobe5th45Prb9bW3tZUBBtL4+jtBt4svZntDVPZN7tpZcL1ir3dVU00U8mizZKSf26+gG+dq/ceMmvva1r+EDTz2FcRxR7cyQRrRYbOE973kPvvilL63faLV1qpftCqAXGEJGM4C9vT184YtfxMMPPoT7H7gfHgE3nRddWhLWTmggCrwIW9TypI9Ed+R8XuV8MXCRs1GeAhLwkumjXr9pS0mf6qhOkEskDJdJdq6xs4/tDZ3MByc+WtcNIupZ11TMw2yPEL2AYy2l892m1UVaidvL1nYbBq29F99aG8GCsbdl6ucRDEPBMGxhe2tLU8NVHB8fYblcYrVazUZqTa3zeD6LZh08+MaES+ib69Vwr99oJXlZmexaO4MwYb1Xa9Vv7vcGks61nmjb/0jPsb+U009udsz1QHcwJ74KOXCiNrcmp2bfda8RQCdRJfP3emWxDqLCzXOWn5/VfRKrnpbT8k8szIzVaoWXX34ZTz/9NG7dunXiueydVMxpfO+99+JnfuZn8PDDD8eFq1lpreHg4ADf+ta38JWvfAUvvPAC9vf3T+n4A17uv/9+fOQjH9m4L03ThD//8z/H/v7+m9Cz0/L9Kq01XLlyBZ/61Kfwn/7Tf8K5c+c2Pnf+/Hn8wi/8An7nd37nnxQdh5nxj//4j/gf/+N/4Cd/8ifxkY985ER5dFre3sXkiYGW7rjjDtx77704OjrC7du3PVL6aTkt36/yhkFKnVMGiN/TJrl2IxnpHTXq9Dc98zOpMT+MWUiR2WHQa2eA9Ca83nIjQjIwktpAOc5nXRhb67NFfDBjH9K5L9xvYhDhFJ0jO9PDfmY3Qe3vAMkoHED7J+QrAMnGYbfSOhplKxHU0EoWvYfjgM9iiAWZB4ztwimK32bWiEIomopc+lVZb5VyNkHNDvJu7FFnYsNMQUr0Y6eiHt4R3yGM2Jx4pi8chlKOcYdDx8wJLN7hNJfRX/hnVMKgz82iGg0gBQXJHAhYCWpEE2CHVGL7ccwLvO/SnYauaULXV4viJLcM1bGQDBj5u7DfkbNtGUegsEYNYgdTMQnwoqmB1B0awwKF2B2azn+2JgbCgIIGaBSlmEEDMzSwppCyfjZ1JDdQA0oRYFIpJMmRyoBxHDEq4GEgoeuKKwrrrWcWh0NjwkCENlVMq6rAOsJisYXGjJEJVAZM0xKrCnApaLWiqkHfDKtMgitgkKSzUh72dViKpxED1IBbqFuPMj8lgYzEED0U4MzWFs6d2cE4Sj0NA1opOF5W7O4fYKoCvxHgYhNgx9DQmtLEUnqZcdyNlz7zshYNlGnXnIlRyBzWpTM8Sx3Kd80iEZlBVunSGQEBaCrL5lGm1g82UmWmjcmM4MdsXPbcVfqdRYIK+7f1x6mfbMSaKI30P2blfQVnZvse0jozmtle5GMMw6LMr8iKnOqOIEZca0N8ZIyqTirJtMWapWlAo+aymxEOOYm01DQylzqauKGR/D5q5DYDDMiaIgDFU0vRCJRWMKJhqmE8ljm0FIFw2WFgBbbUojmNS+ZbldFDGQAmUGtBU3scjKZ7HrGkL6ytYWscMVDBMBSDlGpqO8DAHibBbY4bS1pIA6x48tVCijUKx5TQURhiIGhKQ7hzx2dReavZr2l8YdQOrnJglIJdRS7qiH2ftb0o9cUbDGeqGd19D0yAmSxDmzCG7k8RxZAyqMZrkYYsKp4vAfSFEXLKloYBdW2f7uYcMbbuprLSs3l/dL/T6BvDYLLDqjH9ylIFxp5rfY/URPCRgQIoasb8Gc4i9EOe7+cIkah1NO9Q1stc4iH0RAM9yp4R0F2Z4Lzn5QiNmUbrTvPops1Gp2+6/In5XS9GhNATQjbxjLa6prplHO1x6nPUYbpV9D2PyQDY1l7Q7a1d1vT6YAH9Xn+JDRDxIDLZX2e0fMLP1AfTp+fPmQya1T7XWK0Y/2XwMHfv9zLM6yHn/E5GmHxMj/lvHYwglplWxiEC1x/wvmS5FtJO//VuC98dL5e4ffsWdm/vSdoshK4bu6yNf0YkynSwFZ3lzLwYSHRGpw1vGHAwU6avqXcI0wZ6xv4TU34iP+kzMvYB586dw7ve/S7cc/dlbC22MGgKhg7o0yRi0q3bt3H92jXcuHFdgEndwGwNWOMxNz4WjrnKICiVkLDj1hwclarTNNT2udJGn28IDjSqWSRYynU5HawP1PF8niNOfKrSEH7ONR2BjJ6ApGQX4FMpEn3S0q3anmORIW1vsr24aUpqBqEMg+4O0pvWWC6dkFzEsCiWYCS5DH1/tm5NT8k3c/RriaaTTnTOtgHCWIwDnnr/k7jjwjmJVMrNxzlVxosvXcVLV192YLaJJLLUuIZCwXy1xKw4rxFgl8JiU2YH1oCT9FA9w8E3qm/Gd3Oxy97WifuhTWi2D3WCvCeh/xYCJY8mfm7cIkKmyNjz2p4BXro+kuunvm3qxEkKM+t+6COxv8M/yzITrBcWKPqXVaBomnD79m28dPUqHn7oIVhKv05fAOPinZfw3ve8B9967ls4Oj72oYoeTU5i6HmHGoMMRq8y+PjoGM9ceQb7hwd49JFHsbW15fJFuaK3m6wV0y1Ep59l+ep/Z9OvKgqXsHf4DAkvlk1vm65DAcs0fdxmM3psfydeoNC2kdajsL892+2GPe/ZSiWrQ/k88Vx+djah6auelutwG5PUiW5Ibc1sYetwR1t5vLG9vIGNiwHj4izO8lksj49xvDzG8niFVps/2tc+r4udoH37WOMZmxM7I5hEmdufslzpK8j6/sk9Oqn487YUO7159txapfYS9V+mPuazgdlKuho4zsXrQifvfr7xnvDsCcWYeV5PV9ms1c5es/GJE9/Nco5z90/LaflnFDt/3759Gy+88AK+/e1v4+joqDvXvlPLOI6455578KM/+qN43/vehzNnzsh+PSvMjN3dXbzwwgv4xje+gStXrpxGTXoHla2tLfzSL/0SLl26tPYdM+PrX/86vvSlL33/O3Za3pTywgsv4G/+5m/w8Y9/HIP6KXIhIjzxxBP4xV/8xX9WhLXbt2/j//7f/4vXXnsNn/jEJ06M6nZafnCK2ZjOnj2Ls2fPotaK3d1d7O7uYn9/f3b54bScln/58k9K97ZJMK07RMKh4gfVdKhmVrgLyxE4jl8MS8Nk5g32tDGafozVcMpqYHTjEfnhiswUwv5PtEXJqDV3knRjghsrzVjIqT67lZqNGmzOZDeqBZjJ6ySSFEFIUQHsy85AZyRTEw9F26zRTIymLRvUYECYNBB91Iy8RaPk1GbOycGNG3G4bdr3ouiqvmcdcI0AaLShHP3cxi7RV5JJpLMWuLUE4VCI29m9swc+X8E3QXsi8jRJ3tdkOCl6xY8ooiZBb+3WqelszgxjXEAoatSO6BmtVhBI0q8hGWO8vw0FljpHoxI1cRhXiCFxHOMmb50ECERDAaMKOIoY4Oop3aD8I2AiwIBUrVZQGWBgrAbWSEYaXaOzODQ0NXoQyc14eU4AFmLEYo3oVVC5gsAgrpLqrQAYBABIRcBSwyD9bhqFSVKsAVQWAoIrBAyE42mFVWOMVW9KlyKhfYeGOklaNkaTKC+tojagVka1NFQa2knSNzTUNsGAPK2FA4PATqPCvWXVDM5s7+h3hQGGpCwZxwHnz+5gMRSgNRkDScq//aMV9o9XQCOMWwaKEf4vA0DN+CHLJPJIcQ70cKMuA5rSzkCTYvBNEdVsnbFxfYEBaGZsLnJFHTDBe8K7flvW5SUjYyDWZLZ/Dm/PHFvujEXiLZJ3K3pQK6THKiYYXPr2DOC/SedtGiGpu02u67SldFjCv0BJwJwGoWPTNe+AVIZGmtExVO1vrWjEEmVMZUOz1B42n9rJqTIGrg5aYZUPRYFS1egsCxk0AK0ygBGFGlAk/cjUIrR10EP7WUgjpwHgJnJeeXtw52BPNyLGAEvbJ4bjlubVeKRBwKatSTSwcSzYagPGoWDQqG+jpoJpbGn4qGvH9gfnd2hbusU6MDLxv0VGIwBN10fRKGcMpVdrAl6E8jNJf7q0MQRP1YeUdnKDBTzRdmbcncuGvMNxhURfIOdl2+tlpm3LLPoZJHIbIVK+GajX3k26iPdL+2xLxW6pWMo2d0hA+M+wN/M1qg+A2ZysgAGgUTXy12yPIjL5AolC5/VqxMBuz1VZxSc4tjjvyTo/3ahDnyHEus7jy6LEEWheh/Sz0PyGOeJ7/by1iERBMD2x6yxADOIAeQotLMqejNPqdUe8OjGtDpM90k5yauW5oZjbNZC9DcFZ0/amlJIQ8W4PsOp/J891mUTkW7ys8++GZza/KT9OTKfR74wM6D5PWGM2fdwiKK1XY8KMN/Sllyk+z6DZnJ7ct04PTt+v8av9qwI/15rPGNYPykO1+rvNItcQoHz7tLWG5XKJo+Mj7O3u4uDgwHWR3C1b077PWBs+HPaOZ30hvu4Be72MXC+cfwt1pqdH90YPjsythxgJYq01O6PjOAy46667cM899+Dc2XM4d/68693hkofTg8HY293DV7/2VRweHG50ZnrQrtSX+dKQSyZ5TLPxEuteJZ84oKdE5bNRe9sOpGCrT1PkpU4UTW2a5dx8IEYq0wFEZWVT1zz6EOl+Z3JXUmAX1/HsMoHJfFbdR9JjK3CPCFOrfvYlQFPoNqDYRRM50zXV02xO7GzZVP9lBrixXmqg6HdaVT4OHXMsbwVNaf0EkzXy8LgY8b73vQ+X77xT9y7ZY2oTfWdv/wBf/+YzWK4mBxNbG3IvJK3btPwyXoqc1qmvNjdZ9/B5iD3RQSGdXJxtmF5HjMv2+gwbcRVrLieQ1mj6LrY+2/e0bts69V2bLyOrpXs09cDP3zzrZRbDnD5nTm0HbbKWRpkyfqZIF4n8PMbaV6UmB28QoJc3bA+J759//nkQER548AGdJu7aBxHuu+8+nDmzg69+9Ws4Xh4rfdP6K0IsBvlltAaz20h/a2O8+OKLONg/wPufej92tra8x5k3FDang4v1ZPNQ9POeF7ol4WupVTkHFSa5sFSAAnYZyUDYjaLJTkdPoi50JZs1U+70d0o0X1uXG+Rt4rj1zcM6k15xEOYmbWTT+6mdeC7vQdR9BCQdEZSGlja4XKev835EvbNffi9E2NnZwfbODlqtODo6xvHx8XfhYKCgk+/Nuj/ZfOZp0efWzwgJ1JdsMFLnWhyvjSSNOe6JTkCsuw1yp6tvvsG7Meak8fedErbd/HCWh1HhWg/6F+a/56G5YN/Y0Frp2SQB9/I3vE6/TcXFNH3nZ0/LaXm9Mk0Tdnd3cfPmTbz00kt49dVX/0lRPX7Qyvb2Np544gk8+eSTuPvuu3Hvvfem6PDrpbWGq1ev4vd+7/dw/fr1mbw/LT/oZXt7G7/4i7+Id7/73Ru/v337Nv74j//4NF3iO6z85V/+JcZxxMc+9rGNsmMcR3z4wx/G5cuX8elPf/qfDFSqteJzn/scrl27hl/7tV/D+fPn/7ldPy1vozIMAy5duoSLFy9imibcvHkTe3t7ODg4ON3PT8v3pHxXIKWNTjEgDq96qDanT+kezQfoPsJCb+8Uw0VxI4QZiJIBqlBEHYI4hO3QZWdeKtnEZGmW3ELnfYruJyBVtnzPjAnuKIeBCVgjW+Rb8snA3Bk73DR0YjFDgwOTzGAKMwpyMoJa3xhEg481nz/FOKfRQIpFQZIIVe5MZkvIJW2E8bEqbdRgjWxmyKfk6B3YgAFG5tSRbK8xfklj8AeJADTPBBAgtJIo2Rvz1Orl3XGgFkW0oEJqBLebh4CG29dUYZZ+xoxkJOnFBC+Q+QxhZDXDsd74deqspWMwmghwgIhQBoDbBAFkEUpZwFIhOjiLm0aLUrPpIH2oYpb01AcYBgBFI+ukKFCkYCxwSosh/TeS2cporUIyWeldYo1c1FgAU7VayjszNg6orQCoaNxQW8U4DpgKMKhzngphGEcQCKvVhBUaymLURhuWaiwrRVIRtVrR6oQ6rTBNFa02d9Y3N+5X7aH829gUcmE6bg1UmoAHYE57hkcXYPa1oHgIEDdwqwAahnHAubM7GIqms6vS/rIucbBcYv/gCHWSuZOoaaMCKiStHJWigDPySEdIjhEicaCAzekPXzvG9NLfIYxvyttUSJ0TYtjjVgEFUJpTapaHEawRlFwWMUuKD7Ybj5sNiz0oUD9rTR1IsfZYaT7MLGcBoiKXW9nxE8AAde4oMKKk96xKJgWbEamjhxVkGO2x09h4Wt+nQThFAS5h324hbhgeoYmIAW4CwPOb7QLQkUh2BTwMYKqaZgtgJt0GhB6k0YQEnEOwSDlk9CiDgukGsPJDrK8wtArgq+kaJuFTHa9F/xKQkAyqUBon9G8iQMGosm8KaMsiUDQWB0JbNbTCWLSCxUACVqLY94uBX9IGQ97X2PtKMcCWCX2Vob6vJh7xlFz6vX5nwCAb5xygYQJVaKKSlwGLsmN99KhJiSeFz6K/zqts/JQ/s37C91UCuSzxKD4QMFuxdew8qfNNCqp2CgZwSeR82ts8ypECr9L6lweUaYm7/oc+Q93a8lRMipqjEs9TIVBT/cV0mG5vI1javO4/HsKm3nIf4OOC7/9pz9Z5M51rgyfe5UoGesxBBgHOS3yheorLktRvtrSbRKYUhUPZ5Y1Az8j67ftF7p6tLda1PuMLLU4LG6exSy7el9BngDzXiUc9KlYvY+37cOBa/8o6bd9C5fUuB/TD4x7AsfHhja5D12ft99ftj01QB5iZ7Wcmn/zjPE9ZwU1gnPmkM163M77+srO9O3dx8G/uV26IUhPpKwclazUZUCjtNM89v79/iP39fRwfH3t6V6vDHbbJgRb7Anzt2prq6eiSOXrvnUhj9r4lfWTtr756p8f6EvEX8wzNYF5rDzp4UwlaiHDPPffikYcfwrnz5z3Kzxxw0WrF4eERVtMKN2/cxP7BPq5fv45pmlS3yLwyG1w3cX0PXVx0Olr8LceEFJGOCvJ4dDfVwelrlB3Q2qbJXts/vSHp0VoEGavf58D2MXZALThASXJmhl6CUKo1ApcWunpjjU4Z+/uoPGF0r03SsKLo2ZUl7XOrqhOznhma6Pat2V4qXTabALfgX6vHJoXyBkCAa8xp67L1GZGKbI+U937o8Sfw4AMP+PwRC11aq9g/OMQ/fOGLAQAEYEm0obqMgakAyPm1We849aHl2UBGDfTrMPU5Sw7Oe2kCdvirPSDJCWK/sdErue9nssxoS6k7nGiZoyCZmMtyJzfbSVvXD+1D9vHkYeevjUT9KuzBd5nvrd28G+S9P6rlTp45aNHGiNBla6t48cUXcfHiRZw7f04uTShwzSaGQLh48RLe974n8aUvfwm1tj5qqfVb37F0c83mMq3Lmzdv4Mtf+hIeffRR3HXXnbqOYz1YSnkbUNBrtoeSgH/sGNrD7+NdOQMAXJpftMhJIvyyEPpiY8nmCvs7GH59UoyXszRmULrgtbZ7wAlkTxvfeL2zymeSz+WxEzGPpt/30uYzGy9hXU/R/ic5072j/L4mh3NRGZDTlpUy4OzZszhz5gxqrTg8PMTR0VFcipnvS8Baz3zGOPSJbO/s9m2ev689NjmATXRb70WWYfP+bJRtfh7K361PQM8vwNqcnfD5GlzdZdnmnqvw0/7Lc5ltunS7bqBIezT3Ftck7F635JW51ifv2Ou9n+fnO7d3Wt65JdspWmu4ffs2mCVV0CuvvILbt2+fgie0EBHe//7342Mf+xje9a53bUyfZPS8fv06Dg4O8Oyzz+LVV1/FM888g6Ojozeh16flzS4/93M/hw996EMb7Sa3b9/G//yf/xPXr19/E3p2Wt7MUmvFX//1X+Oxxx7D/fffv5E/iAiPPPIIfvmXfxm//du//c+Sxc8++yx+67d+C5/85Cfx+OOPb7bjnZYf2EJEWCwWuOeee3D58mWsVitcu3YNN2/eVD/WaTkt/zLlDYOUGsK4lI0V7hT2QzpgTjS7F8bMIE6Rf2DOoqYOLTPisF3XgoEssqUiO8EI/TXCHKnBjB9NlTwiM0Sw3Er07yO0ulrJtIMWLcccYeFAjBN5OuhZhBQzClF6FnHmtOgRBLijHbNn/Vi5dmhXgyOH4Y0QhkVr06Mw6DQMZkjXQ6YYVYqnVzEjaBi9WAwPBFhqt8j7Y6n1CmJ6zBkTN19Z+2VUYk/1lG6jkRoELUVOdgiyPRWKu7hQq7IXwSLJWNsgMw6KYX4gAcmVAr+VW5RoDQ2rqtFRnDYsYALmuMVrvJzQdgJAEDq7oUXz6jWWGFoDuWlSx9QACge4kKKhgdCqgD6KpwwrnkJJACySXm0oxdP31Wr1VJShYACjTTJnVEhTVymojCKSBzEw0IAGSXNVa9ydJCJMtUrUJJaIL4yCKr0EWvEUQk1pRQpcEqeBmY4IpYygMoqJvQFDY4mMVCu4EAiDRJKqDVQnjE2iF63aBK4Ny+VKgGOtorWKArkNuprsVrTwiExQ0QgrFQMDEv0EaGyRrxTEwQZ6s/UloCi5tSIgkUJym/v89jbODgUDN6BW1CZAjsNpwu0DSfMmAWYqaiU0WkoKjTaAhwHbC2DACisFsBCRRLoiSZEHAEwKvrJ0FQ2oKGqA1nSSBKCxpI7TGWcVYVkyQI3NRQ3GrOOjYiA2k2o2fPboP7JeLBJUU4N2n3JCZJE4lNwvSeTGWbJNwRxR2i32OdJ1UmQuWmPNSsnoHe9NxYEBDdjpYZ0pg4ImbE9weahGcyKNzsO+L7gkciOhygFuAtAoQBkMTKbRjtQQT4VBZcBAg8jfsWKkglIJrRVMIEyTAmMGCKCPCrhKW6UUNHVMmlOJ0UAS4gsgkrq11DqJoy4ZLxkmW2pnBPY0jy05sxA8LvNlYDxZQ/Jt8WhjBnpqkB2AqxiYaisYW8P2YgSYHSAmfSGYaZ103o3XZN6F9ypI9QYBjGSgmm7zzocNIf/DRSp/D2TgKNNDlDeZXKYSFIzFJUzZDG+VLYUecloNWz+2tmbRa8gAOoRG4bgz2WxAENv3C5EuE6WtO4AJBn4RWaM6SmyQXbsCKkxON1JqJ2AHc1N5Dx2nLbrQC5QDFPDNGpGSxCFs7TRK0RtMJiTjNFzdSG3bWjIeo+65AK3pf6QSjRE6AkH0CAcCWA8slVtEtOg6YmO1qAHM6Q526GWRwhe+7nw/1lmV8Zgj0UBLJTWG0FdsPSY54unmuqm05znpHHldCj/Y+rGPMxDP1pSNL87/NUUFMAg+xeR4SBT4/L5ly0yFttIBY/1DW6OAD86eIAQdZxXOWSdDK7otND8tDOz7pLdEqW/cvxX15hYptZNkjf9cH3zU36+9WEs0+xnvxTccZ6fXqb/Whv39PUxTxf7+nuhmzFitVnAgsSi3Iat8CAlA6MzPutRjLhIbp09mtOGm+rwzcWpIJbaBQDqqpOfzeFO3Ol7x84mIDhlG7hwhLTQbJkoZsFgscOeli7j77su4++67FXQfj4tOyjg+XuLaa9fw6quvYG9vD9M0hZNZK9zsdE7gCAbsbBRAWyBvFyZboqOJS9hknTztlx2sevueok3X2aAAVg5eyX0PAF8P8JQ5inTCPg+NXQbZJTt2IZ7BM/ZNAoPDOEB0GLIUwTptrVUYoI8AT09NrbmuIgAlxlQVuMVNotpYf1ukjl6TKd7hRFsfQ5pHOwOyAROhvnuh/T2XL+PBB+7HoogWBAVuMYBlnfD0s1dw/fr1lJIOYKq6vgq4EEYCKluqa2WENVAB6//zKiFbqVDJYDtdJwsBaHTAAK7bcy7V2Egza1P3OjbahRbgfcolap4BJNM7Xf9c5M4Wjncjr1mlAc3a4MRrfaNpbcxku84tJ9nntMwLx9Y1ejlcdOHYep3Bt2D6+nK1xDe++XX86I/+KEoZJNJYrX6+NspeunQHHrz/Abzw7W8jR2qS4RmdTRcht08Ij7N399bt2/jKV7+K9z/5JC5fvqujny5L5+durE5qguEsqZt3ncU0383AP032JCJgHIrPNMAeecn2XPKxBPCK2QNGKUfGnpO5OLPEfC/2f7XPesKG86guXNfvyOqJ1WNzm3+T/SQDhtP+w9x/lvrqn5I/ZhScPacDN714Xgul9bnemA0iU0ffIwzDgPPnz+PMmTM4ODjA8fJI02WifxZ9oUw77Y2dWcntcPP9KeaVZ193/U+tZBkRw8q9o+7ZvIny+rfyDdv4U5OJPjyjs7zDmIuJ6Ees/f+fvT9tsuw47oPxX9a5t7tnBTCDAbERwIDYRZkWRUnUQkoMUaIcFkVZCof9wq/8AZ7nwzz/9w5HKOzwEpZFhS1roWyZpiRapEiKFLEM9mUWzIbpnunue+85lf8Xuda5twdDEgKG5C0S0933nlOVlZWVmZWZlRmQr2pkgjV1nDrMSEkTztnGbJs4Dle8S8nWsNy4mX8js0YDOw4OzFS6busmbbFY4Ny5c5jNZrhw4YJfbLh+/fqSH+PHuU0mExw+fBgPPfQQnnzySTzxxBM3Lef2/PPP49lnn8X58+ext7f3AUC8brdTe/LJJw8MULIglddff/0DgGzdbod2/fp1fPGLX8S//tf/GpubmyufISKcPn0an/zkJ/GVr3zlB+LPb731Fv7Lf/kv+MIXvoDHH398JV2u249+K6Vgc3MT9913H06ePIkrV67g2rVr61Jw6/aetFsOUmLNDOGOMz1A2WGJ0tHODoBxkFZD1uiANzYMMShf9EydhNHWjePZDmZBOgREeZU0NuwQKeYJzwxhDjMzVrXneLm1yCSpxZtTLiM7Ov0mpTvratMXM4279iPuWEi02UsOYvrpyN48bz0TPDA/wcacbo+yBZel1WDWm3xmhQKQy75wHgPwK6gJx9mJyTYHO1h7kIAa8QhAuAtlfc3rylADd2RLcXpKRi0QJM05oZknaVBQKQVM4riuzOBBSp1Z1hm/62hBST6QTrZExgZzlITh3nBN6ac+QEUc91p6TmvtSOBYp4EppaArExSlW8tsNXAYyEshlE4CJIoGi3WFMVTWi9KMvkICKboJLPuTBFpNFO8DumknmYoAvVFcdf1rmjPARBiGBcxfb8Y5cEWn3hIqEkhFnZSX60qHrnQoXSdBP6VIAJTur8VcHF9UtOxfX8EomM/nKFwxmRQPfAATppNN9MMCs34By3rSZBcbes8i0xoC1YSo45ROAtkGLV9HCjvYSlfJOxXq8O8KDm9s4PDWJrqiawKgB9APA67vz7G/kP0xoYKOOp9XR50EZVTGZEKYTjsMXNEPrMEUnQaE2L4l5Z9CQ5kGi+8VM0CO6J90r3rgZ5jj3JlKwVuqBl/mTGDBj5SPVclM5MP5ng1Hd14D2yuVWenX+HMYWtvMN6R72vYSmmcO1m8lINX5pc9D18+ykkWdAoUkm3uTE5coApJQpBqWlbUkDWhRQEkdN7VKsNlkInf5y2SKWqQsogSdLdAPA8yT6MVKFVcdWcUOpX8AXJSf6nOd7iXiip6rZ6NLCAyenXBaa00lXmKOY7kSwXjQYCULKOMWW+rc63tGV4G+Vky7gmnXaSa2LOkBjMbWT/S57DxX95QbfJXWlT8WlswJ1nfxbEfVRK6wY1iAUktaFpDsisFI1xCnUfX9kfn9ShmcHF2Of5VLoVwE/0ysqNkLwZ9WGbMTrRo8HrTMPp7t23GmIhNB7LSxbFxPgymchGx4luwT7N9ZHxFETWn1rPxkwqzrBIohDfxuDd8JKwmmuE1tfcqci8pcL49p+lm8KY4v17eWW3aUWFAUBWPz+boTwNdOFzKJctN/PMhBy8Pa87auPhfLOsGcsjW0NFdhgZrUrG2ekAdXJR3Leb9RQILdAsZvmqXoNmnOp4AVtJJXaUXzF9jpv0Efy0PuwEuSztaWU1d59LxnmyeWjDm55wwWZ+G6DPb4c30208/4nQR8/HEAglpNYbnZDeerV69q1iQdJ/OHBJidu0bQpDVj37vjZ5x7coa35T1xnlMm7/C0Y8F50bi1+zlkf5wDPENNOn+0Xdk+0nNhKTh8+DBOnLgLJ0+cxNFjxzDpOrmcoDq86TJ9v8DbFy/i8pUr2NnZwf7+bPXS+HaNAJccCB7HGUr8tAR8MsHVe9p5gwX06DvKf0J/VH5SqBnH10LxV1XHKsp8/DxhwfLMoM6QEPvKnNceYKuw1cECgy0br0DjZ0DSyzWqfxaQZ721OXmwJgO1H2BOaWZG0YxMwyBh0aJTGA6ArnSoVQLI4/JJkqc15FLwI1K9M/i2ZVHmFIwVnwXtmkzZ2trCY49/BIc2N7zctmg0cgZ7/c238Nrrb6Am2oh9l/SFQug6Ag+k2aeUFkbEtcoxPeYrmY014pDTPs/y0OHOslj3fFZ62kG9m5wFasw/4g/y95J2sJqNjroaswXnN6veHcOX5I+/YLJjRQdhfxppNrb/7DZIsw4RUGCBOpzwQYUwm82we2MXd9xxh9IRYaiDw2Q6x8OPPILjd96J8+fO4tLly81cx/zV/ixFLoU4L4A4lZ977jncf//9ePjhh3XvKayqbFvwcw6SCBRFoCMrH/QArUY3jsuNFWJDq2B0RHp5LmgdgGdyGq/HWMb6EmRRpavmZQJNR1KhG7oZ9CIOt50uiShuxmjRMNIXMszWmYqzrGs0f48vJx4o39AGoQFoAhFH269ZNwcn6Q3Lwg9d1+HYsaM4wkewmC+wP9vHYr7AUCO0fgwZHfAXN5PNjzjig0LjVsvKed8M36ufHvcTuoDRbYbT9P/McxrcGdg30aNXQdbia0RAhPbsesDMGno7iGcvwcF6qetgYNs+CeMLtatgWbd1W9X6vsdbb72Fl156CdeuXVtxRlq3rutw991349FHH8Xjjz+O++67D9PpFF3XLT07m83w3e9+Fy+99BLeeustvPPOO+8/wOt2W7Y77rgDn/70p1cGnzAzvvnNb+KrX/3qBwDZut1O7cqVKzh79iweeeSRA/WWruvwy7/8y3jwwQfx9a9/HWfOnPm+x9vd3cUf/MEf4BOf+AR+6Zd+CdPp9Pvua91+uBsRYXNzE/feey9OnTqFGzduYHt7Gzdu3FgHLK3b991uOUiJ0vmWoQYFInQczkczGpoT2s/VjfIawTGNnSAZvLgmZzh00PEZdORoi1NdOCuXnXbJrpFgyqXlCMXnAh4f9u1g2zru7Wcceg1JkKAInbdYa9xkJcYdO0B7VqfVzsYlxzPFQRvabVfsKF6BSr4OtfaOSwtuaJrDHUYdmUVJ8GTjxyiwJcEB5nBwYtnIubQgyXzAmoWCHVoAGEAaDOKOQSK/vSZz1LIAbsQPa0Cv8+LBcmqQ3+qVjENVMwQRJKWKZWjSeSc6tMxblnmK1AAk5TA6dRBYoINOsVY3UFtgXEKd0FgFGANQ1BivKW9IjYf2bK0axEWE0tWAr3Qyvhr+CgomXYeigTMeeEHAwEBfBxSWYAW2jBUV6AfWzElAZCixPu1zGbOIKwFcJTNV13UoJDRI0Buc3AneBnEODH1FmXTyPRjoJCBttligaiBRVzoQA7P5HFb+S8q7Ce1ZmTQMgteefYkEmcSescwiHotnZ2Pfnx4QVqsb/ieTCQ4f2kTRjCPzYUBlCXLany2wv1igr9XJlqYduq5ikAvbIFTUAeghpfxsX1XmsMfpvifNBCZlGqo6QTJfULqCrrHCXqy0he0o/acaDhjoqKCC3TmgOxF+AzLZLA1P7uAzHsOWQIz8bzOwsY4faI9xvAiBG8EsyAzOPyzbmzmdiuOEPBtSlgeVq5Y5rKhseDN+RRp8J3vQZ5uckzp9WCAr18FLKOYSE1zZHVYWKGE8HxT7v1bZF2LcZ0ygN92rlGYkzbrDgOwbDh7Iii9Hc+KTki2tk4CbaqXfJMiQWbMPVdbsW/oeR78WMBctQtIs41QhAgqj1uDRnPj1oAstASeEOrDe4icUYnTMXrqhGm2aI1P/DSO4OThlH9eBVR6R4zTfUu2UxTNkX44d5v5bsvsCkZnA8MkMLVMHN9K77sL5Oe2ILNOTZfWqKqpND7DMXoFTiQ/VDZTwZ3pN0B+ZyPfvXaUI8aK6QtInbNtX+yyCluSnObgpWJ8NsmRop/zFkk8g6xdWV9oDQlX1Isu2ZDoQqcuaY9IMbrLVEacAgTweBAnupmqCLC3IGUgzamAFccKVcrDKHvC21FI37NnI8pqNg6XkSXc+QvQ4ITdyPaQdKdFqje9ydafqgoO8BEnAq+4UKh5M1TgIGeBRkFjoVvJhE9hxE8fK7dN0nghONQ6BPPC13GhM04oXz4wadLKKpuA6uHXNpu4CJi9X4DPWIfqneDE9FwFu0uMoIIn5pnOO0F/jV8tAcP6T4nOBT2hpf38fV65cwfb2djN3e59SPzYb47EwnRimsxiOGeMFMXi57czhC1SmjABLPCk9d4u0HPslglSagE6DblV/DBw6dAinTp3CqVN34+iRI5hMJyCHkUIm6M/5bIZXXnkF589faDqK1TTmmYMeEiTOD7KkhssPmbp9H0LP4bfuEXKTAOE/oXA283bZqTLE95seU4PvG59COrfEhQ0mkZ9MEqxt/DTTRq2hDxI5h1N+b08l3o/Q62wuJnNFZLSBvszV9eEKqMJa0GtWMLBlvAUGHmCZga00mp0HwCbLNeiC0PAUP7vqMzkYzveBzqHqp9PJBB/96Edx4q67vI+q5a9qZWzv7ODlV16RLE/aQdfFJRvnXQwvVZrpI+8Xo/XQb3ROpQ3QyyGbzrsQa8Gpw8xPnBfYTA6QzQmixD+Mf8a3PmLa4yuk9vLnSd6P+8x9+wOu32HEQ2RSbLSV9lbIDpMBAedYkkRvTig2WEMzzsuyES2NPQwVL7/8Cp588kkcPnwYpWOlFzkDWDZVKoSTJ0/gzjvuwHPPPYtLly9HPnHOu0anrXMupBmRk3ybLxZ47bXXsL+3h4cfeQSHDx+Grxsj0X8bsNXYcYLdOvocT/lsYc8SRJ/VMsWFRHa6raVZRCvbnNYu2a0i2DABoIQt/AmeMc+zNelsPOiHEGczV9RiLoHXLBuTrMrs1T+wxQ6psYyzli/rhBpO0vy2VB40nV1WNk6PcwY+gvVp9DyETjY3N7G5uYlaKxaLBWazmZeAFXQke2BwCQT/WT5f6Is6zUSfebcaIY3xkuAPeTGW6MsDZqniz4xw1th2c58ZXwnu1ReqknxzMNrgR+clrfKD0SKsbON+WplpzyR9owUr7R1egss//h7gWbd1q7XinXfewQsvvICzZ89+0ODclu3OO+/EM888g6eeegqnTp3C5ubmgWdyZsb169fxpS99Cd/61rfeZ0jX7XZvhw4dwu/+7u/ivvvuW/n9pUuX8OUvf3ldZmnd0Pc9/uzP/gxf+MIXcOrUqQN5zmQywZNPPokPf/jD+OIXv4jnn3/++x5zd3cXX/7yl3HlyhX88i//Mu6+++7vu691++FvRITJZILjx4/j+PHj6Psee3t72N7exvb29ppPrdv31G45SKnoAdxvntDo8JSdvemcLmdPSs8BWDKgJuMatPNcdsMMiOmFfCu9NUyFcaN1WJkzVAIQloKBGK1jOxvqFL7IcIImxfO4tWfYuMEWzka4kcEzkaRAllWtVguQiVtvoDAag8QZSh5IAw+IMcP6oCXebFZqWhCHeLazGZw2ccprzP6fBw+B4QZgf7892Oe5mTO0CSoaGd/F8mxjR7Yl+4pKUbzB+4myaRKAU6uW1NJjvBXNErj0VirFulNJx32nL33fcI8MT4ztDl6bk8JlWWbU8ixlDiq705NJMqFYxiYLRjAjHjQoRpwQHboOMGelzd2C04gGFA3yYc0CxHWQ4IqitNgPwFAxsDibBiubUAlgKSzWQYx8QzLcD6WgI8l8IgFKBKrQABHSoCRGKR1qL3gvpWJ/NgcATLoJptMJNjamEsQ2VEwnHfZ299Av5sorGIUq+gWjX/SodcAwVPR9j77vUftB6USyZ1XDjTpHzKhsPEqCo1JQC0sQB0PgHAbtj4HppODY1hY2SkHhAbVW9IMEsPWLBXb396V8G5MEihRCtUJsGqjF3AOYYNFXFO4EtlrBWqqheDa6CMpp6C3xL1tgLxFZCCWVwMwmQguq8/3MKVA0OTHdbKqlBX1829+Av0Mgrw+XgxzC5MetU9BHCT5WKzfvx1plK2/1veJ7PzaXBpDF+JUF67YXbUi7pQyYcVqNcswoYMEd6XpADXuaqS1sk0WyoBBh7PhmrhiGiq6bOhYkg5Y4wKaTDkNv2ZUscE+4lWQhCD6QZVPmiYA41SYswVb9EKsWQcDkwVIAPNDDsq91VQ30KhP81r87KCU4hDqBq2rw5liWEQjiI2H0LOVVJgWYdkUDRBQHncocdwAGz4jU/1UCq8ponXxl2fHdEXmpUgaHDIOpAePbrxl644Oe86eRP6sMsnLTf2jWgbTmTTh1rINEv7rnoOuhnSUDtzobfW3NvJydPipb3CEGcIlsFVZehxuasZ0WQcQ2D3vvINrylaUWF5lPBK5Y1s1gqJb9UDJsVNbgO0rK3go8hxy1PSz0ZnI9l3SVdymzkQYek6uum6gOybbmHPJ7rHdQOz24PmilFU1fTTqL6zIqK4XPrgjAtoVe1ZSvm04sS5gD8PQxC5BzJ0/CJ2yvWIAkNd+umvOqYPfbqXmoreESuEllCWfyS3Rxc7/KQYuysvelfdE+ZHSe3qEsV2uzLpT+ze+nsNGVoI9pa1Vfcb7K8oFsO3gAHCDnht3dXWxvb+P69esehLg8DrXgJg0j+HTLX9oTEhp0N67d5ms+YKFXbPrvo61KDOD81uAe8afpZIKTJ0/i0Y98BJubG647qWIiR5EqgfWLxQLXtndw6e23ce3aNezv7zuPM76W5+QOaSNfSutP+k4iGlvrHDjqfVHLK5fQztAsbpRWb0TQNc6jTvQGg35enCbYg1MNXrZzjI2nZ8qqPKum75mpoR0b1AKoVEVp+HMrMzVzVY0AjB6D6sNFMrhq+SgLfu8Xcy0Fp1AzafZI0cNZz4Vca+inyGOOnOzNFrb9sBwMKwH2AnwhwsMPPYS777oLhUgyqFZ4ubahDnj1tdewu7vr2anlWCHnxcCf6KcDRyC3nSM9IJ1bGHxPNmf1Vuab6GzWpRHhpoyM5wgtqbtEsP5uu9btnrZ1gtE9EvxLApqQw/0SN0m8yGQIRrIuzXkM/wo4V3Ee7aH5wPfjCHeBJg/D8wca1YdZyjNn/lnlfLq9vYNvfvNbuOdD9+De++7D1uamZkGqOrZCScB0MsFjjz2GnevXsb+/n/ThkBS2TnbJpQMJHRlM+s7bb7+NnRvX8ZGPPIa7lF5tWTK/EtZGK5dLWCWpLp2CocYyjANHA0tG6440A7UpYQ53emm0iDa2nZmbr5Xug1bSWiT90GV3Q/fckOSqxkt/ZL2AQ4lQxhccAyNIcz+qG5j4GMFgVJXXrW0uNUb6h/6WaDHiqUN3sDEyjVsJh42NDRw+fBh7e3tBay6bbOor5HaD1zRKzjxruEnZ01d15XuoEVzNt+knpX4yn76JbpGI2mTW0iNZt0bmDa1OYeuU+wg6JSOx0cCrwFnF1+C01lJBzDFsP+mMcDOCHrWs57Vn4h9cN1u3H97GzOj7HpcuXcIbb7yBc+fOrZ2NK9rm5iYef/xx/Nqv/RqOHTt24L6ptWI2m+GNN97A3//93+P1119fZ05at6VWSsEnP/lJPPDAAytpiZnxf//v/8W1a9c+AOjW7XZsZ8+exb/5N/8GH/3oR/EzP/MzuPvuu/1i+LgdPnwYv/7rv46zZ89iZ2fn+x6TmfGd73wHb7/9Nn79138dp0+fPnDMdfvxaMavptMpptMpjh07hrvvvhuXL1/GtWvX1vrDut1SI1559Xy5HT1yyH/PgUqsddwzQ2K2G4x1uSMZ1Q+c2fZvTqZSuvQ3Ael2vr1kxpcwZIkzm9T94VlE/IDFbt3Ih2sPnDJnFVYZvHSyiEO8OK2SQ3H0XtzSUfMEiRnTDXUKqxmTcvahmzUZU2/Xhd3KD6byN8XfOp5khbAMHBmXSEbRFmdx2zHhycdeYSqhlInCDXp6aMa47MKKA3jCr6MuG8mok0APkJZx04AVXR6DVwKGNPNJKZCScZDAMg6HoWdrocBX4FFxSWZo1+8gY0qQkQRqidGaPIVrKZJpgogwKXILWfrtUKjo3mAQiaHZ3mN1jhRd1KKlG0qRyFRQUYc4YzKZ+J4rVFDIAkeAQlOUboLKPYahB7METhADQ1+x6HssetaU8koPSkxdKeBBgnQGkhIMVEgyxDBjUooYFjX4ByCUSYeuk1R/pXSog+GQMZl0nt5WDF8beuG5YG+2j34xBw8DhoFR+xkKTbBYMBZ9j8o95os5FrMFamUMwwCuVegP4hipLPWYg9ew3jxW3uR7wIJdJJCsVkhfXDHpCMcPH8LhjakEYjGjr4xFZcyHHtevX8fuQkp6SXkvAnUF1HWYEDDtpqjEWPQLoIox2ILwZG49vI4lNHhB06tUHvR3QlVaJ1bnCsQxlgMUyUpTSKSIO+eF9Nm3i5WQcKeS7mfjzcQsV93B0Ap4AiFpYBRRWHAJaZ/IuteaSmdkk6hbr+Ozojw5ngG4cdSLA04ujBIs9KbAAqqEf5rhsZC9Q77GkiWppAAl4QdMwERNikQFg42rssPkRLGgQS/jpPzd+lcZVGiylKqZCegXc/T9Av1igdpLQFo36dCVoqViOnAhDbirGiwlgX1czbBedSsOGGrFYhjEOer7NDd5pxNGkc2ULg/MUVAge9cN+CWCLSpk/wyDBW8BxKSl/1RmKrkRgGnpMO0KulIkYJGAjrRUIAsNcikeuEO+4OooRAQMts0CXG2m2XAt6yT7XbMVZGd5Y0CmJUxlw3qW5xHwFPLYenEqosBp9JVGSzLMyuQQR8Au+4TkuULcZEbI8tiCn0CIfcVo5lpZaeFAfaVtKwOVKN/IJTAGlRtdgsPq7mrfFPxLZKH1nfgrxTyE75SVY6ukVvhL804TrJhZiZGC4kzElQacGk1ZUFxNuprSsdG/qHrhzlkOXrJpKjw658YxO2oWGHCQM4DTnOHPLa9LEyDlPD2C48dB37fSZrPbM83u//v//j/yy5LTTXnUEk1ngri1FsGEo75UfrQfGWXFv5T+zX1Soh80z0eocPpYvjMaplX92v5uxzpwvZvHePSFBPbOF3Ps7Ozg+o46sgX4A/CKkPEKrPNt63X0Xm3g5cY3GzyvbfFG6N3Lc2hhW2Zt7PKk+fQWHWnOXohw55134tSpe3Dy5AlsbR2CsbM0KwCMxWwugUmXL2mZvDlcWAG+dnn4lZdOKH3ejKIBFWSf27ul7YMkACbWw3SfyKwIwpJxMM5tsZZyLrI9JZcmLAhTH4dqlCAUufwBzRapOiGxBm/VqllZbVFC53TezKz6GDV49vnoGY0BuYBSrARuaeRAKXJ+KiRB1pNOzl8giL6kZwHRqwYQipwtVN8aasWglx0sSMkGsEDokLc68Aren/UtJmj2PJFFj5x+GE985CPYmHRNMOagOtAbb76J7z73HOaLReBb8V8odFELUKmZR2qp7ghLMfwaXIp7JBlnMJt+hlGI5NL2Ww6EsL1rfASmXzLiHJ30JO/Wv2sg8WeMjpsRVbYvA2d68upAgngiaD6SKdk77X50nkSp95SGh/xTeUgL0IOUD2U2GLsp2aeyruhj5z0wstVAjLoPPPAAHnjgfs3uqhmV1JZQdP9e297B66+/hkuXLusZWEdvxgx6rpo12mk7GDZK1+Ejj34E937oQ5hMJ7EMvk5I8qvFP8FkIlxPG4bq+BV2QYgAzei3kFyyIuUVwuNC02RRTJEDvX3UMd3nxjFSI5PTA5bhtDrcrdw6SCr5Hsgt83lmzVhEQRQwEIKeOD3v0Ca6j9dEOCzvyiYs0Yfgcf/NfGI/NjxuNKVWlAquh2HAbDbD/v5+orelwdNoS9wgPotINh1v1Y5OsBnxHfD9GJDvVU8OWslcKvGphm8EDk1Paih7pS6Sz5njUXXv237MX2IZN8u6JzkfHl9IaTpC4k3fZ/v//r//3/f97j9U+/a3v/1Bg/Aj2VjtmNevX8fZs2dx7ty5dSDNilZKwcMPP4ynnnoKjz/+OO64446VDnpmxo0bN3D27Fm88MILePHFF7G9vf198Kp1+3FopRR8+tOfxi/90i+tLA/IzPj2t7+N//bf/hvm8/kHAOG63e5ta2sLv/ALv4Bf+IVfWElDgNDRm2++ia985St46aWX0Pf9DzTmZDLBr/3ar+FjH/vYyvKE6/bj3ZgZs9kM29vbeOeddzCbzT5okNbtA2g/+ZM/eUvP3XImpZoOoJ6lQ/4AEIefnLXE2tLhydMXm+FCHFxhkJRnix7+wrnIaaySDnRygCV3lLZjRoCNODn90GfGExCYKuAlgwxwTk4scgNUdsbltlLZVINFY8A1tDFHUikCVqmqZXSgDMdgzCkbxK0ftkwHaVQdEpZJxWdFYtQlL5diDuPiuPdzMi3PU0BKTsZEJw5PKt/TKvDJFEPhjDNDHkOCKMygXTTAQJZf+pPbu7K2PAyNIV8cjUGbQBgQJACuuMOVCqMjAqh4CSQrBRiBRgXwYDNKsAod+xwBdeSr8V9vvXIBqCsozOgIqEXnQqS0IAERREXn3GEykcAIKuQZkcxQKTRfULlHKWK064hQh4U7iglSMo2ooIeUfJOhNBNWraAygKhK0IJmuCiYCP7BYC7oyhRd0fJpGihUSofSSZBS3w+6Ih26rkNXgEm3IfDqzTyujAUP6PsFwIQpT1AmUyyoYoGKOshtNmE4RXBcCqgO4mguEkQzmOODjf4LBi0rR1b2MBmLSpG51gHppjWho4IjW1s4cmgTUyIMw4AFizOFacBsNse8Z1QUsJXSUqeBhL/J3EGMwlNQqSBUzOdyezqMR+IUEngZ0LUq6DCQ0E2xtWU1yLEErli5rLjFSxq0U7S8hBT1K0Ck1w+TpJnUw0hqBjZnD5o5xp+zDdxu8sxTOw2SYkYTJMOsQVBkPCiZ9inBpf1VX9MI+ozAwOAjQvjijLNZi1FbgxAgwStUiid3qSzGd2gWBBADpXNHcQEBtde9IKBJySjDk9CNfFaVP4qjyZxkJqOmG1MtEUeovECF7NEKdWKpIX46nYIwoO9l3FqrBw25oRzioGOCZgEg1KF3/Aa/bBcpeK8FskW/yUMJQHgPE6EwULoJAAmWG5iVhjTIDhL8UXRFFpXR14pJYWxMCjYmxY3HRTaa0yZVhU7nxUWCyoS0VxhUnb5V6vk1ZwJIs6JBeOdQB+HTCF3DA/IYYOpgfLqAMCT5ahpLGMyN3lT2MRBBgITCYvS3UoRuWC/yvWV0I3Qytr4nGZpKCF7InrBhg3e1pvHI+afrXAq07puG71lwdpKZhf11k0tZD3NnIHuOKevdv/dnfc3S6lCUrZNgyAqqKg9J+ZHKQQu45jqyuOcARuW/TqfmqCNbwpHBPlQ2DwLz5dDSqzJfajBpLzMQmRlt/klPyfOMtVF+hLRmNdaqql7kHHfUX8DBLjMETUnPbQL2E8SKC1JG1gZvJ72Ov7/gpQ+6NdA6Hwv6yDvi1tp41bOjyHiIPqn8Z7XGvarPtoUzyaDMHMX2rtG7fc8ZhOjL3k56czPOSgCMZFTvrQMIhN3dXcxmc+xcv47ZbD8FYehcVjgCm49cX16e/epLCfZ5Omv5pgp+5M/7vxl/K1rC7RIdNHiPZmeKMV9T4AEilNLh8OEt3HXiLpy6+xSOHzsm+oH2ay5f25oMxrmz5/D6669jtr8fpWyR3fSZzlKgUhK3oq8hvZvW3LQuc3ym8130HdkRjC84XdlZyPie4YcSBvS8TirXmjOJyiYLULLxJYjcZkpgHpJGqbwWFujtq2CIg5zntRSrZQelJL24aHnqmLLwx7jUIVnjtGQzWRBP6IiTbhLBFwpEAYHKRIOaLYjBBqCkj8dsGBaglGQCEGXASSnD2Qj5e2ANOlbmftedd+Ijj5zG5nQqFYWr570Fg7G7u4sXX3wJi35IuGanAQkIC11WZD4062vwrHBsB62ZTuCfmRwyNuB7st07wnqSTEHYJXw5ET9jsQIHraheDhRf2Siec6p3ITmaKQUwB0kH23uOJQseNrrmCKa0EXUFYBiwgLcsj/J6h36gg5UxHAlhUF3IEYXYw2mGbAwH8l3f93j99ddAYNz/wANgdLCMqAz4+eWOO+7ARz/6UZw9dw5nXjiTnAvsc7O+fe+ojsS1NmRQh4oXX3wRV69ewdNPPYXJdNpi2PfFKEAp/WGJvQgEdHIRCBjbv/Qzfa6y7BGCVH/vRjKKLF02Vq04gi4Sju1hV7Gy7FPRU9PapBzgedlhazmmZaNH1wN8/fTbTEIN4DYP5en2ViMHEGOmssLLMhC6uDkgqcVTM5X8Pa0Ixkn02SAq0c9kMsFkMsGhQ4cwm82wt7cn51g2XSeNvjT4+ANqPgp7ZKyVh9Nk28S7MRaV25TX54D3WrzS6JtV+JNPXc/3p2MfH8z5dI2X6AV+BjpwSjzWZdv3G7nfvrkMxQo9c93WDRBblO3ny5cvY2dnxwOTLAPrukmbTqc4ceIEHn30UTz11FO4//77Nah+9T6uteJb3/oWvvzlL+PatWtrfK7bu7aHH34YP//zP39gcMnOzg6+9KUvrQOU1u3Atr+/j7/4i78AM+MXf/EXV9ISEeHDH/4w/vk//+f4xje+gT/5kz/BYvH9X27s+x7/43/8D7z00kv4whe+oKWk123dpBERtra2sLm5iZMnT+Kdd97BlStXmrLS67Zu1m45SCmOwmpM84NanNjcYDU6MDWZDrIBIP0XN8rkO8tK4Oa3xkhCfrC2G0vjM1o46MyoJBEDxAccBokAlOb8ZgYMSreY8v0mTrDnQ27c3Aq4CnGrwPrh3H+JOZZxX3EQZQzQujkj8IsYhUpgSfCmNy+txBOJAZqrGezMGEGIRTRLnt3JIs0GIE1ux0ZAjj1l8wnno9oG3bGXDUFmPMy4MNjjq+KlzNTZ60Z6SwSjafwZvh6+7mqRZFJDccWIzkidG1WcvFS8bIFhv9aKTgNcQBTBVm6sZIerQpz/EnAiAURSzk8oyW4IV16gkDjOKzOICzoSQ6QMXTQQSPDOJEagTqO1rBRbAaPTYCEz+IozuWKoPZglqw80+0Zfe79VnAjKfaZSHg8SUKN7SrI+DSjEKJ0GYei/pescZ0PVjDwYNKipAkzoe8Z0YwOlEBZzMaLOFvsARwk4hhhJQR0IA4ZhjkXtMVh5BmZUkrglCTCqnq0Iuv/NUCZrIMEMk0kYrAiEfjFomYeKCsa0FBza3MThrU10GoiCwgAzhsrYn8+xuz/HXJ8HR1kLDBI0NRTGoq+oxKhchD4wmLtGHChD4n9Gk9mpRyTV9tTYP+jeq7UqacUmEXoSpxFAkZWFrOxUOMPlfXJDuvRSwyjuhlt5xzI5cfsVIpIy5mHDyjcRLEb+ZbLfExr+xoCX3bO+2Zw90DKHRuMUOAMGgCQYEdRpGQzLoMcSFKORMZWhpRWq4tbwK8GbRJapSrAysJS8LA6wPD/UAX0VPkRVHG9Sco0wLVPJkMSDVK0rHaYTmWDf9+iHAZOuoK8DOirqaCsoXUHHBQu9bQzjw6zSRB1xnQazCb/vYn3ZmaVwPM1uQF0x7qn8tQhntnWt7LKlB3vAJ4HQFSlRB7BkG2AGlB9Zpi1URiUNCBmE3hZDwbQrmBZgqpmsuCjvh7l/IEymBn2KY7WgVnaeavxLeJE6LkjeKMpLSUuzMSC8kV1iCM3D2H51eosCf8rvRvLMyNT2uBDQ4B0yJUmf+L5lbMtOQFubuK9adY+0egwQDmgLeWydpxYwaIG77LLV964qF2QyjzR4aWSHJsp/CW34zfeMAe3ajeYuU+GyM57TAEMOZxeBklOJPGjWFoc5eIivm87PsguOHZ7+bMt+wrHNEVQQAdzpRUSGPeEzwgPjozbAJ4KjGAXFdRJfAxtLS3cKjuxDfTZ6EtwnJwMRuT5kPmdL3JCXQ3CRlCNdc2Gl7Xo2wavpu4MMprdL052W/nq3p2/1e/29EWIxWjiFG2rxdaOlb6wb68P4RGq2VGkv5BE4PWb0FPqpPbDqrn37rpW+3dvfw3w2w1AH7N7YBQMY+uXsBqYLjCEwemrmtDTfPJ+MgxauwEeGO/jTqnn4p0Se4TQ74vyMt7QObSBV5qPBZWOtSMfY3NzEU08+ieN3HEc3kew7FF363rH/9vb3cPatczh37qympW4pJeJnoyeiVlcT/MJVJ+MF8MAFjvG5wXKDtXypwmVAsTMz4lynb9oZuXpJ3zjHmcSJYAmDJ69NfCZjamYi5XXsGR8rcjaOnN0XgJZpMwlFwaOZ9SJGDooPfST4Oft87Get7Bc2hkH4eK8B3F0R3QogKWvtQRmDZpGpMQcVFTWteaY3l6Nmz/Azo9ELwENNpeiAjckETz35BLY2N/wyidVzqwAWfY9XXnsdu57ZzNYLKhPkHIEaYTOG36wpNFs88Q4BPPSAvJ6MeDFxgNAbvFOVTen5IEWOUsJpeCTMuSy0bzmxRWOdUJ6U6J+bDsOiEHIx8+XVsmDM+Zgz5Wd7EOVZCmVxpkX42BY8likxZLfhM5ikn3EaZSXAtnKIoQ/ormXI2UAD72tlvPraa2AQHrj/fjDiYpmoD6zZIQvuv+9+gBnPv/CC8CrXUXX4FKAjpahZlfrquoPprZcvX8Z3vvP3ePiRh3HnnXcmG49OYcyS/W+OTQWZS+idgj3be6a6xhlY12eQoKVCpNmarWtOY1KMafIz4xl2dsiCaywzsozN5cRbGrJzgk8vPeSjNttmLLezXcxACbvhEiIzybR/JolgX7R6xfgpm8HyOMu7x6ma2ifS9mz6KYVw6NAWtrY2sVj02N3dRd8v3B7TrMfSVs14G+kLxqkSz/CMVPCldGTm4D8/cTXiN+kQS7W7lzUL+SxL3lXPcfPTYBhPc2n/24+x/TnpKdwsFzf01K7siO/kT6l5pPluvG2X53bw8+v2o9WYGfv7+9jf38c777yDa9euYbFY4OLFi2BmzOfzpbPEukk7duwYvvCFL+CBBx7A1tbWgc+ZXnn16lV87Wtfw9e//vUfyPm/bj8+bWtrC5/73OewsbGx8vthGPDVr34V29vb7zNk6/bD1oZhwF/8xV+AiG6aUanrOnz84x8HAPzxH//xD5RRiZnxwgsv4D/+x/+Iz3zmM3jooYdue3vkur2/jUgu4588eRJ33nkn9vf3cenSJT1P/GDZvNbtR6fdcpAS1TCVVb3VBfKcB24o88NPulTZHpgYnsHFy4KZAwtqGWJ/aSnAKRl44gaQHS3DIZhvnbemObghL/fPK4wM0U8YMoF8zjQXNwNcRo5C8iw8lBHh6EpGW4XDj+lj45LN1i1EtTmgGi6BAlQS466WlWmyG6nRFeqAbuySDS4Md+H8DGs7wZ18hl+GflaTQVlvNtfAfTb8mhM9jDjsRn5mYKJGbF9R0hT4YNSher/mPAyAlBIYEYgFFtxAjfcaUGMG/taAYXBLWTGClNghKawk5iVmUE2lgZiB0rnh34yMdhs5br1L4I5g0NZZnTSaAaoUCTQgKiili7JKneCqH3oJviikgR4AyJwRFKWbPDiG9aY9a2kGDUKoukYsxk4JamJQZ0vdgakHKtBNCFQYtfYAdZgYvmQ6jpNStewjadkFEKalYD6fYxh6TKcbEqegqfQrBszUsbY/30cdKoaZOOAG3WfD0KMOvRirrAJVBWiofnMT5ozRB7pSMCkdhjpo8JSVsoDyD6HIjUnBscNb2JwUyQwC1p+Cuxu7+5jXil4DWKy8hTgthC4rKuZ9RSkSnVIH219hlI0drEFGPDYm6l+2X402OJyWBRIU0GnJMigP1vCcdJvd9pPuD2hQj9KpwW5OJ7efZ4OEjavBMm4U9GfIAyEad5oGVdlek/mboVb2vAUbVne+KFyg1iGRAg6MtwMSrDLU4BzGU2y2XFmy+djeSFZ1ghjAtSsziUrwnQbFGB+S7DgEC3IQPyWjk3RBkGw1nWczk1KeRaY+kXVZLOZStrBK0FzXaamSQpJ1ac5S+o0l8JSV9xF16oDQLGYECfioOeDFSIYV4xRBM4o6yzLQjQz8FZaRJ5wAhSBBThJtBWj5t/DqRYCerVwdCH1l9MwYCoEnhAlZ8IYGKpai5UpaWUYaAFKoRICeOsuEdIVeapILxBK0lKulFYTRP2QolKZCZ3BCT/qAl2TU4K3sqDOWneneA+uUcsIHYwKUEBRjDNJI0IuEOC0KfgSwCD60cY0nWG811BO7YW2l+PJ72i/BDqL2odJzcmBxwksDV3ot6ydwzBmdailGYz4EDIM5wKE3/hW3SDoEgo5kDIGZdWDTVzxLlMLjvCrNCap75ak2mYVYGLc7OFROjnWdeK/CdMyq8pqBxGMCP6Q0VAppgF/amySUkMdhFv5luqbxaPs+OwRtQIPDs224zpMdGAgaTO22NjLzCloDENkv0qM+3+S89m7y83m+lHDCI49LnFkyDba7IOGPxl/Z+1lmtrAuB9hQ0r99Ymn+aQPH1z7Hvh+wfU3SI4uhm63L5tlxVq0Wk2ihMtocPecBPhRfrqKxQE/C83gwtPBkXpNfaS9wtEGkglNx3guPbdeb80KOAJhubOCee+7Bgw8+oDf6InzD5s1VSvXu7u7hypXLuHz5Mvb39zGf93G2UH0hDy1BrykwNE/TcRd6CEdHSm/Bi4OkOHWQNSByWU8qG53/qzxqQrc8e5H0IvqvlG72rEysAfEqX2F6LcclDtGDZJzqZZSrxt7IqJ6xiAM5FnDeEqCnFhWYufrv+QgnR4SQ+ybbAdGbhkGCjuTyCPyMx1wxVKG3fpDzTB0q+kWv5xTRoarKhGZf+/5mB9v4vp3Lao1QlSyLCEA3meDpp57EXXfeIeWrXF5GEPHFS5fwxptvqj4Ucx4NLWczzxKpBBLdNW18hm/+sHXxzxi5BHYE4OR30KyZ7xHAaYlXfDnmd3LE57afDCO3817iC2lvW3C5B1OR0Tx8JTjN2WPvFGbf6WN7CnxSAT0bfQYETgj+XHwWvFQxzHoRwHVRDn1jtN4RQBX7pjL7xSxm4PXXXsNiPscDDzyAyWQitjfVtzrbx6Xg/gcewDvXruHC+fOSZdR4L5J8dP2nOtPJOqTRy9V33sHud3fx1FNP4c677kxZ6oI/BcQJL5QpwP7WM+gYd3kdEukMFX4haUJ6OYTyfjI4RlAkfYpi8WRdRmXmDFbmFvfjZnu0BXf0nB2EEeeP5qvxvsx/N/vM8Lr0Uvv++NmGiUW/IZtHGoB/0b7j02iHSuNRWunoezqd4o477kCtFYvFQhwMyntjS5rcGmsj49bqXTaqz5eax0ZvJlnqU13JHG/SEr8yNK2AmZr+Mm4O6NV4wWipiIJGGr0xM9il8YOJuD4St0QObI16lf9t4LEVds4c8L/b0q3bD0WrtWJvbw+vv/46Xn31VSkFfTufE2+jdvjwYXz0ox/Fz/7sz+LEiRMH8rPZbIZLly7hxRdfxJkzZ3D16lXs7u6+z9Cu2w9r29rawuc//3ncc889K79nZrz22mv4m7/5m/cZsnX7YW21VvzFX/wFdnd38fM///M4fvz4yudKKfipn/opvPbaa3j22Wf1gtb331577TX85//8n/Hbv/3beOSRRw4MkFq3H+/WdR2OHDmCw4cPo+973Lhxw+1w66yDP97t1oOU9EagOwzCzr/ybJRt8WYrdSMBS7keUkMhpYO+vEthkMLozE5xoJM3xHjhNzTtGRuLwnhgh7PxjXMAnkK7MfLXmuwKzakd2TluRmBrxZ371b9vcDU6AFvJI52KlitS45vDHoZjXrIomMFLs6uwTIj1kNvcQVRnVxMcNQrYcuegehpjZhaEhDDaGU2gaMmZGoYWLXElHYhhjG3eAozjppSimVfIb9n6qyxzkpuz7Ka3vKIKjHxHakY2I4DRiK0Gxbh+MxkkQRYWCOPrYzS/7ATPhE+QdOoWGCWXeCX4QJJySCDAMEgQTCkdgCLP6Tul6zDppHxaKQWTyUSMdEWNplXeI8uoVM3IETcsxTCvAUmWIr4yejXsi0FE565lZPqh134Zw9AjyjIU7Q8AMeowYNJJCayO5P1KVQOrJOCp9oL/UgrQdfrugOm0Q60Lz/ZVB8loJAFdg/w+MOaLuRvxs6HIgqwwhOM3G3hZ01F01GnWGplBN5lgOp2i1gFzNd4SFWx0hDuOHsXWpMOERIkDi1FyGIAbe/tY9AGXG3U5yjeQMrlSS+wDLqg8IPkoGuczMSMH+UE/S7WUAGgKeioYIAFnEXiia2r8geR9o1epPDE2dGaj04hjUwQT2eex/5PzLfUn30kGobgRrAEzBJ1f0ewo4hQKpwK77S1323nEmXzI1QL+WpDlliwrjSaxQYSqdGI4FPo0DGgAna6ZPMKyiSrpZ0ZNGizDVUpLaTCGFnjysnx16DEQNKsKaQCS/NdNOlBXsJjPxHk29AAzOjC6yRSFOmxtTLGAOKCHyiDW7E5KblQ6EFcpK6iBH0MdpCRiWj8gAmNI8WcG0I5zoGmSqfZv4v/gGmUtmSS7FBn2yDNtGZ8tRF7Sa6Yl9TYnU0yKBBNJ8EbAZO+WJLMlcEOcJRY05AzYfwqNltJpdjAJ1lMtApYPy/9mgEsKcEq83kM9dJ45iJc0+ok1UCuM4sXBySbcrAMFVtOHiHKpblRGs/vgTjGiCPZJY2XdyUSOO2E4YCww+W38JcFiStEBVuwGdqcFbr6lNC3L0LHS+aDyVlBoQRjqKqMISg6dQ3nayAPhe7+YLrEaekrrGTNh5y/xaavjrMQDW4BcM/URrkIOZDhp9FRmXIKrnO3kgM7T66HSsNOq4cGyToWuausetB50cLu2di9kvI+DsOKNPLdY2XjH/hq/G8Qg221pt47GSUFtWXTGYLERD6SRPIL+XZE+5wMoQNZ0GCrm8zmuX7+O+XyO3d3dZYORzakBjVt4l3SQ5VkfzBVaneQmFLu6h6XzRB7R+qfVC8F62SLJgtYVOIZGviuluLHjxIkTOH78OA4fPqRZeoBcDrLWimEYcPnyJbz15lu4YTj2JRvvbWqpjmDKkT8VtJsCLEdwOmtPX/pxIuHIIeXAgcCtznsor3XIbI4aSKPlaEmD9D1Y33TJqtmLvIyx7jHTGXRtJG6Tw/HMUhLaHKr5rE+AnysApMAqgy0e5Folu2RHsSeZQ04wQndxnMpnk65oEKnAKSWgZX9YdiOurJclOHi7o1jOe9mZ3vJO8meLBhgXYgCarYkZQ98DTJhMJ3jqqSfx4fsfwKQrcs0l1B3UCuzu7ePMmRfRp2xny3aNERwcJHaw2Fr9Ja2ar3yxzHn8QaEoGr3J+bmxbPSz2GouMuLSsJKADc+CnDWNztt3WtkAspC8DFI7HyEJchpyJBoNNR2/mwM+vvR9u/RM8Mms6xoctmdycInLbYbvP6HbiuorJj/Pnj2H7e1tfPihh3DnnXfAAsNrGaQUbOlQqOCZp5/GXXccx64uvgABAABJREFUxwsvnBE6U56ZpZ0ssex5O7/6WTvpfrP5HN/5++/ggQcfxCOPPJwuT0lfwXNaieI8z/Cv/9hlAna96AC5BeHRTBLA33HR80++0hZ4Z2BldXKXi7aHqGGhSlMx35xtyjpMlXiRlIfEHRQCpatmfGZn287DGiAzXS1P4GANhTCSQljaMSbvl9jCKkS1vfiXcfBv9m+eSh62U5vVxsaGZB/uF5jN5hgGKW3e0v8KqJKOslr3w2hBgVUbV96tPoUsl+NDblCxirXmrI43bzdlHj7ng3jHQXtAGGHSLRoBm6BOP1wdWQFVnj6pHmR/Hwj5kph4N1ys2+3UTGezc8T58+exs7ODS5curTP63EIrpeCee+7ByZMn8ZGPfAQPPvggTp486UG7uVmQ5vPPP4+vfvWruHTp0roM17p9z21zcxO/+Zu/iaeffvrAILj9/f0fuCTXuv34tWEY8Nd//dd47bXX8Cu/8it4/PHHV9JY13X4rd/6LTz00EP4kz/5kx84q83169fxH/7Df8DP/uzP4ld+5Vcwmdxy2MG6/Zg1Irn4cOedd+L48eNeVnpnZwfz+Rz7+/sfNIjr9j63Wy/3NnJIhaGnPbrkbDLZiAG0xqTWQNsaxczQurKp8SMcSlrixk+x1nHKBOHwLpvS4lah2pI0ai9fNPJsO37oFUNBKSTOODvejxh++3dY38zAs4zTA4yHDkc4q3jpUM9ADirQzxsDMqcAopFBYIxvv9VDZkTMZsEMUwSusVoTAx9qTmSIw7J5VW8MUtyFtHmUZIhkhmeEcqOPLYP/TLeiIevlvZpzJBuf0pzH82/WJKUvx+gdIl4+rCTDiZrJk0EcGDS1eCmGT8FN1xXJmETwLCtit6wo3cQdEqVMwGAt+2R4FqOvBPowhkFKT1XDHTOG3tK6l2RNtMw0HWiiwUgaQcSVtCwUSfCSGa+tBB20TAKgWZokgEBRjlI6TDemKBNGv+jRlYJhqKKc1IphqOiHKqXbwJByWRWo4mhgquhK0fJzWuLL6qUjHA5+i1P3PpGU1KMipbGoK+gmEwxgzGYzCWIoBV0hHDtyCFubG1IQi0gzFA0YKrA/X2BvNkdfzXyeOFeyF1k5ttJl2gAsqK41vHIquxZ7X3BOXj5AArKodaokNpL3fxhQI0iJHCERGGQ7uFBJpf4Eklo1W49SeuZZYaQNo5hkh7OgrNbE1+6rMLAJbxh0v2RjbTikamV0+r6V/agGSxWDtdNhvk2sQUGVI3hMFinhmiIwtbmZ790bHKSp5bOTPPM+LR/iwSTiBCtspRzNCSj9bKnzYDHfx1B7oWOJVUJXOhSSgKXKQF97tSBq1xXgGo4GydJkUkyc2FaqxAMYBCI1+LKWlxPnGpuROJf68pp9NYyXiv8yLegGwoBB9mkyjib/JQhy878WoA4DBgY2u4KtSed4lBITthpKd06mIZmLZdmqAyzjluGaUmBGDiQOJwFLsBlJoF5lK0uqwZou7xSD2ldRPkMJOs7BJMSRtUvxnTP2i1spAp3GjvmD9BiPOVHexem2QOMwAUtpPIycPCloxd9RNHjpNNv9yi+aZ5txTLByiDzfJ7XBt/GY8bScptJ6cCXYVfTIJtjCICVCs5ym6HusrBnOjeYdLqPJ6sh1vEL7PKgPoJlffO+/yXytEiuld7NzK2/cwAqE1mwp2Xs0dGT85bcisFDfIAvGWnpR+KfrPApfWaXt3t4tseRmPW52A9+0rfYRxph42P9p1xYJZ94jYYm+A+erwnwOgirJjpHu2zis9dPFosfOzg52tnfQ9/2BRsglB9pqFrO6ubc2ZrBqPmOUt0OY3A/+8q5ZEpbWJ2TZcgUUO08o/0j6/UGTPXLkMO6++26cOnUKR44ccVmch+a0/u+8cxVvvPEm9vZ2b37LuTnfRn+2ny0gyZ+46XmifSa3LPqXPYdZr4ozhwcSJX3F9UCSgALJnBR8Iwcplc70uBjGxLzE/+Qyb0FrWe9wnmQXjzRbkwWqBux6Iksl3JFQZ/tTTxVLZ+euk4DcWqsGR8uFDcmYG7qQjGVlcSXkAyRnyqqB1MbDK1umwwj1yrAI/krIGdUXGMDQ9/JcIZx+5BE8eP/9mEy6tI7s8n1vNsPf//2z2N7ZMY3Y5x+41WyKMHm0vK+yozkCH1orS8M3m9/GQtUCWEbhnpSC6zyrVILXAQlc5ZVyuUtZ28stxrXvCEnmu12HGr2k3f1K87lbF8NJpxntS+fGyf7hz/q6ZR014cz5Zswj9xM6if4O2XSUuoisPHExqoHVMldX3cNF9gsR4/r1Gzhz5gwefPDDuPdD93ip44qqZa47FCLcf/8DYBCef/55udQVTEX61rGsHHkh8gsO+cxKAPqh4vXXX8d8PsfDDz+EQ1uH/HwaOlfQU1ziIsnImhBmQaJy7894TtBBu4zy6cCSCa0rhEmyFeWHi8LgEqWhf8Op9tnIg2A8OTjRNwMFbRPiwkNSYXMvze6y351TN7xstGN8U/sEbiLOx3pqOvtRjGw2t3fVC2jVM6HniMhKOE/bxs6STXf65aSbYDLpsLV5CAxG3/eYzWZig6mDn+nY5NG7gMmj34JXtFsy7KhpYr633m0UwPegXf5r9JTEh3XuLW9Ocv6mc0kSgJc/y09GHWhuPh49BaMpHuFjxexCB2l6WK1vNGgcvbVut29jZty4cQPnzp3DW2+9hb29Pezt7X3QYP3QtFOnTuHJJ5/EU089hXvuuced6iuDJ1my2vzVX/0VLl++jCtXrhxo81m3dbtZIyJ8+tOfxjPPPHOgHNnb28MXv/hFXLhw4X2Gbt1+VNq5c+fw+7//+/jUpz6FT3ziEytLCk6nU/z0T/80iOg9CYhbLBb4y7/8S+zu7uJTn/oU7rrrrh+ov3X70W+lFBw6dAhbW1u46667UGvF/v4+tre3sbMjNtIfNNPXut3+7dZDGscH2rCRLRlf8y3vcGoxzOBs75nNRIxWyTyRDr/ZAStnRj3SJedQ6ITJ4pmc0W58IiwdLA9SKBms4FL4irSfoqXHbkUZbYzWubY64Diyg2JjVPdBC7B0I54Aqm7oicCwmmAyJynp2dvGGRs+43DdBFUYIEQgK4dTWVNnj9bHX9IyT7C11v/IjG0tfUiGIBmzJOP7wBoI4AamAkOJAWeGWTGEsxqq9HZgclJaFiLF1AiGvBpIn8cbTq+OqzAoVGZNX2jGk6prUbTsVBjxGZbJxQKAACKFT0scUgFIA5hKIUynE7m1q3h0YwYZPopnTWIUsJZsq8we/ALWTF0U2X5YDVAoLP9VcXKiSJEgqZhlma/UTKW3LxlVg4cAKp32OficBL6KWhfo5z1KmUhwFUNud1bIDe/Soe8rBnU6AIRaexABk+lEApYGCZ6Q8nQVlRiSwaeqAVnhK0BXJmCS4I+KqqW1OjCA/f0Z+mEQWi7Aoa1NHD20iUKac0RvZNcKzAfGjf0FFoOUxZN9IOW8KqdAAkjwC2s2nq4TVjpoYAkI4CH4YEUKbmGObBhqQKtKd1FSS/qwQItsBLV9Z7TlBi8L6HDrXRj1CqAZbKRljmL8lMiCpbwXf8KDLhD70JwlERQRsLWOlhEfpNbkl/eYfcI6QJPm35xQlI3bRgeQ/eMoDhdDwMZgC37hCOxiWcKAk8JkaHKLSANSbX0IAA9gSIkrBlAqo5sQSkcg7gA1bg/DHDwULw3VDxJstzGRFemmU0yIMPSSgaswgI7AXLTcSnUfSVeMHxDYFbTkZONYOXeFs+FAgrmslEoh42Pt/XYNk5OyJSgYAJgTUpbPaFq5vb4/qGMTVfjPpCNMSqeZkiRYyZxX5lyoZGXXZF1rZZevTmS6nvJTgiBt75ihO/i5PqR6he0hXVTXM4xOgVQ6sIytsgxwQdCa0bbJc4TKkVQB0g9C70m0ZHNKOtPYLZGDsQIWW3ZC1Ctkn5ebkQkxQ8fL2LHdtuKyPxm6Xe3S8mRs/ZlasBzYI9gzxxyNdDkKnKU5mixynlHTVKE0OXJk+O9sQdmmOxq+SPG/2tDjQd15AQNlvgtWtdCL0meKILLMWaa3eECg6Qwp2IJzeMpoDNNBQlw4bLHO7duyU8n357t6LG6zdiug0orfDmqrMbv6ORr/Pn6Z869pn6h+jPGecp0a/twSpSlPZgD9MODq1au4du2aZGe5SQs5Gr/TEi3mF0bTcHBH5wAoz6RM3Jz+HQGfuz7AoDo2tKZqYO5TXRXytXymsA3ATQcEwmQywT0fugePPPIINqYbAVc6S5lO3PcLXLu2jbffvoirV6+G4c15kf/pp9HoxP6OfpcNydysy8H4CP5jnMF6N2e+z1OZTQRVt2fr6DcLINVhSLiwhRVIoI9z1dCx0ntyISRGz2cGLzOaZAWHQFC9U5+30rPed6aimBegGVIRPI2gJWcdzxIsK8HGRc8yci4wuUQg15UcwynAWSYjekb1OUHPtQISJ/zaJQ2XUZqVigH0fe9ZQ++66y489NCHsTHtnD9bpTtmOcu+9vqbuHDxomaVyvLQveEJM/JyUd1Isuu0O9HFqOnDaGUd+2fxHhue/J2QSyMFw/dmwLXqaTsXpinZ06ZAyKJG1wlCWno+gzB6t+liFFTlbSTT0/4HQlWKDzlBEXgdb1EPPleZLglf06Uoe4ls7RBy3hiu7gPOsmIJ7bqoVMFavrYy0OnluFIIdRjw2quv4saNHTx6+nSqcssgWGA/4f7778d8scBLL70kfML1B/K9HKCRWpjSyqbzJjPj3LlzuH79Op555mkcPnR4Waa4/kNe4jdIx8648lMuLNhpg0fl1BLVKoAM1iTccolFLmw5Qh1mMrwTGhznQFfBgQMdk0g06t0mcsl6q61vboz0vO8xyh2k5yxAfQRTC9GqbZXATZc0TNdI+l4T9Hdgy3wnEWLefw3E3OxT0gPpqnHymYZAmE43MJ1OceTIEdShYr6YY7Y/wzD0nh394Nnmb5JMTxA26yTAxRpRludprVqlaQT/8ugt+1qGNeZ887mMoT5ozf13T/E/BkI+aM4UN2k3/54PfCoCv/hdx1i3D6Z5SV5IEMMrr7yC119/HbPZ7AOG7IerbW1t4Sd/8ifxK7/yKzh06NCBeryVzHvjjTfw93//93jppZfWQWDr9gO306dPe2DIqsbM+NrXvobnnnvufYZs3X7U2v7+Pv7sz/4Mly9fxuc+97mVgUqlFHz84x/H3t4e/vzP//wHHpOZ8Y1vfAPnz5/H7/7u7960ZOa6rZs1o5FcEu6ee+5B3/e4fv06tre3MZvN1pnlfkTbrWdSUgOkpOVORgE3yIcBc2xEBeTGfPLRx+Er3XJnyrev9GCcjCw2jinlYkg052Vr6LQ6P5T75MZ8Mp5gY6AwB194GWIuNR6J122+ZAFXMVk2i5AeYse3beXjZFhxC5kB1BqQAkWyHgGm3IojNT55OSp3BrbGjXEmgVZgqMHdwGgslCMjRjJqkDvoGOL+1cO0wudBACNDCHOFJNOJm2/irGaAzBkfjj4zcpmB2hyoAUeGU24jjtdKQkekpJOb6ijTtBnsNIyu2G3gMAxIZhoGUQWhoFYNNCGAKqGz3P9qxOw0MEtgmKjRXdeskBskJ5OJBgOxZFqyIJhhgAVC1VoloEuNdUOVcnK1DrAb0NXoYrAyA6z4nwAkgUCC0E6NiKyGUs36RBIAZCWviNkzKllZqg6SUrh4Nhmg9oOs4QRY8AIgRuUBhQoKF3FMaKatofaSNaaXwJJhqOChog4VA+db0lLuadDMNyBxOig4GiwzSCYYKhj6Hot+QL/oYaa26aTg2NYUE71F3SuS6lDRDwN2dvexN19gUSUQyoI7pDRE4B5gLT0GVGIMVMEoUgbDnDQw+lnmOub8seCxzum3+m1Tp2DlW2E/NOtgGKnMAeJlQGzD+sZNe5wigKJ1VMKDBKxfK0WYnZ8RrJWCl5q+bLzafJ5hyrZQ63tAOD4YDAyDZBsiuTkvt+AtQE94SWUGV8nSJLF+rEFM9n1VniiDDXWABw+wOR4kQxkzUKmq4Zxjv9j7atfNWUs80wMLHVONYExwh+mkQ51OUUrBYjFoQM6gZR61ZF0ldKUDTbSECAhgoX3AIqPYHSLGLyLbmDJqbu2tlaXcXZEJqMMlbld7KRYQBl2n4t5jC+KSMpRggGrFMHCDz6o4qhVKy4QFxDnX1YqOKqbdBF2nWdxoFITEnMqjxE3sZKU1geYwSTCowkhBZ5mWLPhM2F0EzVWnZQa0dKJtE7b3yXi80qKXKdM9JywyTNKuK/gHaX+wJOCyuoOAZE2iCHZyJ2OSw8zqqHREUQBKgAUfZ8Oy8WzHi68TeVa0lQ4O2H4P434uPed6jesoLZy5L1/K1Ox9W+Pc6hB6j/qFk2+yBD2PeJDBYXMd9/xu97NNHxJSb3UDGysHCkW/ygNq9RImwa2TfqZzZQZYM3lk1Q0cpLKseyU4G31t+TujawnezWtCzitvy+beyZhU0pobmbESP/lhJHbhXy5/Gp8ZfYz0cNOTV4Db9pQc9EvUvjSUr3vf936w3tvb83IAklmybyBv5xr7PuCNQPybje1/rrhc0JwB2n9avx0ljLKtTabLzINW07KdFTP9j59YOZfsxdYNszHdwPE7juP4sWO4WzMnCegUgKuOsegH7O7u4uxbb+HqO+9gNttfopUx51riHYlO2b/nZr9FkBOv6sFAijmlWct3FqTOzUiuIyKWh0wm6pRdLBCW11P/K6X4JRMqReW8nV+yPtTyMgnwqk7r1dibHTp9InpBxYOciovtihrPFruQ4sS8fB4GpXMOoaCGXlqk1FzpyMvKFcu+Z5loHGZOMIlOrqHWpk3LBQ+OQK5mXUz/gOC1avC1BVVtTDfw+GMfwaGtDdVhNFMTi4wfmHH5ylW89MorepEk+rNsT3YuNili+8TOtn4Zw3WfLG3a1pwZXI9LeE37SPq3VUhnUu0gCtVnN3jaiy57265bWfzuwRKkeGt7SZ+ZDE56KWd+k55vzvx+DsjimBPXB6x8s/xffjbPZZaU1sluNPh6cpzDXN+0KRBHjMxob8cckjIgWNO+5PziZc4UhrfffhsA8JFHH82zCyYAwgP3P4DrO9dx8dLbqL3lSqrxrMITHC/v5QSTtp2dHXzzG9/Eo49+BB+690Pt/tBxdboRO0TLNiWQXrzx5TQsJghsHsYTq/TJJPaHQlq6MtFwc/nA19vgI6RFgC+u62rcvgeCMRy2qSTRMppR+5t1mWjJXiLLsIygNx9g1O+YZh0fhq0Ej43uF/RWr+oIL+2MA8gVc0tnKuNS/kajk8SbDTflCMbtug6HukM4tHXISyRlXWhVW6VTNFtzLEOUvzk/8JtLBtVKLWuprcKf/TLWS8c8uYXZaC/x0CUQQvYZUTgWefnJoIlbnc27t3YYckhanrlu71dbOu+mNpvNsL+/j/Pnz+Pq1avY2dkBAMzn83WZse+hHTlyBA8++CDuu+8+PP300zh16tTK8wszY7FY4NKlS/ibv/kbvPzyy9je3v4AIF63H8V2+PBhfPazn8Xm5ubK75kZZ8+exf/5P//nfYZs3X5UmwUNMTN+4zd+48BApZ/+6Z/G+fPn8cILL/zApd8AyeT0b//tv8Wv/uqv4h/9o390oO1z3dZtVSOSc0TXddjY2MCJEycwDGLnu3TpEnZ3d2+qO63bD1f7HopDRvCIOf1WtbHBOohFD42UTHXJiOAGIc+2ZM4W9nObOa3cYWzfA2EwIb3JT50aQeSIJWdXq1VuNyQdUNhNGHfwIHebjsTJWGbvohQ33NpBnpYOndHsFiYtfxWOB7WMiPFwnP7ekNcaC4jipqSbWzQ4BMwY79swEEFxlIwRZsvRdacSB+cxHH6QNkNQuslkGZSIcsmdtH6VPTCJff5mGjUjFKkzXMqRJTNeIDD9KEhG8IRX1nUxB5Wvua9XGGHcQJFP6LpulvnDvsymRSsB535CiJOhGO0TpCQZFRSaaBBQQTeRQAWz/g1Vsil1XSdlGWw0dy6wZCZiCVwSVFa9mSaIGLiCiUBVDeKkpa0gDouBde+5IUcNgpp3B5AADoknivWTMcKo22vQB5FmHyJ1RLA4obuuSLhaKRhqj8VCA0JqKrfADEZF6ToMfY+h71EHBqNIxiMW5Yir0ZvyEwsGqnrTmoEymWDoBywWc3Eo6HpNJwXHD21hoxQJZhl0XJaSVXuzBW7sz7AYBmdNxIyKQfFHsteDUHUeQpsMdYRQMvizOTRTAJw7hHTf2t6zZzF4FrfWgGmMUIJ23MmOMALyEA6O4GXhBDHe0voAJNBD4LQAogK7eW4Pjm+UAqRlkIzvRYCUGcTJmIPyeIM0+KfvULnxbiXVmJWGhE4lgVDmKUX5osKhxmtBtTkRiuO4UKTsJ7L7w0Z71UCUTD5acrFatCHgvztndwN6TQ4/VueawDTRUiGbm1tYzBeYFMZ8MRdarhUDesGzlhubUAE88EjZRS4zQcUD4yygQzIUkQe2hfM96C84W3V8+2ccnBQEzVaWTarsmc5IByamprwKXPYAlQflObI1hwJU7jHhDhPLRkCRotN4Wq3VHWMM0r1sgTzBe3yfWPYuHZudNjRjE1sGuRRIoxRaoA4sk9dmfFca8MCPhJsg0xDaxgYY7M7lJaeMrkHTfC62H+yxuuJxjsXS+TdOMKTb45Y1MTwHCQxCA5rDSmAeQq8yHCPYD2eGAdszWNlWBTv7NDj6sTVPNnkPeDOZT1Q9uEdesv6ty6RHNOOSBAEyL+MeEpwsPGBJ/XJEZx0oz4vz70YACd2h0wXQDAnacw6ZeG/grSadNNMdO1SeFRPB27OzxKly9cRuqxbLkuh56ZmgFdM8G/V2RGZLU6ZVDwbfM0fh2NG0/EbW8kxejvYDGHu7e6i1Ynt72z/LTbIHDGn/jINbgkeNMJHmyEufr4J3qblCE7xOYIfqcZxWwXjFWM/O/KGdP5D4SXyRPm+n0gKcg8NCWvm3JEH7d9xxJ+45dQ/uvPNObG5O23LL6bzILDcFz507hytXruLGjRuaWdTkDVx2ZMAOxGPSwzLMMlboWGQBVSzyJc/H+6Z4d4wU48E5WLQJOvLXKfWlOqRmUQHIy0aHbIs+Scvg+TIY7edzGGuWXla9R2mm6rzsS8ej6Y1ZkYDwqzFWCZ2yTG7Gzskp/FqR9m/FreVZufBkgQ6VK3rDuZOlSa0URO/ZBnIQvzzb7jeWYAJbEESAl1/0YNERH3n4IZy86w50FLoCmx7BwP5sju8++xwWWqY6j+urSgEDs+npWqxe9W2H1OQGcvkpDhmYmifm8Vm1Lc/ZS037uiGxisxx8t5eQcEM5MtA8SUHzY7fSXvBbQuOo0ZArnjbwwVhNLi8tyg/rr+O9WS5TBUzjYCbjFvTtwC4jplGCF3FkQFfz4LQMy3To8hv+Oc0nruWnqqFFbdiZyql4OLbF9FRh9OPnnaIJQupjD3tOvzEM0/j7Nk7cObFMxj6IXCjZDfeyw2uHK/RZvM5XjjzAgDGhz70oaV9Y+ATIiDbzrstX1ccAqglIcnkUqIV05EzPRuPsgs5yVrTND/bJJ3M/iZuAwLTiNpb4sON+OKEn3b949OYp4+XnmUg4qZGOzRQkXofyamDpT01/IUPgLCFcdWescdG3INbiiB7hEcyPslFJ7HmJfm1lILNzU1sbG5gMV94gEXf90v8rOGbDa1y8337jsLu/CcFEyZY8zwMyNBH8r/pTYr3xx+1dtXmYQROePmrtH7tiPlZ+bzqnjjoMkYL/4qwVtuW4w/HtOvfHERz6/ZeNWb288Hly5exWCxw9uzZlY5hyx5geu263VojImxtbeHDH/4wnnnmGTz88MM4duyYVkRYbsyMa9eu4W//9m/x0ksv4cKFC+sSM+v2nrau6/CLv/iLuPfeew98Zj6f44/+6I/WAYjr9p42ZsY3v/lNENGBGZUOHz6M3/md38E3vvGN96T0GyCXHv77f//vYGZ87GMfW+HfXrd1e/dmdDOZTHD8+HEcPXoUu7u72N7exo0bN7C/v/8BQ7huP2j7HoKUih/ygPZQ2DgT0uGrDWay9yQLQhjswjCmPmlI2TIjwGzEEkMNe3YJ7VcPo36rFQTLy2Gps8NvF4YKc7qL4zQfpiUYJlz/AgdzlNeJHNoA8xBGL2awpt7OIMqhUg/JI6NDkzFA8WjG6uYGmB/MCeG7Noti4DwfKWsy8mbDcF4vv02YgJDxNaOOG7UpzdkydMANXVZUqhS9PVgEl4TO50RUNPuJZgBhiHG2GRvuyAmqI81sE8aGPAeA5TIvFwCdr7UFEDgB+EGfAQswyNlnbD4KgxnC7C0ipdMm00QBuEMpsSbhXBATqJAUg4hRqAOoqENcbjV3aigl6nysUsSSVQpJdqEq85ZyA0BfKzAwmHst8aaGbtYUwKnkHuttZIFL9pfcMC5SJgsMroMGRyiMpaCyZleq7OnlKyQzU1cYRB16VHRFbjcWksCVqnjsuUdHBegrBh6w4IpKBNQedehRuEOHDouBpedaUWoFhkFxUVAhJdQqswcekBqf5DZl8QwpBEJfK/p+wLCYg0jou6MORw9t4vDmJoqubx0YqEA/VMwWPXb3F+gHCRBpTXfVzVZWLmsCCYIxOqtW6g8sda8QpiGucqubNFV9m2GI/VkqmX8mx5Y8ALfnakBRBDdZNin2/QrAbxyH8y74tNiyW0MZgb2cgQQamkFWjbYMd74ZdVt6f9LnPfOarpcN09k+dQOd9OIhh75fBGudGRgLKfWSBs8QuFLCV+CnpyoOJacFpXfFS1FrpPDlqtmLipRfI2iQVPAVy3Il/DntabLgRsNhBQ1Fb/kzqJMgp14DybrSYXOqf5eC+Xwfwl2F1nNAVDfpwEMBMOjcIhOgyB9xKIiTLoKpChGGmoLK0vrKusnaSvAFOS9rgj6YfY2KOjMLIAGKqECRfGuFJYiS0WHQvVGrBSErNbPQUa2MHpIRaCBCVwomnWWY0z2SRRss+IyUDym95ExEOinJaGaZIFLJQeULne4nvz9OcJoY1HBdIfxOpm1lHVl4ttJQ/FNgQa3QfWJyoMt7jRCZH3SLu8k3wUmm8EDWOUnm0FN0vIK8sHqLfKSH6LZNvYjMdD2K1FHrOgWZUhUyntlpwrSfFSbuWAtuA8GWvjf5U6n5vFqQpQHtr8vAVeWR6Q1GsLqdkUIOYFm1zEHmcAFapiU74YxGjHckfRDwPe7vj6fFIXvYgutjVsFSyXqWzG2KjFRKxJzZ7PzEYdM95JnO0iDG+7xDkwM1gmDFsUa4ybLdBo3Sv8ugrjpfOO4yPhRvjsPW22QdAC35JRBMWqUP2QJ1VS473UQwZN8P2Nvbxd7eHm7cuIGhVvT9ohmK078BSwvIaOQRNhItUvtuOKEQtNsMtWrCLTxE7SfBhlfBtAyx68UH7f9RYIKgezzKeL3i71IK7rrrBO4+dRIn7zqBja1N2JmSRhMw2TWbzXD27DmcO3cOs9lsyfgVeKIRWRDMmdliw4L4yXnCauSw8vn4fFXgVcZIZsNgeIAHqayJU1eGi5rMLCgBn6AkHPfyby6XB3+Gk3OravajKv8AiIAetv1g8sjPepFVyVmq6XVkU9JsRmx6WMoIxUFJDIA9wEKzxyj/8mBQg5UHFHQqFTXbKQBwFR4IyYrrZcDBmlHYcJjkHNpgQXlWSSHRZGU5e9Wq2c6o4NHTp3H6kYexMZk4X7dg91rlssbLr7yKa9e2k17SchtGsCbHDENLSNtaJtxT1lVk0IP2HsdgvvR5n/svZovJxGx0Hilx0PyJFj/wJ0b9Q05ITZkof7PlAUGzrSqQS2dl/a7dp+1nq8IDDV+2QQOf8qxnMLNzFyf+Pd77jZ2pZaIdkdNkEwit+mz0oljP8CSYmRmlkugvfm7XtVe9/8LbF0BEOH36EemvpIAb5SX3P3A/Bq44c+ZFoNolr7yXDTYZ3Ur15QD9jOmhH3DmzBncuHEDDz/8MCaTCVwA2XOZNNI+FzZFTl8sIHv57sgO2oaLUeoLCPzWwbIq6aWNpgU9NDI2MawRmO1sHSfxhLNqaudoVLe0vzCWjZzACh2t2Usc78UHwTWWLwDkzUUhg9odDePa4/m08+bm+cSox5NNQ3P7WcJf3u3y2Qhe35vAxsYGNjY2UGvFbCbB3Paz0QXTv6MJ3aQFnn0HJkHtagQBQHGemKfW4qaFx4Psl+AZf8BL6Gw22fJhY3kqHPYAgyXrQtlO0eiI4/4o6HX1+sbkhQUvbbB1+wGb0fX+/j6uXLmCK1eu4MKFC1gsFtjf3z/wTL1u33vrug6nT5/GU089hcceewzHjh1rLzmkZnjf3t7G3/7t3+Ib3/iGZ6pat3V7L1vXdfjMZz6DT37yk0tnVWvMjL/8y7/E2bNn32fo1u3HoTFHRqV/8k/+CabT6dIzXdfh4x//OPq+xx//8R+/J+Na4N2lS5fwS7/0S9ja2npP+l23H99WSsHRo0dx9OhRDMPgwdz2c91++NotBym5Q2mF4lxKON7Mz8sHBfjHFSLv0+xL+SAd2QCA9jBZ81N+QAvnVLqdD+tXXMJi6yI/fIXhJxsPdFgOo4S7xPwgCJixx2wNreu+uGXODZF2AAaBWMws1RznDrAFdZmzS3CVDSthKVzOrqNRL4DehLUDa5ccVmOjJvl3DHMq2O03wZU57llxmBbY8WmORA3qKcVLocj5trjhbRhSaR4c3NqAAINJAndygFATPGC0QBroIB52pyG3A3jGJ3Nuh+HBbit2ZqyULlHMmFnFWV+60sCniYMASGYk65tK54aVjgpKV1C6CNgq6ng1Q26BrNekdJh0E0H1IE7qWoChlyCafpB9IIFiBcSDGNG5eDCTmU+IlAA7wxJpyTQxEJrBpnSdfF8l+IiMBtQwOtRIge7zJqDTknVCvzZfmd+AigUvQHoju2hZmmFg1EECTQYGSpmgU/7S8wLUTdDrDeuq5d26YlQv40sJqUH7EYd/IZLybkOvmXUKukI4tLmBI1ub6LqCOgwAiyN8UEfHjdkM+4uFBMMojVlmk0IF1FFk0GJ2wyqKGE0LC+0IV0gGIAIqhTPBs/hQMEhGlMBiyDMVGmBBQuO5DJc4p+x5C7DUIBS11rJnM7Mb70HrRD6S2u+SkwbFbHoSwKGRUWYclylJnxaYFfOA+wHGDvbWwRzBq1x17TzDHvv4hYzfWO9wx43hs1Bxnl51fxfYnjLGmzMuxHy5yPwKJs1cLEDSAyS4wC5a5QAB45OSGa86bUuNNdl3JhtLEdoopYAxyI0Yy1LAkMxAyoO7SRc8T/ezORAjWIWVF8q7qBDariZFkymVoDQlMq2QlUqQha1GX2ShrLyCRwuTkscKqGhWJy1vWZpnpXkQKgCGZHWrvj8KOhuPB1kHKgKhZT8Ee7nKxOER5d2CNlyXUPFfk6PVxKttIXfdUsjPaqVg1Dbr8gYl0YbtJQQ0RtdIjqyke3ggsOOzah+tmy+pHk7n1okMbfsm6UnGu033ws3k+6hffy0F8+lnEvxXY+24fc9wnvvzcbWEpzlQSddkPLccXDyGLWS6ZBYcataz7KfRqr+sslv5tGGUjTKNj+laxjZKuB7hibnBZw7y9JddFQ39LZzf5Htv3AfG65Txo3QdQQrkUyCfzRLFOG3rQLidW+ODu4XnfM5p2uPb6KSycKnPvFGdbtH83Y6ZB4lXmRl7e/u4cvUK9nZ3sXiX1NcBStAfxvBxPJyGcrlg8xqDSd5PMKR8HeGmiG3QaNkFxvQkD3ovaa8GP87wGB+w9w66e0/IaxEaReYDBYcPH/IyDMUy1Y7GsjPOjRs3sLOzg8tXLmP7WhgjVhl9lz7RfZ7PEfnJvNepNOwWtphtn3GetYAql0/GPzIhqIyisZe9nbDjJfPIopkJ7V0PUKKQbYDIsAK5RKDKmdOXySaT1bZ+hSFBzy7XQoiSwhS0qvEPfmYieDZd02/I1j1NbKRjON4c5yYnEm4hOnt8UlSHMVSS61PFymCLkiRzJej50bI6xpwkSF0vSCWNQ8rLV5/PyZMn8cjDD2NzOm3kGEPLlYNx4eJFvPHmm1GimBmaH8nnlZSNWPOlFrsz3tWADtfhU19AwnfSp5OoaloaOstSTrRgf4gakgLtmoBLPgB+7dvIfdV3/ouFHocMy/yn4Y8jDAXht7g0CpOppGyFo73lJ4Q0b7dfMIemSXppYTwBJW3LxJn79yA5tLQ92uQJWvnXg9nSerYsTQKVmIDTjzwM4iKQJXlHBNx33/14551ruPj229I7B7+NuBHVsRoNw/CZFUigHwa88cYb2N/fxxNPPjlyauRFHslr0wtH8okULxb8w2mBxtgZB4pWCNlYRllK7zkvcQNj8Pm0VdJvYx7cyt1GllN8Yntklexe2nOu0LTz59HP0aD+XNMVbH/H3EZQrYbhwB5XfdOu4fjKQss3kGQcLb+xjIyl0UopOHToEAApxTSbzzDb38d8vohzFB8M982b8cQRHZH9oPEHAj+PViX/yUFrI7Ieze0m+hiMy9/8GWeUI/Jz2lk6Y7RQyNk6yHMJMhqtbwZnST9atx+k1Vpx9epVvPTSS7h8+fI6KOkfqBERTpw4gU9+8pP4qZ/6qQMzJgGyJhcvXsS5c+fwwgsv4M0331wHJ63bP2g7ffo0fu7nfu6mAXMvv/wyvva1r635w7r9gzULVCI6OKNSKQX/+B//Y7zyyit44YUX3pNx5/M5vvKVr+Dq1av4zd/8Tdf91m3dftDWdR3uuusuMDPuuece7Ozs4Nq1a7h+/fo6G+IPUbvlICU7IMpZLB3i1NApxh8rNWX3ucwxn2xHZgAzA1A2SpoxhqH120dBEUlIZ8Nmzjbhn+UzpR+c43vKJzC3gABEpUmhGsErlPoqejjl3GHjF4oAnXjP8GFnTc9sgfhuhPXojTkZqCz4BOEAVOMoaxBRaQwG8c+qG+ph0RvfnqP0Xxh3bF7hR5UMGWIwSUZMXfhaK2pNGQXy7MYH64Szpc8tgxRResYXTvDiTgEzarbWAzvcS4BYkYvDKWiONStJDrLgqtl/3B4UMFmJGgtQIYpsO2KbJjCJQ750nSijrJlnqIbB04ycACaTKabTCZgk/S90zJ6B2g8oVCTLEgPMAwYeUOuAQW8gl0JaBa3EmlHrjKi6PuK8iPUVmpR97jgAo6/B1IOuNeigDph0nVBxiXJdzASaELppByagow4Ewmx/T8rAkZV+IJjXbagDBjbHAgAMIE3LJc6XKiXwStHAMMnKYplcal/RL3rhRUQAdZhOOxw+vCVBa9qvrBqjHypu7M+wN9vHQgMVpCRFONAkiEN+l+AGCfiQ4KQos2HBYWYYdWMYye1whmYIsb2cnukgfQ7VnCTc0Fe6GA4q5AEVy/tJx7T9iOxoN15kGyobtMQVMvhNPX27Vt9XpC8bbJblzPom21xGc2kPGQzVA9065f16k58yf5NxKqClCjXACoCXjbNARRLjgtCDZbaKTDyC8U7ow5bK1gXqrysE0kwvY0Mc8yqHrMzXZOIAM54K7YBJyzQMwCCZ5AYt2ViIMJlsaOaNHn1llMKSSa3rnOamkwnAHMoUS3Yz1tv8A2vIke5h1qChUhi1DiGT2dYhiGXgIQydlFab2TNl2dpVN+ibh9bRrpneCjBU5XnSTwU86M4oeagMLhKcOFQpT9d1hAmJzCXW8pMgNB5WqHjVbFjcZA9g5w3C1yJUitSjLOtSVR5ERhIrDQhG4vkaAJ2stlX/5qRjeGmuLO/dSUCJxtDg3QNY4F3Bb74bTZLpPRacJLjPjlDpC83+dccYt7ZypwEfx3SWbKwmp+fWiWa4H++JVTqEwZ/4iTmERrpYo+ckvTA3V8ny+Lo01RyW+ZXkeFoypjOlcSyFFyPSPXJ0FoOmrnP+h+CjDbCAZzLgEf26jkMyZA5cywH+8L5tVRJMCWZqPlSoKtK+WIGD27Cp2nyzJ2KWjDaxR56+6oWOt7ReSwOmV6lBb6zBeF/v78+wvbON+XyOGzd2b1piIXipjdHyiSWhbW9xmi8hMogc0JZxFzv5Vlqj6TM3+8d4QbMv0iHuoDGC/7HLkJvRoQcXsMiLw4cP4cSJEzh69CjuPnkS041pjKcOaBWz6IceVy5fwaVLl3D58uWlkhgHniea8f2BlXNqYWenQd9niTfFGXj1+PkMqtpDC0UCTCT7KlwHF/IzkHZov1pXJb1cSkGn+gfX6npiZXgGNt8LVTVbtqwThLxR8ppZxp+cNZA4nhcZpXTDFPPmVNpzhGuBLdNjBOYKu9YzBgEWzGnZNiwzoegw5PJRrwQ1+z7Kw2pp6mIBDl2UT4XoBpYJFQCOHDmKp59+GpubG15ay7aQna+uvnMN3/7Od7A/m404+oh15TUjW3edc4Dg9OO8JdPCSJYa7xkHR48pSMbgBr7UDVxjSMsUCQG5eSFTcl4/+07Wbpkju7z2uQVS/FzoD5o+v2I/W/ZY5YkxZR49lwdf3vGhZyoPa2wM8pNMiLcoaObjC5vOVo6TA/g6JRqyP5gqRKelNF4FcQGXwNOF8xfAXHH69GmY0ui2JZJSmU8//TTAjIsXL6IN9Ii5sINMLW06XPEBA3j74kUAkEClycTPE4Fz51YxVJOeKOlenM9/IWucpjN/gOEHXnqdiSJQiYy6ERNLa8Opp+YrnaPvjJQBExR8yP7J+8ZklAmoTHnj1Y4AXuOICZbc6dLeVb0gyeIRwS893/5GzU+jtbGczmeSBqSRXizQ26kiwdAqViPevhLUFu40n82NTWxubqLWivls3mRYGj/7vbQ8v8wvMqyOrSS/83z8ObL5t+/7E6u3vAGyeh4mW/LewUq2tfp9f8foJT+rP429jvocy4N1+8Ga21K0FPRbb72FnZ0dvP3222tn2T9AIyLcfffdeOyxx3DPPffg8ccfx+HDh1eeRZgZfd/jxRdfxLPPPoszZ86sS8Ss2/vS7rnnHvzWb/2WZqNc3S5cuIDf//3fx+7u7vsI2br9uLZvfOMbAHBgoNLW1ha+8IUv4A/+4A/es0AlAPjud78LAPj85z+Pzc3NHwr75br9cDSzld1xxx04fvw4+r7H9evX1xmWfkja9xSklH83p5gbufwzO64Blr0omyvc4GVHW4YGVXA6d9PSuTs7XxhaLsSeJTF6isMHbtCTQ6MdKvUTO9Snc3sOZwlHYRqPxzdt7ZkwPi0ZrJqDLQfekM+fksEhs+PxPM3gKM58CawBJCDCjLDmeMuGBDF46JyrGdATHI1xPTtgw7ltq0i2hnbTkbq4+WtGHebI4qI0UKtkyzEc+7yTWSPPPQcyZCHVwKqghhNFzDxeOIrbkkeCX1YjGKVABqU3dX4grRdTOLoGFjorNkelE5kXuyHQDGUyu1gTAB44ZHMrmtGmuDGQHDckFfOkZNnQ+zwlKKXTAKWCvh9Q+wGoFQNXCW5R9FYMqCSZSUrXgXkAqma+KVoKwWmzotDEcVxJSilyrRH4M6J/D1Cq8j51YdHsh0FgHSo2ug3JBsWS3YLRSxAMD5h0E3GIMINKxVAZAwZU7lG1Zhjp2tXKWnJByk2hym1qHirKpNPSTAO4MhaL3rPaFxAmkw7Hjh7BxlTLpemVa64Vw1Ax73vs7s8kiIIgZe14CPpSw+WgewiawYoLxb5jxsADCnUIViPBItGMVovzE/YIQ8JAFugC50+FNBiK2ekv9tdyUKO/j4LsKOe053wf+R5KtGCpAqLDJq6Qq2Z+U5pXe6xQvHqQm36BBubcPJuT723jQbb3ZH4TC9AgeOnG6mU3jQY1wxnsNm1rgIUG75Hyh+qwmFHbpEUEUQXf1+xHKZuLG+0dlxrUOAyRGQ01529ClOiTWZZuilKBfjGXIK0iGckmk4ny8eqGfx56yF3uQXBNyigsa5CugZR+s/Jx5GtjgSM5KHVQQ3Sh8ZKP+X/7r92utqC1QkCZdBiG4G/dCP/V5YdmAagA84COCQMBkyJBl1ZasxqulP5lfUNa5IA7cygQoLfcZR1NBgFazpWjgI4FsjJbWdkIIBP+yW7gDRE+MkLr37G34qfwBdvj2Vw90iM48DnayasdNjaC45PhWadsM47Odh44oDqD9WtqkBuyE2/QSQgcK/iMtXGwBrWEFHBhJMNNvo51SkBpW1d0ZFxP2PF3mv7JcEdtvwmFmb7lnQiEZxla/45AC1ko61f13pF+CAo9q9GH0U7Bgmk4vys9eaBRTfzZHdRkgQRBO7GIMbfxO7drO4CkRi0EWLCjrC9n4TR6rel/NR7avSnjDMOA/dkMs9nMb9zIITbW6SaQYryTgeV1XknUDWDtMAetpe4w7TV06oZf3IwG8jgcsDc+RrZAlQB9fH4Yd+p7y79vAxVt/pNJh+nGBk6eOIlTp07h6NGj6CZd6MP5aZagmflsgYuXLuLtt9+WUlo1YF5yitv7tlf1wWYFEr8zXtHibTQ/Xr3Go67asSn6qz5G2qNG3Hl/jxcn7XsJtqa01ibjRzNnuD46sOk2Js0ZfomBVD833RipVG+aLanOK9mKWcFqlEwAlvWTlFWabLG+l+WJ6XvSn+In4ctkXUedlKE2POZgKuocdgKrTiQZkAwCUjhDt0/7pmpwtZ9h5ZFByz+DgI3JBh77yEdw7OgRKe3t+mX0OwwDXnntVcxm89gvrk8YhpIewMnuQb7BUB0FrSzz1SCVVck+0Sx983eea5ZtTfdBT1l+IlFVo+u4FLMvllhw/LZ6x7g9hEzTiK0g3ytdJ5huyjkteKjZBLEnGBwlvDjjN4V+cej4zVxGPBHIl1HU3gGADOb8bOo085hGXzMFBLF2cuTQM7hespBWvXyu8coL599GrYxHHz3tuhBpprVSCBvTKZ555ml897vAxbcv6oWAmL/Bt2T78qlnGRx0+vbFi9jd28Njjz2GO+64w89fDb58QVVf9/VJek6Da+Mztk+NN4zWS78iCH9jwLPCyrmGEiGGDMhng7ZR+1xGTeaD/mWaG/kiouXD5MGcCYstbpaIjhKebUDE95ywOlrGm7fcf2wEovwdAqmcIF6lRxj+bf1clGWgEi9KOsRK6FYphQpKKcXLgRw+fBh932M+n2M2my0FKK8EdJko3xUGw7IHBK+EMZ0RG3prOlkx5gimZUDSi2MmjcDl+POmuQA6YAwsoeQAaBSkdyWwddNWa8V8Pse1a9ewvb2Ns2fPou97bG9vr/H4D9C2trZw+PBhPPbYY3jmmWdw7733YmNj46bnn93dXXz3u9/Ft7/9bbz55ps3vXyybuv2XrZDhw7hV3/1V3H06NEDn6m14qtf/Spu3LjxPkK2bj/OjZnfNVDp8OHD/2CBSleuXMHnPvc5fPjDH75p1rt1W7fvpxERptNpk2Fpb28P29vb2NnZwXw+X+tnt1n73sq9cRx4wlCtJi81ZssxncwMloy+aA0csN/D2UWWociNJDaOZUhgdWBahhhq+uR0sPeyHvKH/yBPqxgHfnEoT7SP1onGalQhzoc0TvYCPemNLAZmqG9tCGHEAKBOqdIarjLODZeKW/LSa3DDghjxqtoVDH/VfJeIsJrRWgLNZvRblRkQP3PLikrZBfLPGVreDRFQZaV4xOZGgDvd8mF7HPSFpcOEB8QkXHjQwej7cPQykpdR6CT+0M+Tmcgdf/pMsRu46Sa5vIJqqeKVHpnhBjmy/5GVdNJPzVjGEvDTlQ4sNaYk2Ixl/YuS98ZkAqKCoV9gqGJoD0FN6AjgyuiHXq1Dsg+GvgdRwWTSwaylUo6OAK6oetO4M8M/2G+ldl0BWWaQClBh1KGiDnqf24zEie6IpFwcIGUhUAf0QwUXRtd1EqRUBzAVDAtCPxdnQTftgMJSzqoH+n4A86D7pIBKRT9ULBZyc5nF6igZpeqADhGEyNBsUQOAYgFxA5gI3WQKKhUdFxw7dBhbE0IHBg/qjKiDZLIZBuzu7WPRD9KX8bdaBW9i0VTDJgAtm8GcSr95UAo0C5EaYmsy6nLQpNyEtb+VsUACsWSsNtCn2L7Kxs1qxuvgn+1+YXeOAS0tByAaWERaBdDwCZ2PzYVt94shlb0UpZXGaK1mzDG+BcEY/P5kMti7EdA2GhVUv8HKTakt+ahq1iUtAeOlG7UUIIuDjbriJUA6suDQuCHKkEA6JoC6Tg3c1fFZSvFxLTORLagFK2heLX2+0/F6ebcq/ysFZaJ9srzDxBpAJzJnsZijMqNjBipjYyrZmIS0xWm7mAvNWhYvmfOyAdIClMLhBZfFvvqWoZAlSKyjViYE3ZLzPXPuRh8tPRWClkAkd3YqK3VeL840UrqRALNaCAMzOi7oGAILKxMzudrQcchByfqQgk1N5lUr06jv1ETXsDKFCBwpXxWqjgwDigLFXOsMDDkUMrkNIvSPXRdwacxZC8BKuRZ41kdgtIeRfyRJSHOOjYzXoXpZMcpsjMtOPAPH3jDZHR2+exAMeR8R4IO0djc1gzvul+eenjLw3DliAXKmu7E7loQmipYwlb3hc2Sg8VoujWRTSmueyT7hQcjdiUX5GZxv5hYZCpfH84Cn9HcOWF9i44rTvM9Cd/3haXme1H6hv4xw1bK05hle8U4Eq2W6lf3c9wN29/aws7OD3Ru7qBwB2uyID527WSDK/eedFAHMy22845afyePGeWLpqdTb8sWOA5vySwODYqKjfpWhYolhNfCMAw4p9QEsw01EuO++e/HhBx/ExuYmJpNpjJkfTrrEUCuuXLmKN998E+9cu4YxzhrwR/Is9xucTblNQxe5v4PgD8KL4A1efs5wg3xOjXkt704/RYV+QZEVxDo3GmRmPUPYOhYH1uDo9LzGPMCSAVkgbuh57OXPoGMNgwZ861k5dDACrNTqeB/pvLKca87I1TU4jM8TgW+TjQzUAbUUNAG/RYIz6qB6o0ZYWwlwsSNUDXxX3Y1Zy7X5wgKalbGBUSWPZc4U8SJR4IUKptMJnn7qadx/772YFAu21gAVtosUjLPnzuP8+QuhlyS9kX2kkMB2eq4Km4slx4nJAwM06E/EF7uMT+SV+MeIju0j182y3EejizTyNTGAmEdLx3bkoOY5+FqMG+evyEBLzzm/TfvYBlrVfF8pbTEkg7DzMYxmYTNoeURm7bEO5GW1k8VDn9NJVAZIzs2Zp2bYm3UdMS3r1z9lwDN4EmQPEaEr+hRbxjRZswsX3gYR4ZFHHgF15GXmChFQCJsbG3jm6afwLIC3374k+4J4tE7t7wRbG+kvdE+9HMCM6zs7+Pa3v40Pf/jDeEidC27uSXu9xQVZN7EaeeJpPWB7SVahWZ/Mp/UeCbgwKhOsuuVSEM1Sy4w/jeB7RPlNo1+Qv5spjClNCLEfDtTGTJByptzVrRHTB6gQ452WH2u+u9lAQMJ3etZ4u27crH0IsZKved4hq9ZxCf5RGwcJGx8CRO5sbEwxnU49YMmClRaLxdLZ1MF792k3jUf0qMTUyI32LHTAZHxS9khi2HwQVMufpV2EnAnwoHPSzT5NXY1Vk+Y8sW633mqt2Nvbw+XLl3H27FlcunQJfd+vg1/+ARsR4ad+6qfwyU9+EseOHXvXLBzMjMVigZdffhl/9Vd/hddff/19hHbd1k0ClL7whS/g8ccfP5BWmRnPPvssvvOd77zP0K3bj3v7IAOVzp8/j3//7/89fuEXfgG/+Iu/KGeJm9qM123dvr9mtvIjR47g8OHDHrC0s7OD3d1d7O/vr3W326DdcpCSNTOipX/cmJWdc2Ekrm5jSb34u80NextAG7uBbnRO9j7Sb2HtVEOsOb7VvmOganBBDjhCSZkI0B7O4vYieSYPRtX5ihHVjBR5fm7TtXkyQCOnshl+rfTMkqOSIsBoKajHrI0Jt2EsyRCppQXLm60JbCCo4bakRRbAC3VNeRwHD3rjrVa5mVcNBodOnwlc2nzy7aSl23srzsb5WbK/iZBrDWQ7gRgSzNCvTmujBX0+IRMWLMLUoYzXoaS1p3AeFP28Kx1YgybM0EtEKKWTTCNFSpURdSANUGLWQCJ/VrK8gBlD7cFMmHRTMV4RNGhIMw+pY9zwPCkTgYcIVAqm04JBg5NqregcZ/JeT4Pbk7pSJFhjkJT5Q18x9IOXVhDDn5ngAJjR3029DKoVhTpMLACwGj8YUHuhJSqEftGjloqNrlOnieFZcC1ji/OgsmWo6EA0YGNjKrdUaxg3Bw026Pu50GAdQCRlvwoIRw8dwrFDWyAswFrer8cAFhCxtz/HbN5rlhbNXORlxCyogSPoDMXTrRv2m33vQQIkxkotP5Ud9qzvh7G2aOBloknFvRn+tIIeiOzZzCMDf+GAsTGsy5El03aIZUODZNjyK+OCDZCVzEPOMqC4IAs0tIDE4JEyruU2iznZ3sh7L3hQOIf8cyIvmygwdkaCnk3I9pI7x0iCp6C8STpNZUNtzUxQQcqFlC6c++6cSwqK4zHxRisP5pkDoPhgzXjERVlvdVgJhM5kBhfHTx16KCJFJBULKAEKTQBeoC6qBP8pHzPcCe+A05fzEw3OMZrOOK4c72eHc/H1cCrx9SVIINhycIWVjCEQdaikgV1IwT6K73AEyTwHhjgemVF5ABcJbOsAkDpiw7Ce5SEgQZqyP6X8XU28NIXnljCos0vv6iUcmZIzWPlr3I5n3csGRJJT6aPW0BtWY7NBux5guEwOMQ9aRKt7uKyD6lE2b7b+CGawDn0j+g+eoM7fFQ4C4x8GrGSjNJlqe6+dXaaQsSHbszZ62bfxoMvzHLfGwTH+jlROJlrSL1TmK59N+hFYHdppb7teN9IZXJ9yHAWehVYcDTKelRFcNQ+lqYpl/c2+z2hYCvagCDbyINFxP6azjpFVRp3fZm0JX3lKzZ8rMNtMi8YfrB6PItC273v0fY8bN25gb28Xe3v7EfidFFzjqc0FDUKL81QO1NfOQV4FV+zc8Xq/21zSqGMkOZyZl6/AQno88ZxcQrAl/nb8JDN8z/hgtGLc9n0qhENbh3H//ffjwQfu972YcW7oZUjgx872Ni5fkbJue3t7KQviePwDZnzT7znONTZ24jyhO8UctVPRI4wXt0ogokbWaL/nnwfpQGR6i33GzpNMnzG+EsFMEaDk/QDOC0O/LT6+ZUcdQ8esz/kYQCkT4agalGNlrWUQLT0M1mdFj7TgCuaaSvOmQOOEkKWgQtMlk4yxEyVbOWTS7E8ECdpgW6toUqot1sH0JgAoXSelu/S1zIslqKm6Hk1EOH36NO770IewOZkAGFxw5sDVa9e28dJLL0mQF1sYPxxPzbE60QMoeIgF1oS2as9lQeWCvtHsg6KyjpaIGxZkEnTiWV5sObMs1L7iwgPnHhuoTHY20KTJmmwW0HV81dkj6WvMZnn3tDhLu7RN/JIgb+FLaHAZn4MpFNeUR0HAqS9GEF6GYgSl28Eo9K/8tOHB4Q46b/BlXaBGqXtQQ5e+T/SMeOHCBQCM06dPo3TdSLchbG5s4umnn8Zs9i1cu3YNg1UypJBHTYBVEokMuZRkOgk5thlDP+C1V1/DtWvX8NSTT2Jrayt9366FYC7k2HJQm/1FaT1SMBlCHINsj6RrMFpaUso4W6l2aJargGZ59eRc265/nHtzYErUygp5ZVZH9s0UkJv+0dJBGsr3QPCqwBlH0FfTwXIb971qjvGwyd2sUyT6zxnBnKfEXgBjNIAJQzoQzjEPjNKaI30eWS5Yl8uyXwKWNjCdSmnYYRgwn88901Idej+/jfnJCPJlfmNry0DYbpWHJj0oSjavmPSYAeUPGf5F8B6+yfraRlw1k1UzOLiNh2j4Ko+Qdevd/lg1ZsZsNsP+/j7efvttXL58GVeuXFmXD3kfWtd1uPPOO/Hxj38cP/uzP3vTklmA8IW33noLZ86cwXPPPYcrV66sHZDr9r43IsJnPvMZPPHEEzc9m168eBH/63/9r1vIErhu6/beNwtUYmb8xm/8xoGBSp///Ofxe7/3e3rueG/afD7H//7f/xuvv/46fuu3fgt33HHHe9b3uq3bqkZE6LoOR48exZEjRwAIHe7s7GA2m2FnZweLxeIDhvLHs916kFId0sGM3TgwNi8BYhxAqXGgMoOenkrtMB4BQPqeGkAjoMYOZdUNEpZ5qKR3YIFJbnjNASspq4Ea9gLmdAN0ZWSMGh78nXwYBbwYjRne2IxmmusiH+JHhg1xXRWHUaaqxhUzcDA3DniD2TBfzXDgNoVsxDSjQspEood161MeCxwARcpYoWjZog5QA4tf1AVAahSulYGhRmBHi175wRbQtWyEiHfCuc7NYo0Ne+KQVfN3jEHZocBqtrPSVWI4ISKFO0oQmhG8MZto6aVC0MxKqZSeW33U6QkGU0ElCzZQXJEECxFJR1Sk0BAzoyuEUhist4DFCTFBJclORAp/13XiuB8qqpYtMKOMl0UaJMNQoYrSFdCkQ2Xphwf2JacMz6BzJNnP1SMeCoZh8BJsdtuYK7y0mWRIqVrjSTKwgAkoHajrJOU6A0Qy1kAMIs2sVcX5UdChUvXb2ma8q0OPOmiZpw6gooQ0MJgLJt3UDbeTQlgsZig0wVAF5sVigQqgK0DHjM3Dmzh8dEscJ9VKRKg7hQg3Zgvs7M2x0DIPtg+kOqEE6BAsQElvoAs4QtNWbhGCg6J7qjLL/ldcsJcaY8kIxWaoJDVwmpVYyn25WZIZlQpQUgkyhd+NhIDThWUBAkgC5kjgXHUQt31mvHcggDiXprP9JPyuU0c8K57IgjrTntAQLhDrrXAQKml5PraSX7b1uIHDPyuk9BJjV7Bk6yoFg8EQs4/bs2TGYYGEK0AdhJ4LIvuQW4/F+Gw+rL4OHqDjYU7urJaHhLY7Yexc1TBeNDtLL8ExSO8QhE6Y0XWyj3qSDAUFFcSSsWkyPYT9vT3ZA8RYDAWFLTCUQIXRTQs6JtSF0Fush8qiEk7TSgSmTkoipoREgHHIll8PkDgq4Ssc62NcljnxQdkHRYMgKgd/1dxWwuOow8BDOP5c9rHgROGoDAw8gAgYmNAPclN8UuRnMfr2bIoV4CiJVZ1+ZEyG8C2jqQjyMAMwo0OsJ6eb08bOnIKpCO2x53VqgkTkfZFLumuDNk0Ux69QMJ16bUUqwZ0Q0YcFmVmgYIwd2XYUODJewg3NRiCkQRWlbwwjxelhCDohHZ8T4Shx0WhC2bFl44XDRuCwoHHjH6vehelMRKmUCVb0XYHG2WRotJkZIknFue5VIoALrBSLOeJkvvG8j2Mbx3VOg8gCuDKdUF5cX9eYas0JHhHlYDitRWTkcoVM5X2VlJsSAGbwKoymV0QtGO2VqcH17dda2Iyfy5ojaCHrtKOnrZfsUF8eQwh2GAbs7u1iZ2cHN27sYuj7cL6PNy2Pgs4yHkdDZMdZaKzUfD6GyaFd0Vfm0zYzD4J71+VcDiBNUlr+Gju4KPDrYzboDGkbsjszgeVLBf4GCQ+dTqe48447cd999+LOO++U7KBpQjkQtrKUYdjd3XXHT7WywCmYg9uJHYwRbkkn49dwsqovUv5KeTLNBEviwfFtSOa0Eq5j09L6OG6dhZDyX7hOZO/KcynQl1VmU56k8AKrRG5jWAYlD75JEy3G1K0ktJW2tNJnpqKyzsqOVuZxrkEPeb9aQFEEDyTNw8VxyK9CkmGx6HnDyq5agIXrLpRKwkL4Yh05uiPICC6zCuCypWjAOxSHw9CDSpHSu7CLGALm/ffdhwcffAAbG1Ppjy27U/U125vN8dzzL2Lnxm7SOTJ/kr+Kzt1pPtOI/R1COHDkPaRMPi6vkt6pOIM/J62azcb0BCT5k8VO02/QSPQ92lDI78Jxbv00PIvs9THPHLewEfm4NiPvk9N3SQfR55DKK+dRYk8H/lPvo+lFoBCYnScAiAyuuXvXn2zh/OPR9EI6RMg3R8AYlyQJUr/6UXVxL+tZCfrBAAJw8eIlEBEeefhhTCcTDFXo3eJPNjY28LGP/SN899ln8fbFi6A6qGgIijWgIyMSBRxp0gaX0cbVq1fxd3/3d3jk9GmcOnV30GpehcxT7fclEZ44JYUuYGSZxRglXDNZKUjTJQiVNKM1QS6gNfzc+JZvtuBrBMi1DF4S1rJWpGQeFJQnGCw55Jy/73uwmfSIZrj5bGlLrd48uYMGnqWxEmzBBzi9m22DRh/W/Qj6pX15ADyJxOyDm11MXNJhl9av5VVd1+HQoUPKa8QutL8/w2K+wDAMGHU2ms+qNlp3Y2KIoK3xGaWddIvPIIqwT/J4QR1XK2BKjwS6ufky0Lt6TjkQu5mXSxgD1WRps2A/1s0y8Vy+fBlvvfUWLl68iPl8voK21u29bkSEQ4cO4aGHHsLHP/5xPPzww5hOpwf6FWqtuHLlCi5fvoy/+7u/w5kzZ9aOxnX7QNvHP/5xfOxjHzuQZgFgsVjgS1/6Ei5duvQ+QrZu69Y2ZsY3v/lNEBF+7dd+bWWWuiNHjuBf/at/hT/8wz/Eiy+++J4FftZa8fLLL+Pf/bt/h1/+5V/G008/fdM9s27r9l41o7PNzU1sbm6CWe3Hu7u4du0abty4sdYj3sf2PZR769z4NrJWNM4xf94+T8+sMm6FowhArajJCGs3ouxGp/cDM4q0MDTwIA6NZME5IzOCmwrdyGK3UvUk7anV29INq+Zrh037mGKQ0WHPRtUjrp15k5GZGW5Ik49zcnhp4qTVsjd6qmwClhJ8ngWF26CnbPAhVnu44t+MS5wMv4JTyXZTFcc+jhltbtIy3jJ8uVyVGC3Qrh0QBmEQPGKK3RyktKmBBm7I8JEVZ3a7F7Dbx05HunZ2c4/V+sc6ZwkOsmUwqxq5E7SzUjpqcJfUWUYvMm7XdSlLi8xxQpLJSLLuGGVI6TLSda7Q8kTM4eCpWpIEkACkIo7UWocoB1aUPtT42NcBfV99f6CmMnba3zDkG4PsgXDDwOChoqjVsmgAWwW8vBJR8RlofAXq0IdjRQ2IPDAG8YmjaCBJZQ0EKEXXUZexFEldTxbkNZHENJNNcO0FBo006YqUrtvc3MDxo0fQaSdUgKEXPlMB7M8XuLG7h2GofqOcOZeFEHxQYZQiOYWyvSm2qxlOKwZAb2ZbcFKUyajVAlpiH8S7+mllWQt/RgaRvshp3c1PaY8AnMqqIXiqNg/gBDlsRvD5JngYDOMnMzRITg1VzTuRsUX6dcbllstwbOS5xzyy9XKVkwAEvQnJjX9Ugg2L7zGqOr+i/LxG9iSJLJO9XSj4ofMYqVUmnN5kRS4XipAp4qwQ9w7pvFhpLAdbCvRV9rnSRNdBgxYj41ShDkOtmHRT9LVisRjQ8YDJRHYXJXgnkw1xonEv8/N1E5jNcSfBP5KFqBpj54CvXQc4jUL5edFAYCS6cRO3rk91y3WYRj1jE0U/tWqQGRQPulfdocTRrzhvbC8SJl3BRAmbEIHJxgstwMiy9xBVn6ffXCZyx6MDnNYUIC+/xo3x2R4l4XmsQcHJQSzAxF42apZu5J3IVtYOvzKAJNE3qXLAKdgky05OsDRduM4VuoDv1+xAHP27DEroesETHCVL+pX9Z7JcJEeU1HHH/Yi/hK4HtFxrWU+IQKniHy3pffl5S1XgHyWdR9dapZnftjc6cF2KRa8JXc0kgMBo/Rg/bOFI+rJ3p4vLKSiL0eDSyWCJVyqMNQLX0uTTHBlEXdIWb8e2rD9nWQCM94h9/+46pj2ymC8wm81w/fp1P1iOMeq6zupt8D0123e23Sh9ihW0vQT7LXwy/lrZ5rt1neAZ90kNXVLzyEG4Tjx7NC/7q+s6nDhxAifvPom77jqBrY1N747y82zlD6Xs3rlz5/D666+j7xdpjNHoow/H+7792/jzCE8mu5Wm/NiQ9Lp4e8X8eTWaOP/jZyNqnrdx4vKJnjlceKjMc3w1gBsnDb26wZNmTiSbl+DWgnhEnhuvUdBFoMvnRA6b8ULHAbULaGURXdcz+am83aq+tsqzjF3lZoB2KUGaCqHo99TqX/YUN6VaY6/53ROEvuX8FXHup2JnEXmg6LmJSqd7oCYdBdjc2MCjp0/j8NaWVktVuvFAa2C+WOC5557HpcuXHF9wXSvpwCazx0Q1JnLTNdL3nCgFuoYuy1xDY382aDB3TD5Ws3XHzLB5zU4uQcvUPrrEV5ynIh7iZn+m541+HUe2ZmO+GXS+FADa6JBptvkckZvTNpwODIYwH5BmmEvnHWcQHKoUjZYSWVu2nR2nP9cemrkaAKLb5HMdg3yxoh+WyCTlX0X1sZA/jAvnL2D72jaeePxxHD12DJE5VPre2NjAT/zET+DOs2dx5swZDL1lcm1nY7NIofOSeZQNtoDdPr9x4waef+45MD+Be07dE3IlzSrT2HIgSvCfdtmC0sjXnBu1wPdegtvoVRMiO73mvZgwm+rGKf/k1WtnvHgJXfHkeNX9LztbteHM3Dy3smvv4KDmjA9jRrMULua6dw6YGu27NHAO+cs0emDL0879UB6NTHys7KqR46uUgQPGNRxvbGxgY2MTdaie9eZWHQzjc1fLi8Zrb5i1feISp8W5/Zp4E42/syFWICQHQI/VPlv2SPq0+ozYDDaWRUtf3yLOf0Sb2Ux2d3exvb2N8+fP48KFC9jb2/ugQfuxadPpFI8//jieeOIJPPLIIzh+/DgAHEjbzJLh6utf/zq+8pWvrNdq3W6LdvToUXzqU59amZXG2mKxwJ/8yZ/gzJkz7yNk67ZuqxuzZFQ6e/Ysfvu3fxv33HNPw3eJCEePHsXv/M7v4Fvf+hb+9E//9D3N/vX222/ji1/8IpgZzzzzzLvoM+u2bu99IyJMJhMcP34cx44dQ9/3uHbtGra3t3Hjxo0PGrwf+fY9BCmZkWj51sgqA3E2xGZHPCg7M/V9QA1ZrUFqZbmekWM9G6THxo7mczuPp8OfOdCiJaOMG1CTCc5srX6zvsYRjiygiFc6PJYPvNQaVGweRF6bLsIqklMOaA7AZtAJI7HCsMTMwylohjiDx5z3Vt6FIA74uJkoGTkkIEfzBxgO3BgbmRPG+B//3j5jY7ZOyzG9ZWJxMwDBx7Y5s+KN1JGXDSKKZjUQwa2MzKwl2UamNCYAtf2Owl7JECN3KZJDpFA432Usy8ZQFNYBtSqMRCBUDARNYyLl4QgM0ICCLsGqBkmqKKyZdargfTKZ+K1KySrE4FolQAcEZskLs+jlJhkVydDCQ1hXLUBnGAZ1EAjOqjpS68CeQIlZ6LsOhheBsVYJYBqqBBOUrkNdCI4mk4KiToi+H4A6qBNVaMtWlDVDlCb1UATr+pktkoAy6SSDFwjz+VzyZk02UOuAzY0p7jx+FFuTDrXv3ZzEBPRDxbxWbN/YxXzRY6iDZj6ytTIjT3Ve5KyGdV9A14vgjgqhEvZ3zIDUaRpw1vUNey6DbN7mBBoZWUvppBQWm8M89oP9V5CCbZQHNEZjI+UKAFY2K3hE0Ymx0RhsPzjy1b/GMb7hwGk8+KQFmDjPZMYAyRBlQWaGHTEQi0XN9nM4dQ5QRHWr23iU5smsJevMlqkG6Aj2TM5YXWiTC0vOfMOlkR6zZsPyB2CZBixAqQFT16yyBtshOddA6HuWG2Bl4s8Kj+tAhVCHAQOkVAGZZV0N5pPJxOcwaK0GK/cmQTsaaGcBviRrD0Q2ihwYFMFo5hzkKF3ZOMe4Mb1yTbizPWIGUu2/KwVkWayqyUrNNjbCFwANxtTAHDC4r+gJmHQdimZmNHZgVMJFyo0a7YlzKfaBB6OkuZtzQvJZ2YpGUGHIUvYvCYyucW4B0GwNppcYia4yptscPXtfWgejS4Mr6NSC1Fb1ZXD6p6IvqcPBabcVf6JLjZzNwEhPQ/s55e8NHsdPdpTnAD0CSokMQg2cIeOdn/hes25NpyijZ9u9muFeBUfmRSMmm/TIwAkRmsAyZ4U2iSU9Lj0USwsvQ2t8RF8nm1rWjfRWNdveMf7mjiz5mxM9IuOCkT5X2G7VoXPbtISPA/R5eyrzcFnH+L7Wip2dHVy7dg17+3tRaiqNkZ1CS/6nFW0p+C1/h5B3LcUd1G7+La946uZvCN8XVGSedXN4Wx6R6Oh7NAKN8TLpOpw8eRIPPvggjh075pkofTyHWfWDYcD+bIZ33nkH586ew40b13UPGPPK7+Sg6OVzqM09g0RpX48AXzGX3A8Hflbt+bxSS3hb5j1+1lSZTrFZmy7tfKZa0mjtm3ARgc3kquKimPyzs0/ib6Ff2dQUh14LXQKb7UKBlXdTRUFKTul8RXeufjajGnPJOmpmu8Y/WQWT6W8yFSk1bqVX7fmc0S5n/bJ5SDB6nlcrtxkk5aeNJZIhTncBaZlnJjmfDYPTGBHh0dOnccfxY3rhoc2IV1nOO2+dO4c333rTsy9l6sDoE8dHiIt4tuFBwdco/ccwesqPssv5LIoofRZBZ9IjAREUpy81fcYDSQgq8I4Do6IWzraTgNHXcWnPNhvWMBVDp664JajMzeB7EWm/jcBouT8yqbSNR180i5X0J2VTeVeh+Q2hM42aroKft1efQ+AoikAus1kAZBcBitgiagqeu379Op599jk88xPP4OiRIxLXlBhx13V48IEHce3aNZw/fz50dHuG2zFtLmQyY5Weq/Na9D2ef+55LOYL3HvvvegmXXt/hdPTGVk69qqzmQeOZ8WWvJtlWIxWWC+wsGQtFTtNuvTQDK1njzQbm2smgVXqgjwWk8lTWj7TcjvvA/q8eQvqb3hIXhtfS53VKvlu8pQbzSj9NkbwCoTnj25pIhnqVtZ7gD+Pnl/epMtDpS2Tfyml4NChQzh0aAuLRY/9/X3sz/ZFvrwLvKH/jRYsDRA03UJm56cMXOYXjf4yZov5tXxWRHsSan76slODi1Y7oRjCX+L07Soq+PFqzIy+7/HWW2/hjTfewNWrVyXT/A/dueqHt02nUzzxxBP45Cc/ifvuu08u6B7QmBnz+Rzb29t49dVX8bWvfQ0XL15cr9e63RZtMpngU5/6lAfYrWrMjOeffx5f//rX13S7brdNY2acP38e/+k//Sf8i3/xL3Dq1KmlZzY3N/GJT3wCb7zxBr7zne+8p+PPZjP84R/+IW7cuIGPfexj2NzcfE/7X7d1u9VGRJhOp7j77rtx4sQJ7O3t4Z133pHS6etsmv8g7ZaDlHK2myxADzLghy2QRwcxRpQgG71Dy2bZ3BdI4dBPw9kaB8Lx7z52shjEATYdxvxcPz4cxxzjmCjO4AbGm+gUq43cBeDa2OF5NPYY32wGCIQhd7Vjrm3LGRistE/x8cwwbVMk1vJY5qjmhK5RgFIuXzIORrJ67asCkOydpcP6CO4ACnpKH7ycAbk1NsaEU4iOYAY+65PD+WlGwkwrVKxLCRZBiUAswb2UU3DHEDMsj7/hihAZbCpXlDJx+CoAc3B3pRMjUQW4GxRGs9kQiMXRWwrE6UskzLCKgdJwNNSKOqTyMwQUljJWUsqqoEw6d1wMtXqQjgQODrBACob8DSbUKkEFpRSgVg1UqvAbnxw34cXJIeWsLDtSNyno1Ci4WPQOo5TGkmCy0olppAAY+sFLqRXqJESPOnE0gDHRvrgA/WwOIgmGAIDpdII7jh3G1rSAakWnKzLUisUwYL5Y4NruHvbnCwwcWZSqzsOoqDK89JfRnt2uZgtQSg4YNjrmTLOCD8ONzU/jNMFgDR0h5yZOuSSFJMP8lY1IEZgUdv+xwZD9c9+/aqB0AxVDRuXYg7EPjceYsTDfM23HWh3cMMp2gpaHNfbtxgBocLHjgciy/ABWUKxALhJnf4UYWbW8meb2JyLFNWkWHOMBZuhD48Q2fiWD28pE4KHTNqJMHI3lGxTHxOAq5Rgl2LYCA2OCqThniVC6LvndCJPJFMNQ0S9mwDBI0B5bhiOjaZZSkQzFi66Pg2AZ3QTz1bMCFF0r64+ddcl3tVmfOpIn7KZLRuFkIm3KXsTvsq+M3zNKRwAXh9meyXTknxFhUL4i/GYQftEVdATN5gade9ofDAwpqMXkU3ZoM8PX06rktPTZOsKzgRg2O9MTHO4sxDnRdKBkSR9JY+XGOgiNdJHV8jPWMTJAKj/hZMD3faCdN46+6H/8u+CwJgN8DoJi54OezQxIThrZB0wR/OnzYThf8hqFxjvNUcKcdKwUCOVIPbgtB80jkWgEffpTnNZfeU8bYM2w8pOxjhV53YWmkk5I8aOy5WsxRLAJeMeUA5L/zdM0vBuUDM3sQf6GE/UPqWthtZ6MZu2XzxLC06x+uNUQb5GX1wkNuuz37xVjt37D/FaeS0B9L7C0r6mssj2W93jwa9eJ9SDkY63gQwfBkXk1M2O6McXW1iZOnrgbJ0+ebIKT3FemOpat4c7OdVy4cAFXrlzBYtFj0S+yUnCrGAh4nXYOfmasq9jZK/Zylmurx/C5j3A/ul+zBJOHU+QMrhDHMEweYbSFDT5EgHCc1+R7k37CH0yg2SUhivNlCIM4m+gZo3rwDfl5qpVVEdTGlWFZJjvqFKcAk+rTjWyX/0yni/W35I6M4qCRwyjqf3UaLioPmeXcYGVlq2eTJQ0UN1nvSBdYfR0sW5PqSJCgYdOna43zV6EOjz32ETx6+mFMuuLaj+FAApQqru1cxwsvnMGggdKhTxsMecESbSBl6WkXqG0mLhyv9mzQAyGN0/5oxpNnQ5OP/kPuZJnYvJ11dH91eZQW8NxryFzfdz6LFRBz+sX0HqDJyJQfJYzgT/36/sg2jhW0PZpxZMYFYGcn0xeR5pHCh52/uf7pkCUGYfgmO2eOMJlhYSQ64mbdhjrIGZdIgxUte2LQ+97+DK+//gaeePwxTCad04/BVwh47COP4tq1d7C7u9vQUcjHdpVyaJgH8FDGgnzbDwPOvPgidnZ2cPr0aXEu2HxMd/SBqNF7Y/6JX/s6GI7k94qbS+OWlM3+kvGvOBntR9saN9WoXBGDy9Ob7YpVn2S+v8yvl58LgIw+jdZuAqfR0CrdOenCWT+KAXWcFTLuwHZzpI1YhcpeygFiWIFM/WAseylPazS/vGH1l+l0iul0iiNHjmA228fe3r7f/m/PWYHvm9lXM4tbHVi9DL7/u9J+Ys+bwETgspl+/mLMbxH9klH3QcCPPlktsn6km+HKLjmcPXsW586dw7Vr1z5gyH682qFDh3D8+HE88cQTePzxx3H//fffNDip1opz587hO9/5Ds6cOYPd3d115qR1u61a13X47Gc/i0984hMHyhBmxvb2Nv70T//0YHmwbuv2AbbLly/jy1/+Mj7/+c9jOp0ufV9KwWc/+1m88cYb77ncnM1m+KM/+iOcPXsWn/nMZ3D8+PGD9bF1W7f3oZVScOTIERw+fBj33HMPtre3cfXqVezv7695+HvYbjlICcBKxLvDD2q8MIPsAWtkQTJLfbCe0BvH6OjAlZ2HIwenO7L1/Vwbc2xAGY8tzZy0Q+Ngb+FT+0oyssGMhG6w0u+4fV+c5FbWq9gXyBkDmhTvgGerkHFb85tVMhkbzuWsvCq7gBpffegIWJBMQGKoN+d/z1UNH2YkTOXM1MLjxuB0vZSJG3gjQ02CX9dLMvEUNexlfHHCRJixfe6ItbCBixmgKb230sJEZi+NNUB2giaDIsW7DFYDeYbTxlCjHRWAJZChaPYYoJOAMEObZt8y1FlJHCribJMSSdBbkgBQsbW5iVIIPWvQAwhl0kmAEwoW/QKVKybTqRtUSiEpz1YIG5Op7p0iWVr0RhDDSuBZwAJDApbS3imEDhMUvXlIqJK9JNEVs2aaIaElaOmr0k0w6QRH1mcpRfohSPaorgMRtAwdMCmxjqUY7goqV0y7gq4rmC8W2J/NUAcpsyeXnCuOHT2KI4c3MSGA+9oEczAzZoses3kvpeWqpb+nhkYsMMHmJ9mkIstJDlYDsdukzI1BhhTAaZgpshN5UIM+Uyic8oCV6dLgNg3MCjtbMqimfWfvGD3b7Xbm6nSW7XqcM7RQNqQFzxBSMIuawFbIShW2QaZhaEvGvcyXFPZSKGXqgju7fOdxwE8apCBZIgRYcr7CjrccWCQBZAwopbLtddi+1vmS8cPY98SyhlWryBVdI4FZaQHcBnsA7oy18pfs84tSbbns41AX6MpUnH1a0qQQgboJBmKRP2WCxTBHYdYb/OZ8tlInktWnFgn6qYYXIg0sDeO7ZFmyYCvBZxB8lomR7cpkHTN7Vhlb48jOoCsbnt7IUqiGbds3pJmZmCV7kfOaIKD41WnB5JNIpoEr6iDz7opmaVqiP1kloGsMy5IpISyvtlbVYKWYIwCnZdsTjQghAoqafF0Iy+QisCtl+WCTNyEXjccYLyDrl41AtcTnSO4vB3G0AUCGQJMwrqfYZWHnEWnfcOyNcYDW8nrD4WWfoxUE1W+LBU2FTrAKdtNHctciI4qvuwUtjdekpTOZV9YLeBWe2dyF2p8FwhbypEe2Xqw4M3iNRIznUvreyKrq3lxqbIEIEHnBVSeQHl753vJHFgjldBmspXWiJF58u7ZVAYpZ12r+Ts+a7rK7u4thGLC9vYPKFfPZbMX5ZIyDwMv4yTHGDgqqP7jvccsj3NqzK5Z8dXPh3bDO2N6q1/j2aBxY7SfvBtXKmROh6yY4fvyYlHO7804cOnwIVu43cSzXpo2fXL++gzffOotLly5h6IcAWnlf8ARuRVSmjUZ0BH9wnWgVGZiannUorKIIdvzE45TOVC1fE/1ihM+GXjKw0b/BThkkavvRp/x/psuEQsfLC5R4ngXCmJg22TTpJJvqwKpTgKSssp4JhzqAAZSuZLES8qF0Do8FbHpsg/F+0yNCusRcSjHtDCYrA/yQ0yD4uQIsge8WjGv814I8DI/WtwVnFyoSKEv2u+Km6nmOZL698hUCYdJ1OH36NE4/8hA2phM5J6SEG1b+eH82x99/91ns789aesgZSdJedWpIendew7zf8muNBkIMy3pKSNvH90/CdwDhcj5LHo4XAz7Ddd4dWUe3Mdm7zQAgzzQe8wk7OKYL5XebRuNf4nxgI9klBEMYNf1z21UcwFcO4/udo2+n4UyfS/qQfO/6TcJHxrPjk4L7qtqY8BnritG4Pu9RcHTliqJWiVyiWs7PUvrx7YsXQYXw2KOnMZnYZSnrlrG5uYmnn3oKL7/8Mt5556ol8nYektGaA+Qz/fjs9Rzgu5IZ5y9cwLXtbTz91FM4duxYkvdpfitYmR8vePS484SMv+DfDZtXHsjBBGFqOat9yzTO1SoZN+uVv+f82wqxE13ktWzeCj7N0OzaefojmloxevCFkVTPNDsadyV8+Uta/nxM8qthGX00+pgTLh3hetbMdDUS8IkxjmTveD6+iPm5g7QYy650GIcOHULf95jNZpjP5+j7fsyqpLv0YTrxuM3TwJVn07yzaoH2OQCw+yVLbHC0xJmfj1c39bZyrqvaUrejv5oAq5vg8YexMTMWC8kuf+nSJcznc5w9e9ZLeWQb6Lr9w7VSCjY3N/Hggw/i8ccfx+nTp3HXXXetqGzQtmEYcP78eXz1q1/F888/j/l8/j5CvW7rdmttMpngs5/9LH7mZ35G7G0HtP39ffzBH/wBtre330fo1m3dvrf2ne98B9PpFJ/73OdWli08fvw4fvu3fxt//ud/jjfeeOM9H/9b3/oW3njjDfyzf/bPcP/99990T63bur0fjUiyK504cQInTpzA/v4+tre3cf36dezv7691yR+w3XqQEiWnFQBzhHCcM9vH9SA3zjJhNzhZutSu4jSWbZT5Fj+vGqQZb+RYU+OlGJqwdBK0r81RKX+bVUThMkOqHpDJjUEpr0hziLNbe/GcBSgZygJ/1rGZENiN1o2Dn1sjbmsukff9hr8d+t0G1BqsZPxwptnnAAN6O7S68WmUfYEYII6sAIbA1NyoUmJeDudo7TywAKyO/ZJ6kXVozYwJh3ZIN3xWdZBragw3ypjBnhNsZtAickdqzeiEGQE7hUmc/E5fpAEhulZW6o1ZbtZ23USM4bWGL5IjiK7WClAHENxJXMicIAJ3KR2ok3Jok06M7LUCQ5UyUaXrNPBGnu8mHTrqwGyGSbnVTF0BdUUce1UCIAYt+1aHioGrrJVaSwnAMBC8PBQ0kCcZB2uFB1jIO1aqRnBDJNXQmAq6Qhi0NyoFGCQLEaqMO5lOULkXo1AVx5eVryiTiQTDGAMojAEV+3szzOYL9IrPDgDzgMOHNnHHscMSoDREIFivAUrzvsf29RuYLcQhEXxBqc6dKi0ts9IO61xJS3x5eTelwWL0qIRUuXpeDWagqnMbtd0I0ncuZ2lja9AXi0OFCnnmJ6djwIMvBma/H56DBowryTJGIIUHbSD2QcBk5Y/yvdzAE0Z4w+jtZIJ1XimBV8avavNuZIGB8B3lH5SeibAj7bMKn/GMDQiYKkvpkIpB1oygDgy9da8bc2C0wRQUATSdsBX/2x+pVYLOKIx4BoLscQvmUb7tQaERqCccagBDeMSkdC5bqBSUaQdiwmKxQE+Q4LDKrpAzQ0o86DuVqwYGVsCDGCjxQkOvOAhxgNIUxlT2smQWzDE21Ga3lfEutyf7koyMTEp7EyqodYBAK7CxrpGx5xKvaJYxodlKLEGGutcs8ZXhu4OWvGgcn1DaSzoCUiBRljQUjtnBgvxSULEFWWfZxC4TM98w2jaaT3igFDRte7os5yUYxeem+eS+289zUI0FAq9q5qhV6FY+k6bY6GHNuObMQzadt/P1PWw6DVQehHYhfSPmJctCTR/+OVkEkX+b7fewwCoPTtfxo8xw7neQfZ/r/q2APZoGVtqmV2W2UCf7OcsQ9Yb5XmmcQeRwjYPDArWmz8X77VoF3rOuZ2t1W7ekh43pj1nKgC0WCwDAjRs3sFj0ADNu3Ljh34cDOQTSWFNu+oUptK0MwwHvNAET0cmqrv2rljOsfiLLx+Xv6YDnG8D8eytaswqk5c8OApxdn22eHO2FyWSCU6dO4e6778bx48cxmUxQOgrM5z6UJ1Rl8Nd3ruPNN9+U4CTNWJP17ex0DjYS+6VxyzVwma5E8Wc7uQPnnldq6Vt/LeRcGq55zi5yBNgr+DPd3OnSPKo/Jfi8NHyhdZizymfyBWtDGOB80PhVUV2rqv5btPxz5Ziln81YdCyuou+SlmO2v1H1AkCNrKTL/DPTOqc1T2jO+pUiw2S02RdsjVNV4uCNmtm1dHKZYZADiAayq+wpJQLJ2XQaxryXSxtD0jPvPnkSjzz8YWxtbcjuqhH4wFpmexgGvPrqa7h8+TIGttLNAlbVOTUiP6NFdegmINjW3HRUw4UOnINF8vo7YOnT+Dyedtwa/xvTosma8asrGutEc4DQqpmOJZXPakmmrujH1zbBmm1Pbn/gNN+xHnIQ/Aj8puHiQxvPuk7ygtGujdKhXVJZycGXeBq57Gr0BatsiPydKdVmi8rKmM1ZIKpVLsIVTQUtOqlQ0/kLF3DkyGHcd++9bmcC4PR3x/E78NGf+Ak8++xzuHjpUpKriLVO+m3TKALE2kAb45mM/d1dfPvv/g4PPfwwHnjwQbehNGi07pb6X/ql+Y78EgcEF+k8ayN4VqyUwdJ3S7osYzgzVI9i7QG2Cw72Oa9Y5GX8+LNpHzRPj/gmKFhc+xg5SeTWZMpx/gY0mX0Sm+D2T6XnFXwhg3WTKbYP3np7t1dsO77bGaW9ZGhvruLAqycwmUwwmUxw+MhhDP2A+XyO/dk++kW/xJba31u4nNOOhx+1NuBJf/UjUd5Bt4bUlsXEeWIZwuX3ltsy8Mq1bgmW26kxM2azmWSJA3Dx4kU/Q1y8eBF9368DXD6Atrm5iWeeeQZPPPEEHnzwQWxtbXkA7UHNbDfnz5/HX//1X6+Dk9bttm/PPPPMuwYo1Vrxt3/7t3j11VffP8DWbd2+j8bM+MY3voH77rsPP/3TP71k0yAiPPLII/iX//Jf4r/+1/+KM2fOvOcwXLlyBb/3e7+HT3/60/i5n/u5dw1oXbd1ez+a0aCUlT6EU6dOYTab4fr167h27do6w9L32b6HTErpVmZzUlOz3JIhfzmNbcS1kJ2j0RyGyD5PAQNmAyjZuBWOuAxPa/BTg4AaugK6FddW3DBFQIlSN5L1IWWqgBgpyQ04DMsoZMaPfAbOhnO3I/Pgf3h2CoSpyTMHpJMrQ/on/QmqKPa8BtIkC4UaWgzfeoMUrFmpCRZYAhKnFw9mZE7ZLwAJwvBFsINvXn+DPxkM1aAWrYRhzxy26uhjNQB6hgDNsmFGNvXdJiqpjeEWZriGLae71iX4wOmB/catGWIqs5QQy8Y4hVeWhzQpB8E8mBJMVHwfkK5hdCv4G6wkYVfcSUOeGQOgDui6iRuTKjNK1aAogjjc6yClpYYBQyXQpMN0a4pCHYaeMQxafqozGpSsKv3Qo5SCyWSCfqhYDAug9uBBiErKW0k2pkmZAszohwWGodf5SGpdZkKngWMSi1MxsAXCCQ4k0wqj8gAwMOk61KGCSDMg1R6VCwaOgCxClQxKE5JxezGqTqcdCB1q6dBpRhkUwc9QexAD+/Mei8WAYViACOg6oZONyQQnjh/HZjdF7RcSwMGMRd+j8oBFHXD9xh7mcwlQcgeNLhxp6TfL4+FZXJjBtWIgc6JVD3gTp0Hx/VBhQX0EJsvWIuN0alhmSJBFBGCw/mfG1Qg6IpZwQTO6RhBVMj6x0KmVwvDsVogANhvH9hOzwGcWUCIA1YJuin/umYqUehmaZSiNb30bDiS+I/i08TbLr8CVUYwZOJ+WoBLJsKV83cqY2SaD8LFKKhuMN1WgFN1bsDkQLDBADOs1wW2sQ/YLcepL1xeAOqwy71YeoRmkfM3NEcuAlUCU9WGY85WX+CGjcg+uBUwFtRgOZd+VAhSu6EpBLZ0E8JEENFFvwYwDPFDOQGXWpHzFeZ4FZMWNfXWmdJJRjUou1WjdCM4HXR0zlBfjdRZnaAG96iQEWaCe0qjSYTbGW4YwkQWauakqrCrwDKcigySjkC6Svl8xIORwqUDXaQkYllJwnZIgK4hxp19Yin/O3NrwWWiBiVVKhjxxnYIIzCJPi0037xNuA4xtXNI5eJlMR3hFRxb4aP0p/eaRCSofLWRr1VgNmSn9xfeFeMmJzdY5jMfZrjTH6OoAGoBQh5YfGf4apzpR6DQcMNtQ5kRjpw8k+k2jWQYN1zeSGsBpTlY+zsrgwXSnUUZGVx7l73BoK014qULyve5AswXnJl6s/NNw2Do9Td8MnQSoibryPFv+qZj2Z0gzRI5WW3shKbFoe2zFU7dVc4Yshrq+X+DGjV3s7u5id29PS3Bwu9BtB/pp8OrQJ/NTuXF8yO0D4UhHS+9JHNhP+5Ob31etCqXnMzeJwJwMVwvrqjnf7Pulnb3UI4/+zlA1k6R4YzqZ4OTJk/jQh+7BiRMnXefNc3E6h9DtYrHAzs51XL58Be9cu4b9vT30/aIBh2D5dMJ5HKBQei7GipC/8VzH80obMOE4n8mcpwPOAxMpNX0Zj+L0N0aQVNOnvBNjTElfM34VDAvj84SpbhFkGU9WGIuLQFsggo+M1YgzOxGr6nSoFZUkaKnrxLgnFw+g/CzBBFZ9ntCVTrIZ6sMe1Jl4NamOLxcoapq77VJK4FhxTPLn7HGXcVS8zDIVaDlf29sBI4iAIuWvXC+wVLQsZw3fm6pLg4G+l7MaV9G1qRA2Njbw8MMP4dDmlgZT64UHlmDwqrLglddew4svvYJhqIlP2xDjYvAGr+mM8nuc/RNPQGR9CbpveVGmHeF3QSMRzLQc/NnskyV9IclG3zMk+FrxjMEVssjWOO+q4HceXGGyLfH+JlyD4+3owuBmlfWmP5jWFbw3qTCwYGVfwNxlHmXESiw4TjtpcNJi1fYtJVkW7/IYZw2dh5wO7HHwpaX3gk+FbiR4sbLddsYDVYVV7QnMIGa8+sqrmE6mOHn3Ce8yX+7rugkeOf0Irm1vY76Yhy6aac/pU3Gf+Vvi/6vaou/x8iuv4J133sETTz6Jzc2NtCyBiZrWMh+dIjhuLBtaGcRpAUarFX8nXmx7hlTvJwq7k8OhSxIyALF+tgdsfH9vWZrHzYOx3A5bpX3D45dtbzTzjx1n9OOSidHM3nFl884028CIvIlaSJpyZgfrJi7rmimMkDrmJyNaICDZIJHY11jWj8fQlU48ZhnWPK/2dwtYOnT4MBaLBXZ3b2A+n7v9pcXrCggMTrN3Hvxw4utB/y1/ogZVcpmnnU/muEBrn2lm6+fFMe/PD7W/Nug7GO23VRuGAbu7u3j77bdx5coVXLp0aV0C7DZpm5ubeOKJJ/CTP/mTeOyxx1bS6rjt7e3h7NmzePHFF/Hqq6/iypUr6+Ckdbvt25EjR/DJT37ypgFKzIy/+Zu/wf/8n//zQL1p3dbtdmrMjC996Us4evQonnzyyZU8/PDhw/jVX/1VnDt3DtevX3/PYZjNZvjzP/9zvP766/in//Sf4tixY+/5GOu2bj9Ik0yth7C1tYW7774bN27cwKVLl3D9+vU1r/8e2i0HKXFdpUy2R9vIekF+qlp12z8OeuwHWXGOjjNsWLAM1CBgN9D0UJ1KclhbSlGd+o+AkmT0Gk3HDQTmwNbnauWR4YLya2Gi0+wLoDCnm10A6e94mdTX28LiN7jIcKGj+k89jDcGiyqBNEWdZcklSQTNAkNqYI7MHu7DdpjUGJQceQxbUnPAhYHNPg/nxciwMMIVA3Fr0BzXFAY/VmNgGCJ1AoU80Cc7X7NTKjs4s6HEnJuWsUNseqTrZPiL3yzowAzJaWWavyzIJOiOAc2oIDbyDkOtWuKMJeMCE4Ze8oiUroDQeb9cB/S1SkkGVqcEFcm2QgXDsEDfV0zKhpafY1Qi1KGi1gHTiQQ7DP2AoR80ts+MxKSZVAq4EyezZFmKMlJWGg1gzzLWaeYTlA6gLvYeAXWQzCalEIaqJeFoEBwMHaiTwLOhH9B1Sr9UJFhoqChlgkk3wXRit7dJS9CFg6ZQxd7evpRc0ICIrhA6Aqgj3HnnUUynBTz07iCpdRDHZ2Vc393Djd09DwCyNRvAcQNUN7FkH+kEZ7XK9yU7uOXBcK5zsy8IFmghQSMENNlozNBp/3oCD0q0rh9QcuoLdyGnW6f7Wp1ujaMZzVcPwrM9Si3by84VTlnlbPWToz7Te2RRC3hLKW7stoACgmXE4aApNbIRkAK+tKxe5plozKoSyFdK8HV1VhFbhhbWYNLILOE3+9XwLc8imI92nl3aVn6ygrWcosiyAgJKh55Zshp5oEW4R2I4480aiANWHmBBGFVJSgM9lE9ZhqeuEAYCJhOp+9z3C+dH0oEEoQ08doUJ3m0tDIswOcsh+4pm5rKYiHCetrLciEloSWUywwNSIjsUNMjP8D7qJxk5GZC1JkInQIlcUsemrfpYjatagrQQpdKoDB5ENk9KlEy1/2SwoXGCW4CSzU/oSPc12x7lMWLgm9h5AMNK8IWcJZUv8o7LHaTSjg6IvucBEcnArGvV+AQAwMqI2j5tlF11UqEkdAdOXU9JuhD5e8qz3FHSylR5uyBYwcgYbvoS8xK/8B3m+651fDIsCMqRonDEPm1KmUB1rYZf2Xrbeln/ZOC2gScxC9dJ/EFEoFXoovGM6yhsWdsyHpRvuSohfKfaewl3iZRwYIAMjJPWBMTY/RW07H5Zbmd1uzXWrFbDMGBvbw9Xr17F3t5e6KTpWVr6RD+nkNvg0TMreFDgf9RX6mPMdTxQJEOT9MdmHYJAlkZJ7M8HYx5Lu+U55vey3mtzNByE3M9yecw8pMfg+WNZG3+XUnDs6FGcOnU37rrrBI4eOaL8ghJPhDuMhdwY88UCFy5cwFtnz2K2P0tluJNs0X/bvdhiCA183K6B1RPyOXJ6Cc165kYOKBretxJNGSx/efw5u/zAiO8t/cajAKaDhhudm61v/93o0c5o+oVkiYuAUnuBweCq2VUShdlFkFqrnm07fbfqGVHKHHeqv0vGJHb+IiRAQRMKZtX3YpqZj8FTIGYdIYSc6gGw3cAKKzyrbyMnSPU5kgB40VGk1HbXBf5YebKAK5y27xf+JZNcJDhx4gQeffQ07r77JLpO9RHVtyxTVGXG1XfewcsvvyJnojS3MQuS+QQPkWARI4FWDmbnOuwb5fVtGFAaI9AGC3K6Kcdv01DF53FIll5u1knDdOXvFVstzY5iDpyAXjUGp7cDpGbHNHqs/W6g+BAc29P6G+HMaKldOONrlPr6/7P3Z8+WHcd9MPrLWvuc0/MANBoziYlAAxxkmUGRGuKjSNEMW6ZFSZRsP/jF/5Cf7r3PfnGELVu0ZIVCIdFBUVLIEi3KkkEIEwFi6gYxNno+w96r8j7kWLXW6W7oIyZyF4k+e69dqyorK4eqzKys5rUsaWCamTPcTVPcyDDX+6wHVcgOWBnFx1y34FJCO8X4HW8M2RzbddxGc5JRzA5WjOMoJ5vpE7jllpMJdkECQ5wLZx49g6efekoCM1ze54GSr2uaoWekZ/Lyn0QWvf322/j+97+P+++/H7feckuzmuG0p+GEO2pwmzrOMjetD4UuuIGD82RN1gZB1ran82vgvP80+027poRZZUwEvDdavSXKrvSrA9O19pl9aWt0lyCY8og21NCn7VVbUeM87MIyt5x5PQYxX1KbNDvGtpkQhS13NXvQ3L3/NabPXDKVQK2EnQGg+Ux5dmE43dzYxMbxBZbLJfZ297C7u+dZPPt1OvVoSrZb3hdtsZayF7n5Ldp2KOeGixZVfQ/SxvTXFosU9O90bD9eV7N8oGUcRQ8vl0ucP38eP/zhD3H+/Hk95LAuH3RZLBa48847cebMGTzwwAM4ffr0Da/pYZYrvb///e/je9/7Hi5evLiez3X5yJQHHngAX/7yl3HHHXdct94bb7yBv/qrv3IZti7r8lEoOzs7+B//43/g137t1/YNVDp9+jR+8zd/E9/85jffk0ClcRzxzDPP4NKlS/jSl75000Gv67Iu72cxmjxy5AgOHTqEa9eu4cqVK7h8+TJ2d3cnPol1aQvxTWJoa0vunyTbzUYUDSwLiG+t92nRN3V+pQo3GztLdR7Gna4ht5WY0Y78YbNpdEOqblQrT4RX3mB6ivXOIWHZBLKz0VvR3X829ks2kYCD7JIiNsOxnsrsbD6tgSEFIIAFVfmUDSXYtG8yO5JuLCVLBSD5XQZtV75LunoxMkUgjvapUVhk6ev93XDYWfCNByTlICnHfw1Hud95pg773kmY4DCDmmWyIsUpa4AClWSunevXH2hmFbdeSvt+bY/Nr26U3LhlBkS7booGoIipqlAY+6yuO6mIUBaDt2n1C5EE9gCAB68VEBUMwwAqkgUEbDQi+FhsLLAYBn3O2NzcxLBYyKndugJzxeZiE0NZAFyxtxpRUTEsFrAAHKOV5d6uGttlDuSE5OjOCQtKKnoSudZEKxxXShnfVj1xPRTJ6lGYAM3UBZLMNgsibAwDuAxqiI3TiQQAZSFjLYShLFBAWCwIMhzGMGxiGDb0WrolVuMSe8slVrsrcfYWwsCSMeX4sUM4cvgAwIy6quCxYlzJO2MFru4ucf7CRewslxgrY/QxZ8NRcoJNjL8GNCSQwZzqOs9V8SQ4BgYaMOp3TVzmV9OpbVekltJ5db6qTlPm8CMOOhvt6ktk8DhO1SthGuc2csScXJ3hmHKQS5ErP2rOFqTytbBgiIiTz9/at+xBrdHXsp5ZtpCqctT712xHNQWmShtF+UoCT9idUkAOfmK27AFmXmRwUZ5kaCALzAoa/ZLmdVL1UoKhlUYLmEInmNwflIBXOl8DWUYTdtgJgzjKijrzNJCq8hhjBORKNyrQxAMusxfDQklOeHO5twSoyrVvq70wRavzzBwcbUASYSIP0zVU1TITEEtgGJIDsqetThfZvBOpZiMLsjN5SQmKoF1rzzIpwXRmseAYgUucgJYFzMZRu8+21BBGIpKMb4NeO1QIGErBoHxbq5yoHavwbQTm5qBlH3TSASXhwAJkKEsKNbQnHnMRwn6lbVq0gACVDa0xHtAALATv2vooG6xDf7H/iSApqcONAz+t09wr0BnWo7XACad5877y2qcLojH5ojJiQn8qRufGzcqk08Cc1gHY6nczxyfoZ5wjN1zZEgB15IHK5KcmuMUN9wZXGgO3tN8A0q0TLYDV0ULkgbLhEuMZ2Ns607GEoyXgZqz2PpwboF/91V8FIPQr17qZ88VwYP/uO+JUsnzvaQUNbfTYyPR/Pf9bKxy7NX+3t7Dgz+x0tnHkLqbjmnMzcaw/0po2ZHKW/TegkUmn1HwiIhw5chS33XYKp07dioOHDqJQ7B+ad0QI+xp/udzDa6+/hh/96Ee4dm1b6T0Ny+Yyy5UOGZSr2hgVl2jamjxo8ZUajb1YW4P2wcN84ZZ4yJzW7Xt5H9H+4NDIOgNWr63bfE57E+/JN3qTnjXluf2cYCPNUpnk2zAMuu+zdYQEZNtabdRAI4MhgihkjyBB0tLZONr3vBaRObOMpY7DBnKVV77EzuNS56gehBnI9mrSZ6yZjFAG/Uy+viuydVM6HOS6Nz/AUFHHUfZTitaDBw7gsz/7szh29DA2NzcAsARSVvYDDxXAzu4e/u7v/y9ee/11H59fndz8yfuJjlYpLTpclZEcSvBMT8bLxfnc+GMaaBtNRdB8CuzwrvOhBY7giizLZsCcBEobzDM6KgeT2aEHb0uhpaahPAqr3DkwmTM5x7tOC9ZCBKG2UheK3zTWhB/r2Zz0lFtI/MepZgbbajgclGuFXamBlcjhtQMULtObdYf26ejR4CMECZnsBmWZSR6YaHgdR9kdDkPBI2cewYkTJ+T3HBikDb9z4QKeeuop7O3u9cJSO2ava6NipLVNWg/P6T0GsLGxwJlHzuDWU6fa1VxCMznmWznpeoETrn1uo/8uvHUKRdINJgtsj6Mo9f0OUn/+nzWeJ8Paagbda6BUOf+SaH0qT3IQYvDa/Ph0/Em2cgMjNWCQv8JRBUbzXbs3Wbibt8xZznnGk7zfPPEUTTcAwdba/fq9J8QcoCbN7iebotQqB/t2d3exWq2wXC59T9kCSO2c77cZSXb0/UpDOTPLHp58mq4RZrHrIq7t23CV5amV/+//5/+3L5wfVPkP/+E/AABWq9U6Y9KHpBAR7rrrLjzyyCN45JFHcOutt970tTxXr17F448/ju9973s4f/78+wDtuqzLj6+cOHEC//7f/3scPXr0uvS+t7eH3/u938NTTz31PkK3Luvy4ysHDhzAb//2b+OBBx6Y/Z2Z8eKLL75ngUpWDh48iK9//et4+OGHb0rHrMu6fJCFWfzQu7u7uHTpEra3t7G9vf1TFaz66U9/+qbq3fx1b2ZAIbQbKjV+uWHsOgIisip0m0N3jukJJrLNbLsFp7lt18ym08DMBqFclXKfgF/j0xjDzNJkndg4J9eZxMLbTq+5c7MLjmrSgCNvHLutfHYOV+mjqcW6/dd9sB6K1ToGT8Ipx0lb2YCadYMSHBzD1zmO4IbY7MffbKopzcDMuW8Ofh9tas+CGyR4pzQ0ZYEDbvx14x00K430b4bnbOHKhpjsYG5P67XO6Dx3bh8lIAdyAWHwy/ggkoCVZmzqfJeEVWLgHkgu6CtEKJahhcQ5PZCklx7HFcpQNIOLGKeHxQJlGDSgSDIWLRYb2NzYBDOhLhllIVe3jXpFXCkDxpGxWi0lgwsNqFSxWu1hVUe/3kAyuhh9jGKwI3FSuOHKcFvhcyqOK537ovSk46sgMBWMaoCSzERybQMNRQI0LMCJCgYavI8yALRYYLE4gFrJfxsKA3tL0CDBT2DGgoDjhw/j6OEDGAbCcrkCV8nlwgwsa8VyxbhydQe7y4qxqkTJDnpzPgeZedBQzK/Oqb+mtFTZDczGOwBJEIJjR6yE4ShTsw8HLnsDnGU/MgenGa3N8DoxKPVmRLW0WjsGl8gDhvk/LJjAjYP6D5E3AjMiGvdkf0s4w1KbNmbHbUXVF6cmspC37rNRb2RlzZbDnW2PR2lXBZ8FPhUqqHoloM8poBmwlK+tCbtuExb8JR0UWkjfaUzuRGSAWZxI5twTXu4NfEVz2IwKgxkLNSDLLjJgaIa8gJVqxYrlqsY66vWSKt/EuFM8kAdcE+0avWoQD8EDC2FzZtq5kectH8QEJ3Q335NTnIFKEoDWzlMO2NKr1ShotibHBYt3LzCnc0os2dm4I7g2uCrreYGpjoJtgUeuiZPA1uJyTf5yglV1KgfcVXFbOfNVZG+IdQL73CoSQ74Y7I2zLcuVDr+K/w7dMNXmOO7wm9sC8hyQISc1ypL1xPUiq46Hxox3c53kXfyrmY2c3joaQru2ap0iaR3WrSfsWSPfGB40Hc9Zu4/578u8LyDL2bgWyeSPU5nDzAl/DRqQJNxkTET51HymD9LAZ8s0FkGbLiU4zUFevJogMkATvvpAsileZ5HxoSi7e7sAOvVn9JsQT3kO9i0mG1qZxUDobTJ93HdqC8cJNDNdBJP2tN23OO3neg1fp9j4KUiBdf2wX/udG3CmO2NIpU8Cjh45invuuUeyyCwGX/u1raSx61yN44hLly7h+ed/iKtXr7Sjcdwnh+o8g+6Lqvxc1lCtTO1r2hqkcWrP1M64vCmbFu8/oZOA3iyvJqPJAoVmZWGzLgN0PwFdi9ncm/wpvj80ESEHKorvfXKAku1ZbN1LpEG9wyB6vVZQIdejILnqraZgHbmWmuVQQ6IF9vWj0YjKOA+CEP1NjX4RPRRMA6c7du0u+g8E2auXgsq1OTjCLHsj2zsa/RYqKMMCrHsn63ccRx8nEeHhT3wCx48dxebGQrJM1qprAAs0Z6wq4+y5H+H1N95UfdxLq/nZ9sAT09tpHWTraDb9XrlpLQe0zsmUrCYaHW4yI8lGsAaVm/q0NY7rKleJqc19Bpfmz8CiroLx4hyD5eWdiVYXcnMywmkscZHRVwdPEm+xXPE1QyC+mTvX/aZTKf5Ncgy6pyIbF0fwsl0vJWDZ4ZxYEzgWrF486GD21V3aw+W51XUcpmGqoZ/y9ZOtjFqtVnjpxZdw6NFD2NjcjPnQF5mB48dP4MyZR/HUU09qEHGgN1CdaNNXRYbXCNDtZ9O+L5crPPXM03ho+SBOnz6twZOB+7wmYsoyfdpu0EOLR0LYkVrd5JzRwOn7PmaPhS86V3Iwo/j77eqrG1zXXx9ONy2mB+x3bua113TX++4tprVDLl2CKZ/TnoetzpyOjFVwz/V9G31Ab6yhUg+z8Ev1mdHNAdmVuXWG0USrczn9zs67c3NkPLTYWGCxsQBYMiQv95bY3d1NV8JN3uw+0/xP+5R+rny/HoDpTzRLDPtiN9Wdg/s6s/KhKpcvX/6gQVgXLaUU3HHHHfjCF76Ahx9+GJubmxOb5VwxvfTyyy/jW9/6Ft5444199wrrsi4f1lJKwVe/+tUbBigxM5544ol1gNK6fKTLzs4OvvOd7+C2226bvXKNiHDfffe9pxmVALkS9Pd///fxz/7ZP8MnP/lJbOq+Zl3W5cNYiAjDMODQoUM4dOgQapXDulevXsXFixdx7dq1mcMPP53l5q97i4uJZOM5d6TDjK5uB+ozOrQbw/yTG7MYboAnWPBH2oSZsSqd9p8rs78xa/YGIDsmzYibjft5HGG9iPHKMFJd71fgzDaxJqgJsdmFP+kMP9lgrT96UA0RQOnULLE7wHzcOgw5OUrNFAn6NDAIFMPK/4Ydr7syqoXbTrMxy0lc1muQZH4i2KJ2hteAxAx4ZnAPg5471P1X6LVkxZ8zRhknm4GFJoYHM4rk4AnkNo0OPNArnXzk6rg26vBxUcwbe6CUBieNckKZiIBR2qwFPk/M1U8pA5JphVeCu4EKxrGC9AT0MAye+WdzcxOLjS2AGKsqV6gBZnyvYqQfFhhXI3b3lhhXKzFWkmVJGjHWUXg30Weto/4FmGqibXNURMCZB59UcTiYgdZoCUwYYddAMcpQnFeNDsa6h42NBQbNWFVKAQ3iGDhwYAurkcEjY1WXGMc9LPd2MY4jhmGQOeGKI4cO4ejhg9hcLFDrSmKlQNhbLbHSIJLLV6/g6s4uRjV2RpBHnvvqThR3/nW04RNtNGq8XDSYyA3AOcArroi0wKQsc0KuBe33hQCMamkUfs/ytDVhhpPc6Jx9XL0cNhFREYEZJgiMB820qFPqMk3GG9dfNGmbzXBuxn7j5xyc4PxZQWUIY7F7DBP+g0O0eQK4opJklTEDaUWVFDrt6+JQwxDGuyS73clbSOhejc4WimhX0VmR69pKZH6qVTI3gTz7VCEPQ9KgP7u20II7SK9fHFErARzRpXI1Q0UdJWCKioQaVZYgyMViA7xcylyRBY0FDTDDrwZd1RWGMjRy3fEPc+qpHoHKI5giqD6e9r0gHlXBcs0j2bxTyDxWepGX7RYKmNIq1gCCNknnY9B55MrqmKTEo3OGY7n2Tk47E0CMyiNGgmRbcz0U8t2uhKvs4blhvHbR2PL9BBeseLcxInjYg3MZ4cAyWeJeIzgMZjwPxweC8SiCqZo+0K4lMi1k2MnXBq3DxgOLScZvV1JKies2e3Xq89A71bU/Tvq/nydFv4/F3p2zRRLZVWoRdO3zojQWDt5pA40jIulvySpmGd6okQ2c8e99CezZcTjXz1zpdYnBI7Rq01tSP6GUjXcZFNkp9uuDDDJzguN6B7M/VCVppSyp4pPp3ZtoqZ+KhnY5rS8zPd9k6xmYXp968FPbezM38dSa4ojNuG4hxPUmIcMdHh9jK6MDtvk+iICtrS1sbR3A3XffjVOnbsVisYDRYgqDjLZ0zcIMXLlyBW+++SbeevstbG9fy8k4urfs2/58ErCGDHOZYpPILYXEmgdpyxT7Ce/tBvzZO77jU+9+nc57fj7bduJLCzg3vr6e36YJXoUcTjDdmuV8G4yo6zOyNa2uGVFSdkxqroIdhgFFr0WTLJqcxau+I8HRK70W2vbglaMfIK+72AOX2IWnwCtjkzpTPAptBdLDre860nBqe0MXl7L3aQ7RKNkMi0HX/XqlcK0Y68r30gzGHbefxp23n8bWxgbKUHQjBBCTB2IxES5evIhnn33W1w0GsoPvcxcriOkodQ02M98SgJ/ayoO0N3ODjdiJgBtbT0ydzBQvEMVV17nGhFUTQST+7IOzOL+PuGg+9hNAmlxd3iQs2Boq/W7rhYaHbVwc64wIYDadnsbVD85lcgoO9tdjbaV3ucLW2g0p69uTjOEqiGQfGbhMJhmdQ3abBee2CQ1OY58iDYbs53hRRyz4s/ErFtKdddluAhAuX7mCJ596Ch/72Mdw8sSJFs+qck6cOI77778fzzz7TCN/A+6evxW+aKZd18yU1XKFp599BpcuX8Z9992HLXcu9AvPgD7Q4NK0restCJKL6eLEL9cLwMjyV67qtX4JRO3eiBJNMYeEn7YpvTpN9/Uy8dtaJjGDr/99bIBZtZp5ybrD5WTTeEOLPQhTmKYHo5D6nA7UpoXbMZnMpL7zlpbn2sPcz/tOX+hWbsZvvDSp3rTX2HeyLsr2E3uFxNEwHBxw4MABrFYr7OzuYmdnxw/9+QsZJ4YYo+FJ1Nj1y76B3tSifHaIPV3ts6aZaR3vCsh1+akqx44dw7Fjx/BzP/dzePjhh7G1tXXDd4zuXn/9dfzDP/wDnnnmGZw/f/6nKpvAuvxklZ/5mZ/BJz7xiVmdaYWZcf78eXz7299+HyFbl3V5b8orr7yC3/md38EXv/hFPPjggxPat0ClL3/5y/iDP/iDm1xvvPuyvb2NP/iDP8C5c+fwy7/8yzh8+PB1+XBd1uXDUkop2NrawubmJk6ePInt7W1cunQJFy5caA8J/RSWmw5SkhPgeTNlwRwSjNAEb/DcVuk6xe0atnETp5k4yXyHl5x8+26Rb9iPf2ycsOmEp/YzMQqQOnd1rCUbfcwRaMcrO2M6UN3gpFnyEeYMhmWhkY7aXTkVywJCevLT2tRMSurnJm4za3iQDZdwBJO6sdzoaD2p8bma4TCMvWWSzSAXg8MCUKBzb/PU2rDMNmOwErWmojaQwrCTDDEOG8EDFzojQ0JduwFPDmI7PetVk2U2DI9Fv0Swh82BG6Q4BWko3cv1B9CMSe11cna1mnU8aKYUD7lYaNaPQlgsFs37i2GQK6cqY2+1wqoCG8MGxrrEqq6wGCSD0Gq1i729EXvLUTFV/FqnMMzKNQ2S9WtMzl4FrRQNTlNAzdBa7aSvYKukq+qgRn+5dqFKJhNts1o2MLaMSlLHgrUqjxiXFRtlgb3tJYgGrMYRO3s7WK72sFouk/wZcejABo4dPoitxSABSRYUxoyRR4w8Ymd3D9e2dzDqiWg5Cc6ItC9izK7VAr3y9U7JlCkMDnN7eVCb1jN5ALJglTJxQMaNS1KPNTuOswwy/i2QygxlYdXzvm1auDWJumMs244Nb2a6TvTXByCWJCfEwSTBK/KvNlwty5Nl8/FeFK2Jp92JKu8yqVQlElqi6qePbawW7NJcU2VjUPiKB26RGj9DTxhOIgCAYIEJREnuMyACT6+BFMHv8tkDS4gBzY+EJNpYaUpg08AlDdR0nQiRrYUZrNddQnGQHeaS8SACKUcM+k7QFwMSeMSMOq7UEUcNnbD3KkFSOeuEjZ1VP2U05LaYW92YHZxu9M5TyxC5ZPrT5UMySgeJBJ04zSTHLUTGDKWIY0Cdi2MHUy7CKnpdpbZdqGBFwEiMBTMWJeaUoOE5hq+8DgD5XHogjTlADVcdD/mwYLIh/xDGaOcpLRKkkpwWfp0aqxOrIEPWrIGgAa8eXJl4xRuEz2c3AT3QkzULOezarzkYfJ1XJnKQkGztc1PFgAfFefto6C23mRsJ50Li+VDZqbhrNOiFuKko8M0ERjFUNk0azUuH7nnIz7xesfXVXKDfdB3Vfg/pyQpTmsvUz35BrQ3QH+KSwmkTeQeXZZr/R3YwKT1K7OvN9uI6/7q4pdmP3l+j16MdIWuKL1Z3hqHyz97PTaKrDITjx47j1ltvxe23346NjU0Ptjb5kb453TEYO9vbuHDhAt54401cunQpORNaTDZzqz/v57xt+KZ7Bl1P7Fecxd+NIWpSNfdlT1KQk1dJ8pF9NTizj5jvTsMSfY2UUebBCE13FPU55J7pE6B9x+bNHawA/HpcKs1VGwTolbMy7rFWzdKqcr2KzmPIOmIcqwTfK2XUHlbWa1T1Ctl2/gwuq82hD10/KT7sTiVmWEC3wI+0rkt4MFySvaxrRMh1uQMNGJdy0KRyxWq18mxQVvfw4UO4/76P48DWpqw7TAfZWkXzX25f28YT//AEdvf2IttqWqfLfBgd5+A3RJ20fpKRtvrZ+N9JUQT+ZJ1v667AaGuviJVkq38oP+tg8U+TtUDQel+35UzWaSNf59kaK0MaUq+lkaT1ml6IOeEr0UE3PmljKtFbjmzXNMZjLu1U39q6jKk0gAnNksskBpp5NngpjS1mosceORkbvlzcA4AekAqdkSv3sqIdobY2oxPY18vMwKVLl/D0U0/j4YcfwqlbTyFnFbI1zOnTp3H12lW8eu6cBzH2MpS89VibxD5yukf19hPQr776Ki5cuIgHH3gAp269dSLTDTfN9i03ENOJhv9sPmhuTlqsds0ZFr2tEYwCTR6tYrgJBqesN5FagLdSoSKrG4EPKom3yUA78o4dQ9IzlF/puTcandOqTVhjs+jN9D4HNruMD9mUsdriO5OmvTtXmnnZDyfNwxutA3rCncNCXk/MSaXck+FF9huLjQ0c2Vjg0KGDnl1pNS5RxzFlhe+auwHIU4mmz7MOTrRNqX4/Okr/9AFc1k6/to01Bd8YvevyU1WGYcC9996LT3ziE/jMZz6DAwcOaDa86xMKM+PixYv44Q9/iCeffBJnz57F7u7u+wT1uqzLe1Nuv/12/OIv/qIe9tm/XLt2Db//+7+Pq1evvk+Qrcu6vLfl7Nmz+N3f/V38+q//+uyVa0SET3/603jrrbfwv//3/8ZqtXpP4GBm/O3f/i1efvllfOUrX8FDDz3UHqRfl3X5EBfjm0OHDuHgwYO49dZbce3aNVy8eNGztf60ZVh6V5mUNJeKbGaqnaiXDYyLgWqOpmS/m6R479rudmKyx/WdOOIkUHLkUbcZ9n2l1UibVt+xmZMcbqwgSgEIsKaSMbcRtprJx60lYTCyPb0Zoc3g49mgSHBoBmK/tsz2rmmHb05j6X+ABUgJTCmwAJHBRU6JdhaNfPpaLCM6D60CsVP9OUApzApVcGn9pzqNc5Ey1rrr3wx+CsOcoK92BqTWEceABoOZc1kDomyO2Ewc1Bh2zOxReXQHTOMIUCerxhuFxUlpTP+vLs8CJGOlGacNbjbDn986p4FLCicALDTTEelzybrCYB4VPwVDWTjdDXolGiBXwxED43IFFB3vUHBwc0OuLOCCjY1NjOMSy5U4G1arMdHciMWwABgYRwmSsswjEudlQWySCcadv0rQpPisq1ENgTmjB4FHOH4JDNRqB1DlSijLyFSrn1wmjTyoxBjHJTaHBaiQwFdXIFTsLUesViNWqz2lwQJeFWxtDDh55Ai2NjYBHlB4BBM0OGkFgLG7N+LSlR0sV4xR7nkDatWT4EYnbokMvlPaEGNu64yUzDA5iwihoKq/Kdx6BQwURV+JoA13rKs1NYLnvAtlg+BNMZgHuC57HTal18hA7wYlSUhDkfHI+IZKMoSysUOgw0SSGeKTbY3MAkkWqMQBpwcSwK87DNGpdJ1luOXSb/hWHWGkp7xT4KjhlwEMaUYMDyFKpbGCAiZ45iEozRrPk+InaJzTHAjtynAlmFLqyHVz4pBT+tdrC8EWCCcBR6YTR5MVHDgvln6IIXXJnGGSSY1AwCgBhCbziAhjAUgD/hjmVKyoowaycsGImmSjwGHOAp83dyCo3kF8Z7ZAknDkCYaDjhv9R3AarRNDpq4PvD46eo+gIJO/JvsLUVwVx+R5HHvjatZBgCauS2uVFUuA2oIIw2B9wJ2+DMjVlLBlQesYchhLGqgxUMpyFOsReceyNeW1hV03E+FnMZfOix6AlwKDwAmP7PPrOHSMWsAeEj92QVUuI+wa1DaYzPFagjeDRfPaQOsYYbsOBZIogHMWGYUkulFFaw616cbW8KntsA97Io+0JkKQsc9jGPG7danPcx6j/ZgclB1NZ0db5qVYJMgfG20sTlTSuNPRfkrrO5szH58NsXUsuLxL1w5OXE8f4nRKbP8EWhBOI25rmo6l/rfrjI9v/NP0bQOo/5vea3RaFmbtGPo1aV7Xz5eu3x5+o/VMf1n/UlSbjJGAjY1NHDt6FHffczdOnjwRAfAZCxTf49pbCWh/5ZVX8KMf/Qi7e7vtCqXnp9RnO4y0kAEnWeot+Wd3DXtDeUTpHeM7EwG2f5h5I7AbjvPGyWs6co6mjK0p1jS5VrRt+4J58ovZyhCmyhz61nVJA2fSjUlnWyi2HdwQeRJPPcgYIWPrKEEQJosXi8HXqmUYULl65lEPToAEbZcispGrZE0NnWOw0gwabX2tetf2UUl/kV0/CjvsoH06mkjquNxHmntogPiIQsXXoKMG2o9VMtzWOvrVUZsbW/j0Jz+Fk8ePYzEMMOoQTFawBrePY8VLZ8/h/DsXw0A02R8kQmg5BLZP3J8+05qYM55q6Dmnky6wqcOxaZZeenHDS/aALbTLdUVmS07/kCqcPsAD/i2VpMMylHa4oYdufw63NUI/4ETL3Pbe98lej6NuEp8N33b6u1P7PkeNXFHiMzUGXa9OdTN8Tr1xNj1ha8GMFuUxpfO8NrE1QwOn22V6HaryhllsEAhZxyCMqyWefeZZbHxyA8dPnFC7QPXXSyl44P4HcPLESTz99DPY29v1a4OBDg5foyQ5yR0duMJI1KkVrl27iieffBIPPvgg7r77LjQlVyUb15RmTLZ78IvTiMlMeb3OzXG/jvVnBm5cu1yAuFrSx4ronZCyzccgMz+SnYiBzHMWH7M80Q/Y9HWzHqCufk8T+3FbH5g7owedW6Ip46c2GCsHoCfa7sbBCt90jMa73YDnBETi85bm+9HBRehkK5oEZrfb7RpAwjV1P8Ubcip6E1tbW7I/54q93T2sVisslyuM46rbg2QgpsNtqShJXbWnNrYcr5dwN7dImylu580o31/ZrMtPaTl06BDuuusufP7zn8fHP/5xbGxs3NR7zIy9vT385V/+Jf7+7/9+fU3fuvzElKNHj+K3fuu3cOutt163HjPj8ccfxyuvvPI+QbYu6/L+lJ2dHfz+7/8+/u2//be49957J/bcxWKBL3/5y7jvvvve8yC9N998E//1v/5XfPWrX8VnP/vZdaDSunzkChFhY2MDx48fx/HjxzGOI1arFa5cuYLt7W1sb29jd3e3XaP/BJabDlKyjb4b3AgAxTU2uex32nt6OiqfELX9kWzWvCZ3W07dZZqR1l60LE/m9MsnGm2v3hh6zEKFGpt5RmPQzafeuTEwklkZEMZKv9NGgdZtYs2bSsvYYYajeCOsXGYnITG0KjbMdlJsrGZ3YzGiJqQmuNM8qDXBbl6jZGAJGtfekiEpnyoimAkiW9PMiKaz1Hhm0vg4fwtDVnOOqpRmM1287+gvnNO9/UiCFoI+SwuTbuILiTHaHQ4ZOCY/qUulaJSSXlcGM/KJAyCc+kppLHNUKK6hYhAWRa+L02CEMkigxFCKJGsqA5ihmYcWKGXw8S8WgwTujFXu9gawubGFrQNb2F3uotYVtg5sAjxib7l0A+EwFHAdQWAMGwNW41KCHipbXBJggQ0wmpfhWlYkpwHDh157V2vVgDRFHpFey2POE6FzKoMGAxQ3WDHLtXIYFlhVBvaWKMOAsVQQF5RB8GTXO1UdA5PgfUHAyePHcPLYURAGoBbUlQQm1TqiYsSqVlzd3sHOcoUV2xQSuIbssmwgQiZFAy4F/pEN1upBBWaI9tgUmJHX8CMUNOgVXYC6i4yskkODKfIysfKjG0/V6AQOriB9X2MMg+nV4clqfLa5gAVdVoPPDJkGOxvLaslOD3IZbzwaHGp8p0Eb1m6WMYlX0y8KmmYJcz1i4y6IrEwpcIMj8LWANIgy6Qj2Tx6UwQynzbA3S4Bbm0FJca/8WvSKQpcdkOAuItbsdZSyJgXynIYIcn1bIeE9zVBmaK1KZ5SczJZ1S06KawgwFQl4ooqiAUmCvKLOpAouRa4g0ICooUhgk8A8wijQQ1zyNWnMkKDXbHysyfmfgh/8KgV2Og29EaejmS30ttUpNu8eEFsloM8yOhgfAn2AR8h6k0us193Ys3xKe3LykzRYim100lwFY2AJFLLMSMZP5OuGCOiD6ibTs8Z/rG2ai9/wlpLtRRCKDr2kjHkSOBdBvcwW8Df6+9GuP/D2RJXY6ibzJnmXEXAXwYLCW0LLBLvCIjlEvUuVdSkjRhMgkyGSifG5MJ1h4oMARPCylUb4pHVBX0yu2bxmvRpOU+/f5RsFDhO/2brOHelK8y5fG/kFNGtajkAuVnw5d5hsV3ls/tQ8LIfL4Ofq6xGTg6wdGHdZdje2LJzWjvKg6Z8sxwOxSt+lxfyHuwTGWqiNB218hOsQzU2VWawIsepn7YO73yc8mR1yGf4UMGYyk9o3Z0erfUSwhz0PWpkQViaMmTFubm7g9ttvx913340DBw46LAFSvCv6U+h5XI24fOUKzp8/j/Nvn8fVq1c7PglY8xjSSiGBmQJRjAdo/q3Emt2AJ1TR9G1yLhLRtnKnyXrWIdKkSp4boTSOzDCUa7PXDEc4ezsZSgmsifcFF0EhpLKjpwsG/ELb9tBG6GXTh6AUeEvF4jH03TDOlVIgN/tWOfEOOQQxLBYY6wqVKspiAei1aJHZDr7XkrX0OPWL+/jJBF7IzYRj1/dp/WrzpSNyeUjF1qolyewk8SzrIUvmV5BlfWQJACiKabY9hSpyMIZhwP3334dbTp7Awa0trUeux61+Zcb5dy7ipZdfga2I86a5p6IcKhohTzb0niZbVWU762q6vKGLXuaFTspXE09ElveTBFDaX0SFkK3NrDW6tOk+TUWST92P0qJlhQzCtJ4ybTcwN50pJl3Hy5PcXWTtSfJsro2MHVK8pDU9GpiMIpEEllk/urlsYOlR1QZMU/OcQ447TCaHlWddlwSvJCTqT1nqpsBzW8e3bBljJGC1WuGFF17Ex++/DydOHE97JXuXcMstt+DRRx/FU089ib29vRQ3RkEes8ZSFxDx10Sq013M/lhHPP/8c2Bm3HnnHRiGwbuJQi5bzDbmbeb5Vzlg1GB7lzb4hTq8dni2RwavtCT7dpc3gc+Gxho101FLIhgXpTNVJhqQ0oc8hOaDUSiQftGfYl3Slrm5a0u2SUSwXuzJmnaiQ/QZ011ozRVO72M/WJHq6EfOI9Vn3VrF/kY9auahJ9OMfedZaltp5WBuy3R3QUHB4tDCh7ZareRU9HJPr3JoeXlmeM0IshrszBoztYHWJitaLKNmEgw2GQ8mumtdfvrK4cOH8elPfxqf+9zncEIDWm8ma9Lu7i5ee+01PPfcc3juuefw+uuvv08Qr8u6vPdlY2MDv/zLv3zDACVArjb87ne/+z5AtS7r8v6X7e1t/M//+T/xK7/yK/jYxz420Q/DMOChhx7CN77xDXzzm9/ElStX3jNYVqsV/uRP/gS1Vvzsz/4sNv0q6XVZl49eGYYBwzDo4Qf2tdWlS5dw5coVXLt27YMG8T0pNx+k5M5PPWVlG/aJ4doMAVI7/zFr7fweyDbANNNudUOOGAvE4sJmYOBktOnMhoTYo8m75l7kyQ4vbBTsMIVzjhEGDgCszt3kmGr3hdZGXLemcVCeFQJuOLK67caaIEFJdk0QIM7zqo1IFwpTsoRnRy5gjrkYt2+wSc76sxqB8wn/GIfizp2pMbfmfIshzFsTAjJ2B2veaIedIN5v5kCDSCrZ2JLjvTcWcHv6uDInQ586VUgM0iNLMIBkSkoBUCANLgujVe6xalYkYwNzBmZ6kSAzA8wc3xb4wKCiN4+tVkAZxHk+AIwRg36vlbEYBmwcOIDVckTZBBYbA5bLJepqxGJjEyDGuBJnA3PFWEe5hkOtkqtx9NPDcQoYeq0Vxzhqba+j0zJWIbRKVU8qAwMGfQeNsUmCGdizoDCPIAzwAELElRIS0yFX4tUFsBgIQxkAZuzu7WJ33AMVEcx1rBhQcfToBk4cP4JhWAhNDCPqaoXKI1Y8YjVWXNvZwZVr17C7GjGyZAHjKtfPSQYcu8JK5AhX4+Oga3ZaFllmV8IB8q5EZTNGDoOrkaEERYiMlHiiVk7KjRasuLQMCEXeZDGEcmU/CW70x4nMpZ8k54zfmTTvmfBZ9WxFBkOqDzHiFqIUSGmnJFOwSgkmDUdKGG+t3Qg4dSnUyaAUPMmWMak08tWcKWzBn8hOwhSioH34pWo1yU1GlnBoHCHMqMnBBAA8jmASQ3g1p5fSpQUlRsBPaDUP0DC8lpQxTw2cVelA5OMoWZWIbKpRINdDciHATv7XESC50k6yNsloiuo7JtJgzhFcgdVYsdAgmBw0m2mY1SkldDLCQnTi1DN170Rgi9GFY5NbXJDKUvktrgC0923WitJMn6Es7LNmNO71j2SeMr1dq+d4mlU38XqF6T5WOGuVqxoGhW9QI9sgksu1m+m8yrF+6FW88YkHTBm+ZmAyuRvBKGnwaGm0YXQ3mot8YNVlFoQXzjXLfhX/I+03nHkWBMjedg0QbNqlpsmHHBmIPN9pbdXNlct768RkoGfFSisIhssMH3KSp/GbXhPqOLKrOQ2NLR07dmcMqN4m2+D3D65uSpJv6WEjW3rHbzEHnAsJ+HdpK4Jgg68MtJinELeUwLRAd3aZ18P3oT5hwdMvjVjo565zZvvjf3TnM28aQTttzL1CzcOAmZp6vY7Mzfi7+peaeQXmd0jRTazVKa1b4vehFBw9ehS33XYbbrn1Fhw8eBCE0jimch8m92tlbOuVbudePYednR2/vrita9PheVhiTErXvd4M1GU8JZlHmMHX9enXZJ7X7TLd9W+7rOactaKtRT7RJpSSPGnWNKpbEfu/mtY7IWY5jZP8WSYxD3J0XHTBKbb+cfxoP7afIMCCbC2SPu8/IkBT1vuLsim6YYDuM0ZwZdlD+Mj1HaQMvboX88uj7RrpJKr0FI22w1N9Xv1t/T0FjxKafZajPyL0k+4zkMhxSfa9oHGgjXUl+5jCKHr99R23n8bHP343DhzYlAMpzDovkkGpQvYyO7u7+MFzz+HqtWu+PrTx+RqcM2wuAOCarl+sdB8pyf70NFWNdYXxaiaZ6bIp02+m6VArHmzv1aa85j/bO32FBoj8EiX138ntxP65nWiGJv00LJqiG5tMVo08QUdEPextBVfPznQxrkBR2H5iLT2lbxsxIew8Alrwd75i2HS3jScHW0X20ETnSd55kL+vxaFBdpxwH+vBgBkmomCB+BcvXcQTTzyBRx55BLedOqXrMA45ysCJE8fx6JlH8dRTT2FvuRczyyobHdhAaNimELjK2X0y/hTvY614/vnncf6d83jggQdw+PBhG1KD48BDg86Qz32WHpdsGuyZ6DpofarsLAOyv83sZGjX+2X1lWFr3ks01IE0/dy0EO26PrhuSRV8zZ1/oqaOH47yCu06NnSVawYEHjgFBgetUmrND3TaZ0T9Gw8jt3Rdpp40O/8zZfJMa76W0/eDzbJjhQ01ZEIELoXMa0SSflksFlgsFjiEQ9jb28Pe7h72lkuMN7gCpZdIUXqqajHA3dO+VfIWsj7rXphZT63LT37Z2NjAnXfeicceewwPPfQQbrnllhsGJgGiy95++2288MIL+Ju/+Ru8884779kVP+uyLh9k+fSnP41/8k/+yQ35Ym9vD3/+53+Oixcvvk+Qrcu6vP/llVdewX/5L/8FX//61/e9+u2+++7Db/zGb+Cb3/zme5pRabVa4Vvf+hZ++MMf4itf+QpOnTp1U/prXdblw1zMvnXw4EEcPHgQp06dwpUrV3D58mVcvXoVe3t7HzSIP7byLoKUtLgRdX4rKD+rQ5FH5FPEuVJ27uS//en9eD/6bTbtqa1m39rthd24h7TJniltgE8yhKVAIdmMU9hOk6Eo92qOCr/GSIOrzBlq1whlg2oEa4lTwWIEJPU+/D9zzGVLpWVcQWrPjM0NXPYumwmr+FgCl3pljjsdkOZ9Otbe6DHBq6bON0elZamZw719zob17DAnvS4pMi2k34icLkAUmZN4lYwxtnkngMypamlyhEaK0kit1c+BloHSXNRAPWRe66hXmjFjWFj2Fpn3ZN4EAIyrwO/ghpPRr45aLpfY3DwAKgU7O3sohbCxGLC9ew3EC2wsBqzGFbgAqzEMOLWOYFSMctQPVAjLahkv2E9I+7iYxYCvOKMqWTRYAzXM2MoaLCGBRFDHBaMMg7Stz0jrVozqQJGMSIUGyRKlTgwAGMog1ywMRaJEaYG9vT0sV0vBRRkkUKts4MihTZy+7SQObm6C6oBKK4x1idU46n+E7b0RFy5exd5ylDmqGniSHchGg9A5LARSJ8wIw0Nr0C3GsRZ8VC2YRT4Xd9ZlnmrtnZHVgp1eQORtuulLjbxmgC4Q5xcAt/2L7S7kpvEKVRZnlRv3anLItTLAQBmhrka/ZsrkHhS+GFfIAhufDVD/VvZrJYisn5CjvYxvgyItKCjaHVmNyRTOH+cfa50i81hhllsSnI+Vly0oqoPDAmdsoqiQB5TUcRSnmWeUUV6moF+/49HHq0FskAxNNcFgJfrXbE0gi2lTe7LQWXUalD5Xko4JlvmIilBlHRmrcdTsQJT6sSwDevUYpeA8x3rQkJmfM7TZ4YrJSKwfbcf0WpbfSr8ROBNBQ4J6SidgAx7DpaE6O5ctk4RdQVMTzdpYJmsLwwwLzkcGhiKBRYXaaz+HAox6pUx7Ux05LNwCnZzT4WSl68DT6jkE/ZFdQ2H0xYiMOmoIrxZElfR6MiDPrWoa5zzFyXzyf23tkfpGopNQL4iAtwgqjH4ATvxiOtj0btOy6URrm1NgpAPXtmOBYMX5MfSWv5Zwa9+bOskb2cqj+fVgbsNk+1wQyX77XluqcYSmJ91CzTODyXToBHYAHthJaf5iITo79g93mfJE82ta4jZBIFmCMb/7sVLCP7X9zNdHYob0bKbcsK3USqYt11GTygGnrROCV0TCFio4fuIYjhw5itOnb8Oxo8dcxmZacVd3cnAzyzUMZ8+dxY9+9Jo6E3gCSN5TTJGQ2y0tmnRQhhffB+jbnJug3OZ8MRy43g0hHW2kfcCckawt7HBlvdhA0vB+nqXseG4Dr+FjM5lpurDdgVqAsOs9/cduqrUgZeR+AF8bABYIK58tONLbZLmyb7FYyFpilL0QSsFqXAFMKEPRq3FVtzYy0vae0mDVZzYPOQA9r69sP9o4dBXRadkQuJp8j+AVwQW7DiDNjklEnqGyEPl6UdZDBWMdFTcVdvX67adO49Ezj+DI4YPYGBaQYIYKhtSVq+6A5WrEK6+cwxuvv+F7gUa+2nrJ6NvWQRzwR2VyPd8MOLXm18c6wxiFzbXXIq2VG1nX5WeJ5+xpL3CYU9sCd1BsR9cpGMl7Ta/n36aA50ctP/ljRYGYTTL+qKkZ/eXOkz7R9UXEMCrcSd5EEr3gM7ty2gUo60pWVW4Dre3D0ribUeX1TbZloK3nTI9WJ3o9U1u+r2vlebSV1yzVuzT55BYJCnvaalzhmWeeAQCcOnWrt5X7OXnyJB577DG8+OILuHjxYjvFM/q7KUQuDyi1mscvh9jkANnbb7+Ny5cv45GHH8bJW27BUIr3lddhaUnnMj+32sv7kEe6dEp7/WYEsQHx+tkOZeRG+sGylGYSt8DxZk66FeSEjtOzbLHMP1owWzewwAE6vAJ97XgtI3CftS23L0wB9cpo8Gicer3+92+s17kzHeW3jCdpEgqW3ppfZ0aAP8/LrW6SJENXO6vzA0wyt+uXQNja3MLWppyMXi6XYv9aLrFarWbh7IHKoE4ppVWuKs5n6a19wnM/rstPSRmGAffee68HJ911112+1rpRqbXiypUr+O53v4v/83/+D3Z2dt4HiNdlXT6Y8sgjj+ArX/nKDa+TYmY88cQTePrpp98nyNZlXT64sr29jd/7vd/D17/+dTzyyCOzNpj7778fv/Vbv4XvfOc7eOmll94zWMZxxLPPPotz587h61//Ou6//34sFu8+9GFd1uXDWoZhwPHjx3Hs2DGM44jt7W1cvnwZ165dw+7ubiQo+QiWd8+pM46T9mfbuOn2yY0jaVPZW8aSQScbO3OFOedQ63zLRpdsuIn+5ZqW/Rfa84twNS6p9SFgyzB2m0+2TCWAJm9XvBTfspaiI9YMA5Zhxpy7hpHqaeehxlSSk58W9GMGbsCvqenhB7Lx0zHtc9Jvssk3qdFYzJ9ti9UF7VOZzjT3m3GiZKYwhwA1893PQXtKMowR5tyjwk6LmHHoxTUHEfjhn5klOIUAuYIsZz0gHyurwdDcEGG8t2AnApE6Ss1JMNjcAsxyiVsBSfYU0oABDXuhIvNezImr/9WRQYvB77AfhgHjCFy7tgRhwOZigVUdsVzuYWQGV6GYcawYlxXjOKIyUMqA1cqu5mIPrmH/jz34CGaLIwAaKOUZQKrRMPlVU27kZKUgDYBy3FUGFWC1kmCPMmgGkKonnceKMijdMkCVsawj9vaWqGMF0QBCwYKAwwcP4PZbT+Lw1iYKF1TF0XI1yn/LEXtLxsWLV7Gzu8Q4wu6uE57RQKUBGtSgsNeGNpwCPSgBzH7KuRQZJxv96rUZJTmlEoW7MTs7cCyALZ/AdjZjuzavNRgy2LPs1I5XLOjA6d5ln52u1/Eoj3B2oFGevymvuZyjMH7VKgEdanHLSEvOpSzjEfh1w2FV51qJkWp7ZjA3g54EMlYdY8gxeBAsAK4oZIFWDMv4ZgAVxJVsJlmrY8kM0/JdxqdXTmp9Bgs96vWFBcLHo10fYpkAqIKYhZadVyQ7RfIxh/whgDHCAncsgMjnvJHXClshLDSzGJsfmKHXr7R6sxRJ1VY9u1LMaXU5pzKNUvCmjbvRbaqRSGmb2zl2ekh0YbKkumCBP7eT5AzBl1GpOfnEB6oOysSbptsL5C68MfFyDtYLKkQgCYZb7WkcUYkwEKGUyKokDj/R1Sitw9X4V5zGSjcMn0MYfdg8+5ijDXO2pXABFIh+r5N6CfbMl428avnQX6F2PcNOWy1MQgPGh61saIMIY57I4OGkg2PBo3MUQUU54DjmEV7X1httT95hGn8KXJ6rixbv7TiTTOXpOz18oNRWrk8WZhDrtS7SLsbo8tMH4fNKKJPxTtaxvs4MWW701yot1UvdOGo/0A9R6df4c/N2veAS4x9bwRqOcmCD1dwfiO779dA199s/Ar22lvRlM0I8zpDRpL8m6AXAxsYCp0+fxqlTp3D8+HGUwfSftpnWEgayya06jjh//h288eYbuHDhglw90u2ZvOu0jjE9HL+7EI+Erpzb4Jlnc4XQtbgfGuAUwGlsAcbsGNJgEIER6d08Kc2vHXR5zZj0pvxU/T3vwXGWXiKDt1Ny0HVJyg4Ze5vpDtbWBVIPjayN4chBD8mUWvX6UUZdLkEoGMogwTl6jZvBL4H+uobRtWattkZIPKs6Leu9vHpwTDR18r4z9DPytFSktZMFNmn/ZDIEie4IrqFUn46jZYeV57fddis+9clP4vixo9hcDMYQon8r6zuMsQKvvHIOzzzzrMjRrApNTySwkeTZNJg7z1isp9rHrGTR6X1/i5s+Yt2c9ERqv1FZExgIloFNmjCkB2y+bufueR5GM6QUdtL8lr5Q4MbGyZjK+WZ8c+1ws2NpRjlh2lyY5frZCXzKg2z7wRREY/TlvVDThx9g8b2LzoIFMVDCmyNcVxBG2zavzN3sZR5JsoPbYXrQkeGFQ8YXynLbZEgc8Gp1qgQtPv/8czh65DAOHDwYOEp4O37iOB775Cfx9NNP4/z583DbXFqrTecHMYc27iRzMwXm6nu7u/iHJ5/E3XfdjfsfuB9DcgbOheYnid7Wy5Fl/hb5gYNYryUZP7N+8h59v619smRWtkAlmuAWbQIpw9kcrDMLkx4S7ohAYq5Nzho++/H2vfW/9KOMr24TsVZdLqfqaWy5rouRvu2mm2mf/jffl9rgx1Z/8nkOS22ZITZn/Zn+5xCW3iHOcMyXvGaabc/xSNjc3NQrSRir1Qp7e0vs7u7qlXAzbXc9zx2e8C4aWmQffqxl2rXJuvz0lYMHD+JTn/oUHnnkEXzsYx/DxsbGTb1nAXbPP/88vv/97+Oll17C9vb2lKfWZV1+gsojjzyCr3/96zho66R9igUo/cmf/MmaJ9blp6bs7Ozgj//4j3HXXXfh2LFjk9+JJKPSv/7X/xr//b//dzz33HPvKTxXr17F7/zO7+Bzn/scvvzlL68DldblJ64QERaLBY4ePYqjR4+i1oqdnR3PsvRRXJe9Cy4NQ2OzU0slOzb9VFnsXN2BkANI/C8BxEWvieoNdNK/12YGucGhgApgJ/sbo6VtX8lOXM4Yd2zzRuFUC5giYKXd9Ed+CDkhK21Uc5Aw9MqrZDJkNNeCyd/ijtgAQ7JngFkNwnFtDWDGDQY064i8k0460tAYV4jEJU9+TYwap4qNy8NN1NZoht7AVOOMcEdeSWhKhh0zkGfDI4kBjHmMB4rHol7q0huJtE4xK4gZOO1qP7ZpsEANAgr8VG0bfKKOIYLQilQUAxXiBG5QdRh6WnzEHJFmNamVMZAYK8swSHBAsRPeSqdqvyulgBYLCZBixjCIkVwCFAoKLSTbEIuRE0RyLZxeMcZVGlqOKzU+AgMN4IGxt1xiuTeCq1wVR1Qht5QVcF0BLFfHjQyMq5VkREpZk7JB1Jx90JEPROAUDDMMRYJM9Dq1ysDgfC2G/sWwkDGTXCMhTlm5lm5YABvDIIFLQwFVxmpciUNhXGEoBRuLTQwANoeCkyeO4ujhQ1gQgWrF3rjEarWHOlYZwwhcvnwVV7d3NJDMcG9cIfNHLIbhsbZzKdXjJDppdi03+mRSpvysoJK0yRrsAY5T+U19Q2wKmrHTm0R21Zj9EHYj9veCHpvfVBa1fWpTapglkpPyY2cBtvbMyZsL+THmgMFtexNHsL1k7Rkf2hWT8bvxpl2XJjxn3BXhY+FwJh/f9ERslWsSocFzJQWaEICqGXO4agCd0O1ABVWd/RqeBHP+xe120s6AwTNs2el9CYyS37lK1iQuQgNxin6MueOiclzHoDLMcaxIZp1Ov5ozk47qOGIZk959iTIQKuSKhLiKEJaSB6UAtSpWNYjQjZOqpyUb0eA8b06aBv8JxhyA4SezLTiZYn4tGNlkvOmaILWZ0GNW50rKntc7aysYGAqKBiDKuK3fkNmhM/J4LXAKeqULMKBIVqV8TYzqyXDyaAYivWLHnYrGeDpeKqUbY5rD5EAWEHiiV/r60yAbfS8f5af4a9ep2l111nrPriZHIkGkh3YLr0VnzvMxgyIvPZjHxmu6WkdmtG1hudaHcZ2JO3j7HYy+pskOCPIWTA4CpDdINquWGIDC5cGiivVCkhVkEpgJkS0Oh/vFXDh0DumYi5yRQf2dIZBhgUOdXEyF/SVWmesrEqc56Npi4pQx3dFM4Ie3UDOvQBCylAjui/oNZ3FetczVIauWvs31I7WMwrMe3g9uf4Nbusm/576t12g/4LEAzaDdmT6BtE4jbCwWOH37Hbj77rtx6NChps9GjGh3Ebg2YmdnB2+8/gZef+NNbG9vt5CmTVLgI48xy6M85tAN3m8CgvpnTsNzP8T66Hq4bZ3e1Iy7x6Pt4AKOTHlJVmSYcyMusLo+7B9qWytkhxsyHRlPt5AhXcXHrBlObc9qvOxdBDVTId/XmS4H0Kx1iOJgDKssiuDLWBf4UpeEGsdRr0dmg0MPyoCAKut+0dGSvZUsuLvBYuDFtmPOA4mHXGd2Ki0rISqSsVUCLzTIXXmPCmEosleyvVW1/XMdZW+2GHDo4EF86rFP4vjRI9ja2NQMioyRR/BYRRfoNeqXLl7Gs889h+VqpUuH4E6/4ojg66SGdnwBboMIBb2vWCbj7EQWeVGvSOykXQQ+ULCuI9zaTWQbt6WRH8Bw+lDYm2BxbbfXwLaOnO6zW0D6uewDu7IeyxKlkYWOhrmQy4Qea8fnpsdFXhOE3QMMoRmtYgcMuHknZG9DrK6je9qPMeX1SC9SjHsJrFmGDTVxEC1GNw1xjVY7vKfgg1Y3JP5XOeiXdupecG9nF08//TTOPPootra2ZIzG20r7GxsbuO+++3Dl8mXsLZdp/8yuB2zOGsNbJhfjn4mWbFCOOo545ewrWC6X+PjHP4aDhw6mWlOOmuhRJ6oegOifAbeJZdxl/mvDPltarvqrXRHtu4C0FrOMSy3Z5nlMn7NunOihfUq2XeYyo8daMBI99O07y6TgpKyC96ueW89st887+w6LbD4ztNNDCt6f6ZvcosuDkMGTDHK2JmNE69w1YJ9nAt4AhP6d2cs0T2aJMxMlYbGxwGKxgYMHD2IcR+zu7WG1XGK5Wmqw8Yyu7Zue770dS64zx4YuvK9HeOvyUS4WnPS5z33uXV2HM44jLly4gCeeeALf//738c4773ykT+yvy7rcbLnlllvwta997YYBSgBw8eJFfOc738Hu7u77ANm6rMuHp1y4cAHf/OY38Y1vfANHjx6drXPo0CF86UtfwmuvvYYrV668p/CsViv89V//Na5evYovfvGLOHny5E3ru3VZl49aKaXg0KFDfiXc7u4uLl++jJ2dHVy7dm3fAxAfpvKPCiX0rZ4aNM0I4Sc4G8MOfEPXnhzKBmgzkIXhxw3UafOl+2t1JJPv3+XUmBnCo08xYlpAUQTCTODL36h1GLihzkxJMdzJno7UOe6tqyGsuAUf7pgpGlhjxv6qTlEeOTlbM4xkqAE4Mta4MdMwm8ZHaiSJkDAxJIkjm32AHiJAEGMTFTeGBf4ky4sFURl8OchL/pRwoKYihs/i73B3ItiG4bYhkI9fjD8j3HBqT70bMyoEvYCq49oCVgxmG4s5Kz1Qwy7rcbsBuYXXTnyaQbLyKBjSa+vCSc7pmiClUQIwDBKQU9J8jzLyxbAQg786TYcyIK6xYmwsFn7lHQOo4wpUCjY3N7FaVSyXOxjHJcowgAZ13PMKpWgXo8y5nSweCul1bQl7iqvKNaVAd07VOWCYI5g9qEazUNm8E7nRcxiE8oahgMoAroShFCw2CrYWA4bNTdx66+3YuXoV5y+8g1EDlMrGAhvDAgMYJ48ewi0njmJjsQAqY1ytwBgBAsYqp9Z3l3u4sn0NqzqikgbAkPCC8VWFkTy5sbAhHzfeibPFrh6D8rQZ7sFwxzbpVXeVGSjmgE5GWjczktmDhT4J8EAQxXDJPEyS9Y2YG7uqZeEQg2HIlDBxmlSaSCZ9UpvfslMoCdMWNwp/OAlMMCn86R2DwWRyyKkw3EWghuI2QeT2Txaci9OgRLspMMQyLRE0w1MJR58iESDSrF+suLfAROhfm6GSTqHKuCozaGTQUIS3DYrKft0koME00ODPEqPxeWYCVQsEs0xUkTWLTQcozdVKyFfYmewFA1xIZFyFZHaqrIFA4qy0qxyDn+X9UsivEds/EClrw1YHNoFIxidk+jCM+pni85yzGnUti5kZiz04wObUSImSHtPMNa7qgiIBkgAxCzYxQvJg18ZoX7wv1+2QAC3JMmZZsMizvlmALHPxNUlmDl8HgROdR7Aj0NVzp6DSTgbR3+Hgc8OFwctGL5AXs4PQaRRT/WX8n9o1OieIQ6XGS/o7NV8j6Nv0fMKHj8p0qAJBMdtNBohiWDP4M+XlknECe8NpDy4PigYSGU1n3IWULaXAvLTeDyeZZHjW560zJPM2Yk3QCEv28WLCh9S1ktrjbNid4qLR1P5z9TqZyj3YAenLh7106irPQVPNBxi6xKrNjXQu7CeoPPFY+jc+hr73PnXi/XBCmo/g/5mxJNZy+dymQ2vmMevhDN9iMeCWkydx++2349ChQ9PgJMDn3J10ej3karXCxUuX8Prrr+H8+fMYx7GP8WmANhD67F6BtMBHBLImfvWaSf5kPJvO4DQnNMXJ3POokIJ5mVJ/qQplyOKvBVrn+bL5dF8yo2UhijGFFtM+U+WQAVD91eMnyMp0cMgsoy9DU9YHKvtlExX7EeJ2PS8RzSGjTF7qv7ZuMn1bWQIVhkGuV5ZMrCPsEI3sr2u61JgcbsvuOeOXRROAkpDN6ffY03FDB4H3oOdi+2sqXoeoYBgIi0KgMuDgoSMYl3u4trMD1uCpUgq2trbwyUcfxbGjh3HgwKYEejNkzQQOHBJjuVri2ed+gKvXriU2JV2jKcwqD3rKbPjY1Ru7roz1TYzNAgDIs2O26xfTeQ3ekHGeBEUQHvKiKbLtJL7sGCDEjmvnyZxlHmkDAWqgCVO8tBhKoFGDMdfWIVszYbUSPT4nGdjI6rbXrIfBiGvTkm3AcDKrP61eE7gS673g9MBhht3WGraWzGI+74nAsf5ObyMEZswQJZz1gVOWdTHWNl1AnfZnV0t7YBaACxcv4amnn8KjZyRQyYPPQLqEYhw9ehSPPvoonnrqKezu7aGdSpV5zXTol35dajA309Z+IgZee+01XLx4Effd93HcfsfphOM8Tzqx1Lbi0joBZIfUMkGZTBWZ1+mSrKv0hQjGN3kr7VjQktGXH55pWujDzFtlQ6m9OXIK5FD3MLgihxbmvTuQ57vnmXkODvFC3c+98Ld5bkYTSrUZjO8GJ60kyp60PgtbM5UtJ06HxGj4m5oZ7UbWLQLSx8mMGo9P2mg/tTPWjSjBSiQnoxcbC0EdM5arFVYruRoOAJbLZRzO6/qZKy7RuZv3WaFN1/txXT6iZXNzEw888AA+85nP4NSpU7j11ltveGUVAD+Z/8orr+Dxxx/Hc88953S4Luvy01AOHTqEf/Wv/hUOHz58w7qr1Qp/9md/hvPnz78PkK3Lunz4yksvvYTf/d3fvW6g0p133onf+I3fwDe/+U1cvXr1PYWHmfH444/j7Nmz+H/+n/8Hn/nMZ/a3Ma3LuvwEFNuDHjx4EAcPHhTbXa3Y3t72wCUAuHbtGsZxvEFr72+56SAlIsvsI4ErrM/EaEPXYfIwkLjBEyPsugwrDGqMP70TwQJ+2DdXgJ84h7nb9D99bpkvzDAjptgw2LabxqlhSweu9Ut/G4o70M0BWcyh6qdYZQtLCTQxDmjwjxo9JTgEzb4+7A7yock0xFCjNCWjSgSNmPFP5sZGanMXJ+kyzvoTy7mNMOQQgCEZFntDjgbs6O8WVJOdrn4SUK9ScwczxPgn12qVZm5l/10i64PByKwGeYSzHNDr8EoyGIxyQlaNdFTMgGQZO8zQIM5OmwtNk6Iwqpu7MoDqTmFzVtk1HLWOKFyAIgFJZSCgFDDkqoSCEVXvMaACLBaDJL+iKo6BMmDkJXg1Yhg2sLk5YBiKZBmCZIRZ6BVxy+UKO8s9cF1iGAoqQU5RMzAwYbnawziuNOilaLaVMa6XqxWSAUTwadllYHhiwmhmFA0IAhHGKlcUWVaRQkMYrwC9Sk/4cChFrqgCgwbGsBgwlAUWC8KJI8fx0L0P4R+efgIVwLCQTFKLYQPDwDhyYANHjx7C1uYCAGO5qtgbRyzHilWtWNaKnb0l3r54Edf29rBiYDVq8JhZ97jqvJPTDPSUalAtwtho9OEnxz2UTSvbCVdGGYWGq9F4Mqhxw2dm4GRnJcumYua5QXmnsgZMuIPI6EqlVxFZ5EEwMnNu9DaetaADgl7PlxxJEUxq4xPaIoijx2HLTqTsEGaVrsosPDHthYHUM7DoyfcI4qDcmMCkx1CLySSoLIA68YrKuSzfIdn3QJKpzQN+VP7WhJdKiQYg2ZBkvEVHwH4VWVHZNVrWACIQW5hNgck6ITPBpZziB+Q6uxSuQYERCxMT/rIsZpbljjSYTriuIK6EAIDVSq9qYYBGqVGK9sMVVORqOjA3mYjClEpJVupXsrGYblGlof3m6/MsU6BdkUkmREmvr3TcEvKBOmuDfL4jm1g43FiubyuKMIfdgpTszHlcqRZZryxzhRjRRu/XhhFGceFzGY8F3lSFm7V/HgXPgzXuc169XVYnqTn/LNR3VLgLwa+yMxVqNGOFNKjWLuF0HuUI4bXAw+p8FLoUvp6ywYb85Rp8aikdSe8iNMkg/Ci6B0gyzOY8YS+ZtuHiwOQlZVjh37Vxpx+fBfuHhIdFPrUG0jarIvuzcIQl54BmNvNrDA3iTMtMACtPWAAzJ1htDixyjFXu54xVgM+zQKBjsox14cVv2kSqD6hGaQghd5CdAkEPOcDBf8+wVTL/ps9LKf07H6YSMqh1Bieaa9Z6aOrET9w8lyeZblrcBXbn3WJOK6S95LmhqNT2mgDNAfpd85zodjKf1IzcZetiscDhw0dw22234dZbb8XBAwc8I6tXzHTMJjGk8+1r2zh37hzeeuutyUlO8o64gbUNRkJe/cAxF0Ittcbds75Q+l37pDK55i4fUIlwmgk6m3Z9BeJ4EMmeA6ecNXvW844BcyS79jFhRwn6FLjBZOuLTlq63oDPd7yV6yDBHnVNTxPBs8R5EIXiBrqOyfs5u8Yaun4VvVgluJoKhqJ74hoYGXRk41ixqiO41sgEXKNtrqu4klTXaw67IbbZQ0ZQSZ8VrWFoC5wgmUmyaB3faCtNkq6UCnnLlv2wFMKBzQO45fgtePPNN1TfyV6VSsGdd96O2267FVubG1ioM25kWVePzJJhlhmrseLZHzyPs6++qlfA1XZ8SreWJdKw42PPeq4rjo20LnNcMoNqLMF6NuLUhmytUiCNree8ZKpHyIceKL8m3Va/GU5/0WWKt8mNKEzdTtcLOUCuBXJOKscvwaftGsA+2XiMp/J6ZS4ANMvJeAfKS/GqB2NnGejTJTTotoBmtGn/BQv8secxBoslMGiZbc+hMow1wMVlkZNV0E+XqcoP5HVrDV0G+HxOMlwzPFBHYsxkncskNH/xwkU89dRTePTMGcmo1MyC9HDi5Emc0UClvb094TfruH0hcNjoQVuz9Ho8JKbPBDOubV/DM88+C2bGHXfcEXuQZs6lZTGR5YBS0zn6h6M/QqpLrFmIdU9hBM/9Ljf6ymM1PWP2KrE8BoW6DSyNMV5PMhM2f8hbstRrkjsBBVpMUhpr6LHWBmgw7a9hM287b1pb3auz6yq0OrGl1v17nhGFs09yi2HnKF49slY32n22Pe+TEk4TgDKnWYdzvDALV/9bRhYlvY808dROqHdB2NzcwMbmBg4dOgSojtrd3ZWMS7u7fq3rfAn9Y4dJ+61IyF4Diq9LGuvy0SgHDhzA7bffjjNnzuATn/gETpw4Idn8b6IwM95++238zd/8DZ5++mlcvny5s/2vy7r8dJTPfOYz+PjHP34dn6cUZsZf/dVf4fHHH3+fIFuXdflwlpdeegnf/OY38Zu/+Zs4cuTIhHeICPfffz9+8zd/830JVAKA8+fP4w//8A9Ra8XP/MzP3FSQ7rqsy09CISIMw4AjR47gyJEjuPXWW8Es1/ZeuXLFr4iTAxAfbHbMmw5SMmOlbY79ehf7fXbBmjbgvnNMf5LjOzti3DgLgKgCvI/wYGq2m26wQPTFycBgBj7PGtDkHrc6+Wu3e1MjautACwOVBd0ApPasMFzJATjdkFbylL3RFvsgcr8mOI1Qsg+kDSyyTW3eEhscHd4Tnv1r7OwdB/nklf3PrkaytmdTG884yPw0WTxIxhL5XNzBKNcjGW/k9yzwyUpNBhpvzw3i8tkMRcxyirhYgJga50oJWHhEM7fEkGAeSLCHZXkpbHYESsEQlv0j0aIZszU4w04tlmHAUOR6uEWRjWKhAVyBqkEq0o5c5bQaK3gcMSwGAAW7e7tYLldgyLVxXMX4MI5yXcRqucJqNYKGglorVqs9ANRc0WCGVgK6FNISXGRZlTjxU5hn4Paxlc63zaRkN4Hyw8KduJubmzqugrK5CWLCM0/9Ay5evQCUEVQKFosFChUcOrCJk8cO49DWBgiMVWUsx6VcT8cVy9UKu3tLXLh8BTs7S6xGloASJr2mwmiXAAuMmbHDGbmEMZ11vpReNMNK0N0oQWBuH5RsTcWDHjgZhu30cnLI9vaeJPcqWOMn4iRt5lE56C3jEse+/d7KWc/oZc6PsEspHUeGI49LMVncOJnM8Eew653I8QMJKlF6kWoWBGpvJxzb8Fmu1crFeMWcr9KDzBnZ9ZQON5Ad+eH8UgOzjl0ym2l7BFRU5XW5DpNYnF11hIwtXRViMKOQOxAqQj6t5B5FN3yy/obKDlsYtpFwFtqqFEJhguVTElpJ+qBWMbKXVm7WavPRncTWgZL2PY6j646cxcrohSD9gxU3gVG3UkbGGrgey7TTGJ1t6OZwSXKZOfQw+TVkrVPZqYWtRVY8SitFO/R6BKdxHxvxTBr/KIZb6tvS9kYW+CoBhUewXqUjPtOqunHauDl9gXzNjw8HNvfmeGIbJ1noU/AU+h70S7HgQQReQRHY58hKOtmcXtBMWG5Qz037XEyDlDvPJyIbhsJYyNcjyQ0UDXDGuY6ycSZFBqcsr7yJxC9Bc4QmI5w2V40eGnkeS6tMk3ndSCVkvUuVtGBiJFw6rxr/iaKnNNmT5VDTblpXNGsaEZ0xXIasgQR4DzhURmNmpbPiMmjSaYO/D1+JsVIgKEkhqRNyy9AVs9EXaj7JLFFXJ0m5/XATJNese5pA5R7ODpq5mnPd0D7fAGCxWOC207fhHr3OLRtQfA2fcGLjqbViHEdcvnwZb7/9Nt54443rp/Tdl0Y6Qdp8jf3f9J3rl2bPQHB+arcGNj++urhuy9Fe6KXMw5MAoVYEWSOzMi8aRJIRmdYMdlvjse8JXK7k/uZkPLQSG61nWYVmL2V7ygDVMnXIwZiS9lmeBVf1jv3HDF1HWxZUkuxJVYKjLdAiH/yo4+hrTrkWrUYfvt5M7JP0P0y2BwI6cspzbWvWWOOVPJfpYJA42HSNUsSU8fabb2BnuQMJRC0oQ8Hxo8dw38fvw4GtLWwsBh9DrVXWPvp5HCveePMtvPTSy7qXEAg8SyNFgB5NZ7DR7b7xZpuokEgxdvbhuySxrtL8xyIq6zN7PMXnnOyJNUGq4/yXucz6ZauQRWL3r9XLxRa9WWA3kACIdRSlOtwwSm7PeNiVe+o2Avz8XJPzObV8TWhHmfjHeSSNK+NIWdtL9QN6ToGwlUkjNilhxXgwoa23ocSBupBbLg96uWWD4A5H2oK3zbntViuafNpPxl68cAHPPvssHnvsMZTs0LZ1HTNOnjiBRx99FE8/9bRn1cg0M2nX5BPS2F14zFFbO/BxrHj2Bz/AxYsX8eCDD2Cx2Gh+N3ZBerfhiYZkE0UwPNOu69brKJ/9NGf+3daJ1ffP1h5PgIp1Szy/vka9EQTzr4SMjweGpaxtey0VhzTJRRp3EcazEAWJvmuoJ+NXfu5Ydd8X+nWe76Ec94TWqIqs6HVq2kanNCR12E9R8swgs+TPe8R/BHI6uiil+LVDR44cwWq1wt7eHparJZZ7y0aPA0i6lf17s+dZX9n1E1UOHDiAxx57DJ///Oc9Y9LNZI4YxxF7e3t49dVX8eyzz+KJJ57AtWvX3geI12VdPpzlrrvuwuc///mb4p9z587hf//v//2BO3nXZV0+DOXFF1/EH/7hH+K3f/u3Z4NjP4hApeVyiT/6oz/Cyy+/jK9+9as3dX3juqzLT2IhImxubuKWW27xPcPu7i6uXLmC7e1tXL16tY1b2aeN1l/5/1733XyQUv7MjMhEkoNNcB3lXX1zLI6kuU1T7o+bjWh2jkaxjR8cHjEKcLvTR40T8ugMemYA6mwl2SErdWpy0uXtphoei2x23SiV9oHm3K8sjvKc1cU3zftsTieb7MoTQghs2DVuZtD1bXD8mwwNbkd0w1+crARkzJahwgYlxrrpppc9m5YYEs1R6MZ6s0FpsJs53prANL1GSTJ2SKBSbwTNhpNwSLfnFf2dZNAwx0EYRcOIlOsLHuE4NBpghamo8ZkBPx0n8OoJV7LgLfhm0DJ6EWkATykYhg1Yti3YFWO1ogwFTIP0VQasqmRP4kpYDJKx6NruLlarPSxKwYZmgqrMWC4lw8lyXIFHBmjAWMdkyGZw1YxoZnqteiUapbEg0yY6uie9pkhPajNF4JfiGBWggVD02ipmYLHY1AkjbC5kbO9cvYjd3SVGvUqiDECtKyyGAUcOHcKBzU0MAHiU0911lBPh4zhiuVzh8pVruHj5KpbjKMLTTj0DGEFOp+aM8SsVzWkysUDq8zoKfhhg1Dj9SuG4IVA4xsmkgJyYDIc5qeWaNbtXos1klLcAOsd1hlGvoQg+sb5GDeLT/g0mRICStZMDGRuet7+UDcYtv9Wqx7tBbrwzpxyMT3xIFUSDXwGSDc6Gaqcl5feazOqkHGUZe+BXKSQDHwcP2/WCoQXY5ZUYhS2bmhlipV8LJBnNy6BjS2og9EOak5rw02eP8flDCtAh6HWQ8n0o6XQzW2hSzD0yfEqvlsZdsgWEzKwmU/X7wIRKBUzi1Kx1VL4akiw2+EnugfTrDiIsyPQeO00ke67LOaMte1Z7qpFmWTCSA+V8fgu6dzSgV+451MCyjn7yXFTpoyQ6BwAqBQNUxnFoi54nZj/DAhMBSUhVJaOZapcykAQspjmX+bZnEbRj+OuD/5qAT1srJLoyeE0OZ5rKctwydkGn0QMbbU463DpQ6ZeJ48vxYa/Q5LemRWWYyOIS12w6H3RrEO6N8jbG/daNfto3vdfDnB7l+TYQffg+1+bOYyPVbr2YukfnKHR3TofHDE+iqf55Nzg0c8PwPsT3H2P3ecl04mOTdgK3WfZ+VEqirX02QFFsfJEloaWC67d//Xbn61vrWV/OtRqQzUHTUWqaJoKsEY4cPoJTp07h1KlbJZ08tbTmMoUjQJ8Z2NnZwYWLF/H2W2/h4qVLWOkJmD7Afz8+y4ExeU3jEHNfbxoC1o90iph04KRzDOY1mfNoWkM4HNQ6Un1d2o8rySUGxzqlw4HpYZphGdeJ2p7sY8LR3EhT39PZi5meMQlGyDD3fyOwsx1XDtyxtZztKyxISX4lX9tH1i2KNTAzmGXNzpD9Qq2j7k+k7Vrha49qATsUWW/z4DywQpdTWa+YLuL0GYnWTJr6Xk3HGZeUAzZ9To8Mvf5adPVAkrV2e7mLcTXCdoNEwJHDh/HJxx7DsaNHsRgWSobJ0FIhe6JxxLVr1/DMsz/A9u6OZoky2JQOOAJ9fS/Q48JGxA5693vSIR1N2CeX4KE+87ahESNOtsY/jufED7H4Ch3jz8jxn7PLRtvT+TYwJhKgATKPJ2XNSW/7OzTzufu+v/T2QTWyF5SC4BuanZHMRq6pv8xpsPWXLxR03WOzrYtZW3/1EBvNtAI/9gItOC099FnmmqoKTy9yvH7DY0EnvquyfStP5yYHnb/zzgW8cvYs7rzzTmxubLaQKAwnT5zAfR//OH7wg+cm60qVDi29pDlpdSm1VVz4ps+QQKUfvfYadnZ2cP999+PY8WPaWBsoT77xvP4KwGm1V9E25x2vz7U1N0+Gc057dLNPEkeAa4xM3uaZb9buDAU3peXb0IHWWnTZ6SNwQ4+2K5wsx3KlSQarDj6eeee6pZuAmV9z45PcVumVG64j9/v5BrQyHUtL185LLRE09WLdOmnhxvDdoCwWCywWYto3p8JqXMk1Dl2bRIxhscBiWMDk3N7enmdnWq1W/1gw1uUDLIvFAqdPn8aZM2fw8MMP47bbbrupTBHMjAsXLuDll1/Gs88+i5dffhnb29sfuitA1mVd3u9y55134rd+67dw4sSJG9bd3t7Gn/3Zn+HKlSvvPWDrsi4fkfLcc8/hf/2v/4XPfvazOHjw4MRuY4FKX/ziF/FHf/RHN2EL/H9flssl/v7v/x4XL17El770Jdxzzz3726PXZV1+CorZFfP1cOMosQTb29v7XvF74MABz7pca8WVK1cwjiMuXbqEnZ2dfxQ/3/x1b4CZ/tymZQFHNqjrN5CcyUTJwWmbXd1ykhmnw/i0X/u9PSvq9daaMDxZvZL6JVDr/1IjS3PigOXiIZA4kABN4WyBJgQArVPAHPJ2EtOza2SjlxrP7bXGgI7OcJuNu73tDTau1oDop56QT8uU1Ab75sVhMAOxw5ThKm6+CmeCtR+mvf2yBiC1ZUE7ngzCrnGi4tY5KnbxjdELAitmFTf8pOAvmRPHgo7BDBfF/Ksxdh1oE7yhpVa5/qcU0it69Gqs5FQZzFmgmU9KkZO+pFksLOhIaKpgGBaoVQxAq3HExrCQK4JKARdph0myBhEkk8bII5bjCiseUTbkWjTiinEExpFhKZ6JAAxFHA8oDZ+Jr9cy/Agui9yZgForht7pb/xIKXjEeF/xt6BBApLIzGOS3amURTLoCByLoeDg4QNY7u1hd7mLVa0YsEBZLFB5xAYBx48cxOEDm1gMRQKGGOBxRAFhuVphubfC9vYOLl++guVqJYFcbNk1wrwaPU+ZpRWWyUTLdrUXu8PG5hvNGxKEZMNjaH22QAeKgBnqgvoAEBUP0CFAb5FLhsnMS34FEQS/diozD8scVcyg5Gxo5UaMM7fPMOcToaQU4C4vkuE3OxHzd3GMlLZtBZAYKIOdHgyjabbbxXPAHJEqXTQLXQS5msMMFLInmytLKUCtcm2eZnsRB47yldGI4aZK8A2zXEQ6lMH5LiuZVv628lgihgmVI4NR4wwgMUuuRuXRQhogMdVrrFcwZqOSnPy3cUgQnVj/C4iqZ7XxoMfCsKCR4AnTu5qdIRt0Y5Suz/wv5jKPyFUr7hip1fWoyMaZwDtoYBjCWd3qOx2rjc1wB1LFxq7Eyf8X819K0PlQZL2ifsiE285YnOSiwRDX5Nh1LwRzSBFpKB1pAKHipqoeB8OvgjNp6CUFSrfwwPUEuF0TwdtonfbQUWQ95M+SDLfgpTnnn7XWLq10tDnLJE9PLxtvZN0cvCxQN3qjGUODgIlsaeDOzpYks7IcawNqWxS7fDCdZfVThczTbd8k/BXAxmcCPG1TV9qgg9bJ0+vitLxskWsy0PnASb/tSwO7LZDVArczTXwUSw+/f87y2LnfVGPgdipVnVJv0O/8utrb6DMIZX5NPSWqjaqZ/lUOLRYDDh85hFtO3oJTp07h8OEjIfdTX21QnK6ymLG9s41Xz/0Ir7/+OvaWy+iZMeW1/vt1igcqpcH0dA2TeRPcWkBs7BOz/PAZsvVF+rHdU1jt1hWZHXxT3FNCOkcfuX6e5FzdIgJUh+VtZLMWoICCbR24DzwOyZycmKFSKyXjw3Vq2nOU+C77jUHloARoxwEJhdtkWpJ1FVWyCWl7QxkAyDpDZCSnvSm5vIq/SULb2ldxTrmiIMBHazA1ulFpyQKlWjxaZtmp3iYiLDYH1LFiHOU6uoICFMKhQwfxyccew/Fjx7CxGDQjk4xJ5KVc5ztWOfTw9DPP4M233vJDHAEe+79C+tcVEnA5ESQWOILyVmCiKZzq+3BNd+lXD06ErQEMnxnBnAi3hWtKd4lPGnvLdO7sYIV1sd/4W/nXzT3QXfHVKMhOFnTd2J6iWYzEGiUPiROQrezJEDZSKz0jECQzr895qu11DUbqW5C6Jv8A2yPFOsab1THLlbX59Wz/6fEQ18ZybgsUpEfkAfBCT9Kv30rrIjzjH6HmEr2++OKLOP/OeTz26CextbUVY0nYuvPOO7C9vYOz585O9rsuaDnhjbNcT7SZ55Kb6i12GXjnnXdw7eo13PfA/bj99tvdRte93uAuUXaCP4EBC7BPdE6231Zc8rTN3Gf+rb25i72CyVWjG8rv+fovdGfmOW7qdzSZPvvvXjlhpEGq7s7TQDi9enMl6epe7jhWMh9RWwWAHULaT7REIGaSiYlOb7o065br9dgDoP/sC+CMavCxtWPOeIpDCDdQLe+ylCL22q2FZi7oheQMoAcPHgLAOHToEJbLJa5tX5NsnD9GuNblx182Nzdx+vRpPPjgg3jkkUdw+vTpm86axMw4f/48vve97+H73//++5LFYl3W5aNSbrvtNvz2b//2TQUo1Vrx7W9/G88999x7D9i6rMtHqIzjiG9/+9t4/vnn8Y1vfANHjx6d1CEi/OzP/izeeecd/PVf//X7Zsd84YUX8Pbbb+NLX/oSPv3pT9/0Vajrsi4/6YWI/ODDxsbGDWpHMVvBbbfdhqtXr+Ktt95619k4bzpIyQAVp1yYUmTbZYEwbYYC2wi3J+sB6gL6Z50RAOI05byQYk6O6wRNmEVi19fsz2GbwoApmQbVwAp3+IA5DKeWMScZm+TtZJDVTew41rShRuw+zak2s3kIZ0wYKpP/T34iwM7DzZ2OkACiEs44dUgnU2Pgqhl73kS7pSptoEmNFgykLCZIp157WPc7PZyhzeMVpyaSwz3aYb2igJosTK2TMpwrFggmtOHXBbHgzgwydg2bjhQWUNQYExqalmAYoTkNFiktHcmVXXa6UuqXYQCTnFreXGxiHOVajmExSOYTNyRJ9pNhMYCGgnFcoi5HcF2CaQUwY2OQ674qSwDPiuWKIvbTo5q1S0lMaKF6hhvHr+J95Dj9RUyRMaZ3ABH5tY/mGCG9li6CTtjxMa5GEAjDYkCtjM2NAQcPboEJuHp1F7UuxZlVCmolLIaCY4cO4fjRg9hcMAoxmArGccRqVbG3XGF3ucLuaokLly/j2p4EOY3jCgAwKj7ckKjZVKgUub4BFjyRndqRoUKe96Y/49+49s25SIPXKiQQ0bPiJJ71IBaTjZoJzd7Rnv3UesODDqdJWecGqW9ySOl3dMObm6E72ZpHZc9qNtFO6jMIcEO9ZRUzfMENz0VlQONAoSL4lePqCCcWKU6E3sDVnzfOEaTgqMp+bRtZhi6HXGr5/BS5Rg0s2QA0yZ3wu2aGKpBsQyLDBAbJKLZojYe1yjUHDOchdyACnp3LcGlzlmVIGxhBwS+F/JowZstoxiGrjY5VCYwenMb+zKjV8F5IghnNeOvX5rnSJcUcK53atSaksrfVxcEPJvuMRiL41bMMAunKw6Dnaln2Mq6aKwdDL9WkooxfYM4bZg2RtZGQ6+dsbjaKsMxTAW/IrjxGJe70LmOsKUhuFBUKruCiTlToMxj/sCkwybhgc6KwM+yKUJMBaIo5TTnBaeqZ2JxXWQIErCbzmvZmN3YRIGdBeMb/ztfqFBGMmW60tqjBEc3Ag1TTsidmh39bhy2/ZqO/7a/o1zwoe7GlUVedZDLOeM6uMDVBRfFdBbTxQdO3dcXtGL1d1MxF0TnadgwwNgc8uvWPZ1ZLQbC9w8XVkUuPWDKpHgFPA2U+GgFKtv5MsHIOvqW2bsyMVJ0uUXz9Z632q825J1HqtF+KD6GFW1rty4wmT00JvS4WC9x22224++67cOjwIQlon+nXAnLY+mMxgl64eBFvvP4azr9zHsu9VVp/6nuzMm7/4sElcxizdW1DZ4T2bk1OtBprjRw0NpmPSRaGKba8wX4tuu9I0vw4L6UXmsAHbsdkDlJbp+zTi+5mm3n2pZDJxUwb++De1i/M0GBD008FrV4KR1MTjAldn5TBMyaUUnzPE+3JHoU0wyJX3UvZ3kSXi7aWqRz4sY50dasyLA3PPhv52Z46j5/T7FKs6Vp3NGk2YpufwKgHjap+8ixKpWBjQ0wYwgOyfpKsJcC999yDE8eO4cDWAoPfnkma0bhqgJL8d+5HP8LZc6/KOp79AlYfe4zDZj9JorSfp65uUAicEOO9RCJGB0lVsr9jiJ5+zLzd1jcgCE22UHAXZ8kNHD1/hESYBgHNlf5xWvW2vzcVg6AYkIMWJPKlFceUVG3Gc2onN55w5/uxpHL6xIycxpvn3P80eIo+XCe7zCuOa4baHoxx8nAA30/6/CN43HDBLkena4ReFqFrezIjahOxvUWsl3KdHNgf2Ll48SJefvklPPjQQ5o5Ob1CIrfuu//jYFScPXvOoWrnPPg6PezkbbJHBNghyPP6D8DO3i6efeYZXLt2Dffccw+2NjeRiwdbpjHF2rSV27Z/yTQSsMQXYasW79M5mJMFpj9058Chq8Wu2AdocYx/vnW0+Jwpxv6Z9l2ItJhueTwJnLn25658tROHiXFzAE4/7zOD+UeVxi6zfy3501fkmWdWetXdTES/fkmP95mvfVcUFHWuP537txJz2Mrc/frcv4c4kLO5uYmNzQ23+63Lh69sbW3hzJkz+Lmf+zmcOnUKm538268wy+n4l156CY8//jief/75dXDSuqzLTPnCF76AkydP3rAeM+MHP/gB/u///b/vA1Trsi4fzfLSSy/hz//8z/HP//k/nw0GWiwW+PKXvwwA72ug0qVLl/AHf/AHeOutt/D5z38eR44cuakg33VZl3WZL8Y/R44cwaFDh971FXA3H6REeRdnxlX27DVaqXESNWYBgjg8yYwn7akda9ksPk0QEHOzccvBRW5Q0gCqvOF3w4I2PLe9M2cvp4AcOX0SBllzZEugElJQio0hmbmYUccwzsQ+WMMJXNaG8Xdiusr2SDdUB2zyQ202tC5IHWWWyUC/23xkAx9pIIs69sHhrDRHfygHTZuhv/l8uHNEzHHSpVi9IzNBAdxZnnfj3IzRMk4pJv1apjC2KV4rEPSTDCzZQeXBAoYPuEUqAghGMTKSnkIm8muIskPbTpTLVFswS9UgHZ1dkquqSinYWGzotWQrUCGUBaFCnAMWRCDZW4puFBllKKBBMuEMpaCAMNYR42qFOrKccibNXlLVWa/vahIXySRSR4x1BUIBU9VT0RawRBj15PQgg3N+tWu9Yr4tsEJPJpNNuNBdoQWYNFsQAZVHz+oArqgjazaiAqoVG4sFNjY2QCBcfucy9pYVjBGlMCqWGEbg4IGjOHbkMBaFAB6xGivGkVBHC1BaYne1xPnLl3Hp2jb29Jo3md/qNMTMEgiALG9kvO31fSFUYtzVfyMm5RuVDVbPeCQ7T6wl0udVHPAWXJOFneCrDSDK0jIH4IUjpzPuUZJ1anQ0mILmW4OayaqqTiTPWgCgJt4JiNDUMcOmBA+UEGbuWTFp3DozRUTo1ZEWBOHZB7IMQEN/OasCu1kXCrvZC03OmH6JQBu9xRBMA4x2CXECWeRxyIhSBsEjACrQTGQUV0JxyGoeI2ykwmScYoAR1zVpQAuRXFGQscvQAEd77plZDI/Z4We07FFNLptMOHFVKVwKCstVj6PJzgavBZyuaw1ZHEEZNcnnlhbgAXI2tpC/RscKO/LpXE500vKcoCmNEf6xNd4ibODOuWlOGoeRYZg0IM2IwVsLHW6PGgMx2TNWPQgJEtN1QCHCophU0C5TMHDj5PJ+JVjU1xyNoXjqavIYALJgMcQ8WKYqxsztafK7rRkyn7k81K925Y/8RA4r5YwLioesZ+2vg2g0mGQXSJwwFojUgGlXjFLIVXL6kNf7q/zi3cj0aE4lI6/q/adJzOO3z0EozW9GU45nhTwHHplKyPrDAMp6xZ3cSSb3XUer4RjIrCe4jRnMOLR1kWGXua/x4S3uzs8g6wPuCDqG1fJv6OWkh3JT6GdnOt89VFP0tXPcSkTMorunivhB0ufeduoUTp8+jaNHj7RzTgGlw88aWM+MK1ev4K233tbTKNtgtus7OmICHCeUeKyB11F2fZxkjDZ7DJ8j4/sWFX1wktWN6U48mpvlpP1snYW5trq+GoextsmWyxCuL6U9jj56XHAEoeTScmAfwpTyVtj6MIEx5dyMd+tABZjt91wOy/XQYAlMt/2naybT5Vx0TeSCvZFfpGsHz9KYFWxyQFrgg/xfZEpNeHSZo/BacL7L/KQbTN8TjN8ZtnZr8NisRcnbj+WCBtJy0DJhwFBks7a7s4dVZdj6jlBx9NBh3HX7Hdja3IgAY5DuhzSD0igBShcvXcbTP3gWu6tlI+c1jCNsGugLuR6bo5Zmah0Hbb19ba95bUIZr/qz01ZQmPFA8EkvF2bCihuBNpUjUbTVmd+iiTkMhXx2PYUW9gYJBkeGy4VL1o3GL51cSJMVzzP/JZxa0H2GnKsHN/YocpAoj0Exneum/WZeiTS0ZGsI12EAeRC/YapFUQ6qcuh9j6F86wTAGSstXBwjdj5zFJO/7usJX0MDP/rRj7C1tYV77rk3HdawtT5QhgH33/8AAODs2bPzpNTtSychVkkOG/QG237tVTBefvllXHjnHZw5cwaHDh8K5LWNBz6ASd/c10y8bzxFfpBkvof9Sjsbansh9mvgxKyWuMPn2+xgc2MJRmk1IMWcJyJka5cT3WlT87KI2o8uAuZlwVQWZjtdr8NDR/h3RvDfPsXacBtMI8MwD1c3lKmC7/QzMm308qN/zrNfewLZf1StxOb20QRo+30uRqyvnVTtP6oYVKVcf07W5f0vt9xyC86cOYNPfepTuOOOO6Zryn1KrRWvvfYann32WTz99NN466231te5rcu67FNOnz6Nxx577KbqXr58Gd/+9rcl89y6rMu67Fv+7u/+DsePH8cv/MIvzCbb+KAClWqt+Mu//Eu88MIL+PVf/3WcOnXqpnXruqzLuuxf5EaqG187nMtNBymNENcbmSGR9foz28a4XcdOmZspBWGUzBudvMNygw3c+man0XQ7CmsoG1v8Kitrl9MpQd0YWwCTPbONWzao5bTB2eBmQQgSnCTXfkQ2pRifnEyNk3ONocyMS2plEiNBcXj7vV9vAJOTViUFY6ihmkvAQMnYVFujAJj8N9t2RxAD+dg9+4zZNGrVqYh2vC+DCxLAUlGT4dzwwo47oPoVY0TkVyNFBiZz0sMdlTF+McLnoKGxApYRx1P4T4xdZjzUIBGU5Pxih4+1js+mklvryIcEB0jEAySTC6FWCWoixVPR56uVNFKIQGUAj2p0LwVYDGAUDdkaMXDBsFi4E4EGORVd93aBUlDqgODpAYQKIoFltRoxrhigAjuIvbdcJYsjwzOpoGDUzEIbhYBRAqUGKhgt4wTHyU9ClexMUKJgdgcwKUAFGoSjczgMgwS3cfEAkrIgDAPD8olcunoNu3tL1HGpzwTPW1uHcOL4cWxsLkAFGKsEQ4zjCnUcsbdcYW+5wtVr1+Sat6UEb1kwmge4MdQxXjCiarr7MPuS84oF5LGfQicCBhLY/TQ5V70uTpztbIEhrGNik4gaCAEG6/hJjTseaEIaDKm8ZMF7rPD6FWOQ6sWNz+xwyxAJFmYXAQdJarhDToMrtZVqF8wRwKwtMBQmk+9iJLT5M2mkoWkuvwyfUFlRVTZAg5EEDwxgAGNA5ZXXFznKyktF69aQRVrPgqmqBSsAEZSAbLQVeCuZk0strmaIrVWvedNr02BZnTQTHaksRJFAqjp6Mqq4OsEC9gioI5gKQAXuGKg1cGej1Dmrid4iipjcRgvDJYssNQEYgYxKLzzCjdVkgVajY9UyIwASfGIuGCifUiGf4wpTU8ETcF2VXUlt4CKRBvE6uxFARmGWo04DwRAOj6YQnD/8gX32vgUH5ogxzVJNVifPilzPqPyN4BPLjFEgAWiVGaPqkgiehY9PHKE6dXZ1KIwGhQas/coyvsFpjmHXvRafs3AaWma9wZ6qrosASuVBzx5Aul6QgNRBFzaVWWUTm4/OOUaWGAaLnRanWAMonbFG3TFkvRC417aIQFyc5sVxZZkBtXXt2zNnmURQuQNvO8kpDzqyPsO55b9RWu9N1bnrWpd2ZIGP1dg9wVMAtkx/1WUOdCwGW2X42tTXP9CsZsakzLAMbj6zLntjEdduZtnEvg/BJZmvYW1OlFvSmL0lJpU1kZkzLqGLfKPQuTYcfJg31k3+vl4+9A8pfwgsynqdptXSZ8NyxJMl+jKd1dPZBG00+dECOfYrPjtE2NjYwPHjx3Hb6dM4eeI4Njc3YQGBQsPcgJF8yViNK5x/+zzeeOMNXLhwAavVqkXFZOTs/c4Whu9r5iCOYGGp7DyVdFXgMbcZzRCn966HpIRXo31dDaQgnXh/ur6nJEOpqeOU4uxAplIQutJ0tDVZrwut92s87+Mz/RH6AQi+D3rVP5TqQnUDWmer6zjAs2wWC2Ji1ef6PVMPAZ7lJPZfjDqOgq9GcpgOjX4iQyf02ZimOq+7imdXGGwObN2ZgrpjxjgaNQnqQRAW4M2BXrDsrRBrLFYcyLClvd3lEuM4amZGaW9raxOPPvoYDh85gmEoPsfV1vqVPYPSzu4unnv+eVy6dDmyWgIT0wNgSR0j+NTnP8nyQFXMma2irRR9l2HimjSrCjt/gtLagIOqM+00Kwz2GYXr/0xjDjDBo+5NHTJFplHuqKmXjzC65IDPR5+qu83B9JvipJN1rgGtriK+IbmsKFR/M8YZWd0KqRBdgZVsm2H/tZUsjb7ONBuCAqZQOgoPnPnI02gY7d9GXrDsKQDYui9kVQOI04PhMWeRsd/j3Q5mTm0izXm2rXVrmBiLZHB+8cWXABDuveeekNNWk8UQef/994MBnOsDlTJuHYbg70ZIJvy2sjSPvsXN5ctX8Pd//39x//334/TtpzEMZuIMPLj6Mh5ITWcuyZSaRLPuFUOPcpqPwO0sESU0tLxj+7qSeAFNDdJ9enyfq2VtN+13AwzaSpByi1PbR5uq83pOQ3kGWwHRzCN3tlK/UpXg6awyjWW5NBkbz3xO/XZs5nZQ6zK/3rXcC5MGf94OpQeZmTNv9kB1H9LhkUxpDoXuaTvV0sE7h6BWos51PdOKV2js4U0t+3e2kXV5HwsR4dChQ7j33nvxyU9+Evfddx8OHz58U/s8Zsbe3h5+8IMf4IknnsCLL76I3d3d9wHqdVmXj245fvw4vva1r2Fra+uGdVerFf7qr/4Kb7zxxvsA2bqsy0e7jOOI73znOyAi/PzP//y+gUpf+tKXwMz467/+6/cVvldffRX/8T/+R3zpS3L9283IgHVZl3X58ZabDlKibhML2F7TNrrtpjuML/D32qU0JytL35ka0sBuQMn708m+3w0r7Wax7W/GuNH/bFe5kWYYSME9kllAA4O4espxZrnWzTMC5C167Etjs8/ojHs25NYIZYB4sMBkIyIBHga8VDe8qSHCnCAgb7KY8ZMoAqSa3XtnoKJkQMwbWSJ1qLYnj9140xkwzaecd91iJI8rXcxekU/QRavxxAzUBERmHLBmL4mgnFLMCaRBKNkQ4ONgMI+KI0p4zinJzPqhQSqGJzYUiSG6MvTOrRUWiwUse8pQitAOCgoGN85QIWwMmyhFgpQKGOOyYqACooJFWWDY2sDu7p52L/fCDzRguVqiMIEGwshigB+XK88iU7mKw8Fsk1xBkAADOxnNkGAgwIJpqjsp3CCl43fHsjuP1LTGI4gKylAwFHEoFBKj+1AIgwbpMDOuXbuGcRzlRDigV5wAhxabOHX8OA4sFliAgLGK0bwy6nKJ5WqJVR2xs7uHCxevYHd3pYFFFshkAXxwRjO5ZAYhkUetEyoH/hmd5ZPURTOjFCp+DYRRo4d/pQYlCIWFdsguSxL/twVXhIwwvgqadD7Qz6M5P9Ry54EZHQ2z8j5XBIyJbxsjtsoEm4PG7pbEbBgyoX0r3NmwmByaFija871lgqCidE8BY666b2aB9NmCHEM+5CsNZc6N1o1UDceWaSt16HwsMqSTCwAsiKVqBh3TdETyzIJXQQCxXHhXhdBSIIzJ8QiGy3PtxkK3ShZAHTClqCOQlXY1OLZqQFQ4izq8ux2Y9HS2hqhV6c0d5D7mNNMMoDvRbXAScXou+Km1hk4xDCk8DHIYm6l1DPfT3GU5c6edf/S5Y8VczuTo0CnYvcY02gn810SDFCNmwdhU+7R4rmMELYquCf0xJDYxWAUmcs3iQYesY/FxJUdHytTAyYvaZ0AJuRJrHOZoy9YCNh2eOY1M/VO0YJPCsY5wvBr+jScovdvQYKapLD8yzDWNRWVcTyvu5IhxGly+yCJ0tMyOU7X5pzVGa5AHbL2SHzQ/N+1a276Wa+RknhOl8pLa5mYU6W/ItCTV0yfWoDHy+ZhzXgRnUczjR7EkZ5yXRDemC10eTyr2M6J6a46j51CUmkgrINjK1IMvZ3tUnb8YcPjQIdx99z04cfIEDhw4ACfGDEXiH2lMAkV2d3fx6o9+hDfffAPb2zuYTDjv92VG3rr+TLU6mZ1HK/JCvrsU3M/D1xRKci64ue13Al7UMLr2F/KX9qXInphowmVdB2kGvWe9Doz9WYbSfKns5qxD81qwpcweCyEDprj00XI7bstkwNXm0nQ4xVsswbgWpEScdAbJ+pxKwWo1Bty+HtQsk76PBeoY+tHkiclSa9ey3dp4Q3UYMnuEZl2SmSHWj0QiN10fsjjoLUDJ6i2XS98HCBYKDmxt4Wc+/Wncefo2bBRZk1GNQXCtqKPsc5arEc888yxeeukVn0M7cDQzI3k7lJZFIas4BuZjsv17HmOjL21tD066NOGE2zAYVz0MMHVWF5+L2Me05J7hyHyaAjfsj8FuewfjHWfgaEMYp5vpRsS2FM+zlYJJXUe7yuWEO2upxEdbB3QialbU2DMHXSgnVj+pUereogxXzNeEWtoO4rcwgrRai0w1qF6ztVovImxO076I89/Unc2hrWVDEmkbaV7JvicenCsmaWqteOGFFwBm3HPvPZ6VjQBf9pVS8LF778XlS5dw8dJl5KueG0ATVVCCz+FoVWOit46WfXzA3nKJZ3/wA1y8eBGf+MRDGBbzZs5OHc+uHPYrujwOlvI2uJMPHY33+1zE/HCV/aNfAUeudeLfIDB5wmiWNnOq1bBrAPcQ+O8+gcavqVFne1t/0gR30d5Urk8q7qtnMROgpNCw6f1A+pRWp+v7BoxGJamsnB2FPmloZF5n7/+8ByB4r323E1zdazxpnjpQ55DaY2GqhwOiG8C+Lh9o2dzcxKlTp/BzP/dzuO+++3Ds2DEAmNrMZgqzXNP5t3/7t3jyySfxzjvvfHT3heuyLu9jOXbsGL7xjW/gnhSMvV9hZvzZn/0Zvvvd775P0K3Lunz0yziO+NM//VMA2DdQaWNjA7/4i7+Ic+fOSXbW91F/Xbt2DX/4h3+Il19+Gf/yX/5LOWB4E3p3XdZlXX485eaDlPJWjc2Yot8RznvPFmTb6szPVM16Yi3pJtqyaXBsQi0YoqDZpck+Ok6KOnSM1sjiNozO8ELtWDyQp3BTHyRBCpYBIQyumimA9TonN6Ck3SzF82xkYGs/2VccE8lIZLg1J/rEEE6BHzMcSD3yzXC7RS16WJWb8VuQUByjDPyEQTrhL82Vde2ZZdI8ZKumB2pwOu/vAQLiQI+sNhT0YYY7rTt68BFAJbIcZaOF41c38a3BKeYPClnRFpPND5UtOxM5XKT4GaiA07V3ZuCXE4ZAGQQOU7QVHOnNbN50HKWQXFdAmoFnBGgYMCwGDe5ZoJSCcbXC5uYGKkc2qXE5Aprpoo6jZ0Uxg4MYnas6ziXooRIwMGG1UryVAh71Ip4yQK5KKChUFb+sRlOoQVZ4wa4BygEzNBAWi0EdC4NcR1cKFouiaSoIq1UEFgmZFnAFNjcXOH70CI4d3MTmYiG5esYq2aQqA7WKY6EyLl66iu2dJVZjBGZIe0ZbGkBSNSAl4cTpHZx4iRq+MxpqeIAs+44FMEorhYBVle920r01BIUsqxTBOtBrAe2qP4Ejnc5OpXW8B+/YFXKUnyXDJpg14ENx5KydeXB0Z4AYKCPnlvNkHlMyUGY4Q/7FSf+QGdKu8ZjLZcdjXDUV7bEbbSP4xcZa0rxYRp9s1DZnXsxHKebM7AycDZ6FrnN2HcvMI4BY5ijrR3BbCjRDHAOVJFOZzgf5nE8NkwGHOQEp8W/MEztdpSx6SLoktVcAzYAlcs6cY1SsHe3ArrOgTAsGg8nI3ogKp09q5qTGnOv8ZI6bMxbrQGDyNeOox5PAllxHk/lNgjs7zyifRG861vcz3cT8WGAyJnTXwUam/+X1otFpnh3MZQV8shy3rEGcNu+KW0KmlVaXNX5PxQmIEl7SuJU3wsGZdHsTlGX0RO2cZlmoOl+C+EozZ7Am7XPi67wmysFUpLhjX7MoHXhfPHmvldFGi5rrz8bqyKH2fc9mFbTQr7c4z2uGL1VOS8fUHtkyJRwJyPCrDkEqPgSFyx3cDL9nNr3BRkeABydY+0KvSUJ38/phL/tIBik9/J55i9NfdNjNcsFfjJ6awKf8PEHTILIL6ulWk3NjICIcOHAAd955J2655SQOHz6MMsQ1oDaZqqJj6Z56Xa1GvP322/jhD3+Ind2dhq72lafefw9hwOUVeOa5rfMQPB9rJv0nLzhytq5GBu8DUz8t+8A5U8G/9flXvO1cl4NfQg+oDOl1hjEtxZrHm7YbIS4AAQAASURBVJkDZ24MfCNeCzozmeFyzPdAFHRnMi+tvIhDVTPkc6FECUluW2B61tVEg2Z0lf5qZSwWklXQaa9WnVNZN7ahooa76Zowr32bAAOixnkewbec2DjRV8ISEQFFMlwS0rtELu8AjuzFSe8AwH333YfTp05ha7HwNsARNG46sTLj9TfexMuvnJP9AgcujTY8CLeZY0IMDr7WsDGw05WOSOmLTBcn3IaOi6lsSC29k4uokKyvgzenUrKBfCLdPEDCKyU558zL3RtAG1QNMDoczfU/EQbTsdn7DKDoIagMU1tN50H5nhN9tCX4Ya4vG1WoZ+NLnZCkQnyu5mRd86HFI/Uw+DrI0JD70gBwo0njO6LJyObG2fKuwWI0beu+qL//ONJ6w+prxk+uFS+8+ALAFffee2/ag8e7m5ub+PRnPoMXX3wRZ8+edT6yf332OdEUUkin81CLuwnIPRlpe6+//hp2drbx4IMP4qg69tsXJi+ilb4ZI22vsUbM9jlKmbsbTGLyckeqDlGSHUYXYa/reMfE1cyck8syg1Xb5Tz6/FbX+pxeM53n4M3tsfYvcYgimguiz7RxnTa4w0Fe08yJF1znu65hlOlTm/sB0k1aCIxZOCcHT2erpo50TzRZ583d67aPqJuj6P4V+4VTI+2shE6f7WRd3pdy4sQJfPazn8UDDzyA06dPy6HO/XThTNnb28Ozzz6Lb33rW7h06dJ7COm6rMtPViEi/NIv/dJNBSgBwEsvvYS//du//UjYXtZlXT5M5WYClQ4fPox/9+/+Hb7zne+8r1e/Wfn+97+Pixcv4qtf/Sruuuuud6WH12Vd1uUfX95FkFL+Qt0zs0aKExnM0/2gGqiy4RLZAEjm5DNzhQaLqMEnZFLe+LVPciBSAJCu10l1GyFDYTwm/9wWtvY5HMZmJIvgKvhGUz5SA64ZZPJWMmwd80Jv+rgdf7M/t7YbI0dYQN0pZvjX38WGQalZ3aR21+EAJWVgaI2WYpgWnFhGIvbgM3iGHw9ucVtdcQOy/JRbFSOtG5hjov030jabodYKokHnLAJWKuCGboPDHappHqY2LzXuFKQ+jR7ktzIUxwlBHbuF5Co8u26qmvNcnKxlWGA17oGGgsViEzRowFQBKo1YjUssFhsASRaWoQzY3d0VWEvB3moX4iwnPR0cV2atqgVxCZy1xp3jhCJXO+hcyn3k4qAoRBhrFQO/XcWFlK0qGzZYApqGhQY1MUGyUkkWq1rlSjmushCRjCNx/Q5KwcHDB3H4yEEsNgqoMFAk2KOCsaojVrVixYyLl6/i0pWr2NlbYbUawcQY6wgLGLQyjqPOg9JVMtOaYMjBEdk5bwb/uJJLM06Zkc95wd6bBlk4DTHDsnpFe3BYI+MRt79n2vRXUvCmtxNE2pya9mCIloob26d94arO0uCt3nCZ+xd0REOsBjrzPVQPWEi8rm1yHZM8GVVG5EFos8no2OO1Pe0rOIygCOHFkVmzl9QUoCT4rZVQyhBy0rHWzqdSSchehvCyBvtkg3yoGgn29OxLyotA0H4bsBSfw9mmY6sEC8JsaUOzISVjc19clqI3Q+pMUHJ+pHfm2snBVm7WTlUteKUyUFAAHgHKMjTz11Q/9wFmeURzcnjCA6ZeKeusZsCpbm67M8p3Dvb9NkDO1xY8poQvya7EsYTKGJIzztc5gDueon2RN1I9LVqoNQ+bTA9catCcsXmeG4I7Vs0NHsF3gb9CxXVrxlWPXxuDBOVEgFKAv78hOwcaBf65rZufmzyxIL2cZTHzPiSgLE2gwiX6ijqYcnBqDtTs4Wye2dseOB2iqeWL+M3gNFnky2IVbiGSbZKq03hPc8WAQBLl5lxUPAVX5nXt/vT7YSr7U43hONVy2TC/Rt7/eWovve5XKvaVbtgiz9YgIpw4cQK33XYbTp06ha2tzaaK0xcrLfp4NNgawO7uLi5euoCzZ8/h8qXL8zIZMw6sGOEsxPsNaBqUSOlP31aeh0SUDa21xzFi7dLSpj+bgBv9T9aZMNmb9YqPpBmeB8v4GicFcyL4o1FFvpfbB4uc/rjg9S/N2Jp3klPdR8MtvI1wMRmo+6umOQaIbC81pgBF3XNDZNKo17qWYYg2iuCwcpX1jwoRIsJq1H1BgWYk1Z1X2pMJWCHTdFfmawgC+f4OgK+TTGbHdbcl5KOVpPZY127F94ix9rDgdIODfX8jY2dmHD9xHHfffRc2NjdQBllfWv8SmFQ1IyrjytVrePbZZ7G9s4taDT+dLmzmy/oHGh7Ma5j83YmcIouq6oLuDetIxqH0mem5L1NHvSEyYJqTb77EoGaYbV3nm9Q2G09G3cDDTF+x2pzAP1fX6LcJ9sp1m/WScVPNFVKVtj+HmeLN2WL4cSC57bpvz5Sy6/MITqH8PoW4mNN5Jh/JV2umI0IYGe2E6OW2ga5N59f0PYbVznx8SzyXYWWeIMFwUGvFCy++CIBwz733uF0ol2EYcP/99wPMOHvu3BShXZuGqaCzlL0qBpEmckZoJ7l74eJF/MOTT+LMmTM4fvx4kpstbZpYlyuOO6rtMjvOxcX4XtnsYOjmJMHlQrUrhveQM9EDJVpAtqEl0AImSkQT1ae473glDzOD2NC1tUNNpSwyQsikGaW8Ppjv//qlw1nTDE8npAce+Vn6OrsOSVzRfO3GPU/K+t4+Y2sQ3HWLJO/nhEUjGbNwaCtnPppBzHUKpb9dP+vyvpRSCj7+8Y/j0UcfxZkzZ3D06NGbftf0wqVLl/DKK6/gu9/9Ll599dWJfXFd1mVdrl/uvvtufOpTn9pfjqdy7do1fOc738H29vb7ANm6rMtPXsmBSl/4whfU/xi8RySHHr785S+DmfHd7373fbdzvvzyy/hv/+2/4etf/zruvffeCYzrsi7r8uMvNx2kNFvU+iMb1O7Ef87O46W0G2XWZ6mtvO0PNxuAZHAkd1hJHy4mzADhtqN+sxkBSL0ABBilDNF7cixwhRs6bYMuGU16A5xBzL2txuEUB9uNTsTl/uVatxZuNdL5OHXczCAa3NAhz6K9wBPc0SkojA2v2D4I3o3+IFOZrF0Ezy4DROBOGCeS0a2QBinEGHrnCDW0YgEe1lmM0QMizEhg75nNwOD3uWoNgZ6FQKN1LcihzRAyvzVnM/6p1SfGYQ5Q7a8qLbHNU2T+qlwxACBaoI4rlDJgMQwgAlbLJTAMftXBYlFABIzjEgzg2u4KtY4gaOBD0WCj1RIEqV9HDRyCXS9FqFUyPQF6hZQFyJSwLLkzQp29IwiDGrbEyVBRSE4mC+50jENBNt6XEnRVWTI9jStxfgw6TiK52u7gVsHRI1tYbBZwISzrClwZxBXjyBgZWDHj6vYu3n7nInb29rCqK8FjJgZ1LlSuiUeLmc+0mrTbn4CdBI9Qgd4bqLRs82vTrjLHAweChgWPBaTXyrU+j3njnIwXgAbU+C8c18RFHBahuXKucZKTW1otQ8q0X22YAOLSOOqMPhVjyBnTclCX/DrA3SgOQ7zb9GbOF6tiMiIJGALiOlGy/trg0txenMgOmWByS7x4Ggxnc5PmDBD6zUFEEsCR5U1xGF1Wa/uMLvOWpdNRIJgrCopcgWD9kwZP5cAGv60zYd+cUxSyKoKyTO90WS9SMQdcBIKqJCQTk2a+ZJdfbWkNmVP6knkJW3tkOQi9mOYCJiMxM5Z9DKD6vvVdZ521MZe9Uw/ecv8k4Awjvk0Raba0/c242blK1LYfgWFCd6Oeii+WNQ0IB20JRUUMDEh6JVAAFb0CmwJqzuAp1hKfOh+2v+drIJueTIdiOt89rbsqRrxj7/Uyoi/GOzngzd9RmRQZcwwBrrUbGIw35LvKzZKzBhigFpSUaNrWaPtsLjP0pDqkFONFH70mRFQq6IYs2TdJYWV4hAwhZc4xOGQMLgXc2RnyVVeUjZz2fqEZ56jCAuYDkP2o+YMv14MsB6K2y0Sj/f10W/+s+71V6YlUDMc3ygzQysfFYoGjR4/i3nvvxcmTJycnwJxPbPrb5Qpqrbh46RJePXcOly5dxt7ebjN/9slx0C1efBg3bSgJGm7fyRkNqe3bg/qynqdW1jSbhVb6Rju6jvLxzEmx0CGCqK4OmSzwBVHo8NSXbQCjx/Q3s0faU0SgdzsOf4kSwXgbWQbmcWXCDdjbftvgDprUa2VerkWFXHSDU9Y2/Wzr9DpqoLa+KZlVdV8AYDVW1501XytaJeCWVO6VQhqIq2s5Jg/U9TVNyxoxFJsuQxLg9T0ww9YTavRrXPQp46gHdOcAJeWrjcWAhz/xIA4fPgC7WdgOChAkkLhCstbuLld4/ocv4K2339bgqsRzJqP7566LYkIaMWIE4GuhtuQQn+aTvxffZyg6i6pMCqongR75sxLBdE9HypO6HJ3kPbFxdgpBTL/1rfQ4oOZTQw+dLSBabwc75QwLFpanlFAW/JRhDgnvv+d562RcXosYb3MXTO7jucFa2gVSIxtVnlHW/7pmSPAxWVZZH3XDr95bM5mJtqYrowbGDHkccMjVWnnrs6L8+MKLL+Li5Ut4+BOfwObmZtCytlRKwf0PPAAQ4ezZs5pVzOY6YJsRIQlb9ut0re+rKc7zEi3t7Gzj8ccfxy233CIwbm117/faqwu846gROJ5fM5D278tTvLsSzbc7An+u64lsF+1pfqqeKCGX2zpw7M0DcpMDsL3KpFBu2XTjzbfbNtXOfMgQE9pWcQb5aQ5nAO+eNZL9JuCdlaJzI5j9xsarfZNeL/FcKx30Ifk4+qM97bxMdYrXSQ/2G8lcOOq6/HjK1tYW7rzzTvz8z/88HnjggXedNWm1WuGVV17B3/zN3+Ds2bO4cuXKxD60LuuyLjcuBw4cwFe+8hW5ov0GpdaK733ve3jppZfeB8jWZV1+cosFKp09exa/+qu/Ohugu1gs8Cu/8isgog8ko9KFCxfwn/7Tf8KDDz6IX/3VX/WrV9dlXdblvSk3HaQ0JwrMRJM3OQzNZAEGwQwpaWPVGGhj8yQOxOp1zOHMDMkABDWg8P6GIXPw+La4MS5T40SYBisR7NStO84gIHn4iVtSuDHwufOb4v3GcJ8sME2AEoXhr8GrGYuh8KuzTYyu1L8cY3BDmrZKiCCB7Bi2rArai7nxAre26WU3gjCT30hCoHQynXPXqJUbWy0pnGRBGNlRzwy5wqm44dnmcbpTVroRBDvOWCfGjNJ2CpfViMeeDWcadOHGpOzwBMQwrhNcq137R+5cMqtlzBMBPKIyY1AHJev8FxrAlVABVGKgaJDEOGIohMViAR4Zu3s72Bg2MQwFhQibiw2sliNWqyVWY8XuaglCwWIxYLncVjYqWK1WWAwDBipYLpdYlIKRR3AdwVzBXPViu0FMamyZhuDXqLFm1JHgOgkYAoCxcuSd4EwLYQysYwUx5IQ2GMvVyiOMx7HK6WxmWBaYUgBeMbY2Fzh59DAOb21gIMk4xQDqOAJ1BFfCamTs7O7h7fMXcG1nB6s6omrGmrFKIJNnX6tmLKxqNrQsOzK2AtYAj4KVX6MV/OYOdiNk5eFslGeO/wCNMckGQ6UG54EUlGls2wTHINnTVLaZA51J5k5YkMDFYExOvCDFxOdw3rFr98yIHwa3nIlAHVf5PXaqhtm4+gATNjjNSKswMdrgmjDYylWJ5PKHRfKoE8k6ziZUCYhpM8BMTpE3ZXSRZEFYTKFtSknmUgp5lMcstdlpR6UdZDYJK3WSkeGVAdAQuivBSC6LhNfYv2tgWtXMLyrPxPGAZrxzhSHtQZ2RERxi0xDf7Wk2peegEpvbwAWBOQJK4x3HXAtbogsPHuH+XW4/K2G12TyUkrSqBOawhHvNGOt8fErPdgWOnRq0cGFnZ0lBJTztRB1mW7uUiVk1htq95+zTIgPqNCiBzQEs/VSqvj4oZHxrPJUdgKaLWHWHoVYDe9pekMzL6Rn7qEV81W69ETIsvpX8S/SZhFzwgiu/5ByYzkcGqwkAtTpM8Ax9iWfmyuQKkVA7rp9j7WgOhUxrgMmxgGfapPGMOb1NFJC2rwTUmPdNzkR7RizGQyEDXY5OCKkN9sitG74dB7a2NRwEOibvf7RLmgAb5YT9k7JqvuWKgSHKXzlouu+2Da1RfZpbJXEmHNg6gFOnbsOtt96KAwcOYBiGG4xFmrNsM8yEK1eu4MWXXsA771yQNc+MpGngnmkaaGmK25+iapIB01HRzMtdp8YHKmtlDNz+nEoOCxRuaNdHKZ1uNOB6KOuWrnFfdwK9I9rRHHfRXJcvoi92GLmZdwoQfTPDjsGpRjIguMFu9NX17xPY1nO5YvLcdbMPPPY8yhsMCV4t0HU4A+NyhaEMumqRq6VrFf00Mmv2VMIwFIzjyuGQQw56JelYNTiiwk45VHcKJ73v60Z23Wjgimg2fKZViK4DfE9ocyBpGR0xXEfvq1b2OXOaYWAYCh595BHcfvo2bAxDc00w1+pwVQZWq4qXXn4Fzz3/PEbW4w4EzSwL+PWyDh876dsUxw5e9hP7ZSro13CNfMnrM472JkShv/PkOfnzbrXVfIxgbnb6bOQSQv/0NJ2qoGXLFJjWlzzkLGOdbnK71nDe1/SNdXI+OeSFF1TyN0E8bRM+doo2m5bzWJglG46/bMFPmVH7VlR6TCfD9Xa8pGs0VpsObN/ZB3OkmeEWrS7ZkiyOsYhcJMXvRE4Hsza46ilpTnI6+QR25G+teOvNt1DHEZ/81KcwDG5RcjlbqEhGJUCvfptp2yFS2a7ZdjlX2k8fNo3FfJpcGWvFW2+9ib3dXdx333245dZbJ81Y803C4E6PhG0MLn+RbJLeTgoeqg5FO9IpzG0N0uehtUkPaCZyto2Kv5jCbP1xq405wdY8z/UmdVpuzMFZMT9Rw2itl003prLcPsXftGe1YbclCalZ5ZzqtUKq6XW6LrK1Chy//tsNaHH/n+WXfcKU59/KUzNpq+ef9CvN/95SBOYQ6vWui851+UcVIsLRo0dx/PhxnDlzBg899BBOnjyJjY2Nd9UOM+P111/Hn/7pn+KHP/whVqvVewTxuqzLT37Z2trC1772NXzsYx+7YZAgM+PJJ5/EX/zFX7xP0K3Luvxkl3Ec8fTTT2O5XOLf/Jt/M6sPF4vFB5pRabVa4ZlnnsHly5fxy7/8y3jooYfeVUDxuqzLutx8uflMSupYUiukGFQ9G0/N9h/d4BdUzicya+z7zJCSjYlmDGR42mU3aJmxjYHekB22ozAYSUPq4GaAihlNxDAkhucw5MROTII2bJhN1oFsCEJ+LpZYRtU6BEYRo5sZaaCOeDeACu7EeJGyJDWb06JmCTNQyLslX7ekOMwnyDhhAo1jNAwZxRy0rFcUFTM6JoN9ciaSOfcLoajj3gwxbp5R4xWZEc46S8EKhXQeq6GONGt7FaOOGxONJtTYEz3Kid7OiBizIrg0vEINhxKckgyKCd8MBssNZCgk01l5JTVpgAUomHWAyJzg0MwbMvYBeoKZhnRVmuCjkNAg2VVTtYI0Y9JYVyAmbC4W2FgM0kdZYHdvhTpWjJqJqIAwLIpeHTWg8giMK2xtbIJJrhQbhgXAFeNKaH8gAo8VzKMHqzALbGMddVisNCHPS9EMSHUUWiIC8QDL0DMsTA4QgKJBYRV1ZDCNKEXGz+Mojg0N/BpoAwvltUUZcOLoMRw9dBhbtMACBVwZlQlUhfZGrliOK7xz6QouXd3GOFanzQoJNCionsnGssUUCzTszDJG2WYU96d6/RxGbpx54jBigAX3YzaWgiUhivJRazS3Hp0JIwhFs8GVYiTOniXJ+gUBI4/wYAODnC1oqDNtkdG0OP0lOZbioAgei9O8zJW8WJ1vJbCzqEHUHEwMpiJBmiozSJ10IX8VNgsyYUOxZfOpjkvmFPRDxtsVJpqryXgyGCR40TBjgQlEhJIN/z5fxQ29DJaAQCJY0Jqf2DfHZFpTmqy3DGECp8A6Qhx2cr1UxQKqvyrAVF02EhefF7tOhXV+wRXDIIGSrGOpPAI8wqaFdMSV2WkohWKCSnLQKUIaR6vSp8WXhFoUvIuzUOVhcSARwR72DgEUWbaczlTWupOWCCT3X2qmtUyTQhkeUEHGGwo/+6AVBut9JvhUM+UU1SuWoYop6X4KTZk8C84rEvxXVK8BdiWri3Wdf33T/4IsKJYCN/5b4nUTK96G8aznifTQSRs2ccwfgz0ghkk+h9uzJn0as2EuhWiDIjOeRRwS4MkeM3zMumaoLeyuz1lpFJDslwoHZdxMHQfyasDaPs98XBsaIJUZPi8J23OZmewqxJhvhbmTjqmV9Kw0vxadGVYYbUoZ5HxstCRjKEm827rC9A352qU0GUDa4PgWbyxrOpDiO9rIOJT15HXCLuyHRP/7V/4QFFt3N3NjvJTXfEgywQRbO6fSSs8jIVXSV5XHtC9u+laNRo8fO4Z77r0Xx44ew9bWVpJ3lEVZPLNVSKLfWisuXryE8+fP4/XXX8Pe3l5T30VTClwL/zrFaJzmrPuOR3Lwz6x0bQsldDR7kERK9nXOmdUGd9l7c3OV9LD+ZLLH3idCA6XJuH5spFdtT+SPvUUJq9y+nh2ddoVcfG+G7hjJOJqOv+lZH8ScmLzKB1diXEl+MMDk4bI+5831shTBlBbkANY9GkmgMzEw6Dpc3ilY1apXL8v6xvblEmBDkKt/WfYQUB2h+z9RJwW+subqmV1kDUwaBIyEQNlne1CJXZNOBLC1JXuujMkmux7Ds8qi0zFEukIsBWceOYN77rkHWxsbWFDRnTPDsh/ZHFSuePudd/Dss8/JPgqmNaz3JDeN1WyOnPXYCYVR0t47zXmR3/O1X0j79Gadgmg+cyqc3xPvkLEVKa1oP16Ng6e0KcFDjKcvvo5ITxwoREBEyIIUABOjacbp8E6Eh/aUgnIYBq/w8xycpi+FvOoERkB1apIt3qbbH2JsWXT3I24zTeZxmgxoBmSSPQ09hS41sjKvWYzHawTCG24p5DSHEEu/IeZc6cAIQHCQ8RNyK+9LTQXGoJFJPP3QfnN+adZyUd65cBHnzp3DvffeE7YjpWOmHKhEGqhUE21GgGYMq1vvOGnljoNuJmTuKsh4j3Dp0mU8+dTTuO++j+OuO++UQM59ZLvDlte0zbqilfxxQDLwA0bYM/dTIP2YbD5z+3Nt+B4brhOC5VIwU/MaN3PtIipeb9vP4+4VXdNI6FvbT08GnNn/Oqho+kQEH84GRjsMiZAnnabxNPafmToZGd5u6ou7OWnaafsP+div0K5HCPO/5UNivrzL4i2tg7ppaVomtD/GFZXczPfcezczZ+ty43LvvffiC1/4Au655x4cOXJEdNs+uN+vWOak5557Do8//jiuXLnyHkG7Luvy01EWiwW+9rWv4bHHHrspfnzzzTfxne98Zx0YuC7r8mMuL7zwAr773e/iF37hFyaHgYEPPqMSALz66qv45je/iS9+8Yv4p//0n0oW2XVZl3X5sZZ3d92byQE96RgnieRxVuxuNALkdGSuZ+9yeic5Z72vtAHLBig/eUl5O0Zq+LKsBcX7sXfdsKBX5rBZb/Qvg3XPr6anapk8bH/L0T+bY1gaiuwH8IxEMiwLCrBdYZ/NSa9woTDNSyYVavDD0EwgHqxAGliSjfSRP4LIcKqbWsdZvl5P51EDqszQZZkg7Hcfy1gBMxqbCYXNlKABYendUsgzHPnMG7q91eo74HDIJYOhP2sDoji1YgZ11jnLhsXYXicl5sbisJYElmPcbuBKdO3BEGZtSSiKO0qpo00dc60ShFAGCYajgjIUP4m/GldY0ALLpZxsXunVbsOGsOk4LrWzAvCIYSFBVOMYGVgqS/acyuyOg2Gw/kivKNST1aMYDjEARANARa6W06v5SB0QYMFxMT5UvICE11arUZwJZQN2snhcLYXW9f1CRQ2VhGNHj+DokcMYStHgKQ2US1dnjbXi8pUruHjpil9LMeqpaLvWKorRrtEHOz1Rog85pJ2N2UpfSX4V0qxebE5vuKwKyw6ruLGr7sLwxYBk2Unv2pUbQX7s8kZaDSKMZw6UzEON7xaso1QX7Rldp7EZDdscggDUuHKSzYrK4SD00bj8MANZyO5sHPMx9XwwWTeGHDBjqXOHj526d0Mu2ZwyR6BAbpfJ6F9P7xbjfXKh08txlawAUhY4pXK74lOCAhmlM5JKnIfqCJPXMgIJYGTWm+P0txzkEHeSJh3oVWHyx+aw1qrX1GXYbSzyn5/YVRllejeChCxYVr/DMg8xhmJjqMba7mD3zAjIU5onwBxhFoQLeHCpOTNdtxfH7XS9gGQDDr1q9WXZEbQYH8Kpz1278JEmXQKBtXeuW8YjhgQVueNI61iQk/FIwB5jgOss6bOCNSAJHudNoElWL4ND5KeOyHU9u6wxknXezSXD2+CA3MEWbBU6P1u9s2xxrdmtT0yXtSebFTcUjnOrS6kxaz8HD8wGGdg7UDoGTec14QKOjwjeiqcq3zqabdvqgh2orZuD2FzeN3JkOo7ZzE15PUOAZydsZDo1SBNZliBmGIPm3uIPd88+jIXbLwSa91E7AWEy/1aMH6cyar7QddtKn6ng8JEjuO3UKdx1953Y3NhC3k8kzd0Ba3JQ5u7atWt45513cP78eVy4cNFlbn7velM2CQJq9ESGV2q7v4nyu0EYkb0rc8R8AJODpEN2Gnf6nH8jeFyDOWaq+pKB+uec5EmWk/A1QDA9p5EBroQxlY8N/Iak9HLPq6YDW1z30j+vajIVxi/GrlN8+YIElkHPnIWxj1JZPIPAHIBisBfNgiTjkWyLYx0BWBYkBhXLqhoObslyKrp59HUjIAlpNXDI+yix3vPssxF8afsGAs3QeqC8DbyLcXrAU0x4ylZEsaYh4PbbT+Puu+7C1uaG7GUQdJO2naiVsb29gyeffApXrl7xfYQiKmBMfzJvNMEJHL/OrodSv04tExXHjb/bdD9b86mRtDxMtJSbSo1PlwRolKS9z82vkzFw/4GCn+RK61wnbBITIPaB1UFQ+m9kTA9VlgGTseVx8NwI9inBO8RJ93R6tVm/JFh4gqAA0ANNbZ+Ye1W8xx6npTRbRxt3ZFp2njOcsdEDJZpp6SVHI7mosbrKp+0+0faRnORK7EXkG8f4vF35/sILL4CZce+996YsviEfhlJw//33AVxx7ty56dqPDPJeenOu0CE8JiTLomiunc/VconnnnsO165exUMPPhSZELslVWbDeU3X8pU9y/rI9pMAZjIYzYwjfwcaGm+SoVkvdvgu63z9vafdNvibopeJvkxyWV50fW5vzm7vu/bs3TAW7Df2OV2d1i1OE43obd5uIdhP/lxHJvSiqxfa+/H7BI6eTmf09wzN3Gxp1wFhn5lkmOoQ5fPi/Bg992sLo5LpdF1nAtfluqWUgttvvx0PP/wwPve5z+Hw4cPvuo1aK95++2288MILePbZZ/HSSy+tAyTWZV1+TOVTn/oUzpw5s69tIJflcolvfetbePvtt98HyNZlXX66Sq0V3/nOd0BE+Pmf//l9A5U+yIxKALCzs4M/+ZM/wZtvvomvfvWr2NzcvCn5sS7rsi43V24+SMmcKrrFNYcceN6AOi2EWZM4x5N+fxl9qwGq30wloeSBTEj2TTWg+OlT78+Mruzfzbg5bVsNJhPHtp4Y8ivtOOwGjaPSSuk2fznwitzQQ2mXTCVdF6UGkdJdgZIDgCxwKm9U4wQi0ucYi+GNtb7bXTiMwZKJQ6HO6cTzSNLUNHa+xhCMoB3D5SAKyTI3uRMe7MZLC0ohM453hCLjQMyTGU05jIEMcuN6ZfZANru+IGjaZkiDWooZJfUk5KineIsYxKEORDPIWYBGdrRIwNAoWS1Is9tQwWIhqQyXKwlGWiwkOGcxDHLVQlLMu7t7GJRWarXrQQjL1bIxzGl8jY5T6kh2IvkugRjsASiGv8qQqxGqXLFkuLQMOkgGdHFyAFSKZlyS8RAkMGo1rlDriAEAKz4qj1iAcOjQQZw4dhjDQBpMImMaV3oVRR0x8ohr29s4/84l7OzsYTVWueqtVjAYdawSQIgwzmbDfgRX5O9CYzXNizFGc0KvyuV47sTojXFOz0ETxEZrUHrNvFDcGVI5jOj6psPXOuNah3k+WT5ryHTnkMgJE8122t3o29/onec1eNNrmczVMc8aJFXuuSOPW2OjSYd+7cgJD1lOkl6VOG8gC+NZCn9NbYyQaLsEmxnk7FqrNNfm+Je6bnoNo3ohD47wK2RoAPQqNL8ej4HCkKu9lIdIZQPXFCDKwnND0WBYYtRKblk2J6A7JRwn7HAH37e6z78TNDApO32C9vK1BNXoW9tzuRAeLG03X/OSZ4IjAJUqwEX/M7wK9Ui7JTl8w0Te03hWHH6indmzn7hBNcl1K5Tn3eVBtGNBNX3xpDUKXyGVEarTNLbT8ZR1W88TDm/S2QZvAYFqrJXytaj2cpZhPha24Kh0Qt4yDrncIJeFGl7nskLoTnHguk1pIp26N55sHTwRsthwHM8Ytn3MY4PP/E5f90Y2b4fDE6oZ7wbeGtmZ5mmuA4eGA7ecqgXNWf0ukA6xrmSly8kVbjPwzxWZNoWIAv9CYLHG9EcB1LSfNNLGOfdhLw50ZOXIKOuDv1qaa0e4/y9dl4bG2TalLBYbOHXqFE6dOoVbbrlFnZghV5OmhimBufm5cuUqzp07hzfffHPiTJgGU2YNfR2iamrPj3p2O0bGzzdfRJ5oT5lliRKEttZNMChjkOpqa0tejfoOyz7DNV5rPKJp7dC/qmoi1i3o1lHde9Q8bIFwODua9HezXLC5pNivoafjrL+axqZ02Mxq4oGGH1Iyusqy1huKONvHKrKjlILCrFkeVf9p45JtlQHIGt70yFhHZAwzuMWhZWD0q9ENj5zGLOOtCRc2haZFfCw6RtkLx77cg2KZMXJV/V28eYBxx+134NFHH8XBg1uT61RlHySBWJUZy+UKz//wBbzx5lux9lH5XzWLlB0uclJL82tsGVyq4Yquc9v6xg7s+juOH/gYEu3Z2sF/4qD/tExT3mPY+jxaSOIUXcmLFgpZay/5bDdjNLkWjfo49+GZtiSI5lRXoqmWn/dvU1rsQwSjBD9zgw9fuyFr1Wi0GW9auyHNa8gqg4JSvVSJUzB0ovHICZvWMLPSOOgwqkub6ZwKEgVORuX8m/ZtIc9ieTFZn+T1EDdTpM8pCNPwkBZMtod54cUXAQAfu9euTDGcKS6KZFRiAOfOng3dDxMShtO83s2ATEtet+4n85tnDJx79Ue4fOUqHnnkERw5fHiOZBHoiB+NPw0luWGr5XhGrDUBukGgEhr4w2Yp88tznTleE/BpXRpSh5p56/Ez5aokTSZ7wjSbPak28HEgyOhl3wXIdN3TBh3qWPZ7P09KnoR54JBHPv/7zZaunetU27fmzS352ubm1q++9qHIAms8lUHNQN3kivDma65LLgcOHMCZM2fw8MMP46GHHsJisZjdc1yv1Frx5ptv4rvf/S6eeuop7OzsvEfQrsu6/HSWn/mZn8G/+Bf/AovFjV2izIzvfe97eP75598HyNZlXX46yziO+NM//VMAuG6g0gedUYmZ8Xd/93d47bXX8Gu/9mu4/fbb33cY1mVdflLLTQcpmSPXDQG6Ccqnuebfu/kFuW1821MnutENWwdgQTPusByavtqAGWqaAotREm6Myqao6eYvn/jPvzdbTrYMBGXSBjcbZwmMycazbOB3G7JtMDmd9nMzV5zQ67EXYLHjp82KEPgJhzjATYpwjjo+35ElwU/V9nWZNYu5BQENHR7U4QuOwB8wPJOSGVwIYgi3KTeDNbXjy8UDk7LTTx3CckpYHe1+GhceqJQDJoJ+NN+OOwWqZ2eB4sHniwBi1kwnMuaqDnE/oceaOYMAKgVDkQClqhmQ3AlJJG1UDUYjya60XC59jsdxBQvsGEfry9LHp+A7aMAUE8ZxDCox0mHWE8t66r1WzTSUnNRFro9YUNHsQEAZBgCaAalWMFcMw+DGyFpHsDoVqnomiAhDIWxtDDh25CA2BsJikIFL9hsJ1AKPGLliZ28Pb56/gMvXtrEaK5arFcxZMo6jG0NZxyF91+TIiWCTdtHiD1VI2H+1oaNqDmwzOIfFLwqRBnrBxxhWXeoC6hBtJUN4djplA2vvnA1Cy89MnmXTF8en1E6t7irM4EOyMEnmnKDf1FYzpmlxZ6MzUMJFgiGMqEi8FlNhuAhZZ7ByqkNez4Wk8Y3NN8WpQgLSlSTJbtlcw5Rx0uK9akY9l+mVwYXTWEyuEiyKghGn/eXqRIOVAaope47hrZ1nyZRUJ7bEmEvLfpBwof1xGlfrSIipybQo6As+kUxFKcBVi8FEESnSwESk3EOAXYvGes0fSDI2tPPEDlfTFYUTI+PEA5vsxzRGD9Bxg6y91/KdC1ltw+Q+ck1GBKaRalu2m1vacRtGW40ZMiAHehn8llEJpu+ZMWimL0KeS9MpcIMzEbDSLHNzTuu25PWJBdhFzops6HcxmHRgmpColFo03dzMXlOHGzh7Z749yzj1NUU3prYOQ7JQmvNaVzQE2FWkcWUBIa4zTLqPAm8Er9LANXHWsGGy4x2D2dugoGFmVKjjP8muduw99UB5chqoI3Tg1ID5ktvMzz6kZcZZl5e1PW2/W8P+pLtMc11TzIxhKDh2/BhOnTqFkydu8ZPObQDcXIn5YgB1HHHp0iW88cYbePPNN33tFvBPZWisSwC/YrLnsWm3M3xog7V/+rVPzi5jSrGvZyXpKqR30q+xn5jSXZLAMO5p5OR1ynwgz/Qd09/NXi31mcfR15gPEMttWwbctsqcrJqs10xmXGf91JBDJ/un+iv30Sx/RFcR+X7LRaC+E0FhcsdwrUAdI2DOD19wBENnAPM+0bI75X1UEz9gesT3iClYLOnDkhaNkalYs5Jy1SveBA8OF9gHXwAcPnQIn/jEgzh0cAsDtZkJmXWvx4yKitU44o233sJzzz2PcRw9KKkZr4kjXzvpw2bfCZ9PtvUYUlCKUzl5g7HKaOV8+oOWP+QlAqElyxk+78scvfnkyW9hb2ibBFHz6ox26kRKD0Re53OgYX4EXb/T9cd+Uokn3zJ/931Rww+TQNKJHPKF13zHjcxE85nBzRXe1NRTrOQ9J7dNtaMOyamvC080dfIBND0kMkF4eyjN22zW3xzL6m4PO8UBt3+74rKxMl588SUQCPfee28zRvtYyoAH7n8ABODcuXOe5W1S2VinEXpZ6EzbvqlVj7Z96dIlPPHEE7j33ntx1113dTi29hI9swQLNSTQNW3PvJVmH9ZweryTZOesfszr4q5tVryQ7y10DIQU8JZ1n8l7BI10qIFJb12TyNQku4rDdFPYRszdtATFBd0bhU4xdf0u9mn4XbzYyepJnZuBZT9A+t9CT9yo9AFb1+t70tzcNNmc7tOb/5sI/GZn+qe9LBYL3HPPPThz5gzuv/9+nDp1atbBer3CzFgulzh79iz+4R/+AU8++eQ6OGld1uU9KLfeeiu+8pWv3PR1Ta+//jr+4i/+ollXrcu6rMuPv1igEpFkVJo/VLjAl770JQD4QAOVXn31Vfzn//yf8Qu/8Av47Gc/+651/rqsy7pMy00HKZnZuT1ZzinjRFuyMde+71v8p9o/EOOlWUKLOpF0I99nEQDEqQoCPGDFjIqVm2wSZkawwI5+x8Zq3SLtV2yknQMyGSgL9Jo5pM0cwWGUtsLwayn5m2CibKxTg4gbQ8gejY3TNpzF7UaYbQ4CkdqoHMG1U7TyG6shpejVVKzPyA3TWfBL1qAc2JT7nWZr8vEbCGpwdoOQGtjinWx5Ss7gbGCFZZeAzwm3FhSfo2ysy4qjCWZQHA/JEJadEIZnuXYleEGM9/ZbykBUFD7LIqLZhkqRE89iKAcWCzmlv7GxicViE7UyhkE3qXu7YK42SxpsRFgsBg0GEmOfUZxk/hncHLUoA+rKruWRjC/Qsa7M0aBwkDo7xInAkiWJ9QKpUkAKNyOyeeUgpzB8CS+VoaiDo2JAweZQcOLoERzcWKTrKBjLcYU6mlOhYsUjLl6+iktXr2GpGZQsyKR6+hqlJTP+JjrIzhwlnzSH1a9Cy6RbyqCBGEqHYECvnxP+FINOKQRDW3VSYyPvhl7dyeUG5aBLkZtKK5Ub/jL6bBz22SBKJov0iQY9mn1ZPuvVUM5bcLrM6zcPAGEkZ1Hfd8apnbTNcGU5u4+B1VBuV4Dp/JDLR6Nwjr+EpFfIZVnI0HECW+6L9X/mBAlZbMOaWu6yXKNGDhQHsZSC1ajyOOk4ogIqAypGz75DpUCyDAnO7Pq5CkLRQNtajb8lw5oFDMoc1gSX0RF5AJVlKmCT6QZzE3Thk5rmPOsuQtZrytKzGeGytTPMyUEzekmaz5HYXznRZzClXd1m+MuBQ7knHwNHf41DpfjZ0VbxppLM8yCS62yEdorkN2TlShUvFuxSFPCKcMw2/JPgE+dM69juSYwz/NYAs94ImNc0suSwoF4GUtY5tI2mR96fyzjRVzK+OMUdicNa+WLrBjhPqp52Hgp50mYQCh6kkj5nWczRz1yAkn1un+WT1+36xtql0skMd8Dtw/cmPNPYI4Qr9UPwDFRB9j6ANMcJ1o6XbFLa5+mdm8wUkJ1D7QLTQOL2OWea/7AWnQMPemPT7EmmBr78HXlyc124c830S6v3CUAZCm45eRL33HsPjh8/7ldGNc24AEt6JYFTK2NnZwdvv/023nrrbVy6dAlVr8iMNUVutc8oIPLL1iZkPOa0iaDlJHlnA9asjsmATOtpTcv+MxtbT5vKNLWPXqeeGNNcmt6+DrQJHuGHaTezbyWQcmChyLgc4NGQTreXsN/ZogomMu16PNTy9H5vetB8GmtTl9rPNm32rq/zcuuKU99/EAGocmXbILReSvFDE6RzMq5GeBAJEAG5JdYaGXrX+bpeKL4mTiJQYZ1mWnQp7TLYnP3NnhfRh9Gq4UHUo3KPdcqMA4cO4ZOffAzHjhzBxlAamh5VD9t6qTLj2rUdPPX0M9jZ29MrfAXZbA7+zJ0z8jQorAuiTbBn1RzBqYk/bJ2NJJvzuqxpM+F4Tv/NqI2MAwe9baCh/4at3P5BTTe5anAw5xEkYFPtbDtBqLkJL+t8pgczn25UOud91ik86dEWjx1e5HljGoplQNAmQnfb+t9x0y6+/BMBngFnKk5jbRXPLRub2Q2UYth4CM4ublEi27fn9Y+vQBJq0nrecBEDcMD6g3kZt7Y2ZkAO6WQ9kzquteKVV17BiZMncPToUYfT54A0o9IDD+DK1au48M47jrc0WVMYGsQm0Bx26LXa+7Yw+WF7exvPP/cctre38bGP3Tt1VnKCu3u9BcPseGmvkGRZ0RfY5gETtHVsmeXovuDD9j7sMsbeo1RH6TKljr2RrqX0j73XyyXeF8GY8th1dGoLa4zd1jPcjSnsH9fpvx/M/KT9mMqcHOupY+7x9YDJOGlnvJ+73p7RQNAtH6TCfv12z24wb+sSZbFY4MEHH8QXvvAFv+7y3RyuYJZDpxcuXMAzzzyDZ555BmfPnm2CwtdlXdblx1dOnDiBb3zjGzd9/eLe3h6+9a1vYXt7+z2GbF3WZV0A8Xv+5V/+Je6//37ccccdszp1Y2MDX/7yl/Haa6/hhRde+ACglHLhwgX88R//Mc6fP49f+qVfwqFDh97VGmBd1mVd2nLzQUpuRyS3Z/VOuO4NUNGgBU6BIbrdzKc8AbU7JFtXOLjUwKMGGCoSJNEwPiN953iPq2RN0gGI0aCC0F8blrJgUDL/+EY8HLryHX4FyX4n29tTpFK3GD4AMEf2GyAFSpkh1HCMPC6ajLPt3tpOBi0dS2sAicAVq8HJcEfeSAQFRTAXUDHqHBaDvg0S8BI4M+iYNWNHO4p4I9GEG26t7cZIJPCJYyNdLZDsZUJ7ALvjqSb8a2ARCKgs7nXNfDKAxNk69a5K8IoG76BK4IE5s8dxhWEYUEoYIS2IRXy3ckUZ6ijOlFJQecTGxgaoFIyj/D5ixDguwTxisCvqql0JtwEJ6LIMEeRXFIEBO8lYBrlmrJIZEtkZzDMrueG/BjkVM4pKEMhCr5DwTFAkWZTqOGJYSCBSVUcCs2Q6GgbJHMIVKAXYGAqOHz2CY4cOYChF6IYKQAU8Voy1glmuc7u2vYsLFy9jbzliRAWTjCeCJEIWiCTJgWppXi3Ig/cPlLSgnf8/e3/abclxnAejT2TtngfMBEA0CBLEDJomlyVxWFoiTYkWJVqiJZH+7h/y3vve/+FBki3LoijLGtaSRNOal0VoIAGCDRAzGhMxNHruPqfP2ZVxP2SMWbVPn5YEokHuBE7vvauyMiMjY8iMiIpUI3E7bjF6YQoqONXtabUPxkx2MydgeLATm4GYEQI0MF+Ujy3AQdsbihgv3All9dn70WMwqhm7Vb64LGM1tke+k8wlswZSbbsg8V17stFWe7Pf58ODSBodehCpOzKJSI6gcnnTByE1PeRvsDfZ3BiuSbFm6AERRskQ19hWjmCbsdh5IM5o86G6qPFTMAqyOtHUcEtY1tZvC75rR6uUQnYcIlA9EFLkCZuM1yDfaRaDFvoKeWoUWFvgo5Ob4tXnRqeiBf6o/ouOSNF8yTEbYSDLBhd5h7llq7FAArDJVlJ5bKUYriCyKZnMKc9Fb5DXoF25CWvA1h0+t0FZArY+yRwVcRv1CkEcL0GfGswBoN7BE/V+bFv5yJxLYM9eF3QpoEGXjf+GGQngAVpT3ZYui24pElRTbVpjm2zzoHoRIfuE4VDhZ81SpEHL2l7jt+SsNRrxPrOsZRg9hDXQqpIDlNzh4xjFbP8Kg8qdtH6zsfUrEv9X9QoQ1jsJR+0OQBagGy/36xbt0IPTunHrT3L50oLCPWAOJKQe8WE0maGa/3Ftlph/BKrbdzo7r6dlk4ytGH9NLniJ+4thKLjhhhtw57E7cd31Ry1zpemosNZoHWXnba0VGxubOH3mNE6+dRLnz5/HONYgC6IjX2Q+lPe9/QRfGEJYiSO3FAhD+Y0RnlCi6QQFZZkVcRIqBrjYfsamqMP75DmOjWYZwPAAFAXL+ZR7YCYQTdvMuOmhmtRacZt0rmQ/4WOeXyu4hzYG8QYcs6ohOeaTMIM1Y/iwdmwVdbesOtiDVxUbYc3HKhUBDVYgWWO39WG7P44Vuu+zPkkztsYAWDIZathjCVCSnribpnZct+O6H2aDQIK/iwfD6xeiIoHZgAbHsvRbpW/tYFgMePjBB3HLjTdh354FyGSn7AMr+9qEGVtb23juhRdw8u1TbU9CqgPlGV9JJtZvSwnplzTQFI7rML7M54Ct8cNMc64R5EwWWbquVJ3bqsUWvG7Xa560vtg4YPOoGMhQZilBfRtAa4d9jpSmoj6z6iYWwktJ8HosFeclYoSzf1ZxPXkAeVKabYeI8jnck2e4e875M+/Zuvs60GS86qFXSpNrIiPj2q7Rm69voGtToem2XS6AHk0YQLchdyJ/GqicVq3pw0CxF9am43OVqnLHJ91YJTS5tb2F49/9Lo4dO4Zjx45NjfXUdjj33XMvnnjiCVy4cGG6BghHcWdR7/Q7N6uTqQjXg8S0CmMd8corL+PMmdP40N0fwg033NBko6vBrJ9m9hN6nWQyohyd8JTKan2M5rRz1pWGe8zOZCAA5cdpEK1KgFmZJG1YUF1W/FK3m+RdFqX9uTFeXTtZWsbWd+xciZe4u8gTqOZhXCWhrtSx9rDTs1OEtt5ynzE4fnb/pe1Q5gtr3cnC78xkjsu6hWavr4uXPjjJMujvsiyXS5w+fRovvPACnnzySbz22mvY2tp6h6Bdl3VZF6AFNvzSL/3SysCHvtRa8Xd/93d4UY6zXZd1WZcfTLl06RL+x//4H/jUpz6Fn/iJn5jNUjQMA774xS/ia1/7Gl5//fV3AcpWxnHEN7/5Tbzwwgv4mZ/5GXzoQx+66jXBuqzLurSy++PemAE1NFqmDrkXHHj224yVNNndxKwHtnkj3yyakcYMkK1yPD0H2jTpZlVMocxhF9a+N+OJGs6ysTdCpYYwO9KEwzaTdduoG0XZElrQU7sGNTSJ9chChdRoAMrnhYPRXk+NBgk3XtoGtBQ35hFN9trRWFh1ngI+iQGyrB46bzouDeIRk20M8NBdrc6l4DSaCBpNwK4wfAqK4U7gJjGRMvxTDGrmkhdrV8wy02choGAoS859bSscz9YyfPiERsO/GsKjAbcyg8eGK1cuCpPSXEVlAtUCLkOAVQ12kqGIgUoFTBWQoI6BGMOePS1AqSxAAJbbW2jHwg2gUqEBYlxHLMcRZTFgEMXc3A3NmG+nMDFjOY4YBY7KevQag6q/jWzHIIzt2QZPEX7llj2iNlwWcp4AD1AHTOUx0EF743M5LttRbJUBNapSwYCCQ/v34+D+/SCiFnQl817raHCOdcTlrS2cPHUaFzc2sVy24+f07SI7opEDfSjxIHwYLbTMTEAMiAgmF3WEw41IVWhH7XBQk3H3IpO2oYFhGm7IMuEcnjY5Z3SW4dRgDKPFGuRqMMIpzkj5urJDH1CQeAawrD4+7GzcbNDGTD0630B7qddln42eNCgNSA4UHR/JkZrC0TZPQdy60bIFxJkTTp6Lb+YrT8XMAsLWDfaG4BAEoPU821ujN5kvo0Hle9EZVbKhsQdzVWaMPEpgLDA2pdNkZ1UeF3lQq83JOFYUbjxQwWB2WmsytmVOAmsAotNMlTF60ATB1ZriO9J9H3wl7cj0tGdHN9TqfLJReNKrtTG5yZs4YxCceOhFRctHJBLWxGzOtKdyRHGQjnfIoEt3QdciwKvKTNv16OmEjzbngcfktzm9uAnO6q3bukROVoMFCyucoc1Iz637FrSiPBXXPDrfzmMljLlVHJlBxIgZFuOyySWBDlEwKfKigDA9KLDBq0d4uoZXutC5p3zMp45T8WqAqH6zUUYEIA3aUJTnkKtCIM5w0TXuJg7rBUjwtLZNQSZG2Q+fY0u7p10GfnEQY6BapMwAt1WQIClQaM8/2xojr4ba8Hq6VnjVLY4wh+Trj44ujA4BBE418pu54+PZMejn3S3mgNHAEL2a5P5c5hKt6e0Y1SreY01y/U5EOHjgAG666SbceNONLXNSIe9fcK08obpPdRXA2Nrawhuvv4HTp07j/IUL2F4uo2j0aQ+0FovJSXB3J9wPQSOBI5EnOVVI17Nj36vHoFR/iSEWxR35gCayLHaXf6m+YqZE/tmRHAOGglSb4Cvo8nC/h9qDdfJjumbQ7zsXWYOFtYJKhTSX1ravvex36Cxi39eAKvM8kNWc2CoHWPukqSi1NYn2CVuHERfL4kq6TpEXEXzPpWOo7aUCC3xSPUDeviwaqtaVOrq3pg4uE5hEttMyytVsdNBgLde2AImPtCZSY2jgU9uD1bHaPv8Dx47h5htvxJ49bd9UlNBIj+hlO85tOY54/sUX8cwzz0qQVmu86prWlYCQAGeZOSO/Od2LLyJ19Gp6K5C6Cnh2meSUok3qSwQcnuMOFq0f9UEHW89GJh/zdV8BuA7stQlp+11gjXUX5i080cm4SccTKWXhYpywmIPigm0mDjd+i879zH890A6TVqHEe5yG6rIbEqTlWkhlOgI9xvb6oGktNfCh8dFEtsD2wUkupbEEDChtCygpiDuMNS3ZjM/huOOpjnIxG2W/jnWyVcbm5ct47vnnUZlx553HLAuzA0Q4cPAAHnzoIRx/4jguXrzYtRCFeJDPlCmrD8jqSASOM851wzAYjAsXLuCJ40/g9ttvxwc+cCf27NnbwdDhI6yhLTDZ+Dv2K91w7LLf4wTII1zWaKD9oAeaXKXuGZZjB0OATJxMbWpON/brrn4dE57pOT3KE6/ssJk9kXSNFXR4BC/q21k5m9vNA5wVdPbJAogFt9qt1UFUOge78GV38GgIbFgzcYTQZUiUL7lvzrBSkGsJHqcJbZonc9U37nD2cKx8Zl1ARLjppptw33334Z577sGdd96JxWLX7hQwN1nz+OOP45lnnsHrr7++Ps5tXdblB1g++clPzgdPzxRmxqOPPoo/+7M/W2c2W5d1eRfKuXPn8I1vfAO1Vnzyk5+cBCqpTv7yl7+Mr371q3jzzTffJUhbeeONN/Dbv/3b+PjHP46f/MmfxKFDh3Yla9ZlXdbFy+5X1QB0wxU3a7a1Sc6Etntivd5tlMxAx/osbOPG8E13DEzRys2J7McDMfs2M75FSSUb9pIpIDi4/C1Asg1bhk0c0tSMpmosNQcaJKBEQhWqbCiLOt7YHY8GgNqx9K1OM655QIWNeaWlXXGT8a+Och1We5RBRQKbqAWZ2fVggCDAHOSgAuIq6b3hxjfEo2h8RrU9MydooFra2DMsixPUGVmsFR1nH5jkQw5OLPW+S5UCzaPChvdMd3PWGJ1ygdnmRoINzIvgNEgW0KNokaA2sGROYZTCYtwfwGNFpZZ1yDJqlAKuwGLPAFTG1nITpSwwDIsWsFAZtGhZUHisYCKMI7AYCOM4YjnKKAngsQX6bC9bIE+hATRAMri0CS0yN+34tmadLNAAltIc5AobA4SCUhYAVQzDAELBWJuzeygSoKAOjnHEyBXLui0GJ82u1fC5f98eHDl0EMMgtA3J+iTHu9VasRwrlsslzpw9j/MXN9qxFOpwGNXpUMWQqkfqVTPCmJGSlV/JjsPTOYszTsEwY3KBqxhQB8nEI3WFRswYSC2LRoE7nCA45diqeCzV0MsdHxH5EVLTZYvKIIYaVYm8Ygt4iW9hCt+FrEQgwih12suxjZ8KEUAWVuVOKK0r/6lr3gg9GbP0WjEmKiHuQh1XHlvA4XnydjoraYNRA150LIJh7bYEKLmYvoDKLWgQbQsgatnrILK7yHMydpVBKqsl4MMDptjkimW0YqAdmcngOgIoUidnAtDnIQ5nrqMd22ZHCyrPBVpgwALNiEjEXAiUkHnTILFiGROmdJRURlAjigPHHZu8Yx7twV4GJ6dq0MmVQ9Yldnhb9hyBW2Usmt4zzjMg5Idd9gxpbWqjHnS9qA6tCGNfuEOEuGQd3/LcAErBO0VJlLQNMt1ea3UZzC4v9HhPcAwWIOEzXRO0qpozogp/19oYKWaRSjpQYYBKhbwOi04npSuwj7+d8BoN/VJXhVsnJ9xpq3MX13hzhhpfz8T1mzq+PHjS5UZ4zGWQBWl48FIftJXIBkpzsQaFz7wWSA42plTNnYqtppPmjAvBZNocKvLqKK2FjPe6togkkIREbrYW8no58GP8jE5R+T3rgLpWSpDXgMuZVadQrHYf5RAYG3SovlgscMst78Ntt96KI0eOYBhK4BNKhNTWEc4jzE2+bW1t4Y03Xsf3v/86Lm9utjm0NTGnrnXxnSHWgfms9uNoHxqc0FF7R//e4aQj0zuToqgJsnhaenmjz0ya8drxJmW6ZJcG9iTJPykociU8cYxzhMEzD9Ls8FeXVdQVgg/S1SksllFJZLeBS4F/rTdHmekDGNnYbz/m1Y9i49qOLLb9XKBfzfwxLpfQjKdNJ7Nt2vxlG9iLHLUGJ3NbrMheGtAXhWwd6wMW0mcbr+FABJxvGcn22RoUqInoFJcWiCKBUdXW+77OPnr0KO76wAewb99eWQ9ThkeCk3RMp06fxrPPPoflcjScsinKsP4AGxkFdu7mNx6HR8iBQ2Etbloi8OCsIO4YSumhs5fY7ag4tP0dis+VrxkaKCueMxh67nbi9EAbMhkT5admV5KOslgIY1R93neVgrZU3kW6U1AmPD/DvZSfte5jv1FeI2BpIozCPJJjpXUhmZTjmlnb4oj9LPuseQ6BfbpnMcSFNU0Ha5adPIkO4kAr+jzpJr/GyRBalkqqTScBSux7/vnigRh9AFPlihdefAEH9u/HLe97X8So1Tx48AAefvhhz6jU9W1jMjm1cuWV6DHhI8CaJ9kmCizy85VXXsHp06fx4IMPylEwWX7HVnIblIJ6slzIEEc9n3kHImKEenTOE//HoVKYr7BuN/0g7fR0HZZKrDAGhmmPhw4p63F/dgafiW51fykXKMKf28slzAs8kHJau6eEnrrigD3QZ+dWOF110g8vSa7ghyxxEX5lvPU99kGrdn12vRZ0mO7dKNBYuN2PqGu9+8zyKtfbWef8KJR9+/bhwQcfxMc+9jHcfvvtLQv+VSw2x3HEhQsX8Nhjj+Fb3/oWzp49+w5Cuy7rsi5z5dixYyszssyVkydP4q//+q/9FIp1WZd1+YGXcRzxp3/6p7j++uvx4IMPzureG2+8Ef/+3//7dz2jEtCOh3zkkUfwwgsv4Jd/+Zdxyy237FrmrMu6rMvVBCmJQ1r2qlZ0kzwxxMU9Tbe/Idvskv1We3uZETpFHb/duejqDNdjU7xrrdCe9sClGQMge5s2QANa6xDM+azHJEEM0mAJGiCBVfaH3OOpjdfeNJoYIx0f+VpuY+5N8yioCw1mVDbTTBGwqRkqKlffzILgb+fKm3pyVJ4aR9UYZ45amJtRxi+GB2nXjarSL1e0o1787fQ2/rgxRmwxjbUfd7umxo42J31mmlW22Pj2MOQIg+grtO+ljVUNduYAEId8KeoEAPQYOR7F2ay0p8Eg1BzQhQY5imHAUBaoS8m+UsiOh9JMTcvtJZgrFsVTjm9fXmJZlxJMwxhHRkFBrUvwyBgWi9ZtBaiqob/NS20hGeJcb8SZArnk+Dkwg4YBVAjDsABLQAZAYKpY1ipH4HA7qm05eptiiBpRMTCwb+8+HD18EENpb2hXVPBIcmTeiDqOYK5YLkecv3gJ5y5cwnLZMjKNrEeJVTMINXsXGw31jnW93hYByputDaetQHZq6GS0I+WKHq/BJpPmaNAyrMjzhkYSszJro5lXYTA6LXI1d2igfgmSIOc152blVekwGZgjobvcNOMXtWxR2fnY5sJQIs4FxYsJMjl2T+c4GjiR+FMfBmCBAwwgL8xc/vtxTuY7Ig3fkGBLk2/kBlzj8xZ8pHNNxnMeqOSOttZ+C6pRQ6oOhAEqGGuVow3buFVOtflTfEJkwODGQCMClYFVMjc5ruMbOKNlB9DZA3LWDnT0p8GGPk9mMC0FqNVoP8rYaNhPcw60t2ypoDaBIdm5YO1qIGmRwJn0Rragzq7I+NmJO8wZI/GOQhT5wJ6T/nV2OkWqgY5KUplup3pCx6Ky2oIbA/DK6yOQnu85U8GzDFkUxwUwF5EpmV6jId6DeyXMR23KIhfGyu24UOQVgdLcAInvDLg0KE0WhICxIBeqzlmcokRPHeYU1ypL01FjfiSgwtdI0lcHKqNMfs/1kazpZDgDhyCvME6jBG5rkjhmC4IqOlAPcOMuq5C2aMf/hDuKa+XJ5mCfrh0nuOrXKAqqyiXJQOWOliyH7ZnC9lxsLQZt6n0PNO/KquvXTFkFnAdFAPMoz0/O0y3Qjoa65ZZbcMcdd+DwocOO47lltuhsDvpxY2MDZ8+exdtvv40zZ89gub3deuwFQg9C8qAyLIg9bTLmxt9da0J6pp7LrL4oD+b2Mh8ZiCumIK6Rp0agqZxGrNcxaZRQ0/vWYwdLCIARxR3vR4fvDii6ihLkCE8BnNUrcemwQrZZe6bsKCCeUlf9Pg6IwcxBxundKnofLSi7HZmmwfuKT31ZpYhxPRwtzG0NEo+tZMnOqZmI7Gg2hcfWOOzrgzC3bP+47rIAU3K+DqNo2f9ET3CtMga2o3QVh4s9e/Dhuz+EI4cPolgmPwZqk+0kup1Zgwq38fzzL+DipUt2Pel8hGBdHVPHy5G2tX4vb2dnXRHRs2GQ+rErW2+HBvWek5WvRnLAGyPSBWQN2TJM+qI3UtA03FY4ihVY18mRIhN96vdZGaLPx/rdAPvvVr2bhKlhJkLUfYtzGikz6O6IdPZnvBdfAyuDuur3dWmU5ZadO7OvLYrCVjXAOZUbbR3fA+owxDVR7CbqrLQ+QLwu0tgWnR28Rkk6DVFWde3MTgVZoE18yUNlNY8Vzz//PPYfOIAjR44E2vTnDx48gAcfehCPPfqYH3fUr4EmmMmjTqCFizomnsFTNwzo3F+8cAGPPfooPnT33bj9ttubmjAIco9GAh1yasBjz28JTLOzacDmVEFrVrpMn0YhgTZczvmsChK4D5+RehxoOukc+PNhHHH0UVJcecmZ6bPHChCkGaHx1g5rlfkeOt5PPV5NmeuUTZysBsnpPvcrLzOteLLfI/e/5WIQYR2vT9Ytfk918VT+rctuigYn/cRP/ARuvfXWq3I0MjNOnz6NEydO4Omnn8aJEyewsbHxDkK7LuuyLqvKgQMH8NnPfhaHDx/eVX1mxiOPPILTp0+/w5Cty7qsy5XKOI74xje+gRtuuGH2qEaillHpV37lV/Drv/7rOH/+/LsEqZc333wTv/Zrv4af/umfxsc//vF1oNK6rMsuy1VlUpoTBmwbMi+TDRx7/Wmj7U8NgWrfcIeCvvnixjNGBfP0DdXUZY0WitZuDXBaporkDIuGHd0oOoxtn85iFB5a/ySBHWZCrCAa3C5AFN6IRTMmy8D9bVjZQJphWQ1jEa+SoQHZuR3bjjh2P4U4aBVTBAmucMz16f8BdTq4CYhIjWqQYC+2DBpUdC7swLZsVLDjAbVNAnVHQiiyWY4waEefecan3mGiduAWiFMkuE0CcygbUXqzkuEpeGsTHVG8XwQ3MgYKb/1PHGlsRhVtuxR3wAxlANECpQwt2IdZjncrQGkBEsyM5k9oBxGNPBqNjTIvlZeoYzPogxaNxhbtDb5SmvN4lExCnjGFMNbRkJCMUtBABLQAJRR7yzo6FpSHAKCOY4NhVOc1teCj2mhyz2LA0UOHcGD/PuzdU7Ao6pQhFHGajGM7jm5re4kLFzawtbVE5Xb0kQbkGN2IQ1qzmQ1lEN7V6xwUfwHkIKde5iR7cjBaRqe004jjKdKfyiRvQ+erc9oH6tP2I/3ZW7c6PHtSZ0UAJkI7VsuNd4BnGwE4B9oJPY9c/ainAHsMUojBHTHQSwEQqSz4lcAtAYIcQcZgFEduMhvzVkZucxWN9dEI63D5mNqtYnjw4wPIcaL8i8GN5BZs0DphkiOuUJACHqkFnxo9oGWJarc44FzhEzoDu0wzWSeaxYJZfJxNbmvWuybr/KhSCdyqhBaJo7SMMFY/og881QOlKKNnR0gRWnL91oSEycgoY3VO5oylmZoDLZPdndNLWr/o2iHJ9ShXWbDKFvQXtBGM5RDlcYZNdZjTvM5BcOQqqYts0vuqf9UBYJALfRWhkXZ0TLXgIxZIKQOU0KVt2loj8A0AC7pudN/GF7c0ZPiD4RCU8d0hxNCb5X4HWMCZcSJ7z3r8ozed9WBzYExXZNEl2utObSXqaRtlaEjpi0Mdn9f8pLdtQqlHg8kEF+QOrcvdHt5Ol3T4jbTsQYLo6DtKeQ2K8VvUzZHLRZO66bquwVOrRlPvjTLR0e1iN6v5fuBIaaN9L6Vg/4EDuOnGG3Hrrbfi0OHDSS7lp1y+6VTWWi0w6c0338S2BSZx/3C3Pp+hbV1r2JpruoY1yqCCJL+MhBmgMtuPflfKcDwoDpVetP6cPJ7j//i9r8eWzdAZcf753HCWowqrsmAbKs+3RTNrDMWrgT+3vsj83fNOqgogOzf9juNS9QQmhBnXd7O05goWvn6Yyg+t2JqYCXDQsZAGJ4ke0myKcg0Ujsy1dYKPxS4ToBmI9GYDkYyYGP7Cg2eea5MXneOk14NOLqaDHRtzwW9cPQtSkuUA9u7di4cfeAC33XorFsMCRV7q8BYJnkWpBV+9+ur38f3vvwFmluNpgX7SDHYKlGmTHMcjTyp5zsiChFRTVOx4Ig34Dett+FrA1jeBjhJe4fh22OfGJP8qvVKAy2SEB6n3Ja/qkmqa8Ea8pnNqGWFm1/sZ19PAxkBb6UaA3VYAvQbQ77vQemEvlEeiL09lwebgFVsR2sgJ9j1ZEXRo1P3W7qOsR6gU6A+2DsjrmLin8SHpeqYPYpN/ja1UKSHYnoxqrO1EOxE07KY4bkhf6iPCxsYGjh8/jocefBBHjh714+QDjx08cBC33347Tpw4MeUzzhrX959aIdM0h7E2FGTZ4g1bBWhQpVLa1vYSzz7zLM6cPoN77r0He+X4twmVmSzNlNrrz8jvgNv/nBRVRzl8nOhgguWu3SlYyncNNjZbQ9rXxPYiDkXw+f3VMHhL8ec8P87TklIgu6yN4itWuwIxrm5/p+L6LkhS44lca1VbMYDa5UJ/z2rP7K1n1yfMkx6T5CBlcTaho+rHqYPCkb+O4F6WrBrXj1pZLBa4/vrrce+99+KjH/0obr311tXr25myvb2NEydO4JlnnsF3v/tdXLp06R2Edl3WZV2uVA4cOIAvfelLuPvuu3dVn5nx5JNP4rvf/e47DNm6rMu67LacPn0av/3bv41f+qVfwh133DEb9HPTTTfh4x//OP7yL//yXYBwWjY2NvDHf/zHePHFF/FzP/dzOHjw4LsN0rqsyzVfdh2kNG9zku2cvbnuRpm86WmbJDdOqoWkBfk0ww1Z8AzIN22WSYH17c0ajC0Qw4Bu9NxxGx3f0SiovzOMshWVAJPWpTpQNY9JRoIfwcPo7QfeV+4nOtzlQudUzxjTJtIGmQjxeDkL4BHHQW8A1k12yypAKBTegJUAiBzAIJtXipvdOJfBaQl5c1eOXdIsWIYOayI6pDWjRTa8RcOcBah0GbJ6R1F+i1cDxar1p8EkNbw9ltuQsdfe4MuoI8Tg366OtbYjywTH7QVkFmO5PieBByzBR4EGSxnA3I5h29qS7EnDgCVX1OWIhULAIwYAQwomaMe4MQNLCe7xuapm1yQibI9LjHUJcLU3oxWXrMaIzt6gfMMMFBlTrSMsKIMLwCNGMYLWcQQqt2MlZMwYClCbM21RCo4cOohDh/ZjMbRr6uMY9gxgbm91twClbZw5fxEXN7ewvazYluPrWiAijEcmAWEqD8yxofxFaEEdTokuB5xWNJAkORQ7GumPEEowqN2Xq+AVYCotO41jNsPsZGdwm6EW8qZ61x9jnLEPKc9yGksPZ/9dRy/oa2xO2QAYaRakfCtZ1difJ7HIamAN9XxM6cNgMfNsZ5RTXZKsbt0YGKMYpn0sXq0AqkvUGUKkSdxQJLMSkXJVwaj46HSDOa2JmgwqLs+Z44ikvhzBUoCQrc8DYJsDLtKi4IFre9NW5lMdPJb1x+Y2yHkiCWIhRD3nPKKmSjeE90Vr2Rh0dJosUPX6RE/61ETV2QfI6bijrlBa7+fUje8+Jv3LviqGEwg5AUNhibqvej24rgacLqxZqOzUKyvt6qYbXb+14wArFaj7SuGY4GmHwtwChQvFQDPHPYmTfi7LZOtn3sjcxhf0EwfzOXtgcn5W8datsyC8YPyngVje2xylKR/pfOkaKOp907oBVLK6vjaJyJysWYLOt7VFRmU3xp2LBsdFR0MNNNsHI0WY+uA+/1fh8mBGljlperlKlsHpOB1B00KGhysO69oqpo/Tz12ULNeICHv37sHRo0fx/jvuwNGjR7EYdt7a+Eqv0ej21hbOnTuP1157DWfOnJGgj25hb3B24SyyRvf1hzxncqnvddpqDqyLnamen1/DruL6VWOeoxWSNXpse1UQU48S/znt13nR+bOJ4Dx3iNhkDmTusgcdenwpslJYh1uMeITftCp3stp1UQ5KoNnu8hpSM00EzITbqmtMDnZtpJiSqAMK2fV+vsZxKXpN1/FVd4e2tiGSGdD1hjxfq79sEnW0zqkG+eg63GaryjzZWqk95Oskb8X25cQStOB00aq1Fzbs6GHVGdLsnceO4fbbb8fePXvaSx/etESQazZOxlgrzp49jyefehpb29sY5di6NPcKcxhnnCjV7aAgm537vJ00V9GRnwt7pWk/UO5WDcEuOuD6el52zHwLfKtt6HXOg7avRk6cb0bKnysG/yrZ1T9vtGUDtOUEaVZEvyWij53tZlk9hwKsgjWNUfFP3X14fyKouj0LoNkZY+CB/k67xV4cztCbHucVhEJHZUqDNEM+mVbtV8SfgdFwm+iQszTU510aJ+IWEewUNad3/FonLwPwmxsbeOw738G9996L2267zWrbk9SOYrl48SJOnjwZxjyj10wYchSMBl3kHie4DLzOZsI85/GNteLNN9/AWCseuP9+LPYsZsYfMRFAuQKm/OUkB699IZsj0rHG+zss9vq9n65ltT8nkEApPW8FeZ6lT+xnp6K03Q/MIZt2OZ2vjny6juNEUvq5M2w7l/QCQ4AL6Mhspjgfka0TY+CQypY5adXbrFt/wb416Ux18CqAwt4q8jTJGFcP40e2EBEOHTqEY8eO4cd//Mdxxx13YO/evRP7/KrCzLh48SJeeeUV/N3f/R1OnDixPiJqXdblGihEhE984hO47777ds3PZ8+exZ/8yZ/g8uXL7zB067Iu63I15fTp0/iN3/gNfOELX8C//Jf/csLTRIRPfvKTePPNN/G9733vXYIyl+Vyie9+97vY3t7GL/7iL+LAgQO7lkXrsi4/imX3mZQIaAFC3fZSDa6AGEqRHDftsmQbis4c2aw1x1KRv5gxIhvLkjPc+nSHbds8BsNwhD0+O2vpIhsX2RjasT/6piXgDmMZqkEX36L19nN2EnuGwjOsgTUlN6obU7KTtQKoEugUdsua0QHEAX6Fwo+gafY5Dv3L/dIc7TZHZDaSNI+1ijG/OlrbmGQTnupP3/B256Fs4qlgDDiNFpHW7grnK3M2FkbHJNTBT25dWaEDiBXXin4K57q7ob3ZASqqBOGok7EdMeBGhYaPZjRnliPeCqBvPSvsFSMGlOYgqIyh7AGPgv/C9rYTFRKeGtoxfbViXLasHS1DU8smRMwowwKVGXU5gnlswTIyr3qkmDoXiAm1ONw2p0Z+bGMvGoQhBpERI+pyiVIFdzSGiQOGUnBw/z4cPnjAMm9UbnNeBkKtSwAV47jEWEdc2NjA2fMXcXm7SgYlmXf1kUODMEIgC1gnL1JFw7EaU9mPAFN6b0QMn18QGCGAoZNbej3SB5TmwJZVSmFWVkjyIvKiWtyC8Vt6ALEE0sDlp31GWVijnKsmByORa6YYbRsR/sYcdmSgl5iVxMdtQaQ2Us9SZVdVVkHeDA1vuUeHfDEZYDMmRkg2/HnwKtwwG/QBsxyzBjY69aBPt6xyrZJBroHLRXnUs12Z/ZQK9FhDDU4tZXBjs8JnFwLWiECloB2oqP0ujFZbXwOUBsdxKceskc9RwAnJGFV4efamlvGJqPnl9OQ4pUFCCDhRHmiNm5MwqCwF3hwl7GQiEk+PyvNHorFbxx6NqDaXPX66+jrmPtBD6U/pxQIJpe0YkDVxoifalfHwmKar6UnFloyJ4xGzMvf6K9BrpJl2bFq1BB9FdFULrvT/BMXyGR1JUR/A1k4chuNrFTnOloBKulaCBLTJ3JGOqdGoyaXesQGXS1piEAG62qLg5Ec7WkizV/m6h9NzzkdB75u8BqLfQnFs3U9VfS4i92y2OAdaOZ3p0UdOfwSfT13T7dQd9bgiQtQN02COCGaUf72uirRenACC7m3Zz2imPZ65pnQs2cGCI+LKCH0XS0Kb0PGVHtE1aXj40KFDuOuuu3Dd9ddh3z7JciAL7dxi1jvNAVhxefMy3jr5Fl579TVsbm4Gh1g3r4E+J3xlPK7yN+pjzSITeCy2Ne1JaHUXc5fa7cZKusbpr/dAd00m3ajr9BjgEPkg86Nd0zXPHI8kHoqwcnx850GHtUG+E52LU93alywHQ/sQuGx90q7vmptYdGVA0ySI3NCvApGgGRf7IC7TC/3cyWVft8DWLrZAEL1DunSDagrXsUnvynrRdK0cIScqDrY31XH4MsMgcp3dTabVrfazQo6Z1Ta7utdffwPu/tCHsHfvQhJoSkiPwTg2Khe4Lm1s4tHvfAcXL20E2R0aZqXYPmSNXRdFuvClWKxp8xYkss2FJT+VtjJFZZBcl4UlDAGZ/Z3meaatUCvd7aVCXz/CrjQ7bTHKTXYREmwVlFrvsdp9oUwXnGpmYvFRxMtkurwfzVyYtLVNymdxvaJy3GE3XulGBcDXo9LOdI8WZITMl4oino6kg8Jnzfgs2DWSHUmzEkPXgaozpDXOsCRqIHibdlfrzQRyrkBpXHO5GFe9GnA208g4jnjxxRM4dOgQjhw5Mpn5PYsF7r//fhCAt0Kg0gSkbg1kNjHuR86OG2uB+1m3e3NyngGcPPkWvn3pEu69715cf9111r/tR6Kg7gjf3rGYDCLUSjwSKhH3zdnwnSdXSwMdky8JWdbC5HI9Nh7WmxPxHfu3tnuMzWAwTbJK0D6Y1afO1yHdgA2/3OGQjZl2racnwDmQlOilH3svWedazLKFexyHb9Og7fmSJWzEC4cOqHsiKpbwecV11o9eueWWW/CTP/mTuOuuu3D06FEAO89HLLVWnDt3Dk888QT+/u//fn001LqsyzVWjh07hk996lO75umNjQ387u/+Ls6dO/cOQ7Yu67Iu/5hy+fJl/OVf/iVuvfVW3H777ZP7Bw4cwC/+4i8CwDUTqAQATz31FP7Lf/kv+OIXv4i77rpr1zJpXdblR61cxXFvarwEEI0zyajaNnl6LJDZiuVHfuO8NdacdbpZLmhZVtTJ2KyDapTsN8m9gcsDVTT4KWz+JFinN/5zGFM0eeSNexAgoV4R4xM4Op7MzqgNQw1aduyPjL8IgqKRRMNJoIZOxM2swpzNKoxgg6OwPbb9KJlhWI1ZLaCjOWr0dS5//yfXV7hI6weDVzbIAEBBy/4i9apXmRo8mlksZimI9+IbRHluGB6HkQ1V2YDghnd3LBGyPiBrpx1bZ71MjChVj2fSOgToSWfR0eJBeLAgOqK2kdVAsjqOKFRBGMC14WuggkUZMPISY2XsGTT7ElDHKhmSlJZbtqNhaJlXCCT3W5Yjp0c33tRaMUjwTgweGMfmhGgBSYwRy3b8lASlFRSAWvtjXYIqy8vLkv2DCHps14F9e3Hd4UPYIxmUWixGgw/MGJfbAFcsxxGXNjdx5ux5bC+XGCvQAiMqKleHvarR1XmnGSQDZXLjJTJZwdDj8nJgBIzh29eKqsEsNvHaF2z+M69pxiPhwUL2jDnJrI9goIpOmGTsap/2Frn8dtoPhsNwBJFlNzLGh9O4jW/OEOVBICrnNK0/V5bAMh9zrSpHnTM0K4EfV6IPdEZE5RVmUNFcMw03VfFlOOHGGyzwh0wW0YFojupgXfWxaP6A6vwWMs5Vro1OgkGZoYFL2h6Zsd1mR47lNMejBANUdUgVsuNFo95qsIvukusEQinAKPNXq/ZT4MhQFNagXwsgfKHzzgk/ojNKkKXs7fhP0UeBNrlqgIMeaSkAII6llcqMQY8epWCENd0Lr0+KY1gdCvenDlmnf3fewr+T19ML885lABZ8aCFHARIlz+yYtYnqHHCeUSdAbyqw8QMRTJ9X6T1nGIg8pPItBuFGHcwJ70Tylr5lA5GMFwZzdrN50J87oyMPWzZDNOcNGSxw2RBY2fkZtl6LxGq+Mb0TLkTjPNlaR0cs+pZU3vqQLMOK0pWoVLkKlV2KXu/GZWpcLyUvkX2dSkcvTom63kUgDZszw3q4Ehx4mK0f5iIGdNp6heIVIOAsCogYiKjM46Fr6IG9hsuclgoqJV6nFmB78NBB3HjDjXj/+9+PAwcOwIUFpcp9MDAALJcjzp07izfeeANvv/02xuUyxiVY7UhxienjrFj2D5+XOHvTVhkaQB3BDW7EjjZXu95tWUHOppHGu0gHkQeMJKptRBME+P2AnBRYGhgirjc1wI7RB4B282nOtagvElATmdECZVUK+PoiCGT5XmfnNF6KcispGEQ1QI7HpJv74AyY7GkylNIEOYgagB1kvwCiR4nGPWIEq10O/M++z+XKIKqiK6vhRo+VNaplf1lF19lRh2vQp+4BWbIcRfmScBRwaTMdxtXWPRVJ/0iPSztmzvVvzKx88OAhPPjgAzi4fz+G7lhfm8/acDBWxvZyG889/zxOnz6NalMWAk0VfpWTUefoHNhvW74E+tCSOdxYTnU202ztuEIxyTIh0qR4fZwrs2V0xeTUtMPAJbb/Y6tfMS3T8ANX/UITYf+R+DBUMbDCF2Ot2HBsh5xO8rMc1gjeZY+xhJCwBwwc7ns8gyNKm/DyRyCU9i5bfOEL9mQep6+jJxohsje5TNXR+UsXnNASh2SqHwHHkZbY91cBdVD7TS9qFTbnAOfVGHTvwkgzVvcDi0gg79g7AHNzAD7xxBP48Ic/jJtuuhEQGwFLGxqoxEDLqBSVXcRVhqpj00z0eY4IM5idaSNRNC5euognnngCx+64A3ccO4ZhKEIPfUBPpI0Vc0hTzRulm/Ov6jt7cCImskVwflCmA6xNWOB+0suBt/3FsBnw58YVAQ+V/GsM10uS0Fujvi0O84+sj3u6mACVqXvSboJl1cimq5DVhSYt5t4DDZrs4vSAyTVk+cn9/QmhTEAJD+RrkS3lCAMvman9+y5V0HupLBYL3Hzzzbj77rvxYz/2Y7j++uuTPN6pMDO2trbw8ssv4/HHH8fTTz+Ny5cvz+j0dVmXdXk3y80334wvfvGL2LNnz67q11rxd3/3d3j55ZffYcjWZV3W5Z9STp8+ja997Wv42Z/9Wdxzzz2To9+u1UClkydP4mtf+xo+8YlP4BOf+AT27Nmz67XHuqzLj0rZ/XFvXNI+MRZ3jgN2TBrc+KKOmGbULm78obDhYhbHHoFqMPjFt0QmVu5opLFoEQCa70M39O06KQwd3MB0P1ejc1hNWNqUbKiJxUARjJIkBr+W5Ub6DcaGEned8OtmGCNuTnFHjDkpGRIwwlV82mxbfAvG4HbMGBUSJ71v7NtmeIAaq4mao6Ha8wgBFQKrGjNbChqAK0iyFcXsQPr2ugci6Bu4bb4r+Vx4Rhp/wmykshcuSg/BIEOW2YHNtqE27lRCYAULbZjDgZ22mIvNqRrZW/CBAWe2Ezc9NKOmGncG0gwTGrTR8NiyuCzl2kKu65vpxQIQWFzaexYLFALqcgkmxjAMgGSEAFeM49hQRJ6RhkrBsKeAa2nHwNVG8S1oqcG8rBLYQNRopzT8DBVAaZnIChQPHHiyanKsdvzbWCUrE+wYOSoDUEqjKCIsFgOOHtyPvXuGlt2JBhQGuI52zAQY2B4Zl7dHnLu4ga3tEZUrah3BzBjr6LzH7Q3rlEGJNRhFHD8SYFKErqpk0AghMXkyzbhTG/+URttKy0pMhdCCAixAoB2FxwxwYVS16wQCVFot0CCcLGMAMj7T/qoawM3Glt/UbXTq0kuDCGJWJChuJECRWQI/STMtpaG1fpQfIPAKHokgY1N8CE2Z3IOYGYtyA1p2F3FslfaMMGKf5VyOXhReKG0zaPIgvQ04sTaC0TK5lCIzW/x649EaTLliojdDcJW5bvJ6kIBYNr0BkdnNCa5Z/Tjgg2RMQxkgkhjMLYdSy2xWGp9W/a1zVWz8TEUypblsN+dmifLJ5WQxAVmcroCmNwRFHuSmBk+5V9QpqrQiQX0l8JRkPPM3yBV7Y5KzRkcQetRrJvdcj9n8G72R3wkOHNWRnv1LHUqDZ94yOR+ynuknD+2rjMF4MfBO69/lvgaeEAFcq/1mw59wm2QNYQtE1G4brpt+DPpIYCrmFAufkLVNQQrI9af8n5bNz/mc5ahWFV1NNjfYdDWV2pEpSf5DKG4oyDpYq/EtetH+cKUsznBZ2+hgLWiv9ejjJekvAaaCwC+mIygMRm1LYNPgB2aL48sZDBuVUWjDnezaJQkNMSwTaJKFMp5Z47LSeXTWcdd+DLgUekJzLLtzXgF0R5xfdU1lJKz0C81ioniA6GindQQZ4iBn5+i1VlyWzMOY5QiwZ88e7Nu7DzfddBNuvvlmHDx0UI50c7qi7lmLGZDrly9fxtmzZ/HKK6/g/PkLOzoTnGsjwBzuywRO2ghzDZ8fr6a0PdVvKnmjsLV6Vl1qmc7qug59GKTJCZ5vqy5O2V8oiTPEdYetPRL9ui5Q2RX1gY2Yoh6osrWL+HI+9P2E3moTST18ggTyr9C9pP5uMmPe2QoK97p0F6vpgx1X4VocA8XjSTngKqy7ulFY4DYJDZjsMHlQTe/7OtJlE1jXf4xSStNPsgek4vvYliHJ84DGl43UwNeOgWuTWsiNfpqVVaE3+aUvuii9wHVLq+R6ow1F4LV1BwBq++kC4OCBQ/gXH/kIbrrhegyljZBkv5YCJBgYuR3zdvLtUzhx4mXJulyNXhPNswdc+Cyo7kK6Z1Nsa6uZojraiFOAMp5wPWWBAXH2Ra4YqXFsw+lGyNpJAb3sdJ3cMQeUhrS/mNjPIYohLXmsSnNJBkbBk2ST06PuJ6Ie3o0DN2ZqY+1TJzsEnoRh+DVbF4TZ5Yir2L++8AKXf6antcpUB/hwPeAi2mu8erG9d1phESG8JiAs4kE6+hJMCzDkDmeBp1hoV8cdiZSU+3wC2ol6AQ866A53HOqwZrZF0GG2cOs+Fecm+3RdFII8wnxe2riE48eP40N3fwgfOHanyHEPXF8s9uC+e+/DxQsXcWnzkvNKh40wa/arBbM2epkc0a1jCwgz+Pp1lArZ8OTW1jZeePFFvH3qFO699x4cOnTI19QAoMdnGrTReuRz05ekGozz2doioaU89pWSKZTI150sk4bVxtCZVx22oKaThIr44XCX8s80JPSzGB4n00rhWSP26VCzQJxmrFpZuPucu5d/ZwdSX4fCv/GK8lRXm8hxYOs98rpB9U9lVpDxOxz1NhGOfVuqk+w25+s/pOXAgQM4cuQI7rvvPtx///245ZZbrvpIt/Pnz+PEiRN45JFH8Nprr+1Kr63LuqzLD77cdNNN+PKXv4xbb711V/WZGa+99hq++c1vrvl6XdblPVBOnTqFr371q/jc5z6HT37yk7OBSl/84hfx5ptv4tSpU+8SlNNy8eJF/Pmf/zmeffZZ/NzP/RxuvfXWXa9D1mVdfhTKroOU8l7TDd8lbKo1WxGgwThtp9UyKwVjAEMCl8SIKLYddc67MUTqkG70wwZdDAgszkY1/DDXFrCAKk7G5HZMY5qk1VeDUGd/i5tIPfLHzVEyRn3INptq2A/naKkxVPClzsxSCLDjl9hfbInwaZtAq2tGJTFChefNeK0wR6OIGMRa3eaILFQsqEmN3v0RDYQCrqNtxdOcTjbvju0yiHGc1ToqQQmsz+WAirb/LgJnv7lu32vcpJshVOmvDT6O2R18btzX6/qmcZtmDYAJx1kJrH2GEXDDQSM9hh691o4JLKjiKGh0ThjHEcOgRgjJ4CNIKosBVFqgEdCORWsBNw0ntbYxN5xXUCEUDBiGBYCKJbe/dgxcCxjhkREN9VSKpP7St5Xb/FUmDMMgQRUMKo0Rq9AnEWE5bmMcxc1QpA+2HxiIsBgGHD18CPv37W00VIBFIcObBmBUZixrxYVLG7i4sYllrRhrM52NEqiggXzK385W/vYvkbqMvd2idXSKlD6LG7zM8EuwhUwLVACICiq38+MrS5YotSOR23NcFlKi/5gZhhCcTgUt2Ex5g4SKzb4nCAtGJT3yi2w8lNrvsxvU6gFB5tBDCVY7gjqKIu8CzY+l1xie4U0Q5nImeRy0b8DljtSZMSa6g4XsD1T9uzcZiuMgDFaClCK6yCQD6TwIGpSbzUkk2eAqSBx3VQJ8hO4kiKFJBAkIJSC+gdzmYZQj4ZoRfFEWEmDAwrdRBjdeqnKkZrs3gCzDEUvmMg0UKxJg2uYKrI4LDXCMgXuA0xSChbONNZKElhIclkB4Y9youzadS9QC9Vj0th6t2qTDhI6aXK9wWWkEkmjX57YEXo0wxW8mrFuwWOIBwDIHBpyoozqWWaO44Uqet3VE5NPMa4BpLKMzVcEKrr4dX6jxlsJna4gU+Kw4HIO+F8kW5Q1n9gNaZj/V7/1ahpThFB9CD412/IhOy56BhkulGVulaBuCa7V9T+TQhN/zfCv7eQUN0KSMa+nbZJ49HHHljcaAn9i34kWxiUr2TDv/URDDvu7rN4f9vKssZgHK14ykS1X4OizAh+ncIeiw5jgM2XVkQBHPTgi+HvHx5KIi/9o2sM1Le4S13f79B3D0yFHccMMNuP7667F///42B6V7MCwH2f6R38zY3NzE97//fbzxxuvY2tqaOIwQn6Xud4TLfrXJ0ECa2Nd8w04DKXOQNhsdVlJxZlo7qKzyzDXJiqlr2LiMTi0H/RqbmciayE8cnvR22jCknq4VEPRPx1vutva2V+8nAqwSgG+nTlJPSWTXbG/ZyaE4pnnNEGQmAFXmHGS469nYcsZRbi/W5+45H7fjS48rDuCTB5JEHev7VtEpsgeoge58ecBhLeafHqDUshK5LhVmqx6gqQ8l2RSUoB1JSj7WuITU9ZHKN4pRIkQ4eOAAPvovPoIbb7gBiyFkbRS9bnJYIWLg/IWLeOw7j+Py1pYcuypc2s+H7j3R6SPE4BODOnSMMD5K351CXd/IUsJeZoiO5ykVEEKklq8VjNw6+p0lsS4YS9eqqX5g6kkbJi0CdJT7nEilzK9RXHigLlKdrMM7pdgryWiLif0HBFK61u3RE5TdqIhMTzpv9oEq7HBIsyR7CCVtPR6eVWhqKwJ6CriyITc4K8l7FtoO+TA9aKmDO6JKYTM8+BjIngmySx803KrszborTUMnPxts0Z6HFDgzA+C0fR0XtzXsC8+/gP179wUnotfdu3cv7r//fjz/wvM4d+7cCmnd9xnoIpKXYifJ8L4Ntvn3oC1OKFDZePbsWXz70Ufxwbs+iNtvvx2Lxe7MqUl16B4iwkt5vp1m4Wu7dGcG/7P8rN+cOkyeo9GgHidPab606lTmTYL4oh7y6YinPac+V5ZevwaRseNjq25M5F0QsFeCZVcl4DeJtDmdj45/9J/Z5nBVQCZ7Ty81pB8TXqv6my/X9HbiCuW6667DsWPH8KEPfQgf/OAHcd1112EYhsm6dKfCzDhz5gz+4R/+AY899hguXrx4je+x1mVdfrTLDTfcgK985St43/vet+tnLly4gN/93d/FxsbGOwjZuqzLuvxzlnEc8ad/+qc4evQoHn744YluP3ToEL70pS/hG9/4xjWVIa3Wipdeegm/+qu/is985jP4+Mc/jv3797/bYK3LulwTZfeZlAAzdliQidxQw1AMpIlOLHOEUdzDyja76ptiNN2LRQNJ2LSqQdayrYTtPMHfnLPNf0h/P/c2nxp0o0grEgikRtGECT0TiaYblAICYwhjjgaeYsFVgPRJsj+VN15L8TG64akhOb59zW6pAEDiQNbxRKOQvzkaTATQt6Y0GKKhlAKea8v6wfJGGuouN3TR2EbWrjsdJQCINEims4HJM80QlOeqXW9Y1r7yW32xbjCWyC2GttvuaSYU7a8ZLqu1ydwCX/Kb6DIv3IxZHIJNdKy1AjS0vC6aBaWNy49TagExkt2FGVvLbRRQCpyp3N4QBpUW7CX1zafELSBiuRyxrFWOh+OW9YgZtY6odXR65dZuPLKHNF05QwIiGq404GdZR/A4YmQSp3jL4sFCj4WAMhCOHDyAI/v3o/k5fO7UWcE8YjlWjBW4dHkL5y5cxOXtdqzdso4NvNrwYnPEGpDh2LdPkRuBszGy19GaFeIEjvzAkWa0MhuBscz5GHgKaG9sRwPuJEDD6MsNm20c5LIzwKCZn2w+hM9czvlIik5hMJxqgGMKFBDZ6g4kffscxg/eho8tBr44nJ2JkyMa67xxG9w9KTdaGjBxCASG7PCo1WOfyc5HnhnMrbVtgHp0X+JXxbMKD4IdTxhi18KcaV1AM4spTTTjccG4rBiGxSTAsfFQCzDSbEptrjUoJMtaNdZzbdmYNLtaKYNBFeVyu5/nsA+6BAan4TR5CPWFJpORW2lG8g8aSWk9CfcihYvtKEvTKOTwToN9Q7YGGgy6PkBEeU8n1zSe4BZy5KYGlLZ7cjSpvYVrqxCjp0ClOpFeK3TiuGZUMdab9iQN5JN5NALOOsJ71mCB4FQHxenwB5T/yS8K55tc8HmRcYd1S+xTB00CaQ13XH6x/fY1kb9RPQkYsDpxDdbNtdKhNhxKDfyuQRE2R0aLId9BbcG4ug7isG5jW0v4WhTIslkLB/ngGFI8q+ydLzutd1TnT+pwoAsw8nqm6TcFcupw64I1jE71bg5MdJ2RuN3uXtvFYe7pdv++fbj9/bfj9ttux969+ybyvD3TE5zq2oaS7eU2Lpy/gJMn38LJk29ja2sr9dz3G5cYV1zmxv1KAn31g36r13VtHuNV6r5zRwfeEqVa9qzp5bgOgMkEIGbyCEMKffd8FKF3OiTrWtf3E91uVxlOr44HC+xY1WEYoQpqzTekPJzgm6wlbMU1aTEFS1hTzptpe6drIra7M0By178H01DUL7FZxRUhBE1EGe16UfVDe9Gn2lrZZoXZ5MeoR1OTB1a3/Vbcl+ZgYpVTtfraEuw41XsJpyZf5TPqccOtU5u23ZZYLWC8CVIJFC8Fd931Adxw/fXYu2cRMngG/SiBybW23eTWcsSJl17GxUuXWoCStm/E53Jf0cWhOZ9zhLVInmPDQfg3rk2Ccgt0E9cjKqrZ6Dg0nukBooONiXbmDe+LQvtTmu/lXtKIStfkdhPHQCeR4sC7ocTedF1gWLDMglEuxEfYJGGkH4MjDUCPBexHN4WjF9SRq3wtObN2EPo2u4iOmSllnI6ByHk4LEdBB7g5tC0QMDfepxJwSyoLWt8a0N1uV3vzwuUCxY4NG5p5te3BhPjDHOyEvUlgKU2lqA8rygSKD8HoBMj3ZKC1Mp5/4QUcPHgQh48czg0DuP766/DwQw/h248+is3NjQm8HhSrwHQ6wOpHvvWXAJS2LHgqjbPnmozqcTniueefw/nz53Hfffe17I5pLzDFtenHxAvTHjP8ZKJMdQlk7aCZkKbF9yoOSdAtMvD8korIun7ubeBz0K0o3b4gDs5tjUHOTll1V9301cIuIsMyC2P/I8/X6m57Og53JnaWrPejnm4tzWXWUpxwWBj0Y5oOJm+7g16ePEeTqcmaYToZu5yCa6ocPXoU/+pf/St87GMfw5EjR3Zco88VZsbGxga+//3v48knn8RTTz2FCxcuvEPQrsu6rMs/VxmGAZ/+9Kd3nUEJaPz+6KOPXlPZVtZlXdZld0UDlW6++eZJViIiwgc+8AF85StfwX/+z/8ZZ86cefcAnSmXL1/G17/+dbz66qv4t//232Lfvn1XvV5Zl3X5YSu7z6RE+satmI6iXUCvqcGF3NlSygDNmBEdutauPJk3RtHgQrY5mxiyWYJIOGwq3eoa/DdD2KB7G33AUnyBzrL4hL1av7msmJqq272S9vjuSBZjgeEwfBbOO0aSIBczNM9svOHP905FD5KSoBewZahpPkI11cDemmKGH0enPVII+kp2sJzVxbPFuNPSM0aooUqzRwEsmQ0KFehRcu6wgD2T8F2ngVI27kItQUJHI8052I5KivNhcAKw48Og5OZvkjHUYC9vJ9dq7UT3pgY7+VE6BMiRUgpyrfq94ZIKeYYVALTQN3tacNI4tmPSBk9XJkcvtEAo5qUEIjEGIqC2Y9M0UA/Cf6WUlqUIkAAIoQs9VhAMPT1GbSKlDKi1GeG4aoBSdm0VyZZ0cP8+HD50AAvJxsQE6IFzzIy6bEEYIwOXt7Zx9vwFXN7eRq3NmcLMclye05MGyuh3nTcNHAPr3ELoxAPXJo7eOE8gSVrR8Uv146biHEU6UdiEisxR5DQuQVxaxQxGYvRjNbiz0U47FlDlX+2ci1MeaNPsGVRiR2Z2UkO4BRIBjUELyAyaKt9EDijQrAbEvLjLpXuzNNrCgDSX2qYd29AqeNtwnmm85sevKSyerr9mg56ktmqoKmAm1JCBqonvNi+9XIwBkhrooLKC5D/VL8wAlwYHc8t4VSujVGAoAxgerKT40ixo2qfOXcZn43+2wC0YHD5upzeTPzSl6sQjCEZv1mMFVfcK1lnw7Z260TvA4gqQE9zWlqwLFKIWNBcgC0bTmCHGx5UzQriDUINJ4TRJGvyo+IAp/xh4l7BDAAccpt6VLWcM2Nm57bTj13TFIr1x0Kg6DpNBApMdneHBKwHI8JnXDCbjQHmpFA3qMWOjyS/q8FJsLRURlODQNQ3lDENp3aT3u3acxyriFER85jZg9KD4sUAoQYXKIg240vpxTtWh687GEL5xhflF4E0Ov8PDQR5xN2Yvc4F2tv6034wY4hbXlhnHSvT6PDvCQnuOBUIP1lww/rVYdIhDKTh63RHceOONuO3W27B3317EQEMtpeTsEnHg4zji9KnTePvtUzhz5gw2NzecnnYFi+rEHr4eDpd/q2wIjQYCeJMLcQyhykw7etVoe7bTvD5vgFP3mw2MvoUrYcj2EwqLtdk9zNNupyBlPAhok3VOol/rx/lddZLxEvuLMPEopjk2uHJQFDn/5+H1AM3cdATbSw1Krd26s2/OxyNSUUWQPhMUKofoh6YLyeQ20F4e0KLBOz3BKo+xZEpiDvqrqixv/fqe0nGu6xRdOkQSt7EyWqZe1iClKLnIPokIN990I+48dgf27W0BSon/bK3eXk5gBpbjiJdffgUvvPhCa9tXDmlOJjaHIF6NoqJTOcxhh7B+yibJ0dq9efrS9ZlX7OCyTuYa1QVLuC06z0RXv+4OePY7WcbZOktpIc1NUGLho90rPtJA+/26oB/DnG6aBGmEYZqqVPqfsN5qXmZt29CZZYLe61Y3cSUk/VOYO1PCcVhyreN3SaVlx6zpFKog1uOO0eiuSBaypLYC/+XByVoiwJEDFzv7lM2xjzADH3nCkB4wCcskjnQVO02Bt2uEMmWszY0NHD9+HA89/DCOxEClNijs3bcPDzzwAI5/97vY3t6eGdfOQPSqOM5zhKkTsanuHE+KqsGbb76JjY1N3HPPPbju6JFAajStbz/meB8imzQQTveH5M+IDGjQsH3P7QQqjMGBiVlTGCaiAbQPUAwYQi4dTjqbhF8SGtYW0lp3pkizs+vYHWitlyo7E2bgU51pwTmFazsXznMarpMKL/3UXinen4EqjjmSXj/L3c95OHaCfK5zvXE1LV1bZRgGHDt2DPfccw8++tGP/qOCk7a2tvD888/j6aefxokTJ3D69On3xH5qXdZlXVq555578LGPfWzX9ZkZjz/+OP76r//6nQNqXdZlXd7Rcvr0aXz1q1/FV77yFdx2220T3X/48GH8u3/37/Bbv/Vb12S2tOPHj+P06dP4whe+gGPHjl312mVd1uWHqew6SMmNHm5Oaryjh5/INYkg8DeV2Awsq95ylV/2XNo9WbqLbsMpBhrNnhCNZPoZ35bSDa8fri5b0GCx180hTVpq9ZjJrpphkLNJ0TIDqeE2beDjbzFOsTfgNimS5CsFqJohZIAdQ0aefSU+k438nlFE36aNzmDdgBcNEAjjLpq2Rdsnx406AgFGrb1jsoDQAnP06CeiIW32xa7a2qYhOfdB1IJFQmHUiW8nG8bakVYthkadMJotxH/rGNUAJLktdFJkKt3AGJ0JdkRYdDpHQ51Y4PS4BK3D49gSYRBQebQ5KBCcVOUTsqPVFOG1VqBQezOvap8DxnFp0FZ5MzIej0bwo6NAPj+lTSKUX4eBAGr0VMc2d5rJZRj2gLk5/fSV4xbkBgwooFLA1H4f2LvA0YMH0E710yOxCrgSRmrwMLfQj+3lEucvbmBjY7O9BV2zXGhT5kd29WYs5cMmUoQ+zXij9J8DIVkbhh+o48cMaYWGd4ZfVyMtgyXFP4kMGIWGPKDCaEgDucRQXGwcwuv2TUpFy2TFEkTCnHg0yTL2McH67oMsWeSi8z3gGUmAJp/0KE5WmonyT8ajtBSNm8ZL7LZSIyt4G70F2Q3nhnAb4ySTSVIJFKv7PDHDAyBVL8m4zHDXMsG1MUk9db6ZCnBdUKJx3zKPBd3CDk9zlDNqXcKOeZwx+XlQpQ+KCMK3YUik7nE94kUCU8ORL2o9nwtItTphDtxRoW8HG2E1uQDJ4lU0u5vSvcqIGlQuO38A0COyfMJcJ/YBhcrLDhPBj9eouS4BFuSXjhEgn4OgbZUn7O1tkuBS8jptvP6GKVGJMXLeb2C3JHeSYyq77ZII0XWLTwkQDPONdOM4OVXzoFjnNxt+gKky+xgjT0W+YZUFNgrBV5Pxzu9ADIRTXcStI8dHGKc1Kwj14MadTfoRNT561blsjraAlU6MZDitnapjC2s9FGgQg+Mny3sXr04MfQC74zUHa6kDO8pOS9do8+z9tGVcwAABHnyvYOkRs8XnAJDjZGTMYT69fsRnDl58L2xuqRCuO3od7jx2DDfeeAPKMHTzjsSQul5W3QU0OXvq7VN45ZVXcO78+ZBVNOMnrSN6OGLN2CdC4IsrDrsXr/Sqq4efuptObt6Kr0HnS5zTJp+StDJ6m46T9P8g7wOPJPkf62RZpG3RCmTO0VwMrqFuFphZnLC5H1+LuQxV3bR6P9HGZHKgm8c43iQ+ta24/goApWb65nILMHpJV7mjjRkcYYLK4MyMc+JtqhrQmYPofDI8d85W0iBi7UmPmPX1w6qgVJMvJsLI5qctjeUFhbYySj23NQbyXg+NeywgnICbbrwBDz/0oBwZTdaxBTcHncMAxlpx9uw5PPnU97Bcjr7mibzaTXLcw9lccFg/EXy9D20nNuCfKsZZYTRERYzl8er9HASdS5t216tR76R1V/+orKeddsPaRvCxSg/PS0V7zKukpQfLbxMsRuttmOSPcd9o1rdJN3YDS/t/8jUYUT83AmwYyipdIpKi628iMaUOI2yA4p0kJwHustxEmDjMaQY783Rcc6ArcwERMihtmuL8UHwUbrvrdEY3+lnRlsDgaR0iYMLfmb68907OCuCXNjZx/Phx3H33h/G+W27J80iE6667Du+/4w68dOJEph0G8n4hXLevaeK74h1NA2L8Zb1JW+w6ByCcP38eTzzxBO688xjueP/7XSY4kLPdU/wSSGSWvKNMk/2OL+F50hCFDjiiIOk5X31QmBjlMV+ddCuTPjqzEyFx7qN9UZe+c/Tdf40vT00VZH4EEzzMlPRMps7ZfvOA01Or+WRqD9jpmel6z5WMc43Ke1OKs2PyJ8LYqB/yjNzNgh1XWodei6WUgjvvvBOf/OQn8eEPfxh79uy5queZGdvb23jmmWfwyCOP4NVXX00vpa7LuqzLe6N8+MMfxi/8wi/s+ghWADh16hS+/vWvp6zL67Iu6/LeKxqo9PnPfx4PPvhgtptRy6j04z/+4/jrv/7ra1LHv/baa/ja176GT3/60/ixH/sxDMNw5YfWZV1+CMvuj3sjQqEivqsYyCNGG3WIR7uIGf+yBSVl+GB3ytobLGo4JJjRR98sMkcfAyFmqDPfsBjsIBt5tIZI+mpnWcXB2easf8MemmWnumFf7VpmcohG5NLqlxgwYbhyA4cGV7RMQgJvMF5qfXeWqdUA5nh3A2vM3BDbIKjHosUdZceWHS2mz1MX9CTBSpbpR7IeqcHUHdyGFTF+FO9/bhtPIZtPNGtyyJREDa4iWK5c7eic3gjVXvbt3jizcUD6ioYW34irASUak/qsK+07xBhfQv8MDcvJgSGNR0oheeNXH2Y5RrA5CvQ4KMO3tDXWEQzGYli0VkvDVQsa8nGVUryPUedhkOOjGGVoDnkzEEngQzuLXXEsI1BH0DCg8og61ha8hBY4RkMLAhloj3TO2Ld3wOHDB7F37yBzw+DKGFDQjjYk1HEJAFjWio3LW7hwaQPLsVqAFZSXg0zhWjsDX5hMDu5ZCQqL+E/BZBSC3oKRW4mhyZIqLFxQUSVYQNsL7Ri+mpzTQAp9izwbq4XGpN32qwBUVVq2oSvZs8qr8OZ8slwGudTx05zNzQMv2PgIaPzBcvQlCyoaTZC1RFDZIn2yZoYyDFvfbI3EazGLCcFlQXjrX/SF8qYbBMOb+upwUvwlY2WBZz9r1MBcUSR/FwBJssQAxlaX9ThD5+dC7XBOPbVsGArGOrb5pdY6g1qgLBUUGiDv8APQoxhdnkcjsjr+uJscDz4TbWBDd2P4yHK8g8oincuZwhbo2Ad8uZnUH1WeyoFL0fGoopARdWKA3/SdHyFZmVEKTH8lnSDEHANgMn2n0SQnXJ+NxozyVp8cNWqJNTmfSyPTGCilmW1gvNe+uoHYMkRAm2706PWjZgd8ncJ+ZGC8jSZDKxCCgNgwG0WeBl6RLIJSAGFu0uBW+tGAFuXjgIAJD7tCka8qiycTJGuN3OkUkCuUiQNcyUx0/2xgjeJJRYJey5NjMCLcQlib+Dh7WRrXft2atfvqPyMRhx4Cr5EEVFjALJm4AKWnaoC1ZX3UNSGErDUDpWab8hGR8RXgU3Ktv/W7b98+DMOAD33obtx4040YSlsX6eqplSBbw2+dn8ubW/j+69/HW2+9iY1LG2He5okyYmQl2VL+4cf66KUZ3lHdOGlUmMr0vNTkLDmcq+caaboiyuAIS/BXyiclePuA1TSOuCbS8U6ctOh4UtcGTmOrMR77C/uVOI644FlJskEw9s/aGG1lFeoEyIK4JvTZXmD6kBNCI9XNDGtu8QXVRz6s7JqOeibLZ9VFsjyysdlTSV+ENVq/Rgx6MD5RZB1EUleDpX3I1GVC9AAZy6QcZKPqG123zqGEisy5riNtASAvZ6Dx/f4D+/Hwww/h8KGDGIaSYNedkR6VTtyyGG9vb+P5F1/E5ctbeX0YgygyC87rF/j8K56t/1k5GuaSHQ8R284fU1dvPGY4LByjCobfjtYWDZD1fbC13S160lgDr+dgqh2Gpm2urOs85nSbBjZ5MOvX1f3rWqcPaDT4tV/2gGFlmszZ3fokzpXqUGY7ujwF1kv/JdC6Z4N1xHgW2AabPqv3crB0HI4zuQVqs1EPvFGHVfHswVVSKakkf17/bSwRcaE0kOnOW+yUirbDmhEdO5YoJqa7Rtd1CmkMQd3c2MTzzz+P/Qf24+iRI1lyEuGuu+4CM+PVV1/FuFy6nI3jT8IoriF20jH6yFQ3zCk3k8fdGvjy5U0899xzWC6XOHbsGIbFYO32eHAYZ1tPvxVj1N+nyN69BIma2bRGgsZr6sjD2gGdLoO/TNAqBJmbsj2h058cEdYNfGb1cIU50kfTPnLVM7P353VAqiFjzlp7/rvWc9TwfLeINB8wMAc7dT84XnSuARD2FN24wnREvZ3aj9cDLUdbwLVejhw5gsVigZ/+6Z9uRy4uFiv1/FxhZpw7dw7f+ta38OSTT+LkyZPX/P5pXdZlXebL9ddfjy996Us4dOjQrp8ZxxGPPPIILl68+A5Cti7rsi4/qHLmzBl84xvfwA033IDbb7893SMi/NRP/RSYGY888sg1GZh47tw5fP3rX8fm5iY+8YlPYP/+/e82SOuyLj/wQrzL1fj+g/vCFkm2yrLx1OAcRgsqiRl3ZmzeZghK98VhDDEmtOvV9r5uGvJt+uy+Uy0kauw1WAlqaLENNElGDob5rcwQy3ADlBkjSMY3Jsd+hMePfwpFM5lophMxhjYjrY63vYmqMLjjqTk8qbjhtsANtvq7dROcVWpIo3a9kBwT1XLvQwM7mBkoNRgxZQz2Nqkcx2XZZACSDCHZNhaCpaABSNMI1daMBI6hOWEteCI58Ee5Rrl9wXPV4BpEIwgDKEAlxSo0kARww6POvaVa5+wELkVxA0QnAABQKSgUjTlFDO1tnnU+tA0dziDHxbkjtoCGdvxWKWgZk5hQRwYXxmLwQK9m7GwBN4w2V4vFAkMp7ci0OoJrC+IqYCzr2AIoUGABgNSCpgYMwqsjgPY2smYe0ICIcRzBY/WsHQxQaUFppSxQpK3rrzuMw4f2YSAJD+E2T6U0WqFSMC5HYKy4vNzGqbNncWHjMpa1Nvi4BTVFJ26tFVTFSELtmDkzeKqTi6sZTP1oRYYHRSrPsx1zBwCQQEPjdTQSLWiBXlXpKFinCmmQHMRYx0IzMH7VQDRibytSMkJAjRqjzfGCbKar7G/CN7qU+kwWeMOoIDnGq50SWd2OBafpCe+pwbYIX4f6bi1jgys+06pKcGnV4Moa8CV5qgrkaINoBXOcQd70LgSQBBZVM36yWdxaRrbWNmkwHwHEniGOlWY7pyxxy/JV24U50y706Cs1zA5DaccijiNI5UwRXBKh0IDegF1EPjbnXrHMYKhVYng4yBCnHcWFBoM0OqzW+siaeaV7tiqttdETgMIsmdpaW/qcWS6rB52xzTFMF6mOQbjc5gMWmNtkQJsjz2bgbZkkLIoT5YtpHRjsLpMbcAWWjYbdSOrFj+z0ADaAa+gtOGiUhjXQDoEKmpOHwvhF1YUABKU/d+pVcwqz4NxDI+cLMeca5KhW/a0BwCmQhmPdoMuQ9bAGS1IIzoOMQ3Wawiha2WWc6mCVZ50D2h0AU1nCgU8h6yf4Sqa77+0BYW3jC79ujCuxaS/qE2KGMpdl2RHXkDzvVIvHxirXsYGb30YOuh+iByI/AaEtw47rK72qsHH4Ld5qnzvts4S5EKrV4AGWoETrt+GyqixR/hL5s721E07fvfL//v/+vwAIC3lDKGYkaBekYgd+rRXnzp3D66+/jtOnT+Py5ctBYzldJdyH58MU7Mi76YHYSAwaAcKaV4MTaL4DoZu+02kASz9fupbJD7bm2OnHmg660UDOz1bTqYFNZ+HKRWVUOH3YVjoJK/H40nQvrDviIkxxyDwZfYQojNzGlTk010tZZ3RVFvYTeWw+jjk50vc9LVNITEJ2zv4EbfSyykSSpprQ31KPwuMWvGR7RXK1QO0FBoIEIpEGaHubGQd6zFS7XjVwX+9y9UxwAbYGlxxPJYrN1vI6p7KOsJcHTGYq7O1Fi4cffgjH7ng/9u5dNHypuFQ91B5oLx0wYzlWvPr91/DtRx/DchxtPYVuXaLXbP0c14o2RzHgRXVRUoeGJ2szTVlkiKg9pvQyEQkzX/ynv5xlCweESY5wxtaD9z4HtLYqkbzDCqj9G/CzE9lPZGoM3uQAh9X3lzlSMRkmtKJSRsbKenxaLyLtk+JwXQ/0kFIcEODZPNvNK+kFF+urpE3mZQJ5BludAwoQytqsx2PP36wv81jL7DxoHcPJI0KY+CDqKr3N6TmFrknLvijNz6zSEkF5nz35GC/Gqol1nJ4PHDiAhx9+qB3VZG0I/1XG2bNn8eSTT2Bra2u6x6Kov4Jkd7bFBFthDE6i4QjlWLfj/0aq/jCjyduj1x3Fhz/8YRmD3o86cjfrEUoIoxU1bSc30aGRYWDzHTPQK/wepLTDvsbAyTzTAWNy1H73t9Hf6jlhSj39kJI6MyT6OCepqGLndqsfRf7dkegELtURq2Jikg6hINt0zShybmIrz9MuQ3O704x5Z75EA/rkXoBNR7pKlggu/z//z/+7y45/cGVzcxNAe/HhaoKTxnHEK6+8gm9/+9t44YUXcO7cuXcKxHVZl3X5AZRSCr785S/jgQce2LUsYGY8++yz+K3f+q32Ivi6rMu6/NCUG2+8EV/5yldw6623TmTCOI546aWX8Du/8zvXbICiZoj8/Oc/j/e///1XtcZZl3V5r5erOO4NmG5es8GD0QJqkgNq1his97o7HDZKUCOoB+vYdlUd+WFDqk59c85ZMAjSdbfS9Vav0PYEXjdemouo25gmI1U0KvS7z+A4VIMGSXadHg4fK3ndiJ+u7RqMPEQIjtQYvDFjHhCLlBqy9Q1bwR78TWXBdXDUMPxYI50vaP/sb9/58L2eO+7YjCsE/e7HvEUactsCOSzsNGFOPIrOx2i4UMPBjDFGLAocbFNtbGLAN8OC04/E/wRjRZufWjXYpAUoxTk18CuDBpJUfv5ms2UsU3gwBpjbmetcPQCnGcWao3opwUVuqGswE/RoPwZQxTlOqGMLDisSRDWOkkWpVjEAySSQjmfEYhhw6MA+HN6/F4PQMyT2T4/Nan8VtY4YlyPOnb+AjY0tjLVKMIfgKNC5OTKoxXmo9VmNZwTKwRszhiiVEu4ak7dyhSkiHhU3ys+W84dje5CAr2z4dAMThM8loElIriibMsBi8p0GEeZvhu5QSwNdzNhlpNwuVqN/N2JFA1qUEfq1sUmUs/37k0qrWlnfMJZAK3t7mK2K8nsO/HD572+Pc8CL92zS1ZBaYQ7FKgEi8GPjNAucytgcTNXCwVr2te44OWhQrdMaETxbHLfxjnCHf5uHCipDZzAMsrc2gVtrc5hRBWJmI3fQBEeBOsaCs8BjULwORGZWqkDoU4NlVHZ6EJTiCkEwwWQxQbJHOeGYWtTsXikgi7JjQkGI10jmiXVe4BkQ4kOefYPtwQanAhsb7xfjwqvqsAVb1kUALRi4upMwPmf/KopM1oQgVZGDzm9s8FGCPcCTO3J8UMuYpPF1TQa5BLG3X3WNEkENPO4BtGEkkY6kvslF+DyrLlQij1weHcZGB/GetDYX7EgKQlr/jaJzQn6gVGeufesl31cajvI98IGtETnKe2BuKubnx2nSVkzk91KgSYA/0VrocRZHnXyIv5XuHMawNgVm+s59GPULfpRkKDwX9cC1WDQNe16Bhe+JPBnL5RInT57E22+/jVOnTnlwnwtkZBryFidLcLikUb0zWQv2DSHwqs3fzkGKc21E/gaArHk7vkiyYSJtG9kG9mLAnO80Q5+WKSSgqgNnejHQKmGu8gwGYn/2k0MgQe+cp5WkSp18jtd0TTgDQMeTUUrkdvM4BHeTvUOSvtZODFDz+5RajPWy/jcNBpp5djIinQdmX/sAif5V/et+w/ZxuvZQvW4bnHbfM+pqo0HmMft6uA/CkLWEyWGeykKunNOpd4KaiHHsjjtw+63vw949OUCpzYUN1MZba8WpU6dw/PiTGMcWqBt1tvO3C5GKtgeYaiOFw9dh8/wZdHf3rNkMkvGQ0/wj8vKKRUNPAf7CVEfnup6g/uEIv4+dFbQwP2wXw0h7sHiKpynEaB3GiKYIh/bDHlzfy/n+e5LGsboJEKHfWaVPU0T2/chYKd6kHHQxLxd5cjGFjRgvCt1UX+tzCJCC8qPOCalMZHt5y3EQ5kUFMIV7gShnk/xFzMwZt2k6yfFFhBjMnfEQsDXhl/kAlrin4EmTWcttbGzg+PHj+NAHP4j33XqrmyEAUCHccP31uOP9d+DFEyeaPIvEO0O3UVdEKebA9RDvII955msHPzNw9sxZfOc738F9996Hm2++udmRdlC88z2aYk91eo1GOh6CHQdte/gA2QyLG8Bt70fTeiJPVE83GAIEswsIpDmJPN2PZL7w7D0TIQjdJv7gKUzWjK+bvOvYxxT7qzWyyqc5mZDnxWlLRh7lYmrvCjQcZfduC+e+J4Cm/jHFbWxnLujrGihXk2GAmbG5uYnvfe97ePrpp/Hss89iuVy+g9Cty7qsyw+iEBF+/Md/HPfee+/8WmdFef311/EHf/AH6wCldVmXH8Jy6tQpfPWrX8VnP/tZfOQjH0n2k2EY8MEPfhA/8RM/gb/4i7+4Jo9+q7XixIkT+G//7b/h53/+5/HAAw9c9VG267Iu79VyVce9NdOqG2ij02X6BpNvqrqWwnc1lkYHWrPa0KRu93h0nBJs50ahysRgynpsmfQZN/Er9nEkcMatPlN0kCs4wbAbd5gJhuKwczBgaR8zDncNeokBWdFAH/Edg4e0NzVQq8Nct6xx7DanNSJBA4xknGKIrCwLueJ0UEgN+17cwOX19E1/g1+dASR9U0SX4maEO4Ri0IMGTsDss2pIYcl0ZMb44NxIhWFwpEIAEcP1lb9py5q5hyHZUlpQUKHBxsVouS1aoBx7EFc0NBFjkGOrakVz8KfMJSTHnhVIQhcwc8s8YEZEfbOqZYUZlyPG6iak6AAppT3X5l6yGIlRvtAAooLlctmOeCPNDNPqtZNYBhCAgYADewYcObAPi3aCGZgF9qLZadoYax0xjhUXNzZw4dImtscGnwYFtaAOzRbEjj8iMFVQJQyBA9X53hYSmknG3/pUWgIk0KwxixJjmnf90gL7/Bi2xhatPlnAQstElt88d3e804YaD0NgkVt7AR07aUAhA6j2rFti2xgLaeAawYzorFmTXPYw1GkHaECUOSXUfGmeWgazZHsTXoyZDxL/mWyT3wBaxpv2taDAj7RU2eX2t5a5DVMHPWIAKRxv0eOKmHGFxcjf5Jg6qkDuxPL2ajBWuqxBMMACGnzoY1X682OVpg5dBLlVCskxky24r2UdI2iGpkZbMJnVMgZEuSv0DJGJ0kYjVz9WITs3QxYMiWIUNrK2VJqzZSMTCtDnVAfa5OrsAZbNEFk/aTEa7XS/G2JpIut2U2IQQeyXOnrIwYPC151Buo2xxAbh3AmTo9YxYLgGPFuPHyrp65OwsoHyj10JursUD6bT+ZlbDxARBvceiuzz9tR55Q+EduBO6bxuCLi3pU0AVB2fBj6LyJnO19x6RNvQTG4BGxE45WAALXtTSYwU2+97VWWnpEku0+Icxvp6vF5YJ8WAvUmfxWFVvqBIFxzgCG2tWttO+KRbb6ys2zkv8jR1eO+GYyACLXtd7bIIpQrXapmHL/LOuFzizTffxKuvvopLly7NyqUswxC5HWz/rOgt6AXGinqdgzDCCHgwZlA7uywre/QaDJPzgOoTz2TKbBK/w8sUkBh8uBNlTGk0/ESU0dKOL5zSeLLY8JcSyHCWeSMqgrmgJIsjiXw6GYjSjksgl/cIcnw6rimDubj0Fr3jlJUkjGm+BNmY5F73TJgjJV6mtMub2U+0YP8mx8imwvZHIXsU2TKr6Rw/srt7aYjaiwJZBk0RPr0vWCfyfQG6MHiV0wQcOXwE93z4buzfuwcmljnjSGm9yh5pc/Mynn7mWWxsbMq+QHWofJDDkgJzoZmL4x3Hc/sV1+5ppFJtescwYvsrf0FlrrZiMQYazFEOp+9z/JxXJIb/bh71FsXKHe3C5Ejf9yqB1ssa8us9juJbP3FJN9tWbpMQ6HKyj/cg7LxW3p3eizybAofJg+9iTYNhbq0k/87Jln6N6g9xQpsGKJm+SWNReCIeM4X1ss1fApnTMy5Pg1Iz0jC7jIE4t24BctuKT/ZjwThDGV/QSHiwr76f2NjYxPeeegogwq3ve1/ouzV85513tjehX345tzfDeLuiiJ7UrZ2Z9UY3NXYr0iYDy+0lnnzye7j1tlvx4bvvxmKxx4fBAU87gNLEdcCRZldGxr6vj+f4OAylb7yfytmSdaMnQmT7bS/cKLxhrvMKS5sJOiGs2eZ65q5eak8rWCXuEEOGL9NFs51l2WHyYV6QzzwrMrlfRvRr1rTP0EtX7ODKZVa2Xl0xETTXBs/T6nuhaHDS8ePH8bd/+7frI93WZV1+yMptt92Gz3zmM/YC1G7K5cuX8Rd/8Rc4f/78OwjZuqzLuryb5fTp0/j93/99EBE+8pGPpPUYEeHTn/40tre38X//7/+9JgOVgJYx8n/9r/+Fj370o/g3/+bfYP/+/VflZ1mXdXkvlqsKUoLtP3lyT69V25B63Z6RkgEvGqCScRxiUBWjR2cIsLdpWVPVy0OyqVTjjG1M1WgpXdgbm9HQq07LAHvRsw3Ix60wEfx5Nfio8bV3VDmepP8yRCwlx+wkUAlkGUH8TTQJAEDM1pGdy/qpTlPrk4D2xrU6/4JTlSPMBFAVmNtxO0VSxKghujSvQYMyGgQ62TkMwxQ2Ds6X4tc1eAbssJujX8ZedQ5lvqjIkVrMnrWFiu+6I35kwlrACxtc2fjZHkdwxsLq6AAFv0Pru0igAZjb2UcA4vF/zFWOeGu4UqdCrYw6VslKBLNHErXAIj12bRgGG8NQBlTrynFZymCGWzUYFhpatibWYCCfn1IIVAbUWjGONSUYc0cBgahgMRTs3zPg6OHDOLBnAQ3aqgBKaUdmVQlWqmNr7/LWNs5f2mxHvDFyBpfgHLGANcsCItmhONC8HvHXOeE1cElDCUvxQJo5Z5fRbyeb1GDdjlNsASeVa2svBDgqZvWILQ3oMsehJ5MxutH2zchW2LL2aMyJQsEKK+BHAskYmywIdigdA5XAX0LPWkXlYbjPhkdxesLnmwWK9NYrsgMM5NcgLSrOVMgp75poZgYoG/5UXnrROXK5anLd+Jj14QCXtiuQswdPRqsdpWtKV51htbRABnMagNAONCwYSAPkumwQkmmsEEFfyGkBU0OS0cMw2Jt77VhNhh4HSFTAdUzOOUI7EtKycYVjW4iKBEgCXAUXyW7L0LT+Oqc6wVF/6lFSDS1CP5KZzY8jc/ogdWAojIF2Ixp7fdSvBVQW2YA4ZshCLoR2ZEvCuRuf3bGTH1PaVZJlkB/DAYfR6nY6igBUCWKMtNk+Sjt+pqMvwz4FQ7fMh0+uHtUowcaBTHUt4nMo4ocLiGoYq/N6DJrwI40MFEUgbN0ix9+gN6pzaE/mOB/7MnXGN/xz6MurGzZUtsysT/qSgo8F7CBynBaRYY/PRwgmwULczxeHZzIO+rVmvD41citN+XfnCaex5OABOr4gP94ntZzx7hKM5XjNGXxe0xvYTEX9enljcxOnT5/Gq6+8YsFJmKmf28shCZk4OuLsn6ZAFoFnuqWGwei6suMF1ZFhIaV0r/1ECL1zv+I6D6GPnmYzBillDOQE4xyTuN7Wf+OacVoibZWgL1S+6sJVIQOmc6T1nb9zoE+U49PxuazbTemf1T6db1XGalBKpheXv3E+XE/N93YF2KSJ+TG4XrC7uiYOsLl+ETyqvhQYlf7SuiuMCezzYi+XJB2ttKQB2fo9zL9mljVdyN3ctWs5I6/rAFkc4Mjhw/gXH3kYhw8exGLIx/iCKL2IUiUr73Ic8fIrr+Ktk28LLckTkdZs3RYYOhy1k9SZXVAB0Pi1xoWujLWpSxcUvmdBFiAR54oPrW/zzyGbouJHObCTY0E8xDlNvvgwBvKh2KnmE/kWih4f33UZeNtxl/Dmq8pQAt5tAaK8nxrIwBiO/Xk96s30P3VARii7NUWQlla3o4hOdq8cBZSee/nUjcC/6TATL0/rhh2ar2Ui7sPzrPRJYR1AMnfcS68Gp85ZDIaL+NBAJFdV5CSfaCXKvBDQGJAUZg2+mM3r2rQXR2hShz4jG7kyXnn5Fdx0003Ys1j4rFPbd3/wgx8EiPDySy+F9V3EgzbUMyUl/omCIVJM4sS4boxAxv0NcmmPVLz++us4f+4c7jx2J9532/scN6nk/jLA83cC9NZ3ovNedgTgbQ5Xs0G6nkiiU4VOk1HQIH9HeGanwQRAVmlKe0lrrp1Ozs2AMBVBV0LuFUC1U1BpBUjdnuNqA2TSOrSn7/h7ttk5LK54/oesMDPOnDmD559/Ho888gjeeuutdxukdVmXdflnLrfccgt++Zd/GQcOHNj1M8yMxx9/HE8//fQ7CNm6rMu6XAtlHEd885vfxH333Yd9+/ale4vFAp/97GcB4JoOVKq14rHHHsNrr72GT33qU/joRz9qNup1WZcfxrLrICULHAGusMHygKLeOZR/E4gG33pH47TaY7Qu+YbeagWjkRtfYhszmQUAcaRnh1OsM3GiEVsdvWb96RvOEshDNBhsEVYLONCN9QxODAX9KyyF8qaWtOvSjLg1OuchmSSisU4c3GZDKN6IQdUMjiSxGMlwY3CqMZz9GCXWwKnWXnMwtzE2GV8tWMCMrVwbTIzgdCZIWqLOMFgl+4javUJGK64AlZa9hPSvgLkdt1Tt7U11xvq8AGrcgxvbvds5WzOIWqCYv1HZKhTJTlKlLZKgn4Y6t160ILHSolEGD5Sw46GEJoweS0FV5yNXc6yP44hSCsY6AiAL/rL2bT4bb1ERZ7iNseFoGFpmEq5N8S2XSwu0UVy1ABwdO7AYBhw9chj79+1pM1aKHYvF3OiCASzHJSoTRmacv7iBza1tbMsxdMp72Y7lby8TqKXJF1obJ6KG/RlqR1oU9kCwKDtsroWIjLWEnggt9K6qzCLlF5+PIha5mmiEMNYKDt57DYRsWQ5kHvx2sOy1zjXgqkRjrtZgfVOSzKjHFizCjYZKplsKz5qROcg2DniLss7lSkhFHzLHBZQbfoPlN80F14qCAgR51XjdDfLq8gJzy0gXZKv30VtNNbgzTKB8qPuMiNoJcWBwONeDKzfRAj3uUMeu/ajMIpEZMvbaxtkcZYSYp4ih8i3yVaP/YSjmlBbpk8alwZbMTVZzVTwB7cgsNvoUFnd8kvbPgB7nJrRUUKwdtd6mWRKyMf7WeRSnp5KTjceOOHTY27MaHNva07e1o4htuITQNuB6b944a/wapt1waE5Ztg+t0O43nrJWQ8CGB96y6eCdgh08oItBQjTq4MuGYMW/KqbQDlPLahHA4TQXIl8Y0OTSyZEDn2OTh3pPdbzwFAKPKY+zAq1tmwxhk+kpKAtNFzoOMi8m10iYpBrainPk6kPWFDRAsyFYYJHQrel7ilPv2cw02DCu05TnDeeKTJuarn6YG5d1nc4PCsMzM1TjrWkg5QwdSeatGEDLAcNz+FR8TDaYrAGfEfUUwZRraPSm60a2qwrCNV2aXHIoa604c+YM3n77bbz55pvYXi7zPOlz3XotyTMW+Z9Kx8BBnKisBfzTcEgqRacw7BRg149Sg3Hch6oAuyM5wqbcmSiAp33mnzmMjTtiMf1Bc4FIIjPR8TPFu9MxqqxP8h+KXpcF/pwORJ/t5NLceCn3pzImBwl3CFTkJNkegrZsSn3dZ0pSsSMVidnkkMmTGZzkFVFf2NaKeb+nwPiTaVw6FypSVH4q/YrSprA/boFBUfahw6+uS6RNDa6X45+L6pG4TgT5ui3AovC2sYhkYw1QCpmBbbywvhfDgHs+fDduuOF6DIsBpDrMQBe8U9M1urZ4462TeOrpZ2T9rQzVy+I8M5FS2igV1qn+NhzLs96i0zkCL0PEbg4RdBgiLzuYbOtD3bf362DlofS7VxNBeOUwMuUtMgDZW/Hnmb2f9OZD7sMCnRJsET/5iSQ4RCdlPstwwsafW1G4k0yzdpWWdYxs8zKVzZlvDXbRs35FdX9ry2Vav1ZQWiihffbv1j3bS3sZrran8M2q63anSxmWyGxw3SGRibaT91PGr6ltl9ntyS7QzhTSjM50JIQPilfstwXmJ9TNS0dT4eQwxp7OnT+PZ555Fvfdew8GCVTSB0sp+OBddwFADlRa1UkcRbqWK0xlgM+fB4V1Aa876WdmXLx4CU8//TTePvU2jt15DEePHA30r11FTdp++2oh46cf6WTkascMOjff7uVB38CqhrV+tiVIZ76fmVu7Wed9WxPg0XFedzcMaFUlrSsCbGVrsRldI1yhTAKwe9ka5cHcs0b0K+A3Pgy8ZII8r5OUd7K07PpcdaeniZlr78Wyvb2NEydO4KmnnsLx48exubm5Wjasy7qsy3u27NmzB5/73Odw0003XdVzL774Ir7+9a+v5cK6rMuPSHnttdfwx3/8x/jCF74wCVQahgGf+cxnAFzbgUrMjDfffBN/+Id/iKeffhqf+tSncOzYsZU2yXVZl/dy2X1eRMRN0nST1jZK2dDVvz3ipX1PaespGwrVWETiKGJ02Y+iIcmMz+6IjBu7WtXYm41VDRJyk8Ccg4FbkE/LaOEBGURqNIwOWjm+R9rXMY/q6EI0flSguBvXnK3MgAQ79RtLc0Bq5hzBRbNtFHOIluJ40WG1ZDBLMJcWRGNGJG6wIG7kZQQyzlKKBS+5Q6IZBq22vnFrcBUwk2SiYmhwkmJdjTse6OFmGDM/RseCPgfFuQcngQEqLdfJstY2D7Jzrz0SA2LNGUry5mx0bLC+/arz04IYmClkaAHqWMW2Jw6PCrRgA8mspNlvhsEMCUqF47gES5CVvRHJaIFXFhjBIFSgElgyhrVj4CQ7VV1itCMVGpxFsuqgFAnkGc1ITgQ54qFNqGZQUoeAG0YU4w22oRAOHtyHvfsGaCBH5XZYGXOjrSpGtu2xolbg/KUNXNpsx7xVMVrVOgo8LduRJiJpR10xqJAFN7TAp0ZXRRyP7oyH0dA4ysDcnC08Hw2LOrZoSAI0Qw0Tyag4tdOq+9FP8Q1xlRlF6lloj8yH8gmh+HGG0DxgRlgmE0Z1xgT6c77sZEEVvjaZFjK6JAcSW/Yqf8seJm+d7NO78iJfgyxQfJM7XOx9e3aTd1+c4+UdcR4hQhxAtUC8+W2izrSiX4IGoEdqKbpV7hbBn7QNPZKODdew8TOAwZ0F0PmRcdRFk/vCK0yN94fSAiObzFEccpAHLRiqoqDWsR3FROIaE7lIRBjHCg0sYKGxMPsuhqx9pfcWTKY1Gws0d4kFjgjmrHF1uKrS0vETtWO7Op0eHWhgTnMTjeVzAS/Gn0qDclalOkxMxHJocDJWSvK9yd0QuAfV2zrb5G0FmObKyoU85R9GMqEpHa/JHluHcGAT0V7szlWFF2izrLi1ADVdywSDf4l8KvW1nd7c7oG2LsusQsSFBrKYLFJ8OdwGLUUqy0X1IpHiSuiuKq3FNdEoIy9BpsFkiFbUoAbtwY3u/ukyJvNzgi06e7VtpUXtIKxb4nM5gIC9DbhsnHf06GegewNzBb05ByPKWH8YExgnLbGCp7I64CjovmuxtPTqjXcvXLiA8+fP4+LFizh37pwbB3YDvhIjwjzD8TerWfpLHGQaVHbSbGVtcxroE2WSyoXwnO5pVg9i5qrrvvSihTdqOt1IW1sib6OJRQ90tXEqjKoXEfrpCS8Arihva0gCqITbHPpR/eEyQfFkwRlpTGw8Y8EtaQ/pwPQORw+4iMB3c0j9d5r8jvpF10gr0JChVznAmIwr0sqsYxdI1+YpL+zpGJ7hN+Gghro5ECfND9j2shTG2AcqKz1YRiMqptsVS66bXJfV8LzOqZEvtTXUPffcg9tuuxXD0NZqCj9D9/DV8FBrq3Hx4iV876mnsCWZKNv4KmqEJ9gOdJxx5D0P9nPaxhd0qisy6EDiuFzN+r7O28L0e1r8ZBqwQELuno4kCp9dpYd+PKHBcC8GpuR+AUiAfy+FwtOcqGq2TPTspMLcM4E2UjUPBEklqX9fn/a6XCpMALCp1Pa7qhrqyWoYiPJS4UnqQXkAiQazrAKAIsdDG0EFWZAll4+bQ1+eoVaPcAajrfVsX6O6R0fCHT1E/LCPlnyPZKgDuqcVX2oniMoNjkTyRlZSiq53AwN5f/NPvf766wAY9913b8sKrYVaJusPfvCDADNeevnlML4IW4ARWVbuVNILgivu+7DYadLUaCIW1Aq89dZbOHP2DI7dcQx3Hjsm2a8d1mjvmsLnfLEKWzxhqgZTns3dlB5502fVJkwKuJFskJNZA067oPRlpsSRzknvKY6mXfHMKPIVG0OnLanDXNpSmT3KgzlzNy49qAeXgLgnWlWSzO0nXcWE8dH8nF1d6SGaWRNeQ+W1116z72+88QZef/11vPHGG3jllVcwalrrdVmXdfmhK4vFAj/7sz+L++6776rsHZcuXcL//t//G9vb2+8gdOuyLutyrZXHHnsMAPBzP/dz2Lt3b7q3WCzwmc98BsyMv/mbv7lmA5WAlhnqySefxIkTJ/CJT3wCn/rUp7BYLK5pu++6rMvVlt0HKenZUis27aR1rARjhmXSEEe6BVEEh6plBIIbB8m3S2Vuh6RZHQhIR5mQGzwIlLMZiFNajVXK0EUHkWyIerzUYIYc1g5kjP6GtFtbenMAQQ3CmslDslQwN6dlIe3JBm3BRwEJuulvR7U4XtvYagtuKRr80QJTWsBKbcfFSFYD30lrX0A78k2DsAAilrf5m/PRnIgMFJLsPaggtICnUtQ40gK6AA2gqGBI1hnLNIVmeTZjl4yUmok6G/la5h9KOC/w0y3UQNeO+yIJrPDgBEZlNzOUIvNjzXGg5/DGKwUcAWB2PGtgUQtIEqsDaZBBsUAEM0gUANQCd6CBAssW0kJCm9VIvvVXx1GCodiCHNo8EUoFhmEBrmhBWahyBEPBUApGMKo4A2qtdhReo38JfeIBY93Gclw2sjf+Y6M9NaAOZcChfXtx5MA+7LGj5drboGxKvEgwQUUdR2xc3sb5C5ewtT1iFLlQa0VhYMCAkdkWAHrslc0/EAxBzeo1NrHhjjUrerSb5LphDdZwa1AVh0XROSSyvjWIrZG2vxHJRhfk/ZiAkCCjcDQdQK19yTTmAXQMtoxr7fdgQUuNx0a17Nnb9kXoSZ21HI4eE4cgjxgET2redlufjibQGxh90BHAcqRhCKGQMWvWsCZiG120rHLeXlXhoUZQUtlWAtZUX/gxVdD5VSN7V4zzJOOQykhizWxF0qUa5Ql6ZBrCMZYOm8pJlb7V5Jra1VVbWMCGyOCKQG/MINZ38WF1Vfy3OdIMWYSRYsBm+140q1OhdrSbwFmVBpQSa5M5VBS+wZiiTbHQp9BpfCNc5Zh+s2liD8htMsCzHagRO5qCiT0gR3UsC5/HYFzlGw3OhOGIwCNjKB5MyjZOnWiVr+6w0ZY9UwLa/Ct8rFmhWgaGNkVsdObGYArtTulLdZo6fmF6UCsGRw+3sRuvWXBACyglGQODMaLRvTs4lIaiMxXeN4ASHGJKu0VpMsCs2avI5F5Yc1m6A8/m1uPaAggMZqCS1lfKUPwqKDJHmuFOauq6p3UlvCTrB4iu0rWcGs9zIJLQI3V4UbCjo1gpl4XqdL1XlL+Lao4kA7WfTmnAfJAUZbjCx963I8941Z2gHizhMsvvaxPzGRA4tppKbEtWBzCsyPhnnWdCi1Zqd/8aKt/61j9k0p1zBK4EnyYVNAjSvltNd9tEPuqxHlsyfTcLgspVRtT9Xld5sJM5FOFy+TEZkkJh/OdyYQp71KesPsLgIG0//CiSUD8hfzJIuA4J43XooQGzCH2pPjSJNRNc7ZLAadqPFGuIagGq0mtYg3nYdx5/UBOTQuRORd9fqY6wG9DXAfRy01PeYrFR5RH5PiVcZpcKc9zt+07Vxvqcji7Snwe8Ky24HnQhzZHXdd0R+aQCeiQtIOtJEfkN30X0qu9LdB+jNNV0XVAMAkOj5SIvIHiuoqQ/yPFxyy3vwweO3YF9i4W8eCTUlWSaBztXZmxtLfHMs8/h3LnzIaCiBTIVq5sNik65Ec06Nw0+DxqGzwuHNQ/7E64mUriPYhiTtY0h0nGVYfPndcRTLg9BU9a3jcD+9dF1XywIv+Y6FOiDV7UTV80xMFDgptBYBFlb4NySzqkPU+dxNvQ6SNWoKUPwtIMGE5IB/tWaNerkEDQubbZp29ndT6zHubvuUp6cbGkSXC5zFD9Rm0VScRQ1m4rOgGNG94UcRIa3zx0+jHVJERD3jBnYOe1nUji163tqldeRgudkcsITtfn3Pno6cEhef+MNEBHuu+9elDLY/WZKJNz1wQ+CifDySy9DMxV3zRhSDAVpmD1Xsk9EFK87OgGk/blgrnYDALC9tYUXX3gBp0+dwj333otDhw4DhkfnPJ2cOO/zs9P1313x3VPk6DhaCkvevuUVnNCj1xrmSdVZWJVUub/PUdiuejpcz3LDPqJsspqr190ZmDmZFKrFuZX6GUv+Yo62pr+D6FvBJPPSyztHR4/o6HS671VwW9W+w76v2MEMD11j5T/+x/9o33cKKFyXdVmXH65y//3342Mf+5idIrGbslwu8Vd/9VcS+Lwu67IuP0qFmfHoo4+ilIKf//mfzy89wI9+I6JrOqOSlkuXLuHP//zP8dxzz+ELX/gCbr311quSh+uyLtdy2TUl5yxHu37INjbxjT/9bm+lsQYvxY24NWIOfzPOBCNwZwtrV7sAE5Jr4tqTtwLF/cfwBrq9LhU3QrGmLgFDA2/6oeasLbohJs92ktoXY4G13zqNaaPdYOpZpzRLEkldaH0LLiFBJZmxzPtVJ7VnhmkBP9npbvgWR0qEE2gGOupgbVlwAKLSBKQ58KJFiy0DTP82scFqFrAKUEUpLUimiMGcCgGF/DfB8SLfiZpjRo/KK1qvAFQIw6AwKlz+YRmeDEdV7CUjwKPRQg3HDcRsJxokocYAxYEFvchcsvVXwXWEZguDOnxltogYwzBgKAPa0S4FNAyoXLE9jubEoVJaZiXB80IDlLgZ8QvapyrkWqso3ypzVUGoKGiBIEpje4YB+/fuwXVHDmPPYiGmG4Gu6jtkMqm1HUe3vRxx4eIlbG1tGZ5c0dvIzWFix8wFegiCQxlYrjoulV49sxULP/iRY/5md7sWTd8Mlwt6UYPUWJ3h4ASXw1clOQhbEKSGNESnuM6xsQDgx9lJe5YDyXDgWcdMGoqDyY+38v8cRqlq1MNGz61bhjr3tabb0boj7axfghrw3cDe5rwKbiOkDZ8e6OYlzrk1m42paljTZ8N4ogGemTHOLBxXm96URkcwRuPfJtMU+yx6CAJne2bk0TOMkao07nDb2mDy72Vox1/6YjHQtzxHkPkoKgOj7C2CH4WFBWGKR6F7ec5ldHVCCAKOa5Nb7hhYpcs90NdxgTxRpkdct8KOFFWnKpmsr7XmuQxEYP+RaTXReT7Xcz6B1hWbfqr2jKwjTIbNlehwm1tzWLXwSTZ32k90dCdu5Sr8UQ2IJoeAgPzsfJSB9HLGoXQa0RFEvaJNI/JdnF7uLxgZ+hxF3FCdwEKJYcMaS9dH8jzpOs6eh+k2jXFMKwP2cdhAODwXS5qqzjHtSPALs0Sg/NUCGxtv+D1bB0RHZVwHutAMuGzcEDMSqMNHs1BInKesPTPMiRdtXqJcV3pocinVp268gIxpjr+vjaLweTDwFZ8I2i5RTyCUpE3sW0cRV+gFoZ/4bJ7w6Ex0aubYiD+razT7t1Wi9JzTYKTFqQSYKRTkSF85rG98vxUGB90nkP1OMgSIZBVkseqzBLDoCgrYIP9b6b2PWI7yzXWiXoty23lsRSGHAKJriSB7Bd8/pTGT9on0Zy+ndPdAaAG0SUkGvRvWX208vu71NUSQsWEt2g3G6iX6Z5VLLs8lkjWzREB90X2U6h/JdpsDlIKeBsvx3g6j/mdHTOt6nOQFAeFJgo+XABzYfwD33XsvDuzfh1KKrx90r8ky90JXXNv+4Puvv46XXnpJ1hJBZiQdHbhwIvezPHDFrF0FHoykGnlDYYqItf6DsppbsMyAG/XfnE4xAFYsT7pa3i7PXVW9o38RsEhTapvp29hhMKGmy7vcaq7Yt6kBQlHpB2kZeM0HZ0rS+dseU9tF1i2TpUtYY3FYo+5YKGHa9moxcBnoYLIi+5D+OFJdv3GSbkHjQ+RW6eR8n4VF8JfkXlxjB5g63sgvJvVgRznt0Ons9nv3KRo5fTfZuaKo/LUMpdozA2+88SZOvnXS91GBbfTot+uuu64fYC8mkl5cBa2t3xTmFXUdD9o2Zmm874HBOHP2LB599DE888wz2N7etjWwyXIOeOXapneVQDDhBcON01WgdQT1Px11B3NYF8wPfnpN+Tk04YNZgZLZsXRNXE3hyZfZEU4Amcg0793mugMm2mt7iWs6hjs4hKCma9+doKRewOc5CJfn+XiViJuZyKtG+LtXrm4fsS7rsi4/DOXo0aP4mZ/5mUmQwU6FmfHUU0/hkUceWcuLdVmXH+Hy+OOP46mnnpqVA4vFAj/1Uz+FD3zgA+8CZFdfmBkvvfQSfv3Xfx1/9Ed/hIsXL67l27r8UJSrCLdj21TNbQjitejUats0dXy1NlrQBJmBSY0SDD8yKe5r1Rijm7tgwwLIQzDUA6Zv5iWjvDXaGvaN5XSD1gcuFIiTnNmCPhRuzwZD6XmAJhtFC+igvNklCE4mhhN1pkngBSBOsup2ENnsuqGoAsHxTmBxlg9Wp0S4SGvBDMyepaPf7LYwL444UiN3oTYXcsSYGe6TU1W+qfMWsOPgFF8tEKnBWySNCBWy4CKiAcDQUpIoVEXrADQAZTGAFgU0tICeMgBl0Oej+bXRToHjndU4BgaVFnjVcmO4M3TOANDmx+EzHAWjJhU14FeMErxDTBioeOaN0AeV5khlkDm4STIlbdUlQIxSgD1lgUXZA6YCFMJizx4ALdioBXkR9pSCPUPjOc14BLDhfygFi6FgsSgYBsJiUbBnKNi3WOC6I0ewb99eCYwoKFQw0ICBBsm4g/YmtzgVLm1exuWtpTg9NOAKrW8Ao8kDp+84/16UHtt09wF8+t2CAUp+yzbSuwb8aT4kD5SAyRTPdNbzspKxO1z0UeZGGRUtSCVm/dIACzO6SntcKI292Nj7PhtVDlon8HQLxCO3g0kAih8DEmW08lgwlLHKQMkOUwhlKJbdrgUfaZBieJYqSP5KgRnMUpYGbnjoLZKzesNMf/JmO4/iMJCgms5I7IGS+qf9N1lO4Z4HT7gzwWiqsPC1G5g9uwFApTXCGpAqMsGzR6mzU7M7tVIBVGr0MAz6trUES5aCRLcCUa2aEVDln8iyIphh1padhmTc1maaA6dZ12/VvheKdBkMq6aPFefRqRWMxokPAXV6NT1JJle17Ryk2LWRVVGiIacRAtfWg/J1b7i24DbVC0oPziLSVm3BZJJVjGMWLmT7r8qRaHDWIDzPCul0bX+27HC+8eBFpLmOvtboolKZxFSF5xD6lHWE0a3Ms9XJpXeU94X0KDaLllSYuZsHTnB6YO5cfzsUBpijbInD7tZMM/IlrndaHZmD/KDLmxlwzBlUAV87hiiqMCgbdxAudhzcTP1cdB2pwWQqj/LtONb4u3YBroZvCoFwJssBD6Dfec7f/XL1sPW83AsB4dDwa7r892f7xrpGw94DoU3SOivBdx1jkqNf0wDT50WtmK/bKu1EW3FVncfYhpd3Ey2pSr/lcx639bwDkFu3I3dhgf96wdcT/XNxzcTIk6efLmF9uCbYEt27rgptgtO4vYdO3loDHhjrQdHeeNi2yLPF9jO+HyNvM/XXBaPZbdU5uorQPdyquZUWg25y2OJvWXd3+jn0GnCj+2zVO4pfxlLX6gRZ4w+GiBaIpGtxQiFgoLYudRmr64XWXiktu25bnwADFRzYvw8fefghXHf0KIZhcHz6isHxHpzsb799Gt/73lPhGMgsm6tK6LgumaAyEE8ic63vgRwTnaTtzew9+nuZALMsStVsdnJPPPPfPIV0elLh6u90P8wu0vXvvEcGReSrmdqz0ofjka4B50EaTsat60wVjLOidRKROIcV1fWc1iY5uDzLyADEtLkkylTfi/6OOPINByZYMnnOIt9D6Ja8fMCRrpBJNa0lo8qarPlhaxStr/j3NWIIVOrXhOzBaTkAN+KG86AMl1nPRXqhVKdb30ADsKb7frW1eQbhdr/WEU89/TTeeustUc+Zt8pQ8MAD9+PIkSOYK0m8BJU0R01kRBJlfIZRG+kkcIK5VQtrvu7+crmN1157FY8++m2cOnUqvSzkHMa2/ly5sutoIRBf6LenVa85F4Dj5yGuWPA4QebrKgcYHd92wFPS/rNl9Xj7x6ayJXe5atG24nqcB96hntUJczwDNCXqCfTiby/ABjWTftWf6HjlCnB1QO50M1Oy8fpUtq3LuqzLurxb5fDhw/ilX/olCUjefXnllVfwR3/0R2sH/rqsy4942d7exh/8wR/gySefXBmo9Iu/+It4//vf/y5A948rm5ub+Pu//3v86q/+Kp599tn1cbfr8p4vuw9SsgwOK24nx6Vapjjc87oTgcBqPpsxBiIYduLenvL7gBGO9iUbd81IZaCxfRLp+CJIDHXgzzrKWJ9dtbmOG9ywcyXkjCVh7HnzTp6lhciOu0nmDbYm4mMGUzQ06tE+nllG6rG4Nal/Kw9uQJDNtx7j5pkbGlyttCOs4hvylmlFrWcGn7evhm9r1+aoABgAHsDcPisPgBrPxRmegE3GY3etxwCBfoBqlFM6a4DIcVcS78VVHLgTY1ou0Y7K3NpNzmt5K7iOLZtLywbDYMl4ZAYddpiZGXVkMLcAqFpbulI3cDRDf62MWhntuKIKErrmonPbjsMbawzWcBouEqRCFkgB7FkMOHT4AA4c3OuOKRQL6zIaE2fqODI2Lm/h4sYmtpZLganan9LEWDULT5WAKbZxTwNZQkakuexValbRQIgVjl4NmmF0fQTjUws6DMZsnWtNLaU0Y/wl/6pNiXzO1Ymd3nKHf1a4A9pppIqBWuavw4fhKchCCyQg53EnjbnAoGYQc4eiGvbYYNXBNqcNA1RDXSTHuQdPtmeTbEGXISQa6YJMZAvz8uxlGqAE42IN1CjIjlZK7SXR6lZSkzsquxwvFpmR8NECKaN8b3Vr4Gel6wKSbHSRFtn60mdS8JoEdur9WkNmKkNvhq+Xk9HpYu1GQzX7M66fa6ozo0HNMaq0oAGYSqN9v9kvZ4SZSoRZj19U50V0Us0FISLQpM1ScgxlGZ5pW3WM0BCcRkiQ1OCSgCWo27MdBOMZ1Zyer2zgIB+fgOgijmfaIXMupRICfWdxrkcwxixWnY6aDx7Ic6LOX+XfXv7lOtmJyKKz3KEUsEDuzFe+iLIwY4ymEOqxgi0tIuxYGvJnIMeumCw2WQJoOPyciT3SmeIo8VQHTC9XDeY4xpk6GR/ebilz97Msy9faAMISwXVAt3YjggU5XvvlSry0+6q9E1rL/IqN87fwUL+P0VZDiFJ4cHfw63p5VuImOdfTXk+5cy17HQVphpsCHCovp05xr8jwtcG0keyQy7ishsjJYLw+Aymtmj0g32RvkvY4fGVsZDB7ve4LtXZ0p8gV6F4yrGnhsrddji/KdH8BoDTDEXbpu40jLBgTWjh9tu+pKbuve2JmXxfauoz7TG0IMkrbb7PPDNRxSuG6X9FGjPLjutN2EhlCDfaxQDYC9u3bi488/DBued/N2LNncD02J/lZdQ5jY2MTTz/7LDY2N5tm5rZfchyENR044HAF38t8mT4y6Ps9AaajS3uPmRTwidYDT/cKz0jeBE7or/1W7ost5lYi0U31htbpg0OSEzqswbXPHGwRhpC+57XIpNjQOV+YtBjWs0pj1Lvyw7hm9u+xxThC2Hx2f+naDuCnjcQU+ti7kw0bbdn4Ei6mazHnx0BXnLOt2Vi0nj7Y4SPafaKdJ8ot3a/bWjuKWe5nrMdRpte+jq01+2CZOOZe1nd7mTAYKAd0WhfL5RJPPfUUTr71luNO6hAD+/fvx8MPPYQjR47YvmAlrQbcTC1gtOInr77NPibVV3aDdL71ouMAYFy6dAnHjx/HE088gUsbG7MUGm2Fq7chMjNJHJFnA5wtIfsXhT/oDOyEQR14J4MExlkwr8yGVy7K0tiRXQHkud3deBR/Acigs1eBH188ScDMroNmLujabAc746TEtciuKk/BmI6Foohel3VZl3W5Jsrhw4fxK7/yK7jrrruuSk7qsUgXL158B6Fbl3VZl/dK2dzcxB/8wR/ge9/73mQPQkS44YYb8OUvfxm33377uwThP66cPHkSX/3qV/Hbv/3bOHny5C58FuuyLtdmuTo3RjBMX3lx0AzA+U1FeV+yBAOEGMvb/mzGZNk8y5J5CfY9Hv+TQdSNtRuFJgb5VYbz8CSg2WvypjE5mmVc9hYoI0BP6QNAOp6H4nfG1FDT7e65gyNYP9J9w6kcZ0KlBfW030PLqmQGazHWV0oO7YRLAtRBaI4J8gCgBnMRoy0BXPQEMcHP1Ftmc14d3jYG2RUzhbFqxgVpjQqGkF2KMAB2/NwgsJYUbNIyJBSpNzTHMxOYR4AYpFmFlP6ooFbBjRqDaIBmB0mBR8HBGcPICABzbf4IJtQKtBgahr89nA2ctVZ5i7kZ9/WoKadHxnK5BJhQMICo/Y1cMdYlCgFcR6B6piSghSeNxNgel80IwnrsW0GhBQoNLdMWYP3vXSxw6OA+HDlyAMPQnPya8QlCr5XH9r027G0ulzh34RIub21jWVtQVG+EbTPdHEM1HrNjxmOlaw2MgMkHVDanP7E4r/UaXH4UNSQlZ7s+GO1G8gRrdjF/W1wDWiwoRZxa6uBhhScabCe2S5lru6D03Girja8zaoETvvyZTtZVEnou3vKqIBYKwWVGUGIMn3hzukCHmGmOi2S0UZhLZ3wTw3kIatGp9YwA7dOd+jpjQ/tjyYoncitZIpsFz9rL8xrNkCJzZvHhPD5rDNQML8ztuwQousNOebg7ngQwOecBZy07Xuzfj0dpspHZg4IcEjK694Cs4nDpnJpB1GW+yXEiod0cdMQsx02a3PGSAiJUf9A0KMzwpo4Eq+OBwcZbAccKux63ozrfjuPMMxFoPgamRB3vwaccDLytf6WzpvdY4LUxsWe5ap+AOpiib9p0lUMCiJ6x+VDaM1rKVmPikG2Lw0Ai3jvnDgiWtYsMdjKaSoFm5ELN1mdyfe5sanUizwbvKs3L+sPWZN36x79z6NvleR80mHmtg1/REYiRCHa0rQvt1p87pijVD4uOMG96IXbU4aMEmpU6Ubf3f7PFYI/3e9kY+Xa6IZ7AFWgz0qTFzKoOFD73wIvVbV4zxSZ8tzBOJ8/4MvBHf39l6y5avE6iv+zen8sEofV2aj5d41XX/WqEJexapK/ZrhwOgtVfHUzJ4V8oS+0AfeB9Z64gj5Bxr+p6hl/neYSnA2MKPA4XIgZFlkW2TzBcTIfRB65GOBzLGd/22a/R7AWJXD+Gd0Tdkagw4SDolbhGDrjsIMlUaOsBh16hULyR0USmM123WCZgm9fSruvRsMzh6Eidk9bHGIPVS9S3vi4FtT3bvffeg1tuuRn79u6xpVmJNKOQK+0QYVkrnnr6aZw8eTIEz06DaHT8Uf+Q7D1yZdeTFlBr2wLBH6fapq8JNNMvm67Qjqn7mzxhMPY073DoWoa7CnMQaMWQS8zkzAqJFfru1w1zUE9bmfKJ1OO+9R6fKq/nYTEMTgSdKuX58TAihxE8mKD7rsKukycuB0xiTWHQNWwescFsOKEOgzwDe1zH27V+ZIGnbT67tbTup7t1Z5obIwYSUesAmozoxtjjRX+7rPF/o1S40tpIZQyh7we+voJjU4SoPpnGtVwu8fTTT+PSpUtCMokCcODAfjz88EM4cvjwKnASHCpzqGsrFwp9KdyA5jnOY0pItp+mM01RKu+2YPpaK06ePIlHH30UL774YrP3UN9mznA2A6Xhbf5+1OkIuO2KgRj02kRX5+vzttX5dc9sQ/+I25T6XbXmm0os/TUvI7tXYOXhtKeIt8O8pqVGqDbRXNZmkiBXKL1cuuIDOzdFSsMZXOWHtF/9p/S1LuuyLuvyTyxEhM9//vNXHaBUa8Wf/dmf4fnnn38HoVuXdVmX91rZ3NzEH/7hH+Ltt9+etZldf/31+MpXvvKeC1TSlzl+7dd+DX/2Z3+GjY2NFTbBdVmXa7fsPkiJ0YI7oBvCLlPRTInOmPhmLNvOyNtphs3QXfC2aUaZfjPdb+ncFqNH43RmPjOAJiBbLRocTnkNPaba75m7lDLZVLYx6nh9zNPgIh8BQoBQ7wBsv/R4NzU2BQOw4hgIb5dKMAwaMsZRM9VQMAYHmxhTc9jK/fiGqo7b3jbtjJ/6tm0BQOrINxtgm6129J4ED8U2GQ2/wUgWjScs2W/8qLXm+K91GQJxFNcSFFE1iKIZjgpIApqGHAyi+B7IjpJriU3UzA87EqglcdDsGsGo3zktbeYYgBx9Bq5gC07SIIEQgCAPjlzBRFgMAwo3TNU6QrOWqKNhlExBhQlFgq6YCyoxyqKgBRLJGBggLlgIf43j2LK1bFeQ0QUarZcW7FTKAgUFe8oCh/cfwHWHDmNPISwkkKuOgnsAYx0xckUdK5gLtpcVZy9ewqWtLYxCQ9qnzjnAGCujMlCToycYPWOQiKJUg94kuIvkOMciDhB3WklrasBNTv9mialAfCEOUBN3CCRhHgPeZc4sSMXpqEhAnMGDFmqTDZ1TZ6HyjsqLPqjKQY5ytoj8zSJ7zrnQ06YGHAAij1iDveQ4NcUXQ8bSgOSqR9OwzNNgBtkiTilPISUghPkzUyq1wAcNPjSznOoEZD3hQYvZds/SX6OkMF+KT6iM6q2ELmEM5igPub2173pIcMwkePI5n2g8JowtFV0yM6pzQee4DxyzgClyPWLOLgumbHLQjanNeZINstEpQa6zGI1mjF79fg6cc5pxPAss5JmeAEwCWsieK+ZCs65MdeaADMNBcnzn/udgshHKuoEt+JVEhwRtLIB4XdUtGtDXcJiPfmTrJ3ba7LRV/rxGXAulQNXeWG6OXNeNvZNSj6tJRuxAmx4s7C1HXWnwcO8sQeCrfGyt+U04HtkWsn1V51k/Ck0DfeeD1jRQzjNvkX13Ss3HE0bnr+pfAzjg1wKGVJ4YsSm6QsAoOX7ceZDQ6l2QHoPYjtWzo9yUdnba1AXYYBogBk4LhZGQKjhlqpIJWt3+XJdK5xaYnWW/wjEjqa6tMhn2LuBN6py6i52Mn3DCzLMRBu7u2cVIaNO5irIsgpGdWXPztDNcPRyr5WNo11InTDOqrex9xVGFHP+1PdNc8FOUQe23jd3WHXNtIz0X9xQA5MUN+HE/6SESWPR5fb0hyN5u/B5kE/eFOfjGntXsSpbxyPFXYt/seqD1iRgbvXrM1AY45/xd5eRtHdakQ1yXxFno1lKs+ipqGMp7c5Mp+vIJW4Boog4LiiTLgMrykgDLCwdxb09ybNwHP3AX7rj9/di/dw8GEnc8S9YYWVd71t1GDGNlvH36DF79/vc9I8xEduo1wQOXtAd3vvAJ8K/d+JjCtU6HS99zc8P2qK+bo+7O8iPPlOLUZI/Qub6AkXCf1mdhPdW1zpj0MNNz4KewpokLOOrrpz6c3/ylEW0gAxRxzM40Pl50eDd85DlsT0ao/Dt1v9OYVQ7oZk7pc6YkSc8Zx2kkxo9xbF07KpNSX5TmG926DjJGpeep/M66xvjB+MNrTudP8FjZ5rgXxM7nfiWtq7UN1sxzWife44Qbw0dolsOTea8M6GI0tRBQH6tubW/jqaeewubm5fS8zveB/QfwkGRU6nWOk0LeT5neAiZkkvdZEbAOVwTYccBXKLzix9bWFk6cOIHHH38cZ8+cbfIn0F3Uzf0S8ko9c5oNBJxlXRARLyIu8YWt40Nzq2SPsX2grenfqqITr7D0MmD+2SzLV0MX6XTntuYLp1rxmyKll9KrIND5VL7u8BNTYxni/xGlH8xkrrt+rjg/67Iu67Iu72wppeDTn/40Hnroofl90orCzHjjjTdw/PjxdxC6dVmXdXmvlkuXLuH3f//3cf78+ck9IrJApffS0W9aLly4gL/6q7/Cf//v/x0vvfSS+WTXZV3eC2XXQUrTo9XYr9P0HT8GpWPE0uaWY4vs9hJzTjNQimQ/aG92phTE3dki6hyzjezE0CX11NSjljwzDBcJRvE067r7j87AbEwRY11oxwIbyDearPWA9sa+bbbFeUfq/DWXKczSTW4W0W1uhkUMvWgZW5p9l8FUrR830umxOmSWTNaUR3q0UnBMs/yj21adnwZnM2UTEzSYqHK148wAP5rLjOHarQ6vMFDYxqEGOBtnUUKpoMJgjA1+xbfRCgUDtzoWEAJY1LEuRxvUEMJALasXDZpRQg0viquGl0L+rlyDnyyIiWR+JYwKzCPA9qsFQIgb2nyWBMG584U5YksBl2bkiqeMVV62uoVQFgVlAbQkGXa4RmtH8KwZs8BsgUXqBI5zs1gMLUNSaZkrFqXgwL69OHroEA7s2YeBB0ACzYpkt1EjeQs2GlHrFi5dvoRLG5tYji2QDFzN4dEgEhyIUzjmjqkMVGryomiwohxjpPiuMmstmER4kwE9kst4G5agq405OFtUNas7OeENaLSsoyN3Prt1ja0/5VGjWHUCiVHHnRpq0HUuJrAc96N9NVg064m+le5vzurb1d5/m1s9Ek3pSuZbe+EGJ8mcxQCJZLyHZAsyuSDzVBQHxeUpaQxeI7TWBKNwneAzBvD5kVTRIOdOQnXiK5wQvJicNfxrUIEOOh49CKNPNZYzG+WZxqGiNOaytMmQNu+NsRamU1TmqEOyZRoYzVCoMliPQ1QZO0rg00B+VFqto9kXWxAIoMENOi+gES1gQmRU55BPDhRq8sVoSwyipRCKHqOGLvBU/s3BJaK3VD/CcWNBPIyuf+EDnUPEwD6dD5ezagSuFaijB++ogVxxa9+Nlr002ncZamn70IK5NGAw6gjlIadGkRPSdgw8tfvaTiwWLelQecYPPWrHtLi0GYP5fIwxuM4nJgZikwtzJhdeiiOpp/PTslMp4r0vg0XnX5tE7fDrgcApbCo5hiVYV4SFOr6b30vx1mjeAsS0nsoMG2qYVXOO67JLnN+KjShnA56SkT5+5SnsNuORdwRuDeoWCkY1dnJ+cxWQ5yYFgqqMdi0SQQYQaSC0FfChcjPxmGV+pAkerdXQvfbVO6/e20X0aNAJeYDcfU7v6OLL+MfVn28dUpsU/lbDlb82mRgkhAnEPudHakXhIp3/CPlMsFwPVgym6R3jURbGR6zv+EygO0Tdm/VBHkUIm9BjwTNSVAsZOhy2gjRn3Pg0BvXmQCJK4yf7E9yFdZZWdNbj8F33TWkgBqeim7txo3dqc6QlhY1QumAlUuak6N6XHgmyn0iYguptu8aOQ0OfTa0EaXd84PTNeSa4ejPaTvHn7BtFHLRx6FFntu4SuIiAoQSdNBTcdeeduPeeD+PAvn1YlAU8wFWCwaJqZIWr4uy5s/jOd76Dra1tkecCr/2jAq/Hg4ppoYMwCf6iU5D3JkZ0D2oT054hx0NsT9vQkSQyItVBEVLXCT7DShNxfRL60u/kdKYyxqmI42XoRM1JrlDTZSgUf3EVza7P46DSAH2MqU+dA+5laWxC2460pnzKuauVJculfM26gO0FbKC+PtBnpjojBzhqy0osYWlgOikGoTo5+/7OAuptrStzyA43h75s76uwsOM0vs7XrzPsO8VAnzBGymNTvEd69jW4X4n85a+JxK5V3kShPKGaGf00o3PtduAgRz9iq2fPnsUTTzyJzc3Nbj3Qntx/YD8eevgh3H777c22EmFOATehv8BaHj7XE2U3OH1a6Supq46/EWZcUOXzmKXGuXPn8N3vfhfPPPU0Ni9vTvRq7NsQxN5H/O3N5z2e80NoPZKqQhPaieQR5VnWHv1fgKGvZ+vf2Ma8IOi5ddX9+dxzaUTpCQrf+xbj+CmOiQPsncy3vpISidecroxc8qJhOqj4OwU8rgB9rsxPSyqRHbz/XQnmdVmXdVmXf9ZCRPjkJz+Jz372s1gsFlf17MmTJ/E//+f/xMbGxjsE3bqsy7q818vLL7+M3/md38G5c+cme1ciP/rt4x//+OwJBdd6eeWVV/Cbv/mb+MM//EOcOXNmuj9fl3W5BstVZVKyr9Fwqv92+xc32GLGWKQbO3larluEnzkSgnFUdk1+jJUDZQEeltWj2GY8wxM27XE8aG9ytn1Y68PdZr0RJW5IBfaQnUI3s5O3wwgWtNWy/AzBftFt4iNeWU0kZLjqTTESVtMMjUUDidQwBnEqimOxVm1JYKsgqtaSB50xOGyCKYwje0zZAmgazJL5KWQo0GAtpYVSSIyR4dghm1+lldqMKShgNWaroTo4A3RGWk96zFkFobbAm4FaEEVptYgQFIyPlwqhDAR1ekeHElc3U8XsLebLVFqAOwI0uIMggTJ+3o9gWr/6EW9FjGhVg2W4YihFsmSNKAUYyhB4agRRRRkkO8UwQB0sGnRVawUxsG/PXhQqEvzXYFgsBhQQFkNpWZwIOLBvL647cgh79w4RXDN6VlRUHjHyKChkbG5t4MLF8xglGKrNZ4ODoIFsnvlKg7iivWa0+Yiyhf1ZiOucYtBJtWCx6DRXDJuhyGSBZvFgBb21a2TuBmc1mTWa0cAINhoggdWc9hToMDjHmQAiN466Q0lkljldPXiMwWCicNQcwpxno7vBAHYZBhdzADm9srQLgr5Q6w65aLCsRoMQh2nrZzR8qKw0TLPkS0lOIQ+eUdmtDq6GCz8WTp1Tqksqw7IbaXSfylZzwkPoS+EWBydRBWOEBmIAsDOStK46ZRpeFE9t3LBx12CYLw1v1fWBOuM0w1tlBklAlzkdVX5S+GGkX20GGRVcq9BABfNSPh22FrzRiMpwxi0DDFMV3tTGVf5ygJPFNtqQSEIoNfQbjZNcPRilIc/lJzP7HKl+VidnyA4FkMfawLMyVZY+I4WEAGSlZ9N58qdwwgIK/T+V5y3QJMobNqT7OsIljc6wfWpWwar9xiraVpBh6TulrALKZwqtrmVMSlFBCXq2MtsxmLaGMRoI6xSF08CP6xXk404NmuCwD/ZylY8qDxwbjtlGIzr27KBKgW2UwokEtr4zhDWeygHP4tGu6fhCji7WIyrDnIb5m67T8vyTY8AhYX9eJgoUcGuBYEEOpWxxJsPZ6EMD1kwHVIY7JdAFeegaNwZThPVjkHceZM/dWLVrdj3IlqTkGi2RJgCdCJ67lavY9zZ/fMXqRkrdkjyuFibtz8I410t4jrtL+vjM/qFvvg/EIdscZDqPNMKRdlX3TkB0vJru62swJvTkcEQHvPMwK2HaQoPh+5gAs8jE9tiqWQrrYcR5EXnUtZv2kWmK8t4oyjOoDjOgMn76nzYClTkqP8j/sk5p7bb9hOJupsuQSdW6ZDbcTKSaiwFrJCT47WBv8xGDj6F6X1q2I9Z0PPomRFiXFg3ODnsWzXRcBY/DsAhrqAadZhduexnCLbfc0gKU9u9DGTQ7ZcOB7iV1jV91XUjA1vYWnn76KVy4eDHRez9WpUHNBBqR1siSwnwG+ul4wprUx/srM/3bfESZklpHvmFf5+QVN5jD2iTxeOLN8LRNnerHzNuJ/ru2HK9pZRC6mRuJ950kp9EYfL8SBj6Rsx2EfdH9xDReqavPPYzdOiOs+1xf9+OIvBWuh/2k4nlVX73sDBIt7IGUFjk9H6c3BYUwG6+lx8MaKeMMabxOEraCg61LBCEcYOH0vFAORUkc6Ix0jRRoKSFAaDjSAmcdpPUa6ZP/9I1rHh35yyI9A7VApScsUInDY6AWqHTvvffgwQcfxL79+xxMhSXqEx2xZNHu78Qxmoruxp5/K66c/xyf0+DGubJcLvH669/Hdx57DG+89VZb2wN5nOCU6TXjkL3/rrM4PysT88ywqeElrTmuvFYy2RtsG8pj/lwMsF+BlMjnkztTCbtz2alu0LzktGvY67vimT99Iv7W59jvTddhoZErDWd2DuawEzu/OjzNLhHXZV3WZV3e4fLQQw/hX//rf33VAUrjOOLP//zPcfLkyXcIsnVZl3X5YSkvvfQSvva1r81mVAKAG264AT//8z+PL3/5y7juuut+wND908vly5fx7W9/G//1v/5XHD9+vB0nvS7rcg2X3WdSkv2MOTyxwuQUdjLNL8tibHJHqdWPTh7A38KCbp3U0Rh7akeTpeO7rD8yw1Z+wz18hk2fb46r+FfZjA+aWYkMQ+Kkl+Aa3aQ2Z5o4W8PxAHN9ozaDarP9joqxidHd3+rycZBNAsz4pP1rZpXZN5w1u1BnFGc7kizjUA15nsHD8Uh6dhlYAmecHiwjUnAyewCHGKw4ZGFBCJ5ANoY1tBTE7AwcnHzuiAvO0lqBugSRBFJIJibNBmPObbSxwY6AIzAVUCkopWCQLCvuc3RDa42bejvazq1vZEZBd04DcKdq5QC7PlMM1+M4tiPSRhYDVgmBGoShtFgLZqCOiseGq5Z9RwINqI13XDYHy549e7FcVskY0fouVEBcMKC0o+PGir3DAkcOHsCBfXtbG3L8jbgnsKzbGMclah1ReQTziMtbFRcubeHy1lKOdxsbTmszptYQaNHmMlAoa+aV5hypMZ2PYECNWAS/1+ZM/qRtc5iw4E54OQYrtPmsMn0tjKUdOShvdaNI5Bn7XLIb+PzIt0a1gMOqvOBjddowU1yQB8q/LcAlGvz1/mhWoSRTAQ+G1CscvFbyoVmzoizsP3seUvNebzjWZ6Jz3J/TCjD5GeWomuJJMrkxlB/R+Js49hwcfm7NM5zKnKSscwkzsPZjVgN7E7lGA6PqK5jx2FpkBngMsMD423Ar4zXRLkEhLR7BHZHZJSZ1g95pgV+SJa4oXRFUNcc5Mx2qIJkckaMA2Y/ZykcDBhmtwglOV9EJTeSBnf1bncIaVoRjoAGZaU7Mm+sO6AKRXxbEIYHJAQ7N6uTHbrEka4pGbcyeUpTXHpTGF4+4c32Vv0faTmuR3dpxWfgZDR8MlVNKPOz0FhvuO4hzjEA5YcwpUDGOu0gWjyJrHBMLykfdMY0IOl9BIW0XqU779HUXy5gV/Bp4P82XyDMNcmQ5Wq0/EiMHVWk9dZYVpIDl3cxJmNu+qHNqkqATgQ4VDnYna79m9baiXO/BcNnsdDmf6ahvY7KGDPDNjmtHhFw7JdF1uLZTUZnrP+S5OUTaQ7HxTF/tSyOmuSao+5wvYSS2bvfMpKldCrQgz2Wei7DZDqM9SjMwRp2Fedrr4Yz7icm4gkyZ0hdblfjyQtf8RFhN5V2nVCf0vUIm2hO5Iw7KQDjUPh0Yx6fBhJhpJAyffD0Alj2ayinNnBrkWz9W/e37MjRdyrCj1xybsX/fE0RaVdnMcSj2F3BnsjrLdVv/WlY4HysVJdlungJcrBQY1sJDKXLMs4+Duv/2792Le+/+MPbv3YvFMLS1X8ok1V52qPEFGjDGkfHGm2/hzbdOwgKzXa20eZ1TiHFwtuLqeDORrfNDHHYck+Ep4H1Cp6xzJ0ElVGwuNDhhkvBvho/9WNjQX+yngzsON8EbR60EjQB3I2DbYfk8azsTRM0W46ZuDcOTOjR9KMI7I7MSKa8sPjHGrokWqHu+60fpfU4RzfRltiJd1oY257hai9+rmRC0Oq/S5ao/GgcaHXZQhWbaesr20P6SQqvTIZRCiEykT2ksytUoM63+DmsQBDsUqc6jmSnteE/vc7g/aRq+n4iYOHv2LJ548sl29Bv7vCidl1Jw8y034eMf/xhuvvkm5KeVa7pQvR3XFYG6KV/fKVNUlJex/ySnYl32+bu0sYnvfe8pfPeJ7+LMmdMtm2+Pi27RIlJuZxJPZECTe7of64vKst0FBc0H1xnxqmxVprTo3HnIs8WQZ/5mO8r3d+T9iEgfW5zbyD8TG03Xki992HW3fV0BBK/8ERq/Et4xj/d1WZd1WZf3QDl69Cg+97nPXXWAEjPjueeew7PPPvsOQbYu67IuP2xlp4xKALBYLPDAAw/gP/yH/4D777//XYDwn15OnTqF3/u938NXv/pVvPDCCxjH8Qr2w3VZl3enXGXOspkNrH7naJCQDXxn2JsEJOmjZozRLbU2L25eNVBWbY/EuFNSgAx7BeurNxgQ1ElM3YYTKfCEBC7P7hQ2oep8Vce99QlxoHu95BC18VaHtS/q5KvyF80aEyP/3AZXjKRy/BrU+NJVU6elZ4tg62PiEOb4nG+uI8w67S0wKRguiKF5cszgBbWltbdHNWNMdFh7wFd0uKvxTOcW0MAczQJSqFimpNamBoJoUFgwxkiwkhrdSpE/m7fBHdhxXnUukm0pYqQYfo0u1XAWnou8onQW54LZr7e3lFu2lSKBCHpMYCECVQaPY4teqiN4lAClYYHlcont7fY31ipvTxd7t7LyiFIIhw7sx4F9e9w4yi0bTWXNouFGlVqB5ci4sHEZFze3sawsWUCqZd1gCWRyx1axI648AEgzxHDLJCNTY4EsltVEjyOaWuQi7syZEmuloBwPKFG5YsffoaDQILjP/G7HKXYOqhgI4Ta2xDAwHoyGSWuDxSeghvAWaFlA0BfZG358vK0fd+AAzk/KsL0jPXAeuI7SlwaJJWSJM9hAmxrHg6fLxkxFgnMCnXfz5ElhJCyN43hUxrcsOKsc8SnQ1fp3XqOIMxmjGlI1cMvG0IBJfNjwJgFVgmPNbAMOBy0wGR1ZZrbgwFJa0eH3Abp62Eoce4OlHf3GHHHYZBGkjShrXLfkYJtsMs3fVHb2gTrmsAu60wzHTMIbQY+H4wdb+3psqWEBJLq0CI45wMwgVCaM7p9TH1rrv4QxEczJyX4BfSHkcbksy3KhD1TSzyQ7jM7M1SGyqF1ro6k+h3qEUHg8uiL8BoXmtc/ofnc6Alw2sFXweVYaVm+CrIR8jqF4j14L52qnOwq0OA1I1E/NCuR00dYQSdbMGc6t+6A0Z0paK1Eco8tvC7pmp8G+TY6ODx13XJPQFBrjG1v/1MAzyLSxYnwBgCkeIjzgRG+pbcr4j7w4F8Tksg5hXcs7ofmaLaYu52APc7mTaybhiPv6ofEkP4TH05yx97lTfwb4zI00V55Jzh+MxQSE0Xp0AEaZnarrvmkVUjjIjunDO5ZVjrgGz7QNV82xLnefk6dm+o33+rY6uQfh5ImcyI/3vcRsINopdw+Znojrirh2M2hVthQDzQKL9eHeea3zqrQ3j5yMkMQg8/pP4ezH4etXgc0XHn5N/wB58UOzKbYzMYdS0jqf24Mus8AYSsGHPnQ3jhw5jMVisPbtOOUg05XFWpAPcOHiBp56+jlsL8cAr+gZxGNGZUXLUV9aR6af7I7obUdLqBdmsg3ccQLVux2OY/ainrA41LQ9eyffNYApPxP1kfdyRb7lXqtKa52osMBJYDKmqZhbsbaKYxBcRXtB3E9MqHSG/fuXHyZDm706A+Kc8GMgpcO5qhLWIX2zrDVoenF2x6Rsy163l6UCb1vfK830/e6gj1gxrfJQWqUMp0uqAKcFYXbr4dmOVsucfJF8TlizDvXBMjTVZxT0XCfjw2Bnr545cxbHn3gCm5e3Epp0bURE2L9vP+5/4H7cZIFKgjdjln5NsGpG+1rdtVX7V+ky4UHoNPGN/NNzdq0jTr19Ct95/Ds4fvx4C1aq1enc5Oqc/k0dutzkfH1+jJSmNGnoXfBX3qvM3O9+RDmzQ6srru9ubdNGSzMifIqHLIe79o1AXJdMVizaQCSzlamrZrpZVfVKumGH6zvJ3XVZl3VZl3e77N27F5/73Odwww03XPWzFy9exP/5P/8HW1tb7wBk67Iu6/LDWq6UUYmIcN111+FLX/rSezZQablc4plnnsFv/MZv4Ld+67fwwgsvrDMrrcs1V64qSEkNjBNjddxUFn1jxo2jVi8E2fRBRGSGzvaoZp9xI687ETzLj2+03PE6Y8yPY2Ce2bIJDCVsvGveVFNAlQdQeAYTIj9GrA9Osmslj3fld0jK/N6pK/CwDLLHQXMijohv00WYfd6o+9M6Nc1L23dXw2czJKtpw2Fi6Fy1II/2pATqVABcDHvBt2m7d7ORhWvRiOLBHG6Aq8zu8NFjirRfGsCSycICDMizhEDouNFtMKMGC2sbrweSqYHX5lOp0hyISi7FDW3wwLmqR5ZVAJYNomVPadmHaqBlOU6pxvkTf4HgQ8cBtOAergxUoHABjy3r1d49Ayoztra2MI7VgsDMGMYsb+MxDu7fh8MHD2BYlHbcAyJtOUlxZYy10f+ly1u4uLGJ7Vrt6Kc2Ny4rEn11n/4Ws8sLDwrJvGEOH+OpRt9K04orKiGQJJUZp7EcR6gZPTwYIMxzCFaJYzFHsOGy8VI7yjDINLdop3p2P1gtixqmO3ujwc3teeYWdJDlB6PPTDKLA4gzU4S25n3RP+XvqXQIrUwMW61mMgzP1KFgiJ3KPrJMA/POTzZ+09/NQSbjIocj9Ch2QRKazrjo5zoHEHjNkmguyCMAltVJ6LbWKlnm5o62U/nHEvRXQBjQAkv9j2MQio4oKEbVU4qLQoTC3P4QgrE6PJpM7wNuofLOLvoc9PjucTWrZxtfFdXDyudE0CDaPjCoVpe1pWTd1uYjUOmqzCcKcnfRA1oJswSdqlP84WsP67P4nCNkYbNsHjXhyr9ni7M5IZJDFMb7EY/5LXw9yhWCk9h/03mul+L0TMzmHd7iIs7XbsZjAfw53Kc1yKzhm9I3iy2KNXonfpLD3TyGbIyRLnxOYsCZBETqMUOK1zgmR4TLXZUfovdWwbaq7KZOXvetln276g8i1cigf0+VWXhVR1LGTVqnzsm5iUMUTvYpwDEQN2HyzI4+Mpi67tpSgDPMHZTSnwbG5RpxDzNtQfTlDjM8CcCcHV+n5YOeS8FzkcfSmoen7SQ5MaVZns6Krkrsl3ajOIj7v7kUekFLmhjrMRNUdufARpDDuYL3uyJ7r9FeCCgMK9qEj269aNjgBH1a6yG0YZKJ47pFA2hUv/p6yPZZen9uLsKlEnlLXpBRHOjaqx1HzRglgEh1dlwdMRi33XYrjt3xfuzbs6fpcoQ50ek1smrjqSBsbS/x7PPP4fyF80HmyVgUryv0EPffKF7xtUoMOHN94viPgarKZbHlONZZSrO9q/P2FPc5QMDa5b799juPudNDSEo+3ujWQdOvia3nGpi5MsEz/AUlz6Ccn1qluVbrNF1LETpCznVSkGnEGGa+y5UZXZHgiXuAVdDRCtnLU12ttKR4MsHWLaiMaiI8WLGminpP97/JLtNkVvstGamd3DLAcZydfSO2hvC5es0fQNR/bVrIeKp1daX1jIzG5GYMTKIAWNaZ586dw/e+9z2M4xIZI15vz2IP7r3nHuzbvzf32PNMaP3Kq6/5MrF/2rwFyGxvOiP7BbAYTMlo+6W3334bjz/+XRw/fhynz5zyI9q1ibw4WTGSbg0wuTYz10rHO7bbPZKacem4Mjgx0v1MnX5ODazVEMzA5JStWsql9/zTcb+Wt0YzxNMXpqii//FElQDj0NYqPK14dGbtHEuvHq40vHVZl3VZl3/O8rGPfQwf/ehHd5RTc6XWir/6q7/Cm2+++Q5Bti7rsi4/zOXll1/G7/3e72F7e3tlnQMHDuALX/gCjh49+gOE7J+3jOOIZ555Br/5m79pmZWWy+WubM7rsi7vdNl1kJLYoNLGRo9xi7Wy4Vq+JYP5vFMhb9j7BYk4cMX4kpxn4rDdiaHcmVFQyqIF0jDCC2QtC8ikPuRYLIFJs6loVgmiAaUMYTyh0W7scjcc9ZPvM7NkxgkGKEFLFWsDEYmNvohROeOJozGM2pEqeixVkePMtI/KnI7wUwDNaJ4MEWJEI1iAVNz+EnTTXmUjPoDE4d4Clwgx2wEbHbEFY8UjAVuwl44lOKjF8W/BJATom4eFSDIEESriMV6NZorOFQDYEQNjy/QR6a8U0FBkrlpfbgxcbVBR2gQGaBYHkiAxm3P5Y6GTUhgtW1EzTjIYNJT2XXBUysLpD4sW9EUVRFXsfgIpj2AQKhVgGLDnwF5gIGxuXbY3n42kqMFGEkhwcN9eXH/4MPYtBnMMDbTAQAILDY1OapsvFMLWuI3zly5ha5Qj4MYKPQAqkmY21svxPdBgJsULqzDJssKMkOGNZDSWdxek8qf0rb0m+2h4W5e92WyQaq4SpzunJw9m0uCgYuNTS2AKBhAcsXggNBhObZPRAek8pPKNdYIS/EQUjv5TntPGPfgsyudJMGnnuIxBOWrzt3tQQ+H0+ZSRSD6rOs/CsR7tqKYKpgoSOWrGb8UpNJzRsUGAvcEPNJobRG5Fz4r+VllFQA4mCPqGjc/V+K+Z15RQ2ebajNvRg6XyNEZURposRdpQOpKgvZBlxgzu0bkZaE771kx/LG2NcoSYil4NflJ5X1mCBOHOCgaCLKdUf2p+hOOnO5ZP8ei4zvpMtVpU6RYMJfLUaFnlvq0Tugw/VdFALdhK/kxEIBp5WfSV95nmTMfkUDltUThuTI9vJW9nGhwwLebMhB+L5rou15kPjjSpKBc9SI3AQX8Lf/Tqp1NFFsSn96LjXY7M83UBGwxzth+VI7kzDuOKxvr8CV1bJIcXRBcP8CA8Cp88bQ8+F0rLc4aqyVyx/+odRL2zL67z+tLoP7av654VpaND5ZkrOQImTcwvMebrd45Lfbzn+/dWoe7rVIftFqddeETXh1+fBMftFlIKgdNp8qj7zM+k++z0gok25Hnw5+Dsx8BZ7zid59ExXO/7/Z73rWb4HulbpVnkrSmUff+9SLNaOu8KXMicRgjBl/3DBPTy23/38Ovaj01kcLhHqt9tqiJOCPaijMpRQDITiZ7ScRiwyPgJ8MWSAitV5rCPxxsI8shFr+ttchna2tU6/oIPdD8bNsO2pkTbyzG1M6bLYgAKsBTnf5bHigPG+265Bffecw/279uHxeA4ICi+ADM7hL3XOC7x/Asv4OVXXwlHNJPgOqGooWNmP8aTeUo3Au7DnKha0/2H/JdDIrhD/qTrcKnP8qK6U3EeHrZLlNrvn1d4p5mRdiiUx8wIz8c9Qqwe4bXrV5Czvf6c8CStBHQSwDEpQf41BoPTWuCzUJ8m+O+6n9kntaWt2k0ikmkipLj79OtKPzNjIV8r+qQzIt/10E7XX5gGK83W79f2skgOMjDKiPwcujbmpOZcsZWwa66wHlylx+eDz0J7NBNcae3J+nGGzs+cOYNXXnlFsi/7/Ugt+/fvx4fv/vCM/I19aX9X4AEE9T2T2dPtaz7eWXoX/ZFgjvrD7vt4ah1x6tTbePw7j+Nb3/oWXn31VQkedZ2pmLmqxeWVipHy7tt1PZzbifuJuaJr2lUvR3m9naTifPv99Kpc0UeYw9UkM1x/5HXYVfW+AtYdH+rqXJk2/2nln5lu1mVd1mVddlEeeugh/Ot//a+v2o5Ra8U3v/lN/MM//MM7BNm6rMu6/CiUF198EX/zN3+DcRxX1rnuuuvw+c9//j1qb/USMyv9p//0n/C3f/u3OwZorcu6/CDK7jMpcWdUgm4s58zMYTOaNnXR4NgbcrJBzEzm7AYVNbTkt1nm3t3L190Z6EEuWk8zNpkhp+QxWpvMZjBvht5uBOT2k2JjLRZEo7hQp9v04WImNg2EqLpJ1s29PZPel0pXLFiA3QlIYkwY69jS9HM1B0sz9nSGlGB0gmaSSeZMQoubCXUJUk/NYAFk0mbdwAh1UnPLiERUQGUA9DgBO2pptDm3WWSWoDIy46AZ32y25V/LDiWgc7tHYb4aJoocfddNfjCgqAEyBm+Yc7g/8kkDDszY7k2qeZhrlUCdkDFL5lxCywBqQU4NJzorHnTRAtcYKCQ5NwjD3r1gIlzYuIjluESt8fimdvSduIyxdyAcOXQAe/cMkgWoCJ0qpEXaqBjriLGOWC63cenSBjYvb2Kso5mG9K03c1LrG4LJGOp4s3kNcRqWtUjn24JfZIYTLba5j+9yq4MjUDDG6tmCSI7jaCIlzgtD00UlA5T+GU01YnfDmsokhE+lM7j1UmWV0qPUCRiBOnPcluk8yVybXAl8QGAL8IvN5bfQs7ycdKt4YjlGbGJ1Q3BgwuRXCsAw410MBNH5YqPpOCYzOHJt4wDsj7jJasADlexIxxDQlgubrCXFt9hq41uZJu4jvpRm7DgSzQomB3ppVgGKuFWqqY4uO45MW2fUuvT2q7ZdM0wi73x2XFI0ee7wuQ6T7xIQxURpflX26F8MAik2SxTwEOglSFFTXTrXEccIfcbgMJNpmqeuZbKKelAUvv1WPNcaMuQZFpy/451IX738iLI61A6yyOk2Ob7hQW/9umJSApzJ2N0/ZnSfHa6mB7oHLOghkbk8K4yUNQqc3wxjZHwYG7OgigmIOaDL4KCMcR1rG36853JBySvTkD7r/G/6d669Xjai/93+CALijI6JY+tlhq7NRBGk9UB6thOHacTTyQzXIx/FQuGvHzNbjSsX1UX+gNOyhfbtqqV3q1wZOucDYEoFscz6uMJ6eSUAEQiefNmxJL2aBhO1y0yXnZygMFukl5OInHC78DZNx+C95O8UZP2kIQXH1zP6e9Z5KP2m7J8q34JOAKbzEjkjNdfPlcmPeNl/N74MzMkdzNG5ix4gX+eojsp8nWGJ0HKoHUVrlC+qX3hWeEzxuSPtBtoyicLhnlXnJM/iOAKmvZ1IDBzqkz+s4y7DACZga3tb1i4JetNH1113HR584H4cPLgfQwlrQpuK9rvaOqvp+rFWvH3qFJ577rlgDCTD+tyLT1GRzq1fTGZ0yI1zPVUxfV1dn/kt03HyK+I4q5/wULxhpMeuW2wv20uONLJwI9RdpTNC3fabYQ7tsB7MkM7QpiMSE0ToeCZ9hh8z+4ke3tUBK6s1RE/TcyAkKaj7iDT7cY4CvFoj7CP1EbJnZ/qMsijgq6e3iEakGpR+5UE4L1jwTVV54DLNmk7rRG9MacZp23lRn+73R3F4/V6qSVDXUBMOijD1bc5Mr9M1fB3fVXVd0zdBJgdfPHECTz7xPWxuXp7VQQBw80034c4775wGhEWSmMXjZCShXde3qa6KWYLRWMRlHLu1R3PUFnHgpXLFhfMX8Oyzz+LZ557F5ubmzIjnrniv82Oc3ktzktYgE2W3kk9TOzus3fvHV9mcp/I743bnsmKtLnBN+EDbTQQoP1RG0BRnrZ+ZDJ9aZxLcuOL7yvJPXe+7TGRrrQ8EXZd1WZd1eWfLnXfeiV/4hV/A/v37r+o5Zsarr76Kv/iLv9gxsGBd1mVd1uVKpdaKv/zLv8Tv/u7v4ty5c7N1iAgPPPAAPv3pT9tpSu/lMo4jXn/9dfzJn/wJvv71r+PMmTO7XEevy7r885fFbivGLadnQvBrKPJWplrhqLmZ1Xbrm0s1XGobkqGkVt/w9sU2imzxOoAbMcCwI3DUKKJHpflbl60iS1wWowmXygySjB4KXstaIVaFcGQPkDeSmimnOardKUDJkVtsW6qgUxhPkTdbNT+Q4qVCjo4SlzJrtgdrewDzKPek68IgJtSRQUWyATGjENuzbZtcxOGtArWoX7nhUjIBubM4bFNLNG4KvGAAozjKq2E4GdXlqCcNQDA3axFMqk3P01s1vHEV01MLwFGQqAItExPE0FYsKIFIA1M0+qUFbJHMWGWAFsAAPY7ODX3RME4YemsqNEChOTkrSiEU0iADskl2g19xnJbgXK4sb7Ar3JLBpI4WFEJEqLLQLiEjifkvgkPCZoQr6sjYuLSF7WVzKCzQ2h8lyKNgaJwwFBw8eAAHDu4Tuq9AJTAv5Wi4Aq4VVEcsGRi5ze/Fy1s4f2kDy6Ue/aaZXfzNRf3aMlo1I5ryWOOBdnZdG7saHWujTUigAittB6shV3AlUBncsKTGRFTBJ0kWbP+vYTQElERDoeCa2Kg6BYw14yu3ORJwiAmVXRiRziUzNHDE7Z02Yz5dSiOsDyuv6PFhcHpqlB9o2QgSxN4nkfNsO6aOJShL6J8gAWsN2413FD/Kmz5mAzSRWDY7umzXey2AMRveCypGwWnIakQaANTmDSqPxXJptncUkOCe0WRccgzLM8oOTZYV+2HzEnSDHjvW5EUYdyWJ05NgxCpmuqI6SuzWtdF7DM6K88umV+S5UlTYBYOl1wXagriAWvYpllZZA32aedPRL89zk50KhQVSwcnIeiJAj64xgS/zX1S2WWYPbupB9ESjf7/FNgoA1B2xqJMBXSsocmUMaJkI49hZxsmyDJD4TNMviY+M3iCYaZc8vrjJ4kIS8Gp6APCsHJmuLdE/ZblaZfyzhlpbC9QOtOxI1uM2/EgdDeNWnlbWkV5E/+rc+ZLDFLRTGqsecYO8ZwdzlLU1lsqOvKZRneYgx/XZ3IIs446ZwaTrnZrv2/rAjw0KlON0xUqS/3/23vzZtuOqD/+sPve+pyfJyIqMJ2RLnmM7GMxoE75gTKACCVSgApWq/JL8YyTlAJUUGAeHIRS2AzgxtknA8qDJloQma/Ag6enpDfee3ev7Q6+xu/e59z3LGk9L591z9u7dvXr1GrrXWnu1E5nJiQQnEAOnoqhyKqFcv7CiFLDgbXmQahfMpuPnIHukD9HxCufMAZ7pSvEXcBiOclTnTGwnyVND4UpfMYBM9a3SVie2Xz5F57ijO+HJEPIfisu9FA8wdS4iTIfOT0AW5zrcP2LVI4338EedkNtIcz045oICg8oATnWji4sS/Ox9kl/JK5DgcLKjIgONqsINYCntRWdddrM5DBb0nfZIDN0vRidgbK/xU54Dres5IcJoOIo2thNPoCrNcCcB/GGOPduHOwzbPkMxFGHwMHZf23p7UQ1ZIDeP/BuwOVxxGdtwVEzWZNmoc2pHVjIy/ysidU9n8kse7lSnNRHw1ZZkQRcILdYKLMsWS23ZlQqUF9n07nVnr8M73/kOXH/uHA4PDqRdFnlb7TuYQVyxiLxnMC5fuYKv3XkXjo6P27WwnrRZ6wBPtNThgAK12Hd7PtOOzZ/RTGxLcRB0kIydwNP6SV6kHz4BKZCvf8MgdZ2oflpyLAT7BcO/1YQTU2sz/eK43goXtP9BLoU1lD5rqxrvYyjMAJUdI+rqGkx5LL52GmWoo53y8ANUpHs3E4fCVwn2UW9n8JwmoyRNClizOQsLVl1jF2skwa7tgYWFKc6T7z9Z601KDFwz+RKvhXGZeJmsMdp9ndPACpxrdND7GPSKgpBo3ek0teWEKGP1OWLuRF6Ywl7Tc2U88eSTuHJ0hB/+4R/GgcikWMpmg9tvvx0A8PDDjwRZLHLLwNPxr/Gj1DJ61SpRSgVbGc3WMH2TqvngfOdNOY3HhYnYEL75zW/i6aefwfvf/35cf/31GVkOTeiMB1j7ssqvMxkX+7NsV931HSVK9v41GtVbQLOzhgvrsMd5mfTU/+u7eb8S23Hh3tGc0qLaE1aHSsLcCXk71g3ajnUwtnfKYmu5YR3az37ExL7sy77sywtTfuAHfgC/9Eu/dNUBSgBwdHSEP//zP8fR0dH3AbJ92Zd9ebWVZVnwta99DRcuXMC/+3f/biqXDg4O8Au/8AsAgM997nO713Ivk8LM+L//9//ioYcewm/91m/hlltuOfllgn3Zl+e5nD7sL+4F1YgQCbY241uBZydIx/jo65QEcxhrSRsmluOEtC5BDMSykdbNGuZHlfSBTp4umaBHUekxMm3PR36UjA0tbM7UsFCoHeFEfqSOeJkMD3GbxxJ21DrcgIJhzp2JZRh/dsyJgTcESpWyEQOKZ8dRmM14p0cpMTeDMrNkutDtZzsuDFjgR/XEjXx7PuEwwMe2v3ZHfnPsOeoVRxIDpCQDdeha6n+BjUhQjJBNRe1TzPAoJjY4qmYiMg9kC7ZaliqBBARwSTTX8FPArJmqAi1q5h+hB6XDdLyV1K91gb65nAP2OOCoBTdoRgoNvpGQEjAVsARLFHjQHrAAJFlYuDr5ogUyEbEELSne2nFYhVo2qMuXjrBslzbnTFKvYlNaYFZhwqYQbrj+HG684XpsqGBDRewmAb/LgmVZsCy1HelWF1w5OsaFC5dwvG1HUCke4tuAnnmGEs5YaV1x2Dlo3PgjddCO5ANXUFUaECpfti0YsDVq9KVZZlq2KE4+AJYAmd75bbRNav9R+dLmQw3ixuXsQUMxQ5U7VzRIS+mmQo/1c+eb4llq636MAAEAAElEQVSDOEgCXxz/JkcUf+ZErAYPGV1QOCYjLpDUGZ7nhDQSJAvLJNcU2n5+CXlu/XHyNpDH4g6rbvGmRzQyrO8WVOUwaa+aTWsYh333I7IMWBDiEWiCEf+IbG3z2PhxqR6IUAqhSLDORu3qoW+nJz0SNOJXgitVf5HD0rBYLVDBAJajKEnkNzGD6gIKWSva0yYUWi+SxcmyFEhzlniKKJwwoQFxIosNHrJxuD1WaESC3VTHaCanJhv1yEWlDVYhbrAofkEbqxvLoGNCZiYyuPz+rOg8qK7VLHUUPiqfvV8gej4Iub5nHJzAa3InG7WZ8ngMPqvT8OnHeAJUWlAbNEtWlzEs+ANFf0pfmm2MhZ+DjDMaiLAkOeA63z+Ko7qK5xneoXoAACRg2D9OT6r/9DkSWU8qp+BrF22nZa9kaCAvxbxrGnRkzkAfq815IwaQHhfF3o/BrzORjtJVGefrsjjfGQf5uy8JguwM3+MbN5k+kb5H+NZKgkkyXw7BYi/B0muq4Sbg85n/5DYmTiie1LV7SUdGvYokC2b95TuUv4dmqa8ZqnKooFo+tUxdEK7JUc7MOvQSxzeBOKxtvMqEX8K4FFZvUZ5NfegoOi2rL0ecgg6Zcx+mj1IP/iEDPbfN4V8NSCJnxtRf/uLrFFnZOVzGv9bpZACzYWowhfzq+Dw+7Os9bSePmBVBkeS6rjXzKqOjDT1e1LJRIugQyH5C9IHcK6L3mBnLdit7iTgy36ttqOD2227D6265BWfOHPr+XemEVKdXy5So+uX4eIs777obz5x/1tZKytM+RVk/j4gX6mMPPLO6cU8BFcxRmcLhtFkXmrGueLjfgqrjqwNzqLpOwhXRZ9J3DvxTeAK2OY5e11+ZYxAd9gyMzmzHVRy+dpEEaFj/D2XGAmqvSRUm8mlNHvQ8YQvQEDCHXl5OAIl6cwZ7uDeEsMp60SGOM6y9hXVB6E9lg7FukNHO0yID5DR762kydl3L2CottOW6IMBtNX1vm2kwjEP3FSZvekwlaZ/qUMBC/BuQEH6Trae9SZp8vLdGRgUWyDco0gid68KZXCUiPPPMM3jkkXCEZKc7Sym4/fbb8JZbb7U1/UhXYR7HUYdxBxjiH5rJrQynByE7nUV7wXpxPRktrhcvPoevfOXLeOyxb1o28g7osZlp2/GRiZJLU9ivCTJp+/p3bf5DP8wAq5WEOjJuv5OeoFQBtjfDOHs9JhSD+p8NdYaDWZEuo6zoWx95HE4cu9rtAT6JHE4op3Ey5Vn5Hjvcl33Zl305ZSml4Gd/9mdx6623XvWz2+0Wf/EXf4HHHnvs+wDZvuzLvryay0MPPYQvfvGLqxnaNpsNPvKRj7xiMippefLJJ/H7v//7+NKXvoTtdvtig7Mvr7JyVZyUnNC290q70NHeobfgQRptUw4xYucNen5GO26/miNLncpeq30PjnsQiDYotJGEEGTwU/oejC3kb8L2L6i6IUrgtVT22ThRir51z61OiSNyQ0opRYJMeqc20vfoOCxlAw3CUeOV14+OZQKVAjuSjuL2u7Whjj1mnRlxaoWN/tpm1oMyWl/tbeVihoPO5ASijYydYYFPLPZTyZ6iGWoa/psxWw17aqCj0oKFJFYsjKuVFnAkNKD0ooYiQpsLQWgpmxYgxtlAZEYU8utm+hPDiQcukMy1GtNYYpzcbN1oUIGQTCqlNCwQWX6cyjUEmAjOWJ3/ynPuyCgbAowPCg4ODhHfjjJzIh1gUzYgABsiHBTC2YMDnN0c4NyZQ/zAjTfi7OEhDjYNH4U2kIgzd+Sy0mMLgHj2uYu4fGWLhSV7VDS0RAOdfHUHYnevTcpgYHSabznPlIZjcIrZ3wkgZqFqDUgS3iOfz2a60zfMJ0EIE+Nm4woPFhAbPIipBXTFMYWhAyy2bjcYEoCyKZJ1Swcodwx/Hoihb9SX8LbdAK/QtGWPUN43OLRNMr6Ib9hGwNWQzK1RgyPKe+MBCrazzvneB59G/BSl5fCsBaL0ekT7MyNtcNJ1jhfNHGVvL7LLmblM9eCQ3HcxmQZQC3AE5AjEQLIdXRsc0rYFk8gbpC1+grHwkp7xQA2Hj5WnRJcxVfEEkgW1uawS6Seyh1FbBibLyOXyKtk6SfuWo/MUwwxYQJKE8WoQW+Rdlcc+EFabsGQFBCzopJAKksF8O8w3Z51TQ5BMY+ugx4LsTW1AgmBMN00Mxkw2zuQYIIj+JqERE1R5nRA+secUGLQyRsOXANuCEglssgk2f4DTG8Ppw1EeHVVi8Z74D5qtX+k505DjEcjHFCr8sPZ3Bco4HtmXEMpHzuJpPpk8/FMDeZRS7bjcAdNK2wgERUZ/ya+c8CD0rISua5xUp9G9rjkodM0KsN0Yx56vud6K9fu1Riwn/R7HFOoC0MA2DwwBaFjIvkTLbNJ0IqJzlJH4jKEyTuqnxydj1zXDav86+bm9ICUG/aN9xfXAKB9Cc6wkQUZOqs8TSJTpxer1IMuvRG+Z7Cbfda0xl2YjSZOvf9KqxoN9G26SprFvPduMPCMtU2xvrbguUry7uJmMgxUa7u7R8IiNK9CZPT1jJWlAs0DuKgN4QT/7flhkg8j13CSlNWWr53MXQuhN9/cBzRYwgDy+FLCKInvN0I+xRVjTCrybUvDWt7wFb7n1Vpw9cwYb1aFGKbKHsPZiJivGNx97HN/85uPD2hFppI7DUS5m4o74TLhP3ylPKPl6TGmqyQlVKoE/mSXou4NTeG/K+2G8MUjYkgaHdYaNaMaDcCqeyQwAKXtHvq1BKSMfTGUiGJr9eCR9H0cPY8Z0f82vG432MK0bkPzpTs8nmji1yhMNYgIKkE2jwWncH4MzIl9RGOMgSMjaiPYWwwapPcv5Nv91ONKyTEWtwg5Y3zZ0dglqL4jEGhSWMxEdaa58nWQrw7R/6f7a4muNP6NMWOGQ2L7KxlB3t4RdXzM9+OCDeOqpp7TSQGOlbHD7225vgUrF9+C+zlgpvtAyMTHc1zGE71PO4E7r2X7XK82D43XvgfC33bt8+TK+8fWv46677sLx9rgHbjqknh95QECnY/sfQ7PegMoat2XNy3yd08uVtV66qwpT2M/NJ5S6jzdoPac57PmSx/H3a8UeWdxfG8eUAdhd/2pKtCV54FjuO+uKl8leYl/2ZV9etuWnfuqn8GM/9mNz29mOwsy455578JWvfOX7BNm+7Mu+vJoLM+Nv/uZv8MADD6yuXw8ODvCRj3wEH/rQh65ahr2Uy1NPPYU/+7M/wyc+8QlcunTpRPv0vuzL81W+53C/kVjnxOvOKkZ8y3vNwZ3fnpxtocJfdaSrQYYAfWvUHWP6BmfuS//WWjPkrJtlThs6LVWCOdzpADE0OLRsbQDmbYwIUUNENFwkZ6Q7nDKe3ZCgjm0WQ7A6V1sSnRYY02oTKooYy1omIQntaPdJHMNiwKqyg47OWjXGzAQUk7YXj4kLljWSjAcQJ4TMQct2wahYULFFRbW9fTPwSbsc2mO2zEq1smTuYTAvqLyAuWWIArFkQSmCmzCnwcBghkJ5W7jRQsuFVZVu4DaFaKTUt3cVYA340gCAFnykQUhuzGMG6tLuJ4MiA7UCxJrva2NzhkIoBxuoobxQwcHmECDCti5YuGJbW8aeBWyBXRtxuuvRgmcOC177AzfiurMH2BSYsbhyo4NtrdhyxZYXVKpYmMFU8Nyly7h46Qq2C2NZFPdKyiTjASzT0ISfnSecH6oczRdxGx40Y6GFb5Bm1almgDJHSuAzNYQ3kRDkjXCQBoZNHcTWL4vtutqxdnpkYByXjAQx61mSM7WC9S1yERqW/l65Ocokpa0OtshblZdGoXKMnx9l5B9W3ouGx9AeBb4GNx7oAy56uaxGxlmAZRw3izyUWnO5IfMzG6sCq840DmOPz6ss7h0wrIZfbZsZsMx07g6tcmSh6pA2pm7c5Fnhet3BHGkJ8IxdSDZRa8/kfocro2v/tOPK2K93fSsvkc1J65PC8413vI1lMD66LE64juBOpsZ8Mf7H73AYODKNzMYwu2+Bm6zUrE6zYEinjs9Up6gMpphVT4ENwr8BIJQgAbw11NfjuSK2gj6YGXgHPEXHMEb+MVwHkHrHndfPvKD9Z4e09YzMdwEOHvmJqOchNn1VSj/GTBDR2ZbWbuL4U5kbDeNxrePzP67N9NmTNkY0ghWeHelsqGf86TQfcVe7OYrwx2yL1iZzh8956ccb248yNvFIqhfbkjmk0/X9UignTKvUmVUi4//TPMNx/uR7mjMTKZQvYFJp0lecx9UhRaGJGZ353d14Ce67bo/QU+JcfvPkM/arcU/tmq4l9AmXkSyZ3Pxe5+w0mHPgYoTF+50HKnF4aJgh9l/ad53y34qnz5V0utjm0gMAs8M4zIGtMMPTuraJ+huBPlaNWBEzWU5zwlV2oqv+jq2yDknmh+AZEUEQp7zLYH0DsHKVD3sbsn9SWUdEuOmmm3DbbW/FuevO4GBT2gskNg+wzMO+jtHDkAuevfAc7r33XmyXxbLamuxFSJ5rFLVehiBGZswDaQRv3Xbc1mmBsNqYVefCAQPCw67b4rpAEJor603iQUbMJY0C4fjs5ZdDMGIo6YgwsEi5U7tC2sNgCDyeQryylpvBk/46UwighMiDzAmj1kfmvVkvu9dka0X5c03Oa8tGY1bXJKIJ3Gh78ngm++IybiKgjZbiWjMOD/5D4YgzI+xq/TVeJOG/YD+yZzK19OONcPVgVO5x1cmswD5rJa6HAX8pqBtqhuuUToBaK+69916cP3/e8Kl7UmurEG5/29vwlre8ZUUsT3RlEBjzZ3QPHh8b9c8Mp0PXod5pisrNhSu+/e1v48t3fBmPP/64vASTe1P4en2d5wS6QUjkOpn6XVClpvL1Oc8Ne4lJSetf/UcXLgnIbnyRD4Y90Y5RMJ887rlAt+cF8p1MkYa7a0n6fShZ0s/1y77sy77sy/NVbr31VnzoQx/CZrO56mfPnz+Pz3zmM/tMH/uyL/vyfSvLsuBP//RP8eijj66uFfXot1daRqXtdos777wTH/vYx3DHHXfsZe2+vCDl6jmI0YI5uvTv7hfvjNhQ46hmhike3NFvQKV6NABZ0A+roS0eUeRvl/qRM+qI06w6wUk32eOmLBHipIsvwBQ9/kMMlGqn3sh1TRZR4BmbAJKjRaTU2j4RAMpj1wxTydHBDLa38Mh24NEp0fBEoW40IKihXuakts11Miolo4M4GrRPACnoQb6r6YWrGuXEeKGIpKK5QOTYLUgmh6ITLPMpAOh8sR7PYIhphjW4Q5DNcS34qeqQkGNyJnNdSN8O7vDCcmRcDcFsETVGo51DGYCa2tVg2o60UVqSABKBaZxTNY5UUKBTDRqLPKBOaCoFVDbg2oKbmAmbcgjmgu3xVo5bZDPWl1IkG0/LHEXlACgF5YBw/Q3X4dzZA2wklxOjBTdt6xatA5aALQbLMT4XLx3j/LOXcLxdsOiYKtsRcbVWQA3UIWhQcUREKWBL55qrzxmLA6vWbgIVd3L0TzzpoDJaVid1AikPiGwoJDmUWMcK74M8W8w47yK1mCzjj2alqRyOMeyCK9qY5Zg6o21CDCBiDvNrgU21BegZ8yrvOW+qDIiBUEh0os/Bs7RUGN7tKLRoQJfKJM/qW+ZmpOKe9vMb+VpmGUJ6x63RApxv4lvkZuCHzLMdVRj4zuQVJzkWZVV/NFiiRQAkRypq8ILKVDJvTLXMRwsvbWYqUNnHqCk/B7nAMo9w2ULwecj4IhuHQqeOX6eZhgt9voqcHwNcQoANq5Ffw/r8uFTQKMs8k0PGdXQaFACFW4YvvVetHhvujFajzuAAU+jfMgqGviIdVJPrYe4NgSqDTZGk0s95LNHZrDrPdKjhozPO5wZyP+EZhX9G+67cwnyEhmwdI6sJVtHY8Z/XL4HW89EkCN+IXL4p72ZHX1xP5XH3ARCzMh2rlBT8F+Wefg+YYHjGAQ200SyLenymygQ/7qYG+pvBpANX+uSAT62sa5vUgMk+p81RJ8Xq1o58Kqs+msN2klNkTX5G4NWHTqxrTgqy/OVSJjgIzlz7ro6nwGczXeSPZd1Mcn1S1fYfKTtGqjzyVg/1LGg31skar//kfCqZOyN9khKbocR6CuDOyIqNHnMPOcjN1xHtt8sO15fteV3HJueV8bj2odcmsAxjHTBqV+0OazB7xJrei7wWj8MySZjasiADxeewPg94DuOjsAclYba4J0l4DM/Z4lMeHPqPY+ZAAdTG40ERcUxdf6z/9PQrcBrdtHWS7yHbuJgJvNSowY0/fJ3QXn45PDzEe97zbtx44/U4ONj4GkD0dlUFFj7a3+UrR/jyl7+CCxcvypHdQbn3cnFQv64PnQZ7ZCPp9ISBPOWJNqezHnmGnCpTWNq6GLcGqatL+fYgKwzigUb6tmVnI/TlNoy5vOpbcj0pczQHX0BwepnD081dVMFtNO17WmeMzYz9T2SNPR8bmNF930lPLb4eGWqwtj+X6a1lH2Saw06utn5kPatroDhG1VHaTuJ1nRvBQDjWN40xjGPAlNEhped5FWcBBbEBcKo9y+plujYQ/a6gomSnsyd8X4T0V+4zJxzPXibUcvnyZdz5ta/h/LPP2kgGGArh9ttvw6169FvoJ9ffja/M2SudNYB9LRqeUFHj3ezqizG8dGG3mn5kAM9euIB77rkXd999D84/e37Ux9AXikK+K5MhE74Ahjby2OKX+fzNEeM0nV/ugH/v6D6KLxm20Y6uM9IISOt3OtZ+sk1Nkhoqh9emI8HRVQrw0iCv1tqj1KbKi+c7WMhffhnuJAhPENP7si/7si/XVM6ePYtf/dVfxU033XTVzx4dHeGP//iP8d3vfvf7ANm+7Mu+7IuXp59+Gh//+Mfx2GOPrdpvY0alV1KgEgA8/vjj+B//43/gj//4j/Hoo48mv9a+7MvzXa6Oe2Q3qMdttUu9ORe+IaO4OVTniRvyk1EhBDeps4Ak7IegR7EUN3hNjBGxL7MvqqOpkB8TNnVqCFxFQo2CI0QNO9lQ7Qb4OFZ3NJDZD4jgJ5sFx585RoBh46pG5LR7TrCz1CvWlwKjdSoDS61YWAKTaAGwgFDBFkTTOR4qoA5vUkeEZqQi3agDXCXoo+pcNRhnsWsAW1CHjsPuuSUB1BmzIw7cmOzOETPvMCQgRZ22BeANYpr1uiz+LLNGwkxpgcLcaT4jnwU3XPsIs9HcDYVsQW1KydHJ6PDb4AAxZOrpcC0jVJsvzRpF1Jz7BMKyXYDagp14WUBcsSF1o0jQgeCEqODc9dfh3LkzOCgFGzFOtAAgyTy2LABXYKnmYD4+2uL8+edw5WiLhQELKItBGxyyEoXxaABTH6TCiV5hcBiOOuVPLEelyeXC7ZqSfjRcmTyJBiqhY3DPMzKHzOHIOJ0inbmWhcqc6wA4GHZixjYlbzf8OJ2QyREy+lCZWi3Dj1JBsprBj+DKQTiKQGaXLdHRKT0HuVeN/xz3iDUFf9lEHN+gT04NiEGwAWBzp/yr8+FiywSmDrSzj0lOG2o4V96TU9caDL3uMH4jVAvUVAN2PAZUZEwwtCt/S/oc4TXJmMWLB9EFR4VmHJgFZOkRWm5/DtmtAv22PjywRZ1DGqhSONMLmdxcOSbUDKPCJ2CnGGbE7GYFnOZEAz5c5sqscjh7WY+RYnf+WuAnSViW8YBkbAhiraEv8ntoOnsajH+JJNOfzacHuDU6FXqh7Kzojdg5+0OjVw22Mget9hnhCrDltYr26/rbBRFkXjEUlxiAVVagEIMBnJ5lxq2+rUfIA9gaaXSrsOk6oYMmBCBYIAQH3gIyPvpB9TI6OnYUtH6NpvjWSvanBCO8wt9+sdKrBQewramymMxzrsPU+npdsaqycrYm1GmJzSuf9iUHffknhAwl50rsK60Jgy4DdW3TjK5t6RQQDJnDAcyXZLHA6r74Yjrj3OQngNlz1m7ObBMDzSIv53ZOibQg3+O093OLeL8Bsd6kK4wJLFHGs9XrAw0pfY9tezu2PjAxQda0a3uk/jygluw4zT68UAOt3YGW1+zabqJfOP16sK07Sw2ErnD3ieMc5HcWKgmWNMxu6Kpv/Yg1/+h6x0gzKbo5zNqTtcI5625+KODKZGQYrT5rz+jMRYxE4cqwjUiQqd6+y68qL33Ymoq7gHUBj6jgtttvx2tvfi0ODw+woWBMCM/q8dFxb1SXivvu/0d857tPGS3F4bv+y0PRLzn4VG+5blSlHFdUjAltkFNajFueOYOJKGEZYconWkJ0XJ8PzPfJrt2G4aEPikhBIBQeCC8NDcjiGGjXwwm0PXIxqOweKV9OnqP4W/+w98oJQ163181hXLp+TyVc6iXcVEYPtBKUxDCOoaswK12zEI5VHg9Xe9j0Htkd7ZuhclF5zgKls6pwQR1kcocA0+9xPEa38uwYBBEkqvJ7N4JBMgbiVGrN4/UK07x3QbjbPoNr91yWWa7PeroNOOmmk/1WV53SdwLh8pUruPvuu3F0dNw1FGigEG5/2+249dYfynhcF+oQJE0QoHraP7MyD/Iik/Fqx5mRfr6mcDj9RLJlZjz5xJP48h134O6778L5Z55pdjyb45VOOv5VfRHtDXMOWuO33FoyhewoJhNs7cZZF9igpadeqfQ/KEpPTrD1oHB4ZhhawLlO1Hzk11J8XnbO0UrxscxGtf6MfTv9Y/uyL/uyL9dUfu7nfg5vfOMbr/o5ZsYXv/hFPPjgg98HqPZlX/ZlX8by9NNP4xOf+AQuXry4WkczKv3UT/3UCwjZC1NqrfjqV7+Kj33sY/jEJz6BRx55xF7c35d9eT7LqYOU3OUiBs90T41+2RBF6hgN2RyIsums+eI0IkOtGQQNqtDd/czBY4ZJwI0+ut8fLAJiDiGWj9S1egVEG9sAF6KWCl/hIoCKGAsKyfMCGwpY4GVsZAgNT9pXHHPLJnUAUJEj2QgbQAKaxMRHBwCKZ2wq6oyVLAu0AdEGwAYF6syXkAxxGBC4PWsdb9rb9tTmikrLKGJvHQerhgYq2PCLb9TNaUgbydIDgKpPgZCImvfBMu+kx3UVMBEqGCTGUgo4pCLZthSH2qfQIYga7IUbDm2Ki8wNGzyFAJAei+UWG8YCphqOUVJjnWYIKeY48jAHmVdmwbgfQ8d2Jn2bk2TIQTPQEUtGLeMLDjTEkAP5WpBBYwGA2uxumEC19XuwOcTZw+ta4FXdgomxRW2BQtFwWAgoQCkLDjfAjWevww+cuwFnD8+gUAtI2+AApQKbytgs3PoB2jFvAI4X4Pxzl3Hl6BiayafWhsFaJGsM+dFKlq0HJPOjtFhbn2YkbbzUgozDmJUbSSlaM38xClcUVJSN8CA3vtUACn/TW3BNDC5ALQC3CEUUanhWR7XKBBThmABDEw1tfHpcltE6qsgtkx5QkaBvMkfTrQZSkASJFAYKFxQ91o8Im80GJMyqAYQeqOhOBw+e2zTZw4133GMt81CW1p5Z3hq/Ka+1gEJWqYF27GK17DVqe2N4oBnJ03qkoh4eAAtqqD6PavzUrGxybAorfOROzXikIsthk5VVoqkZvBj9pEL+lrUF9pljQI96FF4m0S3Co34s5qbJR0hwjAaMMVuWMpWTLFmWjFZLMVoBk8kGwRwYi+BHM6WZ8jFdU8AAL0BpsqRSyw4W6Ucz9ZkuFMNzG4ObMJvhXuVPk9EFGztCsoaMEyqvFR6WTBWFnC5bvAgLLQR5GyicLBpXabUm/QEQuBYwt+Mrc6CA6pymDysKgA3AxTLUaSAgm3NN9Abr78BrQAtglHvN8Sp0RcpfXr/hkE0F6nhIsvho9kcjaqhe0qM6yWBqlFKtTl98lgo0WxaY5I8+U92xY5QsvEZ9YDFcdUtzVXjWAw0rSGWzDSMG57RPsSONDAsyNqc7x5mKlHhNdTw78BFMDuZyPR5K5ijrZjY6tIZEv1JwCDSnt88z0hNV5LRfVhxC9JUHZgEZoY2f2m3Ftx5NG4Vb9XHPPCxdu2uB9SZDrWIcc3V6Qod/zcwHcjco61/gpfx+i1JdK5mGrEK4FwOXya6POB+CYlJvmeet3QDT0N7kBk0hnzmHi/GX34tCnQ2sPJJYVyR64kutrzhw/WYSJiynms6RAGd4QJzjgkw/eTBgvO+aOU5LCvJQmk2fMCJTeWR83NY3AqHpg+JjJV0/RGxEOawQCa9KYGe7kXWsKTqKT8Nw4p30c5hH4+P0tTYPtQIc1pn0Q3HvGMNzsvySxZPMi8gp1cVxBLauG+kZhl8k+iOQJd8gtEyrm81Ba0cCk6tk+Izx1RGPN1x/Dm958w/h7MEhNrpfYxjtELN8FLtNNywMnH/2OTz00EOwF/DYx2urwERPscjaQueC47Tq+m8MfIwBfIZeDn2RYVB0Q7QtsONS6wYeogFGCD0OUjvo5QiOw2F80t+PF3QaFC5EURJGGnRVDqgSmAc7DvleIuDP1r4p0A2+boTroTaHnYzr+gCCzjQbjmKqZtwkNhppoacVDUyzl+cCvKMemIbXSNMyeWHMuleyUZDuaxzzUa7AAsMptMn+PY07XguSh2EZEvWGB0wEvIdC8XmTTvLUoEcdCh+6j9MbVfkVM5Zr/1kax2cU1qCZnC5p0k8U9rP5TlWbXIxr+VmAFkP39YTnnruEb3zjvnZUgekLh6G9DLXBrbe+BTfccMNkXdfDGuTwKQrZv52cbp2LDAgvthh+5+udDD8pwXv7/csLALbbBU888QTu+PId+McH/xFXjq6MwT4BtnQnzQv3VcN3DWDqb7j8ncWhTgOVOl0wzSBmfxUPPWA9HjjBRvGXVBtB6Xk2fFROrNFB0ttrlXbdy1JsvczGuuu+4lRx30sOf+yUJL4v+7Iv+3Lq8rrXvQ4f+MAHBtvIacr58+fxxS9+cZ/NY1/2ZV9e0PLtb38bf/EXf4HLly/P7b9ogUof/vCHrykA8+VQjo6O8NWvfhX/5b/8F/z1X/81nn322VVc7Mu+XEu5iiAl/RJMIOnt0bBxNCNEeJ58s53fUASiETw/5+nih1TQXcCSOcDYTUm64Zcb0n4ztughcSBGKRpIom+6pZ6QjC/BYJVQwixH+9Tm1LSj7fRIKXX46tuDLOnwNXOHG7haxpia0EF6hEg8mswwqo602jLitLOJxEjs6NTMOADSMWruKJbNNqrhMZuRumwWVMHUjrWqzO2trOCIS3PE3faXGVw1g0yeX5YdMS9Vjtpi2//HFN+WrSi2m2atBT/0x9v5R5169jNkf+DuPw2kiIayLkW5GSnU0RPxICMLzlfFux5/Zi2ZIbPVacdGscXylcOCK8sRjpbjZvhfKpZtRV183lq2F0IpjZ7OHG5w0w+cxdnDDQilZdeiguNacbQs2HLFgooaggZqrXju8mVcuHQR27pg4SVkTIIcH+jjb+NQvASehByRpjQmdCGU1upUtZIw1A2ReYw8eI19TuyNbUT+VcNTnnatU2vmGzKUB2MlFfjQ1LRIFhyC0FcLqCMRZjJ+OZ5IMCkw6LjcoN8S44j8Ccfs9bKtdmN2Z3Q0nEGEkWYfI4mJy0bRxGndeiJlZ0ieGOOoLFetHuwIRZUPyqjKzyrDCCUY3l0OGa7jETPBkaHzpDID4V4REGlm+Qw4G4rpH63XfpeykaA6PxpS8ZOPk2vyW510tVYsSwjUYzGAsuAO1TbU1i8rTQDpGAbr182T+Q1SnTPBsjl+0DnIZpv/nkfnPBR5S/k3OZpEp+ajdhQmnW91TvjRZFFfx79m643ZyYRLTY4Ho3Uf+OFvqec1Slx3tEs+nwElUCCaU1XwjRbkqkFX6rD1DCMRrUrTCp/fauiLjoTYX4A/4N2b9XHGv2PgS3zjVkeux44qP5U0z+4AI8OtiUP92xYhmAZedfqe1DmV+CqvBdYLBfrq6aPnB6nfzzVHugiMEGjRAyf7lUNEnchzecQDFLwMQVqJB2j4PtRJjcHWO97mFEkYM1AIjxXPPEk9nb1UywRPaVaUnpytHZ/oqKFbn9NwL68r1sqUJnq9193u67p+jbImyrA+lGIGRWzQncMxuFD9znHNHrtprOuBLPF6Xj5kWeyKJOtgm6Gw9tKno+xR97mvU+byY7ZSS+s4XR/xCL/NFId+ui7sp8G7Y/47hutruvzxtZ6OcXfJewmOXYlsna3QtILyewZvHMsu/d3XMZouJMc9L21fyLI30yOfbR7aXFx/7hz+2T97P15z4zlsNm0nrYHSVdbXlX11HdcWR0dHuOfr9+LylctgVFtbuW5ylDhOKYlxX7sMaBrWE4j4jnijtEyI5O8ABPxFnPdzHdeieT+YBBamhTvqH7sLf5XRM/3YI3ENHW7okshxE3kijyxesHW86Uzt09ftPbBr+mrgj4kuNXgi6fbr3zQ2Gj66Pp6tNXrbjsvAfuQdmMAwf2wArpSuftw32LqZRY7E9au2G8BX+DJMLsvaCy1dmQxo2ANRpj0HADLdYY/dNRf1QFwozjCS4E9yqG81PrSuZ339Pe/L/7I9E2Xnk08+gS996Us4f/58xofKHiKcPXsWt99+Ow4ODsIId2nrk+R/GEBa2/hnuhrQAa91Mcwzd39XYCBgqQsefOhB/MOX/gFPfutbwdEb6dEBNC6x45Zdpa6ygomODBeF66uiMfDBbEh577Nrbnr+6r73MoGivg08E9dvcc80rIxOQw1rEmf3KK56RX/Seqev3v8QHbaLVfdlX/ZlX66lvPa1r8Vv/uZv4oYbbrjqZ5dlwWc+8xk8K0e47su+7Mu+vJDlK1/5Cv7zf/7P+OY3v7la5zWveQ1+/ud/HmfOnHkBIXthy9HRET772c/id37nd/DVr34Vx8fHLzZI+/IKKacOUooOVXtbcrZ5Fst37QwrMbBALoRHo2UK041VzLgwwCQPVgmScTgp3gYqiaPcN8AkBmLdj6UBqXE+bMrV2pEM9ZDsLPFNQzVAAS0IypwWbrDX480qMxbdBzMkwKiZBTQoyQ2hAlfVIIUaDDJuoGmf6vfZj3izIxu4vTnpDghpnwB1avqUcNjVq5msAry0jD6c3+gzpwl74AIkQIeY7RilZmt0Y0MLKpL+KoNrhJmdPGyO9WgoN/a1AJ3ijg1BXV2qG96DQbUFGTRjSXMS6kSIQYYIC7jB2W7CMqRADYUKX8tEo2/DNQMxWVuRbpPjAOhoqv1tAUqB9gpw5egIV46uYKGKo3qMZVnasW/sz6sRr1DB4cEZ3HDDdTg4aJ3U2jJYtOMAGdulBR8tYBwtW1zZbrEsjKOjLc5fuIDLyxbH9RhL3QoNLahcWwBMdGIgvgHIMv4+YAs2z81ARS3jE1ripcoVlRcsDeNmlo5GR6MttyomI3hy1GjwU+2dQMGAad9CdiboW/2eRUVEhRw15/KlsRejStaXHGTj/Fvb2YjCxp4lypyKQqsWCKj3VaT1lkBOr6L72A0byg8+YpUZnmeD/Lkgm1qrLdjKAgREDrqxv401Bzm6nI6BLQaIXg8BbYZrmwrS3jsbpcjYMGJmzywViwcodIb23lAfn4l9iRxSWmhy2OFViJgral3kGe+bRf4XkNCgH5PWnAohWEnnp0IC6PJc1+pOPHPAJIMpw7LvkGcrY4wBTfp8seBZ7T9nc4nBUBb4w9kJYYZcOxFPAwgl+wt3dcNfdO30AR3tp2QsY5UlHtDZsgQOTRnvyOykdYuNf3zM7mllDWWOzkyPn3A+b31Kb8q/TSthDNzqnTgVoKWNJ6twAIGnDMCg+6jnWbmnvBneMPc1EQ0wxXFHfEWHxOh6GoPDomFfwLO2Z/wWZc1YR7OnqbMxrjN7p0R8fsfYNOtQpNdJxhhb54Q32U13d5lsjC0mY5z97mnBR9LTUlyLJrQMhXn11suknAJyW3s6jbrjs+OReQNIdBJkwcnPeRcxONMVqs/d6nD6/kRe7B55tz5hdaCt0EbrQLdfGSOd/M+0mFYGnczJzxkOkb/H9UYQT30LosMgMoon3TQ95lkM837C4Ih8FOFjJPWc1jM2TP2d1xHuSCXTPxHNEecOCyRQP3ShTdtaPwNq+4cOVsGQQWSoCbJtJK7dtE8d4AmHodKyLFiWlpF14cVfiujbI+C6667DP3v/D+Of/JPXomxEOrJmBWx9LBI0wWjfF9nDbrcVDz/6KB574gkstcpLOh6w0abQaTGON2uHPBlpaimsNey+r23mrJNpyi5ZF3n/PY2zC/hMQKvcYIWcplX7Np2mgt4K/AZ2vmufkNEmBrzxiI84JqO2JDSCZGXn7nFwYZArdJjpN/CHCDRO2cT6PobWAv+HZ2xuIpxjAMMoO22C0jUyrM+GxuO3XtfPIHfBAJtPhyyNxfaDbZEXWiG/pjjUajpnOr+6p1C6iToA3scIK4vs05dN4qAo4XnkSTK40tobHeWcoHcV5qxFfG798XVa6fcZHmDeZNGzF57DnXfdhStXQhahTsTecssteNe73oXDw0PovnZYc++g+wlU7UOAZX8GbLLSlJLSDBz3uhYd2rRekXEVvwZccq56+dJl3HP33bjnnntx8eLFMLauvs1vm+/ds6iPBVqeY6PxweqaZkf7w/5npMvYm4sHV+49aFHmO5Td3R4fu0Vg19FMh69Dfa2ltXbyCnMNV1l+7su+7Mu+PL/lpptuwm/91m/hjW9841XLGmbG1772Ndx5553fJ+j2ZV/2ZV9OLk888QQ+/vGP4/z589P7RIT3vOc9+NVf/VVcd911LzB0L2x5+umn8cd//Mf4kz/5E3znO985hY11X/Zldzl9JiXbpI8b8D5AIGXTgW4kCeq4I7E/xEQdYA+s0Fbz83kj2oCS+80ai007k2w0GgWYOO5KGbBAkvCYZkyxTTYBmh3JjQwOG8Cgkp31pQCkxw4FB7WNgcN3iimddezSbupHgJQMTKiOI3R4irPT7mkGH7Z5jOfQ6ZhBjuOYhcqNtJzaZFanccBb93wMMGMsqHKkQDSbKS58DsJfDg50DWZaIMcFFHG66xEGoS1EuuXwdpQbutVp7QZb750A8MJGm3FT394Y9nktCP0TY+EaE9cbNcfMVRFPbVolqKcUC06zACWx5izHWywSpcpLxfb4GMfHWznKSdzj5mRpwQhnzlzXonhlzrm2gK3leItF0p4zM5al4nhZUJlxtF1w/sJFXLpyhOPtIvAsFjSlWZQ0+4/xC3OaRzBykBWUvtjGt6RAvIZNSIAApA/tsxodQeZS6RKhbSWVaIkqHtMjRwISybF7AR4ttVabYxun2ahGI2AV3BI2ARY91k/JkhDfelWej/Kx0QebzOgNb8zsQYZo/JRNTQxIAJ0ebaTBPdEpsRY8YK2oXOs3jyThTaTHxUV5URyuYMS1OVPYrR2lGXiGOHZ+U89NCpiBKA+oXHda0GtRZ8TMb31bCHBqKRo8EHEsMNfq9ABo8FCcXxhNp+sCYAu7kGMzJvRqvzWYswEs+mGUxRpsFl1VCP1GXd0H+foRCaKI2Q7nNBmbsveokZcjzKoDMl9nejSw7Zkx+0+PC8/Il8amc1HD3M7agfCVfje6Cfd5xH1et2R95HUlO+LwPCNMkc8vnI+5KSTjQdO18YhMkGU+00DXJrMbDZDcb33r8WXwtQlmsJ1cenxYcBCHv10Apj8bZAszTDBM+xnpMTrYvB2YrrJ+0XDFVYInK8k8Lw2HMYgo8OAaPjI/rH3HdLw+wHU6ntFXqGVtMHf3mggwHJgTqwsS1N4pPL/G7y/pcjVgWt20QjSdon6j5GDd1Vy3XtSPrmd3OVeHDG4KyGSSelkRswhCvrneZHOkMdpLEuZk5bGD2LSt4a3FEZZU14Vh12zmSR+zLkVd3sXnqLuQp2DioOvwYk7NyRGTrf8o89n+8zFB0BfnJvcb1wgKrcmZCaSK+r6NNI6+TqofYZF/CIGvJ3i2NhTW7khIw/9MByru0OEi7DkAe1nEgqUrt33BUrWG16UWSP7Wt7wVN998Mw42bZ1rNMts6yOVt7purwCWhfHY44/jrrvuxvF2CWs0DUJ2HRmXEUkv6bVwtEOc2t5W4Mo7478tsTjg3acr7gMHGnDMJz73o1phLx717ORD8hscbuY9hQYlka+78hM7S+rbCEnlwjig3H7fB698+jonAYWs53p+ggYmT64PdZ3uermd5nGq/zh9c27QQkNtmxtmJJ5IFTtpK3SQg+Y7mmDJLpzGwKF2Hqu3O64jaDpWfa7Pgpd1j7YTad/0UGa9AFnXT4/DIVsoTRTyOLf9hfkc6nOehWe3k5NTHbXkXLp0GQ888IDpQdX5DjLhDW94A370R38UN9100/MbtME9PUTmdH7thjD7MZmPeGWC426uGG3//cQTj+PLX/kyzp9/xlRUJ2DDVx7magSj02dD397uzqZmIme1qnDRSFi5LcuS6jpHdXO213a65PtYTtvD+ro+4jvs4aEyZN5XL7d62Wa2033Zl33Zl+ehlFLw4Q9/GG9605uuKUDp61//Ov70T/+0Hdu6L/uyL/vyIpannnoK/+t//a/VYyeJCB/4wAfwH/7Df8Bb3/rWV/R6alkWfPnLX8bv/d7v4eGHH94fxbkv31M5dZCSOtCBuElSZ5reE6OaPsJyRQzLbux0g4XfK+4YMEO0GOiLHGOhz5kBH4Phg9CyxySHYYJT3mCyfsnQoPCZJZ5Igo/02LZmfDFDRjtLC4C8SQrJ4FMAkjfvC7Uq1L0q2Yz8Oi6gvf2oOCkoZdPg0LgoGX8pET+yzxbH53q2CjXSbEC0aUcZldKyD0Xc2Ry1RaTCocdsWTCQGXsKwJsw/4FaiuCC/G80FiV6sHFvJJCo4bSUgrIpKIWwESN5y24hGW7KpiGnlGBYJstKobAWgx82/4VaYFFBC+TZSOYlp+NNg4EKNkQoaoaTjC+KnzSuAhQjvQBRmDeHJeC0bLApG2iGEyLNLqT0FIhZDb2VwYsc60cFtGm0qH0VAjaFcPa6Q9x443U42BwAdIhmlIrHAy6Ntiv0TDYsteLi5cu4eOUKluoG1EaIyihiIJRPc9wHXpd5NZoxXmbjJc8X1PDBQm8a8EVclBhRygGYdBaKzI8GMgS5EmjZ/zquka5TqsdGn1qNG/6ZUGijA21HYgRbOwt/ltJowRyLpTXmfcCOi2rjLyKrMkyWXQkc8Amjj9LRT2jCxqi0DmbjAw2A0qCIUZ77mOKvLNvJ5y/AYMbyJAtyIAkJ35SEewb0ELwwP5ptKOuJ+JazwwGQ5YUCKS1h0A09bbQMahg+UcaSyGii0uHFaQtiBiyaESzIG6UXkAfdFWSZqZngSDLuNdlJ5vzrOh1kacsaV5oGVeFm43H8uxyG8G/DnetI1XOTcQbZ723AxklWV2ChTdeKZ6tLOiTIaM046H0IjZWCSJXGHYzE+9S3G1wOpn7VGTGBIeIlhSfwpskb9gCgBm8xPotSMghJwR1chkNccZFfewcPYI702A7F76SZhgB1imr3zm/UYDa+DTQx4A3juMNYenzZ3XhtxXhu8E6N3XOXl/atPjkGQZ3Z68+7qw/kc6C8YH8RdFeAz/gQuj5DCD6HOZZct+Xn+/E6XtvHAjtI5jfAkMcVYNeRiVMukWWOTgmPj/P00isz2Cj8nX2HTSSR1++pNv3qunE6cBz5PoLDXM0Lq6PanneeShcS9OEaKXwd7DblSiCq45yGMyomdK90SEDeTwQ5pDAE+hwQldDdyXzBQRpXWs91+Dc9lY+7zrI3Vvf5pQTHSM9K8irLtL1M/wGqxI9hjaodyHiIRGdnVExwgkl7E1gJsAPGQ7045z2O9Tl94cABoQy7PePPFtuzdkgM8Otx3+6MhnlqE70EeG/5JzfjLW+9FYdnDtDWCRvrtz3OvqbSi2jBShcuXsTXv3EfjrdbqCsZhnd4X/11dNfT7z40IksCXXf5POcxZaaKQRu2SMiYNXqKz3f9BrmQcN59o9i39qXqi2B6x5V6jyO9EHQCx44T0QTcZV6xuUp8E+FXAvfmrI3U/Lrut/uWLlLaZRvU9FmHcTIO/UTeiX2F9XGOfOtLr3eVqgKWpV3d81H/pPabFmF6nTt5O/JrHhPZOiNCYlwW58Gea3Q+tBVpXUGcYMCf8HVRWgsamZoVIF4OEiDgQiHr5y/KSWCc28AOsPsZZzPdoHVTbZPRHd4DnXzrW9/Ck08+2Y4Qj2CEZ2644QZ84AMfwFve8pYpLc6CgXevvQhQfRAlQ+gz7yd87D3dcJSBa12y7ieixMzyS79fvnQJd3z5y3jkkUdcv3Zz2vPtQA+BH2kKF3WfdT4/TTndc7m/VnjOEENVqcRh7Ds4aV5mczl2uz6JoV6CK368pX4/kXUWjY/sgJrotJDty77sy76cXN7+9rfjx3/8x69J5j/77LP4q7/6KxwdHX0fINuXfdmXfbn68rWvfQ1f+9rXVgMniQivf/3r8e///b/Hz/zMz6CUqwi/eBmWp556Cr/7u7+LL3zhCzsC6/dlX3aXq+aS0SFToEEldjySbMDdqSkGU3X0hFf9ODw7vDEX7VlioHFHTwfHJHjHHZgtuEFyGgSDDYGpgGhjBgNzZkYjnG3oZCylOWBrdIbJcWcVhJb+vgBcWlYEbsE8Zs5prxSKu1IN/PkIucoAqFi2Dra3K1lwGPCkSEq4IvveDBnFxuZvpwoEIixzJgxtNTsWPPNDg4loI7D5UUzaRzqqbmo0pS7NPQf7cHaiJJtoVWNLiwpq4QzsuJMjgay6vimsbxGTmhkivMlErUmqnMbicU0I9K5IJzlaT4yxZkgjw6L0Uyd0LtlmBLBtXbAsi+CYzaGpeVOWWrGtC7bLts1t8aNxSAIcNqXg7NlDvOY153B4RgMZNg36sqCiov3bjqtaakVd2pvUly9fwfkLz+F4WczuWqseeFjMIeEZX8iyFNnxdDbvjg+1U7fnZf7kOLh4XAGBUFjxEh3Vji8zunF3JBhzqlMxOrZzJhiHk0PmMwuSQes80pC9u59TwUnGoJY9yYOMhD6MfzWzkeDS3uijlGVIoTFDGoe+zWMexqq1WeEq/mFqmbaScyIbwJPjUBFlx1yyyTd1TEVe0uxA1Y6WTNiWOWKBRgKNQragbMDPbzIOb0qbD8BaarI06AKGZpvKb9b32VLUqWbHywyyz9uLspGSswWGD22npy+V40uMKI+DqTqfFVQcNjP0Bp1mPao8tu8aKHuyMTHhQx1vmgWrx1msPzYEIg/CJb0GmlTOfSO+sanOUQB69KqOUem3BfuqDG3yY6neCRGNi/7ocG1Nyzjm8kCzqrm+ApxD/Hg8DwSAzIFnOvH+IiwdTxSpC+TjZ2NRFO5Y3KfACDgs0ABJZBzqikND+gz3+qcGnb8yh9OAhdB/X89od2UcfjkvaCLdBYIwGnVZ1Tkd9Fg2lYPmWQwynnRNNMoFhx1QjWttwbONKfvOHFQRN9r3kO9B1wf2OHWLnFwabWc8+9qEbd71SE4N6Hz5FVr9rqso1anz8SkO1x0x9iRRJK3U32A7DWs5LYlG00O6KurbmDWa4Yil0ZfOMSE7yVw7xT55wrfmo9eVCQdKPIFEBsqNmzL76/ou96trhKhTs4zw51TmSlClPbuSESo9P+oVHff4UFyNhzHIGsypytvrs7KMWVr0qXGMCkciE127qZ5hhaWTZcrXs0HA1yURXgoyUkudwK9PaBueGRZOp8HJf/PNr8X73vdeXHfdGWw2qgPVCa07sOrtWaZV4Oj4GPfffz+eOf+M6DQkhCgciQ6iOmDHQpC+AWM0/aSdQVDBzvurlGUwxvtx7R9xzrFljr1w+k/lvtM3p6fjvGbh1X/veZ9tHZcHFHGse4cIqssC+4ecJig2E3UpB5o9abE5G9twXl6/boDraw4B2A6oPaUzDW7ZhCyQJuwnMg7m+HGejRQWhh/X9AaKywikawpD15dvXnLr5FKUQ/WpADOdQMptfoszbhoMuY1dTkHbTyQ+mmqyE4o/G/cUKvNW9xPKsVMB3svUFcUV9rC9dmm3RTcLzpdlwb333ot77rkX2+0ywKT4KqXg9ttvx7ve9S6cPXvWpjDGCM5LrxMFtslaOTbUhWXm0QT6MXztOIMyr9nX62mpy4JHHnkYzzzzTNiLRrXg6xvVez0OfL7DEHbAdzXX+5L0cehv2MeOPci9NTrbMcE2B/OWpw+kM737ddzp5+fker4/yhoryIcwoUqPycbL/py1cbViYF/2ZV/2pSu33XYbfv3Xfx0HBwdX/eyyLPjCF76Axx577PsA2b7sy77sy7WV4+NjfPKTn8Sf/Mmf4MqVK9M6RIQzZ87gIx/5CH7lV34FN9544wsM5Qtbjo+P8bnPfQ4PPvjgPqPSvlxTOfUqgVmO0zDHiG5uol1GNoT23Q0CutFt2x3JWqMp/bG0bCTBMNWea0c06X7KAz10cx77I3sO5oSvaMEB4RrpAzoON/LqWFrWIt/tNudzAROJD6wZ7MwNGfaZJPXVaV40AwczbDBmjDcMoUanJhHMOVZ1Q+lG4IBpGWcbewXsezM2kuC4bVpj5mZSPItRuwWSAUCVaa4GY8QREyM7SzwQowV9BasnqyOdAbQj3uqieGq0UDk4ntQgUtTZqse9FKkr86kbbio2PlZDKtBgALDURdwHamgpkpGJxfZANjZ33CuCOBj7hV5Yv8lcKiap0YSTfQu8Iaizk1ErLGBmI1mSmAta8AZL5pQFy6LoVSNUy7xSQEBpx7QB4niwfhaQZrwqzRhycLDBjeeuw9mDAxSz3zC2ddv4rQJcJcCsblGXCq4Fl48qnr5wCZeOt+0Ytnh0T4UEovh8ux2pgms1WoDwSrRVNXzIBWLEoxYbWYnzWB0IDEQnlf5VJxMLKbZ5Ce8IqqEFbPOijhgzr1mGKDe+WCClfK92ZJ8Gn9Q2D4rPZAWtaAGbRQGSMagjp/XNtcm19mNxGlI0oprhsQXQbEwukrRnxi17iIwfGg/VNA5ADXY+N2A2Xq2owgvBSIWCakdEqqx0AcLqoGLrXeZHjgpJR2wwquoOdtOmMpu5+Go1Yy2D5dir3oAo9FPCMSFtoAZPVdzItTYPbX70TX+DbQIrQKhB1bX5qLBQ0qTrRJ8RRNdUmxo9holZjuSrbBl1WI70IwBV+ilEjd/IHbXZGO+ylkipEoFHu79hnNXIXHhPjv8jLi0ZoFB6MVoMBl6mjDMOWZgcNPu+HpAiPGCG44Bgdg6Ojqb2XD4uteFG/lY0nEqAaBEeXhADwqIhWI6joUVkD0GTHFUOsiXMbylOF95ma5cJIOTgKAbLddHzLPpWeZu9CQtu6i3ALPRA1aZUedN9byoLHKdkPKY4l4Bdausg61PJ2PgdaEGTDkDPfTE4yGZi8nvVgdTDSSt1gORzsWoahBeDE5R/SelmJTSHPaA4iHmQ6KER7kxvuob1SLfwZjIF528YY/uOPLeBjII/03igfe8VDK22n5oMusZp66Va1mlkrYqhJwQD6epAx58epPggha9zfqOurpfACbr+lYeUf5M+njjhXYfD1gYm/mKKjjgE8q/WEoV7vhFKkCpPp1GGI0a9dnWVamsr7VPHFGV0qOFIDwBnQEk3VIZzfz5wSJvFFXJIrQed3PRTgNMoAWEOdQ0JfzDuF2yd5t97oce2KQw6wW5q1r0OZtObjtOoT4YRkk1CG0egzygvKc6OVGduOo8Tsch+QtdKMHUlK5jia8wq+gqOI5IMliQpOg8PD/DOd74DN954Aw5KcXplFj2r+y99gcFfbtguFQ8+/AgeeOihFFSc1wuKpZ4na5zwsM7034aPiE6935OuCkXdf5DjPE17P0dm5OjAi23Ga11xuDkkEwoIQPe80HUaOYf78VuCf8TMCDAa3Uacqc7sj+gKWFlb82WBpd90D9CtDybjbfV4+J5wlq6o/Oj5JtCFkWcIelEGANLIbfSdrE2j0nHaeKMg5UAf5DKXY2uQfRu7zCbI0YAROTqLOuIuQJPT6BOth0VSGkdPkBY8EuRaetzqdHJuGGdqFf1PX0+RjYNTFRqfS+26LLdZD3vZteKyZL1OD/WyLHj88SfADLznPe/BZpPX80XgL4Xwpje9CddffwPuuvNOHB1d6ajTaXcIoU70sAJfx08pYNYENnZMbv8j8zPtuNdfu3LlCF/+8pdx++2349ZbYwapPshslM+Rnzs2+J7LSS89GGCk5LIiC71FjHjsmGLW1SAr15vbfX/kAb++Bvvp6Hte+nZpJzU8j1O3L/uyL6/ycu7cOfziL/7iNTnnmRl33HEHPv/5z38fINuXfdmXffneyna7xR133AFmxq/92q+tBmIeHBzgx3/8x/G6170OH//4x3HhwoUXGNIXrly4cAG/93u/h1/4hV/Ahz70oVd8Bql9eX7L6amFlmxwEktMfINV99IaVMSsmXRgDld/qydsxm1D6QYcve9vi7cNU86QAdhbfbZpZYA9g49mLbFmajCIc8t6YhZVcQDGwIz2bDhPqYjxTYOMGPayjRqQCkGOCBOjTnTOspoUYfeis0qz80RjUhtezORj76wmk39K52vYkO0msxjFtA3NbULeRxug1KdpS+2Kv9Wf59Thi2/lRMOaGvV7kxU0uCIaAG1a3AlobaNtry0gQ4JQWjwawVHfJqcUOdJNjm6qaNmqoim4RXqy0a1Bp3NGgObjioZQCB22IJyWmcvnub2hXFkdJqX1qwapYFTTYKqCgg1tGqapHdu2AVC3W3BtwUBg9iOSUOyZTSk4LAU3Xn8OZw4OwQtLPFULoFiWRXDaxrgsFUtdsHDFleMtLly6jEtHx1i4wc1VguMCPnqDVZtjOaJK71QkPDpdC8mJQzwbzsaPtp3bErRpDJ3QBLPDZoFzwbHObLl3gj2wzZtnLLMQOKdpgmUm8fg8Qp91qfIWlRc34lWHT3N9KR503Hq8UOvH6QpGSy5D/LnOoU5s8wuMgQQ2J9IMa4AW6zhdPjceoCSTjI9kUBoA5m/Ihk50KBZo43Oi/NbYheTIkRAkaM5V51ufS7b5MqDsps8v24ySihW4THS4vQmBrcbr/V/HgeJOaSO/EeuwRpllEKiThxl6lGSYWqf6Ca/5sxKQWtG+owU2ebYBNh3s8wTBv2DbnCOjaTI5Nq3Nsa7r9dBcgHdW4tubPk4Kz3PAk8M06jWjaM8AIfPBvBgfURf32zL7if5izS4kEiEdUxjeqyefj35oGmfjxw4COYtNoxcfWTGai+8hR/rtcbz2O7huAnw9jmLGIXbcR5oLzyYWFn0K5gzHxDkQg+lyUORYN8PvoMY1Yt9H4gco/XdZ21QMsban8mHSN3s7GizS8/yuYuJ/xYsxyN+o0hC+d/JhAmn3wGws3M07oGvik0fy4hWb/wR6VDrzp+xpQ2q/n4htSp0BuWGdwlF26sOTfrmDDyPP7IY9AEbo5HqQCKbWXELoOtCGFOp1TBt4QpWn88VM1mT1zdDIcgrPr47JrgWZbhDrLUp11pAT15REM9zaEPNzaXcRewgym/LVJM76hcusr7AHVXJSGFWnDe0OsnpXibIqM671wUY9LrfkPnfzENdzFihg9CRHTwOyj9A9l+O9/ddesjhzeIj3vvef4nW33IINFaOv+PKHDt7WR9z2UNta8fT5Z/GN++5L2VX7gAUP9Oow1QUHOY5Flwac63pvxKy32VhY1/+c0R7+xv6csgNY3Xfqb1KEJYYOSWuuQCY9Zrrh7loYSd/qCEsPc1x7rdTLvWRZt1ovrXUFa+z3ZlCHh6c9zmFcWYNqXcr3rE/uxwKRwf7d52gdh2kUXV8zCkm2sVijU3O+azlpxKbxUg0XUzNqncgfi97zwQ/6YQBkLficx5/d+v3aViJxgk5uYdd6c21OM0kzvvWtJ/Gtb30LNQVTSjCjoYzw2ptuwm2335b1gv4dETeOZQ1Oii+DBKhNL/TPxf5jP+He91BqrfjHf/xHPProo7Le3t3utczyrjJ7KWLnvqIju7in2C0bV+6sku6ET90guNLLpJW1+dyByajT+49vnXw8tD66LJLSekGvhXXpqUa0L/uyL/syL2fPnsWv//qv49Zbb925nlwr3/nOd/BXf/VX+4wc+7Iv+/KSLnfeeSfuvPPOnfZkIsJtt92Gn/u5n3vFB+5st1t85jOfwRe+8AU5JWhf9uV05So5I2YnCEZgORbDMyG1EJq26eZ0D+LUJ3C3IW97psot441mnADBTzpAy0RBRbMCidmV/KP7dC+UFkTjdwaVmo6mK6XY0TK9iaOUAnUyFMgxWkT2jLUDyG+giNO0kBqI/T/tYUNylAgzUNlPrNfxxhGFdhVxmsWFAaBoxgTHT7STeAYAQvTkUsCBmMMbfmI73bY3Ctc0DwiGQjNsN4LxTElqf/EANp1nrT9zHjIDpWy6iSaxzzAKFYOSZE5KcZgqE0AbEG0Qs0co3HH+43jUtqyhFQ0dbLRs8w4/eqi9gdeea+2GTxG6KT4+DaICCKVscHCwweag4Hg5ggYLacaiQu1Yt005bB/atAClc9fh+rNn2wFFVFDKpmUUCsfzoba03ktdsFTGwsBzly/hwuWLWHgBMVDE2Vll/nLwhI4uUmYIvEA0m4d3wBmoltyjEQBzBYriLxpDGaW0N8ULNvCMJU2mQPHuJAANjLOAlcjvReBK9r+W0QoKj3oDA59wbQF9VEoyENnozNbbDJoapOD3PIBEYY6BPrAsC+IclEvuKIx87LSoTbZjDprDSXkm0u1aiUZR5RUg0KKKALvH9kx0JDabbpE56kxaglORln69CyKIDj+fSwaVhowmpvxIyWh81PbM2eUMbQNoPKVyLcg/qRedfvpodCQTBfhlvNpesX7Y5L8qLs98Ffo3g6bzupOV0q9mfPJsHaVkh7xJY8qfOL8RxwGx5rzJYyajZZ0LEtkZaUplYwn9paDUNbrrAlBMZhIy/IKiGOxK1C1VSI7iEh6qetSe8KC23/AnIb3kg45OLDVm229HTQf+qItajxoI7WsaJQnFidEcO100/zAlgXQ1Bpg+MEjhidCzZksZZHWvU/O9gR+BxGtr8LgzY95uBFNxv1Z6+GZtReP6LFgKUxwhzEkuswAjc8Y76Ilm0LW0C69rZTo2YHQwdvXXZfxu2f9iFwIQMw51lBmuBI7s1IreX3f2hN9JWTuvo6Nxk61BFs1UmoqSqO9sPUhBL6l89gVHaCwtRFyWI8PTB6lQfCysyanjVYcx/A7PtjVYh7Hg5LKxreGA4mWHQ9uOD5I2PpBluz+j58loQtsdINOaga6MnOa8afqrB0+7iNAEfeVt6PpgLlNcL4R5ohFe5OHozPrazNYDgldymukxF+9p3bJpsNS6mEbgQMe2B6b2Useb3/RGvPkNb8DhQVvblUhnHFyY0lDl9kJGBXDx0mXcfe89uHT5skNmMprDeiDyeh479Bh49j2DUExHax3tUGhD2qbADBqEpfeG0CkK+OQMGad//TkWnFj9xOtDA/1EGz3Y70mvfem0VbjG3f1BqiTODNwFf2XpdLrrFIBNIFivr5BTgHKoG/dCEx0Y15M2Cn2jDJ3Iv6Yie1UHKN09CXNxHe8z1o+Y7Xfs13vv5875mDsa4/R03JkjIINSKz2SnFsizlfkcmh/XGmty+tZibJ2bX/R72Hm+6FY1+WdlloX3HvvPXjyySfEkK70EnQTASDGm970RrzlLbf6Vi6tebv5n+iZfHuik4T/k45d0Z3tQfjfLjPwzpcFTlif1lrxwAP3484778Tx8RE8inrnY6cv3Z7wauE7fTe78TDv9/QyMLU9xQ2nP9dSvldc+Ij6tfXuPnWKnp+Z2Jd92ZdXWyEi/OiP/ije85737LBZrJdLly7h05/+NJ599tnvA3T7si/7si/PX9lut/jTP/1TfOUrX8Hx8fFqPSLCBz/4QXz4wx++Jrn4cirLsuDTn/40/uAP/uAVnTlqX57fcvpDYSmkhQ2G7NnGSR3azYlY7JpmE7EmrB0WA6QGOLgRV/voIw3dMKtvkOjmuVneC7cj2xgEppbensWROTr10P12g4cZoQjt2CzWI9c8OxJFQxBrxhTBGbdjgohrGDMGY/nMUMGARgDI9WaAcSOvYQP9ztiMIepXrxo0UWSEwURJoU/zI/hxARzmm0DmSM1G+oxNzcJgzmbETB4CH/uc5HE349yi2RIEPhL4SilGOqxWdhQwh+PdLBIG5pdiqac4y47KaEiKxyM5bGr88jc43WDDdoQXoMf6VGYUYljGKumu3atmcK81Z/thMbQxAC6E4+0xFm7nwBFLIJy2B7agtFKAs2cOcO76s2Lc0iP8JOPIUoUmhWeoOdgrgMtHx7hw6SKOlnbMGyoDVZwORmF9tp58LEXjl2wyVdxGA6M5pHTqhP+r0HfPV43enP/tzVWuhlBzFCgvqZEPBf7mOTu9CA4bnc4XB4k+jDxiFjFtSp1QEpSiA5PjxTJr9rxeXeQInCoLwYG/JhYiN6RF/He/dzizdxq9ogdz2ieD2WW7l0DHBguE5yOcrkti8EeSudDj67xtpbgIeW+qt3EbnYS32SnXAxp9EQC2wEIFOteLuI0ysNbagqgEZzZekNEfQnBVGwdMhGsb1r4ce1iYwjMAsMGsNLzZCMc54Ci3VHeQjTPiRINHK0d4Ix+w/eUJfcxhM++Az53xlv+1QCjBgcu4JvM9gIcNTju+py6oRYNDfcyaGUR1kMv9DF/VowYVi0Ee98dvufOrGsaNz+W4x+6gDsPfzEFxEp/29K76mxW+0FZuI2f9w+njn3L/ncwerg0wj46kYa2wQjr9HOySUTEoLjt3BnBsNvq6RL5+nAUo6fMGm2Wt88Z9zbR7PCcVPRHGcYw88baAmAR9cMCF937qvl/wQkh4m0HqOjVWzGu2sJIILcXvXac9V1KY51ASjdhTAVpfvPgz9u+Mx/W7rbpVC5hs0rVEB0k4elSA7ehteCLwxMgjeb0b6TgXDZztcGnjYNs7QMWs4CVr6K7d9JNsrdfD324H/RDWOrGZqJ/6daMOUNcMLUMGD2TQ6/cELCsuRiIxXc5We7pOm9GdPWDTkQCytVecA1855ACaRsM1y4XYR9h+AHqMcTs6OwZBWJvS9y2vuwXvfOc7cHB4EC9DZR7besfpWP893i648+678MS3nrT9ErEeUw1opl5bg0yRElHYaOCkNavPpM+Lx1NIj7pmGBsITcXvQDoiUteTelwcwwKjTxpGbNN4mvp2bdCzJ4UdfCUcV1IuVHv+7mRSR0f9+uK0AzHpMNhU+iC+seWVlnbUCdBEEh/kR1fBkOM0Z6eOmxC7ymLr37Bekbaj/BpO/uxHE9YmSLobRsv6r9m75Mqg6VhpVUGMiiLTu8uLydjDGj+CClvVcqgijM0O7UAJg47Ncvw02D9NgEbaxwxr0/x7umbkZki/55578N3vfhfvfve72nENAdFRRt5+++24/oYbcP999+Po6GgKb9rr+t0IdTcGrXHyeNfayO1972vAWiu+/e1vY7ts8Y63vx033nhjoMPvoZxiTvuyc0+wcjk+s/bsbL+yW16tAbjjXtdc7uPkedplw5kGv3VghdXUAHLUO7Y6PcV+bV/2ZV/25aTyrne9Cx/96EevSR/VWvE//+f/xN133/19gGxf9mVf9uX5L0dHR/jkJz+J++67D//qX/0rnDlzZlrv4OAAH/nIR/CDP/iD+NSnPvWKDuDR/dXR0RF+6Zd+CW984xuflz3Kvrxyy1VkUirQ4AYt2a462+RFx2gwzgfDCYU3lVoQBszwp4YXonCkDXPYfem1cBQUih1v5XB61o24mWsG7QIS568aU6EgBIcymTO0SuaSbJzW49cqAUwFFRSel//IjZkaaKHP9UWNO3EMgB5LZFg2vCnSqlqtFXdiGKZSUNkdcjpHcX70e54vN+q0Lvx4AK2rR6/oMXnmOJAgGK7teCKdV4VtajCQ+dVxxkcMDq1X3bjdslj4PSLNbqXd+RhrbceetYCbil5GqrMoji3Og709az4jyShT/YgcUJsWtmOFWsMWPKXfwRgMDcH2eXR0hO2y6COtnqRmakF9JMFfFZsNcObMQXPoox1MV2tFrQu2yzGWWrFUxvF2wXbR49wYx9uKC89dwtF2K/1Qi1ECwCiwt4ODUybixf92RxIKXIxF8DwamExOEOCZ2PTTsi718xfpxP5KnXZJ2gwyQ3IhWYAX6Xi4cWGbMAkMakyMmP2nHXsXaaD1Y1nH2D9GE8wCi4+VNYsKO5xm0BfnlBo2Iz/GN28Tj4YAkNk70MPbxAFPhlcx1Ftgj85nkjWRX3WcGYZekvlb9oFnpZ3GD3VsIwlghUsfnRvpfB5VTrHNlzUT+54Z+wA5OiwH3nkfOcLDcaF1NDuOBzO2IYYQP5UpXNGOJdNjAtV0WARrTSexZF9qx/6VqSwCO8/oNZOdMvh8fKUKETJ9aPIbcrQjch8c+pgFpsz0yNo8jfONAf4259mBovNmHwsWVF0j/F6d55g5ZXuKWfMSbAM+gVzR9VlyAIFN/hD8+DjIMXxU4tvcmvkpPu9lGpxE6ngPfKx4VL6d+pi0DqxCxH1fd/X5FRg5PHeaDcZcz2ub68/sgk2/R6fTpDJ6N9xaQMQQqNdIyni5p1cvu8c/C3ybAOpxsurQ089scaLj79oomrLxZLBeAkV09NrdDm9G6jyjp55Xw9deIXb1fK07a0v7g+swiJ6bAa5y4BSOdv+hupDGe/ZbM/KF66pa4fwYna7D2izuCzoc+WO6hgkjDXo34Sj1Lc+btyvoGmsrCyt1t8/5sZPBU/lhqz2FPMvx8DeOMa6RFJK0PwxdRJlrIxhQGNerFRhmMFUe5smuSeMRp021OLRGC13b41ok1AhrPwKw1ZcQoHStdKH79fb8uevP4R1vfxvOnDmEvnygkFRbw7QAurbvUb5g1IXx6Dcfw+NPPGEkwBDtRz2WHfI0jm6t0IVYjM/HdVG0M1iQsiJ1FAeRFuLXuJ4lWx97zfgJC82GUsCZdHii67jX14nXe1yRsF+WFyOL+L5gHKffX5O/8Rmd13mFIF+69gbensKpN1cWM+tdrgA7EfaJPXQvqzdP0N8Iewp2buxljTbfB8q0uiv7lr77DnbluVTN1psuk4c1IYeneEZ/BE0rnOYojcVHOsFoxg/n35me5/athIudd0Pb3R4xrddtCDv2rCvt2RpRftda8eST7ei3yPPhQQDtxYk3vP4NeO9734vNZv0FkgzHUMPX9UkSjfKC0AeinBZzCfhVGFuL+b9I7U8/9RS+/OUv45FHHsFSl2vsP4JChsveBhY/a7DO2xwvnfjMVZcT5NSJ3c2evzYYR3owiQ1MOJcmP4zuwh9GyMa9dyLty77syzWWW265BR/96EdXnfQnlTvvvBN33XXX8wzVvuzLvuzL97csy4KvfvWruOuuu3auQw8ODvCBD3wAv/Ebv3HNcvLlVB544AH87u/+Lj7/+c/vzDS1L/ty6iClmvYp7jydOcH07XQgbzRnBu9oVFCDkBo61OZC4a8aAsUqCqDakWu+YRsNcN533gwzUzt+iqgFf2h9MX7rkSwxdkSNprqB0w29uXeZQWJAsQzjTGbss2fRDMRMZO7hCnYHRO8s1GPgbCwt9AIECU6SN7alX7WWaoBDPCKNiAFuwSPZcM5ybSvObjVey9ZVj+ujhvv8EWO/zJOZXShsjinTiplD7BoB1etUAAtXbFElkIXMmBeFfjwmx3Arx1+5sS4GVigqfCPfO4K9LaehRg9yRBMAaFYnyIEPDMtC1HrUoBQ/KsuO9yK/rqUUcXNVBm8XYFvBSztCpwJCo5qxSB32FWcOCNefPYPDTQHX2uZOhl5rxSLHO2hmpArC0XaLbWVcfO4SLl85xlIBbJujvzKwiLMdLI6IkD3GC+f5t+xX5OMU5Gm2ESqNW/SIJlABVw226o1VBRbwE3r14xmzA8ONgtXovoE7GryUgwjVTnnzpsiM3hbowCFjDbcxOLFLIJS8XZ3WI0yABFD0MkohYA1wUgNy54yKtO5yR6mX4AEYZDyfAlcGI1g0TAVDaCdH428NaJEZCC1VgBouNFYrGYBVpkOPwGz8aUEAsW+FhkbjossMmX/0ZlxkGhXesqM7ZY40UHDWvpm0zUDnR5m6hFcZWe14E6N5yXbWTieLBupOXnEFU5VxVr0osq+X/epYUP0VjJGTTHT6PZJ7MtZnm2Q7CjMTf2cohmR3iuwh9NfZL3MAcKYd/TsLaOqN0oVili7q2lfJWhwike+1QoIM/TgXltogDRzSq1lzpwDY+DeWnq/jMX7wMTa693WJrWmAVbru8ZgcPYKzKPM4rhpIP6EtCy4VmEqA7xTG/x4fvQzun+u/94FGaY5XDN9rcKwF+8ycQO60A+KEDW2z3eicdRjGmWGMVTn9nZUhANNusC9ujZ8DnwZe7UFW+ZnYmj175PPvmHl+S4aOug8G2mlrN/kW9dNK47Php+VeRPvOMqdTu0fdb0z6plNmHVA60f902Wp6JMAjY+xdyGs+aXsoCn/2qhG/rS8elWsaJwVZLHVNz+n8eUdt36Btx788+YTrBlM/0rgP2sXrQVboR/GWxubyqpddvn7pww1yRjXdd1BPEzZXXTE6dT0FXbPCtZyCStYedTSW8ZZlpdO5vSBRAQt6C3t4XTeeO3cdfvifvR+vvekH2toprUN0buX1GpGzzMBSKyoDly5dwQMP/COW7RJeXBEINQhukLlZ/kZ5GPeKA30oyjoJrDSYka5r64y62TqyXQ9rJe7mnuIs5UKSzTlVTvdX5JYB43BH3sxrOK0TYIioge4R0cY80bdzGAI2upcoApTWFSmBBXzPRmf3Vtcd/TMy/8hTmLmjw2WX9a3n1dyf979LV7I+E9eyUHHnmbvG8eTf3ai7Txhpv24SfjGbhtZmx43C0mQa5zhTTPSRoUShynyY9tMd1KcqFNfYeq2f+5NCl0Zctqapv7ALEGTanfFq0GPdMWkPPPCPuHTpsvBe36/3/9rXvhY/9ENv9jFTHt2qGu1L0ou9/IgyvQ9RvJoyeUZF8uRer3OPj49x3/3346tf/Sqeu3jx2teZp3juJN4cyqmQvN7XKWue4vaOOhMYjasHGE4H0yBTZ2CltcYKorrLHqi2L/uyL/ty9eXmm2/Gv/23/xavf/3rr+n5y5cv43Of+9zekb0v+7IvL8tSa8VnPvMZPP300zvrERFuu+02/ORP/uS4z3kFlosXL+Iv//Iv8d/+23/DE088kXz4+7IvWk5/3JsE6qRNWDREcHzrNJpP5LYZaybpeqONLTqboDYI7ZiQjngyoxQHa2zYvrMbS5Tpq/62o4rUcR42i6SQaps1HEXlxjHoeINRwf16OXOTHDzVsmYQW4CGZxthcyLqRlLxUQrEGa1vVLegDre3tuCl9rdHrTiZ1dApMDLYevGgMm6pa9RokwJAQjCZBOY0250eryP91GrHALUjqzSYyw3dRGRBXCB9C7qK083CVFqAgc4t67vX5MZIgZO5Cu5aS436hEYQjrvQN4gVBgvdiIYsP6KukGShkmeaI9sxTBHb1eczvuVoWXqEFtxYoAEvDZdFHdoMtMxDIfABLbtPUSIlAOL0WcA4sym47swBDg8OWjAMGKAKwgbLtmLhY+iMm5+iVjATrly5gosXL2G7Xdr0Q4iEqR1Vp6xVxNCBCrIARTUkKUJI5tMNrsYzBLj1VGaykPM7Kd7Y5tL8ZDY1oxLrZYYaHN18XE0sRMO6B4e5vCAovO05b09rGPIFLp9bdeqp45i54czslmYM1SDFSEXFzUGsck2P7mnZQAq1TDEu45ocEWKFhiF5QEQNiFNpQvrDjdECr8kJPZaStC2ZRx09uWxDCtjiJIZZ5EUpkj1I+Elx1WAk88f0SzKlIsV9dIZo7SI8aSI0BSrKjCXaCG0FGJ0mhDnQZGwbItkkNvnWnAAuqYvhqjmW2aaGBUcuQcj7rww9GixSVwlz1utJ04UqI3UctTvmKRmxVY85r7HMaSGlRsVfEZoWGg3dG0+LDDKu4HgckdJ2mxA9Ms5J1n+bbjewYiaLLC9Vjkccqj4iioFagRdD+4bRqhfZaNdpQZtog7GAIGmIAw9YH9awygP9ZWes+jhUIvk/3gZnOoxjiOOywlEuAcNRM4Y7nX/l8Z4nOPBEwoJ3BG76vLtFqbbjonf+9+u9nh+Zh9GtOvocwnD0jtw33TpIjpl0CXdZ5T4JLSHItTBvoXdHAMOEAcf7Tr+tD+4RZmtCBFqNuGAVpvoQx5YzOBld7O2MZPGSKXnefQ0gygyRR2b79ai/ZyFAsxlXmdlNRVcj6Mgg5ftWk9QwuaxyLTtpw4o2/RZwrNtO2o84Mr53mmPmLjAxwJmQoB2ovox4bn2VQG+xXxKa0rGlrvq2Eadx5D7TNbZPRBjPhFflWmIzvRWdzz1vBRnnUMYWSHjXeTA+a3umhEHNKCS6gFOn6GewDUtwMMgwr2PwJ5rLNIOeD1LdeIlsHdHTjo0PsHV9goYBKsBtb30LbrrpNdiUko+rIs1wu/gjOs+iw46Pt/j6N76B8+fP25omzqphP9kKCLpvsNgMGXlUPTbbBNhxtVAS6UJjEty6Jp5UoOGKzy+iPqZwj0KtiB7qn879xUtG7/4sy2C0FaeeMO5OB1ldCheHIq2R72dpgDFi2deELulc50b4ZiWzsePZmuvYZthPOATy6ED4cMrC5J7zws5giG7oPSZ6WdiHJPkv2oGTNu8uq2bwRIrxNScAl+1h7c5+2wAxtDLBbGR6e6ZAw7NrN7THWHWAXi7mZsL+xBRHJy+thxEAxWOk9/gyUl4j5zbylDuH5mfmc9Ge9VFeuXIFd955J2677XbccsstCecEl1Eg4Pa33Q4A+OZj38R2u83qIPFCP95ufWz1A1J5Aq/ZivrSCexTlEE/n1SbGU999ync8ewdeMMb3oA3v/nNOHfu3EoLjnea6Mi0z0KvU0OT1P2dlZOBXy8dfbodyQCT6xGgXSXL03x55XmVhbocsH+A2SxpU9GWFGXJDF+nCjoaSOh7Qey+7Mu+vBrLZrPBP//n/xxvfOMbr+n57XaLv/mbv8Hjjz/+PEO2L/uyL/vywpXz58/jD/7gD/DzP//zePe73726J9tsNvjIRz4CAPh//+//4fLlyy8glC98YWbcd999eOyxx/AjP/Ij+Imf+AncfPPNu/es+/KqKqfOpJTfWg3mR1KjiZi+ZFMze2s/ZtfwhrPdrs/gkGoT7KgrWH/629PQgxhUWjpmDxnxgAmPK5LOC8KYYEY8fbYQNDt2tjtwM1m34BKpHbPmyEuqlWWPG46w0SEQSy4GDfaBOLUY0mbutGWN2sCyWEVUUnPbE8LGVX8IrKWEedKP3Os9hjrllkGEAFBRKEO/pLaLhjMKAV2CNMU3a6PqVOdgwAgwacBEmx4NKmrFMu5IW22e1SBFBncFUJX++o234CXLQoZmktKYJzKaIHhAQkGhjY3PTZTNYkBl0zIiEdCOoYsBaNJaaYE+TC2TFkrLhFO5Hc9mRzAFfPlRe23OmCtKAc6ePcR1587i4GCDTTnEZnOAjRx1Z/hjtEAqnQ9mLEvFxYuX2xvQVbIskRqkYf2x0mjRbEdiCpG2Sgn0CH9eabeNoQTF055tWZeqEYjaiHR+ybpoc9LQRF7HAoN0dsiDvST4S+8rPRsrqRGKAQ888+w+wrCoUBg7OgnjaNNOIGygmceKZmyRdjyDjIkuNcV29qrWtj5PRYQEJKgtic5oSIuBdjAaz5lGdOZCUILiimE87s1kWa9GZZLoK+fIghZwU4QuJYNRCQZYG7NYzkx+leRU1LGw4tTmqdGJTlWtnomL4bRj4yr5+ZiBx+e5C05EyNBk8obgGXNUroUB6b+aaUkEugbyNRpsNGRjkKdqZWhclBtxdRyuB+2NUuERdmQa7TnHRaN3mytKlvvGKxvtS4NHNQg0GsQNhuLyWa678dZx5dgVrGgXQf4yR9z2WKQ07iZLCWVTJIOcZ280mFT/Jhg4Z7hiDnrJsx75PS9KhRqkCMNJQX90Iyjiil0Hdm22+qXRfDju1Z8NMsqM4X0LSNcJ2lQM7oLNcw4MQpKver/RJnefvkOhGBmugsV9JQR0xDkMJQW0+tCF/qfDHcdvj+YHPCCr67N7fvrGtOh5zUZANh/K+/BAox54AvQ4V0oT0Z6p8bl0T4EL/ehaQq5HfaXsFDlH2/B1iNfzTl6aRWcqo7SjKh2QPjGhKb03/BwZcKyp+hW+PvVnVZL5LEQZ5wjv5sgY08eSe+a09p4uSw03lO+RauTIR6QLiaCbAi9qGRhB67ncnVGLtxdwH/7016Z99Y2ZvFRpvSIAwjKLIsJ2AYooQ3tgoo7XyeslCWUZa5fJEstkHHPCR+o/DmSYkEykuobtSVdWg0EnNtxlWeP6UkfJtr9yuebrpF5KktX5oVt/CLfe+kM4PNjIWrp9Sgn61XSVDE1lZGU8+OCDePjhhy1AOQxC/vqPfltmKyPK4/E7+jPUC33kzBs+KTbD8Tt8BnqScu4LjEoA65HiIh98bZysDGneNawtgjQvPVFnaZPkXlgr8qTtIDHHaxFhA0gjgL3M04C0uDdQ2ZTWD+M0hBudXA047SXgWLRvvR1kc0dya5l4XC4o7L7GZvZ73YMdjh3L8dqUyymPTGtmXdY/3esQuZ/0SzeH7OugE0vgk9xaLx3I15Q+omGUFKvbYj9Cl2F1e8/aOm5W1sbVzxUS0hMfkK5lI2X7vqDfQl949lncffdd+NaTT6DWJMiUMwE0u8Pb3vY2vP9978eZM2dTI6azV6DPOlQ5reeZ6YOYrtmvovTrqcn7Dg6Fyde29jw6OsIjjzyCf/iHf8B9992Hi5cuwu2EOoAVZa06NvBiGlZHgiqDX6hismBtvXH6lsL3LE3jVbsrY53Ng8mooX7fmivWxEmrazxyUNfG+j3jYV/2ZV9eTeWnfuqn8MEPfvCanmVm/N3f/R0+//nPz202+7Iv+7IvL6Py2GOP4ROf+AS+9rWv7ZRpBwcH+OhHP4rf/u3fxo033vgCQvjilYsXL+Jv//Zv8Tu/8zv4y7/8S3znO9/ZZ1baFwBXE6Qkjk6KRgs7DgzigA0ZDbrUyfp3YM5gY5veCw7aVrc5C1ktrpXtaDOCBGRYX9UaNycxMzYgO8JJHcQaRNS6aQ5wdSr3Bi/fLLLDEeAtiiPuxy79Ve9PN/zMbFluAH2c3UbELRCgGUoWgLYAVXjgSg1MLQa4sNM156Km35dj7MDF+lNkMRUwlZapxI7V03YrCLU5YglhzoHKSztyhhcwV9S6BWuQR2XwsqBlAFoafrU/lvEaTB7opccNgOVYm7oFcRw3BxxbmqDg9FejZjXjanL/cTZQRod0i+nxoCeZUKf/9FedaAzGEoIJxDnNJHPnARML+9FoS63t4B7uPnpMGDxbyrZWVDFknD04gxuuux4bKm4OlLHXukXFVtDXsjHxUlGXBctSceG553Dp8iUcLwsWbvTDtbY5B1DZAx4qqGVMQWkBIrVawFKjOw2iad+rHO2WaA+wOels7jZPfo2FRmLGscB7grdUX+HnBofaKY23aws4qDbPEB6pOss2NgpAMxOc2uDGnmCZ1eAkQvFAl34dQp7dpM2HBFtVmPxSc7TCqnyvlBsagxqjLBSTkWSh0qkbZR3HGsiFMMcm48wWS919D5ppPBKPulIjLwntOb8BADG10yWj078rRmuKf4LPMwkeapuzFrwlAX7Q4Ec3uqqM1eed6wsYRWjb9Y7yK6v8Mx2n9KNtxTEH2KtKs5blblmqvbUeQ2V17qbO9mCAVPzVMDctWLQd0QnTt3bIaMbh4HyN3RdUPR7Q2KgdadfoqMjcs+nfGKfXZ/kh08lKsxJEZDyrD0bd2YEE01oi+/SqtAefK8DnOQb3pACnoGc9oMlLoWJBzApzHF8fHJYBlr7ZXBRQCVXEwr66CbEMjgqnBoc5/LuKZ5ZRbBWTETShy/7ZiL/WTFc/rgNUb4jM0go0taC79LKjeDuedAdhdo4MTolTlKjr8rqSh0qMubzRvls7HRwBT1EuzuDcNWf51txJMW+HJR5BHA6cn4v0kh3zFkp6Ii292GU6I9x/WZdj6zyWG48BjHZN6nHi+9gtq7K3J2NvUS6o5qegh1ibMFlX5yOxPUf4z5aYqxI8AmIdcliUmO4DjzgN48prr/zJ+B2E4ND/Km0rY/VdyIIlh+MFXRZpIOzHDDbj+0lwCkZ82C+baA2Q9/77MWs/UBloojD0GfpOHBznJKKpR8/kmt8LsFkfoq86+Rod4Up3GqibPqFfqwPCa258Dd522+04c3iYRsLWv6zHVR4Jkeu6+7tPPYX777+/HS2t14NszmNvay3VfamezUcez1BURltr8XpkROcvDPhEnKhJ+14/za7goKderU/pV/eYklSHCx1LzHXkPJUEWm4QlNepI4pgZ0eGI9xy6danac3K+Q7lu95ZXkcNwKC/H/ul8cPTXvwpXXPC8bxT5xHSbCp3IT3H8P7zOsPHovs/Su3MpXWmkThHKhsowLFWPOBeKcP5z8cTyopuTHzEaiPTnU/kk1Ctf64bX5sq1yekVEyhDo+ycYY0pS3nCf8oPyRJnxAbrtu3GW53r4viS00AsGy3+MZ99+GiHG82D6AjUCm4+eab8d73vhdnDiVQqevcXtKZrUg4Q+4j2AFvf7bftO2rKDRpgfP89981WOlL//Al3H/fA9geb6fzeqruKc+3zbExzTWN6nsup9mbnVx64HcMZjKFuozaIRFbq6u8GkJoTX/3fayM8aW9ldiXfdmXl1B505vehJ/5mZ9BKad2Maby+OOP4//8n/+zQ5bty77sy768vMqVK1fw53/+5/jOd76zU7aVUnD77bfjN37jN3DDDTe8gBC+uOW5557D3/7t3+I//af/hE996lO4dOnSXge8ysvpVxDJKCyFghEpOAv1b3Sg9E7FWMzBjvAZ6hOiwxzQt5+8DXPMcNzmNtjbi1Iho0L7aQ58dfCZyUcqRJONOvUBySijBifZRJu7wRzFIbtTMF4SyDMvScvxLaXWGosditGA34CwMbha5qMqDsNoNNC/wSQbnZPIbxK35iRDhXzc0e9z43PB0MwivRMgZwsK/ZLOl86HDnucY2+zSB9qrBYc6nyRPk7eDtiCVLos6QmmWUkO6YA/BNhiRpDuaRuUB0dlI6QWh50lg1YLmgMzlu3WMsQ437T29XcLZmrtHB4e4sZz53BYNiA1OFI75mtbK7aVsVR4cE7lFkjGW1y+fAkXL11uAU/RgVHbWKo4GjJ+umGb07k5LxRuC8RhCaNgN7Jq4EaaD+7xxuP4ya8n52wwGnJw5HLqh20esoOA7bbNcjBQsgQxgloAAJt8SC6RRvspqCmMLdRpbVHAowZNabCJ121HoTV5QxoYQwXVQO5kMXMI6HM56Rm/RJIxA1WC33ikzQZEDHhQXlec6zV5E75zHqa2Av5JJ1MCvFIQCNwIaHOrclfSgbFgiC2TgPA9eyBKy/JGo91WcK3BRS0YVHCF2o41USMktQCmFninsqUz7E0LoQWgZAN31GosuNXrKVDDBU+QdSr7XA9pwBMFuLSVHp+qr1PAkjoTALBkaChdO6nNdE1xGK5F/Sx0o4EVZHTkfSuV9POv7TOT6aHoFyJIxrxgLI70UvQIUm1fnqqR1kk4lzTLhAYoCUWvGOLHQiDaZFwkB10Owuzb03HoGNa6SkFXsS3FJXVwdkbnMTCLPIASvmZa67enUe8bRiA568i4xutxGmX3dHyh7bVCOtQOcS6HArA6v5N1p9IAQEDRwPesQyI/9c47dRjEtVZao1J0nK/Ljn4cITmo45UznczHw6tjfemVMdsYgNW5H3B0CqdRT0pzns6SOl6yQL4JaLafICQeyt9GKdro1teG+QYyjbD/VVlon7Aeo/Cfj1X/ehCUg+Xr6zbOLuOLjqCXYQHkrBdySRImrYVnRaW160WtH1VvkilhrBTHuio4KP01brW2/W9etgjm2CeCFeTpOGJf+RYr3P2eh3vc9MFhsPWPybN+zabfZUhFkFJr9bVD2DfbxhUquxgHhwd45zvegRuuvwGbkFkUQcZp8DDHjwRKX75yBffe+3VcvnJlQI+uE0c+6PS/eWDZ16uKvIzOKbskhHVfs90iXI847HSp43y8N/QzuTJVZWGf4+uwSdOpRn4+wtavM00vBtx6ICalem29vGudo33kUZHA4Xvmyd6wG8UcMxMdxhqQ6MM9qeX+ebu3qh/I2aA95XIxrUVmUrHVt7YpynO9F+DS9Xbkv1OMw+VCWI8MtdfxaI3MuCWsV0xvpL1IaCHuJ/rr3ZhUkhNgyZ5SW2kMs94m4MvaR7/361Vrs99PwnWDWt26nKPD+nP6XX4fHR3h7rvvxuXLl1OWOLUfOrzAa296LW699dYJ/QnvDuvWAAuAYdWhMrFvrds7n67sopd+bULWbb8/j4HfKg+Oj4/xyCOP4I477sAz559ZEc6nhbODdUUO9GO/prXv6iPON1lXndTH1czFyYUnNJPbWJEpQUblKr38OF15eewr9mVf9uXFLGfOnMFHP/rRa84CcuXKFXzmM5/Bc8899zxDti/7si/78uKWixcv4r//9/+OZ555Zmc9IsLb3vY2/PRP//Srbu2lwUof+9jH8NBDD53gj9mXV3I5fSYlRKeSb87dJBCMGeqMXjFw9IZnd+rEN86yUbE1GYJ8Jky7/haIGCioiME0GBkYEpihzvNNBDDDYn/iZtXMIc1gSwCRZ8ixjb4GcASw2hMeBlVKEQOdm8ZaTIFmrVFs5+O0FBbHp441ZElKlrMOXxNjSoNf+pOjyOxDcdxu4FWDd288iUczwd7cmxkoR2OfwkcoFhjG9lcyjogj2p3xbfzNOAgsC1umkwSrbf4dt8yMungWGDf0VjMmxev2rB4zFpzlbfyaZYTD/LY3j8G1JcNaFmCpQotuoI1vdxalW6GNg0K44dxZXHfmECTZhjzQqILrAl4quMqxUgx5w3nB0fERnrt0GcfLFgszlurzFXGjDvSebtXJ3JwgbkQicYIX2sgREO1YvJ7wOGXiaMxtATKMRNusR9QlfIS24EY1l0fttxryff48vb8aMNuckQQkhUBByyLkMkpp1gOgWkCLlwWMRWRMhDKbHls/jTY0cCIHVYlssOP2PPiL1ODN3nIumSfVgdDMuxqEWOyIDsVrw0mbM8MrsiE00jywyHg1o4/I0IlBTYN/gC4wxXhrtgAhmX8VOgqQvzWudBlluuI2GeII0EA6h7VJoarwyvPt7f9FZL8a8yUr0kS9GM8FxxCRxlZpm5zqV+FxDyRTwzg7fGblV73CbewaLGeGZJlPwafiovGmyyE7ig4weU/U8FqFxzTYZ5gJk/dl0L0UlJDxn+DbZXjWB4qH2H4OVCFjQR3ErL4eA5fbTYCBDFfarl7XNc2kf52rNcs4dJ5ssHY1AxGH5Pzer4t6vIw8MrbnQZ093JTq5FshcDl8EPSu6+9e/zk2nPa8DwvazlAOPBPHNgTVRbhWl3JZrs+cZwMOMdZVGcoQeVIBGG+RrTlTfTiezC8Vu4iAgbuZWaOliV6bTrnPxyzwS6twmMyX8sZ2wE0nspv4Z19DX8NYGpkGnR3WUxGOIeizd3wN8MarY5s6HFj/WbMbbXD/ZN9e/6HwQEeI8EBWby0IUP0W1ukz/hzHF64EGbtrNjoRPG2boTq8n3j/xuzyqKf5II1cjs9gYZ17WScEwMIyKtSNOIrjdjhjgFgc9Ey2xbUBwgzlI4TDHIVpjk5yw8tEnnqWLlmDVIYuGXpZovrY1nPCFz/0pjfh9T/4gzjYFDgseQyWhddUU9vLbJcFDz/yCL793e80SKK+TnMXaDXIKKUrXYdEkDNvzjnRjlod7zib2D58xEmkiYwoCvdzo85RcWSZJ3sxrnpzpidjK7GXxNHMmBH6EIAlT/crEz/ClsNzc8k2+8GsUMHwQ2lOjHDtNw1QjKW1K2tzW6M6z86KvZiy0mZrd3ZX+QS+x9wF3KxvswGMj6lcazBK+5HXhyO7513319TuFgRjqKy/u4anwLO96GFz6SgxvJK2a130ggTdGs3h44iAnXp77Z7qpqALgzCLulVlJGNlHYWM4ymuOWQxpbwWaHqgfX/22Wfx1a9+Dd/61rdFTvf4dpl26623eqDSTOak/QyGCmFLionAsH6uPkCnl0p9m8MVoNu32/cklv3BCxcu4M4772qBSqfuv5N9AQEqB0weBJEzWxtMmz5pwXJK/u+b5+67U+cJOguuRRKcV1F8RXE64B2ayA1RFwNRL1uV1OO+7Mu+7Mu8EBE++MEP4u1vf/s1Pc/M+NKXvoT777//eYZsX/ZlX/blpVEeffRR/Nf/+l9x5513ruxTWyEifPjDH8aHPvShl7Q99/tVHn/8cfzRH/0RHnnkkZ142pdXbjl1kJK/jMdm6GhOTw8OUOOVOlF7prI3JYOhrX+baegXeryIHvuUTdnT5wI8/gJ7C0SogB0VZM5OUjOGbsYBy5RQ2mvt0XitmR4MoMEJEMyO5Bkg1EBlBnN2576bUtg24nokGhFApWXJacMt4ROPbEBzhJYWLGMOWSLPZpMMIuK4Lg0n7qBuOPfkEAWEjeB7A81W0sZeQVhAtAjcmwSfHp+mk1YILetPrS2blBrLmK1fpwc2qwQLXVVqjajTF3Djb5V6KHL8DlMIxnBctDkvZmirYDmRrc2PHgOk9KdzrMfcqGNAA1wUd0QFHA2t1q+OCaDCbR4F5y0ArbpDBgg4kAAEpR0AB5sNzh5scP11Z3DuurNgioZdMdgx27FfqHr82oJCBduF8NylI1w+PmrHzQlOosOCBAY2+JVm/Fg0zcjBtcr8BqMGK42ORqNGiy04zw3dMENrmzPJyUISWiPzzeQypfEVWZe9LIjm8UhbpbTsVYpjPf5NnSF9wEBybJtxO1i1zHIm10Jms/asZ9fRQD3SsamxW66qndkCF2kM8ujH6TKJjFbV+UC0gR1YSUB6I9UM7ZzkVsRgmLQwVulDoJoHSvhcJyOi8JvCrzQUSw6EkqMlQZYFppAG/uX2HSU5q4SOMwYAGU7JjYrNmCyyTOU5O8/HgJYOYlNnTQxzayfIWXe2BD2hMm8WSCHH/FnmPj1+DT7f7A+AWA6xEzg2RUWg6paa8BOvOc1rBimANPCpOA8TyLKsNTxxIIKAJ4KsD0L2wCjPpZKKZeNn/UTeY0YJuj/Wd31SUMoBiDbyaXqnN7K2IBp3hJElCusXvvl3CyiLme2oq+Pw2tNBRvX1enahKQzIba6szUeHuDc+M9w32MbG7Lg7PbJNdJSu9TKTtmBHWs3owfk5anpVZcXaei/RtF5TsML3/hjDtY1LL7flsFjT9y6LMIFnFnCF5Dga71P4TOooX5zC0J/z2gRdEJPbBRz7GiW3kgMhXqolwz5kOzhNE+sqKNTpHdqTedjRRtD44ekcFJ3qc/9d1pQarIuo+ZUQVzpOPzyLQVxreEcuh9dga/d1raL3eyR293S/w972KiUTRkEXa8u6SPnOTx7RVjUjKODHyIa9Dk365vxlGgBpzNuA1N50FtDJa9Fecg8mjGYZm3Rva+NwhYYYbJSCkAKGbIlk+k2ZvV9PUqjrc0HIjcV9iz6r+yWStSIRsNls8NZbb8V73v0unDlzYDKFpIOo7WxPoWsXIlQmPPPMedz/wP3huHEfH2jEVZvPMANsM6AULrhxHT57qUVLmsNUMz4fp8R5jWLNLhMwQYMfYlu+Ph2C48htH4q7BGQYe7xIqQJ1D/R84+PkUL0PHk/rWtUR/lQaZQZyoqN6x7WPJIAWaXVdx03vUB79mig8qZ0T1QCPTxLlQCpgtqaILXfrnGG8XVvxpYjUrjxH44ynXmzREWSXgROlZoYjQRtpTxc+ca2IEZ82D+HjdTg8qbVVWqqsi7KKBvrs+9pFM3Gs688LasJ+ooGS6buX+oDKw4Bayyaua1Xv5cKFC7jn7rvxnW9/OwRu+ctPWkopeOtb37ozm8Rpje6nWTF+r6XHSg7EDTO/AnMOYgKuXL7SApWeOT9p/XQwc5Bbz0sRsjRIXD1cVWH7T3/tbmPXfV79oWWdb9ZaGvczqi/I4I37M6sSW9s7hPZlX/blKgoR4Sd/8ifxL/7Fv7jmY96+9a1v4bOf/eywl9iXfdmXfXkllSeeeAKf/OQnce+99+6sd3BwgJ/92Z/FG9/4xhcIspdWOX/+PP7wD/8QDz/88H5d+iosV5FJiTqDK4kRL77JEjfs8tx0g3X6zbk7LbJBrNkNxnYYehhAMXijcwBAOjLJnrNABkjwQ4H6NLn6mJotLm/ItV2zpSieNGBJ66ihujMuaYYPdSqNAQPad3Q8xWwazVicju1ihju78xuPzJJXhH2DrZlkNLtGy0DRjjyKpq9m0KmodsSXZFOh6sbMEvARRsl6pJUZj9x4Ed/OMqNYmqcC1oAPjsfoxflTIxxL8I8+S8hO2/ZPlaPhEPDNimzoPAJ+bEsbgzs9WoCRmvKV9pD6qhakpsZrvavZsSpXVAkKa2TrR8u0QCjN0kTYFMK5M4e48fpzsDi0osF0SPzYAhUWMLaovOC4bnHpyhVcunyMZalyFFLIGiVZZMwpn5xgGvhUQZLKpjfMqeNaM4YoyQUfTcJNrR4EFA3TLTijdb8BuXMk4I9BIUNNo1UWfDd+8ixIGhBkjhHWZzwDCAeKdUOOwp0NQBC5F493arjvza2BA1jpKmZHUtqByCehaa5g8sw/rbcFKp+g3Gxvw0pdgmf8YaevRhMYio5k7nl3R5dmEtKgLZMtdvylB0xqy01Mev1qYxNMs+sUkPOnyVk47YOyXEvZrUyOeCCJ3gtDgRqgYeOVj2WXUYHrlswmGpwPY0Ykazj1J8GdnI22lVlovfGowuGBao7+aPj2WYp/OxjY5bjLpYhDxWsMBtRr2k/Q6YEPxwBDGZc8k5xtBMQsVf3RrMozzU/KNpJZoBaEhqm4rFR9CsCDpxR6IyOSAGQfsTkNlXYCXv2gO59jfY6EBszJR/kYTgQIEl8kyGK7fqefd70zM8hPjzAK64rYIxD1pvNIakJlQhiHG7XJwNbHTEb0w7I+VMg7D6XuAlx5CHJHnrM5VBhC6wYnMLQfSx+82ffHEWFKH8EBGNcC3qaxRtZjkPhfRDnU6cMEQCDzPrike64b1cr1oYlQu9dDL+FCcZY7uPnqxuAvQWAkHm8SE6pK8Mz6VMmgAlIDGKxN8pp9IKPuQRgIuke1ZJSDiTxz276AEj6bcVms0XTieD+PN8polRvG4rouNGUojq6YQsPgjK67Xle5e4zT5VhP+4pHY6uOVrwBEbUzeTmswIJuyBUzgdgYTTelFYN0v+YyJZPHU6KN6ArfDR8metlkYV4DxOIZ9NJd0q7ZgzC1BcoVPTCD8JrXvAbveuc7cN3ZMxlIipiU+SCHWo93PrpyhHvv/QYuX75i+9YsT6vpHMVfXFe5UOxpumeADqU9+SfCCjeS+gvh6/2SQ+Gy75kW/JmGG1sraL+Z5ZNujsMB9WvxuaByeu0alsan+OM+G2vQe5h9or6Y4C7ws88bbJ4Thca+Obcya3cck9J027cxjzgZ2iHnR8diVNJZF+v6Ii+HRtwGrl/reSiedzXUCTrBaqU1MWz+Rl0S56eba+WffkESWo7tcZJJJ+E1PJN4cHwyvAY0yuRRRQA9rm10jClck3XSHNr+UpbTyr+7Ah0p1Yw6Q54Mj263C/7xwQdx+fLlgc/jfB0eHuId73gHNgebrG+CfJ8G5yc5En4M4I903sDNLY5cnztbmZb2laYd53ZXpujoyhHuvPNOPHP+/I5ZNOVnZMTe8bQ/h+0UATzKDOEz0vFVljjwbmAnr7xn8jfjUW2Z1toEwavSOuqGaZmPdicOdG5OYsV92Zd9edWWN73pTfiFX/gFHBwcXNPzx8fH+NSnPrU/5m1f9mVfXhXlypUr+Ou//ms8/fTTO9dt119/PX7pl34Jh4eHLyB0L51y/vx5fPzjH99nVHoVltOHO5uTj6DOaeISDgdCc8IygB1vcLtJRg2WYvQkTVkP25+RGAGj0w3ImzjPlAR3FpG85cjsSWYAcYy3jEBswQJuxFOHfbu2tHZIXJlmsG8BAUQWMiM2dN1hk+84WTaOBFQitCPfFiy1YpExENoRYFWNgTFzBpcw6mjEY9TaghbiS3HNEOfv4FcJhAALrOo0BwNUwNSON1mYUZdFjk6TjEWGcwZQzblc6wLUCqpV8NmyJan/nriC6xaMLRiLZcIgC8IqYJYj0KoEa6CK4VfHW+FvTgsepb8illLiNicxy5bOUzsirM2hOpbHzA1wY19LryA0jQaXGRQFVqhhNgbmMTzn0gIPlAgZSMw4VVq4icwrVwJqm2c37IuzA5pNi1EKYUOEgoLNZoODMxucO3cGm41motlg4YKFW9DPUhdsuWJbGdvtAq6MZQEWrri8vYQLl57F8fYIvLBnmpLAmMqLwC0ZZ7jNT9WsV2riZZ1TNeiRjaN9JABH5oalfdJMTJXA1c3Fys9MFm4DpuJ5m5hlfjT4TAIzFJesLhB9+56hWWSUPhuNyvFehueYEYrlnvJHhF8HJgZ0nUd4zguSBkmzmwHWnhnIzQm+wLNStWCVRrdK1/rmqcsPzfSjWWxYKB6SOUaPQSOZD6WjxqRkGZXUPGZBR4nudOwMogp9984yrDSAZN4k0w/0eJB4lBo7zozfFj0szGRQC1ySoFEKqkgNp1ywyLwAarcUWa3yTmZ5yDQktMu8bd+Vv1OWHW7yilmORCQwNBNcDrtSukmBnXrdhtlojIXSUVp9N3S7tOgN6T6aYpIe7PRZiPQwKpFb6pIR/aJ96tNV6a0ajkjminkRnRV0aq0AL01HIQfkKP06nCWMvyIpYUR9zeF7k1VatyXy4DxnaHNmdnZ9lqgFRmr7YAeIYbqQNKOTo0GVvqnkVlXklfBVIWCjA5BsUmxyWeVF45SlKr2oPvOB52Ak1zvJSRjajbjSLH6e1IjA5Bm04gNtXaRUwv5SvGWvknvakQZ2MgANAE2wRsN2G6vytsrOob5kOmlwtjEpH8bMTK5jFHwP6rJgc8Uid+I7fIpMov6dlRhQmLKnGL0pEbC3DefDCBMZjUdgBIdBRvcBalHnm57Q4F1QJNsp7Lm4nCXhaceJBt/5bycg9nsvm6K6xQH3uTiFI2k25jU60f7Giyd1oise+zetYVJWUG1UqUj0lq+iuuvIUCnrmvDKMAbNKushRCHdtRbacGqHbhpUV7rTX/WVj9N4IcDrvCvyWOjeX5YI8i3gm0VWm9wJE2daLqEwHtUaaSTKOpgOsdETDfUMBs6vv1B3r/G3yqMGo41/4NUwOQFuWyvvoC2bEt3X5ItBf2b5hiBj2k2VNX0PggOhTQvmBXBweID3vOfduO66syDSI2olo6JAoGttzcSr69TKjO1yjLu/fje+9e0nYbrapjPORQxgcT6IFNQndjC0Q7kkK4W0ZzedoK+LhJZFRyWqUTwLVSUSHKZyMnnssOnh5XGaqXsu2jXyvfgrjTzQWKZS5vFqhATMAx6pqxkI25/r+jC6E9Y2mkyNO4Z0nihhP9RTm0yC3qHz7/nZNYOkBt7E9YPtcQLPxPu2dws3CB07pyh979/XcPISCduwOnQ4fSocUebn8QV40pidY4zKGZJNOsvovkUDw3iil4MDRQHdnFGYSbtu46zhqt4b21CZpu1nyRz7Rn5uHIh0oRBnWk2QcBe8x5nXe76L13ysnU0wkGrM4vrss8/i61//Oo6PjzNT6X5Nerjpppvwrne+G5uySeNyywEb3Hnd0JWBUFfqMZrQ04z304ZydQLiEjdUy/uCdC+TlLeX9vyMK1eu4M4778T5Z85jNm8RkjEuMa4ZOj6TuR3kw6BE+jbT8J6fkmTuHOM0GbOhMOqcRPN5rxTl2gz3I1idHSbKdZUPqd9+AmbztC/7si/7ksvh4SF+5Vd+BWfPnr2m55kZn/70p/GNb3zjeYZsX/ZlX/blpVsee+wx/Pmf/7m89LC+qLv99tvxq7/6q6/qQKV9RqVXX7mqnIzRBp7eGFfnTtrPBCN0vMoAYwMOWTgIRQI2dGPVOiPbPed21VC0Yt6TDZdbj9QgQuymATOiEgHUO67DZpvdKMTMboCHH8tU1ZCVzBMBN4A948ccxOOw1CHomNOjnoj8GLalVgvSACD+KLZ+SmlBC2wOf/ZAB8hml6VuhCvNkbbn861OuFjXn1CjphrQ9Pix9qkWjFHQjtALc0gaaLKBBndUNZKLY8I26sFsFvfZnhFKgxLUWOtBIA2qbDTXjFTDtlwNelyTkU8N3RTqxTft2qY/GM2IbE5jxiYnUJLACNhRcfop4pQsIXCDiHBQNrj+unM42Bwkp6vlBJHgHzChLs2Quq0LFmYcbxdcvHgFV463Qkdsf1vwRXAPikFEU66W0hy2C/uxOSANEGQsEtDX8mstsFrqDDb8NxQ1e53OlQcDRaOJZ+DRwKJgcBOjkGVIUnxXSDBVkXieiqUugQKcPhjRoFaNEFjabwhwp2Iuivxs7iRSfsrBC0qfRiKS7cWocc0QPzPChXb7+5b5QILNLFsRZqbw1lZNnm9DgHzPTpHGbS3AKs7ftIgA6QNdehnifM3huSC/EHUN2XhULkea9a5DkILgvZQobx1XZloMcBmsHc4arXHoKvZBqLUazzT+dNpkZizL4vNFrk9qmuP5/MY3bjVYizHCaHRNMjOkoU000BJDswqSzVcK5iTAjwUa6Wf9TVYK91xvxP7d0RpgVmxyRZLlxv0edKvSuDXjRwcRMkwz+DTIyMzH8qzKE6UVe7ZyOoIy3ltfLJ/OwBvlVwtE05AUJOs1+wNBDvYDi3QdcK08zRleDw7TdlnmfKSV+MzaOPo6M9y7wT0JFhc57Pxl6rT495nbJcHXj2t3Tfs6rG+CcT8OudcF/RhndJF4WLqdvdUfnWPa8Yx3+vb7rJQB2JdJofR95tCZSyC9HtfdomQDPamUt33AtOXd1JLrr0PffgT4E7N6sCBzpDFx0NleJ9CONRr7VRrzvgZW64dkIPVyeT5KGh+cF4Ehr5Jy54l/SNcBXi+gAR35Y1xfiIyC85DLG33O1+YeQKJ96X4i9NN99KrvX8Nn2P90Y+5QFfeVMxKb76nzPiPU8PEmpEUcx5kIgREcdTKwOTjAu975LtzyT27GJhzlp9yUT7IioLLvf9HWtE88+S08+ug3sdRRRkVK1iDW2frD60RNrw7rHvcj/jiSp66zbb2gj4799oGEqoNjYJ7hUF/ACPDtkhtTzcPxRYbdzJq4nRnxv4QVzb6rI+jWVKslq771akbrGbadTRtfx87iJeruVVt32FxQ5ovTSubhCeqfnQx8sFspjHk97Ht92O84T1PdxIxxvBzuybWhf8k816+Zw7/Wxur6swOMlMFmPOgj6YOJrA7Fun3Q6fjNge4F4gjaaUrec83XRH3QO8f5Rs/zscSAVd1T9HubvO4HgO9+97v4yle+MjoXJNBN23jjG9+Id7/73bj++usT1qIOG2H05215d8r9hMM7CfLm1rNiZlijr04K568nTV7o9MqVK7jvvvuw3W7HVnV9OzCh6y5fE8xsMXkMp17ynrCsudqi68xdn5OQtrZf0vatn4l4BTpJs8NuNJMD689cvfTdl33Zl1dPOTw8xC//8i/jzW9+84o98ORy33334Utf+tIOe9q+7Mu+7Msrs3z961/H7//+7+OZZ55ZrUNE+JEf+RH863/9r/G6173ummXty7mcP38ef/mXf4krV6682KDsywtUrung2KmBAGhBCVYHbg/KXh4zdrAZo4JBwK4xKhZxkmZmJGKghCClznHor7c5EOq8zG/z5Q17a6MFyxQqnsWJLF9KNmTqWEh+aGYTCeAAkfgdxPEYzrpPwUWWYcONEq0LddZyqk+FgJINqhpYFQ2wpRQ5/kbe95Rno5NQoLa2Z0a9lmGpunFf27INtIbJqLFbsiWpJaAUm4o0DmrZIvrj96gUN8oGJ7nZFQTv8QgqLfEsZGZGzEWlfTCWhpMJbWlAVDtBLQZ3FLDMFbg3BgEp24xcL3oem+Lbjj4Alro4Hnq3AgOFCjalHZtWCnB4uMF1Z8/iusMzKCB7M69lZ2FwXcC8Ra1baPBIyyTF2C5bXLx0GZcuH6MuSA6D7JCWrESdQ8PoijTTjuM/YrXBWgwlyoIW6kPUnmdnmd4Jqw60WivUIR8dGMSaXUZpv6pN0I7VMzpU3Ad5QJT52J0Z7e3+EuZAhobm4CkGG6hlP9JgkOi2aH1GurXmTbZFPjNZqM8qDrq9WgvYcv4eqJrDOLwpyUCmb4TWXNcqRoN5cArGeTRZ2y4kZ7rVp2T4TP30vEpIGeDc+adBcMKnqClOtaGxdoZktzi6YVfnrOS+k66Q2U7OKQ+OjLi3Izmh3wO9ijxw+tMhjnDNitKDB4w4/nvdqdJa9dj0WAyha9c1eX6UJ/T+cIpdNI6bHs24nY1Bi4pgKiTqUOR3HFcwEsd56UuSC0qrllGsNUZdO0SETSlDsFGUNcnBo9cCH6hMoTjPcBrlDicR1vZjcg0+Zn9WxtDjU/qeBTV6hWwGN33ZGZd5xUHuFRBHZN+4b8Ori0zWIEXhizgPGGX7Wt/TgB206dFMZdEJAOi1yTMBPqWz+JGEasbJHMZu9bSXsM7TPk8qcby1TvAXxrOGo8CuSEco2vU1XgkwEiZYfWmWIWBtXmt3G/HZqADD0z6v+dlBzs06iPIq/fRnWIU3dQ8JjVt9a0Dreo8eUtWut2OrQ3PaTli6tnXUBFhrNt4UTPCkethP5NreDyW54/IvOs9oaCH8snp+XdvNa+oS5nEMLQsICXIUoZ6ua1vjUbeSzXVa5LlOsMntdJ1OTQcKrwRqR6d4VnGGSF/HdvuJaT4cite4+xPnROpbexSOGGVsNgXvftc78ZZbb20vPJBkqAvts+hZDQpW/DDayzLPPXcR3/jG/Tg+3joGg0xLGJ6w7qhhuoppP7BSiJyWenTZ/jbrYZsR0qkWvAReIaE7b3INhlMoBAwzluDqeZN6nES4hnYp1fExzuCdhZ/Ma/WFom7Sdf9knZHhdZ3dX9ee0q2gA5M+DOvpcS0x6Zucgo2X7Z4q3xksp5tLdPRkzVPmN6fbuD7zccDWT5gsLHqZ4E1dlWGaoj2nW791ffV952Z65TreZ9NjGtCX97hRRuveOLHdyYPJf4I8TeOZ7CV2Bc33dcZux6CluL49f/487rzzzjFQSRewUt7whjfggx/8IN7y1rfi4OBguubVtsf18yrYayDP1JTrr+5SzMaOAPaMdk5ddC0qbZ4/fx5f//rX7SWe1s+4Lom/9crqHmvSzsws0feQpuYEAjxJMmQpuFazIaO/a6qro60ZnZ0GyNPRydXIun3Zl33Zl/VycHCAX/7lX8aP/diPJd/LaQsz48KFC/irv/qrveN5X/ZlX16VhZnxyCOP4OMf//iJgUof+MAH8B//43/Ez/zMz+C66657AaF8aZRHHnkEf/Znf4ZlWV5sUPblBShXtapQ50p+c0Xf/B+dlzOnZjPmVBC1T8tiom/TaeCA2Jdo3GqbwaCDzeu2jD3ZgR02/DoWRKO6oII2buAYdnwSmBNMUWzOfwnY6I97cOta+1Oz89s2oeD53lHsLczZCD60kfb23OG8WQpKyUZwqwsJkgobYzXuF5AfmceQTFSAHltUa0STvvGkby+3QCVgM5z+lx1zQgdUUagdlAQsRmcWtFUCLekZUfIhwMbQG8ptxEK7bjkhjEZPmKM7Bq80G7jPbaZzpaswl2qyEGN3a9efc/pQ2m/H4hU0HGw2G2wODgBq/umDzQZnz5zBubNnW/DS5gBKHJVbGxQz3EgQluaKOjo+xsVLV7Dd6rFW1cfazcfgyBccpMAYNX7q+FadpiRGZj86qGU58v7tU/RwLcWfZlhqfVDp+4jz3BvM2TKejOZYMt5td+WgxWgwdctzm1cKxnNzSDEKqcHZrYJqup4aRA1pCawV54EeJVhS3VrjaBue3Oib5XIbgtDzKp07TPrd2CQ6dmSMykMUgiRz0EcfcAYxxMHoyK4JnMlA15lvZ3hkoMs+JFJOYySTsTi5h00HqGaodR5EESlKtIrBPC8xLbvzD5EHCflvwSEiqcVAJfZkIHodAFAsMBPwsUTwfU7CvCiEE3kXzdnJqaRIiDB0ciEHVsTAnia3WiY1nVt9vvW5ZniNtDMLiMqBV05v/hwsOHTN+GtBJOZwiwHMMROgBve2D/To0nDEaA9371RIY5B2qAi/hr+9YdqejXpKnAlrZua4Ppk5ZnpasOfahazBdhnv7dlO7k6AOtkxNKcFVSs71Mu0WNVOLVDkX7mWeSdcIMj6sF3T7IT9+PqxjbS7G9ZxLaFjaHrwJB4Z+706XL1USoSZwmeot/qsuERT1jfuGkoKd1J4clMaSDw0H8NwmUaZ0zsxfScRG8gvTRgdTtYzJzql1mDdcX2mbZ2u4kTRUEdruFNXr6huIJM1WXSonJvAz2FdEg7Yjvpt5BOV0wDFgGIdgfxj+0iDJa5N8joxNS1fTMfvWBXkRwONTXR26oC730H8DKM1PLo+JFsT6sspcowsEW5761tx66234szhocxTsflk0YF+sJT/1WFuly3uvOsuPP30M0EPT3RNvzgZgB5CcsKaVMfc822QEEGux34IaAuQDn+hk/Yc9fAF3NsejYyXxzKTVDzUUJ6Oa7m1gKGpXheIGR2OJ0/6fmjWTobXgnRlPer70k4Q9DYcvTmgZL7WWB1YgIMmODa4DIxIo5OGjT68vsGqaBmmbH3tsl5yiFljAcd/XPv3UNpYGHJk72QcYShDG90Y/eb6AFIQ9mqPu28YnfRwru4p/L7XG/s5Ce3G7aP6G3pLmnuydzi5jI2bjg5N9eM9f/48HnroofYy3yBvnOMPDw/w9rfdjve//304c/YQ/UsGUaecusQXolYy3lrVOIxkN1mvv7oYOw1o1lfr5Vvf/hbOnz9/wlM9ThTcUcdcMzxX+cxuCb+25+ComHUZtLuheGtFjnxv5aqE3L7sy77sy87yMz/zM9ccoAS00xr+7M/+DI8++ujzDNm+7Mu+7MvLqzzyyCP43//7f58YgHP99dfjox/9KH77t38bN9544wsE3Uun3HXXXXj44YdfbDD25QUoV7myWDGsTTbW6pTs64G5xWbAHQvMvrlPRhR/td0MNq0JAodMBdWiYMg2iawnwqG7FQwjJBW1f3UIVIzOXd98UjbogeTkOTdDWQr2sNHUzDAZH+H4GmoZKMzgwm5AdFDEXKkGGLVLoC32/EizCosgkiww+mZb5WrHj7HME1jx4tmPmN2BH51g5rhLzuoaPopgNyQDQOV2DJhanDQzlRqASOFGRV2qzGFFXRhV0h+wzoVigzx7yWBoDfjXiefagnSqoKc3aNp8pTmSzEqk+XnUIaP02g45szfR9Jg6yYLVggr8uLd2JBR37QusTujWdtkUbDYbnDk8xOZAM2NphiEKR/6R8UWtcpRbZRwfH+PSpYs4Pt628XMLtKm8YFkWP4puUnyOR4NRooMa+E2n0eYLwTHFer6U8wSaEXWpy9BXrUvLECXzpg57QEnL/6vcjnYzOrPZpQBbER7Qedb+/Qi4eCydHmGoPcVgpRroxPm8gR4dX9G4xuy8BRt5l90IPY8BZpIPMs8N+D5HRgfBqMpC98zu/HFaV3gin5B/hsitlnWnYuQ17UvN93r0mcFm4DsOEXijwSkZcgyXCgu7fCCGZkBy+qwAL41egtBPTswkr9jm0GABAh/mMen4G/kqPh2XrV44nhIIxykq6UejozKJdeKwARLcw8Y3USesOalMt+pMGRuxwaXwzt7QjPo0gJX5GqPB1gOzwlGKgR9GGlGwOGVe7Et8ruqxlNKmBirV2rftupYwGrRj4FOUx9H54sFC3o850C0At9HlaRwKPufyW3WP0AWsLXvCHA4MWRuo6DG5FfgDDqM6MplCf4FmYhBvX9TZa0d0Knx9vRj4FT595cR7GOlgFkDmwVz+x8IWOzU0DcjhCI9/YoBS+nBfN/APqTzIMPdj7L+fNG6WgcX56YuuBE5yEO10XqzM30upOHgU/l0rfZZPb2Q4ERpx7IPEml9ecbBHttQfTlqTUANd57De3yXj4hfOMkBAoghav6bo2hloKXkZuftoFzR807YcHJUJrgv1jwc6xIc9m4b2z6qLckX7ywH+yENNTmedZ2vlwKxpVJTbj+sj1WleI+BiEiia8GGI9s7S+DNq8/PeUKNZEUDczYnSVRR5cd5sxRxxlVcCsqdTRRv0PTFe97rX4S1veQsODjaDvB1gDWNX/bvdLnjwH/8R33ryW926Juz/Bhx2c96vsSKfRBRr2ruulZm+QbhmNMJIiyHdayvOZvLG9Kv+p7aJUwlT7v7Ox9ZjmPPIZkOyxxL/mG6L83gSEcbnJ2vJgdfH5pTW2ZRUrJrlNCHKIAr40N/S1qwja2PkvxmNOnDh2sCYlPBgd9KaWLmwgteC0Tto+9/rwWQ94DturMlD61BpOdTn/FwCjnfo2E7ncWgnrosyzzuv047BpLUdAxA7xUkc5bmDM3w92HH8u9Ze/kzEW25rhMFndvbCg5bHHnsM99xzDy5fumxzMGyf28O4+bU3473/9L04c3hmbegnF5Vr8a0F42eHLQcatYpJPfLkO04p7k5T2CGqS8Vjjz2W6cYW8nlPEQHp1wU+tvUXWQYdLg3rvvAkUbmr0PDvLr4K3duav33WAthndpV92Zd92ZeXUnn3u9+Nn/7pn/6eApS++MUv4t57732eIduXfdmXfXl5lr//+7/HJz/5STz99NM7136lFNx+++34jd/4jVddoNJ2u8U//MM/7NfGr4JylauL6EgK2zLZjY9G8v5xdTkVoBbZVBf4G7LxQbmnUTSD6atlZylFj0rTohvgsAmEbM1J2pMj3XqjZzJcqOFbDTRxvFyC49IdWpAACabgAJdHimyMc4YjgUw9yvJHM6gQyJyTgG6uBVfsxjtFl9oMo3GKAhCcpqzNZWUNRvJx+7FfIQggZJBJtg1mydIkb+BaGu9oGVMYCR6gpH35mAgFxI0uItwNNWxjTBl4QnBRDd6HbBhzo5E1GxytvWHLDF/c5i0972ml0IJ93IjWshoB7c1kHrOecM30ZHm2NwBKoytqkWqVqxz5tsHZM4c4c+ZQApQk0IxbYM/CiwVete434EqoC6EujEuXruDK0ZEHR8UjHGh0GuXZ9XkcDJMRz0KA7WitaGYajYXxOd3cWLACxRoIR1SEN/CNqtSRK1lTilqglEKrNTU4un24dl/bBOBBfHHOLeqDQLQBYTMY4D06UeVGMM5rQJA6XkiMsCECJOHYyI7V/uq4GYxzvYE5GxntO4c2uxID/rwtThTBQqtEUW0E42J4lojS/Cn4OWuSPWk9quwgEaysjJjG6G2EUbajGAWPFPqemRB3vWlLac4g37P+geCjTY/qkvxGOANDECCz0lA2UA78xAGn5Bl1vHvXCUMACCyMS7L0AOrJz/WVb9fxY0fmdXo/ylbmGu3Mdr/IkZR9XyS8Me9X1wIaiKZzAeN1FRfxOLee9hSYEo59S3BDwZdApXBNs2bpcCkcx1psLnIbfZt5TIDTbw56MryovievHwNxlC6K4T92GFsfxOiOhfxcDqxzjXdi9MqxXudIi22uOP6Hpks/NtG9J8DEnJ9T3K2w+Gob/sNamvbarxlWpMyENrvmTwtbgM99kXHW+zX0S7/00A6HmHK/GllrhyxQadDJqTeVy32L3TNresHUVM9tE/rodHJaEnH3W9cnfQvsAQ4zp2pfP3bgetQlDLo1UO8g7FuydcmOWYg8Q9q8e45dGCV67dqzIE1y2IkDD3d9U4S4Z6g4Hr1HSJuffjRRxq44DnetF2w0E1KwYBnraiUsjDKeWRg+yvJ+BtJanHR91tEkeWDI2TNn8Y53vAPXXXcdNpuNyFoPvo6BwG2L0OSKyptagSeefBJf/8Y32pt+HOmjH7Ov1ddKfq5HXNTVEbGZs2wX3xZLjhfVS4k+yWlHnPtKrz6HNJLQsPYLvGSj1HmeyJZQT1YzMkCdv1PIbtu/5vl10GjoewhsgQfU9frSmph1jRVdbXfHMuOXNHNRhtq63Z+N4PRBDXF9nfpbgcd5jrrbDkMSV1ARrU9mOTAdL9bUxtVqenkq0ky/J5us941utcfZnlv+mcLZM4u2iYhbl8tRZg5NJb7N89d3uU71/sJLXDnPCg1f1nqZ62trf4aYpLwzXad5YcYTTzyBO+64A89eeDbJEyLkQGpCC1R67/tw5szZVbhOXyY6L1wb+YIHXlprLV18HsrTTz+NK1euDLakvs+r7W6VDmeDWd0PXU25ujZ6jp0FvM3WHKcuJ1XtBdypGnyeJn1f9mVfXlHlxhtvxC/+4i/i+uuvv6bnmRn33nsvPv3pT++P7dmXfdmXfZFSa8WXv/xlfOxjH8Pjjz++sy4R4W1vext+8zd/81UXqPTAAw/sPBpvX14Z5fRBSuqoZ7WwS5YRMW6oXVozvTRfPOXAGPnLknmGiVDFEFsAcYZuoFl21FBkhlbS5xisztzajFztektTD32jU47TImI9cKrlCmJGQRFnpBr1NSiBHNhgi4x2bstbQKW9a0eEWjSgqkLTZ9hbmQSwZsARRBUUlHIAog16JGlipnZc1qbVoQ1ABUSSyV7hkXbVGNI2wH5snb4Rp5lNWgKhmAWCgaJZnCqI23FhrEZUEtOqbfjV5K2BBw2zDReazUcDaYAFhMoFhA2IN0AlEJORk+ZuQpzzzhhLBLeSE4GpBOd1+625cJjY5suy4gA2F+1otOrH2IGMZpszuoRU7EaZ8o2cEFiC5LCRZ1goSujXDNYL1NW0CHy0AZgXMBYZa4O+bICyYRBXbIhwUAquOzyDs2fOyjRVbIoe5dBonxYCLy1rCxGAZQEWBlfC0fEWly5dxvGWsXBFxdLgkgDBgmJO72QcKQq78DRtJBiwjbixPTWDJRgaxKbmXLXr6T0NYigFJjPkTgs4oIBHbEB0YA4SM03Kbw+Eyt7sxrsFxEJnKmdU1oBEHgkNkIxBAI7+swLChoocP9huWmCFBJOZ/DN5AselPMMif3ojN5VoQBaaC8EHEqcGDRLRem1uGCRHBLa+G60WnY9wjGYfENSChtwVLJwbXsbsjGTsZnpFUAGjMKDpCKLMHA2b5I4hLk1WQ2QNKb+34x1JRHFlQo2BmIKQqvxogWAVxAuKBU+WlqGGABh+II7TIFdkTmp4zmW+O0hhcxfmjQhcHSekxytSNblAolM0QKsNP76NHR1a2UhpMgaBjsKRh4XyXaPN4ETQhvSoSQuGsUxJLRtVdr7EY2FUXsrHYG+6yHqXfk1HizysqiO4muNZ9YzjQsfV2iikAW2ig9ACXt25UUQHyPFr3dvteeiq03VuS2eMl7EWgRN6QCYbaRWw6FinUZZjafXIN527CQCT65p9CdCj43oHhwavqdxTOUNxbiQKgNikogUJWah2mG8OYzJIAh7Y/vV7KaAGYc2WorK8H9V1viZad36cqsTsmVfhB4jdRUesArz7jYsCD4oDNIZXdXjMEJL7jOu2OF4yumPOQYQJp/GH3KzClukkkL6aisAwPtgKSNc+GOb+JVWGo0nawNOwk1xbn79I56aT7cGYsUHWkyr77Bm962tOXf2ojE1wE7qabK2m0Zj8ChfTX+puxu+6NUtnKvtYVB0mPZKDHYx+BcIWHF0ADTwVPCSatPbJLqZ2w3qpHXEdbjkioes/D5GJY4gIbGtix0vArOoPqIxECsTRYN6gxqCBWRGXkRa8uMyN/TWdl4PWI+6tK907wXPC5uqUP7JOc+a14UMVttOfjEOjATSIS4VTkN2+B1fdFCAg2R6irf1uv/123PSa1+Bgs3FcWQC+y13dKxntizA5Oj7GAw88gO22+n4L3MbFPQcMGEuAuf+YhkBXPVa8Lw3HAhMp9Q6tmy6C6iN0L0+QSoCM864n6UB0g2U3jEI5QuAzh0D1XYu5Pnv9dC8wkur8drdTChFO4qArBJKwBvVxd/LBuvd27ZIR6ORFrekMxZHMQkHDf2md0ea8wdQH9a2UXnWkSz6WHmP5IQoE1Oiq0TxMxmUdO+lbOZE4YY87fLauOgGpNYwO2g/naX3Q8d/+yyPqMd36y9JkBHxG961OP9e6ptDnHGaXFXYvsIapN+pxqe1EGdkXVSLKYx3N6y9ymAGnef8ec3tFfezKk+zaBArtfyXQKoIKMC5duoSvf+MbOF62SBRB3VwQ8NrX3oS33vYWG8NVFUPJXFaOwO3A9UrXgf0R2OJ7KkdXruD+++47YT1+unKaNibi7QUoHa4HeXLSfkTKWnBs19V0CRmbWf2xs/NU+QVF377sy768ZAsR4f/7//4//OAP/uA1t3F8fIzPf/7z+wClfdmXfdmXSXnqqafwF3/xFzg6OtpZj8S287M/+7PXbnd/GZZnn30Wn/rUp/Y65BVeriKTErtzrEICcWAWjLQZBFvmoGEzFgwD+tdMKMEIa8E4MThAXXFsphKxq0qAkXRV1GDPbqxA7EP+qiPJjSsSUKGmvBVjlGbJac5oN7aqbakA2EgGh00pLcOH7VC5BcXo+AkWJOM2M5asJjKe0sJfiAegzCizKRoo05s97V1sEFU/0C04E0nnhT2rRxq/WFksC0g02kRznDl12zP6i2xOFP/RSev4V6dE+y1ZmUrDtzqVzbSl+/9wXB7Azb1LHgQFAFQ2QNFMFRr05GfumNsqBJWBLMQGauNeNDADDM9G1OrGt6EyT4SsW7XRMXN25LasI8Uyj5TNAQ4ODnFweAZnz54VOmpzbGMMR3Kp76OGYxOPtsd49uJzONpu27hqdnYZrEYbMi41tpJSPLUAp+oW7UIbUGnBc4qCEsaSxmVGcp2M1j4VpT2yDDgNguoBEEbvnDJslKKRFEB0PsR+9WixZuRvgWktcEczsPRGz/Bmn9C6cDw8MK8CtICxhTqFpm+/6bxUd3cpjgP2J9/8inEVeVBHO/4pOO+Cl0EDCRnFgvjSG9RAuwYN6IMFigaXTh5HD5zKziRTxhFZQI/ihv16gzvLP52DSVfdnCD1mw1nZO3r74RPRjdP+a8GnujxHr0/Rvui3rmeAjK6h+AOmRjMFbMMRPN5piUSWPri8tMcAX1bLLgm79/mRJsw+qmOi6Ic7/jPS97Y95jBiSFBjAaRw5HxlZ2G/Tz2WUNaE+qwS1RiTyosGkzZO5fs+YCXJqNbQFDLRtfwXZtSNgdLwyFCP2MQTtSZfZBOepPcVWe6nvDJgAdX6Roly5nZG7dDthVyjk4B2Aaxdtfa3nX0Z9+n9WcyaCwnBSt9Lxuqq/FxxLqO+zV46FRtJyerOrKSTGH0lO397sDJjrsdG6061l4+JQhWWzdFXtI1pvxLPTZDiYsWOC+qPAPCvBCQj0gKTXTfYpW21pkFY/Q1T3vPB5yDH8bndM07BBKaDqBUR2+mVQ6FdnRAXVexjxgMOYNd52kuVRDjSSbj7hGfeYU7+P1qkKWxX1tnrsOruLbxr/JTpLs8NqdF1+/xGQc4zqfMscyzqr58yLn32WdX6MeZgzh9FqirpwHupRTc9tbbcOsP3YqDg4Ow72tyq6Sno14QuiRgWxc88MAD+O5TT0FffIHsuTvWc/R02DM2t0AUVbCeqVCAN1r1ooLB1xZ5/maTmfemSfiH9h0X3o12oPtNHu5N+DURv3+ZXgZsjwIL3O5rxEIOxESvxP7nLSgzcqD1tMrydWHiajI+TOsP4+EVfpvy/SrIEz73bz0/eAYWCnCvtbz2ew50XIeuPZZWWTRWNfkSnsiYyvzeLunCMMoU+UZhnMYDoX/O+FJaj1TioU1Bztgn6MgAVB9crf0mGUVeIwZuBmhyMR0Ta8z1bbwSYZ82ukoHGGgX0L3TjCYCLhOdRTT3QXb52/lnzuPRRx6VYPcQJEwECwhF6/8Nr38DbrjxxumoTy46e+sL1jgGtfVRN85py2m/HXq7FjC78u3vfAdPPvmkwZf3vL5G7veuEbY1mMeXPxTyF6us951k2Qnjm8ts/dmtSTv58GKOfl/2ZV9eOYWI8OEPfxg/9mM/ds32G2bG5z//eTz44IPPM3T7si/7si+vnPLwww/jC1/4wk67PNDk8g//8A/jjW984wsE2Uuj3HPPPfjKV77yYoOxL9/HchVBSrIhTs6uuAn0o3aivXYwFQVjU28Et4AW+R4DSaDZd7RNdle5GRxIbTbRNF8QzYR5E6t1mgHEnKBc1bIhb/j5sUzNRqxBE2p+kOwOwSnv42httl6qY9KMpuzBJRQ35YxSWgab9rC8KUvw47EEyS25A0uWmwZ/rQoveYAHe3CN4t6OkzP7ksBP1IJ7LMNAtdsAWTAQy/FhVZ2VwXClfRI0mCNmwJAsJNCgJgKoGBiU3vYmIQU9eqC6c0Y37tJ/dAAbjolAxd8GL2qkgtNL/2a0RTlJQNqCiqpv0UvAVKMaCW4gcTq4lUXmpoJrOxpB3+olOUIhWvXtLUlqwUpls8HZM2fbsQwyxloXYKmgKnSpPCBG5O2yYFsXbHmLy0eXcOX4CMdyHJwmAcmObAkKghuvNbtYreMbejU8y3okGjyoS+fB2yw2Nuc3P35JcZ6DpTj8Vdpq7bGH1xh/xaAw1CrPLWagIm4BgwRGUZzJPWX/+C5oDPRy22cjtOiQirJHx6KOfsg8F5tTgEJGJQ0iMedICj6A0Qez06LSKwuxERMoZp1TcamAq4Mv4NOSESk2WTPhjEayZJwcNqMtG0O2+55sjIsBoh7A5Md7xWPkdgc3hDkJusj/5IwSM4d+pDmlp8i3MTFBlA9NpASaZaBl/yLj8RLlVjeeZvzNhmWrUzxotskylXsMPeOsN9qqTJ06NZnBTGmeNGCy6YcwvsSHweDb4bg3rCqtqFPb9X+cS8Vy1ssAdYExnQcDPqbRWev3Y1G5X4oHFmkQqPOb41g/mrnI5Km0TyLb4pGkPVxrlDqnYXcTOExevw/y9Mb9ejyWMQYD9tsYCs/Ngsos4ELFXVcnqqgZfV2LkWptszUL9txluN/Vtc97/pv4ID0/wjQDcybHhr4lC2FeU+QxNJqZBLvwjKJ3l7jcABBo6SobeqELz+Y2yofT0dc0WMX2KQEfQJbv8teCe+zGnD61kR13U7EubH2icpG7T2oenh2PbXJHByO6tvyirhs4tdr+WHY/iCwmeyqs7RGIytd0qa+w7rZ1VoQNDrs26vxMQWYBHszv89aFqAbcKH4m+Nb2AF8T6bqoKSjnv4S1EYdT5g+12/gD/a7Wtic6+mJoLiJKcxDW13D5kl8ciWuRLEMcbKktOuymm16L29/2NhweHgZ9I+tpedmIdI5l0cNoa4Qq+7bnnruAhx95BIvoa8t8M4yV5X+fd+1twEygj74d6n7HtmByNI6zq9+t70y4csR0rmPrPcBxQvCFoBSTKb08sdb8urG/PqjLj76x/kLUMcG2QalahD/c2EG/uStCQkPm4G4BEB/0wK32idjUYMnJ2mxFerIhR8HydeUIcqT3aY0e2BOLLPF87RlxGyduAoPVCSSXZX6UrdQ/En5liLJdDJksONftFZPRzACrEB/7nNl10wuhNnX0YF8ibNJeNxeMXqL1MA8tz6+Yyjl5XuNaOPY1Bp93sJ6CX/J6dNRpkYeYgUcf/Sa+853vhJe7fBxx73J4eIj3vfd9OHPmzKlgGK6Ff0/1jBP7ythkhLtw8j2sLVWvPPzww9hut+l6X2/odrIniGtyDwjL8J9mfp/fcnX99TRrep98qmZ74LXnk/x/oYe+L/uyL6/Ycuutt+Lnf/7ncXBwcM1tPPPMM/j7v//75xGqfdmXfdmXV16pteKLX/wi7r777hMzBp07d+5Vd+zbdrvF5z73OVy6dOnFBmVfvk/l1EFKakDOm9veGdIbkJqxJDpA7S8kS03/pBouNVOT3Q0bsc7Q55vUbPyxF06ZLYAkOo50PLVGp7l/t8Cn4FyKzunYmWXH6c2r9owb6K1vcnyMDkKGZlFpQS4V4Noy4hCZkzni08z4rKbDeN0aNhgt0CTOjRiwwAyubvj3QkDV4KRFnhHY2MerBnU7ek+fJjQHjLSlTnaGBIiEOaxyzABXArMc8SYWv1orlkWCUaoGlfWOWE4b/MocjnLJZuroICaQBCkUyX7kxr1Ih+6gljGnrtVA2Y51K3oUIWoaf6MJdzoXcbAfHhxgs6GUAamRI6Mux6jLFlwXMC8NF1WCqZhx6cplXLx0GcfbrWUIUXwQQbIltSOvqgTf1UWdRkjBgCF/mQViGO4i7RoteWCh8pXiqiqPVuc1lQQKm46znxOnFwnWCo4Hd1CJnOjIVeElscJyrWneRjsOSRo3pUEJYAiZV5TWWPEiEJkzsTPqm5FZzfpGkx0fh7G0ICTBXa3Ol7uMbkbbHkwqVNZkauUQf8cWpNjLvF1GMRsSebDNPJDEDeV9kIP1FfG3yy6q8jHKJSY/Bi60bYxNcBnK6kwtQaao7BTa7Az3vdG7suosn0OXp1muQzOCGW6qwVCK0kuQvzZ4DnIsEBH5GGpFwnXSr3qtw2Wc3/Ft0/Ft/wQzHIdxvmI/GZ6ok43ijTa1jXXjeNRjK32wz0GkJa8Tn5+PfVa4kukdQ4qANDxKGNozvTdrm7O+6ccUYY2fvp8ZX06vIdPGrrqnui4LvkCpQJk7E2fjaU10ckA/3XrutLCN9XbfnwUs9f2M69p5Pf1rOsRkfOwwz10afyAITkg9fYnjSWIEJ+PipVOC1KX8u6/WT0uSe+wSPPHloOPHyV1zoDs0ZB/XALMizlD2WiPtjg7TcVwuI3vdmtuLDseJE5MiTjnIg0gw5KMJTZv4m/LjWM/q9tVNVs9x1kmCjpBV9uQnXJ7kT57H8EubtD0EhQ8GHK8xT5R+O1k28D3Fi6yrsfY9PZvWL2uY0qOVHV82vXG5QK2X668/h/e+9704IwFKaS+W9oG+FtHu9ffR8THuufdeXLx0USloAlncS4Z9o84Tw45x69caaewCma8ZAnUMpKD0on8CV3Yd2VeiTrZnORyb9d/5vsoaWSg7jArDZC7SWiIdXdzr9UyDce9j8GtDw6INiHh03SvPk+6POOH2VKUfE9osWRYeA33ept46jR4/ce8xaX1ef12Jj2tgGJ52d93J9OHM1jYvO/VJv1bWMbSbCfaeLCnUtfqTQEDvg8O/6L5H3uokZ1jfREA53J/tB+wZpTmB0XQQRzgzjnatzbOOsFlI633ds+0qca7jvmA259NAOz65DgAcHR3hzjvvxIMPPojFziH3wcSnzp07h7e//e3YbDYjDDtHs8ZtPcx5f9hsA6d48Hvp9ITy3HPPWTal1qauoXcvvtNYZpPGp6epF6Z8b8i6qqd7vbUv+7Iv+/I8lZtvvhn/5t/8GxweHl5zG8uy4FOf+hSeeeaZ5xGyfdmXfdmXV2a5cOEC/vAP/xCf/exndwYqERFuueUW/OIv/uL3JKNfbuXb3/42vvrVr16lzWBfXi7l1EFKajSXXyHQQg2nGqDQOTDFYJHeYiXYcU9GVkSWSWLMKNAZ7NtVqCOVEGCTTW7tHcfJwBLH1Y5925AcqaZGTMp7PsvsE4wv5ryu3MHdsjdVzXgUDI325lX4rcEfJbUBaJYiOwIPjCIZTPSILDWwMGsWGIfVAhNYg3MILVtRNO6wOM3ZPxZY1L8VKQ7+ZIQLTu7oePOJRS4TEzVzy4LDYvQUumk44GiHy0b2LsjB8REDzPoj52QeLQsNLAuSGoAjfSmYzciuR1W5QYxQUtaVWQCAOs8qFujRYeJFsKwYbU6b8+LM4Qbnzhy2rEYElLIBoR0fVpnltEUxQC8tcK3WioUrjo6P8dxzl3F0fGzzwtyC9BbWYwp1/tRJ4/TSHbwAaF89ztOMNrpKdGfT64ZAPRLOWksGKXegqWNejcaNP2C02DLuKA1XMGo7dlEz2ATDfJwvDU0iPQZS6mpQVuvDr+X5VMMwJUPQ8MarjKvRbAl1wpEJ8fnV4IMoI2JWMUOsyEIe7OSERo9cqySFyxmTvGVh1B4G9qwLI1wOdyNh1wV9MGc2JorzvzAQskp5fX3+dI6FqDtOuzjx9nN2GVIHDrWQPI5zRdXgXYNMj6aEyWyRJRTGTUALXFpgR0XqPYVP5aeQmD7jEika4uUTjgObjlMxas5Dbaurm+a6Savo9OMO/9YkCDEDVsB2GFfmE18/5HlrzTVaj+uN2G123PtvH0ukhxzAFJ9PkIbfFdyC0WqTE402IpzuYbCAvqg7o2bsdJXWBxGqZh8kgOMc9+ufKErjGAUx/fWhcP/T6at3TFmdEw39nVOQhm6GZ3sHuffT4CHAAkNnQT2nLXEZOLuuIJzU7FXvd8JSZq39q9lE7arqDtXdz77o/plTFl3fmSPTro+BLdNh67PUfvR1os7z+kFX6UVZd/ZtO4EqBFkuOqzZcWv/UWgrySrXdxMNa/e0rs87OVzwceQn1RFJ4Yo24ASkaytEODuYeljXmD2NPeCrretiyzLfafyTQAMO66Whz7hmyc/EfUgXUrkK87yMcs+XYEpTsgeI8MQWFL9xDP13BN2+A5qe793xzEYPSR+C8OY3vxk33HA9DjaliVehQbLnY9CKrhlZ9gzNqXDf/ffj8SeeTKQzaDylSxuHw+BkSFlnRawlJR++hP2G7eM5tMD9zM4x2Nch7TPsQZyj2QUKD1Nl8LINTC/RvLJOz0BqGXjjh7V1sNgJImxDX6tCPwmh8Dsz15TV4k3DUmyHgrxZ771/WcHlpbShewrbkO3W/3mdsKvn05XZGuX0zYUbwgs8ncsQsIP4F6lO/O7U7rOjrWaZHtY/2uswnlbXZ7+nC/lOyGtns6dQeirqkoiLuK9R3dW+uswZRh1o4aTiemSk47SnTrXzM3kvMA90ywFz69wxo9NaKx566CE8+OBDQ0alCBYR8IY3vAE/+PrXd1U63pyty3uym/yavgzSwWo65CTUr+n+/jfnz6w88cQTO/ltdudU+4GX1AL4eYBhQjovZPF14IsHw77sy768uOUnfuIncPPNN1+1TUYLM+Nzn/sc7r777ucZsn3Zl33Zl1duqbXis5/9LD772c+mUzD6QkT4wAc+gPe///0vIHQvbmFm3HHHHTvxsi8v33L6497Mlt29SRyOxaIix3VROw6oEIUjbILRgzw4hEqoEzbJtrEuej045KXvIoFFvdWT4Q6+4WQXIMET+4qOQZbgh/aQH/VCtGlBDqxwRMNwq8s2PgJLLhqUko4c8x1fG8OGCBs53s2dzhr8VIKRT8ZNHlDSbDvF4GQiuPMaYrwqKHTQHMpUWmwKV/uo8azZWcVJbUYGG2w3j63bUjzAZVPaR+EuxXHDrHgPRiIbp6KEAVRpF6DCoFLBWNCOwJs7pYkIpFkdhK7cmOuWknZ8nuKqgKmA9aip4C2r0Q4caKNQgWXTgcMRj9IwuEiJsvWh2Xhs7KUd7UbUjiMqpeDM4SGuO3OITYHgsrFoywJVwLwBU/sQFRQuKDJHtQKXLl3G8fFx66fCjiSo8PE0m4ePwfEptCuwmUOBWnanUuIcuVG6SuMelCVUTR7A4MER7sCQG4iZpFCE55W49Mg4KNto3SK2VA0oUlpo32PQEoe2lNecnwKPWCvalwYstii0UuRYR7D600O9zgAPhCDFEuAqFqAZnzc6CkdAtb+bTG9y1KQxY3JKCfogAY2B95qwlTmLhufJGGa2yrwxdeYgm8PRgBjpWmU4IPKi+G/zuyhdlQTa4PwMUwZWGWmGc5U12fEyyAptSPWFBGCm8ZE6mckuEzxgzOhDjyPULGIWDudQ9oWIQAw7NlPpsqS56Nqg4PggPcZU5HCYv15mEbWgIGUtSveFn0whw+Rn2ZD0yZb9yec4PCsyjhDkYHEnvWHUZKhxZac7yfBauoDlKKeUhnQ+x7e6m/4spWCz2dhfDfZTmoz92JjCUYsa5NnmBK7zzFFXUbkFnqY1Bq04PADL2KW01xxyM45TOeI6DcXxUYrgmCIOJyXyUYLTgxvj+GPf4YfLBJEfxk9Y9VuMoEzkjWGGxob6N/Wv1TjW2srfewfK1Wdv6MZA0PhCiL8wZfL0vieOJnh2tdP1G2SgL1nSJ7b90i4qg2G0bmFDRE6SLpKHx93t6rImf4l9EXSF64+w8VjCmRJ8187pHJ9952PAFVRCBiayVVJmOOM7/5n1fuIRk7NRj/R7nUwnpgNsDmjAaw850I6D9jmTb3rubHo0Zv8IWLHv1NGv8AX1Ms4b7fm3NeNwRP0pKhPp5RriRE+zNVkYcGa6RKMOVwze8KGRLy1ik92YIt2o5nSdHje5/bzo8zCdTER4/et/ELf+0A/hcFOMdIo9D7SMjW1vwqq/tYbIw+8+9RQeevChZgBi7zHPecBNjzTS/UboN46dVPD3TBAVl7ZGeR78avo2pdiOdrzN/FyAfOjBV8ZxzmA83M9IKrK2amNm6ANKJdQ/MYwTAS8U0K5Mo51yei7rWR0thbHs7jaK4NiGAUSh4o4S7+p63GVW97igJ5Yx4FtbynK8e6q7n9uLurvVjn14X7NAi6lujfOg0xTkW/7r18nmJXRssrTjsSDT9HoIswXgLztF2u67zk/0NKJ0MMIav9qeK80lOc68otB75pBR3ub1vsERMBVh6Pl9FwX2e/RBvK+soXv+WduX9B8tzMAjjzyK8+fPBx2laHF6ISK84x1vx+te9zrEFc2uosG/SVwqrndjQwdniND1RIPppJ67poJIdfme/87KhQsX8Og3v5m4dsbBq/D3V4e129Wv6Z+/wt3f56mZq5ia56u8CF3uy77sy0uovO9978MHP/jBa7YpMDO++c1v4vOf//yJxxbty77sy77sSy569Nujjz66s14pBb/8y7+M9773vS8QZC9+efzxx/F3f/d3+0ClV2C5iiAlEtvYAmjACAHMJEbOtmlWB7rlLRneIAoBMc2DY5lgolMqZUyCb9nVFtW6Uae7BJxwTtuc3jwGQbMAVbCc901Sr2U1WGqVDDViBJTsPmC2jEQApI3milZDkL59qsZocXujkAY0tLqsDm1piDSkoLTsCrwsYiC2FtCCioqPgxiVF9Qqx62ps18/4gitAo85BgTXyyLPkgRTyGy1TzAUizFVj3VrfwEKjmF/Q07og+VoKl5QUc0A3kbdjhhr/Xp/dtQSwYJUmIGlstCXGgrdKGfjEpRUcAgsIkAz+si4FUaGHn8mI64VZJlNmiKwo8ug7dm7xnbfaIE1oEvHvKByO4attUsANsHY4M75NhaBgxccFMa5s2dwUA6sPUbFQoyFCFswjrll+oDg7RjAwlswb3HpyiVcPjpu6cUFzkXHYkfiydF8aPOpx1K1eWPo0HQOAUgGKXlUOV2zxMgEqLFMr+ohfs5/Sr9iNNYjt7CBgCv80Nqr8OO9iL1Npap2rzlZWsCG0kegX64AL4LfhudKVWi80YDCG02CTf6QoMplByqhZZ1SeiTJaqVy0Isbxwri3MP4HinDDIXnmoz1LGoqHxuwAos+xw0ApdeGBxJ6XWScWrt0DvMsH/X5KrQgv0y2t5oWGin84UF/zWGeN7GaZUjltSaGs2MXiYHCcMcN2UmfxiMUhi7tNh5maPAWD6qMjEbikXY+8Da8FnCkAalsONHcU3rMJMtztUKOmGtNLJWxiHqIOqiarBI6qfG+a7MWfNjorzKhEqEFZLbnXHeh8aPoKianS8v4k8hM9LLIi8bTLOzHSfepPK0AUOWIS0G26TeTdxT0rFAGCwc1hQ/LrNgEndMdkdBXtWd1RpXXYXqthg9Dg7JcDQsPa4C0GcrJ6mbnksopp38L2AUBZdMCiQkS2MlyhKawm5Bp0SMfxaBfqMkElU/V0NIycLE5Z4QG5b760pkxtQK3KdQghuK+BxvN4NYcM6px9wzDA6xZONlUIwXHQqSlAH9o0ygz9DFzxDcnTgk6lIcaKrajDESHlvUAAtctM2eiP5N8Mj0EyLS427nSB0YY6QJGLzMwImx90GRaS2HsP+vXXdDD6auuIOOlUIxWG/I6DTyM0+jf9BWshmuvTDMn+qcC4jrWMR3vULjMH/jOwKLUaB9YAtQYQwOrTT7eDi3DcFUeq05QPWyjZ8WGwN8dt2z30ogZmMjkOGZbSvcjD3sBx1ZeD+o3bc2cq+FoYDAn/s3zyK4HQt8xMEp1i8MQ5oTg69fIJHGYNI7TT4MLgR1RyNn2wnFnM8kZN6x6hOKzGXcNJKUdD3yOmRdb8bVOCugD2fM/+Lpb8E//6btx7rqz8EyHTTAwIGtpYLEWdMUofaLi4sWL+OpXv4YrR0c60CDz8lw4fB2FqFyEv8CQA5Zm+oByA8qLpJOVaqeqkDVCSmJMyN2wzBTbqq+DPL+IxelBNg6yJynOmz+P0F5GkxOZ8mGCITzc0L7ubGeG7yMCbtvYo5y0Dift9cqmw5UB1c9vVnRr+tdsEcwJTwzfP6Zibym4jsz3u996ZGMEOvDZhCx9mJE22PkICY9dX3HA0wbzPcWfz0bWXwmzhifrfaAHf8bhpFDBZW/Qqj0PGGCBjpN8my2A/J71wUH3WnBSwL8NjAI0FDiErL0GktMmRdiNx0bYkh5QnCZazPc9+L9fZ3Q6xa5GWoSNdR1HYbFJwLI9xv333ycvj3W1Zf8GAIcHB/in73kP3vnOd2GzObAXxnr4A2DpO/XXptD5DOwcwWmd0ex9j2uo/LcvtVY8cP/9+Oajj47PczfWAUgKnZKtoW0APRDTJtburWHmassJk3E15fkCaVJmUPbXTkNb+7Iv+/LKK+973/vwa7/2azh37tw1t/Hcc8/hj/7oj3Dx4sXnEbJ92Zd92ZdXT7l06RI+/elP49KlSzvrnTt3Dr/+67+Of/kv/yXOnDnzAkH34pVlWfDpT38af/d3f7dqK9mXl2e5iuPeslEBHA2HnOrpvro3hpkjTI2u6o22h/05L5T259E5FzfBZL/9+CGzogQH0Gigc8NFa0SDW6IhNeKh2sVoSiEBxOP43HCjP3Xzb28sqXHGgh44OezMnGebU3FmVTdaq/HXMj+YjYzFGeyuBjV2kxl7JcBAnABmwNFp4dy2DoTdchmMg8mSZwalBn+gAWYbW7VgIDc/xRTw6hyPb40nAx51c6D0QXBLXWcwjo4npZlGktkJUgK9+BNiiNPrwZBiZleWccGPWrPAPM0eo3SpLRNwcFBw7uwZbEoIYqgtiApLi+LRYK7KFbW2YKilbrEsjCtXjnHp4mUcb7ftWDeFiDNudU5rXWBu4wCLRaLam76KIxl3dZpyJ8vieIh04hY9uSeOl8oBdQIDBbpipKDAFsghdMBxanvLjTt1FP9gtvlo8GhAJQn9ed6b7ICxqyZxIo+yooj9rVVUtgAHf6NUg70if1VUDSxix3kMFIjG0vh2Jsfxp3mF35cJUvncZIHz1eC0DA4EoxaymYGyk/YV8aSOoQhLCnKwMRPAHkzgcr0aTSpfeACHczfD9QUzggzt9FJUFoor4YGWLSI4SyQATPUGByQ6f4su4DiWzoEIByOxdrhuTlRqgUk14pC6Z0XGK35z0JY+NzmCLlvmbdwNX5oBisM42GRN4y8AFIIJ1auqAUvB6WU4CworOpI53hMaBgccW6FUT1AUAkp8vvR4tCRbOKxF4uzXMFcc2w7GbUR5pdBQ6vf/b+/bni07art/WvuMZ2wITEgwxvgDm8TmA4dLKiGVh1QlUJVKnNtDeE7+PR5SeQFXLoRLDEmRKqogFNiJPdjGGDDx9RubsWfmnN36Hrol/dSr1zlnxuPxJS17z9l7rV7dklotdau11KVYEC1ZDZrzmG2KcWCTEgv0y/jWt9ytrTyeuN9cHslMpDJ2b3X9OMgbFLm99e8U0LhRNihWMLpWNpX3ece6rtCxFLRDdfiYlX4DOMa/6c8sTWtg+er3KSiebPixMnFNfQ6RsdnetGE6eXMl318N5xXJPIVQeo5U+FsedPNHgM/nBrojPdjpvjH9uVdiPs4lTN8NkGMZJxtlEhf2xvQgtZXsFcjGaJrLDqlTnsmOOrgfF6aDuUkLvV09TGOG7WfWX6vFf6o8Ap+8nq7L1nPDcQ8pJEyP25NWVSy2Eu3WFxroICNAg7R/PnVoHrs2/13Tvf4u3V8GW5+sxzOva4LW1BzToVTCTVHIkQC49dw53HfffTh39qzbXZfVahyRJirteZsnFlUcHe1x4cKP8MtLl1qxmB1yUJXXzfeNjiQzipS5ShlvpjXaQtde2HGqRDIp3eB0EU14r3jPv1adzZUijYUmwzZuS/ebWmiUdDLLtbKAiwWJq6+X04y6CyjkNZyvoXowfCXrxbHE5XE3qGxVduQYdIlWmnelZ9nYduOXS9H6Jytgakk7/coyugU6qivGOwfn2zDyZ+qkeoWH33ebxT0Hkkca94pcxvH2mZWPT9blDCEReYbto5IVo+OfUfcx2vMoFwqeNAWU8DPKfKiaIg+ct+ZE3Eai5pg+zKMzRorN4bcnUPFkmofrumQjL60j0rQ2yTX3QBB38eJFPPbYYzg6Ooo+H6B2cHCAu+76EH7z3t/Esiwd+uvV0wiGw58+bgtGhRhuwgSylIKnn34aV69e9Sa92b4vNvQMNq9jLeddfatJeoI3eQbN4niajgdOH1x2fLMTJkyYgPPnz+NP//RPce7cueuuo5SCr3/963jxxRdvIGYTJkyY8L8PnnrqKTz44IO4fPnyseXOnTuHz372s/jTP/1TnDlz5iZh9+bB0dERvv3tb+OXv/zlm43KhBsIp8+kxCDkiKMFb35zD+Gcak606jCN7EN2ZIs9K/S91e7BCp0/PrkCatBOcTd5bPyX1TLTN7JatptS9rnirqy3U19Nh0D9GIVFIg2//ZXmvEobUG0zLDkvk9NNna92ZFly5fmb9pFdYq/wbDOKGpglzQseTiTQZm1zIAnozUttGXdqho6KRz1aagG9fRuI+BUPgpHqlooXDMO9bwEs1dEkUZW2vBMawRlA54QQ7Y6nkRrIYg5E2o0UALt2lJcA/tfqtL/sj/DgHePV4LgV0dhUjsAJchy2XU53RTo+Czk4G01N7nxjtDlQFgAHIjh75hYcHBy0Dc+QZ+wLlqOC3V5rZibL/FT27hDdHylee/Uqjg4L9vvSMhNZYIokHvTZxhjqGK2OSu+LJlfaS6X/LC2uoY032gtSKdB2VJp6VpGKg4hgt1vasWxVLpdu11ipIc5elPSKuWel0BMKR4SPm/R/WuYfO+7OHaj9xkFkhWHxCP9rDZ+psWctN1hLtW5voyefURMk52XDMct/sNnKFQr+EAFkoULd89wYp6NnWOlpd0774VJWA2zApeENTW2pphJ5U0lDN658oHSUnwyeTw1syGwE7kT/5/sVtZDnCDJ0aekd8XwkDNdr4wNApJBRWLATb4yHHqONmIavtOPvTL9ZhrmCCKbrs9kkDmqJbHaeCY3pj9+LwI+MBExvh/y4zUXtAzHt7k770OcVf/X6PUBD6lix0EALSBNp2eAskAvW53bEDNlCHl/UH32Gn7Sv4sWa3ZTAr+qULPf1iDTTN2YvzabDdZ/JjD1fVW3LTOVH22bZMoQ4mMbstgU5jWikEMcsh/a12T7rAm0Gz7qGj83ZclCv52fdPZ9Psb0NPWc0edt2jT7wDUKSrjbZ8JmaRqf1fewBc02/+LDxula1E7SseEJ8Nhq8j1he4vfo+rUA10EnHxPzjnt2Y3MFMU8I2W9/YeOtKz/A/xpJuangPHNZ4819Zpw29Z9G/rDO7Wxbg4ZXU5nOBkDjD82fDUP7EhuUJkisd3rjz/IcAiL0H1seVgFJGCDBJteh1JrjKt0NrjCCG6ouH3C1y1gSwWLd+KWP2cM0kaF5hKEn8UAaKgMLTv/qql2vocOVVHL9TtlmE9K5okSrdS3b9BQEoFnOTjPeoo9O94ACZIOR6JT2D78Is4jgrrs+hNtuvTXW1zy3KwVSFItlyqQ1igcGFcUvnvkf/OIXv6jB9FAPlN7YI274uFCOqIjvbm+6CoA6j5Z4kSXJVpqX2Tf1PrK5gsSF9eyS1sYr1PxCJ41BYKeI+2c3dI7fMf1g2o7tvr+25C86+HNm9/tWbDG/amytK3MPcF2Sym2TstZl0VzMPVgfGj0r1T2wUYzTMOBpaCel+2Dw9/rBZ92s/5ti0E2c6pNJSaTfdpko7iYMI12XbMEKpLtJ87XBeMxX15rXJUat77L08JxzpBTWfCEdo4CyPhviYBiQ7HqVnq+0kWx2cx2k6/6qEyZ1iizDLk+sJLqjQSsf8lDrVYPpMRsTzz3/HB599FEcHh7Fms4LK4mx4I4P3IF7f/Ne7Ha71cjvdcHQvB8D7pvs6tqyvdcDvRbd+gDAlStX8Mwzz3TrCauI1xNI1zeQHl8fkbJJno3101j008Fp1hWjMp3InThnOEnWR7BaO2T2X/OaaMKECW9/WJYFv/d7v4d3v/vdr6ueRx99FA8//PANwmrChAkT/nfDI488gi9/+csnZlRalgWf+cxn8MADD/yvyKh08eJFfO9737uuefCEtyZcc5BSessdeY0Nba4CtcW5rJ5jGAmSiKTMIvXvsirDwU/1YltNtZ9LWmBK+uZuS0HbMJYWjCJtUWyO1M4LQXRwdh+LYLDNZQu2YF+MKtqJCpp8VmkD1jYbl1qH1VNK8YK+eWV4UxCGNGcmOwqX9l211mE0Gb1qdUL8SLDYFuicBtr6LNGfg0Byl4aTV9CCUBqftKi3a7JT2xb3i/HmrznHDG/z6QSfAFmwDnxbgrf9p/qGl8CUVuti/dk8kpzFZCBWUK3HQFkQUBz/VfvIaF+WA4gsWJYFB8uC3SI4e8sZnL3ljONOSWdgIiiQGojl4y8cf1cP97h69age89aA37V1nvPGuOzgxwlCgRZgE8FaQjSbw7mTt54jPFwUWBq+nuGKEJKGZT0ODBGooNF25Yd6X9bgwKjE/zU58vGwpPtxbIc5G2twh2e2EsNhccw4w4JzpA8GaIpP0wa5rD2H7Ox0BlgApHr8nj22iPVLHKOZ2Ew7fJZliOW6NkVHvhA9hiJg48v0BR3DSTqLda8Hw5DOyvWt1KVR1F+ka7Qxe8ym/XGeMm+ya8ZkKmei0vyghHzxX+/LVF+TDyF+LzEmpD0z2khdlsV1ivWooOontePmxILu8rNsR5cFrtNl0Hfx1zV4OH+NSbJzPesybvij8sT0prbxmPTHQJeacz362/hTg4MMIzPR/QaMzydSP5kCXCqtWhJPatGljSXqw2QDWa7iuAmg6uCwF0SbByC5lR7IJvUx8c7nFnYEn2/OtyCclRxLG6uRQcgu20ZCM0DZud/JddRGcw/EnIT5MNwERMh82hQw3anUT9prJKR5TQp4QtaHql3f97/5Y88l/RhBXVyHBy0bu6iyntxrWb/0Tvotpz1fH5UZ1dFf2/rrZQfPRQUwMVm19/YAdRnJc4R6Qbor/Jh/Pc5+gNV5tgfS5HTrSRffrm/yIKHCgGlXL9bPk2IaIERfrsNwdl3nSkaxQlbpnuviwIVHjel0SfWLz6F4bpEZHF9SQOMID2tI4fWKdPa3G68+DxzVlartmE112FWha0mOOpKMV8yh4EHWr/0cq//7uqGrJ2JVhL4HLlW1Lo7Tsgh+9VfP48P/5//gYLfzNQdgujTstIiklzlsPgEFLl16DY8/8SQOD+0FHhsrjFsEp7rNo78sH72+Nnm3+RIvGjR9yx24rieZaIRctr6Urqud/tpu/knjX4JVjmOtntmxHtOOp3a8WJHP1QReppMk6M/HmrMAtIqGY6QXcOuIXvipfUfewqdGMj0a8Lnd7Y12JUKQjVrSd/2cZjBf6u2/V3uDxqHjkofkqYJgWe5ZPwR7DeOmFxHywAJp7WzhNrqn5BdLVkf9mb6Dev2YJk3HdjWtKVwXmRiP1hSZZzbv61/ICB3bYyj0MzT9yrYmiqO+HBRPPiL0ZIrX66Stu4Xq4i+yotHqtOvPP/88HnvsMez3+1TGnyJZuOOOO3Dvvb+JW8/diq4U0TyifqAn6ftwPtLJen/vWobWtUw9DZefP/MMrly5ckIptM44STZP1+bm/Txsrgu25vgnBf2M1hA3Yy6/aoPYPWHChP99cPfdd+Ozn/3sda9vVBUvvfQSvvnNb3qmvAkTJkyY8PrhkUcewYMPPnjMvLmCiODTn/40HnjgAZw/f/7mIPcmwne/+128/PLLbzYaE24QnDpIKRw2vUOd3N/mkB44eA3MQQ6E41SlZnio92O1VEreYItKkDZsqvM7ckS0nTTHI61ok18svA/qFfofwN+ECuc9B4igtGw3ZQ+BYifATmTTISBGr/GqLbbzRmkcC+WcUqNfYMELi0jKkKHkIEwO1laXBTXVcqVti9d/NdVPbmLalI6+g/ewH4nnm58Y/qZOcd5kNy73GZeHH6kFD/5pWLY2SjsGrRRtL3CT+0bjyJ2RLOa3ySxLVXNyk3MrP1ucubYZKy4T5tFqx1ohFvk1yOYAdVOhfpZFcObMQQtQqp1mTmnFAiwLigiKCPYa+Nm7hPuiuHL1Ci699hqu7o/8SC/VPY0PcjySbFTxrYX8cDh3JAoEC6D1Y+MhjwHrzaXVEzxPGZV6f6eNVxivDbVal0J8YAsKJeCKTGGmh3JflyoLxcKzFmgL1OHNJ2ll25fWv8yfxWkyXaUt+Kw1BAvU2xetJ/FZUMBS9Vg9ZrG2qxq8EaAeCdf4K9iBCCRabGSI69fkyNVOnpMjjH/kDf3K7zgGsgbXaJJRb6P7nW509zjYyTNbJYLyFeX+96Cc4z1xHBjnEkGePNNHNn6rGGlL1iaruurYtmxAAi1Cejbo4q1rpSyA7mA3XjF7zAZsRjNEfbWvOagmAkySk7/dLZykwuxx2tgJ/eU8MJyMhxZASbbVdCoafcGLbf3JQS/dNniTBXtz2jkfhCS6soDkjeDF8QF4ThBBhNaIb5ymunZwXaDGh6UFAnLQpSt1gHQ0016PjQxa0oa+CBaxDHrw+ryE8dOO0ez46bqi++1iUbRm9muao58XVfVjghO2bTNALxgE01ULJL3Q7cGlREPMndDJnTcdlFvZZh/EmqPCtN8ED5To62tsszlC37YIlSVc+bfNX0/j8M8bkx3Op3hm6z7jy/Wq5nKn+cv16EbbN2Nz43rhOL6aHAA8io4BJeb4nG5QjHYEt4Jl4nrkovCbVbmvbK//Ev+n/TT7EbNMDmb1+afNr6y8RgDqinLJxEl/z/Si38hUhP20q3lDNrMlc5HnXaYVmNdbmTsAINnLjijJDGzlGY9R3fm30zBsPT8W9q09w7aDcB29VKNlTJ+17rh6xkGan2wh5AWyrPgNkmuWPwG/MCB473vei098/OM1tbeZsiST9pIKanZO42qbIxQFDg8P8fB/PYKLr7zsI4CzNPIYChSbLLjpDTo4eEla8LKbe7Kf9VrUY894VaTjTwedJaG5jK/1ndMRxMzFczAu4Uo0Ma1ZJkMiBTyLJDrpSsxfuDlbr0f73kL6wvhFptCgu80HQiAG3ArCT89jRkRD7wwrWK/DuIbjax+V6GsYB+acDljZ9GMeXV+EMPbBL0i4hhxnXRIv/NSfND/zEZ6lzeBYHRLDaFU2cjPB8Y4209CgxratrgcnWj32FlAUiL8a68ueV7EOC4yz78jqJKq2TQzRu4aw2TGvgI5xCo45CVwi49r0sxA/toJXbU7//PPP49lnn3Wdw/3OTBcRfPCOD+JTn/oUbr/9A3mdwk9e04Dt5wIdSP91Sxq3QTY+6L6zyrx85Qoef/zx8RqFy/bfT6BhhJjj0KtsK3ZtCnDcVJjt1e/tee/43vXgc61z/9R2Y5Db4RvAjwkTJrx94K677sJf/uVfYrfbXXcdpRT8wz/8A37xi1/cQMwmTJgwYQIA/Nd//Rd++MMfbs+bGyzLgk9/+tP4m7/5G3zyk58c7+29Q+DixYv4yle+4i+CTHh7w+kzKSkdQaV2pJakBV5eRNOxUmKZHuoGIaQGI4j/3SFlS1ps078txm1xSRmL0Bzly7JzR0FaEkuUYSeQ8jK5eQVqYETnUEheHnUk3Ckh8SamcPMo6/Vzt9pzJ8ZijjtFCpKxlbNqi4mpG6DMFzvyS6w+rbxUBbRIC9ix4ApBUTuszhxT+Rge44/xNwUesINNKOsU0PW/+asEaBu2opaxp3K/uBzUMt6fxBdnuQL+vq8KBLvk4FSQf0wi2K0d/gJVrXzj3UBzgpkstGfzxlM9osdxWulzRT22LPrMcLEsIirwTB224d07yna7A5y95RbPNFKavO6wQzuJqEqGBSftgaNSj17YF+Dq4SFee+0yru4PW5hRQdG90xB81vi4KFqmouxgUydEKi0WcKV1E6Pu0SywoDE0jGsgAGX/UYUFB3hdxpsWmBL9VuW3DILMqKdp0169l2NjXchXWuVfsHiAW/zn0grb8ndtRuNzWXYQ2UF18TETDsyadapm8VoGDi8bZ62NFPAQDrI++Igxc13Rnk8BJFhcp3AQXV/TqmaBe6Tt2DLbjCE2E286N6VtRrGj85jJzip4hpzptUJz+HeBNLKuxwNpoJ7php3faWNG4LrlOLDNcA9AM+dvc5IHzYDrfsbX2lT1wJF+c5MDRDMttm1XA2YsGNN+pw0Fx4yDi9g2MsMWP+KzBmha20sLxMq2LuqL/vJx7XbOMmxVW21j2cqaXbesdp7BQWljsulaD56iDZ8FO/CGaynF+yBnzbCxYHLbcOPNHWuzo8H7CgLIrtqnRkudf7Q5iEgT0yUywZF48GY7cXC4qR39R3bfd4W2gQOMWF+nMqbSrY+Cy0Fre5wzU3LwLegZrp01pQDo9QBDlpXuxsCuUyOkVwNn36AyVUE0Gg7RBI139MdxHK+bjgPunuM2Fa6lnvp73O8ntcEbHVzeTPVKBXTPvTWBdofM5tC0N2BEGOkEtxey+YybNLZHgm4smI7jLIzI33XMU9q3Xj/rPyRuKt1Tw2uNfg6QHakNsf87hOA0BTZks2nOZ7yL4CiuR9Ljm8ESvl2aEUw2kq+b/g4rh6QQECYuaSk1bZS0AH3bFnhN+DeaZUl1dVO4sFPUivGs6uZaaQTtW71rPEIMBoO96S/vM2MsD3Sgrhe7NaTR9Cvv+RXc/1v3413vehcdTUxzRo15S9hW2BKzrSkKnnv+ebzw4gtBtc8ziX7jNKdGtXuuktnuxjrUx6yPBw1MnfHxcoQbgfaDpTj+5kA8p36gbmnm1sk7SSOJ5cCi04fsLQSc/tbHFs3j+TlN37jRnj62j/W6r9eoXLbNGwZFZFXSUDh+RrIFo6eosh4FGzcNF+fRKXbU12Oq128yvHoq6FkSCsoLVFQ7u0JrLyqZ9WaPciUmJFb4Bk7sC23Ph1zFjepvAcmGjUNGcNgp+bp1C19o9Eb7WDHa7vW6Tqmc+828OZ6jC5Xhea1QCz2/+Urou6TXSd/xk7ZuyTY6c19gQ7M30DwoWafZ+F/oekenKp54/HH8z//8D+m9vo2AW2+9FR/72Mdw1113Nd9b1n6nGT9Re/+8dFewrv86tcO4/Qa6vvfCCy/glVdeqb83fAFhiEaVblzX7nPNyN58eD3rDnv+dbXf6hjPOydMmPBOhTvvvBNf+MIXcP78+dfhQ1E8+eSTePLJJ28wdhMmTJgwAah69itf+Qq+//3vb/qXDUQE73vf+/BXf/VX+P3f//3r1u1vB7hw4QJ+/vOfv9loTLgBcA3HvQnAC3qxNZ+HtvivcPKa06BtLiI2esM5oCi6r9k9zOmp5uwhF7FIbL5qtKPt1X87XiveDgVqSMwe2gI3pCEdGRfijVl1mtqxOy2AJ3yk7Wgq2MZ2KyPhoLZADmi8QerZYpIbG/WYH1VAeUMWhHv7tNVidYhVx0dpjuXq/Ckto9O+HofT8FL6D43zWkr0n7E1tQPPxlMRjc1M473xxQK76uZGqXUjnk++NzXedDJiGXxMgrRmealv+aJt1rbfWlrdoL6LIKs9FHuN4KIa4CPtmcrjvWrNSGRo6T5oJQ+19YHd6GUEqLJoHiaNPGAA9sadWg7teDFtvG8OzGURnD17Cw527Si41u7e2itobVT+1jsWJHiEfTnCa5cv4/LlQxwd7VHK3rP/lNJw1Yabb0iHc7RmoNqj6B4WMBDBAbxh0p71o6hKc4BoODFARwQogFKDf9hoWt0AsGAXcmF81AKR0sZDCzNr/ewbiVQfuy3Z9xQbMtyp4WwpKvVYvpaRxuS0NNmzrFIKrUcS0ibAvhwlfedHc9nRauRSNedhlWm489lDKpyfPEobr3jjSwtKiYjgWi4HF9amQvbDKxybMNV5Hd+tMZHFdYn1jiKC/SACpaAZe0btnm8ylZDxgYdPhDJWpU0AgfrmDtp4CUe3FRVZmt5nMQieGz6m0HjLInDSTLxWet2hbfeag9D0mfFRmsDYkIwEA/GWdeit6BcfT+16DUqK7HlqCEuTI2eT6Tijozj/tPGv4kFZBEmuRFDto+vd0uTQ9AFIRk1XlEYjjx3SgUpHy2mV5lJIXo0iG2AMRFd9dvHfEQDX5hluYzXa8z4B0aSVRnDwUFBofS9tY6iU0mXDCCVgedciuBI+aGIeYH9Nz0S2pf5N6pDzbGPchnWw2sw3Pe6oZM97ZC2zuRCMaixSY7ylHd3HMwGIQBabjx0PCuv/wGEU3GF0MZ3MgtiTWme6MTMeG7uIcebtNxmRdSAg45qeBzfcAe8pHUd/18xq88DnwdvP+7gYDwfvuxVfWHR0o51jOnDAorcQ0IDuLlUdxtpk8GzawOo7kznLXZzlJsmREirCdXKNMZfMSMVvHurZFA4630gxXFheTR5c9nP9SRoSqnHdMz0w/qn5mCuFfLqCG3/vBvcInZ7MTtueUAJuk4LN6gRaLAfrUOpRopN5wHLQ7vIci9rlr/3487YUq2dTxqysjDsJjkpHvKs0K1RpziucgdZkJGg62B3g7nvuxrve9S7a3B+tY9ocBgoIpWRsdv3VV1/Ff//3ozg62tN6r9e1SjSL90PwU72Ur5nS4LD2+T6LMHOLs6wsmVc0Bi2bixpvE83E73bP1rzRireW+yVmhpu6lOdrSRLTvK/dywoh6Fd1ueZgjYQdDzt0ZBJb8nhS2CItj4yOmBNsYG5l9GDmJneR9exAe4RcGc2SRhGCZ6dBrfYzh+fA6xmBBA4mkra2909fnviaro2kCVGWdXOTExFJcWkuPpprGOnOfj1R5XQgVzaf1r7GGPf+lwVqxfZsgzYkLQI37R4r0B739L1+eKxpUl49jyttiSJV9MFhsa6LuYKmOkM+oj0aJy6fWNGRsErodf3tFfBLm4L9fo8LFy7gySeexNHREfoXZXpYlgV33303PvShD5GEB71b64k03xnWbHUlxg0kWo+ZL59yMj3Ag+fTpRT89Kc/zbpz1fWhD2VVGTWgp0Pn2CKn1otjCb1eGOnKa23renFZjbJr4MGECRPe3nD27Fn84R/+Id773ve+rnpeffVV/NM//dPMZjFhwoQJbyBcvXoV//iP/4hvfOMbuHz58onlDw4O8PnPf/4dHah0eHiI//iP//AXtCe8feHUQUrqK9c4HsUcprIA2jZHbYlfUjBILKLbNq7/rv4DxSLNyZDcLcjOgga2WSWLpLr9Hppz3lexWjMPrWhivODPxIZAbPzGOSjkWFsOANlB2l/YMV7uHEHNEtOKmyOnZoTK7ifPtkOZV8zHV5NPxdtmCxYsy44OVjLszelU2jOGby21WwTWdByDtFQ8aSPSMjZ5oJaSM0EiS1FASYvZlAnC8hop4Fk8rI+0HjnHHW5+Cc/MIAosFsBWKbZgBfYHiQKLWmacekFRs5jkF0jJkyGRKcrwk8Zwo9feMI/NLG3tLlS+1mtOOkFBSHIdF5akY7cABwcLbr31LG45s/Nj+3aeTaVuGAjgWXoUir3ua7+iBq1cuXIFl69cxd6OJVPDIQJKFP3mVjiSmCeKyJgCKGSpASXiB8uZpLUANS3OmwU1uKjSXKJTBpvJlr3Jc8iIZeWyo00GTt/mPBTvkHBSLULZk8TkDa1fw5HbLpJctgwpnhHJizT3ZA3g0jbupdEuVKbqQeMy81biP3ob1J2oktsx2TCxLIyzahr7odvaRkPHW8/k4/iQr45kX2C8IpyFxg4UKhGARX88S07vKJM6AGHBJTCao0HUINeQQRXmFuDyVdghTng6jYZz0/9+35zG2mSGVUuM+wjcE8fT39q1ZDqMu3GUgkXTG6iSeWHgQVWriVJgVe0b2SKFyw4AlzEbbxI9CsCyFjUHuNCYl3im6toYm0J96MedWbZDKBZYkEsE3C2+AUH1+SYJOcLJwWxZhGzYWuCSZeJbmlEk9V+zySV5Dz4Z63xPyyW99YW2cn6EIQfxqGdidB3utrV9ul4ynem6p5GqKh4Qyn3lBbzFwTihjFEj/cgBTjZsrOwa2ryEeO+Js1j3R+Ou7/usIzkQLTZX+02+0cZ1H+zB1DpX/XrucC/Bw41uJs527TIbeC+4/zQTUqsklI4D7lJNDExqdzzw1+h5Od8PZNzIhnGZET5OVk/jKfB4y4Hh3I2fxPv2bxpHxoAVzdr9lfVtFjYG569u89KmIKtR3Z5tHd3LS0aBcEzZUwTwbCuLfzjbD01lxsg3gXKt6PqXbX2tKA+DyFqgQASy9E3QYI0527pQflpXJbi6NSjMoq+vG43Rv7mv6jyN20kYSFwxHXmMKHRYboc7cEu9z6fNVOK3mj0a8E67so5jr3BiPrI72OH//t/78IHbb8dBW99Ju2e9Ue1uzLIigCjmtkdHR7hw4Ue4dOlV4kE1kBwilXnhpWKtBiC/JKBkq0Pp1YDvFrjeMUPMhrMcCAZK0RuO9YMLpXpdnfZw3vVVrQxTKt/3Ps27ELxeyzUFb9n6ynjTUI3sw4E3GetkG3lGlIHkgq+09YTNj3p5bBjidCCDbzb/4jvi1zN+HaZCzyb+GsENYd2Y/0g/3Yh2s6rsJxc8xiQr1kTY2iBnPwc3vsFDqlr5dzdP6jVyzK07GE0ONoHlfqBte9y2yiFodfR7G+H00RzWjza2T6yHa1HJdST7vTV/ZnxiPIlfFOdPDscTxyVaU7++ohed/JLtOGnSF+uTLW7WQvv9Hj/5yU/w2GMXWqDSRtWtkmVZcM899+BDd921aszX/lvrCRyPj81dVte7Z9Pzm8SN6z+ZczWb0vPPP39CKRuXHXKrRtvtY/DcxOc0yF4HvN55ehotA1XAunXrGOhVWYIRK4/j34QJE94ZcObMGfz5n/857r333tX8+FqglIKvf/3reOGFF24gdhMmTJgwYQRXr17Ft771LTz44IMzUKnBhQsX8N///d9vNhoTXiccnLYgp7eXZYlNyOYssKwI4fRp99LK25y45GrT+mx1TLbMCkLOXtrwNucrQFl5qg/ON52F24ZmhzttTBvYkVeVRtD33kHReWmQnQD+7mo7mkm1tEWi4bW4I6HsSwuwWjvjI6tENNe40zIm1cXnvvG6OiJLrX8RoGg76UicL15dqZkkRBBH6QEpcCAjY38si1P7XoA4nq/hq0j0VAePZYohfnpfNf5LXk1b4EnvX5PmfOJFee27es9ziZgzkfhngQ2SVvQ1S1PNssU4mNxaGfENeUk1oyvf3ozsHEML7X5LC8g6c+YMzp05qIektaOgBGiHpllQlQKL4GjfshvJggUFKMD+CHjttau4enTYXHTxVvLaTU189T4SGzQtEGpBzbISR/nFG4aR5WRxF0aVB7WNBne8F9/sgmg7Xc4czfEOr8gCUNadeuwS4LIkNpbMGVXHUH88oY06/5W6l5515yRtErgsLO1ayI6FV8pintfs5LajG+Kt9G6zzDO7kIPHaCA9WQOp2nFMUhD6Cy4D9UirJVBovBG0IE30wOOejlP0gBBzykYgF78By5zl7cYk9WrRrZb1iDYGyQlt+BoPPTCIdIfh4tkCFM60cGI3HUq3LbBQJDaKACUZBaxvGRfTBUFVyLnrfuIhqJxt+ibaEGOEt+5M7/pYY/Zp6ERtY82OFFgHpfS45LZZ0ynpZd+EbEGLIYdVzozayIxk2yTm7LbA06Bxt9tFkIrjkdCK8a8K0QUcZBz9VtsrKC0L0kLjNLlhgz6yiyqkC5oMFApsY53leEHyEZ7EY6dbms1qG6fa9Uk/mS+q4HhjWZRsoNmjHAfOvGNb3wf9OGIdRAaj2tehAUlWtY0VzwRXeauNj64DrS0fF5rqz+2uccl0jcqRHtwRipt1mK1Ak4XQSyM+9fwoVbTjHqOxASbiK2f/xjN8nfW7qar+MbbEIxa6zrO/J/DIpXqA86rsCX32VgEaQqh2Hkjy3P7GeqK7BS7fyqYCMZ54zHtp0t3r+mz8tvndMZ2U1zZj5g/7xIaoCP9M96AawWwaeh7IeoTbUTviS82GAKaeeXDEMGvlrWEBeF7cGotGFCsh7GcRPY1WhxK+22Kq1JMCyzZqDRm/x23m+i1Iw4KYHFk/9na97kpb3MS/AaHxBNlXqKT+jrnKhi5I8x4kmQge8NOK29//fnzgA7fjzG5X+9bX30F3faQib8lZIdJeiADKHvjpT3+GZ37xi2SvtxTMOsjF2ZjmSMr4s22OHsn8c2XIwUnE8KGgDGfAfk9pPmqzHl6n+jwI2ZbwlH+tMbJcxOWkVQa4xcwgk2D9ZQLGcz/6bT6OjAF6GAVlMf9GNr6nbmsewGUCl37ONsKrlsz87Pm1wWVZS8ugwNbNAS49/9sf9g+50EhuZ2TJU5m+KUlFYvxrJzxRl7WwXpbFM72+3xqpjPUYPwzYZ7qsa8fmivXuWkaYNZT9LZ7Nv3091tPgXRAP8BoJrKP8GTOMVlEv32sZDR1gtiXGV0WRx/nYrthIy7Sa6ZTWZWFjUquNf88++ywODw9xzz334D3veQ9yAxrzPagHKr3yyiu4ePGiC8gJU8GOcqO6s89p3tR4lOYA43Fz2taTZtsw+qUUPPXUU/iVX/kVnDt3bpsCoW5OSnzwRK+STpw3H6/7hs9gQxao/eSSkvW9FZ4no7qNy/U8OIDxum7ChAnvNPjEJz6BT3ziE6u5xbWAquL73/8+fvCDH9xAzCZMmDBhwknw8MMP4/Lly/jc5z6HO++881hdfnBwgM997nP4+c9/jqeeeuomYnlz4PDwEA899BDuvPNOnD9//s1GZ8J1wukzKfnxVm1Tve3IpAw8QHKipv0E944D/rYr+RVgx7U1hxS/FbT51r7VixZcIeSAVIG04BulxTS774SQrIvEsq6/a3/NGK3nzygg2NXT1xpRouxsZfzbhjLi3Utzklvgjf8WoB5Ltq8bx1D4EXFWH+oG7J6P/WmomWNHW4AStB7P4z1B9G5meKD+UM+EVOtXloHW3gKpOAptrJhjSbv+jHRQcZ1krdYf7fORZPa90tXeQ/f+iGAU9bPxQHQAQv8FLB29tIEv0VfGL0GVM5YTc77VAKwFWhZAdxAsOHNwBuduuaXK61I36o/aUXaWyaagZova7+M4OtE67g4P93j11cu4cniEosBej+IoNcOZnHjpiER2aNlejWWlofNmcoDE2nkMSDsuTumZ1k+t/npU0Xr81t+Frkd/8OYIB0Ooj+El8d/wr0m2wumZxzxgR8gF/dFPK/1F/VfzfBXnZ/g+G89gb4YqauQeOTMTX+KS3WCae3c948jjI/dA/st8Dja2WhaBpWtyfQPAjrY0aqjx9hKsBTKV5mxtwX5bPsuBBzL6NDKPGb01lqu4EzcCLtYZ8txpavj55g1lDCqCkJH8lG9o6toBuXK0JyYynTGO0purqrCsWOpHKLbfQuPSHc7m5leq23QM2SfSs/E3MvEY7pv2UQVaWu/SZqFa9jrzlkro8JrJqyJSOntiesb0oQcSWtYm8rwKrC5KE4bYLMh9UMi+IeYEzirKPoAoYLmfigdnScc3yjWoGng0m8TjpN5bYMGDOUNR/Wu2mYghmSd6mB+SN7/NZmc8c/+lwvRM7utKhP0UG+K0Cc8B1Bx0GMPXGD2ea3Edx8FJZVglOj5bzzD5GrLXyzmX8bpMBNpnlKEI8bPxlfpwhM6WjiOwoZRiva3NY1jD819LGsH37OM4ki6yoWu0jth5HF1vNmjXz2sbF1Yp68HjZC3PVUK1Hi+fx7Wfv/W/euGIMjK678+vr/coGvUxxSJcfKMajSl9RiH+HTomlmCdLiHya3sSYyOqyHin+aQ2u8KlMkHXuumHRn/V/ZYPhwdBzHUzXsT9NAkgvekXMx9Gaz+Jouk705VpkygH9Vq29NeKZo9miPr9OoCYRy34wAfuwMc+dh/OnDnwvlVEpllpysfWE7b+M/xUFfuiuPjyy/jR40/gaH8E7ea7A40b98gW9bo1+JDnUT4uYvqW+dhML895qMeH//WFfW5N7Yek8HjpAn46YmXwzcql9pnO4Eh+SoARR1na+pUo372W0ZPMUB94p91YHKjGY7Wl2xzWcFkfZn0Jv5dMo2onK/m3dpwZjTP+UGic41EvECanYmKWVyhScOGaMlJ8x3BuNY+gv3nOR7rIJbZ0T8R4kfTcwK5sXTEFjzYKOGpiaA8zHfllmgFh9pUUQ1pri6xp38Rb/d+RbRk9bOuyk0uvO8Ye9cxPMiYwjXDJ9+olIf6YLRjDSy+9hIcfeRgXX76Y2+r5KzVQ6d5778XBwYHz8Xqg9/H5fKPrs2w7JQJhT+gGTbwkEk7A69KlS3j66affmKMaTsGsoUzK8Y+epg9u+Hx8MO9nHXscn49d87xOtCZMmPD2gk996lN44IEHsNvtTi58DLzwwgv4+te/jsPDwxuE2YQJEyZMOC08/vjj+Lu/+zs/Ovk4ODg4wAMPPIBbb731JmF3c+HZZ5/Fv//7v89jR9/GcOogJXNMpbefuuMKRumFAWC8IaU1aQEWhIOy83S29fFC9a7eNoUvnfmwIsQGXDzrjh8BYEfKoGWIKcWPafNsTLTrFX7QWP55sItIbJRL76hA22hqzt1iPKkZdmLrIfMqAmN4501Ryh5aSg3G0QhwcIfKsqz47cEuqsnx4gESkttPzmWYw0dgx08E7TnYxJ7vA2XMcbwCDQdk4lnjvwdTkR848aeThdhgRzhR2EepnaNIAQ+c8PoiCIGa9vY11VX/lhYIJO2shUJBZBDBstQApYPdAc6euQW7ZdccxuG0q4eq1YClfdtU2Ld+roFXBfu94vLhIV67csWDJSwYKBx+2UsYLlzqZ8qeYnTZOCnQmqnEHVZRr/U5By7UOyGjgqXJOGXxcVqzPLCj0wIKwjk7YLrhKhJHvNH4rkEUlRYLEvGzCvl5zfhwcFP6uDxJPQKx9XFsumcZEa8/xoqNXx28jbhqn+SZ+ySNRQCQJW1+pyCH1iMpK4NW/opYxh9uK6Hk7fvDqDq6FlxSn4U8iTsi+c3vPpCHHeoCO2ZPwNEErA9G0ysef6antAWhmTSG3mzHy2kBKADV9HUPyU5IXEv6keSZcaqisqw+FiToRxu6fiQZ1HAOh4M4NoqrHOwazmP5GdGRx5fV3TmXXQfaMZn1YEOFQFOAUXvDO9nd3P8pgKbJzObmkiz0m+2OE01yKMTjps1M3gau2PHYpvZbZSsHr3A/isuz8W/Eaw94hI2B0B+G78i+xSbwWsqHc5xjAi3CjiwxrxjUYXgSJ1bzj0Hl6fYWHlvjydihXX95HNjWGqqbCp4GrL5k8+wjHY42DCTu8WeTLlLHq40XokeQ/64qAWUQ4GmOrB+iYZDLawyX0L8DWt+CkHksa5q7gkHTlsDEveEmPMvGgMej9s26nySm1m8+ZwfZJyIjgmdYMoe1JXriedDyggKnwXqna9MZPZJIm9fVIGQFBfxSHT0u3G6tsdcx8bfHKgcOZXz4VowxwbF9nm7JyuZE0HoEpPNSswee96feGHVXu8FzLZOAbHfWma569IdBoi6sbH8qju973/vwsfs+hlvOnMXieS0zO4pEwFK6p4Coomh92+yxxy7g8pUrwZcThH01DJuNWMvgIEsKP7PRkJL2zkFbIx6SgfFLTWZcT9K97mvfvzG/oLGVSmsuh4ENT2uJVsMgWlUR628RtHVXT5s9D9hZxOr3bGyM+cjj0kp5jUk+M242Nz0WVv23UlBd+Q631Pbombhv887RGApLqulKbfPajeB69NcPv/yyzZoTeLZqp47DUBNqxgM2CmrZrn90/WJLPxx7Slat0yRhdT+tl8cSaffS8ly6ku14c6Nm2J4IWBLI8AdhGpyIi9uQ5v7Hlqx19mjzj1FfD1X5ltj7wKM1Zz/3aXDl8hU88sh/4bXXXhshk67ddttt+OhHPxrHdac2t/kj9O3kFxCyX2Jcz+lh0xYM4JlnnsFPfvKTVaCSo5OV87qR4xC4TjiO5mPvSf6sHpRu/n4DsduyDj6fHJTnv2+HtcSECROuH37jN34Df/Znf4azZ8++rnqOjo7w1a9+Fb/85S9vEGYTJkyYMOFa4eLFi/j7v/97vPTSS8eWExG8//3vxx//8R/jzJkzNwm7mwvf/e538c1vfrMdqf06FwETbjqcPkgJnfOXrhsoUDMutV++DaexlRcysl6yagvVQCn+Znms62ODd42Z+Xaobc9mUV2BNQNIzlQ0cqiywxka5epzLdMCOR3FnEpa33iLjc0Fi+ywtOxKWrQdx8NBUyBcBs4FpzecnrGho20rtSVKwXrT1TNfGJvFnOfZkeP0lhYQo8WRc550O2SxIUt/l/bGc9stFDV50ES3BWEocn+mDQWnnyStpkrKvBJYzhJ3hingzvn6V9tRP+aJlpZJgx2PEYSTjoSQJWhHeBLyBrLJFBzv5GyUgt0OOHv2DM6cOUjBGZYFCKrYa83bg9K8Fg2X0jItXT3c49Jrl3G4P6rBalppUMqMtZYlkxKBYg/FHhBtMQIKiAV5qONk3V95V/ugOP+DV94ByM71cLS0QA1t/agC6IIacLFzPCO4qo4xC5oQbR9EsAQHkqCTQQ6uWRYhPOD1Wn/HcSmVx6oKyNJcwztw1p+gy5ys7RmY89X40I6BQ7SrI+9T26EPB2PLeKN9W40PTGPnlmedFaRml674qKCx1urecuSL2DgUUzAOsdHX+k4aP+0IQH+edIxITX+/wONTlPscAj7CBuAAGca6z2YT/W560PrUeVaVW7ITFbcCdFlzgnEWyLe4HCwKSFVqsIBUlQIsSjIl6SPGeRqX0vCyoKU6HpakW/rgnmzbsj61++uxH0f6eT+A9F4iuMqvWka1ZsNML7C1DsrQTqVcWiY2+1i9tR9YPAXhrTXdnvcX13RZP8Pshdooa/0q1udsKzHko1NhtrfpdLNbsixQ1E+V2ZwhLeHnNqP1v+m3Nq4WsUBFWT0vNKa2+jrmWln3RU9Ev1bd0ALzmG/dff8uNt66zICpjdbvJ8zrOTNjY0voh57zNldabcYf34bhl+ihscJVNQa4nGxtcPb45rbI7HfXt2bNPPKhhMuqVGuXfvpccBPLjNfocxw9b2UYzel1dG9UrhPQ4H8dHzpiBjN+AOs7Vb/EiobKkm5Adz1/t47ufhvGfuST+NBW5L71YGE3/t3AIb3vtEOpjj7AIeZL0ubrRpz0eMOG1ECwpGdx5sdqzA924kLn5VuOkk2uRx1AvEWn9zKeyRCtcKgB3Fj1cn3hIuOj/gw3PdrU7hBeKZaRbl/XED8Ut547i49+9B6cPXsGu13jpbE2Bg484N+mODYm2nx3Xwp+8vTTeO7556C2GbyBf2+HE210tJPzajBsmzT6bLTyopeofm5CgTxAnmOYrDhPBYMego8vGi9daEQbbxp943P97f5RxofbTnaP28wQQU6F9Ny6FK9z1oZq8AgYn+66ryG4LKg/RkaPbO8Wmk7PWI59nZMeFicpay6Dk91TYzNX21r32Qi3ke6O/uqsNa0nekXUdNhm5LXpYnFeSLqlPVsIg/wxPTXCOb4P5HU4KWClz6M4P+frWGBNntlT6kSbd62PQOTHunkbxP9bsdfOOR3ytrNnp4TK9mRM6r9tGOQ5OYbfo6Z43utu/Y3GB2PTSipd1wCXL1/GE088gaOjo87GB29Mhj74wQ/i3nvvxW63i3Ycx9G65zheNE/pUJeM4aQQsH5uepre4bXDT37yE/zwhz/E5cuX8/2MeP57nbD1UseqnePqwLVKYH64l8TRZ7vl7dFxnehMmDDhHQ7nz5/H5z//+dcdoKSq+N73vofHHnvsBmE2YcKECROuFy5evIivfe1raf48gmVZ8JnPfAYPPPDAOzJQqZSCf/u3f8MXv/jFekT2hLcVXEOQEvLKRQChY020OefyUilnTwkfnoZTkKquvh/1BTPQAiQ0stPUzT1CRM05bNdtc5m87UAceUQbvGnjWEDeh3BWLO4cte/S6jA0FHkJGXVqqRk+fEO3bQyao2uRXc18tCwrnAwLdzTXZuvWuyxYZHGngnhWqHBOcBAPGukgfG2jG6otIExaf5nDNDIBIZWrVdSAJHPk0Ia2mAs6u52ou5y63lefN0XMKchdLamLQk6AcP5Red5A9k1N+LXxZoF6vwYVDR/l45q4TnJquoNQWt8qlgU4d/agHsvQgoNEFQfLDgfLDjup28s7kfq9WABak30oDvdHuHzlKo4Oj6J/VQG19kNGQiQ7Hht+Ytw0x1+M4byhvrS6mmw2nls8RQQX7WHBAuIbFu2YDmUZEHqmoewCFXJuHpt+wxxdf7fwM3J8B23m+FW+awEnNhh42HpbS+5bCKAUMOP8ZYdg5yZivnceujrulzbW49jL+IjX6TR7MIcS2iHLawe1OUhrWQ+zSY44klPhe0aHM42czbpqj9kS/Rm0smzCdAbgezujgJTQjyP5zbxyNudiiIDDUBjDzQfXk9lJa7ov7fsmmqPl6J8IblwIt5Bbtm28gc7BLrqZ5l6WXW0PNFYsIDQxSt0WDF2X7dIiNZgmbLTlMJAWsArsZFeDTdH6zANnBg58F5sYDWj2qV5wya3lbLNGBL3dytTETCF4FvWkoB417PgZRJ09OyT46brdP2TvJNpSJdwRfV8Yty4AiGnhOYLhkH53oGC54Ssl9CZC/kKrUx09HsbvQeaDpE9OqIfQX/1dSV4XENnXnYr6P1GQ+3k1z/GCOdvBqFyykfQ4DQM+cbbHKtG2McLGdKQnc5VpY3+jskxX/v32g85QHMfFIaHizOU7/l1qeKh0970M2ZpeENcaaH23syJ+p99wjxtuTv2iaw8SktDrIB3enmgZjxi4TpG6lmDbPtpQzXqk1hJzvrC/rdHjZWzFJgtDIcKZZ8nARnX4LwAAJCBJREFUxhDs53rMp3U7pKOZIb1IjfD0Oce6f0M38/wosFTvp3T4XtLpazh+gI6kLM/nGi1tHrbsFtzz0Xvwq+ffi93OXppRn+ctEmHcC/I8xORJAexV8fLLr+CJJ59Mx7evsO9sJU1Aj6FXiYU8D2K6mt3Vvq801+GPKXKjJN+rSdpIZrhX10Ee0bT1rw+Ajf7tV7bUYFsDZT3C8wVp8w6qa4OfNudnFH1iT0c1j58fXBzoD6vS2utf+LB5THS/9Alqu/nQcZZdmuoOnR8vXww16lZveYeu7nbzBb440gus+7KISXogzSM0NdSKMzK9XgqNmMQ0yXiAdviHrcg6NcqN5hSZM3mYNRkPRQ8ecys2cNuiazlReN8bThGkLvYYPJi+8c8xX0+UtrVqbwtWN003bAXqrIOw+KXIeM4YKYOnMr7r6ZtSt0vHV02y5j609vxzzz2HRx99tAYqIfja608AuOOOO3D77beHjmw6l2kbvqRBWk1DYDKF/NzGkB763ezTNXu8JezKasX9xRdfwg9/+EM899xzazqupcIT29P0N4DG7eup/5R1aPc5XUWDcaNr/m9Vd2KZG8jnCRMmvDVgt9vhc5/7HD74wQ++7rqef/55PPTQQ5s+rAkTJkyYcHPhkUcewYMPPnhioJKI4NOf/jQ++clP3iTMbi6UUvDEE0/gi1/8Ih555JFpp95GcHDagot5VHx1HZkLvMPtSKQWmAMgOZPNKeLZR9IieOwWlMWCb2owgjk66EFyY6njZQ7l6jfS6hiRBWJHG5ijzAIwoKBIHvROm+pQrQ6WxQMBzMlS6VuWcDhYto3qi1mAttlbAwtKa9eyzNgmc36TKRywrZ3F3NH2RlVrSgvIxdLoZ0eL0ZKfr+yz8gK1QBMIPJOJd614H/jmgNRAq+jCmvWnHj+Q+Vk3VLm7KyZF0PhZsx2FFJTWb8GfuvFbmjPFMnTULB4mU5Wn9Xgndn5Ca6CbBwlhF70XESUA4pi5ilZkoxKxoJtwaPBGe/0WATAqC3aiOHtwBrfechZysGuOZYGUKqultOeXSFiju7qJYPK13xdcvXqEq1cPm/PBskWV1kWRrSScX/XoNrhs9KC0oaaeF6htrTe/nHhOKdWa3cwCXmqQiYCPjqv8CaeVIsbqQoJtgTDWv5YFS6Qd1yZS+zQZEnOkFe+Hqh9iXNb7e5eLmhElAlXsOMfw80gNoKCdRUmb9nGAZM2stKPfTo0RSvc4NCrcgTVbwULNSXX4tjFs2x6KGkBi10GO9AjiKG2IRVAVo7N4uiILRgQ8/X7jYbvt+qsKcPH+AXYVb9dbPA6D5FIKdgsFoLXns1O84cLXIMCyb3UbvyxzlEKwj2PXGi4oe6gIxIIztPWTdJnwlDZj26AoFAATbyPXjT0ohYEsAtGl6iPZY9foLVBgieMMl8aTqnv2MFdzZKgqgBSXh2aZYEFh6w2PJqddX7uoVYEHtKDoHsuytD6xbGkwo1H1TLNxvsHUaK3BNAW2+5BsdYLoy0VMF5he0jAPZvIabWG7d4Du25hF6wPr5dAPIY+VBzzuF7PNvBFk3PTubX3uPJBmc6uuDHKqLlQeK0qBd/S2trTIrJrhqqAUw3GBSM0eJDwPauU9vJTGS9ZjpcmVNPlpWFOfWzto+luaHjY145rG8a16RJT0A4mDybuzwfAK425qy/FW61xdi0UO8LZr1J60eoxin0ZpqkdXX6iNvpxg8ySZ1ZMC749hCVbVWNPnCMSQDFyU7m3g3lezVYTpMX7ZteiLXFn0Z3xf4Ud1vmXBERUX4VWRrWcF3hHrgAMWWOGr/LDPeyJIgp/JmVyOE9CVGAj/liRrtXNjzNr8J+1tU9vCwpMCMWKAxfoGbgNDE2pfSSJFkfkUUwbuEB7nVI+zdiRkef1VSe50dMObeiLbIm87gt2Zn+pCQzrQ0bE+LqgB5lFXYkG/Qc/0OJtZf2uwFKZH6TmSy4COP6d2jrT1hGU9bDLykY98BHfecQcODg5gLw4IGeLCGX4lWM9zzlIUVw8PceHCBVy9cgiTOe37Nw0lDsaSFbuiz2nu0mwSaJSGOKvzl6uxkZGVlyQ92ktcsmU8BUCsY7LcM3S/Wn/yizteYSrL4zA4t1r7dAZSE4sz7V6zsr3OBkBSPwRtiQqXw6g9AkjINxO1tkazQeGMPasMI77uHelGmgwgdJTpa0CxEGsYz9BKRL+0v8ZyAH7E9KptIDIhh6EezT+cbm/JZNt0XvcCiEuZZPnsZNX+DYmXVq3x2XxarYQYNmybjHZpOsDazZbJdSyPu1UPE579msLb1PwU4eg+D8ltcKCSdnov6c2V7VqPIyNxHQhUcdEw1LD1RJrbD8kc3wekZgz3NeOojjyu7TnmUq8RAO5zMvkhNV53vFABcMZaG3HPPf8sIMDH7vsYzpw54328DqZR3HPP3fh/F1/Ca6++turXHjjo0ecNQXQ8ajUMB9m1g/ZfBnWuYpDa70uXLuHRRx9FKQW//v5fx7Lstqo4PYzZcyMKn1zbdSLe8ydXo0Msj2tqJbu92Z0wYcI7Fv7gD/4A999//3pud41w9epVfPWrX8WlS5duEGYTJkyYMOFGwMMPPwwA+Iu/+AucO3dus9yyLPj85z+Pp556Ci+88MLNQu+mwrPPPosvfelLODw8xCc+8Yl3ZOaodxqcOpNSaYdqufMX1UmgRVPgkGcbIrDNZG3nSIkqUCJ4AIijyTzLjTldioIzVHidvhlbkHZ2aoMVj+Z3W0T8dw3yiKCTzApxp4s5JCoeCywzgjtlQJuptiGs8Ra/HZUkfuQLmqOqBc8oAAumgTnM+GP0iTuM4mCkFvAgxv/2ZlqpOO3ZuWL9YX0FQLSFv/ib2VZ+gW1AW9acio6i6B4FpfadOV26zXTHbuCIF+sf/8CPKVMEuUgOWHLkqbqM1Kw9C2oQRXOytc1w+8uOaT9GsJUTFIiE/EW9hO9GoAA7ZXtHsnp5ky/gzJkDnD17C5ZFKl6ljoECC8pqvuEClCLYF8XRvmBfFPsCHO4Vlw/3ePXKVRzuj7BvWVbseIb1W5TB3/qxvgcsI5C9e612H1G2qEBdDmrQWg2eagIs9oZiOCvjaK4WPKIFlpGrf5PPx5Y5Ole83HSveRt1N61lE3OZsWxONRACrfbIiFTHXtebsCxsAvG3zt21bbwkOTBcWS75d2RmYHqkBQ1VviZPUOufhY7Aqzhrwp/BA4U4OIV4mFzdLbgkTrroMy+1HnTnP4hn6qo18Kj6v+qERvMSdNWAmR3Ej8xqunNrIazSjrpruLeju1gGZPVXVlfT+E0BLVjJoMswqoHgbFziMmVZCTiItPHP2gRgQZOmg6sarkFEdQy08aELtLS/GvQS0vnXMZuZLBOhUkmyxfojaLFxwkeScqvOo7RpY/WxTjd+tDYoy1fasFD1ky9KqUE92jZUlLL/mDwGN8zCER9IBgMv8U0Gv2cq3wNvbRt826aken3u4Zzu5iNi5rgdJ8l1mu0v7SjOgZ1oemGdqYjxMXwLF0hfTW9bkHO9aPo8kZqeX2+5ZCd2ncOof7dPD6H/4zmugxqs+mRdxRCOEfmRQdgoFFlBbF6x2is7pq10fZDQzOz1is9bdWDN58B1Xe64eqxMGqYdTW+fTYaeOOPSWkaPr8P0TLbVo7nHut2oPQWiDAdRxS3ND6itZJ3EdDQ9K0C8TNHXMmiSMdbuVmcQ+fUOKGWE44JWf69PfAIaVfjmvZrmZH09xrfN6nIPkn62+pX+y4Ic+GqnWLaHPiORB8V6PdEz0Yqbkkq96h+3iRp8ZpsS8/3Y8N3O4HH8vTVt8DmKQHH+/HncddddLUCJaQ6MQj/VeW3NQtyOw1a09cUeTz/9Mzz/wgvwbCcjJZlYrImVFapc2bp6RIK9PGKyL+hY3Tdj9WamJb7lsSDRzYRmx8Yxct6ajVEX0jRnWFXh6I0HrSLm1Xmuv4VLlos8P+9nvz4Tgc3rVtVqo2plDBSxPhnTtBHesoX1xuX+ZQTkOZ7GtSiwMVlwYZH8/ViUooyMHjPFJ90jJ9GeAnKORSDLMpGWsPf12lreubqsM21eY/NNgSrTmwPkV/WSP4nn9NLzY038xnfTf/Edqe5csn8u07vmfw52gncWJ5sd4Zv63Z/V1TP+UoVy9RKVpPpJ1/Z6M2FBtiwZSbNvuX3728+dn3v2OTz22GM4PDzc8KPUOs+cOYMP3fkhEum1XgqbmrFcMYQeX02JNoZHqltC9w3norJx/RhQBY6O9nj00Ufx2KOP4dVLlzYMzrVUei0F1/rsZkK3LMeWCgdIx1wHn7fKv33WFBMmTDgNfPjDH8bv/u7vYrfbnVz4GCil4D//8z/x+OOP3yDMJkyYMGHCjYSHH374VBmVbrvtNnz2s58d+A7eOXDlyhV86Utfwpe//GU899xzmyeXTHhrwKkzKQGo/hYPLuDVP6BFsdRUQojMDbG8K9CWySQ7YEo6lk0BlbbpbU/b+z6xwDfnHHtNLbtHeFo6B4wCqvtoWrUtmMMxvg66ifqqf0fCOYGWmaXhYQFD5qGMjA/knAXaiq9ldFDa8NZw5NWsDUtz3LXsQY3cpfHJ347V1kJpeNmboBJ8SBvMBXVzVdXrNdeL89COo0LlmW9Aw+gPR1jwh/vc6Go1M49oExTGI3I+aYev4eeBXVZrUSzLDha0tFgG8dL1Y2snulSaE7ViyX3tAWRtha+d8jKn1OYGtMtk/XuwW3D2zAGWRVBKaRvb1tloGTVaBgwRD0ASl5uC/b7gtctXcPVwjwLFvpSUJcfrMly9n9ACCSxYqPUB0N4WtjIdfahBbtVpqdQL8A0bdqypapf5hTbtunKrDBwSXxwX1Zopx/q9PV9cr3BcpaAGXlk2E6OwZtPq/VBV5tRlLeiWDne4HJQkH5l2q7N3CHM2qdj8qZqodDznDDLeB6qIIyNye4n2AQiyEzqRqtwX9YYHyrVyVWbCce6ZDngDhXW2CPHTAn9Q9TjVw+M/v317nBOs9a1IxB26E9QCzLQ55BbeY6p/S1n1l9ESWOV3Y73vNPIGAWjZmwL/UtpYiFrTGDM88uY3b1yzXFUda5mRDEd2ZIfzsenlYkO/C5Az+sQc+ZZtqZYpLSOaZ5/y/kgodf1j2YyqFTeVbVmFLIjYsg1lPGofxiaAOm8Nd+6LuI5mR+2ZjkbULHyRVyBvEkev1MwBfD8yHFi2KQOzyz0v+XhG7k/7Jo6f8WC/r5muGCIjCPIYCmXo477Kk2mAGM82TTJifNqEbPe4Sr8mmU+BF323fjfbiSwLzj/XC6Hi+nHcq8CTPP3JFm3UeRwke2ZqSsZl+ra6fak0Foa4Hndv0Ob6ejfgTgFhI48v87YAF+R0odoNIXn2Irkz17+6qrS/0MqtZMLayDIfz0VlHBzrdnqAUe7v7Q7x6W+vZ60ttWojy4YZ6ixiNsg5EIAGnTLRRo9p8DTzyPZQQXPAfjD37XQ6GP0YsQGpIceMSq/YHCXJbajf6Guv9mwkU9joWirKOj8V7uZ//nDf9QPIc4v25EqhjYNT2DYDwHvf+17cf//Hcdut59qp5RTca93f/o01Zdgqs4Gqip/9/Blc+NEFlFIz30b+DsLK09+FLAito9YyO9KItoaM9aCyXtaQmTUO3EHr+kNkWG7pJiSOMrU1RrA2rQe1ey6PCLfGuXHGlPlE99Vt+7Dhrg62qX2AychiR0Dg6iWJBNo/tgFji+ZXGfeBjUy3ad4QExSJRzsca1ZUqvcYoy/0xeZE3pb9tnnTYM2kxLfQJZTFyGlYG/HTmFZt9MRLCI4oVTUKIAJWLxDomhWa/6ExudZTw+7i9a3NJ83XQS9OaMe/aCJ3vgVO1Xpi/cLmKqlKp13g822qVZpF6tedPeSXLLIGyr4GIXVNdpTrcl0RBinPkknB8qRyhRpn8Dp+uNXM7trhmksA9c3fo6Mj3H333XjPe96zrqj1yft+7ddw8OMf+xFx0Xjo8dMFx54enOsC5+uNbSHkX7W+6PLss8/ixRdfxO2334477rgDt91223VttG9ZrJsN14KD6VjWs1lf3Wjus9q68XVPmDDh5sOHP/xhfOELX8C73/3u11WPquIHP/gB/uVf/gX7/f7kByZMmDBhwpsCDz/8MK5cuYI/+qM/wp133jlYH9d55H333Yd//dd/PTGg6e0MpRT84Ac/wI9+9CP81m/9Fn77t38bv/7rv+4Zyie8cbDtqxrDqYOU4oifuuK3TUQ78sZdBm3BKlKP+bBVmDlThk4C3l1eLAWz+CK7J2ahGhoaSMtOQQt0qBvu9XiX0p6NMjDcRbCjwCjHy/5bwgGWghLYsWhukGVBBFLko5pq0xZwpBA/2qi1Iy1oYIlsTZW0ioM5jmyz1DKtlKKOiiDy2tgKX7Cg7S23ZD5xPJg7k+iCiB1XVHm6LMH/RZbqWhLmR6O2RWD0fcxO3BQ00O8q9iDhhK1UGO0L1df6VNrmx+IeKXf+1J+7Jqt7GJfYmeruFVHvh8Cf5MqDIlq/0Y6nSPBqtxOcu+UWnNntfNOtxZ7UvpClHYuH7pgNhUliKYqrV67g8OoVaGmHokl23KU3IFskwNrBJ7D98kprdUguJNd1nAFxhFB2lqKN6eS60+zK4yAO9q7KIhZr4sEKtbImL2pHG9mGvLSj5FoAggU1SA5ucQcfYbF2pYj56Lxx36gGyZcILHiCgwtE61voLFetWggFcbF+5IAnO67SnImLvzFs46TVsPLw2xGL3EfBZ2t3DZ0BIBmHy1cM72Wx4L9QIKKWqake3Rhp9SMIKRzCMRZ8PICOSAwuZ7z8exzHYjpFSS+4Lmry4ptZrLOaDEhPu/VTxym7H2otbE5jkZdzmWbuqgV5mfxRG6zTVht5VR6qDlrAsuwy1+njHHDTcHK+BI052NLajex/qvv27ALfPHX92LL5CWDBSz1YX9nzQBSLgD47stAYv9btrl3Mv01tLbD+b93dkKq2MTaQrBZxa9c6bZGaUK3hZnMD129JRnw4bIyj2mbtr7Hs7kuz7238sG04ftNwcX2kTRfkfrYN6Kbvza6S/mGd0ve/TQbYDsemjukest9eVyI/8Ok2N7IuYkf2GLhMv/E22ohbgakPaoefy4GXoLmPpmd4WDJO/feT0Hg9wE7/E+neQuKa23orggy/B086e7vJ+V4wYAZ52GEuA65DrBauhwWO5hatTh8zPvYND9MTuc0s4zLsd55/r67L+npgNu7klf3o2J1tYlOEWq/zM6v1Gj8rNmWKeVC0n7BJ34U2ep2X3XohZ2cgZU30rXUeXMNnHdMFZorhgejIJIP1hs1TTVdGhdaAM8AYQ7bb8K+0qsLr6W2C2XSfixoVUtd95997Hvff/3G869bb6KhxpCAD6hL/bny1I4dUFS+//DKefOJx7PdH3muhkjr+drI1fDkjWu3Aaqf5ufFFqJ/a4ytdZQzz53hEZpnUrsPNNoYI5ZFy/GY9911qJuEyNpq5yLZROcaStCBlE/k8jvm5Jif+UhK6e/38IxvaUV/mdSV/if5T6gGahHg9jKHPgXwuGBPWfunPT9p6M+hq7QzYPRpLMZ7XkxqfrUtIaK29zQ/FtWGnM/pVxBiG40LH9wPD1lqHdk/bltSmIydXuMQ9OS7Qioyaab/ROIm5EunxEauB0GFsQ3vfBSJ4sp9f20tmHDRb163c4AhHiTowGIbelyujCA7U2p7bhm6Srg5lvbUJIfj9HLZfO6oqXnzxRVy6dAn3339/ClTi/r313K14//tvxzPP/HyIrp/ZDhDL1nrCh94pJo80mk4sy7hsqdQRv0cq9PDwCD/72c/xzDPP4N3vfjd+7dd+DXfeeec1Hd1wDRjnB65zTr1tIU/G5TTrhJNf+Do9JCsjwH6/x49//BR++ctXXn/lEyZMeNPgIx/5CP76r/96HPB6DaCqeO655/Ctb30rAmMnTJgwYcJbFn70ox/hueeewxe+8AXcddddg/0J4Pz58/j4xz+O733ve28ChjcXXnvtNXznO9/Bd7/7Xdxxxx2477778Du/8zt417ve9Waj9o6Eq1ev4qGHHsIzzzyDv/3bvz3VM6c/7q1oy95QXTjSvIC+qFxqYEdpG28coOTeF+EAnnbHB0m9bpvU2jJVVAfmvh2hUlqbltGgOTnaNQ5msGAIPoKtX2EmJ2Axehp9zVNY64gjXCLuo25eGr0QaQFWddPXApS00VRKgXOuc6pWXO3tMYUdQVTboaAYqe3tFTVopYQjyZwL1SVcgl/QGhSjdFya2Ga8tNOKssOnlrVj48jpp+bwr/wOf0o9aiv40zvXnLKKI2+Y0nOqvQNZCO+ufkFcA+qRUY16c3p5XfzHSDH5AFpAUpMhoNJNTiIwj9GyH7n8h8zYm+LLIjh7yy04d8sZWBCRLEs9PmpZnPfW73sU7FHqkVtSj8kqChwdHeHKlcvQsk9OQx9n2o6N8/O8Fpe/mkGpIOTZAt9sU4X53PpTq+yIe/kl8DR56Z3H3g/WVsWjOrDaUYxax0MpTU7a2Kj1bDg5eZPfzm1kGWq9bW22Hqn4kiMVuqAUDvapATjh+y7QdlSct2f9bm1J6/Mg3x2shn8vcyLmPG48EEBFnIXLAkAiU5fVbf20k3pkmv0efeJZu6YuY3Z9QRxjZ3pNxAL7xHWcfa/1hI4OddeOrVzq0XWt5la+0rMsgdvSjqJrcTJNPTZcxLjnzdImiwVICWTpj9hsWp835ST6IUm098MSR1eugi3g8s3BZRb8meQATV81fW91FlT59sA012dNd7quNR1j8hplrZ2qa0onR5HZRlWx3++rLSb95W5iHjPkVbWxWbM/tTHd0Wb1m16JDaZ6T9pYyvjGcaVW2uo13uy1tIxxNdhMoFgUvtnKx7sV3/C1Y2WDQqPWeCFA1Ve0gQmNwA/jeWnHyi6yeFm73vctb+GoP9vJC9m2Ku92NGajn2xYKSW3U6dAvl9XpzcLEpkIuSsaAVs08Vi1k3DWoIPpCSsuMc+R0JkMIuL4relfw0mOcRvnbo6NHTIO2LA6YyPxeEgOerfvOsS3x2H0PfDriWjDB+PPFoR+6/XdGL8tPmOjHZ5brT5vUYg5BSADqkynmFZNN8Y/6JIxm+ZmoAxlbd7ZMAH3YPCf53USRRH3Ryh4v1K1/Say24d+fHnlbb4A7u/VBMntNmnq3Ib9JBwtZIQ3JZUaWm9M2418PHfYD402vcS6P3t7tQbjZ+4zxpy/WrC0zVmsEbMZph9zIBPTq0nnxnhcU7Ad1KLrcWZzDTQcNfi0ChFwOlg+Q97rvEpw772/idtuvQ0Hu8V1eOi6rt+9JTpGvF0vpeDChQu49OqlNXttHcWsacEAig38mQ/dPZYUSVfqXDyZMx3lLdG+SpoP8EDMvOuB1QEQcr81fl2eY1KTazMDsG6FsCQcR4q+Tl4GbceFsFNVIUV/6/hZIZpgMxKl2wJJARjHrSPMSPW0tXpW7Y0ooCoGvcPz9lpO8nNuI229IG2sh503PdYHBsXzK+WXxkt6SYTbp3+HEr/SzQTpRtZ4W0FHvmz2i2lgdvon46rHlO39Kglfm8fD9JM0W7KtoYGcSW2lpvv1BKJte4Z5oN28M/Q+kWrXVSN7OGE5nuqY9CsGSFLdnUUie2A2pGdEmh+m8cr+poZvsjGZtBHk+XBQpqq4cuUKLly4sHk0gYjg/PnzcLkemc7V5NIIjPWEWDnkOcJYH3LV29Zh+MA1QpovtvFdiuLll1/Bk0/+GD/72c+ur+KTgIXrVASeDvpe2Pqs0Em6Mf8emZqT1hPH4WefHz/1FJ7+6dN46aX/d+0VTZgw4S0Bu90Of/Inf/K6A5QMvva1r+GFF164IXVNmDBhwoQ3Hi5evIh//ud/PnYtcc8999xkrN5c2O/3+NnPfoZvfOMb+M53vvNmo/OOBFXFQw89hG9/+9t48sknT/3cNWRS2lUHt6XstzdoB5u5xZxqurijKe6Rs1sECwU+FNimXM00oKW5G4QWzLSANh9AvFFkTgJAtB1DRZvP7N6ozyHqKqXSR9llluYU5OAnD29wEhaIFNRMFTtYJhHzpKmG06woB4sEVyx4pGjxIJaamaJm1RFZamiHtuAvbSFdi3jgmDZH31IbQtsBhQJYll3d3IatucX5qyiUyQftaLK2wa7wdCPVgWHOm+YoNcfhUnvPM1d1x+KoH1vX+padQYLkpdPkIMkON3Oq1H7fw97kK6XKZ+W1BQdU4TA3i+oRFIJlie1o40MplkmEMi+5yChsI8joKo3/5sz18i1t/cFuh7NnDuC9rIJib8gWrVm+zJG1q6nGpQmzQrAvwL4UvHblKq4eHdUt+7SxFc4j9efYqaSwzRvdW7atdvSVWKYjuCOxJs3hNxfr4CjF5LWPZexco2rHakXZojXzEzuUs7OSUsNrbMbXzex8v0md76XHuIH3pEX/eJtQtEEBO3IKyJviHmjXHF52jJ4a/bz53aQm3gwPeQRa1qNWbz32ct/GbRwbVtP512dNL6qiBaeZjBmCi9MdDvfs6E26EAWW4szu2/FhpZSa0WlZqpzBhnbDeal8WihHXQ2+IH0MQWkBbIssKPvgTfaB2dv90UeLLK6nOGuA8SX6Q11+TLbFsiih1dMC3BaKr1VF05VRD/fxpgfP+L9bXBZC5vIYc5sm0mxfcX3h+tQVTs2SV49aA0QskND6x2sOTMxOEUPTUXzIfmLrW7UmHRdAPeCX8TQ1u8BCpFyW+BxN17FKgUR2T1Kd7KCWxQdvHXrVmDje9tdwNZwA1OA9NTtM0tT4viwWXEk12bCn9lTbkbOdR90sv+HKYL+XRRBHRObsWT7+Vdv4DEUkok5LL2KMkxhvmn2q7VIfytLZTZJBt4+5gZEeEKBt5kQ9fBwny0qYYZsVjHmUinXtWxbHNe3WNsk2+jJbR11wIcQRQVTvui40eUDPppPbSGVzOyTSVGiM57UCt3Fa2Cqq/OUa6nvzwDa7bb4VzMgjN/Qw/BfZcZJjoX/7tmpRpduj+Wb3FLUB5TKmd4nZKwXQd66V1e57p2Pb/CDGho2ThjM36f+MOzzmZdxeLa/awtV9XNQytk5hbsaTRtPi+oN1u2e4SHygdgeyWZta4+AzvyTY7a/6LGM8dsiOpYFJdUXmRZu/9w4b8b5wJUAV5bGrKc6TRcFmjWAyvRzr2z4fRfDs4OAAu10E1nsvKrWtQllaKxKida2hqPPbw/0eh4eHDfcIpQnNv57/ODZNB6/GCx0HyGyXrg9WLASLQv6mWtrxunQvjd1Rn4aNF1sHcJmGgOuAhB+1zQTbw6tJbidXHTJi6I6EU7ryqW71MgJJvA6JpXZJoAR1HRnDj+dnRv86KHhrPRE6DqtBNtSZii7WudfGVZPULL5kkzmrGnFBBn1t4mDhRdwDI17HGF1IzYVe9VpbnXGvjgyWjsynUA3rRuHr65hz5IIj/pmOJ8+E4xDTTclJhBrTg18DhLbwjIZT/1qAOoQzL2W7FkGh3nBnH2IMJPrAF4V4bToi92HMq5UfQzrWdEVmskgr4oP3qUKk8dJsDNvLLdieK4cdt3UgUsZa0Nyfu0HyOpR0oL3w0Ad7BR4m152hXc177P42XT0d62uZdtNRVMoaT60GTWt7kNvIv32tuIH1tRw3tFXHZmFcywNvHjA/r2VNcXydildeaRmU3gY8mDBhwhhE5JqyzZ0Eh4eHN6yuCRMmTJhwc2Dq7m2YvHnj4Jlnnjn1XoyB6LU+MWHChAkTJkyYMGHChAkTJkyYMGHChAkTJkyYMGHChAkTJkyYMGHChAnXAKc+7m3ChAkTJkyYMGHChAkTJkyYMGHChAkTJkyYMGHChAkTJkyYMGHChAkTrgdmkNKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRPeUJhBShMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTHhDYQYpTZgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgw4Q2FGaQ0YcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKENxRmkNKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRPeUJhBShMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTHhDYQYpTZgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgw4Q2FGaQ0YcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKECRMmTJgwYcKENxT+P/4uNvXuuZj2AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAAH/CAYAAACxPcr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9efytSVEfjr+rn3M++11n7p0VZmENi18ForILIhPZhASNBAkDiOOG8HoJeSEJm/ACJcHgCxEJMaBCXEBUFFcMqCjqLy5gMIRtwGGZuXP3ez/bOefp+v1RS1c/59yZAWdT+g13Puc8p5/u6urq6u7q6mpiZkZDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ8NthHRHE9DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ8M8bzUmpoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoeE2RXNSamhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGi4TdGclBoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoablM0J6WGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhtsUzUmpoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoeE2RXNSamhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGi4TdGclBoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoablM0J6WGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhtsUzUmpoaGh4TbEK17xChDRV/Tu29/+dhARPvvZz966RAV89rOfBRHh7W9/+21WRkNDQ0NDQ0NDQ0PDrYvLL78cV199tX//4Ac/CCLCBz/4wTuMpiGGNDY0NDQ0NDQ0NDQ03PFoa4mGhoaGhjsazUmpoaGhYQE+9rGP4bu+67twySWXYHl5GRdffDGe/vSn42Mf+9gdTdodAluovPvd776jSWloaGhoaGhoaGi4Q2GHCezfysoK7nnPe+IHf/AHccMNN9zR5H1Z+O3f/m284hWvuENpICL84A/+4B1KQ0NDQ0NDQ0NDQ8PtgbaWuHXR1hINDQ0N/zTRnJQaGhoaBnjPe96DBzzgAfjDP/xDPOtZz8JP//RP4znPeQ4+8IEP4AEPeAB+7dd+7Rbn9Z/+03/C9vb2V0THM57xDGxvb+Oyyy77it5vaGhoaGhoaGhoaLjt8KM/+qP4hV/4BfzUT/0UHvKQh+DNb34zHvzgB2Nra+t2p+URj3gEtre38YhHPOLLeu+3f/u38cpXvvI2oqqhoaGhoaGhoaGhYRHaWqKhoaGh4asZozuagIaGhoY7Ez796U/jGc94Bq688kr88R//MQ4dOuS/Pf/5z8fDH/5wPOMZz8BHP/pRXHnllefMZ3NzE+vr6xiNRhiNvjJV23Uduq77it5taGhoaGhoaGhoaLht8a3f+q140IMeBAD47u/+bpx33nn4iZ/4CfzGb/wGnva0py18x9YJtzZSSlhZWbnV821oaGhoaGhoaGhouPXR1hINDQ0NDV/NaJGUGhoaGgL+83/+z9ja2sJ/+2//rXJQAoDzzz8fb3nLW7C5uYnXve51/vwVr3gFiAh///d/j3/37/4dDhw4gIc97GHVbxHb29v4oR/6IZx//vnYs2cPnvSkJ+ELX/gCiKgKj2qhXz/72c/6s8svvxxPeMIT8KEPfQhf//Vfj5WVFVx55ZX4+Z//+aqM48eP44UvfCHuf//7Y2NjA3v37sW3fuu34iMf+citxKlSt0984hP4ru/6Luzbtw+HDh3CS1/6UjAzrrvuOnzbt30b9u7diwsvvBCvf/3rq/cnkwle9rKX4YEPfCD27duH9fV1PPzhD8cHPvCBubKOHTuGZzzjGdi7dy/279+PZz7zmfjIRz4CIsLb3/72Ku3HP/5xPPWpT8XBgwexsrKCBz3oQXjve997q9W7oaGhoaGhoaGhYREe/ehHAwCuvfZaAMDVV1+NjY0NfPrTn8bjHvc47NmzB09/+tMBADlnvOENb8B973tfrKys4IILLsA111yDEydOVHkyM1796lfj0ksvxdraGh71qEctvILarmf+4Ac/WD3/i7/4CzzucY/DgQMHsL6+jq/5mq/BT/7kTzp9b3rTmwCgunLCcGvTeEthdfmVX/kVvPKVr8Qll1yCPXv24KlPfSpOnTqF3d1dvOAFL8Dhw4exsbGBZz3rWdjd3a3yeNvb3oZHP/rROHz4MJaXl3Gf+9wHb37zm+fKyjnjFa94BS6++GKn/e///u9x+eWX4+qrr67Snjx5Ei94wQtwl7vcBcvLy7j73e+OH//xH0fO+Suua0NDQ0NDQ0NDQwPQ1hJtLdHQ0NDw1YUWSamhoaEh4Dd/8zdx+eWX4+EPf/jC3x/xiEfg8ssvx/ve97653779278d97jHPfCa17wGzHzOMq6++mr8yq/8Cp7xjGfgG7/xG/FHf/RHePzjH3+LafzUpz6Fpz71qXjOc56DZz7zmfgf/+N/4Oqrr8YDH/hA3Pe+9wUAfOYzn8Gv//qv49u//dtxxRVX4IYbbsBb3vIWPPKRj8Tf//3f4+KLL77F5d0c/u2//bf4F//iX+DHfuzH8L73vQ+vfvWrcfDgQbzlLW/Box/9aPz4j/843vnOd+KFL3wh/uW//JceNvb06dP47//9v+NpT3sanvvc5+LMmTP42Z/9WVx11VX4y7/8S3zt134tAJnsP/GJT8Rf/uVf4vu+7/tw73vfG7/xG7+BZz7zmXO0fOxjH8NDH/pQXHLJJXjxi1+M9fV1/Mqv/Aqe/OQn41d/9VfxlKc85Vard0NDQ0NDQ0NDQ0PEpz/9aQDAeeed589msxmuuuoqPOxhD8N/+S//BWtrawCAa665Bm9/+9vxrGc9Cz/0Qz+Ea6+9Fj/1Uz+Fv/mbv8Gf/umfYjweAwBe9rKX4dWvfjUe97jH4XGPexz++q//Go997GMxmUxulp4/+IM/wBOe8ARcdNFFeP7zn48LL7wQ//f//l/81m/9Fp7//OfjmmuuwRe/+EX8wR/8AX7hF35h7v3bg8abwmtf+1qsrq7ixS9+MT71qU/hjW98I8bjMVJKOHHiBF7xilfgz//8z/H2t78dV1xxBV72spf5u29+85tx3/veF0960pMwGo3wm7/5m/j+7/9+5JzxAz/wA57uR37kR/C6170OT3ziE3HVVVfhIx/5CK666irs7OxUtGxtbeGRj3wkvvCFL+Caa67BXe96V/zZn/0ZfuRHfgRf+tKX8IY3vOEfVdeGhoaGhoaGhoavbrS1RFtLNDQ0NHxVgRsaGhoamJn55MmTDIC/7du+7SbTPelJT2IAfPr0aWZmfvnLX84A+GlPe9pcWvvN8Fd/9VcMgF/wghdU6a6++moGwC9/+cv92dve9jYGwNdee60/u+yyyxgA//Ef/7E/O3LkCC8vL/MP//AP+7OdnR3u+74q49prr+Xl5WX+0R/90eoZAH7b2952k3X+wAc+wAD4Xe9611zdvud7vsefzWYzvvTSS5mI+Md+7Mf8+YkTJ3h1dZWf+cxnVml3d3erck6cOMEXXHABP/vZz/Znv/qrv8oA+A1veIM/6/ueH/3oR8/R/s3f/M18//vfn3d2dvxZzpkf8pCH8D3ucY+brGNDQ0NDQ0NDQ0PDLYHN09///vfzjTfeyNdddx3/0i/9Ep933nm8urrKn//855mZ+ZnPfCYD4Be/+MXV+3/yJ3/CAPid73xn9fx3f/d3q+dHjhzhpaUlfvzjH885Z0/3kpe8hAFUc2ubr3/gAx9gZplrX3HFFXzZZZfxiRMnqnJiXj/wAz/Ai0xDtwWN5wIA/oEf+IG5utzvfvfjyWTiz5/2tKcxEfG3fuu3Vu8/+MEP5ssuu6x6trW1NVfOVVddxVdeeaV/v/7663k0GvGTn/zkKt0rXvGKOdpf9apX8fr6On/iE5+o0r74xS/mruv4H/7hH262ng0NDQ0NDQ0NDQ1tLdHWEoa2lmhoaPhqRrvuraGhoUFx5swZAMCePXtuMp39fvr06er5937v995sGb/7u78LAPj+7//+6vnznve8W0znfe5znyrS06FDh3Cve90Ln/nMZ/zZ8vIyUhIV3/c9jh07ho2NDdzrXvfCX//1X9/ism4Jvvu7v9s/d12HBz3oQWBmPOc5z/Hn+/fvn6Ox6zosLS0BkGhJx48fx2w2w4Me9KCKxt/93d/FeDzGc5/7XH+WUqpOLQByxd3/+l//C9/xHd+BM2fO4OjRozh69CiOHTuGq666Cp/85CfxhS984Vate0NDQ0NDQ0NDw1cvHvOYx+DQoUO4y13ugu/8zu/ExsYGfu3Xfg2XXHJJle77vu/7qu/vete7sG/fPnzLt3yLz1mPHj2KBz7wgdjY2PDrj9///vdjMpngec97XnV1wgte8IKbpe1v/uZvcO211+IFL3gB9u/fX/02vI56EW4PGm8O//7f/3s/YQ0A3/AN3wBmxrOf/ewq3Td8wzfguuuuw2w282erq6v++dSpUzh69Cge+chH4jOf+QxOnToFAPjDP/xDzGazW7Q2e9e73oWHP/zhOHDgQMWPxzzmMej7Hn/8x3/8j65vQ0NDQ0NDQ0PDVw/aWqKtJdpaoqGh4asZ7bq3hoaGBoU5H5mz0rlwLmemK6644mbL+NznPoeU0lzau9/97reYzrve9a5zzw4cOFDd55xzxk/+5E/ip3/6p3Httdei73v/LYaMvTUwpGffvn1YWVnB+eefP/f82LFj1bOf+7mfw+tf/3p8/OMfx3Q69eeRP5/73Odw0UUXeThbw5Bnn/rUp8DMeOlLX4qXvvSlC2k9cuTI3EKvoaGhoaGhoaGh4SvBm970JtzznvfEaDTCBRdcgHvd615+UMAwGo1w6aWXVs8++clP4tSpUzh8+PDCfI8cOQJA5sEAcI973KP6/dChQzhw4MBN0mbXRdzvfve75RW6nWm8OSxaZwDAXe5yl7nnOWecOnXK1zp/+qd/ipe//OX48Ic/jK2trSr9qVOnsG/fPqd9uK44ePDgHO2f/OQn8dGPfhSHDh1aSKvxo6GhoaGhoaGhoeGWoK0l2lrC0NYSDQ0NX41oTkoNDQ0Nin379uGiiy7CRz/60ZtM99GPfhSXXHIJ9u7dWz2PHva3JbquW/icmf3za17zGrz0pS/Fs5/9bLzqVa/CwYMHkVLCC17wAuScb3N6bgmN73jHO3D11VfjyU9+Ml70ohfh8OHD6LoOr33ta30h9OXA6vXCF74QV1111cI0X44zWENDQ0NDQ0NDQ8NN4eu//uvxoAc96CbTxAinhpwzDh8+jHe+850L3zmX8fr2xJ2BxnOtKW5urfHpT38a3/zN34x73/ve+Imf+Anc5S53wdLSEn77t38b//W//tevaD2Uc8a3fMu34D/8h/+w8Pd73vOeX3aeDQ0NDQ0NDQ0NX71oa4nbFm0t0dDQ0HDnRnNSamhoaAh4whOegLe+9a340Ic+hIc97GFzv//Jn/wJPvvZz+Kaa675ivK/7LLLkHPGtddeW50Q+NSnPvUV07wI7373u/GoRz0KP/uzP1s9P3ny5FyEozsK7373u3HllVfiPe95TxXO9eUvf3mV7rLLLsMHPvABbG1tVdGUhjy78sorAQDj8RiPecxjbkPKGxoaGhoaGhoaGr5y3O1ud8P73/9+PPShD73Jgw6XXXYZADl5a3NdALjxxhurKKrnKgMA/s//+T83OTc+13UNtweNtxV+8zd/E7u7u3jve99bnaC2ayUMRvunPvWpKpLrsWPH5mi/293uhrNnz7Z1RkNDQ0NDQ0NDwx2Ktpa4bdHWEg0NDQ23D9LNJ2loaGj46sGLXvQirK6u4pprrpm7muz48eP43u/9XqytreFFL3rRV5S/Rfj56Z/+6er5G9/4xq+M4HOg67oqahEgdx9/4QtfuFXL+cfATi1EOv/iL/4CH/7wh6t0V111FabTKd761rf6s5wz3vSmN1XpDh8+jG/6pm/CW97yFnzpS1+aK+/GG2+8NclvaGhoaGhoaGho+IrwHd/xHej7Hq961avmfpvNZjh58iQA4DGPeQzG4zHe+MY3VnPmN7zhDTdbxgMe8ABcccUVeMMb3uD5GWJe6+vrADCX5vag8bbConXGqVOn8La3va1K983f/M0YjUZ485vfXD3/qZ/6qbk8v+M7vgMf/vCH8Xu/93tzv508eRKz2ezWIL2hoaGhoaGhoaHhJtHWErct2lqioaGh4fZBi6TU0NDQEHCPe9wDP/dzP4enP/3puP/974/nPOc5uOKKK/DZz34WP/uzP4ujR4/iF3/xF/00wZeLBz7wgfg3/+bf4A1veAOOHTuGb/zGb8Qf/dEf4ROf+ASAc58++HLxhCc8AT/6oz+KZz3rWXjIQx6Cv/u7v8M73/nO6kTCHY0nPOEJeM973oOnPOUpePzjH49rr70WP/MzP4P73Oc+OHv2rKd78pOfjK//+q/HD//wD+NTn/oU7n3ve+O9730vjh8/DqDm2Zve9CY87GEPw/3vf38897nPxZVXXokbbrgBH/7wh/H5z38eH/nIR273ejY0NDQ0NDQ0NDREPPKRj8Q111yD1772tfjbv/1bPPaxj8V4PMYnP/lJvOtd78JP/uRP4qlPfSoOHTqEF77whXjta1+LJzzhCXjc4x6Hv/mbv8Hv/M7v3Gx01JQS3vzmN+OJT3wivvZrvxbPetazcNFFF+HjH/84Pvaxj7mB/IEPfCAA4Id+6Idw1VVXoes6fOd3fuftQuNthcc+9rFYWlrCE5/4RFxzzTU4e/Ys3vrWt+Lw4cPVYYYLLrgAz3/+8/H6178eT3rSk/Cv/tW/wkc+8hGnPa4zXvSiF+G9730vnvCEJ+Dqq6/GAx/4QGxubuLv/u7v8O53vxuf/exn7zQRaxsaGhoaGhoaGv75oq0lblu0tURDQ0PD7YPmpNTQ0NAwwLd/+7fj3ve+N1772te6Y9J5552HRz3qUXjJS16C+93vfv+o/H/+538eF154IX7xF38Rv/Zrv4bHPOYx+OVf/mXc6173wsrKyq1Sh5e85CXY3NzE//yf/xO//Mu/jAc84AF43/vehxe/+MW3Sv63Bq6++mpcf/31eMtb3oLf+73fw33ucx+84x3vwLve9S588IMf9HRd1+F973sfnv/85+Pnfu7nkFLCU57yFLz85S/HQx/60Ipn97nPffC///f/xitf+Uq8/e1vx7Fjx3D48GF83dd9HV72spfdAbVsaGhoaGhoaGhomMfP/MzP4IEPfCDe8pa34CUveQlGoxEuv/xyfNd3fRce+tCHerpXv/rVWFlZwc/8zM/gAx/4AL7hG74Bv//7v4/HP/7xN1vGVVddhQ984AN45Stfide//vXIOeNud7sbnvvc53qaf/2v/zWe97zn4Zd+6Zfwjne8A8yM7/zO77zdaLwtcK973Qvvfve78Z/+03/CC1/4Qlx44YX4vu/7Phw6dAjPfvazq7Q//uM/jrW1Nbz1rW/F+9//fjz4wQ/G7//+7+NhD3tYtc5YW1vDH/3RH+E1r3kN3vWud+Hnf/7nsXfvXtzznvfEK1/5Suzbt+/2rmZDQ0NDQ0NDQ8NXKdpa4rZDW0s0NDQ03D4gHt4H1NDQ0NBwu+Nv//Zv8XVf93V4xzvegac//el3NDn/JPDrv/7reMpTnoIPfehD1cKmoaGhoaGhoaGhoaHhK8XJkydx4MABvPrVr8Z//I//8Y4mp6GhoaGhoaGhoaHhnwjaWqKhoaHhliHd0QQ0NDQ0fLVhe3t77tkb3vAGpJTwiEc84g6g6M6PIc/6vscb3/hG7N27Fw94wAPuIKoaGhoaGhoaGhoaGv4p41xrMwD4pm/6ptuXmIaGhoaGhoaGhoaGfzJoa4mGhoaGrxztureGhoaG2xmve93r8Fd/9Vd41KMehdFohN/5nd/B7/zO7+B7vud7cJe73OWOJu9Oiec973nY3t7Ggx/8YOzu7uI973kP/uzP/gyvec1rsLq6ekeT19DQ0NDQ0NDQ0NDwTxC//Mu/jLe//e143OMeh42NDXzoQx/CL/7iL+Kxj31si9ba0NDQ0NDQ0NDQ0HBOtLVEQ0NDw1eO5qTU0NDQcDvjIQ95CP7gD/4Ar3rVq3D27Fnc9a53xSte8YoW/vMm8OhHPxqvf/3r8Vu/9VvY2dnB3e9+d7zxjW/ED/7gD97RpDU0NDQ0NDQ0NDQ0/BPF13zN12A0GuF1r3sdTp8+jQsuuADPf/7z8epXv/qOJq2hoaGhoaGhoaGh4U6MtpZoaGho+MpBzMx3NBENDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDf98ke5oAhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoaGhoa/nmjOSk1NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NNymaE5KDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ23KUa3NOFTXvTXEJ+mEZgSQAQigAhgBjgDHRFSYgBAZgZSAphAVHyhiIBMGQQCc0KXlpFZMuoog9GD0DlplKYgMEBjMCUwMYgZhA5EHZgAoAdRB3AHZgYSQDQCGCBiEOQfwEAmZMkYDID0H1OvdCYQCCkloYU6eZsziACAtFwCKCPp/6K/F1GP1CUwo6o7E5A6QmLWvABOBALQJSARCb0dkMFIHUFZg46AlBgJQNcJIxMBlBkgQk5AT1JFyUv+Eml6AN1IvycGJWC0JC8kENJIGMHMSExS3pKUORoROmIkEi4iAZSEb1oLUAIYBDCQ5D/SNqw81rw1ifKJpM6hHUDyHnWMNCKIODFyzui6BCJCzhlEhE7ppk7fzT26UQd0AIHRJZFRTpKv0CH1MDo6IiQwEgvPMuQfAVK2PhuFFra/ZALtXJA6Elj4pxxi5pKn1tfS2wdhFYvsASo7UrYVZvJqLyp7kSH5MzOICEQu7cixlZi9zPKpQHgKEAjErLIR6GClQeuclO7kzAjQ7PPwQeGc9t2SJgVeWCor37hGKg+pKpI8Dyulg+olKu3pdafSVtB01s69cia7xmDVVez1VmbVDahpQeT5kpZqtGfN22ghLUOklbXs8o7JhPPL6yrtnRno+4ycAUJCPwN2p4x+BnBmZCb0PYN7KWvKQD/T8jKDGMg90DODOqUxZ5HALFQkbRQiIHWihyiR9O8stJm+IRVODqwZjaTPdWT6TdqqnwndmVVvQGi1ivb2W88gSuBs8i36hUneyTmLziECRoScC78ARiJtN2Z0VOrIDCCJ/hGdKnxNSYatNJbPo3ECcY/UkegfztI6JBI32SR8+v99EXe774VY29Nh3BFGlLVGSf+aDERdweiRMWNgZ6fHyvIIoyQC+/8+cgz/vz+6Hnsv2IeHX3UpzjsgI0w/6LNMhN77NCOz8AyZ0E+lzGkvYzEzYTZjcJbfwRB+J9GFvcoCsfSHnDNyD+Ss/S7oLbDIVs46jpGMB0nnAqTvZMpgJm07STfqSPolGMjAbMr40nU7ICIcPH8JlIRbfWbMZgygQ55lpEygjrSPQdtf9YPSLP1WeJCzyFGpD7vsSX8JMstZWwk+vvSZZY7g8ln0nTCE689kPCLv0UQESqpT9HeeFj3CxhTTaWxjOSNn4PgNO5hMepx3cAMnbjyJs2d2cOllF2BpQ8ZlAiF1SdtH6Ol7xu6EcfT6TRATDh5cB40JuScc/YdjOH3mNO5yt4uwtncZnY6b1JG+m3WOkkAsZWQbRwHXg8yqG3Xep11W+Kr9LRuTVUapTzJ+aNtwlr/ZBhYQcs/yu+onZvK2k+xUb5k+1flEhsrUTHWizp2QGR0gsqqygPCv54yeGbPcI896EMs8o+cMnk6we+oLOHviCNb2HsLqvgtB42UfX2WeO5PJBY9BqUPOM4AzMvdCXw+AMpgyOHcyF+QMZp1r5l3Xt8wia5kIyFMkIuUnJD8GwISeeyTMAGSR7dwJjzEBuIw90HnIb7z+/rgz4gd//vM60QsjeelQOnePmtx+Jx03dTQkKmO0zp68v1LUl6WfSG7JdYiMbzphlYmkpk9WsvbZ0rcjpBvH2QgLTWST2TKW23qAnUpTQqQ6RfPhkJ/2KZszxLmW6JyimHxNQ4F/YcJqZMbfE4XffPgkZOKqHfydkJ6ovJ+6QpouEcv8H5B5uaYv8wXyBD7LCfVDIaesGyLv65ZwHRxHWs9f+UCM0j4hT1K6kQLNsa7KA2saJz80iZU9L7f6R8tO/g5V9Zmvm/w3hZRczQrr92uo7AZZ4kWJecBFCo8ollvz2+bHC4oMzVr3mWHxHNKIzgpysSBfpvClAmH4S5WDiQHFuXmdtmqzSB+XWXlpz1JRPsd70HWfya6sjzXVQPa4yqGmLfLYVVpYZ8yzivyturjYKwL9XMrPuWgm7nUebmO8zy/le6/juY3rBB3XtSjnpy3EAgmuT8yOoKrW5DoNO0XQW9Z33IaCMhepZNToRcnb5iuwz7Ffl6Gz0ps2TbPySeuU4tpfE0U9Ye2eCKAk+iZ1lk/9vq+desKJY1tYWx9jdc9Y1iJkMkhFf0dmavlW9+msR0oJI2Xi1tFj+Mhv/A5mM8IV3/gAXPw190Gndrqq65vdwNbFKPzjXPgZ+WTzbHDhp9l9Kt5zkYNat8Ab3d6PvGatN7jkyyZvFNuj0LR5ZobZjLG+PtL1hNEayo9dzdlovRxFXuxf/DLgW1kJlE+lTwtyEKL4Lg3SxjElwvOlop8pwfti1Y6hA5C+lAHsbs8w3e2xsrqE6e4MO9s72NizhvFKV8ZGFFkknYP2PWN7a4rcA6trY6Qka7qdszvY3t7Bxr51LK+OvS+77Ocy/sX+6mMmR3LrdmFwpbvYGiFR0SdsvEUlF5EPOZTB2cpR+Q6GIW8DLcvTc3lucyHLNw4D7LSwtDWzlsPIuQfnHrOdLcwmWxgtrWC0tAbqxj4HIc+M4XPPkAeUH1LMoKN4RWRhJWNWsXoLcbnUnYpws72v60fWyrILlvFSKvymZ16EOxt+7G+mdzQJDQ0NDQ0N/6yxe/1ncMNv/iQAYO/XPRb7H/T4O5iihoaGf4p48deNb1G6W+yk5BsKbpFlX+y5NScVQ3ox+tgiLOkCSZ2WGLpA42KgYoBScouA5DMGuIdskFlehKR5yGJWNhVkY9DMhrJRZG4XrOWROvq4zYzIN5594UepGBV05SbGsUJDolQ7RnAOGxC2WS7fUioWADL6kxhNzPlB1t2yEE0ZYjDKtuBnsG7uyiKa3BBgFrtkBrFgbMhZNtoz66ZOL5vxtljte9mAFB5Knl0iNx7knJHUQaCHGAhsT8mMJASIIUg3xbzJfWNG6eiiWS1aEtRG5YYIuHMJZmXxL44KpO1mxh5GzuSGy1HXqXFB6l3W11oPNqONiVxxdvEFOpXvZpEoZuhgVMQ86Jwp6CZDlpXNnGI6r42RbserUKhSOqtNckGwY5mpI1BF1XcxdJb+7RsjzO5wlcHqOGZ52hbhPJ25+r6AY2ro6QZ1tc/eNoPKE+ZzS+Cq7CAm4rCEyMvixAUA7BudhV9Whjl5VRta7gTGA5qL4Sy2jfXx5D3CtjELVcar6LBV9xh2up03qk9T0s18MLoEsBrEs2666t64bPB3llaeJd1htD6Yus7T9X1xeqPESEn0lhk0Wcs1vR45Ycb1BGBkzoJQI545HVDyGon9UZ2qNLvEhN7aIpnDjBnPVO8l6cmdGmJTEt0rDlEoupeLTHSpK7ZAYozUmUQ2TUTuk+rCBAZ1STZNVLl1CQB14J5x4vgmNvasY2V5VG28mrMhBjJSOCQjVp4xiDOWko5gTOL0qgKa+yhNJnNmnKwtpMZXzuSbCe6wAx2/UnESsbYTYyyBe2G8OKJAx2pzFIGPMwRxkE2dtEFW3plx1gYje9cq7A6plMFZ2m3rzBT9bIYLL9qDbiwJ+8wyD0isY6DQbQ5KRHF+gdKPQmGJoI4u2h6J1IBc3mVnnfQhG/dsrLdNmz7XG34pFeNvUkGP4i/6nFzgOpK+CWbfpJL2Mp0LncOQOFb0hLOnJ5hNdnFw/x6cPb2Fza0JLrj4AJbXtHNQ502fKAPcAxihnwLHj54FgbD//HVgicFT4NT1p3D27GlcctcLsLaxjDQSQzTpfM7mRzJ+mkFb+zuRO3vZuO5OYCh8ZDWqk1u/4U7l0LGaWfgphv6irXPgcfxXnA7ZP1PVRlJ146X9DpVp03Pcu1uLzDEyY8YZPTIwZSTuwDQD5wn6nbM4e+IoZpNd7Dt0F4zX9oNGK9Kr1WEriSt2+cdZ51Gmz8yxJMEcaCShzX/FYUWmu2WuZEJmrrJ97kEk8zPxthZnRG8rc7oxOdfJhDTVIs1zJ4F53/t8A6jmhWTjkuo7m6DZXIFsgmeKvOj3KJM1C3ymB4r5q0wXtcoAxXmflVOcmSq3U4oFmS7SdvVy7HFZaVSUEemao+j32H5xo7yqDgpPfHIQ0jGgG1ZW2/Kuz9OcfBunlQ6m4NQxoMMEP5Vi46a/iaQ7Emh6070+x7LJnbbtIomt5m5c2pXm0gdGxOHA/uaYlMpvkV9c0s91n4GOZy6Oq3G+fq7xftHnIUykY56Lciua86ZgDmzs41FMH5ty0Xvzz4fpBykG3cU0WXGwm89hEb8Wibqpz0VUDOk71+dz8eommnlhHotLnkfk76I6nit9LO+m8ohryjgWLfoe85ujgYCk8xA7iGRrcErwQzOSLmTEcEcE61qUUNaHvn4ucwwpQ/Kg8M8JBKp5mNNpfR5135D5SlgbKW1Wh2pIGfIjlSGlcpyhUsawnew56Y+l3xfinD5CcEYip83mVJ6nOaEyYTLJ6PuM5ZWxr5+IJf+b7utSbtY5xijpXJLNaXNeY0T2RJ3NKG2g09baNjPgKVDaVtLoaJOtfuGZvhSXCj6MeePOy687I1kbDdrDaJ1MevSzjI31JTl4ZzwB3CksyitC+y3sGxXHanpcxkJK15pxKKJ4YA3V4T3Lk0K9hv1hCJfNKH+Bp1B+O78YmOzOMJvMsLa6hMlkit3dKTb2rmG8nAZ5lDGDGeCesL01AWdgdW0ZNJI5+e7mLnZ3drF33wbGqyO1CQhBYVrv/jBOe+gjUZ/7mtO/h9/dlkrBKavImMtdKKeSWcTPXMm5DY9zNMV3UfqD65QFDpFyGDEXYw4YzD3ydAeT7S0AjJW1vUijFTClMH+JR9JMQCx/cx4qo6cdnpkfGUR5ub0srCWi5PvhmMLuUjcUHslvw1GooaGhoaGhoaGhoaHhtsMtd1KiDpQkqpA7F/m/pJvBYmiXhZQsPGUTXN0d3ABmESZ0805Xsx7lAayGnISy4tU8dIUvB/CzbwKUI3Ji7CG1pvlGaTjaa6ep5TeLb5KkjmQOTcEEqHkXJ6tF5r5oMkzqIETlPeeJLAItaohtuAIlEoFFKkBGcQjoGdzZgpv1FL1t3qrhYmAfoVQiRySSKASZJHJKGskCX4JpENDLpgTIHJegjj1wZwUGo3NLii6mOaMzRwayqB2sh9HL+dmsm8222e9GlLAGtiU1zKijhoAUNoE5W/sVS5VsxksMLupQnCkq6xID6ixF2h4WIcI2GmKLmoOBUF+fjq5sR8xzrV8cFObTx8P9QxsUDb4QyI3HxWhjxowaCcHxxQxgROEU8HwdLbJV/M7B+hUNOdZfEs+fQbYNp3PZMHy/PvzXHcb0PeevEtkBFc+LUW8g5PqMuDj2LDIw2l+LOJUHaYomUx1hdAd7TTFIlRK876FEkhlub5px1LZSxVRk7YXw12poabRMJSamNfkcEaEHo2eAOpG7EcFDynTEHhlllIHJVCPokDiCsPk3WB9g7W+QPmXRYMQwz7JJL1ZzxMgmZogWwxuLHlc9wYl8d8N0jsmXWXtzZnXIoWJVzOz9iFlVOMyZxDbitQ2TOKplLhHkwBblSyPZaGuZKZk68mgsrBHsRh3p+6SbB4xRSrqhUZwcAcZsyjh1YhsXXbwXXQeMUi23wfVgAcTpYrLTY2VlhASNYEXW/iWyR2UMLdRrFCpru8JHPzHqohpOqfqJ6KL0mEWvWmQkicJl9AvEuUwiz3UU+E5wfWr6JDp1ErE48TC7E1dSh6HNzR6nTu7ggov2YmWtRLxJkKhPo2TuxgQPssVBC7KeWrXSEqnMS51647T3S90gsxOyXg8r174nd/Y1hxDbTGF1LJYxSSON0YJWDuOZDZfmqJuD85+dlKUEEBP6HjhzagtbZyfYv3cPNk9v4vSZLVx4yXlY2xhJ1COS+Y07SpDMBaa7GTfeeBacgYMHN0AjwqxnHL/+OLZPbOPiu16A9f1rGjWxKDaRIXXE1na3CC1JHc7EYajU006l+/ve3gjRjqQ9PGqStxe5nIrsSfkeOYnN2U7nEr7zIs96gjtGC/sI6FVudW7om4gMcM66mWH8Jo0UlkHcY8ZZ3p1tY+fMCZw9dQyrK0s4cPgSpKW96FMSvaf9P5HGG6QkzmW2+aW6X0Re3GZtM4v8g2xclD5bXFfFYY2rDk9gWPQqiwpqTvDipGWOUcmjhZGzPo5ydzJQcN6yRz66lZF/6AbsWpzjMx8lwhgEzwPaDgjPgoYq83OfiMTZgtLC9bs2vypfUPQpZP7ka4hAq+ktz830SrWjW2rMUb+hzEn892qIicSUblM2q2w8lKrlFHSe0l0Ob6BEHgPAVMZNzsXRwMS1rid87VLWTKY/56oI47vMOUoUFZuKSruSp4n1i05QlUNUxOC9IBY+ltvMwJ571at3lQPK2Mp53su3ti1OE778G9S1mkmbTFDY6Lb3KJRdVaOq1VzlfSq/gAdlLkM1kVaStZdyx+jlSEnpRDVuatpz8zVAzLowb1EhN5XzAiGI5HFoD9R8t7mU8c3W7f4+F33O+kB0EpUCvCDYAFB/XUhzTWPpYkGbVepwmIv18+GaEaGfcsnDdJVly+XAlD0kAFDHo8yqEfV5YonenHNxTPJoRgyfF0aeuCwG0qNTRnRQmmv62KSV/gkHuCwZl/e97soQd0gJdAxFdiF9Vqz1q/mhqW57KraLqNPsu7PZFRewvTXB2lqIcjn4V1RWcMryajL6mTngcnhetFJZawY6o2wMYHOP4U+xaSs5s0EqIOfY37Q81nkMB0el8HtxbBqo63PJDYDplLGzPcPq+hK6pUKbD4GhnMiiqu5cRv1YJdCgzpGe6GATxyPMqdYyrsZ6BNoqUR++Z7ZJoMxzNH/muiwyAWNgd2eK6WSGleVl7O5MMJlMJYLScjGSmU3N1vbIshbZ3twBg7C6tiQHhXrG5tltzHam2LN3HePVUcVUq5pXkYq+QGyD2D/BA3nS+ZpObqL+8/WsTpdsPeHrW5R8q/7P9td+XHRYBR4duu4kqG1cnk/RlTYvIGaNmJ3B/QyTnS3MJrsYL42xvLwKpCUwkrcdbCwJPdx0cnHs44EcMaIbcWU9Gjg4sVYwxviK63PWdWA5ABx+U8GiQlpDQ0NDQ0NDQ0NDQ8NtilvspJTUQclWpBYFIw9X50mvW3CDl5rZyE6X63asrrpsGWabK8WpSE6lkNzdhRh1hCEWMzGCl81dAOhSkogbWRaCdu2IGNX1CraBCUIWjXrF29A6AJSTT8FCksXzRzaqLGyFGXzYoi4VvvgiU1fuZoQxQ41dl2NXl5TD2bqBqWVnsBtDfXFtBo7QFLbxTBbtpNOFKkMix/SMrHTANuXBcsWD0oteFrGdhhbJvo8im/eycREiWmn+EtXEok2U9a1FbzKjO5jkiiESxwU7n26ODhblgbRyREDqdEHNulDn8o5Wzjfr7AhogtDEaik0JwfkQAuZXHBtTFFOV45KlexqCi7GQTOpmCz5yfjSPLWEcTDkVM+KaSGYDipDUKGvelVkTBMksLcHxVyofPd6AVW9xNesmDWGEaGGdgs33g0eSlewU2FYCHE8LG+nQXkU+LTA/q3tY4YeVAZv+32grebyqKOjwa//A1FldGfAo/zEaFxmeCoukxUbpO9xMRR7/pAoL9VVG5pBNPDapp9tKDq7pDuBid3JiEj0ClgiDfU9MDZ9kks/6QjoZ1w2MNWJpOvIIyg5HzVP56ndkWhSZ44b2griWCQ0ZxbfJRkTVNaGxsqeq1YkUNC1gc9QXiE7XQnkVzaKPEv/zhA9mCx+mhl0YYZZcSChjoqeSbLB0Gn0OGWL7zYQGGdO74ISY+/+JXR2FR6UjtCAUf+ZvsmARgwidO5VptcpJCCTOOZkADMumxyF00X/k+maDB8bSgh8LlFlcngWByQu9SsbCuRtkzOr86mWq++SndQ23aedJqmMF4ESx9dYgemMceONW9i7fxWre/RxzvDrGCz6FwFIcgWp6z11eGHIPKRErSmGe+9/RpaNu1DnDeksPv8weQXE8YRIDOEytgRFEsYjIDg4DPrtMNoTIESZE2+8lrDrEkCM3BNOn9rGztldHNi/gdOnzuDsmS1cePEhrO4bSxQm90rQhkoM5g67OwnHjpwCKOHgoT0YdYR+wjj2xZM4e3Ybl1x2GGt7l6E3OfrpfBsLSMe/lEQ2or5JKA5xcX5UjOklfT849SxzMdKrKU0PsNbDZEx4kcN7Nr5HPnmfZ9FXRp84S4ZR2vjLBCOc4z9kiFOIhBQjnmCyfRZnTx7DdDrBngMHsbq2B5RWwTRCR6JjmEYenQAgd9oSltj4X/jG2ilZ57Gi93uwXgfXo8yVnZ/WB6DO8BaJikxHmJ4dyaltfVai9lgnBeZH6zsPhnOgQnqcaRUnL0tczXFRNmvsHUtfz2SGDh7WhnC5Z5tvhgm16Bfy9pY3S38PZOmXUh7p90IulWKtrmFeZaNeGfk4yIXVq6pcJMO4VZER9r5Df1YKE+byqmAHJRAOCPi4OcjT/qNq1ZxROaOsPxi142cKeSotnGKGhbcxuktVadiYGuodaIy88flKacqw4V0zimqmhvJ0BUxBzqjmQxBjB2ERm6n6FOVgcaoFz3jwkOuv52raCmxD47wT1Hy2PPfbORF4a7JtOcy567h+W0heVU6k8dwuTkVWeNA+JvbzdZivuwglqvEw/jQnHpXg1rUs04B5mm0OEsWb/FP4HuYapTSqyqjKmqsZDx84bI0T87fq2zMC/JCR6WuN56h9nEpfzpUIVEVasGzfqA9lVs9QniEmCzqII432mb0JdCJsDoVlTkae2SI5trklFXkpwwKKM349xxumG/LRDk5FNsfxLfeMyWSKvfuW3R5U9WOKDgYqNUEAjRejUXRh8NFE58zmCD5Xac8jfo79NvKZLO2gM8X1XEzj+biQF6Hw9HGQCqNh1T4qd9HJCyxrlM3NKUbjDuPlygpQ6WPXOozikMt1/apxbQCXH6VjOM4M9dUcgt6IdRoORYu+xiidBrsu2Q4BGo1G/+7uDNNJj9WVJezs7GIynamDUrniragFBiEDLFfHb27uIiXC6uqy9NmesXV6B7Npxsa+DYyWu4qvMaCkyXbVl6PempMzzMmy65VApsmTy5nbWeN74Z34ciAi0lDpDC5EOj1cfvf3LDq9KiPtYfIv98iTXezsbAMErKytoxsvgdFBnPMh9lPI4QfL3J2KlIA4PynP87zCsUO0QTvEuWeB9aZwBJOLrpOv7HynUPeKlw0NDQ0NDQ0NDQ0NDbcRbrGTku8rwZyNWI0FdqKc3HgjCywC5zwwOMmCShZpcl1GB9sAs5Vgh5Q62UikGfyEil2RoQ41WS3i0REKyMg5wazdchVGudJEFpFiViNkXXQlyRsZfS9uB+64ovCrGDRsgp2UBifdoCMwqcsCyWIxUzFSJt2gV9bI6bFgvJeHJGSTZ2Mcg228IZdoDL2eVHbjZUfQa8wB2Ka2OZ94RrLBJ+GTJLpFp0bOJM+7Ecl1QbpIJib0zKAsV9UwJAKR0J5LRAldrFNwaGCuTxAWEMByrU/qyPliC+UOtjEhm/hw455k2nW2GQmnCc7n7MZD2ehkdLo74k4CuvGU7QSsGWBhmxC1cXBovDImE+rNcFJZKWv7gXOTP684Uco3I589N8OIGeZKMwbZkFz8RKzy0EL0Z3suJpFgyCD/70KjmtFB8ZYMdUwLFajsGAPrW6GzUHouIx4P0hW+Kp1uGC5yMLSZFJ6jGJCNAu2ylaOT0yPRN0r3o1J+lXvddp0mMN7GBJ1b3Qqy6c6KZm9ts3eJJtO+Y04N5crIwB/dvJMoJWZgQohuxH49F0Ei/VBKyLs9mDK6lMC9lJuI3KCfSfhNWa+SU6pSlwa6UR0mNcKROQDAHUdEz1m0D7tmDMrrnDM8apy2a+pU36cE+Vh0J6vgJW3Y3voXad+GvJf0uRkcU0d+dYJtODEDPWfRobprwjlLhDlzMNAdTbYxK0GOjHNC7oHTp7Zw6MINLK0Rui7kP2fMUy1OJgcipZPdKZaWRvpcnIDV5QAMiWaU9SqrnKzXDo2yXAy1oW7G1Mppy/I2OuxaOPV9MDkBA0zk7SOn5y1WG9QgXjZR/KpRtUp7BEHr87kYoZnFkeXGGzaxtNRh74EOqYNHwJr18OP6HNpcKxs2ytXJjlkjBgptHZV5CGlbJTZnS6lbsutJyUfIor9CeZRIrg5lm3OYE5TpWvjcwuXd9au2eSr1782pJQRNceNwD5w6uYXtrRkO7t2L06dP4OzWDi689EKsro9lgwtZ+ZHAnADKQCbs7jCOHjmL0WiEfQc3kDrCbHeGG79wHDubU1x614uwvCeBuqLxbC6R1AGZoFHAUtn0hDpN9qHfmgyaLLnas+6C5NfjIQN5xpKPOxHJnMLnIcqIGFnJBr3e5ED1QH2NiMlWuNrQeBqc8XqblzD8ysKce4CnyNxjNt3CzsmT2DpzGuPVFRy84GJ04xWAxmBK6MKVlCCLqJb1ipne273PZS7EkDQeNQnm4BedJCnUyXQ3a1/K2sYk7QwpzyJ2mOzYGM2AzwXtmmEO48GdE1RNBGxD1OatFV9o4IBVcoBrGf85OBRQcd4qm0g27xnO7jhsypIRhGqnypRjnD2QRcKymYTSH2YXNX1Gm840Ig9gxehmdDVRouqzzXPmHHe4kG9CUvkezPXX8r0qxZwwVciKriz5Gb32e8WZAdtM7/ktfbIXWjn55PC7lwXAPU3Mab+q84CBA2ZT+Ofsp7ruVFg153zEgRoXQSr8ihvslXT6PK84FgwlLkiRE+TRQ0pDYB7z0lv9EnhK85ORufLnc4pODtFBh+ukYa0TSR1SzOFv4Wn5VdqUncHejCjj4zDfMJKdE/H3EhnKZNh+jQ7xAaGNh2IW2UCIPw4Orgz69yIKz+UwM8fzm6kjIbiwxkFiwRhwc3yL++DzJLBfeWprQ4vALFELJW85TFTrJ6PT8wmdf8heAvw6Nof120GHHurXSn7UVlE5RXphdQuWKU7dqvauXXnr0WX1d5v/2nrd/fFt2qBKyzSJX0uri1Gjf3NzF2trSxiNNRJ07MgIzTqor80DJLpihsUpr67asvRDH4d5Vsz/VnFF+tKiUzic9fCMZ2B8jNGbQmScQZsxdA0eDjT4OBLkp5JxTbO1OUVKwOpahxIViPTgRihjsfKb+27O8EOd4GOEte1gHB2ONcaGSl8zVwe/6r6ofSnU3YcdCrrT+pYW4CwLBUkEpYyV5WVMdnYwm02xZ88GRkvxqjGpQDlK16GfMbY2d9F1HVZWx3KwYcrYPLOF2TRjz951jJYJlMLhU9V11j9lLVR4aTJq7VXVeCh3kYH62Q/dmJIbzi94oG9COfFvlB37zE6kPOABrd6mWqbJqTn8GWHMGX0/wXRnG/1kivHyMkbLy0AaqY0caneVikVn/FJAKIQG/FIFNOfO6nOHqF9gFFZjmbd6MBJUY03Ux8MOetOjRkNDQ0NDQ0NDQ0NDwz8at/y6N48gAcj5MjH4J7c669oxZ9n0BcrGuhsGATcQhlUf+dUYWRffpA43ORgTk997bv+T1TOpY4gs7suCLntZtpBkJjkJX8xLukhVo47ebyARlSw6AyAbr+rCQClEjzLjS9gIIEK8tgfQk8PBeOAhtH3BWJ/IK4wWWkv4Y8hmlW4kUs9+Oo9ziAKTJXJFp14tZsDodZPXojy5EYTkqqXUlchGgGww2vUyUg/ZsGWGb8gB7KfyEinbbd2dotFGo5pEI4+unv2kOJfT1sUgoAYQNTamBInuQkUKAdkg5JzF6Umjt4w62fzMyCAmdwzLOUsbB+uRmRBTaCunuzYnnNPIyxCnDfb8EFLrZkWwQXgzW37BIGJvRsNagjiQ2MZRKcXdC6KdIdBVyhoilhfrZ8jeRuXqrRQ44FEMBoYnN3ZwyJNrOnjwN26H+CeO2336Nzj6xGKLY4nQWOVPZRN7AZlBloC47QjI5n0xXEW3IuFNIhrwlkuh1rAqF8lLFc51EGcb00HW2NYfosG2rqe2Ogs/LIoO51yi6eSMHJxGSNQounFC0kgjMxSnUXEWUB6kcubc+k1ljKVSD3e2sOuZIN87OTgIs4jahplcx2VXSWm0FCqG+awOkTlL3TqoM0U0QFqbqC4CSCPHBXpzkdGuK7xNicQhM6nzkslqohAFqXiS+IZpItl8yYydszPsbG/jrpcfQEqskfpquTm3npBT02DGuMtqtBzViTMLP3vo9TrlRDCHjCi0WXFMEH7ZNZ8ZXK7gIgJ1QJ5BAs1Y5CRGcaRVGStXkmnVMqmzhBUv7Zo0yl4JXKP8gDpGUtmYAYATR3fBM+DwRWsYdVnHJHGaSuzneb2No36x38wRxraAbUwu0djKLlIiyJWG1hcrQzG0u0olSWVSnOi0DimMz9bvdHzn0uwIIuB1Naczc2IkdZqIfamfZZw5vYuts7vYu2cDJ0+cxGQyxUUXX4Dl9RFSZ30lgSiXSIHcYWerx/EbT2NpeQn7DqwhjYHJdo8brjuGyW6Piy6/AMsbCV3H5eR0tihhMp5mkivyRiYrJPKXoc5Fueg3qyPDnIJtLiYMIiZQ1vbp5V3YnILgsppVrr2vMPSq4OJ4aXOEYlA3B0Lr1/Kv55I2Z4m6JVedmd4rg1GvEZQ4zzDZOoMzJ27ArGfsPXgYy2sboDQCUxL57RIyGIlH3m597mFbcaTOl8Kf4NzozR/GAU6qtzskSiWaF9jfc/cwyhJVDCOvg0R407kgayOyzbVNyiDzNUkOog53WlRzrPoHDnJQwEUXhXmb5WFuFaqp5TmVFGXEtU4cnBLmiYDPTQmmhES+XUEGZ8TKkSJGt7BKhsrady5vDItmVcik91GWUSXMJ0znxIkQxdkmysSxTlIcNuLPQYdZWvuv9aQUiofqehveq/md/UZl3lTTWfPfxpfoeGdOD8JqrupaOeixRVKKLc9V14tl2BSrmgfGfAcDdrLdXKt7UITOQy4b73aFaKUGBpB52+IE/tUbK6QL/C2JyhjopHFMGFxKrb2d2bG9hSbVshol1+oWig+iG2JJDKn334y+iuIgE3XXi584FmQ9uk5vtFkbh54S26cel0tJ1p6VM+ciryI+55c6Y0KI+Fh6UHSEnu/toc+G9lkkN/EhDx7Ffj9fwuJsomap2tEy4dBXWPjE2tmd71QckkqfROWIHR1DLGtfk9QEFR3kNJhyCO1IqNodiHMza08qjhiL+hhp/cvUpe5uYb0RfKmqPCK/LDJPjH7Eg/eKA6HWPcwD8wyYTmbYu2+1jkSLcLDF5dxrXX3qe8ZobIwbSJquEW2uEdvEcwo84JDvnFMJbJ5dp7M2K7zkeb7ZeDYU0gU8jk4h0BpZ1M54FfvO9gz9jLG+sey8A6ARzovOOFff8OugQ0ewOgBFnoaI+S2yKwxl1PhrdsWoU8uY6paAObk7BxlzhTIzdnd7TCc9lpaWsLOzjX6WsbF3A2mcyjrAXyrl9xNxUBqNOyyvjEFJopaePb2JPGPs2b+BbklspbXNMwwrke6h3g3yMRg86nHdfrd3wwGGYV+NeqeWyVIAhzQU8w9/bcQa5jVMa/Inv6uyyz1m011MtjcBIiyvb6AbLakikcR+AIQIfsDW7AycK8chpxtD0PxftvB1wTaueXmNiGGnYP2K8Zh/LFtCbc/330VjY0NDQ0NDQ0NDQ0NDw62IWx5JCcUZyJc+lHx7RByM1KHDDEZEyExI1JVVKYkTgG+Yyu6nLsg73VghyDVvBFavF79ijIFESaM0yXPdMtKFH4N4huiw5Js1nDWKUYcQN0fWdwRZnLFcs0NmNWSAQsQk2Ka+xl0ppjYzeCW5l9yvHCsWATEyCA96hM1xfexfUE4OdQSgM+caqVPHKGFc9O4WWfzCM7ENBFtxsy5OzeiezdFBDVZiCywbbcVhQOi0648skoCfk2LdcO+MO/LQopdUEUnMeKZh4btg1BAbGrtlj1mumbOISsVoRH4NUIZFgpJfui4VI6G1HfR3Nx7apoYxxxyQqLRB+C2hGLk0voG0j9IyvFAlgyvJSCgRkCQAhPSR4vAzj2LWKNtqRloKhpO4MUdUGw6tDyaQR1OyepmDiTkgUSgvuDv5hn/hktWjmDfsvXiwMqF2arH6sr8fc5znW2ydPvAD4bkVEJ971CVYWxV+WtnlM8+VVepXOy2p9oOZdqxdisNRbToq0aoQnlqe5oBRUkrUjQ4Ei6RhxepGpZaVoE4gROgtnI1UvGwUqr7oM9CrgWymp5s7PQE9SvDQ/6NxAhJjNtFWoaTORhYlz048lzYtDoUqDUSqEyCb5mT9rOiNXiO3ZOVl32vEM422l6HGO4iDEpHooOQ7qrpVqmlyz0icQanzK3Q6gjopWasVHpVTnepcq1ciJKLAcxswhFddR0DKbhD3zbBMOH7jJvYf2oulVTmVOkNGF05jmsyXK5kAjRsIBmF3msHjEfrEHk1QeqTwcjbZxWR7F5kZPRe9aIosa1gYYuFlCVFRt1Nmc04h5D5Es8rBwY2Ko08yRcnWznrq12RCa2KOeZwlWk1m9utFkxAoeWYzYMtYfvZMxqnTO7jgon3olnTTCxoVCaorzOiNUAcTdW0iuYIsi97I0Ig3QOZcObxAN9ay6n1pF6lctjp3ZU5ims0cJUZJ3B0z6wl1InfAsnmQjanFGUZ5p86zoDC2qE3bvs6mGadPbWFne4q9Gxs4c+IUJru7uODiC7C8MQInBidCj17GNhZKOTMmmxknj5zF2voy1g+sousIk80ZvvgPR9H34qC0st6BOmlXUq+BNNb+ZeSq8XymxNvcKgEqe1AZycY9H8dkhyer011xakLcIErqc+f2+OKkHa8XMMcPVucQj6AW3vVxiENkKp0bmUadWQ9k1UMMMHrh5YzRT7axdeoIts6cxsrqKvYdPIA0WgV1Y9ENnWp7jaRlGwvCe53xcg9miTTmc0UbJ7xOMuJE5z/YPA4AkThLmYMSs16fTL3PzUjlvOgxc7+NzhkEJtY5XzxJvWh2ceeAn9ynwBuVLaYiE2VcDSPs8J4S+6Wa1zHEqS+OzDr6L9xsibMB1GlEUcKuogw+MbCZmDstUaDLNvR1XeLPWXW1hnaj8qLmTeW7zjcoloXClzhviTLm9FGci+icmMLGd1V/1XtxLhHLUrlyv4yQQZzvRceGIbGx3csf082lP1fvoW6Oijab8+m6yvK2PCoJKdMl/3FI55C2RQ4KtVzCHck94NM8+UMSnDb77g7yVBM/YPPc++W51Z+qHxbRY5IYv0c2wL9z9Z6JNtF80w7pKXnM5z0sW+bx9dsLRKd6kgJ9w7TD8oa00SDNonYSsuZ5uSh/rn4bdgzvhnNpxaZSxi06R32GdYn0MGrelNWi0F6tcPRxsVoURzJ/ZVC4y6f2Xea6DmAZpyx7yHIiRHYtFTd2Rv05dGAq/NBnYU1HKoAxCo3rAs+r6C9zdE+DhhM9F76TzjWs2wU9EZZYnkdVfxI5tOhSUZeZLjGdbtdks43doWF3tqboRh3GeoXWsI86D2ByX/+aJaim2uS4Gvk5Z/T9DJPJDLnPlRPSIlnOQ++gBXDyje9qfCAuzqmW38LBKvyNegUI7+pfr8tQRsGYThk7OzOsrS+hGxtvgqANKudtbT8rK51EHedNZuRn7dUcnxU+GP3eKtrmfh5yoHxqfRE+6JcF55Lgo2M4ZGny5e0AgDNje3uKfpaxtLSEyc4ucp+xsXcN3Ti5MUVkQObzVlw/ydjenGJpPMLSaifr2mnGmVNbYGbsObCObqzOf2FgtOtdjTeRR1XUbet4NGDCAGy6Q9cT80xHdV1hdHirRNYOM3D9m/Cp5i6D3cTgDmt1koHcetw65H6K3e0z6KdTLC0vYzy26ElqwwbDr3kbjFpk9s6qT9szs0S5hbsQUyluDvpM7fAEn6+50zuVgxGBAs1SMohdtZonEgb20YaGhoaGhoavFnCe3dEkNDQ0fBXhFjspWYQg2XiDbjLppoI57iQLf6sRlkCwCB1i/Ja7TxYZWUg3dOJmTyYCc9LIRoUWcwCSCA7ZjUDB5AawOSMJPbJOFEeAGF3Jjswlkrgm7tgE+GLPNjeL41Ix6Nvq3Jd3Vn9hmj6LhgVdgLKdSpQVMWs5Ht3HnIQAkF6NYOYEJ92z1roncgMJIJt4HcE3j21TyxySkhssMpgT+p5RTkhRiXqk5XDmsukaWi8pIezOElwMDbB1sbyhNyupExYjgcv1QCyb3eIcYXyCRzzx+qr3lRkDYVdS2fURKg8ZZYO9WBshdCp/ozFPiqytSpIV+SnjYiYsm+oR0W2t/B1YqsJXy983gIKZwC6aySonZgC31wnmMKR5sW3o1zR4aOqKgHPALV/FecljUhB5v/HNPzfw1dyZ33ao61veI08/KN4/W3/zApWWof3Pfw7VS1TcKtWfzwkhLhFOMmKbVeYbp4393zz/TCydpmDtGdLI2v+Nv3YdDaFEYTB+Sx20zwDBmCaJcpYoaJmtzRLYIpmw6UfpFJkBZN20177GJP0LHWGWGX1W56GkGyjJjIuqC3RjHnqtG+n74jNF6EHOB3MIlOhneiVSx0iUkLpkwUCQs+iq7NdHqqMRBSOl5ciQiGnjDsyd6xJxehRCXQd05Fc0AACZF5PqHFGd6kyldfaTiOMkY4K+L5HXADBjstPj9PFtXHafwzKWqEyYDMm1NSaItZExa/tMp4zltRGgTku9GhAnE8LWmR5bmyfBqcfuTgb3nTiqwhwfVB6VZ1l1s0elUrkXcovAm0GeuTgd+dWJ2heKXNrYaJ2D3MjswbGS6hW28VSdcSyiFgGgHszi/DvZBo5efwb7D65jeTUhjXJxQCHdaNF/Rp84HxcnLK8rSKNE6c+skQK13/hGTEZ1ZVxxqMxgkmhC4rxXZg9Wl3g1RodUNjVUZkj7d0cAW7QlUwY2lijPffwilqtVGeApcPzGM9jcnOK8A/tx6thp9LnHRZcextJaB3Smv7L0D5gjGrC72ePkjWextmcVGweWkBJjstXji/9wBEQJl1x2gWw0JEan46m0mfTHZLrDHWE4OOLZXEHe5Y6cD2IQlzbPOVzZxoS+J+3PJlvSXr3a821ekHuGRcXxPq1ybdfC+dxK29t0o+nxPNCr7uzODFJ5szJzFmcg5BkmW2dx8sSXwHmGfQcPYXl1A0QjUBpLFCUZGET+M4tDOLFGCJU+ZvMh4alNoqC6tlMeQZ2j6rHCI3TmDEYPcG9+67BrJZk1ViFBpZVVcq2o4qBU+NTpHEUjLBGB8xR3VpicLRjB4TMDit/tWdFrxVepdqT2sdPlKsz/Ql6uGU1VUdSXNTXiaGQuzjqHVlnxWYHRFnSDTwR82kKBAYG2RWyYI4ScZWUUmOdhnKOZPi/XXZkMxhfkP6zjIMdJy4KpoolctQlLg7Rcqm+OsKLm2X+Pc3Wv4k2UWSaNFPgp332tAT2IEeoR10TDchjn/q3MzZxJ5eBHoDNMx8J/2OkrbSW/SXvU7VZ+r9tySFuVavhbaPf4jLUei/gasyEq1xwvIMXT2mw9rrcjj2iQ/pzlFYms+m9p3HPkw6FkitFJ5W/F75jH4KF33XMwOTazfw5rK1ZavH8FmYy6BT77q+Vgjl4apokYujBFKuu1lkdqGXZjiu+49vEErsly+WvywyHxoAu6nolrl0Sybs06V9MuKX2qqNH5uhDKun5ujId3tOIIo7KTSKM8k/lNB7ku/8wBIfq5yvze8iu0heNlTper/EiTVmyuDQO/bX5IXOw4xsPcA9tb4mhTltXByT6Q4X1voCins4zRqHMps37c98DpL34R08kMs+kUW8ePY7YrkaTjdXr1X3IZiGPNwm7C9WeXFdTN68sBFH0ZX1+Yd0zjedpkSeabW2d2sbw8xnicEFWq0RHpsc9RtqJDCpUSKnm3zu42giAnQxViDjuxecLZlXOP8+TVqoZSf8UdT4Y6govdtQe2tybitLW6it2dCZgZ63vX5DCSiZ0zpMQMnk0YO5sTLC2P3UGpn/Y4e3IL1CXs2bMuzvuhLxWhd9ewul9zqY+XTeRRx+q2khf9MAKTR1OtnJC4tKu/z7HQkg4hTf2j0WJ5lbm1NwehOOgMnJ0A6Pp0hn6yi+3tTaSOsLqxgZSWQEmPNpoNfFgwA4uuYR3WgZxJpuzm3/G1agg1RUFxmk5ivzWAawXmeQ+RTO2B3cp4LuFtaGhoaGho+OcKZsbWtR/175MbrwP3M1B3yy9kamhoaPhy8GU4KdmipTgqmOMRkd1xHrf3i1OMRFSSq9tKdB0ueZI5QOlGbDyyhM43wK1cu46thPqXlasYUkiNP+IoZddxMPSqMGJk7q1WuvjX80T6We4PD+ZaCqdffEFM88btsElRrDADo7HXKxhHbEMFxhvZRCZ1sJCII9DrefSUXC5XtgiJZjUMRkHNM6k1ihi69mS/nqdsSorlQDbAhKaeWa9vk8zsxLBtgNsCWMgPRkoqS1oxoLBfMZdzrKcewAuRJYCyyS/Rq4pTBmtblE1ojSai5Zjh0fL3aC4w/ur/lDfjFAwItvPiqSQnMxSa4cjMBik0ZG1QKjUp51rPbTFhiNGoyEB8P9BWwZzEzPGhGN/mroWi2kxi0QCsn93UZqHVd4QQVUi9NtzBYZDeN7kC2cPcOy4Pi3krWoAib/xTKGWxsSQamlgNYbZRFR2hrBrJW2jgdIdwxQlECqB6iwMvOOQVDXGRnrr9NaoVx9pYxB3tU1q9emPNTgeTmaB8UyCHTfM8A3Ivp+/s2okk92Zqnycgi5OQywcI3EvpXVccGDOJI49fJ+ksV44ooRJdjdARobfwb1qP1CVYBDyLwtb3soE+SmoIZ71iUh0RUnSOAqPvNV8zhmYx/jHE0QMsV1UlwKO8EaxsjQpjYwzBnZO6JE4t9k5S5ZFcl/UAdXLNU4I7xuQM3HjDDvbs2YOVsdxzkdGr40a5KNAjzjCQqAOj9/Fya2cqUU8YQO7kuj/KmM2A48em2D7LQF4B8QpOHp1ibYWw90CHNC59azYrbnXGQ4nEonzy4+DRaQ1FfkI/Iqijmo4J7J1H/tqmm0txMvkjgFijRZm+k/YSZzmJUgRi9BPgyJfOYs/qMvbsGSPBvJEkc6G/ONdZh5S2EyflflZkHjoXydYXYKdri+Gdszq8egdhDzhFlMRBiezkcjidX7pr5TRjm/vuwGfjYNBXNgYmbRfhpbuvqfNah9wTTp3YwtnTu9i/Zz9OHz8NpIwLLzkfy2sJEvyx7BRZRDEGsHm2x8kjW9i7dw3rB5cAYuyc3cEX/+EIRqM1XHDp+eiWEihlcfB1J2Co7FikRBT6wxhjjms2vps+MoN4r1GypGo6bmUC98UpibSvsDqcafeRTUuGbyy4044KmG9KaIMK74tizVmdu2F5mARDZJUZnPtivGcCco9+9yzOnDyKrc2zWF1fx/q+g0ijNSB16NQJXsbPBHPCFIfMjOI8xH6lJOncUqkCMTCipLJvzLF5TnBCDp/FmUh3bBkyEpCOosx65VtvkoUyIlvdo6AKz4lY3R7DIHNnhXRE1AM+yjwe5Sdz5IW9oj/GcbesEWLe9sVi+BVHP8/FkzHmlV0oYEEyn5+E+UyMChTbreTCJSPNnhaUUxxkQl3KK4GYmq7iuIMyzof6ROcFDnkRgDy8Wk2HgsrhYcF0rWz46bgWnJsjfUM+hml30fkoutTpIG/tqkm4qpz8YNd0elMGnpmDQuFrZKuutax8ir/Iy5mobooh7yNDUXRUUWFlJlotc8M7ce3ma6o5WivyUbi2GHNuMnOeBPKhuFSXn6pcg2xHW0CZT9ZSbHyr+2nh6oBddU2CCrO2GB4KEVktjHFZHCZymhEbo84H821RCCi1K1d6zh+UGOY8Xz86x/OYz7xL01wa/ZBpPn3FMx78Fh22/dpU9upVDgBhnLb2m5vr2AGguBbUNInsP4WvHiUmYSHj/DBYKEPGAxQ9Gf4i27iNyvHBhtXoHGX1y7VwFLL1/XhNvf1nkRNN5XilaYO2CHWx62fjugt+AGN7c4Y+M5aWu8DzMmLZmCItoX2G/ZNGSGWvX6Rhe3MXs1PH0dESlsYj5J0d7GxNkUbLGI9LV+DQ1v52HCcGY0bm0iUYpX3BpY3ju3F8iPJp+tL7O9X6h1DmiOByEIQZ2Dw7wagbYWVZ1125uMFWDi6BVp/HUnkex6WhbAiva364nrf8XHb1N8ve5Mkyo5CfVcLeUQFz57tAIwB3KDPnGS9bieKesL0zw2SSsbK8gsnOBEiMjb2r6EbBNsZlJDDMJhlbmzOsLC9haVUSTndmOHP6DEbdEtb2rEnkYYpdnbxtpU7W2QrnypyNvD6VvrTkWb5waA9zIK30EVC3KcqzRYg6LQpveR50+TAfVq3HymP9r3lA9rMd7G5vou97LC+tYLy8AqSRjAmBDxYlM9r1EPRtXWgYcbV80YGhR6sA1q0YhYV8AAwz5tirJY0pVp53NYbVE2UugkVjb0NDQ0NDQ8M/e+TJNnY+/3H/Pjt1RPZXupt4qaGhoeEfgS/DBVJMJonK0if5ijyVKD927Y+nk8WQbIDbb9AFa7EeSUoqq1NJKeUEdwJGrhaWRHZVTNnskmtNspxsB7nRiSnr2iwa1fQkfLIoHQxwls1NveqlWnS6dSwYjGI8HjM+DBarVm+/pSlaLgBwWGiagxKYwXqN2tCISASPNgGSq5Qo24lA3Uxl9uhKYgDSiCcJ9cYgSTQW24C1KAkWGclCoUvUFnJjI3elur6YJt3wtqZl2fjzWrqxwiwuJfqHNQczu9OVGVV6lA1izixlmIOWvmpBHYRmqVwCFQM3SUQUuxpGPAXIXyp2jBIJyJxK/Hojl9SwZLe24mJMrFu3fEvhhxQNWFynj2eLzU6gW7YhlTpeMFeOMxTfDsRYPrZhbAaKmkbviVUdCezOAE6nGw+DQTHwbr7+82Cz2gFVXQdsKTULtrCBaSZQP8gfw/yD/vC+DCSNsJZR2tucPjzaRcjbDabOj1JGoboYmsv/hLNmp4/2+gQN26/1tN+GJimLgOJGR7Y6lAhoVld3EoQ4Q+XM7ixofcIcFs3Jc5YZow7expXBURnWJbliUfRa1mvW5MrFRHptWwKoI49KRNSVK006YMaiu9AzRnZdoymsTN6eGSxXyYGRZ8WMnVJxGEwpAejcKUroNONq3CiLV0mKgiPSNid1giE7DV6ccNAnnDo5wSc/+SXc736XgIjBvSm0VIzINg5BRLt35xhGP2Ps7sywtr6CTCSONwBSYkx3GZgR1laWsb6+B/sO7MXejSVMtifo96zoLUFqsOTk41U0GpdNEVYjrDiu9cHR1zcjSK81yKROWKWnuDEfrt7UYYMBFgeNMCoCdk0H2/siL7MsdB4/ug3QCPsOLqOjXE7rc5LoSeqMltXRpDcHJh1IzM/HnK0IQrP4r8YrFENnKiIgfcvGwjAegAAuARylr+h9gayh14wzo5E63CbpM2V84qpMlzUOMxetQGZCv8s4fXIbW5s9VlfXcObkcYyWRrjw0oMYrYjTn01R+p7BLDLNOWP7zAwnj21j774NbOwfAWBsn5zi+utuxPL6Cg5ddD5GS8nfh7WJKprS/uqUlwCy63bJZChEYGN2HWpzLdvl7zNLlCSLiNZrhCiQb/bk3vSTOR2Tjs36uyU0XrLQmDUyGOdijpd6BJ1n0EHNLmObEYPRg3IGT6fY3TqNk8ePgDrCgUMXYLy8B6lblugGXQeW+GbKl6w09mDbAWW9Glg9qpntqmGlJYcNDB1DmEznh2g22hDmpJ+5s4rDHOPNuTruVEmET+U/99UmVc69b+DZFbeJ0j+Nqxnco0P0fYn2Mhxp45jNPm7dXBVdH8PmMjbWlzGspqeUJt/lZZs/sk0Xh+nCqF8dVHC1YHULA7uN2RUNteLyNo9FDuY+i+oMGvw2nIxZvbyeJc3cXuN8U9S/xb92qMDq7kTGxqo32KoNxFCcDiPVtb2xKP9urFwwaQx77sP904olJk++BuDSVP6u9unIDp9jmVyw0VJcgP2v/xYIjCz0dtO2n5P/xfWveHETv5NnsuDQzLnSm7hiXgRi099UPxyKUnzH3/PK1Xy5eSrt9UG/WVB2LIoWfC7vcRCImrzhO3P5E6pfY+yjYTm3tG4mEYtpHfA/zkHCAw5vuYMEgNpLLpRockrQa3VDQTZ3MrrCnJJRHBksfbJ5AEp/CVWr9JpHewxq0qfxgF/jnEimIMQQL3MUOSUbpnV9VJwqhJ7MkANfsdxc3p+nqfDEYHREnpT1FmBXwMa62nXEIOhV2zIfmk0YX/z8cew/bx1ItqaDr6tNJ8y1MeDnCCbTXuajVJyHbD6XpxmYzZA6wnipw/Jyh1FHGsmxRCi3eXvUo3Mq1doyzsEJ4QRT4ZNF4YoIw0SVqZVtQmdRxYsDRRECk7OdrR45E1bXR+r4r/SDtGwq8zIfj2rdN3RuOZezyxziuEA6PlGRHx/uqvGnzAONHpvnz88DArPI5FpnMRQO3TGALNd9T3ammPXAeDzG9tZZjEcjbOxZQzemyD7UFiTGdDdje2uClZVlLK3IWn6y3WPz9A6WlpaxsrEq63Nr18ijYLeJFbDvwoqgiXig9+MLXGR37h+KTNuzxcwqv7teNJnlovjqIdjWEwNYecozsQNmIM8w293Bzs42um6E1Y09SGkMudoNMO/Iwg7lkfV5mKLRaK8SeljS2NxRJwxDGZoblzxBqTC78GndrAZVHanKNNoLi21d3vO++WWMWA0NDQ0NDQ3/jJB75MnWHU1FQ0PDVxG+rDhtpP91Y06wSJljTXILjpw+z+hhloK4EPfIMbYJDmhkF4IFxC7LXHkxEYGpC8bfsnCHGnZyjos0W0TbZpETDovOAN2odj8ZjeefrWrmfAKJhgEAdrIeKSzBffEcNq+AhUaRuY0AIOzH2gYxe+Qi3dOS31MwlGcga3QozgB1YiADxAlh1MnGV85CU8+2hhZeJA3Bk9VPizJ8ow9WPhUuArIxiR6ysWteFMpfO+2VMzzCk21IGC90b9eND1CjiUfYsmcsdZDrW0q6LhhLmEnqz2Z9hFs1NTaWLbVFxswBCoAFRjfbhaWVwB/FyFhkrZYoQxU1amDYdkcK0jyHRmuiBc4vKushZcIwDbxdTObMmaUzWR/QHGxeasidt4pZTazHRdNEhreyPGMVplKZKpT9ImOU1aGHtqvJupdVNlprPobeTvGUZehLtsHu7w2NMsFwVFlJy3vExRicbdMXlQ1WREzfNAN6pyRnoKJNNtjqTUY7qR51qeVpPEbgS6lDNNiqwx7YaYRHPiJMNVqR11KVi+kkRpF5QPqyXYlISa6ASl1xTrLyfcMglYhHKRW9n7MYw0advNep4HadRdAjjDS/3AcnCGSMOkJKGvmmA7gH+pkz0a/toxGJE1e2sSNJlL4Q3cYi5pkOGzqpyLilvOBcxiwdizq9Wq0jkdPcZ/R9wubpKf72zz+BL3z+KO57/4uFr0wS8UV1vlmsLaiURNSxq9SAne3edXTPVAKps1wvN51Msb3Tg9MUTBnTacbScg47taoZgtHV9aWPgSonOm7Y+BE3TvwUdvaqyzV6XefOIh6VUMcJAkApef52jSgnQhei9ZmjKygDGThzcobNMzMcvnAdtKTjr5aZNfpOzsU5rOhSqWvfi87IOsZQVgdCsJ9yrjaRdKxzKy+pM06SxB1IDO8JesIdgF4XQuagZHqZzHgLdXwj54+NJSnJafakExFzigZEDgkE7hOmu8CJEzvYPn0ajIT9G/tw7Wevw/rqMi649HyMlhMoMSiJJzP3pOLFoJ6xfWaGE8e2sP/AGtb3EihlnD25iy997hj27duPgxftBY+NcPZ6INACAF3SyJfu7CL9uUT9gf5lvRpV2swchux6xr5X+WE5yc9ZdJ05Homzj238m5zPjwrWl01PAaKPyN5RGfQ9VS5juitdALb7KHLF6Ceb2Dx5BNubZ7G2fhDre85DtzyGjMl6fV8Y5Wwe6R3HPiYCOIFSB+ap9r1CP1EOdNrIk31Ms2gXxZHThFZG7mx0JAKzXgGHLFcDwuYy4tBElMuGF0E2R1giLln/h86NEt15wzDLlcspfAfmZ1vy1cYJS2FyanMo09t1XuF9prptYWNC7VBu+bB2fBr+juJkb5kPvrpeLTI5eBdFrvVpkIX5eUmJIqEKvCrQCuXBs2Eug+emy+1XI5nLHCluClqSFJomzi2hU8HobO0qKEyIiMLcx8ZLwL29h+W5c1BVp9LW3s5UyuPwPcKuCIfqtDjBJQ680iHdN/pDm1QiSiisD4Xx4G9IOg8q/Fv02yLENqVhokXOR7Tw483kX/elIXkVzQt4PUdC6CBUcrCheQENVOXN4Z26v1luZWYMFNUdy626Y+xmJcn89WiLaAJXc+ewqKjS26bw3Dof83UyPRO4Ppdj7FuL8h2ovAUiFUpcoBjiprrN/aw/ptjWBImeqN9t/hjndJWDpj6M+kZ+Dv0Y8EgvZlJyuVMZ8ciP9nv4DAzmOToPJ6uXpZFJZFUOGHLYKlx/bE4CNk5EmZn7nFC1hR2WM15Y+ZU+YJkrbW9OceyGk7j+uuuxvnEZcqYS1XOg96Ie9HyZ0Pdq6xkFGxagaxNZi81mWa6FBmEyYcxmGcvd4NAJB9kYlON63OsQxqbBGMnV+8HxOEd5KHn6oS4u9ba/Fn3b21hLmu722N2eYm1jGWkEmaOy8KM4tpgSKO/GOYJfFzzUXxy0ieqEUAWlWbOOcoDQ1qHeRT0EZRfHRNg7gb9UJ5d8qCoTEHnePDvD9vYWRilhbXUNp06eQSbG+t5VpFEUTJtf67sZmE4ydrdnWF1dxmhZCJtsz3Dm1BZWVlawurEMdJE/QV7CoZ/huDI3DA0VUuCD2Avjmirwwtuy/nzOMTPwbj4q2LzC44xB3w18D/pQ1rWM2XSCyc4mOM+wsrKK0XgN1OmBEOsVZH1P3q31vfYdm29Qocvs0zbrjDavgnIwzWkLKfyT58uDH4I7L5Woz3HiVfqjnWKrS29oaGhoaGhoaGhoaLgt8WVc92aLGRRjFds2PKrFjBujiaqNMIAkOlFmlF1XCgtwM2YlJErIdt0FmVNRWd0z4Jtn5GVSFRUEWU+tp+RxlGVNmINRQCMK2IYJmVNShrkQWNQK2cA0VwJGNGCzb4SYI0cJ1Vs2lSgYNmqDSTSg++nDLI4HOYvzDKALcF1cZ4jTjhllOJOvxUkX4WY58evdGCDbl/XICtKuuYduVBOokwIygK4zY4JExKro7tmNcMSsm3DaPnHjKBjzkjZYzoxZDpu7wTCQs2z+JvG8Ave6udAL3b4PH963G3IsYoSFfLcrq8AWJaec0Obwz50UyC5r0mgIVAwNGRQciOAGg3IKqjYr0PDbTUQNimCwO/wYqu9qDM5z78V92+BUFMqK22/lSgs1DIKqzaj4npVPWl/jn0UbGtY2Q9qmiuwfLEyEeT7Ipm4wFC4y9hQ7WanbAr5H801pHzkVVyio34l0WXSKIpaVm9ZgM8TkQdwZCw9Eiuyd0jZmDK/pGJ6bNsO5OTcBrJGKzEGM3bmTs+iMcbVhS+jtxiB9bqHwLX/rS2Zw7Eh0HcGinFlkInlJIskob4JzEBE8mluXzDGEioNIMHN1owRk7bMgv27NNydG6gBBWULNJ+uTjDSChGBi46lt8tjGPYsTirU9xDEjszqQuD4wy3nZ+E92wJGSRohhdNzh2BdO43/99p/jE3/7cYxW9+DEkf8PB/avqf7VaH42xpiTDxNmGjrPDLGbm1Osri5pFCC9BotJr7Bi7Nu/jCNLm+A0wjR3mMwyDm+saT+T+omehm8SZC4nHn1DIfTJREmu8QmybQbKyihsjrsgIGkEKKJgnCe93qucpM690J8Jfm0lmZzPEna3Mk4dOYPzzt+L5VWAukJj1jpkPapvDgLZPafE2UT9YotMp3ClkE5GjDfg4MiapN8kjUBlcptZnJATAZ1vlBE4ZR1vVY6S1Nci7xU9IM9sjpO0nxGJA5QZeq1/iwMZ4fTJXXzhszditAxceP4hHPv8EWydPINLr7gY3UpXHH513AcxKGeknLB5ZoZTJ7dw8PAerK7LXOj00W3c8IUjOO/8A9h3aC+6MYH1Wl1zRibve6Ir7IpdIPQFUw3KR5lTkY6vpf1zrw5jvVy9lzk4uaGkg3atDEbvYwZXY4pHvYRdE2lzLfu9OMCGYEsl2IbqfttUIJA4suUpaLqDyZlTOHXyOMajMQ4dvgTd8jqIlkRvISGRRKeyKwLlGjnrUwCFqxtlvmqxulzwNCpm2FAIDiWiXnLVFaXO6tAEBueZ9E8NSZm1Y0sPsrlmRuV2zDbWCR1dIjCLnBbXPePbcHZw58FwU25+LI7f44a/Oqv6QBFHbYTPDN9Ig7S5O49RmdtVY6+dgreBUJ+xR0aL+cc5q822Cn2+vok7vDSoVz3U188ibA2BIWxiSqU2pvtCNmWOBNeRkkYLJy4+eca6IR363coI07iy2R+uitNhFXGzP24Axmhgxs7ohwWg3JKJUI61aC0e/oznmVRxoThfmHKBz++tuBi5icFzV7h5bqbSXFYWNB008ot9L9OSoOvq8gK1ZV67qPwvA7H/mH6ab+SQuCTVz+XhfNkhofNA+wesR5hEUp1dqEtxSg0KPySwXlvo5ioPc8Kl2ChA4CHV2Q7yjc1cyVFIZ+OO1NMpWogyX1A5snwYtTzwoD1jHwDs4uC6v6Fws7Qil2/n7Afz9FVSYDYKLnTGK8HiCxWPgpjaeiJoVphTkA1JhW72Crku0M+RLpPXpOGH7VpmX4tV+oDm3tdhXtaMpvZE9Un/lwwlYjQg8/HQ1k6/2Xe0PIta66pYhcTThPqA4ZEop5vb+H8f/msc/eIRTCcznNi3jvPP3wtOIaNgbyvX45pzvtR8NmW1kQgx0ZGAGRiNOyyvdEjdSGwqHbCyOg7zL+1JXN4prbZAn1bjNtXtHmgE4NHJo1hG0RyOI1HMXZebnlbZ6afAztkpVlfGGI8RrjGzf4NMXOZKp4njSkjmRNnMa1DdcEin1NnqEPOJDkWlX4U+r/+J+qHwRcfLwKOQhesSc1DbPrsNToSl5RWcPbWJ3a0d7D20HzQq0VRNZr1BGZjsZuzuTLG6voTRWCwUu5tTbJ7Zwtr6MpbXlpC6OE6rJqda/0T4b6bTqK6rOf+aPGjQeo/MFdei7pxUtIT0H5S8a1kcvI8BkUHPmr3UyhnWIcphBoP7Caa729jd2cF4vITl9f06qJueSQCSzytL7iWzYktmpc46jnVw60/hWGfon+QVy/Dr0D2X0IGYUY3QQWnXo5/mE9rHeWD/pThuG60NDQ0NDQ0Ndwb0u1uYHPmcf1867xJ0a3vvQIoaGhoabh3cYicl7m0Fbhu60ThEsG10X1SzbapKOA2PysH6GQToaXYz+CVd6LFFmEjFQGGbZ1JmCotMO81FkFPlahJVq1RKnRphskY+0sUiZHFpy8posqOU3XJDBGRkpE6vGmIA6NyJyiIvgEjjgGskEj2pkm2RqhaMaEiXTXE1PGk0EDNGSXYarSJYLcuiWjbFcy80ctKIBNA8tUqcEa4JKoYpaDQEN+YRZDPGPU/0yiboBrRGIWLW66SULrIdYa1X31tbkkdTss1PM/LY1UISbUUX7WSRHKRuKdk1UoxOr9npkratbn7krBFWUqlnNitjFwx6PbtBKYOROtmM722zPZlU1Ev16JJiRji78iG5DNkGVjmlZNdrxVOG0UBQYo0NHZGiEaA+XWv0VWer2N4vJpG4LVm26IZ2QE1v7A4Gy7hBYynteU1djNbEXp9okyQMXvL6BENqlX8xzChZFQ+sRtHYVxkY54sr/A/9ZlgXaPk1n+R6S4kOVRwJrR2tHqImpN4p8CDWPdnmCEfai4NDbJsc6GNjAiz/EJXJ1GGnEsgAJ5YoM2rRYy4RBHpmNQhaZBrVM2YMLP9xIyuD3REkmwEsAVD9S6ivY6BEYtiE6hx3VIJHaikbdpq36knjfw7/RmMpy3RoKYuRxslP52aljzK5zHTJqAqypY8oiXMKIblDEUh0NmtDMcR5ZsYSx+S6T30Bf/fHf40zx45hZd8BnDm6hdkVB+DX4LG2m+oYZnWwgY1RGbMJAXlcHHDVScd3TpiQxoTR8ggdljAeJezZt4RuSU8Iq261DXeCXRfHHnVPIlTp2KMbsFkdp0z/MxisY0fpZOqQqYLnhm1AnF66EvGm0K06KhhWCYyeE3LuMZsAN95wFnv2bmB1XRrenSJZrhSza72stXKGOuEWZ8JEMlGx/mA6gJI5skHHfRtb1HE1RNayMTXuV0p/LjqeLQqfGYAHCtiuDHBjeBKnKhtrS7psBMrpfUhUsLOnd5F7YM/6AXzx8zdg6/hpXHjJBVhZWwIIEr3M+jbMERrYPLODMyd3cd55e7Cy0YEZOHl0G0e/dAKHLziEfYdWQeMMQien8bUz2fWFdtWgzL1k0Lf6G91+Cl91lDmPZbA42IH0Wj6VQ3VQsoheuRp4SiQAiYgkbRVPs+fM4gQXGNi7Vxe0x2aAu3KlovIkm+Jn3aw0OvuMyfZZnDl+PSY729iz9wA29pwPjEY6bsvcM9FYFUFWHZB9fpNsHgLbSOjdqZHZJTLICYKx35xJXNDBdr+uvsDatp24A4uwqyKTfVKqrn5inVgx94BFVCKGXf/nDZgk0lLOZS5Tbdze2eCHAsJYzIGnpk8IsN3lsimt/DXxNf5anbX/+gycbD4srum2Ae1zg8CoMl9LTpzNC2zNYnLo5ddapK5nyNtmTEJLUET6brmG02ujNJU8uVDiY0adYsDmISlhDjJM584Jg9+oMGDAo7oQ3/TOpnMKbzPX6atNxblJI5zp1Z5z+NnpDfkB8/NUSxCvUpGAbeRX98Xihy8zXNRKusiAMIRGJ46KVg5pw++l3Fir8lskZthmg6HJ8xqmHfJtvowa51IZc+lDv61kLPDDvgOY00WLaBxKcR6kj3VgDPMIFC6oxPARLXruWZijzuAww6LufY6eFyOQlv+i0icAfK6eQk458Gxxe5wjb00v64Tym8mcjWqlOxfay5o0FBEIZR2frB9nwK/00ilhJMnfqdpJ+57wttAY+ZFQy4o7oQCIUXTlvTIXrLgT+UZhbkNy4MqCGcZmjX9dh/hcCKXPElW8qq6g098LwZrOdRy7g8HWFz+No3/1QZy88RiYGduXXoS+vwIdk19HZ+uJ6Hxk150xZyAT+hkwXrK5u41rrGNDKvqLExJYDpmlonfNyarqy7HPhi7lczqlIzrO2njIg7RD5RTbxQtUGRo6LTE0Ai9B68fY3p6iWxphvCJOON42oe/OOc/Z+sTamwLtUQ6otJXLRNVZEeYXNy23kqCsoTjwgMM8t+K7jktRV/gf43cWuecM7O72kFl/h9Mnz2I2nWB93zpW1pYqh6GkA5sVO9mdYbLbY3V1CaOx2MJ2tqbYOruD9T3rWFkdAckO/NiBw9BsYayt64vQwKjbwSqiMsdc9Ef0CJt3litCxyGPIZhDP9NpcZw7lE+1fEQt6X0O0kaZM/rpLna2NsGcsbq+jtFoRSKqRkbYscWwlnanV48OWwuWvM7en2MnLLY1izZd8i4HFIqN1yY1w3mE/C6MmBu64qDhn4IN0+a5bPOTaM1saGhoaGhouKNx5u8+gNN/8/v+/bxHPxPrd3vAHUhRQ0NDw62DWx5JicuRe3ekAYGzbPDYJr5dwSMLdPlMlMSZRjdSUkfgsDkli7Gki6GZOCexnsOnkRt+KpOWrv1kjaaOSlmvlgtHVxnkJzPLtp+W68Yn3RBTGiyceTE69Oi513olNbAFw6pviLL8nrNsmhOVNMqx7KeLlT4G5MohigUinNmHbYFEg4baHdyAwJmR/ToaX5sCzL6R64bXyvuDfIHv18tZeayOZgzflPTTqgluWfJN0GCQ6Xs5qWOOBakrdSe2q3NMZsygQIDywjdjkmxedomQSB2y4uZqZvR9ub5H+BGcWVgX3BrZIRqZsrYdZzHe2UK+D7UxVyVb8NcyVC/8zTSxMDR3MOxEg8HwJG0xehXJISzefDE7SbymQIO5uAGJo+lhUIg5z0RjGIXvVgliRueGk/LPKDQ57VFkJ3kdSoWDPbCyNQ0OzJce6k5YpBtFjBQNVkZ+jCRQkU7K29pEcy5+cvU7qSMPkPRkrtEZ32dIUB/TRcHHL9SlOLTFepteS8xqsI+GpvJeNDFZXcqmHJVISCA/Ley+L0Ru5BUjXtlgz1k2tQsDyDcj3HnGFQchc5bytBKpC5v1IZsUq+CcJXT6z5NXfUKdbqL8JJZTntpHTZ8SNIIc4BskxYgn8mAa3xzBQAg8tiFCSnWbsb0P0qgmQEIHzoyts9vI0yk4T5EnW9jeOo3Ml+jVhZAxLrNGAZOKZRQdDAZ2tnp04w59lqsXhMUJSFMZW7RtMkvkpw7i3DnrCd3IIg7pNVUaRs3pn5mjUhkrPQKN9oFinBWZQCINVCht6kOTOzWJsygrHWwZA0hI6jjMqsSy6F8yZ+QOJ49vohsn7DmwBFoSJntUIhVai5jjeavTGKsgdTIkoAP8GjEGil/CzGRWxyyVf2v0rjMelOgr5gDl+pkARnaHYQRemVOXOJYFaU6kNGi/1P4kV0bK1X3i6EPgnnHyxFkwCPv27sH1/3ADmDMuvPISHLxoL5ZWCCmJA0VK4rgiY2/CmdM7OHN6CwcP7cPymjjVHb9hE8duPIULLz0fe/avoBuzMJTMaVdl3J1rZLy1iE++eUhF7m0aA62v9KWkV7sx+p7FOamXzTDWKJWcy/htGw85w6/bs8gJ7LIaDN8MjcwVyjSaskSLK9e8sTtbmzyYgT9zjzzZxdmzx3H6xAksLy/jvAvvivHyKojGMu/0xra4FFz+6rwiMbtTOKcSucxOk7NvKpTZn6hH8s1H9nyT6mUdFa2OYPQ5I3EC2500HGcUxekRJJ1Y5tDBKViZTSq3HoiKszhckWnZGH/szoVqRI56iVkc/43nsDE3zCUg8pc8NEadj81/w0hb5WX5UHVvk85dbBwIM514Bj2ojMGTODMk/02a12QlFjb4Dq7r4nRSNVGJ8wNzeKvAVo/opHaOCRiVfldFzyRnv/OjWjKYfh7QOqhN1XdSVXcURyZGPQEMeqiq1pA1kUaUzzU1pptD76Lw15p/0Cy2cR+voPJkkUd5nj+l8uXjPChEMA1lL046h+KstzjZvJxqmQN+kM51nA8hM6+m14MWluFl6Tqhlmma+68/p0XCVrG3RAUe1HQxT+dTlse0MIV/1rmNrC0HMh5JrvIa6pS6bB68GNcnUpbqukH+83IsP0p/K+ljXq73Ku+eqIHmu77VufboKa7mxpdIV+VAYDwLtTcn7iHYfy/9xYkc1GHOk5JDPwz/4neby8cSY101SJLP80PRC/pJ4YKZqOIokkL6LpI9yAOhTIJFgDE7FTDZ2sFs2oOZkcZLoOU1z83aJWsGNj+XH62UhNksuziKIzm7U0SMMJQBUGJ3qOptTpULQ7jKnyv5Z655IDqaav1LgVmM8n5syqAfPOpmHGcwAAWZzoSdLZkXr6x2GkVdM+FwgEJbgkMFTN5dSvy0HNyZ1mgwB7HQJaQPWH8i1Z/OsHnnjXrcDf3G+UGu9qLsmwxV3cP5V6QrZ2Bne4K+Z+xZX8Xp05vo0gh7z1/HeHWENKIqep8JIzOwszPDdHeG1fVldVBibG/uYmdrij37VjFeHulBpKoZwrhpjCgH/7wOC5Qrhzau1gk6B/D1AddprfmGesf6U6UnozIc8LTSLQhrYG+++oVen+fZFJOdTUwmu1gaL2NpZRXUjWQctDVuVdFIjrsUlsKiU1xFV+lvc3qP6nVoPTipltK1eqXbiQbT4uHog+J8BiBGd62rYg1yjnG1oaGhoaGh4Q4DT3b8c7e+H0uH7noHUtPQ0NBw6+EWOykh6SZvznKShG3RPm8GY11gFQNKLg47zLpRWTa4xVCaq00DsZWI05C7ILiVwIxdvUbc0avgCLp5YZF7Rh7GmwFQLsYnGM1ctiPEcK0n3MkMNRbdIJcFYlh8ErNHeZJNXtlsBMxoIhvO7BtLFDYtUC02SZ163KiSbTHMHp0j3Ofm19LkXljfAZDTOfBoFBbRiblEVQEDPUkV5VY3MfQktRLYVS0aGEre7TM6dS6TcOPQjVkxCZnTEecQqUEtMVI2/Bkzo+/z/EIfcHoLJG8xnNgCW/mlZh0zlBg/JIoRu7MZmD2aixkqCEBKyZ3JvL30lR7iFMVQnzmnlIrR0WmvnciCYMM3FNxRzkkqMqTpi3EY50BwvrKyWUt3G6HUwWwvleGLh3RLeg5PUp01UP0azRc3bbxgFKcQY4fJYUV/KCP2LECNwFqXeANELDWeDB6yjZxOgUWumpe6xY5SydpQeTF3ctDS0gIuDQxnRonRa5GJWMv2tlMq5BSt6SAxnsWNQkZdZ7d3qXByZjXcQqK55PJe6YdZ5UQi+yStc3EoQOVwZ33M0FtenbaEJjJ/ywRGR6RRiyR6UYfiqGf1LG0h3Kn4IZ3DHUJKL7F+RS5rvTpkZZj9nUpbQq7iipA2FwHLwU4IdVZIavye7WacObWNzBJ1ZTTqsDReKu2dJYJbPF0sDpkqa5kxnRL6PmN5bQQL1U9GBHegURJHoR6gLmFtzxJW15eQe8K0B/K0GIVtvNHggOpQZxWSK9hsXBUZKOOyalAxxlsQF9PxFh1POyuzbGhkk6EgdNafS4h6wOKC5T7j9LEe25uMi+6yim6pB3MHRg+JuiMDB+uGSjZ+qbAnu8JKhZ1SiDRAZY/BrtgzJ9q4mWxS6vsRQRG642zYhDZHVOGFOuLovRBECX24ksBKEUOwOm37PEPGbbl6lTHLGadObGN3a4a9G3twYus0Lrr4fBy4YANL6x1yYqADOt3yMoNxnwknj+1ge3OK8w/tw9p6wmTKOHL9aZw9fhaX3vUQVveOQamXa+303jayvhc+m1j7fqQPR9qHUpABZhCLLPa96B2ekeoU24jUTDjKjvzec7nC0HUFEXr12CvXcqrTchwjtU3Z+YriGMbsjm1J26jnLBG7drZw5tj1mE4nOLD/IFbWDoCWVtVp25wbTQCookFjnWlZWWWbSt/VEUNkI4dxLAOpzP3M+Sr+NQ4XtyUZbU2WrdcwsugmFUCbI3LORjEk0htp9CRhSg7OUuIcVxzvOHaCOyWK06NdJSIyGg9BwMc/ke0wn/M5mySK8UEqPwmEcZPj5tJgnHbltiCNfiKqn8CdYa0gBNkqekX+X9yizfHdS2BPXKTF3nU5cs1dajqcDDkZ5gARJl2a56C4UpXBBKaIz6AQQqR8XsZsruTl6Phg85eiEkq59YROyi9e9k5vVWa2fspzeYaUqJpsAa+s+CKLJVkOfJi7AplDeTYu1JOZeq7GJV+y8dLpmT/4QHM0FwKG1WAjCKWPLBKNoWPTXJqhEAB+DW1d/bLaKb+WCpV8ea4vFje+Om2kZZ6KKGscZHCBQA0QVzeLU0SQvsGDwlXHL3gj+XtKW9RXsRbW/nOCz+VVMtsEVTwZrtkW13PxZ9dp+tm++XqHS63jO9HXqNIDpiZBfiBmEXXWd4wHPi7SIK1Gzra8zO5Q9Y/Q13xuo3kkqqMphS4l9aJwWCCg6lbgckUgFT6FAC9l7hzop6oyHK67rQ8GlVtXyXXXZHeGPgPd2j6sXnZfjFY3fM7rKlt5YodOnCfaBrMZY2kpgYdKlOFjk9mMlpeXQMsdCEmvMB7o1PDyUGdF3b1I51cOR0Yrl3SenIqDfOai42Lbie7T8SJcfTfZyZjs9NjYt4RulAF0AweOWoNEZxSPGFopkzIGLpovlC+BPh8byxjt69F5ZTs/NoYynT2DNEMVHCPaAjI/3t6eIk8ZS6MxdjanWFtbwdrGGGmMOUfFcjCKsL09xWyasbq2gqUlmZOfPb2Lye4Ee/etYbQsUTpFuI051s8sT56r61z9o17g8lmn1yWCEg/SBp5weJcH+VR8W1COvx94GvWC/NG1rq0zIfo3c49+soPd7S0QAWtr6xiNV4Bk0VjLuAf7VrVh0ZZCR+2IKn/0JgBNZPxjLnq41Dl0pFAfy84Od3kf9PW42ZXjexzkOR7AKIncBsUmNcOaNTQ0NDQ0NNyZMD7/Upz3yO/CaM/BO5qUhoaGhlsFt9hJKfNMV+m2gBHDk1xJZo45ceVYjHplkwhhxS8WKyI9gWk/cPJNi0Rj2Il72Klzz8MWU3plmy7OLbqHBroG5x7M4pDCarUqi2qhnUG+CveNScsXsokkxp2sO+wS+UkM5QkdkVwVw7o5EFalZaPQ6ll4YmktwoAZZ+x3MBfHG61XWIdqG8hTgjoCJUbfy0ZvttN0mcNJZtZTzGI9Y/EmgO4byzVJwaEh2fckkTNkY5xAFtUoZyTdEesSqTzIgt82/0keqJOT0tOp8xlldWiQdvYoLlpPIVvayKMRaRz0eF2e1N/kkcWgkKCRCMQol1Tu7LOJlRi1ZLmfwkKeNUJINEsU80ZxLlG3tipVkIBaXD2XmOPwnfiJb+KdYFwIhrfE0emmpr5EAOIqRbGNcehzJRaDXbDIKM4d1j8s/6Q9xYzGTiOXdFUdg+NWNIxaPcRAW3SJOZREYxTAoa6Ra0WObsq4Yrwo9SnpkxnXjNSBCrOYGvNbOJGf8+XHDYHKmKaFpFC/okPrN8ygP9w8YUCv97LSRZit7/W55CfOk9bPNRwel3J7i15EKBv0SSNYQDbo3REgWSQf4dW4A7okVz6OtB93LI5nQ0elSLtpW6lTuVauGOQilws3M4qUZKjTEOAOZuZQ4rJBOgQN+oeFoifIvXWJGTwDdrdnmPYz5bfECetnjDSSUlMHcdLIMjZkc/RUXTLZzeiWOjBmyHkEqH6SqzMT8kw+91OA+xH2H9gPoMd0p8d0OgInYKRXrsmJdNX5Vi9SBxLVk5zZ+5NfzUam04QJ8RCpXyuKqH9JnVWyRrQpl5KUvbYMyixGXBWm7bMznDqxiUMX7sXSykx18gh93wUjarmuoRixzfhf3AFtvPDAi2zOrTouxrs5UCL0uWSw6XKjW+S0q5wcVO5y2UwDNJIPwa9UjZJHKizeVftSEbPv9z1w4vgWplsz7FnZwIkbz2BpdQnnX7SGtNKDUg/izoNRdcRg7tH3HY4f28TOdo/9529geS2hnzCOfP4Mzpyd4C6XH8banqQRgDq4luEeiSSqYNQXzhPr7HHcJOGTdHtxjpn1Ms7P1MHNnERJK5eZ9ao3ecejJtk/dZIUXpG3rTkeAXY9nDUqiROYOue43lX6srajRN+Ud3pk9P0EmydvxOapE1hZWceh8y7AeLwGdGP0euddJ43vc0qPxmXPLAISS8QimQuILjaHohLyJUm0zjDvypw9GpTlK3M5k6ogh5xBykjZVDA5lrkVgQMd4hwn88QYjclkkEDUydWCMPkvjqLlquU7J6JzOFDmCiYjcX5gclJFkBmMxdIFqDg5+Q+y4y1lJR/Hi5MJWWEY5CjfKLohWD9DoJ2qeZ20WyCOw8hU7X5ymfhUHim2PqEqSci+/BnopHqeUcZiRtTX8d3BDNQyCfma82fc7DKHaQrZVNOThOLkoLwy3WAiKeMeyvXSQ1gZrvdtduBd1vUZo0RLsT4wbE1ndZlMFL6QjRF1YpcR9uIL2wJf/a+l4VL/RXSgLqb6W9g/H6GjgKq8BlI19+ycoLrsOnf9zHFD/pZhXhbDXCPIuq2Hy9mk8t+56CQL8hz+bhjWafh9ri0GFZvrc0Pw0MmsfncRHV6mj7lax+gtOCg4ys45usi56xRQO0XWecbfqnfDF7ax2t6l8n7FBxmsTQUEBtSOL/KTOd1TcbzRPpQjIZp3IpnrJc3baEgoB0/Oxac4Cg755RIXm4Etb5TnFJ3FyrOhfqnGMVMS8QWYfCfQ8hpW73J3dMurSKnzsp2nyuDojGN9Jfc6r0vykIOeBcMdo3KWtQczoe8n2NnaxmyWgVGqokdHnsyNFyWw4RwWyrg9O4dQmlMRD5Vk+OjXXGVGP2Xsbk+xvrGE0XgwZtgBDNMYgeU2Z6iciWOnmasBSjRVGxJDFK+oL+R7aedzuUBGvlV6NZBfjZ2RZ9qm/pUlEhLPGMvjMbY3J+jGHVY3xkgj9rHH89eKMCdxUJplrK4toRvLNeGbp3cxnfbYt38D4+UFVJLoh3gtNGCyEQZBlPFvOB4a3davF+lWbzfNa+j0BqCOWhj4EZvP8w7f58oLjK/Zzeg1etJssoulpRWMl1eR0ghEyZ2/xF6NebiAxI5D6shoa3EudiQ/RaByHrVHmOgP516lrFrQxZZa98Ta8ZT8ym1TECXfUjdzcGpoaGhoaGi482N88CKc/83PwmjPeQM7U0NDQ8M/XdxiJyWGOrpwkg2oaHULx+5sASsLSL2GSx6JA5A6uAzzRjZDvpBEiUBZowBRVuehDhapIumVEGac8fUyyUZqubqF3eJiJ6mjsYyokygE7tCjYYlI8pKP6hBDHUp0D3lXFs16Ige0cIBwY3dcyBvdzp5iwJJ31Oig9QiRuQGWTSi7FSOl4gwVNxWYJbKBXX8jgYQIqWO5nWcuapG6AZCW17NvVKPXsjRl10k0kK4jQK+XcUMZsmzw+jpa3AN6i6UMkqtj9PY82yjVqhXnJCK9sqY4SoA0CgmFDWmjV5nMbFERSCNtDYwoIm6VYcmuIYLJjYnAIH4OQ5wgorNPNAB7HK1oLEKxK3gdC8v9HbLnamuIJgfjozga1P0nXiFnRpyuiMrAwhY/FkcOexhdsrKVGepg5Vk+lr9tysY00ahb1W9QR9L3FxmviokHYCJ3RoknsaPD1bmmZ36ybC73Wg6q6/dUYMwoHutsMlLsPIusSVE11gagc25BcR2Vy9sVuvFsEknwk7zFyKcb2X1tWEzq35k14k9HBNlX1+sYg3OSc5s10li2jXP5niyiUbTFGaXazyiJ086I5F+H2kHJnJScdn2f9bcQAC20NCE6GeXBX3nXJNbkT+pl8UhCS4g+h1wlCVCtH+wKKwLM7a5LI3E4SmrssxDp6pApjgpJNvWyOr8yg1PCrAemU8b6xgjADOY4lHuJWlMqS9g62eO6T1+PM8c3kWc7oNEFuGztYqx1WjsKsQG8SvXJd/e9MJ0owqP8ZB0jSnSYWH+gOErIdV7WxnZlq4zf2Z08zJGsB/eEyYRw7MgODpy3irUNRkpjoSEBIxLjOAB3/hFekMqplJk9Yg8V1uh4l5JpBEanR+579bxLKflVBRL4MLgeuj4mj8Bk+cr4YGN4kRH7OxqJU42MO5Kftb85+kn55Dye9YyTx7cw2+6xd20Dx68/heWVMQ5cvIpuiYCuA5iRWB2gKYNzRp51OH58F7vTjPMPbWC0SphNMm783HHsbPe462WHsboPGHVA7pM6p6HIpva/UgcKslIce8uYKn2MIVG8PCJSLy46mVlv3yWPSCB/1YEtm3NXGVhJJytsJ6e1j82yXd85GA9VThkhYglD5SzoCB2je8ywu3UKp47dgNxnHDjvYqys7gW6JXAnOipp+IHExbWxzPmiM5pFIsiexsccEx0ngKWPUwKr+y6pDNmgYFdB5N5ClalsJVKnNtvglskPm7cXMeR640CjjvegDlBne4Q4TDIWFLdOHwfjBPBOiqK7yNvaZGW4dSrfTKnBf/OZVxCmOMfy922SAfh7MWJJoKoMAqYzYnvY+FBRV+YCHrnI9GmYS7HvHqr8x6ix+ryiJnhel/gnJf3w8znIrn634tnTs/OUgSr65qKJVLXhSrHe0DZE2Vy3PMjajn2eWEkl17QCsGVXIB6uHwavFnapw1NsJ5RXq+rEzxzqbOup+Sgy4YvmFfkYeeIEmxwGuRM6wgtc6KvrFmTD+EM3sREORPEeknuzKOmUunitGJffapSGjk0+/+s5CgzvLpoL0+Cv9Kl6ph/bwcVkjobFDmtDGmnwFutHp28+YcgraJsFDRH1ma0b/QnHLeH5d3nhtzCGopZ1aJ7D7CIvOPyrc7N8ihKtHAFQ89v6fEVenNjn8nFYD3Osj/vqi2SVKEZmlfWBfSbU60pvuVAxl7K5Pqa/2NCthBSXX5HK2A/0bFTIwuSEFusxhIhK9pvRwWoT2TqJbryEbOO7sV6VGOsLZa4q87DpNGM8kpMR1p2qKJdKX789xfEbTuLU8ZMg7jHpZzhwdht7xntgPt/2RnSY8TpEgXEeQ3VXcDQKyappx7k+a4PERxTbS209eUbY2pxhvDTCaMmq1dXpw2Lcg3f6YEPGiqDL4GNESlS1V6yujaeR/trv2xzsFtQl1DeWC9TrhCpCNA30WOjXzIydrR79LGNppA5KHWF1z0jW5KGhqrlFJmxvTdEzY31tCamTddfm6W3004x9+9cxWqa6/xVFIuutIBSk43nst1Hs4vzLDzIEPeKyM/xu78Tnke+hDe03lzMO/A40aAt5hpFG472U2WM63cFkewsEwur6PoxGy4AeUrFxm0I/H4qyFL9ojOZaT1Y8KkRZ/arKV4NOsDTa2rvKI47h3lCIAua3DYDcIcn6R5RX5xmVw4F34qVEQ0NDQ0PDVy04Z0yOfBbd6gYwWr5NHJXy7rYGJGloaGi4fXCLnZRkA1FNXbZA0nVOIrverFw/ARoBKSGjBzij0/vBbEMwZ41GkyErf11MZQASJUKXZJRlszl1bsy0zUwxUoqLR4mSVIw7zD08UpOvVcuGJkDhTnRd4EPXd5R1UZdCFCKoAaBEKrD6uNFG+VJO3OgC0zcD5NKpFCxrfk0QG6/rxX5lJDALRlIbIJmNRBarXdjztihMQNlgFIcFcoPUiKBOZ+Qn5no9tdQRoe8Bygzuii1ID++BEmn0Itv4hvIw8EMtkVJVKdQcHwA9acRQZzYORn2xSLjTVdaIA8i+EejtFjZ++pmduJTN475noKNydZ0ZwKAXcOjmhpsjo42AivHE2qIYQ80oEQ1QA2PCwJi8CNbOGazX9dWTi2gYsfR+UpzdpOcGkljW4AAsgOhcBTdMmYHMnBGCPaXkM6i7wRxKzFhsGsANbkpjUicAj8SCwk/L0GhzQzGVKEYEc9IROUrlbYh8FwNRdNoKnIS1jT2vbHtWZiDO+By0mn93Y/NcOSFxtDGhbLB4dBGYo4DUK7HUI6OYujhm5TJfqQTkPqs0k153mZTO4lRhr3dJrgYTR06As0ZeMYOWNoA4eWiEJBWO5DyWvkmdbvCr8wBp9KRxB4wTMIYMMB3mHZQqx7qqLeF90OzfdrLS5KNXnjLL59KeFm3OTGvllGvkY2yDRMGZznRmTE8SWWa6Q0hYRkrLAI8wmwKzmThjIcmVbNHhxiLFMBN2trM6fGUQd7CINcgZPWSMoQzQBPjitcfwuU9ci366Dep30fMZ7Dm8jvH4PGAZerWe1rKTfpVZnYdgeh8exp4BdZrSps2FB+VaMyq6WqPnsIbLsKtZrT4WVcic4Ezn5DxDno1w9PotjEYd1jZGyEzIM7lSc2TjB9gdXTJbjELVPxlgvaouhuEHi5OHOKxK63Z68hwMjCg4TrPVSyPJ+KZ16QOUzYDOMCeVzpyBQ6QxG5dNn9l1p94H1dmlGosg1/qdOraD6TawsbqOY0fOYHl1BeddtAIaaxRGhs9VTMH3k4STx7YxzYzzzt+D5TEw3e5x/eePYTbpcemVh7GyR8bTzJCBWMdp1yHmqAUU+7TpaAI4aSSkoLT6LBsXs14S95kBdZ7jHphpn7BNB+h1IT1L1EbSMd06Tdb5gW8YMbm+7I13HMeIoONM/7BFz7KoSz0IPaaTXZw5cwJbp09hbW0d63vPx2h5HYk6jxwJ1rEUZe7hqphIHJi9ja0drP16MKvzD+n8kFnmbblXeck6jyx3ILpOZjurrHOvzJAodB16qPNfiFqmpSMRoefeBzsGfINS5qPkTqruRMAhjl+41hfQyJQLj3zfWUCF98NJCtnvubQdxZPi9p4m9kF7kI+DIZu5GikLgEWrkjeNCm9En8W5M3Tw5I5TVFBWcsv8UWivZ45xw5o4vl/GouJ0NZy9UEwu1aG6yOEb1pfidHJotyqOSsrGMPGLTk2xiaq1Sj1kg1gdCuJ8Sn/wuZN+NydJ3/hPYT6g44OfQaj4bZ/rGjMgekP54nNWn8thLm21CU02ftfl+ZKWShpXMzTfVKxrLvayi8NLPR+M9BQdVUuxPF3QQwYNFAvgAavim7W7W/yl+syFvZUD/5CGAaV1nSrWFp0W+8EwrQ3hFMsd9oPyLgG6poCvZxfRw9XfsjYbNocf/qCaflcLMLaXdcw5mrQqXWRhfvuawodFmrrq10rbOR3oFqCWiEJL3HCueaLPrG9YPlG16ffqc9Uvy3OzJ5DNBQgg5qptKfZjQljvio6wtUJH8i+uHURtkOsbWjDkRd0atbHxB0CI3Fr07Jwutd+L16DzM+YV31rEa3u2u9uDt3cxOfZxzFavw/T8A8izuyOPAOpkvJGIqLVeJMhczQ4HcE6lXjygiQlnbziCUzcew3R3F8RTTPsJTh65ASvr6wASbBrt+jZEKSLjFbPXo3YuKQf+XA6MRtMhWnEOz2uelt9MjlwiemB7cwqAsbQyBqAO8YCbDAs9Zi8MmVrZw/ZReouMl/HI+3rsPGE8HDprRH7MOXIofbGvyDvypET/O4fusvcZ2Nmeop8Cy+MlbG3tagSlka6Jwrs6qWYAuSfsbk3AIKyuLSElIM8YZ09tgZmx58AaRkvwyFQ+ZtECmuy5NHxlgxhU2Wn29YKNo1anwKtykKH8M77Gd6roajyvk4b0FL5bgfI85sPo0c+m2N3ZRj/rsbS0gqXlVVDqfGAvMlHGC6ZSRumbtV6rJ3lBRw46hfeLoh3qiukXOwjB4Tc5KGRp4qBls81wKM6UtsuzOTNZ3xvE0yOLTMYe4fvcY1xDQ0NDQ0PDHYHZyRtw7IPvwHjfBdj3L5+A1cvud6s7Ku1e/2nwZNu/5+kO+q2TSPsO36rlNDQ0NBhueSQlRjFQ6zNZD4WA4b5wtBWnrFI98oKalnIGCJ2umcqRYY1hBALrNRasUUOSGxEo7H4RbAGV1VBim5IMeBBwwDx7yKxYZhEF9Noz1AtfDmZUjrQDlMpmEOvSMumS0A1suktojidmxImbmXYaya5iy7pSl1NWhcNGiTtlFSYHw4qnQs4JlJx63WSW+jMJP8VgmOWKOo1WRUIwWJ2A5PY6vZYtOjr0QE+y6Q6lfzbLEhkCAKlDkBuvOqtnMBqQ8Ci7xUqvY0tSz5TUVYbku+wpZo0UoctvpnJy0AxtvZyO6jOQO4CyGoL6LHKTgE4Kh0WIylmu1EskG+GyeS5lZRanr2jUj6aEePbd6laMopVNwN/H4FltsC+bzQxgpqJrUYnMKAuujcqWu70Xy4sG5GAOjl3AHwwvh4lp4wHZyngV8rB0SZ+zcsTSVdFzOHJqWCajXMODBamMHyUyh5UfeRBsam5Ydz5SMbDWdAHRsaWijUVOhlGACBalxtIhmodKJWA8ic4+Nf8iV7LWxLbE7UQbg0HizalGQN3otveDALgDpVnDyNpMo0lociJ12MmyGWB9DywOhKLOxcFCItok15cpEVJnJ50zRpQwggwu5qhkstEFOuszrKUP2KhgetJ4Vrbka/7b5x7Wd4qDCw+cFOyv9SmPyJTZHVRk/MoAdegBnDi5g5XlfTj/wCXYXFrB3oMHMUrrOHsKWFoBurFsKGQzaCaAcwKROHbtbPVYXR9jNtMIc7AToxqpiiTyC08Ix244g93NTYxHu9g6cxxnt0/iwCUHcWD/PlCX3BGL1GmhU0cV6tXhSOXPIt/lLFHlSB17TV5krIDzN2fRd4ltE8Rkxto+agNtDdulTQD3HU4e20HuMw5dsA5KQD+TK8mQGNMscpf11ljWK1OTyrf3Y2aJSqXdhrSurGNKZlbjvm4sMIdrD4vRl60zq07lzH41nvEhzmVmM9bpiuVVHGezhumonJLUep104GQWR65+xjh1Ygc7WxNsrOzB8SObGC8v4eDF6+iWs45r6iRLnW7gZcwmhONHz4IS4fzD6+g6YLLV44ufO4qUgEuuOIyl9QQkLldW6dV1QC59ShW78S3bdacsTkWi96jow2yyL9F/cpY2AsOvDyQSZ+WcJdoSs8ivXY0IlY+sO1OZgX6mzsQoYzuB4L5k1r7Wx81xh+FORBatSTbjZtjZPIHTx4+DMnDwvIuxvL7H9ZBfG+uRBzQKUfKByGXaTfgMsDkaVTpa5MWiHbA6omSXextJxAEJzEh6ZZvpkjCFA+lchcOOLgHVVW1Zr9Nkpb3oIXVygs0fS4Qmj/tAFMmHzFmLk8edEYVe8qhvIrvFecnHMm836/clg3hrRhlOVAZ84mN8Z4+gVP4bxsaQhb0WQZbWfvN7Z2zALLMw2wDyPFkGBoqbVD6DDJvAKD9TIN/p1HkRhXRGnM/p6ilHNS+p3g3lOAvCtCSytKQL468+E16UdUyYfgQdXtgE11Mo8xnzMmGUa5utXrSgvDig6zPO7PN83zhHoYeppoc1OpHpMOf1kIeBHzFCI1IdZ3Wu7bS5OORhkeKCGBb5gJVbGi/uLUpaRngVvrYb5Fk1EqBOjvKoklqqklX1WDQHXpRqUXmm+3nwmzkCVisnrvMqfnOFJ35V+jkMr/NPi5NIlIHCc+OjxcsZ8rVoCX+fCm2RC/K25RGioww62nDVFjSHy4d9MWpq5xorO2yIsx3swoJ0CLRwJYfD1ovvLmCmJ3ZOheaoouYG/UKWXtfhObxD8Xsivxa5RC5Rew+Ks5L1v2H0JOuDi6LSGNj4BLhuzmwHeQataLRwrUe8gqHzFLmS96MTTnS4sDluBjCZTDHbOovzzjuEU6lDGhG6E1/A6S98CeONdYw3NsQJx67Ptr8gpMSYTRg0UvuJ6SmyAz0qr6p7to7fiH7Wg3mGfraL3bOncPyzn8bBCy/BaLwq82mbjwByWCK0sUmt60gOjh5F5IuTSax3cDJx+TZ9rXn7On9wnzqBsLMzQz/L2Ni7rA5v5FcAq3mw0ltRlisf1gFdovtLU8ZwUtWYR6jGhmos0Qw5jFs+DgV+xI5msjTX+6h+4nNiCK939aq28WgJW5sTdF2HtY0xupGJHassFsHNM2BncwpKwOrqWK4Wn2acPrmJlBL27l9HGpttr/AlOinFOiHYfqvxOFQjOqBG2Xf5QI3Ip4wFPPPGHLCMTQPWmfr7xtYodz6oi9wx95jtbmN3Zxtd6rC2toFutARKdsKjHHCKchCnb8IWyXex26r8xkZMNfcrhMf4bXHdCs2/HIVUC4ipIB8LixyZbdDWseXa6UFnhR7k9DWElRV0ZKxGGIcaGhoaGhoa7ljk6QS7N/6DfGHG9OT1OPnnvwYAGO05D+P9N+NAlLpb5MzEzNj50qfqsnc2sfulT2PcnJQaGhpuI9xyJ6WsG3QduZFBVjR2slyvg7PFOHo3bhSDkVkHMkCyscdu6CHI/V8Ac4mzIbYANWrn3iMZgRIyExJGQGIk34ANmxuwaEpJDRcazYUAaKQd8qMy2SwE8l4mpNTpFXdhSWkRHtQ6xkzlOiGC5MPs19FF5ySzniQ1viWzlMDJ1YVicAbLwXgAt+kUq2AqxgGrZ7kGShfQYROL1SHIHLpmvV7/4vtdQjcTIXdqDNBrZBLLhq1HemL4FYC+qEYxmtoC1+i3TQ72z1GO5LeQMaSaQt9o1JWNPPMG0N+4Z3G4ss9q9Rh1BGSWCAvMQCa9SkINQGBQZyYG3bwmuCMaBSNUOGAYIgsFIwSi8b8Y/eBpzVRQ+GS/BFY5zHki2L804kgRxhTSztuW4tn9+HwekreUNKQ5oRgxLQ+TqxxoYBTjsT0ht9rV5XWeDyqO9DDHHPiVeVZ/i5TEJPvOVlKv9HWh5OL2GCqiZUVe2Kdyhow1Oc3xzfIxQ5S1cYc6mk8xUQn3YxQq+5uVd/GdHPJjzdPSx5O/ws5yTs6vuqIS6U4SU+lzes1iShCN30s/Tyxdl1mdJ1gcM/peIihl7chJd5BzFmekLpE474VrJoU2uf6xSyYLGR0IoyDjxUkpbm4wOpTt3cIz8j41A2HGrNc0QnSspuq99Uzy2RVm7IfDPmLOX9FZCVmusGJO4jg0JZw6vY1LLrsIR794OSZb52Nj/xqOfOEYjp/cxWilw/JqwmiJMFoaoVsaoRt3GHcrGI1HSLkHIWE7AeMRYQyJDMhjjaajbZaQsMOM2XSGye42Ns+cwOapG0HdCKdvOIp+NkXGMihncVTSjmeRjXogXJGmEWD0H9u4wvpcnZCy9jkZrwnI4qQijEjoM4f2zTrWA5lEPjxyVQa2N2fY3NzBBRfsRzcWbrMNnH0IkwF1ArXW4OIwaIOFOBSFTWoAIEYm0mv1GF0yA7H2WwLA6oic/ak6kci8w69z0+SJzLEs6H6VGxl+bDygShcB0GhF4iTFvaTNGTh1YguT3SnW1/fg6JGzWF0Z49DFaxitsDqZsfcbsGyqT7cybrjuFMarYxw4vI6OCDtnpvj8dV/E0vIqLrrL+VheIyBluXJW5znQqEk+hVGu2+ZeAoCuODAySZQk4UFwPutl3DSlTDqO2hieVRn5hkKW6EpyNZzmw+ROAr5pqO2rzVHGe+2UHhlP+S7OccGJihmUZ+hnOzh14ih2Ns9iY2MfNvbtR+qWkDrRJkzkDmtScBljOYusJd/ZkrL6bM5xQVa1J8qwZRtFsqEhRn+5XkU2WGXeY5sKGeLMLs40nTqGzWARdczB1ULG+IZVzuJoR6xz4VTmHMQA98qfTq6QRF/qVyal8A3TbBEFWKK03Zmh44/0b3kkc1V1z9UfWOUZxL7poonls4fS0P+EyXJxaIkzApFLc8iXMdWurUyodrvDK2VotU0fKUNIUN2F8rplQhrplYY0oOgwIjlEUHkOo5zkh71PoSYcquy5qsPKoihamlcVdUZl0WVSqxT5ZBWqHFnCZNLHD3tukRlUxhc5wMAcF0Pjl7ViNXsrz2MbCNOcCYyiu41fRvrALwz2qkXeGEZ+qkQmG29CBCljOGOuh0V7H4dnlQOFzS9tQ9FoqklEPT+uyxrsjevvVHijyNWstx7DhrCm8DJDHWmQdtGzubwGdZmX/sHzRRXFsD8txk0loarsmgOlfHnOnp6qDDi+rh9ukqybYs6AXpeTwYNKLgb5Dd/hQQ0XlTOkr5J7/U/2639pPr2lzVFWBAnQtURdMOmPBNWRxm2COyYSwa90Q6izzQtS3RTVOtP1HxcOUMijkGLzEhvnhz2B/Z25puNhXljQaEWW4hrafrADBARgujXDCDOkpZE4WhPjzLGj2Pyj3wNGYyxvbCCN5PAHdQnUJXTdGClJ5JzlPedhtL6ONGKMiDDaez5oaRnd8oo4HiQGTaeYbZ7A9PQx5H6Gye4O+tkOcj/Fzo3XIfezMg+MfLPJGgWZiA0d9WMufwG4s4mBYONbODwR3x8wM+qc6RTYnfRYW1+SaL6gYlfCvE5wyRq2i+kw02OD8dOSVO+CI0WhAK0Lm4tMcbatlJjOU+I4W6er9TSHxz6/UZp3tqfIfY+l8RK2NqcYjRPW1UHJ+o45sdkYnmfAmZNbSKMO62vLSMSY7TJOnzqLbqnDxp41jMZ6aHEwl/QpVVA60oepHI5APU7GeSixrA/cl9/mpsGAFh2YOOTBef73erzX5/Y3NhlortXmfweAHjybYGd7C32fsbKyjvGShJMqh0/sDRo0juYa9EGlFyqZDH1ogUJh44u/G51YrS5mCwagcayleH1eFRhllTU6/IC44RqJ4XMRa27iYAWTDlx4eTNjWkNDQ0NDQ8PthDxDf/ZE9Wh25hiO/sF/B41XMNrYf5Ovr1xyL3Rr+8r3S++FtLyGbm0fKHVgZuSds9i9/jPYvf7Tc+9vXfsRrN/z6yX6ZENDQ8OtjFvspFSu2FIza7AEMchPRskJuBKGNiVbBJNc0+a7zCSnz9UQVcoBAA7Ge3GR4F5CMVCisKAuRgIx8qvhS1f72ZyFyLbskudNlNF1nRuQiEs0JKIRUmJPK5uXSTfjZCmZEvkue/FzUvoIlVHb65KiUaOcIK95DN8AsNNjtmBFMJ3aCV2SvWPnIQHligJtCwsLXBkeuWxEumOANk1yFhJ4ZnRIgjGRUwMG+l6uPMrGB13nj8z5x/LUPFIHN6akVOTGVvO2LnbnqZSge3US7Uitl2b8knJJNooTg7TNJXoG5MoW3QwGWK5oIoDN8UoJjP5RfkIr1NWcKRLIv4tDSTG8msNMNH+SyqLZuCoHNFQJiy1B2yApzXFzJqKU7BIUTBvFYMML3l2YmcmXyiWBi0NNoMGksBu8XqI9WcnKn4Fxoxin1AASHJlI87dXPIpUkF3f8AtG7yEv5nhDJmuFKRzyLf2QvB9EOXfdBtV3KGko/qbyZr3VjWtc6laKkjoYz+ZNTsWA5M5gsb+Y14B2PKtP8dMQh6MYypuIkLpyWZ6cvk2+wQ5mjJZkozxBjJh9n2HRWCwyWopEkQRSS1QclBJYr3cjH2Sic5JpZNukNPtfTFecseT7iMgdwow/VH02pwLjScmP4z/va1JHZu3Xys7EcCeZ3c0paJaQlnrsTDNO70xx+sbjOHryDFK3gm68hKW1MUZjIHUj0JjQjUboRitYGo3RdYyV1WXwmLE8IiyPR0hLS0hLY6x2S+jGAI0Tljq5Dmq6s42l1GNpaQmzpWVkypj1E0x7oJul0umyOIslBjKybgSRt6E55vjGdxYdKfIjzkpZTyYX4yshkxmZNZqMRbTQUEZM4lSBvtMxirG7zTh24wQHz9+DpTXJp1z/WeQWJm+UZJzUKD6u4FhkKMOiF0l/6pQGnlnEO+jVQuTRxoASgaUum8pY611ON6x0k1wCJZHKZD0XEVHSZ2xOfPAofUmdaiaZcfLEFiaTGTbWNnD0hrNYWR3h8CUrWFrWMSnJ/GDM6iBGwGSLcePnT4Mxw77z96HrCLunJvji545gY/8GDl28H+NlQupUAxmr2MZpGR9SUichc1ZBiZxhIqFhiVx1AKhOpPs4DRl7ex3fPQ+NNOUipv+yClH2QbToI+vWrktNvqDtrnRlFgdE1vYBAzlPMdk6hlNHjyB1yzj/8CUYr22gs8iaKWkdS/t6/azpQWUzTZ/1nMtmGmvUTlK51LmbRaASObC/ohclUpK5kYowsu7MyNw3S/QIAKAOGSIwzDNtGxU8Jo2slr1cEMGuNBQnm06+22Yf28kndb5XJ3wfLxIG0XrunBC1X+ZXsd9JxCGbg6kklYm+5yD6rgyu8qm4anAcVMJb9tSnNFV0Io6Jy0eydyj8mEDu3V/P01wXU0JdKtwZ0vpcPUFjf9/mDBx3POMchiI9mvdw4lMmKXWdgh6p5k08SAfpjxTmcfXwqr9x4CnHd6uh2K+SsmuCy1xlQLbVM1s9fZqjD7hSIT7PiuDypzhASbrC+8Cj8No8G6nKz97NHPSEvV8xFIU3ZF9LYTYXqvgd5c7aFfXcM1aQjWGhKkNHe5v7Dd+1UvzFYcUXpAZQUVH/UD+37JL+Vku60mzP2WqK0tjB+STUthBpQw4XvlHJpfo0/9ugbjSolW3QhnyHn2oEx2qjeyCYHPK1ehKGbW58G/43lsPzjRLq4XrExdbKGbqyDeSG4uoLtWjMFWn2ktLOOeTlq1BNk6ARmsPcwfQYhjwoAU303eH6oejrkMVA2bD/bkTWXKQQWZoD320tFXTqkMUV94qFxnlpD/zsmyig3APbuxl7Lr0cx68/icnJLfR5irS7C6JdEBI2T5xW+xLJvDSxOChRJ4dEuutAncjAuOvQjZdAoxFWDl2O5X3nod89hXzyS+B+gp3TW+iIsbq0hCll7HLG5NSN2LrhOixv/AuJFqq8TjbegDTyls43s809oP1NnXS48MbbdMAnOcSnet/0telDXZ+I40SJSZdnjK3NKVZWljBe0lbOta73cq0lw9gkmQwGnmpcL3JoomEyFPNjHZgIejjKOkPghUmCO9+T1JnDfMDoHajGAaNsjGHvR9vbU+SesTRexvbmBOMRYX3vCN2ojDkozQeGXEG+fXqClJI6eBEmOz02T21heXUJa3uWPTq6z0GCfgumGB9mvX8af0Kb2w/DdrE+6640mpdHKzadzTFjLJQp72teHsXGUt0UtHouz6FyDAY495jsbmK6u42uG2N9fQ/SeEl5Wex21QhjchKuxfW8AwOyVpq4jPA+Dw+i59GZQillTCqRUasxArLeEFsioRjjeJC+2OXLWEmVDi+TKKXTDrQG41g9HyH/fDNuuQ0NDQ0NDQ23E2i0jPV7fSPOfvzPwJMdAAzuZwAAnu5geuL6m3x/+Dv99RigDhv/4iFYuejumBy9Dmf/35+j3zpdTqsG7Hzxk9j69F9j7e4PqveXGxoaGm4F3GInJVnQQBdiuvAhM+YkQK+kgC3oAPhiXo1ZEgHHNhZk1Sq/yyZ4uYpNjWVR6ZEs5MrGmy2y2B2h7CowSWnuJLa0SrqxJ7FPZCMog6grCzc7xY8kadQDyU7cyvtivfBNVH2v0/wlvIyddEnGOq9XFX3GFu1Jo5xAF7FUjIL2rNN46cwoC2LNmt1RCX4aqRjRSK9/o+C8FNa6BGSz0nAxrGSWSE9JmhaZGDN1FMp60t2ipiAl33j0zQB9lyDlsIXG0U0+p0OdmWTjT7jW91AjmTkykLZgRs7DzW/lV7U5y2Vz3RMKU7O2KYE8gkdOQnRSy5WEQBcmmVOIG2FUlkEa/YbLuaZiHiA3pmawi7WdvyvXCZpdS50tQnsTlzwKDcWCFKcDMY9oEYnGq0XmhWgqicbWxHotHshKPbejU9iksShAlQmGA88CLSVyhZVSDIQI+Sw8lQqN5mKGw0BcbIvQ7QID2A1fsY/5ViJFGgP9Ma9QZOG9lssl7QzB+SXQZnUyOSt512cB5+rgNJXUqYQjELoyxLmEyPW16SyR71qmYY4NKvcM0SUJwCjJdYezGcCcdbOf/SpEidqR0XVFqRDKNW9jyKWeHcp1DYXXKBsELgF1nc150oL7mLNRrzzPVb8zFlAJHU/lvaIPUa550Dc4Z/Q9yxyckzr6ZHDucPr4DtLKCAf3ruM+97sC137mi1hdW0KezTDd6THZzZicnGBzOsWsz8iYyslfGqNLQDciLK0sI+cZlscdRuMRaDwGRiOMUgfqGOOlJYzHS8gd48ypUwBPkQjYWFvFma3T2Dx5Ckf+4QasnFrH2voylleX0Y06jEYSfyrZXXse4U6cJiglzFjaNmnb9qwno/V6Lrl2rji/zEgj2vQZnQ5Epq4JJd+kiqnfBY4fOYO1tWWs7e2QOgb6hOJEKvKVbazTPHu/ZcuMowyQjCMypgNIhI4Ad3ru7LNu3JDkaaeB7VpWGVOS92+7Mgyg6goAn68oWZ06zWaNIOUG3HC/hY03tmndZ0bPwMkT25jt9ti3tgfHjmxidW2Ew5esYrwqzjTS/6xUcbydbgM3fuksCB0OX7QP41HCmeNTXH/dMZx3eA/Ou3ADaQykJBKfUudaM1G49g6lDn57rRaV9USzzyXCZh1r30sJGJNEhOx70SE9y5q0nwk/ck/6V8ax4tzERf3a2G7NnFHpyeJo4wMdXDn67kgG9T2muzs4dfJGbG9vYd++g1jbOIBuVEdPMsdqk6EylpmO13kDiQMXK71y9ZppHXU/Zjsh74zxOSZgMiHCRKpLpe7Z+5yQk8VhiROADowsTh5h98fmwjZvdl0NG4O8lVFmFzOV2VT4B0JKY6cjaju6yUH7jod0eZ38uvNCnBWd68WY0sZBncySJYmDsw7WYb5s/5HIquUdO50eHZFshHFZKJ4yYV7DLt+yoRmcmDVsKGu81ap+rofK+FfvEgYMHJWMlHINHgW2Re6gvONzGxmTvdtxncyrWRNQZDxMLL2vEQb8DdVhb4IShRXw9Y9dJ21rIKAcejCH1JziOF4K4PiBCt1R9KO6IYTNeN8BDZXlBR+5TmJ52iyNdb0Rljjh2qo4n4l6uMxv0znyN/4lDH5DnS8QdPCw3cIcKOYwn0f9mUJaezKch365cPlYQGqkwb/zfPpz1nNAm2uJqjtRzdhQYuz1i/oDUKmYiq7IywgK//X+fVOM44pSf2/YPsOyGYv5Ol8Ue32CxplLHA/eLGoD+ymFcctgxx+iXrH05nBEOg5bdCFLUqYCuv5Npb9aBFa7Fs76sDHE1m7nqFL1jHXeJO/SvKxR3XbGkWIHiPXjsL4r9fArX///7P1br2xJkh6IfeZrxXXvs881M6uzqvo2HLYITZMUCEmUXkRIgIDRix703/Qn9C4NBsK8CdCLLsPBCCJENsm+VGVWnjyXffbecVvupge7+oo4WVmNYk82GV51ckes8OVubm5u7m72ubmDACTDdJBrjm//wf8If/bml3j/m4+yD3p4i9P+gP3bb3A6Tjg+PuBwOKLWCXWqmOpR1zDN7V1AxVCKAJNLAf36WxCAYRgwlBFcCK2ecDodUE97LJcjpolx2j3im3/5f8fuyFjd3GC93WJ5e4cyjnp9rupi16chC02/G+CocW53vxY0nhgI1cpg5LKBFJMVXAm7xyPGsWCxKnrwrD/UZeXFAQvEhi4JXZoqVfbIdTIQ9btcktGn+wg9JAggbDjcz18diNRliP0dEPzwgL9zYY6ydSxB1t673RFcgfVigd3jhHEs2N6NGkFJaXIQnSi56cTYPZxAVLDeLFEK4fBU8XC/x83tGpvbUfuVrcoAflFoQHIpT13Pl/8CIdv5OkdbxjaG7wPyZ7aDAxw8vVS2f+/o4P7azTT4Qv4Sa7liOh1x2D2iMmO1vsViuQKhOEDJ2tG1q+ubeBhyYjRxkgJ2ep1utnnIcs2I17Ul+W+cKmCbxuBgqzxLn61hKJXZcRHSs16S5LboYPpuHKxtmi8Oyv3Q1HVN13RN13RN13RNf3eJhgHP/9l/idt/9L8ETydwPWH3l/892uEJu7/87wFuqA8fwPX0o8rj6QTghE//8r/Bp3/53/z2F9qEj/+P/wuG25cYNndAKRhvX6X9tdJ5BTBd0zVd098i/XiQkm62svOPHR0DFIvnmzf8sL1SOrGj+SSCB9wRCpYrL4BQaGbqby2HILcT0lo+EKfeGRE9icOgZLtoMS7FCSLJI9bwQuIAtGgBZjSYK9uGiObQzMkCmm3g7JS35gXCWKU7vhx5CJANfACV3I4gkSJISmQyXp5vFzPP3dSgO3+yKAuF/HogReEIXwy8RHYqcg7z0GveqEhUFQClCainNQBVjIbuxyl2jY4ZaqS/i0UvUhOpG9v8TxgFjX+tCVBCABJysjAbD0jjGhMBtem1VUTehwKAkqtTSBsekaVSQWCwRicx+TPnthkhDNRkEbBUKpFNFJYsApDR2gN4TDLPI+UYPaz5mj/JUQdCTux9gkbJcbqSYeMHzAsz04aXG2WkM9lpTAfrZouRC+VZv56Fgte/xicHzqT3cr5cvukg4+aQ3kJXTtCXwWZRZ+YjpygUdlUGubx6aWZMS7QNIAXUhIHPHIHNxhCAqpcMOVCpozDKzTRbRjbZV11cqAhQR/VUM4txWMeiD4sans0gqPWE0zAc6WzXIhWAiTGMQmHR8AcZZAgQRgJGCKBkCcYahAVkchlhDoZsBA0dlaMcOU+TEZCVp5zy53FFgDqb00loc3ozIuJcGlO5z8GM2hitSSSYVllD5BBOO+DhY8PLn22xuRnxT/7FL/AP/ukbbJ9t0QBMp4Z6aDg+TdjvK56eTtjv9jjsTzg+NDzeP8pVC8cDTsc9Dk97PJ0ecWpyFROzAEGXtACNBXWYMO2+x4e3f4nbmyWGUvHw/lt8g4anhz2mBnzx1c/wxR98jdXNM4yrNcpixGJZMC5kTlqt1ihlxDCIQbqqnh0sahBYTvkaKJQDwCGRlNjnw4bm4d9F11eJ/NIKmCrQgA9vjxiHAS9erTAuRB8zAK4KBmNCm6S3qnSO1if9NSQ5Yp30hlFkCYXcKdW4SQQwlklFZLLp+yJZFaRXYsmcb+BX0ffF53oDGLWWZE3paWxO94jtknVv1kWNKyoXvH/3gHaseHH7DO++fcB6tcAXP19j3FRxHhWT+YLWGqbGeLyv+P6be9xuNljeLjHVgk+/fsL3333El794jZdfLbAYYs6yWsW51nyu7lzHFJGpwmFkY1q0gYGIZG0gc3jRMV0aoTKjTsDU5NR/a0CdoixZb4UTzq5ojchDsc7Jy5SmiCKLcAioPLJGr2p6CrlOePj0PT59+B6LxRJfffVLjJtbGZONJepbpzA7TaBzvuowvYa2KTGuN8zLQAq2shnUnQMMVt1arDEwmZXYgtxarK845DmX3ZquOVlmEVaAkcyfAYrytYr2GykIHFxUbqvKQAUVnU0M+c2DDDYD+oO8T3pYwU8ryVSTFmG2qDDFfcGo0UWglCfB73jiSabCFHUA/XrNZyNKn2HTZ1p9qI7xfkvv5/q6lQeR9l/UG+1KoDR3OOq7nHli69hEf784yBWfMyDnST/7PEznWSlYMnv5/By947/mVWUWWJ00Jy3mHhQ60xeeLJJSkz1FSUz3qy4vtXvWZn9H6bM1gS6lTE0GnTpXzo1rWTy79S0beDrqsXLN0d+tbk0uY6kWv36mX2y9EhXY77HmvAjQj6zRHz13/OPn80WVl7rpt6Vw5Ob6Zg2lXr49f1IRqdFCb5L7uRyeySvO19v5nTy/Z13eyzj1BdPn+TIfD/M67cczvqCXL3trHm21neW5WF0S2uCvATyy2ugAKVAbxYUyO/6F2SfW3jo+8jXzGZ1hv2XSGEGbrUkIsneIPUT0zSUZvkQrAAFmAxevK+pnjwvpolKydURfkq4SZL2R5xIA0Lnr8fGE9WaJYWCMr7f42YuNzvF/oOvmBlRgevyE6XhCPZ1wfPcN2rHiuBcE+enhPU67J5wOe5xOE46nhlobWm2opwm1TWA+oKKhnnY47D+ilIo6Afv9DsyEd3/97/D2r/8ai8UKt89fYv3qK5RhKVcSLxZYvf4SDcA4jliMS5QyYHH7ArRcgwgYBp3biEDjoO0PfcZps5/tXMa3PFeariQCDvsJRAWbzUL3LJLZ9hMdmAWpHn1Ykk6xfW6ZTUBZP2ada3QWO7TRdD+v6MQOAJOmaQB+mIn5UgVZUlNB9jGJWGXWK94a1ssVdg9HDMOgACVGvvvQ9zEMHA+Mh/sdNqsllssRh1PFYVdx2O3x7MUN1jcDSpkfpbO+YJ/75Md+bGZ+Jnbp+qofP/lqxqZtk6i90XcWeTUfYjgrO09zaWD7xzxvzspwHc4At4bD4QnHwx6LxYjN+gZlWOh4TH07a2tuI4w3uf9TXSA7EIuztUEAlFJZad42ThPMnhzttNHhViuTO5cp3dN2fcTer94ODp5Ey3KDdR/iA9WOellu8jzXdE3XdE3XdE3X9NNIRITx5oV/X776GsyMF//sfwcGcHr3N2jHPXg64unf/rdy8lTT8e1foe4+gafj37r+6dP3+M3/+f8oe4EyYvnFL8UvC4CWG2z/+B+jO4GmNA7bu1lDCmhc4gpouqZruiZLv0MkJTvaajsw3UbZxt+N74a+kTyULyOHnDRpGk+ICnW7wHODsGztyI/uZmMU+zVsQoZ6AsEaLaA/BS0gDnFTyckmCz0BMJljswCDnR4pKDy4+dc21gaAks29vqO0mhOYHJICP3FmYYfdMED9VpHgr/gVZICCuCCbz5KM+bbR9X2lbv7lupYw8pmBzo24ZvQx/kGvTLOoR036ktRSwE5T0TrUYV3laiCrqEFAGfaoAWCNUEQAqMKdGvmUnjmFS+KNEcsAqIjjVN4rGlmIXeYM7GSn2g1IJEwjjw4DNZhyA8ogETsqGkYqoKoAKqTIVmRkkBseijbADQ6BvHO5zH3K/kkc6MIboZVTfjfKJJmoUOAaxECbzQRWrtnemNX4zi7xXk77jAn23FnX016T/LpRMRtDurKsLnJQ2jyP+sQ7q6B8lVNxTa1RnQagiI5i9WQVwcqnMRVrbbLQ7HMjmhVkhhs7L2Y9UrJpyqMgwGkNw9Hl6D9FzTs2DhhZFozvwbO5ZpvZLD0PF73qTCszY6ycZla5sNOQFpHG+RUlUiFV5dFmGVspfoQZybJTAaYbhF+1sV7fQBJxSelcAVhBrngrJqPIUM55XIDoMwN4ebQ8CKh0sCsDEEC3Oa/tmr3GoXNybQF0ghscmS3SjEa7cbArg1vDw0PFvp2w3AwgahhuB7x4doupNTRmjCgYK2HdFnjG0EhMIszTHjgdKtZrAaa02nA6NRz2FadjxWlXcXo6Yfd4wOHxCY+7B7z//iP+4i/+FT5+eov7Dzug7nHcTzgdGnaPE4A1pkfg/vuK5foW47BEWRSUJaO2I/bHI169eo1xXGG5WGMcFzjWI7Y3G3GMLArGxULEelxiWCxi78AMKsBYCIN6hgKCC7TWZHToREEY8PBpj9NU8cWXNxgX8BcYjKkRpgpwZdWfIktVkEshV0qAGOuFBomeRJ1DkRl+7aBiyORXRTmJQZrRSNYcBoQyR3O+fjXrs8asY0knMZ/7TPervmdVxmDZTDFQa8GHD/eYDg3Pt3d495tPGJcjvvzlGuOKMYyjo3eZLdLigN1Dw6/+6iNub1Z4+XqDT5/2+Hf/5jvQxPijP/0St18uUEbRRWUgN/Y7kMEdgXGin1sC//h/fSAJxMVROgq+VBCYgRtbgwKTBKzXmkS8Yr2+r2mUpc6h4EqZO0BIBmH4fA0pq5QAOTX10lBrqIcDPnx4h8Nxh7sXb7B99lwcZ2UQ3VuKz+WuO3rl6n+GIkhpm/PhY17WmcUi2/j9s8oorro2kWdNQUhS13m4Y4/IIIVBnJTwpXLM2gTRktoJeiUcoDpc7w8U3StrzEZpxvF1dHIekPE5gT35fL38U0wWVctnTvcC5dmxWzB0ICFfCVm/xeLRk7+t/2F7ON/DJPmROcfWoqQ/K5xF6+jGF9s8S/5LJoMT6oK4OKlncmxCZPOPjW0r7tKCi9DvA7ysyz2fr7udYZ+i2LQIjPWDJJOxzFd7Jw9BKzuDO6xQu+47A9CBmIvtGtlYT/VS0N1kaEPPxx9if4TUzbMFVQa2JNK8HVn6PNpjJiK1jW2RwfA9mgcENt1nHZgKz0CxOTl2IIVg/csqR58bz+Ty5PyHrQfl96a5SJlI8arW30fs8R99gkn7HhOKxNwzACF7Cd5n7DRQzjJryvlvvazmMfPDic5a1MWgOPuUHxngwOULpntyiYmCFDHH9FQen05NkrEMWmMg9uqfp6yrtRMrmucJPnL3hnzWbYDnSWaC7pnXkdWkKyTqWED5PW2sgMxzB0quzuk/GwMl1T2kf7mEjl6KMR36JMlrSjPtHfo5jdmunAvvYv6bK4KYj89oY0Y9AqepYn2zBEPmfVr0AE2iAh6AxfIFFvr85udfo1U5FLFcFPB0BE9HTJ/e+tXMcgKGMdWKw9tvcDrssPvwEd/+5a/wdP8Oh/oI5pNWtMBD/YQyLoFNwX37hIePe7lOrpAGN/z/4jSdsFgusFgsQCgYVxtUZpSBsFwtUYaCYbnC+Ow1mArG5VIiMelBr9XP/kR+H4ocMNBlSfHJIzqRAJyOjGmq2N6sZFmG0Od24IHV2OFrdIIDzS/5NkwWXY2lzvOrOgldz+Zx1YVPA3xfncmXLudOaHyIzMtNo3E+B7cKHA4ntFqxXqyxeziiDITt8xFlkEOGc5XGAKYj8PjpgMVigdV2BFfG/YeP4EZ49foOq23xQ4lqGk3B7tM4NsXkgyO1IfHQ9EHX1jmfZ/nsmY+PrDrnn6kbUrOUwL486wfH68gmpZ6O2O/3YAY2N88wLhY+R846Ja2lo12cf79Ib6fM014IHvgyv5APSoUsdBpX5p30tNN6ZO9cOA7pFTJyA50kDrtjPI9DP/Eae36jKt74bTPuNV3TNV3TNV3TNf0PmYgIGBcgAKsv/9ifb//4H/tnZkbbP6LuPmH/N//qfMHFDU///r8DH3c4ffwOl65786S/cZ1w+NX/r/tp92//32fZy2oLGpf9s+UG65//w7PNLJURz/7x/xrD+ubz9V/TNV3Tf5TpR4OUyHa3DPj1bgSwmT/tSgsU3yz5ZorgzqvGVQ1ZHFEPYMAc8s0tSByjpcTVMR5pqDV3LIqxp7ihwk7HEAaQe9ubXMFj1g6YwUkNFEVP9ZJFVoI45fRaFs+v14Ex4JF9hD5lkvvfOXim7Zfvs9+ygc83yfHQwqlnMA9ADu7qzH6zyEyxMY4y7RooS349ju4/hfUNEX1IntOgxm+7HogkKga3hnEsHn7bnKWLgTA1xjCq4UJPRtbqLHcgVqvSXyXYq45LeQ/QE50WtQlirKECBP5Nrr4hhtknNB68GpWLXGNjRvpWoVFigKnqdVQs/WdRGpikYiokV5+xRlVQ3jP1p/Y61vt/z61mGqPmzGycjTJEES3GT4+y/icBpayaihyWeW6SnkVUmBnGguZ+gWL1DxSu1fxOtmlFZBtGoxzVyNqajEoXkhv9LlTgRmW2yxO1pjS0LFJRClodZVOUL9+DV/O+kHaziU7oLFj/xvcz+o0YpOtEYOA0yVEQALIsHZkOdk72yfqyAupk7ykI0IKdUGQ34Jqebi2cWBbVjFnGk52ALBBgpPUr+T81kkKAH+NgsUEiUtIAwgqEJUIGQr9QR29uI8NARBmkRYnnwbNkEwzakkMiO8v86qtUl0SeCvCC3ZJE2u4K4NSA6VRw/5tHvLjbamQloJFGsysFQ5X5iQHwAFCT6D9MAvA4HScsng2gBWEkmWZXBbhhYGDGwKLTJtVp09Tw/q92+PCbv8Hj/W+wf/yEVieAR+yfGGXB+IM/+QW++sUfY2oDpj1wfDpimg6YakWdGqZ6xO43O5RhwDiOGErBcdpjc7vFuBoxLEaMw4CHh0esNs/w7O4ZiBjjsmCqR9AA3Nze4fVXX2BztwENFj1EGVQEhFGIsX9ifHx/wOsvbjEs4bLWmkThqc1AMSqrCZBhku8AGUgEpDIKQGowHatX0hXSkZPmYjsMUlUZc7W1hMmulmt6xOYgWAQgobmoodmvJrD5JStkfR8kURq5Aq02fHz/hDYxnt88w/vf7DAuFvjil1sMG6gCabpOGhRI2rB7avjm3z1hs97g5VcbnLjhu2++xe7TR/yj/+LP8OLNCqxAaRQI0Jdt/NiaSyNFcrTRrysjNUbbfMwyxln7QsajRWEC0AQ4EI6FAPsJOMquP0TKEyNZAE4CeIoT07HG8YhONi+zxaezqEHANO2xe/iA+w8fsFpt8cXPfolxsQYNgF346DAcYm0/wNxiHWfrBlvLMKPQ4GsiZsilIiZ+LUAgHk1JhUKucNOoesmJaXNZU34Y8DHoEN1SFADPVFVjVxAKikbQE7C8XJvIerUgtC+gMil9yZCIUKTljmhcARLAvWi6yceE8d11P89nqp9O8jWnT4SXFgexkgn3TS4EQDp97s/SX8d2ZC9UXjwBCHBdWjfID/DFHmI9YOuseVHh8LZ8NpP1c5esgdNqkYNgkUnqmxFM6tYN3RcS2etbNltTpe+cX+4WJCbHsGHla4+gT8vg6EcbPu7TTayeOwCzw9giVzbSsgo8sqt3if6z2xHtAIHfFmhZEm15yYv8PCVTF34gwdrir9ueA1kMuu+dCBJF9Jki6xKnM3X3LIBsotHWZ5ye5byc+ki+53blb6m6TLL/FrLZy0wGsuW3O7m7kObyxrNf+wMKPaXzvceZXJ6V95lK7RHnTjTpsGcXxlHKMW+j8QSI/p9H5PkhzZUPTQRoDPjxcSly6T13KTUz9g19uXYYaa4/OP2b1zZToaqv9L2ss5Ncz0FDuYzYA0SNAeTrW6kqANC/I0MPQ/SS0skq+jLO2qWKKtNk3MrtnWn0836l4DVrhsxHTl+sbcaviQn73YSxDLK+JQ55AnzfJnt7Cp5rGbU1lIFEryyXoOUSq5tbp8MCYzMBz/7BPwC44emv/i2ePj3g47s1WjvAr6bFgMVqixevv8AXv/gFhs0zYHmLephQTyfs33+L0+EEohOmwwHTbqdUPqJxk+vAh6LReQta/TdoDGw2G+m3gdDQsPj6e9x+/ae4ubvD7Ytnso6naG/wlFFPwO7xhM124deJGj89Ck8L4GDunKy3M3gGJAfiOnxcF+Ep6b6mdow0l50PjpgUbf2clxTWXz6lc8yRl3REgJwYaMB+fwQzBKD0eELRCEplUPkg2yHLqGIGjqeKp/sKqgWr2wUaGJ8+fsLpcMAXX73BajuAkkGGMy/yR20zzWlPea2t7QJvvLgWY4F9tEQ77Wo6z8MXeJP0mtsWMddz8Gsj04Ql19a3Cfv9DqfjAYvlCuv1DaiMCtBKMgQ5BCXL7ug4A5ja3om0zf0hWtb3Z3wFfF92JowMt0lnsFbokhljc76ktYmaVhjKV/bovV0wDufIA9dzZj80e5HTmU5zKJ+yXr4Uwf+arumarumaruma/n4lIsKwucWwucXy1R+c/c7MePbn/wJoDR//2/8r7v+f/9UPlldWW4zPXmPx6mstoGH/638NPkmUpnbcwYwl7fAEHJ669+vjB5ze//oSoRiff4HbP/vnv3sjr+marunvdfrRICU5cSFOSvF8q6mGB4AIXNShQgRzKMmm3eIxAFAAkCEHCkX0JA9by3EimSFX8NhVcoxJN1zqHucUl8Y2n0SyUeVJnECAA4L8fnliNFQ1ABGoWeQjViCBOdeqXEWgbbLrQEgjMRXS6Bu2vVSnll3X0UgvObKNbxM6LToPpx1g0123Odmzsz22hnkjrd/JKFc+mPNNnVxDKX7CSK5VkfazRlyyqEHiSG7ibKRwIGII5+NAJI78CWhFTtRxNYc75DoqdVZiULBDA8ZBrmwjQBy8AEpjDINEYjF0kvgKw5hq0SEKSRhsu6rPjFTmHNC4XGjebxRoIwKoCn9IRBUDAzyJkbBCRBhKUxkM2AR1bAJNjctcpaxGcvWQhdtXk1FnDDBAyrzr5GM40ico+MnNJOT9WwC75QZMAfzIhgOXA5dgy2OuYOregdMcUW44/Qvwi17DgwAhZXk0mTPKM2imoXc8nB0Cd/BPGHtTjIk+qz6zvMaDEtxKhit3WYctkvu2A9S1l/QEWq67gTUqWM+jVKTX3ZnO2Q7Vm7mpN4xTetbSP2ufXCRkbmd0tZjdywFUxmszBhLgtquip1UVaKBxUwLIaeMJ7JHarJ8sio2B8ix4TFFglEUvkj4wfSkysIBc82b88r7hHF1K3PaZlw4M5Ggn2bjggHVZVLAhyWXMFNG3uWxO3/Kh49ZMv1i0g4raBkwKtNnvGN/f7/HHf/RG+kvbb6AmTiCO2gS4I4OLcJoYx9qw2ozAIPqICGCLIANCNeP5oFdljQXLFyNu7p5ju30OYAfUDbg2rF59hT//n/2v8E//+T/B86+eia6dgGk/oe0n7PdHPD4d8HC/w9PjEfvHA/a7A3a7HWojPN0fMdVHvQ4TmKaK5eIJH4a3ADEWi4Ld4REgxvOXr7Bab7G63WBBRjc7qJTAaEfGu1/f4/b5DcZ1AROhVpH5yoxWGawReApMswGFBMQoDkvWK09VT7JGMWPGqVp9Mj+0yn71oExhBJ7kfbsi1ozfADwqYKus0a3M+G5XfknEi3z9YU3zMSU5BDSqiU42zIzagA/vPuFUK57fPMe7Xz1gWAx488sNxhULHKUwWmkYUFCazIlPjxPevd1hNS5QiLB7OuG7X3+Lb//q1/iTP/tTPHuxAo3QaIhKQAujuYEMOwUJgGsAOCT4G4O5ODCoNnMO6BWrJPqGDKxn/2y8aF/bGoAQIOl8oyRzzBE2LpSDMj5tftbnBSxOLo8+WXF8+oRPH97icDzi+avX2N48xzCuYDEHBRCvfUwy0ltjDGSSJfqhEQTwoDrQo1LYmq0wmCeht4gTLRwgptFtzhy0LRI6ykBgBQNqm0KztKaxkzj6CwQ5oZy1u9AV0dzK2YRSbH1JTfVcReEC1uvtmOLkv4PQ/IIpLZkMNvr3LIXXCKJkyLwicA3PvmxAZObue+9DUicwyfrbv3OstAwW6wAlizDT3almuTPSROtMi5UMDc8AJNLDGz4XpgFshzioK9Oi3SAFcVB5I1tp9nOs8ed89dR/nXGrz0azXN17BhKbFYTUdYleu7HOfouzERTfEf/0Nu8A79j7ymK2yKtIgKIS79pnA/TbEDCZaanrclQ124sZFjG3L691O4bP2m+simtD5YG1sXSvRDS/DkDORnzWIqaLz/s691GWNdb/+h4y/aKaSdcyotcLclPoB+sxnnRjrB8C/aiciSH83QSmnGXr5VOfqM7PPL9QtL/f8c86LwEQKeUD+riePS0pMkuW975F8ynvswT6HrL7OYPSpKS4qpi7otgGWerx3J6gLfYeZ+KqHZOj614iO2rm+cNUnyu+4Dsx0sVHMcZTJSaHSLrP+irrQpsCCCGXHfMpuOHy5s73GI85zb6GE/7COOrb+pn39Z+BaLxMXVMwy5oNAFCB3X7Cajn6HMC5ECuRKAE9pIVSDmNclC6wTwY5VW+HpjJg8fpLDKsRy9UaDXugDlLmsMTrr3+Jf/jP/wWe/dEfoyxH0DB6Qe10RG0V06nh8OF7nHYHTKeK6TTheJxwfHwQINNJDkfQVMEPH/B03EvEVZK1yXL1Edg8YlxscPNcmCMRUnVdaWvRCdg9HbBYLlAWpdOfzltDwKKXkUu6xoFQypzqIGSVRdvAkvV3H80qY0vm49XzMSzwashQ0tU+h3yGtk7bMSlAibEcl9g/HFGKRlBScSlFD2PZegbA8diw301YrReYDhOOuxP2+x0eHz7h7vkzLNcLn0u9/lytEtiJIGY6JU9Gqe15XiwUPLM1tTFwPmZK6ttL45HSZ2dTmn/6vzZfxuR7Ou5x2O8AAFuNnkSG0tJx3uHV09+sWWONQsGUzKNUiM2LfrCBre1q7SE77Mq9rude1/c6Pxpue6BeM0UWA4Rl4LyvM7w2K7sXCBEBRX97zTp72CLM6fjczHtN13RN13RN13RN/7EkiTI6AGXA9o/+HPf/r/8auHDwkYYF7v4n/1vc/Of/U5TlBmW5BiDroXZ48ncO3/wbtH0PTJoe30sUJ0ut4fjuV+iiNjGj7R9+/w28pmu6pp98+h2uewPcLERycl4eSSDuCCZbwBZpqeiGiIsaKGQDVNRo7wClZLSxqANiwYUbngQjFeAnc1GHEUFpso2uRkUKF7pSaA44qIONxBFkhiOzsBcqaGjuwOBkESKKa2+Y7QoaSqeUZMvoB5gyqsCf9fY/f9VbEz9a+b4b1vKT/04cIcla4BvsFiT469QbErmxA7HA4tyV03AQEJZeYcAlHI6Zbq+Lpdu4sF6T0LAYSXvBHIDattGM9RrVoQR/A7xFeh1Tg12nYU6JYAW5fHDeSGfjhtbDVYRjgpxK9GuBGqOaAYhEqprKK+WyAA3nL45SGgitNQzFL6vTPAG+cR5zmFOsP4rSbq5Fk9EwF5AbUk3S7Xk2M1h4fG+35rCYFZ2xLBmCLHsnCwZQ62pIGVJRbmRxu8wsapO/NyOOU5kIRwGlf15mWNPCCRUFJ7NKUJZNY0kM0u/RRyW9Yd/ztQsSWWjOiMuJ0t9cr59yVd5HhKJsWurLmZ9ChBrYbIi7DY+jLnvXI5GR6AiYwcr1BcOuzcoOrZKYm/lsUeYJETFJPksu03M5glbmJ9JnTv+8nnRCzxxZgIGZwsRm/+byG6PF8jAszkj8k2sjGxNqa+AmY7hV0SlNERiVCdwYu/sTblYblGUDY0RhRisM6NWQpVgPQlBWzD7Gp1PFZr1QHaOEKdqjKB5W6G7+DgqwWI/48usv8e7XdxjGI6bpAY2XePOHf4Y/+2d/jje/eIFhxRr6v4BbAbAE4wZTY4kuVAnTCWinhtOhYto1HI8TDocJ+6cJ+92E/eMRx4dH7B6fsNvtcTweMFRCrRNOxwWWy63SXMEaPcs0XGvA27cPWN4usX6xRBuBqUGjzogzhRS6YXO8DSeLskM21yTlarLJCig1p9xARa4XtRMYDeAmSJTWNIYcEUj7FYBE4tCrUYUmABPrqerQJ9wJCKuzW2jxmxUIYDqBqKDVgjYRPr57BDPh+c0dvv/1JyyXI7745QZlq2sjNAEKYlSgHePpccLH7w94/XyL9ZsB3/3NI/76v/sOn3Yf8PM//QW+/PkriUilEQLJwzcEAM+dvN0kLGDf1ihF9imyx9OIaoICJDCaXLcHAAacazZ/CpDJ5lKQgLgsSpDrBuVnmLyTk4NsnpOkN92hNEajCRUjGo8YiNFOOzzcf4+H+westzf46s1XWKw2ABV4BCargewKyIgWBYKCnXTcmR4rTibsFLHY2m0tRN3vidxIutaA6gufN2zR4WD34u0VsWoCEHMwvkFpWyq6KE9V8kt2JohDQuCYxWkpyg9be5rjwGcHl2lZtzJrFM5Lc/FPKAk7bVFhs14Oo1BCzigJoKcS0Um4/y2ih5A/juilMQachlnErCApPieJ7EmJBUZakdjnPKmag2z+HE5nt8rzLLN6Z2zIgKAeYOWvzl/pKIs1BuVvPSDF8ncTd5Delc/ox5UW68CBVHHOxoBeJ53yUTyTvUXqQl1UeMBcwAFLoOCLX2maXrP1lD1sNGPdbF01T6I/5LM5q419zIBdSdStzc4eJL2Zy6Se17Mbh7wdmZ2xw81S1/dnKhIMnMHu7A3qvtmnc4czkHh4VtOl1I/h+GZr0MsldK2g394vJrh0UbnPqbjEpXn5c2E+f/rZtqcxdWEUn733uXIyja5jfNxd7ptuerhQflzNmtbYHNSaDLrDnuwwVSLK/hDgB4gQ+TP9+UHYAuxQT1+srSdDp8wAfIwzPp6RRvRb+8j4yqrfucsnknl+SCeAdtlkbwAWs687L1muauNKWKyKHIKx9ZfxzmpTfeVrDQBtClC9iZMtQ1z/zhQIA0ApePbiGd5vVmi8Qat7sclsXuLVf/aP8Owf/JlcK1xk7duYgQWhrOQahtKA5Ysbv+KXG8B6pbVETZUDCXVqePw3/xK7t7/Gab/HdDhi4oLx5VdYbJ9je3MjtrvCQLqC0hi4259ApWC5HiRirfIs69hOZ8w6Pmx50QeWz4E4ad4yu04zZcvOvLCn2TscfZSmizMZcl3Ns+fk3Rjf3XZJ4Arsn05gBlbLFZ4+HTAMBTd3S9BCOtoBMApQIgYOh4b97oTteoHlouA0jHj33SOmWvHyzUvcPFtHJHOYrFh7e3p0+dw1zH8D0sEcnC8vWPbM+d2Mucngr2yHANQeYGPmwuCUw1cc9iijmyFrZAKg12hzm3DYP2I6nrBcb7BcrkDD4PZb76KsRABwWt9lZKMPqdR3TgeF7nVt7Do0FBNFJvktrdPP5xxCdyAjDWqzf56F8LN6KPJ6XQyPGi6DSffkWe90tARkOUBfto8w3vw9PABxTdd0Tdd0Tdd0TX/7VAqoDOB6DlJa//If4e6f/G9AZXaHClF3Rdv2T/7p2bvMjOf/7L+MB63h3f/t/4T9X/1/0A5P4Drp1XCr31tTrumarunvT/odIinJBqiUopv72LDYJl1+U+DFMMAcDXJ6inwnbI472fyria0QWitubCDoFSIMcDOQioBKyiCOxOZHZDvzlm8UY3Mv9WTzIGFQZ07RzWMY7dx5kS6Y8k2lAnZko6q7eyK/Os1MEIUEhCJtN2OWALRKcqBqkZnRTqHQbadvIwoCt9joKwsTgUo1mdFlZqkscPDKfG/LDL1+Bx6NwHBmaGp88027tHlSCx+RgJm4wDfCIEatGo0IBDIHo/YSBgIN0i4SVJOAdxRs1iC/tUYadcv6VNlkTsi0ee/Ce0Pl1vhsG3QSwIIBg2rNVhuJ1FLSFXciSxTGMwpAmkT7msmaRn+xUZJMwH5xjRllWzYsoI9a5AbJ9BvpA4syY+9lcFs+Ycap8LlhhLu/ZpjoLVXZ4JcTpVfmp87MWTKvJwqJGqUceT6YTuiMRezGsh6k1BuUZ+RpW84dAsxhdAZJBJXMl4u37vI5QIo6TgcNVpZFHJLvBsrUfmEzUdrfMNgDNl4+43joyGKPzAMrV5WJOL+5d+rrexItjR1Akq+NkIIDPJVpGiBjY9DvxpOsfZVdIFg0sUxtyGvt3u05a3k6B0CSMIk6FX+rvmP0MOTaNk7lMMTZKVFlioq6jN1aCeABTeWl1oL33+9w9/wGGCuYR6AyRiK0Qn7SOce0IBDKANRJdMZibSAPA5ewzkEyXswRK3wumBqDFgW3L2+w2mxA5TkqBlRs8eIP/hjrV7fgJTvjuTRUYrQikYYAgAcGFwINBWUsWCwLxhvGBiu/lkuiCzHa1FCnBq5APTGmU8XpVDEsC7avtqChScg5yIzSSPT3xw87TBV4/nKLQnKFYE1RdASkpAZVYnVsWRQiAYYVGG9Yr/FsDkQpaoxtTa9W0zs8Wd+3q/pKAWigAIg1AE1GUzVrOsnvZuQ1gLIJhhutofUWTo4gDuAxkZxCr4z37x7RJsbd7S2+/+YTlsuCr35xg2EjIDaJGCh8GQigCjzcT3j/4QkvXm9xezOAd4zjYY/bFxv86Z//DJsXBcNQBMCmcw1ZZI0qys+uuGWwX0fXKivAWCWwEGqtIC4CPlJHuV0P2xrpmqn4lZCtGrBJQUqNMDUDBwc9NjIH1Q8NtgaI8SWd3ETmdQFGMF2kgB0+Yff0iA/vv0MB8OLNV1hvbkHjIEBpM4on/QXonKvrKQeXwSKpnAOU/BoDDj3ACoAK/FdNZStwsxTUWnXeZ9HZyojGc60coCDniK4DlE0gktgSch0epyt2h6i/RP0yXsKplk8vu48jzTRF+SKlKkiqsPbvT9epEMsMBVaYpyy8hDFWPRRjrGVjtW3gDFsRkL/r5xzMeW4OXFuneSXU0wJOcmZ0WbZ8et9f8zXMPDaSNSYDAfL6JzcrTt4jLQKlTItoSPp9vjpw1rGT0tPnFV5ItriywUI9zVlt5r9edK4z/4hEkzveMbumqV+VMuAAHymXUNLVSHZIwSKmlRbYQwsIQKWPEmTXvmaaTK3nNlg3WgQ431el9kdfRf+5029mv2vGVkT/ZBHPLCDEc3EwzljJZ6ztvtgSI/3x9WYq4kwEztaYv6XM3yZKfdmfWcFeeNlmGBvHZ1lmD+Yl91rZ+jKtPvM8gv5gRH7nUup8w4kB9s4c7DWnJZ7Jt3xIQYma5ZO8Il9JY+j6NMBJvUxmMJJpI9dVfKE/bL9luVljAnIvBD5Osi5ONMxVYabgvKtj8BPSAQj7m0i0sn28zh9aG21vfomQi7TZl2iHA5Q4foLOA8an1unwiPKT1yMBTKJuPB/3FeOoazx9JhG580GkvmmmAxuzrA9NJ1Cf3/VOEC6fFyuU9QY0DhjGBcaF6PRhvcXq+RdyAKEgAP0qkc36QeXBFSEBNMKVUwGhMDDwgMV/8U/wvP056tMn8PGAsrlDWSroXK+ps47OeODjYcJ0athu165vvB9MZk3uEbYyv9o40d3pdLfHJX6nvjbZsOjCZlsCyTot6zvv3wtTfhYzTh8SNuYMpGSn7HgC9rsTGoD1coHdwxHDUHB7txA++76dPdofGDgqQGm9XWBcEtqp4fFhh8VmwMvntxgWBCoc7SWLQEjO3y6ZLnN+XGis9Y21hXXdb/KfP7sdx57RZRBSUrqu/6z/c91MfXRGAvzEZKsSPemwRxkGbG6fYxgXLgyX2trpZwq653PrXHdFREybTyhlt4JT3EmS57GPiZa55ahvqI7/mA1snWoHKmJO6+Nb5s9Ov5Houp8wU+09r+0hlL9+0Lefv67pmq7pmq7pmq7pP4003LzAcPsS08ffnP22+vKPzgBKPzZlELlUVPDyf/F/AP7n/3scv/9r1Kd7LN/8Icbbl39Lyq/pmq7p73P6nSIp2YaLSCPJEECoyV5U3DFjd3kzN7Bee+bOq2T5ZNtImjWAIA6iAgEnocCuwCAeQCRAKDQzIME3g03zU7Ye6IfGVa5nc0uC/JsyiEl3rAPgm0oHI5geTUADMVTE5tCAROqyhu+Iewtb2tQna1TaseZ7wsVo3jrnHHMfVpnSZ73xJDlhZINKBjxg6RMqxd8jEnCReREyeKlW1n6za2isr6AO4yDCrnYrQMQf15PO4wh1GDPGQRyhA0Ov5mMsxiKOYqiBurBEGrJNNjeQeiHDqCftqc3ChwtxpZAbH1qTqATEca0aE6Mlx6vIDncnvc0IZQE/XJ4hzwqRROyAgpTMoKkcz7dKRGGSzAjIsCtc4O9lmkwAegeXlqF1qr9G6wnjvou59XF616P0UP8bq6wYUNCIOTP08PlHuyIt6A9QVZhzyN/Jxj0zauV2zyKyuwGyzN7vm6mGmO5ppluNzRfacd6e3AYRZ1uGUZcz9fMs5efWjtb9Os/P3XVqTdtkelcyxXthtIqaLAKJRRWjAlSuEnmHgUEBgfPTd5kalQ6PlERKmwGU7B9wfl1GiM1ct1HHW+vDHGkptSwBO8OsZ0Y215+gVJb8bu81CADNHAsCUCJMk3o3dWC2JtFSWMEujYHjA6NMjJtnBQsFqpy085gV0IIwTJqDBSAcj0eMiyL6jsIdZdHwLJoQV3WvN9XJRSPhlAIsRiywwXoYMdEay9VSrvIrAC31NKop+ibVEDe0VpUZBUSDAHlJQCNNZQPanlYKylKutRoZWBcDljZgABokglEBu4H06eGI+/c7vHnzEha9aGiskZTsyjRSXSsjvyEiKgmQZvDr1Dx6Xkph/M26QgA43BBRhEj5VwhTZQf+2nVkFucrz82mi4ng4FvWK0qK3vBFpSlQKqLwNBrBR8bHt09oDNzcbvHum0csliO+/PkG45rBVFCIURhoBsiZGPcfjvj4cY+Xr7fY3o44PVX8zV+8BY/Az/+z11htRywK9No6Xf+A/H/sIBlnkOs3tvGl+kGc67ruoJivuTUFKMk/OQWv86jJHxNqFSByZWCqzcGNPkb1dwENK+APug7QPIWLRzGr1pfMQC2YTns8fHyLx4dHbJ+9xM3dS5RxIWDoEpOROzp8nJ+f4TWnggG3O3cEJ3M9UYosJ+sBv6KOO3UKwIDvLOs8jrsCDWAUFAESCc3Kz3pZ8huMBoQAO2vOrOfze621cARlgBLb+JW1ULEwVXpdqWUy4JNQ+LczHPzdJPK5y8ZpWrJKsvUoA3DAhbaXDOYLH9P5e+5/45P3UgJvOJCbe35nx6TpdltjyRiNKK3ygspUihTBuTAX7xlwhCO/OOOC+LQEU34FTejKOJdjK1tYcFneO7CMVpsBSU5WqpYzYf4kIvhoV3VACgfm0KzOrq/jb7NhQ9CYfIgr4UofbampfmoUdYF1rixp+WFVZn3GKT9MP+TGq/zFAtPnp64bZrzL/GusdKQFbXFGoU+JZ11fcc5OXV/YLJnXSnThM4CzyEIzrZW6oNul62fTs/GuqusYAjhP8zryvH4xs5Z3Rnv6ef7bvKxuvrwwMGKHELonavnhsufkmk6IufhztFDXcovWSikfzcroxtxZG3p+5L/nfdf/Oy8zvnnkyzT39gcd4kCWlTXvp1yuqz518OcDETIPwiOhXSrnglqDCx4HfZ/L6W9wz/f5OMHsc/5r0YWlrtBlEtWz12msbc7XD9cJmA4V65ulXK9Ntk+JA2825sEJVMnQA1SsAPaIKOOgGu7ph9LHANphh3bYASTg61IWsg9ZjBEpNJ++Ych+IvWRA4VgAGro/Bm2QADgMgIFGO9eu+4S3ctxoM7AeCQ8qgfG/umIzXYd0bE52m6TTd76eoTrjPxJsponrkyHva/CGOMjzUnsgLF+DOK8KvktC5Hxk/o6Peq5/uZ1NcZhdwIzYbkY8fQ4YRgGbO9GASjF6zDdwY1x2FccDxXrjURQqkfGx/c7EAHPXqwxLCxyMyU74FxGEUPI2w4fFGZXa9oHHTgI9tzAjORjIuyaFHLIMkYcpDRTrva70eXdjqQTlU6zebLyolWJntSmitVqg3G1BkrxuXierA3sg6Y/xObK6jOJcr7uvT6Pl291xQ/dLBuvO+PSkxjnxhRyGjm/1elK9kaqvrMThGluy3OAWYuEXzGQpJgE/v/cRHRN13RN13RN13RN/9Gm+ukdpvu3fyd1lcUSwBLrr//h30l913RN1/TTTT8apEQoKGWwmAbIZjAqekUH7MQO+2aK3fJQALsbPJm3iOUkHHF2HBLkupPiWc20xHo+lWBXfTSgFT9pU/xEcFFa0y7dynQzddETRw3A4HXJNW9KS5vc8CB78yZgJ42JY5tCIi2+yWl2i+TgPlXbXGfLAIK0fK87YEYYeVBKQY6KMj9dP09+glfrtOv1nPP5JUoGm5IM4Go8yFfD2clBkF0xJn1Y9QokLgoYgoAhJMqF0kHaRm3XCAH5kBrqpiZRKIZR42ZkXgykhqUw+HBjDaLBKbJJGFnN4dD0NH1VEZS8FpECsGuvzNvRCHItHEuuYSwecQlaHxFpVClp3KCOfzO0CS0S5cBPec/6qGouqdZ43EDeQuv+YITYEUTQLDKXORQKz/KpkcMNoPovO3v7UWzPyEFU/oxSXn1h7jSmsxay/9fkMddhdLlhBRFtjLryCdZjPV+6yp3epkbITAcbO8zQhehHK4764s4M2HZSjbx3+3yXUxgnrX2uPQldFBIrx0Bn8VoCLCLsaHnMRn8bEIM7/WHgMYuvHvIW9EV7w/0q4Ea57m4EYYRMGNaXFmeuj5gUbTdjnWntAdTxwHhiieMt9ICzbFgLwKgZ40XGyMvTm670oKUCOFjGbD1pvW6BlcglrTHQGrgVfHj/hMV2wLgkDCQoy4rBQ4Y11qh22hnmdKwTo7aGzWYElaZ90xvzYTqVVfepHHCN6CdEA4ZxxGa1Ao9rrFYLFAVRVRZ9Y0o1xo84IWpjdSQor9vg/LPxK3InT+xaU4sgxAV+nV8YdRumA+P+u0948+K5XFkxJEMq1BjKIg3iSGA3CEvZBajmBDZQkb7Dcnp50OvxSgm7arXr+Kh5BCabkwzwZf1p81NjhlyhqQbrgXzeY9XZBpAqiKs0bBiJAyc0UD01fHj/Ca0NuLvd4u23T1gtF/jyFyuUFSQiIOQ2C7npq6BVxod3Ozw8nPDi1QY32wGnB8Zf/8U7lOUCX//hc6w2djLcAGJJypvMlXa9CrnMzk8HB8gIzHoFp0RIIioKRrLISBKTpRpISR1srbFef5ieN9LoJ6TgM3neFLdjURdQigDotBy7ltbkG62h1Yqnh0+4//AOQyG8+eJrLNa34HGItZXOtxb5MBxT0h4/Gd8U+Kb1kIGQyMaVzR/5PRN+i6gjPCtFtG3LISJjVnLNIxG/tEzVAdya0qhyznF1Y1xxqJpP1z8ZbMreBgMBBiiLQOn6W81PMaMyBLRflG8W2ZRiMKqsz2FQP51EMz4Lu9j5ZB7FmFdmk76tu2F7hdm8qM8lCkGsN/L1bR092RtktVLK5wWn+Ta1JmrlNI5ntGt/SdNtXWM/mK5F+sBdUbaOmbfV2BG1CR00a2R21l4CC7lDM/G9k3HL6rzgeNFl/Ly+OTcynTppnIGnvH6dH4tWxU3X6JTWXxxgB19XqLPd9HrnrJ31qU+naWHSrY8yzZnP805QXc6p32zOtX4vOveDgl7vD8uM3LhzrtmebV59zn8unWe556V2+c/YRH2+/NsFST+nwtam+nhOSd8lPaCn18aX6z0vY9am+VjIObhv43k6byH3JQg9yZP/uaKM7s/xzwF+lwro2JmAUWkfw+lTVwfpuE57CeremROS/1A3fmy/a/TOtPi81JksWSRh9jGbo1rpEHJw4jz0h5Vsa/++Z7jL+zmtA4Q8cPcCd3XY+wYoknrZx6qBL7jl0lO5mrdOjIqGYanISo51ErRM2MEqrdZ42rhhHNVOhfN5y/WA6q9ifGKrnyDRzAsWY8E4juDFKIccrB25LFI+qkGNvN3BIo/0QhRXwSn/3U7i8w8ZWzvd0Sqw3x2w2aywWBQ0YgcJmU7n/ILrapvbkj3qwvwB1jW+Ph/0mu3q9NohSwW6A53+t+/GW6Oj6wPqnxudxQRZH+Z3CDI37XdHNBBWixFPj0cMZcDN3YgypnKtU7Sd+13F8Vix3i6wGAn1xPj47gllLLh9vsY4KgnU05qwL70Oto6d890eu3zG3sPL4At9lfrM9gtnM46/HzKbm5rXDN4nSdcADG4Nx/0ex+Me47jA5vYGg95tl8HRWS5y2dZRrgNNb3djK0fq6vXlxXUBrAJWHc5dpTGnxrE9X1MZQ/Jv3ghoX0oJAXoyXZJ0AKI+6F4odEl/GOCsX7q29FoRiLKu6Zqu6Zqu6Zqu6Zqu6Zqu6Zr+Q6YfD1LS4z0EPo+AQLHlK278EctNUUetXPdWNJdGVdK8RTeJcga/eXQlu+LDDA7uzNIrYIQu3ZdROGzz9WhuX7DjXKzlQsEgduE6GX3m1ArLU0FBwYAKjebDBIvYxAZQYYCoKXjHWgKPxCOnfc1JBvg1bsj7yh6AZMinvAF2Q5IZuub9BHRRkwohB/RQfpVwqKV3bZvsRgvbtzMcL8ZkDoNk2EEYNaxnSJ3WpaizXKNdDGa4IQBVrmsYRkJtDTQSqEKuWqNk/DInv1pPSqEIUU6kUSjUqQqJjkIWMUaBUnZ1T2/UijY4hkCvE2Qto7CdojSGpFPGbFA5mP0mGSKgV8qRnoz07b69od/J5cPiBBGxn6DL+aKX4m+y4bjTEzkvB01n0sIXP4bzxexS7KMNAadywjyTx/ggcmO72V8ayTiX6CDJhpeMQD04x3tHOUMus12ysWc5O+9bioiUnCRCcn9a3J47XbPP8W4PUMp0W77oIQNyRGQg+90ivgQwK0xNvYtG+JkjDrmRNVRatEt5baHJAcY4lHCMtRl/3fbI8SzzJPWVAZbkuwIN0cWT6HgRwCFG06uHkm3e+c+pzZYMSGVgPsvn+qb7r+WNfwL8EYIkcgyjejQZfU/1h/VHgRh+H54OePn6VqOdVCmHBzTFt5K1wz5Dypxqw7gY5DTrUHReahi1o+RaNhkbtTG4Qq//BKg21VMFQxmwHld49WoLLG8xrjaCj+Ii7RmELzRAoxZJuYXJoLMCUtEodk2DRwGk48AiHBGaen8bcTrNHIbMOjHqNOC77z7h5u4W67sFMEZUolKlvgqNMOU6VvTnoBH7rA9a86kWAKFquwVUQCiFMSqW+TQB0yQgMhoozQsxDzv4kewKuRhBPs7TUf1CASKRaU36ya5utfWFROog1CPj4bs9JhC2dxu8/9UDbpYjXv9iiWHFXi8gQB8mYDoB99/vsXuqePXFLVabguNTw1/9299gWI/4gz98gdWmYNT5qhahuJC65nSiZUN32nVeZOAyeDQDub4QcsWqgr2aOqdqjXlKAEaiDVtltGZzHzuwS6JjFpQiczwzyR3kBOknSERMUppMmdkabBjk6j9dLgCtYTrs8P77tzgcdri9e4Gbu1egcdS51QCJoiUKCdyxwubjAF2a5hWws0WBdG0a6yYOXRLAUoCSK7T5fKzgeLtWOAOFdC0oYC+4DgJYgPWAX1kIhl/ZZjM1UwWra5NoBDf9LsImdCoLbd3H3uGqYWdeM1m3NRANItO2RiXpq4KiazB1dpwvD386yZwsIKcz5mPrS8ycyeYEtUkkGuhjPq0TZe1sE0Ys8jLMyOMz8fkBANNlRB7nqZunXL4S8MSJ7YBKaaVBtu/QdviaqfTzoJdFHV9iNkTXikwznX1PZOGMdd1v83mYUl6av5a6bw5QAoLlZJ9zvWl8U8p/RrOW4fO+NcBPYqT1qc4ttii3K+YubJMSDfZBe7gkWhGiZI5nsuteQ0TjiipGRNKiRLuWbgdHcv22rgrnaiI28cM0QQZ0dMk6ldJLXWXByAzmRNcDMc5K6nTPwbb/TJGkqK+lX4wmHiGtcHNfKt9z1I88/i2ftb+r6xIfEDqgJyUBArveBVxnnzUC0THQNYJ9drBP5kXmY8hBptGuJj/jOgWjMy3z9ubn1le2T54LuufhyOt02F/XpXzGlXlZhBjPzssEEO3SJQH1ZVhIuZUJ5JkPntf3UDandW3PdHTV6GeOfkn7Ie7K5fP3vKhYnzBkbWVTrl/11mIa9vfJnsl42+1OGBej2E1YwcPzUHPpXdOnFjWUBmuC6im3dclzizIXIZV7HhYijGXAer3EcrXEqax1voF3bJ4TvHdUL9GcMeTnNXQpk9Zc8wnCdXf80Crh6emEYVxgsTKguo4jjnVeV57ZCHXfYACXbs6wutI6jChdEYf0ju4BzJYmVcTgy93SAV8yG2xO6AZ4n4/znABZhx8eJzATFssFnj6dsCwFm7sBNIZW8KUBCbDq8HjC6cTY3i7FXnZi3L9/lCvCn68xjOT0GAEpgJX05aWB3ems4JGPP3uPA7DjOqXFvJvtgN5uy6wy1FIlEdm2Z5i9k+eWAIsx6umE/dMTmBs26w2G5dpPtRCQgMpRyLnZqGeERYkL5doDvLspVd8PS9jlJHauOCTh+jnzdU4KxW9Bjgkfp/6L+SpRmeZzb1jH/64J+rvpidz+OJjay+MPtfearumarumarumarumarumarun3kX6n697MwCM2tewhj6tVWE9tNd1hDtn4rob7pt5dBmMoA4ibvEuDOmN745lHR2qUADbiULNrjGwHl++pl4gXGu+jAUQDQE0d3+qw5DCbuY3HQjrpBq0hrrFDtRNapFfQuTkE5sRjZj/NpPYQ36ySxvKen9CR5lIXJcCAHzSEAywF8PBNubXbDXCUTuxr4b75zflto2yGGYZHnWDIdWtulExGvOQPDFNf0xOWjRwYMqizuTEEOcAR5WCCOFINSDYMBVUDGrA6zA1oZaAX6ylzqorDkvwZNwYXBRix1E+F0CYxcJmj3ByFTZ3RVCiMbQQHMQxUUFoYucyo5Q0koJJJD4AmVwVRIQfFsPbrPJJQbP+FgxVmVLLP3L0TJgt7Qm5ErfoknL7Z/CrXdJkByuQmm6RnNgqvLduPch433pIYFZ1OvZ4vRwgy+c+1FRvfnoe69n7OEcPpd9ZucCCb/qpYA4+og/Q3GGDGGU5tikyXgDcBEkqnRTkbc5A+nRv+gh/s/Z9MQJqHMCm92QBl71teomQkoxibxstswrLxZWPWHHc91eiiIYWtk7EAYaHfWesdtK8GxBV/Hr0Ina1cfy1O85wvlHL5b9om0xXGj8zDCkJNOrtBTiszigCRKjBN7KCJ6STG3qpOhQKLcifMq0yo1PD4OOF4aFgtlqiVABrAaBgHEgemgkar6n1SAzQxMB0PWG+XcurZIvUUcjBDKfpi075jAZmAgaEUN2YPQ8F6u8HN3XMwrTEOS9dBxfSTXX/GofuISACpSptFN5Ln0dsEEoCZDjiPCK8TS7N5pjXURvjw/ohhGHFztwJGAdtyk3HMACYmcELRFZKrVwcd+LUCbQJOJx09BI9wJ8bvJo6YIrqzanuaWrWHoUg0QW+3RWsqDq4ZDHikOtoiMwIB5ovoItE/+dRoYUa1KHWtoZ0KPny7R0XDzeYWb795wHox4stfbIC1rnUK6zV7Mp+2ifDh7QMOTxNefPkcqw2hPlX85V/8BsNmxNd/9AqrzYCiAh7AJAM8aJ/U5ifLjXaJjCX95yBHc5IZWIbhV7hZGD+73u1UzdFGfsrZnT0NuraSU+7cZA5rHO+DWdZLJOPN64XImAGnwAw+HfF0f4+PHz5isVzhzVe/wLhaAWWICGOmPdUp0F19SgoXZ8DRgMpjMpVh8ywpmNje4wDDmkyyR/W0U8Gs6ysVGtdcBHABYxIyhlHHmXlkJpnDFFQkZFlbYiYK/abrU0XQkZ0uV0AWafgt5gYfkA6QF70p4CUD1xUHM9kcbJqxkUYPY4Cowa5++8mntB7oFyMc6+68ZuL0IvxYQTdnyodB+kofsOn7lIkiZkd+MdEVr2Rnl8kaWCNZkc90miE5scho0zV3aqu7lhKgyvLB1xnWz9yRJyRk59Xs50yrzfnUr/Xmc/78F57VZ83OWY0v2WGcxymnv15cypur8O7nKMrWXxax0A4bFF00N9X5Fq1VVYMDYkuqDoCvEa3Cfrym51qXbvs8KhPn92YLNVNTZwu4XHYssHp+UALrkK4Z0qqJ7XcrL/fvrDrVGPo9Vvs5Mm5OWSbi/fh+aYRk5/2lMvnC57PoU+j5bzzMbftc/blcuvC9GzJJ7uck+PVaP1BXR/+scedReSLLfPjMeRZ/ZR4T2c8dfN7JLZVzie+5HdW/81kfd4308nVnwX1/GLEhw/LJo62kovCZzwTovmH2G8eYlXxiB7FZkCn2TDn/vK0AOZCs5/tlLuVpZH6IRGdlqZelT7jp4QKKNVGHIzY93dgBL60Bh/2Eu7ttAHs0SmWh0MdGDylvCzNOU8UwkK/9AQPSxrzkU0/qB9O3dmiAiFBGic4KEBYoelgs6UFNzQBXLfrsEvDEZMLWoza/BSkUCtLGF8tcddhXoAHr7dhlkyzR7/3gsz0y0sGTYL3pepPb+dCJfgoeGv9ibRA0AHYgIsrJ+juDiPyv1Zf4I/OXrDlbZRyeJjRmjIsFdp+OGIaCzbNFXPFmut+ipjZg/3hCnSo2NysMI6EdGfcfHkGLAc+erzEuoj29bS7aO9fF3k8X+ta3iheUovGRuY9k5X+R8tnn1v+edT0Ynf0iExrjndFqxXG/w+l4wrhYYblag4bSTRQxnoMRNhZyMvtN9L9mSnuETEBeM0l5PeDW+Gz7uDwbkCsFe9u0oOlj0ToOluM0R3fKxans9F03QF1Q2WXYDwPkEH0UA6eXg2zPigOxMenlI2jXdE3XdE3XdE3XdE3XdE3XdE2///TjQUoENaKpcarzdguSQy7PqGJcHUYHD5GGdGhN4zeQRdXoT8fJBl2cCuaI9crDzNoZVgzE4l88yaVFdjreT46RGSUtaoLEyyA7sWygF5CfSic/9c16Yl63pLqptYhGTffGxBrpQAEw0j5CeAaBOLmd2mJbT92wmsGK2Mpm3zDa6Z/GPONjvGebXsz4ZY6bsIWSbvLFuEZq2Or5rKeCUkQrswTZ9TzcWB0IYZQBA2UkjWoizsOJWZy7hTE4P4HB0Qm62afU89pnhIgM4kAgFphLnSRGCA2EQcFWcgJa5UA5ZECl0sKARBRhv82wE2AkbWO2iZgNwKSXIFc22WtuIDReoUu5Wwy40jkGEojMDLc5qRT4KWNzWrtBUIks6b0GDn52pcAdP2a08KhGJs9SW6Ivm116oFM2+Cb7adf2wdrs9JKeNFXw2aytlqfXBBc4QufvzaNdZQtN9gcYn/PJ0b6f0F1nBLMKcvzO6D8zGJXSKUIQ8jWUlseAapM9Y3OEBwGZdtcfyThn323AzETOuSKiHbom84ug17upLCz0H2n5AxugqUnkjtTWNvsr13hGz4XZjjtzV+5r45NJVC6zKa8EgMYOUjJAWoVcb9UmiRQzVWBqDY0FANkqNIKM6CZWwWeuAI1gKnh8nHB7u0UZBSyDqnJUDFwH11nWLiLgNDUMI2ExDqDCoVPSXGcvGYiiqd4AaT2qg1bLDVbrgmmSUHN3i1V/jQNJVCbFWbgTBTpPNL96Lfq1kEbWaTEiTIU7beo8IaURDXi4P2H3uMdXP7tDKRoNSQtvzYyhRebFxgrcIJQSYDGeDPhpYOCGqca8CY2MJw4I6W0iAXAUxDhgZnAVhrXaQNTkesfs4CdWsIy6d4tEZwoZl3UIUNBg15I27ZcCxgBqcrXCu+8fACLcbLf47psHrJcD3vzBGrSUuajYYKMBcsoX+PjdI067itdf3WFcE46PDX/1F99hdbPEz/7wBZbrQcCzAJgFVJejK0S0OApnh87LTb2TAuLSLmMDHLFGEjEQr5Q3VcnbphZlAHq1Wz4xzH7tW61ChzmBmqMkJG+tTWWguJNH1iIA1QmH/SM+fv89puMJL15+gdX2DrQYXH6zGT8ivqFbzwTyQeflNL+lVY7yTOkka48BeGWMFdeLpDKr4KLWOlpEN5JHJvA1D2ypU7uaKdNkY9CaQoRCQx+1DbKGgPUXh2YLoJZdCZVi99haTnrO5574q9BUX+P4m/hJp7mH1B8FmFDGfQMVA3AFkE3mClFi85JELSkPWfVDIOC6OV14bLPrPNIM+foxr7MtMpdfaRMtSKVemptnlHZze/cFtsTwgih61p2/aa1CNKs1L14uVN3ToWOGow/mZPraZl7uZ4qMJZKvVvu8eYJK7SO6XKZcJwmPWtbI1ozwebSR1AO9Brc0fVaiKuGbVCpixsF6Uyi6XjGgbyl6rTVhxnfdM83abG2xbCW10ejw7upZ0C0rbZ3d86RnXNST+8zh9Kl0m4ORCotSo7S+Fk4Zcr/w/EMaCr30IIFHyNS6v9S70Ml1+uf0V67us98peJkTuSJOZacCQlItn819iZ5URk95npk+r33p7NOcW33K/RCfydszB9fYfOj5bX5K5TgNfKFuDi6EsOQeS3NdJxDzXmWX2wFwwOCQipX9RC9LGTQa7Qh5zvJo9Tq4IBSul5BVqMtX4hWQAUoCdGrQtRUjrjRj0RtyxZuMe4+ilPWQKVEGToeGcRwxjDGPZNIj2o3KHAuFBhQZhiHAkTb3ce6NvslzEmS/MmBYLvXAHmEcB9+XmL7qZQKu4/wf+jpzvbk/srzJR/I+JQaOR8bxMOHmZu18s/0wZfmxvW8arszw64ZtA0m5XlibY/0Hhu6lIXsB4x+nfrN2WN8U8r2V8LRXEGdTvjPswm8sKqROwKf7PWgsWC+XePp0xDAWbJ+NDlBKIgsm2TvtH09oU8PmZiV70hPj44cnjMsRz+5WHl1W+BB0xvW1wRz/NXWc963SGftvpCkjZLOLIDbnY+KlyeDZP8tmwB2fS4XWbhgBQKuYjkfs9zuAgfV2i3FcOaIx1iu5v9IcxnmP06nuIDT14Rz0PVN98Xim/mL88NlTH/EkfJOXBXZp86LX2clbT0a+Jt40ojeGOWrzwoyWmUAqv/PM22lcjh7I+uonv5+4pmu6pmu6pmu6pmu6pmu6pr/36XeIpFTcIOAbobQBdOcCoE6gOLvXGfJnRgEHdCQzbQNr7G/bwIWptdtO2eZ2Zvxxw4ISXNyybI7RcK75xo9iY92aXikGAdH4DlzL5QLI6f55RBRjlUV06aOTmLVpDgIy2osZV/R0mjsLWKIUWfKrtLQbjMRSYiPpzmcr344pIoA752dqLX8YhbIttxSa9bezNWTD20Xu6ERVB2IhcYJy0+g+EgnB+3QkCU0EyJVrAAqxREfiblsuPDaRYbvCSYBzbRLGNBIndEkefjYZ0PckgIECJ7zf7VogaHADPeWq/S8OyGwTlQgJKKS0Sv8XJckNNs4rectcpGZysF/y6dQsV9mI5d2VPxs7Zu/NzSdp2CgdwdtB66dUFiNAS3KdoUoZ979xV15Pqv1OSNgvbbEbuswI2DcJAYjLjhck3oVhp6VfLUZCmGqoy9uxUtts14xlA/iZPQs9jbmtcxNVxwfq+zYiD5FHInJ6VLe0ZFXL9rQuHHmukzrSRefZNVjEYRS3f0qwxaoYACyYsFJejJBJwhwMCydBamnmJHEF2rfPHBAZiNTJBIfc9PwK3XopStMJAlKS3xW41Ah1YkwTg6tGTuIiJ6Aro9XotVZj3ih67dZpz/jwbo+f/+JlHPcuer0UieQOZNc3qgFUB/VpOmG1WqIMGr0qhNqvkARTODkH0TFTY3CVaEEYpF+XqxWWy4LNZoNhscFmGwZ91k6mBOKwDhUckOjoygZKJEy1+TPY1X8pck93nQOrobYB+0fg/v0eL1/dSjSJFjQoawQ8oG2q5shX+WQFyHBtoEIYVZ96tCMjnBSc0gAqrCeDJUpXq0XBVREJhYgwDEX1MGtkIJv/CUNJY9bnQXZelUEAy+OQruJUr8TAhHYEvv3re+zbhDdfvcT33zxgtRzxxddbLDbN504xaA/SxxPh3XdP4FPD66/uUFaEw8OEX/27d9g82+KrXz7Dasl+pR6cLvi4EVC1rHfy3N5qfJ9qXCPKlRWUlpYoFGuYRoSpCn9k8tEx2yRCEpWYb+YG6OaD0ozZpl9FUQ4oHuEMUMDO6YRPH7/D/f0nbNY3ePXqK4zLNTAM5/qvW3qExvS1IIcGEHkqIerN+Kc9ro0u5pUTtBbYjterQyT8qgFCMcio/B7am1NoMLus0yPYWWek+R+QqJ0deJTTnGHrF6IUtbEp8A8JGFNiXWivMiuIRtcWBLTWYj0CW52H3im6DvnpJlsM9bCIHvRjay77mecldJF+WPNkGWIXlD6jRXQDQo6ArmZ0Lxh9eSbTDu5n4ijTxla3Hju7OweqTy6vxvO8fjFR9+c8xfKhe5a/EwDmC3RlqiicyN6etAgizNo5K9v7keN5jOH+xbkjMXS5UtPgUWdcrVs/qB7kBtmnNd12tSwvqg/Qd0eMO/JyTE6bgogbRUSl3MbgSwK86fjPbXQVFWrJf/couXk+sKmrwYHKVqFfJTPTFyFzHHxyejitETO4yp7YmvnzLskcpZcu5GXnbl9Pfp4ggImDUULYBdL4P8t1OV2iew5L/KH3ePY5X91o7fhcPbms81Zdqq/nhNR3od2fqYxnn63v8p4u9jCzQ2EXij6j+UxH9/ny/NaXEwdiCuTQQ9GmRcQk+L6iRTHxN6MP7HlirPdF7pTMR/uvrnWh86UBuPO4sb2FrRP8cIRF7VHmGngoA76tEO5oYKARnh5PWK0WtsFSPUUdA53ixMM6VQxjcV2T7TmZ7z61kc5OLQ5hUZrgiOWw3TAOGBdjHLZLujZtWYwTsH1n1t2sXeK8Dxb0c6qtgXQTOE3AYX/Cer2KdXDqwA6wbv1BQY/te2yZ1tlgaD61hl1vGEL72PM83bn+LeQ05ZkubHGWdzZbKy89OpbzSdeLFdg9TqgTY7NeYPdwxDASbp4tMIx5LmZvECtAiRuwvV2BBgG8ffq4w3K5wM3zpUQq7waijnKnP+Y5AxZZP2ceftJdqwABAABJREFU2GEEAroIq/Gwf27R7s/SfBLIfWHzbbDV16e9VUdyCw8qDvsnTKcTFss1lss1ShnOdEBO82VMd30v91HzzhW+cs3ajNw3l9qV5wKTNzlwIHIUQtNHSeqly/bhsT9J+s/Ws8r8vBeLzzyjNewDPv7mpHPmg+VP87rR+vnp8pqu6Zqu6Zqu6Zqu6Zqu6Zqu6feefgeQEjn4CLC9NIPKADDLdTMOwgkLhGzKGiRiUflM2QouMcdRGc7qJrfw2sbTdrqyY43oTOgM7hmoY8ATi6CkO2U18ojDWUJw6xVWBchXbUiLGITBLSSxGVTwSonNZ94Vdk5E6EaUg8YMQDFDttoHOyOpBfvxJ/riUGabUC0/7Hzsp4svJbNxEBIwAqQGr7QBJvm9pLj1YtRjNdDoCUOCOxbnhj2iolEPANtI1wa0U0Nr5LwresdDs2vgEMajoDdOBjvwDHLijAgzCdeISNlB76IWp/dpZrCgAr1vQg2WVYANRa9cKqWgQMEarNfWsFHCfoyag3Jvi1U/B4Q1z9WPmmxXse9mPOrsMcoLBjRsveSrsFOt1JUTILBUSGf87eu160ysP7ooUPZ8LpCdwdFtq/4vTIL9i+6cUufvPKkGyOYa/yWdY4u/6Zo27spAl5eZuyciy310qqxrGGHgMXAOqWDaGxrc26P/5EhAxrdsOLZIbEjP7YsZdTPtBhQp+SGycVWSX62XjH2D/lvpPxN7A65pnBlth/KEpD25v6MdDB26DlgyDWoKkCg5KBgeicx4JRGTog77e3JesoC8GqNNAhbhKgZxB+MwJ5ALPCINa0Q2Md5W7B4YhQaMSwIX0T92jZhMbUX1X4urGwiYJrmcYlzI9V8gxjBEZBM77WpCUVVXTYSIaKdekcYClqit4XDYY/Qrn9jBJ6arWmvSLmWeRTVCCdBO0wnFnH5njggVuEGvkWo6Hx4PwPv3e9w+32C5GTAlnU9FHU/pyrSq9ZUUZcqus8BIEj3IkEmOpFGdw3Jd21AI40gYivCYmVAroVpfmv42WVa0bowLO7lPDi4tFvmvxjyreNK4Di7NtXXPePd2h6mOuN3c4sPfPGKzGfHm6zXGVQOVQfqjNbQyyDV/O8a7b3eYpoY3P3sGGoH9/YRf/dvvcft8ize/uMViSXpNLDsdrGsXvw4BMUe2Ks8qzFHGcb1f1WhKgF9h2mwdpH0qgDKOsh34pOOvxLxMUBBfY7BGR/L1CkefyRyj87tq7AGMNp1w3O3w4d07gBvevP4Kq/UzFBqBAWjF1mrwNYbJXh/NKek6iN7hHMVSO8qWbjFXw9df0HWHPyfSO2/6lY/MKQRG9avtRL6KynJ8F2ekXbMm4CJQ0UhMWratHazsLkpTOA09UpSvXNjpgZdWALLZQZ5kwJGsM0VxFfdAqJbVcgzE9FNNtiKy9e3ZTJ0WNJRkR3+UL1T66Av+X1sM2jyjfE6ol8srYReas4XWRV5+hr/d2oyCftPjRpc7mVLbaF5ICjNC6bnXYUMrVZpVrNNO6AmbfST0efIY7Zx282bbOxQ84lzerBzTs7mbu6ypjL7PU9tj+RDX/BgoCfCxQpX7wwz+Xiw+vQrTec4QHc+mZ9Pay+sEwoGor5AvULXBc4bN6rWyrc/mbM1L4c+woxPVSyLZyeOFv5/N/AMptbLfd3z2jUSlNWy+B0lEZto6AN0FoIZ99sMVlN432bU1uOsU1dYcR18yXOjz7TBdfU6D8JTOnncp8bezU8xr/IE68qcc0dbgti2V5jIGEz3TvBdJmmvhdD1dvCe2mLxTTPOYfk6YHFkrwtb/ac/CpieSNtZIJjyjkr2GqCdkOOlrSnLjf/VNzhGT7DdSnqXr5XAhYky3Rkv6gKOs0M2ikCTqD2GxDCA/5X+5bexH+mQdBsagBwBIB0SWLIoNZuwhVJYz6MVBDMyotaK1imER8HLPybO/+UdCRIw6498ssdTqPar92Sqw200YF6PsrxB6z+ZCn7cSHSpq+jHAGL4nS2Pdb8nV+t12Y29zgM66ufECD2S+kh+7vTT1dHjps/lMmk5oJ+Dp6QhmwkBL7D4esVoNuLlb6F7RgKj6GRCA0sMJrTI2t0tgAA6Hhof3O6zXS2zuFhhmptRcLycG2kfjTeMA3PWReLO+7eUbnIBOpmNn8mJZs2BY9FyP6M6X551s8ZEo+g2nwwGH/R7DMGB78wxlWMDAfWnK9T6xP38rUM1nlHU3v6RJU9oZYKGcfHwoM2KVny1/APJNBGcQzR4cHu/YKzG2IptNdD31EX2fENovDnbk7HYAo8AOhHAw4W/D12u6pmu6pmu6pmu6pmu6pmu6pt8x/WiQUplvyIttv4oaRvKGrKRNfJg1qHsOdbKLpUFADkWf6cbWnFIUUZzMoMOwqEhySiwd/PfNLMPAQxoJg9idttlQbsYBKU4vM+LWheL2tnORd0sYv0jzGM0R1UkMIxbJxDaFc4AIke4js8NOjS9FHcyW3Hlom3VmrwcAmPL3HOmK/L0u5HiihRgCNrPNMJ2fp20sYKTW2MNiGxBHjBgtjBNa16D9Z1cUlYHEMSjsFsdxYxg27UQSwYoAjAuhrhR9Tzfp3MK4HM7vJG7Kq1atf1Q2SpyApGTMMlZQCZCHnMBr3raq4AaQbveb9Rk0gpJs6ocikVrcaNMYNPR9HilcmfPfBcyST1L5K9EfvUnwLPHsn7xjozbYZgZQBxtRf3I+jBtm7ggDx6W/Z2G2YaYXi/wAFCtfjdRWt71v10GR/8cMRGHQs5/ChkgzVmm0lc6Clt3D/fvzlH8zuj7n/SXMack0xbUMBkrKket741ZfpvxmvWCROigARJD+LCBwkahMl4BtLu9aZn5fAEqEARLQzE4+AwZW4o4PgJnWgt9zEe14N7ehpTIyKCnzw3jUEDqQmdCIMRlITgEGtQJtYtRJgI7yT/qrGXgHcNClKQTpl4LCjI/vn/Dy5QZlFP1jhmAHcmkUIIl0I8BbZsJ+f8J6tXQQiuj7CqKi4NEAy7QmvKyT9FdDFWAPsXZGA7cJ4BHcGqbTEexXPKXeZAFH+tygx47ZvFamVWysVJUi0/EgZQm7ThdnEaOeCO/fPWJcFGxuB7ShAa2Ec1b7IDuFTS6tfLDqRwJoEGPpOCp4DgI+Yr3WzaLDQJ34p5M0tla5JsGuMxtMh+pYDgO75C8aNW8cDBzLwQNlWqdfNXIeA6BW0I4N3/z1RwyLBW63C/y7f/0b/PIPnuNnP9+iLBkYbG5nMIpcJ3io+PjNI0ob8PrNFjQy7u9P+PVfvMXr58/x+usbDAvItSwsBmOe2Nth4DMZG6SgI7jsTmktgarPq10HQsqn0NDMOo97dMHoj2byYQpAB1plk+kUlaklTuniKF+BxSyRAuvxiA/ff4/90yNubp7h5u41ynLhR8pzRB+bg0OUlS6PYBha2eeY2TySiZoD0K0OW3YWkAKOYj1k77VmY6o4L5mrjuuow0BU4uQZIGGcFDRozlVWyrWvWpvg2k/XswIasrWGyZEsDHN0Slk/FfVhiCYvZRQ91qqvM2Uclc55mK+U/KE57aeR2E+1E2z97ugzXf/ayoj8+5kzH6JzI7c5dlOOYIu+Qf5entMo/Wriwl1ZaaGILK3n9bmuSYchvI9gkQU4aJm3Kj3qoyilNdG8jakt85SBMP0as19fGe/m0432Qve+yb6XPyeKXXWEbqLz/MZrfz8vTC+sGXwtP+OLrb9Frei8x4hr2gCUoQdmZ2e46eGuYYkFPGOctc1p5uCfS1mqax6ByYDO9rpFtOj22mcfMo3pUaqny2rgh1n+DPLoysEPJ5FpG5ezzunoJssBdOvOXsdfTBQRIn5b4vRf53xq2JxtRsEPacesTSzlQxjRglm96ckl3lqebnz9ACWfe87pn33vwDdpjOXSRF559lyS2zo4aLT6m779ufbYBGi2AKI44GB5CvWa7qLW40x/jhnS66g5/y4U438ZiKjT82epBjlgFDrBgB0C3I71Uaw3e+pjjJlWJxz3E4bBAPoR+cfbr0zw0aCEtyo2K79+nmIsdcCYBFSysZjBCnE9vYGrY24C9/ou6xmGjSEKexMC3OLtnU04rrdmcy03YL87oRCwWBVwYQlJl3me+smeOx3oafXpu3TTU6d7fe7w9bX0iwH9c4rxYBUE4L1Q6O1u7Xph4u80qg7Kx8cdWitYr0Z8//4TVps1bp4t9HBcHqg6V02M3eMRBYTt7RI0APtDxf37J2zXK2z93ZDDTm61bu+aFlV09Fs+tkM76MC/Vob1ASc++V/ts/mAi7y9LcZa/Nmxy0CdJuyfnlBbxXq9xrhYAylar71PpiiUYGs3wLo2uKCt6ELdjLM1ETAbZ6lL4XX3hcQjGZSxzomIckY8zd4AbD04t14FjW6tc/t4S+M9+H1hses2YoJFIbNvGc5q2WOGmk0fP6x0r+marumarumarumarumarumafg/px4OUJBRBXOnUGoZhBFicg7GnS4YVIpDG0iDfYImhDCA32AOEQoSCqps1fcc3YZLXDZfZGeOWFw4AAREKzEKj76rzqWWLuZYvdpsm12/Z0Ss1/JRuh0ooVNQRaJs+Beuo1cmcmKXoZlX5YRGWbB9Zip2YUyOglsONwzgED8LT2TNIecDafjcmkLZntosWJ5tugQmgUmIrytHO+bZefaoAi4GqFDOKcJxQ62iTiCUo7I5niTakQB/bgnOcRnaDhjoz5TfWK+/EeTmMQkRrOJMzTl9ZLQASEauvS/JqxC9razU5ZAUvKdCDIKAiBpgLWK+rAwj6OIBnysnaGgoRBlYD7UABZGIBOBGJY84i8VgLbGyw0ZhYW6DArmQC8+7NBs/EjDC1xff8tyWDFKl8DBCn/qT0lFQGQeoPqjk6gvOfEIbLjmXNy3JVV7Knpnq0DtMz6CMXWdmW3wA5lN5vIDRKfOKeH15OetqzNOkG7q8jcMDkhUTxKhgGsmGPmFRh4506QE46AArzvvWGMfuvya7IoYGHLNKRYjjkejZEF3URO1KJcsKZMIAxEsV7HLzk9Cal72bgj996CWByDAwIPeYhsdh5AIjdOvhmPKMuylRrTUAcquu4QvRGA2prAriggkZ6OprZDbWkBufWJAIJDTIQGoDp2HA6nHDzs1uN5qNyR2HcpxJjoOk8MJ0khEOhEa1KRCAzS3pkQLMdWv8RPBrRAoNEwmniQGVqMCCEODbYjYutiS4YkpeVCsBV9GStCrxQoJLkJ++Pqs4PFAGYGFBJaBP9hUp4+LADNcbLNxvQINeGWaAW5pjLJrdmGyBG5mW5jsvmRNF7NJBGnxOnMaeIQkQkt6ciIkaZ9JXCYHXYyG/sfSl/G8pYNOIYy7gorBH5VNR0zpTIfi36EzJPgQXE9f67B0zMuNtu8O4vP2IsDXdfb4Gl0EBan73TDg3vfvOIUgpefLHFWID79yf8zb9/i5cv7/DyZ1uUlbTdAX2VYbHxWuWY83Ru8rlKT78WjlVEbdKH1RwtrI6vJG+tyUCKcQs/tCvqhb0f9Z5GVJ2fXGZ17nYnSFKeZJGrWsPjp0/49P4DqBS8+eprLFYbNBrAA9SBJDRmx6c5qSUaI/wWuhxNSaI+QviUPCJ5yQFrC+RdwzjZeslObw+qP0AAN4XWsg9oNAe4KyTYkHWq9UthMDcYoE7o03Ui10xMOAhtPtffCg2ArRU1y0DFeQFmX5/auhDIoD9zfEi+outEu8JF5DtOY5MOeI7QAj+5ZDO4cEDn24TOkLmbgcxT/5G6OT1Gepo0KRw+4VSew7nPS7DX86LJoyH5usSoZqcFAM4BdRSFEcBdM2IuOXOS5sm7bxmy4/5yYnTs4KjX2zVrbPbZEuICRKKO3OCNvWc/zZlH3Stn9DprW6rj0qKKZ+SGEgl+dknW8r7SSe/b9GSBBYj7/siOV49OZfJi+osS7WzrkQQybLZmMDplP+RXvMZ0KeXYGoky3fD5oJDofyuPkcrQvCUxh/IPMIL7aAnnvUD9Z5pnzflSAYn5OQeMf4CDDmz94SVc2GvGGtgmmlk7UmXUf/D3y4yS+VV+3TBz3ZISB52fbVz6+rlx6DrNy6BoBqV33fZwoaSEwuPuH3ffLauVl5s3b1yW5U5MdNzYXseaWrQxJeW7mFKXyeETdPvczJegzwTNWmI7CJrpSfuc9p+f6RMRf/YrHbsoU5q36RqHlUnMCXyj8joHysTe3HRG0tkEOcxDcXWwHPYCTseKzUavgKbUwkRXMRZoag2otWEcR1nLkWI0EhjBrsvrh608JIIfADMd1o8V+W4Hn1y95PGRAruwGYHyWPKfZx1lOpbi0AIacDpOQGNsbpaxFk1CaKLeTOQ5yvOhOutv1zWU+gkdmd0alMkOJkYfWN3GDx9y1I/VeVIRcJo41ez0MLB/OIJ5wGq1wOHhhBEFy5sBnK54k+ZKIa1CAEpUsN4sQMQ47hoePj5hs1ljc7vw0Ntc4GOok9c0j83nCpv/Mm8bp+5uIQvRWN2jYFYOom+cBqvPRGbef32xfT8ze/SkcRhxc7NFGcfIQiEb+TrTEHqTxhgHXV3G7ESzAfHmypJc32QdDp8yGABT7EW7NYm9xUKfVCmRV40QNiY5WSJsc3xRVqyUyg0Atu4gWtIP0PGXGEznBYet3GmCRM01isgp7Zp4Tdd0Tdd0Tdd0Tdd0Tdd0Tdf0HzL9+OvezOOs/y1lBENPezF71AIBLDHAFQZ1cJBMSUbctGM046VvjBjusGgQ5xE8ylLRA+iMcO5IXru+Rcgs4kiyDSeZ04bUKKcmTdtw64ln2/iVItd7cHKe2e7XnKUSIcMAP+ZyUh45XbGhVErEINF6Y0lEOrJS5J2WNqBmEGGEkSzIi8hGZkVhNVIRI13DIxYE99Mhb06NXRHZhtWAQCVO/ooBhMwyLFeeWdsA2NUyjfU5yYl/LnBg1jCQAnecK+JIT7JARJiqtGFQa54Dn4wPUOefIhzC+EjQmwgBEoew8dKiH4sDsGEc1ZyqdoQGcQSb5ayM4sgVY6EU6KCVQur8J9gth43FUMpFhVJjx7O20eQ9G9bikPX52Xo770Rdvq7Hzox0WWqT/cj5zAR3gHM2VFidzB0dfuuIte2MjlzrZ56aUQUJnJP4YTKX6fa3kwOwmZGKzvlh75dUyJmhxQ1o4dAN3ZZODGcrXEqZT5dyWPtyO3n2r6V/8Z7qikQv6ScBEhZv24CIflTADlrC7N0w5sFblmVpBLCARE6yqEqZdpo962i1zynsuNRCyZDY8yQ+89kzRg9Qsn8VNlaBaWLtfzH8G9CjNkZlAkuIO+1f5Z45+1XOB42sxwBIddeHjwdstysslsA4COBLwItCX1XwDTHrwJar1va7CWUg1FYFSHhiDFwwDAG6tLkKVibkajO7YkLABnqysRCGUlBUkXvPkc1cgIFKm5ZdLHIbW6QkOzEsHcBqiZbpsen8FyAmkAFpCE+fjjgcJrx68wzjaJIEgFijxcF52pqCeG1cs9JYQs8YIMgi42X7bLO5nmxdQAANPocJGJdBFHEMBvfQaHb1AAtwyqKmZUltcpq9FDXM6lWjaBhJFOF0AL7/1RMe7htuXj3Hd988YKxLvPliAVoDoAIamswzPAAM7I8N737zCYtxxItXW5TC+PDugF//5ff44s1LvPjyBsOKA+yjDDGZ8HHtipu8zQZAku4jx8K0BgcoiQ06rtkUgJKC3XK5Oo+arNs4QhM5qc3mrOYowRwtjgAU1mtaG1C54XQ44v79exz2B9w9e47ts2coo1ztVlrSoGk+ho/HjjCVG+NTjFGP9GFrJwp94vJRbHyn3tZFiwNGtOxGEECSFkK6djTHGDEH8IgaGKOCg5rLjbQpgRZpQKu2zo05nnQ1aG2SCEim44SGwdaXujYl64NOXwF2dXKOupOdCQAJH5hF99ms6RPgTzMFMEzbQAb+sjlK20GkER1ttUdxXS/YZdsVEMIBG/fEBL/m+tQiL5nU2rq9n+NN86Y5xdrB8N/CsRkOd58PlfrwjsZaJFKAk2Eqw9oTj/tEs4+zLk/VRcqNyxM0jP6zooXe/Nu83PRSgHzyGiaWWZze78pIRF6sx3kS84uV59EyLXofBQ22lCeOSHEWnCFX6KrY/9MDJrq2cN/3rAS1avsEwK7X9nWO6tp0DsblMalc/TxzDGsG4521v0EBx8Rn3drzP9d2LgLc5YvxN2ORknLeUUl8ujWt16r7hhhJqZxLgvu30F1OQ5JTnv929jz4Mq8x8z//xrmiWXmWVL3N9MhMfucNmDmTz37X8nLULJ7/477nLtE/p1NXzbqfEn2r4tu93dNsciL/VS3uBycy2Mny8ezNs9hMXQVzCcwO81x3bv+5zM750/GXfWuuazsp1yKayfNYt871U9YT3hcs/JwmWY8NC7muubixpSfMQUA6fmuFcrBp3bL+M4bKOsH0W4BubQj5+sY5RUApKNWOelgm7nR91sFmtmqpwda2zDupYTan2YEQO8gwMQ4K1sp6zz6cqRKey1no8vw9rn3u3zEtmPfCc6mwCI6ARknySK7kjMw0+BhOXWgHNVzfEfmBstaA3cOE/Z4xjAM+3e8xtAHL7QqrlV2Yztp+IWaqjKenA8ZhEIASgMOu4v7+CdubDTY3C4+MRYgujP64NDqVRk79Z3Om/UvKupvb9LNH+0ty4XMlR1n5c4ydAEZm2SfAD0pwY0zThMNuh8aM9XqLcbGAX92c+5f7NhitMzUVNKVkqrUD4/nATnOhFxZzpZs3ZjLo64NETF635kWFkBzrcx05EN3JPq/D20PePni+nrLONJ2S08oU+yCKg6OArZ+lVNPdNnZizrJxrbrid5+Sr+marumarumarumarumarumafqf0o0FKVTfgcnVaXGHgsU8sJrI7t1gMx1oFFQ5Dir7jUYd0BypgjHBYdFaBmWWDrC417ojTVsEiuuNzQ496lQpIDRJamEZnKNlBwnG6LYBM+fwyOwKiM8I1i3wRp9g0d2yAs1PNNrfJAlJ8T0hKnhhbGgsAqQszzsmm4kRYhZQMZroBtarMWk8GAAPC6qkb1LnFnK1HAVSA9cq0IsRBwF8lwFDat0U6xo1KzApC8msNzEAnUUQksom1Ta9NmjQ6xFKtQizRDagUAUdQOoGkCCdWwJAxxSJfEMOv6mtoHkWhHZtETxnJDYoNBJ6UTpa+q8x6whmgqiCopv1aJKoKD9BroqJtDAGAsMpoU6d8ZwgI6e6etPRtUAtGYb0GjiUCEsP6ktDLHcEcp7C+1197cEz8lSuoAHOKEgKg5ICSsLN0iWePOtn3eiwaUJJP/cIIUcz+i85oY3k4/ZaNZkp7hAcIR77TxexRewSYExxQ16fntfLnls7uILDRlSgNaiOZ8zKAS6JXLEIOikSAAvsQjbrMMctyfeJIAqQZAAwqB931Clq7gf7m1FgeAzrN7U+uSmbNz/msPgeNpTbavx6E1Ld/LoP5twAqKShJgRINpNcuCl8EuFTl+remcAHWd5o88zrYZE7GRSXpe6qEh097PH91hzYopWoFZwgAt2mfDCC/xmyqDVMFVssBE1csMAJMck1ZlXlCor8xyiB6ZdB50k2jpqj1tDQpsodUPxEzCuLCO8M8tihBrr5UgFKh4pFjLDocQAqACCNkg4INm+rK1nDcF3z4sMfd3QZlYaSxggJsvkbMk+qEpUKYKoeDpKR3iTAM0S+sAuPGbJUZm6Ma2NGxhDRXUxhWCRmoqnKoHWQOnFLsZDtj1ChOZsgXQPUAIkY7VLx/u0MbRjQc8Zf/6m+wKEts79Z487MbbBYkICk1OrfK2O8nfPf2Htv1Bi9ebEBgfHy3w6/+6h2++OoVXn2xRVnC9ZwNnnlcG9Nx7jBgVrCZdODkTBIgrF3LYGOvwfqWAY2owzCwS8wwrTJqE5lvDInm1FSOmuqXFrqLCXJFnzKYm46BSaIn3X/4gOVyiddffInlegMQ+ZxWdD5ujIiepoC6kttM0WYD5bhsIa+RlI+kck6xTrMolqaUak2RLwv5RFEKdH2mEYnA4FZVxgbhFAEWMalPut5lA6ZXkOlsncsKyIGTSLH/MsCksToJWa8etgmMLfqZ/gyKtbLW3SyDDBBdRxY01JgLjRdQMH53n/FPL+UlZqyEYjL1cd95MaXdeb0Sz+3F/Es4XOyaw3PAD2t9VpS9Y+C4AIbaO5JHdZ87B2Ot16/rbCWQKvFyEkO6dVvO053n9+bGVmDmsk8TtVOulcVBisuJqP/VDjjYvqBz8HvfZdpnMndpUTF7bGtANpq5py/6D/ArxfPw0XwWmVVAv9DIfDotFF1PEQRo7JF8o00excvUCefK0S2E+EI7EKparhFVnUXpVdcsaUHKiS/5diefb+1K7aQXY18XZMLabbrM+yCNgZ7zWTJduucAkPOVYUozr2XUGeubs2gU9tsMTBNj6LfrrDm8xWmkWZ9cLIo8H6sQGRDl0ri4BPK7pFnTsOvHb6Ij5+me5DbTZTpyhtzvFjnIwK/+7kX1z+m/kQRYFNFzBayU9XK8H6KbnNm+zmF//1I609uuaa1l0PbPNUnfOy0xIEdLisMzJsPU8ak/JAFfdzV9kPeebQ62hkVcipHk07JRqB8KE6bjCeNq1Ku5TPlE/Xl82vzEzJimimHU610R/WHEqymrkzNbbzmtrqPm86ldExyc8f3aTMANvOUjmKMel28bz/Ysh3hmgCdg/3TCcjWijFnbkPMtJ18TaJlzHnnvpn7yZnPMc1n43e5lT+lco1mdZzqA47nx/VIfkALNGLLfeno8gYeC5WbA/fePKCAstoT17QKLhe63KA6wTJMAlBaLEevVAgBj93TCp/s9bm432GwXKKNztgeLIXif9xPedu6/txZzbO7L+cJD1ttSY0TdiTw+Zuxd4wGj0xH2x8+Lsh7ig1yBfNjvMR2PGBcLbFYrFL0bcT7/uL62+uCj0CUZuAT2jbeNd6az8kSeedTpfO5Z46+mz6YT7AhsvNzPpaGdSCIJczyxivISLOQ/8dJypx9NPhnph0R8nuFt7Jm+Nh0aXd/vfwy8dAkAek3XdE3XdE3XdE3XdE3XdE3X9PtOPxqklA2lEo0BAvIBOiOIO5wIEp2ICpqdTk5lUNr1s1bgVyl5ZAl1Fnfm1BobVwJAJRln1W1eBKBkkXHceUMkV9FAgSJqvQ7jhm0AzfllFhNrW+z4c3QOKnIWMU67n2/osiNO6unzmEHaHofBTrehmf+IzbQZ7+Ec6o1+djrQTmE5761OQVZJtWY80d8KGWCMffNsWDTrN3GqlXODBzRaFDPKUPxKoqJORTfCmaxoRBNDPgwKhPICT6xtEJAAMcQAmL0c7qhTruXNPaXKjKeEcAA2oFUFIegj0rLJDAhFZGjS+ouyj/Q4cyHCoOUWIrlexu7iIgv53iee/Z1/tpSa6FForL9dRlJeNy59JlmghXzyVu1OMynqIwEh/d61JRm45Hs46OdGjoL+WgGL2oQZf8wIaOOAOWAKZp6yHrUhYN1fEUZmLyeVZ7Q5LzDvg4j0UxgpRxihLFJZGJoiV+fuJrcHdQAdA5rYKVvWdrgBiQQYZ5wW+QJGkuhHfrUg4CAlSvwVo9klx1P8y+/RGX39c6Dvt2jrhe8U8hp1c1e2ARUAi3QSsibX5IV8n2pDnSBgpcphaAOhteLADrverTUDCGn9DAd5NNVnpFe17B8riAk32xGLIpHTMJAa9NW1a31IABOj1oLD/oRxKHoV4+hR34pFxRkk/1A0+gcBU2MFXEnkmtZE9zVWMEmVfqdCcb2cCqvpXgOuOiipGtw0gz3YoylJGRK5xaPa6aChscpYOhR8+PUjbm5XuLlZ6JVpgkRtfquVcLNpxyo2JpyqaT4nwK+5YAYmpGiLaY60CFJ2j4GBVkw/DzbPUh7jKcIFQZzCheKkMSFObRMpaFRPXzNArWCqcmr9u2934FKwvhtx/33DV2+e4e7lCqsXS6xuBhQi1CLrBq6Mp6cj3n3/hO1mi1cv1wCAt795wK9/9RFfffUKz1+tUZaA2toFzGJgMQbcKZQAR63qmNDoRq0J0EhARAr6cWCvzgWNMQwG9qYAMOm8yt4/0kms+fJ1eqxRDblFZCYQoYwGKmY92Q/U0wHv377DdDzh9euXWN5sQcMo1wxC25XWAALoE7ChEG7Apf5qWTsx7XOuLYE4+jtACeoEUSXJOrD9tLaxlNJ6y9dpAZTmqgTZOlPvezG+gFiuqLX1rEe9ZHjUJBhICZJXBc/0ULBTiJeIY6pLlC5fS+b5kQX0LZB9GasDLAqPCEBDk+smjA6LoAkDRfVrzZ9ikm63tUsi1hcZMuDtOjtbdaQS0HU6aaFIMoCZnHUzYFTYnfZHrKXy1c/+pyMhz/kBvs5lRdNMgZHLua+qHAjVcQguk/NFY1Qag2T+amSQuSAmzBn5Iofs+RO5XlaKTgWAZvxzanOY0LMc0UX9Pijn84HevRM8mMk1zd43cSDomlx/SKAgqZ/SfoUCBGC69bwJQXuwpL8mz+Yi1a8NDFLdXcgxoDBdQDqWM98t4lPoQtsz94xMot6vZxMf5kCRS+pg/sz0qbTnHBwn4P9o8JmIW56zZ3kdxv1z2+dfoO9iovM6z6Xx8m/23VWM8/NcL8SqPukU+2uF6L6F87hPFJyP6ajYy0l1YVZX9wpC3qyfOD1nfy/GUN8iBGBDhcYuHJUzNnFw5nP/OnVDORZHcIosjw4WB4LZnOg0ZfBcUJ5hbXk8O6ROB4evyWMWDP2hv3PmUeKrAZSqAvhZNyMW+YVbrk9etDWEHVdz8IdWmfVCrcDhUHH7bC0RWQs5EOBsTMW0j1plPBQd4L6GSOJB0P1oCV4FoChodZpbkmRH4yRKku7IkVSA0D+w7ky0+svR1ZD1FIOogaeC/eMJi1KwXA7RCL4s45dAIvlH41/p6DCKY7/g84RV0je1K/tCNd3DZHoM+Vf25XftWsNagafHCaCCcTHgcXfA3YsttlsBq5EBtSj69XRqeHo6YblYepSlp8cTPn3a4/bZFuvNIGt4BPjU+iKPE+8T7fuIEGbfpYyW7AnOh9lckuXb9BvnymBj2/LJQZbM57zvzyAwm3frdMLu6QkgwvZmi7IYESF4g7/dFX0WcczLTmBGRfx0spPm3PyI0jdGlOdjeSac8/l3nsIqVdIUwM4us6HmeU74ak3LswwlBiqYybSOlgWYPZa6cdODkTLtHFfcIstvjPcGUzSzQcB5T/EZBlzTNV3TNV3TNV3TNV3TNV3TNf2e0o+/7k0Tc0Mpya3f1LrbEpDFDVC6seG0YUNshi06SOyO1dxAYTASA0VBoQJm8ZiRFhbmqCJgJt9DWUSl5GSynbKZbHynRp3hzt6NUzG6/dTGdVcbWTh/zu8jDK9EnXHHjCRulEw7VjOOFYvCc8EBkh6E8dve17qacz7ARW688nbmXbnvlNXpnbbw6lC0iCWwtpiRpSFdK8LxO6wcjURSGcMg5cpJLkbR71W/Wzl+ZZG+Y1G1amVjuUZTSEYrNAxlCDKK8LEUeCQRAxEB8EgfRHJNFKsDGhBnMi0UHEJKWwPGzsDEfsU86XcJXkGYPJSHOiPUsFD0mLQZtLKxZB7pB933dNoxJKyLpJI/zMu5VGYuy0BJ9iyfoM15w4QZ0U2S/a/LH/WEToj6KdXBF9+b31RjNDQbn7Bx1Nc/b9/l8oWfZfZM6iUHyWRjUoDCOlNS55Ce8yADu+xfvsos2/wo5zNLHoDa7Dogae8AYEmEEaK4Mzgpg40Gbwu7vGXaAAU7cA/QyrRlGnMsidZRS4nX4WpnRHSlOR9y+c0Na+I0rLPfDFxRm+h45uZAjqrXm8H6gA0UKYJRlYcGWAJY9WEJYxszGhM+fthhtV5gWDUMCzKcQgrOzmq8lGsfJeIN4XRibLd2DVQfbaixgAuaho8R3WpjTTl2FlpHwEvWdlDBMAw+37XGEvVK9Qp0DPRzHxRMEaCMAHumk+WsI7Gc0NqAd+8OWKxG3D1foRQGU0MzHZ7mvNbY5z2ZsxQ8qpHqRH8LDzHJdansRloTPol0ZODEUgaf7gYqHsmPTSGlMRLyrNrIxsYAYMjRMeSl4qDVeAxm0ER4/+tH8DBiuV7g3a8/4PnLDb74gy3GpV7dR4QjhA80EfYPE96/e8TN7RbP79YozPj2m3t8++09fvazN3j5ZoVhIV1nsDGbLxqLbApwjIGmc48CjCYWWRV51TkQcSUqgfy60bHIGNDlkAPdOq3K+o0hkZCqgZ+kzlKVOJ+zhed+4rmJvLep4vH9Jzx+vMdqs8GrL96oQ0EkoEHa5fqyaDug8zPDHSo2PgLMxskZHmuCPF902oukLaL/+wmiv+bGokqEPrC5nbmpExB6pS/rXJpmE1Jgh65d87rNeG5jzyWRwog//yyypzOJRnTiVkNbEnw9wxayzbrEI/Uo2M3qbE1p0pUqBVCTaLAOxE85zZ3z899kKHvMIn2OmDShOsilLQHqPeU1uClMID2M+TzN/BY9yzLYutmcSq6R9JVcJVOUGrSw/eAtPoNmWDl+tL1fI3UO1ksLxiA/U9PlnztivV5rI6fqU+15PQTKvyQqqc9z0eE8a5XznoMnhOhfTvyN9bbRKhHcMpgxHKtRCUMd+6Sgc9NR9Dn6OAak8Se3DVCQQNRriZUIBxcw5HZYhB53eUqLv/N9WdB+1gdzWjrOdkuB2csX+gw4u84mzZgmxWc1ndUze+6/UfqQxltP9eXyf1ui2ee+3J5r4Qa+rHN8rj77ZdaeC7//EPWXwV795/lYu1RqBuPkvHP5yLPgb6PZ9hT9QQVOn3UOv1DXvA5C2FwybS01ks9fSro310FdW/JBkNlM3dHFXTk8+37+gtlcwBFVsqPFxq99hgH009SadI8BQE7HJnuyBYBB7GUX1LnXYY/qFMBzU4EMW3t0ywJw1XWUbwTke8as+rqLg38GpPXxwLFPiLES9VDqN5/1sr5N30M/E/aHChTCajvqUjEdXpzRmHVgp9suCFtTtdwypZSmVoavYTP/PDsjvxmPjQ6KsZFtPEBvl8hyyxCC9g8nAYyPA3af9lgtR2xvF6AhDnVVsEewnY4Nu6cTVusFVkvZ5z0+HPD4eMDd3Rar9QjSCLxeD5/z3OQxQEl6WMfy697DhND7k9I/yGEJi46U59o8kBy4lutDr+Ny/3r5mrdODcf9HtPxhNVqhXG5BJfSr09Sf2dQkgORYOtg7vPmDkX0o19BSOnHXF6WwVlRWRcQJR3h4/Zca3eaxxdWSaZ13u/1Xl4N6u/Wd2QgvCg31kBGfNBizZyzxHOy1qe2XWt3lJAR3qmMS4ula7qma7qma7qma7qma7qma7qm32P60SAl9hD5Fv4Xem2XbsDMYGFOS98lsQXoQTaihnEi3o9ISoh6WK924ea7Zo+84lYusS60VhUQUmCn3Cl2uGityoavSNSjzpFEALOeXte9WNNIGwVmsKC0wZsZVH5LMjCLnUimQqgtA76koKZRISL0eOwgiXJZvtcNvpqhiQCPrsTq3PIdKzvPgiYFMyggJ6zh2oVkm+h02hAKqOLoy6L1kDr/QdGW0ix6il721wxkxRJ1wk8FadQJIkCBQ6xXMBWNRgKNUjGQgeGKy4nQWtX5GyeZyQFlCpjSfmgSGkWAEAS/OgnEKDR0UR8UeYBhIHGKI0V3UmOfGJRCRk2urZcK9OrEZHAV6bXTuMli4D3mJkYwDOhByVgXBokCA+Fkc3U2ngSAJMoPI1NDGKmTxIh89JYMNxh2Zhq33EV0JKPdxcqsZ513h4MZqX6jNU7JpnLS386Bh0wXpWcmw/O8PS/lh+TWSKSFUakvX3Omz4i+OuN3pl8dQUnfSWQMhoF0VOQdnLSAgFWyY4FAcmqXz6MjWV2stVkEMzs5ne2QFT2tNmbC4memueKGwmysq115hOSKd3500ZS0BAa5XMv4CWZRI4miNJFEH2KJrEQoEUGmibooapRkAw1VAypKawRkK2CgAqCeGIdPe/zBH77EYtGwGAfRD6rnml4xJUZfxqk1EAjTqWGgwU/2ir1TIgbKyXSbRDQiFOtVfvpcxhkDDS6TGVQa8ye5fvF/jTUSUvzjFoAPA6yS6SAE8NYdDAwwV4AHPDxUHFvFF19s5cpN7d98k5HpfbtmzSVL204wMJQ6QfR0ukWHaCgeKJCbtj/uN4WffJ/NTafKfh2XX/Nl76qQW9BDc8bYvATAT5IXrXxioB0Z998+gIcB6+0Cv/n1Bzy/WeP112vQoqKyRNmRq4IauBIe7yd8+G6Hu5e3uL0bgNbw7Tef8P3bT/jlL7/EsxcrOS1N7I6aZv3UyHnTlC91amAuei0hUN2DozxVfkjULFn7FAotyizXv4lMxLV+7hxvKSKBDjaTZb860uqz+1chtGECWmvYPe3x/t17UCG8/OINlps1uBSfD5iFNtJOJpUvj+zAUaTPT+qQECM72XJF5TzJZ0EH4uP02eQtqyQGRWQ7jv5uCmrSEGg6GlTOmMFcda1kmgg+PskAB5BOYiPMpujZPA32//iYY1dQgKDzTNfHfO+yq7LfOQi0IgfqcNP1nSr7RgqoibEh3AjHz087hR4BdLxkWcjrgY6/6d1cmjmEnG/5t5Cv5PlKvU7pHQO1Giibfc1oOWMdQa4jjXZrVLgn59/6lCNtUD7ynnjQtzPXb7VdzDp7Md6Pt6D0ny3xUl7uFkBWV94DdasfNjlPRKWuvgxg0rknjS8G3MGZy2GX9R9spkcQaPq3aNTC7IS2oRU81cMyemDEQRI6Zt3xqvOMbeGCphx5ArJ3zsyyliZdV2zPnDrg0vjN/WM60JY3BPaoPnPOXFJVNoaa545oHfyZ9zKJrm344o+zevoP1OVJ+/nfMc1iUFxI55FDgtw84czf7/k4L9vtGWzj3oYs+f7G5qMzbeVq5FJfzWRk/snAB0lWL799/kz6Vr4VyHXsFnXVrxrkyEv5XaO3q+A8dgerrmSVRbu6XkfFxX6+FEeLlYg8KzPS2iI/Y7gMO280L2DjMi1xZDqPf/aM4zMBfjALHPs4Snmdv928Aux3e2xWSywGgEpE8hRdEH+zDmsKfhagNseEoIrAzq4F3sSiBZkMkf8+T8Vl0imONiPOGZosJlx0jIuki5G++7RoMt8I04lxmiq22yUsmnnuK/vGnOQp9VVJ4mDzRAoWjllTOrpsqva6ZlO322WSLDPQRYSlVE5ODPjkkX+uFTg8HMGlYBgHPD4YQElARgxyXgsRwGF3wmFXsV4vsVwR0BoeHo7Y7Y64u7vBcjO4jvGmp2W6z8O+B9D2qkxlmwOBuuhNOQIg/J3Z33woMfPeeNvQ1+HykgD+Ng/q4YjT4YjD/oAyDtg+u5UI6ziHw7jGzLJhdaU1GEAuK74WSLRKHyo99ljX2ym0YayJ8lcVDo9Ia3KU6LQI/ql2+ZRsr/asO+amyKkuEmOMPn1XNeUlQfS2BJ32jlFDXTmk/8/l5HLToIavfqIPL2roa7qma7qma7qma7qma7qma7qm33/68de9+e5fnCJEJA6qYhtwNZUQYO5ziYjBADU9UDLEJkotvQJAMrOTno8yRxCFdUeuVJNdomygi9ZlThpWQIpu0PyUiO6SNV84niOMLbgETdpW+V7C4NjCmVFKbK7zZjwcK3LK3ZzhAOln2yRbfnVEFjudlCxDHOCFbARPdivY5jKMRaROUjrHutiVN2lT26B80MIpdvxCgmVVq5UEyAgHcmvkp/CEr3AZEY+APisRzYPI7APyuxkS2OJTDyI7ciMLuaNyHIoaSdSR5WXG9TFFDU3ZyQ3tj6EUjAsSo6HeQ9PAGjEpgR0gfcYEDbMN719GAzHptXVq3FUEnhgfGFxa0AE1PpDim5LdsVGKckMRaSQMZW6G7PpxDkqyE4WsxremBskkGW4YMWNusz4lM45YM1nBHSHMARwJA1fnVHAZiWLc0Kf1hOM0wEDxu/FJy81MSOUZT8zkY2UN6BMD6oiPcu1vQR/tJ5tsxI/P6LltZVKXny7kulSWAG/k4h7uuJDpck5GpC/oWIZELiKIQ2EgAyrJtW+dwQyIq+JS2aZBFZbpEeKy/PDsrz03OsNxxansaHey5Xsbc9nz8i2ilOfV8ZGjeoFIr0ADpgpMk149ZUMaRQ37qmMau/OxNeV9s/ym19hBHdaC4/4ELBnbZwPWS6AMdi2YAJqsPDt12FijKB0nrNdLidbGNp9BcAj6sU1wXQToKUyS09utkEfCs/HalDY54d3ArXj7RJYCbGqR6arWLVHjmtPJVeevIrIDl40A6hUqOD41PL7f4fnrLWgwGnoHkwMplA9DcjwQJdCjykkjnW58XkvjLYFU5X3pzaq0A0CrrCBejfxTJCqVjTKLkif8Zr920/XofO5jOaUOEOqJ8f039yjjiHG1wHe//oAXdyu8+mqLsmhyBSwkIh41Ah8G3L99wndv7/HlV2/w7G4BniZ886sP+Hi/w89/+QVuXyxRBtWdDHAV/lSTPVFK4CqRA0UWJPJNTQFvuAPTRZ8VnYzbJLJVG9zITgRMNdXN5KehDezbmjhSGLHOMG6KA8iug2PU2nA8nvDw4SOennZ49vwOty+eyVUVRCJLTjNLFK+k1F1D2BrCarKIUMkjkXWmjZECjY4iLPPr4XwtUkJHGh3KXqejkPBAgLXqMGGWdhI5cMlB47B1nIu7EyoOjQpGCcA7MUAsIHNdQzJDgdAS8U0qqLpOtjbmuTnk2da/BjZi1sidpclahAmEUettAYYBgcqQ5sWmV2JYB53PZT+VFFddIDofaT3Cs/w6T7AuRDi/ZuN9NujZeRA6OCKohvwLgiXJla59ZIvCQa9lsDVovBGyxJ5Jv6e2zdY1NkZsv3HWhFDaDoyZO6E7nMWsuz8nAbaXMz1pY+2Mrvl7/tOMiNmrth7OfTJ/g9KPDjjgy+3M7VC100d7ophDqcvY/571E+WCtTzTUaLiFMQxBw9p4aUQyhD0us5F0K+iGp9zXYk/mRZXj/aB0r4suOdcu9S/c73afU+ZbD6+9G5izazEPu/5LzGOepnm2Tu947OXq/x20gmzWnJXB604Kxdd2T8u5fJ+pzzc8/BSMh5Q+vtDidHzes73nm+qe2Byn/Qaeh6V9O8yDT11PY8/LxMdjUn+LD4HkbnRs3ycab70NwE1EHupbl2Jy5/n6tYiq85BSXPAl0cfnXXmHKBkz0yfNQXFL7dy2EGXkzHWZ7qGIAcgam0YhhRxSf/lqMVzweFMExC3ZV2klfUAYQ9Q6nRp6mDRG64kOtOU5TuTKSK0E+PwdMRms4gITRz5glf9fGU60+h3svOUmvjdvT+jmSxCKGJe8CuuZ3OHved63L7Pfvc9ha8X5bdWGbuHI1AKyljw+LDHej1ic7OIiE4EjyhGjXDYVTx+OmD7bIPlqgCN8XB/wOE44fnzGyyWg0f7dvOlNrM5M1jBPz3PnMeWS9udZdZkKc9LOUC8BR/PwCekOnL7vU+svmCUPG+MOlUc9nu0WrHabLBYLTxyustrki+X9axlNGJiP0PkuinJCXcdSDNJtTVkVm9n82Ja43Vjz4vJupG8ERmQboLD3BHjgyCPOQMy+c9WQ1obGnGyFrY6o212qCLmFbOBmzJpXjjnDVNKAaInbxZlpXJN13RN13RN13RN13RN13RN1/QfMP1okFKz69woNi3hAteNEkscl9rUAlNIIzBx2myJmUmARPbdDAnqDII6C5ORRisAkUTnoFL86gyCnui3/KSAA2YM6s2000WEgkKERmGRFtqaGyHsxJ/dB95tjrV8Ay+5I0Ot0wJQsYhQtmllGEvyrri4U1UdzcZghAHLDRUwA4A6XOyeduVrScYTN9YQibPZaEnOCU/qAPT3EcYuA0oJucmAl6xG4pxDb8hglmgixrfGqIDyndwwKlGj5B2L6oLG6jNSUI06FKuIE4YSTkZATrlXszdUxkACIhr0RKI41RmLpYKTNNKFNF1P1RWgNbcWoFWNXgJC0/t2mNivlGutYSDSyBnynl/TV+BRmwgRXcqNEaltYV8Ih0PYaxhJGvS3/lRw2K84+o7h8tvlZQMoBQjEyvTeTHabHK2MUx1h9DZgVVj0+EK9vVkpzCJCa7Qxm5GSvSqMVAgeZZANIYw4YaSLNmWDTS7tUp2dZWvWgpZKmf/am8CSsQ+m7XIue0eBdZRPEkodJX01EGEhUdZ2PUMubW4Ys2vUkgnN82WTVwYkzcFKxq0KHatQwADsqrzMc7seU/6TT3JaGfY+EzmAy+vjBGhS4loDpsYCwGiEZiCMxn5lVZPK5Go3HWRTa27oYyY/LY3COjYsmpK04unTEV+8foHl0oAvErENg8wdrQKoZrAklGHA7qlhsRDQYykGUGIUPTLNLIbyMkRbLBJMU940JlQC2sQaSQeoE1CrclPbanxs6bM7QbmhDHHS0fITWbQaxlAEoGJXstUmEZxamVD3I969/YS7uw3Wq1H1LeKkduv1DxWbr0jb1Rxk7CZaSnOI0uAnpot1sCsMuDEU8PpIgTUgwlAGGPC26BwQYFQxuA5FaSV0AEWrRIz0hHZkvP/mHsM4Aqs1vv3mA169WOPNz7agsaFwUVmX/uMK7D9MuH97wsuXL3DzYkQ7NXzzl/d4eDriD//wK2yfLWAoMJF7QquqEzWSFFhBUk1Ah2aUb+kUf8zfjABapQiIrOMklg86F4WOMeeblW3zTmMFpibeGHCnMWk0QYBrw9PDIz59/IDFMODNV19gsV1hsRhAaCJzpHqjwtdKDDpz/HgXc6wbjd7OOWX/0fYRBMQWDoJ8otfZqnyRJ3a1hWB42Os2QFi33ml2StgQjGrI10VMXI2ioM7sfNB7ohx4bqFY8lxOpPI7wTyShEH6x8amrhNE3gscSOVtLc4cd+haB6eZTyJtWYda9BaOSAQ5/NRPLTWdo/Lk2a31TYCSU9p+YQN0Wc6YvT2fAeujcDjYxAUpZrqY2Smz2OnIr4Vs2xWeuqbz15JAW9lJPmZLIphjyb53WfJ4T0zIDt1Ly5YOwJV+Z5UbutBc++5RKXKVWk9Hz4WU1xycHjpYJy+8bN6a0zz73BWsdHDmoZbb4W3suenytEchKGAiiUMGWTqYyHSSgWL1t0JkZymCNP19MF3Y9ZUCzjnK6Pkf0QKzDNiHzDK7MtaehASnicJ/DSZ2fdz9El94lnP+jmSlrqY+j40zY6eMXQNih4znUfl5Wfrtad6+tC+c0RY02zybeESzgxOzdGmPBDJdHS8VKxjw9eKl0ubldo9ngs+z/ujAhNTrRqLzKLjR4qhC5F73HzrnxgR6meLYU11WAHNe24oISV4Au4I61j1elM5zRgqnOqwso8B+zzii7jfrg/y7A7f1ma2PUiG2pPBxn9tg06z95nIcMwMRcDxWLBdLLMYEwpLTXT4v28EtQHX9pDaLkdyGZXooy7HbdrTB9pvTqOu/Vhm1MtpJ9hNxhWxL4ITUK9SXn1rk/AuVzTHXBQEAGtpE2O0mLFYjhoWdrOtqkjFmdoOUnL/5mb+VeKUPbHjlq7rkJernB0ReAH2YJooorJkXmUNxODPRZXRUYP9wlOigw4DHhwPWa73iTQYWqFH0FQPHfcNx17DdbrFcydGhhw8HnKaGu+c3WCzLGf3s/4kvthcG9EBfzjzjyVlZ3bLQDuBxyJYVk5rtgKXEDgN9xVyXxorSd9wfcDweMI4jtre3oFEAWCmIbjfOjU/2JH/3UU3nebM89eC1qMBtVTPAzQWW9T/k4pxrc5gmu302aiWVUfZ2ymHCviSxjtqRstng9rqaHxI6ozPliW/dpG7CnF5ICk/fOXshK8RruqZruqZruqZruqZruqZruqa/g/TjIylhgFx5wWBU2BVbYngmEIt5TE5vSCQaVotQIYCawFDMuUhqMRLnfwEVcb0TlShTDbKkR4EYchKsAKBWUWgEHNSkhDKBWEAq+XR8timxnY5moKC4QYrAID2pTkQY1AVkp2N9I5ccbWbEIA0Pka/yyNdEODgFalSy9zlOysoJO6tbHZQWqUjfN0MNwyJxhPXAvudNfdhm1OTGyQhm7bI9MbGGaweKngi0m0QAgJqAoZo6m7tQxMofB6MpGAFsV6CpsxxAI8bUkK77QRjxmEFD0asYhLDG6tzUckmtylWvFoyoIkBRgNRQoL8B46DRP2CADwIG4cVAhIqGcVDamUFjAVeJUFEG4XnRqE+cPagG2CkABomwBRKgFLOF0+cOANY0/LQZWlJvumndpNYM/RkK2DK/Oeezx91ZqM4U2FzKEUKF6II+n42Hc6NilD83t4RDhYBkMulNIBEVQUodPE8f6WiezNCTyx0u5wRg0VcMJGMOMU70y+ccRYnmJSVDDidOs/KJgGxaSv/MSB357VtRSgalMcEo/XcZJyo/mscASsnf5vUXa1Fy6OffgQBNGSjJfjfasgvcnuW2mdB2QAnLrNEtmAVQaGC4pvVVbU/TZ9zVm+CrjQEm1AoBCHFBmxitMrhavQJQFVCOWSwDTJojxojPn1BKU4BCcWfO6VTx6fGIL76+BUagcsXQCjCwRFRSkCpYdB4psICZsVqPGBfKxUIoPqcI6KM1Fv2EAm5J+n0iYrmyrhZ8+6tH1KlgLCP2DyfwlBV/QaEpAdPYgUFDsblLokgVRe801a1y1RmDRsBCwQ8kbcAR+P7dHtubG6zvxtDxpt84xi0LwlSjIrL+JpIlxnJ0xlm7sYLIIiqpLNmEY/3C0psydZBcdeH9Cp0Xe4iCgU/NIOyRwoYYXxUsAmdvE9BOjPffPGAYFxiWS3z764949WqLN1+tMC7FTVwAlKqgFwY+vdvj04cTXn91h7IEjnvGb/79B5ymhp//yZdYbwt4MB1h/a71+on9uJatVQMFKTjTIgjadMJQgKHqRwWvobGvnbx86wvENX4SaUtBcDY2LJFqryYzDWukQ9JBOR1OuH/3Hsf9Hs9fPsfm9gZlMXi0Q9eZZFGDkHSNXc9Iek3lzIFLAthj1RPWYF9/mLDowwzqs3nB2mzOX7/eJRZvQJXxF8u+NCvqOsIRl8xgrgKkR9GrYWVuJm5oPu82FVlB77Gt9WRBp1RMAiZiXQcXWS+TRkWrKozCxxTFyReSFkEhZMEHDapeX8h6cp5RaNSZiMHcUIjBCpwWeZPZ5ywAy08qUThHEVGIMjgNQIAegQvrlnwaPYOpKdaJqT7W9eg8opGdQAelC1Czyk7rZas1jh/A13Kmxwx01O0Z/L3Im9dEHZCIvZh4lluSyE/LQAeFFurXZaavZV1u4+acvrz2pNxgTnR2dfX0eftT7bZ8yu2dvzTHlfI8L53/ZuUaONWvcFPaPYoFEmhIyzGwEOvV2nSpKm2f7BG1LIuSmBqTAUfR8j76ESH0mYE5M0jJZ3ZTmRZ9ReuxNZgFdp2xWPLyBb4BvaCo/ElePuN77v+OdiQgdKrjHP7Sf+MZVy4lKS8LE/l4crmhnPeHU5RyflRi/n4nS5i3rU/zerNtYf77pfLmv+Ucls90es5k+iX+ZD3HfhDI+CSzyTntue8IMQ9l13huR3fw4UJ5HtEok+v9lEfCnAE9aIk+U4e9a79b/9kuydZ1lk/A4HnvLBraAROcQOFthvdFiF9rvcx14VRMZ9q/BOIvALgCh8MJm80KXGKeEWBj8CfrD6t8HIseapD2eTRWDj3kkQHZX/O1mTRTJOi4r9jtKvjphP3jJAchFmqfI1mRtKePul6KdnUYBuOJ0uFimWxaUN3IJIe8jvuKcShYroZoX0HCQ/Rzj/WnjdWL891sYLksZ52uysJtW0a3Crbt2QzwmdcboXri975enuWzMhn7x5NEshwKHh+P2KwX2NwOKEOMa3uvMXB8rNjvT9g8WwNomI5ySIYb4+7lFsNI6YpCoTFH9LKx5nOJHdzJTOvVR//ZZByYAYv0udoefX60d7L85T3FmZ6KATmdJhz2e3BjbLdbDItRDrnM5KxXwNoHFPXmfB6FjM/1ajc3zd5rgRDy8WqEspLtIKzUnotzQeLvfAYI69VsPrf/KHEu67p3yQD3rHnJBd3sFjJSmsXm7iZwqyzpCGeG5QvmuS1e9+4+l6cxCoQOu6DJr+marumarumaruk/4XR6/w24NYmqf03XdE3X9HtMPxqkBJACiWQbVklc44wmhjLd1RAxqEREB9v8y8lV3XBR0dP7pGGNFdij1hsDr8h1OwQqerWcGlmgkRNkI6egomImNyvf6leznRkwCvuuMZ8YDqiAOvBg18IhNtZmXMkbOC0hXx0CClCEGEvkeWvJeO0bctKISvo4/WxGAQ+b3fWGbBv9qjjbtNo23ByFarnsbQGJVqPXCWA3OPTGtCjL6PQNv/NDyvaoSLY/bsFzcyqYrLQW/Gbta0qn7O3Ud2kAlYaJSQFDyjswKiyyQeoHkuhGVJKx0vpRQ00PpHUzPPpR0TuYWEEJFo3BjAzm2JA+FvoGAsxhaaenihoa85Fqd8g6R+1Ee+n6tzO4mKgAHhXLbWqepzdLZThOIr0vv7MU9Ym1f93YTHZKeFZOMhKyvxlApTMn6cyA5nUBcRUAZoY3byFn8esMRRmUZ0YfN+QqgXFSWnhooJ7qteR4DPBxILRFQ7j7zF7GJROOxsxwfvRX0xEG5esQhCuwLQxb+cSzgZGGxLcCc5naM3IDvaV84rgmR392Ms0Nbz1/kw4hePSOCJ9v1wJqfdxHZ5oA2LV38VffhUQrkeh7g+gHdSJMVRzuU0VEHeEAMbTKHbEWUKloeCpqjHGUMS6GatE/w8AAKp4+HnG3XWI5moF2lKhqFBAzoKEM4bw+nhqGAViuCCAJUcQMDINcGVkndjrsZDgQ86NFy5N5soGGhhcvVjjtgd1DRT00TAS0MmIoEgnp8LDDEQu09RLr24LVtmFcAMzFDfMGoIoUMjGMQDvJl0Gjxn28ZxAxnr0YQENFayJVRCXZJEXnD6PqEU7zuPZTpxBgznmRyWKgnWQ4Je0nEUFS8E4DGUCJBdwFFJ8rDHjJjVFJ6CYFlZoeNhyHAR9hc1EpaIeGD988YFwugWHAt7/5gFevb/H6ixUWS+sioXUCMDHw4bsD3v/qCa//8Dk2W+DT2wO++dUBYxnw9Z++wHIj8xW3MILXJiAkYoQjDORXuolTIaL1kN6T17T+7DDyq2FB4BLgPTOmt2bSqXOnAvugPAijuxRq0Q1BcvLarwWtDY/3j7j/eI/Vaokvvv4Ki+VS1imFQUM42Lg2TLU4ny1CluJnwtgP9vWHTXkZODQHOLiOZwNYa54EzjJdKCNXx6tP6GlNNtPEQls4U8nXGaULbeLrITaHgM27OpfaZ4p51UgnGiBIPoVONRJdgkFuvS0GHmNdx+qckK46FjYxmGzxgVSv8qTIfYxszjYd8AzpTwEmFgVHsf/+003hwWT3kqZFBeDrNp+bbe5KE6vP3Rw6IWOZKMmIf+4WM/M5PUVkOfMo2ypC6dJ+6nLYRAnyOTK3xdrjc7xmsubbmuZzSzSfm7s8Jt1OubTGlzM54koiKifq6zy7pWT+Fp2X4qBBbSDN8ue+JdVHZyAFZ86sQkrB+Iw+RmpX4jH3RTnrlTzSvmvMab8Jd9b7daJz3mSeWF/qs4jMFJmKyeIgdRtQIvgVtCS/ebQps2MuhjOWXWpvznopj9Hg7bnwjkl8f3xgxoi0f8w/J7V/LnFMXbtUYi800QA1+VPfxvM35u3uf8svel7u6Y2Ps8ao3FB6z3gwE9dUiXKP5pzti74wKmeJXd/NNZOtUs+11bkusdW/RVW60KtOT+5STuSbNJzJkbbzUpvm+iDmt/RsXi76AxRxqCHo62jQcluaPAyoYlcqO03dYIx2+aM5cALCO2+/44wlelFBwXolBpum9i2drFNfxO6sVqC1hnEcXDnN+8/XSh0o4VKfSk+utwXr9YjjcMDH5QDSEw4WMZsr4+E3b1H+8IByHLC9HTGMtmZL661sdzK6GH2kOP18Osg+brMdxP4HwA47uD5MthZArYdWX5o25m0znWx1MlL9ecB2Y5ZDWNP1wXkNAGSdH+/zjK/eD9YFFdh/EoASBuDx8YDNZoHtdvTouSaXdhX2/qlid3/C+tkKZQFMO8bHdzuM4wLPXm5QFtGWJooiIqMSgDRv5DEZ7ej3/HMedZr7wtwqewqKMUnw6GNgwKJmm76WaMFSmF1nDwA8NRwPR5xOJywXCyxXSz08E3w0VtsewvcqNKOfon7/07WJvMy+s/J81Pff/KGNr7hCeaZLTD/NpoCO/54hZtwoZ6YwE688euuMrGh4SzoywUqTvdh69mze6BqsHeqNyeSUWA/MjZBexoUBcU3XdE3XdE3XdE3/Safjd38Fva7if2hSrumaruk/svSjQUp2kjzAL9BNHqVdfUP1zbIaEtUowCwRDsL2S7Ex0g2U3xJXioNN5GRPHKtvLIYWQ20SsRoM/bypfNeoEr5ZJzXhUGwdi1qQxfiip1QIIBQwt4igRCn6AUXr/D54247qJrv4Tl5+y4auom0A2fVuvZXOyrA8vrnPRrL0mlXl19Bp1A7SH8yJacY/b7ehBNzoyShU9EonBDDLSdD+JKs3iG4K3GkaocAiDRgN0h7lc7o2UK5Ya94PTUEaxGpwLUJx0XDp3BQQwtDISCpfTXg5KVPGxhigQADE5ruUiE4jV+HBQWJCkgCOmm7qx0FoaO5kjv6xvbucdhMHcCUBFTQW8NSZV+NCMqduQZxW9mAPLhTKZ++xeGyl5+UBwQw4OafbumCSMDdv9AaaPEr7sj1yTzbcENQ5as/t4kZ0BsjEvXi/syflk8L2PM6ncSrH+r8DXCk/c945z6D84a4O/WtOU/3eH7ilrqx5tKScGOzgg1yvn8oHekCSElEgSjk74yz/pavekLgV/8gjC5SUqyJ4lduVedUAD2dftGMbBacKeueDl5vKq5BYewZUytGTqvGQZV1rLvvGpJGTxIjemoy72sjbxAbMUMMmEUmEJZtj1Lhn0WQIQGtaI5s0CuizUMGnhyO++uoWZaH6iRmj1lMra4QkBYmpvjodm5x6Tp3HNYyG4twknxvE2Gsxt8Igy40w8gIDMcZnQLslbG5H3Lxc4OkeYD4JrQTUE6FMhPuPT5h4xGqzho0Kj8LHoYNlnjHgEvt1D6R8f7if8PQw4c1XK5RRowgNDdwMzGtCESec3SFrY8PGLEMjVYmsEGkUKlZ9OpDq+gBu+VlRpZlK0TlTQFKlwHUuuRODw2BbDDzAfn2oSaSBdl1HHBo+fPuExbhEGwlvv7/H6ze3ePV6iWFkX7u02tC44FiBh++P+PDtCav1LYbFgKeHCX/5r99iWG7wi//8NYYNMFXoXCFywSBMJ7kc0SOhyZIJk95HanNRZdZcpn9NXkivEoOvXZzHkHkGCrRjLgqKivWDAaMkGmXT/ohCSOmpStvpcY+Htx/BaHj58jnW2w2GxZDGslwn5tcYNtPeGknGbvTQcUcEYEgyzuzzY9aD2RbuDhFmXy9Ykwy83eVv/VyQvWgMWzeFI1dkT9dgXCyrOlFJ5KuFo6ybBUl52WxNYzOU6TD9rl60vNYAdF1ESX7R5GpCNnpsoMVcRKToaF03iqNQ16ZgONOddzqrF9PbAUCnn7TRwDr2wvrIxi9dcL7kFcT8fdKVgu9TEPKfi1e5zGsJAWcKADLXI3Xleuyb9V0Awcw1JfsMo1Id3GcrkFy3jraMaDprcbzjz3LTvfZ5TuPl+Tt9HZwy92sS+5KHiNORfrO/2Zfur+cMXVV8kaS818nvd+XOaL2kV7wbcjhS+2O6v0XerHPZ9jM2l3KqK2qCHUzIAKkzuUvtcflG5MvtnbdjfiVRMCNeCn0IvVLL9hPn3O34dQkklmimYJPTLVXaDOEP+gyzpl8e6Sb3HksO8DFP+v9ZPbM62Ou+VPK5bOToO+VCfnvnEkfseVcn5z8hjPP3z7/PJCm/d1kl+t8Mk83j73wsUfebqkb97rMYMJOSDEyxEm0PlqMu5cMP6BznPd3dY+p/y3rG5q/8HqM/8GBruwxQ9Dp0SpE8ae3A9lu/nnB6z4jUOcLR2QlYb/OyH8BrGt2bcDpNGJeDnTqB6QaPJKR8yryutcWhitmw9lfUINDriH5E2RgSnULgARiWwLiCtCPuvQZRwebFG6zWC/BgBycQAKXEDpP5S3OQpdORcThUbG8WKIOB11VSFTB9LtMJaMaqy41PJqMm2/Y9DVi72m4+V7G/F+PL9gQ5ml7+3OkK07UXFAIRwBOwezxiGAZwYTztjtjerLDeyLXUFlXW5Kw2YL+bcNo1DOMSRITjruLj20e0Rrh7uQQGyVdsDGjdFu0rz2PGL5dHtrE5n//DxJcBTD5FJdnvwUhRh/FZeEI463jrOwj4bzoecXw6YCgDttsNhkFOOHDin/FX7KAEqnlOEWbn6xqt2q7q9CW3WT5zf+2r9Ssselb/Y9hYgj/zvvcVXjfvRK1xBkeIzesk6vYn/Fk+nitGgu0PZPyY4soaONarzJkLxnDgIuIOSEAn7ujtBUTXBmYfvUj3NV3TNV3TNV3TNf2nmBavv+4X59d0Tdd0Tb+n9OOve6MmCA8Sc6JdhdHsCgo7Rgp4lCPZRFlUI3LHgACDbJfdwK2hDAsAZiQxA0faCJJt4BnM7gZE4+bX3HAj30kxp0ur7DENME+dGY+UYoAs/gh1m3L5Y1d+SN1m1CEgrhlIlo1ixm9Yu7UVdmUOYsNHsE1rWKDMQOYlmjEmGbHcfqZ5/fqblIdIDR9hQg0gVbqmhgCw0lYsDymgR9jsDmVOtLozLDyhblE3R1zYj22zm4wBDaBSPGIVcQMPxa8jMCCMGU0G/S1HmRi0v6YJGnGqqeNb3h2U78ITjWJh/coAKaDIZNOAEm5UyYYJNfiAhF+khrJSBP4wFEJV6xQVicoxXrYRdMYVu8am480szQFKfT6DX8x/IzCamzUo5b9UByezdc6vIuDj3t41MJXlAQWP3E6o8pJpzYRaloqINGSGukwDpwpyO9tF/lo0Ic1j73P83vPSzFvo/gVfPp8uuQXipK9FGNIxB8SVhgDMUXC538/PlBto0q79sN8z4Cj/Ja3bnOS5bW2Wz99NX6TP+/Pz2UFiEZPsXWkvoYL0ij34X6+XFayioBW5AovBVBSEAUBBP3FllkZO6QxuvbSbjmCQXgsnOrvodU6FCLWeMI4Fi4FwemwYhwHLrbRwIKCUqoIygJsGVScWQBITjoeGWhvWmwWYmgNhW+O4nkp1TisSJc4Asu4Y1/FRtCMrK0RRQ2RJJLkRxCeAG2qdMK7WePbFLTY/W6CM0OsEFJVgc0vSudnZMEAi8VTtsMOOcf/xgNdfbLFYSd4KGTFEOp+xRCryKzHI+ppRwZ7HxrLNhrYEIG4OJGos13JaBImi86rpaTuR605l7TMBKqku1TWBO3PsJHaRcVxMKeX1QmG0PfDuV48YlwvwouHdu09488ULvHi5QimM1prSRahVIhF9fLvD7uGIuxfP8PjxhHe/vsc3f/0O+08Vf/I//hnayGgT5Fo45YedejbUmgeP0razLhIam5wU56lFrqq1xVrA1x067u36O2jkpgqfx0BFIlE5KMN4E9fY2jxfSeYsHCZ8+vgR+8cn3G5v8ezuGWgxSGSRNKYE6GZRBKyXz50hBsJojfRKJFbgclHnWYz97HjK/gK/yjbpNgK87yMqmWpLG1cQnUGqe5iSLjcwUKqQoONE16ZoUoat8eTFotFAW0SYtDHmayGNKmoOFQccAUDVdUKV2de9TS21Wcew0qmtTXNnrK3YnBM6FkyXyFVVplsUEmuhYlpq+080MTADmrD+n7Vvc0b5SPnrJQQSAAtvQZ/5PUBceZ2kMxgbyMsoujSjRoRYe07pV58jKb1J8fwH4q0kGi80a/7c1rD2O/tq3vN373YfZouweV3WL13eC4Aid0ifvwtI/2a/3HzlaXr/EjEdEIZnZCrDu+gRPj76wpkgei8thBsj7Gqc9I1+t98bSSQ8D7lZZL5xEfFxqjTO6HQdjBkftM68bsj8IIJNEwBCLw9eGD6b+ogaJnPp2ZkCdzZ0a1GvinP/Rd5UCbyDXIfmclXqjTemt9NattFnwGo/8OBzLMi08vxpur4rszHnveTX5c9VmJ597j2eZ/xcARfTZyFkIa+zUi4NJ99P8SU6lRPezzOtZ2sLxD4worGmMUrov8+o4Qt/pQ2mFfu25nwebRLG07zmF4IEvMGpHSGaOahgBioFVIujjxkBJuAoQ/RhmldU/wgGiDEdG27ult5umZPVXuVAIOkEAaTL2m6xGFQX6RpI8UTdMKeYK02ZZF1VqB/XNr4IssYxkDWzxJ0ebp9jsSkYRrOV0JkMGV/ymCHInsK2BvXEOOwnbG9Gje5KPrbOZDtN6GdjLc8Zaa63v6Zvrc/tIFket5eHpzyd8ycDZux7NmOd2X4AcAV2D0eUMoCp4Wl3wPZmg9V6CH6ZzLAs+w6PE+pUsd6ucNpVPHzc4fHpCdQKbl/cAgMcxJ/3013ds89NF9IGlzaex6FJlffM5KSbG+ffoGX0c63zL80NzmQWvpq5tR0bDvs9Wq1YrVdYLhYBTkop293sGsNUZEdH5mdaZnV/+2lmpidTXusTA3FmmZsXjUQTkM5yZnbN5yCO2mN/0XztkWUuX4Mt7yqBWZmz5cs2YDteyB0R/Ro/dbLqCCDblzj93M8qlIgUHgnT3A6Oa7qma7qma7qma7qmSMvXP79e9XZN13RN/0HS73DdG2COA0JxQFChInvgooaD5EwxT50YcsJIT1TS9ktNIa1Crs2Afi76j3y/FQ4bi04kZJkTDmkTSGSbPHX+EQBUNZrrCXqliSmuKLMoItmR4ftHU8RpMykG697B1mwDaQAlNWKZUcQ3fG7NV5pLtFWLdwNNZ+BOO0Zx2CqfOQGcnD3SNje8QWjhEvyUd8QiXtQoYDZ5bmIYd7BDorgkmmA8c/7h/8/evzVNkuNYguABqfZd3cMjIiMyKrOqpmdlZmVk9mFF9i/s/3/ct5WdvUzXJSszI/z6XcxUiX0ADgCqmVdHy1R1h3QbMz0+M1MqLyAIksAhUA7bu0azc+D5nAf1FgoF87LETijQBWMb6B6KpXo0Mi8n6mGJGtZV0I5J6w0wBVoT9G4mpuaRRgRJBwMbqfNqNCm9X/mVTh0Wkqg1M4qOzUBJ0gXdDeibu2puTXIMs9uot5yrdy72qSpgqj4pR7t4i6hjAOdpZZ25eRi78viGxn+zXuYVpKrkXFeUCqUWgIng0mmoE552QeHhw6/I+eeSBMK2KPucz2pIgUmTBxvzVtpIxRrrq4FwwlOCarhnv9DE6feit52BWrX7SnPmrFkzT1QMMCmhsNLoJ9wTEW/E51iM7E78AyhzckT2BrGzvnofJiP8RBNLG/nJf+vlOcFY+bZYuCyk/Ki3oLdtRJjP4WALgkTcaQHi0q/L9AhdNZxGCgtXVeZueJ8r4EVIC7m5eIvbskAEWHXgrx+ecLjr6IspeTmnSOTw1iNpDDkeT7i96+gHAy+03h2AAIcCxrBjaRb+ixHpejdw7xhwF1rmPao1MVAQFF3Ma5zIahRRA+EdV2A0QVuAw0EQSFQhhQlWSH4iPzf3xDIEOJ6A978845tvb3H/xugea9ZwMHGztXs4qshCymnMzfQ855JGDIwiYu23+hWtJzDLQE9IkJk4/9f1MaSE1d17Kx4kDDSVhhRFd7lKudwabI0YZjQ6vih++ZMBlDZRAyj9/h3efnMLNAMPQYFts7By21D88pcXbF9WfPfDW6g0/PwvT/j//D//I26We/zN3/+Im8fFDASre08KD0Ep2QKkKeLewNzTo483nJeGL5S6mTcoMHSfNpQpah69FMGjKUpsXo4xJjAG12QLlca11dq1qmL9+IxPf/2A1ht+/PFHLHc3sfZX+aXw0JCrQocYgNjnLrTsUTx/6+m5RhUTQEkYWU1zy6NTZ+ayuAcgr4SnPM/eYTKA/C6CCEe6wWiTYXVZuJs5Q97R01TDwEB6u+RiVD1aOWBLYXvUIvVaI9CI9Hew89hAOSwUXIUGVo49I6A2DB1Vxrs3JgNd+iyJvantY1U6ApJPj0/TYvQbTC6jeDEgjLec48IdR24OQhYg9+7W64bCVPNnyfkYIMAKLAFg4LU2r42lobkHQmXXbEuZ/1JQOeKV5BLL1spcDouuiKOpltIt/xuXHMrGJFru3fgahivyytkvCQyqU87r4NSYi53rq6Cc4P+yt7Ry5oJkV89kQIuHlRBlT1M8X1ZjJmdIAmNge3dW7YsHQ73VauKfryvhaal0vPtGKGQP8vnUH0+Uy4KkU8omFKDi3F9p8/gbIKF0kpuTkN+She7aYL/qbuz3MqLMgp2FenqPMqqUn2CTmQ6K+mLN7/eeLrQkQgpPZVXO4uyby6tl7D9PeWmULwSqtLrch/KsZihfaz3VIF0REJbnX5mctZ0X+lB5FeW3lAkXyo65hZS3lWIX+sE0rNDdNPz62jKdh3Ypy+dahtgX7ulskmMOJR1nFl9HY1lVWyvrHmKSXch83p24TBdAJ7ZZsox9V3lGIf8ZsFuxngYGBlovc0DLuZ7gV/9BNb0o9e7UqKjJQr1gH5//ijwCANkejpOU3wH3thIIJ9+j+hoqLZarcqbVaHusKoI4g/O3MYCXlw2Hm4blQBb354rwxi0cD/JgleOSf4P2SaacNoKJn1pRPu2m4nT2rfuGXolWJtLEIzr/HvvVDXj6/IrWOwYGnp+PeHxzh5tbWwgC+KMSl3Cen1foSXH3cIshgGLg6ekZvR/w+M09bu5d/cp1qSol2PzaR537ReC+AumJSuf5p6VfIbd2Y1DzToQs3yeAHMsbaqHdXo7ofcHDm0dIb7FHQW2X8B24vpV1lHGcGGMnrzHPZ4h5Xdfo/IX1Scq7e6GJ+Xml7SUZOzViIo+Wtpb9eeiqeVIeUxlRrghiBxF6c8/o9LDLPFlekeKF2WvHNTx5SiCMZeKH2v/pi+etlxGDgHKBQa/pmq7pmq7pmq7pmq7pmq7pmv4N068GKY1Q8ndTpkg6GKa5IEBFA1B6U0g1DUTN4MIwKAaecWMyBEqvSHGS5iE0gRQ0Sou0YggqxnlXRPTWMXRMgBY7HDZTilEhJHDvFRrt39S9UXidLT5dBoaE0ptqVKGnBBpUEDflAA2De6vt6qH5KpqZci5WxE3gXRYA9HI0ol+p5JGox4AANl55w8xyhkcosG1IZREboRr0FSrdtAAnyvt8OY7Ogsl4G+Hppp4a2MhCBTnN/arttpnhexvkASpWFN3DC+nJwTkdwMmBbDcNequQIQa2IonUDA06hgFB3EsHQSVdDDixuNJJXLliNGx5E0yNxkKPYkuGx+re3oWenKjW0PNb/mmjmFUjldfCfhrqkQtuvKE5ZlNJCB7Y/87xCj3brt65TdWzjpbxNqBSUZ+EIXrfBupWamQVjbaxhMw86YYc9DC1T3XXwvnvvhuj9CHfy5u8umv1Wfsv1FUfNNAjRr2lG37aQLVUhM0risjZ+L/jEcyei+ZuydRvAiXr+Ej5L4DJGF7zVlUYeX4EjSlLMpxdzc9Qb2wr32X4NgXCG8y2Dle+uTGC4+oyLgFU4sCZonBz/iGAUEd6gVvde42KgVRdoEB1sZYPxfPTET/8+C5CFFr4LOvF0gYOzbwbmbzbDDQpwP2jgZQ2gqagEUVqONM3F04EgppXGX/WgcW958DXGUXDpsNu1bbhAKYeQJihJ7Rm8kS6DVzML2kQd08lyvFwOdgE2Bx4twEffnnFzc0Bb761cJnb2Gz99VHt4t7gPNQd4CH4YqVPJWfnutoJ4rDxMA805CX3zidAlwRzjFjENH6rvGy4j4Hl0AIETOOU0GONaswRgY03HOS7ngZ++dMn9HaDEwZ+ef8JP/30HR7fHIyvVmDbYAOkA8cj8PPPr1hfB7797hFDG3755RPef36P//A//ge8/fYBy22HdIGs5l1rdZ2toIYzG9GJ9KzDdY0E9P77OucCyWmrBvZUuIfKAWgjDm6aq3yVgI2sOKsVSICV1pcTPv7yAa8vR7z95h0evnmw/kjOM9EKNjUg1abW1k4YtxsCCVgLQw4IMBwGXC9ShZ9a4/hj3pcBsScwgBPoDKeEzYKt0R5bMmS2Jp9BbY2H70FtXgtGSCQbowAdq/e9SbQdvgeEIo12/K6K3rr1YazcoYD7L5NfCkFH7zQsGCVb6xGqjnsudT9z6ZeAIe7q3sz5IoweOVmaWxhFcx9AVjQA4W/XqDBvdzT4Nb5r4Q/h7fT8TaE7L3XzvpO1COEOF0KpKeugYbdYsrKsujqS8TOH7t6Ydga7PV7sr7Xu90rZwjaVd9hqKTTzptL+FJKGe4fzt1Gos9vfnXt9qr0IQu36wHVmny1qVIDhlpkSW5vr/NnmqjS5LBH5vQxDfWC/u9ckXNgPlk0KZRbDSQqS7qrIc5bOdagCC1HaYnKqjWCJZD25PB6SRWc/i2uaCVBFGtADVKFfELvSZR6KaU9Wk+w+TWOoM69FKdEPKbK39EyytCw6zxO1yhyX+YJB0MT7wjWCPyvbKvl9CqPl5QAIAOM0L4tMqMvk9PrZJ5l+m+f5/N6OVSL/+e9sf4VY1Rkru3dk+mR6knnOSnmLsiDHL8sw1q779Tr2hfkCTO3v1zW41PG1tOe7/XfFjmZyTitmHIADPEp7vLkEicezMmf51yMdR56gp3dkD1oifSu+DAL3ZulUE8oKCR59fdlwe3MTY2Rt8HDnzfbb8PeiCWpelMwzajkzV6xSoZ+IAbQr0FKRcqGXvodXZBdEqgaSF3XAhGyTR7hpjArKZ0/PCBOlwPHZ9kC39y1fUa5xMsvP0iXZfd7LzkvMtf+plbx7kBnX1iqDqUOMPpd8QWr2kWuCz9KxAs+fXtBlwTYUz8cTHh/vcLjpCZIbNt5QYGyKp+cTxia4u1swBvD8fMTTly948+4Nbm9vzJO518lLJNAyDikckaBC/lxnu3Vk5Lekbx07KfPlbK3QyzTn/Ah9i2cawHZa8fLyijEGbu/vsdwsdam4OJeTx4oM0nkczlId2LGT0UJZj4mx9jQMPnOlAaui3hK7v/F1ajPOBL3xOWYeipWHc9TbqShyOycL26WqU998S1CASabzruQAEF56/RRcSYMi7XL1mvYQ+Sw0U/Gce+KUPSmYrumarumarumarumarumaruma/n3Sf4YnJbtN3zDcENIB6WGMM+CLHZVpwKIm0Q67ww9ZftrEgEqHoAM6ILJB0PxQ1ABpUGx2yHMD2XAgkap7ZhoSYJc8PmneklM/6AkiBJg74Ebz60tmyKvnTx7YTbvV0AyAAp09twBFmTQc1CTRztYkvDNR4zpca0RPPoCa4Q2pvY0zLw+QVNBRUd0YZssAQ9tQdPdAJOVFLWVR4UvD9XCjV9xFd/pVRTcP4BaKTFK77idWhcQhf29UyVakcTtAEzuFQIKjeGDX8Fg1hiuMWvLT2Ox2UBMzqKsaMELdQ5IOwXgBtsX+QYHhnltubhCuYBYAK8wLyKBKTxNYREUcPUt5ZBgbx2EeJmgkA8QMnE2wjoGl2S0vekgBzNhLMF4d5/grqQTfK5uYv6aqlOB/R74Rn+iNyFs5vc+BCE82U/nTMAFIJUq2z5hCQFUa238OTLI5Z7/SM1JtI39vALobe7fSzkmPVYy3yU42UOyvDWeqaagA3aCTEtN1cFDQ+88M1uIvAnNzH23YFRJTY26pg2lKG5DjkW+kUcW7cTbeHJ+GlGEifpvQfwvvZ4UzzGNTemTal1undVXs1XrtX/KIlt4yD2DeTTYH9w1oAAeGhy8Yml6QlEBFeNisYXmFil4o1mGe+jA8PEJRSBpQAAaaGFkO6aJDsG2GdFgHDICqQG+Kzx9XjLHg5m6J9QFQuyjoc918I3UztErDetpwf9NxWGwE22Iyd1P/vAFNNZWWzeTT2ADtJcynpLcdWjvGMA9TlDv07jIAYAiGvEKWgb44gAO2IhJoId2U3LoZmEq15QXVbs358pcn4HjCtz99g3YwmSiuKV8GAGnYNqdfB7oK1nVA/RanuCycFLJUCvt6P6AQVfRm3peGt5Fyoom1dfP+N0iGfPM5HeAVGTE2NEDRuG8grAwxK743OQ3g+AT89R8/4q7fYGyKXz59wfd/8z1uHxbjv5PJgLEOYDSsJ+Dnv37Buiq++e4NhgJ//cdP+Mtf/oLf/f47vPnmrXnok/SyZvuFegPfxtCH3egzMtRjgLZcVjRIeP1q4p6BfOzpUQwC92AEN9oW4guA5hI3AEZUgBtfbc4b22ng5cNnfH7/Ef3uHj/8/vc43C4gqsy8uqQXRhokFL7uurFpiITxGCJoojEOWuVbAeuYZ0QHJjsA3ZsO7tMqaJlgLBGg+860+1q/bop1wICH6oC11kL2qXMZwWvqhmp4H8SRBKn0J9B+BW+/mwywfSHDcjJurIULMePehPQVtbU/uFxtHvh7vMlsAPIE1tFYEntpYxqIDqB5WDhxQL7LZNFeV4rw1Km6BUijj2qs+O0aFcKwHkgbh85zoS6rVdAivlhS/018k630TagaG03uquo+Zg9uqCHexD3B1v0BDdeoTWO9e4vnrmyULLFmFhl6BmS5tJem/PDnYSyvWw3B/P18Fxn00PKEYN9/1VBYWn/2TbIf1cFPGPtLE3SquBRVQIAhUSvwstD8En337Y49AmUMd1s6k4fVRfv9d8ojA3AaoLoNoPleow+gD0AXBNK8lXJrW6VxzcoM0ynSAZlA8SLGNc4BiPS6qb5x5jn00nApLw+xX5XmuhuzC2Qk7ZiHX5g/5oTo9N5ZOy78VvNO8+9COWf17fOXNWTgchuiTorDGOM5d/Y7e8wH+3L383RMrc/31es7e7fwm61al8vftWSeLrvMBcsJjtXFN6XIQ8ln1YOJgVutgLgQUfjmnHL7lHuBS2MctGE7SRR/gfLC8iQYf6JLdJB7jQTO8OxE8MM8HWWWAfWZf8iLEDs+KPobu/wmXP4xNsXxOHD77uCelYqIU8SazQtrEHtnaeKgR5nWmyFnhIaAl6rmNhP4vaeRqp+zYi8mMJSHCRwVXuArg6XlM+VjmX2Vp0+vK8a64uHNXTqA8pZW/uR4pk7O9Ul6zj0xk4r8od5Ad3miNpZd5kKtv4KwKpCqFqa1nUidgSqwnhSfPx5x0xZsULwcT3h4vMNyaBmmDTCwiALbCrw8H6EQ3N4tAARfPh/x/OUZD28fcHN7sPGv9OHnIuhsDHkRsFxKQZ6BKYOl9CHOHz6ecVeCORVTyMcAu2nSqc4RY4dYDLCtiuPLK9bjKw43t7h7eDAvqihile9fnEe73yUeTetNHd/o+443bUwLR5Ty4x3vn90btbxNdnNG5s8m+7i33kniaKjrNicUtV2Kms58TmRqQtXf5Dqk9OIatNCprzHzCt0CaOi/a9nvWt8l+CYGPCqQiUYJbyoTKE5UhUkqDa7pmq7pmq7pmq7pmq7pmq7pmv6d0n8eSCkOTu6W1k9Tk54+DtKSt654/NQBaX5TvRyMWmt26BIFUFzdoKEacoXgJb85FKE23B+/gaBG1EXlkqp58YCDbazpdlKvB/R6QObXVPCkoaKGGjNaFHWL5uGOh+FCgWyP3/qNkANzEdkGfiDIhQZBf7e7AsGUVXnQjBAXAehAKNUa8vZ9KHldiWSK+aKxKH2bjrpx0Df6mNcsjrNO9ULmOzg0vAW/SHQS9D4Q4CXJ77xJ1cS8Fa3DDOq6wZV7gGwJUrNwUorDaeBmFWwbcHMADgugC7AsqRlsTaL84VcVMzwe+84+DizdPXLRsFuUQVTqDAdJUFsRRjX/R48+Ce85T2b4lzm2fWiTJBTJkxYDBlqQwkcSOejhZ4LvTG/XlOOYT6lAo0eIenOdIcx8xpjRpISgSDVOAoqG7pRr2ctJqUWFT+XJ+mkPsgMklHHRfy00KHNzlN4XXVihb7n0HrRjg/dzJO8uS7FUkGakU7RS5nqo8KPiLBR1pKCyBa6gR4KJQgQ7BbXwSVXCsSYtdQK1Hs6FuewNqcLS0lubf+4bxERrUD3KGcDmHscwxFGI5ApXlemOI90TzObjFmEXPRfBPybOE+ygogFwUTXvKQsaxgp8/viKx2/uIIuHtFJ6ihnOFwaQkWaej3QF1nXF4+NtKgB9XHpvEaZHQ0aN8JJjY+uKdh/kbWPXTN4NtWfDjaAZGtTato11GhwqT5skwItKV5Q1d6hx9fOXDc/PK374/Vsc7hVbE8iG8DYDB1NFuFEt/ODrbgOXQQlvLcw4xnBgKek/Isxlc+5oYqEwTVksZBArxkOWDiBCwMUaMVJC6khvWwS3dN1wbB1tbTi9KP7hf/uIw+EWRxl4//IF3/3+WzzcLNhOAycPFbopME4Nx1fFz3/9hNYWfPvtIwSCP//TM375y2f8/g8/4fGbW2hzsFUxJAMORIbxSDU1hrFLBzYFRHoY6zulgq+bEbJCc6aYIdWV3JLrUJP02BRABd8TxGgpMIZxMVbF8ekFv/zyHmNsePfDd7h9fEiwtm4ewswmawJfEH8FGVaDe5nY95VxiP1P8S6WIHUf54bivFJ97tiz9WRr8/SKJG8ESGUXgyDXpARDc7MRYWzFeM3kixnmxhi2F637uCbAkPgLp7HCQOAmx4d7VACk0ZMnbHaTLsEHAxa+WKDavbwCPvI9gjhx1L1+2i+bzwmGzGtJQyhUV1IRIoqB5vxIAhEQdWlF/y0lGnqS52MqFcsj51ymsgcIms3lYvq58knzNZGrDhmt7MBcdnMfF0s424kE8rGcXAlL5gv93SfOqa/tv0iK+rduiOpPepbvK+XVpmh0d2phGujk/N1L5ZUNhLE4x65QXwT7faQNhdbh9j2Bl6ElIzABD84p7Ts7daC8FOM2WUYKqIVk9Lo3RaxPWuri5Ra7pYAIK9UUwOKg4+ZeOrzs2LONutfOHddEWUl5GUZjcP9bZBT/e2HMtNC5jst+BHX3iatwbKtKjrnN6ZllzwO6y588mftLlH58LXEmVdARV//c8V7uD+mxg4DN7fnKb78u//mvl+as7p7zk+7y7/9mfp1Gppab/JKTIWi+H4SzL3Nr9UK2qENzi60lc5WPlIB5vLkg26b+5FSeP8vZ79jl4dkjlliNLYjtnTUzh8gStnMuNPhKaxtMeJKHOPcn2lDuyMwLCsXrccOySOxnFKjR1aIx0vL7tm3ovZ15wBHxvRYjQPl/eOEjw7nmeTdFagLGo+lFMUH5Vz1FRetEw7NcnLP4Uoy/jeXppDieBu7f3KEfNM6Y3P9BXF9T9msT/Zw2515okOf9kM2c+wngPKOVv7gH001n/916F7NBs+6qjxoK6Cr48ssRYzRsi+L1dML92zssvUWY5hiDYR5on56OaNJwe3eAQPH06YTn5xPefPPGPC8FQTD/RWmQFLB2MGVdAVDm3W4ck6QpJiYCn78X7yvCSxiAUEqoAjqA9XjC6/MLpDfcvXlE9/Dp9QxCXVWeFc7Hou5bJj4UFP4t8qqUpf5BSrYo0//xcuMF8kGAuMBR5UTUWHh9buiOVvWLVuh3zbQndtkLVGGGCiqqhae+OIsUp4edGWo13MtmUZUbcv2kcGmRd1BCRR4DWhFMpaWt13RN13RN13RN13RN13RN13RN/37pPwukBEgYmhTNvFxESg8WrXWYMVOnZwAPr3Y6auKhM2D34AVLHuJQTX/dD+7iIS4QJzMdbtDRqtxTSAstByAWMqUa/eDtqDeVAA9B59+6u9flQTe8DQjzKqgYZc2QdL8doKZWb4gDqenNQ2E9o/J2HOnVvL88U9NYvLfTTDe+OWqS5QQ5yuGZSineYpcsLBUhmm3a1IBRkVckjIKtKKX4PMKuwA2eSYU8rLtnitYSqBBKaR83j1zkBdn7w2Pbty4YZhFGE0FrwLq5QmMFdLjHBbcmhCIOigPolcvaopsPTxML6VT7A3gIJytjbKa96b1j847HnBADzcGNy1oUajT4V11JDkhhE/+JXjRaeUglK8FcpOheCUYlaIvnnF0jFX8w3jHfZWl0S6XGzFOcDwnaSd7MlsyfapgBluKwQ7JA0KZ67GkXtHHkESA9RVWd36So43SVua/7VGnB+cj3SbMZEGbzX6NfggndUcvyzwQoiSRfKRAgBtm9x5rCgwtyBA0zIeE9KcOvlR6K84cXOHJAd7WxjATOKRLYVMF0Cqtz81/SsGWfNzWvJ6SmzZME5mwjPSA1995Tw6sMHRE2sPuDLbzSuDwVhCcaNAOQjOEjwXCXIg6wMLAA6Xc6Ac8vK374cXFvMKYYHUMhnbPEPCihDYwheH0dkN6x6YCONo1j6z6u9Pa0eXi8DXbLUpEeg9j34G4BtoEuDa0Daxk3cc7qnTLRPMos3eToRnq5Zznz/mCeDRnSQCB4fVV8/HjCdz884u4RFqcNCrsRbuO2cZGxwY651ZvEfBSoeYpq3UByLuCFQhE0FkmyVgXldQmQxeLAE3VLSGsSoCQIQs4RlGTGCFOaWsisNCKrdIyhOD4J/vIPT3h9D+ibDV/0Bd//9D3u77op2KVhQNDHBh3Ay7N5UFoON3j37h4YwL/88yd8+PCC3//d73D3cMCmviAg+XkQdyoSxGqNYW6LR6gm6JDcd5A0Ph+b02AMgj3hXv18NqmtVxZGLL170HMR5S1v0Zpy39xsbevAx58/4OXTE+7fPODx3Vu0mwUQBbdPjQpocA/kfGeskeE0NNtnYyPpTQnuecCTuLCikb2m5kA0AhKae9tSTUA1DRsDyPkUc8bbJ44hijiPiD0d2W+PzYkwLyIOBsrVIveM1gGF7V/VUQjNG2SeEn1wfNVpLQEvBuZLQ5+4h7AANYqNDw2ZtidusWLTW5jRnKAqhknM1UlkQLXFPm/bNufHZnvvACfx3281zfxRwZ/xi9BQYvQbNMpLAaVV9EnsbXxUtedCW3Y+dtnB80ttSQG2hV/H0hZwT+xjHBZXawy977ANCUiz1Pz9urbvjcXevYlObDcuPsfu6fyrasqaKC/j2cR6Ey0ID1Rfqch/nuxp7JOW50i5N+Xxd3lWmPZqJc9+Es/t5Pp23m/uderv02d+aV/ZBc0b6qhEfXOq7s1N1wyv1BsAD9/Tmp/XtPQHYqDp2IsJKogreGv4up8v7hoo0cT5maQnvV2PpXbg8nAWouQcYhl7WVr7VE4bpawsaR6D+VLE9JT8ogQoJeivZtOaN94p7XImrMAuILBltbpduzXKNFqedecsSfl7nmeWY9w/7AFq+tX3z1s6jy3Xgku1XWScUgsFlJa5lk/r3wr4iVHbMwTfORNkMpdV/k3Z5evP4nflvEOwMkNHC/yZ5tlx4hnd8Qjm/gJ+6WlPIr7DvJLfZ/2J4PV1xcPD7SQ2VK0x0tnOXLPt8pR7Rrowv+gtNQBZZV9BRpVCi/SmVD10SnpW1rxUGEsl+86lUCtYzK4SEczALb1AsG6K48uG27sFh4O6Z264t3KEXqKKsApeaqhMm/u+sgXLcY0GSbSDvBj6pVrWjo7TZ9LS2zddIKz84oJkOwJPn1dsR8W6bdgG8PD2HoeFZw96ibVC15Pg+emE1jtubxdAgc8fjzgeN7z55h7LQfzSgiB0kF53tHU/n33sOWj1d5RXQnbt+JoZArBT+duVN9MSH/Oc+hU/o6wDLy+v2E4rbm9vsdwcIL0Ihdq6CzKJ5VJO1PmT+6X8Xvcql9ehlKZ7mT9GjvE0rkj6FGzQ1I4YC8239uWwWbzQmf2TGK+U2L6axaRLX+dzHxH0xq5+a9tOwnNfJfk+s2u8Nl9g4YnR/kuGcHp4562vrg2eCVGbc03XdE3XdE3XdE3XdE3XdE3X9O+WfjVIqbXm1iIB0NzAwmSnOwk3RQ7QwIbppj00tRWuFLHzkXkW6uI30v3GemstwnQIqFynWdxVmRGjJw39prjxkGFhNPLQI153PRzythbKAS3OaK7Q11AI7W5qlsNuKAvYwvKZ9ZAG1RNKnHWnA3oqYsxIm4do8S5srNo1aTy0th3NQwmuDAlljaayh46cJsXC3LUwvO3zcPx4SLffihKCB97QRqRyVJDeRThuGtoU1l4Msw3hUSKMvKpkCVMIKg26ADb/7u8Mv+12dyPQTbDcWRVLA1QMEED2oKIjFBLunUWWBFu1DuhmPN9BZZsrIocp8Kax1okMIBcLZvrr7h+JU28Th8p/1lHk550SRstzmzEGBWj+MA23883WXamlUCllzTln9YZMb7r08N/sVxp1qjchvhtAKPK/943emKZairLlrKSgN6ZbfVo/lT+sByjmFam0KRpBSQ80WeFs7CikAHDu9eiC3izUWtVzQ8g47OmdRpC8e2qtp+vyIhHOaKQgSCnBSVv0ND12VSUcldOpFLT5rCvnsT1bNwMn8ZbktmrQ10KxaQg11X3bJOSxAWAt9IoKGLkg1pjmYxK6OQImmoEyMIDXTyfcHm7QbiTCDgBqYB+YrNg2M2xtY0C04/V54P7+YOM2rN8M17l0k2OtwUE3DhiJNcuAnZTPvQNLtzJOJ2ATQLeBoQ2t2WgFpXWD6AhvQmgmc2yy2Oxt0rDphk6DfkOEo9Aj8Mu/fMHbx3s8PMLK1wz8Jw5MIsDGRK9wOXXvNzSumKQiaOhMXrgVybwlGh8QnEtgL4Ghom48D2VrggPEPdoZ8ApheNl0Q4BDi7Z9HYrXz8Cf/ukT7pdbvDy9x5Mu+MP//CNu7zsGgHUwVNuGocDxSfGXPz/h5uYWjw83OB0Vf/rH93h9Hvjpj9/h9tFDB6oY34gmKAYGLonxDQluQ7S5kFfV0n8ECIVrBw1rk6dApxV5GuC7Xryv71BkqFG1sjAEY1V8/vyM9798QGsN3/3+B9ze34ZDypB1LjzC21lMmNmwSKBcepBsuSbGJE2ppSCYTDmtMhEUx32flzPG8BCFXqMmSNYAaTbvER4E2HDucTTmeuzD1AFAHAf+Rd2b1Ge2t8w1yg1Qs+smJICFY2dmUXXaoNCJtLEhGvG53ozW4VBPEQej0UddK8CSEg4CzfjL5xGUID51j1jNja1+y/o3HO4tFjEhMHMHEp72N7n+zhub8jlkbuHz8m7uv8ueYV6wwTGaV1n4XEm+RGnf3rWM1nlV9giTgZztVER9U6/id/LcjnYapLuY6vvzmaK0vm4eAAfR7KGF5/uR+iX2yLl8RzVtMnLV8ZrbNO+Hd+0twxP11B/KeCftYvR3yc8QrI9GRvHPcfkmPXbUtom/gzaDxocC6ueOXmjDc1XlIf6pdGYbBGyDTOMXkjhkFSikoo0B6eE6zfW78FbUTdrsaYs9r8ziu1Bm+oX77QouqO9zvYj8ZzvPqTv5Q6lR97kn5rlU6sx3e464xJX1t0veovbtvfytXDq60Jo5u+yelXOLM/uctUqfC2VIAXbFXzlr4X5qnRng+YKe06BKRdln3j1nf4K2Zc5wC8L69xI9ntWLQ6WdFsasgJe9nKG5j5o6ue+Az4+dlM9XNPPUXpImPAOJCraTXfbpSwvWJA9BEV6YNyTQfDspejd0EPd3MX9kluvk8DF241imgN+Fsosg3k5T1SU1YzRUQY+OE01RvDBRn1PntPfl+csRy9Jxe+v8SLC7Vn9xu/YXIjfKXDa+0nei8Xk605+I9Ss9Rsu8JmqecfZpFEaJMYf18fVZ8fy0ovcOHUesY8XbN2/RDgxl7vWrX0g5Cp6fj1iWBcuhY1sVnz+/YKyKx7d36AdJD6XsdsjvXMgEdV+RxBtafviqfJ7ndl0veHlimuu7oQqvVkq5bhdgXl9POL6+ovWOh7ePaL0FjSc8r+7k905Q5Lq1W0N07sdZny4ygrWRl4BiHLW8U/hoGt/a1q9WvJNwct6OuRuZwc4BfD1WeTvLUAlThZ/EMNfSdlLcpc60QOzH9GsTZy+p8zxnTSgSTSkngESFVlr9hs8T13RN13RN13RN13RN13RN1/TfRPr1npTc8CnS7XAkfngqikK7/g/YUWfEbXneXDa3stQGuwcbhxuYpmX18rt7xuheftXQ5GHNj4WIP8XQNQbDeZjHDhpX8wSNNBaByiG+a6FIwnDo/QuPAn6Y4ztAHmSrISsNUjz902iFeB5nQs02GAgn+xhdQ/6m8VIePoH5NjqNMGzTCG1T3qBTatxLH+KcrQA9t4jTtdPw6t5Lek8wxKSoQCkTCdKSeqt7p9TLGzyp4dBQQqRnhVAi+os8aM83xtRDLQAbQz+d7DfaO8NY1Ak2cI4qqC0dDoRyI5rQoOlenGRJoywNSgx9l+Nrv48xDMxUDJ2AQt1AuTQzAtPQzRBkTcmxCZLZ6yOoToix8PaGh/ngnVk5V3Ucw2mVtQW7JB/sKs7ZFMUU5ZCc5WP7qnFf9bwM3ZXnXTLlFOntT5tQH5uK8X9NnRL8HBIk5QBTepAp7S7lA8DGVo+RgIvoxA5EJTlLmZE34s/1cPle0rGAMHcKRtKP4aTmxztg1TT2Oj0f+786K1cDWOX1bSPfH5uH1FQDAG6befdRCDZYODGGGXBbPHSMercw6RTgI02DoMI03MPqNdCh02bMHl04Fxk6TDdbY7YN+PnDJ3z/3bdmLFhHzPXWrM0tiCcYaFiPw9pOWaRU6Yn3wdopzbx+2VqDCEs33PUO3eiLGNBIHLQhmv0x48EWtEEf2MYGGSP6uw2ra1N6QhNzjtSaR9AbJt824Oe/fMZhaXj7rsEwxi4nvT0GcqgyQGuEhpRhTk80Sc/v/I3laY3uYO9sJewb8c3aBLJt6L1jNioUYzzFpgsS23ekJBPYbXQo8P5fjvinf3jCN9884PnTC16Pr/jj//IjlltgVQvJMAC0DdDR8OV54P2fn3H3cI+HxwNOxxV/+sdfsB4b/vD33+NwhxByTYw7pQES4bgcaqXwtYyGJvfwJJQsirENNA9PSyD0NhLQKyDuyRXHnBcsr/K+/4254wuY+nw7vq54//NHHI+vePPmDe7fPqAt3QB6KGPtA84VNca6yK8tjOi5jjB82uYDE/urErIOKO2OPpf2g2A+Ay3anmIvzMrgx/5MgZGen7husj7bR5JPyzgVADT3C2bY5L6s+buUsgVsrcw70N0TGxRmGKE8VpvkQjCVYgYH7AAmCYDx95obL7i3Lp57KM8oExpMHluXRqGVQofB1cX7nHvO365RwfYS9JLElSnnD/nP6O5Pq4Dw/J4tvuu0avMmeyu0zRdmMIiXm0uk/yRR/7y30ak9s3GU5e4A37uNSeN+BjrVe84zZ02JPRHO8k6Nx5SKrI1PbKtmmZdAUSTpnjQAJg8XzDvxfm1jqSObP/vk2e8Fz/rKOvY9nLcS9lzmh/sxj7NI+T1AA1qKFO4BfRhDPiC8WdbNIuVc0InvY9d21lFpSBHEs6QABQo7p7p+7/Z2vAwwSt7dq5m8MYTC7MgWMjfBsRplSMmYElvL91LQLsW7seagDApbhGnQtNQY80u/VsOeu77elqRbacLZZJj57tJUyV7n08vXAvjJB1//NWplmXL2y+XaWXKUX9PE34L6B6hrFXApbpbWiVMoPDzj3qNTvWjBR8OFQJSkOZ46cv4QgLT3osnquS/n+aTenCGPSKkj2n+GeFEg9nN57i8ky3Ueph96OZ7QlxY6kaleFhmeIBt0A7bNPaQWniXgQ5F7CJFyiUmyn1OD6lfKHQ+da+0dSS8fU+vfiHp55ol1wF+eaKWCl+cjmgju7rrpiIYpilSy8abrOedeceGpXCv3a1cd07rO7GVWGRMDjcokJ+c6ZdK3AYXnL4FlFDi9KN7//ILb2xtsryu+fHnFu99/g+XgukEpF5KGYFsVz08nHJYDDjcN2zrw+dMzVBse395jucl2zZj3BM0PZ3wNfsx5kgCvBPBXotGza73hpZHfabnTUe7zhUTl/NvMG+vz8wugirv7eyyHJdaosh2Id4JHpwHAmSeyM5pPbSkFXxKXSR4ACY4NGRCrV6GwIi6o1aL4YU+TINQu834/cJ6KnBC2LgeS+tPcFwkgu5WJB4jpNyvr3LORlvHD9Pt5mxTUjbGaaFNKXKNHrIKck7XePaGu6Zqu6Zqu6Zqu6b/XpGNM+/JruqZruqZ/q/TrPSmJoKGBXnEEQG9mkNUWQUDQFhqeGlBCekCBJgeEGqugcFoj+MRDW8jiHge2yG+Kpzx4N1nCCAZxo6E08HY7AUJNUgFKDw8ACoAo+8ca9+ERmhtnW1WE7ZLVP9+099cDfKRm4QugTlVeOym8jHJO9wNvADr8+Ng0f5c4rCaAI7wXFQXOAoBGkQB2sLKqUCdNvByhB4mWypNKQ+MNKuXmAzW9b8CfpW5QohK3fxflgYO5nIj0dsAbYZM3BOTYW+gjCy3EMdAIyeEeK4bgeJzHpt0YTajnaVQKOEauehxprkdoDOFHJYn3Uxy0Bff6EjwIBeh9zMO/aXj7snI2obLIQjBVw3GEQSNtXLE0h1GblSsiNWCJ07/w1sxjJMnl+7rkG1EzfpypRnTH+5NRQaeSmJ9u9vfmw3kssmez/sqN/q4UbcAEsMBufudbKMoYlkdj6I5+QeMsRyDnMmC3OQsFXvnhvCWzLGmYVENnejrShUb0vSrq4vaQSsfyfu0DqcDpf+7JKlPcIPXuDvdcMtRu8Opmoc5UB8bWsG0M/+bADIbtGTA5WEKWhaKTImsYPTbVAuhT82ZGOkia04bPSVstrI/NmZ/ySlVwfDlBFbi96xgbQ7OIexGS+LxBPaxox+l4ci9KA0MlRscMAenpa5GqLE451xdbA+vNXbqkNw8qALpgDAsftW0j1o5mKy4IDjmdADTBYbG1lyNjwFab2NIFYx34/OkVUMHvfv+Idlih2iEwr0tGPwMbN6GiWzLcJgxYTACNiPjS7GAkLQpbX9sAGwNhiAhfc3UzuWcTSSADEOnOngpEuK8W8rQCEQFfE71MiETYvOPLwF//+QXrseHLnz/iz3/6BX/7P/8Bd/c3WNRCD5qOdWCg4fVp4ONfX/DweIf7NwteX4/453/8GQ0df/z779AfJMLELh6PKMJwqc0biGRIRPKuJkiV60ATA6wRt03PbwSm6Za8Tb7aow/nsK8SRnFzuGF02FbFpw/P+PThM26WBT/++CP6XTc6Ot0Y1q+JeFggl9WNa6zCvGNapxhuJCSzv09AIfcX06G0CCwCemsYRxrLMGicS48lkbQCcsteJcID+nvqEpsMU4BSBnxzGVndJXj+aHOhtWMfo1bFQHpiMoFkwL4EDkMVEQxYzGuReJi42H/5ZjNutGuOZ9Q2/cBVaVj4uKh/8bmq0LFC6DkT5jXNjB09CC5tg6r9+62m4BF+53+4GfSBC15nbqF8QRp1s4SUIYPz1cGNe0seZmNphICTulJ68Ofa0MJ2IvV2u0x/po/79y8YK+N1l3/nu7BdNZK8dNHQhvKwNEEBzBx33sTdq2f7FyA9uyqQIXVrubXzQeN5nHl+ExJVcwe03z+h/L7bpmXe2ERkaysWof523s4sY7LLsUj+VMoLMMPMVuGeVCLuN9nQx1WyHPaJkjVpgvC8kEZWiTz7Np8RTZKDKueTG6ykCzwmKYXqmXM/V/dsPzcm23/2GDnOF9/f0f5i2vHjbnrlWg2AHpbn+ZGD6BSN3xXz5QSdPu936Nnfr3fh/NulpP/Ks7nk8xq1/K3lyFmO3TucjJq8IJimDygkdf9u/FoFEetXfy4l34X6lZyVdSjSU5JlSf0RS66/ccmIcr9CjEujpCVPzAupMqMAoqR6nM79yHYceHi8BWD7rJaFRdvMe6hx5LoO99iscU4OTmKfwbpS8LCtnPrDwe7qAlELlaUJ4OeTmQ7cdSle/vpPOL7+X7CgYTlIePiUAjiKTkBwXDeoAvcPN2hdk38Ke4u3ecyvljakXo2XNoLWuzWnyoeZn2Ve90ZeHtyvgXVdDGCGzOAwAHGe2FbF85cTGha8fn7F6fUVb759g8PdMkVyF5df20nx+rzh5mbBcmjYtg2fPz9DWsObxzvIwsYXmS1c34tsqXQp/Bu8V9ouuzwzsc5pkO8jz9eVfn4eYd6xKV5eTjgdTzgcFtze3pyFdlOeywufX0rTuO3EJflHsPPINHdnWispVVD4eloaoXP5QOyVpzYJLtD3UkeSMWMPEPxbLtopyp5kLmzeY9qEUT87VB4PT6+RXaZ1LuZbfNh7eZ16mL9P/8kRocenqs2a1/U4BIa+8XyPeU3XdE3XdE3XdE3/vabn/9//A9/8X//vQP/1Pk+u6Zqu6Zp+TfrVUkV6LwYtOzAP3Vyh0qEeggsw45x6aBBxYJPdtioHOAHsBrk6YKncGDMzcRh6FOKuf8phMU5+vNGOCRxj33lbqbvBZvPwNRYGxoxWptTZXHUgkjfLdGh444G4pxlXcPSeJ8iM7mGGxAbYDa/Urdnx0N35WyC8emhMRdhewUWlmHfVwt/FodgraFlIc4NdGFfFlGTdjZosPxRq3s8axo7jEHoFv61Wtbe8PR03G4Pm5mkoQGBSFE9aQEb+Ao/a9XZsUGk6+NdDfVHWqIF8zDNUNTyJ9xOQYc+3rdBGAG2AnKzIrSuWg6CLgS2WgxlMo/2aSh5xC014CxPjtV4UbtIF2zZi7BL4pu59qZQXXEHln1rdap44CLRrhU5BmVC4aNC1FdaYVBNFIVo9LBEwMaAesuL87jFDSLVd/UwELinbFCMXqqXyX0m7crEizZ5Y7BONwh0Weqn2SSA+jxwcEL9nzaNSoIiHSYYE9Z1uwZulT2cUybr2FKmKpYvPNMcm8oibRMkju3nFFCEe/UnzltS6dPqn8XdETo1PMEl7No8BjTEaoV7LCgggUNA7TDM5ujrFOyDDAW09PStlWKtUEhJwVI35mxvfU4Ga3vAIFiGoYtLZuQI1vTsIIBYm6cP7Z7y5u4e0xvvFDtrI0HVjqIEBtmFh39Qm1Mn7ssTcF2wuN6WZEDJdrlNRFarNw+gAug2iogyopRo3w9HEAJFwhbvL1aEGHDk+f8Ff/uHP2Ma3uH0Evv/xHje3zeRPNySLgOHcFC9H4Mvziu9/eIO22ALRxOpog559fAya4CBIUFBHWGO63yrfhno4S1tH0EypPzbnfx+jIQa6isugbs3nR/XFs/naydBVXNvMiVRZpGB7gzGMA3UYX5xWwekJ+PmfP+P+/hbH5yOOxw3/8//6d3jz+weoDPcQZXWPoTh+PuHTX17x+M0D7h4anp9e8c//9Bfc3N7jhx+/Q7+xvvdq1BeXL2pr0cYu1dvL6nJoDCjD3Tm4hHO9edspb1RsfSA4jnUZn1ieGB+vsxkq2T2S2Xx6eXrFh/efsa6Kb757h/uHG/RGQFmKu7qHmFz4e+K+ifNKAfceZf/i9ri3SYq2OkKxouxh2M8CqlJt1ZYZaxbDv0V5ggjfas0pcqm5l0nvA58RJJBrB4o8UQzR4i6A4QtdbmitrDsQS6DYPHRdh+qIRltYxRHAa+ufyU8L56I+503uzOv1gMiI9gb0JuRebVPxSCDAYMi4LtAhAZAxY4PYHjf+5/L8N25VyN0AQG4NY5XvCxKcVBZmiBtT5/U1wmj5luJ8V1BWfS61zXc7FXHDfWus+T4nQWOjhdOre649pasInNuICDXG9Y98zv7VY0yw2YX93LTg/ytUrh6nhOviftKxkEruUkXMWf+9xa8abZv6WQq7aIAs1mhl1n2+8n3f1SDXRAyNMQvZy31B6de+CUGeSoIL7RG/8FDBhjr8kgGcKMWtEvF2IgRfauz52YDwdguXZ1OfyQ8uk5xH07OC5ytg1n3T+XMrzyis63jxjUuslGtHtrWCfHZktDwXAUqXyuYH56UYg3y7DvPEtuVvhEMH50npn56/w/PP2ZyK/mXraj3187/WpzKjoi97Cs9l5AWSXzmx882JcVNa1TLO5g9Kf3YDNdVaAGV72u85iMMXF5Z2L0UbCjvlKaSKeBNUnNHT/C3gxqEJvpvbbPkrGLREg61dc1m4mwnkJck1ee9RaUBxOg2XMS2aWPusQIRwxFC7RKGKTs/eqL4TZz4kUEsk9wl2Jij9uDSYnEKNcyA5MdhEN5yennD8csTpBDy8uUG7aS6bkkvZ/21VHF833N4dPNx0kQmF3vxcsJmFqKWpmhcdms8zFY3QeJw/Q7Jr4SUbu2o1f1NJ78RS3qmNmIA63oZNgfWkeP1yQmsNh4NixYJvvrvH4db0OyNoaAVux4Hj84rDzQ2WG8F63PDp0xcshwPuH+7Qllz7pHR+AiNJ3GnJDpXn3B9TFnHdqfKlyhkf3LnTueBOcmIii/qlj+MJry9HNGm4f7wPD2HnY7hbmHUeF5nyljEp41n3TFIHFJkh5lLpZMgHVnFBOOV7uReY5PterO4Wgnyu0zvTulrmyVQUxw1cs62D9Fw2XzZl3+d6mCvC/E0ML8j9mkuiwvP1QmDd/0+ySeDtUf9se9shBKyJy8Sk3w5WdU3XdE3XdE3XdE3/nSc9vv7XbsI1XdM1/TeafjVISbcNjVf7VSHdgguJiN/6TsUVD155XCpeZ/yXOBX6gcmAROZzQLTB4pTMsAV7nbADU91Mynb3WcDQKvRgYwoJN+ZKKm9o0KEiblJgR8fhbqXLYbe4fglduxuea3gchrOot1x0qIW8qbRFOXuW3wgSSP0ttWpJV6vLwDJDNTQCNHrQ48B0+6ookKUoQNJuIIVWc0dpTLPQbXDFEW8VJeFqKD1Iej0ptgkfO4dAaBpHeUvSlPFZPb0kMCQfQXHZLg/v0VAMma6I2opHBjXAxHqCqQlVgJsGxQbtAmkOVFIY+Mg9MyWAwNvDUD4F4KWDYQ5tAA3opoCD7ip/NKoeYzxSG9EkKJr8WXhipuGsRI0hK/mmPDo/FyrLKl8UDjWvR+ehYzjCF299lf+GrXWnb/HL5Q40slpjjl3QtQXgxueDID0tuW5lVgLu2pp25WrCoHyRkAm1elMDZa5Uiqt7gZoBPOwX2B7UOjF9qvWRSOK/c5qP2hdn5sGMoRys6qO5D6xPYTMtKZ00Id5SgR1EBOE9Rco/05sS3AS0DgOYKA3kGt6CMGjUoxGf4I28mTfGQO+prg97MWBAv2LEl05vMF4flYfNZUjIPwOndI7hyRTtb3+497mraPB5uqkZD9AgvUUZz88vuL+/NZCMYyYJmBke4mnoQFPBqrYyNdCLjim/Y66VuZXKZjM6bD6Rh7urGttqRnCXj/d3B/z4w7d4/PYOcljRu/3epTuPCKSb7H99VvzyLx/w7bu3uL0BRis3cKHoTc3jFUxuNZ84GfbN5Ku6NcS88Lm8LbIWsCWVBh56RQsfJK3MFefZJnBPVfae5XeZPUzWtwL+5XphADXzLrMN84j08z8/4a7d4PV1w+EW+ON/+AmHe0B64XvZMNBx+gx8+fkZb797wN1tx9PnV/zTP/wLHt68wXc/fgs5IMOiBf/rDChwi4qF5zKvXhmCpDTZx7YaXUOe+dq0bYQLanrMGb7uOp9pEVg0TjEEyjhueP/+Iz5/fsLbxzf4/ndv0ZbmBrGcl5QhCjFnP0UAc/3J8GQ+Fwl+ibXaJYxyTZfCT1x/co7DacVXdbepiSVIC69V+ZYDEGWxXhr2tLQp90WxEnnIwwSVUFbUjRtlWArRFiAAC0I53KNbkafqfgKUHthsfgxCHoUSlCtMS5khCQwkTcWFaYLsSTuJDSFlgMIQgQx3q9AAiwkXPqeVchWaN8e/raSIfXoYKzlvYv544j6+rNqX0oUtUC76wazkEpfHe6tffuBuI2QnOQY674++2p6v9j1LZL4JZsy9s573SfKx50XM8/wh12n2Q1BIO+WEA2X2vyKnxq4NTeZsuNDOqXGXnuzfKfzAdG5k5oMyVBcKjjlftrt17QViKzVhY8764C/GvjH+o/GugoZ2tTA56mfS7sBSyvNBAzkvavgKsBs/eouNjvoCorWxlX5lubxIr0mkXiDYhJYrNNDpRcwPzx9dyvPV0b/MLPM7csZi/neWaQFYAfk4x7jFi6Rbyt159mWP6szMmuY6q3Q464myykqHlNPTXmFXFtsu5ck8t+eKNFpce7Bv8z6H7uo/n+/7Ei41QGX/PNexuu+LNkqlqc3zws5FFnE945KWaz33GARG1zmwb7uwkUUeotZXuz2J3rI2A7G/LVuhaPDpuOHm7uAXpCxXXqqw/bX4gcoucGzpVZmyxcuKy0ZqfKwTQkdimuYcl+QVLaPId4NebM+Ayoiz/De//wlvvr2DLHYB2s43BdJEL5gr8PzlFbc3B9wugtHK+sK/LcceHL8yphQvoSfyMeNlBu4XK9CwsEzwRS1vZlQ/d/qD6bxIZEwZP54v4XxED0qLdIzTwBgDj+9u0Q8JHBQYkGqoYrwCp+cNN/cHLF1wejWA0uH2BvcPd64XK+BgZP06M1v5nGwxeePEhbWylJeva8wbrhehVSpVsJ6YowMY68DL8wvWbcPt7S1ubm5iLPNPacDOOxE3JSKSoDGNqs6ajP2ryDGvYzQJxRjfC4UA0Hi5vjd1Y5r/X00a3Znl3oWOnBVVGi1AhIucLgvUjoUokF3TLsGBKhMwvMpZjmj0uRfxsqcoz1LGzvWmpmjEefbrq/Y1XdM1XdM1XdM1/feWbn78e+CCffCarumarun/aPr1npS0eygXDYOhOBhDWnMDTTlYE0wkDFTlB33de2mx+2RD6cWgHr4GIANm7BkOCkEoefl+KqP8hOkn5FDsKgrIIj0IMeTJKAf6SdPb8liWxjX1a3mtOu+w7K0oZxRuwKSiRCK8mtEsFQqhRyl11NurYcyBHSNb0diYwsdDqoE6LTsYN4YYKPnDYFGVI5fGezcWBBg0BxFFmzVVuqrwMGh+MPe+ecSU6cA+DXG49VEPPeQdU/O8QjCSeVHwOspQ1XBsHMLQS3m9qacaWBZBWwzsMFZgE+AEQBfy1UDThtEUi4fE6Z1h66xdccu5anxg/E4AA1rlU6/dx5au45vTRP0vgW1f04/s1A0XM+mFvPyhzr0N9SZnAXw4v6TC4nI7jD85b2ZlTKo4ss5wy45UQPIX8bzm9MJ4yLw3sa1MqTLbt6vqteoN3Xw2K/b3t7XJw3vQlKLwONLQwBBoZN9QZhYZs9ebVSUuMIOsLiqBYswklKtV5mQIPyk372THI9nmeVyAaimowYG0tIs9V1QPCt6GAcgQbO4yn67zVflXsK1livj8lmbjqyrBFyx7CG8+Wwg09lPE5wtpx2cjZS5HgfmpLHz5csTSF9y96Tg0zKFY4Pzobp5as5BpjR6IoAaicdm3FcUegTfogIbbBCuz+zwaSvCHuqOOOtrqjlMc9BAeBFcfZ0HvB9y/WfD2+wPaYUFfyHPFHCDAegLe//kz3r65w9t3DdIVQ4AAbwJorWNbjc/HFi5d3GOOjQ8jtLF9B193tw0e0s8MHQFO1MK/WoBGBehEGUcv8mOo0Ul6GGzHUPPOVJTzUAN5AMDYGl5fBD//yxfcLAecngZOxw0//vEtlscB7UDTjgXN5uYQPH9e8fLzC7559wa3jw1P71/xz//wM959+y2++d1btIMALQ1mLVCgvgb35D1VBm0zwLOqRIhTm0qzVKqYm5yv8LVZIOHVB7F+DdXwADACOWb7prECT5+e8PHnD2hLxw+//x0e7u7MeNIA3Yy/CKibkocube6NiDlizo1hHocEEaYOEkHaom/ivMvp08TnK0OYFoFb+TxAy1rG1utO7Hsa8Ota01pzwJA9H4WuzfcWAIG25+sXSk8zrIIiLREaDTKAc93jeLC+aDffJk9QKuqO6HXlKNBWVTDUgrJZTri43czcZe0QouTDyGGT1ebWiNcS+OD7v99sIj/lupT4JBsT/pYbkxy/XOMIdDqfg2fhCAvfVDoHhD4WzQIZmjZwdW5z/Siy3MX/mBnv/PVpjdZiUFQUdypBh3iLY1z7cWHTUNf+2hQtH7RmnJ+WcdjPoZTx9bvia9/nxrG9e6OrlELrG9OeiF9k/i67fGcG8gtjIbtKqtj2o9rUxmrnxq7tgIN93cJOdiXodAJKaZ5diviLMusll9LaOPOSQvv2k+9YXO1//e1fJQLzndHrDBY0P60EPmt7EcJfY9Zd2ft9+6V2THwxteWs9miWyZm9MfhyaXseutTOPZDpUslstZbP+5ovzs+ppvMSz/L+p8gar8YiEUOzvxhVh2uqo7w6oYuCFrrPmr+K0d7q9F9lVya4B0AsxwprIH83ELFMja5n1gr2Zcs4lyNvfLdxFyCX77J3AELNMzsA9wmuG7CdNjw8HiDd9wxT3nLKU/OAOQZwOOSJT2D5BwkViiRfFwW5D5dpqzD1P5IUunnvqAuJtcZrbvdv0A+CdkiZFzTwMsYAXp9PuDkccPvQIS09qtplwnLpashUd6wfmlO/nnsFQNm2xG8TZ10QJ/Fukclx9pXUwfEJ66/rQfDDsLPp85cVizRsqwGU3ry9hRzUzwUFeDYE23Hg9fWE+/sbLAfB6WXD50/PuL+/x839oUSXnS/+sVX1/Jog9Hn8IEUvU9eeUtAk5319kClDLjyzxHC+V/ee9HLE68srlsOCxzePWPyyUPBZWWfnmHf+JzwVSrY35k8F5M59nNZ/3fXRi0uwY/ZMpw/7VImj0fdpD7GnXaWK5KuQXZ7y0r7qeW5lvuDPaR5oFuJniQgbXNYpe+/SimF/657J2pBErvSNPQVlJycPkoyh62W/K9jK3TQGqPSarumarumarumargnA4bu/8WhI13RN13RN/7bp1weR9PBtCkTYGhULEeVHrdnIEh4BzPOEhFEzjkYIbZQIWusIlZ5rTVIhhlDiGMCD6oxhscFdoyPU6FBhIR2ClnnioOXvSxoIAuBSlRJSDnlfI4vMnzWaT29O7eygm8aQ6U8pR84+03NRKIIkPUVlHu88FUKeud4o6yCg6fymVfbhXAPQeypUUqlVvQBd6AiT5sNWwAFm029xK3MGn53fKOZhu+ZLUJx7MGnmGYavhdEBeVtPmmBZinJBTREytHkoFm/cMINoU4RnEXrWoHamKjVR2tRocBaZDK8cs1boFgaIr9Dvkq5OVAPoVP0LUCHF32cK1jxAUZdFaq6sSD2N/Xdyq09FVFVKVpBcqa8pzDV2UZbOCjaZaFHnRPf5rP6/zRU6NeQcp3Mosp0v9yAba/NMyTpsRSLFr9lnyTpAdZTLvF05FbC0r2dqtJInJfi/KrhCj+X/tp0SjG0bxcKmEfYjZXIN6we48k/df433aRRa1X9WT+EitfqGKtZtYAzBGDZntuFgG7hXGEX8pYwYGz06kN8lAYfIsewcK0mwkogDJX1u1pCcBPpBxMMhIUBIAkAG8PLlhDdvb7AcgO6A1yEjlMYmX3Oevr6uuL0xpbMBcqxNBr4qnuOc2uIK9yHqdTvYpOIOpJVwDb5+uXZdRwEaxFo2MNCwqSEnlnLj2SyeMHmoirEKPn444ubuFu9+uEO/Ne9UAvPcE4ZwVbTFwpIOBx+NMkYQr0PovcfBE77+iAILPcU5jxJcSE2vNMrLAhZzZkulKOUoAE3vc7wpb2Pr/KQG/Hx9An75yzNu+i1OL684rRt++Lt3WO5ghqLudQzjgeePK758eMLbHx5xuO14fn/EP/3jX/DtD9/i7fePwKKQlnNlID0+cRvSIAbegXgoNs4j5+kxr0fsVwB0xOSfeDgLEWBZLGZGNZgEQEkMrKUKNDSre1NsTxve//wRr69HvH33FvdvH9BaQ+vGc8YK5h3M9j5G2m1o8DX3XraW++D1BE3H7X+1OSM0qBdDYQVTsIvNFjbfV0j0jSBCAx6XVUdzz3G+ApEfyw9FiMfew3+3pVgCvBLrkU8Rm8/2xGhqI821eYwxGzpR6ooJGbsXcELzXYk9gXg7EM99gbMxGgQ6tRjvoEjsGyyMWMizBtu/Ai5MBSIDIguga+x3BdUg1LxBOc9+q0k5gPF9B1HQy/xxtuHCvG+0nxprKHv+fSr7yPithuVI96kCjdVUJUNl2AQv/Fx+5h/y5eW+7MapvMz1Oflvv0f5WoHelvnr9Dllbylx3wzgjD5TeygnvbJzWuqUMfaGtb+qkzyoe7FazNf6uG/r9P4uTy2mAhZE5hxa3pXaV9EL5fr+pcy3aR9FuUmvs4rCk5j7Xs8Su3pmgJqEAVPOs0Y+jc5EKeVhft7zx57csvu9iN/deOn0bDe9I2d97z8n+azIMkNuz63nGEl5C0KA7TwfbVgn4tYe4AJl960AUKBIwmdf711dY+ov+/baNy3vnZepO2oWCgS1J74H9/xzW/Z5LsmQaazjwfmciTf8Oy9PXGJFfhzuidrO4bb+DY+yyvCoAPeGMr/sDUoZklTY6yyqDJr4t4SGq3JtPyVZ2LZuuLlZ0BdBk+Kxp2URlXBj2+8TJda3kAEyX74CEF68pQxA5a4zWenfqeOpjch8JoyaIAAilElck3UIXl83QBruHha0rqGDsr1fMogqwnGjArHPrXKYLRkhFCXqowytQ6uCYNIA63qX4hif24RJngKzF6NRiKXl87oCz08nLK1jO63YxoaHb8y7FHU4VY4fXzecXlfc3h8gi+D4vOHLx2fcPt7i9v6Q46S+U9wPzG6svrqslYlWvUnNc5Tzq3ok28mBsgDk3t3ORttpw+vTK1QVDw8P6Ieek9wLCJYrIik4ardoSNSRZbQyx3hB09BROznC4S3sul+f6zxO9WTl/h01z/KX/Xxt+m6MajP3ub82XnX+0DNq6HZKznpBVEPJbP94ZtSJ4HUtSXkxCTZ/HvUppt9rR2M0JpoAEDXdRij+qtBLfrrAztd0Tdd0Tdd0Tdd0Tdd0Tdd0Tf+m6VeDlAZGeLyA1LBAfkgKDYOk8Ycnz9b94Ebf1/5mOSFqnA7hZTD8m6CLKUUC7KGwg5UfvELvoGaCMkWKvTsaYAFmBjoaBixETjhMkDQ30wgrAmw7ZRgPyzXEGGkwKUn8v4JSLmhEyj6zHwo7k6aiOuszg5XHAt8pk62WVAqHkoAnf02vCXsFYh6Ui6Igytz1RTEd5HkkrnSL/ggVOprl8gDOMfZUyJjlhVKCVMxkxuDmvJVKOxketqZYls1TeiqqzPOHFW6eXhRjE/SOUC4SfLCubmRvAJp7FVlIS2trcyAEmnhIJw1QBA3N8DBV7Fcd268ZD3d34SaAXOXGtiujqqYEWrwjlXpDecdhyTdQ3mF4G7ZkNoVUOFS2hXVVtQmfBYDBf3doV5knc6rlZP+sHQPqYfz2CqDydni6yIZIFhQ8vatgAmZl2TZHrA9Vyc42pAyU8j3mlqYSNt35a3lfom56Zdqr3Db/fZvohulv0KwoqAhOUkxBjvz/GjRq9X2fBxvYzlR0Wkgqk+fbUGzaMDbB2GyOHFcvczOQSAWSJXATMQe1Ab1JKLRNWU5PagY2HABAEFITA1fAPcx4GwPBb65zjP47L3Xby4b1dMIP3zyiN0ETQ0/1TgKQnwZUWoT0aovPaYZ1cpCUQoBGL2gcV+cRD+tEeaS+HkIIFkrQE9fK5uElzaPM5rzCdcoEkcC82whDYdIT1bBQlk+fT/jyfMSPP32D5cZkYvPpYOEoPADWUGhTYJXwDrcRKOW80QBsHoaTIOPUiRKWbDSZlMcbshxNUM+Q2QOXhc8TrJSRMDCcbghQlJXbAuh2fFH8/Ncn3B1ucHw64fW44fd/+xbtYXjfuoF5MLCuDZ8/vOL1yxHff/cIuV/w4edXvP+H9/j+p+/x+P0d0B2gpIKmLgUpKAf51kHMvU06YQEizFvrRl+ClZhRpoms9h5ZtXje29ORymO2YTsNfP74GU8fvuBmucHf/OFHtJuGIQzTqAkmgphFhgglAAvBer4+R/iSwrutzdKMN/YJiNs2zXF2STfU1rom9CaVfMAPFYQFFK9RqL+XPUNZ6+ozTmYaLnupM/7NG7CQswoa7HzNdPcI3CdV2lMOCNKIa6Cf6q0n/5Fd6B0sEQgoHtPUvKh527g35lrEfRuifHH+9+8OpIfWELDu0U+z3vDI6JYikxeX9xm/hcR1Mb/XhwlmrHs4rl/cKHIfc8l7Uu5vAPjZIb3rcbXOIgOAcrYjkcjEfPwf/R3sWC+/7IrKswv7X7LLhRcvzReJFmWhpSNlC2ClTJnnNlY7mdSHcuF3OX8Wsi7KPm+3NTG/E7AotV2FEFGV+N5TL/SjfE573uxpZ1fsLFMmIhAInfsdAyaXcS37SAWKxwEbx+HWaHEjdSv1RF2+uRsCoAFdKfeq/LjQcP5E+ahGvwpumnvP/JwLui8KnB0SHc79rJU2N+CyFLkE2Co0qt9nFo13LrXubA2osnuX/3K7srKJRyXnfIVC/qclZM37NUqw5kvPq45iPrNkiKy6gM6tym8ph+KdKFdrDlTpqshX9NI/PR+H/H0e3Ev0mmzluDSm5XKFzhn4myrBK34JwNf5+hxk02JAp9inR5468mcjMe3HLLX6Gyu7cDaf9nK+OTi+HHH/eDvpMaw9VX7ne2MbWJaeM4993hWt5TPlCy9ptAKk4h5lkmWFTgxN7xLK32hnOreYr5LjrgM4Hle8Hlc8PN5CFoQc1o19TDkduiw1wNbwyzIV6BGXSMpgaJFR/JzzvnRLy9/KzJWXcoNaHikwCBopDxXYVsXLy4reGtbTirEp7t/eoR2yXOp7hgpen1ds68D9/Q2kC16fNzx/esHDm3scHgzgI6Xur/UhBkgQYcX3QjS2M8kqc66p70b8KgfmJLnWOh++vLxiPa04LAfc3t3axR4gwTll7YvKwlM+pr+11mmv4K+E7qGuRRRlO/7fj/1Zb4qY5MJS15rktdwzzDKxtHOXd3rfii68BURIXJnbHe2cwN6ZSWqnRMqcIOAyOztpsy/Iq32DVQmQTmDUtJaUZyIE0tYCk0Dc0aYc14lnv7b2XdM1XdM1XdM1XdM1XdM1XdM1/VumX+9JSVcYcsMPR0LD3QhtD40FqgIMyYNd8bekEIg2P0tpeFDg0zjDa7nRrAQkNTfEVHO+G5yEAXAaoCsEG9TbovB6pNvBVsxLitJDAg+1bvVR5K34CAsEhBGoNfNWMIWJm86WebM/AAs7BQa9DuwNHDzrknZ5TpzUHwF4msIOMfPQCMVHBTFv2lPZdOnMqTRwljrGGAWYpdHG+jqVKjRcdiK9ht/Q2dejCgvih+L9xRQorRUvDy37F4otpJGbgBxVM1yGa2kC2FxpaDgGDZDdttpLq5iXg8PBAEtJB+sjb3JujiBpDeYxRRWjCxi6CgRwwBWJ0tBkGHhKYcZ6AaQbI9TZYD1LFUAq1Dif/HefG+lFrPw+USjLO1f4FZ4ryplsySUllyXqRzNwlHum8t8zVJgpO3pRuFTO1fKvKr/4ZihLCk0I01hLb6eWavYjlJPTLztCyO69nfZKNGmyU+lMWdnWqhRXAB26c2GuYVDezerZ+wiKh6TyfYMEUCmAAcUIH+CS4qWMc7ReEAYMlKLhGSjrs/eKMUWnnw2o4JnXIdg24+vVQUqD4ZCGACrYVP2GcTMQRHPPWKpZlqHtgqAELA2nV2vmHScAYpJzTqBhFDQgiT0XzjmlVxzB8fmEm/uOm1uvsrcYe58RPicEbQDPL0dIcy82sN+7E4JLjSoi7Jt4PdvmYEY1bzW9tQCzcA0jbW3cDADURLAsDa1vJmDEoUIyIDLMqdvQ9IoDDW8/OgTHzxt+/tMH/PjH77HcaYTX3NbhYBP2VNEccCPmuBBdBH3YTe/h4LFtDJNZraN1Aztsq6I72AngzXeOBSaFu2p6m7IQd5ZxKMGr7qVJgVFQjuoh78zoa2v32ID1deDDz0+4ubnF67Mp2H/84zu0O2PiIcBYrYxtA37+6xO21w3f/fiIfuj48tdX/PyP7/HDH7/F/bc3aIfqQcXWRAK1eMMb0ADGTjLH55p0QaOHKVG0Zv0UH3/1fcnYiizimuJrdbEP+3wjmMLm1tPTKz68/4BtbHj3w7e4vb/zNcTCbgQtx7D2uFVg45rkm6m6fG+qETaNHRvcv430UhfrcuFveppi6D4o8nvIiiILPZ+iyFTyDGmsCDBKh7VP4VgrcpTTxPaKvkdTD53amq/Vvtfw/WF4NgD3RtbCITB+ZL2+XwgjGY1pzTxZKQFaUmGkZS9kNcA8YG2FrurylWtOdLrsKWfwUgVxWZsCKmX70aEmG/i7M5K0Bt1SkpOn98CF31Qqe3iFy5VijY51mZtVfs5NDvZAp3mnkcnKoqeNBF7Pu6R5XzUbq6uRR/z/3JVkzXtq12extzhvXvxWKXIh244m/pETKpuWBufyolwmTe5dzp45VPsrLHQ2HJL8dhG0tX9f/3VaTPOLU7kSNLcNcTTac0JcTti9c6kNVS6RhrWDMWVzGscu1dY7xN5Eu3uDdDkfLKz5mx8JUO7TTKG32OYQGztwQeWBPb/IlPFykrO/s/zBXGXsl8qHMnMk90a1gtx2FBbVWuSF9qRM+Fr71WWr+r5tX2IdakW5LFGndzbtMr0kW1LX/x17Ot/J/P50RtPol04v1lVkbk/5T2lPXjDZt2vfJL5fZYCKpC4AiP3xflpwbwruMeOBlMlmLdapDS5NY/33+neMKf6bKjJMq+b3MRK8E2TQqYjUP5AgfsipywVl5V62MhRunUMhM+cYYgko0FIP7LKBNGC5kdA1ZP6ZyQS+BxSAh8J6cafKrWk8laQuMyLGgGvm/GIdSwKVZnWB71ULu57PQdvrH7+c8PB4iyX2yiWceJl3FbRCDu8su/yTwQsbXtHIOpXgDa3tyHGqYFU2YZKtTqVR+mP5xOkoIX9VDaD0+nzC0hespw1jG3h4e4t24LlXEd5DB/D8dMS2Kh4eb4BFcHra8PrpFQ9v77Dct/CSF6KxyKQ6HhxP0j5AWbu18Gtyiu/lRuA8356Z4qwxgNPriteXF7Te8fDmEW1pUZboOQxFXLaNWu6ufaTXxMi+llUdSOyeamf2fFgEXFz6iDq+vpztZSj5VYoc3a8J05K6KzfWhcpwhQCyb3fUn0LjbF/q+sl6o2NP76RjXdQujLM3buYT7mvt3/4CEctKPqlr1tyeWLHKueiarumarumarumarumarumarum/RPrVIKU2KagAOwgBiDBuNJ5YOAoD+bSixDDtRDMTmR/YNr+131y5pZlH/Ma811kP5+ZRpyMsrf6bPbUQHOLGxgFA2sGeDSkhTMrBzM+FrR60Acy3Z9Q9IfjhjS85XRj+RbSE3kBVHISqyW/EuUooFA4OdiiKqFY14/5nqHs+oN6rHFYl3muhlGHpfG6jIFGqga54YJWzUD0M2RJdkGqaQRjsSa/eHCykMIOqcszqIb8aie2/ww28ocxpvN1lOcyTkakaW2vGjzTYRzibVCYEeMH/9m5eOeiCehsMxacWr6YpDmLasx5utqztBGmM4Z4p1MPoBF9I9HEAaG6cpWtzeksJ4FoZB7ax0gLTd0vdFXyzukAnRcRwLprGt6hw4rvmLxL5qoK1jNVURvKMIEObAdUjDz1R6HS5bNfq+My5Qg9L8L+zOdiedJFQ7ubwlLnnuUdIEkwya6KdsB2lr5OSkwb5Ol7eZi9g37UZlCW70nWXVyJfzbEhlWSK9KK0wcFABMYBUN0QIIUm7lWIoClx+mYjrLwEZUa4QCp9kWMQ8sufDRlm6BgO8EQCFdRDGXB+giHPFG4hcmNhB8ZmwKPNad1C/gHoxuPdtZkKD+EI8pdCFvN8M5A3EcU9Mjn2CGOsaKOht4bTpvj06RXf/e4B6CdAbnw+KkTNdZ6GcFP3FiW4OSxG7NYMLONjFXgfwGGw9jvHZqhCHPSjBwkeFAiW8MaG6NsYLcJbdSlzl4YPD1XaREwutYEhA0O7hQM7Dbz/+TN+/OFbvH1cgMUQlur0ab7W0osPxyO9LCi6mFcrQLBuijYkvOtE2IWea4762rQ5UKn7OA5n2s3lpDYDHJHDQ0lPo6y2CJVlzG/rX4ON7xgGUHr/1y+4Odzg+cuK9bThh5/eoN86kGsTqGzm2WsFPr5/xtPnV/z+p+9wuGn49MsRH/75E/72b3+H/n2HdHogAsbmc0WqGjrlNYHKTrIA/qYcSMBnIyBNfO+hVLTn5A6FPg2gntd43/hON+B4HPjwyyc8fX7G2zcPePPuDeTQoM34ofkNbwJqFl/vI34H4OFACaDiusT1wfuwWMcJv2khhxM/ONySyfAEzeWQzXGE4ScEjEr0W2F7idZSVpLruHfJuZ3K82g74KCj3NsADuz0fVz1SsU6u8tBqfmdJgIJAJZ5h2OjvKMujwzsnnMQMf4pxy2qmlHTQiLaysOQo9IETbuFgCzrdBbgmx3hvlkg0jKcpKDMU/Kjede0fANNfKUS5L668PJvNdHLJJPGHrGVXAlZzj0RN0Hhxwhh/IwzRJZh+XNPaCkB/Lmue93hMcDXNrZLUWjbL6z9pXwfst3X8zd2xh/Z5RBwHzs/1F3matOifE56lXy6/4ENv9CG0mgalim+Il8dk9JD0qLK/ZB3fKcQR+qLmGm1Y5OzPgGIcxnfJt2m3VehR+6ffF7Jrj1VZqOMQenhfIFgbpfC10LfqzV66C2sTZrswTMRllXmcZ0qk5mnLvKZy9Fon8hMt0tjfrmqs9/OKvYfZPo5QTn8vofpuKjN76Vf05qAHU/8J9o9sXjQkG3MtSjOL4W3o2wtD2v9BaSzn9eX6MXf9+MY8wEEAdSWXS6zyphL8udSGrvnFZxEcFCdD5XXZ9AcQbdJkalfBaQ2X3xgf+f5yfJp6KdMM93Nbr7Jrt+X5NjupyjPv9cQ8FNe1sff+MH/mi5CY6IOBZ5fVhxuFrQ2AA9XH57XfG9UW7ONgaX33GaUvlSva9E2X5viwprTw3RZ2UHZ08UbnfK2CFRB7BkJcg6Hm41jKdBN8fJyxO3DDW5um3t5K6AHgvh39Kx8RD5u1IEAqZ/j+Ydl7Cd2WXPU+85j5TQRSp7axyiq8BB/HmqXGY7PFuLtdNwwhuLhzS2knG9Y4BiC4+uKbdtwd3+H3gXHlw0vT0e8eXeHfud78tqsM9mYbZvOGTqPHUEmZbsXz4KldpM8WHXXb34QSFxWeXk+Rj8Oh8Xum07rd86ZVtpKOgP10kBphABadJkZBlDndrFt5OtxQVYWOVy9FNcyOE8EUi5Las6fOoZTeYVoWVqu8XMzao7UV2q2wS4aZr9N3+Wd42CVeSeQUMYYbd1Dca1ZS82u/4gweRQccr7uJOjJR0hGETR14pwjNDlm9XJFXJFzARMXN76GEruma7qma7qma7qma7qma7qma/o3Sr/ek1LVsApv6QMGFoqfIW40MS8RCgvb5jf0hd6J7Oa5he/YzKDtB6JmLjHgpZjxz0+b6oakFkYD8D9eP41/HeKGHLtd76fZRiWaaT/s8Clm3PazmUDLAT09P9j5M5XTkytjwI1HZtykG2KeDyuQJJQvwvOiG9lhB+9QYMBuzgsQz6siiDeEz4wYPNyzv+WGlG4jwyNpKorCy5LkIToKzz877YSzhPIQzu6y4Oyk1DJLUVKy9ZLBDv35vAUIqLzn3WjdDepuLfVoLm48VcjwsEaSxmk4TXkoH2reYbCacV0WK4PGD/MS0tA6sA7zzNTCwChmYxRT6DVvA8RDpw1F6xpAhGqEuEDSnWFCkqag0mTWtlRFF8dBqeVELSsaMH2dTYLzd2CncPa2SKhXsi0N6XmIN++qvm7/j/UlwIj5m5eRIegIvuqlRnqo4DzYK5qqkg+YAVWVvpd0ijTaRz5NQ0s1noi/KJ6nVk669ZKfOWrZ+VeDdqO0ZgBYFR6WK/nHWFdclrKZCSwaLJ3WWJepWoRIvdnKcEvJHhxnhBIeIualpeRpIuiufzPvegONbRqADlPGESigXm9rDKmpEf6N7NngoeCEoEWjyBKCOmF4YzNPQ9ZF7+viXnhUsT0N6FA8PDa0w3CFt3m+CTnN8RTBelrRe8fSBUM7dMV0+1qLQp90NE82DdIlwbFDsa52a3kCgwFoi4F3ODSao2N0UgBjYN02rOuKplsysAi6h089Hgf++tcn3L69x903N8XGbiEpt825VQB6ahkeyk4HsHRB6xL8vQ1gcUXr1q0POiSMBMMBIzpoCHEAiitS2+LKYg/9tykMR1yQcrHW+LtmzE3DMuW4CHA6Kj7+8oL7mxu8PK0Y64Yf/+YNlgeGfgSkOVBjU/z850+AAr/73TfoXfDxry/48OdP+MPffYeHdwvG4oCVQTAUb+0n+MyAo2kY4TzoHWlgiVnu61ZZH3lpHjqDeel1sXEuuNJXxL43KLYV+PLxiPc/f8ThbsFPf/get7eH8PzYfM43mJ9IOICtM9Soz5+lpUwNkK84iK+lhA8DkLJvedtdiuBvPsHpxc3WKPespPRUZKA1zkurc3dTvAhgelGY5kDsB2T6XEWrSHquU1SQI70tiYs9Amltngb9PPcGMxNwL2tAquxjgCJlGBjUvcIF0E6dgKDRz+btQALTck2uYPu6bpuPD/K9+nNpHWmwUDci2EuCBroMMJAlYa0D0paQs9bK3ebiN5Vyg1D3QDJ9MIbW2LdoohecByuC7Qx0PHU/obscQqhz/H4ThlxnMzxzTPKoZTYy7uos6+Su1/bOfm+t+UptjdaXuNkwRinrftlTlt8rn0bZtQKtK+kMOkiDlMw8W0he9wpT51CGBftxKGthHIZKczW7OdGwtDta5s+trAvErnWS3S5km85n8VvuM7gkR501hKaXWXnBziH2kMeM0QzrUGmjeRSLNWMCTgriLJOkKPtullfYIkjt8qQwycRsVU4nDQSFjco8S7lb690zucnj3Z56mtycO/M7sTSo8xL5xj+cR62U2vTzVJkz9rrzwNflKLrENWfqFaZc+7lff0+Rdk5foMj+Uhdc/vCJAH5+y4aWoZjbu/9eXqtekzKHxCcXIfZ9AKVl9mk3l6NvpY5gQ/Lzrj1FzGRl5d1YumFg6gS04DylmJ/aUcXHfn7XNgXNkeVUOWPyUye+Z50iAu1+xhkAhuL2/oDWctynC1JIcI4Ogt4LLXe0m2a2zHmyD1ambJi9QSHlFgEiWh5W7yqqA0Obe99DhPSFEvCteHpagdax3PQAtk/zTXZjG/s4I1br1v8mfm735wxVpw4GCoBapfe5smF6t4bHS6qV7LE25vekr4XUfnnZcOgd20kBHXjz9gayJAPHOqLAy+cXAILHhzuoAs9PJxyfT3j79g6H2wZuxUpTU/VVulBURSmn6/hLygaUZxf7yN+KnOJf3n1UBUStv68vK15fj7i5OeD+4db28uck3o2rfWLbTd7NIEr2IecP/B3NiwOV150wWr+WftjlyHwth7GuH1UG1EH2ssvyVHtZ91hzDwrPVNry/SIjtOQRyosQRHvgEAWNzn3wQs3T67mwznONnSfohX6/luj8n5KytvBOVtok3pF5JE3ukRGjhJ0MvrSeXdM1XdM1XdM1XdM1XdM1XdM1/Vun/4xwb/XYDQe72EE/VCx+Czy8TYgib2XwXcFQBzn4iU+BAI2EdwzXiI9hWhlx1Egcr9zAYIqFPDwxJIh4fTyY0fW/+JkMTTCUQcf8kCuzoZ63vXnoq9rS4aF6Mo9ARd3wzpM9D7hFsUwlQpIyFfP1DOhaDQKJQofBQ70rNhguZXgooDDEeWgQcS9VrQnQWraHhkBIKItY5nSrxrURoaCDKXIUrrSDzOFL1JRKg4AK54WhCAUJvVKlvcnABgSNheePAE6MYigR82IEBzKoKddS6aDQzRVbsFBTmz9r7rZhbHbFmc0WY2MPVyfYRDHGgB7sfRtizXBOjaANoHcLbQWxUHVt8fkxTRdJLxtlzEVmpX5N1StP9Y9TlVJanic7zcqMyTCnJZek+pJvVK8WNUmp/1Ib57x+J/CiQnEfIiBTAHeKZqV6BKplpEonb/aGc7KiqGIjxOmQNKF3DTdQ7+ZmvsM2ZN69oobKLPZp1rNqjM+GbMsoedmezdtPl/pSxm0KpzTEQ1MBQLPoYNIgzcKomRczcSAm++OyoJncpuJ8aHr4GO7tiAAK9TKaaxQF6Z2tKuo2AOqejATm8cuWBQJYHLSjFiaBMtnkg89lSdlPBdq2aTjKC08xHBw3+LUGDJdvpJ2BDbp7NFJ8/vCEd9/d43DTzPsPAOnDb3MOiLpXDQyMDTgeVzw83sVcFVUDW/mEHxv5LmUIb0lSljXNMVMBhojLKhsDgu02FaAN6DawbQQDDQg2n0MDY4zwSmb4KsFYTRH8/udXrKvg3btbjDFw2szLVGviISZNNg/AvoeYFOuvWN5GA6SMQBg2gXnCawZe6l0whmBdR8oS/zcKn4kI+iIe5sz5YLK8mOyhIUfcgwzXGW3Gk6dn4OMvz7i/PeD1aYUO4A9/fIPlXh1o0xzks2E7Lfjwly84Pg/8/g/fAL3hz//4Ec+fXvF3f/89Ht8Zw4jaeNI7oHJNC6FnfashNbsYwBWAGao8/Be7s6HoeL1Q28IQwCPFQOHzOIxJAxbiruH1ZeCXv7zH6bTi3Xdv8fj2Dm3RAHUxGqnYZMWhtQjdRi88i8/bMH4P3wfAgR499z8BIGjAOM23gqc5rglsbC2BXZwH3IMwTwUfVZCCb0eiD4NiiUPfJhbxMorcK+/yX/d9Dzl6c9oS6KYQB0AZ4LWGkGit+7y3PRL3iLkHMwCYqgW5sz5sAAwgaPsR856kcJQlxGRxXUe4ARLubS0ZGHGNPRjUVqHhnpLq2lf3DAozBI4xrN0eAln6vFGUadP4207RUx8PBMnmtXZaA+I3n1WaYxu/K70w5TuaAxNnjFi9Sz4Oi+SsjYGoAB4peZXW12nvN++n6uNCgNh3Nzl7VNqUewhgnmNx6376XadC6p50mk/KvmIGJJQ6rdzc/0Qd/wqLTbiYi8/zfLDfWcUagxyhikPi9wpgmZpSvuzYYlqrvjZNuPsaceZJAIEO92Zbyq5GaB57Cb6cz04IQo/h8pjeOKTQ1L1RtpHPamfCo6bLc615og9WTxqEfU8Q5KlU14nm+8K0MMwlOkt9VufYedap9EvnjfqGz7jzPGVt2DMZe3Wpvkv5phTrX+H1r7xbP+/rCvrmRNr9XsrWmYgCTEZ8ji15/vy5r71lLo367q4ndZzrXobfWT73abWJ6dmOI4My7lnf15Ye7isixGHpJOkT7YeDZGQuoMo5rvO1/Wze0NwrhAfq0oYYD5eVAoSX6ghpC9vfsn3H04rWgOXAy1HiVPH9f2xo7J1tG+bFWeo4FPr7r1YfL3uV/mTzkv6UG5WozC8wXcMGjI3zVhOYpNlWIMdhDAPwbOvA/cOtyyfTh9S6pOwt5+q575JoRzIBge27pVGQnmXLw4l3yjhlkYUvJcdT97yiCAGznYDjy4ZDF2yngaHAmzc3aAeYt1yQVxS6NTw9rdg2wf3jDdoCfPrwitPLinffPuLgYaatX2Wf5tXygp219ysg6PK3zhmpf3f5J91cjImD2GNBBDAEx+PAy/MrIIqHxzscDnmZVGXCeocSxY7bu31nYcA9SCzov2PSOENM3eZabzW0Ml7Oor6/zb+cWXDqxnfJ/WIqT3eE3Uk++6gzUWv3an+TGeYi+VlNNqJml1nC8lJQAoJ0alvoZabJ6zOzLOhxcZV0gq9N5Xu+7mcWCPICVhFGu1Qpq3ErRaKpUgZyP7Wu6Zqu6Zqu6Zqu6Zqu6Zqu6Zr+PdKvBintb3kpjUMy4kBjYJjueQTmRcn9oPBWSGioqjFQpgMcwIO6RLlmaHIDENTCffBgqMNDfkkc5AMEQuNwOXBSgdCknGwFZmAC4pBI9dfw9vGQPfz3xd8PAIIkCENVwzsQjQ/VtX/Y2+lNIhRvfgiXVOwwVQWXAR+KIkAkDX+oD+zNGiZqH+t9VuInDeN2NqsNhQu1dpcPr9UYOCmnSp/TbXnS7kyZUzRPIt5uIWjJFTMOzrKxTiUWx5+eImwcfdwXA2qgkxfUw+xZfzzKkxvaJZR71m7zpCRwbyU+D+hB6zSA3rxNqtBOl84a/OiqMIQBTOkxjCrLGYwUXoOsZ5NiCygK3RioqvySeL8MwTRmGfbAx0xTOURlFoFSAxmSLEv0/iFBPwozGs86w/LWBb3JzOv7fpKO2S+ASl0WkE/iBuiu7EkpGGqcBJiMMgotaqABu8X7ocfywsZ+TJG/U4XJcfCIYiD8aQBYQ3GVcyWUwyEyE5Q3hQkU8yqjYCggb8ukfYMBmprLs4H0fuUAvXXYvKKm1ICNCEPGUJsb2+ZjXDzLbGOkka7IWnWlGWk5yJtx1Ziy3v82KvtzTG0uExAK9xhkMmbp1h5TvAo2B9XIUOiqeH56xh/+9gF9AQQd0oBNNwfKdgcZGa3Gqri5OUCamue1VBEGeIvuisxDH8WTgXKkUf4bUEy9XUJPb/D5VIAE6xH45S8nLHqH9Tiwvm5QXR28NaBiQJUBeHgnk38ff17x5cMRP/z0DUTMQ9R6VKg0NFE0HebxrUuEOOUU6V3Q0DHGZqA3GQE0pbcY0n84n5GnehegCbZN0b1NHR7qrFN+Gmd3CNpmvGby0MNsujx3VKgBnl3mNFUcX4BPH17weHuLl+dnDFX8/m/f4nA7IEuHNqC1zcb4teHnn1+woePm8QayAH/+l5/xp398j//lf/17PH7XzNgkBu7oWtY3cY9WIP9JAOnIl8n3DgqJcdcIa9aDR4YbPHbSMSaqg1/9Wn6ThvWk+PDzMz5/esbd/YLvfniDm9vF1033dBXSyYWFA8R7S/6E89VwQ5EW71XiVnAChxvcW5DTYDkUXva1MGoVo5mogXG3bXPjV8u57Hu8COtW+IcyrTdg26KpaQzkXC8LU8iQKewqAhxCADM8nzoPNWiGgvMr5QFUmaU22FDzlOR7RWEoOym3wSUMQwas05BFY8A8coltJOhQiY20G9OSRMieeItWXwhbGDvP7Vn8XQIMRtAU6W4hZ7gPaVAb6H1Bv6nEeaGqaeRSxN479pa5iMXaSmgQ18AA70wLR/1MmUw5xhYUmLzLCMohTquoj1te966ZzxH78Vhnc9uacnff9/JFfXzJ1tENwWxXm7q2ZxRuHuZ78vs6SeKkav6t5KNHhrnafZ286JAULWS4mHLXNrfxX3unypPaB36PIwnO2V4KD9TtUOTTUibf9y8MI31mUFTbM/ECCUMFxYZQ5r0bu1rrrGcncaRrnHHg0n4Ug3fZiEcxWniT7aL8rBT2iuxPNfvuRyGzZ7EpK/XCW5fGkrkupUt8N3ktvfiOxn+t0l3uYkiNFu4YKp/p2W/TixfaPvG/TJwQNJl3/UmTqaUxNyX2vJAy59Xb5wviV8fGPxAEN69wvget6yby7HuxnN08pxyofJ+ywUMfa7bhrKOxL9g9K2s7dUT0zjnNEZJPCbCTqewop8yjs+VO5zlY5ZtW4VxkR8gS/yaFxuKVrMcVN7fmRSlCYu+6H/X5Gap1meogfSZ5vuO6OiYzn8qURzi4rHcAT59O2I4NeBk4vmzQMdw71wAc7p6gKlt/19eB9XnF/ZtbtO68V+WPc5lwL1/Xv6CbX/Bz4E7I3jGvP0mIlGuiiBCZ3PZppZMTuSnAEMmq5VKQFhlZBTrsctnr6wmHpWM9bVAZePPuFr0r4HvW5gCxcRK8PJ/QekO/6YACT5+e8fnDM77/3Te4ubfOqsIvsEl0inzdS5tUJXma48q+XhjvkAtlyFkuL3JO5+upq3aB5fXliNNpw83tAYebjm7O6c/2JDmHSl0XhCDFQJV7MYfVeIl7K/ExrV4DWZ6UggOgRM++2mbeKHo/DbnIDusF3WgFk+8aXjgvtwP5xn7LuBcltp7UuasTDSdeLaMSe81yO9HWbHd5XN8RgdSbGhEbz/PxkFQmEffPQQEZk442KZI9mvaNlNPuu1tjYDLf5fPLNV3TNV3TNV3TNV3TNV3TNV3Tv0/61SAl86phBrhWDsp5nhRAOiI+eWt+wOnTLXkDAqVfX3GNbtwhE6osPVybewCxQ6XkYVcErTUP+yLhQckObT2+W1YJRTYNjOIGPh6sGSaDN3zMduSgBHVvK15+C4CUe0px7VY9ULeeaqdiWyfFJiNeVY4RYKXCsosnBi0HUykgA5TDtWSdoZSQuR18tlessZAIm7crjyoMGlXmNB+g43X2059NseElK0jPTlmtTvTKAWzULCqgMIN5a2ZUqDchU5FiBkXzg2BG9N6NoCJuyBfAvCakh5ltc2WeGIho3Yz3t809i3gdvbnBdlhYB6h4mCcJxZuIGQ/pAQYQv0EtoaSbOk9lsPU+FM2F2nP23TOteSZlRr5VvXJbKKHzm5wc8bSR2DOCclx9FCXVttRQZ0wZ7olvpGqsso+Wp3xeb8by133fs92YbtmXCBrJVymULiqaAaSRUBKAomwZ52Nklx3tzfC4ujwZ/nzIPEbbSGWZgGNlk56AJPMYQi8enrfIDOMlh5JpUdy7/DBy1nrgN2WTxuYlJsdaZGC0FrLCMSWAGihpqNUlQo9gilXdOxEQ9BUgPPyctUE8HBqNv7D5wTBpNj1SWKWMNf4Qgd1UhrWpeSgvBfDx0wvePNzh/r5HuAUDOiypcFS7fSgQnE4r7u8MpCStuecd9zLlYFITkXlLEnDQmLAsy9dDhorTKyS1rR9QNAxgUxy/rHg5veDp8zO+fH6ysJwLZz6Hzm9aC3D8onh6/4wff3yLwy3HOtcF41UDDg1V9EUcbGYCeFNgaYBIn4wyrSXQQgtv6YCHsVK0DugwTmtNDHii6rfNXWaJhdhciVJ0EJxsiHVR4GMc3v2sty8vA58+vuDNww2+fHyFAPjjf3iDw61CWnePYwNdge3Y8Mufn3B3v+DN/YK//umIf/p//YKP//IeP/3hO7z97oB+gPulcqMCAPGQhNM8h3mKAjq2keBWG2DEGkK2jhBcmuuhSIvwcRFO1MuwsXBJ2hQ4AV++rHj/yyc0AX7346OHY3Cwm+b6HQBx904lMTEM9MRBNNnhMosWdCbndcVwoGwqpdNLSALC1TNYnzTaY7TxvYm3U3z9awKoh22IOS4JWq57nuC6rwlwTdBtbhVy46LIPUN6cgLSq6NRhF6VbG+Q/bY5Y4uz/bX9ZuOepLcAhtpP5nKrNQ/F4CGFMbIcaSNkroQFkfLO9rIGdvNVVZqv/bmWssfc7zSh8cY2GMr9QvEAatKE+ySrK0NN/HbTtCchuST3dZSdtoflziSE//wbUHi2Lu25BiW98hf+RihteLPgnkklDVSFtepeBVLkJX/a8TXfV+z2esjLEvy52qMCgC5zfftUge21p8mBSKM2ZNeBuUFJR65hGjJ6rru+lwVquFc4b2oZqZSfpC/Hmjkk918yvY8kaIz1ObfnGMz8Yc/mlglMbu3PUXOOpCHXK9sgwLw+wsYhjcjFk4Jm+TTi53ggZRP3x8F3dv6VqFdAIy1qGS5rq1clKe2NkDjBiCQE4vdLu2mtBC/MfTYOlcoT3bPMIt2QA1Hr3cms3XyLtbQsJFqff20tqf3BLDH43V73X+XrRenu79xCLfkoEDgPKud77nmyTmWq5vv7WVbPbbHF0KT/FIKKQy01H0FMu7HZ9VvquJb9yNA6lvk++Y2/hZdDycon72U6v0/Qc6wFIODK5wsr9gtKlXxB7qlDCHbkXsTylo7GhHYaFQ9l9AbU/Txx2hTruuHx8c7mZMhkcY9P5awFuzzRCegphOWs0PKliuIY011+2f1GutBzufsHxd1tx9YEr0fF2IaduWO7O5/RVRXbKnh93XD/eItlmc/CrHc6s5czfPDY1D65sFbs+ZtjnGUxbDf3sECR/1KAdkV8hSc2p0GC/OyH9QS8vpxwc7Pg9LoCqvjmm1vzoATJdVsFuipenlf0RXBz14CnDZ/ff8H68op3j/e4f1xsz8vBC35KPq97j9rf0APNJPkq/mPPD4W0WT7XINiYHF83vL6csPSGxze36EurpCj8uktlrmj5wL1mfYljER7ElHOrnIdK/kqPCszieUK1YOy4jpV+7csg9Cbk1yx243zO1lY5VTg23yvz72xsLvwVlPWq8EF81TkvkHRhAwnqimdn6wYFkU77Sp2zenG18YxuUDOSJzXz8jcHJ1nFqV/Ps4gNEIFKuifQNV3TNV3TNV3TNV3TNV3TNV3Tv3H61SAlEcG2bSVUigE3pDU0Ld6G3BAt5XQVt8+jMPuPwo2BXe02vDagD1fEubFcq1HIXh+qaDLCw0RrYuF3AJj3JjeqthlAEIqF0LzwPFfvIhoAyTwf2QmcAI4GiTINvAJqWlBDIYQRStMDCzufh+vUPnzNJTSfC1JpQ6VAhIwqYJz5lsy5MgqQGSRS2hTuuVXRJUM7ZR2CxkO/wGPIVy8bQB66EQfjAEpI9W5TNC9VMVJaTIVkVZLXm/NmPNdyE07CAxIVvHsFUBh++XwAsrSoT6SFAmpbTbE3PByQNlMgrJsGkK27R4shGkYGEcVYzGvOYm5aIOLAJDFQx7qa8jJCRPF2tBvGGGKusEDQaDIklPGr+pIYz73WudLCCzCzZyrrbVokWIlTpWqDUu9VlUH1LvHcTpvPlvbh7SZFeHlBNQFRiPetlTReM4xaKINKC87fvayIAsrcJc3sxylP7QPLUpHpt6xP4nY4sTf8PkBgUCo0twHzukW5YwydSrRwa+BgmcnoX4yp/lnHKKBNel6CzzUFGsLL2xiassQqNm8iLss3LR7FnCxpUEMqyh04sXlsLFHF2OhhzKkiyS+9U2bl3NExy6wAkdJDkagrqg2cqpumd7ouwCKQ1QBRG4BPX454+/Ye0hnqYbP5hW6ep3y+DVWsR/cu09kxBwQ0LhiTyJ5EmHmmSiATaSIQAzxFrxwIo1ZWWwSHw4a//ft7bKeGLx8X/L8fHvD583vzFMXxVA9VOgQvq+KvH17w+MMDDo/0vtEsBOVmTe0NbsgzujHUlohYiCzVMHZuXNNWjXUPDR5mTkKJLILwzhM3iKER2hOb8+Ao3peaMTzXFmmC7jJn6PAQjSlhnj6f8POfn/D27T2OTy849IEf//gN+j0CoAUPs7o+Ae//8oTD4w2++e6AbVWsr884Pj/j//Q//QHf/M0DDrdijq+wQrUBDkLJvYgEiMZCo6WhbEBdcWvKXCdArC30GtQaIKNw7TDgnbiimHJMRCBDMTbB6bji04cnPD+94N27b/D49hbLIQFeoNxoCYoU8quTa2xwMFAL+SUAMATq3qGsqbNHR0ErsgNhiCBgxFk/jI0q9J42HNQIC1/oZdg+gEJLw4gTa63Xm5+Td2oiLQGk18fCe6G3F4l92SiuI2NPNtxdnC8i5sHLvtOTHb0cwufObFxhWz0UHwY6bz1rqcv5MBX3Gv8j18RKJ47cgnlCs+kgEFmctwoQvzWobuTOkPVxGVtNRqu2kNFjbAAahHvlsv78ltPF9XiPCKrGUWjSoP7u+YM8LFtZh3mYi9XHM53xYVg+z2/lV7lPr3J8HtJdci/GJOXDfjxa+T1oUdpUu5l7O+5VCgCGtKnd2BN2vxXUix8nm33dAynK74VskWVfuOa2hUtonAVKW+s2dQ/aCBKXsjOf5Pusku/VtnCe78iRRs8kedLS93tjrvvcoJz9PIsk432l1xlVlMs6El4/Ym31NR5cmyTPWrHfFSBBL9lPGvW1/AYp9GCDBAUQWRtav2mcNSsha66zOYuk2ddkTh2a4Nrd+NadUr2eoBfKUH9RIvfMiPP1hvN2x3P1zzzHT/3Q6V2ZeniJCnPZWt/Yv1b5yr+rv7MrjBjpqT+2Bqn/LWUWJq59qfxeMwr3KlXOUQbo3GxfFgEFNj0/i0abnDlDqzIyk0zfv7IGADMPeuW80MP2TLIx5JYGX+iuXyFrJpmeXq2G6604V4NA/nw9bjjcHCCMnCUcsTbtcdSFQp6VOBiSY13k2zRmReaHJ6dpgWDeBB3ExQJXMy0HwdIFbeu4uV8M6Kwjzt6aDcXYGp5fTlhuG9oN15HksUY6T+tUXtiQ/fhVOegfuK+LPeFuwEOWadYVFwJKmbku5YhWAAvijACoKE6ngS+fjri9OeB0WiGiePfdLdoC9yyV9Bgb8PLlhGXpONx36AC2dUM/CN599868m/bKYzlXqzelMjzpaVjx1bXDmjtf0MvfyZf7dwv/D+B0HHh9OWKohepbDj3D8lX67kkfawbPmfxZ5v2C56sgldD4SZFJpZ1nn8v6FGcL5U6gVFbWhHOaeeuijAT72H+5tnmvp4kuXncRjClaItvlOieSze9dXAZY71yB5gdQQGn5nHQYWcxZg+oEqoLUVyifAPP6V+plS/aTFOlB+WzF/U/Q5Jqu6Zqu6Zqu6Zqu6Zqu6Zqu6d8q/fpwbzSU1vOkqnlVaPSZAtgRVwFRM+SI+/sRgFrTgfQQpE1cOQvIKGc1/61Js7A0OjBEplvIcX9cE2RBQ4YZZjOsCaBh/LcDfjkV02hXFERU8AqyazSoq7pNth4BA2CSyioCCsxA31yZzRM669JJ+eJ66gT+1DZ5n+13AhVS7cjzqzLIVBgnEYq7eqqmYi6Osuo0pALMC2TYg6CHpGeeGWDlRtniOQulVrZ/Ns5Q2TTfOKrKAyo2zMiqGaZPsj3bloqnVExqjL3W310pNaDYNkGtUeBGFSXMwHh8FKWlinm2GS1dfps3Jzc++OfNO9HcRpm8YV5GRBGha7ah4VXE9ALm97wqwGikqCM5KYMwK7RdW4eLiQrO/CHKoOKxxehkHiox7XmoCuPdWtZO7zQlKqhC2abzm6kEs8FPtUlwt+vLHTzoOWr7qeCrRplBZdXU5+I5JPJVOuft0qzFPHPt+6cw4BTLjxAuzsPr2CBOWY5tKo8RwMttNQUUZW5zr24YM0hoqMtARqnyeULFqHlhMlADtXsSHr9sXgwqd11Rpe7SX1WBFQHMiL6aXT0NpkjFFh2Z6ECEo1JBzMOlixs47M1NXa6KRPstPFcq6tIAIDGHdPg77i3IDBgDAgOivD6vwElw/+YG2hyIxVAs7uls3fKW9lgVt7cLRDRkb4bTgIVuC1mc4Ncw/qgDvrzpQ3wd3OBeh0gXA6MpzCPbGOaLX5qa67Gu05we64p1PWHbFKe14Zf3n3FzCzx+szhdaGRRN54kE0sX83YlwfnBk3D+U1VH1TivwORQ8/ikBqZQ5y+JhdHCXVldzb1t0ahL+d/FvYYJwXVOKJj3w+60HEPx8rzhl78+AdsBXz6ccFgG/vA/fIPDrWIsxptjM154+TLw8z9/xsPdHR6/P2BdFf/0Hz9Blob/8//t73D7aMAUK36gwGsBcaDgRuFnoJ5t0wxnyLXdl4xFDLSlImFoHmoh8gjUZeivkFWU/T5RFQLdgKcPT/jw/hmH2wN+/4fvcLjz8Bu8BFvkO40okWL9SplldRlgZRRejFdCVgx0D+WnmvJNXQaELOT2RF2+qsYeoTnoVrc0w6rHruwi2MYImQTknK0GB3tUpGjZ8+Rz+6cuwDeXedXIz1vp0WfuT4r3S+5LTDTqRNsoB5TvGvxNQ1RCrzkuvma1hrFxPg1fTzTKsv0G96Huo8fLznDENlnE0QqqI1Eru7XZ6DmQUNfqBcxCv7WyYkuQ+Ctr/28kpfO8uqoK6v7GCOFMIZRHtRSNMXPh7u9qMpVUqIM/DQMzMr+DEeveddoVVaFfvnoV89/avFLE1HTZ5RO4B64py8X9kz3kuldkTmkD80B39WZH4r0wUMmF+qS8JUnjeFyeRz+TsLOdTfftK++C866M8a4xIT6EMkZDTgtiKSsDM/05/15+r2PJ/dT+ndp2rd+932NkWwgeQs1DVgr3EexjGv7jt5blUB6zfWM3plo+1LNsGO2j2CrTkB5peFbUfZm7ebOnm8aji99jnUCw4jRHfBR345Hn6glQdWHQzudHhYmev5rzOdtnIijn9NfTJeNu6ZDOT1TmeoDkh1hnC90qrVDGrWBxScmgS+x985XoaJ4B8r2YKzwjVOJUUcuBKpN3pqmcrb38vQJtdJenAjbsslHmm2hPHqn9ljMGmOSMTD8gPAxNR+AiyqvMM/pKdDLCvXq9YwCvLyse394ZcDvmWJsbLlbOtg4sra5Lu/7teUWLfKlzsMoP0gG7yz6kkcL1HKk7srUhCA4dim2sGMPDoB2PkKa4u70tbomST+uMr3WGHrCMH884KHnq+jfJ16B/gsRYUAXtcIxiVke7ZJKHtU2qwHoceH2xs/bL04abW+DNN7foi5cleYbbNuD58xGHZcHhrmMMxaePrxib4NvvH9BvSMyyp0X23+ZouZhJOc8xCYLkn9CYco8aa4N1mPMkpibnrWb5xpNHnBw8d7jr6D2BcOVPXnKcaIokWM3sX8Jr8+6R71ghTo+9F0ktdbESpfBX+AVESW+zSd6QEXVdrfOmToecK4r87yzjk18l3slLO5hTyJo5yf4L+7zLSP3p5RfLGkc+lVwTa57CPrGSRW+m+VIJnxfRzkO0pVybm6zZEAAitWZONPJ06pqv6Zqu6Zqu6Zqu6Zqu6Zqu6Zr+vdKvBinRAwFQlT52kNlUzbgLM1q5WQbit/zpvp7KwOpZQuzUagfh1mEeD6gEcM8F0qDNb5uP5gf1AWC1vOJB1wE0pQcluy3fqKRpAnTEDXopJ0beFqOBPm6vYTboElQQwADvf6fxjCd/Ghz3p91S73DjVnfaDOtmpqqg8EOxiLoXqeblu7E4DF8IIzvKoVwEcMzLpGQC0qMKR5MpvLXEA3s6hIZZV7yVdgBzH6qiobumwzwTadC8N8mOBk0B3oqzfpu3LnoDYX4CG6pC1gBwNnamQJIETnh5DYiQOOtJMdTGENY0bO6IoTs/hDKlaGt6b8CGoDnDzIsafbYNEV9OATTe3FOFNoJ8EuyFAXSfGxE+UGHgBbVxUmfSIIFOpAOQnoUqsCZnW00FJORPaJdxddzu3TlvS06aFdeTyqXea9u3dOa7vSKM31vqts6esSUsI/KJ89FOkxQtrgq70tbae05i9ruaiGXX9g1p0t6qdy9NzywCu328eaiCBoF0yx8GAweFJHBAsTW1cGZ1rsHyRdglmAcbdEDFw3khgaDo1tJtuKFemnstcnlORSKsfJtPGt+l9FgcrOF+69DdexD1YAfSZTG5NFxxF94rQhGokNZC/jQ1kI3ymbQAmbKNqgn6MK8jguHPt1VtbVgUG4D3H15xuO3oBwMYKgQdSyh5N0fRNBWsrxtEB3pzWJ50412CCgqIg+OpboxsQn5K+kkjuEywDXdvRKUvTJCRbsODdobxRrdgfAOInKDjiHVreP+Xz1A94vvff4u+tFBK5qxAcqLL/S6K1ls+d9nYxD22OdAmvV24Zx6lVy8LF6dDbW0GPQ+p85fdnG+9KFOHhRQTByINsTK3buUtvj9oHmrr+Qvw1z99wdvHe/zD//YL3ry9w//wP36D9kijgNMCiuML8OGvX/DwcIOHb26xnlb8w3/8BToW/M0f3+H+0QBfHCPz5kXAktO5yilHGsatdMygWwARsoNgHoWBnLjMjBDEkl56xMPZqbXh+cuK9z9/AgB8/+Nb3D3cQBbEONE+FLezCQAb5hXM8F0FWARnvoiR4i32PN0XuQQeJF9YnRJcQzYyj2tlLVDzSgafK1UJzlBow72fqZS2OxiKDZuMDoWy4WBSc/+1d+sgYmtng8nNoQZwY7kdtncy+VP7pMUIYMBAge0dbe5KCaGk2LjfUAvJmhxgQECxQLFQjLI3sjmw0msCBgxp73sGgXnZMsFg5VDGNM5W7ndIGQe0K8FPmJ9rB7TBwiJvSWNZc5smFiZOdGc1/I0lLTw4/b5HtcR/Z/hSjpHTlt5npnSB8bykMCAXXkXsZYvHmdhLz95Dvmaz8e1b7v8v5Ku4Bu5Z2Jx8lvuXCUhXmr3fRU2gFA8VRY92hWCxCSLIu7Zx3jXtf1NUlp33ZbEYzt2e+q/TT8mzWUY1ztaw2jH+sm9dtmMKixdlZJ5p11stsGUPw7HX8ltlldqd+p3ABlFeKPA8nomA9T05uObEMYP5CTz38YsyaxxMYA5P5vIszoNa2l7l8Pmk8585EE6tSRbOf/eQpbpT1PIriyOtUqbN4MGZrvta5/SVqVfeOT9x1Hag0mFXxbkUyUsMX68y5VQtMmVAEQia816/QjGCG7QMWorFrGv4eaKOcS0t94hehsDBvlW2nMshrt/hARcuM30P0eo7/Fvk3V73QVBeFYkKFASWtY9eiut8Jv2sv07hUnEFXNBAH9Nasi7K5al+b4MqJu8z/B1+1jkdFQ3Nw8Qnh1UP10G7AehQ9KVFAzmm0WaUi178p9nfM9nJdYFA+NIpyvigmxcW/OO10JsSsEHVwqCpDjw+3loYZ631JN1rkvOfUsfk7ZiWTY7nNAg5ziImN9l35c0QT63ZFrdxntDbprpuQOD7YmudQrEdgS+fVtzcNGy6YtsGHt8+oB1cP+RrzICHg/tywuGm43DTsW2KT5+eIGgGajrMcoSgQPJbkrcCw/Yzq9CsMOJ84TL/Q67w6525/ng5Q9W8Jz0f0XrHw5s79EXCgWjMUy2eSJl0nu/7eYxSl4HFci5VMBj1uelxrBRS+sq+xNkBiDO9k83q38mMvRzbt2166HVXGlPcpmwgEzq/FjoIyocdIS7pcLXkr/O/lffG7sXzNdR3dKXyaUmSstcJ+f71VS/7Sh0DH4wsOxCyJBKS+Eha2Zqfsom8+a+vudd0Tdd0Tdd0Tdd0Tdd0Tdd0Tf/H068GKW3ggcwMIOkJxP2a8CpQXI+WOMFGyLNQglheu0XeMn+UWU6c9TDIOsRvoAvM440fxEyh111ZM+KwxzbEwZoK3HauAACbKQh3zTXkz/CMnjXeo5FZxMAt1nR1VzvzHXhxRQKBX9XVMlQjVFP1ykSDSt4ISiUXDd718B3GCs8TnqugocmviqKsJ4+iDOUjLb1CTZ6T6llYy43Oongg+YAsS5r4IT4N3UwJdnJDclHkNY6j7A70RaF2phyFeZLp3cePoa8YpkgEMoDWFCLDACGbg7+609PYyjyH+AF/bBZWqTltTOvl4IOe/af3hQHWYUwkzRVebjCFG36H0uhtYLvmYAh4/tZlMqIWzBao+pg1LXkXebqVrPTncw5OyjeNwnv9015vM6b8bM++nOSHUMB7mwJ8dkENwnw00lVd0l65Fvm13DqP3+eWUyFbcwmSRlZfApS0/GXeUb4NNT7bhgawanMgkDsbMaDTEGA4UGlN3iXQcBTf7iJismQk7RB0KB5/VIOv2e/RCOZ0GdFN3mwblXbGONuWHj+oLCaPDmjMZY7RcAWWuPeK1nI8WpecozAwwTrUPe4kjbsLKIYWAxCOk0gLcCzE6/F3VOFhn4B1tRByIublZWzmGW3bFE+fNvz4+zfRTpKilc8GDhKcToqbW3OR33rHNhBhy2iskQKytbnt8kQR3nTgnqOGqoFzhqJJB4aHx2iASMPmC0tTa6tVRvAPYODck69NA9ATXp9f0XXD3/zxW/SDraEthIkC6CHHa6g/kebjVGQj1yuORdz4Ls/Ihy3HIQwo4t6ZXIYSLCfdFqBl8ZCrm8vDzeeFJIBOAWxoePmo+Ms/veKw3OHpyxfc3TS8/e4W7dZCWA0YWG3dBr48Ax/++QVv39zh4c2C4/OGf/iPP6MfFvzNH83rkqBBNzELr7Md1y1bh20y0vABncE55H9xfhMlQNEmonisj4aGBjMScmwbzKjX3auSAng9bvjwyye8fjnhzeMbvHl3h+VGDNTaY3oaOHaUtdrnEWUffC7a+i4OQHAAWZkT0gTN+0pvaOIbm+a/UXAON3YxBIJo0iNAPECEfx0uAMdQrBtN0s0BbJTmCRrlahIhAUOu+cTxtT9uZPvzGr6OhnYa6M1jUynLZRPr1InJfV+iBWZZ9ilcP4bvrawtub85DwvmQCcv2+SHBq9ghOkhyhf3SMb+0GpKg0JQShRj+F5aGyZAOlDKdHOxz2vbd24IcBOy3EKm31zKvcbsR8WHwse0jKWE6c3GkEA4MkB+YSn2ZuxxYxZluZVXnG8rZ5hNp8EMkG7skXnPkfsL1uy7CMVZ3lgpuabK/KSWlRyEaUbZuwVARfLA+apQbSIhyo/Fmlc9Suxbuk8yNyM+0FMZ+7CvMrJyLLDLmNPrvO6J2DoD2+r7F7KzzponvF2UceA6EU8oP2szdgUHoMEHa5Psl2yAR5icQFMqSYM9gaU8D8NvaReBmNGusk4FPYE4o1d61D5O5z3WRfkKkx0CmQgZzdV5wCqfJbb0nOPPf8hZdoljyPu7oQ/Wnfh7/7eKjH3dqHPr0rMd7EqnPxPPX3q+e233I4FjKZeVa4AWKvgHW8swgTZY7Sj1Uu8wta+0QUvZIn6GdgTyfp5FG2r9rFMQF7yASYRkf8lXRbxOwINY64pHQf9eUT5cbgPEDPIl0NV1B34WqKAeIf8ZnnimSZl0bHvB08Q+UQrjaOnP8/MRh5slaVUA1vu0rXaxRJq3E9aeSttp1SsMNtHM5wr3GByPBIlnvm3EUSq8iHO/5r/6wFs4WR0r1nXD45tb97aZl9LE5exeFbdPVW8UqeSvfFeG17L5D3W/HeezHQ0aZRbHVKyT5pE2270B2I7A05cVDQ3H40CThru7boXA9qemqlGcTsDL5xNubxYstw3baeDTh2fI0vHmjQG3rK21LzK1T2MChADNOSB6xh5VrbkXVlLoUokoqjYBFVi3gefnV+hQ3N7d4uDn1kl9spdLewEZ45zjFXMhB2iiP+qz0o/YGo+UrXW9CX7n9NN8b5QXhirSI2Zt/PnXWEJ0pqeUZu/X2Nh3oMoKP0cppn1FlYNfWy1i7kc953uyvdyuPREu+FBMLhNrKZc2S/V7GTDKvmk1nQbUXy9y14oQp4M/j8mqzntZ2GVKXNM1XdM1XdM1XdM1XdM1XdM1/dulX+9JqaqLtPprsd8CoGKxfQA0qGm23DCmyPtQiuEaBypZ8wCUiiy4sjS8aYBGIT+V85CndoOdxi5AMWBGzh4WR7jWaUB5qGfreditB28gbiYpb0lVhRiQLoP9NmANWea9AG1UVSFmB0DXdPHsqeZZhMRIo7KHDiuHew0lWVEkYW57KgnEx8wVZiJhVGjevs1BM3yfngIGLYSQMOKmsYdtyZvnNGoO3gD2jptBOBVNBD9UoBUT+zNoKBCBjuHAOMtQgUqu20iFvdehrMNsTOEZwoyvaUSi4Ve7oPXuBlf7jSHcmgK6jqJkc6BIE4gM8yLSBdodZDIUfQCHbhW3jf0dkAYsvcfsaaHR0QgT1sl4wz0jiXur6QLdgCEDS2up6IHj6DjwSr6d9VOpZFM3cudN5uqjIMa3vuflMMQZ3wyl1KTCyM/sJy/Mciwy1wyeKJwAgpJYPtW6FYBUdbWTLg4SZsf8PaXVFHIo+kq4lkx0CC9K4ob9Qi/euB9DMYYEaMPkVsNQWBgkEQzvq9mU1bydEJDj1heG8VAoerP3dR2mMBWGXhQfZi0tNW83cGDCad08zFha00y5asbsAXHQoAQ4xkSpeRYTOHCqN6gbzxnaULy8BEwqaPwfhiYNflwaoNocfGWedaqnGhr4Daxm8klce0lwQMhVzgVfF5SCxUdxXcyzyuunFSuA9mDvjc29BpH+BB8AWE8DOsTAHjKwjY6xaYY3A40Xlr9VK5kQVOju+4vcHw5MoMwwIIl/bw3rpugupE1xPpyHrH06NpffHdv6BS/Pn/DHP/wEWdwLVlcAG3rvaK2VG7M5TpRFTAzDpi68pfTNnqcMaGLrEek1dHNW9VklNo8I0hxDLYSaLf1mcHBObu7ocFPFIkDXjhXA09OGD78c0bYVH355we3tIx4eb3B7303ObJvzmuDzl4EPf3rBuze3uP1mwdPThj/9f3/G3Ztb/PDTWwduNQf7WS/Su6CFvRsKjG1zHpZQkqfBIaZKGAu4ftMjmC0uXM2H09G4w9YsWyfGKnj6dMTH989YDg0//eF7HG4bzOmjukczCS9o6gPThF6fyK8aBm8ZlpeeAilToQOd67rMN3pjxXLFtG45zzcd2MTWw17kRKwFBVykG9dV7pdy71JqmfY4NPpWAxVDsIBhG0k35G+xEDjNgy8F7g2uLBQjcjuINA0wBHm1ljQmSRQoIdwQKvjc57IZ9KLBeeIeQjEs5B8RpM4zwhCXLgyq8l9L++xvm/Y/ST3rScMo+2DNcFDNeMVoq/5Yg0YMpfpV6+JvIHHfb/3wfvseLw0jUjaa8x6cTMW5F8bCCPeW3nAkByHDGIELrZTGlE3TFA9E42M0h1/qIKPsUoT7jP2s8LqLzNmP0uQoaKor93gSP00PsHs1Cy9/ub/4agNqGZLz9/xhaaOmDJhbkanu46KPzC75kTQmUI3jPs/DUu48BOf1Xm5OjqXOfYyyYtB1IlOMh8x/FeWc520amrTZgDAo0xtt0ox9VETIyZYGYgHy3OprAMOJMRSmYBqS4vlzHpXpvDvOacdQoHk2uEy7c5ronKGSUHDGGVOom4l/d+XI/F7NQZmKs7ZeZtpLrDCvWXMptaT4G7xb89VZFcx71ulot8xg1sjispt24vgLXughiD/PXxxo7pEnKhQaS+M+Ri+47JlpOveqrC8+UTlnKthIywta/mUF9u6IsmKJzXGu/VAJIJedJ6yeLrmvqECL2pGgQpSZnFrDV8+XFiToIZJeaHQFxgYcHlvqd+rNnkJ19fPfcjDXyooCxvD2ROQrLeQv86TOWe5nJxlc+UnPf+aZyp5L8I848xpA6RW3dwe0RaLvgtTLUD6wKNYxyn6Lde37UrEVoZ/i/C/0quNVSJDlqhZQKdJLk6LoFBEY5eOqeH3esDTg06cntHaDw6Hj5q75uREG3lLB60nx+mXDnQOUTifF5/cvuL27wd2bg51pQRDdpbnPuWUPK69xHKfoWbsxUmbaPRXZ0SjO7Yrjywmn14FlWXD39pAgqrKYxhhjtx5IrTMnjPHYefvrnAq617bVv+UzvcrSW9U+8adRFif7IxM5dkvrvH4xT1GqNuoQUORpmTN5SWFeIxTzMCiQXpbIu+Uh+SFkczRIoxzyyTS3C98ACG/8OfMAXqyVqZeYeKIUAe6LIZTP/rbuKQbMi0Q2PML3uoyoxM6Lp1eA0jVd0zVd0zVd0zVd0zVd0zX9l0m/GqTkAXDiEDNCz2VGGwBpFESbDvP2DKCCSND9hvgGs5rZ4SqObZJ/46AYhupmBn81LxDiRgb1SsRPl90stXlDplgZGMhJ/XDZcDm+/f5gJkIADzuWhvoeBlFYeCF6IwDQCfoRzdjy3W+9x9kx1AlTffU7jczRjpI/FCnlEDoBiDxr4KDCm0Ttcxp1o0w/rE4elIoyC8h+hzKZxjrnk6p9qspEArHqITyUU8iDdxMelA2glrfVJW+RMWkZtyBKKnpaxDWa26PDQEfbpnFrDQL3ImWFLj29gRkPKmhYYxlLT/AUhnmX2dyjiEhDawZG2oZx/KGZR47WJei7ufW5t+RtAcz+LTDwwMa+FA8/AdpLRQ37Z1gFCYCCeYmxEFf0FmIGeefredji+94gpMibwfnOXvk2p6pAo+M1G6bixcLLcSjjpCbRXVlV1PA9jkrNW5VTe6WXfW5Jt5K/KigrOMt4EJNRWJDekIYW8JLAQ381i+g1CKqcJwhBKs2dzA11Q3XIv5yTBExRIRgANMDb4v0Wa9Omxjuhq3K6N1fgplKK5TXvr/Mh5xDK+6ENNH7i19ZtDegcQ5+nBC+FbBmCsRVjPKxeahPV4kOG0hgApLGdLsmdNl0VMoCnTyu+++4eSwfUwbDqHm8CwAEDLpxOK3pfvAcOZFEL7UDvVjkvFWFAdK4gtqOJh52ijCFQU+lIRQL0kZ7D0lNT68Y7hvESAzT1gbFtOB1f8O13d7i/X2JNaAK0RrCjYikgNjidzWDidRHU4OCpkOmo7bDPnaDYYTLNyuOMkvIeXJZwjQh9bcr1oTGezfOuqvj0ecMvv5xw0xY8bZ+xiOLuADx83/H2XUfvAukD4yT48HnFp4+v+O7dHe4eOj5/3vCn//0j3n37Bt/9zT3aYcTcGcOAowSvkPe53gt6hFKDmlo4zN6KBI16/m0QjGqLL9d0AnAB4w9pG2QbWNeO48uGD+8/YTsNfPf9Ozw8HrDcACrDwzEO98SUEkaF3v6UZHUwmvOaiIXkEF8f2AWnK2cPjUHDB4Pjv5EG7ukNIthGw2gGHIxwLAz35ogYehNLg2Pdp+XejItOruUFsG3LpLe2rI+ciWFQs8xpvA/yWJs0AQusv3pRiuyq4UXO5qobQLhm0zIvsPmMAloGwXvDdhxSANtK75fefrdENC9/xAQo87u0juC4CAMZg5ittza08u4oeyM17wzD5Gw1/o16C508pRt+qyk97uX4c94FdCPOEzuYTxjYOPicSaPwYG5U5hW28ixi0+AzPtbO2FPEiz7DJPcYgiIHNcuKdVG0/FSNaIVx90lqW52HSlMBzAAf5me7SjtYL/k0rxfoXGD+gqm7LGPiq0oYPXtG2lz6le8VMl3oc76yp1DC+0qjyiauGlOzxB3AbF/NjhQGuIiVLl6SUkDdh0mSN8YgpvTOewqA8Cgh+04Hz0iGOLZ7NuZlkjLa9xt2RPC9yChtcdZqBLZ6WxSJS4muEGiB+f19KhyTpGWf/cvwQugFkMVUA3ilOWdYmUHxjDJ+4veJMfetuzx+c+kJ4q2cpZfad1aVTPnPv2QdcbXCx1KTUGxgztOJsbLFe8YPbuQa7IDNGvosuP2CWDGPfLW+KjhSDhd2j15VscZ3BAUAV2Vl6RbbFPt8vl4y5QzVGJeq+2GG3GuWueW8Fo8KH583aP5+SZ6Fw8NCAIqT1+OKZWnonU331UJz3rDubR3umajcD5h45vyjFEILq3daVc/Y++Ji/xPrmUY7+E4Knzy/bavi/v6Am0P38426/Ex+JP2jHC++91nuFXL4OOec8yUwPGnWsZnX9F2KsksedkMx8RDUxu14Gnh9tstsp/WIx8dbHA4L+kHQb/1c1Czzy+vA6bji/m7BspjHpc8fj7h7uMHd42L7bCekDgl+U5Q9Vl13+F13j86mt5+7ygQLVox3qaszAP3YBOtR8fryAmmCh7e3WJYWnkUVdSZlucHHMv9cJ8DZ/CYPljlQw7BpUeZxTu/Xz2le73ldiyyode7kDuvd7wGk/M7yq4ypDbnUBqOrRMUz/zklp3oTEM26J5GyJ3t5yM9xXizrQj0V5EyJWuKzYrh+258JoqT90pR73l2Z58rZ+vbuW6GFIHTrAOxi51m+a7qma7qma7qma7qma7qma7qmf9v0q0FK0HqYaVj6fDM8jbl2Eg2js8ANzEijw2TAMT8U4mU1D/Nlt9SBDAnHcq0tdrt+5CGdylG/YSXKsHSptDQwCD0GpOJtKDBE3bFROcD5+Y5GXlGEJxAaDhUJ/PFird2tKJEaoJu9HMpZHvLhYJ34lkrMGUgQrcp+lja61Sdv24PGtd0Z1cEtqeOhpoNjVJQSPo5TqKDaRz88615TkbEDPFRLUWHQBbbCDaMONuIrA6F8rMALNi7OzRG6z9ozRD18jxnZ1bUrKhLGYCrp4jaomHeP5m3c1kIPHzdTAhoBVwcWmcLL29fcCO/lMZxQ78iwNKE4STqKGC9uasAg2dQ9d0lRKtu79GzVkbw0hLfADPygirxtKhleidVHyL1JkcYQfqQjFfnF6I1kD86F4vsg39n92/MKP9NAIagKnJ2yTqxf1eMNPQ3Nd9rJhzs1i+Y8psKm6BCDF2KoNZXjNDanj4ZkB4Zty7lQ600l8BAxA5XzDh3a6KCFSSDSvVy/2SuKqtUcME8ny9KqXi1ATNXbBMd+aMqSKmuVbqCKAstUYF6uJOQHYiAKOJjJvCjV+b5XxhkhG0M4Kgz4xsoEkGEedDj30xMUy0j5HeW78CSQy/pjDWj++9ARikq7MDxwPAo+fnnC333/rYGC+HBYOQbGs/rHpjidBu4e4J52JBWLglDKisDDsgHJFH67W+HehKzJg55uOGatyFGyjE+YWC9JQ+EYD4wxADnh9dMJ37z7Hd69u0dfgLYAIsPlm4DxIMXlQIA2VdGaoncCknzudfKphccDLLxohMEM+ZpjEyAVOE3U6QqTM6PweRjSUG/6O1DP83x5WvHxl2fc9Tt8/PiMt9/f48f/6RF9UeidAcRo4P/wtOL58xG/e3eP25uOz59W/Pl//4Aff/cWb386YDkAKhbCYowN0A4M8VB7QICxFOkODQaMA2nGsGvFCMz+E8DH0Kw+PaEd0CEWXq0B2BTbCnz8+QVPn57x+PYG3/z0iOUGaLKhOXBbG7B4SNqox+eOgeJ2sX58QhgdfXyaNZPeuviGR7TAphrlMxyhIr17+dLmXtmSJecQIi63KMdE4hZ9GHZLF7ifSFFs8qwCB8YgwFFiHZpEt0rwWzwTCZ6DSO5PKL9bbbdOhr3eLbRiBaxw3THPbdZx9XUTVMTH4uBesdw1pIE26eVMwktdhrKbV0ALJWFS1vYdCUuTJlAZEB0RLlIgRDQCYtD53BsJlH2B80mx2Fj4t+Qdhhv8rSYNhrG/sTMusofjOQtelAy773u5RTmO3HOmxRWFkTVlfgjBdqHMrI37jgk+HSEjNd7T8g4Tu8S5Vw3QUx7+ut9ETXuQlM3xnmR2X9AufN6RupJE5jZN63L8lm2TWkAUeoH7uM+S2eMQgHRoxb7I/uUKUdJo6ES7qcG5MRAXCBUXFh8jbBMbrmU/caEZfLmMx0SXyopl/Os7cSkgxVrpJWb5F2Nra4RtFRKYDSC8xHIhUCRrh7zJpaRGTQ9ScV+d+fdMF61D1QXUswDXjNqZKGViPU2SSF6MYEHWH3FPd55P9+XtjKYxvgSxxX+mHuy5siwlu/+evxdF6vzsP5XO6tTs/7QP3mXmOMZ4avIGeaJ2gBdR9skue2nQW7kCatZfyVXXd/JIhovHtB/cS2VBpef8Q4J65jaegZJLvVVOViKJSIZSLCKhLgX8EO3jGruvyyuRSgufE6qC03HDzc3B1uxC9+iv5t8xgL6w7bkGtxifebzJcSI6zVFm4IpeganTFCNdh4Y3Nd2VozB9WteB43GFLHe4vb21y1dxyavM/7P3c52K33bzPDJSHta+7vMWPsLuef09HutcBEGZ/Hc8DRxfVhyk4+X1hMNdx8PDwfQl3XRADIP5etxwWgce7g7oi+D4MvD06RWPDze4fexoC9snGX4XiMuOVTbrzqsUeTHIwXkU6ssZ1DtNA65VgDtqFWyr4uX5iG0duLu7tZDkXUF9Kgea+jBexmMbpjHi6sn9j+etbWWu6S2tYyjz+NTJ53Orgk8DrFnqmNpUPnMu7PlqWoHY3j0PBr+kziYeOG32pIh3C6+Ca1ldjsrz/OhMrhVqpymjpy7OdN7PfmrTqMMOeRKxYWVqX7Ziv3DEAshad3KWzxnJdOsAAQAASURBVEt5Ql/H1Mft/P1XvS3y8sA1XdM1XdM1XdM1XdM1XdM1XdO/V/rVICX10BStiRkFYUqr7jd+QKN4y/yQZsoR11qYwXDzW/rqihl6YmqpyMKsYAGo2NLzhlE760Zgdc8jcRsbF5RpFZQQipXiEYhFC9/LUzkNEzw/JoFcyaMGZKLXAnXNzvAwLzTQUwnGk3iTNCZLy/MmDSdUIdE971DzVkTPJtEHpDIShYa80dqQN3XdfJZKpXJ4j8Nym+lSlQhmWC0KhkLroCFfom5EkI4MvA+VhEnzHBN1I62WMqycVFSTrtU7E5XmE1+GQkNDAaBugJ0ZT6HDjPzb5i+23THdFTND1fskDq5x4gKA36zUgQATjeFh5IZi60DrNo/acGVlM+BA9NOBBpxjEAPyYdBriyaNKkv6f8JtPTVMSmVTgnHSQ1jyXYvYPEhvHUULQ4hgAuPcMxcupwowqiCgfX6tA0VSaqheQGVbKrAmbU26Pz9TGJU0ManEc861+s5W3qGnHRGbR7zNzJBpFo6o0H419/ImL72eDW5cT6NdGPCg7oVM0LqUsrJPpntLgBc9NxHkZp+tsdsYEYIA0oJuAgf7iHt+aojbcr0bf6nXk91n2+Zxo+yCiIORXA4TuNTEPIkhFfUMiUd5rRhuaA81oDNhDpzs5GfvLcJXKEyx9/z+FW9v73DoDcBAG63wexo1BcDxqFhuDkAbGNpjDtBgbWHMLPhJ7wWoKcDSmoOlqAdVLM28KZkRsggz9khgXnzUDSJd0XsDQWqWdUCxYRsbTusLxnqDm8Nb9C5oy+Y0co8uPcx7sS4QlNNJc97qjpBi2CmLpU4BAAbIUjH+1GEALltnTI6ZQaSAn1AMWLA5MK3Ww2TEtgGfn4748MsRD/2Azx8+4u27e3z7+1scFpj3qj4sJMMKfP55w8enE3744Q43veP9hyP+8k8f8dMfvsHb7xe0G5e5A9hGRwPQu4fMa+nRwfyqOV85P7XWMswYjA/NUw4ZJIF+hDp3AqDZ99YwMDCG4Okj8P7PX3C4Efz0t+9wd79AmmLptsexdShnTUSMYxMYB9MBeAZAQ657dRPDMRzl1rqvK7lm09Na8m31WqdiRnJxbx8h18BxleAXqPE0VdrCcoaDb5qH6XKroTi71/2NqPo+0IFTznP7/UKVveYFyoxv26BpNdf/2CsyLB1/LHOu/kQPZuJzxFc2l3uUhcOCEksCnQMo7/tWC+Pi6/EYtn+l0XTTMhddfsZ6pBnmQeBIv/A1V/YjgG0YfGwH18yeawFBSRFTRAEYWM+AkwLdvrYS/xYSLXcwOvpAGW24BhSjqRv4zvc3yXDpncYmSsg05QWKeAuIvMizQDwppqfYI53vUiixc7/JwcPM2LE/4jjqbHtiF78yEWLvlkVM701yof5Wy/BVcl9F3ddX+sZ3rr3ZyrP6A6p1YT5P/bvUvZL5zIBZyqsiMN/zNXVu0kT3+jDaIPxchUM2qtYjlZiFPiHjasPKwzJ9o1AaI2MP5HIsp0GpWfc0oyyjjEYCu6SQQxDeHUP87rzN0iNvtMv7WEEapBNbYPzgYP8db8ef/bl6zjJthyrv7fNNnysRrJIdB34tyUy/OjZztpnGZe7X1szv7AYbKBNl7hTpJSzlkgyrf3OpmMYitr065+HLl+aTlOZUUBt09n47lQXjsVi3UXgr6icIWtIzNOsSrsVJNfG9/7l8y/O/AgHS3/MqX6iAkeL0J4vz+itQ4GykSh3Rzar7YSdhHLSeBnQFDg/uSVMUEXdxQklIeJ+Mc3rt7pngxQTgzrHKsH7UF1S5HmHEmF8xjTNkBwC1jaLtUzfuDRb0u0dIOazzXMdCzrnYK5Zck4P+5EmZBy/4vvBshA8u6wp/20/16chbiq5z+ngaeHlZsaDj9dVC2N0+mDckcSKJALoBxycDKN3fLzh0wdPThqdPRzy+ucHNfTMvlWWg7KyVY7Bfq2qowGg/1y3NeTTp8io56cHKH9Sz/uvzwOvziptDx8M3N+iLVc7Qx0BZewCg5Vm00ihkdQjc2ROPlryl45ZvZB5B8dzGbCw6xkUzlCF0J1POK5J4OdeV87YgZc9Ue+EHvbQqzBNukgM7Rqpbw6hjv07s2mz5iu70rIVFXk0l5aWDkNtCXqmN9P9I8v68F4PLmfNGk++nwa16lR2d5v1TyuNpbdit1dd0Tdd0Tdd0Tdf033GShv7m+//arbima7qm/0bTrwYpiXTkqS4VKgaYAaANrXUPgWXPBAxpROOSmNcALyTDwNAfiykGmpr2JG6NYs2TsJiBkWANcSVT3jRrdrgOA8+IG3CbmMHRFGtmdG1Siq7KLQE8aozppEKhpOGWZjbWWzih1J4lueIMi6JogpmnRMws3ahsKopSMxSPqETFvR844EUEGMWLk5Q6pFSoml46gHQowcN9L4oPKrysndnPUCAI7JaP94w6xDGGAW8mwzwCHMRjrwKQngfhPA2r0dkVn2paEfNy1BKsUZWLNX5BK7SWlnlNp6jRNwwUA7Gd/kNhWxR+7jvBjfsjPHzx7G/QhWLoHApd3Ag5XBHRzMDf1EFKm/Wx94YB93Y0ANmA0QW9GUDkIBJgH1F1r2Wp4RpKr1EIJRcdK1j7HDiodkt58881vFOCssgW9nITmCcdRbGiAOqeqsinrn5z5bIE4E1BoFJq9pL6OfdJ87gpGiOpqHqXUHi5oskDfIXCrOBycjwU2JAArMqBwTJFMVPnD2VViYQxKUWjDWqhojZ6lnF6Nmc+hrWiPBpAuQlf9Ee0NsGgFL15qDoqriJcU21nghMV9JyiGXgzSC8BLAA47w3YFqALMAyl8WaEB2N+nUOkSbP8AMNtAvRUwDEgMbuYcZjzBprjTQAGOj2l8BZhGj4aeV0kAE+CAZUBbBY6UdswL2RowCb4+PkZ3757C+mK3g0U23QxL1OqUGzGt1uDjoHDYYHFNgNaeC1x8MXwuQvxhg9gUHGtGM1oQ/nZGhzwmArBmI8+Zr1Lzt1uHrNs3WnAOGFbj3h9fsbL8oqlKe57s9u9XZwOMMNOQ4CbmoMmmodvtNk/Zvf0zUKSwqNMjTHQFwm+hMCir3JhGAQ2SXiRUijWDRjDw80566oAKw1THvJPlDfdCdpUvDyt+PjhiLu24OPHL3j73QO++90denOvb90Bbyfg088veH5Z8cMPj7g5CH7+yxf88z++4KefvsE33y9hYBk+V9riHjMI+PKOU4k73LPc5sCrSSc8BkRN7ol0NKHU8WGv4D+uR8PAXOvrwPtfnrG+At/98IjHtwv6QUGHjU2aGzRsrLmGEvRJY/YYXJKKXC88JAqsY0DU+M9CCUnIuwAnhecjA+n1JmEEMrSlA5kVWDU9MqnP9aw+FpciTpyvXdYNkC5uICE/hJFP04uhZx0KDDAkihuQylrkVYLEDs9KIjGGcfM4xc4cUkS8dgcY9Va8GPgzoAM6sDmvNAeJdZdQis0MP2wM3Y+4hV/UR1Nc5gn3SzRmYjLmGh3NWCjSIZTVDvUFad4MRMXNSIDIoz9Jc4jBZ80gRm8MXL8U6NU11m8shYGu8po/o3FPkr/tj+8nlGtU3Wu6nA5uJQ+2HEMvSwjs0vo+ymSrxWboatEiy+MFxHreSlEsYAbeeE8lhzD29vEaF1KdZNSEi4BgOqxAMoTlbtOSX7mn4Cs50TglpL6wKyPWRczPrT865Z/KmN6fx2Fq66Wh8HE+h9+XfEVe1CIBzOsfdmNkm400HMN5SnQXQql27KzJQYPChrsxzxYQXATMbc7380dBytLw8sUymLO4MOWZRhXhidXOY9nOEBuS9Uezy9RJXstFyPG5ObvO8rLzMxvssRwUhzuyxryb+u4/xFo+Nxlhao+2OZ29Us6bABOWQlySxBmh8sieNijP9p++kvXiu+TpM072H4pDwDxvkx6aNI95RxlGjijTJPbQIWN37eUrZe6l0V8KGK7Q1J8zpF+oATgMLCdAcDOwf54XZX4Fb5/zJnkhJKNOjppRer97iSOceXluQ+EbOB2V67HAL2xY29fThn7TIAtcb2HEF1X3Juoj4d47e59WgaldbNaeZzKUkv9XCi0LbeLd0u5J/yUuizXXMB0b1tMK4ASVgbvDAa0Lljffghcjang6q9d3WDx7VR0Jkpd2ZAR1NwSphXwkT1aAkvMwvXUCiJ1X7Dk1emnt1JkWp9PA8WXDIh2n1yNu72/ickCMJQDdgJcvJ2xDcXt/QG+Cp6cjvnw+4fHNPW7vCUqf6U2V5yiA02nu7mRb/W2S52UdEkU6aZQE3XOur8eBl+cjRBrevL3BchCg6W7dKnSX3e9Ftoa48Ftee7FLzD1T7jfOJJS3M/lqTFvLlBNc6aoSZ+KXKteCX8/7dildWI6n96ZtXhU2Oz6NeYbS/1h7ZHqteok/W/Nk3xSJvZAUGkwXbENGZ74cNi3t0CKfy8IIFMHr9EOF0Y9S/I4oXE/3VKiLQqEbxzz1nL/h88Q1XdM1XdM1XdM1/RdL0g+4/f3/+F+7Gdd0Tdf032j69eHeZLU/TTCmwwr9FGi4WyegYqhAWl7XohJgH87LPOKYBxnzMtPBkuKwPYDmfrRVt1J/whzstiBN9x4SB3kQZLifqrSLM5k3M0ILeSmzlklAbxXME7U3i7wzyqm3egmCKwQEdP3tCtLmx0YtXlU8f2uAaZ/tMDr8AZWwgBZjp+YZshryUM6pVBL4qdiq49jsbsGG1ksTEAYE4UyJybLn8S1VxW80RnHMqVRm+BfSgEoLfm8oY6HeK9bBcovSJvSTpFNoQ9SNxfT6wsO96xJcsZ9GWR+LBjCMCvOJqBnhHbgE+FhtBoTrNGo3KkaT0URhYZa8WZvCAE5DIQtBe4YPWrqE54XexZRm3i8zrMYQpYLSx6Z3A8eEQmpk/03xVj1GaJRB7V4TA4/o5qG/xFhxaFUSU4ERZsZJxRNG9B0vxHhisrOUEjM/CUWlafKOq2SK/qZOVQ/Mk16QUrN7piSuqSqdtsF5PsBwPSGPNL0NjTFMSa2CbQx0aRibGvaFHoOAcB9v3oMcyhUaJWvYGANLT/ovzTzYkVBqaBszRLUWXm3E5/62bX5z2eFJouhLC38d5l3FedEn0k0XaJMIZzeGRjgSEQG2kQor0QB2diDmL8RloANBTJMJ0BCYw5A3NFHehc8t/P/Z+5cm2ZIcTRD7oGpm/rqPeGVm5aOyq7s5nF4016TIbMgtd/wD/Fv8EdxwwQVFekHhgpQRoQxJmVmwh83prkdXZWZlZsR9uF93exwFF8AHQI/ZrY6iZHXFZJmG3HB3s3NUoVAoVBX4FHCD+yBggrLpYzEEQDOAUlNAWnMghuLTpwNuRfDwqkF2gibdeM156FGBoILD8WR86TaWx0Hwls9zQUSRA5zvnHc+D3SBjwVc2jyiioPAhnq6NTchMoKaDtIuEFnAPA2CBYeXPWQIDp/2uHlzD5UFNxtFV4FB74Amxnllnpc2S3QTi0zC9SfmhmpEu2loLgvUawjASIA9XD45Jxe1qGCLmoxYZKFhM10Zdcha41qhMCDZ40fFh+9O2GGLp6dHfPnNA95+fWvjCOOjDsU4Ct7/9hOejyd88dVrdBH87a8e8e7dJ/zsF1/g1duG1hGpE5laz5YhA/N1H7foQ+lPY3QipkBzakUkLshPxlyPeiUuu1QepwV4/90Bnx5fcHe3wddf32F3A6CNSd6HpiMp5uCweQ5tsaZYtKpMvwmXeW0CPdn7Y0is33RGU3XUcXKJRRCLujaX6EJSP8fksMj9jRSdURdbyRQwZe9Ao7zVPes30y8t07/GomD1EbAVewaViBbVyvrpOLuQbVYVmw6a1QUOUqfX1PkXEaAEcmZ49/WcfRvZknARVPW1yN+g8iX62/c6kARpAbbWt/jEZI4g1xwj7t1c75fxWo1o4Tv3vnURJ/Lrh1rOF2L2J+dPXGdAiJHkfgxlP1k2flFMHFbrD5KXsRfyyxSgzAExRvl/zoB5TkVbIXu5N4kPJOUzaqzyE/plfjt+Yd1S+sQ22c56U7P+e2oDsc+t3880nr1+/nl99u/YVNWxyw/KZ1z/Ze7yheZ83OZqgLOhn18qD6lI0ZNl3+sMsj3Tir51PWseySXpKLo15MIflxxzNqGrd2J/7/WPAfix+DyljMLA7EFbAlEjSomEmgWz+dqzua+ZssGc6ZukG+X76FtJjcv+TO/zXT9AaKVp4jVHZmZ8wDhkbvfCtJ9K7cv5d7L6nRdPJF8Qncd03a9a+VrRrN/T7F1+kfNwOLGm9h1sWiIIRuMX6irB+rJB4WWaPPdWoBz3ZwlG8ihfMkvyHGXH12PfR40VY1Vpt5inebQplN+0oYTZQ2ZQVdoN8v0JZOTvTJOo6Ni1XEQERy3rBgAQzKecI/b5SRWnwxEPD7eRYtpvUhmtHIcAdSH4UoZg6vtENGU49JmPdJXXlf4hT1YVAtQ13qCoYDTNM+cy0LcW8bI31y2jub1FM0IPFwG3A1A+yJcJ17vuV5HPKqfTczr9Ep+HPEvCNnKtXKlxKA4nxcvLQEfD4eWAu4cdbu577t9dJ+tJsP90xGkM3N7tIBA8ftxjvz/h9etb7G5t35RpdVdtCeKCImWSpI+icyeVsdalWOn5si5QPpZF8fK84HQauL3dYrfrFtlJdKV3y17beTRUE+gPyuRK52nK//qzaRwubIfZb65Zl1I1044U41bEqY52rA9lkahiQX7Uc9iZ7mbdRRcELdQBlWfltWor5DhofQ/n76HSpEhbTJHL6QwUhLD+4SIipTdlDJU2obpyFqbl6heMI7+ZFq5o6wvMKnyqH82NIAhGrieIMb0EXbuWa7mWa7mWa7mWa7mWa7mWa/nDlu8PUlJ3eg9ApIfzWPy2eeMBS809rvXqpfAQy4MlDT5uHIA7WfzUWFNP2SGvRQqkdNzQIjP/07CK0InTwvkNlENqOaiJoETqKQa5eilOzUhskQ5KdCM4ICIMPbWt2RCVqZbUUsKV29L1gKt++o0ISPaEGQhGcYGoJkhB/L1WTDxCo4KDIiYjntPvh1AaqazpamEqDECNPDUfflurxs/5FisNDtUpk4Vh0mceiGAGCfiHk6GBIqYG1mJUiHXaK45rwDPEjAIcYglgQfY1wFuevquBgDL23Y01ixa5FueDp4gTAOLRUxycYA7pjKRBuTZQnRushkXeOAHoDlyyKBJ0eHtELR0uu+RTGiIqQCluYi8JUAlDqNIEAY8Ao2i9pTFKM4y9Im9UW8U6G3owmVggMIdyRE1KFTGVlZ1sNrCtZGUpIcgZ+l4Exbhu/7qP4gyndFpWBqUwpGnSnzc8qUsQDh4DE4wwtFn0peZjpxg6Yjw4f8WjgNgfBjDJqE5aopZJBO3QoQZgc3rDOGgPYhnst8CzZaL3jtbdieAyqSjzQxP4Jt5ppiZrfu2+bwSn04i2VORsbqoYGEvIQZ+vAU1zpjbQpVp0erMIXwg6LDpTRHByHT7g4e3HMPq7zS1zKpzQtGGB910Ej8977N5scXOj7uATDBGgDYto0wRYBDqMJ7tdgzSzODYMdOlcBLxXGjpbBwE4nt4p9L2DYGSOcBY6WBFzdrOJ8DrGt2by29in3nBS4Hh6wVYWtG6gN1HFp3dHbPQO7Ubx8Apo2yXWQFU6EVqsSbFWimBDg6Z4tD/OF+Wa5N8tI+Z2a82i9ZTlVdRTHAIeyce5NBSCTczV4ZGJLKrTwNOT4vH9CRvpeP74CV//+DVef7VF26qjDE3Wl6Pg3a9fsAzFV18/oCnwq7/6gKeXZ/zJz77Gw6uO1mkkH8bAAmwh8MT0bFnv6xqsGpEUuZ5IQzhZNa4Xa1l/XOu77v70dMT7757ResfXP3qNu/uGvjEvgTkCmtdHR1yCtoYaSJWR0UxfuLLxCJG8Gb8oMBYCWdR5q5TMcGDGWsVxifVWC+Bs1tPi+4u4Te9yLx55KSKYAT7vqE/KXs6VOdMPUu6nNmLFcYcX1YgDGHPZWgFUFKEfoNyXCH8xGW8c99Th8YzrjlDhyLqmvSB1Uow354qlTmvcZ7ozYATBuddU7gd9Hxv9HHQuc4+cG0r1eSTSkcB38q0DGDEm5KVFTKMzI+d4d7CqOs8YWU3PPE4/nCJIoFHy0oSoDAt8Y+gyzrXE36ybhFgbkzf8u2z/o848P3DofJaG7ic19ldDynUZltDvpSeo6f4qTdMEPGfIWbu29oZorfo8P3+pjqn6SkKpY60bvgcGwIEPM58+2yFQ115+OHB15fOJv4VhsQeLx10mqn7HJRb7/sMBujXNZzhD48w1ExdtlnVca7WrUmUt+rB6LuiX8pXOvRWop4iW0OnKCCWClTxnPfHddJ6cn6PeFGBVUY7rRHPlS6V52lxzD+Ka1u0DAwSDsg6JfnBuRYWV94XoQtV0Nqj7zPo6ASP8sEZQuiTbfJDyT4dsrBfl2djz40LRqqE4P/LcWbYSSQHXTE4RRhSNZyW/59gDFyIpGsVstZ4nkp1yBipC6Mc1eMnOJ1yTKTM1nboAU3Qb0s35RR1rZ0ad5sbZIXCl5+Js5IIjrgwzil159bICmuwNXD1op+J6H7yWMV+IEsE4DUhv6DuJs5uy06gEAqqLndXFL6GVVLzU4/F0CNMZC0r/GM0Is968pEPJfEGmFgMwnt5DAZzGCV0WtNbsPCHApw+PGDevMZri/mGD3Q4e4ScnkzRM/A4ZK2MV+8B5xc61BMavFXxzmnwr9V/2AllHXrpTHA7A4VmxgeBwOOH+1Q12ty2jnft7ugheHo8YCtzd7yAKPH7c43A64fWbO2y31rL6qmZz4YJcSp6XtNQf6wJwGbxVf5e6D46PMBQ47Bcc9if03vHwaofNBmB0YvUo3Km+KvhO02ZBnDxpdMJyr+hvjDy/TSReVpFlTNZ9k/Jnne84G9eLoF//XWYlHLSuX7nI0qKzqKtTVue61/smtlPrnHS8VzYtg4VBVeflZPD1utg/a7g5jQpl6pB9HvBYVCDTGbBJWL+9kxdW+YhfzwudvuJgEpaMm6fjeqbG/z+jZq/lWq7lWq7lWq7lj7Tsf/PvcY5gB6ADY/8EvP7qPz9R13It1/JHX/4ekZTCXgQzVHjaEdESmh1uSmjulGHkm9mAgXKIEmlxWx6aqRl4u09pTGJ+F6xvW5MmuzWG7qYmGteqUUtmIAodcf7V3N1ySg7bzcIbqLUWN6D4wa+3vI2YfMvjHwECwQw/HWocbOcIGMYrNzqK5E1vhpDQNIA23njU8s95QJ6QajoYa0lDaB58Rc6fKWdlNz4Wh70iwRhklc7v5hiSMzRiJ+NS1twx25KlcesvWCiTEwlhOPO+ax7o04EQwcWjoQRqmdEqIsQIIoqP9Tvib7iByG/i8x2GB1pgKaE8PROdvSI5rg0d4tFuRPJGo0IwdFg6uE7jj4Qs8OYcvwsHDecV3FgsmQJM/JrnQAFJORPteftjjBEOVXOG+zMOJgswXvBLYxyAOW3BkMAhmFGON6lnzzJoJ6TBkwC83krUBB8rcaScqkUrEvccEUAnggCXQYqRP/qbxrS13YxkLc4LBSDasCwOCAvwg4N+lpRD0xWBPIkbq10MtHYcBkCziPxmoQxtF3LptAwHu7msEpzYejMQSKRAlJB36WLyIAOtN8y3+0znNh9TDP6uOKlFGyEfRT26kjtbJfSWf08d4TJsc8drE7XAW2q6KgK8aeqL1htk0VQikCLjxrMG03FdEgTbqFuhcYtZMLBAcdo3HB4XfP3TO7RdR4OlOZyitkCx2TQc9ifc3Ap2NxxLBzQ4TVRZTH9g/CWwyN7pzYBgoYOlQVVwIn5VizOnzJPWuS4ZQ0QEcrJ3NgB02eOwPOPNfcPxeMQYCwaAx6cXnE4L+s3A/cNbJ8NSR0EitoYZ1BdT/uJrs4gBh4cD3qgLFSkPw2lTtbkjTJkGm1NDEbigLTKCnCowtIUTa+iwG8BoOC2KxyfFx3cD25Pg6fEJX//sNe7fbiDNUpcZGFBw3APvf/MJIsDrbx7QFsVv/vojDsuCn//yG9zeuXyppemCnDBGh6Bn9CHXMeyDKjAWA5XlGuXrUxcw4BfTIXSxWFV0RFpKDx8vBQ4vwIdvDzjsj3j79g73bzv6ViAyrB/aLNpRUSbUr/B2VBmpynh9XNLA3CXnvzRAhmAswLKgRKpIfUaNVp2MkXrJZbCW6iywd3QyvIvP/QQcefRGQexN1MQu5r00V5gRtRIhY0EHHe2aYBxZfc+lXxfERkQ5+QSu75FmfM3b79ljzlcJfnMNZ5rSGAvvp7TuTiANHgJqKU+lRdpZtjK8EZHi0lTfgdQoPGo6cQy1SEti668OOhhsraiOvzEWRJRHyo6P7Yhr+yh6nT2nE7dCwto0Bj+8wrigVrhn4WbE5mbuD/n/2iWJAa2XFlA2mtwUIcZVuI+Wsm7GlFXbK/p765Qhkr9O++AoigRAFvqqTEwjEmvpXN8kQ5LrkK1T7MtUzSTbNfvaxC98pnAOFdUl5buUQ/so9/ehKKaXZOJdjkElIM4Pn6OLX6zqReHppZdXrJmclRfbYkVF1VT6Qh+j1HGRYPnM56VhQY5TdcTn7iLOBjxdEA8RYAVgSgc1q9qss/kzEWmwjm15JwEcyAWizKv656Rn43+2lrWI4moNpHoi8FeiDlVUlk/8meovJfaQMo9jpPHkvqbQWudJHWa2W8+IfGj93plK0ZkPlZaIdxGdKhp6ejDtAPVz8qVWHvLYcsxpglgYPUWsD2FHuSCIsfdefVfloGaOC6lcyQ/fqfOj6ipFWSOj4pTD2tdKSYxb0dOTXuNan2K54nXRM8g/o26nqXm01/lSmPOPewwZWAawf15wf7dF7ym78HUp37NfWgc2Gyl8kSmlesicmPaa9IjkmLI33EtwzyNVWVa9xLFhvYJIPbd8+gA9HXA67dG3dl5+2b/g/vVrbG+22OwaBobbjQS8fJfraimqswyQ9wqPTsfnitoOuiRoJuCmyn2c8MOWVcYGKQ9jAIeD4vCiaENw2B9w/2aHzW3Lh9XqXk7Ap49H9AbcPGyhA3h8v4cK8OaLe0ujVufoiq+RzozzXXMOhTAUfuSdzHO9yYinda+qAzgdFftPFqH+7m6HzU4iPPZgFFJNXnFrOM3ZoI/vkbQisLGfOf+3Xt/iDSd+BsyUZxHVTnVVgCf5Kj5pg48rXV8Gep7DhZvT+rV+Z01PeZ7PuQqZ2xOCeFbNTnUmH6dl4RK9oXPWEyXPy+Rjypyu+F3flyA6zTg8F606V/sFu6BSz1u1P5UXFQTF34Ke6PD5enIt13It13It13Itf9xFdeDw7d9c/lIAlMuX13It13Itf8jy/UFKOPr5xxw3lnImLVhmdGolvVscdyZnuQJo0sAIR3Yg4nfu7BG1iA8AunTEPeqwHmb0GhFEergKeknjVZ7EBWlco8Megki5xhu/pZk4UsbhF4j6VPkum/JIGjwANj8E8vDvjlI6omZDnABuMOKzBUbixo7hzpxycJU0AEV3jUNpHCrXEuuNSx5Ge6vG3moAkzMDgdcShjgakGqJ8Z4Ox0lbGgfKrTwfy0il5zldApvGZ9WBIW5MC8duMTKlMUL8NvJs2KlGlpABkXQGQcOoauM1wvSSKWksakbvnqKtmbOaUVW654RSBz+0JmlobpGMK5iSBj37F6nnVA3wEbwVLCdAW6Y0EwdMxChz/NRv8SpTQJUx8v+N4pRrEIzFIwR1GjB8zpYXl5ODWtQBSGKAncnQWoefadPUDOu6ECBoQMfWnZahaWRzhpwWICNNOFAH2Qj7B/V0OgL0DZ0aDl5Tmw00SYrLLm/3qkcOCaeopNN8DFhEDG1WR0wQwbL4Hcy4ZmmAJEYAopNI/O+G6FwYqYYDQshntqFLSUFTDFjqqAFdCA50mAllEoKNbxpbm1MGARmivgmwbaZLFumeFqAAJUWgzCcIj0zEea3kZO5PM9VQmf+uG7ogb3oOhY7FwQFh2UyhFOMhAGw2Fn1o2yn7ni0EgGrDSRuaLMBQfHo5QnaCN68a0ASjAV0NsGND5qCVASynI+7ub9C6Rlqn1gRHtbDsWr3C4vLf/VZzs7pEJPSmwmWkRPWBKDaNtyMl5z0nii6QDhwPDe/ff8Dh0xG//6vf4f27X+PlcMSru1t8/O5bnHTB0ga++dlr7N5uIX1gu6OWGFA5WVq7oUBrNr6cj2K3hJfF+mm0moJkPw2AmEAXuKzCde2yZMol05VqwEvOFW3oQueOrywqWIbg48cDHr87YrN0PL5/wdc/fYW7tw2LKLAY84YqDi/Ar//jE7ba8c3P7jAWxa///ANa7/jZL99g6ykZCIixOWL7D1vL87axnuAp1TwShbTYEyyud8T7M1mLY2FwpyoMcKQDOI2Bx++OeHp/xN3tDt/86BV2t/D0tAi+Gi02byO9Jqt33XYaGg5nW3OY6g84nYY7nQTHZWA5DQztBmriyuDvCVy2ff2Y0t7ZMOW+IPZFriMIePI5R/BDddbyu9gPrZzACSYPtll0OQfH5JYg9y8WWQtl/5N7sagr1j1bWwI4CcS7DQjwGNVx7LFccA3n4+tOOG9TB1Wdw33lXJe3yJB35bnQpUF78/oZCct1qe9pmBA53nWdzL0V97KW8iHXF2OFYIwFATiEOKgr9TpXD0YtUfQY6x9umZ0+9glQ+22cm53V1YnNQUzAOfeUda2XST7Y0OS80fpVBViAu2hoIhdXm5tSBCu519LL+sKq55S7+hFlXssbMbnLexfIKFNu2vfG16Wt9Ta9vhubknXla4QBX8gtQKrW8wrAvQw9feW1oGlqrpJWnHY1YtzsKM1Su8ChuzQi3JpdIiSi41S+X6qn8rglPRNPJ9ni5zLVtT7HTu/Zsp+0ur4Qrr2FlHilVu5Kp+q6tSMz5aYQ67+vhtm/0kmeAO6BuJfKquo4sW9DcZ5SaeLDXHflnwK+9ktG9eE81FWwJ81zLi6MafkRfeD4kY+sd5LqdR08V4R+KvNYQRRPWZPzfZF5fTI5mycbn3fsb5CgXXx/n2MW6y15/Xmyo33uMep363NzoQY2B/MsTtA7uOau9VYQXNpXZDpk8u2MUv9tupGU/BAgne+l7ohm6+dvnpWjCkHKTkuZHBjY3W2xbci04bHma8yj4xjorYXu4dwHEAD4SZEBYcuYeCMrHg8EqKnq8qkO8fb8v7E0vPv2A979+b/Dh3/33+Lb3/8Wp9MRm9ZxOh2x37/g5bBHv93h5k4gm54AMiVjjbA6V1vd05V5RVaEfKznRul65bkC8xg6P6U+VwZoLMDhMLB/WdCHYL8/4v71DTa7BHM1J/20AE8fD9DFIijponh8/4LeN7h/vUXfFh5zhVfbo8V+tOoY15HlpanflDGuZtQVsWXgPPRLCsui2L8ccToobm622O0aOgPR+sWe0J/k68i2Qpei4ufTpjfrMCpk6iWZeBu6eLWORldjzOf+Tx/lIM6/Bp2K8qfvazRoPivCZ8iHFLxZM1SldJkO6gTWl/PtXCjrOnxGj1bAFqYtoArSXssxqnUXVYjCC5vZmmttOYfYXJCSFi/bTpJpsyrhxUnTZPfR7G9Up8kCmd+FKorYhO3uMrOv5Vqu5Vqu5Vqu5Y+tqCo+/X//G3z6H/4fn3mioe3u/rPSdC3Xci3/dMr3BilZCgoempsffj3Nx3BQRz2RgYfqPK01T2cCNMujDgRggAYDAnGaO3jDkB1hLeph0ZwTw8OZmEOqRdqUpGOEwZMQH557eTOZwJsFGk5ACWNUPcwD05lyICxcTdw5KXknJQyuYISCchAlb/0EGw5VPTdKMRVJ0EUHnOLMeAXM0YwYXn8az3LUDaflyiAxkEAqIM+xvJHJg3CLaDd+OJbZEIJVX9aHaYIiRMJ+W4wRGa2lGiwqqQH+opHUDYMBCIt0ZSWCF6pMIW2IPq4Wf0PC6U80Rhrh1QFTRv9RHcjgvKfzvLl8iEfMoKN9iIExOG2WRbHZmIGqqclQgMtoXChhv8egodON8yswlrWVI525wgQ6RkRTIlhuaAl3LgbaGSe1yCBiN8EInFoWT6fmz0W6QbbNi40UsZFgKBrJdEgYfvuAp3ESS3Hk8thp5PIxUxcMhQMJFBaVqVreG4ClaiF35guAbjdS6eSl0ZAGs2WxBsX7pc34Ok4z6GaMjOrUmt1GNX47MCknitU7HKqiwKbTWAhoF7/5OmIOWBYkg4ToUCw+4Snj4n1trRkAytvadInnFgXa8EhcjXRRB5tEbATYNmArxpNFDIS1iBvoBdPcJ9iShlJG16JRlakTbIzNYB4pEibrILyfw8cuW3AJifWAaXMW6jrhrVRLl7Ug+3B6POCnP3nA7tYM7csyIL0bSFAN/KkL8PK8YLvpHknM0mBGVJKty5LLlHRztkTMDwfViSNAVJkiT4phWiNyTCO9opY2oinEI6oNFYyT4D/8t3+D/8v/8d/gw3dP0AX49N1v0bHgd8sHPD99RO87PD7voX2gbxe0LR0Jhnaq6xoBKL15elRfjpehWETBlJ8EPgKpqwzEpOnwEwLoEky80DTqethU6zBdoIqmBgTS0fDhwx4fHk/YHTse3z3hmz99g5svN2FwHcMUxvML8NvffISq4P6rG7zsB37/H7/D7f0tvvn5A/pOQy8z/SJvvcNVuw4gQXBUPDkFuReIVJsuy6dlYPi8ZPQ7DSeBOUaen4549+0Tugi++PIed/cbtA1wVEFbrJ0FXFsUYMCbYXxjukvqvcXbZxS1uGyvcPkygo2ODh3CLUgYw6nTN91SPioKuBPDQZwFhOQVxJqx2jAoNCNAxXylTKQBXMCx01gPY2ZrOrC5p6rOV4K1FlccsbY5AxKUnXsRi1THvVCCV7S0VWz7blCvmwu4LkdG7wNCX0MVnY4CxpXTXAM4Rpk+SLA4CE0haGrgVcAAQuq6wYBqvv8D93Su56EQ4ainXNq+wXSFOS48ZaDvsVS4PlOTWh+GAyshdd+hIfM/3FLh/xLs4J4mP3DdBi3PlH3vtNfkxrE67Bwk2thW7vUjOgdmTrGtjFaVYFM+wXHjHnU9p6KN/AB0/vDJeKVWi0LPhT3zxJry++qxPKNgfl7ru/W7UsHkvIr6qgOvEsZN2jkRUx9qnYUxlOcpiM+qQ7Hn9v9nFTLN/7NzkJA6hUx8UnAgyJ8Ao+ia9xr/l+ztRH+I3fpzzOOhAJieNBkyj5GWz7if5/rQYOuc339A3N8o7wUtWmTlIm9nYNeahxNwySusqaR09ax9fqEhyTEyfTaPmS+F8OxGEYQ247hmfXWbX/kb+pUfeAUD8zrUYhCs5mnsVwNV/5T6OftRbBZBYAiGlHMoYs8c72vhoY0EVz37XkiXtRGyq3N9vqydzXEAKHH+it4iL/Lh6bJQGb4qV6FLVQNMllGJ7cnutPDqmkq2P8CxW82eIieVzjHSJgBQvpLOddaBGl0yxrS0VPU7L5Xp9Kl/JnkZ5/RyxMNNx25jY9DqGUZzDVoWmyc9IhqnwmqNYylxPo+x4xmfPK+6lp8R7ESexwPGH0ZLs+cEUMHj797j3/6bf4Pf/dv/J3rfYTm+QMcRexywHA929l8sUmSrNoYYjzr6K51a5e+CrMQH5D/Hg3tzzTrm8VHwPEFbXD5HgNKCl8NAHw3HlyPu3+zQbzk2PtcHcDpZSrfWGm7uOg7LgpcPB+x2HXdvtmhdS+tS+qRlbOa+kpJpPZ9ZElGzzK7pO5YCRqSt4bA/4bA/YdM7Hl5t/JLbzJvQl/5ZnYNgXaX9uqTWebBeDytgiTpP88tYA7Nv9m1c5KuXwlaDLjAlzv1z7M9W9InzekqdRtsQLjwvSUdO2dQFk66u60qSNoFXyR9B2c+xHqkMSS4AmPZd599SH5zrtrg0MXEqR499pS616e728bL+xrwomtLG2QTP+kZA/gxrncgu45yfr7Rl6KT1unYt13It13It13Itf+zl9PgdHv/7/xof/7v/M/S4/8cm51qu5Vr+CZbvDVIaSpCGO3WHHZUinYZ9a8YpVU8Z0y3KQhyvBN3TENlZSErqJoQz3ew8drPJwCKL33Dr/i4tavaPBzPwkzC8+fc09riTUsQNvQDGYg7s7iezVoxrKmk8Lc1FSpWIGeV1MgyvRfqQOBmr6gTcYHQAsBuqcVMtjqFuA7VAFxnBAGpGqTBC0oFPQ4YkyGpl9wCP+2l3oZGsWsBmAwOfDoMhHXd+e7Z3c8KFAXtl1RJvJ1LrzASZbJS+RpPFkELaLcWK89/HaSABSoj6kyfNwV1jZKPKAY13SnQNLfymHWtIpsChEcANMgSPDFhUjd4NeGEBbjyKUheL8OE3RXszy9roDjVQ+6cDdpmRxpbhQBlxsMOQcB6YvNl7GzXj6HCDiAVCkeQ/ENdJB3kycmxU1FLPMGiEAnoyo1SDDcyARtSkRQ3wEdGeBnBSQJqlO4y4BiGvBoxaHHyk7hBnOGpVi8q0OE9FDYxTI2IRaKSigAPDRIHmxj+G0x7Dwu6z5yd3jAhg0bl87tN4RUFrEOO1h+YeqsBiwI2TIoEMPvbMLbdo3LMPQxWN6AaDoUhrzBmIGaEC7NRappEkrwNYScOZ8W6MYfrFgSg+hDbvVSPN2rK4rJqSw6b3SKEGATZQ7AS4KTpcYcCfvQAnOEgA6iAMa6eLj7UYLUM9VRhBL5r9psN8OJCiuRJtXQK4ZrFXBKIj1ojF54+EHFNzCTYE37SGjoGugsNRcVpe8NXrV5AmGGJRujIimKVdWgAscsTdww16E2u5pW5oopG+D0OxkYaxIKLiiADDI5qEg8AlT7pY330ttAA5it5NX/du4KTWzJEzRscygMfffsTv/vtfYbPb4dXbr/DpoNjcCMZhwTgd8eb1W2y8zk3fuJNIE4DoXhuCT+gssbmgGAY1hWgL3UhHjMBS4s3Ry0z2aSRX6sNhY7t4ej24DlAVnETR1drB0vDu2z0+fDqhacPL0x4/+tMvsHtjMtTFwJmHMfCyB371q0dsRPDNNw949+ET3v3+CV+9fYWvf/4AuRm+jpaINK4Dl8XmOtOgDaeJkZJGAFN9naDuUUvJZ/kcXUf4hGUKzbEAx/3Ah/fP2L8c8erVHR7e7LDZwiMi2Zq3KNcOj5rjoJXFHdGD638BATef44p0ylgEHB8R7hu8bwrbOwh8XSlGbh3cM1APeCRH97ZF/VxDJbYwGfVLuI+zz+ggVN9QMG0h9TVYjxA83Iz3Ynu25rLDdiDUi0WWlHXlGozoQwIXgy7niaCsOWC0g2wHVJNw3ScSETkbOB4lwpxI9J970IGyvjYB0Hw/6WNc/uMmS12Hxd7Gx92cbQOtdSiaz8WTazmr2wDeizPHFiYdJ+Ov51cU6c67jBhEoC2BSbnjo9NCkhk/wBI7E3FehjwQ8Fllo8qD89n3mTHsQp5av+mw4cKW6wj3yEnLVBP3zvwT5UFWwI16rItljnA/UVkv+Vp8lFVE69Wpl71G7kVXn9eHWT+flUK/FicZpPZJgxbybU1DpT/mFlCcjDq3DWAauqldvnxGftZbHPL17+nZKherxlJSyjmG768r4PdSeD39fXn+CBA6bqK9tnXe1YmGaQRWzVS5ABBROajHx0p3u5qKeuPPke1FE+L77kpDEbRllIiofvYIgFShkeCYKv/s8zRukuvqrDNnuqoTGwpPc5yRSCvtCV4pDa7r4vlBU1YvgQzsDonGvJcxVZmFNHNwog2ZZL90MZzmWhmDvLARtHH/HYNSKqwg/gsC5bs7q74KcZlvARYJmgQJ5uXbQvWb/SgyrrXfCGipX06wPWVHMSiFTjFw+1J4OEN0vf5JjxXbBkIzJZBD5/nG6EeCXONlJSeqyEsdRQfaezb+fg0POhqW5YRXD7fYyExT8AZwAPrAZmtRVZMz2Zd4vg4pz32F10GLKxf1weJ7YTIS8hxTCkC2d/z1/weHv/lzyAJ89c2X+PjuO5xOik0DpCvaTnB3uzMwWZNZHxXZrbox1k6f5Fxrz8AwdQ2cJsI893I/mX0fnCgKvzjg++ohePm04PlgoKrT8YiHtzdoN8ln2ixOQ/Hx6QRAcH+/xfOnAz592uP+/ha3r7aQbuMjikzBHfKR8iVApKifaCWj1FMtloHO9UB8/FJeLLXbwP7lCFXB7e0Om21bRWHPOZBhza0+8nnSSc47j6OcjxdFqvXZ+mtdW8ovOUbUHxp95yWhunDw1/g49AzlNmL8rGRLpjoK55LOqlO5tlRZRYne5/VwXcyGLvRzxQs5e2B+ab1mcLwqti9168ygqs/F1y6eIIz+4Fa0l4AquUBA7RiVtWnT0M+g3XtMuki06hzyO+d1jd4YchdSpxdG6Fqu5Vqu5Vqu5Vr+GMu7//r/gE//4f/1j03GtVzLtfwTLt8/khLSiSxIJ60Z6XigAlSHA48AqEGM7NDlABOlF9hATLQoijhMyB1fNIJIxKKmMcQjQoi3JQ00L4XBzT1wqoC25gYXN3UJPCVdHjiZrklhHZOpvUvnRN5iy1tF1eAiOsxJzlN1k6g/QDwiZ6k8Exy0co24tVPoAOzkLyI9XESEKlYngjImg54YJRn5JB19NKqG8YoGSe8rD690FBqYwuqIaBoETpT/nxlFpNCp2W4Crvy47N7CNDLnDUt1qyPryduXOdYMb135ux7QGBP1iCt9NShOM42cujqwz2lvJJmpcICSieNoADxN2xCNMRQoNt3AF6ehBnJqEScFIsDxpOGICOMgeSWALgN9QxlQaLNIOXFryw0+mUXAwAxN4Sl6kAav5mnMVk5AmqwY3MFuLnrUGPHUd+JRgxixo1nkjOaooNYk5tqc0sKMkQQ4EuiiDm4JA6AQ7GZCI6DhB9NYnE4w4NXaE6jAQrCGG9EkLIX21DIGBqNmKYDhkZMWB3Kpmv5QTceNz5exKBP/JDjA+6SqQJeQn5Q7a1gdXNb8900nUCAmJQBFb92TBxkgjAb67jqXkZ6YUlAAtMbIQQYSsRvPEo4FFy2LHAbFBogIMCcIjv53ajH717qBV0S9TUhEyDOj4XCwaptSFKmD9ahzRAe6W9wH/HYyLYFicsW+dNi4NvJYgMfHE7758h63W5sPCwSLp2hQ9lEEx6Ho247NznTYGAhHSPO2+ybBhE1sPpxOACPhbF0/8L3eGpaxhGmSc7a7TPSNzQ+xAH8WTcnleeyAtz/+Gm+//he4e93xX/xP/gX+u+MTxviEjns8vLrDn/z0p/j6y7e4u90Y+M51QKhWAQQOckN+FnNLBBlBKZaviMglkjI0RlkrkI538onAkgYD4hAkZI4+Szn34bsj/vY3R2y2HXp6wc//2RvcvmpY4FHimgHTxgK8+3aPw0vHlz96wOOHj/irP/8NfvlnP8WXP7oHtoCKRQtjClXTPx5laCkGX59Q1AOTExAWSYpAM4BrjUfEUQE08wmejsDHD3t8+viCzbbjRz9+g83WAG+LX4cW1YgUwHVGxMCb5LN6O3VjYBHSdPJBiDCyU1mTuA+Qsg/wSSWtRMyZq4fQ+VW0do5n7EByrS/rshZ5qD9RZKnUuJK1dHYZiMwWAEbos+FJgTW62aFCg2Z/J2ciFSabdgUbOzW2ze9jQcgmanqDus/QoWg9UwKajuRu1+i2iIpLOOPr2q8isP1n7o8qaDX7558xDIqarqLe5Nhwhqky4lTzVJwNwnQsAugYUa9w/Jxf0nSSpx9ikeJEURBYT2BJ8o3fBX8LoGCuj4WCUj4tsrwG6OTXHsEKDYpWJk7EOkON+BDOsKw4f9eig2LI1rKeVKxlWNadQ9Xp5fc691fMCF9lIW3e9eZaEBuWzxSjKeXTXl7zj/XYPzoZg41lSKQ8G9/XOVyqW8/ls944HdXZHgAMneurPRQ5b+uMViSvg0Wl+XoxYl1fLRGzQamDrc624kutfgLWFF6uKgbEL3eMfLk32xcJABDIUPYHTItcVWotHkwy168mZ22HBHmna1TPeIBAkfXYVpXOMbogC6spHwyosj1KmyHPrE/z83iXVRfaCFyIuut09nomB3mZ/6S/ynTlJ/crANKJz0tZyDOZUkewY6HGZJr7ue6T/hVAqfwephM/C4Ucux4kv+k0z+hImH5WYJjNL5mAQU0EuRvKy1sUuQ4JQPEQP1tM46HRT7YR46oJPOK5N7S4OH2+X4fY+YagYY4t13kObEPKK/vT2BaA/Wlg2za42fBSlO/bSG+hTSBmMyhjX+Wu7r3i8hN4tg2Scn4pYm8yzUu3CQQwqYxPql/F7es7fPXjP8F2s8M3P/kRNk3w7t3vsBHFzc0O290GD/cP2N1sLapv0Mc5Zpc1ZHWe4EMaLWHW4ajP21+X9CHfU2ckow2Rb3Hmh0CGYP+84NPz8IsUC16/vfF010XHwS4W7J8XyBD0tsGnpwM+vP+I11+8xn0AlGbQY91DUwcFjVqGeaXXgnZefoLTHJ1Lbiwn4OXlhOW0YLNt2N1sPII14kIFmR9bYtqvKs+w/kMKrTOj5fwj+5RpkFd11rFjX2T1/nTOkKLz/K34fbX2UqZQekS9Tf2hRb6mPhTa1vJWH9Ta1rqs+TAr5yBC1wxRKSOQn69JPWPzejLwT++ArgkNwZfC3wIQigZdR5dByOizMunHMz5MfJXpt9hvrwXGhXHe212Y0NdyLddyLddyLdfyR1Xa3StYipPlP/3wtVzLtVzLP0D5e6R7cyc0hjuHJQ5IPLRLnsagGO5MWyBt4xFozLyhGYMon9cFIpsw0Fk4bOSBURXzsV3dSCWuQ5u3dwJkgUZcbzMetEhJJeGgZDqicM5G7Q6UaGkgZFor3k6NCCmKMDrESVmKQyNq9Gg5OiDNjF9ghBFGtimny9mgS3DVyuBWCpsebiyhs7w6VBhRigfVNPD6GBbnljnqDRogbhlgJHOLHJRdZjhoi1qUdIcxN/oR1Jbxl+DDDE5KYzqNp3SUm5FUIiSyDo3oCJkKJPuf4CbyilGE8n7w4im3qqNThOuzO0Q7YuBJLw223YViwfDoYT4L1ABJY0ikD2tNgJNGyqUOu5mnLsutCzrb5/PdBkzV0jlxjMTRgjJI6wDQMQg8oNFz4nw6eNuKL5yj0gwIMICIdjaGWjQkRaTM6eHtVpwcTDXEI5UtpgOWYvlfFNCFBhB3tnu/RvBdpgmgAI7LElGARBWtGVBgqIFgaGx0k71FzfE2wND2YsbyZdj8DmenIFJzqXoko8HoQGYsJfMIEhs1ysloxg0a0AhKVKPVWCbWb6dfFWDONMItWrc9oQgMiET9xTFwMjrHzCNCtAYzLMe4ERjm3wvBe5mSgTDNAcEWthAYYElw47w7ATjCaFkgDloqxkWXfwNZGIxpjOI0ccUzhslF7wb8aTocxCPQjtDFTAsxmo1hb2pp6QBsIAGkAtSgryI4LANPH1/wk5+9wtb5syAjQUWKMgj2L3v03dZ5YdGahqdhYGonwG6Z2/rVzEHXkFHAFq5X6mnbSurLZpGSmtPfmqBvvH4aHEukiBsZ+MUv3+B/+b/+n+Mnf/oam7HFX/35v8PHD7/Fw80Gt3cb/PhHP8b9/QO22zZFTGD74ez2NbiFZ0pjDEaEStIwwFPzUVcOj2zFqWegHkaZYhAxBxN6+grVjIb1tBe8+/0LHt8PPB+OuNUFP//Tt9i+UWzdwTIsFBP2z8C77/a4u9tAjgO//ovf4/fvfocf/fwrfPXjB+x2BuQEo4mN5joHkQ5SxKKvDQGWZRSHQ+4fIioio+gpbC8xFp+TVi/X5aePB7z/7gBVwdsvX2F769I2FIPgMmcgHRKR8g+2r8i2KCcuVT5fwyESdbDkekJAHGLNE49uITnWkuMHzkOP0KYtqkTVs7YeMKIZV4K69ynPUpeB61CCTeH6Md2QJQITMkpHAkyigZLeMWmUoKSoffeSc93mOZnLzbIMSOvQ0HVe3bQBcX3NjYv6ehxrnjFxLBrrCGmc9qtcQz1iWfCuzBejbW47x971r4k0BD15ZR+AYNsIEqq5N6nA7UzrakAmjmsXzl8KmGIlYD+oYuCzui+pUqj+RIkRwI5q1sAFt4LkUGpc7zhzJZj5kg44yU1TKFp/rzjfah+U9FbEX6GQz8+giPpATFOcjZbm/rn2anqEe8BSx0zJZRmYHFnrR9Zd0fxlDQ+rZ4y1M5fszPmRVQeQvTwTNXOcGxCokzLHajOfc8hNXSo8n/yDkt/zpbiwUatjX6YPL7Rb6o7zWOjg/Jxtr89KoTt5tl7PX8mKtYw15Yz8HMM/59i01NSMUFkwTfEL1/omBTwDXx9ZXzzu31b1LutpIlN/fUUIPtR/Ux95xipNWNsJ9OCci/MdZ3VZWymtAecsLB1cPEkzGwHHIj+nLUIAi5as5bvs7DT/si32N/sebCu8inM6ivpOLlemTrzlXiIWLKSOIc2trV52AkP8OXj8XVxeWqGTc9c/CJCT96pOQ4EDgfyc7YEdoUi7wXAZU8CjZSNkmmNCnpEfNgclusu+NcgU2WTW+7QjiZ+r8h/plsJrABjHge2ug5Epa5TuQd7C9iChl5xfode8bY4T5RdcqyZd4fVzfxdjwn1d/l5TuvMCUk5Cwd0v/0v86X/1Gv33/wP62OPw/ITHpx02DdhtO25uduh9G5fJcvw59saM9bwtDA2Zn/ZC0ReAqivmtbKP6/MK4jOOPaHLp0Xx6eMRh4NiLPbNmy/v0Xep5wx0IzgeFM8vJ2x2Hbut4P3vPuH5ZY+7N3e4f7VF400cpulGmyKmDczrkIJzPnVVZTPp5vM5teqgAvuXI15eTtj0De7ud+gbmXjCRmOOrxetiU/5Wny7WnPmj4rSLm9OqnY9Tn4uyKjoiLlWyco0t6W+9doHVNxNPKLr+srnUz+qfq1KcNUOCq2cZxPASpKe+nrUW+cSdZqmRBfVM9UTrF3RTcJSY5T2YFIj3rj6GM0Rs/kU5nc5FvGE7WMzXWcSc3ZBwZUToynNEpGdEdX6Z1lTap+u5Vqu5Vqu5Vqu5Y+5fPm/+N/g7pf/Gt/9X//3OH38/T82OddyLdfyT7D8PSIpMSKSR2aAOdPM/pPGF3NkeoQjOs4gZoaSenhbHxvzcEU/KyNzJMgAfnBymIUQVDLciNC8HYl0SYA4eEbDUKX1MFasrPl3OnPD2NdkOqzm++Ww7Ia/QWMae8hDqJHqt/dpfFNPf0WjRDFkWZcAVQco2WfVwFSjF9khWia7RPURVkPo2rnAzyvYR7zSMKI1OtbspYxOlZWEYcMNx2GolwSLVasDjYUkKiIjed9ptIpbj9FxyodHPhg4M7zlEJwbCzjAlGl+MzxXT5N00JM/FmEIcWtTNQ2srLMR+KQSzuBwMg5gEetTE08JohYKvHmEjN6RoBYM7MTSaqk2i1wjHpbcBXaczCmtYailOdhvREqGpk67GG+2+o1JegMChOd/SzqAx4IY32VJGR0LnesmH4vzytItecotmnrC5kGgj3NPxSNDWFsnlx0Uupchln5ODESynNTnmY1i3lF1fvXUD+p95YwNGRjUAwYu0WE8GA7ICoNOREbTSPFkkXYkQIGAeHomp0do7ESmZfMmAzSyIPhGP3oXhWywMroDrXOeudx61K/mzvzeTPY2AmDTXS/TkKhQTwfIlAweLwKAgZPsX5pZpXzuQcAc+CM4ihgQiFG4AHeaO1sLiFJoNXSwzo0IdtI90pfxnmMzaCTsgi4tnAmkQUJC+K7i+Xng9e0Odzs6ta1d0twhOKnicDqht4Ztb9Z398I04XgmEKK3huEpmHTAU7YRpDfC8UcQq7gsKNIhtOmCTU+HhALQsXg/BNobjifBt5/e4V//V7/Amy+3+P1fPmF7u8PN8R53dzvc3W2w2d74vHUQWvH0tl4ckkidG+uXj9cyEqRHXU2A3zR3xPSfQhyM2HyeUooEiuaAWoConXEE/uavPuLxSSGj4fHjB/zyX/8ct69cX0EgfUCWBc9Pgnfvn3H/cIvtdoP9d0+Q0wH/8r/4Gd785AF9a7LTmkKxYIyNp3d0QFTpf3q1EkQFj/rUy/rbPKWfwgC+4pGTpFmkr8ML8P7bFzzv93j1+hb3D7domxZ7AAFv6mcEAR3poArjuOs71YxEUR2P8xo8g4hVGX0lH6prKJB1RnsOroOm461CMKQhQHV1LVQg9hPzEinhZKPyI6ZoSmkVa8Rccm+RWoR7iXSc1/eUy4LrYMmoXWWnmPxNmhgNszqWbfmawUPiz6j/ZOuMYEQQbTgFHZhKEGQFVdUoUxlZrPSFy2ZxOnCFga8Jwig9Mfc051Nwrax9KwemOSnF91KZOpnzmECpjLT0Ay3sD2Qaw+x68jYjeXAutBSGor/qPi/LzL+poaQgpE19r5qhqQjT1wvjz/3HGrrjddVWSvvchymkgB1SfuqLgTuIvVM+Bt/L1ecrHdM7lP2a+o3Px/900lmUX0ZprfyMv3T+NNqcyQLI1truxRrhc4hfnH2bFaz0L9tHjBj5fE4v6xA2IfOzWuo6Cyvx/0epTv/1+THIoY6lDAKzXtDyQeFx6U6+TzC0mChPaXd8/7pun2V4W9TXkYa6PE+wGLcBbPZMDvWcp6pl8FaMyIh+yLUo1qE6h2YpzhR2Al5qYtXxTuG7pTzLByZnvTelQIAZOJ8x1cFvZl7WCzyU0xmsXMS3rOdsdDo7lLU4+F3VnQIZqWQlTyAobQ3imdSn9z+jm/J7AWK/uno7mmWqckjdo2fKb9LBaUS5Wrw/CwgkY0o4B3OJN1B4OCtU9X23XWCwaKl1tZ3VByN/s9tcfShJrv1s/7EM3N9t/UKEfdcxk3J0u9Rms5nGlGl24XKeAJBZjfAO3ahCJz5eyPVCndvCCxDZpYkxtAs8v5zw5hc/xe0vvsDHf/t/h3SgtY7NpqFtxPYMXnM9T/D3qp/rHirYz35I0bWy4nkhr3avbm8p93XdgPrFgqF4eVzw/DQgvePw8glffv2AzTbXYKY3P+0HXg4LbnYbtN7w6cMBm23HT758i37bIyJULGlqa25E5wriMBd2voRQK1MxxDOFwhgjAI6Hgf3zAlXF3b2ldgv9IXMT0zCuSaikURdMipV7+DJDfUFrnKOlvtzvZ4PUL5Szuk5x3tpFt9CumEDhl+iW1K/W5izj0LlvcYfgM/0HchimSQjOk9Qzkw6sfF3xWIB5LOrCVeQSkuAdmdo973fS46Rq7gwrTTVKWkao88sUZIjWZynzCOWSUakKWC4YNC9kZ/pb1p9UO2hWNqUJRvLhWq7lWq7lWq7lWv54i/QNbn/xr/D1/+p/i7/9P/3voIeXf2ySruVaruWfWPneIKU82DQwxNEEwoC7ScK5ZunOFAppLQ62ZtAzy8EErqmnxrACjDCAmWXEY2n4dbIESQ0oTmaqkrwjZ0CpDCsgADAYSSAPb+l8qP2dDbss0yGeqTviSz9URvaYjEzgXxsfJdsifXk+LMdC2uhKHb0nzypxaTRwh6oCi+SRnTf0eUBm5AA6Ow0wUg7UUo7Cbb7VD3LPjRFQRIq/NDrl3+IiIyBoZASNMeSrw31zCwftlK1JGvncIE2ZjHFie7QvqU5jm85OM24aoMbp1zKmxWASbJU0CAwHszBKD4aD4jxVYACtvP7qL6Rzaqh6yiWPIBTtmVVIFqD1hmWxqDNjIG6mCVBkKNvCSMcl2250dgDIJDYmd1rkCm4kmQyVHjkj6Pc2RBGp2SwQhABNDGzVJSJt6VBsHEhD5zOtXzqGgfPcwDcWMeCej3+axICTR3XhWC0MEU/5g0y8sc8aNdJkXWJEEC3yJgBOA6azCEwbCTqxqF0D0htkmCObhk7WY0Ay13XFGEvQis1bB6a1AmiijHqFbSvYbhp6B3jzU0RCV0I5jyxyXHP+ddEAHrXCC8CjE/lcZkQimLacAEAsWj4j8GeDClRiRCXBYQyLWieMNCLoze/5qQmMAfAGtr1jB+AWGbnp5KNkTgozrvYm2BZDZhr40vm0geAIxfunFzy8ucGNeIpQrwNgJCVP+7YM3N5YyjQpeVYMr2IGfu3A6QhL+0hwKAB18MlQgYyMttKa6ePNhrZNizDTG7DpwKYBed8cQG9Ooc27d7/7hC8e7vDFNxtIV0g3wGFrG/TeHZTouq9Z9DCb96awRBrQLA2hAVgamAJ1uGpqQIDkWig2weJOHon0CmRxrkcE3zE1XqRM64Dogo4OWRoef3/C6Tvg+HKC6h6//MkXeHXfLZIUAJUFGIrDR8X7Dy94/dUtdrLB7/76PQ6ngX/5P/sT3DwAoxEkYx4M1a3NZRkYmgApGwyTey4hGc3K57/kHBMwDYhH+4MBTI6Hgcf3B3x494KHhwf8+Cd3aNsR4C9b1wCM4jyOH1L2RIrFI/p40DmARnrnK3kY677mDW51XR3rs6fGrdEuQieyTV/foJb2kXSFI04c1EQgCxzMWw3wUffq7wChOUAjQD8aQFFtmEA6CVgu9Go+U/cWxCkrfLzhzjp2NnSd6z//jE4trnvk2zrt0rQn4mc+H/htNb83EVuDB+XIKmM6He4wGF1yfVNZOCCc7dwuNVgqTCiEBn+19+kAMP4yiiPB4aQ/P1vvJZlquHk6OEBNb3Hdb3Sr/jDLRJnW1d4Lx5FOGh9kgtfntBZlvKdVI2XKQGOuDXwOEVwwr5Z8XZOGNe2uF8X/qOeG6uepn0/9pW4V36Eo5oenFzSfn9qfyc4oa9ynO40XADYTbUGw1ZWibHsS8f2GiE76qr5aXwF8fEqkJJT2ypEkaS/tTw7C+Fi4scv9/YqWM+ZJbJ/Ourmm/fIXJETnMQX5xJU8X9PKQ5IRug4TSKEOYQWjhG4vpIW+4xfluakL3NaUSoM/3gYBpsTgmWwVp7P3qdJH+Zt4ppieK72J5s/GUXj+4943xy9kinVmV3MN5N6uyomUVmubZf2d5gvmNknreprrtPjK9H3VO1rWrYj8JBEkFYy8vJ4zo/wuwAz0CvoqYKf0QXIN5UvUSYxoyAptP55yiFINf3HtGepk+ifn2lHBvUfadDjuuSNKnVTbm7Sz123ROK2tRSSilpJfpZvWTrPzUBc7Q2xEC0gbkZaN8uFWoxL3McdLYec4nokOpwW68XTNE6Oc7lALfraljiu8qUCaUXQQ/D3uWcivurcUIKLpClDO8eWcRn0ChA1MFTgdTti2hodXWwgaNvevjQ9hs7EOUC/Xi3f8LKMKVa7PvIi9IMdaL8/3bBOTXSu+4ADwDQVkAIdPCt0DclLo2OOLN7e4u93EBQGelU97xcthwe5ui00TPL17gS4Db766R9/G9Avla3yWNNlV/QN7mDKDMo7rPsVaV/SGADieFPvnE05HxW63wfamB7/zxayI+9Fpfa+/8yMpn5f2FC7z0wuuB1f6oYJ5zsYBMxCnksv5M63V0+sJmFmXytt5z5ENUPYqa87mna5oirki00/TZeWC6VoIKQOlsqB8GgOjJNaHSu+l8cH5Z1Sa83c+l0hueWeKpFQWQKkP8hxWNwFKMJr9v15ki3ohZ7KcTBSvKomhPT+xUpJ1X8u1XMu1XMu1XMsffRERbL/+GXZf/Qz7X//7f2xyruVaruWfWPneICXFgIpAMGDpR8RunYtH1iHgRQUNPYAjTGhkiXf85Cgb+7SeEFFBEhYpROoxVHs+50YHiN2cj8hODTDAkjnT6CQXZVoqr8trNeeR9a7WTeMNjRGCTGcC/2zQuqUIgAv7EofzIcU4KEEzjcdnhl+YM4AH4WrEJdbqslF+NoI2N1KIAMLIPA786aVt0MDmfTDfvY0cI4NMhbwKh0iVj1IX+9RK2gAlYMO+CMen16uqkaLObvLyRfaPDjx4yhMbmKFpYItze4n0USOP1OfSgKBu8DViPJhQ8lKA4WCapRo9NCNDMR0AI/GAKVkAqEdnaS0bDmMqb9fC0klJE5wWo4epqFSNCG2ADKD7DczmVlkRWCQIPgs6p21ejoG4OW0Av9ngI26EWk7GyMFr1M4bAydY3WMZGIuBA8NhjCKn0nBcBjp7pQZCaW6oHy40QgCAR9/huxn+vwWBGbHCQAeLG0e1CXTxeY7ZyS1igscIOdlbtiMOELPPm6cODIMx8kbhUJO3cN2oG+aG8V1d4NWHfrGH3bDsxr/mgBYC81yGdQOcFk8r5rR0B6RIqyDO2RnW3ejkGgtdNG8T+3MtTXcG0qmi6780tYghNcWJSUn+ThNVBTQZbkNx6BZ1aL8MLGq6BS0BLZwDm40Br3YAdlBsYaAqqNfl3GXUpK2i9CX1EHUyIFig2J8MLHV717Ep37HPw1YtB+sothvXr94r4l2oOBYI2sZnqA6MxcAFigXSmvW/2Zw2rJKlduwiHlXJ6mwCbATYFIorR4cC+8OCkyq++ckr9K0lT9w047SJ8gB0YFkOBiBt4jIB60NjhIuUKeFaDHcguDNfMSxFpA/+cKWs9MTVdabIW/Dd50QTcdDXsLX/qHj8/RFPHwZ2Nw3f3G3w1Y9e4/7NFv1GDHglALTh+bsDPnw84PVX99hsBH/7lx+h+xN+/s+/RL8zOZShWIT0mBZZFhs/dccq6TydzPzaJGWUhnhGN2NEMxFPowkJ8NbzxwXvv32Gasc337zFzZ0Db9BNr3mOmzEcmEp9H7JY1hamfCuGfgJAqyOywdbmCMLEdb7MyWqQr7ANYq+5hTAaBTKov+BpNRFRpCISBXwvxLqTVDCCQl3LhzvRUq64l9KoL6mWeD9SvsVaXfZRZRZQVa+2PqZPCb4DoI2yHEw3koZGZA3uIYbv+WJPg+xr+DwFsfvrmpXaMNpgTTRN8xeR9tRUl0fvhKJG1aEDT9UTZPpCrTghPEcx93z/UFAQ5pbuMxXqIKRAMw+2jHRcjACK/4+hcNWhJK0dyPGJOL9lfruCKvzBMt+q9vKnXKcZr7hyVhlU1gwCm21tH1577t/I89i9cS7FvEoHLh9Bvr0iLYGUdFZzX0ZpDUCWruor+mUGDJaH4sO1ognGFD7Mn0+/c16tq2W/vJI6v2e6fLbUuaml91XfFF7NOiJB7PHMip5Ys+IyyqoOggRK/dFTJ2rF5vnM5R7bM8esInTRRDLflxWtghjr2kaMZ5Gh2uf4QM75M/PdfouU2aWt2OI3X09WUZs4nhQX1YzaGBF5ZPpRCEOAwxR5PoP3YQYmYNp71LVCkfMpdUOJZsQ6efmB35e6gq9lvtSfay0R9K3e47o7A0XLgEVjta78u9I0Cm/YZuxFkXPaLjxkf6m77Hcb1Iw4nXUGkAOrtVPWY+XrFWWm/D4BYmr7/pwi9+Q5oRPktJ4/ax3LZao+1+q/JjgVe8tcn+3hu+Qli/U8WC0Voe0r1iw4U+bMUGC/P+Lufhf9X8/PoEft7DPbj/j9rAXO1yQ/azrPs48a53H43qZeOKlndyl1q5q+Ox4W3N/v0BsAdGwf3tjZMuRVoWPYhRp/vwkiqhPEI0YVoZtAZ/6dyZlwKVwB+pK+usesAOuc8xo6nRP+8LLg8KIYGHj1Zovb+1v0rYStg9DQ48vAYW8ApSbAxw8vEAVef3Fn5sVYqzm42Y8RdCW9Q6k/z8EY1PbUyGugyhgwuvcLemt4eNigbbz51YJXz2uVp/lMARZX3eXfzzqrKpKsbJI+2k4mhVbbc30iCHmsOJdYU/yDuW6AM2mW+FxTtN4ew8y3M1qo27jnK5MvxmRaN9eTsnyyGiOC+s8URVVEpe+p39by8Ln+YhovOacwG6njXeZLVbi66gj3+uoLt5Y2Lo6r1rb1M39fWLiCCcPlwbXupc3NtVzLtVzLtVzLtfzRlrbZYff1L64gpWu5lmv5z17+HiAl/iIZ1Aj1vMVTodghUwTD77SJGGojDfc8wPIAmAY19dRufKx1RiZxBzBzZLE9MRMXHcuqCyKtDfIcOOg4YwjuMBogovqY8SV7HFELHEBSja0RuYGHaab+Yb8g02FW3ODD6AeMzDPbt8wiMMJx6PWUrqaBNC1W1bAJeGQe9stLRCaqRifWpzxQz7eGp3g2fgonaCTSbwAZXOvvMoSIR2sqY8My3Go0hFFQ8hYTBCEPaWjh37VNLVY8mrLSGaHxQkbdEDfS0yAsPv5SqwrnAEPmV6uC81ksQkpE6SgO6g54ugUHFqgBf6QZMIlRhgxXY/IkkQowmsAygKYjgW/qTnd4lB6XKcvSZPUuNPhATYZFpn6Fw92ZNMaw6FKa3eOz6vM6jUn23uLRVRgFielswv6TWdwgYqmndNDcp46Jk3CcrM0upkcKsIJyrg5kVAKdxFWPxHgSZFWNihxCcwoYeGNEVBZNMIIDl5pHcOJct88AXWx+0F0MqEfKsb+ZVsu6T7eoGcs2nooOAiyLm9nVGNA6PGJOnacWFarTSOp18nZwRxrsyTmr1cbeQHE55zhtOjTc4ZNhzstwIaacDKRTgHbpJkDfdOyHp2tT16EOthMAWwF2AG4AbJ2ORfOGM4vHX3J58Lka9OUN2Oa66enxBVsZeGgNG3/bIKoavDA6F9zuthaRTEeEwm+uazU8rOpRs4z/3Y2lHCvK0+KgMGm8pZ5gmCaChuFjVZ3VRZcOxYffPeLNqxs83LQAlAX4T4eBThbFMhYMNZhZb7xlnXVWcAzHns5Eps1qFsoq9IvdluYdWIsANMpCJK5bVIGxuP4aAxsxAE9Dh+jA48cDnt4P7J+PePP1Lb74+gHbW/UoTUCTBWM0PH93wvP7A7748QPQBb/6y3eQ0fDzf/41ZGeh2QzoSfoNkEQejMXTRo4EDQ5GUZIFos2jCbkUqwNKtcFziAAqWAawfxl4/+0nHA+Kh4c73L/aom1cZw+FqIFklrHY6Im47uQ8Fk7ksgZorNVMo7OMjBY4VCM92UkTts09jVCZUtaQ6z6HleAzpXL10ZLGSEKmE2uqMaDudeYb5Bxnoe7JSVic1j4eXB+Ve4j8O8FLtj4aOKCsq77nmXSLcG0oewnyAdwDZsQi9fEjzb6Tsv+Uc5kvl+6UdTwiGrDOAFPZg+TF5IxcKcTYR/iek1rVRYQjgoDmKxHFACMocYzE4ZmAQKRDDXlt+9viLG+cG2DUDt93mSIB9zoByvABl9YxmL/yB1kymc60v6yfAWXPGtwv+9JYVUu9q/2navmU/09dZ9uGulesTimJhW4C/si8nvKb2B5+BjlT1LY5XTGDXVZv5cNFvZNyyt3siCv109FZ92ulgXUUoLoB0PrZqs31JiH+9AfOnJDFuRXiO9GV83ZihNc1fS9rHuU4rksAkUgTdYHINDy12fXes9I50SyzPpPyTABJpPxd6qQYVeDdemyAos9W9HlgThsuyf0RlxCs2oM/RwmPsyJgFxvKOMc+nR8pMqWyz4OKR6gkrnlG/Q6Uc6wP4BTNj2PKPvl8r2feSlPwtvBvPRcrDSFHXJ+Ul4Byv2H1+voLOoiL4Mdyeq5nJHHe87wpNKvioozwqTzr1YsSEvMWULuoQn5J6jDh2two6ysaZdaQ04zR6cmL2tS+k/K57dED8LOS4/pvrQqSa5d/Y8QWsy9JREQS5PptZ4o879CAFeeRC+1Nc6HyQqchxmI3erDrLYBCudrke0MVGweJ1dWltlHlIYc617Wsq8qITPK+ljZxZq8/Vyhe9gt2m47tNncWAG0rWvqb1FnK6gT6h5pbNUBbjA9LzivW3KKJCQwSNjimJaMeKbRTn0EF+8MJx5eBcQLu7jt2993APj7pRcxecHpZsOwX3D1sMQR4+nCAqODV2xvbywMW/XQ9Hmr/GCWVPEneuC7x/maaU5neD101gONx4PCyYIyB29sd2kbOLhSGbq7rn5Yxph7zCWWBonx+c62gDKz0COmaBEuL7NRzyrrorAdJoK5frfo6GgEuhQacdIvkF9OaUXQG+ZTb95wAuQeRuf4LykUpgzHxkl+RsvqsH4golnHWoB5eK43a91V0yrqW1U+oy5O7hW+aL+i6f1Nz8xmOC7Od24oOnTZxhRlS+0Udkntqo1H8Uo7Guh+AvOhPw+ciZl3LtVzLtVzLtVzLtVzLtVzLtfyhyvdP9waAx+pw2k4xOADAUk4IugM3GhRLHsK0mcOUtU0WawCaTl1BC6CBHRoFvCZYHQYC9ZRWPEC5G1yHH1AVkBZGxnT+aTjCGjxSTZCxOpKrxPkQbkyCG8toWBs8P1rTGDDAQaQJizpp9JrNaTyo05Ae/JFihJDSPt/z75u/pzTOly70Nh9qhyJSALEfEBpXNPovwWw3mPC/5lETUOwHEm+UTvlbLU/g4RScLbWF2fZjwMO5t3Tk8DYe+WSgNQkj29quLzVCBFMkFQtHg4SzSMIgZYY2aXWEklfJO/LE5IVh32fnSLFQyOyQorExxhwWCUIIdHIJqTfICOFi+rUBB0Z5qJwhaawRMUCDdgNsWDvKYZky6qi4o9tBYnQuxBzz6FDK9pBRMzgtOba8hUs2dzFQCZxPghZzpbmBfSwecaIY33y4DBjjALLBjvl0b9Ih0JADGmQVA2NpdtOV7TKNlaJ4Wgw0JTCnkP1sEYml+eSrToHemkVwapa6Lf3JrgSgHhnIaO0dEPHUO0G+Bq82O4lxoIzQ9jSYrsrnaL0JLPEv5xxd1nS4tpDznM9rUxZlPMFAOSs5V9l7tksDfr3FvDTBaTIOmvxuIdiIAaK2sLRxi+ssgquUY1torP2ijmPKuoEBLMDz8x5ffPkKW+dNR8p37euiwKYbF5QW5JjCggHxyEs+litnQq5ugqV7BDS5PAbGy2Lg41xU49uiisPhhN3NDm/f3KKHOjL5aBC0ZjU0EbTe0fvGInFtmgGVvL9h75fUQYuaBHKdMwAS0uETet7ea54HrXdJwIcaYFTGApFu8781aAO2Q9GOivfvjnj89oTT8xE/+ekrPHyzATaWam7XBAMLGEHp8HTAl3/ygENX/Povv8NGNvjRL96g3Q4b96GRmu3kY7J4OshlgekHdZAVWkSdG577SVz4mxgQiWubawKMRXDaA08fjnj88Am39zf48pubuKF9KmNMMHIrcsLbpLG+i0ZAiFhnfQHwoDc2hj7XTac6EtXTQXLYm6MExUGSU7TGiISEANEY8BSRUql6ww0wl6BXOlUEyNvynOAl0si69I31Q0PHS9FJMuEfYl1TRe8NozmAexkxR6ojiNuQwUXIgUq2FPvaQNBX0dN1KR2SO42I3jRwNufYVRHM4RElnyNtjTlpwXWyeN7APaEQIQlEO81T5bpuEtOQIvDohtaIaOZwYbpbOsAMp9shMqB6IqFoatrOZIUp3EiWzQmmdxTpiLCNTu9F5/0PpuQg5ewqoE4Ka2x/6KTP90LPCwFnVWuzkvxs3nNq6vn68cQ1bm44kTwSQhGyKX0ZXwHc8Vf2e6Xb+WvuIfmFnD+W87Y+gHS+cT89taapGs7FQMv/qcOKouHfF5xxvjxOH1xykkLyuRJs5ayQ/zG/ox8letSqvazn+8l3BQqc05BzPvrHGSfzOBB4nv31vRF5Tb1UUf7RpsT+O4CW1aG/6qYfW2fRJLmVB5Lv0am8dmRbpd62rwvsG9cdhemrinmm7ozxa4Cdt+Ui589pdU4O6r2ij+vvyP3olIa59G3No3hp1f4kj+SBXzwJHsSkR0az4bpb5K2ChyrcPBubCbK1zud0oaMs0dO6w7NfTu0ZJEse1X2GPe8XthR5jkeps7Km9mX1eWqecoli6pTPRDJFkz/x/ET/Sn0EXcn3tUa0OvxM6X/bxYsa5yPTlnfJKE8t+pC602wyuuq/21/KOJdVIBi035/sMkPhQIAJJUTB2w4tMfGZ/GRfVqtJ+V2nfUqVp/XcktVgck/Jni8nu7Bzd5sRoFIniJ99OQYNIpaC3fa5sbIGPy7qnCJbgnL2KC9xHlH2y5TzeeDRWdBCeBRAXxQvLwP7J8U4Dty/2WJ334FmXOR5RxU4vixY9gM3r7Y4AXj8+IwuDQ+vCVBynew9YLRqOC3qRFk699w7JuAxma6alwi4JnHvuhyMltNxwfZ2g5vtNuwgaxnPtWeWlcrnuFQXYpoCkfavUue0MJW6NNeZ+s6lcY25x0E9Y8JMa5W/SUMU2ZjfK7ToLAv8Z+kKdXpN5ypiRFGeXOup0ABhCy46eFUmjSEX9JM6Lzj2Ux06/bq2Y3JPf2F5KOuyuE4lCYpIRVf1haTNK7SWUKeUi2wrYahR5+2tclNPqcR9HrJFzV6kNtXkrV4hStdyLddyLddyLddyLddyLdfyD1++P0iJaXJEMyWWG4yYTsycogkEEgWk9flwWkocpuKwxUOtw3/cOlcNlywGSBjFguPmLW1x6sobm8WINR30/Vudjpnn30MmI6G1z3Of0TdUM52Tn+90CNQRGoy4UoE2OjXpLw5/jo7WQTCO9blJGjIvHRoFMOdiK449nY7xgQchLUxTZkZTc1Yb0awgbxoJjZU8NtNA8RliImYErfhIvrEXFXRlNJhRjWCZ6fup7svl88YJQd5WzOgXc2qb2Zg0GY4nY8w5KIpGr+wzMky5IKI1EcjDyFFM2zSEBlh3wKtF9jBZs8gui9M1hqK7z3IMOlQ8Eo82HOHgpDGgPSPxMLyNTFQXQ40DFdAkUi0RZNf8RemIVAQb72043MRS0tnccwCZqkdCMgd90+QhoGjdb81q2sn8teBdc8exgYpo4YID9CRAczZGBlfx4BQApKQ+AlIUxUGV6ei072nQKRFlNOfuZMwplrRFLSXmgEKGGY6HNiwC9MXSnvXmab1UMcZA0xZgAaasE3jqu0HAkjuGWtrPWvA9/wkm/JXT73KPyTYIIEFKfDeBStXIKaUee3bAgB2j1LFRk2eODm857yR/71MbMoGkNqjuhqRzgGkWNWhsAD4eFxwVeLjZmGy44Gwkx2bAbkfvWot2aFyvfGurnzGshT4BjbNpYDzXP2vjpClGBTCkYejA6ah499tH/PhP3mDTNMyE5EeXhi4dqgS72RObTYMUjALnXHVxU1231pB+JTcp00DpNkrlc2LRkppaVDT7XiBjoMuASrfoamI0qg48vjvg298tOHw64E/+9BUeftQhG4NCtUGl1PHx9884PB7x+pvX+IQFv/qL73C/2eLHP33AZjew+PzAMMTNUIUuNhLiPLH1wdNhcu1TAy+ZI1egstj8G90gHWMAsAhLy0nw8f2Cj98+Y9savvzqFfpdj6h3roh9sAXLYoCTbAuWgsx5EJuIWMNzj1DXkDpOAMBISBHFj/Vzr9DgUduAZfEIO41rrdWm4pGaSEYB1gLOi8F5YsBraxtlr+Z7A8jkkD5fyzjjEPu9AFf55GxkNdcFskZtX0YQOHVIBSuRt621iKjEyF+x/saETBk32WKH57W68n/t7G0+YDJ9LFgwwuE4p6sDmC6WYC17ydBQ6t6roQSSWqMylgAxqy7WCR2+t00icx1JjdNc5i0NsWKMBRaFlDPB9JytbcPHzDW8r60GdJLg5w+15LAZH5OHfKKsQf5cwEhcJnIP+rl+Un/UVQ/5u2rs/RQpZbN2L/ve+nG8dL4KsO71AnHho2yvdkG4ryn7yKJM1lF3Pr8TPn/nc/M9Hq36ZK7irM5gyTyp5q7URZ3vaNElqwbm1HZFkRbgTwX2XCqc/9w7xjsrGmpn5j7mZ7G901JJNCwX+q5c9s87H2BXH0wPHzppJb7L+tY8rizx6iswJX6X5G2lgqmwVenEzQd4XqnjG/swgkD9A3WdxGi9l6eBdYDTurKwLIwgsAGr5sn/6QIJyvpRnqnlbP31/3EspzdHqUEL+KLO1bWnHwjner04MFW//sM7X20ZlRdaf8Yc8TUGsPMEfG/mJGlDRF1mlF87K60Ai2ymRH3inMo1u06JZPZF/rqgZRupMSeQ6YU9RT43Ax2G7/gyvqCD+suzIrn/n1PS+f9VY+/GNtbtphrN84R4m4dl4M3tNiNm+kxtzpKy7YjLFVMbMX4Sl9IIMZGyR6r8naDQRcdP+xmcFz46VPH86YC7u62necvnCWwXzb6UVXTav4aOW7URK6fMnwOY9kX13dofplBMTIbkHPNf9s8DT08LxrLg1dsb7O6bn3VJuz17eF6wHBbc3N/gqAMfPzxjt9ni/mGL3v0Si+YZAdMeKM+XQkEqUdXX64MOD8IKgoHdgrc0vDwvOLycsNt23L/aGXIOs5qoA6H17MLnVm2uzwPJf0pPRsFjHev9hI2T1irmsXHlKRybQuNFhTFPGEg5907Lm+TjbC9tbFlXfTz6WhVtXfvW/Vp9X3VPALuoh2inqTJ59h7mfaO6RqhyPunHeRbmnJgn7LQGj/ULmHla1qIcywQuqw8Sx7V+R9DQHJW+yuGFxQW0BvC7EQNJG2LWJOX3y+JxLddyLddyLddyLddyLddyLdfyhy7fG6Qk6CBYJ89YBn4wH/F8IrTbG0DG4QUAj7QkFZjkJqoJxFJMSZqHTn5uKa06RJsf3mksYeoYxEmRjiE6wCIpEtvHHFp56rOU2zhqYIo0LJoTuSGjtdBAkr6WclAUc6rw/bNDYRg/jds04DC91RgSt+95QK6HR8cZrQwiGs5RnrbD8KSw6A5pOQPAw30arqoR02t0GoqRu95WI+sln4dKGh4l669GAlWLxKDkpSBT6hUmsd56i5wOQ8rKmWNCktdpPMl6BQiQVpznaRApdalH55JebnujvIDq4Cx84C1tGlPUACddkh7WwRRjw6/KissdAJyKYSLBBRZJjMlTlsVSltntQ0HvDafFPm8Y6L2hdwNG0VZnhl0AY4SBexnqoIfq8LSoEXETy43jlOtR5jGjugTYho5Tl23yiQ5dkZT1HEt1Y42P+VjcsEh6Uj4YSSytYEUGquEJ6qmKqCJaplaMyG056AuvUso8N6b2qboY7aW10AXLSbEAWBpwWhStATs1IFd3+R4EFxBAJsBYfF65seqkitYUvTU0t6zzVvEC9fQHzvsi+6r2HHmYhv3ZXOVa2I3q7rTHbMhvztwl2Osp3pAq4ABLp9bEVoyNrxJMVQcR9DDgk6YELDHqDynMmQVsY2gFLy9HfPHmFW499ZrNMV8/nMaTmqj2iGoTtmnX35lSAlqdG1lmA51EVKqUp3wujKQoBnHn5nBefXw64NXbB2x3LeYe6R4O1hhjBMhvoHw2bNISCzv5TJWj4Q6rYhQ1oKO10sXSsA7VSLVoE8+AfEMWyNLRRsPAxnrjylNOwPvfHfG3vznhdDrip//sFe6/3FhEIiVAeGA5Cr779gWnT0d89c1rfDwc8atfv8fr21t89c0r9K2Bx5YhUHSMEwBtWBZzC+R6Y2PSujhow0E2XYCF/bY+j2F7EFXyseH4Anz49hOOL4pXr+9x/6YFQtLA1jTOGhjMAjOlQyVB1Ag9NEbeeJ5H32huMRbg5mWSdYGW6AekRbBQNyog0gKQyOy2Q9JoPUto0soF29YZDQcP5UPqfkjq/ibBObYGUaBNRrg6ZRM2QBKOWo/6p0lZrOOFFhFGhzPdVqNGZbs5Fzg7zLHSfJ+GSB8SN8CD5/795AjmvOb6k9/bWuArJ9dtkiDsuEz8Edh6xucD4OwO0tAlUGT4Kn4ziuMkQTZM2ai65HqyHmYZ0MVlQ3pZi7jvGL5GtXjvXEp+QEXTTR0O4dWtehdnG1tJsBGjq9axnKMprRb9lc7mJ/P+2+ceJ7q4PnfZPK9BSkXzN2N+orTBT9XnY0ZJqLXWNXnV2mcHVVcE1j37ul4+H+BB+EJ5tvqdbafK5/aN1AfXHblAF2mbGijvnLeeL0znkPmr+a1SJ/VQ1dHUhXXo4vfcdqUeP2fLZ9vm41xjcoWY9zJaHyztl4+y/vJ3/X7d6N+9d/HPqo7V+hniMylth86ERQ4V8egiyufVLyYlfdwbklZXl9N+JWW8zjf7OWWwRY4Z1yGwLsm/ow457/OaRwBmfe6VpHtfzhgptT1U3ZCP05ldAQTxvJS+kgml/hJ6Z3pp0nGVD5rbC1+mfF8o8X2VlYn3nENOF4MI1vmwjsjDl2OPsyJfvQutdDq74fo96rO/ZXpfo71Yh1f6Sy7SZbWuacq3goiSmjvrpnXqeLR0absm6BHVZJZpuz+WESjPdCrm4at0Y/Vc7XmltOqh1fRPW06R09NhYLPdoG8jJCcYpdnkwE44az0c86Y2vC4XpoKWXyJaS8zXVTQYzbE1mlrYHKw/wMvTgqcn2/e8fnuD7Q0vbcH3jIplETw/nzBOA/d3NzgsCz48vuB2u8Xd3c4ie1PHwM4x6pMiU+QW4ouuiYtwKHPE+0A9pkOgo+F0HNi/7NGk4e5+h81WUpAoJ8o3c88Qlw3WglD012eWkrPBOVtPV+NzaRyrDEvRZXz8TD4nxfXZ5eazdF9ck8svFJGzPcvqjzyH2QfV1kgOT2fgCzSEjoxpk2DPcyLXM7fQ7UwLcTrj8/kcWw9M7LmQPyPyHi53pF7dms41q9/qJTtWM4Gc+Km4ri2yD8B1Wu5Xqu6O3y9t5q7lWq7lWq7lWq7lWq7lWq7lWv6A5XuDlJTX8t3sEqmeYE4qHummG0PhTU1TDcNPV+dYdVbJlJaLgJNiMHDrmxlIVjlMAoxiTr90A5UIOk7bKMaLyAX/GVOBVMtZ+bDeomNUivhb/Dadp+QgwCgjBczWoXqDn4dZVRoWeKCt5qkVfdNYZZ323Tp1ibdL47IRXOqrzkurn440cccurW9rUBCfp8GYDt20XSVtTNFlv8OAbuJAj8IDqLVfAQWAA20U5mhM+wWAvOFb+VN53FqLw3rrdIYiGayANg+rD5NLpioMZwEQdbHfQiuQ8yyDQcj0HulhX/huDT1t7eW4TSHWIVN4cUbXEQGGGgAAiwO9BIA0i3SzWEqaBoX7+mO8et9AFxv3saiHSs/oXWMoFjq+09/voAiJ55ah/mzy0t6xyEWMHqSqeRtT2cHq8DBeEhiwcXkZ0U94FLMBmXgl6P7rEroBEY2IsunZhlznOO8Z+Uqdb5Ei0UP4k24teiqc3z6mHqVFRuo866vRejoB6PDIWWK3pCMaFiND2YhLTQ81LNqWNGA0xWYjcaN4gYF1NoXlisspnagTyXIJrqejIA1T9rOCmxBPWi0B7lE4GEmmlAxQD1sO8dvOGVWpisgCnf7mdGz+vLiCeVFg//yCn7++ww2ybt6AtrpsHmykBUiLbhL2m/cKBcg++O9MP0fdVQEaax4NwCG8CVolpwaaA3MVx+cFy8seX//kjdOUc1003wiDp7TQr02AjRRjuoNsMAjQ8xVsNd50/mz8mjWN/10EKgZEDJAuDHAcwENp2Gzts3EEvv3dAb/+9RN63+CXf/YGt180dI8GpScbh8NR8Ztf7bEsJ3z99Ws8fTrg17/6Fq/fvsHXX92hb+Gc6lBdMDzazDJk2mMQhKFOn7KjiukGd/O9xZABwcmiKe0bPrx7xsvzEbd3O7z92Q36BjGXQlOousw4wNInv/FYz3kZ+xXyltGIXFZ878F5EVIQa4LT3DTWNdbbfF7zces3LB2cIuQ6WnB5XHxRiD2UG6JzzUvbO+eAlHW/+nDsBat4DAMbSrcK0nFMoHTs0CaHNm+nM42GPZ8EJBg09yGcc6T7DLxc9o4KnbJS1HWYN6HH+gvQIF/3AIUxMLqlMK2O/wSm0gpmTycdhPOKPB3eF18fPIyFFA+RqkdZYhW+N879s0eUnOizd3tvE/gi+Cy23xRpEx9/eCXlx2R+FQaiaFjOqxzSs1WqfJ4/V82BQDWJQeMEwFRP3afmJHX5LN+sN95aPv5Pst7bmE8Rcx1BZa1rVa/ijIyzvz9X1mlBYoUka1Y/i6ihvsVnytefIUjPR23NK84xaHlOz/hS21EHymAaX5TzgLVaz6b8+MxRWvXmiiwy5qJ4SY4Fx38NVIH4fqssB/HOZ2ion816uvyu+UzokvKY1DbqQ9Gv5NHUJ3+e+58Raw1ynYR/LtlGzC9BpD/lu+wv+ZNnXMSZorafzzmovui8SZZ8bC7OlZBXnWSPFzJYm62PcrZvntfIbKCVgavLzZns8MsSzVV1dZ6rcqer92oDuq4/z9eDDzEK74VoyhkREJHqjmdn7QWAJBWMlLzzLafVHwQ7PRJHuNWbyf/6eQ2CnRFWrUSK8gssIP/4bPN+teyaP8P1Q+JzwTnIasCiV95uN36FbZ5DKGM1ycX6Z8iCxloB73t9dq0DxZ+J4dMC2OJ38X6eTcYYOB6PeHV/e8Y/1m2fqe0zNM8T8a/S5YSxXer0S3XWPZBWWShzGwIwDTNC7bj+XATPjwueno6QLnjzeod+a/ujBjg4XnFaFJ8eF5xOAw+vdjgcT3j8+IK72xvc3m8hUtdQKUq3fLYaLNrhyIRpvk0q0KJSjpNi/3zEGIrdboPNrkNcUcmKSVL+z/H63GbAt7+X17QVr+vfgFU5XUapddZ3Ky205yF3HnWd0FrJauJd0LjcmU7z5KysOsSlYdapTlHZzJgu1qlOO5Mm3876Td1Y98UTcWU2FT0cz03d01yjtbSx4netGdSnWNHAKieFvhr4M5LLglAe4to6n0XV9fE56H3aZNB2DkGeJ9wGwouUlREh025FuND3a7mWa7mWa7mWa7mWa7mWa7mWP2T5/uneAPBGeqQ9KcYXxIEH5fBvN+BFxKPHaNyGZ33T70onzZKnPlhdlpLDj66S91KNHrOECiQcmF1aHvaq0aQBujp0TSk+ViexAN4AYamiobk1u8JFQ8UYblwLFnh0AHhKE+8LyxjqEW1oKJFgZRhO2AXNevkMb8LmIdp5Ioxgk05OAwSVd4v5QgQBPJoAUZJGASnjlRFnEA7PMBCcGVSsXgNtpeGw+eF5SoFS2mkr+SDPjWfp5GSqFhIxy9T5+AoQ7xPhIc0i19SbgQZUYEX2Xm/AUgBSlI0aZt26lUZTRp/xLH4wd7uAgcYgDmYD5VbCix6GHH+v+byigbGFnUMiNZj5id3ReVRgUfSNoDW/8SyC4zHHpjdBb5xZxgdVYDlRJgQnAVQFy8li6wwFNt0BZp5+iOBBVZMzi2ySIDRVjxzlHCHgZ3haNDq1fboEaG5ouU2ssChCI8dgDGDTGjatgIcou1C7Fevvk7dkMdSiqDQHL8RNVaZJSvENwz/126ZLGKWXxQ1ageTxsWpOS7O6bagaxqI4KdB6wzKAsQy0hoiYtUREq+IsHxry1QRYugGutHPeJDhHXYHQaMXvqyGbWvjSrWgCiBjhiGYr/r/BFg7Tbxp6qEEi2pG1Y3I/XC4JhrkRAo/sb8rDOgJFg0VPouOAkY8OLye8vrvB/SbTy2XaQROP4ZE3diKlv8IMK9Enjw84tSl6DpaqBsTkB4LnUvhFnlF+Tio4qeL55YC3Xz1g06xPcXleyW/jxBgnl0UHRTYDJfRCx8IRafFU6X8aQJmisY65igHjqOdaF4vS0gSCXkBdMHDFseG7vzzi179+wu7NBj/5+QNuHxq0Wx0GaBx42QO//e0eL08LfvT1K7w87vHrX/8eX379Jd58eQfZmGMFiwGgRBpkDAy1xIHDGc2UZYzuBAALjaqxXjjg0NOhDhWcTg3PT0c8vn/Bpjd89fUrtJuMPEb25U1hKeMnJc2O+rxzmqqRGh4VSIFMyCceVTFl1YJTcQ9EnZIAG9s/2PemI1vuG2BzRtSjyxiWBYCtNTpMD5oeRnH2+grqQigj1xDHDxmAsqwr3Kdw/xFzUBJ0HfsPkazL9XpEpJPZiS2uZHWkI0PE5Pg0mP7MaRupV+u+QodFQWPKzYhE2L0+3+PEHGpAGcL4KQ0R/ZDRmlQV2hysR9C1708yiqNrhuCDAU3NezfKfqsAyh1gQV7Y2mLrTPCvoKj42xzNqu6gxPfQHXB96xLivJ5TNUjztUAVra+1+w+wxHYtdVb5cAIK15e4d7rkDKopBssGKtfJABzJ/KqsoQxsWybnNOWNf4SEcy8Wm4ap6uzn9EOjnpiTWrrM+RV9IwGlyfKdrFlVaYCtyayYDq5aZbSB6E72szw4nVEutDmNSgGCJSh6fleBTGPJSJ3OB8XcRh1Wq0NisZ1oCcUTEhNt6rqumUnT+BZpPO/ouj6ZWBbquIK6V01N9cTPKkIF4Mo6ubdgmxPWzmmNs5mUOXHh7zoe0Kyvlb8B54mfWdXPraIFbMMzFs+Q+XFEN+E4U9fCdXtrgC4zH0LmAKgSLCUzr9iQy0yAw8q7xqMi+Ws5rmOgfqZMtTGBX+goD575d7m31kmv1PEiCDnmrtZ6EbI2Kl1V/mT1N9sctl+om04RgVRgmFdQ09kRNCVw/gswWuq3ir+o81lLf+vmmPsjzZ4jgRDiSXzZ73SoM8piw7zvBgStKBn12uOyEhApp2M81GoeUmdaft/h5yAH6CsyOubdhlFozy8isGe+S8tuFz0+zaParpJNziGZn1gvDbF0+ZyO84RHeGpqe9bj8YTb252v+Rp15fTxiYcRnGV/KONVttQbr/CeaQ6xPz65ao0iOZ8nfRpRhGwvOxTAAjy/P+HjhyO29x0Pb7foGwm5sKO24nQSPD6eoAO42W5wej7h6dMzbh9ucXO7NZrLHoD6QUPRlIjbPA8rZVtqyN5pzVPv93JqOBxOWI4Lem8RtSlsLihzpK5PhWczBHnW2xys0LXe7xYCgHkdQHm+6KTp69X6R8AcqGN1fmdaR+Oz3Ien7q9Qu0K/nuuv6DnnYnm8voo1z4qCkc/0b76BcK7na0t1/eGkOpujZ8p09TMamXVhMlqDB/XjjFL5uYaS8WHZ1vybJIQWLRuSsMGXd3BpHLHai/IZkahnlksyPicEbZkVznst13It13It13It13It13It1/IPVb43SMlu/zOdhYd8bz0O7FbcpCI0PAqggoZ2IR1cmDz8wwFFd8NM9zOSTofQapgUN3yI0+XVgiadNEimSc1IzbC7NDSRsmVoHP6n0LrFYLA+WMcNQTdsDRpqVeMGn9CKwYO3e8oVTKmVhp/p8FosqPXYOqUvcEJqhJeIwCOADgkDUTIPJQKEZP3l4C00aGreKlVkZBT60APw5bxO0FHSQ2NYjQQwxkCTkprEvHdpcPBoNGGkhvGwFZ5Www5Ag6VORpbq+KMhn049kmOp8vxmWTiq5jRZNDA2Kb/3BHGQ3xL8tBRNjIZAQAdAEEGCI6pRsRrNSZ8QEEVOu9yJALqYxWpwTOCGwxryfSGQxGiMW80KHHVx8FJzsIDNWR0Ny1AsY3i0Ik0Dn5oMNyiGjEynRZlywnWoy7r4vCvhuclzSWOJPTYQ4ASBzxF7r/ugNRfCocCmwdLOxVinkVQhzGTlcktLEx0JHiEkHL6UNLG5y+hhSkDUsFR8wQeT4R4h313QLe9iGNsErgt83BZPf7cMjTmy6YSzmSRwvrDvcTsaTP0EyMnHuMGBm/N8qHa2AE8UeQMKOMgt6XLhnXVdfIa33jkPqzFS4YApV7JV11bNn9oj33XVgi0yxRtpXAB8ePyEH715wK0ODNlYH3w9aLBoU4u32pEgqHVpxfTGNistXKXs96onkTcmnU/q9RHgxfcXd+Q9vn/GBoqHXXdHyJw2ogM2McfiC4QDWwO5l8A6c9iUKFCF4liRFEG9AQAHIM2jEjntiwZoD2JGbBkClRMUDR+fBsYeePrNHn/x79/jqz+5x09/+QrbuwYZQN8LTt3WzeO+4Td/c8Tx1PD1Nzf4+NsnfHj/iC9+9iXefH1n+lC5N1DoYvN8OSVAkHNBoQaC0eZzTexdaDo7IprSwLIIPj0NfHy/x1hOePv2Hru7jQG4xKJbKYDF03XC9yNk7XDdathIT7np4JJYn5COSyjXAdMPBi70Bx1ARFk3kJOmnpME9QlcdzFMkdfN29cEFlOlUr1QxwqdVk5zvWnM6ubUfwlYrE5tbj2EggPJtC3+MwENuVrxXeRrBjBQxFgSgEXxjJRtoaMpnwkmPUtboL5/EeS6RkXiHl3Drq4cpGyjptKZ3Aaukz0tWwXQs/78zHWqe9g5v8g79T631m0Ow9a2mh5QMRBRB0C+ivMtNkJAtJEz3GSUi6JrJs//EzJBur3yEkzyB1cou0XE7PPVapC3w2X6zCeK/517+lxVTN/Ndc73zKc2VUGvvpTvqe/nGCzIRSP6ExISL9ctd32de53JMXeBruhiLYLYu8SzZRFbPx99KV9U/9rUpq8rMd9dpnkpIfe2+W4V21of+RbPzWSe95XP6Pl7a16wrdok9Rf7SYfsmu9VBVCFTzSveDINj1beUeFV3VfemzqpscbWxhKUlZ+FBEtt3+d8CuPESPuTiwQ/l7kDIpMjvfZfFQniSfGdAS3CiI3iex2EjMcZrTA4gQzZqBZ9qlzn/BW7l5QA0ej2iv91DKpM1/VsHWFkmiP+R6RlIw8Ai/LJlMscj7M1kHr/fC4Ym2vDZEw5k0iSFjs46gof48nRHY3Y93UOchwItoFmkwSvBzVnSq2QKNynwCLQFv4avbPeNPkswlfqz322S6V/z7N01QMxf/i8pvhalNka3SNOaSDwQvO1oDfqn/YQ9nvDeaQuADgtA5uWFwy0/Gsup6SEsQ2tHZme1RUvDPhu37bV9+d6elY8lINqX2A7Q4DTYWCcFHc3Gbm10hS6VNM+5hPQzxVF16CKhE58BObfydtLa5QW5SpqPDMAv3263w98eh7AHnj/7hPu39zi4c0Wm41Lgx0JsCgsxduT4nRoePW64/B0wPPjAfdf3OHmdhM2kThfVgKLoiMfuD8LnbNw7hfbGF9fgMNh4OXlhN4Et3c79C4xF6ZoZFj3f6V269+uK7kdXpc6J9bTKyKZFpXAusn2im3iQ1rGh/qeaQ+tjjK7SZ/o2fgDZQckxst5PUwehB3F14qqQy/nZVwp8vyx6uTnX6v0xprs7VabWtUbUQf1+9TnYn8sIZVC38tM0Lq6FXmxf9L6TZHdamm4NLcApI033i2MicNh1iB10WGFsbABOobLNO0zrKDaRWRq4lqu5Vqu5Vqu5Vqu5Vqu5Vqu5R+yfH+QEo1E0vxAkw6ABKfQMOmOqdESaAE/owqfhzuH/DAoi4FM1Oo3x587adETVOTxKuywuLiPSmbjoCgWDHeOuatd7HMhaIIfAdaG8BCYh8ymgLZy4UoYfMcdhHF+K0YRj85TnZN8l4ZgGliYPsxuyI34m0ZNGn0CJDQI5pAMq14O2KIWPoGAChE6dqvtxtOOwFPV0JgwSr8n/sh0HvdztY0AjT/18KqZHgwEoUixTZRxCpCUf2Z8zTHgpSkCiBrycTr7zBgm0+dpTFeoKFoY4N0IjVJvGJ7MbEODTDdGAIA7rY02puUxGXeg1XAQijBCkM2W1u3u6HCLSd/QamQRfpqDS4DkU4Ja0tjAm7XNGZmpxlrMqyFwkBGNmx6lqwmkCXrPMPLMPz/UotMsgzeue6TFoRGqeVSmMYohEI6lgAT4BoKIcBY81QyKpM5L9lHdKm7zACEzbbJiKVo4yXL+sTSoR8jwW+NKo7LzuzX/TWNedggwJCKBqABDzJgcES7UqFBJGeSt9OZzZ8DmY9AyrGNLkXNGMYMYXbzP2uA3SofkbV7nGdMUSpfJoc/IQADCkUKwlEuMt82ISTqlblCY8TfthK5f/dkMjx+vxC1lZDdAgz0N0DSRt5VJE/7uxn8uyLaLtozaN2mijZ9b79nROyAATsuCu5st7ncbQGyedtABZ2n+aBTfSpsiFknpz4IcK34+R42yuVHtq9S5yd/ZasfoU3Z7VP19xTgplpPgq6/usXHBGkLJbDl/FgMFGuiKytU6xDRsdEKQBv4NIBxvTQSLuoFRBggOpAMarpMUIEIn1hwR4EU7xvPAt3+zx8ffAr/581/jm3/5NX7yZ6+x2RkzdCxYBBhLx8vzwLffnfDyLHjzaovn9y/4j3/+Dr/4n/4Yb77YoYnxA6oYaLn+A5Y2YTE+dqZzdGEZWCxd3pCIOjh8noo0jAEs+4H37/b49OmI16/v8erVnelZRi5yg7LplxZrFnzfAD0Hc5iONLIIfgxJHZqRFiQNzPG9R0OzKaWui1uA2gYSDIuY38Z4RepoA4EC0l0H1fW5S0xQjlnvgoVy4rKqohiSctoJAKIucQAU0/VwL1OjQcX+wtfzwMzxeaX28T2OGiBOvIIW+0KnPdLeFjCdCe20zzDZ4FrncyT2Of4iJNfzKPZ59zUmVvQxYp84xshog8q5g9hDiK93/HK+4Zyf217F62Uf9QT4ehNuxeKk9hedGQA8Cii0uCNFgEEN1SFtC4wjxlggsjGtS5a484OpDAHulUYJI/DDLLMjbh7H+Ms3g1wdamQA1kGAUkQEE65t6RhK8Dw3rKW94sWyd0y71mgFFZgwEeB/a6GHj5QpPvVpHpXSp6kC+B5v9SLXiguPz4ybSa3niZAz5fvBYKz+jH0ppZ8ldIBXIjM7Cq01LkB+JfUvydpjNVuxOIb1M90E5YBHKJ2foa6hvqwsj3drk7J6v8iCACEL03iXv2tdcfFhJXIxtoUp4o3ImnhIvuOPl7soId/KvZKUvpZqgtwSZSloruI9Nc9zk88OqvRYR7OfERUvdBHK37y4ZPvBOtTxm6bozDQU/q6mb31mDRiLcSvzM20JCPAI91ahCsr4UK5SBmRaK2q70S3l+rAmcKZDyrgTLFGqmrUMz8blywl8H2tZmY+Sc6d8ZL/Xo9ZKvvnsWD2WTa0VXhJwadUZRRefj90ZBHSam6yU48E9Pb9fv8Of6+7VyxTRTwVOpxMebm+m9y9NhRolu/Y0gMRRr16sI9V3kfNJ12JmHud2+ZBr/uk0cH+3K+czcftSPs10vvXdkNuVvqoydz5A8wpN+dbzR/x3md4YsP3U8dMJxyfgw7cfcfvmBq+/2KG7BdIu9w1AO5aD4nl/whgW1fXweMR3337Cmy9fY3fbw86j3u/QQVzayTsOQrk9E2kj+ViEVbW5tRwHXl6O0KG4u9ths5kjsc7I47nvVdfUdYQ/FLP9govypKOpb0jVeh2Q+DHLF9vhWl9e452p+Lsi8aDzmlkqPVvT2VkhWO9c95HyWW+Vh9f1reVo/mrWn2VNOat8vWZONONyI9yfOB/WerI+5pIWH9b1JN6jjtKkKcdf8nnNz1LvrcH4gEgCDOul2nlzM3f6jAcuMMpoqwpkXvERHahgNfH2aq/NnndJs1/LtVzLtVzLtVzLtVzLtVzLtfzhyvcGKTH9iR1T6PZyk0s4CNyQ7wa4OARLjahi9Yn0AAmYM3WDjnorLFswA4IkiAd5oJa4psPvBctYnIY2PwuCKPIYnOnHDFBFQEo1oFbjsNHux8lqnHBDZhhucflcTGNyNTgy3PnawEDnwOTokPJMGO7SwQw0r5dRrsJyGQ7CSLs2GSeSrihDHSxhxBuIKAdgaNJTLSWzccV53NrMD7bnjkhlOh//ymziNSrOqijMcB4yltFn2HQThrd3umipEUT0igbxaBakw1LMiML8hvAIPuBNYhSwjLuzPOUZBJGODpqy3F2AGsyZbEZxN4iL3zgk3Q5Wy/HUmF/2u/WxNQdMKYAGGP6J/CtgF3fWM5IS6Wsi6JuG02lkVBJN+4VCoM0jQA1AYSnIxpJRiEI+izE+x0li7sR92CITrSUogePe2lyD9YVAI//bJx5BkepeAhGPmuPO6EbLmzDqW6boax2QjdE3lI4KiWeBEm0LbqBpYvqp6AUoDdM2Hgq7MTwwMyP0nDIySgKvGC2lOR2OeTNQT5OMVkRAo2pEOIP6zWDXuwk5YgoqJ0MzyhjnQkKNskyGTeTtTUFx2KpGn3OkbbTbqh7adusNZUu3kEb8ntwM86ZAHHwEnPieWIqo56cDdr2F7FMFVBWkAG51NqRSFkkg6Yq+1jrKe0mXONAm15K6JqxiBkQNywC++/AR9/d32HZBhyQgDQQyUT+Rk/59s1RsrUmkcTIAFAp1hV6Zf+daHaPsZDGynIilG7QoRga8HQuwiOC4Fzz/9Qt+/Rff4vbLDX72z97g5sFoGAtwkhNkNCyPgvff7rG73ULvFd/+x3f47V//Fl/87Cd49cUOref8VzUgpek6cSCtAF0cGDLAJX4MS9mKIQ48HRB0A9MKMBbF4/sDPrz7hPuHHX7ys1fY7SxuloTiyRFVAdqIPzFGrq8ECoq6DlqaO00YUagAhVtdXxCTpN4YF/iaznaRewUDz9gHwjUMCPBP1O66sQvrSR0a+rC5bDrKqEcaVI01QBwopARhioR8BF5b0o9Dhwadr5Py1dQH7Kd6X215seiBxtXZtTlFn4jGWYkGwIaFbQtkitYBYJZ/H0OJyIQ1+lSdkZxjDnBj3zXrNsB9erQS5C0+Uzl3JJwGloqtATiZgKmEbg8CvR1GpGGSSlvXe5kfvkbGfGymJdQAduYoF8iw6IIDI0B0g/tzgtwUM9N+oMVkkRqvFApX/C0pj/Vd5Dy25/hpy7QpU6X1h6zV6NRwwvumFSa+j/WB66TMtRTSfU9VvtPVc2VCZT2cVzN35lV7VbyeqV5wbSl1aPLNzj0z/dWbdga0AIoD84yB0+JZ6S5HtcLRnJe5hlEH5rp1yQFZeV4BSrULlX6Zh+/sgVBBet6raKussSj1no2jlP2TsJ/nDukYlbaSp3W7U9dd35XvuObVOkhPAGycaKkD4KWxfZnbt7pkHhfWG4om4ZvDhSnqEJzRpPC9V0NxnifAQksb3uFZ4tfjidQD02dtflZm8qd+1LElL0TrBRXMc7Q2vKJlxSlrpsx3AkxbeZb7j+CZIqLprM//fKmwf+oTaeegCBJgX9vgS1QNNbUt99VNeYGi6sVsJ6MdrcbIn9RCp0KjriRbJ9245uCFaV94JtFXAj0vHCF9jOveOUH+y+KXLerSUPSCAFigcUYY8RwvQZ33XXwvzb0DyzrVZbJbp35h+pxcyhPG88vB0j+Xvai9m5Gnxlhw+vS+VMr97ArkEXyedWBNL0UhqhEuA4cR60vWMu3V/BkdwOlZ8fTtE27vN/ji6zv0TZ2jaqndDwP7TwObXQe2DR9/94zn959w+/oON/e9pFSXCYQlWGGyKyOpu7hGDJhtg4pFBcui2L+ccDoO7HYbbG9a2FCmcVzpEOqdCbSi0aWik1d7Bn621qu0ZyjryvGRrPJ81WX7jUTwYb24flbdHCnzVoIpKx5aX8+VKHWn6fIyIKrndK7eJSGfAycDQERxXH3HyFZnVc+oqaAxdF92EdRRsU+aRmvqyt9dKl2s5YKs2JBL/sEBhX/OBV8VvJkSloy14g6GUDvMV8DMYluATgUEy01HPl0XGYKdFUnq2lp0LddyLddyLddyLX/MZRwP2P/2L/+xybiWa7mWf4Lle4OU0glOgyWd5plChY4bRkpISxnCkQIB0BGOUcjJjWFGijmKHCRgXsBwYlhJh7yChmBzYC+LOWpEGghkGCNTiLXeIlfSQBqM7UajQlQMUMI0MOJRXsBDanG0Vd5kFo44ABJMAqwPuAkgCWNAg910WYE2Lhmo+ZrRjYkWGmnsPZ2eoTWSJpOawg1KXttnBGh0OuJaeU5rWyWUw0QdnX0SfEi5YN8SNLWm04xa9fic4Lfgp0hxrDAKj4+BWP/VwUODYCRxsE8xII4x7CgvsIhL4gAmoU0gI22ED6QlLZEWx/vgAXXczkCAERxk4IZUScO3kL7iJDDgTRoXNuION2+rdaA3RunQYrhT9N6sL8Fbi9LVm6VOIgCKfdp0wYl1OACFTuQKpAseFEdQawbCqMbBjPY1yyed5+Qt4u+UGWmzYbemjKDhZ0rVR/52N1aXPEptlatMwIgTNE4Wp1gxyAa4yw19JHdAIR0ONHLDH53OCgyavyVjQbEfi0erCcex5HsEKkEUp6How5jNFEXJWw2ZUmXkLsFpATPBGRhBgC6E+hhddDA0YJWOLE1cjM9DQ76pb4nbwwlOyBusqnO0CRZqkmpGS9d/ApQEWhw1qY8EBDVZWxsAHYqXARxOwJcPO3RO49KeADgCOOiCG4c/WeIymdMtRP3wXs91AMiIWOWzAD3p/GzYg1d/DwD7w4LWOx7uNuiuh/ggjY8ENQwo0Hij2G8uqobeSN4jRo3tLas+USZ8Ztm7lF3YT1VgGVyXXY4HoAfgw2/2+PjhBX/2r/4EP/qze+weHLjJ0R9b7D8OvPvtE+7e3GNz1/Dp/SccX47403/+Y3zxp19gc6Mpw9oc/GLyv4ylGLw9paPLFEMUMgJda86bMSBoeH484d13T2it4esfvcLtfYdKBZe4XiHoQ5gShUAWAvZs8aUzMtamAggTMHKE+hyQMNxOkYZgIMmcO1ynXBf6qC1DiwewgHDLOqK+R+jClKsjIl/Q2ahF18Vak8QEQCP0JB9vcGCaj6V72UQSuBVLjeZezocincqug2JOKdAIVpLUF7FfE4L8LNqGZcizNTwBNmXSoTguODd8P0G5zv1R6tJ4e+InQh+qBoQ0OsqogfXFuk+B2Lpp6VuT9wRQQdnfIIhDk7TGAsDxWgDf89LBIBBbP5mC1b3UGvUKmBLXZKT5Pss1ghK0hMmh+MMtM/CIY2k/ko/gPibfWFeTj4F1OGCLPOSZZBoiKsic07E3ARCLcBUmcE7ExgCf43QF+nFenPv4dPVByqLWh1c0cMG5DGLJz+scqfTXclFUCnBHgh5gVdV/srBLsSeuq+Sq4WlcChkXz0D6+d8nHhf9dC46jLSXvJ34NhE3D8907FmNaaa3sd62OnbOw+poDv0qCWyKbfaa5jpHBChY/Pisnjtiv1CYxPZjH1L60WAdqJFdS3diDxgXRDh3vI6miNTDuV+QWbTLmKTOTBhMjCFFpOoHrk31Oa+spnoOVpW+1RnEMYo9Qf2yrBuNfZHyboyBzHXnEMf7suYx+xS8Zh819gW2v89e1Ogrde3jLzVikyrmKHs669hc+4LCGJemHiHXzSQN9rvtj3O3GYA7/nWx7tU4eJnrym90/cZax0jV/ILcF+c+gV26oC6yDbF+8pyzPw3c7Lazez/qsLXXQEqy+n7uQ6TpW8kAaQt8fBEiKd/HO5X4KnT+5GlRSOu42W0gUEzroRJ6ZWf+Zf8MgqspeDw/hjj6pF6zO8iM+sozRdamd0aeO6iHdAC6CJ7fn/D06YAvfvwK92+3eT5XymnDclB8ejpge7ND3wo+PR4hAH700y+wue1hrVRlpNm0Tyzck7ne4jkn50nqQRGeB9UiPO0HDvsT+kbw8GqH1hWpuXjZin/BbTblPBh8SqYJz+guTOulYtJvK6EN/QzE4lv173o9jHMG6SlrN4B53SZJUx2+xx+lnlRt81aMwXdIsv8+yucXy8Sg5AEvz5VtD0nK/qyVd6kvdSHtwvZlnKuKTj9TKasqz6r/TF+oR84+q3/XCYSiG6JRrV/PWiD+qCAinn30/C3JtXbWBzlR1+M9KbPYB5GiXHDlbCN0LddyLddyLddyLf8kyjhhefzuH5uKa7mWa/knWL43SAlAOJKYeqXeNLf0K0w3JeUklzcwZDI0mSElI0SIGw0GmvQ41YkwpZWndnOTQKux7qvlz8xtTudwQ6ubadSNB0AJ316+Y5U0QpYwHTzkRfSH4MnqLo+/f/HALjSM5LtpXC6OFGACKxl9umqXFY447tqhXxPQUg6zQitEqYNOYN4oG2xfzDjbJMPyT4d2MRCIakZvic5j5itTovDzbH6OEFWdoQShEVAkpf8RqQjkMQ2VlS+zAaCVwRhD3UBm34Yc8ZDvKByBAXKMDmubEZVU1AE/GWkjogEVfqvCoxGZibE3sVRESPCLNMVGkldDCXRyUJVqgGGMJnPCK+trDZbiTwyE5/OKzBSxyA4iZvIYo9zyEqB1wW7TsThoAcOMmIsqdAiWQSO+Rz4hj0lzo1FMitGIN9/yRjXnIh0wOWv8Fp+DlejQqU4WURpaxQFeHVAzySyqwGKggy4tUyHBjbFiN05BMGXYX6Q4hgga8uhC4mnM3Lg5lhH0iCp6F5wWj14yODcSCEMA4HDjHY1Aa6Cd+E1yM4Rnii9ZpDh4jJ+9t9CkrTWMRaONtgAnUWw3Dbox+bQYHKHdQM1JyFLWDlAD52/FMIrZGFstViqrdBPxToLKAII98vvVPeq1KQ4K0ztMTLlVm2+fDicsGNhtmoHziu71C7I4wsa5a9LeXMeVQDqRMqIa9hjrjZAt8psgH7YjlE+OI+DcdrCN2LicloH3Hx7xxRevsWkaEWcEQEfDouLr2mLRi5YjxjhZO83iLOlQB9pq0Eu+cVQ4BjVyFpdfUYSspDHZ3lsWeArCgbEMLCfBad/w7q8O+Ou/+ICv/8Vb/OgX9zanFAYCFKtj+TDw4XdPuHtzh37X8Le/ecTL+z3+7F/9GLvXFi2KSk4X07vq6Q2FkBPR0L/cV2QeU4ueBPJ2NHz6NPD+u2eMk+Lt23s8vOoebWMBfG/SXT82Rw4zjWRKm+tqB50MpnqFoqFl9CIxYA2XE9Nd8xpNB0iqw3RmtQacTkvoziit6B4tEUxcpy+uJwiibhBIbwHO1EHHN3LPBAc6ljkXQATNf8Ojb0RWS2e1DgdBucIt1Bba580M12Su43V+8xcVRCQsprapzlQazzNSR5bqSIOOWE+m/ChOFoHCS9CUGi/2B1xvPU0gyEuOtZY9gwgSDGv7lxFoUY3nc58LyAT/5BxLPmeKupQl7ocM+OqRwoInIANtzruyUXfOGv9Mm7bmkZQ4/uTdmqk/oMI9CHWV9aTQW3h8BkyKPV+uSCHvtYpYjfJzjjdTqfIrRqqcaZw/0yKv9gFcd5yXqn+9O0F6fadsqfMXnSm5OIqSz7LeS87L2u7f9f303XqaSfmh83P1u4l7Fzsgl/kV8u5Vlge0NgLOnRmYUc8UMe+QugbADCI4I6DsT6TSMPeKU/LC6zEeM+1lD4sK8KeukdQPHE9gAqWQJjvbYeK3CPz8jODrJJ9I9V8dvfM+mHVWYJKUvlQwxmo+SuVxAvdcVVkTKqHrFQiQ65nOLX2YGF5/zS5UJsdYTTIsvreTWXus51m85yq27mczuk62yrGYAFF1TocgIWwNFwkvbVo0YROEAdvDcM2o4lqX9GxLgq7KE6aib7UO/xxKWZwnrw6X78Xraw5cQqqbOB3w/FfW/jNdVvRvBTrMAc9k6uCsgS+Md6FFK1NkxV6e1eP/WTfvxZwALDrQ+2aiuVJRU0I7S1b9TdBWbF3LO+vfczy9lUmHFTnz73L7ZiC8l/0e2+0uU9iX+rnFWIbZmMZQLMsCjkGVkbHidR07jcULM43lWbKdtixIyhaglvZxAGNpeP6w4PH9AXdvbnD/dguIy7lXNlSwHAb2T0fc3G6ALnh8POD0suD121v0m5QR6kHb2/H9AqRH6kDqHdqHpPBc1cBJ+5cjAODuYYvtpjDJhbbqQ5R1x+9AxB6YUdRJEyOorsenlqrzBXkhqeoR/s55WPtzPt8w7R2MV+o9T90V870QVOXjTI5XdZamsj3yPwQRMSakdt3/M17o6gN1yr3NGpWtfDwRNung6ft8p5LJtyzSdfRqnuMr2opWm2iPvZ3zWNfGEa+QtpFUXWeVf6YT5ewJzoEcgLpTnmzPsmrD357Pxdlm7hX0fLyv5Vqu5Vqu5Vqu5Vqu5Vqu5Vr+Acv3T/fm5xa7WSge0rrcr4vDOtNfADRpEeQRkRIGAE8fhUjzZY5GAip4WGt+eq4hf2k8VXhdnqqtUIt6srSILQ4+ueSMkDkykwAGDCGpWgwf3nJbtRnHvIbpABqpqcJwUg+SGofrNH7T+FlvA80ApWhQEfxSRaS1osHAbqhZE+QjeRl9h0R6u3prlAaqJmm0CxL8ezoe10Zx8pTjVIk+60d5ns8wHRbbYNsCgnTm95iWjXwPkBOjF/l7No4avA0jSnO+oYdRsDc35K6cYQynHfSImwfcEFAjJ40F0G6h15uI1SkaY9Y7DeGaaX9UgoaI/iLJT0uflDQrDJzSeo5PGGiHxHt0sjItGVPHAICKojeT6aGe0k0c0LBYeicRMaAMQXriMiuC5s5TCANOV6ewzbce88/GgM/UNB8qQNsYQIgGv77SMQladGMPBzJ/lLmGaNPmv4MWWV/LoCa0oi/VIksFIAYaiPbFgTVDMTqwaWLPOYCAtwNFU18GFKY4B5ZleMQrhdqAGs/d8icAFhqKFkbfkjTQuRGMkbgWJHCHUV1i/vpYnyjHxWxFdZvOGtaB0CVGegKcWCirdVZTlzLF3DReqPOJwClMtdrPAYW5/hXAEQ2f9i/44vVdOBnmYBuKBYIFig1ajOs2TKRzX2m6rXN7bbKzJ5L+pfS1qkL+HOCaYfeXPz494e72Frfbho4BppkCBpoaqOa790d8eH9E393g/e9eoKfFokSF9TdlufKnRgWq9NC+SV2Y4M7ha4RGndIFMnjbuWEcG777myN+/dcf8aOfv8HXv7xF39r8H6JoosDS8PzhhA+/f8Krtw+Quw3+5lcfcPy04Ke/+BLtvuEknvbQAVvSEnQnPgmU+c2UciBoMiz6nY7wruloOB2Bd+9e8Px0wP3DLR5ebbG7oe7sxglRQBb03ly3OGhsaKQ8662CE9SAYouCYFtRJ9znOhUTg/oxykUKnc9JcHrlWtUAyNaiRyF0u+vBtCtPxnaCi2l8jv0OEClhN9Tf/s5C5emLGde0TFWBMKATjElam08uHS0EW33PNc0tZTUaEZ0IGI7vgy++fqkBTrWk9DG1OGydgc68XMlra4AuGvxoDuTh+hUBqcg/QQB6RfxdIPThKHyuei7+FgJVc50XGLh23lwq6LWZItJQNlRDp4eAe+pXaQ06Fuhi+1EB4jlxL5eB42wfQMBu8w4ObRAZEFE0FUAMatkaIrqfPck9W6X7h1U842HRXStaKf9YgfxWTzrLwb1l9no4yFBywLPqGPupxggfkHo1x3Hd6orenIK53kU71aVVng/a5+q06JJLQyhnz64+K/XXd/I8sRLpopAy0miovygxZiuWal2La7uFTTwLzEC085/rtWy9/+cf7MO07q36u3bC1l+qLrAtVZk1UalmXVPfZoBiLZ8Dg0UKMQEiel2pM9R4oSt+xhoA1zPlnME6yr/6vk+Nc0CX5Hv2M0HXzXNbUe9kR3IsqtzWcYoiJcqmAkMkQDAEiTJSKlm53rtEX+rsmeRg1SeSGTzMcx55MM3iIm+xp8pG44sKfGMDDDwcY8r6XJbYgbrO82fgXR10e9b/nIKTjuBwEHh0QWWueCHxeTTPCK01amLZWOZ88n1R7B2mLkwt5Dt+cihrcn1GwAsPVTiBCkQIvvj3cfabVjQDkNcJrqhHK55tCqUreR0i2B9O2G16RIvNXlSZQKSDEwh6ra5EuQHbL3xZ/5XX9c7J4lM6/b8+JzguC3rfYLdtkbrbpqRGxKzTovj4fo+xKD6+O+C0X1xGi76SFaBvNbCkFrr+en0p7ayjXr3ZuXQAz48Lnj7ucf96i/s3W0hPeWRkzdPLwMvzETd3W6A1PD7usZwG3ry5BXoB7EmJeOpE8Txf93cxcIrYEzAaFFRwOikO+xNOpwW3tztsthJ2meiUAGGjZM1pLIgLjGHTROrFAHlVmVvrHn41rVE6jc0kA2I2Kc5Jfk/yJv2eQxeRe6f7iaHXyp9l3zLLnn0iWH0hK34j64t3ta72c63rdYr15/FMi64rl56KPmc/a80cevZp0ok5fNFG7HcuKLcUs/JMtKM1UcDZGlTfj/45kA2avJl0AusrdU0RckOrFU3oQqekQRUTYQGsYwLujNJ3Pjr8oo5+6qKzywLXci3Xci3Xci3Xci3Xci3Xci1/4PK9QUoWocdv8TO1Gw1xyhvGNSh2mnok81EVY+hin6mbfYSnaIkTpoKHOjcV0UkPOoGk1M1oPe6+FbZdDTI0KmlY6CwktVqIcz+KNZRzK0mSfJvWYb1woK2FWC06lEdxfDYxXjANjT3v5qGV0WMynPJ7sX4Iu0W2gQdbZ68a+CR46od/Ro2J8eCIldu+6qf6OE774ZcH13TA+EG5nGF9lEofJQ/RbpxSuDNyMnJkJYZlYxSG6iAtfPCxqo4EG3eEE7EamYeqpedzw4N4OHsDjDTnt0XTsRRwIbkOWnKzwlCIR3QJ0FoTjzBm/yJtXDPQBB3aKuoRf+xnvaHPaCLkQkT04UCLRXQKgxrHUh0EVYx6YdCB3c6NW4/gzT93qIIRetwpy1RDQzAacBQtUbYMpLO45Zq8sUgQLmtndsyMikD5W0fYIiCJ4zpGAT7R2F/nAmVHxEFWJiNDB1rrJRKZzW/ZWPS1Lg6gwGzYKsIDCHllOql3j1YxNByrQx0U1AhWTOe0FJlRBXRBzI3qUCWQQAdBHO5Q55A70M0ikKjLg+mJiDilcL1oFrllAY6Lortxq3fXc6a4c17SeOm6ojuQhG1478uNUZ87CPU3DTNvW6v/zhg4NLENCisyihFBP2yvGhhrXXsZeDkJDvsF37xpFrNk5ahUMFKSYAeJOhlhifTVtvpkdEszHWlyWFvKSNBHvZhyRJqph172RxxPA199cYONmBPBbrcPi3LlTd/fdugJ2B8Hji9H6Mn6Jt5HghlKhkmnNkFmDTYfM4KXMUbEHYI0xsIiuQ2lznC30hCMQ8O3v3nB3/76I7762S1++tM7oAOLDEhbMEbHfgFe3u3x/nd7vPnmNXQj+Jv/+B7LacGf/OQL9F2zfcICjO4AO5cAi/Jm9C0D7lQRLCdfU1yHce4tQ7AcgeenIz68e8bN7Qbf/PgVbm89WpoPQJPFIqtB0fowP4LnKlHNMRXxCHVMT+mAlN7piJNy89Vnr/h6SOes6wiCf5v4WNWBAUyvcY42GwPqz+6LVein4WMhpoebr5OLj5uBFJulwlTqi4FATin3Eeo+FC02ZkZwazHWgkx14VkFfR+E2DPUjHQLHeL8YDgfPAVdgHi00FPSzcBlV5kiU1JuubRRTxrPcw0gCFbd2xDzTjJ6UqhsnxOMTFWdcmu7/TxW3CPI9AD1qXjqzYzMoBc2ejavY+EW0wyZmoGEeBS8QZlUfy95DyVgiTJu/0iDQAxMB5MhA96NlLuijT4HCP9hFJ4dco+CaYyS9oy4IvEeMIP1wtmjDC2jtYaz9SrZlPKWgCb7IEHQTk/sYfwRweRkjM8LZSoV/lJ6Vd676DDGucBGX+eOxzwpGxmjXy65lSQotL+0fFwjB2ZP6vmCC11RMfl3nMlWBBfe0CfId2r9rO9zYlvbrGIyp0ApZElWXVkT5yq+v6JxRXrWUXVUTunkTyGDcl1/Xqp76lf9hGMnuceJ/sh8DuIzihXvTA1Nn9d+13Gt/BzqAQrLdBBgOt+tAbs8b7V4YVbOfH+MICt5WRkWZPl6UWbuelrwjB5jXYSMfeI7jGg6MajKrnD+Z384H/hhPePHGQ+ksXy34hX8bx05P6wuCfouTfkqP1F/ma61zaAZZYxRdVLSUdPwhRis5Ibr7vD9Eq+GTBFu62YaKOfsPLOXKm3cybMLy+jEr+ijnSHqs1kt14OUKa4MVfMl8MeU5QKLzHo6Dtzdbqc2rR+mr4n77fD5gBkIW1cY4JKuzZoJzpojoa51v9uJBGfMWYZivz/g/u42ZG7SwV42G8EXX95iOZ5weNig9wKdonjrOfPPtecF2Qsyc3RiWziMtwKTl3EygNKnxwNuX23x8HoL3uWxTTiwaMNxv+Dw6YTbux1UgI8fXwBVvHp1a3sv5wXPoKGIy9oW8uDPJHk5wXVY5NjD/oTTccF21/Hq1Q1aZzpnzvEEKvJCUrQRc7jM8RT5nFPTfBUf10vMZuf8r/riau7XGfF3rScyPYnUvRG1ea5N2TffcK/X9VkDp66I+UvaVxVnj8kvmeiOeioNax5p8jhomPg9l0q7OpGr6ZVzADO/i1id6cz1H1r6e6aLsP68tl9XE6elRqOfhETDPhag8brPmYVj0nb17wAxFn0x7UdDBFdrnLKf3EfKir5ruZZruZZruZZruZZruZZruZY/fPl7pXszA6aitWU61AA8M43AoNgBsLnzze9wqLmS81Zci3cbuh2e/AQo68OkAkOHp+OiESwNY2MopLnzp9ERCYg2txOYd23QAAHkITBOw2ZBqw539xGB6AQBDXjwQ2bhD8+Q0/mckVIyJYu5piQAD5Fuavhz7O8oh8Zqvwgjp9dTjRb8yXR2DlCw8N7FuE3jkipk+IG+WGEHHEjlzk8IsIh4pBkpYeBjlJIAkTAqmUNTQEBV6xmBIRzvdFzGgZqsFHalGI0V0JYGjqElUgfCXzoZbtTuHao4GIfykxJYDFPwNFYGLLAoQglAoePKImKMcBigxWCGcaS5LDWxaEM06sY7ag753tvkLB1thAyoW/Wbo7naEEgnT4zBqga4aACaO8i1hB+n4Y1RpOhE59iGI06AjbTg4xjAUuSOojUG0B1kZnJqKZKsDwPoLQ1Zbnhtcasu5wOYPom3todFiDCjlYajenGru4HBhCLmY+vzxcPboxn9mfLQ+e1t0ODsr0RZ0lQUVjM6VAB/r6Rq6vD0UN5HgoDGosCQwkNzHIsmei2c943pCzEb3VyPLMswQGhpQ1uCbnRY6rmmiJQ/42SAssVNUXJStE3z/qq3aXLVG2+QKpbRInpZUziYywZggxRtH2HEdJWZ9ionHTI9z8cH5xnnojICV61fy3oAPO+PuL+7NXkAcPJ5uPF3FgAHABs4iCm0HaJuM5C7DnTDsVL3FEMy1Xjz56ifaObL5zJyUv49oAP4+OmIV6/usemuyYS0NBCaMERxd7fBze0WJwW++8kr9G3H8SBY1HTwUMUyTpEuqkbcI7c5D6lD2dagEGI4uMR0gEAxPEUihuC4F/z2r1/w7tef8OWPXuObn99AtorhFuKhgmURPH084sO7F3z5zSsIgL/+63fQLvjJT7/Aprdw4Ng7VCmMHERLsMklU4mKiBn+HSyqLtwvjws+vH+GQvHVNw+4u9ugNfWIcYq+odsnnX7Nw1UQ98z0lNyThANDvU3JSAGWNk0ytSHRbWrR75QKZ0lHbOO8VK5VmsBUZzuBoHQA0AA8CZqvsxxW1pf6R+Pdoerrrvq6poB6hKGBACQrkHsdZ/0YqY9DminMvmdS2Nyn6HQ1HaXguuVR0oRrqmAKNtSyDzYInNMS82Qts2Fv9zWAzmFGS+BtcL6pBGg5/UyDEfsRHzcf6mlL5o/Gdk9UGATP1kfnFcduegkAmqfic4c8nc/5tUba40Ki67GGjBxYo3UxyqBBN1UBaUyf3EhozF1oQ+PNaAEQaeJ88miz98+Scf4Ai6R0V9BFFB1l7AW5k7RPNB5fO1I4CaemLrTLP8tt/fiQOrbSk7Ie5xiZ21mXCgmyvUASI/lQCmp8X591TeB/q2Y0F40vavdXUVzykYkRsUSUZqcen3d/LnUqMroEVdmKLcL5zf6UMZiG7e9qY/UMx76yKfR9EYdKSt231J4FKERXD9tGZapLp9dzrxHP+Jq0dlaqr4Uz8H7VR4J1JMc42vDnWj5cOFDq49f1Ekjtk+S6EE04zYLcM3H/E01X2Y21iv0twKo1x5uGnh+1LlCmyxkO1P3INH3J6qnmAD6Qb0q97eeMNtNRyL8oH0ajnY1qSrdY3krf53e1zMVzGday2Nb3ch+MSNFG2viiTh+QcYUwzbGItVSnr9dvxW8E9dZUU/lP4vMRNGhEKxynrFCHOmC7CBVy7BrsLBm2lNL/xIaTk7PAzpeiLugH5AzMZ+fnYx+g9uxxWeyCiV/qWbw9UTtPqYidMZBzrc7tmZdrWoA4T8Se+Px5js2lka1jpgCOpwU3t7eZCjDmWK5aBHS0JtCNYLNrdjmA9iXuiaYrI2fLZDS8ln2Oi9lCEFG5rJsEug/oqeHjuxP2TyfcPWxx92ZjEZS8XpPThuNhYP9ywt39DlDF4/sXyKbh/uE2wP+ClGtIAZ8VmRfxvXjMyXldHgsstdv+iL5puH+1s0s5LfUr9fU0R6X8pC6X7GvcUAlxzbGOrZ2k3gu6QwDm/QuQ+8gq5CZvM1CPer2+G3LT4Gmhi/xr8p801PpmSHfawyozcj+RCi55UnSnP3cO6JfkxwVapjW1rAW0cU28kdxKTP3Q9S/lgaoXddVeee1sCEpdUZXM78RYEnREfkyVr2Z2razs3zhe5FcSImfP0F5Ze5MQXY5auUA6CVG2H/qyjHVe+8KqI9dyLddyLddyLddyLddyLddyLf8w5e8BUpKwoilaOdDbIYjp1DKdiJl+RDYBEBKPIiAlP9dkTPJDrvKzOOC7wYLIIz+hWRQljxLQ6Ij32BcNBnhwIFJjgBceUgPsQMsZkFYRGhjyYxpNWzUOxMGvHOoV0w1D1TTq0GgV3wGe2gdxUDRwTzpfVRPskiR61IkVjVGmQ63mWIVxwOrfFC+HAQIUTI3HY64qgzakSa1gWtwgqlMUKLYRx+XmRpAwYEo4ekXcoCIABkpathynajwKM1RUVWBSkiY70hNuc7UxFEFJo2ZPM3pFa5Rfi84TDiG44UENUNE7x9AY0XtDAOt0eF1S0vd41BaBOTu8fwMGFOni0D1h+iBJA1g3TqvYs4C6U9+ErDWGfo+Pki8UbTrV6bCwECAxPjVKC4EoTYDR7J92wcnlldHAlgGMxRyidLiEsTTkFGdOH/F6AQ3AmqWQ61BRnE4ZUS3TTWjM1YwSlgIf7bilUUdGqDIgTvav+rdpIsxIOzUqivdICKBhRBGfk2gBehMH/iyLAa6OY7H5qZY+zwzVrtcaPBIG3Lk9AE9hx3YZMaRJSwO5G0ZPJwckOI9MFQ60E6aUlsOtZEMHmlqUMIuENCjUHi5IIKMFdJT6ZdMs6o7NXY3HxWsgwWlcJMTDniewoIE3sZ3/lE//NyiDWWXlAgDFog2/f3zGN1+/juhLA4hUcIClsVtUsQ1ZrDbAbIP9YBdGkU3nHhSKQXVVnAzlTnKUXAJsjg4AHz4dsdttcLOrFFYTY86T0HWua6ruUSjGWMB4Tq3I/BS5aowCTikOU1FsfFEZsNvYts4IuhjQ63RU/O1f7fGr/7DHT3/xgG/+dIu+gwEeTi1k8fHjAZ8+7vHN168w9oq/+tXvsbvf4psfvcVm0xwQhbxp7EqkB/80PIq9AcMBiq0P6DIAbKBDcDwMfPfbF4wBvH27w939Dn1jfWkeKQ5IwKDJtK8fkg40HUBvBlAeC4IG9b2DBvPTMC2OI9TF5i91OGeNIqNcAbaeMAKUcN2m/obNnTGK7i1OHaZ5OQ2bAWOxdIA25hKR5EIDqO2fQgabAGPEXkvEeaNh73YZ8J+a62hsQZZ8RlCcx4VMNAeOasobx3lo7kOGigP/7NlRwFDcJzQxINWYGMFxiQU/aFVR6Gn4ftPmZY0OE9GowsCfepVrxRxTwfdSo+otxBoNj16VHLAex/vOgFgHuC41GNA75h33JxJyZkuTS5HLqkZ/AaLiBHAgPsHLZW1jH4seaOJAZwGkdZMrX3Mu6asfTqFcI3SSbxwBVFmT+bVQlprjhnn9tPfTmVtq8ypKnfHV2jEnsUzOTedZYb0PyT8py4WkoLV+WNqv1Ujp5rqUOZr4kfKwnFfJ39ORvLpJ7w+lo7Y0NikT1lP2+Wf9y2crjfV31ljBTBfZpvPf2ZT3gHWt2j4TmTPiEhC3dtCv38VZXeWn/9HOXlrVJ6shFglgZb0Ywjr5jvAZINJczwDxbJfaJ9Yw7ycg2Ph4EdgW0RWanMuYCw/PALFerMamCpni/PtI5QbTk93bVc1Ipt49m82MNugRJ6cxLzIUIqnJp0nPSfkOEumhLg3RJXkVrPro7fFsVSPrBpfdkayVH9MTCD4EqNo/FDhfJMeN84sRiJcxeBqZdGI8O/VKz4W69Int8SWCZrkO2X5SU69cmJM8C4WtJ3SKE1QitpAJw0NPhm0kopysaU1A9tQuvN0LioZzi7ohnl/JNs8aCuBlUbQNgdOSug3ws1A5Y5Q5QZrq2K55DKzHvczTIojnoNhLKl+xPw6MZeBmuzlrZ1Z+uXaafDmQXBOkwKiUUY8k1KnSXdeR+NvHXqkTik2NcrUsDU8fT3h8d8Kr11s8vO1omwTa2Vxu2B8WHPYn3N/vgKPi/ccXbG477u92dpGGPSq6Mc815zQmCIr9s9Tpp8PA/vkEoOHVq51dcmgFfCi4qBsmtq50SnC76kDN3+M1/92izjnPad/CGV53mvtT2+y/xM4n1kB43XW/QIDLBLhRXFxPqx5laVHn1OBc/DBdWSJe3wQ8XjVW9chETKFv6rrG1yGDlLnP7W8vbZsKyXOd0ZafL4B57/W5yoA49wn38lS9l/g89cr5IyWKEjj2Gr9bI6Fgw25kD2iMf9j4Cu8rX9dRYmmfmYZA6gJmWpADGKAn+R/BpYdruZZruZZruZZr+cMUEaD//eKZXMu1XMu1/CHK99Y8PFAxvZoZ/hgVJKOD2LNxHJwKz7pDirHGT+RmfEonuz0/n4KZ7isMCAIMXdxoIubc4U0WpflJygFdgvZsh0YqDYNFGDa9G+FYFx720xka9JfzY83/TnCUCKM9zQbTNCIk0GcyuRVjCpCGY3VATzmLhnFKWkYtEGHaHYmIROHcKMaldGDWwywiMlAYM5FRfCgD9fk29SF/DWOqlH8+LnQ8s5Iw4pZqmkd6aNUyoSYy5BbbDwoKeIwpaAQS75ynAhR/X6cIKlN78OhKDZFyagygGxrAeEswQDOHPEg3x7IBArUINU09fZcBRQSe9qxZJB0RgmFSJiLVF4cHdNILRNrEIxpRMk2i86rwuA5JK4aaJg7q6RKAkMUd26dFsIiBbCyMeJWDegvS+GWABPuwuVVPxIE1TTztXMfQgS4S6XzC2YBiOAOjRlAvma7QabwNsJI3zuERstJIQ8M6HXdhFBMbg9bN8T6l14MBWHqTuIULGPCqNzFnuwyMITjxem41OsKBXt4fpscb6in1WgudKvF6sTYiI55wIMcQDHf0SgN0LKGDFYwcZSO02XRAhxm81MAFFoWqpHYSAB3Ym0BA4YA60KAtYVBMQ/usBwbUorDE35N0AEBEA0mznWYYdQJhZeD988Cyu8HYCE7l9qnCbkB7/BFsRMpnSVXXlM6i8aPNtEc6QAmY+D33jobFBEOJtymqOJwET88HfPPlPbYuaZUvc7WuJ8qfCgf/dXe8O3DU5s2s66jHCV6sFC6g7A+oNGiAd1yTiGAcBX/713v87lefcHsn+NEvdtjeCUSW0LXHY8PjxyNeXo746usH6PPA3/zVB7z+5g2+/OYGWzQsHu5jcGyH66XQMSMAF+icrcB2+LqsHacD8O7dC/ZPe9ze7vDq7Q36VkPPorlsltEYOtB6K7fzqWCDtbGujpPpit7dECwy8VAAAzaLg5uoJLXUi3ltop5kKlJQZkfZp3R4ajt12ZJQtq7NnYZuYz9cR4mUcbbxN/BNcwOzQnzd5J4EJJdtaMon8x6GU4b26GqpHuNsTY9nfQLzeUZ/hCSAqUayYKTCmuaGDO/S0oEiSWMAcjg1ILHfrPuPXAMkaKm0MVUrR0l9zWT6GqDst4JPCeae9ZkB3WuaUQlayPOMwsKFVSCRdtRqXwAHKeWeNLVi85SQgTIo414HQ9ChGNyWAdrQMKAynJzuj64U2A+sxA3x9Mb4D87NnHfr9QX8W0uEs/UTObQ+F6vGL6O72uDVP8M5U9+rAIGVXoDO82lNcV137Lwzr+uTc+zsA80+rnTQvPuaq6iOv/mMNn83vzx/EXt3/5hRRqdF9fy17MLZ7+fRRVKHZF31+amPjGo7MzQ6lOPNz3QedDYhM31zm1V2ZlorVdPvPCOv+j/1cRpjCdL4p5TnKjsJ9Kb+FvLBXzRJ1fjL3rdK4i5KQftMVAqQe+KyRuB8PGTdOW+Xuhyhssqeizqe/ZIEmNfzCIavJSs5CvwqZp5AZjlOmnOOrmdxdGeqTKf3AJ3mBlN4N8k5r6WekF0UWrD6WYR71irluTYNaUbR8v3IWGYcLduLtZTnnwLCXeuUc92QghaRSeIyWu1U0XshC5I08vmR9PGcw0jHPA6xnrBHYP6i6gH2g5+3Agior8X5jTSuHqn9Pg3F/qR4uN9wZbZ5UgajXqxQ2MWBbK7UXASFcjoomIWeFLWig5F9D16XdwBgUeA0gO3NFhIKb62JVh0EgL7B5s03SfO0DuTvNrzVurBaH0v9aw6sU3HpAD59HHh+HNhsFXevBG3DeZXRcPb7gdNp4P5hh3Ec+Phxj5u7G9w+9OkCSczRxEtkX6qOQtroyJ/lqHh+WTCOC25ut9jsGuKSpJS6Ck9CPVKe13pH52eBtT7M76UMk4F+UqDVX4y7kcHRrLPa6YBznRgrf10/OA56oW9k2yyys86W+cM847uEhtiv9H55lfvoaY6uOyCzrlyRUtrEeoqdiXmslbX6opOn2eaMONe99sk0lhfoqTRQRwUgzCueYEdVXlF0WsiR5ueCCWw295MMlfoJQtEL8gIM64l+CaY3V0yVzy4QtMXQlq9T+s5ruZZruZZruZZr+eMusr3F3S/+Szz+v/9v/9ikXMu1XMs/sfL3ACnV455CdfFzDoFLPPDwUGTOEtXmh7V6e5dHJvOamfE0U15ZyZO2ncP8P81Qzqpqt/OggI64AejmrHivMUWHJGCp+SlZVydTO/T6EXDMB8tqBOXhMwyiq/ObKoE1mSqMQAfS2UrdgDmnVTCnNyFgwQ+faSeQqS0RqzfCV3sdlqrFwQ/Is25EAQAPs5hSA1TrFI0cZiREHITnoUpgSRgYisVJPJ59ODClPLcyNGj9gn0r9Qr5SUvHJetCsShpacwO8C36MQbQuglFpCbr4v5Eb4PhYKREzlC1lGpkwYIE0TEc+mK2mU2vjDJaapQlAqKaM6HJCDCbiEVYoiVDC5NaEzQHx0zOFbfQdBrkqnFjbZzz+6XsZppmKHfiBmWfd91SAGxcbizFWjqsIQagS/mwlGRDYWgZaIQz4jxQtShEKsVxzH647DfKgCoA40/vzZ3OxcEsBoZqLVPxqc4RfJqT4qa44AXnnfoYVvOOOK+q8YxlqMEz1Bl8c7PBMgDsK7iPTnLqIPXMPGZhkuYpFHWgsG4yBFvpYSAbOrAMM4AGuOikgDZPqWY9XtTkaOtAut5tjBZVaElPZwArk6vDST1qkWB0YCuCjRD2knOxw1KucarPACGbTw4jDcniGCiSN9RDmZ3DuK0KfHh8wc3DHSCKgYYlVherj0ClDgKWsrTys6o29WdrXwhQmu4LXnDsDR/rEf8EQxaM0fDu8QWv3t5js0n66oxi+1l91j88xItIN2AHc1INA6KFDmMdkyNEo251ug3o0iOdFbAAQyHacBrAr/7iBR9+s+Dh9S12twv6zqLmAA1tKI7Hge9+f8RxAG+/esDh8YC//avv8NXPvsLDVztsGoDFoyQ4+kN6dd0bTQlcpc4uAKyl4enjAR/f7dE3W3zzk9fY3vLGfXOd4ZCruj4A0JFRmoQhsdwh5moi5poiI+soEEDVyMwlMCAU5ZQOv1AI1p1Ya2M9z5/WlrhTwvXO8HngfzP6Gp8lToXPFg0DUM7YqK8rUAJdUkcD6no319iyjYi9GvtBgKb42jwKECeiCbqDn2ue6TCnS23fd7Zl0zI+LtNSeBgRjsJpM0zmxHo7qBMBG9OYBhKTSDE7kUkze+tUg46g1e4g9jMNJgCqOeZt2gQlz7J+da/TSCcDH41NjPFqjKSJHi8Og6qD6jGgY2CoRNSsgHCoxj5hGQuA5usBmdyggzHwFjTZ2B7Q9+cya7IfXpH6Qws/U1/kDpWyiaL3ZDW2sahPz1WQrwg/yRVJS02JU8g9UFBZvH8VExmkUpWnQCRNU4+0/jF/OT2o82eSlF8qZw5If0dW309OzGRx7Guqgy/Wk/hdE2yyIr/GRzvjD8rUwExk3U+d0ea/lCGfX1zxZ3LmTp7LFS31tTJtJ6D72Rurlc3/x7NWdVDm/rcC9jGdA6O/lFn4MWMClJ7vYaci8PMDoJKg7+l7qeuEEx5E5YN0jk8XQTCJyKrtlOPYX1V5w0p25MLrPmbc6sRSUVUn53M5D8R34Ph5euZ6ECrPnJGOtQxIyIEAmZq7/L6uTVb/zp/wvwtPKkMuZPKJtYv7FVtufH8e9TgUrjQUutP5ZhED6zpZzmjItjnmrDX3VE7TSI1l8zRtKN034YzOVS9P2HA5l+0wgtNi6776mTWAtkjZaP4vZGruJtXshZKaMcaW/OIfsDPF4TTKmXmOxATvckQqlXkVtTPN5Sguipk+OvVVyuBeeGf9btAB4GW/QJpg0ypcIB+Krq3qMwIIjU8FI/g8Lexv7Ko/Q2+qZReEIRgq+PjxhKfvjtjttug3ir4t5zm1iI+fHvdQabi92+J4WPDp/TMeXt9he9dTD3L98X3u+vBW1ynSHTryBOz3J5wOCza7De7ubuwimOTLjPo7mbD894hupFRKxX5Un9Vg6UU+VabGeb/ubGgXYNRQPl7VF/WRIC/OlDZDpxY9oqtn1utcVFPWuexY5aec80fqH9m/sgz4eoPQ39N75dX1z7U8nm0Tzp7Pis/4r6XJFFZcaqp8fTYGkx4sSuJsHUTKn/1O/Xy+WzuXldUuo+wbzheJwkwF4hZtGTfGofPVIObRxRY1LTA8U9rvlvkgbnZGg3+XoF/LtVzLtVzLtVzLH1OxgB3XSErXci3X8p+/fG/NY4dlsdv8jeAFc5yE4T+MiD0PczQEaRpc7XBkHkT5/7H3J7HXLVueGPRbsfc559983e1el+9l43RWubLSBiNKyMICYSEjWSCKCUgMmDBASAyQGDFjQA1gZIFlGCEay0hIxrhsyUimXK6qzKqi7KosV2Xfvub292v/3Wn2jlgMVhv7nO/6vqyXzkvmiU//75yzm2hWrFgRsdYv1ipFPD0Ang/8PaTn9Z4ZuYi6/FBCERBGNs2thWJYwq6wW6Jto2+KQFN4mjLUlARxHe6pqOgLpiQxY6KXL1QJRbTm52G53BAIr4yHWiOzhZErpTqdQlbokusS08lOMdyKRws5CtpYwwLp1tk8Rvk+NysbcrsT7Z3eJ1TRvklPWiN3adziRoSzYy8gK0pF0UHeB2YV0bfRA+aEDyxyQeedIMc/036Q8CgKCslAISgjQJS7gwKTGpsnGqkbZe21tqWqBslPIiuvVQYGYrRZvUWp9lWU8qFOHdTDUG0s7sihACQNWVYKNMSX6g+Ud8SgQCiqLKYCN5AXA60wBw0T0xQZgd529Y/WKzcAD+1F3CvKqUQfScg2ciN61VwkzFJodWw8DQWYay7d7oe3C/PoEQae5kYbEIGG4id1BwVrFW1nhIkTo38hwsjSP6IEpwiziPD2k6QMThsDk3eTjj6ipG3MEnpLEVXDIP1Tq5zeLephpZqG0U5oD+Itq7XwUMKsnpUshBpDAFipvw2gJX3NMIgDyLyzkFeSweCBdawQeABa1f5qrOGmVOk3SFk8SViEeQDWqyJjgtAZcGwCGZCU6LTwNpLoZSo88DGYxWQxAQrYkhPPIOBqIyb86nmJDK4AZm7inQWk9yO/XEJIqtyHobwMhy/ZUEOL56WOlaP/5ZNwt51Qa8XlqmCA9J0pL+29Roq7QYhE67mGhgqWMICFRZaxeUyjYyNfas8yOdBWnxvACpoo2O8Lvngx4fnnW9DU8OTZGk/fvcR6Q6AiYJfDRHj5+Q73ux3e+9ZT3N9PePnJG3zjp97B4/dWoMJAa6gmp8HqJKmBLSRbmgsNBCNzCwON8HDfcPtqj9Ya3nnvGpvLEmG0fBxUGMjllNdGPwVuxMneBsxIxAoAPqHUpjTeqMvbjIQKFEqh8kSAUveceQ5qLCYQA6g0QVY6UIvZ+CyMfdyUN3TMFJ17zI0/Az6ezCDIzJ1B3vKyeZRI5IJ7MyB4UKwwmsSaTDz5ATJPKtBUfoKTpVDaCFjojmxkd0CS9ovxfUue2469NBUfqAYKdzogtT/3mxlgtf4OjlZrN1mMFuUBA8jntVyBrGWHJP8BaKjFBMTwNU3IgeWoczpksDApCBe2xioabrXBT5uzSTLtB6V11UmedS4hGEi3apM4hSAFgJDdIk8aCtqJ0/dft0S+lLT2S+L4sHWWtjXWKPoIBy0JbAsTe/FoBpdrsTanuCh32NZ5ZtRPPE6pbpmPT33pLnY17ivjbYyvlJ+kuJENkonNukbmPQKn38Zjbt20ezap2RBf8P2SgHSi3ZQqfEyLL6mbfe/kVlfFo/e6DPIz6WF73+ZWp6sSd0mzvgw6WZ5xyvLeco1o69V8kIUBRzUc0S91uP+2jtC5pbnXXn2OI78jdqKQcXC+zW2KQyJ9O/TT67loT6raEX3oiJxB765y+f3cIPmw7RqnZ4HgjwzMcVmeSiTqs41CFxXUyYQWjbQQpT5HLPrF5jOCrHczbToHv4nvgL46R3t4xPxhY7z5Qi/LOt0HEnk4WJOf2TN1jCnt5xLzfdcdFJ6MPHSTyWKvp67DANGZxCb9iM5EcMcezcvruAaAzPHMejioJHGtAkcOG1CHS7FCl/XPkpKPfqUHU/6VgcM0S1gxZPmg9QOHR1CKwwi0aLADBimtGZXVjHn7ecpqQwl41QMnljwzN0ZlxuVqBAERqtzWwblGSX57frYGczACwfYTRKmsEwM679ujEV5UukSojXD/0HDYMVZrwrhp2FyusFrpvpQJrTIebitaJawvCw6HGbu7A64fX2Kt637T89m+1b2tWR8Rgq55GmaAK2N/YOx3E1bjiKtHa/Vube1RanPfggV+I8m9AOSD47lTY/ptSQC9Nm/IJ6tCxQGtUcVUTg+Utf2BESLkYdCDc8XY5Eg/TByYmNsbTTwJLD4xFfqN7Im9YxdGjJYYlPGRGJfyT39G6WNt0jHl+7duxPaVIg2Vnijs5WZadPUgXnjWO0GHE4ToPKh2NKDuJU5t7dZWmTDLgl0Wk/YP9zQjSqQNELeX7wxCyHKGELKyk5OU7mu5AawzpjqmwTmd0zmd0zmd0zmd0zmd0zmd008yfXVPSgZjID/rpjtu7t3m+ya6hk6LCHJyiR1sAD+5byCKAWjswBIDm5hHAKmDKY4IrC7QB7f0knhzMCAI6S5aN1f5jGkp8asCEQosKSikDqqI9JOodh++gcsPlkLqcCe0l37KlsybBUKBjexlIpSTeUOcjV5mOHFjb1dHe4jd4OP0VS3GGDHP5J18fBHRnKTCEcWAtiNUjtGmaFev4BWi27uuZ/B+tM103vdKaDwBH7ACMugEDxwrXjmaUcTnDwMBqFHFgJ2eFCMlXBFtwI3gV0YzQAaUfy3sEJtnrFA+WTgAUv5u1a6RahZZDava36YUKhBgDwRYs1LX6EzFKzgQBFCjyAYazZgnvG0h1FyRUQQaMSDaLrQPryPWx+FrzH4DrfODo+cwOftYYlWysoe7KwXgQh6ezkLzqU40FB6s7W/JKG7oMh2nxcYGIcImkniF8hBIpnhtDUOR8giMUb2qSbuKe5ApFKHf7M9ANYB53zE/SUl35bwaY91BKRx0qAxUgnj4IgFtcmGUVlHKgLkCw8xuXBgQoCZikyWMYZTx2aAG9JLGt/VRYQerjanfyyCepUASZo4n819k75H3V20CRJhnBSip1x6yU51z8HxjwsxyCnocIadjmR3UWZXFh0xTU4R7+Rk2ZDQOIKn/Nvmc+uR2e8AwEDYDA1zQiKUclrB7FQIqKNYXqe/MCGEej9IU1aWkY/TfLX0/+uPeCxMA7GfCwzzj8bNLBT7YeUrWgS5yzUAjdkpc2J6dp8QrV9P+EmlIGiItl5emhS/VHQ7aH4wGJsK+Ej57scPtyxnvfuMa7z0ZsL4qWK8KWpG5uU6ET350i1pXePb0MV58fof9w4TvfO8dXFyPzpcMHesgrHT+ro1lLDG8rZV1XmcZj4ddxavnt6g84smTDa6vRmCMObExxfzfioBmINcGA0Cp9zbW9rmXQoaAvJj0T/MEI6O8bE5oLajHytdgOG/aNO8gMSvT6G4yzeY2DXFYQeIJqOmcZmOrGcBG6mjADPFCEKBMqyMgXsyM71w2EycPDxKSsiaQUFHAqIVCi0Za3tTRIIczg16T9YxM8EvQgoos4T/3nBcgLvPaYBIg2kTJ42XkFWsLpbfN7NptYYRhqZOu4ZiTVys2QFRJRvrcfvZ+ZgrPgTZGichBuR7ObpHyeCNdd2a6GFGEVwfrLZfZ8lxTwJLMVra+qi3AbiCARvU314wRc9g5QxOwA9jMyyCj6trIXTh+DZPyBREMPJNW1ItFsH1Jz3T9kzwl+MRtTJOlPnW5GJ01hyRTyRmRsnVwUft8xcbtKd9V/QpikQFFVZf3/RFKZZ2ylr0l7649OiYtr86GdarGhJP8b6C/7r1c93yd0toPMYZ9j5B+p6y+UjruVfvdyxbrlyXAt8vnLZktWWpZsK/Lkug0OdY9b3mk9VzO66hqFHKb/b9oj93g9Nu+Z14hwsm97Un6JF606y09o0LtpAeZqOgxDbjjF07E4OBx7teD1l8WJtTbdII5Mh/FGEEM2beMF9+HcZ+386b3rcPTujIKmQ4h1nNe71R8Jo/zRaJV96zRQXN155kE2fvo+CWCr+WZ4Y5+bU42WnYyBljso/tKxVpBKkeFkudn+PzS7fH1vWprGH8u6CWNp072APJOF8Iwv0Ky1rVDJSKd0zhcrEXidzLAO/ETn2m5vmdH0Ne9HumflcveUcYgfX+mUvqxCCzuSisMxJT5wwDUuSmNge3ugM3FCikqLUzwON84A6Pry2iL/C/9pft5iqMZPaDrOC1m5SC5DtRaCffbit2uYrUuuH7nAuMQcoiJgBm4u51xOEiIt7v7HWpjPHmywbgevE9NpxJ6G0qeTvv524BMrQHToWG/PYBKwdX1GqsBEt7a62p1J/+dZaR98vJ56n939/nEnJ2eXVQ5rhFi34LUrxw/KDNZV2aAnlxeO+0iv+7dNN4pP0+Rz3I+6tqzuOVDm3P15IJK61g35LkqzZec6uv8mmQG9Zl392xNYdd9mbeodBx2TG1cZAvk6SHWPDm/fmhFO/t3F8UnolrV3dtU5g+T6ZC9bZ5nZG6wugSjkXag96OXYvMnJXlnwC7y94zgrOVn2YT0K4q0XPjtDT6nczqnczqnczqnczqnczqnc/oJpa/uSQlqODKjghpMSMO0mXEepYAwgtEwayCeggKQmG1dYUlDbDYBMGa4SZt1Y1QGgE1dJAAIUuWg7fZakY27gHJEI1uogJuE7vDNWVJCZZAPAVCN2FEyRZa5ZLbdH8EUehQbUt1UmuGwU22ygTYSgEg30o0CqNRtATlOBNl78pCd7gta9joGci2MGUxZy/DtdcuKILgRsETRWoYo78bRjKRx6h+AG9XAGiYlK3r0Xe/jxf7WFTyMzthqYIqcVL8mG+WB3Mux0x9JAUVwBZYrZigBqUoAkuJ0vnnSCi9h4PBQY6HhLJZNQximjX+oAGVAjAPnCaBZn6sSpGmdBn2u6vUC8TKEAgwDdc6PjLDmTSeMMaaMIVdaMMJrUB5jPv6sf/S+FWE+tuxpgilcYrRYqKve0EHuNSKUPIRxkLY3FuAQDcVpUAby0tjeA7kSzhRNcxOaCMDMwBxSZhmKG5PHgRQoQ1KWtZBI+xfi6SW1VaQYuhaT/w6wlI1V64jWjTsBkgHCl5VDMVSGQRSLRBgGwkAMVlDHVNldvpC/Y15EGEOpWI8Fw1BcidksLBEYrRIq2alfBSEpAKyxeBGrWuUBEO9vBEyVvY2mLCSEUd8Ks5OIDPEEpaMPMxSQRAYkLMCIkDMwkBH7nJFlALHRufcE4yoxNuMYo3HBvGt49mwNgD1EnMlE1duiUHHZlY3E4SEr+vw4hew1g1Qo9/oUsq03hswgvLnZoYwF64EUHmc5macWTsCn4JHmlFUDigF/S0NlhX2xgnsxwIwOUZcAH0YZJZ5idpmzPRR88cWEu9sZq4uCb3xrjYu1Gp10UM+7hpcf7vGwA548GvDiw1vsMONnfuYdbK4GD2npKmmWGtjaABpKMHgIqNzAtWLeAXevDtjuZlxebfDo2QbDyCjFvIZpHgWgRihMaEVAGr72MJmtfwyIFzftRTJ6pu5jU+6zjM/GDRm0bFjm7LnIgNf5hK3JY0bOngyr7UAdUbrLJGtK++40dPeOMFEGEjQAwyA8zQrCzqd2TS6JzNX8nNOVG9g8GwFuUTTQJ2LsAypP81jUuUo85FmO5lFKvFJFaDJ53uYFm4QGKu5xydcjSyU3h9cFAKCBvAneGj3+TSCZG0GYOclvhoJ9UtvQULhEiL3EHbb+K7Z+NEHOiZ+V3jaP2e8CUhDvEiBD3pfu7YMGMSxbH7DIF5nnmo9T8lm3+XqzUQHMaOEGH/UvweyetBoIxBmYBhkrHGuBr2vKoFTrbV9jp0FGLrnD8yOTSU/uBEG3n+iMPr54gq9r0iiOFZGOUZMjvl7Iz1n+i8MC+p/lFaCYBFCiyLMTItoMyyzfygANY9NuGOU8F80NOkbGnC7n1I2RBIbwnFKejXpa9O/37yzEis6zNraXNF3kS8H+y3r4/gU9fSz/ZWXy3gaU1gJpHjkx5csjdFw38sL6+i7f87ZZHW3uQswHGefY8Z0iOBIrWdRpD4mV6Wi0yGAJMMJbzanknZJAQos5zljoVBY51I/VPcZxHuP9+OzoQoh1/3JMQPdurPLNyrN6Erp5zWiwBFcYrZqvVeKGA2/0szFjVD2DAfd9/CLK8XYtx2C+p58lXfGdeFpPLGnElme6vwROd/yPBCqzAyn+rHh1HQtrqPSgoT9H4Z3Q6k0MX6fY3Gntteq3vvLSF0HaxI/pQJJN7qSHxCg5plRimVdcG3fHnEMn+6KvDHfFAcC0r1ivRtheOPaJQY+0Y+nke6a1yXln9ejV7r1urJ+oYU6suTSQhKQbBgwUux4rMfj7SxI3tGkPX1tSAK74hGDl5ReSMri7GeOKCZgr4f6+Yb9rGIaC60ejhLlOcr9NjN3tBG4DqAC3L3aYuOGdDy6xWpWQv4mnbc/MaVx7uFwlZmvAfGiYthMaE1abNVbrIp5gjT81H5geLztvTm3KssO/pPkuh/V1frax2ZIu7oig5GPL2pcT5bk50TlAO3GdAAdx5Wfb4rncXwbi9xCjOj4zT3essKBLngX8HecnpIEVfBLwN3TKFevjJTjJdRDsnOnZ+vogzz05D6CTZcvx3o3hE8Ml9kLR8FOyJMZG5E+ZZqmOnDMGjucFExhs74THIqMeWVGZ0TRf9k7WvTDsQAhSPr3EsD2t1CdXKPzVdUdvlmMRQBxyPKdzOqdzOqdzOqc/C4lbxfxw8yddjXM6p3P6M5h+jECTdhJXVH2xcySUMojXhEIKFGLfrDmQhiAeDhQgIpoEM+JJCUTJcEhwo5ad+DCjqwGjAAX96B83RimDGJTMowknJQSpwZi1Hule1MHaS77xNQUaA1qGbXybG7AcPKVKpqypcSUdJfCE/2+by2iv7Cup26wyQumSN+yhOMmnJ3vFtimcfENseVu/qocf9cwdClClkRlY2ZRduikOl9RBA860TCFumOEeh/I+ubtG0HBZxelmG28LceV185OQ6WQwq8cM5Repu7w/FALIQoZJpYoagqlpmK4hPP5I9zYB1uQwLoU83EwxGpH2UbJkMDfx+ECksatEYVEG0ndlvIinHwOeAa2KxyuuOgZUUyNAs8yv7F6I3D06kYdaSyyCoFSwhPUbKaHdmVZSMALk4K0FO0m4HBhfmOcOUo8gDYUGFLB7lKoNQFFTuoG62PLWkHGmnSNRQjZuAItPjTZoyBv11jS4crNJPxUBPQ5ECoxRHtUuCYNjAGnst2EUszHS/lyTd5KWCsJQjRMpvSzclJ2crdwCmKXuncahOOjKTrc2NUITGq4uRqxX5B44xDON8ngL0KTLjApwZdRZPDu50tcVVOzxAtx4rqBOQnODvHkWA4tXnMbipQXN+o5Ri9YfBbWK/BgGxqwAwJEELKZ+Qjpax98C7KJ1DOMSYX+Y0WrFelWkTyn1C+BAgqEYN+pYSXKxes+RK5Oz8jKrAQkCcDupV+w+BaRh88NhasAAPL6+ADkAwVSIQvbqim7yuoTSWWTHrPNWwSj9UEYwDajM4rHKFZfBi0m16Fxo15mBytKq3Z7x+Rczbl5XrIjw7W9cYrUx4InM5/M94fnn99hsLrA5NHz4Wy9QGuE7v/Q+Lh4NET6sCJiQFd0iHuTUr0AKo+qgxYnw+uWE+9sdNquCZ+8+wrgByiC04iagYrO8Msj7u5B6KKwRMi3mPf2trrf81LXNc/pwUa+LJrOzYp/ZPD6pINM8DChHNi9yzL+AAPTMkOIcbCHQALB685GxSDE3tZDXnMulmPNz3QSMwoCvecTjzjgIf7WuXrF+smcDkCUZNnMV5M8kPkp0MfOdrTsk/KStAYqHHbVT4czk4BkLaVGI1Gub1K+x8ryHimNvPrOAa7g152HoWsbsK76egvalzr22fhDvZCR/NeYyhoDUwngV7bPfxXkmesA8nwDRZ0Yo93TCAiAEwvuSyxUWQJyFgTUYIUHAUE1MtF6IzcWk4Y9bqzoODDxQ5D1nOgM9sYYJtjlPaNAZsL5mKYcWgsu1PMPGrOCD0hcnJgPJZYHxcD+CgnbB3LK+oNz5p4xKSeh3Y1Jv5bHKqWqUDUnUZ+WXEx8CcNB9z339d8+ru2g8gyQT0z0bj9pEY+HlBNhneQqeG+/Y+8u6djnw0oObLMRs7k5L7C6TIyBN3zV9eQwPS+J1pqOmdXXytf+JNlEq3/Jy8cxIByOUyyj60tpkeZywOyfvp3RUTn4u852L5xP8YfdKqqc9c9T4xaEUR8BQ/5zns6BjtCVu9MbOlA0t3syNJBmlS7FEuUBYXykoVBcyvr/W+jU5QeNlZiM4US/fLU+X7wv+zXyxDItGOCKTzvUc73btdkrpn/Fnz+ikneXLHoo33VBN0Z8+9ehzFqrdPE6VtE4ReumcrO+vBtlDO39onua1FJA9nANBG3TfEetUyt2U+S2nLISop3F4kElMr/0iUV9VrlfxZGw6IN1yo0DW89mzUC//ovDojujpxkCtFRebIdVrIXRsLeUsG/fZr7wFItQB7U4JAeQFhRYX85LBDmpjzLXiYrMKvozqeV6dLF+U1VrFdPfKOY90LjRdUvbKau8tx4tlnsSL6LZYAEoPDxW7vfTHo6vwsGoZtBl4uJ0wrAeU0rB7scOKRzx79xLjuiSeUHq3rjouA2W+0JY00ZHsHmZMU8N6PeByMwqvKagtABXhbTOTqtNBnZB/qUtgE6upJjyZnFc9Ru6b7jONBwNdGXvwsgNsX5CrZWOf/WdXvwzk8qVMGhyE8Kq6rD9Snj6PdY9l4sS1jj6LNXPXpEUZXWu9X+PZnu7p66KMZT7db9gcF/mcmst6L1eJ6KemL3uE0cvAyE2byl4n6m8fESB4kLtnMiVJK8rpWp6fOFfKK52Euy80GObNTspODJOqGEIgEUcnord5ojynczqnczqnczqnP52Jpz0On/3hn3Q1zumczunPYPqxQEqA6hKagQ8KSEN9xD5JvT4QBEAAQDxAABb2htk2iQSgiHKsqRqCCoiamHoNpJB23lKLphtwArXYQJmBwJX+eROmBiTRE+lJ4TEpo/K+jNJGnNAZt8RyCtUphHIUrKcUtYZdCJjFjrXpDn0oRb0IhSEhb7pNUWm6LQuBgiahrbIyrA8Fp0ZBy4Qs3A076IQBp6vXzw0v6RxqUi76vp9ibyz0jveiHvCHiMwQPnQKI0K02RWShRI9yA3T1q/uHl6VUgaqEByF7PIrtwgb5sxhdZFna2XxQlAKaAgaSCQZASuIMYv7U75Kj2EIYE/0MSkNQhFAJF6AYPSB8i3C40jV8DekHoNalesNjFFDgBHB+1O6rbiSZ2im4wsQW9bTdPVcfDIgBgeK3zh6Pjx1yIgNA4CENtKTr4PIA3vCg91IIaitSv2GIUriaDsn2WCeVRwUoIbyYTCaxjguQ+n4xBU+lkdqi7ebQkkWfQJvnym6XEWUrCBDUvQCwAjqwn+x5l9ZvWaNhEnBCVwArg1EjBEBrASbEl1eLumofGsS4sgABiJuGIOG/muKsqoze4gI8y6UgQCo0NCbMQiHEnIjet9kaAJBFeNtBWY1v4SJWUFoEo5uNRDGYn5CpJ3m/c7oEyKHklIv/AI1ANvtjMdPLlUxqKDARQCIQk4RzzV7v8lcjGi55uEjFnaKM6nr/K2uX4UYKhvFy9Trm1s8eXKNYVBgJBV/tqWcciBFm82s7Gr8wgyiWd9Zg0oBStHwguxvCw80mC+tWsnlm80LjRkzE3bbihfPZ9zdMYZCeO+9S6xHhmEkwMDhgfH8k1usL69wzwc8bG/x3Z97iut3Nlg9KfnQpYIkMqiD3Npl9s+GhjYV3N/OePN6C4KAkzYXBSgybisD3EjXFKRgWaOZjEmTaQAJII5DtjYFPZvCO4du60ADLPkWlS+DzkNVYn+4EcQMOD4nycTpBs48TzEEAAZxegMLqWqGwdoUj+jeCRTUxTHvAVIvJO8GPm8oAzEAKsXLt/cBOP1Z5Y8tFsRYaXNagJtcQuocSOaBioO3pS9i+MjcrdecLvJg4zxmWPvfJihWT27k9Gotz/Xa9yye2VgYy6WwkvMtHioiFCwQebIBwBQl2o11inWSDg+dM4MyNreGBCo+3xvICqRgczb6B51k8uvBwIU0RJs1yPqYsr8zm8iLgnVnJXYBkQG2m4539vJcbjODuTrvcFGw2tKC83VKTnL2PvAZWBkx1pFQvlY+ZjhIMBYujOwyhpCbb5lon7psODUbWH4UX5fVTkV21wgwMI6UQTiVOptbKsNtSt3Dywv6DEW9bP9hpymWBrClHd4nyJgquoMYXVsjF8j8n1cJQdlMF98XUJI63UNfzpdH9e1uWpsD+BG9ZrNqyJg+31S23s+y2Nip62N0pMVRZxg9sgF6UbYVuwy1Jgs1OP1pSZtlHvpZjtrVv+ayPF1vrDNFCfknAirmSSDJ90UeAXWnJQVSXU8NjOMHM8ij4x8tIYPPHDRvz/g8ycEDnajTFVWSFz2hJA8bH3bYxfarS6/Gbxl+XXtiHKT5wNuKI4rl8VRSHgxOdE5dStKqZnNaoklulr2YDwsZaJzBCqg2/YOsObLnUZCep3H5Cw+xbWPM65W6eDm0j8ad15NOE7bbAyg9zPMk6VSof3HYJOmcQMcyozPAC2UP04xhHFKfBzfb4wauDI9tC473PiBfPyxTlkVRg77pGXSS32IAh2nGaixpbxP3lpJzOYPl7xZy2vRwdnQkh7aH1yP2+PKOETzVGQJUnyfG/X3FPIsX4cvLlRwiSxWoE/Bwu8cwrnCYGvaHA569dyXejsZEHqKOFnnc9JgvQp0Z075ht52wXq9w/Wj0sI0gdlB2pm/XdVhcs/GhdTFx4fVhW4P0MgHUZRv5+3pc81vQmHSycDCLVNv32mzvcKp/5pMlz6T65vnO5uiksvBGHs28qZycLyc6ZLlr813Mm/2eOh9yyzrNvBTNv4/um/xI/eEHrdK1ZZ1N7+j1WDTP5p2jgejvL+iShV2ma6YD93PHKf4wWc9kmyrrBxNmnVRN9dH7bBqCfo50GqUx0uVAqR/0dFvoHW0dl8rtCqCQc04bWlbxnM7pnM7pnM7pnM7pnM7pnM7pJ56+MkipkJwHl5BCZhyRe7JHU42Xb6zsJEh4VirJUxJITxGm3ZUBN9wzEjcUKmp8tBBRQJwIKSCKkEqqXvE6yTP9BpaZ3VOPbXxtPwjYpq/fjXW2HjLPC1pfDgVzF4ude69AUHpQrph65Ik65kIhgIb0GwSQPa8b7hY712S4s/+FGq2pctotEazAMAuhZ0VkTQIAU9CpctEVlWYtTXQOo4RuiLXfZWNPnXckYBl6iV3LaYqAkrwXlQJQEeCD/yaEgkrLGbSeAyeQmCk99E/oAQcZmYqlDJR4R70dFPHM413KAIqAVMJQYIAD7VY2/jUeZVdoFgdDiXbBTquWoaChSXijJnWqEEDZPGvV9UiguaY2z0ooBLLjuAwB5gzkBmQDpZC3LKs8g3m+qtcFSp/WbuvLQvLDQgpwszEHgAiFBj8BXGvyQqaaaLLwYUlJaJopAxIMyuM2ZnL/GAf76eRF8tOYQDJ+hy8fVxm5YjorE+U5Ky/rEI0WOYQIGKgEzNqPZSAHqQwl5KCVW1tTr1k6rlvFxAyiIQATLM+1JuA1ZoerKDiCwWbUZijYS8IywoAJLON3GMi9I0kIROHkQgrMowB1ZA1pKOZIvYOJfKja3w4QLawh7ow1bZyEUjOkcB5B8rtWxna/x9MnjzV8H/k9Bjyc3IpK4kUBFGZ949vVgHE/8j09CKS8fIEAqqhMuN9WXF5cYrMe9ES8lC5wBfOxJaGfLHvztBd5ige02hi1NtTawKzzWqsorWKoCl4kBeYQ0IjAzUA28FO1ZvafK7DbNnz4ozs83BOurgZ88I1LbNbAjIKhCa9vt4yXH9/j4uISDy8PuMeMb/7U+7i+GoGhKf4ooGDm3cBP2BcAjRQI0tC4YP9AePXFLdAITx9f4eJqlNBt2lmtMVoj8TanY6Q2BS5ZjymzEVkHkAORuEpvVTbPO3LCmkjkto0whhg6G1jeVVnECrIy72+2nmk6Dj2snQpM5vBCJGFnpL0saMTgC+tUZg8ZZx4bm1qY7bcBLwWMy51BgZMgC/CVzY+EeVYguD5bDQCVxq3lZXNqrKtiTbP8Ht6O4HzV2NZFcT08g+lfel6MXLFOM9pkg4SNYVn/xbquMwhZbCMnaS4z8va1EyGATnn+R+Rj8oszrXT94fBNlcHMMVtGpRBGP+s77WTWdU/vjZFBJQwN3k6dMWz2sfEr/dlAzCg0Kp9K2OSj+FlWJRKoT2tBPx2iX9vk4GGdb4C0IqFEdZ17aJmBjuPIMPOQlnACKeLrOCsoCkEP747rUscvaQvF025YQ+acHvR/silHbeLlm86z9h2Wn66F7LXgM6SH+hP5p76eqlchWytxXgZIjUrUO01v8f7SSpu+HxkFlwUv7tOiWxxseAQ0O523r7tha0cLKRXP+2cUEvy4bErqcwLUE0xUO3ths989T+S22JoqyWLA5cvyHSvTvcna/tfkXTFZSR07MxFI9xfOLgnEIvNQzHlaBQUOIy742jX1LANfOkhOtNtps6Ct9ZW3O/M8WZ2pC122zNtkS1e9o3Kp75NM60T0XESW43Kv3//175xg5JxS/fqn6MS18Hq0lFLZa5kNOQMaoYRAaLauV4ZjNuAwqxdhK4cdMOEU4X6OX/K/VehoLKXrmVeyjDL+P3UvFhgADVFmelwPo6RDXHSa6rU2bNaroG4uC8mjrsu8VNZC8J7q80yTLOy72YT6NubEYBwmWX+N49Bxgeybmq6xs+ZicYBMU4PoAOyAi6/HuAG1oU1APUBjgUP4xMrJ67HUBmbCdGDc31Y8PMxYrQdcP15hHGwUCHnmibG9P2AcVthvZzAIj55cYTUKYU1vltco9ilLPs1PH2gNOOwZ+92MQoTrRxvX/fhBPAbcc1iaz6vx3pJpFlN8lrtHcqabF/Q7JRkbV2N8pLxjURA3Gen9lq8h5FfKoy8lvjBs7ueOr07Ngf3cEv1L6OnDiHnBfhu/e9jPJAeSOtDLsfKzd1uoDsXpa4Ouf13rFu20PcPRHNy17W2795zp8fvLHmS/qNBGkwVvXVMYHaOdBO7ru5BYMYcYVdnpL+sASnuI8IL7Ze2L/PQzE7DrYDoGKC1zMoWp5tHxzTmd0zmd0zmd0zmd0zmd0zmd0x9j+uogpaQyUZwS3JMQSZga32jp8SDR04S50DZnHipDN9dmDBLlavPNb6ECaLga8zhkp0EBUg835mEidlLFtLeauhM2hUJhljafGcjibc5u9tP14xO8qSwoQAdGn6x9iY29ncw3sEVOsUeMna4rnovQUDAGAqaxDXVjOyunfZTzY+2KVH8JEdLtX52Gto2lZDjMycAkZPTtXVG5ociUYxl01Cl9tF5G48bav6qYMEDSqA8PCvQhsvaYpwJ2WhdKXnh8ky0dWYoARkxbYvSXOjAG4TDIicMgTmsSHk5CFgrvDgPgoCEw0OAhvZoqfqH9VCy0G8jpYeZ10x0yiyccayCTgJYK2CIheVgkVpYalb61KW9DwiSIIwY7tWzarKTESjwc4KxklMnKttRX6XCl0BroaFygNnsWwIyFCQIj6GeyA8A4DDEOKZ0oTp5PrC+GoiACqx8zhgLvZ+licu81WUfTtzqUc3Ytq2ycJknXk/VbpkgqS8WRjTOl08CEAQJUGrReNv5DTWSn6qSnSjEiK08XRhkG55E5hVISoAcwsoA9apWWzZUlLB5LODZPJssUDOdjkoWnSqfNVeO9gTVcDiowzLW/Ado05F5jgFcOV1Tlv9yrYJi/kQFwA6h5XTJuv3u4x8XF6F7IXJmqPdDUy9MA87BEbznVTInmSO3r+9NCwbWjuz1vmDGvoeDhUHH3sMc77155+5bPNu9rlUWwE/HswB+weOXZT1XnxMFrQ9ywfdPw6ff3GJ80DBcNT97dYFiL4GQI8K+q6x4J+1kwzcDuHvjkRw+4vRuw3x/wnW8+wmY0UCDjQIyHe8bLLx6w2Vzixct7rED41veeYL1uujoQuVWVr2UsUwB+AJhGm2vB9p7x5vUW08y4ut7g6nLlc4HkpSdK26D6UEbjCmYB8TFLqLcGAxEpJ7KCGRREYwaJ3ruY8oodWjWZ5wZjAxKrUbcZb+jpUl9TAFwFAGxysDUps1YokFT5XEOtGB/Z56BIpPCoyMCQnjNZrpNyBujwot4i8+wErK0titBSXyghAEO+sCm85THD/LQWhiIgG6ChtM1dG2sQAdXG3GqGgdY0XCQp/TSDktrjeeqahput40KuQOdAq/cpS4vNG7ama+pGzrxDeUhAADNw5E1jaVdi4sjPJznhywibSy7j3KMVLNzc0qBACFduDcMwALqmXWI2mq5tXWpovrIGEd98LvsZihZgB7/b3Crg9AFMzYHBQqsj8n1tUgYBR0hSsgnBZwO9GjO6yhIzTGsGAEK0R1jqJVRZ4a6dESatb11o6CdH+d0XXwToz7QmMlkXRvnj/gj+tvlYnlv2Vz9T+bKwN+Bh+VC/Xjn5VMf/i+cXv2NPd/y6PJf6cZn5cUVCJnOQcLmmfFtaDN1jYuAtdKH+FacjfMR2/Sk/g+uOjdHWhwlEZEI99T8o1uIAAsOTGbv7zX1duAfKdjiJjoYB0owlXIwJ21+Bg9Yl14XgBOHqr6pcDh4IEoQ3GcvXJPmyy0/1a6ZmzAnRcMure25Buzxf5pQ9GCPRK20RoFUHAAd2GpCeKTzk5naEEdky6+uZ29p36zHvHHW7fZrIobccslDxSOgwuP0ztlayaZhC1lgGRgebUo7mRwSQWeZ3RFjbHCds0dnL7rAxZkPDqWHiF2nYLWSqkRnpnoGIOOWdX+3lUMgjBjDNFcxN9AenaJuKN6DSCWisz1VHcvctKQ3FlEnimvQhe4AJm83qiEeiZZ0fHq8j+7+gRMLkQ+YX4YtagbubCXM5oNKM68drXFyNANnaWsZXDiXWGjBNwP2bGYcDUGfCo0crjIPyFMt6+TA17B5mDMOI7W7CUAhXj1cog3Qoa4aNj8licoRZ9RYKTtrtZlAhXFyOGIZw6Wpzp0SdjtnHrtt47kBAfi8uyFgxean09cMJIT+Wc6G/gwS8OsUYvGiz50tp/tfrftDkxJxLx9d4ORAW7YTXm5OXph7MTkbvE22MAZwblNqthcljsSeItZg8nXVdHWmQprt0zcdN5pP03fvvqFaZOD1dTi0OKD3bPZ51xjo/mie76K90+NXz4l526d1cDix/vciLxnDuBOMp6ukQH+T559+u9IX0i/Nv8vQJ2xvmNRRRnwdzl885ndM5ndM5ndM5ndM5ndM5ndMfZ/oxwr3JVrOpoUz2V2pMId1YmVcLAywZkMU30gJmCve9plZJJ0Gh4d0c3ERimGOLFZKMZMSorCHMOE61H8XethYQoZFGuSnQcFSxUQ27a+wyDRBhig3bPGd9GqCbcFNssSmEdLPXbJNaVNkmHhTEN1Wv2PXQLMThzcEMdylsWB9KReqblY8NScNEYvhdateOlCF5f4vwvAJYaBc9eerAAVPS66nWTE8kBUShpPljGPiqZO2kKmAKiVK/wIyAppDl9HzkKeY56Q33JJC16hTtLIPt3S1cYfQgqda+kHg1cWWEK78UXDQo77No5Vx5lMAU5tEDIDcwNJjhAiAUMXQPSIoCKasxo2gYwqqGXAMZFYQ3Dx2OqE28D4lXD2DUsdf0HVMMHSmQ019WP5g3mmUyA2GoQpOyln2korlhJpR2VIB5buBaJJydK8RsXAQgAWncFAjAixtAY0EO52Qh8mZuWKm3oebtIAXCMLJiJatt7CwqIYUbguRhh4+NZuKNXUFlpj/Suueh4wAH/Y/d0C1gGhmXwZsMOK+VUpLizZiW3bObRv/BoPzXmEGD8b3IrqbfawXmWQE3c0FtjJbASmy86G3s1U9ueLd+QQLzKd8ZD5rRy/jBxsOcYkZY6MVQohmtA4BXvDfEcHR3+4D33nsqssWygv2J/FtRhJNzQGZuh7Z2WW6WT/kTFCcas/4zK/+FtypmHrCdgOsnlxhVTjevnRnYxRtSSwUaUK2lPwBJnhfQUEFUBERaBgyrERgK9ocJbZ5w/XSDgkFAalVqVytp+C4GN8bDA+Hzj3d4/tkel4+u8ejxgPWGMIwKjmLg/p7x+sUD1uMKN7f3uLwa8c43H4GGCuaC1sLDT2vZYyB8LpBQYAWHfcPNqy22DxUXlys8fX8tISBcTrCAOFsRYImPIwWwsYS0G9QznEK03I2POWlcjmf/xdbTeQxqr5mBjcgigcHZWOeM1mRtIPI6eaWgxLfcGxrA1Bs8SGR6sTIKeRgMm2sM7CWI4pCh5hELgINQWftTACkIA1mDLo8KWlVvjcy6vDDAlhkg03TIEoZOgHJwzwiNk6xUgC27ldP4JQ1Cn2JtwVDifeMNSmuZGF4OzDOQrvWXA7atV8n6FL6e8q52wBCByCRrqg6gYS+FJuKeS9cLmg0n5mloWafvmdjcCST5RtpBaDJXs9SnFJvDdG1XALZYgVawMpWsmdg6MckjoY6ARQed76qUb0YSjrUyg4DkNdFCMJJajuikqftrltLihLrLedHSTVbpO6e3ONbCfl35L2eTBXswGHw+OwI/hHeGk0Ya4yf7yoB70UTMWWno+BoUFHK0e2CZdyJFZ+SjvgxnaUpUSc9ne6bft2JT2XloxxhBRz8jv1E8aMXRnjSO7L7RpuuGZZM7wZ77N+pkhvdc54y3IELX7xEmKnK0LYnl5wAeK9HW/l1G0dJY82t+eQ+kDbF5xmXHso/z9SVRcv/r72ww79iZFtmavIYAD5DeAeCAlyzyom1qo7c8ecEn/sqiwoufkX+s8+N7apCV0XGn8IoNT6uLVbPp9WLtKsc0Odr3WJs5d4LNP1Ydmfu68XDErLHS6Gqc1wYLsuTd8ZEYQowjO4xi5MpbWSsxg6iW+di+BwhwXG5/7/PjuK4mhkwXwjrGPZCp1skO1WShkuVbljVHckOf7sGhcD4DpD8zeMPWK0kcBCX1wyN3uW4lsp/nmrwTJfbL5Vv9kV7MFOsa1dOu47tOIgrB+MTrwVdC3/3EGNcrB1LJmGP0HJO9gMehF+MF/zM+Nx2Krg1BBcNYcHm9wtWTFRoGDGMJ0IxPidI4U7vNM7B7aHi4l5B5m8sR44pAA3v/THvGYVsxUsF+d8BqPeLiamUb6LQOlY5O3d7zQIMcstjO4Aas1iNWa0IAa6h7Zwn+pNS5Js+NJscTjzAVUfJ+cywe+qUHFs+oN9ZcBy+Ku8v+w1/lZZWCa41nSqrTEkPizy3nlczTR2xL3ecSMNfVxoZonl9MV5PauaTvUdvT2Da9EJbP5Etp8J6oVsiuhmM5lx/KcjwVlGXDch4MQI9ea0Ejyi+m+cU8WXetWMqKrk+W+lJ5n/Vdkxtde53SygTE3TO5o6M401Pp86mWDo7qiJHqtWTakz1xTud0Tud0Tud0Tud0Tud0Tuf0k0s/BkhJN2mq6ABiI2enlmwnyii6X7JPedAVK8wANRCGBLIpaY8t+dipeOaWlJTsBku1mqpSMU5YAaTvUNpESr6uGGtiPBYlpyrXHQQUxkM7KdQA9e4Siqy8ZUQqS8qLU7ZkBizduFq8cXYQyilyhwcQ91jFTY1rCgwyJZYrb2yDrYrWBA4wchkxsvcZrX4XXYWUZuZ9yUPIaNsKhaLI8GRZwcqehxndlP6Wubr0tlvZqFDI+iCAUYXECOCOd1x5FEQnDQdoRjzXUZCE6TKjrXnlGoopFshPlJpSy71LJGBM3qabu3EqanA1mmaAnI6LCEvADt4BixcgILy4MAtwq6p3jlDDsofcyYYDgIEiLs3RpP0NAvJgbURhC+3HcaqWAwBm3VFsLEOBUpRNcqGxWeqDFjoboSWFhwdofmTh9AjiLUh7lhkOoMlGhaIhm6BhlVpl50UQSfu0xBnmiSfGpo2qDArKihsPvQYD16hiyMaBZp/fyZQwY4CU2yvEtaf92aLlxCHkALUMKFp/U0omqhO8nkbsGMtpzLubLR3/rWoGRfpRvXh52DfjN1IPYdCRaePOBimzhigMbyHcGipUtjRGRcMwFAcVwvIk83KjdEsnmO3TyjXD5gAxqG33My42F7hYjw6MAWxMSli0gYp7ULK8ug5KfUHpx1IZamo7MoIj5rXiMIoi48rHcMPtXcPuUPHu9QZEAiU4luNRER2i6RmKPBvE41UVPixEGKiAaAQGAl00XL9XcPHkQicgxjwJYJEB9QikwIdWsNs2vHl+wH7XUEZgval4+s4Kq0sApaFVwuuHCdtXDRdY4ebNHZ4+vsKjdy9Ao/AN60CgqnmrPlTAcOo5R8FJtzd7PNxPWI1rPHvnAqsL4cnWAkQrQKeGQgMcxOyUGHK3yTxsBNXJvnTSNwwWHk0VplRNSldC8C4pyJAEOCpeyBhoBvxJstl4IPekzU8qh3vmggKL1JCusj+mAwWX6AD2OREx7+Y8/SshAR8l71rVn4BOUKVYuFZ9SzXutnZqynQWxs0AzUopNxiwyuJO760e2sRjU/H6mVcFA/VZeEFhGVl3lURLIDw/+CqNQ/Y6yCYpyAVMJuFou3A2VmHvDJ2v7Wdazwy+bkr9hVgLNf+l9VbqOziZbPVh/ScAOyO3zfsMVoB0WvMRAVySoV3hWb6wkvmqtapyXyUhNwXbBtBLeIQjX6snEZgE6sjN+t34rQFU8XVNAWZxXzbOF6TrQ0kGXqW0PtC5SC12lDo46BPeVOU9SvN5eC1iXQsUWzGQyjsfhIsJheLnW9uWZQOdeJy7XNMiKr1ICfablwDeJhEatMjfq/y2evl8GvsRy9SanIaWl+UHTXJhJnLscpZhFOXll4y2HlLK6LEgUozFMMQv20ILulhxp6q5WEbJXwItejsIMZemvu67vgeoL/snX5d1zXGXcPr0tlB85kZYvZZzTsaIZCA3jN9h85+8UlKlMwip2wpSBnsokDT1czbe+te3DJHcD/L9mDEzrwXte3rR4nmZR5IxtSzyOjV3d5nJGoCTLLbrBig3EeS8gqBv7jv7krumpO/pEc/nlMfPll4wL1eZn3O5KvVsBPs16WeCS30f6/Ey55olWbLsGZsffX2iLy/pKN+jp9kak4tdyChaENOn21RPHw9IcsufZzRFblg/WVrSDBAvw9Pc8Ph6c1J0mz6ppHpmHs6pky1GU4rnMi2TOiDa7iMhQA0MYJoZdW64uBydR7q+8tZy+r2sX+hkmFl0AjlUMHTNUBhcGDQCQxlAxB72zwaYv8XAPDN29w3z1LC5GjAMhM2mYLXWelTGbmqY9g0DCg67Ay4uV1hvBiei6984DqPY4QH5k0lgnhj7XcU0z9is1xgvih526FQxSuvT3013ZvqS/F70L/sF19WdYI4svxZD6Zg3WFc1nGRzJxsiN393KetDFMXvxF/Ocyfk3MnKHz1DwXmE8JBmd5OgOpX/Mgxc/wh73Wx45zHtY32RZz5gFOAn3auRV6fjS28Lcd9HKQ+jW77ezQWc+aGnsZcXbNIJMcmL0/0Yy1E9IwR1lZK9RCKSvmWHMQ1gGGB31ZXpdybVgrPNeXrHZE8CRcqwWnQqxbXuQKLqpd0zsr1FpPuJ/yyGO6dzOqdzOqdzOqdzOqdzOqdz+idLPwZISVT5FjKhqZqFdDcUthOS5/xUN9Cr6ArM9C7GuqLVGNTgYpt5M4wr4EbrYKG2ZC/FbqhwpT4DEfe+gdyKKTu62GclIwBwWkluyjGEws6VYEm50G3yG9RFk25gSxjibKNaaPFSSgb+WW6o82Y5Qr/YxjPqKW66s3cFM8BwUlZHGa5A5N7F/DIEQ1ZOmvHMfjM3FDfqhdIHpKeL2ckPC6tiIbE49VdT7zjUhG5h8LOQJqHsCg9H1jGyqediCippnHnM8T4nA4bJtcFtZGFgZJbr7MWQK3MqQplHChhgkAM0jJ6l9HWlwh3ByfJUj05hfIIreYsbUaxNzb3ODEUcRFRmVJI+LhWgAWGQ0/KaoW5MAcmquCvpMmvYLBK6N6QQQh0fJCUXYhTFCV65ViiaW0jD5SiPDCW8XrECWQKQGKEBuUn4PAuBx4CGG2IHZrDyVynal2AFBdmwiNqaGTpaFBJgEEqB2HimC8QTCiGClKuKJpNohqnI4QCsnAFIzwlNyf+ZR50AyGVam8EhQzArzCNPyC4CYfYHB/eoJEZy5W0FHLVmYEfN0Fz6FKC2JiEviBKqEW64ZyZXyhfAw3xmLzZu0KxwsNoEds9ww0KwsIU1gfT53cMel5u1AHXQg8tk7gFWMGAdeV1GpUXSiSZ7icg/M76Y7Gmes46FJNM7cK0SoTKj1hGH6YCnTzcoJFC1ACn1glNkgAKS0viwxhtgUTAFTcEI6jnQSi4jGAMqi/wqOm646nhFE49clbB/mPHyecX+fsLlNfCdn34H4wgMa5FXdRrw6tWMh92MoRbc3u7w7gePcfl4VDClAFMMPVVJoVpMQBUZ1FrDPBO2dzNev7zDarPCk2dX2KwH6RQqAQLSd+WUdpF6MsLrHQxAo0XUCvM+Rjq+QYxBZUeLaTR4TSlVbF5EAAKtLOtTk39c4SHc3Dsds4fLWnphNOOThYs1jik2TPTxgeAALYBRmMKrnMwUC9CN/OfzmJXF8dvuuye5mGqSjtvmd20HEGFadD5uaQ3QavYyZesB80Ag/BWgRjtpL2MVEHlbq3oQylZX996URyFcVnXgD10jZoCh95s+vFwi2ZrHPFfqIsvnCwFIknrIinwsU6ebrU1JBAKhgC3UJovkZSIwKrhVCUHIIh983rd+c8tKzIoedo0I4YdCiGgeEgAEmIuVazv0hRCrcRM5SkXkjcoURbGCFTRYYHUHvMO+1uktgITM+0fPcEejJX9IKpnRfI6QKxzeOix3W5fmuFxd+JjMy4sSc3elN/LW3UhGAAEAAElEQVR9v7NExHR5Hl8LdjpRrj25KD8XsbS6HtN6MVfZpzphpe6iZGD7vS6EtsvW1EtHdEE3NaahcrzKTO3uOZh6QHauXv4dYvO4bOpJkwFCUfax5xMTFUtABHwtBzco272uu093X1SPsOi7dK+c6LsTA8ewpOaJNOYGeOOzcb6bM1K9vQom3/rqdECl7lp6MOEdjmV492JcWwKUluLLf9JR049po58dH6bKBI1sX5HeIZnfSu4DnEp0VC+wHfbJNeJM+aM8M+lsO+rzYBozvkbgGIepCJdVme7+rq21/HqSakonGzs+rdq7CfBs1zOoyqe/JFf9S9MDK3mPa/9x6iOk37D1A3VECh6jCIGIkFXeXlsnaqWmuWEYh9AnYFmRvij7JvlGv7lMWAws4z9OV+MJO/xy5GdFATSMxoR5rthsBuUbWuSBI94JYWz15e5bvGdEtR26AXLMY3miRzewGrgVzFPD7qFhOjDGFXBxvcYwsK/zWiU8bBvq1EAMHKYJl9cbjJugdF4e+p6K4zczUGfgsK+Yp4phVXB9vQm9SJqawdFtPucQdV3p7We4h+ncSvv1ZbIG+brVIV3LciWiLlN3v2MTb/txMv6VanLUNfNkGlvGO93YeUs7jubbPEefQkvmMZ3a7u1Kber4nfu65OUnpfu5H/1Dy8lzhm3kj+rfJfb3Fpe6MjLNlmX7JULf3kW+HT0SnTq9HXJfmHaIU569lOg00KT8kduc+MC8srIPCFsD9BKCAA+pyHrwwmcpRgCOMiG8keQdxEizsdXpFL+c0zmd0zmd0zmd0zmd0zmd0zn9BNNXBimJ3yMxOFdTdACyceLY0Mhpcsh3oFe6EGJbxqKQYWZQGVzhIhv12AGaUcE2cIVKf9oRDEOQkAJHzEORKEPiFLBsgu1eryyx3TKlMGAONCEL4cJeL1NadMoK28S3Fkogfc/AHxGqJLwdlNgLiqKy1z264pIpb2oXhgJXrJFXyMEqhd3wYHk2fTfC7IWyxMlhTU172fByZMpMdmWeGEejfHR5BB84AMRdNXNS8Eh/F7IQSBDgCNtzAlyh5O4oQqwICM2KH+wwvWt1WL3XEEYqcnKyZOWRfGqUQu1/bWsR5fMAqQ/pu5Is/o7SgmwsiDLQvTQl7TGRGuqZ1HsJ4JUnyyfaInUi0RRT8npFcWqwgUEtKYRV5+D9y6Zb1HHR4qQagzS8nNS7QEMseZ/FX5gulJeUggIgiFOJtdmJLGlIjAetg/KkAdmGISmqmDWEAyWQIkCliAG9CpiGq4BxxlFOhwpKIOqdT4JbT1NX94BNEpDaHWPP3glRJv0zcHEAUnCPibIeIGfPiOf7AO6FIrI5OMrqkZWAyck/xHQeZ/fs6oqAyg0oBesVUAdWsITQqFblCe13z7GSj/OS+C88y4jwJERIE/doUgiVGTQU6X+TMyRjupSCaYZ7jJP+Fi9mpQBFQWENTTwzTcDuADx9NqKCO29JgISRE08tIRcLkoxE0qWRYGb8pGaaN5YKTOsp4TWhaU0qPvnWUNHw8tUBm4sRw6g1zIpyICkTe76I31HiSISq81Y1oVOpq2sBYRwI4wAQFccv2clLoKK0AQ+3FTcvDtjeMy6vRrz7zQ3Wa6ANMxoR5oeCFy+3uL1vuKoDttsd3v/eY2weF6lvE6AEN2AoRcYeV7AGRuXSMNeGh1vg5uUOAxHef+8aw4WOAmaXASbvmLnzqOXCCiL/qskCG/dNwSDZQozkdStZ0xpzHpTpfRbPVDqamM3VAhTI0mQd0Yt9ZBf8EVYrzZM6DgTk6wPGMzFwJXRut3k95oQApXXhL1IS8I/KSXFbpfNspoSAUzNAy2ham8xPjdVbVJpEWMenzf2C3aKYS6zdiHbbg6Tgl6r5tBNgLunD4l59smS0biPEfxZiJ4/vAal+vsZMVdG1lYG/LTuT2WVIfMMid2S+rAqIhxs4rdLCagEkG4p4ImJUMfqzhD8k0jXrYkQL2FaBvUWYjHkWGdikz4gMIM9xtF9ZiJQxGQm05EYCA3LJAoRJPTJxhYDHWAFbCpPM6/Gl64GvYzIZ5uNdB40vrE2WpLbY+hZAAIoI2WjbA6mBxGJH5fvaDMr/nPKyr4nPl2vit6Y0rmQJpOPe1zMxg3szvNlpglpmy1bntxWcgZS5oeYB6PjF7pCGywLE2n7RMOp+wfdJ3mVHs97xtVz/roS0oOoNsZy+o+tfJ1mqu39Xz6T+fO4/n2e7gnryp7mYqO8X8wy1rL+Tn/p9ZC4my0Na1IuWeSV6LT+7whuAkjwpdBUL+lOXwVsSpTqeyOVLHStQtJmR19EyMnPVYqpYdAr68i3k+LIfjd1OGugXfO3zEC9AI1aQ5sPMaCW88S2zknd84XDU/LeTxtZ+fU2PusrunODD1ByR9/or0+r4sztGcFyH9MPq7lts6j1WArqutv137q9lH5SoV+abrq6nZJwyTqdy0f1LHht2j0g9Iam81pkTYMJuX3F1NUB9FupqNtpq/EnLv0RbKYe7thyLumO5KJ+M/ASllxiM/UGCfpeBrdapgUvtxDL39N3W3bB1RBppKmBI6brkt77fhG7znrHfNkyHhtV6wOX1gGGUFysYbQIe7g84zMDQCjBXXD/boKzR5+5raVJ+jXa2Bi9jHAqurlagIY9p7hjE5xorIemvQLZ2pER8K/MtbeWTX3tKm5epUJaofFUac09LrZbXaSkmOp1holT3meYE4DRgkk4wW8y/Ue7JmdjIlJ7Nyxxrk50zyc907YSqpFJ7kPLqaG3jdZFJHkO+jjhR55NtSHkvWKVbP5gs62RH5q/lwLbH0rUsw8yLrK+N3jLPyremRQgxfd7jOGjBpwrxDlFBaOHarNy0jsiLim792FWO0Hegva1/pHp0mJ83jnrinM7pnM7pnM7pnM7pnM7pnM7pjz99ZZCSnZhn35En40k6YiHXNExOSSAhuSkbHw35QjTH5lI3crbx8rwKedAdAGkXaifU9DLMuwnBAEGRTMmkIKZUJ/ezlAwf0ry8WyYNNyPPtMVuWMJ2IABOCaBkijwzGgQAivy6kbRTRJDWk+EnGYmBoRCqevWRPgnAmCm/3JuLGfuaqHYpucHOmgAvS5Uu5rXIwxFpc01RmYEoBIBK+NwxDwvZ6HPKS44ZXy0TMzgXC42nBraqdammWNO9ejPvw6bhIDGcDsmzjil5iKDhwYxepoBhqQdZf6iSz/shnUol86yjfaJACQFlkGtetPu7fErYyMXIWkpneEEjNDQMQw9+4tQ+VgXZMAyOZTJ6tyYeO8RAKxmzaYK0rgxWI2dojsxzhvOcei0x/s7ee6z+QRn7fJtqT58xQ799cgYkmLJSchlUA5lNGFVjIYndO06tGyjETpZNE6MWRtWQeavB8EpLxcyRHsrrYB5YKN23Ggp4iTv32NlNuXz2CuiOtgjzSouu8ffH9CwDmDX3ht46wF7frF7KgCZtCxFAylOlCFARYnwvg/ZsIdTKYGLxvKZ15saufAWSfgzCM0Mh92DXVD7NcxMnOm4ZI8xZ3W6hkApQBmAoAmgdCinfC7/d3U3SlgJMsHB67KAtM0aYtyxCgJRcFFD6DqjsFtpU73yhk/VR8nWS9JUBDSO9f5gINA64uBo9z1Aoh2GAESCQbD7K6ksCC/hB6zLNs8gwZjSN09VaA7cKbgITVpEVngwL0OYRd68aXn8xYb+d8ejJGu98sEFZxfw13RR8+P0b8Ai0fcG2HvCdn36K8RFriEigKNCh0IDagn9N3j7cV9y8ntAa8OTZBhcaiqGSejarJmwZjauGYE1jQJXCAjzOQFelo8l09fRlcqLWRNtkiAlFu59ZVSCOypATQCARjwW1icxxQCcbn2ZgErz+9p20AwohwAYU80zwQvwW+a3gaFNMx8IF1Mg9T4khQJ/TOSS8UpG330BIBvC0uZHtD7GmYSUMcTKqaLvtUK15RWo6vwVFZW5s1afqjl6t9qFfDaAkHtsSDQkxNmytQfCwoq0FOMrXBcovVlasZ6x/KIRgJ01jfSK8XWVeMw+TasWUdjbh1SLShFsVj55c1Ptfw2B1UR92Bihy6UOST+Iy5wmQAqdhQtT6xAwCyh/IfCHQWVmjNOUZmxeBhhnsQeHk6sAGrDIaJbcXX8ekcsLNH11VTW75L+ErFfLhrTB4rY/BGL3jeajctDV2+FGw/hD+y2FU/TlfA55uxqLmsPk5N4rsp5Wf2LUz/hG8ZtGAtDZwOXVcD+/uU1ZTH0RSuFUly1H7ng2jfT3SUOO+DmlbdpSyAfNU/b0uaQNIC5octTV9z2049WxHv1xFznRTiZc8tHT5wMbwIu88Hy3bZ+3uyom2Z471tiRaWdWzV9LcZs/bvuc+oLxWPs7X+jFFOO/2FeYxjhd5u/zHMY0W5DnBN7GG82vIlV4QZFFGB1ym3oCen8tZdPoHpDUCuuHo7Xb6sByAYN1HDiV0BT4/Lcb3KWn71cy7eTy+HRTVNY5wBLTSmc/nBG8vssdQWlI8nktjjhfXbIwIL5Hum9l5BbZWQayrYO+50EjXrJwsR2yNp8SMw2/xzrK97g242H6MYx/Nsj6prYHKCAbpHNDXpcDWIUa3BRgONkMvytbxf9zHaYC64A/C5nyajon1ZoW+d3LZfb98GUfl52Xd2GLdzIvf+kL0uxGZsH9o2N43tCoeni4eDao700ImwpvnBxkYraG2hifPNhhWkml1fmGYJ04pj3w/cThUHPYVRAVXj0Y5fIYYDaZbYeUFYb88QSJkjsmDlDJvLume97aZbssUvLrk52DrTuwu3qUkJ3q1oY1WxDyk35lOSQ19Ps/zSGIozTU+dk+0M7fBh2V6Ns8zmcbebIrftt/IbW0qF5Dvpfovv3obFnVzmDlH86JqJiC5e8du+bSc25B+dvf7ycizFXqYHgVfIVknMnwvoJ1KFh5dn5M66HG4owrlOqWOSnWIczHcPR7N6BsdY6ojE0KqtSjH7vk+zJ74mu8nzumczumczumczumczumczulPRfrKICVThrIaUEo6wUxlSBvyeIG7HW9o3gwUI8/Z5jtOE9pGtLohRzzShFcm9j0hGAqGggJHiiosmtdHlFkU7yRFYLcnP9qDyQuN2RW4pEq6LhwamdFSfxIt9pxxstna3ik/mBNIJtFbFS9VHy5kwBrbEAe9G3NSDAbowDxROYApeTTJG2c3TCSklJ0AJoSXG1Z6e+3N8AoDRiGASNo+3xhnmzUZ3dKpXwvxRhTGJKUBMTDoy1VD1QzeFvKSWMFi3BgYtB8UmDYUQhnVww1BPU4IB2QwGRugQvuxD08VNAYBw2iKCaF5NjQYbQuRh6kg9SBjPFCsI4rU2wBKSyOUhEaEa4fckxmAVYmx09SwYP0SbvbTaV0iNGL3COXtUQ1P1lHlIXGsyFNDCFtfJvpov1hdRIEl4AVWucFKm1BmWVi4rEohBWwgvNyY3AEDXKXvWAzpVQ3jPArPFgoDQ8iWyD1ais7IY3KheUnsYBgzR88Qr1yRd5j2rSxXFC7oqt0AAjTEElQZJLxUk1qJYGHfQrWk/jQ8zFjT8d1aMpeTAIJaY5SBxJDdyCtkPIISvNQqgxVE14h9DLg3AmbMFlKJ4aG6RDlZYJEFuQnYrQu3qZ6TqDFmYowDoRJjbArka4z7hwnvv3eJpgNh0reL04MUnGTgtgCXWR8a3wYXBU8i3c+8UGCGnOOTzIB4CJorcHe7w6PHlxiL9Vw8aR65UnP9vnswA6fyKbxnMFDnqrLE5jIS4AEzWqtoPHqoSqYq8msqePNiwmc/mFDrjHe/sca7H2xQLiQ8awWj7gtef/SA3cMKTDNKPeCn/vx7GK8birklbA1tAJgHHcIzQAVtHnHYN7x5tcU8Tbi6vsTV4xXKyuQmSXhOJcCgvGj8wda3OqzNEAEWWd2w8NoDiFeuKusMdk9CCuDRUHDNO5N9jAldY+QtfKn4V5dJNieqbPIQT2YsS+sXhs0D9ox6itN+clCuhUizoVWCRwsRYPNoNfqxgLBsLKaQEQbGEdCg8SU5LZnVO5q12MDBRoskcFojBx9lb455ILRk5WFtZJzG7+WYeZNqBkpy8grQKXvU8vyyxNV7GRS95AMfJbpmMgAkaV0EsJznD+mXAEULF/h7PrcmnmMFnvEMMGEAg+cDWq26HhE4pACoJml/KQqEkxFfFAQqPJ3XDmoWZYUUMunaKEkASmERdZ1rBuFmng0hnqAYQG2zrr01jA4AiV04Od+1NqPWA5gtWOjXMNn4RRw2kH61iXLBO85gttazBaJdz7Nun7KMZs3MQqQab2fDPnRt2GWQliW+xkvAKJ8n7T5CJnm5lo82ytethDS7IV1brhjenjpjYXorvqe5PJGK0wLFHFIdlbacLL39OEXubq3jdVPDq3XvMWjHwNXR3KOsbf2H9F4sZyLfVG177sgQuqjDglgOfvB9L+UM07xuSK7U50jvpeVAB1zyYiie99/KIHkv1rUhle95pvLM89fb9hI5T6tirmtBX1ZXB7/IXR1sjDoJExN14w+6902VsoMfUZbJBHsD3aItj1MxZAcoMM9/9lA3rXhm0RZCPnDAvW047ZEahbeeoht0sneALpT8Ml56rk83wtLXBoAowp+a98KTYwxwkHReUYJZvQ7bM1FIlqhLkizHTL7vdUjrGlGzxN4v+iYOL/k47mSZV9PvhWNB9nHgHh1T821t1Y0p88ZcZX9PUEB1kdX5bnfAaj0CuhdtBMyAe2YG0kG1RCPpC0q0TZW3sZ6vZyFBPdjoiJZ6rTGw205Yr0cMncfxfpRRl0NH7i7/I3mW9tLSL5T0TAZcis4S/UnB/qHi7nXFNDGunw64vB5BA3u/1Zmwv58AJhx2FcQz3v3gGmWj9eY4GNK6YyAEboTDvuFwqCBmXFysMI7kmyUZe6f5KnVZTwSyMuGHH7rxuJDNlkeWC6fwF97zb5t+nYnTBy9+4y3AIkBl1XHmbxnuR+/7d4IeIO26/GR12etttVsUnGSfz31GL/3PpE5LdJR1p9FARwfnbKOkLl+bPvl4niLr2FQfafMCMJjI2PUp+u8ueSPbGEMLmSVtinG4zLMDExp/ciZc8njUKrja3mGA6Q1YtT2UDqJlviUlkl/z33kQwPex8g75vGj6xfBGZrKA/X5oknLbGeA5VwKtHuSwxzmd0zmd0zmd0zmd0zmd0zmd01dMX+bU5G3pK4OU4Mo6BjRoljiMUfMrxQk6UWKReHNhwE20aq1kBxANYdxjcnCIucGVkCxxDQZoIPGr4aecdUMpxtymAI6FEpTi2aOkG31rnSlKsgL5aBPNAEooRbOiVhQFadO4LI7COOftIvh3U+owzGOJ0RPg1hyMBM706lVZDKuvPlsU7KF9AzZQCaJMr3f2LiF1aupFy+hoSgbS9hCA0RSBoVlSeqj3IgPTeJ+pMkvzbI1VCUywqC0cTZXf5p2B4eFiQMAwhuJA2l0cnGEhvcAKKilBc3OdQ35KP/JkSgolo6qBgKAGSfPxUkzLATVO29Ag9+pUKMAUZnQgQMAGBAyDKWV7nnGvVdpJZtQVZUTwg9HNwHzFXM5YPsrHRfvClNkEaFggeL/Zc+bByAjhCkCjqY0tJCUQgv+L0VnbPAxFwGMtgeo0poDQrShAQEIygQXY0JjFqwTslGx0kpQrEsHG0MwAV2AcYaiJLiyY1Pz45Kq1Mbcl6e4SeMiuhTce8+5j70T/hXpI1Uf6K+gWf9Tdi5paeQSTbqFyMvYj8CCnWEU8FRnbRUJujWNBq1BvJymslpbdqoWpFM9lBgoUHijKu+rFRQWlA8saqZ8R6Tdi6PgQIdEAUJOQgoPzJIEGoFVRQde9gNhWFwV26nlSNdoAyW9VbDyzA7cyP/Z9o3RY3LN3bBzn/mupfwd9qoExg7DdV1ysV7hYaw9w8L7B04rKO/OmlGtks5Z5QbIQg6TgBlFmClCpDAVUCsZhAFiBEArIKGbIqgWvnk/4/KMd7t80PP3mGu986xLDCPBA4JnR9oQXn20xrEcMww7T4YDv/cK7uHzMaKWAGqFUgEoFtI8bzwAR9lvGm9c7bB8OePT4Es/evcQ4AjQCrGAKk3VGz9YiHJqHYzMjonubE2BIyDUFiTad9Qgoo5yk1k72dQDB5iL4u+aRDQQPhUdJcJtnMEC8zWVFvo0z8xbUhVBNBrH4GlJhHEO4NvXQV9KapBSABhGipPxLCuBlXQeZnK7aJgt1Jm0qDlCSPAUUNIDcgOnrFZXdzALUNLq7XOHs75LcEKvYwG4dYV6NjAa1hvwnpaeBxPoQnraGyYbHJD+9z/t3rD/9BL2NKKN5Wtjk9aHlYRI1ALlpnWfrmeQKhHRaZGa0ww6NH3QtJ3Lr4eYldocbXD56jM3FY4AvASrgdpBJnQYoHA+yzmi6nhrAaDLxcFMJJmHjSL2HRmg9Gf0MyZIVlNcUlGjzXGszLMRcaxUFIh9aFTjkNO/BbQ9CRRlGgIF5/4C72+fY7W4A/HP4uieDwRmfU+Yamzxt0ccMJpXYLnvNBF58bWny2IA5PptSLhchSBBjHT7eOBag9mo3sae8vF8XjO/l6OW8sNAXvYjjpUi/EIkmv/V3NvylpsDhPf2CFgD7IY+3FUvL+nG/Nj6qy7KN6Z2unqeSy7IFOYy2lJ5JsjlnYJ7dvDrUVf2oDr4+yws+KyKVcyq596Fc58y++vsUrfzZmL6izgmgZHNJHhLZ61FUNvI8Ji+l+vWeOo76N31Suh9jLlaz3sb0msmurJA4RUYCOvBX/5udeV2NsKQh0M/Ruj7yqEyJ3X3u0TbYfIRFG9gKsjz0AQ9HbmLI+yDDoi3Fyi/D6qIH5OlTQ4BtniaZCZd7hCUNYh17Osm69/iuvWdZHtE33WzpZ55Wu7lW5W6Xhd1IfJsb7WuX5XeGD6iufSbcnb+QdDPkB5TsRVlSM8bL0tU/t7347773COj71eYUHwt83JYFCZdiMPc8g1BbwzgOGMesrwrCn+rX455UOnXrVoC4yfqSOcbJYqQWilC/RAy0gsO24fbNjDqJTuXiepTwa6oz4srY3U0gKhjXEg730dNrjGuhva37+rDpAoiYJ8ZuOwEgrDcDxrGo93E4/1j9na55bOJ4bDvgRS9aWF0bQ9DyYYcS9I9zObkrqf/djY100dbPy/XmqXF4ql2nYmUKiRWsa/MlBw27LsxjZZGI+uuhj+z733k2D47F3OF7pa5h3Hs6RJIH6eLRWtzLZgUB5hxx1And/Hxibk7bvpPtturk/rM566TsPblwkZezDO/qupgb57rFod6ASsPtxSeYaYfDfov7ww2eDO/jvdXPYUNPwTyCuanHcwEuST7RNwbUFVmjhx24IULOahh2jh7l1Liu/WxzSXOvSPKearTcc/OEA9+CUUFDwZvxR9i3O3xY/hM87F8B+D+eoM85ndM5ndM5ndM5/WlL3Fq3vzinczqnP/400RZT2QIAfnT19/AwvvB77xx+Ft/Y/SIu6hOULoD91ycxGnbDGzAYjSq+f/23sB3e4Nef/ds4lAf8L/E3vlI+Xxmk5PtJUwqqRoghhm27Zbv/ZtZCqFGd4AAiASMxwBr2ihpAg4TkykYBUo8MpgU2cBOH8s7LNc2FB2aT3TYlkAaAbnOcQUi6HwwjB4fDIiqQE3umGAECrMLHeRhoypW7BAclGYnilKzRxgyYpBtvAWv0p8ylAlQIQwvFmuVlRmE7AWh0N+Nn8XhtopSyEEq+3ybxuGAdfqQgIzn5L4CypGRQ+hsoqHDybMLsIV1CicDdu6Q3hyFvq/UBBZi4YqjBvYk0iyczQI2Q2ibbpBczjsPLN4iAHU0iDTFHjmJIxnMEKKuk/OSPMKidUtjONWJHCh1WegMFg3qnYlIjthtRs2E48qGUjwAFQ0tV9FivOg9zZiyWXwlFJ2k/uFIlK9UoTK7enWmMMJMruz3kHbLeLhpttSsQb012zfjAnykkoIQWRiX3rGQKJYKHMyrq9aqoMrowNGST9bHUrUIGb50hjZrFk5KU2XtUitGYTmlSAIJK35HdWIG9r33ZVPHWEJ6VTDVOANjydY2Z5RDPWBoRZlp4vnAakXJxKIFzHXWMQuhYWV2NM2N2D1byop2+NGANyE4DGlCB+5q0XE4oBFljczUVuI3V61SSNwY4lYO8kt88MwoYgyri7m4OuH584bKVU7srB9jIZahTUSg5JEr0NIEFakrjF+nt+JbBTM7rzJgPDYf9Ac+eXTpIhKnqSDBXQf0oCO9Jrj5MnrnM4buM32EEwNXpVhvUe1Jz71CdvK3A9qbisx/tcfOmYn1BePaNNWiU0+KVgXoAbj6/x0AjtphwdQ188xfeB13JnDwwMFPTMTXAdKHToeDuzQ7bh4rLy0t841vXGCx0nIV8YB3T3gHCPzZejTnZiNLIjYQOSrDOaayhSHXusjmBLTRmeLozz3ckPwLcC1PWprnC52QdpwzxYFQI3Aydat7boDKHFoZptoaoAjiAaS729D275F7HEPLNQN7MUC88Mp9QizYZaLnZIqXZHAUHMQEKEqxNbus7hcpiTGp3keufPVyHrWPslK1LQSIPhwoLmWf3bD7hfmyZnPY1DFk72fvR5hMDxVooV1+jpQnHQo2qKNY2GYhFCmwmdP21XrWfQ9qVUlxueRhVW4fOE14//xGmwwtcPh5xcfEIh/0BP/id38Dt/gV++ud/Hu++/3NYg7E/TKg8YdxsMAyXOqqLhqwrLgOlKeb5bA9uM8AVw7gGyggDT4sYJLCGoovFpw1x9aDGFeBZFAV1wlT3AM9odY9Wd7i7+QK7/RtcXF3gcvMY27t73L7+Am9efIT9wxsA/0N8HRN5x6s89DUS4J2dJrcI/RMG3TjsYMm8tHghzjMhmbMQ5Sgrz8Bp3eLrpbe0w+VyZxXUd9IiiS0z5REsZXp6z78uDJlLoEv3jo0DkosdiCBy0P8p1TePo3SpL7pr03L8w8Z4DMu4nd6j/pWuXDfCRlMkBKlPMFnG6zMhmuMa9Yc17LnsVU7qYh2zaEqqf2d4XpTj2+BFe5C/L3gnibmjF/ye8fsiH5OH1nXWD7m+Jt/tUnLy1I8vxPrJZX9q0xGfGc2LrYdC7nZjxfNKc3S661I/19n/55gLggwwkI/371GKNUXO02hjc64dFOlBUXHYowERXgrL4UzOixHCVOnJiXaEXmx5p+W8FpChzFexDHHW7PbpWimjfaZR5Eda43iGjH7GW5TKSWUxyZaJU72ADORB7hioo+tF+5JITeBHVvqeTHz8nb39vYg7uQZJz3PVviZgPsygoQhQ3LMXYVATH9u+YKEq8tlmmQingVukDNY5RfL6LbwrVca0m3Bxue72mb38zC3n7nfAJnK+5LSoD69kA8ACZpaDJQaaNn+9veexeVdxf9uw31UMQ8HVkzXKECXXytjdTxioYGozmBhP39mARi1bGaQh8uQm+7zd9gCiAev1iHFVOlnUFnyx5DOrgK8rkzwx/pD+13K5H79J2ns/GY92zy2+2ziIl/MkEs/7mNd5xtebqbxlyiCf4JFUicV8Ge2P+agbK/l6et7rR3Ewwd9J7WT/jxaApp421P88kWI+yHI0fnM3d39ZHjnltYHJ8YXz+YVQS+8uiuMF7UIGR792a5E8t9CJ/HS/8cnlP8Qfjr+Mz7a/iXHVxJvxUHC7e4mb+SWeXL2D9579NL4x/7N4/+7P4+LhXVwNzzCuLkBYSY5EIEQIeBkmOl7bjNoOIs9LQdEQlhFGlcBs2iIC0QA7qGJM2bjCDk7s8QYP7QXm8oDPL34D3CbsDjf4uP4j8FhxdXWN7XyD7f4Oh90dpsPubR12Tud0Tud0Tud0Tn/K0v7T30fb3f5JV+OczunPTPr77/5f8avv/Jv4/PI3AAAPw0vUcvD7q3qFy/oMP3/7L+Evvvnv4nv3fwmP52+f1Ff8cSdGw83qE9yOn2I7vsJvPv33wGiYyw6/+/ivodEEBuN+fA6mH98b61cHKZGd9E5GAqoABUipZdc2sNPrJRSGMC9HBsCpUCQCgAZqYaSMM4DsigfAvF6U2C2KClHteWl36RTsNaKirLMtaShpoMpHAatImywKBxEEQOU/EKFVKG9gRYvQK7qlrBwCrqSNsEdfSlqHpgbUonQN9+1SZ3FsIJULRQSrp56iJ8aa3CvmaYWChkSgRklZacqJjlRJ2WZB/kxRmLpZySJoOVX2DXCvPW5UKGHEZEZsw4sGcmriLcQdISctwJC61g32IKBAgU1B/2IaOVWuEQMjR52bAZA0/0LqUYgBVhBZIXbDkyloaaBO4VJIjc/FOBAeJqEpbVjLFXWgeFwwhbOFxDPjzEg9JCYrScTYa16S4gHJNcA0fpLUw9UpvyWAkHYXBgJCnaHP4Thlg4i9TelbVuLk+hfVmNl7FprAlUzMjj8DC+/48+YNLRn+ibnzBNVs+BegQjz0cIOG8BM/NaACJsZc2QF0MzHGUvzsGnm7g+FCtZ8pZvdCyWXfm2n69HuBAYS0f0GdAcLoZF57nCZaALHkUbzE9J4+yCzgHjcqwM7ESf9UHbMDFTRtaJkZDU08JKmssxPiTQEhYPXEAkI1wCICaGjYUzO6GuiCYOAy1v6WtpdBjfLp9D6zhaQjlInAI6M2xs3dA67eeRczGIUJoAYQo3JBmxjrVekAWz1IyTwrLa9LeAfnw/Q9+uFU0tPOIFQm3N3d4tH1JcZSYky6r6WFbpSijUlEBi/oQ3LCmCScJwPVoGeNwVzQ2gGNJ1SLYagu5NtM2L6e8fknMyoBT98f8M43LvHoyYAVgJkYhz3jzfMdVuOI3W5CrRO+9d13MKzDzbvNOzOLbK4z4+b1Dof9hNVmxAfffCShGEj7naAhG6VFBi6oDHBT0JW4YvK5dlAgTITSIwcdeahAFercwrMM2KbWmD/z/AFS4G03EamsUk9hJvIaAZVkHi1EGpbAPLapl6WYfpWv1TMSQRpoc7WqkEXM6vuGfgRkReUALYDa4kS50ogbYxgINKQ1SQIRWvi5qnNoa/CT4C5HSrR9aQCkRuEJT7M2+hlNfRwprSOsrAKj9N1BJzM7oc7ykNCoCLApDDPqjc0AQdpZQwIBg8IbFoPU2KllIzzfEPSkv56CT1OfG4htfTcQlB+bA5sbBNxaiH0ObbWBq3gxqrsDvvjwR3j5xW9ic13xwXe+BUwNrz/9Xcy8xeHb12jTM1Ru+OLDH+LAO7z/U9/G5eY9DHSh7dyAsPIxj9pQuYJ5j7s3n2F7/xKX1xe4fvIMZbwC8Ub6mACeKw7zPcpAWA1XIL4AMKK1KtKhHnCY7kB0QD3s8HDzAvvdDYAJ+90tCk948elHuLt7iXe+8Q4uVk/w6ovnuH3zOfbbG7TZgmV+DZPNY0Baylsns6+fYrWX1y/hVc1GpOSp495m8IyQ0ayYbb/CcBkGpHGR6uFF5pVNTtx99I2DMbjMvTgxz1AMiWUxMVem0kzuLtZyTrK0TjOAlE3JQWejWT8nLltoc1X2gmkP9yDNHhABJA8I/l6/J/KbqW0ZvMMm+1Xe5me9W1Sm0aKLg1b9GthBW/4ch4HbaYMIkWbXcr7UffRE0/oGGMv2l6l+3D16RA5KX45Ywt43uiR5aPXPuDPK75PsV6wets4Ur3/svy2vzEsZXJbzixa+PVEmGCd+S30W/J1W3ZTeBXyPbuv0XKbOfkELrXfrnuFFODlEX/Ci77WejZBCzfbtai0AuA2ylytJZPBxMV7LGCXRRmsDL1/2F/uLDR21viRpKYnGyzy9n9PdLBc6LKMtkxIP+fMUcuaog0IMHteXu8c6pnBedVlw3IyuzvqchYefDhXrixXMsWQ+R2SefNMSAtXz6yWa9VRPH1IvKMdt8Z8LlKPxZANh32aMFytZwyXhahxykg28Nm/xwgUBuLdGaFNDq6zrtYD1tNZQqraJtE4NmPeM27sZlQqevbfGej1gWJHrP6aJsX+oGMqAeW5oteHRk0v3ogpoiF8tqTEwTw3ToaLVhs1mhXFVEhGtRlZzpTIH37mcT41178s4Hpf+bvc7uM5Beidol3nZZWcaG1ZPO2DiNGX0cow79pRLWS6nOcvrspxX8nvKeKYNJeZujFnZ3Xx3QtYaEIy5p13nRcn43Ghs9EpjH9BDAMvK5mzQ14FOfBrtTG504xtwAZ7HXZ6LT87Bi0p0Ij9l3s1hi7m0S1a3hABbLg0D+EV4ufpDfMG/g1f3H2Oe3uDiYYXLqysctg/gaYvDRHioa3y8vsMfrP86ph3jnx7/q/hu+efxbPoZEEbQMAK0ggHuGip2eIMX69/Dbv8aD9tXKCPj25u/gKf4Lka+hujYGdwapsMeKA3juAFhDcLo+3XwjIf6Ai9Wv43PV7+GL9rv4Hb6FESMw8MWhIY67bHbPmBYDdjO1zjsDthv71HrXg5UnNM5ndM5ndM5ndOficR1PrHYPqdzOqc/rvS7j/8/+P0n/+Fb70/DA6bhAb/63r+Bf/juv4mn00/hv/Tif4Q/d/sv47v3/2WIJbBPFRNuV5/i9x7/Ncxl79d/+v6/gvf2/zQ27dFXrl9Dxf34BX7/8V/Hrz/9q/jh9d/F7epTqBbiLRuqP1r6MUBK5EoX89BDqsXsTvixbXIprulfuFsv3cl8RSjE+2UAWF2saxmkyJ5QFtjGHG7IMuiLFGEbbY66MwSIQuQuwrVBsiHVNlkeg17LYUocaFT6XrB2nhLlHlJJN70WukbqF5tvUzIUNaDaOx4GTesaioRjtZ8DU0J7BI2y5+6kyepi/WIqT9MhZaWKKmQGCg8s2gUevsYq5iTh0NqUrBl0EBd53laQealgiv4pWlFO9KKUleXtxmRT6BB56EArobUmYcM0XN6y3qzGiaKWYLa6i9UbzKEAspB0yz43R1BOSzYNm7S7FA3tYzzQAqyEqA5QOEKxEYHV20mENjCvW8KbTU8AQ68tjS8GopKxIhmPHfXDxs5+JTNCPOc6G4orOaQKLZ7POeV7pQS/NAAzN/UmVmAeo6LfWU6+mrywMaAxAV1pbDVm824BBeEIX82zgGXaIONpLIQB7ltL2rII78IQpbK3J2kkqz8n3osMMCY4RyOSglGcDsnLmI/GAIsFIJG9TSBCUaCH1W90I631NWPQOol/n6LAEBmOFUBZAeK9TuRmbeahhTEUDamXlIPDoGGoSPI3ZagYZdiPp7dGqFVAhs3DUGnZKmc9vJfdswlE5ff25oCLzYV4XGoCOBoGBU3V5sZODZ4EcprFuMw8l3kv82DzgcYd8EH6oAcRHdBAXPBmuwdfrlE2YvBYnuD0vrXxn5TlS77P12sFXnxyB64FhQfsbhmtFYBnEA9gDOB5QJmFlxuJgnz/fMIXnx2wGwgf/MwGTx+NIqu03O2u4eWLPS7KGruHPQ5Txbd+6inGDaM2A1nJiWdmYJ4b7m8mPNwdsFqt8M57jzCu2Sb4UNQzxLORgjwEaCLgIQlLhq7PLTl4FKEsN5nRGBFeTEStKsQZdkLUgDYAPLRbyH8KIvtzZkSI8TGUBBRMG64cKrUokNZ4HDC8i4wNketRJwcRFpXnNj5dUCKFv0BMzgyREiztbVVOqbfGMSYVvdxUhnFmKgiwZyjkwpiK5OXASPM4wNHO3B9WEQGQyVjsPE5pRxYbX2mi69dD7OU54DuVwRzg0n5uOTEw7HLqTwccavuoe1EIQkV4sGnlpW6xhuLOIFZQBgIpaHW9HvDw+g1efPoj3L/+Qzx7+hRUb3DY73D/6hPcrTcY6hpffPwHmIcJjx7PKBcP2O8r1tfX2Fy/j1IeASxhGQ/7B9TpAdPuFT774W/h1fMf4Z3vvo/vrP48Li+/CaIr1LkCfMD9zXO8vnmOZ++/j/Hxt0FDcXq2NmF7+zlePv8hwPd4uHmOVy8/AbDHfNhi+3CDgRrmwxbMDfdvDribXuDm5Ssc9jdodQeev95GhZNGJ02+xohFanonDbDu/YLes0uaCdL8oBJEyoHdzh5OljNHfM3r9bi+mBAU+JGBPSomYmkdoiCthTk/7s3OZXJen1Aaq5Fbaj13Zdkzlr+TNyethsnj5W1HdNiCL09wTgtYJjiFvKDccBcqx3Olr/l50TLq22fZUfriHt1ytU2++dqEQCUZ/I3HEOuUvj4IQ3dap3X7yFQRW4uDQ2ZmmsZ+Of1GWjPl8lNeuT7Olydpp/1voN+OFulZYMEj6PmXjBrHya6JE+SlT5dcISzZ4Oh2/1KA3+zD9xjpu4OsYP0WB2rcyI++XpyyjfEXbWa29si9ZmXluS2Nvabz0mBY5cQnfRtjjdQTfNGpHJ6j7DBPrquNlez1NdMxs6EBNY9EVkplecfGiI6fANdEHWWN1Nfe1kXdGlg/C8O9cHqdl7zMAJHs1cIbYl/XmBeSjDzRuDo31Cp7COYk53RNCUYCUgN52ZbFdle/t9DP66Y8y0FGed72oJr7NDXMteFiNUabrI8pejt6Lu0fexG/qCdh2s3Y38+YXu6xfXNAm1g9jjYwBjAKiGXt6V5qdw33NzPaWHD1eMBmLVxkYv5QGdv9jLEMmA8Vc6149PgSZWiqoyPtM6nFPDcc9hXz3LBZrzBejmmMmQDkNJeR1weAevi1+8EEVh9rtP32SzYmu0Fhsj6uyUGJkwP0KLRkHvf5q+8785h+S8r6Kx+7uZxuDkeat2I/6jIpr2wolx2ekuwAgO2bWm57Loj7T2ury450O9Qe7H0ZoQJtvOYBnd7nRd+ldue6eLvTIDyiC/f3c2L3xuvV7PNw+Z0qsRREiHrk9i4HnNHEnrX+GMaCQox594C7wx7Tbo2BBrR6wH5bsb0tmMottvcP2B62+O3L5/j44ldwPX8P36p/Ed/DX8JmeBfAiJvxE/zB6m/iM/rH2LfXONAt7vkFCMB719/F+6s/hw+mX8STh++Jl6V5j/vbW7w3/gyePP5AJiSt9335At8f/yP83v5vYj+/QD08YLe9l3DSEHATNznORcQYhg0O24bD7oA6H4A24e2u8M7pnM7pnM7pnM7pnM7pnM7pP6/E1PB6/SP8h9/+K/jlb/yr+Pnbfwm/+Oa/g196/d/Dpj0BAHx0+Q/wK9/43+O3n/y/sR1edQqqdX2Eb21/CX/u9l/GP3X7X/frA6/xne1/AQNvEPpyxvPN7+DvfPB/wD9+9m/9kb0j/TjpK4OUKjeMZfS2uYHOFXa2EVcFh+9yGaCW9sOMwtooc0Wr4TJI3d3Yif+iRjj32gEJWSbKRz1BrZpI5uwtKCtk5VvREGF+ww2LUtdGCuLhqJcrjwt1+9Ss0Ixz29K6DK7Ip5vyBl02wKwbc+oUYF5/f1+VaZ2iJnbppow2o6EbLky3Y0oQTsYJU4RRlJkV6iUr79iAYKo2MWM4cwdqMnogvZOTtcMMrq6MS0ZrUFCymKKXIm8WVnFFYGUWsI2W62AT1YgUM0xrP4jL/pIMXXAlLGm7B1IvB8oA0s6iRva3aUdC4QmohwzjDQtLo/95yD6kcDtKLFGuK++QAJWINByWg6qgwy6f0l5oUF0hqAA3JB6kEDe9f4J43RRk1m+pmYtrrvUDgY9yCxVJlMcQwEzuU0DbSDrGxxhVrUo7xWNWjG/n2aSBYqUFKTGjbFIFlnhcMg9OrKGxBuprTotP845EEK9UpKWx1rFAvI3IZw9IsBBwpltjMGrKc1iUl70nmbGl6NgtqTwLK2fJgFQlPZfLNc9Z2ajTioAamtGlCXCmFAFBiEclBUqYbE3jkQwIaBYdUmBn6iPW+Bh20hwQuSFYNBJuqITdfcWzdy7BrWGeCeMqAC2tMtZjcb4zQJf/JbHeOp7on4PSP7Ftp8jMJsmmPTcfgO3DhGfvXEExcaiqvCRQ59kp52u0z2rlGFvyqxDj0dUa07bh4XaH7e0t6nQABjkFPbc15ia0a2iYG7B9PuH5hw9olyt88xsbPLom8GAejIC7+4pXdwdcXqywuzlgt5/xrW8/xbgmcfVOFUwFrQpo7+FhxuvX97jcbPDOu9dYraEnxAvABbUxUKrMAU0NPs28/UiD6iz9z2qtI/U2ZbLd5iPm8LZoRihAxqwd0iSS96QcBqtHHAtDaPnlz2yM9n6nkO8URJePNIeVNNnl+hCRgonV4xmR846UZ9zDLm+JdPylubolnhCDAaNVuT9X+DhrTKhVvL7JHCk80oMIbIKVecx51ga50S/zmlZTTqnHufIIzUZ97mltgUzXNK4pyeFML1arSBgu+vFl8rvpEGypzr4Os4sWEs4nTm+6/GnINFu3hIG/9LyghG9oGErRBTVrGJMDiCoGOoAfXuP53Rtsn1xjGFbYPmzx/MMd7l98gnZouLl5g+F6jdsnBV88/A4etju8/93v4L1v/gIurr4J8Abb2zf49KPfwcPNZ8B0j/3dK9zdPMe4ucPd9Rr0dI/dQ8XNqxcYh4qXX3yC/bzHZv3P4PLiEkNZg+uMabfDvL/Fp9//dXz20W9hoAc83L/EfneHcSio+x3223swGoYVYXN5gXn7BvvtjGl/D647oE5f65PPFrrV577Fmsy5ktKHr596Y4nBgB1gbGPA5ixfcyVJrPxsfGf8mZbysRjKy6vFgslr3I2PXGG5z7qWS81cgE5CjiBdyheWxtC3/aYELrXiurknETd75ehkZW4g56qwys409pDJFg/7M3n25X792MuRrsiQV3l9luVVkDc1IH4ftZcXQBvqf3fAl7zWierGc84b/Txj9fG2mPylWIuZ3FpOWgsb7zFdaHF/Ub9lPyzrbXlENiGgoz5pH+8ESRlwn0dXzyXDJg7Mc3Vur48HXvw+SgHcOcrnqLTFl8Sj1q85H7tmwKYurBvpfJ7QED43K/8a+NDmtXzgIwNuO5HCNr91vQFAPRkyd6GpE5m6Z+17LjcT0KXAQnBRN6b4qOeCMdi9tTqtbIrOdUjj3b1Z6X9EBFaQ8YKV8hBKOogsSNOnjl9O+pmuPxOvzlPDejUCYFmvlrx2aAJaB3wdtxyOIbFsfsn1pmMvfemlLJPM606zO0w4zA3rzaoDrZ7qz3yBlcZepyWzK902lxJSbTevsdoQUGqUzuYtU/4aA4e7GdubCtoMuL4esF6RgsmEbodDw8O+YrUaMe9n1Npw/ehC1k9soGD14FSB3X5GmxnjasDV1QpF3XTa/lvor1Rh6+p+Xy9/i7m4izmYwHCZaPrZjXXrIo7fNm6PCG+0tX6zMdo9IExuPGF8l9l2mTq9XDcR92V2cgkhG2J928sgE0mGHclLZ7vX0pjL8ifnY2XYO06/vpq9nKaQTW8DFHqhHTEC3OS3k3zsC4z3j/LWinZ8ow9bnk7L5YBygh+D/2S9kWmymGS9ntmjlYVUnDFNezDPIMyY91s8HB6w3qxR64x6T+BpCzAwTzMaAYd1w8uHO3y8+2384OKX8YPLv4l/rv4PcLd5id/f/A28evMhtvev0OY9CA2H/RZlJtzcfIj6+A6ftF/Fbt4CaKhtwrSa8N2Lfxa/RH8Z32r/PJgqflD+E/zuxX+Am90PcXP7OVrdotU95vkgxGkNPFc0rqBSMIwF3GbMraLWg4esPgnsO6dzOqdzOqdzOqdzOqdzOqc/sXQY7vGbz/5d/ObTfw9/+4N/Df/KR/9bfHT1D/AfffN/g93w5qRu7TDc4YeP/i5+eP13gW/FAwOP+Nn7fxH/tc/+F/iF2/8mGs34++/+3/DXvvW/xs3qo7fo6X7y6SuDlETfJB4UYtNKqoSSn40bCo2xoQYg5/SHAGMwEEYG2eZGCIYEzDEAB8wrCuumVPOxWCaIZ2MLtVS5hbIhK4YcFJOUDKb8sh046fus4ciAAJc0/U5JoXF0oshqoNq0zoCnm2wBz8RzWTlh7cub5F7Ry5pP3/q8Kc+UMI8btsFfKsOSc4Z4Hr0SMxtzka9Z3Rd5AAE4sPea0sNNil0bFMyiHVLUUwIXYGADDonmpjH7SUUqiW+oRAgaoznk5J8oSSS8lddRy7c+NY8Goq5SpbQpZ8ieb+5BYgmY8b5G13UA2PvATh9739g4MgNs8owEVcKUks6PO81Tf+qxX6ckR31Jf4MC6BH07pyYpxS1PwU+i3ZBaUXpu405Ax3l/o3f9o6xpvG4gNkEJDaYkpEUNGNK5lZR1AOFEZCBCAfXmtCYRPnEGpOwkYS3YmK0EuPSwtRJRiZ/KNW6P+FeYGCs8KRkSv0TulWn6KCtdkWf3slAO3+Pez4y+rZEN8vDDBvMBpCKkVuDAzvFKAMoGlORSMKPcQNQCYVIwuVB6CeATQMIkPfzUMwIZ17fBOhk4EYLo1kKoQwEFJb5hAjzrmEowPpiAJUKQtFQYFoPnR+yQcF4VloT/Z5BFpm/Ent0/eDUNJmo+cwMEBfc7PfYPLoEhoLJ+99yRQdSspIbs4/r5UxE/iyDS8PluyMuGuHi2RqP373EMLLQTIG7jRpaaWgVuP34gI9/+wZXHzzGB99b43pF4oSwCNDr9obxxasdLi4vsH29x7Sf8e2feopxzSr3JAzXPAF3t3s83B1QhgHvvfsUm40AI5lYgB6tKECngWsBsXjLEsW3tk1PPENBNQwFECtBbMwyxBsWUNQrgUobZj31y65kLhqulJvdZ+/XMJCR58uNdX7wYdHxQgcS1nca1DMg9/NmTq1ZL0n4SDO2O9g3WdSZGcOgnr+gALyUbausodMEaMbN1j2iBI/Qd6Rh9aJ93h6V9WA1orIZI9hBV7A2I4EibR73CyebG1xqYCOgC7kqS73wOiXhcXV8ETm4iBDhHbPUEgCbegTj1B5EOy0PCcOS1plpTDez9LDRqaFWW0OItGVu4nWJikpJkUncGpgllFqrFTevX+D5848xTTcgPqAdJty9fo1xU3A4bPHq0xvcrUbUQ8U0M67bY7z4iHDz+gH76YD7+w9BPOHpsztMh4bXX3yK5x/+Hu5ffw7mCXPdobUDXn/yGjy9xubyEbb3Bxx2O4yFsHvYgVYjHl49wZMn72NVLrG7nfDJRz/E4f4L3Dz/AbavP8I032Ge7tHaHvs2g2pFm6s0d1jhsG8oBajThDrfa5g3ka9f19QBq2GgEOr6Gt1XGxBLsKetFvtnCfkhXcNyeGyzuV2uE5Cr85XqD98vLA1cVqyc6s/7pdzkWGv5nGBrtfT8V7ELZYBXHuBeN+rvWXl09HsxXynJu8MCWJLK9lBJ8CZyBo1zXdODqdx8B9xXm1ODbD3cUlkOVjhRSZ/btZAsn72IlE8m55ItGMlra9eU5UyvddTnOVtmj3iNcIQOkyXSkbjulqf5YmqP8f7S8Hxc57QGTAugvH9Hfj+927EVos+8OeCcxVFifUE+8iEByg90xmzr9xzVnZGB/bFjoxOlUsrneLTYMyIPaNFgBtSbn+3P403jJQM2Wdty+KVch777uQtPvHyGsJSViDBjxs/pZXs3ZNAy2Zhfdh4643zUN/dMggEsaBh/hKpovUIABgpPLgSQOByMtUXm3UX5ec9IesP42WhWCmJ/a/zegDpXbB5t5ECE3hdPi7aPtwMfxwd1gizBUz0tU52ABa+6xDuRYcFufwCNI6hQeOLNobBj9nIZbeTLxPLcu2KkU2gEypowrAYUGuDeiywUahF5fLipuHm+x3ixxtXjEesVq8ySneV+z3jYVZRhwOFhBrjh0eMNymg1JaAJuH6/l7Buw1iwuVrJftLkPhevaqz11ZMo2/reHghZ0s1dQYTu+eW80b27vCHdn+aSXrb5uy4P+7klnl30rb4TY/842f6GOCRTltNdyuOA0uHJnJcdIIJ5cqOoP+C6r04GJ3rZ79NjOJXP8DHnlUugxuN5fdEQlQUZTJSqtSCScVXif2vPQuZ3U1Sun1cs+hC0lOeJFsddeeIai57bPLd39+RETaUZu/YG++0DDvsHtDbJWGoV+/0WzLOUOe/lrQrQMGDa3UtYxGnGfvcGwISHx5+jzg27+wcc7m8x7R5Q6yR7ca4YGvBws8dh+wa1Mrgq7zUJ4f7p+h9hvr7DX5y3oLbC35//77h7/gJcHzDtbgV4xDNam8GoArhsJnkGzPOsunwCt1nDTyd6ntM5ndM5ndM5ndM5ndM5ndNPLM20w/34/J8sE2J8cvWP8H/5+b+MSvvj0PQn3wHy5qfShN9//Nfx0eU/wH/r47+CggF/9bv/c9QUKu4/j/SVQUpDGfSkoe4W3ZAkjbJwVGb4s21mUcMRafixMBrKbtJDsYllslMAipFxkDKUyKxxVgTnRK5gXYaXsQ2v/Ibnl5WgbljX3bAZFFzXZIqHxuqBx7QF7OWw72oVGOOG0d5LjnvLaeyn+JaKY1eiWpZmXIEYa4t6qOiUd6n9HbCryHfzEmOG9Bw6QQkhSoGF8iBORxkAxwzLSbfofZjf7FNrqW+WGiENr+NeIVrzerOhc4jVgCC0t1N4rmnyPhCeYFIPSko5OxXMUO8TymsWUq4zlBYDPalWpRif22OicB1KPG/lF4QyVB4NTw/e/2bkJbh3o1AwhybHQhEabzW2sHBq3ldGodCowT0CJBq7ByXNvum7ZEo14xtk5X7uy7epb4NX3eW319u6V8EsLN51ki4aprI0gEdLvGHdKmAXIRABHrICRKDKCjhSUI0iFAjwMVAG4xfpl8qsdSUfwrUqmEm16KTh+AywRErbcTCeDxiXgVXiL34zQonu7TOKsIVqk2f9FLbyq8M3Od43xV02ZthzRfvAwUn6QPBIrlPxshqingRGYaE3D2Icqxq+DuoVrDKrZyUAHjJRO5zVxbyVr2CDYSQwi5emQb3BDYMq5QtQhgFtBh4etri4GlHWjNVYMJCCIxsw1Rmb1WCiHr2aOCkzYeH34lqWSAK4sSRvdMYhiu8MxsAF97c7HKYDrh5fiDedxOuWRxxUjYFXE5ijh+3FOBGqj674a43Q5oLSVuBhBjCAWhFjBgE3X8z44g9vQasVHr034tEFUEpD5QJU4O6m4sXrGeurC9y93IGnim//7GOsLk2eVnAj3L2Z8HA3oxTC06dXWG2KK19F9gHg4oARAREp37CFUBQG4hYygM2NgMnsJgp5A6k1BzKJXGrMCawS6woJDyZAGetD+RPLMrHIAukP7YMUotA82lUbCEDMDxR9IFUNcHEpwqcRJs1kSij/3audlUXikaeY2z8K7DSzgJNapTjZzAJ4amyh8gRMg6awP4a03eZi7gGybgxl+1NPTw4U1zmiqqe2Eu03zzUSOpY6xJ54q9PRxbGeMHCmAahsQA1EvczWfrC1n5VpaydwAI0bG1XzOib60njFxhkzo1m4FJaJy7pW2l8cVMXEKbwNAyyx1AdSfkMDuILQQNxwvRkwtAN22wdM8yx51xnbuzswH8DTGnwo4FZRG2F333DDe+y2Ffv9AVxv8OJyg1cffx/bhwfs725Q93vw4YDDtEPlPcYRmLfAq09uhQ9mAmHU/gHWFxeYti9x2L3Aeljj7vUbfPbDX8P9zaeo+y9w2N+CuYLbhHneicRpjNYqwIR2aGgH4LDbooDR5tn7mL7KxuRPKPn6Ky7A+FcHG4C8EklrH2QO6p/q8nM5nHYqpLyR1kXQ4esu+UyOAbqOO14HOcgie8pEzNsxX8kPW6/HIYDFoigVGW9Bx9fp+/2zOgaXdfW1pZO4mxtNlnV1iKHodaCcHY5lKRbXLYUMS2Vqptlg+aUrzeVN7rsoJ/NQKc+EXFsaOT0yoMkpRhia9aElK3T1NL7p+DG3+/R9x1emtjtldG7ztb3zpVMivuf1CuV1Saokn6bRsk1QfvQRdWK+9DIT7duJ/PNaJ1/ryjwlllLe4MTF2nGZLcviNSsx1gqcrqb+hYbkXhZr9WoAe0lKi0xvRqyVcptSe/J+l6zu1Lfdpt5u3PnvkDf2O/ogDggcj1/x7tO1J1HC+8X6L8nSI3pwz0v9mql7sns3O7JbyhT3Tszh7TS84SRAV64nc09fHR+ug9CCbN9d1FPzNDWsx4IyyjWL2k6INZ5TiHJtuRt7WU4invD2L8kX/ZcJoLzEEgatNWCzKd0hobeXcVyHzrMmH30JUcK2dod7ASWFZDVm7B4qHu4fMG5WKBeM9ajedgmgVnDYVuwPwqzzoaLuK568awAlaWWrTULXTQ3jOOBis/JwyDJv2aBRADrLftBq2/zBqLvfM/qw5RXtys/xsumnZMuXkOpIZqZnfO5z2ZQF4PG7XzYPWkcu+y/LbeNpShtTG4++h2iZFpFZDomNdtxeQtD0bSzka3bGkVzL8+cRjfSLl88L2iZ6ZW+D9nh3cNQbDSz70uVSzlyfW9aNFx2dceh53YH+Nad3TsIHUilGU0/VcnDV9EG78gIPFx9h/UC6X+DYw9SKxjMINu4FTMS1Yr9tABfw3MBo2N+/xqvDDnWuupavANvBixm2kpx2E+b9VsBOkANcVAhlKGjzCg/TF/j16/8HuBbsn7/A/uE16nwPbnvZ2zJ7eDeTtbIHqwAItR70UJswHxP5vHZO53RO53RO53RO53RO53ROP5nEYLxe/xA/uv57P5H85rL7J85jN77Bv/O9/9lPoDZ/tPRjeFKSLZwZERpIw7rI7taVYbqzd/MTh9Kt0OC5yV/xd8R7TUtAG9l0iTLXgiYVB7TIiwY2EU2Ch5vR3WF4OApjpL+awS36bKck0/8J5iknqUOTts7ehbU17e7dCMpRpxziwvLKCg33suQGlijHjC5FKdKHlOu9NHHSKrjCXLpGC7IPK1z7NykC7X0BJIiCz+lCpAqX4AvP2jb0Rg/brJuykEwJKfWo3FAovBoxS0isotpHAekAxKqkVY8MncInWVeYj0/Dcu7LBR9YmeaVA6zKbFJPJeBOyVHZPF8FCEiMxUKrYVAD6oLe1j9hIFEwjT3IC89VFO+JsgBqRFePNGbRMD72E+JK4CI0CmOCgrWsy7Vu2d9C9sQT3jDiJHzQk5wuuZn9d3KAUg5jFt6FGBVJqZmeEZUN0GycGc9BAC6s9yQUiIJszEOQK9kEdCTOeLIGLnghFH1CRwl3Bg0HJP3pjjpSPT2sG0LxF8aTflDLPWnnqOM3G1pCt9idGwYDmCG8WShCzskTYbgpqcis3+uGuoslCd8Q5RJGUOfRiwmohdAGVVwVoFTCaMqsVoRvEfOCEwkANFyc02YglMJqMCD5tNO4jdHmiqfvX6KsGkoZhLYkCvNhKOIpS84RdvSKNrIqYcl5mRefloyb4r3wxGQ8ygD2XHEzNzx++li8GYGwYlEyVpfKCpbjMBFD58XsXcnroWPejF/m5QUa7muuM2bMGFlBqTyAG+PV6zscfuNTfOObH2DzzTXGi4oRA8CEcSbcvKjYbxnjwHj+8WvQlvBzP/cMl5dCw3km7LYNd7dbrFcD3nl3jXEcUEpxb3ViMCIICITRWgN4QGPxC1Ybo5rHAw76mQKTKUBfFq6sJo88dprbvC+5zNG50WWdDTDtXP9KcB5tDcCgIBrScjhAmt044AQ8oiiPtS8cVON9gjRZaR0U4GO3zCjmxsc0mFuV+oiRiMRbm2ZqoRcCcESgJgacZt4HDIwF8nC0vpZJ8yYBOo5JT70WX2sZqNfGNxFH2NHSz3/Z+BPeCbSBTcGRSq/m6xIkT1QBWJIpM4O8TErFWHPfiayywxTw3RzFPq05GATCBN1c5hZX608jsIR0Y65Aq2il4XB4QG2TzrcEag11ugHVA9AI42qDhh1qnUC1grmh1YbGDY1Ecd+mBxx2E6gOGFFRdwc8/+j3ZOKdgXk6oPIM9wBWZ9SZcaCG1hqoCYCMC4FGwmq1AmOPTz/5A2C9wfz+Htvbe9TDa0z7V5gObwDeizfA6QC0CWZ4rq1iGHSSqg0VDQ3izUDWfgPKkGeZr1uK9amlbADP5nU6up9+sz0fT56A6ujz+oTH/4j9jO1S8pqtOwhwsg10VCd7IUyxkQeQxlvcOirDR4xO7oksPs7s9SzraJHh6TofNaFfLOi1TAeTWT1AIbWjo0EPHCOcol86ZkF9e8C6PvU8I5+EY0z7MfY2GPjLPL756iC/Z79hk8Wi+osm+h4xX8ukSZ22HG2kDx+txd5W3KKj+7kscunoGdOUr1dtXWK09zonGvjrnPguZbTss9xOy8/my24+WfBI1H1RiS+lRmoQZM6RQxU9HRcz2XLEIbegpXrnfX+3r9Gx1jwMfX+/G2vc0zaeoa6dHd04lUmRT95bSrtYZUiMaSs36m7rgkxFSv/HJU7UyevjXt71QDDv12Mx3SUVUYn2C6lDUW8DKhUbq772SC0gHPGa6wtSfY23Lfx75u3pMGFzuUYp/cEz1hp2OqSFIPairb6L68vnrNAsEQnU8SogBxe2tWK1WSE80dBxXjhNQ6HTsX8mqz5B+chdz8DXVtD1lQERDvsD3ry5w5N3n2C8HjGurQ9JDoY8zKgTsB4HvHx1D54J7zy9wHqUteU8A4dDRZ0Zq1XB1fXga7KoVeJcrQ+n+kpbYgCFuE/XFzLY30XfL5TuHaU0NwDodEa0yJeo7/O42VXn6NbRXNDVOQa7H1TEMVDRZS/1eXCilf82tFE7bveRnOhvH8nrnLris6yy+nVPwgnIqUM62bFY++Rn8u+jbusEKro5tJ97Uw+kAW3gIZGhaXByX5EMXLc9VQZoSVlNIwgI8WfeoVLFPO9Q5wlcKm4vP8KPrv6/2NaXaPWgOo4BxAV1jtM8BmwyuhEB3OTQhOjkGqb9A+bDTgpvQOMqHlFJ9NvEkEMKql80z7sgiD6wFTw83KCCUecZY1mj1S0IE8AzgAoillDQrHp1Mt07ACpSR5OWhooz5e05ndM5ndM5ndM5ndM5ndM5/ZHSRA+oNPvvShN+8OhX8Msf/O+wLzd/gjU7kf4El/5fGaRExR1koLAaJFtVEEGAUVgNZvkEsmz+ZKMlGy4BmqhOBCSQp+RHvyjwSO7JjlkULmQ7Soae7oA+R+JFB0U8BnS1Tyq55Z5VlWZoABfdmBHpiUsLY5I1G/qhACluGgJPPQC51tcUaEYrVnfjqsQ8pU/xDTKFIsN0ntm7QLXwR5ze0dS0r9DI9BiuPU82PX0myOIVKp2OS/LUCx6WjoBG7PkNFPtYEEB6ikiUsXKDCOYsC6xh2RpHKK3sjYEUbSPAEgZQ0KrkVZnVxTt5OAQmc7VvHpOE5kQKFlLEg+3nTYU26oUZjHEgDKptsfYTR1ggP49PCuQxelUlnyJPGsQgTNYeAMNAbiwXujC4CEDGlFUVLDyXDCemLPGTuVC9ghp6KxkdmtBAmbOoUsvCD2T+iEOkwjhLPswnPBe6pfyaJ8rfkuLN1MA6mpf6N5cMw0JtZqxoapKqf83zSANYeZFarqmeF7XBoeHJhkHN4034rrL2E0G9LUm+rVUwa9igxqBB+okA1BI1LAgPAcXKBDvIS8Z7jCV71sK8qaTphh9BQsWJ6igU2aRgtNw3BjRyz0uUwF9Jsbg875tlMoE7mWSper2F60sBDMzDjVBL6PuokQIcjGkZHprLaGWGAgJoUEW7Cotpf8DqcsDqQsFLSrfagHqoGEc5JVgZYCrhKQExRg2wGSCmrMwn7wNL7tUC0H60f+JOHTzg5ct7rC8uUMYAIFVKJ+gTrVn7vWrJpDW0MF4G1aihshYiJ4963FTAcgXajArGgSbMtzuU2vCzv/QEmycjVquGx5cbVG6Y64C7Fw84bBkX15e4e7nDUAkffPsSl09EZj7c73B7N6OMKzx55woXF8KnjQmzeRADFMQi71gtG+B9yU0ANS7SAYiXLJ0LDRDZxJV9oZLoA9RqnsQUbGOBDSn3pT7rc0leP2i/EhTBZvyv8jLNYS73rMP12ezFgpoaPtU7IZjT6X6ZW8pgQCHzTKNyzepgRgfV9xoYUuSLjqVqnoDgIex8buBou8+1ZOssTnW2065wo1uML+NyG1OJzzUfSnkbfazgAshcBICrKKyzhxv35GZrLSa/ZhVxr2FsYSFFZnFziDUqN1kbclMvmAyihsP+AbvdHcb1iHF9gUIrEAZVuMt6UZpKIA1dwlzS/GgArQa0isN0i7ltsRqBw/Ye1A44bN/g5RcfY5rvcXm1QRlHDOMGIxdcXBWMa8L0YGNfwoOKoXoGl0HWh9QwgNDmg3vzHKhgd/da5mgIoHBuB++7VhuauwCEenNS+dAKWmUc2oT95x/hsN3i9Tsf4tGjZ1iv7jGWA+Y2AzyBUDG3A5grxlGNVUXoWSsEUKgLLlagVm2tM/5+7ZIDy/xnMjpBGdoWQPnFJH055lGT89BvBPOSkebAVOARadTyx7A1OGvRXw72sTnaZ5U0fjqDqOYUa/AMxDqVZ1T5VCSxTB4TBSZHqFtHko/V5UogwIABYnSvU0meGmACJotw7M0FZA3mrv65XkD0Vz8fL9pv84vVmYMmBvAwLzVHgBOO9bLllQuJPG0dIkB5359EM3xu9qbwcV2jbF3zkNAunz1A+pQ2WCdlYzWl+uuTFJQy8G7CznaVy3sbUKJTollHA07vWR4MBX2oUdzuhahPfCDXlyF0ja4BxEY3n3zZWKLUXvktDTnqB69/LxusiVGnaHRer7kJ1tqlfORlJ1o5+EXnX9cZGI1TuzIwwEMkGvGbPlBsvRzzse1jc58uAVndgEJ/LwP+5F2TYy5FYJJvaWe2JiTYjvJHEOG4z6L0+MbIKgWTGSYrWuY/rYePbTpRho8DJyT8AFcny+RAEpQn2izG9mGl4GzNQZbXEVrPvDUveQswXyJRt1zvVGpah0X/SV5yoA76HSDs9xLuqQyqh0AP1O++Lmnlde5lLid6m+ywscfaRls4yoGgit1hCyojHj+9xJP3N+DCuFgXNDS0WrB/OIArYViPeNhVXF5scLEpWK8HzI1x2E6olVFWIy6uB/GQC+rqBsBxwDHl2kQQa+wl/eT5mIMtv8YuUfzZnK/vC06llsZ7pjUnWi/od5xyyfGRwXP9ZJhoAHK5aTLBx8zRJAqnWc4ze59ip1+q75fI1wUuB4DumY5WA+mwWp43cl76v/B5hmGbTGLY/MuZmBz9mdkhz+1HC4pUxdyGADZm6WSMVjHND3g5/RBUgKerb2PEBYhGCXvow4HFs79pcXxj2K/2iBvu2xe4a5/h5fVvY563eEG/h115iYfdGxwOD6ABmPEA7Amr1RoDDRhWDOwaaq2qFydV1on8F/1mE/BtUxAS5Lk2VcTB3qJSQltqc2s+gOkDTXTRjcWbap1mHB7ucXH1CAONGMqMiWe0OoNI9g5yiJRBNKin24ZWzWiymAQ5DvSc0zmd0zmd0zmd0zmd0zn9aUqmLZnpgBeb3wfAeOfws1i3K8jO522bzS/P82b1MW5WH+M3nv67qLTHD67/Dt6sP0rPVNyuPgVT+5Kc/uylr+5JSY/xF4RXItkgh5cBfxZmkGTdhLKH2ipkhqe8g4UYiGyTSLZ5DE2dfNXN8AlNW46511q8V9y7DOK0UopV0im5u/bat3xKu1PDgBEgm6ZenJjJvaaY63dTuqTmhgKXzOaqXpKKgYHMKCjgFgMl9JtFGUxmvGzJ/36AcRIZTdmjNLAqNTbDf+S1VPTnEFot9bmVG49Toh+FS+RSkLvNlI3MUPfrvbaKoTRQpW5rYggvBC+PCrnhDxCjYVU6Gi2IwgsQK9CpELtnKBqkyrVGeBwB0Vk9Q3PibuMX7Fc6xZPRRQ2nSgdTuLPmyY3FQ0xDuMKB0SyY3p6XcoVO2VvWoJ4hGECtTUFVZkrSd1TjTSCwulEyUZtBLrkHvf2qJrE2hiJ+YYzS7+YliPyK9zgCtoh0d3nS1ZS9lAwoPTDFwTgUfOSnUln7sZEb+MV7CPkJRIbwiimuoX0wQBRIztNQwASzlyW0Eh84EiKtqNHktPcGwJxxByjG2rHUT9pn9ugTT2vfO6W6s/UA8ilpk7+Z+gv5lkvk+MVJvV4oeXIqBdQYVceUADSRwqDZvCAGz1LQebazscpVaNbQwJVwf7PDk3cfCbgDABX1oDU11Ln5vEEkCv5CCqLyOoecNKMDJ14wejit2DwuaeguYgATwCun/m47Y+aC68sVJgDcCAMVN0wZWNHmGQk5yBGiEuKRS+YloYvNCUxCF67shqCCgjqznLpsQCsz5tZwd/sKoIqf++638c3vPsbls0usRgGSHCrjzYt7TLsJV0+f4LPn9yhDwc/9+adYF8Ld3QHbwx6lEJ48vcB4SRiGGa0S0FbOcMxQC07IebawDCxtr1UADyaXfPbRLwJ6UWMBSxgIl6HKJza3gIE5yybpEBRdKzStA4yf9H0C3ENGwgH7esSNiRTziih0IXJ4SPOPK7ijjJI5R0Umi2s85ROTDyJfrJ5h8CT36FRVbremtGyJVl6BnkfzvNmHiFWvPIjrNo8bDUTh3veJM7vJ10STeNinJ0SIXl8ZeTXNoFd0UeFzkuXOGkozyXIYQEnpRK2gtRkTZrl+2GH/5jN89KPfwJu7z/DBd76Fp+9+E2W8xnp9DaI1DtOMOlVsNo8wjo/RhrUAAFi8iBGJZOV2APOMw+1zfPzhb6G219isKl69+AzEB2xvX+L1F59gv3+QEJWFsFpf4PGjZxiHDVarHfZtwjw1DOOAsTRQGzEQYUihYVqrqLWJF6MiRrt5FuMj0SB8VOxZNQIogLgUnbVaA7cmMqwKTzYG3ux2uL95hcurxxjLiDbvMR8eUOtWw8uqd6dWMAwrlNKkbOWLpkxWNBYtt+ZhUL+WydcRcJmZVwhBdUpjIsZNXuf2TK3vMcMOQzhQQJmTU/nw7Nx8fWSc87pSX1T8TgKJc5vSmoAzkKCXNcuiurUQJ1os5nNwv25jJPmHyGBpHM2pozYhPK6depC5y4fyc5meuZ4cdTrK8gQ97ULJhaSHklhzWnMqJ3cF8rPL7Lxe1L3PfPys71NSubzIu1Ayb7KsG4eCro+chEfECF6O9bVV8uix1OjjtgWz6how1anrohgOsQz030GTuKPXTZ4T9bRM+XStU6Y/4tPUjK6IRQadx5E0dhbD139knux4K10ti/vh2TWPG32Gg17WgaGH8KnYU0v0kT1TtD17b7ZyAvLX17XryxNtzDT8z0rkMpNzV3bpKD86Ln0pm07dX/KMPW+eegxQ4r1BicaAhm6lCO8dA8wrkHmk6UEfW0ftdxWrcZT8GsnhIegSt8qhk1rhQCcb3y3RpeffXgAt257BfvJ+DE4BExDmCTjMjMvLVbdeTEuLjt4ZiNHNV8vfmY5JtyN0lPba+qtxQ9P9wPWTS2w2A1abgqKKpcqEw3ZGrYzVZoX77QQm4PrxGtQa9vuKuc0YVwPWm0H0JkX0G60WhAcxaVumoa07ZS7XOtnBAZzmqTxOOjlGidjpndADwPcLWU4vZftShhrvn5JJWdCa9JE62djmmD9S9j5H5TkDvUzL+5WT7Tf+4uPreQxFCPFuAukGadbR2TjLjy5lgs1X9mMpa6M+sdbvUuqUU2uqTnQ6UyNCXivdSn/bv7d6wJZe4/XF93FXPsYX02/i5v5jfLL/TawvV/hm+Xmshyf4TvsvYoMnWB2eYr17isvhKTbrJ6CyAaiovC2JXxoaz/jB6m/hH+//bbyZfoThbsI87TDPB4Arpt0DpsNB9dYAlYJhGDGOawCEcWQcZvHCVAbCMA56OIVlDjH6NQM3y3XxhGr90WIPKBMvvI/JxgU7c7DrjUXvOrWK+bAHlUFoWKuClLqZ7qjjchj03OEWAv2czumczumczumczumczun/31PFjPvxc/zB47+Bjy5/FR9e/8eYaYdPLn8NjIZv7n4RF/UJ/sLNfxtX83t4b//z+MbuL+CiPkUJdMbJ1DDjb3/wr+OXv/Gv4nb1KRrmr6a4OScAPwZIqbAo/GmxWy2lqDeh8J5A9lkAiUPPab8qBl9Q8Q01uXagqTJKzpuTglTklAj7Ltpc+eeNVCh/ZbNJDPWCksoAYApVeT4UO12bUrtDgRBGV7khHw3i1cQUz0V35GI4ylqKhUcZBriooY8IA3Rj3gyzEgEosgJelJ8ag9wblekSyg/bew4lNrBAKMFcqUzk9XAAkOkGPfRbKGGsXmZ3k3uqWDxKYp53Rb95dUL6VE2hgFtUiVXUKO1gKg13ZYpepRWrUgyAKARKEU8aptTkTAsFV5g2i0g3/8J2lQGujIEBGkJp1StkemWOtaskZRUA9ZoUXhQ401XLJ1UgmiI76czUGCAPuRcL7SPzvMwsNNISHNBVDdClbu0NENUZR5QeJeWd++VU6miRr2nfGDhJPtM4SQo0VQd5HgZq4kWedk/wQwHYaQhPP4Q4jcwEN5QzxOtNgG+yMk4YwhTllUUL1odOzG959TtKEMg9BBVehvogHD8tAKUcEq51T0S7s4Mzv6t8buNP/dA43eW9AOMIvUINaPk6P0JUiy2V4XXgJENIQq4BAAZSbzMGDhTZxwUdaKixyBsMRRWUnE5LG09WHHaE2uSULgOqTCc0rphnxjCMHRVmBRmC4B7uiMxTE3X1FqOitt3xATLWZ27i7WYgUBnU6xxjJMa8A15/sceTDy4wg0FN2jo1YBhYvQkRDMjJBohVWWQKY54bQAWN2I0opO4ViIJvAQOx5E/C9n6LVRnwze98gIvLDahUFBL6TBPh5vUEmgiXjx/j85cPQCE8e+cS292MNw8T1usBT55eYL0ZRc4V8yjHitQuDvoZFIHYqob5qw3MIkfF83vBUj/ZTP4qt2WPgwIsc1bTfll6JDFwGbmxGGDxTEfiWxHKR0YqA8nkJcgACBDMeDqNYRnGEvKxO61POj8AaDqGwcCg4WVtrpQ1jI1dfdUMtfpMa+bliEMec5LD3WShYzlIBRhd2PhWFdFsoFmtv4W00zZ1idnHMxBzrM2LTgtuCYRAi9AXqXdYDadqaG2k/e9tE56OOht9tI4JDWW02d+8xosX38ew3mOzHvHq44/wxQ9+A6+efx/76Q63zx9hffUI10/ex9NnH2C/n/H69StgGPDdn/1FPHvnZzGs3sU4XIPKCsCo66UGbntM+1u8/OT38NHv/n083P0QI20xT1u0NoF5wrTb4rDfgdVoUFcjdjcfogwrXG8e4eoSuDs0tDZjtRlRZqDWGfPUAGq+dmraD61ZSERttoZNEE9itQOfibxr+n5VQKCAvsdxhITja6i7GTfbW5XD4pmptdqFX2itgWgGuVwWfpJZr8FCunB3EODrl0jXfD0rB5jbvttz0kjnMuFFve/7gS4reefIMEmknkY4PZoPK0Q+tg7IGdvcmrcBfi1q5/eOXsw1XQxjl2vLdeayG1PZEeaSfW5ZzuNdHpT95BxVPoxnXVF9fc0gTWmNJXnwUd2Xtq5l/kdkSPeXsvPk6tTktxbWidb0nd9Sn24+Wbzsa0xtq3mwyPujHDIoG5uJdO7UvN0Jp9aBuu9mqExt1t8ZJEN0TIbMj7m//XBMfsi+0+K9TA7vwpi7cn0lCzrus8xruRMzMU/039E7Ke9y9ExqyqI+uUCrn60J/K7tlZQocj98g3HK29k60SfrG3x8ESI0GKlXZo41xXJv1fFIqr2KpvBglPrIpHswiXVjD2/K/Z2HtdW6dL8ovdP3S95vdWzDiT75He77hNB/djRbjLWWHmSGHKKBybMeCAc6ASjj4Htbrw4XoTQ03Q3rujJAY+TAj+7ZRTkyDk4QI7W7pa6Re0XnJQYq8HA/YX0xSlsTYD+vPS1fQvJGxSG3Yp2h9VvKbeszpUW5eAQa1rEuPcwgIlw/foTVuBLaqv5rrgLuogas1hvcP0wAETbrAYfDjDY3rNcjri43/o7US0JBl6XeJ81B0D73yiW6Od3TLXD3Ed85Pq0L5D3uysvgFohD96Cpjb0s88nyXkoiXngTRIB9u0WLjtAlsyPGdCc/yYqPHdFyTjI8Cmc6cf9cXhuomlVpsABCLtzYRX1OyOijVtn8QAu5JUSU9gmT+vjXTsqe4pDuOc1PlJ1nlay/zP1ur7xq38evHf4qPlv9QxTssb/f4v71S8z7W8zzHocd8HD3Ccq4wo8u/jYYhLpj8DTin9r8C/gL9K/g2fBzGIdroKzBNAAs+9YDXuO3L/59/BC/gjfbH+Lu9nOAt3LgwLQsrF6PdWNMraDxhEPdYigjhjJgHIF5Vv7Ia3Kf1K3/T3eCPWtr+nRVIw3odeYIAchF+oQAqBfaVoEKmaBsb2BrRtuf+Z6Z7IicdEBLZb+FVc7pnM7pnM7pnM7pT2Favftt0PoSfNj+SVflnM7pJ5oYjE8u/1P87Q/+NfzWk38f9+Pzfs+k6ZOr/xQA8IeP/xYAYFWvcFmf4S+++cv4F774n+L9/Z9basUAALfjZ/gPvv2/wq+++29gLvs/3sb8KU1fPdybxQGTHwiXvrbBSSo3VdCQWP9ROe5nLx/kmhjZthcisMbNcqULSreZMwWTb7Q7hsp+Ski1y6ZEsPplhQHBDG8ZBJJuiTEobZgLDAwBD1tmp8OydyH5DQfENNZ8NDKHgQwMIAStN6U6AFlJFd50DLBlSglAwRamqDAFdUKDFAoX9VlZEx6SbO9MybtP9HexdiJCY4GlDAvhkxV5oYTnLiSARv07cpcv1Uz8ZKqips6pNbwdEliNVblkod2Er8TLDYX9UABCesKIwBpqTepu4KoG8fJitGECxs6SECCgpoAEIlHThZIuGMVC9hA4Tg2ydqgCKyIcjnFWNmor92cvGRQKG9dJNAjYjQlFlRBUirqShngCKXKKqzu1W0xRlnRGjN74nFoV8JilP6TIJ3sj4ZTvUbIq6Diy/lvyw5INDaBkCmQJA8deOzMUSNgK0pOkYjSXEJDsoAMJzdQwjiWUZ9rvvecqwdq4hyjKnqKsp8IHRFaGdrIISyWPUGnQQduMksxd/uT38lt934X+k+BKLISxwVJ4aIpnBrBLW5HdwSMmX1J0KBCJ53KGEEK8UTUPuWbjLp8oZ9ZQZ01kuejnCHe3W2yuLlHBKDqgWtWSG1DGInINLJ5ZigEkCjxUFovsE3kiQIFSCrg2OTlNA5qGfdBYVKgMCXVGEtihlAGlVEwAbm9n0FpOWE4HGwcTgBVa0zCAIlQ0NIrIj8IOExDFOBcBsJDMEwMJP4ohyxTJpnlVucWMaZ4wH3ZY0YRn334f62ED0IBxGDESYzsTPv98hw0zLi/W+PyLCaABl5eEm1c3uFhv8Oy9S6w36skBNh5K8kAHmGXNlJTCr8YVDPMYxE37mFPYMg4vDaT1N4YR0A7DZnoBZ8q8bI5dCOppqwLmjQiknop0cHML3gmgMTmzGy8acypOoZMhDFagcjdtBDenSd6U4j72IfOFG7IojWvNzzwksfOV0siWNAkF5PKtqexP6wlAFPoMeJuB8Bhoax2ro3lotLnSvHVR6dtvz5N+X1lYN9ZT9taDTBjcY5nkZ4A+WZopkFZlVdG1mivaSdraWtN5xZTf0pntsMOHv/cP8Ye/+ytYb26xWRW8/Pw5Dvev0aYHMCreHD4HjQNery/w2bhBnRv22z1os0Y7fIqbb/4M3n//n8Gzd34BTO+C0UBcsH94g9uXH+L18x9if/MZtjc/wu2rP8TAO/FKyQyMDUSMYRQjQUFDrRPQGG0i3E/3GFCwWk+Y5hnTYYIBqxtLCIR5FvCRKe2JCMMwOM+gQU+AN6EDch9SZ6hj5W8xqhqgOICPBniuVYBQ7u2gijelYRgwDAWljMEvrcq6hCnCSh5ZD79GSXnHvN91t2jhOcHWtvliXlOmR3MBNqv5/Mv6VLfQYL++NDRGuLyFV5ofJ1H6QuhzCXHbVz6Wkd1nB3jgtE8w+fiVKnRqFRL5599vzZCXXtfiWWYkRE7ysLDIKzfx7eXYnJQeWcpxTr1vbLEsb8Eg2WjcTcOL+sFksspB86ZT7Lsmj/xJIWtdumpdmj5DC8Ll/YaFMPO196IdbMI7jRmbO5ckPCK5AqGKNmoJ2jIjd9BmOdH2de74BPJM9gnU1+eY52hx4UgG4MdPJh/yfrOknPpRv/hL4cudPrx8ZiFhFo01T9GZ3VKXxXx8gk8NaH2Kbbv1d77PxqdZTp1+NsQQRd5pHGdUQA/m6tMpRVxOeStsbcx1YaS9K4IXvDzlfVtr+nsc9LDDK7wg9DxVX2+zLW2azietYRgjBLFJlq6U1P8e8s0QaIADxVnfdh2FyoemdwhFDjkxcNgzUAZdf1ujbV1HqT69XLN9uLXbwwdalRBtRL5vea0uwVTQuGGaJxSuuLq+wlDEdTRRQYEAlO7uZwwNWK8K7u4mgAoKVbRpwjgOGB+t1Yu17d2iLF6scW29bMCt2OcE0MX5ejnHpe60FFO15MGn7pnMsoGKxUGfREsrwOm0yP+IYfMgzmXb/5mJT7Qlt9dp55VO8mYpNJbtzPkk5YwdLshAzaUM8DIWVZa8Ei2W7SPLLbwlg9O7KdSf0Yj1GbY6JZJ27VmQLadMgr7XZZ/zxfrX8feG/xM+efVrmA+vMIwN8zSjThMMODTXBpqBUgbMD3e+5mYQfgt/FR/i7+Iv7f7H+NmrfxHj6h0AhIYJL8vv49fa/wsf3/4q5v2d/E234LoP4KKGNwcFrVubRKKw5FPNY3lhLVd5tClYqQX4yEFCxQ4Ssh9+cjq4LiU8L/l6wOWQhHnOuiv7TsQKsm4xB7ABlmRsljIkfpBOLcoDdqDpnM7pnM7pnM7pnP5spPH6Gcq4Rj2DlM7pT1FiNPz6038H/9ZP/0+wG17/WEqnaXjANDzg77z/r+PXnv0/8d///v8ZP3/33/B92Ex7/OD6b+Ovfeuv4A8f/c0/mkLrnAD8WOHexDNEKRQbK0DBH6aQYPcuQAily1DIQRuypypp2yl/AxU0EBgKRlGjmYf6cQ2fmIJJwyyJl47iGzizy5gqTjaHoUwSxVVoUgy0kBU+npaaWNZNO8uGT0LXmVEzUtNdePEdn76jm0XbeDNIPVsEAIjVG5Dk00BDhDuS+4zwhR5beFKCk2kRsuID8DBpRgfbmLIjX8j7rHF4vmp28o+SV6VEEnEm0If8s5oVpcFJAIqwUzK0ZIVIk1AoarxzJWACG5B8hPcYU+ARYO6MSVBkkmsz8BNQioZJY6HeYAguUm83A8AzBPxDYXMpqoSuECUFqYcLMyq6dxUSI7+0SfrDvBq12vS4bRFgkXZUYymnKvjBbb8cPGEh7NQhSoSiMYWuejap3MAkHlJY6yDDR/nM+iSxufGIXFD+Ra/sywpdQiikQxkm36peLaq0CX1fjENK71EU6d7GLLf8l/WGgADEqj9n4BvxwjIAaOqJZK5iPB/G5DGBjVe0Da6siTBzrMfTRNGpIBQmNDLes3ZQD5YKceF0tGSeobJJwhXRPoZDMWfmUXum+RX7Hel0/yhdkuaPiYQFESpN76UkyKxF1s4GFrraeyR5tSLAn6wVZogcKQpirAwJZ6ZyfNoWzHPDo3cGNRA1oBUJLzZVzaeo4V3yJRNq6lEIKtNkTAKEQcOpAVwLqgIxalN36S4YyYGGYrwAxpGwu2dsb2a8+/4lzLNRY8YwjiLrU9guACisHgOrzilF+IAbhyGTBLhlIcAq1POWGqWaPlsrY3+YsdvvgTrh8dM1MDBaITQaUWvB7gH46PM7FIwowwof/fABdRhxccUYUfD0ncegsYBGApeGxhWFVPFYTUlJruSsKnfQWE/wR2gkq5t5zsmKUDFika8Bis1lMGUq4KBS49Mkx3y8a14woA2gSnfJy40YimgNb13KYyrbwshjsr4JQCPJOKuIA1ZthHWDlWyq9nyb9lfV/KV/YaMygKas19iuGdoq8iSrY5btQCeLLYVCmn0uDwNy0DmPVQkTq5+EHtSxWAuRAlubK8tJ124IOvskm4CpNu8r8rYsJhJmRq1VADQA8P9j709iZWuSNDHsM/cTce990z9m1jywqwdoghaSQEogoIWghSBI0EKCNlpoqZ2gjSABXGgABG200U6ASIkiWwLYEAmw0AN7VJPNJrvmzKqsrMysHP55ePN7d4iIc9xNCxv9RPxZmT3ln1nhme+/90ac44O5ubm52edm8x63Tz/Ai0+/heX1R9g/+wwv2h3muctzaAAWLMuMadqA5hm7+YXObwd2hM++/RIvPvsI039lg6urdzBdXIJoi3l/hycffw+fvf8NvPj8u1j2T3DYP0dbXmCZZ08rWarIgVpE8jbuYO6i53TGQjvUWlyHNbhpawJQak29i6yRkADUaUItRQCaTYFJCYxMTnZGa3Fz2fQk1v+01nQehN61FN235F1RTQitd5EVhaQP3EU+KN8WXwesQNfY676MxXhZSMS+7yHJkoHhgdibfFzqTB8ilgYsKWQS/DvT00KrgC77kF+OODG9adDuT4/F+6Uy3yM8pL7iBBDB9+SsE+UH0r6d37EVfaRbr3SPtcxYI7GOqnZZikFnOFmMz9OgRnqlSCj231WkmFOdyDLRZypPy8murKLKcOgs0kcDciaesK4O8ms9P+zgFPvcggYaKQUEnOaPg36mhzlrrL4Dp3GaesKyA9NKVjh9OT2bRp/ToGa283EZgIaHr4JP87JLdLSv/GJJfjYR5iRn5eW7mmfyAZ2eVh6+8dOhfnr8Rl5b65+2P4tOwInRrTYZdI6uwxTjz5/1tI7yd9anwPsouDevv2jNixyx12BWuP7C/jQdjXEtT3j1k4BhyfPqmTW/DOcJHntKvthzm6S8LL0sq2lh2PmZvP6aOp/fyf1aBe480uUKZG7CrkSY547t5TT0k0FyDmCjf+izVJS2q8Zc/jDgUWIA9J6i1HDMp9YGu+wmQGhgWYDDXcO9q2l4xwDw9pm3m9adX4RLk8MWOTrxiEd3MxoZSL4zltYxzw3MwLTdAEVSLRcq6J0wH4BX13tQKWAuePH6AKoFm0vGdjthsynDjZzoq4zhVAoyl9WZnunzPN4sy0ZdRefJH4w1s06vt564P2vLisbT3uX95GGsdKKyU3ui6/a+ClbPJF7P681lS+5DP+7XWpQS2253iklwtFbsM9kf7Dk7Bx5RJtlz429pd+xY78F31kOT0WxyL8vP1OX055EQyzKXMPLTk4s/xtc3fxUvPv8+eL4G2g7zYS+XCZSockrrgF6CaRbtVrmmX+/wYn+HP3jr38VD+greWf5LOEx7/ODqP8X38Z/i5cuPsXv9FPvdKzDvgH5Ab3PITmJQM9k6ymTuHZyBjXkcmgLaLjFkm0spxVPb20UIAyY5DW3zVTkS21DqgdoZ7KJQUSOXX2ShkFFA2ERFZnQL9JYASXYGPbVDn8u5nMu5nMu5nMvPaglP3Lmcy89GYTD++I3fxL//q/8L7KYX//QVEfB68yn+vV//n+N/+oN/B79286/h9eYT/MOv/l/wu+/821jK7p9bn/+8lh8ZpNRJgS7MQO+RLqU3cTxmCzKR3gwXR2fX2xt267sjHAV2kO29g0v1A645aMKbYaYriY7hJgw/pEWUiwCspPtFHEbfbN3j/Lo8CHM2oggIqSbLmx/0IF2q5rgk+G3YMUy+GS7FKpLTWWTrhYFxSJ3KXW/EKDnT7wloYY0AMh8FAlTheJ5ZwUVqUcqpw3SIngbKSJkND+F0iNtUObKFjg6KYdMx6iE6GWhzcaOWOlVBQVcmiYRCHUDvYcCKM7Maabxzyi8QsINFmVBnsMxnInchLBrhhIoYTA1oRVWI4dGlzOxU6Ig21mZEmIpNXPhHuldKdVCRpXwy/oYZ+jQ8EKkxzhzFRAQ0ht1W7Il/ic1IxJHGySJlUESvke/IAVdmVOYgX/DSygBNSGl8wqSSPl/Na/pJMBAP+1wkCXGk8uQ6M/jJnrNLqB51yedjBOww1JmiIcs6AKqkocdZIpaoMdmczEQWTUl6HsA6Tv1gXyeLG++CJmXVhzwuAxZlmmVjZf4bSPwN4emeDJy5DYksZXMmwKyKGIfNaU6bwat/tPrcekEAFkh0m+rPkabaUyM1PPi5Ard4yEPQzShaBDjWCxQw1PF617G92uLiQgQnYQZr/QsXbCagdeiNQwjoxOSGGlC5pzWkDLe0DougsSwSxQdd+tqcroyq0f1qIbTWscyEly93eHjvEiBgXgBSSre5gjYKSE3RhHKUOGb7D1CoeMS93kx+SDsdJGnA1O5HKGgNuH59wMsXrwEUPHrzbdBmxvPX1ygP3sAbfIXba+D2sMP+puPqgvGt9z7BV959E2++NeHqjYqLbRUDZQVYEVKFJJWUG4eZIvJVBxoX3bMUltEhIDEFNDFrFC3b71Q+GfjLosH5NmZbNRlYxvYNjcqk4fQDUyBronVL5QmPPJhTi6im4LqCgDmVywq50V72OemA7Q8GTnPRaenbdN8zQDABDmDKN2QJKTqY0siMxoJLU0Qpj8bqWuQv3+vW/2ypUNCNdW4iep5EJyooYQx3mS01mUy3PcfnALmwg5FIdRDu5L/b3m6p6/KNXbL5972UvM/RC/Y+iCNDQqxxO2D/+lO8983/DE8//Qbm/TNwu8Wy3AHUUcBoywwUSRfcDh0zH1QXZHR0UCfUvsHF1X1M7Q53L98D43MQbcAM3L58H/tX72P38kPs7h4DvAO1GcuySIoDWtDm7kBG44E6TSC77k8lIoCxiZIGAms6Y9E5DeRRCmGaKohkTbdlUce1Sd3QCUxOCGCzBL2S7tCb7FfFFk4RAH6pBnWTnWeqVfcmdXa0pvNVJBUnSKMtAcMkfQkLU+zdQOJXhsqsUTkJnTo5bxD8aS9HPVHHeB7wcG7env0ioJ+8jsdVlPfrk194nTwCalIbrsQM4017/2ptOcyH0vfW5Ep/y77KAGLl/tHQTu5SPhpBtuQEHkigdm881Z16QQgHuzzO6dv1LxiJSuPXlMZ96tU8aEp98yrJpFKiJaeH6ESdQZY0Iv1sNWSryqY05GViBw4QU+qif5fPdva3lQ4eIgGRbcK5L6SjP8GY5P9J7/UYfu7PGjzAjAAusfVntbcc7TN5Ta4/he/r42JBRAOxvcjf4oE/v2hdxkjsV/Y96+jJL6CTOf3XgJmB7+2H6xeI/umzfWiTBl4YID+pnfg3Qu3sc5x4J8u9YYXx8bN5cjnTWJ+x84S3p59bGussm/OcW035ysUalpjpH/IMOjc8puFNY7HPM1+unzMZ1cFYFqHHZlMCHKELNNL3kn6eL06FXmmAH59X/yf7gqsLEH4RtY9hF3HyHC8NOMwNdVslhZ3zCcNSKVNCBmabTRbd+e8sJwA9XzgxRplz9+QJnn/+GK03XF5eATTj5m6HLRM299/CfCDc3TX0RS7Ovb6+xoP7l7j/cELZkoMuoXNE/r+BFXxteJpjjPKQdaIMeJJ5Ou9ZTosk18C2x7HvXdZeljFWt8umvAZppC1SHfb9MCaT56vPhzFbn1Mf8prIP2F15aWZZUn6aQ14fzMPpL5B1w4QkfS8P2Wk0Rpo5BfaTolQ7YRfXCJbQ9YfDhog1tdAHO0tJZ6Un+miQx4vgPXHOBq7EOWOXuBb27+Op8++h5uXn+FweAXwDEAijMqZu8lFP610tptFFNet5ExXccBz/PbF/w3T8ggzdliWHebDAfvb5zjsX6HNt2CeAUk+rpc8GRYzLdOwFL0QaekQfXxBsThvlZBPJPYmu7xjl1zEfqq6rskti56EOKelVeoA6O4LTy5MMpFEaTKJ7eeYktaevRdzYMBLmf+4DHQu53Iu53Iu53IuP/vl8On30e6uf9LdOJdz+edWXm0+xt/5hf8d7qbn/1zqez19ir/6r/xP8HD+BdxOz3A9fXbaTHUuP3b5kUFKBRRRTsyxR26ukUOgeouJOG4hcrrNoe+U5NJ3BxdVP4XXUqFHTpTSENb4dCsWBNCih+cKAvSgp3ACM8jbYc6MXtJxMRyUMEjAPq/QVChwcImXteEIwodyaz3AMBkoxaQRhYo6VjXV12AMXRlSOgBomppakmEPerBlcmcrVg4bS5+RjUF+oi6IUOGAG87NYd7TmMwo4oaGYk5NDBYXMwzZ+VbsceKUtnrsYB1ALPsiOhm3UO1ADgUmRKQqA4D5+9nwxFADbNBF+k7iuGce+KEzxEkJCLKDAV4kAlFBATeJmGGOROEVAoo4Dgor7YvMReeK1jummgw8SlO74VU83x6ATrqMKOhnRipiQAFHnvJMx0uAR3ghECqRgJxA7rhnjzKjKQbJgIFCh9qLpuVJhj2diDVpjbMoPWX/LFpHXiJdDTrxfkTtcVYc/nGaffk7t93T7xXpBi3sVm6kI7PVz1pLtz6nNSFrJNZd10XAGvklGxN99Izg57RGra5ufGZjTOsonBbsz3gkokQVN1BpP+229speJ2CfNAd59qxPBaSp8MLJYD99PpXpTIKvaQ/4spA1x2PUHE9bpl0wvhPgEil/RG2L7gOlikOhzQ1vPNpiUzsaw6MU8dwlLVWXemy9sg7QZGrvkg7JDH8ChhVgk/GUpd4qJJGKIoeC9FWcDwzuBdevD6hTQb0sWECyMbohT94rRdZcWxQ4WEjluRn0QkYz2a14TTvYCYcmHGspGo3+t88X/JO/93v47je/jVrlRuizJy9wd9ijbh7gjUc7PHt8jQeP7uP6+Qs8Xxp+9Te+gq/8/AZ1W9CIQSQgB6YGKlXAVBYJydYFQ2kkafU661wpg/UUUakz0BocfGV7WGdhDFKjqCoEQmNYRB4hczgfTbYlcBbJ2s17E+vC4h4R1ZzPFYBr6yv2FgERcxfDdJnIo9K5A0dBW8Qmjw1Aq7fa815GGqGOAOYut/51D+4sqQ4ttao5kDsQ0e+SQyzfzBY+JOdf3xcp0QcdijX2NW1al8kAd3gz1NnF6lBiVPXKekpEW/MEtK5QSYKCc22NyAPZAN31xq+kQZT5EHQWudPIUh3a1X7b4xXxi2XeYXf9KT7509/Fp+99Da+fv4/D/ArAAaXIJBMgAB9LUWBA66I81KTPS2u4u36Nz97/Fj796PvYHzrABbUU7K5f4frlM8z7a3C/A3gB8wKi5intGD2ISkBRyWYpYE2IdU3FIHu1ypUmINbeJTJZnSZJ8wZoiokGyz3DSnuyVIpgn1eAAnzGAKO5fOoq3LoyQgE0XSnQekOpBVNJXEFQ4JTsTZ0bQAWlTqBaJWqazuGXtRRGOCZdf9UBabHlQ8pzNhwH99lbKlsQp4lVaibVXxx5AX05tBFxXMs8WJpq8keS4w6jjmA/B7BJatUqcVG53tBtnElOZF1leFh1jQFglNq1+o9mPSpzHTJ3JetqRufsJCWsHFSpXTI+h84nw+WVObZcfzc5lxu1Ofe2vMVBV8yPDf1O/JJlqlOO05eEcLqlV3WbVtkQ7/mruQ6Gp5PK4AGLhAbEeFmj5DofcdBAg7zKvrCaLplDOpo357m0X+XxOkk5kZSgkV0TyDW9RKk+3670Z6f0mY19zV8cahXlDiSSDX2j408zr8cSYp+DdR2rZTa0lZbGyedMZtg6yM/zif7kLtszlBZD7N3xNxB0WvdhvKwRi8zODAwezg/Rn3Xf8nhO/c1pXOMyyE84eEQHOfSX4t0M+CJ/Ms9zHlGs4mEcHEC31MQpkRjvUPQxt9WHugltabi6rKiFYzxM4MYOODGAnvXFqaSEyKnLRL9KHMAnZJfJ0pQ62SLqLvsG7h2b7cafF7CK2c6i95wmyOfeiMLRR+cphtsAPDoqicQsICwHxnvf+QifvvcR5nmPQjPQFhyWGcyE/fUt7m7uMF09wmG3A6jg7Xcf4PJ+hQGEWYWAc4Stf+2nXZyxc5tluLV5aqnficTjnk5WV8wlQS83ZMbIh+7ECEwYDQSrspZTQyQ344nV2vW+2TsrXvXzPGFQJWK1jftKlnsEHiKP2ryvLzbx6m/FuPn5Pm8NxYic16rRhuFnHCTax95G/u7wma912zciItx4gYxigIk/rP2BtmuZu5oL3+2PBBqDueGz+kf45vQf4rMXf4RXzz7GfvcKrd2prq+9MVnWOfi3kEdsl+jI0lJbFly/eobd3Y1fJgIA7h1tmdHbAqDBc72q5SXLVwcKUYzNMgBYEfCe2sQopdGGfG4XfD2CkhtCckt5canEo3G/tRhe+VWiBA3LoKdkfwbZHqZyUjMhAOwRhwFy4NS5nMu5nMu5nMu5/Pkofd7r4elczuWnuzTM+JM3/gb+7i/87/HZ5Tf++VVMwN30Anf/LFGZzuVk+bFASpbP2uEnDHEumoOACjozJirhNLTw+skSZU4FATSQgka6+BIBdF4ArnoClxA97lDG6Fji7LJnGm6sww6RMINTOjzqmOyAZs/1dNNUohpE5KCibVst9i44Igz4Ad8Of53TgZ1BEAt3Zyht9HBsAB6wA1BA0e+c4G2IvKvOcImIoU5ma8+tMIROmgJkqEOND/qY3MKxNC7igs0RbIabU6viBh4bEQe1xWkRjtDWZS4lvLHRUedF06c5GAoES+NnQKNsxIl0cIxmoKIetIensDGu7cAk0UsqAVAAk6XJgZpkijpuG7OnTzFLDiUgG8FtlKilZNtCOG6dv+wd+d2iPhkQQAy4MldmXLFIMoP1TI0JbJfEoAAzHh8DCzhDgskoXdUYwYpgMWBagFjIx5Un1wEHMbr0dMx1+IIDpJZL5iBricFo6XlOz9q/nt4d3fbjO3FznryOvHawqq+acS/Zx1jTGxUFnBXj0VXfO77gdhkHgMHarUolc/zYd/FK1C79UacSp7YgprK26sfKTugpTkp6NrdJHOs+p/SD05WQ5zSsXvBIQongLh+JCNWifiXaA0CluMe42zfUsuDe5aXsH9xBtaLPBG4LposNFjbQTNBZ9gahhEU30QnT70O+EVj3oAIuGvEG0pZFiQEYSwPmHWN3e4e333ngYDQmux2p5EhpYqgQ+sK6V5CAVqBODjU2DkDKxp5ujWcRFos5Og+E9/7kOT75/mPUmbHc3eC2NRwON7ioBZu+w/Nnn+GtF38FL1+8xJvvXOHnfuU+Lu9PABU07Y+5R8CTyIUOAVqqAbQt0t5hVrAJj+eOxiIjzdvQ1WtLzJiqRHUh0lbUIVOg4LAu70PlcG8kfMIKeCmWSiuAhMbzxrsGMjOJYvtNsf0Ntk8Id2cQLCyFqo7V0rCCw5irkDdMpJEPOW6pVvUCmCxmNUpPU4HtP8yM0oQPHGxk+46FEVR9oag+I6k7q+g7JUCiJklbt3Wo4CH9KXsDqV4RssH2QLA5dkQfEeBg1A9Sh4LpPgBqraMzfDCYJ6muaS/FeC5t1EpuvBZdQwGAGhXNYam9gFvD3ctP8Nn7f4Bnn30Ljz/+U7x89jna/hW478BYwCQp0nTpItKLRj8qCrg33Ts7djcv8f73voGLyyswV8yHGX1p6lRYAG4QFJtFQIIY/E1nYwNeWWxARq2CjFta84h6lo7BUuMKSEneNwHQWkPXf9xUJqmuEbpMyETbXXvrq/TIiNQPBtSh6tG5AizGyveMWiqoSNrlUiqYgWVZPIplLaI390Ze95exjIAGWX9M7N/ZGlGywpSgpNr4HmRyxPcrXQe2lsadO/2qH9saG1pgRqT5Gp33oVunWk+qxeH4tv6tH3NeSM94dVq/p/g59X7e12n1Bad2U+Ou5xx1KC4EnOprHuoaODB+mVuJyrLTP4BPa7h20mlWXwzfpcH43oD0wHHz8pb2Y61nDr8k/jBAaS6cX2QMgCMbp7e7orud8SjpSVYIWRdDkiWrOdHzxIqNh/kclhficginPdbbJcT5PJbjUWHtsIMxLdqKvpxVwzKsjROcxAHrp1Wf1+sgAB18NBcxfnL5YfWbTjDoqmmYXr9/liZO3+UVJfK54+hXil5GAMuxzyMp0oUM5bVTdE+7c/o+79mrt9b1pDZD9xr/jdGs0msr2tkJgWGXs4KG63lcpwgiaFRXPjWLSrfVOCn/xxcDD32jTuit4fJicjlg0br7EpEpbc91+aURlEf6hfxf8+1aJpGtrcRRljp3WRouLif4HrCSDyZnM22ZoeedRJOET0gYZ4BljJ0J1A1CIbaO29cL+t0d3nzrLbx4/BjUGhovmCpwb1vR2g7L0nDz+oD7j+7h/qOCMkk/utpJjJCc2mON8Oy6IyIFtl3SMJnpS4kzH8W500EWlC4k6PzYZQj7G32UZ1leD3OSpzHtFz4c/YDy5zYt9nma/iQYhnnLjclFMXnA9zOiqEd5DAyPLh80lQqHaLwI0JZ10i7KsdLWbFPxDOv/Q+7EdzTueYkGA8GGDUblka9HOiKx0cx/rgXXWiSl/ZlOveNRuEwvkLG8Lp/i29PfwPeu/wFeX3+I/d0r7Pd36G0G9RYTpOfufIPFbUFdF1Y6E3JfsLu9Rp3uUMrkaZtzJCMyQiAu4trem20I9rfp9mBN40xJc2Q5K+VI/MIzWW5I27Z3jZNz/He0HxPorOPnieLfe/pwJDu39tEvUJDZy2J8eQ7P5VzO5VzO5VzO5We/MDMOTz74SXfjXM7ln6kwGJ9d/hH+/s//n/CtR38Lh3rzk+7SufyI5UcGKbkZjwG7ZR/nr2wtsLDYjFqwOkxL6SSOpMiRLe/5LXT7Zy9SUadTA1kYATla6fcEhh0Ky2B08/4hR/bgZOjS9+MM6oASSp8DiFRiiQ4AUFMsf3HkwkPvWqowN4JwAKIAM4Ra29KnCqMH4oBphjvKt4zVcWl1rQxBANyQ7AZF65e2bX2GGYh8PpIxBea71sghdp7VwzbleeYwqjjNV4dbcYLqgd/jagcwxA0EHpmL/EDd07yKIy/6bMArDxEOM8yMhkfzKYuTUMen1jCiIg5lTyMxWn16Z8zqAKuUjW2MrsYpn0szRiSjlfYw+AhGJ7hzvXABt67p3FJUGg1jzWpAkttX8NSLlqIQ0FRZEKd5S7xaKO6DdTYgVsemFAfSyE3VNF9uaIx+B4+trVM6v+nd4TuEI8bSWRh4Dhhv6tlPv2lIq5t8HGa0oYFkxcx1x9dqGFqNwPtgVxeTrdAjwiHYYQG89txGQUQxyf3wfoM9RZnfLF4ZhKJPZgTPEZTM2CZ0TkFCkvGVhrpaqrPwGM4+212zbFrPhVkYxYDJLuf6SPShP1bDBDOqFyz7hjcfXWIzQdN1iYF9LoyrexOYGJULsIy3A8UIb2tJgIZpqbuMMNltEU8ANVR2+ayjoWuKKfSC/X7Gw0dXKJXRFEjQ2GQ2gwpL2qkqMQBbYywdwgBaHEjVIRxdgFpFzhQQOjoWIjQm8ExYCqN3wqtnBxzqhH/9v//fxu/8deCzH3wTDde4d3WJh1dX2IBR6oLW9/ilX/t5PPrKhO1VQ6eO3oU3BEAsUdUWvS5OLHJOguDIqmYFaxpgU0AQuheUkRsKs8j6yazJrHu6hbUHliW4lLsAsQAa1k0hA0sEGKdaFEBPsSWcmzIFBn8XOA8QWCIMUr7Vq3uNqiNNF4mNpxbA0JwCvLWIfrGXWDrXZelYFpHJU5V0Xmawtv3PIzCypS5kTBrJiKvIjloIS+sO7CpF+DanqupmiGbbn9mfBWRfag3InkvTBbI+AZI5lT23S/RBEkCM1C0P9iCiyjOL/iFCaEjh6goPQBa+ish1iXDwdTBJVCPqQN/t8PSz7+HDP/0tPP7g93H3+lPc3rxA63ugzeC+oBSTo6orUhddTPmEdK86AOhLQ50qiBe03jD3GYVnEAjtMGOZJbVZb0ZX6RNBdM8yleR0gOuLBkJzYpguqvtapYreF4CAOqnML0UBecJL3ZwKOoFUC5gF3HRMw6prUJ0Qg+Gf/KcAwwzozA4yknUqioXwlER28hS+GqZz7rMuVeX11db45SoJFJT2nbjtDVOsXLnM4xFQwliXyX15NsuzJJDyLkmxT3rqDFdYhkV3qvup9hN6iD2TUkemzg91gNKfzKF/rNvKG3z69c+a5+F7lwn8RViBI40uQwdMVxmdtVm5tUhi0LPA6f7k84JNSYyH3eHtfV31JW/8J2Yaw/SPj58c43o0BGDEFthZJI2Yx35zmifm4HDrQEx74hZO0bFI301IpZHnjYVtPlbjSW0g9z3tqeN86cj0wsLgG9cxuFNdvxtY0y7EWPW2la/Ww1EkrnQ+yGOL1ZQGlwi1ggqmB3hFi+AESp9mPXboDr64rGEz6x44r6x7ZPPnDcVJgTDOgv306Kx5eKmNtKWkeoIX1mP6Ih6POnIN8JoojRvDd/aurO+evj2i4anGY7vFmqKZjqc7y6Ps0wc7gGVu2G6q6Nsw2goIfJpoILADX3xZxuiPwEq2vk+JdpNPWn3XPwiEw37BtK1iy9CuG9jIoze73SJ0sbz+GLYXBhjfzoqxLRL6csB8fYd+cR8MYFmA/bzgnbc3oHffwc3Ll+j9FpUqttOESlV01KnjzXcusbkqoBr7rk4twJZq1nRDcuCKR2+CybmYJjY6U/Cs6+5ASiOn+0m6VGdtxZht3w9bmNMrncf1IVjnnVZ59Sfd1/fbvI9l2YnV59q3LKM9xR9FO52jciK1LdnNS5+zxM4rHcWALxYp0r4rOteuMVk9DD9PgMamvCdpH8hRGIexn9IvKNaY8+Nqw+kY3+fVz0FA2g9f+0niM9x26R92xuPpG/id/u/i86d/jNvrz9AON1jmPZgbiBvYF6G8V5S5uvZM9G0hVodcaKCSIvn3rlFHm+jneh62vrNNKsGju1qEQzN5E+SMKBfa2Pd9ojThStyQ4ex2ZtaLHoPQN3uhg4pG+yFR1b7aTpB2tqHJBGZLO4RfmOTQZ9aXJeTclOwD6btzOZdzOZdzOZdz+dkp7fYVluvn2H7lV4e9/vD0o59gr87lXP7ZCoPxzTd+E//hL/+v8HLzwQ83+JzLl6786CAl8thDammwg06EMLZb48w9gCP5wAqAaDxUmlNGUgqpwcKTOWmol1LUKKHXvdjck9oHOw/qcSrS74RT0IdhhzU1KFmeb09lR3bwt/6mw3wBzOngEZXSYX809qXDYooCZMTIzhQ2x7IeXmsNEy53u0Enfe0cqdSKtm/O3QLyNAw5EoX1YUhrgzhoy/htHHEgzkaxMFhLfx1kZMY8HbelJmscDldLm2esMNBJPywU9blBKmYrDuQUh+VsY3FgRCA+UEgcxh55po9GPnjKJ+NTcQDCwD/kZgh1zBqvicGiQ6IsmSGjFhKDXzJAkVu30ryz0UiijpnhiwiRGo3EKNU1LFTPfdeRsxmswEe360iJFcAagQOZgch5HXEzz1LCSeXBowalKmnCjIQ5VLmvtWQFdrsd5/lSwwtG4I1E/hmfspqEn92cp2aocbcxXoa/I4CsmtqRyEF0VL9956ac1UbmzoqBLoTRSSC1WZtZbBggK1vs7B2TP6fuz+Vx2tvFJzh/lul7fPMx0iMQLJq+RXjz7wbeirVsBjuL8GajZriUVrlgxuEctY2dBgSgtY6+MB68WSVCCGStzAwsPGN7cSFz1YFGhKUzCmsat64OXBDAhKYjNQBJGJGTfCAB6Zg1zkACkhoUuH61B3fG5b0LT21lBmBCGJ6JgE6RnrR3Qu8GjJVtSlJEimwwo2uxm8lFbjzPu4Y//oNv49mLp7i6/wbuP3oLf+GXv4otGNurS/RNAbjiYtpiu7kElS0ePXiAX/mNN/DgrQllAyzdosEI3fvCJqU0yg0UWFj8tjUQqb2EjwHy6FIc+4ilpCwBKhpWboeDjnpXua7zMiHAGcY78j15mgS7ic3aF1bZ5ml2CH77OKf2JN2MWPm2szkqIiJiKUBVkKvtXbVoRKy0zxAJP/VuYC3p3DSRR2HMDkEqJFH3bC5Z0qcBXaIMwXQd+VkImFBg4FizpffGkJutMltT8tT6nuHeGllHVAkpiE9EGTSZkPdmjkh+AprJzn5of+I2LVHRukcdyRQbUo80I9YEm0G9CRhB0soRSp/x9JPv4Vu///fx5NM/wv7uY/RlhzbvMWFB0whKS28KkiwoGmVqaQr3VAeVpFbrIGIQF933COgd+9s7jeDEDhoX0FlI9alWTJvqSgF3xmG/6E1p0zsJrS0g1rmoVWSTRk4iKsp0ClJrDAnsNKZRIyKUSZwGvREMoFSKAIk22y0IFfu9OFcstZ3NXcx/RE4iinEJcCnpcgzMh9lvatv3benKk7Zm+lD/l7PY4kYCN+iOrIvQ0+2uNmSTI0CsgdgN6fh5JF2MdccanIT5wROf516vZOLJtuBDG/Xe9Gh+K5oM5rB3PVYH4+Scxuek/Vn1d9U5yin10jNHXThRxxp0PtTCcSaKeoICa9Ku+7l2GiO27fRseijru/Z87uMJ+g99WP3tR4dTY1zpFP7x8SPJSRix4Qx4ZPvZAAgqMU42AjIN/XWVmqOOdftrvrPvrW57hq1+ovH71XtYt8NRxxoEP9KDRprnsWrpRCh8itBfXHioNdV/4vfh7/V8I/SNPOWmRQ2TbHtl7ojThIZ+jX1ZrTEaaUj5OyDWO+dx5j6PYCJavbtm2pMsjJCwphiMEX7H+k/XcEzn3N6p72K9ZRvLCXr4Ggjez9H1vqhHvXVcXE6ewtbmk8AeDZchulMz/R6h04RjXjqQQUwYf017zeoZkj1nPjRwZ2wuJtSqQBVvB3D0GtvZeSXdshBc9cf0bNcPibD76Ht47w++hutHv4bp8j7efPfn8PM//zbapqgOTmAqqESiz9WCzeYCDx7ew3QpTBnp1pR2Grmo+XiNPjF3Jyc8TfyxXBznPn3iZy6fg0TTQut6dC57phmckgNvGdg1l7R41vuAA08o/VzNd/7cX1zvGyJe5Sg1nLf0MQOXpw3DbV4UdBrkbeIdPw/YxUEYvYM/hn2BbT+RRqI++JniuJCuR3ZaZVqwkPeItIP8PbE5mQxyOpldTyeAlcA3m0/xJ9vfxONPv43rF59jnl+B+QBw9wuoYg/toKZnlVRvHrtdDpDLT2FnYYjevI5ERyqYHPxlaaHJzl8FvUm0NLPHAuTAHkrM0dlsJasdmGkAGg1tK6FlnqTukNOEqVYsALgLUGudxtDqN0J4ircS55PcLHc7e0DP0WrLifspJ2b3XM7lXM7lXM7lXH4Wyquv/T3c/uBr+Ln/wf8S04O3ftLdOZdz+WcuDManl3+Iv/GL/xu83J4jgv00lh8DpCSHX0llYxZXC99tBy9N8Ubr1+Rg6CCZEuFy4zynt2sYIKpinOoMKpM6//Rgr8YAM2BJmxUGLmFN/WOncHN0upFAvZcWDcQPgpyMAd53PV7qgc+iEflZmBTggZRrfmXgAjA4aD2srhUZiN6wU6NRj36bIc+MFAXhnOPOKQJGMuJ4FKDRkOP2GWtK56MhQARkRqui/TLaabfF8BWhgY1mBAAWoQh60LV+5j4QhnEZXd1oqhX6WX09J8mYYQYdS6Hjd0vVOBSZZCx0s9Gxq4FEoGldjXJV06d0hqTuqaRObz20JweijcnS0zG0va5gn6J8Dkj0rBKpS0hp71Gm1FjEicbKFpJCrht4qAysVRDAF6nKboMqiE0dfGxGjs6gSdJTSYYoBVRQvhUZNzdzhICIhaJzmdjdTRdmkAMQcI5xMUjKuXgufpLfJCb92w1viSbwvo1/hAknjDLMjOpzZUxvzpEcLSrgcAUZOHXK/ihP2poxg7d9l2xJcVucKMBnYE+XMcajyq3BmX/dvoA5RXKRyrEMUEo9Gd4tq5lw/j2ah8CpZFFGkJR1MVv6LMLg1U1Gg1KfKfiIgXl/wL3LCVNKP9lAOLQFl5sJRaMmcNW4J62Lkb3L+61Lui9Pw9RZQaDd2yCKtSWOiCapkYg0K5cA9g77Bcu84OGjBwIwJF27iHdtDRUznpeQzybLiQilK7SWgWUW2dFUhkhUJgIWwvP3n+M//83/H149f4I3vvrL+O/+j/+HwL7j+nqPebcDLwBNBfN8QHnrHi4e3Mf9B2+ibiuaRk8Kb4EC7phRSUCPLmC6iznpb5HIPwbMBCQqHBmnUJ7viHTARnNWeJpaLh0UQABVUgAOBHimN1apFOeP3uOmsMhMSWsJDuDmwD2kMs90BZVfKGFkVskHIgEn2dBbF8CKpF6TVINULB2G3dRWiCERigFLAU2pBgeTcJdIcxK1rDjda5Hfx9vwMsamwptZInOZ5HQAXOXUlvTD5pF713lQcI6hlE1fUbAKIRxgQIDAIFMcjmyLIqTrgXQDtr24q8x3scNJEmjdnmrCxgXG0g7o7QCaqtTX7rC/+Ry3Lz7D7vUz9HYNwgGFGHWqaHNDXzpab1JtAXo/wBwIVJRnuYM1HBZXYF5m50Y36Fs0ApNgRaTNNE0a1ZJxOOxRKmF7scW0mUAg3N3tdRyMZWlg7kk5I+X1hpwWgdBRqAo4r3V0br7m3eDfO3qzWHUFVaNwic6q6QkroS3Ks0pjh8m6kkOeYni7nbQdkzcCrJI0c13TzTK4dAGKafrZUmyeC9aq5peqJB2cTNh6xByTCT10F2dQkz1Q2QHk/DJZH5SvBHBGunZiV5R23PFneiOg0Uaz3prA25SeR/Rl0FHtF88VFgCDcFbH375PIfRjl4fmuNNGAmA4kDK36k7k5AON54YxYtzkU19yG1nvCvKl9kIby9WM31L+DO7IG2LaeH/JFknQOfUj60VDo2PDQUOr15x/iTaUn+PjMTsf6S/dnlvTLb0z1A0MkZHGSgEmlnRVGmHEwOwGxFUR7nVW12nkb7ugYnPDUkmIlETb2F+1G6sx0PBOZkKoTBnpMkxdHAmHknkn5oJN5KbnyZ8f2GtgvlyOPkjd4eFrOvpv9GHVu3jiCN1w3Gq+bBF/nXjBwCYjgYc2IkKwLVI+WjO5hLTLf//wcgxfPK7/GN55/JyDufSLE0thePHkFNoa0XNQjq0yiiXbR+McN+z+TYDiEp2TdQ0B4Dg3ukwjWW+siyVPce+xjfDA5Ih5cDZJi8WFE0lUlqXh4mKSvTetS5fpazmIOHsDIRe96BI0mT5cBGLC4dUdXn/8OfavKi5/7teweXfCcsd48vFL7HYH9L6IHtoXbC8usLnYoG42YJTYJ1X3MSK57HBDUdAiAPMc+xHD00qfAi/mlKRG3yMar/7ktYCBdSrmZPjalm0CAHlEm8ygWb4bT+jvuvJAgOtONs1+5iCb9rgwoffIAIRtyJZ9jDei4rikMDuf94v0/zK/ttdkUrHrvmmdaHWR3jkGNlDQbAorWgyLV1+wlPEAwnZq/Wc+suFYPbTqbwYMuwxEFn3yQe8L5sMt5s0rfPzga/jk6vfw+vZDtOUabdmB24xCDRbWmxljarTOAJoOYey7pWomSARbYlnsxh++9vRd5z1jfQZ6F72/1gqqHVUvgXSNHty7RIQVNTYGzdzG6O8+c0G8UaeTwXmUKFDohPpeY6EDrQk+7ArsdYHgFx7g44OPPZ/NZS5yfSsl4lzO5VzO5VzO5Vx+Zgozox9u0a6fY/fRt3D/L/+rx2eRczmXn5LCYLzcfIDffvffwu+8/f/Eq83HP+kuncs/Zfkx0r0hDtCAnj67R2eQlCYC1bCIK8Ss1ks9vMGcdZrWioqkRmK99V0AZovSJOEVxJXT3AAVRv50jGZIKAtI7AhQ12gh6USsgBEzrITxYjxAegoUsDoqI5oEc7zPrE75opGCVgYJT8EFaIq30QBlTtFsuCnqRGfviwzWgWB6Y8drMXAJ4E56VqNeNsTb4dOGy+l3lPHoye4sopTWLYxsBfBUNQ5uUXASQVPUWJYlCqCQGX+sH2BzVKfQ3Gx1sxgBEMYIAwfl22ddbxYarWVKaaB562G4pDT3ZmSxNCxTIbSWHFUkfLp0doOj3YxjSKSlUtTRprzVuvAEETQIA2NT1eGgTsVJDYxFPeotGbjMWSxp25SnZEY9/VTM5wiYshSLUGOS8QGB1Fim6Y30Rpk4uiXij0Uu6eo4JA+hE8Y5QAARBohxoy+CBzOQyObZnTr6njtekB2GCvRDGJqjB/C4arBnSPzSVnf6oXxASreoo3hfkpE3tWI9sfWYRctgJHRaA7Nb7zAYg9zwmMbMECBC94UZ8ggct+0ytCuiKHEAuDg9kYzC2ZxkxnkbWQc7/fIqzIA0JLrbfB0RNn3UvC4XyF7XEJHK+yAy6u52hzfefIBK5JC7zpLiciLjjKKOOV10Sb5uqkTVawoW6hZhh0mdc8rbKgMZQKlV2i+CRqyNwAfg5sUtHjy8wMWlpMliBkqVlI8dYfyratC30bscARx4spjsV0HRmdAb2TYGAnB3veDl0x0e3XsbDy62uHz7XexeFvzuH30Hb7z1EIe+x918g3rY48HDDR48fIDNdgOuHdyKp3+0CECRh1FTOiowqevAbb8V+22AVUQMaLo7MgCMyt4W4DHZf+TWaFfZVFAyDkqATyYzbT70c6LI++DpQvW/ZGnYwKi1Sno0c1wTYDeqbe2YzJR+C+03tQIqywqZsZcEVEJQ+cgeXaoz+036QpIKhDnmkBVoZoZbIoBKkahIikCjQm5o96hGHeKg0rpAmlIO8j60ru1ER5EADSAbwALZdJce8rEoTw3uwx7rmzujqSyQFKCMUlOsCKsrLeqjKJfq/GDAoyR2yaUq+7h5pwD05YDPP/wO2uEZpo1EAJuvX+Kz97+O27v30NsLFByw3Uh0n2VZBHjUJZVpIfgtYlY9S1K22c1iAXMXqmitoSu6x6MmmdNS+2hOmrY0NJM4qiscdjP6poNqwcXlVvb0edFIRAyUIvxTSNrqi7cj8iWM+0CAl3rvkk5S6WLRLk022BhAXfVjgCs5yLCghIwyBtD1QCpvzLHA3BzsxtzRWncd1B1ohBTlDE6jL2uxtQroTrTqquyN9otrEiBDciPxvz7iKTZMKxkUEmvDQID2KUf6j1Sz6eeD8qr7vKzr5IzM62gYx3h/fhhcAum4JpJ0DhCH/ympGbl+WrVlFYXuYfuz7U3xvfcn1RFgqBN9zs1op2wE5hAGkr6ZasjgFlcuQm2I1FgY3/P2Tnx/qv82T6f6HTq21sBBP0oEsc/XgJyse+fh5e+smNjsvHJac6rf+pujYxCcfq5fp36CdRWkv315pP6ZqPfvEh1NrxzIRsfjcABDrteeHZdK9DN9nNdvjiyR2NSJEOTP8OPjEks5dQZprF/41moQqX+2tE/ynrXBY6/SaE60PS4ezk/qhPDqHVYCcn5Rf3VeARDRUOzrsWVpJemmlD8fy5jqkZJjPYGtEn0t/fkp2TAAEfLfvkAyPWjsDIkMjMsSWdhh4A2L2EqJhm3pmKpeykHuLzRaKg/8OlxeyN0wcDr0fGiyyfeBNMaeYGkqLKgB+0PDVAs2G4KlTyy68JlEbxku+iQ5avpYjprZx+mVXa37H2jLjOunT0B1i3q4xsXVJQ4Hxqvnd2iNgEJY2oK+HHBxUTFNEwpViPLIAIvu7wD3PDcM2OWs1fTKzxSF2vqbyOYPcrdLfkCAdNISxkjfpBYoLwexuCnNE/OajPJ6isyxjCldKhyXFQBL+xwdMdvCKAeRNor43CKDdwOEMvvlTCL9nHXsJgO1rmo0syhbR4uT/TxwtE+lfJueftm+8+UW82bzmueE0u/+d5JXtm/YPPXeJOKo2TVOCdvUPtKaY8Sl1bQV5cGi9QUf776G785/H8/rn2DeXQN3jJsXz3B3/RS934BIUkUTMVqDXJZh9uj7sszUfsJZxsrfOYIQaxRcl2+ZP7KwYOE31s2iqI1QoifJWbCQghOHzT1oZbwverzYLKFSgPWSjvfUL5euZI6OrTiD6cwWYR4Gj8B60rWWDL9+VkrM7WcFHmUk6ebh9DypNZzLuZzLuZzLuZzLT3vp+1vsPvo2AOD2+1/D/b/8r/6Ee3Qu5/Ljl4YFH9z/J/j9t/8qvvXob+Hl5sOz2vpTXn4MkFIHYUrOWoBQwVTA6GKQ1Rv/XYFCktmNACpx8FejjaWDs5My+/XPsCoQEbi14VRtqVKoSDvMBiLiZFgjj9giTrs4JJaiZlE1oGTjYRgFx9tkHoUA5uKQ76qmDDKaFIKm+yK3sxU/bYbjcjTABYDJ7aGkxhgzSBDckJkjJznghjSljTkas1EjzsAJdKQ0TMadPD+SwuUYtEAEB1kM71jRNEfGIdYe97FP2YhqtyT9VM4kzm1nlXQramXQ886xGgWDMIlOahj0P3UO1OHsoZr1v16vt6H1M423IFkNcO4AB6rPfRgjNbuUp1QTnsh8EM7oHG7eDJallhgPawQfgtcvTk42H54DdJSDpKjnnQjiM9XoTAyAm0RuYAWDmM2kkldpU+t/uxHFDHX6eSO4Ty9/Dn9PIoGtP7Wf9rwDodJTtu4qbKW7CeoLbGaxBglBLyDWq5oKvY5sRHMDHQKUF3NmcqWnaDpwo6UZOo2lCTJvEl1KjWbeKymL9yecWtEbo8GKaiovCTnGlhnBjFbstyLJW7D3ZVwl1TncQsxtpd8tSpavLaQbzFpyEA+hXcdh33F1cYntlMBuIKB3bAopQCOtfSJJdwVZR00t95WAOhVJz1R9NGidPepYpaJrTwFemlqu64B3hxlX9y7x4MEGdasjYSiAtqNMxeebDACigEZZnwJibCbLde9gSoZr2aTQFXzR6wSeNuDtFWiZUcsFrl/d4df/yq/i3v2C73xtxryfMW0F5LTfdXTeY+kzAEJB1f1C9s+mxsVCBXLRkwTAoB0hpAh/xogEVCJJR5hkkoE4iSUqkgA0WGUCCRgJELkIA2wCpOk0JBts3KZmRVWaLDOQEEAqJwWIGmAe4dYumzW4RxS0zqTASuUnDm7Ohnq1W0t/KoOKgXHUuNw1bSB4iJ5ka7UUoNpeUooCUoV2EkkngVQ4bkajG6iJQJaqlSTSHdUCLuQwCI84QUBvOgpW0KXJpSI0ApTG+ow7r1W/ASlILMuRwx53Nze4vH+h9UwAFxRM4rjpRdKugUG9An3GvL8Do6PWC0x1C7QFKBWlTKLLKe8QA+1whycffQ/vfeMfYX/7CYBbXFxtcf38Oa6ff47l8ALTZoeCGZgkSgg1AGiSIrUXUJEEnG2Z9RavLiCTKarDcevgpaPxEqnPNDqXpRw0A3wpVXhbo3oB5I6i3meUqYBQweYZUr6SvLQEFJHlm80GtYq+uixd+mdRwqqsy5wilgF3OsF0GxKgI9kGAE1dR6bTAAZItQiH5hCwsS9LU73OQFIdy9JFBikwU6IgFtWTNSpU0Yla7SJftkKkDG2rl0XCGQicTC8ymsVjzu2yNkzv95r1J2OIgBSK9AD6GEE1uZrQHOBSgGwHHzbHIz0412PtrTfV1Z/0BR9mBxqpwAq9L36nVSVkYzjZQHrOZSpG2vhoj0flUW1p5DLTp0ymer/XXdCXbF6Ppm7VtyCGvc/+OxEc4POFHJ/bSI3zURtRjsA+P6S4nkBj+yYjnBYhJoKjSHUum6ovWrKc6M1xNHQgBEU/LcLnMLbUB58frNjjh/Rhzb7G0pT45ov6c4RgGupazRpj5Drfg0/3ySRd9NG4MNyrw1k2tz3M2WqEmXi0/lZqpfz8cQ2DPpzlBg9vIWwq6WxtldlXBQKstnnyuhNCKI/x6KywosCadqfWzvrvBNUNwMJqZdlvmRanWDqdxrwfWUxa//KZc91aU73r4mLC+tRU0rwerzd4RKWMd2OGA/QBuO46tJu2LU76bWO5jbC9nFDquMdwh0RJTuAUi1ZrIAO7MsIawbqDUQyM3e0CE3nvbK2p+qBrumIzTbj/xj1cvHsfH3y8Q2sNpRS0xtjvF/R2h4s6peg/8H1G9PQEYP+ChWcywjmgGBse84KBIkQXS2s5rYM874MoiAWMsOHkS1nRlq0Zu+hQYtJ9nimqg6UURDkeq9vgDDBmFxZU8Nrnfs7TcY6yf+wzwDF+UnCULqjBltVl9diFs4iOJCXdH3NezO1mEJvJChD88mPonDrGBBzL0XOtdN7j1e5zOVPXisvyCIUqCk1aqZzbGi8AKsANt8tjtGXBvfomar0Q2w0BpVwEmZVx9/QMv49/D9+e/w5ubj8Dbg+oRSKaLvMevR1QyqKLRs+7lVx2WypzSwctKdBCrhu9hTaiP3fuCjCC21497VxPvEIQm7bygKx1BcuxpbqGrwWx2bHrpTl6ERH5pUqrJ6cbzrzsPc8RQpMuMQKQOKLR2VwPQj2d81ltB4W8Hla03RBpF7EnZe7LaYLP5VzO5VzO5VzO5WehMLgt8tsy/4T7ci4/i2WhPW6npwCAwhPuL19ZWS3G0jDjZnqMgg3uL+/+0GcZjJebD/E3f+l/i2++8ZuY6e6LbWnn8lNVfmSQksRSMMunOJ+gTgWLlkR6EKpFHGEdGrGGzampRji2W5oSy0UOUhw3ukhvQncCUXUDgTnozMNdKMEZLDWEnch7c8OJGZPI3oWe38zBasOCHtwIDl7JlrywmYgTyj43R7ClWXEjsbTuh8Ru4AS1MHERmpgRO4NYzOFNFmnBjAt2UNW+Whony09vJYxYJCmUWIwk5iTNz7kz2wdqxtDV7RlDX4yfOofYwTk78QZ7c0mGIjXYVDssJ2Oh9Nn6wWB1+Hl1Oq5sZGOGOu00aodb6clpZXNlbZihDIlW7lBiAOh+e6mzpHxiAooe7kshtGIGETOFs7dHEOd4MabA6h6/GhR4mFR9RpnJnUdNLJsaMAYV8kuDRiUxQ4LdeLO0WZaaKhndSaOFdbfEaN9Y+uPYPYsOoZwigBfyObSSDfDZdJ1DhpvLy1zElOphpHtaZEZXWRDrkJPN2jpRBiNhslyyGvfNmAMIgICNN2BgJP1djcJN5VQzpBkJzKo1M9oUTXNFETnNQAwEbCuhOm3DekTeB7gs7Okz63+yRYZxVf+JzTtmZqQCD/StqY5cZ643zGOJTxLYktJc2lNEGjQtGzWHHlsR+bPfzbi8d4FKEpPLjbFgbCwUuVLAnHAdAvAyoy9qfFFqicgpgAJeanyv8r/qR0wSuWyeG3b7W7z5xkPUrchEd2p04YxuN3Kb3NYkFVYdEmWpyyKEB0vpsv+1rhG2OAyPgPDJ3YuG149vJbVn2WBzNeGtX3yAB29f4Ju/+9v4+IMfAKWDS8f16z0Ohw+xvbzC9q2v6O1N4ZM6qUuml3TzWhIQkkbcIeMPjVLoab50eogVxAFWbCuLgVyNvgKakLnoXeQICFg0MlQjk1sITEQlN/5uCvmaEnAMBBCp+4zJ20Eus6TF6soA1fZD3cPtPaNrY0ZpAHNXmUsu76puoK1rpB4mAQUV0x/SLWsApcoGYqK09zHtIxNQJnIjdjUasfABWQQ1kndlTgBwE17XftsNb/meB2CVRaAsRaKMdRNi5hSBRNEBF7SuzituIt8B7G9v8OLxx/jkg++i1AXbqwlXDx7i4uoRHj76CqbtQ5R+H3d317je3+DRvUe4e/kZPvj+H6JuF7z71V/CZvMQd4c7vPHWL+Ly6l2lc0MBofQZrz//Ab77tf8Yjz/6Y7TlJWo5gPsBrc+Ylx1624H7Iv6KLgCe6aqibwrmueGwMEqZQMxovUPRdS7LSqnovYO5o7eO1prcjq8VdaoeSWniCV0BgGACVXEQbqaKtnS0hdGapG5rGqWpFAFzT5uK3gnzLCCp3hqmqWKzsRCQKpHJfofL/mmSOevd+LYCBWht8WfD0J+lNskN7t5kfVJBJxLQlKWjoAKqFVSKgrBY5ZdGdmoCmGKWSFnka0LaKBR6Yqmx33wZiwOIUhdtHxKyhy4Veh6FAgjb3inqMOXNtx7fvKIBMjd06AIE22xDd3EdznRey525ckbmvtt4UlWuY2bMU8aQDSTwcRiNYkjOhitS8KkpJpM98Y73iYcWj5y30e+kVZisx6g3M0PBv0neGfmt72lInopYGzuK9JIbTB84X+SxJuUls8CpQuu/KH2e+iHjW703zFfwZH6GxlmMPh+rQaFP6QN5yH+mYqt7iM+T6ZbeIFTv1upMN0AA/k7xWuYhX5Nr5TOLMntvNWAHzdnf9tqwPsfLLzxOfK5Of+HjdeLdObFglMj5LHbq3ZNtDU/ZRQLALrYQMq8FYGSsi4dqbJ3kn7Z3yLgI8adMhs3Vuo9iL1itV5CvC+FXHuYqpnM9ySPXDtGucslrxbV28idtjSSRtlpDq4Gs13z6L+VHlC+OZW3IBImiVIZ1anLbUuIOMm3ohqUX56FDGRTFSLKBkaKdjc90Zhz2My62G5hJKrM81bBVmAh2UUzwM7Vj+TT6s11aav4du4ztnTDfdtw+P4BnBjaiO2zvV2yvCj76+GN8+tEHaMseNAGtMW5vFwAFD6cJy7LE3KYBDZd5dC3lSywnZ4NjjcdaB4jtbLEWKgHIt88MRGEyomQ5XSI4NyuoSyLV4WifOVqSaYwuavLysnZBTn9GAMG9Ph2HRHNK71EAfHquN/M558g+QaTMC9LHODMSj9SOtSpCM9M79pOheh83CIn/yNtlFUoWAXbhjo4Zc7nGbnqGz6Y/xmc338Un9IfY3b3GhirewV/A2/wX8XNXfxmbi/vYTg9wsX8bj2/ex/Vb7+O2fobvPf/HmHc7/MLmL+Hq6iHaoeBX6L+Ody7/Eq7aO5j5Di83H+LJ/W/gs/51fPjZN/Dq1ecAHwDMaCwRTTs3TaOsung3+UKoU5XzT+tBFxu8KltmM2D93FPukdRRigL8oVFPdff0CPqlYJqEgNyh0Uzh4J5OFmlf/vn3dlMN5OAkIEcdiwmyywwRGdUARAAnxJlH5QLg6S9tPMZuJoftPWP6vD0aibJcG9aiLRAe9vBz6pdzOZdzOZdzOZdzOZdz+WGlo6HTguvpczy5/Db++I3fxJOL7+CDe78NANj2+/j1m/8Wfu3mv4mv3v0X/b13938JL7cf4o/f+E18fvlNvHf/H+OiPcSv3vxrIBC2/QH+yy/+R3j78Bt48/ArOJQbfHD/t/CHb/5/8acP/x5ebj7Cl9nufS4/fvmRQUpLY9QSUWnsVobfeGYCK4SgcwG4+MGGklWe2aABdjhq+nnxA5sdNJlJw1MzOqs7WusikIJRErAEcWh0J6gdVgl+a8RKPoCZLcVMcJbuhbs41IdbY4OBLxk4SA6IhIgcNaQYs3f0RGnGY/mT/BTZ2cao/032nZyqbrgBxPCT5+AESYdNTgdQ5ohYQxBHrkWFiaIGI41CxZ0lskk6vLphDRHpQuAGAlGxG21iSKEYkyK5PAJFDN9pYEYgS6WSG7bngxfjVqP13Z6x1Gx5zoP/1CzFAkoxXiGdI0/7o4YNca6Gg62w3KyyNHh5bjsZAEVufZI6x8N2wKhFHOkWIcUMK4G/Y428ZJSTOW+9i/HQr9apQUSN3KWow14Nm82Mm1ofNPJJIYkQQiUMshHkQEBRxApOcsNbMuAHJ6TvVra94fMV36fS9AVfzrqwJX1ZMIfTme3m62jwBKCp8uDMJ4AavYWp/TLAWKwLBRNCABCdZf6XZiA66b0ZWCMaHASkkqjQIHxXDQCTjFbk77OPlUBOGVk9pCHkg28HQydMbgmIxmUZ4jawGU83iDoSVQaqjS4XfZ7Gd/LEJttXqktTUyWzNmvcpXkGgI7thlSe6g1FCKh1Sn1sqSlGGKhj3sRbUEus+Zywh6E3mxVQxJ6oUMrr1zvcv38P04UCUZrsNwbmq4UwKSNKcCcbNLmxtGiniu4rlyjgxmgLwAWYuyyiTsB8AF5+1vDk/R1wO6GAsL33AFcPLvDmVy7x+Q8+wjd/62u4efYY07Rg4YJaO9rSwZ2w299iPiyYF3ZDpKWarLqvlKmisUZwAVwWgy3aXxhCuQNLt31J5ZrsqJi7AQ4TyCpNdCkkqePUZ8/6bjUAatG1WoCiDNQX2ZfF4MsgR8py+BUV89s7u/MBoSmosRdgLj4d3cBJKr+JBMDCzOiL7Q/DihHQUmO0LgBCu5UrY04uKjP+kug2BQHWMpp5pKW072QDcJ0EnCTt6fea383lQUGiJdIYhH6m23RWxwkTlv0Bu90dbm5fgviAqTA2BXjx+DE++P638fzxD3D98hNwv0UD8OZXfxXv/tJfxM//8l/G22/9Bh5/9CmePP0Ev/brv4LPfvBt/OnX/xHm/gKP3nqIaboCbS7wq7/xX8Pb7/5F7HcHzMseaAfUvsf73/oaHn/4JzjsX+DqAmjtFvN+h8Nhh2U5qG7RMe8baimoUwGwuE5EWLDMc6T2VB2FCH7LuBSJHtjYADcFm80k6dUgYN2pTpp6oYkOWGI/qXUCoatzoCHSLGBIeeBAdC3L0mCRluTGcQXRhMbdAU9EGuWKpM2aUN9db3F3BcYZj5ciMrH15rLf5KLol0gapUVhIuedA2scvm5rmBWsBne0wHSNfip92ZevcPL+2m/jTm5/RRSJ9LYu0axpQBdh933cF0/Sy0KmpLqQZQBCv8xIYf2QMHaF11XBq/Pf/SeHDi4gbFEEVdWK9k/VacOxYSKGlPXxU4XTLz56Stu5/rLWwd2xe6I2o8NQN43P8NrRunZ0Ga39gTRVbM/nDmXd/fR4c1qUPBbW72ylDf0y4o1bhc/HagqHPwaQTarH6GNBTk9iQNbjSfQfHudxXwEQ6Z91qXsGGB+3RbQyZo6mi/VtRZti50k/X34BTw5D5jg/p+9y3bYF8ynj0Y8opn7Ishj+inUQsuRobazGnt9f84aD81Zyg4anjwdhb9kFDtNZ7DwKYAh3ZH3M6QFzxxmiJ9hdJMo/U08Kj+t23bOVFB1+qnbmoAp/nuLCSUGsoFzXuHy+SBJ9MaW+mKJOGf/b9L3WOy4uxIRlaZ/M7pOj8Y51xThL/lSrX7MoAQOAhjlzlrx0OHSJwLiRPliQR3siYwV8GxqqEEHi6zvNLzpAhbAkvukM3L1uuHnWwK3KOahWbDYTNpuKw37B/mbGpkyyPlkvU1TGZqqYpgpmYFnYAVSlxNgJCCGBkDuZJ01vz6Iv8yvpi5bRKq8f05/B4wU9sn3Y7HeJdrE+Yk5UTTyiaV7vst501zUaJ1kr/8jfC35In3H8zHtV5ofOtvaObYOZ7/LaybJ1vdetZRdbl9R2M/YnAWCwKkl+jHu0NUC468/xAf8enrTv4yl9G43uMPNrTK3gxc1T7Hevsbt9hb7s8Gn/A1C9wFV7E/fKW3jr4S9iO72JT3fv4T6u0Pd7vHj5Ae52L/G0/DHqVAEq+NNHfwdv4dewpUc4tB1u9k9A+4bdzUvcvnqBttypfbkpOGlBa4uvNVZ9WvRd1dE1ZXLvihwzfYoTrZT/mUKuCUApwEVWbzA2OaHMPmkXASQl9ThLDhRyOyb5O63ZJQxtV29qWnRl+y7sgnnNFdf381nWzu05Al8sxVSn/V7E3tL1Rkxrad05b9j4wl7uOg6nts7lXM7lXM7lXM7lXM7lXFJ5NX2MP3rzP8BnV9/A9x/8J9jVV3g9fSJfprPHDi/w9e1fw9ff/GvD+w+XX8BtfYpGB3/+bnqOFxfvyx8M/PY7/ybut3dxb3kHC+3xfPsexsPZufwslR893RtNesqOQxpzgzhHqph8yEJUZ+OBHoMIMKutRwjgDCoKCw1r1CY/uJM4tjlZ9VgtS2aUisN3h0WD6Mnak29uu9GFLGIEHOARdbK3YSFy3UlZwhAxHljV1ZtASV3b7dxR0q0ZkKUaU4CKGnHkBk845MvKauagCNZIH2B3UjCFQ98OqaxXpsjG61SWfwGgOF0EoJTok4zY/kw62wN6y82c59mSCj1glxirGVgGsJVS19vtSKnq4NEu3DhlphoDDymNeWVks4ErJkH4tZDfWrOQxzJX5JYhe70zwwLLS1/l9pSFdPbQ7azGXgMmaVsMaDj3AIgNt6qKGNIkGU6Y2joE/FFL8XR7mo7ex200KyUifJDSxsZlt3wbbFlKRDQGJC2PejgkFDl5mHoHvdg7vt7CSGJGPyHbyE9mqLe/KH3ukwKNMuJGydM82Y8+yUA/5S+ccChw/C6ublt78mnMqd4sNMMlC4BSontYTyXajoEKhO5QnrSVBSwsYCUBnIkctFRCpHNVdM1GGrugRzZQxj92Hk4XshXIFSnejIYVwrPZdJrNoaw0PabrmsrwqF8ijRFGbYooVKOZ1EB6hLvbPbYXFYXYHSkNwmvVQq+zyr1kQLMWGQFE6kQS1chSgpHcqjZ+7+qobCoY/eZ3Z9zdLqhUcO9qgvEOAE8fwGTpQaHAswD+mePb1rhhHAgA64KsE7DV6EqNxYFx93LGp9+7AfoWlw83QGFU6phQ8PTj19gftvhv/Ov/HXwNHdfPP8J2w5imju3VBd75ys/h3bffRSkbLI1BFSgsG4RFY6ASffT+pEmztSvynsAFAnI08CnMEBlhBkn5kn2MyucqFnuDh7uXm7gx+4U0LaWmW6tT8dQIDm6WDFboTe+zN+lH69I3oW/VfUueb41h9mhZRMXrBEhTh8nvks5OgShKDN9joFF8AIBrOCxsz0ZXABicv+xybITKVx5u5jGQktM9OvIKcH2glup7QgPQGlIKON2YWIFcHWDqSmPZp5a7a3z0/e/g8SffxYunH6K1ayx9hwcP7uNys8GnH76P65dP0edX4PkGS1uwf/0Mrx9/iJun7+Pm1z7C9eOXmHd7fP7hMzz+8E+xe/k5bu6e4vWT9zBVYHPvCrvXT/Dm29/A3W6PShX72zvMu1vcvniKtn8Nplu8fr1HoS6RGvsBbTloZCMGN8ZCEgWIVd/bTJMAfFhvIrfmjCmkMhCdpmXodnUa6hwwXUzkb62Ei8sLLMviOsyyNHBvaEvDsiyeFk6+T7kwICAkWwNEBU0dI4UImn1Q9E5uAToigEpBLZJyTvaF2MeYewIomR4iqWANTCTj73Lz3teo6CtTmbDdXqItTSM9NWWq1V7AXcOZyTou1W6GC92WZaX3fOmK6X5wRSZcLcVULy+23pK65/LegT8RPjH0NkfsK5+pcDveq471Dt+FOf4afqzoa3Ih6oJv4u50ze9mPW3sytgGj3W5+j3Q4bgPw2fp/XUxB7HTi4PPMnTayDH0zxQDggIF4sLAev6+iFZZISEEPVw7o+g6pfe9eXvf+OEELa12OkWz1S+sE0bDZ8I7Ax3sO040XvX3qCtJxRsc7Bh5x5rIlQw8pG1kXK3pT/GBvsMYgHUNGmXS5kD3dztvGRgz72Xet9R/+2XN8wNtR3Uwxn6CjmsSxXsjgwzv2juUIkhxfC20SotWdUI+1SaP/WesJuQLiq0djxzrcxt/534RkafbHsZxYu16F7TP1j8W0a/p6+XvojQouduZR706PuJLxkBOH9P62pK9n6F+a/Ks6zr50FF7p+sZ/nK5RO5ot7OU6+ewi3RxGeQ0n4S+3FMTOY0iTBEGXKYxInI2AMxzB7eOi8uN7C1JFpid59Q6GgcZYHejhT+mk2DnrdaAvuu4u95jvn6Gzbbp2aMDveP25Q5l2uDnfvmXUe+e48nHC0AzpgLU7YSL7SWu7t3DdrPRduySYeqP9nMdSNvnNbbTkHX23mrc4GO5ZnTGsC5HmlDiW5d/BBig3deqvp+f9+jUWXjrWHNoLEZccvF1pR1K+I9hT/J5TLTKAzC7pfSBYk/SSLRfrJPFyrT92DpgNZ/SBcaIysdraJgfoyfJHO3pNd6/+C18c/e38fnr72B/9xK97bG0PVAIlxcXOOz32N3egnlBQQe4oR0W7F4vmHfXmHevUcqEZXdAKQ+w391hPlyjzXu0fkAlgCqjL3vcXT8XHVWjHbdlwTIfwMsC4IB5XsDcNCKyXjZxJpIfXXJkOy3FhqKXApONxnUWBhzoo2dUuyDiEUjNeAONUFoKmO0yg5xT7GxplxaN0qH7C2GJoq6YWtb2uto8IpoeKXM5QNj6qpOco8yPEZgS3/kBdmQn1rEKMKqAul2w06wFtNoHshACPDpw99yKf8ZGeC7nci7nci7nci4/VeXw+H30w91Puhvn8lNYGB2vNp/gd9/+f+F33vm38Hz7/srw80PKSqV8vfnkR3r+ZnqCm+nJj9/Zc/mpKz8ySIk7q5dYkAtEcpCT1GxiypIb4KwRXMxdryAk2E1NaPolvbGhBha57WEmKP2ZoiY5+sStKFJvqQKOCuNzcUel/E16oBVgR3dDEnk7ZlzJxvUhlRLl8NTyvtuGs9VWwRqe596/SkYETgYv5gHgY5EE3EjDrAfmWPD51o4Zl71f1o1u51ZO/UtO/ibGzeLeVvlhN5BzO26s80LJyGRGwvhnkCuPHkVRn/eFBXwl9rmSxoQ0b8ZPCEejghm4GzBKwoKbLc3T7bDGKeDcfpzl3bhG4jw3nqrOXiXxQRjeqFt6NQqeQXGDQLeUbBxANiyMSVMwtQY32pUaoByJ5iGGrM5qSCiQW44aucvmQSIE6YhL8JPNDQ9/m2FOGmIosEB5z+r1Fcc2N8XpyB2alibmOmx/FLTMNpn8i72g749uYp3rVHdaTb7au40Nx88INRSEx+5qiy9Tv/JHBTbuAN1MCBDC7MAvoWdrCrTIOUp6lg/Bf+EYUj5pCGs/i3N9SA9HNICEyB4nwrImJSw9RMgjG0tOVWBrESpnSzLaAUHbrCNwev9USdI4m7LGyU9vWzS1ZRZD2+XldnAsW2pQS83g86O86bIx7QEOKgWChgBKLehGe3O0aYQp7iLrDwtjf7PDm2/cx1ThhniLTGdjYUhaM9ZFYdEZiACe4fKhQyKdgJMhrysoozBoKejXjNunMx68VfDorQs8e+8ZOjfMhxmvPnuOi81z/MZ/9dfB/SG++4fvYL59ie3mgHv3Nrj34BHu33sD2+2FgLtK8GfvRkeIXGoCmKm1qlxO4CPjKQrj+1RI09bJ3CxdI6opUMmj02lqw6mSAFDUIV1q7DFgva1NRaLIgMC9o0w6FxoBBmr0LIU9qhxQHVxq+waoOFhNmiNPr2kyzsYkzZPvz+Sah0o1Jk8DqmIVE0msmUrhcJI9Q2mEAvSOyZCxJWSXOTWMRqUYDw338kXOq33dHGnFBSh8n85r1HrfuYuDTaM4gjtoOeDm5XN88L0/xHf/5Ldw/ewj9P01er/DYd7hSe8gLmjzjMPhFptNEd2qdPR+jZuXd3jv+jE++fCPUDvhYvsATz67xO3LFwBuAezQDntsNgTsZjz/+E/w+ul7ICZspitMdYP9fg/uBzB2OMw3WJYDCCLPGjeheOty61n3ld46SiXUOmGZF9/POncZp+qR5sjjLvqj3UCeNhO2Fxtdmg2bzQYgwuEwK/0lwpI5HAAoQKmpI4BgkYmIgNZacsSzREZsC4gqai0Ai2Dgxpj7glKKRliC17PZTG68X+YFbQ6wUk7BkIvItCQqk35pKVpRRa+elxmBQJZxGdjdHdUQR5iBjQUszciLniOc4JeyyH5k8xbRn4bUzvZsAiCRgoSljIqHnRnYErquNjVzXqWaQ/aT6VsYX9LfV1O32gfjD9+eTUdejdowF1kcDO+kz4YoP0n1GH6h6Amnilwv4y/e02OUPPTh1PODDp/7bmmQKNjvVCOmQyI9M4wROF0/Qk+iTHSSvc9fZxyDT1K7tKat/z7C2o3LiIIuvnbJ9pZEq1yvLsGy6seRrsUj/8T51dqJLwe6Wd22D6WgaV5Xifes4dyOR3dC7LHeNkIfWp+d8u/GK8bD+byb5zZ3cT2uzDOIj+JcYDw9EDIqyFUZ3Uf4TH4vahnZMz/PI62Ovv/hJffHdFdCRAaVyztGf4pu0ahXWB9dPuhe6ikCk2zJa28YrvXF5hZKV4oPo+5hwMOc+Nn6xN9fTBceaHHySRusrice/v7ieuVVwjwv2F5MQ92jLpXrHtffsA7z30m4yNqIM6fbaNKQehdd4+JiApV82Ypcb7WJsPOCzTUw8ojzsWHnrW82PxpZvB8Yh9uOq3sb3L+8jxdPSFLNcsdymLHcHfDVX3qEu4cF5WJCKRsQAdNE2G432G4vYHGmqED1cXga4zw9vSeZm2dgLS/sd13koo87tvrkPinmvAAK5Xnx/dHowBoNm1jTPgfdhmLsTfCLZ34uR+jvaq2MZ9fym4cqU59DMpj9y/jC7Z0U/R4wXiXOuKwN+2WiIbXtuMeZrTCIb7SLDrLzyKr/aZ/IutCeXuOjy9/G9+kf4bNXf4rnTz/C/vYl+nIANGpnaw27l10j88m5j4ukoJYLI3dYDjsc9q9BBFSacHfzDEtroN5RSkPX1MYTEXje4bDsdW8pqH6A7AA19D47IEnSprGP1c6gvocwVFdnvZyUdnKK86sLNycQQIUwTVXp2h2I01qTswEIpOe+jhzpK0BOoyQZIx0RutvXSilyCUJDA1tUprS6YVGd7DKonX0iYlMW0NZsANnkkWAMO2eYHCx2sbFHRCd53C7zpuGkNcVq+yMyWX6iH+dyLudyLudyLufyU13K9gpUKlj1BC+9gZfDT6ZT5/KlLgzG6+lT/O47/zZ+653/O15s3/9hRoFzOZd/qvIjg5Q2tULMbXLAMmewHd6ZFxA2ehDrIGronVAwiXMnW8v0SC+YJwklIBFL9MCpViFzGLDmJLdL0eEwAiSdhxofStH2i5/kW+/qzI5DYRzkpIygJv3QDpTJkyB/GihF0m8YYMUu0IgTfWXYUccVDZZHKa01T7MWzk84HdYOrwyEiFRkFAYxH0MYzfwdaPQVs52lMzwQN4t8DhTAYwdu7wOcDTyKB0NucJZSFCzB3p4bsXqHpGbROom8P+u0PJ7WXf82M0U3UAHCwey3ybQeUiPGQLpkGASgOeXJnRcM6O1MARmQGp7QrW9GdzU26Ngt3ROXBPQBo3Y1QpFEBkEtg0HUnbIMNM8FAF0XUlfvQkBP+dUlek+p5CHRuUskGkrjYlbgkxmzdIDZgdLVisbWBzN82GvJwsYck8g6N8FnUIACkj2FFJ7Cbiz0mVReYRo/t7VTjM5KLZU2Xq+Bdwpj+Mb+a9FQskFwcIgldiCSlEodEjWmQCIfMcEBMI2AVjQ6WCefq84AFhkHE2u0K43SpX0k0hRR0HGplTundwKROzGsgxZLLiik/K49NyOUcuVgO8ppGQy4tCR6FFrdtMbg5xoN5umhvB6bt0HeDvI7+ltHQ+eKee6oU/E0TgJalQgxlkjT6LE2PhsVMr9Yu03nrKvB3eSlrAsA+nuvhLYQ7nZ73Ht4Cdp2LESeFkluvob87D05kWCy1vhF3GBNDfhdDagNLPZdYjBJyqXdq4bnnx9wee8C7/7qfcyHBbe3O/Sl4cAzrh69hV/6C7+IB28X3Lxe0CvAhTBtLnBxeYHLe5fq/GBMU8FmKhGFp3d0FjlQyPpXnH6L8emSZrTEHogue6NErNE55PDQG2C21pDFBRWNJZVepaIh+NXQqsSKtGzShukKhq5gSCrF2o/lsxntayninCkALwoqoIhA1pndqNs1BV7RBcQsEAYHOJNE87FiN1gLRQQvcfQJ8zlwiarLHiomDwNcLXIbKCgeHc/3+PQMGQ+T6Dad883YACujdYkQBgPYiYOg3e1x8/JzPPvsB3j88ffxwQ++idfP3sfdzXP0dsBEIsgPhwU8N9RCqNzQGgOTEIYqYz7sgOUGu9tnul9OKDShLR21AOgHFOqodcJUGB0L+uEVemPs55eYagUq0NqCvnRwm3X9NLRlEVAaKogsxSKLoV0Wr++bvLBG4GKUqcp3jdGb6HgG5CL5Q9NFyNqutaKjo8/AcliwLA1EszsamKRu2+t8P2IFGU0TCtW4Gd27pJhI+9w0VbRF6Ccg54LNRiImEhWVY9KhaSrg1rGwRoTqTeW47lZk45bfiyoblnIuua3AVDBNG9Rp0uhcHaQ8Ks+ntLsMX1vC03Hrm6HeRvOIfkmL6DQ9NmnAxwDXzy3eZDitZH0gK4e+A2Z9NzSC/D0GOZNLRJtU543qf+YMshIya7wAMOyAtnEyjqeA4qcPg1fP8DC8OA+sHgzwCA8fWsRUXteblR/AU36lIem4o4OWokv6StFn183g6zPh/b1/NphMhvXlCQDu0eVVH62Dfmkk6S4WQdR36jwfqgsMspii6hxdKGJxWTUnJm71bMj2qNNo4frMcIYJ0tCqTmOZxBrrmQY4nOqumqcH6YjuqYmk0HXAo35mvd5oJDpZvOf0LlGh62gn+Db/arxi9Pb+rmiS55p1AHY2NPoFOIbHd0/Qag1Uyut94HWrzw8yq/EkHfBHk6Qj4IkoIhvZmiFwrDsT0/a8guqDDolH7VJPnlsenzUadcIw3kE2ZQ48JXfAf+Zgk9vaZUV+hVY/rW5OH/L41TimdVvO5wIkl8jKZbhUZbXE6CIu39iX9epKfWcDiqzoltiDdU46A/OhodSColY0TnuZVqc/Ewemps024vI4vwPoeV/tCB1YDh27mw6qBZf3CvpyH62L0OTWgKng/tuPAOzAdy8l0iOpTlsLSo3E2UQaLTqDHDl1z2Tueo8Q1ST4jqLf3n8e5dXIg5RSZNIgY6Ld2BddZBBGGnKyZbEBjwO0kcGuGiDagUUehZZirtft+7TQmndGmW4Pyjkh5IWn01SbxvH0cxqb7rH5ppKR0eRUlvWIfp+yccm7IhDMFtewx1Lu8PH29/Dd/g/x2fNvY3fzEne3rzDvbrHMd2jt4CnoGQB69wtRGUxPejbsvYEOCxhAwx61VDBEV2YbDEHOZFTlXNAlhXk3owRYLyYE2KjbAV6jxyYFHbaRW2QqPz8BgKVJbvKcANu0v3Zx1iONs+9pvWsq5Q65OOFGSyNm5oCIeCT7pqw/KKio65isHZur1mIVWMTTca7ZzzxaiUaC4/XUDnuy98dqpyLvEeTib6l6DkvyUdcSqSJgtmRnND+/SGPnVG/nci7nci7nci4/m2V64yugaXsESFpeP8X89KMf8iaD+/JDvj+Xn6XCYBzKDe7qc/ze2/8Ofvud/4eCk8464rn8iyk/ero3i6IANV7AgBGSDsMi/hQSQwizCi4KMI2ANtR4YYdPOyyaJcKMRhbxBZoPRcEacvgX5xGQD19xiw2IyDPefdY0LubsJDi4xjpqhu1CcUINA5a0VtRaQGZ4sH881rG2ZBQdZBz2tdVi9AoLhEeCUFp1t2bBn5VDJsJSoc/auGWMcYDl9M/6bA5TMyYJAiaMSmMaPa2H1dCqRqyhb5QiTCHGa332urIhysbsfTXQAFJH4LzCZOOXVDxhkLJ2UhvWLitNGWCz0+nDcpOYBmOaOJPFSdwBBazZRErdXADLt0Ukjnc3eJnRSvm1Z0MYI3jE6a4RPPTaZFODigQ1iZv3Pod6U1FSAclc1FIdKJQNYqRRXhxQZfYVmBHFjIYGGBPrX3HQFWtUKEqRKWIsDFtHOhd6NZuh66WQA55YvQ4yf0YRNdwQEI5Wqz5Wp0eS0HbWN3yhBkq7eerri7FqaWWUpADt6D04TxUlPCTyqbAAuazR0hncCU2NUwwFXxQSEI/SwgFmOucEklRtXUBNlrLRHUcqY2x9kPcMaBBwlqUkSMvHn2NdeUShN2RniKWEK+n9nNKBnZLhdDR6jhJNx5z+kjm3eWDYjb/b2z0evXnlve0AWl/Ams7Lxh1LPtZj2AdjxPFRh9t/SeQSJTnWoLcBuePmegbPHfcebCTiCKpE/WEDCUp6OAOCFbuJa2vJvBMh0RRspg90nQUl9s3rhpeP96DthAdvT9hOhOtXhO3FlbzTG+6/+RDLpkmf9wAWBlGzxSDCinV/pQYB5BK4E5gKWo/w8xWsxk/pgoF4wHAwLSsQZOkdjQsEPELK5wQo2NJ4hggOSGxdIsVZVLOmKTF9x9Z282KTtJrkU2Wp47gxNKyhrAPj90KeBs7m325bm7GUSCPeqdwrBah+Jd2AHybDhXndAOy/2x5SsHRWeWvj1XpUbncwqHUINC62295FTtrf2dDroF4OgHCtJcC86niyRdkF1YU2N+zubrC7uwb6jM0EfP7+d/G9P/k9fPrht9D3N0Cbsexvsdu9BvMBveqtYgBcGvZLQ+/AVIXEtU6SyrMByzIDs4AiL7aMq8uCGR3724Pc3kXHTdthu5lQ6xaoKg06sJ+bYtgIbZZb0kVzoi1t1nlmjYpFrl8VlTS9mZ5nwPGCzWbjad8EaANM242mXJR9p/WO5bCgVAEpVUi0IQEjLeKwBAHU0cFobNGnRNYWIvTewMxoywID8jmIER2NLbUciaOld+FL3VBrrZimydPHWSo1AZ1S0v+kWOoGtlACrHtfAsuhFNGVTVUkmSvZhyUalcn6OhVsp4pSxeEwzzOWpbmMMkeN7ZEeIYGysvMlK9wHupGTkYZnSNGnrovkw7BuCb4zmBxzGWAPhjNGvKxFo7kC+UHTaaOFpOczVnVGWud4Ou/KrrL6R6f2z0EZ0a7T0GDSY2l81GUkp34N/R/LWv/J+gMD6TwBrI0O1h6Z/pi+PwIcDe/Enh2ACxqesTOI/W6Rce0d7/dat6UUZcKIMeSnStE3T9DOSqYH+3crIBvHj8QC4xyMH8e8r3jU20gkJiigZd1HxgDQHuYw8eQQtSPxA2PkkdHZHfRj/6f7qp39TL2xcWU60Ei7vB5NHxjon941cHDCEjhtWPeOPNDMP19Uoi88fJbPAKffi5WbKT1aB44aifHQ+JQD2ezT1VwDocPbaxbVwm0SHBzo6wJrOmaCh86GLnrREHVZ37UUaCZrac3nPkZOIL6RFlj9ZWeJkgaUecN+C+qYjFuJmhXP2Mf5qEwgzEtDnZI+BjurpAs9eTwU7WI1juPCSVDB9QiT5SaP+tzRm0Q0Io1yBMAjHRof20L5Qhtuas4nMDMOi35z2DPubhqoABdXBbVIKuliIG6ofUwvEjJD0s2jh6y2SMO9Y375Gfjdd0E9IvD6hR52kmXMglMsz4+tLbMNrDc7HxLbOxxtqQ4W9ptk07IfibfXctaKzQ+0P1nYm26ef7fm7Dw+1EXp9SwrE296O2mcVjxtuPNNRPoOuTi2633MdE5txdnTIiwPgx+3EpaXGR035QmeHz7CR8vv4wl9F/3yBtevPseLp5/i5vVztGWnNrSONh/QuQHEDv6T6DmqV8YnKJquzb4DACrFI9Y2AG0BmDuWpaM1oBQF5lchpEUetUhDrXfdJzRCv7YZdFD9p6g+yHFms/kVQFLx6MDyDmmU/u5z3ixCUBe+GfY6ZuRoTEeXRO0xwuo7Y3L5TNKYQ9vOxc6tostbBGbTTYMvyEW77bsZaORr3LqggCSLtgfA15WfRUzqk14EIr3s6DcWTdabbdjOEyZ5z+VczuVczuVczuXPS/lhIGVeDth98E1s3vjqv8Qencu/rCK2kY4nF9/Bs4vv4TsP/y7ee/CP8WLzAW6mx8eHsXM5l3/O5UcHKWGB34jpQCmeUAGgqoe77gcuogkSeUAiS4hhUoEXBtJhjYnBElmjkByB3exFHUALQyk3GBjHjm/irJITfqQEkHg0wGisy2m8HEQiX2gkCD2MJ+eiHz6B8ZY+RfSOwUZPGuWjx2G/6GfmwA8QCEVaG4SxhtTaR3qozmlipGl3xfp/3XhE8bmMn8IRjDj0+lN60rfUNQ720mlFl3QubmQigCGOYrOnKSZALwHpzTFItA+iiDxg4CKbo96lDXcgmzNd+1VKGMytxwRhD2b2+/WlhDOJeqrP5iMDi5yOBIuVQTBHp3KWO7XD8NbNYqCGdVIER9dDfBhotX8giM1HCVfDyFYIWFijHSkvNAUSEUHWCwtQYjRwS155BqMXAeoxJApFZ0Y1flZQTYHd4pVxSTAQMT5XHbOtGTfkdcLC7M6SMil4ww18Mp6q4cvNmZxvPY/W+Uh3YMbUwaGm9OxNok0Z70RVZoxSHoJFCzKj3WDW8caZx8/tu4iQo/JDn2kwwA0pP8R6sr7XZDjqxOBJ5jiPuSswiUzuKOjCjEzOR0xojSWNl8kSHVcDAJJ1V8lAaGYEC2NVNvsap5rB2bJzFrBG5mJY1rkGQoXyAKcxemGnbZ5OBzolUF+2rRqXqbkRhQnz3EHbglJVBhIwg8FUsaWabpIHo+sySzbbLLUiWlRE6BNgmO4CqC5DRDC1PWNZFrzx1j1MF0r7brSRCFmL3eQ0h0KPNQgEULBTgV3D5SaRW5qGzxJgGuPuVcfjj/agC8Kb71ZsLoDrJ7cATWDeg9EEfICOR/cvgIkUNLSo0bR6ZCebdgHFFIlk1BlN5RX1ZLwtcOCS4CMkqo0xObNEc+uai8H3EV2/XQMpVWMkkwk63lJIjNqwG962GCSqU1vYQSA2JxZlyaLCCIktJR0GUNTSujhklakMBNBAAHdP8+n6g0aXIbXci8iOvcB4W4y5wh+bWnRLVzoxYVkgEekg+2UrIptNJnZiVBa+aMxYWhcAoqkVRA4Q6V32hKILptuaVaCnwHo01RlXiQS2LLh+9RIvPv8E3/v27+Hp5+8B3HD/aoOXTz/Giyef4e72JTaFsZ2qpGXoEr1o6V0cArpMRBXqEgnIVk5nNUALzaZaUStwWA4AGJuLgtqBw0EATofDglqEtrVW9K6pG7igThMW7gIytJBw3fQpsZo3DRksadEqeutovYusrrZ3Ct8QA9NUIVhtFZQFKFOkgS2lOm3BoidSEd1hWyVS57IssmY7A5Z6pTM8mpNuOhF9QSIUdYvwpRZ/k72g7hHBmAGqBc30gc4K+EsbXiGgVzHoM4NWYZM7dwEhMlCmDa4ePkClLXa7HSTSkwLVFqWr7vOse20hQmsSNapOIk8NjLXMTeUXY9puRLe0aGZf2hK6FQNDZBsrpPqC6B0hd025oxIvCAg9b2SmAMq3jn40HQSmWxzTaMTcxO52hMVZfeDniaQLmf62PkuceD3GYX320fLqmdC9ydqD8mrSr0aggI7G5YC9b+2kCws2bMq9sMZ5cLjnIZyKwkLapgdESDI50yGphEO965/5d9PPBv2Dox2nC51+f1102xpplvVafzl6MLDYagz2ZAZX2feuN63oYX0AYk14a9YYCzv7akjvUvosHK+r/gwDXrXL5qRcjSODv2hsdyBo3nP1Gd+bAJXzEUWG1+2s+sjDH/AltF47vH5v4N8vLlnmBP1GJ3j+7lTJ7a7IPTyz7q8/P/BpWgC5ohP9BNK5jdNjBI3KYmc0+a6u5vDPKsZ/AwAudc3mFQhbioGejiTrao5D/pg0Hp/L82mXzxiyr3WIHueAIdXLKhXtV9iIgnV4bCeVTDtz0lsfMlDMddYuEbAvLyfFTJDrEMIzEW34VDuRxlroG5eQrNcIfQ3AcmDcvl7QmPHg/gZ1Axz2ojMQd/S+gIhQS8G9ywvUzax6tDQi5yQ4szMAXhrAdmFE6UvRrstCneiegDK5jyYr8s6V6efsnOo2fiq2wJKQtnVrQJ81o65FTl6jXvz90VbgZwMeL+BEfQE6Xrec5cl6f9E3/Tn5F4IqBwOyebao0UZb4xvri51xDecOjeaqKrDzYtBFLz8CeDl9gK/1fx+f7P4Ez198iJubp2jLjKkSwA3LvMdy2IPQNSI3A5AU0wKQX23OSjtJuV3EVkMx3xbVTFIpy7DFtkVgFh3VAD9FiWHAOZt6IIPIZWLYLoUZYMbSpzmoR9nH7FfM4N7kYpxeoAD0EsjIHgpEknodaEVAmSpqqRINSs9NjLh0Yu8Y3+YzABufZI4ym6eOz2xo8TlAiJRw7MzGym8mtPsAEDZ5Yx3fXlxgs7nAfJixaPpHkVXszGuyeYxYpWd03RwIkqLbwE61Fgda9cwX53Iu53Iu53Iu5/LnunCbf9JdOJd/AYXB+ODeP8Hf+sV/Ax/f+30cyg3Ybajnci7/csqPDFJiP5ARoIesTtkQpQdss+agaAoWORhTUcMq231RBqiFcYsAUsRC5w5CRURx0Tt/atGRMLXdD3px+1T65zeuh8Ms+U/PV04pKlCho2ejpHecIHbItghG7E5f65PXYsYQMyxQSpUAOJ3ceM0RheekgTsdUGsyIpgDbnCQQKNq2CHZDC02NayRhhyoEmN0A1W3djkZLXxoQ78sioDkWheLdGebP/h8M6B+I1bHHjxlEOy5Zg4XMzSFkcnTAQy3vlLqLqMBgobZMWJfWjQEcyaX1E+PmqVO/HxTPodq72AHagFATTcxnU4tDCGsYAhLFcUKNDAQRy65z03HTWbHMeMgVTGcivlLvi8AW1QfBVEZb5LWZQ6tguA5m1A2x3MjH7+25uNmQAxjFtnb6GRpkUDqc45bhQPvZB4q5GHZOc0fYPwSK4b8bzjoCGBNA0b+Rk/9jdVq1a4MroMJO+bP4I4ZNGNrjfVz6pY2yuA5FhJcgBsAwJpqCy3GYPMgcxQjy4bQrrQ00BGXWPMuOLUUxByHAUyBkGKS9LR0BpAk0shRMWoHJ62VEVtL7jhLRlVyZtdxEqNxxc3dARf3twBFv7qGgjeaxqqiSBUFOrFeI1pTzLrNtvJWJ4lcRk3noeD69Q6XlxOmDTyyTykWha8IAKxFKj9Q3H4FW4ou1luc8pmAzsgN9GBJq3D3mvH55wfcHmb83Nv3cP9iwmHp2DVZu9evdtJEvcT9hw9weW+TiGvjMCOo7HmtA0sDyiJ9WVTmFJWR3AAq6QYsEwwj4ZHUyAyk0v94VkCOMjzlaQcD6XAzmFQ/FNFt67poJLnRkV/I0gLYLKmBFgGaFdqZU0fqL8o/xBKJR6DKKjNVQBgvdlJ5p+xogCjbbIkSyLaH89X0AF7stq3Od2FPD2t7Vu+k6cxUTkIAoVQiBR0XRlsExMYkrNKbAA6XReUshc4jMkOAMk/fex9/8E/+AZ58+m3cvPoIbb4FeMbz0sFo4LZgwh59abjbd7S5ASTfNTbpBaCQpDntjNYEkth7A7ih1OpRFAogdeh4JD2D6hO1+uYyz7POmQBjLE1jKcDEBkZjvRU/3BeXtdwYqA0orAB0Fp2AClrr6G0BFcK0qSCqaK1hnhdxdmgdEu+quG7Ve4tojZreoVgKh95NgRKHRiUwC0CKIbQx/VSiT61uSrOAZT0lLKfvm4DlqVR4lC5knmfUSb5ry+J0GxyWpq+Wgu32Aptygf1+j3lpIJJ0eaXIerNQI0VT2TVr33RcNJ2LgjJVbFjGK2OUG+vLcsJT+mUpaX8nl/g0fGkOnXDema4HpznrH8y6K+jmZE9a7Vl1d/nAEWmH7bzgz5gulHQ5V3qA9RkhOwnztmX7pOkvNL40PEg+aCA6tiKXveqbJgUd9K816GPd3BoMdgoE5c/mZsaOxlvMx2ChXJ+vJ2DVFFRt9y0vO4Nzpz0KH46Lbmmqj6bx29TxOKb1JOlWq7rN+GUOqmL7vG9A1r88X6eHeGpKTz+TxuvnoVPP9xP9U/bMn+U0cLn+oWrjHXvWJjw5by0aagasZMd7ljRr0uR+uoM9f8/H4zBTg50HxD4QEJI1jx0Vl5V2ahsXk9PBdaLo56n14GTKvJkWmrV0tPbtuyw/ECT2epFocqT3+pYc6zKvE1s/6fOB1/VHS3QFw1M75bPW2KOQo7lLrAvW0srZ5RdV25I9Js/VkQTT/x7P5LH8iLPAYUngeh1vt2eMVqm/Q79PLaZM03XLabF0ld/ggt1uVsd+1BHzKUTxqMVKa5NfQIDGMrltzhvG8beZcf16xtyAiwvCZhKg1rIwOgrudhJNsqKg1AllKs4oHkWbOQKXG80YWMSgAOYEroVGUSGALAR0FrD6/hFQdZDxsS/bHGRZYPLC9ypPd0/O0wSgUz4D5gtbESnHzzS+3hFRuOUtr2+YfTI+9i4BoNij0vrKcg6AAIa8jkSELEsI43mIQ4+xtdyTEPK+6zxVA8efWMsagEplch/sNi83H+H3N/9vfOcHv4UXzz9GX64BFtDKTJaGTfRx7hLpiBUQb+ms/eIawqbZVXD7swDsIh/3rtGJ4qzsKY3T5s/MaERysQRxYcB/V54l15eQ9iChR9OIq3YUN30+dHW5KCNRxSjONmmiRFeLeemJO7kzutmWNUq2PBZR2gBLOR78Wkrx6FDrM8WYJncYVuKh2Guh9JB003L2ZP0yRwTO/LcsC0qpcvGiN5DRoUAvYqS9J7VpdHX7dimgSsJ/OgCW26ND/8/lXM7lXM7lXM7lXM7lZ6swGB/e+x38f379f4YXF+//pLtzLn+Oy48RSQlhREi3ULA6JBYNI+uWGXcIcEoXJYdGi5Rg6aQYDPSOQhKe1yM1QCNDUIUZEuQ2itzcEfdEvi0m7ZrjwwEYiMOY3XoDwkgnztO4bmgpPwy0klMuMHKEn5XxEEIT+4LVekEUTlI3rgz0Vceut9+9XWA01rkBxOof2h77m/ttf0vknaJGmDCQ5HetQrvRZtEJBqtUMnwRAG7QyBtquDZjTbJilyLfGfAij8ENT/4/+cwNsInnPDsFj2PogEco8n6ksQsACcFzQNzKZ6O9gFwEFMRujLCzPmsEHDG4hcWBeg9AT4k5s3H4ONXSVGpxUi4GVtLUbF0Hl409Nt6IkgQ3QBqghgBPy9EJKN2MLMLrHuNBB9SVfmbMsz57yqjO7ugBWRotkwUCKnAnj/EqAujgRsI+AqHcYA4cpbTIBkV2DghxYk8b7QnZgeLSw81P9nz+aQZu5W5UGAiGNeqZga3kFnLrQK2AgCoE5CI00hRDfstPbh12Tq13n3S5laeDYI1y1pPlmjWVVmfGNBVNRQRMRXhxquTpIkoaY9hQj12iQh8ZTUPcK9ZA6BE5y+ox0b2aB1i9hEEuRSkSHQaMZZbUdlXTHDWIYbZ3AUO0oc6AoSWbXaxP/Ywht6ZdTuo2A2h/mCRdVBek3s31DGbC5eVGjY4VfpORQ9aCgKkSWoPO7bhiKQE9CxMMa9tZI/AwYXfX8OTZDjd3e1w92ODhwwlTYzx/tkPnihcvD3j56gbLcsBme4kyTR69rmsqKVnPLEA/s1hrtKb93EVOUQG3PqSB7Bq1h3XyuCMiyGnkIXPsOwBWI8+YXC0soJree5KZCpRaZGUM4FtA9kvSVUINQHWZpNseqJJHBWRmAY8o0S3qC1HiI996JN0Xax/EOUIpOqJEuCsAepPPapG12tXIXGtBL7rubA9zfQX6ufS3TtJpViFvO1BnQufmqRx6J1AtgVkDSb9q2tsAYGKnARoL8LOIplKbypm+4ObxZ/j0B9/C9evvouBGJA/PmOeD3JIvsnr7soBbV8CK6lpQcB0xqt5odrXJ1ntvChQTkM8yz5Db9SLHJPJR7DMOruGOZRHeEQBMlbXMBQ0c/WCRLQJ4NpBZ0XRvhM1GkDdyG7kImKs3UOmoII0ECLTGnv7A5aR6AtvSBARqcoeEjvO8uL5izhH0Bu4N08WF8pBKFZKoW8VT/rKmo2jO65YysYBAk+oPijIyXVKelzRwpu8SNd3/hCZcJHWc6CmShs6Edu+M29tboO+wzAeAO6apQPBh4iDsi/Qp9GkBUM2LpnMprBGopL8SFaxhnmcdWxl02S9bsT0rFkjsBXZxAMh7S7xhgFjf39h0Ofh/bUN03XdQNmLPH5QJV3Iwfp56N+x13qVxo0x+Oa8m788ndX9gaI9pfCd/He/rQl95MvPZZhgDr/5ePRLpQU48v3r3qJrVscA/TmP1Ltu+YL8D/lB2pMcQDWwWXXHdf0UXf2DVB5/OVf/iDGV9HAEOgw4Z7ONk97Gn8Zwq7uxEprf87OlD00vBSZ81Gqb6121bGzkVsKpDwX98PBYf4LhsEDv0utPRv7Sc5N3V+ImOXk0vxN9Zb7dUf7x6bgBbpfGuxUOer1xivauMzcNPy94/Xy3z8Rc4YSj+GN9ftb0ec+5ozE046Ikjso0viHXNjKOUk/Z5povxP8OxrzC9mQiSxpVGCljTJTWbZXZ+2nkKCLBgqudo/lclA9SGucu8BIl62TuwvdDLT/YYJ50218urao4m5XgM1nf5TIgU8GvCssi5YXsxCU269p87mO3y3TighA846svQ3/Sb6DaMu10DE3B5Rbi6mlAA3O0WcAfmGdjfzWjLAcRNFF9b3KYLeVt65qPYO3ofeSfmyfaBYBxbI2apkwdjwRuPcxK2WUaLPEtAZPvb1x7Zh2BKcOQkDOxMYLLGGMe39ryOves6oytbVpZTfubN5YQsdztiR7qIlZannSmIHCyb94xB1lCcQZgLGsnZwWWFPadTauYBt6mlQTIzZrrB0+2f4rsP/yFubz7HvL9FW+5AOGhlDIZGRCW4vkzEYL3lQYjLf3ZBtFYdL4+AI4v+NNoATL6GsS/aCXtlV8B9gVxktIha3QRTpjdsPYouW4gkiiiZjNHzaZNTV9WzUuvHkX/kKG2gHD2DWFsI21SzVG1EMKAStwaqVc6T3YRo4j9Ao9YDFqXX9HCry6OBa53rKEwEDOvRzzNZuaLiUYG9bZKzxrI0tLbIPBY9J0POZBnABYgNvhuNlCmpjJf4on0AxIO9+1zO5VzO5VzO5VzO5Vx+Ngqj43r6HN9+9B/h7/7C/xEvNmeA0rn8ZMuPHknpyPZCgyMSiAOWHVJJnZdERQEpRQ/h8pLdEmc/8IZVrmhkEVZnBCMOenZ4NGCGm0koxVHhY6fbGA1JTS7a964DybeHYuwWGSgBhgolEI71Wr9jOSRSai2OoaMBlKzrfv7PTpWxfavCACxuBOkEy3pndLN2BmMMCY09wpXNWdgexr5RzEGmx5Fhy41xyahECrjKlkd9hrW/OnSlY+qHHsrJiJlokOxRQzGDm9HEwUFpfrzvbtjNBhEzimgLbtizcca4LGiEgyOaRJhgMCYiSe0z0D5u/MUI9Bu7oZzmvOkNRyKIsdrmRTOeiNEq0nixs1bEI8hrkpXI3kY26iVesNIUKKi+7/XCBxN5xCdff2qkqzpHzBDjNxCE8jlQ4y6zRpUKAx70MzKagx18UZQmnr5wYEqYjTMZU6VjmeLx+TEPFQiAxynCgIOwdBgOrCOTM93DlXtodmJ/L/cNFpOJ5WaiyUd3UjE771rqP7EhEbgTDk2Ad13XeSkBOCMdp2BnbK0EGMkoqqYqcPQmIl0hojEZQGnkVqPbKA+O749L7Tc3O1xebFAJCkhiARgpumMEKcW/nqNhKO+YM8Ycb4P9keGhy5kBXgBQxTwDNzcz7j/cohdIqtIGAB3LrFQrNlgF0jQxpYfzJ4yKYkhV6kkoJRAJ3+x3DU+fHcCl4pd+5RHu35tQK/D6dcPdDEmFdjuhLgXcZnC5QtlU9CJ8Iqmnuqeg6r1J6H03+JoFWwTLVClkHDSaW3JYmXOyaARDczTY3El0IF0PBJ8Tgu5tXSWJRgeReSjD/tg763rhYBLqHsUJCnKU6Ea2D7OnUuPe3VDKTeRFU4AeKdhYsH3mKBLaE8vtUioG4FPAUFfDKquMVhkk+2NIgLjpqnttITXkdu22GIIJIosLCExFgCBNIlt1Zk3vR+45oCL965AoSn2ROVmWGbzsMR92MIBF2+/lxurEuL3+BLXsME0HkUBdwTKlgGfyFAfFU5w0FCqoJqMVzFyLRsgqRQz+rMb61txZYEDyQmKwFjAfK9hFeN3SNtQ6wSItoXVMtYKnmiI1QeVxcwC6LQpmSRWw2UyoExJgRsZSJ8K02SgwsKMdmr5TQRN5OjWqpHRn9NZC9yABK7LK0UhNl28zd9TNhA2ZfqAp/iA8Ju8oUKs1p7NESSg6lOSc8QWia0yN+BKtym6U2w6kUlV1oFo3Un/vuLi8wPbiArfXd+iteaq7bhup9qFqCgZpozsQz9PcdACaAtnkQje6UQvk6Ze2WL/TnzD90hxQgK/Tte5ujvysXWevYK4zTgmw3dC+zxcBrIQmhZOfmz4wNJJ+5eHjlaZBq58wGR4frXfUY718Nb51V42EppKPG3Z6JwgVTkHSaVmDncZexXfs9dL6qWMSprPO0TBC1yUMjnF/xnRQ6w7ZD9lbOD7GoLp+YT9UVzf+MHrFcW3Vt1SRd+J4PP79qt0v9POt+JWHOYqmMu3yd6andU7PI3TtoFPoWQCOwD8ugui4rz68NAcDW33B+C3i4sAcSnsDTmSNMh2b9DJJfM7KGHSif84Xq/q8y5l3vO/yYaZhVHdqsmKQMZyoMei7OjOfqMkeNpC0ybueaZV4Mc+VfeeRNTDOxyApS6JVWqOqOilIPF1k8v4k3srngZXI9rY5viNk+qj8XfF0lq8rdf7odwZh0cjKBsSzM/tgKznx02R+rpgzI9hnFHzAWYDrnPTG2N3N2GwnSWrdi9fB3c4m0Y7Xk5uy+UznmWgp7A/zzLi7W9CYcO/BBttJ5NR+ZuwWiS7Zdg3bsokU6VRHxI3rfN1taznSS5ZlKXNqCFqOi36u2hnDArFn5r3G+5LWKkJGe1XjBmkTEPLH+7ISjKf4iPx1p2fep4ERjJXFtgFdLMooa4XO51bfur+qhI3i7HiVh91qvW9EPX2RSylcVX4YLsRtYnKubUtHwwEvyvto/Q6v5s/wZPMdMBqe1R9gt3uFbdli9/olwLeYqkURQixqNtAM0Lj5XHsUZmaAwmbSWw92UNrbBUZPk5Zoloc2gHB0E6IS6d9aY09zZrQVEFACx2gL1gezGVPaDImAaSogvYQgX2n8aJLPmbtGe7V5tf1e55/04hHCdn0sxUR4lloigruOQ/iavK78jukN8tP6FDZBEGnU4Ti7WMTeANSS24UYYkuvU5UzkdK1L5oCEsKvTSN7M9SepMLBgE8ih9JFLbbLwC6khs34aH8/l3M5l3M5l3M5l3M5l5+awug4lBt8dO/30GjGq80n+NajvwXGgh88+Me4nZ6gU/uzKzqXc/kXXH5kkJIBJkarFUXEB2RHIORQyoBZTSrl2NhhMLGDoB1Kq96SaX0Gwd6pGhWnqemv6tnJDnush2g9CMPMjhm8Yn0zZ2kYi8zhbMCDOI1ZRBnEwdHqYngqpgz0IApjHWBhe9cGFHmQ1qc+jhDCnbPhNG5miZFAjIvmSPbbs+TV6M/xBtORpVTpPxg03bAUNLIUbtJtN+ukAzSc4kIrMQpYJKMYT6T5sdD9nl5BDVxUNOILrect+uiG1sFItQKWIRvDRtpYxJWqUUxYLfsZ+EJFD/cUNZsRx4FG2ggBQC/6DtA0ipObKjgANsar1mdLX8SAGBLUAGhO9tx36O0sSTUEzAyNLMJo3SJECKO4sUP5w9M7ueGB1GEdRhszoqCQpG9iQlGHgPMx4jauA+OSTaYxo+o4eraP9bEOKtJ3C11uPwuF8a/oarfPKD/j/BD8k50QJT0x8IN+WpKROJmg0htCZ1aadbI0ggJSENsSoXGsE4JF3SAfa15H5GtjfctPHNwRlSMZYE0uMTxtkDluSzWZozQnePQv6b8AgSrGtWHFnKKWPs1AS0aD+HfCYctBJ6OhSYMCYF6EP68uAji69I7GjG2ZzKad0oRQ8AEZOMttqA6Y613SjEq7GlHJL/uROhoIbS54+uQ1Li+2YCIcZk5yuUrklg4nqvEy1NkAggMvPN1lF2bvlk+ABURyfdvw7OktGghvvnUPD+4LCOTmpuGTp69xubmHvt/j3jTh/r0LlTMTqG6jXUHtIQyDDOaGzotEIIMYcGFOJSDkcyFJJ8kiQyRoi8hbT4eoa4oV/FP02Qz+snkXlgsQVERAKg7Y6x4SMO6dkxpbqSb5xQqoTDwtKQPgt1pLgYIyCRPUoK/8ThCgkKXwNJ40oy5I5DjAuv4DgIdSnG+JDejGrmOk7GACAOnBV+EgIAU9SWSuw82MF8+fY3tVcf/eJZZDw7ws2F5cYtpsNdRax3K3x/XzF7i7fombmyd49eIjPHv6CcAL5nmP3e0t7t+/h+29LV5+/BGInmK76UDvkhpS+a/rWuOu46sFU9lIdD81ZFMRGd2WBZJpjH2+ky0fzEDVdGWkGynp3gwAm80GQMc8z5I+oMr6mqZJ6p4XBzxNmw1qlbQK80x6Q1sm2SIVyg4qACPpj+w3F5cbbLcTWOJ2Sdo8BbTVOknEoPmA1iRyVKRuK+poiChQdhvcpUjaG1rroNqx2U6uay7zgvkwA2zRlOT5YhshgNabANCIUElTuCkoq0wFk4LFWmsul5kZ6GHIL4Xw4MEDMApub++wvdiiloLDbo/eGHe3O7Q2w3KTLEsHSIBdVApqEQdEU3q7kIKuN9Y0jTaxQAC0IPpHawu+rGXltksgmohGkIvpLTliZihOqsX6hpTaUdnQLdphOgf4ruW5eEZH2whUYt/HgNArrSqXm2t9c3xs+Jn1O1urrhvymgQKIvJK1vRJv9BxP0w/ymCDU0VeD8eY6U1r5WgNwvD3OZ4Z3sP4uVdH4yOmRayjWwwXNew7Oh5H/tt0wNzWiR4PfUbqjwP0DbzAEc0j1+U6pfd1bI/yfyg9wMd9M53HHs8+5uw0z/x1NCx7J1h85NvEX6aXAkgRDcd+GNkp9QWp/fzLKbog6/0c/bI5NBnmjtzEa/kyzhoUYVGHhs9Su5k2TOzpGH2tZv72SpCInMbCwe+JhO5oVs1h5NlUq1288HUzfBn0Bh3hTPSzdCkMGNJ3HRM8dWz9eeIpBjQqjH6VxltS/ZS+J2AIOMeJKD6/KkEyn2QeDTDTuPLzU5z+2SztDwu2FxbvVp61KLAES2udBcQoy4+c7EYHPiLR8EFX4bnftUj32hNtdUIcb4Gg3VGbpuYjrQmKNrgBhwPj7m4GCLi6mrCZhPBLY1y/vkOtW/Sl4d4V4e6qqO5cANVVfEpWjYdNwPqY6J3kQaZcMeonep4EK6zXHiciJjnt7+d1Y2vb1ojTkEJkpuqyHS23CYKDVGodoK3DWjUcOSHZEgx0tF76SQZlFcP6afJxWIuc6UQhawcaiN7Re8MHN3+Ex9N38PDeA7xz9xexHBo2my2utm/ikh4BVLDDU3yH/yF+0P4zPD98gHm+xu3tK/Q2A9yxaASdabtFawfw4QBg1pXYEOcgjQyUiFZKpAgsJdsmlCcNwCh/ehpvZhubXZZLTOAyQ3jT9ViNqEopGrVEbTId3OxE5PQT+5PYFGHtOK0ZpVaPOG32ObvkYQD0tsjGkm24Fo3ZbYLAwP/ZDmPf9d5Rp5ouCBKW3vTumZxFxK4W/QdZ1oDge4+2VOwCh/Kp6hiDKUDLdrvFZrPBbn/Q+tTm2Dv60ofIaQYkg531SO2cbKm9ydk+BqhyshuNOeT6SXl9LudyLudyLudyLudyLj/J0jDj/fv/Ob7/4D9G5Qv8lVf/PWz6JQDgsr2Je+1tAMDLzQf4rXf/TXz9zb+GZxffB1uogyND0rmcy0++/OggJT19Ujqmi+FAb6aX6kcYMtczl3TAkYVgt8vDgBUH3TjsmoeTAIu+BIZFIZFD7eQGMXPISong3N5zIk+dBkAdfjYexCEOZphdndzsGYw3rqkLUIDibOjdtoNvKRGdKZ3dYUc+MuuLdELTqXHcrDTASzotx+ik7t7NaGlOX05PJgMUIKnY9BBrVRY/DNtYNSJFHw2Uo2WcvU57gJmhQYA8lZCPliC3qDxdnBlr2c7xCgSQz9jBM9EvexwMuL/JHOxWbTJqMdJN3DTG4AOAKIzPlBvhdIi383o8EId3qKGriPGrqzVvIoA0LHitATJhdBAXVOsDs88doAaiLlluIjJVAAHRWJzYHShVPp9IIotIKp5IZVc18hJ3uaVnvGvgFktXNMy7jTGlyquZfhQ/AeXfJfiKKqEpzR0gCIviZTyIAFoYb2Bl6NM2wwGg7RkLDsbE493V5h9gVIQB0ozaHZbKIFZlTtuXATtApIrqkIhUZI5pFXDmqGYyYxU58sqM+mY3MrkgFtC8linxpAD1uhKoK9FbytVnQOdSCLMa+kj/1oAqqEWiXonBzcYqP0kNepOtsxUZbX4M6mFgpajFXtDoMbA4MozbfQNtKrg0dExB+xSxRyX6IBebrr2uDn8qcoMZ0IgqHWixLKQuhkccY1rQe8HtDQBsUDeTAjc0zRsY3PRmJToIknKtNzMOhiPL5THH/BJbFDFCOxBePNnjydM7YDPh53/uEleXMkeH3vH06Wtc9oJyPeONB1vcf7jF997r6NMW6BPYQsFDosn4LWcGuLeIUGPpM7s6sFSGemYsTxNpIIbgfwfuGX1UJpOl/3JjrEXSkBD/rcUKEvnGOrcBoC2laJQzBSeZMRYpXWWabYvUY+m2TFbbHU+XsxqdjCzCUWGAJepNVSEh8qK4Y8j256VD1oiPO9IpFhUCgklg/963dI9IqOm5oAAlXXuFCfP1Hb71B3+Autnh7Tcf4vHnn4JLw9tf+Sq++gu/iqt772CqW7z47CP86Td/B48/+Rb2u+fY3b7C7vYGU2H0tmBpTW7DF4D7DLQDNrWCuKGzRFMCK8inL5L+S5meO2ukNQGoikOGMC8NtVZMm+AnmQvh32VelI8YvTd3WMlt4IbdbpcM8wpyIUKlCbVWSDoTWTfz0rC0BVOtkgZukjVEVDBNReV9k38NEl2wSNQlQG4fz/MBpcj7pUbEqDZrVKWpqjwsbuDvEPBRvmg9RIgqkQ6BjIcKuTCvtWApBYUEDOXgo2LOvtAGmIFlMZoJPYs6lhz0pi5Slx2ug1WUOgEg1DphUYdMV0XA9lBK/a+1eH2tNUmLwQYeFoWHikL37cZ0ZwWOpXApYImUlnawL1sJ0Dvg/Xb1cgTFehQkAzHYxQT//rSSYHofkn4VDUn0AtvyQ71OUKS8yeStU2WEt2u6oT2T+pL/PNpiXUalZ/Uz77u/m3TgTBOvM+Z+oCXbVxqBjkP/HYaZ6mbolrPO95rGmMfkX1N6LFSjYZy5LRqIweO7YxexohzIH07vh/oW/ePx9y8qVt9QZfqOB7Ly8JwP0QaoY1t3D4nfxspXfaN41OhQ7BkKXVqqjQnJ4J9BT+bUl9UcAXBdnEsC98uWC9sqKb17NATC8Xzk6Tpi/BPfpe9dF2X4xY+h0aG+WAkhuU2G2Pes9EzPUHonTRLxuqPsPLQeGq+mM7H6UTG+8e7nCSFNOeuLDx5p1uZWvhtWu8+fR/0cOkneR6clUqStJNYy79k8RgrCuOhE0MicWj2l9rI8KJkC1g75UJN8GeXcqWhvRpLWOmBgZW0v726cZFVeqy4SV/KHEx1WWaHGhjVv+jwDywJcXBYHt7vjvmcAaQzCwQYImlkfRv1FOZGB3W3D9fUBTISHb1wIQAlyoWK3mzFRBc0ClNjeA3hiNCJU1HS+NP7pQ0fkzBMCwvYwH4vZxRh+bk/LDIkdg56AXxKRpmSAPlajpfK0Vboilf+dlsBAw+Av0wz46F3fAhO9vUIkECTJBmP2IwM4Zxvfev9wUhpLUGyPw9LM8w2M+5jr20Lz3fQC33nwt/GN+T/Bs5cf4XKpmHcLlmWHabvBV8uv483Nr+Byex/Plh/gkxffxvXrx2jLLcCatllrb70BDCw70jP0ItFC3a7UdQyiF3boOQKkAO50KVEvH9gZ3FIK+0U2WJ1ybjCe6n4xVQbcPGWx6cU6GUosB6E5kKjBoqKSXrwJVYVdZps9wC50+mUBPfhZ1HsqNPSZSoXJc5kkk5Er4JPNu/JD0Vt41jebR5tnt+WwnRPgZ4+igtJkOXuUKAUManRU13cHOR5nIjCc1kQEYongyr1LZFuKKFFWt1/yVIET9lgFNQL+PXvoYQUp4Zgep3e2czmXczmXczmXc/lzWTxK/rn8JAqj4/n2Pfz1X/pf4zuP/jbmcgcw8Hd/4f/geuWbh1/B2/vfAAB8cvV1vNp8jCP73rmcy5ew/Fjp3uSA1OUWCcMdgAT4dSPK+kkW2AABAABJREFUxppqYSLs0Cf33cLMVmG3my0CjFlmBTBR9JDv8Y/daEBdbp5b7CQxeslfTARiDfMLVmeZPqd1kt5gNwNDcaNDuEc6s+c/8tRNCCCHpVwajHzZmGMAGhtCCUDKkcHcjTvkBhAicYjbEdZCAJOmAQElJ38RYwshgVFSZCvvl/5zw6MZzawb4HQDWZyOvbEDcUBiMLdz9FQkrHCDpe9Twx/JLaaiYytWowKoWC1ddrsVRB7RQYwrwlORdiAMgebAdptXMoC6ccjoYqQthrshnzt3hiRaOL3SvFiEJTGMygAtpLMY/oobJcQIxGg9ogD1YF8QVaBLcjhzzEo9Zo0JQFNni8hEyXInAAKxO4iDuul77ojXsS7M0afFQCzSn0LWFqtBWtYgF0ZhczJrBJcUFcpAATl6UqSRY3+HWFa3GUB9TRkvFii4giTij0ap8WpZo8CYUTHPif7hph1zeCIiH1nnCLb0IgqCzJjyGlKbsDvAUGO71MUoA5imKggILICZrpbupjLGI4+Z0ZRFPnVF8HFjoKqcLPF857gXbJ1obkArEVXF5BLDoweplVlkgBvHGNMk9K3EqCUMaiZqC0nEI4nGxs7bRluBJXRdVxYw3GgRC8bgMQIiYNztZjx6dAkiwIK7GBqtoSvdyRKIodtaxAoQtAgfMAv4hDXFT2schsvO4C6IvEKMw13H9fMFD9/cSuq0JeSfAHvEmFpKFRnalLd7GPcqCFSC9sb7BDFY907Y3TQ8fnyLm9s9fvlfeQcXF5OMtwHPHt+B5gk0AxcXFQ/evhQ52RX2RwJI6F1kx9ItWg9ACoKQaHJVQaRqQGTyiIWdO0A1BJmuPQ9hbzstK2BQhZCtdwcDaESlzqIQtFnlnF3w1ChtZrg0edsH70NB03kywJGtdV/7vSnIKGSO9IuxcfBa4juCRNgxg65GXpP0WCrHrXlLu2YOmU6gmmQxmc4CiWBY1EDLup8RCWCoQjJocQFaRyMWHuwLJp4ANPD+Gp++/y28t3uJebnDbvcaV/ev8Oitd/HmOz+PN+6/hU/e+x4+/fi7KLgB0Q6lL7isDQRg7gdMtp8sDb0t4DZjfyAB/FDBMsvN6EX3gYW78IEZmjuhcQcVYLOtapQ34zJhu626ZtRxoN+11n2Ndd0ISHkfTVLo1qnK2gCDW0NnSdMIMKZpQkFFnyU92dwaeKMymmQ/XJZFQJKk+1jrIN3rJHXZoiCcDqKOOjUBWpWCWjRaV51AhbDwIhGVmD16VymERR0ansqBBXhVCmGzmSIdQ+topkcYfxbCVAmdCg4H0Q8BSdVaNxK/r6nQWnoTgDvLLeneSMFYMoG1stK3YrPdoFLF4TCj9wXXr19jmiaAO3jpWFicOgt3TKWg1gmt6xogdeYUgFuTfx2gUiVqVZkwbTYAAfv9Hm2e5ZnkYLG91p0iX2LjgQPFkfYRd16l3+07c7gclazp2S61UuZyqBBRGPw8sI4ulGLPuU4OkKefJOVx1xoMYQ3APe+ueCadJT9O4+cGeQkn9/pwYDpwVAXO8w3XjY10vHqnwBol14fHZkK2Z2f0cUdO/ME6h7mPrsKojk9jc3n8tKKTyXoykD3GGR6c5dGFgTag8bNMVXd8cu5nakTnWZZSgFQG+qR6XG/ME6vPUao299seO64r0SV9lsfiegindaQK6+DjhBEozrmZd5yGpuw2oNu+CAa10BHX9HRHbG4rjclZGTq/6aFi9LHdypaZr/XoW648zzfY3o8FvOYRWQNjxC8D3+Rox1jVmT/yMRl/c/pW68n8MbxLq/eHpiitMflvUXuGrc/OYe+wc6rbDUwXcAEQv1p7dqbMawgI/TD+lodsf/RLFo68iPkpXdZyIYuOmS5fKc8qVAB2GqPoVBKNIxCVvSM4XiMADnPDdppcZpv9KaJpBYPm92ySnI4cvGG/27Mu7tP3BAY3xn7XJPqjXV7y96WzAqYOWo1166UTbSC3mVXotgC7fUNjxv17G0xTRFu6eXXAcuioVDBtCrb3K1hBzCKvbH+Md3I6LmEfPXPVCdOjd2N61wybZJxR0cdpNM6yTfUN+92mwuWd0TxNDI3VO53srAxgiD6eehLRZ32GI4pVlvH+LiF4jcwmo2tgvXi1cyO+K9ZBnrfML8OXiTZMCONalxWxb3f4pP4hvn//H2DHL8G0w7K7xrMXr8HU0ZY9em94+eIjlLrBvXv30eYZt9cvAV5QCwPoKErY3pvYqIoB6CVNeGtychdgjZ4XlVYeUct4xOdQgPgopDayLnalEpNnfDWAe7KASTfSGHrZ0exQjdGo+botaieEriWpu6d096odaQrqbAvLqZ0j+o/RQcZk0aldBDE0Aqn1D6tNLI3T9PJa9PwLAQWF4B4mnkoBcYHZm4tFgy+Qc4P3NQOKEJGFU7VEpBGiJixL80sLbgPttqPoLsiQdNd6iUJkgo3NoicxgKKgM7kcQkWiyzZl6LyunCK+lo4GfS7nci7nci7nci5/DgtNW1z9yn/hJ92NP5eFwZjpDn/05n+Av/2L/wZebj5KCiSw0M6ffXz5bTy+/PZPpqPnci7/DOXHSPcmDo+iJxYzePiN6BKREgjQ9B16G4tyPWYsKPDULJYaycLqw4wtPL5s/WA5PEskhz4Y5+RAGmleDIxSaxFn7dEBLDs/GGZyM6cRI6LxWNodmAFdDXSw24UIw0Uc7OLmsgFyLFqQpwRLNhA9Ag+GJWaJ0FO0rxaOuSgYoUMMQcVPuVKZRbIZymhvcWNmsRurbvDSiWMM/fTpy+d0M0ZR+t3AR8kGRIBGsIJbB+KWUpq/mBwkE2jQERY+mZCmzvslfwe4yM/XyXAVoAijcyaLGSKz09+MfNGIZIipaiALy6YbBAnuXDXDfyl6Sy3NczKhheOE4XPtU8HsAEExxJjhgbSOIHY4ZaVthVJJCjWGRLawOUMAdcy4bEZXi4pFNQgtY6LBcOVUU8NO8AqZGSXmleHXV41Hihqwuhp17DtmNbT53OdKGM2iuAQLALDEkEHX8W+hV7rYGQYfZXQ3MIIGBwug+CB9sbM44aaJQBrlJztA1eaGxhKdpaC6A93Tl5gAYCHL+qZ83PILQxc6Y1JgR+8NKIRaigNomhpfexdnwlQl4lxRBIkGDpE5KhL5q/MI2krmf5PIyrfarvcqDGYdwN2egcIoE8FW0dJ7SvnFLmkz/9jsliJAn65zJIA9qAGO3UAMhTgxUpQgrnjxao/tvQ1QCa0VpYPKXZXZfWGNFNBhoCwzqrI5ojnkC3to+gK0hmVf8eIVo1xs8MtfuYeH9yZQZxw64fEnd/js+7d44+E9PHyr4v5XLtG3DN4xeOnYlIIKCIBBh917V9CJAR4VwAsS463dakXIVuKioBVyGWc3R80Z1yGOjewlJgQAEjDawn/3PUnpLCAppZOlSkgyirT/cRNe9pCibUd7EkGuq1FZKiHfZ3OEIIJGQGIBnnWWCFUdjNLYgUpusGUB1IIk1QNTBgTL7daWwKJotkdicKJTT4CoTrh5vcOn73+A/f4FHlxNePzxx7h+9gO8ePwB5sML9H7AYX+HuxcdTz76Hmja4vLyAn3eYX93jctNRSEBC3FvWJYdQMDVvSuZt7aAuKMtGqVqWcB1QluaAIpInAvcuoIUzTEnjohlFr7cbCb0pqnKSlfwjdTJTKgKOrKbvsYwpHsJ1EHBDE9ZabdrqaixX8HRlRQoOC8CLNKb1t3yYELSOm6miqlWdCpgUoDOvGBZWtqvYz+plVE2xaM89aVrtCMBWhmPZQdzpGmQ+RenhEZkWppEBKPQ5QIcYyBhAT+uo8vAbon3LlHH0gZtdKLCGrGAUErF1dWlZ208HMQxYCnXzDFRNWWiAJKqyG6WKEqA3AbvS7qNTbIH6oKXlHuLgLZkQOxpE+0l10u/9CX2Z9UCB+CA6V6mR+RBUZI1rvNmhc4YZdhasi6J2N1M4CVQ/0qRivfJ5IXyUfKiZkcopSrWfV59rCOP348e0LWao59GfQR02QFM/17rkj7ypCMzxu9yfbRWeKzT6eMc9eR4PAga5DleK2nHjUO5QD5aT99qTMi/pzZtL6SY7qFZTnRYD21IKZfpldsinTGf+6R3J/29YHx/3ZeBLmkMGQiQS6afjREcc2lgAORxqR7IaUy0etcq5DWhrO/2+eodSv+GZZLqTE358uL1c1jRd/WQLb0hWtm6ER2Xz1Wq1yopq9cHWuh3jHguE4O1EuuCp6Ebe5EoM37yZ8ljWv1BcNyYfMTDFDjow8a8pqetId/q80TDZJ8+qwS2861qDSglwBy9Gx/peZJG204piV+LOuhTP6zl+EsmivMErGgg42S0JsAK0ihK4AFKeiTHRvJzfERBj677dF7CWrW/Kt8XHA4NZSpADVoerQmt3MGKuVpdRB6lKM0CSC+oNGC3A5gKHr1xhc0kKZk7gLvbjlfPFlxMEzYPKqarAi6QKCxdUiFXoiFlrVx6URgg2cmXfFyqQLvtyEmXZIjIj+CjLGu+iMa2T5l8StvjuH94R+JMTi747DJJnNmNx32NK12d0ukMHbph6m9+13Ro4wHVcde6gukjhcbvTNeyc6d95rRLhRpcuC044LP6HXz98Dfx4euvY7tj3F2/xu7mGofdNZb5DsyLXFroDYd5h86Mu9fPUAvQ2gJiRtPoOhKVZwFDLg8ISKU7HU0PtssvFjXUaG96rNBbo/sAaEuPMbKc+1pPzwNhC7O68jpK0dLtw/g+yZ1iiRplYppeFmAuQI9LQ34hC3FBx2pnVtCR94v9nO9pTJlX/+TzSGs31AjnZLMvspxf7ewk06nriuJZgB1YbQtE5kktJPoyHbUZ69KiXdu+3R3QVNK8xbvOn1aBEoVU4HEzgJKVrpcc2c/FZtvwg6ErLFFo7PS5nMu5nMu5nMu5/LkuBJouftKd+HNXDnSDb73xH+E//cr/FR/c/yfollblXM7lZ6z8GCAlNSqlQ5anaLPPicM5aMYYtW7Icw1EFXIIM4NC3OAJ6wh52ix3PkIrs9xqGmEhgCsURgOwRifp/h3U6AGi4cCVU4Vka1c+v1oUYzGUpNC92QIKdcRmAxVHNCOLOhX27LCYkaaEs0hJ+dBq45H/BjjMvgcn4y+n22zAapzyt6X4shpJ48wHbWJ85sjhZOkxw5HRhwCP3ELWR+uf5osjt+IgwCkUIBmp3xwwnPoHr6eY857EcFaUkDYFxzEDdE46AiziBiwFZvlYGdzgacrgoLkMgoobZHJDS+ps2tMKchCbOe0JAKkzPZvxOqvxqgOU2C7Wi4HVzBJI/sNulll0JgaF8x2Im+UUvOKmQI3KUTVmfyGNMGRpC6FRfkh6HCAkBRaolXC4MapAqQKxmgZ/hgEsrIoyHLaITwi28O9713ReRuMwkubqnJbKcUOKAem9g5BsrRaSW4IDnfyd1ALFLWaZ2zCQIp7yvptTT0AV2gMJxAKLVMW6UDt31Fpc7sjHee1wWlus81Qk0pTPifRxKmJoLaWgQyIlabZAMfBRQW/yXPCIWFOnQhIhiwCujKmSxbVDrTHGAuuf3rRWOW1GuUxxgNF6we1dw4OHl07RzpK2zqKGERR8ZHTUhWmGV5M9Ed1NjZEeKp2AVlwudU3jhgbc3nS0XlAvKFKddVtXKpkU6JQN8m7MJwMzaD/NoCeCAdwZh7ngxcsF86Hh7bfv4eqqYCJJ8XZzy3j+8R7TssHl1YQH716gTZq+qwG8NGxqwWYzoU6TpmsyQ6uCQsg4TgZOpSAsrnAwT1Gqd1sOiWcNvGqh+tHsZnUAF7PhmHRh+Z5GiV5GfwXZWSmAyhRjSUnHZnLaQ8oDskLd8KrdVUZvTdZj73oj1OWMyWAOOaEViv5AYM+1qvOmPO0ZZxXgwR2SLkqnX+Szgrxc7SDQIn8s+z2u7+6w7Bd88J3v4LNPvwOen+P1yyfg3S3m+Qa93YDbAf1wAGtqtLl3YLfBtCFgOeB2N6OUounNZpFMk6SfLaWo/CBMdUIhwrIsmOcFy6JgnrTGzGBdCrkjjCBOheWwR+8dtRRQHffQ3jo6sct0cW4IrdEZzVLhJj0CPXSzUuT2rdzI7u6w0MUEu7XdWlddALLHMDSqUFfnggLTHWRdnJ/ZhA00OmCHRGtqDIkSqMAdGOgsHCgZaN4ag7lpfxZbGGDuKLWgKjCQmYXmHjlEU6wpLVijDBoRTQ3rKtUMFGBrg/uCu90deiMQKmq9AEPS3QFN++qanQAv566pKhoauusBPelIvQkoaZ4PoDuCqckmb4EAsVJevzaPX9KyhhVngJLQ2jbX2ItykaF1lTFKF9+j/AETY9ES5zODfZQjcoy91Ip9Xwg9JhyxAQiwaCTsPGXvYxibvZfGsxpjON1GfeuHFusbxQeuxwJHoztuc9WOK1xj3UM3ktLqZ5xVX47Y0BuOigdeTW2MMj9duuD4TPp8gjhfQK9x3NKH6E7SaWIL1p8qS2jsl9dpwxFVIumfK901y5ShXyLrjkio/Yp0ScPJwGWCRS7M4xxYMPc10U94Vr/L84nQAXW5wdja2z0aw/HcDdOdPju1rq1CSv0YQJenpjl1YnCW2y96/jCdP/SV9bP6PWJ88QgN4zUa2vKIzvHQoXGNJ15LepbLrNU7jET7xIt+XtbFNQCBOPHAet3SqqLUml9IYYuAK/0sFPGQnCTWh8SAFmGJVNcyc4rxvKWzs9+97VE8+sAzPQ5zQ52qy3FRWwJUBY2umjGqPvYTPDrS2KCqAcC3NsDAMncsC2NzUYJsaf3mKHzSbpoL/dPPc+k9O2+AgaURdjvRn64uK+okZ+jWGYfGONx2VAY2l4SLexVUE6C8RVQWS6XtfRyYKpghukgj3RNxsuyxrdjGY1XlJRY/Yt/N637YOzN98h4DEZrxkfTuFHZY6JqYPW2sdgFi6F+SW9mGZ+ceys+xyHpKbcWyUdsiQgYzbE2msTnRCNwJT+q38If4m7i9eozb5QV2ty/w+sVrzPtb9GUG84LWDgALMF5SlymndAKmCYUF9N6btG4pnUstWJZFAe+xFzroUM/NFnkoCxizaeZ5A5FE7el69kToMwYCEj3ZaCOGB9Pr3Ua8krHkFwXg9jzW84TYe2iUX8ypn/LhsrQfvufr8wz2C2TSnkQgZ73sE9u8jGkELNn5OD87PmO2zVLsEpTZKEf7sl0kDL2Fg818eHGxMQvD3rvKuYhs2/sCsNkKxuIX2Ew3TbuVR2qXWsQu1ZdIb7pWKNLTZjs5LUnP5VzO5VzO5VzO5VzO5V9kYTC+8/Bv4x/8/P8Z79/7LfQy/6S7dC7n8i+0/OggJc4Jj4bTuP2ihrOiYB35zozs4iwkNViYRWk079khLR+/xHg2GvHMUeTNutNBIsZgdRCXG4F9OEDaIXQEWVH4RiyktJ0bLUa9GuEARAo4M+To+OwA6oAgtmg2yXBn3StQh3j0wW2M9mwCOnmE94FG2p5ajyLaMh09m6134jhLEbIANzR0dHdUkhtz7P18yOdwvum8M6CAiXTTiEc6ex3Uh3pPzY3fUrJDPJKBwr7P80dI8xzGy0yDnAmF2KJ5MVCT8x5AgDPg/bCDuxn4i6aeszEYjgT6DJglCgWl8NVQUBsMjMNDujxLdyHPifPZe8RGd4pQ3EbbCnXgi5GmTmFkMmMDMzS6D9x5zU3SmMHWQ1j0nJCUxkRFHMIEFmCCtCLvZqse0js6KQVpnD1cOQQFVSht5EKe3uK1HFIQI7rPtzbRIIAr46tuhkhbj8kILW1nQGH3obphFBkkY/Ch0RJppiAL6Y0mN4hlztTAT2rYI3LjvEVzszXTIXNYqqy/QjHXxiwlyQfjE1trXfkXHQlYVtBJAQkMAZ8ZJRTctFD39zQYEwiMjaUOK8ITVechG6/rwIshq/Z7GStNRdIAMuGwdHCxKQwAUofJ0NORP0gt1pWKOD060JSmYKAtrOAWgfQtu47d3YJ7D7cyP12i+djazUZ2UtyP3TY1WS+XTu32IXm0PonERNjdMZ4975jnhnff3uDqQurdL8D1fsHdc0aZO974xQ3e+KUJddMluR0XLEvDbn9AQ9M0Vk3WPwWQU0ShAKME1aT/wKgmZy0UPoS/Oxjo7FGLnJ7MAOstdDfsKmVzlD1C+NV0nVd7HbbeFbhh60QXcMtAYF0T1lY4tmTtdDBYU2VFlDhKjjeJXqSTjhIoNlRiAS4TUoQ8BqhE6gadt6mSe8WEp4tEFivAoZkTUtYlqex1eQrC/naP7//R1/H05ef4lV/9Rdzf3uHRRcPN7g50uMFyuMZ+9xqt7zR1RENfFt0rOtp+Ac+Shqwts4MG+9JApaBwxbI/+BwZPUoR4N2yLGjz4nuFr4dCGrWIwuEAkaGtdU2dIIqL4H90nfQFrUtKNUtxCEtjBiNVkmXaFyqE1uXvzVTRe8c8y6Go1gmXl3KDZpqKOEzaDCZ2MOL8/2fvT36lW5I8Mexn7ifi3vsN773MyqHmbhACSGiEIAiCNtoI0FL6DwTttNZGWnApSAJEgIAAAVxoIxACRIigIIISmy2i0SJ6KE49ZXbNWVlZWVWZWfnmb7j3RpzjZlrY6Cful/2S3aj3siu86uUXN+Icd3Nzc3Nz85+braull/O6+7SuMzM6KSKSB2M0oEuLNaG1ppGFHEjmOr3Q659rxB3mBDUBIVyANAUj8wjDIDWP16tpExoADE3RVn42nV/WPBH0voD6AYKO4/EWd3cvQBC8ffsKp8e3YL8hbpGgHByt4PdM+5p92h2GGF3V9onpirT/HMTm/361i3doZysgLdT8K5+s7092JHyN8pv5+UI9QLwE7Mi+4ng4n7tcn2R6CqZD/RuPsCCX0XCAtAkqCTRVujOJZTo0vSCCdl0g6zSlXq79oT1fLvqP6bDQaXlqDKbGq91c24g6Xdd5RU+t+nOZ2UL5baQAduB00vgUpfs683O+kfOrykzlezlghEzjQe/4N+Uuu+z1X+zjLuTOWrVBo8pne0hKG9NwVpmqdWH/HV0+QCE+swzsntm/JxfPFALKQNbXnZ58Mi8wJKefbq92IfdN86MO1pZCBpC2jT5zSVvVr9636bvSRTOz6nSN8a6y+6RE7nh50bbL4sXcUmKFntBNkx/BBS5lzveXuS4nT+JfoolnvtfwC1uzc4QS+GX/ORDd64+zcNvTOvhqimZ8yY6IonpYmu0X3EaPbgXN05zZ8THG1fbs7t8hTrivdiff4iEYK+N47OrLkWLlFv7GvC3z0KsJ00USMBr0MXA+SQCUnj9fcDhqp5gFp40xzoJxWvH8gyOOLzqombAJACaMbYBFo7AOTxPtfSn2o8GawGOD7zP8IkbIWBmPVNw7vWP/Vr3u6vhi7hT5qbKce0aKpsK34ONaFu2iindkULQTkTJtTrhOKXcQ4KxzvTatAy6jkm2E/YhcZ+KiIeUz4XNCfu88G9jw4/a7+M+3/yt+9OH3cPviFl0GmjzgZgH4xNjGGdt2AvMWvpzQhuokwXoeRkONcuSRevQSAFsYZ79w2GwyylCwSw4yYh32yLU1dVqCuExypkXDdLLJs/sbci5KGT+XHwo/4qXOEdS9NmB1uh4ZftERE43+7lNApaoXYiyNR010r0IhPxXkX3Ug7+zLUqPx14FbAXyCCVnUqzS21u1yCIOtkb3Ods5q/xuodYAWEBpubu7QWsPp8R6nU4K0cqz17XrByH2V8kRDqQcB3w3v18c6hhf9v5ZruZZruZZruZZruZa/lLLRCb//3n+Ef+83/5d4WD75ssm5lmv5SylfGKTkm7lwkME2On6AGb832BEn6l3Sp5zWXm/d1OmGKd/rBAgsL7ptDDVljAJsHLgidqhL8GgY7lxAAShlNIdwRohYvnGj350anCCRSib7Bt86o5s9j4igz+2jCM9gG/8unRnhtG6ktIgfbsygpQoUKf7BcLJJtJVtJJsld6D2nJ7wV07lbw74IpDlGHLfSR40SHTA+UlZk2/GRfRQ3b6n1uzWUWzJAeEcL3OYNJrpAcQAHOUGGxeAlDs79z4L8qhaGuFcrB4yN2lzurwLknU0yRR6GaUgD1mbhVMK55TM/3q/YbQCKqfuPAJ51Btz2nLehvbh0ZSJ5YYZ5diJCas7fFtr6E0j4XRq5nCco5BMBy6sMueH9jyg4CPSW7XDD5SBuEVN5qhTzKGE3GndHobc57wkP8yZQzGe9o4hujyqTf2PSQ+DwwkOpDzFbd0EXw1JLJOCnATpXtRn4jDB+gjSSEUORmuVV3AtRlM/lQ57wvWa9a0TsJmO8O8aEcgcUz43WfwmtAEo3csPhC7y28LugFIZEEtVIBoJyfWSRyAq8kwskHDyCWDxpkQ0XYICBxnEhNYJGxQ0xA52GoLedAwamWxY37jMN50WWt/r129x9+IGAsJmecQGC5alR1QzknQeOxv9lqKnCIUOs8mg/t3doQoHkGlKto6GsQGnhxV3twfcHAmQFjJK5rn3G7a0kKWMshvjBdSHcETbTWXWW4vCHQ/3gj/7s3ucH874td98D7fPutK2Ct4+bhgn4OHjV/jat57jxW/coXVo4D+X55Ux1jO2MbBYvglSYbCbq5ZSjjU0/+tXr/HsGfCeRWHRMdAD6+GnQAYkY7jjMW+056G5gviI8sa5zke9/empHR1HHHPT67TvOmWqUXcYEzU7wJoBomTykhc+yQBZOibdADCexk7TriGi6oxhESvIQB09gaQBGGa/lU+WZtFuxW4cEZV8RjXS6DwxN0jnKtn3vra+efMKP/jd38X3/slv4acf/gB//HsHrK8/R4eAmHH/+lM8PrzGtt2jdQL6Ygg/7cc2GLKdQZCI2sMGAiQhCG/gTdCXrqkbPHpP61iWRaMejaHjMkbYK8uyoDVC75amYzC2bQsdwyJAZ2D4WprrqTvLedjBgqdJ9AhkUKe8GKjY0xDyYEsDAaxraj+3UbZ11fW1a6qJw03HGAMETbXmY6v/mQwH2NZvU/taSiGDSQeZbIxwlHs6YQVyGvUhE57+cj7McNBVAIFEB4WJdQxBFtGIQdQVPNcA6gRiBU1VwKvrJ4FgWQ64e/4ch5sXoHaHQ7/FN37pm/j044/w+tVnE+2wqF5MCvhTLWbzeZTDB+Qa2cxe0u/E9JKtCfUQoq6PvxAl1zMtfkHAx0y/m62z+tu8HoelZeusrhl+R93bgu0Vqq6cAZP1NnscJXkaasn5lHbvjt9mx9dhofrBbKiLM5/dOOpno93/LLYpnD2YgYzV0Kt2aXSl6vcwTuc/8s/6QI5C/aUal2kjTxSVtgqALNrdP1g+C2bwR7xzKeO1XwGO/RmHmLlhcrpkYkO1k102nT7/qabl9UcJuzGqeyL/V9IurvXNTVZuI+w859872KyvvwOjuDNZLwuljLl4h90x8XeW6Tq3QNlO9NOerbJTu5iRgN0my/5W3lN9ed+3vXy7fSm7Z57ofL0D4XIqlWB7d5qirm9Le67L1PZy/iUMror9k9Md7/pD6d6L/fTuRGsVTIoGZRqB/Ffst4C4lzGbpqPV2UARyTGajc7Z+hRRcIsM2JLX2/yeoEbL8fmiT2wrB19F1I4drOlRg48pcEHTpDOdP0X5hE4s80EsRZ36RYAt0tlS9gG51uT6kPPF64v6fT7ZD85rTcUEPNxveHw44733bnE4UvRn3RgyBOPhjNtnHbfvLYClkoo+i0BY7RbfT8YaxwJIBbIDp8cTDssBhyIb+7np4x/zTgrbytyLj7lcPjkv69dlacplo6xPCvz0NYLi5RLQOfsnKkf+KAVvEevGXh/X6U87+X1iuuWqJ2KyUTr7RF/rrGIhCK343bu/ge98+jfw8Yc/wJvPP8RnH28guxV0WA5Yz2es6xk8VmhU0m59cdvQPpvfo7UWvoTkH4PsPd8HQgTsNrLkxbhJme58bMxsl5q48LoVOiSedUZz+NIKA8oYw8fU6PQ6xhi5RzNH69g21QWdsNhljNa1fd27JDjqUqpcDub11n2/+p1f8moK6JpmtEz6jkyoct9R2iwTQiTrEWHALnVUfokweCTP92tLTC1bSPuyYDneYDncQYRwe/MM27qCx1vdTML2bVWJ2d9Z7R6gNPvuMb2ZQEvZOa8nvYBruZZruZZruZZr+Zeq/ML4Df9qljPd4z/8tf8N/sEv/dvY2sOXTc61XMtfWvnCIKU8KMnDkbr59BRZ7rkgAtAcNJQOpQDH1C1POYiWspFq5vnQgyk7kBe9maKHy4CH+laHsSBdgr75c1BLQdpIHs5FSpriFA4HhoNg/KfYo1KAW+D54ZF0V6dJvG9tN9sQ62G7xObUozBFSa9C8DoPYCida5Lt7Pftk+OWatQAzAcuKCAY5O2cVghyp1LNCR+ZNpz+6kDzKBlUCXR66tgD3pLA09m0dPDBwtAzAmzkr7c21+kHopnSTkpfM+S8H+A4r/x2XOz74QfYyO/jEVEgCyWwJtK2GaN8XPxvjYySEY2I3IFRwG5AHMq7IzPH3cSBPaLJzpEgHjFE0EGRnqx7O1Ob2o8uflia4z9s8DoRpJnTJuac89DpUVBHa2RRjGBIAwN+wKCKHPcdi6M2+6YRjqwtG+dwgAthM17UARuDcejNHGRej4e7tmcgBSyoh9+a6s7HzeZ2gzmhNWVcb+5ye8pZU2YQ6bj7UOhFWzIUo8mcjS+T8Xqkc0rTX8H40SaHsMqxgoWUsfZbyzRxw9KEOYiOiTSSlHhKOAmwX4/Q6hbNpoRABxpINOUWxEFyEnObyeVSiRM7mWOP+oXUcdsjgwThbBcGtk3D0ZMYkKaAqSASoE+/7e5h04EEj2S6NntXlJ7W9TeshMc3JzAYN3dNQWENBqQySIZYpLAYP30mDsNcv/hcIQODiECkYV0Jj2834HzCt755g5fvdUAE20Z483rD2AQPH73Fe19/hpffvsFyADAI3E22N6CJADxUf0hToIWN+1hLGHt0bCcGOuGw3GiKNSaNBhSKqMXBiOu9Ko9+63cCHmVzBnjytW+3Bvk8ErHoPA4i81RYvi76mjw7WVvT6HBoJkd289387KlYbT6yp9YiKBjIncoGwCJbGVQ+bN13AJS3Twk48OhZEHcIp15As77buzw0Ite6begN+PEf/RH+yd/7j/HTP/+nGI+f4fOfMMAbWm849AXr+QTZHgHewBtAfUNrAt7O6mC2CGabg9BIwbGdgEYdLG7b6KThoQcDwkMj20XkHAmAXOsalWnbBOfziqV3HfNNbSOGgn6X5aBstXnDkreuwcbDbcOyLAqSYo0aJMyWEiKBPWzRmUD63jYYy9JwsBSF6zr05n6Dpic5EPrScDg0TZGysqVeKxGNoN8BQO8NfWkgDf0HjTq1KajSJLgtCnhvrWFjVVBECiR1PdhIgVt9aWABtjFiDsRMkAR2AgiZHdum0R7h4DuVyzE2o1NtS6ZcDdx+Y0MWszAYwN2L93A4vsDSb/H67QNevXqFbVsBAx6qMmcDLmuaQbd3anQpp1nXZF8HETZI2JVux+5sAV8PnwJnfJXKpU8kAbnJ7bLPAIqyzvW4/u1mdrEKrbYKWDR++3viQOJoUt90PkfltqhL6iff6zid3mK1u+MR5Dg2W1O9jlCJe94U0MPeHnnq3ZTg+ZlgFS4f8K496aQq4ID5+8tH3X4DXUZ28TrK2SZiqGOM/HeZ6ULyzduW6X0o+HNP2o4Iuviw/7zbH9FsZ9PuPR+S2CNM8kOFaQl+mtjmth8k7MT6/VNcTFl8GnyV7ddny9eFj5VuKe9WOgllyknygMoD3l2vzueM7mHgKm/ij9sf9Vmfu67nAPiNoEkWIlJMoXHa55a/dyzRKnmmfy9X2k+Z+wCHk5bnvR+SbQaNJdVZQ4lWs2syaCgfffXz9z1y8rSF9nGTuf9zoamh2OcVAoLnVmcErhQJnTn1q+hRT3de26ZSoZTwVb5uuQyNMctS1ZEucESADGA9M27uerLdAPW1X2GPWj/qKupj6H3h+iPqgyjhooBtU9D28baHrqHyqOpeygGY1gT9booAPvGSMAawnhX4/sH7NzjedR1vBk4nBTWs92ccDgtuXi4AMRo3u4yndfCbTyHbGY2apjG3/bymYTYASejYhqV3HA+3BvB2sG2olKS/6Gnn4V54q3zO45/1xP6wjEOsn/ZlBZTWddLHy2lpsf5m2w69ye1Eyo7TTi5PRlbdAjpOXAqxNSVfiGSVNyNQJGudbIuhoPoPtx/iz977T/HD8V/gw5/8MT7/7EfA9mA1KFhnO1NMokZ+mWHTfaptbvSyWdNLKUXWW5v9KQQDMDFjq1FEjWqBz+uM3AooWAgC8ys5D3X96a1HBN0amUfrKXsLYk1dXvaFwm53J7CoAnpSRnRTmqnNvHUdAPXNERgj6nEZ0ZI+Q48K5ZBjBV2pl9Uvt+hFOudN9lXKqHu0aq19BvtEBKIyn+vc8QtmdU1z/3DV/bPH2OVfn1i3FW05oPcFrR1wOp3weH+PbayIiwmxWCHmfQCXqICqC7+ndaLOc+S4l58m+qpuv5ZruZZruZZruZZ/OcrpJ38EPt1/2WRcy64wBn589x38nW/9m/jO1/5dCP0iRMm/lmv5F1e+MEhJ7BqXRsLwjfUSXsPcbHGmzgLC2aWbP09pwbaB0/QkAcCxSjyKTt4cpHBWArotzRv5CkwKEEhsORlChCEZtYelg9As7vOACCUQqjgTffPnDgwy554fykZfjU7xDTxBo/203GTrpjJvh0UkJt9sk1Lt6XfcCRURdZpHUbGGrc2SrSyccAQ/ULMINFK3lXmoF9/IpSPSN/AEA6pUBzrmDaw/T6QH6OSRXSCWBsc9Woj+K63pmJra9Q29qHPG+RMh07Hb6Ie3MCkK5xYQN7X8RU+PVG+kBi0+vsj3Qcjw4NFXdYbUTb5D3hrCx6pOXIJFM3FnUjqUyDog8HRPgPsYxMdZsr9sRLbh1dmBbSdLvWWvkIKN4rvIZeAeFXPgiDuSADQKZzgNaApCd8KxRMQRjfYjKu/FOULks670zfrQEL6XcCKy029MIXJAyewuslBPejAc8qEVRsh/c9hExCGXGeihdYTvseo8u5ynrhIWdAaWJliaOaBqBCz4IVp1KqVA9uL91LYJXRTAJWQH6ltGzxKy9GuVbkn95Zl63FHGFsWhkfbFI085gNAuzIZ8O0CJCDgeeshF6xbwhZqlLnMmO29EI80QaRubAE3ARBjgrNdBHi6npk4hgrdvV9wcbkzPMcZGEGlwzCEPTjFsKvfDxsvDI5FoRC91Muqgi1BExuqkYC8hAyKBcR4DKwMvXj5D70YbxNJVcTguyeSu4BH0swgaiaUFtYOsZjfshfAwgFefbDi/PuHXfuUFbr92BC0ErILPPz3jzaPg8dU9jg1471t3aEdGYwahKVgFygNQDK7qJvj898haNs4NuHn2DC9evMThcATRAQqPSDAbyOR5EzSLDOXzstlCoIcyBuRzJ7TPR1+vbM4QqAAKi752pzUVR6Y5oXsvKaoIISPCeUMbyIMB8ihyEH3f1x5A0ySK6h5fLzzsv8q7gJuOR0ZDC81mdcP+s7lk81dGRqJqQ9tv3YArm+DH3/8BfvLjP8OL927ww9/5x/joT38H6+lTHPsGGSes28DpNPBo+v/mcMAYwOl0Vs414HBYTL12rOcNw4RLQZAdbdFbwToOOmGbRbtj44fPCQdlq2g2i1xka+MYOI8R74qNR+uEw2EJu6j3jsEDwsDD/Um5IQo6ap1wuDmAR7O5sUAgGIOxrWtE9dH2xdJrEngQhBjbuim4CoLj4QBCA2+A8ACDsG3DIkT59WHTpSYUvTeltfvKqnN+sCggkS0FpliUgOEHBQbqgdha7jqcwZsdeLHYTXOLIFdScHVy+K5AMBCRidiicjYH5HHKrPjZJds6RnnYg6Zj/foVXrz8Or75zV/B29cP+OyTv8D9288gPBBK2hbzjOjEfim6HDIkGKdGgVH16MaBg+Jdlzh3/Va62zQU8++rWHRf4AZO2g1p8rv94xoq11yX+fIXXCkS3A5IS5XqY2R2ze7gcfor/yjP6ZxV28wX8LzgkFrUaqE8gI2q7H8CKODDJPuHyme5HMb6iAdNqXb0VJ1/Xztb6qhggcqCuhDMQIXymNTIF0/TV0uly+3G/F5iD+DmQK2wRi26oLV8lomOS0rquhQ25b4ewm40kYecpR5/r4piXVun1o22iVduY3t7ZT3zx8r0LubaRBkiDRXNQ/c0TxDrRt3L7uVgktXKmvJ3lSn2tpDyPQEZKP/2/UC8Xjo60V+ff6LEzPf2ypeTCJvsSPly/2yAg4Dciz/VYFE3NP8ZgA0auv9rcHtGYs8ZQCCU8S1gjdjXl7FssP3RTjX5NjTIi99zIj01Z6ps5tdlLvoDgpR58osY+biPjfO2mIII27o8AyBTgFnnXQaZsk4XqHVlC5freyO1z3sv9qWk1r8Qfo7lxS6/IBhW9WTco4KPo14COd4scBO0BPcu/DS9X2Ul9KVfBEHs6TyK7GDg8YGxPWy4u1twfNbjvfPjwHoCzucVnQi3zw+gpvvDUBtOK68WqVHCb1T1U/xtl04OxxuLTKP/ub4JnSS7+quQFP48tVwR5XhXXrpOCLp2vPJ1031kdfgi67kAPkMm/V37THmprs5zccY2uuhn9L9OjsITl28qz4op4Yi84zJovtG1vcV36N/Hdz79/2K9fwCf7nH/6kPI+qhyKwPMW0QZbaT2IPUGXk3IGqH5xT3fv9nnWCiA4t9y74vtIeziAVHTS2RjqE+yCTJybQLk1QbeLR7FxzPZlBAorikZWZ+Jy6zNbG/iiILkQxcAcYb6N8wGFwHaYtcABswXqPXV9NZOZPVd+ji5Hzl4ZQaSAObP9SirRdDcAnF7QDRyk9v79RlqLaKZaVQr9en4nkNB6r7n9tTc5qNGzg2nOfWm0cCEIQM8BvpCAA+sp3ts6yOER+hHtwXqel3X42kRtS9TzvPyDuYa51LqL1r2Wq7lWq7lWq7lWv4lKXw+4Z0hmK/lL70IBG+Wn+Jv/uq/jn/6wf8Lp/YKV/PrWv4qli+e7m0CI1mqKz1eQ94e9sMG95bpxpZZItUG+W6RSN/3KAqwbVAAH3Lj1EgPqdG6tY7iYJY4WMpbRs02VA1CegNfD/56OJHRNOKGeg3V28CWskidQrAITe5tLBttsf5b+80BEoSINJSghjzA0M6kw2u+rWtOGv9O1EM4hr4ZqW584xg8siK64dcD5OKkasWxYhvwOPy6cLrFX+FMqI4A3wm7o6oMcUQ5yi+N5uIAqHVdRAAofanp5Nxp2HfAIO+/05qtIsYodvKFLAdq1cN3dtml3Ib76w4gaNa+HubPDq5RD+/NQTFYHYctxhXorUXUIO+n96+Ce2r//IYVAyCLMlTTLzgIozeChXjSOkgsMhLg4AYuLsYNEg4cP2HQaEkWc8zbMf4O5A2+epsPkAxBb/HFov9NgQDNdQdl2rboqGSkirzlZ455UyPMHDQRFHhSo2ipIyujtalOgR78u5PKTkIUIKRaS8z5yQxQV+AFd43m0opAhkPadYdLCRW5sgEj1rRYIUNDw9IzAE8JFXIHynSZpA4qy+Y0Ofx9HDyNTNzmQzoLda5KpsKCxDgxafosB545OE1EQWSuxePGn+snthRwpAA18jR7RBgE1ZNDB+t8Yjw8brj52g3WTU/f1xVYlqaABVjkoIgeojIyXW21HiuYTNtjSwmmmeNMn7jOZoFsDQ+vH/H89mjh/6nMGwVEAKHioTdOM41c1wluUbT02v9gi3InwNgIn3/yiLefDByPwMsPbtA7sA7B64cVb18N3H/8COkbvvlf+wYON0DrPeZW53Ibni1FlwyIbBoRUAAeChAJddUURKGAwxF9cSdnYZUCqwZy3kMs7WH+XW+P9iLX4nOnnFrFOk4KpJjXCgXW1JSn1KnoYv0+6rf5lXX6mmrrpM1TCEC9pUzA0n8h6yEHh0zRZSQie2kENJ8HCAXta2cTYBDQSNOr8RngrWF98xZ/+of/FN/7vX+E8+MrbK8+wnr/MRhnnDDA26qTGDquvXe0w6IgpJ7rvIhg2waADY26plrkARw61nXVVJyi8t8tCtwmaqsshwUQwrJ0QBjMA8uyYAzG4+PZIv7MG0j21AmUqeBOp3Po59aaaSpPiKdrAhEweADnMwBg2wbI6iAinS8BoBFQa1Hntg4dT0OI9m5Aw20oQIklAE5uj7me9rSlrpfWdQVtZmc0MgAjwW9fw/QhW5QnXQaV15Ea0tNwARibHcoUWWu9K+hRgJu7Oxz7EQ8Pj+CxQTAU0EQUcq4RwNxesMMcMVDXcgTAFnlLbUpft4/LAYSBTz7+Md58/gaPb16BxyMgKzRBja1rZgPzsLGLdF4cesuVQEYGM9TesPR5rsxQbRin3RO/InTLV7V4ktm6xooZVqrnyjpbVjn9K3/xbyT0nT8x24Nu+4VqEBSjdn4OSD3rPPboE2oAy/xenDx501+Q8ZN9EURmXWFgPNEfzHwIG72QUYEAUr7/WbRcfC3vfuwiwgTc+gOmkBTTO7t6q6FTOlUj7fj39d392D7xcZYTH/OdTSfFJobZUPshzH3f023WLkzvut3otNgBau1LfXN3Bjv3UXJMq2j44b7WX3iEyxK8MMY4f2jXF5oezn+l8sDNsCfaotoPp8nFwT47cKOmetubghKdzCnnUTQBxP4p3Aky07LXE3ERSXzdpotuer21DqcvIrBZOz7Wsyjb/trVmwHeW6lrGvt3zbv6B+WY+Y8xvwv9vl/Sy06FAcUe8/GmoLe0sWeat0UA2PaPceFLzL6iqR57dO7HhYBgt4eeZcbH8nweuLk56J5xFPAY+4W23bH5Xi+UpoMO5wXXMfQxU/tyfRhYekvZ9I4hI0gFQ2Xuh/ORfK0BlQsP+sr5ceB0v6K3jn5sESn6vA1sAzi/3QAZeP6NZ2gLbN+nDe0DU6stYTc8rHN6cUXicpeyUwHq/n/Z+4IEImACZbiekBSj0Bkoes+fKXplX0IendeuZOq4l/Gf5m7b1RWDSdO70zo6r1TZbpkL0+daJSVXCHPfvWiCeJWHwQODGX9Bf4g/fP438MOPvoNPP/8hzqe3wFgx1geIbNiG+yHNj2d+SuoGVNo2aGpxbW04cKdE+HJBHswKLCL3xRKYR/pP3JFAiD2wRihnbJYiUMeOgnHev94dXMMYY9vxlexTTja94DCCl35RVf2wrk/dhqfwv+leIjkbMm1RaCX2fFLer4LguoziYkMZ7qIu54X1wqYR93JhEivfY4ZsmU0uAJblgNvbO5xPZ6yr2vmuS8QrMpmbfFXWQO/dsJcKiGLmwv+O1ggPb19jbAPreQXzBtXAFpmVcp0K0FUoqn0HK08IeaEvo9aGfeRlR3eC1K7lWq7lWq7lWq7lWq7lX3TZ6IQ/fPkf4//za/9rfHzzvavZdS1/pcsXBikRNugt7jwM8QNOigNF2+V4HnDSjVCzPDP+jB4K+Y0uq982RZkT228tAwQ20IB6/DJVmW/Q60Y0yQhnHHs6LDaQhN6K55EAEu/BtFEGGXAJdjhqh6fmCOC6+TPvnP8Lc07VnZ8YIMH9AgJ3EiiNNbU72RXGcCGxRwaYulj6bi4xRqbkasgQyruDFY1QJAGqCseibX7rljQcc6XRdC5r9IN6qOzkkDm9/DDVI5SkR684AIxE549Y3YCCPvw5KTzH/l2439CdmUYHRG+0Sr3/hbwQj6xr73wDUtZS5ggo7fiBByQdMpriMA/NKQ46/J0qb7OTKJ4DRVSuAAJFf+1wtSVIysF86RCnvMUpCgBoTld3JrvTiYp46IcxdN7p1MsoX9Wp3MxJzf6cqOuDRUAMLN2iNIVrVNDYb3H6gVBhvHAZ+/0NVUrqzFnngImI/EF+eGtOIoMuDHdsSwKl2AERRDizAh02BhaLMBa6wT4rLtFBEMlX81UjwE8u186sSP+gjj8y/TBsjIUAafafHV6LKH29WiiSeo6MljxsNbk15/tggYKWWqRLIwaIFNCFiV7ncTq9lD8I+QtAk40vkV5TbgQMIrx+s6EtC5iAdSPIlrS6no0DOovGpIQ6eI4i4IgAdqBvelEIYzhQycasAbI13L8a6FhwOCBuUDLpmoSWfQkJNH6FDhaxVAktIuepDAvG1vD27Yb17UAjxu37N+BFHYL3D2cMbthYsPSGb/3613DzjECN4/AudJ39t60M3jaAVwivoQOYFWQRofHtQIEa0HqCRGD6xJUYuU4lnx/2TKwpCP2kz5JPCzhkhFxxmkxWx7PLdGsGKTCQpesEj9zlt+EjMkN3Pto6JhnBT0SbqhH9/JNIgsbI1y2T3XorP6KNCSL1Zm9QgLGxezOek3COMykAGRvw0Z9/hsfXH+OnP/od/NHv/RZeffQTyPYWbZxwOGwY2wpeBxoD3AT90NGoYzDj7tkztMdHjPUEHivWE2vUIvE+s956tQVLWGVCVrbISgvGWLFtCmhqrWM5dIxtTfk7n0HUARbwGBHpz8HeNjia6qw3bNuGMfyQQgffgWbCCoxalgNAqgvHSHkDOOpWHucq2c3mCGANDLBhg7Ztww4VXH1zHlSQQbSF49CudYsMZelIBskUgdEFotpZLc3E1HeS0Sla7yDSNKAOONL1l0DQA6CXLz/AzfEW5/VDbGMr9oyt0sIg0TCCeuO96W10j4TVO1oTBZ2dzjp2IJAdBr367BMIPsVYN6zrCh6rCi8xHDzqgCiPcDXz2oU8gai6unqKReNHy8Mb1x8OrtLDqSUOh/xW+1eyBHKmrF3+gRLQ5nZVWfThQAH9xic6kBFLrQkq9mAapLlXCHsNpTWKWoNUeiKqCgQlYXPsM1SHJt2p5sofuSS92/8Q8yGvOcTaX9+Teb5OnSltEeZ/k6e1o4j1N2z4augUvtbm6tbCORLt7trwvRJdEBSrQDQ1vUpPfPR2LUTJfJg6x7Ga7fx5zOdS5uOumWwPsUd5N03zFy6XIZMTf7Im561TsOffRJR1zFPU7n+my67opZUqs6UunycDdrnC7YI6FYvsylMMEEyResrjCaIp79T21S6Y67VlDhHJysDNHm1Oq6GUW2CK/pSXVYq9DJOBkPWcm+JEAhPz97JYLwJ5H/wQ3u0VtiqaKFTV7jVNY5/6apbE+OuJOedZgr1/LulULkBNA1DHBjMNlf5Qkf67hOaM/VWAr2w/UKn2OqvcBt1F9YUPY/cvkURkkm21da5p5CEHqWt22BwNH7r4l3c0vaPfIVcwABG0ve0sADW05bKNSeafUOfxrNjskhwfT7N9PjOEgePSsNx29IPa1uvQyN6QgeOzjpvjAYcbk/MyoIKkQ4YoYFoE4KFzg3LlhMTqmH4Hi9aZ/ZKdiNQZqwwiFB6jPGxL3SRLksvfvioXCNkpiUalff/OeVy+D5unrEuTDoq/xZtKucYTg1Wfqf1SEcivJGXFgaCCvOg0aMVv09/Eb5/+Izy++gifffxjPN6/BmQDyYbeFVgyBlvEHa2/tWbpzSmAKbxZFGZPEyzAiGhAgiZ5EYyMl97niGIErc8vFPhcbq3cgKqD7nwTB6t4qjT/e1pJbU+odrHToOmi3faXuEjg/hKnkaowFCUXQCa/gFCUQ/AMrsPdxlA/W4DPjEegUp94/YjvEnyjtdaLg4DWqVGVC0AqHvd3W8ii8yS6FPrIfN2+ZkG/K6zMjADGdxe88+kEOp9tausezifEvDxJRGRNgfW/Lwc5e2O6ouh7ogSChV3i+0IpY3It13It13It13It13It/0KKQHBqr/G3fuV/i9/6xr+F0c5fNknXci1fevniICXyjVaDxGlzOmISyAE9mATCg6BhcFt4BKiZ68Q33nbrX3gUT5vdMIN7fXQDpc7T3JjG4RblLRfYoY7ezEY4Rog8/UhuSgXQNFaWnys3s7m5Y64bW4Tjh9x7k101ZlkrjHhPYyjQtG+0boYTSMlyj4jvFv13A5cUZ1k+4htgRPhpp8mHogXSqEQeIotyFRvvOcqSO/Wk0JcOB++qtV6yj/jPfvPRN/wALAS0PrOPltFbswgR2hF1qmW9zrvZwT/TVQ8P6s3cThm1KOgOEBcFvZ567fJwYHZ0uINE+6RE+IFY8+geXhd0juw3+QFIQc4Dd7bE7Tns+ibuIEN01g9cRQBuBCKOQ8tw5DfYvDE+sgFkAJBYJBJxZ2D2WR2sMAAexQ1Wd6AR0skLQIFMNv+ckRmtwr/SdyMSRng+KYFDxgu2MDQRbd/1gKUKijkOi+blc0ZgkXgk+iOs451TkABoxIlNgG0IWgc2BggckUIictXQqBpkqcE8JLlHOAq14SkJ3PHnB8gAhDTdnZh8DPcxm8Io0z7qBSwSUlcdzCIhcyG7Q/nGPk4CAE2j7Hh0FQnvk80Zf24v7KZb/eovPMKJ/ykBFKWmBwrnE/DygwM2HiDu4JVxOCggglnHS8EOOv4OUiJLf9eaj42DyCQc4KFHTOaHDLAQHh+BMwPPXy7YGuftV4pe5MGFZHQeT7fn4C0AkM2jKKisnZnw5q2Az4yXzxc8++YR/a6hieDzNwpQWt+sePmMQO8f8PxrHW1xec5IXlX27t884OHtI2TYTVaXC0v9FrzWsFsREVCEFCTIMLDlpR7WAwTTp+JAz5QPl8UY25gznj7K/m4IGQomehswoAkhQHJ+sLVYH10P+kmUA5p8rfEKFUyZa3gAPk3unzoAaqbDm81v9S37lXgH3jlfBA6DFgEGGw/XhofPXuF73/3P8JMf/jY+//QH+PzjH2OcHtCwgWkDLQoSqreDe1vQSHMmro8P2M4reCiYKXS7CKh1kzGF3lkV6EToS4cIY7UoRsKCTTb0rnzfhqaBYAOHHg4FoCaI1AitGYCGAB4D57HmAY47om1O6TolWJam6ebs5JnHBta8DRDSyEbLsqA3TxHhY+lRfvxWs4NiLGXZkEkOGzTVIwRYeoffbxYxgCZp+kg/zND0c3lzW4xetRug0aUwA27GOizdnN76Pt4spp8G3NmvNltHXxaMIXj1+Sv09gZjOwO8BWhYIyEqYKuxA+MbiHrwfth87UtD7x3L4VCUPWHbNqzrWfu+sYG2GNQ1MlW1HJmNj6bjXZB1vrp+DgsKnpZU56YfnpQaw67weWU38fnS3vgqlQQN0fRtFj8wqat1RuaMNyb95DrKdZ6H63CbD2FPhx3pC260knaN7xvCYJ1CxCAM5FCV1lYxS3fF9Puup/ELXb4RplGxBS+L2V5Fr1f96foVlPY27djuNqSOCBUCBXuCo53Cjjkq7CWd0/NRTwUWJWA7RkMk2q02P9El4MX3DPs2Y/0lWx+noZPLgbAu7+mXeGe2L54ay+xfHY93y60/XCP4ZL/qWj3TLkTTO5XWoDnsLOReoVw2mJ91ZhsobuQUdVvKCfC/nSdBf6F1P+RkDe1xNHUfJ3uG2t9xED2FbyoPWoX1daVL5aJeWgm+xruFEXQJ+Mo+JwApyJPLNgl56YdgNi8yoqbzTv0D5W+fg4SYB2bKGG9TjwUeEg5gzG5MY1q70LM+KW1WGavsBDlg1p+h6F+MexmGSZ4KEfX7Wi7bzUip6yo4HDt0HaCSfmmO1OQdvhiywj/vs38vXMD+MN+ACHgDto1xc9Nh9+oClFL1apjRMl/gKuZ18Nj1/WDC6SzgQViI8ez9I2CpqU8nxmDCtg4srYGPA4e7nlFxY+762qTEMGt0SzbAuTMkpqFI2Dnw3YHTZTcAq358SnDqMlBYe9HHslLG2M4V1M8TVCX5ipQtKt8pC1JYpvmyI6/S5ibGFIWsLisxh5JmW0khQjNg0t5xHcx2keiNfIh/ePPv4I8/+S/x0V/8EOfTa2znB4ztZBdAxPxMA0M4983Qy5YNhLFuGKva4xzgJNfRDrh38H21xe0ynI19sz2WQCLSKheQEpDA/9hT7NYdEYGM0Cg2xsnoiDRqPp2IbMsS+2wY2CUuZYKKrnlawbsPiCe7dQYax0VW+5m9PZEnnq6l0G97jdyzKTlsTgEi0tTc1CAYuZ8UAA3oTZXo2Fa8fbPpDxYdy4gEYs8j0TwF7xtEhqXgA4AOIk8BndR6NCnYnsvtTE1LTSajPiZOf+1uzqaYG+4cjkUFqBeFg/wyLiIatSv1yLVcy7Vcy7Vcy7Vcy7X8iygCwcc3f4T/x1/7X+DPnv0DywB1LddyLV883Zs0ROoJ6IaQZI4KA+Smvm6GdWPrm2v7vWye2G+L21+6N2aNjGBpbtTBnq7NOXUDTRezdQPKBoYyUBOgm2c7EGLWVEDCbL8hNtO+K/VbQh6rKZxz+qfSjTyEopabPHfAOZ1iPKlOPHd+Ff+JMy/aS5dUOgiABE5Njr6IHARIYMIsPHrLqm04bN+d7qIpYpClW6pOXWND0t/Ku8jSSgQTZ6dAo2S4s6I6mZwPHj0oHIuESD0VY16838FD2Tm1Srtk48oWqSoiUVA6aNxBEuMQjiyZxswZQNZYiAqQabvixtQc7cC/y6g/EiAF7XPe4d87jZwB6Vwx+SB3IpkjdADEeujLQ8GAjUj7DcSJvTrf2CJipBMpDiSqTIpCDGHzQEOM6+96EE8mBwF5AkgPmMECC04xydEQRlu0bfGBdkCHaKoaiMq4GJ/Zros1NLRe9IhFapkdbxblxWgZ4uAKP/D36F7FSascBW8CEGuEoCHoXZ1OGUVLcFisf+Z8itvXRJaaLuuNSFTm7FPAk/G0YDn9xp3fIAVB032h1AMD7Lin1WWVPTINGdDH+uZzhoFOBgCsETxMkYnVF4eGRBHdxIGRFbyYTi/t78P9hn7wcSFzcqpMbwMANeWr9Y2aAUbK/BsWySfm2hTq3WSEFAzXpWE9Cx5fP+L5yxssCwPoU7QyAAATHOwQzkaycXAAmA6vplgjBUidN8EnH684rQ3P+sD7XzuiHwnjzLh/tYLHgvuHR02RJYJnLzv6kvkrCKSpN6FASDFs7N3tLY7HGzyeF7S24HBU2hoUbCJDU2/xYHSyRJFCINIoPqhj4D5Glx9yfYXUEUThVB/DAC42uT3tYRQ/0N85evOQxuXf1jlvOFjoSsPmhuluCmdotuVz3gGRfvjkvPDFSddp6xtzzFFfv1Tvt5AaFgkwJbHEAeBglaft4RF/+kd/iD/5w+/ij37nv8AnP/1T8PqA7XwP3k4ABvqxoS8NfguWQSAsEOkAGsZ2xuvPPzc+swGPpay9YpF3DjgcDui9Y9s2nM9nbOuAR/xQQNCCdV2xjjOYu6UD1IhMGiFJb8d7Ha6zhqiOUZ1ZwJ+wdGIYNg5db2sLYYyBbWzww1pP2eYLKbU2rU+9E8ZI4EGuSbbm8NCoapw3uJuNaaSFMae+QOfYtlofpuMsqH2CchvZAE2tNxyODkDSqE0QYDk0jK409aWr3LQGlo71PCLq5PF4xLPbZ3i4f8D58R4bKSEkAxn20u1IPyBhSANa81SH5aCH3GJym9fWPVMuY2yh+4gaeusmRwl2Uxt66IFBIILtVj4BQj3XY2EDfOnapykt2jRvq+3ELIgcr9jN769YSbvVxhwA4ODKUCVpF+1AKA5ecp0eQH34hQR4LUV2yyYBVQKzTQIU6BxEznzUXyySbOlL2GOlUqoNYP5+d6E+7dXSkHZhHut4Z55CugeqYVZr24U/uy+zsukdCXXtYu6qwm3vXU2qQ5DzaXqm6vkdHy4rKh/Jwd92AO7dk+khW8flotsX56FBu8xthR3tP7l8yCSLqH0Iudux7onxrxEKvI49PxIgVNrDXFfsm+rztb9IGa48iLlwETVl90xZl30cXV37tIk+FRpbHYewsaqgFLnwfhSiJ7GqU29XRUSThY0RAR5JJICJT9Tr4CKp75NfWDEwwp5nu7/nfVmuGWK/+16ytiGlLgEskimmogD+HDelaxbVmFBBZGEM5c/xk/0dS5TM41inPlCimu7rrrzf+y4KaZMsT4pUvwhPRiU71q0d3SBL3QoD5CLmpO4TyiRA1lX9Ex7BdL/6ZWapqjjtLyZs5w3Hg0ZMTKhr9nnqn9dZ0GhVB9THmYGHh4H1JFgWwvFZR1t0L3d6HBqRdRvoixrON4eD2cJmFwTPUuEIFKB9c3vEshywLEccjwe9vLNpy5EiuAiizwe/EDCxg4BMQStTf6b1AEnDXpdMrxS5iHuN/nsVoKpTSnP+X8YOwvxgacfrnPS1/XvpT5lp8sdTt5kuEew6Jvb/ujK8xk/w98b/BT/483+IV5/+FA9vPofIBvAA8wAL6zhSU8D8QFlRFEC/rivGuiZzGiUKz/fyMN9Aa+G/GpsCXUIHN7+AkKmWiXQv7rpLU825H7dG/ym+zbKny15LzEf35Ya9SeazkzpiydjcP/h8tmhP5Dy2f1lwsYKLgvlTZxulNsBEmN+pyn9X4mJtOHz0s6dsbt2kzJQhkV6y2MB6qQjqlzreHPWSBOt+fVoknVsu5963IZFqu/o0PCLqBLs0nemrWVyqpPSz7yOkVrtgosXWYXJfAgTCw3gmCV5/gl/aTunTO/h6LddyLddyLddyLddyLT9/YQx8ePt7+Hf++v8cP7n97oXv51qu5a9y+cIgJd0rZdQShm7a1EnIZRNlp5i2WSLbVItsIOrmKNHniOyWvHhaDIqNHRGB7Ea++KmkUmIOOIoNInk4IrEs27ZJjChL4n/ohrZuEtVZk1sw5rLh880cOTzKQQDuZEtnRiNlikTOG+gb8Uxu1vNXQAaDWrtwlIIM8CKXhx8i2faFwzucpRahhOoNOpnen6uluNFP5fefXWokHExOTVBxK5VoTfWMsoJ4HDhUncFOH7NHo9F+eITkEkRn6n8vV46rL8wjcXh7dfwUQJKH+s1vMUoR53gvnTzT7TbMN8OlDEyLeZCRd4If3lfzoYinFWvzLSqXV/csRqAAv/VpsjA2CzG96XQivZAKIsbSScFi6BiSt9E0VZyBXYzHPmajyoP1wSMZ+UHSYAXwkOZ6AxM08o/JiAN3hICGpum74pxY0MWSp1ArKeokour03vTmqLCFPDfHF/IwxW/tOaCp3p7v0N87EQazgjbQ4lBBXUUapYQk58vwnA3s898dP4KOBN61RoooMh2QkQVUCIUz0gkB6E3BWjCg4SKWosfmkbA6ozJNEAAhdNNWNcWHj7u4XKC2r+/5RbsAasUzJnutyJPVQuT8dGCbjSapw5CZMc6Ex8eB9z44RKQlGRtuDouOl0WAcjAJEaEJYS253Xq3W+7iztLiBLVDeXdWOpDx/n7DsxcLbm6h0UlIQXQ+t0RSP0jLCGqDVd9qNCqyFGEGkgBhMPDpp494/HRgG4IXv/kc/dgwWPD68xX3j4LT4z3ee++gYJZOeP68Q4EHBtICGy0anU+a3qY/3DTcPrtFo5d48f77eP78BssCNAfzmJ4SHhgWpQeL4T1cX1ZganFOxt9FGVYgUqzPRSF6JKMJy+DyYLKSTnAYQFFCr7ZIryYYrsssylYHIl2rH4J5YC7/vq5bTovHOiSnn/wgyA8a9SXlCcXaUPuph4a2ngEQNPB5xZ9/7/fx3f/8P8Gf/8lv482nPwFvb8G8gkhTMQgJxrph4Yabfou2DKA1tMMN7m7vwGPF/du34G0FMIDecXN7i+28YjuvIDs8AOmN3W1bMSw60rAIOwK2KHEUayAzA5syRFjTwbVGGukIZX0poKRIbVVO4uMWdlMgz+FA6MuCbTBWAwh18khJAyIqs5oGQrBtm8KuDWVW9USIh4ilDWUgbgCbFDCrfWTzeBtDo7dBbUWyqEhRbHx8rY2b0SYBYwMexinS5rqOI2pYlqOBIlnT3LUFh+MRhBU8CBuLpdMQixjFdqgjIAMbhZKwmdcsehkPMUAX4ka668IJfO11N7Ib1hx6pllqRAaDPfUfqi0wFBTFCcJv/YjleIulHcHbwLY+gvkc/IzDJKqHPWK845gjRQV8pcs+kk3YY9NhFaUBVhRd2A4AAlRSDq9r3RRPeMOzrZ0jgzxgIhhYKcfb51q1NfMwOxbOqZ36Ud/zxil0XLxK5R3/3vq5H884mCcABaAU63mpJsiYfpNdhfmhHlDvuzT1SWYbAuU97N4hZ+pTP5b6/BGJfZ6+l2DX7L8/6fZf9kPK531b1nvZfW9Lm7/35KtzFZc/P0Hf/t9L+nMsf9aUFbODa5qkIJcuRvOiPyEXk0AYHVT5d1HTZHd4/5n02e4CRUme9iUvEUXq1lonSgwHQUTMlfo/ZY0TNV7jPbfxfG/u0TGdl153wYHGO9FvuK2Q36UGomnehe3h873Y30KAp6X1TniGpGlOe/v1O0qfQ43aMz0m+a5GY5X83j4EYCqrzXlRJvPkZ5D9M2XP4HVVNSxJj0QFdCHLqO9Vqa58KBGx8msGD8L5LDgcKZ4TYfRWxqo9zdeiEuKfC3Eu7QUJBJw3Rjs09APM76JSUH0G0Y7LErkOVKlgTr57+ywaKWl92CCr4ObuBtT12dMjY10J53XFs9uOZdE2b27apJ9UbosdZnxoHaBGWA4LlsOCw6EHgD+APaTCKaK2CnWBRuXZDc9OKIK/9V/MejZHdhrESd8Ez96xhlWGVdeZ1P/KulXnw5RqjsrYVJGzcaylyrDvJ9NfJXO3XUZtMphnAT+6+Uf4Dv8/8cc//i4+/eRH2M73aLRCMDBKjmoWjcS59AW9LxAiLIcjANJ9ngGKBAMQwnI4gBZgO5cIrRBAGsbQfaH3mavyMvlgM5Kdb6o2m17INND7rINy7FIE9MJOKku1WXv3KD6kaZ5tvDwS8ARwohLtyb6ddEvY83Ux2n0I5aTPqJ70CxgUadTCtvD2yC+G7YTX/E5pK+lvTrVHL2cRCOk+bekNYj4jZsb5dLYUenmxQtc5j+Q7517z7zXCVc67vOiwnytGjU2YGoFRIBGtOJ7BPM98XIkIaB2HwxHLcgRvjG09Q+FWM8jpySiY8adfJouV71qu5Vqu5Vqu5Vqu5Vr+OYqA8Q++/m/jb/7qv463y0c/2wl0LdfyV7D8HCClBCfoub07s6lsYHzDON8aUeeDO5rrLNQNaIOEM0GBB5ReLPcG2dMMxtJ6Og+gngndY3mqONuIitOn4AexFCyeek4suo74Jk0YNVqU7/jUSTuHxS2MiX/qIUlslP05ayMPVEoTvpE2T1vuNT2ySWmqOj93zpj0YWmUnLg8BA+/7zeTM7qL7++9H41ocv5UX4ZH0AgQidHhDgd1ZFJ0yd091MqtPcDOnHTsJQhQL2g41kTsdpV2iiWjn7gzSnmQTokkyHjnjDKn7hgcTlUHPrgTstexK6wVEYCpBEWmUq87uXZORPtefR4px3uAkjuWqmMinaLmWqN8VyBYiDR8eKSSIrh3lIImZ6EdLLACcNRdmWPJAnWogTCGprvp3dJiSY5RpgpEgMXCqdEKD4pcOAOHTisw+b1067eBYprLXpV7UdeRz5Y8oDdnnTuiYrwylZeQpWRDBbqI3ZQT9OZpc4BtcInmQsrbItNkxLhoCcwJainUhkUoo0YB8GvUNJLIyElEpNGcxMF64kAlPcim4lUlFBkxRxWzYIGCmuIwwv+tN3mtGgeXscCAMlk7fB6JmPO/BaepU8wLVYcaR6b5hCaEXDiPTg+C4+GA1gcIC7aVsfQGZjZXGMHVvqcpGqaUWreoIJ5aimVK31lDkQtbRJxGOD8ObBDc3OpNR9ACwMATojKugAwFHWEDpKmu10hUynNhRmNtY2s6Rm/fbBgngqwD3/z6MxxvG8YqeP3qjNPa8Omn93j/xYIXNwtO50e8/8FzLEcCc9d5JDk3yQbBgo+hNaA3QV86bu4OWBYCwVIzMkp6N5s7vKHJomLQkPoPAgepECngzQGGPjbsYxpXmH2NJT+3sHdSf2v9Ns4ozkpBguysvX0KhaJxp1Q8wxupl0VdDcRNTdVpXoM7113Xi4bnSSAGkR2SljXGdASLRqJaFUOEThod7dVHH+NH3/99/Nkf/g4+/+zPsPQzlmVg3Ry8MkArYz2dwUtHe3bA8dktXn7wNSz9iE8//hj3b19jyIAiMRUIdHt3gxMEY9s05aKwpliE0utgknAuCyDCWMe56FEJ26T1hsNhQe8NY2zYtoHNwD86xxXMSHGA4eNng0oAUceyLMmfkEkFksJIgclaNUFYBLxtoW9b18MRB8b48wmc9L+bZdYZ0S+fB8uyRD8VFKW3vsdm6e0iK5fT6FGdKs/qf2zp+5TewRtYCL0Dh8MB0hrG6Yz7N6/xgLc2LzjWH6IFrXfwWO2muTbDXRJ4Z2tqJ4KHBpMBiAGONEIeZWpCMkCphkPSm/SmPz1KVS1i4EiyFG7SOu6eP8fXfumbWHCDTz78GNv5DAXzC4jier31wU0QO7JvHa11jI2hN+ZjYn7li9ukMZeDev1Xoz4i5B3I6Ce5D0HYEZSGKTy6gNfsa31aI1ln0mP625ETYZn4/0rY0vpbK085zfYczX2JulRMwg73nyo19fwuviu1VBUcf1A+WO2w2kXZiYXrebJnngLrTAdhViJNdK2vEBX1Bd0y9SGPhcvzJbyFA5M9uqQPK1rSeDl6mBlV/nbdFe/EGlL6vyu0r6zwcNo/eR3e99omZT3e1p5Mr6fu44Iecpurymh5Z9//3fjFeuvRyHbdqfvUSe6iL0+MszGhyqHbJqCMXOR6qvJkUoVGYwUKKV/Jm4DdbAh+TxnfJE2LOhfY+VInDAEOlL8IXrETjNxL62+t9Cn6UujvBjzRywBiaekrU+cpOs3Nsra5rRfrrJvvnH0PulwmxHSj7V9ivLM7098Qi97pv7fk5TQuZdgnfRN6a7fKlD16lc2Z0faR8kWXQYAMtKuXUohkuogU8995Vur0yNJGRtq4SJ+L85zMXhJROnhVEPnhZgk7CyaDBQOSdOwmXO579QcxmWQI1jODN416dHvXsRxV9s6nAZGG87pi6Q2HQ8cYAze3i9r6VneN/hRrhe9/rS9EQFs8Aig0iqsgQD/MAuq7eOBlfCfePMHrul7sVX1877SVH4JNO9eZy2iVr9pu1Vsue1z4j9pWXV9MJqa6y7yuaRp1rZFCq1zwwB+BINLOEwSf9T/Fd5Z/Hz/9yQ/w9tUnOD+8AbBqBC73ZVgE+DEM1tT0ss7N8YjlcMB6WvF4Puntlab70WYyH32s1DqdAeSfVZZIfq/+Mckx9iGnBhkcdjYAtU2dd6HgTKfEQqUVMYvJW8lxCET0Zud98LeMlXhudXI6fa7mJdD4O2ooXqDil2hmENQLDYDENjP8kUafXxCo+9lcuNN+dN+AsCgQlO3yma0bEMG2nifOV4C8oPDPZMojNZGvY/A9NyJ6FJFAqOVzVGhvfoHL+mVtUXSGjBfeJd1vCFSejjdHHJYjzrJiWy/Hxuuo8wQCCOnFCxFoGu2Uhmu5lmu5lmu5lmu5lmv55yh/8vy38B/8+v8Ka7//skm5lmv5SpYvDFKKjZHvRLuBfKjBM3B5+qghA34Qrxt7jaPBtpWlcJZybiDhG9S8yUTU09FozjvAHEtxAz0dJNSiJgOxlEOGuEHEAPXwahBV54UDnDQ8MwvHJpSxA8MEY/yfcntH8keydx1Mo04y23Q3cxQS0OoG1DbgrfA8bmYqS2PzqxvM4s5oAQdLR4NH3yj0hiNHMPcrHJ9+UENAebY6r9I9QObXMEdC3HKndEZavX5U2Np8v12AODWP/OdE8dtFNKnCft+8e0osd8VFFXaQGKHjI22eyzNHeKbKF5W5Ep1ArObihHMmeKQg9edQ8onCDRBOVHeyUxEmZbMdapbxc742Ighx9sz6qod15WCv8MgCZGRfCWAQxiY6lzwCU9NpIUOwiaU4s750myAZyUZZ5RGGdBqXoxwqTmo7rJfCAyJgNNF0TH5YQHZDsZyWkDg4RkOU+8HFfh6ykN2yVVeTp/VzR5ceipeb3PZvb4C0BmwS/rZW2oeTBoLGyck5xkNAw5xtDRpVyg7Ce6dwjHdqISNMDR6xR11eBNl0YhNgKekoZAfdolwxMp1hs6hGTQEBo0RZqDJKKE5dP7zw+WgH2M3GfCF3qKr8DjLwjuseYwk7eCA+E7atYV015Zq31c2JqVGpCO6h5vRRwlO5MZnO74QMSK46VEzu/VCJhzr1xsp4eHXCs5d3BsQszkoB8ni+AOlIo3exhbuXDaEvQMA29L/PPj9hWwmNGb/yGy9xuGuQIXj7+oSBBedtxTe+/QzvPe94eHzEiw/uQDeq33uzAw2RcPw64EoGTEcrgAAkON4e4mYqD4GHNWNsoENHa4v3XueFI0cpgZUerWCMbDMcjz5Z/STc9YwYZogQYwmiiE7n4e4nALLJgKY4THAgWkYCibShYmmzyKKX+Rrs+OEyB11XGMXolu5QROtlq9yjJklr9ptoVqtmdgW7/JId5jXomQzj9LDi07/4BD/43X+M7/3+d3H/+kNgPGBg4HQ6W5QwQl8aBjPACg5btxNAgvtXn4KoY5wfAF6xdJ3Lzdp+fLjH2Ibq7kZY+jEiPIEJMtQCiF6aXaJRfjgOJ1s30B6Jpn+zaHFiIdA03UNH9xu7gzVFYDlwCKXdVCa2lUEWoVLTkdpYDl+FPQIPg0r0NwUOqhbbZNPhM6Bq2oFuI3AsIjrbHSjXQH7oQmK3jxEHFg4U1ZvmEm00A+1oO2K81fo9cqeCUAHehvEA2HhgtBEgUPBAs0MDsegjnRxYZXQDMW80/aRGTuoGSvKIfKp/DKDV9D2NdtX0gNd415cFzWhmC+3h0fzqTeVM16Dp6qipvhxjw6vPPwVGw+n0AJbNxgZlYSe7Fa8RuHjoKe5y07G0GwivCr7apYT4yhZJuA+QNmraR5hlfDoNNfu2RJcpppupwHLoVcAHMN1mSz9ybqLYnW43UACf/NLFFK0Bbot7TeVzsa9jZyNJd7Wlg7LojgMjskbvvqv1tKGzTUyfSr31xwtGIQ+TKxKglMksz65oFZKvVRu07l32+5iwCUtb5PwjhFxktAJ7IvZKpQ8ToU/0E847eaKLvuaV5TPG4AlO0tzHqXmZm85+py0y2eR1zCoP5+ZyLvh3+z5XWujyuwTypRzVdi/qeFfd/k6hflrXy4FzrZsBkGRE3fgOKdN1artJF/0pfMUu9SPe0Rc3gWh6jIIH8TrN70T6M1+6KdsIfVDpsn9t6Y19zMTHPfPs30pjjK2FkxTRiyPie55Kb8yFUjkn36qcOBajptwqYo/8mPpOeZn76PrexTwv+jr0d2GwR8NtuxlF5V0f1zEYy7EXPkvakDTzqUbaojKu6dfwThc9XwVLABnAeh5YLAqRFGHYy078Qs7jBKuGr8T6KwKcT4LTSdCb4O7ZgmVRfX46DzAI2xh49nzB8UDY1oF+INBSNEfleSs0NDL/j1hkHM7IMkafWARIxG8exbKAHcUboWlM3e7er6llsUxmxLzNkSnLMWBzArTj506HphjPujjadT5UElxf+A9Ux6GuJ0/rtFiXy7wBdjrEaPa9ojDwvfGf4sc//gE+++gneLh/DfCG1qEp2CLCJQx8pO1rBCTGiTecTrpxEgN/ULwAtZONcGpkqeJaXHjwubxnSvgJi/URoD1o5GiCR/SpAPsCbLRIrE+tB75uejSj4ItdgqogU9Q6fAAl//GX3Vc2y5fsxisns+8ZEoCkv7FdEPOJn3ZKm+Ra1bmY35r0d/NDqhxwXOYA1FcSZrRvXpw2l7FYr5IBVIZH90z6kZF1VLnV/ZKkf9t9sOSXFiX3IkZB7ic46wPgPiQAEBY8PjzgEQ8KiAoHqPsYy7pCDQK2i0My+0h9Yj1lC13LtVzLtVzLtVzLtVzLz1X+4df/b1jbFaB0LdfyrvJzRVICdOPXiCDDQDTVyWqbNkuGBU9Fob858MJdLZeug8QI6MFSLx4Nv6WiB2kDpPGXdFPLArQG5i3o0zok6xV1NHjkGHfMSPHWpXODMxw5HDaCAEL4JtY3kBO4IfgF7DyAF14XdWomgCB8RyLTRtPDEPuGth4W7M5s4qDN0+zprf9L540/6yz2jX44a+KACIUud+xIONDiX3M4iDtKjL+xYSfbpMOeCwefwJ2NNRKVb/ZFJAAMGQYonZMgddg1ZGM1MpGI02oJpzzCFpFGv6mRgYxmThJy/GBpl6Q4JOI3vQnljhdv28fSac7XkmkRvQQ6t9JjbY4CQaT26qSH+GyhJ8Sdg5T1eh55khYyWNMhqd9SI8xQ8z5bJCJL4eZOSoJYCC7rONyJZmCZruAR99U0oy9uvPnQFzkDpeObQ5ZdyLzd5B9Rm1I5+CFHE0sFF8JpA+eh+ps7VVSue5m3QooJaQRIm1NGEUGj7IiCk1gMP+IcFr+1RurYYUxXNMcGczACm41rM/AFyJ3u7kAUS1XUTT7S6e3p8Bzxx6ypypoBNUQwR7Mx2gKsVuW2JX1kEaVao0jFpCmKDJDpcxwJhnEdRzaWndRpejoN9MOCw1GdfWNj9KWbYiq635hXD3808o2N74BFR/C1QoFgDkBSXusgnO4Hjrc3pt+skzbHObGGJjum40md+b72pP+QMUSwseDx1cDjJ4S3j4/49d98jnbDGKvgzesVvBxw//iIFy9u8OIl8PbTE5beQY0xthYy6f0kUhAc2ABYTQ8kxhjqyN44gAl+MKS3FRUgcTgs5iQ08IiNrSp3hH6ewr1zglwt8EAGCzCee0rHUDElCl3Or9SbVPjfmkYmYkboGIAsFZen6kq5cee8prSqaxsyKpPTbjTykKIBUoBzzTMBcn1iUaqYc41IdatgaBqED//8J/jBH/wuPvvwx1hP94BsYN6wnc/Y1qFpIHtD64LF0gtup0fwesbaOogaxrphjAH2SEHUwGMocKg10PEAEcbhsECGYH04YQy2AwaoA9h1sPWtdQJR19R+vKL3BRCNPAQBtnXV6GC9o7VDjpMAsPQNwwBHutYaT5khBk5ygAdbmkwSdUZrSje3pypwxueqrpgewQ+DLfKZjscQjrFB6ZUPausNy2HJcW9sUZMUILRtm05dO3jpvWNZvH6j3dKhiUWsa10jTIkd2LDrSJvLzAJpKT0qu0oHwNg2X6wIHorLo2R66jjnFVvkLo3mkPaEH+LFoc1glYne0KnHIQERMjKdJD1ToTKvRXB+POH8eFI6bKL2rikblHcj6BGhiDTZSEFU2zjb+iLRl69qqUuXA2RjzSq2LupzpOOMnX7wgzHA7KEoWlm9m1/bDzuw2OnBMqJoK+3UqpsESaz9VRsoLWWkUV//cx0KmwST2V2ptH6lrV95tzMBJps1qJuM+KzH9eXFlsyNtkJBHYMp+idQ5Hv+u5bLUaH9F08+K+VL2r3je5VK+kW7tQPVDq2DXWzS6et3daL+vmOQy7Bbn7rOPtWhXKPC7nzisWlLhCcesGcq/fVjyGURgf17HiVk/xuA3Iua3KG0FeNeaJradBriOf0y9gX2WgkymKLnS30ZYyUjByj0xe79Sd53z0z7u8qbfCR1UVna6tG5863a6/p97jddBmodPu94x7P4x2jhYApFpOHd1njSFfUzwy+BJU+AEpHHeOO6p4J7kpCno2aEnO1kPWRiEgSrV/LyxV5n7eeX7nkER7v1Vi+iTWWnA522+M10Wqi1Khs7MreV47JA6K9Sz75tn88B4KJSZ/COsJ4H1gfBdhq4ef8A6tq/88MG6R0bDxyXjuMNYX1Uf9Ph2MCDpvk8yb8T0RB7N7FIlFL2ThPwk2AReow2G5MalXDH2pzvZU2mJx6vuo4goedaeY7Ks7L7zoP8ugkE5Hyc2keOC7tMFX9K1deTHMD3tlQqLuvTE/pLjKd1tcnf9QFpZ907nE9g3iCQuKggI4EgGtnK0v6yXyrIfbbbsUTQi4Qj90UNpJfrPGqQ2c5+WSD9Jtpzt5m7Afk1SqnuVXrvaK1pKmq4/0FvsLk8uJB5uvIYC2eAXyAkZ4MOEBvNzfyNKVt7PyUVOUjllN6vuUgIwE5ogq4EILGnXwu0rI0fpc4NeQ+ZMWCQRdjXSyVln2l9DHsn3iWLjGp7D4tQPK1ZgALMrB3YXgbifU2BDZ+pqE1PhIjkpLTl8xEV1NeXWAfrBJXQd5AEN2WbhGU5gECRytrlSaRcMBTEJd2aSvharuVaruVaruVaruVa/qsXxsBj/+xyf3st13ItUb44SKk6SsQcIQSIRTrRzVHuYgK4M/RAFkQRIae12VHikXu0at0mNTvE9VvoGvGBdcNt7camMTZzuun18A4RFUJy868/S2yq1YlFE0gBMPrsPKT1BLFk1A6JzWj4VYoDJfhm/4aTzjex9pLfdkJp1//1d+JQWJDpRZDP1QMMjZbQpjZzo0uxea1pxZjLYWV1xkqGUC+SkHve8AIW556125LdF2PsoZNhG3EqT2qVyeeQM3EnKbkPqDgwyKJrqZPCaZ5v4vM0Bu6sJuOpy+PkTAlnWB4y2dFuOqqNvx7jyOXQ0+s5HXVuBC+iX1ZZiWmuX+kBsYfQDxkojZM7K8Jpl4AA5a++lCl4EE7PuJEsBOEE6xAoDw4EmtIMpAfFoHDibcPog6dfIYsaph3jcKDNCVHcK6mOEpnGsUYsGKJpFNyJ6Wxz0J0Dolgk2vcxcFkgaiV1XXW8ab/JPgtJkQNjb6Qny3HV3zTlnFjOwUgfURxUmgrD2rRoLQ5UAgE0bFxd/o1GTxcGcxqRUDp3KXVUOKVNT5HrO/HbjgmEijnhvloq/RYxh1qzKDQ6nh067gDywKSMlXDD+fGMu2dH1cVDD8qXxVImFPk26iendzgOXcZ26cC8rYhlJ4LH+xW8CW6fHy0yAXlAvpgnUx3O18Y6tTyyVdNDgU0EIg0PjytOZ8b2uOJr793icNuxrcDrj08YApzbI957dsDd84bTw4axLnj2rIOZIAOxToV+a2I+XRcIS+0ndivcQruDLMS/iAFsVY4VRzYAHNS5bTkv/HYjWdQmLmtb1TvVmUhlzEU0BZ47Mtv0u/3rawElSJFMTTQxPrv8Scqtjy2B4pCCYene/GZ2igIC+Ob0Dol+9t4zW6LAnLYU6bNcTQoBPBTcxJ4q1NemprLc24JvfvANvHf3Ej/FgNDAtg0cbxbcNIDoBCKUFGsD67piXTUaDbUG4Q2CAeYNzGqDjI0tHeKqfekNy6Krw3k9W4q0ht47FHSiwuhrMwuj9wXLYYGsEmkYjscjbm5u9G9mtEUPGYg0hdi6btFHPRyg0HWxzA+AyfWfDqxAb3pDFATVmvZ12zRcW4B5GynoCi3AOZ4ujccMTHo60g00FSUzZN00YpvpyN47em9Y1zNgoC23hRRwBeOX2V4OOrUJPcamEaZ46K3gOA9y3VRsHqOvx2GMpywwnTM0QpNQA7HgsDQQLSHLAUKSPKhIQIvY4ZLrfoFsjK3YwHm4QYDrHVt8yWQZdngVqftC7yUvYbe9l9bATAZmJPiazrypDhCdP65DeKcHvqqFyr9kegEodhHcDgN83xEKC+VAfl9cL3r9lIB4e2D3nukoG1OXH4+Glzb9DkjpKY9CNrwqjZxY2zCTY0duWbOcD9iN3fRO2v8Ub83FLViX9TR6nMdauOwx/Dd2+ZWpsly7AYtEkDTPvZhLXkYo70+/W1tuGpLY3z7OEuvKRR/rklJsk7LVuOhzNpzfXIpBrpERAbc8KzCZDGM9343x9eoNkeM0hG7CzNPavuzqjHZ3zQW55Z09cP2pcaFKL3yNQEwJJ73Owem9fftPtFFt9tTHGWWm1nWhp6q8Uz7runiSvWLn5TtPS6OUD7vplTTRE78FjWazc9EBpX+o/gNkfZHx+2foYyk0TeNTZOfJeeNEsqdxpmkQfRySAbWDlHTWupyXTrNcsnR6B+WzEZx7dprkUsqzFRtHAmyrRjSKAYm1feaTt3+xp5sYOvMsAeIU9Y9NbZrj7SFS7DktgrwQU2EUc/t1QirIgIWwrrbfaIIXLw5Yjg0y9IKFSMO6rbi9WXA4NE0ZLoTjsWdLIjGOsc/15amsYdZ7OEikNduHEzBHXkEo2dT1lHMr+uL2y6xAQveUvtdS14/6d8jSU98n2+ZSLvxU2ag6nCxV315mpyh9Jmgh8lxGscrGvv0yX2SqS/9Y2z3ePP8xDp8eLb30wOCBZWlYWkejDXEJQHTfIqR2p6d7d/tPLPSZhP9AAAOYux3S4VGURlVEM/+Lbol3Wwsb1NOIqw/AUw9r/cOisfp6R7Gw2nwRuCURfp9WootrFK8etEy6xm1yAxT5BU+aHkmZp6cmskim/ITuEbxf2odmeypVshXErp9b8icG3f1EdknMPocSvlDiVdfXeZJgsdirRucMUIbiNynPZh+ioxPtqgP8okH69Hw/N/sUqSj6AoqPTkwMDfBa6vldxoGkorTxMxava7mWa7mWa7mWa7mWa/lC5X75CN9/8Xe+bDKu5Vq+0uXnSPcGlLxN6jh254BwOM59g0t2UuLRG/ygpnlUgfDe6Wa+WYW6T7RNGLtjyTd15vh37wLpYVo4SUCT4043hwyPla0RJjSNDkHzHekny4MSdxwpNnG+6dOILna469FlRMKhFaAiorwqCk/Hlbya96W2qy0HKnkYhguHxFO3EatTaQpTj2yfWVPRoAGNfdOd/tOp/uKgJFAAmIgUXMZcHJjBq5lUd+zUPju4xw8tfLy4OGTSkTj322moZWJNi1G7cLKkM5Vm54AUGY6nS+VE6OFVzTHNOrKvHs4+xs9+Uad63pyHjZcfujF7RAuEAytonkba2zL+EU1ZnJofglr7eag331Nzh4ofqOkc82g51mZOSTSXeQsl1LtHArAxNfAUl7Hx6GrpRKY4nIAILAuTyQChE3lWuIm/3v9ty3Ecw4GROu80zVoO22DWlJPI9xtRSX2T/G3NiMq8KTaBLDIXKQAFMFCl0SykUah8zvvkrtI5PEWTDbuIarwa7QvQKBkuEzpHWjrTXBcWnoy4tZhONnU+Fh9VyEH63ALkxn7blWwsfOKWA1wBXIk6ECbHxgFNwPk00JpgOQIOoFj6YnIFAG2St6cOGnJM7MBdZIqyE31vgvXMWNeBly/uQN37kDJX66p+RobKcdx4JwVlUGvYzh2vXp8hQ9v+5d94geWmYQzG/ecb1pXw5tVrvP+tF3huYKzzSfDeBwccblij+EBA3GJekghoQCNLwQADNqY8lJtLP2BZFiydAkDHY2SHiw5vrRmoJLyUMaPFQIV6IOIvQG/zVpkklZE8LDY6n3IKm54fwU/l5WJ+YD2fTho0CoOE49qnkstM783eK9FESGnnBkuF505g1WOrB7wpTli3C4QowXPWhsGtdG2ydoQJ0tgiSjWcHjcFH22r8qN3DBk43hwBGRAMnE6rAWl6hL0/HBZzZm8GjBEMKFDEQV4urGMbGMOiG5mDedvMaewa1saWmcHnM5gHWu84Ho+mjxnnx1PcflY9k9GGxhgaccoURejh6pgmP0g1fdE7lt4j5ZCnjmD2iD0ZIZAMTDXIcmCIO/8FNdrSHnib4iI634ggg7FZOjI9nOlovSvvWovDmrwJnW1ElIo8DcHYNkt7Z+uS2YIe5c2f7V2jW23D0m94RAaju6bCDO1n7w4RAM14vaGehrXWwBYqT8d2szrzYIAsFaDaXBrFoDnNoxxa+AFWuc3sNol+VMrG2HA+30dq5cPhiNvjHdZ1w/l81gMaynHx9H1ClDrhK1l2hmqq8/K3rkluf+YDYvuH2Sjz2/Fuc8QLtRlKi8iBpVTaDjlx8sI+TDvEbRfsPketdT0SFzbXx08fBMc/+59oV409Q2WPgfJ9/vN0FJL6SivKWpfq1OzTOd2OxqiDkPste2dPUlrD1g9bs8JO2CNv3CSL9cK/lhxOb2f6O44P4REJvOwDBekeLj+r+GTPwmoOorO/2b8S/crfpLmdYKC3+QQP9/yKH72Dpttij0Vz/2tzfhga2Gg35+yzszDGcxrMfIjqn0j7cy+bYSqWdvb7wKmPhY8R9ZJTxl2kvb2Csbc+7KLdFJIqzfvpVedFREl5Qlb3pYLya5SkPWCu8gpyydaaZs074/NG3D6k8l4ZP6DKaPKO9v0jKlEFC02ye6x8FfvqdzFCnv7TxznGu8pVic46gcZD/nyOZQfIaQFhWayPZp82mn0UKDyZaCHMskexpF4KhADCCnA/3hzijL7ya/9Z6iDuFKuEjQQ8PgzVNyK4vVvQF5Wb9cxoS8P9mwccbw44Wkq77XHgeOjoBwlWcVyeKX3wv4sidnvJL3oFqComh+z+1fcc0BRjav/j9nnlM4Kv8wUu9wHEOLR8Zdrr7fSVy/k0g/Z6rHym+vBubKYIdZVfERlvBjPVNSMbUCLdopBU/JUFsf9gErsAUPwEdgFl24atU4JtW2NdUTlukG57RHOkhb9r55+A2xAiBiLKnzy6jfM5WCBiNrHamr2nX2lbN41AWsZAfbbNUsfbpQBw8b8Uesh5qcwUdh9oXk5NcL87RwoXRRJ7JgFDz7npc3o3LP6BYFHrzeYPIDVI7T2TQ00TnRGdtPpZKUgsMDB5ER0Pb79GVYT7e92m90iw7uMovs+6wBqTRVyPaapqtjzzk3+zfFR9LNMPIh6lqqRq8znkl+GiP75PnusoppO1M2IEWuu4Od4CAqzrhkFs8u4+6arAr+VaruVaruVaruVaruWfpwgETNuXTca1XMtXunzxSEqskQE8sYoeuiNC90p4VTKMc5zQkm+uu22+GSDdUOtNHIv8E6nYgDFGpEITsG30KZzc7ifS28rVKTFA1BFQGNtxaxj0TK8mZIc5onW4E6r5BtMdBeYMikg85tHKKEzusHFnJsLR6uCBp86ClVrrT7pI4qAStjEP52VsjH1j7YfC7sTW3XI4w50O9V7F3rk6ktQRnAAhEUFv2ec8+CmROswZVZ0OIIqbiNQRUVEccEBkwI1Cv7/r41ijFqXQZXSU5KGOT/jSgt/pRMvUdebM8AN640/v86a9tulOKrF0ZuYXgJ3lBugsHG7Gw8wiqOMQTgwbG3c2TtEBPNWbGM3dxpARcuBprYTU+RaOfONbOtaKEzGc+RIynA7FFMYaQUvf9/mslTLUCUIEz7YFCEJGWIBhX+pBrKA35VHv+i5XfSB6uNwbJpkKJruvhSVkwlNFUXM50UEXmBqx/jMBhOYYKwUeQsIBGI5sc9ABFGkUeyc9nHaxJJNdvwUvCSAbNrbqG8uJxpMe0zEjcxgJYOm9EIcyRISxOQN07rO3S5mWq6btYrKUhZzz0x1Q/ie7DrHvBAksbOV7eGhvsZuGg+NgKJ4xHR9pwkwWx2CcHk94+eIWvQMbC4gJfZGY62S3K0kqjRJR7HxOocxbF0/Vrcr8TgLZCOd7xrNnd+hHxNrjByH6HnkNk5McKKkugNABPAiff/yIz1+dcXd7wNc+uEU/Nmwr4/HNCYebIx4f7/H+B3d4//1bSAcePluxLB2HWwGkQVMuIR3jdtDSCNDI+pQ8B3BeGWMIlqWFDIFN3s0JqbRb3eIOUXfQIvSFHihTDHI4bEWwdHcu6jOteXSmPLD1KEbmr7SUZNZCWUs8Sthmvucp2ZLLcfBbx9pjvbABLyPqhKXdk+FOZwPBsUdaIwWVxJzI9YA4dVPoUmuDLYpAL6nn1AFNkEZYbhaNSNQ6Xrx4jvX8BufTI2RsGNuGMVaI2QLq4F8UQCiCddssZZsyrjWlUXgoPQZCbZ5+1tZtOvSgg0LxqJTLqHw2fgphWwfGWLEsCozaxobeF2tfDzVubm4gLDifVou+pfKicyhtEwcguZ3SLKVZaw3bZqCgkD0fz5yHrjcp6hs753qL5/VdifXPxzbBOIJhAAgxoJ4DePJ9X7s5AFqagsH1tfaut27rpPIEvay5kvVkBClBo26HKmLpSjkd8CIQv6HdGtAWvHzvfYzThvu3b41/+rzfulb7px5WoKRIReoEsbQsnLeXRWARuKosm94qpwk1WtWwKFsgxoEOuLlRQNu2rQUQpzzwQxFgBoZ+9YrE/1bwtR8gxcq4WxviUkBEcHW9n7ZMgvVNS4jPzCxP2eT6nWnr0DUc/JypRs7dqU/aUq7srqxo16j1PM0thDFc2yg6MPuaaxyV7/zVWsNTaXpK89lSsL486LZOjEEF78RQ1cfTJvVmfcIEa7LRYEuKPS7Y4OuHlPpK/1NWHJyU88r3Bvu+py0811n5RLUv/vkJXk5TTMo/tPtdcHmoXp6oVYcpQ3QhDVFPFejgJaWNvOOpfpAALqb81P74wbH9RvO/Mj96QZtMD9R3bA5OcoBMj4vkM5e24/6A/yfZxiRf3u5+Pj5B48WMLXyaxtwZI0nfDJpFPFxBh8HP8lgZzvJ36quQR7ncX07jLUgDbCfDdbyjp0ZbBZXLxQOXvLxYNmj+br+u7OeA2zMy8VJLK3yKDN0CbOuGZenozaLril2+QPHtODl17jufU9WHLF30Q4DW1O5Zz5q+tnVvg6ISiT5W4EquIVKYKU4bEx4fNpzudZ1//uKAtmi04XEeoN4xziuePTvieLtACNjOAw2eajaH2G2CaiNEW0UnjcG216JEQJqMuJ2Tyt37laAS+Dq31+MmdD7nWpv5r+NY9asKTi7fup4/aX9I7WOSTLGSycVvQWahM+b1nlcEROprp7nKuLcnyD20PZB6zN4ua1D0ngBqhMOxw/0ry9LAQyOqymAMv3BigupgIAAYPICyx3HfFFva5qCC66UPvWgwRfmUXPvDVnSGiYCHj7Xu65nJIm1SXORyWxsAGAxmH8dW/oXZ/xKfBQCGEueR3aNLrqN93gaPfZwkPk8DEqzeDTRSj4VenGQjFxG/cJfKM2owPyKBxJKsm23j+2AQ5fpSrCBfL/1SRFz8KLkKGRwXap0y5ZnWe7y5QUPDiRkyhso6JegrOzOxy+Z9uRxii6LNrlgYnN85IVG+90Gp/C16SxhjbGjUS7sOIJfCyieNl2u5lmu5lmu5lmv5BS3qC76CZa7lWq7lq1d+rkhKYrt73UgJBJbCpvmBsYCIixPHDoMI8Lw8Yofi7oD1TbeIRDoksdthfnCYBwa2yY3vBIKhB/+t3PQRQKMy6K7TIyH5IUTeivPNGHLDR7B+GFzJOh63d3Ye7nRwF8dIcaqE82wXDSh9q1SciFSAPeWAlsrtbPepVOecte9hsf0x59k8kJicUu64IpTUc4I4XPYoBfyUBxqIFFOxyXbgiKVDgTkwmGCpOZLwqV9Oj9NX+Fyduc5zl0UYD2HP+Hc+du4oibE0nnE4TPwm0nz7GpQH+jw592O3r64CB50gnXpCxemojWGqXCT+ychHCToT46OOkzojvFmtyuXUHY/qjGxx5ltuCovR2HLEFYDTgoZ4zyIGuVMigXjWzoD5xw3MxgCY4sAW0NtmnQAeDkCjHH9kBCOXJu2LFAcRcswEETWIYI4ygoX8tu+HjQ2l7Hj6N42A5POOFEzjQ+Fz0oSlgyxMvgODcr42pG4JUB8EGAhwnjshI2KMwEBeoiBBceeyHij7nPK6nK6MkKK6dbWxUhWqdAzji1gqLTHPNXsjROFUVLCbaUqxcScfR5PxAXQLi65KWPXiAnVuKjiAsIloOoOzpkdaDgQQQwZjaQuI9OC4ezh4Tj6jaeQrB8OkOnHX7Hy3WueepkJ6+3pDax39iAADAZlWLNcQl2PjjSkKkQFhi5ZHhDEIb18PvH51xvqw4hsfPMdybNjOjFcfP2C5PeLx/hHPbg94/sEtuAkeHweYGc9ujxhD6fVb8CLDDjlUAIejdIDEpgBYN71l3ZcFy3KINDciAA9NJUYGoNTUWmK/i6aLo6LT4Ad6hENTJ3dvynvF1yh9w3MVGhHdAKtiIGHqrp9tNTI92GDAPTYgkFdhgkPQ6DssGuErDyp2cQZcdwrg6TEU9CaZ4o9QgE4t0gWGXmQoSAkJPnU9aZwAWaoN2DxSWAFBiNCXBtDAw8MD1vMjlraBRKOubUzgzesmDGHw2LDSpnqVNDIPtYblACx9AY+B0+kMAbAsHcJ6MKHR8Br60rAcDiBqWNcN27oZX0htIgAemXGMUQBFBuAhdv83PFXcGBvGAI7HG4CA5XAAD033RY0m4MvGHPyDHTAwBtCAvvTQLfqOi0au71LeLVNyN65pl8RNXiABVZwvUonGNIbF6GK70Utk0YZa1Okp3xoI3MhAXT5PFCxPlno0hdLX4aRfLFKhp8ujBvC2YQxLn0EZvWOMgSYW+Uts/pkubX3Rg0RmsKfHcBvFe2l6iMPu0YkyBoMdFCWChOPtbITyryns3WGFjtTj6RHb+jF6WyJFpM5blfiGPunZr2oJfUmICF91LOEHJbtDnBjrIrkZo8jGodjiAYCCVyMxNuUbTAAEzOba5cmRP5N1FMqhtngaqxVolUex3vasL/MmfakrWpgPyuuZVGWVf0H+Q/3e36N8MPZU+y7HZylzy+ou9VL5n+A95ZxIop1O+6M0G/3In4KQGjXqYhsShuROP1GtA2EnVLp2W4+JP/6+i2T2MesLFkjKXnxZnokuF97u6Y3XCk8n6YrxUOD+xE9/tjKTJrbHrJm2gz4+Lpm1sneojvK4PmpCEft8vIOve7oKz6J/Rahi3yyIfW3lx4UYuFzXqVrbLoyg+c/cSxOwn36VFbN8UeEFTfVUHjy1/a4T00HsvHsm3i8ETNOYvb8FoFGJjOWbks/ic5nmeSaIfYzshNP5v2eI7ouzvT3P/aJUpcc1cdVLBNsrmt3kRPl+Ojs88yF0zI4ve01LxgMGIkLwuuoby0L55E6xTPOx9IGnXup7IoTzmbEZMOT2mQKUZADr/QYGQWTD8dBxOHagAWMTjME4Hg/TvNfPCX7eq+bUycD5k5/YXreht24RY31MDdASXfI1SgclbTeE38LZ4HvumCtu2yMvfMxzXeZUa3GjKUtctpHka9BKLneVB1ZZyHntRdKafSq6yQj3tUfiV0r6/b29niv6wfmc3jnYpRvB6XTGeV1xOm9oNEz/1kUlFZxHC60KqDeVd/UnNGzbNoGGxjZiT0uke60Wl4TsQKmge5NeyXTxpXMO9IeoDS3lu9b0ZlmjruAmX5slo+pUIU3AkH7vl478wgMFRcn5sHELrZXn89/57gRSl6lH5X+N3a7bGpm/q14SlNynxDDZehjClfz0esPWtz2s2g9UZM/54fQCHt1IgfQd6/mMsC/NAPGLtuJRZJEXNitTJlPVhJrrxtn+rRchZ5/vLOD1chuge/Dz+YRGPZ4PEJa152s8z1Vdy7Vcy7Vcy7Vcyy94efjBd75sEq7lWq7lWi7KFwcpSRz76UGqwAAATW9beco3yfDTRJSp1gl6WOUeONtEq3NTvWRM7njSqBC6zRMAB2h0EoZglAO/BrZoFSRkB3+wDRjrrUTxKCgMkgahGhEp8oSVjTW0LRZNmSEV2GAbT7ENcPONscTmj5FOE7YqPTIOeuwNdcNrm0rHhbRWNuXu+JW8oQZ7N5wrVPabKA4pKf4SOyQmUEShajCnpL0T4eYb8sZUOHC00lY2wek8rI1LbND1vFGJc7obKJyEJlC2wXenWR66+wmnSAGUwZ0DZfNe+QBzjkHbDycrJFLcTd8BmrpL7MZYOCO82wV0ZBFTPCuguONA3CFgfzBpKiJJh6AgaW6ov1VnR/axOn5bz9DV4VSEOZcGgGZAmkYTkMYdKRqRx+YjIWRJ/S0c9TEkwll75Bt3yHpqjg5lhsvbEP1OIGgL0vFjkUz0/NGiwxBNIK8hgDR3ZO+AajbPAEJ3mu3rTpmqx8cDDSDzxgpJ6IKar0Wg7bc6WVwGW06u8COKOhHVAaf8ifu8Qhgs6AuBLTS2H0iGk4gAWMqf8CP5Z5/XPs+8c6z1pnNKD+kTOOgOSx0PNhn1CHYKZLLoNBYdR7ikGDE9q7yTAE5B1MEsBk5yWWUWUNNBHSG3AhmCx4czXry8ATwCCXWrzw9uqs4kcLfxoPzOnZkEBU81WHpFFnAjoKm+fnxkSOu4e76Amh7QNZcIHzp2HihvyJzm7OnthAyJp065h9cD5zPw7PkNvv7NZ7h51sFnwcNHJ/AqeL2+xdd+6TmePzsADeBV8PDqES9f3AJNb0d7Bxy82aip/hZAOhJsabzYhoKUAMKhH/XmokXXEtEbuOiL8qZpdC+NTtbRWg+eukySDwlUny9dx1d1Wo6/2NiDpKyHCH0A0RukCq6EgWX0nSYqZx5ZqZlc+AHdsPnaAuXoi28CLn0NDPAeCGxnUR16QCUux+HI1vSkxM1uBAdbItWA2w6EgYOlMmAR8JAAHGqkKsb2MPD683s8njcIL6B2xLquAK9qD3RYRDHVodu2xufWGtAFh2PHshzQWwPzgnbQVX5ZFpxPKx4fTxAWBTltjIGB1hYM3mzecdCoER1t7g0xAC8H0HoMgXhOu6HJ5djEmNqK5XBAO3S1j5gxzpvaXbKlLSJkYD7YPLE6h6B3i3RnKU804qPrHUtTak52n6UB4sZ8w9rXJjc+ho+zHwrEfPSb4qHO0ETBRn7QRb3HOubpDxsB/aAgIx6mZx3Q5UyB08DYeA1gUjfA1LauCg4kQGTo+ikJXPaDJzBjnE54dT6Hbm1LA3VN1zBkM9otyhTpZ5VPB8H7ai7BA4YfOjY9jG1+K36bol35u7CoXNMBivGuMcB8hrQRhzG9Lzje3mI9nRVcJRoltKaB+8qVWOoqgCht5zSx7NtiFxcTKd6DuM0BX2QmeSsKU2WdAuIdtkPuByj+DeBDthTVVX1HuxEMZW02ah5DlQNop1/mzz4fdN5mfVUSsp/WhcI7jxobZ321vWTs3HjYCZWG/Cw7Vk57DLiti9Cbe1qjGQE8+txcJ2VHsKNd4qFgeT28k+l/fHELjk7d3H8u30Yje3Dffry8PylvKGm/k91hgk7N0NSCk/oUSeKyWOaI2z3B8drGE2NYh7nlNifFs75Y3tn3udI6H5yWVK9IHszj5ut6fJz44s/Trm6qdcjcl/37k9yW96Z+FLCbk1DPpwmxjIU95HyOda6ORJFH1RVeGczmKU0XtZB3Vma+R3/qh91cvOCbVROXS8ozIYtFh3kEZtnzx/m7G3jvo08vqs/uiyTfGGWsg1adKIwCCBVgGwrCBwwwX2T1gpZpjc3P+dCs0qi+C42gKqL2XOh+pO6Mup+Qn0n7+1xgwnZm8AYsveHugxvdh7BgfdDvVznj2e0tDouDOYDttOFwWC76uV9h4vdYC1zRAMOALa11e74FNqheplKVaP4MQgIk3K+A3fypMufPIWXAVezFFH9CZ3gloRK8/ssOF52Yc+lJOcNONopMRPAoVF0swQqX/dl/NBNB07OpnCg3m3o5awhaW3A4dKynB/OdOUi97fiWiqz1blFNU1kthw6RlmnNrC02h6bvbWaQocT4RE8LY2p/mVNBiCSojKHRuvXSk74knk5aClDc5m+OWypbXVvI9Gv6LWPVCj74mFYlXZXYU7adpNz5AE3GRC3eP+RlSVQdp+317mnqig0S+9NdEaOAzf9mlyskLJ65f67nkgcMtojZYr6uSP/sN39CNyLojzEu/Y39GJm9afx3f7jImOQs18CdTVNlJOSGM0MBEJG7MCRSh1/y+1qu5Vqu5Vqu5Vp+kYus5y+bhGu5lmu5lovyc0RS4nCYC9v1pog5ohuodOJVYI1uZjUNm/7tMWx8y9M8t3mkcJBST27aFVzRbN9GIOrhUGIHS1GzAwerz+jwmyLpHLM622JRNxjkznPA9swaKkVyrx2OsozjkJvsOFSiusksDh1nm3c+HJVijgQHmIjVV7xFSKdJ6/N3dc9fadR+tLJfVRqHCLrUm68GEirRVwBkuHaBhaUu9AdPZHJ+prMr3UPV+eVpsyDqfWuFkxHsxyrP6D9ZnxdPVdYCKGZAtUqj982emU4RnXcxPhTj5P1iKbc+vTPFOeTvAYTAuki5iRgOCxs7A941A0UFX6mEy0Y6/FTei5tNHHBnc8MABuafNNFLZ5U436yfrXkYb/0uIu+4UycEXf/pLaMphSPc4rw7nyMloQGY/HBMq2jpEDc6mShSxwl5xBNYGjYDGTV3CrrfJtPeKU8k6zQeuzMroiltDFq6yT8HEjDq9HbEDhOaP+rRkqCRkoy4esTeiCKVVWGXqboqp64DfMzUKdjCIYWQAzHid6+b7BTHJLy/+YzriniGxACkCOCegk4oHGotMVMQGIYqwAcqC90i7AhpiiuCYH1ki0zSwEOwjoFuIJHsI6aUfnE8O9hSdsajIEvMx0PpJkKkABsrcH7YcPvsYNG5dMw8FZ6Pp2MMYK5DZrH1wVhMXVNObcDDqw3rgzqFn31wxLIA28p4eHXG2AjndcMH377D8xcHuE/68X7F7c0tlsOScxm5lrgTcAzBYgiiPJQySCQB22ohlppOWAfVKghSIhVi1GnzmSJfos8tnWR+OKhrFYVzFkVf+zrHkTvFIo1BnaYCJD8l9bhAPzdxIGPcwY5DJHfog3xOuEj7gmN6kfUmsEh5l9K5rUAttvWx2TxoIf8uk2jIFCCmYJtQ0ZMBaQAJg0kwiLBtZ2yPKzotuH3+HOt5ROQ21ccdLEPTeRHZjWXTYK3huOi489gwNpX/m5vF5h3j9tkRfdHx3bZhfRNsliru9uYQkbK2dSggzae/67KyFvttard7xmADKDV9d0kN4PYRD0YTB5G6oi7rsP2mfdP2+9KxdNUN5/M5UsoV4qyVtHHUVhGzNSRTXBIFrZQTEm7bFC056UiVe49PoDfSl2VJOww6tmwAa1/3e1sMNGRR54wuj9bEFkVpjBFzzIFMYcK4DrHFTKBRAEEEFovy1DoWS/831m3Hn7lPHr3J5UrX34bleIPeDyAijC3t5WAyUaYlRa1+tsd8BsZ4mvwN3rCeHvXGvqV/w1f8UMH1mK5BEjaFC53MRrL+7TowRhDxTJouzqU43qqP2fu5/MZfUn8IQ09boyKJ5Dq3GoUpCnGxIJQjhw3ninkalTTB4osAJvkBepgLFGPqfJuiSAS9Ov+iy3X6lr/j62BGHtTtIzzV93fT2fghvvVBqS4+UzW+wiZI5V4jDQU/ipmU+0nkcNkGhcpLRbM8SXv8OdlNyD2Ky1mRlXntneuaIooILtsplEx6UBxom+/VfUu+L0/UhOQZzfxGpad8T3s6cflcFX154t3Y3wElam8+XLv/1IHvhBEq3Ur5LvoUF6yc+rPndd3euX1JyGi43u+9PO22ldGuD5VHeQubaDeHss6sXHVVDkwEuA39NXdharN0S9ubD5irrHsdF3Jnts0kF8AUlWm/z9jL3f4n12cCFJDL5XuTiNd+OI1MFl1Ua+YN4G1guT1oxEhB6NgErisvXX6e7FuhV/cAPgQF5MCE82nDcug2/rlHeDJKCGV/6lhFvxh4fBgYZ8bh2HE46kWFsQnW01A93oDnd7dYjgnC2rYEqrhMuW9H5wPZswVITdA9tnfSA61GpCGKQVUeycX45MpRZhd5u3QxJ8IuLf0X+yEupOzlbsefvPSV4xOPS/Z91mP+xUx8pSFU9V4XWD25jnk7CaQsd9Jibd/P60wvWi5xgAAswPmAx4dHAJb+edvgvpnw4xiwQ0QvEDnfnAfCommjIXkZhVzODTQkYlGYtMphe4vcH/ilpDHPQ0HRGZSRjsTBTzbm0EuYMgZYyn6BkJFQ9/Zutd2RPhC3t6nr3BqDZ6dW9vzyu91ikZFIUaIG1cF5opr9YiDqa/H6WtzsycjfVc5bM78UC9L/6qRJ7DtQbKSLxVRy7vrvfiFW7OIAkQIKFViUu4DLtS7XnYk/BN2TLIeY4zzYvPB7ftSx/meXfE4wtlU/cX73xWq5lmu5lmu5lmu5lmu5lneVLgfcjQ/wsHzyZZNyLdfylS1fGKSkxQ5/gZ1DTrcvfnAvxBjstz08qoZFD2m+2ZlvR4P0gGzwsNQfGgHFnX3kEWrUS2Ybv4FEHTTU/VxGIfKD+9yY+waUIsQtwtHBPECkh3wigGQOrd1GUmzjWetTmiP4iTtpnA5gB+LQesKBWoAIe8dRvRmn0WQSwAXMBwq+uSY/8MbsECJotA1hdZA4UX4fPHxEnsqtjHs4WKszC+7kK+AAKePsD5V/KxjMv/fDPUIyKQ8TZucZVd7ElzaMNdqGICN1FDedO/+i7UKbgwCqv0F87Dx1UaRMEwAO4LOxN/7FjTWPQuFODO8TBH7K0buD3JyOrBM21h4JSGBQPk5QnYOSBBq1qrghkZEaEqSWB2AUoBudk+UgThDAL0G25U42hkUgsLEhTln3En4cyc+SU8oAJT6e3heXpawrHSiE3ux2czg23SklcYMOpDfVetc5GbcamSI9kvNe7D2PHOVOSZBHeklm+px3cIzOaZXaIQVkaU4okhQINhmY3T1kEWpcZmLQMEoopGa5zWLOst+IVOIIYgfdZd7k6Q88ugosnLsDxNTJZX319sTAgwZkHJaSTzbCwwPj2bOOMRirRVHayKLsDIkm6xgqmMGdfq6cACKN7CKi+oOb3TwUgLjh/vUjluWA1gkbq4PPxymAMNWx7wf3bNHUwrMt4AF8+tEZrz49472XB7z/4gjqhHFm3H92ggwCjgPf/vZ76DcN6AwewOleMIRw+7xBWr0dytYvi/LCogASFk1b0QgNBpoSl3Vo9CQBhA4YTAreGZYOYO9MJNK5Yk7bOHh3PUmp9x34G6LlaUN9XWIfR9PyItgk3LgghgJ7rEZX/SQ5p8QVtslMhROnEjVpNAUikrrFVGUcxujFXX222STbBpsT2dOimX6K6a889QNlAQo4ym6UDpuPrWFbBR9/8gonbjjevcTD/U9BluaMZajjHwLIiPSLy7Jo+jZRwMv57AfZbABUMjtHwja5ubvB7Z3xdWWcHs/gcbZxZ01p1jsIDSvWWLhcO3iaME9N5gcUyUdoZKt1w3nTeUq9o1PD8LUUlyJUHdTehjvhW7fbvGMHTgrxa7vvUxEGcMb4pXNghPERt29DPvd1521j1xNuTW3rGikugzcAWrNDlgGg90wtt8st4jqHOaQbrZGCKUfhKxXLycbVU0VWMPEYm62v+k5EfbA0j9NYWd9NeBXkdryBR8iC6Ufm5AhRmAj/zAOFAC5B7NBKD3lljGnVd8DUV7WkHnPdVmTXx8X0TUZfSAMwbIXQgNVYk7AtfU67ztPKHcDjtoc9LL7wAw6hmX6HH1DVz2nXTOC78j9P2bBe/O+wROIdiu+nVyYelXd9shQ97I/Xn2LvUeqZ+lFe3OuUYtrmY16nXJB3+fBT/ahKcP+s00D5vJRXpo552YE63D5wW286gC9/78fF6Yn+FPF5aoa+8zs3QXbtXMjCxDhc8GPqVflt5kMRcetzgEt8n1jrpLnZjIpX2qaZ1hjn/ZjUSqPTT8hK7SMuh2+/2lQgHnY83AMcqoxX+a3yma0kEbTjBZ7oY52/T4lqHGL7XLd6Zu/BDpCMHBcU3svED7loa2LSO+YY7cYQgry4EF9q+x4l2bSy8nvHQ2eyV6nRFmnSHyHvrp+LnoaUSx2C2Deuq2BZFl0fXd+79q0Xd8gidwbPgABwhX6iQoOx1S8oScN63tB6s4sOpucLOlLKp1xrkDJV2c7A+XHg/u2Gw6HhcNTLUNsmWB+HRVVm3D5fot9Emgp6bIybm6b2DMq+qNbvSiMmTVEN1uXwJ4hAwa8GzhKJCDw/C6gcdnrRmdPlsthzpDzlqpR0AL6XlNhP6P8KhMkiiRY+1/1A1Xe1/5ApKhJ2jxW2xA+yqytchuJ2gPY5dZBM+sIXW39HSnUeGWjZ7vDy8ddByxG3zz/A4xu2vUrDGKvuoZ1h4rzTOeziPAbbfljtcR0qi6Tq+zbSyymH3iEsui9yH+kYEY1H7NaHpwf3vsU2O3Q/wi4O/tlvugdyUH5LHsVYSuoCKfpIEtRT22GWC3nOmujim1z/S6sm1x5ZykHQZbJfrKG5n9C5lmui6KWDKi6T3lQ5nddHybYw89Epd3ly+SjUzXtzA6OlL2uoX8mfbb4Xyttbvi+a18bk3rb5hQmLyLWT2frWu42w1NXOlOjFRUo57BfRa7mWa7mWa7mWa7mWa/k5y934Ov7am/8hPrn5/pdNyrVcy1e2fGGQkqa1aLGBdmeUCFm4aYTDA3bDRwEdxdFCDeI5mpDgBDGPi6c7ETvMdWeZ/jzfFvKoQ+7FFuSN59xQ6gZN91Yc+zWP+KROgrxVl9FEfMPqz0mmXYJvjM2jAZijI/8WKVGBPHqS/2AHxyCxSDbpEojbbzA6isPvSQ81MEUbyr5jctzWg4R6SOFOVT8QEhsDAiJqjgCxCdY9s22MKzVEwUPvpjo8AD97r44gd6CACEwz7VrnE7e4d/2o7CCydHQ27kKWZqi8kFGhlIj8XMbHnHXuuJ1+k6Qh5BaWOgkO+CljFfz1m1lTTxLsJPM8CDESjzSi9bM5ceOWpTtB3JEoxgN3KIlHnlBnQwQ/g2RkluI0Tvkuzni2kXCATHU+e088+jmg6cHEo7ZoPzLdGMIxWOXT52OMq6Tzh01bpEPT26aIwAJRgIM7QsNxa04hx+1ESiqriiXBkw4uBHu8mKSvESAtU545oIsIWChv/BIESzOaDSDjAc8EdtDu4xw3ZMOXqTPK6wqekQLsxCKU2LuEnn3xwxFLZ+fjEXOI3EknUafT5FnL2J1TpqaZgTEGlt7BIDAJqAEP93rjknrHNgTrNrAcFj09EMCBnSxSs9tBoCnSQqe5pBEUHGNKQYE2mhPz8XFAWsdy2wPMMmQA0mNsxZzzNnoZPp0AEEN4AOiQjXB6wzi/FdzcLHjxtQOwMNYT4dXHJ8gKtCPjvW/eaurCATQmyCZYH1a8fO8Gh4M6gRndZKyhu+z6PFw076HAQGysvNhEwKOBhzmBG6H1IzYGFtbUVuu6Wr8cbiSpG6xL3aMOGQcbkUVQk5xPkr8jppzWOCqIzPg1gLi12013sSlYBXnaGm69B5GBN3Juj4FIlZhgjjz4AhKQKr7ewHWBCb31s1Pcl7c+1n4gHOg8FPiTgDWJyFCw2+zCgibAL//Gr+K/9z/6H+PH3/81fP+7fw+vX/8Ap3VT8AmrrGRfxhRRSOWs2ZxvGEOwricsy2K6RNMHEAjH4zF0EAD01rFaSo7j8YBmafyYCeO8hT7VeJTG+9I2F5AJCRTMRgSRYf1UgBCKLtP3KHibwAm2fowYb0D1ImOo7rYIZNnv/boVK2f8zcwRgcrX4SlC3xN11O/i4MTnkekqGePiPQdZqX7h0N3u4M/UaxT1+nqs69nu1NNlqzXT66w3wE0kwQqYa9KDJ3o4ZIBu65/zwGXYOgYRxgDj7RvvS0NrDcuyoJFgkPNC53weZKQ9uOfTdFMbqR80FbK2sX/3K1nKIkC2KCQEmt7xLOKD24++3/AFLPkj8ysAgJaKxO2QqXg9tNNfl8SLPUdU11TZRZix9anadtFttxPnH+KCw56u8mXY+P7ZfovDfZt7PlMne8tro9IGTazFPqJjHuhRHP5VGmYuS7K4VhkEIwhzfu1rmAkFqliUs8cLLgE7gBJQw7Ne7CkoqZveKiRmSzsellcnumo6s4txqjwh2f2dXSoq4CmCL5r3tTjaj3qLHUB08Z4UWmciMMll3bu5wok9KwLXbq+ZjXGZAXaiaD/E+5J7vPkyC+0HptTb6tcTTTlP3FaTQlOtl/ZsKM1MY1jaFa8TSHCQ5O/OKSrEOwCqmU0P3wOV9p0H/n2TXZv2Y+zTLoR2pqW1fCYvTlGsIanzZp5MajDGoWjr4K1fWvE6i5Ip89aP4sdmEUoOtm9gNl8DFb4Z90p0LAiFW6kqspIZM782+1VTLjW0pdkeSyvwvsX4U7Y55V4HAIsmLkzYzgJZCbe3B9zckaaFHsD5gTFWQVsEd88WzWnsungQeNtwc1zQO1JZlLWk8r6uYLLjo/JLfxf4hal81tPlZhH7W9DvXqIdjrF2eTtVBwli5tlXPsJlXsX/uExSzP/aJ7HBkOiID5TV2nIM3ddR5c7XNdnRF1WV8Qv+2Q+6RcqexP5nP09qvcgdSvSPzf5shF+n/yY++uu/izf338BPfvA9fPLxD7ENzmiY4vacfh5mn6f+8f9pMVbDZdJ+Uh9HS9vC9/nlctJk45FkODApUmv7MfetJH/st/Jd2qI7Zsr0145p/q7a4K1Rrl+EgnWpSk3m71B+s5rFLiZcLhDzs5Weaq9JOPz01wDt7WyVWP9NmIg82qw/v3+n9rleGoLp8HmhqoGgRAc7/IIQXSdb4YPsJ3rQiRjLsa2zkhOXk/27l6P2rn7MPLGq5Wf3/1qu5Vqu5Vqu5Vr+apbD138F7fb5l03GL2QhEP7rn/9P8Tsf/Ac49VdfNjnXci1fyfJzRVIKp4ank0ANowu4W4PIQR7umIscNrmJ88Mwd45IHtJEG0S7DbPEDXt1NnRz5LVwkDTboVPZYPqGfHLEuMOrhARWWsQ2aNYfAyZkpgKLltIyclRrGd2j3hasIaOrw0kzmgcZ5TPlvlPENvwUdQTdT+/eM/1P9VJIfSfH0YdAJDJ4RaQeMg+QEBL4UB14Yo6YlhWHQ7XQo4fi4Vmc3m0WOcgdVzUNlJj8ZESO2jfvVrbmQVO8c9Gk5oJLIIHz0Z5tVJxHlOnV4nP1pxV++oEsUTa8OxuL9Gv5nYT8hyOfUh4nJ7/WqONgIC+NDFXGEO4URMi7H3DG/1ZanR5xh2GNCoA8kzC5UweK3/K0+db8WYokJgKAHAQhtV1APE2bR0uK0O+EcBADBkZK+Q7npChIJzByNlA+Z2JuGi+aO1ZE8sDCaGLN3BjAHLIWw/lNQPfoaYUOnxPN3qVGaB6py+TMfYMNwOaRjiTTXwoA6jqeTYBNZvkOx6nLiigoqFmYeCmnRCJKc+iGehgUDjOdS/UGqwLY/C8bR1OkHjmqtYxY09qSKfhA2M6EbWU8e3aDwTq3l6XrO4wSNQ6RNtDlUIAEI7p/zvgc48tGMwR8EpwfN9y9vNE+kIarnw40RVLWjC+emkwBQgKBAoNef7bhfM94+fyI2/cJ/QCsj8DD5xseXg+gM375V17gcPRxZ7A0vL0/4+7FguVIQOsQDAOdzgcKQZOH5bcb002Q810A2XTwtrHpLWVKvS5jqB42BzcsPDwgdvtbowt6OioFUbgsG99MBOKWOKmDfhs2OECRNVUK3Wkvi0LQbcjGiBRVVivzl0+OZHYcMOUzLv9sawE1Sy9nghbrpemeKqteNZe12/2mDhhSLK3Nk6HKcqwbPv3wcxzvbvH85TO8//Xn+Nfe++/gg/fex0//5Pfx0YffV56IgXIMTAKTqzgUMZ3q6Rh4CLaxgRl4fDwDsJRiBoA8PZ5BRFh6j0MNvUULjG0Dk8mlKVTXYUDeRIfNW7cB6lIOSvCNAMAQDGy5Xs8iOTvbSWXLlVsFIfVlQWOOdHRELVKlZdPeNlz5xvcRsYgIHhFT2yfoQYzy2AHAsL5VoJSUdkz5x8FBrlF2KACxND4aDar3ZvU5HUvQJQbYYhkqc5Lt9K7pQFnYziMtLYa3EUAoRLo5Irc/CcQUEbe8OL+dFinpIwAGM2HjDYAfMjpQrxoLafdVPuXvTwFsTO9PaZe/wsUOs9NsSuVe16i0m2CLS/2t1pX2WFyiKPUJEoAc9kzUZbIMk1dKWytMvDBPatspy7FPCbK9AYnn8keax1sy4ki1OczcCZvQ19Lsd9Kg85sK/5A8IWAvLkkRYfrVPors9bjTOtdTbeCwX6zrE2DGvzf7xP93apf0W7KKgu1lffH1q2yHQhc8WWK+T2qr7EOBiyEtde9/Dtu2fjbESaUJhc6igqdSzuajFAm5GOuQ2/q1q0vMvLrkw1zjJRiOYg2hyuDST61mZ/vIboi9TwVUElOX6rO61459D3LP5dUHRkSSH23HmKAXmHTixbDab1y/3zF/P+cDL71/yGyf+luwTOY64p8yj/13fz2ijGI3nkVNVFJo1y5Hg1kaIezBkOdaX91PPyXzRQ9EH3YyfPlZLn+LCu0JMjuENfXp4dhV7+3s6rr39npiXArZ3i/UJZQQ8i4CYAjW84bl5hA/kw1KFfWI2Bd8mnslTGAhnB4Z62ngeFhwe0toHRgbME4M3hgsjLtnN5ly2epb1wHqDT28bhR017Hxz97f6e6FDU6kereB4XjZ+ZEMIbMMXAbb8QZ6G2M3VkUefK6GyVgWkb2sVoCER3FGGUfXAVUx7n0PqX9sLTEmcJ3gQTCBJJMai83HBAgj6rkQpGkJK3bF1Fd7jgUDZwg2PHx+xrYOvPzgPXwL/yr++uF/gO+//Pu4efYM/GHOperHcd5PegUa0dNttDEyPTTbTQ/3gfKwdHABdJb8bzAGl7b2CiOYT9P6IJUJO74SoHuovTDOHMSOgzq+LTS97fP0jSFD9+aFJzGGwfP9ZEeuRaU9qoJVF9bo6l5ZY16HeddWtD0vHEM47C6vJNPvOQf3Cgcxbjr1Ch84IxSJz1cDvKUPqO7J5tFC5Z395DYSQLHHfKL3/4zyM96o8yYU7ruMi2u5lmu5lmu5lmv5q1T0wsPNl03GL0Q501sM2nDH78d3/43P/2f444//Dv7+t/7PXyJl13ItX93yc4CU/ADIDoQwQGgW9hsg6nYjSjfGQqyRDOzkmloH0PI2O7lzQw8ZmQAPm6xbQEajZptIPehyh7jIgAihQQ9fyQ/jSA+HvN16211phzmFHBgQ7hewWB54DNvU2tFn9ZpZeAwW1rzxVBy7SKeOdzD2drYZ9qOMcFS6JygccHljzA+GSebb834gL2U8wqFUbv6Fk9QOFqXlBtgPIHwfKiC7pTk7L4jnfWlrSMCS9y82y9ZPIvRWWEb+n9UpJTITOcaigsC83nQkFPELh2+j+cDmwtFGiCgtHtljekHcqVAj6iA+Z7+ectKkY6i1SwCV951Fo+uEH8zlvfnNej8ML30wIgoOMA58OlnKMKgTerA68fri73g0BRudEN90eDAXmSbAwnjEAXR3eguvnRORSg1i7dcxFjsQ1roaCKCGbSh4hNyR6A4W0Sha8S65I8mBAyVF2MR8v6mt/WMwyHVMpyDcDxiGhVISCMAE6hYFTMPzhAz7GIgYaKqkJyNQ9J0HY2ktooV4ujrnl1jfSFocPkcaAzu4VtK9nw6GKKCxonJExOhpGBvHuLq8Da080huKlHkhyk8WA0X5df8iA6YR9CKmkh6OMwWyDIAbzvcKSqIuePtmYFkabg6qixs6/JagymvLg5Tq/7NDmgbKA/oeLnQlbQMe3pxwc3vUOSlQPTw8yg6jt4zYVKM+MFG0OxgY3PD61cBnnz2iCfDe127Qu2A9CU5vBtrGeP4ceP7152gHTQXVu94Gv397QoPg2c0CamIAnKaRVuD6U+KzHxiwtW2SCmIJQJGPH7k33eSPBGAeYN5s/eLpYFhTCHCsNbC56NPTdYtMw+upHwC/sas3cRER8iAeyYdsxRWQhb0XA+AyFLjGXs+YD2NFEIBMhjpx/TZtZNxjHXOYjtdDNQNDGb3D07uJRdwiB62pPAZ4zpQT24m1DNWBvA68+vwzQAY+/+RD/MF3v4Ov//K38a/8a/8tvHf3EkRH3Dy7AR26SaDePGdbcXyNikg6xmkNPmDzjhwwIqGreNuA1kCt6/wWi/JkqchgfdrOevs1IuKUE5HqvCf4Op66tuqnjB5kUYzWLdfWdx3U29u9dSxLBzoFfcw6n3rvcPCTWDSnKt+1rtCJItM8SMd9iTzptkIAiWagkv/betd13dO88cB2XqfDLI0GNS+0PMaU/gLIlHnbtmGwr3s5bx285RGbGAp+v7u7gwzGet6w8Qq3FVkG6AAQWhxU+C33sGGpwaMZVRsweGCHUiJ5uzoA3OLWIgV/84xovl0tVRiqVeJzsiloy+X4q1vqAuH/kRkU85NkNqvbx8WwceU32drGRbgtW+F74volW/Sn05iZbD6z7yO1kQ+M29jOeI8gpPbIBMGW1PVT36dDu9SnM731LcnXKP9NOxzTmCvd0ZFdH2da5vNDKRVcfJyen6ejXNjZU3Muum6HTOhz2Fouu3YpxjNHZhZtouRNfQbi9kxpO+iSeNffc1VTZcnIijri3yJ+EQlsz1b727NCTzTXfy/k/d38pt3vvi/24/3ox65u51/OD1tLiuDshzJ5Sq7WY62vfZU9sU5Dfa7OQ7lsT9ezuY55I6LFTEzbT+xABqXt4EMRSQsIO8+bXRGULGM7ejyleQBg4GmF7WuvV2Zaqkqb5i5cDnOSTZE5jAkSFWUdUjqYl6CyUbaJn6ANZEpp64O7NCrvuPggnJPTLrXQRlXYavNFQGo0Q9+JAWrnExqIBOdHxhiCu+eL2ljsdrFcpPqs6mKSdJfrUD+p17Z1WPTCeDrlwseMsm9S6vJ6HaS/ngXn88A2Bm7vFhBpirftLCBmLAfg7u6YFzaMwrGpMX489LI+pc0upWPpn0nZmHSYddLTahHMTi02V4C2d/IVsrLXyaXEtKtCXPgRX8vl8zEdY62keKfOybp+qJ7aEyIT6bNelkkXx29Fx0hMmp0erX+XAZrWMQFYBn64/SP8Qf/beFw/x/2rR0AYX3vxy3j/xS/h/uZDQFj9CTVcdLWZCebHKXJMJQ2x24z+Dgpg3RBuyk+dOexAPv8uWPbEIO6Kz56iLssApjDkRYJqr1CsH7VCgkcG9hYkfBaZQlLbSVUq2a8d0RT1XurB/XqTPkWbH5SXNwikl1l9Xtu4MBhwH5lctp/fqB/Fo29X8FH0oaieiTZPc02EvizorWNbN4u0KmVewC5zpb1fQVjVap1trBzJ/fq1M4lTZ4pM70YffkZJHUrhh7/k17Vcy7Vcy7Vcy7Vcy7U8VQZW/N77/yH+7rf+Tzi1V/jg/NfiNyHGnzz/+18idddyLV/t8nOke1NPK9st8HBeUYMe4unmWh1fLRxiuin1w2yY070ZQENvA7GnybIdqudq9w2cRonRd9X3pp5AFgaBLR97pq1RR8ym9bkzztKrkcffFgY134we0IxGkKUqijzrDIl0V9D33UkiBgog3zSb148BUFO4k4j54u1QFRbDReZtJvtt8OJG0TNlTcNTD601NUl1SCEj5ZjX0fFKHr0iHV/zRtUdAurwtcNg816S0+kHLJzb3HwnncXh8DeaPH0Q4NGjzKHufTVWhUPDIyFAgQLuQ5p8oXEwqjQ08kgf4bsLwIDAox+kXAC1zjKODUBLZ6xH+GDhAI01GBACHtJcwTjE3paRaL910ht/zZhTfRzVwRYyYLICFR+EY9fTLUUoGYskYe1FWiByoJU5tMIpxRHKJlKPuAPDI5wYj6pf3oE5IuYEpfTbDxtzj/Dkc0xK34hVDtmnNmW/4ny2+MkSgGBj4IAIc8DGYY8A3f5lMrATCLL56AI00kkamDiC3mqztgf0c68nVTBABTvIguIcsoml3WMFIWwjD6W1H5pybQyL5OQ8j4/NZMv44mkeRKPvEBws6CAhCd0YwEofk2CiA0ysJXeGwuuBzWsJ/ZtROlAiYpHJm839RpYaCqZrGMuhYTsBf/r7H+FXf/PruLs9wtNWKijFgJUAHOQ0ROAnOS7qDqIRgQLkwEAj8CCcTgPLzYLDsdtE9eesU556jwTDAG0kAHWdEw2AMGNjwv3bDdtZAQUvXh5AB8bjA/Dp52cch+DQGe998xna4n5MwTYE2wqcV8HzZzcaMc/6IoI4WN0ffDfyMUvd4SAdNj0zNj2MIQGWpUQzGLquMm1AbxZlTuxgnDBah8VZSue+RXYJxkp+JCkO5XjE9Blc7+rccL3J5ki3IGDWCEp7SNAuZfQwiKBtDgQFWk/HsQzkIaIfwJhOBJVUbTbn9HCrz4d6mNti010eK601QAZhPD7i+9/9h/jzH/0xPvmLH+L1xz/Bs/few0///A/wr/63//t4/4Nv4vT4MQ5HYDnqYScP7RMR0JZu/OAYR1MDeHw8m6MW4LHlIYmofcIWIi3GY2wYQ22jw+EAHozBK6hE8oE7fc0eqieieqjHajdlwktcht83cKNZFQ72Q+G5L8FEhL5Y2jIx+8fmPjNDWsvoENYvV+RpVuh3vgy1bqACGKCMVek3ahBuNqkYgg2NO6h1tJZAJWbVPkJ6qNDswEcBpQsaa/o9eAo8sx1IPF2wRN8AjXZ1EXnIeOEciyiBcDm0qHS943A8gjfGtjIaunaUDJTu4D2PkGTttNawrSMjZMF1SSYfilGjQpPZsG4rqU1s0cgkb9QjbF+rqXTN/6i2UZO8WX24+QrfcBJPS+dyr7ouzaFyNF5SEFbjibwetxHgdinmugSx5vnaSv6CcY+AEOwEIrlidaGneg45H9rYJHGwGdmFiYuTI6M/YyP5z+Wb2ny0kfajg5ynaECY5aucD4e9q9/T9GzVtUkLQm+4yp8oqcq5lApmFNkdGFPWH41J+Vx+qIAj59R8iFcP9eZqpBBP+zYnWt/xfaVh10/Jpe2i/tCz9lrsRXbPqi7IPVVsk6mM00xMfNz/p7aGIC92IPR/SK4RUaM2TYettblWlmojKsAbMvNsUrGVaB/raWz8j/ySPC2YjXbIaaEzZM9ecxxDpvrayWgQq/9Epj97tmiap8tuzsiTD/mc1f9V0JQSUOWwiGpVM3O/gNjH1mjLUp53fVPnaSHF6CG478W/rzKxn+C+336KD06HrTxJ5O7hSuP0vevamPM0keD7JGZGWywy0dsV2xDc3akhHmq36MIYb0KmbgddjlMIk+4NxqZrdFzkQeD01UdVLlQpQINmGfTfLIKSCPSCxu2CdtC93uMDg8fAsRNunh8y1SFsPWLCugkOS48LAlKYEqyNfZlxfgJGVJmRkK0xxNJOO79h81VtF39RrCMS0yMvhlQa4rt3zO+9DqgRAKt+2Y+L+ol273q7ZT4DOc9Dj0n+Ps2laaHCtB5TWeu8Th//4H+ti7I6BuMHt38X/+X4v+NHP/o+Hu9f4/z4FiCgPx7xwf238cEvfQuHvgByxnIgbCsierEA8Cg6CozJ/QS1phGSTAe6rbff81Tbwfemqo8JEZLab3GEfaLy+w7FlbyoH2KwXasVeIzLY1GrFN/7fkciinLVaVyVEeoASo5VbWbSU5Jrmbivzfa/voKa7GWbNLUPKX4t16yOKHUgUZD3bm0P+BxM7Sz502TzhM63ybi/fBIOrKj3ouMx1qHvJj5acf3mv1DRWVLHcKZh38enL6Hsi4BZN/Kt95/x3LVcy7Vcy7Vcy7Vcy7UAClD6T779b+Bv/fL/DtxWAMCPn33nS6bqWq7lF6d8YZASRezzBImQ3fYRabnNIt1gEzVLF6Wn6hFJgRocpKSRGjx6UnHOhWfSHYLNDoS0Lo2K3OOmS4tNuh/VNzRaYiPsB2m+dXMwRDTl7QIg6uY8aOYN88MSpScikgAAeEqJpfQYGCmcRmSh1zP2t7BH79ltG+3vvBBH6KTpsqg7GEcPYbS9dGLVA43psMD+p25DDdsQ3K1OovAvtnlMgQg+Y797zCvs977mZJHcPFv7FuhAERuUhw9+a9PH0wEa6sh3h0gyyenpcKdeOi7D1WLjRnCQgKQ3hBTw4k7YTgTp6jjx8dIshqSpzIxfnhbPafBUY1WYqDAt6UnOUAvokAVHkXgvD1CtihKhxJ0l2QUDnzFmsEId75bOIh+PVk5W8gack7xzVhRHUDPHiPp0inxVj40BJzxKRdeJn05LwZQ6MByr5KCqQgPlAQ5BImWcA0A8bVvrNp+sX+4ga1a5HvxmCjuBRlfqrUWYeEimmmBjT/O+iUR6NZBH8FKgks+h6ooK5ysB1DXalcqRR2VR2rv1Uc9qPAqSO+9m/REHquEU02gQOkfymQj7XvyBmoqSUKrIQ0PK8PzENlZwXUmql4fg9Lhi6Zra7XwS8Da0GetIgJ5InYXsNZi8abS9uR8CBZgp71VexmlAtoHb50e0rqnz3Bnp4eJFcs5V0dPoMw2bKGjyzWeMt58DN88bvv3tZ2gL4TwG3rxesb16xOGu4/k3n6MfPBKdAmPHBrx584ibmwNat8hlBobItrXRTH+Y8kfV8RdeeZdDNkAhpYPVDw6YYSHNtD3SiC0R+cxlxFZLT82XjtykrPcEthAQzznOK1Io2HCI0ZvOZZcn56vJto8BWzQSqfo70y36+l9LyAgMkGQj6OHwqZFFcUod5y+QCIYIuq9JNpdg7a0r4+Mf/Sn+/I/+MX7wve/g9OoTnMeKTz9c8aMf/BP84A9+C7/0rd/Ay7v3sZ4/wfHIIOlYz4Th6xklH5x5Hl2Ih2hkSPFDBZ9E2Olz/a43BzSxgvaqs7yRzTk9qOOoc7eIWok1loJjwQNym6KstQBFuoLMfmA6kzcINFre0hZdb5nt0MRvdyeQzcfLgTRiD7iOz5v+EgdCEfnNZduHUQSw1A/Rt9YiGsAYm0oGKc8bNbSbA3BSMHoeK5RDz1ZBHtnPeU2TtIGazg22CRHHzaSyu61n9LbAbVyVCQU/9WVROYjpqGM6xii0uePf5Z9ybE3P++EVEWz9p5Ii2HWHU19WFsLEu/y+rMUQCA8FjfeGw83Plc35L7fQxQf9RFSk3GwXIPRrIBSmU1maR34+JZ7aSatML0nAxkF1cgHTUr6sb+rlBl9zi2WitEm9dJA680Im6fJzcgCpiOqjxb59goE5H+z7BBju65XQra7zLsiV/H6WuaKUn5TDHWlFN1BlQ+2bfTGPr4TdI26hl7XAFdMTnDU6krdBwU5cRHDJH+RIVHZ45+Jigv9OM98rz4AUwaCTKr3Z+GS608ymKir+nmnbafq86526Aqs9JtNeyV/YDx3mpbtOs4tSUz1NYr3jpf9BO4bMMJOdknN+i9sN2AltLEoFxFD66QPlMlPm0l4OfQ1vKbbZ/tNdn96Nzz+jK09PS/cfmN1Fkwq44FsFa9S5PMlB6UPgNErDF+feUtr09a30Oy//0NSOD+UE1mwodsc0ZSPF2jY40lWvD28hkgDq0E2FPpGcJ5UHNdN12CS1W4Mhg3E4LhNPqfBQCv+q7qu0MID1xDg/aJr6u+dd9yciWDcBrxt6Aw7PZoCS20Xn02aRHtPH5ZdCaqm+A5G0/SirmxgT8D77ruoEj4apNNi/lHImKDJXG7qcfj+z6MU/fZh2PPQ9BICLf6floH5Xx6PQQTvalE2maXa/xTjXeb5bfybdHdQCgoHv3/1d/Pb6/8Ynn/wI968+wvrwFoM3jWh7P/D45mN89OM/xs3NMzQBeDxiOeglmzFMQH0fF/upbNCtmpz3O15PylY1n0fOnkAnZR1v5ieUrF2rqk6jZBxCf07Kpmru/GaGkaYeE9Z9KkgvcKnTjOzyRnllUtl7qaqLkET9VQikKpH925K8LK4tQDxiVabWq/v5CYy1M7hSfj3iZpkc3j9/xvd2FhGLYqxNnqSs1UXoPOqreJ5CazEvojzBo/p31eGuT6au7AFK/7zlKbqu5Vqu5Vqu5Vq+/LJ+9lMs73/jwvd8LdfyZZSBFf+/X/4/4m9/+38fAKVruZZr+fnKzxFJieNwZgag6MZN/Ve+AWxxmE+UwB2IHWzabXp37HsUhTh0Q26CgZaoIqRjpUUOdC67U7G0G4BIB4ghZFGZagSnOOiHbmZlgKhDoyyRbfYBByN5ZBdCHsapj8miIsHSQ7GniSK7+GMhmUsKJne01hC/NerRFPq3bD7F0iN52xqxIp0IGhHKHZ5Oo6TTSMyhRIR6uOhlOn6n+Ya3b9z90IIhedAsxVkpDu4x8MiFDNUuqHOEzDdJdujujsxOCcLZe6yGpSJqSAcqyF1vJeqMEUYePUagkRhKZa3l4T0VB8XgEsGKEFEzyPjuUVJ83OIACAl4URCI9R3ptPP0UQEugjuadCydt178EDMdqD4QNDmCPBKTlH5MQLZ8O2TG6/XxAxJb4S6a/eEM7P3Z4WSEcM6Xgrazfx2YWN6yW3iAgnfCIUlA86BnIZ0SY6/zU9uDaLoocdBI6YPylTxblvK3NbA4yEPlwaMq+QGG4eiSD8Xh4/PZo7o1JyOcdyaXLXlADHTFBMQYdY9+ZnwRKjdn/SB7WMS4pikv2VPGiTkJPaWm0Rs3siPlmI0hKCLsuK9QgZ8EGTmE1MzNZim6xqoVLceGdWPIAHpjHI/NHO0MjygypZrzoTeh8XGV8q/+YUkgzoz18YznL+5ARW/l3FJ+bCzGwJTdGj2BATzcD7x5tWI7D3ztG89xaITTKrg/Ky0v7jo++NZzyFGdmC4XwoT7NytaazjeLBhlIF3XVYCrR1tI53/KjKc19UNxEWDbVjgYpPcCaDSQBom+x8xYtw3r9oB+uDOQCEOYAhCEoo9dXzcyQB6RpadI16IQBWDR4GfhJFe9bfrRdAhH6tAEmnIZ3JBzEUgrwGUYSMfAVU5fAr0MLFnn6A5sG2klnZ5GAYz038hEhzfBp3/xI/zTf/yf4Ud/9n28ffUJ1odPwdhAPCCD8ZPf/xQ//eM/wOF4g0bA0geobViODcuhY103iAwFFdkcibGIg4bkFSAFPFR1oMkrqV0wZGSUO0ScI7TesfSO9XQGMGKWZoSzonOl1p00KF/zZm7eTGZABhxUDYvyp3hrZd62aYTA5XDQdbQ3CCt4qbUFY1MwkeoXn6tlobEWnVYvaVaYziKCwKMC5dqckTLtQJk10h9byr/WzChoujb0QwcGZXqT5vyCRU8Clr5gWY5Y1xU8RthukXaP1D5qvaMvhLFt4KF6q/UONE29sa1nO3Dw6E2WamNoiuE8eJKI3JSzzMXhHQcE9q6DveEpQePnS8Dau24577+vh10KJBx4ePPmyXe/CqVGi3D97t/75HcuBCyt6IipLjh8U58mmwuCHA8gb6fHgb/bUZT2RRpU3nYLvTafA5X5EGNY50TLtdjtDLdBA8ab9Hun3DbzQyb9m3YHdXMklLTPEjJdI4fqq4KpCkmyHYQfBJTi/FO5ovL7LN8TbyWfefJwWFCioVT9on+UJW76nI1hYnuVhzistN+l/E6lmSJcZQ+jHyIbbpBU5uOeTSFLu/oKb/fsSpDQE4O4r3+iRYwX5YBVkj5ymd6NjUtB2mKX682eP2lbXFQ317tfq8K2q9FgJPqRs0sbmM+sJ7hLRlSxL9Umv+xbAAft+fmReba6nVxICP4QzGwutktp5GJueFtlG5J0CKa+yb6aWne0PtNeZTX65ZOC63vZR6+ziszUsCTN07ru+sD+fprevW6UuS5/R8o7VCoSaIrcweiHBSyM00/+GPTsV9HuXkxC7yAerzfcH0U/TCzcT2wm8DZwc1guxi3or/NWvEc7XgHYVsG2CUADN7cHtAaMTbAZz25uOm5uFkgvSs76sK2qh5dDR9pos2BUXfWOIUtdZGnnZD1hPL4F89AU7UXnQUokG9H5PZixns44Hmo0l9THlXU7CvPZwhzBjt6n5BazitvLyNP1O+dSac86qPgdC28qve9UWZJztM5BlWH943X7MX4ffwM//ekP8dknH2I9n7HxCpFV9dEQyGCc1xXr/RsAmgZdPQhAX7rKeAWJ+ewWA61fLEKFQHLQy9wb9elQXHIB/BKf/etRerYt3krBkqwqGJ2TVCZpq3yUMuayG6PKUI0ErZdn7CaiRYLS9Onq4PEIUrseTwKedm2VsBzviBFU1qfcn10aG2L+Ar3opl/3bunimYtd5fYSBR2t+1gO5CWO8DLqWDUFt5NQ7PX8siWg+/qIvqoz19oeCBiiraEZpbXyw3r9pED7EKTtW9/1B94VMelnR1DaNSMCHuOf/eC1XMu1XMu1XMtfcnn1nb+F9/+7/xMsL3/pyyblF6qM+8+xvfnkyybjX7ry42f/BH/72/8HjCtA6Vqu5b9y+blASvpvumkFAxADk0wORwbLiFAorQBErBIIsUUtyXjbAkvfhTzUBMTSzADCtiEEoI5+2zSJh+ghEHX44Q9ZdCVNLYJ411PGgDUSku5euzom3YdA2kYcGArgMY09R7w7Drx+PRG0/N0sYBpoAjTqEGkRjUXZRyWMsrbTezfA1t55NjtW84F0x4TjpTiMPWJ0fu8OHgofhaeC8ttCnhZAmBGgnfBWK0GTMzs5r+M+HATC5gRsQWX6SCQdriX6hAf2EXOsOXginTZ5Q6vWxQCoG8jDHBEOeMl+lrq8jyKwTIFobNFO3Plgm382BFMjPcStDgDf5DMriITMAe6RfShyOcxugzi3rjyxFC3hlDCOhTOmMJBIU3Bd+LpEMqS1yQizpt9JPnq9GYFIRA+tG7XJsV59XAoqkAgH1MwTnodCFWhgTimxCDr+HEgdVUQB3hGRSIsGm/Ota2SlZJM6wJz/nqKMyHBafiBi/aDW8jCDMB0JMgTdov14Gr8hErdcObzhHu2CFawGjcBErWlyS0nAn4L/WvLWTqE8lRYAYAjY5z8hDs6naSw5yMx6kE9lQFwnKiBInW4+thDZjYFVaykN/OB2GJAywBPikboAd2j7/OZN8Hh/wt3zW6MHWHrD8bAYSDSJD1ALeXSqBHuALGqSPe0p65qtA2N0nB+BZ7e3WBYx/vpRnDsg/UCEQu2DgCG2BlHDEODNq4H1Ebh70XH3rSNuF+D+7YpH0Qh0x2PDy/dfAgtAw2TQKtzOeoDy4r0baLoIjaLT3FO+9/WCLLqKR+pKR6frK2aGUAOxgLdHiDBabwkeFMHGwxy4EnPydDrj9vaI3hc4yLaCGj1CT5UL2Hc+Fj6WkeaEKHTPNmav57B+qLxQRB/z6FURjcz6xgwFvUneyva1pJ7QxcGJc44S6OGpcVgSUFUBmiKcgEST5dSXyquHT9/ge//ou/jRn/wAj69f65reCU3zZmGw6mWcH3E6vda0HzdHbNsKQLC0BctywOAG5jXWbo/yA9HoCvUg2BWfqsN6eGBryhi6lltkRaKG3pvVOXyqFX2MeSx9nptSU+BURmSK8dUYaaAmAcaphyOeWyT81ibGTvvgDWxrtTvpl9ZxuD1i2xjnU26uEkBtiVsJ1kfCGBYhLNSIABjIdAaaQoM4gXkBzhEFAzvIc2wMJkFfOogalsMRrRHW04ZtGxH1iUj1oEfNYGZs2zb1v/WSUszWHLH3lmXBID94UDtxbCVtG7n9qNRvQyHpeiBufeItAbkhGy7v5XskQDwfKOtfSvxuvuS8quNQv9+DoXI9kdnQ+KoV3y+Ik1uNOgowuc0OZA5K+zsrMtUsMaf022owRS3GH/vNo/vFd5XxiAGdo73kepQ39ua1MP/LwSQ3UOJAqX7nFM/9mj/b+hctpX6tRVxX0bxnCB2KtNmnVnZd98sGs3TNnK/fUKF+eqcMA7CLDlLGP2jz4fBeu3xQqeaJPtfv697E/57mVeWH2ejR18qHwoCSqWzaZ03dlAJw2v1W+xS62FNblu+mpbLSjy9QBGXnUHhQ6nV96fXqdwg7/4LoSrjJ1lORei+ExU2APfH2fQCQdn3ddafYvzLJkm9FYq9expjKWEVddR20atpuTCeNLfmdd6MO1YXMWL+8u5PGmPjsO2Lbq1ga2UqDg+4n9sncn3ghzrmz41TaDNZZatHQHKkMZ3ktddRO1HV7isRVafY3XZ5K593nMLaB5dDhtnI/HDCoh4+lrl8yTYKZnt2UD3r0EQUHKfhY1weuaS6r/O/l1vtp5sx6EpxPguVIuLk9ojdgPQ2sBn7oBBzuFt1jcq49rlvGxjjetGI34skS24syz+LLJyaHrGeM0z3UvuxxycDbF7NdIypl6+hN0w+7H2wvC84b38rVOZYk0MR7pzl0daFVXC5NK5HLBnZ69IInuQikLZUMesKMinZmwrJkyuhdO1IAjgJsY8Obz1/j4c0jCLpvi0uOuuG2fjKEzyAIeHTtkz3bWlM/TLG/9J26uBQqin6dx1ofYjdfWzOb19tIwsMOrQudzz3/XwECOA3EeLi+0AtySkP4tipo/gnZpWLjaNpyj3pqvCCyyL4U+9vLevxSIYVvg31DsHuu6lSylI57fl3oXr+kQGR+urwMiv8/e3/2M1uS5IlhP3M/Ed+SN/PmUlvv1d2cac2MhuSQooYQMIAgkW+U9KIH/RfSC5/0qL9AEPRGSC8jQAIhCBhoJEgACREYzsIhZ+lZeq3u6q7u2nK9N+/9vi8ijpvpwVY/EVmdPV3VmdUIBzJvfBHn+GJubm5u9nMzkak7XqeIYN0CvuB0yXbdzqyR5VuebYkimpnLQp9/CmOeTHK97s3nBJ92pzMS1ostZ89fOCf8G5UfRx3Xci3Xci3Xci0/5tJu7kHL/ovuxk9d4acHjIeXX3Q3/sKVlY4YdAUoXcu1/FnK50/35oCdtqTRnvzWspTDGxSEYLfi9RDmB0N1vKtdjTUthdUlGGhtZ7aIAYDQ4Y5/NgNUR7N44iwDjfxuCgAzxhDcmTtQQvPoQZLcY0/Wr7SmEbE6Y+Owlwd9sneUBmHascP0MEelVqWpTsgO/BRp7hqhhF7OEtEtGoVBhAAMp6lIpImC1WtWN22zWves/gpwISC81O5T0b54yiCnj6Wg8tLMQHNmISMUX/k0HHeiqp+e0nAm+WAc+Mn7Y4d5dgCGH8GNX8yxqMY2HXem/FLrWYDgIBmVg7wxRKotljQCsJRoUGRdMt6tc9waGSimWhGd3BKplbwdN7hUo3E1ArrZqtnzul4y7ZZbgKkpeKYXp2RFEE2GumLUHEPBZc3WZgREAaKeGg0t5sSMSGmMyQhT0Q7FUOBECAOXvRqRTmwMQW8HPUSKSOXZAO6Ju9wRUcNkFOtdV4e7RwsqtjEQylKnPjkUgjbIKGdcgFOA0ngMvQupkZ6K8ZYTNDhEw5o7wEgNXAZxIeeRNAYCc/SZZhOfjnBbM4WqbkzyKFY6L4WmlmaLQOGgqEY0sXfduOx8o/yuc8IECGubSc80ZCkogjBWxs3tDcRSH3ZSnnSACAQWMcfRWJGA0ZZ8iRZhH1qDhchXnmduOD6eQNTQ9w1CK4gW4yPKNI7GMy4HRDySmhpA1xV4eFjx4oOB/R5452s7LL3h6dWKjz8+gG4a3ni24Nn9zjL3CMiit7ROWE/A61cH3N/v0GgAbYFIU4CKbUEVY+rz7FEAeUgagMWZx2mskVgGH9GILaILGaDT9o1YDx27ZY/7N5/h7u5NoO3Q2qLOLIalydD6yfaUUebQl4vSi3QnDV6oizdlQUZBUuBLjRwUv01AieTpZFOXU+6oJbt5mfULFFDafI8sCzjs6ol1gaBZxDlMzj8iQCzyHva3+OrXvonXrz7G48vv4vHTH+h+sjKoa1oO5hPAJ5AM8AocjY9YBNgRdvsdBIK+KCCM14ExBtyATdBbwAjaZx+5AkFsjD623W4BqGNZ1EFEjQDaYz2esJ6G0bJG58FcVwhd0VRhvSt42EDh1BsWC8fWe9fUY/6O7wumy/Tejb5smXEFY2VotElNY0KdQL2h9wXMa+7lMU9FV+hN06hAxyxCQPuTjewBwjIEgEOt4i6w617CADegK1/3ncp13xuICpATDYNXrOuqkZJ6M06zSErDQZ0KQmxQZ0iTvE1NEI2u5NGaQpL5fmqp6SJmRr8wb+d/w3SMbdQSHasYSB6QCYSzYYULzoHPugVdap/J/6UrxkuhpFXlogB5PuNt5zv/S0EPReHDFhRW905bP/4u+UxtSOZfBk+Wr8Oz6BckEHu61ppgw3xWbMS1XzQPMtZaAZQXSlTR6926RKRJb/d+k+tPhYgXxup6aVYmQSd/bVqvTkvKIQEOAkkgzlmz9p7rLxG5oTpSJx1nnqPcYTcVu+yD60zn9KnjS0mU8s3rqT7fnIlyUcN5J6ctSeksU6bYf48+bJivtr0dVt1ug+fKX06LSufkoNkZmzXNwPY4T7g6YbIwludZup5s0Ocq1B9fHk652ORpem/bpZjfQmRKRgkKiFVVxMa8P0vur4Vw0XZ9J/hhS//622f00zs7RaTCOWBNdTAKjL2nD952j4OpkLyPuZ5c/4XghR+nQghgVEihMuflsbMx1o8TX1X6lLc9SlryvANU7AzYu72jc3rzlZ/H42tPgOtz4raPc9pv+xg2jphHwjDdStsSky1lHIVn/O+idMK6gPUkODxqVMn9bgE1YJyA45GxsuD2bsF+3zK1o3g/9LLU8TjmiKmlrcrjPuagGAF+k0rsp6yiSPYCIKkXGJzmOja1Qu2WHfY3N3qmIYKfMOvY/Qzv8j9sAD6n9m909cK62Jq4fB63dqQcQ6mr8LuvTaXBvIhEKtj9jCpzv+L3S93Nb0IkLR1vvfkeWFZ8/7uv8PSaITziLNR6w1hXwLRWEWCMgUwNpqjXRgQmwrIsGY3H07HZpMayldKX0CnLjBNCF6emF1yaX4qyqMJkKZE/Y1o2QzYiB7AtQUIaZUiCjwE5x7qT8pvq1iPoz6Zjx++kz4DIouLbGg8Bkvut09b5JWWAGA9sBHJhoIvy2WRB5UWOvtnwG2H4AoPL7xTG0SZV7jLhFtGRfI+8QOo463iFuQ/73iYhjC/V8Cdx7YU3CvJ2Pmtcqv9Hl3m7vLSxXMu1XMu1XMu1fPHl2a/9h2i3z77oblzLtQCAnWnLRbRruZZr+VOXzw1SAiyChx0K/RaPmwsT8BBwC7jlofpPAVEHuYUF1tQXHj0JdgDNiBRUI4WAITL0Zpg5p+NQS9C0bTBQUZie1XJKxbkLMxa6EVXT4ziSJw/nAkbzNHCSN2TIHFYatMZDGHv6I40O0lpHVqmH34hMMTl8zYjnYAVJo5qIRnHQ/rektkimTCAoPeM8b++X2+NuLHcDkjr7igO6aXvVgA6xKBGYQ+BTS7cMSzXEih38N2dZO4y3aVZkE77d51GjX3TrCHuqDT93syQAw+fJDI7V1h+sh4xG4bfm0+hHSRwiA00YQKPX5/KAL25VQo6ZDSwGu1kZhpE2GwCDtqXZZnPI5QcRiw7EztNpBIlVVWiSjiMyx20ad3ojNMunF+YX4zcHpLkb3oFfHASsDaYhSaw/rRhF3cl7DmgrVbUSNcgrp3Izzv4f9QaQiCzyj69h62fk6FNmmG58bnQCd6yMYXPt3bD5GRZC3aMrOdDQgSNah/aVBRbRzY3qlKkejBbN1hO4mJk8reBa1zoyXWHhXiIycJrBNT1lXKGv2MKsa5RZZYug3r40vto81xrpLXW26FI088i6MsZgLLuuv7cOIsZpCBoaemvo5Pxi8sluP+bayuluxo9hVDYGPL0WQAQ3b3RwA4BuazwBIt4n55mgqxlSBwOHB8b6wLi5Ebz59h5LJxxerxirRli7Wxqe3e3RmqC5pd1ynok0HJ4Y+/3Obj3bTVDRDaLZghWIgmNYXZrNnN6w2/BDZLqx6+BIwGTWOKnKOlYQSQCOWIATe4ou5dGbm1vc3NxicDdHQ/IMWwqvZqn5QqabXG9ETibl5xq5zSc5bJm+77rhViPyRLQuyb0dcBmYFfifkV7CeEyNzM1dISHbUh5SRkkq65Z8zfkaIkyp47wPYuvi9s09vvELX8W3f2/g4XAAn/Sh3a1G/xqnE2ioXsDi4ExNWAoRHI9HMK8x3t4aaIEBZ3U/8tEyc+Tv3Do+Q6YTYVl28PvErZk8aITT6WS6jUVP+FGG40nYa9SivlvA6wCaAqq8XnWaEJbdDmxAnNxSFMx0c3cDano7uLeO9TSwHk+qO3TCsttjWfTG/3E9YR1skYjUweJpHalBI4HtOtrSTRdpWLo5Y06rPZ9DUZ1Hcs82wqUe6fuYylW9hM6QsQIDmvKtd3UGkjlCog6LtGm6j4KO/EZ2bpIyTOsQVgD4smDwUDlpks8BSuKLiYCIwmSOFrHoS75GtK9+G9/Xoutp2sdtJCSB3YpfWvC9sEfCkumdzwIobQFS9amIPnL+6penxP7peoN8Rn/raaKCx0oJxRZziqX0YMZ+ASToV/nHtQGyPhEqVUVmoGUCb2fNxdsLlWT2LFvvvf81oiWgkV850hhGreT6GbKP9netOoZpgrRGXwwZWroaMl02FZUSfBn6pfV389xFAMimX/WlMNr4a64jTHxexrjpo4+j6sO29M764NEjqfDGdshZj2z6uflcGvY9q3499zz34/p97fN2aKEDFtRNnaKaks9T910qweeUfeHCi7VPlY9dhzgfP8V7VPowDXvL6v4W5bgE87v6s0mAOkgUh298X8hfgLJeS1ohMBOVStu13TLWlAvlHcm0vpMSOk9WPC/ISgQeGTKpG1N6gU9qcJXtb9F+CY7rdHV96vx913HmIXl9Ur44+x4znfxs7/y+jbIbfbXnMld2+d3HbimwuukUZDYK2t+DXz7G9YbpHLdd0yHnapvlJ7KIoAws+wRDbUWxOC0JZwH0iIAxFKA0jhoFadmpXrQeBiAazeZ2D9zsFO0QFxkIEQFwDIvYuEsQ7DQGYPp+kg8uqwrfz3RG6qPCgOuqlGMbJZVVXhBpYCY4quqM92PCtMESbDfl3ebfKcK3/buVidPv9W+vq0ThzX5M/wBxDinnnUq4+mr5rrJQBQdPy7nw/7PxVbxF7+GD0x/i6eEJPAjEHW3RmsY6Qs/nKpwsCo6n6/azzTwsiQjdF0vVE8vXrVzsct1C51kwTmyXDQH57JpLD1x+0nxxgVrI94iETHoBgDjPE97N3rueA3o6YuQ0Qjf3qEiARmPyOamg0fw/zZsLlehLzGC7eCdV4Mk5i3m7TkG9mIqgmb/HzAaI8vYluiFchH6wi1h9hLxMQHFOYBlmz85I3KGjl0irHp055iJ4OAHz0ck/sWwWC7WwcbuemiCpH11fXpT4PO1ey7Vcy7Vcy7V8ucru7a9/0V24lmuJ8vXHv4r3Dr+KD25/54vuyrVcy09t+fwgJcoUXmTpgzzqQRrlCR5+GtDUMq01A7mwAW304OuHwWY5sfQAPtKwKOZUIlJnfEPc1PGITHnohR6mwQBrbBMP6+uG+4icAEIj1mdFNAiIhhgJ62U1xAyC9lFExwZNJ+fGIRAi2o/TB6wnfbE+imiqKi6Hx3ooJYsYNZBRnAQWIQgcqVDcsROGF+2SBhuAG+TEPuWziDlCnn/9FlExQscUWh/YbnpyNS5wjsfrBVAighgphUpUHYr0W6tZDCM9lpjxSNI4HXeUwkjgDmqydF3Gby2j3ECSF6qNwW8CcnPD39yOOl7VyMJkd6TZDUGZMsaBWq37eLwSdWwLCcicnGE0aqQBgHwCyVL1GNH85jFEeSXSg3Ea5GLcrM5YT0vmxkibqYgmRfCoUXpjV4xWLQBGUMAMPOJORp5SAI7XOUda8uf1bzdqwPjUI8ogjJSeDsqN/Y0SzON8Q/agtDRQ1fQ5EMOR1GhGds2zmdO4XeBfqvNaDG5S1l4zuqqPkiwql4+LYAHb0EAYrKnaRDS8v8s2530ufk4RgMmj56gjG2WeW8gb61fzunK1uqGQ3cBEFM5txPyo3HFAiKewJGcM8vVtsqAhUhuGo1Wcxtqu8hZjMHA8rbjZ79FIQXskKndPx4H1JMCa/KdglKbjJgNL2frXi5QS+4WuYZVpg4EjM+7ubsw5IdBUPxWEpt1cB2znIKwOmBQBr4KXH5/w9OqI+zdv8ezdWzQIXn94BJ+A0YH3vnKH+9sWAANCMTA3YH1SQ+gbzxa0bhC+AvYLozdZZCWj6hCNxuTr10EROd2SqcyG0k4wwDKwDsGJgT6Mv1gs5WPDyjr3gwUKr2lBm+FsKgqs9P13WPo2gs97MWOWhclI2ZJeEgk7rUfjz6gAtoY8gp1YBDv7NV7nNHbGxkSaGlH7pxTvTQFXg73ZvMUb3NpieZjMSHnLZe0LoOuJBafHFTs8A9++i8NBQDiA15Oma+w7LLs91nHC6XSyNZXRko7rUANvWacA0JauwBGLoqTA6ER8VfBJ3GymZsqKpiZjFqzHVaMT2RoSAXgdEFuQl8Lxs9QoI03b74Te96bjsDnEVJgMS9fZlgbIMOByAzmquDVQYyy7BcuyKECGgPU4QIulbVtHyM2+NJAAq6yqV0T4B6X9WBmEFdSb7pFCCizjFrqbghFmHUe3fwl501vuKiwJMvIUGzwGGpsTpHiTauAh52l3ZKQstRvsxpMa+RIQGRjGgC57iRDpGdTm382p4M6JERuegh207vBpAPVD/O3pV6c0bbAoDzCAExAgudYTmM+W89TXSGvqGFL6j6ILEi6VL/sNnjMgT4qVdLT4b743F0dOQmZayqtYRyrzyMCul2IMuISzzqD+OW3oDpitHmKrQN+ytIvGHOL9LeN0J75HNstwRc4frigiAN0xf5KhOgqJQvZHlyr96jhN/Puz0yWJ0CFTBz/jpok0RjXbg2xYE4AhHvNOxZ5lP5VnXcZTNhDPb6upen185fqR9yzVhqik0uIz2O28b94wn79EMHD2hqW8P6pr5vY6AZqsRTEgAMU39j0mdTF+3Oq320FVXkAdTwxwMwyZaT5lCzI+dvCwjyMulvh3kvULVKeOPpTfK0mnTxu6hgO9/iRJi/pddkwmnqhziU0fz34PWW6rMAY508OXazRd6veoo9GEeIwVBN2raAm9xojv302AIB9vFU2xdssYypqI8UnSbEvuaZva9C3EoM9fab/ylI8/1vO0TlM25L+6hw5mBTZQeYAFcjzGHhhjDdk781nlJbIo2nEBC3q+GIPRdz37zlHVNHluU2hG+xg3A4fHgePjCTd3O+xu9HR0ehwYJ4G0Ffv7Bcvi198MkFZkLrOmtdvfLGZ/yrW0zV7on/MC0Ga+BMFfcUHQ+syu6NtdiaGBMdU0VQSICDBM71TdjGxejDxFNkcp8gYyy+i6FitvRqcrfxWyS6mjriki2uhRtQ2HDdMZv/m5vr7jZStzyIjGm775b96/Jjs02WNZbnF//w52bcHD648wxgMAjaAEAqh3LNQxxhpn1QDfsF3Ci1SM1k7rSncD/eT6zoHlcIpwNKKJsILt9UAWF7rGypGa+nwilQq5zCk2kQTatzir5kUYAcgi33e1ZcAi4ud+JHleaB0EO0MAEZHJAfzU9GKpjDKGMm61+6Td1m0eQNNzfg3rfalYVVVmCbyP8xrSAVbtuDLEZlOP37Pi5PmUJWPw5nlfa/Wbpgu0dDrErdt6tn26VCh5JW0w+u9kP7MfmtvXRDKaF3TdbQFKdd1syf0ZvbmWa7mWa7mWa/lCy/r6E/T755NOeC3X8kWVHd9j4bsvuhvXci0/1eVzg5Qk8ilJgG0g5gSDgTMCWGHWDfJbs2ltM/MIAAfhOChID6QBsiGzGAmA1tQhDIpQ4szDHPwamYCFLYaT9lMw7HuYEaiBpCl+iIfFPUqDDeKQpk44veHvh033qKoTmZofeiWMShrtAmZFdMebhFNqDI6IRRrAoxyRDaBCzcANQEQYEDgdEVYr8v+L3syCA6DsPbdPNfKIKjoHZG2BBNORupykBbCbkAoyiEgvxdBHImbYS0vldL4uBisLMKRzFYf2rEwsCk4YeokMwkAR8SUMCG4ws2YjfDOluwpmNIm0Qfb78OgxMWgETcAS0XOsijCNOXDIHelsAKbWEUYiZlGABjQ6DQuByfhFCN2+9zkRAYQSBBbrhDLdII+B3ns4PdKJb/8F4AThlPUbfsMs3sN5E8k/YYTypGazFUWBP8FDzr/avgMk0jiik+K3+HpVDrcW2WrVtAqUH5s5pzV6DuD0prDcO7gwjLdkYDJJOmSaRqVzJwqDjQcoEFGQk7r1zfglAmaCkDp/XSbIQEQkYFAAkbSfBkxqahgPoBdsrkKcULKti0/7ziOZIciRtBvDgRspW8OMX/5JG5+vbUy2tozoodGDgvSwEO42La1JGI/XATy8YtwsO7QmWLrK0MYa1al34Oauod8oLZWOw/jL1gzMEGZOfo0wImkMMwH19HBA3+/UyC5Ke7L/26QaKI2CfilaBacVeHoFvPjgEW893+P+2Q4gxsPLJzy8HBhD8O7Pv4HdbQO63Uh1OW/8wSfg9esD3njjFm1RuTqFuzd6VYNniLeIHIWwDzdEE9PSWodFFjKwSes9+GA9DZzG0LlmxmlVBBizAVFsvbgzpTosqxMubpvG1WkEQxAy2hEjK8ib+MnDsPUlrIZwYdkYilXeTI482y+a0Zao6w1a2tAjpt94HOVmNIcJ2Whqa5EQYA2XuX57l4mxf+s5fu1v/C384i/9Gn7/t/47/Na/+q9wPPwQrTWMMbAOBrUdiBqWZbEGjL6GPfHbut3Ayhm9DLaecy25PCbK78QJQYIxVlvHAw5AGuOE/X4PFqhjQ5SrMvpKvSls0b5sXbfeAYGCnZYl1CLVY9icAQx0oPdFwUWngUbActN1LwKb80pvEe/2C3bLDofHgwJ/e8NxrBhjYN/32O/3kdaRTzwZrVkYJIJ1CBbSiE69mxwPJ4aOo74XjgKjP+IJ52lJ+gKADAUgdcJY0zngcz/tX/AoTClHNQIfG8+V6EQsYEsp7O9tTfIOoPHofQmGsD3B5rYsNEh4On1dGAgr9ASO8YnYfPieYzpANwBZaw0yBOt6Cj7qOwX/CyzKVQgil1fZd/1qHtOXqbgYCS6R7TzoZEcmjCCry7fUKTwl3zRcKXpztOk8V/jH07RGXa5rVPCkXZgwfgmB6/xc6o6vC6/GQ9592GUG8h/Kj5XXbAxUeu5NxBlLcD7LdeP5E0quT8nuECKS58zR8zRoGxEbaXooAe7zZjg9hxCZF7vtfUsd2b+X0KOT6aucQXbco9BMvFGeK/tn9r2MnYzMZfqj7zNz2T+U+sAF+if9DEBX6ijYDcD5c1uXSOxNMcxk2Rh7zFuVEUU/L2Q7KxFly54LAI04PycfRh+27ZV+XCqxBWz7UXSaFjRNBqlTnmd2TP/GcMtYKR/P9ss6xfZdys91jHV8Oi95piyq7YYoM1nq2TvlRKm/iBm69FKJODX10xi6TN/UdpwPnI7TBHlHKerwXol/jQ3P1/5Kbcf1eH334WHF0jr63niXbDw88PTd3wTd/SLa7jbSqlMZUOrb5WJX2ducZiQaqVJBDtk9mujokU6T6ezehF5kEuB4ANaj4OZ2wf5GgcSn44p1Zawr4/7NG/ROSaoNAwsDx8PALoBS5xenJl4QA0Jv5ipl1Lxmg7983LZfkEV1VPKYbus7nR0YErCRdPT1VhdBLIsytM9YKpfLRjBM8tgrrOtCynKxtUcbQm15t/a5rvNanO5+BiGY7jUNcu62kICWhudf+xreeP4cjy8/wR/+3r/Cq5dPpt8RmFeI2R8Bs2MSoTXWtN++I0qe+dJe4nujbL6LXp+Rk9nXQj6rnxscQK+84e1upsE3sjJOPysKs9nxAL+YB8DsEwAMNO/RhdtCCryvMtXOS0vrIDtziY0z0iXbumS28x7NPF91rdAfRDZjnumS+2P+kB/rdwElLNuhb+gbYk18RWViUjBTzF0VviH9UJm+aqAyfS4zQdqf87VV9lpf50Rx8UFqu3Ge3NTQ9HmyqMtx6YbEUvHl0OYIrFKqPufJa7mWa7mWa7mWL0Ph4yM++Ud/B2//D/9nWJ6980V351qu5Vqu5Vp+DOVzg5RaNcj4Aaw6QcnSa5gFgVoa+cmdT24YaSjOJIKDk9Qhqcb5apJmC8mjBm09/LdGkxGYDBTiIBwhdwg1iGRqODXs5Q1GTdVD8HRgblQAEGAZEUZv0MOhCEQ0vUreSCYzlLUwgkSECJBFKpkPepEuyr7u7jB2u6Go48rro/i+GCjdiOgGBmvPo6lITXFXTE0igPvr/RaXRsOZ7UueosqmIYwt29tr1YDgP23/FTOiRNwEO+TX5+otN+Uvig5VAIZH0+iESFUVBm+rcBCH8QQAiO02I9kt5kbRB+9gNfIjqAyLEpLRhPzWIw+vDwFs40Ar2OysAvQSeSdun1PYCZXUdoua3IjjlMqi0+pO8kIXNzI56WTmGSdjyX4DQYuw5ADFVclGljotjJi55sNcI7be3MBibW7tOYJiW7d+x7ov/F6NIRmlyp6H30yWWKciygPd0yeKxG1An77h4DI4aCuNlZ6eS2/TpmHGI8WkEV//Hcwgdwrbbx6tiqzfClRKIsXvRgTyuTUeGrbm6sLJdZREaSB1/Oc0px2siJRmQV44mEKjnQn0OY9qVPnH09mxyZrGhBfff8D3//gVfvm/9zX0G3XmU2vQZJMdj4cDnk4Dx1VTISjAiEFoELCtYXc02Ppg5bdGYn0hHB4P2LeO3W6JFAn1NjFB7OJhi3XoUaN6A9YD4eULxuuXJ7z7lWd4480OYcHr10fI2kBdv9/dNLSeYw12ZgBMeHw4Yr/foy0O4jGwmveDgAlApmjSkBMafUydpr7OfJ6aLQIH0o1VQR/rGJEqKlLRmCdSAIA1SoqMAaERfOcp3IIXBJFes/JxGPg558L/i35Rjd5je5bxY7P1Rq0ZHSj31U0bLmOoXBJ1I3pDA1tUKLH9N8C0hd99H1JgocJHQArmEs8/6eLI91oTaAJCv+n4mV/9eeAXvgZqR3z3O7+B93/wEcb6BB4DzCes6zHSG6ih18kVEDRNmWFGeQWUcNBovulaAC+W7tVTCzBzhPgX0dRo/q6DTTwNAtygXwWO96+arD2VBxG43JoWMTig96t5hMoOagNtR+g7wa533ZsG9AaxKCi37zv2tMfT01GdDMsS7cfNe+eQkv9mtyzY7XagruDwMQZ4ZUvpooAnBQgNbbP2MQqF/CVymkq0ETeCCQAW2zcIwDBHB8W8eCeb7fd+0xyReliKIlOqNV2IZeSiFV9LjCak43MZQITeduaTcP40GRr1E+b9mUy2U+xTYLGb6b7yUm6L6xME0ELoWICuoKW+pHMITBn5iVVH1tQYCo4DEPz+pSx1n6D8MsBDQPBMBTOkfozYOye9Iw4KMJlRdP1oRmol014PbPvE0WZChXOfp7P/lzUTDfrvYnI3+S/aACFDudWN3npY2pvGcqHUZ6rOJoU0c/8+o04pQxXYPk2FDgh9qOB/o8FyTIj3cszbTm6eKGQIfaCKRJmrKNVkF3zeHMFBCQxyJ23lHbpA42ATW5MTbUIRm+kV/b/QJ6WXAUm4AF1jnC6KqFY573kTyoW80ougqOyar6kcZ/Dp9j0p3Cl1aJI1xfgovgu/b+0X5vbi29hOkoYBsp74Jvd9j0KWgJwLfa9j8vmQ/G6SJd4F05tbedZp5e/VLEBFbQr+98qkvHtJKlzy90oyqv5dorR6G9G3UMCybr8AkAR2/WQjkcprUr93usClYX2oyrqcm9CNUR63n/Vyk124elrx0R9+gHd/5l0sN7uQHUSC9eElHj/4Pj5++ARf/+t/E2/e3GX9VqHL5EvUrFO/rhpJcln6HKmt0DwukGzmgSAQJhwPwOPjitsbwv5Wdd/Dk9p6WiM8e+sGtOTeniATCvqvJ41Oo1FuTV4KUKeokh5Fb5fyr4845QMFTbxM6Wm3lPK5E5d/ZTf5EaCDGdbr35V/JduQzTOxLuXyb3XPyB82bRUZPK0JG+LW1jTN4/Zv+48FBlbNc2mlc5VxIgRegcEnoAv293d46/m7ODx+gsPhZCmgFbQvbv+ZGt8Cdv2CC6Z58sn2PSiiEpa3Zx03v/f6hp0jAxBMgEhGKK/EnsSkSJxR2ASlXxKK9nwu2FZsI/RGds7JCWzlIpVHe9Uznp6RF6uPmSd5UT/3pqnnXFdmS5mnZxyE7s/s54K5n3XG0z45r4lJdDYHXvlFNo53t4rQpf3FwX6Xi9lj/SyMwq8ZIz7p1zUCFYvH3xNbs/5kdiDOzMiLg6pHRNPRptuTQAmYg9m29fKbnYHdPhC2F06ZYXziFzOvESqu5Vqu5Vqu5YsoMhwc3kE9XdfCjOMHf4THb/86aLfHu/+j/+X0+7VcyxdV+p8iWdW1XMu1nJfPvYLIrAyTXcYO3WFUFYBEnXBxq6McnNKuxpHv3q+6ttYVFGQnRTHQUCM7wDUFCwGaPz3sNZTpNCy2AiCioYVZgCYgDDjSxOtUo5EbWFsaB8xCWMEC7kSLg2O02/JPRyMAkLjhpEAKCLt5JA/W1XAGWKQqI09Lo2hEANhaZgWY0j+EQSPTBWxmMA7L9cK/AzMg9j2lYSBsHXYwDiCKPwuPVjAfYD0CUh7kxa00GlnAxpUXgjNKSM5/dHsyjIHm20kEgmcFdOOuwNLvGF3T+G+ACQ/Dbf1WAwqpk90P6250pSSa869HKmpk6yKMKMV5whn147j6bTKK9cMWpQQ0G+acb9TPKjn/SHq7zao6WHyugjI+T14XFUMEEACtiR0rv3k1hJjfajKpgBJ/h2H0cEERhus0hIURSUQjYnFGzoiIJdTMmVBBEfrMMANhg4XYLg5gNwSGM8de7tZXdQQ3jCHl9qD137KtZDQtbXso0QGb5jpXDc6zm9vUzOg2hjCCbuw7zXgzfO+yfU75qZefGR4xKsF+4jk4bEE2XQ4xr2aHUp6NeVCpF847aZqC7Qh89Aef4P0//hC/8G99BX3oGmqN0cDgseB7f/QBfvdffAdf/dp7uLntSmcsGESYnayUKTTAYGlhXDuuA8CC/X4JYF/FEIRB28AaPo9EGvHmcAAeXgOvXp6w3wN3bwFjAK8/OeJ0AloXvPe1Z2h7sYhmCciJ1HpDHRAiwG7f43c1Qrc0NE5GcgOPlLUFk5Uuf8TZRSxikVnIeWj0FX2+BanIDcaijQgLBg8QGL3Z7VXjh3kPLTJvYhsKeRlrJzgq35eSYmOwhfpvGvUNxpuAAu1shSQdYA4SA28qSZy3DLjhshaYOj2M52fjLUXUPggF8MrfYaeP6RzOEyzA6Unwvd/7A3zwgz/AygfcLw2/+M1v4uHTP8Inn7wIYzep4Lb+kEUJ8giJCdwbg9EaDDykv5OYvDQQtO/VAk8haxGKWtNxeOoFUmCaE/p0OmFZuoFHErQ5xlAZaxMmleeIIMNkMglWHgFOURmpfWxNBZhi6Ai3tzdoizIIC2M9MBrUeTYsfR11jVK07DqapWuI6FPr6jOq47I5JII6AoVBbOn7GnBaTxBBAJR0vBbhKZQ1xNiaRaxyIHkdNxEhUrkWWuiarE7CYCCrXoFJuUeqzsimbJ47NRKw4AxGlNoTs+W4M2TH3f0buLt7E48PjzgcHiHClhaPbPzDak0HAtsN9C7AsizqgLEkhjq9TR00TZ2QHgUBJOh9Qd/vQOzgNpizqFl6PuUDGYzGBKBjPY2I2PTlvgGda1r3kNyfcjO1fyfEQUqjcBDCqVn3W9e7/XeX3UX5jXcmzaZ0UVKHIQpHvuv5egHC+afIuuBb/WMChcjWUVXaLhWoDhaQ1KwYJQqUKYEejS03BoSOJ+XrSvJ8vNKjfkL4XWl6QabnYj+R8rc/WSoLIEUZ6nkkogQqXSyVZXzu4ixUBnA2ha53z7EMSkCiGXAh5Z+qt5XvL5Au+ygeLW1+ZvveWSQlzHQ1leBMdwxaU9IhInPGsxmVZqvjYztu365Cr3CZSzFJ27EkT0vM49aHeanvlRASbfmMpr4fKe/Kr4Xlk0YTLQrtveny/OTMLf2vekZEMC7zsqVfu/T9Z405FqH/XT5uRNH5epvX8TT2+LxxmJusClsFEQJauOHVuLQhuMD/mwW9eXdaFrKdZl3F68NrvPjNf4n3f/N30H7lm3j+zV/GzTs/A4wDjt//Hawffx/H1we8/zvfwhtf/SaevflLQKe8wDMG2rLEDE1dEY2oTDBdFMDioFyZxxI8ZB+mdH0sGCfgeBxgBvZ7BSgBhMMT43TSqMl3dwuoS1y2QlnjPo+rAbV3+x57kO8DlaQxiM+QmXW/SJuGnPGkGEM3QgLfRd+pdiZNG2u6rO1HsWZj7yqVT2DDOqvnP52JXcn5KdtRrrMyN5VvpLzbNjw3yR6fQ/++0KzKAt6sdZF5HQWtUD6Lnnf4kwXf/+TbeDq8QuvAzY6w2y04HApda6eNMtv1lUBYo4Cnc433pUTeTQ1GNs9oPzfthtw22xUlCF513jo4m/C4vEZhg4kosM5fRiiqPNWA3vpkv/LLFc3PecLodr7Qs0gZe7VpQS+/gAXNQly7DQ5ApHtrLrcIQT+/ZLUF65VRBoEi+qnXCbd7pJ0o+2TaE21lpAuPeU/4LLU6db55Fs8iZ9nZoC8L7u7ewLoyDocnMA/01tF7szPhmBtwGS0IwLielbKrjSj5IbWDIkAtKlYZRA4xQeh6J0VlMcs4k//Xci3Xci3Xci1/HuX04n188g//Hzh+9D3s3/tZ3P9b/wO88St/A+vrF3j5T/8/ePi9fwoZJ7z+rX+EN37138ftz/6l6X0+PID2d5Nv61q8XDf3n0QhEJ4ffx5/fP9PvuiuXMu1/NSWzw1SYkmDeaSrgB/D1EGWDh4GoeeJyg6q/j4sPoqA7VAl0JDFdqQSAOhpkyAChoAsR7o+o84td9ozMwicNw4ZIFj4G3KngkAd0FYHEdxBIsIGbBEQaxo75qE3g3hYiF09JTa/JSeIGzB++z7MPgZ48Js/ekxu4eTc2rdrOH81TLUwWoSDD8X4jbwh5oZidfaK3miajK31wGwGnWrUaZmmKCL+bEs54Ns9nDmVTzWuSUYOcgePOlJapMuKyBz+YuRBK901g5sbrdw5I9YgCyK9HTMwoEbmvBHrFHSHoQ/GABREwT8JVkLwmEdeqsZjN4i6cdT9At6vSlMR5XIyA8EwS4I7E5xb9EYkY3EDk6CAvML6rmn92GmcgJ86X4pFEUsvZ2kxfP7MIFXTLM6OjVpPOr4iOphkSrfsh82BpQMDcr7YOtQs1DSRRavhYnAKY4kZV6BGFx5qNWSfRTPA5fznO5AE9VHzvpUELT72Ej3LgpNoy8GfSd9GFGuCoh4zntt6E6M3WT9VtOntwmldFLpK5Rs3cm91xLRQqlnZeA7NIksNBrUWkMjgM+fBYIQSyQpiEe0QfEFixkBRfnl6GMDNDqsMfP9bP8TudkHvO7Qu2NHAWAnv//4f4cUPv4cPvvs+hrwDWjraAlvDentyt1OjvpgDSqgZ4K7htA6cBuP2bg90mOOIEjDoXpP0IqlxtwlEGg6PwAfvP2J/2/G1r+2x23cMAIcHwcOjQOSAr7/3Jvoe1r4ya2+EVXP0QVhTZx0OJ7z55h0s2aOBVpDGawObqIM6wZhkstAjDin/JbhvDDeIJu2HRdjx9dot/L07FBSwRoAM8BgQHuB1BfWd8ZGErdEplCAwWD/dEJ8c51HntC3jI890ZTzfKAGU5O2Qh5RXmo3BxXgcuMyYKmZJ5x0Rhk6ZsgVsnxaPLmVgoRJj0Pce/ZwyJiIsokRrMD5mVsfQqw8/wG/9d38fH7z4Q+z3BHp8hYeHT/TWjesfos6aGirf/3PHpBvK2YzuIpxrUxdOyCvdKxoIttZJgdX1OYPYRYRAEU3fVR0LBLJ9QSc3wbVsuknD0hcsvWNdV7CwpgSjjtPxoOulAbubHW5vb5Wqi4NdBNQWyMrg9YghmnJuPQ2c1hX7/Q7LsqD3BWMd4NXSii1L7Cm9CdbTChkNvXu0NAGvA4CmJG2taXq40Es0MpGCctZIuQYUB0nwroHFTBdYlkXT4jFjHQrI0n2XA2AY8trrMb7W6Us9VMK4vtW2slARvp4SAUwQGbHnO2B22XVNkdcOMdbdsgcADB6WusUHKiEbVO3UvvZuIDXSdep7I0SwigHqLMKa+CYlzpv6HZPqpTKMsYgyiiZZOuLLw/3SlHTJ6QBNW60PFINS2Q+mOry4a2Wz2W7m3PWIALYgREPUAzEAs+tt+WI+nIpu9B8+CgfyO7LR5LHPcUb6yjWQYKvYvbNhv1EQfKXtSnQ+36Ty/2ncoZxPA9ro7AhFJ9635jPCq4SsrjpnhRZJ/J3tBIUunSv8HZGIfHTpAbs/kH1yjqljuPAqZafioTgDbUkdL2hDCrqfx1of8TkIisd+WF4ofLYlwdbZWXVF70s9e9QxBt8WuXqJeJM25R+iksJWtcvx3QYwJjkHU9l+Z3vdWUc2irCJ1ellqmOrr5bxXqLlpDKWvcHfS9q6k9v4oKyX0Mc3Ywtd3vkP+fdWRGznIKNezfMT8xEPSqzBOifOf0HOae5mGk9rudSLDT3ztxAn2SmZmshnNlVGexILMvsKAKZjQw549tYegobjccH68gmyHnF48YTj+y/w6tPXePz0E7z8+CPcfvwVvQHddP7G6Yi2u0Ujwf39DrudXSYr53O2yKTLsnz2OCvZYnwCYQIPwutXR1An3N8vWDphHcC6qhULTXB7t+h+SyZ1JIHywRuswI3dbpf9uNQZcQ6c96CtjPKf69zHPIjg9OKDSFHsdcxrWDvn+g1ZZEth2szxhTUe/ZznfvtvfJb5+xCh03DO96U65s+Si7T5jvz/9gVVgSSb/pRx1i30bK36bwK86u/jo+X3cHh4wKcvfojj6TWIV4zTE3isZ23VSyuA63++N+nffq6ITpWJ8vmsI85uSfDLGenE5LMIxlCduJnhq16S8EjZeo7ytdrQml40EFab6bLsMNaBwau+1zuW/T77QpLnR9FeMrNFayfw0PNt73n5wM/TGrnWL5Oq/WKIXU4gp5PJbbHIzWTnY5sY3Q+bXSDhM3oUasIBUk61bpFIRSTs2MKz7QnlU8wJuV1JSl9wQXnYlLJ2M1IyQkZ69WMMHA5PEFZ7etXQ4Oecs7k3vjdAWFzwo7KPWQNS+k52dpDCvzU8H8dBw3iX8sxNRBHt+lqu5Vqu5Vqu5c+zyDhhffUx+PFTtNtn2L39DQB+7iXw4cEeZMhYz9+37ATXcl6e/ug360H1Wn5M5Ye3v4nfffO//KK7cS3X8lNdPj9IidSz2dDNsWcGRf9/s5gfdjhyg/kUspj8DT+ADvjt8zgRkrv2Rhy8mnfTDux6rGpxa8QPso16RkcgLu11BDjID8VNnYqRjgPaHwfPMAbUcZZjUCc6DNwkEJzM3lAdD8VEL36zKQ1jSiurs0SosQasDnXqed1mZtjMiFhIccShuFk7AUSwkBUMj/qTNpJMgaBkd4O8O7SjS80P3NUim8aTagxWZ+JsLHMbUrMUSUIaXQBxAG7xHpApkjIijBoLAiiDAvCycedn2qREUto1s824o4MAdWxuvA9xcwyergtBMAWHaOSJzFRIkc5LyAFSDjrSdjq1iBLjjmutv2mUBSWCrSslUHYrowzF+zVylbWtaIAktr/fLOUcFYNK3jL25/wva4MIw/nAfxYbHxUbm0dRAdDYeMwvskrSOUx2aTeLtYgkNwDlgdbTuEgOKip2yObvWmc8zY7zoV8+Y1tKHumEgADwEQxc6LxbzEMhpyajKAznKGCLctbEgEEOwELarqr9c2vAnecg10e0LYA0pyGZHCg8wBrtJuZLSn2CiN5U16zTS+dN0A28qc8JVhKsB0A68HO/9i6+/ovP0bmFXGAIaF1xelrx9PgKr15+gtM68HRYMQ4DIiuYCSwKQry9Ab7xs29h2TVL+wAsIKwnweHxiJu7Pai7fawwSxExE9FEgAGsR8LDK8GydLz99i32N8DxwHh4pTCW+7c63njjLSw7r6+hi4GJBgBReSksOB4H7u5u1Glsk+BRWkQGxIyawfOFx9xQy/D1a9KMnE8ohjTcAGuRh5rtfeQCzgSw3prUKD43N3sDZQxQ5xCukbbO5fYw4E/zyFoUsrBkn1KgEqjsLzYAF+6VP6pB23lVWNORVu9hkWW65ihAilvbr0f6CNkhnm5RkEuZsNqa5CHK46LGUw9oNUU5M9q1hdBu7vHs2Tt49dG38eF3vo319Arj9BS6haaMM1lqgEq2CDtVfwi28xvPm3mPth0YEDLEjez5TP0XGx3BQZSa9ktvJHci3Vss7QEz47QOLO0Gd/dvQNYV68oADyy7jr4sGOsJ1Bbs9gtu7291TxmM02lYejfB4KOBwwSMpsKFB8ZY8bQydnuN+qY8aAAf1kN+X/T2NAtjHZ7KUYL+IgwmYCHb5wxsG4DrlrpTRG8M55L4wrE0QRZdSATSgN1+hx0UoDfGwDitmpbHwEpeV3WEOO8xjwB7ecLQWQIXviRSkLaBrYgUDCZMmiK2eLxevXyB158+2JQylqVBaCjAsBNkzPuvmKDovaMtS4Dheu+aKs9TA1r6N49C2FsHkajTaKzqgOqatlj3ggKSdRA3KUCpLwTIHoPGj3DmfPElAOcFUKCFDAzssup83oCqtXikEKtVNs6UuhHT2ZfmPCr33mPy7HtfyxCLJkumo826o+sM/jVl5dE3PR4Z2CzGfQmgtKHLrJLMCjYwPTfRJ/pSZP4ZWSSfJaSzqlRUI6+GqmTfBTjJt3FKvp/bsX8tbSQh66BSdY4xupd6UigIMj0fXaPLuledg6pSnNEiyFj2glJPpaeIhOPOda+pmq0uU+qrwBNqpeFLSmPdslGi5Er+ro5yd+SW8W502O14o8t1iXmfyku07R7lfG/fr2eEmJvNs0GzDWEiZWDQe+bF4Bl7Xkq/tB0p781do9p5YD4L+7OF7MHf3t/g91jW8XcoN5hlQCUrxcOYKizTeEZDwC9w5ecyyXMLl5itEEEQS29z5vChUNKv0ONs7rd/SPq6necGgPUELM/ewlu/9m/jzV/5y9i/9XV4WjvGPZ69/dfxml8BROj7Gzx776t49uad2WV0b5abAtCH81Oe1oSB9TRUT6G5e8UcM8mYyic8gNNBsOwX3Nw09A6sAzg8rmitoy96mcIB+VRaoKxG+7EOLH2JM7H3NGOTeBQb6P6GDe+Vear0vbROBICsB4t2qp1TPZamy24u03s3YL6nqjZdftpT8rUzceTsKqWzAdDbLmaZZeu0TuzvGsmq0jEe96WUS+pCJ+fPtW9brSf2EKedd7kS33776OZboD3hrXffA6+f4sWHL3A6PSp4BxJ09hcDSFTOBXV7zstmvufRRLJZ9EpZm0m0fK7uYjq5cf4XBe9EwMKYXwfCN7tQ2XB7cwcR4HR4gu/hzCPslW1p6ItGex0ecdZ4RnVW3tgkFMDEsMs2FnLaU6zrSVn71LteWNGIorkOJh4RrQtG09jXycd+gXiVhlKfc/i6gDqwo0XHOxKs5PY6n8csJqNjUfq6v9Bw6QFB9fVcl3Ze3a4tYZyOh5xNO4uI5qJP2eX7SewDmlbPFziRZSKwSw4uP90Y5dGt9Oxk37nta7NZ1S3K5USHXrybwHbXci3Xci3Xci1/DmX/7s/i3b/1v8J4/QnufumvB+i537+Ft/6d/wiP3/51jIeXaLfPsDz/ytn7/e7NP+8u/9SU8fjpF92Fv3BFIPjtt/6/OLZXX3RXruVafqrL5wYpiWjucP0sBvjxmDoET6XmZjcxK0A1tiu4h/MgC3WENz/AQx0tkwGUJJyBYoem5oYCSZCPOjQ9Ek49bGXkIZAf1O17i6BhXuQwZXu0iOFmMVI/bjejz3xLTYDiECPqHl4losV4T4KQbrbyfoZhwcMPzbepWDTiVCtjDYNjnSDke24kcOe55NfqyHMjFiiNN9VoVoEwZQTu1HHjeAVJ+LnahhT9c4d90M5NLq1Nh+aoD0bCEvNfJA0lU3qLasgSBR6RAWgilLYbQcy41ghgpgz1Yb+RW7JgpgZLAQYWMMjTWZIAAQAASURBVJGHkApj7FzyZqU708lC+YQRt8ZKt0FSn2/vpm8ugQL1pTCYiMUjK2AB8n4b3xASeKDp5VrQbut4d+NRGoQ9ElMCLgKMo0wIv0UYhu4CUEvnUqFLy76rwct51m7IeuAzb8uYyAJtaKQs64zfItV0YdZmQWZEOi2flzJWgY6zOR2omv3SmDnc6FiiksmQNMAREKkGfQ27o8Xby+l0syIY0BR0rIA9sgo8ms1sBJOgVZVladyliDYWfJT/07VutBxjxPdpYCS8ejXw8qMnfOMbz7C7OeHmZg+SZrcOG7gxGu8gJ8LXf/ZreHoi/Nw3fwZvfmWn4DQEzkUjHo1VZZklqxMIxgo8PRxxe7PH0rsZdSmjetkMeYqtTk0BKsav65Hw8QcHSOt472t32C/A8Qi8enHC0+sjnr93g7s3FvQiC9wJbETV2WDC4+sTltbiZranLWtNU/Qx2V7QKFJtecQjj4ThYLaQRFL4TwqFjQEGWxQdYrS+C/CiO0AaAdQBagIijTI4mLHAwZMzyDZWoxtAXQpQ8l/IWvH52crLEHe2p5Wbm7mR5DORy1I7rDfZEYbUyanVEkAxpdxEAqnc2TvCHtuivgFo9Cq4idvWY8hXidRqX/nGe3j45tfww+88oq0PwHoEtYb9zR3WE4HHCrbw+T4GAU+6SdRrhngEAMnX5BYMI2ZMLuvN5yWQlV61Gv97X3T1WzoGZk2p1prKKx4ajWdZFlsjwP39Pe7u7vHq00+DtqfTCaf1BDTCsltwe3cLYcHj8VGBKQL0vlNnwEkjVDaL8KYAHFbaDcaJTziZjNFoX6v1h6LfPEQBT+vJ9BrbM4liDxJLqwcgwF86vx5FyXan4iH1NIcZBUdpva6rtS3obUG3FHlkv63HgXEaGd2z6GWxNkwf5dKv4GjTIZyPW7eUa7bXLbuOsZICXS21X28anmjwKdYhsIPIAENTNHrUJ99nPTLUsuuq19re1ZeuwKt1aBS+AlYjUsCyPq+OFe1zK/spY10TZKuDJ5MnDT0x/V/eYkCkdMjPoB1bZeV5+x/Vr8j0kGE3v2ladckYSMEEl91eX1yz0BpDV5CQZ65XRSQNpF4Z+pRVNzuJfa81mec67DSyVE5S3ZZoIy85bMFvVisVJygZXV0fg58xigyv+mclsesvpWdlqUbfxHUqU8yrQ1b1vJKKlsq/vjfEDYLUYXJ6imywvWnSJ+1zTQUWe33puc+N13YpWkhcsCj7ZbBXoU3sZ5VeVOtx4ujLwc+buoLuHFOUztc4z5RSxz13fV4DNpYWCiFNL9Vuh0O9OiadecX3rdrQzAPz2ps/T+uiPuo/SqnG+1boWxdP1OdnEeObeSx6fKt92VJx6nYd2oXO+zmq8vn0SBmXiyL/YtK//JnCg5ZpaTqL1g5S+Y3O+mkrWSTfr+/a/+KCUnmEZnLkOU02fBX7p9OKrO/T4sxm7X/ivFTqWh9f48UPfgi5eQfvfu1t0BvPAXqu9Cl9brc3WJ6/g+XFJ3j+3ldw//xt7G4aJrRRIWZEEi3zs64DiwGpc6LqGhFsK3OZyCtweBg4Dsb9sx16V9DSOAnGibHcEvb7nvVFDS5ZtX4C4XhijUrbN7Ld5tP5MuRiDqtO5aad/GJrQgJUjA5miAyA9nkJLJaRCVAI/KpJREeu+0hZi6ZGXKA/CvKnRJGqD0iOy+1lZ4Mqf1fZX1ksZTEF/9W+xc8O0Cr9rWvT0xN7I7FXIPs50ZuAFU/4o9v/FoeHBwBHHA6fYl0PEF5VL9zf2FlCo6H6xZPQHYK2SRldG+JqZLQfgCZrvIKhlW8o/y599AqIgNYz2pDq4BLPBZBW9HKCXmSxOoUx1pFtwSJ1mn2r2Q29k+mkYhFMp4kltf9qdKV6cUP5MnjM/udrNC/w6Xk2oh2jxVrzCELUgOZ2CMn9azPb8a+U/cMfCZCQjUPssm3YBhZBZwGvHBfasu8qKDVKlelhUjmpFgpaVnlJBE031/SM5DifAJG5XLc6WTiioNfzNhkz+YUF15eUl0nPIWOO/OtR/IX1LAG2S6BFxuZFLE59t9hEKxD7XEm5lmu5lmu5lmv58ZfTxz/A4fvfwu0v/lUsb7yNm6/9EoBfOnuu3z/H/mvfxOO3fx1tf4d+//afe1+v5Vpqeeqf4L957z+76kzXci1/xvK5QUqEDrEoL9X5K81/z0OepxCajAXQcLMEN9Z0cHVSC4M0b1C0CCAPW8Tm19DDdoPntOA4QCuYycFTXSFIRJHmiM1UQQC6SKQYEFFgS2ukoXfhxre04rRwXtrQRRTNGynqtC9uAATEjKgUh3l1fC7WA0NeiIU2tvR3etBWpAOZ9UagDjMJc5cBPArAwW0IafgSy8KnkyD2fvcDr/icYHIqsE1ac9MLR20WNUbHqjd5EAd3ETWUNrLIF7NFJp5lYq2bNLpJo3RkelSh4ZE9xI28UtJZ2WHeHIXNDTLBNcVYEmd8pxrMUJFmJIIZqMUdueEyjYM6YDcUhdChNM3bgHlD0n2mYhY4ho6t1TRjZuNozQwn1kkhNTTomBqG9UKYIaRRw8AMaS3BW4DOg4Op3BDmhtwKmDEndBogtH6NHuHGJ41g4kZBi22hBpVYI0BvDuCxB5v+Jmz8U+ktALfZKMsWTSAdr1qVgxF8HDy0f46AEedHcpupoLHTzoFG5iwo0VPcae6GLYcpegCPboi/MD0J4FetqTUDqOQYiKAAFqOBr8ogCVvEG6KN0VeBUR4tzKWRG+0izRQlSAD2PTjrssAn2Rf/HPIW2R8bozFdpG9xA/HKwCcfPkJOjF23HlILo7TY+nVQ5/3dDb7+M9/AsgDAQCNNDeUsSQRQ72a89XkFnk4r2q6h71rsCfPFcJXzke4KZCAQwemJ8Pip4HA64v6tGxABT08D4wjIYDx7Y4c3bmu6B/t/vfhHOobDQSOy3NwtOh8WTciyKZnMaFiCFaPSiDa39fS6jAqwp3hUA+VZFsZpKJCBoftca2a8BrCyhqgVaHoykYF1rApyJZ0wB3X5mnPneOsOokHIWHfqeMq2iCNhgDp2i3nx/EaEprIGff67y0m40TujoEBUNoTsc8r4fgQFyYnJFsXQSDGkaw8Dv1nqya2jrC/vP/Q27He/9Xv4rX/2D/Cd3/tv8OH738V6OgKdcP/GM+z2Cz79ZLXIQLZKiwe591KvyWpbhLlHCCKlqzpVEyjr+wJx8oMb61sHbm5u7PYqg3rH/maP1gxoc1oNxKWTJqygKYyBFYC0DhLg9auXeHx80HpkoC/qcKBFnRTMA+vphNPphLGq/iAiWE9+T1kHIdLRiKM/Pu9jMHpTll6WrjelRaP/kN0C730BeMUYq4J8e0kXAUbriqTpS0MTHR8b2kzTj6nA0f2s7Btm1feodn3pdoNbacIDWE+rzZGgdY0KsN/vcISAj65XaGo+n4Pdbodl2eN0PCnXbkIZx17RevCA7xHLfof90hXAdTxhZQY1wtIsuePKBkRljAIsEkt3ASKwAbmWZcGy77pHW7pIYcEqJ7AMA9kpJVprQbfTAbFvtaaOWx4a2bOJ34pWOiqAkQEWDNvbSCj0tS9rOXNK2hczGMe0tOokD5FVwer6dzyz/WYCZaSMEwBUvYeQ2CfyCdcqWsjI6KkJiAQvTRtafK5w86zPB5+KskcacecVgHACVv3JgWoCQUPPntbzl3Uj252az7oqzcrDEzjF9AU0+56TOv5s2ZkQa9vH7TJccuWjtJ96l2y+sLajOnH1KvRcp0f0ezPUaWy0+d23Akq+EuBiqkSR+lnmusqPvKHrtjNZP00pVLZNVt1oHoekjlvKRVCA7WP13CRAcZgnUahMSF0/JHO19beIDGv8SmVSXL/8LBFU5y+DShaYYaRhL8/nsM6+FFygOZKOznOzPm50Mbkgm2ecHaOvsXZqP7Ph0KCKKhV0m/jHn87O1/WWfZSpjujTBgRdnwkeLu1IOLmRazma8/mSGDttGk3gb3FYly7Us+/x04/x6vf+BW6//qvA19+ehcM0akJ/422QCO7u77HsNHKL25hQ2lHw2DzeYfvyFIkayMi7SDCE1+Vnn3GC7rGNsN8RegNORwYP1QPu7ndYlvP5VbJUIQmMVQmqekv9ieKsKkDYgoCk4ZZnJ9pu28Y8byKpByuT0tTPiA5jJqqw0fiFm7K24DuMy4W6P8zDDQabdMvS7wuiM58Sp8y8DsUYr8q3aR8tNHHbCnzPvdRmHcSFDtW9NNYuC5gGXj1+hO//we/jxcffxdPDxxAeADUs+x12ux0OT2Paa5MCmC4z+V5VOWZed5utzhfu2ZiMZ0j1c/KINgQQNdUtgSmlsp4nzG4qGSXJ9Ybx9Jj6JenlBT32m17Bdlb1FMPivJKgcoJeLq0RpHTaDEhjNgyAMFjTP/sabkSQ3jRavSBAQAAiGhBZ6nhqhC59upDQvJ+VmBt6AUjbFlxmI20s9qRHP+9Lh6zI80kV2NBoVP6u16fTVuQnwSKeFtkrNga7dCVk1qfW9IIHO7DI5svsuslfdmZqTd8JmadMEhHBZb706iAotgi5c6SvlBVEpHYh501/Btl/kNscP2Mzv5ZruZZruZZr+TGWww++hY/+3v8Nb/27/zHe/g/+k898jlrDjYGUKkD4Wq7liyqDTnhcPvmiu3Et1/JTXz43SAnIw50bWlpTwxJkIJztBEv5RXF4AqAHWEsnooYGP+zpppJOGT18ZyqOdLjUg5seoIbZZtTLlm3WTuvhXf21cY0lDQv+X3U8uhPLDtsQ8Vgv8IM6QAFEIJizG35YNHiH+CFZQM1v9HMeMp2WpcsamUTfSUALpWWK3GFcTTgZjSedxzrObvMRliX7J1wbRBENxg2CWwOrH3i9eKQgGMCJ4eC18k4xyEQKOdIIKRENKc7KFIa2tOVJfC8WnsYP/hrxokWfIioCENEKyL5PA6ECbJrPIlnqPvvcO0XED7H+1zEHcIclgFE+Wr/pK/4ZErfSwE5fTROnl9TEIlk5PEwhatQtxLZNUvN10DSNT6Y7AsACaW6ImPvodWrQDg5DjNPKQ5B71DJJFwW60U9YAW0BhoPRI4wb5oB28JADZyziTKeM+lPskzYP6WStIqIJJf/6q+6IdP5u6ZBxY6HO/yaEkd0i9WhNEaJdnE8VIBJRgGI2zeg3oCl5xBy/EAPumZF2Y9Rxw1qKGKXjDNyksJ0Ob9PWDYuEwzzWkswAlDKtMXaPprMN358OTYQTIZYUJQ3Xk6C3DuyaRYvzOdcR6/qrKQwJd3d7CyFvkY5i7Zl8ErKUIQwZwGlV/lh2S4AlfQWRuKxUo76YvB82f+sr4JMPjtjf3+CrP/MMfQEOr0949XJFI8Hzd25we2sRkarpXCpvKZhkrISxAnfPdhBiSEHxNVIAjbPRFNmc3Inm9Zc1JAaYNMOgG2nDAWqyOcAq1DKdEdk7diPXkrKh0wKCr/15HcHnwvrCxuOizIalWzoHMaMq5d7gdTQQhpjxEmZQ9nVX+gRReTXUGqo87yH8RNOJ5f45852I85hYurGknTOi02raa5r9xrUulz8Ur/MAeGW8/uhD/OHv/At8+MNvYz0esbQFu7tb3N7d4vHhU6vYUJJN++E8u9spKPp0Wi3qoBtyDXQ5KRJkfOprzQ3Fs7yC9bP1jtY1LZuDgoQZtHTs9nssyw6EBh5Do+ocB1Y+QcAQPoF7iZTjCDpDiYoNxx0T63HVdGguXGwzkpaOAr3Jm3tib5lyr1FHa932CWjELxMyLANEXSPtscPqdG8CKaB4PZ1UvhGpIb13Wx+CxWT9ejyFfphO2gR69qbp1oQZQwQ0bP+z1HwCoIvmiKSlY3d7A5Yj1tMavOvkUvDQIWRdyMqyobte0toSaRBa0yhV6xjYtYa+65BBFgWrg5ixtwhczIh0alUvZWEQE1pf0HYd1HsCw7wfrWFpOzCJRo0Sc6gMAg/GuiYwi6A0Fahsot3OZDGZzgxDh6uO6hGsWm+R+vTLWYr+ZAJAQcuC8CbD5UpIh9AFQMj0awDCI2wv2WrN1Frle3+HXKkourhK0pZtmYST+FSfR+qaUb8rtTQ9VvtV1MqJb8OtOaWTq9pZidZCSbvaJ4pvJORqUjqqzHWYalF022Vs2w5B5rpcf3ddKJ43NO8WS+HVJ83y/17vpYxWhKLP+H8U2+FZ/QHm3uxJdOkhzM9Oz2QXLj4b/bPxlCBRcZ6KCqh87z9JGUPR1850vjrwiRsKHS512nX56tT34YskmE2yP9uxFbU5lgpF1Xnm306E1A9b2tYBTMPz/p5NT7LDpo8XWCzfKTQ9q0tsDRUeT3160+bUftFZvC9FxlReq2uvHlEuDL9EcCv8Tpu2Kw1cVlB5vr4f46ZU2TbP+cOTlrMde5URdWyfQXQZgtZ32D3/avkSEy/5d86Hu+dfsUiJNf83lYdqRap3iigomrJ6k2mFkEVuiw1gHIGn1wO0NOzvmoGDBYcnBUzc3S9YdkoImZE0U7cEgDBhDMay62iWU76eu2Le6TLdzyYWOZd13v392FYi0koi+v0cqNFf19IgwaOch4wr6zEjDllVRf7H63XcF/paq9Ddh+Z5Qa7t4AMbpOsrSYeNUIjvrWFXhS/JlYmWkn33b2T+tz6v9kuCnAjHp9c4Pb2GMGtkykboy4LT8aBnuHpB0qKli43FbRs82Hio0GgzrB9ZKiPZQFgEjSR0epjG0Ej1U4+8k5cQcsAFSmZAF+S5HbCLdwZKAhfQU+oXAhVi/n4AeghmC3IZas3GXOXZMqyokpc9PGqQ2sj0DMBjGF9tAIoWEWqMDTPWyZzI6EDp0i8xPm15KkVraF1tyjWdn9PRo1BPetNZcwSggSjPkSwCrBrpszW7bFj4ISPLUuh0vp41Wq/XvLG3xdwogKq1DmaxM4kY3RzcXkBPknuGdRcYeQHY6eM3RFsRGlRtItdyLddyLddyLT/BQn2Hu1/4q5/7+btf+Cug/qdya1/LjyhyOuKSXnUtP7qQdOz49ovuxrVcy099+fyRlNIGEgc/TV3S4kClB6102sVNcDehkhsG3ZRuwCJrowWQKA9uHmq4Gua0sJ0fHVCkQKUJ/CMaMliNkhplScNTwBK9kTkxJCzsmXKC4wBZ/AUwc8YUKcgNUWTRcbyfYZwRAOSOyhEGAhHt42A/6NuhkM00QAJPKVcoEqdMd+iTiJKtlWgrUU9QHyBLWRfGDUqDmBuC7BCtqeoo56wU7XcxegX6AeaZphhPGLLcsIRoQvvhkTW2FqU8xictfW7csWO3zDPstTmXzRhSIyg1a995GJDCq+kUJ7Pc6VwgIua4YZAMSDJgDrBygTL5JI0ZwQ1unLPnGloAZCKyTLkM5zxCQCBKdMjFCFhDnhcDnFhuQkEaAZ0+ajjSydngMIK2TgjtZ65nt6e4wSVAiEKTMyOicFndrdAm60r6B7gwgDS+7ijmw4EzsUYFaqSlbutbbC1yiSCh9WiENPX1N0uv15uD1BKYNrMdRV/qjfEYpNrr0jjH1id3YhgBjNUCnCaFnycnhz3XDTjGa0Z0CNlbIigBCPoHCFAQ/OzzJeyObq1LjazqiD2dGDIMjEY6h55+UUAe0E3rah2QAR5Dbx72BIUGcIws+lWsNTXir6vg5m7RKFIlPZ9NIogs4Wc3uawdxekB+PRDjdRy8wzYL8DhgXE8aJqDN5/f4eaWgK77UMGgFhqY4W0QXr98wu3tHnpp275PW2ysn+lzmfJgkTDm5YMBrHXwUryln5gZXAyrHs6fB4PXofuYgUhYoKm/2pptOE9CIwCNGrUtNgeP1GZr0uRAsG5019dg0qgZb7L1q9lL9ZawR/ZzOncz8vol19aAMZJfyddNdh+uI+jgbSmV/cMNvNSaRZnz9K6SN9NF63l8eMIHH3wIXo+42d0B6wE7OgA44emJcTwcbd10AAuosYKu1pxHN/y65BITQgFGbLqHk6S8csBJBVhJ+d0B1YfjEYuGHAuwKAYZ6FhvGHvLQkpjWHTJvlvAonyxv9lpdD2b9HVdcbIIQ40U2OK3fE20Ky09jVlXkKsMVjWha8Si2JeYsZ5OMSYeA0NW7Q8JiIZFPxQQC/i0YjDQlwW7tmiEJRYMYaDVNGRA713fba2kNXKeTjoys8o82/da67mebdKbaCo0sXoVACaQMXTPtad9jgKwTogdScHJeTN9WRacTid7R3VCldVskZZ0Xa/rarzuoEoHQSoDuG7hCy3Aig7uLJ7BvmhquTHWsqkigF5SZITyvS8qYMhJ+bb3WGc8NMqUg2vcwTQ7fb9cpYLUU1cITTD1sqIzVnlK9a8kbfzfdR9IyjBI1l8e9R6FfNJ6U6GZ4yDZTXjreHXhUT4U+lOtf1LUyh4dpepx/tvWK+wCMNiGszP+uHikBdi5qFRRNoK5f+Xs4D0WzDTytUS5Z6YuX/peVKVcf9OwvcXagWlOt21T+V+AVkv93l/dvnOW5xbyuXqmq3qYy+/QyVCetWd8H6Ty0KTS1DHZ3620aZw9j3Xbt8rYVo//7s7v6HShhW2NWa994TybkYWmzlye80IjB9jUbk1jnhbkhm0qvTHTG84/lTgCJAhvrovKmL397TNnX/jfTpc61kKv7avhCC5MTnNLMdZpHinpWGXUmU/9Qv+mest8zlIDIfu3DO4ykJAXSzyF7ln9VGVj9pEuPi4z8YyDRfKSx7rqhr176z30Z+8UvbpIXeff0KGhe1ne18l9lcocgODnQAcGOVBly67+yY+6HvFzrMDhQdB6x3JrAPwDYzCwLJr+uS+ELUCJUPjb+UCAw9OK3pudd2ia48CVF9p+1oEijtFlncy032wM9g3nQarIM8Hxkx9o5EVJHmHRiDqgNvFpXf9laqOtyl4hGyjlUV0rm931fE3WzzSvpDwz+SN5OWlLiUnO1HW1eTZ5uewHpd/b5biMW7zx9LMg6ri7exNPj4KxPmJgxThpxJtGBGmay5qaAVIsarPY/pGbxLalS8Qunbo4BteTzC4wpfw2GwEhdM24QGHRPLmc//Vv1Q16t0io1mexFNRU+pG6l/a7WSQfAHEZr+w++slsLWqbykhM8ayvic2GwB5xHC3sXgFgKkqg24TUxqJXJD9Lrvr6ILJLAN6Xkn8zoldCn5GuZ/I4k1a5OEU48iGkQGiN7DIH5yU8lFR3zoc2fwwgbqI6GW0dVduCdkPlLTsRNzzil2x8q9qe8WNObWJjFG5/ba08lu8mf0i5aHQt13It13It1/KTLbe/8Fex/9ovfe7n2/5+3vOu5c9UHv/wX+JLftvxS1nuxzv4lU//x/in7/3tL7or13ItP9Xlc4OUmAc8LZSm9KqHqLxRyVwcQSiHJaST0w98am9kN0eEAVKgzht1flIAi8SASXmTSOvdGoS0GT388WB13fTi/PAIJUCAhtA8TgqngdEPpixmePcoQJqSSSPomJPdO2GnWhaxlD4EkWGGb7/VMwDpWVc4ZQ3UZRYxalycYVs7Vzof6g1Ut4g63T3iB4sArGnj/EU2+qY5JTd3Nw6WKY5/K53hoy4WNv99cmDU70VTCA1hVGcCbZ71A7JG16LZwC7V8KRz1MxgozeE1UVXjV8Cj4AiCnCi0pAbdwwokNfCy013Pf2HYUaMN+BGE6ePQINeAJH6TvtIFmHG58Tqt77GBTiydHslmgfZmHLdAB4NCvUZ8Wd97FTmuhgeCBHuO79P56vzU12/PNhSDOUNK2YdMEGjdkVEH04ShgG22Xvk4eiV36PdzU1akWr0JHUci4UBFw2hDahBrDsIx8fsxhVv36gkI+UVgj5c+LS4zkQK/0iAa9qGpo3MUWwGutazTR8vJGnmBl0RYEHOmWMl12FGIQMdVsN3RCHyasV8+cGyye1qWHSjITQ1p2h0KFkHjocTdvsbrE9HkKcriEUBA4jquAczZBWMdahBKwx8ErQMmSGst4xXwuPTEXf3Nzr2wYh7s9aMJlB0urDxDmF9JHzywyeIdLz9lT2WPfD44oTXL4+4eesWX/36DZadChPmpqlD4cDEjHijhBM8vDphaR37HRUgJQWwRuDATF9buZcFbV1OAGHQVVFhhn+iKQKT00NEwENp1xuh9yXWaAW++Mw1amhNbO/h3Hd8b2EUwUYpnCUdn/C6Cx97YYEFF1I+GsxzpCNyGvl6kDDwiqHk8gZ/yuB19dZzfVWhHk4VW3cca9QAcpZ6LIzDsVZSjtVx3Nze4pf/0q/hvp3wnW/9C/z+t/45juv7GMcnLH2H+zfeAp+OeHp8BWrD1sJAt/Rkml7L9g6iWDsxcpvgGl5/Kr7/lkOxgo0a+rKoIwCIFAYyFAizLEukDOvLojxlaTzX0ynkf+8LBg8FsxRH3rJrWE8EXgfqheIaobC1hqUvChwyvYKbprkV0ZvBfWlgYQM58VQHgNBHBJZmlAgePWNdV63Doia1RgAzxkhZ2loDdaXH0juGKOCmzmEFAPiNdE2PqvvxkBF1MTNkVYBpax27/YJOhMPhaHTwG+MMom4AIV8XKRljJYXD25/znUAiSmTvPRxAY1WQJhFA3W6Ui2CcWFMh2u1jfadhjGEAOWQbAJ4eD8EzHj0KomA62hXn7zrK3mg9d73O16Ltixl9x259lz36y1kcaFH1M/sfObDLfqC67mXi0dATQin1F1PfdthRyKP05FRhGX/aDpKi6wIdQy5R7skxP/Vx1wmRulw4MpFzthUt1ZFEoromBW0qL1tnSs9dH40LE4EaknByBsDcxufk8+1k26Eqyqex5zScj8E7KMjUZi7XvY2ix1S6TRSX/E7KV2ezEsOnsxeijdJv7w8l2ea53vapDtB5y/LcOu9OZN2OF9MsxXtb9tqui/i37InxgTbfXXg+5mDT/qV2XJcMUtQ2C62iuTLvQa5CNxHvSA7yrA7v04Z2BGxglrMO4EsZBEuLWGTepvJKn+3PMfdRv6SjvPQ76CVFPZKNulQrl/nPzxo/XZhDX7bz+dV5FJG6N1S/0pezfljkzbMscbLhgTLXISI39TVreyqi0QshwHL3DO2Nr0QkTrIOC7LPwTTLrUZEgbngrTNSaetdFkv/Otiiheo8hE0ghbXycfCqEnI9CY5PDBZW0HcDxolxeFpBS8Pd/WKXTlB02rpViM2VfnE6selYcZXkjOeqvNzaQoD596DtdvvwicX8pV660bE1aqDW4adlsokl6y8Robdm9iinEQWPTeL+khyuctP+3q4np42TvMpbtcnM79RntlEuo63626XNRfJKo3dzs/Ti/e3rVYT6OBs1fOXtn8M33/4rePH+9/Dd73wLp3EEQS/zLMuC/X7B4ekhZE3ZpQFwXCRQ3tfLjmctCyWZC1GmdU7lGYKBjIJBtV27iKIplzWasF/k8wtU2kSG+dY0zQa6Nz1AI6h28BgRjanOQfZPwgbRIgqRco/S2e0CrpvOFwGBvHg1TahdLh1DQMTBswBltDAAesFV0x83UlvmJT6cZ9lsbRYB3fe9kLkailT1E9KLC6vYhbJgYMk97NJ6LMVT63n7IjAZp5HC4eeoMo9u/9WLf4josX6SavZbyHn4pVWl5xgMrCpcQ7fzEjZowAFKl0k186Ff5Ihzv5xz8rVcy7Vcy7Vcy0+iLM+/jvvlRi9I/wmlP3sXedPhWn5cRa4ApX+jQmi4H++enaeu5Vqu5U9XPn9cPAtv7Ic+ddyopSgPkhqZoBoKeGQ0JY92FA4FAGIJzrReDsuFR6ZorduhK+M8szmzvRENa8vlVG0HdT9TUosoJt2c4gyYV5pBxHpYJIob+A0EBmOY81gP195XhDPCU1Q4EMUtOJpCZ6ThRKqTAeGMdyMB7KaU3mxhjcrkJhAhM/I4DfK07bnclS6ChgbHdlXjDBFFZJQWxosglU9fGofCYp0H+vyX4lZQ3JJqeVt3igRAqTuEwS0sSxo2m6xhEdiNqjYb2EER8STAG8WCE2AXs0x6tCEAALPd2qSgx3CHHvnwRdMZOQChGjZaGbdQGuiig9lWdaoVHESkglIDjtbBArQIqVwM7GF8ceOFVswWNchLAF4gFnGBNbKWOKjNLZ65Q4p4NB7lxd58PMY7AQZMgGE12KfRazZ6MwiNPR2aOR9LrpDgKYYag7ozXcoSr9e/cxL77UCdeyrRwbxymxAmMzRSGNEdbCZiIBuDYhDU4B1OakEAgpxO3mdP7edr0ame/RcMyahk/v5gNxplpepcV/Z3W2AJEKWANhY1TrXmwdGMdjKvU3dSuCwDsG4ttCiVA0G7cWKshyP2N3sQEY4PByy3N+pEaC4rnQ6eogw4GjBhd9sxZKCNht7VS6dxwVxeNfAQHJ+OuLu5MVkIUIB5EGnwljJfDqh6/Snj5UcH3N7usX/W0BbC06uB0wmQPnB339AXl7XKs24wdSes3hrVbw8HTUd6d7cApBFSRHIOYjbFTam2Pq0/bjiMNJy2uJN/bMW4sPc1Q2pEbkJxO5NI02FpZCoH/ngYt4xys+x6GKYVcEERqQ/Oh54iz9YzGeDBo74pcMQZxgyyFvlL5ZwDBSgHTQIMfUfUfqt0dTstAAerBO1CDtc1LLkG4WvNBSniWSl/O0iUYi1lNBIeKds9UNqyX/Azv/orePe9d/D600/x7W//Nu6ffQP3S8erTz/RW63rqjfII02X3sQPw2vkqFR6ktUvLlfcyB5ryvtXvojx6Y38pfdYDctuB4jgdDwpoGUMHIeClhWYZGnXiNF2DV0WjHXFWFflhb5gMON0VGDLfrdgWTqkd6yrjqNTN1py0JyZcTweYz9orScA1+atxV5UDOtFhrhsS9pxyBAu86uRjwjMQ4G2tiCdr90xwsbrl5xSNW0kM2OF5ogMYLqvJwNVDazqfOst3pvAdMLo1OBH7FAX3flAhNPpiHVNcAqg63wtQHuxfVHTfjR1QpA6M9qiul9rQ/eHobqcgtA07Yem4bNoj015bBj4SJ1DGu2KiY3ncv7q2jGJM+3JqvvZO0OA7rLBpdiXuHgKWVENKrs8Ayr1K5MDrhdoBfp7WaMuxlQ2yiYlkVeaTrLYmq1ibUMbUpEWgsrONZMQsJdNFlJ+HzfurdOh44jkbXqjgZS/lQ8p9beyGFs8bxFZTe/T77bxXWZHfwKuij4oSYvp7VRtQpbHT64vFz1kfqJWk+5I1Caz+kmfmdYgptfOiu9f9Z2p+0WPqzrwj1wVkuPx/Rulnnre3JKrfhU6BM/PbQdV++jv1777WdHnKHh2U63XG+MqPxYWDb3EibeNFHGRNhf6fGluvP8ViDDTjGJs0YXSZq7Z7BIEmTHbGxTXuzDxt/at6CObfm2fnUa7pZ/9MY1v+3ephsoXhZ1zHJs+gWJaz/vnMo4KH1BO3bbrZxPmdNlEoZKY8zJHPu+F3nVLTnWAQlb798mV+t46NMpM7x08TuDjKZTry3NgZ9bTk6XUIj2nedcppVLok6y60673iFZah+/nbU9tlyxPGCfg9asTdsuC+zd3AAHrUQEXbdewv+m5vxR+mPYcI5SI6qIswG5pE4rO++AVeB3T+Mu8xXZzoUzTHTyee4TOBYdADo1cfMvyvcXPIghb03LzBjyVeBEupUGkeWOetqAJKr3KGLU6if4Udjzj1xgj0TmNYv+g6flgf5lIjbOH/M9C4LQ1SFwmmeok4Ovjr+KPnv9jHB4f0foe98/exptvPsPh9SscDg9gPlqabIkU6Bntpwg/kWi7GeEkCJyPVrnlBKhLvFnKZoLZUhdNI43hAHZAZGBlDtsbmV5IBFAnyArTm8VAMjD90gH/Gg1MYyz72iN4zmcxgvt4gTmKV9KXzUZkUettJD5C72/uP7B1kjNppINfMp10QQGI/KxiNi8570eWWWrnJS/9LaJCiV8SorD3FRGZbdt8VZC4v+80EbtUUS9Qelf0bKRRURu5tUxp3mKNarRvQgPKZbWwTRqAiZqfjWs7unl4JF8p/JjnHmz2wexjPdcGV042rB9B6mu5lmu5lmu5lh9T4eMDZJwu2gu3ZTx8gvPbE9fyky7Lm+990V340pa/9sn/Av/1V/8PuCpO13It/+blT5G80wBKZn2pUSUy10XTFCZNAUkEmsCtbkAjMzrN1yTnhcw8oCGOxT7rwdUNVyIjbhbpwdCBTRxt+3FLDRBq3g0jjzkSmn2vqenSYOCHvgqg0LRGI4BBfuuIWtfba3Zo9Fq0ryOc840UFCXuxPADIev/yByNtU2Whh4HYweAtaCXbuB+a877blNC6pTWXqURSME3efCsRlHmElHEiUHzx2jDJ8sPsm7pKRarVg7FwhKpFHQuRKO7uHEFALFYehMzHFq9EQ2e/AA+R+phj2hl/VHaaUoip7cIpaNd8VFhxI30MMkqRt9gbe2njaGY4CJFHywIlgARkIbsBtelfUqBXQZw8+dsjfktKnLDYGtBNxKfdzcaSoBkPOqHGyUhsBtqlGm5nEvD4dmiLXEAmGQUrvlmukQKRQcrubXVjTgaIctfSeee94k5DZMszoB5kzZpvzVGp0NZBCALX14NSWxyScnlzjozAjVMQLNw4Bt3cYAAYWAIdwYab7bkKxIBk5nzirVUx+crxY2UzsdiwE5MaxwgoHk4cJiDO9dz8L2vQHZjVAE7OTc635VFyybHeBWMoWkZ7m5u0ZrewjsdDlh2+6ALgAwdD+evhsWiLQkEfVng0UpADiLUQwKPhuPTCbd3OyydMEAYQ8E6cH4nJ4m7WAXrEBwfgFefrAA13D9f0HbAw8sTHj494fbZgufvPMNucUCMAZQaQPBQUR4BSQE7PIDDgXF3t6AtBKKutxQZEGolYJrE/E1eAQjSFyCWQqIIiCKPYom4sc+FExp4ZVDvliavu/Q2nvAUYkN5nBWIses08Qm77BE3throqXgMPGWUznvlQkSKDa0vI96oPbllajNnKCi/ppPbmazIRXEBZanHkKXuFZjWcX3G92doWwYMdf4PnEDLhsNRZoPruzug7fHeN34ev/xXfgW7Ifidf/3f4vXrD/H61ccQGWAeGslHHJxkN3bFgDM6ApVvVjEZAEadEhbdzsaqIf0ZFSLQmqcps9RnYuvEeIYH621ldyQ4qKSZYV9E9QNmjV62sqMkTVcB1tNqYDN1Lgxmk6FplHYwaJ0yDA45QKTzy+tA6z0jHkFTvTkParUOUFqVJu7cCj5yelrDcGej9mewYIBtfj01QwFRkPEeOQjJ9RqtL24ak4J/RNRZyYOxLBqxKPe6XAe63ryBDc+ROT3FUlcui4LSuTo9CBiClU8aGas19NY1alpTRwLzitYI+9sdqC04rQNEyr8txqJuiG63wAXqoGDbV0AahcLHyJQ8Kp4S1YR8a67D6t9jDJtfj+InGqWtaQSqL/Pd5wTAVOVonis/ayj/Uzh8Z0kSUkaf8d8nWVeedmHkukT1oFrEIq8+9Vv9PcDSyDrmRhJgVJ1nDnijui8XuTE1490HkKigQgsg2kjHZ3kRvgKThtkOTU9WvcnHp3/neaLSbwomQKWf58RKZ/bUkL1P9U+yOSljr5vWpjScg9jqo3VM2gXKSDIUU5nnlZq3qPRTSj/8ndhzUDhWsp4zWqgyYO8k8HsiV32cyvd1jDR/cT5mBwH5/Jtcdt3UdbqYvMKHlCTARJ/8TkqDhA0Yw5+vNNl01B+vZ8pKy8oe3natr7YRz5X+cX2n6hm17yXi4xkCw94LAI+v862YicYLu8ziQ38LHikARP/e58L6XF4PQlF03muZ+1Bpk3ND8WyNmOS/+3q4GPGp/O1LNqSzycOtj0AIWA8GubQ0R2DG8aPv4eH738PNez8HyE3Umd33S0k+fnO6A8URMYMsXRdaFo3aGHNT+dC3fhs/ARgiWE/A8YGxWxbsb/V8ME6Cw+MJy75jf9vR+jkt6lwRYP4PAZiwnlhTtrZ5LkJWOz/KXO/Zs2UMZ7xw6XOddAGEyKI29pzvUm/og3bG8DXU33ovq9nK2Q1fTrS4JJM3ckDlSQqyejbejmdq9uwHifcvyhWYPCvCZ7JJ2XN1XWk7Pqm2+xgzeV2363Pc8DOIEG7feAt3z27QG2GcBg7HJ6yrXniAiAH1g8rZt88YZDM9l82ZNgO5ZHo1zt5ApAz2yO0pQ/zs4oBrtZc6AksjTyP0R4ZYPu7sk94jGPCLJ76XSHX4FRkSM1HXtdOWBbBLTSC1GXDkmix9PpM724mb94raERFSu2aUeacQpyzV31IX39YVkeYHmy3AbGFUQZIwHrlc4twibpf0yMdnA4gIU0zF7kYGmCK9XEHNLkA0wNOPw9MKkvYwzjyY1xuAOA96pt/zteX9LnW4HUMk/vbF44Dtz6bAtVzLtVzLtVzLj6fwesTD7/0zjFcf4f5X/z3Qsv8TXvjy2rr+Ipfbn/vLX3QXvrTlneM38dbpZ/By/90vuivXci0/teXzp3uTAUIH0QIiVqMsMUS6ASnU0RY3RNjADOTOM7tZJAAtXR2rgnJodwAPENYeszrqbbCM8pK3Ad1p4A4uAmgpB6qmDuNw1qhzqGGYIatBmMBYzFhGcNNHHgBhHlMHKzQ7U7c0Xlvedz9s+xjYb1mrZ9uABDo2jTawai0BQNDnNLqCP2dOwzC06O19jbJit7ankMhkoCYzOIjNgVffrL1iuNkGU2RLdRKRaKAGP+9RE4TxlXwelRTpGHfHtSAccELNYz2gQUpKM0uZJRrrCkiDTfO0SkQJ/HFnCszw4t4EDydfHbQE+I02N7YRoBn3zOkvzepPzjN7ZBqKmvmLxY0XnDfxwc4niPkPkEejNKLTfDvY33FDiZhBgNjmiMxIwUAvlvtcUxQh7z0SNmyuIBTz6o7poCl59Jp6QwsYYehQXmbW/nkam2phHd6XACwxViO4gIAB7Lo6/TyemDv/h6VG83abRZgIwII3J/lf68Wuawa7TgA5MAU5PkDBOAE6dDAhEA5+uLyAjTt41I2PtibZ5IJ31t7lavMqBjtntHD8WRsMsWgjcBtfGNLIBuDpCTNP4ewsEYuopmJA+8XFQ0NiKQ+NV0uHMFjwx9/+GHe3d3j+jRtdLqwpug6Pr7FbdpqyrlOkTIQwGAr0IxGsg3FcGTvWvoj1W7pKpMaEMQin08Cy36EtpB0Z2jcWlVcNCLDWaLq2SICnh4FPPjjg/maHt97eYwjj+FJwehjY3zTcvdHRF2CYdOy2R+j0NjPemSQVAa/A06sTbu52ASzVKWzoelHRUhcqjRrlDdEGm2NykI5Gj2MRdIvyByIMk4UBMijOd3UmC2SwrrelYWkLWtsjAZUAVnuPROUlM+QEYDFDo2cAtT3E0yqypV5TThOzu5Nf2cy4YWaEr058MdnhaRJ1nc+2Yue7iNpm7M+eosOFGgo/u6wFNLqZslGmLiFv39e4rpGCmZ3SeIiosd3XVzO5NNDMYS2g3vDzf+mv4d2f/wbG4QGf/PD3AAJef/op1uMTUABF1YspLBnlznpN5JHBUECsKW8ryMlqRCfC0jVa0DgNHwUgK45PwLIske5PjIi6dzfwOlSfYsa6rhVFauOX6AezplFk6zOJO1YTzKP6ks+LA7HbtCezpUEbLLqvWeqy3joGOfBToxgxj2LpltwnC5KgpiGaAsB4n8h+CIb3mfbb5sbD4iAqMidJ7hnMjNPppBETByAYWAHI4jxHphn5VFr0wcLRMzAUFvlP/7ZYSMGXcJ6zKIWDRYFytq6WRhhCljajoS0dN0uDiKbnW3nVFHQQLA76HnqbXTw6JwEyGEPEAG4w0Jzra6k0kNNyUyIClaVBZUvHST2dYV/Oojq/2BgzXkzKziIwAPhMVhqkbJ4AP5LPmZakpJykWz4boJ/Nd5VfVXaYTkBzBXEdglxmts179SagySBXMqOysg5SOpZHKHTTAAYXxIufcbTaXAcV8OM6ySSzN1Sty9fb8XFN3FdfIGQ/Ex0ETPqclPfqeWearrnuUiKSSXnPhppsEn0w8L9/X/SonIULjUQXc8zbFFlJtxx3RLsszyZ5ZKaV1yEbHW3LVtGQRHoxn8vaTiutuR+WNryu4pdi1HHxwd/JpmbxXFiwsmo5iiTYZjNGKe9PY9/yEXLfCJp6xIuY8xyXbzYxOuuEWAWTyPCxcfaR7O+487Eh95a+sRY2NIsxp8iK72MLJ5rbkJlOE82iIcL8dflxQ9MQWXGYvFCf086+3/5U182Wh7NP5zRgBj75+BE3NzvcP99BxhHH9/8Yhw++i8PLD/Hwvd/Fs3f/bb2YtZl7FxljDJwGo0m5/OH1Qy81COvZRSNqb+RUYQLyybNItRjAOAHH40DrwO1dBw/BetDUyze3C5Z9yyjPZdgx1kJAjxx+OmqaXL/IVeUswdYpkt61LqdtnUbfv/w3ziZjbrZsIoJIZasX8izaauGTCg5xnhcWSBejY9mTYn60E2GLAJIfg+nz0bL9TOksg6C12g17TnTZTMC0Vi8t0uDXSz/S9E60xfMXJOT3yqC6MwFEuBlv4Zuv/hYen7/E7n4HXo94+vQFiIB1PWKsx4gGGlaquj58sZk8otJo6Ofk8yhJKkn9E6By5ioXIUTtsHq5YT7/xdoWiVTk7BF6naiX5sZpZsIpaep7yhZMndzoPK7D0nGTKIDfF4SnaUYd69kmQNO/EzueFRciRRhcEHh+rshhz39r3azRlot4HXbe2ja+jZ5byVmfsdZT19puAPay1mVR+yklPcfaddscwc92cT6xsbMDnoKvks8EMDttbZkK2XJ+67+XxuxRX6ldGPS1XMu1XMu1XMuPoYgI+PCA17/1D/HwrX8CiODTf/5f4q1/9z8C9cvuagVrr3/OPb2Wa/nR5fnp5/A/+f7/Fn/35/5TnPrDF92da7mWn8ryp4ykpNEp0pvux3w9qVZDmJ/iOA7l5nyCINKWmXFRI5S4y89uvJI7HtSxrUWBTGkVcSuOAE1Q4zhEFBUCFAlTotbocdQckg1ESwJN7GDp4XQ9KkoDxUHcB8m8gqiXcblhB/BDJsQND+r0A/IQSQAGEZp0iFg+cmGI1DRx1RDW0iAAH34efDWFmI9fD8p+81CNbBpBpHUKsoVxwaPmuNGB8tDtdpe4XeQ03kRkIkryhNFNEIYu+2jt0HSw9ug6Sto0IMV8SkYx4cEKxIIBborhz1O0TUY4d34GHbO9ao+Q0pbYHPtvniwsD/VpSPCbitTT8k1k4Bs4Tf2mdUbEEQGoaWqwbsA0N6ZRVEXJUzZfQjlvGf1L0k4tAA91Vnai6IfYYGtEFcAjzzj4qhDJ+cYNFdXJKwaC4JnW7lwV0bQ5gE5kRIQQm1fJ9/ySahhlfb6KVZa4AkAk+u0GWU2LpfPB4t9jshazRZTyqAxOK4+olHzfpnUcUX9QeP6C7Q/elJix0n+3/vhtXDHQYvAWweSXG5Qt6oIAZADI4IugnU9WzklNAShi0eFUmIKZ8MmLJ7B03B13EEXc4XgceDqcsL8dWIdoaHhSEGEXsqhAgDDj6XDC6SQAdZxOK/qtmnh5mFgW0u/7gr4oIcZQouptQQWYcAg2lVnrEDx9MnA8Mp6/dYO7Zx3rQfD6pYI67t/UW9AaBp0iyli1v6ZsCQgnHp8GlpuO3c5SauW2k7ZDj+6WYix4woReGAXDmGlrmcOwq42rPE2G8O8JwFg1+gs6gXqPNUIC8NCUZLHOkECSuGVp8lyrzOgqsSXZ2oiIcHHhVmVZhuen6Z/qbJgMlpIPqZM0ZVak27TauQr8ashtNg7Y5Bjj5vxRRIDL2ICUkd+sGx0NvNo6gQOuAD4ZEISAN776HLvDwOOHJ7z/+IDXn36C0/E1eJwwxgkiDAaH4yVnu3ovcpLZgL8a3caiCQlP8tBRqQLGGCabizeEIFhPJ3U0DCmRl9RB10QCZCIGpMqoFjbnNW2K8aIwR6Qm5wunrXjLkmNjlunGvLBEPzwVo7ACcXz+3RGzNXM7w6nu5DtarpcQt85X7lTeRJdJkIDEs6n3Wf0eScjo7eCw+LxaP9kN+Erf1tWhyeuIfm8jNfl+IRbWjSP3uoRe5HuQ1qfRItquA8I4HRXWxEJYTyuYTwY0ahrhSthSiHaNdjUypZ6Do5em6EMZA4MFJBqpibrKytDPyrr0fo0akaulU4uNT1sjLJ9h1PmyFJMovhXAPyiovug9vu4DpZ5Ra5T3HIVg33kaW+T+7PvwDBygWAfByUFrwFOOhB4Ayf3cny/KmbZnKQorWNPWJ5mOHsCgosf7GqK6gCqhQkHaFJrfcxmqY9ZzVYEETe2S6c45HpfVpiNOOt3lUo8i05KObUamPpUBze8gZUB9Oqqs+4o9Kxsy5Z62/dLHO3/jrOX7D2zIERi4PINNjdm5MhZCgIGmzte2NmOoT0htyWlh4yzTcU6j0kmPrln76FphrJl5mw49wU40Z/2MOTxDMc90cXHPpY+xfLyu0rZMxJg/Ul3PKDuzj1UVsHi26jF5JWkuU1SgSzxtfa2O+XhU5lcmvr9Qz0YV0r99/Jt64k6C97FUAxSaFR21bK3YviClY77GKt03Sz7/2TZShKxIPqt7tOoux9MA//AFDt/515CnVxjrwPHpgFd/8Nu4f3aDu1/4y4DvoyCYyQVgxunjHxiArMeZi8RlvxLKI1y3VvoT/dA/JoCp4r1xemLwyri56Vh2hLEyjk+qJexvGvquxZraLMOkef1KgLHqGb/3zayX+akAwCApZl6o61i40BspwZUPndFlXkc2mRH5MRZWbCS6JwrK71VOJQjYZWhEY4shhTC1XlGC0ct4Zll4Ya+IdxJog2iztES5R01puCnXBoDJ1hMyV8ofpUxyrA5n0y+3i4zDESuf8Ey+juX4Jh74D3B6eo2HFx/j1acfY5wO8EinAi76bQKIp8atwSr7635WgjZmP0X7xGNMjDQB0IYf7hJWrzYDB6YVLqoC7Gw3plgDej4sZ6HNRKY+lP33aqe9xi+tMRfYtMTzeZlUNpNxLkmntXlJXm9pU58rsoIqs0TdEuPyfmiEbC7zpJ/I0q1xiWKFGIvEZ284z19TJ+H2LrUN6hXC1pVgPqcCWBRcpZmeJ5K7dNkKxhQ5QifBI7wPViHotnU/+/h448KDyDlZiUqkeAQPCvKy0rVcy7Vcy7Vcy4+7HH/w+/jov/7Pcfroe/DN9uWv/xeQccLz/+A/KftsKcx4/Pa//PPt6F+QUu2L1/LjK26P/sXXfxM/9/jv4dvP/t4X3aVruZafyvKn8GK4g0TmI6VZlvPv4jhHtSwhDCXMw1JgtTTKByjCDRN6aOutW5QJM6QILDWWRbOAO7IAwTAjM0Es9ZuCP7KveuvMIg/AHFM80KgDbngo46jG0jRimuFMX1ZHNyjTwAEGWvFmBdQ40hrEYdWje8h80zp8xPAxqxOGmdG6pQpiaISOMh/U+mSicONDpoMjG646NRzA4IaaajxT04IBu8oVx/y4OeT7dWJCGMtyHOU2luio9BUDHGxjjtOc3q20BsBipvjcu0PKD9xhjHCnJpI/3EGJBKmEGdCMdnH0D6NWieYAoFEaDybHSctoKuH4KoEcas75MQowgijm0PWF3uZUP84zcKekzbU6JMnmV8fcW4MMQScDdHAaRjy6UzV4BpfR5YiZachVB5tA0MTAKUDwNLWMauC8JMXKmNEOFEzDIhZlKvm9x7wUgFJUIbE2q/HSZ9CBPG4MZ1zSvXyOytwaWMf7TEC5zorgY3cu+mdmwVKNX2TruOc8w4yyun4a3Jw5G7FNnRHtdzcQQm/mbYr0Bg5m8LvVum58rLMRzJ/L6CKdgDef3+LwNPCDP36tPNIaTk+PeP+P/gjHl4949uZO0z8t3dIgAbdv3uDu/gYkgl1f0NqCu9t77Pc7kEl4nT+9Zbx0dQokP5tEGgD6itY7xlrSVT4Cn7xYsZ4Gnr3ZcfvGDqeHFa8+PgGt4f75Dvs7yjSRAmzBkt5Y2vsbDo9q5N3dWNrIshY9ClJMX+VXmzZPXSblS79tC3agYPJm3ed8HRO5+dpkNQ8FlxApPxhv8DjpfsOq2Op1VMS8u7wkSrnWiCLyv+8lwhL9jGg7Jr8bUpYUz0SsP3g9YWsl3WPEwJnl/e26Ynsm5sflSWwqDgTwTcEBy7a2jFdz/5nlEYtgtHSUygBevP99fO9bv4l+u8ebdx2//a//KT78we/h+PASLz74Ll6//CHGeMIYR00fKrluArDqjh2kTHAwVwVsSXOjLqbfwtHDAJOlj7N9QNc9QE0wTqvSpRHIjNPCHOm6yPaSbqnXeHAAosjXff3dkX6SKSkd+NeKIyKf1/Rn4jICKLyv/OF9CV7z6EQNBRBX3A7VOE8+563I6ZTlgPKzp4oTngVsOoSLrhUyP4W+A8FhoCRf8EJQuWvAo957RhFimfs6FQpeaBYaQYyOzuyeymbZLQA1tK7pMtfV0ZbKmyC7hW3gLaIWN49Xd9C4w4FUf+gmMz19q5Do9WcARC3AsENWvUGPLf8pv3Xz4GoEPE81wRfG++Upk/yu9Pb9vyjd87NFpiL1nqzV9sppn3VHpNdc9e3UCbZ84nrGJPBCebD/ua4buk/WkbxU2yEXvfqdKWPiOrrpAzVS2Ty6+g0SkeIOatJ1Gn2JJTXvUbXPlUZBTRGgtQKEkDKm1JWCDIU0tbkzFWz7W5ztsq6z8hn1nOkA0+uVR2IbwqUlUdgku7h91vu86Qhtny365VQtlT+Mx71v9QJA1JvsOVUUf9KfTO/oFyGAkdtx0vy/qb8pvmmiIYCzyClVd6r03HDdfDaoRVzfKb9T0hflOwgyyuFmaVYe9sfrebWOsfLO3Gah05Y3L83tNP/Zx0u0CKm2GV9RleZS+FbKyzQtwPk9paNMTuUtq0z0KkwV/Fzpct4dEIBnz24tzetzLF/5ZTx95zewHg84PLxCX25Bd+9gfTzGRQcC0HaE29u91mIRBfWs0a1P2qCI2ikalWhHE3PD9rjNbrECxyfGiQU3tw1tB6wnwfH1AC0d+5umEV59XDV8U5m7ia9AGKuCsna7bY637bOXi9P6jP83PJs7Q5HbpT86PwPryw8B04/y8g4swhKrrkYCKlznfJGX5KjYWQAw5do3mVHIPfd9Ix9dVoS6tv2dclyo46Xcd2pjE72sf5tgSNP6cp3T91Pvc+2LFDoKpZ4KAIfDA/7VJ/9v/C7/V5B3XuLVq/fx4uMf4nR61MiYp0e9rS9jowcDM7xrHrPvcZf2r4tvkVj6Ljqjab4oUb/rvFL0XK9dL7g0VD161lEQNkvyaKelb0mdfNZTlHl0pMqX3rU5bXK2m/PmwMILm8Cko5i2Fo9VIXv+p39H05emd02PFQapyLsyWAfqUGGyZpPB5fyyjc7qn12PnYHoet5oNm8pg+ziRWHwkGuSZ1JKY1xQk2xx+KUeHrPwkli4WxpeLlSfsHO469hnwKtruZZruZZruZYfU9l95efx1r/zP8XHf///Dj5o9Jl28wbuf+Vv/Ii3BDJOfz4d/AtWZD3i6bu//UV34y9UGXTEP3vn/4p//N7/Cd+7++c4ttdfdJeu5Vp+asvnBik1gTqhoKAZN3u0hnDahkHQbheFY11gTlcxZ1AesPx2vB+WgXrgs0MaFGjDwuaU00gC4XBAs8Nig6fCcsNB3CTzg6rAbrumMUwb5TidzdFjHEiFeIeaR4VxAJA5pawydgNhMQY4YjVsiwYeQiOIrGFo04MpIa/Psh1qFXDC7tiEHnAbuXPN+hvjrlFWWjgRfLgcRmt/HoEM8ue2h1L1o+ucV6O6FEuKj0OQPNFodtA0Ajy90Jk13g1oRrOzY/EGRSRDzAhKkFYNgFSMmxmBwOfWjQ9i/fGb71LaD2OA2W/0llveStqGV/ab6eFEKwa2yS5iRiWPIhKABXvGQWvpvM0hz3Ssrjxt1yN/hbGBsi/Rp+DzjTHQ6eGh7CXTCvr7/lnbstRFDZHCTbz/4awX66s2wJ6aIIygCbKq7OYhy709Rr2hrW16tBkIEoDlUUMkaRD92fISABkZ8WprfOVSr89xjN9pGIYoBwcBAIN6i8hR2xvozBYJzGQJiDRiUmB3jOdg68hm2CMxhPNBoBG3HIgmSN51HjDjLong6199jrZ0aMCvAZKGx1cLfvDOHb769Xfx3jfeUqCjzU0ToC0tbneKJJjBebMBWAU4HAduegctZR0LIOK3oNUw6VFZiQing+D1+084ccPdOwv294TDE+P1xysIA8/eu0XbQdOdASCLUEFMUzSwWO9q8cPpKFgPA3f3O7iIM9aAz1pNAeh1DONnjVRiMqO1snYctomQCRBCoxYRopIv7BmYrBl6u/FwOGjdrKlSmxDGOAKyKvCVYDOe9A6jaPB0mX/AUh1WE6wyhttg634aLxae9HXPLPG5Ot3ECVTkXXVYd1+7dpG3ke4VHtavrm2CpXbzNiV/F6RM8P0njay6z8PGc3z9Gr//r/8ZPvjo27jfrXjxw+/j1csPcFoPWGUFxhMgR4hkCjWVwxwp3lhQwLXqsDkDn5JiYS4Zo+szfuPVwST15nMjAjphd7NDXxQ4dDquGOuaPFXbbIQmGRkORpe6jymoWmxdlc2lEVrrCqwxxx+z4CSr6R15w15EsJ5WUHOQsvajtaZgV4Gmv/S0CBveM4IEOJAKi/kekQzkPwpSUPk64Xgn1vLGlp7G/qp3CEgEy7KgL0vSkYBFOpa+YKwr1nVE2gwFMKkeNekYRZ57V9vSsNtbqsim0YvWweChkbG8T10VIpUh6zBgU9d51BxuEVnO0yY0auDTyIhpouDU1aNCSQKnIl1GnWvXQVgiHWuzfvg4vtROBZGiv6T+6E4jY49JZ00dZSNopTxkL2+DvuizGWHAnZm51ydgZxKXxk+Z0lDO6wWFbMrhSRlF8m/db7xP8YVIprt25dE+11v7PgLYmt1o0CZ7PGyg/2L/EYd2qEA/Dp10FvzZSY0iUAnseus83i0APi9LGA3KKzWKRKVijKCyeQHV1lKfia7H81HVHHHJ53GSU9m3umSkfNjOeYx3Iw5zLHMfQ/SFSEww0+TAt7rywgPOfkvdYvtl7Yg2lDSqp4nsbaSnos0vVuckQi58ntjA+NX1jiSGZH/LlhD92Z4z7X/en3i2zNlE901fgw22PCa23Xu9lWeQfBT6POauVbpXueTfXyqy+bDtj49yu+yqkzsAkEGX/Iz4Ljuj/ck1B5Rjc9CkyqYcx0TzDf0mu4AA+31H66azvvnzOD1b8PK3/inefOdtfOWv/Yd49rWv67nLZHYre6tXzEWvif4JMAajF4BS/c2DOBLa5NjnFTg8rGAG9rcWQemkKd6oAzu/7EBZYY0QBKNb0sf6OARjZex2XWkkE+mzcKWq81+9RJff13/jcxX70xQVgIcRQU5HA7qvWMeq38W5mw2Yj3J2ldwOTCjOy65MijgPbKReXaqEaR0CdY/MtXRWCq/Vv89krWzoPAVLdBtEnnrSZnfelq+VqQ1Px2b63w/e/Of4Tf5/4o+/85vgTx7AltqNx8lAYAN608bPYi6g5gE5HIbsGap9q+Mu+77U+kqJC29VtlG+T61ZqmYDIjHnPi2CMTzN9QQRsrTzBnAbbHbAymGbiSON5huX3cT3LLXdVDAbbA5URuqZ32Vs2ji9lcJEZXKk0KbaqKayZT7v6vSIS7LtL/l7BTg6oxD0YkLWYXTrLeYpouJaBLgEfNO0+fnFHAH0XLD00Bt4SK5NzrZ0yVd7eEZM9yjGfiEEpHPRzCZNJWLyVq4GHSa6nG9desk3uaa2cy3Xci3Xci3X8pMobdnj/lf/fQCED/9/fxsA8Pbf/J9j997PXfefn0QRDjDYtfzZi0Dwj977z/B3f+4/BbcrcO5aruXPWj5/JKVqrGsNIiMMeoqToThUe+QfEb/V7YZQPTh5xrh68Kk3/6rTf4jA07UpCsXq4QG0DnfGeBomDoOfQMCW/ovsFj/bAdOMCGnVVkePCDylWoy1OIb8JgwkD27ajhs1JSLXKPAqSedPNVLwQi/ORwiXdGIEtK5GCKOFg1rcWWEdKylZkM82ClqPwWitI8Em2Rc3bIQDghCRCdz/mfaXuEtjxoqkD28Ov/lnWoOn8P/OTuL3iN04OpsGzWdjUY/UiedGqSlFhTvLxUAQLEAndZyzn/XTyUNEEZ3G+zFGTWFE4dTwOGACizhCGpHGaUb2uRpu3DBZozVVox0VA1kYWEvUlGZGVI8EIFIjbbkTOSgedjI1fCT/AWVe4WbO2SidczEbwTyoRu/a3rCJIYJFptL+NotSxmYwZIGBh3TJ5tqOREsQMrNQiWAS9DD+mex/btwyg4uQRZEZFN8HyKEQWoEIEvM4lZGOdR+/p6X0OXTg5MbcFAzqgCznmfqbgNSJDaAZvTwFnYIXK/BF3+uk73jSS3TjRXaAVaaGCt7zeYECbJznHFgGaCo1GGCsdWDZAzsIVhogJuyXBT/zs7+C977yNexubkAdYDNQdVGRq+CYDh5HjNOKsZ4wxorGC4YAx3VF6y1SRsJGIeyR5WyP4CUC7R2fBl5/suK0rnjz+Ru4uWk4PQy8+OAJ92/scftWR99rBzxiXUjhkj4y+VfXznoCnh6OuL+7QW96O9GNpr0rSM7lYxh0MzCb8pBF1wrZgmr8luSzsnYERcblstPBsmAcj+Cx4rAeAWFUp/Y4HTSaUoDuYmRpHK4eAvs4yQ8zBqezOaMkKU/bog05JCHzEhQJeIioNPjbbWvbg/wmqATzWk+dlkQqLy4Ylp1OjgtCoZ3TLVJZSj4DIYveBsCAym+9/Ry3t3u8+uF38f7TD+3BJ5zGawgzSFaIWB7CzWLTVA2kUY3I9yE56y/0SXhUHB4OpnFAsO9bOtvMw3eoABh5tJu2EPquOwdhf7MANzusHmXpRDitK05jxFwI8yxDT4JBmn7M6yHYrdwa+dGe9xR0bsTW3hLyFrSNnPU9HZ/YXic+naU0BLVmJSmf6ApC93R0cau4THg8LfG/oGv+QBe+t30h1pmCO8ESuhAP2yN6t/QyHX0hrOtJ+9nIMLIK6NFIROo84MFYTytEdL5ubvfY7RYwM8aqDh8eka8y9LyVGZ16pJDL9IyS6Rftedh6br2r3O+SdLcUDcb0mn7P6UZlD/f1ibKnmI7LwhjMAZT68hYHlHlkiuJw9Pl3FTJ0baAmhqzFOSYdmSZMKNcAyptbyDKF0I4KJue1uMdUCndSlRvZZ6REKRrutrfZVjjhKOc+95eN7mr1VhRWnp0S1OmRmeDyn3SMrlPVdVh7N1Gl9GnbBx9f0M+dZ/X1IJTEJQBXqGXTeOwnVIZf5rKCCdzhHmJA5n+12gs84lNEZW4JcFflLHXKdhuMlftvytnyjBXXkUtnkrCVp2aWgRR6TD0pffWqqr6ZzziNy5mV5vbr99PrknSZq80550KgLZ1iDA5IqnziqYrr3Me/M0CnjrcuifO92eACZcnEuAofbufnXCdJcGKOhbBlhu104tLc5df67zTXEtFA5+GW/Q++1uY2BRXkfXlc8yQXHWtqob6zJTqmOZmYzZ+m/EnXoDKNP7Z7++vYPXsXzw4L3vzaL1qqISWEX6LINZ0RWUSV0Jhn37/I1Jq051D0gSgnSATgARweTiAi7G+76vpH4PioZ5P9/QLq8B3U3qOLPD/ptaKRE/vSQE3bLKrupOe7PJyX+mYdb8hOhabxTvCI7fXbfUTg4XwBsgg3LSM8aQpcjR7q+hcV+eX6pcsAqmOeZOhcBLl2Jzl0YWzTGrT/1UekvDLx9MQjpTuTvJ/pTKALc7iRH5v6jC0BAU7tAd954x+jPwAdgqenBwgGll3HkAFZh+4nPhdRWfaDTJe5KGckOSO/vrT+5pWqttQix+HrSXXMtnRABMwjdMrWTH9niXTSU7v1gwAMBgZAAYqZwbH+XY3IPRe3UzmvGaeS22fY5Jf2o26FMTBnkJljsh5qYLCdMc82vUuU/JHlIng/9hFlNB6c6wkFUC9KKx9zymrj5Ej5bHvmav0mQV96gJ8yYm8OqZmdhkVAovYn2mz6mha+ki+j1+r5oumZKM7vCN47p5VLlfKs6PmY/CYpqMztmSXtWq7lWq7lWq7lx1aICHff/Ou4+dovgdcT7n7pvx96xbVcy5e5vF7exz/46v/xClC6lmv5MZXPDVIiWDhupGHPj78RaQMd4aSbrjKLRVbIw6sfeJnZQE8Mljzgug/XD6luUdBUBlonhEHUYWaKMDqgmZONGgLIQG7wWRGmEbsxAvCcPq4BwvXAPOBhehS80OGOaiEJQ9yqYWIU3OJOg2IWUduS9p9Z0MzpJ3DwQjGmOnUlDRWtnFarQ88PqCQSiKA0PjEI3YASI8/hdoiNvta52tyyCwO2z7nnlyqWI58rdZDoWJpPk/8RTtEC8oDbKLTdiOMfxkBPXaYdJwJGNO03zSjoG6wRfEfwcCrb23YRqcI6oTQyFoLbjGaDibABSUSUkIa283rVye5gPaRyFUYAr8smyAyxbgjxZ8TT/YRVFmBQGD+EBa3X54tVEJENKC5kzTqe81AabKoS6PbMMYzvGia6udVE4I4Lp7/EumERxRZCYqzCFhXNjcNw457LlbRXJfhLB0JENifuZPaIIA7i0LEOs/iSMYEPawyL+jSRIOnnz1WncoDyrF9qS5eIvKWSo/KKstoAYVikrCldEs2APTdQ1eXn66jgT8wo6mtAUg5YfwRmqLaZycnPOVXaqowVNIA6PDJebw3LTqPQte4yvaRks84zq/Fut+yxWzp4AOs6NDrTzuSnB3ATChCMMEOILP2X4HQgvPjgiKUR3v3aGxAGXr9YwSy4vyPcv9kgi9UhgiYKeAXpHIdxnQrdm4Iyn54Gbm5v0XZylkqyZpmKiD2lDnEjsDNhiG6Kf0LuQ8CcUQNa02BJ4WctRj9iYIwVJMAbb7yBm9sbtO7AkIExThCUlyeRYTKVFVjKwrb/lpuWnPsHbL1pxCuyTpvhNQzNxtNcpJvt6QmylfCDi4+DCrBLzNBKpGEWW+5JYuuAhsvT2I3qwGbeLIKxzqtvJEyMxgQwgdeBj374XRwfPoSMB6z8GvfP3kSnG5wOLzQtA9TQy+KRQ3S1OrAjHF/WNougu2YhFr3GHP3MmT5pvp3qfRaI7a1AAnlbU32o7xfc3t+iNcLxcMBp1ciJfVnQd10j/biMK4Ig6DlFGyCTURZFoM2AKH1uwFCOEFO8fIwqk5o5L2CORIqIjHHDmsbkUAiwuRRnnMsY10+aRh4CE4SPYEOreVTHCi3cRoapJfci60F4nm0dWtoJkgRyj3VV3mC2SAsNw8I1tt7Q0FV+e++b6gX7mz32+wUCxjgxWlcAKS1A3/WIbufy38EWrRGEWOWHegHD4epApb40jLEGCIy6AqE00oHSg+wmPA93PkiO/Yw+Kg+5/MaDVaPtKt9772jQyA9naXS/VCX3s3N4CACT3VUMFOGMANjNtQWAF0TxzFQnKHjZJzbYrdRJ05u+j5R+kio0vl/P8k0svWH5eppLQWjzontj0GCqxr4LuXouOB1MqFtHUiSiFoRz7dxRSvWNcp5w/WvaA0vXL/kVt2CPEAtlH9y8gks8bqpD1l9/iMryn5AUVP8WVNFEm6mcxlI/SLLZGTe6vCxVxDNF7TFRsHk3jiBTxaEn+GCpArGy7mkN2Isim754ZWUcrb6zmUrZDCK2stK5OL/ITMepzc/oo+v1Ts9pmNux5dZ/NuXyGf2/QJLzL0pbVL6rzvTgAD83TMtQX5jObN6Mr81NmZ6Z2k4dskac8VqS7+us6tt+ASTEjJTnC5/nG3MV2/e87QsSN84alXARlHmaAAqZEhKnNfRn74A/egksuXdLecX7Fudl0zd71/15mD3IoyVVhpz4rextYwiOjwOEhttb1bmeHoeCk270bIO4QFEGax2a5WIuBBHBabXIkt1kdKljXoPT2zNdJed8S/96TiidCUK5fPDa/R0WVp21NSy9h33G66r2gK0sdZ23Xg46W3ybhegXiGIeCg/X8+wkBy7IqVom+Xe+Fej0bNbzpYp8PedVuiL2Ct2DJE5b+/jd21/Hx8fv4MVHP8Tp+BoiR6DpmYpEzxE5KH0rgWN1Zlznmm0/Yh0JW5Vg5iW5PMit3FE8N0Ea0HcLem8aaXdl03skgPJiFoRq14k92HlqkoPebK7XsAsab/beTMf1x+2iRqOzXHyVR+rESnmmkG/+spDD09mRtBjTpNedyeQc8wSs9j77Jl2KXyRR+ZhCSiJ8t1g0XR1xpGuLjALeWaD3ptGSoGfw1ptGlyatx/VScR5A7bMyaNafNlsiS+s8yUOKeeSBTOdK5Yw29bDwAnymN+ve6BgXkpoB70qkp2u5lmu5lmu5lp9Uob7Dzc/8Kp6+9y1Q3/3oh1Wh/fPp2LVcy2cUAeOfvPu38cHN737RXbmWa/kLUz5/JCUAkAGCHlKpdQgIxA0Kn9CwNSTNTtOsN88oo0Z4ZAAFBJXDrqhjoZlpVQ/R6iQU+10P+QbcCAeVRROCOu30vOVRlwiZ+k0tXhr9yYAexVJYo1pU8A9BINwgaBlVhVgdeAS4owGcBgh1XltUJymHTiEwuQMRQGtgqsaPPqWVaRZhqRFHmjG2/sJoAGubkEAJIZiH2MMVe/odAahrFJ5ymJ/MI6KO6Sb+jB5g/VJNRp9J0FcaxiJs0XSDNOwcI12UluEqIkr5uMmNj+Zf72654gR3NDLaIA/gbsv0iB8Ei4RjjaudwcEt2gcmPaRbj43nbFyZKW+6Eay4GLLQQc0MTWkFG2b4E2QaBSxK1yYUAVrCICeIttR4LXZzlHIc4uCqYvgxQ0tGdqYcmBsdRMLIFmmX3IYhFqEM8OBk8V9EHgvDo81x83WobZC33wBHIJJ5lwKcIpKGE0v71VijPagf2Y0siGf0X4vEZnQUTyVHMRToRbd0dCJopPUrOM3mtlhhEmRi8w2gN8IQxPtKqwJ+Ym3XAVneL+cRLuR3W1Q3A/AQrwsmA3WZeLSZtIlJDL9gMmPSmBFpFsUiZjWv22SOEKFBwUT6qkT/HQ1H1DBE0FjXwxDBcZzAbQVop0AekyMMQjMj3SALT76ukA6MVXAYK3Y3O1DXuhqRyjTWgY3GOl9rgzRt8/FB8PLFA3a94623bgFmvPj4CYwFb769w/6GNP2UgQp8icQMiqaXA4n9YNGAIHh8GqAmWPYqsDwdhJDzCQIQiOayYY4SITa5ZLzRmoFBbB0JUQTnqVGLqgHc+bn5FxBL7UU2GcZjxkRjTRnC4kDOgcPpiL1wYM7UUGggHhJLcynojSwVp92AFHLzMciZE7ZbDZO9RaAQCDwSfBdzKfNNUXHesL566gzdOwwMJCF+goa1BH4OGbCq0jJSQIruQ2JAFIZoOoMhOB1e48UP/hDf/+Nv4Xj4BFhPOLz8EMCAeOoLj4wo9Ta5gaFN9pMBviISiaerjFSAmvaMWdPubSOJOPgnLce5L4sw0JV/+qKGawDofdG0rR5BoOlvsjCopBgcLFilzWkASG9Li/jeqwRlM3733hSEBEFr3eaZc/ySYEaDuoShmzFMNynS0uVf8Ty4a4ecfeAGbaWXA4upNQ1v4PSFgZfDAZNjyubycwDhfe3aT711tIXKmrU59QhHrA6AwWtEVBJp6NQMtJhRCVrXKEsKFtQ2lv2ic0WealFTPzr4xSN1aspf1WWpaUpMj7TFYIg0A1Q20AK7Xd0UuDfY/Fk6KbTYfjRMvsfmktoZi+oqM1bGaTmAoWK3NwWfkq2XL2vJyA5S9jnTXUxT1BFbKufYEAFdZ/onxd7va9wecXlsdMxb73nusI7AhXYA5wipz7v+I7UPLeUgNg0KJjmY/AbrB0X/WQcAoETbkhz9NvpF6Lvh6KTQlaz2bMkd0PYs+bo0FIbKaElZHgpvspY37xFMttGDXD5cilS1tRnGFEvpP5XfpgfL1Dh7iF/mQLIJQvWbGvIxxT+uY2+e2b63LdPeJXO72+cjSoxv5eVlQqGH9de/y+dmmsTUVzGA3C8dokyFhihtn/XdP34WvcqjMQW+N5cfyfu2pYF/buffTVhJmt+PnbOOd/M+FbrXvSC2E8koH2lTwFTq9wo49g4431LWGc/7gI1O01ZfV/Xc59qP1J8246pzFPQweV4I7rLEv+LNfPi/9Szsa9sZIdYAUozF/J2Lr+wHcu/l8kx5JN6JqDQvP9R0qla50zvGaXWsj59ifXqwgxxpquVVQEubguXlHCPOzjF+BtaD4LgyiAQ3NwuYgcPTChBh2WXapqnfhImIE8/7t6wRlACgL16Hy80tn5SXp4ku9U2Nz3MfAutH0LcW1+tQx+ITKvXyUUIVmAfWI2PfPApnrZhSvgkmuZsPp6AprFV+n4cfdPpRZCm0c3kcFKoy2tqs9W35d7veq3oxPRr9JwgGvrv/5/jN3f8L4+EV1sNrjHEAmC3q7cF0KCltzvaEsINEVyT6WZan/U5xwVE8he8ZSYw/4qXN3CwGkrHzWWsd0vNyFZmAJmkGsHKikUZWDUFm+3AI+uxpADatrtaapbn3fd4vrOiY3CYRdXoddQKSQCEPXK8424RmaZ/85gFjP6NcirZAVQDLfJaAlCikRSaIwCLXF7LYmZKoTb2TWBsuLS16qj/jZ+SwG5RLp6Q24NRNKdr06HJugxJYtOyS9s3tZ+C0X3qbBFK7mV++DWZM5sxolnXDSm7Xx+YLUddyLddyLddyLT/ZInj67u9uDquXy/Gj7+L08oM/hz5dy7VcLgpQ+r/gv/jG/64o79dyLdfyZy1/CpCSgnzUMO2343tYpzTC0ADREofbOGxBQT3NTtpx6YYCZjCn8CE/R62zYccOZhrOWm+thDGfMqxwo6Z9w5gPzSgHZDuskZ0086YY4Idw87SaYUN0zMRpYHaDBFEaCMKwKWikqe1gjjTAIhYAYXHTdhgMBrVuaaHUwa7U6WoY8br9NhHn2VLPty1u3/jJ2h2mHvLZDT7MrLdyynidxs1PqVMkrLl49Bg39io+rMVB21MqpZ2FJl1DSIEGRJoaiD3SghsNkC+HYZDs9tFwwEidLTOW+BfGf+688qvZ1Znio4+b95gNLFL6sdWTxAFHYTySiEThzGGzaxF8HESWNPW1QcgoKBGgCsU2ZZM2RS+rjqsYF4JnxSswYkjkn7Dfi3Hv7HYVzTdOWwEZbQ2ODr6qTrvqOPB5iUGxGn+oDFAkUw+6Y8DngVk5TVPjKA2GPU+tKbDC58stWY0gQn4BDkQWFSX+dse78ZCBEOr810G6fcejxfkcxBy78QkTiQuvmHGtGC7dd+yRmgQW4ts+OyrHHdYSfIlSeVmfnjrPKU0ZyasTaYQf5wURXW92S1AGwNIBMtCpWDo9FgwbG3UFsTw9HGAQCBwOJ+zv94ClBBTDJomQGs1IAG7GAwNjbTh8cMTrxxW3z29wf9fxtDI+/egRNzcNz99p6HsAssSaE6N5OFtiTnRsCkJUkMThMMDrwP2zG2QcKqc3K5AHRt9SV/P1s5m4yRYaNlxJwFAYYSlSZGh/XebUz4x1nPSWZW8WmUzBtCIAjxUK8tH9hpnx6tNXuHnrzdhflBLl5qvvTTBQjfOL8VkrUUh4pHEZwHwz3ufYWb5WH8/MPK1rR39nj4pX0gG4IbliDlXAmdx0HHGQUXKyJKM5+V42WMAysD5+ipcfv48f/NG38PTqj7FfjmhtAGPgdDoCGJn6oDWdQwYUWO39UwBHABJEDBwrGnkHUDA1DKAmCPnhvDcRYtIvjFjsoGgDZAM4nU5o1LAsC1prFunKdBgRjCXBb96nJgZ4CUCR3qz1daxAFOtKT6D1stObR+u6QgRYFo02ua4c4069RXUoNhCWDytGGXsNYjwgRPpZceFoKfFc4qcDJPfwUitg9PXnio3cHCmUOoXv2TavLk89ehqPUdINwvYVDvCQAgR9DbgHVMe8ngi8mv5h8vZ4PMXQGyn4brfsgA48ySGAMSADbspwlQ99WYy3a1SljqX34idQp2HrnlK1o4vuLr13jHUE4Ing0QcRjqDzovue85reAGd81tNfhqL6dgLG4DpM6Oe6d1OJFJSqiq3b0CH8+1lDkXgRpqKknJz7Ehty7PF+LsiKauHYbWMLhsvQFJoptRPMXyuLJ8XvtKfuVvUyGD9lh31sBooM5aOsnyq4J/rQZjzzyvQLEeG3otIgnY/BOgJgpmn1exW1OPRa/752R3kd2Iw+Kpj7ZHLFbh5web+22Wgem5Etuu7VlTghU39CZ64jrOPyTfNHGKam58rfcX4zGqu8SZJW0gd9Skcq6ac+1+0U2bbue5/ZzeiblwuzbfLF9s+6UVS94azS/L2mIdu2K9hgnAQTH0Vf/PtYEgkeAYrecqH4b/P+NgOccn1NjyQ9yj7p7/rj3g8qn5Nf5zbqoHye4pnCF7Utv0jk8+nH26me8sZGcM7zW+g0PRaHT0x09WqrvPUzGwRYX7/G6eE1RBoIDVPLknWpDshYjycFf0OjEO52+xRZnzWHAtNfCKeHgeNhYH+/w7J0jCF4Oq5YGuH2roG6SdUfAWwItc0+k13GWVel7W7XbU4iVpo963anwvMmBiLqFTZjIDob0mf2zYRZlZWq/ynt2MAzrQIsfBzMUTHZ3iMsWHaLPh+PX+YN2TZq46hHjzq0ia83Q4i6Ny/M+t7lev2PaS0Wegtsv5KU37J9f/OuM9YqjD/EP8S/4P8cH3/vuzgdPoXwI1pTwJuC3TnWuoL7U992eyGhynYxuS0beuQfcTlh80suvQ0RxM7/sWmZvWCwXdpSnVEv0xjYmTyKsZ7bXVevVaeskdz7fF6M4HphUCAN4GKH0mfni2yXouxUi2oskGjP90yzJ6dwjedb83Bqcznfw1yGmw5f69nQGdFvSptZEYRs8x402PQgaCZ15lRP1bMi0MT1Q0A8ZVqJbOW0c3vdoKQUu15c7W3Ge06TChaPCKyCBFvZBV6PQpWgOMBtQ1UPy/mpf1o7QjneS4v8Wq7lWq7lWq7lx1jWlx9iffFDLG9//U98VsYJ4PXPoVd/8cpngeWv5fMXj6D0d37+f41jf/1Fd+daruUvVPncICWGI08kDrh+aI2oDtDoSe7Y8ygqeuuG4waQ0DAztB1C3chQjHnVahbACQHEnHsZjYnR2i6djnADUvZcAT09HB8ZCttuiZAZpwAwD0SEBDM4aEQSBxSkQzYP7R1+5AvnIRhiTgRmbYcYRhOJA6Cf3d140SgP5tXgqX+b46sBsKhQ3SxUbI6vbvnSA8RDZDdrlBaEmlImjQV+e0oEZ8Z8dwKEPVJtF5FOoHkfy36XIAOlSYMb9BSM4S40pUdLe5j97sbIBM2YIYPcZYvivNf/NwNzCWuEmEYexQpx01OCwazvFvUno/9gMiaem0gK6eDzZ9ZDODjJTC8UT2SaMFjKJIva0UCWFs1oQhTBiQLPJukw93EHfY1G4SORYoSINZSRB2YjtQECAI1YUS3KMMMYIwA0cYvQ2o1b+huDR6SEAoXzmLqDKWxODdRC5BHColM6m2WiIjWR3Qobg9WAVegLc1TwUFr6MlKjeAtwFJVZDQNOTGHKBucHn2W1AaWMAUqKLaOH800Y+9jr9BSQEdzJbkQrHVr0hWJ9+GS5wU3f9fb0+wGNTqWPpOFq4vGYEyjgiT2IUMOLF494fD3AY4GI0rY3A2VIV/o1aDSlVTCeTjg+HTGGYH+z13DzZdrEI4wR4BF/wMA4dbz+8IDHhxNu37nB7d2Cx5cnvF6fcP/mHZ4962jLCOeDd71RArqqQ4UI6thllYXH48DpyLh/4wa9UQGVKB83Wwu9a2QWlbUeBcKjh/krCsBNoFyVQUUeU4JCIsUmS04wISLmgBnCQ/eRpsAUslSkYAVXaZQrBYjd7m9xf3eHtr/BsnRLFSMRucx5uEHlXMhS43AHJSW+sMjbQszqoHFeTvBQ3giG7eduII317fV46jxJegIpp5oGW4z22OSSG2RzRHXfs/Vk/PzpJ5/gd379H+DF+9/GD//ot3F4+hBPr95Ha7Y/N4mIPh61RkSA3kHcwGyRkOqtYPgyk5gvAAlaGmMCKAEpb/Uz5zqb/jUdaB1onUL+nPgE7g23t7doQ/lQb/oTlqXjuFvw+PoRp+NqRmobGwG7ZacpPlhTOyjYjTDWNRwRfFIE79Ngc15pG8cjY1m66SKMMYamIrA0uyAbU/HoU/lc10H4L5uCiJw+fenoy2I0LPuzRxyExL/kjpVuaRHKbXWdggbf19Oobze6QcYXjDEYY+XQx1jGtOcijPMq1zUymPWh6W1zGeY+sPQpzCogmwkEtr6CBDxWfQ6uJyIAigG2J0FbFCTfe8fSFwgL1nXFuq4KWhZL3WC6AInJ9q7vEIA1FqM4BkzXY9vcjIav367pOL1fBuT/spbJgYWkn5gCmqD88pyBvE2Dzv3RlOgKiy4KRQGD0LQvuq6OeMv5E6WGGWKkoFirS3L+43V4h3LDmEFRkm3TBeC3OaiEco6phk+hTXQSr3OjsAYAMzzYVrvTATkHHmWpoiSiOqmvS9DZIziappvOy2mUSUifJ61i7mwlHUU783v1azi5aQbc2zacQxFMevS2+Jlj7vk0AEQ0X/+OXKOuz4WieLH+fEImUoZ/NGRHpQEKnZNGlb6+l+d5FhNWatIDJd+ZdFRM015K0RE29UR0h3kJK23s39rXQoBN1JGzn8/6dlZKf85Ys75bftw+M48R5Zw0N6G/JXfGMil87QSdlj6q5JJ4x6Pi+jqogC2d4/l8sSViXOQQwMEMySvZF5rmvJxlQ3bmOqklxAzlWKNam1tPB8euH4bYIDw9PuLw+gnS7jGriAWO6u0OwenpgOPTAbfrUF2gqBzz+rI++2cmHB8Yp9PAcr+g7QinJ8FpPeHmbsFuMSAz5wDP6i3fbsWz7qOiACXvE7mcO1+zrvfmmvCN4byc8WnpV7Jh2duQz3sZrz4GHx+TB8hleuVngYPxW+u4ubnBsiwQcpCDy/KkSStjUYachFfyQ5mnWPcbGU3lNwHOZYXP5QU+rH+fqTCSPLSVQaXaUo/JMSCA3iTAD5ffwD/49P+MD7/3Bzg+vMDx+ApjHEGs0URzjlPvZcepYZZ/Z/Iq6DUPTIA/ATy+BTfVPcFtAYzel3K5aaBBUxpL83dIdcmlYz2tOB3X6JSDXZQvqNhk9NwUZ9Yyaari54XPsFXGJY4E7eS+pueDDRenDmBrJMa31W+sjqpXzMDYhKURAAqdneBp2M7kfTaSfwejbgFK52xZ92Qday4Msf752XGqE3nu9PTj1PQMw6aks3gkLIdoS7ZX5iz6IWIRwyXoFfuArw3rnWcBiIu4dY36p2irDFcw2UI+c0++lmu5lmu5lmv5MRU5PYGPT3/6Fy+r3dfyGeXwg9/HeHz5RXfjp7YIBL/x/O/i7/z8/+YKULqWa/kJlM8NUorbxnbKJIOKeAowikPzqs9QM2O+h8rOgxIgaixx0I3d2mAaZgPQNA+QNh2b3KmgRpIBWOo2jxQT9ROQCcW19Yy2or/FRzf0SBobaLJqq5PLYrrADTtWawnzLzk2qzyADhJxh7Q+EouYhDCgE/wQKZbaoNyQCzN1UyeYEIQ4DAEsbAdzAojDEeH9ZGEDJgiYKR24StWwLKQx152ROo7hzjI7rPrNJ4HfioQZcYyWvTj1C/0p5gjh7HYTEkGjuPhB2w2fftx3CrBFxgjgm+dMd7ob3Rys5Qf26jEIB3yjCF8UFyXNUMSCuHU4OWgnPrHfUEJ+l1RpEaUpnEIFcMU+XwhHfBpNjHZlySVYorjMKA0lDkRzQI870sTGEdaJZN5w1G+NEDVaS0B7nE2ig7OhrkZ6CiNoaU7HUgypdRWxWMQgyVRTfiswjHPJBQ7occMKG0AskEkedasYi5oxVX6PknrP+N+9RqIOXmFG6ykLnG9jnfCGZsVYZIOMSD0CZEQkAPXGpM+d8wZzAtp87ttC8EyRDoAT2HrwDhlmwlPT6ZqCpeHTuQwIJBHW44pxVLquq43ZQTaAAfsUHPPxBx/hd3/zX+PVJx/HeJmhwfQA3QjYIr00a2kQTkfB46eCw8OKZ1+9Q79pePj4iPUw8Pyde9zcA60DbBGUdC0MA0nMtC89g3ssTkfBWIG7uxu07mm0Un6ocS/Bbc5DEQ3AUgl627O00b8deOE8PjkmJutgzr37mHvXiF/Ma3xJPcckohFdIAqU6r2h73a4u3tDpaILWmT9IXdDONo6qXLahirltipII780T4PossPoAKKUH4UULlcnAAoUDJXyOtfWZMQVlXtUvQ1kIEKTCRQpKpKXw1kiSranly/wnd/5DXz0vd/E4fX38XD6FG2swDgCNCLCT8yv9cNvnDsPxFr0/bfQNfYJ+0ICmH355CvT8z40B2sDu5s9bu5usNtpdMnBjHWsWMeq87z00ifG7e0NiAhPr58AZvCaIClPdau3pgXUNUqQ9A4xYEoAJ0AYa4LKhRmrAH0hMI+QrQGUaA273sGDLeoQYm9CSYkHDJD00EuInA87WAjrkIgy1DRcGNZRAYMKDuoGxum9a59tnKk/IW4Bx7hszlaPAgcHU+a+mOtApnfJPEws2ZdwPA0OZ6ZGOFKB2hYdHIs7ZCiidNXb9a01vXVv4K/TSdAth+oYAytG7phEaAbsYh66H3hEu+ADQW8du/0+aTIB5dS5IREswdZteaaRR7L4MqOUtN8uURz87EKngoZcxoXODrL908BsokJC0zYbn5EDfTw2T9MUsEAs+gQPSThoFEDtm6o7zNJB6PpHyuTcx2VTV20soU6zvIj3SPXf6ojyuTUpbfLJ+lVqzpadrht5bPVrNQ4WbEWXq8XoFq36Ryp/5HqZ6ZjU3NZNlGI0hyaFbjA1U+lQo8OAzqhWepvPRNfK56qjVlkf4q3uAUBm9bvQTtIim3H9HbUNyjbrvxsylf3beN4i7xYtsdDlvPh8T3r4hecq4R3INZ1jSv/y/dm9DMHF4LpBv8LadeqAEMtRKo1o813QpdZP83dTu+V9mX4v9MNGL7H/u5SpjvG54/lv6vlZd6V7zFHtRB0UEPMQLDqNKc/MlecLVjGq3NJT8CfN5fk6mdbFLBYBB0jXvmwZS0pf7LH1xQcRrRai79TzSR0LM+PTFy8w1hNunn815FVlHoKD2uwcLZoa+XTSffvmfoe2ENZHxmkduL3foS+wdNGUldVJ8s7OQ4lPY2h6VwV1+6sXAEM2lrhEUfo8891M4/p9XTvn61bnQGod0Y6UNGQUlccZnAUVoAWCgjgoL5VMfSxEcFvExJ+SbUvhlXm9+b95CWn726bZqd1oj7L9S9ul89XZ9/XZzxCWwXtg/OHt38fTRy9xfHiF4+OnWMeT7ls8ALCRNHnILz7mvJkOIjlHW3mUXfms3eusi5jkPuzSjukfvXfs9ju92OD6O1OkF2tuX+PUgZfdDiDSizAsWMfIlkxOOMDN5Uhy3qZ/FcDDEvq0n4OdRmoDa2qHGGxAnUqZnKgAO1XaWX8C1HmBIaoMb72Fnq/9yMjcImkP1T125tX5zC+4zHTnJc8ciHpzbyhywxuzi4l6PkxmjPOJUyTz/QYIyc84aQ6k+V2RvCBl78Z5QhQgRa3lzyVyaNABUFtDKWeA2Wu5lmu5lmu5lp9wefzOb+BPfcuuLbj9uV/7yXToL2oZpwuHu2v5vIVxwt/76v8ex/7qi+7KtVzLX8jyp0j35ucxMwCRHms1mo47QS0eDDcoEMcO2AILWQt4AhMST89GEbKaSDTihDQAO32/uWXUzU7NDAMeHcYAH+Zsg7XhoZr1BkuHG8X9TJrOUIm+i8AiGXkUibTK6tHVwBRQQ36DOj8bCEM4D6qWpkQiZYmnf2E0+K0ZMzTAHW3dbuEEWsaegRkD7CDuyAozajL5LR4dH0OBCbCIAB7tQeDAjzYDXkjHldGqxCJeAW6cq4a3cO66caPSsc1RccKYWs7+DQkQaELAQNDNb2kK4kyvxhcYAIrI0sFRMQgW7iw2SSI1pDQ3vnj/q8HVDXJuVLPUEWRWWQegTVFVBJACRIJkRBAHXjXrOLsh3HipGiw1nZ+Biiizvm8vfadBLOnpEWaUhSjmfBWLWFXGlhXB1psbTaxOsegSLQEKnu7Lb/Y6IKUavmMaRLB1nCkbpXFpeidmy5yt1h5Z+8IaIQiCsvZVZnRY9BgzejXn2YkT3Ljuc2Lz6995BxtlNKOIquOOjBZrUqItRFo3ULl1WlomuNF6Zs5uYLhI0YgaeSMBaCgAoTp/JADGrEsGjxd+DkOvDTGiIJgRS0PWG7CRgd4W7Jpg15umhCLCYJ4iNqnMbLi5ucVXv/Iu+tPA7f5G+byTpTfQ8TYQxNEnLHj4lPHwMLDsG559/Q5tAR4/OIBPwN27C27vPepbpaHKVB5iEePSeVEj2BEJxgCOh6EptLrE5LihPkSCrWVNt2h0N29gN+NfRqKSmBc3SANudCfjeZdHiEkKGGoBPPg8MQvGuqJbutLWjffcGMkRjwrMwGk9KQiFlfEaGhq1pJPAUusVfrE5m5xpiNWQacFclv3/2fvzYFuT5D4M+2XVd865y7tv69frTPesmAXEQsAACXMBzSBFUqQUMEWLpkK2HP7DpkMMOywqpLAclsNhh+yw6QgFZdNWhIOLSIIiCYoEsYggIHCAmeEMgJ59pvf9db/93fvuepbvq6r0H7lUfefeHvSAmOke4FZHv3vvOd9SlZWVlZX5y0y27G6hfqcbSWucXF9fAgxtwJLr/FenciTzMlcAoj2XrM+lrgfBFjdOMn1nBHD5wkXs5QHL5TG4rFC4IKeV8oPNl0bDooKSZN+Q90vpONa9aGyIrf1njEfSjKkRYna99131AwqM0HXY2JxhOpuAQkDKGRQCYumQ+oQEoOs6yY6UJYtWDkWvJyAzlvMFhmUGGMhZgEUCyg0eAY1mfsxo7mUqbA8DKRhHgHKmbzGA0GnWKRBiJ3pSShXIBKpzaJkrY1O6DLBMQ9KHWrqz1K7ZPhsIk8kEXdc5LYkIk0kHZgX1pKQyuylVYI4vttKdIssCEQo1QDRThNbn1dY8kawr0mxmIUhZNapZz1j1H9a1YRmViAhdV8ua2rUlF7DSy8poWrZOLgBY0lDXSG9j/iq8i2bsEl4Kvq/HSVfXo861lHcgLU0oWZlMD6tOmsr379W2ns1HP23VOG2ylqFXj65tf/UND0Iz/9LWCPs9VS+1z5qXNjIWZBkVGnlgPEbjR7fO+haMVB1XdY7MSeVOMvecVeBEWzDEeXo8aqxHvhNQM3uZHqv9lzVk5xAGNMjBsrnaODxoo6GjZ1piuP7ELaHadad3yy3213hGyf8Z085e5mAYGg9Yd37bPPyadv859czm0TYftk8SLHlcM1/1Rae4rfFJyhipeXHLN+uN4GeAty8L17xfx9k6VH3YZzyi3aLtd1sxzn/axxH/vE1XuPlltNtxex6Ez0H72bhvJuca2qHy0PjeKrdH7EBv00/GiCbrn7eZcZ2y4+3yFB3s/HtKCHF7bQvCPqNfPhauw+c6znY+7bnCTqZ5yAS77qPfn0WH9bGfmts1GWuirPbj9F4pZDLiApVoa0PzPQxwHSENktVF6e9BJiN0osUzEK5cvYK8HDDd3BbwfGwHIO8Kei0zY1hmDD2jm0ZMtzsAjGGRgARsbncIHal9pekqo9o23mbeqxwRPSmEmqG2IYp3zHXX9bmwq6npQzNvo/lb+51HnzcgT16be93b17OVjrrYwBkAA90Cledsl6FxqdGmz+3aZ/3Qs3O/Td+dp1oeb3/Wh8GlLq993F5+5vqqnWv5f/0M7HLe1mHzhAJGigtcuHARx3sTLEpCKQnEjMx20K4vH5+HeLRfuchwvnibbtsNhFNgkHZkbU9HUOcg+nlQu0ULUmNmlKSgd9L5tvtiQeykzDjngrwqsFs9SIEquKllgrpkWjBP7WcbFOj2QAsuYANY2T7W8CShbgLw1zWvFpCTy0xUsI9dZxwUYtXR67O03HcpKEUCO0/Ng++v7HMqAWhcM3evyb1WhJi9z2gX9GwPrrSq01BpIGChGpnqwTPOTNAsqAYmrzxstraiGfFhNIf9VN2R6/0eRKX0kj43UVKoNDDbbjtmO88VM16dt/N23s7beTtv38ZWFkff8j1EhLBx4dvQm/N23s5uTIzjyd13uxvn7bz9jm3vGKSkFdlRSkbNxBPVkGQlKIqUo/FDY1KgEsGikAPps8zQTABzRlbDCVFwo7gYkHOTFaYevKyUnDiu5X2j7EBkhh6JrJHe26G+OVS747ox8WQ9kFGoxi3xOKkxJY4OfxZtD9hz4eNjSHaBQOLYK9yY980oM6KPOcK0r0UymVAQp5SAW4IaPtUAo07HAokaChQcaMRMNWrfLVVGKz2sNyVELBPEyLDTGGUIasDjJhW3kqIwJPkJA6HJ+082WLWSEuSwLem35QFufCAgG4XsfaTHb3NWwt5Bfnh3u5gZ7YQFdN7Jp7mwGcf41DNag585b0bGE6jxG012JYjRiY0fIY5wEIGJECEABwdyhAoAAliTxcgLIkGjTeuzZK6g86r8WfRD1ExTWWnVWsmMd5k1k5COwpxbAWbwsSwpGtVWbD6LpwBfj5a3/rVRs87TbM/XjEdU6VuzUCjwg7kuwdZMJwztpSTJ0gOpjODCUnKQ1/pm79J1YAYuA3MBrLKjAs3qT50T5Vni1lDUXMMyx9RVRwiUd1npWkvDEYoHL/K4jyMDU0PXxlYUlAlHjg69yDLmWIKI1m8AkJTTg5Atc9HyJ0HBiyLn8tCDkBAja6RdkLJHYFBhcAhYpYLJ1hYuXb2E/du7oBCdR+o6055xQc4Bi6OMo70FLl7ewvRCwDBkLB5khFxw+aEZsBWUDtphde5XYo8z/VhKeSIFLSbCaikZaSZTcnlfdBsikGRPQUGAlVeDGmIFqKViSOewAbRxjUQ2WeGAPZAlAFKDsJXrqxmsbJKF9sJPKSXUyM26dgpbJiWhha390BFKb/xuexaN6h+UdsLbTcU+MsOmPRO+zYBR0/W3PMVA40Rsovsb/l8vwUetfOAmdb1nO7N9hVE02UlR0I3Nlc8NrDxfu7YID117FE88+RRefvZfiiMhrVByQi6DiIpSnTdCZylxYDI9FwHOuWO/3YfXB9nQw+h/1nXVLNzOuEQ8TzdmABFW/YDCUjouaM0uyeglvCBl6BQYigEFGbPZFAQp11BAyL04USqoIXi0tG5iyiPjrEW2jkKIo7XEYAUWmSwQvQ6kEbeBm+yB4oyXsmnCW6V5lpXwDSF4uTQpY0dSXpGDAExDQIiEruu8r6WwZpGrNLbvc87NumzKr3nUeLv3yHsNjG4SuzAjlew6WddNQAHInBG64FmdSmYMQ5NjQGVAyRme5VNBWzEEyTYFiN5ZFKhk8rgBKFk2PpuSnCUTU4zRFqHod1nprcApsNA7FdO3ahR0pVNEznWhEwFRwV85Z8lKGCpvvucaQ6PGdX9vedZ1LnYdDACYKpCrBTOMRqmyzYT7eH0Wl9muKjX7cOska4HE3uH2jSY4T3Vg/HcVGaoLWHbNtWvNQWb6kNzRaIJGF5c6Fqxhz6j9q5me1j6zj/znabnXlmCpARPqiNRx8zot1pRk19H9KgMq6MqsSoo+fdw1H3LzGgJqCcBG32mvV+2uoUfd39GQRGHM9X7LcGgqzFpn6v7YDoq9Dz6dvPazGVjLhX5Bu32P3leBbHQGcZqjG9aG66xp0L4RmGRtHLRGR27/5zZgoulzy7sF4zG2fSUbSTNOm6Nxl/wmRp2Ds5qrh2fNv/XSdLXmQwPq2urhdiBNn6zPflFDWGqesP6Ob+a75TWyueOb66v8On2f6/otP7bPPCPA+LSeZnM/ft/onjUZ53RYv6EVHSz3ybdVxwBkb06pB7oZSEHha/gkAIBUPCUE3a9ALYC3ygwrL86FkAZgucjY2OgQJySlXge5bGMrAOp3d9I0NHT+btelMbmd+YpkkwWJ3mLX+Vpr6deMy/m5pev6Wm3G1fL+qaXt/RrzFHPDNyA51+j/FhAlZNSgkWIgcbV9MDRABVXXWpNvdX9RcdiuWRqPY128rbFB5Xn9nMdshBaYbM+297aiZo0kGhDJtaxn865TKnyz7lo8jF0XYoftCzsIMSp9GawM5Wd+Zfh6jhqfc1qAi9GgLp9GyLayF2u8gjrot1MjiDSAgICUdV79fFpB6ay6NHsQJCQbdBAwD0KHKSSDspW/Hmf+GXe79rll6ObLNeFSy4oV3z/EVgtQcQ3Wx9vahOx8a2Abl9VKZyKzncGDuSy4zc4TrLIJyu9GOytzbX12Ox8IJjGoFfum74/6CnjpV10TBpAqpYi+TXVtcebxujFKFR6BjMR2rtmefP5sDjRYzmSuvdz5Bmj1Vz+/N5m0vCqAnn0tcDLooajlgRZAL32j0+84b+ftvJ2383beztt3dRNw+/Bud+O8nbfzdt7etr1jkJJkiNGsJ7BDewYoNmVgSA0s5kxQI5gaaMyZSGQZHLSMBgHMGcwSZSLO9QQgIWpGJQDViEeAlTcLerAyp4U5ciVqJKh1I3mGA0aWw5dlXzIPFszoIAd8j27xujmaWUWsE+5Ql/dmdVBLOTU3XzotCIWKHzDFOVyzI8FAJ4HBnKGmJLd+jYvPFaUr6/ODlsuRaJcAeNUrq8kmTwuwwjGtIVJSVkcjrnW7GmXYDrNWh4AEoOEHeLmhMKsxQg/peupvXuXZTWxEZiIgACWrcYCh7xTqhzUDkDnEzUFf08uLs2sEHgKh5ijRl7GRxfhYD/xSF0s+51oizbLnVKALvDOWPYpJQCuyPuD3USCQjrkUSDkqM3Rp5iYBVtSsY8QsoDGlBXPWsnMCdvESgjBnW7V4EgFOYjNjMFAKoZhhK5A7PA1Q4UZQsqwN9h5dW2SGPm7Wv64XpbMZKW0+rMJc0WxWumzkHdBMULqu/X41/liGGZIVon0HAgtgShxPCmyj+l7jMQbQqfPdCOIGwtZCrJ4Bs4t5RhdzgFITgbtmbSIilKE+27L+kM67EcTmozpaYeKkcXbo+3QN+EoMtVxC0QxuFm1sxiw3otcfbm1jYiS9hpU/iQu4iMwuzMjDAOSVzzuUh0QuM3IS2iMSOGfNCNPQkYtmpikgFAyFMD9IWJ4kXLg0w2wrYDnP6FcFXRextTMBplnnXgAM1ncqXAGTZGAIcidTICgoAFgse4QQMZ1E77tDNFpmYi1x4OvCsoPVtWNDB6rcMJkDrvImBJF9Zug0eWJyzEEsbTb1IKDPYRgkSwwYXawOaQIh5wEMySCDAi/3Z1nycsmeucn4SBPljZwIJo+ANpK7giSZScpxQUExAdUpyPI+eU0to2TG4wp2clNuw7/kMtJlk8kUNxoLSLBICicFh5qRVJicVEhnQMvDkY8hI2DoexAKAhipJJTUC//5mqr7InPxMgDrJbWq/lLbyFDLlTfkQ/uFR0ZcYzZnJQJC1yFMxKEwDMkvTUNyR5GDlBxsClAX5XsmoIhMCDFiY3OGnoBhlWtZSwVbtOOo2VoaoaD7tYOKdA8w+RujlOxLnAVENInC+5FASXjAjfu6bxOo7iNEDgQtnJUHJCuUZUKKUUBPhrDNzJK9rGg2gIKasYjF8O9zESOij9MyKMlklwIYmBqw0q513CKT5f0FQOwiptOpDCQNyJY1CQISkmeLPBKVR/U2BRAFBTQxGAhADAExRiTf2Gw/lL9Zy0763lEMJq/rPgSYclK0rGAIpJkmheYGfgohaBR91QQtkwLreClq30sDmHoPN0bVOfwDSHpIl9+NJuM84TIBqBudrj/LEErcPEOFHGVV8UTXreLMXLnk68X24wqEovocljMEILrxOohk3bkMmBNT+9pkc/X+K4+4RNKsrLIv1fME6TNEJ9N5b2gyei7b+hdwoZC6jgZO9jHgwAM79DtSmTKaE/aeN3K3EsEzp1SywDbaqt0Y/9KIX92xbZ/xmFQuml02Y9Tc6esHCzSdtetbcFd9bsMSzVzUdxpZfa6NDlQf7ffpe0b6Jtqz15hANCIvj79ueIv03FAg2QF9HIVsQdV+W1YshpfnNo4ysTTCKzRbiH/kHRvTw4dpfW4+tFtcU1inT7u1Yvz+FveEpo/WFz0mN3RuwOyoutsam/k+PeIj2BqrX9TAIawNtI5xHdhTH2Z95brcUXlrdJM7nxvitAlwULfyVkT6ssZ47k6xFa/1za5Zu7Dl3bL+ncuu+pkEWenZ02tH6/nfsh+W7PLD5Jqdcyy4Qc7JRfYro5AD7CtTpcIYVoycCmabHWIXkAfGMDCm0yjgi9jMoD6mDohGQ2aV2y0BmQlpyABJhkXnca50c15ee169pso2u9d4n7D2PB4/0/mmAZ954NWpOQH6/dtethesAWlKa9Gpiz/M9jEwg9UcVliyPhJHX+yMKs98D6umr1FHZK9t+q6s0KjsI/DRaL8YDfy0HBjJXjT833x+KoEdw0ulul2CzthpVICkuEBCj+Vijpx6BGIk6L6qZ4RWCFHzC6mRxUEjwGmZ/jbN14D//Xar10ePEJXHQY3+DweimJ0KzODc7BxB7JgCZhY91s69sQtAKq5DAut6S7tPrW2w7X5h0ktpXpSRTbcKnZ4XWOyMFRDT6FymYRFct7c+VAGm1GI4wMg+rWebarsSe0kZyT7hxwpQ8myzgJ9vawAjHCA0lt4KptSNJMToAaKw84zyELSvMOCPPpiNvjr+NpjASmTLOZ2cj+FkaBeS0t0FTd0o7H0qqX3ttLxdALcrov0OVW5xI/zXt8Pzdt7O23k7b+ftvH33tsVrX323u/Bd3RZxD0OYv9vdOG/n7Xds+xbKvZnxo3FY6mmxGo2DO8EyJzOF+iGwOu/tHo2814N7QAGTAmZCluimUkCIYLPgaOYZVqOYxUZKZpbmMEmSDpxJsgQQICczi5ID/IgsBgfysTFnPWDKdVwyJBonAdBDKWs6YiIx+MAM7bU0RUBsDpSsY2jTZhcwG9BqzRzA8OvhZeKAEKIcwC1TVCngMDb0Z3PWAiAFkdWcO834yVIbh8aApsAbFARmsENa7BArTsQYbdIbfqiWcNhjnYbslyOE+rt1y8lUqiPSDtteWsn4SPsieQ6AUMQAgVCjf/yd9hp1kLiBg6pj3UEXxM4Pxea2FDEC+gFexj16D0FK17GCB0IBURbHJMl8QCPJ2Hgbyj9qrA4k/CvZBYTnpZsanaZjrWWbzG5hxjcBGQQzLLhhTwwdzHBHcGuoBwkIyDJKYc3YZwYZbjIAuINfb7HSX2boMACEWYtpRG9UGQBZY1nnxp5brBSd0keWtXN0NaCxAZYYoZE9IFozXqnhCgwpD8nKg9JveSncAQRA3ZD+RnimA1SDDnGwTgp9jecySzk5wqi0lNBIo+gYTUkXo3toyizBHdvU0tF4mgTY560uxwqSsX6WgNWiIEwiwoaMI5uzARmlX8nYNFsLWLKL5FKQhoLp5gQpFwz9oFk6ZK2JbY4ls1IGVouCw8MViAMuXp4BHXB8mDAsMi5cmWK6ERAjPNsRm8cpqLlyZCx0Bm/MugEohNWyBzMwm3R1zVCdZ4u4FZqRGk95xMdSclQJZ3ziGTaUNsZ3SvNc7G8ltIJtivMoVE7IfGUwOAM51dTvltHJswIURi4JrFnwUMSRkw24EwgVeKJZ1HwdNgZM7STXS6uxkbm+z4yjXMAZ4ECeZc3X2ch4XbPIGFlFlsg6td/l89bSDedhK5VouoA9hGicfUrKWAmwL6SMlJYoXDCJHfbuvYm33ngB/eoQxFnWUiZZI2w8YtGj0PnTuculIQq7MbfN7OZZ1FR2quYCgBuAWOPo9GVXDcMUCJPZBLGLyCX7vBggELmgm3SYdBEpZeSU4FmCSPvAhDSIk6mUAgrAbGMKImBYDQKUYQE6+bTziCkwMieTGe3ZNw9mAU3lXLwEZOgCum6CXJJkHmNCSoNn/gtdh1FIekfoQgRBsoQVk70aJWxRxV3XaaSxdc0yD2nnWMDVOVuZDS0d5/zGmlUp132E4dkubT5EqlUvn9FVsh+JQwENLzMLGCizALcCadlh5aSoZTXEMSE0NjXEym7EQMBEnEC5sAIHg+7BNVJdwK8ARuuj4UP9qqwDjFT/LQBCkTGwjmEdZGcoCqKAEFX2N2U/3nOt0fmo+ffUZT5Mld+2KrmRbSOdrzpiWsDNSL811b5OQRWWo9/HctCdTaYHuH5AzcPWnNjNO1n1j5EcbMbmZPBr/O3Nz7bDSpO3oZF8RK4sej+4+PfBSkd6JtCRq11GaeAoW2dUKeC90SG4NLT90AVmQxXm2seRd7RZIlTp6PMNk5H1Bl9GTLX8WiNbGL71j57l4hLjZjLfpqTqwm0nm47ZQ+j0x0YX0Teaz7lSxBPMwqdpfK/TVTIBCq6TKyJAQRqegYIVNNvwBetZ0fQdmz8CvATxaCztsEbzOO6fLxFu90/VD2wslZTjB5/VqM4P0dr1zfzVFWcTY1+yX96+o7RjaKbvVDeavp5amesXj0T52qpp6OKsuHar20SsT80zjAZvlzGKm2varrRAGVqbz/VxjaUt+ZctQM6v5/G1xEC/HECxw8YsuMzq+x7DaoEQopxrVTdvAypykfJTBUAasoCFAclEbC/Un0MPrFaSuXu20QEErFYFnAqmGxHdxAaiOmBN/Nbw5NoeMRqjfJYlZaGUvG6IbF0JKrtrma7Kc/VJpjnQaBhn8tuavJA+1u8EB8Ou3/hep7dyFruRZMshWBFv71Mpo3dJkIJlHa5Ztkc81OxHpkKuzz1D+1FGJABg4LXKH3J9pY4/Zm2Ox9S0LkjAVlsua0TB9WmwfcmuNluDPo8BIAOr4Qj348u4sfMbOOyvY/feDSzmB8iWkqvVx9qBU32p6108GsJZ4hOjC0f3VDk1knNnPKBeyy7IPIuS2V+b7JuV18ltVJK1Vp5XzOYRJsCQXH6aLfZswTceZaOejvRQzrVEdOX9BvzS8Bdp1lb/nIzfzc5seoe8lkIrHSsTkerX3u2Wh4FRNjf73jKNre/TACrAseEtW9NQOUaAmExZgGHNZLksNBqZbmLzxe28mVyBZaSVZ4WomZ90b7ZKBQZMG8noEar2dBudE5p5MDuv2d1qEJLpnZW7R+D283beztt5O2/n7bx91zcu6d3uwndlS7TCaxc+jU89+n/H/uT6u92d83befse2bwGk1JYAscw7pE7MLAdMkrJqxc/7DPeYE5BzQggWyczV8A+JTJe7Sd8lhyOJkErVoMJBD8BimrHSMkUtAG6o49ycqhpjSWnPc5oZp3Wgon5fFJwkjyiSEcaNRZ53WK8xp2RBIckwYKXu3NhDOr7WYcqSsUQAJAK6kn4ULa0XxfgQxdrCWcaOGNRppgdN0oP9yLqkoIjWmgwFd6kxSIZW/GBqqZODH0z1gKzR3UQKW8oKZmosLcUcQCOLmryG1JBUwNX4rnzS2NdhYIFRthaomUCfXaOsGcUO/mYr1eu90gnXufV3aZ8sO4qnW7a5IpLU2dqfkiX7g/tQW/41Q01gIIvBsGQSLFzqsbt3H/P5CdAXbHZbuHDtUcwuT8Uoq57boBMr0X/CU8EMB0wOePEILHUANxX1qmGBG8NHIOTSOrHUMFLtceLwZWEpAhzE4d+rAciy2HDznc2JZS6o89UYc1CvrWWCdH1VNh0ZGG2sIFsLsIQAI5OZ0F6+z836FV6U9ztPGhCPyOdNeED5gzW7DEuGtaLrBMavQfggBFnvFSiIGlGvPROsE/t6Ask1ObGXz2vpVw2NELnWZGlTWCgsw5LJryKX1owaKptDqSa1qIuiANi/9wCT6RY2rm6DqIAy4c5rb2K5fxebWzOkPiOvpkDUFzAhJ8Z0EhAoA4UxrHo1RkdxqoOBIuCw+UnC0YMeW1sTbG136HvG4rggRmDn6gSzTSGCjbxOpkX2GyOw0zMQISuIlSDyrl8OAAHT2cwjEAkCErDKicaGlibd5qboWrX14+AEMDJXw6o5CE4ZPAmjcj2sMkSlKKwMl4BLQr2ICczBZVcXo8uhUoqXPiPUPacUkcvRDJg6nsKe7R4FmsGt2dco1/HLC6q50fLXuZEyBi1/V9dUK2ONB83oXcs+0gggt46FcOCRzUX7cBYjLFjKUlk2QTe+UgD3Cbu3r+PmjRdAHeHhKw/hxmvP4frrX8PJ8T2kdAyQlLRimA247l1Fn0Ogukd55Ky8q5as1WkabVjeW6WNDMJkr39vdFJhx6VgtVwiTjrJ4uTzy4ixQwxSdlDGrW81+QPN1MNSMiUELSXAAi6c0gyAlGqwcpcl57ERutGBRv3TcY0N1gDn4gCFMjCWBkZTHk5JeFGyCHVazkG/KwlJFpRnSAxEYAqeXZBhjpNqTG8daEU3gGApwRjIKTdOBe1zKWBX3JRfbf81b1sgEKKXRivN/oxckJGlrGLD28HR0tUB4JxQAhywRoTYdcLXxZQXQipJsjVNOyBnKe1qjsAYBOiZkoOESce4Hg2uC03F4Zj/DCSYkug4xi/BQCV2eValSdcDhSDArPds0/VkmToBX1uma441CLmn/VjkrN2zpm2Yo6zR/e2HRfbbfe0+XEH6LkFVryzj7rT85Q+Ggsybz4DmutNA76qLNPtfoz+pOuWfVaFKjd7ERh7ZR11GGRC+vaYOojoQdY/yvbLRsaDP1PG0GQ6ouaJ56Ej+2Ie+D/ig9AdzBRX7xu0kHq+TNd21UthfrO+1jwzEyON3Nt2m5k+bP9ZnENq9f/wMWruXAC9DJGLkDODKqAMjko3exSP6yrznlHBw8zW89MXPYjE/xqMf+CSuve+juHjtCWxc3GgyilqmiEoo0x08UMOm3N7PJmvq38Zz6x1mrs7U9qtWR2KjhY2NR2znfTqrGa2cDexebqi5Phf2b5u+6KxnN7zVDmGNg50X2o6OZfX688ZnLDT0ZF6nYMPDluGsfVFzv7e1P0gfYnxYaX9WZ72L4z7YR3qzZ8FZH9taX4xPh1UPooyOp/7A+YNDnBzsYWsyxdBn6GFZMg9qP0UHYnC/VBpopjeb5wJwIfRDwrAqmE47dF1AThnDIFlgJtsRISqfO/qvLshGfah83Iyj5XvJagnNklh5bv05tE6F9Xkl20savm/mpuW9dhLW2MyvbYE2gAA26vu07BVrxhgQwnQDgNjohqM9uMxFc95pZHNLiKpW6b5XRfxIbo8yGNHp4dTAkoYoa+M9a+zrtKx7YyXIqSXdbFBmP0JpYWJNF0rBjeGr+PLJT+E2PYONMkPgguPDuxiGE5Tcg2Elt9vdb9wfoJYllPLH5TQfnGrf/IL1/Wx9fzTgUegiWkCJlSEGCdjeAx9tH9A9gEKQzGYMycpEMseBCOgi0pAaEH071lNkcB2FR0w9Hmv7UUpJSlwT/FwMmB3ObCMMy6hrpZxNJyFnRPJ9gD2Fl72v8kqri5EKqkovucj25rWVsD5QDQ6SiQmNnmf6OApLzt+18yCIJGN/aSbRaKtDIZAGVDb7A3ENQAxiP7Z413WbhQc/6OZqEEVu+rEODDurcalnKgvoKHZe875Xofpez8563s7befvmjZkxLOd446ufxzd++Z+gpITv++P/Fj74e/8AplsXztf4efuua/n4Qf3jrFrY5+1bat2FKwAAzgNWt195l3vz3moFGa/sfAqfffiv4pWdX0EOq3e7S+ftvP2Obu8YpMSc9KBGzSGoOhfFQFEUxDA6MlVHArEaA5oUO6gRP/JXGYE1EAjMEmUvzjnNPmQeabUoVlBDLVXjYAo9JDuwxRwBjTF95Byixhig5SCYAQoV4CPDL6ACAbAINWAZfaQVWMks2PuaqFbL0BuCga2CplFnt74VdZoANbuPZBTRA3uQ4zariamah5XmzbiEZkWNucEP7/VAqvRQ85iUFLB3kt7L1QCraDRLo1yfAC1/pVPUGOgcbME2H8pfI/AYvMSKGdnEWUl+WK6H9JoVxYFExrNqjGGqkU1mALTvC8QoQHVS5T9NviE+3NBkgjBecoaFWigBJBRWAyIVpLTEzVefwYO7NxCHgml3Ee//xI/hsYtPSqmlpi+wGWRCZHgZrKB9CWBwBFgzBumXqB1rQFjKgMWSU4RquGsNtDYHksXJxhIa842BY6iyNLdZ6WsGGZtnM6S1k2ncL3ZEBVW0ZNM1QxXP6AYly2ISYEZWvUYfwHKpR8cF9eRaOut2rL6WzMCvHQhUjfSs/Q+N1YtB+nx4+bXWANs6aMw5DpDzC8juG0flj7MpwJ1INpcjMrLRi6tB35xQ6rR0UA418wuAC2FraxM5JyxOei2zVLB/fxf90T1MZo/g5GSJvg/gmLGxMUPsCJNpQAxizIoUJEMYA8zR+WrogeOjJVb9CjuXLqDrApaLhNV8he2dLUy3ItDV8jVmkAQkyjoQAdnKjJn8IQV42HzJp0OfURiYzSYAETI3ko4lk5jDnShIBjPdK8QWKve0xkzbx4LPn8x3K7TI6W57ns1XlbEUg657KTGVnJeFadOQMAwrzOdBs0hlLdwp5dzEoCzOkslUHD+FGSQXCwkawFEdgTm0yTOEOZhIh2BGTPgYhD62oDzCc23PYNYMZTqGwA1PV/aT8p8GCtDvW189N7QUY/PYYM0MBe9lgAvKaoFXnvkiXnz+c8i0whOPPobjvbsowx6AXo3ypTFY82ht+bZChOl0hpwTSs7IaVA9YrzfA0bX0eZRv7OSUNTsc83aJkPIAg76ipoBDyrvULQsHVf6hiBgtRgFiJyGQde4gIW6Loq8VyM9xSA8UcporsgJTzq+VnaY8Xs83mZ2AC2jScyYzaaefVKAUtEBXbkkXXeaCdDAQ02qCtlLbf0Wz/rj2Vh0bDFG1GxHsjZLyhXARSSgnFy8r+uZgSwDYNd1oC42DglCB+XrUpBSAnMCqSGeYgXGBdZMaArQIhJZ4OXguqARxypLBJmIgiyld3UsXZj43ldKQeYCikAXOpRUkHPxUq+mDxuafwx2oyq3G950p5P2P8YOYGAYBuclu9hLRLyHDY480iLqP6IjN5ve6GxQ/wUw3svJTyHNvkq6p6/d7SXegq97z1gjyqn3ywIp2iXm/W725KoHnk32etqo+pAPm5qzCJqx107Uv0XxHiU1A1Fb7cN5RYVt3TS8PBj5iUFkcA2kcJBVPRQ4HWyG3BlttGr0obVbfSys++/656PnM9cyWY3Ojvp430/r51WHGpHd+1d/X5+XVm/zx9njTZ7z2EHeqn4N+U9PV2W8ET3abq2RoY5RO1C4YHX0ADee+wp2r7+Ag7vXcf/Wm1ieHOGNp38Zlx/5IP77f/5/jc2djzqQp+XHdorq6mje0UyHT/tI36y9POXrXFsLPpfcTAk1l6yNcf0ZfMY1I2fpqEziWc9o1pPRvVkTvl7K2t9tn87Y/i3LZLsMW7Xd32fLrDSZJf25SvuG3lWHrApLS38b+0h3gsg5/13f3c7hiDTrzOZyAKcb13v8HNnc52sFAHLG5pYC4xBc1gx5cNAPApBs7w5B4qo6y0pISIe7IhNzQjq4B+InAQZyZvSrjMIZs40JAgX0fQaXguk0optQzTBVat/qsEzfoVNrfwRoAvQcTZIVenz5mCy+nnn0vZU4a3XBUV9aHmkf2NDTPhvx41ofxmBYeaHowBllEF04XnxI+8Eo/UL1Cah+FBud19YRV55tO9zwwajx+Kfxh+vRDeOOA/PW7m/H5s+0hSXfur0NDfs2vHyqa2xyukq4ujUx7mw8g6fx1/HG7a9huTrAxtEMXQzIwzGILLuoMQj7Gmjp7901mRY00K8Uz7I9as5wZ3zVDN2zhjvj1Jcb9ER00pYjavCU0cVtKtZfpQlz9mfU92ngYaUgTsPAzhDYZ/DJ2Y2996Ljk+rKYvet9jujfbN6mX3e2KjQyFH2kmoNJZklSEHLTbZ7kZ9lzxzbWb2WsyjFCkarctnmRfsJORcYoElslDxaF67XtO9o5Rfq2cJ1thB8vrxvtl71fFUMpdjoXe0vp3SM+iCAGk2AoEAytXs6/ajRwUzmftNJP2/n7by9Rxsz4+DOW/jqL/x9PPsrP4e3nnkaJUsWlS/+7N/G+7/3h/Fv/1/+Jq499T2nZM95O2/frlb6Jaib1qDe30Jb3ngBAMB5wOL6M5hcfvS3q3u/K9vG+z8OD448OXi3u/OeaQzG1678FP7xU38RQ1i82905b+ftd0V755mULGsIEWp5keJR9OSoFGo+E2WnqHPJnF1W2kYORVEOTmZwIgPR2PFL0/ISuVtDnKbiKJNyWGZ51G/VUVf8UEueMtdPb5Ze3BpXEJOBQAL0MNhcWsxRDYizkARYou4VPXBaNqk1Zc9STCmIQQxjjGL1x0uCOP/sIMuQYh/V0iZn36LGUymVgsLNu1pgjxpviPW5DE9hhFp2ikaZcIr/DarGDJnzopFY5CnQq6OmMSqp0aCl68jW6v06A4wBNZDp/LDRRvvhJeGDZZZR45SXHFLTgRu8mmcKA0NJqBsxa6plLbmjJAo8nmvPulSAtl6ClZggJvQFmD+4g/uvPo+NkDG9MMNy/zbKYh8oA/q0QFkdIuasBi8CKEp2KarzkTkDJE5iB2IQ3Jhn9JTMPmbkqsAuaiLe3GBly6NpY/6sE2RGJHHy2pIRpnS6WgSsGWlaJ2tjwCRAMooZ+dWOY1UEvY/CXlqqBm6AI5ULxQahz/esORCH8mgcyk+sxLOSXMRkwY8CjnGwmcxx0ndGCrpMtExTCG4wK8UAN2aECg4MaQ1G5N+TE97AIyO7rgNdVAyyAB8p1rVh5KorzJ7FY8CcU4CbtSDP2L60jTAJoCLOr8AFW5d3EHiBONnExStb6CYdMk+QEqGbaEQgAnIOABfkNIA5I4KBRDg+GXBy3GMSAy7t7KAUwvF+D5oAW1c2MZ1FRAJKUcAQxEkhYDGVfVky0gkQQyYnRonA5sLgImMeBnH0TycTHV8tQWbzbbnkiG2vMMOhmUwb/qO6/m1NlcK62xj/o8qeNWeRXWNrigpLxhw1Xts2wyxjHIYBoSNMJhNQjLrWhR9L1pJiUQAXUYG5JRdERs3E0gI/YeRi559AFUxnHfPsAk2mOdK9NLICTcK4JIrTyvYHVB41W6U7KezdqLJfSGoyWQEqJhsK3LklfFyfI4K2IJQBeXGI5eFdLJa7KEc30QWA8xwxMJLKaVm3xedHDMxAN5m4vMsswJ/YBVCYSFYeBTQWz55zhvnVNyblFTXaTqdT4cc+oXBTrg2a2cVkeG7AwkH2aZk+A5MGB/BYxDFp1rzYgGgoCiA5MyuAh1WvKc6jp3rfzBNQ512GVQFaZDpaALquQxcjspaGmEwnaiyXLAYlZXcqWMoQZpGx9jnpPhqVFjnnWsIMTWkHMFJhxG4i49F5MD2x7mNA6ILvE7ZXFC6aBS0IQKjrwIFQUkLJxcHclhXKZWYuQlsVtlwKkkZ4l1I0k5WNh3z9EjNyEiYNISIG4XYrWUmjMsjNnkYQHRUBoISo+0eNhha5QWQgvTIqrWg0tWcyW8RzULkpstIAuqLnko/9m0VRv6faWQqg7ssj1lad084KTie/rFFGQQq4WZfb8i4rt2t3Vb2B/BNqHs66qOp5ohGAzdXtGHz/bmTraE7qq6RPa9/VsqeNQ/GMOT1FKl0vYM3KxwqUZKw5w01f4eY3+WlAYR4N0zcVl3Pt8ywDYksD/8JvH9NprLs0Op7Om6lIVKd9rVUdZwwO4tH7fH9Zv5twiv3sV267rZPFzXBMvPswMf7dO9/wgnex2c+NRUdJuBiYH+3jU3/r/4n7rzyLWAZ0symW/cKdCw9uvoSv/cLfw85f+IvYfugavPw5yb4oY2BwyQALEDpGMQizd1D+HeNYZawGyG+BM6MsRi3dmmXG3P5UPdZ4bI1H/DZ9FitTnZ7n+r7RHKx9Xke1fnPzf8PTdZ9k70NpFqy/S9XT0ZJtxjrKMjNO9jHSU08xG9pgBtGV7FsrNwoe07l9tuwxp1nbWb8ZpwOi7BzSEGvEt9zsYc13pu8OB3eA2Q667R1/fgBhY3MLaToDhQ6TSUToDNwsQAUEC8SRh0rZVwbnHlwYqwWjHxImXcTGZIbCjOUiIU4Ik82uye5c5eo6L9lctNkYa0kkwDISlcIK6tdML1xLuI9o2cjvU/S0Ndvykt2zRtd27uxsabr46Zfa+MbnxfY6O0tOplOE2EEhBgq4rmvPU0y3OyRZyND4hSaHzpJn9ea1z/xKu171wlYutORrZeroOTT60J7YApbWNmynE3xMa98zkDHg+ubnwMsViDM49VgcL9BFQikJdmokO5+4DicPIOjZQWlW9VB9J0lpQ+knazYnHo9tbYHKHFi/A2IMyKmora/R+fQ5XICMrPZTJ04N8lmjL7OBvSEBA0F1QqdZe6bVsXqm2TMlyegdwAhiXb9r9DHPBJszBrVTUQy1dJmdG7jSGkAFIY1IJ4Ou/W7XfXMfKUIUdgZu51IAWiHU9VZqxJmsf0CyGAWznZYKUtKetLq563JrQSAtbU2frGu9ymDL4h01s7D1lTOjBaNWnbHq9kEnm6G2g1Py0N7brKdmM2d9GZkxjdkD7MYgsnbcZ+6s5+28nbf3eDu6fwt//X/1p3D/+stYl9tcMt78xtP4e//xX8Bf+M/+Dh7+8Cdq0NMZjZlR0oA4mX6be33efqe3xfVnMH3ofZhceey35Xk89L8tzzlv5229DTTHZx/5q+cApfN23r6D7Z1nUipyoLasOSOAgxqcSI3/nqWhPTlRe8BfOyipBTerFVGAS6SHsAKEDkCoJTwgB3qCOohGVtRqbPEj9ciyaRY/bg5/GlGtAAQpzxJh0e3icCrgTFpRQ6L/QVnK84D1c+2vRchwzYTkDkEYOdgPz3ZgpsBAsPTnGvVvFi8OjZFe46DVK0AELYtHKJxhZYdgB86SYcdsPd2qk6FoOuixJar+F6oxBVYeRSNFxdQn32itASupRdFKezXALz2fB3PerRlAi0WgNmdhzjZnwnsGjCpgRLeCacxVoZrFhuDlvlhpA6ApDaJzwNW53rAy2PmdqjG8LZMxMkCYIY2xPLyPL/3qz+LkjecRhzloEpHKCqHrMJ3MMJnt4HDvJuZ7D2G2PUOcbIDDDOgsr3PG6mSBg/s3UIYlAiK2Lz6MnYcfQZkIHS3Dj4Gm2lYNmm4BG/GwO8ht7CRlzSzLT85FQBaNkT0oDRy8YaAO+4/gZbNqhH2b9Uh5ntX4T9X4BlIDGqodLxcGBynzRUySVKwx7tg0SEaRxpDf2mLZotykb55ZQifYxjTObMTeTxbi6BhkTPYENxQaSzAgZX1Jl4LJHNTMNzpcmTPNnFbYS7UJiAowIIQBD8RhLQAhMge6c728O5pRLrOsZZV/DC2B11hIpVwlI4SMUCK2ty6Aj/dgBmq5KmM6m8q8NinIS2GUgcA5YXF8CEbAsgCb21NszaZYLRJSyoiTgK0rE7MVurGUi4wrt054bnpHACO6kweBwUHuS6lgGDJm08kIW+pgPZjMFBq6zVD3AEtrTvZOk3cRlUIsRsOaCauCa73kJ+oW4rJM/3QAmoEifBMyACEhxglmsy0EmoHZsp0VBZppmT9WmW+l6DRClKnKNzHyNjSAzFXmovuv8rEZdit76x4hDGrGzZwlSV1gy0YldHTAJ1d+a52WJcMTdYgc0GuaDFNVGBNQ4KBQXYr1PgBcIphlT92YzRCpQ2TG8mgPRBn9sBRgECz7mfCtAQ5Z97Ouk/oiEoWfkIaEaBmBYNmmmgwpSm9fW60hGrW5Ud9B11Fk8Nrc5CGBCyGGCZggRmgS4E+METkJ4QKRAICgAKRgwK6A6VTkTO6T6FwsQCLOBcOyd9kx6uHIy+0fokrXBiyuXzGEfjEGpJQwpAQGo5tOMY0yvkIG6ioNnYrqLbYgdMnlotmPmn0Spu9wM+msznaVXyOgEoFCcHpxYQzDAC5FSlawgjMDKaCRUBQQVXJSPiXPnNQ6DQw4ZTrsOiAohICUW4cNIUBAlkWdB95HyD7l2Z5CAzbKsnZiJAWBTRAgenJKGSWbbFXatVH3RiOloUdRF9XBUIFdxoMGVMoZIKPTyBn+Xmzk8tf1ONRxe++1jHSrMI9gDCN62fqt5wDXul2QqcMRa2uI0JxPbJMvzeONX6jdXpo1Z3Np+37l9VPgZNOBVIG3kmyjQAoAsACCdh03iIW3n2G7rgLuqKG1fTYeP/uYHDClfRzryFUhGmdvsXfWefRx0tp1aIahnxk55J6aQaElx9qTG12glUL1S3P2rdPJ5pPb6093sfILs+vO7bt9TtvLueqG9gZuSWPzWXjkzG9LojEx7rz0Zdx44YsYjh6ASlL+lPNdDAEhTnHzpa/gX/yN/xve/8kfxBMf/2FsXroGRCsZTDh+cB+vffXzKMMKZSj4/j/253DlifeBuzDaGUZsZSvx7CW29rs8QXNkuJ5Lttyo1S3XAlb0Gp9He6m+wLFt7XLkZg64zjsr/dql69PYLP32eueZ8XKXD/Q8Uc9/lTIO0LM5P2MRmh7rfTV6rV1s/XXQWCvmRkxFzRe1SwagGomTlk7rfbO9keD6n+vGa5evkVJ1PUJJA7gcYrK94xeKvhMRgmRhzFn7QrIHkj5g9Lwi+vLQr7A8WQExYjLtECmgX8meOplFRA2YMC287sz290gS+K+N9gGxQVSQVMmM2AWPpWptM2vi3HXhdg23AKVWDjgeiqVfJqHrOtOH6Bw4jzeEoXaq177n1KOsFloql9Qu0gGs51LPyAK/Uc4scjZwGq3TsHlfI6aaq0/3k7WzLVArNPe1a9XH1PDr2pPqVkHG23UGR+t17Tbv15oMZwaOurs4pNsAFc/aSZxF7y4ZzFlteWjsOg0BdIFJCS45O5XcLDY5hdSX0/rwxhulz6P/LMi5BbFQM/4KBvKAFOObIGWYrXQ2a3AKFw1ctLNKQ3diRknVBhtDkACKktZsgM2cnUHn03tp5ad2ckrJ0hfIEVACbtjpxSqI+fSr6/OUsfg0RU+/kdltuCJHGxuv2prM+V5LBdenjc4DrT5uwLNmAzQdqD3StLQY06YB/TSbTg2m1eCW0fPHg7XzkWeGD8oDAAKxgy7r2j+DqMzjT0npWtmlntmN8+yLM7Pxnrfzdt7e642Z8eyv/Czuv3kaoNS22y99A/+/v/gn8Mk/8m/g9/zRn8DFR54YfX90/zZe+vwvoeSEfjHHn/nLfwWbFy9/ezt/3n5Ht7I8Qb/71m8bSOm8vfNWlidIh/ff7W58VzQG487mM7g3e+Hd7sp5O2+/q9q3kElJfrQGEANxUKjGXgZr9I4aadT6qMfvejCyLEh6OBdnatZ06ZremBRT0xgnJIMG1KkrB7zQOJGtSakgS5LM/gz7u3BBCFHqtbeKm6a+rQa/tSM5W+SuAYXIDbFuBGV47Xe0/W8cL9w8D4gO3mE1JlWjpVkFqiHYz7JOcXkOF/JsVaQIDmbWMnU+A+6AE9BAUqBIqN1ROsi8aM0wj/IMyKUOVrILudlBbnWDkhG9vrdNuV4NHjIzqcmgMKKR04oaI2xjLdGDtTthmgN+7Yc59tknhPxdxn+kdGmcUCzOe4KAGwpVA76XLmMAyMCwj+XhGxiGfQylAENCTktgGbACI8YJ5kfHePPFf4ntq9dw+ZEPYufyY9i5ehnbO9voNnawOrqPN555GrxcAmWCy498EJ+4dAXcTRRcI1kpitlXCmo2J11HlvGJYHxIzpcMNRjpOrT5KAqUsKktyqsULZtYY9iGpfBmdZDCyxxJhpBKf1lr8HVALS80c2GACJv4EAKQuQLLCtRZXlOkAzKOrFYiLlYqkgDWFOMMmHTKkKxlHVV5EDTrTiFCVJplcHWSKjMaDbgwOgpuOBNDv4GexBAeomZFKQK0yToyj1JzWlXur6BCW25uORVjohrDiv4SLSJRjV4OENPRMqSUEREhmU1VLWoUInImIEsJp+OTE+zemeOhx66g24gIlMWBADVAq+V5tcpYLFc4OV5g6/I1XNqaIhXG8fEAzgXbFyeYbFrKnqz0CMggmLM1BhIwDQcx/rsxrK75QnBwWc4FaciYdB26ziyuxhMmaEQoxMZBkQ00GwgWPW0GRVDNsMRmnObq9Oe2MxgbIW0e6lqo8kOlR/OZzHHOsuYEmCbgCebg10upraIlHBgwI7Puj6VUmQ02sJ/ep7RtaSj8agDRZu37ZzbmCjS0DFPBricDeo7HVWz8zZqVaHl2Hrd1QW2Gpqz7A8ueLU6eAM5iPM8EcMk4ObqPW298A/d230BOcwArMJbo+xVyzqAAhCiZZGTYkonLQMIhivOJdY+XpFwRpQBFHRM2iURA10UBlWhmQddFSsMDyiMxRqSUlK/YxwqTXbae3TBe9ZfpbKpOsYgYpQSYGamTAmdCCF4qNueCnIdRXwKoZh+wvdbfozwO0yEqyMz4Bm6EN1muYKJQkHIWMM1k4mNIKSNEiSS2bHS2T5wyhqusryVg655Ea3+bsZy9ZAFgIEPdHGBgZIUwqYOhA6C8RjUzZx4GN+DLOpPZDLrH+56otGFoqRaV6YUF9JtLlmhvBZJZwsSsUc8F0HVKiCTgKC+HqAuQS/HsaLamSbNjcUfoJlEj5xk5SbYpW5cMWQt1HXNDt5qJSgBZXNd5MMdWlY3FZMl7uqncNUBCFd/OywKcUfnW6PByzoB/LvdR1d2hOyHLHkSNLu5CHKgvtF+IT5XecTXWBL9m8ZPP9E1sslVBQbowR486U6/VLA6w88RpEknfRdkbOQltWTv/1feYLsX+bwV415xE5PLDZPz63id8VZRc5J/VcVWwpzvc2vmwEmTe5eK/1YgEbrvu894SygAw1l+7xLtKRqs18lWGqS9oaYXmc6r31F28oaN1uX12+6yaTLgVa80N9eepMw7VLgg7FNx95evgvAChIHQTIGT0/QDOWUDpqcfR3nUcPbiJN57/IqabP4XpbBsbW5vY2NrGdGMbKa2wd+dNIGWAI4blEn/k3/1L6C5caNYb6dpqss40tGqOoCNSOcSXoZW45YzY0n1EfzojK8wanQhwndbVu7W580cEW5dj+o6Wti51rxqMhgW4TpeLh+Z9bd/93obnGNX5bvu2sa1newUwOg41/SyQB7iVwgKX9MFqioApUmTX1NU16m/j44Y71Xm8Vm0VmR7cKMXtdMAW7Xht2dlNBmhnRZN/kt1RdPbF8Qrbl7cV7CU9Lk2G7MJAPwwYckHpNtBNO4QuImfGwBkhkGZjsq7IebM+oc6d6zoNf63LWMusWpjBmvG0jfGxca2J/ebL03+39BqBDe3XM+RRKwydlmt9rZnET99dUkJeLWUcqIEuPH5Es6e00rXpo17TwPTbryvPnOpfc9EZ35X2ex1fa3uAyRmbq0ZOUPN7BbjbvsVaThsw0L7piQxZIrIBEahIMV4m4OXuU7h15yUc7t3CanUEzgMKBgfmtGdEJwxI7Q4K5olCIwOCG22kPDVQqVhtE21mZaMD/IwIfXZjt2wErK/N9ssmINH0erMlEFlJYoCD6EU510gzAsBFglhkrWopY6htZ0R8vedtN9p2tPDzRDNIt2tQCBpEJe+3ktKkgksA/2syvt0knT1sT6nPftvGdRw+p6avNOcmoaUE05Y1RixcgVwS9FR87FUHItRzTtXZ2X+XD4oBk3x/I+fv1v5VpesaHdQOIFco0Amkx14LtABCJM24rDqvyf23WcQECAiOGacuoZb9qo30DGF13s7beXuPNy4Zz/yLn35H6/fkwT184af/Jr74M3/7lKwVHS/738vjA/xb/+l/ia1LV3+7u3zeztu33iigu3jt3e7Fd00r/Rz5ZP/d7sZ3RWNkfPaR/wJ9PH63u3LeztvvqvbOMylxBkgcPAaGAQKiOnncyEgMLkmMWFqrKXg5KD3Uhwg7nBGCl+kJfi5jzQKiB9gy1IO7GimYyQEM9aAtjm87YbndyAAGUMMhBQUXiMMymBGeAqDlSUpzmJZfJKMJW+Yksqwl7Bm15fwoWQpYyxoxS1kdGbg55bWfamAiyyCEanBjT0tBAEQxDIgQiAr5OL2EW5GiSWIMapwQ5sDiJH9TdMOKnHXVcMCMSJ0alXQMOclBnhjggoyaIctSIhftJ4GQ9TAfGrayTE1uEDQnnBpVCtfMGsEc6EA1iOg53sAmdl42YJw726v1pzZSw5L9yerMdeszajaD2sHRA8inyQxI5GWMzPYQijyHSwHKgEARjzzxfsQt4OWXX8Iw70E8YBozNnEXy/ku7t5+GeHFr2I62cZ0NsXWhcvYuvw4JrOCk923JIMQNrG5cxmcB3Ceihs9iPNWjFEJhIjAUeZLLRMls3GYZn+wbCs+BQLYKVSHTFRLX+jFpAAk5/1MMMeSZb4ycAJGzlozZVE1rIH1eWaoUuNWY7wUhlLK699Wco9AWjIMSLlIJi3mRgaYYYacFgwSEFOzzoIacbIIAsTMvrylsmNAiVCDIokzSOf9ZLlAGQZszaRkxpAk89TxwT4WJ8fY2trB9qVL6LamgBlRiTUlPBQ8VjSrUD0AFjVaBV1envkNksWkDDXLmAFPWIk0ykxkTnedh1D02iSgheUSmEaRuCUnoCR00y3MZhvYmESETkttqnwtTAiZkTOwf/8Yd+7cQ8oF2zsXEKcdloseuWRsbc+wMZu6U0VwWxFDKYihRtqClee4pr2ytci2QLmCcPIgAKVp7BA1wwlIwUhuCNa5baK0SeWDyRozDJbKocKPantkInlmrZNgvmg3ArKDAsb249aYqRJD1heL8z0ULWuRMxhZx22ZZmQvFcCNjKUgI5fksj0EKRflRnk3nEKyfUHTiTFgJnCjqRm0PWOVlWKALPICLUtqjmSScnfWL2ZCIAW8MqEUNTirnAjNqAubj1bmIRMDWWAmVBg8rND3SyxTws72DqgLAEdwzji6fwvYmGAaN/D6M1/Fs1/+FA7uv4rl/AFKmSOnkxEYmZu+A1KOQbIVCQAEMAAII+ckclDnwQzSXZNlJzS/A5oNB8VBNMV5ot0jisrPmp3IjNvGUwYezYNkf8pDAEJGjJLVKXYRoSPEEtAvSfrKBMSANGTf14pmQpQo7iygFwXoCEOaM0rWVQiyCNkigCu3Agg6vwb4BGLo0E0niB0hZUZJGUis0eaEqBtdDBEE9hJuunqqojWiEZyexjOemZBEDoJZwbRkLCwgZY1aJ1unUbMoOuhaniMZi3KVgVaGTbf3InUydPewsi5QfmjAXgakApBTcr8tIQAZmm2wqDML4CxR4u6MIYF4s2dGUeeM6XEKJC6NrgYCYhcRu6Dl6yTDUuZgyS5hzjzP7JZVtyaAEGFZI0MMoAjlF3VocAO0ew+2cblOAypR9dnIF6pvFOM01f8aRQYAtHSb7wAj22qjY3gr9WHGj60i0jhIXeFsnUaAr3NTPG05WPZT95W5d5ZNEdJ7bJIFjodmSNQ4BSvYoInsB0YDcp2hGbyrrK7iFUWS2FgE3AlQUx6JfGw2lhZwWU9V1Vlm91XnHNwJZ8DAdixOU3unlYrUp1u2TQcwt/04hexpxuj0bqbsDFr5dUDNFrXOTt7olAxbP2OMTg1VucBoq4DOI5oADBvnWv8BVYMyo1/MJdAmBFy8cgVxFnHr5i0IgLRHDIyNCSOlFfIwx2p5jECdBPlQh9DNEDoG8iB7Z5ji5gtfwpf/25/ER//Qv47Ljz2F4n5y2edLs6s7yVtes5+sHW3/PkXsZmzNde0zWdccgev5A+Pr2+w0vt7s0SPBUH/nZi7qe9TB3vBS+4x1uePLtu1PsyYIQNSnsp6LQvOdjQ3ASOQAQOaCg709HNy5gY4Kdm+8jH6R0EXC0eE+JluX8PhHfw8e/+DHMNveaDJzjWnrmTvbMTfDkD7DebKAANNh23OwXuBrFPA1Z7QjrvsfCOiXBdNJQAgG3pBMlpOuw2waVW+UfdTgyLL3Aqv5gJPDE+RcsHn5GpgJfS8BU5NJlOxLujhchDYSyLpfh0A124yOwM+7So6S2bMFk6r7Va6trWHrr8lw49mGr0bPN1nNDRjUAHtoeb7uA3Ut8Uh+ry+ldqrkEQzOue5TzYISlbCFKwtY3+mk9ixaZ5hGb6Omcy0ArCWPPcrmRt/u5y15uYzV8f5s99l+QSOaG9i4XTdmnvGzTZH+pbRCGhZY9j02Ny5gMp2BEMBcsDg5wKo/wf2Hn8db6Ys4vH8fhw/uIaUFuAwADz6nbYCKgTss27FlTC86SMn02TIBXIeseho3+3G9TgBFdf7aVnXpKqeo4UoJMqv0Z+YRuB0k666W+pV93a4x3buU0ti/WrlggQTeo+bftT3L+2RzxQ3IqPIjaZYnRlPW0XiAjA8CYrTMpOvCawRLrn1ueb7pv83fWGeRcYXQ2Evt/OCDUpmtc58bG4BnCTZdBI0s9EE7JeSe0vTP+msZjkb32BKR+W0zqbbZtLFG1+b2kQyybgSq4yxFS4wbuh+6tp2X2CIvIBmYVb6Galuv+9cpqON5O2/n7bugMTOOH9z71u4p+Tdd78986p9ifrCHP/mX/s946gd+DBROJws4b9/+xqWgX5zgzivP4GR/F8/96s+N9pPHP/aD+Ojv/6O49oGPq9/2u6idOuC9faMQMX3kA9/2Lp2331mtiDcUhIiA0+ujIOHzD/9/8eyln3kXenfeztvv7vbOMylZZiI3IjPAWR3S6hwCiXOEiqdNl3OZOlaZURE5jdkq68G6idCXsjQs+Jzg8X+QA6IaLEuAlSST6CJuyq7BD67jjZmakjzwA53sgVmMFNAyU8xgBM1+QRU8QBYho480AxUA5gzSkh9mrBBHlRkUSB00UcM7JbOIWXBqxiNuDFluoqkmReYR0MeBKOawY4jS6Gmi5fmSPUAduXotcxgdeIsrOGpw0QxKYtgq4yhxzWrg89wacc0oAAAageYV3ovwzQitbwYfbmKKyIrxwQ/a7jT23OIEC1gyw6PzLJmBSJ5dqAG3NTSvhphqXLDsDH7AV2ekl2lgQjb6MCGECbZ2LiEfz3HtfY+h25ni5Tdu4aHHLuL4+AECgMuPXMbu/ftYHh6BVgukOEdZTbA6uIu9Gy+BwoAIgGgK6jbQ54TNr23j4sNP4cKla5huTzCZThG6iWDqyIz7blLSrCAyltKYu5xXuYnYd+OJjbGaglvDU52AaigumaXEjfKFGcIy6pobGb6KrVMryVUNS6UURC8Tabopg8gy2+hcWuYmnY+c6xwHVH6zrAe5KBCBWMt8MaSKYASyAJ8oMCgLEGNgRlkBx8cnmG5MMJt0iDGiTz2+/PnP48711/HYE4/gwuVLuHtjF7NYcPONl3BydIyLDz2B3/fjfxzv++hTKN1UDHW69GT4NcIN0Ew8TnBq5IUZSwlZHR+cixj9NQtPpgKK5IZGiYpkdURUEBizrNFVnzE/XuHq1Qs1UxEP6FcLKalWlshlJsAmmmKIAHFBSAGHBwvMj5aIKJh0Af0qY368xNbOBiazGboJg0IBc0HhToGHmikpw0GqxYy32kcp2WdGRHb5QCDkxBj6jC4KAKUUBoegPn6uxkljLTbgJNc1LC9yfpfyhhqhr/MgRlyVC6h8ZTzbloayFSDvJJVXQUpHqDywfcfkaSlAGgbkNAAKdKDmXdlKQ2mpDAoKossFHKI4xdp1xMVXpBsVtXRc5gx3gJNmgIECc3UNMQXkAoh3Uumo4DkS5hFeUh4savQ2UG0BwFR8fyYmLfNGFeBESnsmICfMj+5j9+5rODzcw2TzEiYf+AimvA0uEcOwwBuvfB0UAx59/4exfWGGjQ64Oz/EcnUEznNQSVL6j1gjcjNyGhSga4ATAeukIVfnie8TCmICoaRUpVnjnGibG7KDZFkKXJ0QY4BOfYeBVgx80WYQKoXR9wkxRjHKJ83YQ8FL+sUoZQj6fgCSRkqrPmOlHYiByWQi4BzVL0qzN4pTL6iDRSKn2b80p4JtkAwijcI2g7iWVM2FXa4ys5QCDAFhEsBDOuVUaJ2aDhxeo7GDgBkj2uiuDFBA10VMprLbZwNLFQbFiNhFUKf0TAU5SRm/kgXAzQGS/cj3QfuXnVfXQVt+jX4UVDfMOesexerk0KxnstnrehG6RJISEhWgq+PRRWsyGcgCJqKoNCpgTogxYBo7KfdHQIiMkoWniRu5Y3ulOhNC1IyjXdQSFgxQVNmZFGC2Bmx5DzWTv+NmQBdyR4p9Lp+2euDYidK4kWBAapOdoyfZvkHNczX7DzdnAtfHXfOuHL/mvql9G6upsKxKptGL7A6uM/sNa4Sojsr69DMugJ+v2su40Y99GFW/BbOCJ5vDSyVMHRutvd3oMhognE7tR9UhKBfX8xX0jGj0wKnmtEIzzXoOkrNl1RUA0wVaiPB4WPbQ0WjXeK/xafrv8u5WlpzdWrKM3mUbvH3WAhbWxsvNFHiuDYIYXWcbWK5WiJNO3xWxvbOFYRgAMDa2Zjg+PkZeJnBO6CLQdVMQMvJwhNznSkhaYhhW+Oqv/ixe/foX8cEf+P14/BPfh8c/9AlMt3bkvEjjvjesNu7/NyPKerM5XHtmPTdWnd+ePfbp2tm57dDa9f6hvst14PH7bZ1795ux1vmnkZ7ejrxKIpMJCiJg0Z0MPG4AuFwYq+M5Dvbu4/j+DSAPmE6nODnaxZc+9Qu49eoLmM6mmM6mWMyXCJzRL09QcsHmxYfwI3/838T3/Q/+NHYefgIhinz3bE02AK7DqHND4663NHOa6trlRt5aFh/93MYIfa89o6SCkBIwkeCZnAvS4gicM9L8GKv5ATC9jFIyIk1AXQdEAmXGsCpIfULXRQl0SbLnTmcThI6UL9boO56GMW/5tI+u9JJrMp9SrjWoLuU00eetqYD+mlOfN/cRrV9Po78NbOxs6Hrpev+pnSL3y1g3HeSjapfpwKLbYG2+m3K0JECvCkzR/6n2t/JQuwgsqEH3CnJ1Zq3VNeH7TPOVAQKrdDYZZ+80vm3WdLt/t+80Bi8ZR/1dfL38E9zOz+ASnsQT4XvxRP5+UJmCYsTJ8AAvrz6Lu/QVhAlh59I2To4Iw5CQywDy+tJG76JZwOQDwanUjBGj8TL0DBcQApA4V8o3uvU6rcx2IYDgdeE5HmQFv8OD/OqlSq0CFC1hJ7Itu63HsjlJ4ESRs7NGChV9pr1DzsxB9VQ+NTe+B6r8dd1EbY/rStFo70abjYgbehtQqK7bs9sYJHyKYo2MHtkRm/0jdhLSZKWqRS8hlQMBTBKsJOcDDZyw/YarHbkZIjyrKew93L7a7xlnLYafd4JvfKiLgqoEJ59nDZRr9kf/HZLhHbruigkWkjLnwTJrkQbo6PdtRlZTXkw/JC1XbXqgPE556JTgOm/n7bz9rm7MeO2Ln8bf/g/+HH7gT/7b+Pgf/NfxkR/9I5hsbL3bPfsd2/rFCeYHe3jl6U9hcbgPADi48xZe+Ow/w/3rL4sOcoac3ti5jO/7Y38WP/7v/Yd4+IMf+w73+ltrnBMGLUM2PLiNdHAfk8uPnH1tKeCczvzuvJ2336ydxHv4F4/9X/Hahc/iffMfxhOLH8LHDv81dLzh13zt8k/hnz/xnyKH1bvY0/N23n53tncMUnIDREVzmD1DD1OhHuKgdgaNbHejX4hwsAtlzVSgB3FYBo76Cs8soo432YBLkzK4HtwIcp6Oaj7MPD761sOdHAQte0+1UVrmCnWgoTrbpKyIwmvsYAt9t4K37GGtW8Sdf5p1xkFKRTIyWTkf9QzDMhgZ1RzdMLLMWdQinFhOeTIjhT6TAUs672AhapwGAbDSMAiEjDx6pzgSJGOWHdrlTQWBbU5bR4kBe8wR5z1W4I0yjBkRrF/BABrVyGG8xixgqkCEqGC1gAYA0xgBrfSJfVczzGi/Q2tQ00P5Gh+Y82TkpKmkh4c+52q8KwAoBtBkhtnWDk7Cbezdu4f9N47Awwpl1uPyQw9htrGFVVpiiQ6YzpD6hOl0imvv+yC2dy5guZhjMd/HarHAatGD0hIPbr+Eg3tvYTq7gtmFy9h+6AoefeQpPPmJH8HOww8pzs0cT8aG1cjXGmwqj9aoOQMkhCb3vdHVsvv4U9Xx5IYqCpqdSjLHBDWARTeA1KjCwEF5I3jENKvRxH9SJbbbXJoRyRxDMxFprwI52KWZeM/QRZByawVBs6kkrBbLKquY0U03MdmIyAQcn6xw/ZkXsH/vBrZ3ZmAmfOSTvwdDf4i3XvgCbr3xKq6/EDDpJkhpBUIGDwM4MxYne3jl2U3s3XsdT330+3D50ccRO0IomlmG4dHIJMmpEKxkhY7TnagsTnUquj6JUCi4AcsymXG28n4iPM2w5OuhCOCn5ILZLIIDIyEgF0IeemxFQpx2uHvzJq6/+SqWRwe4fOVxPPahDyPOOgxzIHDA1uYGhn6FfpXQTTpcvrKFOCVQNIOXgKdKM7dgBbBZUrjGgFm45SmVHgoeLVmyZU26DjGSG8qF8Ww/qcY64xsLch1l6TA6gFTetZHitUwW6Z6Q1aBrn1XjrFthG4O/raMq723+iGR+KRCQM8BJskoFKfll64dLRs5J/waAXEtrcZK9xpgEBLYsd01thFqiJQhohQjtWZX9H7JUgk2JJOlnMblcWFYLKTiumKHS9gSuZdZMDjTATsDmHShpiYP7N/DWq1/FnVsvYbVaYPvSFSyO38AkbmCycQmXrz0qQDlmLOZ7iN0KWzsdplPGatkjlaQPkz25lIySUi1nwRBQidLcyl9IBKlm+ZtMEGOsfhjAARxWMmzdGG6R0DFqWVqMI3XJjd1R93Yp6QYw+pSRc9FMP7Y2iu4dRZZDLkprYDqdgDogdoQJd1qqEFLSMUhJOoDR9wO6rgNyjRx2OWBzyZL9KJCC+8BAiOgmEVSEVjZXDhYiASZ3iA4urWUrkgJ72ZdfCMYrGNGOHXy+Tseq+0RzhPsFxqMKHiZCGhJSMtArA6Voed5a9sD0IJ+37JsFPHqaCKRrzfpufW68Cb6mS7NgHNhoxn6TZcwOOLeSh7nI+vWSP9rvsVOBgAyknMDFylFy09eAGIBAjJWmVLdyGV6WT0FWQUslhxAQQ3S1RMrcwZ1a7+moudZzi9Fmbxfoz6pnme6CNcCHAYkal6trzePH2X3UPr25xEC/ep5onuVXcu270J1Hw2mfVi9tMkboQ50rbPxNpx1g7HvC6dYMB+64bHpr7yF/XqWI/MVOt9pcA26+t/e4pnvq+lGn2O6FO0bbx7gTejSuep6yM1Mrq1vwlI9VecH1JsDBG63/76xuWhdGyVMbGVrBMfVZ9lIiHr+HmvtaUrXvtoe2XxitzmBE2d8JCBEhdiAw5sdHmC8X4DxgPj/CbGMTs9kWTpYnWPVJzjYswObtS9dw8fIVlJwke+FijtVyhZJ6lLzCyf5dzPf3cOf159D94gY+8L0/hj/87/xvcPHRR8bT0nTdeu8/m3Xg3Nwu4fUb0M5v/clr3xkNS0PUFpzYLKEq01vC2XKyNdoMqAUHtPuBvajVKde5XLJK1uEYIDutetx76w2sjg8QIgGFcfmxD+DClctYreZ47StP4/nP/woe3HwVnHuklPHo+96PoZ/jzuuvYDU/wvK4kWF6ZuICpAe38Rv//B/ila89jT/2P/sP8fhHPo7Q1QODz0PT0bdjPVdZRSmFaHnrASw144cHmSnfO58zEKbboG4DFCMKCzCclwvkoz1EYqTlMT77U38dx8slhtUS0+kmPvYjfwTv+8TvwWTjAuIwgI/3pMxtZsQuYmNjAopkiPqqb7ftLKHdzGc9XzSyi8kTpI50j3Y5ntooGonP7QXjPrV+e+fnRoa2t9dXrEnd5hmnxqT9r6KjubAUl1+hm6HbvNj0y4LebBzSgQJGnEwRNy64nKproq6x+ho6s5+VCqfnqOrGdpsFCbU82IxPQRJtkNWIXhYMWBh5WOH2wTfwxe2/gzvz57BcneBm+Cpeyr+EKW0ixhm2L11B2CGcpH10fYcud8hpgRgYgXMtNa26XKu/yp5lPVNeYhuF9Ys1CWHBuLQlr3NH83ubgQd+PjciMdf3tQFzkiE2ohQNWgEUSNPubVX21nO0ZtcMhNhpJltm1RXZ35FzVkClFC22jK3GxevDcKAo2TmW3IZbx9fI6mJBoybbyQMgPagTqqfymr7c0GS9rZ8pTBci0wgIplGo7NYMWLafk2QXI81o3Z7z617VMLs9267Rjtc9bGxTsPv8GQ1vkwU8tPT1x5I/z88lbVbNkfqg1xbj4TpZdh4cyZW3kTGmT40yP9n7ABQF4Zkee97O23k7b22bH+zi1/7hf4mn/8nfwPf/a/8j/MR/8l9gY/vib37jefPGzMhpwO71l3B475Z//siHPomtyw9hvn8fX/zZv4MXP/eLuPPy17GaH/ve+07a8mgfX/jpv4k3v/Eb+Hf/yj/Awx94bwCVusuPoNsZlwtMxw/Q330DAJD7Bf7Zf/4f4WQlQKTQTfB9f+zP4qkf+DFsX34I6eAeljde+I73+3dqo+kmpg+9/x1dGzZ3MLny2Le5R7/9jZmR+iVen38OP/9j/xHubj4LpoJbW18F+G9hVi5A01EgDhGc+nOA0nk7b+9Se+eZlFAPMJ4dCGZoAGr0k0arK9An2GGOxBFGZGW9NHrZciDrNRZ9JuchO8zHWvZJHYZmKDanGGm/ShmX1AEzuEQ/UXqEi3beDCVS3iqqCxF6CDUHppRKA0MTl2sX7Vl6ritcEKJEUbYHPyvHIgfxXA1qdg52YE0FJEBTdHsKbAII4pSTg7+W1+JKYDaHNTMKZwWYqFWIax/QOLjlxZbas0b6SD/kXi7Fx2PXFc4CFmGZJo/iIujcBr92dIBvDrsCKvBcHzoGi2oXurUGLzNcF79aDTIk18KcmmgNe3KDVZhqbZ9UaPQsAY6wGmEqidyATvByTwECpuCGt1nTBXLusZof4XB3F2lY4PadY1y4eAkXLlzC3u4dLOdzTDoBAJwsFgibV/AjP/6nMdueYbWcY3f3Nu7dvo2DvbuYH+5hcbRAv1xhcf817N1/HXuvvoXJhfdjeu0qQigI1DWgDF17hUelCU4ZGMxYSJZBQj8O7BGbQB2vRV1WY0idU9a5MdAN2dyoMc18VTb/hXhkFLHMMsRNFi+Gry17h9kPDVZSGmexLzVYNpcgjmsWoFUqQEoFd2++hee/8DQWR/uYbUTkVcbjH/oEnvz4R7FYnmD37m08/8VfQ3+8i36xQCoB9269jOXxA9x/40WkxREyZwxFDYpRsrlxYaTjhK/++mcwnVzEnRt7+LE//qdw5aHLQjeVmUGt/aWKJwFZoQ7QSFyUh1PRLEwqxgJLOT9Wh4aMEyDNKkfFMi7ZPBNKDlglYPeNm9i7fxfXrlzCsDzBMCxx9OAmvvqNl7CYHwNpiY3ZJTzxoY/j0hOP4UMf/gT6ZcHOxR3MNi8gxhW2dzYQO4JkDGmBa1TnoABR10sgaKkZ4ZHM7GuqIKtcDQAHpFSQMmMyiW6EL54mDVVmGxcqo2UVlsYjLXiUdF8yBqwODfbScoo9EL7Sz3KpvFkNqNQ4UOo6KLkBjNSAWo3QTIDuDSKeK8iEOQsYiWsEdGFGKQnMJNm/sgB6OcTqvGtLuGlmjmwrQ0U32cKB5Z5gIBdY5GQpFgWsJUCLrk2dUCmPVmpmJBA65yuGlQ61PYVRBNSSM9KwxPzBLbzy3K/h7o3ncLh/D32/wv1bBddf7sB9xuziRVx77EnwnLGcH+JgdwddnGKx3AUwIJQEaJYrM6KXnJ0BSNcAYDpJI+tY5RixZrLSMl7KkFGjiS0rkckiK/1m0bEhUJVXWmpCKm2o0RoSqdxNJFNA100QOnEqDENCzoOazoOU9LIsjlq/sZSCoR8QiTCZTrA5naFkYfRgGcSU+hMW5x3nmk2LGU22HumTZWUiy0wXBLTUTSImk06y3WVxSMQYkSFgqr5P0lMFZTtddP4pEFAa2uXiYCzryzqoos0qBarzZZHMlk2OKIACI2Up02dzxyRRvLlkn5uu6xCiOHDMSG+r0TY2VmB14Zq2PGqJYrbyiLaePcLaeGlMSwGMajQxaZa45nqT17au7BkmZwRgrcDqopD+EMFckJPodcKHKhOaMaWmrIvxqGWFEIBjUTCTlsxT9c7o+55tLPoJ2CWTZsqRr8mF6FjeAzzS7UQv5vqtKR0qm/0JLGua9aZKUbj897fo89k2LMg6r12nep5oH+Pi1haB8og5mlSvb99XQTDsgIB2HKz6jsj1uu+4GmbfmXI12q/seaV21Ildz3ByW3Wk2mc1kt/oXve7005E76xmi2DvnwGlRqvUZYXtwy0x13VVpRnqjMr8NK7O0fOp4S9/CEzJsnGZbtte0j4CqNkunfLcvAJjsrqKUbvU/M11WJXE/n2A6do1gx0p63BJyIkwDD2GNOjeMmAxn6Pvl0ApiFH25aFfISXG1Ufej9nGFIULVqsFFicnWMznGFYLrJYrDP2A1C8wrBZ4/cufw/s+8SP4gT/1E/J+1SN9jXHttpHGwHzGT82xbjTGlqWcDL6+Tjd3sI5I1mRjoXpd+7O9H4CXjm8OnQ6U8DkbTUn9Yn0P8/kueiUBw2qJN776G3jxi5/B9We+gvnhA8kmmhgPve9DePTJp3B8uIcH927gcO8+eBgw9AOYCIv5A3Aa0C8XouehNOtXM0PrYfPk4AHmh8f4/M/8ffyZ/+V/jLizXcuMcaVLW4aY1+aj5VmQZJRJKYEUBGF7vgGvW1Y1ApgcIAa6i9fQDwWrVcHhzRu49+arSPdfw8V0BKBgvjjCs7/+aRwfHYKQQRTw0tO/gp2HH8OHf+BH8eEPfBSTYY7pdIbpdIrJtKsysbAvDAcj6BhsN+M1fhrtD15b2s5ZrEE4fnc9TzbGAOcJA/a0C7s0YK6Wd9f52i5o+3QWnzdywfeBZorsL19epZ6XZP8vYM6VL0MEuqmfUUTnsfOFrSAD2QdQlGycCLH23Xil1IGxyX5S1mk6bJAcO39Z/8WeJ1dX+ViwODrAsFqpnaTuNxtbFzCZbcCy21jRaOaMkhMWR/tYLY5x88Wv4+bzX8Sdo+dw8BM3MUzmSEMvsvyYoUdRxL0ZdvJlbO1u4u7qHmI3Q4iEzD0MSGR6B2uWoWY0dVJ9Mtb2PJuDXGdVbJpVJ7Qsp/ad/W/l49h2dNd/2mAXnaegQEJ9p4CVimSBbnZC070NbAPYnqWBJjFi0lk2atRzLAGx6yRzaCpa5qzlSX0HQXhmTbiQ9iCYfsx2vdmJNIuoMlcIQc81cDkEnwd23XkcMHJ6h2izGts1Re+vASfw8wZgJfrsaq7y0DKxi8Lsmad8rpuF2gamel/sPWduZM42zeKyedJxqqAgvWYElmtvB1XwnKqjNRtznSdw5b86hkpTo++pTVPHxVmB/oE8SAVcnzOm+3k7b+ftvNWWhx5f+Wf/NR7/2A/gx/+9v/xud+e7pi2ODvDFf/q38Oyv/AxuvfR1LI/2/buLDz+B6dYFrOZHOGrAS7/VduflZ/CZv/Of48/+7//av3J5vrfLcvit7BMb7/u4P2tYznH/jZdw/Vf/GzyGI4QQkFPCc5/5Z9jf3/d7vvLf/j1cevRJfPhHfhy/74d/EGE1/1cax3mrLXQTxK13BjAM3RRhY+fb1pe346/DezeR+tOgoa1LV7Fx4RKAyoOeHTUNOLh7A/ODPTz3qz+LZ3/lZ3Fv+iLyL6+ANvEbMVbxyP+8cHABj77xCF79vcenzFLn7bydt29/e8cgJYm2twO9HUbtgKkZC6ApBcyIn0v9G9CDd3IHvUfpcRGjdogwY708v2ik1wA9mbmDIPuhKzcpjwus1EYhdcYygZHdCMKAlLaBOWtDNa5ADvfiT5d+a0ChlNRhdReqE1MOfrEaMIk0c4KUC+FAVtENlv3Isk0wS9Q8EVU/iAKPij0bSh/IeyzFtwNzfHKMoARmyxhhEf5qTiCGZXQgAkAGeKpGNdLOmkFQDE4DmCVDB7EYUb3D+i7yjwsKayYnpZUb17yz4jC3qKSozhKxT5LSWvJNkJXDstlyg4H8404GmUC4M8h2E1KQBEMd8HC6BjOKunEFQJZ5L6hD9CQufinVtOtcI+4dkIeCwj329u/g8PgIqyFhGBJW/QK7d++gpCUmMYLiBkoCclniYO8Amxcu4urjD4E54OoTT+HxDx7i+OAIy/kcy8UCi8Ux5ge7ePDgLk5uHaLkVOfRnS62JoqWKxRaGXiitUaS/sNum5LvvCSX82pjiGHAIvHM1kEAEjNAkmHMDGQEEkAOpKSVyYzCANShakYgifKzbAONoxfmeJURSh42RikES8YeiskKKFjDMp1IAhsDIhzs3sX1F17Aa899GQ9u30CIjPliH2k54Pabr6A/+u/h7t3rODncxdH+A/SrAcPQo3DGS1+9DyoFw7ASuqMgcwYp/4dojviCMhQsVwV333oTZTVIFKTSVtZtNSQ6HUfrXCE1LMa3zAlvvvo6brz5Bi5fuYhLV68i0BRXrj2M6cYUIMnOQSEgUkTIBdEiktlEA+H4eIH7t3dx85Wv4v6t69ja6nB1ZwPTrSlO5vs4OdjF0B8iUEHOx3jpubvYfPMylg/uo09TfPz7vx+EjEkngpsV+IQ1mhsfgVmAYlyz25j9mk0KMCl4kMCFMPQZhRldZ04yBme4PBa/JwFFTHOKmYBk6jJQF7nhjws7eNKAU2Z/ZcAd++YXIQjYqOg4RplqjF+V8Qz/YbyaGTB8rBhjzTrNKHmFoV+CSFLyF5Z9ggEMacCQlsh5QIkMQCPKmUGFQQr6QdFyf278FnBFyQLcEcDcRI3lAEpGTj1WywUm00100xkABnEGkDBkYLGcIw0DGMB0NtNMh4zlyQEOd+9icXyAvh8QuxlAhG7S4cLODnIGZhtbuHj5IcQQcXzwAGnosVyeIA0LHO7vYe/+bZzs38LBvTewPLmHfiUOuZyWAmRk4OgA2Lv5Gi5eeASlH3AjzbF9aQfDsMJimINJsvsU3ctyzlp+rTkIFwYgoFiyP9EAVxi+nggkmZE0Q43JhmrElWfGKJmHGAL2yCUj5+zrUxzCZlRWB1+ISKmg5KExirOWdIP3RTLo1OyHVqIwJQYoIXYBs+0p0iDgJU3/hcmsw2TSoV8lpEHAY86YypuW1TDGGoFNpfh2aGXxQggCqjI9iwWczYURI6GbTrDqB0CvpUia7ZCV56o8d15kAzHUNt5Hqly3z5hZQeEC4rGykEwk1Qib6yiIriBR5Qld6BA7AcnlnJUM7HuUkcazI2Hs0LF5r45QOnUIrX4Zh977+mtLqbleVyC0IgOQinApFBB8X6vOJAaUp7M7V4zGQJWro8O6gTGKFsYsLGozBQQEBTgWL1H3Xm1tubWa08c1Ld8jTP+DjtX2hXoeaKMJ5brTwGxzgAECLmzu0efb+0yXkluL6rCSBc12kqowN+OxNW8bgylHPhb4e8BNZgbXce3+dhzjSEnnAhr9NXqHQXDG47crxizuUooVmHLGyzzbiunZzSzR+Ckuh/xjnzuorBH543o0U6W1zqk7SAnNe6h5RVmjVzMnsHOLyf56jenqo9moau2pZmvadd+2m7W7dZrXaGddbNl1bcrq2RJjXUL26frSwgXzxTH61SD6SinoNbKUuWiGmCC6XslYLBbgUhAnnYRNxAkm001sbicHHpeSkHXPPry7i/uvvwjk7FkbXdatiUVq6Obz3Pzu00fwUsT+9WiMpuf6dFTfabN8uV4pfDDC2xl87zT9uXnPWd/Xdcbe77qsDNReL6lDIfSrBX79p/8rPPfZX8LR/n2kocdk2mG1XKAMCbdffw6ro3vohyXSagXOSXR0EnDJ8mRQXSVLqUlm5QUGrGQv1/6VAtx68WuYH+xic2e7oRGNaNxuE+1eBUiU9oNb13H3tefx+vPfwP7uPWxszLCxtYVutoOP/NDvx+bWJgoLgHnz4mVcvPoIODMmkwm66QySURPIi2PMj+Z44/ln8fxnfhZ3X38RXQf8vh/5IWzubGN+coTFyTHAAyxAK6Vj7N9+Dc8d3Ee+//144v0fxNbWBsBZbCkwsEYFWTZCbfzZemvmSE8WohckuSGERvdYB6g2dHNbApr55tPXtqJ/xLPa13qmw+ji0fw0952S1pZNS0cDHl/PYJQ8aPCYyc2qP+Q8oJSku42VpmLRQXJCXi3A25qpMgtveL8KY+hXAAGTycztW8Ry3Wq1AIWI2cYWiAipX+DwzpvIJWO5WOLmq89hfrCLbjJBN5kghIC0WuL2q8/j5HAPRXW1EDswMy4/8hg2dq5gtn0RH/7+34fpxgZuPPtlHD7YRb+aY+/m6xhWC8xPDpD6JXJaIH18gfKxAQbW4pIlmICBnFZY9IRHr1/FWxeOQOEIFAP65VL0LKWDAcLPXv8iqGh94oxBmlR6FXxrl3Ldw5pZjTFWUDaR0qGRZFTPyQ5AKSyZfVuJZ+9sNpWxesioWVAhpewDQAhIKWv2VvLSXpaR14Dvtccm+FUz8/faGFV396yd5HKL1nSzSFo6WcvdQW1/9ixAA1hRzxRv56Aaf9eCB6n5KXPkARKWTa0+QfrsGgz7vIQ2c+n63taqNvaTG611rc+ndh4VYtw+XDfUs8brukUj/5xepfg811vrdy3o1vlxLYNly6F2PmaCZN5qSDnq0Hk7b+ftvL1dY8Zzv/pz+AN/4S+pzfG8fbO2PDrAT/9n/z6+9kv/6Ez5enjv5m/7O7/x3/1j/OH/6X/wW86mlPoVrn/t1/D8Z34e9954afTd5s5l/J4/+hMjANTlx5/CQ09+FIDoNpPZpviCmZEO7oHBePnLv4bP/N2/iree/SIiMf7Hf/7PY3t7G7u7uzg4ODjVh4M7b+LLP/+TeHi4h4985CO/pXGct9PNgiDeSSupR1kdI0yu+r1ptRjZRr+V1s+P8OYzX/B18MrTv4K9G6+tdxA3nv0SlieHp+5/6KmP4vJjT+LClYfxiR//M2BmPPupf4rF0T6GxRxvPvM0Sk5Iq6XcEAB8DsCfffs+hRzwoS9/CK/+3ld/S2M6b+ftvP2rtXcOUnLjcHMoZ/U2woxMBazl3CSjT8HoDvUG++HIMjGQObiCmJioOX4WAoUCQIzbFDo50ANy4GN5bJRTPRrzkb5DZZ6XOWutesGzkYhpi4E2qhHRoy8j6SFPywGR2IVFoJd6epXNmd2Aag5wpyEAK79gLnQDb0gUbfBrBNiknzUnSmaNqGKLyK/R5SxDcKeivUuijRogAVtGKyjdyTNr1wpfrHSXqDtmGVsYn3XFWFS0bAnMqUg6P+xOO7Kxm6GwMRhaSSFWGnrVOeWs2PCN+AMZsXGCUKhz4HOB+rtXoiG4sYXUoGIgGJm/5hlYM1oqL/glNo/MWnINYCLkMuD46ADDqoeAdTJKn2S9BCATIRFj4IJIwP6D+9i7v4urT1wDcwDFKTY2LiDQJi7sEEIkxE6c0vPlA3zjVz+PCREmGSgUUSAZUKy/TmeqBgzjEWKbV4I5cc2oVBmsGmHM3wZ/rhA0BELONs+E+ljNisHQ0mbiqLcsD2x98ImpBhiqL3ADojmJQgA4V+MJAYo6q3ZFWxusHScElEJY9ku89PUv4sUvfA5HD+4glYTNrQ2kYY5UBhzu38D116cgCkhLYDrbQUq7mPCAfuhRsoAWugDwEuAU0MNcmDJOYkbhXqKpKWK5WuLw8BiXHnloVKKhON+Z1GQnvQFwVssF7t25haOjQ6D0eO4rX8Dt11/CbNphsnEBFLfx+JPvx6OPP4plP8fx8SFms01cfega5icrXH7oYTz08KPY2NwCZ8ZqlXBw9zYevPU6hsObSMf30fMU/WQL09kONrqIjS6gDIwQpphMJyjDCulwHy9+7dewsXMVBXNsg3HpwgV3Koi8IV/rIIvAk7FYxpLGQwzAgFpmiA3gQlgtJQ/QZBZBQfcUBaR6djNAo/3U6QwxrJKV6PRySMYMKp+JBBinmYqMzi0wgY05QzUkuyPZ+LPh1bEez2q3Vn62cnuAGJpzApClG0Ho4WCakpBTDy5JHQKElCTzUhciVvMFbr11HdeemqDve+zu7mIymeLypctYLhY4PjrAnds3ce3hR/HY40+h7xOm0wmO9ndx985NLJYn+OBHPoGdi1dxeLCPxck+SlrgeG8PN25cx3xxBAqMCzs7mG5sgsDY372Hkwd7SMMSXJLvjEQaadFNsXHhEt73gY/g8sXLePOVl3F4sIehXyDnBdKwwLCao3CPslqKcyH3CFGAVv3QI1CHAkbHBcu0D2TG6vgB0mIPaUjqVEhANrBGzdgDMySz8QmDqXhpLqN9leE6L8qbOWcHvFr5MwF1rBnISbN4sRlx6/y3GZhKYZEFLnPrmo6xlmhkbuSVOwoIXZygEBCj9DGnhAJCZgKVgq4LyFlLnnYRGxsBeUjIXGp2MdtnwRjU6RSjZE1KQ3IDPPT7yaRDCOqAgsrwIiDvvqwAIsRJJ6UHYbwqBDBDflBgZBrOrgnfAmxc7SKAImE2meg+IXTkIhm7ui4iUkTOMrdOW8i6CkH22swZMQTESaeOuTGAL2gNPqr5F3xfWO9jW8bCnAimWuSc6zhMLWwarcmPUgq6GBEoIHMSkJSC6yzDlWRJISAYSK3Ao/qd1+htD/tFQb9SnrLJBhAEICmysCD9Fo0F35lmyoD/Bdc9VMdo8xs0X7trqdWzR2AX5WnPpKO8Z+ubVJivT2ftg+qr9ixau0qVGDkS1P3CFRFXIq2PgGWXsLFROzBVvB2Upoqql4XxcbYdJadJo5FiDCEynZBchso2XXU8u4w1o+kYcEyuL1ZASeuUrfus99972+iiRlZue6VP8HMBxs813iCTx/VOg6aQd76+xJ/hlxv4W6emeVFLRmYL/KiU9kAGe00TsUC0Nj6jRjsO5+X2S65Da661n84rRmfll5x64TORDDpfIgOsXGdmkc2r1QInx8fYvnxBgjNAYESEKEBQKQMktEhphWGRUXKPwAwUGuvoOhVtOyUKm3FYVtOxlD19fxXW+oNOiWZP+AuliXO2qZOw9dnc6zSXq9fXeDtvHghk4/VnaLCHZuXxYJsCLI4P8cynfwYv/sa/wOHeHQz9EkVLrOYsGTE5LbBaHQlPhYhIhJR6MBKYMwgC/I2BwIkgvn72IAsUU0NZs4gyVqsFjo+OcJUbWWdjOYOe8h2h5IRbL34DX/7ln8Ht114AyoDD/V2sFsfiYA8dEDo88+mfx+bmJlIZMPQ9Zls7uHjlKvohYWNzGx/6vh/B1s4OiAk7YcCwmOPFp38DR3u3kVZHIJoilwFUEroQMZ1OsFoOclajCEDK9M6PD3B8cB/HO9vIq03MuiYbZzNTjjmAH9vXmAN16TNGa44ZSElkVuzCGTejMrDu23X6q2RpqGoasPMuN/LeSqY5vzbrx2wGfmZt+nJ674E/h9a+aHmcFWDtmYGGORa3XsbWk58UkPwwyN4VCgw0a1m/02qBr/13/xiTy4+jm0yxv/8Ad15/EZvTGQiE1WqOo8N9UAh46NojCCT6VckDDg72sVoucPHSZexcuoJ+1ePwYA/L4z3kvsdqMUc/LAFIdkcphRyQ04CcBi1VpkBVHdvurVdEDw0Rz37257G1fQElJZwcHwEKQJISxglAAV8twPslWM8AOQObDi6Zzi/c2QANGYV7YCjgnlFS1iC/SlOz+zg4vkZs+R5sxB/JrHWhDXiWeAc+oQXcwDNe6gTCM/7ocwwoY4+UIKYKMPMXGvDGFkjRvV/loJUBtv3YdELjag8yK4xUJJjSSiOb7unvavY5yRJfy8gbU1Nzrg4xyt/MtawyNBuonsHd1sQydwWqe+gmE4iQk5Y79p2+WSfev0aTIHjJZAAgLppJXOkSSDI1GzWNztSudH1UEBs05yoRiHAq6wSx8c/6DoORvtj23/aclpXqO9r9Hr7JmsYTQjNePY9kbuYNBj4bf1azMzUCs+kP1vtaqmjUKnwNtc8SpOftvJ2381ZbPz/GOwU6/G5tzIz922/iF/7qf/K2AKVvV1seH2B5dPAt3cPMyEOPV57+FP7lT/6/8OoXP408nF0C68s//5Ojv2cXLmLr4hUAYj/++B/8U5hsbIEAfHg7YRoYP/eTfwcPdu/LNdOp71ungvTWWt/339I4zts3b2V5jMMv/yIu/75/E5x6ibx+m5bnR/i1/+r/geOiMAJmvPzrv4z5we5v6d1p6P+VsoXdfvFruP3i1wAAX/inf+s3v+GjAP7gN7/kyWefxGxxDrY8b+ft3WrvGKREnCGgHkJ1HojzXQAxGSXo8YabQ7sbj81QrPHIgcQQQHaoIzm8A35w8sjlkdEmexYWBoGoA3FAYclwApBmFSExuKqRNaiTu6iznIhqtiU9jfl3IAREEEU3BhnIB5aOHwwu0r/CRcFTZlTImr4HgOZ/EQOEHtab6DaN1XYnggzfCrnrAV7rPtUUv1p6BBOYAxkAuDACFYnO1LHK/t5E1jfgDzf2kjojOI+s7lLCyDJzsHbblE8GBymlopgCMawYOEpsqxKtVNhqsulBvYAg2SgKCe+EIKCSQACXrAa4gMBaXkhTNLFGSEUGovEmzChIyI1hJRcFVIWawYa1pAL0kUTGizIfUa2KnoEIMl0G5jHbZMmWMUoMA4GlXJXQK4BLRuy0XA9rBiwkLWuVkHtGyRE0iVj1Rzh8cA8F34PMAUNiDDliyARCROwmiDNCDAWZAmjzEkqUSMmSqabVIuMqzTSkjvGiIdvupCUCgjnWZG4yS5m/QBDwkfKVZZJR27nPYbEMRmqsCUQK1vGOOG8ZDX2uCBrRN54/4ywreWGigJTHsjnilR+q2YYhWciE95kDVv0x0vEJgA53d6/j1uvfwPz4nhguecDJ8THSIOux0BxHD24h54JuMsOQEhbzQ6AMgCZYz31EjB3QRWRkhJRhlaeYGbGTUlx5yAhdxiOPXsPWxQuSeSQVcFQHZEqgXFDSgDDpECcTgIDEBakQ8mqJ557+l/jGFz+PfrVAFxir1RFyWuBomRCOdkHU4cHdl/FinAHUi9M6zjDdnKEfBkziDFevPoKdS5cxmUyQ+xXykDCbbSLSCqk/wF5fsDG9hskkoHDA7MIOBnUyDKsVUlqBywKzMoC3tnD3jRdxZXOKS1vfg5TGuiuDNTsWG7kQijl6a7msKn80spKAVBjDQqCt080ABImmbuVMkA1F+IFlzWUq7niUygeC1ihBMr1JRoWIoJn0sirSBqQNKgDYojuFhXSNqJFPrN4KCJWxeMYMF4ks8rbZsyzrjhiqGXnIYnBnQlru4/6dV3H52uPY2NjA8d49DPMTRAwAZYBnmIaIjgIKZxw+uI+br/wSHrnxCvb393Hnzm1sbF/ARz70cdy7fRvHB3dweLSHi5eu4smnPoLj4wViAPbu38HB/gNMZxMc3buO2cYF3L11C/P5PogScr9CSgsACQDjwS2GSNSi2cJkrnIeINHK0P2IEcIEB7sRu7dexebGJlK/REk9AmScQ5YMZCgD0tADSOhCQS4JoRNZWQYBcPS5IA4LUUQoIaei5dl6dyoE1TNiN0HsJiAAuV9pNLl4hJgKCokMCIjuYHTnDsmTSIE/YjhvD8DKdwxkZPDKAJhA1kw3bhM3OeoSKCCA0MUOOWcpZ6jfCaBZa4cWFp0ERbJERXUcR6DrOkhpOsvoSJh2URmcMCyl9F036SBAahHI1SkiWbW0Fiz6PCDE7LqVZBUrKk/FoB8mAjbKQ3YnTCmQ/YRkpUABPyEEcSB00TMXEYCSMkImcBb+93K5TROfezWWd1HezRxABQhFsv8UQwqwKSEkWeHUGcCqKwYSAJKqV1oWT8CIUgauLR8rew0rqKzSa82Z0PpmTCet3nDZ51n0NWaWjEkwvoLqPwVUmn1K5wXah2ROaL0hUvT5qXtnc42C04kkW5/ttdJf1tIp0p80MCiwrs/g2UXfs80FCmGMRgDqupLP3UFIqDRv5ut0KRKVxco3kk2V7MQAmxO5vWoQopvUOr+sz2jnuHYC9Z360zmcx88spgc3H1ZAa/3bsyqx6WZWMrk0A7fzA4+fgcpv3l1uANAMf7Y7nqjytA8H1h+5ieqn/szKo81E6LoZXa16tPW8Ibt/ZyCoRm10wG9dk+R9qWCj9tqiOoPOjcvmygfWC2o6yc2zHESA+tyWKGzT0JyP2uubYa3xB+rFvEbnOt3194ZW5HMtLw2RqoNYn2JnrQKGBQ1xkVJuzEWzNoq+nlVnjxSVSzIKB3CIeOjJDyGETrLZApV8JsLaNUBrv66NuUpYfURp/kD9ndsLG2SUbQMj+unnBvoAMObt9rNGXnyz1izdZombE7ne3C8XuHf9Bdx8/qu4/dIzOHhwG8cH95HyEgwpq15yryCjAOaMk6N9iP4n+1QaJDOhAPwLcmr2MQNEAlqmuGFwBogyLl7YxHLvFpi/19fOanGCoe9BXJBTQjeZYDqVkuF7t95EShk3nv0Cnv38L2P/7i0wZ8VPSj8KF8melXvMhxPMjwKIRNbMjw+wv3tDz2kBb734NcQ4QTfp8MlPfBwXtrZxfHAPq+UJmAesVhlDv0K/mmAxX4IpopvMAM7IOSHlAWAgBsb29qaA2NMSk51Luq/VBejz4hPV/lLnxSxRzOQZWgWwLPIpxAB2/Cb7mq57QN0RKpPLgwqZvSc0YASbD1a1QK51+cJUeb3pqi/9di01+9dpnpQ1bmXq2pK/eXkiWRSLQA8599jfvYnl8hgX7r+FydYOFoe7ACe1AkTXmRhSMvmVL38GuwcnQAhYLhcoXHDx4mUQB8xPDpHTEiDg4Pa2yISckdOgDiHG0b1N/bxgGJZKDwNO1oBCOI2aEm+lZtMzFs8lARSwGFZYLQ51DVc7lgfKoaD8cAJvsTyTs5zmgpRS5pxFfq3U5sKsMlBL4FkpL9UFQggIsQNAKCkBPs/NxtDaC5u91idY91DmcdbOMQ+oXq3nmdbpNnpfw901qACaAQryruZ+ZxXXA4yTS+XqJoNQIHLdOCfTFUeMd4opq4wsyo9mAyN/v9gStSQcockqWb9nQEBqJMBa0iACOefWrKYll5rNiJuHrDeqcxECKYDKhACNypFaucT159jj3c4M6HnNgmzrPIwcpbxOn7XnrvEB2zvW9Jtme626jcsMtaew0N42vqrjNbqci0T9Q3m26hA+UapGKtANtRSe99hkcCnIzR7oduDzdt7O23n7Ju1jf/BPoptuvNvdeM81ZkY/P8bN57+CFz73z/Hln/u7OLx3C2fub9/OfpSCFz/3z/Hk9/2o92t1cij781qbH+zizW88jZwSvvLP/mu89oVPS8DMt9BWx4dYHdfMN5+7/v8GIHvrtT/353D16tVvCoZ5u0ZEcu95+y21dLR3SlcBM46e+TSGB7cxufIY8sn+N3kC4+u/9I9w/fr1b2c3vz2NAPz7AB7+5pdN+sl3enmet/N23pr2jkFKxTI9mInHSnOBpKSFHozkENwY3AM0pbBshgL6CVq+ph66CQCTOuhgKee1hjvXQ7qU+glqQIIY1bTEFKM0wAlUYAskbXKwZ0AyHNnxjHPW9xQHIGXOIyhRa7UtavCyCGUA4DJIeSMAQAaKOuHAyETupEMNGhIwRlBayid68BRPPwUCe6muogZQOZjKGV+MTlK6DUpj6ClYopZqSmuhEUD6fKBoBqjCSd2sclmGlC4DYi1dQwB0HixyMcToRl0BFpnRz0rCwSOQipbkydwYsageoUupjv6Kni6V35xPbHKlBJxtIBYNJzNWDTSW5MoqEQLk7/KocT/oW3k/McQUS4Olxsv14AAxTAmARiKIA4AI1gxXgcXJDx2PGFATIgJyAgITAgryMMfuzTeQ5j+E3G0h9VL+R2gsEWrM4tDve6FfAAumLGpJtNbcytWJVO1stt7I+xJYgWVc4CuPLHONDdLZvio0VOluDiZWY6397ixjPEgkxnwDm6jx0kBtTn9fvA2diwBFSqnjMfCLAPbkZWU1IJc5Hty5j+e/8nk8uPMGKG5isjnBan6MlFZIeYkL25uYz1cgTggUkUvG/u5dcdzHqJm8BPQYQ0BGcaACq5OIdT0SmcNQHPcxdgB68HCIWSDkBCACq9UJXn/hWdx76xamAUh5hQuXLuLxJ56UUmx7e1iuepThBC9/7dcx378DoKCbRIRoxjYpMxdCj27CWC2OYM7ewkfolzKvQ4lYHtwBENFNJwgouLhzESFOsVrOEbqMCRFKHrBczNEPQEmEa1cfwcnxLg6OjpFyRgwTRAog9FjND5Cml8EgRJqAC4kDQEvnhCxrPzODUKAFL2UtFdLVKobHrNH9JResSpbyWl1AAaMkUpCaCEqrzFMKucPA+AxFAEFEAEXdNwojKRAWZQBIQS4leclIKXkWUHQ/8awlmvmL3PlQjZAEzU5CBM5Jy3rJukj9CifHR4gxYmNjE8fHx4ghoOs6TKcRi6N95LQCOGD/zut44+VnsLF9CQ898jhmAUjpEIESiDrZLyCABqCAU4+TB/fx3O5NDKlHyj2WRx1eXtxFvxqwmO8DZcCD5X0c772pWVaAYbUS4+YwxY3X9qREWBbHBQX2lPBctGwCRM4RSXYWcxLmXL0uUbMYAhmBM1LfY1mOEQMDnMBF5qKLUoIwlR7MA7hkpDRIhiiXw9qHksEpASQRtKVkySRUshtaJW8gI046TLoOOQmwqvqiR/ADMAQ0WQJVcGrjyQyBkBUYI+JMJRUFpQ0LECfZpgrdms86rTC6rsNsNq3jSkJPy3KYUtI9nCVrAlhBJ+IoXPUDMAwgIkymnfCsOi8RIE6iIqjfvFqBHLSsTmrf+sjltEQRM6bTKbrOsubpHhAIiHWfpRDAuc3IE92ZFGJA15S3i7GTKPkYJTpd1+TASX0CdIpOBCB2UZ0uhG7aSfkLBSnnIiCDGKPoNImbcmxQPc+0Mfj+YNHTNOl8LwdVnScEBWeVrI6KJrKYTvez7lvUeBbtk9YxIcAXkDml6ybJgMrOFiTE1SMn7FrnAaL7MAmNigkVHXOMEVEzoKSUkbNmndIOdzHWrF66nwptulP76HuptQAa/QQO5VlzxhBUE9Qzh8+beXtbYEWru+hz5TbWM0uVA83C8bNIVdCL+7xaD84ott/1RtTecv2+AvNU/22VKtV/m0fU3/QsUvmmKBjTJFxGC+xyR1nDttQ+t+FjF5ImP01bJrg8WVsV9byHdllUnc10SzT3OtAPLsadeu4os9NDs+647Zee5QRUOR6DPafA5rNdsyrXEKruujYq1+sbfmph70T1nNPyE6+/zh7X8lwd0piSjRiwOTrt+yTXqScbW/5yzxTZHEIqYCzo82RN5Txg7+5tPPToowjTLSkZpOuNNJMSAwJgknSPmn6/jtVVchtjo9MbPf28oYTw+VgnWvtnFZXjZ+p9/Hbvb35fp+Po8c3SrjSy3+titWOtrdB1vmcw9m9dx1vP/QZe++rTeOP5r2E1PwAQMdmYyvmrMEpJmE0nSJqJEAqOyBoAEbQUX9DAi0DBy46zniOqvLNSsib97BzHmB8f4NaLX8eHfugPI5cBr3391/CFX/gpHO7uolPREKcTbG9fwHKxwOGDB3rWzlgcPUAZVrLHOMiANWBHaBI707/Y6UYe8UNIuccAGc/i5ACzDlgtDrBYHCMQYTKZSI9Z7DCBCJvb2+hXCy07L3QOFCWDVFkBQQI0DFDLDJfVFsxWdFJbmYCG37xlVjAK1yA1sIOnnSn0fOmAkkDgRsfNQw8G0E0mSpuisBsSMFhJiHECywhEIcKkLQOeSazo78Zj66BH4/cCiSB+cPtNL7t2cOeG2AOGAdeeeAqblx/G3deex7Ba4epWh23q0fdzgBNK32O+dw8pv4nw+kvoug4dpLSgZ1oC67mMkYaE5fwIq/kRCgpKySAAxw9WCDEipwTmBICwOB6aPpsMIeSBscqllqWFyU9WR1eF/pLXxW53uhokVz8TvpHM6UafWs4uEFAuF+D7NRiFi5Tm1iyEkqBWCL/1YAuI7MB0z7rabNzWw5LVBmGfjWQ9V/0A5DLFMuxxQxOjEezqdnOwZ6FhiNHXNWuTyWgJWiAH9kD3QdvbzjyL6KYvdgK1xMXgtq6s9s0WnO8ZSBuZavKw6X0dH0kwBtCAsqihKcvzi/Wx0Z3sWU6uUiRAUv8Hkcd2CqDOdI/T46QgJaKFZmbL030ykJzrKegZoGauqvu7Ecu2qyaQyu5ThJefE22nKm9D/7dpDsS2PX9M1fo7N3vq2uMb7QeufDS6QdXh1IZGzV7iPEp+7rAy4yhc9Qquz7JVLABH0pKB5+28nbfvtkZE2Lr0nQNzUIijPeZ3e2Nm3HnlWXz55/8uXvjsL2DvxqsYlot3tU8vfu4X8Yf+J/9b9PNjfOnn/i6e/um/gX5+cuq6PKwwP9j7tvZlGNQ2/C22ruv03PHeaczllG7giTC+7e9mpH6Fe6+/IP5YADee/RJuv/wNAMDDH/w4nvy+H8Vzn/45LA738dgm49ENPr1WmXFy/VmcPPc0Ll68+LbvWy6XZ5bi+65oHwHw7+CbKjVUCI+8/sh3qkfn7bydtzPaOwYptdZLkWkSzW9RKNGyEmQGgjgJxRAqDqfQgEIAPSR6hJUeNmHGo6zGjayGq2qsk/OXGWY1osydDRqNUwoQohoKFFSktpJgB3ArU2VgA4aWNqkZoCQ7E9R0HvzQxu4CsCOnWcIt4lkOfjFEzeYjIAZC9H47QKsFbTRGEgFEQIz5SreSCmAZRAorqCvIOGDxYfY8eL9oFIVTgU6kGRMsj5Cnu2ExPVGoQ2I1RgkspAG7wBwC8t5gzjs1vJRiADBoSTLrh2RTAicoKwDRsv40h3mLhHRrhTpgWYzOrCUqwAAVaORkqyRo5opcjUzm+XRfV2NMYTSHfgAWoln0oO/RmGbvJL3VnP4MjzbLJSuIQo0wasAjBjhExEigSBj6JZ75wtP44Md+EI9//JNIOaPwgNAFiZ4G61gVHJKFIAXUAN58cDqmcaYHyUola4l1XDJrod5ljqhGaXHDDlcDEjX6lgPCdD4qFc18aVnIFGTEDW1hjtzG8NzYtcTAhNFc+fTpcgNJQZ+hX+H6S1/H/t7reOOF53H3+uvgMgdjgjDpMJ1EpNRjWK0wJ5Fdklq8F6BEjKAY9blFygplWV+TyQQpF3EQs2Tnip047i1CVXB5GQUFHU1x683X8Y0v/Tq+70f/IDYubOHejRv43C//NOa79xCgGVE6wmxjA8Oqx9APQBRwVFoco6QVzMRMRQx2nOV9ITAm3Uz4wLKQaMam0EWRuTmDiZCyLKCd7SnScIzFyQIhdJhubUmWnJIBHhC6HpkJKQ/Y2LqIcnyCkhMy90AZwHkpYJRQUMoChTcQ0Hkmm1wGMBhDL+XqZhsb4JzQbWwCWVy0s4mWOyrAMGSULKXJuhAMuVSNxxQFmDEM2N/bx2q1wsUrV5BLxvHBMXYuXMRqfoDr11/AtYfrFOO4AAEAAElEQVQfx86lRzH0c5TcgyZb2N7eweHebYTpBFvbV3Bw/wY2tjZw6ZGnEMNESpswNxHGUENi4zhmRlHgTikyD/3JAW5efxlvvf4S+n6F2WyGo8MDHB8fYjKZYGNjE/P53Pe52axD6ZcoOaNwRFod4/D2Hezm13Dz1WewuTnFtCwx0Qh224OkD2Kc57xAXi0FuFMyOBGO7i9QmJCLZC8KIWKZkuwtut4NLMo8YEhLifjWPVpKvWQY8lKkckaMhC4I2JhtL2MFiHDyvSMERhcYnDNSzuhCQAhA3w+yTnQfliwXsh+mlMAoCFEiaGWsLOuGpcyZ/c/FSrKR9y8NvZQWI3ZAlJXasDXADCkroHKBLANQzq6LmKHf9o2gFlgpLwecOmRy3SNkK5Uo7NgFcQIEAezlUoAgoFLfGGztulNM5rjrIrquA6MglYzSZzEeU0DsooIyB4SOEKlD10FLe0lKjBgIJQBRs+ZIWUE7IFcQbugI3WSin4ssKNxGLclGZuA2AwHqN8jDoEZ+AgIpCLNKcArioGSo8T7XjEXmUKQYMJlNEKP0Q4BgWSPTI+JkAgpFSrNAHb0KZGbVpUJgtZyr7kZVVpgqltVxZg75orxXMyidblVfMj2o6mXuajsdYAaw0NuyKpjDpt07JQK7Tb8ic9J1UZ0EBooUsFHXdUgpSebHLnrpthjl+jAR0HhKCWklkf9BvxN/ctAyflIesLyHU67XTDxwfa0F9Yh+paAf0lnR3zFyqNm99mD7rAE0m0Q35cIcpmwuUOuGAYmqMujnDgPxA85f3i97b/O8mvWUXaf0cXKVW3X4VLs+aqrX67tMs3I6mm5kfiv9wwB7nglKVfx2vH4mIO9+faZfZ2cujN5ZaWY/x1nCRjXC3GPbgP18zo146+OC78+14+o4tKc0x68awFB0qtcGNepL02fA+cLnieor19v6uBtReGY76zKbkjMb1X5ce+qjeOHX680O4NIx1AwukD3PMsLmjP37u9i78wBXn9gUkCZrOdQmK6xsenK/8FgDxaRm/KNBCHGCcwfWmKrZGxq+aafBzqqnaOCkt5UzfmI7HyP/+PgR3ifZ8eqYqJnXZpX7G/2vIk6FT/+Dv4YHd97A8f4DDP0CEioRMPQiq0oWPbvvK+87uNr2ZbVnyHeiF4UYVd+QRUmBJCuw6Z5kZ29Zn0SEk5MDPPv0p3Hp0fdheXAP1196FjdeeQa5n1c5ZQAk0/PMxuKpT7XMMHGVOfp37Kaup3mmmyL7OxMDJYNCQC6MlDPmJ8dYzg9FX4MY4dmyn3ACo8dyuUROCZPJFCBCGgZMNzpsbs4kAyMKGBmLBzfR7exgtnkB0CxfJQ9YLY7AHLA4PkHsOtn2Y8SkmyAjYnN7W/RjsO/7QUvFl5xr30lsJKvFHHs3Xsf9G9dxfHyMzc1NTKZT3HvzNZzs3sdsGnH/3k0wGI899Qlceuz9GFZzIERsbV8C8oDlaoHti5cxPznCZGOGD3zvD2PzwhUZY8NJZwGg2yCfNPTIywXefOYLeOE3PoW3XvoG+uVcy2dlDP0ARkEXO1EjVYe5cOECvveTH0cXJ3LGShmcE3Lf4+6tN7F/cIBPfPx70Cmvuu1B15zw6wpg0R8kJTLAeUBKQ7O/sctVuxdkz4PytIzHwO91EZLrkoDJHdn/su1njOrQITnnSHxjQk5Z9B3Va1NIKNcA/CEAm1VCCHtX26IFmWydbIB3Gt1P//eNUmdKxpqgqEHpM1W9oE0BZ9uC6XDWpLTZWM8avaHhg9MyayTRRM/rIpiLAAxVLhsdbM2qYqxqperYVDMvMQLIgDnEoCYLp2QIl3UNtZ8YD9hz7P/igQvweQ9EmnGYPTt7sayYMH2Eve9GZ9NtJKNoqqCkGMffuzzUsu+FPdOSPZ8CIWjQA5GdcYvuaxIFY+W7iSDZko1uqKCl8d4hdkLbsIw3zT5r+s0Y9NroK+/QKV/vofZDnTc7J7rmNd4lGzBS+wzJCEbOHxaYEzW40fYYoAkGJXJ9gJmB1OinRIiqFwqNSc+w793zxHk7b+ft7EYh4hN/6E/j1ad/5d3uyu+6xsx4/jM/j3/0f/pfYL7/WyuD9e1obz37RfziX/s/4rUvfQa3Xvgazj7tfmfa7u4ujo6OvuX7Ll++jMuXL/vfzAXzO69jGqbY3Lnkn5eSMd/fw9mGPGC2fRGTjc13/F5mxvJoHzee/zJ233xl9N3tF7+OG899afTZtQ98Dz7we//AN33m1Sc+iMc/9gOYbG5htrXzjvsCAKuTIyyO9vHVX/j7+Nov/iPceeUZyaoPoUlVPCWo0wBMjz76KH7iJ34CMcZTz3z55Zfx+uuv40/8iT/xtrpN3/c4OTkNbHtPtwsAvhfA/w6/aRYlKoTLdy7j+PLxd6Bj5+28nbez2jsv90bi9JSDVEE1VlQjhmcV0UwVpKWwRqAPAOZEM4uhOK5EUI5zIphBkfW5ehAmFb5mEnIDOfkz9IwFzxHjpRNQgUaa0puaCPRqHLXIGjF+AABCECOfAVYUcGR9lSEpHSg6OEPsMGIogxndbWT6nYNB/FmacoJCczBtD8wG8GCQlw0RB5+U+LLo4zFtnEY6ttIemgkABz2MFw83rfOsjl+xZjSGBTPimIGCdUO0gzFk3I2zTs0NsNJvAgAqboOp88zu0KnR97XPlrCA6wS4c8o+Ip376mxpn3c6o4J9Z/eXXKOs3PbL/joULogEkAHckKthEdWA4RxWCiIXBAbSkFAycHC4j1u37uHqB78Hq5UYxCeTCcAdhlUBxQhCQemXUjIsRBQyvy2DMo3mad0HGH1c5CzoRi4ftLqx14AatpjMqc+5Gj3YjP6hpXkDKnKjFxQIaDxT+yZMYjOqayLo703nalfVMMeyvo8Pj3D/xg289MxXcOe1r+Fk/z5yWYFCBniCnHr0i4IySCmGNBCm3QTMQEqDrueIMIkSWWgZBQoj5QGdGnlKNoMoJGMcBeQsazUEAia29guGso9nv/6ruPrQNt7/1FO488oLWB7uopRjgAirAUAJWPWH4JzFmTIwOA9ATrIWipZkUmNhyZr1jBhx5wJK6cElIaVeyg+WDhLXmxBCxGQy0+wcIuMYCTFKeco0DAhEuHjxEuaLY/T37mIYEsTRPcHmdoc0ZMwmHabdFGUyQSkZJyf38cozX8Dm1cdx4eqjuHT1UeRhhfs3r6OkFSazbbz0/LO49vAjOD4+xIc/+jHs7+5jyMBTT70fi9USG1sX0E2moBBwtL+LxfEJAMKVh6+AJ0DfA7kfsH/vNt569RVcf/UV5GGFq9euAQCODo5w6eIV9MtD3Ln1Oja2d7C5/RByf4x+tcBk8xKuPfQIVvMjbF28iKEU7N69jstXr+L7f/SP4OLlhzGbTrHKRbPGMCgGFGZMpjPklHG4u4eh7zGZTTGZTREALI6OcP2lZ/H6i1/H8cEdMXAHSGYlN6LWEj22N0zjFJceehSb29ewKEtQYFAewP0CyxIQOsJkEkAcERDQke60LAC/nLNmg8lqTGeU1CMVdqeTCSRmAUXGbooQCLEDKGZMJyyZb4qCirqAblLXuQMszRBNxY3vJqdTHkCBMJ10iBEIyFit5gLE7DowBRAXARPlAgoTd853kcCTiJQV1KFOA4IAmq2iEWsZBymhwL4HmJCgQCNAiJXfMvQCuXGVUMFVNjdQUNTYqdJuKetRyibzR88hKZMw29xAjBHDIKUwDFBCIM9A1ZYa6CYd4qTzfSDrQRIcQCjgrDJnkM8pytoHJQTqEKNExxbOGFJG7CI6zSIUQ8RquUIaEhgSiR2iyGsBh0FAsVW1gmVbJC6IECAE275eGCUXjb4uoC5iEut8Qnkml4Kui5jGgJwyOEvpmVzEOWWOlzjpEEMEiFBKQkFGTlWHI4iTkwIjTAKgTgbmgmEYXN8ozArOBBBlLlDEKWmOJpDQ3UA6b7e/V8eTriH7bq1kXatPMDd9gEV7kzOL6zxsUchR+omg64uED7qoJVODa5wxRnTTKSx9HHcNL+qG3k1IgXcR5ugP6oz1LCnqDI84bXx47zSDhTVzo8LIRFoDhZE7TA+kKrXs+xrFD1T9Ds3PJoIfPLp7bVF4/+rV7U975prDSM8bVWBwo+WjcYqNdSPrd9Cb7a72xKQanfet/l3BOlVOkTuhoE5KWMYUwui5I0S4ER2Ala+0Eqr1nFIH+jYwk/ro9jc9P7HOwUimt3PWEpjqPUbEOu0VYGrHpna2vKQbDIBb2whMtXYsIr/67cfVjs9J1siHte7X9486ceZQrYPOn5YJxee9+Emn6uX6PTFr2TcBmAwlYdEvMQw9cpbMg4gRoViGWJLzxLAE5+S8yErXOi/rI27pU89IPkftLTy+238f1QBE5S22N9h+TZUtGg+/T18DhFMuPZVcjdt+rdG9Xes2RykNeO3rT+PX/snfxu7t17E62UMeVr4WZMlIMILVEuMiYFFg7EwHW2ap+h7LYFkzf0Ad/rYw9G6S8n6mm4WYcXx0G3ee/QyICPt3byD3C3DJGhAmfC8J9YrPnxupQy0danQsFnShWUn6MgCw0lgs+igxwAUxRCkH3kVMu04zJ0P0DwQNzCFsbm5ivphLBmEkeQ8TYhQ9bzaTLIpG+jSs8Jl/8P/BirZw9QMfw+Vrj2I228CDu7dw8/mvYTKbYn5yjKHvEWLA9s5F0Rcn23jkifdrH6aYbW7JeSwNmB8fYrUacPnKZUw2OvRDQsmEe2+8gFuvv4zjB3tIQ4/JJEr2oCxBcYGClq9jXH/2S8ozGbkAk+kGooLZQ4wY+iUoBjz06PvwyJMfwZVH34+Lj7wfG5euCThAyfzgxqvIfY+To0PM5yeIIaKbdljs38fx3n0c3L+Lw4NdpNUcksPaQnuk9anhW2asFgn98gRhcxshbCLGKVZzgALjwvYmDg8fgEvS9S38pHgj2yVrUIvZrrh+5xnFit6oKzLETmW3BjMEvadI1nGGBmfFcaCc7X2jzdh/Ff6LMSruPKMggykjXwXKZYA+QcAjDL5awNPggRYGvoh6HkhZgzO4yb6n4x/pf6PtzzfepsctOJJ8z2pFRrH9XQjW7CmNHqGCaPzqkdQ/rWqYnCJyUFrUbKwCWNT3aT8ko6na60oB5wr68p2BxX7FauO0IE63uREAisgKHAox6jyTgt1FFliJNmY5FzAAotLILXa5K7Yy7UFQuui8eVaiKMEj9Swh9kouMicUA4LqL5Gp3ndGRgLWz6lokEIpzd6hOkeoQaZZ8XW+JqyEqqoq7TyZnYv4tJ2w1TVHvaH1z9Zu4tHVa79RneOzHk9qv9PV5aCyQJXnGzaUTH71HNE6JEUnlXmlrglW9F/qxiyv/BZims/beTtv74lm8uG8fWfbsJzjmX/xT/Gzf+UvY37w3gEoAUBJA3a/9Es4fOstrJ+KvtPtW8lK+M1aHnr8w//D/xwnmOL9n/xh/3zoV3jtC7/qmUrX2+Mf+wFcfuzJb+ld17/xG3hw83Wk1fI3vfbNb/wGvvzzP/lNr+mmM0w3L+ChJz+MRz70STzxiR/CE5/4Qf+emfHcr/7cmUC3O688g923XsXiaP+0IaJtbL55acvl8m1p/+ijj+LNN9/85gN7rzeCIBw+BuCDAP6HAH4QwCchYKXzdt7O23u+vfNTh0f1QR1X9YBkBmTxFbIetjVyq9jhT0A65pqoz1Nju2Y0Asx4geZvszqKxdEOrIHsPoBZ3POW/UEiB81C2RoOJbMS7HDtWXkYDI10hIKP1JhbGECI0AuhVVhgqc0BVAcKl8b4UWDG/FLUEelRZ5p+GeNyIVFBM+ZAM2NS6yAAWDM+MSQzUu0zI4G05Jg4c6QkizhCDURWxEGmiBFSGjE3h1R1UliOJhub0ZNYABpe4k4NGI15pNqVDbxWkhoxxPDJLJk8CEHTtFsGkaA80RjslcZjB7JEsoICKMgzJLLSUmSLsziaZ0TpKV9J1NXo+UFLpxUDoZltpRqV20gnsxYRIFmtNMNXKQxwgFTAE9ObAAyqczww+/+lZAzUY//4Lu7fegMlDwAxJl2HSZxhUJACSo9heYhhvq82ITGUMwcHCZnh27O/uOGrdpnEUikOCf086BosjRW7GugUJqj/FGY32rAaMkrWWXOnwvin2TsZjkdqHFa138zSF2JJriN8Z7xkTmeS9xdguVrh9ZdfxItf+SJ2772E4egegAHggn4YEDOBkJBDAfEEkQDOGTlINLNEeEpnUpLSiQSo4UoMfIkHL4fBRICm0SbxS0hpvyZSLVAAhYw03MfuW9/AJt/F6y98AcNiT7O7iOMfJSL3jDwUDCVj2omBsCCixIhCBbnPICoCigqMMmR0GxPMZgEnsUj4aQwY7LrAYAU5DcsBKURMug6LOUt5vNBh1k1djkxmm6DVSjJ09HNESLm6GHvJFqMlHYvy79Cf4IUv/UscpwkuPv4kPvEDP4yNboKv/9rncLS/h+1LO7h76wauz2boNiY42buJ3dt3sTo5wMsXLyAz4+LVRzDZ3MHm9gU8uHcXd26+hRgneOrDH0COCScnGR0F3H3rNRzs3sWwPEYXgJN7YvwvBOzdCUhDRuoHLE7u4UF8BRMFkQ67wO4tKVXHRCDN8nRw93Xs33kDm9uXsb3zEJYrATZISaWIIRU8/OhjODk5xJ2bb2BYrRRgERFBSP2A45MTpNUxqKykDBlBAWDCQ1kdRGIUFv7IRf6OXUAMBHACxSIOIFvDmhErc0LJBSlnSJadhJQHAaIpAImJJGMPFXAqAmIDQcCq9pyCQlF4ftKhDAPKIM8Uls/uREhZwGkUo5Rby3Wx1gjKGjHMDOSUkIpk2UEuWKzmsOhagMR5gIKUEsrQY+hXIksCkFJGGTJClGwDAv5rsg+5vGKJoI/ifGKGAywFiFsjXT3rUhBnSVFjNSwi9v/P3r8FW5ZdV2LYmHOtvc85N29mZWZVZVUBBFEACYIASbW7KYoSHWq13LYUkmiHH+FQ2P5whCNsf+jHEf7Vh38ccjj007bsH0fblizJssLhbr3aUlDdbHWzzW4+mw+wCeJZKBTqme+8956z91pz+mPOudY6N7PAwoOoAvouBLLuPXefvddej7nmY8wx/e+RDRpgG8u2HgI02mUePEATHQogsIpCULG/2BsjGmzMI3NVxHSHdj848xJxCzTXUh2kREg5tWvrWlwvIMybGTwxVODBG0Xy9VirnXlpTtbTKpg3E6Y5o4q29xOx9WHMkAtyMkCzVG2xgwai9fNAXPBaGTbAcTZ2H1khYqX3SE3eVQ9ocE7GBseENDj9qwqsvikDYudGniYQKspaDZxFNhZMXjLTv8+UMORiA8XktwVO7PxmGEgL3IMYdS1eZm8AugUAq50//fyLc4aGoMoIECJ0Z0pnJ0AD07WgRwSsyL6XcoCUjCkppYQAH1iAycvhenYTux4TbKGx7gJ0RTB5PmW0/VtrhXI814AGxGiZ9R/JptL1SrcDxuCmtsXZvoCGy6BgFoLbFBHoCh9NALbjU/9JO5j+OCZkeu1oTxyHqob5ja9R+/IQUIq+9M+tu+QmiDb9KOTRcTe7vBmJgNooUfzBWLiMjbR/Xds6jX3ddfv+Gjo+sI1TH0HCyK4XjKhwHR1xz0stgsbjWx0HeP3vrW906butR10uwRMtYizaPMT49vVhIA1p6yMSRDqyqfcpxvRZ9oQ9o9Ukbd/qfT0Gp4Vu223ZYd4o1mNfB88GTKJ9r4F1hvJ2NrT+DhTzc3RQgvz59roC5YLz8/t48K7JT3abILH9XquVVNW6YD1ctPkjoUawcRRgb+w7w3w+fVy//7tRH5PLf9NLv/fPLrNdtKXZ1sO4J3X45enyWsN18c+gAwCE5fwMX/g7/yl+/+/8f/Hk/nvYnz+ElL2tQVFULSBJiOQf28+mH9VaoBTlq21+jLUCbUGE/DIQaWeRJS9LSskuDjsdCLArvHTVgiQL9vvHOHv8NiCLyZvYP+rnhOtvKaXG2qbqrNbF9jCzJ1qolXqbN9kA5GKsohI2sLPZihSUsoIKo6wHICespbrNbUweRGp+AB/fWmtb0wpjvtxst6YjaTXWZSge3n0bd+8/xje/+kc4vXkbu+0J1v0eD+7dbbqflAKeEh7d3QCiWA97fOP3XWKkhDRtQWwsS08ePUKtBZvNFnmTsawrcpqxLhdY9hdmX6tAC/UF2XRG63yVCwfrm9yrFxftrIbrdKqEN88f4e1vfAmcZjDnrgf6GKSUkXI2MP+6+J6JJDMHn6ixoTY56JtJRzkHuI44tf1va0sRpXk32xk/9mMf9+UmELGEFFHxBBTTM0wGOouqT1AAS0zP0PaeJrMVRVYvE5WQyFl2avSDG7tOAPVs3Q4M6TLKDx3OYIVUS/bATqC/KNCfVOgNgUxdFydnCTN9tnpZOm2ADRVj0knNx4Umo0fdAmT7YiydGbIZGO2JLmeOErLijBlkS8iodva2u45nS7viaTHpA1NLdRvH5cHlwPIwL90/aHqzraVjZnqbDmn6BiO1NQ04WMlLYidnYO5+L3tGnlI/s70b4r7bAIuPLN4xfsPwAJ4Ucsy2CJeF4eMjS0wYzkj7zN6Nm59G+/iGzxVofhhjTR+ZTW0dNpkPt1EHezDWVdfTQvcgP3Kp2ef9/H7GYUdo+7p/ForCJeDR0SXdlx4gwaPqiOgyg5mb39b8TjysKvJhsX3fRkoGPUy9j3Fgez84dZCSza/gyD4KNqqrdtWu2lW7at+2Pbn/Ln7l//y/wW/+tb/6FNPiR6W9/PLLePfdd7/vbDjBCP5n3W7fvv2UH+G9d97Co0eP8LaXOPsg7Su/+at/Ft37jlpZDijLAecP7+L1P/xN/PZ/8u8cG8vAsV7xZ9yuX7+OX/zFXzzW136Y2osA/lcAfhnAjwO4gdENdNWu2lX7IWkfGKRkderNuDW/gBmPAgGDUN2J2kEKpZVjsrQr7Y7D5jfmBmIKkETc2hwNBlzqABy4PW4GqlcWa0aVZQCHc97uWZuj0xxQUXLMYsnGjMLNAR8GXWRh+WekEFlBykhuyIpUJ0ZyYIs/z8aKrERSG6fstmAFsTlQRCyDxUI1wYTUWSJ68LRbtG1cmmMyssYmCBgqqwe+DSJmpUbE8qJJIVIQABZ7iIF5rCxQOPWjDIs5ZBpgihoXj4+/Ybgic6pWHUr69QxsWzMO0iECkjsrtK+VGu9iXguMjg+FuiPU4W3hBaIoW8MeKOxro60jOBtDW8Mxjh6OiOAidRDS8ZqPnxyg0jxf6o4Tp0KuAiH1cbPM0pwmnJ5usN8/hmoFpWMmL86MvJmtPKJWpHTAV/74N/DgrddAmXB6ukNksE4TGdvNYcGcFcuTjJfkz3uwNii+ceSZbyEy7QAjcyy5i/A4eoKjyAu6QymCFzEG9hWfG4r152vFtYDYQ22uYOuEiXx6ff9qH2NzFAGkXp4xgnGtP+EAMmdeWSzA8uU//Af4yh//PpbHdyFn70HqhTHR1wLi4k5ENvp/sv2hmnBYjNEmZbZSa7WAvXRZSoTksqlnHvp6San9TkzIeQOihFIXlLq600hQFoD5gDe/+jXQ4R7253cxTYKyrChrAMQKtAhqrcbWw4JajN2HyQIDUgkggUjBdrfB9voNTIlxcjKjroyL/Yr9QTBNDlCBlZwqYgCAPE3IOWOzO8GhHHB+cUBdDgZ2SDeRJjbZLuqy0PeVElQIwgJlgVJBSkCCYt3fx2G/4O7X38Vvv/MlMGccLg6QWvH48Ruo+3OUJ4o1ARcP3oIWwWHZ49GDb0JV8a03voycdwYyUKCs51ARPLn/GpQV6ypgyijLBcp6AakLKgFcGEQ2NtXXIRMgzuAiYGieQFqNaYiSLSqtAGeQCN598xE0bUCYwGoBBUrUZO0bX5tNppelAQcUjmlVoGpBctlTg0VFxCn11R3IZNnMHnDipMYQA0BLtfUrBQYqY8+AtzmusuLRkzPgyRmunW6hWpAJmBkQZgDcyoWQCjRZoKGKWlCiipUeQ0FiQCiDoSBKoOQOW0YLbLDHw9bVy42xBZasFJxl2MeZIgBqXXFYV7CKMUjVAilrYwUKZ+s0zyBUSDlgWQ6oa4EqbN1x8rKBBcxTO9Pif0CAjYFqHud2rlR3yqeUUFFtf2uckiGBogyDtjMsHLigEcBgLcquoH2/e3T7pyHLXGB5ecVCggBPMqcWpQjQUQveK7CuBcimP2itxnCSaGA04MYwpVCUZQVrQs4TmAhFBVUKppxxcv2ay84oh1CsDEqtxuwQBzRgICD1DOio2Ql7bq21AapABqtmeODCS7sVL7sLP2MSk4twZ44iL/nB7ABND8AFPRbgZckMcFWrYl1WJE5IbLJZRFspvSrV2RNtvabJAGxSnfEyKurAxqtBwUNWExkAqFJnCwinvE9+AHjamA99rFEaJJxLUU6XLNM8SqqpKtZ1hVZBJDfHOHJKmOa5MWwQ2NitPLPZ9NEOwo8ASCkFohXZmZag6N+DPa8HNSxgYSAwsSz4thpjXX9Um4NF6Dj0EePXpqz94eiqpz5T39s9tuMSoQXGuh7TFCLCkX5oILCuK8U9Lvs1gsUHqg070vRiB7EM4c+jPjU9DHAmGI3RaPcOMM74ytpv99Q4jAGqdlnozw54VHp6LdhrdB2th/xcHzzS42P8hqcPgM8e2OwQpRFMFLZL/y6NDx1mAeg1/dBk3Kg7d/sHrkeO7EiehDJc18ci9v8wbjGwhKEMWh+QcXz6aiE8YzSPArkN5DPc7oO2rlObzksg5Dxh3u6wP+yxlgXaFpm9X5oMBCmqqGsFUcW9d7+JJ/ffA2fGZjO3m1t1XQOb5sRAmfHwzW9ASgGl+fh8VByVd45zNv7W+zwo8ujiNgZkxD1QP5rGx7zvWDyz0aUxHm9EfVrbx/SMqfBzsJYV9771Ov7Rr/41fOn3fx0P77+LuhygqzEV2RHuSUEkdhbBSt7GeFSVlqQhFRA6DswfAdiaDeTdEJcxIiDOINi5Zewm7LaAIIuiLise3r+PWg4Gxq612c/umAAApJxdDzIb2Y47Y2M1XUCRZkZKGfM04ZWXX8Zrr73hCTF98GstXRsitPPdmDrZyu+iQorJAIufVwQwu+0UTyy5du3UwFjOxsumwENlD1Xgyb0LPEEA87wKdPUEiYNA6sETWAIk48H0/YWPb8j9iv35HrQ3ts297xWttekEKp40R4BWXzoOioCEHIGzlGgrkxB+KZvravrKuloJaQoWT6CBkVwmqnR96EjHjES7WO8SZ5PfYziHyNdh8+MEGN515DxNXYBAAVjCw1oKpnlCJJ4xwf1PIVNDjquxarpWNapPAY5oct/fM0pGdV9R7xfF+eib1Zhb+kaMRCqBQv9Fgf60laa0pCw0oARrgLmLlTIP3VoIKRGUuX1n3N/Nz9OXtIPnwt8T55PvT3oaaBP3Cd1+UIaP/qPjF46veLqFny/0Cx+38JmEjyz6PwLVgPAhioNH4nPbT+r35+Tl2ByMpCKoqqanc4yn3SPl3Avaaqxxu3cNZiLXbziYptt56a/jemwbJwpdxP6JBBbxJNQw1tiFORHsfeK9AU/+GsG9o8DX9q6ROHc8+ujjhH6I2VRz63/TjfzW4u97pDccT95wuXrfh3PvaD/1+RgcaO2ZiVMrSR7z0cplD+/CXkacfL5HqkDtI/HUmRzJDTGO/uZNhw3bpy1lGnSbNr/UxviqXbWrdtW+XXvtH/49lOWAPG8+7K78wJuK4O2v/BH+X//6/xRvf/kLTVf6qLV5nnHnzh2cnJzg3r1739f7fvazn8Uf/MEffN/u+X7tzp073e7/UWwf4nmbUsL1699Z2bmPTMsA/i0A/0N8GwX8ql21q/bD0L6Dcm/JZSbBHP1h1ANmIolnIsOyDZEBL0NhBm+F5TkxDAijgFMOhzXbgBXNscDIHgwycS0AJRjzjhlzUZ4KjZXCS3CwMU6IeMa9UMsEZvcUsjsqhO2d1DMfRY+NVALAja3IX50ioMnNHySIDPjIhvTSOU1RsS+LepDJS7KpFlDQ8DanujTHqtn4brg3D2Jk+8Z/zWEnni3Vsj2VmwMB8HdrYCLrj3piTQQGe7AhnGf2DBU4U4GHRShYOYAocxdZVghnJRM4HHawIKUCDlBg8w6SAMQeuCBYqSFzATRKaoVlqrr74umMJnOMNsPa6e1tFaEFxNQzC8NNSM48EE7R5lTD4ARHkGqRO189uzQcTaEoeXlDBuFkN+Pl2zdx7/GEs/25lVVYGVMG8pywPdkgpQxOCYfDilIZpbyFd+/dxTxNuLiYoRXYnx0wTcC0Ndr8iWbQeh2sBYAFMpljnbiDjR3w01ahE8mTOfUsUTz5fvC9J7bS2WncY+GJB7wjeG3OZu17X8P9c1xaCb5mY01DAXWylJYhGEt08PXFWApRm7fRcVfWikfvvYmvffmLePGF5/G1f/QbePMbX0FZnkDWC0A9Q9xZQNQdoEBCyuaUDrYbau9je1QjsOUeYqNED0dnDzqIU8uzFtA0GcuSiPFyidhYr4rDcsC3LoD3Hn7LQI7V2MyqVKPGZ4Lm5Ew+JoodagMmwjQl7GuFrGtj4DisBYQtmCdcLI9xfnGO9VC8r8bew2SlIvImg5UcUDlByx5SKqp5haFFkaSAZYGWA0AW8IcQFAaAY5pMJgohStkpBMwrUFfsn5z79NrYJlXwJCi1YAKhLo9RSsF6WIyOnizwJunQxlS8jFmVCwTg0RipAIjtayNfM495IUKtVu6qMeKIQlnAaveyZVgAz7BlLb0koa6AFijEgEZiAEIRRVkduKQ9y9JKwjnYTypWl4+JCMWDFCyRma6+J2w82AMKTBmkCUUFYGMsIBBQK9TZZ9idwvOcsJk2yHNCOSyo/ozEzq41lAIgGOiBkrFoBXsGgaEElLKH1Awp4g5p33NS3Ulp1+ZkG5I8wz5nNqASFCkEDBMyJgtyrisOqwOUivXRsjyBPE3G/rRW7Pd7Ozu9nKsFuTxzs0iTAVYrG16aQP0z8vkz2arhPPc9rL5XAnwZUkTF2QzjABiEzeiE7ZKqM0SNNq/2m9q1zrrIiY0JyAMCxjwgWA8HBJBSXY+IPhhzIcDSs2V5YkybyYMAwDRNqEWwltJYinSp9nMilCpgsVxxK3VmY8KcQRMjTQxWRvJggRYFTwnJs4BBNv7BMGRMGs765HIO4QyHnytEVtpMjT2ATAVzJjBGFBJt5c2cyUpBHux0HWupqF4GFWohMIlgi+tHCQ4MVQdqIqFV63W9DgCU2djwHBgXQQXOyYHr6qBF1yGGoIACxiblzHgRHCKfUygAZ4CIYEEEM3LO4Dk7ODkCdwZyjRrwIIAzYbPLyFN2oFFyXcICpFJMB1GhxuIWzIcW9AvdEeBswC8RA5RFWYcANRrbhSecW/04QGHlBj/SICUe9lrfZ6F+BRumxVu5/4U8qKhxUvtnruM+K7DUHYV2Z1IHQWqHNarr7h528qu1BYE8+tSCR0AAKTsrRAfWo82DxXdCX6J4ha5rtucN2e6htTWldGTEak/v4s2BLIigMNwW6iPgfe9MntRu70xJZLqQRtcjGNpstP7eEbRq74pxrI+mc/gbtX6EftV0MIRF0RNK2ndiHnkYx/blDpwPhqk+Zn28jsFK2j5rAAW9NP7xnLbGul7aXq91scHL2hvGLcZhaHay9m7G8+J3HcbvWA8FUlJsdhlp3qHqBlA7I1JmL9dlZX2nOUOhKMUY7FSsVGbFYoydi5X83WwzKBGqMCBAnieMiQiE3r/RV9ren/q7xgbRcVz6DLb909fc0Up4v5j/8X3oeEzjPuPFFHN96Tu9m64rhgwAsD9/gi/+/V/B7/7K/webRDicPcDh/LGNm1QALqvdmPBtYmff+Gw/o+wMpHZmxZNDVhmAV/rAxHUET1hRKBmAPDlTYK12nlUYSL4CWA4HWFlus6HJz2qkBLT3PJ4oA9ZWaJFmvJVS8bFXPo6XXnoFX3/tDaz1ACmCyACLclKmB0dCkAX9rbRSNc9DTcbgpJaQVNYVSsV74ICeQa9TiT3leoAz8GjtTNOxUAL7nQQGaAIcCdYZTDGAwmI/CwqogVsicSlWqvaxH0sIqwOs22JzUFoAyXxRGcC+LwB2HZR5ADuqgWpC77J15++PvkZGkCWT9aUx8hKazhugEb/SnqrV9P8mT/2ePoamtzDmPANEOIjJDdPXyYHhvrccfB7ypwH8Y39XG1WC6emtdKEG6kjbfguGF0A7CxIFYw03HwCr+73uKMpnHEDmvr2YT04+Y7VCitn1KXUG8p5IZUmI56dnOME1PwZ7n9rYNZnQwS/BAhXtSM75udrPgrjHJSF/WfgBR3PbWz8piGw9sOuA2vryDLAMFL1Ea/ha1X2s7rNLllgSSQ8AmY0Z7Eca55rPL0yg1dKBcrH/YhvywMxkajS3MTdddFgrPgyjfCe3H5tPVFOz5aGeGEHuX2haRteLYpzG8yXYakeDLfy2PTkEbQ2RM6e3/mmAbvp1fR2ExLYH09H1x/OnQEvOjDGL9cLO1h39bIlu/n4cYLHQycjAeLWIJ+BY/ziRJ5UxNNZsU6H6WjHZGvLaDyoKIBT5mNtnrRz2AHIzhmBP8nAFoI3lM8rdXbWrdtWu2uW2uXbjGWfej37bnz3C7/zH/w/86l/9N/Dk3jsfdne+bUsp4fT0FD/2Yz+Gb37zm9+3+/7sz/4sPv/5z+NLX/oS9vs/vRTaVfvhbVFp4wfBmvUdtZ+BMSh9jyJIWXH343exOfvHD2x51a7aR6V9B0xKkRWlzZlKxM2R280ldwOFceP058JmgCmJ/b85ingw5AO00w17Y7NggB0oIORgIHOYCIIieHBKEjXwht3Dg83uoWiGLGCBCUuLRDAw9eBFBAciuGmmtwX8htJsQ5aOijS2JrgzLkBHZgwKIrAHuFMMEXDqY9FASeRlKILtYHh3VWdI8szFxsYEIABCo+MqnHPd9e5mrkbwsKIZ2jGn4ZEJx1fzMg/jhwCCDc7X+L4Uo7YPJyLCMRfOnuiv9pJZaqCLcI4EkwHEg4M+xy2Y0pw2gzcqSBAiMBOldjhKZMQ6jcw5d8ogjH20wEHLDvdhawQL3ceBKLNikUVjHNFZcOfHXsDZ+QHbjeLkdMK0ySBhnD8+4MnjJ3j5E7eRJuCwKJa14LA3JolaCh7efYx9OQDTjBs3nwMooxwYy4Nia8wDM1UV7OAhQmTHmbO1QdoSeQ4lGlBMw9HlfhL7rgP8fP8yBctWH9+n7Y/ISrSfeQwoxVpWdZYghjjrVoxh3C8C3SFgGmgu9qwQHj96F7/19/8zvP3aV3Dr5i2cPXoPdT2DlD3Y2ax6liUjSjimzJYVrBYoqFIgqsjMyDmhVgNOqsukAMOlREhIR+8YTCEiYg7AYus8JRv7/WJluDIR0lxwcVCUdbE16fT8VQWJsu15CJZl39gyGvU4MzYbQgWBKWHKCYdlhaSEUguW9WBlkqiXTJrnjZdIskB/lCJJeQOtj1DLgqKCKc2oahngh+WAw+ECFQcQGIkyUgLWsmLOWwToUsTKd+0PFzgsBijKOaEBTHyemAkJgAXlrcxDzkCBBSHAACcbzFoKyCU5tII5m6O/Fo+xKxTGwmbgMIoYTAsetP0qCl1XcyhW+05OyQANogbOYwLEwDkpkQMAnCXQA/8qxdh+Qu47e49NdzAGsTsifS2oIs4LEXHWGEWFIHvZgnXZo9YVlo3vIFs252oRYANjYNntdtjNW6xiNbR7+bcOyCEFKrmscjaVWoYsVl/BU86YN4yLumBdVigr0pTAbAdDFXNmT9MEhbbyWiZXpckJTox5ysbGUy1AVNcV0A4WAYyBiWxgoKqYUrAEatuXBkSCyy4DXzCSj7O2a9Ec7f3MgK9nOJ19d5xSE8qitTnGO4oWGOJ1R0Gr3vxcGpyxAYIDDMA1zbOVOmNjd6wOWEycBm0hzh2bzwiUBFNOnCPkc7DZzB6MMWeyQLwEnoEP0pQBNn2DkQzkUgeWE4pM2647pJRcTyKQCFLIvWLBqdXLrJmcVXBmpGlyzDN5gMzePasFwK3kgelL00QeSHDArz+3Sm1jG45vFUCL6RjswMIoZ9Fkv8u8lANFZxGRy35xAozNkvlonsRoMpvOIxF5G77ftB62MmtR8qZI6WMvlmlOSTGnqYHFOGfknNEAI65X5DwjpYxlObjMAbYnM7bbGcQZa5GW+R/6ikJdP6XGxpiSjXFKCTn72hJBWQXQxR4ZjGbVQLhRxi85yNGwtrVnvn+EQUrq8zvG++CMnzF1ffK073v/3WSgCUIZJrl/r9sTlx7cCpiFUhfaPprojKCgtbAvmlbsc9llR+gNIxNPyCNcese4Kbpeg2452TeH94m7h57UDB2MHbB7RGDKVtjxBUd9p7Y1Wn9jfMlLXcffhjU7BsLHex691JFMjvGL9+83aLHWo/nSPhZEMHvk0tg1nUBhGm2wTUTiQWcuCHvPWCmAhtBF1z2f1X94X9sjI1qrQw+pB8epTfXxumlPasF0dN0Fw1ReXqLNNvPnuI1FmbCZZ5yd7bHdbrA9maxE66rYny9Yy4Lt9Q0oKbICtTJqAaL06WG/9PLYaQKnBClWifPa7TsGxh7OyDbX45rzaYw1MJpcbYH4B0fLVfvP46XavjwM3DAmbWz1+JL2sw7jO/yVqBHSxCZCZ5rtCT+/+5//B/it//I/xMWj+85EaAB2BLtNMETH9+JFWtA3wD99z1h6TweMxqO7p8Svc3s3APHxV1U4cNh+jng+UcbuZIf0cOPgMtOXFNr1BUOrtrV3lJAD13nBYM5m94jguZvXQdyZljmFHIl3C33Gk5UUvfy1Gtg5Obun+O89GcjPbI6SxrUBdYjMv1OKlZIDOSCC6WhPtNH3ybTS8JYMVB2olNh0VGNd6jKa25Y3sDU1uRvzoc2eN1B87dIo1pYv1up6fciC5ldSQC7NbZtrVUAUwv2sG8+YxmQy7Hki54Bugjb8VQMwiIBaFgTwOUAipv5Qeze7HyPlDBGzD69dO8XDJ49NNxvqSgXjJlHoEtrG0haDtnVktrbLXQJGwJY9c5hACUC6tncOFi3TBQXymYrKtYNXfBxE1XRsP86OnzPYFaC2ds5vXGD36KTtqaZ3DX7Glvg4LLTLx0HIFxoP26PjfRRc2m5wBEoefj++s33GbHMT1zW7J86c0AC0z+X4PqJdrJlMg9nX4fwk7wcPYGq28oyqybodbFbthePcH9ak3ahtDEUkGnaFoMlGwBNRkpew9P0egp0AK3F+KSH08niRgfk6WG6wAf13ivJn2vWVPsqRsDMAnuIQJrQk1Tavl+ZK1ZIyjs+Z4xZ2T/NBczyvT0wcnZw6YxL82lHbo7jfnECFIbW4XWg+KnYbwfKLLveF3J7qzG3xrJbIhfAjh//dhNdY3jHeVYNRDpGMGQNx1a7aVbtq799e/szPIU3zh92NH2iTWvDX/7f/Gv7gV/7fPWHtH7M2TRNeffVVTNPU9Y+r9iPbTk9PcefOHbz++usfdleO238bwO57v42y4u6P3cXHvvix7/1mV+2qXbXvqn1gkJI5ZNzwagZs2DHuRHXDmsjolI2C15gT1JkPzEYcSrAAaNS7LRgg7hsyxiYlN0jNTdON2lbKKr7rRqE7IVoZF1UESAagFrtpjm2SwRNoAazIrIr3U7WAR8sqjnJUqgBqC1YTrL8WNDOHAIEB6Q4y9vFTteC/PcfGh7z8SHOmMcFKegVrQhj6Bi4yOzQCuQHycjrzYqORqLllbXxodKYFtfAxp7/dwt/VJrAFNqAja4jPZerjZFPs3rtGk+OMGIjMHXcGeoahOTgFpOF4NZBFrBMDQtSAernDZHQS9fkIoIu644jDqRMOrQgYIhwDQHNA+1iZTR7v3h2QaE6y7g2JALqVyGEr7ZQZvJvw8OFDvPHa27h5+xpe+eSLOGjGo3cf49HdC+SN4uT8AJoscCBqa1MqIKui7gvkIHi0P8f2ZIfT5ydQJfCU3REZTg4viRe7iag5XruTLsZgcL7Fuzjld3uXOgDlfPuYzjmA+wan3EgDHYwQoyPt+G/S+mCgNWnU/xriJfxeQ5a61Ionj+7iT/7gt/DaF7+A9cldHB69jWVdoHUxCnIJRy03lg6QelDX/s4pGTApgtzUnfqcR1Ci/bd6gJnZymnYcIkDmsxRx8woVbEuxbKewUiccPvWi/jJn/4U3r23xze/+Q0s5w/csQYrx1Yqcs4INgzRaiWemEHJylxOOSNtN2De4uRkh7U8gpCYc7raXsnZHZ0podSKw2EFZ8K0zVARFFlRa4G4z1HEs2+ZcTiszuxk6w/BGKTombxizBWQinVdUUtBXVcvcVZ9J3QwSdDJd3lsTAAAUEgBMhBJzgkpZ8/ylLadWRUAo1YLCkzESKmDpEQ8y9wEHDj1zFGiKJsFe68EiLKB0ETcMW5rrxYDzIRsBTzw5Gx3qhWLOwqN7WQEkcb1FthJ/rcIXMW6CUckM2E57L3cXzEQIzx4Qx2sEGuVWmgGDTRYHagUTkjAzlWm5J91MGuaszEgeYk0Yzgythl2UEOtpWUkW/kXccaqcKBbsKJKgVZjurNM+orD4QJSCzD0x8aFsa4GnOMWVOjAO5E4cxnzZupyQDpwOeQpgXx+uvP4ONM1DvIAKft5BRw5lOM7sSY7sLWDh94v82sE947e5FqLyxRFDw6NMs/XDBTiZ3LrY7sWqKsxIBKTswjYek7OYCCi4EyNwVCKrbGckoFTPdgTeyCc+AFyNMCRtoAtMYESgwody20Hqk7z3L5na9kz1yXYe2KfiTnPydjENGq/go5KqKmzQLSgEPpYt9Js/rwoJ2LBCTUgqRhwLhgq1EHdrdTbCDZTK8HHrm+1OfY1Qowmb0WqBQ0SYZ5mK9mCehRcmXJqa8bY6HoANJwwxIS8mcCJsa5LCwoLgMzke7C/s7EhsalLhK4rKrzEm6AUk1XipfhClsABbEAwM9h7Waw6QF/JmM5q6SVdP4JN20KNT3rAsV/TPx/3OgiI6JyOc4zQLqlf354F143p6HvB8nEc3Toet0HjQciXHkjj9wneDMHnjtJpt6ejO49BwejrM6BKIT9iKLRf20A1LQho3wn9OkASppc9zcx0/JbUnjraDVYeqc+ZHo3xMYvAkX4Mkw3t3tq/Odok/V39NYa10Xqk6KxGqkffQYig1ic0LdmatOc3pbi9p+miFGNC/e1DtsR18Z7PCmx23XHQh1oXtZWkOX7byy3mjgx8wQbHEijOHz3Gk8cXOGwyilwD5wn7swPWfcW8TVjWajWyYk24vDIdDlABlv2KPE3Ynhj4ngJ4cblfscSJ2vnhKvUzewwd5lL7eRj3HgFHbdUdzXP/7PLPdGmsx/NaQce9Vw/Ihu04dLJVyRHFn/zW38bv/92/gSf37wN1AUk1vUx6eec2t23/mH2vg78AMJDyKGditTOT25SRIBIAu0ECHKkWlpRk7ETVic4MUHuy2+GF559DVcJrr72GtRh41cxzRUW1slguckQDvEQGGvf+UM4gZKSU8dxzpzg5uYbmbwkdnAhgQqnF7EEmJEowYHZBLaWVQwN3JpE2BkwtwK9iyRCGIXEgf63OdN0ZVQCzgRCsvq5TB9i6rySff+6BeI3kIg5dfDhP7FIU9wElL6/UkmekB5XCjgd8Bw/rjDk1mzjsPxvUPpuh38ZsxrqJhWcALvX78dE6bnLF+6xBc+RNgh1YqWUx1yJdv4o+UdfFFaY/tL0Z/xA1vSPOhT4GYn472Fpvur37fMIG4Wyg+Xhe+NtC5vR7UV8TiKHQ/moMyO0Kdd/PqJeyyx4NZqVxnPrI+dz3bKvRlxMMXk3xjjNtlDN4RmtbP4TQOEaX5Fab5/GaZ0v3UTsRUdAA6u/96zfuMrCfPR0g29dx3KPWnuREfh4Hw87lPqnaujJWXm2EhEcAq9h4vngMIGgvYUlJQCSbHslLFbAauGb0uTVdgw0wSe0Tt93jGmcGbfIr1n9tqMIjWWdnbQcNtQ1Kg7Rt+yDk8nD+D2fLZZ+y3eZ4/GJf2Dx2/zI3lq9+eDEFiKhf34Cf2gGJvoPAiUCUm3ysPhbkTMSRqNn9mW4farVEPH+e2S7uD47SkO074VsHxg5orEsfR+YAio3snFftql21q3bVVBW/95//h/jCr/5HP3QApRdeeOHIX/e9tE9+8pN48cUXsSzL96FnV+2HoX3kGNMSgM/jsjvjql21q/ZD2r4jJqUwoeyDAHXIkeGVmEEqnu3GAGqv8c5ugrkTCuj2bxivR0xK6rTjIAeNGPOElVBjVDeuzClqh6yVsBrYlaAOsAgD1Yxxc2qEIQ57j3AOXPItxLvrUTC0Z9LZzx38QmKyUlTBYmPEMNYIC8C5c0gJTuALIqfBDts6DGIvQ4XBaCaixmDVAEmNUcoACFZKLVyjzlDhToZwsrEHa45Rz+rsTz3rR9WplcPhTKNS41lYUocDK+5H3fhv3iW7hd07AtNwBnxuQSMrxVQ7m9KwUiwo3OegA2gcbBCU4oNTR6Ct9CAQWY0W9O9la3pmFXnvY9wbC1RbMGgOyggCkTKmlDBNGRfrBR4/foy333gH50/OUeqCgozttRM8eXCO/ZOCW5sNalFoNSAAg1BXA9cpFPNmwnpYIYeC/cUB8+MZy4FA63ZwwAiOAiKjs0HRgi0Iunr0AKsl+8bv/lx1p1BzXg5ZYuGk8jHlxrj0dBAinN5tT4RDZQja2TByo8gfM/Ha2DZne8Uf/8E/wBd+429j//AhmApKUWjdG1tXc+Bqo0mPeZ6yOdeDXaNWy/y1vpvMYhWUsmKe52NntFimrapiXddhzZlDv9aKnM3Rtq4LRKy0laAgs+J0x3g4J7AqtFrpDdLkewwWVHcATi3VAySMxAQIoQphnncg2oJoxm77HKpWiFJj+7G9aKCdw+EAXWHsT4cVWgpyJhz2exRVpHkCV0LmBBXFtZNTPJpnBIDP2HEKQIKULSNCSsG6LEMWr/WtlNIchTllMFtJ0MOyb+sxsYFlKAGcgdwATBXrauxx7A5IY+HxtYLqWZYG4gEZa1NKxoJl6yr5urFlbsAO20twlhRAMW0IWRjBEhEAkHVd3NFo7F7k811VoCmAQQbQqlKRs9Ogw+WIdmYl5owObu3rkJHAnDDnjOdu3MD5o/v2rFaqwfeon0W1mtyzEg+AVhuTNCXPQHbKfP9vKc4I5s5EaY7UaiX3pglpSlBSJGKsZcVSF3C9BPKIc6yIrT2X4+IlPwCBigN9qvjZrCjFQG7TNA0O4JD9GGSDBUJztrIg1TPWqyqyj2lKCa1q1ujJtxsN8ZoACrSHoWeL+rkox67+dnY22dj1jGc574+CRxEo8PmmYnIpzkRjTyR0EFZvig7iNPCRnTPVgT1Wyk/AOfkYepkADWZBBzALQQVY1xWsQJz6SOH41hbEIthzRINdgZGgzqJk80AzsFRxdgOBrAY+S1mNKUudfc/fL3HCtOkZ37WavEw5I3spP/XSuiMgp2hBVd+vbGULQMbgFSViG1CuFqgaFTW3sQxmQwvM1VrsvaOM4gCGZKIGRow9EiXb4NeCgBIsV36+TFMyJsIAsVUFpQxVQhUHuUKQpwym6Ju2dzT2JRjgshQry1eMne0I/I0ezAvgUykmC3LKff04oDYYmNpaVdNlO4jM8MXi65BgYxfnQudR/Ai2kJPoMqPbAHHNM+TA8F1f7K7non8pLn4mE1fXV+yDHkRV/87TfbXPR7+Hi5seh4qI11E34ixAi4/SUV/Hi8c3cLkSn2qXb/EOjR1gsHOoDRjazyPUqT8g/uY63vj09lIhF6WNcetrjLs/Kd5Vm41xKYtS6ZI89es1VMHh3uMo6Hi1j0GPdPZDC2NQsoPDOotCyFEfl1htREfrIxgQggVEx38o4G9Dv7SdNq4GBQuInZfQXiovgCkNoHJpETw1AgrsTp9DylZeshbFfn/AxdkBKoplKdBHC+aNYl0qqrNSQAEtbPYYOigYAFI2nQ/Fzp11X1DLUHJp7M+wjUaVfAymtuto3L9HU9jfTJ86zhHTieH3yz+3W7Wb09Hf9Bn95MbEc2zPRScVinU54Pd+9T/Cg3feAEmBkqBUOwMRtgLo6CHkm5G94y3o6wHkPngG8JUoW+o2LBFaMobZI7bm7JymNiCn16/j0YN7fn9bV1L9fJSKzTwhJ0Zpuk73S6jocO5JnzQfB6l2ThESTk9v4NVXPwXi1GwcggfT4Sy0oVMoTH8AWhk6EAzwLMDp9VNMOWOaDORsYCzTCVo52UEn09hXYbP7/W0CwwbQplNXDXAPefkiRR8yG3txsFH1JLgAhIWOYMNg8stT3WxeAhwNaqWd1Bchez9Chwi23zSF1NTGCgkQVNj1FGlscaYf9nUfuvGR3AQhfGoNdECdKa6td/+HYGVrI3kMz5BtsemOgb+uKzBAyl66sO0sT8Cxe3WAtkJhSTFMDE7ZExo8QaoG+9TY//ATWIcJvR8d0ObAo1mAV71/zvRyDBDp/T8GdR2DPmKLx7MbUMcTo749aDvOtadP5wZxifm6fJle+u+3aTTMCxC+TD2SoW1vXLphl2l+/VDaK3RKs0dg9h535jNAB2q5eK+eTGOJSzSA/sazLuYWIDJ/SPiAQr5QgpWW99J/CnWgi8nUJk2pP5tSPE9dlxWAB7YyjjPZW5NrnSk1gD+WQOq2sYMtpYZt29dJS+RAyBj0czxkyTA3AnT/NTCsaeryPP7Gfa8ayKgzK9seJb9Xl0vd9+r6RMieGLDYB00uSe+/j8HR95o04X7ead9/R0AymM8DPI7PcN77uDSbji7pdVftql21H4p285VPgvMEKeuH3ZUfubbuz/Fr/95fQTl8tMqb5Zzx4osv4s0333zfa27evOks3t+br+jll1/GL/3SL31fGJReeukl7HbfByqcq/aPX7sJ4C99yH24alftqn3f2gcGKSFKgrkjx/7xTHv/1YxaL/rjAeHIsDWjcQVRaqWo7HMF1EA8CssYCYMpGEbCmWWGnLPOiKI5g3HsJDWnS233CAcKmkOd0Omo3YGsPctWIO6ckksGXzj9gkq5e56Clan7+N0JFl6H5l/vRiIRuwkezm31kjf2HfJnGFsGt94GXToDw3iFo6v/Hk4jgWUxmpPBwEvhfOtOjGC46F6McC6kKPnlzg7x73VHUgRKYlgC1BPsEcPkxEwrECVxmsNFA2xBw/27YyACNaNzoblTtEIRJZqibIh9eXBfdeegKpidxcIdCAZgQxuXPg4SnbRHylCuzB0Y1N7HWFykKM4eXGB5XLHNz6GWA87urbg2ETa8w7UXrgH5CfZnCxJvcTicW6mWKlbWx53bu+0GTEA5rHh89wxlJezSycB4ws3BxQiHnYb3dgASxTwYO4kB3fz9JNyIASyIF6cjJ2Z83JzrDjbsWWdt6Q7OnLjG5yC8IIMT0jJGB6dx/OOXMgSHpeDRwweo62PkvGKVPZY9AFnMCSyCxNm+45nkxFYOAPBMZ4KV89IobUAGrkkMEutPKcWC5K0Mj8mYWsfyDx0oF9TZUV7FtpJAoLg4P8eTh49xcX7AbjujXBD2S0GBO2HJ2H6gQIVauSJkQBllVTDbc/ayInHGNDHOnlwgzRllFZSlAEk9KM2glDHPk5X0ysa0MuWMk90G05yxLwYugChSnrDdbJGn3AAT7X0rAGZ4EjhA5MGy7mBdl7WXc0iEslpJtAACqFqQXUiAaWrBrD7/fUWta+lgAlUDAzAhe+mnWovJfT8DhKRlrFhAxjLGRRLylFoZqVoN5KrQ5kxUKJblgHmesd1YreHDYTHABSUYGKeiDFmDTfaKtDIeitrWvP2/tOzmyEJszD0ixrjkJd4kgmFUfQ8lEEVwzYG+bMGfyGDkREjTZCWpGruXQVwRbDsAqASJjDgohIFkZfVUHXBE6rjVPufJ+1qpWIk8lwgMd/T7OWylTuGOYju3UjJnqzSHt19DpgeEDIqgwZQArgSQrV3bf17aLE1oLD6DQ1cp2Ae6MzekRSMgCcERl/0p5a4+SBaIzbE9gJkxe1k8y+bt37eSdX5++rEfADZVCxBPU2rnA8gz2eP8Q7AxCJZ1bQAocrafnG0/Qs3pfVgq0pQN4OV6VJef1PZSqcXPOg+chdAncoCTre/qsrgEUJIIpVi/uc1hZOQCKtZ/EnHglTvp/fPYC7Ql5CmjrNWAuMnkQ9YMAjcwO6mgirEYhfOemVFKcUAn9Wf42cfZSkYE+Cp5ECPkEghe1sLeN+cEmtiZ2mIOFKWKyQ3yIB0p6hoslRF0YGd2MP02xlOktmCoyb8ENtSdB5V9Rvy8k1qNbU/UGBeZIVWwlMNQRlQbI1usdfuZvC/kIFtj4iIEY5pnZ0cZoT91dX+YzfXNYADqilnXjzEGhEK3puHFul42hIr8X9cxh8979rwBlQKmAz+949JRjIQqZYGsUAtDJnTFtomfS++H+Gsrw9Z1y/iE0MumuFbpz6I4bj1e1d9Sh5+GrreCZhpfRF/rNPSSVDurDPpYjAHx0K/H0T1+2vj9ru9p07ip69HadSQ3hNqUtxkaBrDZjRhmdCgf1b9o51kLvscVjhAYVFB0kBCGQY1bDW/Yp+t4UjWW39Or7eglFMf3Qtgsoe/29d0V5eFB/owbL34cnCfU6kD5RQBhnGyuoegCFMXmJCPPM6brOxQ9x+FiQeIJpVTTm9DZPtXtlmSGI5ayQJUxsQGO1cEkYdc+a35ajH3cK+M4Y9D76fj3pvYRLq2XI3Xw6Dvd9rs0D5emZmy9fBeG+R2+R8CTu++gXJxjs5mwrwezCywi3deS270G1GN/bwfHDkHv8b+cBrvB+9FKGrUXsn6F9d9KO6kiMeHOiy/gwf332jog16XWdcHZkzPsD8VLFQNrqe080mCp9QELv4Wdl9L0uFJWJCa8dOcOAoifm+AY1mwiTHN2UWbsookMaNzKwDnT5WbeYpo3XjLV7S/Q4HfAUTCcB3BBl/m+Q8R2qY1N8KrYWIgKRAnU1PM+qZyGpCiE7oam/4Q+GOWjmu4O7Sy83Jm0o5yZ6SQx30AAd44Wr5dqpUytfF3TB+H6fpPA8VlIBAfsNHkZ+puAUmpgp+b/gK1TSIU6SNrGXMGIxD64qHWtmQlUvcMO8G4MUKGzRwk27XuHlJEHlmUDSPf7IGwKpQbWS2EvKMDBPk5oYw50diZ43+ogbwnBGD4kL417bOgPvCRyG+cRXen/jSSs0KkaCGQ8D/2fkA+jSL4sa7osOj4H/7TW7Q06+oxAgw75Prf2MR8BZ63Mr8J9EV0oh5wmcpCMtNPHbFMN28z0zyri4MTU5Hyw84zyXcXLLbZ9NvjjiECsaIkpMZbDPRoIMtZDmxO0vRrPV+1gpBgyIgLl5KDJ0j4LYNMRSC7I3sexH/7eVCOmI1ux+fTIfaxdo7LPhnVi/g7XJ/0Zogo+YkyMtWyJsOEftXeUdgaodpbuvlLISoZTAPEIIUEEMYZ9fwRA1xL10BIvZNDlRr9trBVj/DPZTc6YKT5etdYme67aVbtqP3ztEz/zT2La7nB4cgVS+n63t778h3jvtT/5sLvxVNtsNvi5n/u5bwtS+n40IsKf//N/HteuXfu+3G+z2TSf4lW7at9xu8JSX7Wr9iPTPni5Nz2ANIE5twwZYqevhmWthOOBCVaqy3mCADOC2Bl4SLkZoezl1dAMdQ/4BXUzh8WczJlPwX/THTkJsCAmsRtoioCmqH83HGWktZWPA7ozJoIhzNmcNhGQc28q0cjeY1+MrDxS+5uVTAJU450cAEWdiEhJu6McCvDohBkC4xyBce2EyCpWHoQIkDjEo5SOMySoZUR16nYLDjQwkRgDSXcgiAOjqM+DWlC/aG2Bs9E4bhlbR84jLx8TVPcCQDsthrqHf3RwGTtAOFoMoFRlRcvaoQhux21kWDfdCSBa3aFcW39EwklJbqjbukjNgaOQ6g7JcMjbSm7/AzxID19TzNBwXMezoc0ZKACQE4oSIBmJE+Zpi0/95H8ND8/fwvmjB8gQXL/+Iq7degGH9S08vPc6ku5x2J/jsCxgZuzmrZd0E+SJMSEDRKhVkPPGQy3VwTkMsnp+jRYfIFQFojJgOAYvu/UViihrp0B3KAeDhmora+iVo2yEyErLjXT4zZfUfEHqDs9wABHg92cOB68CYGOT8K2uAGqLhPg1pJjnGT/3F/5J7HiPL/zOb+Hi4RNQLQ4+sR0SYBtIhTA7E5H9XDRAJZ2NAkBzmE1TRk4GkFvK2kqDWT+c2SicqmRic11KcxSV5QAiK9nDbHLn7OIxvvrVr+NJBTZ5srJLYtIrpclBNIJaCig74xAG51vOyFbJC4kECRWJrLRUIiAlwipWOoyQQYCxnUwRjMvIIFQI5s2MdA6gKhgJ07xF3m6ARFhrD8IgHHwJRu/vYxBBBZGKUlcr3aB97Yzrq5ZqVO4p3mcx5hSgz0EibLeblvGdszHxSKnQaswyUZpNqi2MtVaUtTjwwoCk0zwZ8wzZWVSr+mfsbFFAqaWV50opYZo3zakqtWJZllbaisiAPVHOQas66EftHYgak8kxW1v1c6s70I1JiXH92g7XTzfY7WYAUV5CAHWAg2YHO4jR80dQw88VC3gZsA7VnZUqQEoGKGJninNGl8zG9lJFDfCIXo5sXRYkzgZ8SeHUFQsGETWQiDHllBaMSUzIiZFTwurzPE0zir87gkmvGuBYRKAcrBQJAbQi6mAKFXjJueSlREzO5pyhUqFSGwCtBxbgjl771Vie0Fihmhz2ozSl1IIwFhQ6drZeZlCKNTr+3RhWbE2sy9r+3kHMDuT1JpcylgHLRs1TBueEdanQao7snBPAVqasrHbvYPSSWqFrNUajqYLJGLnW1fZTciYgIng5QgfZtGOXgGpByLUuAAy8GGC1eTM5IMZA2syEPLEzM8R+tfPcwELOvBXlBFwFiVK3BhQ04M5anKGGGDm7HDpUL8FILSAkItBVOkuaA936vMHvG8A/A0zCGZNEI2hiMsruIS0IlXM/O8GhV4kHaPqaKw50MuDqBHFZDfVgUOp72mS+sY7VWr10TC85CTHmByIy4CxRC4ISMRIDRUovZSgm91Lqa8/Awfb9/l0Cku1FThFA8uCrGktdY3aCnX8f1SZa4JLJ9KkITDmwvdYoI+pcVOw6oStrHDqiR4t6XDaCRdT2rrr+buKbXD8eQNWuD9qSGeVBl+UBS5EjkNSoN2pTk3uIToerpH/vkj6mCGqCSPnQFrSy5oCAOGkJDjCP70f/BtaB9pfhSUTeDRvvFjAmwnEJOG37k+CJJkh9nGhgsvM1rUTDGz9DvkYgc4h4DrBTxNC3dR7jCXX9Lt5E3Hoy3ZGoJ0KYPjvOT09UaGC4GBVqr+nvOch87yPB9mYzOsgGf3xHG1cf+yEwGZ/HtcGmZ3ZXsGGEbXV5zKJfCuJkTHiSwDmjTorn77yMi+Ux9udPsK4rps0tpHkHrQXnT87AWiC1GMaX7JwXt6PSPIGFvVoig8hY5HrGwjgO77tk23+P1/zwGoMKP8SD+33id3r6a2MH2vfiOeNnMS1RxnH4zvvFVMN2vf/GV3F6eoJ652N4+403sJ4tIK2dXZk8qOx6R5z18DVqLoCeWMHOpNMThOClPoHiQd5YoxS2NoVVbcxEwYZSpbYgs6kedlUpKx4/eoIFwDRN2DMdvVfbL77mW0mzYJnR3i9iYLedAWcrffLkDLWsjY2LoBDLBwuD2f5LFoTf7raYEkNW+HtbiWor4aYeGI97Hc9/SKWQ0431yYVKL/2tfQ59L1kQvjrQH832tpZcznf2D4bvYQQIw2RdyC6zGTroP+xNe9WQT8G23JmUFNJ0Y3ZFSLy0mTpIu5fYDAbWGIBxLfmwDudSjIOEDdF8Dop5M2OaM3a7DXYnW9B+3DEBfLIbjyCQxoI7XC21+0tsrAlOS90YNGMttDEWbYzoAVSxhB2Y3eSAKSsZz23Nq3Y9fkw2Mz3PpbyDnWqF+6mGc8uFItHwK8XeP/ZFNTBrJJf4uf/0uTKeoL7MKL7XGWti2pptTCNj6jOEzDPaYFIcnT9Vut80gMpdjvSzqD+G2poCyP1z6HPFvdyy6a+deVdqdbtWmxIRIMjQm5p/Dr0fI3hKbSu5DRuJMtY4uQyIeUD3mV62uWq9DBhzn0MkhDapYWMSCR/RJ/ZEHmOkk7aGQodIEvcJe1n7GOsAHCVqY9aY8aKfvi8tWahDk9kZCSNBjXx+4wxw0eLv7wlAjLYfY78TdT9bbWxLcSZQ08HMLx6lsakvJl87zMnZl11mD/KD+kbxa7lNb5yToYTZOziwtSVixpiNh/xVu2pX7apdNVXFl379V7BcnH3YXfmu2jRNOD09xf3797/rezAzbt682X5/6623sN9/cFapa9euYbPZ4HA4fNd9uGrfeXvuueeOfN1X7apdtav2UWsfGKRU6gFM2TIOYc4BiEBhZXsuzvfmWIAbOzmZgxUMpoRpnr18UPaa2WY8VzibAqVGCQ6B0XuTgisZZXoCwkvZMh3dYRwJYsY8AjdILYBlICUP2qi7DxX2EHIHgRigilhRpcAy9jyTMp6gQBXvtwZTixvGUGgwJLjlp1pbLjWb1Wd9id/dAI9a49YuOaobymR4F4Q/uSCCp/BSb+b8EnsXtX4Tqg8qWSC7BjuMWjYiAeolt6ByBO6x4IjAYGACQnajXJrXOMaJyIIXRjdv72A+P4EqW6/InQlqAUOFO/0knHPN3YEov4boP5mjQJ3aJ1goImvbRsEcFiLkASkHi1ldQLexn+F0CbogivHrXiGDGRAEhKRkQJNgAQC5c097oYfEmHPC9uQart18HlTexY1bN1HzGUo5x5PDghefv4Xd9euojx5AyoTEijwl5PkEqgCnGUQJOVVs5i3WtJqTJmckyshqpfgIAfzTTpHvr0aIwIivueYQ7tlWGBwvxOQAOt9LGLI+FRZQjWBg85vZvauXMCG1EFLLtPPPwuGCGKfYo+iRhOiTOUy7T0sBaFU8fvgWvvW1r+DdN9+1/pQEVgcplRVKFVUz2NlZqj0YCc48A2OimfMEkWplh9xBHswVFtwlSKlesqA7uPM0IaIKIuG4JiCCSHkCaXVmkAQVQpEVF0vBugp212fkaUZaC6ooVAsa/TeplYKTXsKN2OTLPE+YtzNUCVMCLi6e4Fq+YeU9IviQbLRrtb1vTks1oEfKUJ5BpKjLYqAFrahq+6kiY10rDoc9oCs4nFYVYDCqMrQcoHUF5QyihOIlqsKjxh6ALLVA/B0s+dz+XmpBKR48d9CCqGBZDub8owQpa2NZqSLQoo2VaC0ViRk5GwBBV2Mt2uw2VuJMasv4JiKgCGgyFhYr7cfgnLw0mkCLOQqLGpNRSmxl0qQ7rg33RH4mqctCk34c0EVRpGSyQ4VQi0BKhaA7sYkZyowCBtKMeXMNcdA14KYaVb4Bqgz4YEw9VtpuWVcHDNl3pNp4aFUIWzAoQD8KA5wY+I5hmbFW3g+koClkuPXtcFhQ1tWBQp5p731YHTSTmLEcCmSaMJGDQtnGAZqxrNWlpoCSzTErI0rBEvdATjA6Aa4n+P9TImw2M0SLO6S1gTPgckhI+9kUgYY4ZJWG0qDoQqqVQQiRLjhu7xdkoOGv2j4JIFQLFrAxBaka21oj3Wt3t59EDCykpOBkoK1SrLyZsbhRe29jKshYHHRZpELFAvIR0JinKMUoWGoF+Z7oTmbrdoCdaq0N0BXnZp4yNk71LO4oJw8WIJzeYsCskUELCqSJkcnYkKKEAdhKCqoq6sHKzhpbkK3FAEhpsdJzitrmxo4HZ/SAoGgw43XWg5Rsr8dZx66XtOz5BDASkjMViVYoORvEanu/evlETrYA2fsbGc05T/5ZbWCtnpXdgyBEQMqElKfGJqEYmKg4nuGOf7bSjLFuLLvdMtwD4LauqwUhnLmBmVvgzvQyY7cIvdBKzDmARSzIl6fk847OxvQRbLUsbR8dzh7hcPYIqopSFrz15S/gsN83JSAClVGGCCCklHHn05/D9tp13HjxFaTsZYYQgUQPnmkEptsiawGXMX5GOu5Z/yeu9wslFBoduYeih3YTC0z3fRbgGtX2JggwrA56ktksOvSg3z0ATg3U03QjjfhS+3cMvQ4ft3eiYBgaL1MAqCZXyRJLgjVVfeztHSztJN6nS2agBd5B9n1q30aLtiF0bLsfDbr4s0vxxDkRSm1XCrWNv/ZhGoe4vV+MEA9DGvYLt24FsCPmu0l/CgsPaODMFkwe3+34s8HCAI5+o6PvGW5sWOexTMfAIQHzNGNz7TqkPHI5aWd8VcUmE5grqABT2iInMlCqMxl3G8DHTqidI/HfSMZoPY7hiEHzbdPe8NIy63ZHH/J2n+Hd4s/jdhhi83Fkt75F0Di+H6umgZCoj2lnnOn9akM/rIf7b7+BP/i1v4F3Xn8ND+++i7Je9EsDnEECIHlZLBqgcdqAawayiIQAXzHDGRHMMh1AMXSFIwGk75MIvqeUkVIGBVDCwYUChTAhI+Fkt8PZI0tQoWEzawCk9ZJ0YGqJA3nKONmdYLuZcX6xR6Zs+rmqAf4x6kw+0ApAC4QSRIHNPCFxlIlwIL8qVBlVrAyw+QzQ/BaWEGOgKakFOk0gZ0I9UtF00L3VLPDQ+cjHO0Bd9m6eDAEvH+2AcmMltVkTUfc7dRuZmdzONfnQGaKkiX742Rr+hkigM5Cz6YO95HMAFHRYt10eHq39Yf/0vWEPDKASAwg2cnHF8tq1a1AQDqUiL7X5pOwssbuFzR1MlRoKgZ+DtVZIiZKGAfDRzhQZL46+dskFEzGQ1Mp7i5gdEGNdvXRf0yOb/u/nia8RhoFEup+qg246rBP92dxP29gPgZszsJp2oJdvl935Fpt1hqRqCSAxDhrvS+az8n0XekH4JvoZ1ds4t89qx3ic42uCjbUz+owTT229RLIjyO17oS7YcHxfA7eMCZLS1mvoGzFHpj8xUFyv1wDbudyhADQOfoVh/uIMiOe25EF/h0hoo5S6liNdtrfERpDZrSINmA4lL9/oCrMA4D6nZstQS8KJzWnrKpI5e1nnzmoeZyy5bBtOOBtsBICO/LAlpcbeFtdzMl+QHDG/uyxrstd8jkPlSBtDtn8alItTP2d8T4yJgNE9CZsKAYxEk3sMaiqNasiImJ/jg3ncG30uhzM31qQevxf5GuznMN533X/Yra5L+/nhO2/g4VvfBACU9YAv/K2/jnV//u1vQIzP/XO/jGu3XsArn/k5TJsdOE9XAdyrdtWu2rdtb335D/Gbf/3/9mF347tu2+0Wt27d+p5ASjdv3sTJyUn7/XA4DCDuP73duHEDJycnVyClH3C7c+fOFWPVB2i33r6F3eMdLm5cfNhduWpX7R+79oFBSuv+sTsKugNeRHFY9ihlRSkVzZXgDh1O2QK6lA2clDI22x22u61lsTcXToUQQ8CADu5SopYhFI7BYHNJbswGQ4Q58saMYiv1ZBm+0kph2aXJDLz4e0QpPLAuTptu7E3UqNLDcUsgq3cezlg33kSq15g3xxKzfR9xvzCIyTLrGnuvG9IRYFEP1Gl1Z78GdMYDLoA7zQyaE5lJTJG9xFCIZdqw99edXJalWHwkbLyVAqARDhZnmYG9S7P8o7zfkdMkNSdZBF/CuWPjwc1ZZwNYu0MD4dgJp4q1nuUUbFTVKcgtyCk1MiXNkWLZYuYEYUIryeSQDQtrUTi4urOYIoMdAKF6yRt3WTbKdwGlDKg7IWIdQppXlT04xs5yQwqc5C1uXLuJR7tzCO1xWM9RDwVIhEf3X8eDu19HzhW3bt3Cyckp3n7ndeh6ACphlYOx3ewYTx4+shJwKWOaM2oRzMwOEDBWo3gH9wN1h6iv2Vij2hw23VkY2XNCHoRzZ/DoMIn9HoEcdSdojKVqBxsoqIFWYojClyVCDfzR5sH9LVIVGs5IddCGL5AH99/FP/iv/gs8euurePdb3wBwAcEKkQJaCYAFZieewFzcuQfbh565lpKzfYiBBIiC4QnNca21QjWcg6ZkmxJHVlIoGbtXY1kim/uUM6C1lUUUZmAhCFVg2kLXFZSyAyaNtSlxRi3qQIXaHYBVumOaCBf7C8ybGcw2JzkzcmIwZ3C2+wCCZVlszwh5uUBj6yjLCqUJVA2Qs5bSxkEcBLGuFWVdwKRA6tmnAXgs5cLKFzhoSIqgL39zkKWUkFO2/VrUx9ED+ckzxZfI9jMAw7oqcpoQgA2uFmS3DFBylhJ7x5QIgBjjVU5tPxCZU1xEUEv10k/23eoZzSGfU5qwLIuX9GOXP2TAgpDLnFyGiTknyWRxZH5CrYRWrClFBuBMYxxnX8+m5pyw1oqlVFzsD/ZupJ2O3Z2U7MwuOU89C5sc4FULpAQTkAPpPPNSS2SJYmCrAkgVogUpCW7dvAFAcP/BXXsXKShFXG6bo1eqgY+i7BVTAjfmOvVSIeYIT4mREmNdV2e1QgcpOagpggjm7HQgTJVWkoQ9Qz8xOSuKnU3zPKPWFaWsnc7eHdKpAQ/Q2NkiUBVsKZfdimEsHztY+889sDA6//FU6wCC4XpyBiMv8aIAapTtCF3BgwOcrKRaLRU5J8yb3GRIKQZOEgcvilYkMrCMwMe3KoDSyhowAKqdU6SqgWJScnYpD0RIgN4iu99LG3icGxUCxLi5I76Wiig7W6utsSrVWXxSK0eoaixHxk42QWFzTL62VQxEYwBoK+OoAmipIKkQUqRkrFlWQjVAir6OHZDDNQDjziDEgFYCWDFxMnmaGJwJpUb5M8WyLABF1raDC51FQRTQWlyGW4k2K1sY559nhauieplMdaYEAw/Z/DIz6hoANbHApUZJFFcGyAK5KVMD8mtmSCUPqITsIcNSeBm4aeKene0MDeKsSWM8oqlobO8CZzrVdoh/9Nqv/ft/xTVZxrI/w3JxDoCcCSog395asNLWgIEvGd/4w99CnjKuP/8i8rTFi69+Ftduv4hbr3wCKc+Ytifo9gq1MbO5cVAOOqAkgDJPhSYkAuZ61K24b1NihuBm3CfOSPvdI2waMiu+2kFUTRdxfTb06c5CGsA5HxoZAp/jU70/du/+Ujr8c9zL+Ezbdce8TNq/E/pzu6czsQJ2aAW7UdwnAl8IOevBvhalG2E6YWOO8tiDdI0xNl7neD6o/TuML7QFiPvfJHqDEe1CYWUNCCFqbx1jPCjYbcz8+W1C9em+UetxCyDHu/lxMejapn/EuY4ozUMJJ9euYdoyzg4VsgqIFU8evgsVwbzN2Gy3yHmDw+PF5LAyKplM5MRYlsUTFRgpmY08s425x+mHccdRiylrIzwO39EcHL9+D4gO9x2X3aXnWfJHv1+I0nhomzsd/jZeE8+m/vHYvvXH/xDf/NI/wv7JfSz7M4CK23MBRTJgaHJ23qqdMTHmhB2csa4OWhmWbNi0dnBrO4s785JGnhNsP0vf9zqMQ6wZtxvMmDd9k4Zgt4FmnBUwfCYxBx7sjiCzqpr+MU/IOTsoCQYuYPbEIjU2V18MjeG1igHUVc1WggfQdXiWSmOtDP1agQaesrNXjphRAmAQ+q1CGpM2kyeL+N8DoJKc2leCorrpmw6ACb2PE3rSUSSFUGNpDWAY3G5lIk84MwBxrdXXuYNtPKBvgAVnHXI0RmOeCvQAdakTyUFRxlnCgPIxjDWQvLST2ac+YCzG5oLOaGtTX41d1XU4YzTqq93uZ4zOAe43n0ZtIIiwJxQOxBL7OYBE7Wzz/Umq4A3jZLfD48ePjMEFXi4OBoxit62DhC4Yd+2vAYxhhJFAvmeqVvf3xZr1M1FDFhuYpe0u3yxdNPQzdDrM4MJAY6fse6DvUR5kWl+f7V7PEh5DO75Xb+M5/X7fGQXkCObV9pnrOwE0tSEYgCYdcCIqyCk1ZlArId9P8BjTJibbfA7+RtcVmMLnOIjnQZAH8+oIzIQDYEBjoo/LZ0VjBGviORiL3K7sACn7grovgTwBSWD+ltpsLnt/Fnt2Zz9yO6HpFmjvh/Z36uoajscTosbmRJNdy/ZdBoESoVZPchrGChhlrKL4PdltZPN/hu8N7cEmthwEFn2isHPsZ9uPkWDYNSSFHO1zAMiJzRc4rHHEOUQGyLMklv698axRW0itf6P87vf6aLb/4//4F9vPZ/ffxZN77/pvT++/92u/85/8OyBi3P7EpzFvr+Fz/9wv46Wf+Dx+/Od+EfPJKU6eu/197vVVu2pX7Ye9feFv/jU8fOv1D7sbH2rb7XaYpunD7sZVu2p/Ju3k0Qmm/XQFUrpqV+1DaB8YpPT2N7/sQfIJAIN4AvHUHSyW59eCkYkTNCUIJRBnEE8AJUjZoxwscMlpAmd20ACDcwZpAlECZ3NOGcuEMULAywoIDc5+bblqEPJMHfXyNmoOLwCQARSjQ+k4iAF4mBMsk8qDJEQepDUjM5xqpKkFEYimZhCKWPDfsuYIhGQZg+rl76hnu0gETFqJJWkGZZii5J01h4m7Nts7eVOByOp99fcDN4AFSIxEyPNkuTEQaXNekCaAxf2Rdgf1cTB/nALOnEGwYOoYVDBD1x2d3qegmFet0CG1qDkL3YnQMoMcfNQzvIwhQSS+a94/CwIy2J1lpMGi4PdkNmAaFGh1741NQZ1lRTybE0xg7QC16qAzotQNfUIrXRQOuCodGRchQFGB6AGsxoRgWVeKk3mHn/n851CnhHsP38OcF1wcHuDNe1/BRDNu3bmOzcS4uLhAWSuSABnJGCDgDGNJbQ6ZIOsClQmYjGlKxhIWUVKtNUKU9gCCP8RZrtx52sBKFBmE/Ra1Dg4eDfCX7cfgrm90937D7grSnrEVoK7mrUWryNHWcQAN3JmTfF2JU3kvZ49wfu9tPHj3DdT1DBUXsNJ+ti5EfH1Xc+wsUgAJWCI1h1mpK8q+OLAoRbigZdQiHOE+EJyMNUgdfMg1gvzGlqMEsCZnTqru1AWkFiQYuGYzbVCSILNl04UjDgor5ZOMYcWAjxVFZSgfZI69lDI22xlzJkzTZL4kd+Kbb5AxJbaybVrBk0XQE2eUZQVzxX5/5vPOYHeymeNKHXiS/HcH+IhAvRxYWQtKWZvMqAPwQbR6WT8B2ILHIS+JAS0W0MnEEK5N3jGRlemspVGei7MBcTieRVFpBSMcsMNzpUK1WmkwALUIyloMrOWOv81mY3PqjlO4/JQqKAcvf+WALwPvCUqx4IGVLpDm4Gd3WIpEYABIebYAgiOULKlTME8TSrE+2V5gqFScPb5vWfuekZnIjwCXY8TAvJ08QBO7Q/yZtcl+k2suX9XGKUj3yEuARatrARMhpxllKRCNgJwFZ0qtvZwaHTveVQwAxomsbBYEqECVgnU5YFkPbc/EOauqqDDA8jwZgMdYtBwwGM51VWegITgmDaUUZ4yqrR/qQTgAzhqHRm3fnOQYAxGXg/YfrB07s9FkQPzcs4fDqY/mxFZRkwUpQcRKPgKKlHMrnwcCOJEFPMUAcLOXN6tSoQIH6Fm5xCqrO7b7Hg8hK77+g0ExytyCHezppQMDpGRTa+cYlep9SpCqqEUAFHdW2+FQS3UAj7P4+DoGAZSo6UqlmCzNc3aQErAue0zzBIKB2PJkgKy6OptBZqxqeya5Yz4A41Dbc0VtfMRLCPIIEKde6sEAianvISYkMHhj54G6bIt1QtzLyfmsAokwTYzEGVOe7NwRA2PbeJOzYJmcS1P2NV99fTBSZlDywOsqLShpqpNCUJGzAQLt3FXkxKhEIL936EZWTaUHQCNLOqUMRUKUQ4NEILYDmFSqOYvYgirfgY/+B97e+toXhqAsgymbnUChJ7p8k9h3FvAJ0KM6S2ZZVtx/6zUAhPe++RUD7k4TtqfP4fT5OyAQdqc38eKrnwEAnFy/he315wwMmrKNXQSegb5W4Lq2R+w600+XS00CORCxhec01myXSQE8ISIH+XcZJW2eUosadTaP0Je5iSTyv0cbs/lH/ZrGv2n/87Nasypa6Wd/lgZzCdA5fzpQSJ0tZQymtndoQTz/bntlf3+KpJL4rIXHj96hAWF0GH9/eg+4xl0q6BLICW7HtEQJaGMEHUJ2TfezMzaCn/0+AawarDS0bvmAUdwn5sptvBZwB3WbJWyiNgShK1tixjjHUGA7zTi9doJKjPXkBjZpg8eP7+GwPyCnGVBCXQvqGsH+Hqc0EIKX0WTT+UkFiXJ7/tHpp/HOevTZeLS2LTEsr1Bvj4Oa1M6PcbqPz9jjpsO/GK7S+N6wrI87Pvw6/BzLUlWwHC5QlnOU5QIqBYI1/tiAw4C9jLYBpLY+ADT2QfWgfSvThQAjoY172JFgakH+NhQRgHbFThsrpjH2xopkMDLP2G13WA5LSwqBAq28PXHzE8R5H3sk9IhgAco5O/A85Ia/suuSKTFqUdP34T6NlEzPJ2ecHr7b72/jYMkdDoxwvfUYCG590/Y3l6nuCwkWKkTJMA05MIw3up/HOwGppnsy0VHJMgCoakyG5KC86Ic6GKdWL5/e3msAZHgigYE+3c5D7cvZyz+hogECbAmZDyjeoSWy+aIkjbJ4xoTY3tHHFM5EaW4dt5F8XJfDwUu2mU6Q+ms1fQIEB5Srz0cfu2CPbAwxiqZftH0zLM+QVWUtqFPtiQe+GaNMdOgl0QsJIEazr9FKgat4meDRDhnlru8hdZBX4uSlsbqc7VvPZWqobhrz21m34Hbv5RbHbPul/fjtlajL58/42XfbQqYREZTZk45MhqaU+1ni49rAZDBJG6xKoTdL2wM09I3aeSZNpvpp7tdC3cbx8snjWRW6hThwOBIVxTezDmzj6raeUp+fdh4MMlzj7HQAaLKXBDFjmhOo1rZPQl4YkzLMn4dgBZAubxSIUquXzy/TLUKOEJQ9AY36ejcsnZ3hTMmTHPo46LCm7ZgI/+X4TvZLU+V8jExOscv92s+2eG/3URNrY3VVZ5lSDfZxarZeKIc0vJ8A7scwwdD82NTBmf25Pnf+48gG3cBUH8H29le+8H25j6rg7je+DAB4809+D5wyps0ON+58DHc+/XkAwHN3Poaf+qV/ESDg9sc/hZsvfwKcZ0tUvGpX7ar9Y9W+vXZw1a7aVbtqV+2qXbXvtn1gzfrBO18DEWGaMjjPyNMJdrsbyNMMUEWpexz2Z1jXYgwalJBTQp42yPPWFHmeUCpQD2IZ+pQw7zYRfTIDG4w8bYwlgwlazPmd84zNZmcsJZwsIytKnQENUKMEaC29FJREBrxlAuacYQCpDEpm4AoYOW8s5ETh6TF2iaP69holtNwtIz3zye1KKKQZ6lGyzO7QA6tkEc3mzAnHVLSeVWRdifrvXufEg12dtQheBk0cHGW2pJXiU0eEqBp4SWDZtxBjamIywICIOpMNe2CP3QtqDgqWhOIZ0CzOJNQCFKuXehtYjbx1h97g0lcYcMhcWJ4hTQBJo/ZugZ3mGLbv1XBQqgX/gjnLnIzu3CIyB7MHy7VRHA8hCbEALHkwLEBhzaHXstfiu+Zss1+iW9ZvCWers1NYdphikxTTRODdNXz+Mz+N6fOK3/gHfxcPHz3A5nQHLYzD2QUEj7FeXGCpiu1GQSkbS9nhAObZGLK04vrJDlO6hovHKyDhIEqQFI4JdwKFzxs4ciyoqoOPjIEpsZXqKQ7+Co9RjLh9NYBKaPT7pL73wmHFY6DNfqDGokReWsznmI0laQi/9OViy6GBmIgIWhWPHj/EWi5ALCBUQAq0VrAqTk9m7LYzKCU8eO8Mq0S2sjvppYAAVEQg2ManFmlsUYIowWRXRImd8PZItTICtZbWZSICPJBeS4GsFQIDKikBmRnXr93EX/j5X8A//N3fAyVBysnKuSlQam0vzskzCXuEASkTJme1yRPjxo3rePLoAUqpyBuGOqtMLQXsewiiWKugVAGclSfnTWM/sXe0vcMOcOBkYKxpmoyZCmoZ1h5QbwARTg1gFdT83flnJaFStlJiiZIDIitqtWzzlCwAG04yVYL4XOVpwpSygSqKyeuyGigqpYQqFSKdFSTAIuu6OstYQqJkICifm5Q68DGYGKqs5vwkAqWMUhYDZDB8bhhrAGA8g1ElynL5ugaQU7LSEE4DX6UiMzDlBCUDfaSYU984wRynzsJkAV1bA7FFLaBhZ0ytK+AMPSllrOvegxTanLMYaN6rsyNEkN3YYxSLLnj7rbfBzDjsF1gOtzGz1bJiXVZncbK1vHrpN/vdGaqqMeZwYkhdkSJ4IzAHqZcUiO/UYtJ+BYAylhZwsKhT+WsVCAhT9v2k3enbSw7Y+4h4yM7L4zXPNuI0RgMSxPp4GngUM9jX0XHk9Gl5efnn/tlxf8NJmYmx2c5tn5jc6LInZwNiGFOB7a95O0GKXV+KGkua6xBRspCZehmTtYISt/GGGgtRXaMMn7+HqDMUmSxcV4UmIINRy2rrKcDEKubkJyt3aeNaodUBN2QBbmJCqQVajbkpAEL7w745s/OckHNCLp3FpoF+HIyXJt8/8HKb1YMixEgSZ6854qvXpbXsZED9ZxFBqStygFsieJMM0JzmCawVUmytjgwP0a9YJ1YKshhgEQxONh/VQTIpBcMYO0jMFqHIery6IvtbxcvYWilcEcI8T6hFIcXkVqlW6o2ZGwthaQE+A/dZeTrCNHXdxOI4BmKNuQcll7cVTKn196PayuEMis4CwmnCNG0aWFZkxbouHrgM5gsDyHFyZlZOTU+wwCVh2syoBVjOH+Dh21+zQBAzvvY7f9NkaZ7B0xa3XvlxPPf8y5hPb+D2J37C9PJA5gBosoVMxp3fewtP7r3dg6gagVPbM7vT53D7E592e4AwbU+wObnu94xgECEoVzRKU7b4luI4dkpNBbGPDZQIDcCHyf0GqqJmlRzJxqMoMzBGyRB6c0jR9mTycskxFu1+xjRDrmOPwTdALZhJ4gyDXQ4HQKiJ27BlQs0+em9XAsPOUrMKQ789luZ6FHjsf5N+LweM9GChv6PPU9NLW387IKuhqlogup9J9i46/LH1qD97AKl1JiUdrvXP2jyPoK2ux8Y7kRqYlNMGN2+cYrN5Dq+/fsBhfzA5uRRLUCFBXY0JZ5q0B5Cr2QsQQdGCGyc7JJ5xuBCkPCEGKMrwqOJozNrYDWJliM8Oesygv18CHMSCprhRLNlxbujyPPe/x36IszuIZIeZOLLJ2/eHe1UR5Hkypr6ioAE4tJkS5imDUsLjxxeoQsB4P98641pAzN0wCF336AAVCtYfvcyE5v4FCrCpOHDF9oF6ws00b/Hjn3wVb3zzDYBMn+fUy7MFIIP8+ijxTeQ2qZfdyjnh9Pop1FmPOA12XwOAWOl3FbWSSmTzYh4CRvYyARFwb2MRz4SdgwpnCXT9rzEiei3UI1B8m+OeGIR4D0Jjr1YNpmXqZzoTqMbYc/MjBEO0Ad/tfIYwqtbhfOw2PhB+kWMWwphPwaV5F/HEHXax5axKzrbbn2HygBE6c7eAk+tN0YdYSz0Xz4CjKTFOT6+1MZ6mGYvsTY9scl5gaT5NaLX5bEdDGzu9tJdscdOlMyTYsOKf5XDAuq4tmYBcposDjgjoLD8SJcO6fR3v38rWTtqTrAL0QWgsuOGPMX21uN7W56aJlbY3+6yqxvsdy/+Y6xiUpzWlZwi+S6353y5/85lf1aM5fuYVavNuSQyub8L3bu7sXHatJx+4TmT6SLBxdSZPFULK2XyOaiA3qcMaJgKJJ634PlM/+1WH+fMhObKJoICQ51pK04kamDPk4XBIjKCesBlVzYZmL0dp4JvafH3WTUt06qBrOysDnGP7fVjfQAOrJYQvw9cNKxoGkryP/owo7djLZmu7a1wD95X6Zm19tC1Obf/UWv0c5AZ2innregl8zfuIXjq82jnc0gz73MB12+LnlzjAnIna/osEwtA/Y/zNPxPyCkdrM85ucfkc5W3pkkz8UW9SCw7nj/Hu17+Id7/+xfb5/+8/+D8BAE6eu43djVv4+Od/Hi988qdwevtFfOYX/zKeJU3G9vZX/gjf+pPfe9+/33jhZfzEL/zz7ffNteu4/sLL39vLXLWr9gNphO216x92J67aVbtq36YREZ5//vkPuxtX7apdtav2bdt3UO7tAQBCOTAoZeS8QV0eG/sRK2o5YL8/8wxyxjzNqETYE4EoI00bpGzB6M1mxsX5AUKMKd+0wFcp0FqQKKEyYc+WAXP+5ALrUjHPJ9jtrmF7egrO5oRJ5n0Lv6E7xew+ZrB3A7NWC+BYAD1j2mzBU1CnTy2zOvEE5hlAAqWMlOwaIDK+GeIWMOkCgpfMYbaARhi9qDDAjoMPKGA6HhioUZN9ADpFUwMbQSO84U4J6UEF9ew3cwCxM0VZ0IYVnrUUpWfCWW6OBa0ChjjLSsKctmAyOmVFNd4lMpaFCEIWncwZwoAqN4cGyMoK9cCHZ3a61S7hNGsBe7SAdHyfvByMGczkwU5pjisz1NXH2obIWH0UQXNOZOgWTtyAZM2nLG7wI0qzESAFcAancPIEKKFleYUzIJxBEaBsTsEeDFEApOzOVwMZJFqR0g4HWXCyBW7eOMHHPvYJvP3NdzGTgsqKQgxlQeITZGZsZ8ECQlkOWGBBzOWwQGQFn2xglXwKAKfddweedwNQ8Qx2DzRxOFH6WLZsZ41RGZaeO5LGAKex4/g4sP0gMTdwX3q7FXWHITloUIe/SR+xoJ7W8IxJXxvhsyQCbr34PD75Uz+JLz55C8s5gOJgxsTY5ozdlCE5oyZj30rSAXBs9QsQs2VlAsPJOTr0GZQsDCeqqFINhCjGghT7NBzi8zxDiRHhfGP5KeZg9sBBmiacXDtplObTPGOaF4gIlrW0NT9tDJDJQr1GMCssfVaxmWe89NId7C/OkKfJACbVnONlrVjr6nvEwTBiDmepK6AV6WSLk3nCfQckVAdIGTglW7m3UlHKAtIK8s+Rbc8zZ6RUW0CDmZAzA9UZTnyuanGZ5ineUnpps2GFuYzwcRNCrSuYSwuEGKiiNoAUUc/qC1YN+9WdgUuBsjnhU7LSYqWszeFnpZMmZMDKvallpBK0ZV6XUsHJAE8qClYLHkQQpHu+HYxT5YihqZJAk8tXGGglTxOIksuzGSenp3j3nTd97bcNa7eNM8CBI4ZaMJYhqJVMJbI1QxQBGF8qHlTuDmXyElt24hwOB6OqFwNjGljNzkQVsRJ/7pBlDDT2GnMlXk4UIC/3qdUABtVZb6x8TGrlmkiBZXVGuJScot+zWqsHUyQ4L7S9Vws6RRBFYycDPIxXD7j0bP33b5f/Fg7gHkhsd3vqPiZLnwV4ssBvtYBKNtCzn7TOptXHXEVRvCxY4mTgONVWqgws/rvtbxtDRarJ2cGARIxSBJqCQRCmJ/gaD887e18DrBfAwES5Bayt/wIpxYB1QqhaEJnZyYE+I+sQJ0LKhKI+/8n6nrIFRbKfvaIWgEpTglZ1xqNxb9isS62gRMizsXnUYmVNJmd7iEOKEkOKOeHZy6FUH3eFlS+ZpglQK50XAZMIQFACphQlByuyB4BE3fXv57tIhdQVRAlzMs3LmAr6WRiAReIEESstmlJy/dPPEQeBc2LkKVuZN7XAiOmr3PRRzkNGM4KBwsAozNnq90XEkix4Y+BShkowQ6IFtq2kA7te89ENKkg1cJcIAVShUgAtKD7vqhWlrE2xIGSAjA0RqwU9DbDEmFJGWQuUGNMEgODgJis3LNXYa1QVy7KiFsX9t7+BnGfM260BNAD0Ehpdx1ZUA/c7O1kLEoo0PdeYSSak2R5OlHDrlU/iEz/7Cy7/DYR165VPgt2e4GT2BigYmAClWGvBPBGqe/TrWFZFXwE7+4df2zt0uchH5ewaawHi/r7XXHds34fp2QGkIdJQEoevWsBQxRDwyr2UT4AC7bK4Y5QC4vZ8C5jqkc3WYrJNp43nsvfDbjwmH/SHxaO0MTq1o8PlxhE8axzSrrAO7yHosxD9o15uHP07oSu2IDbFGTdMkeugIxynnWPUn0IgP5srmE33qRBkUiQCtpsdCIx8FLgnpLQBg5CToACoa5StMqY+QFz3MUD7C5/8SYxNh/FrttCg25PranEJD2PehluHefR7oIEa/POnRNTA3BU2wDBAnRBlmPNxGR+9RExfnweoglFw49ZN7M/uoxz8rITptcmTL8TtQKUe6BV1uJwzNlv/KIYHw39s7rnvAWi8kyK1pJneySgl3YADPn5t3fi+uLg4M7noz4hgc2dL0VYqjdgBrD6eTRIwYZ4m19my6cwNIAEr6RbggDhDVGHstQBpNd+LPy/2RgB+qzPajmU7g20l7MoA0RiIyebJwAlurzW/ToByw9aU9r3Y6wHmswC8JR7RsI+6XA8GWZd24ScYA/TN/hQE20i8CzUwg499Mn9LcRuCmB0U5bqFaANuR3cRz411M37mnWhsMs1s8jXCGafXThzw5Qyw7P6O2Jjj4m/7L0ZyPCv6GTPOR9uf416L/vbj0ZiPBqBeAzL5cyJVzcZ7SFxr+iQcGKitq7ZVO7DrCGRNvgRFB5+GJ8o0P0iIhXG1o8+x76fwg1nvdLhqFGB0aTyf1QbZ/Qz74KmrjwAol89xND8XBFDWBjRBzJwzgTb7TwOAVrt84g5RCx0wQEaqQPJEBHVQkNnvIXPVwUzWPWNvOpZpDawn0te2D0WTWQPwN+amvcsw/yE3R2AumjzoZcDDn4d4b0/AiTw5chkdIEbiYJTr4LdgEurncLctCdzASM1P6X0I/eaoh9E3EITE/KWuCAg6GM6lvzMdm00eYppUEYDvDuZGs1vCTxfjHpsvbG0cPSfkX1+6NC7f0Zfn+nUHVjmI3P0FMUXq8suY8fo6vGq9nT+8h/OH93D39a8AsLFN8/ynfk9KgQwJj5fb5ft88s/9En7xf/A/b7/nzRaf/HP/jNsSQJ43yPPmu32Nq3bVvm8tzzM++8/+Sx92N34gTWrBwze/8b5/b0mEV+2qfcQaM1+BlK7aVbtqH/n2gUFKIgcA5jihytB6AHABUDLjqxas6wICIfMELStWESvLwBmlnAFgTDnjsE+oFUhpwtnDCxAUpRqLR+IMwDLWlnXF4WJBLYpzZFxsdjg5v4G8mUAAMplT6yCElCeorlj3j0BavHQEENZzDWYGGFMByIIeyYFIiTMUhHnaIuUZgoSU7XPmCWnagGgCpQQBUGsBkdj1PMGCKAQKym4PGlmANgNsrgNGcsOarcwLPIs1Sj247yK5A6p6WquqBa5VYSVCxLJ0pojKUEZVgJ2CnIPehpxWHYAVXIcDFVacnz3E6elzxhZA2hzCxqBQcTg/w2azwX7ZYy0JN27c9Brr4TwM5w/c8AWMMcrGgBMZLc4I5iGFigXiiNh5PawkkTnIPCOIR/cIYJTmxd01vdY7xLO7xcBQjUrfA6WAOt269VOltr5E6LuxC7kDDCBUgTMcBPsHeXmiwXMezi5WW7GRncl9fWQWVCyYNUMuCl649SJuv/AikhLuvHQLVQoePnmMOe8AqdjsBBMlrEvFcnEG1QopFbUs+Na37iGlc1w/eQVCggorCQTNASPy/qX+vlUdJHfJcaG+PFqgoQPLOojHLw0nIgGo7kRB48VqAIsjF4YHnMagV2xHVQWlAMUBSXu2bDgsRRTseJ2T01Ps1wXn5+eQtYDUSuAVFSglLHodh9UCnkROp59NTtVamrNLPRMz59wy+AJosuh65NAjwNiafA2GcxCJACYUtf2X82yOeXXWHxUkImRSrIdzfOMbX8b+/BFu3ryB1dO+ickZIxhKCZzNIxUMNgEgqVqRQNgfDnjrrTdRqrEV5eTMK7AyReQpg8LmyJ6mrQGQoJC6IM8Za11QSwA4DTwEZogylqVgLRUc8wA1wJV4iYG2Z3rwhhOQYGXOImM5nHkRpGMeQBLu1I+yaYfD6qJZIf4sYi8XkYyxj5ylQodnA2SB5lowpQTk3Jy/lBKQzJEZQadw0JdSjBJ+ysayB2NwEmbUqoB6uYFqZRaVbA4kQDdDAKkBXoOtRBWFBKyEUqQxGrEqKBurGpiMPY4AhQXkmRUMDw5pxKFCfpmzV5WQ0gxg3zIlbSwC/GXAFHLa9wr0shGI8w5Yll4+xs4CB7b4XgjHMFTNieZlJVLKyEZ1ZOw/IqjriuLAOGP7yg7erM4gxY3Vy0A66uAJctlqMk3FzrJpnoGNtsCQsQ/J4MZXpGzvKFXaOWkO3vGMGAMbHWBzLJ3CoXscYCA/Y58ONDw7ENHWAzq4apomKHmJyrI2IJvn1rbSGJosUKxeEixP1N7DwM4Cw6ckQDKQbOztXCeAEkr1MiLosjvnHLnhDaxCRCi1AxNLAJYSYcoMUkJVKytgWGNnnswJXNlBOnaWCwR5yiAytixO7oZ3wG9ZFUTJSx7YvrVSaYopWzk7ZW7nKCfLMM6Ts6wlacC0dlapyY1Yj1WMKcjG3oDo0ef4PObDxLXNiaox2ZluYiAeEnFWSA/oJC9XKWjAKguMWBCjttIw6gBGD5R4cBRezm7iZAHixAYmogiI9MCCARXZQ0N2zyhjQs4cJcqWFc8EUJTVsAAqI0r3KEoR/67fuwWvPrpBBdXiZ7LtJTGlyd4Rvg69DqQB8FbUKGvCDKoVUmFrNMoBMmPZG9hVPUAejBjipajLanKnroyaMrQerIwR0NisqpAH5wW17K20cOgn3kQ7IxcRY13IzCFPZLh4fA/f+pPfNTAsWwnrzekNMNu5/9yLH8fJzRcBNs1t2p7g+U98yuwNSi3aNAb3OE84ee5WYyGJZ0ekTn2PjH+P1plRY70Plyja2UCJm44dIIoWzm3vLO2zForTinXdY563/j2nKvCgoGhFWVfknFBqgQhbOVY4QNbfscnB0Euj/0fmgLa+mQ7Bg94RwKh+elBjEbnEXtCYNPxtqO+ZCCHGpupverSKhzi2+hwEQNT2YXQ8ABDB1nA8O+0Oxy8cgAHvj0KRHcCXwNBVsNueYHdyAlbCtdMtRAWHZTF7VhVpMmCNFDF2xiglJhWPH1+AeMV28xwe330Lz3/q8/4wHgLH/vYEC6z6tD51Sj59ef91mLfLZ287sNo9nEXmqbFut3563PTYtom5wjB2cbNaCx6/8wYOhwXLslgyk18jIHzs4z+Gd997iH1ZoboHoYNdWTszTzzQAvLc1553qNTqDHdDxyUYxbTtP/LyaMFezBx2knoZ4WAissE6O3uMWhfcuH4dd9/tt+ahhFnX/YaHS0C/TBd+/OQxXnjxeU/SIF++XiYNUarNAIep+VIAqPh5PJTwVcHJtWsuV8gZOAc9yfdkfAfaYGjNHgQN/R1BIs0utY+YUsyo3dvlY5x/JnK0MVHbq/kYchoXYzzeyo35OkAkifj469Clka1FVbtdE+cPIklC25oKtmzmANRgkDFdZoW+EsBNA4EAulXgugEc9NPVgazS9yCRyQoJVla3zIfN07ef+hiFDoQ2Dx1IZ3PF6PMGHuSBj4s0tjvHxjMciMH9ob7GVaonK8U8EBqrjCh0NhbiYHhppfjQASva1pDZWeo+nRiHKLsIBAsX2nqPZ42ty+KYiZ7Udrl1vf/99anLulYHvj3rO+93H2qyJuaFHJBSVQy8JHEeWxOXP7GuRr2kX2cbI9jFQJ78Es9IZDmViD3Y9y78HiNwbExiE18z7PcOn187nodxM2b7uDcQPkPyUu486DrB5BaHSQPytPPd7pdaP5wBG52Z2pJ9OhNs3Nv261ASLpI526h13yYBzo4UfbAy1bGeUgqZG6xDg3whMsZ/9D0e63Gcr1HWtzOyTRvZ3gp9j22/j/46xHuE2Gw6V6yzuIYGmdkPyw7udP+n+316U0RJ6av2/k1VUA777/t9vvIbfwtf+Y2/1X4nTrj+wsttD77yU/8EXvjkT7W/X3/hZXzmn/5vPnXWjW2zO8Wtj33yu+9k839ctavWWy0Fb37x93HnU5/7kV8fZV3w9X/49575NyLCL/zCL+D3f//3cXFx8QPu2Z/e5nlu83Pnzh189atf/ZB71NudO3c+7C786DUCcBvAx/z3fw6mZq/v+40fznYD3wGq4apdtav2UW8feDtvNhaojEyxnIDEYs6FCkAtu5OIkLi2MjgKAmkFiwVbykooFSBYAG5RD9SIwgAuPasWADIrFBVMZrTuLwS5zMjMSNPWyhspI21mbPMG614g9QCStRlxooORCgPJlGDMccBLBNanbKxKoGAFUKQ0I08bABmUJkzzBmtZsS4LdrtTbDfXwA5ysnJybmTXalTL7CXmAlTADI9PeimXZNS6np0EEJKX7ODUs+yj3AfB6ZHhDA6ckNIM4gnk7DER0ALgjqz4b0JZ9pB1j8eP72OzmUF5bgF0qFh5sbqgHi4giXA4f4RaJ+jpDooMJSueFY6ucBZZWTI0dgFQQpSiM4eTthJ8xnqUAbJAvLSABgEozUA3FhHvvwYbVYVQlLUzJ4M4s5QBVSxDz2L6CiF2TIY5CqNUipXHE/+MzE2tYv0mczaqU9xH1nxV9RJ80gMX1cFX7uquUpHEmR5kDz07IN96ASkDL790is//uc/hm9+4h0ePH+LGyQZJAE0r9nWB7GElr2rFUirgzA+AYntyHfO0BZSstFg9YDk8MCAOb7HdXTcnq1MoBfNUZMw1Jy4UrAJVNmYsz0rniAFSOHbQgs2RYBcZa7UUlGr7NuWEaWILcIUzSWycgqa9SjWWH2IrE6TmNIlE6joAxCBibGACVCm4+86beP2rX8W6v4BqgaiDDpmR5x1On/8EJmQ8uPcutBxQFNjMkwEEpYNo2IGDwSCTckLOue3DcEoh5hVwsKEBgoQIqFYurJWj4sg4VEw5Y5Myrj93A4fDOQDCkycXOLl+ijRNECQE81VkwOZETitELXhURRH8A9Mm4+RkxsOHD3C4OKAugs1zO5S6x3I4QJ0tSURQBJh2p3jxxz6LnHZYzs6gco5az0BpBmcCJSBxcqDWbA5GIitVJnVwMDoTHZEzkRkbzrJWLIcDSl1gJYkKmLgxECkpSrDHOA2cZUWbE7NW84YmzwqNUlPk5elSJkSglciCrdWdY+yotSlny5QWKzNnfyQkp48HM7RamTZjOVGstVgZh3DyOTtQCYCUy7BaKmqwybFdHxkxqoqUYKAyAlKG96FACUg5Y5q8bJ0IVgiSM0RxSqju/EvcmWGAbM4/T7FsGeMe2JQqzm7kJTfc+ag1xsTOL8R2Uw+MEIOc3WjezFjLCqnw9V8gWpHTZOdhlM9QoIiB/BITVt/n83Znzt4idp+ywgDFxlBi5emsfGLKGZMzCvFSUNbV94cFt/KcIJWxoliZRIlyetb3UoqvO/WSZj69yUq8Fl1RvYQjfKwik3zM9G1nTjsCh+B8OO2br1YbG1zoAaErdGlgv4+OF+YAobgDXiNrn3yNZ5SyYi0GqIugPoOhrKhaDczKuTFfqTPwpER2NrLLS84NMLvyirqsBq4GcFgW1FqR58kCQgoQJZdxtqeQ/IwW9b1tazf6qwQI1Qbmbv2YYKVBpwxmsvKAbOxJORvo0BgGTWbA94H5/slAF1MCUJwJKSPNCSuMpYiYkKM0Y1S0cuaaKBM4zTNSGpjqWpkIWyM9YGMO/pSSMUPKCDrrzFzEtj9rEUgx2ZtnE1ZEVorOQPcrCIw0MYiTlzJ2QFGAF8LxD4I46yTn6IP1TTxAbPLOzox5Mx2tMW3lfYY9jApRNgYrBMueBQvKWpCzj2/qgThVNTAhhoDhR7ClbOdyBOstYTtsAFjgBnDWhABdeZDEwfd2rvv1ILAmVC2IIJPNE3ogFwQmL9njweB1VSTx0irsshvUyqRKURhzJaExksacITRzB7paN9C1GjgToa2t/cUDD0glPHzvdQRQn4PlSxVT3iDnqZ2ZLXAHRZpmnN5+0f/GflY4w1Zc5WjfGEP42iRi3P74qzh57jaGjrbWA39RBnbCrY9/Gimntr7jAGr8Ey47RAqY2Uq+pmwlbdFi2Ha1VGhdoQzU9QBRhs7GZtjtg9CoxyYuV8NGIzREgL+GMUlQt3PCjBjmqYdsqf84BlCb3D8GYo0RYYX686iZU2PwtI1l+54HIL1uU7B9jNeIPy+wOhEM1bbS3Krwd1YU6FLBux2IgeunM8rLL+DRwwvsDwdsp+RL3eyQUpzBTQ0sSiqNaSJPG6RkYKav/c7fwfOf+hx2z930uZiQ8wxHYXrPBnkyxDBpHF+Kd7PfqV9w9MUxBCqlYt3v8eCdN1AOB9z++Ktt3el4f5+ze298HWVdcHrrDq7dehHTPDf7JKZdxsf2zYEHb72O+++8iUcP7kFKAdR8DqIGzbn9/IsofA137z/C/uIcKgtELRhtIFjpOoavlrBnewCYG+va+OqGhziinUWA4dT1sAD9K2D6LGXMm40Bk27cMMDvPOPa6bWmI8bKUQRLkw7lDEfgHdm5PWUc9nushxVSFGmTIWIshAF2sQA6kPKEkxvPg3lCXRYAK3jagXjCzZvP4fHjR2AwTq9dA1Nqc8BMbkuoMZl15cu3Xfh5rDRxLbUBCxRoZ2f0JV6zgQeNzhgB/iWEeO7gwxSsgi6zAgAU6zPkDbH3S6SxtABooCEitkyaAIiQl3iXDiKM94pSsHHvlmwQLMGExnQZwAJmAzNgBngG6i2BvqCgn2XwbYY+Z+8mEMivVUD8HujsqTb/x0Dl2DJEfQuHyKMA0DmwJ0BKIGeJUfR3Ux9115mjlHYrc+/vh2DK0j5PotJKMtoYqyfpMEoV6KlAflmAnQaG1vavd5RTZz42otDqZxBgJYiNdbL6s+C6U6z5KMsbg0EuzxpgB70EedgTTZZTk2CtX5db+8gFHcVCiDV7JAFGe+LpmxEF0zeOAEIhVG3OxJMdwlYM4JHdv7McERqwOGyd8IGSNkBPzEl1lJKxBNejMQhgEbxfPID3EuIM7K/UgOYD6DduRslAVyErRRRMXhqRA8Bm13ams9TWcIANKeQlwX+XQXa4HRjaGaHJCVUDMWVK7XoAvTxalLZEP4cJ3tfaQagxh21fBeuvOBAwxh9oOlybN1b3KaCzMQ+MGzSMQeg67EzEzU3aZKl7sTNb3/thBxI42xn1NelrmshYtWJ9ixhTMjvTUthXQPjmR4Fw1T7MplLx6J032u8P3/4m8Hf/Rr+ACP/Fv/Wvf9t7bE+fw4uv/vR33YdP//xfxO1PfPoDXcsp49M//xcxbXcf6Pp5d4pps/2u+3bVPrymUvGrf/V/h5d/8mdw5yc+33y2P6hWy4r9k4d4449+G/uzx/j0z//FzgZ6qUmt+Npv/x0s+3O89BM/gzuf+mlsTk4/8LNe//1/gIdvv/HMvxERXn31Vbz11lt47bXXvqt3+V5bq8rwjPbxj38cs7O13b59+32v+0E0ZsYnPvEJ3L9/HwCuGH6+H20H4ATA5wD8DID/PoBX/f+AGaP/BoB3P4S+/Vm1VwD8X2FgrKt21a7aj0T7wCClPEUWlhtmrBZgBtyIAtiDVuZkAJJEUMUc/UxepkLJnHVSAclmMCfCulZ38MCDk+ZYmicLroMrQAukCAolLB7gXFSgtGBNDCl7qCzuYfKMMREYo4QBASoZgCS5cavoJYlqWSElSoaZwVoIOFwwFFZiwgxWy3ws5/fxSAl5mi1glBOExIEyhClP4DS5QVqRcsK82cEAPGYISjVHnoGSsjvtBFPOFiAjRpT74GRZjepU4lgzIs8mgqSRSc1sTkP2bHx1521dFkg5YD0sOHtyH1UrBJFR6i5zLVj35xBacH52D5l3OBwmABM0DHliVAckcTKqfIIFujVPYMn2juhBAyYDKpASZszGmEQMCXCErydAwUrmtG2ZinrsMKdk40zw8RZAM5x02f/uwCMN/zBBwmsm4fgPVgqCBhsT1Z58RZFr5WlGqo3ZgeGOOXc2MLkzWwm7ky22Jxmn165j2mxx8/mbWMuCR08qtp+5iT/47V/H6++9g5deeREXa8GyP+BQV9SyWpmw01OgFisvlk9w++ZzuDjbQw5nuHjyDbzz5oK33/4aHj98hGvXX8EnPvlP4PZLn7QANTxGQs74EE5rAszdWY0+XASUxDO+wjHhjkYxwJYM3vbDUlCW1crqqBpTWqmYC2PezO4edpAYKspSsa4WjAeAnDN2uxlpnhzYZlNa4dlcCiTPoKsieHDvHfzDX/9bePj2GzaX04S6EICDLxbGfLLDWhhKjMxeDqhYyS+QPVPdgUlMYGUkirJIYnxazowBBzBVd6ozBbsQexkyRV0FKRvjiYqagygRRAuoAPuLc+x2M5aDImmCrAUPnpwhzxOWaiWNiI3J5GS2YPXZfmlsYgmECkCVsBZjlGMkwLOtFRZQKLVCywpIdQcaQ5Y9Hj+8izzdAJUFqueALNhMW0zT5A4wRiIDTEotqGXxcjsKddmR2EpjWqDW9k9OBjIFLBNTtaKsxR3IlgU+zxsgOWOQGAggMiiDhQSsyF4CTJHQnZJWIgxESEkB8uAjAlwEA/aoYOJk7DLOXnKZRcGc8/ZZkeoy0jKA50xQZ4TLlFGKsSgZOCc7mNH7SoQ82fqptYCzZ1JOBkaVqkAJgJKBRKrvO5N3ycvNWPkhdQYuG4vIrIwMY5PxBricTeSDkJKdDVm8rFGNbHTfO2qAq8yWcV29XJxUK9s1TzMu+NzGxNlgVNlYjsAugy2oozAEoURwVeHscx6MMw86KEC8wf7iMqPWgjTPxrQlBCKbp0QGbAEp4KXjlAjIfj5IBFUUQPEyYpMDmwvI97Y50IfAfK0esIlAXP//UTCgR1wQ2cS+6tDK96nJk6hO0dYrRnBSdzCLVHAOphtnGQuveIU7zh2wTNwyyIkIOWVMLgMBLycFMtDLsN7tbEwti5rI2KvslRKYFFmSs56Zs19qRXXGmHUtoEyYNjPm7YRabc/WUv1nC0rauk/uxPcxICBN2YBPAhBlK4cGsVJuduLZ+XAUf4nzQxsoNMYCdWkMT1ZutWJdFgNqK2Fd7NoovdOyfsmYBRInqOtlURYPgIOOVhgQ0rP6x2AyDcEnQ2TZ9hOgsbaIQliaEx8gpCkjz6mBBGVvgJWUEkopKFVAmZGYkYmhMHmXvbSe1AAcUQOACKmzZ9n+kVrATNhtjYWmrNJKBVpwwdZNKQbUp1a+lxtLorHWOQup2FkqAZz5CLZW7rKtm+OgD7WyJX1vs7+sTaMzyLXopwerlVuQp/qednXSMSzkAECCHcTO2ghGVWOzMgBaRWUD4ASQ4XIQs8feq29VnwwNYLOdgRH31lhXFSjFdIoGzPEXr3Tue9BBbkweWLK/nz98G40Fw/WZnCfbE96MRSRkjclpFcF7r33Bg4RAgLRiXUcAMIBHBELe7PpeRR/rsfyIwpy9p7dewLS7juu37uCVn/o5nNx6AT2JwZTv5fwMh7NH4HmDzfY6ysreb2r2hLFpdEZLkJ87iUHqLE9Re84Dz72kS/IeURgcbe0AEXiMAGbcQn1NxTvGHeJ8DhsR6PBhl29h/Cp6xTwH/EeZPqIB8N+f6o+lFjg0nTxGntrWsICvPXnKGXlizNMGKWdsdxtUqdgvgnx7i3e+9U08PD/DtesnKGJgRWMOE+R5Mqe0B3bzZsJ2u0FZCrQuuP/2l/F3/5//Jra3n8fNVz6NGy9+Ah979Wewu34LhDT0PBZZH1QbYxsr0wW0nQMCbXYU/LyA76H9k4f45hd+B4/vvYN7b7yG9bCHqmLe7qxUppfRtGVgul2tgsPZGapU5GnG9efv4KVP/RRe+onP4/T5FztAzu0JwEl5YYk9X/qNv4k3vv4l7J88tn6mBAzsjCDbT5RyK+tDvgY7WL4HcMmNGP+qv5t0AE0Err1X1C4MWaZtH4MUN25c7wAtNR9LKQtyzqYjuh62P78w3SrAKGTA8skDE2spbb4IAZACpFqZ1eunN8wein3sCRyu2Jt8AUGl4rC/ACcBSQFQoLUiJ8Jmu3E5GgAWs1GW5WDrrK2ansSUXMdwPIwVqPf5CQYmG79ebo1T5wkONlXfzG0h2nkRgDpubx5l1zjkPULv6/pcMAcF44nJohAEerQfAbQyWw7RAJOzCwlgbFjS2JQIroe0/sL1AEB3AtxS8MsE/RiAFwF9wbufCWlO7VxTELSS/zHORO1j4NeFXGzrrOnGcX6Jz0WUsnMQwgAmGYFtoVs31QnB0uksRNTHqPkO2qzb+RIJXKMOjkmAzyrwT8Gzu2MddhAwoSe8UWIwBEidkYopGGPDhnKbgjpolNp+tMQYA8ZYx5kYgmrMTHH1CM7R44+ebiH0fUWFqupOjRiPzqoUI6jt+rb3fQpU1dia48rG3AZEGeNYoxrsRRRQ6dzGI9Y1vHRwZ4KkwR6P8pUGwrS8L5dtoj15z+1BiAFtiMnKNE/mPg4mMkvM7IxmDeAH0/di7YjaNez+Jks8AAIo3NghAQcYIhR482E2oKdCq7bE2VhDHbjnuT+uix0lbvpeaUklMX/DEpXB3m3JkjHjNMyng4NUMTBzockMpc7UZKB0B5gzQVfpvlygg+4D8Od9asy97f37/UyOx0euL8GC1InMnylegjM6Ff7gSJo70pR8HTNTm5O+fq/aR76psWF/u3b+4C5eex8WmA/SvrPvEk5u3v7AgJVXPvvncOtjr+LGC6/gc3/pl3Hn059/KuFmOT/Du6/9CW5//FXsbtx66nlHpSiv2g+0vfPVP8L/5X/5L+Cz//V/CT/7l/+7uP1jn8adT30O/G1AM99ti4Su+2++ht/+j/9tvPu1L+Lrv/v3cPHkAaQUnNy8Peh6T3/3/OFdqAjmk1O89OnP4TP/zL+Az//z/x289OnPI03z+66hshzwa//+/wFl+fbMaR/mGvzEJz7RgEiXWztPvg/t5Zdf/p6+T0TY7Z4NYNzvv3dmuh/5xgBeBPBJGCDpnwLwWRhA6TqAa8/4zvID692ffTsB8C8D+F8D+EXgfbb7VbtqV+2HsH1gkBJRcmpbp7d1hSNxdyo34zAyY91INsNLGttA9QCMUEJdV8gamXBkwSNYwIUIqKsFcBJbuRGpK6rYM1Z1AxqCWh+DiZHZjPlwUMHpxwlq5X2iZEdzrHndWDcuqwNiLPudnSkASHkGkFAQoBg3zt3pJiU31g4h6Q5wZTBnNAYZZlwkK+lAYKQ0GQgHfm5E8FUFNWXwktxZYRlDyetQm3IGgJMFc2GHfauVXsWCmO7otfHPTudbQKLIksF1D6kJFxePUcseEHHnsKDuF9S6xf7sMTb5BBdPwrnijDAOgGG2kiwW/I3SGwTmyX+3OWqOg2rBpHneODUzN0BVsCfkbPczAFcC5wStBaUsbtRPmOedlepgK6k0JQY0SlkB0GplW5wtC+wZrp7BrhzOZHgAyYOR8GxMCgdwuB3YQCdeykzVMtAsa3SFZXQzSBhQgdY9Tq+9APAOFxd7lItzzCc7bKcClIpXf+LT+MPf+z08engX+eQ6pFSkBOyeu4FrpzsLUjLw8P4jnF9cQMsKloS6X/DHf/irkPkW5rTDKise3HsL+yeP8TM8Y3vtFtJ2hlAGkQUuEY5SB7kIEUgPIK3QYlmztVYgT2BksJeMM4p+AM5Ms5Zic0qwck5ajOHkIDg/vzDnijqrAy0WSBVzwAMVa9ljXTfYXtths53BjlsgEODVrMSdJ8KKw/4hHtx90xzkSlbmCAIlbYH8nBNStXlXKOrqADMypoV1Xc2RYx4je38vl6VkwElKxr5jWYEJmYDT69ewlgWlGrOXioGURAkpZyAJciZMmwShBFS75+PHZ7g4W7HdXUMtlmVdDis2c8btG9dx//4DcwxRxqFUB9EVrNX2dHLmBWJCLRUX5wecbE8wbRIeXyxoHF5RSorZnYwEWS5w95tfwbS9hikBgoLnbtw0h2AJ51UHGU55xloqlqWAURtYL7O6jLdgXWJf01JR1xXUGCzc2ecl2vIU5SwBJEZNzhyEKGlgMkScnj9n25vLYcGyXyBrNWAU2dqP8inJZVL0nzzzW2uFFlgZKuGIfgNAy5BVGNhMVAASlCipo8ZYRiJeGq86cx4jZZO1ohVC1QA2iaFYUcXYCdJk9PbbXQK8fwHcEjEnodmIAgNLriAU1HqBWi8MyJN3FjxhsVIOpE5eoGAyRppSVi+REyCsCCpEBnPII4Y2Z2pkODtwoawACkDGokSareQYMeZ5srF1yvmqxYMQFtAoolYuRmwcqBjr1rquMIakAB8LRAGpCVKAdVnsTErJ2eDszKxrdQCBlamyAJzNVCIDO5OXyuKckKbU2M+m3QQsBsQ62e0ga8XF+TnUmQyYAozbAwFxXkZoKkISauLQzw87ZG3s2Jz04eAmKzeX8+RBBbZ3l9CNqAFeRY0ZIpxq8f6UjBEoAhLhGJ7m3ACO+/MFUgXrUiFCzvSWjNWqrFZ6TRU5J2y2s+9jO4eXwwqlAAxPgABlMUclJ8Y0ZS89G4EDs1KjXEPKBsDGUuz6TYZUQVlWMIBSC+pBwMlAn5xyBzAokHKCSHFgUmkBEoU6a1dq7GkNzOVBUKBimkzn00wG+iA1XVDt/1FakZmdkay05ONgAcg5Q8VLOyLkaA9iAXAAiwVxRBQp96x9k0t2BkyZkb2cWq3FgY7JQVs9Y11UgIOCNptWwpPQAwemM6fmTIt1Xkp12Wr9X1eXEURehpWQmV3dtnMgoNJWEldRi8sr152qs3eYxOmBxY9i604yDxA1xiC0n3ugcQgGum3RQAU+j2ZvkJ0HMjxITR7Y3GizUSgCpyGz1MBtHgqELgc0BgJfGzquN9j6iiAbAJDbLh0M152UwfJFHnAyfTekVL9vD0SxA2l1CNQZOzehB7AMxBl7mpztxfTZHpyGBfiIrVQ3fPh8P7WhdZ0+mJ/K8rg5eIMdJBg4ovQJXG5ePHgLUMa8OcE3//DXMZ9e970dTEKKsr/A/uwReN5hu7uOabtFBHHzZocXPvlTIbURpUE9kuv2mie9tEAvhvE24GcE5wMgFbpv3K8BuNwWCOa50+dfxvXbL5kuNc2YNhsvJRNBYQcxSOzBYKoQZ4oJHTfWZwDsAjghsST6fIBAyj439tcAJAAVsq6OY/Yx0IJ5OgFoQllX1NXkUU4KiODm7Vt45623cDhcIOWN9ZWBabsxALX3Yb8/YCkr9FyshGqpeO+drwN33wLzBNX/Cpozfvyn/2n8/F/+V3HrY59Cmg0I14Fnw/4CvCSOAcjNnopxCyYuB6Op4N4bX8drv/frePj2G7g4e9zmMZjv6pPVZYQPVguiOljap36RC9z91tdx/63X8dXf/Xt47s4r+PhP/Rw+/tN/AZyDqc5tZQDvffMreOfrf4zDxeOIJjfZ0dhZALdJpa20KFEW695At0Pz+9u0xz4JkBHaWpk3k+uYnjSjg+3ptkyaEq5fP8XuZIPDYQ8VYFlWrKtYTpfY2kqcMGXGbrPBfn/hY8TOhOjrqJVAo2ErCda1YLvbgTNb2V3XiCypxXa8se8SpKy4eHwPKc1gNlnkPcaYDBCNOeHevfuo1UF+rmQRBYzS9kLHAoj7XwafiU87O+NOAxWS+aGoAW/sfbjJTEUrvecgPSsPDE9Msptok2WhG7jPxM9oQ1CwJ7S4ttjmM84kwLmNAKZWmhyRDBPrTgMUZDYmWKE/K6BfIPBNglw3vV8crEIEZF/jxDCbVBRVFJDkz405UCgVKApUXRfnAL6ryyM9XquAs1TWlnQQEqexs1A7OTC+LQadwtZWRSu3CzL72Jm8o5StfaeCrhGUFfgUoC8C5bOKetvkE4e/QLwcYMjrxqBI0Apnogybl5o/0Wx50wka8KJvzsbSA+628pjQwpxa+e5EjGVZOxgOI0zaxiHARZdHJ2zhOH/IUVwNfDMu76Yb9rUlVfy4DiVO/T8hcLsOCxjgJ36OMmPxrlYGuBpjLxRanLHLmU+rGnNSleqfW9JQjGtZSzurmJPtIYTB40A1d4QSEdQxEUYeKAiGyMYQ7CXILbnTzs1SC4iolQgfdQvmEfjjfIMxDj6YUVa8983+Ju5rTpzMpBUO4dYXNUUJza5rjiXOOgOVl690mT+C4ikmMuYlbPd2D7u9+UjR2avUmMVD72UEQMnkda3G6hdnQn9m19kaANbHojOGoX+Oekk2U19vYrIXIQc1zjbx5x6DE4H+Xlftqn1nTXH+4O4HvvpLv/4r7ee//X//3+PFVz/7FMBpuTjDe9/4Em698smnQEonN5/HT/+z//LR2v9Btpd/8mfx/I9/BgAw706wPX3uQ+nH2NbDvp0nP4h2/uAufvc/+3fxu3/j38O8u4bP/cVfxi/9j/41fPxzfwFp0M2/l6Yq+Mpv/m382r/7V/DGH/02ntx756lrzu59MKqY5fwJXv/D38Trf/ib+Dv/9r+Jl37iZ/Dn/5X/CX7hv/c/w7w7RnmoKr709/9LfPnv/83vy3v8WbWUEl544QWcnp7iyZMn73vdtWvXMM8zluW7Q67cunXre95r78f69PWvf/17uu+PdMsA/lUA/wsAPw7gEzB15tnEYX9qq8nII1i+yxv8oNrzALYA/hsAPg/gX4EBsq7KvF21q/Yj1z44k5IHbTUCC0RWwonMCSHVDN5aOzV/OHiNYWNGSglVBJzckRYldPyWqopS1B14NfzLxgwgqzEUEKBCnvlsBiSjGsCBEyTovZmh1R3ScCeRVCT2AKY77SKwFuESdQpgYkaioDEm1GLljaJ2utl7AkZ2x2Byh6xlbpph61TFqTYnjmXSszMTGOuOQC0YOwCKAEBS8qw9u1arBVhyMuO7VLtvypOBeiJ4AEaVkcXD58JLgkALWADGCXKacH3HKBd38fD+25BaMKWMdV1Q1xXztRMsh4pl2uFivQsCeTDQjG520BTBM74jE8uBHEQJUcIuSlOY0zJjuQCIOmiIPHOcyUEgat8R8/JBq/g8KEAT1nkHSgaESl7aiGAMJxYXSVjrClVgM88tyGwOB6eN9oCFeOArpQxqmWw9Q4s5MprdKRMZlgQUVRAVqB4gshp9vMJZITYomEC8YD0smHeneOH5F/D44SNst6/gcHGOL3/xT3DKBbuZMW1n0Dw3EE4lwdnZY2PQqoprJxtwqrj/3lvQ+Ql203PgzLgoj/He/gJv37wO4YTNjedx/bk7mDYn2G1vIaWtjaEsqBDUco792XtA2ePxgyfu6Fhw7dptTJubmE9uQTkZc4aKgVxAKE5nXbw8iUKRAHfakDu5J0B8jMiBIkJtnRQtePLwMQ4XCZs5Y0oZma20YWHG+dkjXDy8h902A3XFxz72cUz1Au+98xpqNWMrIyHBsounKQHnZ1jXA7SWvv8cdJCSZaTWtZh8YoKVSDR5pKIoujqhDEMAzCnh+ul1rATcfe89iCyYeMI0TcibCdev30KRiidn5wCJZ6mb05/ThBvXXwBzwrTNqPcLdrsZWg/YzjNOtjPO93uUaqwapOZQrKtnyHlZNohCaoFWy15OZCUgoIMjtQoaMA8mkwUEPSRIIvs/bP8ABBEydhWIleGEMehMOVvpSXeQy1qhuqLWFbUsBoRUbZl+1UEz9lx3liZgvy7QWjBNGdM8G025+wiTO5UtaDkwoGi1dZQMSGUBE/VSTCFLSyvfUKV4UKJakBFAUYAyNbp89pImIGNkqdXYhtJkQYqCYtnXzvBDIJSymoOVYeC7RKi1YFkFM5nzX71sGiwkB7BzQZCVrEB14JAyIOKsR86wxgbAULFxNQCvgHI4e50Rz0siAA6QqCtEVqzrwcJJDrZiisBZBECTgR+InCjDgzYoYFZjFnOgb+KeybusFcmZCyxwpeAETPOEshaUcmgyb12LnZGePZsyg1iRp9TkdwAtUk6NTadUc/quq42fOliA4VnQAMCE6sfV5MwB8LnMm4S6GjvAtLUSNTlNWGkF9gTSnvHez6MWfkEEC3ybOEOJgd8mZ2yqXpoCSjgsDQ6AVm4K8HM6A8woa3EmpZ4xbIFvBz9GoIZMf9pd26CqGnuFg/RKNZBnnhM2uy3On1w4+MQYdWR2XatWSK2N8Y1JUIyeEQorr2jywkrMVoiVKPG1UMqCqsUAWQ52ZmLkaRoCbIw8Tw5I8ECBBHuBOeFTTp4RZ4yYUf4sTxk5TyjLamXZ1ECOKWdwng2w7k52Aw/6/iYg57mz0DgwONiAVCpIgJQDVE5gkhbYsbXmmchPBRHteVKr6Vgts9vZFRKDJ7IySB7oJIpsb7TnQa38pGWaG1hhXZYW5LKz0+YgZc8uF0UtS8uQjn6VUpzhKN7VWTyrAhTsVB7wIA/EIcKStvejFKaqgvycRV/lFkQi9szpj2aLksQd7YAhqNmDjZ2NIC5y1rlkZdS0AV99jNXLxgAOMLDvqwMDiHqANQLywa5jPtzoA4B2biLiXy1sSa0vGgPfvtsejj7vAU6K70mUmAFapTLAdPcAuQRDapwJjd2O1PvsffcSeQS3LYAWbETrnjb2QPskwDORMd/Hipwpo0WvMJ7buBT2VpiQAJhmO+cy4cFb7+Fw8QQq0kvIiICnyVn/MniafFzsvm9+6Xd8H6Oti9YF9Ozo7hCl9v+4R5sM6rp67AffHWaL+Y0DSMV5gzzvQMzYXr+J68/fARNje3oTt3/sUwggQxVBnmbcePEVBwd6sNt1xxZU9LXdxnHoce+ff/aUg1ehUvDGP/ptlPWirTErKZihbkdJLUjTjJPdCRY+IOeEsj6Pe3fvgkiQkzHBRX3lCLevywHEjCLAPM1gFuzPnwBpQeYNKBHKfsHXfudv4vzt1/D8q5/Fp3/hL+H5j/0E8rxFzlsQ5bbmRQW1HPDo3W/g7mt/grtvvO77pWKed+C0xcnNF/H8j38G5w/u4st//1dQDnsADgxBgIVidQ2bDQSCBcnN5vIz3Qxlk71VsD8/x/qNr+L+t76Bh++8iY995udw+vxL4M0Wy/4cX/3Nv423vvjbkPWA0+s3wLri/MlDiHppcbc1G0BOipcmHlg7GrjF5s7K9wToMdiKte3vkBUKK8M2z8Y0e35+DjS2QDtP583WmEscvMgpNf0JkrCZTzDNG6TMkL3g9PSk6Ww5ZTtXNMCacP3M9zcl08Gp+1wMkN39G8ZiZACbSDALZiEFoHU1JjsO0I4FJ6ZpRq0FOQcXETBv5s5M6+qXioElpLGtVBuZAMY0WR/nt41zVbVEAtehorR2WOijLIjPggFlBIsBJvdDbwj2kgYmg4NtfP7MriLICJ6lDspStzGjlpmM4MUAN6ggyv4pBHQDoP8Wofx0AU9ul1YDyZrNoDCSagXISohq9cwdX+/NP+XPeufVd3CBB7j25jyMIZp8oa4SN30/gNj/f/b+POa27DzvxH5r2Puc8013rKpbI8licRJpSqRtDZZaRku2W92tbkMR0g46aDt2p+NGks7gAEYMBAmCBEGj0WnECZy/gjbSgGGhYydty4Niuz0psqiJlimJg0hWqYZbw52/6Zyz915rvfnjfdfa5yuSYpEiKVL6llS8937fOXtYe+213vU+z/s82VSzXPtOJenX56A5K6n3bP3tUCXU7LUgT6TAdYfb17m7uAwx477L45deY+rnhLDnoVcL97pklqoKa88EI01oTVkl+ldipO0bxVR+iill5fkdreSmujSospLFDC3Gc/ho48LekWDqpB6PSzYn2HhqodpOXLE75ppyXN2vBN2nejTPp+rhVV3LzfMmu6qBs82bcxfXDIxI6V27Irx3uueqKrCVOG/9gikdTZLMShGLX2stihG2qeur7SXr/FDvuRQt4AKNOzB1LBFSzm1t3d1314XNUYtX7F2t82HbC9Rl0t5Takhs9+s9vtR5zAhf3hnZR9eIOufW91YEi4/r82gPUuOqon/Olmq7McZut1tf7+wndtfpOa4z8lVVS426FxW5+M5g/byrFtVifT/byddz6e0Us700EpvUfdjOnCZVXcvup86hO3HbznC18Xfx+/M8iX0HaiFHi1h2O+myXbZvUUvDljc+96++4u8f3H4Jbr/0JT/fJTp9q1u3WBH7BQBXn3oXTzz/Xfr3W8/ywvf/sQufXewfcuuFj/y2x/MxvmMVqi/X8jTxKz/9XzGsT7/6h7/RTYRxfca/+pmf4jP//O/woR/+cX7wv/+f8NT7vxsfuy/Z+4gpYt/9rc/x+U/8oy/77I8ef5r3/5E/wYPXXuTv/1/+12xOH31DLzmNA7c/80le/+yv8tYXfoPv/jf/ezzxwodZ7h+R08TP/bX/K//ip/7KV1VR+nZoF2LCr9CuXr3Kcrn8uklKb29fD2Hp+eef51Of+hTb7faC+tPe3t435Jp+z7WnUbu2fw9YfGMO+Rs//BtcffMqz33muW/MAb+WpoZA2l4AHt/5XYfa1R2g4cgfAa4CR6iY7TexibPCnK99SF+2y3bZvgHtHZOUcslmLeEb+O+DbxtP9TTXJGLJ1QZOwYEgrlW3i2DAjbTNoXeaVC+SG0ChoJKSdxw9OFVPUVsUUzNCbYuwBL3K0ttmrkzzBjoEBb0lkZMm232YE3POBWKYN5t6/HqOOTEUY93IFTyz7HVN7HgvdJ36pU/ZUaJB8SZdLqXYtWRVxkgKkmrCOSBUxYhqTecvJOlrQker/FBVGRFC14P0hGBAi/PkpKC8cyhYaFZCWTJeBMkwThObzUSWDUXOETnHk8kTbE7PtLKNgTQVXFoz5r4BMy250jbY+ry9EbBKwRIKWv0cY0Blp02xwVUpd7WcmaZMMAsctQzUxK93AaKSoRTYzSrbHXrSoOpWGJgXfcC5DkHtgbzvbQzAMHomI1BV67OCklV09+5xPlLxIXEYoUWJVrVC3QevRA57ThVCLEzAmrMHtzk/f8iqCNMEwyjEPfBdILvCOCVi2GexEILf8D3f8xGWe/u8/JufJQYFHUuaKD4osUIyXVTCR9959g4jgyS6EnAxMAwnuEEQPzGOE5/91D8hLJeE5WNcu/EcTzz9Hvon93CuI+UNaTzh/Ow+9978Ardf+QykkWmryma+g35xha6/ymO33sP+lVvsHdwkdvvE6IwwIa2yT7ETIRO0ItxlCiM+ZILrQIQsoyU4PGpvqIoQRYRpA+tB7bP6GAje1Eu2J7z62U/w8P5t8jiw3Z6BN+We4pVcI4UgahvWdR5XBqqvhLNKOu8qYGzEgaKwnxO1TSw2UAXImGKUCxSnsU+/3OP6jcd5cP8M74s+gz7SLTqeeuoZhMiLL30RkYEsojYyIYILdCtYLhZ6XODG9Rucbx5xenrKtes38CfHrLeDKWQ4ijjEALrkIAZv6kUJ77T6c5oESia4AiUrIaVo1R2ukIsgzqkNHVsEZ6pzWYk0IRLCwkihdW6xJKBzdLGniJIvpNqMOKdqUMGS0VIrIa3qskJLNqd47yFEBEvchwq8azLNo6QBiipfNDsBs2TwUQlFkq262qo/xTL5OZW2BlQSSC6q8uPEm1pMaHNtzlmBjgpEFG/JcAUPauLPh0C/UrUBb3L9iND1PeOUlCDkNQHpTRUgpwReE54h6tyapgnvO2KdJ0QVkTRhLeRxIg1K5BIXWzIRUQWWalFSAXtdVyy57DKUjDh9DrUfLBuvqmS2jnkPpSiRbRhAykiapjlh763KG1X5CQElfyB0vcf5Akz4UD8fKNuRZkHlFKAJ0RGiqgT6tpYpaa9IVc6xCmmpYJ7YfKpJeyW+qCVZiULwanXayHslU7yj66NWHxdMMaeAh27Rk8e6bqrlVk5Kco4xNPUehVcgRk+37NSyoJKvRegxO8dcCGTIonNv7JjyZGuKrnl9FxrOHy2J1KzvRIk4OWer4BbERVLJSvZz2WKPKu0fSJPgiMQYKYZRpCxsh0EtbBqQY8odQLOwxGIX0fdfE+aVAKTAnpIgJyVOdn0DenJKZqOl726IHWKqedFHYh8pJbPoO7plR5GqZmGgSFaVTLUWVKvVBjiXyd5TZ3aKuv5mI1vVymIlBZmlnPc4b/Z1BgILqLJUmOMje0l07c2VjLNDYjAQRquOTZHR7yZsNH4NwbUYLudsleVWxV0cKQuxsxjSo2tMUTtRRyBEBZ2USDgDw4YzKsi4k+CvSgF6BTvFjRXccUrmVOu9Wu1PA+9yyk3hS39swFuoVd9ilkfu666o+lY0JdwYKbeCYpW44er9zeDyvJ/Q+dCVVtd/MSlm/aTxSalDhAY24nHRt39XdT/9ipGmpNpzzNEdO+PG2UUKZQZWLYtRFYca8WcnQVjJVNqkVcTXy/eukoVc+3wl2yqZeQY4cbsgViVl7yqJGPDZ9jOuHb/uJ+qcQplJSgWxmL1aTtHGVRtzbc/j2nNyRYnr05QREkVGELWGlAzJSH2BRC6C84EsY+uLqmzSyGINNHR1KaaS9oCmADWrSlVwV+fIXArehabgUHeI+jmvmwIDRL0DN0XScIKglnoPb3/O+t7P4LwRoULXsXd07cJ73SIh+8zVW8+xunJj52mDtOdjhKl6z2ihyfVnntf7z4kv/tJ/y72XP812fcI4bekEcrY9SafrvDhbq3xHCIIncevW48Su59H9u9g0pvOzuEYUUbU9r/ZgvSfh8WarnfMAGcQVUlrz5muf486bX+QL/+rnufn0C3zg+/8Yz7z/Y/jQ8+jOK5w/fIOzR3d57bO/zJ3bL5KHNTlprKih4FJJSgfX6JcHdP0e3ndGYskmhCHt/anh0KyelGwvbgQIzC4XIz+IzevG13d54gu/+i946VM/z97hFXzsKOOG11/8NTbnx1rwlHSvoNOCPjmHTpcVBHfq16rbbUPUd+eZUnaIjDhcMFKo5S/Ezb9X8L0QYsdqdcBmMyJMRhZWkvzh4RHgiaFju9mqBarTjUgIjtBBt4gawwKr1R4+dEx5w2q1YhgHJiPAav+4RqooTkxJuM5tRtqz/vNOONjfVwvT0QrP2FEJsx0SghWb6PNaLJa894X38ejhQ/b29tvcdOXoSMe0AWvZ1J+8D1w5Orq4rtWXuzVv568x8KwAosTiL5MtFprCWZ0zGqBf1XYq2ayqZbp5/mtEQ7vXpqxY0D3KjiqmHqKuPEpMUMKTQfqN0K4qq4SA64E/DPwhwV0Dj5LKck4Wv+ncrPtRaTkLbG/jAO+jxmkyE+UA1qtzHt14wOq1x3fWzTouPW0Q1Her5s5cHZmlzk5671Y8MM+3Xgl83uLNQ0jvHyj7hfJsRvaN5HAF3HKOSXS90T5S4orFpDvvWclCJQ/X82te0e0oAjlTojHr0uIaMQP0+VQiqj0Azp445Wx9StpPhKIxaQg6/9cigoIp8kZbH6TmCcSs5WjBWVXToY2ReWzWc1bLd5zGqXU8SanzvuCSXmsIVc1wh/Ro91DantcsXUtpVoG5xYKA2aYFqtJYJdhB8ZpH8k5VisVbrrVorFxqfCPtLtozp/17zvM261posbLIXEQkYY7BakGDLbWNMKTKaja3Fn2+wSzTWzcKpnQ/x+51FcDmI0ctSJiJiMWIgPUaahxQY+0aIyMyz8u20NScb+3WGhNU9cQaM7RYqb5Lbcsh7FrFVnUpO5rtAXfiGBN8avdWP55EldJ8nb9yW2PqnFKXH3vM7X8sfN55j+dnar9oMdBOYFVD3TYvtO/VFaSSA992rMt22S7bV27TsGEaNgBsPvfoAtHmn/7V/+zCZ7vlHteefNdv+26967t/gOvPPP+Oz7/YP+L9f+RP4L0njQP/4P/+v+Oz//zvfm038U1ou2SlJ977XXz/f/c/5j0f/yEAXvuNX+H+a1/k9N5bfOEX/hHHb77225Kq/vn/8z//pl+vSOGX/pv/kl/6b/5Lrj75LvrVHiUl7r/2ohW3fPu3+/fvc35+/i0955NPPslyufyarNoODg740R/9UV588UVu3rzZfv7cc8/xyU9+8ks+3/c9zzzzzDfker+j2h7wPwH+Y+A9fEPX5Ie3HnJ88/hbR1J6ClVDehr448CtnZ9f/TKf/12IP1790Ks8/bmnObv2lZXILttlu2zfvPbOBdKCqX6oeDCa0JC2idTqFEsoiaax6ga1bq6mPCkoXaWCRUFfS/XgvaPrgyUvDLxnp7rLiWVv6ubeNm4uILmmW6SBlRVsFgpi1+VkrtRCDJjzaqkCYlVDoipMVqGcbeOack30a/W6Eo2mmQiFJuS8V+qGIsW5bUwhUv3L+xiQ2HIc+KCqFF3nVfFCUBl/V6uroes8IUaCJRBCVrJAKplxWqubj5F2KjhRu6143XBnKWpjIpoUG4eBaRNZHkRCL4ybLa4IyBbvAiEkUko4p1ZdTkyG3fea5KqJL7Cqu0ptNbn4ojvhMdtzwVsSp5iSRaQo5wK8Z9ooMUezYlbBHTw+duQpU3IidqYEEVQ5pGS1k1l0Ee86vC8GGpvFkFelh0qsCs5oBkHPmQsU8Xjfmf1esOcYCbFvSUTjVhnhQJNdsYuWwMsgI9PmIeQRITCOE5v1liUOfGRwiZgm8OD7njxtmYaBx289wec//2mO7z/gmSefITu9p3HK5JTou45pvWF1eGBKLUIfIttxTU6qFOUCTOM5680ZISwp/iHT6RkLJyxCgC7y6PgN7tz+AmeP7jJsHpLTOV0wNa+iNlub8xPOHr3K8f0vsFg9xlPv/hiP3fogKXQV12nZnFLJHnikdFrpHEUVrzDCoVPrNSceJxNSNmy3G0pyjBMcHF0hycSYJ85PHpKLY3N2n4eP3mCxJwzThpRPWZ8cI1mVbkKAZd/ThWCy3uBJhODJRSXAFXBX8sE0TW2uqgmralVVSdKVfIAPiDdA3UX6/SscXjnEFafjr0yUAtM4UaSw7CMhOE5ONmYV5pCSmIZT+qi2Yt2iJ8aeRVyx9SPrk3XLThUfiC7ovTiTKg869p3zxP09FgcrnO9waaGKHdhcVv+0hG6InlI8hUJUhBRxgRBWxLjP1WuR5Z4CJotFBBw5TZTiCWGJSMYT6L1j2Udi9PT9UpU/BH0fnYJ0Lo9NYtw7TThPJRFjpFv0hD4qUBW8OVJJAzrTOKjii9l51eR+JT2VPClwKsxKRNWeRcTUqhzLvmcjW3aj15rgBJrajziUBBNVYS6lia5XyWEdG4W+7+x9d1RbplxULl8UHUQtS0RVkOydExQ4lGFEUkJSQtVSTU0IXctECjkLw7AlTaq2FqraUV2rgGrRYDdDqRaXkgBVFCw5AaUByzo/KQhl1EtVqMpq77bZqDVbzhMhBGKMxM7pDbhO1QVLUmUmH3DBKt6Lrp16KZmSRrD1P3YB34H4YvaXHSFWC1in16uTJV2ndqd50rGbgyp2NRuwGBGnIJx3QrRq1JwyWuAckGBzTlYCkpgdG66wWPSMMjEOI8UVuw5db0IXdV6SqqwI/f6SfhGJnW9J+GnQtb7rOkLncUErzZfLJSFGlqLvnpiyUAwdPjqmUVWDcslt3MSuUyCkFLCK5xiikglMUUTqehjV9rWkghRVigoxUO2oSi6qeuUVBKkEW8Ut1M6yslEUyG1ZZSWOGeGlFCgp67uXCjGqSqMSuLSfKnlNE9hqfersnXBeAR0vzggAtjZ7r+B5UrUzjasETFkipwzB6f16vbYYPc0yVqpNmQJmMZoiUxoZh4GA12p5EdwOEInMZAR9381O17k2V1SiWOMBypzs1/7U9aOOJVGsQ9fCGgcKTGPSeCvGZmsYohLBZ7K2JfulKkWpomZ9vyvA4am2yLP1QwMDLX6OcY7hstkseq/2t9XqTYGRYs9f41WHJ8ZOgaqq4vDt2ioixA7gV39S7G+Gi7hQQaCLQImqV1XEtUIrVEgL5xSIlFLPYbbDjb0l+uoU2ibF2btT8ag6BirJZ75WqSdqexwF8Ww9rqAVUIkL8/3qWFFC03w/2YBQnJH97Yp17BpgaPOxkwqE6TFDMKqF2Y7pWNL9UlUi8KbCVPdTzs7TVAyKqgLqvFD9W+pcs3P99p5gc2e1mBb7Xk6e2HlSVPVKBf60cMD5grP3vZgiojMLmto57a6EGQC0QSM2NrIpj1Qide3ZBu4KFOfIqZIG9CgiYkUe1d7X3uGqqmKKVcGrwqQqEdo7bOQxcXB+/MYMMNfh7PReSoH7tz9DLW6o40nf80AFNGeSkja10NS5P00jkMjTVveQVOvipJt250kUfFCLaR8CU06UnNk/2Of+g7sM6w1Hh0c6ZgqmGmrKVlOi62f1leAcKY9NhQavJNEpDXjXsTnfMp6dsr73Ol+4/v8F71mvH3L26B7j9pw0bZEy6XpjADhOFedKOWZYPyB0+xxevcX+wU2KFX20Bw6N8CbisAVfQWASSFUBq3OaxSYykcYJKWrX2C8WCLqHPDu+h4hjGtdsNyeETmO3UkamUa3N6/lj9GY7ZHMHxdYy1+boSiq8oHph117VAaljocbnNgnoKAmEbkG/WOj+OytqLVIJuUIMnr6LlreQNueUPNg7pCQI7wPRdwQC0zgZcD0D5MEJodp2tUnGEfqObrkgLhaAWh7r/BHmtdXeKSUP21xR5zGnKsjedyxXB9y6tc+tJ55WVReMLFkczmv8D05Jt9Gx6CPL1Z4VHMwvuavvo1l2qV0qZlmvY9tH3+ajSl3A5uZScivIagqqQiOf6BgvzRJLWk7JmpGcQ1eJwXlnRZrH5qw0pQ95Jk8VgsU7JdfCN33X/ZNOE/Dv0URMqZOTxT5KFCht/prnIBvnZkfqKdRXU+9bSD5xcnjM8faYJ/x1OuI8D9nE0lYcG68iQnkyIzczbpK5gMcs+MQ+09Zabw/qgyCrDM9AOrCMn8U5Suyr63NgVl2xNdweXbt3WztrwRI2Rht52HYdsarRBdeuv86xweJHVaW0l67GvivIsUCEKKrw6n0ls2jup9prYnkMqaRDUXtyj2MqqQ45jUEyFv8JWnSls5CPQfdDZpeGre2lFMsNqj15MfJR3SfVubeqenkr6qgqqzXW0HjCVNBrf++qgFWLzSLts7R5ynIb6JSqJEZnSrK+dV39s1QGjLRObX9WG7C6buVcLY+lWdSL7RnrejpPgZXI7YhGgK7HKqXGEDVQt3FqyvE1nqtkLWpcK0b69RihRlqftN97R/BR14SqkFX3AnUI7Pw5z+0zYd47VV6Und+1r4jmLvS5VJK7EVVlJoc5rSSj5qfrvFfnEH0mtHfBu2DviWsqWW1C25m7LkS9O1OL837uezerW1XSXPuu9UW9/0YP3bnGOje/fU68bJftsv3O2rRdc+elz/y2n7nz4m//+7c35xzdUhVoRIRpu/66r++b0cb1Ga/+2i9y+9O/QuyXAJYTTr/LV/aV26M3Xv66vvfVVIy+01sIgdVqdeFnXdc1Yv87bc45nnzySW7duvWOvuuco+u+MbaB3xHNAx8F/jOU2PMNVhAaFyNvvfstfPFM/UQ3vsO+/V7gD3wNJ/LAv4sqJX0vcJNva5u2cTUyLSZK+DbOpV62y/Z7uL3j6aHmxB1mObT7c2gJoDlxW60BysWkkckxi5vli/2M8ABaLVfJLrViVw+wI+/dKrDNr7ySkIBIaJs8TWTqJrYm3PXAKLDjAK/QRU3ea6XVTlLfV2AjKZ7RNoOazRVXK3bM+qt4vWtLKinYrpZMxaqv6315q6rKRszyIehnBTKiKhfezcCB94jLgCpbFVCLHuurtryX+X50I2o2QPimAuQ99H1gu3kEsafIRHGZGGC5iuozLxPISBaHCx0eJZiVMtjGd658EmxzbEojdQvtg0cyDMOWPvaqikRWwEhiUw3Ios8+CGrFYZtrTfgMliwSijhKcoRiQCnCNGW2Q8I5JY0AlGKAhRO1qLMkoBOlffmi4MFkUtw+hKZCoONCCWwpJ7oYjMhQgRJHv+gVDIoecsFROHt416rwMvfvvUlxIzFGUllA8Cw6hw89OcCQB7xEchEOr9/g5NEDpmmtyi9GwMrjyLBZI8NICoGNTJQJNtuBsYyIOHyMhNBRnJLmJCeKO+X80Tmvv3TGw+OXcIvAowdvsn74ANJEv1QpTUEoMhI7x5QGpiERXEfJI+dp4PZvFaLLHB49znK1YjsNLfE+jSPrszs4hNXyCZZ7Vwl0phATEKrqWYAyMKzv8Mbtz3D64C1Kcly5fov49LM8eniXB2+9Rhm3dAdHHBztsz1/wMM3HiJpZLs+oeSJ6At+TxVX9lb7avdmlc99B6v9BWlwlGEgxo5xHMkpGfh3MTlVLR79TkI36GTEYm/JXlzhQ8d22OJ8Yhw2aoFmc8rZ6SldH5EyELpAcDBNCU9HcD1RIp6AI7DqIyVvWe7tsU2wnR6q4tKo1llhtc/1x29xcGUfyFY5GvBEvINrV5akIbHZrFlPd+h6kFZRbpWARQ8ZO08RT8merlty/dpNDq8/Tljus8cBYdHhvRDyGYIjJSF0eywPdF53Zr0YvWOx7FjtHbK3f4W+m9VKChEfFwRTP/EhELpA7JTwgimoOYcSd4Bk5Connq7rKV4VLDTnqCpXwdTQivdmoal3WBP/3hLgau3oiV1g4RZ0RUhZlZOkKMBXrTGdc1ArXGMgOiVZCJUoYsCdg+idkaKKWSJmcprIKTUbLR+U2FVnN+dU9WXKkxKUckay4Iv+vjOrigr0pKR2WFFnfVujdG2rpFJNMCsAn0smpYEpD2qxV23WgikRmL2cDwpKeXsf6j2VLHgqgIMqJLlMKkog865WbKqqQTRlpCIOwVOSEk1yzqpkFLXPQvS4oJWwetw497dknPOkJOSSdL5XPwucU3Uf58EXNFFeC76dzqG6qqgNntolzLZx9Z6dgZzOgIGcCx0di+WC0AXGzcA0KSF0sVwQYmTYDBQKi1XPcm9B7HRuz2Niqslkp9cSF4E+RGIMFqt4nOGQ0feEEMm5Y7seGLZjAzlaxasXui6yXC4NKBSrnhd97Ni6Nk5NZVIT7aZQZdXkdcx771SpSOZEc1UPcN6jjpY6hlSdIag6UTaloSJQVGElp9JsD3Td00S8Em4dUURtPV3BR4ePfVOEqUBOlqyEbe+1mpvSQJGaTPf1foS2JithUNUXU8pqS1aKnst5xmkyhSnth0YqopJ7HJQdsE9ncYsDjGAYqiUdqgonu5XWpV1fmjR2rIQxKVmfW5gBVip44JR4XpLa+FaAYhwnVSypFsNNBWcmirtqCbSTr2r3tRPn+KDEMo15lOTrAk2BqoFUzDY8KU2NmOGcKmCpysy3OahgAKprz+Xi73ZBot3fV8AKU/KbPy9UW1FXyUQVv/T1eDPZpR5JlQaYwar2pfmTviKtIvP+wcbFhStvBEHZPVKFfdr9gLSxaK8TFR5qexA7RlPawog4pvyiY9qUPep7sNNXUqrd7Qxu1nKQpi5Siip9VHKImwlZeh87tIUGWjJvgGxplfbe6xhO0xZcMLBfizZi562KxPYuogtSK/qo84s9t6ZmUu1O6oio91jUbiZ4T1BvXItl/dwHsrNf3CEENfUOp/OyKmLNfe9Q5YeUjPzoaz/vPP0dcLH2TO2WInXe8o2wNl+DWYY7XWebagno/G5DraKN4/bchoywXp9p3Oc9IkrsjUHJEOIglYRDrSoXqxXjdk3Ok8UXar9Vsirq6R7BkSSr0pWoipzem1op5lIg257VDUzbkeMHI+v1A1x0bDdnjNsNrhS1h+2ijWKLPYxk6VyguEIZEqePCp7CYnlAiKouWDsw58w06v12cZ/YLXXvIN7UW+s4dhqjTeecnlRbQcdydYA/usJ2e87m/ARJidAv6Bc9adywGTaqQDqNSMl4X9r+oes6gotM08R6vSYYubp4h6SE97Mi49sJShfmGlfHqRVFeIeLGks458k54VzR52JAsKTIOA5471mvC1ev7uNNJUu8EnqdBFXwFEcMHpFE7Dpiv2S73SiYXJWVY89qf59+2evx7T1wKJHo6GjFzcceR0oh5XOzey0X3htVrFNitAhQdN+6XO2xWO3jY08HWkDkwInuRTWe6Ll24wkl2wKVVtT3keVyjzxNkKf2PqxW+5ycniqp0sB4BfBNnYZZIa4qqFRaj8Y/we7MZjmpCqaqkhO8Etjq7yliBXeVWKOqP8Gr7burxE7nLO6oSpzzHFQJFlXNVYH+2XbLOfAfc7g/DrKygrEijSgotr+pcbxr86raqjdChB0vS4KiqpZWh4aEwrgYGfqtkVd39hAXVp+dedUV8r+eyFfTBZuwSnaYVa6ckWFkd6Drum32k86xs3extcXINHWebSTuOvcWzZeVbASSGOoCqMqalfBxIV/XTmb9PK+P2PPavcTcZR489cD+VWzfb396W1N2cniVNKcWXEVV1p3gi2+kIpFCnnQvWwsbixHhfeeJfTRl0EpmszXN2Trj9VlX9XmdImzuN3s4cPjkzFJbr6lFcZb7jCFSLQ+RWhwhLf+qz7SxiNtYaLZqO+uRD1VNrW47az84LaRr75EqIqlKofV//V7dr4rM8bo9GSXcGlnb1jlV3w1z6G4/U+Uk166x5QV2RnHLZ9b5zPqhxUxtT0C7Dh3f6UKcJrvjydb7Rlqysdf2GvVYJmcs1Z6QWZHMvoQqz++M02J57jqHzh+1QHUmxrX7LIXqBl0/W/dUwnx/b1f0qhymi2pSFku0bhOLeZhjrB1il9j5L4TjVaGTnRD5sl22y/Zt20SEcfOtVc/5elrJ+TviOr/edn5+zltvvfW7dv4HDx7w9NNPf1PPsVwuLygf/U5ayx+/7WdPP/30lxCSuq5TF5qd5r3n5s2bnJycfEOu59uq/Q+A/xR47Jtz+Bwz6ytrdXJ5h4ScEgvp/5jg/V/HCd1X/8i3QxtXI1/4g1/43b6My3bZft+2d0xSci2RPm+S5gS5zAmcuoGtVXwAO5L5rWpDs/+2sdIdVimubaLmxLUlJCzJJrh5kyfgRKsBvasbTiNHOd1sevGmaDBvSJ1TUk9NQul+Ts9VQBP3VSvfPkOVlRZpwMG8P1VlpVJ/5xK7u38Fyk2Fqm44XT2bVUjnTMaSY0WryDR/68mS583sZLpTO4BITUCpXcpcFeks8VL/jlWHZicQHc4Veu9JsuXs7BzvoHNC8EKOZq00JlXz8JGuE7pOiR05T/jQKcCdi6rc4PA+al/artbjDbwveFcoZSSnjAuOLImcRk3ceFW6UMsotfqpm/darSyWWCy1ulWcggzO4SOUacK5bIpOgo9xJ+FpikOYzZwXfBakeNKY8EGAAbX+04RTzkkrXtPEehK2o6eMEyULXejY29+HCKHzqoafB/J0TrfqGE7Peem3XualV15REEFUxUqfh74Ppdl5qHpMlwuP7j9ArZ1UEUcEYtbKtDRulXjlAlMWxAfGaaTzQlobUG4iVIuuw4WJKd9nuv8IYiCPI5LPFTQKPSWPuODJaWTKhTQlSkqMaaDrF4RugNxxfP/z7PWJq7ee4fjVlxk3mdAvODt5yO3f+gzeRx5/+gPcfPxpfQeKKrQslx3ioyao8pr7r3+Ol37jF3BlQ+wXjMMbPLr/WbbnZ0zbc7oQyA+Fs9WKadjy4O5b5O0WnBC7joPDFXGxZJwSiULfKWmOEPCd5+BgQe4Dadlr4nkD01AYtoL4iHNFVWOy7FTjOXzsOLx2yKKL9H1PXCyRBFImNo/eoowb8pBxFKY0UbIjTwPBDUzDmuj38GiSWys2E2XU9zZRiBKJTm2crl+5zoc/+nEOrh7yz//hz0DsOLz+OIv9FSkU8nakjCPiRlxwJBGm4YyrV66x3Nvj5PgRMQZi54k9lOSQEto8JlLAL1gdXePo6Crd8ojQHxAXN3jPs88wFk9JW9569TcIIXDt+mP82L/9k4zF1HSYVK1LIsO05d7rr3C0XJCmNX3I+P6QP/i9z7I+f8DZvbss+469wxtcfewmhcz9t17jxrVDfLfPnTdfY3t2Tgk92TnGYcM0Fs43ZyAQRG0AShmJTmk7Xrpm6eDE4ciEIIwlUSaACb/o6RcdcRHJWqJKjDrf6rus86aLEGNH6Bx9jGotEiAY2OM7+89BF9XioyQlJ5WcyFmtKJulVRpN1UPo+17nh0kTqT4EspGzSk7kKQOdgjsSCD7iyZBMnS/pPF8TqZqT9vZftTjQ+S24jEfMps+S8kW0ArwoIcgbMcUpOtiS5MWpgpO3Na4UISXo6JX8WiZc1DlP10lNvOOcqdAIoTNAue9wiIGZZiVqlh7V9rMquAQf8KLPMKWi6nnQ7LFCCApreFUS8l6QVNROLNFIOmoRadiUqdtJrOooWiVc8kS3CCyWPbFfqEJfdCxlgQNSVpnFbhmJfWC53xO70EDUlNSKxUUoBip4H+iikgSLMxsv8a1iv+RMSUlxAMu4h+BbdbHzjtB5QucQ8Qb6JjASmMPhx4FxGDWO8CAlIcUUBAmqPiaZ4KOSm0T/XcndRSD2HX3fMw0T05RwZle3qyhGYVY9A7XKMgCgAF3fKYCaFMkTUbCjgkRiln+q2qOBm3NiY10MePBK4qzqmkZED8E3YE+gKXWonVtu45niqfKWqaQWPzSYytXYSHaAQH1Y3s9EOo0Xoet6VZzMdh70XdIEvcaoOc8EdiW8qfVO2CWLmYKDZB333t5NtUCRBuSUUnS8qzyjVe3PRKRq51Krw0Mwkp89L+0UJeUl5nuc7TXUfkjnn6KEKlStUkyVz5k6TVMi3yFVfNu2HcD/K4EguyQcCwi/7DHYBWlwF27fUb9b9wE6dtpnXFULsdjR9hfsjF1newFViJy3MZVo0q7LzdckdnO7l/z2RJzYeasekHPzdc2VmNI6qF2WqY/VjUjdcVXQTQEzXW+URmhfbLGPFkdcuBY3n6feoDNLOWfAp5NZuajdr60v3jkKiXGcFJxE1x6pSoqZpmgRwBQ4lJTnzeZRC0tmhY06b4kY2Fkw0oC+J8XkMJWklKkm5CBGPprVVXbwP5u7bffaAFr7lceIBKLvGKYqwPyu7T5P55hJSrkW5mRb28xa1zaOpWQmgZSdFoyIrTddp2BycDoxl0QpEz560jjx8NEjHh0f28viZttlDMB07ekrQaAIw2ZzoR8BvH2vxjU6t+ocm3MmOFQBqwl7CdF78JlSNgybQRW6ckaDMrFCk2z7eFWoKo0ErsU3PiSkBIbNA7pQ2D844vj4WBXpQmQYtpw+vIvznv3DG+ztHyGTIKKFL6owZ0mDMrE+vcfDu6/hXMI/GchPnrJd3SO9MFLKaJZyMHw+Uv5lYnt+riqdaLzW9xEfoxUIYaRtr6qC3tH3AcmOEi3vkDRuy4mdMeBwRuyor4QLnn65UMvmEMyqHITMtD1Tq9+k67EqAWqM6Uicn26YRrUJnAl8BclZ91aoGrHxLlkuVzz2xJP0y56XX/wieM9itU/oOooXSkrIlMHpsxERpnGrpLLlHttha0piToU1d8l3No85FwirJYvFitAtcKHHhRXXjo7I4iiSOD++g/OO5Wqf7/3+H+Tf/w/+nKkrFZtvPFNK/Mov/yJnJw9whwdIGfA+8kM//Ee5/+Ae5yePcCXTdQuW+4eELrDdnONKYrm/z/1797n92qu6NvpALplhOzCOE0mUoOed9mmw/UTNv1QSCKJze3GFkgAppqqoqq5Ipph1Mthe0c2qST6YjVa1V2UmYFRSYhCP33f4HxRkrxKg9Z2QMqsXOedIZm9VARcloJemhFLt9qRkSnY7ajmmPlcKqUucXTmnf3ilvv2Wm4NaMFaJR+NyYHP1DJwRCd8+3xvBqPaZM4XxKmDW8n1S15k6rzkjvWiuTS25qtVmqdOrEWdR8jXeWK6V5KR9iKuLCjNhboeF1O6tklWchY41oRjh+KmHelxTyazWqWrBzc5BdA9SbXqdC4jtbdReOtpaPFs9V1Kudw4XdE8Rotqaa1xr+wFTCdZzKCGvKgbV00tdS0Xn7F1q+Uw4rtdJG3eVuN760nl8LqRqIdjyp7S4Usk/pZG29Tpl5/M6r1UF6lzt3Hb2EhdUdyohycZN7VZnezcRMUX63TjGXczvWsFmzfG2NdphZMEyr9ftebt5uDZikpvJZhclv22N23ne7H6fRtDRJ1PJ7L6NPagWzDsKb+2qWmfYu1CLINBiLYv952c6x4ti/S8W+zun32nEObfzpbn7qOSo+d2jkQHB7RRw2LNvBKR5P2J3b9x7mYOXehLqbcjOM/gO2E9ctst22S7b19sC8BHgg8AR8BPMKKkAfwP4a8A7EKcKIdD3/ddke/aNbA8ePGAYhm/qOVJKrNdrFovFN+X4L7zwAn/hL/yFL1FrGoaBv/k3/yYb29+CroE/+ZM/yac//emmZv6V2t27d/nc5z534Wfb7bYVjH5btRvAX+CbRlDabdv9LW+9+613ZPl2fvWcO++683s6LBhXIy997KXf7cu4bJft921750pKO0lysI2l/axVpFnTvU1FYB1itmni3z6bzWUevinw2BlEaHYVwYAgqdVvNMyi2jpQQZ6WACgtkeNNprjYdZSict45q8VVswtwrikGVKCggmEh2gZVMLsCO7sI1fIql2QgmGvgEt4q9IrJjRuTSFytBtJ7CNHbRpqmbDB3uSYwUsqEUGwDDdUipW6xpRRccaRptCSm1jCqIoeAJVk08eRamba0JHutKtLEckn6kWzJBjeJVnQ6TyoFN2VSTuZQpJveVCazc9PnUpKBes6rcripVJVcKORmV+JdUCAwFw14SjY/d61ydS5oFZODGDw5pVaF2yof8Sz6vo5AxORDU84q5a8wilZEedQ6qe76geCUsFBQa4oQVYWi68EXoUiCUIhBE/ZDPgOUhFAQyBO+90jpGcctY5lwWZDtBmeqTxIsCeTUVMAVS5x6hwtKuEvTqB6DoM8sBiR4piL4JGSyJoeLMI1KqAhWeSol46NnsYh0i4iUUS3xtlrVeHSwMKBH2Kw3qpDSmYVgcSCelDPDdk3I2jeSCgwPeXTv05yenSLJ4boOKSNdd4YLC9bHr/DInTBMG47vHdP5Jddu3mT/4JCUJk4e3eXB3Vdx00NWh1HJasMZZVRC2nKhxIQ0JdK4YRpHuk4ILliluCquTNPIdjupTaTL0BekDAybNeN6Q8ATRd8r6T3LxRFXDh1HR0eU4Bi3I5v1Oc4JGc84Ro6uXeWpd93i2uEhHmGSTOci9968w/37d1ksOs6OE84SyilPjNs1JWuQXkQteZBihD1HCgPDeM5qWmtF9+ERdIlrqyNeeM/7ufHEVf7Vz/8sxydrTu+9xdmxI8mWPGYYwYWJZ97zLm5cucJrL73Km7/1GnurnkAm9pm9wyVFDtWuLencEKNHxBGXV7n5xLMcHl5D2Ofo8HGOrl7nxnNPcfzWKzx45Q2YJmLX4UoijWtCtwTJqijULei6feI2UK5eZfXYHpsEgZHt+pTHb90khPfgSo+Po74rXc8wjjz7xLMslokknus3H9Mx1S3Be3KaWJ+PbLfn5OQYhy1IIW/PyNsTJEZC2KeIJ4uRGKcBx8irt1/h+OEjnDhCWOhnUkBy0HnPq+JctzDLRqeVnz54fB/1vShaZY1zeFE1IhYduEwazBJQhJJGpkmrp9Ok9lw1CUvWCs7kbE2zauHilPAiJRN9VYqZWiK3GFiXzF5OKExJjEBkJNJSGuBlLjFmWZUaPi+WwFeA0iTdlYGEN3WpaVArwpyVKFGnOB+CKdkoCddbRauOaVPGcbaOoXZ14zCqwo7TlSZ4rZwHtaVKpuRUcWVdX239cgrY1cRyse/5ECj1us2OTIF/XfCaTUFT9lDCZlVN8tkzplEtP70jxs6Uhnqc82yHrcUUllh2juAD/WJB6BRMyUkYx0ltH7Mm+aMpW9S1u5RCxiwY0ev0DrN9VAAwTWqlp+PSVI+cKkX1XWfnwta4SnjWsdQt1P6lJoDHYVLQ0hLIlZyl9GU/k468ko5yKbjkVAXKgJwsClTUcdl1akuXc6ZMWF8b4FCE4FSVDBHSlMi5tAroYipoUYL2vZFl1FbNQOOoakINPCuqWuiCqlupSpeRcJwzFaUZiMGhSoNTbrFWBQxo9oqqKnZRwdK+7nyLY0pKOp7ErBJ4WzxYVE2sfj0aGINzes0tUW9091YJrmOhVs4reGExQ1CFDYW/DCgoVqVcitlEZHa5IBX4D97UB5wSptQKN7YYFGr/mbWyq3QEjWtLLrONRhHyBcUo9+2fPDCyj7ZKrpjBuTrnNVhPdr4HtC/XP8QZkd2O8TaSVmnMRhowWBExV2N9drutglw0EBWLpx018q7qE/UdrAqy7Pwp1Odcx26VNBcRXBvw83h1osevW5tdtYiqhFQLR+r3di/etXvaUTLYuapmM9MQL/vuTgWGAoAOVcaze79wX8zfx1El4qT+3AiLyUCzahli7nMNwHa27yoG5u/uM6vqkOHglFLBV7uWneMKRo6x81dia4hR51zbt9UijnocVUfNDcwzLgNQP2uXZPNvkdL6t3W6U/W/uh8WMJudgmAqtgYI+kADNfFie7RClhG1uTXQtgLKUeeYLGqVJ7nYXDjPqUq0or00CvJW25/cxrruSXVNzAKuKPGloGRHVd0rNt5MSaOqgFQSR1GSjXOw6G3/XKSp1jX1FOvDIjU20qe6EYG0Ybu5yziM+s4bySmEEXxkGo7ZOlWP3K63BBdZ7u2rRV0pDKaW5BZbuh/0yPdnZDWRTfFMnbwLLhfkhYlyI+N/WnBDJcNqX6liVoaoMUjsIstlz4M0kSeNg7xZKBIcMSxwvWOx6BEjx07T2N61VDyL5ZKjKwcsFwscqhAcnGd9dqYqTcEzDrMih9p6ahHNMI688sorNLsne25CJucRKQlKwfcLXPCslguuX7vB3v6St159he04MazPVF1Sku6ZM+ALR1evsLdccvLohFdffInHn3hMSYRB6PvIYtXjfCXSiBENIMQlewdX6PsVuJ79/ess966xunrE9uyYzfEZmJKpK5noHavlouVgXAgE3xNjZrVY0l+9wjROhP4a4+aMF973Au9614+AxJ34IlIkk1NRHguJYcycnZ0hBHzXUUrmtVdf4/T0tMUgIKbUNFCk4EOPoKT247NTbr/2KtvNOfcf3OHk5AzJk6rE2PhXkvhMkIx2LbMim8bPVVXG2w99XXdMDUg+Wig3isX1qv5ZGmmmkpJbyZ8pO2mcgnNN3a7a/eqcVBopAXv/S9E8ytSpDXkpO3PjzvjB1+m9WsldjMHq3FHJGZYQMnVay9nsrg31yqv6je0danFiqSQL51q8CaoM66BZJzonswKi5QerENCcVjJa8YU5tx5bTFFnXotazFbJohZXlDxfh9jxfc2FmWVaIwEFs/r03uLYPJ/fu1YcpSShmahe7ZNrTtTX3Fol1lQVUHbW6KL7QLGCv6YcbKTYen+7ymZ1nfKtj3StiF6Vqdr+Jc3PuUWVZVY7KjK/50Vs/1sqqZ9GhKk2s94IfW0ENDa1Xog+clM/bCo8NcbQ9bxawWmIZorWfmffleexVn9X1ZVm4pDYeHVG5KuXURXU3IX7bB1W37HdDsHGmI2b+i5UotDuz3bPc+H79XmGumZanlWkff6CyhG0nHb7jEiLC9sxLb6ocSZS+6x+Z36mtaipvucItm/zjaAE0vYUFweGa8+vRjA1rtLb/3bfTFy2y3bZLtvvoN0A/sfA/xK49hU+86PAx1HSyOYrfMbacrnk+vXrv2vKPpvNhp/7uZ/7qp/7nVjSDcPA/fv3uXbtK3XY76wdHBxw5cqVOf7eaYvF4gJJCeB7vud7+NN/+k9/1eNuNhuOj48v/OxTn/oUb7755ju6rtdff51f/uVf5vj4+B1/5+tufwolzX0LWukK24N3RqoTi90v22W7bJftm9XeOUmpbgxtc9RyJSLAjmSzrxvYnZ102/pwITGDAVv6XSXxZLMFahU7lewiJr1vlj7tHEFnybqprTZv9bCtssUpipor2IwjOE3Atw2YzIl8ASWKKLqrxKayU+lk96bf9FRrK93saWXqvDevdiR23zu2HSVZRVattPKu4hXz5tj6PShPQ9UjhHY+bwklFyPzVZWWKHKuJlobFgIU87eqYAc7m2hL5Lqs0ujDRBkn8gSli5ZQrglelcLXJJMCBX3f4QwMAMzqLmhVUVBJ7ZzU5mbKSjhZ9EtVP/AeJKOEiapaYQpJmrenFDcDFzub7uAK05SUeMZO4mgcyYh55XYGeBStqMyZlGtyUVWasqiwg7dHFYIxBhx4UdJZDFbpmPUZuiAGIGRSKhxdvUo5ygxD4vT+MW7UsdPvLzm8dkjRYdISgsEsW/I08ujuXWQ74fB0ywUH16+SSmFzeq6WCDkziTBNgz4/nFWnQ+gC/aqj+MJ2GLRy3ZRAVsuFXp+pNwzrLSlNhP0VoLY9RZypDWVcimxOTxnWZ6TtMathH+cgjYU8OmJwRKeWdJvthvXZbVy0avoSefTwIZvznpRGzk4eMU0Dq4NIKcI4bFh0CqKnnJgk4V3HcqXJ7a7v2D9YoIlNs3PyHpFMv8iQCzkPlOJ56/WXOXnwgJyykhdcJOJw4oHIE7du8u/+yX+Hf/r/+1le+q2X8X2Pj4EuLPnQ8x/hR3/sB/n7//Dv8Mrt27iSyU5VmsbjNXmYlJSSVKVE/69wfn6MSCED0ziYwlKGNIF4OjxhWNBTmHzmxs1rjLLBseQsHfDGS48I1w4Jacvm7JS8nZBxYhgmnHhc59hsHHeGB9x7eEKWiZGR5WLF4dXrbIZRE3JRg8U+6BwTuo79owUf/MAzvO/5DzBOKwpHFBZsR0fyB7A6pDy8Q84T2+2We8cDsT+g6/bouiWDF/Y6B4xE7zjcO+Lo4HFKHrh/+yVu3Xovy8MrLFZXga2COaEnib0LZAIOCfoObbNY0quQJlOUK45xGvCS2Z6+xfGdl6Bb4uMh4oNV+WP2FYHVZ3+D19+4o2pPQd9DXWsK4zSwXPX0cUGMHULCEciSG3AveYCcmUZN5Eo6Y0wDvg84l9ieD5w8OCVNW0oeVUGpWDWpVKKFawlqKWrfpcnkSBTfrFRcjJakvZjZzCWTclWYCLZu7FS8UhDJba3U5LVW2Ycu4v2CcYRsZIyWTA9qzec7TZpHCYTgScnU8EqhlMRyb8lqb4k4x7QdGcdRyT96QWaJqWcXW7y8D+SUiV1sa64zgMGc8VQJwaPAp1mihGZbVRpptZJ4ZjXECopOjRwUQo9IZhonUw1Se4jYd4TgTJlBSZklq8qWofBkUcKm5KQJXxzjmFS1qSWCoVqNjaOqRdSk9hwrRKrdxDRNO/PzrN4hGXKCaTJ1IYepHpk1XZ6TyqUkTDwEh2/VOtXKRFBAN8aOUkbKmI1c4E1dxOIW0Yp68TPxS5WKhJQTaVKAQ5JWDse+Y7HoyZKVLB09zgeyKX25IoQQCS4w5dSuq6r9NFKUKyziQseAMyUtB+Iy3gVCCCTJpo6l82NJrikE1X5QOzMFu733TIwaA0w6Z9b4Q8XAxMKkGQxodhQwE3kk06qQDagvOTNsZ7JVjdcagGcxUdercklOWQGeqLFjTmqT10gaTmO8ZqVRo6wd0EEVlGgAb7NrQdpYjyHQdz2lFMZpbFZtIUR2Y6/gNPRsYIIo8a1Wh3mn1n/eiB3sANoOr6QM+KrVZL+rTeY9QgVP5t/Nf8yEpZ19g7X69tQxgTPC1g6iVIHyC8Q20ThVLeM8lTDiEKptdP18PeJuLD4famefU4fJzv6ifqIeZ1aEchfBtgvNzcfdPY7s/KTUn+3cEKjqZyUGNFDdtSM2tYR6VFd3Z1W5yTrS6TeqcsCX3Evri7cdf94BKcju5h6UtgfT/YACkRpL12stBuDP74Jdky0mTYVCLlo16fPLTZUGIIao645TopCyosT6PqNMNVsTcn14u9stBdB1LjRFEHtmqnpT1QsCdTeqSmaqiui8o0HkO9OIYARe5v2Yc65ZqNc9Trt3A7UXq6WtfaYWKXB4cMhYEqmknZ253mNV/ZWc2a7XSFKlKoKnXy0pCGkY7XqVSFNKaoNDiiYgfXBWQCPklAwg1+ccY7CiE4tVJo2Hui62d1GkAukCxZGGkTyNlLQl5l73d0kQI+E5CpKUzD0Np6ZA7Cji2W63TKPuxcdhSzlIdD/pKc+qsm8UVUIqUq0OA7FThRP//Z6uW8A/cMhYidTaX1G9UvX+JXN++ojtZmPEcptTg5LHcJ79gz0++MEP8NIrL/Po0XEjfTsXuXntcZ5/4Tk+/+LnOD49MaKqjvO8nZoN8UyYECAzjdvWr8MwUO0+zfSd4B3b9RpXZotgxbMjY+45e7jFrRZWdDCidsaZlMxm2TtS6jg/32O9eYbN5BkmJXovlku2VnGtsaBYbkTViLtF5OaNI55+6lne+97v4t3Pf5DXX7/LmArielzsGxk35cx6s2G7HfC+MwVNJQD44Dk6OuDseCT4nuXRVU5S5tYTz3B05SY+LjWPQTFlL1MBKgJF7ZaLkUnq+d717vfjMFVEdL4v05Zpe8w4jlp84dS+tQhIyWy3I5/81V/hn/zTf87Dhw8IQWO74GdStJLfo8UQ8z69tHxRgazKkSIebyQyvMO9Xyg/lhkYSeOESLYYfCazsjuf17kFU5mzHJK+h2r/VC1dd9c/QeeiRoCo88qFJaUSkirJozQilOY1sGPY1OGVoBCiNzKWnjM4r4TGHSVLH5zmVIKqcNbii7p+6D6hrnc25Tm1zNJ9RCWk12ufY7xS1aSwd9Vz4TnU5sMOKdi51rfZ1kS1/VXiTSUPgahqZvtdmedLI8ViSqAaxxnJ04jhznJBFrm3687ZbOx245D6zCzmzDbfVjIzdeYuVSHQ1jdXCVjM5Bw/n0sqUdYOkdt10z6jCrtKHnU7/9eOYe9WEWnHqmToSspv8aVowU+MugeQglr12X2WXItIsb2StGIT2RmQunbrXlCJPFV1tPaFxmSu5kh9faaujbs69pUA6eb9mxO1RK/W8u1dqXEDO89kp/vni5vXfxtPNY7JOc/FqXUhl0qeo11rJd/VZ1ivf1Z/9VRr2RYDyq7CUT31zntev78bGNv1RdtT12Im2FVVovWDN+XD9p67mh+dYylne9fdPmlq/H5nP3jZLttl+45vIYRmm/X000/z6NEj7ty5846+673/vTUfPA38deAH+e2JFwH4j+zv/yvekaLS71YTka+opHR6eqoiDSFw7949zs+/Vtu9JfAc8EPkvKLa6b7Tdu3aNX78x3+cH/3RH+WTn/yk5gC/htb3fRuztYUQeO65r64ABLBarb5EnenWrVvv+Pw1Pnr48CE//dM/zV/7a3/tHb87X1P7MeD/gGG1l+2yXbbL9vurvXO7NyxxACpJaxXyUoTgnSWDTc1HoGD2FPiWbBCzIfHem6oAliiuZBEhTUrOqEkZb+CgAn0CsWub5xAcnk6TF1mTklWdxyGN0FSxYm/yu9X/vAIldZMOc72IVp5oglKTw+z8fgYQ9HuzJPFcfYxZnkCtMG6QgLKuZoAEhy+aGHGWvKhKVd4SFLWyKkuikJsdnUghdLFtwGsySJMolmioxuSim+hgidxW9S2adBC0oqtWIeE1weWdBqPTOJKm0Sx69B5LKSQZqRVtuRSmUVVavPeaAE9TS15421TXJFTfdyCabKqKCyKWHA89orep56tV1o7m9V5BH+fURK2qhdvXkOKIXQcIwUcFFaQgUlWwAl0fDHRPinmiSYFsCbOcpAEzXVDFq81aKzCDln2SyKqG4HS8jKOCIlMpEDpC74khsNhfQIw4VHElFzG1Lw36+709TvueUhydjywPDjh67CZDnijeMW03dFLw4giTVq0uFwvSlOgXHYtlT+gjKWfMlckS3jURVFjtrdhsR7oucrC/pwpGKetzsGSbWuhUklhi8GsymS6qPdNUMtucWRoBQUKnBEMn4D3OR0Jac36e8AjjOFCA1WqP7XZN8IWSEuebDakILqoSRc5bTUYXIXY9zgcF71NmGnT8LZdLAp48TjiXGLePWK0irjtkSgkI4AvBCU4iU1zy1gmcrBNpnChTwouQhg0yTGwenlDWZ6xP7uNdIHlh8oEyCoSORw/ua4KnaKJbwXZISZNWEkC8VdmXrHZ93iPOs8kT3dIxnt5BJLF2x7z86s+ymQqlTPiwoI8jne9JsiFtBkQyPQsYhIfrNdP5GctVJJ0nFt0Vrh9cJ20mZBw4P3/E+XCm86xAZMkzT3+Ao6MnuffgjCwbbt3ao/fCW/dPkXTG5BPiEueP7nCy6hnOC9vTM/rFkthFtuMZt4dzShq5df0xDg6vk/f3OT0eWe3vI+J49cUvgHTErifEffyiI0li0XXcfOwWbhoR6ZimkbfeNElQr/NeBHCeuOzZXy1ZhVv4sOD8bKJI4GQ78eorXyQNG1arJR/80Pt49ukn2WzOwcHqYMljNx9DSqHrI/fvvcVjN2/w2M2nwXmGcc12M5oCHyxWK6LLTMOW44enBCe88doXEITYLzk/e8iVfc/2dGJY18oMp6CcvT/NftJD6DryNCqwlRLiCs5HxUGpFaQGNNT5yVuFqFXlxq7ThC+0uaiuIdvtiOsh9voepJxVCcrrHBtjbFW7CpAVJQcGTah6HL4LMKSmXuBMrWiz2c5y+PWcptLnRN91rfDESJ1qeRJdJBcDaGx9kCqdBEZW9YjNOeNmxCFM48jk1foghmAEigr4CWWawNaFnKYGQHiz3GrV0bYmlzLHEBVgCFbpPk2TVt57nTtLwazPFFCdppE8CUHU3sGbZU5VxgCxeCPT90oQitEIDA5dB72CeNOYKDnT932zBnIWY2y3I4u+U/VFp+pF2Szn2AGhqxVRtf+grUkGsOyQvko2Up5TZQ8n4IKn5Fkxynv9XCVD5JRIOSjIbLGWc2a1Z1XmQiHlOflfE9yqEJR2+nqO/xxKaPNOSWC1KakhNoJOtTTxztuaWlR1qiojtfMo+WsGCRQQcVTLQRsPJV0EAJxZDtXmKnCXLHas9nU1Ue/nqnAHLiW1/AmeIpnU+gQcaj1VVRrruKsxm3MzUawBJ3ZtYhfj8a3PRRQMzC61+KKOOx3n+ozGcSIEVbeSUphSVSbxOC+mTuPoY0+STEoDgsbCwYVGopD6PL5DWlUjqmDgDDDVvi22xzAShjgF4pkBnXk/gQHD1aqiPicamFXsWXkJO0CRUyvQ3eNQgVGLzW3P4HbOK4jOZ/Z3jVe1uTqgqhLTDsC1e3/1l9VGzGrZmQPedvQGVjsDkOeP1bFne5AGpjaYDsPD29yq25VsE5Jep/ehHbL2S6VnV4JQVVCo+0En9bnM16l2YaV+ivnN0D9LzkYQmo/V1Drabdd41Ns7Up+ptLkFe7+wuQ1423up/1ZA27Uen52OKjjq2v3W/q1drP2m9+d9aKBzJeK05+49ofaXgYv1Imw7QTXN1K7Tg09TVWeyudaKTKqtTxZV6T28co2nbj1FEEffddx7eJ/bb90GlFgizTLd+rTrcWHgytEVbt64yWuvv8Fif68V6+SssbDDmSW3Ap9KLlYLWR+C2bjWWyltDga1vp5Sxtt+bpfg6myvVp+tcw7JhTxNTZnRQVMSCTXT7VVxz9VCIefxZWIyonD2GfmT0D3fqRpOAcmJadJ9mzNWQ1U3Kwj+D6kioP9UwJ8L5a7akIc+qkVgKeAyOW/pOo/zCyW5izPFKwBPCZGzQRimoravpRBEFXjJmWk7INPEtF3r+u4gOyPbOM92u0ZcQQLwGLpn3YOyEuR9wEKQyV5jmcH4c79hWE8sXOS8u0+5uSbddxyfvsKUlEzhQ0cMpSkCS9K9n+dZyH+KzXiTPE7ceX3DwfJXuHGtsOpXjIuR1WJFSUltY5tGUODo8AaL5SHv/8CHeOF97+fxxx6nC5kvfPG3kDKRvSmDbs8ZYqBfOMb1GSFGste19SwNlJLYbs+J0YNf6HwRAl3fsz4/ZxyPdU8devDB1KZhudyjC529z5HN+pRk8acSGqTlELq+I/RLs9stDMOICwsePXrINGwA4dq16/xrP/RD9H3P3/7pv03XRxaLvilyjuOAlMK1a9dxVvQ2DEObT9USXgO47WYDeDbnJ4zDOd2NFeOf2OJugJysmYbUihXElPxqkZ2zWMHZWg9QrcSgKl7XPcUuOba+WLR1rMauVYmy/Y9zZhWciaacWkTJHGJknNqH9f2sQZ7u5e2eRS1+EbXKq3NszkoOpebGRGfYLKXtmUD3E5r382pzv5N7wlnxgaOp+ympsdSv21ph4JBIs17bVW2r8460OF6aGo5lkNpaVttMRtY+rVQQLYKTFl9qoQVqjSkQba2oRZV6fHfhmLurixfLUXmvanmurkSunbeSpWIXW5wRvLcY2Ol7g+4Z6hwMrq0xUsdKjUGLEabr87R7LG2M7aj7oPdmYfjOvksuFKTmnJWcpPVB8/c9akHe1gfrc5vO61iue4J5iM7xTgh+59rq9zRm3yUozU+z5rbE7s9Z3+zkQW0A6e349h5dIAnVZ9R+Vs9xsR8vqDnU+MpOIQjkWWHRRv28/0bHTT1C20/MD+bCfmK3b+o74prH8BxT1DHz9nupYyuXMhfBem8FPOyQ5LQFK8pJRYnGVSFNjyftvbxsl+2y/d5o73rXu/jhH/5hQFV/fvVXf/UdES2effZZ3vve9/LP/tk/uzAnf8e2FfBXgR9inqB/u1aJSt6+9xD44ts+UyE3y8nyzeymgN7Dh5mv/wng3+Ir3s/ddJfxMyPLtOT41jH5D2f4TfRe6vrn3JfM+bqv+zjwfwK+F7jKr/zKHW7e/H9w/frtd0xU+jN/5s/w4z/+49y8eZNpmvjkJz/5Ndzwl7+2b2XzFns+9thj/Nk/+2d5+umn+Ut/6S99zWSr37bdAv63wPVv3CEv22W7bJftO6m9cyWlMs3yr8Vpxaolu4kOiuxUnSkIVIz4EXzUSr6SG9kmhojY53EgJTNZBaXHmwQ3ZEvQVS97SrZK3ExJDkmaTBX0GNkAP+fAhxkw21WdyCnhQzBPefWgxza4rYKpJl2Y09oVsBNxbTNaf76baG8bcvt5LsWSzzsbdZQDVKWREat8F01IiCWYglN1KbFEfZVCDlFZ8KrwZKCdyU8b9UqvxxQKtMoYkAnvvBKGqg1M/T5O7aOyKXiQraJSUdUKejmElCatsCo1Eaap95ILyU8slwbm1ARUyYxUMtKcRKrAQfA6FE153Sq1IqHvZus8UYBfn53XfjEA0okg3hN7rfRKNSEIrQItU0AUVA3RUbImr3Xvb+M4ejyiBBcqocyq8QFMPrmX3hIESrgLKKFAQXFLDokC5jE4OhdY9D1dF0lp1GsJnSlJJLoYWK326Hyg9x3Fw3KxpO96xvWWEoSwiPi4sv7QpFlwQhrV4m21t8R7T8qFlDRN0vWBzkViUKuiYnZ6q9Ue056qWeUy0S86vf6SWbFkuxlIoya4g+/BFXAJEFOSUTuEzILF3ooxq6JSF9S+bRq3DVghGIFMHGWcGNcb0jQgKak1EYVVtyJlT0oeNwzNVsrHSBozqqI/gSRERggL4gIcmeUK8lYIiyXbNJBHs3AogRgDm80Z/+0/+nsM2xPiItItghI+nOfNOy/yd/7uGzi/YW8vMk6Zzjl8ySz391nsHXH37hsUMVvCGOn6juXBSt/b6OlXC7Wwy0VJZzHSuUD0C0oe2ZSJuw839IvA5B2PXr5D55dc2Xuca08/BtNG7aJc4PjRmVaFxwHJW1zoeeqF93F4tEcJS5xfkNYjZ/eP2Zxu2azXTMOgSbMiDNuRz3zql/jipz+DpMxyb8W7n3+GaTzj5HTLvYcP8cHx9PVbhA5O793mU595kbOTE7VHDBHnI5IKB0c3uPF9V9hOA2zXjJsNU0rcv/cG9958hUcPjyEecvWJF1is9nAU+tWSw2uJ4zu3cWEf2Z7zq//iZ1lvztWWYDpHxsRqdcB3fex7eM8HPgKyYLG8RtfBE08+Rg4LHrv1OOebU/IwsN1u+dyv/Utuv/oKQ0p0feTV/X329w8QEcZhy4Pbb/CF+JsslkvW21NOT9dMKdF1C/rlniYcc+LhwwcgmTxucCqjQ0qJPnZs1utWRQ22IZN5Lq9rSd6Z+zUxL6SpqugUplwIoWsJ4iZjL0XntK4zC0s9rr4DIM4zZSGPI9F3iNO5WcmplfRrYCpGwnWiEvMo8FAzpClnxlEVakJ0CFpNnpPNZUXtOYL3pJx0bvUezMLQOa+KPEWJSN7Om2sCU5EDUkoIrikmOWpVdba1zWuSNynBT9dXVbjqYkdwwchgukbosmeVuGKgeilMm42Sugx0zAZEYDYAeVL1m5KrYlMgpQHMGnVKkz6L4M1yTNerzkjPKSdT8FFwRvtdE7/TlBpgq1imzmsxqq2bDzMgKrmwWHQsV0tc0FVYvEOr7W1zbRafzmxIpECassUogc5X0MWDWQXFzkBbjCBjVcjYteK0EpaquISQkiMkHXO6jGUjZKvKkgPylEhpJn45j92rJ3a9xgEGThiegmDqF85Rbf4catWpwFW1VpqBo9pPlUQTYkSy9QfewF6xtVnHtXdWASwab1ZCkyqOiVmiWCszpUPqep1LI0OrWlGNGSoon7WPgvWl0CzqKHatblZoqMBBtYu4UPlsCpglGygSHK5UwETPqVDepOfyDpd9Iy4oAakmgVR2S1xRBQ+L6XTc2zuXFUyp8bRej6nRTPqsfHzH4f23vDWiAwpvzpYwBlpW4lZFPpG2/6hKNKURhpwR4ksD4yqxv1m+7Fg8VaBSD11MKcBMFk2NBYxUsgP+1MIJkRn0ch4b334GQe15NRKLsWHafqGCk8xKDO3amAlBNeY0iia1ar+efx7+s0qr3zleU/0S1RLa7ZtKxqnqHt4biUfEYh1Hq22ofeCYyVg7BBzd83izTZvBU+ewd1DaMZwBh87u1R5CU3SoCdIK1Ol7o6RekUqmqpZFO8/SCGQN2LeLd659Ree3Zj8631e1A29gbwMpdW6AHeU2Z73dGE47ig9WQ1EfgQrv6Fiy0TE/v/qMLNkaCPM+zsarb32sNyCoJfKi7wiiSiBKZlQ1FXHB9nlaLNF1SiTtY8dzzzzH3mqPBw8fMk1Jry0GondN4a8+n5LVNrwqIlXFBYDQFH+NZFCEGAOx6yhdsTWmEEI0QkQBVI3RGWHYebXLcpSKiKsiUy74EIld1PswG2uHkqmKFQM5B24J7qaO8TxOqoJk9y5O6HyHFEcG24c4VR39OMjHCm4A7qsaDtGBC3iBu+d3GG6e4V+G7m7ElUy5L8hrBUaHnzxpGnnpxc+T0oCPnkqpdNFx6h/ym2+ewTLR9V7tfDfgE4SrHeH6gvMrp8jzAr3gbqqyYNyPROfAO0KnypzVNtR5T7B3+9GvPSQMjte+5yVkr1Aewvaz54SfixztXeNDf+ijdMHiBzzDMHL/3j3u3v8oZyfvAg+H1wOLReTR8XOs9n+Lq+MrjOuBNCbSNOmz0modssvcvfM6D+/d44uf+SxXr13l/R98H3urniKOtZHeD1cHOO8Z1qc8fPCA/WVseQP1WNV1fnu+JUYIXSaNA1KEcdySxjXnZ6dk8XTLIxarQ5SwKYR+SckTw3bLol/x4M3XOTk9MyLfhJjd6uHVCgnREQABAABJREFUK9x65jmc7wl+getgtXfA6uCQ1cE+m81GVZlFeHT/dX79V3+Zh3ff1HxUF+n6nmBKk845NqdnYHP8ZrvR2Nk7s5NWBctxHFSBsmSEhPuDJ+Rlxt/3Zt1VlTZtDjVyCHVORN+3uueo87LmsII+g6IEQF9sQq5kBmr3eoarI+6uHkLfQS0G0Ng3QehwXsxWbt6/0P5e50Haf0UK5tEMFgOWUmOdeY9UVyfN49g8autFJd+IiMrf1pyhF7WbrmqZtVuqMptUIroVI5hSVr08nRdtzbY5KoipOOdia5gdp6pSWX87RyP/u7qmuXkldszrYuPYOj/vT0CJWa7G3RoUN4UkhxFr6lpw8dlXEk8tmqz95S3ux7lmG1YJNbGLbYzU3CD2O9xMrKkhQcnF1kPflGxbH1usr/Zu9f7chbgHaizjrJ/tWooWTjbisn3YOS1EwYjhc+EnpjBkY9ZI/7rml1m5Eml9vkvOqf+u35lj7lk9TNUyPfOtWGxoSq7O5lXnZFbul91j6birfTfHBtSl1zqOObbxmGofLddax/quktGslmTvSwva5phqJ5Cb+xNsb9sCovmY7fu2X2i550pQlCoT2JQYvcVac966jiFpOYhKcGvnr2Ot2HX5ub8u22W7bN/ZLcb4JWoyX611Xcf3fd/3sb+/z8HBAaenp9+kq/sWth74LuZJ7520SlT6HwKPgJcv/lpE+I07v8Fbf+kt+CXgU/aLl4BfAc6B469yTTe/zM/vASPwGKr+9G8BfxI4AN7PRRWoGix9mbbNW179r15leb7k5//0z8O+Xdv/B/hP4WA84Cd+4ifY29u78L0vfvGL/Pqv/4e8+eafaAc/Pn6cv/N3/qd87GP/gI985J/+Njc1t7/8l/8yP/VTP8VHP/pRbt26xd7e3oX1+Ks1EWnK77/bTUT4pV/6pW8sQSkA/wnw/d+4Q144fApNkfvt7eGTD1v+6bJdtst22X432ztGMaZh0L2UKe6IYL7sgpTJZI4VzKuJ4bbp9KmpH6nARIYgQDLfdSXVlGSAgStWGahS7K74mo7QxE/JBjIGXAGKgXOgx3C6J8xTAgMwKrjqQ5UGT8S+o2se6wpkgSZjnPPkPJmkeiXWqEUPVBCTtrGrSQeggay6kXdzhVvRqMFbJUw2ufAZOKiJ9ECeshFojAAkkFASlxToFh3TNKn9m9khuBDMqis1m6QQOgWXR7UiKqWovH2MlFGJYQTMZs2qEwVKGklTotRNrXdWVWeJlZrkKdhm1wg7UtQKZxjM2iUqEWaaVPmheJIl0UsuuKBqClNJavcTa1IKhJHYKynEuR07gb5HcIzTCHmu0PMhELuEi5pEyFlVnYLzc8Ihi6k0qaVdKkoqcl6VS/qu14ojk5x3TpMswTkDrwtpNDupnHGUVtUnoEpgzpmcdSB2njGozQ4xIj6SZWLKhSFt1daoZFKO+BBIziwSfCT2C8TBerPGRU3GhWCgvr0P06TWVBTIacT7QEqFYarSz9B3kYO9PXJStYjNelJilQuNpOS8J3QdsY+kVEhlIjFRciJLRwiePEyIkZC20wTFs82F7bgxwp8CdMXk+bMIi4WqWG2GDTklgvNM24FhsyalTIwdXR+RqRCiU2ePoteMZCIB8aJ/9wW/COAKWSYkT8QYyXkgJ6HrF0SXiQ6Cg+ILKY0wTmR3AkDoPDF2IHUcjdCpEkXsl1p5PCX8mAjRkyk4H0zavNAtF1y9eo3F3kottaSQybjOmxWAzl/0HT6oNdUwbNmUzB493isI70R44sZV3vfBD/PuW08RF0t8XODFI3nL/Xuv8vKnX+bugzNKCHROWF57jMff/0E++bP/hJPjE0rOLBdLpmnLNExq6ZgL27OHTN05nRfKuuelLzyiTFuS85QoSgyRU87XE0f+kBA2ONZISeAiwfU4hCBb+piInePBg9ucPnzEarnPwd4VnvjQB7n9xh1k9QQvfPeHefqpA7rJ8dobJ5yPjn51iOsWDNMZ124cshyXjGnL+jwxnmXiwiMBnIt4l1hv70M44NHZOYuV8NzTT3C6PeL00TGP7t7m+PgB59tjhmGiHz1pPOXk2CqDU+HhvY5hGliulvhQGIbEZrMlBlUDcqjd4zBsjJTUA0Ur2sWzKWvGYWPASmhqe3XONqF0tSRN2cBWS84GmKak1iSuarjphj7EiMJxQoiRftGzTEslQTqdbwtKbhNx+NCxWi1ZLnpSmej6nr39PTbDRteiIqQ0WsIVXHCoDYFQJJGL0MWe6ALeZYoXJe6KJU8xpaeSdQ6IkZwgpdxA2lyrM9W/ExFhKBtiH8kUfPCmYmjS/rY+KmlVgZmcMiJqZxVjNJUXfbc1y60qcs5Al5SNiMiciHXOkcUUo0QVoqryka7RZjU2jpSUKEUBsWnSNa0SikUKqRS6zuPDXNEO7FSICg5VWCoIKWVCA8ES+I5StD9iF9WmIGVSTqrAZyCPoGScKU9EH0zu3wgZweMk473ZIEjWdd7IobHTebaIEmzSlMxazekYMWWjEAMBUxFygAvt2SlhqmsJ8JQybkxK0DZVgCrN7J2DoKopORd8MFKugTitql50TORBiXjee6acDHxylkBXNYAsBkIUMasKA+NKUeJTjKqcZJhNMRJDMbKTOMFJURtVrxYsnY9Mo6pk6Zrmd0AmI08rcmLj0De735RsPYpqdydJT9z1wQgIs91XI79kVQHYtW5QEEuMKAU1QdPiPAOZfHBNzUpJJc7IUaWBS1WVUSO/qnJVgT7IJUH2ptqilirgGMdJbZlEkLyTEPGiVhc7Vg0OoHz72r2Vai3YMJvaNyDU6nizMGEmmiBC8btKAna8Ch61vIoBWyLNGqiBet6UvQAn+QKxxovTNcE6spIznFNbQP27jXGnZA6RArkYATI08o13s4IZuAaKgjObzZ3CBRQwFAOz6zHs41QIqs6LjeBT70nYURuQ+v8zIafsEJ92PpOrOqmpGFDHfRu7UBVOKznFVSDYCkK0qlAJfdmCZjc/MFPom9/XBpA5UCtDmyPLTLaaSWTSxkstNClGaK0gqgKiRugx8LCC5N4IvVJU7dRHLdBQIFmfuxa5zPssx/zelqD7xgpy69q/A25KJQrY3GHzhTM1TW9W0Tp05eKz08XV5kO7D4zItQPO637aU0msOi97G8dG4hQhSWpE1OCUNFZcJoTIarVHv1zSLxesT09aAtv7qj6iY7tkVYRFTEHSxnpuILGSWKttpRRpBFsl3SpJCVP3C1HJtVmKqitLwZXQyFDB6TyXrOAkiTRL3KpoVYzJK2IEVrRIpkwFPzhKUqvSYoU8Pqpihoop6fOPRsBzGNi6KvgnRS2hfUFwJMm86d8kRk+5ptbZPhf8CGUAeSSUu1pIVCdaF5yS00UIBwF5poCfdE9I1JjolYI7L7h3OeRQcI88Phl5LUZVhu07swjUXIjzdt+2z1Ov98JrH3qZsYxMfqTLAXcF3Pd53Lvhvb/5bj76woe4enBkxORa8ZP43Gev8MlfuM75ZtJ9pIO43KPED/P6Wz+Dy68jlhsoOdneVt/hNGwoYcI74cHJll+5e4/4Bz2P+Se4/voNFlOPSMc4FRauZ5w2TOM5XRdRkrraBqdp5Oz0ITduXqPkifXZqa6zLnLtyj6LPpCkZ3nlGjcfv0LvHOOQOVknygRxsUSAro+s9lfkksnZMW43ShQLNb/iKGVgSoILKzbbLfurBYu+Yxi2jNuBe/fu8huf/jXdHyKUEpjGjeV91Mb2VI5xTkn+RQrTWPfUweZJ3ROmNOFd0Of7sQmSqqVV6ynf1BfdTl5I6hTFTMLQVuPcLLnNKwIcnByyHFa45UzMrASrzY0N7gtzDFGPj1MFZy2K0Pm/6ztSsXex5pdsymnED2r+TnNhoao5up01xtaXSlhVUlm09cbIkhb7ia319X4rWbyuYd5sxpSzYqRaI5OI7StqHOZrzIeuH7aFsPW8klRmwnLjgdg/ih3Tm4WjILPCjsV8JVWSE2Dxpqv32+ZyjBR7UbXPO1V5bESPojQf51RxrJGHXTQSotr5ukqyNAWeuszUPUSR2drs4lq6E0W8TXWoxk/YNddx1uLymncMpjCO4Zw7sYWzubN+Twt5KmGO9jsNU2zttMfTxq/s9JmFBkU0fqq2sjom2tBqcXnrbztJG3+u2nDXzZx9tpLkxN4GuxfdAxuhvew8c8eFd/PtKg21aBUcVQFVrYKdFba4FvvXJ1EHnOZ9pR27XmdtGiPO6lEz6QtqPNsiv53YvnXRzjOew+F5b1L7qxHSdvLRpRTyzlho33VzP9eYW3+8c+GX7bJdtt93bblccvXqVWKMHB0d/d4gKX29rU731/kStRtB+HV+Xf/x0Z1fDMAG+C3gM7/Nsa+jQkVu52cC/AJKivoB4AZKLnJv//JXbxKEn/+Jn6eEwvZwqz98AfgLwI/Ad//fvpvn3/38lxCHnnzySeAmb765+1PHen2FT3ziTyLieP/7f+arn1+ENx++yZvTm+z/O/t8JH6ED/zCB9g73ms5YIDj42NOT085Ojq68P1xHHnttde+9hv/JrRXX32Vn/mZr37PX1P7I8D/nK/r2b6T9vjLj3P44PDL/u6t97z1zTnpZbtsl+2yfY3tHZOUUpIGcNYN47zxKZbQhJKcJXY81WohZQUhsQRt9AFQBZWcQMS3aidKIdcUtWTEFQUflSmjYGpNBJMbCFkrVErKVjWjYLIm4KPKT9fNcVGVJcSRxmzkJQXEck14NiB3TiCHEFSau52/JqK9yeMqKKFgUfWM101qynmnKlf7tFbQlVIUWC1a+RQ7TfJGBymp2g11k295nTyNWmHnVOJcRJBRk8s5J5M77+g7aUk1oRKYFLQtBQoOlx3iNfEvVUlECk6KEbrAxUCetDTMe/NCp9qyYJU6vklkl5LN4qgmwzRJkLOCwMXshcTGFKKJvZTUzqhWwktJ5KS+ut5Ane16Q62+r0mhkjWr0/c9IUSKlPYMS4hIUUDZOUvSTTVxotelSg0efwCL1ZJcXKsYLGUyZR69t2lKlkRyaleHJ00bhmFkHJQA1HUdfa8EiSBWeRyEUjJTzmT0maY8AhD6BQSvpDHA+07t7lymkChZ1PouBOjUnqCkyVSKlFRhBg6Iy3RBbTuc1wTHZtyasplWnVaFrWJS7V6EacxIwRSSEi5A8PVZqFLJFGqlXLH3vuDEt0SMDyNdVMDaBc84mvKV18A4TwPTtLWKXVNl6gIhLqAkfIy4rqdbLcjjSHBZCQOLoLZaBUp2pGFtAE5AiidxTtpuiKHH9Z5CIYZIDD3DoHNP6NSyigCh68kpkaeRuFBChlAI0cgly14JgjJw/fEjpmmBSGGxXNL3XVNWGqeRUhL9Ito4snHuC5PA4eE+rlO1HucdaRpJo5Dymt966XM8ceNxnvzod7O3v6+4U/ZQRm4eCs8/9jRPvvspnZ8obKfEm2NkHL+P1dE+r7/4WYbxIcuDBdN2Q54yuIzve7NwyuS0ZT0M+DYv6bs7DI94/MYBk2zpYmJ/b0kqGSeJ3i+5ce0G165d4/DKkqtXDrl9+03W23OeeuwqH3j2Jjcev8bVp95N3LvBzaevcevJyKLA+TiR7hX84TVScPhpza2n3s0ghe2wYdjeULu9XLj5xJNce+wqr33+Nzh9dJ8sa/rlEU8+u89Tj+/x4m8dc368wZMQSaQieJegGEialFiSciFNW3JODGh1+zBOVqUKnqKKZdszfIA+eGJ0VHy2lGwKckXVc2xe75aRaWu2iU4tO0KEYJZbU044rzZrqvtninxBwat+uSQuerWdQ+dlpIK2E7Ff4LuID5HglXATY2TRL5QgN414D9du3iDdvUNAGIaNgaCaqqzKRbkkJX9WazGE2AUjdJjNlgtKwiuOnHSuiK4QVxGXMQJUgSxtnY1NhUfn2xC82VpGJUxkAUlGmKkKb7pIhRjqsq0y8lIIcUkwRSbJai+qyou65hf7t7cK21wJPr1aDDjRa6tjXSS2quVSisUWbsdGR8kcfa+qRznpnGUiWqSctN9tjchTQozslwMIpiSEzn+AEVAd4kEmMVKXGOG2A3FIhkkKoSsEZ6TYuiblCvxXCNIRY2C50Or3sSpDWJJb7R5mkKAS44oYcaLo2MlG6gnFyGNFSQNpSrjsiYtYcXEltVoiXOMXWkJ65rYYqOFnIF5QRawGhIgpXUxJFZScEpBD1FhKQQBVjBq3Ez5kJXM4U9rIZrPaAIIKZBjqJIGcBBGv7w9CKKbQZSQKnJKzgveM00QBJaJiYN2YyUNStc8YLKlfETMlWjnxLdbBSCrWTbPNMUqgwmKZ2ZpE70M5cqZcmRNIjfn0Ip3QVAW0gt2At+JVQtJElCpIV4G7KSdKUntRW66pdkpAI07oa2cKMt7tVG1/+7VSwaiGSjn9oQcwIl0FK50zoM72IKbuBdazKmcEWE272Wy6HVs30HNVlQT9bu0jI/DYXkZ2K9iNdCNSyRIVWJIZzGGHUJEVrHXeGf+tNPs9aYqqdi1+Bq4bhmoAmTSSRgWfZAZJy45FpYbq+rkirZ9KJay5WenNG+GjjZ0K/EGL6XaVCmofi/WBxrBhvgdmAmLZARSbAoNYAYC9b24HsK5xqaCf9fWe7cjBkOdioK6uEf7C/rMBrfUaQWODZq9dAcRKRNR9h9g91nudSlVLsz6xPsZBKLGpLzSLwGY7N6vfSWm4aOsX58F1PbEzMNoIOUWK2pMbWN6IYphdnXeUPKllc6rnUEWMlEYqiaqqsxSZ1Vur/ZCPqtZWirC/WuG9Fk3s7+3z8ORRgxuLkZ10P28EszADvzrOCyr+NgPOU67Wm/qeqoXRjhKDYHs/27tgBL2wo9aRhVzBUFsJVU1r5zguK/hrYzuZvam7AX6JxrimrCxFmmVRJZA4p0U/Pkbbz5vaRdQ9gq6HjpwnfT9jh4inMFKmCe8jrte9i9/3+GdVHUls3VQ1ED1fJX+HvrM5RMdz/JDHSbVQzKwOFpSsZKsYOj2OPZGSleQVY1WTVHDYVfWRI8EnRyedzWXqrys3J7an5wznaw6fuEXX9dRlDim87/nMw7ee5eDKoeUlhCkXzovn9ht/DO/2We3dJox31GbYFJVxBRcixQt8vFC+JzFdz0yd8LK8xJvPvc67P/8cq/uR/VVPIZHLwGf7zyC/KVzfv8ZzTz/HannA6ihyenbCam/J+dmGYdiwv1xw9WDBrZvXONnu4/s9XNdz5UpPH2B7PrEeCkV6gld75dXeAWGxp7FN2pL3D3AFFssl+0eHbE5PmYYN6/WIDx39csmN63tstokHU8ax5fXbr7LZbHWMGAGglJmskMsuqdLP63ad8IsS5ZwHtxT8hwP8UYGuHstIkzvAfgiqjlgsjqzuTUqgMzIBpjIktirZHO4cBB/UCsyIH9knJb8IbV70Plj+S8mM3vtmH6tFNIXFYknK2RRMTVmyhkSVtFjnO4RgBV9a1GDnzhqfavBjRAwn+KD7/mA2XYiGNWqza0TTtq7JTDptSjPM1toiSj63t6OSRSvJq+RCCLofKzYXifXjPKF7tX+s/BAj69bjwEyCUsWZOSyROmfrnZoFnPXzTkxSn7Udrc31OGnK5644G2Az6b00cpijqVvJfG4lWfoWC0tBFWSdKlbVPtI1uM3WekyUlN9IqHX81ni1EbNrzIHt83TMBW/FYaAEKqfQYVU8zEbKboSZnTDOeStWrI9hh4BX6qRIJQPJvBdqx3BUlfb6rIKvZLjZGlmKkEpSFcuWa7W1sN0b7U99n+q+wmK/SjhqT3nuQG97qKpm7JyjuKL50qIKj1VBssWBOwdosUCLdJRUPBPSaXtlvf/Svqtz0fx82lpbCVSt06uaWc0H2HXU+7SPiXWCflVz6sXUWOt73IjhiIXTrl1Pe86X7bJdtt8TreJcX4st/LVr19rnb968ye3bt79Zl/eta+8Fvjxf4xvfFvbf99h/X2v7sW/cpayvrr/0hwH4OFz7yWu4T7ov/T3w3vd+kX/8j/91SgkXfp5zzyc+8Sd58GCPafoZ4MscH1QlqqpQfQDOl+f8Ar/Ap/+1T/MD/+8f4Pl/+TyVqLQZNvx199dx/y/HCzde4Ad+4AdYrVYNH/x2aL/4i7/IycnJN+ZgV4D/DvC/Afa+ymd/B81bwW1tqU8t3rtsl+2yXbZvl/bO7d6sEhbbrNaq0yB1Ey2WuFUbGlf/vTPvVXBIJKvrluU4cprMjkOocvGVUZRaoqBaQtSNVUac2eBQE5+WOMZr9XSuG/hJEwfBEt+WzKnVvape5CzRqSoNycgiwVnWwCk4InWzLjUZoaQanKpSuOAoyXzArT9yStovMRhxx1SHfKDrAy0dXJNDpmiQpapSWAWfU9C5ZLV/k6yEC1ekJZtqskCrfhPJgGNsc6uJBU1ujskIJGKgtSlUUJUAikrwCxq7VAuOUiAVVUPIzFYxPkDXd5Tk5/1x+50mi0SEIKoWME0TUTRZ2zbSAKXQxagKS2lCiioVxX4mL9Ux53CUnFSRyDI8zo0zcGSS8TmnVlVdshLqGihpSM80Js5PC9M4amKkU4B+GketEC4ZRCtnQauLx1Er37Cx64OS42QSxCloHuiMhOANi1MwFw/9qjMrJWFMG1V6sESPCx61WZvTBEV2KrmDEGNHLkUdCyrII5oU04pCuz+noFmxJFdNtqo1RE1NiAIbi44+FyMCYPdbCWH6bLUaLZvSh1kTFAVzQ/CIqFJLAVyAzne4sbAZB8ZxahZ3+4dLQh/YO4ikabTxVRi3AzmNTAY4hMUCEMZJx4NI4uBoj9DBejjFUQGgSYmPzrNc7SlJw0iMoYPgFySzgPExMCXdrPmitgvFgArfa/IpFOGxW1cYR1WsqtfmnCMXx7jZUEohADFEuj4SOk0m55yZpoG9VU/KnmGYAAXb81TofODuW3c5OTll1S1ZLDtUG62n7w/pbvSM+0uWy8D+ItCtJ+6+fs6No0P2PvphfDnnwe2BvegYVz3DdmI9nLMdB8YxtYSU95GuX7CKPbmMjMMpA5GHZSQu90nbRL+MMGZIgaObj/M/+l/8eW4uev7xz36CR2/dY9pucSUzDGe8+vobnDrHtSdusChb9uMEk0e2Gb/NlKlwcnLGcr+n5IlJ1gQ6oghjKQq8FU9kQVmvOb5zBx88KZ0zDGs25xPnJ6O99zBOW5b7exwcXkGmQLfs6BeqEleKs3sVoiUavZEVci50i54+es5OjwlhwaLvyakgLrDdbClFGLMm67su0MWID3Bw2JHzxNnxhu1GyUjLrmP/cMX6eE1J+l6VImoz2alaSoyBoH4WLPf21NIMJYZNlnAlOIrzON+z7FaopYIqIVEUNMn23/lmy+QL12/e5Pj+/QakdGY9losSkEJUa8PYq+1gSono1TarX3TgYNgMum4UmStKpSh4XdQmKk25WVYhME0jXRdZLBeqHmTz7zRNplDlcU6T4FMWRKZG3ohd1PlCxKrKC+M40hlBJSVbqw1EyNnUFJ2j2r061HbG+ap0oSCx94WUdRxhAHm123SlqNKbTZOxU2BdDElW9ROTwfdGphZI4048YMoctdLZIhi7z8nWa11bg/cK4tY9uzNFR3E4jHgJTCk3SyPFJ+aks/eBWn7sKikil/Y7BWKLrR9iRB/XlKp8CPicNc2cldw8KyZ5HZNS521T7LCLFUvaA0YeqyQGJSUFH5v1GtixSwX1rJ+Sfq94VWMITvt8SglcYLZUKmDgbk66nlVAoYJptER6TUS4Buzpem9KN0FtcKrVRHCOkFWZM8RoYHQk4JrKCm62mK2kBClzhbmztdY5BY8CKPEMaQqVjdzRQPtqVVEQSbqe1uOmhDOFnblyvVZ4z6QZVfTB4usKcKjVL4AU38aKsEOisZVbL8fiZCox59s36VBtJAGLp62KvxYkNJD2ojrdLvFql1DTflzjQ6vOR4qBLzbH4syybFazqEGzYPEQc834hX4u9RpmVSxfRXu8AaAyW8jUeL4CoNhZ2/W3Y9dKeYW56vgsvjTCTFNNaGNNDJyzYhGsOGQHTRLzm6kqFyowUFqc1saTAWD6QvsZSKVSR7SP2v5v9ohpAKcC+xXUt41dPV976LNNGzITYYrZ5iBQTVcqKBpMLWh+ShXUDao6Y++iFAWEG4GsfsHt7EEqOdbeO29FI41oY9dT1QDbk8oN+tP5DiOJ1e+UahU4k80QJfCOMirBH9r5iq1js+2Pb3ugXAQq4GyKRKWI7vUQHjx4wH53wJNPPnVB4Un3ILrWGUrZlPdWe6umwLS/v38Bi62KH4IRAILazNXHqIUkoakw1G7FnkMFWWtSeXesVmDUh5nMVsdMfWfrO3xhHNa3pM7J3oGXOkR0T/K4p6yEadI9a85K0O173YN3vbd9ns6lqlqclAThfFNQSbm0cbpYdEaEGrBVABG1uMI5YtfZ/JssLhB8LYACXddELeedOFNlUWVO56vCirC3vyCX2PITVaFNHKRJn5lH9/rBbF292T+VnOi6QDZFz9rnkoS4DqxlzTCo7XYIweh6nv39wtWbwuA6tR+PHj9l1qcTq37JlP4INx//PI/u/V2myZGjKvKmPCpJ9mMF/hiI1/irKgWXLvPq8y/z2J3rbM4zPvbklPns/uc4feUU/4rjox/9OH/mP/yP+MB7n+HR3/q7bM/WpHGyOKNwfn7O/ZMV3f4eq17ATziJMAFTwRUxi8JMdE7JLmAW4jauimt7wGlzzjSOeArTNJDzHsNWczBK3s3cvX+XfrEkJ91jxGgWupjqocXIlNkaq8YiMara1FRGFh/uKX80454ITEYmr0R7jUPU1rnrPCHAMEwkyWoL7rXISUQt23UOscKKoOrgOMs3WNFZjF1TWDy5eargwgh4LbSJoWtzrQ7sgrMSCgG2/cA2DcRFj3ee7Wbd5vA6D5UyqwQFF1rsXe3MnHdEF61Yq7R5tqoMuUacqYVmOhs4e8+y7V9cmIkUOc+FCbV4qugmoa3tSs6f4yhByWSU+Tv6XuvdKunGyDnVboz5HuZiw5lU24i6NU6TAqji9i6Rq1q81b520OazGrdIi1+Z57wWZ84EkNLyUNaVpli1ix23taUI4uf58oIyEnWOrOvyTJCfY0a7XzuZMBOTvVmTVnJbiyPN6u4CmboqKdn/zvQo5kna5vjWzzWWsf5zbn5u9XM1dhArJGmEMlMBLjvPqK4HzvKzVdmvXoure5Y5TGy/k/qONHJcjW302r2fraadKaU753BF1cmLXReVkE67mDp0dFzsHBNnmWqL8VscKbW3ar/NfdaIkXa9ZWfPuEsKniM1Z7n3Fs60Pq33Le0Ca6wt83hwLXjU8+7E4ruP+LJdtsv2nd1efvllfu3Xfo0Pf/jDimG9g3bjxg0tpAAee+yxb+blfeva+4Gjr/qp3zctpsjh2VdmbV29+pCbN+9x584TX/K7Ujo++9kf4/r1f5/j4/+iqXReaH8e+C/4EvT59MYpv/xv/zLv/rV3E1It+y3811f+a+7/4/vET0T+1J/6U/zFv/gXfwd3941vn/70p9+Wj/s6WkSt+/73wEf4GpD5b0x7/X2vs93ffk3fOb96TnHfHkSxy3bZLtvvzfY1kJSUKKPV4LWiRa0tdm0xdFMrLdmsKgBFk1pBN78eI4hImKu2ymSVQ1jVIGiCXTfSurm37zcbFwMMJj1nTaRLLg3k3N0gY2BaKZBE1TxEQLxWzKpFTSGlbIkarwpDBgjUKqpqF4CBmKMtxF3Xq33OOM02aVTbOVNxqOozLhC6zkCUQk5Z1Yhq8lGEnCZiiGpBISYXPaMxtr9UGxgFKFTdofaDVodWNQzdZEdLMJacCUy6/dVSN03GoaScEFXdo3nbg0rzV0DF1KEqmOAqWlNUOSLX5LU3xagCXQx0FWSMHaMlADGAp5jccxGtiA9OfZN3wYlitjS+2iHU6vRFVIWNMln1YGhjwkdU4cE7vI/NCqazatWqPiBoNWwy5SaMfIQlHL1Z3tVER6jgmSX1m4oHvY5epwoNmtQ1wN6JBfkJcZpYL0WVOrwlRPC+qSDp6FCgR1LS63Gi11EEX5VLECpi1saC9pANFyXtOQNqQlBymPOQahIQTZKqxLejMzUKrYxXu6YKHKlFh6dzvb4XxYAfG2dKCFBSV7bxEzuVnS+DAJ5FH3EBprRlSgrGn6/Pib5jksI4bhGBvf0D8plwer6m63pNTuaR/CgRvNoe9ssVe/tLJCgBIKVEPj+li/FCPgbn6DudG3xUEsdqsQQRlqs9QvT00XN+fkrJSZ9FB1703UmT4KNXYpP3hK7aJgoyDoSQiPRMWSveJSf6PtB5z1QKQQoljZA90euo267XDKtzfFlAXDBNE+vzNV946QvsfbGjlIHr1w/ZWx3y6c++yht37jBMhSeffIYPPPcEt994lRdffZGTkzucHp+yHSYlckSnFoZ9ZG9/aQS6FWUsjNsNh7f2mSYhDZOSKrxj4Rd83x/4KD/wsQ/x8iuvU+I+i8UBzi0peLZyhZP1krd+/S32X3qLj3/4Ga6E65zcecS9Vx/x2usPiFef4eDgCt4XNuvE6cNHhG7BZptZnw/kLIzbM544PdbrAoaxkMKSYRi4f3/NyfGaKScyQlgegt+jX55ydP0qdFGJOl1HjIH1+YYQPPurlSapM4zDxGbYIF5YrXr2j4JV6MLxw1NOT09JqeBdIE0ZMSVAVQALxG6JSCLEjtAXln3PcrWkX0WG7aAAIDoWfHB0S7WxykVwUa0T++WyvYtOCiKZbtGxCiu67pBp9ATfk8apJTRLUTsvnUo9w5Q4nc659fjjSq6LkT70lDLZu62fd5ZgTtOkinDBVCjE1PNQewPN/ZrajVewLg2ZkpSkWSXwNXEuiIGDPoTmAR58UNUcA2drsreRbA3MGYek87cl6r0RECvY4U19MBspyjlHv1pQcial1EhCMep1NqKKc8S+I0hsiiEpa/+m0UCBOJM61INSl7k0FSWpCQ10aOCGOJ2nbQ3Ve3KN6CNZlQWV3FwnzZko0BsQXAx8jF4Vt9Kka5Im0m09dKo05b0jJWn2LBovYfalM2CGzJYJuuSoamD2ufV5/Z2zNZ5gxzPQ3YnanoqRfKodTs7zBlsFS+a1VXlJYoTA3JSpqiWQ90FJdhaLacLd2fjQ1bBYZ3sDbWtl9lSmBiDNgIsSKirwXcEeRSxkHpfoz5wLDUDQ6wyETtdUBZIji2WnZLyd4iEpM8ikqkhGxvYNErDASIFn/dx8/lnlxpL3pnDUgBUqLuCa7V0I4W1JG2dxmV5DsVjEh2Drq37PV1AMI1XkMp/bWrMUthj1d5oz+aa3RlbZAdhw83vJLvA2g0lSKrHDwCNqKG6Er/kBV0ElI1hUAKwedyZMtJjWzmmicDNI12LE+kznGLwq6BRUebT+1stM1G9AqXMzGtWe1S5gaaQFI2rUcVAtv+au035pf0oFFjX+FLF1rH5epO3ZvMXrFcWS+o+dfUUj7dhnq4JQJegpodKATeeavY2aZtVO2lUZU3sY5x1V5EgfzS6AOIPj2O/U+rHhZG2vUcd38GrDLCKIC2QD1msnXwRw9ceVaKn7CWZA3mFrQH1OoalL+bqONMAUrR1wsvP+zsee77COJ7PlrP3DDnDt54/X/qikXV9JqxUMtt/dvn2b8/M1Tz71pMahzluysHaWju8KVlMB6wqg19FejPTajs38LkgF3PVnM7Fo3ptTpF1TG8P+4rw0z5UOH43FO7/g8/7R1b43a/did1730TqokQqwB4idkT/NfjNEKwIpyZRwvSlIeiV9W/zS9T0yJoZp3MkTZLZbXU9KKQQrOMArV6qUQpmGZu2m16a3EUyJCu8IRLqgaZXYxQZ2T+NIJWC5YJZeYOpxrr2vPmg8lAuQ1RrWx0C2vZcUVbMMzjUla5eF937hXdx8eB2uagyYxhEXI+JtHJctBwef4N7LH+D8vGe1WtDFnrv3j0nlPteu3eV7PvIE4+bH+OVf+UXeuneHYTxn2I66z993uu0k4INvxHEpXmPolFgcLVRRcCqkv5+RVzTeuf3KayyDxhtJPD6o7TUuMpWOxJJHD7e444F82PHUs08wbUdO1hPHD8/IfqHkHBfJ48iwGXRfLJ5xSBQjZbswsNlsWhySCTizzX3waItgxPbQ4fwCvGe1t9ghTSgBKadCLpk+dlQrqkr8z5KVEL0I5B8NhI8FJpnYbAezo3VtrtV5Nc8kC4uBXFAid+wisYukKekeRDALKWfrW1QFcq/f10I+396ZguY0Qgys9lbErsf5qBtg26zXWLvGjMdXT9lMW/aWe/Xt1PeGSsjBuPLO4lqNjZsijxOLh1zbT1dbQi1aMFWlsqMi1ObsGtfVfJHGPd5UH2sOYSayziQXwBQ+599VQqoULUBsc53UGEzzGN4x25OKxb1UEjO6znhHcLHtZ9Qi1vY3poJcCxSdxeI611Q12dqbOwqWMq8Pbc608zUtQotTd9WGnN1X27/AhXlYVf7mebiuc74SsUTzK/U49ZPez4rXc+zblmslQ7q6v5C2DugcruRlJ0Z2LqXFpLvEe+9my1Pq2mzPW0yFtI0BNxee7D7numcTI/FooQstLpnzOa6tU95pUecuWUrHXP2Mfan+vPaqzMRoDebqk/FtOQ1m4Vuvz4eID9IeqT3Udt7aqbtrZc3GtWuoV1AV8pjJ3vNx0H6g5uaYv++M9HphrXXtz909gKt9ZTFn+zd1HtmhzrdLnkl9F35+2S7bZfs90XLOfOITn+CVV17hox/9KJvN5h1970K8f9l+T7WYIn/8H/5x3vf5933FzyyXA//Gv/EP+Ht/79/k/v0b7efOCdeuPeKDH/ws3/d913nzzX+Pv/23/zbn5+cXD/AuviLyXPzFNZwC/EXg5xSz/Vt/62/xgz/4g7zvfe9jHMev+z6/rdoK+M+B/4BvnaLX25p4mcOHd9hef9/rlO6SpHTZLttl++a1d0xS8tBIIlL92QGHVbAaUcmbPHIlMWEb8EKmeCWqOAPrVO/WEZyq8OBELVVq8qLKDLcNqFW0WCWtyCxDXTfWs/S1JXbZ2ZTaptVZglVVAkyJIWulHQ6tWi1Y4qomjFGZ91plF1TSOJWieSjnmMrYEreg1jkOVSfwTnPCUi0QPJQJkuSWpMxFN6uSTVFDNAESrJJPd6u1woWWPJeWPNLnISJIyrYZ1UpEESNVxA5XCtFDXC4QtHozGx+nc14T9KlQAkRLLLta1mWXUaQmKeyZG9CWktmJRa3+m2Wxa5JBD+J9YLFcUoIlV+pzqolrPyedcLXqalYAqWMrGMGoEFnITvLfrlnQ64z4JttcddbFSUtwKDCsQHUrJnLZklMKSijJCAOGsESJJbx2EjpigAdoxXU0kpJa4FknWig2A7PepP0tUYlv1bdaIyoNNChmnSC1f2sqypWWLJFqY2OJhqqcUZPhJeUGWlQQpOxmNezfc16kpbr0GaBVxnNuxu/YYJR5nBvQUlM022nCd479uFIyXOgoSRg2ieImKI5xGpE80fc9qWSGYcvCLZEsjGXi8HCflB3TtOHoYI+z08L65IRps6bre5Z7S5xT0Ffzd0oGKcXjSyI5tXTxw4SkTLcfCaFjb7nHou9wXtM2w5BYrPY4PT8jCMQIq/3INE6cnZ+Sc2LV7bHIOj7TNBgYHc3SYyLnzPbsnL3FksNuQez3yHtLIpEbV2/y1M2rbE9POImezTqwWixJOXFy8oDf/PVfZrnoefjwGNxE6Dzrs4GjK1fYDMK7Hv8Izz73HE8//QTrvOGLX3yF7fmgnAynJIhFF9lbrQixI5WJLGpN1wW4f7bh/lsD05C0NtkJh1du8AN/6ONc3++4f3DI937/H+J977rJ8A97PvUvP80f+OALfPR9z/Dm8SkPpw13z87hpVd474ffx1t3z1leOWD/ypKz85HtODH5BXuH1yldT39lydE0MgwbTk/ucOf+K/Qrz+HVA56+8gR7127x1ptvkdKWlNU+T/P+S7rFIS4+AD8RvWO7zWzPNyyXmnjdbGEaBrqwgCQMw8j55px+r7O5T1QNLQnTlG19ga4LTAOIr3OYMIwjD+4nFssOPOwdrtg76On6yDhNLFa9AjM5cXCwJEadV4chcXa+QRBWqxVd1+m8bHNI1/ccHO4zPDgmeo9f9uxdv46bCh2efnGAdCsyC0s+atI0+sDJ8THi4Oq1a0Di+OGDViW6W3ms9lKeGDy5ZCWklqJEJhQj1vVH54uSZ0BBcjG7oprgLkZ4Clr1n21NFH3/p3FqBKRK4HBOyZBFFNQp3Qywh+iIsaPvepIB11UVJI0Tvgt4VwHLGZjNU6LUhLYpYlSycilKFoud2p+oGpOqGajyAUyjyVpb3zQFRecuJKB1LUBn2FIoeV63FEhQsFcK5kvhyAZg+ADDNls1clXMKK0KXySrrV9wSEnq2tmFtq5NaTKQW0m4Su4S8ia3auwGABQDXBzNMkCKAl+IY5rm71QCa84ZmvpXgvpsd6935zveV4s6fW+GYdD1w0gGNU4rUjCJlhaXOO8okwJUlmfXPjQFq2lMaqnpvZHLxIBUwTkds10X7WfzfxX8wpllldh6oycwMrYzYsBMRCsGxGl8as8UJVGFHfK5iFAM3HFGcHZ+5/3YAR7a540k7U1NsMarsxS1EZuk4PuerovMtg2hgWbZLADrPZRddSfvQQqTkeNq9XsDpARKFryv6jruwrV+O7YKkRRm+66aJNlNgu7G9i2JYnsKcUo0dji1q8S1qvrmqlZmQK5+33lHtdVrZJwK5Nb4/cLpKolqPj/2GY0DbZ9DtbKZyU3t88XOXwsxMKEYC/qaKk0Dlwzs9GGH06HHq/aDdRxXFKtIPQkNJBOnG4+2N2qx23wPM4Y6jylpwJs00M3ZZ6ASnny736buB42kqbfrUCUG0WIQr+StRtiixtM7BCU3A3ZVrbbGvhXgnCNou31T9xA/fyaIfWYH7FWbyHk8uB1LnaZa4DC7pVnZrg4fwZQgTAG2AqrO9mb69Tnb53B1kOj+lp3m5mPSvl+JtXN/vL0JwtnZOZ///OebPSJS9x3zs6yP7uz0zPph3jNSEVh9Yjv3uAOotntpA71d2/wQdsZ4/Vn9TL00V8fj/CruDFM9p3vbO77Ti1LXEdvftv0JKOnEQ7dQBUlnQHyaCmoH65TdYOSeIkZWsuKFnAuLRU8pauu96DvGQZjGwRSelUxS99V1P6FWwo5aOFSczUGlEDpV5eliT/QG7vdq1xljp/sbyQTb34VO1XuLqEV1sG5Q5V6oSnJVBS2NqpTU+0gvPe++/SzPPHqWvf09DveWpHHL4B1TcnRB19Fh3FCm13j21he5dy8yjJFpu+DWjYfcuJkQEjcOH+Pomfdx9cohf+8f/gwPHxyTpgSPgTwN/tdVMbTrO/yzgXxdCdJd1xF6z3pMbM4SJRXSi0IaMjF0HO1f4aXPf5qrV484vHKFx24ccXyy5tGnX2RvueSFdz2J87ARYdxuuHv3Po8/cZNpEaGLLPueXDypZFvLFzgPwXfEfgUibIdzUhk5OXvIwjsODg7o964wjBOlZFLWPtQcixGlQocwELzmZqY0kZMWy5UE25w1piq6Hk/TSEHoeyg/IvBxIctolsU77xdQjAQAuo5vtwNdZ0VMwdMvosYkqPVC7LUgLEavORenuS7ZKGgTgvb7xQkbFosFm62eMwRP7DtiWOm+NiwgBIrvmBm7ZkebMmka6Rcakwzb9UxqqBkFK2pCsLhizkEgVuSTlbDUSPs17rC1lFIzDK5NDdUupi6RTqzPitol1lZJeFi+parotFyjkcu0IK1NNxoTZsFR8N1OilNo83y18apzpeb4NN4tNsd7I/UX0eJGF/S91sIIy3/ZXNdi9J1cVptP3UxU1iVamgK81KmwTZemyO11LzOTqGun1G6uikRGdxRs76ct56Kq28xjwzlVr5U0z8E1T9VILZWYYmuhqg/uKiDWKzFyFrVwshJW6zib45naLq7rGYoRjmReSlrfzYOxrU3zoaSNHY3BsfN7nevd3P/ZCilDmNX46/dmstb8/ra8dRIk+EYUbiRtO39VZde2Q5bDtc+357RDCKpvQyVStpuEthfWvvJvf9VbEx2UWkLhZ5VR5/zO+eZiofq+1VxjDTxaX9R84ty9tuQXs46cicuX7bJdtt87rZTCa6+99o5t227fvk3O+R0rL12275AmsBgW/Mg/+RH+8C//Ybz4r/hR5+D551/kz/25v8pbbz3O6ekRZ2cHPP30bW7depPFYsA5ODp6Pz/xEz/B3/gbf4Pt1lR6PgT8APBTtFiGP4iqWTksX76z0BTgE7S15+zsjL/yV/4Kf/7P/89a0ex3dNsH/s+o9V34Kp+9bJftsl2232ftHUcaOWcCoVV+NK90QCtQKtlDZvWjlmW0SibbeHuT7t0loUQfUGn1ad4kmYqDqhcUvFUoimhyGTFVI3SDVi2oZCcZcaHivW1GFUj1Mlc91UqxegKx5EroQkuEeOcYBwUIojdLuSlb0adDiio5dH2H85o4KSYTXUGCYBVkuSYtXCSGgDgY00Qy8NMJBBw5CM7FtvFU3MJALFRdqQJlglegIBso7WZSF6JVUNNkUvZOjASjpLJqUVKrJMcpkUsmxjArOgiEEIFCwKnyD3Nf1/4NXSD2nVoXGAnLdbXKLitpCqt6D6ISw1aNV4/XgIlaUWtYalCkxJ6dSTR7p2CjkcVmK/WdzXcdB3VD72fQI5s1mTN590auc8zH8jTAo1oYza0CrLuVb7OstjPFHSeOQlbQ02kCYa7or0oC+pyqLV/wmkFVW6ZiAIlvyX217ig121dfDEsO1uu368YSkAYc+Jo8qUmbeg8tIWHX1DANZ10xj8VaVYwUda1SqTVN2tRjzb3OarVi2QVOHp2QpXBycqpVuIuefq8nxo5h3BK8N7UaWC4ie3sdw7Bh2G5Io95DGjIP7pyw3Uzs7fUEHGTHdj3g+kApmf7/z96/xdqSpPl92O+LiMy11t773Ore1VV9q+65s6dHJntuFIfDi0XSMi1IgiwYlmEbvgAy5BfbMGAbNmBTfrEgwDb0IsgPfpFhyJYp2aAIjkhJ1EjkkJQ0HPZMz3RPT3dXdde96tQ5Z++9VmZGxOeH74vI3Kd6yJ4hNV3Tc6JRfc7Ze63MiMjIiO/y//7/YSSGgVKNMaQuR8Iucrh1wRgS1w8ecro+cvvOSM0LV8eT0dBHKDlzurxCcyEFq6otJZOGyMXFOad5Jmc14E+K7IadB2eFcUjMx0wEhgrP3LrDSx97kY89/xJnFyNj3HG2P3C2v+CwP4cYGFIgMRGkcu/2nn/i53+GIgKa0HLilK8ox4UlVy5PDzk9+ja/+cvf4GqaePPr32Q+TibrEe293I8D+93IbtxZJXnNxtgmwjA+z3Mv/yD3P/h71PkDgiRkKewPdxmffoprhTffu+KDRZj2I6+//i2mq/e5/cyO5z57j+f1KRaB66uFOE88dRb4mX/s4+QilCK88foDvvrNE/neLXYXn2NIAyEl9PSQR5fv8838Jq9+/Td49623+cEf/hw/9ode5uMvv8BvfmPHV778FvuYkBBRjB3tNB+RtOO0KLEsoIkYd1bdXGA5VS7nE3m+JE9WnTnnmfgwMIyBEAu7MSIYC9DZ+YEQbU52NRAXIaWR4+lkIBsK42HP7nxk3BlwbV4m0rBjf1B2Y2UYI1UXdruRebbk1Pn5GdOUefjgPru5cH5nhwZjVppPygcffMA0TeT5yO78LuP5bYaw5zzseeHll3juk69w++yCh/fv861v/AYp/hqDV/vfunWLpUwIBnIt1UAxVomd2zbFPC+2f0hAq7HsSfCApoMgWkK1FgeINMkBr5QWjPWoKJRYOOWTJVRcBqAxKfXgetXOEtMqvREsieHfiWpnQM3FwZJiQKZcHFTiiW2JxJBQLZaY8j2xJzvUJRqDMfkElyM7bYA4UWzvLDmjWaklMOyGNmxQZcnZWY2kg5hMZsMAWurR/BAiMSayNvagBmwpa0LZk9+l2JncZOTaOZFrQbIiIXou2iRXl5LRirM4KsOYSCl0aTcRA9ZQLRGaUmS33xEkMh3nzkQoNKkYt5fqNpCuDo5iw0YVvKo/2rU9YZOGtKnqbkkIelV5C8Sr4kBquh2XhkQYwg0ZWDwp1RJL4GOtaqAelN1+x7wsLHO2NSlrgN0k4KIDV9fAvy1VO+eKOqC7Gvg5puSSo2a31tpslOp9iV2SJTtgrUnI9upuT0SIJ8cay0ev3u/JhPb86YmZZgv1ZIkqsTMebhJlnvipdU3AlFJsTEU9qecMPersVOKJsE0QycBbDorT2hlLPsogJW2I7E0Xu+XkybKevJMGmqEbZG2e23VWbIPbKP5cyhZE4b9v8msi0VM2m0Tahg3HACY3+92fsyfyOkBJMUCb96RJ27QhuDllbKTiSd9avX/OdiHhJtOWWsIyNuCZj7sDR1Cis3M2tjGtq4yZJSp1nUvMNqEBclvvxN9nW9ndR4IGurL9oo3d5tv6sLIEdVeuf7cXrQQDzFZtMtcrw0JnC2pD8oNjBe64/RxboYb3LfmYenLcgNltL9RmD/slGx/BDUBc37u2+52PrdGtbhZX8yOa37CZ1b7uaM9Itj5om1sfaB8n67OxTvfrbT/i1CDrKNyvg9olY9r6amCkPiQMACttHnztWr/6au23VrR/d2U+8TW+DrDPJ2z6idwAVrXp21y8/74vsRYHuPGebhgi/Pv6+JcP9qs0DKQgTJMxFU3T7GxDkTi477oUBwr4OzNEhiFQMuSydDByycoxT+RcGVJ0ZmM7VyUaOKGx2ah6oVXJkIRhNxIJLNNEzplxt0NLYV4yTXVJazWZs/ZeiDjoQhjGwc+qtegrxthZW8yWsTMqKtyO53zm9Bl++MEPc/fsDulziZQGhjQwpNH8vSgECiKVwy7xyqdfRoFXXjG7MNcFzbcNxJQn8vSI99/8AM2FW/uDFdV8QpA/L5Ag/r8Csdq86nOK/reVeqhMh4npKeGZ+hKn01toPiEpEghESQznF7z+7rtc/81LZi3cS4njPHF9+YBnn77N/s7AxfkZFSj1Lstp5uA+39N39lCF45S5/8GRh0vg4u5dYkyY1VUoy8TDyxMf3L/izW8/4s7de7z08os89+JdlqXw+hv3qbkVvVWWZeatt95ExYqbVoZQszlrMTuplMqpZAcZG2hMUZbPZ+QHlXhs7DT25zgGqhZKVpKEflblbEB6CQYWGaJJ7uWygERiCgjGuqWiRC/qqtUAYLUaO9bpeE0uxXiaHTAzzRN5yUyTyaNLjMTdGWkMnB3OObt7h4tbdynTxNXVI0JIDmZXhmGkUsklQ1+LDsqojUkzOEi7YIVUtcdA7P00qePGRtXsyBUAZOdgO0sNPKTd3rUCRO0srNsto4Eo+j7Zzloz6Ow9IvTz196xxwDluXSpMMLKztNMtLb/qmqPAzV7tSjGWunnRLMpWvFWwG1o73P1QsMmW6cYey2Ixw4aM1Dbv7F4E+IxsPW8ou3VG7ul7cHSxlm1h3vaWdTsh+r2tRWZuD/R+Jva2WcHcC9EaT5gs4FUtcf9bti7Pv+tH/3obuPqn3ewF9LBxjf392bTrQfG9txr7It2yw2LvHDznKlNatau0cBarQBiPV7s6jEGZ6ztFhDtLzYW94eULq1nLGjSgUTb64mfkdVtwm2BwFZloNsE/Vk3ANrG/mzPXPXm8998Zv2m/eumP7GNxbLOXW3viBpbln+uwdobOHt7E0VtfQY+1M8n7Ul70r5/2ncbKzgejx/puMLvqj3zve7A97CpgZN+5Ms/whd/6Ys8//bzf1+AUmsicH5+zWc+842/z2eEz3zmM/zET/wEf/Nv/U30jyj868AO+CeB+/7BHwH+KvACPHzmIe984h1e/M0Xf9vr/uqv/hr/xr/xPj/7s9/9MP/LatfX11Ys9Ltt/wJPAEpP2pP2pD1pv0377uXeVF2Cpbrzps5oAzmbg9Qr/qg9kQcGqhG1oE1eCiEZQCi6s1m1AR4syhxc3qqUbJU+Fa9Etgocc7oNjGRBwxUcYkEWcQfNggUhbph+igloCUKQBE7xbzJc4UbCKnTpAE9Mlg37ggcBRYYuD6fqMi02YUbJ7kGMIQaqCjEIKVmAc5oWqwAOYpJbLSsjwdmRgBSQMawgGA8Px5gYkgXF6FTGPnahy4BJMPp81UrR4s/Irh+DzXWIoQeZYohIFYYEqTFGeal/ri7pENtz2qwPTzpLEHLNlLmgIiQc4BUTQ4rUZaHUSqkQUgJnOKFqB2bZfAsi0RKQGOVyjDa2JWeCO/EhJHItXnUWnT67ekLSpqX6PAjQZAM7aGkDpKnUHmxSD1ahLSnoGvIdCOTPSu2brYrJNW6IbnV0ineJtIplwVmbRDcBBQFn+YohEFsFo7971Eoh90yMxUhWiQcLmlkQDvVEQxujM3etfEouN6BbiSBxUFYLgTSQlb/vLTODJ5Bb0qzNAwAepPN13MYiWGCvumaBSuXs4sA4DEzHiSjKLiVSTCylMOx27IbI5eUDyAUOI1eXR64uTwboK4H9/hbPP/NpLh895L3lbabTzHBx4PadCx48vCbUxBgHYmj7A+wPZ+ziOcMusT87tzWlEd9s2B8GipoMo6RAqJV5mtgFk7uSEDjlzDRbhfW9O3fIpRiwRasDImCaTpAjVGMMee7eXT73iU/wwgsf5+LiaQ6Hkd24J4VAjEKIVgFe80yJttfEDPuzM9pKUq3sFUrKPDo+ooTIfAXXl9e8c3nJ1aNLyMWo5AVu37rFfj9AEPKyUBHyKTtoBdI48uzHP8M3vvEq9f5DRJUh7nnhlU/w9bfe45t/8S1ef/MBeXeb6w8+4PKtr3NrrPzKl77GcbjFLh1MDiNWDrvIdZh5aifsqjCcD7z4yTu8/vZDvv2tD8gVxlujrSuJ7A+3eOHjn6bWwK//2pf4cqx89ov/Fe7tA2cv3mP+9TcZNBNRUOvzkk8cl5lDGhnHc1555VM8/dTTfOO3XuW9995nt1uY3nyLy4dXSDCAWi2ZvEDNgTgURBNDMom4YQchBZbrStpHDhcGkONyIcYdVTO5ZtCCZNvrj9eZFIUUDcSSxkBIZ5yuJ06nzDge2EkgSGU6ZfJkABktlbwUptNMCAO37txhnq4YxkQIO4i3mMMZS7jD/uLjPPfJl9ndeov33n2LmBJ1dlk6zWTNaJ4JKUA2cFEDKZWSWaZASIGoEVVjBzTAqiXFhmh7bki2p56Okycp7JxU1GQrqgVxQwjGohQsRLkGi+1cbpWqN5ld7HvBJSVrLS7v5uwFua6VuX1/c5mj2aRfuzzpYEH2lJKBOaoxIbREhTE5LoQ0enJhrVRdprmf5+NuNOCm0uXP1OX5qoN5tGTQ5P30JIgbKU0Srcm3mCxrNSY/P6876HNT0dpZdTzJJaWCBJa5UnTxeRosIVpgmXJP1qyJ4cZMZ3t9XjIixsxUadJ5obMaeV06SiANA0H8/M8VkUqTZ0MCJi+moItJg4Ro41E8IQPGYLgyAtU2N5vguGIAjOwAJC3bQL6dOM02I1glf83Zzs4JA29J6NfL2fbcFO3cTNEkb0otzvYlBIkrMN1IJ8ilUnVh3A2Mw0DOYQ3S+1qz+dqA6hwwcnMd04EZ7cRsknvIKu3U5HBrk4Z1AECH5XqCpBQDfZcoJD9LVMsmoWFsi6hQ6tLBFyap0xJ2tuZjaElyT8B4cqHZuOtZ/dFtayX7Ct7oDC8tqQMdNNEkYXBgRZNraQD9Zv3SElLdn8AS/dDt+mZXrRmyto4dNNOAGTfyNu0bzjDgYA9jtmp9kvWSQTuDKE3KacMquda/b4A6QYguj9hk5MKmD53tRlryq9mXNuica2cgvcFK05OJgkbzx9oe3pJ9gQaE2tJ3295nssLtnWj93pwDrPtBY46wxF3o8x1CcJVie/+7zDcNxCM3ko9acaDQ6rch4mshdLlQY1WzXjfWGlsYrWf0cXYGXxqjkE2mAf3b+2bzbz9bGRI2i6YnZG1taXs4tO3Oc6X9CbdCmJb87ZwKvsfeTA7eXJMIDqxt34WV+Wn1e4Vmu/cL0dhT7ty+fYNlg/beafUCG5c+srek+wg9Mb5Jnnd7v/urfUL8XW6fle5LtO/au6n9Qs3D6L3WrT/hvoa619K6NIJ8AfSPbwANYuDeGIKxLmLJ+RiC+SMpEkNgmU/GOKiRec4G5g4BrcKQRi7O7jLPE9dXV5RciLvAbjdymhZEzSdrZ7yCMwgNxBTtnA12nooqopU0RGo2kDPR1krJmSQ25yJCzpAdDDLsErXFWVilRUvOUI1NbyDxygef5gvXn+d5eYHdcE7aBZKDp0Kw89qQwpXa2HgrZt+KdPKtokINlTlPVAmU2Vgnr+eJj7/4cb5559u889PvwA5240j6H0T4JahfLujHhBoKFEWlUndwNtwjfvAAPU7shx2TnNidnxMOI1/5TeX8IvP08w+RlHj49pucj8rVo0u++cYDbt02GWFxwMtC4WwIjCgSA4ezRC473r9/SVkWohhTM5gs5u5wzj0R3n7zLd57723O793hrkA8G5Axkadssu9ayGXmg+V98j4bm2racbE/cO9wj+P1iYcPHxFiRuaZoz6EJGaXLhVeUPSPVsKmiFvE1kZMQs0CAZNzi4mcF5MEV5BgMZhQoYZIKVBrtmfnDHtpMNloWwPG0BqqAsXZTN0fd+BQrcputyMOaWPnj1SJlLBH4hmHi6fgvJCrEoIX+vVdvDobkvZzpNa1CKHZ9yZXXD0eY3Et8CI3CahUA/hTvWDiZoFgYwIXjw10qVLwoiZvvpc39pl+SroN0MBJVDW2btqe3g79dY9T38fNcZButzUp5a745oxPq7aogtvz1b+jumFDarGnuMqnbcHptbRDu1JKAyCvZ/e6V7pl6f5Ek/HtfehHg/9bNsDtNkZnskJgWZqMs9vSDmRqhZuQ/ZqbuVeLPVXXuF3P+SZjvdmc/bkYCF47O2I/slpvN3ZciwmGul6ln/Et9kU7LzdHSgMQ+bPWx/phZ7r0P6s6c2utULQXwvb112O6YZ1zTIKuF2WIeHzU37HN2d+KJQyY1X5v/Qlu8PTV2nyI1tMNomoFHq0WaFvnvZCjL/m6OSvXc1P8uZWq3R5a37VVWlh8PNqqIHS9VweB09hXWR92s6G7neLn70fbpXjSnrQn7b/k9tJLLxlz4fdDOwP+u8D/7nvcj+9Rizny+V/5PD/5Sz/J828/38/Lf5QthMCf/JN/kvf+q+/xlf/FV2zOAf4K8H8G/i3gp4Db9mMNyry/KeN29+5d3nvvPf+XAF/gdPpx4NV/5P39nbZpmXjt+Bo8t/0h8OA7fPgpLON+BVwDXwD+DzwBKD1pT9qT9qT9Nu13xNlY3dmRJolBA1xYAE6cpsCcQgcRhdRCrhYoFfFqKqAxEvQQsXpgwIPTVWg0Lk3Wyjrizm/zoluwSszxDKFVGUlP7KQh2r2mxZIXPdruCVVxkAcW1GsyEqpKzUp0UNbgVNyootUo32NIBKlUMcmRGKIFzVNyB9Mr+NWDp1GI4NVVpWdXhv3IKNFAPMtiyZBhQFIiesA2hugVRi2REvtYai3WJwfKiFoSWaFTYxsgy2XMAhQM1DMMCVCWmr0qyYMRaolBETH2KDBQkQN/elBaG3PD+rzwxACilHlCF3tGAQvch2osBzUXaimMTnXeQ9dVDaAhQllMfkcCRg8ugRQsOBuAooAYxGmpmewOvFYl+UotHsgQD55YEt3W5iDGvrHkheLBjKDGuKW5sHhCM4Zo43EQWQzRGK9oUjkYXTzOLqbr8ylFIbV3oxKSy52AJRzU2ZM8GBJcHiJ4pZjSWI82FY+Ir3+vjFYDnbUqqZbYQRu7ptJYPKz662Yip+UqarXgcws2teB2QCyGE9RlR1oFV+iBfG1J9ewXQ7yqeGFIiVAFSqXkhbyYROL11TX7Wskou7ORYbfnTrpDnidiHLi+mqmzcrg44zAemOcFRLl990DaPcs7b7zNow+urKo1Dgxhz+HswDDuiPuBQYwh5Nat29y6uGDcjWTN7FKCIohU8nKi5kwthTgk5uNEmRdiCuQpk0thyQViYC4zcQikGDnb78h5Iasn4JZCVOXe+TnP33uKT7z4ErfPLkgC+9EZtYox/UAxmv6Y2MWB02IghgCUMlsCSSopWjI2jSNhitRJGYcd956+Rxkj+92O/S7BnG1/GSJhtzNABsa4s0sD07QQiKgeuf/+qwiVw9mefCwcLs5AC3/9P/wPSBo5LcL508/z8N3Iw+tL3n7jdS7lnLevlDgc7JpRGAahlCOP3n6fXc186oc/xY//9B/ia69+m69+9SvMy4mPffwFzm/fZkiJcXfg/Pw2F7fu8PwzT/Pe/Ud85Te+xdnzz6LA9dUlV9dvE2Lm6voRDz54DxkCQxbG3cBwdsGD48JFCTz7/Me5vLriNC0cbu2Z6xkxRabrE7NLZeVsQJUohmTIeeE0GUsPRFKK5HIi1ZnzW6MDAwauHj3ieJqZBjgc9uRTZanXtsenxHw1OegloCVQS+B4fUQLHqgu5GnidH3N5Qfvc7x8yH4/EAZBdSHnAjVw/vRzxHibNN5DdMe8BMLuHIkD01w4Xl0z7CKlZpDqQNcBDZHrq2sLnpfqbEDCkJIzXKxJUS2FmCIhCLlUlrlCEmqulMXZtZJJw1lw1oLfosY8EmJyCQKTQq1VTZbCzx3E9i1LsBcH3zg4QNXBnSZtZRtINTCQqEntDX5+OVig1uzXsz7k4tXYYq9EiomU7Nkty9Kr4UMSq2QnkZeF4oxE1g+TjitL6cxAtqd7MrpUqtj5aUmIaIkaLcaSonYWBTFZNa0C0c4kqzq2uQ54RXk0IJzm2lkbLTlTDPxUjU0wBuwslTWSXxuooNLZFihmiyzVmLKSBAN6h8bYEdDgyaJicnxWCtzm3qVEesX0mqySGEmJXvldi4HVVkYSxTSQTAbDpHntfNBqz87shFXeoCWV8ERDkydoCZ7qwNwlZwKFGJMlWII4GCkzFWPBiDEwDANSt3JmuMxZ7BXhIu0sVj+HGoDebJSaK6dyogEoGvC7OBuiqskCSfSzHoViTDAtrVQrxMFARiJq4N4GKmqZhLACQAyoqB3bbFKHBgBvCccQfI7cxo6hMULWln5rp/1qV+HSqn6Im+0aWqE7vXL+I9rWiswt2EJ8ntd1tE0kmeSuuL8RNtfZrDVaPqbJ0ygNsPEYdmeTbJI+W+vvt8mnBppqyc4GqCub4J7/KetPLKvkSaSWuKq2Ziy5vflc9aQb4vuNbhJQcoPhQJzlSzpwAtIGnGRSwJHoP6ulFREEZ3ForAwtMdfme8PQpSYZrF3GjC6zJ+5gdIiJm/7NmwvNV1C3cFsC1O16EdkAtTyhuSKgfKalP6QO0nFb10CmdHklwdn21ObHijDWpGR/FP7X6u+jbFiKWgJb1AGnPi+1yd0049iHuyamZV2v/vpH/2tVK30Qkc6Koy4nKrCuCwfrBfer+7z2P7b7i/38/PyCYRd58503/PlBA/2tq1UYxxHZrElR31XaXNfaGTBwf0Ldn0A3YLt2D1gBVu25dNYwWW+yGUDdzB19zvx+/s5uIwHWPaE9Pt0r+jEl/aTAD1j/Sq69gIRaUT+DUMjz4uyDEAdjqwlhRy2FINEkf4sBd4aY3E5QdrtEiGdcX14znWarOQmBKGZzxRiRGLs01G63Yxx3bqu4fLwXVDXZ9qJKUGN0Mkk6QTUb4Nrf10JGQvIYg0mDlyZLHmxt36kX/NC7P8CPPvwRznYHws4lWd1OUNbrBzH7oFQlYzK21W260tg03MaRLGi28+5wtqdGWzM/GD7HIx6QZbGCrJcj+jFFP6/IpwyIk/OCELj/sbc5vfYAQRmHgVsXt7m6uma3e4p33/5J3smf4amn77M7PDQGyesrLq8fcT1XXnv1DS5uH+0dFEjR4kJf/hJ86uOPuH175KVXXmSZKvfvv8fpdOTs7MDucCAmKzwYhx21ZM4vznj44AH333/InQ+uObvYk3Pm+viIFOFYr/hS+nsc/3tH0qU4MGigLIHTB4X9Ny+Y3p05fjITa2B8ZkR3Cu8q+c2F8klFD+7L933JwGDz7HJ0IbiM6exFKAE0kHM2iWSUWu2ZlaVQg62bGmA5zVgRme3LORdKLrRiuloKJWfm05FlOoE29k0rANCiDOMewp44nhFksLhJTIQ0UFVZlkwSlxNzaY0QxBiHc6YVOjXAcxqS2cfq52hY39lm0zR5tSbJq27DtP1BtTESNXDt5gy1l9/OzSDdrlz3xu1eue4VbT8S2cQg3AwgtFhJ238aA6g981b017YgCSuDUgO1qNKBSnZrITu784ojajZYbaGObp+pun3n+7KBaez8a1utsUGpH4G+Z4fVvm1xGXxnbCyEN7bSzVl+g1lyK0nm87ydE+uWdJluCQGN0rFa/TNBrHTUi2LMHLHBWnFEY9DlRmtg2vY8VoZW+75Pywa4tfatMwN182K1rZrRZmN1e4xAlWrS6qoOrgse92zrbI1Lt2ITJW4AUH7/DvC5CY5v895ZkfzzN31tew6V9gx9n3VfyLovDrzSfo2VwXPD/LSVImjrtNkKzvSEvy8qqw3d+hhs07e1x2o7tSs2S6Ev3GY/qm7Y07fr7El70p6078f2sY99jLOzM772ta/9fT+33+9v+lS/H9tTwB8B/kXgv8YfPJCIwq1Ht/jpv/nT/NTf/KnvijnpH6allPjTz/xpXtfXuZRL++EfBv5vwD8P/DFW8BLwW//Yb/HJL33SYqkh8Pzzz/u6fB74C8CfBb71295vy2QoIsxz4K/8ldv8iT/xiLOz+iE75XfbrsIVv/DJX+DqP7naxC2At4C/BfxlDLD0X8fW2B/DwFhfBX4T+JPA0/9o+vKkPWlP2pP2/di+e5BStfSbBesDQQOBRFVLJlpAtiUFxB0joVeju3SbBCiLBe4r9IpZ88PNobQKtMIQWpXWGlxe5QEseNHo7kNYEwlUY0CQxqok5gTWpdEUW3V9djBOiqEH2EMMpMEYIEqtHqCQzrJDCmuC06IYXrm0Org12Fi0O3gWGFSpVKnk6kHgKFRpVS8tcaCkFAiSrOIrDatD3Q9C8yCLKnUplI1eSKOkRq3yLrj+gbTgtayJDws82Xc6m0YILiemnuTBq7A3wZNW8ePsRKjJydhg6c6tCg6EsmThXCpDtEAsQchaegKgamGpoCWb9J8nZRrLVtNGF6CoBcSWXJFioJKqSgoDQwpQc5f02KeBwzBSVTmeTp3GOQUhSYQAeTZQiSMOiCE5VTZenRjJ1QF5FaoWMrDUtqYFzY21ZDCmKa3UosQ0kkar6o1qiehdSp43VqoGpnk20JavgS7V5+tCcrUAs5fVqwew27sW8Cr1aAlKj9NbNX+L6XhkTUScEawlmOz9smCZBTVa4hZPlpg0ngcbLTqEIERRS0yrvcjBA30xJq4vr1lOmbhPoJHdYUfOVuWWZwNwzfNCUQMcjMnev3Hcsd+NnK5PHK+uGVNkurrieDK5n9Np4vp05HBxzvF4ScAqbcf9nmWaOZ1mzm/vuHv3Drfv3kUrnOpMOS0oheurS6iVNA7EQbqc4bxUdvszxpS5vr7i4UOTgROFNBibzDwvFrALCdXMMs1Mbp3GEBnTQJLAQOD2/sCnX/gYZ+OOu3fuEUPkeD2R8zukOBIE9mO05I4H5g/jgXG3N1k0gSiCiJLLQqlKSgO5ZsaUONufs0wZ6sxBCj/6qZd46bmneP/BJQ+ur5koFIJVeadAGgSRxDwdmE4LGuHrX/8ypzyxu3OLZ15+jkEzb772GneevscLL3+c199+n7ff+hrH6x1vP3gP2UcuT29Rvjmb1EA+sdsdiDIyH6/RPHD74hZf/YW/zq9+41VOD65581vf4NHDd3njzXPuPf0saTjw4osvs+QTDx69w8PyiKMemU7XXF8Jh4vE+5ev8+qv/T2kzizlxFJmDgdliCMSKhJmHj66z/XVQ2ItFL1GY+bi2XPOX7hAJDBfnThdHpkXqx6lLOTFgvq5FpbZgCpQEEye85RnUjoQVE1aYS4kEmVRjnqi5JmQEtOSGTzgaIHblqieOZztWE6Z4zIjooQIw2AsWYHK1eUjDmeR+ZSZTjPl4zMqC08/c5eLw4GcT0iZ2Q9tbUQgcJoXSp6oOXN+ccGtO3e5fPSwJwUMoFoJw0BKySuhDRicUiQEZ9YTIc+L7YOFVeJRxKTHVNezuCW4VV1m08FQpfoZamDX6LJJpRQkBpfpowf60ZZM82Bvq0j2ytcYIyEliidkQjAZOMSSLlUqmm0TCyGw2w/UUlmWzDzPa/KEdgQZMC17hXiMjXGnuiRDcba6sLLs2XQgDWzl5wd2zHVwcimFUjI5L57o8LMWS3gq4qyCdhCGKIQ0WnV5DuTZ5jjFAY2RnDN5aWxUdFk+rca+pZQ1kaPG3CPVxlrygpBIQyIFryqPBqLN1ViVlrzYmZ9M9lCCcHY4GBCoVEuWZQNnxdQSSoqL3ZAXA1HHEB1QLS5baoBSNxPMJqm121rtLOhgWrH1EIMl1PKSidGSsVWLg41szWaXzEhDNNvJ5U5bckc6eMClsSSYBE2xZ6+NJcn71aqGQwwdIN2IvAysa2C7Bh6JY0IiHdzRpAhp74V9mBgjw2BMmsvksjAiqAOmhiGhWlkaA1rVDabe+mRANDtHs2Zbf2JMbT4aVG0uUxgcQGnfbes5SnA5omq2oK/jLsnyEW0rIIkOPG+Afkv9dghES8Nh7F9rcqonHNsbp/1LfhPZsKA6T6dsetDyNm43q8/3zalb90h/aD3BuN63geHcVu85tZak1hWo0cA6cCPh2zhsmlybzc3q/Gz9oEpLRrbrsgGTrOOzn9u6b4nI1d+4OU8dRLm5SAP/rAlEIfgc6/rVm2NCOttmAxFtQS7tfWw5Z20ZvzZWZQ2E9we6Zk0bM1Gt1QCu/v3aWT9dzs/t0pWVQzzZ2PqLrzPzb0pVZMOWEfyM6Cxm2D44BPMPc86bcdl7i3hRR8Ob6hZQZjYdLfHNmjSu4NJ/HkT1s3Mr170WqRgb20svvcTV8SHpXfeJ1XaMJivU+Lr62dKelSfKGx5NqZ1FQVlZLxqjnGNlWGeM9Z3pz8jf5M2PpF+xAf0ey3zS1oKfGayJYOt3QA5C+Hxg/sJCvVuNQbKYtKgW7YBpFN+nnWkLehFJipE8Z5ZlIQYh19kA4qrGQpkX0jCSl9mXYSCmRMlWmDCmyG6/Z7/fowpZC5rNtljmua9Xib7eo1DcFwzBQNTTNJGXpe91eOEJgCRn7yrlhmRuCsGYm0W4u9ziZ1/7Ke4d73DYHRACeSkc65XFH4AU1yR0CIHiZy0hdHYakeZvq9uExkw9pMHAMLUwSOXZu7e5vewZLuFLz3yZOWR7kmMg/IhgxfSBVBJ5qTx85hHv/MYbVrS1G7n97LM8vD4wTz/Nkj/LU0/dYxyvmaZHVE7k6Yq5Fvap8K3XvsL+cOD+/fuoKLfO73D//TP+2l99mU9+MvHH//HXefP+e+z3ZxwfPeR4vOTBA+Hs/BwJiYuL28QUmKYjc55YmCllZpkK5SxQKbz7/utM9ZL/8Pyv8Rvjr1N3hf2YDLSWKpmZB09/QHyFDi4TgYtwYXv5i5Xlh7KzePrKLQboabavAdBrt1NztndQgskOl8WZwREvUDDbqu27jeGqMW+KVAPXDdH8FQdbt/NEUEpZ0LyA7pmnhXFYUC3sdomzw87BlQbMC36oSgguc1vQJRNiZDgcQNWB7Wuip59nSi9eEzGAWq3VbfWClrJKq7Z9tcVUWjxBfN6UvpMYIEjbrzwG6HGKVighayzCww+dybKBlqyv2oisndXJfZJuk7dx+Vm/YaYUZ2fPZemnWN/jXE61dgleulxb92NwJlpdf9+YkRp4pHZGJ4/BuZ3f/KDWn8aG01gdFYsVtSOsFU+0PtlzsLPK5sdjO/6+tznUskrV9SFuH4ZUA+B7kZwgqKNta7eXvXDN16FKY0pvoG22BN/dhxRwoBK+34f+/Izpsn13/Tdsvutxtg7YpsmrWX/Vi1JDdXvMY5YIzuC9xj1rY1Wt1e3O1e9pNp30WJufbdXsi25rOAiox211e571I8zWRWgAc/X1Qgcpd5uH9q4ZaKqWm2zDEhxw5fG74tSxDagl/XMrOOpx+fUGStJ+FgQ6NqquaxncB5X1393ufdKetCft+6qllPjiF7/IW2+99Q8EKf2+bk9hoJj/CfBD3HAr/yC1e/fv8c/9W/8cL7z5AvJ7NAHPvPsMP//Xfp6//Gf+Msu42A9HDCS2bQLf+oFvcbw4cnZpyKWUEqYJ978B/puY4/qdQUrf/OY32e/3vP7665RSeOqpp3j11Rf5C3/hB/iLf3HPv/wv/wa3b4+AMeEOw/C7Gs9luOQvvPgX+Et3/tJjDMbAs8CPYixdPqYb0/ws8DO/q9s+aU/ak/ak/YFq3z1ISYQmfpG8klACVq2bnMFmWUBM9qPFJwjmRK6VM+qOtwd0HKRTSulU3yEIQ4iWQGvONk0SwRx7cRSMkfNWr0x2Z9woXyyo41Whiy7g1fHmqPYsgicxLWEVXDJAMBCLejAvhG21cWMYyubQthxXtepclVaZRA/6G437QgN4iDTHVTyIAs0pn2s12bMUqDVTSgN/tUQBmOOsq1RebQkOeiKO5oArhCFg0mr0KpseJ2BTOSvqMmSV3BzgJrvg0nDtO9u1kT24H3pQyZ1d8SCyYIEgUSqFLS1xGAIyDNRaWURNZskTx43KGQ0dMNWc6dDAbcECEaUszMX6XrAkxeSJRvHEUWmyXB4kalIgC8owjmgt5CWjJRubgsvFBLEK15yzUeqrokuGmJAqJE9CBQcMoBaMNikdW4smGVYpClIqY4KlFJZ57pWwwQPLLVASoiVfJcMwSpcpAp/P2qitg7GHVJNEVLInCkJfO4hVFgcRgrRqMwOEVW00687Y1Kr/ASoEsap6PNmfxKQLheBrxJifqBnVwODyfKEqp2mi1srpeOLs7MA0LZSajYFsTMzTRAiBcRwZ0sDx4dECSyUwL5ZwF4XdbuRwdjB5hBg9OC8UZ/9K+5F7d+5y95mnuX3nLkNIaBRqVuoANUROxxNRIqfTRAjKuEsGJJABCSPnty8Iu0gWWyfVWVrsfbX3YzpemRzcMLIsC0vJHMYd+3HHgHAYBg4h8uiDR8zDTMlwtjNWp9NU2I8DhyEw7A7shgERYRgGkrOs0UCOqqgu1Dozz7M9K68Yl6AczneEWDi/deDuM3e5Op24PhUeXB/5xhvf5q133yPPmVIgpB3H0xXFq33r6ZpSQNKOs/09nnnxU8Tline//Q3mMvON119jKYGSZ9577z6yO2McBipwdXWfGA5oShyniSiVUCu784Hh1kg6wWtf/xa1ZhadGM4Tpzrx1nvfJhfl2299w/YYyaCVWJWv/Rf/GccHJz7+qU8wP3rAe+98k2W6ZtxZIiXFgbJM1FpI+50FOYeRXIzhZMknTlk5nB+MFehsZDzsUAyQWJaZZV6oFS4fPOL49ttoXpBQmamkNAKBhx9c+95a+3lXc4YKu/2O87u3ePTo2pNH9v5KEIbRJD32+0AgMh0bgx2kceDWrdu8d7q0PpSTnZXY3jYEWzdj3LG/uLD9QR38JNh75Cm+LJGzszuoDJxOC/NkiRMRYTfuQGE6TpRaGcahV95qCAiR6XRyGTSl5mKShy6PF0KkYEmLGJOzQCgxJVoVd226Wg4sKZ5MHHcDSDS5ipa0WBrMwFgPJBTrUxLqvFBKXu2Eakw5MSSWZXHgRkaDBaC1uPxcighKGmyPbCxZDRATghCjcJrnG4ANS6wYsLolYXoysydGvbdVex9SjHYW5mxAK9V+dhklhSeEZd3jtUX0sbMgDiNxSHa+1mp7xjKb/Iq26VTbX4ptuFowxpEQnI2p9OAytOTOyrzUQBLF2bQQA0gtS6aUwj7uzU6LLThta6/MS0+0L4tXrBMIIRJjpBTFnjIO9DJZPpGVCbL/Tm29NzlcYzHLxBSJKRFEiSGwG3cWaM8ZzbX3v2RLmLbErAFeBwPwLIsxnzmjwGp7rHMRJBrwqkmejcI4DGZ7bHLrMQSzA4rbIZ21ymwfk6Jz9k6RzlIWJTgIy+d7kxAOydm43EY0edpIrcGAlSL9dzTwdSl9rlpCwZ9+D2wMw+hgJLfTnN2qAZRQl6mtq/0LBhrfYAE+gs2SM2Fja1gySjpIqb1HjT2zPfWW4Go/acNs7+HWz2iJsphaEs2zZy1F5OCkdt7K5jr9eXkSrz1vRfv7b+/TuibF+ye+H3QbKqzMQaE/p81cWEas/9NsfTb98L/r2o/qjKZ4QnGbrLIhOMhEV0lOrbWDMbfvkW0BKxiy/a6RodWeo5J1H3Izv+c4pX2iJRnb/9vfmk2+JubYgME2kTxZE9zrPD3WV++ctueiawKZllhHbaxtnLJ5vn6vNQ/oz6/Ps3bQX3/efW7Mh1P3bdST9bJZV1bwYvKNjWmjvaOWgJYORm1JSoo6aM2AYGpdXu19Xd/p3W7H+fk518fLjby4AZ0MoGnOdwiRO7fu9DkP4kw/tRFttASrryOf81bFWn28sJGRfPyZ9HduhRVq/21bn2H7ovr7oR0IJbUVGvkciiJPK/wzin7MCjxCFkTVbD5VllwYkxU0VTXgdEzB7SFL2ocQWKbFk+OCKZZaz2JMDOPgQGXpi1GxMySkyH6/53A4Y7ffr6ABVZM5EnXfoIETjF3SlkGAGBl3I+LywFqN6ajva/6e52Ux8G8IBsitlSFFYkhEDXz8ned55VuvME4DU5wxebpEiJGcqzFKBmOQTc6sFBzM1slsfJ9r7G+l97uBNWAYExLU5LAPB+acuV3ucvfh0/zKvS/xfr1v0upVkZDIZaFme+ancOQqPOIs3CKlM27f+zHO3/8M1w8HKsqj60umMjIcnub8/G2zFXa3IO548823CZJQMbm3d9+55r1394QQeXCZ+M9+eSKE+5zfOrLfzc4qW7l95zYhBN565w2TcB73Ns+auLz/kNe/9lvcfuppVBe+VX+L/0B+gbf0DfRUOgiy5AVVKwpJyfxnt1jJuZjdkqIVwhxGtI4GkHH7vAHjrh4+7HJgDYUjEshzA5s72BMHrOZKjMJuP1rspN1X1aTsnS07JgOFl6XYS+tnwbAbKWfFQdTZClY8RiMSDLiswrjbG5sY63kaJFBZiCJkhBgHUtpxOl6bFHOXera4XtnYniuD8xp/yDnbHlV9XxNx4Kf0PaDJTfaiANnIzbdDBLUCK1VnffXYAuJFGJszuOKgxsbOuYKF2ubTCqbauJs8bmOAbmzraDVRdREnnlkLNZq8Y/WCSHT1J8RjKbjsGzh4Sumgz9aavbYFLLWjT/v/uMF01M6J9gmh2SgN5KMEZzs0hjjrVAeWqNmz6Prd9vzNbtyeqb5mt+ccLrfZjmU/L0pxOz0ZgLar2akDh/3+Xea0xTvFGd02thLdVmj3kH4utBY2Mcg2hxKlx5ljjFSp1KUVxXhfUAPcdjvTbLMU8MIHvTHXayfa3AefAzufhOpM7+4HdNPRn6kzkPXYKysA0a0Iu2aLffo593izfsqNZ7Z997ot5/bUWnBqjH3d/uqXdgCxr5sgsgID62rPdllb9XdkY+M1O/pJe9KetO+vdvfuXZ555hneeuutv+/nRIQXX3zx96hX/4jb54B/E/gJ/uAxJ3kLJfCjv/qj/LH/+I/xzLvP8HsFUAKzAX7il38CUeEX/+gv8uDOA0osfKcuTOcTV/euOLs8o1Zhv//zpPTnyfmztC+89dan+Na3fpAXXvgt2kGX0oEvf/nrbC/6la/s+MpXhGUJfPWrkX/tX3vIvXsPef75t3n22cStWztCgBdffJFxNPDSOI6cnd27cZ1xXAusfvXwq/yrz/+r/J3zv/NhgNI64O84to9iU5Sru1ff6248aU/ak/akfah91yClYRd7cmtNhnjA1hMiKQyW+CrZqj5TMnBI0H4gWtWS9mt1II0Yq1CIcWU40FYBtan6FSyBRwPuhB5IMHYfd/TZ6JBH11DHaakdFACr81c09+oZoIObzEMtVj3pAd1WhSwWCXFQj4OuaNVPijEsmHNd5kzNBTbOX3PeG6vx1kEvnnz6UHCoB9ybdJoFgRtISzFmGa1NIk96Na5VqUsfdwsUVy99akkcVZwiudACJD04C6CNJ4LmpVufFGOGgpvU2eqfQzHpC/u7JRbFk55NHsL/r1RTstNWfVUtgO4Ajg7y8n5ZoKg50pbkbEGQSSxSoaKQBOJAFeEUPFCBXfeUZxQDuUm0iv3i8yMiJoVHQYr2xHbyuY0inQ3AgDOKqvTvbxNN0+nEMh9NumoYiPszpuPJqti8yqoF/kWCye4sCqImTYDHnIsSFPJpRgjkJMRhAFV2wx4VyNWSwVHEwS3CuDNqfK1QywIhesW4ItVo2kUsyNOSRRrUGc+skjkvBas4NtaUkJScZ6sAK4pmZdCRYTDGkGlaOF1PlpQGtBYDDYREnSvTaWa/i+xCIsSRGpR4NnA1nYjLwp1btxh3Ixe3bnPr9l2WsrDMM8frievLS4YQiIcRtHLYjRz2ex7cf2DPUUz+YcHo9peQKBXGXeI6X6Jkzs5usywmLxb8eQZRFpeyCiGQhoFcsiW5c+V0fY1WZYiBkAspFM7GxC4E9ikyxsit8zNu377g3u07gFd4aiFKJpBJ0SUkghKSoGIsYARLXAcK83RimmZCSEzHE8tyYjpOTKeZaZ65nGYeXJ148933mDyZ/+B0SV4M4BiB6bgwXU2kYFJwdc6kcCDt7jIvwlvffJUU4Pz2UwyHHTKccT5e9H1QYiTGgd2Q2I0DIexRGdgdbD2pJm7d3fPyK0/x5f/8N5muhKvlAx48ep+6ZLRMlHxkmSaWObMs1dagVq4fvsujt36T9751n6/+53c5u7Uj5B2ny3fJkyBS2e/2VrUuShosOrjUE0JCNSC1UuYTj47X3Lp1i3G0ynCtwBhYlmtKVh49PKFLZSAyu9yWUFnKwjDurJrcA3VxSMzTYhX4URgGC+IG0zsEEYbdYEw40d6FaZ6YjotXl46rdEoMnKaZy8tLSj4SY+Ds9l2Gccc4JIY4gc4czg8cLnZMVxOCMKYddfaKfQppGFCtHK+vbZ9t+4QH/kt2kKWHJdNgIAiqyQrkJh1RCw0WIeLJXk9iVq0QA1IN4DXuRgftuNRZsMSsioVDQ/TNfxPMzrVCMfBQk2ZQhbxk0uASmHIzeL7mQK26uRSTAe1SCqEdDQrOOlArqFfPznlmGAeGcbB1H1t1srIsMzDY/hwN9JNzdsC1nRUteT84iwLRqm2ysye1Pd9YqnA2jOoynTaAYTC2GwPEVaiBOntFuANKrcremPdq8cSB4gyMDtxt9BVsk0vioDAL0LfzdckTpRiwTMSAQiElY1FUHODYQDgVrUIuhXmaKaWBcSxw39j8jHUi+Zqy+Y7R5PWMvWqV6yhSN3ZRdfCr9KSdgcsCSGBZFkqulMXsoWZLltJklbJdl0qlUiLGiimrnaiyykA01pQokeByg3hCyBLIzhjR1pkacEExkLNWk8SppfT+ztUkPYO45FtVqMXs2JDMVtVs59wmOaWrdhfVgW7NZu22nTNMNZBcT2x6Cx3gYu+LgZAjYJKBK5TJbR3lOwSb9EOJno9aC3EFJj3eTzOvxRM6zbZWxBlL1w82MEXzLzYV5YInkpo8oNXe35yv1W616zeLcUVTCDgr0gpwalLGqs1eZ2UsdcPN7H/pt/FcD80Pacw82yRX71HLfrECb1pCqn2mMXesmSi30Vn3jfWu0m3Qdr8t2LHdkpZWFm7OszP5dIt6y/Dg2cnt53XTp8ZcceP324Sg97P7Epu2ORVu9vmxBNx63ZWpoiNAGnNS8xd71x7rw+NJuJZsZsOs4B8s4E6m2cTmAwq5yw7Z9bRu3ta4Juwbc5Ko7XFNTVOBofmWzr7UnIbme1WUJMLLn3iZlEyeq5RKzrOdZc5KuCzFl5AwDuO6H7RzoLZxBfdvvA9q4GVBqEGQGDAmxARiSVfz23ztAjEl87U74EXWtaLa/eUbPqQ0e8ElY4v9O4SAjiA/KNQ/WtDnTDZaqxKx8UU126DMmbmsgGA7xywAULIB25OYj6FiNuySM1UK+/FAdBDRbre3pHUx22lZZpd8T6DqsrKJ6XQy/xVjuihSHRxgYOuYArPbacOwd7bHeU3wyvpuGGPx6ltq1W63RRFCgXsPbvOZNz7Fs/efYsdIjIFxGKxYY7fr74WtUQPuWFzFCpKM0U1pSLzqiXZjgiwEcTukZGN0zHZ2z7lwWhYur4+UWtm9ueeH5Ie5jkfeeO5N3n7xTXIo5Dk7cxQUFh49+4jd/U/x7W+/wrtvv4JoIKXAOAQkDlRu8/obLzIMV7auMLnsITkovjaw756cR55+PnDvuQvuP/oEVx9MDLsjU37I3dvvkuIRVet7zYWqgfv3n6UUYwot85HPfvYBuz/0qwwvPeBL53+LN46vwtSA/9H82lqpkokpUPPk8SgDxlMr8/FoNuUw+Dq1wp5Ssp/x2WQnCf08aCwmMfq/N2B5RR30owQvOgkC2ddBDJGspQMqVJW8GLuPFdM1gx/uP/PA/JPpxHgc7B1wydwoFRHzVcdx8JgLLmdpMs/97HK7bGsz9HNZrcirtvfL98Yun1Zrw06ZLdbYtdkcf30fsz+aTHTxwrwgsu6bHovZbMv9GLs5j/5p90NswuqHWXj8sw041YCU2+1flbXYb7MXoybVmFJEo64dobEibeRYg+0JZga4vboFBbk9YuvOQCBWZCC+Dtvo/bxjtY1iig6Gc7u3bs9tA+SWgkteNyDTdvKbpaM3/r/ZGu3zTTbWmLqr76W23gKCxMha0LgBwqjtX8VZdsHPe232i/Sx9u9V60HcMNz2892/uz56XZl+VN2uk36mLov5I+rPpAOwdQXb1CZPp+4rt2v7I202t60HG7s485M0MJP7fk26rdkVbd00G6q9862/tdkl/UGoz83WPrX4sXRG4Jtx9r7maBbdWsCLYN9r5qz3tT2n9u41G6tdt8+t28R2VqzXWX++go+ftCftSfv+aTFGfvZnf5ZhGHjqqad6TOI7NRHh4uLi97iH/5DtHPhzGAnPH+IP5DYWSuDl117mp37pp/jsb36WIf/u2IP+ofuhgZ/45Z/gB7/yg1xeXPLLX/hl/u7n/y7XZ9c3nkseM9/80VcZv/TD/Oqv/jG+9KWfo5TE9kMPHjzHX/pL/yIXF++v198wt7d2eXnONO0A4f79p/iLf/HPAnD79iOGYeaVV77G2dn1jfiESOC11z7JPBtoaber/NzPP2D88/8e5Yd+lX/3pf8Hrw+vf1+tpVd/5NXvdReetCftSXvSPtS+a5BS3KXuyIWwBk6F0CuMQhQiAUIiqCdXOtLUk5Sqzmik7g9JdwqNvadSNo4aTU6lVmPk8aBxdd0MxWWqvNVVZ8Ec1Cqro6rmSAv04EKvSpEGyCjNC6Q58i1x1yqAbqQ5miQAOHOD9CSbJXzNgTQ5LpP/aAlk13aB4OQpm8BAq+7cOqktqNSSymDVpy3IaYEQSwaGxuJks0LowZs1aNAc6zWIv0r0RE8MPp5EyzlbovpmDoZWFdQ+2QIPraIdD/4UXSzp6FkO9QBWkxxDvcosGlDEkMqNprkYXG0TbO/BL8WCVZtUUBtXc+Spa/DGwrUtgLAJ6qiu7BotORNjfy4xGoOKDSd4wsL7ZPAFf2EsAao9mKIgzocSI3EcKFglZ0iBOEakBTtpgX3pgTkNVuXXKmXBE+Ii7EZLyE7L7CAKOOzPKAo6T1SKBVpqJUpCl8qcF0IQ9rudBaydjanoDNUkK0KKPeGbJBAlETSyH/ZUD26T1SpwBVIKFClcTddoUY7zkd3uFjENDMAYB8ZobB7juHcQjUAV9rsz9odzdvuB4/HEskwcknAYEyVYYPPsfMfZxZ4lT5YcEWVIxoYyjjsYI7FU8jShtTAdr4m70ZL7JVuQslROxyMi0dihWAygqNeoBpZqbGfnu70BrIJwOk2AgbeoBoyspRBqZUyJ24dzLg57DmlkP4wkNanKcYjsB2UIGWHmsB85HEaimBzQOI6ktGNeCrlmk1AQqxDNxSudsarZs4sLtAjXITLPgbPzM6Z54tHVNXo8UqLyDLd5dHnk0dWJISYLsKVAiHB9OhFlIA4mHxCGPeP+OW4/9xm+9Y1Xuf7gPk899zIvfOqHuHXrNuPZXfa39uxiQjSQA0iKnO5fcbHfc+febWQYSPtADJUU4PnnDzz1wo67F0/z7puZq9M10+mKMSTmOnM6TcynheP1TC0FpPD2669yf/8Wb3zjt3j44D3m+Yrj5YEUR25d3KGUI1UXal3Y7SIhCikFDvuRWpVpUqYl+9rGgBfzhEbh6uqSZVrY70em4zXTaWGZletH1+iy2PoNsNvZe5SXhSbtYpI/mRADsQTysrBMcP3gEafjhCqkYWTYDUgaWJbCsig1zyyngogxBrW9CGwNn5+foUWY5okhjUSJzPPE/rBjt49QM/l0jeRMKIWrqyuup5kUjJkMUY7Xj8i5MJ2uoVZiig54sSBninHDduOJjaos2SQTU0jGECR0QAlqYJYUEvv9ntklKIeU1gSuSgfWVDVWvZhSB0LFFvB21rkaPcnvIKNaqoF3vG+terP4u1TEwDyqJruaHcQWo0ufRmM2LLVSczubpQP6qrMUGaBsoEimaugAlLwsNNaD4mwM1c93cUm4ZVkoy9LlihZpgNy1+lQtY2TyKupSdNieiSiH8zPSLnE6Tb2yuJZqgJdgQMUEm/NXXfaVzsgR/Ow1iY21mrh2baduFdh1Ihbkxs8NP9vSmJxZic5COOfZJIkw0DiYLRZjJMVk48vFE7drgLolYaLL1DXwdA3GKmlMitr73loDz1UyosHsttISp9vE02prqMIyZ5TC/rA3KdPibITiAPS6JgBKWfq71tjDainMWgnBpOWMucTBULVVM9vzbwA1u4ixnhijRrN5DeieSzaGgU0mrSWKU4re/8Yi5cwHm+RlXnxPaZKCjRFpc/9eGV1hWbIntKsX568yejlne+Yi/d1ogJxSKr9dsPGj0GxvbBmi1UQ0KUE86d4SLCur5ibf2cFLPVGzScL1xE9L7LXvtX2nJZ5o12LFtdinoSV52mf8g0W3119t6htMQh0cc7PJ9lruCWxjXS25qdxMRILbt/31t32vMVG0Mdu9/TNqNqeI11pIY4BYQUF9eLLyXqw+wTppPbnYkpSbUbQ9+zu39TPr59Z3vPmQNyZnMyfa5xqatFL/aPt+XxA376aqbq81Rizvt0suqe+t7cGv42J7F1infZuNvPG59rzac20pwJu+5JaFysYc/Pm0a1RWd0V97vsat0oU7ty9w8XFOQCHw5mxWmikirFrSRCXnG5DW5P1KSVj4ai2n0Skj6ezQcXGImV+gwBDHFCcObI5bs70pw7wIawyUO19qMUTstpYS+zfEgyEKATb28cK+wqfhvjFAC+pFTBoZckLVNt7rbDB5859bxFc6trfORViGkjDQEyRfDxSSmEI5j9VP2eHMTKMqZ+FQRwQu4gBdJMBi6sz7uVlMeASK2sGvqdLe45aTHYQZ8qsBokdUrLzP5m0egN9qO/pJrtbSSFwq97iM29+ik+++Ql2DIRoLFkhCCkoQSpQjD1oSB7PaIzQqQMabJmru77rux5jZBhHUEHmiZKFNA6UkpnnBbJQg3LGjnnOTMvCftkxzAN3vnmbT737Ml978eu8/twbFn8IAQmJ9y9/jOPr/xTvvX2kTBOH89uc3bnHbrdjGPeEYWQYogGyzdgxCbRSOTucdaA/oRJFGAbhzr2R+e4tHpwvLLmwLAbez9UAVTkX8lIoubI/g9Pxinl6xPX1A/7m37gk/uefIrz0DvHP3GZ8eU+tE1Z8ZXGgNCZ7Pi5xVYo6CN3lmFSpS4YYKbUwnSbqMFBrJi+ZWsxOqS7fZjGt4BJUdT2jtIHQxaXAmmywyTfVqhQRez89bkQ2kKMVWzS7bt17RGAYEoHBZOFC6Kyojd1VAtSSzS5TtWe8LLYb+ZoqZaHWYmCPWggYQBFdi/ICtW9MrdBtlX52+6N5Or4nF7fxUnT5Z2edZXOWoNrZZhCs4Cs2BiX6eIMDQWn7Og4AKdbHJknXrof7NZtTrdvANga/h5/jK4jG30fvk4pa8ViworUOFKku81dXJtAGpmn2jHgMcsmLA1ENet/PEwXZyI925pra4mBqxUsxEpLZ3Nps16prf6UB3+0eG6umj0dEkLqxt1ltmPXTGzusmWdo/35Ve37J90DamMpqT61HsXYwUJAGxncfYj1Mb4CTYLVRqhd+SrOf2+raGFC2L2Ngv8042jXX4hezMUxKuhCCMXV1ey005kb/rPp+6cyt9jzbOin9nWg+QLcD20Pl5ni2homy2vpmo3isYZ3wm37Axqza2vPtVkpFizioectOtrZm+6g2MF7tz7l116TygoGm4cbY+vvAzes+aU/ak/b7u33iE5/ghRdeQER46qmnelziu2lnZ2fOtl3+wR/+vWoROADPAD8H/I+BPwx8b3A53/N26+EtfuqXfoov/q0vfs/ASdsmCOfX55xfn/Onf+FP84f/zh/mF//oL/LLP/7LVgjv7Vd+42f50l/8n3G8vs32PN1eqZSBBw+e/x33AODhw9sAvPfeM9/Vt77ylT383/95+In/Av5PfwN+5vXf4X2ftCftSXvSnrTfafuuQUrmvJjDVurNqhfVSimVhAVFCOqVHersK+7etGqYCrVmYOMHQ2e1saNs47SzOoEN1AStUsmZeLyfLfDdEjmPJ4C2FczmfFkCUIPR4Ev/uVePYUHNtZIWD7LQgR+Fjd+9CZhvKXO1USITQIsnHT3wVDbVpj4PRFmDD9DpwJsTry50t4bFsWosscCG9sldAw8NtNOSc238rUa3JUCt6lw9hrRJLnjSw0NEPZWwzrHP742qIW4kTuhBqjVYf4MJC5eLCcGCIq1/HthurBzUbfLJHXx14BEVdTYgrSClrQ2nz5ZIqSZBFDxBUYMF4aJ6wNt6ZBVYEm5IjGwDMVUVq9b29YVgFX14sMUSlUG8gjmqJ3UbtK4l/T0AGKMluFjzIXFnsjsUWGoxOUNAdYFi9yyq5OCsJhVOp5k0Dqgqw24w0IEH6KUWYyWIFpxuqZ+Ss9HQh+DMUFY5Ng4m70iGGAO7GAljBCLX05G6LJTF9oUYXe5qvjYJraDsxpFynTmc7bh1fuD6eKLWyuHswDxlDocdaRzZ7/cs+WTU+6PJ3gVJLMykYUSCOEBBqHkxoCOV/f4AJVKHQNCFlBJXlw9Z5iOyi6AuiyfCmCyIH3xx2HoYmGdjf6tayNMES0aGAYbIcBgsIF4KRU1aIoZIzZnD7sCzt+5y9+KCs/2e3W5HyRO7GBAqu/3I4XyHaqaoVQpHSZ6gEC4vL6lqDFjTYsFM8arq/fkZcTA6UvW1HRywYeDIQpLIQOAsRdLFGee7PbduZc4ejVxdX5NnS2TX04k5VKpGtATieIu7z3+Glz7zBU5XQnzuOV789A/wQz/+Bc7ODsT9wO4QGRGSCuqg0rAoLIVbt62yPM8nUlwIWhmvHlFfS3xMhWef3jPEM4a4Zx4OXBO4vM5cT8ppdkAHC1evfILlWnn/3bf48q/+Cm9+65tcX75PXRYubt3heDKgxtl+IERh3CdCUPJ0pGpgngqBwG43kDWxSyN5njmpMp9OLNOCVCXFRGbiOB9RXRj3AyULuS4glZgGZ5yxJEMLpqMGgo1ijCun00yeMrUKtSyIRGMFcWCAKi4bGclaPTwaCFHY7QZu3Tnn+tGEiiU9hhjYjWfM5cCoA0MULs72nPJMzZnT6ZolHxnPBqacOQx7yjwzTyfKvBAQk5UJlbqUNdCPMOx2zhZTDLgwZ2p1gE4DhKiijQlJrcr7VCdLWHYmvNpp/VH1ykoDyCaXtWpB8mXJoMaiSDXQUQAHERVSGuzdUTVmt773e0qiJU6yAWJSsKRqLbbnN5altl+JYLIoMbIsBnRp7DNKcEkkT6S6EbINwtSWOMgbqQ7TwXFwVSCkSEoDgoGsTHvLAEdaLUlnx48ldgsLwz5CHC0xUJRSC5qVZS4uGRpsrwxWjV9rYQiJYfQkqO/3tTR2o9WuaYwu2hLP/gwsYVIIaYBqrBKlZEK0o7hkdTmg7Go0Zuc0NryWVGnslikGJk+MGA+Ns2i0Cn8HKrUzu5bS7YvW1w5kyrWDpivz+vtogA6pvlI8gZVSItTKkk0u5WJ/BhnK4mAv7MyWJtuL2T4h2jhbcmCVtXV5wrzakqq1A90b2EGCA43dFrmZ8OihfUskVrMzbK3Y2RGCsYqY/End9CP0e2pxydcNq2Vfj5tkWTN/oyfaSm2SSwY2WBN3N+fc8XUf6eapj57UpM2xbbl9nQFulLdkEf0z7XE8DjhqDAZuKa4/307Kh0A10q95M3G3WRuPJ/V0/V37t1/qwzfvlrqwDqSNR3p/VqDL2q9+7e29evKxTeamoMH9pHaP2sYumwSY4kx4m/s0X6t1vdvXN8ex9qn9W9e+bObm5nfo39l4hOu1bnysga5067isPW2DXod7Ixn7+FrpkscNuNEzc60IojmgN6+F+6O6Dtl+3/2k7WfpEkd9BNKetqz+mOI+cfPAfJztjWj7zna7aWwYfrY/9/zz3S8Es8vq9s61rTQ/w2Wd3/OzM8bdQDHHoTNsIdtErQEFm6QNihUyOCOxSaqZH1LEGb46WCj2Z9uBoLIyN9SqKwjhHMKPQ3xeSJ9JMFSW3YLiDInOeiwEclkcWGDn3bxUhiExDibBrWqAjeLyZyEa+1Gt2aY8hg4uLZQu+65KT/yLJ8aTy/RpCIhaAccyz5SSnWFP/F3EmUAsme5UvgR15pNuU2WjjYlWlNQYdFZ2M/NttVSef/Acf+idH+XZ09MMu2Rncy3mjzkTyzCak9cYyoKz96Jyg+WwdNlxA6/FYXSQ77pegwSqP58qEREDqYwhEMeBMSZ248hpTszLTC3Kbkr88Fc/y/nVgW9+6luUUJA3P83wK/8kZxef4Hj1FuEic+vuU9x75lnG3c7kuwaTWgpGQYmKWvFULgyDMSwvy4JQjAkI0Eczo8DTe/M3U9ijEskxMefCnJVcDLytVEq+yzIZgOj+u+9w//33mL59YPn//BOk/+HrxHNhXq5Jbn9JsLWh1ZgRa6EXAykG/CrLQsnZWLhKJeti9lEInOaZWg14LDGZbWWvOEVw8BkNF7nZE4AGJs5ms4oIhervGf5+qtnL23PA3/UQhF0aOdWJ5HKzKFYgoAlVYwIbB2ONwm2/XBZiciiwWhAwL+ZvrDEZi9OtwBMDE4YYVr+hAfC9eLDdfz0HdN07mj/lY2hzsN3DmlRcY7Fpm2y3gWXdcxvgvjEJWbBl3fdaXxpYpsX9Vr+GDgbue9PmjI0hUt0e1goa26A21257sz52RqgLJPv918he2yN87QmdtaidR33L9z5bjKkQUyRJcFbxxuTkxYCl+rHiz05XZqJmg/diQVbgWRs7mz/bmbSNOwYv0Asprgzt4j5KpUuimj+B29urvdTO0CBWxLY1cG4AWrtfdtOW8V6vZ1pbR8UmvW75RbuNszJF2YMXA9/5ek1iwLq8uI8qgSq1ndQeYwUnh+3zsto5tuZrbTaKv5uiN+ey+be0ApetjeC99D53v07bc9L1+84StX1GNz67ITu6YV8pDsaWDlZyMWX37RuLlhfLdn9qjSGvQL8n7Ul70r5fWoyRz3/+8x9in/lu2zPPPMN+v+fq6iMgFfUi8N8Cfhj4ExhQ6Tn6nvgHrin8wFd+gJ/76z/Hi6+/2M+cj1ILGnj6/af5s//en+WZd57hF//xX+S4P8Lf/iNM/8r/Eq7vfK+7uGkCpwP8jZ+B/9G/Dn/9j8FT7//BXV9P2pP2pD1pvwftuwYp5SX3ZBlsnCdKB/zkkjtxUgNthOaMq1rgr/3ZnLZtvFlkQ1vrAcRilUcSWuImrAEKGnDE+gS4jrhDWXqAZT1JGivSDSfOAxzBHUarphGvMrVEUAtybCtemku97QW0Cih3BIWNg7kyCNlYLbAm7Z54RcyWBtsdfG3facHkddKcKro59Q6GqUZL3JzL5nBuA9idqtqdbRuabMBG0EBcjyeSWp/b0FsSoAGOuqO8SQ50bfnuJAtQV/YrWlDPA07Skk9eZVxKDx60ILFgwQ1pYa+WiNBN9fga+qGFNZo8XpOoUfFnJUKVFjyQHnwouDRdU5ffsDJZwl1o0hKhMV6osTBp9Mo3D+grkB1O1eId6rI0VTzgFFqlliUDFKUEQbV4QCgY45gnEmpRY9NISs2waCaSSEPyAF6xgF9fs4EqyvU80/QGq0AcDRSgNBZ3oYTWyco8T2jNQGa3G1GtpnMPFK2WRJbAbtxTVFlqhuWEaqFqhmhMKIgx4CDK/mxkWTJ5nsnLBApp3LE77NnvzkEtcLuUE9P1ZPeIJtsUQmQYheNx4eLsNipHTseJIS/EEGzfwmnKe3DVWEKGIXR2jVIzlcqyTJS8eKG7STlZ5TIma1mEIRhbzTiO3D47cBgGNGdOV9cs08I4JnLbxpbC8ugRIoE78S73P3jIIIkh2j6VF5MPCMNASJHdkDxoXIgXFwQCp+OJZTF5q2U6kqcjEuighCEKOUZqhKHM7ILy9K1znr57zrxkLi+vSRGuphOPjoUlVw6HC55/8XPcvnWXlz/1Cree2rE723P58B2uHirEpb87SQTxdzuIECLMv/k+v/wf/id89umBH/30Gfthx2mIFJ0ZFyXJwLAPLFPgl97d8dmf/kk+84mPkyWyKKgmStgjckGpwpw/zk/+kR/kjde+yTe//jXeeuc+Mgx869tf4cE7r3I4BMoyM8YIujAvC6dTpmTbb+sMh4sLTnWmlBOqgVAWyDNh3HG8njhdT6QYkTPh/PyCnBfKMhEkcHV5REQY0ghi5xYCp+PkMnOwTJXpZHJZooFaFqIk4gBFM8MwULOaBEUpyLDrO86yLFxdPeTRo4fM0xVUYRwHk7dKlevTpZHqhcK4E44yU6qBpgLCdHkNyeWOQmRMeyIGTKlq0j8xRcpSyCV3OVNUkBqoObOcJnKxJFwQQcUqJ6ufFT0A7HuwJGP7KrV0YFNnExNPWqTGcmeglVIaO40xJOFrJiZLCDWQcmNGjFEc4NJhoTTJlmEY2B/2CMLx6uQsfmIsLO39UsUEvOznqk1GZKAEq7YfdztqTTYGB5I1uaniFfOtOjkGlz1wgHOphSSwO9sRBcZ9dNsCQkhcXx3Bk5xmWRRqzeyHgTQYS51IIA0Jzcrx8sjloyuqs9fRkixuSJRaumxbHJKdNrV60lMg2LoR/2xV6+u437NMxvBVS2XJpUuRCpZULtUYAhAxyT1agsWZscTZfUo722xdlM5QYUntnEuXu2jMWc2e6AmUtt+6zRRDAyCtyevqsia2Hiz5EVx+qORCFLveMs9cX9pZX2qheNJ1PSel7+/iyUczlzbyYNqSMbZf2IkVLHGhbu8gDMOIYu+L5YE8lSDS7a5mwYg/G1uGzopU8gpIrq3622YzRkHS4Iyb1pnqzG1tnlTp75+6/YLbvSYzW6m1UIolrbU/w9p7Je3+H+HMQq2bwgLWJFk/o5td56abjbOBclZ7rn2WnoR7vG3Ccz2RtE3KtWv0HB6PX+hxEFK3fTe2ZUswdXuONT9mX24ZpC3fE+s+1hNO27u3+/ra2MzXh4A76y9u9F42U7WO48OzpJuxi/sifZpvJMz0xjW0D1ZBw+Z905sToNu/3Px5T+BvO9bW/3aE0j6mPXnWf9YvtyYD2/XFiwjMr4MOudR1LDce1WYe12clPcF4QyKmfVOa1yNtVhrx0Y3+Nx8EZyax/nYHr9+/7be9H22AEfa7sfexTb+KOkhq7bMEIY7RbOW2L2zm28BNdoHmr9KnzSZFQ5tLlxJrgNzY3tP1iarAUnLvrIoxIrYkpwJEod5R5CeALwj5VkGjeRopRfDEc3uG6knVlJL5YVrN/2h7XmPBwO1hMYlbk50uvRgqxGisj8lkscxmcWlcP3sI5g/GKCy5shtGlMXZ71Z2w+75aXtWK0C1MY51gEEtVvjg+7rBybQvBwMSKPtlxyvf/DSfeO9l7gwXIMbcVEoxJprg81crdZoRhN1+x+lk9qsBCdrZbb6RBANbBLFik2G09ZmXsrL4ldz9nQbciGJMOqqBqIValcNu4LAfKKUyzwtBlFfe/BT3Pniabz3/Jg//9p/iInyC3Xjg9t177A7mey55ouQJpPbiNWljZ50DkcJ7r79BfvSQT75wzi5BTCMzmVCVWE2mOorw+oNCeOp5nn3hWW6PyeYWQSWiYrJsReHFF+5wffkxPrj/Ho8efYzlrz7P8if+vzw4/zvEIQMmtRbEwNvLvPjZX1myksbB36dCycYqRs0gCYhM8wKqzmg1oAqpOoDe119wMJyYIU8typIzjRumTA4koxVg1f73Zhc2YEXf93zd5bxw0iNLnsl5QNwCRcymOM0Tw24w0Igqqrnv49Vl16NLL4cQjYWA1T5b400bthtt97eCBmNidTA6Hjv5Tmex75fBGauq20YtPhd8v5IQ+pllkmi+x8kKxO6gx40BodrAN3SZrvWXLYYIMQ6EaHLtJefOBmdnd4torXE5O2M8TuQy10ECkmJnrVE/Y8TlaaHZMW3rlx63anu/gSgDtQqJFThUitm+4meVmSfGkBqH1MFJqUkxLy7bnAuKrDKcAjT70PvQGEYtBlLbKWF+XNu3UFTEZemhqLN51bI5b9tn6YUHXaZ4exL7X6v7XHXlGV/PXH/ObR7bDHUYb4s96sZma384U1Nnxlx/1e8d2tlTXcINu98yL8QQ6SAq38y3Y+zY+K0d44uzxXGFFZy8Fkuu8yAe81Rd2a9arFcfHyvtWa/2ptZ+y9UW80/YWg/+bq+Db2Pqz+lx+6YBqaoXE7v/t3md6LaAj938K560J+1J+z5pKSXu3LnzXX/+cDiwc5nhj0x7Cfjv+38v05Jxf3Cbwtn1GX/8P/rjfP5XPs9+2n+ve/QPbOMy8jN/42f49Nc/zX/2hV/my//y/5rrt3+nDEm/h+3XfgT+zF+Gf+V/Dj/zn8KQv9c9etKetCftSfu+bN89k1IpqNQekGiBy20At0dInXYWserA0ByyFsDYOM49aKIrgIMeEMc03ntQwgO8gTUgoNqBLz0QyzY67E5lsMo4kz2rLu/mn1BPcklzoluARiykqBWojaGf1rEGgmpjagCqlqxrwVZzaB0gYllmtHpAx7iFbY5VUbVKeEvWrQ5tc9Zbn6uuciurA+pz685sY6ZqlZOia1Cwf0M3bq+2obuTvAlmr0xC7Xs3q+FauLorsKmCS+vUaoHA1sM2Z6prpS0bJ9/6tFaBtvnvYU2tK+V4d9Dbc26BGu3z04LYNvb20FepGwuwhQ7gWq+rUMUqJYN4RXJLiduziSGg7ujjQTcDfLm0W3scPUGhXsWLB/k98OhzpWpgrmHYEVKg6GLJ6NykKapJl9VAo1Raq9C8MlxBtHgQSJ3py/qSkqfSiwW1WhJAQpOeUK+GtkRniniw296R3bAjirBMJ4iwiyNpGElDZJom5mlhmTJxMHakUhdiEG7dvU2uhanMxATjbnQpm8huf+DRw0sDVsjCTnzHKJkUhFb7tUsHDL+woArjeEakomNhf+tAUHg0Tcynwtk+QByYrq4Z0o7D4QBUptPiQTUx6akhGoBCC2OKxDBQkhi4TC0ZXkURIlEiQwwMQTkbrMp4jCPz8UiNkeurI8N44M692yy6Z9idMddEyDavp/eO5Gk20I9UlEwKA7s4EKOy2+24fXHOMNq1Hj58yLA/Q7UwZ5M7KPNEqJmlWsCXBoAsxsqjQ0BrpGhi2Fuy4rA7I8XEfprZxYUHk3B293nuPvMi773+Tf7uL/4VpunKwC5sAHYu64jLhYmsEh3INcuD++jLZ+wejdzd3WI3CvskhEWIS2S3O/De+zP/v7/3BuE//RU++cLHYdhTRBlDgP0Z4WzH7mxk3A3so3DrkPjky8/yA5/7BB9cJp792Cf4lf/03+fyg9eQPFvFfhXKVYW5EhXqsrCgpBpRMTDtcpq4vjyR58L11TuIJqZTZhgxScGrI+NorFQlG8OKxftsPosa01pdtslE27dRB6VIZMkmAZJScsmRwFJmTEku2d5eLVA7H685Ho8mqVCEWiZUbDz7MXAYE1Iqp0cT0+VE8A2wesX1YUxdInGX9pzdvs20nDhdX6HZAo3jfs+SF9/zAqWCLmr7B8IwRGJI5MUBLUCMiWGIQKIuxvRSFwOQzMtiDE1giS8VhsGk2EqulDJ5RXrsyfSUkoGLPbisQUhDIsbgTE6NEUZ6tXYtLWhee2V0LYXpdCLFEVGMQUeMlUgEk7kr1RJBAQcD2/nagKtarTo/eJA+VzX2HoBSTc7GJWTaNUuxs1U9OWF7ZkWDydudnds+lJfKsA9dzi2XQooDEgLTyeUlBUJQgssOpUPijAPTcUKLy0cENTakZHNYstlZMSRIZnuVxuw4BGSAKMFYmh4/n8VZaPw8boBZiQbLQS1xnZIxwZXszFeNGahAzSaFF3wP1HZuSjDmPq2WkMVlftSBX63iugW23Q4yNje6lEeIQvSkcwNDi7MjeT4J1WryKGrg2rJkQoxdBmIFhKzndy0mnSJB7B4xdFaunAshGSiP4EF5DQYqrFvWi8JutyOrUOuySTio2xVi0i5hm6BqoKCWnG6ABrplFIewSpyV0JOOojYXrZqxVvVEPX6tChVnooiw2BWry+u1BFi3NEWc4eCmjMZHrWlL9nsSaJvsa8mQNeG1Ant6As7/DZ7Y2dq0N26kXULLL9Vbv698OKf6+Gf8H70nHRQv2/s1iMz2equ9eQOssenTdwIAtX/39bX5UmOQVdbf9blrF2ALLMLOrm0iz/0J7X1oc9j+6yYrq4XfOrGZg439bvds45CbD0LWb7W5YHP9G4k0Wd+5m7wD0oZ282fb+Xdg4U0fx3w+Np+rHfDWZ/LG73HZZVj9IQMMNsatzVy0ocg6doH1OTUfUf35b0GJbJOr+tg7uxlzm3V1W34z6m3xUP+p+8q73d5s9hiN4qI60HG7P2l1u6YNRDe+0Jq4b+AE3cx+2+vXfY9e7NPYgSUG5C7obSX8cEB+UJC7NkvRmX1qtoKF6CxITc6ylkrJlSj28+pg+d1hR9XB5Xtsry/V9v4hDEx1NvtYCsnBG2sRDYAYGBhn0VUHMKiisZJ29rupmJTYkMTkyeaFECODg51ydu9KjLko4D65qsvnBSMPDi1ZrpYkxsDDu5z42NvP8ck3Xub26YIYosmIBWFZMjEk9oc9JSZCGhA1e1EE8jFTcrHr26omSiC63HtMkd04EkNgXhamaSKmAXX/z4DZRh1ke6RTQwI4GCMGRaO9nyEF2AlDGgghkEphmPbI332FX//Wj7N74RbXlx/w1qtfo+S5r+0VfNCKl7Zvm89EUPJ8zXmEi/CQ8zSQYiRFiARYTP4vEHntrYe887W3uHf3LuOwo4jlpiQmGEzSOqZICoExCfsxcfHC01R9nuu/9iPET/3bPHjl34HD+0g0I0qz2ckiFYqxXBUVB3nbul+mhVIqy3yy551tMxpGe2YNMF1LRV2GrG1sVRXyCs5tMYstkKC9R7U28L9t08UBZaUUjxXZ56uzIjWAvRZjUlUNxABDtFhIXQolN4CS3ahUNWIvrCAmiAGtJJjscy2Z6szIqgYcbzulKsZypjhjeXRg02PsXs64qcX3k9AYgNwvEC9c8z21VjWm4upr0eNWfV4dcKhq/ruxOvXL9d8JWOFA36VWNsxCRjV5LExuMGm2mJLg72sDrfg51w7v6vPYCvP6QbkexH0fb8CgdTf1WIqf1RKEOJj8dqmVWBStDhBqbEhifpMB893ebbFPZ8NG8DVnnZSwiZn6QwsSHbBWnUHWJkuC/+fnU194tPhmO+58zO3c9I3HilAM8BN8La73pdvG63X9uYifOT45wcE8bY03W6HbC27zG2vpWlSJNN+jnbNs2tauaja3rY/GCNzv5givDjZW0AKNHUm2RZ2l0lFM4HE36Wdke6FrrQ4oi85e2GyCjaWo9Ovptu/9vF1/2PdNZ4AD6WPegujDJk7f9yH10Vas4K4DnPSx+7R4eLNkdGMvPGlP2pP2B7HdvXuXs7Oz720nAvBp4BPAPwP8k/73P+ibk8LheODHvvRjfPFvf5Gn333aC/F+fzRB+NgbL/KFv/1H+JW//Ge+1935BzSBv/NH4M//u/Av/V/hf/p/gWff+QO1BvWmkfWkPWlP2pP2X0r7rkFKzUFrTrMldTAfq8Ja2bQy3LQg5o0qp8cSJ9sAcAP9bNmK2u/WYDs3ggDcSCKsAWrzyxww1K+lXqEWPLjuoXdZQ+GyRuZ7AFtbH9Rlu7DvxdgCtFsnGKB2xw9a0q46+Cj2cbY+mjRY2AS7G4DH+tLH5FzP4mASL4WlJcXW+dw48N4aU8b2c61KvwVY2jNVDyBs5+6mfIMnPrUFQ1gDE2wcZmksHQ4AEjGpBI/Saa0utxB6gGKt9q431sbNNbMdZ9j0af1dCHzIab+xDuEGKAnotOU3AHEYxb7BZmoPXrR150RfDs7SzX1Wqb8mkRfEgFHjMHBa2ppdmSh6ACrEziqhVTojQy3Fgkmyspe0IEVLxGjBg4YeJLPsPjobyGk3jizLbPKNPq/jMABCrhUksdSWBrHJqlqpixCDUhOM44FSAuhiMmAukROSSY+VLCzzzCjGEjQMA+mQGEjM9zO7wzkpWrCy5kiQPU89s0ekItPIYRcJSdjtzhl3B+bpiiEm0jhSqcR4xnRaqFhVXEyWPJjm7NJBLfldmKcjqDIkY+GYslUGx7a2stGYhwgilRSjr0VsPnyTC8CgysW45xAHDwgLBQMMnEpmEWHJC3GaubU7Z4xn5KzUXDg7H5lOM8sMOHBrWRakHglSkWighHG8T0oW6K4aIESiWAB6yYvtaVIdpGSVvgGxoPQwEkJg3CeOVzPHhwsSjdr82Vu30AvlgzOBBwMvfurHOFxc8Etf+rt869WvkvMRpSCSMHkUTJoitGB5sPdAIlEDIRbiYcdX7wtvPsxcxA8Y4kwcRtJwxj5dMA7KMN7lpR9+hikGTjpw/z588OCK+eFbzHnhqDOFBdGZRGbQQoqBNAbO7n2MP/XP/gv84Bd+ir/9V94kX2fyXBlV2NXETpKBFnYjS16QpZKGxIPrS66OR5t7rNo05+zsR8IyZUJIHKcjVTO1WMIoSLR1VUsPkJfGKiOQczZUiMdWTUIkWbLNN4GQEmkH03SNVAv2a7XK2JRMOgMJzMeFRRO5RqpG4nDg7rP3ONzeU0JhPN9TxcBpKgPDQZBQOewPhDCSp8rlw2vrfxZiGAmefAouf5ZiZJpPnkAAkUhKIxIiIRrYQkoFtX2DYNFqCcFBpQFqIAYhl+KyasErkO3EHIeIxEjOJr9iSZwZVInRgCghRdKQGIaBUiyxl5el79sl5w6Ma0A5sDmey8KkM1HsGhJNuqJJz1XbuBmiSb+UYtXX8+nUg+S1GMBntx+IaWfSjVPu99dSO6uEFu0JxSZxV7OSZ2MiAJimxRIaURjPRpM8yJWQC1oD07QYeCqaxZFS4LQsiECKA+M4UJaFpSz0zEezrUJgKXllXxQDWA9jIAKSBJyhYtiNvbL6eHlJKYVhHEGU/fkZKSWWefHkVvGEV2MvcnYmFQe0rBX71YHWgoFfo7NKNWBMs5EkWJ+0VvJSyVqQsLFDqj+jVm2NOODTlpbZFyZ5p1UMOKtqcrV6U1quJ/qANAx23cWTDBXnJbRgelAQSVRnlqjOKnRDQsxBY7UBxRy0Xpely06sjAJ23ncAdK2Uov1aTlLo/2lPegn0ZxpTMim6skpTRARCdEk6P9NFyTWv91aFYInUIBFJDryuDazc7IxAY1lqycOPMkhpBaZDszHFkz49MSa21mkmY/vemkvZXOs7Ne2JrRvXfLwfHWjj37ph6/YrGeik+x10W3cLTtGWt9K1AOPDF3M/p+e45Dv27fEetGS/m88fChOp2+4+szfs/+2YvKc9ebWyZGj//To/2x+s/1j9pZt+2vYej93tQ+PT7l+t/seWsaOdwX2aWpJRulfmz4RNQm/rwyk3+7yO42ZXZPMM10+2hHubh3aetPe6z2vzg/XmfdaCnBVo1b7b7f3+6Y0fy9YXvvnsLm5dkIahf1PEkvUs/SNsH6e5H9Lfg75G1RlSwvqFPrd1fQS1rQ/dXDsIOGNijHFjXyicO3j+eaj3FC6E+lmFe8CBXuiBF64ETK7VmIJa0ng9fwORJlEbqR0EFJIQSZRTJQ5DL4KpVRBJHM4SgpJLJLmsV0ojMQ6UPNue7NJ0IgYCx+8eQjBgcMn089kntPiZXd1fLZ6A7wn/SmeDCerJ89h8tPX5igpPPbjDD776OZ55dM+ki4LYeRyE7LZN1UoohTENRBmM9a9WhiGa/HQBcV/T5FYXm7127sRTZ1dRp/ayfzeZKKVB+MyXXvdLV+UjxsCyFJYpuy8NZ+MOUC4l8eqr/xjnt15kGEe+/fabPHzwPrUufX1vYzVbn97+cxZGQCIciXzzPWWUhSQni1vERAojMWJMl7ef4Q5AiFwvcH2q5OmSkheyVgMDUAhUglb3uwVJA8+9/Aov6H+H619+mvJP/OvcrrArA+/ffg8GZ+JySbMmEb5UmOfF2SxtLkspaKWDoEXE5VizA+9xcIn5bm1nWGMO0tkW26bRznGkwSRsBmOKnb2y2wWbWIHIQIjJfB0NdvZIZNjtOFwcqKESRwO8v3/vfZMXTwOCSTgOcUCrgZWqM76IBrP7nGEluO1ftXT7yGIaEZHoYKbivjeszI74mgvO2taY1avvTc2GsvcnuF9VW0wxSi9gaH5Ysz2bjVOKgbLNdgx9jrRtgj2So/7sFh9T6L5+3//dDo4qnWmn6k27rb3LMQSTlFR1tqB1n0Btr6se71rXve+9xYFOzq6V1QBmIQqSksXXqhf5FQPPt3OvF2T4OxuDoDGSy7I55Nz2CcHZY9WBZj7PMfR9wk0xLwKx8ZUlewyrFa4F0jCsa7CzobaVgP9sO0cbm9hNp3a2dADN5mBp55k6VrLbv20ZqZ2gzW7ZAsJVDPAfJPjf13tvn//muN3YC7Kyn+r66Rb72k5pZ6LanIdtDW0/Y3agXazJYhswf22r3G6zcRskiM09HgMued/b3qmbG7fZWPdW62Cta8Fq++yWPTCQwH0nbTEvVxyozuwkffE+aU/ak/b90F544QX2+48o044AT2Psjp8HXsHk2/4c8BngKRyZ/r3q4EeoKXzym5/kT/wHf4JPvPqJjU/5+6tN046/9Jf+HMsyfK+78t21h3fg//i/gn//T3H4f/7zvDztOBwPfPUTX+X61vXvILv++6/VWHn1R179XnfjSXvSnrTv8/bdb6MNtKFO2yt4lZl7n5vA6jbo24K47gffCF5vA/Mr8KTfrv3NPt0C6N07bJ+zq9780xJAN4Lt0Ku3e0XNJjhb6tITSu1nFps1Zzy0z1HWfqaVsWFrLa2BJB+n0wyHzVi7xI4nqJpDaglC/6byof5swUydicBocKwvtawJKmmVVJ4o6I61eBDOE5YbKm2gg7hKk+DZfI9NBXILArSQWr0RVNBeEbVqzeumP5sAO3gV2wpoi2EF7qwB/BXE1pIG23le+7omOfvzj7EHHtu9+/Pv87vtQ/sclkDV2p9VH5/Pca0eXPLn0uV72gWcVUmBIQ2kGhE8SaB4MNyCiyFENCnzMiNx9JW1CYzo+l71oYe29hUJziyiQkqR4vJwKVqiIYaADCMpBJY80UigDmdnXF1dEcQACW0wPWAbgBDJFbIjs5ailJKJcSSNBhLQCvm0kA470iBoUU55ghw4jHsuLs6xeuNCzZcMu8gwKme399RS2e32lDyTxgiSOC4nlGJSC3mi1GysIyH5uwaqhdiexzhAscDdUirzNFkguJpQX5XAfrfneHVEa2Xc7VAMjFIrDKNVUM/zTFs+EasePh8H9jFZdaoIwYOJx3mi1MKcC0Ii3/+AacqcX9g1YgyUsiNKQDVbIj8MxDFRyzV5ORKyUMUqXlMKDMNATIkckgUJ1ST8pmWhswKUYs+i2uoKtmGQ9jumaUF1hJJRZiARNHA9CYd7L/HsS5/lg3ff5LVv/Aa52DUNGGdr29i1PBgcAzFEYkzGAhZMqi7FhIbIKSRyTIzDPXbjjv3hHM5vc3jmWV7+1Gf58c9/gueeu2CMwnuPMn/j73yTX//Sr/Pg/Td4cPk+V8crTqdrluXEca7keaFOsL9+g29/9Vf503/uH+etr/4ar/9W4DCcSGpSVoiaXBmVeVm4PB55dHXN1dWRec7McyaNg1UVarakGpH5+kQpR9snozAv9v5FB1gsufQ9vXpwurPjqYFuwpCQIJSaWWZFa6CgDPs9EsVph+25WEK4gBZSSiBQYmaIhTFMRDlZsuBwQeaALhVhRktG8ozMR2MMS6C6EGNiKiem0yUSI4f9oSfQTlNGtVCXhRwTt27dAwLL6cTV5QPyshAGGHYmHRBN25KyZAN4hMhut0ckohJIY7Jz83gFOVOqGIhGHbBbHRxZ7bmp4okXZ2sTYygYxpGUBj/7ZoI02UxnP2rR4WKSLiJCGgYkiDEqUF1ywAA1kej9fTzxhck5FpeNowG3LPERkzHX5DmvbDbtDBDD1YQWlpUmz1EciKKkMZDLZH0YjUELhZILy2LMD0ESqJBPM0qlepYwDYkiBpK0pIed9dUTm3jQOYTgchzapRBiNPYjO3tsTy85AxZgtzlScl5MwgMlpUDOWAJUDYxtYzLpN5OKiQhNVmNNUFcH4lj20sAvDQXcEh6qJgXZ82ziQKRm93UjAU/+FMBAOVSTB20yaahXQrd0XpBeDWzgnTVRpA7MavaoqpI84RRd7hdVBx/Skw8tYdqSIy3h0hK6JZeegAyrgWF/BAi6rrP254cqkGW1SdbkrEkhrt+3jjdbpGTtyQ6zQQWTqvO5LpUmUWuX22ZafP6dBfSG7bKR0f2otZ4I8rfP3Yb+S5EbHzRbds0gbb77nZs9h5tglA+DZFoCa2uTbr+/fk9Yn+vaL13X4WPXbWw5H+rjZly6XcQbW9Q+tv3e+kzNlH8cZLPar1ZMIZs1eaPDrKD+1Vez/998fuMXsZkD++gKGnz8FqtvtibYtpdsktK6eQ96UtPHvMlJ2rvXf26/uDlLvga2z2nz/Lb+wIef4c13dNuXdSwtgd0SrtvxhBvv2voIH597+dAasamr3W9eryl9Xm+OZf1MdKnW1kIInRF23Wc3vqe2xLwVDKzf1Bt/3Bi3Ob6InxfNLwrNF0B7YjakgDwlhE9CebHAp4BRGc5GZp1t724JdZoP7DPkvlMN1vHqiekkBvCIg9lcxpaYrPCkGpMiVRyYPJpcu1aWOpOiyREPo7EAxpqotRCjoBgA2ApDKtnP/8Z41J+NOhOhGECkMRdV9XPb7UD3SA0MvJj0VwNmt3cgxib/Vfr6Cio898GzfP6rP8ZZ3ffnLh4HyKWsUlco9Xgi58o4lh4z0Zr8uXiVjAQkDWhdqDUj1aVES+2sMyYn7vcqtgaLA5Vs8NV9Ht+Ptc1B8nGbHHljNRYV3njzGab8Ik/dforT9SUPPniPqo1dyt3f9n74DDeWl8a2Y4Vs9J8XApMEctwRQzRQXhqR/Z7zW3d57rmnuHfvwJCMKfTt9458+9tvc/3oIdN8xbRMLMviIF5lKQUtIEvlvbfe4LOf+wQff/hFzv/Gt3n+7lsMKCeO/Fb9Gu9++j3008Y0syyZuSzM82KAsGxzbQBum7MgBmgzPyE4WdkK9G57SNVqbI+dObIxoKgBBRoiDO3slPbCGCtUk2MU1M9BpTFKq/o8BiVSCGJyciEOEAaThg321uU4IUu270b1dyP6Gp2p1YopGhCa4u8bzgqTBvb7Aa2VeToZwzqFmCJoMMA76kxGFm9rvmNQ9X66vVpzB7us5+UaC9Nycx9rp1Rbz9EZn0OzW7eGfNsPfY9u3xMHc7e9u7pE5Hrm4HPtzQ6uD7Fso+pSmA5SqdKv208pf3+krxbbV83utL+HFKAWirjNGy1yqbXZpxZf6+tMa9uezW6N2tfbjSYO/VN/58wQXvuF+7Tup6Ks0p++B6oqKtULM6W/z7Rp7n8znyLn3M8ubczem2416T5bieqVff7vKrar9LnvM7aaWoKzE8LWZmvWkm77ffPbN87SxvjafKvV3rkxgesceX/MBLlhJGwM1dVeUtr7vbXxuPm5Zvf2jm26q9u+bMbQP7cWXay3b/OxAsVs7119lR5Pdbt3LcFbz2Vbo1ufBjrgUB8byJP2pD1pv2/bOI6b/e0j0BLwOeBPAj8J/Bxw5v8dvof9+gg3qcLnvvo5/ql/55/i7Pg9Zrn6h2xf/vIP8eabL/D3i+t85JoG5G99kT/3v//f8sOf/jqhBt7T9/iF5Rf4ys9/xdby92FTUU4Xp+91N560J+1J+z5v3zVI6SY4qFWEeUCi6YKBxcxcNmfroK3BcWhBhy2wqFXMb/+7Wd16s22DxI8nH2rdBj3aPTb/2iTb1k+0767U0L3SZmPIrcAWtQolD2ZqrZ0laVvppqr+O3eMPeDTwDZKo6zWG8ERC5rXx8bXGH5WJ1c9WIU78KtsSO0yeL2SaTP3zSvWzbPdAncALwQyB9UqZpsTbH0IPRGwBhu2LERtVYgzCbV79BCChD4PW0BRCHHzRBqgqvpz0M7aJD6fWyBXSyqs37VnFDT0oG+75pqYWJMQ27W4XrN68Dz5Z+smeN8H2ecdPNEZIiEUC8QVRT0IezyePBgk1E4Lb+nxGmx2SinkeSGllb1J/L3bAr3Ug5+9Clmh1Ez04GYtLgmGBfvzYnJYYxzZDREFrqeFZc62frQSff0eDgeGNHA8XdnTCMkkruYFY19JSAkcH05IserlMUWefuoOuVSG/Z79LlJUieOecRiRsnB9PHH58EiQEVV7fins0Bh4dLryFzGz5JmlZkJ0qaZlIs8TY4zcPr9DzgbI0Kq0FROjBeeOp5nZg2aosuRMGBLDOPT3K5fCPE82n0FJRCqV3TAYy8FSCMAh7TgLiV0MiFQ0JEIcTLYtBDRB1cJBEvv9mQHRkn02Z1uveSrszg7MnrCeRQnDiKRzlIhSraK8ZBYt5CVDrhATYYzsh8BZ3KOT7T1jiuS8MC+ZabI/aymoCvnqiuM0c5qU3WHHsLdgfikj13qXj3/mB7l97yl+7W/9Va4e3YeaicHp7h0gIogxcmDCJybzVjGWJQVJEAI1BnIIIBGREQmjBZGToGHH/nDBsy8+w8vP7xhRPvYxYbw4I5P42lcj+q7JbiSJLGlH2S3keWKaTkgufPXv/V3+G//sz/Ozf+rn+ff+3x+Q5vcIurjEhSIRihZOJTOVzPU0MU2ZvGQ0F7Iq45AYQqSUSs4LYCxWaRhctgP2486BaSYtYnNZe8VqLh7MDzhFv0mSUCrzNJMXsWrlapIbu3Gk5vZeVqII0+lIXhZisspYyszxwZtc7wceJuFdOXJ67ylSFCRfwXxtUhy1cppnDmlvzE2GBuHi1gUSIueHM07X1xzzbM8PIcREOpxz5+OfYrfbcfXBffQNmI+XVApVhUolDZFlmryq3tbxNJ/YHc4Zx52thSSUklmmkyXsigFSCyY7VWvxysywSXBYQN2Siw7SVEsSpLiDFDidjiZDuBvJy8KyTH0Px/dGafIYfl7UUggx9Opp6QnGNQEBgWFItFwOBGI0ecdpahIW6/mKhA6Stc3XKoeLJwhqrQQ/OvJSqEKvsqY444AKKQQkRpbJZNSKV9CWbEmqWrKzRlkFu71nawVsB8ewgnBb9bNicyrR9rO6lVgLXvHrX5rnmXlZOJ0sCLXMGS3KsLe1U5aFku0cCCHY2VRWe6lXQfsch2BAqOoBcmue5OlSp/5dWoW3J+e7HaU0tqIUR2KwxG7ubIqNsUw29/CjQL3Kt9k3nijUWrokRs4FCULaGaCyJ8Y7EKD2xKEBy4MlEoIlmTtQqxo7SHS5oa191BL0N2wcZ6i0h8UNO+aGjVGxheJndn+GTUZzw7DZgfax2ZONOdHsjq2NutofZh8Yu6dVT+umLx/V1myu7is8lpzZsvz0pJhuQCftZ5sm/R1an9vN3z+eb1l9jQagWX+/rWj/7f2RG9f/+3xqa2vf6IM2ZgC3T7sF/eH+643xb5Nwm++uX9/cb+svPd7LTbKtrv7S9rvbLJp2mZbt/Tc+Ces+5sPz5Kd9p/lvzSdZ77UZ57ZXnkhWWeeu33PzHtxgOOrXDJt+bvyhPoT1s52Z7MZYt3NPH+PjgKd1/Nu5245iXa0N5Hvj+208G2bf7d4jIjx69JBlWYhhaANmWfLNBKTvtz05LrYX1GID2HrLNg9yc75Y1xXYPhWxM6A0f+9c4SWl/kxBXhDiIZLcz1tyoYiDMei8SAwuiZuXxTGpKxOKOOgVje6LCGkwANbZYWfyVCmRksl3h2hskVIL81JY5gWRSGOwDSEBwpSNYqqqFSIVLc4qHM1GKYUowm7c32Sp8bE3qbac7axpZ1qpjf009M+XWoHc92N1ycAGAqFWdvPIZ197hZfefZE947p3x9ALAwz8YDaNsT81sK52MHEtlWEYKVhfFJNnpctjm12jWu0zpSJ1QSUwpmA2Zkj9/sGLnIrL65UOHoFpnllKoWTM7k32/i3Ljq+/9knO7j7Dbr/nnW//lsmAN5aczbu1RoiaD2HvRlsbje2LYF6GvdzuV+AgmxAJYWB/duDW7QOj1wvtz0YKgTffDOgjjAFWAiVHah2oqVCysVtOV5c8eP89Xv70J3nn2z/CEB8QWTjnFuffuOD+q/fhU4E5GOh7KcXGXnSNGzmjV0WpJUPfUwohGqg/Rut3dulgaZKTzSYqftaHBrxxBiURl+EFgpAkQHU257ACuUMQmKCkTAiKzDbXNZ+Yj/cRlGNUKJNJA0ulzte2N6gxliLi0oCBXK2AQmSVQZznyZ+Xx4ZCZDi74Oz8grIsyOUj5tM16qA0i2HhdpD2uFCt2cbiUsgiQkyKLk45pdCYB2tQNNe+boL72LbN+1qRFrsSkz8Us3ssHlAdKGj2thO0YkBT6bGQdp12VtYb23CzQ6X/LBjVstnupo2Gqpqf3j+q/UzsdqFf17b2DTNP83Gq0igVg5pfZRJ41o8UpRc1rMyea8ytA+T87FtDUtvCvtXW0PacBF+PW2D9ys7UYCoBl+GrxsjamPNqsTUYQ+hyhLA9f/lQU9U+/xLEQfftmfoZ5zbgjZN1c4S287qfa6qIxG4/t72wP0c/T20sbVffnt1tvmywNd88byWyKSLlhvGofr6pr18R2xNaMWNtgFZY/Q5dT9abQ5P1+u0PvWnHKB9yjdjaKWzGFQyVaKxSXiRrUyHub20m94Ypt/k3dLYldGWyfdKetCft93974403OJ1OHA7fYwTQ88AfBf4ljDXpLjd81yftO7ezqzN+7j/6OX78V36c/fQRZcT6LtvptOOXfukn3e/5/dVUhd/6L77Aj738GiLwjD7DU3/1Kfj3gS8Ct77XPfwHt2Fa2avS9H1MAfWkPWlP2u+r9t3Lvcka0GztRjDWkwI3guGb72+rctvnW4BCBa++2wBSwBlipOvG0+7vn2mOvm48N2lJHEB7MFs8OGsOvvnGzZkuPTgEa5D6ccBOT6a0RBJCdcd0C5ppsY3ueorcmIctAKbrqrNWxLQ/O/38pvrJHN01qCc9lCAe5PV56VV3Ap1FoAXHm+SJfU9bgLPLoGgHN20TEF1qzp9LaJWnLbkixtLTHOkWomlVoi0w3+a66aFvkwe1V1+tyYE1GbBhdOJmYL2DizbroAUzrBfVqwE3z7RfTHuAYU1U1c5Gpb0yKTx2P9a+6tr/bX+DtOr/goCxbmBBn5wLTeKu5RZEWiB0G3BogaabQYJtMsYS7MnXYTRwQPRK5zBQ8+RV7IFlmilVuTjsuXdxRkU5zZllWRjTANmClSqBFBL73QGtcFomQkjshgHVQFkWxv2AFDheXXP16JoQEuk8gQTGMVFy5Spnzs8O7CSRCIRxx/4wMqbI+1odXxfRKhynE8fjNSlWdsM5i14jWqg58Oh0SUqDB8QKB81ISOQpU8rMOI4sZSFJMIYfXTidToQojONgya1klazLPBNSMPm5ZUYFUki29tWChUkD+xQ5pB23zg4mBxdtLWcHxp2yravjtYFPhmFkP1WGuCOEwMXFGafjERBiXLi8ujRZMgIhJUtM+Htjj7kQBdIgHhwsxgA0CYsUD/AauGE5nRAxcNYuDcQwQkgUhaUUwpghTVQNVA188OgDjjny3Kc+yfMvf5J8esg3v/olcj4htKBWW29tH2tgpcYtY/uoVpBYoVigOCPUoFSdIQfiMSLxinfD23z5K4GimZ/66c/ywvMXFK08elAJy46oO1LYk+KJMU5WUVoyQSKBwDxk3nj3Lb721d/iD3/xR/jS3/44r/3GQ9AFaqYWl2aLwjLbuo0hEBFyaUlAZZlm3xdNljDGyLjfoarMLu9U8gJaqNn2CQQDwegKCMmqaBQigCyM47iyu6gxnsynGa3Fqqb93TWGm5m8TByvLwmhWrCwHPngzW9w//XXeHj9H3PY3+GwOxAFPvcDL7LzQLtGZdgdUA0sS6ZUBQoqgRCFQqW4rGMcBsbdAZHIbjzj9P5DHtZKPl33gHoViCKMhz3UitSIloK0gLWfbYhVQGuE/e2nef72XRLKq7/1NZiPqDRWAQ8Aq1WBazG2qSEmxJmGlsUk4gKjgVRkwEBHmdBrOi0ZIM56VFRNpgxL4uVl8WB86Pu2FtubhYFag8soJFIwpigNQgwVxJ6hVmNH0lJ60qnnw8Sp8Ws1WcMYXR7NGLdiSlSKMTiMeyBwPF6T54kYDMibhkQt4jKBlnhUEVKILPNMmYtdMykpedW0A02NLSlRinrCUxmHncsrFAMxEbotE2JEpVIQ2++LyfbZWld0GBjHHUEjV9M1dVoYUrRzoqVQHjtbGwtgY4MQMfmemBJLNmYMA/BY0q+d2ZYIpweXYozGPiX2u5hiT0QYg6Mn+1o19yY4IcHtKTW2paprkk59vlpFvviZakmcQl7UJO/cCujP0xnh+rleXKqi2V0uw5rzeoZLCFb9r2ZTCfbuNIC2jSlArp35ak1WOWunS6dGSYhKt1ujRH8Xba0Fif3crzQ2BuMc7LZFk1nZygeJ9V096RQHBwX6Ov+oty0AX5uNzvqz1nrF+zZps/3oZqgN7tO+1/NLPQFz8y7tyw2A8riPswWjrCxA7s+0pNLm+1uDfwtK2rbHk2Trd9bPPTbczc//wRHcll9t11jBn/qhPt0EGK0+yDahdmO+vkOfHn88j4OTtj2237WnQPfJHv+MPLYOZPuTsLlX2H77ZufWZ7rOefcnkBtJv5sFId/53Vnns6I3enTTl3lsdrp/8eH14IAiH+8WeHizv/bDkjPzPHEYz0x+qUpPzq5920ybP8M1367rr77DuFegZEvM2v4dRkE/CbKP6A9k9GXgQijB9stRE7txQDGm1VorSSLG9hIxfygwxAHUQN9NQhg16awhmR28zJl5WhAJhMHBOtF832XOJh8tweyVmDhLiSm6beq+JxWWksl5JoiafawmhVYL/vNVmnvQAmIMhlWLz62zi0pAKVboIHa2uROKYgACCUIkUGpxv8sXqNoaizVw6/oWn//KH+LefIcGUAGPAwQxZqeqLMvixTeJoWgHptv55OyJoTIt8woOCAHJK2OzLfvc2VHbmSdkliIGIsMB3upAEqwgAWddgkBVuD6NHI8j+8N9GqDiNJ947fUXmfTjPHPnDjXPfPDe2/06H3oF5OY7LC49t8mO25qs9vOqzTcuNi4pTHLiA/0AfU0p5WmeeeaCGIXjVNEcCJoIRIIkgmRUKlXM1hYChMqimddff5NPv/ISD/c/zPH0Jc72H3C8vuL1N95k0gV5JOTz4jEFMUCSrnujlurySdJcBbPFGkiind1iNJmVFXTefCxbd/ZDCQ5Qdynj9p6KWmFRY3OVtheI+Ya3X79F+Xgm58ydb7+IUMnTFQ/fWzhNryPS7D/hcD7y1NPn6FMmwxdS7PtNk5Lrm3CLNZjxR4zixQaRUJTrh1fUminLYrEL39diclB1WW0V6Wek7bdRokv97jjszjk7HHhw/z7zdERkjYW0rcrc4pXtsoGctFaaudlAKsZsnt2uXZeesXVvbCaf88eBNdt72gYcnIXT3oe2Z4pXLBjwvjHCrufrWry2saVbPKgbnP7+B/tHjDa/OZvEd7uOAdWxolBtjDdiMdFq/lZ1GbEQGyuZ+zUhOEAl+PtOj9upA+QtWNdsL+tzpRU8rM9DqSZPJgY2W4qxi9ker272tAW0nlsfOgv9nGtx0Nrimlo9VvnbnbsrE5AtTVnZyFAa471AZ6Tbftdubd+vm35tC2FbgWLr+womvGHQeSytMZ5umZZW20/wWK+0tdHA+G1/XsH5/X1vRSNqZ9Tar+ZT3DzbO1Nqm/vNoX5zDar7Io3RUFqPV3uEtS83CgC8QAURwuNsXU/ak/ak/b5t0zRxdXX1ewtSSsAO+MPAbeCfAf448DFg/O2/9qRtmsLzbz/PP/1v/9M8+86zhN8nwB5VePjwNh98cJePf/zbpFT6z3/913+It956/nvcw99tE77ylR/g/fef4umn3+fhw4f82q/9mp3HD/l9AVL6zC9/htd+9LX+9yftSXvSnrSPQvsdgJRalY47pN3hbg54Sxx6wBTpDlJz5LRRicvqwHbw0iYo24KHeJyk1orFrmQN1PifrWKkObuwhqsFVokMD9j2ypc2DnfCrEqeteqxj9kdy+gBV7xyMgRwevqW2DOWpBXM0pzeNbjf3NE2ttA716rrt4CcBvCxoKQFACpK9KpDMeTKOm/BKJMbNXVtUjotmCbmVK8Bc2NcDh6MAw9OtWAL9kxbMECkVdawBmbYUiJ70Y0H8W3uLNBjSYU1TC4tANKCeZij3Cj1m2Pcn2Nz4n2daK03n3mbQzzAXle5H9z5rx50tzVTTdrK56EBlZrLrrVSxYMesgZHalWn8O+L1iQItNyowo4hWOKRFp5TxmGgqAXfLVe5Vn216t4OqGtrUivjkKgB6jR7cAuCxE1CSBjjCCKcnZ9TlsJhv+Ppe/eoqrz7wX2mJROBMQ1rUFKVcUzkZSamkTEl0jCSiweq00AlcHZ+m4toSerj8RFn+x2akvE3ZUX0jJAiaTdQFEv01kxQpSgMMlBOD9kddmgYKEsml8VjoAkhEKQyn66JopALUoRREiEKp1PheHkiDRkNlVIWJCSGdGA+nqg1c5oXxpjAEySGsXDWH68QVCoSInEcPLAskFy+QgKikBRSFc7PbnE+HvAlgiTQYO9a8iBYrTD//9n7k2DbsvS+D/t9a6299zm3eS/fy66yelRfAApFAqAhgqQBkBDFkBGUKHNihwaeyQ6PFOGhHSFHeOKRhrZHdjg88UBW42BYCtKmaCrAkkhRBAyggOq7rMqszHztvfecvVfzefCttfY+NxNkFUioGtwFVL737j1n77XXXs3X/L//f0kcjzMpJnIsuOxhWAjBo5MjHQ4mn6fKkiOGH3AG8CDj8UzTxDAGdrsdzjkG75jGAecc07hnPzrG0OjJ637HzgKtMXOYE9dL4flN4tkhsSwLSQtLnAHHg/EFpnDB4l7glQ99iocPHvDF/+4f8fZb3zU2HbFgZaP1biAAC7wVWzelBUdBStuLHEpCSKAeLZ6YM6kUhmeJw1GI15mbq4XXv/ucVz74IXLJvPO9N3nyzts8ff6Iw/Gmys3VpGE9Y5xzeMDNM7/z27/Lb/zlX+RX/vIv852vf4N4bYAbzYklHvEhsKREjAuaTApOhsGC7VKIS6ZoroAjWzShBtRLsmTEfDzUIKAB59StII529mW1gLj3Bjg4HmZyygTvGQaTWNRkwCbxUqXyPM5BTAvzPJNTRL1acLcknj95zNXzyKLw3D9hGhw/86GXePDCKzx7+wplwfvCNFRJhhKJaa4ANojFE8tiCY/gGMKecdpTsgHhnFdM/UtwuqcUzyEejR0hWOW9eGfV5xaVxIeJaTpjGEwKcZgmXv3wJ9jt7nH19pv48D3SsiAowxjIWohzrMHSSutfFPGWlCyieOcZwkhwO2NxkkzInjkaW5pJXkIYRu6/8ALzvHB9fUVJJglGsXnovKtJjgrGRBjDZOxM4vGjnVyCyVSkJk3nHF7EgHW5kLX088XYDgJ+CMZwVQQ/esbd0JNJdtQWck0ixkU5vzhjf7Zndo7lOJNSImchJ2OtKCmjlbmhybeUpJXlJoMKu91oLEX1fEmxSdXZmZ1zaYWshGBgoeCDSYA5KoBb0Cr9qNnAjCavYZJzhndScsyUmABjhnIYI9Up+0/poAab+5YEaEk6VWXwjhB85QhrEjSYDHCpdoma7I4BegQfXD33LBlmckc2LwxU7bptp6jJkopVNntXpT1q38Q1EFFN/uUquYElbkzaqFkaqx1mCbnUg/rNxowxImJJQSe+JiDX6mcFSk52zQrELkVtX6d0aQ6pCW/tC6GOWS6Uspjkm1vtL0v4BFRX+6qBcZx33cZqSaBq6FLqdy0JYpJEZgeVbot2GY8f0/auJDb0edMSWXVCrImrar9JtYk3GcXThJjS7ar2yd60pxfr7zaJRG125Oa7Wxv0pNNCR7i0hPX289LLB979jP1Zt0ktWV+ztISU3ur9Ch5ek9nvGkW7tzYfYHON5k5sM2mWlarfbTJG3bCsQ9b8rdNf9Uc4GZf2gfpMZd1npY9ZvfHq3thd6/Oul3v3HDhhheh2Mifvoo9n7/dmpHR9/pNpVPc7Nu+n+xPIeq/+7Osz2/ug5eL7tBRWMFwHicmG4WjzTGxek27nfB+JClbMmeurK+5fPsB7T8ybMdE1ydjHb/vM9breNQa93Jbb6TsUA1Wyg+FzI/rxQviQ5+x9e9TBzfFAnq0QKDjfgRm2PVbGP/G25zN0wIM4k2caholxNEBPSgtDCC04ABkYQj3DjOk1F4Uqja1gUrFpxg9WTGGgkcomUsVaESWnaGNfiw+82O9SLqQlVWYa87GQBe8COZm9kHK24oGstQiqnmuN6qMOrAHFXXUza0ygWiCiJhXti/DRtz7CJ7/zCcZltPnjqmuuq3SeamXQTakCpGq/Xd3XvVBiquyKdEDUyo5h8YngPS5YsUZLpgdnzIEhDATvMPVvey6basF84VJIqbBk5eYofPVrH+Db33mFOQbu33+LT3/6S9y7dFDO+O73Ps7Z/ZfY7fa8/ca3ubl5jrEMtel2a4eSzeKgrbfNcNY1oc7k6po8WnSQyfis5Gh2zM1N5M23HhDGwPHmwOH6muPxwBIjuaSTfaDUmBNqIKxn7zzh6ukVr7z6Id58/VNM4z/m0aPHXN8cyEOCRdCpsV9aLMvXggCc7aklN/Yg+prr9kIbR20g/hWo1FoDkpnPY0ASA8jZuupy99o9ow7M6LGBWKrcWjG1V7ViiPlmZsnm687Ha852gZf2LyKyIEkRbzEkV+MjKUfz+dT6kw32bhK34qsEWSuQAefqewse7yHltNrTdlAaAKe088/h/YD3xr6LwNn5Jbvz+2hKeH+DYCyqZg5WJtt6qq57pWwYp8wHcGLxgw52yWbDrgAkxzhZ0dA8z/262qXG6GNaVzReqpy8eLzrBJjACh7vxYcVjNhk7vpUFgOxm7yfXdsPniB+VTkTqtyd2ZdhMBtfBNsDGlus2PaoxViDu5mj2n9uq7/gQrBx1gZMsZ+386sxNbU5K95iVdtYkraR0PX8ttibW9nja/AwpVwl2LTP1/di3NkW3CGrldE+6qpd3caj2cL9SFbpxZe4xrC1sYO6Qdds6zrAbe6IzQWt62stxlg/1ubCei1b3KWUvkdvwpL1+2XdxupDKXZ+2LpdQU9r3HUT67XDl1Z8kcvG9tM2I2+Npxp4KpXSJbFP+y+bcaM+u5jvUv0Z2pjVe5QNA650H+XWS3wPm/2u3bW79pPZYoy88cYbvPTSS3/6N7sP/E3gt4BfBD4MNPKWu33lB25ShF/+J7/Mr/2DX+P85vxd8YUf1zbPI7/923+Rf/pPf5GbmzM+/vGv8jf/5v+T8/Nr5nniC1/4yWRRau36+px/8k9+ib/+1/8u3/zmN3n27JnN+Z+AJggub3K42f0L55UgjMc7VOFdu2t37U+3/eByb62KYuPVOeetUgQlWxjG/B6RHnSvXthJ0mgLMFnjwhYAbM6sVHaRdjuTHjoNvoq4XhHl3OpUbQO1vt/XIoPNgW6BluaUF2lJjndvz6qbxFf7XE0SN/d8tbSsqqcxA6RkwSwRZ8nrHpDHmH9qoLj0YOWaFLeu14pHXAf6aLFqylYxpKqIDxZwNk5/e0ZpMjvNGS4nVT32GXtfHcxVk1tOPK3aB1oOoAXdS3Xe7blyzhZgqu8dsUBOC+B0RmsaU5XvTnoLsPakI7WCiSYHoas8Tw0KttfpNl50fw+qSA3EizM2E49uaLTXwEZLPrs6rlKDOkqmlIQW6U77mlFpiR8QaUAsrbGXdQ5kLZQi9d41NlerV70EmweODphC7V1MYbB5kGtQxVngchg8YBVsqtkkqfAomf2443w8R4bCfr/j7XeeMuwuCGNgvjrw8osvocFz9fZjSlEuzs8sMJkD0zCxn0ZitnXpdxPTfuAwzzRA2ziOKJWJ6mxPSVaRPA4TMSXUR8LgEVFySYi3xMU0eXY10XB1OHI9H/BuIC6ZYTAa+3E3gAgZAzWMbqQsrs6/QC5K1pmUIloSirLkhJbn7EIy5psCKgU3ZTQMpGjMOE6U4ISUMxkLfnopNXmitWLaKPV9Zci5HAbOhj3nu3OTVIsRcR4ZvAUdY2QYBjKw6MLOCxfjPbxzTH5g9CPB2zpK+cj9C4+WljjZGTAEKijBEuNeBBdgqEwf+2nk8nzHwwf32V/cZxgmY5TShIgjRUW8J+w8exw3c+Kdm+f8w9/+Q77y+nPiPHOIMykegMgnP/5Jzs8e8MqDj/Dy+z6CBOFrf/C7zDdXuBxBaiBVG7uBQ4uBDGwTriARjNVGHYg6CglXHA4DcKqC0wWvFviOKRLjgec3V3z/0XO+8tXv4cWR8zNifEpOkRwPxHQk52jrLhtIAy+4ZNIJv/dHf8ij7z/mlz73Gb7wwQ/x5T96QnEBnBKGvQEPHEy7HSLC5TnElIg5cVyO5HxAck0kFdubYmqV5AJJQYXBO1SFIgWVtn8nWlbJlndlHFIDH6kTRE2+zQ+BVlk/usa2Y9IDOScaC5bhKguHeSYdIikKMnjGkPnIa6/y53/h/dy/FB5/fyYMcDbuLGEnyuHmQNtQxZkYQ8DOpuCMUSsuR0qBlA/4wYPYehimgcHt0dmxxNn6hDHP5JiNDUaUMYyMw75KbygvvPwa9x++gpeRN7/1LQP/eZNji7kw7ia835FixDmlLEcDbuAp6vAuWDV6gVgiqhDjTJkNYLiCEAzg8/TxEwNzVEa7VnEeUMDjw55791/gcPWcZT6wLJFcHKpW/e8qq5GXwDjsKSVSNKGaDNyEw6UWWS5Y5slBwlignD1fGAeg4GRknhdyrAC2UsgSWZZjP8yD96SslkRMGbIl01Ja7DwNnmEccVOrorevxjkzhIA6IcVEkyGDYlIDNYjtB4f3bgVpVYk7MIYEo/ixfXQYBwYX0KQc00xM0ZKHakkORFHn7Z1X2REL7jfWQDvrpVVmI6QlVhvFnp9mw/mA8yadozFbBbAz2Q4vtjcYs4ACqVaPSwWHu5ogKR0QYIaFzTvnhWEcKshLkSodmHPurIFOnCUSU6uurxJqXizJUm0ak//Qfs5TK5ypaQTNNQFFNuBXHwhLHji3Ou5FFc2WPG9HfmPbaI9g+QFLUtheWXr1f0tmOucqG5NsAM6rpIsxKTRwQ7OFpdtOrrJJOdG6p/jKuFQZNW8nN36cWlvyrKxHtEKH+vNmcKmwVo3bB+3nm3Fu/+6f2CTyml3ff7cFh/TrtQzU2rfbwI33DtusN5Vb9ujtb6yJUDZ7XkvatXG4lTXrmaT2zKcAFunXqwkmbemmd7fVBbN79kRptT97MYnSWV46U6qu+0S7WF8hDcDTqNTqhRVdr8NaAGBTWNYX2N+fPWf3AcX2tOYIrsqS2m/egVwbKb4+J4QTf6J5ap1ppl2nDW/zD05HrI9NS4o2kIB9Zd0r+uNs50rb63VNvm6zf+urXMGw79W2RSGlNObd9rwbORepZ0ctujCwZ33OLuNTmVbxlcFYa/GH7WHDKwPDxwf4FWX4QODmcMSfjcjoKEvk7OwMdcJyc0TVii9MdtkxDJ7gvRVhqPluwXlilb0CqYVANugyDAbYhc5+6JzJrRqAaE2uh7CyZ8wpITni8ORSC4WKVjBs2/eNuUVz8/vsrCkNxFABpbkWbHjX2DxsbCUUcL5LZ0r1OVsi3oAjFdAvCq0f1a50wHmZ+OzXP8v7H7+fgWDFCc5A4d7ZmeWqf5vJBBFGXwGs4vHO27Yoxna0mwTVdhb5LkXffON6glTJIbvOEDzjENjvdwzjRJdTr+vVcAhiwCaBmJSbOPPf/f37/O4XXyGnRMoLb7418ujpy/yVv/wmr7/+WZQPcn5xH/HC47e+T14WpDEB67rP2oLc7Bs9m2/Sb50QRC22IGprtRRFpSBEY4R1xlwbU+QwLzx7fsC5AJrI5YCWVJlljB3VwBmlAisqGKgUDscDb7zxNr/wsx/j++4XePzka7z56J+h73e4TwT0HmSNOG/sikMY6vWUmKJJ/+WVWbqxSWbq2q5Hb5fvUwMGdJC2KtqAIR30ZoBwVzdWLQre3vIaszJQDrf3k/pnLoUcEzkVTH67sJsm3vfKJffvjcw547Iy7CrYyFdGzAqErvV+NBlG2z8M8JJLAsnkUovhSq42XCB4h+RkbNUNBOOd2Zr1DGhMQYXCMO7ZX1wyjntulmddIqu6mbhgxQpd3kwr66maTefE12NDVjlkLZSU0FJBSG1vVWGZl5XZDDpgvZ8Y4gnjzoo+4mzvKOU6V1dgsHPmy9hZttqstq3VwatxUNSep9sSjs4aGsQK93LKtY8GlCwbZm2TVxaoxQ3N7yh13qlYQaXzgjrtR1nJFnsUJ9V2bHalzbX+1+qHygb01RfoxhQ3tjDbs6XKTOaygunIpUsgm53ft/b6Xji5dmM9LKUBxdY4SAfo1wKpIuuZ1+Ku0nwelI722thtLSbY7QQ2zyKNncr13zS25dLYZRsYqRUYbG3Lbn9I/3uLi28t7XY02/dbnOGkK/USGztW15+vV9FbXzq5g+0jt2x8V0GzDci6XrQb3Kdzv72u+oBSi7PanO++qurWWLlrd+2u/RS0lrt5F+Pde7R2Hv8gnwXMEP0E8BvA/xz4eX6IjONdu93Ors/4N/6Lf4Of/eLPMqThX/yFH6P29//+r/OFL/xrtLPrS1/6FH/n7/yb/O2//R/xX/1Xf4k33njfj7aD/9JN+J3f+Tyf+tSX+YMv/98NiPc3gBd/1P36U2oKYblbzHftrt21P932Q4CUTkPfDVBjlaHa/ZdtJe4KuGmJuTX43JykbRXT6oRaQKd9RyqQoyVmtmwz1pftZ1fK3tvGlCWD6AGYbYDZdNhXBw7V97yOatl8xoKezSsVueVYUgPGm8C+iOBbP5SV9WXDRmTX8mtSozmjurksVIp/S1a2HpZb/XWVpaA5sydyLrTgpqK6BvHN/1+DD5t4eE/W5ZwtWFNaEm/zjMjK9CNrIKAnUmR1jw2gRAf7aOu/WCjI7lVqErC9q3Ydeh+dCCq+O9Mt+ELRGgStQaOWBGsJQ0NcoD3AXJ9VNmwF68s/8dOt33WMdDOW1Iq4ljypz7csEQkB7weG4MmSK6NJBXqUNp6KqDFMtRRPzBnxgosCWXCDknNikpGzsCd4Tzg74/nVgTkuPHv+hIvdZJW5x8huHDiOJrtQNDEFzzgOoIUH9+/z5OnRKpuXhf24IzpnVcUiRGAYFO8WQhCi86ToUecIuwFZhDAMDMNAzFYFPIwjMUWr9s3K4TAzjI5UK8nHac98LOSUGKeJGGcGJwxhQiYD93nnIS5ormwkxRIsKSaCOFKJUEymATFgmDQZjpYIH3wFMtoLc1qQbAFZ76XKJwmT81xOO164uGQ/7AyQEBeGFohUx+gC2SnTMKIo52fK4EamIbDfTYzDYAkAMcm1q5sjOWeGYVgTVTXh0eb66ENlRoNxHDg/P2eaRs73ex48eMDu/B7gCd4xL0erWi9iFcXiUBfYXXom53h29Yg5L8ylsOSFHBfIGYfn/R/6AOHBx3jw8JLrZ2/yjW98layRIRc00JM2bSwt+K4VXOfWoBx1j1c12nvVGhi237UQseSE+lJZ0Wbc8Zob/z28G4AExSQt7H+JrIlSEiWnCnA09jwQlnee80e/+1X++m/9JX7ul3+J//af/T5xjty758l5Zs7GaLQLwUBzqqgIc4zcHOYOKlRVQrDq8hhTD0iqZZ/IWvDOZL6ONbDtakAz9/NASTHhXK7ST9SEhMeDAdhS4ubmhp0GO+e0VsQC0zRRJKJLYjkupCWCc+yGwPtfvc9nP/ESL547RI+IRmJMHGNk3CeGacB7x7gfySVb5SzOAF1OKlikcEwzQ6jgP1WcFMQpmWRnRgBXhJiKVVR7wY8OGQyItTsLTPuBmDKoZ/QT8XDDnJ8SQsYPGIAGIXiPsdA5hnGHasSHsTLmCOO4Z9qdty0VVVvHoShHjpa88J64OJMLVCWmtCaCxUCiOUUG5/HjjnsvvcrnPvfneOeNN/nm175qzGpirGylnkeNAs0Sn5CL0DAkopniSmU+NJBgnQgmreLAEyhzQZwQy0JcFkpJHRgCgi6WKFqWhbhENGtllki1il5rgD/gggeFYbJkTU6ZZTZ2Hc3ZQK3ZwE7Om0yAF2fJrGzz0jljUMoxrox+jVktV5kZcWjKaN33RAz8lFKqMoUGBg2TI0ye5bjQgugNOOm2oFxXrYsmRapmD4RpwtWKcu9szlMisaygUQZjHSsV1GTj6yrDnZ1sJeeaeFnfN7r+3jlf7cfCEAZE7GyNMdn+FGyNLqUm56o9louxEfkKLki5MijVBbtlOfHOkvVFjX3L4ZHQpEVcTdrU7wg43dgtm0TG1jhoIHxhZXVsgI1mR6mYnF2XhmxJtJq1LRUIZvttswTWBErOCclCaWBJ8U29g7VI4MezbYE2ygoeP0lu1d9vrG9awqUloU4fUavduE3KvVdAdYXMrNev870nlFZ/4l2sORtDvPs977qP9B63f7Uk3K0e21m6ud4PFgJen2EF3bAyRJz0efNccjr2vadiiVfp4/Du398GdXVbvd/nFLDT791s43c9eL86q/ainvh2bZV2DNKWiejkihu/8/Y9ZAOMkvd4D7J9r6s/SJuT6K3Xtpm7/Xk3b7o+rxE/yOaaqy+lt651O6kqLRFbf2nAEmuPnzzhQx/4SGXSEQMvOEdjZm17jRS4vr7hOM/sxw2jr4gV5bwKkq2P4pXy0Ux42RM+H3CXDjd45phIJTPPxy4VWmIxUK5vQNlS2e4MCLDf7TgeU2WjrTK8ZZVXKgmcV5xknIecBc023i44yLYnuyq5ZmBYK3xobHUpWYFBqcUTwQfSJkZQsklleu/BrwU1VFZTkeZXN2acgmjuc6/NhP4OpO6rTqqJXOenZar72mp7T3COV56/xGe++2leev6iXSdn3ObK3pm/GpwVcoxmhuLdyBDMDm1swMbgmE7Yg9fEsfarhgamFxvDYRwIPjAMgf1+TxhGGpA751QBKu14FpP5Hh0ex+Mn5mNlLcYUnDNvvfmAt74PS/ool/cfstuPxPmKJ08eUch4bWDC7iy0bbn3WRqoAE73eWmfL/2Lt+MUpdi8yTlCPJh8mL3FHpsx5qL27y0A2o5yn5V3vvc2+dM/w4uvfIT/5gu/yNXnf5vyF8HtIJdEzJlRQmXOqfNWlZRLZ7osNWYQnKt25+aB+/q1uZtSXvtxEr+q4Oq6b7crNIfLV8BfipEYYxuJuomUyvBtHy+5GBMoNkd208hLD865fz4QSCwUlnEhxox3dPBbaEBpzWif6CtDdkoJqf9Xo30GHhOT8m4MTzR5WakA97rOnHeEwfxsLWJ+fYHleI1qwnuIFednsRwDcDm3smeWagI55wnDWIsY1R6ig7Kz2dvOWyFBj8kUct6O7woKduIJ044XXnyZ3TDy9ltvEZcZ0F6c1gCKgLHjdj9mjW1SpQW1vjrX572ra911RjfFgD65SVm3c6E+ZC652sVrbMkAX21ySGfaEjEmzQZMz7lALmjegPAb83f1B0plNrdiwa2dWfurdHBKH7R2ZtYzPqe8rtvK6Bp8ACze0wZsy464tQkaAEjUAEqu+gTG9Odr381v0I1t3N97L6qSfr6LrPHI7RnbgE0oGyYym7/Nl3POEvaIgUczBU262cc2tmCLVTawT33ck/s1s2bD6EV9zy2W2Uklqcv5BIi/7nvb1sB8p6CtdV6Uui/ctv2lzuP3sps7CSVa5e1sC16l7FaOzbt21+7aT0/7+te/zuc+97k/xk8+bW+//TbPnj3jhRdeWH8oWBbxk4DffPivAT8L/C3g5X+FHf6z2BQ++s2P8uv/5a/zkW9+ZN3zf0Jazo633nqZ08CC8OUvf5Lf//2f48tf/uSt3/1ktpubc/6j/+jfwf9v/s/w733xJ4ZJ6U/SVJSbezc/6m7ctbt2137K2w8l9wYtyAQtMNTkxrZJhl7v0gFINVizqTJspLPmMNZ79H9vKdDt+12mrP5fqwDtIZ2e1ITVKdYa7FgdU61JT8WANuuzrYdkC753hp+N7nj7Q1swWqFV2vfx6dTAUgMtjUmgebNrUsICPGyc4AaMoj73CqiCWjzkerZhMyb2ed8DOy34bcxF5niuwYNWva+W2bRr58xJ9bJYpZqrzn8fn7xWB1lAt717BYz5olE3dnakvAb/O8CorMG8xohl32ljuTr7VKk3aECr0ga/xh/WSIFClWLhVpLJ+uCdZ9rtuD4cOoOBBbFrf7Qm/PzmXfUgi/Yg5RZcB8I0TfX32ZIGtQpMKrNHTAnvBcWqEINzJHuheB+Y/EheSh3XjGusIGFAk7HT+AAXL7zI2b0L3nnnLfZlYi6OYRB2U4AUON8/4Nnz51w9ueLhCw+IOK6vbgijMI4TZSmWHNdMyY79tKdcWPAneEcYPDtGUrQxzHHB+5HjXIyhxAeGUINcruDHwDTu2O/3zPMRyDjvefz8OSkm4rwYsGg0esgQfJ/b8zwzTZMF8ao01hITh+ORs7O9SRtVKnlLTkcLHgWt1YgRPw6Mu4lxGgguMB8jGjziB9aAjLEquVqy5sTjBFyBQTxnw8TFtGdCOPOBYTeAKCVGSorMMbI8nwl+AGdBQu8cF/sd73vlJS4vzhjGsUpbKPOycDhmnDfw1jB6UorkJXG4vsYFx/n5GYOzqtAYEzjl8t4lYRgQCZztzwnThFW4K9P+nBhjrX5JzDFzfSxI2HGMgcfPrjgeEnMWlmRsIxRHkh1u/zKXr36E3WXgK7//B1w9ftMC8OKAvAm42X7XAHilb3iKawHZAkijt9dOkd4qRxugR1Vx2dhhnDOAmg8B1OQDVDO5REpJtr6KyWOpGluRE4+6I4d44B/+k9/nr/6Nf40//+c/zX/y8FW+9AffBfGoXnMzHwHPoRQGbwm6m5tDZeHydQ9ZafJDMOaXogb0VLRS5BvAzYK4tvd4H2xPTo3i3/ZXKgGPloyIs3XjvYGIhgHvAuM0WpUxa1IsDIE5WbJJiyUCghc+9MrEL37yHh84XwjpiplzlpgIY8CVjA8OPzjEWZLJBwuQX16+wJIiKUb2uz2C4Eerto5xIWcDoeSUGIfJEjApWgW/M6Ya1UwYPU4MdDROnnm5piTDAL7+za+CF5RkgB6XcAF8mHA4VB0l2/6EU6ZpWhPCBUp2+MGk02z/AE0ZF0aGweS1vBrjmZbY93+pcpn4mhgocHbvPp/983+en/38L/HszXd4/M5Trq4ek/IRVQM2Ct7YCSuroGGWHEVbogVcUMbB5j6qOBwSHGN9hyJWNZxmGys/eHbnF8YklAvz4cAyzyYl2ADcqsS4WILMQRg8oxuRCp41SRqpsiuBGBOaEoizpKcaaDNnMQAgARls0qaYuk3R7BacM5nJKg+jxfZvGT1RF/ww4EIw2b6kBm4i9yTibtrZCu6yAWZ4mKRGBX5TqrxFtaNqUiP4ASfWr7TMliRJlQmg5a4xdrOUMmm2xI9zJh/S2RSEvjbo+48lW1oiIwyeFTDuqvSa2QDBGxtRSguStScVpcq+eecIDHYW55X95AR83fIwzdSQzWeCQPFd9sLXfS2nXJMYNscqNPZddoEWNaBX/XkDTPdEbbWFT5PP9h9RB1XGyHmhAZ7anisVMFd34QqAtcsaEelPSlphTe/0ZBR0266b+beYZlbw/60MGHUebWz6rf/S7rUCYThNqnNyqZN7nlaStvlrE6gxXrxXwFdZ5/kJsKc9/Sap9u5q1dPn6AUfsv1NSwZKn8/NF7r9DH0u3rpXS+at/9W+D4De6le1wbc9qKCP1c1ZpW62j9FZlNr3yqYYoj5JLwRp99PNcyiV4Yl1HdUb6OYd6K330S/VvMjbQ7yZhu1T7UelA0LWB2n+pslZBrNNN/uYuvWi3cfcvLd2uZVFzX7W5K+DDyBVbqa/91V+xqQoS/Xxqk/X+lTl0mgsKbZDkO5H9H8K6gV9JSMOxnHPMI3cHG8IeLII3kEIxjA4nu+Zl5nluLDf7SkIcSk4b2wemlfmNlUYfEBHe1ZXGX2MXUnr8yTEBVJuRUUe8adFRz54QhiqDKz97rgsxrSZTG7LCgKs6Kf5fzmlCu6pEunOJFNTTgzDYL5/qmulSd4VpdboUIr5Lj7Y/5w4kubKAGh+S5vjrQ4G3cQnFM6PZ/zMGx/lQ48+wHmeGAeTX7O5bqwwORfKPJutU+XNRYQxeC7OzxjHscrd2drLuRCTJdYbg0qpzCopLhhIfMDXdZSrTTJOY2WuEoZhxPlg6wTwYURKriwimVSUJdmzXl3vefP7k/ksxVgDFcjZ8wd/+PO89OorTPfvM0yOR99/i+VwZXuYbBcS79pTT5pSZero4OF6KLJGBpqNLZ1BNCNIrvucs3ORypRmTFm536DLr9Y1aFtP5q3HT3j87JqHDy6498IHeP31zxPylxmTyWQXFQP8aGEIgSXGLnlrrDn55Jx3rsoS9rNc+p5VTrZJWwu5AgacNAa61mXrrTEk1kIbzF70wZgkm3mlrIw769lj99gNwqsPJx5eCAMLlJEU17iFeMDZ2lslVj1DGKxoIEa8r7LBPvVCj5SSAW10PQ/MH7VnMLAJSMb8ldr3ormuNTheXzMfjxYHEUE1GWjGIh7ruFVpMeeEMIzr3lrMN2yBGfPVDLjm6/OVKt/eWMfbiPUCuMrmLd7zwosv8sr738/57oxljjx5/KgyrxrQ1K5fz5P6jtsVbWoJKmLS9bKeEy3+aTGw9ZlaAccQBtpj5JTr7ypov51VFUC0sgBV4KKutoxAZVXXvqZWkGuVJhStYHjX7dJMpkmgGd7Ldda4spFd817WWjBXJcyLSaUr5guL0850r2YMnZzprdCprQ9oha71OUQ7S2pKucYT2vPVta5WZAR1zrV9ob3zXki7tSTaf4uxdGG+zamN3pjWzKf2wRiRS5Eu30mzubD44cr6327VYszatqJNszNZ6pzonWp+BvTiRJpf1D9SP78JQdvrlzb9+xhpvV611k5tyLKyJ7V9Y/3Buj+KrNdci3FPzbi7dtfu2k9HSyn9wJ/NeRPrAq4/eE38zyLsgM9zmk0MrHvWXfsTtwePHvAr//Wv8Av/v1/g7HD2o+7On6g9eXKfb3/7Q+/6eUqB//g//rfRn6LD5erqEv7gfwYX/5CVkvKu3bW7dtfu2p+k/dB8bc3hfq8gMFCd59IdR9hWk2wSNXoaSIY1aKuqJ9+x4HMN5lbnrAU8fQv+9QC6vOsaqmugvTuzLSdRnTppHnkNEvXKItNQ651rUh3iKktFvWMjXacmn63PNaFUf9efVxowh17p335m/78GOgxktamcFE4YgWqujlYxZgCb9V69wqx+vzFRbZ1617TnaQGBTRC+3bf+uaUH3Tr6ImulbqPCbw/Qx1mtj0KlIxaFjQ5tp+GWFahm198GFdpEbMmUdRxKOZV1a31vgZj2ihzC2e6MmDJLXPo9GghJ6zXot5I+H7YT1fx8C4w7ceScGMexJpGVJqPlQ2WBEoCCc8ZUJQWseNc04ZMmBj8SwgRacG5gCI4dnrAvPHn8DqML3D87x4U99x9+gFcevkC6UTQeTG6JHeMUePJs5niM3BwOqAjXT5+SWKAIg99zTBF/uOFCzgk+43Vhf3aP6eIcEWF+8phjPNagiKPMcFwy0+AYgodSkKTcHI+Mu4Grm2vmebEgHZlpP7LbO45auLo6Mo4DwxB4/vya4eKyVoFbUt+ATQUXBJwwH6Ml2inI4BinCXEDJRqwZNxXgJxz7M/PyWIsU7EmbUqd727wVqkHeIVhNMGoUhSKMajc251xMZ6xmwa8KFIsyB2z3SOXRC6LyQ8Fz7gbGYZgkoLi2VUGJVWxKlvjZUdw7HcTSk1sqBDCRE7K/szYknb7id04IiqkCtAZpwEfBpwb8eOEk2bqVqlK73AKfgdnIbMfM46EU+H+xRlvPXoLnzIhFUiRrJmnNwdmucf5g/voUPjyH32FNM84dWQfjcdDa0hM2g6rayCsBuha9WBd5eRsQelcmlxRk+cyqUPBGIdsb/CIL+SyACMm85AoOda9x2Q3UoqgBS0WsI5ayCS+8fWvc/X4GR/5wAN+8Zd+jq/+4e+SloVp8gZIKIUUZxZZ9/4lZmO4KcmCzXVfyTXBpcWCnrlEpmkkLYkYIyXXSOBmb+kVlGWt1p/GgWWZEYSSM8uyVDYv2+diXFDNPRHRArBnuzPmLCSJ+CC8cO+Mh/f2eBK5RGIpfO3bb/P4CnaXe0ow9hvEIV57YFecMMcjztm8Ps5HQjAJyJSSsUY5T1xm5usjKVgCTuv7diJdtiIMA84bG1MOJucQc0S8M4araM/hp4lxN+D9BXlOxGMEWiKgGBOWw1jFggH0vICmegaVuuUL+Jp4KTHVSmepEi3hNBlf16xm5erZc37vn/0zvvm1bxEKXF8/QVwy4ctsc9KisAZiFFhlSOtpoWKJIvHOJAIR5mVBhipB5j2aCylGUsmUJRmzkhRLrChdllBFccESMW5zpjbQSclKXGK1XYyZLMdICGMFa5qN4VuAGGO6Q6SyjNUq96yUnCwJhCVfSzY2PTunjUkjp8IwVjYmLTjn8c7Z+SSWOBOFNCcWna2vWcmaTaonhIpwqYkrcfZeK4uFVMncZVlocr05V8BOtYvGYURdW5Opswy089MYAdbmvV8lY50BGi2JV+UtqtRh6WxMwVIwqhznhSF7wjAYg1fONYFRDNAZCynP9p6owfxmv2DX2ratzVqyJeQam2IDG4qY9Iw4tfO7Ja1OQPn291YBb1IfsiaS+p8bxspmU+UKiPINTJLrnKoJV2dShAZm1Ro8XBNg9k6020Y/ju29gDy8V3/bjzYAmRPWmnad1Tjb4F9OfQvpH98kWWl5mvfwZVjXZLMLt3kpOqj91s9vP8LtX55co5ny69s6SdOrVn9pLbyohm23sRs4SNDuS7zn6G7s9tt+V3V9ejKtPe/td7INUt/2A07GsK33dTlsLqXveb1t24KtKjJg7et7PFO/5vavt+bYu3wItv+uflldlzhOEvFy6zq66RNIl4TKXRJhAzi8nTDc9lvXz7T3ZlI60vfv9j6oPoQBE9exbBJoluykjptSpBDOBtzkqw/lmB9G5BOeSXYcjwe8CLtpRIaBnbvkfL+jRKDEWoxhoN2jJlIqBqYXWObZwCAKzg2kXJjjwjSMOGegl2EYCZMVJhyPR1KVdhURNJu9HJzvIHfU2IJ88CyLyWq1Z/eDxwf73FJSBTs75jnixxXAkHNegU0VaJ7VJDwLBfHGPCLOdRBEwPZRRBjGse+xRVu6t/n+ss4tT5UNWueMQ/jQow/wydc/wb3jZS2qMSmnhuczEE0yllCxvjSGTicVjOKrJHQtNmpzbQjDGk2o52ApkWEwIFIYPMEZe6f5IdqfVcRXEEVb5/X5qt0hwTEUZXAFoXD99GWCT5BvkGJ+kVSA7GHJJCYudhPq4NE7j6zACUElr353W199ztd9pv+jxhuUtSCs7n6okBsTXpWEN9+ysSrX/UGbjdJASrnvWxYzymsMon4hS2Gejzx55wnve+mSD3/ofXz9C59nfvT/gteed5/HWGvLZl23RJ12WwAaS1eNi9X4kK8MR80W4WTv2QIGtO9p3nt7582GLAVS4sQmKStzt/kyhTAYuEjqMw6D42w/MHgBzRQch0PkyY0xOY8h9DhUPVr6vC4VWCoi9ZlTncO5FzGgarJy2gDt1QaS9Sw0W6gC3729v9z6LgWy+XnOG3PpOI0V+F2fsY2QmsSy+Sau2rNSfdL6qR4LW2011dTPZGM/asWQ/UErm3bmyaPH3BwWxjCw3NygZJzTyjAklTXNgEItjCMiJ1gUJw6VYuBGZ35VQXuBpGDAmrx5v8ZOWs/6oisblzN7cctA3noumG3XwOqujVM9h7uUmdL3lWYf2PrSvhaNNafNTTuIOlim2j5aCk2eudkdTgw4V+sq7P0XJaXUZfVaHM5kO6XbBP2Mo/oLdR3nUmoMtcZNi3Y5N+dcB2HlnBHXihzavqId6Kus53z7TANDUT9n56fFSRvDnn3D1m6qZ1wI5lc3n7+DQlOu2826obX4nmwy8w3E3HbAZpt3xvYeX3B1f4PNY/X44vqDep96274B6frz9kf7vGwvKrIqINQPdgCndx3cW0ruflKbD+uz3LW7dtf+TLb7QMXJKMo7H3mH5TeWH2mXflqbFOHnf//n+Sv/8K/w8lsv894e/U9G+8pXPsGyjO/xGyME+Klr/+m/Bf/BfwAf/eaPuid37a7dtbv2E91+YJCS8656yWtwtgVZYRss/uODw71Vh/G9kgMtaJ3ztlKtJb4t+KPVuXLiboGZLAjYghG66Vu7cQtUqbbkJf1722oYq5qSHrQvugE49WsWpCYBtwlVpAUE6nOKBQs7sLb1lY1zCWiVhquxgA3LT+nPZf82gJOrifQmW3MaOH8PDWHVGnRw/XfupO81oLpN5Im86922ZFypjEIriMnmh+Bq0LcGENTe1bb6v8XtyrZ/27nS5kf9u9TgvH3PKsF8r1a0PwXwTvpzDWEgxbgZB6MGTykxLwvjOLCkpdNidxCVrBVebjsf6rvYSuY1MJWvCedYAzXDOLDMc2XN8FaB2BgqsKBOEWMdCd5kfI7zTPbGcOGCg+CQENgH4WZ+zt45duM5l5eX7M4vKW9fwZK5vHeGdzveePSIRWZcgd0wEFLk+uaG/fkOVxZKUlJOnN0XUh6YU2ZKiwWEizKnhXiwJPHV9YH5OCMi7Pc7A3skNck5TeR8RPxAiQsaAmmJFGfP7p1nORbcMJFzxPkdwzBBzpbsL7lWdTqWJXKc55q8L/gw4Ae/VmQ6YZIBmTPjxTkF5Xg8UjQyHzLn52co0aSu1ABjSTOjN+aWcRwRYAgBUI7HBafC5IXL/Z6L3Y7dNDJ6h6gxB92QGF2AmDhc3VCKsdAMQ61CLopH8ZJJceb777xdZbMCIYzcu3+fYZxYYiZlYz5ysSUZC7tgQKSUlZtjBeXU/SSnzDAWdjuHpkhxYlJVLpBKBfah6FIg1crWkpiA3/yLv8xHXvsW33vrEW8/nXn27Iar44zf32N/7wGXFwPHm2d865vfJRbFaQaJtLrQFRBaEwIV0LAm6TZ7i65Vyj2Jry1hIz0wWYolopIuSGUOEmkVkLnLTajausw5Y/XjGecGnA5QItdvvsEX/+Br/MZv/jJ/4Zd/lr/3d15k8M+5fzlwvt/x/PkNj+ORw80RQZiPMymb7EML/g6VkSVGA/DkXPA+GFBUDQRScu7P2aqES2WaSTmjuUofBEv8DcNIicZk46FWydtz+cHeT9FMiZbQS4sxmFGBWbud58UXLxG/55tvRqLbMz96xu9+9RG7yxdNLmVw4AZyiSarVRnWRJXlOCNES1QCxzhbULWYbJqmghfBOyHOMz549hfnBpRMhTgnUi4M+9HmXyyoLsZIpIWyzFABIglBvJ1lu7Mdi5tNCqRJqDgYKoCkSDHGhDzjQjuzoSRLVuQ0G8CmJsuck7pGfT+TYlx6kskpuMHhJXN8/A6HR4/rGTEzTqEDOijaWYFyKvV/WmVWSt+PRTyFSFxmxt3I+eUZfrIgbYqRHJVQAgWT2igp4ik0adDgPeMYUDG2rZRMSs+HKhGW6poWVrmFrJTFZMVSPNaki8213Ni70AqMplbOQ2NqbPZWS2JnSXYGOl+B04GSMqjrUjLz8cB8XGwdjp4QdrTq4ZSWPs87AFmoDBU12eYcnpqwauu+grNoSiu6JgdLVpZo4D8thTkdbTzqWLT9AmoCL5cTBpr2nAY09v1zzjmyqqFNBXJMxGhzo8RskhesZ3bBkkuN3cB518/y7RiKU/AmV2pMVrknJYwxzark296ds9JzTEJNVmztl2bL0cdMpLF6SMW7N8CVPbcPZoZbMnOVoEC0SgNbMrKB143Vw63zqs+7arfkKnGzzXj8uLVu87WE7Wr33QbR/HMvw8a+v5XkOb2E9pwS/Ttrkmntk77rO1tf4qS1r+v2ZLx1441t2+z39f7bJJRWn2ZlXVg/syaTWv/eJU3MxufYdrD1QTkZ09sgpe0X9eT3sl7i1iD0r6iejtp2QNrG37vy3r7hev13Pzs1oWjpXG25y25jnCT39GTIT0ej+Sm0RLP9qzE7nRbb2Ji1pJ6Isag1EFK/T91LUs5dkuz2/bb/Pr1HTf71d6l9r2lFEo11w3lv8o6shTJdlrPOHfUQ7gXcQ4e+T8mS0T8Hj28esf/y+8E5nr72jCEEYp4ZRAh+MMbHcaRcR8iFaTL2v6vDwfCSGOur00JMSwXpZzTbeTDsQOvYNAk6LQZ8LdFAFstSbRehMiTZ923uGhhCxKMlQ3FVvtT2aOeEnEzaKmpGXMB5O1+MyVGNjRNXge4ZERsTcb6DFMTMUjweSYVhHEAh5gRaSKkY42OXaG9sVdoleloid8uo59Xx4Po+H3/zZ3jf01eZZDJ7BPMnUgXWUAppiagWvAt1/67+qpiMaMmZ65sbWuGPc55pN1Ugr3bgkpR1DnlfQVcFYpOZrXOvqNm4wYuNrUAxffkOwgJMqqvUAg5NvPLwHf7iL73IH331IU+fRW6OiXmJLCnhhpEw7ZhGT4pHnj59TlathV6F99qFthBM2azr91qfmy2Rbcxp/f26FzRW5QZUPImn1HN2jbY0Rk1FUuTNN97kEx//AC8+vOTh2au89aXPs/vIP2EKgSWZX7rERM5UptAqZl3PhAYKaWuxg9X6flwqmGQNm6myMjFjwGJBqVRCdZ61vaIOQSmdibvZJaXFctTYLEuu88Ip+/3AOE5cH00mcKfKW+885eiCFVE4RdShIhXQV/dDJ11+t4FES0k0Zu5SfV9B8NUfyloIQyD4YDGrCt4XZ9KNRQsllcoY1GJVdW6WGhsTA/bI4EkoZOnv3tZ/O9tsnTe7p72LJvFcSmYtG2xnpD+JLXbAfN3bxQklzhxT4qgAxi7nvdvWqfQ5W3IFttQ5ZeeI1CpFZ4UFOPzgK6uvQ0v1IWtSLpe6r2fb+1tRnz1XjXeinUHPNYkvbXvaZm0UrWR5ZWVuetdakv5+/7hYG1DZ7XUtxMQYqZrdItUPyCl3sFwYg8X7wPb+ejibrF0DAWFFI3XcbalWv1+w71Q/gmaC6VoUZfGWat+XbOPWtoi6sE7imCfml5z+2dYW2Lkv6ztoktmN6fx221pqUll5G8JvBTdr9SuM9arJz23jw7ftQPOd6nxq5qjeuun6mravlf5Rpd+jv+fNhToQuF9rA0KvdhQttourP5ZaTMpm37trd+2u/dS3HfAA+AjwS8AZlH+38LVvfI0H//kDAL7+C1//EXbwp7O57PjA6x/gV/7rX+HTX/o0Qxp+1F36l26f/ORX+Pa3f48vfelTLMv0o+7On357dg/+H/8O/Pv/4W0X567dtbt21+7aD9F+CJBSE5xdpcRE/Incm4FI3jsQvv3ZCTBJahJKXE1QNSdu65SZg+SdX0EztbpGZAXjrPeUzbVaSHoNLq3/3valOs9Cpy3mPRx6aU6/COJ91/NuiRbnhCKb4IVQk1sJVWNq6OE0tQC5VQCdVqqYc2tMSyprQGYbe2hU0HQgUftNA3vpiXPeA2k1cNaShX2MK6X7Ko+3MhtsK55bcJ8KRBLcOu7icF7qPLExaYHd1Vm3gb4Nqmr3aYHFfk8nNAYmqUE8qPTq1TkvOfcqxjZ+gx8Yh5Hr62vGaaKoMd0UVZa44Adf37kl9xozxDbl0segzZxNIrUBlFqsIpWCq869LxYgPNufGcuBUpPnliD3w8g0TUyDVTzeHG5YogVNhuCIMVPq3F7igf00IZfC/QcPmc4eMM+Rl19+gPcD4/4MJ4Wfuf+A4+E518+PXN0sLPGKEo/s1RlbVrJk5n4KjOPI4frA7iwwhB1RE1fLDaFYICmnjGYDNXlxBD8yAE4TcVbAZKtSjMzXj9mf7cFbctwSvRBQvHcMY8CPoGlhGk02LGVj5vDBE+s9ChkvJpEV44IPjjAO7IYJ7xMoTOPIeBY4O9/x9Mm1sS7VhO7oRxZg3I1oNkYc59y6FlH2w0AAdiEweaGUhZslsfjAUGUmvPf4YYAw4HLm5vk18ZhgzuzPYD8GdnUO3CypBs0ELZFxKCxZmHYTwziStTKyLAnn4Hy/q/PKgtXzfMApJnuVEsU5NNeq5WKgr1QcftzjQpWxGAabH94hw46AJ5TCZz71CT756U/w/PrAVUzEmPjqt5/y/eMD7r34ItMU+O6XvsXzd76HyhEnCSRYcLLva25d3y29oFR5s7VisW0qFhy2MKiKrrINNfDlEFINxDkNlCw4VysR2x64WWu2d+Uugdkia9cx8o//6Bv82l/9RT776Y/x6U99hjff+CPu39uR08jx+mYNpqfCbtwjHq5vrkg1WJoq41mL8pZUQCPOwbIslqis+07BwAjeWWBea2C1JQ9TiiTNnXnGCZX5xiTHhiEwTVOXsSxVdgVV4hwZnGe3H7k4D+yDZxDl+nrmW9+74Y3vP+HRAV7eFUQhSCDX4LE638+xwQeTASv1HHFiFe+AipjMVopMQ2AYTTrGBQ8uk7KyHBfibEmD6B1hcDUZVgzkkjM5ZXJJNXDriNGDBI5qrFF+5wkykGMmF9jvRrQUljnhvKC+kDjWqnRFta3HYixkuzPmZSah9RrGAiXSGA+qJAaCGx27sz1T2JFz4bjMxGTJ2DCMBGmMPKXv0ypKcXYeSJPfxJ5vN0xkCcjgCdOI1rUqNXCuNfkUptFSYqVUAFGVqJF2nrt6BhZSLm1q9wC9Dw4vijpBM7h21kohjCPOeZw0G8ESE2EIeBcoJdWk1pZJxqrLxVny2iTuAlqEKMnsEoRlmckpIaIMU8AHS/6mmG2/LZY08mEgjAbScUhnRNJk7H5mexQDQ7VpvGQkbCukzS5oUm5Nkk4rwLoBxCQbo1CowJxlw8zovUPFkh2CJYLbvhBjxKTerL9axEBf2UDDsUplqJbKdNX2JbNBKt6o2k11X/FisidNareyluQMFGP0Mtavre3SmBlr4qYldLrxtgn4S90vKmhIiiU2NmZtHz+pVdxKIXc71BlLZmnmVksAQTzOVYa1smb1Z7C9uORTO+bHrb0LrGKW58nvfxCwUjs/+pHFmuB9z+rDjcnZ71F/uPbp3QmZdxVasCactn1ZP/tu9px/7vWq31HN0ZNrNfmW/m9d/YFtn6GC/tuY9DxVSwL2p2NN5p9+//aUWfOYp7+QzS/15PPS590K5qkTms0zba7X79H+3g0CeuKsJS3b91f/8NSHOO37bcao1Xmqlk3/rt56xnaGlLKC27wTvGtSSAalLhUtkskbf2p9/6d+KX2v648pm3lXnwvokpzNe2vJWpM96qYEJqMjuBc94a8F/GcdLghRIjkBojzSt3np2y8yFeG4P5JyNBY/Hdnt9/hhT06Z8/OdnUUh4FAe7PbEaJKmS0zkuKA5EQZXTTODBAzV7k/RfuddoCyeOUV8nXeNkaFkY1nyzuMFRDMlORRngPJcOMajFQQUKuORIroWI3nvcM5sSu+1xgAUYZXBMzUnA3n6BsaoTJHBeUqdk84bY+c4BI7HhZwaAnWV3fOhMvGWU5/ZCZzFcz7+tY/x6uOXmWTEOYiyVMm8CritEqd4Y3aN82JSYrkwDELwQqjzPFbAd5sE3hWyGqtHO1ubJJRIK76wMS5qkrsCBqIqBlBvh3YDMpitGGr8RLqNiggEAwhfDom//Je+z8/+3At88Y8+zKOnZ+RcePzsyHXas9ufEYLj+TvPWG6eg2RECp3RqK/527vwZr1qW4Vt3d3aF+o62FL9tDhCv1qp76PGIngPf6IXXVS/xD4jvPn4KYclcbYf+cBrH+Dq936N4de+Rrh3DTfPOR7rnlplCadxIuVIysbS02IssO4TmvMmJlW6LVlYby9szq16TinaC5m2xXOlFus5EZNe62CMNeZVstnWjV1s8M7YS3Ph5ghPrxeeXS2EC5s/Dtdl+VaGobqvNtu0xjb6Hl7fTS6VUdVbTIFqc7S1m2MFXGi1RapcqNQNawVtFHuthXUvF1BRwujNXiu2p3rvSDHbeDmpTMm1wGXdIa04bBgpKDnZOVdKjUkKfa67KpeGE/zgGPwAVCbkxkruTJqY2t/1Pv0Fnsw1V/0NLw5Ebb2Lgb6aX9nly/xaZNLG1sbe9X62s7k0pqXNfG52p61pNoNnE8x7jzrbaw1waTarqyxYW1m0beHlem0hVBnAtm5EKgCr2etNKlC0s6jBWlgp3ioY+ulax2sLtmsGioKN8wZs2Frbgxt7vX2+FWwqVH9ye46WEzth3VPaOKOtGBNoDOpSg3g1Ntps/RXQtIkVb0ylvnu151m3vW6Pl1L3wWbcvcum2pz/64XX+UaIaDIAAQAASURBVLbdONp7rmO6AtpXC6sBwVRXab0e32n/2P5YbZ9pBZjdf2lz3WHFFT/G/sRdu2s/8c2OIWuZJoDxp9re5V874OPA/xr4m8AIXKy//uIHv8hnvvAZppuJZy8/+9Pv4J+VpvDCkxf4zf/3b/KpL32KMb4X89BPZnv48DF/62/9J3z96x/l7/7df50333yVP85n/6loxcP/4X8B/+7/DV5560fdm7t21+7aXfuJbT8wSEl7kNAq7Vf/ag0gl+rgodIDsMgq/7UNYAstOVOD8y3A1ANL7fKrxI66lrSxyIbFQmpFWmciWPvUGBqazIbR+q6AnrWyVY3evwOI1kB49+KUGlhZq+pdqYml2wmqlhBo8hztnqogpRbpWqDMghcVWLPGGYCVOLiP2PZcFwsB9EB2zcgZoKkFvpr2uJrMjkqnTZZ+1XaD9fqipV+7jbWoVWz54BFZwQrteXvgRJrUTaVZqPNGyasj3UEIxqyxBuNbBZ9CscBcqYEtJ46cKj311sBRpYUlXNbu4KvCfDwSvGcInt00klEOhxsoYnI1xYJhoSbmTV4mG1V7natrMpLK+uEIlZUhNYp7izTVdVFweErKeBFGN5FjMnCOs+Dexb17yCjs93tefXDB2bnwvbff4nvffgcRIcYZLwOUxGHOPLu54d74Irt7O4bJsyDMyfFwHAnTgAttTiYu9nsuzi/w48TV06c8f/Q97p9fIrPib4688OpDHtzbE7znne/bHJ4zZKcssRDnK1wpqwQTDocnxxlE2E8DS4wEF1iOM4ebA4Mf6twaKHh8qOs2l/qZmbg4Li4GBLHqSzFJh2VZkOQZdwPOeVI0kEIRk7qIqeDEc3nvjKvrAzeHmWHwXD+b8Tic+Br0M/DJbtghmkmYlp5oRqq02+QDYbKkgA8GJBFsvnpn4J9clDLHzgBzczwyp2iyQzjUB7wf8c7j1FHUI1oDgM6xZEe5Xrg+RjIWpHZiVcy7ccJJRPEcKyuc4IgpsaSIq/tLyguZwlyrXFU9406Z9nur0HZKLgvH2RL3bhzrfIQQHA8u95yXwKKZ73z/wAvTy9y/PGOYHK9/8w1SXBDxiHoKoN6qwVUdyIBzBpYw4EWr9G7rVBBXwK0BVrAKXsTWr0dq5bBWwASgjrqr2PcqgKNL3VTmDyfa6fsVQZ2CRkr2fPOPvsTx5sgLL57z+V/6eb7wD97k6dU7SD7Y/l+E+xcXljw6O+P7bz+yAvEW08sm9SAeVBIyGKhimnbM89HWvrO+qxa8OEYfWGKsCTEDGCKN6t76XOp5ERCWmHC7gZwT8/HAvYcvI2NgV4Tzs4lxvE9ajpQUSXFh8KH/L6njW994m+c3MzLsusTgkjMlRfDKEIIlRGp1rg+eZU7EYyIEx+CD1RIPrhK8KG4IiDhyPY1M4g3G/UAYvcnbIcScTCJCKiMBBR0cg9+jJSJOCQ5KTKQUGXYju7OJYRi5fn7D6IZ1Lw4elUJhIc2H+rMRcQNSCs7D/QcXnJ+f8/SpMvvM4RDtHaVM0cI4DITBwKVFCxI8YRxwg0ej4tWRUj0uUgZXTP4iDGjOdr6OjnEYSMdEPi51zkKqbFdFaiX7ENCcma8O+BCYdnscwUBTQ6DkRI4GlEzJPtfBKfU4ClVOBe+q7EyT/TTmpTAEii+klPDeQGPee3wIdq45s3VCZUbIMZGTAZLwtk9RlU28W6t1Ww6g2Us5K0ZT4fFecL4G3HM22b2sFGxfFCyZJT4QwmAVxaXJiuim6r8mdiw71xMwJ4lAZxJluYKHmm3QQEqNIcNL6OxbrrEdBbt8A5wP3qPiMbRNgZzJFNQFSjoC1LFRtNphpaF56p7UwRgV/iFVArDF6C2BbAx7ORvgUILvydF+rlMB0cXsK/HrPXrSpSYSnLfEljF6mf1ThA6qb3ZhNZStLxWw1lgXWpKjtGSOWhLQEmzSk10KEFwFLigxG6OblMaQyY9xWzvXQCzN1moV3h3AuvU1+pdYzUA9/bH9+e4gWLf3G8Kj2bg0NidOQTK3umuFBFLtywYo2iTBZPPhNc+49ky2XV5t1W2fDdio2y+eOAYn776DGbTn8bfdP3n/LcHVs4JrX2X9wPqrtq7XwT+5ljaf4fRbvQ/ttyprovKkz1AT4ZbopPtiazebP3fy3qjuXbunrr9vQGLtk2YLZtqMTR3e0pADbN97h1iBuu6/oQ3kLLhBCJ/w6PuV+DFFR6VIRp8W9IuK/5qjPKUX8JzIdUOfQ61vTZ66sdj2LexS0I8o7n4FIb4hhKeeG66Z04Gz6QLZCdNv7SifUYb7gfP9yDAIV4drnj+9AYSDP/DOh97hxTde5NnZM5YlMvm9+Q7eGdtPEfbeI97XIhNLzo/DwDROOO+ZjzPL4Tm7YUQmxcXE7mLPbhpwIhyuj1W62PbJokpJi/mOraDGdmJKNknTYQwm9SOOFE1u1zs703Bmaxm7g41fSZkYE9kL4+hXH7ieR7naAR5fmWGK2biiHZgLwribiEskRmNmWeZkZ5yo2cY1Uet9MEbJDlQ3EKwTx2tvv8YnvvExzuZdPftcXzttv1c1e4ZSQUhVQrYX6IjDuZFSk8IWF1kl4LMKGjMxlT4zW+xi8B6RDOLMnnZ1bEshl4RTAwu5YpZfLi3r5fAe/BA6I1vRTMrZxtu3sJDy4sPH/Gt/4Yqvfv1jfOv113h2k9iFM6bqdz57etVBCuYLt2IFodIy1lhD6fc+2ZdOsuvrviDSdqYGON00kf5Veixnu++s+6Nte9rXudZ/qxaO1zc8f/qMi/OXefl9D3njuz/D9TfeT/7M71Ubyuyz3ei7BO1ys6ynRfUpzDRabUGzo4xBCKhxDPt7Y7g00EUDWKznSAOYKuazai6oE8QLKS42HhWYPA6BaRpxaeRiOcNVULQTY/fOCs+uZg5zIiv4DqSoMTVqH3QFQTpn76+kQq6MoRafE0pjw6mxHhfo61qwPgYXVhaeoojLPV5YgCKKD6HbhK7GlkzGy1hOwzCQYsZVVLmidS0VqGD+Ng/EhV4YM4wD+/1ELpn5WMji7P0UA6WIOIYQkCrH1kD+Egy84+gEtx2c1L7XGFTFOZPeRswfqOdxUbOjAdSBd3b9kgxQGMaRIZhfUKDLCLbzK6WMFpPWa/O7x9dkXddtXTYwkd/EocQqOmgsbFYoaNdq4DZj3GqTTjsReTt6nVstp/Yx1eYz2nW9b2eZ9vHtZ7v0RXxy7pVqx65A4XVFSz2zt0CgtpDbx0q1vzcLv4b+lCZ3al/ZMq7ZVyx+4aAVaVaHqQGlMqtEZZMIh3XNnmxX9f3I9hF0+87WAkagMxO12zZ7r9n1dQBo537zWZoP0gHe2t57s1BkjXdXO6Z1o9mWzQ7S+hJXW2gFfK/vq/5H65pw9D2Qstq9d+2u3bV/hW0C/ofALwO/hUmqAXwN+M+A/wJ4nXXv+5O214BfAz5c//07wB/Ck/CExzePefHiRbgH/O+B/wnwMu+53q8eXPGHf/EP+fg//TiP3v/oX7JTdw0Ahc/93uf4zb/3m9x7du89Yxc/6c37wsc//jVee+3/yj/4B7/OP/7Hv2z5hp/W9pVPwG//Kvzb/+mPuic/VAvHwL237/2ou3HX7tpdu2vADwFSKiVX5wvoTmcLHq9OqzQuYhFMxmjrcNuvuut36v2t4eEWdNbVOWpOuf3bdQe+g49cDQg5C7o2WudSLPjQkjstcXubEUecJdGt6+YE9gBeZ2pan3Wtzmv/tkduQQ3VQr4F5GlVzi0A2ZL0yiZIRQ3jNke3ObV2I3IpBO/YVheaw12f3weUNahRH9eCTKw+qcgaQGjjbrJNzam1StEeIEZw9WKq9tlck5S+9kex4MtJLqlW0lnFXqnvst27rBr2JVfmmwqk6t8/TQa1KsKW0HDOocWCQRYTtUC0ExvvJSeTU9PCfr8nJQuEt2rBEIySeRi8Baw3tNFN4jDHhFII08A4DkirTEUtMCcGyOrjVgrBB9wY2O13LAcIu4CoR0jsBwjDGdPZJUUcz24WcglMg8kEhDBCauMGTouRXavj+nphr5EH918gxhsO84wfRhypyiMVVDIxFoaQ2EliEiFnkDJwtnvI88MNwy4RxSE1Yew1wTIzZ2XyRtM+DIFS4Ob6miFY4vzm+maVViuFkiGVBJLZ7QIxJkqyGZM14fBoMhaOHD3eD8RlQX0hxoXD8YgfRnJJTONAqRN+dzahuTCEkaLKnFJPpx2PM14CwxAYBqsezTVBq0WhRHtfzticBhfYh5H9bk/MC97DOPi+voN4duOEuMCcI/Mc8ToieHIG70YgUQocbmbykrkZPL6zoNh69cOO+y+8xHBxxuFwsMBbLnjNkOGwRJ7eJCZ3wGnCBUVKrhJ1pp4UxPYdFwZLMARwMnDv3n1eeOGeJRfEkYqQk63FdJz7uiyqjMOIn85468kNb709c/8jl+z3Owbn+Oyf+3MEf+Qbf/T7fPc73+H5O09Ix+ckly0YhVK8kJkIxqvSn68F5rQmBNfAOjQq/lgSvni8G3DZI7l9p5hMi6glQWpi1QBJdb2LgaLwjmy1uSge9TuCFp597zt8783H/MzH388nP/Y+fu+fvsCRK4LC/nrHg/uX3Lt/nydPHvPs6orjPCNq7AcWD67g1lxlrOqYL4cjS1xwDnbnZ5ZUmo99rw/B2KZyMQaeBooLUkGU9VBzYhWoYxg4P7vkcIg48cboJsrlbs9hybghcDhccxWPFmAV4enzme8/uuLqeKSIsBuUMXgOx8rElRd8rWaMS6RoIUwGcGnVun4cCdNIWSIIjEOAYUBESDEZGKaeeWEwxqyUTHZFVWpOUABnUmPeZDuHYJKJKUVyVo43R+Y5ompSZ2BsB14h1WSuvdaaPCwRwZFTxAep7H/w6Okjnl09tXMkGTPPOASaWVJKJkyW9IgxmuxLTuz2u4pdMWku8Sbh4RBCcITgEF/lB0SZdoHz3USJO9Ky2HsSB2pgqOIBZwDUIQRiKTy/urbP1PNP8Da/l2iJh5LX4Hw9h7y3Km0tSl5iZ3XywaHiiGnZJNuVUJOByzyTKxvbMAQ7gxsoocoKtDNT0Cor2favKq1TgWvSZMBE0GwV3UMIqFapkmIMWiVVMG6rNNcVWGwyIAURv0qkVRvGNjWpSadmp5VuS+Rc7PcV5GQ9rkxz0G2fUFmLNK2gxJYc2F5PRRsN4cqkmUoFgVmSx/nVtgTpc7hL/jQJkCaB1gP2lrShM1W2LMIKGhDbNeyVSWPxqCxUqV7LufapbhNru4+zvjnnbB+p74pQmQi6GVz3QzW2rpbsWG3t9RWUlnxVKCmxYEBr6l58G+j/49haIhpaYrDDQW595uQnm7/X5E0fPU4e+F0VorevsvErmn3MBvCw4buq035NjEkPI2q/pXVzE3Tb5n6qTXMiHby5eO/7mt+jJ6S0X7wXM2zHpI2jAYJuDVHrSjf6+w/WZHgf43UcZTOubd9Zx+b2OLIZv23/ufXu2jWl/2uzaKvzZOezq/bF+nynQdvuH/Y+9sxf/2wfZ5WT5z75TPc3N0wZdWzKLWYHBfBK/jC4XxX0U0rYD5SlymSi8KrgP+nQg+JeF8p3FPmywJtWJCK++pNa4DXFnVX24PbO6hoXEZNZ+LzA3vxM5x1SAt4HShRev/4ur3z7FQ4PbnCfLuxkwA8jKsIcsxVTuGBMhM7z9off6eyU0i1piDETKOx3O3JZKNlABUJl9qv/l7PiXSGIsfPYcvAMfs8SIy4oWQxYUbQY81HOZG2y3Fol0iDFpfvecYlQi1s6ILNkIDAEWcGhbdzqeWfnm4FMc854Z4n0mBNOffdLVc0ADYOBR503YL7JZ9pen1NGsPPbdzny6kvQmACrLwaMZeBT3/okH3z7g0g0LFVjbpa6ZnxlKsopk1JBvFa5J3DiKYZ4JaZMyXMFE5uEcFsbznmm/Rl+GEgp2RwsihSj10s5I7EQJGGAD9ujLF5hfXFtTjuzCajsNtO4Y7ef7JnEJKjqkcUSV0kus/EWPvShr/DN7+y4uYHp/kQYAk6El9/3Kk4+y9N33uLZ02cshyMlLStguHakiEPwZulL22PaPrDZS/rGQn0Wk182FuL6DEg/23XzjG3fpP5d676rNLuGCjQOIAUXFx6/85j3vfYS9y92nJ/tOf7Or8JnvkIImXEI+LAHUQ6HA8sSzU5CamFa6WMkqrhQ13cFqBdV85vFkVPqcSRnBgEdbCB2PV9BSwWt7IlSmVsdu3EygE2NvThxDN4zeM+YAveXSyJLGx5SVq5vFo5LNHtBTLJxOo48GypbdUWpa6nsOs7uZfOgdFY1ozWqoJPQ5Me02kPGsN7k2VWtWMRYeJrNYvaMw5a696HbNjmbRFhOpZ9jzpUenxGM4ai1Bniz/UcweUG7T0wL+TrVd2CxL+cFaXK6Wrr/00YfrYUzTiCvcbRmt27lh7V6pM47k7cLVryAVonpOt+L1OvV9yrOWVFci1vWOWrP1uSFS7evGxi6gdJtzytVxldBjDVLVauscd3X6/U7cy/rvrTaRtLt0rbebMxdP3tU6YxX1N/Zi7TzuTGctoWaKxCLOq6llC4Tb4tdN8+1yiJ2k6B2rZtAUk/cjY9hv79t/9HNQMHGKosB5JD1jOuWjb4b9N7msrHTNr+rjdnmbv1icuvfpwZXY6PvtslGCrpd9OQpRPrzlRZH3vb8XUbxevMum622dkVPP7Z99hVEemp/9vGovo/WNenUVRuxnQM/xs7EXbtrP2ltxMBJ/z7wVzF5tW37OeDfBJ4A/wj4b4H/HPhdILFm7gSTY7vgj2+/Bvy7GPCoqYfNwAKJxBe+/gU++4XP8vYH3yb9G8mCon9cE/jir36R4gvZ//dA9fRT3sZ55K/9f/4an/+dz7Obb0+Cn64mAufnB37jN/4+X/vaz/D22y//qLv0p9v+T/8e/I3/HHbzj7onP3AbjyMP3njwL/ycqHDx5IKnrz7976FXd+2u3bU/q+0HBik1Z6zJkG19Xvt5BcS4tXJDtfRKfyi1clX6dd7lfFansVV2nYCIbn1269yxCQ6uoKZTp0pEcL5qj28c+O4pq/bgdANUaS69eul2YsCJOxmHBnhg49htv9NBNbV/FjBbgxUtWLV+pY33mrCz4MrqkJea6Dfq5cBGaGGtCGrJFRqArMX5alBDZWVFcqDZPuudp2fCauC0Oa1ds/zE6dUabEq10qwy1HT5lxok0LUaz95bexe+v9M1WLAdQ+nvqjnnqzScBcs2LNaIE8ZxIC5zDRJFck2g55SN9QJjJpnnmWEYcc4xL5HO7KRGmx+mAKJkFCn2HS0mHaebMbHquIwTz8X+Hhf3XiD4QhzsPaeUGacRfKLkzJyPzDdHBieUZeHsbMe0G4lzZj7W4JcrkCLPn7zF/ZceEKaJ+fCIq/KMcQfidhyeXSFSGMLAvCzEeOTq+YGsgp+Ft995zqPnz9Cj8ta3vgmTY//gEsVTsIT+/fN74JRnR2W+uYKcGQTKnFlujoR7Z4zTZMAATC4vpUQYPJoTx8OR3bSzoEyl5o5JWBZjlBq8R5NSyoIuiegM5CTegAClFG4O1yiu0tpbQrjEgorDjzbztRTSMpM0go6o8wbk8UJeMq7G0pwYs815GLjc7xmHEcTh/YAPTYrBWChCmJiGHTc3N6BCycIwTBZRVSH4gd20q3JPjlJl7rIYz1Reks3X4cD+/B6vXryG93sk7Jn2l3gfiMneS1kO+BRZbp6zpAM5H3n+7IbDzTWCJ/jANE4Mg0lsOWdMUjc3CzEunO93DGEgpkRKVoHpBs9uMnk5FwaW4sk3me++8ZSbJ8+4PPs65fUzcO/n4x9+mV/8xb+J5L/Bk+fPefbN7/L6177Kf/eVL/P6G884Pi/k5QBLxOUF1WhsJpQeoF9li5SkagAeVWLKxKSkOLPojHpXmefaPu0RZ8/ofGW1w0CdvjJUtcCsSGKPsh8uGV5+kVdfPed/8LM/w+XZyF4dH/zoh5ime4xPPYjj1Zdf4jJd8OjZMw4pcX1csOQGnenIO0GC4/zsnGkYyHHh2dUVSzSAI4MjlYIPgVFHlnlhSTXoLRDGwfbFWoFrUk6Z0YvJeKkyhVDne6AMDi8esjIfjxyubzjGG7RElnm251d49PSGx4+uuZ4zCfAu85EPP+T8bMfTR0pQ29+NRWBhmRdwyjTuCeKQccA5xxIzcz5YojGYdKETA+u4YGxfwzCgGKDM+xqUVPBhYBh8lY0IluwLDtGMajJ2BKWumaHKG9QEnxgTQoyRrMkSD1kJg2ec9ggWpF/mmZCV3W5ncycmlnlBMEBVSZHDMjOOY2Umg6wmgRHGEe99BZVmxjGQsyenUCs/BdVcpVVsfrriUASvGXGKDLAfR5OZQZnChHeOY4w8vb4mztnYAodASYW4JANKVQnLEo35x7kGXqqJlppcTzFaCqWsrDiNSaEkA/Q6xEBVNelgMnNKXlJVIcyW1Ct0eY92aKtWyVvE8DZiTBHGBhYqG5Cvwe5ikpAlmTRO0cpkVvtUE2jqAiSze5ZlQaschhMDQTnKBqR9Gqx2YmOtKlYJ39Z6nSfd9sGBr2c0xnqlqUlxVpk3NTB5AzaVnI1FDe0yD9BkbwLLslDKYr9ruPiWQGgWlK5gJEuMtIQzBjSsfaUmiZYGknDe7BHd2B/dvoOSSmcQaDJuiPE1WV5hTQRoUVwHxGpN0lVbp4JzSrUjLHfpLEFZGZ8sf7YCt1uVdbt2iQaWS75U2ZcmdqFrn38c2yZhdDtpIps/t0marc+wtbNb4u1drdmP7/Wr9TKstiVrYnX77muPboNlWqrT5pecfrddu9m6upmHt67V7qW3ZI1ud/zEn2hD0/wJTj8uzSk6adr7tL3eFrQjbWw2rLKtk/199Htz6zrb3q2dVD1laKDtESdj2RL/dT7IJnko0osHekJvI1HTnl22t+6gzlMf5fY73Pa/3Vs236f6n+5c8P+2J38swWDJUG1FAdqAbdUO3Rf8ZwLyKUf+1QzPFXks8LCxJjnknlLMdDFJb9SAt7cktLUYxGIcJsZphxMlJ+X5vac8efWpsYFWGV40kY+p2sCZMATC4ClJOU5HvvuR75kkZsksxxumsx0ueHK8YdEZHxQkEGdL3Dtfz72SWJZkW1KCm5uZwzyjCa6fPoUAw25Ctdp7DqZxAsFYWuNssQA1nzrHhJvGLl8mxeTySpVXVS3EZKDq9QVTCfUaW4yBgasulMk61Xlj20EhxmQzwJmstzox1kgRSrURzDdN9exoDLprYr+tY6n7+2Xc85lvfYb3v/MaIBRfNjbrenZ4F4gx0hZnY040m7SCHNo+Uf1Yw9M1MALgHGHcMV7sEJfBBUKYqsSovRfNCcmZnGZiSWhJLHPs9/bOJHy98zUGYAlrsw0yQwi1yMNsgMY+7UOwc8o5sgrXNwNvvw3xMDOFx+izAZFLHtw757X3fRr0E8zzwvHpc54/fsT3Hj3i+dVMWtQYHEtGcgHMr20Myz3EUBdu44sqWpm4sgGmi2Z0y5Tdvl3PRtdlqtf13+I7DY/hJDP4QNidMZwNvPrwgocP7+ERzvY7dueXDN/8BMvXPsz0qa8yjoHDMnM8ziYn2/rZKsuq3TGOg4HbxBiaY7UDEciqhOovAGYb19iN85VdkVqY4hya8woYqaA6raMz+ICIse+WlIlLJKdEXEoFUNlNU1Zubg7MSyLXc/JsP3D/fM+9t+7x9vlbhAq01mzso6XuF+LrPB4M+J+jsepSfd0OSq97cpM0LFpOzwPB1q+ab1Dqnu38yvBjsTZnssfD0Bd6Y+0xmzV3AAlA8MMpU2lJxoDp7HoNzOfrYZxiqrG/ep6ZTrLZf0jtj3YJu+JXKd8O8Kggysb65Oo6NUZTk9Yzc8vGQ4HjsphEXbVZnPdmMyaTtjeAvFZz19h2Wn2ndttIeyFgO5vafphT7n/fMg46KpC/sjSValeW+kytyLPbNDWW2J65xUZb3G5rX+TUGNRb0cHGbqvAJ8FAnmgrAGjrtcrsuTUGaN1fr9GKM+umuNpv7R691/W9VEaroiAbRnvX3535eVu7vJl6ze5rc0NVSJpqH9Z5fAKS1tPn7desa31biIsaWK3Fk0/6tPl7u1YHbtWY7u0HbqAtrXHbrXFsoNo2gm3+aPdJbs8fudWHk/dYz9Qt85Xhl9oudNfu2l37l2ovAv9HjDlp4j38tNp8/exvAf8j4H8FvAF8FZNka+2DGOjpn9du32Oq/wO+9blv8a3Pfeu9P/ce7erhFb/7V3/3pCbnrv2QTeHes3v85t/7TT73e5/7M7W3Xl+f8+zZTztbj8Df/w34//4P4a//3R91Z/6VN5897//S+3n906//qLty1+7aXfspbj84SKmyJcDquG0BJy1I2z/tatCPNVm0Nl2dLKlYgOYqyWmFmVQH/tRhbddb3axtANqLdKmMxjZADcCVWoW1Jkb++OdZ+77+/bSyd62Sb8kw2FS6s+mzVICRO3UaG/OSaKvZb89XHd4acGiX8d4ZvbjWijwsENaSfI2SugXlrZS2Vtm3giilJwizboL9NXCmpbEqNWro1RFHdWXV2oxJKYWcMq6Ov1Ya5hbEv10FrpV230l77xYYGYepMh2lHoy0YG5lyhgGY8i4lZRyLvR55LBnHUf7WcnWzxSjBSudw1XZugaGM8aUgeNsiU8LPBtt+m6cKJqZ40xKkRIT0zhZ0LwkigheBlo1nA9CSYUxDIxDQljwfscwTbjgeP78Gcv1geGYOL84M9rukiAXYsqIJrREgh9JObGkhFCI84KKR5JCKITxjGUuPHv+mJwXUGdBzBpETTEiIixaWHIi3lxxeTEx3ySO84HduGd3/x6IIycDEeYYqSTZzMcj89ViAUUUN9jaXGI04IMDGT0lKkkhlzXZNQyOwQvHw0JwMDhPjop6DEwUXJUEsrXjvL3hnEwOqZQR1cw8R1JRdruhyqMpy+FAcAM6BLIoQ406BecgF4I4HI6zIXD/7IzLsx25JJOZq7JGzo+oBB6++Aph2FNyIoTn3FxfUfKRYbdDgfuX93CqYBxPFiDSglAqe4WQ1VhISgFunvPWt75OUofKSJjOGMahM2T5Shcfzs6RNCDLyP6soFkRZ8w43gk+CNO44/J8zzROeOe5uLhg2k3McyKVjB88Lky44HHDUJMYA0kmXv/uY7773TdJb3wV973f5Ru/8/f53bOXeOmjH+LTn/8MH/jsp/joay/y8IPvQ//yL/K3Y2SOynJM6HGGZSHFIzkvaEmUkqw6vihCQsjEDIcFrufM85vIs6sDz6+PHOaFOWWiKkupcmilpkDFWHpCGMg5G6tWMSnJUgpObN2+/5X7/NInPshL9++zf+Uhu/3I5RgYxJNyJOwD086Rb65IGglnI0WUVDJJlSVnpp2B6kqOhOCM3Sl4Hrxwj5vra5YUTwKHgw/kGEka8a6yOdSo4ziOFC2knNhPZ9wcD5SUmYYBcAzDyFiZisjKfHMgYhKAwzQyH488u3pO1plxcCw54qRwc5O5ublhWRTnB0Y/8P73nfHJj7zCO28tTHikRFwILMkSWL5KTJU5krJW4B34ZJIe6hS8scsltXnaZa5UDXilGREPCKkUK7ASh4gxNzXpsRjnegY4hnGEUgiDww0TOSWyZpRcmZkc07DHAU8ePeV4k2gV1eARtT3M2LlMPsNYDBSvlixJcyLHzDCOljyLiXEcGabJ9p75CDoyDMYm5J2j5FSD/DXRUwEkwRtgLKeE9oRbBR47yDETxJNKZTcokZQTTgIXF2ekVMjHhcPzK46HpQfwRWqyrwZwy+Ysamf/NqHQkg59dyyFUmXtYkodmGKJZleZoUBTsiBzKZVkRIixykQ6Y8ESkV6ZPoyWWIw5IuoYdyNxWUzaLle5Va3JJk0sx7mfvZZgNYazVCu2XU1gONcSftVmybkDJFqAXJ12+cpMwbEm73Eg3q9MQjnbuLQK8gaOaEF3aVJn1e4pZjMVCs4Zs0I7t1d7qSagelC+JUGrwaNrlby0ZxJLLOaaoLE8gGBMUNpBAqd2C11qcQuYZ/OGuwwg0lmiLAltYGYbJ6lygGt/mtxtAz/fBsg34HY34urPeiU7oFqZq7z0/vx4tvUZYE0I1X+YNHL9WPuLc9vPwEkW5z0etYEL2l2avbx9V82PsCGt7+zUtOzD3a7X+l5qIm1rI/dlv/ExTn2G7ee2PkjtUQf8yOZa+p5vsoP6dQXjtYRgS3KeJtqkP2+7f5cM4dTPOR3DNTVIAwbQ5n79jHv3d9uYt72i9YnNe1bViiJut7BnaEDPZq+3MTgZU05mwNrhem1LPPu+zm4PotQkdVtnW5/Q5hqWnDsT5G+B/zljM9LKaGhyyPU5+/5o32/7Ux4yvCjwUvNlTdJI1cAbtpeWykhIL7pw7X1WF06LyZV5b7anuMDojSlpmTMlmv8wDoM9uyo4O2dQS/SXwCrnqcqQDDAhRsyD8wM52xlbNNcRaknjykpcARZZCzkujKMnR7PZgx8YdpMBEnI9G+u5A5BzIs12doS+R1XGwwbK9IKWyuZRQXsKleXIzjyHmo9f541mY5I4WWd1bZS6X6t6A+GUSFGTRXZViqykVPdlA1M0OKgBSSsoSj2vPX6Fn/32p7mfLlFXWVVwtcDGEGf7/TniKjjDWWGBFnDBYiHTONW9rcU41nnvXfOpzc9QBeLMzZMn1SMLuHDo57+rgGWc4IYRikezJxRdpanEUZWwGXwwdiDvceIYx5EQgrFpasZ56SCHDvBxjkLg++94nj49UK4fw9WbPHnzG7w5nHH+wj1efPUl7r38Ei9cnrG7dwEffo2fLYWclZQVUoacKTmhaveigfuwc1uqTHDOsGSTHp9jYl4iKWViLmRVcltjLakv0qX12pnaZbRsRSICu2ngfQ8veXB+xrDf43cjkzdGTUGZyUxnI+WYKd95SPn4VzqgwlhUbT744IwpVNY1P02WIVzmmfZm294nLe7Q9r/6p6t9LrUoQjGQuEPMPnMOP4YOICnZbEVji7Z9bYmLMcDqZDEZoBTP9fVMTBljk/RMg+OVF++ZD6Tgm1QpjqzZgDeKvZOUbM54A2nnqn8mvsXHKrvOZtM1dsiC9+38NDi8x+Zxl0pETySCG3hQBEKVXLPYjjHWUv3F0Q0s80KMiWWJfdwFK3RKKVWWtnomq1IqaEyLydb50mQswRXFhwFxdX+qwJg27w2YWW8vrtqO9Uyp99mypOd2flBBkKw2W2Oc90Mw+zcX8rKQlnTiT/TzR9f5087L22fbClSvL6F+R3MDEa2yky2WB7bHN7qdUhk7Ebpv0WKBjTnJwPEVjKSKD75iDFcmffMTKlAtl76vKWoFOvW52rM1G2xbgHrbZrBD3wy3xloqbrUXzdRY13yTpu7PzGovdSU1rSdJM6GRfhY6afaFsP3iCbin7dkdsEQfF+q53s739gYbwxXaWC6tbyd+g56Oz+kwrPG09vn15NDqa7rVD2vgVukntz1PZ8m7zS61Xnt9rg3ofvM527S4a3ftrv3LtBeB/wsGOvph3HMBzjFw0sf/BZ/9YdsPGyYQiLv4r7gTf3aay47P/NFn+M2/95s8ePyg7/N/Vtrbb79IjMO/+IM/6W3ewe98Hv71v/vjHYq7a3ftrt21H9P2QzAprX/dgni6b9OC46rVsWV1Khude02uqqzSBwIWkHEGUuj3qE6pVoerbfKrL7XRVq/JhZKM5aVVBLlacWXSZDXo7WoVW6MdZj0/ts7j+nx+c0/7fauEV7WqL2MR2AS5a6J0ZS5akwlalGwkzbSKJ2MxqrrpNKfVqkqLUCsFq8MqFjiSYhTbXc1AqVWQlS7etcpkV7u0HUPpTmt7rxYorBEjaiKxJ9hsLJ3YGLeqrCaH0Bx851xnempj1qRkFKs6K2pJ2s701IJ3lcGh9hAt0hNMPniCs8D+NE3EFIkp0hKcqEkEtGrEBvDSUthNE4c5WgCuFLy3JGGp3nwu9ERGqwy0AAUohWncs5t2XB+eE1Mkp4LH5pMTh4q3gLQ3QNzgJnZDQIhoOZIYKM4zDSPBKyleUeKRycNxvuY4HxFGph2IZmKO+AIuOGJK9g6qLJsmk23bhdGCuO9cMx8jeUksaUbVMYSBrEemYWLwSlkW/H7k/HzPW4+fcMgRP40s86ECqQJZ4HpeiMcZr0pOMykvzMeFJRejSx88RbRKtC2IGlNKXIT5GLk89yxl5ng4Ag4/eyCzLDPTEMhxwbuAc54wBHJJVs2ZZ7ImNAjTZMHINGeo7C9hGMkpczxmQgic7Ub2ux1psQpq7we0qG1kWnBakFLYDxOXuz0X5+d4b+xImjNBAvvdJcP+HioDl/deQcQxH56jIZLcjOzAOwjOs7s4h5IsuVFa1anNdw9IBUK0SjPJmeXwGBVH0UCZn1GcJ3hHcZ6UFjIRbUHYHHFl4XLvCMFXIKFyvh/Zn+3ZTSPjNFk19GAAuLNhh2NCxBGXKooWBsZpzzTuefPxM27maw6P3uDj/hn/1scfMF8v/IMv/jfsn/4+b33xC3zl/GVe+OTH+ORf+GU+8Rd+lhfvDbi9Q+/tMG+4RaVaMtCkj1oRsW3cxv5QukSA1iRLC4TWMNcmUVzzMZsgbt/y62dKTQAIOwFXCiQhPp959vqbvPmd7/Ls29/ja1//JsuX/hCfE5HMdVqIKZpkpMLgLZB+fn7GOAZSjJzt9jx59pS33/4+GeF4ONrTNVp9NSY45wNuGBjE2HFyzhagLRa0DeOAXt8gaomfIsYsJlIQ9biCAQqHfU9MFDWQQimFq5sjOSUGLzy7uSZGqwodXOaVBxd87tMf5n0v3kOWmePDyM1yAziO8w03IuyHwaTZHPhhYgwj87JYUidH/BSYEDQllpSR0VikYjTQUAjBZL6SBVinYUTBJNWkVvgWGw8RZ0lk1+QP7N1758gFKOA9lGjMTIiyPzvneFyYl8SSM06EaRzwwRuD3Hy06lZcZyu8XiItvFxSQSQhDKCFqEtNYBgowKTrPEMYVrxGtnMiJyVLruf0wBKTnTmxJq+Kya+Jt+i8BfbrMeKsGjqnhZwGLi9fwJ/D966PqB5tLdTsTKmA1H6O9wD6BkjRW2MYqhFyGutKrRavtozU+UEDuQgmt+F9B/1oqYmVmnBwzpJmxljpOM5HcokEP1iFeT2Dg7dK9Xhc6jkVWFI0WTcPfqjyEVWuTRpQYJOY6SBt1vWcs9lbwRtAT4vNDZXVFmwmWikmt+HVm+ytSK/OVrWkprFU2STzzpjAKNQAfCFqpIiQKsNZB7I7h68Mj1oT411OFqnV+dr3KEs4GltX5Yk8SZhIs1UrM1Fjh2xMoq5Jo7AyQomswCPaHolsGICky7+1REpjYzoBum/HejOfGjBdRFZcxzaRImtGQtX9WBMpWTv1IU5YbmT9fftzu64aC539o2ZmWBNNW2YeAxVugEB1/a2X2777FTiwggu1+xXtO9qS7FtwRO/P6cCfMCDVeWBzcf3ZuxmC1v40MM/p+Mg6T1ryrc6ftrf0fadeb+2XbOaGVGmmNSm2Xrt+pc3jW5/ZXIKeHWvjQ2OJMBtiy3wEtxixtH2jjUy7pazJtvZv1c17t362hOnq4PQn7uO7TQC77k8Za2AWYxLpa2mTKZaPCPJXgY/a2AbvSVV/rK9H79f5QQNVbaS+WypQrRBi8IElzpUNx/YB52rCsX7O7EDbA4MzaVI0UfDGLOq8ndWVPccAPJGblBA8RtxjoG1X96tS1iQyDQRTqHK4yuGwkKONRdvHnPOoJmO6FANWSTBGxng4ktSY/FI2BlofbQxiylU2RivIPZv0mVZmEm9QoFwyKVW5WufIGVLOTIMjayJFK1ZxyUCcOZvfoDW5LCKo87aHUgG9Yva7+XWpnmkro4kWJSWTsxqC2d0GqlqT4YLNNUGRDB/77kf59OufZD9MFTRm78lYkUb8MKF4xukcQUhpwftMSQ5CZZ4Usx0bo1+LBzSGQzOpayVRY65QJaVDXX8OzSYd60SMGaoYyK3FXygZURu/dtYIMAz2znwwJlMbC1uewzggEjCQj/Y5bGxKA1eHmbfe2RNvrngoM59+uCPFzDfffp0wv8X1W6/zaDxj9/ABDz/wfh6+/2XOJo+EtmcM6xro67ml2283QWnxo/aJzZrvO8h7tXblzV7Q7iOCF/DmoKAJlqsjT6+vuXnynJunT7l+6xEcj/gvfZb4q1+A0EB+KymhOM9+sHfonBXaHI9HEAPDdzavdnY3IIo3+JEIVUrXWK6SFkIIXYLeBWOiycU4pbw3Nt9SAY11e7Cttv4l5URMmQGTrM/JrAvnlDE4Xn5ojFc5CxdnO873U117xWIaNV5i4RchhAFVZSmRnDJaAW5SbXBFcJVNOmmuhTWeJvFrrF0NrF1jS+r63nOyx2P3bUeI2Y8r8BYszjVMY5fDyrmYr+w93kPKqQL2K6CoKCknViuLGs/yVdrQ/AvtZEQW72rSdW3arIzdtjeEEExWuQJWVvAK5k+0f1c5ZKUV6tm7G6eB/bTjpijLHE9m8RZA816zWk/+LX/M32kTo6+bDuLpn20FBxtgbgWlqKy2fZOpy5UdXADnfWdYatO85GxnSGMDLGaPNEBY/2y1sZr04Pq705Xc7CiptnL/2Wa+9M1Sayy5gv0agJY69t3ulvU6zZ5oQMYGcDphb0cwcKee2IH91tX+Pp3EtZ8O85+277V9Vrvld2JjtfOGdYmc2nqF04d/D1unPV87V8z+ZSMl22ZE/Wx7JtnYR3aRfr3+ZnQTh79rd+2u/cnaXwH+t8Cv894b/V376W4Krjj+0m//JX79v/x1fPnn6er9dDZV+OY3P4rqnxHE63/6b8G//x9CuJNGvGt37a7dtR+2/cAgpa0jIyeOjDnijcXHOWdBW10r12mJrlqZ5p2Dsgb+64felZA5YU6qCaEWvG6OeM65hXZPnN5VXmAN5Fvg3ELB5q7feo4aVF6lBdbnX4O2btPPTbCies5NCmb9fmXqERBcr7pqYgrifJU7oT+D3ceo50Ws+kzqfYEu/bH1XX2j5m+B1jqmds127XpvWY2jlnS0pOvqxPfAQvueag+oh2D9LbpWXGql9W5J2hYg0GJBbGkBBGlBeaMsVxEL4NUE0DzPhBD6u3TOMfjA5cU5h5sbk0ly4SSgYxIGYDVd2qm9UzQqcGqgrOSEl4A6qyB0EmwuOE9ORp0eamV1XKIFbZnJ4rjYn7HE2QKNRfAuIA2klTPjuOc4HwkysJ/OrDo5ZW7yQkpwfP4W9+/tkAAxJz74vg/z/Oo5j548wuEZRs/V1TPmouzDCB60RFJciGnBlcISj4yDEF3hUOXgtCSCwOhgiYXlOJPLwvHZAecHNEYkDOSbBY8BEbRWqcWYuDlcg/fE59dIUcaLcxIzkkGKEkQJg0VPHj9+iqAEF9CslZloogylVqUZo8q8RJuzGODLYZJX4gveDTBOSAJyAi2klPFhMBannMkxkRACHoJnt98x7AaOxyOZgh+HnsQZvEdyturQlBkw0MXl+Y7ziz2gzEkZpjM8gYvzC5CAGy9xbuDm+ki8ec4yH9Ac0RiZvGNQxZVkACTvoCb5c7ZArVXsZiiRIQTGcbA1qdge4xziQ6WJU0QzIsogissJKLgwMZ6fMQ5nODKhAQxVED+g6rg6JNwx452YHBfPcTIwjaMFuv2ADw4/eAZfKJrYDZ7l+VPc0zf5zMMjL4WnlN3ER4crPvPpl7h3uee7j7/P619/k3/0e1/k2c3f5q/8m7+CD1ahbjtVjZk1Zg7xm0R421ep+6j2YFeRdd9xJ0HYFoHbxvXEmO3q/t4SMWKRQcpN4q2vv8FbX/o6j776JZ69/h3e/O73eWUSPnlv4Fl+wjtX1/id5/mzI/uzPb4Ik3PINCFOePHFFxmnicdvv8PgPc9dYNZMBFwYTFqj7g/LsuC8Z3e2Yzrbc7i+scddKiuZtwRP8KEmwJR5nk0iodL5B+fY73aEceJqMWDXcrzh5vqKuCxkjXhx4AxYVEruoN0XH4z8/Gdf5sX7HnIkl4iEzKgeVc8QzrnY7wBhCB5QigpLsiD45APqBPVWCe2cAcjIVLCVJV3GwbIBKRsgKwyWGDMyB+3vFrVq2FLlGdp5WXJhSQnnByTUhFcFMaWYubo64P3I+cVkyQItVRouEgL4YM9wvFnWyneUYRrZnVdZSVXicmQ5RtI8E+PMOO7Y789Y0kJKhWU5QjLgVdLM8XA0KTrvcINjBPw4Qk7EeSHNC6pKzvb7kqKBX7LJm+CFcRoZnCPHyLPnT9HZZNOcc5bUCwaA1uJXoC2yVohvbKTbwAIV42Nr52R77p4Y2Hy+JcBijoTgGYPHOceyJFNCqHJ4zV5JqUpOOtt/TPqrJT5cD8D7IVBiRrxHfLF17qvURZOdKWoWiqzMK7mU/myWiGhGgvTPOV86g0YHa+lmb9CEeE+DMmtNWLt2TbUkbbN1hmEg58JSwYftO6lKA3UQgLeEqskeWd9aP1Kuyau247Rcbk9wCN4NxgqWsyUf6hiYNEi1aVsSQ+nzXQTU2U7ZEuQ9AVPfp/NuAxoxJhA1akeajEkDl/iabNky13TAZ7Ubc9OCaPts7Uvblw08Uz9yO7P7E9DsrOn/6PNrtbHbo65AeGkFB13ub/3cavvWa24yfnLyI7N2W5Kr90dXUFs9nFn/y5pQ6/eUNdm1SY5tnxC2ktPS3//JKGh7RlnzUu387HIft3yyejyf7DknD16vtZmnVL9kTcPZOHc56ffOh62JQFY/QZrj0J6h/6ZftvZp/axAL2qRtp+099H+vkmK9j2yrZGWiJNaGNLGrN45pVSBNus4eecYx8HOxJTrhbu3ZAnmqcDPOfhrCpf2frVks+ekrl3biC1ZW5lhrWuu+iSlMiJJBU4KBWNeHSsjLC05LatfasxKAylFUAPBCOZfp7hQCqTlmmkcEG972eXFPZZ54XA8YKxAwrLMJDWwvQqo2L6ZSzHAQTa7MgvEnA2ArtZnL5ALxkKombQYw4qWAi5RYjK/sbLqtYRvjBFEyEtEVPHjSCG3DbH6Z2YrHI8zsEqnl2KMpL7561pMPi9nckvkUudrUZwviAQrQjD6prqvKuqcva9i7JOFCjrwjjCY3HBKyXxo5+1EEjHbrFg/KYWzecdnv/pp3nf1vgrmNlCz8yMeYRpHFI8LIyLeJGLTbONW50AQ8DVeYMTOZjWjUJxWX9rmk1Twi2+gWDCARwUN9N3KfmHuRam+u/P4acD7ocpSrWBMEZMNW2IhxqWyjAnKgskt++qX+wpuamxeBcrI22+cwfyUl/aJMz+j6nnBLbz04hnTFHh+uObZk2u+8/23WeJn+fAnP1hlsVZw48ZzqP862VHW/Y11LVH3AmRdn+/ejU7PuXWHXu/R1s9yNXP9zlNuHr3D8ckjjlc3pPnIy+cj79fMs2XmePSkOVYgoMOpMHpj+hmGgf35GcfDwXzosiAIqSjqfJW0s80q52yxMe8NZJMLOZl8o9laUn04b/uUuArG1r4nUWMg07Dj4nhe98NCXBaKVuCSGvCkxLrPiNlvIQgvPtzzwr0RIVOKsWM3iV7nHME7ZLK53wC3WixG4cVTazPMzqj7ailqxWobSdoW61EUH2TdC+sZ0UA4jRnq9IxtgCaz49q7bmdvjBHBCpYQA9JvQZchWMFPyYWUSo89OueMXTQMNNB9TpFSMjGaXTiOVqCRi9n5VLZgxLHMS4/3NUl6H4Kt1VxOWKEcbo2TZdvHVMAHZ/GSYgVeKUZilaBrwLB+hlbkS5PoWudB9RH6glh/3tfWBvjTtpiNydB/X3oMULq92VijOkOV2FvLnTHVrmHM1+v1eiGlViC/c/UM51bBpYGgaNfaxE+7H9Efa13Xru6NLc6wrm+t8pzVht9K03b7Yb1uL/jYsK018CDaJCY3QC6hS9dpUURbIYX2OblamX2ZonVc29g0xkJjNtf6vvRkL1yN9XYsyHptZbUlMa65LaC9jW+pfl47+9oYOdmO2mnrdmG147o/0f7b/Zg2w+7aXbtrf6J2H/gfA/874LUfcV/u2o+sXT6/5Lf+zm/x8a9+/M8kQAngeNzxta/9zI+6G//9tevzHpf6cWr337x/8m+XXcOt37W7dtfu2o9N+4FBSiq6OlLVvzFJsO4FV6nzlrByVOIDGrMRbCrJa8C5VbA49RaAUEsaiwiuNHYhqcEaqRS/alU/ZZsErM5bZQRyzcmsjp33HnWtZn6VIQN69ZuIq44pPfGxVsQ2kNBaFex9CxrWMaI5t2L0ErW1YL/5oNavNn4GRrJvq1IDkbrG2LQyJtkj1mA24G0cW1Ve1oLW8bePtqS/QutmeXfQH0C8w1envyU7WlWp1O+1yiMLoLT3X4P/NTgjNJmW6igX7e/fmCsyrTpUnBj4g/X9WfWTBYCcOAtuO8F5sQR/TORS6GTf4lCtLFaitLIhLQre1UrBhBclS5Wyw0BRXsCpPevkB5aYIcJ+nJDRcV2e02QGcy5MOvDS/Rd5cnVNSRkXAofDDaN3jMNIGEbmeUFRxvECciKnzJJmlpjw6sn7PYLj8vIFDovi3BlhPCIINzc3SHaMIiblMNZksgilJJZlYTwMqPMsc8QpjOPAvMwkCuM0sT+bOB4WRAOHyirmvFA0kstCcI4gis5LBcSYrFBajpSS8eLIJKbdZGOdjG0pCGhJpBQZ/cB8mEEhTAMqCSGZJE/N9wiKd/YOp7M9QUwmajdNRg0vgh8GihZ8DaCTCznVBMlggdgcHYy2lLx3TLsd4hyjG4llNgnHGwNwlVLYDQNn08iDe5f4QSg5gfPszi548NL7GcZLhmEiZmXanZPiEZZr9CaS0mJJBWpFdja2IxVwwaT/LIGjeIsL133AAti7aWTajVat7Hyl5Hcs2TbB4E2CLqfEMg+EYeTy8h4X987x3hFzxjuH98GSWSosKZHmZAHFwZvk4M2BIMZGhQjTtCOMwYJsIuDVJAlurhiW57x2b2K/NyaRS7ewH49cXN7wyfPAS0/hnS9dQ1KeJ6PDn8QOhRaiciosxcBHHdwp2+BVlSNQTLJOlGkwlqleHy4tiNczDbi2xbVoXE1nuCa5kxNf/q9+lzf+4Rd4WB7z4d0Nuxcyv/+dt3nxIvCxVy549jzxX3//MctwgWTPO28/Zp6vGbww7Hbspj33zy7JOTH5YAkp7yli8gIFNYa9enY471EnDONEXhLxGLv0Yy6Z4IWSI2lZCE4grOefr9IaFFjmhXF/jisGTHO19H5/PuGKY15SXZPGLDMFePnBOT//6Q/w2ivn7HeeOSkxWZV9QVrew/qWTcJgt5sQIITCNI2cn0eeHw5czUdcqmwLzkExQFLJBWLmsESm3UjwniUZy4EPJlniQyDHGzszB5MzlMHYbYZhoKREkVYVYtWrOUW02HmfckEk4zwsKXdmHB8c4izpaSBUGHeKBME5z26acM7jvIFzw+AZB0+aF0q9dvEm7TBOEzEV5nm2XmQD3i55YaqyYi5Yknc3DeSS7OwRq9KOObEkS0QOzqHB4ccRCY5xGiEUrq6vyfOCKPhdIHuTtxyGwaraK6jGO5OgNIlKJceVuWGbYCjS5jaImDRaCJWBoi2LYu/ZD6ECpZMxL6ZMcsLF2R4XBo7H2cYpGENVPB5RgoFSS7QkZZdfMqOtFMVRIHgiJrnZK8elAme6gVcQKdV2qc+wDYy3/pouW09WmD3XjL7KGlDtBqod4Om4TavSx8A5mluldel7QEoJcZ5ptyPnbP+mAsar7WgMiKHK6ZhuUREoG4+7JW5A6/yqQ62W7Mi5kGLugAzRbXKlgsRbokMqCF0UnNkgsFara08MF5pMXrO3oJoo1UYt3eaxvuVNcva02rwlpzYSeptkCtXurR+iA+3/OUmKH3kzQ5TT9NNpkqr5Em08+hhKS7Ksn60pq5oLqgxwbJIxFRzfq9x1vb59v6aPtmChmrjpNiwNciN1Dr87eXPyrmtnm+2/TaW/F5DI5kr/5poMa++5/3QFMbUEVksUb0Fy61jVn9Qxb4w/vfdyyiZmfVqHVzb/3f7VnkvWz6N9TFuf2pGv7/XMGx+kjYm2pFn97ppslE2C1W2600bJ1p6ut12ztO2ZtfpCHrLLlPeV6h+5luG0z74E+svAa7pSqGA2Tq6sEq0fzWdrrAuiZgsY/RudtWaJutmTC6KBs2nPscrdOudYYsQ7RxA7t1Odb8Ebc0tRYxLKuSAYa6ogjONESiBuwHljHooxggq+2jY+GOumTYFMzuCjnbU5Z0TNXjWgZj2fBit80eKIJSGuASpLtYVrcVJlS6Tbgrn7zYqxnmgppMY+BFAZOrzz5FgLgLwDZ9Jf7SxszbmC4E2ytwJ8fJOIEvNhpV1bxHwDtAMB0OoXFkWCgQNDCCa1jTN5u6JoqfJXyfHqk1f52Hc/ysvxRQOCloI6IQwj+7NLnDOG06zgw2Cys3lhiQUpue7zbe5Z0YZqIwq0Tvma0PbqOruvd44heGOv8o4mid0KfRqo3YANhZw9znnGcWKchs7E48RYeazQwM5iY6ncgspj/ZwBoYIPFURWF5GDZ89e4PmTAZ9nLqZACDaWo2QGnxjHyMPBcXaEwzsmb7cUW6NeYFMSVf0F6aez9O3kNB3ekv6oyeA52fgb3G6nO1Tfy09+rxyfXvPmH3yN8ficvV94YczchMjT+YoXzy85i8r+nYVDmgkiHA8m7w7FimFE2O/PcNgazRW0qGgdzxYKkTpnbT8y6TSpMmIrdLMV3eUYDahdWVgawKDFvjQX1Cn3nr7Q91NUuf/kPueyR6uvbbEzAxMN3vHiwwsevLBnGu1dlKJ9/liMSzsIp+RSgSsedcboNAwDS4wsKdt8qs8qTq1PantcSsZO2ljKcrI9yGPSxQbcSRWwLQakx6Q2obLxCKzsYcUYdlU6EMp7uo3afDLvmmS89L3VV9sghMnAKw1440xmcyl5BfA7i+34YD5DTLmbUdLYkEqTV64xOM11D63xMLG9I6Xc17PFu1z3Kb0IcYm10NFiYY1ZqjGfG7Cy7XVN7rTaoLnZfc2t2KzP+qfIyijUgS0d0G5jvUoYF4oTgvOEMNpZUS/ig6t7s+KqbOVarND8l3rGqrsFYKp2J6Xv/+sSrHYF9Gs2k6Sv2Hpob5/xlOFH+rh3qJBIt7NKZT/tMUya8WN2fpN2c94jzluRWbP1S7UgS7Xrm3Rh323Wftjw2nWp661/rvatFUlsW/t3QaudWe03kfVdtvFtl5M2PnU7bjK03UCqgNU6mNt7moSqPYdU22/9/abQVmQlI+3veWNXccsuv2t37a6ZYSPACPw8TbTitP0s8L8EfoEfRrfkrv20NIUhDnz6jz7Nr/6jX+W1773Gu6MGfzaaKnzjGx/h+99/5UfdlT/z7bWvnM7DD3zpA+yud39m5+Zdu2t37cez/cBmkxPMia5Jry04qCUHqldfndRWUSzm8NfqJHMmc09IUWowQM3Jl20lyWbDLM0Zq7Jc1QW14OhJQoeTgKkW7exFVqVfnVnXnNBaidMCA1RgEi0w2JIepxTU0Kpn6b9DLBDomoO5zVY0iYEaQKUOV6kJKwuu98jcRmJdK+Cr3Lpvc/Qt1NVlHwByYZW4UMQ3VoMWQNskuno/G1PAmpDLm3v25EexpJo4c2yt8qhem+rQOnfiAGctaATvWw2RknI2kBNrxY9gcgpaAWlGTW19n5elB+AALi7OWJaF4/EA4kzewLs1yCSWFE+pVq0VC0gllJ33BAnMy5ESM5Pz3Lu47EGcMAZyiSzLQtbCzTLjBC7vXTIOC4dogcvdfqIsC8MQmMYB3e9IKXN1dcXFxY5EoWhmN11yvI48fvrMgDnDyP5iwYtjCh684/nNQrw5MA0Dy3JgdDtSXACYhpGcZ0oypqRhsMRHWpRx2hGXmXlJjFPABTgeFsCYjUQKkhP7/cTN4cZAZCXh/GTJBefxko1JoghZCi7A4frGCpOR/z97fxIrW5al6WHf2s05x8zuva9x94jw6LONqmyLqhRYZIlUsVgkRJYIkASliQRCQwIExLEADTTniAMNNBQkaEYJokBqIAKUBhIpVpWQlQ2TWcyMzMiMzj38tfea2TlndxqstY/Z9YisimQVMyIz3gbc33v3mp3+rL32+v/1/ywpUWclGMxrxjWxol2j1Gy2E6osVCVTamNdFoKPHPY3aumQVqZpoOSVbKpCOZucvAjBqd1AbZXSGuSi1hopE2smJxiGkZIKNQNJiVqhKcFuDAOH3YHdbsL50V7vhveR0UXanHCukNa3lNo4nR4oeaGuJ1wpHAYFPJyb2O12DMNOiz7SCEHJQ9BIy/nSse8E7wNDHABhtxtUiatpAdUHTxVhHHc0iramG6glXm08oldwIg6eGAeij9o17jQelKzvWKWy5MTh5pabcUeMgzZ8IuSqCmouDJQKX//O7/Pq44/ZS2V/c0O9G5hJlBigBciC841SEjlM7D/4gFdrheAYRYiihTRXhdffvOd7LzM1jvigcX8Mwew0Gj6oINbDm5XXr44cDpGf+albBl+ZhsC6FFW2cRA9TIMWzFKDXGEMQkDjGRSQsMXGlx99zG7+iJ/97EocjuTzwuhe4ctIHDwfPil8Npz5b4qjcADg2dOnBMMIb27uaMDLl694+eYtmcqcVnzQuJOrseq4dCi2Bg/3D2C2flRVmhl3SghquSmoIA5a3lTJcs5apAdKySx5BbOrGoeJYYjsdiOHOLHmyus3r1jnhhB4djfycz/1AR883TFIIC+Vb373BR99L9Gk0BBivBSzpXWCppJuvE6QTN7DNOFFmJMSPG5vdzy8vVdVA9G5oGz1Vo8YMS8vmTw7whhxzZHzSm2V/f5Aa5CqEUqMLFdzUTW1VHFBbM7XuVO7wtX+AqdAQcGUYsSRc9V5XGAcI3EYcE5JmafjyRSCYAiRu9s7lnnlfLLO9ZIpq9r03NzecNgPnN6eefnJK9KaOK2JOBWib+Aara76fsWBmydPCU54/fo1aa0EZ3mH6PsdY1BVHV8Ypv1WJK/ewYo9+woMr6vaC8YYmKZRCUe5cj6eSEsmLTO5FLpiAtLwXLqPoSHeEUJQtZ/m8c7mOyN1qS0flKYx8rwsTNOeSRzLqmpSu91AjI5SFJh2WH5kxfKeD+ljrs+6j56Wq1k6WFiqRo6i0gxYUmKXWns4p/aA1UiXzjst/LeiL5v9bMvDLBd5BJyAWeMq6bPKxmK357nSoQztRO5km4YLnsEpyXO7L0XVo0rOJOfNBs8sR7yBbVjnfzWrFFN2DEYmr6Ua0duZouU1GNGzFWUfbKqRVYn0vpO4EZro3LWRSTrAdjFm03vRTCUTECpXTda01jZLxI2w0Xp+9thuc4MRrjCczYrT8rUfZ2BBcSS5Ov4OVfdxlZN+unBiAOL249Y/pz/Ua3bp+r8AL1ebuEJzPk2MuvrU1fcvP9JY18Ely7Gvz82USBSQblfHegWbS1dLuDr3T6NaXMDQDiptAKFcr5HatulNfcHWLbRHG9vO8dKhb9fPTs5CFRV7+KQrhP1gefbHxyyful/X+7f3g0cffwy4SSf4waMHvd8TPXE9ttrnbGdryQsJ6BH5KjrYNeSrAnuQrwncopag7/X1C8Q4UEomZ32ONrWq7TLosXU1WWkX9VlvQH+x+OPFMQ7DBoA6r3NmKaobmbLGotFsfFNNNFDybi2qbug9LQRqVSvZGCPYHBv8SE6FeV50/eQ9Ierz7r1Onuc1KyHYqeKjl7DFQCXCa+zMuWwW17VY/MmFXKopPspGItLnXNf4IXqUB6XArji/3ROHKsvU1qhkxEFak62v7DplJfm3q5y4z1f6DFQj7ei7llLBic7jrTUljWNKIE3nkdqKreEvBAjVyGhIrTrn1IZvVUlaRqpoYDZpEEvk/Rfv8dVvf4Xn83Mlgvlu+a7KkgGdPyVUSs20hipclUyrqiAVvdvOKwRV32z9mezNVg2K2eT151Atx3V+iEaiUmKTgeEi+KCkNa7ihxhhtltleR+3bXWLpY0QazEkl0IcRoYQrOEIuuKMklECtQq///t3nI9HIhCHAUZPpqiKYHPa/OTs+rtA3O85lwZOc4+wRRZoS+XN65mqTDF9Zp1akypPSusaaa3MZyV2vPd8TwiVKQazbe3vYyP4i3VlsfVQ2IJMnxP0WUhrIh/f8sFuYRoytET2M1JmvNsxxsazsfL6ezek771Hfe87DMOAd72EoxbDy7JwnmdyVYUvtcQVI6o8DnCC/rzmSreORZRg55xcEa01v69i6z2rpfnmt/e0K550u8roAmOMPH3zhJ0bOcuZWlVd+NmTiac3E4PTxol5Tbx+s7J+RtVEpdejtmfI0dnnIiAVPNqAoyTLDAhxCJRWSXnZQnOVC4mir+GlNXKtuOz0XWx6nsGaeLr6jjNiiyrPte1d7gRHfWZ7LcsUw0S2n23zaNZA7Z2oMprziK3Lqs2bImpl51wgresW03otKnjPsBtptXE+ztqM0Jo1zem5KaFUaAjDNCq5aV1ZU7J1mc0fGEHJ3mXnVelTp7tm8aqaWpfOsdnyvmj5Ns6pYlauaiVoDQDb1NjJJVzeb+8dxa4TcqmFIoIL1hxk+8+1EkTJaDkXillmerNqq63qfCSmq3zt9X6Vsyjpqtd4sfysmiKqNujohy/v7qWpoefXYqTfrkSmc7D4S511O892USTa/u4uz4Jeo54DaLDr1mets3HkEv+VkNWbzqqtLep2r/rxdS7RlpM3+708Vo66zmmdXK0ptpjQz+USp3ra1ImJeti6retcsV415l7UIWFTw+y1WNtlJ6P23Ok617MMXLctRp28sv37VCj7sV5PvBvvxn/nYwLeA/554DPA3wbeByLwNa7Z2I/HD146vRt/wcewDPz8P/h5/tp/8df4/Hc+j/tJsTj7E0atjt/4jV/hJ8bqDeAf/Dz8V78Av/obP+oj+YcOl7We+4Xf/QJxjv/IzzcaOeY/gyN7N96Nd+MnefzwSkr10qkCF2JJ7+rTwlb3ObcCna3ocjUgyDmk+Q00E2SzJ9kWXMijRVhfUF3/bOtaL7XvZPsddOnoXtS/kKi874s8tkWh7ZTLorEXP+xXVoDCAEbQxa2SMh7vxw7CFpMXgo83q5bLRt22WOwkJbHibbfU2TbnVFEAOuCnC2gvKJhIl3BuW+FcO4a6ClUzIthW/d0W0ZcGfV19V7N0cSKb4kC/Bnpqer2FT3dOXa7jxbP+UkTq1KTgIk4gtYxzWoClFToxrCt/pLVQRaXVQ/RM40TOmdPDEYD9OIJtX8GFotfRClnOe7NjyqS0IuIJ1sVaaibKjjiNrGllnDzOKYEqTpE5rQpuOmc2AwVxnoeW8YMzYorgqATvuS+ZOQVcyuzHibgPVBzZQUpKcJmGyG66JZcTPlTu3y6UNLC73VGz43ie+exnvsCLjz5iOR0pdeG8nhjigPdqLTdElenXY9NOwyIOskOsg3JZEipnBDiMAFMowBhHRAKnh5nd3YE4RCUmpMQwBdjtON8fkYwVVYt19Okjs65ZLYVyJUggBE+aC24YrECdmNcHK+h7wJNTZVkXK7gpyaaWyrqeEd/AC2GKpFStmKfF/c3Sphe9gJYTtTUCqrAWnWc/TrhSGePA4XDLtD+wO9wQvEdappYV7zx5bdyfXjHH10yjdqCrddREuLljWdVOqjXHNI7c3T4hxIFSM8MQGLwW8UvJxPCcGALalG0FMnHkVIzM5AhxYojBCo8N8Z60zkAlhAEJXgEFgVaKAua+W+hpMdJH7WKsTQE57zxTVPWbGKK+bE1VaFzrNjWOnBvf/PgVL+eZO4n8xnce+Nabxtg8n4QdH8YPCO6OOArfvv8u55sv4/fvcVSuHykaWOAd51Ph7//2N3E8JQwBH7TQOfrGGBw+NpwrOPF8/J0H/u7f/S2++OXP88mrV3zh808JzvPwsDBOe0IUDiO892Rkt3O8ORY+fvnAB09HvvD+iBoSQJOKNC2g3zzf82J5AIHiC83+W1th9YW7g+N9Jv6rFKhT4O7pnnFwRBFyKuRaSLVwTCunrDYkqZRNESiGAYnCuizQhBBG8I2UFiP4qQLfVvQUoUpRIMF+F0JQ0NQpMBZ9ZPCqioDXeXFdFqQ1pnHgbjcaUefMm7evGSfP8/f23BwiwTta9XznOy/4zf/mY8KwYzfofkua1XqtaqB1zivJIUYFA0JQRS/gdr+nOkd2jeHJjuWDZ3zyh99iWVdVHRBHRsELh9mplKJAHoIMnhhHKo15Wa3rmo2cKU0tH2sprEtSYpNjAz7ToiTfVgthdFv8r9aNnVaNI947Ax2FdVHQIA5xs2NZ15XjfNb3OagClu+FX/Q8ShVubg+kebYO1cr7X3iPYTdwPJ6Q2liWVeemGNlNO0qBT777MavFSe9QhKsKaVHAeDkvOr8MA+DwLqpdRBOCc+RcyKnipPJwfyIMkd1ux7Tb4/3KMDiaVJwLHN+eac5xGAZOp6MCzSFQUJLp6EWdL7PlJqJEbtdAvNqRddWjlBPOOYYx4FtTe7vguL+fySnj0LlB5EL4LigZp6ce3tm8HSCE0ewrK+JMhcr2X0vewJ3WoEqliXUyl7YRCDrBiNbtq65yAOcQ616nad6QW0bEQCpniJgYcHZxtKFKs+5560DH4YdAECGtQkpty2uavYMbCGi5kYInFVevQBXR98d7VQrbSC5eDGBpHfF8lAP23Ea6igKCc+EKLLgq4ts2a1MlSIyRIWbpogS2xyQcH4KqF1TNU2q3mLtimnRiTN8HFVPVFMsB7Z6X8mNdFGv10z94fI6PSPdcoB2wHLevL8Q9+s71WsG+yIbKb/++yisM5GsGOG2f7z+zj7ftXl3fDb7vZ9frlMsa4nLLuDqP7Z7Zsfe1yfa5R8dYt79fVF2lP1bffw0bF0sTNqxu+1x/6mq7HOtFgeDqmbPcwn1KGWF7atvl74+vxeV6CfKpa6AHtJG7tn1efaZjidIB0w4UyrbNzb5FynY9bLUHB3B/RZCvQflMgwFcUMA8BCWrpD7nRLXyFSdK0jEygS6XrpTJWt3UMLxdq9oqAwpC11JwQQktTgQXnL7nW8NINZKIo+Wq4L19ttt8rbmSpSKlMoRoIKPahRcDyDUHHCltxbnGuhRq9QzjQKuFlDI3hztOxyM5rbSWySVpruh0/lQVkq70aPEaUTkXew+6Yl1/HL1cLAA1L/KsSyaOw3Z91BJJLdXSklAJxCuigW1ssxYtTclQ2FrYCEGNSs6rzWGmVlcaxRV777X5qLZGKVkfeBFc8NSic4muZZ3Oo1fPVKMhTUnWDjECt+PZ8pSf+b2f4v237zOGCb+PxDjYOrqgDTyOmhvr6Ux2MyHo9Qw+aN7iRsun1IbWB12/qi1S0/Wc+Mta1e2MVNyrJ/oU16qEV+d0jvGuk/H0nahVcy3vdC2hpRQBIwf0GkMnCHdFm4bOGSJmlW1qf5tV5kb80LnweJz4wz/ecU5HRnF89LDydoaAcPKB2e9xMuK88LA8kIYnuLhX5TDR+TwLG9nq1asHHt4kYtxrz5pTW6foHOIaztS6SoZvfusFDVhTYZrg5rBjPqvtsqrOwjR4dpMjFzgtmVoyz5+MDHafO3AvDeIYKWI2fKKEBJxSYbJU8I3bOODuIa+ROA5Eb8Qvs1Hta4q1aN3i0silJDIJSvzXWG51iJo3gqDIlWKeXfO2BT5RhVaLjc5pvSG4oO+WkX963SmIZ9923PgDu3FkmU80GuNuYJqCkU20nvLRx2851sYn731CK4WKEt/bppTZyRF+e+d7HWUApqEhwVGohN3I8eUb1mXdLKgqPcdhi4ua2lgdyPmtblSsVtWkmnpko1eJStHGEecv83mrWkOkNVub9nqcxRSLL9AsLrmtliUiqmLsVc1NrdZA3KXxz23zsCpLh+CZpqi1k1wZdgO7W22Kk6bkPpo2DzrvGXc7UiqUnDbVc9fYbJfp512K2tlhczh2qZ1oPcFqpMnqfXGIhBApFFXErgXnPWVVEukQVb0tm5JdA1W89apU2+2et9tSrW7r2OqR1eZgHxxSlSQToie1RE0au4spq8qWG9mcvc3JPW60rVFHCVV6T514u491C8LtOscz4lDPhTtB5zL3ykZI0pTnouzem103BUy7l43LMel32rZPMSKSNppZc0IVKI1mCnDtcprbZqV78+nFtHnpsl9dy7jtWdySHsstt/stfd9XuaDlQN+nAHr996vc7JIH6dC8xH7fF0HCpqBVKJd6+pbn9kO/Pll7YB6f2iPy1bvxbvxEjc8C/3PgXwX+e8AN71SR3o0/eTT43Hc/x9/6T/8WP/WHP/UTa+326fH69VN+//d/5kd9GH+247yD0/5HfRT/yOGLZ/ewYzgPP1TdsITCN375G38GR/ZuvBvvxk/y+OFJSlY06eDTdQVfl56XRWUfqsRSrLAum3e4AjgXYAXgulO3N7tcOmSxRWHvQL+ya2vNbDcM6HFuK85fbNm8fsYWbhdwQL+uxdUOsG1nbOfNdt7XnVvb+tOKMZ2s0zskr8O8UxaHdvO4DkjUrcCii/ALyeia3EPrXZYq+12t8NqaFrIbshXRt2u5dcmxAW7OXeSeNwCkWTerHb/0e2jf36zb+oLYXQorusjGCoB6fP3cti5+ka1bT7vQCi4GQnDkanLhXAqjXV2nIQxxUNuxnBnioAUc72m5sBsnVY9xjThFjqcjORV8AyVqWAHXlBFqLbggRPE4lIQwTQP73ajXrVRVqygVFx3nZSW1gh88LTeGYSCI2tP4cUJmVbyIXu0HJESWqp2St4cbwjiw5srt4Y5WV47HE+MQtbA0eqQVluMDMWo3npPKfP8aL4VGpuTEMIxEH0gpUWsjOEcqFay4XlujNMG5ASeQW6WlQvCO3TRxnmeVKReI40grgpNIo7CbDnga4hvn80yujjWt4N1mSUStuOYVA/WBXCplrWbpVWi5QhBCUyuwm5uRRqEmvQ5pKYzjQM4J7+Gwv4GmalatQnVakBmmyDCqHVpKiVI1TuSyEJ3XTtna1DagVVVYcoExDgzi2B/2SgyJkd00sBuCbjcEcm4sS6JW7Sj2Tsl90QuRgi+JIQ7E3cDsCk4iu92ew7RTYCBOxOgZxwnvo9o9WGG6lEbu73ZrhGjKKN4ZAc8h0tVawIvHRU+hEUQYR7XAWw2sdlJpFHKuLOsKsxaUXByhNNZS9T56T1qTqgHVSyzItVJT4sXrhRdvz6wystx9ht9KifMfvuTGC1/8yl/l9KX/Pg+zsNx/xO++fAE/80UWmahnjVmrb4QgiIeXb1ZevHpLqLN2ibZME7Wx0JqV2ljQGmVNHMaFNy/+kNMb4ZtfV3UccArcmSVKDBCCY14ypcL7H97xt/7GL7J3QhVHMouSKI7p8x/yvTRxv8BhgDJEjuMtqcGJHadwZI1qqYLPrN4jTvRa1EotlePpnnk+MwxRY56z2Ot1PyGqfYWXaISNhLuZeGtqSjrfaAG5Yu/dvFCzWpUgao/iUOIKuUH02nlcRN+vpLGlVUGbrRuuOWIIPLkZuI0w0ZhcgfyaP/7Wd3nxduX588iQ2OzenFMCorhAdI6lZN6ejtRauX3yjMNhR1kTeTnT2mrWf3ue3z2jvjlScsFNkePxxPFh2YBCNwSm/cRyWqgtKwlmP3E4HDiuCw9vHpC1qNWNN1JsEErVa5mXWbu7XaCumWod5eIbrWlXs6pJ6NwSxJHaSioV3wTxWiyvtaiyUE5ENygxJHpVdQheAS1RkHaeF5Z55a049oPn6bOnTLc3LPORz3zxPZ7c3fH6kzes58x3P/5YO4VL4eF8VgLsEFiWFTHyT06qHLWmxG63IwQPDfK6qvIDbVPKcMPAfr+n1kStGXHCuI/Ulilkaqzsn+x49t4TDrs7/uB3v0FaC2VZtPgtQkbPyQfPOI3gAut5ZZkXynVuY/FwU5h0Biy4xuBUo2B/d8N5zuS1EkJk3I2ktFA2khFahK+XZ7kTB5wX/Bg3IpISTLH3J2z5TS06rxfRjneK5XRm2doBap3PrxRinOZ2TkTPxSw6etZYuqVvL5CLqUwoKn4BZm27lYoXYdypvWYHRJxXsFbBPCPYFrXhiAYKY93etZSLTbyYzVFt9r2e+4iCNq4T7i/d36Vod3mrjZTSI5LSpcOajWTb5HKOpZaN+NuJHJ1vsvZnrZPKf8C4zsf6v6Xq1bzOT6/z3x/3sYGNBp5ck5Mef66vNjrxpStd9f8Jm61bBzGv0Rj69buAd9hnadfYjQFbBoh9uvnhQoiRC2Z3tfb5gaS17TPQ1X8un/n+rnr98WM1rP5zuSThGwDWrj7krv7euBzHZbWlcfTSTKBqBxsg10/eLlNXkejHR+UCivK4617B0bq9N0AX0O2Huh2/Yp52VJ++5dt1tphwuVOX69aaETm6CluDfUN+VeDXgPfM9rGKkZOUOO5dUMUbUzIJPmzXIoTAmpIReHSPrYPZ7vIstG09W03Vx6vCqa3ZKtUUhoRsFmpqea3AoafHrUCRsimKOFH1idIalMJ+mPQztTIMI7TMuiZ8MFty56AlSlopRrISGmmd1d6TapZFYWu8UMKQ28DdZgSK2syKDF1ut5KVFBUDOek81+1yaJ0srM0kYt9X5ZJONujPTQ94+q+uZlxLU1s2aWqP5pRo06QpyZ9mapam8mTNQSKYeilXa1p9znxQVV0nTomkrb/DGrOdhghVtJMGtRBa4DNvPuAXfu8X2NedbsM7ovcEr3ORd9qYUHJXUXOIxRrvdFvSCl4CPngSCurHOKgikhF2nHfbvbCAprmP1Qx6TcJcb3Vd3u3eNqDYwH/nNku74JUIULLFAKnb9culgDW9ivdGGtPmKWlXdqZArXK57lL4o2++x8OpUsSTxwMfl0J6OKv68NPPk558njdJyOsDn5zPyPM7igRavhAEnHSlJbg/zqQlkZYV25M9G0aS639vDWkJWuP1yxnnhBfOW73DbVb0Itpg1Jry4XJNDF/7IjdjQIBijAMPyDSS455TygyjBrYchYUjKwGkUry920EoFIoRCbRZBEpNLOuy5QMiYoTlSywSpyQuJ3oTo/OklB+R/sTe/95Ap78DewkueUSpZMsjVpKS43NBvMNVwS9RCVENBMcQYDJ12kDDS+L+dOL+tFCHQCVbPmvrCntHO4mu57s+RKad5Vc500qhtYJExzgO1P1EcB5nyj3LkjRH1JYN4jjoeqhoPqYNZ2pDfD4vajlmz12lWix1Nn9kaPrct4qRbbK9GwK4rb4EGDGxUnJRBahgZEqz0+4ESeCiSt5zV7mofaY1saaME5iGyM3tDeu6Mk6Rp8/vOD2ccM1xf38k1WQKWJ5SK8E7SjYFYlFlKClilt6yWSq2a1XPTrARJdV7P1Krvqh9vaO5asVFz24Y2d8cOL09czqe9RnKnSSmD5U3Mr3zStbMVj/q5JZ6lfhck46qka4QCFFJTjmv4JRwiq1/+vea5Uw635k8m+Wxzgk+BLaIb0GtqsfyJQ9wjqpFz61W6bo9Hxd13ktWdlGc0wbHS41Uf9u2ecZmsUfnqc9M3zlX2+yEM1M/vKqj6vG2bXu1VqtPh20XrV/fnmdZfti/t1lulqK5EO7qc1zI5O2qrn31e3tY+HSetKmw2hXr9dT+y9bQeVsuqqzXdfvrTff8rD8RvcZ7dQB/Yl7+brwbfyHHB8C/Dfw7wM/Ao9fh3Xg3fsDw2fNzv/dz/Gv/t3+N/Wn/ffWHn+Txu7/786zr8KM+jHcDSFO65FOAK47pYfpTbaOETyvHvhvvxrvxbvyTHX8qklIfIl2Ousvu6ugdeapE3ivUWqyqtZosuNOFuy1ot6L89+3wsg3t2hfEWTcK/U8r/F9jDu0CGHQFpL7wvd7J1h1ytcNLh/LlnLfv2r9VDWLbO9AMoNVijYh22Va6MtHleFTSGjbSztb9gpEaLovcrUOsAxtX59qLeHpM1VAAf+nINBUQLQZf0IHHqk9tO6fLvy+Ft0YjiKM5to7V3rlMPyZ3vRjv4OKF2LRdyw4mtWodvYKTZiXKq31WtYaKcQBRYkmTwul41C62qoXIZUnsb3a0uXFaZlOOkg1YGEI0WW9ozpMbJmesdj3NjnsIEXGO83LUYttS2O8mYgisadWut1bxzjGGwG438vo4s2YteB+mkcME1TlSLcyt8nY+c2iZlCrzcdYO0+ORt/UeEU9Oe0qprOmIe1NgnTgd7zktJzyVMQQcURV5vGNZrIgrTbvpUqYS1MquVkapDONATQpeuOoY9wdyVsA1dCnvRYlFMURKyYTDjpKLEq9cJXrPfDwxV1UHySkhpVJFbYSWnFVtozW173OOYdzp/S3gTZIkN+1szsuKtEIcPA5PyRmHWhu5OFBd1rsvMIwBEbX/ojVT+hAGj1qBJS0C+ppxrXE7RQ6HA8FHxjjgRRhiwFMhz2q/URpB9Hm6udkR48gweHaHAefBi8M1D02BliFUasmkJfFmfYP3gXGK7PYTuAirEhTiOOL8sBX4nXNa6G9KQlRRMseyJprZKTRpBFPFGrwzm4/Iui7Eq7jpvAJ8OE3ka2sktOC55IVVisqVNxhDUYvBLR4FIHJ/OrFWz/E0k8+J4RAp/pbFQciBrz8kvvfdI+tp5runA1/7ws9yIhJXR3CCV3EuxMHypiBLxodu4dnMGqpusUwl4TPUxjhaHKmonL4z8K04Ayocq4EueU389m//Fj/3T/1lXq1/mTR5wJEtVsUC5fYJH8UD3x6f8eTJyOHuKeur9/mN3/xN/t5/9h3c4PiD4jm2hUyghkZxkSlMNA/z+UyrsBtVLQZp7HcjD6cTa8lWxM1Qq6qXnc80KofbA9M0sc4LJamClzfrLecdDiFlJe3U0lT1yimJFCesuZBKYYw79vsDcQgkYF0Tb9bEOO6gwX6a2A97ggQckFPivC68nVcqlXGK7ONEqR2QhSZG2jByyOgmvHjKsnJ2Z+JuJA0ej1DTQlpX7p4/x08j9Tzz9PaOD957nxcfv4RSWXNiHRp3z5/z4qMXLPOZSqWWlTje8ct/6Rf5g69/g4++8U1aLozjxAef/xwP9/e8evGaaRqASkqVdclK5ipFFQOCV6VFr53UsVtHkAmTo+ZCbzqtVmDt9pyIEIzAc55nSmmMMTINwzZfBbP0WtYzpwDvffazvHpVSaUR9yN+N7KcEru7JwiNMA68/957tJp5/uSGb33zO7x5+8Cwm3BOyGnVmGhKCLVUBdOcMO12Sr5cV0paTQVKyYgVtagMw0CMA6kl4s4RbwK4ynQzUu7P5FSJ+3GzfW1VAe5UMnd3N0rqfJGpqSJVyTMu+I1d0N/9MHhubm8pKbPmyrCfuLm7Ic1vDGxZFSgLYVOvCpNnPSdqM3ufZioAFQIK+jl0Di3lQljwLgBClbpZtbXWaE6BCecDQiOXtKkWXVuykIyE7RzewNoYYFlmBTS80+e31k2VoNRCDAM+KmGqpExD1Y8UoOgArtroXBTtxL6vQI84pzZEncShsp/AxVqudUKjkcU3kMRIFrXVTTW0gzRdCaEVvQ4XkrV0nIbmlCKg6GlT5YIrxVC4UqJsl3yuE2FcEAPxH+fSPa/qx27ZoN0n/Zd0EP2qU/vHeWxqp3AFolyBJK1DJLL9TBVBxDq+O3zSLr+z8QPJXtdAzyUVvqwJ5AeXFq/v8+MNXQg17dPb/hTQc517Xx9f36TuvquTXUAuvdXtepdmhwWd8NMBvUZ/VB6fxeNL0bbvcbWdjvH1GCXofNMxyGa+KX0f+tXrc7qc46f372whUzdy1BX5qC9yrjZ3AUPb9uPr41diQtHnPAJfhvYvCfKZDmCbjWPwZm2p732yON9V04qpKzaaqljUy/UU2BReRbQJpud6DgWf+2LWmzpFXhOlKGgYotpudUuh3mTinRBCYE7Z1sOOKJ4YBs0jWyPTWHImNo1PeVWi0JoSbVl1TVmiqnDkBaFCjaR1IZWEoBarYqC+c6rYhz0lYnNQw9QjLPfywVOKEvGlNXwcqE6PURU9mpIWatsAfm/KoReFXSEnJSyLKBHGGLrUghHJFSDu69UQVGa+1cu7Vs0CqmS1FfVcrNk3opXz9kzqcxKCEnaqAbObTZqFCzFFEVcq+/PEz3z0M3z55ZcJTQlGTmzupUFV61oKuE48GlTZ0HtHHPz2rnUVu9a4qN/kwlJmRFTBK8QA4nSObBiB3+PMrqermfUo1iyGZLve3sjTznIpL0oIcM7pWs73RivZ6iPBiMetNao4nctroZRmRHxdc3Wr9d4gVZvn1esduTnWlKnJGnfcyElAqmNaK8eHlbIWHlLkvbvnrDh8YVPMrhYraoOyFLWUvVL20OfOGh9a05pGaxthDpRUlWu3oq+4zspwQs4aR968fsNaEl/46ofEIRh5Q58LV1UlqOz2vL5fCcOeOA2UmLh/lfntb56QVjk1mNE1rDYuQfOa5/Wc0ItDgpLoXFRSYzZCXN1s+JScU2olRr/ZhZdczD5TtqDqnLMGtK6WZHN3vz6iz/urD1/xpVc/RYhB7dSk8Ga4Z3w1KbHNOWLweBe0TtQaOWfmNam1lzNby3Cp2zXplZ+eW8AQVNU3rSthGGjeWSNG3Qg+Pg6kNeO952Z/w/k0az5fK6kVxpsd65pJ86Jq1DRaKzx79j6H28zLj19QcwYHh8MBHwIP9w+qHCVhUwxvRgKBC4mG/r51NaCrphPQ54w+I13PNXJRxs2tIOgaJfjAWlaraWmdal0XDrc3iB/V0tg54hhZzhmJkTEqAW2YJkJwVFP6fjiqmpUSKnWd7MTrmsoa2WqrhBDwog11atOs73QnwlZ7J72LuKYqX3704MEFa95YEy64S05oOa3GY880jpyPlZayzaem3tPXHxZnxInZGqqtXxNhmAbyWpR0Wqrl27LFkRA8JdeNZNWn/40Y3nMIq5luqYc1LPSc19WqzQjVsjvLffQ9ctv92wjsrU+3RjJrfV4rNnFYXbJaAxVGwLLPi2C2ghfVIn2mGoLbnrHWpTrl8gxtSUnFSEA9F2/b+rVdHy+XvA4A57btbOT3dsl/N/XLq+9s88F1ytmJUz0d7H/KJWe+ZMR2HBZPqBfyVL9x35frtutaeK/P//lYS7wb78Y/9tgD/xzw7wO/wJ9s4/ZuvBs2pArPXj3jn/3P/1n+yq//FUJ5J7V1PWoVvve9D/j0Kv7d+NGMr/+Vr/O1/+Jr27/TkHj1uVc8//bzH+FRvRvvxrvxbjweP/RMKnLp8tCFnBIntqp247Joa1cLPKx4bv85J+RtkWWLIcye4oqo8xi06R2mWumqtTwqPFxPfJ3Uo9iU25ZsYAVZW8htgJIVBZx1/nQgTAlBVggv5WrbXYr7sc1b/7t3pprUF6CghVp/kZ/flnxX6lFbR70d73ZZrzpF7U5cFREvJCbtGguMIVC8gX6tbgWxyxrb5IStYCGoSg2IKfM3VZUChkELBiWXreO2cAFRenG5FLu+ViTYChBW0BdM3lmr0wSzNYnDwPF8NpKRdujGEBHxxGHkdDqp8tGqtl2tNtKamM8LzntVnKkV1zpZohGiJ7iAQ4gmrd1SRoA1J4YQcB2I6UWa4DmvK67B+WFmmCbqWvQahKgF+6CWSkgjjmoBpEWHgqMxOKG4yFILt2GgzYn780JtjWmILMuZdV6VmOYbjcJyPpGXlTfHB9aamMZIzYkQPPN8poSqAHgtjFNQy7qswuoKqqpU/rouajtTKjkV7t+81UJ4zezdgVW0A7SuiezU0SHTyMoyuRRdrVAsTiXSVX0E/Kjlv95Rr6rWeg4iCjyX2t87j8hKqQmfK37YI1UBiyE4fBCSFBpKCgpxUADOw7TbkVKFsiC+shsCQQa88+yC5/nNgfee3jENA8O002euFKIP+OiJw8BuGvEirPOsRSkfCN4zDXumcWIYI2HQ2FSKkHNT3Jq9FfuaWU9pB2FuUM5nJTWJw8dCGEbERQYrMJeUAVMHw+Tga+9dVJDHoUQwtQyCkhs0r+pLIeCdWlyVCsyqcnPY7VQxrFT8c0/p7xWCQ+9bqwYWNcea4bQksjTCbs9cHPd+xzgKicQfvXzLy7/7/6MWKE04fPnnkc99hSV72qLk0mKCbE5gORXGMOJ8f+87SFlwUqnScNXK3eIUhLezFntGxEhJXQ2mxw4XJ548/QxDeMb9sVFs/qgdlG+w+B3nu+f89uuB5zef54PPfoX185E//PVvUebGfhh5MwpzXqktEGiUknjIFdcCqSlRaRhGRAqlZkpKtNoY3ECuWecsF0llodZMiJGUChVTBSiFIcRNgaV3LYOSQMIQqQLjFLWWUdRWZrzZ0aonjJ4QhdoSx9OJIJ6CowAuCtVXsvd88+WJ83cSD+fEi1Pj5jByu98xhb1Zgapli9qbpM0aJITIfjexnmfS6cR5mZHJEadAjCOlNi2cD5FQ4fT2xO5OmKaRPK+Umrm9PXD35JZ8TqRppBW1cMkCr1685Mtf/hKuCZ98/D0kCNPNjmk/ctjvqWtmWVTZa1lXjg9HSsoKqKIgWsuVEDV+56xFcETwPijY5xxIoba82YJ4p9am4zQwCeRYqSlbd3G2eb0wjQGGiVQyx/XIuAukNTGMA8M0cj694LzMRK9Wf99NiS996UNubt7n9dsHTg8zKRVaVGJdFaXO+qCx3RvBal0WnHOMY6TkbDlL0rgQvF6X/UR0wYg6Z9K80Dzk2mjO0bzDh4h3mi+FqMoWcQiIh8O0Zz6fcYsRH7OCX6q8EGgGueVSiMNA9APpdKI5x5PnT1iPK+d5VqKX027saKSuEAIhDJxPxy3P6KodNAWOnVzsYVq92JvBBYxuGAhsylgdCBbxdLZ4a2WzCIRKc+AHtfAo2YgDPpBLNns5Zx3hGnN7wd+J2txIc49yz67QkGuhdNA/uI081O2DFSxXmw+aqkH1Oa6TljUY6pxKbZsKWNmakg3wEP2unpOzZ9Rr3kHPex6XYIQOmF1+eq342cHkroLU82M6uaipXeuW/vUfS9+OAdEYMGVzixjJ4dru68dxXMhX9gPpZJSLLVT/3EU1SVDmln5emjVMWLLdaWL/cDWjDsgaiHal6LntdQM6L2DTD9rW9nn73aa2I0YWche1p95MsZGB+mnL9/+9g3JdCeIaTOoW0R3g6tfpQoC6bh0xsKpdruXl+K/PST71OwP2nLd1kK7ZLtdV1wnXjQj2xOPk8f5sBUB0CgDWbM0bXAPIl+YGnf+7vfh2K3oCoj/rf68N91MO97cd4X1PItl7qPFEbVEd3ntSUuJOJ9Lo2k5zZhH3fUonfQ3j7NlTS2KgkylLUVvJDUQ0QNE5UtH1Q16zEhTMmlytZSrNVEhI3TpN7PyM5GPEmlIrY/SUXFiSKvoF7ylVVVVabeD03vR8ZV5XStN8s1HxXueqVpupQVZCsIaTjZCl91SEzXJJAebGOi8gooooLppDZqNlnTfNGcwal8x27Ipk4cSIdlnBYd/f0qv1hMbPauCo02fLVPgQVd29KEeJrXetEadTUWrdSGQiqgClS061g4te81CH43bZ8zMvvspPvf4yu7Ij3AS69VUnq6qdr7e5Pm9rHefM3s1HnXe8nkyrmM3XVW1AmhGsxAjNfT1quXBTOzdE7Z+viWPb89+ts+w+Oa/PdLfuA8w+U8CIuU4uRMectV4SYrisISZn9J1O/dR1RbPY1ICSPN97cUuTGRcjuQ6sEvERKoW354Xzt7+DOb0yPH0POTylVPV46/GlR/NaKw5TH91C1RYd2VYPwvZQ9QjQXy+kx0h3FZP1vzhMuDaRVlgy2zf7eqIVYH/gxYu3sO4ZpluG28DRv2DOSuLJrpJcoTYljkEl5YSI2lilnJHWVNW5lk310hnRr9SqpJRWKbWrmIiRoTW/8lYD2ggYqDWgEimCnqPZzImRJbwfcIM3JS5RhaWcWFNizZlsqm04aA6WAsfXZ1KpnOeM845pjFZ70TmilKz32RSdegITQqD5SkmFdZ6pXojRI02PaV1X5Qdb48YyL4QQSEUbZoJ4xnHEiVqR91uHd5yORw43tzx97xn3r9+SS8ZFz7SbdA4o2PuiX1oWXQv3n3XlYp0OZKvN9QejKxZVa2y0pOAyt9v5IdpUIvZ+9ZfLO833W20s66INYFnj3TCOnB5W8prQpjE9n/1hx+Gwo9bKPCsBtjqtU6pa3hVJ9IrYKViOXa+IbdYIA2zkQ4fZOxa1lNP71WMsW55+IaqzWZfGIW5zdnukXq7xf1NLRxupiql0T9NIHlWRXOutmDWjt6YDIQ6RnNNFYfIqb+vzf3+s9BXvzYqPsxMRs/ez+LZlgVe50CU10b+7K3XGate0FKtBdeV7ZLPM7N93oo0tfQ6/xBPNR0otG0Gnk6F6zoZFyk7Spl0RxfsxW969pXSmoN8JmdtO+QG5GJfr05PQZvPp9V76vrfMUnoEvORyPSfZjsMCaNuSUDuGLee97LvZvq9aLrbr8268G3+hx78I/AeoctKfTljk3fhJHA2evXrGr/3dX+NXf+NXORwPV3H43eijFM83vvHVH/VhvBs2mn83l78b78a78eM/fni671aLvsjKbhSgpkUy5/qC8jGooAU5BeOdczjrZNGNuq0Y38cj1SZ3tXhSJHtbVG/FeS110jtSnLsiJ10fty0ehXYFmusWqpNNpajblyG66CyXGgbdEq7bpF1k0tVypFSzDRMxWfy2SXkLCjh4k2bfFJasWHgte0wHHK4Wt73Lv5ZiRd4ruxUaa1rJSQg+ME2j/luZONsxOK+FLq1tXrqLLwSsrRbIuqbtnvX7Wq1gGq1IlXPZigWlXmTj+zXpK+oq/fpqATrnivdN1UdEpZ29DHgfWeaVUqoWg5oqc2iXod6/4BzrsmzPTKlZ5bYNpDzPM0Jjz4EQo3WwNdwwqAx1yqxrZhijFsm8Y54XogusOak1WEOVcnA0V5nXhWEdOex3nOYZaWpPFrxjWVecD2QKh3HaOgqn3cjDeaXRGOJAWvRaOYlAZUkzuRRO5zOIow2Rh/PCGD0xdGWsSs4ZFrXyaUB0nlqSFuRLJoyRUg2MaI3TPBOdJ4aRmlSmPaWEmwJ+DFAK+XRGSsY58MOgstveq20BFZrggyOv+aI2USrByG2tVSNLFLyLrNlrl7MUcMLNkxsl0JjFgbSq/24FHx3Luqj8dWhKgGlOnwGE9548Ze89+0EVtYYx8mQ/8fT2wPvPnmyFuv3+QDASnSo0BYYYyTlz+/wZ06SrzOAd3gUGPzKNI41MKlpoFGcS6c7jRYlau2GkNWXrOCd4H/E+bFZizWTGW4OcCyknK65ZlzlKnFOQAErJxCHouyequJZz2tA3EUeMnpQLuMC42ynY4YTRgx+6Yot+wbW2kVTKKhQyqkPkOZ5nWilM04797Xs8/cxnuTnsiKMj4rm9eY74iI8D481niNNTctLCW04ab1tpQOV8TLgYCUHUaq82exaEXANSK7WZgtBWV7uoLIh0qyrtFveuqcWGCC1Enr3/OTwHXr2oPBw1ZnYCkCDUdODu53+Rv/f/+s/xf/QC+bu/y8PDS+7PjRAm7h8Sr86QhxHnQWqmpMySF8bxQIgePwwsRUmiGgI9wavNY3CRdc1EHwk+EGtgt9uRcuH++KAqOrVSxVPMzkqcM6UgJVDEIRLHkXU9U+waBTdy2E2sePDCuPPcPbvlPN+xzAtxitSjh+qhwsPDzPc+ecv9ueDGibib+PznnnO43VMLrHNmPp30mbJp0mHEDO9ILRNuRxwrg/fsnt+ynh7IpVBSYpln4n4ipYKTxps3rwkx4IJuJ44DrTSGEJmGiBdYl4XDfsfD/ZETns9/8UOevPeUZZ05LycGH3j+7Cnf/uNvc1pWBgl89S99Fdcc3/v2J3znW9+h1ESrgouBaVBlnPu3bwF9p/KqxMlKI3gHfqA51L6qNJpTpYVpGJhJSvT1DieN/X7PeV3IBYKPuKg2cfspMkRhfjjx8Oot57f3GuODkmDf5gd+73zk81/6kGfPn7IeF87zSogeabCkREorwzAwjROZRG0wzzOpJUTAu8Zuv2ddilov0ggFnj9/j+ADb1+/xklhOS1k3/MlVYrooECrhWVpxDhonkBj3I2q2DUvatWJo6RCrZlqgITO30LKK9FFvFOLw8N+z6sh4nNmmiLDEFW10HvCEInjgEcB1eU0U30zUEYJULWqwsjWvY5s87cSm23uR2hNrSyddUWXUjdQwpkmRDHlNQVPnBIqDYBXYMCUinJFgmwgtdq6KtCc1tXsVjrApECw+EvRXgk5hboWUyuwXBDNMTV3uJTavQ+0lqFd1Dg3WwdTcxJ3yVn77zqY2uxzznn7OxsY1qi6r54DX+VBIs6Id2Wz6HFOJeu6AkAHq3rq2jp4K+4CjHDJU+3k6WSPrvS05ch/XuoQV6Bj49El4NMn0TP+Jm1rapDNMegKcZJr0Ob7NnC1jni83rjs+fLdPpddk6quofW+2Q0IddJh9c26up/fdT4PvWP98bqpH5MzwsIGkBmBeMsb6A0TbtvuBvV/33P0+FpeE4z6syr9ZG0Uy/ucUxWYUormiWAWJzqcc5t94hXVgI4A9iuUP9WIwvZJIxSJu1gUyvU66PH96uctAvw0tH8D6m3D+UZL/am52KflUiwW2LWsPY7p3jWG5Q317HHKidfjznm7Js4spGmN5r2RyFQ9zntPbarsVI2M2dXnem7kzB45lYwvniEGVW9CbaPEacOOOEdtqmpSrVElRs+azB7YeUSUHOnEU0XJy6mpGpQAzXtVM6rO1q0GS9dKyc3UGDHrymoqIgVnZEen4YWU1QLWOw9F89tSKhL81nxTkq7VRMxSSV8EM7axvNXrdWl9jXvx8dzWlqpyBLUJUmUjTg3TwKaU0Qlqploj3sgKtRchLBTY5nfTRBSnudG850sff5Evv/wCd3Jgv59oVeeIGKMp8tbN/qgTCsZpUqUnMfKeuE3JD1Q1p7q2qQc58WbF3AjX5AHpysGmAnNF4miw2WD1n3ai0nV8qVWVZZ0RDVprZjnW99EtrJoqSMW4vUvB1Kh7rQS4kCfB7PU0Xzmebnk46rMRfEBu90yHA8MQ8V5n2WHYKSnKefxwwMVR1ZtLJ2z12HwhgzpvsLu9f62qvWonidH/tGO7zP9W6xGBboEnXRFIGHc7UhbWBY5Hs/SyWKDb8gx3z/nIfY/7734CH70CaTzcLzjxpFJYUiNXXa8I0EozBSe1hXRe46BgdmnAZmcrAq0gqHqbc0q+EFGCZMlZFZNcV8drFuc0e5Buzz4MSk42UokTtR2MYwSvpIvgA9PNhB88ztS/lKGkZOw3pzOnOdHE4WNUW/VngTJpXr0uSRu85BKxuzpXbWp77wFXGn4cQBrVVGXrsir53evVzTmDqBW0VNlINg4h+MgwBNKy4EKg1Mb54ci03xPef04umTWtLGlht9sxH8/MOYPAzZMDT957yjqvvHn5hpRTf8LxTu01kzRyKhtBu/YcDkyJW589aSqAU1sz8iZm2an1txCDzm9NG36cu8xjMXpqzpTaWOeZkpLyg6qjNHizruScGMeR3TQxz6tZvAmZclGX8w4hWE2gkGvu4c9sOrtal5EsQ2C/37PMC1KaqaTmbR50onZpvR6rc43WWTX8KlFzXVbdjymrVyNENXuXZKvv1a2RyIeg312zKiyHS83SmcKrdx6fHOu8WIrSY5/TK1fqlbWdVYP7dM5FPXOjwQgXlSVA7dysbtqJ6VdxtNcWLxVLLnPL9mur59LrkY9zu8vX5XIQNCMbWiPBVW2UjTDVz+ey376565xFY2Db8iC5XIDtM4/ynKvf9eOvXOfyV3+XSy7Etg/Z/rysAT6dQ1+pKV1t63rHOsvXx5/5c7OgeDfejf8W418E/o/A537UB/Ju/NiPBs9fPuev/r2/+o6c9EOM7373c7x9e/ujPox3w0Z19SrxguqrEph/yHG+PZOm9I/+4Lvxbrwb78Y/xvjhSUpFi6Ngf2wF9+/vwNWFnXYFNVHFGicO8Z5sRVB5vOZUae92VXTH5IWddVY1g5+27n42aeZtoVgvBKVmhUbxWIeZ/X3Tt+7LNHfpAjI5Zpyjedk6aLdCGx3QuF4U98WgWnp0L3C9RP04u4RwxYfA06fvUUrmfH7gyZNbTqcTp9Ostbl+DFZEFPv+RlAy6YJuD3ctQ1wBalPFELMow7pnm5EenHNWRFZAkIqqeth98JvaiaqarCkzjuNV8cdtss81awE2GTmpyaX7poN5Cqw6kyxvdnx1k8P2zpOzWh600khLsudg1cK1FZzEbsA4RMYxkFsj23U4HA5qJVUraVm0kG73YF0T0sC7aOJHjuLFgIFGLgviHUPwtNJwQyROI8M+sswzJTdKXZnTgvcT+/2It2e1y00fdgeqa8z397z5ZKEcDqqWQSG4xn6KpAAtePKSGX0A56k4cM3kqlWSniK0qEWeXBK5qVrEOE6Mh4lcEoPz5KN2N0cXVG0qJaQVVaxCwQ1VYClM+4l5nSF4KKpI0ouozTVyqVAaQxhpAmVZVb0CJRyVrGQt5wTXtHBbQb8zCI1ELoJIIEbPuNtRqoIxHtSmrzTWpNe6FiGIKtDknAjWkRdCJHjhdj/w7OaW/TDhRLjZ77i7vWHwnhgjOWXymjjWB6ZxMlLehPdasN3vd0yHPcGA5Og83g/gAhJUGrw5h8MjDkpatAAb7D2yjm3v9V2JwdNE/xtiVJC8VVLVe7SmlWKKO96UVLz32odbVUXGOQW8m4gVQ7MSRHxQe8gGzkeaOH0be/c4jdIakvWZLjUr2A0mbeXJZQUnPJwW7k9nhEoYBv0dkaVO0AZqjMTxjnF3SxwOtLgjV2hrplYxbECBJWmFdE74IAyDp3VVjyK04nC16D2uovaJHXBozsLRpWDZ45d2Pza9Dz7w9NlTcmm8fSmECcQ1AyrVWkDwfPbn/iq7J18hvX1gXc+8fP2C45tXlPTAfHzF+aNvkl69onBPakljmRNqXVW1JTpohWWdFSToBUcaMQRia3gPHs/oDozjxPrmDXXNZpkgpHXV90qgWUevoLHkfDzRmtpiOans7/bspomSV9777Hs8//ADKivnvDBOI81VK0Rrd+r9MXE+3XNeMgXBp4Uv/NQHfOErn8ePgeWc+eiPPyYLjCI0qWqH6Ty5JYbgGQ57ht3AXO/xISrhZhzpnaG1rDRxtJopApXMuRTubu7wbUCGyNv7e0iJ5sGPkZIS88uZMAyk4wPjFHHSiCL4ccKHwPowE0PgvacDa00cz0d++qs/y/HtGR8jec7UXEmu8vbNPU/ev+Pu2R33rx5YzvNFhh8FXWopNCcM0ZFzZakZLxDHwLIu5FqNaCrkpSBBAcRKJgRPWjJlGmnA6XjmdDySygJGinW1ElzENyHnld00Mk6R43wmrWUDpp0oAFJS4XyaWdOKC45hmPBBEFHbtCoNHyMxOqiVFy8+5otf+SIfPvsC8+mBT77zEYfbWxXrWe+ZU6G0SohdgUtVIFJecVlj8d3TW9Z51g72pqS4EBxDvJB7pTpaKbgQcU7nR+cdw+BJa8Q7A28BkUocHHdP9sRByXmvq3CeV2pWazlVbqiktZDzCh0IBFQkSEGCRlPwLijJ2Ukna1e6fZnmJfXSLW5kg5KLqQLoFzuo2mhqp3FFflChASU55dwQ8XQFNkXTbHXdKiVbkolabtRSt/xEyRudHFQRykaCcBgwYzlUJ2hovV8R7mb5zqfzvg5YbOTujpf3HNjOS3NAAw4aBn5rfine/jO1l2rEgVbapgQFCiiJM8K7kUR7Z/k14KEqodaZ34/3+8g3P0aj562PftZ/pefe+WEdQLniCG3KqnUDih4XCK//dVH7wVQJ2vbzT5OPHh3T1TXupJztksvl7/aJnq1f9n0NQNlCoq8lLmuKq/P6FOClIHbr6T0XJlDfg653pmmvVpR5ZRwHUkqa33aAykAnPVbd2LV1y+UkLtvdVBF3QvvFSv2sAsNUaH8AfK8iL4zMZ+9j600W2z24WLj0n1wUv9rGR7g8x0poLNtzu12Yy7FaCEGE9tUG/wZwUIUWVW9z2xqq1EYVVbHp1i/NFCzMs4XglQCgEUyvTYxRyUKmnni5jKoEp4fkTVFUqM0InbTNfs6beoPzSljw0VNSVjUVlFS/SlDyul17MSLqEAaaNPK6Mp9OVFPDExriGjF4Vbz0AzVXU3xxbGQM0Xi0CR3bqM2aPWADobudZU16nbzo+jlXtVfrYK8q2lk+OwQlJnjRmGTkMwBcV3EzhSiMQGRNCLoObtv5usYGSkvDCKjF+EbOwPqoBAQuK+9WTaFItEbgxKkVrimX1FK06cLBGD27YeSLn3yBn/36z3Boe6ZRFVe9c6RiVs+tXcjnRkATp89DfyawWoYqLts6uWkdQPo1KkXVnexg9X23OsNmKeosXl/W8ReShSofeSMz9bW72Dvg/RUpBrMYs6vjTXkFdA3TQevaiXX2QPQ/azMFpS1oKZEWaZzOjXlWOoEq/AgVT24B8GqlHkZCGBEfwUVaE2outNq3eSHoNZvzXeiB3cgSgq43OwHgamq4xtg7SanH0YvaiWrLTrtAPWbWpW3KLM7u2UbEHG753M/9Avm8ULIS0t3dU6iJkmZkObLev6USLOPp8amqmg2mBl7KZt+FvZuqBu02MkJX8S2drNH6s1spXSVqC5ZGmKmVdV0JIRjZKTAMA9Iq6/tnhs+PuFlJ6q8+/xoOcHp6IjslUpYKD8eFNWVKA6gMO+HZe085fvEt/v3A+jZR0IajPi95ZwqWTq2tw6iW7DUVfFQ1vdz6eVTL35TK0KSRa2YYR1wDb8TLkrIRtjVmpnkBWwuWtCK2Ro6WD3XV8HGMiMCaVm6f3OGd5+HtkVSU5NUaqphHZdpP0BZyKlu+qbmDXJ4bUxzrCqw+OGqqpFbBBSVw1gZmq91qBTueUru1WSHnQi55I/jUUkCcqXzrOxPHwLwslKKKgp143WNZLpW0JhCsBuMRURJcs/xYrPa4LjPDGDjc7Wmtcbx/q+uTqVLLwmqkN92WqkbX1kxBXWsFwxhZF7WGU6s+rPFK5+5ic3bX5HTS64ngvebO0An99hknDDEQx4GSAq1CSvmRYim2NihmJ7nlFo0ewdlyJue3FKmrDl0lRbr/6xzA4n+1mNeJdX1cqz1uPB3ba1d9uswkbCQmjUcXEpLWWm3dY/u3jMfWCqaA1X9+ta/HuW2P3fyAcdnulos9Sn/6lW+Xy9iXPz1/xKzrpBM4e856Rcp6nNba3HB1rfs167u1nFHtbK/yxHfj3fhvMwR4DvxPgb909fP/DPgHwO+iQMSParwjKL0bP+xo8Kt//1f5l/7Tf+kdOemHHOfzRM7vLPB+XMbHX/mY++f33L24o9H4+j/1debDzIsvviDFREzxH/r97/7Mdzndnf6MjvbdeDfejZ/U8UPPGt3D/aqfe+ska9fFLwwgawBu843flJVMDl2swNkLC84JrfYFG9vCXgtacvmeCJduXC0i9AJUL/IJZrmEqqiAAkT0okFDu/9N/QjQrrDaTAUJWtGy30Xfyc6uapGwF/VbrbY4baYm1QlPWrgBtn10/RPvPLtpxzSNDIPj+PCw2ZkAW4FcCVtiXXJsHVDOe1q3m7NjcCLadVt0O0taQQaGYdCipxXTcEIxFRwqFwAQLkWVdlmUdhWlTipyVsSvtVJSxgFjjOSa6WviTXWpFLx1lPZCR65F/xaigQqPiw+9aNo7kGmXbnPvvarnhIH1fMY54XC4BdGu4Mk53r56dSkaOFH1EJSQ0FpVlZlxpDQYhoHYAqfjA+MwUjyEYcQPkWkIDEPkfF4IgK8D2ulWVT0KqEFVdHwrhChMu4k1Vdz+AHnFtYyQVd49BB7OCyFGGlpETKaw01pj8IEheMLNnhYrJS+sqSIuQvTcPH1Co7CmlWGcyCGRpZJbZXRxAzp3cUSCMIaoNmslI7Vwd9jzJt/jWjdMUSuJKvr8DMOoz7FzzGtW1Y/cCEE7unNKDDGafSDQRFVARIlGzZnUe/BqLSSBxZRcWm3EK7uvrsyUO8CdlaggQPCetK7klNndqaXUNIyMIZDXhYd5AQrjMCpRaE24EWIcORwOxHEylQCzZbCiqABrXljXiy1dKc3shzxhjNYJD1Q9NwV7zM4qgg9a/KwN1jWzLAspJ7X9cApEeQH8pX98mkaGccSL0wKnE1JRADFEb8QBJVellFlTAmRTAXGuUddkhe5GiJEYg5KsREgp2bvnuD8tPDzM5FJxPpKBzEqqFZ89mUZMDVwBMqWsuKAS9y707u7enZ3J88oYAlNspmSmDPziBKkeMSu6Wiub75ONHqt7vMapVYDamETGKbLb7/noozPnh0TIDdMtU3KGBCXVNI87vIf4Hen8mlxWalqpyZHLQh4HshMrIq8cbvaktNrckDifz6pGtCwUIyh0EHzWiUHjQAgUIy7WclFagR7TjLxqsS3nTJvbBkzth5HBdaWXgB+EeV047AdO96/N7nFReXXvaSHQlsD9w1GtGkJgco2725HPfXALEU6pkM76rLjQqE1IrRFb5XD7lCqJFy8+YR8Dz/YTdQqEKeIGRwx7vAjp/MB8nhl3O1ptHNeZ2gqrD+yCKqc51wi+kYrGHOegrsmex4xED2PEeU9eZu0yHSEvK4N4yMIUR8rDme999C2++rUvsb8d+YPf/D3evnxDzgU3BU4PD9ze3RFi4DQvFLPZiT4ynxeU4CuUBMHAwrlkvJ9wIbLfD9weDqRl4aG8xVctxK6nmdU5xv2OVmA5JVp+y/k04+LAzc0ttWTm05kqGbxjnCIlF4Yp4KNjndU6tANSjUKIjjh4mgSm3cg4HQiDY53vlfQUVKVgmkZqy5yOR77znW/z4Re/wO6wYxxH7t57zm7YMb8tzOfViDqBWh1+dOx3A7VmSmsczw88ff4U7xqvPnnN2zf3CtI6tcRTK4qKSNVndWwMY8R7mKaI8451XTXvCYIPQjBwtNTMbtoz3YzE+8Cy6Pyfze6s1LLZf3RgqRrLvCspqdVeI1UlfHuzr3Sm+qEIkOAlQilI7cVxs1GTagVyb39qPqn4/hUyib5XXvr7dgFjFfQxm5um3eNdQKPnk10lJqWEWsuZvYoN58xOr2qu0W1zO7G6YIlfuwIOYCOMKHB5iQUXoscV2MFFGad1NoaBG17EVDYux9RVNoGLmkxTgJjN9uqyr40UYPFMO/V17u3f/3G2e6vtcSfXRdnjcg1rvTwTHTh6ZLkmV+sCroGUC3Hp+v65DuJcXce+7/7zblm1YWobKGb5swHSFztDg9vsOdD5DToLqTdO9M9czynQrUou59SBp+26INt12mzpXM8vLqooYRgIwaudblov975d/uyY17UC7natDEzd1l6fBfdPO9pXGu0pFCkQwIun/tONsjTku8DvQP39Rvuk2HriCsyTfhkeA3Z6zbuymileXFlTe1N3rR1cs2O/XgPy0w3+9UbdVwWXbQEoHW5VvPdqbfjpd0HzkhhtXksJRBiHoT8sBBGW89nWgHo+xda23rvt/oagKh49Hq7rYu+hqs065/HBEbwjpUxFcMEIPL35Q8Ab2akTIULw6hIXBqRmoCJm9eedY03FQOSi8duILTTwptzmhgGcKv2UK5LoMI1Ao6SiuX5RomqlXeyo0HmYBsF5i4cFqZVxiKrwYevgykUBo18LVRGTjcRUa9tUmro123U9wXX1mk3Z12oA7soeq6gVb18Ti2DqpW0j4vRXRptTHDUXPvPJB/zCN/8yk5vUdlmUyLRazhc2JZZi9nRqleR9sHhva5S+Hhede0q7PJO1mnoQRlYxRRGaWQVqAUTzc7Oyc0ZyKkXtt2rtip1C6IrQV/FBbVvVgk6VDdmIBtpUETYyVLU1A9uavmrssgYuVUXxmtf279SyKSZ++7tPWVLeLKoKQsVUyaqSilyxC03FNSUid9UuOhnAWHOtaL0gGPFB77NYA5PmHdXufX+Q5BIyLrGlx2Exq0Blqal69NLIqZKWutVo7AZaHGk0N+KmQE6zkv1SpBWxxq2FIkJ78T75c79LHLVEppZX1WwTe95xIUYo4V7VgtUO0NNoqMBXuSICXM0/n6p9qE2vWM7n8NIJXuDHgbRmCBXnG6/jW/7op7+h5JXnJ1595i0339iTUqaUogpKgjb9HAbCTvjWVz4i5bopXGHxrD87wzAyz0fWdeFmHLT5ZFDSjHdeI2uGJScwMtbW7NWa3ttwIZyIWbqXou97zVVJo6INTKpyXag54wmUXPUds9sfEI5v33L35Amf/cJnePXxC45vHqzZRCjSyCnjvSfnYqo9Rkjq8+VmC9ZMnc6afkxxaBxHaOia0RVchZozKWtNMERVslvmhWIqcGEcicGzrtZIR8GHUa+PqI3zsuZtvdlzC136OarXa7qpqLasyspWBw0xWDwpPDw8IE6YdjsjSnqGYaCukFazVXZCr1TGqI1XtamiXoyRw+2B9TxzOp4f1RS7Qmd/FzuBGCMxOe903V+qkSsvSvLNWLB+8ASzI+02nBUl9va5zB7yq/pAf6Et3y1lU7W/Vlrsn3amrNrz4C2nKG2zJrvEiG0KuHrdGlw1X15SgUtuuRGXrM7Rj2CLRVd5jJJVr3L3q0RQbH/XNdQL8elxHiKX5dE2vo+oxA/43ad+3xsh+vZ6Tmhn8Pg7W37Zs8frZgq29V8/wK4q250D3o134081PPCLwL8L/A3gZ3kMqvy7wBn4deA/BP7vKGnpz/JZ+1vA/4F3BKV34x85pAq/8hu/wt/+T/42Qxp+1Ifz52b8g3/w8z/qQ/jRjd/9Gvwz/8WP+igejRIKaVAlpJcfvuTv/I//Djj46Ksf8Ue/+Ef89K//9J9IvktD4rf++d/6szzcd+PdeDd+QscPTVIS/OUftvrblpzSC5TVulfaVkQS0e7uII/JNvrFpsCkFXME/wiE8CHQWtn86K+LVApq1K2gSXOXz/TFlYEYrZWtQJo/1XGjXbcNj4E6TYGuJqJWb1Yw3hag9CLq9bEoaKFFa8C6aNWyyV1Z2wVowrwcQTLzPPP6dWJZlg3k6IoBWoxmAwF7cQHRYkGVLpdsXZSmEBVjUPJJ0eJ3dGo54JyQrcCtna1tW9g6Awacu8h3l2oF/+bIVuxQ5QG2e9sLtVsnmj0pHWRRINGsABwmk69qFa021jXhvOB9YJp21Fo5n2c2k4DWNksZwKy64LwsiDjymlhlJkyDFgelcnd7RyUzz2e1b5tXqhVtBhcIcSAMnjVrl9fNYU9eF7xTS6dpN+HsvIL3PH/+hNN84s3D2Qh1CjqktVCCdsDVWnAMBAfZNbwX5lNiDIGaIIZIWa3LN3jtxhYlfi3nGWrj9sktwxC1AB8aSRo1zQhCxJPPK35oUCtlyaq45NDnOWcSkNFiW5TAKo5dGJGysp6POB8YnMdhChHeUUrCx4APnkYh1wQtgGvkliit4mOkpAwtg3W7CmLvJqyLdicO+9EscIRlycTRM+0iJZoykzRcxbblrVjsqCIQvHUyGg7o0E69EAhOFTLmlDk+vKXVwhA9T54+IcYRQbi5OTBNgwJOVpVUiXwPrTCfz5TeWV+15h+HSMmVnJvKxpPJ1qVJcxbvKiJFbXRyIcaRUh2pZFLOavNWYbe7YYjBrq1a4Ik4dsOOaABQzquCi7URRIiTWoypGkkmzct2fPr+amHLeSGGgWH0rCl1PRNSKogR+WqtzKnw9uHIkhMP54VWA+PtHuKe7EZSK4RiCjQsCJ4aKr5qwbkVb3iC3+ynxFfi5HGuIM33ap7GjFLwggIXFgse1yCvSUpsimHOlOuGKDx5duDVywdKPsIyUipbgbmxUqp2f+ZlVduyYyXNlaU08lrIRaz7FJwPlLkxnxQ4m89n1rNK89fcSEkJo6tZBSqB1kisK5uFQykXoLS6i8x8n1eq9LiGKcE5asrkkInesabMqWSef/aZxrh5Znez0/c2Z+aakOAZbkc++/nPsJzOlDWzH0du9gOHXeDJ0z2v15ljqsyvHsiLAiLntFh37J768MDT929xQ+DhfGI8jLRQiQOEIfL6Oy+Z3x45lZk2KrnTDwPzesYFz93tLdN+B1KZxoHSHKew4GrebCDGGGnecz+f8aeZGISaM+s6c7c/sLu5ZZGZOc+0qGTV49sHWvgecRz4/Fc+zzhGci6c1xM1r0QvfO5rX2WdE68/fsXxzYl5XajeEw8Tt3d76mnmPC+EaaRRGcJADo27J3fk84m3r++pruA84EcQBQxqVbuY1irntws5Z4ZpZDxMjEPk4Y2ntEwtiePxhENwET748DmnN0eOb8+s68q6LFQpSiQ+7Ig50kQVCgcZ2O13pCVTnWfa7fAIr14/gGssxzPH+3vc3Q3iBQmeWhvzeQbn+OyH75HOidev3yANxilye3tDLoVcEvP8wLQfOOx3rKdELpmcK6oEokShcT8p6Fs0GpyOR273B+1kR0mQznmCeFXcSoXT/ZnmG17UJqgsCVKjtLwVqD1KUuy5mTelyk7uqBY8SytK4m6msGeEnVoLPgZcDEh2Wz7VSqErTm4kCOcQd02LuMQMZwp2GOWgdgZUM3DaFGa885vdRc0XNY/ajDhux1SLGcDZeyxmTyXicK2iD5LZpZl8TyfIXAMNXc1ESQRboHuUm24B0PKx1noXtBjAo9el5rIBxCUZmIWj1rwBtYIYwcrseq+T0C2HlQ2U7sqTG3HsCkT9cRtiMGYHUdRCtV1fUi7gk97/R8TXbQsdvLkQVbau820zHdzS+1w38JAtn+mKpNt3N5zmArQ/AqDsLB6TX+x3VS1ROlFoU4rpxyrXz83le9D3cTn8axCrf/WyT811SluBQC6ZupTNnqwTPXQddAVeddB0W9cYQSkAHzb4lUb7RUH2Sta4qHeptZa0hgzQvtzgK9AeGvwGyN8BXvWGhwuhbFuj2fl1C7n+XuitU/KhNoHYsdNM6UxPvl+2+pUK/zrIDao+amSQUtSyTMSZ+qMpjG5EiQuhDRRQB8weTUkdJRVTSNULP5oiYU5JrXpz2dQedM2klk6lKklmiIFSMp1c1kH7VnUts9tNpJyY167qaMoipVKde/RZB1TRWJOSWny1qoT4bKQJnL/YaIkoebU1hmnAe70ualGrFnP9ea6p4IJe15qrLSFNkUJUo6KKAsgOR6ESfaBkKDkpibQTJZtZ26HNIs6er2o2p01MxQlV4tP54Npyzxp5mjUTgaq3GFkqm5WeD57mUJto2IimG+pl9keb/aG9x4fzgZ//g59jiNGaDBotZyX0NrXJnsZJ1UgQ4hCV8Of9FmU2lcBWzd65sXEoxchQ/d23+ynXFp16N7XeUdtmD9iabFbCSoQx8oJTW9trK/au8qQKL9bEI2qP12N+r7/U3DZlIrULvMxh3nmi0yaVZmD1RkhGKdo5V+4fdN5Zs679/KhqSRVV3dF3pgH6vPe4R7uydOz1DH0i8NEhzjSxTHWVCs7pMUoTUyX8/rkOLrWf/koLl39PU2QYV2iJWv0WUzUGXepF1RrUcmqU1Cim9KsiQRp85Ztfhl/6/5BWJcGUUskpKcGrVFPW02usc7Meg5OuSYNdy/po3sLWb/3M9P2UbQ4Ss7rTuorGsFwWmocwBj5+8hHP6s/z8Rc+IoesxDYpfPdnv8sv3P8Su6KqOd45xqjKxLtd5OUHr3h9+5Y0J/KqjQ9rzXQL65YSU/T4qArSS1qUfCkNHz1pTqynhVwzmao24N6TRdUMB1Mb6+rDUhsuFFK5yGMoySWQSiGlvM2ntRScOKZhJKM5b6GqylhtPDwcCUPk5u5GSeS5qFp4K7RauL274+bJLet5YT0vpDVTabgQGKaIR0jLSrPmwk2pXfQcTg8nbcIUPUgf3WUOrQ3XtG6RcsZ5j4+BYRwtrmZqU5UlEVV3GqeBMESW00LJunZLKanFdrfto1rtTpX2dF4EFzzBB9Z1UQtSPGlZCUOwtNJy8VwopTLtRmKMnE9nrZM6YTeORp5SC+chRkIMpkJdttxWRNcPIaiFtE7Haoua1lVjijjK1rGpxEtVdC20eVaVL6uBbUqf/V0FZIvN/VU09SM9gu0dUFUiU4/v8cLWG/156nYk+p5cNaeixFDcVVPAdgyX/Pj6rdvyqktRV3NmcUi9xFxByYu0/h2NE45LbHoU61qPeV0dr12+ezUuaqjQCUPS116fjnl2rWTLE3t0uey79ZqG1WEapshq+7rksz3X0rnFfrDdB3rM3KZ2zfk2m9t34y/uMBH3beQ/6YM/xJiAvwr828D/BHj2J3zOAzfA/wD468D/Cvg/Af9b4Pf+Mfb/w46/yTuC0rvxw40G73/yPv/y/+NffkdQ+lOM1uDh4YZPFXd+MkZz8P/+6/C/+N//qI/k0Six8I1f+QbPPnrGb/2N32LZLwDUUPmNv/kbfPm/+jJx/X41pUbjj3/hj/n4qx//RN7Od+PdeDf+bMcPTVJy7SIJ3gtvmDVH46IuJH0hetVp0mrFhagy6FXNxWTzUm8XMtH297p1u6ecVUJf9Dva7VdppvTetn11QEkI1rXaaCo7borDrbSta7Vbh3SJ6WoLX8UMbDFcm4Fiup9tMVptIdy7tNrlv16O7ODARsyqWsgVJ5RSefv2YQOeNrURLoXE4PwVgNO7tB2+y643LbiZgIAWHGsmhJEQAplMEy3AO+cIEmg5WaenXRPpQBrWPeVIKV3OrXVFI+ugcrrordZF2BVU9FybbctsFIInJ1N/cY4Yg51LJngtAq9r3oBD77VQ0zuBOz6VU0KAw2FPCI7zPFMaRPGUnEwFJhBiZF0WcJUQHMtpJbuKDwZO0ghDxHmVpl6XRE6Z4Bz7/UFlqaWRlxU8nM8zz58/Iy8r5/sjNVcFgUIgxoFlPlFrY384sBxn5iUTdyM7X3l4+ULl691AIxJCYBJhf8is5xUnA4LaT6Vl1QKED7g4cH//ltunNwzeMS+ZVoXdNNFKpTTtzFZcRhhCJC+FdF7IVfDBk9ZMqpk4wTkVYtAOyOP9A0PU4lXKCT965lU7656EG0pp+r0Y8FFwSZjGHeIDuT0wMKgkfEmmVtYICNIEcZ6cGs5Dw1Ga4Jtwu1fbu5cvXrAsK74pQcghpNoI40CWanLfjSiBIUQO06SWduvCQ1oM1NCuyXHQQnk05QBpWjA7n2bOLIQw4MNIrpm0rghVi3AusFhhNHihpMVArUiTSmhR5f/zop3v7qyWHYCPA0MMrDmRayU3oTTww8A4jEQfweTv+3tZaczzkfPpgXlZWE4z4zgQoufm5kCez9q935ySZrwwjBMhDlbYVHApxJ3aPgA4PdeUk4JpzrEJaoiqpy3LQq2F3c37/Pwv/zXe/+JnmabIzhe++d/8MQ9HBZmSnLWY3xyeCMUj1kXZmna1v//Bgf0+Mh/fQhNK9bRigJwRqjQOXBTl3Bb6r0Bl10mjbiMp7Q+Oz7y/4zvfiZRyottMlFqpzVEF1pIoJZNTJq0LJR8p+UytC1ITrhZc0eMv4qEI96+PtFbISYlNVC26FrNa0i5jncWkGbA5auHciTDAhZABG6BrM56pwil4CNCsoHv2QhwntbYTR10z3gsvP/6Ez3z4AfN54c3rN7idxxOZWZmmp3z+c19kfnNkF0cOu5HdGFjOR9Y5k3Mmnc/UBM4PDNFD1XiRzgtvXlcOdzecTmd9bqMwLzNkWOekIEyplFZ4ePWGmCGIJ9VCy6vOB65x/8mRfFogV1MSUEJaK0okbTnz9tUrxiFoMds15vnEzXRLGBTMC2NgGie1MMuVYzoyPtvz2d3nGcTx9u1rHh7uScvM/ZtX3N3e8YUvf8hH3/ke8uYtpRbunt7w/P3n3MSRP/j9P+T+PCsA1yAERyuZ5XymLJnxJjIdJtw4Is3x9uUrcl6ptRC92mFIU5WIZTnjXOX26YHWYHCeOa/gIE6B2yd3vBZHTuB9JBUlGqac2U8H4hA4nY+kkhhb4OmTO9bzytuHI9SqQFZTy7e2FM73J7XhG0ZVchPtoH7/2Xvc3e15vb6hlcy6Zo5B2O8mgqiKRF5XQgChMsSgQFiFWoRcE3FQMmHwgVIauVbECw/3D3jvNT5mIwQ6T1orD/cnGpXpHHj+9I7dLpB2A5IKa1bVSbW39AawKjGzA7UheLOKcKSc1fJQeUK0XIwopMCz2nfCMAZ8CHjvWJYFrBu9lg7aXcgR1xX8CwHdrFoQA2vt/XMOWjXSebcCSgaQWnG+XgCG1vQd7QSIa7LEpdB/2fcGvNthXewqMOC7bTGgf2fjtLRLLtcw26kryLITEjrpg8rFTgqbG53QSmeqtA3wCMHya1NL8hJYl1XBoivLY+047xqnP76j35vvq3TYje7Ekg2EegSkNCNl1Y0IIdLBoA3O2UApTW8veXjrDxNdFaCDOO1Th2IEiq4MQs/zH+flFwLTBn9tn+lnJ/azx/B0388FIHy0bgIDva420i/ECHwG5J+B+jnIbaXNFX4H+F1BXoPkbSmzgefXl9kJSHBwA+3DRvtaQ36l71vn9eDc1mihub9ZxnhnpAqQg9D+6QZ/Gfh/Ar+pB9/n0daTeTDShZ2OXEC0bQ1GoxT3iKwldKJNhZ9q8G8K/s7mYepmKVuNZH4hBBgBYCNIipFgGsOghJVkqhzO1p0bCc5rHKSqQmhOxVQHDVy1a9DPsWRVlVSl2cHe72bXSxWLdruJWgppXaHYeTu1DstZiQ/dzjjlgg+BKJX1fAKEpqxcW88Jw1CtgaeT73pDjxFDvGdZFsZpwEmErABysAYDFVYyIpOoRZ0StbLZD7stb2ohkGraYvK6KIiNrT3FV1UObg03DPZuFpzZKVUvBAlKJGoFb80n5YrIZ6wOBcK39X1XARLGISIycD6ddM5qF+xbrd2V2NPfR4/jZjnwK7/3y4xlpLiiawnL7Woteg5GzN+s4o3AkrccOyiRyNbrzuyjctXY04U1NBRp3cE5TzV1F3FCJm0qa87pvKq5bqYLCYrzxBC25p7rGNNoZLMnU9XQRLBjHsZIzmxkmb5+9z7gfDDlWqtHBL/NXw3TjLS6gDPSEwjrOvDq9YFcdI0Yhx3vfeYL7O9uCMERpfH25RuW1Gi1ULOAN4NH50GuFFHMGzMG4XC7Z10elJBg97V1BWa4/L3HiEch2eKsXObvCwkBdqNw2EVOczY1VKd5CVa3aEZattpFLUn/awWa6kRJ00YK1fRxpLSS1qTX0NahXNWMmqlZ9RDdLYx7XOuNWY/UFq9JFP0a2e+aEe9yLqrU2dd+TRWwPnn2MZ89fYaXn33J8nbW+BcDb+/e8Mc/9U1+4eNfoCUljAwxMgTPMp75o5/6Y0rLpmxcEBzeRTxZyYmlsZwXwi4wmMJRQ4lsa86UNVseqvlMmheQsM1PrRaoRRunlkxZktlDNqR2dXUhZ7WLSyXTqjY4iRdV8RwGXT+hVoqafwYyjZKVYLl/coNrqDLqfKaUyrKcGYaB29sDR+cQt5DSqmuS3cRht+N0f+T+4WiToTYsVnunSi5K/h8HmnO6BlgWve9GLKRVa97w0Cpr0vV8KUIMe3LOtmYXhjHqejlXI/VoLOw56zAMpLwakbEwjCNDjJznBSXBaF3NNQelUVJmnVeCESU1QWqM48D+sFOV0qb2l63puiGEsE30TaWsbE1wsafUnL7RcDhRxbxSNLFfl0QMpi5dyzZHtAZ5zdZwB3WnpNkheshqNVdMdfJ6Hu7rae+D1nFtW5pj96ZJO96tkdRIqKLWeNjclc3KthYlavVU/pHS2qfWFBY+Hv9+yzN7nO3K8Vy9o1d5eH9/64XM/oNVIh/ve1vncNlP5wb1FHgjKX6KZNU3qJ/dNDC3/V3npZfjuZDiLzmw5cc9v4FNPU/n/qD5gxEwr6/b47z13fgLN+6AXwL+l8DX7GdH4P8M/MfAHwLLD7GdCHwG+DXgXwf+ZyjC9MM+OmLf//dQG+f/DWrB9o9DlvqHja6g9Nn/jrb/bvyFGs9ePePf/L/8m+xP+x/1ofy5Gg8PN3zrW1/4UR/Gu3E9BP7gV/+AL/7OF/m9v/p7j2L0d3/mu/z63/p1fu0/+bXvm/ePT4/8nb/9d6jhx7cB8t14N96NvzjjhyYpVaseiesFZAUOmskFb5Ls9CLuVfeILa5rTrqaqiYt37seYVuxXboG1eKE2u0ItGjqvSeltBXN9auyqQ31bvIuY/xoIVfbBjT3z+vhPQ7Ezbp2Wi/AinbLAqZw0gz48NSmijgKKGrnWylJQRKvgHUn+gwx8PTZU3KBh+NRi4iuUWumFxc3slKv0GPFeyuGO7yqJaUV15wtdq2TyWtBJA4BUAnsNa0q3y8mr5/rdo96pzVgNgVJZaddLyD0Qql2ZCEe8c6KHt2OSoutwkWWWcSUdmql2T1uTQghIOK37r1xGrUTsFXWdTFSmBUTS90W7tDsGJIV+TPESCmJOmsRbXfYUVqhzIWlVqRUwgSHww3H04llWVhLxntHXhZaUeJdnhLOD+Ra8S7gGlDVdisn7bhcZiWniEmwP3/6DKmqelAMAM21MIaoNgIVWtFnaJwCy3Kmoud/KieCVwUkFzxhGKmpUgssS6JWLW6ldWFJidvDjmiWfXVWUlWTjHgYdiPSKvN9Yj7N7PYTgyhxZYyB2lTG34nadFwsQGCdVwWxswIiaU2IC4qROYfESC5CXZXs5oPXZ9860sSpyo9zQc+1FUQiuRRKFQbnVB7dO/wwKKkla3F0GCbKovLpwQs+VwYDXsYwcLPbq4XgutCKkhRjCNwe9rz/3vv44AkxGvhdOT4cVQ3Ne0KIiDjWspJzZhwGdtOOUmcq+g55qdScqBXiMDEdDtTYzMqvEbySJqvLOC+Mww0uKMjjY8Q7BTWaKLHx+PBG1azSyrKcldhkamglZ5a0IsDDgyr3vPxE4+e8LNTa2E07Dje37G+y2mF5T2plU5NyNC2W55XT6Yw0iN6znlcQJWL4MIBkWq3cHXZU19jt93z+S5/l6XPP3U5YTgv1o5l5fqCWRCEhOKqvtObxBAVinOBD5PntM37mp99n8B/irajmrotrl8dJi16YIrtVrtvlI9uX+nfFQ2mO4/lDvv6N11oQLoXWFDSsgKuVvK7UnCjpTEkzT29HfukX/xLSEnle+c3ffMLf/7u/TlrODGFgnWfWZTXlIn1/6WSqPodZsS847b4E7RZuRRXGYow4d7R5xMDLbXJoW8GWDk41VSOYWfHiWdZEWmbunj+jPTzw8nuiXditkJZKTpVxDNR5JaUZmRzhMLLkjJTGw7zy8fde4IagHdU+EqLHu0BOjZR1Pl6XBRkdYVBVrnE3AUKdC3E3amG7qXJOywXXPB5HbgqUrmkBJyxv3tLWHsuzwftCjMHm7cz9MuOoWvifRlzwxN3A+eFIWlSRgEktCdaiz64LjhY957cPQGWKUYnCp5lPzgvj7gYZIzdPb8nLTF7Oekz7HU8/eE59+YbT8YE3D/ccdntaWjg9qAJSnjNll7m5ueNufwcl8/btG73fPhBDJCdVLfAN5tMRf9gTx4EYBo6nM3EaVPXuvCKisTIMkSlO5KpWDvN8wjmbz7Jaq8Q4EP3Iw3lhmReOb49qhzkGYmyc7o+EwRH9AFnBm7iLiMCrT15zfP1AXlcaCjydHk4M40QcPdE7vGh8C7sCQVgXteoZxon9YeDm7gYvwtv7B9ZU2O1GfIy41hSkLZilTOFwe6MqXKcj6SSch5khBsZdoKyRdFxNfeSixCNeSd6lqF3asBvMTgMFI1a1WOr2Nq2qlZsPTlUoYtB5JwpP33tKKYXz8Ux51fRZuYojF0CDLQfSPLBQyjWB2+g+BmDU1hSo7rmZV8BdHEZy6KCCKVdkI4RXbB40AoWR1juo2L/3iOgg7spxx9Q+5XHOeU1c0fMTm3v1+Fozi+Grz5ZSOidHr78d64beYOR2I5C74BDLgWvpXeaeWjWqiu1TNju7H99CgnZys9337YQVqWJTMPoU2ah/ZCOSPrru2oV/taFHn1drJcv5McsTaxq4gMiX/V2DNJsHTV9PXAFUfU3x/f3y/WQvnfs9r+8qKI8BMTGCg95nNoJGUZWAnSCfFdpPV/hp8J/xTLeTNimsq5J1vgrtf1hp3wJeCPJf24V72xR4+Jy+Q7IT2l9qsAP/FU/1BfF2fg2uVaC8d9scWsz2WxVcBBW+0Ye43YH8a8ATkP+voyxdAc4AsY180La5tTelbAwFuSgQKMEI8IIMDvnpBv8jkFsl1qjajBjhSkn6nRS1WVdeFpb2zLWNmNbB4FJVQa3VSjOirtoy67yem+Z5zkEcBlJKm0KGOFW16CoorVSaqLWZiJh1iu6jkyRLUrstBR+1CUFJGxfFqdqaEVz7M2B5SlDbYOz8lTikz5U4hwte8/GKKrYaCaSUTKmFYZg26+6WO6FCFah8DJTWSLmQUyHEsFlOqb2dbGCwKsJdHvFuz61rN1WCUVtP0YaXTWmo6Fq+f1967DLg1ppUlHipKl61qXVpLdoUJd1Kzp4h54PawFV7ZmrDi3CY9/zKP/hl3lufKck5Z7JdY+ccQ4zs9ztThfIGfpuSsj1Tqiq6WBOQznEhRJrlSQrxNzvOhvdRnx2PEfmbEfP1PRYnOD9sqqrOeYtDznqtGmldNlJMf46dPcYdSAZYLVacz1jdIdOq2mgNw0CMlWG0uVDqVlPReVcJVCmp5L8XpwQFqpKM2kgpSqiZoipJxhi5fXLDNAljhJwy7VhIeVUyUDGwXfT+dZt3pCHiCT7y9HZkeDZtIH3/z6LIo5h9+dlFkYpPfVauvyB67h9978S69rm20EspAkhR9Z1aCq1mHIXPfvCUGKGVyvF4Yv16YWlerS3FmZKUba92td0+77ORJJzFRbH7Yhw2I8B5qtTLsXdCwtXflSzRp0B7h5paspXjTBwiq1t5wScssmwNMTmppfyLz3+P0+sHpjKp6pgXFhLf+unv8j3/kjxXLGBvSmi150e1bYo/3gguzqmyUisNCQ6XHVIuCtlQLX4o2bCUAl40t101d2ytUtQRTsmVNEpu5FI3lfIQVGFIvEeMlNNoNO81pm0XUlQB+rxQS1YluybaTDEvqi7sA37wuDBSspLVKo04DuxqZT7P5JJxqOrdcl401lRHzoVh59ntR6J3PFjdrqujdVtjB7RSlAjVjz2rPVsYIqXUrRkHEeIw0NREmJIL6cq2tU/9wzCyroVcMikv2pwnQhwCORVkWWGIxNagWU4YvRLV10TN2dY+Zl3KpV7a66POezyClLKpFqvlvKospVUJkN6+p89tnz4bharKSc6xzDM1q+WcGzXHjVEJTde41pZTmypxbXVrfshJ99WkWePn5d3oxHRvzRM9AQ9DYNpPpJRUJb2lbU638EknqD+q6zZVvpNt/rLPStsOt9cle+p5ITNdXAREANeMs1a3ffao1GPCp0fPQbdt2PFdx79rdtM1UWm7hlff1/z3otSkn+sT8nU9u/HpA+okVidO/+zrGEzNyV1XbuRyXH9Cevtu/DkbA/Ac+GXgXwb+RZSc9GnuxT+LEoX+S9SC7f+KCqF9G/gEsIYGnqCkomfAXwMOto//tkOArwD/O+BLwL8PzP8Y27seAVV5+leB/4B3Ckrvxj96NHj+8jn/1n/4b/G5737uHWHzTzlK8SzL+KM+jHfjU2PZL7z63CvW/fr4FwK/89d/h5//L3+eu0/utue9+MKv/61f5+XnX/4IjvbdeDfejZ/E8UOTlHpx8brT/LKY1KXWpdbeO4vb9rlqkuaPupZbQ0zmuwMWvZt18yZv3YYExqCWY6l3z7TeuWedo3K9SGyPUglnx9XcdYdfL311xaW2WXJUI8ZscsVWkKxWMGkNJSE5IfjIsJvwXgkSSOX49q0CYyKqTCOOOIw8PJwQEe7ubojeM58XSoFlPW9WHWLH1qz7CbNqqLXpcVUtDuVs3u+tw8p2T0qxbtnGsqw0VF0I2LqOM33x6/DWNZytC3cDUXpBDrFuWWF0WhDuxCTQBXsT8CJqn9Ss6Ok8tWZyrbimKlbe+43IlLLKp/cu6JzVmqHWqvLZqDR9CG4roOWUySb3LSbd75zDN8e6nHEhMu735JQIrjEFj+x2vDkeqa3ixbqWUyU4z3yeqQLLurIbJm53E+I9R7dwnGdu9hMN7Rx2wemfIjy9u+Plq5fM80otjXEaGKeJ+TwTponotYN42gV8a/gwsB5Xu18zN7cHnAusp4WW4PZwRy4rS12QtVLmlV0YKDnRW4bXUjkcJqJXdSR9pwoVVfXJrYJ4psOOw5Mb0to4Hc+Ao8BGtlBVL4+ToFYSayGlxm4fDax3hGHAFce8LOz2B2quui3RbjjvBahKPAuihISmKmkN7cp2rpHKQpwCDbWoy/OqxUYRSBXXhH0YGESVoZ7fPeG9J3eUZWY+zzhpjDFy2O+4vTkgNHJaOZ/PLMtCyarG5SUYwHXUOOL1fUgpcf9wQsSx39+Q0kpOswILTRiLEKc9fvA0ccTJqUWbdU3GOJAyLMtJr/XR4WNk3E2kdSEvM6eHt+RlNrWfggQls7VWts5B7z0lZ445UUs2EMYR40AIB4YhEL0S38LgCXGiNVV8SrlwOp958/YNpVTGYQTvWM4r3gunfKR4z3w+QlnYTQOvTie+8fWvM9w+YT4/Qz434G9GDsuAOzvK6YSnEQSW8wOlQPSBGD14T6uFb/zxK85L5slhIHjHENH74QVvAGswpS7nzS5SBPFCb4EWd7Hh7LUucRprc1VFAy+O1FZqSbSWLQQZENayFmCLI8rIz354x7/yN/8SOVTmKow3t/z2b/4O61xpORGdkFoj10K3Ziq1g5OyxRdxnmk3Mk6RhqNUJfY4QGojhKD2LcPAmi6d1KBzoHhnnbEKcDm6xY3DNVX9Os8r462Q1oUYHdM4IiGQs1COM6fvvuIQI/HJjhrVevL+k5d89+XHvH24Jw4jvqKdyL4Q3EAcBmiF2ew8T6czBE96teDXhQ8/9znyeiTcTbScmM/CUlccjhgGpGTcsOMkheM88+TuFkJgWTPBa3e1Wh7oPQrecxgnUisKljTt4ndO2N/d0FKjfU9j9bIkpBZ2+4mCzh3z8QRzIsSI90rEWJsq9cznmdHU2uJ+j0iFZeXlt7/Li1dvGA43PHv+jDdvXpPXBec90zQhDdbzynI6k+cHTrWS15mWK6e8wM7hm3A+zUo6HAMuCK0U9rcH4k4t+s6lMEwDa5rZxx03twfevHpDqSvD6Nnt9sznhWVe2R8OrGsmhMD+cOD8MBNCYJ5nzSl8QMQp+HJaWPYj2Rdev3pFRNjtRz75+AXruZDPGieab8zzTCmJ3U3hxt/oXB9EQRVx5LQShkqrQggCXsnddzcHcs3Ikojem42mAkU5VUqrZJtbnz65YxwHmz8b4z4Q9oKfV0L21FXfE+80hqaqNqbTfkdpiThGwjBwPJ4J0THtb3XuWjIP90cDNjy7w45W1W7KxwAOUk3cPLlld9jjfeDV916xLiu1GFhh1kXXpJxuJaNgcld3MmtfOh7pbB4TMPAP6/7fiOpglnKaAAYXzJJCgXSu9nPJHZsZUlzX5PVfznLNTlDS+r0SCfqx9Bz30kGuYL0PgYaCVN2OqKsAbbmoAVDXoII4IURPGIeNZKEKHJglL0aCalucrbVsdnc/rqMrbn5fgwCXa3dBbLkgUFzIr9v5tStQ5bH0xnYpr/fTVZW865Zj7XK/TfXjkXLS929W730Hmq6JNdux9jWNgTytPXouLsfXtkPvax4FhwPuqYP3Bb7UWL+00G4qcieImOqoNRYgME6DzqMp43ZQvpppX2nIr9l5nIClIU+3y7gdT3MN18RsUC/H0wkkndTR6LaoprqygX6mtiD6vMrfENpXG/U/rsgnl+Xe9RvVAcGLNdeF8dKmhuxAPhTtcv4Q3OeEdiebUhgianll30dM5clUxTbCpRF+2qZ6o2oSzWJlJ59kIxypCpvafpWcTc0y0krFSSMagX9ZtVHGWz6BfS/nrGuMUjSfChFxjSRqF6TNLKpe55yY1ZEwjSPn+UzKRefd4DarZRe6VaQqqjka4jwl9fVfJo5RY2JWsoiqphZyK1CUfBXMaq1rt5XWGOKAd117zJRAEcSURgQl7g7TQC2oRff2Xl0IX5pZGQGmmIKuKU21pkSirnoaozYtpCuylRgIrc1A/Z0y0ppgRFqzFA1mnVb1fLdXqqr+zSQDH37vM/zsH/0sz/wzdtNIzZlSEqA5zRADwxBV7aUUckqbKh1N5xdbQOg7YPlrWUXfOZydRzZ7P33xa1Nl364E56MSg/QaOSOVQi7ZlPZM6TgoIb0WVQ2tJW+KxRtA3fSdUb6G2Jr4yvKebvs2bFaEDVWz8j7QmuZAtakN4rwsSobzHqSachTUmphXMaVXtT0/p8TrV69ww8TN7Q65cbghEEuABC1lxGouJa+mKOQv6i1SmefKRx83dlO0XNPUA+VCWr6oLF7FTvv7RVHvAtY3+85GTrB6hpDtvddcpsf1hsWPqvdjCAM/9+XPMO4cGeHNw8LHH79kxr6L1o7Kpwix17FeVbi1HjQMcVOeC2Z9KKg1ZBZTjK79nqEkxo3EoefkrtZMoOSnUquqikvj4fCAiN03HE08NRVO7p7f/OW/z+fefMhhvuGD8wfcD6/5g/f+kPO8qHUbppLaEo6gcV2w915JmZ1KlXJmf3tDdI7iG27qCktKWHGm/mkMLVXtjoHoPYm0PY+tcbHbsjVjbZVuXl5bxaM2ccNhp7lxUYuxNa2EGPrDQU6mIiyq/qLEl0ZpjZozweyHJTi81+rdejozn2aKwO6wZ11UxRqLT8Mw0LKSvergyOtsBE8lVNG0KaiWymrqamKqc9vc2IodlyOXQvCBYRioZSbnFe8dIagF/bomJQyK5rXaFKNzoVR7zp2uq1uzOTdpzlnyGTdNxCGwHs+sc9bjyHpfaqmsq6o0DdNoz6huW+3mKqUIvtp71pXwg0cYqLJe2ZkXvb5F881WKrSVaTey3+/VQt3IP34IlKw1MpcfKxpWe198MEt5pw0w1RSJhjHS6TqbOigQY9xqodSGC57SCkMYGONEiNEaRIygJTq/l6t8sOcBOq80fZtEtvkLixtbHl7rlnNe8ucLmdx4updch95Y0dWX5ZK3tgttvZOv6O+LxUpBLeSvmyOQxzD4JbfXGvBlzkQJhPb5tp3LdtSP89aN5NSV65Wg3K/FFtd6nOwx9iruvRt/DodDyT5fQ0lE/wrwBeCL9vs/iXMhwC1KYvqbwL9jP38NPFx9//rz/yTHAPyvgX8OVVfqDRd/mvEEeA8lVP0SakH3S8BXUQHSd+Pd+IeMuEZ+6bd/iX/hP/sXuL2/Rf6JP+TvxrvxoxuffOmTH/jz49Mj/9G/9x/xs3/vZ3n+7ed87uuf48UXXvA7f/13/snH+Xfj3Xg33o0/YfzwSkrIBkJvixXXi+/KUhHUv7t3qfSFj0hQxZx6KaZhvuNU/bAuZgtBVI68NiVllNpMeFs7XNQrXmXdO5B9Xfjf5HJtNan70+LBVgy6KjJZHR5r5tFudrr8sEm527Zbk60jWDuMKqV4vHcc9gfGMfL27T3eOQ43t6xLJpfG/rAjJ7WeqrUShhHvB/WJz+CHiXb0zKejCUA163RRoot4IQYtkpSsNlZh1KJj6Z2aTdOnUitlLQQDKIcYyAYglJJxzoM0YgikNSkRSbRorgUXA4CsgCxE48ho11102hF5SrMW7orZdSFIE2IIDHGg1ERqaoFwBSGRc7biTaWsWa1JXFAJbucIJrXdSlUlhQF8CIgVqABCgJQTwUWVL/eBUivDbs84BGpp1oHlKEWYhj3jdODN6UGBBecpUoG6gSOtVVpNBJkQVNEipxPiIsMUmdeF4BUoPD08cHd7QyOTSsU7T5XG2/sjQ/B4XyjimeesXUkl411iWRI+ahfwEBzTbkcJI+spaQHHDUyHHT4IUQ6EGDmdT7RSicEx7ALrMpObYxwG0jpTamZtBYkD0QnBjcSbA9U3lvm0dej6GLRD0dRlWquUpp3KuVSiU7WWWgvBQfMOpkAuKzFGFkn4wSNVSW4+CMMQaAScCwSprPOKeI+LgbyeWebKtN+BE4JKXLDURkC7tAkBAe72e0Yn3B72TMEzHx8IrnG4mbi7veWwm1SJxsGcFnIuzPNCzplcFOD21q2KOC0QhsEAPMF7tam7P73BixKXRrNWi7uB5rR7+XhaVNq+qlz+fndgv78hl3uOJyUdikSmccJ7oda0ARylKMkGGqFqF2KMQZXfciKXxLpmclrxTjs7p92B/bRnt5sYp4E4RO2GXqHUlZS6KptjXmYlNKyJZT5rkS9X1nlhWU4srfHik5m0nJQ4lCvL8S1vXt5Di5S8Z7cbeTXfMx2esZYVyY1aZ46vP/n/s/dvv7ZlW54e9LV+G2POddk7Ik7EOadOXU5WOTPtSpfvdTMyFAaXUD6ALCMBQrLgBSEZxAuWAAkZzBOIN0sgHi3EP8ADlrAMMhKyKGNRku91zcyqzDwn40TE3nutOecYo18aD62NsVZUpalMKqvyZNXuJ3fG3usy55jj0nvrrf3a9+NyvUGIPL55y5vHtyYU/DD41VvjxykfibCh/SguaHfhhDjVQ6KJLHJgxyaEaNckRKPyCIZsxy0XLrfOeqvQNxINI74JW+tUCn0obVRIEVWzaIkRKsL7p8aPfvyB2qzgt2xmZQDqBR49CmZG2to7S5U8T2gItCFemBmerDeR0jxPbF4wPJ/PrOvGpla0UVECGF1KhJQTpzJxKgV0kDSy9EiQTCDSt43TFFkQxtKMDibQ6uDy9YW3OXPt78lv4HS+Y4fDB0/gTpKZS+bN/SNtwDdPF6beqWMz0WsWpqT0p8Y34Td4vD+ZReHDRJwn3pTC84cnRCNhQF0rdSzUpTEHON3fkeYzUgd9VFCjF+SUKNPE07sP5BhJp4QmaNeVa3/i6e4Dpzcn8lNhaxv35zNbr9zqRq0b03zPlDOSB5IiXYV128gpMc8z0+lE2zptBKbTief1GdXG9XalrytL7Tx+/glvHu9tBRnKw/2J73z/O/zaX/hrfPn0nss5o1NkvVSkAq3RxooES3jrMIFw3zoRoZ4qXRsxDta1mS1n63zz4WvKfCImK1CXVBi9MZ8m2qpoV6Y5g6+PfXRKElowwlWMkERoa6XqYL6fmU+ZD+8+cCozOQj3pztubFy3ig5BcjQC1jQRRejexX5tZqEQ1BL1Kb2QWszuVtlqZ5pnECsKbs8bQyOhFCbNqHf/am9crxvz/T1SbwQaqonHTx+g7WSUwK1W2ugH2cHugcb5bBaGpUzElEgFunZiOfEYCiEEnp4uTNNswgGxGG6o0LfO5emZkCLTXLi/P3F9d6Gvg0a39xOxwowTUAZWMEshkUIkp4kxhEE1GiBubxb2wrjQTddovzv6EWOOMRC1ZL4EEyIRwKYZKxGY8MdFUmpfs6L0S0Fhj2e7DqKa3YcK/mcXnqjbt1khXYNZiPQxGG0gyQp7RBNmoQ2auEWPx8roQRJB9bDYHQN6HXb+U3KBujLiBhiNUJtZjA6MzgUc1ISfxqG7QOl19/jxl1dFI9UjRrcvvFiovFCpvAP81Yv4VTyIBibm2G2d5RBF7HTVl8SLvP7HcXh70W2nKhk1A6vyHT/76odfHcNvmlkX20+8fg9U0SjwC1D+dCb+MLKOlZCEooXejcyS3Y4HdguVaAXjEInRLIE3WQ+rZBQ4AaddBOXziQ4X7HUrLrqg5+jYt9NNU7M6OyzB9udLX+79GKKRwRgQAuOHA/67Cv+2IH9V0XcDNgCn4KQAWa2Q/BDYvgPEgf6Dinwm8KkgWYh5p94ORlO3BRdkFzWNYRbYw5ozdqHCfj2CRKdx+p4vChJsP2G01hdKragJj2PwoqrHb7sV2U4DSjETT4W1bsf7GSnDC33H5RwuvnChRq9QzD6zj500ZHS5MhWfc/fXwyySgyBhoGJkXJvoOkHGYdMpQAxi4vqQDiGkYuQJCVasD04hZrfKjMH25R1S3K+fWfZIiNZoQCQWI+m0VnmhGnuR/hXNQb24aUTc6NZwfo8EBX9uQ7B5PMSjtcbIIElAg+/pYbRmVFenOXZRYjYiYUg2Ke9tESUEhMT5dubnf+0f4LtffYc5FVIwsksQJefENBVyziaCEKhu/9Vbc/GnFa53uhGe94jBrhnglJzBqIvZrXebm0OMRyHeKEX+mi6Yzam4sKlT63o0ixhRmUNsNJz2o+5Tb3ONi29CsNjWRXbDhTQxGUU2p+yW3U57Hcqg2Xrc8WYzszlszYRQXYzUN4Yy1k7rG5db5fp8pbdm69CAvq2stw0hosP2i/q0kcqJoc+eQGlsy5XNSTAxZU6nk4uRlWtX1lvjRYimPn/stX3xKfU1FY/D3nPP4+DNVmD2q3sxvXVl20zsFTyiiCJm9aygGkyQI2oErrYRnCTZmvL8vLJVp4LtlDV2YRKH4ML1DQflUaJRzIZCZBfY8XLPRyMXqTdA6DASpEmCnATzStiRYiRHe4bGUM+tCW3u/OQHXxJQYhB6VaD5eQxcwoVf/cFfJ02ZX4m/bBaJF9BFj7xVdELaVAoxWoPCEKMX1V5tz+9UveVyRebsQjeh9UQpE+u2mTa8m5hn1EbFxe15Ip9Pe0DGIS5XyG5nLq2RQoRkZO7WKltaiPd35Cmx3bo/S7be9NaOPWT2RjgJZhsvYiKiWCJCOKzQu1qjUGubz3ODEQJlKiZS8vN8uj/R18q7bz6wrdWIsutAuxJ8fdQkRsDr3Yh5hhFlRLOvFEO7UbdKkGhEWOTIQSW3xrR5N5qIc98ny77uesxHIIg3AY5BaybAycUEQ8tine8pJihC3SqtO1nQbZ5jjE4yFzpm9wi72NXO0xGHoIdoNmdvQqwbtRkBPeZEwEn5Oqi1kadCmowohwppKgQCqlcgGXlVh1nWyS52eaEoiV8H8QY8FSEnux+v1+sh1h6jczTBDqNsrWE1YmsKlgepRuWyBgM9hEOHhh11qqlZq4qLw8QTv69FQIg4RfLlGf+bRDoe8+wxJH9TmK0vMewRyr4WKNl/j9hQd2Eah9uv7CInxZtAxxEnGjHQX9HnGNmPd/AihpL99V6S2PuUOrwhN0QT1Nrn7MdxBI3Hc7sfx29bIPJx/O6OghGO/kXgT2OkpP9/gSavC9Of+J+/G6Ngtmz/D+B/CfzfgF8Grrzcj4UXctP3gV/A9jv/AvCzwB/BrOj+duhOH8ffVyPVxKdff8qf+bf/DD//n/48cXxUtH0cf2+Ny5sL/+mf+k9/828KPH/2zJ//s38e6ULskRHGR5u3j+Pj+Dj+ro7fskjJENDq4h0Y+w4O2BP7h/WFd8kClsCQAYSXZCYHhP9lgwi2SY6JnSI0uglJkHR0Gu3j8FZnT/LvG005koIhRE8gCN5jj/a9U89LwXvHJnhS7KX4EXh5Pzv0cSScAe/qTNzd3xFj4sPTxb3pBQ2REeA8z8SgrFqt0FkSSGdZbmxrIgVLwLR1Y8qJHJNZq7loyHL+Vj2PEpjmE+u2gSopZ7OTQUghugWBuoWFQu/knC1R5qIjQ1u/FBr2TqPevUNMgheCIk2tljCHhObBtlakw/nTR+6mz/iN3/gxrCY46a0hGN0pSOU0W5G3t27FGNUjgf1iyWfJQ9zOK4VAlISmynaIxaw/1whMUHImiPLh6dnSJnEvSFiicO8iG62jyUQfOTWm88loTs0s3/I8s95u9NqhNe5PJ3AqkV0jS7y1zUgVb968dT1dZ91uLGv0ekGzouGIxBS8yGvUEUYjSqF1o0u0bfPO5URJmURgaQsaBhqGJ6kwZLhAOZ1YW7X7Mwhzzqy3ld4bG9aNW3tnfV6QMiiPZ2Bw+fCeMUcaiiQB7wLf6mZ2fyGgXSANcgnEkSxpFbwbdiiDwTQV9N4KrUaGOtE3S27rkSgW8pTJQVGxay06EFW2bUUC5JQpLg4p85mkkfvTiTkmVDsJKCmRUmDKwjzN5By4vz9xmmd6G5RcGKos3mnXvRgdQyJFs6ACYVkX1nWlrouJ1WJCc0IE0mQFjp2mNbTR+pXLdSHlTC4Tp/NsNnKts60Lt8uN1hdEdupFRetqIsUYvLuwH13aMQopmf2WCevs2vfWad3tLiUwlRMlF6xca92St9tqoisR+hBuS+V2u5LyRKuVbbkwRkVSoPRCkMRWN7a6sPbBut24XT8gIVCr0vqFNhaqDi7L4NM3D9Tta84ZVCJbWwkk7h8/4fzmE+9+N4KQjGEkrG1Dez2SbYLQiYjaPL3FgXkAGGVp9IBYbtkEmVH8++MovgmWMO5jMEKn0617++kdY9soIbIplMdPrNkpCVMWbu+fkDdf8KMKP3kPv/SX3/Of/Md/lVafySnQ2mBdF9TFFqBujbGvDcELdmp0gaGUqZBj5HK1Ys88Taz9Rj5lUk0EEqfzPao3IKGj0kcnxMA0FUIwokOK4p2NbhMiwlQSJWdf4yyZ+y37FrGCBltjaxvftMYXn36H3/+D71PXjdEG2htNla6FW4HT/SOlCm27UiQQ1xv1ujLuEkJl+fDM9v6Zh7dvCSWwMUhxssT41qm9WjFyXdE4uLx/QqfB6ErWV/Z3rswoIfL45pERBM6Fro22gG7K9ZsL59OZdMo8ffXMqTZySnz97isrtmhkFkuC9q1SYoJSaBHSaeLN559we3/j/e0dt+UGPofPU6G8tUR61EG8m/n0i8+5fv3EN19+TSmFu7szT9dntA6aboy1kbCidAkmgtNqa00+2fwmbaBbM/rCUNbnK5d24c3DI21ZGKPz9uGemCJ1s3kkz8LpnOm9E0OglGQCqssTOQQiQpbAwKhHXTt5KkQVkkSWpfL+6UbCrPbmqcD9mXUL5DmTSyLFYDaaAiHYvZklHDZlW61sYt3KU5lIwPJ8QaN3V2tjdBP5Ptyd2JLSFes87htDOoPG3f1sBe4UGAzyaeaskKZKWBbGwArSa8XcXSOCFRdFlenuRBCl3a7UXvnkO59x/8kbvvq1L7k+X7mtKzEHZIPltpgYupt4IsdHK7ImZYQ94e7rv/j6rQoaYERMa9jpfUGH0YFKyUzTxLKsFhvKS+60Ox3hiC7F4j9L3DvdKDgBJpioQMWLGvKS1z8ECbyQ39QFl7uQfrfqGl7wjR6DKDDExEiKkkI6xPWlFJDOGLZmqAtm9jgsvCI5yYGVsFc1C1Y7rtaqi1KCkVG8xKAeI9pNZBYo384s/3SNw255r+V8qwDyIlCCF5uO/Qd3GcjRsO4/az+yk7H8eXolHDr2LF4IDi4As18TL0q9XPd9/GYd5PqbH7gdz+sX2Itg6uvPcby8/K7fgBqU8Gcg/7MFmQNr26ygPgAXKeaSMIqmNVLEGAGjbAjDBLd9HPNVDMFtBV8Kb/Z82LMgycQph6DYrdcOIca3in5ue8MrYcrL4b+cm+F7wHOAXxS4gVxg/EUIXUkS0e8p47MBEfLjRH6MXJ4vFqv6exN5JfCwopmJjV5fB78au0jG7RJDMopJ8Epd92dYNXAQsMJOXTGSqggvvlp+T9i5G25pHJzGqqRs10HH8MJvotVmceIYFCfZKiaGsPt4uEV2YJrm49hbb2alJDhZFoaL64ITgoffLzspwuZ8a5AIIkSJZoM6TGyw0+VEzPbHaBnpiJvBREqtmoCrwyGo6bUhQYlzBpRtXRnJrbxdLGICNrfTFStmI+oEVau2ylEAtvskpkj22CeEQBYjlu5zuU3aQkiRCLSdaae2d++jgxfjo1dpY0zkkfne83f54a//Ae6ez+SWSNlivRTEiX1CKdkImUMPq6XmtKJjHnaiS3LLK4vdjeZpdKCAhmh7tWR7wMN6h8EYla22wy5pJySpC6FarYzRTJygAjLQ0Q7BpjpJz86rHsX6nbI2ul2j/Q/szT1GS9qnfHtO7NraKRRq7Ua78eJ/byZIJwhDrdGoj2Y0xl7pvVpzlZit49DK0ErXia0NHqeJ0RdSsPmpj4YQzLp2ntnpUSLhoD3rGE46eb06CXpgDdSFGy4qVt8zBHE3SHU64uv9xJ53Ul/TbW1v20bbVrNIV0VSsYYoEduj9AYpsIbAZYXn586v//o7a+4RK9C31l+uDyDmyfciOZBg8y727IbJ7jFtLnR0cjTRxEGtdmLKRx4sjGExBUYjTtEFjOJ5H3XhkjrBtSg9QOJV/moXVfhcbXSwyq2vhHjmfD7RamW5rRYjaUNDpjcTtFrjlPpVGLS12ivFwGiV23M18dtcLDxjuOCqO83ZrTO108XcgE0cqqQgJu52Oh2qTFM20ZgAKdDHhgylrY2WG6kUbtcbWiun04nrurD1Sk4mpowhWL5p+PnSQcjR4u6YuH242nULLrhAmKZsqUSxxsPz4z0xRJ6/+YAg5JytEXBYQ8JoRnKKnieMOPGv2xwYQjShbLe1QYZd/3VZmGcjiu40o/u7E6pGAh/DLDtplttM0dbTtq2gA9v1mCAN9TnP95Pia/e6rPb34WT7bOuLBBOixuiqINnFLp63xCwztQ+atsM6OIaA1k7FyMDgOVRxUZFEo3Z6DDK0WSNBjgTyvgLbfFsyEhVpzWzvPGc7akeDP/UiNKeqpxRprfp6Lzx88kgqme22Uls7CO21dkYzIpLia0AOJu4M+3yyByKe6z2iNDE7ueCWhN4sGkR8PTCi4UDcnnXP974EGntsuU9Ru3jnhaS5f2vfP3DEtvsryPFCrwVU9v9fCzYtN/0qRy4vX9+ZhzvJdfjc/tJs+WpufSVWkpc3/9ZxHqQ+J5Cxi+N2K+L9w/wmMfDH8VM8MvCvAP+y//338hDgO8C/BnwNfAn8G8Dq3/+jmHUdwL3/7Mfxcfx2h0KumZ/9Sz/Ln/x//Um++PEXnNbT7/ZRfRwfx9+R0aZGm9rf8uc0Ki3+rX/u4/g4Po6P43d6/JZFSvCy8Tpw+W4fJQRDyO+JKJUdpGHddJ5MUnWqgW/GwreKEZZMCFHMjkuVMcxP3rpAw998PK86NQ2D+0J5ikc3sP9XcKuAbh2Gr0U6HLWdVxtR8QKHbdJ0Fz7tm9JhRai5nHhz/9aIBBo4nR+8GBa46o2QhNvtymiVHK0T/u7ukbWurLcb18U26EEHYQgSzN5qc7GVdfNZMniMgWa3/Im7fdpLN74ET1C5AAi1JKuhfd0yrTdKMSrTIfoSjo5hu2bRrNs0IKfC9z77nE+/95Yf//hLru8v3N2dqYJ1l2JFuxgTuRTWbWW5LYh2ppxBhZt3fvVX1m5EmKaJbQx6t2RLTpHesU69tHmns5Cidak2L2hOZeI0V1TNssCSFUJMia03at1QFeZsBK9lM7KG9E7ow5OUgenujt4r82ki58joyWxUVJnnwuZJKbwbLJVEDJFIog2Y5hO3ZYVeLaGn1jWYc2E0vHN3ImDJK7tnIrkkGMLz+ydudSWlzJBOyYnrpbMuC7VbArCk/NL1ejMLtKlMRoYJicv2TN0qU87kKQNC2xptJKbziafnC6EpY9vsfhLHue+WEiESMPoUMZo1FTBE7HzHcCS6QhK2rZt9UohHEWVKie32TN82wDqDaVa8aMtGmoxMgmBWaWXiLmfmIEQiOWfmMkMQ7u8eOM8ncopktyhMxYpyYygxZkqZ2LbNkncEf07VE2fn3Q0EPHkqWBKqLSt7OtfmqX4k38YQcr6jVaVvjb7eXCQpxBKIyZ6P7N3KZuvohWpNCIUYAyHasxAkMlrjWjd6e7EKI1qCqFazCykpERhcbzcX0QSUQOuwbY0unfW6wsAtKRoyMqqD3m5cL1fGaDSEkgvreuHp8gTpE/LjxnbdqOdKzY3bWtj4hl//T/4C8/me+fyWlCaCTBCUmNyszxO5onji0+bEgUB0wYdaMtOSXQFiZEhAU0D9e5IwQpq8YMf3NSHkRFQQrWgSdE7M59mSzypMQwgx0y9XohbGqlzrhdN3T3zzDN98UJ7eD+plIWhj60YW6M3saDgsndgziqjP0YqSJJCjWR+MYfaYKNR1M6uMFHl8Y8/pJ5+8ZUqZ222h1ZVOhyhuA9NABykHtNuxp5SYY7RUsyrTNDNk0BlGUSuJ7eiuNvHKKRWutxtbrbz97Dt8dnnmq9/4CRDoDXoYxDJYbl8T6MyzWTieSiH1wTSdmM8ZboPtWll4hodIH2IC1bUTqwk5tm2jV1tbQehrhQ51KHmK5Hkiq4mA12Whp8Dp8Q4pidv1SionpEN9uvHhy2/ocfDw9hFFua0Ly3UhT4XWG7dW0duNoBDuImWekV7Zts26Z6dM65Wny5XHTx7pOkz4qWbzQu90FRqNN5+8oddBSRNv3rylaWelElQoKTGq2ciN1rmbZz598wgKaSo2lwx7rVEbUylkAnVbYQyyiJEbeqOcCuvV7qUTESlCV8OHlVJQHdzdnaApT+3Ceru5nNmvaTQqSRQhAuvaWLeVbalWTCmJcrpHRTmfJtpW6ShRoCSzCgpuRwIw+sbWN6ZodkIBE/m2OihTNruIaiK7lCOhd9Y2rHiWbc6d50zM0Z7N5ISeoJwezuRp8Ol3P+d6fSZPhXGrvPvqPQ2M3iKDEVc6jVGtAJ9zRBncP95znv8Qv/Yrv8r21dd88tkj/bmyvLfrqB2Wy8IlGVmODOXOinhjs0KOePAlYnZNYCSOeS5WSG6N1l7KDikmNhd8hhDMQrGb0FFUX8V2u9JnoF60H07elBhcj2cFt9HNJullwrB5Ihyd3hwCD+tGHsSYzeYSEyp2ddJG9FjM40kNRkRLpXC7VJpTo47Cg3xb8BJ28TZu6+DF7oPuUCujKb1bN3Qs8YjfzIoruDDtp7uw4NH/EaOPXWjEt8rA7F3ix8r9LRGQ8PKj8q243mgovjfQnXKzE1S/rUQycZq/1+vXPF765X332s2L+Oh18ccLdkeliuPv8uq1XheTBCCB/JlA+mcy8zwbYUOFnIsXmQQwOklrGzq6WzoFSim+9lWqz/HiBTQTchjhcBdGmQh5pwt67C+wW9Du534vk70u1hkJJxwCpeEko29Z2QkHyQdAToKcAuE7gqTA/emO08PM5fnCtlTyudBlL855fOD0ml3gb5ZJEZIJB9CdPuH3TTAboV53UZtRn3QIIUZCsOdT9oJvCOzGRjFGa47x+0DcSsVsJpvvr0zUM3TQejviS5zEtRdoxzAL5BjDQX1SVTu25tObjxDjQahSLLattbmd3X6O7XPrwNcWF1+3ff4T/xqs6+pEjGCkmBDQbdCbumilvojP3CqstUaKCVWbd2q3OTm5gAt2WyNrntjWzfaYrbswzO53VaM5WW3cBYhBGLUfNOL9GdurrxJc5JXCIdIRhBQCvW5GxhIvnrrYZtROSEJMgWnN/ODXf8B333/BJ7dHvNWC6LQqxJ6fnLI/K/t592MeZt8XY7Jrumczjv2EEkI+as1709CeD9DaGTvRGT0sBXeLuxKyCziM7KO7VU/c6WBG9wwSD+Gr7nZPRBND+L16CHx6dxHgi/WZom6HWl10py5adOET4oIsY+2ZNSxOZBqgtpZrt32JavcGj2gW5JcNwkys3WgyeTDqoHXo3Hj6yU9IZSKlmeDC5r0wfsx5r//49yzvYpzsl0K/WRCJRG+EsZtnqCDRKNDiRXPZ1ZHi4jEBGCZ3koCmRJ8mn98tr9F7d9F1ZFmfefP5HdsQtk1ZFqhrBxfyDVUn9vn19664XVhgr+tNEPs8618LPpf11p1gFKwhyG3AAkKQza+BHXvwvbaoz124jVwIpBBckDDIsVh+S2wPG5y+qC68FSCJxTS1VsrdPfePD9RWoSvarclQktDHhnanMYpl5bLTzPOUnKDl952sDBF083mv6SGkUbfpjRpdCGX36dBASNZEtzcw1qZmg+gCI4IJLLUp9brQ50SeC4LQ/DN0HaRgxJxRO9qsOS6khEik9Wb2ldHuvVpXSJEpZhNB6b7yWwNkG515mpjm2dbYPri7u2Ntq18bPx+7OFeEuRTLRYXg5EFv1vS8VgqRbYD2fc5Ta5iRRFcnrkk0G8xkMeVuuyVBmHJhXY36dBAe9/nC58aA2Ze32o8GnBAjxWl3KZoV7J6bjZ6r3depgK17vZuwLnjsu6/ttlYFn8Nd5O3+niZEsmctZSPII6CYULdh9MEQYTrNjGHEtxQiy+VG68PnHbUzJ9BXm6diMjGuROHhzQNLynx4/4GUElPKjHFFO772DOpi13RgeSkZ4WXPb0HWMU/sgchhcaYv6iHV4WJ1X6RkbyRygpa+PO2qezTqUd4rARLiMb8L4QRbc+Xl7X0deREO7S8gnljfhdP7vLbTH1/HjkdMGSzP0JqTtvC483VYq/tOxu97X6kk2PtYHt/OwRjjWJ/E7QzDLi71iVz/ZmTUx/HTOArwvwD+x/zeFyj9jeNT//Pzv9sH8nH8PTMU3rx/wz/x//kn+Nm/+LN870ffMwLgx/FxfBwfx8fxcXwcv2vjtyxSOjpxBVLKiCPHZbwk5mFPRIl3/1rCJQSz8Ng3YwH/JXGE8H4wEgHxblXH2vKCXN8T3yrWQbJv/4Yn12H/nT259aqLOQaCYF12e0HiVbHg2D76psyKT+Ho5AVeRD1YovM0RaYpUNdn7y7rZjEj0dD73mU1l5k4zSy365H0GL0xz4V1uRkBqTdEApsTA8S7fJrb5A2EkBJDxJMP0TpevaO+NUumh2QJJkvscySkS04IVozYPcnVk9x9NMdSD0/ImL3L208/5fz5F4Q6uCxwf/fIYzoRUuH6/AEZenSq1lbpvRlBpzW4dUTmIzkcsKRUcrKIYCIsxTtFse5bdSJELhNoQIfRUe7KHW/ePlC3xrZVHu7uuS4Le+ly2zZkdFIOtLYxBtwWS7RHUa7XCylGSja8eYoRnRL0QBMIavfktm0MBikXtqVyWzfm8x3bbaGvlRHNgmJoOBIbOSZKjtzWzTrEzg/kmHhaV7bWGSJURykPF8Wty42+NkIUF+ANJ7QIo3V6razLYuKsZr+bp2iIei9eiXbmMnErK6M3EoGehVaVlAsMZb0uRmsZSsiFIR0JQtOKNkFTIqXOdDpRqzLUBCSiDRXvKBYldOF5ubmYT6APau9MQVAWJsxGo3ZPzNROVIhD6H2lh8L9+Y7TfOLx4Y63pzNn7+C05K7QewMNds5U6T34HNEJYZDzRMyFuxBIOTstZ5jdmtseBE9SRgne6W32FVutrNtKb9Z9bkVoSzzVWj0xd2M05ZQDsZysiJcycZrMZiII8zQZ7l2FEAa9bvRhCT9E/bgC16t1c4pAzpG6J5PdeqPWTu+WxGx1YfidPDQgsdC7YdVjMUHUqN0pKJFUind6W+f8tm7Uoayr2a3clpWlfsWH63/Mhw9XHj79nDePb/i1z99wW97zo7/2JW+++30epBD0xtDuXbGVnISgDbQxJyGIcjrN9mxqYCp3aBRiScQwuV1aJmggThMSOmMzuxAJkEtkijanZy+w5ZTY6fGl3LFtjZiE3gfbuhFJxiIZShyV29c/4cc/esfd77vj8c0dFbMBrXWl1yu9Lrx7/55efW5XNWGYz91lMpJWbRVkkHNidly9yF5odcJCs+TulApzTiYqysL9F29ZbgvbtlF7ow4rcV6fr6CRdd045WyFTC+apGDI/RgzIUfuHs5m/YQy1s3IazEQQ6K3jbY1ltuNeT7z5u1bluuVsXaoA5WNd++/JkpgPp355DtvubYVIjx/o1yuV8r8wOPdHY1B6wvb2gkpkTBLuuH2NDBYR6MNuFMr1KUUvfAdjeLTu1mtpIgUIxEA4PPSHGeCCM/vvkHOhVwmwlzQigldtgaxM7ZGWytziKyXBZZKypG+rox1O4oBEgMikcv7Z3TZSCEZHaYLISnlemF+LOTzhLbB7XpjiFJCIrZImk702OgtMcXEeSoQz6DQRTmfT4xtZfGu+JwLcy70bPSHcpp5vl1Zl4VpLpRcuF0WlucbeUrEXAgxMwh0Ec5v3nCOmTKd+clP3nF7fkZkmFWOiytH20UjQkoTZCuoxSDc3d+RUjRh9DwbOWt0K9YMs7XMYaINq2yfUiYNCGOYeBSzl1NVSpk4+XkZQ5EC2zpYW2Vpm1nQiaJaKKdyWJmVc2GKE998+Y4hyvnuzO1yQSRQpok8TBzaVMnRLHaDW7HoGDy/e0evlWk+8/n3vsNolZILS2iHGACFURu35wt1ztw9nHl4CLS1sVw3tsXIeNo6IwgpR+a7Qpkncs4mss6B7LSNMmVGMmpFb27FwquYZgwv3sBuJSGSEPGuak/Aixc7tVny/RCSmPrgSMdLfBHB6tj1mFZ4Q/ACvsWpViBysohbho5hxUCJgSlm1qUh3dYPpb+4hf0NIo/dgsE+B0fMuBccDoLBsKJbiHI0BAQRNEa3Rv7pHN8mqAYnaupRuHmJyjm+thdr9pLLPkQUZuCTFwGQYOecgNFpdqHDl2J2f/L6lUwgsJefRI93/tZxvtjL2VdeClb/WR+S44CNY/B6v8FR/OEtyH9RyP9oIBahd5ung5gYRUUOoQpiIj2Jya6v729UBykmWjUxPIfVix4WlvspOD5TDF6YtqJXb8pOe9qLVuJF7zHGy+dVs1NWF9KYVuKl4Gb7MTnWYvzZnE8n8t0d0pWtQs4TJVgcV+vqAgZxaoq6UE9dUGN2XYeYRYxu8XpPtoscjDohFrMMe+aDx5ioWduUFJhns50efVBKobZduGsEOxOpcAgV6i5w8ljCbJkCrZsNlabg5x0/dqG3hmKE1Y4JqVPOJhLuZsOdYmboy/MeQnBrJd9j54kggdrMYluxRoo9flXFaD99+Nz2Uoy3c2mfcbRqsaTvdUISE6WpEUrA7q0W+/EMaTSbsOJ2Ra2ZgNhUGS5oE1C6OX+HQAhmadV3a77dFp7ggndFtLO1etwzqDUUJAHdmu1ZQqA7PYeuiAp364l5m/nB+x/w/afvc9/vmEphvs/kYAKd/dkeLhraKUfBi8yWEFC3HbIGnrOvCyheXLffDcHJHa/yCapm99ray3naxTS6PysCQnM6qQnuUUVCNAKTeYzZs+xzhcWiu82bz43RSERb3WwtEXUy1i6I4thL71ZkozdeWCKCSDyanXZSCrv9odizEV20N1yQUls3SyyFVhtt3Fjrl6xrZTrdMU0TH84zrS08f7gw3cM0R6RVdhK2CQCcEjg6KQiCifhMLKekmEGikY2C7W13QpJZBvItS84QxKilPq8EeZkzANsf79BbnJwyfC4Xb/RYF4vt6soP7j93+pLnSnqF0djWlfZqP6H6QnULEgiR43yHIMRgwg12apOYAGufn6MIIWU0mjCt5ExOlnPpo3njnvic7nEcRpvZ82tRotN0OKy59hird18mRQ6CJENptR32j6fziW1Zj5hj26wxJkhgujsxAoRqz3RdV2hwLjMZoTdvAHExSQwBI0NaE+GmFvsGHRSSkZOiC2N2waWaoEadFClRYB2M1lANZj9ZK00bIScjdGMWj31ZGb0Th8U1cZhYpbdqDUSjo7Uh0y4gsTWn1Ubdmj377qelCnk02mjEYmvKbs0Yo53jEhNjF1sO27tKUHIyYVJM0ZyDezv+rdWI4GANaqgyWqM5MUgwC+TdbjYGt6dTyzNMOZNLIabCcrv5OdtJozsxy+YvuwfFxZUm0M05vazBQz2fYjlYswr1eVEHyQWQYaiL3/SgTooYdS7sQmAVch+0oXavjk6vimgysZZ7NZpwK5iFd2tMp5ntdvO8ViT5sXe3bQxH55L9p9XGoldSLuQ5c24nt1v0+VV24Z7ac+Jz4fnuZPTIZgLM3nfCH56vDtZgGKM9x2rz4Nivt3/unSh5RHghIK8sQG0O8tjylaD6iHXCK6tHPIaXI5K01z1EUPvH1mPNlvAqZuKFpHYsLL4H2T9XdPKXr6gvsagvccg+T77+4r7g+jqlcuwvXv8J+rIfEgGiCb7/nh77luAN8If/Fj87gP8YWP5OH9Rvc/wM8K8C/w3+3hMofRwfx+/E8DXxk28+4c37N/zR/+iP8nN/8ed4/PDI3jD1cXwcH8fH8XF8HB/H7+74LYuUvNHvSHDHGKFWkODdIi842hRMDLPjyD03zO5xrTtiVsyOCbzLKCTvAvVEtG8GQwiO5W0HnlY90QqeWPcEjY7uHVBybCCBl+DDk477Mezfs5zWvqGzrwUJhBypvVrROSXevn3Luq5crhduW6PWK7fbxoPbxFyvN7P8ubOCW8SKJJtax9w8zfRuBeltGGFF3R5kePKoH+Ih29x3twAwC72d1OLof09AhWDCJG2dmK1z9BBYqXeN5oK2Zp/Ok38hBk/6B9+k48dkyOt+q4wgXD48M7YL18szKWROD/eEENh6J3k6dGhjt91QF6HlMpH6QLsRC3YiwLZuRwINYNvsM4sGpjKxtYhOGLJ9DC7XK8kTSjHbfRJTQhlsy2pWeqfTQWi63VZq3RgaIUcr+uyJo95J00zI0bt5laaWYGi1k0smhsT9m7dcLzdEInWthBiomyVnYrZrNk8z2q3gkFOkbhvrYuesD+V6uzGdiolQVFkuN0qZSCmSRKh1MNpgBHtWYvYEY12p2wKYeMPEZomSJ2rdvNNZOJ/v+PB0Y3n6wO1yIz+eEYXb9UZOctw393d3pClTtXFdbvTNxCkp3xttgEFKGS2JaS6M6sm8kui1or1TYqardXprh1Ahp8GbaSIlo8/U0VEgBxPq3d/fmaVWznz22efM80yOEIdSQmCarMCeU2JZrjw/PVtyXAIh2+9JKIxWibmQ80SImeiJblUrAuUYeXh4sM+AUrXStkpdNtbbQpZEme4Y6laR3ZIxtW7WSV0r1+fFxF9RQeyZu61X4hikZsWlgHUj1toZfUXE7uu6dyHWylC4LQvVBR2qyros5JLIKZqNUsAsCdqgqSfDoxBSodXO9Xq1ecjtAVqvjLaZaEgGdYPldmOry1FQ0b4y+gJUWr1wvT2x3L7m6x+9Jc/35PmBecrcl4lR39O3wnT+hNP5weaqHLg7TwhKrxu//9OZvt7IJVNbp+2WJxgG3mZfIzCJVAjWlUgdZgtBp5TIOVkBrDg5oKRmFK8UuTtl1hWEwVBYloEks4QQVT5/yKQt8Mu/9J6H8Blf/ejK5db56scLf/0v/1V+/ce/yocPX9NuT/RtQ9Xock27dwsGzucTEo00EDxhnKMlV4eMI2koakW6CMwxQcxWHFazPkwp8uFJiWT0ttKHwjDBWSmTdfaqdaOvHWKaWC4LMSpCZWtG1Uop2s+KcF1W8jQZxUoDQQN9XRh18MXn3+Xy7huojecPC31TJCY+XJ7ZamN6PJFL5js/+IKvvvqKx8e3TCSiNvplJXcYARd0DOq2WDcrJqQwa8dBicJcMkOi2YDlyKVVrrcbbz79FEV4en7m/jRTJKKl0Icl4PvoxE241c7aKuE0c3c6c2vP5GQWJH101utm1AS3Xuy1cn33gdPDPfGUeZiykRAGdCx2aE2RkghtsF1vPIVAOZ9Zt43LsrCNyv2bB9rzakXHEpGEddUiRyG4BiUkofg6v4siY4jczTPzlI1IlaOLmDC70tOJ3kw8cbte2boiOXH/cDZigCppznz+3c/5CYP1drEiiMczo3VKjGjKDIXzmwf68GJOG0wpkXNGkzBPhcvzM70NE+wGs36bU2FKkRzjYeeyte7CLujBii/aB2HYGldKYbQLvcIUM1uHvnZC7GzN7A7Ei8xDG6Ukxhic7+9oW2VbqokQvGtahpIIxABhTtSm9GbF13VZ2Xrjfr7n7Xfe0nrj6sVQiQm0HZ3BweO5KWWmkDifTtyuC7frwrasQCf6vNK7UbEkCGUqlGmitsrQwek0M81mfboumxOFwkEUiMMoQrvlI1hBsbUOqBc6AyMKXYaDS3bLIiv2RauimSC1Kyb38G7jyHGdAzupx+LJVDJlMoLjqGab+Pj5A28e76lLJTzZmi4SXmyt8NhOX4gQQ1/mJe1qNk6KW715cdqceemjMdSL8v4zMYZvCWJ+2sYLpcf+bYTV153a+q09gH1FvdAP+gnwBxV+CPrWRErymXeJe6wVgguVuokGtAvyGyB/Tgj/kZ284cVuOGpDcAgddrqTuC3gSxFv/+9OZ7LD3ROcrxKdXizaf97ITuNohJj/qZn2X2jUu2ri263SaqdMxW2bu61N+YWSwdCDkpVSMspkN+GuFTW9y98PQ9XulTF8z+CoyZ0cY6QWL6q5GMmsDQfswhMJR1f/XmALwe3h4CiwGU3AC3fdy2Z+Ynf6jHr8r73Sts32VlNBwOZGQze8NMYctTezAhvD9pL7MyRixdrhlBl7vtSeZxVSSPTddqYb8WOrldm/ttMLzMbbhAKqSpRsQpIULd7brXdcnJO86GlijIQEIwobndfE6GNYwS/EQJmikZLE6EQEoanNLSHYHiWlbCSXYYVcs+XqLkhSE65nW79UjaoW44zEQBLxAq3Flho81iUYkbDb3m+33A4EOze9H4TgnDPr2mjbSquNKBnBhPzhFR2ulIkQA51BbRXtzZ+55PsJJznF8CIiYKdCdSfB2j21E2pkQAhwCoVznfnkwyd+eymfvv+Uu+2Ox/7IrBMxJk6nMzklgljLQcRouiknYrBmlc3Fv0Jwe7/o+1MT0seYXt1HJv4REZIIUyl2XQS6dqPetE6vzS37CgcdyovbY7eP6526VUJIaNgL1ErvFfH7xc6fkURsP9IwAYK8zCnDBDtmEzdMOMOLbXnYRWnHfOWWiPu0E6KL/Oy1ezfB3N6YIEAWZXSorRnFRS1GVG2omrB/jEq/rfS6cHueiGkipEKKwWx8+4L2SMxGpgnR7facLNlb425OhG6ikqFOPZGdiPYirkMECQNor/JOPv8LFrtj5OvdWtlEutYQgtpzY9S5l99TBZ2FEiK/+ryiCq3Cu28WbtfO5enGhw/vuC1XWl0ZrfpzaHSnfQ6PyfYQu5gtRjNfe03fOfYUyCFiCiJITj53wTQbOYeRofeDBm5iNDFhjOwELSPG9DZAKjIFt+XrNm8F8ZyRXessEVSOOX2MzjzNRo/snbo1mscnTTu9X5jOE6qD0/3ZxdiRMhWjhemw+XSIidzFBGDaLQ8i+7ro4VEORr4aYxeEWPNaFCh5YllXa2wRGNFirzHMqk+6MERYWiOUYns2j3tSiqhm+rodIk8ZNqe1ZTNyVgyWw4lm6+5uWUa6dqGOdmW53chlQgW2WqmtkUo8cmk2d2KLp1gc1scwMZ/vZ4/Pvec+YzQ7dqe3VafuxRCYcrbGJYx8ZqJYayCZ50LrFn/O5xmAbbkxdtG2z5MhQI6R1k1gU3KyvTLmCByjNUJJFrZqay7KQT+MMSCS7dnZLSSHHlaeYyfw+TkTIE2ZvjXGWi2okPhiNzlc5DJcECsmTDStvtGGzQbVCfwI0aX2UV7i7j4GBrsdVGzOLnMxweRS2YV5eyQYPMm4i2hySqSoaE5sq1ma91qBcMQmr4nzOedjnybRGkJ7a1S3PwU/ZyIv64W8CqrwBgEPTkK0WEN9P2Hn6UXYxC602lXhfoIt74DPTy549Ty7uoApJrPzM4IexDlxOlmTUGsDxIRconI0oLzOY3MImPyLQ495ChGnsu1LiDfL+TnYCZk7denvuSHAzwJ/xv/8YeAt8Ef+Fr83gP8QsyD71/3fv5tDgP8W8L/ChEoftRYfx8dBbJE379/wM7/0M8c+8oe//EM++eYTPv36U+ZlNqHmxwfm4/g4Po6P4+P4OH6qxm9ZpBSOjY4VkHaxCfASEO9s211YlLMlbwKMOqxgoLbRMju3QQjK6XSypJsEFxzZ7w9ehESGoh+O4Hb/9VebPvH3jrb7PohBu7DqoCftON0jufISnOzY/cPbw+1dRtUD2W24cO9KiskSC8BluVmyp3UCynrp3N3fMUZnq5UQIimZBcBWzf5ljHacB6urqufkLVHQtkZw6zUdtptVtS6hOGVY10NsFUNgniazJ2gbIaXD1s4ERCYCsGKQJ4xT5O7+zHK7WRLMN+ExWjL9q3fvmepGHKBtZW2NtXbOp0zGPr/EhJUf7Q4Z2jxxE6itI9GSeFtbvasYplKMdBMEovnNhxhd5GNF1Lu7wm3dkJCt07h36toJJUEQlnXlzdu3rNq5xSt9rbTWyTlawuIhs20bKVvnXSkFFRMUKCZ++uz+DatAU6ODabf7UQcsWyXlQpomVITTPLEumxUstg09z5Y0HI1PHh/pKGtXqJ1tXclz4jxl2l4YUMjBjmlsZimUYuTd18/0dcDobGN1+4bE/eMjWzOhjSVEBv22UatCiOikjGiJ5VYrMpR37z5wao2oQstKHY00BcpUCHOka2OaI1UTdUyEMCjTzG1Z6GNlnpSYoasRnrpa93Wvq3VWDXXSjBAl8vhwx+P5xHnOTCWY8CInckhmsZCKizs8aTc6YV2IWSkxk4Pd2wGzYErAm/t7Kxao0Xo8V0KcCkjE9EtCd/ACwchDMSZqE597rEjRUdb1xm1tPDy+MVs9T+Ivy0JdbtTaaa0eRQAk0MdgrSsS7e/j+g0pmQjlIoMgCbM0q4goOedjXmzeOX9b1qPQboU/RdeK9gFFgQ4hMuVC78K6bZZ1j8q22RwUo1C31YpAweygWlPef/PETt6q3S0YVLg830zgNawjsG8LtEGvN+Ji5KNbmnkKgV//0V8m5jMpZrNqKEbDSTkb0l4Cj3OmlESZZiO0peiYfrMsK6VQSiCXaEWrkMjZ7QJiQCO0LjQp5BQJQZhiZC6Jec7WrZk6pQi9C7VG1j7x4bZxWzfWdWNZK2t+4Lt/+AewVf7f/9a/x7v3H3j+8J7f+PFf4Ue/9ldoa0OdOBMR60bHKScYZe10d2aaI6kkpqnQtkpIwmk+HV3T+O+c5okxbO493T+w1o3rWrldbyyL/WyrZq0xFXvGx7GemTAwauD6vDCuG2PMnO6ssNi6CSjm6QSiNAaX242pJGpVlmVDRLisFz777neoHwK9CZvbbCGD5Xbj9uUz5TqT3j7y2fc/46FtpGlGu/J0/YZeN0T9/o2DpNZQHnNEtkaSQBLlFDPSGrdeYTaLjRzhez/8/Xz1k28gRNplNaFk7WzLytaGd2tbZq6vjaYKt42xrjze3zNms7mc55kyZxb5YOeubeS5EDDruHiaTFgjkbE17s9n5DTTtkbdOi0Ic5rIklg+PLGVjRiNbHZyW8fz+cyqJlQq05lYzWKg1JkeGo1KbZ0UE0kidd1QGcwxU9XtOFxsN8VEykJQE271OGjSj3PXAd0al3fv2KbC4+Nb5lI4351NkIOJjXsb5Dna3Ai0rYNaSTJ0oA1fVzsaAvmc+GR+y/XpiqRMlmDPriphLsSSrQC1boBwKoWQhRYwstKwTvswFab7E+tlNSH0ZjFTG4N6XZBeuTufOJ9PVB1obeSS0GSFPXJkUivkhSmT88TThyu9rfZ8pWTUAQbESCqZGIXbeuV8d0/uE8tpYe4d1UrACl3n85kuasWgpRoFIAl3b04M3Qih4HoSahsM7ZTJSJKxB6CY+LRW2ujkGJlmm3Muzxa/7IW6GBNRLMGfk1kwrVs1EVcMJqgVSKLoZIIDE2wnylyYT4UpTyy3xruvnkxgJ3v8BXs3voTgCS47H210Roe3D284n09c3t+4rStvPnvLm4c7nr5+ZppW2jYOW6a9wP06znWZiBf9xmH70IcVt2IKTn6DRjvIUbrbmo1Bb9+m9vw0DxM3hL8pTbgXpPbiUAgBPlXkTwjyCx3Orws+FjermCWrxcUvdJS9AC7fF/izID8R+o/0KH6/LrIe2Ux8j/Fqn/N6v/BCZH3ZY8jrn3n9gbxGZGQMe335Y8L4xYEmhW6fcY93TJBncbsotG241aTZ6+xWu6q2ZnUXiaBWL9FXb6x7AX2YQCjwquCkarGF22nrq72VpHQUuHcK5H5+9vdC9u5/s7wx+lk97j0rLtq+6basbN0sUBmdplZ8z7kYiTJEq266SMn2EzuVxOJRhl3T0fCmFxMWB6+yaTCLShOeiNu/KCVHXB9kVrz+3jt5s7XGNM9myeoiIhMkigtSzCoquMhst3baRYajd04l0wUnMEW35LKboLWOxHgQnVIyQqqdm0HKtv/qajZEA5sLdZggJaRATuEQMhhZJdCbN4DkaPuR23Z85t7q8XnLPNGvw4VWTkyonR5eXcNgNkHD48dlWUl9WHzuVncS90K8CTfMAi8wNBHE1gcTgzYj5kRc+OOP6ehmh4Tr21QPwtG93PEHv/oB3/3wOZ9c3lC0HOLTECIhmJA+BqfvqkJrhMhhfbizmff3mEuBncwTXlkQSjJxkN/DQ/enVkACEswql33u8Vu/9UbryjRNXmDnEA315tTjvalErZiuCrU3a5BSZbh4yZ45PZ5jxCieu7X9IQTARBO7HdMu3tPeiRqcSmr3xU5Ibr3biRDl+KtYbDyc9rULbJdlBV7Zmw2zEq2bW9T5ujJ6B70xRqW1K0EiNSRWCTw/ByQaFc3sFaPlIF4JCXOMpIDlhXZhoIuZQngR18ZonyOE6MQZs1R191vGsPsBL57vNOfkdttmw72LLyJr62xbd/rVoNZAeXjgbm18/Ws/YVk3tnVlWZ54/82Xbmloc1pwddN+zoeCjA74ZwzJraLtZ7Lbgred8uhzwS4WyrkwCAyFbbGcRe/dLbdMcHXMxS4KNUGyCRBb34gtsNsQ2txijQ/iYpraG9KsSUrFLB1rq2ahlhNbNeoZmP5mVMtbtVYJc7EY8jwzuhJyZrk+u13hgAhDbI0YmD0XPs8FFXIwG93WKkJkiJIJTOeZrDNbrSa6HBanjGbUOnE7OFxMS2t+Hw5SyeScbB0SoczF6NRbNVGg5+oUiy8lClGjUW1iIMUJ7YPR1eLpGC3/1DvbciPmCYI4BckocHQT3qSUiCq2r4y+b8dEmCYmMzxhr040CtGXSHv2YxQjaTqB02JFXy+x+1pU6VtlqdUIpilTpkxvG9ESmWbfpjjRSYjoq/vS5gVL8O3CEjidJ+pazboxhcMK2ezqXtav4YKn4Pm4/mrtlhCJxdayUDuj2XsNVYZbk8YcmYoJek2AraScbIIP9oxHTMBnoqVhMYJbfeL3jmLWrNEpRyEF8lSgKzUnZJjAS4KRnnaBY29OEsWsPocafVhIHjtDb0pMFgPutmbgwrWm/ixbvnfbqlPlPQ7CBdk43cjFwPv88GLLqWg0+3a/BYgpEVMgJ6PELbfNrokOzL9OXsmHXlGZLPphDCXHzOk00/tgXSq5ZE7nk+dEGz28sqB1kdMRgnr8ujeP7sKo/d5RTMwd3AKOsQsSXdy5589/t0U4fyfGHwH+JeC/DXzOb1/Y848D/xvg3wX+g9/ZQ/ttjV2g9L/DKFAfx8fx9/NQOF/P/LF//4/xs3/xZ/n9v/r7mdbpoxDp4/g4Po6P4+P4OH4Pjd+ySGkVLP8hAAEAAElEQVRHW8e988Y7pHrbO3W8Z0NM5CAjGj45CCkVcsIS062/SsKMoxvUCv2WHDZhkXUxyTAf9O5e9mMX8QxBXEghIpZcRiyRbgdsVloBK+4c5CUQwpEQ3OsPxtH2jbIE35TtuHIrQtWmPH14chpHNpHSWL3bJTKaoll8c2wbzG3bLDnWKzEmLtcLW93QYR2Lve89LpZUDpLoA0OHiwkfSilecMdtABqyDeZ5YvUCS3R8uiLUNpDhOHte0Outtxf0flckBtbbxnBf8z7MiiZlS76NAWFUttUSMHd3d8itE2Ph0zefcn+6491XX3G6uyfkwjfffInW94TkaOU+GKOZgCyoJ8tn1IsqMUYTUwSzxdrWFR0mbhq9m5VPsm7ccp6PAk2M0Yukg9M0UfuKMthqQ6Ug2OvmUmi9W9EygHhCQjXQRue6rExlYrTK6I2tNlJITrYRtq0ynwqtrkxz4fp8JQeh9cH1cqOcZlobPH24cHq45/5h5kNf0bERKdZFHCZCjnSsozqWhCaloS4m6TAG29ZY68r5bialwOVysaRaH+hodvzD7OhCTKzLDamw1Qa1IykjKTCX7Ej3TJonzGZCWJuJHNKUya1yn2cThImSsgD2vKZk3X+jD4JGaq0wBm1r1iGZE1MsyAjcnQtv3pw5FSMhpRwpJbkgzyg08ykd3bYBS0xP58j93QOqgdGUUTuCJVX3JJB1q2az2wnpsOWIoaOe4IrRSCRpKqRgyaHRG21Uaqts14Xb5Uodg+fLxTv0A1utXriLnO4e2LaFEC9IaAiVKEBQrrcLQy1JDpVtXb2gbMng6Emyy/XGeojJ9OjE760ZrSolkie7eo/WsZkyEgx1c7uu3FxQVybYNusA7It1V8cUIATqsMSsqgk+e2+01tna4LI0fvSTb3h6vtm9ICB1QfoFWQUNAQ2JTSZaMFGCxoJIgTKRz/ecHr7gfPeWGM127v11A3a8+bDOawWho55gC8HsO3dqgVWEs9d2uqPM89EpbfaUEyFOlHJimgp9NNatUrfKti60vpq1SetoV0ZfzQKnN7atsdUbtX1gub1jfXoiYjYNQfyR2qdzBjFkhip124jJ7JDGMIHS/cMjKUejhLkotLdB6zZPpNR4ev/kdCGjtqmaJUnKmdorOQVOUzqS3hWh9UAd1i9aUjAbEy3cnybO5xPXbUGS3fslRkbvXK6NMmU+fP2e5yCk+8Dl+kwfwmVpVCwpvK2VtW+EHCyRf7ux3m6cT7NZumXrht1uG7idiSlDE/FxBoW34Y65VvpY+PTxke3rK8+1Qk7Mp4lrbZzpfOcPfM5XP3pndMDQ0GyFtdQbKkqYTYy2LZUUM3Uo7VZZ02IFgDbMxms02tgs6dqVpQ1izlZgb427KaFd2XaSH1DmiTJBdfJQa51+qSxsTKWSxEQyfW00zBppG3ZtBlbQizkxmhCr2wYF6zRtayNIMHuYZBYBS+9oCoQcSKXQ13bQU8o0M8dEmiZI0chyrbLWzrsPH7g7n2lUQo7kHGi909bO7bYyT4XgQqLtdgMNxBxIObDhcdLa6BkeHx54mzPL5cbt6WodxDET2uB0nji9fUO8rtzeXVlGp3ShlJlcAmPZ0C6uUBBGsOJIaGKiVR2ggdAGY91oMVHOZ0ZQCM2sIsYg5WBWsoDOmVJmym3j1hd6V0v+ayTnwpQL0SlcT88XtnVlKmfiuTCNzKgWM7YhxJJ5++ae5+crt/c3tqWRTpH5NDOfzmhYuHs8sy0bt+uGOo3lNM2G11AhEglD2NpgRKVkSCUwzZltaez1VNktMjDqVMmZFM3aQIcwqom2oFNOkRgiQ0BS5O0Xn3D3OHMud9w+bCyXRl06GqPd8+BCJ7Ps0T68m99WlzKVQyxzup+po7JdFmrJbs0QiSlD6ogmF5nY62pQyqkgQ1ivm1NfOkPbIZDRbkICdZKm7MUpdhXAK1H+T3FS7hDq4EVJUWQnS7moaD/6oQOZA/oPKfJnhPiZgEYX7O+W0Bzd/7t9pxVY/LrvL6YKJ9B/Xhn/usJ7/5rIy3GJ/c0OcP86TgKz1xzHV18LmHzIq989BFL28wLIDPrHYfznBhsbMmzPQQhWrA56WI3sdFqvFxmha9gxBgnUavsLI8vuZCq/D1yoZV+zAzQxnsXHRr8NTupwiy4xoaVZlajNA75HCftreOFq+HO2i5aCchSg9+KgfazgxTeLHYZXyEsuVBkWh00ns4q83pxmGbktF3RbDzsUHYqGnc5rL55S8kYPPURm4ud/t3rq3Z6XGMz2DjHxIvqKWOZ7FLMp62YB1Qe62/RhIooxdqsa/9zDinxGamsuErFGkr7TkNTUtKMPcoqM0bzZoZooUQd1a8Sc6B22tZKmQpkSqzYvhpptdAg7GcLmg5Dc0pCXvTE6DspKLokQsMYKP0/ocBIFB62uN4Huoquhhy1mitGE75gtmEiwe99JSCEFogaPR8eu8QGCi3TkaAzYY3zU9jX2Y8Kpn/jej77Hz3z5h/h0vCVHo5lEp13uTUsBWzdDsDhO/HmMyezJcdGNdj2ezp2EEUL4FjWY4fOKC+aMWmGfJ6R8UP/2HMUYnV47bTPxoMXoHNfVtE5CzhMtNKSbeMCohZZD2OpubydAd2HhPsU4pUphVKfU+Hy1nzN18lsIu3kkaBh0CZ5TMUFV3ZywE4UYXay/Pz/seywYKk4ytmdnFyn1oVyXlad9XxOi7SdGQ3qFxq6cYUhCveFIxeyriMkouNMdMRVMzyesdZdPbv5ZX3Iyu/hD3HbT/m9/8lzMyy7aEZuN/LwFsTjXBEMZsHzRLv6xObNZ84IL5YwkZSIw+36l9YW6WuxqQqSXJeP1ciAih2Ax7jhDMapdmYqRjtWFXZ4rw0l04vePkQ5fKEQ7sRWBFHc1lllxmdgquJjAckUM+7kcE3U0IwTpi7jZGuMsP3f5cLFMX1RiMJHSLj7oW6V6PJ9UoDXaulHmTApir5si/bYcwlbxODoUm3uLWNPa1lZOJRM7rKvto3LJRotrjbs39+gtcH1/9XnH99FBTFgSTTzTm3nXBW90G8GJSWoidROVD3a6VeudkJPbo3ZSSfTwIq5TQFwgF4E2jFysTa2JrCmx78ehxzOhuxBI5GhMlBihg4yBRr8/hs0PhQjBKEutVmvKlF1QZ9RSm/KE5MKoENMxv2g3Mb0ijNGMpir27I2qtNpN8BIiSmP0ZhTR6KQbsTyndugiSIpMp5m+NaNK18Y+QccglLvZxEM3I/yqKlGDC8JM/BrwaUz8MXRS4j6/iirSbQ+VSyGkQqeRXFioOuy6iu2BQsnEUen9Zb5BIgGn3AWzHu2+noYQkRQJ2c47LqAZCufzzFBlva30Ng5r2pxtz5/c/q6uL3QkI/frcS8HhDaUNrqJHMUEjxZH7iRIF34FE3BFCZYT0pe5YZ+jQ9TDUlNR8pSZz5NZ1Y6IjgttG54T3aVJFsvtgnqLsdSegSj+viZE7NlEvq3VfYEzQfY+/+seoGHPaPT9XOuHNfX+3NgCYiLDsduqvvq8rydAPWLYvwfGG+CfB/4V4A/xt7dN+gz4PwK/CPz63/6h/bbHI/A/AP4nwMPvwvt/HB/HT9E4X878I//+P8If/3f/OJ9+/elHYdLH8XF8HB/Hx/Fx/B4dv2WR0m4woLr7nVvnfvNkjuz+AuKJHGyb34clFswHPFJKBCcp1VotcdkHIQymaWJZrDhtdmu4HYNtrGrfjk2hinVBqnAIb/ak6D4E2/DGEFj9GF46nzmS/xKOD/mt37e3frEv24sTORUIgZASdb2x1U4I5ivPeMGt1968GGbJIyNteIevJxM9u2mFAfUEXVe0D0oubMMSmzElL7xmdDhVaI7c3z+gY1hSJBguO+XkAqzANJmVVffEHN2Sab0bUrmpddp5pvvogi5ZmabZkwKdQeB8PnN3N6HROn5v6wVhUFR5e77ni7cP/NKv/GWuz1dPaFsyWgRKztYd3BthcCTSOkA0OpElkxNVlG3dCAPOsxUp53mGoNRlo6SI3J2QGGwjnpPZM11vwEsyOKZEKROiylyiWWP0lTE21m1BnzunaeZ8d6bTaH0lRiuAtdpQiaQRWbcbbelsW6XkjDDofWVoIObI11+9440qj8kSAm1dqMsGpZCydXwZajownU+HYKm2YQkpVWrvjK6MOuhhY9R2WAtIUOZ5ss7rZt16IVnXeVAll8hWB1PJ5JzprZPniTJlRu0stdp5Ulg3ZV1XK7AOZbSNk9v91Gq0rW2tJubQjrZGlMG5JEqKRihJhSyJ01S4O5+Yp5kcrdsxRUsIllyYUiYkE9zlmN2iLhDzhIRC0EEsSl1Xhio52fmaykyIZgnQhyWZDS3vtmhihLQYEikVt05IlGh0lyGD6/XC04cPlqQeg8vFaFPqz1uMbknZzcpCdViyXcz6LqZILpnsn+16fUIZjms3oWAMCQhGM/I/Y9g8aYU4L9K3RsqFtTZGV9btZoWVXHi4i9y2jXVbid2sMZZlZavVUO+ipGSFmnXtXC83st/LtVZa72y189X7C0+XG9dl4XQWonQmVt6kQFana2ig6o0ggbgJNSTejUR6+A4Pbz/h7dt7vvPF58ynM5LsnIbgdhgCwUlvO01gYF+Px3xqBc82xJOzgZgLErMXGhPWPWrd7R1hxEgTaG2lXt/xza/+FX71L/01Pnz560i7IdoZWk046PYC1qm+0tqCjg7R5ulBN8s5dWKQeLe6BFIInoQMVmwag9bfczrNRk+aCjFEaug2t2N0q9pMwCE5MOpGRMmTnROpCjFSTmbRN6fgtk2d3rBu/hRZto1wVfq2UeaZJEao2GoFtyJZt43eCjlZInRtnd4G83wm5UBdhcu6wBgmpJlNEHM6JUK0TtlleU+ZZ/7AH/kBv/aX/rqR30pmdCOPlTmzXK8s243HT+558+nvM+FkOHH58j19E2oYTFPmw4dnPpkn2maCnJCGkfDGIIfA2iuVxlxOzOeJ1pQYIMaC9kFCYO0MsY7TvjbGsLnLCqYButn+TKfJijFYp+xy3bhJ4O1nbznFwFdffUm6P3N+e+by9dc8P13JXcnRku19NAbQ6sbl3cp0mqEkTvf3pNap79/T1o212RopAchKjyaeyRJNTAXUYZ25W+88bysxJO5GJEhnuT27CEb57IvPyXd3/MaXP+abd19TbwtJhREh5MT5sbhQT6wI1joxJCu8Bbs/5/szhMBlWZAcWXuzAkQs1LHSFHpr5BiQZeWhfMbpdDY7ycvVCnF1Y767hxjZnm9mEREjy7ZaJ7NwFFF1KNJBh7AslaYL5XwiSIRmxfqcMyEJrTbwAnEMkZgmRq/0avdBaLY+pBKMgud2Jlu9kabImRPaM6LC6GZhW2vjfD4zts5yvTmtwOiHKhPTVDjNZ3p7T6tuu5OiWwcJOU1W11ybka9cpPDwZqKdYV0qvXbT/XpRN6hCF6Z8otJoblG4F2taVXQYRSWFwu35xumuGEVzninTRIpGkZK4R3IcndcarHjfWieKFXja6FyvF6Ikt8Rb+Porpa1eXGCgIwCDlDNxevm9+Twx5Ymvx3tuz7dDYGI2cCYw2O2+zB7tRZjyN5KT5Ke6sLAfq1umvRKZ+JchC/w+hZ8X+MOgXwDesGAiY6s67lQfIwx50VDMjqt1s+QJGo53FgH9YtD/dEf/TaC9FIfsrV+osUeS08UvRmMxYevL2RZeKnn77/xnCMUmrKDxC68KZWK2PhICo5lAvOPCClWnK7nVjO4iKnGBTTje9biv2Utkum9cQK0Q3tT2a8GttoLbAhpNQSi52Ht1Ez0FUdRt0RDxZoj+0oU/7JwMvyY7/cV3TSba1kYM8YU44vdszplSosdcSmsbwiCizLlwNxe+ef8NdavIsW/bi41GrBiHPZ2L9/w4e+/HHmiIkWXCcMqWmIWKgFudWdFR9qJhtHihYfuInVQm/qyLWrNICMEELtppvaHrIKdELjuxs7tTkBEN7ZoFIy82E1EcRCZtxqONwu22MClMwZ773htykJiCC0yM4hBzMjGtWuy1P1ljL9B3NXMiJ+QY1RNrqhkmdjgKpNj+02yj7FrHGNARDiKEDhMfdLqfP6dEuYZEeye7Hd5wcVv3tQXd318pMZCIfPLhE37+r/4cD5dHcrQmhxSt0SF6cVs8Xt+v0W6fdYiXQgSxhpwYOezx9u8l8yP2/IULHHzO2VuEhN0+0GM7EZJbJA2UpW6s62o5gKH0sR7gaHuGjd5s9puDbwkfBaO7EMyqPZi4UHcBy54bEBPjjEPk5887ctA/7BkzeyGjfdhexM5JpBShjUbr3Sh/ITv96QWFsVtitj6otR4Uqv3ZNXv1ao0DrZGy+HPZmYPYmqpqFqOYnWvo0CWwaCCUM9PpxDwXpvlke/AYnZ70Ii7bZ8Y9H7NfCfueif8E6LrPsbtIL5qllQVYCBFjYdqLDd+7jr5Rr098+PpLrh/eMerqDRXdnglXO+guABvW/IIoectoDwzUrRP3Jgs5hKMmejQaVm/Dr4clqEIw8VQ7xFdmMbY1s7e0PIPFxtFJLENNjFBSMYKczzOjuTWe2rOgWHPS6EYrE2w/3MYuugvHXFiK0/D82HJRco5m9zasCUSC02CSOMnK7q9RK6N27h5mNuB2uR0xoarbYTl1OKfEw/2ZlBPaoI5g4pVme5PWrYnM5qRuQnI10p2RxIx0JcOsu8z6zfYLwCGWMVIP/pmU3Q5vHFZeHR0mmlSPB/Zrk6fCPE3o7Wrku9OJcVtNGKSHDgfU9/EKbV3R7I1XOZMkMNbVcmrNbZODXxcX8aQY/Xm1Fx0uFq69oeoWiC7U3IWKpWTmh0eWbWO93Q5KkQYTL6ec/foHn8fVnwc59hkxJ2JO1NrQYDnSrrZHHXSGGkFQxPKAQ2E+zQi25uw5TlTIJZv1bOsvuSjfTxw2rOzCYZuzau2EJN4YY7FqiNF86JpZw+3Pgomwo8ceO3XM6ElGNLfnq3cTDOdsjVW7IF9RWh+kGI1+NIwGJ050jC50TTHCELbaPX7DE75mrdoRVC2eET+fISZStj29ibU45l5LgDtZKYbDPnZfd1WFVu1zx5T93utGjo3R1tEYYARrjEC9P1Z83fHzK6/Oh8cp2p3yqINl2Txf24817LA43kVU/lHLVKhrY7muL3uEfe7cBU17vOp/Pz7Q8fffJJb9vTROwD8F/FeB/xLwx/htVD/+fwwB/lHgXwb+p8D6O/Cav9XxAPzvgf8mB2Xw4/g4/n4coQd++Ms/5M/+X/8sX/zGF9/a738cH8fv5ri73NOWiR47PXY06N/6lz6Oj+Pj+Dg+jt9GmC4viandwzVn833vu3gA20R7r9dL8kfNO3s0T+J6srp70sKw++pFqUTq1Szixr4BN/FM79ZhtSuhhr5KxAMvKUN7764D9feM3vV+4HRdfDTUOrHFE+U2xvF5WrdExxjWiTIkwLYSc4bebIM9lCpiNlDegWRJ3cyQYAjoMWhtI8bI+Xxi21ZEhGVZ2LskxYVC9tmHd+wn37RakYJWbQMuQtsaJRUUIeRCUMNvW0HShGVtdLMscOT9S0eRJYZiLijBi8yChGS/2waarCNdnDLy9VdfMc933L95QxDlO599yrVklg8XLh++JhZLCKf0QpKK2RKL6onbWldKSOxqs9EaotZBFQXog75162bqlsRNWGEglWKpSgWGcltW2sIhTpumQt2qdzlaB/m2bcwpk3OhlMLz84IyON/N1lkWgl2nbijxEO08LGtnBGVZ9yLFoGS7PikGJCgpQp4ioQTWdePDuw8mEupWkM05W9eq31chWmfbUhfr7u/22hr2bnnl8vxMXgMpZrs/xzgoWW1rhFxIp4kgULeVrp00JRMDoGzbaskphNt1pW+V6VSovVGrcvvGLHhCGJba1UYk0GqFpnQ6ozVynGhLp60b85yYT4n784nz6cypzJRUSMHsslLK1oEWhJTd2i0m74QWTpP9jKolipKf774tgHXrxzQRy8m68XxOMauPaBaOozOCpRENvR2sq1EyIWSztBPodeNyuVHXehTisgsnR+/ElB3rzpEQmnJiXRdSLogE5hQ5nSayW0W0beN8KlwuVy7XK7lMbG1jNCvmj6Gsy0ZOkbkUVEzktlWzoLKimXUoW+I9oh2WtjilTGh9Q3qgvmvElFjWDWWngSmtVbatM9Ssv1prbiFiIqnL9cZt2di2QSmebg2RW62YnMgEkjPCHAKTRp41cD0l0tmS4tfnd3wjyjw9EnOCJMRYENKBMxfRw/qia0SIR8GIELzM5QSaOJHbIOWGlGJzZiwokRyEcxRCip5QDtQyKNtnXN694cNPfhm9/IRzXwij0bDkWZJu90JvPKvyHkHCRMqRmEwYUmIkJrMSRMQJa5bMbpslW7fWEeno1pimRA3mBROnDBIYtSLZkrCyW0ioESt6a4QYmc8zkiNbtY7PgTLnzFQKX797Yu1G3zrfn8mTWVzU6pS4nMhiRWlbP4V1WZFia8VQuLYb+dPENEXWa0A9U99bYwr3jFZZrxfCKVE+fUNoE2ML1Cyc376lLCsaYb1U1utK3TbuzhNLaywfrjzc3dFjhFPi08c7+tpY42CaTiiBdTHrQqNhCEIgpWyWDjUQpmQFuBxR6dyuK5FEyRNzTEaEcHut1jp9bIQUOZ9OrNvCcluY35xotVmn81zYugmx6rbxzddf8/j2juk0ISEy3d0zrwvbdUW2waiVuSSIibV37u7uWC5XNm0stRJOkS/+4PeZ3898/aMvSUNZl4UhRmoL0USBKWSjhSSht4XbcqOtzYSVsaAKdV1ZtZJCIGvk6598xfc/eeT3/6E/wF/7K7/EWI2UGKdEKNmK0K3RgzUA52mmrgtbq0jv0JUwzIbypp11tbVO5onz23tSPvHh6/dcrh8YLrxYryvn79xR7iau2xVtVoxfLjcePnlDb53b05WxLlZcaI21VbZmlKferShxd77n5oI36d2KKk4dmE6zdRcvJtINCKOZLYcOW3xb3QjDhDXaYGsb5VQoU+R2uVnKPAq92/oeRkS7xRCSlfPjHemUaetiAk6nEo1uRQSJkRIzMVpBKsVgXw9WRM7BnseA3Vcqg9PdPfP5RN+U23P1ggmcJit0b1sz4UQQpFs8ZJZLlT6MJCmhU1fl+d0FHYFzeeD+8Y71urJt0IfQnfo3up0PFSvK5DkSkpqQKezFJIsDJZowoVYr+gJMJTO0s20rIQZO59nW4d453yXKqXC7LVbY8WLeHrPyivChe4Hkb8h7/HQLlPAiDPaZPCaPEtGgjNNA/zGFfwzkM4G0F4j2PUVwEVr3TnGLy/bC4i7cMhGDGHV1f09/+6ED/eMmYOPfAoaLpY7Dk6NYZMNJNXujgRgVxk7zrlbYhQSHPuE4Fqx2zPivDOQflsMOypo77HOwF7z8OgenbzDUiZK2vgbr3mC3YYs5295I8IYDvlVUsiYLPUQd+zEO6zg5iu677ctRgMbref3lWhlxRti3Xbt46EX0ZK+l3ogQXHi2F1ZDEt93DW7XKykXyjQhopxPZ7a40taNbb0ifm2722Spuv3KLnhRPYRax7nei7e7CELV5xXbNw6U6EV9E/r7fkKtyDqMcYpge9Heuhd23aqnWzwe3a7L2iz0oE8g+15rt6nzAnYzq7262/Khft86EU3c7dftr3rvrMvqeycT3e1EmkMKF0w81Hrza+zneRcMqRGUugtY9vMj0UQGo3ckJIvBwBtZzE7SlSFWRPfnplYTiqds1NU+lHrzfWvYZSQmSGqtHzRixkBC9HWkk1Lgvp35h/7az/O999+jyEQ8O8UiJz9Wu9YxmEBpF8rjFp77/WaF5+iCn3Y8p2YVZvkJfP/pGQoX5HRPI8iRs5BgwlURp3qIMHqj1ubNNvYJ426R5wK9/VnZ78EUAq37MbiwL+fd6s+JmylR68a2NWLyHMoQvwZ6kHpSTHZWZfgzvj9fu3jRjknVrL93Qd3QjnRhWWy+ak6HiXvuZYxD5NSH28GPvQhuIhizInu57xATNkXURV1CEiFhAqxNlZoCIUenly4mCKqVENMhLBIx+zP252OfX10mEvbP6M/6IRiVQAomyhc1YpOEiIo1FWRxAVZ0G74xsWmj353Ybh9YbjfSqEQnZ+1yB0HR0enATZUhke9/eMvv+/N/EmXw9MkHbvc3vvnO19SpssXtEI4ajWmnHQ20e1NJDAwx4u1OgSMou4DV1qJ9/XbqWAqEmA8BHX5/pSkitbO6DVWKiRiTE9WM/BN3Sy30sJgfY2CPhM2dTRsMpUyF7vOhiX6bE2YwEnEVi2PTHsdCLIXSX0Q3dev0vpJzJsdkzQw5M4JRV8qcKVun6iDEhDjVaSg4yJyd+pSCPZOR4fQhtwitZqMdg80JJiq0fF5t3ggkkJPZbLZtMxtKjxPMik6g2Tq3LovFjcme95ASqZilMm1AH950Y+K06PPiGIPhDXePb95QzoXnp2dwOo3RvQMSnWrj1nU7iW1oZ1tXF7ZZ7m70TlcX4BCpy0oohfuHewTl1i7eCBktz8FORMNt9gJ7A4SOQRShq5CCWUNvtVKriXhyLswhs8WVdVmO52nUDjPEkpAavAnI7qeQErFko8L63mAXMfbR2WvAQYxit9tEig5CSC/XACHnRB/1EIEN0+a5rttzOzrMwtAJd6hQcjreU4LH3JjYScTyuQMjm5bzTG/VmpZQz5u6yHO/v6ILceVF3GUxilHMgsctQ22NK6cJhll192YzRkrittRqHW4IO5hoX5OG45xHd3HaaiLrks0ONxWjvclwgphrWnFh3nF8QXwvwSEO221+cWH5bgEafB+y581iyaScaC6mt33I5scqu6IKn1jdCvAlzvbZ7duypJ/yLcVvOr4A/kXgvwP8A0Dhd/5zCPA/xM7t/wzYfodf/zcbCfjX+ChQ+jj+/h4Kn7z7hH/u3/zn+Lm/8HPEHo8d0sfxcfzuD+Uf/pU/yJ/6P/z3GWHwK3/wV/iNz3+Dv/izf5Hn+2eWefm9ua5+HB/Hx/Fx/F0Yv2WRkol4XqwYRu+QjNwyxkuX3v73XeSTUnj5t5oFUhAhx2jWZc07llqn1mZe4y4S0sRhzdRqs2SyvHTUWQeLHMennnzbqUWHBYAnxFDvXFSD+H+r0xjDPXf/mT3BUGu1DlL/mdEHoXhXb+/EYAlZs6NydLrj9td1gRDREFiWlVIS8zyzbRun09ls3MZgqyuj2UYzepKmtXaowXfrCwniXcwm3Ekx0lqj9nYUpUK0DuVaG701WlPOc6E2x8bD0dljSU+1JFJvRqBAWa6LJUtHQ3QixYDmYO9VF5bnaKIHmbksN5a2oiuEKmzLetwHqgoVtr5Z8idb4kAxdPH57sRy3ehdaWOlK2i3ruuQA6e7M3VZ/Z7yDXpOpBDptdGW1RKtWMEhRKdUjX4UDMZQqlZanwljcLo7UZsl10JM1uG3VqbzidqMltSjMp1mE3gMyGWmj5XzXXasdGS5VU6nSAzK/Zt7lueFdV0Noz0VSwwOp78MT05hlkHSNiNHjWHWiDHQm9ni9VapKoQS7fd1IBKtE3ZP1HS3nwlCFksAzvPMthr5JZZC7ZUQA3dv3zJ0Q5eNNgYBS3xGEXrfKGVCndgUQgZcHNQ6SQMxFKaYebx74OH+zN3pnikXcorklCnZbN1EIUVL0JZcOJ/vLTEfAn0o21oRMUpLrQuiJgYbQwihgEzEMhNztGST29mEYCnxUCYroA0T4bWhSMjkMhkNYEBjsKwbrQ1yLOhsSVfVfhSNYsgmKBkddFhCLkTS6c6K42Xi7jQRgzJEUBVqCKQcefPJp2ZvibhFWWddFpbbhfV2o24brRmdLOXAGEZMU5TaN7MGCJBDRhlOK+ioWCe4amBdBmMsdH3BlY8xXAxltILWsHOEIj2yrJWultxrtbNujVQSa5p4d612zYcStJl1mQhREnI+UaZHRKDWG/3djcs3PyLKyasHliDWYQWukIIX+7AyRQgEMSIBUVEJ9jnECnmJbLSpADHZ8ybRCEdBjNKUdzy64/DX2zPr04XT+Y7rE+TRmXSjC1aUprvVo7ANS/Aig4e7E+fT4zHVr9tmolOxTnNVK6r1Vtl6P/DmrQ/v6lUX2yiDRgxCngo6LOmvzcWeat2cQxtCoDeFaN2x0k1cM5XI3TlT283mrxwJJ+ukrLW7NYZ1cw4vqpZSSDFyf564Xp45pTPLtrBebpzuTpScWK+BkmdysQKp9EZdGuvTlXZ/x/2bO6id5enCp59/ZrStdeHpqw9cnkzoMZXMaZr4cF24Lo3TXWa+tyKx1kRmEMsEU6bMJ77/w7esn3/G0zdfoUslJ0XagKhWIIrCooOQIncPZ9Q75ef5DPVGXTfmeSZn+3wpJx6/+xnvn59495OfoF25uz/z4cMHaq3cPz4y5cy2LGYNMBemxztyLnTpnO9OxDGo240oL8XrKIFcMunuE5Z1YYzK1m58uLwjlMj0eCK0Qc9CLjOZAKMRcySfzzxdr6zbSu2NJMIcC22rtHUhPJyJZUa6ElXQtbP2hR/96q/x+37wfR7fPBgBZYCcZt58+obg4h20I6kznx5Ynp8Z7z+wbTfW1tkuz8g88ebTT3j6+om2VhYvoKcSefzkkZiUvjW228ZXP/qSVBJlLqQpM0albsMoTvNMyBkVs4tstTGaFatiSIiqzdUIdVnJQThNEzoa1ZPt3S0RczDRUtDBtly5LRfasH+nlJiyW1RUK3opZmfbtBLFbFfm+USVwPvnd7RlIZWMtIkxReaHO+7fvmG9Rq7PF1q3eWbQbN3KSkIYw4gpZS6gchQAdqLRbilrNpzC3eM9KQQmCqyVUiJffP6G2/OV9v7ZSH2a6MNiyRACMRmpJKZE7WZ9sq4r+jQY0wDphAwJm896SlY8c5uxoVaojDkwTYU8ZY9XjepkVrMRiaA0ECveb1sll8J8nqnbxtPzB07n2WgpKTCfZy5PN9a6d5nvBQUOQYzIEboe8dEhwt9D5Z/moS8cEx2KRiV8P6D/NYXPOWysbNvx0um+/y7g4gMXI3m8N0yx5HbT0WhLXhi2eNGLwAH4U0AG+XcEfcfrE+pvo8d/Tffz8v2jfL67nr36XPCqwL6/xj8E4x/sBMK3XleOjzSOz6D6spcSL4a31lxZbYQos9JOHs9nUgxWZO/dCpn7MXiTxSFc2//jXfmiEHCaSjd7zdciguAi+eHEipSSU2l3O6O9QPdCHBIX6OF7N9wqFbXievA9Wu+NtglCZmSorVpjRQcZcoiu9i7/AVaIfCWMAiet5cnoB4oLVnARlgkF8mSU0dfPkrjgbAybz3ahmhyCin2NGa/2kMpQi3tSTl7k9/OnTnjI6UUIMqxI2FxEF0NijEYuLl5wUY8RM5U8F7PoaSZ+MtqSU4iCCUtMyGFiGqONdmQYNWnfq4tb1g0Xd+0is10UwT5XDIVkN0UMEcRIU1aYtoJ4VysU53kGt/vVsQuxXHoxOjFFE/z2nTrmQpBh9Ng8Cj/zyz/kj7z7GR70TMmTCSxc7GNFfIuNgpg4OnqhfadEqIt4wERdfZj1jQGVTQSDRI835aDj7M8DCCFilAoX+tj5iE5Ssj1GV7t+Y5g1dEp7Ad1Vh3G/f8JBTtlzBzkXdgJUyQnZ68KIETTCxDyf2K0bhw6nbpiYtdfme3AvQrvF32tC2X7ed/vGwW5TZXIAVRMKo0ZrCbvYYXB8LlD6wClc+7046C7a3C3HJQZ6iCy1E9BD2Id0t54LSJmJabL36I1taWy3wSJGnD1EYT7/iSsJ96KSiovEXgl58OYqEZ+jvGpvBXwTr+2/IxL9nrFfUD+Oul7NojFFZFtJbsNn9+bwtcHujwgQlO998TWfh08Qge99+Iz+flD/emO9W/mlL36ZH3/nx2yxosd84Pkh7eyMvd3ObN97mnWhEX6aC+pCkJd7B3H1xv755BDipBypbWO0zqgKyffWauLHXa+2E7fA8kCW52nWFKUYaTKbtdWGuMjE6F4iu61ho62V093ZLKa2RoqJuzcPJvi+rQRWdJjNVIy2t1n7YPbY1cRiQtBhSamYCDlSYmEqM9t6o62bUW+H5e3sskUa+2dO/sxYHIhYLglx0WWyZyDPBXLi8sHycCVltm2j1UrMmXSKtFhtzUiB4A0iBLPLLJqpfT3W4b3pTYBynl1YauvXui3ElEkloUGgdYJkJ/bYMxRLog1lq5vnI9XmtWEizZGMKmhCrWHkdFWulwsxBiPfbBujDTQGyjyRU7RrJ8qonTKZ0IXbYrEmZrk2wsr57g5EjJalHREjY5fZKInDxYzrbTG7zbuz0a48dqAP2Cplnmxf7kKhXQQuu7jWxT/qAshcrJmpd28IcGGouKhaPH6vbfN7Up2MF5CB/7zFTENsLbO1TwhORlqXhbZVIJBHhGRC3TwVUops62KELWy+6D73x/gSDxtlaV8PsZjOkH02Tw9r9pum2aiKxXIMinI6mcX19eLkpgBhVwX7zDV28dU+rw+3Wx1KIBGCfe4YAkF3EtgLSXQXx0dvohEXKO1NuiE6PdMdBmxO94aOFOk6qK36/OlzZ7bz1NtgF3i/jF229nqP8dIQ8XtyBOAXgP+T//fvtJAnAf8jYAb+t8Av/R1+v38B+K/zUaD0cfz9ORTKVvin/51/mn/y3/snuX++/yhO+ikdY/z9PUn90Z/7C3zy7hMAPvv6MxTln/2//7N888k3/Lk/8ef4D37hP/goVvo4Po6P4+P4TcZvnaTUzUZnn0kVF7uUdCTQROSgKlkyyZKGtrn1xLeqWybpYTu2v966bSYkiCZm6XsCyfG6ORl+vncTHQTBuwB3MRKHEEnAO/GCJ2ltc72LlJCXJDTgXdJ7Z5ui7rtuFmzJk3gWBtWtIq2TU7ROaE+gN+9mhnF0WIWYaNu25/+se1XEuxuVUjJtVHpzXDVCztHEG96Razj9aNYnXqzQsZN/giWTPZEegnWWRkei62jkVBgDts0EPyllxoAUk2PATXBydz4TglGrWlXWWkm5kLOLKgAJyq3eSDXRnxvbZgmHWzMiQ91WhppNzZ7sGb0TJ6MZBbGERc6JnAs1G8HiNJ2o68J62UgxcjrPPLx54PocqbeFXjdST3bdc0IlMK4LY6tM00QIwrauliqIlgQ6zSeePjxRe+NyudD1ZAk5P2cxZ3rt3G4LkoRpPrFtliS+P58pewIFCJOB3WWr1K5oh9vTDclCzEYMqnXjcms8PjxYAd9TbHUxbDoJF8Fh+Oy2kWKgjk4f1WwSHO+8bit9DO8Ig3meEVUul8UKElXJ/r2u4nZ/RluRYu+dcrS/V0g5s9xWSjLKjBHABnXdGM1IEykL2gdaISZ4uDsRY+DubuaTt2/IMVPyxPk0UbLZMqRotgxRBFHrKCxlYp5N+LBtq9k/eeI+SLBiuupB4Il5oswnYoj0Xsm50Hp1OzVB1YrJMSb6sCIQquRptm5lVZZlYWhnuS30ZlZsISkhRZKTyWpvRsNoVuADswBDxZ6bHEnRkmwM6yi2hrlmCaCY7b66OyEB2tZYlxtP7xOXHBjjhITI5Xaj1cppTrRhnfn0YeIocSslQDWiKmxtwGjWhRuF5In+1hu125xgCPnBUld6t8xTV6Vulefr4sepdO3UthDzxDQXWruzedW7aIcOKoE0nzg/PPiz0Gi394hWHufCaWrkMkHKPpd1al29QBMYEpGUIATaiPQeadXS7KM1Bjs+3axxBpEuStBAVJDRiHRi6Ih2glqSsodOmALShdE65Dt+cr2YiG40xAuPXZIJ+mJEcwbtPNwV3tyfTSTWmwlgvfM0xcDocLku9GWjhMh8fwId3K43exaDESRUOrWZfcayLpym2QukJjZVGgbuGCzXC5ILu21OEqFuK3lKnO8yEu/ZrhvTVEjsVD4hldkSt7UxdHA63zGfzpymiYB1y2/XzYqOW4V5IksgDIxgI8VoRhIZa6doJrSAanJSmBJjptydYAxO00y9LCiNsZkVQC6RVivX9525mHjscl1YW6MvlenujqpKmgPnxzc8BuX69TvS1lmXC9u6MTYTBsbTzAgKXqiN4iSEJNRb5f3zBxRlmgtxiqzamO7O5A8TdW32mUiMtbLpjXSKnM/3DGDtjfs7I/cZ4eBM3DY+jCdSygDclsWKwW1hfvtgMUIVfvIb33BbO/N8QpwWl84zZTqxvbuirSHbxnVZkbkQgY5QpuxxiRWGL5cL5/OJeTqTEHpf0bbx/qtvaHXl4fGe88M9KRe62PFMIVLmiaYrrQ+mTx+4/+yR87tHvv7yS7RX1rbx9TfvuX/zlu989y11MwLQel1493QzKlVK5DkxnQbP642nywe+ePyCeZp43ho9grTON19/w93Dvdk8tI4Os2hQ75gPKtCVtq20upJLYWyJ1iuX2ixxD7RlYe1Ggwyq1LoRovLJmwd03bjdVrfaNKs99YT3aMrtsjjR8MT5XAgpMU+Fa11JyQph21pZ63vunegRS6YvzbrsR6czSNHJI2pWWH3bbTSFUoxY1quJqFNI9DBo60Zrq4m/58wdM61vkAaSQMUKwKlEgibqYpQzCUIqkZiE9dpJEk143xuXyxN9HQytdK3klBGxODCOaAWFZpS2MZTlttFa87jS5oSYAzkHIJLuMl98NnN7XvjJV+/Z1kqeEnkyUd7z84XpZMKxlIMLH7xh26Nk+583BYjbZuzfNqXAUYj/ttzmp2yMvUv7hVik/7gS/svBLNH84Hdxyv4hTZ/lRRYv6uyWSSG8CLSAw/LLxBIm1tg7xc3iywqp+icU/SHI/xP4T4BND63S8Xp+DEZYwghD3tH+ej9xiI/24/T34y3wz4DpfXfxkf3q6Eab2WPNXQQx1Pcxu6hK9Shye6BrQhH/38Bt0HQYvo1deOJkH3+1nQB1EJHGoKtb5REPUY4JCWC3aNqFSPvr9eY/4wKYQzSkJi4v5YUGahZZnaDxxeIMI+G00QjdXru7PV+tLmJ36y51WybxfVpM8aDd7MSRECNh2PvHKTFao9VuhM+UKPPkxV9rHsAbQiQeLStOwY0ve1nsPAUJ5JRZ15XOYKsbmezFfScu+udvrSHBbLXXvtFGp5REdFs/gJD8+ncrYjLE9pVuZ9YDHncp01Q47KwwO7Mx7NoMv120m6Wb2UbZHjjs1xh120N16o8aqTUq22b7NPpOz3LKkgtX1ecxxX5XfO8UQqSNRpbd/slicqM74Bbu/vxYfwWfrp/y83/55/hs+YTTdHLbq0RO8bDitfPpoioXd8RoDTnI3nRgTUYh2JolIR9CHvzrMZnFsA6z3jHrp3g8m1HMNkwPgYk16+xirl4t+9BbPSyprMdgp4PtZFQTMwXZLbCizy/6SgC3P8cmMtot9+yeNSunXVDWmu0pahR0mKDPrL0GKe2NWfhcYBygXcwYnMTcLZnhz6QfEzvtx8We3oSwNbOg2uU6o5sN8Vdff4/WLd7to9k+L0XGKF4s92K3zz0hZXIpx73Q2wLaSVHIyei4Ehwz6DRQdUGOiZM8X6FmezaGG1buc9E+jyJAxNMziNoug9GJQQETXYo6GTvavWSiucyqka1XI5jY5IcSXUwE6nNTisppMoutoYMwjMg3LYVf+OU/ys98+Yf4pe/+Cr/29tfZ4mbxTbSYWofa8+jqqqEu1vB7Ofg64a1nJk8SsZyJr+mq6rZQJkyZcmSeizXrEYgBbxrUQ3ShLnYJIZDLRPL3iilSV6OoiCqjDW+aMnLMfkwxCLUbxSaqNf5ISkbSUiFPkzWRxUQKzRqFfE+J2LNR1w1Rm7O2zWwHOx2JnSSF1iGXiSme7R5u44hVO8PivmCEXUWNJuQirBgEgrJuLigKRl7r6rR0F1b2NowWrZ2xNrfHziBmxSjBCOUIFEl0EcZtQf2ZbG7driIEsfWAJmxbY6vPTPNsNpz7a00F3TqjmTB0vS0mIpPAwGiHAWgeG7RqOYGYTBRpuJ5G3xof3r9nPs0mvMlm9TYY1D1Gj9BGJ5ZEKUYhvF6u9GpNOdtWSblyd3ci52rNW62zrItd6+AWmDlRW2WrKzMzJWejPQeQbtbkprVxmdiRV/X1CzFhEYOmm92zXZyab9bZ0efEzTwwj7VDdZBLIodAXTe66mHruY+hu4WirTUlB29uTfTQX+KRoaz+GrkYtVTUnr/9dexesfzITt3svr8Qt14canOBEIliIvDWNqZ5NnrfVCwPm5wUHZyUtFPquzW84WvukafWYU0iYLRy7dZoin+GaI1szvbyfY6v87tANryshRKF6MQuCcJ0XxAVrtcbtXYaJhQeqmzbRoiBPDLJG8y+3djAHl36ZOr2b/73Y2OhR/D7e2ME4L8H/KtYs8PfrZGAfwn4zwP/a+D/DDxz7GV+x8YPgf85cPc7/Lofx8fxe2EofP/Xv88v/hu/yA9+9Qcfrd1+ysdf+kv/ANtWfrcP43dthDC+9W9ByC3zxZdf8Iv/l1/kj/+7f5w/9yf+HP/hH/0PP4qVPo6P4+P4OF6N34ZIyZPQe3IoWHJlRx13R8+CJT12uwRL2irDCTl4F50O6xg1+pHSHHu9J0l3u4yhTknIZtPUWqVW56mGV4WBveihnvyTwJs3b4iloKJcLk/UWtHWDsoOWBLVUmC737kld/fk1FBhHethPYXjvZVGYrLiAtalIiG4JZB3QrfqeO0JnJbz/PRsxbpttW4iUXKMhCxoN/R1Scm6+Yeh9zXaxjjFSD7NXC8XRoc6OtosvTh680SCnUYR82NvOljXzUQdMbH1SsBEASk5DngvtgxLyNw/3PP0dHW8tlCmia2u7NYOEhTtFR2C9EZORjRo3S35HJmfxIoK1izq1lulMGcjI1yXhTaMsiK9U2ImnKILhmYIMN/NiEBbNtbrlel0Iqg4AQXOpxMShbVtrOvGUGWeT9apdhTt9OhEqs2T/t3sAVqzpGJc4PR4pszFCDpRnBBkSfg2BiqDbXRKKYbsXxfCSMzTHee7wHK70ftgqY2UAnEMI2HoMKQ0Qm9GxenVCihzycjo9mxYRYQQrIO8TMVtwqxrudfqBZDAVM7MU+HpcqVWs3tIOaFFSJMViNbLwnI18ZDqoEyFKEprG32rnKdCr53t5vSqAWWaOZ3PFJQkwv35jvP9mfvzHSUVpjIxT4nTnNwOyZLXvTXGMJu+INHEIm0liCXXUSsK5lyQlFEVYjYxmT3KJsRJIVDrRgzFRUmACzeaKqpCiEbzyGUygV6v3JYrTa14gwPWyny2AHH8f9n7t17btuy+D/u1fhtjzrnW2nufc+qcU1cVxSKLkmiJogVZceBINu0klIBAsRwEMJDk2fkWecprAuQL5ClwEMSIASuSgDiWA8RhYEukLCksXiReqlj3c/ZelznHGP2Wh9b6mOsUKV5kSnUo7i4d1t57zTXnmOPSeu+t/dvv3yjbpve9U8pF6dp5HkPcY0aMARcCvVfWnKlNPyvNkxbmuiMGRYBvm9KwLucnpcM5p3ZxzpNLZk5KmVvWhaenJ61LOu0ubCZmVKFnY9sKtWZLkmntzHsVX6UQVFDoInMKhODJRcB7fIx876OPyQ+PZr+h98q2Lpxm/b3bmztu0CJ9Q0lA4iJpOoF0St1oeaHWlbvbW9557xWH45FX737IzavPEOPM5emR16+/p4lonwjpxOf/xJc43J0QSTw+FO4fV7VZKBtC58MP3uG9lzNeHI+PmW+9fqRumYN3HJPjEDutrSxbZnt8w+XhI772K7/OL/7Tr1tCv9OTp5xuWJZGrRutBvYajTSmNBO8p5ULPgYkOEuiO2bnqKErpU2E3JWQc0hRqQCtqJjJ5pBaCmVrrLnggmeaE71BFbXdUGR8YCPvZLda1TJOu/srW1fiilpAQQqBw4sEouIxqZqEb047+MV3DjERkiPNkRA9Zc3ghWmKHJIn943kIg21BW2lUbZM8gmHCudKychWlB7z8g7fhfPlnnCKfPTRPX6t9NzJJVPpiPc01zjOR7Z15btf/w7HFzc8vjnz8PiIPyjtTx4ccnjicpjpZSWXlVQ7FaWMFSMH5qeF7oVMYzoecL6T+0agM6fIkjPdC4/lws3NDXlbmdPMYZpZ88bT4xOCJpe3hzNPbwrTixvcccKFyJv7N7zz6gUBYWsVjxDxWmw3q8wm2tGaH89MpwPOB4KP1C1Dmmi9qNDEJWid83ml18rtnOglg6h9bZVGaQ2JnjgJ3jV8r5TLQqsRf5pxp4l4aayXM08Pj6QpsK2FOR05Hg9URG0hW+Wdz7zEp4yfvRaXDgduX73D/Uffxzu9Jg9PT3z2ix9QH564nSPb0/dZzwu9dLYIJJjmgI+NtZwpdeUwR5ZN7eW4bGznC8vyRIqJ0jqHNPG0numlGbnE4ULAee3KDymqiK85JWO1zpo32qSkg1YajhnnIy9evuR4mLi/fJ+6Kqmkmy2qN/FkiJHuHKWu1LJRVkfeNrwXDqdJLVWdw7uJvGycv//A8dURH52uYTq0OqgCnpo3nUubWmLVVolT4HCaiTGQ18y6KLlORYKe9bLpPOZWfFKr1cfHJ6jgo4AXfHBEH+mlk9ei6yZR6l1wTotlq4qZajayotkx5lKZJ4/3kbJWekUpGU4tc8qmFILDMRFCwAdHmiKtdbZamIxwua3a2V47bOvGJFciac2V168/ZgqziZFMyiNX4Ys8KyBcra5GkWeQTD8p2PnUDWtq0LqzIB9A/7c7/agF4ca12/uTRBsTk+yd3led0FhLtN5NtH8ValmP+/7nYdPUWyP3rLYQf13gO8AF+GXgUe+9QSyZPj/jXnv6Q2f79Y12qVCe1c6vX+3Zue+4l9D/ZwKf0X1PbWOJohsNbZxQUecnLD1kFOr1fXq1zv0wGhC6Ce2UBtaswcI5QUwArcXnZ40dTq3Qxnn1MWiXf7dCXdMGkp2IaxY/Q4RFH3Gfa6HWFjNOVETRnzWMiFfC2Loq7abDbhE+9hNdTCxQ0T2IczsJSwvgtu9gNMho0axbgT5EtcEruVBtLUfrKkQJSq8MUYvSIQYqKgCqOeu6oV9vomivq02LjmrxomIk9vOGieM6oGveQUPpTeOjFIhTVLKQCTHUFWzciSb06iqkp6vAW7wjhESKQkZJLaU2vW6Mw1SRDt0IUCZQarWZ6L6ZyEfvSxFnIhdvlC4Tlg7ibKsqwPfB1r26b3PeqcgjqPBH9yyZ4U8TTNjauhJMone2T7na4wUfSd7z2e98hq/+yo9zcGrpPAisal0lxKDF82Gl2Lp+J+8dg/zUqt6bSsEQo+Z4awhhf6bHNXIidKOminhtElDFm8WNQc1yeLN4U1vCSq7ZYogV6FG61NhTtiqI0591s2ijGx0IpeC4YdFo51opT5YrMCGpU8Se7vOqnt/R0OVMLOftunrvyUWbaJ5b1z+PNTslqbd9P6HnQoV43taeziuFxDnRPZaoYOp8WahboxQlGbbeoRRi0GaOKU0W76y0beQqb4Lx1iu9FlovTGniME9KGEwzh9MdLqhw8fz0qNfFOcQF5uMNp5sTeEerjssla4w0seSUAnc3M8HrcT08bWylEIDoheAFR6W0Si2Zulx4Oj/xjW99n7WqABPpkCJZqlJuW4NuYmN5JnSk4oyS1S02D9JXa/rs3Z5v+Oov/Tifmz/Hb37u63z7w29TpSAMwmG35gq1pIoxMESr3YQM4jVeNjpuzFl0hgKr1aZCEMvSiVPiqq4FNLGiJLZuv6L5Iv0edv90pbR471VTO+Y/MTHH2Mc4r+Ik54xo3aA0XBTclMjnRUm360bdyk5Ly7UCDqw5DhGWp4s26dXKelmpolSnWjLdaQ7P0a3xRAlKamlskomi93HBbMe8PsPOORW2mGhN5Rz6bHuzLS69s60bMagwpNWqe5ng8XNCfCBnFYNOMZKrNr54hMIu/97n9G6CG2eWk93iUnODrqdxeSuVkjUX5gXqVvBGwVMKnTNiMEgzQX5uSIxIUAKY5I2yZXJwuzA4xaT2kU3XofNp5nBUO24XHKV60uHASqfnjBPPumVOtydcinr/dGEtCzVXqhPEd8sDANLIdSOFqLEhBaR2Ws6UvBFTZFhWdqd5nT2oDJG8YPOcTg0YIar1TqVB8NakFQlO91lpSlSjC43r7mg4b4JnUVJa69XmNrNo7DrfipGwQAnGZcmaPQ6C83r/XOd1I3U2FZY2+zMCMYnO393EY62aMMjpPZiz5rfNkreUrDO4qHUtKL2oIXbPNxP69DH90krFxYB0Fc5XE9W3Znuo4GwOH+szFRJXs7cTr016Yq9VAfVoRlARGn1QnBqtYvOmPuvbujJIYNc1975E01y9keQ+QU7a/2gipU/xduIT408D/xv+5QqUno9/Dfg/Av8QeA38Z8C3f+A1Pw78EvBbwN8D7oHy+3jvLwP/Z/Q7vh1vxx+zEXLgJ//hT/Kzf+tnSVva94Rvx6d35Bz546q8ca79NpHSJ37eHR985wP+2n/21/g3fu7f4Of+4s/xD/7cPyDH/C/xKN+Ot+PteDs+neP3LVLqMjY9V6FSZ2BmtTtOLGnovbckbmXQZEbX2BAhdeu4SykqZjhrYquiSeNgHcO9aQEq+kgIahGXiyZSNUHQqb0wMPYiwnw4WHLQ0O+u78ld7bzDUhxa4FTMcN27tQTBx7h3mQra6dO6dscFr0kgCY6WrWPeOSXzdEctmiBtKAnncDiwlcxWNu3U9Z45TMQpkfMKVtguVPJWCD6zLplGx1dNhmvhY7KuogTRqRWdV+EXo+PYCgzeOUIMHA+TJttrJUbPWiulNSaJmpiM7JYE2/CiF7VUwymmOC+eaZp5eHyC7DgeZ1xXGyQlM3nrrHW4UimbJZRSUHqFdRx7SyB3YJoSD48PbGshtUaKnsvlwvF4YjpOlvzVDXp3mkByW8H7grAqdcZ5Ykp6LTcjt1StGuUtU7a8J6FrKdASrXRSTFRfIAsxmj4L4XJemaZJyQiGTE5pVsx2M5GYV0s0CY1W1N4pbAkfRelSRRHfrawkCaxL363LWsvkVUk/tVbtiPaOvK2W/HGsy6YJ/BA4HE+8efMGeqdshfPTBaoWrA/zRJdhCaZiunicibMWbfKWyUvGu6Y2SCFYCq4h0khecF077wQhpECIntvDzClF7g5HjknpIWmKpKT0pHlOTNEzTVrUENEkpxbVlMDRXMO7RnCeeZrpdMQHUowEH+niSNOBlCZqY+9AG8KPEPS9tfNPaAQq9Vo4azBFtczYsnYwuuDwtTOZtUJrKNmkN0rZKN0bLS1b57Qlar0mM53Tbt7gI7V6unWXxhA4pGgJPcXW91apraqtY9404dU63gu0biI8TVZFe17XthGc13xdblyWhXUrtA7rVsyGRpNN6yYIK8EFXCjWsd2plqjs4mmlcl5X7u8fWbfNOuW1YL+uhaenheAncrkHszVyzkNI4KCWxc7fQi8r85yIAg8fv+Hh9QPf/eZrXPgnmuzqmiRUYapDxPP1X/1FFb35QC5Ke+ui84MTx7duDry6O6jg8pJ5c75Ab0xemKeJl6/e53T7CvGOx6cnzpcnDjdHUnA8Pt6rNcDxls+89x4hRM5Pjxr3a0Ga0l16WXh8fU/tnsPxwCFFppBYVyWaROdovvN4yUpnOxxYt6JxuBfmFCEp3T6XalYKWRP7dOJhotRKcpG6aYdiipMKKHrDxahF2q6Fh7JmxEcTKzTWvOG9WgWapBek0rpAE4IPKmLolcv5Hnc44OgkHyCquI4GUkxA6sRIepnSgwqhnMO7SF8K5/oGd4ycThPrsuj8R6MFOOeNmosWbavaTp37hbvbkwrAmtoU5tbouRCjp9bC/f23EITjFHG+gp948epWC5al4mg8Pq5qYdIKyQVqrizLmdkLN4eECx1igOkE0eN8xIuQDjO9NC5PZzt/G9t5peTK+fFjwt3M4dUNLnlev37kxe0NAGtvnHPWufw04aeIL5ok3p60YzieJtKktngpCj5NLGcV/fUK61LI24ZrnSkKbdm0i9Vp4dg7h9AIk86HNTe8URElOppTi7v5eKKJJurP9284v3lDmBPT8UArhYfXj7zz4Yf4lKhL4XJR4psXYc0FSmU5n2m9E6YJ3wPJRxMUL9qdjbDUApMj0tnywjRNvHjnBucj65sLySfWstKoCEVj+fFIbs0E4LIXSkqpuCR4i9/eB1rNbNvKshXm40kLpzkjOOb5xHpeeXpcyZuutaR3cB1pmjwPTggp4osJDkZRyQvRg4+JEBNUYavCup4py4o/KiGzl0bx2p0t6tAAlvj33l+FALlTsbnTCAXOCT5Ecsk83j8wnyaCqwSfqLlRNhXTOa/fP00qQNSCWyOXRkALtoHA8rSSakS8dvOLzQPdisAxJLZ1MfKnkOaoAoRWaHQrHEXtkrYia82Z86LrumIEGkSpK1wa06SFe3FK8iuSba62TnArTI4CI7YWHcmfNtbZJqhRIsmnucNQTIwqugv594Aj5nbzyY5u94nv0XeBksm3uO4rdK8gWCd9b3T2yqyuKTtmI2tFQwe1KaWmC8iHovuOPzHkJLKLCroTiAJFtKjwNeD/A3wT3e8wGiWu1RyJAv8uuC86tV6y17hRyO56/6prkVzJSEaVaSZ8EVGignOOEKJafLWqwoimhbLgPLUV+yLslJhaq87PDNso3U94Aq45JVaK2ByvDQsqHNLvMagf3qvQcVhQeS8mJOpGz5Pr73dMRHpdEyDdSBcquNi2DAgxqh3lKNI7jBDb1aZWLY9kJ4AO2s6w/upA8F6prqVqEdapaCnGiDeBAFYs7k6UTtYaUpuWp01k5cxaTYVYV6FfrSrEGfdkaw2/i+bV4laLm36/9iXrmkFLtmpp5H2wIunzgmTTPWrT8+NqVZFBU2GQrv1UTNlz32/5TqWVa4xprdGcEqAG9aIUFfqIU2LPuqzWJNTIm+6VAkoWGUINtXNTAZsLRnuouj7S+cKZGEf30fSO17qtFk9Bj985XpQbvvobX+Hzbz5LOk6EMOirSmAdJNawF+av+/SdUGX3okNsHzOoikor6aJzmQ+6Z9hpQ4DShXXt23tXuodd17EPGCKUbrSvvlupqQ2phHGdh+BIibjDatA0hPo7RnYdYqUhbOlW1HdOmzE0pqtVWe9DVIQRbjWG2JZIKVKows+LozlPsc8LTp/zbBZOrT+3cjPCXBWEajSotluT9SECtPuzbFXnxDG3Gi2p2L2y22SL2ZEZjUpTKNUK/FroDybWKGZdhyzcv37cyX9XSpw+x/fuIyXLGNl2UFBHESp4z+MhERUhxLJltQgTCM6Rppn5cKNiulZZ80oXmKbI+rAg0nEhko4nTvGlNiXUYoS2YjmezrYupPDA3YtNSZ3d71Ts3sEH0camDjFEXiwvOP3qDe98/IpvfOnrPLx4UCJV70Y8M8KYsBPJOiqgaGY1roKv/kx0NshKRoVqjlIbuRR7tjT+tf3+a3vMD25Q4LTpJXoVwOC9ipp02aG5FVVLatxpje5UGBOdkjfLstEdzKcDPniNJSJUUYJqLlX3xegeKNfGNE2kGPf7pBoZplvDSM4L58uF4Bw+gOtwjLPZ7ur1zFmFIqHb3NGxhj6x3JsnN80dNtGmC0TpeoNitbYNqtqft2JEpdxwkyfOiXXZVOgpKs7Ndr1CUvHYmJ9brrTaiZOKgsSocDEGihRGzrHVTi4qNElBj6eWotbedv2HBiSkaJRH21s3NP7TzSZS42vdCpdNCdk+mqXesnI83agIXxxby5RacCKU1sHsbLM1ufWq1CzvPM2pTSfVcplOkGRrBjxpDiTRBoXqnBLbNcuLk64CLKfWn8iVHNdM/DNE4jLmsq5UNpXpqgVsE40NdNhWWws33UsMUTZjfebcfq8yBGHi1O55FxQ6qlTKpvtbtQuVZ5qaIVTqY/X4LD5j4qW+r2laH/RIJVPmLdOCw0elWLHH17Y3CzjncFGF4NUIamoRquLeVjqlF10njHWhfY9BFO+C2dIPQaHt3c0uzou/HrPN37V3tjVTa7vqiFrfqfx6Di3zUIcV6FU8pZMW+55hX3KzGxnbsZrw9rmA6dM6ht3a+z/k4/DAn7M//+Xf5XUXVMj0d4D/PfALjF6K3z4m4H8L/AX+uNb8344/rqPDq49f8TP/+c/w1a99lVjiD/uI3o634/cc7733Pd5//zu/5+tcd7z/3ff5a3/zr/GVX/0K/9V/77/iN7/wm3T3R0UZ/Ha8HW/H2/GHP37/JCUZCaWR7x8bOzHctN+t3kY3sFihj9Gla4WJbgmWbBZhiCYJa65sueimrRYTLAS804T1sq0c5sQ8z5zXdU8sa0VLtHOmwXGeifPE4xst4DdX2bYVsY0josn/QV0ZHcoqjBFwXrtwQRODQYtk66ZJhzSbH4XIjnp3JoTJJeOMwoPXjXze8p6EUiuDpok1pxZozTVaL3jU5sSa9+h0QkzkrJQktcfLuK6fdzweEBHOlzMhaYeYF0dvIzlaVUSQNVGWUiS0QN2MPuAcYQrUUlmXTK6Nel7orfPi9g4f4c1H95SSiUFV6+s5c5wPuAClgwuBKUYtrluH08pGrdkoAtoFHJIKT9RKTkUDrTdCUnHLViqNRkM730IywVPNSntyTklJspCrWthtJVNatQS3GBraBEmwJ8SLEU98ySo28MLhcDBbqKQCjwZta9BXuz+gSUVSp3W1jPAixMORy/KICwEJ4JuwLSvRihPOOeY5UVuhrCujN0+cdVqtVqAyW4dSsgqFRLQDtDaadI7HmdYby7Iw+UApmyK/RUVNjw+dJk0L22aFFqdEaxvbslE2TTpqJ7RZFYjDp4RvlbZpwdlPkdAdx9MRpJOi4+Y0887Ll7y4fYF3gYAQ04FpnghBsfDzPOGc43J+0gJYa4oAp+Ms2Z6i0aGcJ04zMSW8OEI8WNe0ZX2MNtWsYzyMTuPeTByoNLZumDAn3hJCZf+3XiteAjGdwDV62/Zkr4uRNPBoPbCtK5fzBQmKgJ9SIsRIzhm64HwkuGAJW7WnU9S8dcz1hkdzCc5pQnFY9gzyBkBKicty4Xxe2Iy2VGtmWTZKaWzFCoq94x1axOue2jvTFBEJaulGQ1wgm1iu0lnzysPDwvm8qsVGrXs3f2mV+4dHpriNRkIbShwwxRVDQBo8CAde52wWfHptrnaYsheGNLnmzJbEI2YPM2xFQJN0H4vn67u1AUrwQfaubud+GR9mfeJbxkmDXphj5akt1LNSIdLxwIubF9wdZrZ14XI5c74Iy+WBsj2xLWfSfOIrf/LLHL3w+uN7np4uLNvGlpXk8iLe0JuoACNXthypLSNWOFxz45IXalHLxRhNEOs0RjUTcZZcOMxK9KslK7UqZ4IPOAe1Fyqe0ioxJYKLVIGlVVIIhEOgbpuSHFqj2Tyk9lKVdV2Y06QUNhHK2qld6OKZDyfedRFqY1s38rKRnU7GsW3krREOM9ObC+WV0tRca7x8ecfT45m7Vy8ptZKbdjFLrZT1TLk8MR1PXJ5WvYdE7RBr7WTR4nPOjXOrTEfHNz7+Pg/xwhQnBM8xOVIMWkBxarczpQStEYDL5azCn9IIk+fm5gjesZ5XSi8cTwcoTUWllmxtubDlwrotnC9n3v3c+/QQeDg/cjgemG4PuFOCc9FCVQgE55Sa1KFuFTdVFUCvhYc3j7x875UW+lunbRvbsrCsGy2vHA+ROEV6ycgc8ClqLGodd1BLzfVyUVpj6JS+UUomeMfNzQ0EQVxgXZ9YLheWrbBeVl68uuPN+Q0yzbz34fvEFJgPkUu74IOoRYlAyxt5uTBPM62iwlvLGB+mSSlHq1KDWj/zsYcXr16QpgOH+QArtKXhWqG2TK+F7dJwPVjSX+UtpRZ8c2w1s5SN25d3aiNplmJqH7hRQmaaZnorFJSIdH4407toAUplQpRcaLlpx/gUtbguallQagFRkVjPOhe23EhhVptcJuqmc10wuwU3bDhqg6Dzji7ANKnvxdGKFojpnnkKJlxU69SaC7UXJHRCPIA0ctmUclSKFkBLZXUbN6/uuLm74/7jex4uT0yHSDCh3LquLMuKn6LGOl9NMG1UHe8IUyTXSimFy7oYtcXsKLqKUA+HCRe9FV28EvOaFUCaEq7UZqOaYKMTUtg7lgcBUovgfW9yVhsnfxUpybOiQ+97J/enuqbw/Nj+IvAn2e/5H+zoHmtnvRtkAAkZ+4nxmmb2K90KLyo6sHWJYBZYWlzvaFEo+mDWJ2V8Mlixdrx5jAEfPNuSqWvVos9c4M+CfFWQr0H/uQ73JrKy/U+fO/1/3JEfcTgczbBLg7JSTQijQhb2etrQL7Q+imH6fZyhMAYVSYv9RnIR7bL3ztNFybSD9DIWAB2e0UFUJNOa2o5IV8IBoHsY2z9oS4etX22dotZzSpdwQUkdQyDngqNXFS3X1mi5Q1N6qXOwXNRy2gclRdXciAGscwRnBFiB3ZK3UvbfUcrMsEJUiyMV56iowpsQQIvj3e4L+46t03rZRSNqJTdsqTVubbnttmHN1o9DHK+2b1p4F4HatIA91qy61/G2L0YLxn0UPE0dYKICZ9ZhPkZyUbscbCtbS6Eb+UZESQ+tNxU1+Os90o0+NUgk41iV1Hm1We9NzLJb73mNo3WnMQz6plq7mX27OLVc6mqf1Eoz+3RMoKKqJOd0julVLTudNfAc5MAXvvEF/sS3vsidnDjNB6Y02/OnoqKxzndmjaeiqm0vGO9CxK73nPcWE0SFg4PY7Hzcn4/uOjQV9O1UskFX2iPFmEMs3ogzsUrdn5dONzu6qPNnr/tnK3kJBA9draFyLrso1FvTTrX8yChIOzBCyCgea5zrTZ+yZtcbp0XpUtTmbVCariSlYlZTeo3reNbaVTDlhpDNaHLO+11YMHhyKkTSn9daWNeie4w+nnGTKPTOum1789mIU7vq4jr7AN1cFAPLeO7MEvB3LHSPPYYMYt31/faLb+Pp3pnV3siPjHzUEICpPbgyY3X/0FsjOLXLkq7Wf5OfEZt3a8lsWWx/nak1033l7sUN7748si4r25ZNBKZ5k5TiLsKsvhGq5wv3n+Oz//h9vv/u9/mlL/8KD/5JG1nodj+YUG7cz0Mk140s1+pOjtN73TNIikqQMdtFud67Kiy0OcBOV0NFW2Jxb9jHDWveqptWnPPMs1KBW1UCVc5FL2nvtLYhPoAvtJjV5srieKsNesK7oDmbpgKvXgotr4SUoOk9hc3DTZUW46KTS0OcZy2rNqp5nQSi0b0YAkL6bk3nRWitGJlIxdzpMFmcgnWrRpoZtpvjecbiXaVnPQ/TYda9W/QqQJnCTrORoAKYVhtDH11LwUelt+Yt277f7QKXWorSpOn05nchTjfy4bCtdaKEq1q1cVApNpr5GrE+JG1ych5dv9aiZO15QkR4enzi5uWdElGDp2S1TtZ8h95btWTcFKk2Jw8BXLBmwWr5gtYLm4YcQlSabxdPyw3njHaFiXbrlSrZsc+xZ6KaOCratd+J+wg1V2Iyy8neaDjaZjaaTilcowG0We4EF3G7EEj2tZ0KWRu9Vm1UdQGHrhk6Kipz4Spqdyaa1nnLqI/Sr/Gmq2C5dZ2TnNM1VzMhkNqvma2b5aHHz7E9SymFlBKnu1vKmlnWlW6irmbNY6U2sybVvJ/eW6NpU4XOzis9srSCNMuVGMGx1EIQpc7pHOGgtF2M3E3grdSxZs+o0f+vj90n4ul1TjShkrCLHa8/6UPL9EdDGPO/Bv7dH/ZB/AHGwf77XwL/U+A/Af4PwNd/4HXvAP874K/wR+M6vB1vxx/SmJaJv/Rzf4m/+P/9ixzPx7FLfzvejk/9+L1ISr/t9d3xE7/4E3zlV77C1776Nf7Ov/d3uL+7fxvz34634+34Yzl+3yKl58mlH8SMD8HLSC4+t2mwFCrPo6x01MN74MiddgE3p12K3jr15mmmojYc8+HAw+Mjl4v6bKcUWZZ1z2VEH/GiG8aci/rKl0ztVROXtUJ3pHnieJxYto3Hh7MmcXvXTaEl5K3Go12XligPISr+tzS8aDdbtg31SDBrIiTjXGTLmVaadRhvit62ZHerVUkXlnivvRGiWjZ477RzdC9YuF0sMGzAND0aqaVqMbA3QgzEGNguqyUjO90SIV6UDoFzzPPM1jfmpBj23Kz7mGv3Eg7WnCnLZlYSFbZMCgFy1aRWHl2tjnVZESCdZhVCiWO9qMXfEJl0NLnTWqN2RWin44wPQekMtRGsC7i0RuneEvVCEC281ODNpktIolYSuWTFULdCl2r3phYANE9p3U2uM0ftymu9qy1E0OSgC46UJtb1wrqtiAlFwuTJqyakvFkZtN6J08TkHdt6v9MUfNIKQ5pMxLBUtXUplfkwa8KgNSUpWWGjU6hNr+k0Tdpl52dK1uLVx9//SDupzc7DB4EulFYp57MmTmpnOiQ9PssetVKhmxWNdNbLE8EHGp2bdId4ocpGmmcmn5h8wlui/zAlbm9uCXFCfOLmdMPpcFQrNKfCIU2EqbCg1WpPuOC9qOAnRJOkaOc4VrjRRNsJMaFRztmEexV16JA90b9bUXRoVmgoZmlY0W7T1pTcBFoYOBxPhDhrkiclSmlQKsMuzntRSxFf4JBIU9oT6LUrCWh0DkI37aOw5qyfa8Wnsm2sT/cUE1J0VEzZnV6bZSts20ar9+SSWbdNqWyYFU3tVrR0uBC1+CadTkEKaoMRkxZBxvltXfHnrZkNUeOyquVBqZ1WoVfZC3jUymU970Wa0SXXrLC7d80JFOfUNsaitIgYkcJeKB1MgjaKNGrLMRD4Fu+dFQ1k/Nztcb9alssZdca562eo0Mw6xxFazpzXhafLE99//T3tHB5EjNZwZuFIX9mWM+++9y7vv/8+L6bAYZr43vc+5vHpkVzcLn4rtTFPR2rtPDw+sq5tt2GsdVX7QO+soBOU+iJWSCgZ7yKlazxx3tFbYVkWI+0JIUbiHJ8lXS3hL06f11ULTmLFIh+VLJaMcpbXTbH+vVP7xk1MhOa4lMq2aucxfSOIPlc0aNaJXzssTwszjsv37jlf7plvj8iaSf6AXFZ6uajV1Zy4e+cFL955yfd/7Rs8ffwGhwqy1pLZunZcTsBNmKjSeGwbby5PNBeorvP6/JrDdCRIZFs6kgsxJQ6Hg54HrwS9VhQ935omzbeaEd/xx5mtFbXHmBJygUMIlBhIztNT4nJeWHthXTZef/t73HzmFXFyaiMSEsfjTMkrbdvU+tMHpRj4Rt5WWBvz8Uimcrl/Yg4zkrTwk/MG0khTwBkJLvkJF0Q7f8f9LkJMiW1dcSiav9RK3jQeOC9cHh853p3UhkKEnpV6UkrmUTrdCd/75rdIc+DmcOJwTJTN0yclDYhAXVZef/d7fPiFz+GnSHdqB+E7BBGaE3qD0IX6lLn4M+Icd3c6H+SceXy8BxrTnMhSKK3AIFlqRZtSViVaWRH/4f6Bwzyp5Qtwmo9qTZYL/qSih7pUHs5v6KVzOE4gnWVdaEXtQOndxLdq7zJoa6V2OiouVmGih65CY3JVa7XW2C4Z5qDPXOu46NXyYdPicDUSRm1qpbDlDFVFfF48yXm2qqIoFal3ypqpU1J7TFfY6qqFPpuDam10cdze3HL78gZ3iBwOM57Otp65nM+s60oxC5Fpilqs9kpncd4ziaPTaDVYMVkLu10gRrcXFsUsjTqeRgZUjE9pVCPjACZUUiFr99B8M6G/2hi2UZW19faI0VpEtujsoJuNqTyLvZ/qceITncHdFBi7jTPj362QgooIhjxp/G+3dZ2zYrgXRzGCKlbI1nUJe7zeto1cqlqieRUFdCvSOOdwyF7w6WbR0nvj6rsl+JMn/sVA+bOF7ZyHTkyHE2S6fjedP9GCugkqmtlUq+BgEDVMRNyr2tx4EzxYk4VCKq7XtvVmx361l1IbJ6NlPCtMXYXHV1ELdLWqbm3/u655tYGh7/eeFeYwcpeouKT2SvDaEFBt3TaEVdherjYjb4jZeFelwlRp9tw0O3YlvQkdH6OKkdBnrLdhcWVLASsqYzQUH6N+j6p7OrUN6ybu0cWJrpBUICJWdJSmJE4cRm1yu3We3lvtWX2vX/e4PrDrwLruAxvNbFm8xZqy36WDSDT2coNsMkhdtWjMEVBxJOwCh1aUhtC6Fj/Hs1JLsWdGiQl0taoLPqjNnQsmIhOW88XIdCpQeS7GykXtb6SpHeigNgDXNbYdUylZ71+6Fs4Rs0PzRAl88NEH/Mhv/gg3TzdEF5hSUkG7c8SoRFZtUhixTJ+nagKN8aw8J6cMwcJug2jF4mDNM8IQ/WHPkK4ox/0/qGXjMu6WcnZvN7HCc7P4Y9bUzgUVqzlPq93sBwcNze7F3lQwYNZ0aqnT9+f+urbVr6Fz2SDhQKuFsqk4q1ZtaNLitBgJ1poQ+kZtVZtqatuFArtgSAMXEoaMQMX1TlS8qMX+PpYDDPsq3ZupEKG2cY9te4xwNs/vVkfPRCQjsuwxT6A12RuFRkFpkKU+EYu4xiFMPDr+bQhTYQhUr2ImmwL2WD5ep3Op7HFKbM/RqopIct5Yt5X7h9f6O7YR0ltERZ01b/i5czoeub05McXI09MZt0JxV2pZb0bbjJrrybnjmueD733A7Zs7fvFPfI3vvPquNjrtjR/yzIbP4tDYg/RuYqFh1diNKqX7qkaz+GWOWq1T62Yn0shWJvL2FsudiImYlNik5DvItagNV1PTSdMb0vb5yWnTgaXtFhokR8BRmM222vIeTq2qb+5uyJeVy5tHelda2JoztTeqqPBpdoHQoLrGpWbWrSJe2IqSXL0LtCZqDSYQQtxpaRqbbS5qQ8Bb2aQTpgTOKaHUR6ATm6OJU0G89xSn+7DaG/m8ABCS0phTSsTo6T5Aq7RcdZ+G2LysTRspqDCprBvrZWOaJ7vfdV3gTLzZjeA4xGc7oRAjPYrG/iH4aWbPKOI0F5eL2Y4qoXk8XHlZlOaaMz4F5HjAeSURll4JXsl5AqznC1OKhGlSWpHNDQ4T2qLnUXqnrZlFYB6Cw67NczUXXNB9fGnFYuWIz1julP35y0UFwMFEQt55piAsZbPvrjm5kjeNS17XYSrY0qfZjfctVWnWQ8jTLQciw8JS87KaA+r7vylp2sSgmkFBogenop09+og1Chl5aNiguV0UVffvqnSuqlaVI1c0BMwmCF63jTQpkXyy+SOEQCtZGzNLMfLlyH2EnUw3hJkhBlyrtKbNNKoP0jijQlk9cBWcanOnR5RevpNV2XPxrTWk6j2sZEx2TelYQ7FH8Wt87TD6fu3/tP0YP9XjfeA/QilGf9SGAHfA/wr4G8D2Az/39vNP+SV4O96OP6whTfiJX/wJ/q3/17/Fh9/+ENc/zWTot+OfNU6nJ0Qa/Y/h9VMSev+9X/j8dxBiifyZf/Rn+OJvfpG//T/623ztx79GDfVf0FG+HW/H2/F2fDrH71uktHeTyrPOREt2j83qnnRD8/j0QVViT0I9L0b0HemuG/ToAxIihynRSt6tAoIVB6slpANwd3erXUVPT0oC7oUQJ6JPpDDRpDPfBO3YpfFw/0TNnXk+ME2TJoO8s0S+UZ/25L1TawHrEuvWia+Iei3yqXVZgGCil1YQp91rW9bEYB8JzyZI1eYXdZXy9NaUGNQGUSjSuyZqRtJWyQ9cRTKGsW+tsRYtvMUpaYEvRE20tM66FULU7156oQPpMNFppBg08QFs66rJr24dXijCfJ5nLpcLvk9W+Gr0VkgxcJyTniO0U26zDrLgA+uiohMPHE8nJT+UjI8OFwN1zZqMEO2En2+ONDppnrmcz+SnrMnyDlESvjammPDOU0plmmeW5cy2LAQc0TtqVhuAFAMxqGCqmBUQ3Sx68oYEsc2+43JZWOuGiHbJi3Nc1jMx6LVtTQsx3sG2rcQ4aUqxd0q+EJJnihPeaxJsXVYu584UI94L56cLJSuGO4YJB+SsCWbvAtIaIU48Pq1EnwDZi0v6UAYulwutdDxCWTcrCMwIeh84P7pztcAWUyAER8uOWjR54XsH68BupRFipFzUnqyeN+IpcUqJl3d33NzeggjvvXyPV7d3pDQRphnvA1PwpOAo26oCK4GyNaRVo2cFE4apPV/D6GNmW9SdA/GkNBNjYliXaSHI7dQebxZTzYpYxbp6JVjBJUQlfrigscB7mnhiiJyOiWi498McyF2oLeM9SDMjlqad5yKO4/Fo9g2aLu4CQRwxRHzQgkqvVe0MTCRWt428bmzrhbxtZp4HIp7WhU5g2RpPl5V1VTKPJjA1wdSA7jy9CZXAfLrj5tW7hPlgRfSNumXy5UJezoBXKghiViGR7Fa6FIJEetiQqG2LvQmtZ3o3tHdTtHtvnV76Lnjciwqwd/KNcoGupduedNyFTE6eFRlGcl+usqIRN7E044j3ewFh/JpaOYi7FhBkL/yNLkesOKNxB7M7cs4TJKClOO1wld5IMfHy7sQhJlL0vHr5ihgiH30ceXhQkt5SF1ot5HWldeF0OgBqdYgl9k/HE4iwrZsKTJ2QpkhwSel2eCpCTFoIzq0RS2UrGRHHNB1oXRPcrXd8F47zgUtRyywtBFZaLoQU1YIxBU2C03FBY/0oUl6k4idPXhv5cuH2eMRFjYObdNJxAiBaoSBHzzzPtFz5+PsPTMvCq7t3kOMt26bFv1obKXQu54XbD+BHfuon+M1f/Cd8/5vfYc0ZccKLw4HeGzcxcPCBc75Q1yfK5YlzVmur1jJCJUhEqpBrZ7tc6MDL04H5cOR+ecNlrXrNrVicW+HyeKZdFqbTSQkErTIFjxTIWcWqrmssmPFQhO288b1vfIubFyd4dYJYmGPk3DdcF6UMkQlRC+UtaUd9CIHTKSAF6moUldCgVVJ0KtirRcljT48cbmYVejalXahwRAWGOW9WOA/EntRiwXvKtlHWyPH2pEJO7ylrJgRPvmxKNSkbbz46Mn8QmNLM61wQPMf5wJuHe9pSefjoNWmKnF69soKAJuovTxeqF9ZamUMkEuhrZ72/cPaeddloq5IsWmuk0+FZUcZsmcRpYcN1XO9mz5aUUHfZmE8T0QcoMPmk5IC8aRG7qkWOi1roFC+sZSVKZI4Jj5BrYW2ZdVnUGsR7xKmNZW6NQ4ocj0dEAo+PZ3JRW0vnPcEE7CF5yqLxS5wnBMeyqt3I4XAghsj5stBlMaF2V+FWCKSgcXxrhZAmmlR6qZR1o+SiQm2nFCWFmTSWxyeETkoBH0QJFVXFpRI8sUfIXdePVSkeforEFNi2TEiOg5vUOi978qrEkd7NsiFYN3+uKsivlZAcMarFYc1JhVBFrTqc91psKCp0aq3tNkh4KGWsmTVWDgGKc2qV1ZsKaXZtkhMTJ3y6R/+zHXn1LPP+vI5thRLTYFzFsKBUF+STvzPmGhOLqUWGddkPcTUmLnjWUCHOMU26rlWaohYOnfc48XijxcTkd7LCumqhLZgNdZs6gglpPlHgYS8iOwaxpe9FSQPJGvlEwCkRYBA4e9e10OiWb2ZXLW5Ynlm3vdEqnnfUDxrMmLJ1r6Xv5byhi2yeH6ICLaIOUpEWyUttVwJAVxsmb9Yu3midiFmi7V4VuhrwzqsIt2REPOJhiEaCVyHIuNZqG6P3sRNnc6HtS2LcqVGjIN+NFgAqFgkp6ncP3tbffd+3dgFpTkUvJk7ahUT2DHoTlwjgveBcVDpGa3uJblj76GlVwUbNRZsnZNgsauPBbtfX92WN0V79fu+2qoS3ETOdU5Jhydqw4kT25o7WlMCrwgsrlBopwnuvMduEHs9FbN6JiobNSnCIeYYV3dC4jPtp2IIqaUvnbulqD60qKBWgOu9o2da3uXLoB37iGz/Ol958kYM/wEk4zkfmaVKxgRVmvRtUFLUIE4yUgYrrxKqMgj4Y45kVNyzD9UC9N1JfV9LR4MmMPIOTQZNiFzXpm9nPnac1dqG9iKM5JdvEqJ/Vu9q7ty4gRhYTW3ObqEkQUoiW9NC41DFy0rPGnyFMGOshitJg9R6z88gQ6QCoRWS21+nzPYw9jYgkY03vCXEiHQ44H60oXXWuKZlW1FpRjODVe9fzUJUM54JTgbXr0BovXt0jrn5izmF8djVx2SeOVdfuYmSmZj/YRZKWXx+xnGfxe4TLvgeqcR5HKPnknz855Lf9s1hxnx/4nd67NquN+3w0gNkZdXYvfPazb5iTxv4pJYbd62XRtUcxkc8QDTrniTGSs37cTTnxr/+TP8+3Pvg2v/bFX+MhPKiQ2AnRDetJK/07MfoblK7rM0SpUD44EyGqUCLGQMcIRfZ9atU9txexBrdnAi9R2hOoZV93nu6FsmYifidjlVYhOLWK6yrGby4iov+2XFbq1jnOM84bxbBBc93WHp01Z+7efUFIkfuPXrOuC703YgzEphaRyXmlyuRCr0oGjXNiEKNENM60zp7vO8SjzmWts22Fna9m8wW5UtuCT0oBrK0SnAfc9fwwBI8ems5hy9MZvwWmo84/AaWj9a7nrDTd1zkv+pwYmS3FpNqh0s3aHpzrOKciTj2wbs0OKryVce91Iw+J0utUMGT0w114rNbAUwowiIubWt1RobRME1jPZ2JwzNOBgq5XYkiUcqFmnRvOj4/MtjbqlguqpdGaWsMJKuamQd8q2W3aSIMz68aK77p+UoGe3odqS2tiO6dCUD86lJqS+7wmDnE4vM05amFqAiaxxkuve2Odmwd5WW03mwnIxavtWzUypndO6ZY+UEojt7zHVicas8UEfvp9jBpZdZ3sYzB6sTY99GeCpLFm6V2gq70ponsNpVVj6xMLZpbjbb2y9ZWYdB7oYM0LVecCm6f29MgQKwWlKNNVHNya0fGqrvt6fy6Au64Hh5g3RA/BrEqL220ph8BxWJc2E0M6kd2CcKwVx3psrBHH2K1WLR5/6ncT/wvgR3/YB/GHMG5+2AfwdrwdP9xx83DDv/P//Hf4yX/4k6ScftiH83b8dxhf/vKvEWNm26Yf9qH8Sx9f/eov/YFFSmMIwt39Hf/B/+U/4Bf+7C/wX/4P/ks+fufjP+QjfDvejrfj7fj0jj8QSWlP+PZr0NWieEck7A12I/GvXaNmE+TMAqFfKSiIJglrrXgPPkS1jtk2UvRM08RWqhUlYD7OtKLWOSDEoOSKXrXbubrGnGbubl9wvLvh4fLEuq2cnx5oRlFKKbGui4pATKDkzPLE+2EwInQRupddaASYfZqScoIRj4TAYnZdQ4Ch+GvP1rIlWbVo4hDmaSIXtUiY50Qpmd5g2zY7L5VpSsTWWbZNveufCZBrbTjrBYbREQp0TeKIc2o1FILSaCyBjYhuaNGvU1qjGblpmicrmG0sy8r56QlxwhQDPnru75+ILuAlIDHivCMg5FaoPdtnOEpTAUvwjpwzpWpi4TgnXAo8XBak912QU0vBBd0416pEo95VuNBqpZbKuZyZDwdOtzecL+c9wefQXPEhpb37sNs12NYzNWdaC8yT0+6s1smXFR8DvTSKFBVgCaQpEVPa0c6KJe/UXghhotbO5aJJIVohTRPVOpJFKqDdXETtoitrVmx+1WsYUlLFU6+a6LVCTIjBEhCdnLedDjbNB86PZ70XW9eEM1rQiHGidUcXoww1taLptdCrCqm8aLdfmD1dBB8itMY0TVr8xHFzvOPF8cQxJT5z84IP33+feT5wON0xxaRJ1ZS0Kzs4HNpl2mphy9ncOSopJS32rNrhW7ZMmjw+WBe80+LEdDjCsA5BiUhpmrRzUu9kaGov1b2n1gwuaqLbebwfdi0e7yM9qw2gd0KMWjxv4iBGenBgxUbnHa10Wiv0WqB2FTMGRdWPxIz3WpgJzhNi0CIGSRM+IdBrJYXI6gNBGk/bGXwgTVps9j5wPCamdOT1/WvevPmY81PbhYXOC62h97fzhOnE3bvvc3rxDuKSFdwyTI0HeU0Th/Mzh9MdLiZqUQLM5XLGiedUNtKLe86XC5dlRWrlt77+azxeHsDSvnutdxQy2ojlXDuJwewRhkjOijmitgIigjSBLnt3nyY9r8ms0YUIz7sGxs9Hh3OzxJ/bhUciFo+6HvHe5Uffi7kMyz6nNKXdFkWEICqqOMxR8e9FBXsvXrxkmg6k+H07P2eeLheWdWPdMr3D8XiDcyu1Fk1o2iEn76lt4rJpdy/OE0LE+cBly6xbJufCZVuprYGRH2pphBC04Cgq4MrFhFe9kzcVBwbvlb7QmopBTJAwR6V61aYinScyjcx0mIkizCEojSZ6OhdCinjp+FqQ1jSxnhf8ceYYTtStkhtczo+cz09MMeC6UM8rfat8/BvfZvtw4+7zn+F8vlC//5r3DzekNHP/+ES7FC5SOS8XpAk305HzttJbIDfPUjpdKv3SiMETU0JCIE4z52Xj8bxop7Q0QMVcmcpWCj54vE84hPV8Jsw3EBy1wbblHVXvvSeFiDRHKyvb00o5zkxeqVceKK0TvCdYoVGL8I4pzUQfuH11y3E68Oa1PRe54BpK7UPvwVI6EiK1debjTExK7lDcnqC2i7CsK7Jluog+Na7hkme9XFhTZDpM3NZb1oeFtWz6BLQOW+Xx9RvmFLid78hLpi1ZO2I7lLUgT46PvvsRhY6vKrp1eGpZtVO/N3rppCr45qht4+zP+Bi0W1a0Q1p6JzqnHeFFCz2ldyMAdSRqEbd7XTP03tkuXdcu6MbYN6GshSCBwLhftUO55r5TJYe9kfee2DvVBN3zPFNKZe1KZti2TKmvuXnxkttXNzzKA3XddL72UUWtzkPqtG1VIW9w9KxCq2UrOPHM84Hc1RLWAdM0EUOkNPB9xp0vaneHWt5u6watE02kEmNE0GesCeTLhd6TCSI7UdzVRtSKC1poEfK2UWolzRPzlKxgoYW1aYq63lvzXowSVBBS82aFRaVHTocD4RCZThPxkmzdp6W35Xyh5kJIQWNm6MyHRNmazh2tg9eCyAivWpwXnPR9LVea0jfcbyvofrpGpyOfH8KQ/Qux04R28dH4Ud+FC+rYYcX2IUKAnZQpaBHIe7M9dipqqPazTidEtejyTsUaO03JiEa9Q3CeKU3EKbGVzUhqG70rOcYHT6lF1/Gm9hgUmqsI2IbNb2IYkCEiUuqggO2RiolIgr8Sc5QSYPY/z2r5Si/SPYq35odBVrIqFd5Hmu8UEzEpCeZauJdPzOU2xXfda2D7IxVsKG1mF4GY3Sgo5aD3QREKu/BiEEwEK6I7YdsyaoAXjLCjQqTaVfyi+wldL2k1T4w2occVQsAFYS2DTKB3UzMx1aBSybAXsmJda43cVKwfU6KUbS9ODi1F8GG3eUN0DqpV56TuO8H2iHQllooJxLq03eJGrVueESZ1+UQ3QUPvsA7LoN7wZgfkTLBsmMRd0NVq3SmeWuz1uq80EsaI4zKImTL2qmoPFkIkb9u1WI6eVxVCBsaiToX8WsilaTFTLP61WsHstNwujAr0Bodt5gvf/hw/8r0vcZtP3BxP3JyO2jiTJi36gjbn9CFEUjpFa82ESnoEQxxX65WUGnxA7N/Fmp18jHtgEBpduooJ99SErrucaAOCCjadCVRGbNFj2T+vV/u7NU8h4MynzWhSTvQaDSKOfp+wi/66xSW1tdNmJWfry30f7xy+a6NTKXrvbzXrXsmsoMQoMN5H/Lqwrgu5b7ZfspnaluOYLd10OBLn4y66ojfwnU0Ws+oLhDiplVXThqqcM0mE1BphUlvqUqzhK01clvMu+BmRkz12WLbk2TwTfOH27h637wP03lyWA5dl2gVKp9OZGBUXUavj4f7ueu10UzbuyF3kx/izCYt0ft6D6h7TxlH2Lgwy3vN5QkbYGjZ047kVsRxNvwpZUYGk9ypAH8LiLWfEVbU6p++Cv1qvc/MXvvcFXl5e8Mt/8pf5/u1HlG50qUGZNdGFWtqrhR8Mm9KKx2y39WpTW9+Fo92EDM5dv3O1e7QaAdLt9wEUtElABR6RICokUbJr3XM40poKpbra3PeutBuqWtWWUrTpq3c8Sq2rdSP3zj1qozadDrT7yoSKSWpVu73Si62vKtFHTYdU6DhKM41L0Z1r8GEXoyKOdVvMktViYlciN7VanHe2169UJybSZScQDnXcEEH2htok5kbwoxHGUU1sGsbDaufPGykwJSXgXs6L3q/NRFBchcYdFSTrWsDtdq4do+aIHm816zqQZ3OFmCArE30gTRPO6JsVFUBL7+R1Y10Wjc22//TY2r5lahG2ZaO7J5JPOFHaPL0aUcqe6SZ4e06yaC4SACOw6fp3hMBm82g3qngjBLMwFOii9OmadY83nkeH7pGb7yoYstgMWI4Yo4J2lJKpa45qeeIUk+W6xtrMGjxjI05Kdy1b3tdT3WKB5lyUDKyCVJN+t44rOu8GoGVdu3ijRwJIAFeribc1B1frtaFzCAGdNcZpT6QKQrXJSvNwuh6rOy2azh6fa9FGF2/zohILbX4UT0XPNXZe6EZ63IXu3QTOAcLzdddYL1ZqznRURCagzRNNY4VCQS0/vcfxa25faWYqlhvf/VM7BPhLXCeKt+PteDv+aI0Otw+3/NQv/BQ//fd+mpevX17zAm/HH7PRmaaVz3/+G3j/SYLQxx+/4s2bF/vf33vve9zcPAKQc+S3futzn6hP/GGMUgL/PCSoeV5+e1/FH2AIgnThp37hp/jw2x/yt/+Hf5tf+/KvvZ3n3o634+34YzF+3yIluBYFRtJ8FA26bVrVpqBfN117t7Dff18L9dcu5tqudKBAp+RMLZkUZk3O5qJdu84Rk2Otap+0LBudynFKLEuhZE3iTvOsiUbRLnNExQqHeeZ0umEKjnPb0KJ5xTuPt4S0thRZsnEUyunPigXsHbIxBrTMqTu3ktV7dJ6P+r1xu2Br7+RDE2d6fqqJLLQDKZdhjWZdNSHgqnblO3G28dQkaM6F4DThX62YVoolykQTAbXUUf3XZHLvtJo1MVM74qKKxLoleL2lwrpimUupSPSE6HBeC790tSPqtdIQ5sNMDcJ2uVjib3RHCQFPMeuHbVuRulGyFnICHi8N6ZG26fUMXnAuEYImXVqtTClReqO0itS8f0YX4bKtROtI7r2zLhs+aWdVLY3aVMSUTfxUayUvmV4hxQnx2nWUS2ZZF+7u7vDec3nciPOkNnclIzUDnlYyS+mcDge2rbFthcPxSNky0jdtrm11T+C4ruKg7oSKkrhooxNVLXWc89SSiVOk104pVX9HlMSwni8qLKgN54XtslFyYzabvNpUZEbrlG2zIrUWmKVDL2pd0Rsc5iOn+cCUEoeYeOfuJS9vb7mZDxzSxO3xhmk64MKkicfWWLcLraq4wDtLEpWinWeiwhtnBRWssCgipGnWRAwOnCbGexdyyXu3JqCJK0sCBh/MCsyZwKargM0oS90svtRKTEgpIKXhJNBr5/K0gAt0CofjzLaoNYEPBtYXDzRcgBCjCg0Um6LipBBopZqtn4r4YgjD5AxgF+D1FOF0pDsV7KWg2O4QHF4S8/wutzcH3rz5mDdv3rCumdbBVy0Utg60zNOb77Ocn6wArffPNM+IU8FOjBPT8QUuTNTWib0z31RFuq8Lp3hDuq2cciH0wsPTA9/93jf3WAuW+BuJR0YydhQZ9D83CmMjHW7JVuGKSB+FuW5FKzFmgowCwF4aaHuhbMQ86rApsC50Gk4fBH2NWOHBusy1e1KswFn2eUVbWDXJPAojyXVC1GJtCGHvXD+djtze3fL4+MTr1x9xf/+Gp8uF87KyboV1raSY2DrUXrXYvCmJIJoN2yUr2a0h1KxC2LVU1i2zlrKLuGiNdV2I8URpha2oUCIaJaFY4UcFavq9WzXxRs4a72YV/GnyEe0Q7g13PEHoPJ1XvDiliOXGtl04HWez5Clsy8a5XriLr5h95LIV+lJ42s48bataQCIseSGmCQHenC8cX95yeHnD8vBEWTs+OW5e3PHw+Ejpja1XXOuk3lhFn+EmsLXC6ThBVQLMsGm6LBe2y7aj+VsreMQS5Dp31VZx64XTPHNwXoWe3pG8o1qBV22N1PZnih4fJ1ZREdPdixOn44Gn7z1QFk2cB99wCEuuFEBCJeSNnC+EY2KqB5JzLOcL65KppWnxu2uhzgePdwkfI1vL+OhxDVKMrI8r0h3NuuhB8A7qlpluZpKP5HXFpwMpJtxBaCv4KUCtPK4L6+PCY3qgTQUPKnSQzjxN9Nxw3ZPPmfP9I3NPKgqyJ1NqYxIodWPpQBbaBsmIWq4JbPrQqYhZu4GdAF5Yt1WFODicFSdbVjvC4BwU8EHjkveOFCJbaSq6QekRvgt5WWkiRoKsiFmINiN6hKBJ+bJlI585cqvkqvZ6MZ2ZXk7Mh5lHE2DnLSPOsa4r02FSMhBCRcgI1ewML+dFCx9eQJwSzPJGk46LgdvbG1xQS6Pe9TrpcQRSijpnxInDfOT8+ETOmdyUciQW16NzOCIbSnITIBpZpm4btTWWelH6kvd78kFkWFwE8tZsPm443wii930MkZIzeVlwxyMdz/HmhLuoaJOmhae6VSOLWpx2I26raB7pSNe5TKkudvzBMc+Jw3FGfOLh4UzJn+aqAnCC/kUVyfQfEM6MPQZg9kLofyZQ5aor3e2EBSOUPGuiaCaEUAGDNgcMKyVntle1FrT+qYK2gr6udwgx7LQAkTF/QQxBmwGc6H2EFs+cOD1cW4c/J6OMznX3rOtgNEp4Z+WiUbxr3a5reLbfKjoNci2sg+zWVcPCS7rbRRXj/VQQ0xk2aINk2018PNy9Rkd9GwVxQLgKl+nsTQajsKbzvRZl9eO6CY+uog1tcHG6zxjreNiLhh09191BFbNKBTvvZmFi80yrhdZNOAP0rnHNo8dTTZTWuzafdBPeBO/NcvdZwc2+kxLN3L6KKUXn7jaKsnb/VRNitab7DO/AWUF9kKByKczzhIjaUe9F6tYMvKBxsrZKDJFaOlX0z8Oqeb8WVmB36mGjzTOw29E0bB1Xh9V1s0Kk7q2dWcU459jytltMCUIrSsj1MeC8EY2N/NFaRSpKNrF7SYOi2P40ctNOfOG7n+dL3/4ir3jBfJxIIRB8UAJuCDgXrnv9mvV7DwR+UwLSLhQTYRdSPbvPfQjsxCAx+7euVmheF6D6fLVPWt5o+Lhmc8W5Z8LBbuFE9iYFmt/F+zkXDH9ESGp7qKForJGvtooqQpIRjfb7Vc+nFZd736kq9i21aOycrn1ipJtgsRS1kxUnOPGEcGRKgWVZdhvSbmKF3sY9UMmrEnztEdR7PgSGPZ33gZAmxAWk6e7ARy12Syk0l3CD2BUjaT7Aw3l/Jsa17+PB2ff8MB8WPvfZ3+Izn/ku07z8QA69U0pky1cfnpQy3ldrsBLWZfpn1MB/53/dz6BcX/ecrCcI9/d3rMuB1/cveXy8IW9hL85jQvPxXZR2OponhlBArsI4hClNbHljXVeW5cKWM1vO1iBQTWjqTeiiR3jzcOKn/tGf45d/7Jf5xgffJNu1G1QaFZSqmLw9yxUNUhpga06QaoRvEyjptRec01xbb0I2EVBzeu1HzkRtLPUs+RCpW6b2ghOlDJdSIAWCkcta6ax1o/TK7GdaBYpaUW9lQyr4qs0RXUxA2TuXy8phnvEpUi+ZWiGkRENjZzG6o6sNL7rP7qK/G5yuo8zVXUVLlj+qJmYZxDVve8Jh553zphR173Qz7XSec+Jorl33kDavxeD2ZpHWO3FWcmZextpjEGhUfC8I4jWG+RDxkzV9FNu/mf2ioEKS7gSH3y15u4nIVThmz1Fnnz9F9H6gKRW7l0q33EcIQeOhidtKyeTayMumGt6ukqhic03L2pzWSyevGReH4M6ekQ6+awRsrSnkrKLrBouHUu00GnVHrRgbWFwb4qrRIDn+n7N9/MgJqHjU5tHSGJhJb3m7Vju4a9OlinlNEGrPXqttv5ZCs/lI7+cQIyFqfG71up6vpeKCt2d3ZDjEZGJKsmqb4u3FCbUovWsshOI84ZtnW4YgyGxssZhg8SHFSW0ajbjYmlIWNf8MiEOaTp1ddEfnnVIie+tUs/QNhtTc8+oiOK+xyfSwmg8w6tog1rfaaKI28vq8O1oru0CxWfPfCN/ixFBo7DFqzEi79NM+P3ivNqYhknNVAu6ndXwA/Pd/2Afxdrwdb8cfeHS4ebzhp37+p/gL/81f4MWbF8+y7m/HH6/RefXqY/7CX/hv+NN/+h/z4sUbfpBEdLkcWJZ5//vp9ERK2vDQmuP+/u4PXaT09a9/gY8/fsWv//qX+OY3P8vlcuBfplJIED781of8h/+n/5C/+bN/k5//qZ9/K1R6O96Ot+Nf+fEHICldE97Pu36cc9alJ3izrME29+JGYhXd3HLdGA3EdjeyjIyuE+s48V7YDNkfopF5Nu1cq0ap8cHhgxC9V0uE4NVWrFfytig9JgRW0cTO5fxEm+JOkwnWQS1GuVGSkdoGjIQpe95ozAiGcneeFALn5YIT/R55K6Q4M81BqQtO9kSUINTSaQ1ONzdMqfPw+EA3ywHnRElFvWuBrdbdgm0kj1vtdLMwaAK9QOsbOPWQTz1Zt6YSJRQ/bZ0zTTtSe7euOSt8ibGJBWGKia1fzbDz1qhtta6wvidpXNBkZxdHjAlpSqgIhhuvTbv7a1OBEHK1MToej6x5Q4z20+zUTvOEC55l2cib0qSOxwPpMPP4+KAilg6bczivHfDLtpFitNSwabJ653Q6sa3ZOqNEk3HofVq7iui2skFr2u1koi6fVFj2+HDGBxWf5L4pPctrArDjKEWR3MkLp/nIdi5aCG5ZnQS62tDV3ghTtMKOdXV2TQSUnJHgtNPZEuetahKIrsI457TY1KxrMTivhCMZliCj+NWQJpao0Ru2lkaUzpyUSpFcYMLzMh1599Ur3n33FbenE8fDSe/ldNBiiyWyXOnUy4LUjdYy3XDZzp7flBJTijQrmqR50mKRF0KIVsgGzNKxtbIX+pxLRs/QYuFI5kvXJOS6bXuHniaq9D5uVW8WFSE6Wo/0rkl4L44QEiLaHde9kPNKyx0nhTB5ZPKWk9Hkl5XjaKitgQ8RcV67ttHrVVohiLeCgsdNnhQ8x3midNFi97ZCLVo8qwXxnsM84XjJlBK5VPJWeDprYruUSqmZvr6h5zO1QXeaXMqLFl1yqTj/yHJeSScl3KjYUK9t3gqtCDRNTJWmGPdhqbZXa+x/hq2ahbA99f+cfrcXGLVSZM+TvUCMUsH1Nc5sPq9lWC2Qjgi/dxBYYU5pZ/16HAhYbHTWr6mJSKMtOeio0A5RgcJItOqrjWSStOM0TkmJSlXvtcNhYpqiYfET90+PTE9nlmXj6Wnh6bxQaiFEvZ5unthMNNlqJ0gwwJfGvVIqec1KM8AjZiWK2cF0KxQ3UapF6ZWe8x4PwYQ34pW81LvacVQVyhwOB6PKFYIIJXfKspHiRHWNJmoXkFdNiL5ZHzjdHJh9YEoqrLg9npBcOZdKuX/g1cs7OGbqslFKAwfLcuZpWUlz5PF85r3332PpjfuHN6TlkQ8/eJ90mFgpuBrIl4XZBZZSqFnJcT4IzhKygyRVshJntHhQNCkrEL1jmiaWFimuc2mrCjIOkRC0+HZMR45zYp4mWis0OrlWlvOihYWgVJOybipEeXVkPk3kTcWf0qsKDUW0Qz1XHh421nzh9PIlcY4E6w4OIeCNWiXexAq1UItS/RDHWjKfefkCLx6HzoHFiraDgO+9Q3LDTToXL3UhP624FhAC0oSSK15hUrStsLUzQZS6llvh9vAC3xylQ+6F7XFFQmNZF3z1TMnxyqw4NypbLpwvq1oVnDclShg5qVd4vH8iOU8uWnxqDdZNBdEBjaW1VO2CjkqTo3TWi9JOpENwQZP4uVNaQcSTuxbOhkCh9Uax9V+j4cWrEA3YllUJEOLoMVKyFuCpjfP9IyEmXAgmxF3IW8ElFUt4hG3TAk2xwq4TIQQVBZU1U5vGZhFh2zY8lVyixgebH4UKojEoOkdIie6UIJWOB+oTpO7pwZHrRskb3XmCESNzV5FriJHQHHUplK5CBLUEM2HMKMBYId47fy0qYoJLJ2ob0+G8LMDKfNT5aD7NXM4XQgjMx4MKBxiEGEelXYuXVtgEjS/Be1yU/e9OHDkXjvPMNCXq8J/5FA6Zgc9An5//61iTDlGQ7HSaTjd8pokBrpVz2LmBfS+ydMBZt/l432oil0Gsa2aRNmygVKwgNk9xpfKYkGm3TrRCUsmZbsScYd2iWwUr95jYwnlvc6SY+OD5ibAv6BzRrp+YuEcJsxMxCLnUfc3SaLju9jk7pUSnKznMD1HJoLnos6pWX9d93CA27P85oHdKsT2aPD+8bs+VoBOivYdTG6zem+nInu2ZwGgIgyyi68fc614M02OpKjwJQW3kjC6HUZHA1ibCvqccghRExX/VBDrNBACIWpmp4KNSWjNL5IgPgW1bTbQFlWpxo2nTiPfjbtvvqJQS1c6/E6FK3Y9N17Fqx0trRnKwWGav2Yy0O0glQ4Co5FaNWb1UjaFBqZkqRDGxgwnJeu8m0LHrx3gGdH+nQqlq62W7RlYM3ulAzwSAV3tzE/qMx6qb7VLrVtCUnQQRvMfj+fw3P8+f/OaP8LLdcTwcOBwOTDHqflAE720PPd6zocLYQZWQIcTTzw7B7/STLmr3qoV52fcA11Wjmv4OUzVx19faF7cP1ftMLfZkX5OOkuxuMwV2X2kjjp4Ts6FGxQzYukzPkTaNSAi7CA+7p529b6df9y57PMBiRbOCtNoqehF6COjprrvlNSMfYpbEh3kmBCWnKVk1WxzTdWevKzRtBOq2r9qsj0rtQdX+1Mdk1nuDynMla9C1BSGEws3NI9/7zhAe8omzP6IywMtXb/hTf+r/R0pG62JXMu0jhIz3eX+2NE5YvJDO4XDZ79nrxuEHx3VDsV/DZ8SmIf4a1+94WEAcX+rf4Onphv/2H/5pzme17kTc9X6xdx5/c07XG8PScuSkXBBmPxntSwh5I2xBrWJdIWfd19GVWBK85mxKLXzll36U2jq/9cG3GeIQpakYMayDiLdp/kpgHXFoPO/lmXhpPK9t7NVM7DnssgIeb7mSXcxXKkRtHuq10EXUfq2hzQXRE4OKsIMEQgxE56lk2pZJk3CYEttlZYhue2tclgXJunceQthL3ujrwkmORosTnDTKokKNgNJpdB2l+0t9PjWf1qrarCvpcMQt3feF4PE4Kl2t94YFbgz0XPemISHuOSlErTP39/FKp6q50KZGiF5p3k33pTp/qh1Z71ByodaNNDecj5pTqkI3y7YyrAQHPd1itg+eLW/ElJhCZLlY440tW4SxP9cmQe0WUFFu2Yo2wNm+Qyl3RvOxvJuS1HRuDt7jG7r+FxUGFVGCVStqF5qiNoQ1NEeljSP6WvFKGMIEkCV3pNl1GnGwdaqp+EcBsdn80y0/VEu1vKjt10VFgLrWMrFtG89uu4YLd81beBMDNWuKFFELTtPb4UQoW8YHFQl7vGZzrEFT1yhe19TilB41lo+icbe0wu72ts/JHWdku7HQFJunR144OBOCiVqA61cZ80yntmJET/3udeQJgjbt9tKVHGnPbaXu87HO6yYWsmjbje44SFzD9rTmTMmFgNBdJyRtlOiY6Ls2alNxO84EWs9icx9rUhkEwTH/2d6uacT20es1/zSOO+AngBc/7AN5O96Ot+MPMkIO/Pmf//P8m//vf/MtOelf0XE6PfHZz36TX//1L/8er+x8+cu/xr//7/8n3N4+/DO3AcfjhePx8jv+zPvGq1ev/7sc7u843jGbtVod3/zmh/zH//H/nIeHuz/0z/ndhiCknPir//e/CvBWqPR2vB1vx7/y4/dPUmoNsU0fXBH74rx1Bte9A613w/V3FQNoIs2IPjIS6FjCUjfgo1AwLARah2XbUGqGdSWXpl3XXdOAglCaEFxA5oBEz7KuTDGQS2Y9F+LsSfPE5azd/Fsp9Kyko+ANqYslY7vsnbYpOLbtWSIXjw8mvPGBUjtTiBznAz4GLqvSGZZlRVynlHxN2AtK2ekqYMmGy9YkpHbqx6gCpdYqBe2ypXXrnvJ7Qk/fU20LpOmmUqybM6aw24c4p+Ib7dZSwdOyFFobG3RH65oM7VmPoaEb7pzVxqDRcWjiHBMaUYVo5+FyWY1QtJG853iaOV8WzXo60Q7UXPExsl7OSIdTmkgpasJAsVrkvHE4eKYYKdtGTIEwJ9aSWV6fKblAnDQBaMm9UqoWNhykKdIzdHEEp4ni+riBJb6j92SpSBTirB2+fVuJtiGP0aulmRPSlFjyE0ECHVHaUdOiPL1p16AVwrbLogKiKSJFKSzaua9duK12KJ2eM41CrU2TG87juHaH9a5Ei27WhmXdaLURUyAvm1ltdJzXxE3rBWlCcJrkDt7ttboYIjFOlDUzeccxaeHfO8ft8chpOnAzn5jjxCEdmONEmCa6idmGaLCsG9Kb1r+tgy04h4sR5zoxeZyLKg702gkZo1lvSaM2IXghxsmKFkD31CoKXrL/oveagHKK9y6l4EPSgo5oMTp4pRPk3ulNC0qIcDweiOGA851Khx7QrjkVKbqu4oXeMjEcrOgYzEqiE2OkUXDNGwHB4UK0pLA+w9BoWUWUIiqIdCGB1yRvKYV5OtLCBDR8HEIzvRYhJqZ5prfGw/0Dj5cLy3JhvZzJOWvhH0eTRg+aTK250Vvm4emejz76LrjAfDwxTRPiIg+XjYfHM1uuVLwW8NrG/ZuPrPPeTq4ls/fCgaW/x8r2Sm6wRJwl9q76plEk3kusBrB4LjTiE0UF2f/3eWdze/Y6AYvp+jq3J9461i0o4HFKI+NaJJHxehG8dO38lE7Lna9/49vM08whJRVL+m7CT51b5sOROM2cTgvnpzPH6YkYA9MhKq3PCfM8cXdzy+uHex4eL0iDyQeKWTX11nB0ggi56XFidjXJByscq8jKebUMy1mtgFptCB7no17fkumh7mSG2jvrsnI6HNTeUDppnpAWkCLgo84/pbEuGe91PpKupbYQI3cuMkmgOp3YpXUOxztCSDy8vqd2tY2pubCa2Leu8PrhYw43ibYcaGvmzffegPcUKbjamXxSUV7rSGlsvez3wjQHelD7mRAj0Tl8dMxz5PFJ54LgrYgbHPNhpm2eWld8SHQJhFaR1sF5Ws6koELjkKImtGuj+mbEB+hb5+lxw4lnSgHpaEd7VxFScp3uIXeB6qF0JHQtzHS1Yq21s5YVP3um08RWCnnbWC4XTu++5HI+U5wwec98SCyPT2ylEYOoVZwI0xRBGpenhVk83gvrslEWLeDEWcW9uRZc1Fi5bhukxt2LF2xbJkhkmjfyeVHiWBGaqNBNLKm/lko8HLi9vYNa4Hsfsawr21bJWyUeI+K7WmcU2CjkuiESrINbO4rjFJmnwOX8pI3IouTGXh2lbMzTpMXz3gleKLXTS6d4KF6QBq4Us4GyorkLKorw4NoGDkpt4IUwT0iMHI4z1Mq2XGi5UqZCdRqJfPJ0aaRJ6VGlY3OReYGUovE4Jg0fxSoKpsVU6wjh/LiYYEItQ6QLxexAEEdpGzIlSstaYPIRmtqTuq70k+Y7Lnldl5SGqHeYUvvmiaV2StMCSOtdiyOiRJVhkQSyk+q8i4jNX1Pw0BMFUeF+r5SWORxmLSpuhZQi7WYi54J3ERcc26Yy2kEc6V3UumzMV04FN1vWZygdPEgjTZ66/M5L+U/D6P9RhwSSrnMLpqLR4rHeY8+LQ2M0K4LvDQ9715zuIbr9ET+mpmuB9/n79HYlC4xpUJeuXuOFFxOuOCUO5IYLsgtQVWhhTRbodWkm9tCq1aAFdW2IGHZt6DzmRH8mTsk3EtRqVrzZozS1aRQ8w2p7fG+l0arNX7UGAC3kjiLWoNI0E9A1E2+MNef1vHeGfZXg7PidFa2q0YqudAR20VwuRtCzOZneTPRk+6YOzjuzA9fPEZwVnY1oVIUQ9D1bVvFkKxUvQgyJnFUchtP36lVpArkoLTT6YOKWsZbRgmqMujZWezQVQdVWKYvZiXq/iw8wKzi1FlKBE1XsXOk8l1vdBazenjm8GO3TWVFWV0feDYGYCpOKiTuv165fl0LDs6ur/UvvIN6rmAnYbfS6GAGmGxXDbIzMMveqt7DzbkIpEehFRSze7JDGWsuNZaJ6pNoaWK42kR2zaxa6c8Tuef/NZ/jyt77Mq/uXzD4RQyT5SHAqUg1e6SHYczvsL1tR8Z2FaxgCVBPyOK+00z6OuXe8i0qok07rKkz3Pth1UaFJt3zAWGp628cOgWOrHRFvMVlf5OzZqCbgGbyzGKK9f7fVrRsnSJssRqDobT8OJfBoAd+braiWgofF21UwNu63QfIZMQPvdS1rIvfgI31/RkYCQQWwzpt4pnXWbbOmB6VPq9Co7fIt/Lh/9JjX7ZHL5QnEE2JUMqF4tlxZs/2+UUc6lVZnOvN+3ujXdf9Y/d/cPKlAadr2c/mDAqV9iBXF7a2eC4Oev+af/U/P9xz92c/kE68eeZcuowDfuL194HMffotf/dUv7K95/rsiOo8437i5eeJybtRNxXNKrQbKEIeo6HF2B2JM1qiSWd2m9DWLmd45zUXVwLKs/NivfAUQvv3htynSzHrU7K8wu0ijCXu7P/SUi+XdNNa3ZgTipo//oKx0ac/2YkrD9n7QgNUaCicaSwD8iF0NQb/TLvRyjugiwYU9LvTWjEyZlA7TmjaqGLVtUOfWdeEwJdIUaFtlWzYlvip30xqKgoo7KZpzs7vOO8FF2xM6FWN4J/g5WXNPNfK5LQO9RyRAyfo9vYPckIrFB43Le0NUjEovMhtRb8KNbS1E1NYU1fzv851XZZQRyzRPMqw4u+U+O8NuT0VJKpBWqmhIgRDVVlic5muqd2yrvv+gV4l3Smgda15R0Wnd9Lx6L4gz2zUDQ9XaaT3vAsbeICZHLsOOTui10+VKO6pNr6+flDzll4Vl3bQZp1QT/dgjZiTvZnPO2NM7eyZCDLs4+Cpo1jUAjmvuym5LS/NS7AGU1vfroffYdS0mNFwb6z2lYjvv1eIaNOblomsci/dqEyt2X2BE2nEtGzIoQl7vDxVj1et8jD7jtbRnueER0zSGO+fVDtrpGkL8yMNi+5amjTLS1Pq1c30Pm/tT9JTSUICnnRQxKl+r1/NgsUlz5mYTiYr8lPT1zMK4N3Aqxi5ZG7VCCpB1rvXO2/5Kpe7PPmAXLQ/Kpq7H2jWfH5w1vX4Kxz8EboHjD/tA3o634+34PUcHXz0/+qs/yl/6ub/El37jS4T6BzJ1eTv+CI0YC8fj+fd83QcffJu/8Tf+r9zePv5LOKp/vuF94/Of/y1++qf/Hn/37/5lfscNi40QMh988K0/9GNIOfGzf+tnQeDn/9zP/26H8Ha8HW/H2/FHevwBSErWXSzXvY0m3jQJFKNRicbPLcHZWmV0FNP7br8gwO4UZTvERmeKkW5Fo1q0MyXX8olucuc8wTt8SpRto4vw4vZWiUKb2qbFaeYuBXwUJDyybJt2I2fFTPvoqVKVw1vUYkdEiR69sXdYaxevHtthOpBSYEoTdN0Arucn1qwdgkKnbCtniokF2JOxpWacBEX9bttugZe3VYsKPoITFd50cL6z1axJeUZHmW6qR0GhN01spzQ/s3DSi5NS0q7/VsDkRrlseN394ySQjjOlFE1SqVMc3gfEqW3aelnBq7VWsQR6741q9kW1d3LOipwem1mHEju6dlyBIfFRPP/j+UnPp3SmmJDWSC4oQrqqhUw08cv90wPSCje3N/RegIoLAt3R80YQteg6lw3xwpYrrWRiSObVrkmELqitzujKkso8z0hXYZ2mXyoVwafANE+02rmcL1Y3c9zeHRUx3hohCOdlpRdF9cebiafHRy0GtKpFEh/VhqlX0qxFLSeaRPLOqYWdWSGKdbm31ui1kuuqYrKuOO28FU1QiRBj1ERCVXKIa22kwwmioozkHLe3J965u2WOUROLMTKnyBS1E9S7QNkK2Ve6FPJmuGwatWwq8KETguDtmZagQo4QnN4HtRNDQoIKNbxEVH4lO6nDWbLVSdDERy1Eccgz6pYmxvRxaa3jvArEtCirCd913fTz0kSMielwIMSI4LWQVoratjS11tvyBl0TSCnNpKhF6a1uZiEWWFdNugUfVRRFU9KN06Su5nQDA7leLHY5s4Z0ogXs3htximpRiOBiUopIqzw8PdFdp26Z43Hm9u7IZmKInDOXy8plqSylgtPnuXkVdvgA67Kybhe280LbIrULHz88cf90oeRGM9uL2grr0z30QpPKsG35bfUC0RR96wNPf+1dGbHjecwf/97H78ogGXRLbl0/RJ793nPanhZm+w+8r7336HjsWAHu+nctpPrBWIJmRcNerfijorN5PuBDoNTM4yUTvNPiQvAEJ0ivWuAKnuAOzGniMM/Mh4llvbCtShlSEljgg8+8T+3f4eHhUVH4TnAxcAo3lDev6R2mpMh/DJ/uEC7nM5dtwweN5aWqOLdsZinm/H5eunRKVyFpnCYtvLbKWjKuqYWV94He1PZOrTIj4hxxnmi9qmgY2HJhWTIpKVFgCo5DmDgcZmbvmY9HyrKy1kzb1ELtdIhcSmFZFy4PhXQ6cnM6sDRhXTfEeeIcqFWgqt3MzeFIW1e8aMHE+cAUJkovShvJhbUvRolQwW2lU0OgOLNVlMbLly948/CG/LTxWDN9rZSs810plVLMDkaUhEiEc14I3pHmRC6ZuhYmE4Fc1pWtFCWSdbVICgLSG3XdeLp/Ih1mtbx8+ZLlvFLvH5T2ENS6jqA2Z7V3LuvKdDhScZy3wpvzA5dtUYJJSADUWnh6qoirWnzwkePNvAsIcs20TYgpKGUuqL1ouazky0b0M1NMPD0t9BiJU6eXjS2vOK/xmg5bbdALy+M9H3/80U5fuDkcuZSNbcv402Ev9AgQXGc6TsQ0Iz4grx/J60Y6qNBnOkw0s+jsw4sAwJk9EEJ3Hp/V9gjXSVNEkievmxLtamXJK5Ct0ByVMNXEbF47hU6QhIuRLRfKVlhqwZWMT5HmvFKMaiU/FZ0vvENESZepixXVK4WNbDQ+b+LtXKrFBmhFaWXS1Bsheq/z56r0iK5+rAiVafJ478jNYkVXe41atWBSaqG3RnSeICq2DXOinC8MWkZt2mE+p0T1nY28EzVbcbv1g2tKbClZrShCCEy3R2KK1NqVYjglLrUgCJOoiDpEtWpJU8eJ0mJK2Rhdz71VcBDnRGiwLhu1Nta1cFk2gvNUrlTMT9uQF9d9xD6sENRht0Z6Pnfs80obc5f/hL3b/n5jzunshZVWVQDjMItje1Y6mDWZFraGfd6cZhUhVRPTeRWYOqMrFVvnjRgsbthqdLOxYi/+YCKh64ysQoAQAsmIWNh3rmXbLZxF9LiztGfUgVG8tM56E8bvZB8ToTAKn+5qsdSLkYZct3Mhe+Fy35+1bkTUa4MGDAFG30kDglF7rAAuOCUKGK1qHL84RxBd15WiHf0++N0eR4uEKgLRAmrTtcBuMzOELirWG2sQQQUcW96GLmenMHn73W5xwoveC+uia8JhqwpGteo2xwG9KaUSO8dqFWi2McPmzq5dH2KxZpY8dn21tqv7DrG1SG9m22Tb2DQlBi1FBApVC7si+OTJ26ZkHfseKoCrUBu+Kb1up+DafOsGdagPcZ+RHVvd9+StD+FORzw4pyKG3owOtMtI2AVLHuEuv+LP/uaf4d2Hd3B4/Kzfy7urxW5tDWdCvFqv93wfDU50W1vrkydyJV5hoivv/a6ecjIsNQXpz0UUuidT7Y02Ugz616B1OCM3q4DJMZgUei/p/ks/L2g+IUazxrsSnQfhpjUlW4EW273X+aObeGnYQZWi525YVF+bADSuqQbOcRUKtl1INuhEav/WGXZyHrum6D097vdWGzF4pjTmBqUqqSi+UdRXUAVtdm8o9bJQq4qaelO6zWXdWHNh2BoO0s+rF8Jv8CMq6Bgx9rpbIIbMj/zJf7oLlBhx5HcZ+3bBntnr3uP6it8t536NSRa3rlGcIfjbp4HxLPaOw/Hhh9/kG994n2WZ7NkzwcX4fuJwrnF7m3HuBgSzN9Zn35noYojVnJhowjliCITgSWXbBaYquHMcJt0P1MfGV375R0lb4uuf/QY9GhmvZ6XweQ/Wb6S5ssZWsn03i+/dREm1PvuiNsfI2JMpHbQLRn3Vl3gxSl3TPNx4Txe8nQq9F1tTYb3GNmx/o1Zz0Tti8NQYIBfL8zSiE5pHaaulswpMMVKbkpqGfaYbF75B8JHYoBrtb6eXic5DdFSEMp5lm3uqqCU8DrxASlHn5JrJS6FvFad+4pSu1q1jf+lEkOCNbqu2ra03emm4oIKsXLLZsneL11ersd7UlldznY4UEy10tk2JfIP221CxkjjHlgtpmlS01GEtma1sOgebcGzkvzRu6vH6MGzNNZaWqqJ8H/ze6FVLVatPNub5QMl6v7jgkd71/jXCH15FQA0lQ7bHVV8rYmsQz9qKxmqLpfpzcMHh0DgpW1EbOe+sibLvlB5dZ4+Ekf7nnOzMOmkWR61xoltOha4irzqEYd6pyNQITHRtmBA80SkhqNdOrQWaitO814bCjuYl9fj0uEQ0ltZuwihp1nyk90RDY18zYhGWHxl+qiIQRKn3vTa1b2tDdm0EIjFCl4mfMGpip9G75um8SRJ1TfD8ORxNH07tGEtFwiAtXQmImh8bAmQ9VzFGQgoWQ1UY3cZ3wykRGqWce9C405XaN0TB4/PFG03Y8t+1KdVb6WDtd4nMP8TxxR/2Abwdb8fb8fsZ0oTPfPcz/Ozf+lm+9Btfwjf/e//S2/FHfvypP/WL/OIv/gS9/85C18PhzM/8zH/Ozc2nV6A0hgj89E//ff7+3//z3N+/+Ge+zvvKu+9+9C/kGKZt4q/+zb/KzeMN//W//l+zHD7FHYlvx9vxdrwd/5zj9y1SGt2J18J1s02TbjpDmPaCgAgqXkHU930kU0yEQdOEykDZagJcN6nOaVflul0LLIqv1k38joWvJoihknPl8clSVV04zBPRkvXb2pjSxHufeYePP35NXxsvXtxwc3fgO9//Dm8+vrdChFIBatFKZ83FOpwc3kdCiLx48YIXtzeIc7x5c8/jshp5CXIpmlAcCaPWLYFqtgKl0aRod+2z143/ylbw3nM4TGw5s66rkXcC3VDAmnjX7hYscSkIMQRKyyzLQmuNGCPruu4JDlD8uO+etmW1DSsFSWnPEooMa7SK4Kzzxu1WZMEHmljibLOuSVEENU0Ry+u6MKwFutOuVunCtupxpXkGpwW8vGU8mjgVcWxrZl0X63AG8Z6UlE6SYqSUitDMcmmF2nlaH7XYJ42e9Wd0cFLZaqFJJwZdBO8WTQ7KtqrQbHQUO4dzgZJVTCCi9n+js8hZ11KKkyaOPcRJu63FOyX1pMByvqg3fa34SelBrSkdKEwBmtohxZgoaybFwPFwYHm6kNcVaU3TAF2THM4FDodEK4WYIjd3R5olVnutUDTxXZesVmUdogiHGHj37gV3NyeC10R0mmduTyemNDNPB+7ubo3EEGhNxUI5b/a9tSjtpFONCBbMymGa1MahWke710qHIsBR4US3309RCwB7gURRYnSUcDHs4BDHJW/UUgCPuKguE11tEEst5JoBz5YLLky0Lqy5INJoBUv4aJd8WQtzTDQaaY7WDS97J3OMAQhmp6KF6FZVzNfoTHMyq0aUeiZBu7qdJjdrzfRe9f52TgWPRRHuwXvilBTxXQrTYaLUYj/XLkknaj8kMRKmAyeze2pdX1fWymVZuKwL63Thsmxqv9QUxhBcw7tGdwXXOt3e3xlJou1Ybsto9/1vas3Yynjo925j/fsIB0NkNIrD1yLxKFPIiPUwmpqfvQaGpcj4nPG+1ShPP1hsGIXSbgXdotlU2NOb41ViXZOauA9z4sU7L3j56g4ksJ4XBO3804MT+3xNuIaktpHdeUKKbOvMtm1sRqxYc2bNhRd3N4TgWJZMzlWt7rrjdDyoiMc7xJL7PgbWZTPSkiXlq3ZRakFB6Q61WIe1kR/w7EWOVhu9NjbRIsCSC7k0kk+a3G6NaNfThQ5NSYUPl8y6rPqcNBWw5Cqk6DlvG3z8hs+8+5JlW0CEJMLDttELhJR4kWZqKazLhvOJ4jrNK0a/dLNMEJ2bvXdMMSKiss4motQ9EVpVmtG2qpi2N7Wna85rx6t05inRgxBS4p0PPsPDdz8mr5konqVkuqtMkxAksF02ts1EKVFJf757HJ4UOi2v+HggBc+WIcZAL03FtctGjZ40TUDVedF1jqeZ25e3vHrvfXJpPNx/TKNQygo0YvK89+F7XGplWys+RY3vTiilqK1dbcSY6LmSS1FhCqg4GmGeJvK6qrjTY4JQs64E0u2JXuD+/ol37iIxTdAKwR2IOZAfVi1+TJ5lW7QAGiyxntXaQqJQyaTgNXFcm4r0StFCMY1pnmnO0b3DT1GLFaXgk5EYaif4QK5KEmo7acVEAALxMKlNWlYhU7WEunin98emMS8lE+U1LWp1p0l/6dr1vjw+sSzDCkbUirV33JRUULrpWrHWpmIo6eACHrNesW568KzbRq8Nn6IK4Lra3A3R5eQ90c6394latbC41gJrI86JiEDw1C64BlRHdJ5tW67Hbmsb3x2uOYIXjiGyUs1as9FaIbeuNh7zRGw6D9GU9FhyobZiBLJCq50lZwiO27sbWumcn85aAElKtcir4NzVnulw8PRZC9Z529jWjXVdtYiWG7jA8XiALmQapeszmE6RMH9KO5+5FqqvkV3/VaedhpOw42FUFDYIJXDdOXQja16L/OP+1VpsI4gWXYp6xeqnDGGMrVU9XqmlooWYWjvbto7ZT20krShUayN4z+l45HJZ6FXjWpoCT5cn1mXY4BgJchCVbG7AjYK3Z5pm5kntsRYTWvauM94uABL2Yvo+p44CmbR9XpUu16J1V+sW57SgWZs2FvTWlfbZrueIbnO+Yp1MZKF0mJLzvj4upXxizhbncN0EUibs4BnRc9iHqNX1VfTknNjaVnZBRK1lP9cCe3H8SpTQ6+qsWF+rfhcflWbT+6BJiQk+1Pq42JpMwTVKKZBRxGtKnWqj0NmhbtmKo1pmHsXThu5zO91sVrSA68Bs0YqSdez+Y9hq1rZb712Fdtf4GkSFX84rAWJYI3crXpec7Rg6TsKVctCa2mh3JV15vO45fCDGSNmyrqXHBWaIMQQfHVtf8c6R5sggau3F2C4qxjWR4FQjP/b1H+XL91/ixFGbRBB8UCFt8IEQIlOa7Lv5ndxVTdgjDJqf7l9B1z3OqZBcb1m3EynG+VIRj+yvv9JVr8/xTj0aD47dMKOhAJxRn/Ve0+L7sJXXuBKcFnhLa3qMVd9vUGVr0WdecwHemhQEuq6jh/WOCsWu1Jlu76Xf8dl9Kg4Xho21UvKa2UuN+bVZvHPitHFIdC8ZCLu1IKJxQn9H15HOBxX37s+R3oO5VHJRUa6em74Xvp3rONHjFcu10Brvvfddbm/e46PXJ7u1r8mcGDNf/erXePfV9zWfswffT+4HfqfxTFZ0zT9c//Dbfv9KH3u+Z8BEluO9ZI8V19nk+n9ar6R04cMPf4tf+7Uvf+JgdC7S9z7dnjneKPHTe22CapZz0fe2GCMaG9RmSvewSVS4V2o1sabGiVIr0QeOx5mcC1/5jR/l9umGr331l+hBn++O7aksPmjeQOlt1QSeYvdHG/Hf9mhuWGQ6o4QNelfT1quRK9py3enN1ebGcQaHHWJtnbxa050IzhU63ppDRAXQIep7t4o30nRtFbwj+UDvVW2sgxJ/ms2DNRclVg+CDSqIBY2jQ+g4jqqZUMhJ28VT3QQ9DRN0RL035tOR9XKhrtkocrr/cF7zUL3qmmwIQVQMpsSzIVJrvWoOrI55alDg9RlS4bjG321bmeYJHx2H6YCI5/Hhnt6rWl2jeZDDYcKnyLIqTaq76/OtNKy+x71W6vWOrp1ua/TmMg1vYkwGe1ifk+CQECilsq0bKSa931I08a/aA3ojPzejUCs5zOhP3ln+U4jO1kLBxFNV4473HvEqjnLBI0VFbIBRApVE2G2tM9Z147EGPadu8vTa9vtzPHu7ALpprB+5OW2ckz1uR2tMLFveY44K2q450lqVNNaG6GfYQBu98joHi+Wj27NnS1lyKkBSAVMwcbKIU2q/RaBWVcDsZHwHoTlBejfaYrXGS7dHPb3jtBk2WG5sHKveg7qW8F6vtz7ifT8/QwReWzPik9KY4xSJMbCtmWx05kGxoujzdbUz1vmoNo1T1ei4vXdyLkzTpPTjbvepCec+tSSlt+PteDs+3aPD4XLgr/zdv8JP/rc/yfFyvK753o5/5cdXv/o1Pve5b/KNb3wOPnHd1er5r//1/xs/9mO/jPwRuSXu7u756Z/++/wX/8Vfht/xPu588MG3med/ceKhlBM/8//4GT77W5/lP/2f/Kes8/ov7LPejrfj7Xg7fhjjD8xYbG0kL64Y8+FjDdYNPGhJfZCVBupcN8xaNB7pdXYs/8BFT4eJLW+UmgkMhL52j3rnicmzLCqoOEyepWVL9Gmy8+my8HQ+63tNBxWUuEZZVxzW7dsgxYkYknXOX5OdzrrlUozgPGr7pTZtb+7v6b2xboVcCz5o0l834Ub9cJ4u3ZIdulGcU6TjLPEu+8Zz4OFbqVqMyY3oghbaTDwldp6HrYNYkqe1TgyR0/HI/dP9XjAY5z+O7lBUpNNtM55LURJBzizrqsmq2unitDjiIG9qLxKM/uGDo5WGQmsKDKsROyZNuFSrGxV8ioosF7NG8toNV8pGs+RLnA90qnY410pw7Mm9wxRJ08R6PvP09ERwSRPWRvbAEmpty8Q5kmKilidNknQlDq3LSsnWkS9C8IH5cCBNSYsYOXNzc7Pbejw9nEcDFCKQYlS0elNhVkra/excYIoBHORcOD89qaiHiXVVYVxHbUJqaWzrBl72RFwIDgX9dOIUufSnZ8lWiC4w+tU7jePNDHTU3UqT+9E75ugxjyNSSMxpYo6R916+5L2XL5lnpWnMhxPzYeJwOBCCCu6c024pEW+WU2hRXbxSfJymgFKKpBA1kWWJci1sOLo4cs3UDcR5UtTicEwTx+MEWEck2vUsAs4ZCtsS0U6cJV3bTjsQUbpASkqNKqUQ04S4QN4aW850nBUeNZmYYrBnJBODktZcmPAx4oLQcmZbLojzBB9NnKUiqOg926aWElb3VOpJ1rgQvHaWasRq5JzprZKxDkNx4LVgk0LEJW+J9k7qE3Vp2mV7d6fENhfIVe1ixmOTS6VTtXO0dM7rwsPTA5fLgbRubNvG5emJJI53Xr6gC1zOZ7Y101ynB0drkeM0myBLC3x9CH+A3kd3d3tWDHImQup2PMOmTRO5zxP9w1pylzKZwEn6tYD6nKL0bNYwwZDThD7Pk10jDrLPJ60VfV/piBvHWu2c6nG7psWVz733Hu+/fMXd8UT3idPhyLYulJLZrW6a7LSGtmqBtfXOfLjh7u4F4lQ0lHOm9cpyWfj4o9dcllseHh55fDqzbVmFTIcDc0psubBWTUY3MToBbp/jWtYEoAsen1Qw18oQtylVrFftOm3O4jqCJLVO1GPSBHo6RpqDOsQ/XYgparKxdFq8Wvk8XhbEQ+pmvbIsHOcj6XDkcj6TsCJKbkhpOwmh0OBFYL454B43Ao11vVCbcEgTuah1Qbo50Lpaq8UQiT2oLdByIYhXKx/rInddi+R4z2VbuTw+6XPVGqeXtyTxdNc5zgdKy2QKCQcV3BzVKqOZFUmDXjd89KQ5EFQbSZojhz6RWyeEyrpmtl5xEZrTAlHtjZIb21b47ne+wzvvfcDnv/xFvvUNx3J5YG5K3qNXHt68xh9n1ssFPKSbG+7ubqj3C1tX4VTNxQpHlRBUxKDC2ZOuT0TUsi+qiKiWSkhpL46c3rnl4buvebi/58XLF7jWVZi8rATvuTmdrNisdqwlF3rNRmIAcUroogqnw0wwXysnuoaqravdZkospSAhIMEr9aHqWqDkSqbgBwDGlACtNkrv4D3eCYfjEenC+eFJaQ214hzEpIVTaSrkHYIGQQXKc0r44E1cJLSsVoNhUjJdy5XiVPRVcsEbTXHrG2mKep1Ps66Tat2tnYooKbN3XWdVE16ACpa0pq/CMPGe+XiilMxSqhbEWqeVDEbpqKhtY5wTrmWq+n2RpsTsIt4F6FrkmuJErqsKTsRRulIAa1sRr3MfVYsX0lHx6yiWxEkLxAXWxwuX4xPeB9ZlpfVCmrwJ8J2+R1MLFhU8KIWlS2c+qK1HNpplb02thQW670jTdRp0bu4+/f4Hg2jELliC5/ODimn6vl6+kgW6FkMZ/yZ7Af15Z3zvWlSj6bnq6tGpRdnadxF66WrTEYPT540xJymNQOeGTghRi16iVEhBiSgdLJaWZ9duFKaAblQnO9Zh5bKu6150qqMBwRRczqpUTnQX0Gh7oX6QWIeYYXzZK31I53sVJukzWsc8z+jMN+uTvVKvRfcUE2vW+xwRhuXYsI0czRJjrTCoTkOQ72zhsBfSRYVfClxQeqAzi7vW+i5kQsb30cNpVoRXIY8JnRAV/Q1yrFnNKIFAaUaD2ORMxNGBkNTeqpg1kzwTz+vyRAVVtaoAyHtPb9u4ejjvd6HXOIfOOUI0uzkrZqeU7Jw18lrs+Nmv2ThvasWkZCAR0XjV1cqnrBvBe4Sg8cUIpyoWM7Gos5XUEIOZQGfYfI+nCyuK2i1Fp5GSUZ/2e9HtYlDsGfPiee/+PX7in36Vz9R3Oc6zWjR5T4hJaYUxGGVKi7/jQ0bheVje7fMWQ5xk9oDCvu8WlJzRB/VJ1PoIW0NoY4Gdy0/khLv+/33Nafdeb4xGKkTPgTfb6NqakTycCcjrs/vNPnMnJTUV/4gS1MR7O9+VWnQv7s2yTi0D1R6qVtn3+W0Umeu1YaC2ITBU4SNdG1QG+WNYeeo8JntU9EaPc06Ypsnezpv4wJ77xt6Q0YykVGpl3VZtprJ7quQNcBwspuScqb2rJtIJKTb+tZ/8FX7hH3yVx8cDzlVCyLzzzvf5/Be+wemZhYPJJkxQ8Pz+++QrxrW7ipSG8PSZUOnZ/uE5ze16xfs+Q+xkJ3n2xuMJsA/ROKfx8XOf+ybf+c77XC5Hvdf3lTeEUPjKj3yLVy8OTDHifaRHFUrUWnZRkF5Po6jVNpRRiPPMKV0FD2bL1lplWVa2NVJKYVlXPv/xZwm/7PlHX/nH5EnzKErE7Qyi7PNTOOK8OG2MEe/VFqpb08gu9Oh42r7vGwJ5dnGfijU92rxUx0fYPrjkuscpRIV7pem/OZXKQIdpnlly+URuytn58U7tq5vX/MawAC0561rY4t6WC8GbhXNTkYvHGbFacwHBmQCr952YJkbMyaWw9Wb0HDHCayH6iAjkro2DCtjqu8iztGqpqkbzSkCKQW25BvlOmglWKiqEd9CdPcddEfBqbaeC8ePNDZ3GulzwbcQ3Jat3p0mF3DZ8cMQpUZeMmABo25R+pNe477Gn1kIMM4IQbM7c1z4ie040WONYXvMeq1ptlKzCbM17zaysrG2jd2vaG1OA3WStGdlOnBLlBYqtbWrtpOjJtWpz4qD1/P/Z+/cf27bsvg/7jPlYa+9dVee+uptkN9kkTZGKLEdIpEgif7CAADH8AGLAACX7T0wkB/lBQGIZAgwIAWQJSWRFkGVKpGI92Owmu/vec07V3mvN18gPY8y16yoQ0gYis0nVJO5t3nOq9mOtueYcc4zP+H597+/DwLQQJp7kuYDhlmkivq5G0rJQ90qr7Q7huu2lqRHZs2WuieJ/Fvy7ccyH3oevybZ3D5M3MshSzeZzjI7ZfZoSmKktqsdVBiRbyw3eODr3xDvEOW3ugpjSvQClVaaiIz7//GGweRMDQaNDVgaiJVfSx9X6g+9xZoUajnisd8uvTnhrWsXN53zoQKI1GKZh+dy67cjJ1qrWmwPqtg6FYOcXdQV+8XOJ+lwLIRO6xzA6XLXfpfX9go+uZh33Nt7G23gb/1OGwi/9s1/iP/6//sd86/e/dY/z3sa/NWNZCv/Zf/Z/5q/+1b/C7//+t8i5cjrd+LVf+8f8xb/4d/nmN//gjwygBBbO/Nk/+//kH/yDf48f/egb/19/v66F3/iNv82y1H+znwPh3/1H/y4Af/1//9ffFJXextt4G3+sxk986piwyywIBO/UCNHslu5debPrRF4Vwzn+fgJOwQ+wIlbMseyede/MYvdMigdxmyuElCOndWVZTqzryuW88Ps/+H1KKUgfDIW9bIdnt6qSQmDvxWWnd1rZeHl5tsN3G4f9QO/W8Xm5nFD3mQ8xUNtg34sVubTbe0lkzcmKsA8PoLDfNrbbldNpMZgLk7feW0HE1Iw0BCtyYuoPYkb1R9dYbZVlydYdf70nw2s1hR4BS1yG+30ppRzJgpQyipJzNvnj3o9iVnRJcVUrrPfWzObE7RFq7X6dQWulN2ipIcmAFm1WeG+9Affrey8cmeoNQ6F1qpoUNd1s5DQGYl4JXUkSrZgWxjEn1E1rYjTFhBTtu2kbjDiT557MCIHTw4Vt30AsERhjYGhgXc3+7vpyRZu6kk6gUkhucyY+z8peiDlbsmR4QnK8TprYde5dPQExCOEMsQOdfbeEV6ORc+Ll5cWuQ2lIzsc1iiFYgi5YUm5dFxhQvEiFWCFF/NqrqxPhtjWKWR+mlBAVlnjiYc0s0YoFOS8sKfPpu3d88vjA4/nC6Xzm6fFTHh6fvMgzk/zT6ANAeXn+yO3lmSTwcF4BA4eSJ6xSWiBG+mhHMiiE6N2dw1ScQkLFkv/ruqLeSa6Kd5vbe3uJkK5WMLQOsk5QIedECIm8LCY/Pga9maIUAWob9jm6EkK34rQn2cweKjjwWKlDOAVTUZBudjsSLEm1LCeWZaGUHWi0mXgTgwwRW9fiCHTprupjCbAYzD5OtdPHtO8ISICUFmJerMszRaJYEikn69ZLMSAxoSGzMos0JqW/7ZVtuzIkE9bI+vDI6fGBvTa2bWe7Xnn5+J7WGo8d3r07cbttXG+Fa2lsu1nIPV1W9n2j9rv91ezaNGu9Zt3BarCZm5yADE+SzSOkfaev2bYdRad4HDOVCa5Zwv/1AfSuquQwmQS/zsG7GXHVBUvIzcLjvSV+vsm9MhVjJObgc/WBX/2Tv8rTF1/QYqaXTq/V7co4Eu8pJYfgzEJ02wvbvtv64EWslBLrupBSNFvPb2Q+vrxwuVx4ut54//49L9crssPSE9rVgJXeKL1T+7AErkkuMVpF6PQeLYmcE7Ikt6DEi2+BnLNfOytI9a4wGhIDebHfS+tC7Z3iSvo5GTjYW2XJAcFs4AhWkNnrTqkG7KCBD3shyEIIOyllvvHZO+iD1s3mNEigh0FCyI8XtuebFanOJ4Z2rrVQu1nspdpYThGNkUtYkZt3O2MWjUvMh9XC3nZCUFIOSDoReudaKq3frNOzd7RV9qsVxkYKxMcLS4y0641220kSIATKZjL7qmYlQzd1Ke1KSImT2H50OnW2slPjIObIuHbyMEub/WUjxcSPf/8PePz0c9KSae8btAYhcH5YCTlRSmcN0fbAUTmfM/3xxPNQdlevCwoEUwsS1Ow9ayWFxYAd6ciIpnwUhEjmvK68f/+BobBeTuhW+fDhAw+XBwNvhs+nVrk8Xvj0G5/x1Q9/zNg6y+lsye5hILMpEnb2m9m/xJwM/KmDmBO35ysPMZlCxxJIPdH2xnDFhK6K+LqW8kJaIop3/jrgo31we3nh6fPPOUdh7We2lxeoFVmigXh10ErD2XNiCA50KnkqNqrdr+7PR0immmFqJx2G2ZdJHATNBA1og6J2wG+1WuXVi2HD46VeG2N0mtprauJIvvcxSGrPy16rFWYUB8tAGIcChqqBcOrF+pwiS0jEZsXC5tFg7wYmdmz/S0QrYImDXw5TLTExmsFDQYepMWH2xLkqdbvy8uGZtCQDXhkgDUaEkShbMwBGlDEweFYECUobFrusa7J52RtlL/Q6aN0giZT8c/1rpLV/GoYcRR3u+8oryNXLXF8rUr/mE459yV9nghizkGO7mhz7zLRGcxTUFU79HJOS/RMjOUVeXl6suORMQWv9eA0rfgWG9kNNa/Tm99Htr91yS72hY8mZaZUhYmoRozeaYIpezVQAzGYtQF4w2MZsnJLDB3N/7d1UNcxqxeAI5a5oYNeHA36K0fYZaj2uT3d4gXl9uMfys2kDZte9mm3kvDcObwQRt6qx9Vv78P/flapcbVMwxQIdMMKA4BCFxw0GqvR7Uc5oGisgDkf1xyyyKQyHcUQMwHRbJfUC/zG3vLIXxBSHglgziHFTekBPMVhsEt3WGrxo7oesmEzFqJaKMPwaGsgefC2asEVvppww5+dUrLmrStq/DttXHYgkg/cdXNYBnW5r6bA1cHS1/YY5ByeAFrzBwIr5U0FJ5d5IhMe3xih4vOfvP60GoyRyCmSJPF0/4ZtffZPvfv8XeCdPnC4LS87ElFiXE8uyHvPm+FJutYWYHVIthSCwuIqQhX/2eUKw89sBEg05YBJhxoP+BAdTEpoOQgafyBEeGgvgRVdxzNHBDSu0iqtS2AvYPhX9zMhhlTct8o6vI/Y+wW32ulqROTiQov1utxhDJERrepgWe/PiiLjuiajF0160F/Xz0HHvTL3svqZ5nB1NrTP4ew3F4iuHF5nX6oB07PmZa0fwvEpa1NQH+3CVv0rZN3QMFjX74tYqpQ6q79W1Vtal8et/4bf56v0Dy7JzeXghhGbnhWEqn+qKY3Z/fFGfalNfX/F9HX/9jN7zPcffvoLO/vUFLX11o4Tj5V7/jtzBgTnWM/xv/vxv8+Mff86PfvQFt9sDMcFnn37Fd3/h+3znO5Gnd59ASg7Gj3t+S0yVJ0TxZ9iVtjwnMupg3+aaKm4LaGfoy+lMjsmsv5aFbdv5zvufY/lHmd/+pd/hy4cvGc2e/+E2gF31Dqb6Gj/6IGRTzdLg1lJ+OSw1Eo/rbopFHIpw87mbik2tDl/ThSVac0EMgkaBmI7L23ozgKqZNdtWG8ua7X1CMIXU7Kowwz5I9HubYqTHQO2dmBLK8P3PrmfHFOAkRlJMRFdFPlSOHCgWbL0dDpWHFA/1zlobCGSHq7qaMqeKojlZzmR0eqn2/MdELd3Ov13vykbe/Kbz3omQEvTUDXjKyYD6Yc9cr52ggd7cNm3m1tpwK8BAyqYKPSOxMTo5mEo4bVD7q4Ws3xWM45TR8f22u32XxYq+7kRTOd1vmyldL4niSt129Qc6us1jrPlTVSn7biCWA9F3EVU1Jfk5g4Y1CJi6uamfh5w8v2H5ukPNzqnA4XtSTLbGTuW8mTfubsOW1oWYE703eqkGYqop5E+1oPl7M0aIya6vOKR0gHuv4sbDZlFBpR9xniBHA6S9nisAj3HkxEyJXWnqFmjB1u3XTaUhTDjL48CZ1xLPpIgdDrvncy3PaHmp6GqFqlh22YG5fuTFrVlKucdYqmp5W3HVK1Wir3GmyCeIN7Igd+UvABoEMXcAU6/ymMRhReRu4BajwX+4pV3vpsorrqiP6HFP3sbbeBtv4//XkCH87Pd/ll/9J7/Kn/+//3menp/+sD/S2/hDGiLwxRc/4j//z/8PfO973+Hp6QM/8zO/z7runi/+ozeenj7yX/wX/0d+53d+hd/6rV/jRz/6ghg7v/iL/5y/8Bf+Lj/zMz/4n+VzTFDp8eWRv/m/+5v8i5//F18/er2Nt/E23sYf0fETQ0oyk4Z4UtwLnDPxbweqfiRngsvsL8viqhb3Q86UUrYMCpZMc0/0EGanpSf/vJNqWU6czw+sp4WUEx+eX9hqoymEfIK9WlIhCKV3hidKZsFq226uEuRWDh1SNlUlklmg9G6Fht4aeU1Hom5ZTy5Nn+yw6cWEum/0lljWlVortRRTYemWvMopHIl1U2qwQ+40nggSrPM2BLZ9t0ItUFojL5FlXe6H2s69M2nKj7stw7ZtzM7s1kwuuNV7sr3shSjCsiQkBsev9DjM9tZo2lG1RP4stKuKJYAUaMOsflTom3X2mg2GHfKt0w50JnaHFe5GMzsCkhWhogT2skFU2ihW5J32VzGahVCzgt3z89W7T61wn2Kg1+JqDhkVJebAGI3WLYmUZXF5fGXNC70OtDaWUzb0wbuFrJMWXq7PpCWTl4VBd3lxT3OqGtwiYmDAspp10SHl3s1S7nRm9ELr41BtiTFbJ9hMos7EoXF4B7hRvZvMbIQyOUbyGtn2yijjUGLIIZECBO0Ejawp8XS58I3PPuPp3TtTTUqZHKzQtqTMup44n04Gdk37Dh2klOlq86LWxvX6gria0nZ9tjkrVoi153dwujw4oNQQTWaDFtTl2yeQKKynEyFGt9+Jbq2BJ9VNWrqqQgjWcdyqwSTrykDIefFOwOI2CydT9chAGNRqianerAszpsTA4KkYIpAIcSApOknQzYKluxWdWuKslAmjWWIoeLGmqxXtBWHrlpRG7JpFEYKoJWDHQIPaNR3WrSjeJajBVLMQU4Va1hOjVXrfLSkpEQnR4SGzKcl54Xq9OiiYeHh85PHTT0g5sW0bzx/ec31+ZLvdqNXUO2qpDMmMGBlD+fDlV9xuz9RWaANaU5RIiFacuF4/8OHDe16en7ndbL42V1jD14RZQDjyURNOmoUAcdl2T45LCG5RKLMmaPuEz3txEknVEnhyrO/+8iqeBLt39x1d69h7pZiIMRFi4PPP3vHtb33GmiJLPnN+fKCUzmiFOAaMbl2xSSitHhYIKZoa2EjDbUoitVVKraai9nLl+nLjlBdOp4Xz5cTP/OzPmNVga/zwh1/y/e//HuO9cnvZbG0Z0K6D0qorhllaHbEib+8FUQNVQrAu1ZiTwZCq1GZw6ZJX66SWgQQrCrf9Zp2irKzZoFTBVGRGU0qx4kKXCAl6q97Jb/tvrwbPPL+88C9/8APWkNhulT3sLK2z5sjD+URF2PfCOWVOORNypj488PL+ysAK7PtQuolb0faddT1zfnhEXprt7cH23RQip3wHwlJakBzpQSBF6vMN1WSwCEJYzdKrlsZem83ZXXlcz2ZN0AZ17zSBJQeDQUvl6elT4oAffP+HlF6RYSByTJGnTz9hRHi5vXBZz8TYCcES3AaMDF7ef+C67azLYt3EBLQOrh+uxLogSyaHRPVYgNEhDPIakMUKc5eHC7frRtt3T4J78v+ckVPk/O4Tri8vbB8+IqoEUR6XldwD28cr4d0DqoPnr55JeeXhdGLbbqaUMLxTekk8ffoJ+pWtS5d3D3z67pHnL2+8//EH9lsxSKXuPDw9ksQs0yTbPvfh/Vc8ff4J+bwwpJNz9P0nUHezlRy1E5ZEXBP73o59PbqC3u12o9adHCMsmfXyKS/vPyBiz3NpZv9BiIdt4hDbN/MylS+zKRt6sa/3zhIXixs9VvK6A5IXu8/aGbXcVS+CoALFvHhMCUcVbWa7R4OwuqqHemG7Vq57sedTBemCcId3Si9oTPTaTJVPLADrtUFURK1wUbA1eqCQk1nEzSIxAtFitmnhG51iW7PN7+ggRy+2T0kIlFohqBe2lSZq+3RttGJ2K6c1Wzf7UOqwzvPwKgaMMXI6ryzLmbJVUjfwKkVT4TiKFT+F4zW0MQtcqmqNCnjI1w1QmUA5WBOBwSGHwRvTAs1ehQOgmQWiuX8ddmMYeJKzrRkhCKVWU+ZsgxCTPUfe1T/GsL3LzxOqvu/7Jtl7N9g2Gigj/ox1j/SHg0JD3SInJqZ6zf0zWUxjUIY1TYxZHB8wbZSPjdmL7wcI7NfBwAxoJkNwnH9iDAeQ8q+qbzguc/y3KaVy2MWEEA/g6GvWatGUFed9mK9r0NRUM4DxKmHWx3B+Qb3Zwq654lCJYoVoFRhh3uCjADlt+SZgNKGtELDioqsexBgPFQBTVghoMVjR/uWWNKNZYTWCwekBVbcFiqZ6EMTUWE1hxECClNyyVSeYZnFSqYUwohVx1fVQX4F2h41XuCswTTWh+fMhJdB+KPvohLImv/UK6JgQ3oSt1Qu8qgMJpnIY3eKr9QlGuYqDcFyvLIlvXb/Br/3oT/BzLz/HIivxMbjag8VoZnuejthtqkREV8XqbbhttNtFKa7m4QXn4IVYVWIyEG8qxpht2bS59BktHMV0+07eGDOfe4Yr59l3n5bOIhBiOuaUnZvtLBUl2b0KVlju/rwOV8eTV/CUOCgQ/bxiKZBxqBLfY2ZvBHDgfj6L81rLcTbGQbNhAJLIvbitdq4YrgwWXTFnWh+J/0xK4X7uHnOOGKx0qKOJEGMyi9euxGjni2U9mY1ga5R9o5bsaiZmM9T7YDYSDLWmq9YKX3zh+/bIwOeYpd+g1p1936ml0NpdCdtn83HfnY77+no9h58pbH32n5P7r951lvyHmfP9eDFf478OKc158npt8xMJl7PwrW+9R+QjvZ/59JMLj5dOkE8d8HAbY8XhNWtWG+qWeOJALREVA3FCsNiruxpwa51au+/H0ZrrzmdOZ5sr53Ph48dnvnn9Bqd/dOKf/vz/m3/5re/ZuaCOQ31r5t3seTN1o9H0a3uHiltnjv41hbYJy4VgdubDQYMYpi2cN6W4janNMQOPcNjB1heDX4eapfvH25VHzuiAvRSCKgk7A2sKZps4lBytSYhlQet22G8puKKcAyOtkS8rkcBwxcgJj6YJuY5x5AUJZsGsKKO7zRZutZUNrm/DVKlaUHvm/HHtbXje0p6xNjo5WKy71RtbKTaH/LPmJZPWbOD4BL0Ut/Ay0H/0wcvzs8GbuB3b4LAlJVk8Fvx7m/C67Tkp2LOUUgQVainHPJ7q0hKEeDYL+u16g6GELoyciARaLXQHFi2fBA+XM6P3+/X25y6vy7HHh5RYTwtBhZfnzexFW6c2ZVkXn0cc+3gthSSQ18xUIp1xREyKNmV43CG+j07rUFzpUF3pZ80LI8C6rFRXphOE7hB+wBS+R/c91PcA8XsQYyI0n0O+/85t4wCc5l7vsaSid8BbfP7gykevQKS7+pFZhR6tW6q0WhhtgkUOZ1VTILeGBfF8bT9yf+o5TMHuhSkl+f4QbB15tRweC9xU4z6usUyYH1A5YgcwFaz5ueccm43C84xlSoJ2xtGpOOWvP2ONlBLLkiz29jXB1op7W+PbeBtv423860boge/87nf49f/21/nV3/5Vcs3862Hzt/FvyzBQ6Uu++OLLP+yP8v+XIQLf/OYP+cY3fshf/It/h48fn4ixc7lcjzPy/2yfBeG7//y7/OZ/+Zv8rb/0t/h7/6u/x4g/vfm/t/E23sbb+EnGTwwpzUKCyDjsNqxbpJnMvliHSdNKWE35yIoqLp2vSozJFYs6JlSTPLFjh6OZwOxViSSCi1EPSSwPjyzLie12pbRiCSTs91gybUlYMXz4gdOSuXvbKS+7dTPFQM6RvZvFRldLFIzWrIAHgDBcrcHdyUnRICZVZS/V1HZa8cSyoLpTXS0pp0gIidYLOqxD5bQsSBL6sORXismgl7xQ+k4QWHM8QK/RrHtfJJAXS2YiEaFSilnepCSs5wu1WqFY8E7JZqotMUZTSeodbQo50oY66OIJL1ySvHeEQIoLMSSznsDqRWoyQeR1quU0JJo1wesOplY7wTuz1WWGLZFhu/VoFRmROixBMrsQx+jkZaW1SiudEK2YX4tZ/DDFcsZwWxorjNTWIXXOpzN13ynDkktRlCSmfBSDJRk4mYoFIrAmbns5Ejj7XqybaXiXtFrRI+dEkEQU6wxvYzAIhLxY0g+lVSsorEuiq1CvxaxAOpzOC0OVUrsXvQwasMTToDXlfE7U2g1qEmE05eP1ypKSzeNgRchadqIEzmlhzSspZku+Eym3ylgqQyIprV5QSXQN3PaC8sEk31XJKZGXRK07texcrxvVi6umQLRTu3Xb0wcpJppCCwFdsnc/yrEOMAatKEIjpUROJ3t2BsTsCS5XFCNYIUpSIhzdbJYkCkEJEonriRSEUaopQ6hCGNAHdKV1624PMVpyJyiq1dYeVcaoJBnkEJGwoAF6L5T9hTUtkDKEwaDDCMS0oHhi1xrLyDmaqkgfxGiFl5QiAWVJkWUJnvRVUEHWs3Xax+SFdGWMSEyCaqUV9UJKo5RIqI3eOykFkERzGyTC4HxZWc+Lva4E1njm/PTI5dJ4OJ/Z3j1xfXlh3wpb3Uxlym4WpTQeA/R+YgSl1IYOsTkco0Fs50wbyh/88Mf86A9+zLZVbrcrtRV6U1OCiiaRXntxhYdAXk8OlZqVo45OFDEFrZSJ64l1OSMDJAJzblQD8VKOdG0ogRhPR7ErpXB0PtZu3Xujm0XKTDAKJh+U0kJaEt/61uf87Bef+X6RISZSFKR3WimeOB3knBg6n+NA6MPUHARiXvlMTIlGxdaj7bZzu5oCAOr2DjWQo5CXhU/fvTMYNCfep/fsW0ditj0gDMJe6Or6eyGSc2Z4d2JMti63vSNeJIsixLjQayMls5syGO/kFkAF7RW6gZYxGpSKDKo2yhCWuEJvJsMvnbJ3WhtuF2DKeaN3fvj932dZshVW92bPUYhoNavNba/sa6IFZQnKJ5++Y38u7FpZ80Itg0AnJAXdKXvlpJHnj19x/epK7YMlR07LyvO42vxeEiQhygpLZLteQWAJStkL2xbpOZOKWeM1L4o8f3jhZVxZNJCqGmyZI/u+wehIU0Yze7BTipTaTOmwFTQoO/D06TvSXg4rsPV8Iq+Z6+2FgHLOgX2/MdQsF8ewwk8fjVIa6+VMuCy02ngZg8sp00ZnaztRIqqdZU2c1id+/P2ChkTIQtWBLpELJ9bLSmuNESv0ah3JCqN2qlbyvlNeCm1rfPzqK9bPPyWumVwgqCkCDhGqCp/97BdcP3ygbIXrxcDY/bqzbw1hsFNYTo2H05ntpVB2S8QzBvt155PHM4suvNxeQJTTObE+rITY0GYFyepqQ4jZKbVqRYy4LBh1ESl7IYgpiFnBwAol+WE1Ban3L9R6pY/OyyggwuPjmZAiacmc1JSArOIvpCWz9kGjuzIFkCIhW1d9B8ZukFhIgqRAPj+YIlxXQkw0vBt5DGiNqoJqIi8BGZU2bB+bnf0B+x5WdO2MAM1t3hR1ix0rlEpIBBWCmsLANoYpsQB5WRyOSzQxe9dlWdBaKK0QQuIUM9GLAQnhFCN7vdLqDlhslwSDm4kMteejuXVxdMWP1vZZvXB1n6kIZHayeU1cns7UrSFeeBjK1+mQn7JxFI+Z6ieOjXT1dQ4HPTuJeIA7iAEbVvCMB3SMuHXshBaCNUrMOOMwvXJYNubF4ptmFjT4+cbgpkgPszh8GAqhYHOtdnSIN2SYMqqBNV5fciVOL6kbxKDeke9zbNpyTeDhgIX6oKtDGw6AiFvTgb1+cmhv+BksuBXKBLisACvHmc3iLI6CtQHHA9qgu+WtBCHlRD+sBu/Q1ZhQ2CyKeVFwqFl6Cl50xkFjHa5SZdDg/G7GKw/bg1N0+MgKzz69bbiVjojd12kdY5u7Jd7M2trsiszS1ez6VNXtgLpdM8HjtX40h3gIy1RtMmUpJY5BTonehK4Whxim5JDYrMomawQAIEbqLEaHqVo5CGrzTRQH6MN9DvLqvV8p/g4FCZEcHUA+FLw4oKje76pRE1yZtnoxijVGqIPmQymtm1KUA23J1SsEgyuSZD59/oTv/u4v8jPvv8k5nJAVSJ2wOGRAwFRyO5T9Du8Eg7p6tzNkqfVQ9A1iZ0vVfpwDQggQoQfxM8nBr8wbwuj2xFhdOxuAoPbMz+8rYjZHgj2rB7GiOBRmZ9MQTflI3ZZoKEhUm4Pj9f1/DblYzGuiXJ3g5/AJjw+1s78BdvZn6qqk9t/jaxyhRLEzoRe1UYctsD0luo2hznxySgcsNSeqIg5lugKNQtDBcEB7NoiYsofF1AQl54ROZz+EFDJpWci52zxfV0qp1qQ0+t1iTAa9DVaBMZIpL7piSBB7XlMyEG8A15cbt+vNwJxm6obDG0CmveNw+y7LiUS3W3TIa643Ymo0hEhK2c6Noge0Zt/d55EYXGBWTgbjhUMZ0a7JVCKZNkp2HXwdxebusmY+eXogp8RU8JogwHBllQnPTdjJ1FlAdKBqAMbpfP6aPaWpVRn4ZWs5qOccUhBkWaink8UcJfCn/sc/xald+O1v/47BAE3xXjGU+/wHg97A1xrUlZ0wwK6rq2Paz4SUXe2l2twmHGo3IdikH2L7UCTZ9VZTKup1mLWmzDXFRt13PrTmSpRuVxgN4hu10ZrDEgKBwbqu9JINaAqBqUxjCnb9iI9a62bV7SplKUaamHq3BAeDgn1ug+JM2Xi0Qa8OqnSQrt7cNaAOXmozNcsBEd+z1QEgXL0u+jXB1Jl0KNoqdQxOZzuzTvg5RGsgbN3UXVMUUxmvBVH1ZjifB6UiPSJrNiWkMtBs+YTm1pZzXTtfTgaa1eGQq+UB85IcyjIQbNr8TWin92FdjG4tPdqgOtwp0b6TDiAH2qik00rSRNkK1cF27Z1WvBPFIaacMiIWY4ZoikS92pk6p8TWxpHLiDkyZDjkad9njAk+4xZ5EzSz3OwYoNXuY/Ncg4qBZjFmqJaHGKO7sqG/d/TmpZS8ucAWWwkG3qLJ1rIJl0bbwwwSi75eKvhr2OfTo5lgAq047NPU8lPKXSUvv3IW0AFN7Uw08ByQr3X4XmS5S1uvxBW5zZb7vqZN6JogpkYbxMC9YetMjJHo+6Si5BAo3fIxQ5SuHvfNMEqFKErE1aF0xs53AHoGZlNH0B3hSDkasD3hRV6BoW/jbbyNt/GvjNAD3/7et/mN//Y3+NV/8qssdfnD/khv4238Gx8TSHr37uMf7udA+OTDJ/wn/5f/hKcPT/ytv/S33kClt/E23sYf6fETQ0rDk9+HF/owSWrtA6STl8WS1MOSFDlnBOu2ydmhCwH13zUlm3AcktroxC6EKOiSWab0vgjaKi9ffcULePLJigqX05nYBpoSj198TgzC849/dAcarNJBa53TaUUElphZPzkTYuJ0Xvnyqy+5vVwZ3Qqi1lVrRbkYoyVPaiPlhdN55Xa7su+N3hprXr1jvZOX5HLuEJMnxwks62LFtF6RpJaoAZYls6wL+8vuiVpL/FlSyxPRCq1bv8+yrKCWWLtcTqZ64x2MdpBU1pisM7gPRKyQp366HH3QpXt3/fCEpklli7rSRLIu7KFWjOvDfcgVWrP7rGoqKt3lklNKlkzHEjNDlFE9gRKs61b978S7quY1s1O8KVvNZFzM0S3nhhcaXO48RiQHHp4eqW6JE5OBMDGY6paBYkKOC70PAxtyIC2RLCap3yOE2EhJICa0GpAwtuFS6VjC0jMfIUWb06VQt428ZoPthiVVRPw7xYW6VSsCNOt+SzESHGAhWIKwtY6MhAZLbMz7EXMyJY6cTHVig/WcOa0r0pXLKfNwOhEQni4PrOuJnDKnvIJC2XZiCKzr2RL9fq9vL5sBITHx+HjG0yhcn58pxYrZXbtbohXUC8ZTKl6C0Fpi266WiHfbjxSCATJekJidnfj9YKjJoUuwJFu14q4ARIiyWCdjD9YpHheTYg+B27ZZ4iYldPSjyCchMSx3RE4JS0jb3JuFJLShXrho1WTuRSwBrVjycehgaDEAMUeSdy2vSz7mlIoia2bDkkDERM7JOh49UTS/d0zZLe8CW9msqBSsM1KiQoqoNM6nk4GcrboNYz+KNaUO+klN2UiFnE+EkMiyks8PnJcLH/gSRuSzd5m97oS4cjotVN356ssvuX34MbW8sO8bezQIa11M5S0AY6s8nC98+t3v8ie+8/MA3jlqidHu3eRdTX2glZ3WTfkhhkhaklmmDQUiOWXiuhCydaIuaSWdDEowtZZCKxu1V1KOxLiQ84WUV1LKXmyAUnb23a5bq4XtejXFOe2mYqM2aSQGUgqc8onTatZ6EpKbAihdm3W2toJoM8iHgcRkynCtgwQ0JB7PDwbzSGffd86nwflUeP/+PdfrM71WrrdnL34LeVn54vMvyGtmTZkP759Bn9n2wJpWK9yOfhQ2rLPapsq+bfZMRaE3684N0RKyURbyunC5nFxuHpZs63irlRumAHg6Z8Qt+QTrxhzidqPemX9eIwPcAlOoc10plVILl/MJAa6l8Fw7p5xJXilst52qgzAGL6dIXxfGtbLfCkEieQksp8CaHnhphYjBUKV1t0scBgXvDprdIK4Ll5xp14qMzuPlgjwkPn4cbPuN0Sraxt1yJib2bWffKluH0K3Qtp4W1hQJkmwNGoDY3z0KplrWh6nN0Bk0PvnsHXutbNtOL9Xt/M6E1lnFCl61FIsntHs8Igau7IXKQBYrPsgIXC5n2lYZCnlZKa3xzc8/gzp43gun8wmNVih+fHgin1Zuzy8sD5lIpo9KlEBXKLVx6oPL5cyiKyqDbS+cHs7se+F2vZIfzuRkQI3EyPnhwu0PvqJdd0SVZUluszJQ6fTWCTGT1xO1NximWrd9+RWShcfPPqGeClcvJkYCdavICMSc0BARjaY4ZL6BtFp9Pb4xTidKLTA6KbuNW4pcHh94eHxCC9yuG4QGatZOdQsUiWgetF7dmkBsD82JtGQrSq4wSrfXF2NruqoVklDSVJpxMGFaSfS9cVoyS0qU0VAHL+KIrwrWvie5ksySF4RAqY3SGlVNMSH4vW+9E8MCvi6P1gzESBGq+vVWRitkAhHoMgyODgpLRKsp7xQgE8nr6ha2OxIgB7NgGNXm/vwMFjMFLueVsle71mIx6Ohm4Vt9/Z0xTwyRfd+RFM2iNCZbf3A1v5/ScVhHyN0ienayM/Bi9bgrh7pahYEJONxiL2Fd41MxySpD6kXKqbIU3dIFERidum2Y3suEmLxRQpQRAsvlTBAoN1MuGKr39+vDLWTc9m9NZoWZE7fbjVabF55cdcFVDia4NLrFjDlnaq1eFLW5MKGeEANJksdgx7e0+ERM1SOgh2JScGuhNsyKecZl037NLvosGKrPE4tTlzzVl9wqxO9FzMmLbWqiRmMCNhz3ayonzHs63FZEHHyye+ENCWqxoWK2QGGW0xyACtNCOoyvv49MyxiH1+ZfwgEUGBhlMFR3NRorXAox+t45v5tgFzUGlryYlZHHPvfXDK6GYHvrhOJCNEghukrCEGwNTVYQnTYv2sZdtcsLkDCLhMMbXZoDG7anTVgpiCmFDC8OmwKwq0cF3DbNvuBwIOwA4byAGUJwxVkrbrZq63ZyW6clRr64fs53/+Uv8LMffoZVVoNJ3cq39Y7U5lZ3ypCAjkGlHSCnLGYtDmpNJV7QNIsqB9r9+ZoKDnYkD6bA+Oq5NTuzg8U8GmBm/AV3FarotobHecIV04II5ppnNoVzDlS38LNny84EU2liTrQQppqFzSvXczsAoEMJWn3uuNqFryCYCrHe1yi528wZuAiSoqubqjdbBA5LPrnDVRLCobTUerPzjbg1c/ALxECmaqXDOIeKVDDFMiX734mrtwlRIiFlclzYthtoIK5n2ujWKJIjQxvbbaOVG70VWu8GQ7r1nj3jQDNV0tOnn8C7d/ZHHvSOMYv0VuK2c5s3RPn1iw4szM84VeQkRp9j9lmDn8/UYxqzpHVwJyRitJ8J/ro6BtXVuwWl1mLxgGA2T3C8nwGdkZySv56ZKU11YIOoPFcx//F7rK4KZ/Zg2SzTxL57Sp2eDcjf940xOnu35iz77maLbuuTna/+xPd+md4b/+Tbv4NGB1XV1b7kjleZFanNvQEOaDmpEQ1mmjbSOsEF32Or701g18Yvhj8TZkc/FZdSjEQ8JlZhuNVYwFR1NFn80YdZXcc2TO0F7F6VimikaKUHO+/01k0913NNS8603hxitDWsTwVIf8QmrIkI6bQifVhjYYqknKnBYrlWK2Eoae6hwaxVe+sWfzpQm3I61OHG9HT183xOZuMrc76K0ntlOdv5bHi+zfZwnysKKRrEOdX1bN2yxkOG2rVIbpvV1fJm0a1eYzz2qsvlzLYVg4vibJJMpCVSSqMGIZwWRq8+Rw3opQ9SzqzLwhgGyS2nhaBm00YNlt9TW6tP5wxi9mvRG++iq73PNRvsTKY0B4GV0Rs3lMvTAzknsz8eBmCO7vbbITrk7yraHoPpGGgMdvbCIODeG4FXCpenTF5XUkjcnjdq2W3/V4ubOp0mfq2DFebEG3hM+TASgx62cfZ/ODQ7jmdozntTHzbIuzeDsZecj6YFMBUu8ZhyKruJcIB+IZjC4gQ9588ddngIImaHjq/Vxl/qfQ9RV1h0qMun+wEJD/WeA3XL+9mYp8NhfGvkm8D3mI82rkbo+5lgoJ7qtMz19cWv0YxPerN9XmKYAdcRw7yNt/E23gZg51MVfv53f55f/9umnPQGJ72Nt/GHN+KI/Pv/t38fwEClMHjbut/G23gbfxTH/wS7tyN3jQRTSiqleJeWH2hTRJol9Uw5xhLGSWYndD8SXbNzJAQ/gM4Odf9IOWdOZ6W2Ruudbd84nVdAqa0jGpCc6Qy0Q6/DP9dq576GFbyGElMi5UyKidOysp7OPH3yCbe6c902evEEowSaFyA++fxTQgh8fHkhSuDycGG2taaYCRI4PTyS08LtdiVGOK0r5/XMkMbz+w+0Gkk5mY3NGIB1tbbeud5udgD0JKoCdD26AUupDmpYonNopXVLzMRonmEzIT66yYqXWtBuu1H3YkGrlrAPfi/A1J168+5fnYdtgxPMnsRs6JrLEg+X7x5tHIfd3q0bc9r6WfLNrSpc6Qo1P/s+GnQ1iz0HT7yVFQlmr9L9PkWJlK0aoKaQ3Uah9UZaFyqdJg0NVlzuA0oppJgYnlyanup2Kc0KaEmLKc8E4bOnJ3ovNBnU0aBjgEAfnE6n4/pboQwLxBnU/UZO0Yp/XqCq1QoNIUVSKlweHkCh9/oqeeqWGzlbss+7Srua4kjKF7OZaV7g7Y0ULBGhQ1lTZgkBVHg8n3lYLKmUvChpijTdFCKGS5Jj9zSnDGo/a0XeQe/V7U26d481e6as1EGMVviJbocyxqCU3WS2HWJTTyylvIDOjmJL1vfe7V7mSJJ4JNAtkdIIS0JC9vdKlD6sm7FWtMoBKCGmwBVCdonv4F2kgSWvnmBaGNUgCHVlnLwsNA3WGYqgWeha6XX3TjEDANdgdhSGuAilNxaBU0oQIxra0U2Xg3jSbRYEpqpUMEUNIjpsbRi9ob15wmiCmAYCLjkzxnooOJiSgj2TKZ8M1kyJ4baByWpp9I4V0cvGZRWWlLg8fsLl6YmtXXl4/IR++5wPP/4Drs/P1NrIy0peVl6uG7frjVEHvXS0bSx54endO77x+Yk2hG278vHlvT0veWE5nah7p+7VOo6XxTsmTTUvhsR5PZHyggJ12wkhkS4PhLwiIdDLRtuv9Ak2SQTJ5OXEsp4seYpwXh/hsbPkxGjNLBVHo41qm1RM9uzG5GthI5iUG0OjoQLelVir2ZxIt07F2/WFtFhxLsdMXhIhWTfl9bZz227sZWfbCrfrblBL3Rm9QjDrgtEaKe4sDrS9e3okO6TXh1n6SRD2spvFQC1wWJuY/H9cMstqRT2Z/0hAUuC6bwaxKuSwEHLktJpFX222Vuz7jgTX9htYZy+dEJIpBsVkYJZ3unaxz9dqJecE3SDMEK1bfHup7G0jrNntUDdas/WpbcrP/MLP8/573+f68QN7NYCpNqEQiefMGoTwySPbtZv6WrQiWk4LbS+M0SBFbttO3XeSKtI6nMz6azSjDQU4ryeolVvdEREeTie0dis2jEHZd+rWiRJZTmd6GZzOixWFpjKBJE7B9gcJyvnhhJSElIZ05fn9B7bROKXEKS+spxP7y0ckCuvlRBiBqAZdt1YN5tkhnCMlBh5PZ86nE3vrpJy4PD7xse/kTy48vCRaqbTaKVLIa+ZpzaQE8dMHLpcHXr56b2umZER3g8yisLdK2Qsfr8/kl5WH84mBWceNYbaEpTSzGROhPt8sljklUg4GJEd7LiUmHj/9lG2/sT2/WKK8K+9/9JVZHwVI2ZLxtVT2F4PncjbVq2nMo9oMlKNZV29rR6Enpcgpm+pP7YU4Fmrf0REIyew5Akp0O6HWvFAtEJfIebGC6AFXhGDd0h53hWRFMQXaaNbxPIvEKPtmlnoPpwtdItGBlnMUaqvU607fOn13aElM4WJZV04pk3wfNYAnHDYkikEirXcrHsdI1MBptfUtIvSmVG12DdLCORjMrG2HZaH3RiSwromQFiKB6LYMpVcKjeWykPrC9ba52qPHa62RwoIm4XJeOa8rMSREhTUv7K0wBMpIDrpbQUkE1uVE0wYqxGUhCMj4uo3ET9/wgr8XjEIIh9XRrCFZJXr4/XdwZQwk3ovIwr2gb1fSo5gJNLjijdk1K9337tbbUbzp3vKeYzishrQNLz5bp32YnI8Xd4IX0lM0AHw5GRxYPa62IpPFzsGVNkTE7p2r800iI3gBN+WFEKPDgaaYlJLFSfu+M7ocwIx1wlvjxxhKbdUtQeVuC+SqNiAGLXhCeUITwzv6p1XZqKakoO6Hc9wPXkFJU6EAi00nCHgARUw7tuAgiO1zMXoxdV7f431sLhh0FY7CK6pe6JwwgMBcCxhmWYK6coMexVUBt6+yv4tYIdjgK+6gmA6CRMy4ehb8p31Ptzhjqvc4RCb+WUPggGCCYGuEdrOOsZ4DL35bEwf42Su8KvOpKQJOSMUKk3fb5BADPXazn1JTkwiuumOX0OE+VwSy/zMFjhCzQ48OsQ65KzUM4fOPn/HLv/cLfPOrb3EOJxbfW4IrBs1r3nvz+S62ZgY5rO+m1Xjw80wf/fjsOPQ1z4oTQJpqN0MV+h28em1PE0Ik3CfdAQdN1SSDdXz+q4La/ieuemxWZPb32gc6GSBfZ+0+ulpOuFtBhhh9PYp+Pp1zyvYXL+PaWqU2W2azFF7ONgtnh3wFhlqeIojZrOq8J379ZuHbzk5zYoirRAfPtcSjsC3+dzioFyQg6X6+GuNunRqGNcdM5an5+h4G0Hy+9O622UFYlhN5XWijsiwnRjuz367UYhbrZrmczNq+Glii3RQoY4ysy8rlnCyGbNVs3f35TzmjA7dKH26R5mCBr1Fm6xxtbjXPW6RESJnZAdZbNeWQYfkGECQkUsrHdYjLYrbh4Q7MjG7WU4ci2utC/WtgB1t/AkJXO3Ph5zyUQyUoxkQgElM45nHv1qDX5v+2Tq2Wi0Dve9vonUojJVNkyikS5UQQ4de+/yd4fH7if/il3+Jj/mhgpTfXTIDVvrOr6ggck4KpbD3Y9t3vdXD4y606XSXI8kNmQz1fG0xVadpJigjDwQ33iLN1TH09cVXrFBK1dFrtSDLwq3dT1VpZDGZ7emIJie36QuumYo5gTQAxkLDGvbouEPpRVDF1Hbeb81Wu7cXWj+Gq7CmRfF0xmzYh5sze2gFbqask2R7WGV1pcEB3pvwnRzwmr6DAju2TYV2oFIJazqp0UyHMntMUHQbz5WhAlALqiki9WT4tBbufqzU92eohLMuCOcELy2k1dcZme4qIsMRsnyEFTpeLqQbjqQXPsSjD4P7WKXWwtUJO6VBYbM2SooJQqu09vTZr7oneTKb39VIxtdOgkboXU55VoZbK7XojLWbBblafpsQ0+iCIvZ5t4/MF1VXt7Plvrvip6AGgG6zdiZ7XM0u8+94z95PWukNdBrnh+eYJd8+1cNrfqu/3Zqc6vmYV3LvtkXlZDOzzpsgc8qG2Ncpd7VKCLb4So6k0+zM3jujj/rPH+3g8JBi4Kh7KDBEaE1oM5BCteWQ0UowHQGfPmO0jMgGoMWjakSSmeFU73RVYJ6ipwZ7lEIM1zfmeMYKShtnpqSXp/eBne641b1ksE6ZFnMcnb+NtvI23AW7r9j23dfsnb7Zub+Nt/LSMCSr93Pd/jv/qP/yv+PKzL99ApbfxNt7GH7nxE0NKEKzzYwgahJwXRBzmcOWUGCNpWd1Cpx8dqVPVKIRoXuhEvHxviYAJOMhw6d9GwJIwYyY8Y+Dp3Ts71L7caEUppYI2tCnLsvLpNz6lhkd+9OWPCMX7YFw5JaWF1ioxJk7rmeePz/zoqx9ZYSkGRivub2Y///L8fBQM4vlMcTshbZ01JcaIaFVqryx55fHdBVXlw/NHRuu05jBTSvTtBgxard6xFajNrNvUCyTWpTSOLpqZcAvDO2FbZwyz82k9enEmWDFdTVlm1OY2dZYMDd59OIbSwdUisDZScGgF92S3ZF6pg+zJsAlljDHo++5KBGaFxbBCajwSYPb7Oa9mvTNmR7Udbq2zczCGqW0NV19a14WwRG77bgmNoUfC+y57DwGzVUgxeOIQsy7bCqCkFKn7IKfMuiauuyWaU7B5FkMgLp5QDEodlZgjpUBplV4qD+8e+OTxgQ8fP1LLRh+dvHrRTyGKsMREr5VaGiFaUmO/beSzgRnn8wpuPzN0dshnGIEcTTq/9cZpXbzTX1k8OTKy2UJFhHU1ZYsswuPTmXNa0RhYl9WTL/ZdOqYaNnqzrnaFnE1ByngEJUSFMLv3o4E0alZhpWy0XY8CxCyaBb+vIdr7WLEtWmdta4fFyIQUk9uESbfiToiRuCx07xhX71yLKdOHJfC6NnrfaF2R0KxIhrCsqyUxPWkCs2sWUhJqaYweOJ0vKEIdnVo20MHp4Uxez0g3mKM3tW5Lt55MS6b27pCVlTRH60jy50ODFXdnsSgExKXKezOdlql0Vnsnp4wSCcGe3SFKijbnrCjmsvO+xoVoiW0rWFhiXhUymeu2I72TloV+JFzV7QLMiuTh8ULOgVI2ttuVuKyk9UzMgbCcOeWV8vTMx48f6K2znC+s50e+Su+p5UrMmSlRHteVh88+hRFYt5W4WIHndLqQlzNlL5RyI8bA4+ODKYKkBXQQFXI+EZeVJt6x2s3qLi0XBCU/vKPuV1qt1LqBBFQireNFBLPb0TFYcjKrzJxI8YGhjeq2Sd1BHdRgMklC9IKDSiJKQvtg7ReDm9pO74UxFuKaqU1Bha0WPl5fkGjgUGumYFOKqV+07tc7WpL6thdCTOTTyhJBeyVJICaQy4kQEzGvxB9/gGfruF1zJISF2i2533tHYqJrY992K5qPQXKAro8GomylcErLUYhU7+SUAKUWEpEcDCTpo7uMfaD0YmnnbnN06KDWDjk4KCUkia+KoWYfEBG3M2jspdIUylZ4Lo3ltPCnzg98+rPf5p/WnRGEut8cejDAQ7vy+PTA9drYiynASVx4fr5ZJ2wSCoW+V4sBWuN629k/PrOuK+eHs6uQRbdAXehlY1kSp5DpUliiwVWmdmQwbu+d5w8f0VYNYPQkrKZIXDJop5ad2+1GF1PASb2TQ2RvBsXtpSCt0XWwnFaeHt4x9kbfbgwgaeQSzlx7ZVRlH43P3j1QtsH48IKq8PLhhfVhpYdOq5Xn5xeqKuvTmQ/7Ds8fCEtGl9VAXQVJC3BFRqSVznK2eTEVCFu3olbKib1WSmsktb2+7AbN3j7cSKdhXCiYbVVKCK4YEWytWdaVkRKpZxqN/eUG2WCNWgp979RaSCputxZQT4yPPli9u1jHIIn1BYsriAy3fqEp9fnGNjAAMQoRm985B0IUs3+M6pC77ennNVN6x0BaGL7XCB4D+TyeqhAGiLgaSTCFl7hkgkTKy8Z5WXl8fGDfN7Ye0GB7cm3FFYWgt0GXYdahWMwzRj+69IO6es9c80XcWsLUbBKBvip7bQwsFsjRAN6gVtRoxYpEyxKIOlwBCj5uL2brmww+DHFBcuTldjMFixTptZo9jAiVSnYVyhADOQbSkiitIcOsVUczpavtZSctiXXJVogT2yd7a19TuflpG/dkphVXoyu4dC8SqYNuMotME3oQ8S7/aW9koJIwczB3iAP/vQlMWDzczVJEhHVdvchnEO0sWOkw9YLTZWXIwnW7QZt99W57FOJhOZZSphQDXmdxTF1pE2zNLaUc0FJMZqlsENAgHbZ1BkyFkFgdaN1L8Rje7dNCYLR6FFtRLyb3Tu/TQgm3LdF5eTlUYLwwP6Fxi8et4mcKTQYqBZ/bd6ek+Qzj7z0BKA5451AQeAU2ja73Ipd/DlUYzYpoMcjhaWRxottvzcaXkNwWx6ARiVMpwIEofQ0R2V5g57l+fO6pbjBhmTlHTD3JATjh1e+pwTqtv3o9n0MOCU1wZxZLu1sS9YDbAQ6zuFwy+26QhylYeZHSr5tZ7QxXv3WQoDWCGAAZc3JYZxzfOQTx+RAOGC05rCKY0gLDFMF0qCtVBN59+JRf/L3v8nMfvsmqCxrkAPWmatH9eg16F9AORLOblYMLMfgMK+oHicf9NQskL4XLLIlz2NrNYrOVdL1hYz6fB4Rh55FD9WhggLoXxA/7LuEAcAa44lk7ILtpkRiTqyrNOSo4SDcVpwYMMZAGDOZ32+GUTSXVlES8gSLi98vXgQO2EwfwBqJ3+OaOT8r9O/ozNJ8usM9ropJ+4PTrFPx6H88Q83+nbVfwNQn7l4LGAM3mXIjxeE/EYAb8ei9Ltqal2qjVVBslJmISJGZSSPSlGDStg5iyWbEFA/nteXT1jxTJ3uQTWzRwXQcx2jU0yKeiOsiLWT6HaCkoUb1b6IXollm2PkkwpbogCtlg4DlvQogetztwNmECPyMHEcTjo+4gr/JKFQuxQr5J8fr9cIVmn2tmFdgckDUw3FTDB3W3/IP44li7zZ0J+IGtC7h941Cbj1Hs7Kk6DkWpEyshRH7+JfPuH37Cf/8L/5Dvff57SAxmC+Vr1tw5u4N++L0XV1exqW6qsa8VjoevgUO7qRUGA2S6msp1DKaqPJGnqZzXe0dfgYqmPBmZ6k4WK5kFO5iqkrGsStt2Yogs58YXn3zGH0y1zFqPPdopEgPdTguInYliStZ0IrYGdzwv1O1zt9YZtaEUVldKD9HOsEnCAYikaDkrz27ACPc5ALTa2GU/lG2mrZwp9AjaGq02V0T2XESfe4ddptHaEbMuy2JKfLXa+WXgCnbWODMUNArxtFCqQXC1NiIOWyuHwqK4+tF120zlLpvSmCpoMGUmUfHcoaOqeo9x+ximoDTBJIcW536mfVB7NXs5MSBmxr+gNh/8mkR/vgYWu7SiOCtvKke9m/3kPL/6mXNoJ4rF+jPjO+ErX5JM+UfFlM2loB73iZ83A/7ZnBe8TxxXKpyQ2oROQ/AlVD0n6nun2Fpj0HMAuu1Nvo81X5OXZSGhtL0ycvScbp3LMrNRzYIRV2hSj1Nn2CXyCviz2CFFm5cBy0NGBn2edcQVBYfDRIo3Eppiq/j5qbZG7aYDGh1CCzFQqhyqi4jdW7VveIC5iLkVhBgIamfOJZkdnXrunWFxQRJ/5t327VA4extv4238WztkCN/53e/wG3/7N96Uk97G2/gpHXFEfu0f/xo/972f42/8h3+Df/in/+EbqPQ23sbb+CM1fmJIKUok5HAkxWIILOezddYMKx4uyWzaaqsMrUC07jgxGeUlm4Xb7bZb4kOsiJrzwl6toNRHN6imD5c7hhQDSYTt+YWX680SDiHSRrQimAhbvfH9H+y03hgol4cHTusZHcrH52c+vP+AiFK3nfdffeB0WjkvmZdrIUY/aA+TNZYhbLcrQcxmJQIvHz4AoL2TT6spJGlgqJCCcH1+YTRLZK3LmaeHT7heP/D+y6+ISUAHgWjQzrQ/8MS6eHI5p3QUHcSTaDIt9fy/Q4ykZAUrK/idqHuxQufsMlIl5si015vFAWaBADtgW+HaTtTqHd90pajBIpbctPc2+7fBED0+kyW9EiEkRAyW0WbdZbX5exwJWUs8W1ehf7cQaM1kqk/Lidt2o8xkK8Kg0S17bUmI3hlVTdEkZUSgeNGn9mrd8jGRciLUnd2tcpaULcEacXApQ1q4jZ3RTZUlp8jiylDf+MYXKMrtVmh75XI5EwOsp5WAgXnTsx5M3UGid0KJqYyNbTfp62Rd9ml0coyUfTfIIxgosKSI1kZUeLpcGG2QY+K0WHciDLKIq9Z496nIYbsmnmxLOR+2NTOpLUERGbRWuFxOXC4PRFFaq5zXldZ2yu2GDrNlG+IdW8GVkTBbqanqJbIxrQ+WlBku9R6TWc603lhOK2AqBG106l7o3gU+S4lm5XMlBAMGzIbNEiLJVdZSNlu9FJN3xps61WgGCy15Zds29n2n7jdGNVBi4YFSOrVVGOKqCRXxoqe6TUQfiqoVxoMojHbY9NTuCefqRUBPeoElKFOydOfuhTA5CvcGv6Vg1mQM7q+PgZy1Neu4trL/UbiUYOpx3WEMxMGvmQXVYPBZeMfoO23cGGVDnj/yEJ5IyxmRzHq6EIMBgbUWs+EMmeV8ppRCXlYvYgnEzPnhkQg8PFx4enqkt3JYcba8oPpICLCsJ4ehViRGU0HSgKQTyap0BkwitCrkFBAGp8sT21YhLgQxRZPW1AEtYGwg3bpQm0KIVDVFvPNpBcwuqlazE1EMpLBiWCekYOomAS6nSEwrdZwYY7BvO22txAijV3odluCrlXLbiLFzechcLgv7tjn0qtQW2a43L04M1rTYc5rMTieGQMsdZOMdkdPDI5cfL3z8uPJyfeF2u/Hh5UYMQvXEcSB5YtbUN1rvEE09Q0RgNPZWvYiRQFwxxAHV7msJKn4ddhqd3oUlmTJXkkAdndIKqFlVrtls+UZt1nk5IBLZe2HNif1auW6NWhqX04m9NUKL/PZv/Q88PjzQFUaw9YdW6aOyXwvLR7sW2/ZitlMiVjxvpngX18glndG80GKhlmbFZoEUAkmt4MKabb/dNqIElpxZSGieFkyLKQiNTgjRksdiwPTehynfuLUkqnQ6EiLleoUYyTGyLJmO8sCKpGiwYa2IKPu2IUTarZBRAqYAEkPiMSeqNobaPpMfLsRrYdt2WimULbM+nRkBWozs153+/oV3a+S63cxWZc28fPVsVqCfL4gqozSqDMa6GpQWB0tKLMvKkpLbFMC2FZKIF0SVlMxer1xvnB5WK9L0zmkZpGjWP3Uo2q1TfF1Xg+IajGqQc1wXeza70oPYGuUA6NBuMUwfjLEcBXNxBTh1sLV7J3qUAN3UDUIym1tNmSSBJXsBJQeYyjddoZqd5ZIzdXRbD/bK7cPV1BOCFUJVTV1uXczOsfZB7Q2xR8OKRnajrBhzFAXFu7ntOZvdzNtto2yFEAKXy8VNICz2sGJM4zBz6EpYIo8PD25t0ih7NYBETBlyb5UswQClvLKNQWs4KGz2bxqnypnw7myAvYJBRw8nOoPbtrGuq71PrewKxEEdhSWvLOsJFcjRsMZS3IYhKN2L4qMpIwy2WpB9Z10zAOOnl1E6VBjE90DxuAmaw90gSY7OeLP9mpY+VpiasE2rzQEOK8LEOK265ChOzQIWiCtMmCJArdXeS4QRw+QKaL3x/PJs+zpqe28yoLiUnX3bACvg7ttulrohOpxq26u6ehEipo7k31HAbEwwmCi6Vd9wez4JQq31UEZJMRtQX3e2bXMlEIezxOL52T1/QAy8Vh/gKBwa1DMrbXIo/nU/i0z75lmwnyDF3cbKS4NHQd/DeVePsnvLHVhi2vfIAZ8pDiD4ejtfRFXRYKpL6kVui03FFHMVg3EdFBPhFehhN26ea1KMFmsdFfcJNvm6JHJ4osy5BGYzKdNiTQwqiTHQup9dXJ1proWKFRQJgab9uAchyAEcXy5n9Kq+XptyXQh3G5bhKhBGl5j6XPKC5bRgMYDO1uqYEmECB1PZxemhOJWngDUv0OHT50/4pd/7Lp/9weeELm5bnA6VBJk06DxPIK70gwM9/tnsRpmqkySzrWVCUtZ80h2gs8jXoa4JSDOtve7zY96bOBVt1GzyTP1K7/bK2Lmjd4eQfG4HB2QGDREOuMjUuDgK7hPwi178xYv5swknhuSgejuUUEMMRBaH77sDSAYSin4dh3z1OBwNP/YubpOFHiCBPSNyf64ctOpzwRZ/HrCGnZACU8XprgEiR1Ec3+PUz38T/gheXNZXz/CEBFFTkYkOrahDj7UU8rog0faQmJLf/6laE0EiMWdXV7LrarcomhocpnBi1lP9WN91wOLKYgb/ZbN2i8mfAS+mu113lwGiDBXiEAgY7CTRlbgGKWWSzusvCBYTTYU53xJ8TViOxWDed8sz+Fp9KArZ9UvB4DhFGJqPBjrjN+y69qFHcX/0TkqBlCKju4JbtHtuytCuqCwGRAYwkN6fgSoG97x7t5C3xJ/73f8133r5Br/1i7/FCzdbv8JU3xJr/OH+fE3A1UBKW8NqN/jFl8c7sDQMYpoWoOqgRJ8A0nj9Z91YRZWjcSkoh71kwBrHQhB0CK1bfBbDfN/B7fmFHw9XMvQ8Ft7803qHfRBzpNaCOrDm5ARgMZSEiLWnBHqw69+8YU30bokXY3DYQonJbANd1sfgtSgHzBVjPNZA7fZ64rkddXAQb9LSavMlRltDMtHvwd3mdDAotSAa0N4Oe1MI5GRqrbPRKcVIzMmarlqjlUJazQJ5+JqvW7X1MDgUmpMpdtXGsq6kaJ/bwKE7gGlrqp1/cNExO7PP5cWtRDFVqBQSoPQ2CMHUx1U48pTqyuExJbM1V3/OJnjpDTEWpzn/g1k2m6qPP1UO9Ezb2vmszZhE/Fkcfk9CDMiIpvjoSopMVTzEcpGuyA1uGZuUUguj2t5o0I7RVDYfHADqBuQFxQDXqbyKrYlH9ORrtqkyqUPhg31UP6MmV2SzWEUlIoxjpZ5rbsqZnKIp4Hc9IHdbx/3sKq7SaEsMvSvTPjs49DSGklM2WFnnOdmetW13RwHfzwzAtZkZREjJQSWPK2QMz08I1krsipfD7l3XRhrxyPu9jbfxNv7tHKEHvvO73+HX/86bctLbeBt/FIYgvHt+x3/61/9Tfvl//GX+6//gv6as5Q/7Y72Nt/E23sZPNH5iSGldFksgeSdacAu3mCK9WqKmt0YPfgCtZiuTknXMmQXUYvZQYsmIWqsd+KN1LwrWud/8cC9YnqK1eqjngBUQliAESWaRJZb0an0q3AR62dmHWnG7Njs0jkHVgbZOZBBHQLT5+wmIKwmoOlwg9L3QditIHMfOAJIs4bldN3JaKNsVVVjXE2u2btmnp4Xriwk0oZYsQLxTy7NGR1coeKLDEicpmrTv6I3eBm0otQ3yulBbO5LzMSW26827kO3zLUv2birrEGxteCLZbfbEEpJHYlyE3izRESOEKIcSUK3NEzyzO8gTz6pHAqM74GQJBjXYYoDWbkkeryi03kmOqqCQQsa6OuVQNUBNLcfyEVasQe6FkLFE4sOKxEQt1YpR0ROuWDJXRyCl1WWhAyElhnSmatEYg602ehAkZPJiRe+QFwaBWju17gYuLSuff/YZH18+HEm5Viuld9Y1OtzW2W9Xs5QKkZwSBbOg05ggTQaBZwABAABJREFUJURNbUZCMIhKgGFJliiR87JYMSpEUogsQeBsCdFlfSCnbMpICDFlJCd0DCJ6PGM5Reu6Si5Dj3hidXB9uXJ7uR7AIHRenj9QyuYy55Z0bjGQczoSp3gRoHeDm3LO9swmV8U4n6wwm3Dpfiv+9lpot9nNPmjdjjPFpbpb77Rqib2YFJHs9mTJwYIThEjKmevVABL7LpXT6UIMZjd5u14Zo4A2lnxiK42+NbPcEUW1WkG3NjO/CbYmSFhcEUlR7WitpCXTG9S6g0MXlsAMRIkIQk7JiksSWJeFWnZEBmNUTwKrp8qiwYm9MbrOag972S0l5FZ+4t2stRb6wAtSze1RGupFtRQC5MymHTRxeXxkNGA0GJWczogGqgYGmdat2141kvOFvCbOqyX987KQ04J61zIogZWUFsq+IWJrboiW7JYgDA0MEjFeiEtGQ2O0WSwM4ElLk0ZpVnwcnTYGaVkJQR1QvXkqzBUXRiUGOK0GHUYv7Iuv6d1tXWI2yzkksVcD4mJe2MqGaqWMxrZF1svZJPwHSDCFkZzjUQQd2illp513bttOiMJpCbSys+87+3Zj280Ob913L3rZwpfiShimrqcYXHsicIqRlIQ1RwN/zidCDGy1U1ql2Y21otNUO0sr4bSwxIVSiqnRodbJqYMxmgEQa2RZEqUX2Ietmd0KbCqKhIWQIvXaLckZLbG+Lqu5JcVgBd5kiVBRWJfMvjX2MigVSjULVb1dDzukH4b3fLVv6FYp2nm4nFmXbPu7Bra98vDZE+uSaJtZnYlEqGZjltWSy6enR77cf8zoO0GUh4ezqXKJ8FxvZjXQuynBNGWRTBrCrbbDBgBM4aO3Qs6RvJiSTEyJsNp6ntRApU6jJ7P+0laR5QSSWJfF7BUCjBSpNdJlcN03ym2n3ioVUzMZrZOXxOmUCdqhCuVl43J6Yk0LPXTigq0nXkRJKfBwObPtV277lZBOrKcL62mhtg8khIfLGfnsE8rW2HV3u0OvD/fO7eMzPUbSshDWFW2DkQJJEmMUJAiXp0dKLa6e4LY8pVkiPrlaR4gQrXAgIoRukHdcT2iwwmdKAT0t9DogKHk1G77r7WbAsneNxxTpIr53wel8NiUDt5TSBCMORMwKLr07EYcSVamlUPdGXLIpfchAu6lBBrWwgiCcLhfKS0XUlMVGM8AkhGDqehIYXvhSBXm5MUojpsU6wWtFX8xqo9RC3SvaOkq/g9k6L7SpD17OpjbIMHA1EExpa5ga3u1l58f1S54eHxGSqx0IUQdNh1mv9Y4MobTC1prvdQa3anCFQwLreSFJopVm1o9WG+R8OltxR0xNimFFrrycOGWLBURsLk9lmDEGXUHb8BgysJUCyaxQe6/0ZrCx/BQXFeZ3m/5q0yIsuPqLDlcrYRbyHTAKUznEi2bB9uLezXLKCjlYLGy19UOJVRyO6GOYFaAzAaq2dgmz6G8x7tEsIWJxuK/fBoG4aoEXdMQLqWBxcwgYBH3Yo7lyTDc731eID7hdaEBotRF8/wWPa13FZl0jrXK8trMbFufAKyhrfi89QJEg4nNsuLosruqU3QrOS6kSaNr8Gtnni/Gu0ORchl//u+LCHWPRI+683zvcbsXBgVcvJWJFwv5qrh4qTfO45UVhAy7uZxYDku5J8iDBP8mEMVyNdtJEwrFuTdAp9oAsEcK0G5znpoB5hZn9U5z2Kw5/KQa0z7nY+mAEIESfBzY/h6/Rw4v4MUbOp5MVUYGopsLUdTj8jkMN1cAjMUUYs/oTsz6yThe7J0EI7mk2z1UB4aQrP/Ojn+WbP/4mX3z1OctIkAdkAz3iAQniFm+ungv+jIn9jJjygjgcOJWMSjXATzDACBlUb1SYYNK0OgxBHeyw+3ac5Q4VmYC6Ik9yGBaftxPc0mGKrMzZ1if0pK+K6V7oDopg4F+I0UCzNG2KzeJodD3WgpzS0QRTa7U9XQcxZLuvbZBcwcssJtX/1z7NtB6b4JzqsDWFiNIwtuFu5Xf8c6xnto4nt2UCA4YN7PMnaj7DHh9ORGrapnKots3r0l+BfFMFbepX+XOjwa0ugzUzDEA7op0QzCZ8jBl/WVMFGnxNiox0z1fEEH1u+npOMvixN8/jeLzqdoF4UTxKshg2WOHebzfTBhBw0NCUcKyBw/JOo9s6KYe0iivYYZZFEzK06+l2ab42SMAtkAwiqbUQQ/T9tYN2Woc4kgE12PePYeZQOECyMQapN7fOUnIKmDVdO6zna4z0eX91Ln7BbMq8MS9IONS8LpcLaQ/8ype/zCks/Na3/zFfpY+ujmNzQ/159EXeoOyYwJ/RGG1tGXNt9TV72n8ddoVOuFmOJLiKmUGVMRowEVy5dS63GvwxUTV7eA305lZy/o+q5ebo9ix/9fJicHAzq9WcIoS7gtxQdSvoHa0GhNK8QQ/Ln6VloWmj1huCkmIgrwspWH6l0WlDSSGS3O42SqANs36b1o3zvokYPCIIXVy5bj7nw2wRh1pcpt3yN+rPbI6WZwsCXWzfx+MWHRbrTiApiIMkAcJQA2gipJgNxovqM9HuXRBrWuw0g/PVVLiXdaVvlTCUGALnZWG/Fkqf6m4yH0FGa5RmVoySLH/RRzebQI9LUk5M2PkAg7udk0WE4ZTvVOfBIaigppRK8JhDDAAanqyTYMBz8AbWabt2AIvqvxPuVoQ6BkQxdSaGN6vFI3Y7gDaPCeZ+p91gGvU9LKZMiPfcoynrWRw3Y2zA9gAZpkrqc8O2FkGqxWgGFHWz/50S9DqjLIOGulazTA3ThthWwAnBqscd27ZDzq4e5wpx2nz+D8t1q82X5hC3NbFZzkxFaIg1LzkYKv3QmDUobbGmiwkq61Ak+drg+8hQe/3g92Fap05r0N4b9OHXozvEK4eK1Nt4G2/j35KhsO4rf/q//9P82j/+Nf6df/rvvCknvY238UdsrGXlz/0//hy5ZP6b/+1/w1effnXU09/G23gbb+OndfzEkJJ1GxtI1AdseyPVZhLlKiguZ+ydHylEEEts1N7Yr7sVViQQUjSFhGgF/zE6PbiEbeuMZaH0RhzNgQ+zAkgHFGXdJrVZMT9EIaZE24oV+EOmt0YUkygOS6bsN+uCUfuMe2ssbrU0C/EASQPTpiHGaElLFHOAUmJI9AH7dTPVAYUqlktBvMC1faQT6H7Q761Tx2AUZTmdyDlxcm/wUnYYlgSdyjwSAjlnnp6eaHVnr43944urEXT2zRJ/1smYCSk6WNStQzdG9pslB77mA986ImZnYMVy9Xx/QMUS6K243QGY8tHo9D5IISFpoauAdEKwTrOppjBHrQW6e6JPFSZP7kzrteGwznpa2avJv4/e7vLMA1MDGCbp3bod0tclW6dwh7pVK0T3TkyRHBO3UjktGR2dhLJ6t2cd1i2/khHpXG83ukBrLh+eInS1zsdU2bdC3TqPT6bm8qMf/hiVQV8MANrKRmmNvETr9FahlwbJEjWX08pYG7d9sySfF3hnp7r2iLZOq+Ww6lnWyKdPT6zr4l35wOiUUulqHW+jAQxy7ERPwEiI3mGmDnkAdFSDgQd+H7788sckEZbFOvlL2axbOIC4EtVQ4+i62p8fXc8Dh1cEdBh4NZT1dKKrmkXR0kgkSmn0HgjiyjpewFHvXlfv7qqtGaoSIqFHTqdEzpm0LN7ZZYmg294OO7teG2lJLEsGOmW7Qm8kUdKyEB0AS3FhlGKJqaDIMFWa0bsBi2qWjdILA6HcroB1w6bcWU8nB0WsszXn1QouA0SypaqaJRKPrjds/kaM09LQLWmGgUJTLY0Bqo2QVloflGoKHt3tMUFpdSfElRgWTxKrP+eJyoARWUdGROlV/Z4a2MJQJCTOj++AgUgkpIU+rMuVUdm3HR6C2Tq2yhCBmJCQgUKv1S1g5LCpiTlTr1c6C4sCYs9pb80KA0GIS+J6fSaSqRppWLJfooNirbHtxbra1ZUw1J5DU3SA1aEpwewRY1C2vSDq3f2inHPkVq0DO7bIXsxOpbWdWndOrnqxxEzKCzGfjhnVeoXaCXnwkDKtmpJefnpifXxif/5A+mgWAcspg1rXYh/DrNm6dU/XraBiie46TInqcj5x+vLHfPnVV7QBcduItxs7nRESKtbhTYyEZfUCZmf1LshSihdzhhUahnfJiiXaR+uMJAdUQcdUXeRGo5JTPhKJY1Szl+ydinWMjt45L2fA1B1aHTY3JTL6ydbuZs/nLIKX3qmjc71t7CjEQMyZx4dHUlzNOvXWiDGhIqTVVHdCU7btRimN8+M7Wh/U2wtJLWm6bZVSMOvMoZwvCRlwu27k08kKR6MBwZ7VFhkNtmJKP1mi2aj1bhYKwQDnujduobFeFrMOaJ3rUC7nE6OYCmAOiREMQBAgJCE9riQVRun02NAg7L3RI4ThViw58fTJkwO6Da2VOAKareDY2yCtJ3o0e6e1G0zchhU6+3XnlBKnU6Q3WxuWJRmY1xrsZqU5EJYYyQK1Vc6nSJDMel6Qx8x2s+7wtnfobpkU7Dkaaooe4hn8qWhgRVplRAVt6KjkHIkaGKPRamU5nQw63SujNFP1EQhZiMlg3zb6AZAMtwhdkgFTp6dH1k8z9bbRroVeO7V3yrWiwWDEFCMhZPreIUPdCjknLk8L6bIYLNYaw7vXe1M0Di/MKWEEtEKn09uOYsC7bUlmL9VapRVT1BjDOpbNftSsbWrrPL/crGghyVkf64COrtzR+uDLlxu32nlYL6bOM0xlg95N1cyVAkarVvgQIQa1vR0sLkuJ1tU6/ofZqcTqthXSSNnWNG2BmoTAVBz0Tu9hVpdbbV7MGaY4tixoN6WZMiq1Nk6nE6M1egNJispPsZQSWPyC1ct6UzSYSoroXV1C9Q6tTHUgg5X73fbN1R9n570OPVTwdChRvSiLqSA0B+sluNVHNwjjeB9xSzSPn/DrrsM+Q3Tb6gPLcdgBiX6e8DK8uC0YEwYJbsGnxr/42WMotFIPNYEuzHIYQZTWLE5RnXCO2182W5OCRLMelntcb7Y8DkeJKfKtMXk83+mlOghgKmJW4B/g11FicPsag2NanbCVgyoTzgCHV+6WJ4dCjiul+h86rGRFQ4MHvKgpphR3XLlJV4hbGg053tuKuAbbyhRhGqYBEFN01SaHSBQrEKpDC+q2068UlDykpdd+KHaFeLcpDzlhKrimAKiuhIHXU1FrpLD91QAScWukMZQYrNGjt8HisObtZmdRUzIKpt7jyhbocDtVg54kBLMUHqYkZ3CJQz/iKk5Mu/BOlMhn7z/jT//zP8UX7XNbb1eHC1RdhdELqd2uZ5S7Uu9R4fZ7aBC93/c+LZLUlYbtzFhRB7zMwlvdXmmgDky4qtl8D7VGIwFI0ZVG1WII/4x2vgy0oQTtiAzUoYrhcMgEWebzjhdhrUB+t6y2r2LvXZs/O8Oe7RgN2kCV3qrH6XpYo9s9iqirm0rQ+/XXu0VkigFRA4NanfCxq3qldC/Cw6EUdAfqsPt+PAH3uT4L8agaeBmAEe7Pg0O4IZo6bJtWT2MqxyljWHwmYoqX6muRhMAQJajAiEiy/TPG6BjHBGoCaVn981hx3VhBa05orUEWhwBMRReZFkMT/sO/q8XPVmRvDA1AnCSSA5N3e842gWhN1G66VIgX7T2PYcvFtNKz9XjaLUdXcZyKfVHEzpOqDmeYQos9294k4sp8s3FqzhFTEY+voD77DKoFMMAuOMRmVtCZ2BptN/W7FgQlMa2X+hiIDoa63fsYrGL3cYA3xCS++9Uv8u7Dp/y9P/Hf8eXlK6gc13hgajEhJYPEHAxEg6eT/Ozt+xQ618sJpdzt40xVSRm4MqEzZ9N+eu5rU6HK4AUDuGzOmP179v/WMfz+GLQU02x+c6jTgWDx83uQREhQKP7nphgZQ8CORIPttpmq4bpS990tsAwImZbjjAHR50/rDIfnJuBnDXX2DPWBgTzcFc3sGvj17UodDcnThhtqb4cdr4z73JswWBBBI2aN3l+rLBkcjAjRY5e8Gmjfu5itvFreTVJwFc7IED2aN7Pa9R9qzRQhQ0qBxnyuZxOaKfLp0CMPGMQb5eKweD6KKcJHPx82O6dMsHgqANnXGg5/OnjsitcDW5eGdlf4lgNAHaiBSvbrZs3nz1tIrvTOHZKZAo/RFd4lRvKymEpz7aaY2Q0qolnT4VSiwz/jQA+4KQWBbrCdzvcaeryvYnst3gjV5z415Jib6kpp/WjqxNfxu1KiguezPJeKPzNyVyRUP0u33lnyYqreHjfhanM2oQKq/dhzg6g3R9q1mQ2uYyhhzPV9uEGlf7dXsbKpecv9efdcXPdmh7k3mtWmAYTRY2zbA+1+qgTuUenbeBtv44/7CD3wi//sF/mP/sZ/xLd+/1vH/v823sbb+KM3BOHP/IM/w3f/xXf5a7/51/jet7/3Biq9jbfxNn6qx08MKeWcXEoeUD9g0Xl8ONNq47ptaBhTLAgRWPJiSg69EaIp/Exbgcend5SyG2gyDAjqakmhKYPbe+eUFx7OF663F4KYKpGIUGo1xZiY7GCsdhhPMZGSdae1Wi2BFS1RaDYlpjZhnWSW5Q5iRT/VeeB2eeNoSbYQzG4gRksYiwTiArXtlrRojTE667qSonUi132jNuvuzjFBb8RFOZ8yv/Bzv8Av/MqvsCXlRz/4AfXFirl931kW+PGX72nVktoxCm3cLNGJy85zT8pCJ+fEw+OFrW5W7HQ5fG3edT+TqdJdPp+j09kSoB2JM7HRvTCfDnAiEEjBfM9ndzYz0YMcSQYJYgnLDp5FNMDICRvJkVrbUQi6bZvNo97vMv0+gWrt3vkuLu88DqnxWawJIUKbqi2mstP74tdGWXLipRZK3exztkaPmd46GsUP426Z0JSGsPUrHz++HGpWzy/P3K5mZ/OYLniulSgz2WeJ20BEhinoWGEmuGoY9FLIiwEDARDvzhcRzjnzsJ44rysJYXG59qGmQrO3hnZBJHJaFkI2laSYEqVUXraCVLNvk/VEiJkokVKaJSmZyXFLDpZqloS1WlJlkWAgiidee+/H9RvqUGJ3O8ds1mtNGzEZPFNKeaWiZQno0Yp3aFW75t3Uw/roJDzx15p1TfbhnZvD1XsC8XSm9g4qBoTUjdHLsaZI6Gy3G2V/odcdDXA+P7HkTM6J2ifY1kjJwMFeigEldTPlgWiKR2NAHwYHSEwsdNISPV+kpJDIOaC92vUZZt+mo6IO91l3vttb+PcLKbgSw+yItrRYShF16CzESB0D1buEf4zRiyY4+AFDvQAQgsGdrUKAlCO6JAiBvRqY15sBovl0JsZAKabko8Pk3pNYYTOGSKuNuhVijkiG28uVECxBPjzBFlI0OAxP7LVKFwOKzHKzUrYNBJbTiSUGeq2eOLdClzsq0UfnPBW+vMho1jZWIBoh0MeNNSdyOhmkM5QYFkKIqMqhAhOzFX7Skuia6aMhYqBsLWaFOUbh4/XZVJUk8PD4yOXhQnq88PJiUBoCt81s8VJeOF0ekaGktFN6QdWsliQEbuXGvu0Gt6TBtl3Zbhu1K2VUts1Uopa88vjIXUHm+YWtuZLELNKVZvOpdofd8GKXuHS87XNdrYCSQ6aJQS8DNVBGDSI7iSl8mZ2Ir+le8EGsiLosiyX3s6koEK04taRMWzK1VmoJBld4cW+JkSrKOWWGKltvjAbSGyMJjcYpZit2KUiMSLDCxOgGpOiA/frC4+XCVTvbdiNtO7EoWqzDdpSNfTyTHlbimuk5EsZKHIMUAnstgNkyjNp52Ysp8fjzISlRaqO3Rq2FFjqniylMoUI+LQcwi96LW9u+03Wwnm3NzU1cCeNCA17qjjK4PJ749IvPTMFOI23bqdug5kRVew6IyqjWtbwuBhAuElhDIC0JzZXr8wtLEM7nlUBmBFhzJqkpqS2Xbgp5MZkS0MuNsle7xzlze9m4PCbOpzN1K5xOK42KeMG1O9A7cEtUMWuG3hujNoZAj0o+Jc6XM1ESrXRGLQYLj0EOCU3QxqtYzLvvU8pWIBmDrsp2LYRdyZ8+sJxOVN+reocQM+enhKSNbdvMqtOT/WiDmFgkU7aN7TbIyZRe4pLpGHwXMBWOIIEgyhoDBKH2igYIyWLL4VVanTCEKwGMV35nfXSrbUqyrvs6KL2BFMTBO7PdSh66mOXEEKH0Si/N1j/zOWG7brTUD3gwjG7PTUoUK+8aMewx8ywgCV4YDgGa7Z95zTaPgyn22fMbvbDWqQOqKzyJWCFiyRlJwl4LOYhboQaCV4RCzKYU9VM6DkBEccsviystxjCImeNP3erEi0LWYc5huyJgCgMOBZrSa7jH8mq0ytBu8GnOhwrMtGbrvd8tusIsaE0lGFfDAaNexNVt/LWnMsDRX++gxAQyrOjpMIAcJSMOGyqHq9rw84rveylFL342j8umyoIXo6OQY+STp3e8+/xzmii3lxdT9GjDLavM6rAPhw+CfR6zaLpDJ1NBaDi4kZds6hPDgBzxgt0c9nypgzXzdfz64AdAtcIyqofi0MyKTWWYCVkcxJEXWw+AbUIPDmpMMMrs1uQVKOVnD8Tvi80DE9RyC5MJfzi8YbaJHPdiWsAFf7/eO+MANkypoLgd0YS6NOhRtBdX/BpO+w/tVB2UvTJt0mup1GYQ6RLsuUec0TgqkSBqcmtW+Ld7M4GA4WsNU4XXjnusZeGXf/BL/PIPfomVTEiuhsRdMcGUGvHnyVVhPObordtnG8OUfJOBLdPe5q7I4veA4UCzfk05qzdTQRGHBw7mBj1ACHVYwJ6NYd93QmlOKM4ieT8U8VyhRPF1ddy/25iv540DOovLwa3oFMRjsN4cnDLVYERptVgM2k29NqWFGMxeewKPuEIauBqbK2QJfr8n/OXqE10DSeNd9UOmSpXP76mGhRjgdagh3Z+zAy7x52KMaavoRewJy6jtH+rnjXmPZBbx58/6b97t5qI1LwS7FjHamab1cTQUBRG3fXt9PhTP05hiWHDIc7TucwpfY/X+aSX4f3sjlMe88xqanZf9d+vdAAeZU64fai4SDATpfZCMDDjeZd6vCRC1bs9zTqYM5e1XBEkOptp+KtEgd9TUI9XP8PbePkeDAS19mLJ2TIl1Xc3CU6almxzNLTEmu25qKuTBrWkPYESnTdwwhc9hIIZBFXJYn4UQeKpP/Nl/+mf573717/Oj9UeU9koJG/H8js2S4XvZVAo6FNOO62Q5LxFTGdS5nvrrBLV7oXOe+3KOQzbDIVEDt+52aaIGLcUQGd2Umrol7Gy/9kaCFOxZH64agwi9WtPH4jaU80yN3O3oGGaR1kohRLObrGWn1EqOds/EQbkxKqREzBGNAmJQTPQ1yVJkDiq1bjaf2NzH1Y27P99dOykKksyCzkA17ipWarmP0Q2USslV5qdKZIr2TA1TWAsxWPydE0ENFBK/Fh0MnAnC9OtNMbkIqBAFRgyEZGtycTX6NWS6ry9J7DqHaDGkSXc61OT75JIS3Tsrp8WrhICm6GfLqUToVrlBSOJ74XB1UhkWk0YDhEPO3sBg54ap93bPrQ4HXu6xj4qr4eH7bRuIJvJq1oytm0W5AjHbWbPW5q/vKkk6MKW1SEDYt83yEx6HBVcOM/hdjrV4KgX2me8NcnzfuUfqES9wh2x5FR8KCHbOHcPUW2XCSTF4Y5XFOcPPJwZAtiPfDG5vKsOfEdsfghrMJTiodChXeqjgX8SF7i0b3Bq48pR4gGtvPyE8v6d+TYMrjpqaekSH0qR7DrwdjWTgsd7beBtv44/3UHh8fuTX/86v8xf+7l94U056G2/jj8kQhM+++ozf/D/9Jn/tN/8av/dzv/cGKr2Nt/E2fmrHTwwpiQyiRJrA+XLh8fGRMRo5Dp6fnynaKLWi3bsTxbope21EEdbzmZgD23UnotxuV1QHt9vNOlGHHYRjMBULsEPUvlcenx7ouliyDGhqHX5hQkbBEhkxBrfTCJS9uCT1IHRLEppsvsmDB++GlnCXSV6WlSCdUishR9bTwn7bLeGvg+V8IuWERrWkgeWMkaD+vuJJPJflD8M6qYbycHni29/+Fp9/4xu0Frg8fMY3nh75zje/w+//8A9opdPLjZQqP/x7f5+X25Xb7dlglT4O6WCReCQme2sEGeTLyRJjvdNaP3rxu5rKwjykj9YMQPCEismYW0dRUKG14nLpU8VgdrpZ4kdbY4gyXAZex6CLwQjJi2yWrHZrAC/gWHdV/1qxwjpgu79W98Syd4Gr0KsBZ9GT/ipQe0VCOgCi0TtBgslum38F+7aZ7PToUHD4xKS5e+8QMqf1zBBMGrwPUFNU6g61nZaFtCY+fPiANaYHeh/sy25y4c06l0xy22W0azcLLeB2vdJ6J+Rk0tnDFCVEx2E7dFpXojyw5MwSTfUlJ7Nwk5iIIVFaR1y1KEogBogOHbXaKFtBu5JDtGvWOr0ZOFLbIOXFyn9ugyKe5G/NEvEG31nWxWpN4+jA7aM59Je9qGUJw9atEN96h30nxUyKibLthwR1H83l9Wf2fHYc2xxpbSfFaCpSYonxiFLLTldoarL6BgpaAVbcpiymYPNUBzEoTSxx2oYSWieEQi/F1SwaOuxpaKVSykapG0uOZskYTFknBSGt1h086s71g6lSAIw4GBGM7VP2vXmXdreuZRWiJ8cswWnXySgk7+516CtEL1S17pLqoBgIlJMVC8xCczk63RTcLnPQe3MVgmiFgRAYIdPU1KwynV475EhgsN1sHq7LyaCmQ11h2gwG0vlihYAQ3cqp0oYeRa0hTNcTQoAYFEY3MINuql5rYGAFktiGWQ4xoAdUK2XaHIkBTNHlzoeKqVrlTNdwFBBUglv3RFJekXFPWA+1dUIdRIgSOMvZlPvUFL9a3Xl+fkaDrRnRk4jqVj3n85mHyxOtV/b9Rt2E/bbT9s56yqznJ3JaedleTGkpJCQIp+VM7zDC4LReWM9nPsYPPN822t6JIfh6lOjZEtbjdKKjjOvGXishJjTY3hiTEGKmlpsXPCwZYF2Xtj73ZlL/aDVrBFd5ULdJiUEZdVBbpZRKDtmKPjGQYgZMvn7fK7IEWu0sSyTnaPBFNWWYh/NKibBXS1CKGti4rNk7cQOnxUCUl+3Gtdz4pD9x/uIbpHXhw/tnJCRLJkchMNDuBc7RrQs4JXYRPrz/yON6JqbIui4UuiX3c2C5nFjXCylWtg/vab3T1ZT3hoMNqSutNPZeYYlm/TCT/TFxCZmgQDBdmtoKZa9IM2tMg5Yz5yA83559zTVUgmgPex1euPDkfsrZlGqSUl42Rq1ce7PO2J5Y1hNCYNs2pCnnNbNKJGjn8rRSFGor7N1sVQVlSZmYEuqKHWlJdBPIIsbEWR6QHOm1su370UV8OhsYjneGixfs8AJYDBik5BZS0z6oqDKSQFRTH1wzISdGiejmsRPWBU4KDkWe6dqopRqkIcHUMQhmv7Z1PrTB+bEjS+ZWrqbS0pU1WXi5ZCtUqQSWvBjEq06otEGthZEDRQKjqKkKdIud6KZkQLACnwwrNAUcgugGD/U6O38xqLRF27sdSFaPe8KYcZSBi31UAoExC6a9Gah2WK8Mtm6Aa0yJkILFMt5hXEchSeQygWSxNX0WI+idMAJVzSoV3N6pmX3RXjYrsuWEYkqZpReGVU5d4dOgzl4rOQlBhVL2Ax4/pUzTzpICHTX1xS4/5UUFPYomOSfysoIasFnqbkqk3UB1wywc5HX1s5wNsGjVABCz4DS4afQJD3EUUK2SCL11ljUzks136w+fpVsHaLw4FYLbaIkYRK/j6wV+cRAUQCzm9FDZlHdiYmD2PCLW3d/qVLe0IncMwYt2zul4QWg6Jxls84pkcRWjnFeeni6cLw+MATmfuKwrTw/veLm+mJVJr4QwuG7fp9bmcZM67HSQDXj92WEBIXrMNy20pjrftAM5Lqca/Gw/i8c+YNIEAcUK6ffXV+aLyfz9Wef1j6My1Zs44K95T/xm+P0Zx72ZBdX5nYbqcY8mLzUcPpqqIICpmrlyroEc3pThkIuogQfBY40+vEB/wBBK1GCAMAbtTIB4WkN3h3VDDOz75pCyHEVZqa5+icVmUzFsOMQDBntMsMyu9R0KiiGyEPnmh2/yS//8F/n05VNScBWhaQkjNj+n3ZgqdgYWe19c+cKU22ZNVg5AZQxXQgnx1Tywi6vqAInM58aBLb5e1J1A32FT4/dzwkXD7bFCiFbs/xqs5K91+M3oAX6GV68RPW8w7bjMOnQWcMNxjrH7b9CeFaabr0cODvl6K6oGAPe7Iu2kyka39bsPU3OOXgSelpMhBt9zOnXfSOluI4WDXwC9WZOGBFec0qn64+vRnO/+9QXfN7mDfgeUo4CrQscgR2FaJNnc9Eq2+Nw9AETkKKaruGrvaKY9Ou7zrvdiTQP+XeY9n/ckiBBydiDmriDVX9lbzvkxh4hfZwdsTNVjKoRhVP+E4jxm6K5Mcz9b2fvNJq6pXjcVw8Tnl0F0drb2DwmuDkO/rxn2/YSUTAVndLNta+gBRgRcFU9hWRezgVuS261absbOyoEQMwuR1iO1FQeETNVJo8GMEhMpZ2opIMUsvoIggwNwfNgf+DO/9b/k7//J/xc/On3pIG84QB47Y0Z6szxG9PUDsbyUwVzDlOmY6n7+fIS78ot63NKm2rHPR+MpPJbq3qAVLDcTg6DB8iQMUxbTKEjrDjfaehhj8FXSVMkFW2O3fTMV9McHUk7UdrdDtuP0BE2nGpdZZAcJR/4wiFkmGvgyQBz0Tcl+7rY7SGIrx/CzelCgm42vei7RVPACkgLRm4SCiMWJ2HkbB+BUDAZKOTGqOohmc1cs0WLXDP+X58ZyTga1rQNtdgbqDGuSyYmYxBvvDIxKwexjYxLymqHBXiY0i8f+ltNDDBwax2eGIInsjYSzgcruF3fgTV89qcfr2v094m7/u9btHD5Ve2yu29rXqxhk44HNCHqcDed+bLm5eZ642+uWXk3RbUloNxhM+7D3F1chjZY/sDkuB7w545bmALV2j5nUobLhoP/cS2d8MmMv+0EHN2d+2S8CcoDafhXucdRcg7Tf9z2Hyl9DoojFHTPfLa9hY+RQ902z8Q+HX+d7qgG9w8/EFoup2eWqmmJva3au9L1idLNBlEku+TPcxz2Gem35m1zJakJeM/c845G38Tbexh/DoZBa4ld+51f4S3/rL/Ht3/v2q/jubbyNt/HHZXz25Wf8lb/2V/irf/mvvoFKb+NtvI2f2vETQ0pDBx3xTnNlr5XRC5UOBM6XB3JvtFItYUi0wo7DPzlF61iRQW2F4VZTMQgV5qmPFBeDPjxBXptlGdecqftuXehRaLVj9uQLIQSu15vL4ndmZyV6B2MEXKEkm7IG1lltjfGmLJNSPhLt67ogIqynFcZg201VYa87QQchep+dZ+zzmpEU6UNJ6cS7Tx+43p7pZUPb4PMvPufx4ZHtuvPl+xtlFz755B2P7x64bTs/+MHvc3v5QK3v+er9e0ZXGNVUNkLyBK+BHRzFgvthe/R+JK+nooaqXT8DQSz527xDPcZ02LlxJJ0nqOKH/W4dfWu2rtLROqRZxOiMYWo8rfpr2guQcgK1grd4YgxXkpmfMcRIG51WzKZqWRZPMosXMNRVaV6BUn5fxxje+W5AwOxCzsmKC/tWTHFlMeUFS8BZQn7fCytm5dPUktMmU20JIBSzZLheKaVa0nzY9RnVkkkMh78Qs79BDHQalbysSMyM7oULDQwZLkseiENYl8xpWUwZAP9u4jmS4FYbfbAEU2IhWiKs49383sG1LJE1r1zOK6fTiRgi+3aj9GJy0nWDGAgTVpNIa2pzXjiSEq+LQepViuadmiOM4xrNn33d6SwBs1JDebndLNYRuSc6mNYZ3YqN/vtfLwB2Silo6PRaWYeS43LYacQgLOvZikFjmK2HWCJGWqO2wa10ulryrZXtkAzfayHnxeZ6a5TSWGehXLxgF8zWIYopfbWhfHg2e8WUIrJfeTg/2LMmSiNS685yPpl9gCdzFSEtpvRkiVxPqnl3nA5PCg8rVFi3pSVxNQZKHUQFCdGkuIkkIKh49904QCcZBk+MYDYIIS5o35GU6SqUNnj/4ZmcE+v5YkDSULuebm8xxmAvlZRXYg7EtLo1itl2WEI+0MVsE+w5HOQUyOtKG5WhgfO6ICHTm1JjoG+N3htl6ywpkkSQlMjJAMNplRNz9MKOeu7W4NGgDpF2s4JsruaynE7kGOlVOeWV2nZGV3JeOKWFIZUYB/ttsJd70SuJKS8NVV4+vrDfdlOJijbfY8ysC1xvV7OLO5/JaeF8VvYgjGFqeaUWyycOoQEP5yc+/+xzau/c9hv7duP5wzM//OGP+PFXX9L7YCuFHDOPF2FpidIHe61m1SkZU4jzbntVUojUZtDoGM3zpt6lHWwN64BqhGEKcEMMUGUope32vLVBSJCDcIqLPWN7tWKMKi0kRjPbpFYraTWVJUuIJ1NhCfb7hlaYBU2KAUTZWqGVxsv1xhqT2U3ge1IKnGK2eYmQoykfqgiX8wWCHuqJIkI+ryzAsp54/vCRTTa++PwblNPKsgQeTydenjdqCJyfHuF6Y395oY7KWBNPl3ckAtfrC6Erq8wEtBBSIIrZKY0+TG1QlLyuZgEWMtu+czkthLjQVXnZb2zDilNLh3FV/uB3v8fn3/wGYT3TktCiA1NDoDRiTqTLyvACRk8GWBdtdBGqdEat1NpdacmV/bzQZ13dA+mmHDGCENbIZbmYZV8plKt18PfaGK3aXGjNbBFyJkbcxsUKLFEcxEjW3c5QCo1aGrBZfNWts72PAd0U32qtlGJJ9E5DosdLXemjHnvDup5oW6VvjY/tI8vjyTqgM7RhsEgMEcXsIpVBXBeWc2DfC70YuCvdigpxEcow1aIcsivXmeLF6bRa4dlVSEKKaDDVgzGLmBFGcfuTKISQjgLN8P11JuSjFwxiiMc8PJQGxuC6baznlbQkg03dznCrhdaqWSW5nem7p3es68K+b27fGUzRMwaGQwhWDLM1tE/7iQHarBseXQ2EI7KomCKcBbiICAmlqRX2kkQHpEw143y6UPqOKfVlppdYLT+9dm+zwDNtlvvoDshbOSanbOqqU3USOX4+OVww1Yu6W+J9DZSwNzli/3H8rNENaao9eOxrcSUkbC60ZrEfR1w0sRiPgfCiVPR9ndf1PbNN0uAFeeFovEgpgoZjD2yjebHX80T+8yHEA8wLklgfFmrdHZhQzpcTy7LQauO2V3oTTqeVZc201nl5eaGWnTF29n23+G6MA1IQn5NxFutwWOGAfoaDRU6DTNjErUnE16vR74otBu4NB7xeXQujYjzuEVfRkuO/Q3BLG7X5PJVaZowYxVVeHaJS1AGu+72Z8Mno9n7J7ZnuE25CDf5FvCj5WknK1CqnccodUuutH3ZsR7zuo3VTB+3q9oJ+D4MX9e11hFarFSAnUCBW6Cfe4VIDUKYClBVLQ0zW8HPMv/kdlKjw6Yd3/Ml/9mt8cf2c6HDkTDg6D2UfRg3oDsH2dStUzifFlVFCIOZIzskbCIJb/1rsrqP555xvE3ztffVaE4o6XtmfjVeKLfYMzX+9ukXz+fJnu7Z6fJmpujXn6HAVpdkUMO/J/DuDYYIBr74OhAlmiCkDzbNzCPZzIQT6MICnDTXAVdXVlWxWtNbt7OzztPdBDPmu1DSvp1OG6gpUeym2z0dxYDvb96QTNNBKt3j4KIQ7WhWDgXuYpeo8X73iv44RJNh5TUHFVGhF5vkuHHuQHGpW6oyLWSHqGAYpqSnpMLoBBhhUsO/FG9AsfpkM7FSNM3DBzvYhgISpEDOI4pp4amo1ojhMZKBL8EaAoQb7x5icwR4or878E1JwEAxX57GifTzyBOpAzZyt04bJFJtxpSOzd1WPU4ZyND7FFEAGIw5qHdDUcyVmfxnFmip6a2zjbotpRmGmUtaaqWDGlEgh3i13xyvIw9ej4XvS4+MTDxhAUlul1crttnG9XtlL4bJd+NP/6N/jH/wv/gHvH96blbDaXOXV/J77apAJJbrCnC9udi/ssw6ZC8V4pZZnPzT8Z0QmMGUQwwiWmznmqnojiIMmEVwJaxzzXvx+H8+r7w0hJ9RuC7VUxBVzRKdqtzjcokesbE103c9O8dXrgiRTtY7JcpDl5cb5fCHlTGvK5bTS26D2QVwzEei75SSbQFoyMcTjHkQC0deuaYWK7zW9DVdtvq8ptVdG7648ZHFcxcFSVaQP9usNyxueGAIjmCJOUGBYTBzdBtyUg6xhqNZi9rMBhjZTHgq+V6q+2p/9GfPnUsXWhJgTMfkeUm3i6StAZarXGfSpvqe48pEDyoIp8RKCgV1DrdnFVgNfuRxwPICm4a/7eo3HIUCHtqOvf33Q9kofnZjTsR+0YTk0xeCeoJgKaox2L7qdh8X30LmK3nNPlr+Ze3sK9710xi8BRX2/xWOMCVZOoPz+d3MtnvAPr9SaJkxt16K1QZduuVHscyNY3DCt5IY1S+aYiDnBGKaY5s9fDHfVyrmyBeQAoudjaw0rzc59KZB8zR+vfveuXTrVFh0in/chBLp2f9/ksfO/uuO8jbfxNv44DBnCt7/3bf6Dv/kf8Av/4heII/5hf6S38Tbexr+hIQiffvUpf/m//Mtvikpv4228jZ/a8ZNDSgNU7OBfHd4I4gX1NtzmZKXGym27UUf37kFTM1jySlM7cI2hSLSO+BwjqtYRJCpmATUG3Ts7A4FaGnlN9FDtQF6x4laMR7LCCkeDdV3s0Dc45HNn2SJgr1+LJZtSMAs4IXp3likmSAhH15N5qg/OweyZrvvuHaeKuoVPWMw7fWDdKUGFUQY//zM/z+ndyr/45/+M68sH6vj/sPdvv7Z06Xkf9nvHoWrOufb+Dn1g8yST4kEHWIkiRxIgILAC2DJgwBcSHOXOgP+1IDdB7NgOYCAXSgBbMZCADuIwjhSbIhUxpEiR7O7v299ea82qGqdcPO+ouTsR4FYAkW1pFcBm9z6sPWfVqHF4n9/7PDsfv/6G3iMvzx/48MMrS4rYotirvt2hGe8uN16fv5HYtSyfFBDwQ6iKyq1WuqmDqczC9LRf6TDt5INb/qvry7ww+wAfzAsoKSa6uyHlECFGjvoQyqddfKuV0dQtFqN5t5O60MzkWmPDC2SmCDn92egdbnZ2lloO1DbAgatSqhcyFFOkzHl1WsGEZx426GZ2glc5ZY5DrhMhGqEby1VgRK8qsiYSKQvqqh4xF6MO5E/Xm8Ts0bhernTmz1YnfDsKO7JILiFAVExassgIswvUdO8StA716JQqe/uAcbtdeHd7Yl0zrSvqUGKKkZaVy3VlvSzqzPXnU/tw1x51CqZopGDkGBQJmI0xIvt+sJedWg5SDMSYMTopR6IFajmYpe0p8s3nHr1QP8yhMy9mNI/EsqBnlxw0MR9TZxyidwF7/caLLI29NoGNoCgJHFBr7cy8Z34q72TOEa5rJMekaB+MchRGG7xudxWW+1BMX9CclJLs32s93KFAAsb2UqB2YkyslwtpXSUYGljUzyFEYtA4XHLGLHEcleM4uN9fyMkYBZbLoHl8wr5X3pvggFmYAhT5FeF2u5Hzqi7x1jCLDGb7d5DlhlTAs6CccwQ8qrJ1Fezjo0M4JRUMVdiTqJtChmSUWj3aEQF/KRFfXxkG2y4Xj7xeaa1TSgHrlDIozeihkcwoozNa8e5lOaylLIcvG3JfkRNdJkXzn5cVY5gEISzxQsjqfCx7I8dIzA7WAJenRxxjjI/iVy0SiSHo2aGitjqTD42RXknLwkkeeBxK61UuUTZYlkSwK2bGzk4fnWWJcsEZyMli+Dgk+FqkexxscJSdH/zghZQT10VRBm1UFZ57IzC4LQvHUIe42cLT7cbNY0+//OxbfPHFl/zghz/gd3//d7EfCNArZeP5/kq/b5TRiKNR9+2EKFtvRILHLcCak5wAA7SuTsnRmtwMW6OP6m5juCBkXK4XdfgXjw7pg9CnYOXzfoyKuULv6lEqrTT2o9B69YLuYMmrnBakYxFDFChTIawXL3gGXl82Sk6kVaLmsi6CVVsn53AWnl9eXzmqOp4v60ovnX3b6TfjmrJEyJhZRmYcjZcP33B5f6G0Q9FyvVL3zpYjl/dX+jjoLwck41s//V3ev3vPD//w+3z1hz/AWqfVwv1+53K7cP3siXZU+uGdz3T2rVDHTlwCtQ62/RBs2QdHbzRzkRiBpf1+8Pv/+B/z7tvfgQGFzpozViVU9O0g3JKgZow2YO+d/irRJa4Lba/0vXEcepfG8EjIqtgw3KGHBDUFLrdMTpFj76zLRZFQ94NOV7G7GTFUh9gapTR3/6nQYUnughcVQ9a6ixg5MOrgXu80g8OMhcR+7OQYOErhvsk5BjrLsmBLJl2C4iKOQ85XMXK7XWilsR139tcNQieYXOpGbWBRUI4DtnkNvP/iC8LLR16/eZUbZpcjUm9y7goxk8KCpUjAAVKHDHuptHKcbm/vPrtxvV35+PFZgp01OeSZ4LsowoqjKbpKIS4eE1kr5u51igNWj39z14XjUBSmFrVAHRKtujsSTleUrz9+5KgXCUVRgpZcOGBJC/t2sNfDIT/N1Y5VYQSsNcpeSDlyuSxcSRJGHbhqvZJDIDvAPyH+MQWKqmiNoxYShsWktSH92Nv7P/ZrghrB3UcEyOGgi9bTHCMhCKwfXZ3jE4+IMT3gtPmrLhRDdLcNjzNyoUxr/QP2lWsP2KORnYeDkICDFLVuD//QEqDGCaNEj+2RdGcn5H0KsMFhBTgFbmOQTRGixb+bmBQHOIL2yoNxxtmNOvjs3eekJfLhm68px0HvzQEkoxw7+z3r50edZ4ZHaS8pcxy7PqPfjwnwjPGAq7qL7Sab0VPQftAQ/l9cAJV4Nn/Jzp8lYEvfXXyMR7vF2ajiP0sEhe71dBOaz+CMwPWoxvlzJ+yE3yMXCKdDT4j4PKoTQ2vdI90Ew8/IqDloBAw0ZjLOhE+mUNvceRR3oYxJTjX0KX4GRb75Xnre28Eg5ax9GoIHBxIl5956tK6zEtCCgX8+OdG684txfrcx8Dm88/R64+f/8c/zr3z4OW7cfD15xA+qMSXJkSNGJlik6CoHx1zwn9xSCHa6C82z1hmRHh7Q2HQqmg0kE4J4YElyOJmRezPOx+YYQ2DMjCSa5zgfWnouk6RgQk0CA1qfUY4C5mC6NfZPGijMn+8860COcpZqHqE0nV1LrQ7ZjE+gOX3+ECMzWs/QuKnuFBNCcLcTucFyzl06BysicpxnpRmZXfYq19o2iGnIfdWMVjuLme99H9d0e845e0SZOVwy16XH2fgcJF5tnk463eciE3N0upiFqL835zvGIERt+CbMOTB3HxpYLC76ewxmSu6y1QCP+u7m9326H30KQPQzOnY4KDwcyggRb8BYzrl+AlmLLYzR6HWc32uEB0xhfsYKPs67gxbtE3ck8/ujRilBAXU04kicbgE+qT+cwnS/kjvxUKZrl5pXgoMsE3S0c9xNgkE/9Nh39jHIWTUz0D2bMGgKgUHQOjOGzrI5s3Q1F1wuVy6XCy8vL3zz/JEv6xf85d/8S/z6n/11/ujyQ8WcIfeXdrqlycFlurqoqSp6lBkPt0EfMoJbot8rfcaY5E47ncZh7ms+nf/N5yWPhu/9jJketZ5xcoslnz8G0df92XyhtdxrHbXDKD6+EKQZNEazu/aEGCne6NFHP6G2cmhvlrLO84QIvRNHp2w7y1V7ymZDsEmr1APsssKaGJtDIpeF29M7eq18/PARWj/dqwdycbQUHRDSdxKIWM54xdY6xVQr0r7U3zkEstAVr36USl5WKqoD5B4ftcWAj7Xke1edNeh6thYVNewdTec14cRz/gym5s6UFIHttdElLtRd5wcLDi/aOMdh8zjH2Vg1nfQ4gTw791S4+/nckSk67PHuN3dvAtUFQ4pYCoIhz3/LI33d5b7VBqF5DdChGh/PEy7qDNbLAnnIxVaLB3iTa4iBnJNgqzBrVoKEZozp6DNKV+v7el0f0dl9FlN1jjG/pxN6n/vCCTCPT2pi8/0/Qej+AN3me9kdsNef0984/HwwozfPd7LP/ayai3rwuWP0cz2fc11vGk9xWcimZ95mZKv/QxOc137tk62eu3X2MaMjkw+jNxXz7Xq7/oW6Bnz3+9/lr/7aX+Uv/D/+Atft+if9id6ut+vt+mO4DONbX31Ljkr/8/81v//Tb6DS2/V2vV0/WdePrWKMHugBUl5IZiw5Ycgp4vX+SrYg++qgDrfSK0epLLj1fEyEkLhcbrSubiYbnWO7c1kWWuuMZqSUKbVgFsiLuh/34+Byecf1cqONyqWDjUKdzkA2yDlz7Afh4CyMpvSwgG+16KCdkveReKHEvAOPGY1mWFQX4rABrZO8iybnzMfXVx1KU5RwPIDWObZDVv8WONqd1UXBDx+e+e5P/TRf/+H36bVCE4B11Dtpa3xdD0rtrAnAqCXyxXe+xbv3K3/4T34oFw8vyEwwpLfGjHcLQR1srXaIsntu7p5kwLpk3dOtnHbvw9RR+LD7jQTzgo53hMUYsQh1qIibkkShNjq9qmijrHQVsHodhKBjrty0klveD3XBgR/WZYlcq2JawojklNx5wTu48SL4Jzbv5h98QkmzsB1jBIsOReEW6H6Yt06tRYUwy2dhobYiqIbhhXRY1qzILzptb6SUuaxwxEMd7N5lZH2QLwvVHXDiLMB23N2m06ORTJF0eWlcl0ROkRwil/Wi4kAfJBIWzV0XEmteuF1uPD1duFwu1Fp5fn6GchBHJKTMZblwu131/gVjWRLbfuf54wvDArd378n5c4zB/XVnSQshQikblcYIXYXwYXSphA40oEIEXoh0DUlfDpLF03Z+OiHllDEG5dikracs8GN0B50cXPL3juQRhTF7XEZ3qOZCiJH7/orFzv76kXHs5LzQGKRllcuRu6/17gJ0iCxZcXNghF5V/I0BTLFqeV0JIZGjEZNx1MqSs3fjBtJ6ITCwUYmjuNBUVfjpAqwutwvXyyJHEUtcL0+8u3EKAodb84O6rsMI9B4Z3WO54uye9fd06D0trbJvr4qZTILKjmOTKNSDIJQUGRHBdTbotSr60IAwiFYVGTFU0M2XBQZsL6/UKpCgd6gN1nc3kgXs9U7ggFLYj51Q7gQzgTxFkB6WSDkSurqbzQuRemcOAhUbHikWIiMEOXU1SHGll6Z4yBgU99jkWNUcxlN+UZeVPoPWFSVR+6CFKLigd2q5M1rxAqK+a86LurFjpvaD0QrFu3prqWdso1fYqdW4b4dHO+JONgKBwiUTl4VaV+7P8PKi+aD3wbFt9K6CYW0N626dXu7ce+O2LPziL/0iIQV+5//9j9l3OS0teeGLzz+n1p0cI71Vjn3jD79SLKGZUdPCfhxUL7L34c4otdNrY1kyFr0jH6NPV/jm0QCtQ5I43Ie5M0QjJUUKqfgfaB7B0B0yE2immBLDJFoFiXwxBJqLP7UJUFFUZOCag4McjepwLmay1fe5d1CxkN29XhDrvm20btQml6hj33h5KSR3d+pH4f31ynEU6uvOcS+sOTOOg/rSOazyw1Y4Xu/EQ3Dgx+dnnj574vL+PR+eP/IHv/8HXH7pHd/64ru8/sFHXrdXCco4INY7pMi93LGGQL8BpTdG0No3zLiXMlvsYXSu68JaBxChV8UDvrxwe/feC8WV2CLt6NRekUlKZs0X9rpReoAKNhp5iazXleBAbx+NVjutw34/vJgeaa4kmgXq6wvvv/Md4iXz+rIR1xUbEnfiwGN25OrWm8Zpc1FcLlmCx1MwGJ3aG7131pC5rCuv23bCnGMMxRC0TjePthh2OvP0UmlBBfwc5QqQoiIgeguktFAp9AIpTc+KQaidS4zEsNCA46i83O9cbjdeX3d66e72l+QuliT4CgBEOaQuek7BvbVyimz37ZV8yVxvN7mWXSKUwRZ27ZVKpQ3F6WUv8BPweL1MvWt/UMrGoGMpOAghJ4/O8L2cYGOLLgwPyGmhlkapjefXjXVdJU6Y7n9Bwk4phdKKw0YCNY7WCNGjjZtiymoptKWx1c6+NbbdXXY8tgSD0AVUNwCPd2ut0ULDUiDk6GD9gp3ePz9513CgObhzTYoS+2qTs1Q0fgRcaPCI6phd/SGQ8sLoctEE7fNTTIxRGN1detyNa8bf1da4xIT5njZFwIWe5i4+2kc3scQ8YP8p1MgVwVxM12eX+ORAzhnhZqczKAx6n+YvxowMA4+iprlSNBzs0yZMEK7Ey20/eHp6z/by4nFN7hDVChW5uPU+SP45Wzeutyt5Sbw8309BefQZQ/JwUvi0G//heBOY8Wgg4SxG3ZtJnvxIhJz+lu/Xx2ONMePBYU5nk+F/F84ODHe5nY4OAo20BnGOhwcSA9NBabqGBXfI0X5gTHgAdJ47/5qdn38CLhK2TfOv/73SKgPNc3p+3RtABEgNBDWe92jAMLlgzPOPHOUCMWWsNxr1VARtyA2uTclzeAThvB0eCxOQMLzUxC/+zi/ws3/0M6x1IcV0umhMtwgL88wdySmfzki9d8FqTXBeCJEYk/bDcboNB2pTdCxm5GUhhFXvZhUkred4hl8JDDuJtnCCC0x4yaFPPZ15++3hHsV0itA73H3uDw6YToBoOr+cDTN+hphnkjOuxsGh0grYoJUdWqWHKEj1BIfqOZdPB5Jg4fwcNt2x7HEeDTERgn92h3kEgeldjcml6tEJ1k8Beb4jin1Mcmg1xaulJJF9QjKtz6i77kCe3DDGsBNqGi5qz2E3Qa1WCjFFzGPfWqsuiJuAAIf0ojtBDndX6w4BBHctsoEacPxe1KImEZuusAYhZQJGK8XXGjX+hC6XR0Eu/uywcxyP1jF7eJ3oNVSMkeALjQmZPw6GBRimM3c3+tm4NPzZGDHl86WJhNOhTvOSosjMx9YY7QShJkiGO7QQZszoY05sdTr8PdaC2gxz95aUFB9npvXcUhJ8VI197z4Pd3fua+6w7NDsEDheh57T55+/5/buHfeXV55fXk54c10WH0uNVhvv+sJf/q2/xK/90v+VH1y+VqNQ6yeUOVANi6GGEUUQzjlPzWbDYar5WQZVYN6YTWzav9jwqDV3slGEqYNqE1hkEEY/xyIOj8573IfHYM5IUeN0RJzvx5yp23iAUipMPGCKPjr1cHjEYdlay/mseuvkRfWA1hq1aJ2SW1KBCPuhfe5wh6xSKmlNpHWhHQevL6+EmHj/9J4j7mz7XXPOMJrJASvFSNVi6mPYm77ccW/495hQJAioyw6yTdC8fuL03Ev3eonXwcJgxEC0RLNxxk9TB5ZUg8xtvl8609B0fpwNKbhzkH5+ERS6LorIawKXJgltDvX1zsPdx9fkPtQUZjZjhO2M8LSBgNw5Rz9sFAWvuUvRXHbloigQK2WNoeBjLmgwuVPSUNOlO70ZAv/NOB1aG3Kpu1xXuTR3B33Hw3VoRmJa54xtm/u1mCKtDoa7FrfeKKWcTacxgiVTzXOgcaNl7nR4hOHwZVD9z+Ocx9wThrmWd47jIMWkce7PzcKEl/y+djn79xFPJ1BBlc6Dta76ZUP3e6CxiPYK0YLXhzWXd4NeB6U6DG6cezJ86ZbbpaCo7u51mD+HaCgI/O16u96ufyGuAdf7lX/9//iv8xd//S9yvV/Pc9Lb9Xa9Xf/yXF98/QV/+z/42/yH/7P/kN/7md97A5Xerrfr7fqJuX5sSCla4LpeWfNCNxXFsUGpuwpYpu7D6+1KTiosl9IptVBK5jgO+lkDNnd8KCraB2PNmRbURRbTozOy1UbpXnhPxtEHPRh5ycq7743ehrr9UedhLZUx3M7bhQlr0bs3OYsrEgMXapVLSUoCRgpV/36Mp+iXkrHfX6mlyGHJnWU6EKpRrbAuC2m9MgzeffEZz68vbK8vXC+Ku7vXjTYkDrdyKFJmDIlTpakzK17J+TukHEjXbzh2fZdRdd9ClBX50b1QOqAh94LRO8euSJgYktuZJ1LKtFC9o1VFuVIrs2s0eifp2fXtRacZfzbAbcX98DokjnQXqqN3SNfWCTYI2dztZWApkJOKP300wSpBES02VGwttXqR363cvQgwu6dm125p6hmNybygAbUcD5t3VIBNWR3EvVfKLtE35EFeEgEV4WqbwkYnJTkSjQEpLZR9o7TOUSpmkWSJ4Tb6x1HJS+JyXWnmReKBQJggh4rgQJuZcb3dyDnRW5VQ4WX6nGa0ku51x7ut26BsjVZf1dXWu4pJIRL6kJNNvxCDOvH3vbPdKzFlPv/i/WyFopWDd0+fcb3eeP74gQ8fDnc0eogm5i5O0jj6J13qEgPhIaaZW66HMG32odssYMEEQrp3hw6P34jBI9rM4+Z6JyWIWd2jR+3EDMMhvN4arRaKHSzrhZgX8gJj6PcjRu+NHD+JqOtyImmlOkinmMIBEizdgt5ixNwWH+/OrG6XHkOkjnrGXBA7eV0IIbLmzHKRwBGHCvchBqp3jS7rAtbd3WBgFhWJaIHmRbXZqhZjkujqheOYjH1/JcZ3KmB3wVcSFhpmEkWsB0ariiYwGCGC6bv13lToNEU8ja531Bhy17gsMAbbfeP27j3r7UbZVegkbIy6UbsptgAVuftojJFmNUudwyj6BAqv91euF9nVj2GCeEzAZO+GWeZoG8d2eAdxwnJioBgtBrSjkKPEoto7daizPkZoPs92OG30oykyTjdSYk/IULZO2Q9sRDpy1zr2XQ5uIaijOtg5qVR37XjdDp7eZWKKLMuNJanb/nIpAm2Pg/v9VUKUC7uhNrZtJwBbKfzO7/0B3/3Wd7g/b9xfN0JI3sGZeXr3Ob0Pnj9+YLTK++sTFjJ3d3t7eXlhr4UyNGbMvKtyuAtN9+ibGFnzQuvF56zhYmJ1uNQEhiQJsZYeIMyYok/Hi+KK6Gw2yCkROlwvV9ac2e531iQxNQXvWG5Q2+DeGkuUa0ip6moPi7p5SzlgzC5bwSEpCKobn0QCpRCw68rH11cBWMnn+yXy/vMbz99svHzzzOtWeLrdGHsh3SIlGs3F+nEMXl93np+/4cvvfoef+u53OUrh+3/0R3zvW9+TaF8KtR+Q5Cb1+nLnsl5YbyuhdhfzO6FCaY3lujCa4KveFasTzJN4ZiQJgTg8BorBbV2oXtQPREgJI1KPQqPQrHK73VgvF7btTi2F0Af5IhCRpmcSCHx2fcLCoAV12MekyJ1+FOp9Y/3W5xyl8rq/kiJc84WYEtvHO+O+S6zBiAx3wcpYgj5MrlC9EywJ2JjCnSlCrbZGGY2QM/m2Qm3Y0Ty2UmJgiEFi/WgwGuu6aE31tdpukEbmqIUeOvl6oe2NVvVeL0nPfokaE3Xb2aNxe3fj5ZsXsIUQOmMc1N7JKQMJS5nRB8deaa8bZoHr7Ua6rDTbqU1Rnx+++cjt6bNT+ClHYdt2aBIoOx4PkRMxqUtbe5VAaYNjL5gNj6/R+p3EEdNrlSNWa0ynhBlvk5JEjoLm87YXmrsBSjQKVIvM2MbSBUhHB9KGTVjEhc/SFAVZA9XndUzwvNyb5AjlLAOtqGs+pkDyd1NOAonL5ao59Cf0UpRqfjgGTbG8V3dIcTelnLXX6NqTtwYtdCy0ud1zUHMoCm08RKxu7iAx19MJtEx4xWGKMTv4XRwcMxI1CSLqTUKnxenUZL4/ki3FGX82/11324juPtPao+ojGFDPtFS58zGmswR6tl0RnjFE7dmisVwXjnpQjuLrqZy9OlPYbFTfh/UzXmb4/iETohHzdjrIuKWY7+/i6cDhGPI51lurDiyEhygdAmYzUsWj1mbDw3RA0V0SxDQl/ofOL5F8nF4EWvOY9/LhyjR//hS55bSofWKfji7TMcR/+HTBMkMRi9LfHuAyE8r08TP5J3Nx1vr89CfcFhwiG80htjge8TS4s4LvnYM9zp0hyMV1AnBytFVsjA3fB8ZAyvFH7tEJxPVBHJHP75/x3R98l5/+8D3e3d+Bn7Om0BgtenThI+5wxtv12jl6+fTGn/FpTAcd3xu11qlV+5H1uvhz1Fy0LEZOiePY2bo3zZgLpeZOVg8N2L/POH/GrH7qGTvAp2O4PzlNbMM/o7o+ZpzOPAvq+wX/ifO9DkEAT+0zOrH7Ax2KgabRYvL9pWc04u7C836c76jHYPlerLUGMWpeCOExbuegGTjo+4CdJtwX5tnUBqvDQ9HP8HrdgwNP4XQ8ir7HVe0Bd2qV1de8Fw8AcDq5+HgPauKRw6vms+B343wW87v6OSHgEMF8j/o4XW4FnLgjiml/ElJ0V9JKXhbSstDqoeYWqxL8xwRVxgmsjPZwELFgRPzsaKoTJR6uRXLj0Zjq3qQ06JR6YP0BqQoQnABSOyG4PuEwf3+Hr58TiVKzmj1csuCMYDKDVh7OwPO9mDGUvcsNqCOQqzt0Un1uyCYXM6J+dokzttBdbCfYEj6BoHz++/j8SoiCn+sx/54x0L78erlx7BulDN6Xd/zl3/zX+K2f+0f87nd/lyMcFKs0fyfmvmLOe6pVyFVHZ8zOp+5rE/LBTE1Xwc76CzPmys0MzznZYSUV3PQckiWveTSYwOYE+6L2LFULnZvezGej9WOMfrpgDQQkmUNuBo+1xtdp1XPauYYDpEsmDKjlTm0Fs3zGzZPl/t29ZqG4+Y18Wble5SSx3zfW5ar32F2Nx+hYjjpDWSDlDEy3S81dvVffj/s63kQlDxDmYXIr0mk0UH3OyCHQvHlNT8shxmFyRFQ+IsuyKH7UwWKLem+7OxGNNsgOwRCQe71DifRB+yTae58Rwe602puaX3z0zBlW+2EvFbfxGFPa87RzPY1RMFHrj0YArPm8YA7az+fqTYije8Nb8jl4MMzcIUjQUfTv04vc2gy54834OcbgOAoxZ9+vyakftRzq9BYD3mWme3cICoxJ8XcBxf+OoXi94evv6MPrRNXdm+ycQyawNZti22xEa3qv1As4HSJ11u0D/3fmfodpOucum+ZNQ4IL+6SV/T9Hn0CfPkNtM2qS87PZ3Jn5+1y9TumnksfT9fVmGnFNt1uQQ74GkdabnH9yXVnfrrfr7foxrgGpJr73h9/jz/8//zy/+hu/yne//13CCP/df/ftervern8hr+mo9Lf/g7/Nf/E/+S/4r/5H/5Viw99gpbfr7Xq7/oSvH//kYVBb5fn1o9ucR3UieneVxczlcmNZMxYGT5aorXO7Xgne1Wgy+3EhpsDQgXoWe0P0uKecOHZFeuUc6aXRRmMJCaqOWdGCxOwmMaxFewAVFtSJjYqDs9tQB1x17KyXm0T1GHi9b1g04iI77uB/7zgE/CxLZgRZLi9rpuwHtRYVWTq0AHGYOlJz4vV+5w//ye9zf71Dg2WJfPb+RlxMcEsdlKNwNDm/7Nvh4EgipYOvv/813/7eF/zin/7T/MN/9I/kiLCsXC9Xfvqnf4rrZeWH33zgt3/7t4GuA+qQOHG7XilF3UC460DzuLFZbO7e1Qk8OtCGoKTm9zcvWUCQRaIZtQkkUnHVRSXAgrpw1WinhS14cav3QT9UJmA0h6BwS3DFPaUQaaP4AdzFIIwlCEw4yqbigBd+zVRMzEvWydtdCLp3YLdWz+gDr60R3CnKor7zfhwemadO4XWVq4es/NWd26OKdfU45C7l3WFy/PK/myKlFgISYQMqRCXgkiLLspBiVhdlVaciMXuRXNUJRVAEai3c76+MLlcRmKCJrP7n51QXp1wX9qMq7qM33r2/yckM+PhRbl/v3z9xf3lm3zaJgiaAIkYIUZ17Mczyr8Q6gVOy+K91dtNNUUHFihADKUViztCNZVnU6dm74Jze5NQ1umK4usSaWoo6kWNS8SmFc0yEZCxxZYzBvbwIDBlyDNnvd2JKXC83iSJBIAzIAaXXytHkHDMtrBlDUISPU4FVRo/Ri2MqdOcYsCB4JkXI7q4QQwJ3OhgWqNUtx0ej2U5YVsGUZbggZXRT531rUI6N9XLRvx0CFiR+zq5siRvGdV0pFuhtEENgSRf2UgRCpYCNTiJ5UQ84xcdIa3oPl7wIprBB2Q910C+Zp8/esZeiHufasHFQ8sF6WQmXJ9nM9wLN6G2w3Q/WNQl4OYVXiae9PWIsajlQvdpFD48rKKWcjlGDTl4k7Firgh6DhKcQEjllwpIcalxYU2YvckgTZNXcFj8QrLN47NJ0wBqjY60SRifHxEgqEq9xgEWu15X99c62b4wxBNIEjwmiYUMd06/3V43BvHBZn0jfymyvr2z7RrqtpHzl5eXZO7ArFjpP8UrcG0cb/JPf+wO++f5XEsZNLicWIzlFPouBFCCe0TN6D1IUYWDXK2lPvJad3V1uhhcwd4/UYlGHb3Rxe8bGDAvqoDwErlUvSMo9YZGoWpsXgeX6Nzs0JyQRl0Vif7Wz43VCoDOCcAyjuMjZl0gMAvDWNVK6HJt6O2hNUUM4gLxmWNOqDu4ZsdMh5Mz1+o5j31mWldoK2+udYYN3767szwv7trMdOzlH1pBY1sTlO1/y+v1vOLY7ORr34+CrP/w+++3Kl198wSiFMgpcE+2bRmmNQeMSFBlYYiK/u/K0LoSc+earZ/bnO6zu/Pi6AV2xfiGQY6YflYrWvBg9ErIWjn3j/bJyHHKkCqvcd3IWmPjN6yvpkhxkEeg3quI4QMXnWhsBuRxdUsSCUYPWXzlfFbIFXr75SFgzt8tFbklbUbHZYLlcaNdCr8mjMIYc2fClcUCshdIqZdtoQ8Lr3gpH2cmXRR3DDpPfni70+y5YywHZ0orDztE7tdUBrxhYr7rH4A4BHkPpHf9aTwelyd2Q45Bb4yVxRONyu/Lu/RP35927sgVP698E8EgdW+Swsx9s+866LopCcNhkvx/0/g3Xy4XWtD6GoPmmD0Ue9g51P+hV4mZ0x4TBjL0ZDl/Y6SyjqEdB5AzNz6Mix6Jg1HowHWMYcm2UaVUlpAAj0ujelQ6jG2M0YoNljaezz3AhQBCO1q2YYAGHt/3dNKNZP8Xk1hqWJPzJiTFTR+N1u5Ny4und7cfe3v9JXLOzPMTwAF3GjKuKgpg84tTMY4iT4O/u0YgG6ir3ISZoxT4R2STQzc72GAJ1wlzeCT/hGLk0zvXVO8l94yNnHbRsT+CJKdbhYJ3mv1LruU9lnkMQ8DM/z/B1NcZ4OqPaEGzQEcAS43JG2zw/P8udsg+OGFjXTAiQkjuptk7rDml7HLViRzrb/c716cIXX37JD7/6WrFiMZFy5v3TjZQS92Pnw9dfuyg9HZYEsmpcSkzso9OLOzqYO3DYyT84kOD8C5zvaHC3mSkUn9Fo4fG++RPUWHcxbgqSfbjQZi7cTQfXwXl+mU6ffrTRmQa01yMQ/Lw4Rb/5PM2m4+5D2JvQxxmbRD+BJCP43kjARfN4cRx6UKy1BHA8tm6CQ72184w5PPaLLsE9RHPXFkF8sUW+/fW3+MXf/wW+c/82yZIgOF/LG5+4e7nA2/3M0FujWtHnO7/zOMGMEOXmM90/epdAXVs7z7kT4NF5RI1ApRxyskV7WbmuCLwffZxn5ymG9rmv8Pd3KrPznZjvq2IK5ZgzHR8ZwwFDb5DpY1o26r3s85mbuxg7hOAQxXS6qIe7HPszqLUS3NHIzjtzDoaHI4j9f0WkO7BjwANE8mfron00dysaA/wMO9wtcwJWg+DnF5hCumLhwD4BpgZqDhrIAShaeswn4fzQYO7lZjqXWXvANTGksyHCfI9gTuz5cULStANtgg2iOzYNhx8EVi3LKjdGTd4YcnOejVBy4Wnz6CrnLZ/bZ1TgfOnmv6Vb2mmyBdH/dkePGcN0AozBfN3X+WBG2Q6HqvQO67yXw3o6XZvhsIj2s4PpvuX1gTAhSj8rGmoCGSZHrAiWI71Gdzh5xIHq+frUh/YeVoO7I0fWy4VYk5xrCKzBG/Z6c0BI8buhR2rtHEflh9//AWnGUfnPDjGwhMWbffw+Dfi8vOcv/Paf49s/+JK//0t/n9e0UVrzpjJ3a8LXleJrprsyTjhpQryni0obNJNzkHU9u5S0n9V7IVeV0wXP7yemGC/qYz6fDnrneQLtQXuDEZo7eaqWh89rYzQ6HkU5jBGaz1sC2yZj57s2d19XhPWMWjuOg/VyUe2ua30dqD4QoxHjSrdK3Q5fIwbHttNq5Xa9Osx+KBp5RqzTid4c2Ep1wCWScqLVzvayEdJCSMHdjJq7Tnkc2FB0LwZ2Rm0Naj3IaSXESO2FGUk6weCjNZ8tZ43TaJWzVsaQ4+10sYvRHcvChH3lfp6C0WujbDvpspKXRBmF6XYXY6In/VvGAzidQOvACL1rTpp7Wl/Zjt7OWOlZ48s5kSye446zbuhNdw4BxSBHpNnMoili/mR3p7KH4xYoNlVrrEOpluhmLOtC2eW0qo2JA/42ISDFeLYh8L3uO6Fo3pzrgJo9d5YsSHd4c6aWHt/7oH1L8zlrgtIT5HPO+QSuoZ/3de59DDWZDn/W3SHmuSKNcxPigqEFOhMsnPO/H8oI/v38l/2/nE6AwYjM+LhxfjbreMSfQ7nn2qbmsAEeXVi5XFberrfr7frv35WPzC/9w1/ir/2f/hp/6nf/FKE/4Oy36+16u96uL7/+kn/7f/dv86u/8av8p//Of8rz++c/6Y/0dr1db9e/5NePDSkdVU44l8vqXeWDecIyC+redzFhWRZS6g6vqAB6lENAwHgUE2ehBwRAJJOLUqnqqDfUxZSTAIexJNZl5Xh5oTblsw9Urzv2cp6qh1em5IrSGSZxtzqs01qjHgfeckkORsqRtCz05j9nVsUxWumYCQgJDkNZMJaQGcXjWQbctxfCsfH6IiikNwFS29Hoz+ryq6Wc0BRAp3mBWB1J2eDLL7/g+eMLre9YkU3xZV15//nnPH985uvv/4AyGjQJbMGLwb0rPkZfPwqo8Q4vmwdWUDewF/cNI6XljKpjVKhNjj+mQkNMKqwN9HeauyoZJlFdJ285QZkcduQZJIcVbGApumijjfGMqusuYORF4lM55BayLAvHUTASIUBMAQvDu1CTF08i3Tp1whEdWq+sl6QCqx/yY5TIpEJM9I/g7kWLRP9WG2WvjCInJgFEhwoTtcgRKmd6DqSQaJuLjQSyQaCzpMySErebnElyTNz3g1LaWVhLKdCHse8HM55pmUVe4NhfVc4wdY5HCxylsNeDlxdZmKcYPRpvcLlcyDFy3FUYU7xZZFkyKSWev/nAdr97oU7FwzQhrgnweUzf/H0VLQGTNKcO5a7IOSLWDboRhrFeL7x/90SKAm1qrd7d2k63l1b72d0ZLLJvB9DIt4iFxmiFvTZSvpBz5nK50l2YbfXAUiKnq6CY3uitsu1Vji4OdeAFquuqQkorO2m9KK4ILw5VuYGkZSGlJLt3G17vH8QlE2N2QUUdw8dx0Jti3DBFW/TaIWqEJxdLWqtuXx8E1LRC3TrLsgjccgF0jA4WGU3C1BISlip9yLGgo+J8vuTp7Y03citurKub35IggsDDTh88VsDUUZ7ywrAIGOWop0tV74ofTGmh1oO6v3J/vXO5ZIkAo6uj+YQKJfgPBqsXqlqHbd8V47UspEVwamJaph/QCzGocN9GI7TOIIJV4vAOTXcQiCnRCV74hJQ0HgNyVxq+3pRe8aBC+uFjOgReX5+hGzlLPJQjX2Lcuz6Pd5rOWASzKDeL/eC5P3O5XRljVYRVXmCvvDy/np3dipyMdCKEzrIGLjGR0kIkEHNQZJN3ufbeICZyfM/tsnC9XMjph4RvBLqFpxt7biS7c5SD2vWus64Uj3Or9dA86d3KHTm/VB+33j6peBIHlnrwzngXTBiDNcs633DwZDToirQ0FBnVS6H2Ru16f7M/f1nhC17ctoMlBixE6raz1YPbuyuBxV2IBMymENheX1mjIMajKA5tcfFbXeISs969f+KSV16+foanzroufPz4ASzQWsSuRli0ng3/rs0GlxQZFnj9+ExvjW/9/E+T1sCXP/Vtto+vtOdG65VWFGGxH4W2wnW9EXNW1GLZua1XkgUIgXxZsBQovfF0vbBa5Dh2Kp3C4DgqDEEILSVyTORV4vZ92ykcvLs90TvcrVP2yof9WdDACFA7yYxLvpCD7n+OkVEbdWht7G3XNqYJFOrRuH/8yNKvLDlz3wuv9zt8eGZdry60NXdLCSQfE9UB2M4gx8hi7kLpNlHDTB10A9Ysl5ZtV0xtt8FedlrVOp/jwFxoCCRGGHL1sqB70APHUQgedXNsdyKJdXXAvCsqbtRGKxVqIdZKa03AZFD3cxzQu4Cn0fV+70cgLguX24Xb7UIrhVIax16xNB1cOm3feO2dNiDUznXJXK+Jbdu4bwfbsQtyWTIhuQOdOzjmJTKqi25NoghBLmE0gZMpBIlBCATDTOtzjKQ1yTWqNifD5KAHclUhmGIoW8NQ/EKtnFGxDIknii6pWpergwtBa+9R5O6WlqzYv2A8md77sh+0o2BhcLleeNle+fj8fK4JP4lX6+5QGrUXYYr27pohEVl7hhiSoDObwIfm9CnKAOfvnZfJqUDgkd4DkNAV4gQmFMnb2uGGMhM2kDDzCZV0fqZJBpxxtbjI3nyP19UxLxAkSjw8lSP/DH0AAkKCQxWYIsWG2/sYDsG1QjnkzqBYHrlLjF0NHX3GjzD/Ge0xuot3ATnlqemjPZwmUmJdV/ajcL/fTwHwBCSGIJ8wJnfkMJEL+2M8HHtO0Qz8PkU5CJjj732cDichaI9UPZ5tQh6nK+ZQowBTYDfoTfdtAoQA5iL+BIc+ddtRtJGEdAFEchtrbYqAipKS7uduNH7Ppxtb97HQR2dZHqI+4M4/ujEW7HRCEIylI3X38xCdc9wonhN3T3O3iCAxvtdO6L6nHIFvf/UtfuH3f4Evn79gjcsJyaohY44RIGqPXtsEkgVJTQijtfKJaOln72bU3ihF58YwhdQxzn1fK7rX0aPTYkz69/dK83lzAhCnA4/fg3mo7xMuYQq1cukFicyJ6CK7ne99yollWU4Be55J8P3iHNulTAgiaD9EJy923ufaOiHmM2ZvujDp3ClXvQknjNHP/cspNJsAwhTT+WfwveAc5xOqDDH6OHg8l8GMVAuYKf7LfO/5cKzxueZ0f9JZngGfxtjJ6VjulYph12fofseNx/2P5g0R9IdaPRRTZz6G5zjU0cVhoTDBEvuRe9BdDZ9AkGIP7QQhe+8EB3iTu+aOVihHOSPt5iedY3LMXzEB9CElxuB0QTR3wJYrW/d7JIA/MOgTVPQzsg03+LHgwLHe6zgc8hkTJhpT//fPpbmnTee+0zHKo8JqVdyZjQdoZXjkk+oHU+zvDsyNobj7kRz4CjN+MerMP9eO6cw45yMb5EXvbZiRlTzctLrHWAVLxHgjJ72PWzDYBz/34Xvc/tsL/+Dnf4vff/dPdN5C4F93QNCC5sO579M7qv/ow+PvxoQU7ARKACLx/N/m9S5Fws9IPT2nGMzv34w6FCwyz3vd61GCrPvpbD587xOT4hZb63Q/rySLHsFnhJRpvbkTt+Ct7kBHbZ0lZ5a0KJr5dXP4RPcxdMPCILR0RrKBAJM4YcTWeX154fLuCWyw3i7srxf6/Y41NRiMEOjme/oYWXLymmXzZjXdgxHVBIXXbJaYGE3OpjMybwA9dFrU2fkRBabmy7gs2p+3Rht43cgBXAdhojeJCkqMDjv7vNybnhNet/AmIwws6T2rpTFK87Huc8qEpIwHYDrXuPlrYwI7cE4oQ/MmrVJrVaOY4VHTep4aZ+08z8kxXPDjXBetjU/m7IqFeLpYntD/QPXHjmDCFhlL1lxch+87HL6xCd+ZajcxEtOiumVXLZkwv6HmlVKOOUkSMNY10WpzJ9Z2Rh6aRxXPdeLhjNdPkAv/bnPWiad94PA9iO8zzSOQh/YJgrztsd/Azns/nf7mnqLPccc4AYTR3R/JJ93TxWrOedFd3xwkVil30Eult6FaqMn10/Y3qOHterv++3TFGvmV3/wV/tr/+a/x87/786T25oj2dr1db9c//Uot8Wd/48/y/n/1nv/sf/qf8Zu//JuM8JNbR3y73q6361/s659hx6KTbquNbo1gC9JtJGganVJkH1xqobbB9Xrh8nRx1yTYt0NOLMzOxHDGPYQYJYo1gTzVM8ADciiovdPbhfWa2VNka0VWta3JjaQWDHX5xyCBfl1nRI4iNkII3tGmS11Mze3AjaPs6kDtjdnr2VpjNDnIqOhsqlIHo2w7NjwqIeng3WvFRnPRQ4fqJQlYKUehVhXKskNd6lQUGFJr5bW98Fu/+Rv00am9CESIEg7vx53nrz7QS2VYp+w7pETFzgJrdYeDmT0+GOqgAYYXYzA89kcH8N466aJCOAZ7lRPOMEWyeWg5MGQfzdAzKfX8N0upGAEWRdXYCAIBenerarkRzW4dwTCo4E0n98jt3Y2NwbF3Wi+0XlS8KipgpWTEixw7xhjspVL2w0EsFTzyog7G5hErw/R38SLa/OzLog616u4iNqCVSprG1mNwyZnYJYjEoHgadSxljkMOVSGo068WFR7CujI67HuhVXUhtz5YlnwW6UKQO1cKmbxkYlYx3YbbVkfZ8482qL2qUFM6rSrqRVBWJ1qglp2UMl9/+ErCnLvULDmr8NwrxnABTMJQLR2LphgBVGzsHWrxyLU+gZdPhEHvNi2lkFNWp2hKvHu6cbksHPuBmaCe+/ZM75UQs7t4BcauAtyyLJRdwF7bD3AXnj6Md5/Dc3/BbJCXTN0LcQCXG/u2QU6MUdm2jaN4ZF8tDExuMy1Qi/6dYHLKCDGdESWjemERxY8d9Y61RsiddVGE0TRiN4+rS+68FHKiG3LO6ipUd9RFDoqNsqACmDnoY10Fy1obYUnUrm7PUSSQqitboqsiDPXM8xKIGbCOkbAxu4wlnll8gD21ustB1nuRTS5trWg+zFExl8ua9E6PRi0HyRbagMt6Y2udywWOY6e1pjnC7f4lLExnASOnhZQDx9EodIEWWYXB19dXrOpdP46NVop32yoiLHjcYwiZ0nZiWk4h/diaLPNnoc3ndqbdf5SrVKuzMOjOFEMgwJIS+75D96Lo0cnrylJW7vc7pRwYHUZ1MSMxmgOeXni8p1eebjdyzjw9vWMM2Lc7T9cLLUW27U5cLtReKfeN++sLvX0DeHeyX7LNV5RPioHr9cK72zuNZ5MQ+U1/hnYQnq5gcN93amuCESzS82BhobuY3cpxdhd3jyANIaiYyMMBJsTEqBWLkgD1d19JFhRbk6IAjKFu0RQXRlNcXvHCcgiF67JyuawCu1CE1yUH7i/PZ+yFYez3nZSSw5MS2qMqrZpXu4CC4dEOwSQY3+KKDdTVa0bs8PrNCyEGbreb5p4+qFtlRLA1cZSDUSoNvU+MQenw4cM3rJ8/kXPk9t0v+fB732dsO3sdmkNHk+PWkokxUfaiWM3aKEflslwIq7HdX2lF4EDbKiUMYhQsGBfF/x1H5b7vxL2RqjsVlEKpjWQCyZa8YKFTkrHtmztPRPb7oc/iAkDvBknREx9fX9jKTqdx8zGRl8xlXei1cn9+Ja7ZO2MH1hu17liE4zjYvbPbHBqOKbuIprUrzc5lf4cEHAV66YQl0sw/a1B0WFwSwwRlTRhuTDGrDcp9Z+REG4U6TPDgVTFzrXdikkB3vVy9c9k4Pr4KpGuDcd/po7EsieWSaVtl3wohB2J87L2C54CM1hghsiyJvGT2WuVEMjqtFsX1lQoxKgb1KHLpum8ebTvjGxq9es2+O/Rs5tFeDumS8JQoxeRpWp+/QEiJvRbocnG8vnvi9tkT9ahs94NW8X+nM2J/gN1dcH/KicW7lI/afJ3lFKcbDmZ0ObjUfriDhCIyrXcIkUDAumEumpajUJr+z2LgOPYff3v/x35pP6nx5CC5z/sTUNJ65eBtl8OqYnz1E7T/iqcgczqf8El8zSd/348wcvzogxEHMctVq05AoQvinnNccBFa0dGJQXPIVSBMdxFZg9Too7mz4Pz84+HoAw7ZGBYU7dJtAjgzSnVG7Tgc4LDbpwBVdNBHDkyAw3IC86fDqeDlOg5++MMfMPC4oiHHsBEFse7bBk3wXa9VawMTyBlUdwiaFJJNKMIQWBLAhsBC3QgX6mI63TNaqyfgpEHuoinT6QMHuvrjHegPd4AQpuuEi/eu7Zs7PEy3D/EY/u8HAX2U6RT0qQPBOMEQzYv4PsWhgPm8zMhRcbvz3MKEteYw7hMcEdyk85DcKCZEPn9+ii7uu1PBsnicmkVqa6Q98eXHz/nuD7/N937/p0khERft9VptgkP9XY9xAiAPICYQPFppAlw4PPeIRtO5cEAbVB8rj3lvwhCBbd+YQEL0eGOTcup3QfDLQHth7/c55dExOM8R82Y5A3POowNO98cZ27fk7OCgPvcJvCOwfL6X4CBgUMOGwSPyyEfpshpluuMk7f8Nw1JygFvgaamV1jndrxQRpganbu0Ec0YfED+FOOZr4Q4uvWIOe8jR9fRfc7JtPOanENy5pvG4reOEZyYc5MSj10Jcrj7dCx3W79M1xN8/XPg2facQBeXp3z9zD3/kz8772btHx52AlDs7OlQllzqPq3NopfdKINHppJgEoCV/772ZaY7H+f/xeCK59LjzmE9wc2z3rjU9BjWNaL7T3mXOZfTubsyNYIMxNA8q6vUx/MxrJHgE8XAodgJw5u/4cPAiBjnjjt7kOty6u4/JUVtjZtYVzGPfNL7G0OdUzUINITFlVozjUBzyuqh+0m2AyS2v1crhDWQWJvQxz+LN/7vc7XJeHHrWd9v3nS9fvuAv/oP/Ad/+zrf5jZ/5B+z5kNO4nxUGg4TvIfuM69S/oYYQBG0MQSijK7aUc7+ve1lL+eSZhhPCfETiCgZs4zFuoqkuFBzmizGQUqbXGe+qmWPGkeqrqtHR0POYZ8K5pkav52h9fpyB5tm3j8bRdIY/58o+qEcjrcHXGd0H1U4CDSilwf3O7bMn1svCello+3G69/SuwuSMie9eQ2NAq3JkTin7uUC1Jdo4wbEYI/2TekpvxlEKveksOyHGWXaLIZKQ+3UbAvmGf5cz4tDBITlEG6V0SjvO+OjkDYIpOxBY5IKvGtk4n19waLzUjsXoEavewGjmZzi5hgdn3U5XNG+YMtM8V3vjaJVkAivNHdvM51M+AZR7beLUzbxOM+gBQva9GnJdjDEQLLmDdqc4DDeaBk2LiggeLbi71nRI1btufbor6t+yGOQcHYODXVHj0Zs+bZ598Fpe7Vo7zgqxg2s2gVxO8DyM6N/Rf4b5mHYYyPw/LOi+dp/PBtob6F2bjXgTWNK/MueqMVTbmzWu9gm0ztzXDMHSY4B1QycMX4PaUINcCFpjvSasuXV4vVxzZvP64dv1dr1dP8HXgNvrjZ//3Z/nz/23f46/+Ot/8c056e16u96uH+syjJ/7vZ/j3/3f/Lv8+v/w1/nP//p/zuvT65/0x3q73q6361/C68eGlGb3aOuNnDLbtrsFeKaUIhehWcwMOriWUslFBeoYk0e0RVrf9bNaowy5wQDcj00xGC6iysS8S4y2RCmNvCaWJVFa4ziqbJUX794xObWkJbFcVMRJOVGLuww1FWsWhziaW9sPU+EljaT4mj5ILtBPx5pWO9HieZAPRDCJnZc1873vfZe0RH74R9/n4/N+Qlg5Le6U0OTWc+yM2TW6eDE2GDlEWm20dlCOTcWCWRQcEmjWdeGeItvri6KzvOBXS3sc9ukuvnlhZshdqHcVeZasrtIZDYYXm2gDzvx070A2vFNKdvRp2uq7bfIsLHaGF3ajOlSj0Uqju4tFXhdKU0d5jomjy12puwA5s+XlblDISR3w65o4jkqtA3O4JMcVmpwFQAV0xdhpcU0xQUcOIH5PautAIsXpfhBgBKxXyl5IOXg3XZQddu/EHkkhcFkW3l1X1jV7IRNK7QKVNnV2phgYMZGX1YUsdeIL1Amsl8yaBU9ZCA4lqUN2ILGmlkMxQKUQ3Hq61+adsSrWN+/EVPSGYe54UXqDoKg560YrUHqlUyVQp0hzt59p7a7ogFm8cSDQC63AWbSMp+Chbmg9R6M8fyQfip/b9wu1HBiBbdtorbBeFizKHn+MRjSJ5LUcKlylhTYG+7ZTG0DkqBIjQozc3j/RW+W6ZOiF15fCETMWZ6E3yoUkZC/2DxWtUMRGyAsd42XbSCmTopywLmkhxKxWXhf4eq8cBTB1143eSElzgUUjLIKNoscpdFPURfBO6eGl4sPjylpTV2IbnefXV/LlInDKOxXbzEMIxqiDmDIERaP13kgh06us4QPVi1njfAYg0aW1wVEq3QWMdcmEgYCMoAKo2dC47gOGYIlWNl72jev1iRGMlFYBcGwqEgvdobfh8ZTNhS+BpBJyE+AuSZtATxVg1U28xEQjyFloNKILqK1Uml4/Wj8YGz4nyaJ/Op3Iwl7jd/SmOQAV8/MSuVyuEAP3+x3bKilErtcLiU4phdoHo1ZutydilBtA2e+EoTXMzKhV38NCoB8HtSpWY8kLy7KwLIleA4zGZV2o5eBedlLOXC5yvShj8LptjBo9qkXv8rYpcjHnRNkPd6hQAX/JC0vK3O8bBnx2u7KEwFYrl8uFWhr3cmiI9s7WNna3wid4IdML+B3NmXVAzur6fggaRh1d88LisF0T1GbBWFJSRNZRWZbM88uLIEnvOt+2jad3F6o7aS3rhV4E6phpzhzuAhjMJMzNAr6Z1qJaHLRoHkmgyKbTGWI/+PjN1+ScKbWdXZ0aR416VEKO5KfMerlS+05rB8d+8HR7Yo0rx1HoLzuvHz/yUz/7czx95wsV5O937h++oR6Fsu2U68L2+srxzU7b9d7Mbu6cFlqo3EeVi2AP1AFhDCqVEBPLstK2QS+dl75j+2CJC7122mgkAvXrj1xyZOTB+y+/JEZTHG3tXK4rcUA9dvaj0EfnToHWue+b1ivr3F/vApSeMq0rhpHFWKLiLvKyaJ4fnWCR9emJckjUr3UImu1V3cujky0QGYQUFRu65FOIn853nabIsCUTmrGk5UwZKLUqRtUkPplHZcrpkBOECgG6BYGcFgVG1MZ6uXG9XMkWqGOw77tEwFp5fX7ms88+J6+LQHSTu1KrjVo22tHAGqTINjrL05XLuytLytQpphaBYmYSDCORuu+8bgfHoWi9lD3GxsXzNiTGKQZWIERwx4c2OtWhi+jiFg4x5EXRq91g3zZ6U7RuTFlrXTDW21VA2zgUY+PvbXBho/eutcIksHdD0SpjEKPmh7p39nvxNUixP7RODFmOEg5F0LrDCIW4yN3rjFvNP7ldk5+KhiEK5J1iY+udUo5TeJFq6TDFdC+xwAiCWEarJ4TRuhoVMKPuhxw4T8hmxhALHmld7l3RBaoZn8rwvbMJPkjJhUWHX2Zo04xUmxDgjNcxF83sdGxygArjDN7qHiM2RW5h2zAGKSaenm6EaNxf7hzdwRkT6D+6HCr0mevj54fZnKA9fW26X63WU2zD9/QhBm/cMEppLng/xqceju/u53vmP+B0kBqcMWmGTXbkvN82bXPMfsTVa97HaMFFZv+5Log6rqA9ru8/pzuhBTshM/jUIcXdAsZjbE2IQT9HIm7z8xG405ZFh5a6Q/szq0XjJbgSK4HQQR+Pap5i62Ntx/fYMy5X46HV6YKiNXLxmKBAYL2vfPbV53z+gy+5fXXlsi9EokcgRRee3fHGXY9C0to5nWlCiN438zhPjC4HqwkdTZgoTIhnKJpzupqYIcfUVnXWMny+0s/AI2/MxXzGJyLu6DC0D/Yjp2vAHjd0Uge4E9FDLpnCbDuOcyyllE6nh1a1hsU0IQQcqJpjdTpaCGRr1SPCCOc+yIKRh9a87A0E5dhp/pzm2Ff0VPzkOTt8EMLpvHLU6nCUnz2DznQ2v/TQeUrbNW+O6JzubRNQm65JISSmW+2MqdTK3Bzw0LMaDgi0UgT62+Ncphd0OKSn8cAEq1wUn4DxXOMeFij+1/1sK1hT+57ogIh51JHGUsTMYUL0jLoD3ylnhn+nHvqczk7gcYyhse3ieZj1idpPAEGuJpUZ2xcd7AumxoQJh5mN8+f21n3voTE+4+laLT5/zKaTCfWMx711xxbFiKqRoxQ5wHz6/Wsfp3PKuq5yHik83Jf6DBQcPzInjdFoLfr5zxzAKxo/KdCOCkGRZXP81FppdXhfmN6dWtX0EEKgJbn26t3VvUlR59VYIr/wB3+Kb334gv/7r/7XfLy9qL7QmrsZo0hcBxMnvEHvZ8zYCWiYAMrpNmVzHh/D11h/T7qabUKMGgMeXR5aY+87Xshy8DA69DlOR7N6eDikuUOVQ1Hz/j/2DNMNvDNBU7qcEWfUJ36OnK47cgCzT/YbXWMEOa2PqHWl9kYMgzUtJJM7T9l2xvvB+nSl7IXYEmXfaUXx5a1Weggc90o73NHZ9zRqbItU3MloaO7qBrhbpyLP2gnHttIJprmttY7FwL4XUpxOcRdSiH4e1rw+9wPNa4yGILvaqt+rQa9QRnfwRfvz6YgUgppKzOE7GMScwHw89yH4zt83nTmmc5miskPUGnq647fm4JMaqTTP+dnQ59bHHmPovRRRKdcfn9tnfXMgaN+CmvZiUFRtWlXLKqUIphpQjyJH6xgJyd19k84r0800+Jw+DGhGXpczjm+YObzTfmRvYk2x1b2pjoz108H4AQM9YK5ZRxUUyVnrPIF6nw+nS6HRTwgP8729z52zHtJq9fvmbn7K+AQTiO9cu8NW+Nzle7Sg5sQ63dFEJJ8Nw+b7Ua27WsMAYtb735vOZm/X2/V2/eRdoQW+/OpLfuG3f4Ff/oe/zM/+3s/y/uP7N+ekt+vterv+/7ou+4W/8n/5K/zib/8i/9Hf+o/4g+/9AT+yIX+73q636+3653z92DuY6HFOeVEx/r7dWdeVlBPHUShbJSZIueHtx/R2UHa4LAvVjNIHg0aMUKvElVIKKWUOP/y3qGivlBPF43wYRm0HOS3cemZdEttxKHotBT9IejGKQE7pPLymtHp02OFFIsEiwwscvaszJnbFZdXmHSNRTjXdi3bb6+sJ/cQUWdcLt/dPfPijr/jy3TtaK/zwD37Adt9VpPGiZClFDidBcWUpR469UGtx+23O7rLk3W4hRRXFGrTR5Ihxv1MNlmC8eHeWDbmweOoHMSWWCPdtE6zjFsez23p0FXAMAUWgYoa5tX+vRkyKSyq9YhaJpg7nEYKLahW6ik0E80x2RSSlmLAhu3N1lgV6q/QWdbgvlWSBQWNdVxXTixdSY1TXV05c1pXnlzulVAfhjAkkBRSNMLuGUgyMEYhJIkLrjf1QB1XMSZ2gKqkwhmKLosntazTvmCpD4r+p8FKLQIX3T+94d73g5iPAkIuOvjqXp4vW7BCIMXuxQZ1kUzRY1syaMwakqFhBC17A7NCGUdw6P3mHfCmFNgbRBSELxlY2+lHdRloFvuvlcnamhWAEL4oOgzo8DsS/c5iCiwsYnU7KEcJwS2gJKWfnvkdqgRwoTheOYZRjJ1igtMa+7ayXFUPxRb0Nd7qSwBBjOsXu+XOvl8xROyEt3FaP3mnQa8G86mOm6JolBAFQIbHXSjkaNjqXrA64NgQY4Bb2ilZTF+zsDKV3deSZd182B3tCcqvtgfI/3BXNgqzb00JIiqwbvWPD4ZygHJUUI73LTWXJqwqlKRJREVcAlhdvU9IYtMFoiie0KX4NzYsMuRmEmFSkwmijYWEWk41Ru2LRglyrAI79YCFTKfr91vT33AltAgmjF8rh4mbpggxSkphoioCIUa5dmp+NGo0xKn0EdcBa1hgxzZOaT8IJAg2g1oIiNBoxL3LDA/ZyAFNEFVAZcyTlGVcRyDmyXC5sR8HSQnIRupSD1gRD1i6Yjz64poWGROq8RLKP7xE1BlpXvNiSFuq+U+sBaC2yEWjtUKdp1iS6bXf2fSOnlRggxcC2F3YKI0RsyFHJQueyRtblSsiBba+0WmitYtZ593ST60erpCjxoo16NrybmbvzKd5y9Xi6o3dGHowdXo/d3ZECNBUQ21EcKEzEtNAajFoUcxEk8OdlcVdCFRWbCYS4XC/02lks01th3/Qev7u9EzSZFDsRSVwvN0o53GlQReh9uwtic+G1HRUL6ljuXe9WtEgtcsVJS5d7gQXyunJJC6/H7k4Tmh/241DsFpr3YmiMOFivF67XC3s5/F1W12et06lg0dpWK3YM2sfCxx984LPvfJv3X77j5eMrCaN8/VFASAPRq436eqeVRm2FUgajHIyYPWpL+l1rjXrGf3RCV1c8FuilQQj0WjnuRcXqoHeolkqyFSxw3A+O+yZns9YZvXFbFnLKXqgHuZIMzBbOyNbWaHvh5cMLbQxe287SEyEF4nDhfonkKlcEW+XWQYW2qht8+M8+SqPRFGvauwChrLjL6Hp8r42QJFLndaHvimWzrg72NSVG0hy233fKUVjXTOqCfiRUBNKS2HphKzsNrd3btvP6cnBfnrm8u9ET9LuiKy5LppfB6/OdJa+scSXlqLXlfpBWo4YqRyJfGxuDvRSiu/SFCMuaWT57YpTCdtc+MqREWtQNnlsSRGVyRGgeF8GAERqMSAhD8XFoboxB4Os4jTvkljA6HEcBgyUv7H3T/+bOsWv/WLJ+Xlq19k03C5qvva1TeiPHT0BxxgOIcqhiXvMe55jJMTMcrmt0yqjz4wlqbb5XL4Vj+8l1Ujpdk+KnUS++v2vuQhXAgkR2XCRvTe43/QRXpmvShLVcyC0SdMwdAePZZa69Xu1TTA4eS+sgyXhEfz3EMneKcBgiRjnfyLlpCuDDBbehNX+6Oviv4XDCcLGqdu03mcBQSqRlYX+9670YnfvLfrqVBr9fzV1eY9QaGqPJTbE38EhMkAgWgrkwNmOdcBcWY5RCR2B76b7XG5xxLDA87iVqDZgir7vnmAvovVb/bvr91jvWtFcaU/hmOsN4nJVxiprDRTVD888Js8R4AkS9NxfHdU6iT/F0nO5Myc98c/863VYtSsCXU4U+T4wTLhJY3bsgqz7BCQ1QgHNOxjiBKa3hD8egCTlNR9fRFbk7r947OWTWZSGnxLUu/NTvf5dv/+DbvPvmHeFIfvPBEn4/49mIMO/thPgEKGjJiTGcwMkEqdp0nrAHhKPd1XSTEYw03BHMH40ckf1ZnnFYsvXyuMTh+8np9jJdJnwcO+QwpiMNnPFuJ6Pmz32Ko51xOpO1030m+jPUOV1ROHKPOB15mHGDQxHafWAhOoTkLjoT7PbHOR2bRm8Ymg/aEFqSpisTnaSHAGOcwM+J9Ph7bobHmosM6h57b3MDocOk/p49oASBHjPCjtMBjAkZDj2n6H9WMLiepRqo8Pgwdzk2ifxjvh+fgH6CZKb4rG/Q3VF4FpuHu5cOXxsZAvU1M0wY7QEEyZLj/Mv0pv3oaC6whxmH544qAY+9b1PP9+fZPeFToGT393aOVfPz6mNe9QhGE/ASUH1F0awTYBnuvKb1M3os3oyU1hnYwbvpyDMhguZxZQQ51fp4jkFOlyFofhIwMR3SwukuMmb2lr//weHY3gSQtNA8hlLP+CjVn2+UM4sNQhgebWqU1qE2d5TrpBQIIT3mzun8dE4zDv34fPX+5R1/5e/9j/mtf+Uf8Y9/9h9rjarlE1DOHrDICVdoH6mmoeEQ7XSiCSfMp1GgM+6JG/o9LMfB4rWg5k6Qow+PMTPtUZKAldYb1h+OML09AIq5Jlj0dbQJ1Alzno6BnLLOsr1hodO71n/V7OZ65fxeNO27zWhnw8+MqvN62IDRuhr2gHo/dBZcVkLW3p+jUpvi0oKDXK1URmvne730Bi2cblWPda6f79EwSAm/x9qPdgatlDMuzno/18QYff8yx1PrijjzfTFxeJSrvndyd2p43NtaqholW4MIOfiK3BGIicesmtcB22BE8wbBcXLAvfezftibw/7Bo+GCzyP+TgZ3+GtF9Y0w193oTaDeuCSX5ujP3d/xqDpLrdDpDqQ3ammUo5CX5A7fml+zj9OyF3JeiCkSg4De3gYpDEaan2/Ouw74zHHdu+DtyyJYrNbT4TKEgCVzV+dxQuFnPOZ8EcbDgWmCW3PK9emMOQlrfZYTUwgC7/vo7v4Odbp2BrAYCMH3GO6IN9eR6RJ3/txzDrbH+YUfvUJUY+aMqxwOtZ1OkmjvFaOArgkwvV1v19v1E3ANeHp54l/9e/8qf+Y3/gw/+/s/y/V+/ae86W/X2/V2vV3/7FcYgZ/6w5/i3/tf/nv83b/+d/kv//J/+Rb/9na9XW/XH9v1Y0NKs8t42zZZETNt+P0A3r1gh8MMfXCUg1YPrF7UzRSNWgv0Rq2FdbnQqjrr1WUlsaI3dZaVoc6XWjvBFOezbZGndytLzmyh0Ga3SuuUVmSRH8MJB6W0eHernc4ppRbqUfhEgToLgJgKZb1A82716/XGsR1y8QiJd+uV73z3p2h58PzhA6UVfvgHP5QlP4HpojQ7uFRgiRLIh3cHBj/suxtFbSrCpRTJOTL2wztzoneWF+4/fJUI1+RkAeokDUMgBL1Th+L3JCDMqJFpCfwo3OjwmWQlnRP1OCBGYgrkJdOOTkT2+3gHe2/t7Gw1Osu66t6rYg0OIuHFmD6au2UUjloFHCTDvNOJ1hlRoEnrnXYUUojs+8G+VS+Gj7NYbEGF2tYqIySiRYFk5oANeqQxSLAIKIZi1iNa66SQqIfgiikSqehiLDmRcsCWhevlym3VOMvB6F0FvhQCvbsFdwinYAZ4ga8yXX5ySi4oSBzpXR2SFibANsecHMDUn+cdUwzMXRGO+0EphxdlByll1vXy6B5UBQwJS4Nh7RORxQUMvZlnQdy9ALwzSxEVvfYzSmPa3vdeGDGrgJvllDZMtuRTVGh9EMPgcg2UQ9Ch7YXoNv7LssgWvTWW5cKaAil0nt5/zuefv2f0wrHvAha6QCiLWbBQa4LJhmCLbSvuwtFI3rmZl4WyK+5ouhmkoag3S4rrqbW40KGuYizQG+ToXePu2jDLM73LSnyxhbqrYHR5umhuO3YsRghJjiFeH5riUa0HgUVuPr1zbDs2THFMEWrdOfw+RYLff492DMCoJ1xYeoUuMHIKHaU2chgkExiRrFOOO/vLwZKzCxl4NI5iBwXFCHTZXl8Ywzi2g5AStTda2bheVwk3TQ4TySJHKYqxMAlFEUUXjC4YtA/BTtn0vFqfnexyHTGPpejDvSJao1rluiwsKanjNEmojikKuosRTM/8qM1BHi9me9xSO9TtnGLUd/AiPQ48LiHRQ6TXTsqV0eB6uXJ/bdy3nVL7Q7yoRiwuSrkQcaTKkgKXdSWY8fJyR4XaQqsH08Q9xkhMxjUspGjs9xd671wuK0/v3zN65/n5o4qrrXLfXjjKAdZZ14VO437s6s4MAsHG8EJpNHrXGpJSJJAFhY1xvlshJHqv2DC5RARIw+hDDhkxGERjO3aWyyL3rqHuTAtyE7nf7+d89cXn76hHY10yoDU85UhKkSVlyrZRWlNMp4N0Fk2waNf6N8XyfT8EwfRKaR27Bqmwo3Ec6iavTd/hKIV937lcFD937BvvL1fNiMFdm2ZRtsOyJK7rQumHoN5a+eEf/BG3b71nJXP/+Mx6fcfly/eUryp5ybx/957cA2XZAOM+Apc1E8aALpjsQmTNC7V5d+lQDKI13V9suj/o3qZFb7DW6J1gxl4Ca74QR6AfnV40x6Yo95CQRQcFix5LovcMs09EQ/07terZyinOu9mb4mKjQUrGCAOLQxF1cbpQqcC9J+3RUoqK3hMOCdGIS4Zk5NoYrZ57PfPojAik4dFVfVDqIYE0JxiQg/YPlhQRETpc8sKdu1w7cmJd5ApU94MX68R1JV3iGQV5SQu1DGqos0GY7X7HGu52EBkpUNxhL8ZEsESKGSyxHxvDv9/temO/V8Ebq3G5XiTa743tRZ8pR7kaHLVQPE7MYnRQTMLkNa9y2arae053TQuKMBx1QOSMT+xDomf3+JWUFEs3fF211j2qxsHprHdwtH52qguUTIpsGnLqk8hjEg/xTvC9PsQd31dINOxQOwP9LMbgKD+5kNJ8l7Wf1B7F7AE9SMfxcutwIMVBPyZMEcxdXlxMCYLE5x5VYJPE/DCBiqFIaUEKjVYDeUkCj2p/AB8u4I6gtbNWF7FD9H27P0PGGbuCa0TaV81oDv2s5sLy8P1ba3JKiSax9Xa7MQKUfaP3zv357tCJhG+CC09TUMK73l1MNxNwYH7+mi4cE2yh6t2fbhitd8r97mO7n2LWYIqvLrjTH25CYzooOUbwCYgzXQGCuytMWMwwd32cbjUzAmX4c3s4esSYwKFNn2jdgcCFOd/FtqqxH0A5jBOqcfFPouWgtyr3zlb1bD8R3xTJMkG3zoyDDGY03AVhgNyBJnjhUV04FNElVPYJaJwqpPZf0R146B7RFBM/9eG7/Or/65e5PV+YjkCV7pBKOPcf8/723hhBbinTPUnnS38vOif48oBJ/O+648iMpxtBe9/WygmDDD9bpfSAYvQBHFybsJKeiCKO/3/Io8dbO8Xa7vE0/lXOX29jEIOaMyyEM2psCvm1d0YBs0FyQVki+QPwiB5d2sdwR0Y1YizrKpcbP0NVB1GGR5ZOwdjpYAZzXDpY4u5VE2icTpX4WTLYdPbiFOLHBIPcrWi6W51jcsJ9fdDckbgrQ5G0xHMd0J9N2FwEma5TaF2JEzR0p6Fhn0S6CWZ5uCvp18Z8R+i+r/SfgTvROYgyneXEgvm5sBVakSOsDynfV0wnkYeLWS3FobB2nm1Hr2ez2JyLwrz/wyEyHGbwxg+5C0V3df0URHu8axbC2RglQzPNITFExTY5jDwBIL2LcrOacdnTKWiOzRPUc/BAsfSf/J55rctdiMWxesPKGNR6KEL9E7e64OPiARgKssg43OHgjeEAl8MrweGOFOVIFYo7gEdjWVZijBzevDDPjdM1Z47fUQW6p574pd/6JUYf/M7P/q72DU7tzAjT7nClhTl/CprRWXnorGGcbsWaE9xVaijer7uzs099p0N5iIF1XdSs5ONonr+TuwA1n7PmOuAEhsOiPk681tV6p/MAVBly1dNZvoP1c83sGK3qjBG0XVc9JkV3fvL126GRGcNmYwiCHXDcd14/PvPuvdFLESB9WSmtMEx1jSVljigYuowJLtu51sQJ5HhTl1n0+Gd8Hf9k/WSczmFjvsMOnYT4cGvr7TEnTVCaMDiH34D2yZx7TtMOgp6z9QlBTb4lzP5St0rq1DahTf2c5sDwfMcEmvq74s5Xw9emgbspRoeuwKFOX0uq6lQW3I1xQDJFr817Mte9WrXPi1HO6aMNynEQcpYjWe10BgvmjXlyF58g4Wg+72AQIjOwNTjYFLz2M1pzh1KtJ6MNGoozXdbF95TQjnrGi4YA5tDdBNJhnOtATJEIvif5ZKz7zxrMxl7dQ3UeOXA9xvleTxBzuomOhq8Bgu3V9NbPOTO6c7fut//8CSyZ6uFt1BM8FJA8d0j639bm+sZjzny73q6360/0sm788m/9Mv/W3/m3+O4fffcNTHq73q6365/LZRjvXt/xN/7O38CG8Wt/5dfeQKW36+16u/5Yrh8bUhoOQhTPo0/L4p01Ojhe3z0pqieY7IBzpAXvUMW4rTcouzsIZaLpoG3uHmRBBelehjogV0UrEaAUxWb10all0EogEv1QP+36VWysTTEnIWVseH686QC8hMQIsikPyRgVUjDqGNRudCrlOM6M72W5ENqj8/AolZADtRTavqswQ+f7H77WIZhBTADDc8txCAZaGPRqXrAARqeW5kXPSGnFhY7o8Wy4eK9q2bZtHKU4YGESBpEDzRgd6yYhwwu56siK2rq61fk8pIegX7c+FEN2zQ7zJEJe+PzdBZ4/UD4WLxPqHpQqhx9qV9f7kP0yLszYkNV8rePsIB9SS09xQm4ViXFUzK3WY5LA3Yui16YV+eid1jspZrfLHhyHYpBoBayzLFeiZToVa4oVrONhlSxoJhCXC/txKFIIU0dUSqQg8XZJgRTgaV3JZ8xCpTXRxDaAhkfHhYfNfwgsZ0fxYMkXMHUOhuFViPBwIapdRfPWJVL50KJbc7cdPMbMqL3xut9pe5U7xKIC+rpkbusim+4+wDqzfqAijteYCCouekctxtnNiRl9tLMTrBVFGlpQiWM6BYDcfGIK1NLIoxP9cw4Clh9CQy3NBY9M8sis1hrr6pCSCyoxBb58p+fx/PEbjzZJXG6JJSdqqXz45s52yJEnJyMFqGVTvM3IxEVRSAmfPxJ0c4ctFyYlPCQvDnUiaUopDGtYipAUwhJQob5boJQOvZGTYJnghaA+9Ou9NbkQeAeexAtVFmtt9G7UEbCYKcedFDpHOcgmseCoFaJAjtrr2cU7xanaOrW5IOeQZu6aI6ezQy2dsr1qHjW4v945tjuXy+KCd6ZshdFl851CoBSJBLXsHtUkMKV59MdLKXQHO3szLHUvJAbKUUkhc3+9s16bd7tmF/bGWdDsw8VGg5DCKUqEmAixC5pyAMv6YPTqNuyVnLK6hUNVKX80CIPDu0svlysVgZCldVorlAopL5ipwGxBzkwpL9QRuDe5BckVx4Wp3jjKQW3dbeETo0fvru7EJdEY1GPQanFHvcq2byT0mXuvcnXxIrrEN2PJke2+8+GrrxlE1uuVvQw+fPU1ry937q+bz4GK98kx0fLCNg72ovlJkYwNpgPZgIQp0i0lzIbHKA6CJQGYpTIjCYdHstajYA4MDeB+37hdLlp/ToF2sLdCs8Z1zfRuxKhoy5STO510AXFDIkHImfV6gbsXokNiSYE+FF0R3HXnOJpDj5rLX+6KMUspcOxFguAiF4l2VBVXo5HCgvVB7ZCXVfDsgDUnWjI57I1AHIOCxD/i4OM3z/zwj37Il+8/g1r5+OEDy7uF6+3KMLnqHIfcdmbBfwptzYzL7UL2WA0bA2udlFWofrm/0MIgXzP5mrmkyHIYeURyiBytsdVCbYoLvYVAaoM4BCHY6O7Klym9EQOE5t2pIZKQCFjqjG/Sfa+9EwtQPDYoRmertXdal4WQInvbGMGIKDKidEG+ZhJKRtOvRQtEoG0He+/E60KwSJgdwdOpgYdY0or2Mm10CtCDCuuxq/Ad+0MUiClzSZni+5+8ZNYA9ZBwZr2x3FbKbpS90Y9Nc068ktd8Crh1VEqrHIfHFdKo+6CsCzkX4ueRy+1GWjOty8HqiI3hcasxeZxUlwDfibw+vyi2zgX44Gtj632GsjEYXJ9uLEuWMLoX2N2NZDj47UBT8Rc0YNgYrFn7hmjqQseBSoudUASTLZcr6+VCa4378522vULTGLYkN756rxylOcCMxNdu+JZZ/52AnBIlIBKgFX0+w07Xh5/Ua4wJAnnM2BTD0R4hL5kQJzjhrirugMBQVMtci91nzX/yBEk8hrijPVh8uJZMKEf7Z/0Zl9fOvcwUbHrv9NDPuLMpLoFc46aob+6Gai5QdhcJuzdfTLHNbEaIOBwfFKE4/M8NBq/7JqgAGTwKhNJ70Sew4y5fPwpytRM06Q4LR3ciGHC6C4FHCrV23jOmSO0gQzAk2Pr96B4VprnJI6iYQEw4RdkQIzG7I4JDBZd1Zd89upEHvNU+cdGYRfYZiyI8yEXGGfGDfz5mQ4w/y+Aitf9VnYG0V8MbFk4wqjsc6iL1A9bpLlQnB2L1702Xl6mf9+b7QQe0a/EIqRNgUVR5NEVWZ4deUk38zO/+DL/6279CGomp6Pd5DzGmfdp0VBtovdfn8G/c5dLqGr2gvTHBtPl+TOAynH8XFzhLK4wmNzeLM4IukKPAH3OIoQ+dIWa84fkZ9RE4USoHObBHpN9wAXWevUHz7Pl+zrEx98+yqdHvniq5QxHBHNh2AMOF6mBBcDFqvlmWRG2N49hZsoD5nIM7QHe2XXtG8Mi8KHhaG9HoAAfeMoDObDYwHOzw/1O8s0MFw+dkHaaxOD/78D2xAxN9wOjE6VDm+69P3dd8SWe6X5hv/BQ3L+GdICfj0BVBG9Fzbe6OpfHQT1EZXxtmFNF8Dn1+UYDwcFpqtZzTQC2VWgs56ZwbYqBUxWDNmMtuvib26rCXxH7Nu0OuoMCM4pvQ3TyjaSxoTogpOewwoR5+ZEyHGB9xZFXfV85VE3J5AIOdxozRDCEyfE9tDvXqvKPYYaLO4qMPB7vmHBqZV3AoTnWazoy7m0uO4A3NN3JRjjBdafx9DVGxW8Mj2+QOpIYuO+d31Y0Gj7U7Ovwvd+rB5XpjjMB92yjHIVcZd6LRuBMc2YO7ux2dX/zNX6T2xm//zO+cc+isEYimdKizzxh5X5OGO+uOQfL5ZD77edZVo9QDWMHvRRuQHdLSXkXPP6XIdAacsuqwQExep5jAqLvIaVqUC3kYfp70v1hqVYzxHHMOFmoO1P0c/jxsQh8xnM0CBDkRtga4g85AwLcFo7bG/WUjLQvGUGPRmhVNfJQTmCu1QW0+1dkJk4QYWaLOjieOZJBSUiR5rYQUCCnJPT5GQtcZDqD4Gj7jVaOZnNdNa0GOkRyTR+W5c13z+mCYc9l41Aw1+xCqu5sF1UwiARq+HkDOSXWMhsO8fjbwNTic87P/b0wOT0N1X0sJqw3zyGRtI3xi8X3RnPcaHitnAuIC5oDfo+acQpRT2RDEkw2GeW23dSyp+aXXpmcBMPxs6e6GE84UrKz7xRj0HgitM5bBsqxqOuiql5Xa5NTkbpmamnwfh2BBnWnGOW9PF8Hu79nw5orsbuohPpywYDp5+bML/pzmuxweTp025l7LIAbVTnzsp5zB5ABfj4L15jUugUqcDmPjXGPD/HzjAb+f8844py81pxIeEOPb9Xa9XX+i17qt/KX/21/i3/g//Bvkmv+kP87b9Xa9Xf8SXLlm/s3//b/JsPHmqPR2vV1v1x/L9WNDSnJV0QFMrkRdndrWJAL56Sa4M0mrhRRULBymji+JuNltiDulNULOlFrkbOM1zbOIaoElKzplDLAQOcrBtgfSJZHTosigGE+xJieJG8MivbazA16NNI3LsvDx9c7sHA7eeTaLgmN0LEQHeYKK/MfBse0uGja+fn2l/NEfclmNVopib1BRLSXZwx/lIOeFlDKh9/OQ2FrTPULFCnP4qXv3jLnwzBmToI677p2es7g4s8y7H95n125aFJu213p2WsPDzlzf8tG1ZtEEnsWoyIks95/LcoEFhxqKd5kZt8uFsh/UWjmOXV1MZ+TGkKCck98PgTchRl4/vkJvbvMsgKQexd2QMssSWS9XWpHLRowCSBjNC+nRY4UaI8QThBi90WkSMjqEoQ7aYEYKWZ1QQw4o8z4N77offVDKRjZ95uu6clkWbAoiDHJM6nprAuUG05bfu9iicKDo9tT631MU6YyhsatOru6OGBqTKkDKFWV2a+vhBu73O/dtU9EiyjliWRR5l7xgqwa0R6E+heCxF5/YMnvhEJsdppyCQB/D3SI0Vmqr0PUdpsCRveAfs8SE6PEHzbsRadWLOIr8SlGicAzTTr3x8vFZQFHKXC5Xnm5XQspszy8cz6+ktPDu3RPPzy98/fyRkMwhGInqS14hDuJIvH+fWOJKmsLFklWk8W5/i3K4shGIKWscmQqaFmTTzXCHiun9ZnLgabWqaw65+oQkYSRfE7UNjtaIzIgNATe1HuScqfUg+ne3vEhdtEbPEWInpMFRNsYQVKN3dGfNimHitD8fZ8G/eeEzBhi9YkMxdLUdDBMUE4PEgxgS6/UJQ2LnXg56hxQSKXozYwxYhBwvjCDXq+fXV0otpKhiV2uC4wLG6JFskLMceA6Dfd8ZAQiREGdnowpkHQGGlyUxTHPlGKZCWAiKQOhyNriXjcSKm8xzHO5UljujuNtFiCzLQv4sy3UNL7LGyKiRVjbGaJRaHHREoGYIemeI5CyBqPXOdrxQauVyuTCsc+yHuzJURgRa1zo1BjHLSafWeroaDY+JXJaMdfPoS4drm96lFCLreqU0+Oqrr+HDB/ro7MfB/b5R2/RgmqKk3t2c0/m+9oAgnGqK/qMxelCkQPdYJAseeyX3Mx0YBC3Wo9CiCzIMkgUuy0KOKliavyv0wfZ61xhZFspR6Ui8GX3Qi+LpgjtwWZfT3yWv52cNIVCaILPucZ3BAjkvclAqx6MLlC5Xrp4otbHvh7vdeBdtmvFYmlvu940OvP/8PaM2lhhITzcAjuPg2AvbUHRlq42wJF6/fiH3yH7svNwPco3crld6HNAa5b6zbZs6bzPc7zu1F8KySFTOSU4BAy7LRc58a8bClddjOzvEc0qEMiilka4LMQSuKZPnGh3g6BIhUg2+1rsAFwPr9R3tKBwvr/TeyUtmSXLlanW+N5EY5BjWxqCW7q5tgUDn8rRSe2cNC33AUQp1DI/TbR7JkR1oaA7HjtMl4OgFWiPlTEW/1oa6iGspWFG3+PAIHbNINsWTHh2IkKLHGDKoBJYxuMSM9cFiiRSShnlqgnFKAyTIxDUxqmCSWooEPNP/tmCsS6Idm4ssum/JIqNVnj9+INedy7sn8roQ7EJMiS+u7ym1QCv0+0Z5LYxeuL1/4vb+ifvzM2W7Qy2kMTvHVYA/yqH5t7+wXFbW25XPvv0l9/vG84ePHPvhgqvHlEUJw+14wL6g9dRiYLleWNZFxf9UoctF8qiFchRFCy1JDpRdbggRc1dDzu8dCeScCJiecR+KyYxJ8FltpxtGr1qXLMVTzPvJvMYpYM29d2sVmG4x+lOnoH8680igai5CR9+TDd8rKzZY8/0pJI+hNN8x3XoEpmBG7R2rVVCbx0tNcHGK3NNNY/i7czoIDJ09jnKc30pnIzupFm8LYEIewQXgVusJru+l0F9eFAs6zz7+txmaO2trHlcVT4B/dI9BcUhkOirV1h+uF4MTvJqHge7ArrkL5+yun24YnKDEdPPT/ZzAgMSrcX5GC+MEIYLJCGACStHhl5gS3idxQmKGfr17RM90vO0TBjmfgT9jX29CMMpRTgcQo7uw3v0eR2I0QszM+Exz2MYm/BQURdSngDvdqFzMnBCd0c/POxswRkcw5XCBdgwHowbD3ZssQfb98FISf+6/+fN864dfOmTMOY6wcxeq//wkJibYdL91iXuMOZz1NPsUWsfpqDDX5B+5TA7GpVbmvkN7W3ePCuH8LC5jOlhnp7PTOZVMFfMTyOCBLLmo2R9OugwH8/Dv6u/TBBtO97QJ1nQg6PkHfy7B//v8+TMeOwS5eoYlYyFqPT0Uv7osmf0olOPwbZbOY6djisEIxhLVQHF+nhBP9yvduse/bTNaCY81NL+dE07Q2/EJsPEA+abLkZx6khqXeic4WNIZjBmbG6M7kc3vrzNXGEPxSzYIUa4mU7ifwF1ydxwwdxAaDtyZO8g4jzhBze5uuf7rYZ7tLJDSgrKgcFcqHt9DHUmAnIsxgbxHccjbHBBzQEDPWDBpcuy4I+esPjqLO8Wd862/h310B2FUtxCQxznnWTDFAHetr/gc27pwkwiEMOPdzNfShRS7fwYBUnLD05w9ay3TYUnvhp9xsRNg3Le7x4TqnFFqPYX9AQ9nk+5Rrg6thukgZpyufHI1etRrJuwzf28Ax1Gp7ZmBO+GVKtjBAQMsMJ0Ao9fhQPWPX/lHv0w4Ir/zM7/DHo8TDp3fZe6BJngy7OTtoHd3t/K5wOeFnFQTmnOAIRiCIVdhzfXN53K8/jHrdYorg0HO7rjVuxzD0PrWP4HtZpOb4l05QY7ha5kgu0oY8x3VHGLY5JXkEtwPUs7E4Y2LSVCNHIAV/9h5PMNRO/vrTq+VWgq1FZY1E7LmjO61u1IOhq8x+17OBrY5Toe7fQly7HIorxNQGafj0xg6z1kIRDNymgCrw0omWGlY+JF5Pvj+sAyPNTWPbBvDgZg5bc8YxemyPp9q1/nLdyzYXPfHOabOtRJ8XsGfwdxmycl9xoPPfdl87qMJBLO5PQp2xqy1LrDbvPFzjsGB3p1u4WzCOYEefI1xcC2mhDV/fkPOs4Ph65pcqkbtp5uUliSN31Z0lkze9BHdGTqESMw6P9EbbVdMakiR69NNjn3lkBve6CS/d4a5w53X/NxFdVkW0gL7pihfcMc8f+aY5qQJqY+hcysgmC1Gd1z2PRx2NuHp/dFa00fzd1s1pdEHs6xpXge1EM76Ml5PnlDbrO+d89k5Ibxdb9fb9Sd13V5u/K3/5G/xy7/1y4omf7verrfr7fpjunLN/I2/8ze4vdz4tb/6a7w+vf5Jf6S36+16u/4Fvn5sSKl7l1jwTscxJCZX806xoI6hUiWSq57UALm8bMdGMsWH3fdDgM2QhW73IlpOyq0v7aAP2QyHEFjXCylnUozsLy8cpRBXuYAUBzLUTSU7+X3bqA2WGMlJ0Wq1VzknpXDGZaQYlfM9IvRKtojhzgKmbplBl4NQL4ps8qiyWivNoYLptNK862k/Cr0P5GIuEffYd6JFAuoYy0t2MEAde6MNd6vxGJ0gd6haqxxuPiliz9ivaRM/O2UtKqrteDkotZJmR78X7h5dlYKpUlAk3RRA2mi0Vnl5VRE4pUQ7iheZXHSwwN67nKvCgOYFFvRzatPvpSWfHbCtTTv6oU5lLxyNDraomFJqpXkxqiMr6OBxHm10Whgsa57tf+qabTutFy5PV1LK1EPFouQQ2OyiiiPS6vBiUaOPRju8ENkGloKDLabnFCTOqAupUx0giyGdhTtFjSjOJafkTgDjFE68xKDIhW4OGKhrVB24EthiDmcRslUVGo5ycGyb7m1KEPXMc87exSWLaUUkKi5JReHZsRrVvee27ecY8YKSADLOwmCtlVqrft/dG4xBzu6MFvTeSkCxsyBoQ13k9EDICz10qkNTGmc7pRTWZWFdV8zksvS6bXz14Rta07+xHwf9m0Ybcl456qBhXJ4uXNdMCFnFtNRUYA6JFGSjTVolWhD886oQaB691oaeeesNegWTQ1uK+SHQeZFzis+gZyPATuDHCfh5t20fjaMXgmV15/nvhRhovZ6W8ikpcq3UKncSgtIXWuf15YVxuZzd9hYipVQvcg2WJdFQ1MyxF4hyD2rVSHnGRKqgG89O7qhuwFdFzC05k5bkc4qRcyQUeRGo/hw5SqUcjZjkwuSPkG3bqUFCQjO3fgGGdfZyJ9Ts91xF6DAhmVK4XBeO5uMPoBspJFoo2BgPR70k0f/p3dMJu4aQPG6i0mIEF25qKQ7NLHQCycCGBOclr6QT4hQwR4ik1ti2TgiZ9Xo9O3TLOIBAb5URkPvSkoCVWpsXXjVXx6BotLgsNINuispqe5OYZIEQBrVBaQUz4/buideXV15eX7AwWJfIno2jNF8/VTyegEGMAUi01tib3vVLV0d7j4HRKtn03QxjhEjOODTjIJhDDTMaL0Y5xeVgWFXBeSx6jxMCl45D97mUglkG85i2ZkSLlFE49oPscW8hNloTRLou60NcJLAfcvZjCEJpUY4dWm89soRG74JMDcW05CU5iGDUBnh0RdsOOfKkyLUtHK+vLNHnQ810fJYXiIPX48BCwvbG8/Mzlo1cI/vLK9v2yvXLd5RS6LWx3lb2o0KEXitHH8RSCARaUcF79BlXtlLaxrunJ+ISuddDBfgBe93prZPqdM0bFC++t9Cppu+RQmRJiRAU62ZmlFCJl4XqwEywTEqJdZWz1GiB19eNFCrXy4Vmgx4FItEPIuF0dMtDYmobcmkLQ/uRCc7M2IRlGFsvHGM4zBlJ3p3efI60xTvRXXS837cTLI5R62S0QCma/5YcSMOwlAnLgkUjmpHG4LpeuF6ubM93aBqPR5eQ11HXdp1xP17kHwa1Ny63i0f/NVrpjKB5rfXm0UqN8nzwcn9mudx4/+5zRfha4f3nn/F0+4LXD9+wffw+ry+vlND59ve+Q76tvHz4hvvzM9bUiT8jT4IlQlJMJmPw/PEjHbjdnogvG3Y/tG8ZElbDmgVkR6O1coLfmFwKW2tYbRJYLEIUBBZ9f9LdoTDHTOhaiMzhnWDm+vDAmpyhkrsNtaKI1UFniRmGUY8mHMbhC01gP8Gigt+rBz/joItrIVOobg/jBB7xJYrAMbRHqy78to4LoH4PHWoS9DeYGEF0cD6auUNFP8HsPmb82GO/3FrzdSkQujsluPhv/eEi8QAvtH4HAkQJSYEA7tDTvFNfwID5XrLT/ed86o40u/8/QVsZYzqSTixiwjvhARoNjzvuM1pknFEhJ8DEJ2BOH/TwEPkBdwAJ3mDRH3FNzG5//Tt9CJi2T77LBL366HKmHEMOHw4S+WsioMD/XBjG6B5ZNYVn9Oz0fMzPBMNBJs57Pukd8z833SdO5xvfw7XhcML4RMg3j8Dz75kWOQjOGLfg9+V0zzH93qfOCRqP+NkgnFFdYQv8mf/mz/Ktr748n013WGQOfmfEzt+LExryZ202x8IUfed971M/huGxM/Hxb0+Xhjb392OcTkVTtLX5LG1CWQ9xf4qmEqVn4wbnWfTxYj7ez+Fn4BN2cIcqTI5+85lH/9nYvCeCoAH6MN8raA502VZnKD+rys3V3H2wcN82AcVR80Hfuwvug97l5pxyIsdwjom5rwzzc4UAITrgMj9jON/p4ePmAUeM0wlqRiLqtugZDTS25EjlkU3Bv5PNPzP82Qq0NouC/Ex7jBDmGNPNnrWLR0Scxr5cgw9IyT+PfxK3ejLDm2zG2QgBEyrD95AzRmswXWwEAgUoipiLWU4i84ygtW+OTYFIrXffl0bFt3U1DbXWHMbys7ivZ3PepQ56eKyPZmKk1Dg24/o0fiYwhXUxoQ7uTKE9xXg640ynKMVbKeLKERcX9pOcesgaa9bdUW0+d/0MOUyOc8jHlE7Ip3UHZ4cgGzOP/yY+7qu/MH0MvQvuyKLmLuEavdVz3JhpjwAQYmJZTGfloSaSlIKcncdj3z/nRvCGLIc1Yk/8yu/+Mp998xl//8/8PV7t7u/nAzxiAm4Oi+CAylxPNGfE0wWpNzVCTLAsBsVaKQpaLjkh2AkMp+CemE1Qe0r5nM9hgk0+y/mz7l6ziBY8enViLcOH/nismfMdNK240w2mzffR56XqNZpW1FyoPZP+agqBHBT32MYgYpT9kEu4NxBsr3fIgaUnd+8O9BS1fqP13VTC82epHz6ss6TkjZWBEFc1eAgLkjNf1/k/dofcxoxTG3Km9zEZEEAz7+1gYDkzks60EXf1jEZKmgNa6/SjePSz5qI6GrU3ktk5t05IUfUBzaNzLZhzHEDEaAO5FDu4JgfWoVjp3hk9KHLc35rq9eHze8x3rKsJTP+Mrz/JmzXHIHoj5Los9NapR1XjlTvdyc30seVVbF/zc4z2dylFudUVuZWZr+t9OMxUO7UVQkzkZZUre63kvLDertAb9/qqRq1Wub6/sS5XwhE59h2rzX29B3OCDL4XMAu0Wtl653K9EpMcw/Veqf5rGCGp4bHP6Lhz2phguu/v/Z3tc+z7u4B9Eg04rzGdKscn5wKHk/2XOoIZg7/Hjz3WT7Yj69v1dv3Lct1ebvzN/+Rv8iu/+StzB/52vV1v19v1x3rlmvnrf/ev83O/93P8x3/zP+b19srbdPR2vV1v1z+P68eGlOpxKP4lB7fUttNq1sKjdKNDv4Tn3pofcGXhu5XCOoDWyMvKAMqxE8245hXM7f1ThTAtxit5WVRgTImyB2otPH9UDBF4ga4Uj7hotKqojNo6RzS5E7SmCCgERjD0+WRN3b3TbhAsUktVDnvyg6BBXhZ1AgHZjEteGVTvvtIhX3b0nhFvQz8nqltfTcudijr/Moscns5i46CUXXBTjjQGx74zmrpRZyGo16bDarBTAJ6dvH00tm1XoT1FFfjMC+IW1IXl8QEWDHNA6iwO98YYcjdo1d2dGMQQ1ZGaEtu2sZWdGAPLspwF6dYLfFLoxz+TDWO9rIxbV+RDkzuMBRWah+EdiIpISCmxECjbQSuK+yJEB3EkrPZZkEy6J3TFug0HpqIXckstj0LuFGs8FnBJC4xOTCqqHLu6oa45Y6PKTSMlipl333oh24uyweS2E1PwmDY74wXVEecdYi4Ymhdjk4thMcoJYbpqjTEoo/Py8gw0YginWGFBEUshDO9+Do9u9PD4+7VU76h2W300FlOKZ1FoFvTObueud6ePWThzCAqIQQ5WpyMRdgosKRqj2qmw7PuudzUtxKqiafG4gMt6cREPWpMjUEdCRFoSr/sBG1yuN9JyU/zEZSXnSD8qwRI94AczI8fMusqByOLCceyYBZZFwNBQdc0Fs+lSpnbKmBcsCDKc6QHDHWIGD+Fr2tK3PghdsR6lFkJvLB4REDA5Vkz3Bx+HZVRCSOSQvGM5Uktj9OpW7we9yyFlu98ZE8RyMXVadStuQo5FIXt3sAXyah4JkjiOQw4wEfK60IeKu+tizuh5h6lHFPY6/F5dSGkhBgE5f/gH/4QffPUV6/XC7ek9S8q0VmlLYMlJ5Xufz1uPDDK1q+ApNwQVIAO4E4/icEIM7N6N3Yfmmn5UYjLKtkEuLDkRYyalhVo7pWhcPj9/ZD0OQkrkJdM8TqtvhxfJD93TmOhN7jIhykVJLk/9FAtswGfvP6dermxl42qDEg963SmjYtZPIC9Y4iiNlBYul0WArM9VEt06ozfK5erQGg4GfBJXE4zr7QZ/BN98+ADu3sYwWu3ErK7IJWf2XjWeXIQdB3IcGoNLimRbWJIAnu2QW04tB/Suwn+KdO+8LfVw8VLF/NXnrerrY6+N9QIhZcooDnbZ+X6rON0Y1uijurOMv/dW6MMLzSGwXlQwzsSzsxu0po36EDUF6h5YFzx2lKI1wGb8oCJoLBrF5+c1ZUprlNHZa2G1hdI7pWwq6pqxZsWubdt+wruhFkod7PudfW9QGtt+kN+vLsRDeloJlwUzo+0H+7bThiI1JmgyunHnYMkrMQ5Sqe5aOBSjGBLRjGVdYShuIF4vxOsFA14+fgAOem8sy0rOiW3f2PeDWDtt21m//Tnvvvic8tVHtn0HOjlFAhJL1rTQ18GIka3ujCjhIg25j9WjcLleuW8bvQmOPqrcsFyFFRi+LIQYBUSPSOjVIzHnGhG5Xm68bs++Z5E7TNuL4sOiYodyTpCG5rs+aKVwmBHzSjS55uXLhZCyuspzIi2ZdelY44TxjtHoQaJ68X3DEhPdYxjjkshJANCyZgFfI9CDOznESCkHtRViSpTywse9sqwrHSjHxtMv/ynef+cLPv7wmZfXO3s52NvB7emJS38vqKBVrFdarexNe5rme5c1LUQi99cXCWy+7h51PwXkNg5aU7RiSplSit5jZaMI/m2NYXL2WNZVjosGt88/4/X+Qjk2en/sGQX8G60OFy07x7EzhvatM/5DcawdoiDlYO6+EY28rALOH6/gT9w1HSUI4RRVJ0z9EEbGA6IYA0b3WCTtW+UcIheMGCMj4IK4XGxm4WSEgRghwZIhJoHoIWBB70I/CieJjItz/jlmtBpj0Hx/8Igl44yhGi7sTBgItGcZTUJ6iJ9ECDl8O0GlFCIuyX4iygcmZM6A0fSZ4JPILwZ0h3V47O90fwQEKu5QsJYoOztF8NMBzOzcU3bfNyoG2M9F7rqEjir+dATFTJccCZlTEHsIyDh8M/oUl30vEQLD3xELn9zHCWXMe+njgw4k9MyHnLdOlzUX/TGPkWOc82iMiVa7zlJ6KJwxROHhWHBGugy5bjDBMxf4HlFDjjgMBwTgjOiZemxvjVEDf84BpYa7CtHO85jxidA4RcMwGwoeQBpwQionpHS+L48mhOly8+m9P8qBoF9jAs7ns+KfMm4+fQecEDzPDfN9DOHTP3b+/hRc23QFdmhujgcJ0n7GOM8tnO/A+T/M46b7OAVTUBNDDEFnWH9ec8yqeKDxWFqDiiCIpCicJclhZbhD8zDw06/i+CYgEeIJ8MjdZs5E8zlM9xl93+AOiYLWxvmdpgOW4h2nO5wE4gnH6JysKN3uUWQPAMPhrdrl7moOn/XH+Y0T8HHIz9ec6cw7/HnM2DmbY9e8kcbvd0x2jkm5uMq9NU6HbNm3/Mi7PCPRZvxXjIJVgun89fry7IBzIC2L9qkmGCmkpHExzzoD+tCzSeYoacCdwhwmnGPIoa0+qRI/64Gcd+c7Gx0K13j09bpVahn+exrrvc3I0AmDNb/3D9hUrjgOPszP0I2QF8H4rUEzMgGa9l8CBoYDn+F0gk05nef/xyyq/+utkUY+oZMJKHSHRrqvC/fX13OMBtQU8+m8MYYAdmwCp6o5DTo/9fW3efqv/zV+40//A37w+Q8poZ2A1XQ9Moc/lOo2zj3RnN/EjbhDj0ce5uiv4CeA5nwvHzOS4NyBzoIzUr456HXO/15HPEo/IYoZDfqYd1TjCOkBJc9/qfu9MaYr03g0gvn72/2M3WqDWgWumeo8tE51Hme0zoia01oTHNhH01lg4iLJiJZJDts0ChNunvdN+whOSOfhdMXpZpNQhJtWBp3XLQuorvsOQ3WyYMGbiYbuYVNkWgfSuhC6QPZaKiPprDBjiGOUy3XocqBN5s6gyIkw+3hW0+V0Qx6Ko/XJLcV4AtH6NcdIx0QVgwN61ec5ffna5KY6oeoYDbyuaT4oammEhLtadiwkYo4+IjoW5WZGdMczPL4RzvVgdHdfM73zzH1lCIQ0iD2c90tjWs5DrTZ/36C0To9qTqpHIUTj9nSlHpV90xm71EpaMmld3PVMUa+MCZHPN1xuUCFEam/s23bGytZpL2kOGbo7Zwizzv5YSwWsa6zOOUTjepC8nlDqwYz3mzWvGVlrvjb11mg+75q/y4rD62d0tFk4HapmOsJcC9+ut+vt+uO9ln3hb/5v/ya/+pu/+gYovV1v19v1J3oZxq/85q/w7/8v/n3+zt/4O/zDP/0Paan9d//Ft+vtervern+G68eGlHDwwtxRx/BCp3cbyhZHfzSGwF52HaJMMTWW8tldsyQ5nry/3fj6m68UJ0YgZ7e7HZkQ1UVTS8NK8TiZQTuOs/uGKEtxG+MsBvQuiKeVzqAQ03CXm0q07J2QpoOuySb8OHasNXc6qLSjMuIgL3KWiARCMuqQ3XOskWMbpFWOENu+Qx8S1mIk5Mi+bRg6MOccSemqQ78DVOrwaX6IhpQjR2uYF2JGewj74B3n5kUWP+SnKDhmFk17F2wVg6Kq6nGoZOAdi6N1mDbsrTOiDroWwxmfcf4MVaj07/fZtS6B8LIuXK4XggW2fSPmzOhyEwjMDnQIqMi7byqUC7LqDnLJkUp1V7kU9Vq5v9xZ8so1ZwqNmDPr5ab75sWo2b04O1hle968OBupVREPMRp5SdS9ehFOom3//7D3b7/2bVt+H/Rprfc+xpxr/S57//a5VZ1L+dSpqpTtGJcSQmzKiXEkIoIRJkYBJCT+AYR444m3vCAQQoLI4QGBhJCASElAgIQsWS4bl4NLjl2JCIXrck65Lq6qc9uX32+tOcfol8ZDa33MtYsYn3KVq05Sqx+dvX97/eaac44x+rW1T/t+24DifSWpkVKhtwFWWVN2qzKMnDJLBCI1Jby7D690RdGUj8pkr06PKsBZhaQOk3is7mbHlrPbQIgobbQAqhpvP/mE1htLSV6h2oysHmDPOR1BIRtTKUWxEVkjk7APmJW9LrldSjoqU2fQclZd9dYPcCzN91d/zVqWAKVSBKVyBFMcgNPFVV9yzrTWqd3BHMSDP9frhjE4n8+HbLeDSzs5JdayIFr82SfhdFq4e/GGtZw92J8sVNnWkGLfb99DCkjGaFhrfs1pWuYFFKk2c0lk9UrapK5YdGRCzMhFYUTFbXLFipkY9cD2TT6cEXDKAEqKqlKHlPq0oDBPwrR9A9zuqQ+3dxnDuF4fYyzdKgkvl0d6zSzrvVezPanwtw4iHU2DfWu8evWKdVUubx9Iyx3kTG87Rfz6enMQaHlxz5Rat95pe4PhqkiuMuX9q5TMq1cvUD7D9XpliPejpImX9/eIDkatCEIfYQelifv7O7dWE3UZ/DaotSMhQZyKB/gG40nlbCap23R6xbOP5dYqddtYyopKwnolJYe5ijroYCG9lsQYbfd+1io2GrV3VxyKwLxb0aUAC90mI0WCRlMm2QmjodIdHAj6w9rw9wkFo+165fHhgdPpzOl8dhvM00pZEu7qOG0zoXavyu3D5zNV4e6ucTrdc777Lp989BHdPmFdG8M8SFlKZnS3prlcrw4i5MKSI1AvyUOzEYzcqwMVGK6OZHAqmVrh0jYsrAu8R+Iy8UvYXSpsu6tHZU1sw1hzcVuqtXiyxrqrNYkxTGjVg9RTzW6al+TiCk3S3U6sjQoNv5clo0aoFPn61tWV82blqkMBYVWC0UPdiuHrm+Dgaq2VrVWW88LAYYzeO7VW0EEuSk+ZVhK7eKJ4dLfcs6xUMc6nO4pl1rAyLa9OXK9XbB9oG1gyruPRrWe9Q7KkBU3ZIed9p4/O6bS6uqF1eoH9uiOPXgW93r/gvTdf4MXrD2jAkpRt/2UuH36TPjb23FhPK5iDs9etYVXZvvsxb968z3p/Rx0PPFx3r35vPQLeBqH8aKGyV1QpkikSoNC+81h3rBtb3dlr2AHG5Nets9WdRQpTHbyIksQVwSyC44pwXk9sY4/Eo1fklpRo3a0uem1cPRPlAGWHUQc1DSQb9Mb2+Mh6vuP84o7WK1t3GzNTiaQWkQBxAK3FXqPkzL4PukEmUTe3+jyvK7s0+u6WI0kGte20vboaW4FUoFqntSulnGit8q1v/iZf/sqX+eDzH3B5d2UfO3vbOctLUllQzezXiyd/joSirwM5e0IkqyCaYbRInArn8xpqh5XWulfr5+xJi7DydXDjtsZinWutXC8X0pJ9PcqFnBNd3cLTk8A3G6GUgOH7pGHdFddmwq4PYCDZrTlHHYyw8nM/UkF6LH7fp81urMUNMpj7+gks+CuP/jJtn8wc/PXUrh0w97qsXLfrodYzK/ht2tfORMvo7DH/zAQ1MT9NFaMDjAn4yC0weGIPOHClVd97SUAA3Xy9Y8LgPZJpApYC+iAUgcJKTMeg4+u+J6PdRlQl9mSh3EqAJ56geqKoGuqXbjs6ArR2ZbWZwJ9Awrysp+o5Riybmn4bGGMHQCMqt+TvhMhsKgsFUCC3qv6jCj/eYxoT2MzJc1Neyjkd1tdTFWvCEGq35Nh8Ts36fBNP6pkeibWZdNNIGNfh9l8lqcMeScnZYb8JAkwAZYL8M1l4U2+Zah2esHMbmficeb9SdmBZXInAuvG53/gs7333/WMfqmna3+kBRAle1AC3ggN4AikQlxoZxVnQ4tvDqcB5sxObSmBjDFd8MFdanCo0ojwB9OYzmWDANMOz3zYGbwDAodbFzcLtBm3ZoaJyXF+M56w3u7OpLOHXN+LckTC7qRz3Q5HWW4siopLTcX8EP8O5hVqK9/BxnEuiLGey5mO7P2yATKih30DA2DEZ4xgv/vM5h8rtWp/068Mm78k0+ylFJbnFSuZdnIqtNqmFUJwhrPdEbn2OgJpuY28ccNG0BmutfqrviohbT/WEpsIsEptzrPdj/3/rg9OyesHAvkfMxRVaw9jclUEMlqVw4BbD5xm35BpHv3VFpsTptCDc0Xq7XQu4Gq+4UuRoNxBCzde7qY4FDoWMflPxkZjDJ3w3VZP8fqWIj0Q/HA4wJk2+jzssx1ydOhPKneZzpYQ6nI0bRGN9xpPGYd01AcBZ3OKTeQBMw9dkDfvrOX4dJptzihcSqbrlnKoXEDmUIEiewChPlMjmfOzjKadCKQuXxwv7vpGSK/7Mvpei0KHFOc5/NnwvKQkx4/X2ip/4e3+SX/v8r/P1H/gGD/mCIa5MI6CSqGEBSPThNMG4mC0NHMZquPUgDjcQkMWM00ybTcT3Jz3m0kOxMG5mUi8kOUw5x0A1HWu4+JbsiP14T5x92u22eaJ4fAzX6C8WcYneGyYp5gL//WERC0qKkTD1eJipHv0vp0SvI+zNlZZ8jZGlYH04hDpwSE+Evfme0cxVs5L6XmEMc4vDUGD3giRjiMcFRzckZ5bTmdPdCzj63iP13cehIgppeNzE43UNt0H0a1pKBnPV1V49BiA291h+rpx9U8Jmftqo9dYZ6mpYvfeAqiIeEvGtPrxYyaKvJ3miYjT3FN0LaNpvX++nLeoY/neErZjgfbTjBWkCKkbvFfCzm6tgjUOhyqdQO8Z9D4VTjCO+4gLqEnaOXgipOVO7YVEQM6zfYEURJEvsq7rD5JJ4fHjHsmbO92fqtXqsxHqcSz0uVc3jURPYnVDoMTXhENowO4BH70/EtYW6nc44uAOfHg+KvayFzW/385DEXtDwGF5SpU0iSfTY23CMbdf49P2P731HqLLObXgLa0zMIb+pgPisqfTcntvvf5Mh/MTP/gRf+6WvHfvw5/bcnttz+4NsgvC5b32Of+3f+tf4O//M3+Fv/uf/Jp+8+oTnKeq5Pbfn9nvVfgd2b4ZE4CCXHOGBkA8P+zBBPXAVstM5h+pL7y5nq+6n7R7wA1pl2zcP+lpiXVcG0/5FqaMzS6nGk0qevflhbj0tbNerwzoROGzVLTmSJuiu+jK6J581uZS7qgdUlqUw6sCseQLEDRJAE8uSXUq+VtIQUA+2uzpMZgzoPZIb5sDRkhdXiBheeTQTja545MGevOQjkW8RCiSCF54gy5GglsO6ImKVfmiVW7B6Bt10VkVaVOO4Rv4RSI+4l1cutkbvEhVCjUY9IKVcCq1Wh8jAK7nMU9OJzOl0Ii2ZWjOjdx72R8yMZc2knDxp3Bv9ukWQddCrBySWxRMRbeyhGCM0IeCYCBZ3YAz2dmHNwuuX9+S18Pbh0ZNwvUWg3RWMDmgnAhFLcVswIyGqvHhxxyeffMRWw5YnJ9bTmcf9Hdt1I6c4kDevVBQS2GBd7siLy5rrtKwbrtyl4pZZDgfdKsRteHDzsEdLoVglM8HhgNKskpr9FYTaGtt18wBvKXRz6zvC1sBtdhImXu3oXyWs18zvmYpG8mEGpPn05/mX8SD3GIeyl6tbpFCD8p/PpN+0NtSUAQ9ULNkVMPz9XClHR2ctiycWouOt6+IJoZJJuVDiu4zhAJnZThub29nJgmkGGmY7WVdaq+zbxugeuOyjeWBbh/9uXbDRIKozy3qiD7eQ9Dkn7AbwAFXW5ApqKdG7V4Gqhk1HBDFLXpFk0EfYE4wIrnYPfkX1cu3DwbxOhO1cIcRksJTiQbY+sNrprVJOmZITtdphJ5i0ALC3nbpXMommHRMfi9volOTjr4/moNmoXB8/YdTM5XKBvSPrCR/dmbabB5WK0vYrKfkzTOfFK+6mNWMWtr0xmgNySQe9bW5ZFIoEre08PlTWkI+3lKEsjBHVon14sLY2cnYbG4eCfAz2NpDkQcb9+kgfwrqePZGhxfsAHrgnZUYebNcrw5S6V9Zz4fXrVzDkUN1JWem1kzUSOArNDJFxRC1n8DtYCrJmhnUHoXYDFS7XnY8/eeDl2cdoCjDH1BN6acmk5BDEtlUeHh4ZLSzIWiMplOzzdikLpRRKKrgdSCiniVsk8iKRSuJ0Xjh/srKeV37rm990BSw8sbAsnrCorceYmoFcC8sZr5SVyCpea3UQrrsa2OiwZO93Pi4hGV4VmSLxNYQikEYimysjJszl4615wqjfEn8INGtcturgGMZl3x3ACEsvBEwGmn1dTzZcVatW72fJwbRSiisWjkHfK/teKZICPPWEc8kpYs2+DtZt90B4H1wfL9T7O3o3kizsfVYUC33r1L2jSyaLYnXQa2dZFq66+dhPypILy7KS85nLw5XtsbJ26LVCN4fMSqLgVbujG9teqQExbNeKMdDiVn9JErsm5PyK11/5Ud7/4IsUWamXndOqvD1/yPXtW4okRoLautsTipJOqycAHi58IpCW4ra5S2EL9aKSYm3pFbbd90sJlsVtdUkL4Cp459XhviKZh8eLV9ua25elFLYXAnVz1ZI+mncTdRsyKZm6V8jQpWPJfB4bbvlXegkrtWnNZJi5MmWtg7T6OEyhSFNN4P6M5MQ+XAGjjcq0wWm4tUNt9bAOaZH4V/X52UalqLLm7BXWh12RHWptSTOdQR0OQiWyz+s5851vfhMBPnj5htevX/LtD78byiAOKooode+eSDUL1t73rG59C6M7XDaGYUlYzgtWGzS3ZHLANjnEFwlBTcKy+HzbWmP06sk18f3BdqlUEXZRf+9pC0fY342GdENxq9HRQ2VpqkIEQKopM8yfp6sHaqi4hO2UPFmnvw/bE+7i2A8Jtz1remKxRexhOVQix7HnIxL7U/GhhbpOQpCUMXEbZWJuNpkLBUcwpUdyKElm9HbAB4NQg52fFfvoaWmVVDBLR0JUk8Y+MBKYkRScSpwaoJ5ySz734eowNtzOxj/DE0eHGNSEjUJpxaxDgENqwlHBALd9PzegyX/sQPQIwMhmMpH5qw6ljPlQAk64wWR2PDO78RqhGBV7YaeYQT0h7Nc1wkoZhuCJ7BEJ9Txt1Xoo9LnVUQrgPMW+YrQJOokn4CwURUMZ50jcIWF1eTsfYXYojZzWxZUda/VbOi9O5FP7ZvAE47S1mmDIsha269WTtBMWy4W67a5WKf6eZc98+Ve/wg/9xld8rVxinzwTtXFu8DMhh/LIMS7GxIHj0TxVV5rZYJGwmdXbeZAbWNFaiyIJByjHHD9xRtB4vdkcS9POJ4Cl2ENNS0G4WQr6476BL09pqqnoI3rrj7N7znE1YWU5fsbxHCIb6s8+3lWM2Ftq2P45vCChTjSG7wFH7wFUJJzAGr43DyihtRbj3s9ADjU4yDty4qaMZWHlNe3C5AB3Z79PEoUg0c9uCoyRdCfUKdXnGpmf+eT1fotvIOD0Kho2bTC9+MIUrxaKc6Zm7w+9B9QHR//oo3sMAFc1QwiLUrdckwBERP0vWt0YwwsN6IZE4RPiSh7+Rz97a4CAmlOcI0HwfVsPaGlCUGY9oL24hxj7vjn4G+NE0s1S06c4n/cdxHiq7DUT6Z5MnwDFocCn09p2qtfh56iw6RwBuJalkNptrM0xMJPvqhzXfJCfxDw5esxL8xndICoDrteKyFy3ptLYwCTFmLN4NnMvs8f8leihtj1Vt25ndjkKA4h5KGdxYCspefNYHI8PXLcdCyjMYxQF7f2IK83rGVH8ZiPzld/4Cu9/9D4//6Vf4JsffPvYL8y5zecMjjlVYywQcRcVX/tmIeLgtnaozNhEhPAibtV6O6CVFoCKqkQkTI7YF0lR87WE4UrUB4g6Zxzzvt7HiJ/ZAZQec1zMYz0AFAx69T2TmkTMp/vtcVGhUNQJG7vu1rJ5cZDMXJjnUAZblpX9utFbRcfcs4cFaOw9pqr2MAsAhBirPi6keJzUBIYmTi9ec/fiPUo5MeoIGAo0XWLymbGbAIiTn1msd+plw1Y/b0nEW8aAaWjn896IfuvzjIXSmsYeSTV5fCNlVOuhyMgxz3j81C0U+6F2KHG+8Y7kEKTpPKr7fDjP8r2123pnPlaIP/t86APL+ghBH0FiTWgHjGTH73TMIR+D9GSOPWzrulvH5gm5RtxuKqSJuMr5tKOcc6QrTw8GnY8/+oiX9y9ZT4urj094OYq1HGS/KX7N8aIaxSDDYyRTMSzlhHVxWCoAogkjjdGZ+6q55oFb/4Y0VcS22y1G1n1eOCw7D6DVjr3HkUCU254Y8X2Cx9LC/tqEQ9VvTpjH/ui5Pbfn9vvR7h7u+NP/3p/mT/2tP0Ua6R/9C8/tuT235/b72Ja28M//zD/PV3/5q/zVP/dX+Xs/9vc8lvXcnttze26/y/Y9Q0oWhx+1QWseYDmVBQkVkS5eKQdhmYEHuTQR6iXGaIM6hCUtlCXxeH3k8ngl4fLF3SSqKP2ApimFnPVwcACHj/bq1YOtNg/ABXCBGHVvAUiZJybTAmF/0s2o++4VfZqfVGG6mkofg1IyDQ/wlpyRMdh7Z6uN0SLgODyhvdUdFViWE4+XK3UYRvNKmIA9Ss70kIEXS5GZiYBB/HGY0JqBKZ2ZkE9Ib4Ar+KSk1M0rrC0SaB4D8sqrCczMahz/PMOGQxQ2g6BHZZYnFbzS0gNTwkyal7B7C24owoO9d2Qk9trZrhutuvLD0EFavKpKzO2VBuOollQ8yFROC0mgto0+uiu6hPyzJCAqp1SUPjIfffwOEw/EuvJIQRhgHRku5+9K0oN1WTwokNVBJUs8XC6YCbksSDLaXrm8e8DMyOrfs7XZB2DJidOSKWHh5gpKXhkrSSElT8YiUTQ4jmTIDAIk9UptmcG6WRUWiRcPmrhlnEhU6XdPdqa77JVsNSxcVOL3PVEwHZRMbjL/rVWHWTzF689bLCo0p/y7HcFL72/QhgUUIUfiDfw+JPEEkqmiJXu1HVHdKcnVeMSVCiwimTkXitwCUcuyPAn/etK/9Tp7ItY8LEYAEctyImlm3ztVd2rdEPW+WZsHCjuDJQsZYa9XLtuFJSVO64pqog7BU1WdMRwmE/FglNvpeIWgJ8OMlBxqSnH9bato8kTHPjpJJBSSmkvhJ6U2I5WCmlHrgBLJI9OwyxN621AGeS1uT1UrA094afZKx5xc6ayI8O5yhQFlGKfzmVYHjxe3sLo/e/Xrtm9YM/ZReXwMtYhstOuV7brz5tVrchHqaMhwKANJtG5cro/UZrQB+3ZFGXz80UfUbfM5zTrdKnk5kZeTj+neuV4rdiquBtUH9IpZJylslwfW04nalDY0glwwdKCluMqIuUx5Od3RHx49YU8kn8egVYdeyumEqbDV6paco7G92zz5IYJYYxVXtukDsiT2vmMinhO1COdH1XnKQin+PErOmCTaLggdyQlZMqUIRdShVqtuwade3dmHB2xLSbekmxgq1UEZzdhItFqp+04uC6oOxREy7gxX4Bqtk0iclhNvxydYhzXWi23bySqcTwvLUgJIzLSeXMGnNlQ8IZuGsFfQUrxfqnCt+6HgxZwf1GEuEg6e4AFOYzj8O7yae02ZPJOBQijNGXU0DwwHaDx6o5oHlBOJnBZ6czUbSwY5oRay+AY97GWCKiCXhZwLqxnbfvVEUMAgA2NU/wyvLNaA2DiSFUmE68PO5X5nXBtijb02hnXOJ6O3wd4q5yWTDK4omHIqitpGGx0VfxaP7x5JY0frQLbKw3UHMbIWcq/U0UnrilqOZE6AxZro3RW/rBv358L5xXvcvXfPizdf4tWbL5PTGR2eXLl/8YLPfO6r3L96n/36CR9+5zfYHt/SrLFfK5rTkXTtW3VlEBWWZcU6jNo9wB8Jv949oaGYq3ztncd9J+fEUpT7tSAYCVhFWIorQwxuUDMoXcfcCrnFa9hWJPE+fr1WWijlrTl7AmO4YsywioqxZAfCa4NGp43OfnElybH430lrcLmgdydGUl589g06OtcP37G927luj2y2ezW4JSQLl+vG3ipLWRyWAB4fNjg19m2n7YNmg10akoS79YwBlY5NC5juiejWOqUPvlN/i/pmj/XYqA879e7Kejpxvj+xPZxoNoDmyl8MahuYuvWk1Z3Hy0YqiVp9zmVMS0tFTNj3QTMHnXwlzdAlAI+ESqeP3dc9c8i5N7f/SrlH0tU8IZdTJJx8T9JtYDICGvZ13BWXBjY8yVBSImsklUck+SakLzfVge+7Ftfj+5ERIIKvIZ4kCnWFSOKDHAnhaQ01QXgtntSttdL25snJgLpmIimIC4RI4swEHxMWh8O60w4kx5NOY9oIp0MRgdhH0fqhRmqhFqqRDHXYysfhtOTCjG7EvE3QQoCEdQuQNFNbCxXV2DHF+7qayPwVPWCSCSVNsmOMiQZI7BeFbhMOcSCuT/ABQKY60C0ROVWQjixVfHBoL90eZCS/DmhgZjQhzmxxz4+kvv9Ph6tV9IAQHTJx/ZbIf3OoInEDogIdcBs7EXqdAOO8l/G9JjQDDFNP5HNTR5lWKXFRoWwBZrGPDUDD+RNxBT8Iqz7vL22vEMleEQcHfvzn/yif+fADlpQoyc8EDhTdwB6fkn0N1Lgqe3Kvp/7OPFNw/PdUH5nqXbcE+HxGs7/6emrQCfWm21ObsMy8T4fq1ZjWcHGnZzJbpw3jVM+ar4nzqBHgutz6SiRqp7or4IUvM9kZnz8mAHT7cjF/yQEGTbumoxva7fwanSP+0s8o006nx55xhGqGJ4tvNoLO8DqEU1sjqbhakygjrNlS7C39PGUcS2qsj2MWqMgNrIIA+c3vSe9yqHtZFP648tVUW7LYW0bvFo7zXx++D5RZMDBu428Wlai42pIK7KG2mcxVL3t3pV7B98WCgxp084R/jB+0MWqjN1eOdJugJ3MXig3YW417KKF0Atvl4kBnzLdGR1NBQ6lFCPgjhRqZ4YUcAaL0Vh0exp707dgH6lRWi/kh5QAkPb4Qo+foDzngR7e09SfS2x7vJwzrJAnkyUCY1ngOa8TEG7Ea8b1/UlR97XHbUMFlbh2SupM1wjpTYcrPoNNqDyYw6ucBmd/Z3P5cNPn3tx7zUzxhnTEDYDj0iXnxRRWNgqOMSHW7ZbMoOvLCo6nYM+G1aS9fxJWWXj2+5E/+wp/g6/Ub/Orn/wG77qFOZ8iQgDT9mXUPTh3fR8TQPPvdVI0OkDjmBVd3ZjIorhwWalUSitqY21CbgKkELqOufvSkOHHux1UmPObFeCoeS7A01To9rkLSI/YxF8aplLfv1e3YA4KZ814XB0EkC9m8v1jcBDfrHMea1HqHy5XROjqMtoeKjoiruloDiSK8cXyDY36din05CSll8ulE2s+c/qP3Sf/g5PehddJdovw5xV4LZpXr5R37domCNYe0DvVUMwcOA+JE3OrvWB/m3mXEn9X/3LqrJScVsooXHs21KdYbi32KHSOOgAxvgJHPww46jYB2kIC05x7B/DxiNkFdDSVQV2gaLZ558jVgmBe0qnpMKi3F4yTbRt+67/mHF7vo8O/bw0Jv9kckrPYAhv/dtE42cdX0FAViFusWdrPlFDP2sfFJN9Zl9X1B7/S9kU5upd1zCcCnx/oQ0Ny4Ff61UMt3oC4KmnxYeXHEGLfYCfEXc2ljAsMRi9MnxaozmDxjinEe9Nf4PReRsCm87aFt7m+iX4i46uHsq64gDpLkUF58bs/tuf0Tbgb3D/f8hf/zX3i2eHtuz+25fV83Qfj8Nz/PX/x3/iJ/9c/9Vf7uT/xdrufrH/TX+sPbDPgW8L8D/saTn78G/nXgS38QX+q5PbffefueISVNDjggU/ZZaH2Q5wlqyumqejApgraq4tW1EYxkdJL6x7ZaXW48/NJ7cxAAPFCjohEM80CHRNBwVtwJLhEueAVhyhJBHg+INfxgmHOJgHck/nC59Bn0Slrc0qR30ohDX/fD7zDzJG53MGYtS1SIeYL0dLfS2VhO5YCoanMbnKSJnAu9R1CvV1SFHEpSo/XjADpmNdgMsEjkmCKQ1yKZMFUsRgRjZvC4tX5UW091jl4rrbbjICtZ0ZQOWwiiesfCx0LU4Zwh4mowOSp9h1uSXK9X8ujse/XAqYIxXCpePPjXelRIzcTJ8ARUaw02D3qnlEKhIgLWY3gCwIxUcgR4ImmjGsGGGQiZFd4zEODzcatG16ji0kRvnd4r61KwJtRWweDFyxdeYTkG59PqoE33PnFaV5ZlcUBJb9CVavKDe1yTziTD8D6OCHlW+kZAdlpymFgkGCOIc4BNeJDAoq+kHPLbSikrcbEegBMJifDOtFvwaunKtEoI9gOw448z8TH962fSyeEm88C75gjQeWCzpEQp2cEuVXJymX8Peq4xNlwaOmdX1EolsywnlnUNCytXB7hu26FslDSFUoRXu/n7Ksu6cHf3knW9D1gmrE5yOZIzy6LUVknFv58OVyBqIx+Wkz5UBkvJLFmwQ3mrhex4d6Chu5LTUjJrWRlhuSjJk2WppCP5gwq1dnxkeqLYA4BQyHRTFMgFRAdtGNIKXRL72KmtImYUybS9UvsW8MxgKW4VZ2a8fv8lJoV9q/S9MfrgvC7kpVCyRPBa3F4yJ6R3rtcLfZjXooqyt0rtLuW+bzutwOnksu6/+Rvf5pOHC1bO3N2d+fxnX2KffMwQIZ8AWVjTmeV04nQ6R6JrUPfFVX1EsO7Wd5oSbRhqwiCR1VVJTD2Bksygd4r677XuAbflvB4qEthAsnK9VKiuRkSAQDllD/hVn/O2vrt8vTjgpebB2IRbRZWyHlaQzdz6z0YiAUvOYSnpCgum/iy7NV7evyIJtOZA3JH42iq9dzQLSKKIUZbkdhuhmFdFqUSlow0e3711MGhYKAMRyfDI1anw7pNPQlFPKaVwf3/va8y+01qilIWco5JVsttslXZYWepwCfoxXK1rx1godJ02IRWtEawcLkFf8uLPsvscDcbdeqLiYEUSJT+p3OwAo5FTPgLMZlPlJmxJAmDprUXl9AQB4Fo3BHNwIrt6UxIllcTewmovK0vMSyWUzrpCShPs8M+ku2WgSqQGWmddiltg5kwfUHefA9sYbJdKr4Ohxv2LEymXWITcskxN6HVwfXyELVQDxJMSQxwasR4B8uT3X09Ks0jsmFBbwUrm/PJ93vuBP8Jy9x5ZX6CsJL3j9OKO9ZVxun/J+c0XeXj7MR9+81f4+OML3d6idJbTyYED8OrskqjSGWq4aYT/z2PuUemLjw0RYykLy2llf/SkVG2dd28fWc9nOsal7agKa8ks6sqAnuRTmvr+LPfYy+EIRA9b2gNSs0ETIctMygm2ZPa+09qGhYKm5EyxzBiNbd9JYizrSgNq7eSrq1Nd9cp7r18wauN62T1JmFxdQIbRR0UUcnIg0aEoB2lbc7h84PsB0kCH7wmKT7zokrkB6rDXndE2Rht8PD7k1evXIIPt8YGPvyuc7+/RoazrSln8e0xFvofHC4/XK8JGEgk1o4EExHQkUUWx6paEfUwlJN8UXB+urnYQ1q5JXEFgb74/cuseYViLRKLbdXQnVEBg7ztKCvs4XztzdhuPHtBuawMZvv5rUrS4Ql1tHcl6s3n9PmwHqCAz2aixz49q0bCgUHX7oXhp7Lti/xV7mQkg2xieoI73H+NWTX5YxMWeK/Bt/+eRyLwlEGcCbe7RDosO8YRTbUQS29/nqfqNzmRX7PUwjj33DYiy2AelebmM4fa8hls2+jW7KpHGPK+S3HLVbmtN0nQ7N3CDOIS58XTwRmzeVwcMwNem+bqn9jvdjqxqgDIpVENvqhV+ZrjN2xO+mYlat4xMt0RmsDZigjUfz2qugHBTd+GwXRlxTpsdxXOkfpdHv6VKVVzhTeJzsVDAivs2FTrGEyWbaRE+wS6TmRSM7tfjvWKse/LRVUcnhIDBspbj3n/u3Wf4p37hxzg/nkL1JIdN9OxXE1CSW5+NxOBxr5HjXHZTkuFJsnVe43zONyxmvocGoOd7/xFg3XyWcRafZ2Hx956wDQIShNiBwsRXP4bs/C7xGfNMPiGC2Y8mmJX0ph47YaV5jvG+GeMmlMgcIMthcZ0O+K/HPk/imfglz6Rr8vGbfC+VojhpmM/ZMxZhOJjtZ389lPzG6AwLSy+v2gmlPL2p2kQfcNgIkB72vr6uHmes/5jiFZiA1FQx8da7A24JT9T7WLdIznuCeKB0q0gky9WiMCyKrFQdtvLPFE6nFYviMbdliyR8qLlZQKETuBFzpenje4kcSXwRpbVOSoRiKrx798i2N0wzS8nc369s29WZnRyQoeYDup+KNiPHB4Q6joUkmxEQdhJXco3ONmanNjvOZHOO07C7ZCbYVQ6VIreVSsziHvEDuSudTGXodIM1Z1yphdr3XCMcnrUboIEekF1OXiAhMfeUVI7Y1xjdLeFFGBOOmLEWlHwU9/gaN4bRrN/6RKvHmmTMwME8U/j46K3RamOuWaX4PFTr7nOmxZjTAeZ776E+xkcfWJJDQaeMwo9+40d576M3fP0r3+DjFx8h5uo0Yx5i4kzhE4uvtV5olqPfueVsOixDA681wyJG5RAZT5R3BMaEMMPGNsArmCCJFwtNZSQxO579PKNP5RyGuZUuHMDGnCgnFHhgHt1Vc8O3G0iYeRytj4F0xXpzAGjNN0jTQkUtClFqd7CPfkzgh0oh+H0iYkk5rD6R2/5kYKRlYbFXnH7uJfrvF+S7XkSZSqGon1+XtpD/wntcyzvfe2wbZtXnyvhuevj14We12FsNRtyKiCvO9SJiS2UpWLNDDa1WL4CU2Me4CrkXzQnzPaJolVhD5jjE+82xLnRz0F6m+pZ/dE5uS+YK5SPmHSWFQlPvw+fCnI71fVSHx8waJWfKujDaFathVYbE1B1rQvxZ0FjrOaA3H3nRD5kqR/F8QgnQ49yxZ29TMd0hXcSw3tmvV98XxBpXpqWlOMzaendr6L7HGSH2flO1bOJAc99iFkDtLXbX2mDCyaIaFnS+hvewQTXD1d4sMWHnI+aIx2aVub5NmFCPOdXXrdte2JfBOS4dqD/UEZ/bc3tu/+SawQ9/44f58/+3P8+b7755BpSe23N7bv+JaEtd+Jf/8r/M137pa/zUn/0pfu1Lv8bz9PX72Az4Ng4n/ZvAL/zHvOYXgf898EWen81z+75v37uSUgQHPKgUieuIMOXsaisQAUwVsihLzsfhp2SvKm3NE6aSPYi5LoVem8vwpkiqiav/iEQl4BjksE7bti0ko71KXRcHXmrdyRbHz3FT3Ni2nZxPnJaFvfthr9YdkSWgKSNrZooclVziYOuVs4bRRgvwZ8UM9n0ni3rgLyfWsrKMhf2ys2ihtd2TZ5qozRNZKZcIYPn9lEjEmpnb8kSw1sagxz1oteHRLg27POIZmEscIceB0pPIxlTZm4fX+UxSTg6zYJS0uPx9rQ6oAKoOykhOkSxLjOGqBblkGIO2edBzWTL3yxnBuF6utL2xbxtaMnlZj8Te3jdPsIfCT9sbs9LQIwX9sE1T/PDttnwStlX5qLJNotD9O6clABZztStVh13qGGz7DmEhdD6dWHNB+uZqNtkrVk+nhdE7p5JY8gzeJtZSIhjjQY2ZPJgV0LcaMm7y/+LBJ0l6zPe3IL4HBLoNrEfAjCmbPseVB4MEl4PnSA5F0lMskjUjqkhd/cnlsgdJS1SOeXA0q1flTes3TR70nRVhcLy9V4tHEiAXB2CWXFhPKzll1vVEjsC7MSKo7zBW62ERpUIpK69fv4+mTCmJul9dsSeCl0vJDrMkZVFXAVPJtFBBm5Z5rbmSxens1oIy3HZhq1dMBqUUzuezw3gXf45ailvlibJmjSowBwJHJN633hBckr7iSgXrcnalN1WGaQTWhFZDuSJDHc3HlCZ67w5chGLDUrJXfSav+tckpJFCHcErQXvfSVrYeigCpcIpr5HoEko5IarU/uhwBvDRwzvuz2dOJbGW5EoD4opXfXS6DVJJpJ4pyZP0+V45Lwv7fvXvtiRs7Fwuu9sevjxzuj/x4SeP0K+czp/hj/zw13h8vLLXCyUXcl6P5Mi7T67s9ZG97WQyy3ImYWzb1ZXmOhR8TmqjYQjLaWWIkCIh60FTRcLSzWaObtyCzMv5RI35XJrbfbpqk8ObKsoimaUk1nXBovK2j8HeWliCCEkDhnQCitHcZrKpYaN50koLQ7KvPeYJoD7c+moCOarq4yDs1mrdfWxrpjflerkg5kpwJcZLH9BMqJsrTGWFVq+4WhqH6pioJ4/W08Lp7syL7crd+cS7t+8YbTioWNTVm8KGb6+eINu2HYBSUlTWgw5P5JpmLCWKKldxaGUmt0SUgauDTDXDlJT15T17vyl0eMLKgRySYgq1NfYW9yYswpSEtkwNmLH3yth7uJREJboNLCzT1jWU4cQwNXQplGVBW/VrpCGaaGKYGMuyHNcKOLCmCd13EnPeSKzridYbtVVab5RlwYaybRt1VO7eewGoA157JenKXXI5/6aZkYxGY2SlM9h7jfHvoGNes8+jmqnD6EDOC8vphC4nei6U8/u89+Yr7JdBb0K+W7n/zGe5P7/PUlYeHj6hvn1kUEh5icB5Z9HCtAfdtw128cD7CjXU12wY7XELNTRX3tEkGJ2t7mCKLom7U6F34+FypY4LaymkUqh1p14vvDifePnifjrmsrdGtkSrnpTuvYfrlQN1ZVkZDVrf2UO9sNaK9ebJgtg/jIAPRAQZxugaalvez1sfbNcd23bO92e264XH7R0vT3dQjPVUvF8CycTtAUW5W08Ovw0fN4b4fkkSZt2BLfFK+7pXpBNjcEdLdkh2XXn7yVu3C2ywP+685RNsdHptXN75HlAtsV831DrLkiLhptzfvcDswn55pBlod/A9raHukhWG0HaH2G0mN5hJmEh6N7dxa8nHtOZCwsdVC6ULowfY5MnACQ6XlDFmcjixnBdyKWRVdECrnb53NnGr2AlbHAkGC7DqSHt+P7YJBvl5wpMyfi88uQrzBD33UxNwMOwAINwOsx/qLtNibCabDhAJx1xUp0KAJzxbvxVEmNwsUtzSK84TkQA1jN7CWjKso71a3lVBD9jisG7h+M4ScwvYsb/P2ZO+LaDuJHoAGmowanOrqt5jrtbju/m+xYGh3g9W6kaWzMQV5glUIazrbvtaz0QF89KP2z05n0+99rBXMbupWcTz0+SZ2T5uFiyHhXMk6lG92RGlCRI5KJNSWKMCrdXbM9VpzTg/ut3ONHhxxTgghrgBATFNRasDGAEvgBm3v8emgkYknbmpgbiyr1vWTJWeCXoQaoOigg7lrp75wq9/ga9854uc+glZ/LOTTsU8/6y43TclkLiOOUxnP5/7hduL5PZ/4l4Mu0FDTyJNT5+ZzbOE2AE/zfETXOABYI2AJqaCkd/nUMEg7Ki4fa+ZhD6++5PvjxEKOnEPssPGOaeAi27PYMInffh5f4iQNXE6nQ+wqI922AP50TTmWxWQHGurAzQzOQvmEP8wcgk760j69t6wUFAuxcHPViGvfo5rzc/cSZ48q9GPOXbyCNZvRQI5lckA+HXE0x3xnFQDVCSSvwHizT46ksYe2SEDnedHc4jGz3At9r/cPjeKBDA/13jyuh7j4LrvbkccCimmwhh6WAofSqFpnu0EXSTUIwPSSL4G1urfeVkyuWQumyur5px47733fb8VsRJX9/HLqXXQWyTqxQsNUsrse70plXEDTfoYpJIxCGvMGceIextz8QGCxfjWnNCA3HvzfaHEPXXFJlDz/pcP6zafn1vYfJoRVnaGyFxb/TNdkdOhdbdlk0NpDyT6m8ceJrgvQgBRfj+PeVM19g9RmJBuCnYOrIJIAHEWClU4zGrNjvPVqgu5ZEpZWEph2/JRDKHJ15QR62AfbonYjBvcmxyKGwaf/egzvHx8wS999Rf5rQ9+iyqNduzrY86d62GscwJemPQUPHoS3LD472Gu8j3XlQlEWo+1IiDG8eRcYsf/PNY4449M0CPpATi5mlkU7k3gOU01ubCVEw0o9waFmAUwmRIjChURv7bRHdgh+Z5zFj+iyoJbvtUA28box/jt1kN9PMZ/qIlpfPk+19DkIN/4UJH/y8Jpf8XoyhDvg/l0Yl3vyGnBvtXZ/913jP+yoFpivAyPi8W6P1oASREjHAG0ppzoNUD6qa43x1LYYKq4LblYprbOvntMdipE7q2RVN0yVSfEeTvrW8CXEyL1vp9ijPh91ZwDhm1MVXGZ+zwh5jEjqf3/9KfWvFAlmcNSb1v1mEDy4iUsHfs6i31I1nR8z7lezvEdwYhYkx067dYCxHPgTpKypIQ09SKf4SvXft1CDa47OCVgydV3R2vkAN8GrmpWENq+uzVerH8MLxpF/fw9LYTt6KseY59Kghb7JcZNfco5PN+TAh637bEuWsxByKFkOIuLc4r1UByOtTEY3Yt1Wu9McGruq1zxz24Kc8/tuT233/OWWuL1x6/5Z//9f5af+A9+gvvH+z/or/Tcnttze26/oyYIP/JLP8Lnvvk5/vJ/8S/zc3/05+i5/6N/8bn97prhUNJ/C/gPuKnX/vb2N+I1/zbw+d+fr/bcnts/bvueIaVS8pPA9JTD1yPo71F5D86t6/kAblptJKIK1yyqGQdF3aKk90bvjXx3T4uEKHKrJM1hudZrRUaPIHaPAMBg266uziKD3ogqLIBZORNgS0ouYf0keOABquH2ZMPYrdJGi8pkqLWiWcmlUJJQt8rj44Vh8KIUcspstaLFgzIpAkMaHvEpZ7o19lopeJVPUq+QVlE0w7bvtB6J/N5JKnEPbgHcKbfcGZSlAEatzT3aD9/7iJDaEyBl2FHF6Id2okrKAzlpBu9nZRh4paACkpDuh9O97tiwqBISUgnVlJye2Apw2HylrGzXK+GB4AmO7vLh3l88wHcknQxkWuKJBqdjYffn9lo55SNAPQMzda+MWlnXlUttSMkezG2dZVlYxJU6XtytZHqIrHsQJK+Ly+GrcFoWSimH4tBMts7qudENkR69KtK6EdCV4/66GpHMazCv6kQ96MSTALZh1NrDviMq6sJSbFZdi3hCuEYFl4gHVdtwtRSvMHM4cAY3SvEKVpGwJohY4YgAh4iQS6GPzkKGksNmJaFJyMXVV3LO5FxcCWp4Eql7fs3HpiolLahm9lo5371gWe8wcPWiSP6JCOu6si4Lda9kEZb1BLaiqXDduyspne8pZaFVOJ/vWE8nwIN73RpGWPkw6IuP65wXchIGDkllLXjuyxMuGqpg/izkCETlgMtUHfgYo8VYI4KMibwsnry05uBeVJjVtmEKac2Q1VWDxoCeaW2ANUQd5hIVt2EkoZrBhJzcyqj3TikLZckMhNP9mdp2XpVC3RtLKV7tLeOo0NQINI/aEDGWpaDqVXtJvDJ4XdeAGtyWbF1XRFxRSTTz3mdeeVXivnE+nXmxFlpy2MZGorUaynILOXV22altcL4r0Dv39z6v92GIuQ2eBIw5ekPE4YJhPu6TelC/D59/SlTdeqWzsldPoAyM6/XCuq6eOFoKVjq9Vvatc314RA1O6z1aMqadlFMkRQalLOxj9wBlBPLq5YrVTlkXl2Qv5Qhwp1y8ojIZJg465Vy4Xt2OTBTa1dVs1MBGw0WECrVugFC70kxAhkOPA+p2BXHbrlp3SBrBaMWsc39/otbOejpz2lbu787s73/Atm1un9l3zDzB49BVRtUt8lprpKGRVAdpHZEWyelMSZkldfbW2Hujm9DMXNWmVVJOPsdJCO5F0PK67a4oUxasVw8I98G11qOKtkcSU3E7yL3u1Hjubr3ayeWmeDCse9Azq4/h0RkBIz5uV7dUKfkAj8uS3fYgl2PNG+ZVq7m40tvl4TH6T6aPyh5Wo6gnYHtrR39499E77u7PlJLYLg9ctsFn8/uspfDQLlyueyReB+e8cloSD5dHrtYZJtTewFxZTfPC/YtXnO5e+hwYAd93H37M5z4rnF6/gLyyvn6P04t7pAtvP/6Ejz/8Fg9vP2K/voPRaTt0BJbua1BSNCvXupFwy8Nqw6+3Odyy1R1nUMwV2Ipw3Tu1XT3hIcIpnzifTgFk7SRcUdArkYXGhF/dPqMGANdrc0gPY4hXn2fN3J/uuG4OCVMKbWvs+47WmeQW0MQIYCCHSp50D4y3utMNhri9p1yN9W7l8fGR0To5C5qFtnW3EkXpV7c90SEs2RMP1B003lsM0Z1VMzkr6rhcKMP4Xqruja1XTndn3nzmDZeHK9eHK613Hh8eydnfuywFbHC9bvTaWMTouyegt8fqlsPAUjyB5PaTHZNOV6ONQW2VvlevPHeyzSv6U+J0WlzVYSbhgL31UBgRkiT6TNRHEiZpuSmwaTrubzOHBBcxzueVhMDesd0TZ4uuDMK+Jsc+zIw0fJ8z3/P7sWlKB1oxkygOQRwl5p57M7f1nXvYmXCc1ePTykVjT+iKDoOSSiR7/TxwA0AmxOy2G2PCB2HNMcz3L8JT8Ov2hUYoxk6o6ZbPiTNQfJchnwbHTBx0eLqv7L17EpQJjAegmwIIebLHlNh3DRwuBCLpOAEYT/g5UGpx7yxES4ZX/yO3pFxcUwpQqo9+qDyoTvsj/5RDpWlMdY8bbNNHd7uieI6DmyoVBJAx/zOs7WYBhYYqiaocsITGvXJywffjqr7+Ec8aOOAPmXci7lE8qXlMPb6vxfdFIU0LHp4oFtlMEjqMVPcaChh+Hx0i8wKDtWTyEN7/+D2+/Gtf4vW716x9iWIPV8eaz3iecZifM2GM+UXjPAo3SIEngNhMUh4g4hw08xb55R/7e78UO1R/bu8hATmMAzhwIMKfs+pN4YPh+7ZpM3n8fH72TE4HODCBB01P7mmcY3yfPc+JE/6IbPETcmvGExi+N9aU4/uN2+cFmJFTOtTo/LyWEEm0Pm77HE30DqW4ja73RXELVOZc4glszJB0Ow8nzUf/mPMOx7O89W0s+L+4P8KBXx0JccT78BgBEIgeKoZ+zrew0hG3/MRgCPO0KTyxNIvPF1HUiIR6qMRpQgPaz5LpvbOmhdEt4hIxDsYTG6HZicw8sR5nTO/HApKhe/ELw+0VwZWoRITT3eqp/tEpKVNyIo2pkKU+N4R9l0pG1ItrUipxFs3x+76QC7c9pE3VsyegyuzFDtndVKRnvx/dDhClj07q3a25U/Jn0HzPUvfGvhslLyQn0VyRMNZSlRSFYzHfxPzXeo2zkjICKJ2Qy4T2fA3uUXDlRW6iYH0cfd+v0fcxoV+KW7XG+qFKSWE1HiotI4o9dM6p2KFyPIaRc6cUL+5pzS37Wo9YTxQQIoNpNy8Bb2oUbGhM6vftjv/ML/4Jfvn6kq9/+evU5MpCMf0zhANyyYdK1pyHXDlXNR1xlKk+3fq4KewE0EL0M7NB7TeLsDHcOtsCwgUCbrkV5FkMonrAfg6sx4C+qcaYW1yJTJXaUIcZ3eN7cT+m1aoIx15iWmm33VWrXN3QQY7FvHim7a6Qybippq2p0Lr4z+f6Cx6HECXlQllPftD8Dsi/LYzf6vT3K6fzS2xRdFkop9WhxNrYrhe271xo723YPzeLRwRJN7swSRJqsI20OOSHCJo1AJruarPmoTlNcqj/Tt2yFM/uKeiuIgE8zbxHqIyFmtI8q7lqk4P287NzzmgX2migoXDdetgUxloYUHdUXnp8LxT/bDjYOZWPRq1uW25w3TZyAJYhbRmWmAGxWSerF/C0CbDpnC/GAdFKrIY6N+ziv9+GF7Is63LsCdxSuqOxX0qhctq7jzmNtXMqh3n8KtbEiE/6VnJEP3bb3WmxfihwxTP12Jze9rsaKnfMMRR72ml3Gp81x9fcU0/QkgBTJUWsupufa8PSMuEwvehUfnMQSuMbP7fn9tx+D5tB6okf+vs/xJ/+9/40X/wHX+TucvcH/a2e23N7bs/td9VevX3Fv/p/+lf53Lc+x0/92Z9ipH8YNfPcftfNcIWk/ybws9/D638a+EvA/xAo/+S+1nN7br/b9j1DSuuyevVoulkrtVbJxSXLmUkGUfd6H4O9uvqCiMvg5uLqRK15BV7vjRTKMJfrlX1voVDh9lLdBn3bI5But0OmKq0PTKorLfXmB9cIAoaaON3cRqwsiYGDPzarckbIR+tgTQvT4s1sMJIreTiXYpQ106Vj6nZVIi633bO63czmldxLylj2wH8qmdO6cK3CMiKgKg5OzGqy+QTGbgFXGaez28H03rk8bl7d7fFDUiTlbMygqBzVYkdQG2XfQy48TtwzedUCIKnXjZT80aukTwXQR+sQATEgKlYTXQIUaY3cXEmHGbAyDz7XvaI5k9LJQZcyWMpC7439eiGZ9wWJhIyqOGw1K7NxKEBwCMME2vDqa5dznwmnaX+h1G1js90DsLWSk1cvM5OxvbOUxHldWFMm6UwIeLVoTpl1WbziOarY/TP8Xk4IyRNDHnBcyhqqVDAD0lNyOyL6/nthdaVPfxZVdCIjks9LyOjnm30bidpG2N0RakcexJSAIDQC9thAhicpU9KwbHObGa9I9CBTTtkD9mUJW5VQBYhqZYSjwmx0g4SDNxGwYXj1acmFUlY0F9DEsg5e3r/EorqutnEE1df15N8Rl6OXlBgmrOWeZb3jfO9ASk6Zy6P3yd4b1+slICRX9dpbQ1FyXhhDkewqZtZrKOHIEZA1C3UQAclKWRf/jwjOJ5sKAz2q5ZJXpA0PYEsqdDO2fUfV0EgOpYDr4Fa1m8K60rpgpqQsjFExlLSsUJVeKwVjKSudwVZ3zqv3n713n6eGYc3QlDm9WI5KcWf8fK7boz/nXBhjR01CRSvjakVgsqAlM2SPxLeRxMeDAXl41eF6Wqltp/YdE2WvHUGpzVWHJHuF5ovy0i0cSCS1UPFx26nRG5YzWryKtDefM/KykosrwJj5nNtaJSFYVOyuywq9uZ2lGOtaHBLdNlfuGj7Pt7q7LVZSLtcLj5ed+/MLRgoVmO7WgPvwxLRLsveoLmxPgDVDW4GkDrj2wfnujlwKqQvYgpqDqa1tkUBZAQfkWqs+b6GUcqKHNUNrO0vOCInTWihJ2bYLoomUTw4uRrLQbHgFf3y30X3uPZ8Lp9MJXsO7d2959+6d2ykmt9RLw1iWmfxI5DbCFsEhkywKJAddkrFYZ2+VvXX2MQ4LKvMF0QEcPKCd84IJbK0BbkMlWemh5jeBliQOFZXsUGONdWQpJw8690rKErZ4YSnhS2eoYSh5KW4TWkNBR11RQ4A1L56sN59jZhC9hlpSWdZQI/TEZQ0bE6J/131j2/YAC413H7/l/PLMuhTq+YTkxHuvX/P48SMff/dj2rZxLovbzYVqg3Zc0WwMtm2DtGC9s6aCaKFrphlI91ng8vYTvvmbv8aXvvrHefnmB3nx3udAMn1rfFI/4ro9YGyYbAx2TI3WOu3aWDW5xcPpxHI6UeuONcOUQ0nKkyrQ9orZcFUly7TRvX/gKoLbduX+fHfYqbV9I5srPGhKXGul1urAmyi1W4yJRMmZ01o4ne/Y9hbqBhtixqVfaNbRkihRQZ5z9jFkrnjSzZAc+wfNhyVDw8hr4VxOnNaFlBMPD4+udBX7mBQKEKkUZOtQb2MDCdC6dwcPgSUlSkksyZU5UIeZR21oUorAQ7uyPT4i5zMv7u+wNqhvH6htByto6iQzkgzMOmYNkluJCkbJCWud7bo7FLZkh4GHMCzRrYXtm6tWThur0TtdDKNQuqvfzBznrJDu1ed6i+TymEpoRijneHLThriqpwgj9kS1uZ1e0RzWvAEPmKA5u/1bqE/klEnm4/dIRH8fthQJdhFPjx02bAFZTDrC4exQgujtUEya0EMPex3DLbimUkBt3ftPUjQSLp5Mc2BsckczyT2GgU7linFAwfMZ+ctjbhuespkZ1Jlkkthv5bDFGZGQnWzNhBM0RWHHvFZuij/duqtuWti4KcdeOedE6zNZegOXJttgoVjnlKD/MIdC0RiDUXsAF54fPeidgFYk9qkQ9+VQSOoHjDX/bqqwwLRY0uPvJjQEkZyPD5mIkSfKff72pPYTqG/CXuZFG0MFlRLPO+yYhiuzgM6sMogGqPCk3x/XFgq03JQeJqADgZ2oA7OuNOKqcBaJTA2y1xPsyv1+x4/8wo/wmY/fkCzAkcTN3ixNC1Z5otpwuzcw1Uj889Oh6jLvjxzgi81sJXgiMvr/wcnMa4gOPWE3bESf8mfrglA3S74DtpGpshjqDVgkJf185YpQDiT7BzkuktTXTn2iIDYViD8FNj05645xS8CCqzhovLdbVjv4vyzLcZ/6mJaJbqlNQF9TfcUQshY0F/IiAbW5iuIEsW0qy6jvg/vwBLvGuQp17NXCdtBVMP2MdJzTnb5yReInFzGVfkJX6knfmypWHi9pIyCIiTFJ2BGh8TIJJz+/VmMWGPl5RlN2kCWstlPKGEa3HqpADlVPRVaf25S86K0/RTLeVURn0ViCEdaIoW7iMx0gKeZKBYnvIXJAHGJuQZTVYzU+D7s1+ex/Jsn7jDowlrODyUKAUMfocNgph/r2/H1XbPRE/ejdQYfm8MiTjubf/QB9oYSNuccM5IBh5tnCAf0rOS0OcYx+S+J3BwvM7LjfvocXrIHKcFWmKG5zkCjfIC5coROD1mt8J3XLaQyin/mYS1jYXd3Gqx5wX2s7A39OFmevA1jkBnJMG7zZ/2V1sHPbthvUGlPlnG90qmqNaTMVoBXKV3/tj6AoX/+hb9BSow9XAOxInP8I4MGONcUVEFNASS2ekX/wCJiuxzn8ABmnkluAUsfaMtwSeNpSep/QY573OQ4vILGY6lUCrripRyMcxZUSa5nGeJ/z/gjlnWF2xNJq20NVxlW5Lo8XTqurVrXutsZZE/v1kbp7gYwEeJ1TImWl941pyeXDKmJFothDgv9QsJ8x5EPBpPPw9hPKcuZ0/5rl9NIVWIex1yu17X6tf6tjX27w0p9V7QM1uymKp9X7spnDjrGX8Z4y90sBRoat8oSYxWkbj3Eti88VoTQ5JnSGsbce+1jiWcWeQhJZhbwsTAX0MQwvyxhPQFOH7og/E3NSC1VDU0HM90g9+iSqlJzIycGgNjwWWZ9aV8baqSlFv4z9t/h85Ja8t3hnidjItL084rLDoVUbbrXewC3pDbaxMdpUtnSrzYlz27GHgWn1m0QOdeOsfn4SXMm143aSJvG8YoNkEzwNsE5CbV6OvTGHdeIB/R4rC8f+eALJxxYi1vcZC86SGVF4w1Gkqkzw1QIyjh1LrFTP7bk9t9+TZvDmu2/4V/7v/wpf/cZXST3FDu25Pbfn9tz+k9/SSPzkT/8kGPy1P/vXnhWVfq+bAb8J/G+B/yXwy7+D3/2fAf8V4J/7vf9az+25/V61793urUUtm90SMwzoo2HiliQpFQxl21tI7nLYTdVa49DaaKOTbdouJK8oGzOomo843+iD2jy4l8TltFWUkkO5BALM8AScw0dHbJAx3JJj33e3bAuZ29EHaMdUXaVptLB38MSoDlcV8AC3y3LnpbjqhrjMsx9s8SpiM6SDZldRch0lo0WF+zmd2Lb9UxvQ3jupJMqa3bKjuSJSWQoisO0OQogqZUmousywGLTqAAthc2HkCP7591H1SuUU98oBC7cnyMUVZR4fHz1IGT7sM6HSqltlOUxjHhSK/7m9ziCrejVUPKiU3I5ljEHdNnqrSAIQyrKiXWl190KpSEq5utKtUrjVUBIypaRIdkdgwe12stu/7T0CDvOgLuy1RdAhUxYPlICxRACE7on2PC3dQjnIlUpulaNuj4YHieNk757wNQK6sJQlAsTcEjoEzCWz0tbDvJImuBcRBpGoAIbzeT0STykpWCIlorIrkZInHmtPEfS4yZJ7giCCtpirHqlFFagH0s08YVZycVBKEsty8iBvx1W7IgFoAa94JRcsS2EMDyymlBhASSVkoourWeWClpWlLJRUuO5XWq8OYvROySf/7Ajw5pSRlEm58OL+NamsXHcPvl2vD1wer/TqVmanu/sAG9ewgfMk9bqc6AhlXR1eTIbgiRvrDo0YAw2lHOhc2SDGY1Yh5eLBVhuILl6156TQkUS87Dv7vrOUaW8EGgF5NYc7ZODznRlteOVsZ5CXUEvaWwQDE5aFrkobwpBEHdOIx4NAOSuLugJHxyLI75WqYiAps+SVPBpinba7RR16wkINrlnjfP+KYlD3R1rd2LcLjw8P9BYy5pJAM+s6WE8nJLtd5ageFF7zvVey50HO3qtbjaplCQDLbuO+WyeRIXnSquD2TKN3WiQS3epPD0sEyYk9QKJcFtAW49yT0JeHR1fiE6htUFJCc/J704xr28jiFdVJfI5VvNr4k+qWa4qBuoLQQMmIAwmkgBOC9DSl5NUDtGtCUC6XkH0vbuO5bxeK4iO8OAjbRqf2TiJxWhasN3rdva+LV9AmVcQczmutOt6WlLu7EzmtvH33wLt375h2QefzHafTmaWcebxe2LYrqtkTCpsn3zxg3gPsTFGx7nNhkwQBIGlR2HcHOCRRJGwIh6v5TBWCVisjEqEW1fJWI9gfyghjDNpoFHweOVYwVdoYofxnbHXndHdyRaXaI9jq8/reawTDI6nRB1YSIwK63VwZzXpjMGjVQYJhxna9sqwLgisatj6obaO2Sk4BWKqSszo0Mzx5fnm4cF8WUllY7u5YljMfXT+hbo19r9TrzrJk9rHw7uJzZxJhWRZXKcCVqOreaL3y8v6ecn7F9u7C47tPuG6PfOfDj3jzgzsvLHP9pNLaTrXOtQs9nxj5zHUIO8L64o7WoNedfW88vn1Ei48/64O+VTglhg3vUymhCdJJGW0jYzAGRRK5lMMCJidh3y9owpWmUoKwcQUP3rfq+yAt2ZMPUj0Qr4qIryf3dwvreuJ6uTB65dq8n9ydViwHkKMw1JOhshdMHTIixtOwQesGuLXD3emM1R6KRZkrHdOwpR0GbaA5sZxX8rpgew0wUziX1RPNkfxZ14xibo0g4jDmGGhaYHiC9JQLtVf6tvN4qbTNK597H3QZbKPSLoOz3vm+YnSuvaNAUXWwfCluRBfKFzkLmYyZUHeoo6M5kbMdcxphkeD7R7slsjFKVkB5aFsogMa+QSzmyqigntXXFkp1ocxkAYZfLhdqKhRxO0CHuRSSoJIxa1z3jTa2Q8Xk+zreaWFB9RTaMI7E4hi3Su7WeiROZiJ9KiTNhOZAn0jMCL7nGL4MPPlIo/dBun0qrkakB0AhqmHHOxUqP/37Y3R6l6NaXjXsMkLJSALemQmjCaO5YkNot44eShPxMwl8QInzFTdwKPanDhd4Eq9ocTDoybVNe5skbtMMHMDMcV809jABh/bu87SDpQYSkEkAHcR9kLi3onrA+IfClIQFYaiUiN5gfIvnOaIA4ym4IhBWSQORdCTZTW5KAN7P+9EnwIFXCwswIqk9oj895Ulm4tmTrxwqv4cyTtiR9ShEIYBmhwX8AaSwS5pGzosVfuiXf4gf+K0vcKrrkTCd6gxHAh2O+3DAR5EsdN7pptA1f3/uB+cznWNj/j5YgNJxhb9tbLtqqBznGGIvdmhEqDFMQzlsfsIEBT6txqDEs7XxKSDAQYR0wDQpu73YtNeRaXoZkKFDH35GN5Nb/7AJdCkqKf7soNKELFpvTPVlt9TMJElxnpjW856QXsoJ0RS/02lt9/Nk92Szg3qFqfo8hkPSfo6b8+xULLLJXPjn4+skofbTWhSrxLNUTVioWlgUzti0Roxn1ZrbHeUYU3Erj6ftwOYEaQIa0ADGcvZEdqhsiPo8YRK2YCjdbupmhEKP5nSsJ37NU/3XQqEwo+ZKKb3VOKdGYQs+h5VlRQPaGaPRW2WrNcZszEqi5GwBDi8Bjt4KOzyxXr0QB51bBR9f3MCcCZoMs0N9LcVMPWGh1jtRvoFXOPhDmL9HnH1lqtgNByhTPJvWjSTE3tb7Qbd+U9+RJ6COJFqsxbOwyYseAE1ux74mazYAAQAASURBVGkBJXQDnb8XqtSpH2O3d4+R5eJKeSaBF5n3YYd3vK+lKNgaYT/ninvjOHNpqMxMljOp7436MK6XK1PNxhXFFlKoHTtI2jEdeL2egCUs+ZqoB2DhZ08Zwh/59R/CBP7+V3+ZXZtbgmKoZK8ms1C6iXnDLekc4Jig2W1G9plFJAoBPcrBBJVv67HG+j/cJi3UkRww8bml9/mZ/r5jDDTH2JUJZUzltgmAef9odTjsGucbVaH1gCGZa4jv3xzi8vdrtWHFbdZyyX5eCXi/d4evem+k7IUE89rTjBXOHWE1+t/ulJ8Tlss9oxs1bYy2c902rtvGeqeMZvS9elFhN7okLBX6JVH/n6D/pUSW4vN572w1FHsClBq9QxK3nJ33Qlyha0hHxGFUIaA1Zv/yZ9daDUswmZsPh2LiH735njplV/NmwqTx8pw9RsQwtm3Qh8d4l6TkkrGC933x2VQi/iJhj2pjkOJ5dHOl0pwzCaFXh8kV8bFkduwBJmCUtSA9+rK4eqKMWzHnEjayYjEWY80U802jg4eKjJhHto3RDet27FWGDmobDPViGTCa2XGGSaHUNOBQSVINtTcTbLhSOBJA+BAHY+feNvqtKigRL5eABEPR87djQz7vEUpjEnOFHWDWhKB6gJ4q6bZfmmM11O/6GF4MfNyf5/bcntvvqpmf8ZZ94V/4f/wLbuv2cP9k5//cnttze27/6WlpJH7yb/4kJsZf/7N/nZ6eQaXfdTNgA/5N4N8AvhE/+520t8D/AvjfAOkf8drn9tz+gNr3DCn1qOwoAjpc5WGIJz0lghXdGjtCtowNYy0FE6PWnV4r67KwLAtbn0GKjHTjVArkUCfaK0kyJl6B1PaODmFdPAk5xi3plkWoeMXriKyoi+hEBEdciafVqKwZHctumTAGaFTuXK6V2jutdQ/kh2JDo5OS20hlzQ5BiFeU1dFhaEBUynJe0AQjYJ15yKx7RdQPrjnngHEi2Gj+99Z6hHdDOn8GuBGWtbi9mrl10aiDYQ2TEao/Dmh088SzWINIOEvyAPS+76SkFEmczie2fScXPZIH1gcVT2yWJXvCAdABEsHAknLIZXuCpodiTimuTnStHuRvtZG6y8ujQpUtAqWCK740RpcjmKdhSzaTdZo9AFm3hplbffTe0eLKMuuyAEZvFtYMiTZcPjpJoWhmrxtJhUrzxO7pxN1pZV0yOSWWsnp/SHIkF00Tpury/TNIbZ3temX0FpVqiytUGMwsvOq0HJAjuTETVBqB5HmNmpQSlVs5h3qUeZLfExe3CtWsXsGcy8p1248KYo9YTHsND6yWHCmHAJq8grWx5IKM7tVzMtBWMFzRRYmKqeEqVNI1AlzhV+9XhIg5BKgSylbGdt0owzir2znt9cK7hwf6MPZWKTmzlIUWAV+JhEDJi6tAqXF5eMtluzJwOfne/a7dne8cCByNWi9ctx0hc//iJaJwyoLVHWs7Qz0BjDlIgLnkfU7Cbq64ogMYw+0O8pQji0TVGNTh9mzdEn102uWK1/4NGEobu1vKZQ8AZnGo0hMnSrOokE6eTB3VSCk7RCgW+S+hDXW1qyUk7WfyLGUw5TI6OpSUovpXlK35GCiloFlJeUFwhRvr5qoeBgxFWajX6olOMr020DO6Zpq9cytMBHSQi8+Rd+c7r2QcnUYnJ4fXevN5t2um9YHYICXx6lk8qZayz6m9NU6rj0nNGRlepbemTM8lxnQkWmygYV/n2QKHUhFlbxs2GiuCykYphWVZ3N4TwkpmsF/fcXnsnO/uDyu+WWB/PqUA1jpZM9d+RcXnnlEbp6Se1BBXRWnbHok1pdVK3a8Ma6i4PH/KiaQnDONyuYJ1VNw2s3e3IuutunITs8rekw45F9bl7EpEpYTKhwN4Oa+c7l9yuvuEfdt4vF4Qzbx4+YK7u5dcL1c++ugjHi+PtF4pZY3+Ddu2oWmnWKE0V1EZY6D7zva4U0NBads7e3dFI7cYnUlRr96uIxL/oXxUuwfbHV7BA8gEFFAUTGm1h/rAcHdX8eSJRFLx4eGB8/lEzkrbK9e6O8C07Q4ri1CKB5Axt1w4FYdyB55ExaAUMBO3gAzrClFh7w4Njd6JqdPVZjRBgJZFlf2yoR3yKbG9feS9DxYSysNDo+41EupujzZwe4/WelgPDlfeWV9S7u95+cEHfOHLX+aDD76EpBd856O36N2HyEffwgT23rjWxugbQ5S0FF6//z7lfGbfXnF3Xsij861fv5BkkM8nWqtcHy/sVwemlnsHeavVQ1FRYm4/nxa3YuyNDpyWlSVn9uvmN6B7te11XNDzicfHCw9X7yvLkjktC9rxYHvb2Ydb+gGu3lSv7H1nXVZq3VypJxIA276z5kwuCUmZPqDhfUhWh++shY0DQsoLuYRC3BhcroO+N4oqZU1oFQeWpVG1U1I5+tcixZPo1dcPDYU7Ag5OomE/6mexvncmANwG1D5IWVmKV4Dvl+5Ac9zL1qurZWyDlvZY/wZ7detIV3N0uLuUhA5ltMF4uLJL8kkmVAtF3UJjIUEJK5PhSllEUsMTPwYdtHvaqwW8MpMYvYdtr3iluSZFTTHaoerYRvN5vUOXRuVKiiQH4lYNkgVSguZ2GAYsp7Cy+T5tDm1E0thuKjsT1iBgH+ly7JVTJK9bJOZyyr4GE+CaiSs+qkOtNmr0Zz1ghzFcNSBnoduEUmLvGcCLL6k2WYsnqh0BWo6bOhA695Be8S7iSh99TGs6noAqhgX0r6Kh7hoQQajkjADfcnbb5akiMSEE3xv4XD4VuaayKmZRPDITTnokqDxJFZBJQPwKoRA0MDE+ZTc2oaED6MUTyDjcNFUec8p0GfQhB+Q9YS7DDjWMmYyeCfakenhl2ZPE3FT5aKGgMboDaPN348Ry9JGpLuTdRgIokAOInYnTHuooGkpMriQh5ORrox2PMxTNzCh94dRPvPrOKz737c9yv91z93BmyWFtlT0B7UUa/DZwyL/HPCpMFYTaXeFRNbmKCk/skphWxHIk5OMpHO84FRwgjgLxOWnCYdwgKHDlYGHaRAmqvjeVJ5Y88zUOH/l8e/yWzX47Yt6J52KRwA2VyKON2BMYAbJoqGVMKJEDvphwSesOkpSCn4eisMhij6Dqtp8TuJGAY9z6LSNitLq58omFdXqsEyWKKjAvYGrz3Losvh9SXNlm9LivAqHKhlko7ErEHgyN6xchfnk+PDv2NN6nI9lfXY1T4iXDHOJQ5VCSEYRp6W24So+EcrAEPHWAIOb3yMz3XSXpAcDNe4u5+uph/zf8rnV8f6cpBUQXa5QEVKW39xdJrqosgChjCEhBcmLUDeawM1dHleEFMW5FFgqmAq5ujaucIuFefYPdp42bQ7UOhpY01bL8OucFllATchgjwLkncAQSUKIkV1qNudqt2t3S7jZ3ew8f1tm2jRQFOJ6g91hD9occalluBSfxIIdBClUmTbEWxx5NiM8JFR1fvm6AgrH4WdGGz6geKmGqmYwgY8LI6xhapZTjro0xjnN1StlVYXIOpXIHRlPK3N0X1j7Ytiv7tkdBTT4KnHofgCtKyniiKjQGVo0v/f0v0cbgl778dbrZocwzVYGmBaM9nYujuGzYnIeI8W5P+qgc8/tcA0Sg46q1iMfGcsmHdX0bHreorR3viXDMw32MA6I91goJdaWIB/r5ZaqFq9tST4g25msHwhywS1nCqs/3oNvwGGMpibo12lSOtYH0ANU0MZURXRG+YSTSJyvlr6zcffclL+5eU17esbfBJV+Q/ULd95uiUCgQSlKWVND0gtpOrkb268LbX6zwtUEuCkuh1spo0d9yQpcShZc3YFrCFl6iiGvgUJyrUo/jO7ule4t5aTgAFTHLYlG8OcxjoS2UwnzajN/tblvde4wyf1ajDboIZVp74oUgDptmXzuG3SxNw05tgt+tQQ8QKZeA+WK/5Oe4m/3jtIketcXal1AcBpz8/rS3NXyLgz29fjv6CwLWb+pzIhzzsQyQOtAsx7h0cb6p6O/KVFm8UMtqdxWpAGbn4u8gGWgKON5coXO+ZMK9x7bTfC6da8u8F6MPukQsWObe0+LPDjiOgNNNzIE1nkB0c76JfdTcMyvpU8D7c3tuz+17b8u2cLqe+NrXv8aP/9yP8+bDN3zm2585xt1ze27P7bn9p7WlkfgzP/1nEBN+6r/wU8/Wb7+bNoCfB/57wE/hQfl/3PbvAv814C/+rr/Vc3tu/0Ta9wwpzUqLpBKVwJmcpu+7B88lglJu8wN72wL2aPSQnnV7pJ3WKot6Fb6DQtcAnUAooRLRjkNjUoeLao1A5OgM8bq6Hge5UsK2bWyeUE0Gw+XHVRwiSM2DXl6NFRU/STifVlKaFcAWlaUe1NTFA7v7XjmdTgiJFEkB4rCeUoqkeyhN2UxchVe63KppiKDkDObMhLgkD2603v0zciItboE1wuLGzK3QhgDokUxorYciEEeSwdS4Xq/+ng16T9TW3R8+gjtjeKLrdvwM9ZxDVj4qXi0Udrph5vYaWRNLKbSQRQYPrCYg5eKwSYAPHjR2FSdNkRyI4L3b7N2ktpnBezjs7FJKtF4RGW57MRoqylISS1qj8kkYvfqhXRVGD0s39arnqOxsvR0VYVOFS5Gwn+KoNq61UuvOUhZU8/HcTGdU2IPhIyoj53ljVmvdUgszMGdR5WyuKNb7rYJfPBg+BoxRWcLyyyJJs5TiNj8ioVTTySpHP3OlIj0q4UrJHlwfDTQSWjFuMPNAyQz6R2JkWfw6SymRePDAZy6u0JHD4sGLST14u12uPF4fPYATAaiS88zfRWDHr6NLZ7tc2fedrbaj+nUM4bScKaVwd/+SOjqDTu2Vx+3Kut5Ru4TamiskGR5ImwFZVb0lEkfHRov5ZCclV5FKKXvqRZXaGxKV4q03B29QavdA1pzbXJ3Aw2BZlRqqGVncklHwwF9SIS2L2/bgak823HJGNNObQYvEgHpV7bBG7xVPYXsiR8UTMojQuvcLf+6JoULSzN39e65OMxwkJBIR7y6P5CVR8kJZF5IN1rVw1UGvkcYQcVgqa9hoQkkBq0RgtJuDPEmV3iopKUvJ7L2zrAujuY2OaGK06gDQ3T2iGUtQsoMx+75TbZCzB4OvlwvTrlNMj0DhMELm3YNx1+uF1irraT2CjuYDg2HDK1mX4lDEusa4b7xYV2rt1L0BgzQ6PaADCwn8pELrnbZvnigdzftnVOPqDNSH9cWyFIc8RWlti4rsTsn+vBxSFRBXtptr37bv5GVFNTNaRcihGpBZljOqiVIKl8uFdbvj4XJhiFLWwrKslGXhk7fveLw+uq0dHoDOlwdaq9R9I+2ZkaedQOI0QHuDfacPD/7XqP50yw1/Zh6+j8rVud5xgyvdqaKHnRWxHnjStz9eGTgg5xL5ndPdmaTCZbv6OFxcYaxO2xzCuiRsPzRF0nF4ArN3r5TtGtXV3fvzUhYUYa9XhuE2bwJ5zRSLyvwMW9+jmrlR0sq6KDo69EpvHvTv3cHkkgRGopmD0LU1Ep1WfW9RW8FEWF+95vNf+1E++OJX+ODNF1jzPdsO5T7xsmRevbijdaNIoteNnhLptJISLDmR5cxVjTX9INkSqXUevv11zDb2nMivChe9sl02xoaDYCOUgvqg1Yq0waiNdVncbjdJWINBkoJmVxdye7+GbhURNxtRMUZrXAKKbmOQV7cm3EL1S1Tp1a0a6dBTZ9s3OkbvvvdprSNZSAxaG1yrV1hLJF9aHQH5JGqv5ISvSxH9L06cYShJSvRlnyOnFUtvDkmvpTgwNtqxLqq6hang1exuF+sJRBtuPbHXNh2iWEpx5ch9oyR/L1P1+v4I9LewAnLrC09QdRUsZa+on8oo1RPT8iQRoPiae1pXskXioLp6YEaovbFdr5zPJ++z1W3xLNYa1dsa3c3Xh9Z8bCQzVzqI3ZiGboQhrhA2phWe+ZxlnjztYqwvFkpU9+/7Tm/Nleq+T9thARUQhLpPyyQxCComkjABx4yAE5/YWGjI5PSpVBIJnRaA70w+SmR4pmaDhLLRtI2csHqkrsFuKkSj9QPeM8QBDRys1DFVJEbAB2ElkkMh5wlgZOoASUoaygvdlQiY9n1PkrpRuR47GgcB7Kb44AxLP84T/ru3++ogiB42O568D3W8aX0SyfCUUgAFctAODnPFlurJeaLHfmuIF3n0J0oaolNB48l72U0RCzj2moKvAxYguz/Lm03JfM+ZpPtUQcNM1sWYR6calX/uUxW5W5PjZ6bpOKeB78mtD5IpL7YXnC4nPvOtD3hxecH95R5tyQGduVcWB+fmu8+komjs458k/YhnMgJaG71/SrniIOGejAkbEkoIs//e/iTEy+McMR/QVMLFjh5/JCjd9te/k5mvMSlg4/kdzMYxL81r4RgtNzvrqXxz9O1Igh+AWvxTZoJZpirXLRk71TLcdsln12n91Vr1Qh43bQ5A6Uly1GBCgQ7/hyXPE1UJM0g5u7rnsnhim7Cw7ZWUFobdvv/sqMNugMi0GLf5hvM1o0eRSfGkb7zWgUSfI3qop00wzY5zH0e/cQg5hf1V7I9CzUbj/xL9xM/BMeOEitHwLRzzF/z9x9H3j+Q0Dv+ITIWwAKLmkBClLCcHGnCBHAnAa6sVDZVUV/I0EtP6/TasHH67qa9NKGdaGvqUEN8jfu57ylCUO+a8KJzpHl/SsM00IsFuRm31sCfsccabyktemHYQDkw1nR7nsBTqUszYTfQjwe3zJOzf51ysGBpKQ+KLg/851qkbTOFnQeYc9ARk85hGO9ZqTbHPk9u6M2KvrvE+08LJFfHm9/S5P+cc/SRUy4g9oTrMk9MtVjWBmRLPL2U/y3h8w9+3tUbv/ixk+Gd7Ed08tws//A9+mGHGN77yjWN8MdeduOYx/9u/7fHvY+0LeMNfFvPKcBViIM4GrkKWslvddRv0UC6bdq1zopk84XycokqKe3jMo8z5OJ4H6nGUcQNB5ufmOR2LMC3m+ugRN4q/i/vTY2/au38vDZgNAl4ZrjrV8TEnAun/k7n/mfe4L+9xfu8lazljpgiVvEJZCqPVUB8a9FHRsERWERbJHk/RM1k+QH7WuPzgb2EvNoedi2A62LedJyJTx4Row+L7+1zuCurej2c/Us1Mu9vWO7U1sqZYS/yG9tqiz3qAJ8m0eox1dJif3wzIHKpXE1jrI2BX9f7X2zjOIkbs8ZCwW5tz8U3N0MeexrIZVVpC7MsGyfxcPq3Q53g59mFyUw+cax1zPYv1sU/1oJiTUhK3eG6uyG6E4lLMM66EFu83ISsZmGmcoW+w9NwPMO3ucEu+lNyAUA26hN2oRiy5NXrMmS1ipXMs6Hw23ObtG2wW+y2EEYDkXBvcNXIc42RajIKPM4340ARobQzs+7jo4bk9t++bZpB64s2Hb3jvw/f4Yz/3x/jstz7LB9/5gHVbUXuG/Z7bc3tuf7japxSV/sW//mz99o/TBvB/BP77wLd+D97vHfCvA/9Z4Cu/B+/33J7b73H7niGlWQ0smqKqPR0BuR7VoWlWobZBrY2cE+u6UHSFvkeClKggr2j238GEy3UHHMaYIcGUMgsSMEyCqx8+PQjqB0vNyrIslFLcHqtWUqkhez+hH5dhjrAnhDLIjHbbGF7FIkQFr9vY+fk3oCHNXrkpibpX6oAlEUGLyvVypZQMecJNbrVjRoAVQBxWbzYAEYTNifW0enVtUVqHrCu5LKHM5IkNRbjumysIrSUCpX4d18vFZfTVqyNH34/gqKsRuRVLt4aFspMH/B2A0AB49uvmdmgicUD3ZLpEMqPtjTE8USYhUe8VlxHw0+QKF2MEZJVItVNld0Ai+bXmrNStYqOTc+bVq9eYDT7++GPvmNn7V8kOlqynTBkCYctzyplSVg++TcsCiEplP9AncThpKa4OlDRHMswO+GlKL2OexGy1uq1gUtZ1ZV1Xh3MCGpoJkYjEHgGTWREK43i+GkmzlCQqY/shhW97fVK963YHGmCaBHDTu48jsVAJiGssyQOAosIgockr7krK/i3ifozRycviQJgkau0HADO6wxTznpSyoMlBihEKYykXTyLikI/GWBw2HEDbK1vrDPPvjUwYwAOwuTjkcSh+DZe9MYSyngIuHBSUNZ84BZSimsm5UFtFslsiDmqADi6TLYjbOrSdpAVMI2HiiWJVB+F620nq1Y/JqSkQV1uYyei8ZFLAQGVA7Tuz2n1aQLigmLIui/dtAZVEzolBjySFMoYnYHJJMBo9ZVJecNWLqOCP5ISZMEZUBNMwOr1lRKF3V5BKyW2NZmV46yP6uScVSioBjSTK3ZmUlH2rpARrUqQbcj6zu1idy8fXGpWGGhWPO6dTYd8bSKKXgbGRkyCkoxpdxqAk4bE1kExZCqRMyjnsqQoS1ZApJc7nlXVkaqtozHEt7CLGMDTlgFyHq0aMwTA5quvZYFkWchK0FEYWTufCGLCeTqDZK58FsrntUynCpjuX6wPltLKUlRZVmIMIWichI772BFham9uDpLJS9ESvDZEcMJFXvNekLj0/k9XDKHmNxHhDdFCkQPVu9sknD5yWhdFvIJ0Pu8yyrmTN3J3umPDumEmK2inLiRevEmV1hRuGW8j1V69ovXJ5fOTx4dGBhDGQx4snrvarz23Jq9Bb72z7zl7bDYAVwTRgB2bQX8lZQmEG9roF2MWxVmGzmtRtN0pKdMTn8LJQWobhUvIpEpOtNYdSl+zJIhyqOZ08seLJ+nEE/zvCqWRUPRCeFNbsgN7I2W32NCG9kTRTpbNvjdHdknU5r0hPLHmhLIlkrjaxX3a2rfq6cMCcPp5qr1gWNBXWN5/lgx/8El/48o/xmc9/mfsXX6Asd04Y2MbL906U9Ib++JZ92/waru94296hD4X1dI+kxS0U65VmlXJ+xWd+4EdZRuftx79C3TZShhd3C6clsded6+5WrqKR5E6JTEa6KzwlTXQzt3JBqHWjbY2SPKFcSmaYJw3uzwkCSN13t8CcIIcDgp4wyymDuorYZVxZlhIJ39hjhY2mW7cadXdFzFF3hnpAO6lXZUu3437eqogNUnJ7pt1oe2OvV/I6DbdchZM+GDJAk6uu1agmPxTY/P9uc6gsKSHi6lKtOqQ0GBQSJSvTuigprtTVjSYORcjwvVlZFt8ThE1Hb4Mah+aI5TOGW86oOFRiMcdLJJCn+o4GsCgqZNwq43J5ZDmf0CXRa48kjkbScgQw6Pcq7gQCnrThZuuQpmpBVFUfyY7IePTR2beNTud8OqGqDob5VuT7t83EyrTIiiT+hGoca7upLYypqBJ2t91GJPDlUMzo8TvgCqeIxP0jEpoaSnJyzE9uzTa/i++dSipocsWdPgaqE1p1yH7artmEcbgpo87UrIQ11UzAD5sJ2gmNgKvBOCjVh8VZyPdErTX/jqqxTwj7ILNQjYVZ+e8dg0/tO1PYf0mA7CpuH2kMJOx+TN0i2+LcMJP/mGFtHM8HXEln3iONtcNVHOdnzysPcCaWjN7b7bwT/06hkqaiR4GCW/dOC7YJzXL0dWN40jb5WOjSfVyoHEqfrhDg42xdVwCu16t/b9Uo4vDBnbPf13Ur3D3c8cF3PuBzH32OUz1RejmKNoYMrBBgle8DUvKz5Ry7M8l5XKfNLj6T4X7uyylDyrfXIsc4mPdmQinHxR9J+afwBTcwIEAHDkUjeTKuYj0/9s2xBzXHIAfzM28wwdxP+XNOBwQAnlzVsKdDNApZ5ncOMCxgpqQp1rKbxc4cM4KQkisoavTpw9qyT9gvHaDLtOjTsIJzNZpI/gZIlFLmlnIVsuZQyYprDNUxUXV1lKluFPdlnk8sXoPdwKqpiOb9PizwxM/QE/rSWLcRKHnaaDtqNUHYp+DYfL454B8H4BzImuDUnG9msQQmrsSmAUTMRLdMYJWDnLlpjnlPtuGKz6J6u6dTaY1pczbHh4/hVLxYrLeOaqifjYHkQtcbjDT7ATIhQ4f4exQ9pFww273fdz+rzD2C4CBHtxFW59F/kz6Zc8cBBqqWgAJCmbo1HwP2dIz4POvA0BwjoQAX8Zaj+C0UmTR5kdjs7PMuJhNUR1i+D5Z1BaL4J56qj3//XYk53myqqChCOa5TSIia77UDiPHzhH9VlYQln/Hm2WQ+m9Z6vIf3uw5o9z1JLhJnXj9rUybeNAsIlbKsDqb3jgVsZ2usnb1R9/0o+pnrwgDEBj/ym1+j5MzXv/INGj3+3o45yK8hPjGmIQ3rNp8H+6fVwI45hWMsasxbT60wbcT7RX8b5rEmmaApoWJkc2/l32dYzEiDAI0kBAYD2Az53W7eH90+2SGlPgYj4JmU82G36vafckCyda/HelaOMeh9eUjAnLZy+n+95J/6lTf803/8fdbzC/Zx5hsfCtaNtzlT+uoFFXXHRLHRaJvPgykXNLndML0zRsNQTm9fI/9hZf8zH7L1R4/nJeF0Wujd1bOxqaAjoe7jscEJfsbKgltbe0whBM0OlbdhRNGZrzM9Cg7hCRRtU/PLwcA+XI05pqdDvczjbAFdEgDTLBj0v4r9Bq5eBQw6EuMAs1DGklAZCvVSnyqQY9UOADmuHXXrsgmOzvlgRBwi5ZuCZI+f9VBM9fBcOq4xBUjZZzwu1gCL908BXtONLqE6FmuUKa62GXvFMfdOsYHycogASw/lJHV16+6FpdMWjtEj7nDbd8744A3X9mt1VTv/mQq+hjyBrCSWDZnqZqPT9x6v11CKvIHIz+25Pbff1gxevX3Fex++x4/9/I/xY7/wY7x8+5LT9QTcxuRze27P7bn9YW3Pikq/i/YJ8D+H/9z/Af6lP+E/+vYD/JVf8HPUR1f46PKP8b4/C/xPgf8J8P1b1/rc/pC27xlSSilHojW8t9utGmvGpcdoUYnuB7XRE7277ZueXZGk9ep2Qr2jMkh5gjgdEa9kc1UYY2yVfe/osiKSQ02ok5Kynk+UCFrX5kBR715RX0pBFz8wt9qPQ/AwY4iSl3QcWM0G1jujRTCdsE4zZYRqygwwqiQkC3utERD3IO7ongzsvblFUXeLmkY77Fv8kBdy36KUJQdodbNkKOsCaohaeN0biFfwtLojOHA0zPzfw6ttWnOJ7yTKaG6BlqbE/oQs5mE25NhnFakcQek4uPdOXldKyce1j7DcGd0llVPOrHhCbQaqVIVcwr4l5M63bXe1LIRlWQ/pfk0OupS10DaHWt6+fRvJeiVnJaWF07qwRKC0ZD1AKrGpzpGOgJaF1PeK99Ocsx/YRViWAkx7NSLZJZFIkqhs1KMaclm8gm1WTGokokxmIMaDCnN59ViDHcGd2bdEQor8kHb2irIRUJ9XticmpJQkTXF5L8OL4IUmhSSUcgI61iuKJwI8sRswRyRrPAlXvAo2OyhXWz+CxnO8akoBpHlgM5d8HKZSzpxOJw/QRAA+aaLW3SG0iydHx5DDni3lTG9bKFVk2uicloXlfEbEVbvW05kxQFIhrwvbdqVvDSFh4jYFKUVFX+u8WFZUjKQRyB+RqOuD7XJFdSC6eOVlnypY5uCSGGUplOx9ojdXeyKCSbPvp6i4UzWvjszKGH4NY3jSeQwQUyCRl8UDic3l+nMOufUAiWaAz8Tfs7ZZtTno5tLkRTNLXmhtUPdGtw1Ng9HsUMCyaSegLgWec3Kry96Q5hGjTnc1n0hcGK5i1q264g+KaCYv2a2KeicnDwn3YfTaeHe9ktWhEcGrqUvy75CnipgqaKeNwbq6XWKvrvCmBqYemFVVRm/srZESgAOgZrAurpzXIxGVQpVoDAcPZyWtz5cOVWZLqCVGb/TeSOoAClEt3IfFfJhZUianhbUUxlhcWScnrMIgUffmajQ5sy4nD85HtbKQHNIYnZSEUxmRHBA0L2gqbuUQ/bzuHVcB9ERSKZnaNnprARiAJdi2x6NafN9dmW3bruS8sKwry1Jw4K6RSnEVM1FonVU90aMCddvoo6GauF9Xcvbnsl03tycTVzeyx7DfEE/gKDsWSjR7rLvDjFSSW4UNI2VBuitVzSC0BVQhKpTiNnpHRTmJ02nltKwMjGYdTeJ2aWME9OjrhyfoPDlWilLDHgAAkVDNGZ4TVPVgc4q5tOMKQCVByvSc2bdGZ7AUn6MHla6dvC6UsjIICwdV7pcT5/PGOSXsWrEG2ILSOC9KQ+iWON+def3mPd68+QE+84Wv8MHnv8jLF59H9Yxxh65n3ywtlWURdGx82H6LrX3CtlV6f+vJxGtiPD6wvniNpBNjGPv2yBgVXU/cf/ZLXNsF26/068eYtFBqU1JX9uqgQsoZzdnXozF4fLyyrgs5l7BliLkQX0PEXC2r945pRmPs9t7pOCiUkoaKnleHeyGuubWKzL+v3J1PCL7Hedxv8IOrHhnnZSFnV17pBs0Ia6tZSdxnmj2StJ4gttEZrdP2HTP1NTa5UpsNt3EYoVhZ+6CNwfluJYhxhvUA2hpmrk7w7vEx9nsTQhbaXiF78rFkRS0hSbm0LdZbh+pEfM0Ug20XV5dSV5jTSGzo4nOPtbi3GMPpCkb2ebk372sSthRKouTkIIkI6/mM7pX+4PucrMlhxGahjsEtAROJl9EdwtDkcLL44uFzpAiGz5MjVHVyUkbr9OYQlwMBnuj5fm0aSka3hM1NBWY2C9ugWRU+LJQ+UiIHHDGm+oO53dphRxlJGF87/b41a27rmH2f4xXiAZeV7PifBFjCTT12ghdzHMz8jnNjN6uimbDieDaRKI5f8AQQkfBKB+Ax8D3LDGPPz3XYl1A+usFb8WaTxwhQIVRMVML6mSgk8b7jyjP++qnoM6ECiz3xMLeYHDbnmFnEcLPnmgyOqybd/tsiUTZBDc+J+f1NJQUcH4nNSATOin9VhUxcYyQ9Y9+rM4EXqrRJHDyZCewjCWteWDBCeWPf9+hnbsdURChayJJ5cbnn/uGOz3/7c7z++DW5ZTTgcjMjRC0jUa7HmSEu7bB3jvReQDATkrglCA/1Yd8IHQDE8W/mf8Y12pHmn4/VP+fJr90KXPyVh5qR3QpgpsrK7Z82nYf9GkK1MmmOZ+R24zp/V/1sMNWTBI55RQLycnXPCTf5OjGVsCTS+tM+UJiKeDmyyZFKlalA4+DoCDBCUjr2Vr25CrMnzAdZiquNxP3KUUghmtDklvG+VvnnDHOllGmHU1JAB/OG2G08tdaQUKc4nkeMM7/+KH4J8HHYp9U5jiTxHFcBrUyoT2PMTEXk2VNcXcfPhhqQ3YTbjBs0NpWCJrRCzAYj7k9K2dfSPiK57+D3PB8b4bIsE2YM2HDE5Brv2EOtaYIIkpIDN2OEcoermh0WzlHxNOJctjdXOX5qZTdVQSSKxyBgg+aqhimsOv1kYL4HFjvO4H0qeM35J87iKWk87zn+OEA85ro671aArRNSmMpVSXx/bN3PN96j7VgnHBb1Pfy0oJOA9ByeDKv0ANPm+SVpPmJkSadym5+9ZsGeBhQ3rZp8PZyqJ+KQZ8wT/rz60edGrHvjOtB9C0WlG1Qw1yYNYCwZrgIds8csnsspR7xE4hzd5w0+1gsZyld//YcREX7pS78EoTB1gEpxTvVr8BjNiPvgyo8xM0r0H3VwZsQzmSpQIhPcmmvSDZZ10cQRcJ7Pzd1u82w82mMe9QkcojOgCqOHoibi1oXz/Bk/s1j/JAk5FYcbu+9NRhT1QJyXOtgQsFBbUmjmKlCndeH84T3nv/maP7W+5L/6L73i9XkFEqYrl+7w3UeXlY834W/8/CNf/61Q+a6VSY5YqCu9/3Ll83fGD78Z/OqHlb/7q4PyH71gvN/Y/1hjtEeMCbIE/Nnn/l2j6MP3D6N78Ykr3d0gysBWj3nJzwtzj3BbZ3wN8Tn6UOCLOdRjXRL7AwcPZ6yyhcXcMQbtBkzNta4fY5MbfOM9OfqCcKhWjREFXK5EJBFXTLHHMFFHNWNPnYrPSfOzD+W8JgxxK9Ye6m5z34h5LHbOl/4tsyt1x3xPXH9S36+YDvbavFKJ2CvJ3EfG2DjmdzvG2dznTNW5ubfIclOUSylBVsbua4VwA9EllKx+2/YizhYwNObv2GQ8LXgQc+jV46phb9rHvNVPYKjn9tyeW2puCf/Zb32WN999wx//f/9xvvIrX2HdVnL/ntNqz+25Pbfn9oeqTUUlBP7av/jXnhWV/lGtA38b+B/Af/sB/sf/dfjBV/FXA7776Mf3b3wXfuHb8G/8DfiZX/2Hv92X34Of+EH4838U/vavwf/qbwF/CfhR4L/LDGE9t+f2fdG+592UV9t4he/pdPIgzfD/9iozi0TXiBBPwkwYdVB1Zylur7LtWxwEld6NkT35cjqt1BrSwGO4chJGq5XrGCw5AmIxggxze5FI5NbajyBit05HSOJ2JcxEAp5sysvKLI+qj9tRKT9lnmegdVYzixmMgeZCG4OSi8MhYQEARDDGgwy9d//d5Ane3gf7vpND+r73wb5VylIQdchBVdlrJWeJe+C2JP2JksKwfihdtO4KUTnHYToSJDYGuhTW9Y7WdlTVAQrrftSfSQFw64YxSEUiKCSk00ouOa5hj3uXbt8lZz/sq1JOmf1aUVPu7+5488H79DG4PFx59+6RVhtpSbRa2badgV9rrs37inQPhopXFd2dT7x57xXn04LKYFZWu83KlLz3ZPmswJ4Ry9FbWDB5b/UDvQe9UkqR7PIkpTMAnWG7V5iryyxP2GEGZWZ1/0w05QjUe1XyiLjuDUqaSX23CYngNm754lZ1kTQTcRWYSP64UlLIXVcfP1O1aVkK61J48/77rOc7LvuVx7dvoTZkeAD+dH9GVQ/oQZEAS6CNzr57Bd4YDc9ZZ1BXyDlCUuJWYsQYWpZy9KvWmt8DqfRWkSS0EcFLnTAbnkhN+ZD47ubB3bKcKGVlyndt23CVpj6o++6gRCg5GW67lfAgTM4LuXiflJBSH33HxoZZRcQra1PxIKZX/SrDBBVIaY1KRAtbqRIQQDkqg1ME8kQGmqDVHlBm9DdTSrqN3QltaXZlHTWllNVVWarb0W17hQhmIx4MZNzUW0wrskYCgRbVoMJgIHFvPWmXHV5TiWq9SCKERVbrja3urGUNWi5jql6VLrDtG2VZIoDeAaX3hkrHZI/vYxgd6T6/usx6Z11PDLLDVwN/1sOTCkRw0GL8uWKCW4nlEsneHtWUeIJqQoq9+9jerhvX7cLpdCKXhW3fMPqRkMh4wrm1W7WvC6x1iiSXRh+DtlWGNlgyl/ro87IMdAz27Urvt2rsx8dHTsuJIp5EUtVITvmzznlFGCiNbg0igdAtlJ9y9j5r81o8aZBlIec11ph6jCO39gnbs2HsdQ9Q5xG9uIrZuiwgibrvoeoVdqIySGLU5okKFaUHHKyi3J3vQ3Fsd/BzuALN6MaSV2pt1Hphq5lra+jm1od9DEYyVAZZMr01Gp0xKqOZrxVmLLmgJXNTI0xoXjDrmBoP2+VI0GmKJKE5+LXt3dUqcFuW2irn5exwsgpDBmkqDTLh3UE3o/buwIGor3Exn/bu1aNmBnqrek2qnO7uKOsdL+/f4/70Es2J1y8WXr3+iPv7O9KAV28Ger0yrFHWlZev3ucHX3+WD97/Au+//xnK69eU05m8nFB5idVBqxs5F8qysOQzp5K4vOtcLrA1sNbou1uqFlxZirFx9/4XWF+9B5uyvf0Q65V0f8+rL/wQ1/HIfmlApe4VC/hXEZbk8/f5dEIWqNdK3ypb7bRhrjAYybGleIB/3yuIg+F7u2ChvuNrWPKELLGv6H7fXSVRyaWwSGFaUyYVzuuJNSdqa/RIZvQ+0JRpu1tALMuC5EwTaMO4XjZ63el0twWIxH7JidaNet1gDLIkX09KZtjgcr2gluitMmp1CJXka3HNrGUBbez7zuW6sdWG2EYfFgptyonMKhlMwxbQeHE+oyK+9s0qYPNkIVnJKmETOVx5KKykDjveWPf7GLTqtqLdhtuDZJ/bLPYdhjJTm6qKtbCRk8b18eJJWiMStwGal4zslVYrs6Z92rx4Uoaw/utuFWq3ZLWriBBAICwlhx3YONQZer+pxnw/NmEmj9zCRkJBj1AvOjLRkSj3hxOJ2Tg/HJX9oSj0FBrIYWV82C3FHGLDrRSTTBjGv4+ZuW2KaXwP7wG3BN204HmiVsMEZNNxUaP2I9l5WLcJhHbAUdHO8IKPwQgVjqnFeYMmfC8Qlh9jJsr8+/QxmAjIVCLR5D3JE+ZyqAEAh1KdjRFWL7fiiDmn2hiYTiJmwk0cBQjzO4ywTo3UL9PKeCrzHaq74ongNK2G+7RGlWN/M5OBKoJkDSUxB17Pd2emgtq+1yNZPoYDeUaoQ4xpjXID2sxcAeJ8Wnn/+prPfvsDXr19xf31jqUu5J5CMU2wZK7kdvTMsOWbUi9encBUeTgKPyD28AFePbFwmfPHBNye3pfZ3w5byfjvo78giNxe/9QuzZPKPZL7N+Dk9t3keA8LOO34VPG5PKfE+XQilUJrrqDCGFGs4UUH89yUkn7q/YdNOxwfd3GRcVbTowfLvF/iCfP5Pn5vR/w71GaOZ2Ygt2t1kEVxZ+rQW5G518hHYnt0P9vNcWFmrgKqGpaFE/QykqZQZEoBXPte189G3ddRs7B+9752jKFI2EuAfTYs4P10gFDH3I3MbsMYn56LB66Y42uyuTJGnHUHnheeCqpTebe1dowdmHjcVFkLpbP514ff0g18IyADVOK7cgBa/hxjj3Dss/MTWm7efz83+/k2xhuuPDMhB8PBxKEW5434nOHzk0hyq715FXIbHz5PTasi/53Zl56CEhiH6tt48nozV3uUAOIcBBhhjRSsilpYck1bJHDbqgkQWJwVe5yF5jkulHx6j3HlyfwWUFxBbvPJBN/ggPpiBjjm3PlvTTkg1HYEh4dN5TEvWRqjIcfP9Ljfon7uGnRoIFKP12hAnCPOrT6nzCX10+vZVJnJufi+sA+0p+O79LDfK8P40d/4GnftzNe//HU+ye9Q07A/C8As+T5+WkSNflN8E/UCEbgpd+XsZ0YRL1hwdTwcLo9nY/g40ICzsQB30yw2jIc71/J578VfN2dAB10C8A8QcEIwZvh+boQyWk4ee8gL63L2woslQXeVoLKsLCdokuJcK+Rl5a6eWb/zgvufuyd/44y2BXmdWE8LaOK77zrf+LDxd36zsLVEUlcL/fXvQuuxhxk9VDt9LXlvrfw3/mnjS599wRiZz3/L+Nlf37GulL/zkuVzjetn22FFPNqIPnuz1CQlsiRGMkaN9TuUxSTGXZrFVTaOfY6rSfZjfiX60YRb5hyg0ddVJRS4ffyKuJKVzEKdqQgpvm7Q+qG8rMnPvQNfY1qo/zqf6X02Rcyq9RaxG/H4hYaOY7+N+dH7odRvBta8mGiqjPfeqdUVrLHbPDbM1ZVcWegGLOaSvVhzzPXVIm40IT055tFc8m3ujds1/zxmMZD3PN/7SewZiT1rzBGHomMAWq25shQ2VUNnTDfRVZE+5/7jX0wYfiohHZamxHN4uv7iIKbYXMsmNObf6bk9tz+UzUBM+MJvfoEf/3s/zhd//Yt88J0PuHu8Y9mXI47+3J7bc3tuz+3/f0sj8ZM//ZO8fPuSn/qzP8XHrz9+hmNmmxvF3wT+FvB/Bf4d4EN4+8fgxeJ7u7//IfyVX4S/9NPwYSgomcGvffwPf+sffgP/1n8H/pkv+n//yV+B//XPwGjA/wj4k8Cf4flZPLfvm/Y9Q0o2RlT5F7cNaw0R2AM6Ag+AqqSAOvww18wVlLIqkhN19yr2lBa2evWgdJYj+DqrQtyvHQ8+DLdnSprYrXuFhyhZk1sO7c1Vh5jBdhxAat1BDuIgGQGImYxzZSZ/cc9THWoch/AckvOtdnR4NVKv9Qgy9e6qUYihWVw9IgJAKWnICM/AuSd/xxGAcwjJBM6n1VUoIgjXWqdXf82r80teffAeW7vy8PiO67tHRhu0NiLgnB0SwyL46YftHJ/bu8MpE+jxuxSVoM2D+55cC5El4BpJ1yTGupyoNW6oy114NU9IPk/7oNFdEr2PwXXbnlSDOuQiCqfTCZXsFf7q8v0joKFTOfHyxZkXd2devTxTa6XW6ofjPhwKs6k85HCW9zlXb2qtHQCFx7FuCYY+bQmUUKlxuXgz8GLzCObIlFIfkdjUIziPuNqDgAdPzQ5QquSMSAoJbYsKNA/0eLVWqJVEQG3aAB6JIiwk8heSZlrdPQivbhX3+c98wOc++IA2DGyw5UKtnRIy5kkTp/M9p/OJUhK1ugKZmFKjrzi8I4dqEJE8wbzKbF2zQz2lsK5r5K48EaaMo2qtlORq0zYOuM4jVCkqObPbrSUlpwUz2K6Vkk8IrlyVl8y+7YxeWUqGNWPmFXiYy/H3dkVXt6mTgAIFT0LstdOqW0yJuIpGzhqJpZAmFw8qpajKFgY5gknM58hUQzAkgs+Yy9SXgK3A54EkAwlIcMS91OLy7xHzRoZXKpv6M/dqWMW6w2IzkWHgCfZ0SyRkyTAgSQtVkDN13xBJ1OoWi0tJcb0wIiFS1OXAS1L20UHHoSBiYuj55MHpNiJ4r4xePfDd/XmfSwlLJ2AojzuMLqRinryRqSxmfj0GkgpJPejnKmeZ1qtDlI6YYW0cCZtBZ6/bUUFY992B0Rm07hXVcOPDXBkkG7WGpVZ3wKLVjZQLa84sGOyQ1pCQz4nrVrFRPUkl8TkDclkckMkCOhhWHQVMGU0+lj1o3xxgTIT0fudyuYBNsDKjKXP/srAsC7XWgKvMK5LJjNZou9tbLsXYtis1lJKMqKQfnVY3/8y2U5aVsixcHx/cekCUFgkjn7/7YVnZR9hH5cKSE4vdkcqZbnB3d2bbNq7XjV2MU7njbCfeXq704WvG9v9l789ibd2y+z7sN8ac8/vW2vuc21RfLBZZlEiRcsRGFCUKsWLAgRUhMfSQBLJlB0kQ+MEPCRAYyHsSJH4JgiBAkIfAeQ4UwUrjSInVGDEsC5ItWaE6UyRFsRRWX3Xr3nvO2Xut75vNyMMY81v7MpZcVsMqsfYs3Kq65+y91tfMdozf+P9r84SCdPa+35L/w5+D2xm5PYYkD+i21hzQlcJ6Xl3tpbWwjjEu1y3mFGMqKLU2oV+vMt+rJ5pNQU1ngbPDFi5vECpUUZmaV9Y7hxO7l3q6glwuSHIVLmQhJwM1ar+y3BV++As/zCc/8WnefvEWTeByabw4L/x0b7z4xGe4e/kSI/NmK3zr9c5aMp/92Ft8/GP35PvMm4vxq7/0IR88fsCb16/h8sj5xQuSJC6itO3KVqvbZ7bBaBt1dEjF1c6s0q3z7lsvuGsnHsi8efUelc7p7Zd8Zv0Jro+f4f33vs7l619F9gfOecV0UMwr9Jbi9jcP7eIJnd4pAmteKKsn2V01wZWsbBjn04KNznWvCMJp8Xm89+5qWyPUJYAssf4MI6cU6hquwFh7A1HKsjDw8dBapzUfg28eLuyts9ydSSW7pSdAa1yrm27lomHrJOiAjLr1XB8Q8+MQQj3BAbhSCpnM5XGj9sH24WuyCmsprpBhHBBxRlhsoQ1X5vJ13xjme56LbijGXluocbnq5pIzAzvsW3u36PuEclyKBPQIsNOQNCuU/V4YYAHDYkbfmyfnzIGtEXZ5NGPURkqFZSpjRcIuZyWdT+yq9NpiHfY5KGXfS3jSw2Hup/BEj72HKwDAuixkCcgJEImfGbdk6fdau1lApaOiXfAk+JGIzq7gNn8eOmPIsc8V9bUMHFbprcW6i88r5tYuh3rk/G48oSYqoa72JHmfUih33WAhLBLMR3In4IPYR9gYRx+Z++zBTaHA4YxxAEozsZ4klOYCFJrJaYFQHNEjaaVT2ZOb3Y/hybt5fZPtKjl7ktrpo9i7+VFqKQvr+UwbjVr3w37VmWc59u3zrODfeIOPhjmAPp+DMQ7IYiYs5z3PnFbtNe4hgMcxPxlg2iLPBOE4EoBTFbMFpGvcnh/iBQ+uyuAv1ecwV6xdWfmBDz7Lj7z/eT65fRzZw0rVogeI7/tnsjqF2uBUjZqWxROgmf3mad9FbupZIz5X49wx93lP39WERYmfsbn3nJ8bUMYsktEDvpjqLHYkE6dyj3+UMFV25lUaDlmJpEOhxS9ZuL87c3++w8y4mtEDfDhgMXFIzPf3M6HrUMVUrrR+U449FJNk3tRc86dqbfrItclxLw4Ym/jZdao1zQS4RlFJlxF7Zz+39ji3Tupi7lVsBECTZtLVv1OTn/UdktHDKgqRUCD0s42GQtYE544z2uynaVrNeYfzPfPT9PPtnd7+4HYvsx84kOwJYP+dmxXR0d+cmmCqVB2qSvFXc35ScTRoDLdxPOa3qawmoSSVcuxxvUjAJIp4CNW9UKfxPqehpuFz01TwQwIK9Mn1+HcLGMjMXOUuFFr8YtxyuJuQphSezcQ5cUayA1ZyFWA5xo9FYYPD7nPoSqz1vgbOPfVUzfJuePywx3wOMK4f48PBBS+qcOdbdRWW+WxV6BYqpzF+pgXoVEI6FoNQpz6soeQ2T/QAmr1bSyjz9ogz+XvKeZ5VvdBtglU5KzZuyloOFvh+fAJ7NqaiUUD8I6zes1vx9laRQKGn8sxT+1TvT6Fql7KLJ4+CMT+/O7DeOkkKP/LtH+bt69v8rR/8Rd5769sgYd8d5/NYdo4xbvHsiX0VEeubAEguDhyOHhO5cag+TztHmXGVeIYaat23sWHHHuK23t9iLnP/lssS1zDhvTnPTAjOC7x8reuYDO5f3PPyxVuc1xOaE7X5GvXpHxDQzKm8gF8T7BcLb365Y6+EU8q89amVvGSuAn/ui43XH1741W9U3lwfSUsJCM37xd76AVhK2LWpKj/1A8I//zvgUy/87LauhdNJyFnZxhW5DM7/7luU372y/+5HLvtrrF1C/cvjkdNaVbOwb5VmrjQmZhGnSVgKpSITeoc+XHE1lSiqCoXrqfQ1xoR1Ih6gTzSYDLIoFuCOxRqoKeEj2eHrHgpVrbvKd15wK8ikFFFkGNtw9esJzXpRn58DpxrjXP9tdrMYf0lcnavXEQUtXhSQ01RiuqnsASgTLJo2ur6nHkBtXizTowhIYz5MSWeYMewIucVaJ9R17B8GB7k6w4pP5jNjRHx6HOupQ2sBFQLW/SyQYq8z44ci6oqqMd/EIuLxLL2NA4dn5bY0xT36fstwi8n0G/ZVPqZuxsjP7bl9/7RlW/jxX/5xfuYXfoYf/NIPPkNJz+25Pbfn9o/Y0kj8zC/8DJ/6xqf4s//Cn+WLX/ji9zccY8CHwL8P/NvAXwC+BLTbj/w//lP47/8x32f+xS/Ce4+HCPI/sInAv/q74X/6B+FHP8HtfP60fRn4I8D/CPgfAy//ke7muT23fyztO4eUpj2VwrBGHw4p9eFy7aN7JaYmP6311rCjUtQD29Y8mJhTIuEBMVce0SPw1ponXmb4NiVFegQigizR5JW9JWdKyYjBw37BCBuNUEny6nJYsoMUWZWyepLXagRCzGVupc9glkWFvCdUc3aLIgdOouIyAmualNP5hKgH+XtYoiTFg1jmFTOjQ46Dn1uM9SPAZcPY9h13HvOAWK3N1ZqSBwo/fPWKPhNVokiCsXtFTa0tIJVTVKx5UGCvLaTRvdLIA/DQbbi0OuYVawG55Oy2KCV7de3l8YLE79bWMBPKaQ3GY5CTKySp+Cm218G333vlCbLuSUHNCetGkkIqhrVBGzsZrxpb5cRpWb3KUgajVXptXB73gMqEWltAbX6dKkpZV6/0RFjWBTNj36/UPdQ1wCubJgQUB/anFY6q6v0hZ7cHemodgR3SzCrzRTncNiJYNpMZGJRcSJoj0BWVXMgRVNb0JEBwBJsVkcygR6Ua5OGKNjm5HR14lfD7HzxweaiIDa6tMjBKKdwtKzkpy/mO8/19qJNVendQz2wweqPtVw9i5CWktbMHqUNxR4uQl4W8rt4PwtIx67QQiQqy6PO9+6o5BMoSkvYWilSh/tRHKAOMGQTxoJHh4EfdNk5r5nR+SYwGFlkQNQYVA5b1jpRXryoTD9zU2qnVg8RuIeVggFnzyl3Dq1Mj+KRAj2Qo1skCdXS3T4wg7xgjpOcFsUROK2ZCH9UT9j6qvXpPXCEta0Hp5FRozUM4miOJMmwKc0S/8+RzzokBFAGiIi/nwtCOhhKCV+Z6X1zWs4+7RR347IPePWlO8nfX94qYsO07tRvJhHwSEsI+BppD/QTxBDyDZXWwcdAY1UKdKirVUVzB3ivBPSvPoWDnySE9KoQZoCaelY0EptgNfBRxJbFCIosxrIH5/UjSeCauMHRaTpSyuH1n6mhyKEcEat+5XK8kTcijA0h39y8c8MrZk8xZOZ8W9lbDLnDQm2cpxmhYcwgh5Xg5KizZLTxbn4mcQbdbUkFMSIRdYq10aYg5sJsjKbeWAsXtFosKZo1t22i9unJNPnHdrp6kvVMeHx/Z950xKgT8t9cdU6WUhd4atdVQ5nJ4S3MmpQWVqRzoYKo/a7fAe/nyBaUorTYe3jzy5s0bxmhse3PLwfOZa+9u09XdUiCLMJLQhkDD+8gQj/hGNXRZ3F5ldAcp6tZdrSMSkXlxtb4+moegh8+rFoHcre6oJgolKuIj4RQKTHlZPKmSit/3CMXAVv1+h9u+WVRij1B09GB2CkVAh12++o2v8nitfOrdb/Lxtz/FWx/7BEbi4WFjPZ0oG7x8uTLGQh6ZBQeoumRqg/oGHl5tvPrGV3jvW99i6zu6Jt56Z2XNiYfXVy6PF5pVwDi/uKfIfQAGyROXKph1rm8+4LSceOvdT5CXO1r9EGtv6O3jtN555xOPfKP8bV59+Veo4zUvzspQV0Whdvq+I7PCObmVp8v6Z9Z8AlFGM2p3GOfaOhL7tN4HtTXWpbCeVlJNXLYtErKdNhKLeUIwpcH5fHJ1GpVjT7HmFRsS6oDGGaWL8rhXHreNh91hWhUoobqRzJMMNszfOw7f3p3u0G40TZgayZRs6uAtPjd6As5BWFEJcKjTej2S9wMHCFJxoGqxhI3m1oO983i5oirUurGuniSy5jYuDnsZWRwgd5vaHIpvbWYYmMF9A5/Te+OUF//r3e2Bs7kNQyoJRg2bCk9+rUtB8P3gXnegkpcTaynU3mmjY82TFm4ZM9VG0gFrHcqNac6+ntSxYUibQEdHYt51KEWwPlfT7+0WOdjYWkWSm5lcviV6ZjKo9UisCRzAxgiLJHE01sEgO/ZlhzqQTNjH+/JU1Zqn+7kP0FAXE1xtwOCwS5pQybRvQiER9oFm0APeeEK0TKDAE6gT3tDoW7Nq/qbM5IpF+Ui8TvDlqRLMtM5R0VuCaz7IeLCuaugPa8LlqsnhQIzrfv0oSOHZd7/f7jBVKvkpe+GJ+cjIz0ue9+ePO84YU/l07p9TigKGdpzxPJEtBxjk++1QxGFet3F53I5ncVN8CPg7oMSprjsMsmQWFj7+rY/z+S//IB+7vM15OWF5gmrCVINywMjHVckp9jPiCVtcZbaHlSBwJEqZiXebfedWiOKARbr9fXzPhJ34SGpDjrPJ8dkiSIA7Os8XxGswjvcxAY85jubbn4DLVFmaQJZqwCcBPV0vO213W87W/byU1BO6qq6okssElBxwu4Ez/YApRfznvTNMGGBE0j8dY2o+o2mX42eA2x5gwn8TBPJHJ0e/13imPBnXfrKdhQ1+znGLz+Ww4U6Sov9EEVUuB1xi0e2nWpGEDZ1b/UgklCM5rGHd9vTtOR0Uiel4RvMZEO/VAPRQTfLCrXl1AcLJnL/iGc3ENISizFSmOg4UEO9Xo6+qKFPFTDU7NGnTtifuQ/ysYQY53ZT4zD/gyLCP0X3tGt0LBlpHk/fcHspno99sGg0vwOkB2FlY1AZighBqUeJKIRKWj/N+55k7MRVa9JhU5nu2sLMDkORJeI0zhojdipLi3E7EpRJunTvUXHlWOAA1G92Lu4Z5H9yH25v7x3h8QabdYzrmyxlOOKzuxM/3MTX6v+d02JQh08L61g7AwqMJx0D2GhA99gKirqALDiX3UNhRXAnZQu2t9R6ArsMJhq97rbdQk9bDmq2H0ozbnetRMCUBhMbIQMWL7krxPX6rjW3bw27XeOfxHX72l36GX/zRv82XPvZVnxfMlV+GyK3gROV4136bYfGVE6NbrDn9UP8bxPMMaOIAnCakyOy3rqyU5rpwTLdyrDlzvmih3DtskJMc+wRj7kGmQnLERMbc/xnbvvHNb3+Lx8uFu/We0909KS/YMMpIlF8tnH5R0W9mRsukXekYll0xrFXfQ/z1rzzy4Qev2FvFxDhnY13v6LsXXfXRGXhcrZTCvRo/+VnhD/2EsBTCGtHB+7vTwosXBb0uYDs2KuM/GZy+Nlj+wCse16/T26OD8xMtMY+/WYBcvp7G+MKLKtVHIUY7YPjRb5NlHz1UnUM9sTUf91EcoObzlcPIOez7vLgPg6SJdKybrnaHCA0/37XNC3s0gKcUquRzru49zjfqBaqWPH+TwpMsMeNvUZga6muafH5R05ir+7G2ToUomWMdMJvFfK5ujBHqcHIocrb4ngm/pSfru4rQxk3RaM7380YEiwJWOYowxSDNCSTN/ul9360I/R6nSjkilOSKs9MO2JeG21oqwhNl99u1+Q/6P1PlzNvtnmbM0uPucQe35e+5Pbff8q3shZ/4pZ/g5/+jn+ezX/0saaT//F96bs/tuT235/YdNUH43Fc+xx/9P/9R/uS/+Cf5m7/rb35/gkqvgD8B/O+Av45bvP1nNAP+b3/zv9hH3y8OKP2v/zC8dfro390VOBd42OMPvg78z4E/A/xvgZ/hAOqf23P7brTvGFISneo7LRInjdYAOr3hFkW9s+QSxSKCxEHLA+5GyO+43LDnuj14MAZLWTzZ3/3Q1KYMsOphfzSTCv5RfjDbrjtFBazTuocdkkXVo7odT+strss8cTy8+tfjH3Ik3EfvbsVzVNFEgi586A1IWWnNLSruX94zA9QevHH5ak0euOyjh+KEH0KnPPA0xCOCTglXv3GIZQYdhx9IxbDLleW8oiIsa6G3Tu4D636g7OaJZJfSFq6XK701D2QZh/VVRLL9gFtCcSYqhYYZaQxq3bHh70WjEsv91D0YrJowAVOli2BZOJ8W3rzZaFvltCxHtd6yLozuwap9d+u5UkJ9Z7h11cu71QNhNiWVlev16gG5CO47hOJWRkvWsBv0A3Tdq0MNYWfXDuBIgHFAObPNxFVKMwBIqOtERSpeiV2mZUZrUbH/pCreNCrQsgd3xJ/vrOyb64tEcmzavMzgSe+Vkt1u7e50H8lcD/J4cK5HVZPDfw+PVzatZPVIXAoFHwEkZYYZ2/WKWQSXw27G+/9OSoJqORJdQkKTJ2cs+Wcuy4myriSBujevro3xOd0ARG/VmCkVkEiMMiumFScKB6N5dKvklSULo2/so7LXTm2DdVlYVgfE/M11R5MCdDCEkYxWr5zvTozReXy4sD1eScnlLFRnRZwr0yihrJULZv3oQ6qe0BtA7YMac0eSRDEoS6GO7kCUeTC+7a5goykk9qvbPY52xWherQqYF78eCcrex6E4MvDqQ/CgLeZ2E1IEpNDaYK8ucd+HIaNRioOAniwKqzWFvVasDeo+VcQclJHocwqU5Kozo3YkJxYtqGRG9v4yq2I9OV7JpdCH+CrgtKaPe/HkvGYfI70SACp+MSZenauRFB9RtSme3Euab5Xu0Tc6A5OBFmV0I58KQ7yft72SIlhXccvAUhaH5cyrwdfT6rBRN8QG+9Uhyr0OzIT7l/ckVabmiKvJJdZlxSzszHqL+dsV7ETB2qPb/aly2RspZ0rOvlYNH1/reqZ3t6ZC3R7wsl2oe3XbqbrRgLvzmbfu71wlBdC0+OPK/t5b3cglIfICeKRXMNxOAnHlnFSE9f7M9bqRu8+R4EBpj/dTloXD2gIwOiUrpbzERCnZ6E3Zrjvb5pZ7S1rQxbB9wzLsqlQqXb1CWiIxs2QP8PdawTwwXGShlEKjMgx6bdiAXPJhDZdLwVr1+T4qopP5OqnJq8fBAQ4kquBnxf7oXK9XSh8RUjeWNJVDBte6eXIxFJdGjGWzTnaxMreVGJ3WH3n95kOyKPu18uGr11z3jct1Z1lecr7/Im+9/S5mhevWkbJy//Jtvnx/j+TMevcSMXh884rr5TVNPaFT6xs+/Yl3OS8veE8+JC/ev9fVtVf3y+ZWfBitb7TLxvb4NVQzp7c+zmc+/RkW3ubV61d88N7Xebx8QCn3fPbzP0oana9++e9QLx86YJgz1mOvZa4EN5OpW915fNwopbCUTNbMaXGrye16pfdGWXyNrdboe2dhCdAz7EhV3VpDw9YzkhkH6IJxuVwcAp0qGCq0uju0lhzwqTEmpvLWUvxaSlRRW3e7hlYrp5I539+xbxsCDgOYMYaw10q7VjjDsmS0ZEqCosa17m7/Jwqx32ltsO0XSkmcTiuqwuPDIzmqrz0JCVvYWuxtp9bqMncaSo7JFTwO0EEEi6S8WqgY4XBjyZ5g2ZvRJLI2AUsMGwFKD+po0AenspBJbK0hKRLvzWH8HHaLvbmaJ933eZaUJSdK2GO53agnZJbkSlq2+z5HxYF71cJhJqNz7nZlvZz0e7ryee5FGCPEJMYBVRxJwhHg7xM84EhcE78fPzeByPkzSZNbDh17qlD/EY69+AGwB0iC+frle7XBLT86E1pTEXV8JGHqifR5PLmte26xNp7ABX7jhy1QgBsz+V+Wcjyb3iN5GAoec38xk0hx65jdUo067wvCukTmlx5qGwbY6A4FiisbDbkp9GB+HvAkucRaP21XZD6mSGZyJOeTqo+p+R3xXMehXjQTgvH/Yz801aFMHFZGfb+/76GuENCKmXmfNk/sOYglR3I7NeWTH3yCH/rw83zm25/0pGjxcezKJbektE5lADNyQDmzOQwQ8JjdnvtMZmrATU/78LHHfAoVyU1BwpOD8Tbslqw/nqTcoBwN26kJaZjcfoeji8/in/lZ3h+nlVmLvfBxMfHOiHO4q6KMg6FylaUwjwnloBb7d4uxM4fJtN85bERtAjTyZM/na9iE0CbUclPaIn5Pnjy/BIfxZYwTkfiOm0WXpBzWxz2sZf2859Z0ciijwoQGY3ziNkL0FlY8w/dvtaMB4s/zmsWc4mdgh0VGqOtqQEu+M7GA7gxXoPD3l8L2VjUzLb5mctkVR0JpVRPDQuVYHNpyMdfbs3KY6Db2HaCSo3944djtM3sobfh8NEhOGHFY9gkQltHW3W7TbdTj3cS5Ezw5PudXUT3gOTtUufwcMuJM7QA6bp16dG9BYo6fKoG021yMgJjG+T36xZxDYv46/lzlGGtTdWwqu0iohoEdBXNenOCKjTnlOOd7n0rJf7Z3h/VsdAcSUFpYwOYAmL3f+7NOmmL8+f7HQT7/LgRsNI9tBWwGAU5FvxIThybMqHUPBSN/xlt3u0Hf63mRxmkpbpclQuI2x2rWmANhUWVHkEZAZtFHYu1zpaJxjF13LL/N5XPuaq3OiQIRYQnlV7+xRG8OeNhwQOjOTvwzv/I7eefdj/H3fuDv8eHdK2aMkIjd+Doy1SX9OZJ8P4X1Y24fzYt0UhQxuE0ZB4AxBqB2zPm9ewHgDOHMeWSCmK40OWIeDhW/mFP6cFVOOSbJ2/xo8z2CF2nYoLJxVT8X1YCXa63wjUT+EyvrfiIR8UuEVBaW9cT7SZEoYOv7TmubF3glofednO443d/x+LiBGMuyHHGUTOcz73aqQWawbY1+vfLr71/59rag6S3eeest9lrZro9cLw/wReX8lZfojwxe/dw3afbGYwNFfUwN8/6PxDo/GM3t7aeqlsY4H0k9rtb7TS3PzGOaNmLf4POQJA1FsxFnf43xbgHluJo6Ab/NdyIBDDkjKUeRaotxk6I/OGgncW70OIHJDeiefc1BNAeE+vBzb8oBsmkii/enNmbB53zHAUD14fFb9X1Lm+terNPTFrGHmn+P/QBR9El6uub7fY457vU2Hg0HtMaQo0DPp0I54mxZvaDU41RP4GeiiHfuQ9ULQYcNJNQyZ79PcdYTfMzMDVCKdzm6/860GiYAT5nPJv6/2FxBhef23H6rt2Vb+O1/97fzk3/jJ/mJv/0TqD1naZ/bc3tuz+2fVDttJ/7wn/zD/Oiv/ih/8ff/Rb7+6a/zfbXd+DXgfwn8On9fQOkftmWF3/UZB5HuFnizwd7hP/w1+MWv/2f8QgP+PPDPA38U+F8Bb//jvabn9ty+0/adKympwzZWjYL6QOoeBDP80O/ByIj7QyQHDNDjIOfVz4DkCLS53K+qV7EuZQkIIQ6jEfxyEGW4vRhCGkKritHJ60ISVyFQcSlkRKlh32ZhGdFbc+WYnCLAJqGgEvY0UWHj0sjpqCDtw8AGKZkrHA1PxO91sG8Xl1DeW1hIQCoZGX4wN4+6OXwUsvoDtxdw+MYDq7RxBItSqLvk7OoEA5BQcmq1Uquru6TMAfLY8PeTVEhxGHeIaZAFJCmpZLdOmJN/HKIFYbRQqjgqX+Wwg1GDkpMr64yBmLJtO9teOZ1X1vOJfa/U4S/fTBBTEq5w01ulqD/TdcmcTq7Ysy4L5zUf8vAlrJ/Kmtkvjdab29sE+FZHp2+D2lz2ym3mjNYtJPpvAd2p1DWj69PCYT4vD7J4lZeNGTSeylJ+/727Slhv7QiUerDLbR1seCmtAR0Pwsx8whgemJsV5T4OPODugaB0Aw3M3EattZDiz/FePMiSI2ErImjJoViUSMuCpkxtG603XMkjkXJGx7QuVCQrkCJBF/Wt8QzKkhFNlGX1REFvJBHWZaUUD1q0blArNtxqAfOxodmrz8ZwNSlVPNgowhgbNoysGRmdtj+GzUci54UcEKFhtH2LoGkFazFWFpBOEtgfH0Ip6xrvqnmF8VAoBOQEKonltNJqY/SKqZCzoGaMZuzdgSC3oyuUpbAsKy9evOC6V0wyex/UujlQo67gJeLTlWoMOmaCSryvi4aEvoRkPdRIdmnrYVHkdkIlJRhC0oW0iCv0jMHjVhEGHzu9hcrwZMgYpFwYDJZSaNZYzourEdHImmg4eOnWSgPEx3mK6xyjs2QPrE/VHjOhlBOuiAa2FLQPEiDDuFQfU/tlJxfFTBFJrrzUQSkgmXUtblk2DC0JJGOWqL2zdVe7yppYTne0eoW+IBgpbQxzBSgV8cpBG1yvG1YKIznI1fYNa511XaK/lug3g1wSSFQkilLrjsgphrscxeFLzlx3XzOWu5W9VnodnIqiJVFbxVRZT0vUKgrL4iCDZf93TZm1j5gHBqqGLYVhoRRxHez1gowNaVdXQhFxFaioFnXWqHN9vDqkal5p6SoQHTEh42Ol6EK5v+NyuWLmkMeUaW9tR3VhKdmBMxu0USOIG/ZIAnkp3L28J68Letmh7qSt0JKiXNHmKmMMI8lOQqk4nDhSZ6jQWvd5rnU0u5XjaJ5Y6K2GlYjQ90EqmayFOhpmnkBmGPteQ+1spe27rz9Z/HOlQ0o0aw4aiSeecihsmbmt4xiNlGcyW45AswyjsSPm67mJW7CoNlq98rq9z2V75HK5eHLZGtgVs0d6h/c/eM35xVs8PrzNst5hufDWu5/g3XfexaiIDhS3Org8vuHDVx/y9luf5ePyKR4eX9Nj3F0fH2jdaM3Hfh9u1Se9M/qFx3rlrbdOfOJzP4TJwsPrK+e10+sjQ1fuP/0FPt6Nb3z577DVV5xy4nLd2LfO9bqzlOxaOqp0lCoOB+5bRYaRcyGp8uLFPb1WDjB8uMVC7Q0TZUhCxK0hpbtC0daUotkrk61DUjQr1vVIEvZ9sNUdUWVdMrJXrqOSVehJGc2hVRFlv26sASJLzg7k9MHD9SEqsL2C/nJ1CxKvH/Y5bK+DlBV7kgSG7NXKSSmLYPsWCWEHFS6XHuAAdFzxQNTXuG3bSDmxpEQWodlwK9NQdum9eRJHXfnDOgEuEf0oks6RsEMHOSvXxytb7Q5FKT5v6gJD3eqvu7WnJCVJ4e7FHaN2Wm1hmaw+tswY2mNMa0CCGdVELplus2IblMS6KssyXJEybBlzSmGDEfsazZEQ+l5GlAiw0EJFUyZ16NDiAV8EYDPvZP67zSwiHElsbsqWc68191mqTz4v9n9T0WQm/z254/tFzemw7ZLoH8YTUCj2z0/3k1PdxuY1WbyBp4CAf30khwdi6VCW88IE3DK590NNcaoWqkwLnLhjcTWSEUkv0acqUXhCMnJNE5CfycN5jWNMIH5CGhz/6+pQHGqIfk+zcCDuSeV4Rx9tcvz+QcIwk6P+00k0VFmjyCP2vrm4Ta+rJhyvOBgARZiJTYczFgqffv/T/NBXP887l3dY1ZOM870Brv453EIp6bSM9j1HbQGSHfd9AxLkgLfi++V2nxIg27zfqYTUDwgJXCVnKvBMaAGm2gNMZkSO8/L0QP2N6isWwI2I3t7P/H1iD2peaCNEnx39AOcmZORzmvOaCIfFmoggYfvp82KAS9H/5IC14ruOdzoTst7PNBLK838J2CenfMAwY0S5Upy7p5KyC2TFmTNsdOaFT0saFS9QcHsv4jrTkeg28US3w8x2PEeRsOECV8Ts9bDF6d0OAZ9kic6tP+SUHBi07tcRP2iRDDaiv6i6Ql9KLMsS57g47w+Hl0VuShZzXKXD9+eYPPiIxWAUZh3W4cbRv13laT6iRErz54y9OXyTT6u/IzMkrHymiq5DeilAmXHMvR5ziWvQGwg4x7Wr/EafDPAhqZ/dRcHiLDL3981c4dqALv2WxCcsusTjQ26nNwsd9AmMNaihXgxujeZ9oiP4nkZDaddwuKobx7g2UUbyh9d7vynBBFAm4vCXxD2n7CrYh9LUfOY2VbX8XJVLjmKyBpIQzQxfSOI8rPG+dA5iV9uKYIIXy3k8xmL+D0SAETbPuzXGBMUlIDGZGlU3y/kJP6hIgCUagIG/+yXm1Npu4K6K0PoAdajX+8RUNfRxKRYjXF2ValHcxjm5etPahc+/9zk+9uE7fPGz/1+++omvckkXf68mzAVpzP4aa6ZDZ8mVt8yVyyzG0e1e/LnN8UiMOU1hUxdrlw+p0FIMZbYJG8UxPZSCAlAK6/U57sx8LcBgSDvWGsNAQdzfl1ZjfAUkWz6+Iv+DwfVLlfT/KVz/7obtylJO7NsaMbeF892LQ4F8AmmjN67XK3d3C+fzHSn7vm0CMpfa+X/9Ivz7v2J84WPw1VfCwza47oNqlfO98ImPfZxzWWi1k1On9w27DtLfuuPuWx/n4edg+9jrsBAzeuuuXC92wHYHSEPAZSPmKHVVdUvpmENHrP3g9vUWSnZeAKVxLvMinqluNIE30k2BkWH+++aKS2qDPhrg63PrU6nciwOTjFhPfI2wcbM7nrHK0W97uznXe+FXrNsyd4qzf/m+YNBm9Q/GcNV5n+qZZvXEutmnGpsIRRNi3VXo1cFCPxvHblSVgaLHRM5RlKtyAwNFha7Qq69FKSU/k6sAfn2zf4ookhziVlEvLkKQ7M/QwbO5T/R1WnUWUSpoxDvjNTiUZmA3q2xEmLavBzwcQNRze26/ZZvBsrut27Ny0nN7bs/tuf3mtnVf+Zm/9jN84Ytf4C/9/F/ib/zk3+Dh/uH7A1b6KeA/Bv7fwP8B+CvAGz5i9fYP2z68wr/x78C/+e/Bf/VH4a9/Fb75Bt6/eL3Q37e9Av4tHKD6N4Hfw7Oq0nP7TW/fMaSUzgXqwOpwqX2IKu8Ew+V6gQiWehAxqUZlTcat3aoLP4tQW6XbcAut5gesdVlcaUTmYThkdyV5YDoCGCmsDjzi6IGyknMo0XgV3ZAbMDUDfaquXjPCbqaNFkG3dARMI/w2Q+quYDLMg4k5ISNRNJFT4brtoRrhQXeX5Q3p5JS8ylOMTmPIuAVbxy1wZYQ6QFQnleJVveu6+t+bVwGO0an7oO4ONWRNIYvtB/3rdWffLg57HZUyDkgk9cpOD4JE4KffDtQe5FQYUM1t5GR4sM7LVx2aIKroBMgGQxJjN3Ya2ZS0LrQBywFIDMpa0Jy4O7s12f3dyROiAfDoiEpE4FQWUik8PDwgCOdldcn2ANwih+SH8zTDeQ5E2RC6GJKyV26KHHLTRiQip/zzVM6yqbjkgc0SAcsJ8fBEiUvDak7VLaFUO6dlccvBNVNKcRWdqPCrtXpgL4L183vcWgZqbWgbodQjVPPES8rJq4Wz9yc1QxmRAFDSktGUWJLbHXYLuXQFRNx6Lnmgru7DA2ClsLd6VE7lSILm7Ne9LCsSAXXJmdPJ35lZR5Iw+m2lNBO3VBBjWRdEMxkPYpeUMHWJ7PV0RvBAVyqJvW7klFhPZ1qkm5IKI6CQ3jspJa9UtOh2YQ92fXik7hdSAiRRSiQfBVenyV6xTBK3zbIpV+2WaJdR/c/wsaFOxTArL99cr2zXzSGMGagdgyw+t5W1UNnAjJwK0xLS5bYjWcKIoBEMc6jC9XQ8ibyuxZONqXiiYHiWYsHH6bKWeM4hy+8DiNQ6KUfCe03klNiqP58+BuTkygCRLMyhqDYmYDI8wK9JKVkZrbMuBVdg8IBl69B682CkeKLB3S4soAdPOkHHLDPw5I1bgkDf90OdbMS6kFNB1OEKTBGSB8N6o4QCVt09CVByZm+Nh8cH0vmO5XRi9EbdN7/OzVjXhXW9i17oqjwSAbSpSlDrlZISrXugro5BRxjmCjKaBWmNnJODSNiRALAYe6VkchK6ugqLiSBJWNrCaCtt7E9UHALu6Cd0SeSSjspsVaFZQy25slZ1FZTe2xH0Dz8PbAz6GLTrI3VXWq/cv3hBzoruHlw2M5bTibymCCgaZYlK0i0U8KQdyl2lZMryjsN5bxmvHx95+PADX1dL5lIre13Z605tDr9erxt727GR2b02m5LcvqBHIkzV+2VrjS6uHAjQatjHBRBpoRpA93V1LRlydrDHCi4wMljyyul05sr1SPym4nOcmoUdltFqc6BSNJIt3UEVa9ioqGSWpXBaV2w0tu2RnDrXeuF6vfDW3QvOi9H7I/XRwbS+v8/19Rvqw/u0ntgHvHj3Xa6f/lyoaXiAOuEWeu+/eoWmtynpnlLOEfxWZD273P++e2LfFLXCaEYaSredb733bdb1HRYSeb3nPoO2lct1IZ1fcHd/T7m/55tf+zUuDx9waRfqfuV0WkginHKhi9H3jWqDPoPtfVD7RjotFM2sd2eWpFwvV7bNVbpycetYXRPUioZaUO3GZe/soeazlITkRBelifg7HYNaB4/7hiSFZcHCklZUOJ9WuJoD2SMh3a0Gl2VxVbKUgRbBc2Ew2C4bPUDrqf4zbYFqrZTilcNtDFdOMVdDXIpCKNyMdLNEGqP72BIHd2zrbsmZMkVcnWiY8li9Yt2TfLFPSUBKDEm0rdJ7WF9G9fgEmOvoDkqdFsqysF/cwjCnhb5vkelyFUzkBqikUjyxyDj2p3enE3IC25snGzwLEvsFT3rY8Ar2IznPBBsHksSTQB2GdVd1UldpWtYS8/tM3n1vNsmKhpLVTC4jvt/HQo3NJgbBYatxgBMijDH3JXIk5y2qzzMT3pL4iQl1KIeqy/F3kYyyG7Q07cUOsuiAkGJegIDCpqVwFAYYR9X8GNMizQ446ACbEFeGCGsRVQfXjiRXgHfOKUVK2vw+nOeaya/bz8cffPR5xfqW0i3gfihFTRUvs5uCD34W6K27UkiAFS5oM9Urf8M1YMce/ni/x3sLJanjed8ABSJZ7paxfi60bnRP76GhjHPYsODQ5SLCvd3x8Q/f5Ue+/iO8/fAWzPu1m0JISq7qUKur4+ZQNFWbrzve8BP1GAfg/HzraotyAEpHn4j/mmBQCvusG7Dld6jRZ3iy/5/ww1PlpAmU5qlkkfU299gINRiHBqYVzrzgQ/HJpQRDUSZsQUWOhLMG6CbRnzUSpF5YI4eNj/2G93pAeuawbs4FSXpY4R1FPfEdKWCGCWVJFKdMxaxpCRcjy+GUAD9SQFLzOWtsRHucY5Gw/I5z2bSmG0xQS449yAj1H+tToQ0kkq1t93l+KpqlJDHefE6Z58O517AY6xKQTh/Tbsp/Ro6b8VZbi2KgFFC1708VjfN6oo8WYzt9JLFtAWjAVGnz0eY55gBPoqDrSMg75eJgfMyB6YAL7JgTvKbGXN1PxG3cVI7KzWHm69AEpiQAJdXDJsqhrhF9xs/cbskkEHanY57pLRTu4r2PmHPAJkvvVxZzg8aZjhRAnN6iMRMq0hhzrmIYKiWhmDyC4hJ1VcS6+z5PcwnlJYcyJ6SQo3jjhml8dMHsvR/qOzc1K7eC9msKSG9wAFYj+sT8X1eCkUj0TyVmQ1LCcoKwCp/3K6KuJmfD91u47ZZDYzewdj7fEfd1FMuYAzgj4jUjYI6yLrf5y+w4b/veKGJf6vuKMVwZfNi0xfI+UZaFRRZ6dxWpfbsiOxRVSk/8ri/9M/zIN36IX//Mr/PVT32NS7nEudIY4pCHZj3sGOccSsTAbETfnyAPHCo+N9jQ92M5+znTAcAJfnm/nbaGFtO6b9Mjuu5hOHoUP+oETMYcJ3GeDDWnkjx22XvDxOeP2hsJIaeFVDr9xzryEx376pV+Neqv7mwPSv9lkPcSvb7jijc2h5XvV/a6o9vGUhKq2eMb+Ph05SPhsRv/6TdDCa7jSr5WaXXj1cOF+/XOYzDLSkHpbUd6Jr+3kv9M4c1/aWH72Qe6bdS2RYGbegxVk8Puxz3PvuVa766krK4oNga1RgFZ8nVooH62D2Uia4SyXaxZ8XMEcNh8M42NKOKywZIzmYCoxogzre+Feve+SpuAcUDdagcMjHlxbA87WYnnS6wH83706do25zZRNGe8OO62pzv6o0R/iLiZr6Gxh0jiiqwMJimqCEd1lLjkbwsQ1gJ89r4dytnxLjQlUgrVpJQdTIpx6pTcjNMGPB1xj7mWppQousAYEdeFNuaebhZd2rEOYj5bT8tK5l5ghHqjcVu7oyDy2Mc9t+f2W6kZ3D/c89t+7bfx+//S7+ezX/3ss3LSc3tuz+25fZfaOx++wx/6M3+I3/eXfx9/+ef+Mn/9p/46Dy8evtuX9U+2CfBx4L8N/LeAv4NDSn8K+Cbw78af2d/vA/7BbRh84w38sV/4L/iLBvxZ4BeAfwP4nwDlH/QLz+25/eNt3zGkdH77BWMb1IerJ9PVD4IDD25MezUVl/MWIRREbnL9XiGX/NCq01IJr05RtzcCl4Ie1o4gv2YlFa+w8aoZt8eY0ueCf1e9upWIDZfiJQ61KuqVOGEHZ4MIska4RGbQKvtBvXdPwkbigzaQHGBDb6hmrteLB8DEq2e7uW2bV1F6lVHSzOj1SQXSiAOiJyZSUmr3qq/R/bBZWz3s3malUbJItkSiOMXhMYWKj6SpvrRHwN2i8rrfAjFmx8FXmBLlRELGAa6+h0JTSUh2H/f2JHhTyomSCs2FollT4uHhysPjlTXgGLRzKieGdU7nhbv7O0SVu9OC2PAEKRygW+OWqLpeL6RWwQbnpXigOuTZAYrcqn5rqFSpiAdvIxifVBDzBFWOBI0nMW+BYH8M5koIIpAcJhq9Hefw1h0o6L0fQaWpfiWSWMtCLsr5vHL34h7VxLbtrJFoTcmVhDSSG7M5qCe3wHcEeWcF7rqeWE6Lg0vbTt/dfiSrIlmQnDiFctjNTmRmWDp1uzLUFcaI5FNKmWKDGpWty1LIuVBK4e7u7rCf8SSJ2/+4JLYx9kprHqBOYdEjIq5Ioa6KNCIg0ttgVnUnFbeEUI2AjFLKCshhRTj6IC0CyaE/CVikt0HRQkoadmidJSW0JEQXyhLWEjMRGABXLkqrG8uyHOpPHizzYHuKRBiRyMFCySqC4yL9kLxXBJVEa50cdj8fUSSI3UIfPWA+32eMgFRcBa2Qsj/jZSnUOrhu7VCCKWX1sVh3sgw6DiCuy4qjEUrRFMFRQGHvHSnJD9LdaGbY7mNGNBIBNhySm0kqwYNwlhhMZTllWVagI6Mjauz7hVIywzyIuOanFdQRpMuZLBkRc0WzsCobB8CoXmGbF1cfmVPscgId7JdOypm6taNScbQJ6LkansiElxJbbXSDIUZelkjGhv1j94CfqLDtu1dF61QcCDupAATqtrHIQkoLooM+fF5OYfXSx6CsriYmoRAk5kCkjU5ZCo8Pg23fuV4ePXGQC0tZMRm02jmvZ5DusMw5IFOEbkK7VvpotL7TQmWqaaLXjWVZPfC/bwyMvTb66ze+ptVGDfW8re4O5JlDIafzmVwW0KlSIGEhNwXqXVK/7RuMzqkUir5ArXFuja1VLrursO3bTlblsrm61wiLhR5By9t8FRYOZg6x2AhZBl+HRgATylQg8crs1p8ou6HQvfr1sV5YTytJEvu+s64LOedjrdclk7pDuJqUfa+0PiKBFxWjkbjtU81IO2iDmIs9+TGobeNy3bhWB6Qv2wVBaRu0zfvc+++dUDZ+6Lf/BNs+2K7V9yND0XQKiw+/x3W9Iy0rJxHC75ZRB1ttbP1KbxupNWy/kHIh09geL1yubxBtvLg78XItlL1jL9/mxbuf5tOf+1G+9qW/y7e+/mtc3v8K1i6sOaE2UNyGdN92uiZycmC0htKVLJltdDowApr19byQ1xLgC2gfYWfgc1Eywaxx2X1fJzkzTKj77smMgLP3fef9zZXTtt2TvPf3d+T7e16/efB33DvjulFb57SunO/uyKXw+vUjrXaWpOTkQLSD5z6vutqWUoon0npvHECDiCcaVcjlxFlXWoBy67pgDB4fX1OtY9ZD+WjhfFpZ8uKKczYOO7d1XYKy7pjitrWhGNJ2Vx5ABsX9IejV2K+bK3UWZS1ufzgpklp7jHUceCQS7OqJmW3bsRp2pKL06Oe6ZEiJjrL3RimJlJW1ZOreEISCMgJwMnELNxG3UcqaQIcrO3RXXLuaq31q2Mx9r7ayrlgfYR1ph4qFhUWITkDEs5K+F9QnllqRqHUoTHwPP1Uaos2k7FT8OdRn1PcPB1hjM7l9u76krkA2/94tNPRYU1VCeYz52fHdc63FVfamAs2EqDCHYub+Zd57q1O9xn93mNu5arpBDCJyJBQl9u6e5A94a95TJMRT7Ftnso5Ict2UPTiSxDeQ/qbKZC32HXN7GYm7+U7mmnCo5Maz82HhZxgsVHHiuY0Rq5P5nkw1HRafSYRaO/veHMJQUAvLXDOWVHh3e5dPfPuT/OB7P8CyF5/qnSvy5/YkGddaPRLcJexOZtLa9zNy7PenKk5MNwT2Es/lBikRd2rxw7etfSQpA2aR+F45utdUZrm9u6mk4MB+CpA8UxZXpWu9k+LapurP7Acc1/00d+jz0VRCSKGqOm3Xeu+ecNUJL92AF9/b3sAYmWOsd1fAiDPghJLQgC4QL8qZgGUuHxmbqgFtWMAUkcCWOLuNUJdIyeMCGvs2Au6Jp3nbs8d1OniXo19GAVCAHp4nztERw8JTUsAGfh1JBUkOPGqopR4SacIxnvroodrCDXSJsSKzsx89gMNqbEZHeswxYjfYRZUDCnTg5va9w6aCzLh96uyrEcsoS4k9idECMpxJfOJsr9MaySyUw/w5OjAbZ/+IXUhyxZwRcRpXQLMnc5ufM308PLnZ+Xzj4lMqwIj1M9FH9YIppqqVFwONSJJjrn47Qa8Js0wFx6cWk0fxV0B98731MWA4nDPiz6e1pyal2QREPSYyZKpHD0SLf/8TSKkfFm49Jgu9ATDHqe/J2qF6AzdHSM8dj+cGNs6udVNE4+hfozdXj4nP0uizOeVQXSH2GxOpcqjDrfpibtDYq7RjW+JxsuE6RPu+h4WsA0peUNVDSWret3oMTBUZDsRN2GcuA87v+JlIRVhyQUiUMWg2KD3x8ssv+fy3Ps8v/fDf5pv336KGyvQYAcId89/tOaUAD4cFnM1t3T7gZJ48wxm7i57tD1hotZOS96vWA07NOQCVKPbKmbZXzIafGfpUd5oqiRFfYKqkuc2ZP2PfO2vKPqe3nb05iNVedMbdQN59pFWDnwL7fwr25Z13P/4plvXMdduYymEimWkvr0xrPJ8HS5ziXHXJaFHgItahd1dZxhit0upO7Y1lUZa0krrHIxfOnH/pHR4/8yFvfvu3Sfk1fX/04rfopSmpq9UyY0URrxWQ5GtzjRivpRT2h/4MlbmXib5GzO3ix8Ju/RgjiMdtPU6hPjabn6crHHaYaShLWcDqYS1Hl4jjGKVEfKo2P/cQqow69zq39zfjpBPwO1jkiBWiyRWMs/fzPvoB5dS6u+oWfj8pxkZOAfP6Jt/nRXXruRl7nRAjCnhdgVtAaoyh4euj0UFD0SjOHyhYm8De0zbHQFgnGl6cEHFAxOctkexqf7XFvsti/fL9Z4r5Q+a4ipVq7kVutpV2xBlS7A+e7jue23P7p7YZpJ747Fc/y4//8o/z03/tp7l/uH9WTnpuz+25PbfvgSYIH3v/Y/zBP/cH+d2/8Lv50/+1P80Xv/BFev7H7IX2vdYk/vkd8e8/i+/1vgH8D4H/C//QoNI/Uvsm8D8DPgn8azwD68/tN61950pKOVMfL+y1kQ1KcSuP1jvdzA9zs0oUr/pLodgi4gnYWitL8YqujgdKRvdApI1xBFLacDuPoxpYveo6ZU+Gz0CSaD98t1sEP9NHKqMiVBgQhplRRz0qIY/A/AxuJoXWXbJ7Vi83VyHRnDzQoULHk2F9r26NwsDEVTskewKut06rg+v1GjDRPBR6AtcDTDPA6xK+OWeulyuoV6J6NVFjKkzMatjaO6NCL4IobhOkGjLlUV2oSso+m9XWXDJbBEKGXlRulcIaQdCcXPlH/WA+WuOtly8wMR4vF7a9YiWx3J/Ji6B4JdTrDx8oObsVDESC0OXfp+1RYlbc+vO2UJtaFuH1m9ekSLxh3as9g17T4kGbwx6CmQwSehthhRW2XjkfhUxTmeFWl8oRSO89FrpIiHmltisUYK7yVWuN4Dbk4nBEyom8pCMooqq03vjwww9JugS049VlNsyTJMTvpcwwczsXhCFAVKNqBCdPpzveeecdhMb1ciGrsN6dPNgigknCIqg/xohA3TgAmhHAWVJh9IQuimhmVLdN05RZ1jNlSZRUyMUTv717ZWdOOQI6xpoKZo2tNTSqwFwFqoWCkqLJQSVGpbaNet1Zy8qUz59Waa6u4vZY1n2s9dqRpfh8EYBF0ky16lCZgDVx5Z3iFkFlPaHpRO97BNoiGFUWlmXher16Yt5zXogmVw+KxJqMzl4reVlvldO9ByDl849IYinZx4l5UMzVF/RQGPL5Bx6vG6/fvObly7e8YjaCOEteIggGve9crz6WbQj1unsgSoT92qnVv3ctiXU900cN9XEjZSGtC1vdqKNRsvfDvTmM2Ye/t5TGkSwwoNfm1etJIzDowSnBg5AkpTdFxJNhQz1sn/LJq2m1sKjPwafTiTEcpnTmL0VFeiM6MSKZXPx+xwD6DOYbaUn04QnXVDIko9YNad4nRx20CMidzmcsFLw8eK2s68q0yiglh9KcK0DUh6snKwKkGgYPDxcwKOvJJeZtoMk4kbnszYHGMVxVSTxJ4IG+Tt82Sk6kCUQhJDxAbRjr6czWdpZS2Gul7TuX3jwQqHB5eIMw2K7C40NiXU4O6RnkVFiyw4eaOqqZu+WO3nevNpZYA6+PkbQYrhIUCc9cFu/z4sm1nDPLsmCiGAkESsqkkIkwcZUYQdE1ka4KJwc6rO1s287DduFaqys0leKAVlIu182DrKJc9wrmFdkdw1o/kiWeiHZJeBOLOXwmESdwEEnWyEgIQtsrmFHKEgo8w5Pxw1yhJ+w2JlS7192hmu5qTb1XH6NA7ThUFvuJfRdME006fVSsde5O9/Te+PaH36a3xr5XSArDIdR2rVwfNrp1Ul15/70XfOozP8DLF5+kPu5gSspncrnj7sVbnPKJx1cfsu8XuD5iYcX17sdeoqy82QYqjbE/8ur1A5YK9Cvf/sZXcSGBgfXO5Qo5wNq2D+7u3uK03vHyrXd595Of4P0v/QrvffVX6fs17tFYNSxZzG0VzsvJ7RXHQFKGJFx6BKiX1deJlLFIYJoqtVd2wAJEnuNqoGy1UrcdDVCTkkjrwl32APm219j3DeiDy+MjL17cc15Xrlula6g4mrDXynh88IrspLRtY2+GlsJSMsMSiGK4kkYfg7E5GDL3cilAs5GUl+tLGIneK6PvQGLbmwfoSyYPt6lTYDTjetm50liWQlkXyrJSh/evXBQJAHuL69Vi6N5CQSrS8r1TN1ch1MUB973tlDLQJXl1e+xFTAkVnZmY9mD/BP0AhuJwS6usKZFEOC8Fu3ZKgBmiwrIuDmuoJ/fcZlKwkdxCRtTZQPU9pyVPKNTdbbM0qavofI823wO4KscBNJon9Y892wSLYt6YgI2IHeBG0hRJzamiBPME3dtNfXVaLkdK5kgST4AIkSNxM/dS7p46lV8C0uCjMMcNPrKPAAuR3/brOWCLwCoDOAhK6LBss+7KlRNK8p8Fs1CK6ua2vk++RULlwiI5OKEajQRdq5E4t2kZEgnXI0l1A75mkkoDQDhAKm4WMOAg9pEinpP9E9Bi/uOKA4lJJJg5IGjiynttDDKKLiXADR/zO5EU1MRpW3nnzTu8c32Lj7/3ce4e70g4wC7xfCSevQO04vu4CVSY7+GPMRkJ06lUZfMG5QZ4pUhsTvD3eK4TUngCCx0A2K3bHapBxH8fkNF8NHF+mKpBcy8q4spo29ZxhRw9wJOnifmnqrBJAyaY333cm6sMnU4nwIHOJIKUEhBDAD+zD0wVk9k/iXOxEEo6hBW4q7tpPMuUsiu8RkEQcVY9VCJiOkxxFutjBP8Sz20MUknx/sK21dzi1W1E/Vw4xSnAzxaKPnnu/u6mYs0EHgX/LBuGaXc7G3NLdLOAnCRjdlOiFfOCHU3J9yY2kZkYEwEXieCKzaM/gYACLlRXuOytB4ARMGn068ijH0NmJvZb7+zb5gUgRwL59o696w23s459Xm9hMy5uwzX6VMmROHM+UZJSH49ttFDnURK+B4YnysLq9n4HJhWqVB+BHZ8ktyc4JhJ9lQDM1VVRRAKawmMpieT7oDiXKQEFmd7OFOr7Ot9ATkPvCZL6vJRLQofQujG6oWEDOmEYTcoSgJx35wnu3sZ0LplYPWjN53lXPBkHnDV6j77i12Bi5OTFN9ZwJWcNWJJY682L8izFWDkAqxH90PfNKWffy8V3tYBlRWG0epi2OnCZ3CY+ZhLVdFyTW0G5crGrC4Fl83NNd5WZNucglbDim2enWVDoc5IMw0K1TWO988Iyfx85J6g7OSlmfh4brZHGYFwdBn+7vcPP/vLv4Rv33+Tvfvbv8q2X7wHi8cLha8HNTu8GP47DE8zvUidO4zQfc1K9qWBLKMveFNBqH+ScPU7SHW4JKUAQbupOw/vIhEkdepskS8B5PS5HOfq+iluKbqGg2ZqfDxG3IHT4ujNKx/7rwvXPwfbNe06nO3KcmUQzoplUFtZlpddKq5XR6rGmr6dCOS205sUiica27XTxOEzfrzzYFtDfwN3sY2QOkJRYl3vK31lZf98d1+u3efjwPdr+GD3I1d1cyah7rCbWm0MZP4V1tU9ex5pxEN1qjA7NhoM4sW+YKpZtFtKNfoPNkpvBFXhSDOrzYKsOKJecwupCDkJuRExNehQrWigIipGzx2h8Lox+gYNHwUqDxDpkg95GwLsZkX7MP2OYW8+pg+gyYTgTeps2vA6+iaajp6Y8IWgHuxsc9pCjuzLS3I33PrBurqSJg06m5ipjEQsZt20Jc2Mh8Zljrs3HKHEAee73Xb0t1AjV7SFT9uJh12PktiaEIt38/xJndhLR/0fYp/qc8dye2z91zUCH8tart/jsVz/LZ772GX78l3+cj7/3cXLLx97quT235/bcntv3TlNTPvnNT/Kv/LF/hV/7wq/xF/7Zv8AXv/BFvq+mbAE+Dfwf49//xHfpOnbgfw/8d4Dzd+kantv3XfuOIaXRGvu2MWrDQiHB/d1nwmAcB9eylKjEiIOwCpfrzr7tHrATMBkHTCQzCGuDbdtQncFsQUImea9u01OWTK07I4JAefGaI6/AHEdV1Axg1OrBWUUpq1ejbdvGvu9+YIugXMmZ1jr0qLaK5IBX+nnwfoiRJLsyzbK6YlNvaBLyAn00rvsVEa/E2fewrsIP7jklrtfq9xt2KakommFdF7bLFnBVyCWbe65rdlUVGxbWY34Yd/suo1pDJVNy9j8zr7YZ5td8SGXjB1EbA9VMTplU3EpudK9od/gjHdWyn/jYx/nUpz/OF7/8Jb7y1W9yrTvbh411Tbx8ceJcMsvbLyglUbLb9ZVQNBm9s9XO9nhBx0qKQF5vnlD99Kc+w3pKXsnV/LqTKH24SlLKGsF3O4KtY6pBRKC+lIyKOTyk6bjXGRBjAlik43fAjmDK4Wn/JLCIufVCWhaHlHJmVtZGt4pwfiTZIqDdegW7HNBXyQ5E2Rjsw/t+WhbWnOhMEG5WoymlLOzbznZ5oLfKel793kdzGzudgWrc1oKZKPFgSVLzqsFBKD7JUT2YEMrpzPn+BX24LVTtjRF9VMO6TE3J4sHv1navvDZPrLpqUHZgT5RcigMc5mopubgVGxjL4oopPjZh4GMw54xYRxaXGi/Z4YjrdWe/bvS+8/DmQ7eGW0+YdVclyispFQ94AaDkXEBGqGAZYsK6LPG3Dt3d3d1jY7BdHzERt4PCA7VlKR6mW4pXJqZQ9MGjsq4oEgFO8UCeJ4w6PZLY5/OZmcBsw+0wsuajWs7fgdA7FHUFrst28QrF1slpDXvIgqbFFc26gxu9NfZUMfGAdIoq4ayJrLjiG56UyBFg8sDcIBW3l1tK8Tm7D4ZVVD1gn1ZP1PduoWwnpFzcLq1W2rZFYNuOMZ1yVPCOEckkBxw8WObgidhgzRkdID1UpsJq0jwuhw54efcCMLa9U8aCjeq2YwZYd3gjLYdKj1s3KqCR+Oyc1hOXa6XWTt0bQ9RV78ZAtYIKFnZqg4BcK6gswEAZoG5zqKNHxaODldI98JvV3023TioL57s7ruZKfaIOA1y3R0pYStTqdlH10ri/N9ZSeHy8YEMiERDVuiKopSiANrQs5KSclhPbvrGsGoks5XR/T28V67ekWMnFFZlSwlalth3oiHqiSjWTsyt1JVnJDJo0B1azJ8+ve+Xtt952daycuDw8stedy+XCh6/e8OrhAeORNBLa/Xdb8sCy4WphXiHvSaYWQdmpPJeXdCRX2xg3O5nmgKWrOiiXywPr6URSaHV3Fb+U2LvPxZ6h9FHminMJwSglk8yDwKJCa7HWDXXAq1eHXNrma4E4tNfpDlSb24Yua/LK5zEw23j/va/xrW98hfpotN1I5UxZzpzWe1QWLo8XTxibUdvGdq18673XfO3rsOYTrQ1OGc5p4dXlwmY7Ojy5QXKbMRVh1M5Dv7pq3uOFr3z917lcXtP7TtbK6f4tyt1Lrtvmvx8w0XnSkmau1oiyX19zbZUXb70ka6E7vUUqrmzRanNLQ03sY4ekLKeM2jgC5XvrXLbNx5t4gqK2TmUjZ+HuxQtKH9TW2eSBy8Mb3rx6Q1Ll7v4FeVkc43BpHx4fHrher+SUOZ1OnN5+Qb3u1G0nJYfVRySUh7l60gHiyc3iIydXAnj14RvGXtlr9TmvlNgjdHIW1lTow5NWbbgtxxjwuFWWvbKuC21UtysqBR3ed3sceEvOtOxWtCkSGqkoadogZBjd1+t9r2TMwUNRrvtGYzhsnhKdJ4BMEpZl9YRfDXVG83k3q6sn9ZijDKijkyIJ74xOZLQt1p7u640q5JmYwa+XHKqBOTG+d4WUmIoOXgXuJmbTuuZQAIlIxGFVNqEJIQB+V3MIcuR4XhO8MbGwXZrWxTCrwadyhKoEOGihXpGOfZXvw/2zJ4TQwwItk71CXQxavxU+wJEwHmPcbMhm8tDmJ8WuYa7taX7fTT1khAIdIq4yEQD23IdOWzZDPJl2qML4/HkkTw/wy/cy8/xAJGoJaGUmYT0xHgoh8We3vjh7KcSJwt+V3KCbuR/0d3Ibzxjcne+4f3Hmg1eveP36wRU7r+NQEDtR+MTlY3z6/U/y8vKSt9+8Q7YUiTWjxxlIYu20+HNEefHyBSkpY7yO+dn3gSOuRY51JN6pOfQx11mRaS3nwIvM8Rs/HgZE+HmO472OEWeMCfzMCFokVmECPhoAWQAo8kSZJtpUInT4bdDMwdxpzzYVDmbfl2kPiYWF1oSLfB7ordPa7n27ROGI3a49htVxj4dVDreEsz/egFSYNmdCToVcFodPRA5rOv/+CREF9NdDFSNUlGb/VnUFCWPaOtnxbm5qwXZY/jHnwrhKn2MHpFDYif+47Y0rs9TdYfac8tEPJhA15nkxbOd4AoB5kjfdErqhXOiq0GFvq/lIJqc5dyQNCGWqr8VzmAocT+Gk6DEWc1guNy11B21SgBofVdbwbZGQQ/HNzAufJApWPG7hEKwFDGJj0CTmCzjGlP/87OPc5jF/LNEnhakMNPc+ni6P+UM1oMyAloSAagJaxpUBR8QedJ6lsVBSnu8WVB0cE7mtA15kAlM4b4xpU+VzapLMsoYNYIpCh5gvdPbZGINzvtMJWoRCSUoBtQwLxS1/0NYHIiMArlhbYow9eVLHuLMj5uLPypw+xDTmAnGrLCPUuxlUm9coATRGMU+oYdZ9oDpYFj+H9uZnME23AjjsBrZxFFKlQ63vKMrKCzb6Mf8ZUyV59vO5pA6nXYYF1JSYKkDkzJAoNDSQlOmjUspCifWn985pP/GpX/8kv/bxv8cvf+ZXuMoV6Z1hOZRy7HamPODI+P7h1p9z3pMAELGbdd5c6z124+exMQat2aFm13tjql21ALiethSgkgbEN6Y8nR8J/F2bx/dUAn7p0V/n+iLzeTn4lJKvvXI29j/0yOOff03+8gm6hPJtJqfF7YJbj9hCxFl6p9aNh8eA4wKuPOfM1jp12v7O8TKL/wa+Xniwgu2ys+2hfP/QyUuiLCf2eg11SkFzIiNRxBDzp8yCmY1yWrzwc+7JnpzvCJBy4FpkKYC/mNECKvJ1LBhQh5G6x/Bydhi0mzFqo24brTZ2caXuZfHCNvCu23uj1Yaow6vrWhjd90A+r6RbbM4mSB6qlcc86/NdH92LVUaMp3FT5Pb4oD2Bbv33HEb3/tO6x7tu+6rb/s45+diHxRnn6GuqSPK9qQVwaRFDpxG2kRrFajfYN6LCx5zk60KMhd59nsaLXua81kY79kdepOpjKi5vBjGZS66IHVDUfFcaG24NQO25Pbd/KprBsi987suf4yd+6Sf45Dc/yee+/Dlyy8+KSc/tuT235/ZPSROE3DM/9qs/xue+8jn+ys/9Ff6D/8p/QCvtu31pv7ntHeDfwvdt/1f4/zvI/Ga0x+/S9z6379v2HUNKrVVG9X96zjcZdDFUDZJ7l6eUKGE1YlPxSLySdGBu42HdD8eSqZHc9pJjP9Cec2FdCq8er2Rcbrt1r3R6+fKO169dP1fxQ9S2Vda1sJSAQqLi7Lq3QzY7qYaliDhMtEWgSdWDYAZtd1uN5bwwLOCNmSoJq5rRvWpsKYVOj8qw4fCGFlcYwYMly+oVqCUlbISajYZvuw2sVk55JeUUFT/jUNwRcbuj9XzidHfGMB7ePCBjMOoIlR+v7G+tYr0yajuCz0YEF5MHwiwOnWazijzyXgF3ENVkow2SZK/o6YbVztsv7vmBz36KbXTaNqjXyv3dmXfeehsbYcdVite8hbqPmdDxALcHwAZTwMgCAHh49ZqHVw6GZZne6YSF2HiS9DjSChEkG14puiS3O4qEqhkhry+MqIQs0RewqL5SyLm4PV4fB4Q2hlFbc/WdNR1Vfm79dAtqJjRkuT2JIyLQPWCbk4RaU9gA9o6FFYbqzf7Q7ZIceKl9eDB9DF5/+EFc63C1Ikm34IsJKbn9X28ecCipeNIoEnMpgipdjESKIJsn4iGzSGbbNsriktCq/i5yEg+Oi6c7py3VrOqafTaVguaFtJxBhNbc0m70hnWXpM9LptdO0kzrhqnSxYMsE15j76SsNOsOre2N3iq17ZhVzufiCd3eonLZlWQ84dMo2WGnPhyIREGHcV5WUkk87hdEByUXiABuWVavwtPkMN8Iq0kzqJ7MsHhWPYL9YhbBn0aRdCgmZEluP5ZSJMVGqFhlJBUMt16cgc5WKykLvTaHJAz/fAXoZO3Y2Gm7UJZQ+0LY24WxD9blDBYKASp0Gx6wF4NeAYemGgY5oUuhtkaRDCNsX1Ro5mS6tYGmSquJ1ggVBqP1DSRgOPWKx203rF9ICfJwmMOTQ4mS7AYdClwuOzlBzqtbCG57KDqJj/mUUcn0PhUougOnMth7pW2NnBbK6ezvxTsubffPqanjNnhyJLTNhiu22IDeHJbLKaqQ4fTingE8Xh9JCufzippQ+xZAiwcYR+uULCTB7a1EoPtnDLxaNpVCGSt1bdhefX1Q4bQsyPBAbRuhkodgo3rFprqDRh0VjQSX6tS2gmHC2DYfhzGeTUGLg2vSO0tRerOwTkxupxfJYE2CVti2ndp87tVQCTLJyBi0Omi9OZhbVlYV3k4SVgW+FpxevqD1xqUUlmXhxcs7tsuV91+95tXjQyhxKGN4ABT15PgY0+LD5+nePfHU91AojKRhox+V2m6l1xgWiQMR1iWjaWCtAp7M2druQWiD3swhEwJQUo3K1pC8N2P0yj7cxoKS0Kz+O+LXnnKJalqbeXpX2ekNrp7Ik7rx6ptfIY1CKS88kSSJvlc+/Pb79Hpxe639kbbtkfTvtNFpDxfa5YHX1VXZDMNUIBVyWSlLoQ1zQE4aw2DboaO0Znz4/gc8Xj7A2iOLOhJwfvkCWuNyuSJm5HUFBvu18ubqqiHn0z3dGqM2NHnisvZOKYXTese+V3qtnlAwhwfL6paq1gZtd4vbfdspJWNL9ornSBi1YZBx27q8ICMq0uvOddshXxzWvTZctNED2oqyaKJeHukpkzVTTdjrzvn+jkGnXnakR7V+UiSSHSikrBRT9q2yteFsVvIk4mg7aShl8fVdRVlP9+yt0nv1/h57LaihXOngbm2Nh8erKyhpYimJXBLLmiO5wGGnqsVBlgFuuRrWOL1Bn5F+zIER8bmuBRyMhvJGgjyhXS2uyFQ7LiLiaohtVP/s4f3a4ZSKS9T5HNS6q6uZ+LXlMZOUeuwVxoBeR1i2fm82t5EKe8CALEQVsZn4jqr7w4LEwk40ft8iUR4Jcwl1lS6zbN5hiIFbJB7WsQE1DYOUYFkL+wYHOiS+/qew9Rh2u5bWIzkYe8YJOc3igUkriEQ+qPs8l8oNnr9V7U6AGbc7DVu3Ef+4ZeaEJeL+Inus6pKFIp7zPKzsuu8rNOlhC3ezRwoLsJIDhHDQDmuhRGFHkq2HnY+FKu5MTt3AjVC3AE+MRw7Qz0lBYcT9OoR2s/y2MTiVhZcv7t0muxm6Ce8+vsPnX3+Oj733LqfLSpZ8WNJYrCtT7UeDqBhzyTFAjbpt7PFyFTkS2llTIB7+DJ5wR8xFQDUShBOIi8TiwU/ET2sUIEx7IQFyugFEM0HoiexIzj6x7PPHGb8bSd6ZDD0sxOKeXD1IjuS9jRFQp59JphKK/57rfI14RmKd7XqN65mQz80+CfwM6OC7P5upADWv9LAhO+7U504TR5WSSBTp6E3BIwCl+X3+3hwYOuAD8f6hYW8kE9oNi+kJ1UwLvLnGu+JYqLvg1y7zfafZh+PcaiMKKLzIQWaflAnbpI+MLYlEcDogFg5l2TrcenQ+SxEh5XzYbKU4o86+4nuREeMv1N0C8JovWKfMWiTNDV8rNRQsLPrJBPPtyVze4+w/bBzf6wCNMBPsZp0RMZMJ2/UexT/J1QMOK/MnlJrPp66s6iKBDlz2MUh6g4YMju/1IptxWAPO59qHW0A5IOO73WFCr76rzkmjOMi/PenTOcSVoXxs+pjs3VU8Jxww5+UkHKpXvfuK3G0cUGfOxW0qCYBqeLJ/9AmV+HdOC7LWO9OScKqCYQH/Fy/u6t2LdkouqKlbW9nwdx9jNIkDUhIgnj+cMJs7AISEpoLoiPVNXKEoxqQSlnbxTEesMxOG6vN9WbyrAE16rBMaelgj5hk/1xLqgwMb/hNJZ7GJHdBN7/7MndkxrLWbKl+ART4X+Xq4CKSRjrUkq7CkxNIyv/Obv4OTrPzKF36Zx/3KtVasDhy8vikT/kYbVol9mKuuBYEiRCHeYKr9zUnXzwoOS86ikPl8VPxeD6WpUKic411jvZ+KYROYHO0GixCM1rAOobCccgDJAZx48WH2NXgMdIX6Lzyw/+kz+sWV5Vx8TJuxbxs2HEA26/RaY831mFJrG1Y7o+/sMe5MIg6myQFusViP/Ewc4skMhLpXts89MC47ejWw6nEc88KF1ico6oBecw/12BNL9EM/W/VQQyqhxtdaP9Ylnfuh5IHG2T88BmZodtWvOXfEdgXVUHKK/WuHiMX5dY72pJB1zr3i+5+672T1gsrWW6wnDsTSbntFIQUoSuzNAjgPFbq5x/D+HCqk0a9yzlGIG/3KplWbQ0WuEu5zXm0tlLg0lNf9eSTzsaXMAi9C5dmO2OVcG0f3edDXkYGhB0g497k25/o53mPPMSzOK9OyLZSPDMH6cae3/c+MQ5uv58NCRTPm1mOsEfDmMdCe23P7HmvRNddt5dNf/zS/82//Tn7sV36Md99/9xlKem7P7bk9t98C7e5yxx/4D/8A67byZ/7gn/mtb//2G9u7uKLSh8C/9134/n8ROH0Xvve5fd+27xhSqteNERUrs/rUD/VeVcoTOfCnlaI5rFtEosrDo5SoJnKyIxC+RFW8BxccoDidFmiuKGQYj48bSd1Gp9XGsmQ/HNaGSgQY1RVWjMHYtghqZRA/tLbhwUtJgprLqLfR6bsHSFUT61J4vLjlV86LV2E7i8Lu2stufda7H4rHoNKQFAfTIg5CGNStse27B29zJFwEWm2k+Hkx3NIk5IS9ciVxd1pZ1pWSC69evWLU5lZjyYEECQWL3juteUDcVVnyEV03m8pSSg5YxOIAq+L2bq3XeCcegFsWh7QYwvuvXvHFX/8Kp7fu+di7H2NsDese9D6fFloFhtsi+WE34KlI0pXsiTmZpTlALl599fDwxoP+OAzSCYsITaGcQtyDB7GmhLRDKol9q66+kEORpDkcoMmt82aAcclh3GQcFXPWLUCI4QnIUOA6BkbJ/tcqHuCIZKY8UV/qvR8B1fl362kFM7eMwS2YuvWwjvD72NseVmWJJWWHFMLmTtMMWip175QSFghRnWhmoSwgzEJ3hgftkjr0pCl5eFMTYziYlcpKs8EprwzzqlRX+vHxsi4lKlR3tmt1SxtdWVL2REQ2JHuifSkLtd3uXSSxnLKryVhH04JJAAcRhEzi1j3WOtY6tRt5KfTtCimxloRKYdt3D0yn7AFRUZh2i80tjkrJMS5XD8bIoG1X79Mh+a9R1ewBdO9Lbv0wjmueFXYaKixe+esBQFeL8RpczRmRULyoXkEtog6fjEFKBU2ZpDngk4HmfIA0EoFdAAkbhlIWkqirRw2hmVfW7b0hRig6uLrbshgNVwYpuNJHS6E41hrao4I9bBpkDOidNtyWQCIRtY/ucyuCdcGqwxuuTDfoNlAarTfv/yiDHc0WNgJeUTyTKGMIl+uVunf/nL07GCKuACGq7LVzt9yTlnw8By2DukfFp7RImiU0DURDWp7kCkltp+47exqchpJ7R6Q7oGcDs4rZTo6kYsPIpwUbQtsbvRp5LZxP9w6Y2ojK04XRBcwtgwYdMbc+TMktJGalotvZJbcD0Mq6nNmXhvWGWFhrrJ5ALsvC4+UScwbUfQfcytB6WECKMponRrt1csn02tibvyNF2DYjlZVSvDI35Mh8jEXyJCVXwhJgLQ5KJZnqRd2hhlq96+lCWpSsE+5dWHrjsu2haOjjOVtDR1SBYqwIe23UCN5erzUC2ZGYFUVHJBrCMsDb8LnI9FaNGRW4vvY56DlaRcQhTF8nPKHdmldJzATQTXllhOph80SoxHPsxL5E3IpMXO1EkysLtO4V8X3snNazJxOqJ7NMheV8cpvF5IqHrz/8FgPlcz/8Y+QkjNHYHl9Tq9HZ3bJk3xh9ULwW2WGxcuL66g3jupOzhWoa6LI43LO+YKSEEVSOFLfmzMr9/Uu2tz4GOmi7YO2RWhvQubtfHJZpHYoHpZXsSjzqyZfGoI5GbdUTVjboe0fvEzn7/e/7DuLAKRYAOIblzKKJhlcU5+LvZAwf+xKWm5fHx5gzlfu3XzoM2BrbVrk7JXLyufOyOeBXigf8l3Tier2iRRwM2R1wtWG0vTqkJA7sibpClA3Fu1oC7YzmyjualJJD8a03MCWnM8tSyGkBTdSqPu/TGKNTiqLTiif2qLkkavVE3KXt5J7IqYQiRqe2zmjNK/pDrSMXV9JU8TEtmii6QEqkrVLN7T5Gi72iCkW9Yl1zZoQtIdbpHa7mSlO1G7U3V+aIBPrornrhuyoHlFw5x9U5BHPVpSSkJaPZ9yVzT8qT/cz3Wuvdn9OhnBLJFokErMyENU+gCgllFwKo0ZtUlDyBrt2yNKzzPGfk54+cQlXIK+xr65FkdGA9ZYcQ5pw6rYh0KtUce/Pb93p1e6hsBOU0VXDmdaWUqNUTdjptsQjFqAnDz8yiRPJI5hlL/FwRKiy9u8KiwGFL5uoEA3QCPMRYeWL1JK56mLJ//7ZtXkQiEknXpwoI0zaPJ/tdC4kAO5LkH1HisSc/G5Y9054vxRkQU67bxgevXrOmM597/Byf/fXPcHo8cX+9Z0nFgRYZN0Ap3vW0eHaF17i2mUSL69j3GuPilreWY+152ldgqkIAoTjiqiUO+k0o6Ek/CIhFxJ/7cRF2U76aV4wR4Mdt/M3vIoCiA1I6+g0HBO/dyM+mOTuQ4UDFTPLGd8Zz8eQxMSfNpOYcIxP2c+XdlOKcHntYiz4aj8n/Pd7ztD1EJ1R1UwJS9WKaHAosYvN5TWUwT55bJKrb6CRJrvw3ekD6flZNKR+qF/FCD0jQ989hB8etv004a1rGDbOwN54Wa/6Oem8f6Qfzn6myIhZnZkkOLokn+0cozfiA5DjzOUx0U9D5qB0lx3u1GCO+9wmljCHz4QVkIAd85N1gQhIOtcwCDZiqMHZ8P3FpiMNNKaD3qcI6INjWOJ9GHx42SDjO0Mdgqv15vcZw+HECGnPc+2b/BnDE/fUnY8WFVfwdjlDIcXW8G5Y5IRBkHOPpNsY9ZjBGQCQWCX1iXzCGcxh9kLLD+3M8un2W0j9yzRoxn1hbAgrpvYdasmBFSOaBHY3+5fOUqzgliXNh9r7R45yVk7r19XwnEoVeksF872WhNOMqa/i6M/sH4jDpVAkzj8PMzi2+efV+lhK1tWM9mc/kABPGVAK7PcsYQvTejjkFgd4VVT/nOoNxg7wmACH4epJUD9U/CxJ0mCumTyAKzdyYzoSNTBszRhh9SG/r949844dYLPErn/5V3ssfgoRilRmzmGvCodOdzeK6fH4M9aDfsP702U+OgjY5xuoE9I411WZcLP43VMJsPlu5wTAHeIRfjMfR4r1FTErMYzYppUM1y8D7zDBMva8PbTz8vg+5e+9tMi+irzdG7XSLc9PwArEkiQkG5ZzZ67gVu3QvyBFNUUjke8+OxfztZ2nD4wzr6Yy93WmLwPBChd47WhIlZUbzcSXJNZGUG5ziO5sJ/sV60Afk2YfGoZDn6sZKCLyG/WEiQ8RbfUNn3d+d7wkcKpvzUC6x9x6hbNQHk8dp1fuyxPk1R1zKrS0Tag5LiSTfV871UqYSnM+Pg7mcCUQ/RQgg3VXBexsI2ffUAaK3Jg7Qi0P0MX0f0zD4uWQqTvU4U8+YpY8f/LoOZcsAoyfEGfsUUaGIICn5+XSCUeZ7UIfUjZTF57EoVhLzogkFTDSgX2Eqrfu1zanCAuabe0R/1m3OL/O6Yl2zCS89t+f2vdTMwaTP//rn+bm/8nO8+8G7fOJbn0DHzSL3uT235/bcnttvjaam/N6//HvJLfMX/tm/wLff/TbfV1P9u8D/Avgl4Evfhe/W/9yfem7P7R9b+44hpe1xozc/dOWkkLzirO41Akm3WWIGHP0c2D1QOAIiiqBjCFi4PYamo9q1lCWqDD0ACoB5UL61QbPB3d2ZpJsnjaPSxrofEtdcyCWjGfbRuF5rBJk8cNTN/epXoNZO2x0KUIF1KazryuV65Xr1KvshjR7wSI8KOxvuQjQwrHswM01FJiTkhF2b3MyTcBis5cT5bmVvDcHIxauwbLiaUK8NJMWE65U54zJ48+aBWivTvsurE4FuobrCoTilSdCsftA2DxoI4hBLFjC3dlrPi4M5WAQGxBPnJfPirZeczgWxRKuNx70xHnePITEc8FJodQMz1qVQ1CvNe4AgYkpKdiRRXImgH5Xps02Z+SPo5CXNXl0WwccU6kNAqNdEgEgh45LRS86s5+Wo3EpPIKWkXqFUqycsx4iDu7oiyHynNoPSxDNTCZsQr/ibstoDTyAqEspHHOf3bXOFlhzJKK+M8jHjwXu3pzuthRd3L6itse8bfXgwPWVFc2HUzpIT67q6sotHEm8BSnPQQwU0rLBsDJaSvWpSEqiQlxVhqrcYDLdoMPMk61R/8spiTx7MxIWmCWl49a3mzLKs0d8j6GOdwaAsJaoxFRVYlsxojdYawybM1yg5Y5ZZ1xNEcl1T5nK50PaNdr16sjC5jSOqpLwgKDkJiLrCTHEwKOfM9foYqjGu/PU0IF9bpe6XI3nn1XZA2G9ZXJsmh9IcVunRb9Ttg0wiGT48KTlC+WKvGEI5rYhkQA47mNYbSy7R1x0mKSkhaq6kJC7B3cUYElZgkfzsfXDdNofx1BO6tTVXJWLa51Xvh0NZlhPWGkkGNrpbXKpbYjkr4/OX1QoJSj6x72BpoOo2Yf7uPFm3XV/RqycDUoZlKQiJ1ryTL0txwDEnV0wK+fWllABZXU2utUZ7HEha/NqHUfcdGyNsDhJ5catE2ROWs9toRGAtZ+W6X3186qC1ShvVrVim5VeCdC4OXQ1BO2wPb1jKiSU7fNQMUl4YbaNtV/L5hEkmLwujXSMPY7TR6NfKuF5AE0tOJNzSQ5MnzHofJC3cne9o+8boFZXMtl9dRXAt3CcPmLewWundLeBgBmgz16urxyCVNlx1R1MBlai+d3u+6xaV06p+T2H72EZDtaBZHDwcPp5Pw1ViHIaslBZgLgPVlVIS9Xrx9UkzIo1SyrFOK8r61sKyreScuOaN19dKqS4d39qgqLKkBcviMvIobasOypmQsjAI5SJV9lpdBj+SjyRXA6MPZr2rWzQMt3Pd92M9mEHsYW4X51W6bjXbWyctmZQzMwc9ExWje/9LXZGl+LWQYDgQnHD1LI0q6G6D5byST6uDTntnsLMWgbGz7Y+sItRtMJIrOelpRYB62dgeH+mj8+7HPsHb734S+gvW3Pjyl/4evQ3WvJBLY9u+jUmGlEmpYO3C5fHC3tx6oO0X6L7fyWXB1nteP2xsb16TamMRhzl3OmXJlHRiu1651p0qDn5mLZ54M+Hh9QOv9TXn+zNjOBA3DZt6N7bHK20MNHui5XQ6McytgXrrxMYtkttwd3dHa41aK8vphOqZXncuHz7Q62DNyhAJpUlc9YjBejqznk7UWiMx5888ZWVdEgyN7DOIZMyUWju7VZalHLage90ZbY99oY+TXgf7tnNaM5osoDeNhJ9io3nSYyS2fUcts5SF8/meog7y9QY0Txy1bgzzfWHdWiS+jVKSq3SuGcOtedZl9eRCKohesO3KPhp5zSQr1Nbp5vZzDVdb2reNMRo5a+zJbskxsLCocqjME16uZqFLommAKqEGIGKUJXN3vzqoaP5ea610+949ufe98REbIfE5YSZdnwaYD3g84BJXUbol6+VIeMc+PD7PcKBE0AOiCQoIIObk4fNfwLLTropIyM+9kSj+HpvTdM4ZhbqT6rEnddhdYs/ksH2LfZBBJDJ9HZgJrXnxRnze3A8zwQx5knwN4MFcVbPkTI++NWEbmypTkagjnkUfHauDse9hz82x9smRI/YiiqEWe2ACLj2+/ngzT6GMaf1J3BuDQxFqWRZySYgppzcnPvnFT/L5b32e9boi1eISxVVCIPbOoRw0k+x4bESTcLwiptLT0VPied0S4xMKsSfv9Df+ozNJzwRLvJgkl3S8owmqTdUiAtKwqYwQVJ2FasfBBjy5DH+eN/BjwkH+sxPI0PnjceZtkSDWuLNbv5yfpwI5uV30Tb0iEpRTJSgKSyYcfFNful1jD8hYApC63ffsF0IOdUsbPcZV7C1jj6JPnusEdYynUIG/b9UnSiDR70SnUtNcb/SjP38kVafdcOwJkpJyPvq5iHrRT3ewVVXcDi467TxL6oSzQjUUcTCqhz2ew82dm+3d8HNkr0f/0gMykyd95NYfBhbqUhzPBCZYEclqM1eBCztpzVGYEtCMEEU6OnWdb+9mziOCQzAGYSEpx7M3G6GY4mpzY4JtaapEz6S5wyITGlPM91uhoDLHzyx6mkVHqonRADV8UzvVoZLDMs0LvhxcczVDVVcGncDwVDSe50RRCQXqgFNi7m9jIDXF+55zrp/XxFwJzUZHhjGG+MFfwOL83pm2nBLPpcEY5FRcnARXR7EA9XJ2O+Fp624I3Vy1RYfQ6o6mgKPELc5lAiOhvNJ33yWnpGF75QDahLTNhJyLX1+vocLcGDLhjRmmCwXJgLiiQwecEgrAU1pO8H1QzAEWKk6jV1c+xkHwlCTONm7bpvp0fCRSwGLDBmKu0jLM5/apKu2qXZMyD+Xn6LNm/gxzymhVvvDeD3P/wUv+o9/+V3m1fngDDp+oFKk+VWqaAKAdalBznT3Wn1CxG3aDcidsm+Y4Gl6c8lSBd47hacteqxc+SKhfMod2jDcb0441VIFSzJPjpsQzwdkeCreSFo+pDKN/rqL/EqQ/A+1NZYwEXT0mmVIoES1Y90KO1nYEZT2dSSqcFuXhzSu2rXm/yIKNjVo9LiLzubcrtTW4h/F7OvbTN7XJnAu97VxrRW2gw2NlroYsaMn05v29zTliAle4qtR23Tidz8cCpxEzAldXGmFRKzrXGzlAM7MBeoNzU07o8LlPVPzMMwZtr4xulOyqkElj/RMcmlNY8ukYC8pNrTCpYDk6E1Ekhh6KSNNSjez7vdH7AfVP68neO71LqHj6mJ2KgzDh+hRqbb7f1Jwp8bsW69QExSe0bMOfIXJT0CO5GhTiqm8iYAmQBt33jgiuzjXm/mLO1w6oj9FusJXiysbHXsinBKYiWbyPaaM5DG6wku+TS3Hb6qk8OcZtb/7cntt3vRl84luf4Hf8yu/gZ//qz/LOB++Q+3ecznpuz+25Pbfn9k9pU1N+z1/9Pfzgl36QP/5H/jjvffy97y9Q6fcD/yfgX+U3B1T6NPDfBf6134Tvem7P7Un7znd13evdvJLcIaXrfqHVRk4p4nRRqdb9sJxyJkmiDleVEXUoR5Jg4rCNJg+oaRKuLSwTiquSiOA/ZxFIgKjm6izLwrZfIqDqAcClLIcE+bDB6XRmWU6sZeG0Lly3q9vLROCxtepJZ0nknFiKQwsOKHm1vopAH0ewOon6IVmmEVAcPpN49Vv2aqNt31zRKapaveLFDoCrLNOGLGpqhpE00eNAqKZRCSfUNsh5oSyFnBWRwZtXr9nr7jBQwCYW8uozIDWVfjyJ4BCLamI9nXjrnZds+87l8YIMqN2t5spSOJ1OnO8W6tYQ9X+3Ye65ZxaVpxHQS1GJOSy+1wOCiAQQ5BBZ7/6cJBIpMw0lEZB+Wmlsox0BZNWZoAmZeZufFdLTOXM+n3n58p6SlNdvXh+fI3gFZGs7rQW8lFKoe7nFHvj9DLGjL3lyKzGrFTVAJJlV3FG1NAMvbtcAM0kiCK01V4SS7CDekhxEUOW0ZF6+uON0OtNa47r7NXqy0/uAlsRa3ArQYR0PEvfakOh3OquBs/elaVEjCCXlW9BPlKL+vJNGcETUA0CjU3KKCtwZdMqsawS8+kDT7V4vl0fKcsJfpwdDl3U94EJ/FB4Q3+OeUsAKsxpWUiIthb25ykutV2qv1L6TlxwjSsg5FCo0kyTj0uw9gtnqyfXRSeIgVe87HVhK9jE5XOfA8yG3JABMyXI7xm/KidantL9EVWPFUEaXqAz0SkeL5JSNjuTi02Mksm9BznhvyFEFt9XN54dhyGiM4ck//111NR4SpcB28WCo5lsyxi0sRlQARlCpKFdrLGsmmSt4dfH3pRJB+/jPqWQ0iSuE4DBjO1TxEmYerPbk6kLS4rZJNRIsw8EvG527u0LJmUUE8ApEl95XLtcHV7cZxrAaalAr65IdWBMh6eIWCTHWkjWXfE8ur57EEDXO5xM1rPccfhJEMq0NZHREpxWCIJpJCC2BZLeSqL2SZgA2K1lXvMLag7Aqxmg7mlLIubvCRzdButJF2IcDs6LTGkNC7ckT4K3t7Htl9Cs5O9jpc5c/b10KRvZC+ghkn5YT+1YZkg7VOsETbmYtEm2D1h3+WcpKSq7+ocXXJk9CufrTCGhxVrZKSpyWE10HRYRmnsxJqsh6Yq879bphx7rka2wumfOysqwn8mnh+njh1bVyHR2zxmldUcOtw1L07x4qDpKi38VeIJJZSaZVksOgmvUAU2fc0yvZYdrR2Kz6tKj2DvBr2x2WFnHAdFVxcJIe4znsC8wBp7q3CFJHoFwcdDF18HOMQZd+S7pEUkyB0Rtqg7q9QZeVrglloZSVREFGpdWdhw8/4IMPvk2zjpXE+fwSG8rj4041XzNy8vF7aRuSlBfne9ay8P43vszDB1/nzcOH7NvmPSoJZp2t7jy8fs0+Kr1fyK3SDEpd6AnqMM7rHVkSfavso9L2ypIzKcCxVnceX3ewzl53yrKgJVNbw5pDnXVz2HjvDS2Zcl4wIdZKBxXG8D6Zi4Il2r77mE8ZrLjF717pNpVUfA2eVrN7q5zOJ+7vX9LHoLTmlpTZ65v3SyPl7LXcsmDdLTUcLhoHfHI6nRgt0eruKh5hgzZ65/FyodRBTgs5Z2odB0DUR4DDySHevRpmFduaW+gxky1yQG7YVFPoSCQIe/d7O93f0Xtn3/ewyXCrPYZRcqgadVcXa6Nj5soi5bT4z7YW+zuimt/XkVYbRRTrgxQQgMwk/iIsJ4e1Rr9ZaSDKdYPHN4+unGZEQvg73dx/F1rkUA5FQzFGc5Up1UMr5FA3gKmeok/UEDkS9a4gcYNkRCT2d5FmVEHGxDwI8OW2J08puULRE6pEA6BA/LdydjvrrL6nq5Hs9X0Tx15XhGPPYwHrgsT1E6oaU5khoJUpHYEn4aaalHcBCxWmULKJfybcYhZJvEn8x/NVkVBIsVg/DQsQSzTFvtt/Z993eu0H+JIjic/xxOx47haJ8TmHp5RYTwt9+HwLEmCBQyi5FO7tzCe//Ck+/8XPcxLXi7bYfx+wmchNQenGbh1wia8JT86Dx6u6qewckI086fxTgeMJKBPkgp9T4qFK7INKcTXZpMK2b9wGUkAhw62eiKT+XF9uNl1+1ROM9+ua/ZQjQRs59skUPPnz+L1pUYMc0MxUp5r9XsTtoRzkDGCtKzY0xsLNSnECSseDCvWJ+aSPZxOfrfMRwWHFHUc7JhU8lasQVy/yfaAellr+1JIraeB9//Zq3HLICwRmhtTjBq4G6/3MoY9QEfwIBDWVY3ystvATH9ZCJaIH+D+T16E+QiSpPe1+wA5jnuvE72vCkCk+w69x+BlHvA/O9yXzDBgdV9QhlONZTbgyoIbZRybIMcf/kcwft/PyraP4P/Po5XZzszvP/VIATSS0zJJHpVk7nudh+Wf2BAKM30++V0zZVa9H7zE2bv1tvrs8IakxHEDXA7tyZZ14b/OdJk3H9R3zFwGLlxSQZYLsMAHCzabzeP7CdbuQms/FOu9njsGARnWE1bom+rBQDhoB4FgovowYe09sEl2W2OGZAABNb/OGz/dzPVJSSbe1yqZd4ZzHp9LWOGCrm2DQhMiezEXxnGfcZKqFHmp7oXSUUoA3xBjtXjTjSrEOls91wq0mXXmn9xEwjwOGIoRq1rTrkuNabmBCP+ICKWCU2eUmvPbUjm8OY+AY0zln378kj2l97PHj/Mwv/wy/8GN/lQ+XV1AKIyDeIdO+MObBWM/N1N9NPPfOtOTjgGA+ut3xZzVBUWc05toox7O0Y82eijTGsqb43jkO42exgKN8vPu85CDriLMsQii/+xhR00OZzDDk88b4b1b6nxBGzahlL7wTL7qx4ee46+WB2iqtd84vXmCSuNRGOB5HPMeo1unD4xm5rPR9Y88P7D91pf7UDm/HVN18vW3Vz+N+5mwOoXWHkbqNiCOlKAJpMCT23r4ndWW8Rp3qkuZnxmFhRdgdwpmxFyNApOzWnTKV/EL1VlViT9KPxWauVb3XYx8+1+w5BzmYOcihAN7Hk9hqyuxbi7lUmRspG24bzvDzMXaD2sdwdTWN/ZZFf95336OmAKe9wNHBqRH7bA8XeZEnoZQkzDPt3IMFXBsLvnWHcXt8V4lCmj7XsDEO1SWNmBngioURUx7MAlOPL0O4BNiEVAOk7lOdOsbUHF/qsXgveozvPMausG1hxxwg6ZOF+7k9t+9OM3jx5gU//dd+mn/uz/9zLPvCb5z5n9tze27P7bn91m+f+san+Jf/+L/MH/8jf5xvffJb3+3L+c1rAvwB4I8Bf5R/cqDSZ4D/HvCvA1/gWUXpuf2mt+8YUiplxazSDRYJGXPCViEq2ETcAqtWD4iV7B/fIrjo/t4NRoOo0Enx5wRYNJoBxZVn5CZRSwQOPYDkFktZC32EbG7O5LUAQlkWJAuy7VgzTuuJlJU0Oq1eDyuuHNVwap7QxQZ73b1aTzI6/cDFD4cQYU3zQHyfFc2RvHDFoKiWGRzV06oeyNi2SjKvwLeZwDNXdJoBkt690qi37opNiwf3iCTaurq6idsWJa4PV0atLlM/g7LmcMlMKkACHGbygKmDFyktJG2RjOycz2fW9YyDIxGcZGBtd4gKkOTvJucUqghCH0YbFRE4n8+01nm8Xl1FoDeS+s/n7ImR6QU/K6MPaXuIQO4MmqsHuNRl/FPyADMCa9jgJc2s60qrjcvjjlcI+md54snt3ETULV9CsMGiNHxWcObllijBn1ZUbEe1rs3K96i4iiSMRPBzWi0cAZSwNkhRlddrJSUjp5UX93eUnDzBaYJq4XTysTIlxD24YRGULKHO1Qm/RLdrMwKe8KCJmlcL51zQ5Ooos1oK8UT5DNKUxdVHPAlbPdBLoluLgAc+vpMDVFMiO5VMN5ezXkpx1SfEA2VLQeiheOL2Hq6skrnZJSRySWy10Z7Iwqsqp1zAOmlZqEMYyVU5HrcrJRXul4UsSjZIYW/YR6PtV1eKioq0JK5ik3IORZVKFu9rZSlhB1hobTsSnWZe7emBHqP36knG0REpnugST3SM4fNBWRdMEmMYtbo1nycO/H3U5nY93YwlL2zNx2zrlbHtWHfgruTFYRYzUl5orVKWzGiEuoArk9TWPPCn/q6s7eTFg/Bmw2GV4UnrKY3eIyGhopCMPgPOJWTMdwmp80ha0Tnd39H2zn595PHhIZKExrq6lWEdIDrY9szd3R1JMm2EfURytTAfxw40mTokgeWoGPeK3L16v8sYNlydxY4kmoNjkrzib79uPnXhCdukGxISba5ctfsYicD2Ue2b3Gat0sgp8+LlO2zXK1ij7Y267w42dYdZcoqg5hhHcqXVxsDhMCLw3Xv1cTMcVLjuFVRc8c4GJRe2ukNYB42xu4VJdkhMUFrtSPGkypIXehssd2dPZnQll0HdL2zXnX0bXK+vWe9P3OuZJa+klKlt0K3RWj0AXgngR1Upp4U+GtKMZlD3SiqZvAqy75zOa1TtOjDYW2MzkLxwOr8kaeGdd3bW88qHHxZeXy9cHi5cHx7ZWsVEaRGwFVxpoNUe1cUSc1kmxfpuw9dDTzreqsLdUgCmEsEM6usTRTwGUYEfiVBzxaNWXLmLAO5mYnX0xraNmOcSTYyUfR5AHO7a941cHPy1LOzmFgxicLm+4c3+yFkyy77yulZO6ztwuXC5dnrd2feNy+Mb6v6GZo0Pvg37i0dKyp7sfvEOWQZ3L1+wLAvvpkRtg8eHK9/82lf49je+RL1+m7q95vLw6AoeS6HkhXa5sF9eYVphVK6XKyMU4mYC/M1lp5SFRZR969THjRoAQlLl7nwGMfbrhcu2U2vlfHdGRNj3nbbtSHebBxnD3+v1yunujtP9GZNxrKUlB0DaOnRzyK031lJY1+KQJ8L5VNh7w3KirKuP5z7YLldXaVoK5xd35N5p+05aVqQLWhZKyshIjDrQ0dhaRcMarPeGpERWDhsF1USqLfZdEvZ4yvm0MszntY7DcHvtJBMaYLurBmp3W4mcAHO71iQwRmWYcfdiZV0z0n3stN6pj1dXqsqZngsqORQR/D5Nmqv/CaRSXMFmDOr1yqhux1ByRmMvOYavE6oSiorD7WyvjW1vWDXyksjpph60rAvYQh+DWh3u6b7ZBIyuM0X0vdk8YX1L0k7MREVDjeAGIswKdk+GzmQUoZox7adviccJvB8AEekGQcb3+1fcIOUJkI+ZzIlEmcGhBkAUUeSUPaFuSgtlCyAgXUFMYi8xq/RvCj6YhX3OLdlvodQ5wUw9EnlxobFHmoCcK0dEUhi9qd0ExNTnM+GWmHUliJv6CvieOKWE55iNhtBq98Qg+J4n7umpFfK8eg2VCv98Yj8cCW9Rn/905XNf+hw/9LXPc3p0FU7fD0wwRw/QxyH2gCfCdiQXh5Zra0+Ui/QobHBYZNzSFE8glnkPdvyV3KC2MedQ/8ctxjVUlBJjjJhL7KZuJLd35GCKHHm7ceRRb2vv/B2O1L4/qHl2PiCb6AVzbM81cJ51ZqbdFViiH48O4lZ6SymuABRWTK4SEcZw5iBCiIkxgRo5vkeO65pgxhMOJfq1xvuZ2L2AjCdwVpzjAig4rNJmMvpoUyknlHlirB5rvabjM4eJQzDM5zVhjtv4jqtDk1u8Pu3rE97C3Dq6mxdmDNxSOUkUISEuADQcUTFrrjQzXAn5UCQKJZYJNfozCWVWcbW1Maa13O25OVxzsxEc0X/nD6o65I2Fgo3cxnAKhZipAtXHiGuMs20UN4wR1pljnqVu4IxKWLwlDUDFO6qfY2KNEH+OFtahQ27zhcde/DwxlT9k9muZYkpyJLEdWA/VKnOQYT6j0QZ7DZtXfC5yy2KfZ/qAkpfoG95hTYi+7X3GbS0nvBtQjznIO+2LdHAUkdgkVMSO9QFygCSx4zSHsFM8qwlR9LADnWd9P1PdindI4gqP8/yA21zrMbY5ikWY68wsTIt/DvQp9sBgARq6+tJhKaa3+IMDp7e5E4wa9MpU2daIWWhSiIIZDbUfP7eEPWZqLOuCJC+imtfVA6oYsSDOcX+o/Q638+6hoKQBSKbs9zdhi3leMwVNJWJYxqe2T/LzX/y9/I0f/lt88+5bNJFDMcaH8bH4hapSXMeT8+wBl3JTU4Lbs8VXR6Yv11RgQ2KONMLeMfo5ocjUZ8HNk/1TrEu9dxBDzSHKo1ovnpL3A+9rcaR20M98nd/axukHG/YvQftPFP2lQhqFvcVz6t0Vg+vOMN//cQnoOSW0rGTx2EPOmTUlTNwOfnv7wuXdV9SffGC8vdH2HXYLhaZ4L/vGGBV0MLqrWZKSF/yIUGs/VPqShZLoBFoIYEmL72d7u60RKRRpe3cIKN5VH93P6y05UHSoc/tnTYBzQjLQQjndC3YwB3FU3ZJSc74Bln3QaGgo6SVxFSgbEupmwrR5s+GFRTa6K1mHGhdCKLn5XJXCss33QBKAo8+fmuZcIHG95oE4iflAAlwbvsdHQLK4S0DEzFxVzJXaLFScrA2aefzK1dMcoDKb8/A4lI98ryeHin8bPc7FXpQ5VZ7m78x+7xCjHarEs1jUp9JZmJYPOLGPmJfE13XnMr93zxPP7bd4M0g98XN/5ef4+f/453n3/Xd5hpOe23N7bs/t+7cJwie/+Un+yL/9R/hT/40/xa9//tcx/T7ZpwjwXwb+78D/Bvh3gDf8o23TMnAGfjI++18HfhvPcNJz+6617xhSGt2tM9wOI1gJ8yiSB2Kmr/tMIofnefek0eiVhqu2SE6YRoWNKgkJCyUNu49QzbDGLG10KeBEkcyyFGqt/t3ilVqz4rAshdY71wdXXFjTQt02xhPlnGE9bBUE664GUPc4uM9gKXEoFa/0Ebgp5yR/Hn13oGh0D+rIrCSM4MZ4ElCHQffoI33s6CG93I5qoRCiDhWhqISJpJsDBTtXBuspRVW3/7n1gFmKS5b33o9kjYh4VXBKKMpyOvODP/iDaBZevXqNNSg5YZEY82DYYN8HS1bOp4Kf9wVJCc0OcoAHwlp3qKi3ThKJikG3BTKEsq6hssFROZhyOtS3In7ofUFcQcKfn9tE6Kz4liUq//wd5CSIDaw3ro/9CZQQ1zQGXWeQddoHyBGocisHrwb0JIlfX0peMSYiJI+soQopeb9qo4bqVahJRUJkJk1aVOMnTU+C6x7MyEV5+fKe+/OZlB0w2JtL07deo8oskTBScXu1EMXyNEdKnM8lYJSGNMjFAxqtNcqyerCxFLfqsuJB9dYRNdAMZMp68nuKxFDbG0kLpWSkeyCt90HOK4iyrvcY3RPEy0rvhoxBWRbQAsOD79frThJjLXF8tBTgkPfXQScvJxRoo5MM3lwe/H3mFPYDgognxEluGXRXEkWUEsmVvBR6JAvGviNmFE2ksjKjnDI60gPm6gOSwyDTgqtVB2fK4rCYmStLmQlJso/xUcN6J+bAeBe9e7C7lBSJi5v9ho3hcxMc/Rhzi6neOq35ddTW2LfdP1syuTX2zVhwiM9wy56cEmKDuoXFkdhht1hGQfYZJTQflyoB2NkRWBRJbqPVhbrVSEZ0eoO6N5YXZ3qDXEoE8guMnc0eeHh89Dl97A5IaiGVhbR4EPNy3SOBsYA6SFjKQt12RBRJdgSUZ5LRELZaHfLs3RVoeqW3hi6nUCwatDq8atlcVWtMJSkNazKDffOEUkoDS4neYl6vIGXhY5/8FO268/4H36Yl4+5e0LSg3ci5wHCrTA9eDgiLCrOw2zLDVGkyOJ/OvDyfef3qjfc962iC9XRij6rXuUOMNCQyHHR63K5s25V1La4A0/0etrrRamXRFU2Jas3BquEJmev1AdXEkgpbG5i4JWfKC73bkVRFhcYeAXH//lorIwcAtl39ysQT8Ya/b8YgxTzVRycrLHlhb24bpVo4rwvn0+Koa6j0nHLm4fGRx7rT6h7JRL93tzOMoHW7QUhjDJZcAhztEYg1ZjV+RGWZVft9jMgvSAT+lZwSLaAMsFBKurAs2ROSeGLARQs88XG5GC/u7lnmPmE4TNZ6PwABuoM3nFdIILUj7crXvvxF7k9vc37xmpxX3nrrkyhCrUY1V3aq+yNFBmwXPvjqBzycTqRy4tOf+Tz3L15wd3fi/u4lj28eef8bX+f9D77Bvj1wefOKb3/ra+yXD7FWHbbslbsXd7y4f8GoFfoDGbcaa/kO6/6MLILNl+uObBsvXrx0MOehsW27j4XkUO793cppKbQ2GK2zXa7kdQmlFcOsk9UT3gVPCNXL1WERldjP3axNe3eLTw17RumD87KS7wRrriK25kyzQdt3T3yYf0/rldJXTyyE7WjdB7VtDCrnUohXHsmmzrY3Tqm4BYRUZM1hUeiWObkkcsgGWvQBTXDKiydn9opVQ/FkpowO6vaXtQ+suYWfiHHd/3/s/f2vbluW14d9xxhzrrWevc+9t6q6uqAbaJruthtExyBEkGwsEI4DkmX5BX60/IP/s0SK8lP8khdHgji2URIilMg2YNnubqBN0+qG7qaq7j1n7+dZa845Rn74jrnWvigoBY67CrNn6da955x9nme9zNcxPuP73bFsN/ZfGXAJqkpMSG4IxJSJhb5joEGk8PdiQJDjyZk0nLucSFhAkKpsMpVKqGbnmRRYaiWkQgnEVP50Mp4BLKUglHvLYgvUCmoRNGm4OxOnhPACe28/6Pb+d7xx3HOcTpWY63B9QSYzaXJZmTFN7plomlYxtInRExJBXIl0wVyL515MTmDFhAn/adtxAiYiiLRs4x6JsFFRI8QQegIYV8L5SsBN66xLTUTOf8/Y+lRjCKT1z0hFBw8mBnO/e+VK43o2MpPrlx3TmcieSh6Z6ZrqOQI5/0yECbKRAI2oQWTkz7ERLsCZIOZWWnKvzr1FKQWff/4FRNPq2Gm3AgRu7Ql/6Jf+EL718VtUlNDc5wXO+Rz5DOb3TgWeq098HVSzUjAVYWZTnfDOG+hNr/E1IZ8JwagIpOjXkhwz2R/h6H2q0hAOGG8UV/LhXcoCUxEiwZOp/JUMzmmXcv7dhF4mPOKpinDapOWTmJ9PWEZOK/GzH0jATLAuC2qtCTgSQpdI1Z4s/IBEgm9UtwHzrzwHlQkmcG+mxu/wMdJGWtg3jEqtyHfEqBWvcRYoSSq5ToUwwu88G7oTVgG4l5vqN2qpwuHxBtJJK64+uP6bpH3NtKnjNbnz7C5AgiqClnPe15R/hCqPyHFA2y2hUp14qs0kssLsLEG7vF4qocj56Oc7VlGq16BDUlnZTHNvc8FUAs18u6eiD869D3ABgAQoBBFXPwASyvyHmIm5n4rGvjWmsh6ACqMycO+QWTAQMy5DYMYTImGfZFe20x4ecwOb82eO0PnsRS4owS+1ZknAoywV7jwTcxNRaZOtBPtH9wStaVkJSJ5p5FTD4pyUKrKprnqO0xlrQiSkyv7jE/ZxhyDtiYTnSgKrc07MuTdm0UbCLTLt1FhEAU11ao/cTyrKsmBZFry+vGD0wfhE4bmZ01k51bgYb7qiu1TY1Ryb/JltXXkmbY3v2CMtpgq8tZzn4ox1xYjTnq33xjiS0Up72pKPcEhkAaERfhNMa6t+PlNu1JFjopygzpwrHdyzhM9CC6pMqUh+Tq4L2W9OeHB21Lz2kkDySEjW1LAtC5bxbfyJX/yf429+52/h177zd/Fp+UR1wqBF7uyCI9fWCR3PGJtPcFBBoAzXeeICj3DuBU41o1w8JPcMtGi9BldrDaWk4ha+DjcDVM2shftlEzlhMp8Q7QSmwhEkxgi1I7C/vuAjBPJhQf9f3FH/xIbyKxX+vcDoAv/lQLvvsOeA/PRAs46hD4gqtu0ZT88fUPUJ27ohAniMV9x/6hMaHhhfUIHp2F8RLz1BuwYrimVZM1bRIGic+3IPPd9Z5F6itYa6LFlUynk4ErR24RpeUl2uddpu87nmGph7u7nH4t5mYBw5b+S+acgEQONNURVBZSpDFcbiOPSyDw4CNLmXHqMTjBPASuWZpA04CFvXHHPnOMq5U7Ov+HCE0a529jHuD/LX1xDJOG4h4JT9Tc55HABScX/wLCwAC0fVzz0q48t6nmuvL5A8uztcEo4E+5DKXP8wxUI558ZUZsz1LnvrVGcK4FRd5B+mddsZu8cJOM01e6rZWRaeusoJ9jneAsfv7b39zrXPv/oc/8b/8d/AH/iVPwBz+2Ffznt7b+/tvb23H4EmEHznN7+Df/d/8+/ir/yLfwX/xR/7L/DlF19eG7f/KTcB8McA/K8B/E0A/2dQVekA8BcBPPJn/pcAvvj/8VkfAPwb+e+fwxnieW/v7YfZ/jEgpQYNJk5drmpMNeWBb3RYXeB5KCypftMHK8V9sKpNdYFnoD7UqA6ihioGLdOGJ+B7Txjk8g1HOGypIBTToRBsy4Iuac2lhuYDL68v6IOyv6KC7h0xBkQcLp6KEw4MgYFWVyJU7NFSsRrvl+kDZZBEBbVQUn5WrJjJWUlFpY0ZfMebipwBE0WpgghurhnImHLGA97bVRmmclW/wjIgCib4Gg+t3o1iH+EoS8HwBm8D67IBljLEAANtApStAFmtudaCbam4P14x2oGnrWalTKF9FrJKzgTNA6XxXupSMRC0/kq4q3ucXvatdTxG4PXRYMaAdS2GkipAgkiVgDdBorRxCkTCTkg7O1aOMcGCtM1jUMIsZejnn1XCV70Hjt7QWsOyVDx/9hn2/cD+oFqRCG2/BJoB50jATc/PLUaoBiUy0CZM6oOWMj3tPYoKaqpDsUSQqmA+WJFkdilfKQaWanj+8ISn5yeoVmBZUOuCugHVHS8fP6E/Otb6lCoXs3KSCSJTS9BoWj04q9ligXuHRqCUhUkIMYQrWvdUnnIUBFQqIAYIkzzeO4byngDNZGjLSk1WF6sGwTVhkFGtwkdeUynwUEhkZX40Jp4zsDyrsywT5fkoc+ELrMuCfd+xrQsDxWCgr6pRmUIUJoEKVjfDA31QAWnMBJIEXAh7+OiIRwJMiAx4d4JrnKCgKBz3ssMHYLbQmjKA1hvcFSpBxQoBQhRHHxj+wFKNlZ5Zkc2tUeG99Z6BoFlByWq6VB9PKfKO+9EBW6iMZSu2m6FkzrJ7Q+wjK90oi19sYH90WI7/qR4CAIEFYsDox5ngjUzMUN2uJx8V6G2/YIwQjk8JhDdsW2FVqAGlCkRojWSr4ik+x48hMPoBSGA48OnTHf04sK0LSmFSR6ygRYN6oHigaECr4rE3iBbADEdnlbkJA5KRgXAtgcf9QUUbq7AYtIIDEGOgHQ0lA5Zjf4BKdgI/OqoZQg0jgup9HahW4SJow+HjjvHyCZ+tz/CnD7h7w+vrJ1hkQjAMiIEWwfk/HBEcdz0caB1tf4XAUNaKj58OPF4PAASFylpxHA3besPaO3zf0Y8HqtCK4emzz7Gtz9gfr9CqWSHbcOyOGBxvVpz2pzmfiXM8LssNDQdsLei9o2wbPisr1nXDUjdADG3sgA8Mb5BSMMRwHwNoB+QwiBWgdyyVljtQBijb6OjHoGWZOvo4IMHK/aUWLLVAxPFy3/Hx9QVffnolPKEFH7ZnyAjgdsO2rCgfv4KEYBdBb5p2hI0S91Bg+GmnqXP8B5MxY1x9mmp1wFRfi1TJ6qlAFaroTluCZeU8xOA4FS+YVODYKFbQhOO9Joj5eOxozVFUsCZwNQbXLwjfuYnDjgcEBhfBsT/w+Hu/in9gK2pZsS03fPbhW/jw/E3U5Qkihna84uXTl7CcGz9++hL3/QUQw2//5t/Bh8+/iS++8W1s6zPurw98/x/8PeyPLzH6K47HC+6fvsTj8QmCgefnG2QIXu9fwn3HUiqsZjLAmUSzotjEYKLYjwPduJ95vL6g1ILn5xvw6Y5jpM2UOtpo+OKzz/D5hxtePt7RB3A0RzGqSQyPtCh0rJWKSI9UXVJlks9V4UIbnT4GwoAarLreM5lfihIWzaR6awOvx4HoTG7BO9yZRHsNh64rYgj2lzvavuP+0tAfO2pZgaBCxLZuCHBfIj2gaX2y1JUgXyYPVbmVHaMB0RBeOM8iIEH7o5gR/hG41QKrhnY07L7nnMqKc9pzMdA/UoknRjCZeyYTkJaLATVS+yOYkDuTM8BpsRjgvsmWSph7dCa1gsB7JEDSe0c0KnUMD0Bp9zAVTkYqSfTukHEQjlDazmhU7K1hTUBa5Uc3qRBprRTuVAo5+Y8JGXGPfAJFZzLLT6AiwH1XZDYz8mdOqCMBmFl1jtzHz8Q2EpQJ5J4cSAuhzCDnvuhoLUHcTNZEQNLaBzIVJ3AljiIQhrz2gqI4k4EzWcrXltZrM710ek1dyfTwmdDWNzAUqEjAT0x1Ibmei/vXwII4f3LapDAxP8HQ84wBwAr7VoxIcAmQtKky5fgxszOhbak+2HpDjIFaeC5c9yf8/H/zh/CNj9/Is16cRQEmswAkk4+5HiAmEEWVux6O1h+Yr2Mm0E4cadL7M+Gncrrm+VTYVUlwW2ae7o0ST6pwvEkWTkDQneN5rlF1rRh9pKXRVJSJ2fHOJOi0WZnwnOTZBycAwDV4nColkWP1LdQiQCoM4VRimeBenj+WelrEiHHeskxQHvsB7w6r+TNI4CJSLUn07DOzcERwJUV5TSUTpdzL+JhKNAQ9VfXNPljOMcCxlaBTqgMjLuZFsxCBY0Mnl3zOlxJywRpZ/IT8nDkPnM/0DUhThGfAq28iVRupvhvCrQdZtJx3U404YvYFYNqlc66hct/sYlPteCaNBVOpbBBQzbNXgP2ccwYgad+IkFQ5G5kY9jnp5TObWlpTBePNPUakUg7Oa+9j8DynVHIqkla7yEKskdAipl0gz7GSz+CEJx08wyqt12RSGXkGmjDz7OOEoex89/k6Ee7nPoz9GacClxpHy+32nNbmHJ+9DbThMHdaertDtST4MU64qxZNRdNLRcczXsEIAosfqEw10FL1TlVT1STP02cBlyGQ1mjQVCy65kyPgLcBS1AvQHVrbQesFmx1weFcw1vPc3P+b6oxqU74LY3KHBjOYpVaK4YDr3da7Woq9x2elltV0yaW8IgVzifr8xP77ejQ0VK9ZvZXgtYTrwkEIWl3iFXQ4YoFXK5U9DZTmFVMxahp78e9kmLEYKFhBM9yb+c2nFpU3I+AMGDEyHUGZ5EZQhB94DgaHvuBkcDeKiv+uV//Ofy+3/49+KWf/iX8xoffwCseaAG4ZPECgvG1hBdVeJ6YIGjOrJfaksx9REImcs19EyqVBCgRCX0l+HIpiM0xe6lnnVp3Ma12gZ7Qjr75juFxjiEdDmgqY3ugP15wHDskC7dqWbH+wRtKWTl//ElH3+9oEdDVMqa1w8PxqSzYbk+oy0bFcwf2+yuO4xXuB/xTQz92tH7AR0ethlIVfXTshzMeKtfKFQnvmmgq3QaVPjVBHhEWrgFow1PJjcUsUVnUhlwnfTA2yPU2VRFT2V1M0MZAawek61lQOl+ep9qhJNg5wHfGvimZK+Fa0VJVdfZwIBA9qOab6nejDXjvp60yVS2VwI/quUYjCDMSTid0dsKQku885j6DPzfnHvatq4+oCItyE9wMzL54ratzvVBcql+ic982QeXI+TSfyVzvsrOnlh57Yq7lE7Cedm0TfgXYl7tfKniR8NQcI8g+6+y4b/a+Aq0FvTeOa8114r29t9/JFsAXX36Bv/Af/AX8vr/7+/C2sOC9vbf39t7e23sTCGqv+FP/tz+FP/LX/gj+0p/7S/jln/tltNr+2QBtDMDP5z8AC9Heqip9yJ95b+/tn7L2A0NKEgRHYkq8g+o33hic3GqF1gV0K2Ml8XBL726HFYIHkhU4PlU0emcFZtqUwQRDFQM8cJVUtqG8egFU8ThohSYqWNcVViMVWwSv9zsEgmKCZakMapji6EcmNBu8O+C0ZChSMqjMIJHVwp91HiRHVuSNQTUDAXB/7Chm2G4bRBWPfWcwWxgkd59+7EKLtQjUWjGr6hgAmOoqHTEc223BthY8joNBvVIwFSimlZiPgUfvKKWgFEOtK9ZFEH7HMQ648zlbFWDk95jidrthHB0Fhqfbhi+//B7242ClVRBEQVpI9N4RQ1CqQmuBimVi25kkPnoGqQytZzXnWQnKIAXhGAYte7Q8SMc/lGQAihrWZSHM1lmZN+uBlmXDTBqZllTamuo1rLislQGwx33H/XGgj45lWfDhwwes64rjoC89wRkGzIArEZLHdpgpbuuKWvnM+/CsKio4joPJic4KTzvVaRSCQq94JVQCAZaF9jbbstFarAiebhs++/DEgM4IqAteP71Ci2IfA/f7jnXd8Pz8jNvTE3pvaL0zyCcMAPVUQ5KUnjarCFdWUAqVy0QMgNFOCwKIU7VlUYgVSCkQFwgcLgzrqqUUtgJQfhckLRNVUWrFsTeoKlof6MOp8qQFy7JiOGEgKxXbuqGY4NhfqVQEAm6RQV7Rgt4cIo52dDweqdhU09IPCR+pwjEDlLjk7rNasSegCADHo2Hf7xAJ1OqQwQBhB4NdLeX3VQrayOSgMMnn7nh9XEFi9jGmK8yykrozARFxVZsxsUhFtJFBnshEjRlBzt44Z7Se1d7hae3DcVOLohggynvfR0PITDAGTAYkHHs70I+BpRbUJZOJXlCEVbFW+X0BAcQY8GoDUuRSZKsMRh2tYQyg1gXrWtEOBiRn4shEcPSWihEVbgtut8+g6FA4r1sr9t4haecyxkBRWqpJgPBNKopAHKoJl4qh5LssVqB1QTtY7bmuN8zsXUSmG0ShUNQEFIdHqj44DIoWAQuHikOKAPUJx/2BgYa6bBjC4PxXX34PL/IlOgCUBUjAE8JERju4ttSaygbOoKkhgM6A3uM4cCuCp6dnfHiq+O5vfxcehsVWhApGC4QU6BJYRICj4dPrjlU3jOg4Xnfsxx3bVoGcM4YPfPaNJ5QCHGMATvsnLQC0JLD4GT7gm+jRAaV9iYlBtSbYs6EdO/bXHa3t6APwHggX9HZASwJCY2BbCta6og2qeS3VqOKXkGmxCvdOdQ0RLHWFasG2rritW270Ofb2/YExBh6PO7bfXnG7v+Ll0wte76/YjwOqiqN3xGBygbL+lTYKSAg11QtU9azYnclpJtXyn+HownWMicyZXPVUzRupxpKqF4PzyzyZTDXB1hrB4BAcR0MtC263DeOFVlyIyKSQIECVxtEH128MCDpe2is+ffldbOtnuN0+oIigtVe83j9RYUwrfBxAb6hPzzheOn79u7+O31qe8NmHL1Ct4tOXX+KrL38TYzwgSsh4+2xBezywt51zIQpcgJfjgXbfUVVRTVCWgt52vAzg+fmG5w8bgMD9vuPxOOD3Heu2oq4V/b5jyhr2o+N73/sKnz/fUKxgv98h3tGmNWyqMo2jwwf3A+FUmlq2G9fNTMKUYoAx8O2DiY+pCtIz0bMZLUChgVoqWrvTRspplSFIi9j7DhFN+HdQTckbtjWBSgSWup5B9bIQSN7WDaUU9E7LPUAxlO9cJG19ugMy8LRRzdO7ovnAfnBtP/aBWgVaKxZTtLYjfKAIED7QQLuOEYF1qfBoiHElC2QCM8NRUJj4G44mTrvVQitZLYLF7EwWA0iFxYo+GveOmTyZyd4xsnp9nq4Tduc4oeKXRKDFANVG01L06QapBX4knCs/wqfSCUuk+lqACW0qhWXxg3Lvyb0kE6czCUPbGZnUwZn0Oe2UZGYvhUUVWV0+rbbeqqyMcanZlFIuFUJBWlfz71naj4jgStiNCSjNhNGs2s9EfSqrMB+UIE44MN7OTR0qilJpe93TMmVCLVPlhbfD+zK1mYfi/cmlroIInhGURRXc+zJhO5V5zv05AA3N+zPADOGdibb5HFRPoIx7wqlwoKi1Yt8fqUoX0KH4zne/g5/5lZ9FfV3yFBdvoDE9k2LuDkkr8KmcdypeyQW36HyXAcJmwrGpCXRxPw4oFFYuSy6+BTYzFrdwTzTfI5OgE94yFRa1tI6eSdliVHSd1sHzWuffB2ZS8Oxu2Y/shBPdI6ETrsUTkhNcnzGT6pBpGe153TyiF6PtNwszCtalcl5wJnepKMgEec8zYk1IyfNe5rmLihl8xnMcqGXBSACEZKYq2QT/8rWoAFmcMy2lcKZkI58PMhl+PRRNCEZ12pTlfj6myhPtyAmJ0/JmKvuO3tKeC6ea8Uykci9+AWXul6VhnOc+/uwE/2ZSeUIJp12gIEE0nuVMdbpr5/7+AhBEFOnwc76/QKQSTPbNeKOIpnntcwzmODhtHZE28pNnm2CVyPm+Trs2mYCI85/hCXTxukQE3akWMqFEKnsQbBojTgAgHypUmIyXtLnK2fLNnCqpeoZUmEq7yYgEUQwDF0g2x8m0NFJNK24rZ/FMeBAMH4PjWCdK+AYQSZt1PrpcEYV2vJo6hey/JZ/T7DvyD6nr5LWLnmvIVBSdsM2YqiUAlRaRkHHhvCxBldtPnz7yHalxTOf8PrxjpNLlVOfi++ScPEdKBBVoai3YthX7447uuQakalQEeE8JR7TWgSKABaIPtN4gEoTsEmwwA5bFqEbj17wYIjBjLKdiZc/JuBjnVk3Yme+updrVBCkjCCnC+3lONxPa/wrVSqel1VTomspy3LtQuanWkrZSlmviPNMP+PiAb/3aN/H362/ir//+v4Hv376Pox3c47ljOM8Gc0a3s68g7WE19/1TiRW5J5Cc63L9mOtvFoLNvjYVlk51KI8TBI64Bvoc+4x7JRQzCE6VwqKQ9ube+Fly/lpCgOgIUGW27Q/s9xfUuuUzc+5FI2Aj339ae2oALx/vABRL3agm2gfur58wxs711wRWE8LyAdilpDNisBghqHY4LaPb6AgzLGuFCAtveh8sWjSq3avPNZXPZz8OFgKopcKpn6DeCXtFwFtnIUpQ0RdZhDZjyBPo9/z5t30nELQwFjmtL1UVGo7R09YMQXgIgjaOyy42YdNZcDDXfKopJmxrjOOpERib75rw1uxpkmcfpMqZQEqeTSGXBW/u20UElnER98EiiTOW9UaRzrLYQQD4iZRzPeOQPFXDRC9V/Akz520C1yhg3CtVC2OCsXyQqRI9X98E9nB+51wPR6olBQAxQ10WzvMnTP/e3tvvTCut4A/+d38Q/+r/9V/FF19+8d7/3tt7e2/v7b39I5tA8MVXX+Av/O/+An7t9/0a/uN/7T/Gb37nN//ZAJXeNgXw+Q/7It7be/sf3n5gSCkGEEYFlUAwNpnS4bVWVtv3GYwixEI7KUlZd5xB22VZ8MiDeEkvcUjalRWjZVtrGMfOA2sIzCq2bUH3wP54BYJJ47outO1oDY+XB/ZjJ7hUFGvlYbj7gPdM/uwdEgx+8ns6vA+UVFLaHw9YZYX2cTTMohQVRWuDAeIVGWgagIyzos/7QNRLWlehUGFQZlkXuDv2nVX780A7q20DDJqw+ok/2/YDCqREeways/qLghWZVO6sDJ1Bz1KomjED1QCwLgu2UrFUBhgtoaQAQQ6AAdF+HFjWFUyVGpMhoJZBOKvfOwLeG1W1MnChJglxUX58noB9UMlmgihAPh7PoN9gcK6WBFXyMF+mYoYPCAbWteD5eUMphsfe4Q/P9+NojYGsGQC93x94eXlFJBxW1yUrSC2DhLwGy2B6rYYlA2i9dwYYwiFC6evwSMUlYAbiHYIp5u6dSZ1ihXZMidAspeLpww3bbYWZYt/v+OqrF4zG6nhbKhPjLlAdeH29EwLKQOUMrrfjQOsN67Yx6JwKILTgWTCcwTzCWCODKYXgAfh5oqyY00r4A0jbA5FUi6DaT0+bEqsFpS54tANjeKrDUNr+dntCqOC+N9qFrSuenp+o+OQDWipMAqO1MyBsqvAj1cyCqjqqJQOtmo+VAemRoIpp2rCMjrIstBmxAi38nn5QAWYGhmA4g7o9WKE7g0xHawAMxUB578qp79h3jAhs65rXatAMXpdMWk2rwlppsUXLQMBjZI+whNr4/Kc1DERQ1opSF9rPlQoXKreN3gBoqsAsWck2gFCs2wIJKt2sK6Ee2sgd2LaV48g7NAZBkDGocuUTVmMSaV6TKQNRZSbLRNGOkWpSitYO9pnOYF0xJqiOUhBRcX/ZUdIyZH3a4Dt//mg7hGadWBdWVe73HT2ovBQBWATCB1wDsALTAi0VddkQcQAoVLJDhymwbBuGCnoETAuKMEnVjwMFgsMBT9WA1g5ADxQtMDcsa9pIwWDbCg1Fbw80ZJX/fgBqqLeVwUww0C6C04qJ6ltpj5GJ6GIF3jruHz/huCte7wer2keDqqOWgk1pmdMDgFDtoN0b9o+f8PS04v4I7MfAum748OEZrTe0fuDl5Y4wxW2tqLWi+UGbiLaj6oJlWWFa0INrqzswGivxl6XSHssKvvr4ETJoNaml0kbFM8kwBg5Qbc2koAqTUUup8M7nvyPQ+qXgdn/c+f7M8OG2pY3QgG4b8NkHfvYY+PzD5/jex+/jq6++xPe+9z18/+MnvLw+wJRxxxiMploqNcwkl4qdNkQ61QqElawjoWSVgBbOutM2RlUgBkyLo5yOz+pRj8DejjNxNkHfkaqOZgsT0aOf8/pI2x0BA9lWcgyJQ4JqTWaG6IERA2MALx9fcs+icNDyDgOITkW5EpUKKtgh7cD3/v5vIVwwjo7H/SNG31FvFSgbrBAeJhDbEyzg+OmeIE4VmC1Q49rz8eUjHBvWbWOyTA1fffwIf9xRFsW6LgBw2to1H/iyDXx4fsZSDHvfYVoxTqVIhZUFvbM6/2lbOb6EdqG07XWUUGxPG25a0ButFrsP7McD60Z4aO5bZASQQCeTTYSUIJwXrBa4d0gMrGs9k0x1YeWzBOenMUbaTygTNhC8fLqfSkSifHdqVPzrnWPkjjs+/+IJH55oObt3x+Gsgn8cD+4/lwKYYLndaM0Q7FdjBGIA3ga67pk4kDM5HgKM7tjqcgK03N8KAbfhzGsF0BPQYGI00mVF0AM42sg9yUBdK0zn/olrUB8OjEAMR90KVAr2o9OSKqFOJoUDvgvW52ccCIxHA/yymvmRa4Hc86aCCpAZwAsymGNyJlslq7ln8mUms8zsgmQyeRkiOcdIWraNVFPNv6tZOR+B0RsiCGZroRWnO8H5PliJryooCQa5X8oVPhL+0Ms2jtAD7bV67wlcSe4ruS+eUI7pVN4k+MRnk4nScCDsCrDkmUISgiFQn3sQvz53JsMmJKVqXM/6yGc5UYD86KCy4VtFjvmOAH5G0h4Jh/FeixrBHtBicXt9xk/96k/hx3/rO9CgwlX0ASnGtyiSkEAqh035LKcS7VQWIkzEZOB5vTMpFwlC5N5sXud8RNNG0Oa56nzePA9NCMoKIWtCMI7otBCNzuvwmMoGtHBuuZc15TxzqinM5yRI6AinNeZb1S4/99gT7JgqRPNZ4FQTm4UfEyybqtumirKWPCsRptofxwkRneogAIYo0PqpADbvZ37+SPjitBx7A99ETEszPfuWlnIpwumEUC5bcp3jUeTsi5HrKiQVbeY4TZCEyjdUR4XgDUBjqRIlqS48i17mfjtTs1MRKSWGuN+dY+DCTxxXv5lAMnJMik5FJ4ePfiV8U+1j2jg65jtkGwmsae4/JO3Le+cYn/ZB5//iWj4kE+Bzf3ImpnHqb/Aa8j7OQqAzrmJImShEnst5FpHcO9n5XOZ5XEAFaCvJWwT7YrGSGyhP9eaEklIRd77T2U71rbN/8s95LuKlj+FnH6ciStqNcRCiHzsLT4SFbvEGVpmJeEIohtEJVqkSGDYVYI5PTCg05ziV027WvUMk8uxLS9VpQRh571MNawRgQph5iPPvgVAP6uzXXC9i+HXuS3VvLXYCaBPQysvEtHOcNtee6pMRVAO/v/L+aDcaANLaFFSo6yMghapl7sB+f6S6lOA4WKhVSqVS6+jYD+6zSqmoVjBBtuFUMje5lI1OQC7hBDOFVVrX7jv3onNd5lzhOd+xmGmo8zyXcRVTFjGGDwzh2VSS9phrn0oWW6ie41CkctZ3x1O/4cf+9rfwSz/5S/iVb/wKPukL9tYB9Oyb/P4JR559UuXcM2j23Xm+OBVvct1jvO2ybeTkEec6co1ynGNq7j8mUMjCGdokz+HRfaoFv1XZQSqKcUwTAPRU9wKmRVhvuZczhSMtsls/989aK0wGQlg01fYD+53FlqMdVBBVQISFnCWLw665A0CuA3NNqnkGm0pHcThq4TlUlH2g907g3hgPnCC0e2AfDUvNQrTRuKeblqJgUaAncF+Koopd/ccT5ks19KWUE8SMcDQf0DH3aASpqEBEoHTOm5Hqx1yXaCnrTstlqYT6JwTLd5F9Qwg2+hhQ0YR7HNej8owRsK/1PjDQGVdeFqwVaIMFtR7AGB3RB8+OALSwoAIZGwYSbPeprppqTpCEDNnPTPUC/GT+K/cHmOp9E7zFmzF5QbRTUUlV8t7ljPl5nkEmBF0K1cVpeSgnaCbC6y3bmvudjne3t/f2O9HEBd/+B9/Gv/x//5fxC//1L7zbu7239/be3tt7+4GaQGBh+Klf/Sn8e/+rfw9/+U//ZfyXf/S/xL7tP+xLe2/v7b39Y7YfHFLCPLzzQBUZhBFToAChWQkzRQwyAOV9YCkVI+0FPAaaC8QyaTmr0YIKH7YUDHfsrUFGQIuhaFbNdCZGS0IJtMRgwLU1Kjg8P31ArQUlK1X6cPTw83AmoliWkooQO9wd61Jhatjbg4EwJ1i0risejwdBGmVgmhYoV7XuVYlJgMhEIYUhQSD92APY9/0EYMbgn9ZaIcIEwtEGQhpKJSTweuxMqoJqETIrgyUrf71nEhVvkhrBSvQEwkpWR0UE1lqxFMJfmn/m4CHfwSCSBG3AXBVlqTyfO98jlAHS4/4A1eFn4sBRqp2Jj1osA/CRibus0k1gwmclt7LCPBwoxkBFKYUJuexsfNaB5+cP+OY3voFaFff7K9qx4/HYz2uYCYhSCCnNxMT8LryBzZCBalNKYW/bgqfblgFmvp9SDEfr6K0DkYGDjBtoBnugSpUSZ/KbtgGRcBHfk6kieoNFpSVS2zGio0cGbmalmulpbeLuOI4HzAxLrZlAy2CfB8boqOuW1WnORFBQDYlBslTvAoMaVgoMAnWqMg0fQBGolkzeRQZUB8wqmgxYYQLJnSARzBksVWBbN6gVtJHjZwDPH5YT4BkxUJYN40GVnMjA82iNlpClUuUmkP3vnFgIaElaLyUMaaYACCdh2q1kooEWCwOa0NFIe7eiFWazynHAR0NJUEuCVmxwSQDOUYTzVA9HMWCRmgEzyYTgpWrG4eZAKokx0aLX7Jh9Ty0ltCUrCsfIylODq8CNwU1xqgVRhoQWij0r+AHDUhcMOTJ+XSGOVCfiMxs+MijqrCz2rLB2BoNnEkpFYEWhQRuh4Rkc3wfECfPNCnczKkj0QXUzKxMmSDArAsWMqlFZ7edjMGlphmI3wAT7o+FxfyDCUTegtwNSF4zWMFxQbIGpoKuilY6iilKoMFJFsWSw9CEM3nsoPn33BS/7gUUUz08FtWwcG0Ngy0K4DgVdDO0YGFCEsLI6ekMfD9wfHSGG3iYsxuRHRBC2hZ8gQS3ENeEHJASPR4fKQrW6IgAOqA5COCFoe8NaDT6Y2LxtCrGOD5+v6IPgS/cHA/VYCTY9dsgIeAn47jhGQ5cduwC1LLCyQLTAS6UaUCamixaMHONPtxuaHRi1chw4g6796AjHqXxUSj2TdYGe4AQX7T4GvL+RoI+A9JbgG9daBn1pkVis4LPnZwRooyYZmDc1lJ3qdkdrQERW9guTPC4o64Knp9s5rvoYBH0gnDNmRX8myiQtNFkRz6QJIu1H006BilCEi4/GgLGZXuO3NTzc4bWe6xVh0oI+5p6G+4nbbSPAtx+YdkhSBOaCCEINrPJdUW8r9vuOfX8AfaCEwXuDmKGAFhyuA6/3O1rrGOOO3nb0/kAdDfW24miOMTq22w1FBMfrAwJgWwzbreK2EPztniYloTh2h3uDlYp1A7bRuMbkulpLwWiN1gcj0HvDCMc3vvkZdNABtpQNGEEVsk6oKNwRRbDUitYG+tGvBG0odmFFMi0LM6GSa19dFz7bAC18g3PLfgxW4wNo3dGiwTKY3hr3V5qKhO6BZalMRvaRSXOuRa1fCiNqwNEalRkEEKTCphR4MOn95acHnlbO22pUi1uXDY+0MSmoGB44ekddDKoL4INQ5j4Q3dFix7oQGHQJ7EdLEKbTmsK5ni3LQtD9ONB6R6kVqooegEwFmARLmLtn3xxzrLbGCm2jzcy0phhDEKk2uSwFJorjaIRaJkyhgOyArQvUCoYOsKf8aLa5HZtgBn8vM/6TynBkQkkz6aK5J7AT0Dr33zpr0SWf8xugJBVExGf1PN8XpuoF0s4i308kgCkiWOqSoO+0tEq70nm9kNwH+qkGSvhbMXzOr5edz1R7AZCA8UyU4ryfaek2H8e0pGOSk8+q5ziJVKMBJpjDH/Gs8KcSglDJLPy8x7mGzCRypLrEzNeePEZMJIQJL0tIqVgqBbnj6f6Mn/z134Nv/70fR+mcaxMNYZLep1LPZJ2mapikQulU9JmKeFfiV1XO53PiKXL9M+ENQK5nnXsyKv1c/Ws4z13LsuC2bVCjwt5IIE0mPYIJeL2x8QGT6J5JeOYuryS45vOpxVBL7uVzvziT5/x7CVnNl4sJrbwBGX2cSVW8/TkVWjeR8GMfSM1eH9zXakLok4SJTPBSMeIfSlonPDEhuvms5pEycl9wKlvkeV8AKgylYgOVfWaxDc73IsokraQtHF+VpB0Q76sU2sqNPBPFnEfTti1icD6L49wPcP8yTmWNAJhQ9qmsgex7eW4KnMCCKG1/Jsw3+81550K41FQTVkeCMwAS9g9PeAfXvh8xrd/iUj9KYIJQ0fxROWGv8KkzdqkLYo5KYXL8srCa1znvkbEGxmI0hynv1Xj4SBgAcMs1AixYEBn5gmfRkM+hz778Zk4mVMH+osj7kATeNM+J2VcmeDBhgAmBmEyV0qlYl6Bino/m+Nfc8wHXexZJC05TiLMgiftDwHVAM7Hu6FApqYiSa0IkOJr9oMz1NFLhVg2jOV4fDRqCpU61J0FMpbuSRT2i6PkuPPegVDlmjEnDuD+e8ypJinNd8jfgBj+Pz2r0yDNkQZrCEUoRzikje2kxpS2eCve7KsB5zuccWkThU2Ew+VZCEY7AgODAUM3iIE21tIQXfEAYyEMIbb44yVnCFWk0NeJUNeu9p4WApFJhnHPw7Dt9xmDySql8dhXmRc4PEx4qpeCDP+MXfu0P48e++y38N7/7v8Vvrf8AR+P5hC5+hFkUcirwSIJU5VzfkLa8wrUoRWtOeOjNvMY1MAmMOaTzmlm0wbiJJNilqWxzrvlKpfAZp5nFZdNy1IMWfKUQipkAu8ypOngWYzyEZ2iHY4x2QjmS72DG+0yyqKwPeAy4N8RgIYmtlYCc+9f2Hc0744LVUDOm5ZEr9amkfv2dulQc7TjPiCJZ1DZhZgAPd2zbirpUPiMeyDCOdlriSe7Rilk+s2sPJAEMmeBU7oHyuQ2VN6+Ctm8aU00olReR809CfpKqX9xnZJzJPYuRLks+TsVU8pwxErNy7YsmoJRze4DnPW8DkMYtap4hiypUCmMJqQLYxjgBeUGuzTFVa3vG/bJQx1PtMhW6NBfuqTzvc78mExjHNcZwqVIS2kwzuHyODsKJqhdUnA869458nlNtcY6PuTx679BC8C3Gj+554r39T6AF8O3f/jb+xP/rT+AX/utfwNP96Yd9Re/tvb239/be/ilsAsHtccOf+4t/Dj/7N38W/9mf+c/w6z/562eM5729t/f2o99+YEgJBgx4Bm8FbXRAlImdkjYJx4B0BjLrUlkBFoBWw4iegTBWLkMFmgdHH5RBnvL/ry8vGL2x8iYTWz4I04Q7np5uKMLg++N+P+0U3JnwQgBlNRyt0XbEJJUAePDrveVNMXw0fACKBKkA9MBtW/D558/4Uhyvr5et2Rl4y0TtbKqEQwIBb44ehC4kQIuyclWwuvM5Tll+CJNQRakQMlrHUipMWL3Gamkq6lSlfL9Lx7JWJoeLpNpKhw9HEQV0BhUYtCxTZScIKEikGknaA4xwFFVUFVTTM9hDqXbBGD2VpKjy0o4dKnlAnwFok6xAb1gW2gV5WgecVcdJFQWP0gy0RvBwj0wipfy4mrIiVQq++viK3g4c7c6APASsBszqxVlBleDEDNAIKOEPyftHoJrhaVtxe1pQF8O2bvAxcL8/4C5pdTEYrHQ9A/91oVoNMqFQKu3gRGayi8/jdtvw/HzDslZ8eNpQa8Fjp7pHWRaEdHgnALGUhdWHCRCNRyf8JwvaQXvCGfwnvMQETh+EzSSriS1luVlVmFXss2Iw0qqRJaNUB4gCP5MPAh/A8DbTUQxYDcdwwMRw9B3bbYMKIYCpvrVuK0qt6N3RO1WbRu9orWPJYKgpqzyHD1qLWDmDh32kvVgpULcrgGQMioRT0n7kPSCTU+60QpMgIIYRGThSeMIizUcqsqRygA8MFYxgENrDsdRCi0pV9KMDRqigmjEA3fqZsBK9lCsEAdE6ezV6IwinxeDSWSmMKTXviMHxMXrPau4L/uvjyAC1IKKf0NmRamUyA2kZODNMqIZBb0BoZZfv20rhO5lJzD4wVcygDJIFMhEHAo9jsK+pNVihhSUG1bmqKdpIsKUPVJcEwpSwCICWAWtbFtDmzSBrRTjQ2g4MhyrQ9wMegrpSCW5ZFhxtx37scCsZ+As4GpoEihhKFQgKrTgeB377N7+H5+cnbNu3Ea8O2yqGCrw1bGqACY79gKhBCyuQezsw2oOQwd6w1C1tBBIICyopsQJV4fvAtixYq6LtDCCrChYIHvuBcGDbFozBCm8Xxz1hSG+RyZJOBadGqGLdaGfytD4jhqPLQb26GBjjwOvrHdEJczzGK0QDphXVVmzrDb7vHAcqsGJ4ffHsl0zmedtZQV03sNr2AYTBwf405xcBgcarepsQEdMjTCJZITw7x2AbVARBKkCEj9MGU0JwWzf4F58Dwv5XXx+o9Y5933EcHdqF4EQ4XAmLmDDQLE7o7XhQXVGV45Nr+sik2My7BUpZGWwWh1pa3IyppmcJkgqiM/lcbcO6LLTWah2Hp6UZspI0x3TLqtSZOBWfFaZpnaoFkgloOJME3oNz36MhWqPqkBd8//tfopQXFCuoC1WNai2woujm2OGE5PaGtu8JFQTEnTYOxwMqVD4wB8Z9INlKVlt7YG8NRx/o4zWtsCIV1wYi7UO4ngbmAz36gZf7Az/2rS9wf9zRfGS1tsBK3teItMQr2T0cyFxTZJJBhM8GU5iiGNrjyOdkqGUBLdI6nrYF29MGvAKtHThap0tZS1i6O0aMrJp2PGKHhKGkEsnj8cDj8cC2bbAECyITXe7AcKAUzTmYcyhEYKUCUnB09vHZTwyBbVvQjrS3TVhitI6xFCaxmQlAKYrbwkSDj4Bn4kDUUNUw9uNM4o19pz2tFZR1AYT9pnUCuyXXaMy9bjQQkgXCFEc70i65wIXr62jjBLWO46DSkhq6GNXmTBMi5NgY+wHUkso0/Qfe3v+ON2HidiYn/UwU0RZKVFKJC3yXRjsaAgfXz8/3CpG0kpYzMTb36601eMK83GAkhAkm15cJLYoQFHubAHLuTS1tXQLI5Dz7iGqqqpwUQoJGMoFmJDCoWNYF+76jNf86kCRyWZqdzyd/L5DAA06Fv7kHPAsl8km83fPOeVyAtIOaykJIuyk5LarnXGoJq3jghO7DA3LKxVyJOSqlAd/87jfxB3/xD6J22hwTZE2za6EKpSXkMZ93hH5tj84z4ci9/EwmT4u6LHbIQocTZMNUtbgS4CIzuZi/xszBp5qNXsm6fSec5Am2z8+RN/8X7mlDHuf9ADhthCIhFlXu5Wu188ziHm/mIwct1MAzCx9kwr4cBTP5PSYQe3YDnq3rUrNwoRDsnjbgZlR/mUooktac2T8IzgHF5LIDzHYqE8rXVUW41dQz2X5CBvPFJNyTP5jnWULas7HvXAnfyH7Mv80ClVKnCs84lR2slLQqmgUfqRQ0LpW0E7J+8+wkBC75HTL7vmaC+Q04FZcC1lurvQknI9WH5nlOsif56BgJgZ1KZG+KRJB7EzOenUQFPYFayLRt8/M5TyCOYPfsvwkbgXOK5lyXvQ35Y+yPwbnnrd26zvNewnDInXQevC8LR0ytE5wgTfZKRAJz4w1bQuBvFjUFC4nyDJ8Hq6/BBBNw90y+RxgVgweBi2nnDQSiR/I6ORdORZwEzgj1XOMWIWgdfE8JsdIysMClAUEll9nXZcz+kXCN87OKKfc0HthfXznffHhGhWE0qml2d9gArOiZwFeV0/qScHEC0Pm83yqWzWamSKIdtWgWG8U5301LvFIMtOzmaXA4x4V6xpcKx5Gn+1jNs5dNy90xsp9MgObgOHEqSwVGKnd3VCuQPFdrzps9+yBVf/KLQCAVhYUXA34qqBO47pBIxbLwrFzM9wnGIDgPp0VhAhI+z7OphBWkaq55QAy/++V34/mXn/B3vvWr+Ns//nfwaXmBaRb6pQKRxOyo1xo6z+hT4UbezF/z+3lW1hyzc2255kaOq7TWimSXZvwPV+GDu3P/UfJ7U1nnVDRMUPGcM/wCuWQ+g3l9wcIr77SCi1TYEhEcB5W3aFFq53pBa2aqm48sKur7cY4nU4UsC6L3c07TBE7GnCaUAFAf3EtF3utchCbwHDFOEHpOVCFUrv2w3KCmGfO8nrFIZP9zIvNzEpsTUCT4iZzHItd+IejZM/41LafHYFzOSsn3m7FZbnpyf801bOQ87H1AQcUkEbAgzR027IQYqSQ49xS5e4gLmELuO0QN7gnY5dwjqbQrxXIsc84dYyD0jUpefjjPAfm+PR+KCLRkkWg+Pww/10CbsfI5dnKczTUREakoGCcAPeLNHiuAWTA3408+8iyeVpwOzyE51/1gUZH4uQd6b+/tf4xm3fCzf+tn8W/+H/5NPL0+5W7kvb239/be3tt7+ydvAsHP/a2fw+/++78bf+2P/DX81T/xV/Hx848/7Mt6b+/tvf0A7QeHlJSV6AxGMnhkZYGIoiyUnxfvBFdqhW0l4ZkV7fGAdx7QDSkHH0CI42iNtmKi8GI49h19bzBhYGVooxrS6IBQDWVZK4NEnd93P/asqF8QwYQGPewJMthSzmAaPydS4jcr11Sx3Tbc7zuhhMyIPl5fMNqRcNGlnFRKySBlnJYDYzhKWqvB31QyZ2Jk5IFzBolnsNIzKQ0RjDYAdyx1ycqmASkLnj5s6GPg0/e/OoOPpgrFZY1z225ox5Gy6wzE1lJQ5Kp4dkFWkgIQHqZjDKhTkr+oYlsrbsuKzI8wybPvDAAHMMBD87ZuqEWZXJjVOxppv8VDcZm2OQDUEuCKnlLXDLIspWBZKpbKKmQVhYTg6cMNy7qgjY7H3nAcLWXWFT46c65KBYFZ2RkZ7GTAdyaMAOCSzjcxbMuCz24btucVZWFf+vTlC46dsAZtODKpk9cvVmG2oJRAhGQgndVLS6mAK5ZlwfNnz/jw2QcGiGqlxRcYMDn2DoRAYVgKP39WbnkmSg0MyIQPdMxAbUJjfaAooZKZRFJTFKESGHRWFsspKx0R0HVFKFUtJBymHAtHe9ASbkpst+P8tYBQUwTw6FQ4oZIFE5897S9KrdjbARxAsYpiBWMEii4AHHVZEKB1VyithKJ1IG0KFLOaWtAdCXcwsTehHDEDzDLgSbjPs0pvDKCqwVuHlgBU0XojoBMCiGUyUQknqSBg2MeACpOJbRC+AQKqgeENsbccu0z4qBW03jj/CYOBx0GAqBSDFWX/dAaSxDvl7qVC5LIyZPKUijIDnVaYRRkwCoWVgMpAlRWPfqcd0+B8ctsqg0ilondaHa7rSrUzYVUuhNXNrTM5vi4LQqjSEjMR2xOAMPbbUuqZLPVwtL1heMN43Gl18/SEHvwMzQCZ985Eg1KFQkvB4+ioVWmPp4AZ8PxhxcdPD4zmaO54enpCGwMDAxID98eBx3FgT5upyISwVoEggU41iCke9zs+PG/4mZ/6cfTW0Y877nvHo1XcbhXjOPD65Ve0xLDlBKa6d9RpgydUbVvXAjlYXXq0hpoJzHCHFDuBzcUAVEEHEwg2DM/LAiBQiqCPkioVDa/HHcfRISOw3QxffPaMx8sOCPtvqQuOx4HRCXKOaS0JgifSBp9pECRyKNQqxAzuByLhzdE7Rhfs8YruHB+KgLcdZgtghX07OgLTmpBArMHQDkITnsoSnu++1AKKdGVla0I6x2OntWXlODWkIlLraL2jDaorffOb38Tzh2c8ffkVvv/VV/jqpeL15RWPx3HavAzveHQG3/fXeyb4uTwbhPZWyGRtViyLTqWcBDXSHqkPPxO1Mxg7Ws81lmqIY3Q87g9sN6rPDdKJZ/Upg96VkGQqoow+sI+dz2Aw6dnGgKYqoqmeSoU+OF6O1zvn72qIGDgee0IuS1ZGp8VQ2tmqKY6d8MRx7JnwBfb9wSCzO45+IKLBPnxAd8HRO/tytdMC1oOWcD2D9QWFUAsCTTqWarg9rbBHg1ZDvd1gpaAfDbe6YtwfsExQqQJiih5MGrXukKIo64JxtFSRIYxdi8JlIAY4Fve04+ic00YZMDO0/UD4wOfPH+BLQe9HghdMU1pa0vbhGJ2ApKkwAZv3ZJLJ1rTMXLYNj8eR8E+cVfLdZ2KYwfSayY5jMAkgYOB/73fUWpnwE6d6WMIk95c7rWuXgmmZW4rh2A9agwoV6azSrkgy4TCrmM1oVYdMGvlwQnpgQroN5zwNgWjC0GASwmwDcn8rmlDMCCB1OU0VdSmII7LfMyEz1+JaDEhFwDGTCz+qbQIvcv2GJXBLUIkJaCaoqGghSnjGeyQcl8DEzCzlPl2R5xSNVBIbJ2Dn4ufYR+7xrPBME2nr4r2n2gGhaUlbOM/nKqZnwtNz70x100vttNSSNsSRCU6kUtbAZVUC4A38MvmbmSQ8FZTegEWzyj5ybzsTX9mjmFRLaIswDW1zT6bEFLYsTKbt+5x23iRRuX8vtZx7rJmaMk0VAxHIUPzs3/5Z/MTf/wnouJ4HEoIAkNY+BTWtsOZ9nYqU87qFydZ5ToG8UVCIK3k4LU7m9UIIbs2EBqEoQyk5FnVaNNMadc7/vXuqPPDdzfMozwm4vhu4+tb/9y4MEUFNeKimVRIi8iyWNrMnuMBrJlhD8EOQfSzBO6rd8CIsbcKXZeE1KSFhZ1dHz/05Va7sDTjDM944rVs4f8a8lgQ+wsepFHWOSeX5hIoMcZ4X57uLILQxvSwlz5JzvqPVWJygyPw1zn6bZx4hJDTHzNwH8OzOM9hUK/IcC5LQSnZGiGRi+w0YwX43AVa/fn6+sMClIJNQzVSki3zdCkJSkh5t097o+pCrg0zb4AmXAVQVxMizi4BA92Qp8lnqm74+bdZ6jzNJPJ//tPHh+pegUgJY8Ua56FQ7mQrHmGoivA8Vpe193mN4pD17vocTgEzrXcwz2PWMPBxlwkoJBghAmzyZlkoJFMxPEYLBBIQIKtWV/ZnFUnxm8/OQ8JNayXXtjfIduHcPDPTOYitbSq62+b88v7cxaE3fE9ZWzp6MCcgJ+gUCX3z+lApIA0ejLdkmC0EOd+xBxW/VAs9CLBGcFpbINQQg5D/6gCaAhHNoTdWVBGyLpGOZ0ka0xBQ14liIwAjH3vwEQm+3yvsbHA+aSshUTMliO0fa9xLynWsMQLAMQqiZY6Wf8byY0L2D71WE+y0Ivzz3T4Rzp0oZzy0xJnCb+4241i970z/nHHKqCeU+XnOfEmmVOm22a634VnwLz9/7DD/+8Tv4xZ/8ZfzG57+B1jrM/IQ5uifA38epfnbOz+f0TdD3XEOEfXM4C4gmWDr/7FxXfQLFU4kmrz/3JQQfcw0RnGrEqlNdfCo7zSJLXnMEC8DmpGSiCVlHFn90eB8nxBSjozfOZ2fBkUyAUFgU2iVjIh1TjdHdMRL0cR9o4RCtKGq5PnENnAqJwORjLvhx7m0CXFMY/+QabsWgaRlWS0ldv2nzN2EwFhM46WfCubjUuag+levMhLgmGJVxPhcW5IRT1fu2TkCLzxW515FUUIy4YM0JJ0Gmkte1t0Dk5yIVTueUl31h+NylsF+ozH1e9qM334Pc+UQWDkowphdgscP8DNp8sqgvEBlfynVqQn02n4vh3DeEA6lYF3nepWJyJBibhxhkAVoxODTh88vG9TwVSNoB57x12SCyf54A8+i5bvyj90Lv7b39E7UASi/4s/+XP4s/+l/9USxt+WFf0Xt7b+/tvb23/wk1geCzT5/hT/4//iR+5m//DP7yn/rL+MWf/8XzOP/e3tt7+9FsPzCkVLfl67ZHPSWQ3VNhxqk0AkFXgdYCFGD0g0ohxmRfd1azAUA4fa57dIgZoh20zkq5YUZqmfT2UJRaM7kkaA703qCChBbSu10SdDFFXRR9BDACVi2tcRjgO3bCFmWpsCJonYoG4gKI43Hs2AcrOHv389BmpdLGI4OcYwS0VFaxFTsPqDM60oej98jgcaowqfEAmgBTeBAoKgVPTxvqsqC7Y7weiAHc1hWvWe3nEGQ8jJLlIthqpSxvBqB7BoP7GCiimWwFnp5W1K2kNL5iCYcPHnS1VpgVVC1nkBcxg8wAfDAIBspFF2N1tBYG6sY8HKtlArcwoCI8WIsGTARFK2Wb88Bfa8VSFyyLYlsK1nVFLRVlSk33jtUEZTHcHx1teAblM3gBQK2m+oafsuopKs4qIWNCUQX48HzDF59/hi8++wxSDfvRcD8eaAM4ur+p7k67M2PisVrJ/qWwWjA6A4ll2eDuqKZYthvW7cZAQG+AOz55WuN4YHt6wrE/+N4nNKWVSg5ZlYUMftFiy6HKQHYftIDxtAe0XFyHO9a6nFW0DILzDz0C6I6iA7EYOjIJNQgNmTFRKyJpuVOYAJGsVHa93mkhCKWl4P7Y4SH0q688VMYYmWDop+VXHwd6ABhU8qml0lYjbVYe+wMQOa0Hac3ExIRCGIiOQKkFJrTeMLVUlwhoGKaxYvcAXM8AHXIISoCqT0J7xcggU2QgJtRYVSsFJo4iHbCK4cDLp1doAE+f3xh0cya1IYplWbEfDW1/pMpDZiF8oKoAVlmZBksAKVCEcEKgQ+FYlgUDBHzMCtpoqHU9g5PLuuLROm2TTFBFEBIMBCowmn8tmEgLrJkiTCUCHygp6x6RIFMALgHxAbSOME0lrnKqqigCsvKdOwCYQd2hRdC8ASbns+y9IbRAzFAzsNXaAYDKZrUs6P3A6+uO2/PneH5+Rh8NRQUfv/qE0RxxdMjKSsXuHSUMW6ko9QZW/Abq0fHhg+BoA4/7jjYaijmqCXzvkH7AW0d3oOsO6wvqtkBGQ6gR4FRDKQuDI6XgtglGP1CEwOXr3qDdUQIYHThAWz+kWgnHoMA0FZgksJhhRMOPC8G81ncAVABbtgKzQG+ejgKOT69fsZoyqLoQGjAFoiSA1wXFDY+jQVPJggnJwTXY40qO9YZoD3gmCFsPiB5ZweqZ+E/1LwdCHCEDpUzrHgKNI5NUEFZw722gZdD/GI4vv/ySAWAwyVEKk4YIwi2qBctyw3b7AJWKYhWfff4NtNbw/e99Dy8vL7jf73gcQBmENdwZkHcfEKNCo+XcZamwMQPXYjlO0+5CxXDsAVsNppKV+ZnMS2tZdIFHJkVjx7IuCS7KpdAYhAzXdYMi8Hjs8LSthKQihQf2/XEmy5ZaoSstDvbHDq2GZduwv7xyzd2oEiUJYlJ1EqiyAmOg9YALACOkuy4EUnwMeO8cs4VzUBvAx9cDJaun3QWvLwfEqDS4rYanbcPr44G9d3QBnj48Y/SG7g0hgdvzBlPF3lL5ShSv3WkRrx1RAAEAAElEQVSXWFfuxyRw7PsZGG+RNkydfQ4LbRrhAT86jiG0lhzOimZnlTVyffZ2IJqi946Px4HwwNPTDdu2AQmtQQQihmIFEPY1M6pHBQbB1Ags65pBeYJLbci5Po68hjHTgBFoaZE6OpMJorQLZCKJ4AeNPpkEgQd6y0A82Hd661xXRHGooHcA7lTDG0wI1mnJJoqiAXHgODqTAoYzgUxVjQ50oDeqe7EyvJ/qNe1M0rPv9DbQWoJnOa+utcJc4BqoFZDBsdsygdzawIgBt7TKkCvx9KPWdEIpkaoCfqksIBW1Zm6a860CxoS/R1JpeoETADimJ8CTv/ZM2GpCFdxfAcjEmKWtFJWKuJc419SYKTQQxs2EY26a2H9ThcQTrlTj703rH8nkEZUkcQJKwAWLqF0wv89Cjogry31mlSYAgfM+36owTUgCMUEHwkZTLcBbB5wAXot2JXPnc87EXLW06cIEl5mA47UFvvXb38bv/dXfix+7fyvXLyAz7syRBddxybFBUAYsYEgA50yMi8BsKqVIAiQzSUxlDwBn0hepGAeZZwidbwgCnMpiZnJafZ5KMD4Qg2utQrP4JROqykBWACcUi+xbvLVMHkoCPvl9y1KwrSu2dQE0P7M3WuqOuR5xrQ7gtKqxCfkg7QIz2a3KhKkJz5qWZ+7IMX4EzoKMUqlaGnHVnYvYqaI02aB5zVfGPoEo0dxHJCiXe0Ra1Mz5FOe5ItPGhHUNXEtz3yBy2SexH182jRNOmKASxyPVS0S5RgBMqkIv2GrazvI8XzHSZorf98ZSLD/fe+OzVs6L84yJCQu4p0rYVDZJGKjzHD8hFm7j45zrvwZDRu6VMvF7qkRlf4bO71SosOAAYlwjD6pJ13WGXa4iGss1cCTke8ZOwzkNwBAy1ZZybhLL8eQZKtHcqyss2N/1XPeovhkJdtNy8K0aEi51lzlH5zl4vt8c4amKNiHJ2Sti0g3nM5j3wX1o4RlkjgXBBX0k4AGZSkHcw0WqeU3Qg/eTc4UqehvQEdi2DRM4HK3zflP1jmreVMUxCZhVjhEwdlGde/2j9YToG9VUB6HomIDaGGkvx3MAcg/uAUiOF4BQJqMkbGMMXicIeaagDa9NEtJNZSI6OQlEChW21FCsQlJleUIxaqmGknNQ60cq/vDz7JxLuV/04TCrp80s51D22Qlj5k4JEZ42lQmQiWKqwE3w5ZzP5xwpF2A4/VsnlISEMKZa2kgKaj+OBAEvSEUnOCJI2KSk1V/Bdx7fwWd/5wv81o//Fv7mj/9NfHf5LnpvaXeWqjYT2ErwZq7Pc8578/FnwZMVSZBl2jfjfM54MxY4VvOOnPuzUnCOoVkYGDHVqAzVNK3N3kCQOdYIZfq1plhhHCR4bVZ4Fh+eQGcRqHOt8yA8bKZQZDEaJ3qogAVh8UY1J+OioSzmaN0xcl0AaEs6smhSjftxEWERgDuKFZgRxnFc9qDz2YtH2hIyRhXeUWo5Feu59vj5s0goZ+RcHk6Ii67ufE7ZTQmKxpyfrvF4jwPrkusjAtOGF5gwWe4hhCAdP5xnSs2z91wPqVbFvQoBpDjHxiwkPNeA7KvXBI3zTCF5VhQAkesGObRAb4SVLIsP5hgB+SOCnlP1O+cFxQUM2dwL5taToHIW9CSEzy+Lax3IZz3PrXMtExDSNFVYrnkpkDy5LcYjfe5Dcaqyv7f39v+vJi74+V/8efxL/89/Cb/3134vx+R7e2/v7b29t/f2P0ITCH7yN34Sf/4//PP4b//Qf4u/8i/+Ffzmd37zHVZ6b+/tR7T9wJDSUqiS4uG0xegNqoa6LBChPYg4q5hjHJCuaN3xuO/wPgO/Ai2af5+VbiXlvIsatBBqkVJo1TEYqIIf2LYNT+sTAYXhKCp4PfaUrmXATSGo1VBrJYwkgdttw+v9QG8BR88DMRNFl+944NgPaJ40RQhAYcwDMg+epnb+2ioDMr0dMGUF7Ux6PI6dgE4EHscD6DwY16UCggwaGUwNrR0p6btQlWe54enDMz59esHj8RHeHaVeEtxjjExYZtViVuIendX6S+WveyYcWtupBiBMdH22rfQXd83ATqqolMLq1aAllbtDrWDZVtRasd9fsFRFONVWAimRHXyWMzBpOr3f+ZxKAkIzoVJThWrK3FOto8P0lioEDI68HgdSJxq9dez7gcfByspaea2UQMaZ0AJzGFkEJafaBYyVcp99+IBvfPEF1nUFQvDysuN73/8e9v2B4xgJCfHzwoNwUq1Y15UphgBGdxx7Q2sMwCzC/rYuimVbcbQG7J39WWcglrY7ER1SJBOTs5JNzqSAOxPPporjONg3swq2WElZbGBWCc/A8RgdPq09AoAaApqBacWAI3qjMoAzIFGLnoG83hv2Y8e6rqykzM95W5EeoRjhOPYHWh/QZYXpwgCNd2zLclZiMXEHmC4Yx56Jv6kLhUw2OqzMe88ge8lq9wQICCRmYDDLeltLlZ9BZa1qBHzOdzcY4BYwQGkJUHhkNW8orSMkoZz5zCoD3yaAlgWjDxxw1IQlow+UTICMHFuqgXWjqg5lxTuCvpgZ36SNH30FACS0RPUv5RwHha0bfD9QxWF+2ZzQvi7VrzKYxfc1aCcnhtFp8zETDWp6JvvB+FJWUeffy0p505LBc0FRhRn/PTz4rp0WIXIMzsOQDO47vBqQalAagGXiRxc7++C0ZhkjoFJQi8DE8eWX38dt25ikCIIR3hooWCSI3iFaoFohukK1AmrQ4VjXG3/fqKq3xkDZMwkagro8w91xvz+wtwaFn89J+Mjh3tEedyZMg3PgUgvgDi0KW9bTAsGWyiSP9JzrO6I1bNuac1VgHDvCmKDclgWqQOuCPhrghlIVfTCJ0MdBW8dw3F93KBTbUqkUY4RwRQ0dDeKGmxD66+PIccI+ZEUhuuBxf2SSpyOiZ78kwEeICFmtySRDT5UkERC6tKzShMCc98ekAsevZ+B/WTc8Pw98+eWXGdDlfDqtZ4pZ9p0Od4Knz8/P2IRr5ofnZ3z/e9/Dd7//fcinFxz9BfCWwK7CO21xJGX8z2raTDqEzF8zQE5FFX6P6VRjyfkwK0/joGoTch7oPqBpuzU6ldU057dA0MpUBMfe0HsnXLeU87sgTDgYOPcexwETqtf0DBIvpWD3xmdSVqga9seB7oNwZW8YIzAiFQmLwQUoMwEkXNumGo8ZYal2HNidVpoign50uATqWiEANlHclopaFPu+o4+OZSmQAfRwuCiePv8Mcn/gkYpIMQZeXu+4PW2oa0FZDOttw3F/wOOgImYpEDD4ryEo7vBo8N7gjaoKE7YtaSs3VE81kRhOyzwP3O+vEASenz4wodJooVhrVnUnUCchWOrCZEpzYDjKukBLyXn0ssmttUJS1W4q1DDBMJUvOo62Q81gKAkHKVVVaoEMJiMDAyoTtgTWtODto+OxHzhagyScNxOAozMhU5RwYx+eChycY9QJSbVBsIl7Me4ZZt9y5/7Jg+NUcu30PmEPQgvFNBX+HNEGajXcboQvehs4WkHrkco9I6vZHaE/ukpKJRXSCBf0U8HHUk3Ap20IN2QEhJ3JnpmDRCZ0purblUBNxZ9URqMi21R4YVK/lIJqFVMdlXv+zCDnTCvgeqp2KcuUQoUkpEUJgtc1xrTLAoAE5BIoAXDBFDPVE7gSqDEVMOcfvLkPFbQYWVlPyI3DIC2nMzE2gZ2ZUBPhPEi7yYr9aAmEpmJanifcqcY573iCOmPO8/QCggdQesVP/sbvws/8nZ9F8QKrgqXkfJsZroiZsNMzqT2r/fl+C+1/e0NYZN4tk4vIvWcm4GeC7TqnvUkgZ4LRTqWcRPODijJF6qk4QZCaSULJRPnofionTFhu/nz2kispl/8xk4hQWtgty4Jt2whZAmhHx31/0D57JiLzmubnq2qqhc4EaZzQI/fA5YSsSuEZYUQqBsoEtbLfx3hj1SWZrEeqfca5phBWGGc/h0xF5LlXe6umJKfCDzATk0kkxLU3HT4gaZc07aIm8cA1tidgNUfSdS16fjbfw8izpohhghLzmQJzfU8VtdF5mjyVjZB77LiUF/MdUoXxsvC5FGSuFzvhiWmFTohMz7niVIdJtV5CINkHQfglfPbT2X+A3LznXMTv7fBUQIyMKUg+1vnsua/KieO8x2mHdmaReYDGpViSIzf7pxpV0FQ8E/1yxjBm0l9y/IjghCioroUzYc1nLicwRv47wcVxKaNIng081aQmiHf2KyV0alKAMU6bq8g+Bc1z0nwMwSIcfaMAQttJzXWdEGEtLEq53++nOklMODR4H7R5y3lCLMEuqraYGlBYEFbTIk3seu5WKhBcd1tvQOT5DRcUyH1OR4+38wj7eAynIl2+OwJWBBI9VY58dBYsFAJno6VFaypgmzCoIYP3Dc11J/uCJ0w/55xaSo6vhDEsx1pM+NVPoOuccSWLf04VShaWMQ6Q/SVmX032QeLc+7EfTTWcPKhGWvZNEIPLbsYfWOTzeDwSUOTfL2ljaqJZppQqNWBhgAzFz3z1M/hdr9/B3/r238KvfP7f45O+wPfjPJOLZjGG8/A7oVic95KjjdIz59+BpFXjnA9PVSUCNghc6j55i8NZuDhhkbfwCgFc/p2elnMqPONEjpE5X3N8O8ZgH0IW3LE/JQCmGUNy7hW5dUi1znlP8zuubQgmPCqqCQmzn1OVPPujX2crC/YLVcVSSloa8lqsKLuGAKVQ4fdIe1wB0FpHzZiTBKHIMWijTBBLv6bcp0qLQkSqmWKu9Wdo6lR/Pt9JMJroo+M4HOu6oZbKQrRI9S6bc5HkHMbv7SP3bbkOz44xYUu1a/3n2HoDwOfaOUYHMM89/H0zKj0LElpLFb5ZGGYyxz3PJfvR8BaSJSDnUJ99cJ57ketLYODNmTjXW9o7JtCUa50PqlPxDD0L1a7+AHBetRy7PhxqPMPLXNuHQ93OfjGVEd+4ub639/Y/qG33DX/sv/hj+DP/+Z9B7fWHfTnv7b29t/f23v4Zaeux4o/+tT+K3/93fj/+6p/4q/jr/8Jfx+vz6w/7st7be3tv/1D7gSGlGVyb9lTTa101KOPdGdTQahAD+mho+4G+H1Aoq3/zsDYkEKBViCcMspQCtcLDoQkCA31v0GXDh29+ATOBH472aFTLaI0HsmCAV0WxVCrxAIEvP35CjHYGmTwz9qMHWuuEMCotXsQEFYZjqkOBQRGMgeEdKleVjhkhm360DOQziKECqgVVg2mlasx9xwGqnpTC4FY/OgNtcVlbaSbPH4/A+O6X+PL7X+H+eKC1hmIV99c7g6g+IBpY1wXtSNDLBB4FAVbFhvDAuZSKbTHUTMpty4LbVrFtG46j4XCHiFGuWZUH3+EYx4GiSq8mGEEGUdxuG/bjcSZ+RzhkpBS5zKr08qYSKANlwvTBKcOcv2dFUUxp9acE117GQCmGWhcs24rwgfu94f7YMYZj2W4MfPSG6JEBXcaQZjBLlfLpTEIVIBzr04oPHz5AtaAPYLweaK3jq08f8fr6CWMwST6rrd2nfP3IxGKqX4miDSZBW4JmAGDCxEpvaYuWKlttDLT7HQCwbRvvuS4ZvBNAaW1gYhlEHWeQBakNETHOwDgrwy2DkKnspZc1BtUAgBiBZaG6lFVlpbsDGKxgE5PTCsI9mIQV4Dh2CApTNEK7CRFksLOgO4MkVitKWVCM8vMCnBCBlQIIk3mOgI+GOBMLBHzcG/tGyoT7OFDrksFCOeeZM2mUlbAjJel736lIdAbnGKztR89gp6WyE5N4YzCpHUAG3bKSbzBQWZcZEE6LiSDQ980vPuBp2dDbTnWOMVAXjuN27GfiwlM9baR9gJV69iUA6N4zACRZ8UfJ/kc0PJpjdYOEQ1vCdgmQteNAoKPWCu8D7egMZieQNloHzFCN1fNtDLQxsKwFwMBS+J29U7kmIKhWUQbt9kSzyhC0/ipqCOPfUasY7jiinQHjllojYwYEA/AB7PcHnp4NpRpGMEAZExyMoE2MMzHdouPl9SN6RNpbDizLysRKKhEoAgbF0R2hHRoOgaKUFUCBywHkM1jXhSpCGWi/7w9EayhCBa6lFLgTOADGqQAnPlUdHLMiXXKdWxIaLEow4bbRwrAB8MYky4RHiwZGqmupZcBaBFBCha1zTB/tzrlTmdwsdcFxHNlvOkwXOGXhsKyCdvAeMSwD1XP9MUAVrbVUHlKYFjSJBCQ8A4s4ldnCmbRhJT1hTAVgQNpYpBpFURytMaiO7NuZCPvssw9QCby+3tFayzmwwcoCBZPZloAKQWHD0blGPy0ryrd+DNvtCV9+/IS6fg/f++pLPI4dEgSd9tYYhM+5ZKoyRFDRQEvaaylgRRAj5wW/YAQAhE/EIMZgtqrmGm9cKDoBHUDTpSbQ24HRnMDJ8FSn4MJSFs6HS6WqWN97QiQDOx5Y1wWmgcNpI7vUSqCtN4hQBee0ZvMJkTAQHgPowWRGcJeE1gfGaCilcq53wZGQG/uB0lLEHdJT+eXlEyIC27pgqYSm+nDUdcW6sILeAdyebxiYKhOK6B2jH4iQtE2xtKMMVBFstxuOdqAdB9qRCgNIaz1Q8QcJdk4bDysFdVkIontPyAuAAEdvKMeBWgkQ7AetD0tNu99UF6Hag/JOM4lqWWXuuZeTnN9rrXAfaP1KvtVazuA6AT6qQiGA0TsOIGENOeGYulTAOJeLC0Kzmh0zyUu1heJKu1QIpETuD6iWeN93HK0TOFA/1y8bhAv6GNzz1ARzs808Pqu8c503wh4TpFCrQIBWpqNjWxesi2FdV1gp0DYAOaDO9X6g/0jbvYlIAuUTzWFih2uGX0lCy+RoEDSZiZnzc1TOZ8d+jVNBU0RQJLIKPGj7luC9KIDBJA1tjy9FQgJPF+QeAPb9YP/K8RGRSSTHOfdMZRXu14RjPeFqoxTBmWSb8MfsIyOt1SB5d2TMuW+utCkeOd4hSIWRaQ0E+DnOIlUvaIl0v1Mdrs3CA1HCtpn04nyaao/OdWxeB98L9/Lffvkmfvbv/gy+/f1vwSqtNEtR1FLQxyBYLoQVrrnbE5aQJB80FW+5P2SCdaoK4ISDZ/+Yz3P+eoIWzGBmwjPXp5nsU/D3fdBedu6nrSQo0rMfeXDcKJVkmbOecG5e0LyOvJaZ2CylYFmXE+poMTDGwH4caG32k+uaWUQx4R4H0oIKM1ENzkeSfUHygdBGZiIR3P+OBB0vhajzUjFBpQnHzD9QUbikWkL2R76TC+gLXBAOcAEkV0I5AU1NFRxyQSd4NBO73GNzDzRyrEYmUs00x7hkspyAES2M7AQJ5/3HfO+Yqj5grGGqrM3zTqTqVwIg8J7KRDif+9uk9dsxSKCV+/NTSuVMCOeZciqLqeY5i/89k8EeBCt8KhbZnAfmqs49521daYk0Oqa1sebiOEY/n40H4Zpp8Sg6C4I8E9cEDGh3l0ouqbgxPGALH46OnE/zfD8VciyLVXz4eeaSIMimPBQwIe/c4NPKLNKGcJ5hCCvYGzBrKpgACTYLEpBjIt9HJG8aJ/AyE+C0YUrYbjiGdJRSz3lo/ltkQhRzdgL66Ogj7aL9ggExiy7AAjZ3YCgVTXmdWRQkqeRlhhJGaCJSkWQ4RjsyfiGnDfxIxRVJBbY3mmE5WuWEc3QWKuW181wdFxyW5E+IpGo4wfw3rAkkQbdrvQTGaCeYoqWC9rFIoCv7Rd5XOPsMz6Dzc+OEeYdfxT2EPHJtjgvaQI4lAjpx2s16wn1nH6AsHcHqQBYSXso0kfPX023Dvh8nWDv8KrihRSESglOCJQkRPR83/MKv/WF858Pvwn/1s38NX9avIPcHjoy/hCht6XPfGbn3uyBijump9Ka5n5vr+ls1KJzqZbMQ7lIJO6kPzHkjZw93jOiI3LtxnBG4KTmHUJWWf8axGIjokCz+m6A5VYASxM61uGTcieN+QiSck30qDWIqR1F9UfP+Lefl2buuIrBrjmy9gdNG2o1lfMWyKBVzT14MNYLzRG5iPZXwRRQw9mdO1MJ4p+Dax+WacNm+paKfzOfIa7PCgqupoDn3yx6RBSWF+5C0f46cS1QuG0sWdOJUGcQ5/1/Pjiplcz4+K81w2qPm36Pd4/V7s//qm8VYs4CDxVBz+My+nb3GPdWNsgulQtrcp41BBU4WhV7jB4GvxcYs4b4JBGL+G5fS5qX8P6FbXv+0NzcNFKGKvhaF5LXNTk0F7x/d88R7+6ekBfBTf/en8Kf/8z+Nn/mVn/naWe69vbf39t7e23v7nWrf/P438ef+0p/Dz//Sz+Pf//P/Pj599umHfUnv7b29tzftB4aUpCpeX+8Q0O6qBJNFR08IyeUMJJYigAz4ODBFPhDpxY2ZSVBWeosilMFVC6CaYWjgfhwYvQP1BrWC++MVx8uOaA4/Wh5yJRNXAS1CKeKq+PT6gsdx8KBtcqkhQNCDB1kGea+Kv+4djoHliVZjAsE4eGgvtcK0MoEYfga0NW2Slm3NoKpDTFFCMdqBlolXq1npc1zVQpJBkVKYTBnd4d2x7y2rBf1MvNC6QLAuVLISM6gxcT+DIwTA+FnLukCtYF0KPnu+oZaCbVtRMxF5tIDowAhJmzlLWfL9OjI4gwgahm27warBRVFWwWO/wzvtUd4mE/wM5LJKtijdzk3tDMozyAyIOhZbsC0bpqVEppVRlg2lGPZHx9E6IIrnD89Ybzd8/PgVHnuDQLBk9SMrfhgMrMuKZVkZ0B2OWgtKuaF3ATCwbRX3xwNfffkVemtQEZRlOfsRnz1hNEvLunCFGCGX/bjjfn/FUitutxvqymSyaVZw1xUGBuo9aONX65JVYw5POy4GowTrWgFEKg0pYgAtgyAMZjJoKi6wlcmhmVgx5fPsPk4VqrqsMK1AKmcpCQIGiFvPpN9lk9H7wYBIKMdmdCbl1w1MolFxiNX2nn/fTnCKcuRU6VEraH1gXVhd76cCT1oiQLPSs7CC2R29HxBRjDdJJ0qFd8xKcCpJETIgpMR/WyZjWu9nIsiKUSZfCmEOp91CH0Ck1ZGmFUnJwKGZQZxWZtACqFG5qDNa1rOqdCCgGdRqnUG7kADEYNRYYVAyBhgJp4qTZmBpVloDHCuP1jAg2B876mIYQjCs5HPtiDMR4/n8Rk85/yJMdoswIBoMfJouaW3WEAnbOSQDhqmYVFc0d2ilqgE6ZdwjhHCDsu/vcUDqAuQc6tEZ6Icgup9qPGqKoazsgwSKFojTCkVEsO8tk6JUwCu3FYc7unlWF1coWLm33BIyEQJsJaaBY6oMlAq0DKQPB4IBf9pi0MryaA9appnRQisKIEZbiAR2OAhZHRqSyQrg7EcaAuR47R5plTDwuu/41BQfnm8AHNB6WopQocJQtCCOg3PCcEJIZuhBYGktG/v6baVlwXEk3GoE6qrCyoLWmNgdPdD7AFIJjKoivIcx1SBsIVd6Jhmc0KEqzAhywFN9y2klNQYgGlgWg0CZPEsFDcBRhHCQg/PMbVlhULy8fMr+4JlMJfhiWs7gbDGqNXkfMJdM1jHJUNWwlIKPry/Y953XqzgrT2cwVoQjygr7rce0J2FFOVJF6ay0Bb5Waao2lQAYEFYTWKUqCoKKBQzMz9HttDXoivBAO9KSoXBVtExM9j5QakHrHVYUS11QbwsOOTJR5qeqwDiDyGknIAJxKqN5J7DcI87EuIA/7x5Yt9uZcHubLA4A0Q+IgDCqCEY72M/APiQQaBkwqfAIPPYday1M5nXAQrAthugdrQ3cH4Hb0w1LLdBYcz2VTOzT+mxbVwho2dnTikxEaZmrhn4c6B6oYihVcAhQjapFc404YkAGq7QRBa117O1Iu0nOez6Ce8hUt5jAqud/CwIu+fsy+wC7hQST3oILMJr7EuS7895x33dYrbxf0YQkHXEMRBCg0eBel0qKgteXV4zeAOWaPPqED7hGjLQvuT09AxpUyRypEqSWAL2fMMRcT2sxgmJmWKrlvklQB9AOWi/2HmmlwZ/b94H768fcQ6z48PkN22q4vz7gIRhQjGg/6Pb+d7xJgpZz3xoAEGlvArmsZgKpROUnsJ35l6saPt8/12IeOJhMzbGjSOuSYBG8UslnHANwPxOFTJNlQiiBelFJMGxW6l8gR+IMiJiJrExAyQXTWbXcO3EuCxdokZyH0wIl74lbZEmg+koMU6Fr5PrK+6btm389yJ+JsgmfR/bROBPoTGIyyYoE4eKcP/WthAou6ODHPn4bf/gX/zCexoZ15Rxfql1QlgdE53PQSy2kz6SWnHMb7y/tmcE5uucYQT7Lqcpz2vbmf0/1iFkIgUmqIKjcYJoKPPPN8GVozi1UG2H/qktFKRX7saOPaRY6raEwyYBUNcr34alOoiUT/Tzv9daw7wchD+C0qYwToMlnOZO3yMkKhBBbo+3jWmvOg4Ra5vM8+xm4flvaA/I7Jm7D52F2JS8zN38qfVw2ONf4EZ1Ak5//nlZwvJVyXrPmeWICTN79/PuzH54JXMx8bUJRpzKSndcxoYiZtVWRE/QhMEfruwnyEELN78pNIa3T53ujnfxlxydn8niChJLfM5XEIiY7OM59+nC/xsVpncU1zCco7Dif2bkGpZKK5MtTkVQC0XOPinOGwZt/EvSAvAEEM0aQ73Im7wmOX/eXUyHPB3m2jjZgRWjppHoWUni+k/MfTBUoghqqM9k9n5WwL+NNvwAhNXIofI9FCwbevpv4GvwQwQS4YyDmnKHsG5NvSOGbS41GEjiLCWopEOO0eY2EHQGqWXoERtqTn+pVCf7xfdt5LTJVqDQVe7QCMvK6BQLDCT9KWv9izrWR/UXTpnI+VFzXOWGWhCtOhCXPjhizkIDvfW8dy1phmHB+zlypAqSYsRN+Uu/jnJ8dkcVugiolwYd+zucTrLBqGJ3jj33+DZQbcsI5kfcKSfh89kRJcCPXD40LcBHMMZRKWhlXi5hxnflz11ie/WtdWKzhOTYkY17Tjk0w1dDyfpzqvQOOH//4bfzx/+6P45d+7y/i1z/8Bu67JjA7aDGXkOFcDyTHwVQojDl45o/MvQXm0iInxIKzz+advDmnWO7fOF5zVOd9v30PEbRbF5OvrdXhToUsDwwZqEVZjJfAzQSK8WZePs88IpdF49d+Hjm/zXnognLP9TGutdVjxiumcvZleTthKM9YCZDwvHMum1ZtxTQLlwa6d1hhvEqKQUcqBuECq1gYplS59rdQJtdduJ/q7qK8z0jFZ1Ge0YZPpWl+10jrunkmn1ClnvN9zrjT9vta7BMKxqlwOeOYKte+6FIdzHXTke+1Y+Tzuew0U6k1gCk8RqBwqkkOQscTivP5n5LwLZ89LQ8tC+wGppLgBJXeNsFUxuQ8ZAlXcrrlHrR3hyvPSTMu5UEV4QDfS10rajG0lsq70NNS/b29t3+iFsAf+JU/gL/wH/wFfHj58MO+mvf23t7be3tv/4w3geCn//ufxr/zv/138J/+mf8Uv/zP/TLetzrv7b39aLQfGFI6jgO9NZTCBBY91Cm3nYrTkJSoZ4WVY1sqYtAii7LOs3IPtAQBE++hgqFACBOJKAr1ArkVlNuCx+sD90+vaI8Gg6Aq1SUU9JFfbwsTHQLcj1f0aLTuUUvbG6otjR6s2q+zapMJxSOrkbfbhnVdGGiYycFdsCwr1tuG73/5JRCZrJx2D5kQmVLXrTmie1YMC0qlJZbAqcIxg9WqaK0DZ7KAwdEZwpkhdlUgPFj9bcDj2NEOqp5YZZLPfRBAKILbbUNdN9RlwVZKQjIV67pBALTdAZeEKgLj6OjtQOsdvXUYCEWpFaxm6MPx8auP0GIYCDzdnnBbgS47hGXkqbQzpdhnwPmq9p7BJ8ngfK0F61KxrfVNQJmBgJm8Oo7HqUz09PwZ6rLgfn/gcaeVXtFyJUVsxRjthJTGoMLBslSs2w1Ptw8oxdDHgZeXj3h9eUU/GlQFy1JRquCxNxxHQwRgRhsuBi6oShAzcA7giy++gXVdsC4LzAzruqCagN2Id1IXxQgQ9gmbOQ/K5QNpUSaZeHSo4gxcTGszAjUEXfjfDIxNMKsIE//Lsp4JoyX7m1lN2OVgcNMpEl8zMOEuaXUAMDkzwY8GK5WV4fsrbrdnDHMsMpO8DXWhXUU/doxgNdyyrXAnKBjCIMvoPZMhtFWplu8MVDLq4lBl4AmFUNHRO0yvoFufyUXEqcxBCCPgKUGPrNSdZfgRYCDfAYidAEC4oliqT80q+0yoQAR9ANIGwl+xbqwcP3rHnupnpgIxg3cGQuGsFlSl5VnVAiiy4iwymeUJWLGa1d1xdCoPjNbTWu4AVCEYaAGMdlkoCjSTfUz8+6AtUR+0/bEErk45dGEGQbSiN1Zwtn7Q8iiDx1po39fOarmrurNqgUmBSGCrG0YmhgMDh9BORsal6lWKQOsCh6KWilIIrNayApHKVsVQiwGDik6lFNQCOGipqU6byBEDcTiV+HpLCIVztopCK+ddnUmTBBoEDojD+4HwAct5fcQA7fUca11gYmg+oR5L5Tlg+IQSDfCO1jvHHQD4gIOWOz4aXo4Hvv/xFb/HfhzL8w2e+E1EEMgwRYD2ehiO8lxxv78ApqjLQnWh3riOFIa1y1IQQfsZBv+ZuC8lK7DhcFcmT6JDxLAuhRBs2kWNdIBwDxRNhYuDVgCSlaDT7ofTdKD1BitTyUChtWArtFRpyncNLXAAvXV0ALdSmUSPgdYOHMeBl8eOEEVZqGIYZ2CeMABV0hh035YV/bFjMcXztp32Bi0c+7HPzCatY7NCtFTuKXpz9AzEiwislqxWfmOXlPYLM1BcU9mIYFZDLUw6+6BalWdSU01pL5lgQ0+FFSRs6x4Qp2JUrYXgA7i30UpQh0HnuW5fe4TH48C2blSX84EitBF53B+YdgvhPYP2TAJwPzGVzggAaibhW9sRZmnlmIn0dU0FqKD9wXHgeDzgwurZGI5DOuq6wHWgxARl+Pcf9zvuEYh1QRHuDR6vd0Q4qhgcfB7bbcW63rA/HnjsO0IFPRMhT08fuKfK8aDFYFvFsm2wQrjp8ekVMQbEDB/WiqMPQqCOTKRxzahlgYpgT9tTd4JSmu+a852fahfLQnhiJuQtk8p4u6+SBKFGqhyJcB8qBqRCpRXFOOaAmkmogloq4MD9cSeMkBZ1TFynzcS2oJ59jokJmAKDAF6tlSp6vaGUgrUQGmPlumFdFtzWlWtRKqasdcHrY0fvjjEOeKoxCSSr2xXD7yir4Hd958fw8rHg06cD3UE480e0jdFPiz/ujaho6hMihWTCU0/7mmIcE1Tk8JlLZTvBAyY4qU7mZyJRslpCi6G3jnY0eKfdqYrASUVxHzQtcwRo3s41UHTa50zlEipplCwOmCiJp010yQIAgpVMnKMzqWml4LHvCTNcyeR5nhCd0CUBqnPOS4tOmUnmCThBzv7I3HYkbELg620uNiJQjFbJfQyMTOKZWFb2z+Sq4Mc/fRu/8Df/Z9jiCaVK7iP0VJQdI8ErEEeJ4egJaY6R0E6+R0tVlWPfgby/WiuqUIFh0hOnOs+8aAAiV4IW8yyRycJpRcN91lQz0DPR75m49wSUykIYqLdOq05ogqtxJudP6N0KpgUK9zxvig58roHthHstLZZ6p6rl3MfzepnEHpEFGXmD27aiZOJyWoZTlIHPSPM+eDZJpdOzZeHLmXBMwCJwWlfN88RMrE7lkKwbuSCLTJBOCGpCWvNcZsI5BxPAmk853iRVc+xyD4NMpvI6jt7Swhm0rkNaJlmeRUc/E+e1lIRqZvHKTG7jHC9zjWTCPgt45q2SUM4kN8cD3sAZFgrHBVWMwXvIXPYFweXjIfAEIAGht/DJ3Hufc00+A0/6JryhlAQ9PNCHn89lqrRMOOsazzgT7Ywz8GQ5AbIJEE8Fmoip2GKIGPCRQE2ure6O0Hkfcz66VKamTZlA89zxpmX/9UG1yEGCORWC2Dc1FRZPW7oEdbi/yH6lJWMAfKihgU6H4dOSSRKWiixk01R60phgC/calupWU8FNVakcOKaKWQKsPufUkecyO6NeZgm+BT/XfVyweEIuguCZ/YQb+P5N9VIXn8BAvv+R80hJZZVwZ4HLfGc5V3qeUV4ed/RwfPa0EZ6A5HemigwEcMWIgZqK3D7yHJxqdYQrEnBKsG7ujU71FUub7jxjsBNPYMQSoo1zHJ96Y4JTfWv4OIsAMBW18pXT0nS+fz6PUqiOPnxARirrCPdgE75Zt40qX6mKfirdmSHFbvMeuH5MW9gI4Iv75/iFX/rD6D994Nc//3tQVbQ3618EIRackAj7t+Z8elp65fn3tBrN/Qfkzdo54RPJ5+5O+CfBq2mPlV2fBV0qVOYMzoUjUkk850YB43+QhJhzHmU8jWAecv5hP77W51IqRANTvert/DnHob0BbuaN0KIOuV7lfvicexLKFEuFo6moS4vjecaCB8ebgGf+uOYtVrB09KMBlXZnlufJuSfRfLCiglqWM65xFSsGSiG4N69bigCahSZWgEAq6o+zr51wV8bZxKdaKuHv3lvO6bPIM873hVwn3D1BO4VNjzPhXD1/5lp3LiXNC1yjcp3Ss5Kv0Of+TnL+svy8q8+c+z3ONFDVtHrOmHEHfK7XnnvmWRyGVKWKBFJjoFg5ldfZ/3jGdGecYIRzcGWfmGtYhCOOA5999oxlKXjcDwxPWPK9vbd/khbvgNJ7e2/v7b29tx+9JhD8xN/7Cfzb/9G/jf/o3/yP8Ev//C/h64fg9/be3tsPo/3AWYx2vyM6k8E9A4GlVNTbBj8a0AdKrWnj4+jHTqWAnpVnnlWXIYgRwMgDei0oJQNMQbUE7YG1LPBCSet4NOhwWKQNiAWKCHooiqSNU0ojR2Fln0qBagHg6O2RAWc9Zf9Np/x/JrrDYCjwR4cLULZCYMQZABAEnm6VygcHoatSlMna/YFZlQjImSwceXg1cZQQdOThOAS9dSZhVdOqBBALmCh6G2l5wsBg88BDKPLS0sM9iiT4xYTeUgpu64oPH55Qlg3LsuG2LlgrVWu2p2ccx47H/YEWAyL8DjoKsBqvKNElUUEogxNUVOITLgj48YAqq5mWsoBBMSoO7McB8YDR/4zS6Ei583z2ZgXLQougow2MSGsboy/18IFxNNoRWcHT8we4A58+vuDxeDAQkUm6WVmbUU5AFMfR0NvAUiuen5/xxTc+x7o9ofcD3/+tL/Hp41cIp8KDWkpZn4F8HvytlJSmzgRWBDx6Jii2TEJG9gH+7Kxe6q1nYIhy6L03KBzDAcu8KQOvkcEiVpGbCUQcpQjMaCXBZKig1JK3OCswGbBjct2oBJWBmEAkeOMYAINiyIrtDPRvy4LRmUQyU7R2QCWy6NkY1M7A+b4/YGZoTVPiX1BsoMdALQtqWWB1hYgxMFIXuASBg94ZgBcgXOgvBUdYBsudgSjHoHXZDPzFRMTSZsME7g2zqm3bNozxegVqZAZ13lRcBtB7T7W3jm25ZaU9n0ckFCYagFNVZgTw3X/wW/gHv/Xb+Knf97vxxRefow2CY7xXg0EzqS4YMtBTtrwDqKYoS4Fpzh3CJBWCdg5jBEYQdEIM7McDmwq22zPtqQYVa0aCexYz6cUK0T7Yt0oF+qCsfR+RCQzOs6IN4gMiBeEEJ2mqyMCsh0Ol4jgO3O87ihZCDhJoRjDJ1fL7AkMB8YFoLeFK9iGCTgfcBasRUhoHgY9qhugErepClaSlGkIUECb4e6TljA8MLZAIHG2HikM9a2i14ogd91cmssweqapVOS/uB/Z9IGLASqAfB7ztGH3P+SDBGAtENLiDsEQM8mU2+8lA74KqVLtBOHww0DsrI6sadFUs2w1ffPH5GeyumXgaTmWXUhgELLbCSjDIDEf0gaMdKAp4NETvOPa4wEWTBB8C4azMvSwGgFppvTltVhGOpRa0aLTNA5NjgkBrD5hT7aLDTxWREbQfCiHwV6xgRMcxBIstqLWiiAFYsfRGJZgAQgxjXXC0gnZ0Qjujw2qBLQuwN4gpPzcTAh6B18eOcF5nd1oGBJiYWdcVZanY1gXbshA26h0jWG3rPuACaM0kPydnBo0z0WOWKk8IqAVGHxh9nAAKPPKZZSZlBLo3DB0IJ+hIZY0B6YbeLxUNBmwjg8sb12sPWCoMCQRVK8RpQ6vZd2wmK0ac87ek4tTorC42Uax1xbasOFrD0QitbOsCU8H9/ppBZT/h2MfjDgGhWqQSk5lBgmpa03Kg90Z7I6OiVbtzzVQRDBdIFdTFcLOCaGl1KIG6DByjwR8PqAfWuqKYoT8awVYlZPTp0yuenjasW4EUQGtFB9D3hv3YsWy0tBm9U9FPDcfRUQYrdLfbhnY0yFIQKlhuK26loh07vA2MZuhHz7XJsNSa8MV87jMZHifAMbMYazGYURWxj0yAa6FaS2uYNoIumdwdhMRrJThdNoFUhYgj2kB3R08FihGBsiwobWCACkmY6l9iqGvBslWoAn44vHMvFy5oTkXIaf0YTkjVJPcBxr2qpL1ud6C1ARNDrYINHFeqBu8JnV2mgegBfPf7r1BTPG0L9mPHfiTw/yPaRu9pcaMJ1zIRqsUQg/dmRqUIjqfB8ZCV6+cCGZJ0DD9XLedwkgLUvwiq+9Gezamm5wlypMWSGgg9Z1KKlkSZNM8k4Ex8h/dM6CnMOBdNcIJwbIIEUNpgC06If+7dAKAWPeGCyMQYZr8cFxzhPlVVeU8iFJJzxAnWnHZWyr56/pzk52cSkYloQBpzidO2KE64mu+hiOHbH7+NP/K3/wVs8QRbDNUKFe08UOuCPjoVBOYsHDGFT1INqGTSkvvhCXIBXKcEoBVw7rMJq1zvsQ/n2pjwjKayyARINCEGswm8BDwa+9FUr3Du3QWEH2qpiAgce0NP2zWdcFteV5zDRhIoIaBUl4p1m7Cp47E/cOzHeZ68+selHoLcw06rsFM1NqZdejnVKZgcnUlJSRjBz+dG4Grk2QAnoCdvni8h0YR0kXZUUjKZGhcEEvO1vL1SwkiaSlDI88T8LEcyHzKVwthK9v2Z3PVU4Z2AEXO6fu61VDytx5gipjLYgCmVAjUPSpHKVQFCjdM2inzFfEnzRphvnZbi7iP3UEDILP5JaEDn3WQi3wrcW3ZNmR93fu5M8Hu+1+GOYjUBx5mYx6mQh9yLBwKvrw/cX17wxRcfeG7JBLHlfmGqcXAopy09hzHPcTmfjan4mHOWpwrbtA3HVOwUQbF6vduIE8aXuNSSPPdjmtCaJ5Qygnscsjo8k7KPaL7LCTcj1b4S6OkDrQ/aLSrjJX4WYOU8nswQH+ZUVFZEn5BNYKpGTch7ICEOIBUV5YS05OzHiqm3yuvmGY9zG/+ZqiEeb9RHc5+ocqlqUqXXExJ0xKD9LruCYiCLVcTP7xbVE9wRFaBn/5tQTM7TU9GFz45K3Iwf1LRxS7Avr1OCyr1TycyKEpETwBO+RMZvAJ7nc0vBM+EcFxB4XEAG5lnZkWuVXL8ngtHnjIDT/neAz2BaKxMCSjgDb0BIAXoMFPDeqXQGQoE2wR7OMe5UvjmLa8KhQWj8tFPFhFQcfbCo5rRPzn21NcMf/MU/hPqzK37jx34DZTUIdipXE0U84ZMJK8d1i3wm+RzE7IxVRqr7SBZAzH3HAO2D57liJFhG5mPOp061NXmjzIep/mUnDKZAznOpGgXGRyVVYD2hxwlczb7E75uACRWJatkY84iACOdiqgv1y7orHyeVrHkOms/g7Ku4bMEmAMPzDYCMP5lMw2KBGJVZpxKcQGAWaN6pXggCLrMISCP4nANUEQxlEZOwcAhZSDBGp+J1KVmcFBDTrynfnUAtQMVn0K49Yu4Z39ixyVQZzpVHwFLNfI8Rsy/nWJRLOcrzHcz5ImJgqm9OtdY5Lli4xriVGhWyo1/KaYG5jmYxBd6sbfl+xAyaqr/TmhPZQzxjy5H7hRm71ITeeFZKi1CnRvC0BebzvIB2iTeWeBPUR6D1wKeXVzzdVjgcrY1zPXxv7+0fp+lQ/PR//9P48//hn38HlN7be3tv7+29/Ui2p/sT/q3//b+F/+Rf/U/wN37hb6AtP7pq9O/tvf2z0H5gSOn+8oBagZmnIgPlr7fyNGN72NuB5h0qguPxADxoU6WGUivqrVK5YgcCHUUNdaknXOE+eLD3QBGnfZYp1GkrEpk898bKwu6DKg9jQA1MihmArCLzzvAED+SR1fVIafU4YZTWFP2IDM4olm0hUOCO/WhMqIAV7t6YEKy1nMkES2nyAND6VGBgkqXUSmWUnc8lkLLZoDS+omRQnZLlfQwmc4NKLJEB7f04oGk/NXwgnJVUtVSoKpal4hvf+BxPtxsgim1d8fR0wxdffIa9dzx/eMLL/RVNC+IFiOPAvt8RgwoCt22Fu1OZKRigbPBLstlS1QdZcVqXSzULhLaqKcRAC7sILJVWaAgkTFP5PHqH94QUxoDWiufn7QxaeCa6n56f4e749PIl9nagVEO1elo2MMhCy7xqBXTkcDzfNnzjG9/A7cMzlrVgf7zie9/9Hj5++oTJNZXFmPjv04LNYMYwwFJrqnikqkbv0MJDf1U7A9OXtZ3kO2EgYVYHFytZyCmoxkC9R6CnolcgJckjgMFkQimWigCSNnlAMYJDzR1LXZgIT2UNnUGXDHqMweS6CtBHywBGVmQZg1ZmgvvjwNEJng1Qxt1HVilqYfVbYVKvtw5IgZUFa6o2QQmeTcfBvXWI0gaOFje0UpnVw8e+w1SwLAsiGNRt3pDxVIiPtC/B1wKZBA15XzMv4aPBe4e+SQxR3WVa6Rh631OlYsDKwqR3SVsf7wSLosGiEJwEbV10rfj8299Aua3YR1DHPoNRYyT7EmBfMUF09r/eDnQXiCvKVEAafM+997NCzrRAVDAAbE8bVBX78cCyFFRL9QgzhFItwb0RrlQqMVGOm/ZyxzFQilGRSyTtnlJhJJikgWcOY7BymdE2h7pjHAdcBra1QK0gBnDIAMzhoyFkwFs/5dlVFJ8/rTiMdnLuzsT744F11ZzvDd0JnakQchOUDKoRaJwqGGtd0UEFs9EHRB2lMEw2elBNZASghtZHzqmG4VRXaQfBI6ZXGQBszmpcqjY0QBZAgfCO43CoFUghADh6R7GKGFRU6CKZALoSvLT4SsseoYpT3SwBQT735ky03o8DA2AiJySpRCYxBljFGIzowvP9qghGb3x3Wa3s4XBmzfO5E2JiHyygLR9VKkoxDLe0kJhJHEllOc4lHg4ooU8NWiyupWCpdZqxnJYlPoPtkRYtqVhWVCCVtlePN1ZX63bDsq5oGQg3yWRTrnPTFnPdVtRjhb6+4PFoOLoTgDUmvJ+2G1rrGOpwo0rNSDssJkCpGhOZoCAE3DgHQFh1LJ5ZsEyAZ2I0PGinOpMBzkTfBJU9pr1mOZN7ozX+vpXTVtFbT+UthzdCoALFaAO3bWMfF86ntlQUtwT6gGqCo3VMS0Ja/BhutxuWZcXr6wuO/cC2LaipZCeKVOtoVHbqHa3tqNVQKpUj9uMg3JbKanWhFVGIEFyuG4794B5ImFyFAEfn/ouWp4XrajDRRUBxx/Ntw4enW85dirrQ4o5gpmFZF5TbAikVx71hf91x7wOLCLbbxv1bqYTHHg33xvne026lF4O5owzuH0bCxbUsaMdBKwdVLIWql2dyJhi4NxGEcr9XzFCKYa0VEYLXB/8+hGo9ttSEe5BF/k6gugi0Am4AlPaUggPItcoVGBrQVPfTpSAOAnEcn8DwA7ooxKgYBukwCdRlw4gC8wHcH2gt10UwIeDMwhGWFcP9sePhVJvrY2BZDOtSue9Ry58rhEe7599lUqePwKePD7Sdqo8jCEL9qLZ29IQJJ3CWyqNLPc8T3AsT1Oy9p01nqhnMggNBVqpT087UMEmXmYwiaBkJkzBDqTnBU8VsnEnISAADQrWXzLuy/83PmypKCUgziR8XjOIDuf05lc48E1TDB6Jl8nxCU5GWVPkd0/Y2QlIlJdOBacXig0mriUSclfwJTtEGRBHitKfOzORUmiIINSDOm5s2J6eiHgw/96s/h5/93s/gJhtgkoB+xbotGMNR1wppChdFNCDGONWQqGDLxOLc9wBTcSwttvWCHQJBlSqVVM1iAtpOGImQzLSEnM9L5q8zYTfvTQRUuwNSoYNXUOsCj8Bx0BpzAm0TkptWbxM4ZU6YltHbthG4Nqq93e93qrzFhNzkVKiYq8+0idFURkImNOHxxnb5Uq35unpPnNftMS3uUsVHBGpfhzLmnzn9Z+CYfS836IJMhF+QkocnXIVTqUsm3DXfTY4dwlVpnzSfEa4z0IwJ8D1PZYm852kLZjhhppnstbQ7l7nhyofR88wPzPdCYA0JeXnCbVR6wtlnzguMC8iAE76AECpBvLlGARDjVNuY5wlaUEZev2B4T+Wba6zaBFRyjvIsopoAxHAqoqxPN2ghqM294VzHgNltZUJOCbL4GBgglM01KVVEVXNOiLPPiNDardSS74I2tDYhKxWEGCQVRiX74xipe6MCDT0BkMjvpPWXnrAT5ljFBdLwPxJm6QNDCD5rwlcj5znCGiNhnUt5ZCkFMEPvjft+59pX0uJMQhCuXMsj57qZ6H+jPhWe480kbR2ndRFOACac6yJZq7SBFQBIoC2VlNjfuE54pPpNwkEBzXPovI84z+tjdFjYCRtkzU+CKzxbUBFHcM5+Irm3vyCnCaN6DKTbfa4LPHfPWXP+HUtFlSF+3iuBJTn7WYBQbkgqfQrgmiB1zPnGUwGbZ7m5Dmp+pgfhibMfTOAt41kloa9z1MzlJmNGnP/4fRMy49MfF4CrhnUtp+3rqe6S8wBw9XMtBm2dauoPxz//iz+P55/4gF/+mV9GLTzfdZcTIJ7noDmnTMj1mj/mNcgZTznhpNmNcl6ZatbThnGORRU952DJ8xdmn8p7VOX+Jc4zMc4xHed68LYfBKCAIvtWQrOX+iILyBSX9R9turjn1zxXzuufKlA+qCJP0Fdx7W2SWZFIta4sChHuuSaQk4slJOdTUVqwa8bNLNL2NeMREKS18TlLZwFaZEGB0hquGHywwGQMKhLOQguRjEEOKpLmEzgl8GYsGZFQYyo8+2A8OQLnvb4F1TgyY3I6ubYIVeWFcefo3OcxvqYI47uxuOBUSWFWKBBzf4jLppdzMRiLCUmw6oLWJPefBKiuWCDc3+wnHCJ+xpVm32RfwblXGIMwsGcRleTzF5VUaZbsE/ZmTzsLMwm33193QFiAdKmMvbf39oM164Z/5T/7V/DH/99/HOux/rAv5729t/f23t7be/tHtqf7E/71/9O/jp/4jZ/AX/yzfxG99HOP/97e23v7nW0/MKQ0Kx7DB0Y/oFaxLSuWUtAykGMiiOEY/WDAKS454/Vpw/q8MnBUKvp+nMl/Jr46IgaTuyFo0VhJttasZAq0weq7GEw2higCHX0cYMYwoJ5BKMdpD8EDW8MYxzQBwAhWQWpRrNuKbRGg077l2BtcWfVUCxON+6OlLHykGlNaJYUgMBIMYBCr1IJqesq1j+iwaglEUZ542gn4MRBWUMuCUo2qM+OqkvesjEWnvHgxhUVAYTAxqBiKVazLBoHicXQqlxQBwlBsxYfPvomy0A7he7/9JcbLjiLA03bD8LzHYBDRimJ0T8sLMl/VCiEdQ4II0yddU6GBQFYthdXWpaAWo2KS6pmoCRU89h3HcSDStmRdVzzdnvhseqedVnPABZ8+3XEcO7pnwC2DMUAGkNVQVLAu9ayy/Oz5Cd/4/HOUWnH0htf7Kz59+RWO/UCxBbYqalEe0tXQxoHeGRCvlRVpYpbKJgU+HKUu2LbtSoZkpTDlpRkUolpO2vwJn1lP6EcygDIyCDXhmgiqVIko700MofSCn9WN3vk+QwLFCJLpDLZjVsaP7If87D5YZi1ZYR+SVWRAKlg1TGWxkVLZrKyNrGamelAxJQg4nFaI2w3LdkMbDbcPH0CLBdoQsJoz0I4HitJiQbSip+oAjME7ymxTPWlWJWswmSLBgIoYVQ88HN4bIoPeVKIItP2Rgf4rQDMDtq0PuDfaN5UKyQq+AC1g3AmqUNGFNkjeB5Z1w7JUqG74cFtQygKzQpUaod2laEGgZIDT0nqOSQorJS3ENANufB8M9iW8dVZA0pKJSiMp2R0De2swFdRgP3SJtCbKQGPQsosVdkB4w3EMBFagVoSm3QkYqGKwnslIVUMMCpy/fPzIPo9I4EHZz6Rg3x9MAAeVbQoUzWkp2TpVmsi9KUw3YHREGB6PgwHHQTWQ4QNLpXoMRoeD82WptCsxsPqaQcCsalQm34oZRAP73iBCtTMzAoWPg9TVrJIsxdBaw2hOefO6JXz4ICQXBIFiJgAz6B4gZAR3rLXC02KvmLH2unfAAHODlgUBoPcjVRsCSzEmnKGo9v9h72+bbWuyqzBwzJmZa+197n0eUYXKwgiokkQFIGwgAsIBRraI6CAI2tHdmAjzB/y//AO6HQFBhN2vDrvd6nZ30ATI/SYa0aA3sGVJqKruPWevlZlz+sOYM9cpsE1BG6kk7ayoque595y910vmzJlzjDlGA8RwTCExaU54P9lZXiuO84CmtYhw36oiqJy06FUgg4XOViu6zygc75zLwqrxvt0w5sTZB0qJwjcEWiv3wznQJwu3Cb4WLZDaSMATrvcCWX+f+0crG0af6PNArS3IPViF+H50DKPtoTjWHFelKpAJ8Hh7wM4OLYLTBgocVQFVx22/Y7/doaUBRovKt/MNj+OB2cYCEMdk4fWcA+fs6ONcimgaFjipGiJAAEtJ5hL4Ag1p4Za5QnaHJwidKm2bbhiT8WLbGK881MkcgNYGgMoHUgtsDNRWMR8nc4BQnKtjhGJKwW1vaNuO12+9ohSSEbfW8PmNRG8VAt29n7jf7oAWtNowRsecVJnqYemYCl0J9lPK/yJuzUnwHaCtY6kFUBadxyTJa9s3WmtFjnL2E6c5tlJRRXF27rEeRW8RdklPIwky9yszR60kY5FENCCtYt8r7h83QArKoK1KhwWB0qhqAEBdSDxzoL+dmGEP3P2AQHCeHefrgS1sVAGnigG414oIZEzeSwB7I0hTfQxsTRn/g8SBAN7g3Ou2xnXsZphVcZwnLIAqgcJnEC2D4FG3Ct1qaDEQpDQ4czRR5mUAi/hGYqVstHuyfqLPMP5MoPo4qYK1iHdYqi91qxhTSbycjAtH75AiuJUWnepA2za8lMY89Ty5f3l05HvB4yDheL839P593gUkV3MCLVxKqMT5Ig1QDWcGMJ4gH3Ps0uoiB9F+NUgMRsLm0ojxBEk9APrIx4JUETzupdwwwyaHxBVBOuMkoUQEYTM04zwBxgslwFkLbV8RJIQ57QKHNcD7AJEtiHiLlJIECvcF7GoQeLh9USNTQnHHjIqoC0id3CuoSMNOeuZavB4PWC+JCJclM2Nimxt+7Bd/DN/45W+gtoohJEMR16M60nZvsW8rHq8P2MkGjFYqrGARwRLAT3KyCEjwjpwnbWOS9HKBZu+s0+L8kDZol+UO93OSY6kuq0IbuhqNG9P4nCxUBM4e58xkIV8TMf6X11XKRVzatw23206i8WQTx/k4glRMUqsWXYQqNtowzytBRFoW53IRrAgmk8AAT9uxIJhF7u8BGFMpM4HmfwJUF7n2QqSSQhKaSE4pchEGCGpS6UZDsYS/EoQGJBmAZxoSZXO56iL35OcpsJSTmMcmASet2SQsaSzsHDlXa9lo51MrphstYZPgI9wr4FTDUElChi4iQcYOki+C7IgAWpEkkIW2Y838WPNsnuBzn0GAf0cXi/+VRUwSDXszuwhhSNJCgrhBaiGJgPZ90iq2VqgSJhpn+1z/QSb0VNeNee2+1jef5aUmlgQQINTe4jyhUpZCLYTPfwRpXa2sBilzD8txvm+btpTIADZJlZgznkpP8b4tlGUgXCtJBOvnQRAcvmylozuHtQ5MVBXavC7ZplAbCvCd151nZcbMJKPaJOFWNfdzXKC6SsQlWaSaZW+mQQxSXu/wiIPQ9TwzNudaXKSvQZVhnvMEbgNJlJZrikSuHQrGoRqU53NbxALmbfJuHkEUjhlv4YrDFmQkgcNjPZF4YUECDVtst7Uf5bmmpoW1x4F4vecg0YbCTGrgFGGjlM1oCMj7EjakSe4vQf6II35YzF6ERSCVBC+V0bQt7tlMFDmre1xaNJNwX/K1/xVNwjkbW2anwpkLaweXSjV/RsOOsqji7Cf+wK98HV88vsDP/OjP4B/f/jF6qI1PY64+bQYp9x3xznMdy4p964zxLs8jwfE6e7wfkv8t172WmuuXTTkGDxI774Fkx6htGVZsdOAdyQwkHEazow02SNZKa1aLvd6D6JOWoYwdJB3VQjXuVODMtROROp5DquH52ouygQPxbtkPFArpqpDYGGaQlsxIepse5xW71LayxuRx+98V65X3PodBYdBaUVo0oHVdeXdR1lOCuoplcQ+nSu4MUhX47OY0DGPzTzYdJlmMRLHMw23VheGpUpQ2jtEMG88s3x0kbGZjDbiziW3iiiFprbhoZ0qrusjA+HW5L2V8j3kIR+z/GSEu0qALCXpVSKxMotyyEEXcGzTib+TFTpXWqjWyvSvnEEg08gTxMl4a1QMZC03fsbqe4zn+GWN/7PjJ//wn8af/r3+aCnnP8RzP8RzP8Rzf50Nd8Sf/5p/E1/6br+E//p/+x/jlr/0y/qmk/zme4zn+pY/vmaSUh9YxBuBCa7CiOB9HdONLWCexy9ydh7Jtu+H28gJRxevntyApOGzQ1uswx9lHHOopf6tCFYlSCuA8yKf875wpvywwISCWh/vRKXteSoEG0MrC8ViSvxUagL/T9idIR3ulus533t5wPE5MNwzYkpBXOKYj5IgRBIWK/uhhw8SCHsuOggKSdqbNUCJquH+84e14AA9AXHA8Dko5T8dARxXatJjSEsfZFhOF1ZltMlARbIW2MQWCJgTK+zmBSuLB4+hotePb33rFr/3qtwEf+PLLD0DYqNzahg8f7oAKvvXtbweQToJIqxVQFqrggJTohNUsrAXBC6EWVXeICFqt2Le2Dr611tWFlcWwBF7T1qtuG0LXCtttR3XD+PSKt8fbu84dxb7t2G87RieI3La6QBqbA+7Alx8/4uMXHyC14Bwd53ni9fMbxjlQi+J+v6E2XtscE9/59MDRB2BArYpWBLe94Wu/5/fAW8Gnz58hUuBjYByc48PA4kMQpnrvUZhlt2fbNrBjFIsIpCoY4+p4Q4BvJESwcCWFChDiGoQ3FmRLAmNR0enDMFVCgYzgnIHKTVmkaHXnWglJ/QmHtopS2RE2Z5A3MPg+XTGSWOMTfRzx2VG00koiRKOt3d5uqKo4jw4pDY/zQK0s4GEOKgiFZYNG8ZAqLyw2HccJqcAYVG8qpYY6FkH0VN9CgAjuE1ob9rajnwfAUhtVBYyqau5cZ5gjipcKup0J9v1Ge7tBQkOtG8YENMIfSYa0sUpVnBmd2iRHsJuQRS2DSqEakyttZOABnhSU0hboYYarEGsOg+DsHTYN99sNVWt0uGlUAAWKsgq+WRSz1enPDnOdBmox0c5oGot0aW8mARDNSULW6B1zGu6tIoHarW5oRjU5iIcFWA+ATTH7JRHPwia7k/vUAChCeUpAkKlUuAnfLSqRrXw+7vBxYi+cI1orHIq3t87nHu9PICQYEBGGbA21bHHvBFyaVsZEdXgQFUxoh+c6w/KswCeLeOwKpmIAQbsIKU4LKBEWYlttq7sVa48yTAxoZddpkVAkUxbje584jjfcP3xA3TdU37h2x8RjjPg8Kh5hgVmMg1DHVjfayUwEoY4y7ToZD9u2wwYJtqVUFhfnhMuBPg7Y5B5U2obRB60BzAIQJtFmOIlgrd4wYl2aDXjYGJUgAFqQ9c7zhIN2qiywstAupeA4HsuaQcDYc/YOG5MKKO4LrNnrBq8WBKGOE0ApDbUovvhwx22v+M7nhu98Ypz8sN+w1YJPr6+cd49HqOT42jfcwQJ4gF1UTwu7xX7ZKlisnUXkcpJhMs+g8t9FbGIR3DBtMGYVWs640TrOBgnSAK9FYWj7hmKG8+yAETyoQZYY56BtV+9hq8f967btmMa437RgGmP0mARP5rRQX+kkCWvBcQ7QVpHvcU5HH8Z7m0FZmJ1EpAkcbydMQq3RmQvcbjcSiBuVZ0rd8XgcVKcphUp6ClpVOgEE8SA5GvO9++2+bCxrrfBKO7TzNJicVFYpCZQVHMcBs4mtNswgOI5JwEhFmGsMEndrq4uAfT5OnEFmJNge+15Y4tVaIDMsu6LT2TlRcPSJPgjMjWkYc0AsQKIgO26Nao5o3CM+PTpwOqx3WBlLXcuLMteCrP2YwPYIhS1+r2qadCj6YbB5UDlHgPPoQCHBo6iElZnj5f6CooqeneJj4PPbK7wUqrwFsKCSNiMBhmpB0cq4VhQGweez43F2DJ94eXnBvt/gPhdg//06EoBLAkmq6MxBQqwiiB1+KW9AJNRPGwkqYeEnAVIR6BoBxgVgIxrx9wJQ05bteq8Kuk0HZBQ5K23YEDanusDftAd2Yx5PD634+bCbLUEAmv1k3oHL6kODRBG6XiShJLAdne+aYDtSPeA6g6kIpCSxTeg160m2IFhlIPAmmkDrXNBTKjBwH0fYVgk+PF7wR//Ov4avvH0FZauw6YAa1/00lGk4HyfeXh8QGPZ9WwomrRTaIAtwnCTx8JVdxJsItXFNqZ7DtDHt30Rl5WW0573sXFQvoCMJJx7kehiB7FYaEjKudQsFq45+5lzhNyXIbZN2fCXOOKnaAzj2bce2bVjEtzmXQoUq9xTaPPOZH+cIRYyYz8p4+PLxI1CURHekfQsJCkk04XvhHLoUWpm/8eawnpnE3kyiQ8whJFkiwPQk0rh8VyxYZ4kIDUkqWt+51KQ4T9Kmx1JZBakKI+9UfRDEFwezXEm+YJArsM48BJd1rSlRRRXGUapplrCES5JRgsq61sKMdRsiJaE6KAtILkFUTiBe4zmJpwoQz1wE+knqTPbEUq8yWwoyacvmEKrP1AqPs5FnA4Fd5BgG7FDJDFKDc2PnY1/EnwuUToUWvrt8PwLRss7B60yAUDtBKvh6KI1cNn5X6M+Yt27xqitETJJMnJI4YTml4j1mPAzSDa3+JlquR2U9iDWfLBowxuYJfg6+N8nYCf6/RZ3IY13kmUci/s1pV3E4cxMBHFRqzUldiqJPD1K05yzlc3USHVg7KUi1Fc6rstRrfMnsZPOPLXKOO8lVbKbhuqBiYT5ULFU8ByDlUqdZK9TTAjiCnsfWoUl1dYyTuV+pNeY0Sd1jhvVvkJ3cg9iw1qyvGpTNUF0Szn1xEl7TTtNsAJAgKTlEDD6570IQBCFfe6/EvglNWmAoF1u+/ow78X7ybsyX1WjJuZ9zUtjcN8ICN9+VTcPwsVSWuE5SpVDWc5xzQIMkWktB2XfUWvA4Hvih16/h489+wN/7vT+Ln/vKz3PezRk2agXDo2EsyKSp3C0lyZy+rh/x9t4r26ViMwmavtbb+zwliViy9r5Q4hXuudnM5nEttFyPOBvWtlpIwHKjqrBNp/0gLBSxqaCrIkDRFfdodekrT5lCYlkJhVoqh6WKGJbK46UHlKQsgQ2qMWXs0Xze0aQIocLTGKEuFevX3fj3ntkO48YYaR+XZ1HGv6JKa2UHRp8oVaLpg3vTmGxGKKpsGrCr7pshlbXUGTbHGjU5WtK6/xOES/do3tLVfPv+7xExs48k7GLV5NyVSs1x1tXCnGUqzyA+I78UuwjouXe/WxuuQVJKhUIuoNgHQpWxpzoyMGLOSgkCppKQWArV7mlhbatObzHvVg1ZlozYiu+0zowcJuLZGIN1pkJV+Xxe+m4FP8dz/PcOB776a1/FX/6rfxm/9x/+3idB6Tme4zme4zl+Sw11xTd+7hv4K//Lv4Kf+omfwk//sZ+mAuZzPMdz/IaN75mkNEMxg0oygoETb58/Y9hELRVSCAz1ccLGhGrB7f5CEGwMnHNinJ0AOibtpIQkE4TUb6t1FerT1oEdJxIg+sDZJ1prBCSEB1JxdjZ3Z7FyFpKRoAUittSLIAKfUcwsUSgWw3GceLWBKlQBYXcSpdYtunxGJ0i03W4oTWAYGOcZIFVdsvpmwOwT5zS02lBrwxi0cTjfHihwvNxvLMb0TtuOKOaNKJxltycLP7RaIPjOA+m+bbjf9yjSKO63HfvWaM22CVprqFpg3vHr3/41vL09UEXweLyxuLQFMSrAPjdDS8JH2MzArgJq2lgMMxRQuciMz77UghYkpa1VrE6zUF4YUXBJwpZHUWWaY/qE3iogBQ7FNODb3/6ET58+wcbA7bZjC5WI2tiZtzpOo5t+dMd5kvTx5YePqK3h6AcejwesT1g/ocVxv+/YN6UChANjOs7e4RDs+06FKgXutw/4cP8AVAHM8fY4cfRLpt7cgmzDZ1VCTaTtG7b9lk1WGP2MQiQ7rIBKIF2p3uUaSmBCckYJcEzconOZBZG6bbDZV9HafWK6Qp1EI8BQtEE1u/cdYxwE2hbgQqKfj1DmCjDPnEoL0zi3p1O1gsSF6CpXR217FDCMPyuCx9uB0WfMWqA2WkyN2SEliCTOQlsD1Ui0INTQHPYY6L2jaUPvVJSCOpVWUNCKwH1EgZUPlWponaAeovMQhlqyc82XstEE1aB8OlCjuK6AasQbSYtFgwlV3GYAR6oSnaItCGYj5h9tjtJSy8xW569H4SevtWiF+VjXZYiuxlZhEp3n4tiim0+DlLDXilJqvBfBMQeyKxdCJYMxSf7Q2riOxlzAG0I9QYRqYeaOGmuI1wFAC4lCg/OzzwGbtBwzCDAVHkovbo6t7hCtaE2g6jj7gaKNgFQU/bPYPkQJBKDAjNZRsw/UQhssCUx32gQKMB+dndx62SsqBOdpEG3RvRtxqFAVYjrnlgRgS9UhWvNQKt7gKDh6x/1WE39ZQ1VZ0CyOMfn97obzTEtOX6RW1YoGX8VwpyYMCQOlhOrCxHkQtC6iGOdFdIMBx+NB1Z7G+SaV9havb28YneSY262hlkI1udhLKOdOJKMP2oYBQVCsVJHRUPrQILvVuL/+OKKQzmfeWoPA0YOUWUqhesG7PX5rO7YPYbt2jlDx0oV4iSjOccY/C2w4TA3DgeP4jLOfJLYqSQNwhxtjHTuDO8zYUe9jQH1iT6BQFXttmPuOx4NKaers+vRq8AGSTkQWGEf1PCylvrRR1djL3AjW0q6VhBZbykTAHOMdAE7wRkpF1QJBEJPPSUUzn1QWLIwNpSn2ugXgkMQ2ftfZO2prJME5iV9zGFojkDLGRZbSUsNGgIoUAPD62gE4to17fK0VZ5AzRQTnOQCTUPLTAG4nSqkBlM8A/mg5MwbVQ3p3lFYhqmi1oHvHhKFsBdtOO9txDsAV3g2nO0FWAG/Hia0SLOr9hAEojQTj43ESQKhUpSmNRBKqahKYtBkWLIYgw6YKAolnLYil21bRH8wX243EvTG4/sYAtm3Dy8uNJNwgg25KRUmNZ1G1wDfH4yDIWgMA6ietJdu+QSEYIKg6x0BJ1cCwELMB8sLnwNvrKzz2eMjE9A4orTvbtgHT8fn1Degd+22DbI4phhlA5fQZCi4klr6ODjdDVRKH4VSmGv0My0GyOVyAPjrm6NhUMXFDaTtUaWcFCAYUUx6QcYLWrJ1x3j1UBr4/h7lDE2RyofpWpz2tKsmcqVZK0g7jHqIbnqqVJE0kIUARoHHuF0kuCMVWJJgKxOcH6bAEyIh3+3kQfSSJCpB0FFkgYAJZgWCt35sw9Pgd5iih7hIkHVpVvsvtwwoYoR5CtQ2sz7dQdlMNQulqBhkQUH0viVfsfEfkq74UaXIsclDAZSq0cPmyf4F/7f/7r+Pj6xdotaKWEmSoINoLc8jHMaiOEfuTqgLsKVkKUB7vy4ncAqLftc8s1Z4AeDNPkQDVS7nUMXLjTgLIDEC5hMoIm15kWblQnjBUhBw4jpPEWzPGywC/tWh8bj4TxiUzEkFbbdi3DRpxYY5B1bJpcc3c+0ko5HyeoXZXKp+dColSW9ve5eZzqZB4zFVfhBy+ZxFEblEWMWPNdeTrjJwQfEcJgnrEa435zfM2c00Sd9M6E/FZFs/L1/Vo5GIJYmdeDE/rvpzD1324WeRGKWhGEsI/Sa5ijlcC9405qkKS9XRACJDrshWaQbjgPBZlAxD/OeecwMNuTqXE5/CeJX63LOaO51EqbI/mu+fKv1+2iMj74AqmxREgSdSWALQ9iFf5s+/Ijvkz7rSjJJkxSVepeJvf9r4AGvEl/j9VbeKq4nzHz7lIBam0lYQVDWWVJAEBwzVIBBmTNBpRQLumWFOY3BszH05rPe7bGrHQg/TP+gDPr2yKeW85fRFQUgGorPmVeZfL+7X+T8Yq5fV5WFXNOC8iVbFKWGIJfPDPCb5nnNMgQOmKI0kEoO3qFTPT4ovPNS+Gqo4WZ5ESYH8+QyCV3cI6OObPIq3EOluWdLEJJflgvUcPsiQcbqEeFWc/z3UWc5b2vo3vKt75CHVZKurwTJTxksqpFnFR1uwScL8pUrj0os4kGnG2VE63JCMGiSeJMXOwVgdxWmnHE3cwL7/dSMz33DMdZJPEPDYm8tcRLQhV3sfaZ/OZLHKF8B4YE5PwZRBjU5cJ8PHtjj/ys38Y/geAX/ihX7hiWOwr7qmkGGQ2uUhIjN1JIHm3IuPZ5HsAZJE54ZcSUp4pHBKNVrqIyZlXZN6Q+4471dckFK0krICBUCNWidukAtsZNs9acm7HvYgsRciM6XOyYYK2owWpWpj2ee6O3ueKFYJULlLWS5Mo6BEHY19f9Y+ox/naa4C6NcbwsCXO52hxndMcwIyzXNTVCpWgbTpSDTvjaNES8QMr9uX8EFwxWhRs3lGub+bfbFDTaBiMMB/qloLa2HSV768g97+4t8gRdCKayi4LwbP3aER814A4DRLzYinmBykK5mwAM6M6PSNLWKpG/UMUvQ9YH1RjDOtal1iAQsIn3wfz3zkZe1V5nrAR+7PwJJt7ioHOBVNCvVwLG05VqOTP6IkSJPMkKf7T6pPP8Rz/3eOrv/ZV/JX/1V/BD/3XP7RIec/xHM/xHM/xHL/Vxg/+6g/i3/mP/h1s54a/8af+xpOo9BzP8Rs4vmeSkvlkt/JwgpxKsE2jgDDnDJlfdn7cth02BuZ5om0b5nmGnQiLeG1rUXAZiIYbQAS1NXR02h/NAbWJ7V6hW0ObDsNJUFYV6h72MEBWHgVKNZpp60AJkHhRlEojJVRn0jt+Ggvd02j5owI0bTB33Dd2445zQJyWBtvecByvuLUdIwCrbat4fX3gOMOaBgFCtAopysPm5EFcW8HhB+pWMeexDvAsYvCgbEB0Y+tSvGitoVZdNmP7toPVWFq9iDYU7CjgQf/x9hqFA4VsFd/+9B3UpijSsLcbPn75JcwHPn/ncwA5BNlVC6SUCxiJ7iURWqa0KNAv242wg2mtBgFmop8dtTaqf1RBqQo/qVCizu8RCQLImPjW49uAkkg1x4mqVD5qrZEosW/o/YSgRLc85ddfX19xu93w8vIhZirv4zwe8DEhcNQaXe1mGEbLhj4NUEMtDSVAErjg25/f8PYPfh773qC1YsyJcZ7s4G8VbcMqRIlWtK2h3QhEjMH54yOLsRVLDceToMHChGjFMH4nC3ATChYlZxTmSq3L7k8DTE3lgLnIX7oKnCShEESRWBvTjOvPLmWclI2OmvuyxcjOSE6pJM80Wpi5o3qsOyk4RgfrwrS+wpyYswd5hh2aNiesGxa04bTQy44vFUqWl7CrkkJyBnDJjruzA3SMgd4PuJMYNjqBQEqqK9QcZWsYQdawTqns2tgV6k4bg9pCpS0IfmYsDqZ1loXd5BX3SCyDWqhqOAwaxUkqJ0CDvDAmENZSXlPFQOKeWLiSStCrnwd02wBQgWtrd4RwHB7ngzFJQWvMsG3znN9REBtBUMpu3/44gFajRDyxbRu2uuHxOFlAhwNBKkKsPwFBtemKMQy1bpjDcPQTZh1iYQmhDUUBs2OBLm4E32trOLuh7lSS0coCeR+GPo1AO2gdhUWQA7RVzENZnFSqhFWp2GqBjBNFDVWBOQGfVEuCktBVWyMI7B5/HuvbOwSCt7NjjA6pAncSKT3ABKE8Btq2QWeBV3Yb94NFfqmKfd8wOxVYzvNkAVMLtLHcfNqAu+B+f+GzKOza7MeJc5zs9p+AhOLX0QfeHgdU0y7U194zp2EMw367Y8wTs9P+bK1loY3M2WnnxVpo4bPpHX2yQ1WcakXTSPqZc0BrAWB4vD1QykZSFQhQsDhZwt4yu2K5nsY5Qjrf0fsZFluFCmlwHKOzI1tIvDrPgwQdGN6ON2iA+NtWsW0N275jzM61Ckcrgvu2UT2nU/XuA+4QAWxMWnieAQrHXmgBqknhvoFQWGAt9h2pmcvkuxQIJO4VsLASYeGWnacEdUjIDcxjUrEJNiGlLjCJVCSgnx26hYWrnRgjbCliH7fBruLWCPKMOaClooDAs03D2R/RyU87SC0k0XoAce6Otu8oKrjf9iDURVHbZthPIuwRKm77DYDg7Thhbig11C7GhKsRII34UUL5RLPTViVAL2CeqcQT4IIIhk2Mc+J+v6FsJNlBglByTLwdD+z3nWAC2P1vg/O6ZA4D2r1Nc9qABtHKfaJqAd0qBRagu3uoLIUt6Qilr1Ibtrbhtiv6caLEPjsDNCnqGMOwtYJzUJmGSoYVwzoer2+8p2mRFzpcSHiTJLK9dbz2gft+g7pgnB3dDLUJtIJkmAqqC7hDSsSf3nn/RVA3kgv6g8Ta2hRSGqySOPnoHRLgOoTd2TIsSAsB9tRKm9bIlT6/vjE3CBD6DGXMojttcYIgSSLm93GB2I1wnGEt0FSuAGLfjf+KyOq6d+uhZEJl0SQWoCTRgna4qTLB3DW67o1kktKoUKINMCEYAwl1I0sAEQG+XoSaKzUIbQDRUHQJ0gASSA41L/iKQaVwjyFJJBRzYj8qpdDWsNDKJ2PB6IONBFhwfNiWkJiCtPcoGvFFGZOThRGAu1+POEA3Xn8pBQrFv/orvwc/+ks/gi+OLyE1AXbuIU0K8x5PFV2CgSi0S0y1qlIqtn2HI2wI44vT7iu7+JeaVTzHUkiIryv+6orlCSZb7JF5FhJlPu9zLsJBEhJoW2zoR9j8jLFUEkgs4t6bKjoShFaSuxyjjxUbc8j6nFDtUoSKgQXRxUNRhfl7AqEWIOav/+NvodS05+NczMaPWhTvVXS0FKojFl33kgSl3LMA5l8S8xYecdOvd00SNyCaO2LY2MWMSJJ9fFoQGNJqSvJLrv0Ul1JGKWU1OyDmBtVM87tTHQiLkIEkRqiSkBLrJcHgpbwVZwxEfplrweOeSej19ZlXvPBFAqDKhF6gqmPdB3FexpoZ6oipZGRB7tUg+mnRAJl5nvZ4hiTyYM1XZAwQWngvIBwXOI/IypOngbBRhNMyWORSZSHxJkgEJutsLnHWFwhMQm1NeWaxOSAo67lTiYc33APcF1wE7lSPydiX8/WyuQIsCfOR+1CNhWfiRSqBIFB8JEMh17cFITnznemM2VTOcb5Xn4sAQaIHG0FSrYY5H9+B+6WihWiSEoDqTBJnWBW4KXOGOF/XQuYC6w6Mz24ZG7n3qigkmgCWiq6nmlKs5TFRK4DpKB52VEESWGS42qhip4WE4RjM86heN43qv+K0ZRKJP3OsBhXm4hLKehaEwCR2cs4+jmOdD/Jucv+Zoa6FqGvB2VyR851njxnxll9I+8e54mHeVxJAkvRSVKPpgO8SQZ4TD2K0SDSTxU6pYNMJeAmp/gWQQJ5E+MzfGGtoM29O20KJ4KJFQwUvbLNChSYJKRsqzHjG3obgj/z8H4Y48Pe/9g/CmjlJW1eOKe+U1zKerJdwLRJcxOQrJqaF2Hss3mLOeNisMwQlCZRKPEmQW4QZ53kv9yePfQWx8t/nSTz/x9ws156Qdm4S35mEO+Y+FirSXKPc/67b9HnN4fwOLRWbFKrlxruR3Nti79DIMxgL43v13Z9VjUbMmJ/rufJMVEohUd9IME9e8ugDatl8dJ3pqGS7Kr1UPHOP/ycRVOLsnCqMea7LZ5JELKrzT4j6atph0yzfa1rVJeGaOQmJSklIgijOMQHJhkBZKoAinO8iAkzDOPsis4s7rEf9PPloytzC4e9ITgDGWM9+vWcj6UpKgesVQ6bNJcRHhW6PGHfdf0lFMjj6O4vvVEYEcM3DyIuCG/Ucz/HfO3Qq/uj/64/i3/4//dv4wV/5wSuPfI7neI7neI7n+C062mj48//7Pw8AT6LSczzHb+D4nklKkgWkOHizCEQwa44BKQiwvqBEMWVG0W2cB2wOdv2D3TJSWCi5fbihEJ0CSiURZzQ8Ho8LGIjDmNSCstXV+TFNcb6N6IqW1ZVZw9oEsFCOcDRld/8RRCkR0KIgJJDHHChSMKpg9oHjOLBtG2otOPqB7Gi0aRhHx14bpClGbejngdYaPnxUHL/+naV6BCigSiKFGcYA1B1VAG0F9saDtIksgggL/klsEIizg7G1hn3foxhTMEwg3dFKQakNboJWN8zpOI5X3rdjgVnoHaVFN6YWHGfHr/7yr6I0SmBrgB5FaKnhUfhKAEZLYye7A6Ik7LAQA1pP1AqAaksjgMGadyFUSwBAuyRhR/MYA310yKEwoV3F7CftTMDrES8kmkx2ZSYRqgew3VrDl198gZeXOwTAcRw4jzeoA64soJoAj7PTwmYaZeGFgH5RksgSTJkjQHkxbDOA/CCn3V52wNkN3dqG2jaU1jCCkFDLBjeErRAC+I/nJw6tStKAOWROWq7FQxydQIQaCWGqG6X+Wb3ANMD1sgEhAKnQQlUrC5uyUjQspC4FInOEPQGLUR7kB4S1nEdhQ1Gja57WXSaAVoJgWliU5VwjiciGQRq7nrOrvra6CtOlhAKbOVrdCLSpYFinDWKA7K1VuFykCQO4pmplh6cUjNkXAJFqXaleRtKH4RwGc3aHTY/ueKFMwnl2oBi07bzOAL4tOlKTLFLqFuDTDCDHkcXdMQaq7nyOPgHR6BJlpx/r1RLPPIp+QVSopeFxUNFMa4M0QZ8zLPkEr5/faEVYAmipGgQkdj/OeE+t1uhqIzBUqi51GEDQO20QWq0LXAMIqvd+Yms31Lqtjtu0+SDuU5a9R30RfP78CbUpzDp8dEgloaKEPL85iXL9nKh7Q6sN8+2EY8DcopBMBTyzCTfBHIZaDdu+Q6Dw20fuG1VQqqOVDa0IWtEgkwhUHOaC4YbpjpeyIe1HzEi+EAisO2x0bHvD/XbDmJXKXlC0vWArFQBV0eYccNlgobi1ZeHdAYhhTId4jQ5cxsVpJL9CfJE5IQSgaVGnQKMa2+N8oD+oOuROG7yjH9hawUu9s+AKgpCtbZjmOM6JGWAR18JizDBGOAv3tBcR3spwzNEDPSfByH1CS+Wc94mtJtBkJKRBcE6Dj4n7bUNtoVgnaR0h8DvBmrO/4RwnFXCg2AIwRGtAKI0MH8iu0aOfOPsBhHXL3hr2W+M8i65fCGNzgvnbtgVYWUJJkEXnKQBORDdykAUQyiRR4Kf4XwI0LKCnLcR7iwaRwmK5ZLd6DaCEexXxAxIUjnECi7yUVgAszFcVQHaYG17HK24vd6r3zbmsczxypVpLEAOoBPA4TzxGB4Zjq4wJBBtCtSs6faksl4Vxw+22o3fFedIy4n6jApZN4DgHug0oCmRDkGUN3XqAL1iEOFobVewBwJNARIUaF6rcQRVtr0AD/O0BP44gvYEESjvRSkW7k7xdRFC8wl475jlQdioMVa0YIjAdJHzBMYzrNy0J3BMQEIgfaPcbShGU+07LgTmhuqG1tHZlzOrd4H7itu+47TtqKahC5bS3x8FO4FIx+sCcVH4j2VVDuYggwewd5zxx21qQvxTSaQFsY+IcHaN3lBrg75iwoti2jXYhEuqSotjuO2w65tHx9vpA3SvuLzeCL5NqadMLSiFZptUGR1hmepAFI1caswf5QZhXhPULIBi9Y0xFHxELIo/lzwT4746j93cA+ffncDOIyyIqWKjiYAK0q0SowaV6AQCRIGsHaJYaBSH4xrz0AttKqCVe6mVYfweRZYFDIPoC39IaTUDFV1qIBHnHnWqTqouEBPBMogGwL9JExI05RigZaBAyLsDTxiTRv5K8P+cI+7GG8TjiYSXxCvGeSV6aDpT4M/cRhPV3Silxv2mVJp4EoILf9fkr+Pov/gH84D/+QagVmDK/ulQ9aGN1jB5EmQTECbpR2ZBgO+bE6+c3goGiYcXEa0irrgTuSNLQSylIJZSNghivl0UciTrv4jiu2A44lUxFYUG6MZuYwdOiUk/YrWJ9MedEEBhS1W3OCRskD+37jhrKg2OQfJ/TBsJ3StsaKueae/DZdKl3LbDdA5SfjhL7gziVTajOyVy6BFk41T3dmbt6AK4XIUfePde8fiQ7KBRuLjVW2l2GhXIqwCD2u6VeI+vJLkUMz7NbEMXevQOqN+RXBtlFYoL6pTIirkshM9/tIlVofN9SAgkFrqKQggWKXyQKj3MkAW9aIWHl2rQi0iAXpY0VmGOC77colRWToJXXk4EyLabSome6w1OVaxEW+P6oUpFKFLrIbiRxlKWcKiHTliC3rVzGQ/mpvstTZKn18OyQIN8FksNBAqySKKxBKJCoY+Q76n0EWQtrjU13FES8dYLPaSEJ4Z3mv2ccnEG4SPLaFR+5n5dy2cx5zAOSI+T6jwi0CdB9nT15XtVAvksox8UZNZSoWljdZYzNuAWkemWkx+KL7IjSYGIRP0kKqkVXvulBpDGhtdScQI14Y2ETmuECFmRSTeVRKgKPsNEuWoIclLkmgizA/JT7RSipWKqDZ1xE2IUBomHhGaQSWqPFO3HmzeIkrSZP0SZrIKKCVssiEy0FRef7kYh7fNdJsPF3+8ekHc/1x0gbzSS8ee6XCBvhUKnyIJVIETZ9xdyr7xR7ci7V2pa6Fgn8du1Fcb62aJTwUBri2dEifs6I3YpSJ9wb61QrIl4UGFVFFYFgAnPDH/75PwQ48A9+8OfxKAeWohMQOfv613hn61bWyFpXEovy3pb6kvIZsl4Q+a0xZ04VLWS8CXvJJKc6eE4YY/A9FTZT0mIryY1BVAyFL1Xa+p19LOVC1kOueBocGqoZIUkmTtIeKvMTN1RVSOM8YXNNGB9GPlAyhknGoivnIRmukLwULNmsKeSzzXPNnAbvfe2XUDYtuDFml3iRWhSYVFt3MdagNHJwsXeNnLkvxfqDLytwN6r1i7JBEo5lgV1KjefPOD7jnQlw2bcJm5vOsBSGBLEpal/D+rXPR43PDWFDmDVcQIwkeZ+cy3YeK+cESJZNBVh/9661FFRV/t6YcKEdd9ZjmRcFUcmFSWDUZBB5skIoApekVHBtI3ItxmEqf1rcV+bCJa9RksDr3/Xen+M51nDgh//hD+PP/tSfxTd/9ptoo/2zf+c5nuM5nuM5nuO3yFhEJQf+9p/42zj38zf7kp7jOX7bj++ZpMQCoAEq2PYN29bw+fGKOXg4Ki5Xt0eoWvQ+4bBLerfRx34OFkButztePrxg33Ye4ISWUmUMSL2KAO48bWstYRExkzdwFe6iyGPRzU5rJkrvFmWx/fF2wEIyVwQEnNuG7KwcGEhF3RpA8OgzlIz4M+dxoNYXqCheXz9TNcUNpURHe2VnYy0NUkKWefBgObqhtgYPX/ZSQgVGKh6PYyndSHQslujKTZn8MdI3ncXx0Q3WnKpK+z2KbifMHK0V2BjYqsb5VUJa3SDOgs9Uhwd4XLKDlhUYqBZslQWPujXUjWDgHAO1FvQ+Fnh3jhldULps9WqrASZQkptkCYtu74kxzrhfxdtjLJsOKlqw5HQeJ8yESkBz4OwHtsYu+jkn7vc7vvKVr+CLLz7C3fD583fw+ukVNgdaqbyPQhWTx6OvAoqWtoovtVTst52FEQGlkI2qOTOIFRAWUXKe3W53jFCJoB89JXBIFsnCNEFPC6CENc8JMRbLLbqyCaiyyMgueA+1obT5ELhn8T2AFlYOISJ4PA6IDBZXaoOZ4O3tAFVebqiVKkhmUYAECU4qgLlA3NFKi2JyI1lIC+CCVhUoJNO0AC/OfpCkWCtqdVpQFUCi0FmCFGSTljasRSUIggV21VJgY4ZCwlwFK5uXjQREMMyo4Ba2DOyOo+UhCWckebg5pCjMgDMtG5FEHGC7b3ymAQh3MxyPB9JGbb4DiqcPTJ8s9END/WqihsoGyZBAds6fx4lZhQQgLYASaGYcEoyR3diGuhe4IggkuS4TYDYUrXCNLthqmMfJDj8YrJMACDdQhT+KuZYKKZWFObDodhwPFuHbhloEZzhb2KRt37SJAmBTwb5taKVCnCCwaIGWiuN8RVWE2hQgsq2ipRRa1dDWpAVI967zMJ8RSFjVKMbChUo0UlCiqIoBVBcUGMY5aUPVNohWiHb4HGi3ApkEto7jjfGiVWyl4Tw7Ni14BIFRSgGmU9HPggCoQvJdkCRIcCo4H28kwUZMllAQYhe7YauNyoHdIB7WKyrwwjhcIlao0tbG1LHvO/ayY4wTwyf2MbFtDftW8fLhjk+fPkEheHn5ADcJSxqPWEPCZ6olCEjEMx/o4yDBJgiUfY4gUmwAHP080W1AhOpz4G4BSRuVIPHOKLb33gFX+CCQKaHUp6J4e7vsFlwc4+gRowvtuaqGTL3DZyXgqCRKYhoe/cQxTugUKm6VDR4FUTfDDKCLRLSCVgF5CXWNVqGt4HE09H7i9e0VIgJmFHMBjzYT/PPYeyJfWKC44JLyF9SqEX8TrA0ynV/d4iICKFBLw37baHU5BvoZ+2aoapg45FDc9hs8yG5AdBtPhFqGL3WA0QcmqCSY+yhBWIJxGkoaOAkuSADOKsBtv6GWijFOEknh8MI94hgT50H1QYJIJLawWK6YvfMdvbN6GMMwJv/rleRSA8GUbaM9mjwiXiuVGeqNqlCqfD5bbctWoIbCwvF4wzlPfPj4EdtWYUqbtjGEa2wQPMhYHF6joRgwlzVlk4baCODS9hBr/noAwOdxogO4tQ2ohBm0NpJAnB3y051Wwz0s9FpFaxXbvqHoDY9HJ2FpBBhgse/GfnCGmqcIySoTgqZKa1dV9JPEqDkdMDZDEwQBxjmgiHWVnfBm6MeBcYQKTeR3bo5aG7bSMPuJ4zyCxErLPYViqwXuGgRcZ44LADbRh0c+xf3bwVz6+3Wk+h8i/ym1oI9+kfVXNz4ASbKHRX7En0lLHo99jc0JDbWWALuBZbmRAG3ikwnuJ9si9iVkDIjrZJzidULwDrwNG8X4NQL4tDBlGh3WJ7hUcpAWNXlfRmK+bg0iQhvFmCdqvs5TzKFi3c4JMSqS2gSJ8AscTFJAWN1GTEOQmFLFSF3xB37x6/j9v/T7sZ87CRaRpxYFpCla5KDTCeyRTGKheHS9QxJI+bAdPMNd14HIcUJlRCU+qyzCVsa9OfO9ylJLUU2gUyI3I0C67G/jGlIFJ3/WRmh3eircAIj9Ag54KAHZnGEPzHNmrRW32w37vgNwnOeBfjKPLUGaIsneqN4YObgEaTvttUqAtgDeEUfC8mURYmTlf7WEzda8iDWpPLTsbOIcgGVL5AG8stHBLMH2PC9eih+pQnMRXSTWD/iZC+oH+qAFOol/JPv0waaL1toiOnhOfF/finjki8QOoXpM5v4SpO60Zcs9PJ9hcIiQSOl1dgjy4Lofzi8Hgmh8EYDS1gqhRAHEvIjPXDWFyAnT/i9ziJm2Q0EUSlWajAkeAHuSXeOKWHd4R4T0XB9BojIwPuc8ERhVrpJQoPkcqRgqCtRCwqWCynKpcsEmK1vNDF6wrG7zfafKj4rGmY45gw3WKRwkR6/cOElC+W4zRi4KCIn7SdBQ5ZkJ8Sy5n5NUUYQkKk9CWBBMVBQDE9PORZpEWivx25kjaBgUCa2KLEgfK24i1LSQ98l1AOdMU0pGQj2i+bRQFa0QSeI4bdszrqZakSrrTD6B4g6PJhsPS/Gcx4sEEjGJuWSuOyzVuVQo8SDxecT1WkiU5Hkcq8EOiHD+Lk5Y1FZaa4DRerhAsMX62LYKMzZf7bcNqda0bLqifrQIWMDaV2bYyrkHacpDpRl5L7b2XRGqba5NOvdJCWXhWAdzGvfk4kuJq9ZKBexUhQmFsLQvE+F8R9SovFDFtqpAplAZ1uJaDChuKLj284xJa63HnkEqjuDHf/HH8dVv/W78lz/2/8CxH+ijh/qsMRxaEjHivgQrpq4lsJbFFQOzMYybbO5PSSj1VTNKkhj3Bp55Uz1uESLd4cOxtVw3FvXKjKBZ76TaJkk5QdbzqOVFLM1FrJGzXmchxkvVgtY0VMN41kjBIou5M5W2YVT2SXtG7kXRtYL8Zc/8DMK6TgsiUMQgCbVij5hBlaXC1CByhSQzW6pD26XQX1tDLRWuyp4d+DWvPeg9+Y7iHJ0q2blXlEoV4PdEy/fKWSQgDRRVxq/cA3O/iBrYdI/mMltKmMxhM44FQS0aahZ5i7fO+B5rF2HXXuq1t45J61P3eCfv6tX+TnHSI3d1I3EyFfCuexK0UESaUddccVq4T9RQ4su4mmuaVnrvcgZWm/Acz/F+6FT8mf/iz+BP/9/+NL749MVv9uU8x3M8x3M8x3P8SxltNPyF/91fwB/8e38Qf/Uv/VW8vbz9Zl/SczzHb+vxPZOUIAKtFZhGgERYnHY6osA9D2qAVqq5sDusYNsbD3ozAScHvEF1w/3+ETYNx9Gx3zfYJCmINkUPjPMEIDAN6fWisBHgzSpMITGEsKQpqEoVDBUWB7oZjuiIraViv98JcsKja6TS1ksERSv6caLbA2WS5DOHo9UGuOPt9TPeHsBxHsTYIIAranXs+8bDbSFpwwe7WscYsG5hURH2Oqara1g1iusWRUBhZ5QuNQYeELfWsG87hnXs245SqBp1u2+oVfH62lG1oBRBKxvEDaVQwWgMdhXX4tBKcDktxqKWhVI3HEdH3RRAfG4AP/fbjn4QkHMBWt2XjU0CMkUcJuySY7cRbZCyG9JgOHoPQJHvaAa4y7/nCy3i6ONksQEdqrR/m51A+cv9jq989av4+JEEpTEnzv7AcT6oXKCTIL2RTGRRdC6FhSJFWEYVSk2rFphN7G1H7yfgLFhf3aYkiGz7zs4rIcA/eidRRUlQywnJNTHhk6oy27bzWcwBnyM6e2uIpDhUWQgmsKTwYSTs6dVRW+Tqsp5xLYKCVgCgAE67ECjVLEqJLtIxcYzo/MoFIwXDTogqn0MAP/wZiyJliQKkQ6Ri23YAtBnSWqg+YQPWR4ASBLtEHH32sL1zlLIBqyBv0alMAB8ykZYhEwIDCWxVGoFfZYGHyhIT5zlxv924FrYNFXwPKpXF6FRj0Cz6piQ6OwZpg1BIzigVgKFHLBEbtNASQMrGotnsqDVIQgBcDKUVFhDngNZQGCsVqFSaOo83vL2+QeMdQBR9UrL+7Cc72QpwqxtJWEI1qdpIDpvzCA4mu9x8dJL4VDA6FtjpIHAO61Sq24DpirZVuFgQKAU2OttDIbTgNMNwB5wA52C9j0QB9yhUG+rGOEnbRJL+Xj8/gEaFOSu0/hMRdnQC0bEdoDAGRGjZppWEuFpqPEvuIRCgVRbZfXac/eQ9NJKeztHhQjJKLRWijAsuV4cyrSsMLp0WcmA3shYBpqEVwGbHVO5LcyZQM1CEKmkAQTgUqlFtbYfNTtLVMJStwaLDv4hCJRSHglw2vQDKz0RYFYgL2rYHWFLhfWBrBUUr9tsd5oa9bex0DdKYuMNDPcsDMCOAMqClQYYF6YRFeykKaZTEL5S2wDwtWrSTcGERrx44DonOVgUwYJg4p+HN36Cl4OV+R1HFvm0QAVWwwnLGQ2aeBeIgtiqgutOyaBjqqJidxCk0kt8+fvzANQ4q5ok7Vc1qQT8HzrOTzlkUFQ2jTGyl4N4amgrwcsPLtuHbn19xTBLYaqk4HgfO7I6NfcYCUFchcEfLlhlkG9pLKli8L6qQWtB27uu9D3anVgEGMEaHvTlePt6x3W9cK33AMIIcOODDULxiKzu6d9o+KhjPXVCEMQ5OQms/mf/UUkCRs4nWeD1UxqkQfadSNSYejxNtC6ABJNq5KFoTfFEqWh+0DpW0UeKe3kpBqwVoBXN0PntRjE6LGW0NDlorwL9bLaOWAimhgvIOeBewg9uM81BFcY5QJoOHWpWh9gO3sEaxzk548SA2zQFUCYJZCduaAGkQMUIIPPY+MEYSEUJdQ4C6KY6T++jb24lWN5yj08LRER3+BaUVNCuRw1FiZYxBdUAlWEzVG1C5QYGRgJE7SsTaaYbugJxhsTkF221DFWCWinGyQ98kbXH4zHtYlrj5svzKLnDxIG4V2lG2sgETsJMKSr1PWIn7hZCIleRZLUCh9eB7C0hbXfSOfft+7miNhgbL/nEDknTrgLguMlx26Wsk+SVUVHJOuDvUSF5uLeyZ51hKfgIJa9kRJL6E3oPc4An0EbDP8wQQ5B7VdQ38LKqSjCBhiyr3w5i/qQpnYRuUzRLTaRktyJyPxJveO8agbSmXH0EhEkovxRhAgBHkFGM8Fk9CBUiaWU0N/I4Em4NGg3u/4xs/9w38q//174GCRKEapB3urwRdWwt1hD4XsC+Fyj9cr6EKA6z1m6B9gmT5bOa0sAVXlFbWeafVGkqbCPJDCQIGyThgyhNgHJbSVtoFiRAITPuptN/L60LMKlmg84w9MSwEo+EB7mitBUFpQyoHzDkwgqRg5qhVg2d4ETlkER3CJjvIR+Js6qlalgVLKpsm2cWce/Z7ooudJ+eX5HuMfN0cywIxYiRiHlkqd4ksUDyVrDxOZmln956kVCI/BrDsXCXIJEHHuIjTQeaIJbsIM3luFNASlCA51Y7NLvKLR2ME4p4EqYpj3ANSMcmNe8UC/QEIVSMQz52KRwlK+7rWPCcn0YsRxUJNq4RCT3IOGCfnnOtZkvxLwuz7WLpigbwD++FL6QmSzTm8rukEqcXZIMG8OGyWzYJoG0QHeUfGi7yZFke0xSuhvNYj50uVuBl71gyr41SWtcgDtOTzFaoWAWs+TLM1MzzVr+JJqkgoO9Lm1hF5JTzqNlhKJjn/XOwiCDpXXc7xBMU9wPbaOMcQjWdzGubo2LaG6XxO0Iv0leQMXj1VTAXRzBRgOyKG512kClsq4rrl/JCYt7RREhfUJJFlDF2kAp6+SG6VeIeI/Yr7+Hu1qawRwGhHbjOvA0FOzBqL8dijrPPMIK0qHyw8YtgKLgLA5zt1HA2VqCC1A6FEbqjC8+CKA/qOzpXEqnfkJIl80KJpbmkIpgWlsqHJZ5zXYm/O2JuEJJYTNIgrQuI6mBfSUjgaD7a21p3gIu9F0EKSVZibtbC18lAzNWAO2oFvbeUAETIY4ysJOnPMiHWxf7ujWsEP/frX8Md+9o/iZ/7Iz+C4HziOjh41QC/RRDAv2zdBqsFLNGlGEwJ8WUYnIUUk9irFyhdsqVYHiSvODyWI8iLMvS2U5zxU4roLat0WeUiDiJykKK6fmK+Wimyy9hTmv7k/R20rSIwOElqKG9L2jK+AN9BagRZbCmr+7rs0FLS0ZdNHNOtEw0fazMGzYSR+blmOeuRRoWC59sLM5WbUofxap0FCHXOwnuxJbgvCuihE2eyYZGDOo/jGIPhJ7Fs2WddDxCSHoyD3GM7p7iMUODkvS5C+NM+WTtPvuMQgss6I2wiSVOarVCTP+weE69yBEedyNT7D2mqcbzTUEy3qaWGfGOer92so47rFc88GG9WyajM+ovazCL269iUgCEngmYlx4yJbpioncBF6n+M54MAPfOsH8JP/+U/ij//0H0ex8pt9Rc/xHM/xHM/xHP9SR7GCb/7db+Lf/Wv/Lv7a/+Kv4fXD62/2JT3Hc/y2Hd8zSakUBImGh6PbvkGL4XgMnMcISezLKqC2go8f7zBnt+rb2wPneWB0o1IMUVmIO14/v+Jb3/4Obm+0Yurz5FlvTthgtx8BqiAZWHYdX/LcqrS8oAw8O46zW1KM1h483FEyftoMGWEW2DEog2xj4vX1jX7tIrDO761FUQoPcua05xqrcAycXWDeILUSqIxO3X6eq7OH5JKxZHrdHVIkiiMTCgklEsdWC2oh+LHv+yoUl1Kg6mjS0FpFqw17a2jicJ9orYRNQ4BhQWjpIeXbWkUJS4wsDERNC7VWmBNQqLXQkiSUBaQWjOG0qgq5+VoVN9kxx8DoJ5oWbPsdvXc8joMdfyUBIQuAFbTMEhZsfA4SPszQWl3FvQSFRu/AUNzu99Xp9fHjR3zxA1/i/nJn4XE63l7f0A/6q7fSWAC0UHBJZaqwpSORbUPdKvpgAdhW0e6y3IBTQYkEL3a9PR7HKpCN0VG0YNpAaQ0FLYohjpT0rtqAoqi1hZ1U2BIKu/hpezgIaAcfico4gIhj2AywRjGcqlbuDi+0nOD9bCTCnAN9xp8piTSnhW3NGGhtW3NgSYsrC7DnIPmrNtoGqDSIFhjY9VnLdlnPOIl7rdDuhtZeASwhpNmj8EGbRsHERJ8nuxcDVKihFJZqIgJF74at7vAJzHMABaHaUsNWb+Dz6xGESA8bswGbD5TSaB1VFK0IxCbVJzLYaaXKhQhOM4gbamURptSKcRIIKNEtPwH4cJgfcEzUFhZxAaTZAFZp3A28S5J1yrbhPXFLVfl+/V3nsQa5BorH8YbxeQR5giSGDx9f8DgEx0HyFJyqSBMGdRas2EFXoRWQWmAu+Pw4cLvtBGgmbQ18GupGxTCqBAWJ1Kn+5RDer8uSiLdhQCeAWxpJSu1OlROYU8EkiqtjDjzOE7e2kVwZXZtzOoFOCNCU39EH6kabxMfjQfvK0VErpdl7kNPGGJhsqMXxegDbDVJobyYBlBIwAMSosiNw3Arnt4riGAfQHW0DpnGuaanQRrUT6wOqNdZSCTvOAop5BXFPU8WDClkqChsKCgOwQDinsVs6iqfncQBG4LdtDWXfMJXkGYGglcauSDRABtoukDlwnrRvyBiIIKoIKtQdVgFYD6A6iqitsSPabZEfCwT9PDGc8vjZYZnKBaWSBPEIe6xtu0EGiay32w0Qxqx9f8EYLDQXKRidSn0w7vdsv57QrWCWtA8sMAeqG1rdoFKxtS0sO2fYDVD+X0qNIjaJrB7kCveJx+MNFgAHthsex4RjYmAE6cNQlZY8UgKkDGC7lBrvjIARDKtTvY+B2hpu952kQSBArahkC/eOfg6Yd7gbPnz4EJ/NeEiyA+PJHB11K7jvGxUPxlj2i7TYk0XAaUVpYaDciyTVEhGxZPLv5phBqBI8jhPTgFoDDMXEtm1wjb2kaKidKUpp6LGnUmXiAsdgE+fs6J0WubW1ID8As1+5jDjQmSih1orhjPE2+PcwYIQaRtMCLVRCcbOwVmKcPDFhB5WKWtvg3gFjHBb6sYLYU1gkKG1rTXwRI/hZvggXgEOn4TioWnGeHf0cUD0I9r11bFulYpI0bPVGBbcbaJUWVmEKEujggtHPBaTRoocgNwJ86L3jnASw1AXn44QNxzga46ILtlBfk6Yw9bBSulTbEICR2Qj7PIG0gqoNpTaqSQkAJdFp+oSPgTkFjz4wmzGXKdyTJYG0BEGFwGmRVIUw9HF8r+n9b/jQRaLhIEGGueoYFnl5EgMQOWlFKljQhmsGsTq6ygNc7mfHcRyYtS4iKxBqLJaAOlZOTWJwkC/zr6LBIvMji88GYg9foB+QBD8qpyDyaV9KQaN3WFo3zQt0IobNZ5DqQQk+UfQnVEY0La1sqQGtYaT8LkUBxVKqS70ZEkIEX/n2V/DNf/AH8ZXXrwA1STC8jgLeawkrbwq7WORmQZkmqodhDnHu6Vp0WbXxUVhizoHqY5E5NBQkPEkkxnWOImiVBKsWJCIL4L8U5rFjjqWuJADSdscdWLZoM+VC0/aIz19CocHdl5JV2uE6hAqHYfGWP/cesE4VJWJ8QVQL1Qru00r7v7BAX+QWvCO++KX8lMq9FnMplWQsVEVynV9qM9cLv8hCAaJi5vEynguC7AAsSDFIKBKAagK5uXfwurCeuQa5Zca5O0lYHvlc/nmClmnFCQnlFKSCFFYeuO4bvPZUi831J0AQcnzNGf6qrXXtEThSXWb6XEA81tlZFplH4XGdJc6xAQrHO0MQTbpfak6pTmI+qPQZxC3y8y6g1pGgfcyNRZCJg34JEm4C1Xn95hgY62epzBEEbsuzcnyD2xKtSXu7VHHJdbusqwJwz/+dY6CvphOuhW1r6GJBwpJFknXnWZSEtyAJxjtwB84xFpHL/J1KWVowIcHvmGMR15eOnyQwz5wiEpJ4D7Rbg7MJR4qu8/OYnGO0rOe8dYs4bw6UQlUXsyDDhRIY5gWsl1h7IrApizA5x+A5tr6z7JRYRbHGF4lBdK1nA9BHjyaHueY1iWG0g5YgrnlajkfTD9/VNR8yP7SMiUGmyO2JqjzXmZENfAJ1Wm6rkkAkItB4l2xWCpK2UpVLBRHDeI9uzBMYLgwUU7tI4lw/F1HbwaYnj7zCI/BmHCPJioOkGxJWSik4jzNI1FFHqI1NacpGD5sXSVhjX5xuodCaebbAMaERnwTKNZ3xLBSNp5HIAk3rPqy5XyvrNL/71343fvxnfhx/5w/9HczyOWK6LTJLElJzFSZFbpGDuITXHucIpSsEmUjku2KSu3+3QlEQcGT9RChCehKKI77YRA1S8AyVQHKZIs7KpfqqqVwYBBeJjSBtKzNekcAk0Wwywm7V172rXNEnVY3STjTJ4Aj7y1wrFvsBcw9dOZDNrHlGzTV/RmTdL6I+mUQfR1jXxr3wOfpak1QbtCB6stEra2lIthPCkjLjS76fqLfl/F9rLN/nzBjBHOv0udQQMwZB2JRVC4DiK5+wUDzOnGAO/+45E+cJ5pdUNc/cFQKYC9xCsbHw+RaAqpRFl/p/hN2LsBhzcymPqwBCVXaIhFUs4HIRnHmmcVhwCksJwmzOdclPjTme/+gXKfM5focPB77+c1/Hn/8//Hn88C/98IqLz/Ecz/Ecz/Ecv92HQPDNv/tN/KW/9pfw1//nfx2fPn7Ccxt8juf4H39870pKRjWLOQmOjkGbpQThLZUgVII4QRDXpuE8T5z9wJwEfAoMUxTfNsMYJx6Pk0ocfaBtLYqek0oGc4ZkfBxAw+pr9LEO65CroJuFJYEvWdvl5+4Ai5kEAXsPK6itUWFkUGlJxKlGE4oMrVaqcih9wY8+wpoiuvoCCHk8WBDdXzZse8OR5CoHWm0Ys8NtQJSPfYa6gLuggESoulEZ6eV2Q6sVtVTcbne0rZJME8ABjEWfVlnIOI4TdWtopa7CxO12x5x8xqJKoExrALIWFl0kyhAkosXTfqP9RNGC1hqJYUJw9367YdtbFMrZsdQF2GtFqySfee+otaKiYNuojvWdxxtGdPS0Wkk+C6lp2nPIknlnsRgESaSithodg4ovv/JVfPjwgrbReuY8D3zrW9/B6+dPcOtBUKLU/LQsPCQBKQ/6IancWfirtS6p/mWRAx7gt62hvC/URGedhUrQtBFFMCXJihJKPPZH0UIgmGfMrfgfjQK8agLfV4c+K360PlORIK5EcWcaiUsAsnvMnMXyMVn8rqWCHddX0UVVASe4XYpimmC/7UGw4UWlpRcL1QWl7lAUbLc7StHo5i3IyvnsBji7BGnNM+HTcJwD/TTUeqP60/QokJQoJlsQsRxNKwQERtwM6pwP5wwiijvmJIg8JskZrXEOU5GLhJ5SEswEahVUAcyokjMFBI2V3ZBuFDNSKbTZcsO2sft4zLCE8gNAg0gDwDnCAhPL7yUKkufZ0VqFiqMoYOOkUk5Vduzl/HMSf4Y7tvuNtUbVVdicPbpooaiFxJTP3/lE1ZLpQSAywCcMJAPQepJkjFSvM5Bg5ScV1VypiqJSI26QzCgRE91YSO3G7lfP+3CCbXNMtFaDwEEQMEHitIDRQnDh1na+mzGje5ukjzEmUHSpe5k6+pw4x4DD0ENS3p1F5VoFAL+/lIa3xyvmdBz9hE4miCgadhMW5E5Km3fjd/fJ/YOqOQLvAy5UjYA7vA/s+4YTkwVUJeHuFl2EIwqqEwj1gOi2LsAwKmKoOyCKrcbct6vTU0Wp+DQ6C5BakMJgtZRVeB79QMrVj9EZg4pS/UqEEvVRDG1bQ6227PbcKubsMBjGVNiwS2XEHC7v1Q0UdRWIDWl/NsbEsMlOUG04+sCH8QFzDmzbhn7SshAe318EPtMaYcBgJLOKQHVCpWLfPX73RjC+NJS6UZENPTZiw3TG5dYazpO6B9x/gfv9RnLz8YbzPDF9AGZoYa85h+DWNshgIVtE4LWixr2XAMUJgMoiACjS/tKuonIoN9BiwUNtTWDFIUabxddPb/CwEUP19bs2J2Zn3Nu2jfctClHub90MZoK6bWiq0Mou7Dknzn5SNXLb4IpYqy3eH0lKUIJ28zixGYnSRUgmLnWDzRFzKRK6oqiqsAA75kwFuoOqIG7o2WnutIsBFF6UAKI7RB0W5F0IAWudJEubOY7e4ZNKA8ck+bsouJ9DUDcCu7SmFBR3tKqQVtFP7lFIgFoAU10YQ9rulFDCK0WotuJJdpAAT4NssF9qUCTHTVCY0XGcPYgStlSgSHogyWSOiRb5Fu2zaPegAQDbdKrvbQ0a+Q/J7yRPz9HRmkKkwiEYPtHqHa1Rhc9HsChMqBQ1LQgLk8/PJ7wwKJgZXKj+s91uBLgNBCeDKOXObm0qRFV4kHChCDIU58CMvcW/n0GFiKduQkG/JEzUeGSeBA65iHxygSUz5rKFdYaL4/CD7z8Ifj5DHSYAPbck7gX64tefLwBmMT3y++J6JZUsrnxJkvwRwOQaAXynlRI/M6zHQDA7wTzNvWC8U+eJ+xx9QpTE8ZLEyPiZtFYm2HeByhfeLjGPFRsafuyXfhS//x/9fmxGcj5zwAs4hCeRKEiLk2pdRXTliK02pPrMsrNJUNVT0YbXr0Gu4jmiLjC/hOUkhMBlqy1yqSs/T8IKbXR8KZUoeCZz49p2uwDVVOkEsBRA8jvfW7qIpB0Zv+9+v1HtI85RcxqO48B5noBbqAUG4TAB3/Wici6HBekkGKjCPdYdSLtuBPhaCoHTJHqQa+GLBJ12QUneXyQUxbonvJtvOV2/S10jyTqI6SJ4d908sy3SkPt6jlTNANK2Kr9DU2IB3PdtqWx45JYKk8kGgPgkzqcA9Um3g0gFIKitrc9PUB7ABe5LfidJxnPOsAOsofQTZ3wPQhKSUBEHq3hGLBuQoDdxkRYsciLzVJAI0nSoRKoqisecVCzykzvXsAfZA0mOXCC1rDVaatqIAVoBdYuXWECrtyQjxM3HY8izGsktoR4W6yYtz0h8uEgkqg3pU5/vddokgQcS9RTWYSjQQaIDiZ1hRQXEOVkX+cGSbGSOgRnv85qDEuoe8GQaYM3XGXycCLTXOzKPPDBUsoLc5KHOnM+SuW+QxByr4SznsbmjQOKsjxWXct0lSc89VY4uEqCFTTB8RmprSz2IhBiuJyrEXYQX2jSFhZ7xfK2l8HuCtA1NtSbmbcWpYjf9Uu1bxK71z0EONwCpHISsY2k+yCAYzHW9mfP54DMkqTJrFEksiXpRkKGyTpb/vBr/1nwK9Z93caGUy9rQ4eu9JuGEcSGUbT1ViS3eiUGnYnOHe12kpiQ5lVagM0mkM+aDrtjE76/wMknCipgKKVSsyhqbSKjXhd2tM4fOeKSFtsylFGzf+lfw4W+94L/8+v8Tv/zlr6BqwQibr5g0QC7xJTnD68paYlYk8+fsHRkpY1mGwutZMRoCoV6KTHRw7VVx3cMcpfiy3jahitgidCWZVLj/JwEKCMvCgrWOi7BRy1KpMecKWB9N21yqAAqAIJrlf9a5MdZ3nOkt4mWSG1WpjktnQ+7BML/UsEPxMJ+pVu4dc7Imk/soz2YSZ9yrBmbRdMKzA3MBBPkmY4ZEDYPPPjbDiBkQrumJK5ZEKFs/I6nCOy5Vy9zvZj/5+e6Z9kScjjN1ECBJds57vs60EVgiB8CKB7nuRidpL+c/1fIUZYvaTdQ7HMwFch/QzE2mB7kPsXVSso0NvDGtY126GQYGzN9ZBEaeCkkLXKx4eN3Ec/yOHQ5s54af+KmfwL/xN/4N3I7bb/YVPcdzPMdzPMdz/IYPgeCbP/tN/Pv/wb+Pv/4/++v4+z/y959Eped4jv+Rx/dMUrKp60DX+8Tb48SHesPtfsOYE3P4KnzUIKs8zgc7RmZY8qgARTDHRI1C2uvr61Jn4uG6oI/BghoIQLMTKyWReT0pTa6Fn5Og4SoeBfkDlof7KMZPwTwnTEIiWYGBgdlnFNYdWguqAa2VIJ6wQFW0whUomwJhqROCz1RBcBYZ+hyosgFgAaBEwR7R6aRRJC8lCuDm2NqG+33H7b6h1IJbeLBXrdi3jQpK2ZMXEuRF2UlooMy3GahqEUXrefaQcOa1dB8BOMiq5VISmF1QrW7Ybze0jQopWyur47TUijkGalPs4e0OBc4+0YeFWpMBQqLaXqJjbhrePr8SVPCUCB/sXq6VxAwz9NFpoyKCIixEbZUKHBpdeR8+vOCLjx9DAQIwDLw93vDp06fVHeruGDbWAZtFWqoUibKYZHOSCHJSBt9jzia5jkCBodSKWlgASJCIcuIjihj887qx6J5EJ6r8CM7zhMWcLaWy+JgFMIA2dFEYNhRIIZijhX83+kBrDXULIBIe9nIhP+5OC0VMaBmQEuo4WUILQO+y5aBShM2xgPgxWDSspbK4pyyCtdZQmmLb79j3O/rogDSUStsUgS3wKDubBco4AZKRWttYALGBMQ1VQAWbIujHRFGS2GrhGpvg94pO1EqQuFV2ks1pqJWAY5KUZBDoooVWCblxqvHwoXsARWUVfLILjd850UrBnL7mj6rDRhCPtKLHvboDpVa8bDs+fyZpZts3VGXMKZWxI6edQqABzvUZtg8m7CAtheohhZYgJo7tdgPOiU+f3gCpaFJgNrBF4ai2FvYyBQ0Ks47aFFIEflh89gVyjTHgws5bK4paGgvEiiAUGHonqUSiwD/Z8odWKqRVvPUHDBNiQLVCa0ibGOOIWDyCnDOpxlAVHsW1fpwQoUS6KDvN1QzH4w3dKXFfUCFF0W1GtzLV9dwdpe3wojhGp7Xk1gAtEHU0KZgJGmuhlY5R5aTVigmuwT4GSoLE6pjeQZ6koiqJRSrA8CAcjoHhiloqthaWgOrB0+B6IvmARc5pEzASzyyKtRLxzN2x324Qc6oVFUcfVFZy0wAU+CxZP82uY8HogrR1oV1niy5pgiYzuqOpglCgoRDVQdLeQCgGtIIa1nEkq1xkKPWCWjfuDeNBCzmlTczj9RN3mrBPs7DyUpBAKJXAszkJxFIa+ujo3WCVBJxWG2w39DEIqiKIljWsxBSocycRB4L2eKCfBx6PNxwn30etDS/xrsQFL/2kQqE47jfaQTy2DY/jgemONieV8Q52pd5vd7y9HaGk5Et9pgZxYcy5bG72/YY5DN/51rcxtdP6rzWMkwpzYkaiIgL8CeCq1hrN8SQqZ/x3GM30umMYSIrb2ooNJgXeO4YN4HRsty3L6VCl3WHvJFBKAKaraO6G43GibhsVFk5ghHKSSgVV6TzIGiPul2BXEummG47jxC4kj6X6QRawNQrXaamL7pg9cqFzADGfUploa4V7w5g4Xx/YANrmiWAOgwZYtm0NIiQ/2iDosAr2ZvB5AdulFmwbCbf5PaU2tK1SXSXU0ratwJ33ag6IedgSU00jwc7RxyJTzDEw7Q1aK263Pcgs0WUcgGhRwAM01q1h20jiO46OVGoY02B2Bt5E5UObd9xuN/h09McJ94mtcv8f87Km8GkYj86cFKH6UArY5iycgxbWQwhiIZhrmZCoOkONZrpcpJMgG6RKyvfjSCKEg3u4jIkWaqiWShkxEggdc6zY6kT2wm7EFnjUz55Y0MpNZqhQvP9zX//2bixQ0hexJbWe0moOYdHhsa9IAFFisggiNrCAYsQ60iBhJQCdCgCpoAEZiziMuD+HkCRpiFwhwEwkuBad+knuUcQZiBZAW234yttX8M3/3zfx1c+/K85XuuJfILJBfMjnjHXHHteC/MlQokkibAKxVIDAWseI/2feXuPnZRG7kUC/p73VdR2pVGnmlxUQEOqwVNXpvYdSHdaZotQSKjckAFwKB7yeBGNLqdFcwfW1bfu7+3b00UlcT3mid0Bj3ief9TuSjyNUbQIUlySxhtoJuO9qScJUKH+MS70hCScS5Iz3z1fksi9dJDQt17WsNeUr/3PTpcySYOgMlT7aQ2EB1wlEk0iCpQyRZKaLiJIWMHmG4b9Pn0tRKJ8H/1X5LFyCXClBSgtiPZKMwHjroQx58ZaSqMD7YIz+7maRGkUJi3hPpeG4TsOaW1oQBJk4HSV5I+OLADDOyaIXwY4Eg5yfGnctkbMFkJ55oTtrDbiIIhmfUi3WUns14nMrG87IMUopQWS0peJxkRwuIgPc17tCzDGzJFAxcpSwsj77AKCx3iZKfGQpGmeivJ8gIck7FZR8/vHMQwItzncazyDmSaowxcR6D3JLrL05J0w8FEM81AX9HZmEzzs/Z9V0lpLjuJSshIvfxuB5P5+pFgzEmToaGHxOpN3eND4fkgdJ8tBCm8YZsV2CmICok3iJeeAe+UCSVIwqKLj2lLVeQKs5mYCUUISLLYdEAl3r3XkzSKWVtBgzv5Tx4L4U2zJ3mrEma9jx5fpfimyTpBURhP18kChLpdWj5DP3lcNS6ZlKyZZ0Do/dstAeN2Mq63ZX3CmlrQYKc9o2apDCxnlAooa3VHkEVHRaCuzMmyWstsxsEcQ8mh/HmDnpAKESV4k1oDUU3SAok/ngHINNMJFPtMomyC/GF/jjf/eP4ee+9vP4uR/9eTY5BTmld12qotMsyG++GoLG6PGK2eCXxMp8DgCWSup5HLDBOk5OnFS0URFIvWoSiJgioQCEyMUlSTo64eyBW3ZzwRuMNRxKgZETvueUFE1CD+sgAud5ICwwac/G5wOE2lDU+DSU/hwXGU2j7hhJAs/P5sBM8pCvvCTJnRcpls/IJmO9TYcNks1nkI1NWMcRcN9zcWip19ybdjUtSIl795XXBf08zk+8TxWNs7yu+h3rbdxfaF0YJEHls2LzgIQAnAASNnlBlna7rC3nGFw7mYvEmU3sIoRlfi6hQGlmcYaw9azMZ5CxLuJl3dpaS6motuqJfj1nH7lqg2BclO/JoilEmSFBUt2RcZtqdEF2R57BsN5VzvHn+J05xAS/75d+H/7C//YvPNWTnuM5nuM5nuN3/BAIvvLrX8G/9x/+e/ibf/Jv4j/7yf8Ms85/9i8+x3M8x/c0vmeSUgJkdcsuj0niSXRHIgpjrbVlnSABtI9JKx1AVnFZo2Ol1oJSa4h0GN7eXle3elR/ALF3JB8BSlnFx+w65T+HMokD4v5dna/TJqYFwcGyoM6iwOzsqi+tBCHIMMbEhw9UkHkcZxz6C0Y31E2wbxWP0aEeFdXCg/20gSp8BtMnbh/uUAeO84ALrXn224YxO25t53Wdhi9evsC+N9StYtsabm2jnZKwEWkMEmq2GoC1CEbvq2CQB/KonUR9gMdNhQFSQlofS5VndTaLom4bilbUsmErGwGV1kgmKDx0b3UjaBhF2nGeOM4Tc04cxwG3hm2rlNbuA29voYIxDVIK5knyUG0b7i8vUAXGdDweb6tQXkqNYrNCSkHvA7etotaG++0Oh5BcUYBznvjOp+/ALTu7WWhMsOg9UMA5xIKfuNKqTcCCxZyolQf+MUbUv3gIm85i+xFKSKvLKsDtGmpXJa6VYMxFpstC03CHtFQSyqLAVbwhdBn3EEU8AiokFhWwuElgVkIKXFf3u9lEqyVAm6sofJ4nIMIih2qoWlO5i536BM5YmKalhZYCLYLb/UYlLGMhGFIwLKr/wqJGqTUQLA3VriicbhWkvTBWZHcmyQ1Yc1mFRB0HVkEuFYbyvkRIHElZ+loazCdu+y3ec3TQOUKNiFLZGopY1qNzek7MKGiTsBRcprA8MJ+Y/gBMANtg/oZSU95dgFCgGUZ1JxdHve0otaK0gtY2PN4OTAv7uDlon1LDPqVwXZyPE6okEonGXBMWpMYYkFsNC6cChOpJkhdK3XG8vUEE7FYUiUKpo6liwGCqYbFmMacFtZIEMXqHFhbfzjEhQguqMc6I3YZ+DHZEAjjPEwOOWg23W0VVxfCw9YLxOyaVsd76J2jZWJSzibfHK20rVaC14pgHjn5Am6KPASkFW9twPiZ6EGHECa5Rvh/YSqXKiwnlz5X2OcfZ0bYNbWt8x6VAXFFVcIwBMcdtv8HGW3R5VpgA3S0U5RTnnCBhYELMID4ANJJNzgNjTrR9hztJHkUFNgdsOKCCuldMkGBJAGqiVAJVEEWfhn1r2KvQbrMaqpD4ue87bHRI7MBmwK0q9n0LkJ5kzjkdt71iBlFWSwXmTLworOkmVPkOjv6IeTqTE4w5Ruy9g9CzU6WtmyygoRYSXZuGZU0/cTr3DW7FVFGEhiKIK0QLahVoLQFycF6N3uFzwtQgWwuwkvtNi+LWnINWmnUnmLJnVzZn1ZgDCkGrVDIspUBLweM88Pr4TGWoW8OtDXx6o23nI4hWVQvOQaLR6BNdzhWPxQlKTbcoEjOel3tB3QuOWmF9wrWgCJWshnWUItj3ncTOs1+AQhTeW2PszXirqtj3FkqSVKpqtQRY4diEoAsCXKyl4NFPqi0G2FlrAe1gDDO65TUsICCK188PxkCtmP0g8JrWByCIRJI4rR2sJNFbgEHQeg5D2evKywS0CGmtYSvcI2Y3zD7x+VufGGMnATo455bDcbhh1+jItY7xeqDeFK3tMKXKnxjtOV8+bGh7Q390nOeMLn5edgnSgrnBbKDWDVtrgPulYmTOuLoK7oKtVXQfSyVqAeYBfrtQ/Y4xV1CFgNMczF1aI3jetlh/86SSUYCOrSr6mIsQm6oFFntCgglww9v8hP72QCkVY04ABjFa5QJR/Fcwpg2Dq6EVEgrhjt5JetIANLUI7u2GETHbxiD3PgBOkYLaFKpc11QHG7hkOr7/RuCrKDWAaRimCRUPAzxlPlgWIYymMqkOwd9zo13NpUwkoSLFOcqO/0ulCBKPJYkQCQpaANQJ+iVouy44l1WC5vzMonopKMTPp91aqgGJOEwMW2ux78+lsumTBIpSlKp3CTgFGYHKPCW+z1AbbcrGHHwiYc1sxr3BnSSJW73hG//oG/iRX/oGNt9QW4mcMfgYAa6Jlsh1JYDKi0izYiYSBwtFWlzvJ+NgciqSrKKhmKRaw64pQDknQYBkjLJIW7TlnMsubYyB4rRa1lDM6L0v8hFSzcSBUmkjtCyix8gjKVKJi1sQQUFaqYWdNYLop1QCprLmNVkMvsBefUfAejchIp1PYo8s8BPxnPOhORK7laUqq5IEkHiOquu/M8hRIf74bu2QLFFK2kP5dTki7wCkbFcIOyPRUARa1IQLdE6jTk3A29ZZGkE24X4y1nWue40Fsz5Lk8TDWJcqDbVV1GVFHgQtDwKUXFZAuf4jnHJfKNEOFLnIOtum8g+4Fi9apl9kqownmu8GJLzHvSXBqFY2WORZ0t8/Q2H9Ic8pGQdSueddmOAagIT6Zo+zQ4Gj4932vPYnizOiA9hqiTMrmxmSWJtqSLk+U+lnGGPcUr5aCh9+kRZinigPwHGVobalNVQIZalwRCglESGm+lKgc6q1iRaIp4oNT3BjRg1GeG7TaHCyaK6gihHVpM147oqQxCmQdRwPBS2bGMIzJDzJuYM5gso6D0OwFGaqNhI74yBsQcSs8U6pjhTWrHHPcA9lG6C0INspKycqXFtjhq1UAdwHoCVmYVpW8ftkKc/xcJlzzucMGzvaHSIUlhgjksSoSxUqyQeWxSpwLbgqSotlOYNYEHMbLvFuchOzVU9x4/XMmLu06I09L+YWazAFqrEmFfA5ogHPrzlhaV+XpJeca3OthZxDEvfrRpIZ11PURzSU/3iYveKKytpTU0GH09Yi5tESi99Rws6Kz5b5ApCbeLZsjVBcZIzjHP1ifMQf+m++iS/7F/jZb/xdHB87vDSo9tXA4BHvMraVUjCFttO5ji5iWjTkDDKJStVobiPZSmLeWhCaNclr09bzjYAeNSvWgjKnr1ownDbvFjXNEo0TpQgFi0rhGUdJohkz5qFgqcDl/DIzFEkiIvckQeytkWeJKYmVnnOQ+UXaDZLDwvhiS60r84f8JcbPEtdG22hns0MsnaVQZamEFoQnpY2xjwlzuRTq3Jife9hdtwpTnmkkLUMZ9ZGKfiTwhnWbOkmJEYchYd0JrvdSLgW1WArInMi5aEPhKpToNFXN2YDh5VLzlWzAiuYPj2Zei/hQpcDsynOToJfPb/YBm3PNbfN3zR3I/ZD/wvOZRf7F+Z8qW5m/cL4UlLDcneuZI/aqzL2DIJnP6P1G9xy/Y4ZOxZ/5L/4M/q2f+ree6knP8RzP8RzP8RzvxsvbC/7s//nP4qu/+lX8J/+T/wS/9tVfuw76z/Ecz/EvPP45SErRDQICjhaEDoOxe9l4UB6DxJk8+ESFk382aJtkEjZXhZ0tdavofeYJCx72B/HFPDTWSlAMKX+uYf90ddsRD4pDuYfEvEqQdhSlCEQd6RGeRRFzZ6ezFnZKBamK5JsH3IA5eAjd9opNK7aPH2D2GXay86u97FAlaFdLiwJCwa1t6OeJ7bZDhV0wbo6X+wtqq5g2gF1x319Qa0HbGw+Twk5HFXbMlUJLsdK2qyBcC9WOIOuwCUkJ77LIWQqCoHvbSDbaKp9FAKWqFXBB3Xbs+y0k/AXTgNputMObAz4H5nCcM21PTgLt7mhKSfv+ODCL4DgOvL69RvegBkhX4SbY2h1AxeM4MPuxpK+3sGq73V+w3zYqI/SJL778Aey3HdOBcXTstw3HceDT63eCdKGrMFUQXaFF34GJvP+UgU7ggoUHziVaWr2TDo9ORDeCQXMYtq3FbwC1NRINgCXdzxqAwo1qSLQx6tBSri7ZsDhyOFotUXwWOGj1xe+O4mIAkG6CbgZHqJIhLAhDAcrgi6hm5ouQYsJi0rbvgEp0tCtgCGUKhLUYi0XqgtfXgY9fvOC2f0StN/gMIDTW/ejsuC1R1BEIzAWjO7u1VCl/rcBAZUeckuAncX3TBqrWANz5vhxZfGHRW7XCJ209aiPANcbAVhvcaIu0JOGj0OkGDDcCEELywTkn6s7u+eMcaE1XTEklBzNaaJlcoAeERJtSt9UFO81x3xpeXiQURhznOXC/7TiOgeNBQtU5TozjDaVWbNGxSmtHzrVUxdlqw3DGGnGSVOTjC6oCrShEDLOEPYaz2HueA6cDTXXNu1oqxAfmOGndKEJNnUlrOBhtEVMBrfeOblT28Tkxm4aNV48OxRYF/4K9kihZCpWMCEYYFT58kvQSxAGRgjFPaBRZR+/oxxu+uN9pv6eK0hTzOHB+foPeua9wDZPoMgE0pe3g4+2BL778AczZMZ0EhiQDFAHmcaBPQ9k2tI2EAJ+CJlTqOWwQDI7GQhYIs5Ap8CokoFQWLksQbiXmnmpdClVzhFrHdAJn4hhnR9s3rokswobimdQC8+iYlIJmgl0KfA5kF7G2sNCBoxTKxpfSMA1U84quZUvrFD9RaoVOKoOMSXtET2JfrVCL/WBwfnopcKMlmAYgY27ojw6ohS0r73+etFEVFXSbmIMWhCUV0da1VMb0UkJF8REgBz9HIiaNAKIctKbwycJ02sK2dkOrG6ZMVFF0VdTacHu54zzPRdZw2yClwpxF/RrxvtSKWglSHbMDj1i7alQYC0LSvm2YwlwlwdUsRLsXjDnQ+4l93/Dh5Y7H6yMIwABiH982WqokAJmZjQe4k/ZxiP2g1Mq9u5O4OWbH2+MBAdC2jWQDF1pSaYENW7Yml/0CQKuwnLcT3m1Z0s0xIHKitkai6Zg4jhOlUrHJYp4AoVYS9gc5X2waRid5qoayXikVo8+VA23bhoGJ+TYW2Q0QuDotPsVXMf/sA1ur7KYHcL490M+BVirSpq3UgnbfUbVAtaGUE/0MgAoEJfZtQ+8njjFxjjPUjQiAjkFrCHHCXUWFlmxNUbWh9Ekr3ndKPY6w1wiAvkVuRMCaz+ExHqE8wne3h7ISgpwBoUKDzVBYSGDPBU0rUHWpPcl0DDsxtJN8rIIa9lqWa79WFACjG3oftIoQYGsNZZNQ8gAUjXmsC6YNjH4uEoyBlqviiv1GS+LhA26RQ6fsyvfhSOULYokO91SXu6yvAH2n1uOBH1GxNIkrCQ4luE6gUjFjX0pyz+JricAkzzG+ADoCtWGNmQS3dyQvWdcKpIXkQolkfTRS6QR+kSJStcXcMTvzLjdZoBvBrBbHH5I+SqPFshvPF/kZpXCdl1qRJGR3Ki0yTyEY+iP/6Mfwo7/wI5ybijX3uRkG4UYlcrAACUPRQnABh/lgMy+yBKtVIweUd8ozCJICQWTG6rJiLq3NUlGUajMWxEUSVybSirYIIE4SpUX+xHUNJDSXVmFFG4CMDXMRLotyL6RldQDl5tj3G0qtzP0mbcrmGDj7EXMg5ugiqZHQkCQoIHN+T/4OeKKMKS2XVVsSllLhyuL508o2SWOh9lrq+v1rRNyWbDwIBY143kkSctiKsc5DCVIRAfGZCWvmu/V380drNnSURfpB/JyGPbljRGNC+S6yTObQfC6ygE0A6J3nplrZBEN74XyHEUMFYQd3LaZpV16fBEQLMJzKgmmVHspPCTJLAqpYoGo+UwfPBBpEBwsiYVrTpf7GstcCFvlBwD24R3MKRMLeR9Z6QUaqAJ8RdYckMDBvrUvNyZyqkq3JijVUjK0ksY1QRZ0kpvLcxWDkdtVVUu1YY/2XQqC5qGDfGmst0VTA5g1Z825Oo7U5JK6V6iYSSjjZrJMAujtVdzAHaqwBi33NQhGGj4fEokUKi1BChZG66hQQrN9DKITCAbNJIpDxmiU+5zxPbEl2C8UpN8M8O/MD6UGi4TUYLuLk6IPxR9j4tkD9mINujhlnkaKKmWQagM0ZZnAV+FRIsrcUkZs5wONs5J18/lx7kRf6tf6S8CCc2ECcbUqpobpL5SRRrm2Rssi4qcLUSiPpI5SXHJyPGZNqzg9JqyyL+kiuq/hBUSBUUyXXZpCXxJVnjCC3KS7yjMTET4LSdF/qbbmu5phIe945gyRY4pwVsWPRLYS1hjnGij3ZsEJ+nUVNL2MryXAWNb8SBHKPd24iochT2Qy47FHDEo5m4Pjhb/0wvvr//gp+7kd/Hv/oh/4rRt2i6KEuNMeMBi/m+lpYO8qGuHUfsf+bGNIWs9WylIphEvu5LBvajM1cX0n6vOK6xuJJUhDJRQAm72eA56BSyorZubZH2lOvTeDdUxcScJlLxm8Ic9gataU5SOSRyJPhfuVjGgnR+kKJdZtKaRp7VjbOkaCjqtCqbOiLuCH5OVEbWUpL5hBJdfBQf55n3CvzFwhQWkWpBaps/Jsy1nMUSeVHNjmkLfI6t8FJzhJfMWpdpyhUoznCseIsEIRdhF1o1pFtLpIsCZUT2ZxTVIL065GDScROPn+q60bsgLDWYqkGiWjOGGtryjWwkk8FyY+WykhswCrCWLZELGMGaOw/wzvS1pMh0TFdUFuQZSWJuN+dDz/H74yhpvg3/y//Jv7c//HPoc7vGS56jud4jud4juf4HTPUFT/+//lx/L5f+n34T//cf4qf/uM/HXnyczzHc/yLju8569QoLEtU18wnugNlFrinegzJRbU0drq5waevQpgA2FQwjIUwF4PWiukDY3YSlYBVUGCBpYXKDIs601J1BcgDF+3e0soqPdlldYeYlwD8COjQM5y/B5BwUWsUvlWx3Vn0fjw6gejWCPaDh8h+GmojsWUKlUzaRgDhMWnTxWL4zo75CjSpKFJwfH5AJjAeHd5peXW/bXi5bVSQ6OzQacrrc7CQmR1DJdRO3CZqa6itAJPdh1orIB5KSbIIQgQVCZYpBC1koqVU1LpBUdC2DbfbjZLWCOKGA5rWKQ70c2BCIA0QIals+dGXgnMOHI+DctOI4rnNkBgX1CK47ztut50FrVpxu1XoedIeiqVSFhUMuG837F+SgJBFKveJt7eOz58/Y/QHi6mIewzbAdUaXbIGOp7oUreJR8Tutuh0KqqoAEaQU0yys5AwxJgTTRvUWOQQVEAKHicJDhgnqghEo3idM3YV/0mSSksxCDsmoZRi1so1FOLL7G5D2juQoDaNFlmtVRStCwiHenTHEvhSkVDGoSJUqobUkP9OcNNVUKN4OozWdgbDy63h1qLD3Whfo1rgHdj2AikeAEFI5sPhg7L7VMSYJAE6u1CzJDIdMSdD4aUK0sIOUIx5wp1dsggSQ84rqbT5Kh5y1KkuMB3nOClDLwKN7rJSg1REJgKBZ23w6CjeQmLdxHH0sIKZYwFnvISTz7IWiFaoObx3WB/AmCiryEuwBx4KCTLR+8lrF1lFbwOluksU3FW5lsVb2Csapr3BbOJxHhC94d52iD/gMgAUjHECorjvJBvZJJjhPmhfNwdKFPgVgAvVOShNfuI4B3aNQrAL9m1jsdNPNN0whuGchqKG5gaZg8ph7rRuclA6Pwq9ZobhE7137PsNY57Yth11a5hm+PgDP4Dz7Q1peThtoraC0YG2FUgxWD+hDtSiVJFrBVUqzmPi9e2B2jakfQptvyoMA1WonnOMDhsntiyszrCKsYlxPkJBjIXEoxPIcGOMZqfpBHyDtgAtoWHhYKitwcxW9//ZH5x3CV7OAR9hLQqqEdS0hcxuXwUQanVFBa4F/ehQVJg7qsbPwMOyUADVBXBYFPqbAgIC2bf9jjE6juNBhZ6tIYu8JTpgW9swe8c83rjvFoWp4zw7PxOAzxOiFTXRlRJAlHIOCRwqBaU6HNyrat0DOOuw7jAXdCNES1WMAFVqYwdoD4UZDQuFKmiyRacyUAXYbxvEw+a1HygFOM83nOcDj/PEeQCwiqo7TCb2loopYU0IwI8HXo+Btu0EIebA0TtaK5DRMKEYGIH35v7Efyaw4zh7h/lEu23A0QGJIn2QO2042hYgvIAKfh4kQYCWXoVKf1ThYQlfVVDBPenoA6U2jJOKeFoKUAuLybWTLBHEPZGLDCDVw2oi7JA6FXrsMfCxfMAWtoljslBfa8U5R8SmgvOgioNWxa1sMG/oxwkbBjZ+T+zbBg0yn3mq9BCIM14MK9tOW4TaCrTQ0sKnA8NgZSx72TIcHnZ/2b3ONVagdcPHDwWnvOGU6M43koT72dHnRO9zWaRwg6M1hM8ZpBEHKq+xQNAqAVCSD4wWPyI4z0FCGAh4dJ9hC1Qj5yOpfIweKias8bciQWTzsNMD+jExIhfz6BwXKWi1otWCs3eq3ARI7spcdcpchAAvQBUSEt0nxjExpiNhQBXmXbVkh3raX5Ec3UClNNq5hCpLKj2CBF53Qcf4XtP73/CxbIviDO+w6C+4gDvA4TahUgKs9QVepiCIJnEkcU6VS93qnR3NZf2l12cjCRX+TxEzRC4yhwhC1irpBhcxQFyWFVuSIxTs1I8bYQ4D5gc+k4Toa17PwRi0yIki0VBB8rcHmFeDHAENixsoSaUutPmYjgLFj/xXP4Jv/tKPQkArWxUBqlw2XkGSEH0H+EaThqZyAZyqVkhVB4Lsic1f7wgLRKRaElVCUmFUY/044pEkgQTvFIQKz4L5dxaA4HTD7AG0xrNaxJ8g6bRaqaIQgHapCplUEZX8Dw+bYedcl41MknTGONHPk+fBBCGDwbAsv/jlC+jzIKCkgpSbw5NYyFfEZxU3m6oIPJaEAorz3YbME5W0VIAZ+Gs8X+rBvHtnkOs8vghNAfLn3IxZjTV1ZZEqk+CXChDZbKCh6LmeQQLlKuvskuuQzxVBUgCSTETS0GWr1qpSDWsR/+JcOMEzd+bRqQIIrm2fFivN15qQIBBR2USCEDKRW5OLx56FUMmY8b123U+S+8Whut4IBCX2F4smpohDeLdGoj5AfFxh8XNaOFcMTjW46atZKucMrzPtiWL+BZlU3gP1wjfO9eGAMJfl0klSV5wfA2hH1jw0stASDSFOGzlaVtdoPvKw+UE0NVElkLGWNRTEc+I+6zm7+DRyDvjEnKnEwndda4Lkk6Rpp8pQKkOK8aQ+kYSOeEyp1mEGUzbNMA7R9qjUyhpTbdhEQm0l5qEmGT3mvE0+xiBEF5WlID3GxDRHAxXnNFRVLEgYJNbPIH8nQQShuJskSixCyLq32EeC9hE5H5vqaImVc0/WvpdNN4B8994WMSBV/IpS7TNJdiRnsCDONegIacsVAzImJWkGSJVS1klm1AtqKaE2LmwsCIu0JOFxOuYeVyDm6DMVpfndM56BS6hnJaEl4hU0c6CL5KBB/ibJ/FJit1DimsY4JJDI22I+WpwhQjnMIzZopeV31lCKppVWKoQaqlOZdswRCkk826gYIAUf50f8kb//h9FKwS/84C8BUzCmxZ4Sa3NyTfK58b1CMpNIMCKJYbm/BdEq9758j3LVUxeBNENAxAfWSS778MyNEOcCOAm+Yh7zIPbqjOlTqcAd+U98PfetikVwW7HN57IYVNE4B/K6S7lyJYAEzZhukFKhcJiRQO0uzEXKpTKZ8fS6iNwZM8LH96oCac8XeUnWcBRJgmJNSuHrjAUR1LbBJe3X7KpTBGl5zvdKfFh7+uL6OM86Hmv2slTDiovIvcXzXcU+rw7Eni6xNrJeqaqZDCBVvy1znRk2eRlrnHuSSCpkXsrq+QM8ezqM7MGYhhFblA1KM9THHBdZsmhWzONMEfOw1ti/LGaye5ChM3/gmWg+OUq/o0YqKD0JSs/xHM/xHM/xHP/DQyD4gW//AP7i/+YvQiD4W3/ib1316+d4juf45x7fc+aZXcYAwmJBQskIuN1uACzsrsK+pDX0eeLs5ypOAgQh6H1NFRhEoZ2HXnaTnb1D13HKA9iPbr2wJCCBw6BSv6sjicPh01eHpRvoeS7CJpYACs7jhIlia22BDE3YjTUGC7rbtkME6L1HQYv2LUCFh13KPCZsVtz3GzA9VDnYEVbahtZIBOrW8fLxHp1VVKy43Ro+fLijbVTdcRhaAiAo8Jn2XQKtCp8dsw8oCm3Z4JAoxpZWgSwii2CPbmHKOJPopQpIUWwbbeNau6GUim3bAAjthEDQQKMrc86Ox+Pzsm3o3XAcbwRZA2Acc+J4PEjUmM7Cjjs87BkUBdnFfTweMAPuLze4spu1vbzAzHC8Hnh9fcPttuPLL7/Efttj/hnO84HXz5/YuRhWWRZFgRldR1VLFDgMpYWCA4BaG9pGxYnjcSwgl4VjklryUK+gdLaNiWEsVDlY4DQVABNNyipy+3RYCcUWTSltFsdUCDL7nKjCItqcJG65Zkc0C5XqCTDkeiGAUsqGUgKsXkVNAULtiUUNzt+0eUPYxMAMtRZoAYvWooCntLVEl2AoOvWJVhtBBAOOxxEd54Y+TrRNUKugdyppsVAU3YxzroJ8dq7SuIlr3scEa48OrVTFEc/i0cDsnWtdt7BqUZStYvvQcB5vkHi3BEwG7cJEIUUxnKSArTZUZeFVHdhbCwCI3fRVqaZVtQBmOGenzdJ5UpGjNBwH40vdKhU19jt6NxJMCpXS5hjY9n3Fm1JKFPsm4BNNDG3bMILIU4IwAiehrzWSTc7zhJSG+TigAipqmKOGxxyL2A4UDVIfO599drgZjscZFmAGt4qtVrgPrkFjF2MpBcMGzvNE04Ly8gJ4wRBnQcs8OosDiFREUcswwqrTAnhVKTiNMve1Roe/axD3uEbHGCRfcScgYRDs1I6qPWpp2G+VZFEtcK2QUuHqKHAq80Hw5e/6SJJhdFSK07LREXM8u9/7wByGbiEPL7KUy87HAYWhtkJlqejOt2kw69hvO87zgar3kNCn/U6rQnImgHEOtI3WhOaO4zxw33eUUvE4TmzbBq8CaSSDrufhDjWBktUZpDuFVgJiRcoq3JuHQg7LygH88ne2VsmaiN8XVapeFK4dgMXOVrmnnv1cZIXptOGYg6QbyS7yUNKZIOAt0T3edhbngYpWKrZth7YKrVS+SXs4l4kxjDaYeqnTTGP3ca0VdduRqjOOsKqMOTfGpOreeeLl5Q54wetxwNxwrxu22wsMijIFjsmOWiUo2+pOIqgDRaO72gAf3CxbXKuWQiU7B2bK6oPAgVZ512UbYHzhu0oBnd47bUmrhOS+o5/nAmG4SUQx2hj7at1RS8FxnCQYQbBXroc5DQZBkYLbvuM8jrBzoU3J7eWOfp54PN5QSsG+b5hjXoC7UE1xDtojlpLqeKlYJXAwjrZG29XemaP1MaAKqmKVAnMS6o7Hsaxmeu8YAXRDqRp2joFSGhWVBpXWRiianMdJ4F8LQVgkzZixR5qvvIrIPQvgj8cDMEcptM+r28bvtrAhnCfJWM51URqVnlQE50GVJ60V2d3rTOnWXppd6nOegJA06JPKJaYkXWLSTjXB61oqwXyffE4BULQqsc5pJzjmwDnGUq4hqM6YqMpcstaC4zwxjMS+EiS4HvFcoEAFyt6gdQNwYnYLxc4J3WrEZiqK9DFCgXCiVMG2Vaju6Cctl8/eYUIrMFXuiVU39OP7GFUIwOdSSAIcE7qaCK5cP8H9adkJH2QFIBCqSxVVEEQ297UnTbOlhAQkHsS1e51LCOIFvwOJCSF+lNeZ5A0g7XESrRahzYsnsBUfkhZbtBkWSADcM8hXSzmKyewFGvplBykqy5qjFOboaaPbNpIfzQ23vuPH/uGP4Ru/8nXaGZIeHAqeAZAyNY7zAAkc3K+oopPkTUDCFuV6DIuMlWpCAaaJpA2L8tokiRJxJgsVBg1LL1uEQADREDCCGMB8kc9gvCeOJ0ksiS4mQCi2jcEYVyvV7tJaz3OfGR21VOyhVpsxaQ4Syn2RhfIxyQJuNdBUi/WdwjjLlk0Ucwb5VUgqpIpRXisWMQFGq5z8fPP8ziDNyjXXaPcnK6+fcR7QAMDTGhlItbCFmSOn5Zqf74bZhEQe7QlsyvWLee5YEz9I3QlIL9BdsMg/5DMkyJogbSoV1bWeRiiSAICFempaOvMZ8HyTNmo5Us3n/TknrykuEUshBPw7DxWUYInDIz6UprAZcTjm7lJjgZCQG++Dqj9JygplriAZlHKRbkkYsCCfCa29hcSOmbZ+hfOlVjYZCQQqeT72pQ7iglCwAYAZZBoS2M3z+QdJIADtVO2ak+82FQ8zDmb+tZT1kigRjSAeueUY8R7E4B62SPBQoEmwmmTHOVlzaKnsvAgYVIrJd4OoRXDqzEUgrUGocjcY2FjFc+kVx3O+Oup3rU3IZV9nEWOlIBR3FEn6yznLsynQ9hbrgqQOEnCwzkFcw7w/hIITH1TYMkZNh0qqMSPXNCWwXxuJoUnqS6tREVkqRakAmApLM5SMW4sGB2go0eRCzjwKtH/1i4QoMV/eX1NEENB6SxFUqSCf+3q+eXbgv191iGsdY1mAU8kPYf0G2sCteyfxIklDvE02FOX6T0XlVBKWRda7FOeyKSoJZO/JJqIa+VrGkHhPEaumI1TKDV6jhjeNOVM0dHmk7NMGgLF+V5V5nEzFN3/2D2FMw8//7l9kLI5aYbLqJBXjwHqNZxyMmP6+/pHNNUgyy6QiVirqeDRVSpxZ44b5d2Dup7EOSXAmOb+IUrUriOuCUAoPlWCEmmKpBWqK3jvjV6U644zzKXMr1khnWIgvNdioiwG29ppUWMq5BaetmJRUehTMOFtzbVAFflGCHKHApRepMM69jjw3y/UssMSS1p9lAx85YvyzZVUdtvdp4+2hOr6URz3XDPNJ7j26SG8Zv3JP5v7IucpcaWLxk9b+K+tek1zo8cJZF0oSbZ6LWP9WByysPGfkuYwJQYiKN8szDVWVRtTgMwdI8lo+G9F4Z2Kx78ReqCXWfqSrM+2Kea8lbQc9rASNqu0a6xQxL2zlBc/x23188Z0v8BM/9RP4U//3P4Vi5Tf7cp7jOZ7jOZ7jOX5LjP3c8Rf/138RDsff/hN/+0lUeo7n+Bcc3zNJqYZVkFl2OMpSC6mqeHscLAZpwSwGTNq6mFOtKLtm3YAxHXUTlAqMs9M2zgw8X1t4l0eRNQp3HodmCaBA1d8VF1kAEyEojyi82aR9ACBR1BR4FLv72Zdc+3meQBB3+tnRz071p0kJaQ2p3jkHD7Qq8G6LbFNqQysbFLpsSOYwSGWxyU0wzgkzAl4Fgtp2vNxv+HC/syBjjttGstC2bdE9x8+jhZyQ+DRT4UKi8E8i1bZtmG5UT4g/L6pUWCksAtGOqGDbN9TWQnmn4na7k8wQKg11aziPg+89usbut52FbQe8T9SyIXURpg0cxwNjDHYr9YliEt3AQNPCLksRHKPDz05izxyoW0MfVLwAgNoq7rcP+PLLj6EQwmLGcTzw+ukTzvOIeydY4oIgKFHRIjvGVDRxARTx9Tv97Oi9r+dnNtHdMQJYmD6Bs0ODYAKlZHJt+YyBMTu0ACThhK2cOSB2YToBhNkYkJogMhYoVbQQlIzrLWEJJyCImgXDbWuhIsViloZak2phUUcFreki0QG0XMyCYSkbim7vSDQCqjWw+GDOQiQQIJQohgMYLETL6FTXEsdpHcUEx/EGQFGKQ3ygHwcEtKIoRdFnFJ1jnpJQxgKfBBgiUcwScSpxuEFrwXRApKGUirZvq3A3e4dqpapCrAMoSSsl3i2LU9HVGCQ/qOP19SBgEopkbgbrA8dxQML6wIxg3ZwGc6pMGQzf+fwKH8C+bbRCw9W9P2xiTsCjuE+LuCBVJiFESQaou+I83gKQIVnmPE9IDXKKFhwPWtu1SuBxDM6zMSemA61u2BtBld6DeAJaSNgkiWlZGYaii0Yn4JwTCsPr8QZHhS11HwAogJDApVGw7LPTbtGdljHOeHT2k4peXhYRbKtbSNiz4LwKr56kGEEXx4Cjh1pJ3RumKqoU+GSXNNQhNjHGA9/69mfs9ztJD1Hc1NLQbo2qTjnP3dAqvwuCtSeQDAvMfsIUOMeJBNRutxvOYwDGLnNXwQzAQsB1MhLo1uxkZf24bRXwPax7DFoqHCXUydjhXsI6S402eapUM8uYQFLGCKKULZCP3Y2GeR4sAEuhGlYtmOeB8+yorcU6ZfyEOz9rGGaowPTeVycqtKFUEnPcqV6gAtS2Ua1HAwyPUaTCZMCDrLKUpJwdzmJUimutoZQAJYJIllZ8SRSpNWzi8r9gkfYMSwGEIuDnz69wUZydnc5UbRJ8/vSKx9tbWMiSeLPexSBZZIyOt8eJfnYoSOQwuwrqCkEHYJVr8TwfAChp7whCno+Ijwkgk2xWYj/2ABNLA1WwSmWBPKkVYb0wA1RvNcEwrg8rtNcsWmifB65xBfD69kA/BkwJxM+wWNnqjlIKeh8xN/L9CNpe4W9XgboPqjJBac9mgzlMqQWtNfTe0VoNALAEAEIQt1SFdV/KcqoStqiGog3dHGYnWmsQVLgOFG0ww1IdUKHFHy12ARsGbQFoAthvJLqNEV36ELy9PWDosW6DKAJ5Z8thC8TzaZAaipKtwnwEBhkgZ3zvOQZU2ztAnUCclhJKhCNIgNf+7M74CgzUptjahtYK1DnfWlG4Uylz64ZSB9AH+nlCb/tFCnYPmxLmWeUdKECbHpJFR1hs2jz4frYddW8AuGYnGfW4tRuKVMxQF4VyTZQSdoGl4TxeackI7ltamZFQgVMWieP7cSw1oSCDSADOCQiNMeJ8AbgYwSTPrAbM3YKIROJkAjz2TnngHWkCQOYdPEHIykkQf/decQXAilsAgPWZvnKS0HEgSD/nmoczzhqlaFguJnE9lJ8CqHIPtaeYi2nBSwJMRZhyRK5ry/omO93dE7ASvJwv+GN/71/Hv/L5a8i7rQE+Me/BupckUyQgtohJHnNVC6/dMz/1pexTlAoLScCCkoxBBSWuyVLbAsQ98rI5BjxUXrkPBVHGHdNIgEZYrjiY20wjcS+VUxK7VJFlKzTI5FsEL+aAhpQTUVW02rDvW5Cs+OdzDuYyQY4KPgVftYcWagKOa4RSD7D+S0WztP2J9zypQuVI8J0qo3CSj2g9XlYstrANonoIuO/HeeJiiXG+TfNFxEZ+fgKVnvdhSKuofJ6BwYbVGdcMp26C0mGZne9rzgWskoSZfI2yyHX8bEHmVbEs46xzWaM6OM+SoJJA7jRaXCaphtdoC3R2S3LHZWctuMgAcP/udR3rdsYZmDEFgESuG5bCCFtjyAXIL3LWO8JT/nnWFyXexejzIv8QXY+GpbHmnblDguCf6hpuDu8n3IJU4FcsTDtIc0fI0/B64vsXASUBdqFFoQdRI3P8VEdRIbGBtmMkSpgZRIPUhmhiyPNVKBkCaS8JXEyjqxlJ1rmasbKPHnNdFjcIYaN12RrxnViqKoeymYpghDqkF2qFiVJVEmvlySKAJ4dDRKjc44YZa6DWutYWonbCJgYqHD2OEy60sM41AVAls9R3a/VdrFsE1qgvcH5fPxeXt95lEg587TEx+x2gUqCsxqYxOMe1aFhRMqYvwo8jGjLiXsh5YU0o8yIGXJ5hxdc+E4GY78kQ5Iok1SY5iDE2911o1NAixmSjRdrams2l9CgSVriY67O0XASn3DdTBdpjPnq+v7gn8yR/pHIMIDOt5FIxK6z7Yg3RDo8rVELhCghSZ6oLjYEpM0jeE6YCB8l759lXfNF3Z1b32MMH8I2f+VG8fv3AL3ztFxjTzcISm5br4sxJPAicEQpXwxxCYZOst3c7iErYtmmov+s7QqWuZ7PmWKz/UtOSNYmSzNe9hMqV8Jwj0aQ0jeSsNYclCIa5N8aqTlW7rJnmPuSO9fuqjJlX/UmjORQQLe/mIv83CTlsfIj4ITxTxFuLvUVX/MxcPZXwJZr3kDnLWpcaZxRFadGkEPNtTsM5z1Ac5Fz3iLkWROcM5G4GhBWsqsA0atoiAHTlnbQ/jBiW15jxa+1HV1zORe8rX4v1He8sGx8ycBQv0GmQqAOQJJZrK+aBJen3yjlEELkra4XGbg6IDLSWyn5sNPTIiSWIe1gh2ZCkak0S35iLMEwFK6Ag94L3edBz/LYdDnz57S/xl//qX8bXf+7r6yzxHM/xHM/xHM/xHN/b2Pr2VFR6juf4/3P8c9q9zTjUgxK8AeL2MQKE5QFpzonhE6px2BFfNbejDxbmFehK8K73HgfiGgV/C0uk7CBhNxELHezaES0oYU+TxbMSYMSSuvXv7gx1d3SjJZ2bQ8I33eCU1vW0aBpRZOABuG0NpVacZyc4lYWwUrBtBaU09MHuk1Rkdjc0rZhHx3mcQQbasbeGW9tQWsGYJGfd7zfc9h21BnipGlLiVA+ZRWmhVwrO80ThC0CpJQrPhXYlzkMmCw/R0RwH/izsl0aFCa0VrWy43T5ETVHZ3SgCzFQkGuidtmG0JrnkurdWw3LoxPF4UILZnZ3JJpDJbq9SClptUKWdAa9PYZg4zgeGTfR+oHfF/X7Dx48fcdvvJIe1sMk4T4x+YM4gFwEstmkUIWZY3blDAiQcoRxR9VLJYqeZo9YWhZEZxeirY0gsZK1VQ4Gosbi0NdR9h/VOOw84HAGiqC/1BshVROd3hd1W1DA8VEvcCSKWsI2Zc4Ycv2KMKCIH0NX7uYrcGmAGC1xRvHcCF7VWgmIBEHCN7Ox4NFsEJ3aFOy2AosCsQkUiynxXmACmVEN69BO1bhhj4jwJKLBDsmKOI9YjC3K0PDNo3eFSWNgXhWMASqs3bfw7w8Dsk+pdEsoyxiIopuB4Pbim5sQcE8MNstMazSUIFU5iWCkVqbBQCru+pjvOx4lhgM4RJJYobI9L/QQBAEJop0MAZaIloAOqHLkPaGF88tMhtcEhmDM65VQwhmOCKh3H2Wlx4FSCchu0JgmCgJlDnWDeONiZTKuwlNMnmAEX2Bl2TUEI2RoJWyaG3k/0PtEVAMbq8K+hYkOywwGpimMM0NrpBZsoattwDl8WK6U0rolacZxvmPPAmJNxQAuBJp8QrRADzs413QotNFUrilTIf8ve//1al2zXYdiYs6rW2vt839d9Ly95qZ+mJFKUSUqKLQcBLD4Epg0INuInQ4Yf85/5NUCMvDhAAiOw9BIJkZFEiEwFsi0pJCWKP8Qft29/5+y1qmrOPIw5a+1mgIhMDLNJnSL7dvfX5+y9Vv2YVTXHmGNAQnVJY35WuE/G2hI/UxSYjtfXN+wGbDttHfd9x8cPQB9UCtFScY6JKYY6B/ZCm69c79QhZ0bOPRRhhi1ii2vB+Xhj9XtVnHMCJSt8FaVtGKA1pGqOj5I0pZSuH+eRMCGGdSarVeFg1aYa0I+BIohkYFgsBKlHhITAOW2RUWafkRT2+CygnxPj7OjHG4FfCTtVMJndzwdmJq4FKxk8xiDpKFRbxiDpQWIvKbVRUTAAR0GCfwQSt9ZIMh2079PGqts+BnQMlLLhPA4ogA8f7nh5uV+V+VnZv23cY/sZ4HcmooPwKUKA7ylBP23inAPDeBaAT/zwfAPcgryYQHdDqdyPzQ140KZsuKGHil5rdSX0NauGAWAKpiikNMCveBIdQdDXDRpJb6ocBsHXuacbHBgzLDEMZdvDiuOypjWbOA4CM9ttC5CwwMekslStEHBverw+cLvd0GqDnx1zDBxzQEJtZEb1/1IF87AmBEmlFns9t0ISYnI/MOd8rVbXXggARRDV/hX3242EQVGYGhWiAiBL8LvWAt829oczyY5SgFppUTUVqbAp4DlEAnQgoEJgZN93tPsdx3mij4GtbZy3fRBomkY7NX+u8k8bKto+9WNi9LQgoC0uEMTU6QGCOKYN7h/gnjxtQgBsW30inyRYL6E491QdDlYuuxl6N6S/1dvRcZwEQVRp3XUcjwW01FJiz7ewjQqSw5yYgwoLEuoC7EsFQnWupPJXAoJj4PE4UJXfP83RJxWeaqtobcfoM0gvitoqpBIymU7yorugx3z5VjbJO7ssQCn3PAt1jURkOC7zQqmvvwUhgXPb5CIpAQnoXgUSEKx4AlGsIgikqsoFEBIUuqr9r1tE/EN+P+wbd4UEr3JOCRBAGRJxJllCk9xoV5W7avSBPimlXFQBDTLUHJPWoo3A05/4nR/HT/+Tn8b2RkJlbSXuEaFam8UFzjWSqhYZZ4Iag7R1Q8QQS8sUBPE5/uLYSRAmdKliaCmhZsTPyR5Gkkxi/0vVq6epwDObGcbsmLMvxT6LtZRWN0tpJc6xi0gAB+aAucKMKputkWRaE9jWIGYNW6obS4U3/mdxe1MyyVOdlESptE7JOZhqJfyY/OWrjxJolgDRl8poKSil0lIoJ5SnEokH4J9KSlhBVbPyI86lyV5JsDaJX+aOGrF4zKR7yDp7kPTwhHxmBi3uEzl3vkHYg0C0xl0+yXXr1wL8T4KGhlKUwEVhEvdxotFIe3bGSgkF2bChWwRVDwUyQKTG2iJxj+8bJI3IGyQgjbC2JrFJ+J7I80USBvk9WXzlcQ9E2EKm9WLGkfyZVBaVzGsEuOzmi0wB90UQyzjAfEN2ti9iKwtQAiRXEngt+/bpc1U0+sogy1o7rSNTyeWKGWPyrsXnu3SpOf+SEJOkirAabrruPmYeDkW2SCcahMwSJAtRnr/c8kxPEscVup7WuRJY99GZrwkbI85ji3isSCU5XYSXsCKUJFhchEIW6sxvPJuK4hgnROLurZxb29aorJMqL8BS2CtzPJEHgMUujthHhRGSx7n8SuQywoo9yB5QCaJBjTOj8Y6TcSHIS1jnO4/5nO+sSOu8WCY8K8feJMlaelquHHL+/jS78uCxx6WN7hg9VKP0+vVQTEmly6X4Fr8/4s7MLrkUdUiOSjW1S9H2WXWvBCkmcxvQoNy6AVNIhAt1mForz+5FcZ6dKnmQ9ay5VrnlxHnhiVD8HKOozDODYOuAG+ZwjE6VyrVG5FLctLg/mEXsGoqf/O9/Et06/sWP/9qKx6t/lAq0qrT+5r3K1l6XsSc70uNcufYtv5SGGLM8FIyjkC3vVR6fOyMvkecBuWKLRD6098HCEb0sG3lfCPW5iK3xAbGe5ppOtdZQmPrmMkjbvSRAuibxNs9InDu1FlKDhGfx+Q1Oi6yYmApK2TvcF0sQUi+1t1xPGbcQRDoVKhG32mACjB7WkEXC8s8Bw9PZJQoW9So04h3PYz5jzSOLdfxMUDRcxRKpYsRldJ0dcw/NcbnmYp4LsWJbnoWGTfSR6uPsjSzO4O9f51Gza97Dk4TKXJ7EfkKXAM531QJUzV5kzmvOReZ3x7ozFU01YVmqcFTHiinoYAGXzd8zpu/tj11z4C/9o7+E//D/+B/iyx98mSvvvb239/be3tt7e29/wPauqPTe3tv/f+0PYPeWl6dIPEUC09xwhpIICRmFVh5REUL1GVYZjzF46VVgzo46hdZryMrYTJhp5Mo1wJ5vVgNP8/BhlwXACS7v8aykBngBm09gjSMqVxHVPlGVU0t4nnuAHUGS2vaG0gqK5yW/oTSCfzYdZlSMctNIVDDZeL9TeUUN+Hi/477dcf+w4bY37Nu+SDu1VFStcCPKolKoXgQquiCJVit5rJEo11XxanH7tlD2SXKSBDGJpBxeoLe6U/Y8FAIsqpdL9E0/O463tyA3KPawENEgoz0eB3p/wGZH7yfG7JdqlTExirAk0sIL/TCDj4Exw/4sxtdgmMcIAIQAroNA3LbfUNsGmwNvj1d8/fUPMceJJLMx+clESY7F9ACLw96BxAihxjeY0GuhGjImQdm67Sh1Q9u2ACoHbAQQpExApq1aPzuAuS5vJQhMmSDOJFIC8EVZYZ741JUssGWfJXVlOJ4AOWGyoWhUXPJnU1K/hI2fJCBhF2mJc5DqPVIKHKzwLUXRWsGYMyx7Qva6VIhWmIFqGxvtgDKJpynRLorH4xXTgNt+g0BxPN4w5wOiDoyBWhvqFhY6ZpBSMWckfpIIUGir5uZXAr62sKwJwEocBhLIEGNaaoGgBBkobOYi0USFNSa76tZItPCBxzHgomHZqBjDYONgsh+Cpqwg3BpBrPM8mWR3Ry0FrTLG1dYAJ2g9O0EJmEL6QNtuTKyqom4bpglUG6ZTdYY4+IBEDLQ+kJV/UiqKppUT49d3fuQ7aPuGr3/4NYlJYJKtVdrgDSOZScVwu+0cTx/wYTEfIlPszhVmWNZJMAv5c0OdHT4jBkzDFI/KQ4Kme2uADSCIaTk+tbJKugTwBOUaP8eggozQ6mgLtSAJoKQIYJgRYB3QUKcpFR8+fqDCiAU4VgteXjY8joNzuzoqGRbAHDi7YwrnQqklnjvIgVrC0ooEpX4+0KejtQ2WFjtcpGihAOGS4Clgs2N0jsnLyweUoqimGBhh/WJMjBZDaxtEaN05JtePQeCaFaoVEKMMvQKlNbiVtce1vWLMERaCHSJlqY7VxjUxp6GPDoEBodijoZBTKn/eQACwVF3VsEWEpEPEO5qF/aDDUaBCsNqdhCYbVJxREbQghbmEegiAD58aPrzckZW3BKcrto3KVdttw+yGx+OBohtUU/FCcI4OJukLibRz4vF4cE75oHJXJ7lpjnPtaW6TZDQFmu5QJzBYS4G1huM8UVrBfmtoG2toxyRpq08SxjzU6R5nJ1kOjIvTHTPAvSaAlyCdAkE0dviccJAQVorCBtXYCEpxL5lw2Aj1KG1h06FAEVTQCq2I4vXtgXkYxKlG5ggyi4RK4+hwG9BWcb/veP36DT49vh8EnJxV4maGvW0YASpoKawad2efPilaXWoQ3F967zj7iY/lA7ZaMRToPgEhCDdsQgtC8WRi2ypmd1qYGOM3wRBH77Ek54TUSmKYPRFFhqGI4Hw8MJ32FaOT4He/3zG9Y7y9Ypx99ekkuxwQhMoMz0BzhmXsAvvS/pfEC1rPRLIdJEhwD4tkvXBfHnPGmZHWpSTBp/1KgUNp5xtnqqEWle+01tDYR6mMkH/FfGgllCR8nWkcjA/dO550P4BpsHPgxIG67dASKmFGBcDRO7p1bKFyCASh/xQ83g7uZZbqgEY1LAUGRjAtELaN39LmizdEsEWogmBBsuIfywL7rzMXVVrME/xDYGBBKPsGqeIi9+AJjKIaY4DHcgG9i9CUj7jAxFRNwjdAxgUUx/ryeCkpSTYKADnIBlRuKFele4JoyvNyEumTGLTUOlRCAYSEDSq3Vuxlw1/8lZ/En/nNP4MmDXb3Sy3N4vWSbCJBmXILkn0uJVkqF5IKCEvRKPtdFpDG5y2rP7UQXBZZekzZ64sMMsbgOUZjTwTvdmaGPixIdVRkTeDWA2Dm1+R9MFR5nGNDdVxNkzD+XxBl0hII8FAriTubGcY8cZ7HRbDM+RfPfgGMts5qaQ+TOF0OTQmroCRDllKDgBRqMGZrrubnpsLDRIDIMZlIMHoiJq1vQ9yDL1sgj3mXc/MiCUj+PyABNCeQqUkM+SYQuyyJ4sU84mnObYDgLJ7m6LLL8VyLMVckcwPsCwQRQPhFAeBz/EfvMMNScpyDandsM+66l2pMWkNx/gB0LJZFhF7/TTX2EVzr1NctLObitS8k2LuUdEBiky/1Ed6tx7B1/xJgqaDMWCxJbMv1kDatiLWV6rKS5IsZBMd4P7eJUtpl/5PFLIl9B+D9bId3KUl7kA9ivYK5mdv9HsVNBzzJaiJPhIhUmrsKtZwof3yXfKP/PIgTWIB/xGyzeL+4k+LKWYjHOhGB6wylFwMizpcgZ3rEK8RZRsHz/bQrr2NJHiBn4Yq9TlUZh2Hbt2V3lJ8vvJaip82gaORLZlhoy8qXJBEnupTzqwaJJEg3vNcHkTwIbWntCX0mz3CM3YBagdJK5HGAFFfN93o+r5kZczJBzohpGms3SIYrZyYAZhS0YClW5R7jHmfEOZfin0euKq1+uS/p+vkMG897aGbRuJ88kT4WESPiUpyp8n2Kkmhu8cEWSm+1Nqr/IgnKtHRzjIirtKNPG76l0JTqNjnHLO5gQUJKhUKur+wLX0WIAu7R4iTlqQrESdYXA0ot2MeGv/LLfxmf5AN+9fu/hqMcEUr4GWeP/THyk1zmFuJJUUC3WB+41nkq2D2RTeMkQiKUM8MEXORXif021cCLKvrssMk1ealHGgsFcv+ICVZrJSF0PBUUMAgGMcZjv3pWGZWYS7bO5PK8h3koG7nDehZPVCq1Acwr4lKDYrqOysOAXnt8zC2poUiKICPG/FbIyhNZFLf6NHQw55Jk7toaSlWMs688GM+FSTqXFa8kxsH1im9rP4WvQou8v3rujeC+de0z/EWP/QGhPPis8ATh3UE8YpVcqoDX/st9f9m2ukPEvqGYyDt9WipybiM+JzYAkuX6hBdEfPL17OYsOMpcHiSfm8qAVDBMdSXmaCzuwevzn44j7+2PV2tnwy/8rV/Av/X3/y3cH/c/7Md5b+/tvb239/be/si3rW/4j/4P/xE+vH7A3/+f/X18/vD5OlC+t/f23v6/tt83SSnVApioTQlygusAAdJaLzIRgdiCbd/x1t/Qx0DbSAbqg4DvSriBBJAiMxIOJO8suXuPZKDxLw8QrhS9KvUc65+TvHTZPjwlgICVWUllmiJK0EiAKYAXicoeXtLVC2Zndd6+k8Qx+mDCwY0gpVeqFEVyt6hi33ZsW8Vt37C3HdtWcL/toaBRoFqxbztEBa+fX9GHA67AjVLpY9K6Rrzyslpo9yGFlYPmttR33CZqaZBCe6DW2gI/EGoq+3ZD1YpShBd0ZUVgi0Tg8Tjigi4BgAmJPw4gwPIf/PArYB6LnBWZDNpxxcVeS0VtG6RScaCfVIgoYYfnUckLcWhhNbhqxe3+ES8fXrDfbxCpsAmcx4nH2xvm6FTvEURSdDC5FCDCpE8YySWloihtJ/izHY/HiaI1CCmIpCqJL4BClKSMqg31vuPt9W0loeGCt7dXnCq4v+xMTIggvLJgcLQgw0W6G/GCTCSJREU414QFIJHPIWGZYc4K1yTbOagKU4OUpMr11VoDu55kB8q50yomFZkSVDqOE5iCWgT9OGlvBdoR3m4vuN1fMMAE0P12h5TCBLBWjEGSQBFBHyfcJiAkMIzzFaN31CbAxDcSKgDBY/VQqXKOfWs3rr2oCEbMXwPB6bMzOakCbK0CQXrzSCxvG1V+oBfBKSXHR5KijCSSsz8wzFHLDefjwOwTRYGtAiIO18LK0xnEFWeiptYKOwl8w1lpK4UEon3fGLsqyVAKxW2/47bdSNaD48Ag2UAEDfqNuDN6R5IsRp/YAoRYVYo2aQEXlW1nqDexhJBEhLN3FAX2TXG8PajeLYa2EWw8ew+gXNY6VhHcthtnqjLZ1AoVD4YZ3DqOMSCFampjDOggWUzAZCGKRixIAqow0VsKpvRI7lZ4WDBJUdStMeGeynqVhDcHK72rtlVtn1XPFupx1CU3WltJwYdSocak+lvvOI+OVhpMBNMNCl9AtTnQJ/ebgDTwct9xHg883l4550dWngq6OyAEgRUkZsIMBYImgtIqDp9R/UySKLe4qADPpC4cECpp1UKVK3OgOC1RsZSzqP5lc4CGWBPH8RZ7HsdQxTGGhaXZgM0BVVox4ByYcOgUkj5KQamhnBfPYWGtI7H/WSSjGWM6FQ8DmRRVnGNAbKAEuSPjmYcEfz+pplZrhWjBOYwEK2NS/sP9I7Yvb3h7e8NXX/2ANkGTlqqMwR7JY5AsNwZV95Tk5be3A+NkbOqTNm6A49Az9qGBWuPtjCoUpTQ0BbaPH6mGJoLPr6/ooRZUAFgQUhyKt9cHxHh+KVqhJc8GjrZRlW1E/DzPGTY03A9bI4nWCiuU605VxK7COWdUcqotksNm8OmY58DtdsNWSQQ9Hid67wTkA4iotcExafW4Mcbfb3f0c2CMc83VWoNUuCxTruT9DMBzzhl2oiTkiIYFhllwV5j0f3t95T6rnDtSeoC1tDgoEPZpo2Kj2QiAmvNDlHE+rVemOTAZLy/rUYMqScpvrweCP4B+dJxvJwqAcR6wMRZIA4QFnU1sewOM69rMMcZJ4LoVwCskgZmY82MOiKaCTAisBTDRe6imCInA3jkvtJQQkiR4ePYgjtcCn5P7ik8q1GwVkAnVHaUWHGfHSOBHkoSxMeIEMKlVUV3R8/uU1lfTDP2zQ946bi+G2/5CUMR4nmDs7lSs0opWC5XDxsTb62MpB5oNOAgYJqiQZ7hanqQNvmVtFQoE2QABRCLPTtGfOc+BANdroyWkJfmT6kK8jwRxybEsYxDqKs82GwgCCkGhUG4hqnSRcRzXP3MqL+Br/TdJoPIJrQ3V0gR10qo6X3JZy0QVPy2YZVXZI8ErV0iNvcVzbpEsWWvBF29f4i/+05/Ej//g+7SHin0oCRR9dowJPkDl96cNahKPUpWHSiSpAHoVi6QKU9qTESRP4FRRtUKECkwJJGdscrenApI8FSapIFQFzXAcB+C0wL1AwrAbWuA0ySLsJ9ry8nMlnCLtOnEn4UgErW4BXnJfNSMZmXe3iKHIobO1js1CwSdAxhJqLBcZJqyQxRfxxonk51MAMW9p9ch9OgFIAEE8lrCPjV8LNgLP+tfP5o0C0X/PBLcsPpFYM2nvk6Dsc8EOYi/XsIEk6Snea4lsBPAKLMKcSL5XqCWFLCytkXk290kyf60tSNNUrIWmpU/YP4UCCy0pLUDcUD+x+aSgIwsr57MHAeCavVSajHN6XOyX0oWbo8fZVzA5fzztXDnPaqmxmLNfCUILJApC0k5nLutjlUbr0CDx1CCl8j3D7llJlkmiwUwy5QK34/5Z+e45txS0qS2lBLGCSm1Iok+8ucSHjLxvhspSrbxPeJL7nITPHL8ZhBQ4f8fiXChCG+Dngi9yip5Jm0GqiHcotWTwgyrCoo1Kfm4WBUMX4WfOgVI1LJURxQ3PeaQYdy1wMp1Xv5jxDp0FPwDgRvKKhlWVP7NlPAkesvJLfFiSrN35WTXUwIfbsvCrcZ+QIAaQFBXqVkjiFoloKoXK2qCSF+CoRUNxJEibYcdFHgvVhEQVE6ByzVJOufoDT9/D5RjJqCcbKFoxci+BJ1Er1bEcFoWDJLBP0HbMVwGABakSoKWnASjui9AjhXbEuRc4UjkHq7+TjLH2cvCslXE6z+SZm7McC08iVUWNu6Q7lXOTyFS0Yt9pU/94HJhzAPBQ//H1c7nfY52F2D8s/LD42VTQ8liTAnWJAgaSRiVs7FS5L7QgGv6bv/KX8Kd+7U/jn/+pX8Vv/IlfR6/H0/MO5IQUyCKGrL0zCDcKYArvA1ybLAZBLU/nCr3ikUduUajQmYQSCMJyXhbh1qJ4gIqIBrW04OOU0ZIFi1z3Nufqk7V35/rJ/SXvkJEjTVtdjpuvOZDFXoCsu1LmHC9yzxWPJObHIrdakGiWEmH0pfD2L/HOS2lOQudVDPOkkqjHHJ0zVMDN4KGumWtKIzaL0nbZ4s6wyKDCQpFF+I3Yb/BIQeu1DSU51B2YvnI7mQteCq3ruWwVlooICzpjjdN+NuJfqBGPyLNnyM2ctsdcT6XZVRwR72jOYpkxJrQabd9E00F35SXNDKp+FRpb/M76niQTMpYucj64N763P2bNge//5vfxC//1L+Cn/7ufhvr7GL+39/be3tt7e2//Y7Wtb/gP/k//Af7a/+2v4b/5n/83+Ad/9R/g88s7Wem9vbd/VfsD2L0BzNZH5RMEWgBEgj1tL0bIYkMIds+oagJCElidwA8iGRRAaoVCjRW/0LAtCRBqdF5xHQ6NhHLKrEtc4FnhEhfXSMK4R0IViCRSJLXDFkhrQdsaRIE+J9yBbd9QW0HHCXTD8fnAeU60rV7qQFFZ9GwzZw5ULQRHi+Jlv6GIokhBVapelLrBUZicmp0WaoPvUVXhO1VXzm6oRaDuKKVBhRZEBMkAcyYU3QlEuSot6UrFVje0VvHy8hJVUCRViChq2ZDy0MRMlJZzJ8lQaoJpJBOM2fHoE7swEQ2feHt9xTw+w31EIjIqKgOQ9UiKSBXUPRSsbEKcRCgC3mFFUBUoTEre9hd8+Z0fwe3DB9phOUHE4Yavf/g1zuOEQ2kJosokgoLV4caEQ20NY1Ipqm4F+35D2xrO88Dba+czVdpQIWTyURRla2htA9wxTkqPT6Gaiw0qYU3rAAzTBWMOqpOoAqaAsuqJys0ERy0SCiFIFIkNDwKOozYm2GURFwDvhgGQDJTAgBGUY7I2yFwoaGWDaYJODvOK0Qdm71SHUKD3ybk6fZG5zuGYU0gcEoMXxRSHGrDvNyaOZ9pUAVvbAAUevaM/TkwD6lbQe8fr8UDvAx/qHS2tK4ahVAmrAUUVRVOFjU4AMXbk4/EASYYVvRt62ICxwIsAlRdBiWpT1YoScWYpKwgAcH1PTZCOQNSYA5jAXmlROJyWaF7rssqqKjCfKCo4Jp9PsupNqBJjYeNGWyomud0MNgSHG1QM4g/MMfD29gYNMhmJjQRIFEJCgghK3Uiicocr6SkVQKBJEBEcbw8cx4E5SSzwodAK+Bx8nkIbxjF8VT0LCvo4sLWBolRgk0rCpI8esUtwniRJRZqTsdkHTAzDBhSVVpJmYVFFNZWiAshEqw1FGuYwiBTM3rGpogmJZj4F5xxQDzW9QqJbKUzUMr9X0a1DEQl6rXCj3Qs8CQoAvKDohlKzqlpxngcAgjtb2XCrG6CCozu8e1g7CiC0uOijA0WhZqvitdUNYhRXSyWHYY7t3gJCKEuhDiWsKxyAUhXHzVGqxsYDmJEYOQGSSLVApaJtYYs6mYRM9Q4tgE3FcU4cj1dAWN2s0YetFTSpUVUvqBOYnjLw3FOPs1O5qlUSSoxqYt6UlmW9Q1EwizDRWwCRigpFsRnEHUOfCjpaOVAKigISiddSGwQFJyakbKjbDla5snrVB+c0AUkSDLVOlNrw5Xe+h9fjgePtDfN8hZJJh2Ed5iT7tr1hgODBFGCMz3gcrwCYAO6jR2Xs5LP2jn3fsW0b8jTQauM5RK4KVpsO6SQ4taLYP36iUpNNvL498IOvvsbn11eoKzpoIViKoJaKYRNirECX2OMkLAeKCkoVSGMSr7QAl0GLmDEBLbJsANRIxu7nwJxvaBt/rjXGiGGF5OGqKEWoJCjAVjdgJBCd6okSlcgEx0iMuYgCHmvLvKPGHCxaYHMQhNQC2twF2AXFeRrcT1oi3TZ8uO9UC+xhBeBR1R0qWDxCMZadp+O+3WCl4rSOWguVfaZFYh0EyiZw2sDt1qAAzsnqZz8M8+hwcRK4bxuJJ+4otWJ/ueHxOIIsKjALyxVggQitbQAcPSwBAZKMbAySBSIJjwTsQGBcY19JtRkDz0G9B3nXHFsDhhPAbKWSkE02HlXOtgo7AZUJD7KZucKcsYBEAYeDYAnPmIpzWID3lWqGNjEGCVy1bHi53WBBhvRpgGsACMC+7ahbRR8nhjlKU9St4nyEdaGApOkELexSFv02NvnG/8gC1SBynX+CkIdY32a23g34ZgU6PICtOO5rYLouYQWEVMfxZb27niXuFEgQJkDfBOqQd44AIIGFz+fK4P8GkQhA2I0QzK9FSQidjtkHpmkorskCgRfQvmgYocwRa7+GfbNA8Onzl/gr/+iv4NPxCVCl+kwSF/McLsLQFEp/GioNSzkp1CwSeFpKuUFcUi0BriUxqkV/2FKCUa1YKibRD7RA5l1KPNUNJYBUxPnDgWFU0pmdsQnPQGmSRiSFeaBVn1SmgggSP7fsoYTnwFob9tsdrbVQE2Xfuxv6SfvahGIhlyJrfreA4LA5Qg2VVspJ/Bz9JBltqfxgEb60Un0UTqWcVTijGnehINIhCaa2btTXuTbIvDm3BNeE1ScFpGANpE3iIjqkggoSSI7mHNe0LpIg0RelmmQSYxyyVEioVCRhjUWSlka/ESjN775ATXEJwjXRZqrkSCgMkaA+RxC4Cz+7jwGziba1pUhDENZXH5VyAb3sJcYOklyv83uSIeSJ1JF9exHxgGWrtgBtkvh8KVIl0YvBpeql4mY2SFJxgs164bpxL/Yr5iAVcvANkhS5+DFOHsoVUVw1OosGknQhdkWGVBMisTZnUn4+5xYiho4+Qkk1552sOylVehgLkjCQHeXGQzKJMEEkgMAxg/x6gfz5XuZUFHExpP0VVal490saC6c0x6GohhpikryoyBS0UypjRq2ahIK0iNM6L9aEg3c5NYe6RpFN2kxnnODvJgGM1pnxnAqUlnaW19pNApU5yXUWCmKIMyEcSxkO0XfTqOapVeOuFs+C61kXB6CQUCpJ5on4k2dICEjE9dwvYloF0fQiDZAM0XtfRKVgPzA+1LKUkzSIW2sfjJwdz8EsEII7ihhQqFILT+KzrgDJ/lcUjzNvxOEZfb3sW2NuMkbVpeSmWmMtsB8HbL2fQy7LQQe2fceYNZTWnMVLoI02C5g4nrT3jdjqiDPlpTiWsZUq0lzXVIW9ztnVlePrJYZA8MX5CR//6U/jT//Wn8Sv/NQv4wdf/i7GPjFs4jhOHEcHbIbNWaitrTFn7CDxkWeCJaIU5JxayzoLUHFLly0heatxGjGezefsS31OVVBcr7NUxGt+X1h5OZ7WCv/3UiIP5S5PhbmLFCURZ0rOd/AcJEstL/sUzLuOiVIcBUCrJcbP4z4RsS/ythkRgDifCPdXD3VZhjGP83mesGJdxv4wg9gMUcyT+TMtylxj5GdVBLVR0XScSRAK1SJJ2lSctWrYI2Y1hQdRaU74UwFsqo/lWYT5tfhcu3JGXA/M76X2l/6e81auJTWSpDK+576U52PGzTjrFA1LeVu598xHUzHLoDJRtxjLOPswF87xKIXqnJZ59ug7B4tu14SJMzltV9eh5L39cWgOfP83vo//9H/7n+J7v/W9tcbf23t7b+/tvb239/Y/XhMIvvfb38Pf+K/+Bv7yf/uX8bd+4W/hl/6NX8Jo41/9y+/tvf1r2v4Adm8OiK2ECS9cWWmRwAETMEVrVC7zkpbJ2DGi8gtCxRYzEoW0YfaBftD6hQnxBCuoeGJ90HfcI32VKjqZII9EGCvvMpmtv+fgLUFykJCs1wWIkPuQSVihRLM7RmdSrrYG87GStUUUCABCN8An8PJyB8SxVcHWGtxon9a2DWM4VKmmM31iqw0A1YmWdD6AOQcEBVIak+4YSxUKMtD2DZC0RWswM1SlelFrDbf7jYAc6CXe9hu0CHqfVEvBJEgfZB9F2N5ACKZNXpqHC9WfWsN5vOE8XtHPB1oRnCdVcMQDDAvS1rbt2O83ylH3jn5ehJsxqC4jRbEppZlFgf3+EZ9evgAAnOcJCCtGzSY+f/4ar5+/hggJRnOSMPHh5Y5zDry+vWJre1QX0YZl23e8fHoJ6XrD+ZgcKzGYDybQa43EeoGE+foYBE0f5wOtKKvyxoiEBW0LRZkMkqgCnTaQVW3ylKhTKYtwA4mqSxTUUoMMg8iYy6poSwAOQKhgyUqilVBGKlpZqRzWYYBhjok5PQBeXck3qOB4e0MpBMGP/oY+SCIQoQXa7eWFSdSwwxjmAcg0Jj8KiR6cf2GBJrQE2sKWiCpWE61ktb1j31okTAZOYwKvpr1g2O0kyah3kqVEFXR2EoLb/URdimaK1mj7VEJu+1IfADSimA1bllVSKH8gIanRtnIlA5V2k8QJFdY9YaKovgTEmcDeCtWb5phgwSxj3Dg7SlEc9oiKcia3sopwGs0EaCliQCGIbZNV2a1tNDe0CZJqMhEZNgdh9VjACuseVl9FFbN3zCnYtoaCVL5qkVdiJa9HYhiF1XRqCkOBKkgqctoHneONZMpSCXoAKFVgcJzd4c5qb7eJIgWiBcMcrQraRlsvGxMwQx8HPr89UFFR60sQPADA4aIxT0cQDGkDtpWCqoo5GftVd4zpGCNsmTSqelWw3W6YswOl4FYqbRnDBso1qqohqEAAawOlNrjQGmxOpiSHh73MVJSys2o8KgiLkkxShEpD1xqvsFCbSvBiZiWlCFQcWy2sKHeJxKSEqhn3Hg3AZNMK2I55HjhHh4hgaztJK61iq42xsxmsd7RaFyB5v23YWqU1oYdMfyQoORiGWhuJgqWgwEjAFUClQn3ClATJ0ieas+q4oEDc8LCO6RN7Kbi/fEC3ycrwsGzwMeKdDaW2AA5BpbnjxO12x4ePn/Dh4wd8/fkVP/gdx+NtQjwTuwQkVRUvL/dQuDnxxRefUBT4+usf4jxPvL09UFtZIMKck6obALawS9UiEE+VOtoNfPrwghf3sMnEAmaaNNz2G/b9jn/5W7+Nz2+fMfqlrDACALEgKWkp0DmDeEDCJYGtAGMGbUrdGT9vrSIrekcPoN4E04HRR5C5J2waiQuS6niMXVqUxFieUniminVTKgkDNhwqFbXSEhU+l81OqxXuJLDVWgOoKGv/LbVh9k4yjqc6EdVA2lTs+w3nOTAH1dXO07DtNUALX8CCgWBErxPltqGpoLgBFTgHgVYP68rLdpYEuBKAlwqtbl2ofrS1HcWUZO1WAVVstxvexgPng4pLqrRnlKUg4Gi1AK3h8TgWKRgQHOdBu9eYO9IK5jBMBHFAZBE0xpwLpEoVqoc7NmxUUoKgVao5OEjMTvvbUlghPUJdxObElOvMebvdAvg2tG1DbbQUxXRgASkTc3Qcxxu2rZLEJlQsmYMEPVOS+fbbDaWS8MV9jmQnkVA6nA5t3MvtSZHx29hI+LnUUp6gGP73JzIQQb0ChMVfAkRx7Iz7QJ4Lomhg0qYkbUn4mViAiyGBYd5fUrklz2Cp+JDgsT2RBPIZn9GzVbGPi2CVAB5/lCQIs7Bka7qUnCS0wBbAGAB8ayxKKJLkN+D+1R0/+9//LG6PO6xYKEV5kHxDIePi0C7VAAEJe7SZTBtPo8pQvIToZaeYVlu11TUOjHV1nTGnTdrsAhdRBYgoQXUCiz6k1S/j+Rwdc3RYWHLOIJHkIHkQJkrlvUskz01zjTdBPt4BL+INUOvGvRRUaiJRnPvOeVLFjgAxizVUgFZbEGU6z7BxR63K2Lvt2zVXZl/EMg8FEaoLL0pGzBcSr8YcoaxlobYQZ/U4q+Q0gvhSbbnsCbHmJvHKJKcAAn1SHXqaj4a1pyV5JZU0CMQz7vEME0o1nih27gv81wS7+efCu6lwfs45ViwEaMtV2xYgPOOrgXelVKkjyfWb61Ljz0qR+P0AVKWs82MSP92Nc8X8iRjBfYwdEwTbIHms86eT9OBPhJqiLIiK2ZFvv/gdgIS9Uah8kL2xiA7cAyTIBbHOgtSQNqWCi0DpHgqOEWdsOlBkLdQE1EfOf/4hPx+XgkmSLlKpxO2y/cxZGBENa8pI3KtwxTCL+Ui1pBmFAgUSn5LvSUD/6T4BYRGECDz6Ju0CzQ3TOi5S/hUbSEbwRdBxOCTUzBinPM7WMReDQTzmjHM2qMQsGYiCXGEetXOySHaaAH4SKqDr7OVJphPw+0LVpS2rtFjT69n1sl0LcoyWFsqUllw0uIeSi+s3rB6BsBSLN7NY/yK8Izg87i3ZLxkQgoCiCtiVxRIoiSuxcUpMIUQh2+gz5mcJleHILQnPPx5qelhkaqDsG0lxuQ8GEQOV+w9JF6HUF3OHcT2VTfN3qJ6cuUCNODiiH1qrkT8g0TX3pyt8xbks5ubjcUBVse87WmuY0/B4CPr5WIo2jLUMWLXWKCoztMY5cxwPjDlDydKX/S+vSmG3KW3N1VTdyfjUgpzqAPa3DT/yD7+L3/jRX8cv/flfwuvtQfVyZWHRmCPGJMnNufaZX3heD8u60y5yLvw6fzCXo8u6LEO0gSSzEUpYS3FJa5w9ckNItRzGieeWZ98kF6fqGLepeNbYT3vv63fiNMZjT6j05J7M9RGxUag+LCLwcVk1AlREzCnuQbpx55iVSvUuuKMBy2LZGbA4ViqrL1UYm1QQpF4SGj3ULLOoEbHfa2XeJs91yxoz98YgTY5QEM49JNWAU40z88bmFxld5FKPWtbxcUBlCV4NBUFnQWq8J20xkwskK18Fz2KD3GN9qVkmUazGuSXvAFDGISoCD5TJ+atF4TPIu0EsG4NqeaVEwaSkbWoBqizLcEQ8kLI6+b39cWhOBaW/+V/8Tfzob/3oH/bTvLf39t7e23t7b3/sm0DwZ371z+A/+9/8Z/iHP/sP8bf/l38bv/Pd33nK+by39/besv2+SUopSJSWOvqU4LmqWSlXPDoVBEjQKKsy7DxTTjzqq2ph8qyPdZmNb2FSwWntQVuhAP9nXOOfqlkyEcfkSFRZ+hOcsEDistSZRK90norARGGDigsAVYm8AOKC/b4jLTXmdPgcaEqlkqKKLazuWiuYg6QYccfjcQKg5/ccJJVgq6hhU8ScMy+PVQvl3JWWSCqsyJ0WyZWQ+fVpgF6y8CUTHwDghrfjAdECCwDVxSChujJCFmQrlWChFWitEJA4McExU6loWtFUcD5ecTxe0Y83jH5SRnsO2vqZBakC2G47Xj58RKkVs3dgGNSZdJ2RUCktgY+Gbd+x7TuAEkkvR3MCGDDH57fPgAhaa+jjRD/7AgdtGs7HAXHKN4sU3PYb2rbh5cMLpAh6P/F4/Yx+npHzZMUWiUbRd7qhCKvv6lZDpWJgnGck7hUuVClJyzWJxE/2/zQHnpK1VzViJH0LqzyrVGTloyie7MrS4uEiSSTUQcl9JsppSZYJpgIY5cwVAqmcA24kLWUCk8DrgCgVoLhibNkKzMmEZd0aE9FCoLhPJnL6MJy90+ag8qnmGFAB9kobIG+sBt0KSViZIJoDMBtMlhQmOWyeQCT+AcOcPSofKxXH9kbCU61Ughk91jjVQBxZkSysXoSE7VMNApDjeHswFrWCtJi4b3usXVY/sjqcya3RB+Yk8FNbWYn7UtgXGmtrjAFTYCsV6ooWYLnZBBSoG62JzGjbNGyiT4IjW1NsRXH0DinArVYmxcWBAOrFSBxx6yQoRlXfPCd2VGw1bA0ClBijw6zjtt9gKOhjYiIqjBXA7EFGIgXxjGRoBRUZzvNEHyQF1lqgaHgcD8CADy8718F0QBtsnECA7SpXzFIREorChnOrG9wG+uiwuUUillaABoU7FatqAJPtdkdFgQ0SBaYXHH1y/ll+R/RDgMrb/Q44tTHOcPuoKrBCchHtgYBaG3RynZWtYLgC2qBWliqKB0BVS8Hwjihlx5wT27Zj2kRplTEdBBrNdCWS5zRI5Z4nmZCcAwLFhMacnZCSc9HWuty2Cvn4grMnS6URgAMrpEupuL+8oNWKc5y0uTveYGPiw/6Cr93hiiDjcT+dScAoMTfh/O4A9dwcBlaMlsKYUcyBWsJusaPcCtQNdd9oa2gKDFqslo3JfAUBSBIRWcEu3EVwHAc+f35lbIwkfakN4zwhwr0v4AtWv8deBt9gd5I69nlDDSJWWuylddUiODYSXYECnxEvRVEKsGnBbMB5HCTL9o4eMvoCwYf7C/ccoboPwKphMVqbmjm21sBjBpO+Mw5BtTZ4gFmtUrnLRRbQpFDM44HjCBJTkE/L1LDCZXU/1ZNCjcIdUgvqtmGOy5ZvVS2jYE5HLRuGU3kryQRpw7v+ij6qtQaxOv+9wK1AJhVM4I7ahDa6Y8DqQC2KE0/EjAlAJrwAuhfsLy84Xg+YOOqHG77z6cuEPPH29Wfgq884+wQd4SzelcprtRZsW6WlZ+FZbDoVI76ehvvtxjik3JfGDBvUUFDJOMIz56Bdm6bCCYEwKu1hkYgtFAruLzfYnHh9PdDHwBgGVRJHaUvlaDHeEBI0fQ4SQseEn4N9bRMGKsqpCInmuwMHVZp67wtUEBGcPrFtGz9zTlaLi2KCZOutVbiTjNnPA8fR0F4+Ytsa12rYN7jRpmbMga3uAc5w3Wy3O9qcqL2hDxIMaSVUVpz6NraLk+JRICCr6OGbVlYEPWeAkpeNT1hP8SeRKlcCgc8446/v8aXmWoLBQ8WgACpjvicRJ0/UCST93m7M/55kkOtZ41GEz+NGcrNWqnTMWBdpCZkfbwHWSwBmNeZ5CQKJBuh4+8EdP/uLP4vbecOQiAHL8lqe7miMMQCB8LR74t+5T12gpAURQ1dF/kV6YeyALBrVN1SA0mrn2UqPay9UR+RSI1HhuXj2kySlUHmzUE95JvkDJGi11uJMZIuMmUo2AEKplLGkhuVpaL9gKTHZpcwHkAya1mIXIM9x4uwhYb4GoarGnjdtUvlpzAU8e8RgQVn9J1HokoCiOZUJchrlmf+ZuJMAoehlbSVBeLmI3liAa5Ie1kxk113zMOZAEuYWwUGuv3MPTqJBkJqSXJDD6Re4nEAuQHLgcsQ6sAABAABJREFUsr2JHs+7NVkPacsV55JUPpq8C/Iek+SbIPdIkn5CqTD/PRBcir8E8URZaEClZF8/s4qTLIoeyqV+I4iCgegbSCh5CICwXAYkiFO6YoGF7WyS092BFoTBpUa0+jSeIZBzEqkAaKq+XZZZSQYrSfKKaEVgmPM0SVhpjzSdc7kGMTztJ2uNoqk4myNUM1IdSqELyadAaCgY5fO7Y4RaZ95zWWQRU0xBkmHEO3siF2icqaaNUFaKeYoSas88g6oK+jDeYzEjbxNaWE7CgrisnI7FGEEcNjvcFF5yHQCOPIfbRTOLnIl4zEulKqtjXsoluTZyrpeCGivfQKK/mIXteaq9sFUNFaYosnBc/QjP9Zj7WeTKICSiZKwJUkISRL5psxW/J2ljmDHWYZYkgiRnXgV2HnvEVitKxBwRjZWJ9fMlij3mIIFyFYaIQltbayBfwMzW/KTgXBIqZK0FxjPGdlcHpkPVOf5zwEuFipHcmgQhZ98olLHGY42D+/FS3nLO1zEG0qJyEc+cxElRpXIvMt6xT2olqdl9Q7G5cjsW+1duljxHjFUIRqV0ReYFc45AqOplE/ixf/F9fPqNL/Arf+ZX8Ct/9p9Tda/y/Ohhi3xNttxvNXIuYz0rghiTloapuDVXfBSkRNuIewFjNTM5rZaIvxwfzZXgDEilliA3XTlahiNdeQ483VH4/U82YnF2sFBVy3PGUqUShViq1qcFYcS2OVGC0IzcC3I+K7u/7g02Qs2ssjChCIsXZx84j3OpwGV8V6nI0FAKSywBqj1ZKP31Pq7ivnzmGcVnRUNRNmJ2xEgq2knkq8tSssp+yrjEnJNGIeaAz4skJ+LrPFfKEwGYLx5r0lecvEhIMY9VUf0iS1I16iJDzyBKSe4lcQ7IyFaCPAWbcOO9gkqYZb1L2oJzCVF1O8c182mqBleqSVueF1WXmtR7+6PfnhWU3tt7e2/v7b29t/f2P11ro+Gv/j/+Kn7yf/hJ/N1/9+/i7/67f5eFh+/tvb231X7fJKWsyEnwrKVmsVEK28Eq9bgK8rI9wsqmXIlTQVye44I4x8Q8O0okuzVUeOa0IOuEbHYmSQMMYEIjLpKRE5hzrkSpW4IFCFWYtBzgpZAX3EhkRfKV1iaKLrRzES2433ekzC7Aq1wtkdZywaYNrQr2nV15DipYeNrmhOVRa4qiFXBaCN22Hfu24TxPCGwlN1ghW+M5K1QaXCYT5i2Tv7QgKIVyvbpAl1T1CcsBCMZJUkmNqjj3SRsYE2h1bOAzbZUqOLUV+AT6eeKHx1cY4yTZZHRe7uHr0qthX1Qq7eWgite3t1AgoqxzSglXrSitYGsNt/0FkIpSN2ioblWlOsfxOGHniXMOlNZYyfUEBPU+cDxOuNBGpbQgEAlVuaaTMHCeDxwPWnEpypoLad2w3z9wHFUhVdG2Han45LcZ9lpUsKq1knw1WJGnUWHNBBalr2t4f2RyOeXHs6q8FCZXmBRWjHFGFdqVpNQAXQW0UnQxFK2R+EAkYIxWZENWBaMgKpuHhSIRx6dUAgcEhjOVq6jbDimV4PG2wfWqeOcaCbWUaax4h6BsOxN1/aSag4DrOpL6GJO2UYiCOsvEzAUMwYyKFlSSZ8ImqngBhZxUFbMZ6kMBYLJy1TEGSX8EeAIE0IJprP5l9MmK7QDrRCHOxNcYgwnsQZn4VgosFIvcSPIoUFgkj4pGJd0g8FxLXQBVJoxFmLCeNqHOZJkiVNiMVbJffPkFNhX81u/+TlSfp/oRq2LJRisr8WqpzBTjgwKYT/RQ3al7g5gA00gWjdJaNwdroecCqeY8Aedak70GOKURgzcCdsMglSTTUlnpOiKhOWOMinioSw3MfhIAYoYate0YdmI6cL/dgGk4jgdu5RbkvYJxkhzRCuA2sbUNtWwkPWKGHnqBuoQ9GCiDXgSP44Qp873DJvZ6I2BYBGN2VChQKV8uYYkGAK4Fc3awil1RqqAK10omWmkVQRB1ElFFn7Tra7UBZigAxuyQqLYWpK3PCKCH4MTZZySRJ4ox3plNbEFqzISk2WScKoq93eMZCI5YWNFweA3bhzua7RAA5a3BggSrtVIhKdQU+nFyjbXGORb2mtMcLkEoFaaoTZMkrNBJq6BSKi3PYtxRKo5zkCwRgNQ5H1wXQuvSBH/3nUTROUjuPPsRSi+XypNJqtiQJOWYODot6/ZtwxgVrRXstxuO8w2tVdoeDipobDtBgFJIdtk2qi5MA+peY1xpnwVihNi220Xe6R1nH7RedEOrFTffgZM/XIrC+oRICbUNwb7vOPu59jyBY7ihQKCVij8JZo6lDiHYbjuB3DkxQVUut4lt37DVxvmRlcleMEaHVAKYtfDfkwA9PQElgrullnjPidpKEF6pTgXnPj8CfCpKZR7avk6Sgi+UFCI8M53nida2IAZERf7MuUxQ4Xs/9j1877vfx6/9s19H944vvvcF/tSf/LO41R12dPzKP/klPH44AKdlX61U+qFdCpd32RqqUhFQHGgCHHHWe317w77vkDFI/BOGxn2jKhAC7Nw27n39nOjnQGkl9oM0clDUGgowxjl3HAf3kThPmg2cZ0drstajTe6RGsoyKk7iuAhjTQC6CdzUUqGYEGxQKTh7x7SIK9ykYEYLltJIdloqCrGHlVZJ4Osn+hg4Hyde8YrWGrZto/og9lAD8Ng/OzRUosY0iFNF81YqdBSc/cSwzr0vzgHfxpYgGEknIVQS9wnNM34CPLj+3XwugClbgokkg1HF7LI2y6rwi8ChmuBtPkeChvGH8fccc0ECdvGfAjTjP8a5Lwnoi8xx3U9sYBVZlNKeesHjeTRFclCEaoelhFVHJ2D+4Ycf8Jf+4c/g4/GRxKUiQWDk+mqpUjQnJMgOFwnmUpkS1wVIphIPQtEmwbgE7yAIUnwC5AjgjO9LEoM/KZgoNK6UNWxjlupAxBkSSeZSGcgxyH2VQDELGSABBD797AJaA9zVoiS+igRYHgUDQeyacW+ZZpASVqWM2oxNYbuYZ3dVCdsTML5zwHlOCRW6JIDkOV9VUVuSsiX2k7LmI4rDw5omFXwTwJyhgpCEnBLqOov2lQo+IJGHjI7s18tObPVpzqwYe9VL+dEliSZPc3dy77eQrOASkYs8m3fLmKc8s9ulXOYaduIk0lB5LzV92EdJMESq7oJjxTUyoUFyuJRGqAiZfb8YDBk746ybZwt3qpfQso73DoUEaRuLWJfrOs+ubtzL18IWoQ1zkiYW2SAtunytOREg0WF+Pi2G+SuyCCYZX5LUL0BYb8lSk8l5tIgr+X5BlEhySxK0tv2GIsDb47HGKKhkgTUHs+iJ6JLEPdpshSqVBTGrUP2T97Uk23DJqSJII9c8g3kok+gaHtGgSHiQivWafxAESRTLVjAJSot4Zlw3jG1JNOI+ue2cjxpqPlSg4flK4KuftfL8T3t2vn4SWgQeiqcskJgW6oeh8KaZ28LTGs39I5595cCibyTWlkJX4UPOFaqa5PmCVmu1tDWfHWllda0tgGd+0iW4Lz4r7RRwvkjE/7WQgXWf0VqioOk5X8fNy4zv2iJ/M8NCbRE1LTS142dt8uzn8Zwkcl3fmXsq3yXWrlJlGwBarTz7FapLWxBacmwMM8ihgAgJJSOsSUsQd5ibmxAbMZbXHhBpO9pVgmcDF8dWK8w18nwlCqW4P6YNbu6fEntUDZVOM4dUKmQyXmX/S9iesd3nHX/+//UX4A780z/9Szy71wrrzjhbFDDHnAwUuecClSqO2c/u0NxPYk/JmJCrTktBNUSuJImOXD+t0dI+9zuk8nGsfe7ToSorqdLnK55xL2LuIxXoIBfxKOM/FSCxlJCmTRJggtSYpBmqzM4gxbHozvUqVMzBr63hyy+/g/PR8Xg8UPaKjx8/Yd9uUABvX3/GOL/iXIqzVwmVbPNQUCpp5Jv04lRzM6qbxlqBBdk34izS/jDOGiKK2dm3Js/Wi/n+WPFg5WaCxKQRe3NfS+u35xiCtQeHjexMJXTk4opYyfuLCPeu6XPF7xDCjFxM3DuTVJhjq4qmCjOeAz2K2TxyTq01KsxHURnynGhgYavnrh1FwaIYcafJvnhvf8Sbk6D0N/+Lv/lu8fbe3tt7e2/v7b39ITWB4OPrR/x7f/vfAwD8nb/+d1js8d7e23sD8AcgKa2KrVCLaWGL40YihTkTwmNOJmwLk1giedkOz/uocKQqkuE4T6ooKatuxhirosvhBOxgkBq2OQFc5KUpq70um7dJ0NgjYRjkkW9ILS/pYo/noK3GSsQMg2Ng326opTLpFclOhaBm1XMpaKXhViuKAr0HCWI6+jiQVUqigK7qQ0fvE2YHzuPEVis5Cspq3BaS97Q6YgJMpKC1GpWmQCkb00KRdOBFumLb7wHmKpbJQxX4pDoQEyVpw+AYNjCPN1QUdDcAE7CJcQ70s2PaAVZW2QK5F2hjlNfe9x23+x37/Yavv/68yEkzEhalFOy1Yd/u2HeSmdypMtL2DVDBOE54qPa8vr1CHVSVmJNJN78qeWcm2gLIK1vBfttRtGLfP0Cr4ni8LdUugIm6UsO6oW2o9Ya23bDf7xARbNuO2ioTqZEYdw9AIhI+WSFbjo7MdgsHlslc4bzUILkgkuTmad9WA5hB2Lgo58zoKwl5KSjpSiSw+j6SaDHfxxhUPYlcdD86n62yWrJUxXk+IFJQ634BVs5qVfESoATWJXWRGvrgWhUJhRzaOjExw0qufdsAoT0fbUaojEIwLKzO4gsUAjUBUAg6zQN9nCh1h0jBtpGA5D4xOnBrG+X1zROPWcnVWhmu5pxoW6iYxFxnRSjJhZoknMgo57yBRNJyDKhXzJHAmEM0lDeUycsxWekskcg2hL2XXjhAJmw1QIkEn6gSENYuhUDbGBMwVuC5FsACvB+RZPdIGtmAth1121F2R60bHo/PSCsVi/GoZQMkwNci2PcNmLQscWGCV0yBsjMZb469BQlSCOqf54kxDIYeIImEqpKg1o2JvuPE1hqKUEJ8OsJmyyOhpiSdpQqACooIzmOGlRLXRSsFsjfAWN23bFhKwTlTMcexlw3iwHkeoQhUcWsNZorukXibtIqZg4D0lAJMhamipbJQVKJm4m9r21LeqKWhWw81uGt/m6GWBcTc1oIqilI3DDf0UOGSSMTWqLaGMmU8JvlmrJKPhO1MYmPYltkzeFwwfUa1J9WNPPfUrcI762S1NIw+GN/ujOfb/c7PngaHYa8NUVhP1aBUnnCCI8NnWMuxOLeIMFWuVOnpZ4dNZ/VrAtLutDHoA3DK1NscsR/dCQoVrvJSmdA8D6rttUZ1NJhhhBLKnIN7OQAIsLXGuWgC3bi+7/eJ3m84PzxwHh1jTPR+UvFPBPf7Hfu2o2nBcRz46nFg2xq2WnE8DgADx3kCmCQDlQTLC1Q7SRxz4DgJ41VVoBaUVjCMFqp5NsnqateYJFHB2uckiGwAxKA1QPwgWVQVtI8Ex3qA8xyrgdt+X3GWoHTFrezw4ujnWEC9gUCKRiVsPyfG7JEEd/Q5UFtF2xpG7/BBsLaUAjWqI3XnZN73Hb2fEOGeneeQ0c+wJAHOo0NFcds3knYiwV1Usbcb7vsLCabO/WfXDXYafvDDH+Lx+RWfHweOzjPL3nbUynPL6CSnUuFQYSLAdLz+8Gu4O1qpUDdMGyT01Aobj2V7MC0BeoEUxXAnyUk5P8UMpQq0C8Zg9bZKAKsB4rc4O+aavLD8IJIHUSmCeICjAdIKqPwEwRSHT12AeWsbzE6oAq0BLUlZY4aqEYFMqgw2jNOW0hKJG9xPt5c71ZR6Rz8frLZ3qnm1tqMVxePxwDRg9k7iQwO6EyTZtp3vawSFpGjsed9euze2C8jWAJPhHmo8gAWxK+0oFkiS59AFMhJasSDD5DkdgkW2SMKEhY1QgsPPVitLGSnP1HYB/ASfAwjEtecvwsL6kKhmTwJOxGDEPUmX8kb8uOcZnt9fRFFVwxrEIA68fP0Bf+kf/Jt4ebuHRVWQuuJpfBq6BzGRkgqgMg2gWhc5RgAgPruoLkIKCSN5puWfQa6zZEKiSWJCWGx5PAfjFfvWZucZOIkNAeiRZDkXWeLq9+xbD2viyqKAVtHPOBvLEzlJU+mIyqdUQMvnTWIQzwmpbsYzdVlzS0BVzqU2FGSnUq7iD35H7AVpt52kj5y3RXmWKRWqFTUsbq491NcN2z2JVr6AaHWHylywfxJEPABoxN/Xv3mo18RdkZ+VtsdUAbrOFwnePhEJJgH0XDdJFMziHREEuWfE94SykPLPsiDBHU9PxfNV8oCySSo3LpWJUKiLMYCH0mOMmwCX0m2sq0WWsVAYev6CeDuO84i+D3WNGCNMg5S6yDC5eqkkoUFWDDD/G+pPstYLiSiyLBjjx0kxkaf1jewXXc/5HEssSAEkfSQR4ektn7DCJCxedloWfcD7WwLliPjvYb2UxSH8OfaXO1VsSPwhoXeMc31dxjYVXQ8hoW7pFoB8vOM0AaSs9VqD9K5BnpvuQWI0PBM7NdTrVHkPK0rCN9V0Of8XgTQIY8KEC89uEqT9OVEqbaNVaP9qNi+Cm8e8EwnFWZ5Zcw6ZT0jRUJZSknBi3zS/1CsRZ1/uIZLcESrrLjXMtOt8Is4hiGfmoWozL9WUJ4IBz4qXGlkSEVI9j1vLRYiKiEPChQBjTCy13+dYGn3g8c8iArW0vZP17ItgKIq23xij3VFBS7UV44NoZv6s4sP1zqkyo7gp+5//4nEfT3JPEl5z7c3J4oeLWAOI1ijq8ijaAUlrI1TvIIvMy73mKaYK+0glFU0VJRRiajU0a5jWSRS3S8lGIh9ANU4SV44+4AiClRkQRRK2FJFk3QvEBH/un/85/M53fgf/8vZbzP8I4E9jLO7Lfnb97sq6MNrkPNAYOxEEMVTy1dBaQXMqJ/E9SMapWlCKxv0ZURynF2Ez+o4xGEGUltUPaddKpXjugyQwYuV7M99H5W08kd+T5MQ1lvcGCbvnGbniEp/JHBr7YGsbJM5s0wzNmevsZ8fsA8fRMQbnYu6zXFsAbNJetNZF0hx9BDlKgsQTKkUZjYNZ6HF2R5LCABZ2LVKcLeLxCEvv5+NdnhNz7/B47jyXrfNgvG+qHjG3nMtUltqa5F5nCLU+xj1RoMYZFk5CJrNQjKVpQZhqsVynjLu1XHOCZDODqof6O4s4Ridx1M0xwftsktlLYQ4oVm8UvF4Klu/tj2hzWrylgtI7Qem9vbf39t7e23v7w211Vvz83/l5/NM//0/xq3/qV/G+Nb+398b2+yYppXwtgZu8wHmoIzzJCWcVS9iQ1Jo+5EFyKqFq0jtGJ5haNtpu2QgJjSUvb/CUz48ElEQiViKxFum+kHK+qn+uvI1e1S0r0RLJNUUQFJ5UaVzWZwtYRc9EZljTlIoqiiqRpJqOcRKAtUh4PR4PgouVqlF7aygKiFzVqeYDYwBbAPESlmISWYoSku6qEnZBAMRR24Ya3u0SCjjTgVY3tNudXvaqmDOq8hzJ0wr1FtbDFaVEvDtwnA+SAiTUanxCiVKjz4tEk+STIrT2enn5gJcPH6BKu6kxSC4bbkBhsr5pQWsb9tsdt32PBD5tFLQIjt7xeLxhnMeq0C3bhrqRrNDP40qyhVrUh4+fsLUbzIDSGm77HaVV1Npwng+8vr6GAlJDK5HIqIpt33DbblDdUbcXbPsLkxq1BOASneUORyhPLUUfBworQPM9mYhikjwVwiCATSyCAhUbPq2kwXT7pjxzofKFp9y3GftPBKq066mloVYNqXBgDFZmMrHSAe+0xikbRLNitlxggpI4JyBY5jZhsyKN5bieaLlYQEujVPCoQbCqRWBIJSJWqvqcoS5DStzoA14kiDpGQook6BJVikoiTFZsulMiZ291VR+uPFImmEP9ByC4L6rosbbbtmMMjtu0ga1tAASlUtZ7jEHSnA1AJr/fBeOcC7yBZEJfVvJfotr06AMTTNpVA/aNBME+B6uup0HGgMZ3jjlpCWnsn+mO41WhEDStQFSPolYCYCdBNCkFtShMC9wVdKFpkaQrqAKU/UoOnmOilY19MmixVgMIYOWewoZjq4WJfSE4S9snAEYC0bZXqNPuUp1EiSLAvt+gdcM4OLf3/Y4+O6RUvB4HbE60Iihu2FRR3HGOQTUiVey3LQiRBnFFVcAKqNTjhmoGHx3Qgq1WPMwxJ3A695U5B5pWmjoYP6NFkn2cjPUk0gHWCDyM2H9QKi3OiDJjzolaGwmnYXE4hYm/WgpscJ5utaJPw7Y1jHOwurIqBsYCNMpWYs+LBGMC63Il/RwDWqiWlsppb8eJ+/1GcPkp9po53GQpjzUJWwtx1P0WOI1CSwUklJgK1QZrJBO1Nti2ox8DfZzwGeQMLQSswWrPvVLZzWxAJ2AiMClAqN6MxwPihoJI5IMV2zoJjJzj4F4/BUc/OWdrhfmA6oEzrdjccby9AbFfuAiGh62CT/h0aAG2W4MrCYFuXMMqik+fPsHxgsfrK47HgWE7UGj/s7ed5KdpeBsPKq9EEp1J77B6CiAdQmIuigJeYLPQTlJJ1LptO4byGVGUhKmwEnF31Nq4L9qAYUJqkBitQ+BU2PNJNbCE3ozgBMnDCqkNZlyzijeIFNikOpoBuN13dOtByCFJoWwaKiATrW4QUGGptg2iBePtLYiZjAmttSDcOWqpOHunZeMYaFvF7X7DHB1b2HqMMQgsB8B8nh1mEx8+fMDL7QZxqmSNOdGPjt/41d+ASMXt5Y7v/fj3sO13/O4Pfoivv/6M4/GKz28/hOnEx48f8enjC2bYaB56ou0VrRaMMQmGg4pro5Nsu2x7nPFJtHHeVAf6xOwjLNFOlFqjIriFNSzPMtu28Ww4k6QuUTVvGAoqK8U+RFWlcqk6INaIWZBuA7pVqgnWWgjwmaEPgh+0Gz1R6xZ7DdGEUmSBbGOyEr+Pgb3dUKpAJoEHkq1pE3zbGorsmKOjj463nlYNAnjHVgvu+4azTxxnR+8nCaCloE/D4zxJYoYHmfWJwfItbUmUSIwx1SZSWeBZYTIVYhKM0QQ90/oFqfwQYJ8GuTBigiCVk4gypeKZQOBx5nrurGdiAL75pxdZKuLcAseDbSAgmO3rV2TNr1TuceHZWgJs0vhvHmvAZsSes+JP/bM/iT/9q38S9+MOhIVUCeUZ2tlIAMO0otFK0AySxRjxbFHgQNLAlQHRkjZlaWtyKeJonFG+QbIQWSQKXx9+WeN4xHkCwamcYWuvTGVVINUcOIYqJBy1FvaIQXARCJV44jmKJPDZwh4yrOoKFQjGDCvcsMdBEAvSjtPmjNh8ESPattGqOM6ctbZFhjKbjFGhiilKgFyU5/1aKkQKtDaU2jjOwSBbwD0Y1z0RZ8RZXBxSPOK+LLA91VevPmWPJZlo2zdkwYI/z9tYGxZ9mwDp6oe4E4iEZYwZEPY+ObfNJ1IBVaQsggWWthOuu3TcL2BUEVJc92yPwpYEOZNQwHEqS+GISjgzzvw86Sd5x6KwINeyx00AoVqRBPErD5CEurDFyTV1ocO5ipH/lOeOXEdaavQHlVlrKBKnFeWl3nyRrxD3gHjqp3FE7CWRW0DYxQfJoniq3fk6J3kq0ALr+XPtuVErdvQeKj9haWUWew4JelzYEgTwiBGR30DkbyjgmgSFIOUssgEJEBpjHSscbpflqsNBd7RL3UaEBAbGW5Kp8x5Me/W0yQu7eLDIZwQZGRpx2Q011F2mCZDKcrFGeIQOQn+QVnh15x2niMKUZOQZyjMkpzokCgEyHsdEo7IpQBKYXOpUmTMCh3nFLBeSAUh8Zj+MOWJbYBwvIiQqJ3loOrxw72c/hyq1ZEzAIvbknLVYoyIa51lEnJuRJ4oYv+aLXVuZc32VUECryuddSjFJVH2KJSWKO6AFpow31/jqtXc4f9ZzLaSlo5A0pzUUbUPh6VL2i+eM+3oOwRyGMXMfrLDyTeVJ2maycMyf5ixClQtAFAuUdWbIZV9rxaa0Wht9wKwslS4qfirEqcrrQWDMuJ3nBXbCFW9zrdzmhp/7Rz+H/8vP/T286ivnBDxivUT8wtozIYIiFYBF4RRCqSitLLmXrSzROgdd8yjzItMMYiPWN8doYKI15q4sbOE07iGAwweLTErl3pLvodlnGSOYHOV/g8KEcWbGz7WtLq5P5rZi2kOWshjHq7UGuGOKLCLT8XbgPFiw9PLygv1+Qx8D/SRZf4yTtshVcbvtsUxJlCJBKVR6/ZmcH7ELQTaM56+1LIINiwNs5allCKbqsvQzMyo4a+TB5lzFPxbnU4k5sijEghUjnjTFruGLWMUKpjiDpZKgpOKZYZ6hKphxOEhvy/I19sBpF5Eq9+VLOZFnyqIKryRejWWrO6mKrkAtLCCeRtLbdF+uAmOOpQopuRmvN3pvfxTby+cX/LX/+1/Dv/N//Xfwnd/9Dt4JSu/tvb239/be3tu3o93f7vhP/nf/Cf7z//V/jq8/ff2H/Tjv7b19K9rvX0nJWVE6BkkqaAWqrM6c8kwMEnj4jGspgBZarYHu2T4N55iYfSKtzZiQHvBQnfD8XV7JQCBtQqeS5JFVjgDgoKVKVN9m1e6IKiFVVse6hER2yCZrWFbZNBRRDItEEoDaCmptwDSqVtw2VuAVViHDKRleJCtAJ2zQax4uaK2iBpC2tYa91pBKpq+4R9VlK0yQpLVUVv8xt8FKvyqAtrB2C2lyuEQygzY7W6WNU9GKViuWYtKcMGGCz50qCJn8ZQLY4hLbYT4x+wG3QSKDO6bPVZ2TyW4Szxo+fvyE+8sdtVY8Hg88zmNZmigUdau47XskqQT7TqINAjCRUL46zwde317h5tj2HbVt2HYCkI/jWMoUWgv2bceHTx/R9hvcaPmy3+5UljJgugBSsO13FFHMfsKdBIVtb9hvNxRtkLpB62XBUh1opSJl+SmTPINUR+sXhFR5nwMzkiLsGybr9KnSqxRf1ZTamHA6escYnTl9Z2JeMsEolyz8Qu2E4AuElaHDDKWkEtCEFAkrvrks5kQAmwNjOEppcBge5yOq6yjLTZWgCZsP7NtGgkYpmNMwzo5aBBBDHyRY3e8fuLbnpMS1KB7HARVBbYWEBwXOGSpq2EMpbKCoYxiWncSYrFKU2jCmQy3s0QqVWFgJzoSJO+CDEvql0cYvs2CUFReIVGhp0GkopcE8lJ1Co75UgvWiglYrWDNnGD6Y0EoAKSu+I5nL7DZ/f6R6gtBq7O3xgBaDmQAlSXCdibd+AtAgHCpabRhBXjzGwF4rtlq41sYAGglb/TwhPiF1hzmrBAeoLiVdoEKAXZXAiMUcmWYEiNzQinJO+Qy7RZIPOiZmZ5K73D8EKYbV0QmgulbAFQrG3rdxwCBo2w4tBbOTBOpQnJPi8TWyy2OclOkfBxUgSoX7hNZIvnomuqhOds4DW220qQRtYcSBKgNSHALKwqeNnU8BIkHvygStgbZbWiqq1rC6UAzvcBvxLqH2FIpYfYSFghlKVewvG87jwfjQClpTKrcEqensHSKKW62odYdhwuckgcV9KSwMmyjeIj7ys90FmAPTRyTSK/wcMO+433YK1iGrSCeTmIbVT1RjkgCFuD+2xsS2+2AVeHfMYbAxURFgkhhaLdByRw+bMv5/xKiICWMCGkntIgVNCaa0fYs9lwndJHJZAQqA/pgk6pQGFEcpDljHPBVDaFkFIBKogjEH1QW1YBitqgZmgGSK+WowfyzLTNqHClS5rm0HoA1lMrm6FVbfjj5wHAe+fn3g0Q+4GWqQSGzwXEGyUlQFz7AYigrqbdvRIoZZKAhOA8l6UXlKi6GwKnGQSAWSkgOKRPeBrSh8eiinEVioQksHqspN5GHF3dANcJuoWoMIfcU1JqRjv56OOUhyISkWqLXxbJQga5AJBDMUWmaQkH1V2roDr48DLoqtkXRwu+14vBngFWPyffvoKHXH4zhwv99Rg9w7J0mBbg/UuqHqRzx++IbxNtDHJBltDtya4r7dsdUNo0/M4Th7EESnA95RWsV92zHPAUDD/snhInj58hM+fvqIaY7H2wEbHbUptk2CgMU5OfrA11+/YsxO4ndh1fsIAHF0D5LjDGAZeJwntsCZSLQvS1lPlN9PwBqYY2C/7/jwsqFC8fr6humO2y3OMudA7yTEnH2gjyOIvCSVjVTG0Qq1QQKWhbqCkNRM5Z9UYkCQKBW3veHLjzd89XbgOAnmMNQbijDmzgASzkny/L5tJAfPAMbinOa4gLRvY0vQyZLgoFFd7kkcuAoNUh0EEoT9+OOlNpEV/KREXMQMS1sfLMCKHXoBj8Q5feHCCXoT7KmLWGPr7JHgdqBNCNWVAPWyCIHjEPB+AE8ee29pAQAlIBwxOi3jMAVf/uaX+Dd+5c/iy9/9TtgQUgWlhBItixTkAt8g0YdBMlrP8PRuyWWI83cCz0ASV0jyaPF3kUsloSSQrbQbhjvCrCre6+pXEtzDutR5twEC5MOlyOGB2KmGwmmj0lQfg+empQqUqhgJ8pEQns/mMaPMgTl7WEQHuTvUkdyNZ66YCypCwuO2odQKGNXzkqCUnwmwMMXyDByxVUPJgTZFqXKaoLmGnWcC6c9EuyR9eNw3nscoQeEkOhFY5i4RKlAuC6hMskOO87L78mstfWPFBWHmIqLlvSPuDrH3JaCde1YqDzFWjSCJRB8J77QyBiT2La1YBFEqRsTzTqNSIXCtUeE5KoF0C4IU1zSJYTOUlKjXijVnLeYcIiZeFo9ZjHMRTTzszCBOa5u87AcJxUUgCIvasPxxzKVognjnOflnGmoyglSoeupv9zW3Pb5HYq2lMg6E64aqOKHwoRqqfpwzacdGtSkJuyp+Qp8WNunsMyr08Rkti8SqRCzTb76v6JpPFwHjGhPGouivUHlJ0R8LQj3t1bZ41xWQI8ymCZMFkYDxs5Yga0mOc5ARg4gCDRIhJwCAiwhzJXz4Tql7ZTZIGAwLpGWp51GwkYQ7CK+FjrVHJMvCcRECNEmjILHgOV4VSNy3IkzPJwJgocI2814Sz03y6FLyjTlUCtNukupe/vR9xjt2xgie67FIPjmNVRW9TwBtkSLMn9SZguDGLvPV1xJ347SX4h5IFoZlsUCMIM+XgEjFFLvmSkQqCVnhtYdGS1VEKYqVMIt9c/pEHkvMY7xV1hmAdzQWSHxDFS7OaDPIWYYgcD0R+jAEw5/XbFi0xf7hEBSPe6F7nL+5L+ddpfcehPSIHyvG5njmOrF1LvlwfMBP/fJP4Rf/wi8CQiLP9Gu9JVkoYw1ivuU5Lcu4POd1kjKzYCqITnle9IgfiGcZdtlCJh0716NKkpQkclok7uVcz5bzQ+WKweuIw9fnPRVR/HiGeh2EtsSxKCjoFLlCd1qYG9WC1QEXDyLRhJij7hVujvPtYFzrA24TBYBuQdhxj7097AgBjDmpvFhp64wgxVqefWvB7X5jvmtM3gsVkbci0TvvCMdxLttVkSRAcp4s1f01VvH+A0sBE9BrnsjziHL+1FKoeltorzimhToUc5DTHDbBYpcxgyAtoQYbe0N+V/Sr+7UmEOsjfzbniKpiq4ppBWeMPfcWXErWAO3fnYVhtbZF/kPsn7k3vNu9/dFrZRT8hX/yF/Dzf+fn8RO/9BMr/ry39/be3tt7e2/v7dvRBIIf+e0fwS/8rV/Af/m/+i/fbd/e23vDH4Ck1KOKSSNrsmoSlyJEVF2BScc5Jkph9YwKwTEYCAKbRQ7KmOxLkkBc/jP3WErI0odE+ggrB0T+NivWpDDpNqfBg1xSCwlQrMYziPqSNiYHJKrRQDIAQDCs1AJtBXMQDLxtDdvWeDkuTBbaNIgpWmnrkm6hwvLhwwfc9rCickHVglZLyOvY+lmRgn1rrGisId8fl9GUHK7CpOmt7ZCqVCqZBq0Vt/sH3F5eMM3Qo19Y+e9B9GCCh4loXtTTkmkMJg4MYZc0Bmw8oE6LmxmKBwRrQ6I9KiFrrfjii+/gfrsB4jjOg4nbSAqJKG7bjrbT/uDsnckPUIr7cT4gmHhEYgA4sO07RCpKqbjfbhClbUQphcQRZyL605ffQ9u3ADCA0jaIKs5+oJSKeUw83l5xvH6G28gUNWoRtNogrhjDoJiAnDDvQCSATYS2gyUT0oC7RrKR9i0pRZ8C0AKEfHuB1EpwoHL+S0ilb4pLHSkSC01D9SWSiCVA/awaX0pNBahbJPWXnZpF9biQ6KMKm+xbyl1fVVoOVgaXsIdQFUwXHOdA04JaHRW0NxzDUOuOuoPkMOe6PV8fgXs4pBQUZeaqbnXJ/JtP9P4WKhmCPjpEHFUqyVJauMai6nlCYEYFje0Wa05JsBIVHEdKrhcUcbBkt0K8oDWh7L5urLIN8tZ5PKDqkBoVt6pAUdR9Z/Il7D7MepAsSfwiQShS6o4gOwBiwONxQlvlOqwOMRK8xCZK2Zh0C8WAMyzsttqQVa/TDcxlMrlcW1vxVJUJ6X52/Pqv/To+vrzgx77/fZTtxiQbEsgdIfUdySlxSr/XwurJ+PxaKro7pFb46FFV7KjlFgnurGgdQFEUqdhApTh6dhlaqZDqkCo4zk5wVQAI7SelFNSwo9y3HUWF1lelwefEOQbsfAAKtA8bAKBIBa0TgzAqFe4Ks5jTNmFOkL5Egl1c0bsCpULLRtBFDVpLkEUiESqOVhVzAGc/IWrQmio48TORPE/VP64RJkYJYBngAjsG2rZBi6PUhlIaZE5gDvS3N6gUVuIGwcQ8QCGkAoYDGHBX+Azy617QSo19RtH7AZ8jyHkFHtXhK8EfII26ALgAWdG0UOwgJZeg2+MceHt7w14r7rcGCK00itAG4+gPKv9pIYDoTjJOqXA5UMDvX9XVCVyDCey20YJh2yrGecBq2I6BAERxROw4w2Iq4k/ZkIojk8jmAqXmmJgy8GH/hL3uOM5XHP0gmVkKStlwnjxrnH0GcTWe0SUUEx3ntCDe7CS72gkLMo+Io2pFd4EbiTtn2DiwUpTnllorznHATot9gDHSXDDhsDHQg9ikVZe6lJSCqrRDSRTJkkQhqX4QwIQQEGgtLCIctI4xhDIj7SctAMZaK+DAeZwYZwdUcA7+87Zt2IP42yKW1FLR0VnlHAoTpTXcWwNEcJ4d6CR2AVFV3grcNpQygZPWiRZzWzzjN8ncfQ7G5wJM6/jqB79LcuBtBwS0kYOHEpkG6ZoJ72kDDsar/XbjOUVItnqcJNFpEdzrHd/5znew319olXv8Fl57B8qOL7/zHSQpcK8bxuPA442AUi2sGk7ygk2nDaj1C0AECDCZk8Dtjt79CdAMgMgRQDyJ9EUVX3z8AoDi89uBs0804fybZqgbVQ77GKGU1GBBsvVQHNBW4UayYT972GcRIJGJIEcBfRhurWKrFXsr+E5p+N2vPuPzG88nVH+Zi/hQa0XdGo5OtSUvSpvWBGhSHegbJIVvV5v2BMAlKIwE8TheSZC3IO/z3GOwUGFKckYSiMwTXE3CQAA8AQ7Kk5oQQKWNZxJP4ntpN5fnXyDAWpRFOgGuzwmU9CJexPOk+ixJqHHWq7Tu9fiAjBfiBHfvjzv+3D/7Cfz4v/hxiAHttvHsgjjPSVgCpTKNyNOflzj/PZF3AkRGgpUg6Qb6bD1KS9PWCFBZKJQsBRDnGS8+Ds/WIh7A+FLPib+bDVrdaBIRQuEjfj7HvRQWH/BsRLA4lU5yYGopcUa8FBtyPFPRl5Y8AILkDWgoZVRI3A2T9J+Dt+93aFi2siChsF8mQVUfE2N0npH8SW0r1ApybpIax3gpUKqH8lKMtMi7FLcEAEmOsgbnaut+naoLiL4OtRXW7lxWjkkWsGU+zKKKJNOlQgcQhS1akNbBi8gQfZJzgWNP8H4RPNavKNKWTkoSw4wEY/WlkMT1yn1jzLl+l8VJcZ+I7xURFgGt56A6ba4ZCzUW6DfXU1zk+TuxTktYr0J8KTmNRRC5FI1yTDQII5AC2oPmOYV3uDDd4fcICxd4Pw8FIaT1VllKw7KoB1h3Rjj7QUoJ0gCo2mMWZ4SyCGi0c51Q5d0tDu4rvucJWEuS6VgAZs48ytdff42tNXyolec+LE7DN9Yp3zstm3Ktc35pEZhJzIMk03gozK4fXDFGNc+Stp6XNp5U5+qT9otpM+mhHCWhCp3xK4cVKJizg8qfE9u2xeyW+Ph481DO8fjOLOAAEOTIIBkZ7Y1FSqzbQftZT5JVfIayuGgGIVFw5bsu0h+/Y8W7WC8XiYQqiiVU3qAsSPMg1VCJmBQBm2ERHyQETpeYPzEXF1cszogu197G85cgrekQazN/N/criUIIko5S8dMgQaJyANNIEoE7C9+Cw5L7SZ8dDqzYh7xjuVwKzlJWSLsoM4zj2R/uHFuoYgb50WJ/QhB5c44zx1jWMyfBMrddPveklVVtUKeSXq4LjZyXeyjnCO2uLJVXYwzNPazMuV/wd+Yac8aNwhgvlz2wg2PzY7/+ffz4l/8Sv/Gjv4a0UF4qOM68XL5XEkhiUbGncv3JtVbji3PG5WrjegPzkRJkk7U1xR1uxbdUQhwkwLg5TFN1ksVbIgJXAVyve9vT3NYiqFp5z7Es+qC6bguL01oKVZQRhR4IuzVlzqQorfxm7KOZV+jngTGoPCxh30hCf+QuM74H0dHdQnW6rHtXKfUbhLYiVE3ftlvErwMDJAfd7y/LUrG2RtW16ThOqoOX7NOIe5z7l92m57x2kl25z1wEpuexyzHwIAa11hjjjjPyD3F+tUmCKspSPSoxFqlyiEWeyrhhYT8ZccODiBp9ogaUVlGUhXAA837mvHeYz2/sv7WUdb8tSsJ2vjNyz/wW3yfe2/9n++5vfxc//3/+efzbf//fRrHyr/6F9/be3tt7e2/v7b39oTSB4Of+25/DP/4L/xi/+HO/+HsuA+/tvf3r137fJCUqGxlgCgnv8lIkqpAmzjOsbRJsEIKF0yYaSBDwkJS2OUNGOu2VWMHDZGYmKnmpE6UkLi+hkdxThSMsQmCRTOMVUUtZ/u+1VbhS4lmYe2GitrKKpfeTl3hlFTETIcbKfwH220bwyYwJxT5QpaKVhlpo01Hzkh8X+lJYXaSREE+rENoVMDkxzVnVo+ytlO61kclYgZZQZArLBThQpESF0B1139cluIrAqwaYHak1iUSVA31QKcmdBCWEApDMCZsDFUBrG+boVDcIkMJDVSQJVK1W3G8v2GphVTKyyrNiQqAVuO87Xl5uJNGMgVYLbrc7tn1jckYqzrMz+aEFkIL9VqC6keABQNyxtx2CivMcgABtu+NxDhx9RiKhwJ2Vb0yGCL3sH2+Y48RtY3J5hMKNvzle7h9QlDZyHqCelIrj7TNOCHyS5KAK1LpBtfFnjfZBnMMkZNmwlaQXFPhgn9EeiMkWkYoSvw8Pkol5MqBIRoo5Ye5oRTGdNIRWG6tnFVCxZSWXRCB/ku+nvDNtqzL5YgDEDaqU5Z7TkdITt/stLI2YTKW3mJJ8MU4qGCFk/UXwOA7UClQ39O7YaoPCIT5hw9HHiXnOsCE0tCIXECWAjc7EUCTD1XSBUqJM6I1hGP1EqQWtFZy9o5YNZhO1bCS5lIKyyIWUundSJtD2rF7PZBvB/q1t8NZwPh6ck92v9RmJGhLFCiu1OwGIUhRqYTPpgn2nWtdx0sZozIGtCVAFEFb0bY3kl9E7lS6C3NOK414bVd5KEJ2Kwqahlobvfe/HqCjnCjFnxb47ttZQBJhRfeg2L/WkSOq21nCeE8dxQCor2UUKagO808Jp33YqIfkAtMDmQErdww3D5wKCW1QvVqVdHpyJKzJMgQ0AAsCqbaMsP0J8agZxMH5WBFRFmw6tBX46SuHcI0GkQz3sYJRJYFqBFdTNA8QgYGQ+UZxAjrqhJlBrAIwJTQ/QT8MCKBUuZJJwupRMHIuQMYbDEDZYg0QtLSS4eeeeNd3RfcI9FGsy+S4Oi6p7GOOSGYm3rJIE+9wn4HUpNgAEmvp5UL6+1JVMBzyU5pzWNecZhJRMmkec0Q1749x9+/xDqExK8IOJy61VCPZQdBNMH5hzkICnEiocFiQ/WgySVGSrohnu2OsGU2AIYK1hv5EM0OcApuEYD8zZoVICAKFtT1aMTw9Fnax6jsTu2+MBa0brtdFx9oE5T5gZWkuyZQK+AdaC5KE1XyfHxEDC7ZidIJZTWWsBS1FZPeP8oUplKsfEozvOfpIkFSQGOEIVYoQVpkG8YFWzI9QtHDjO8wIG3MPGBOu7gh3AfUUEmxQUrTjPEyoEyM/RgUqFJ3fB8ThoczdPwGjjCRWc54nWSA4tlep3fRJsW0SMUEThmaLAhqPsBb139PPEGxwfPrxEZTnBv3EKBng2EDG4UWWvtoL7fsPLhxeIKtWRgjjz8eUDRBW/ffw2gXyf6B3Yq5NopYBWwcdPH/Hy8oIP90/4nd/9Cl999RVm71wThclxqOLtHDjHgfM4MGH44jsfUOsNKgWfX19JEnagOBax6zwHSmkYmsCJMZYEkYNVzAJRErpUBWMEKJWELlGkP5coFQeLVnz9+UA/v6I1h5O07pJKhvzuXGsoJGuysjvPoqyO7k5AZgzG7k0qraXCeiFtK97eXgHfsLUP2GvFx/sdxzFZAZ1kKjGYcO9RhI2wKKAOSyUxu+yavs2gwgLFwf01lR3I7bAFmOQbpI6BJ1ob8YkgYYLuJBgm8SIVV0NPAmlhcqmeEO1bAH5+ZpbrI0CmQOI11ArNDGJJPsFliWaX1dIiWyWgL1RIq6lAE+drqrMqNtvwJ37rx/ETv/oT+Pj5A60OAaRaRRK5ssoeAVYleIsA7yGpnqFPJEoPIoUugjs8FXsUtdUVt/jjCZhfSk3LSihBSHcSCGZCx9GnoXhTAnBMUhHiv6elDDknab0ZVkYJt4tAlHeXVgrVd4TzohSSrEhEYv/MvDcGwFqC8KpBiBAHUMJiJy0Bw9pVgqArAewvcoJIkJoH3AbvHEiSK8mWrUqQS8AzGdj/tGMWnk/imah6+2TNEnfXjNuehCaJ+22QsTVIKkkgkm/8/lPzIH/lWCELivjzSUThFufLMug5RiTxIM/HbrTOLJUqJM+EJjOsfbXWsCNHgKrCeaJC4nLaLuZgjCdVC5/cMwm0W9xV5gKIJUDTJNkj1nvarKUyQCovJwHLLdT0lGoq04yEljwTxl6pQlVkroXoSHjE8VQaCbIJeDZV16UoRRvtRam7ejLnVM4vIcFSIpaUQhLaDKVPh0FLEDXAvXupIc65zhPmjmI8nyNUCOcis/Ds+3J/iftxgMtPKj58i/g/96XalLkEWjfhIurlelUqsCDOOGkPljwLkYzpaTdoK98CkaXslgpJGfw1nz3mXdGyLOumAaVIqEdjvUOSHBhLOEZ5ljK3IOyEKkwoE5UapPKYSyQCBEiPi0zG8bFvroendSRPf478nZhvEQBYEBbkR4igLPIQ1jkxFZYcTtJ6TCDybyKm5nz3VLgJJRRYnAsLFtHxiXTK+cPcBOIxc231mUQxWTMh+7FoBSowBi1laRvGn1NVVNRFHASwckq59yQxWGJfsZR9Ws/A4gy40FBZgxj6tKdQFWzyTCa5b182bgCJ4d8kC/PudPaT97fIEfBOK6jV1/uWICGligwES80riaUWE2EpmXnGr2flIcaN3B+bV/zM//AzABy//OU/Q6Z5ECGFsf0iV7rbWoNZ/Okx1t/YJ2LupMq6ILpGec8pkqpA15ydQRKSyPfMaXH+5P0RxvluUcBZS7nWeKooxV05xxORo+SmJDFOjt47pDWufcO1TxqWwpsbwiY7SNqhmAgIRufP1Naw7zsejwN9Mpc83VAkLBEBiDhqq9i2Da1tcAc+f37F2Q/OYcV6Vt47J9yoyli3goaGqiSTJhmv5PJRWmXaVNo9xtrIwCPXYmR+AFe8t6ezaO5HiDNt3mPNgNe3B8le0FB9us4HPHfElBdZCm5adH0PgLDRizgRd5hay5pLue/MOdFh0K2hSg2bb2OfOIvm0vY2iasaJGCPNZXv/3ve7L19m5sD+7HjZ/6fP4O//nf/Or7/m9//w36i9/be3tt7e2/v7b39Ptred/zH//v/GADeiUrv7V/79vsmKdVGCWQTh5iHUAkvg2MM+s+DVe2lFIInAvRxove+wJhMVNvkZVnwJI1vFyjBiveJbSfZwC3JPIJpHe5ONRGnCg5Vk1gtJBDK5xrVN0qAFTAJzLDE87IqXQorVJic5WW8hIR4KRoVwQRyCwRNaNO2Vdo6zbCCgRYoBDUqxlKtAQAcBBZ9siq2RQUnq16MxIJSgEKZ8qJKVRhRzEjkvtx2aKto+87k/DAmKYQ/65FMKyDZagyjSoLP8Fa3JcE/R8c4z6jsruidii2ZNDejPQ4VmpjUbm3HnBM/+MEPAAi27QbEd5sD277hfr+TuCOK2m748PEGFcEMZaTWNqpbTcOcA1BWJGWlISW4STiancnK+/0FpRUcZw8AnPMAYJ681Yqznzj7A+YD295gPpZNDkSwBWgJH6GmEpL1kWjrZ4fPif1+o43ZHKj1DsqqH5iDyg+1RZKhk6RFQbAZeAMVJL4pvZwJ9yth7HDaH1kAq0IQxAU4x4hqZ42EGisN4QXmYyUFx+hMKgIhH+9wpQXgmIZuM5JFlB6XSFaV8IYaTiPFrFmspeE4HUn+6/MM4qCvSuzez5jbJJNQRaIHEGWw3rGJoG0bRDcm2R1hk0FwWZVJIDMmxSj6FMBAoWqE+USL5GVVynknqDI6q84kKuUB2kk6tU9W/DDn/JJQvEkAsY+BeQ7sW4UNfk8/TwyfnFsRtwhuOMQtknsNDj4blTI0kkkVx3GgFsXoE+aCHuBcUcFeSF7aWwslEUVprGbP+f5yv+E4aFOSCm+PxwO1FnzYG0ohaQvuBAqgKIVJ4mkkiTl7IqoDBeN4oLWC0gLkIwIS9k5MPb69vqLWCnOSMdQVcwyCfNuOeXY8zoPVxQL4HLDeQx1hIqQLAggAttsNdd/gs6PUhnFyX2itUQVIFO4Zj0DQ3R2jn1eS3DlWczjqVgOomYCHZHs8o9YKsZBIN4OUBjfgPDtUSZhrtUVVra/q96K6krgJPCxSiRlqrTgeA6WRTNDniXNSUr9Wxb02qkGpAGHnFDXzkZhlgrMWEnncBOqO6bE/aoGBfW1Gi1BinAobtDjxUAPofQQAe0eqyZRa4XTzoO2GG15ebrA58fnrN5hNvLy8hGWBY54TsnGN1SC28LMaigv6mDCb3AeqQhFgHwg40eYn4sQYVCETwDvHb983DBu04JuMq+fxQCkEgWurPAd0WsVYSOzbHHh9G0AoK0KAMYE+PqOUgg8vN9xut1ANAY4+0CcTu6KKtm3Yt4nH22dWoZbCpxanwtmwqOLXq6LXWCE+56R6Xan4cLuh94lhTvU+BGBmJGOOEfZ6kzY+7hPjHEy4p0VoRJ4E14pW7t0B/sxJFTImuAmSudE2sXcSfLQold2OB8bZYUKFhQSoIQJXx9EPjpEIXMGo547S2rK5mEZS4JwEEWqjGpafjsfjDYDj06dPmGY4z5PnE5OwYuAeVopgf7njO9/7Hm4fXghwHQO//S9/G28Pqh8CcX9yBOjq6OfAeXa0nUTu+8sLytbw+nbg8fpAP09oEby8fMCXX36Cu+C3fvsrjGk4H19j9oH7xx3f+9Hv4PMPX/H5q6/w6DEGQvUzLUDbFP0kSbnGHmJwVM1+btdZEwjwe1C9qlZIgq9pyRdAnPtAHzzLzXlgKyTX9dGhhWe+fdtQBu3ubEwIRevgU3DbG2ATfXIvmNPiHEcQccyJOgMwgpAY2XQpcz3OA/cN2GvBfad170wlkQS33DCGAxioNQAEFez7DWYTo3f044xq+W9nS2IfEtiUJ3KXX+ovKiTsS+UZZ8a5VMsFGl0fE4oxQeZA4sbAAuS1BMC8wFUJsMcXSdElgc8Y2GgWKpb5oUuQBhJEKaAEYSOpC0kaIacilNpSuQ6CYoof+ep7+Kl/8lP47vFFEGkvwFskyEQBViZxIe8xHvvNUk8KkDvtXDxAr1TkSyKJqlJFQVn4gHiHVOVIgvoivSS4nkTN9fcghYSdZr5jVuIniG+pSpWkmFAgNXMcB61eSqnrWR1B6grFuKUKWqIoxGYQYePeGECbyzetbHKMfFIhDUDYM/IZtVBPkAcc7rEaoOE0qjpxb0k7Tz5bBa5+SDAz7qfuCAKto7Qaf8aCAe59cylxEISM4pI1peN7EogMMoQjSXoJGgbJARIEjehfCQKQX/ZRCKJMBpIk8K718UT4yLM2RJelYJ7xLvsZhQeRxVyohgyeQR0kV405kISPmcUd8ZwVss4CAhZ/mHuc/9Na1XgfDlt0kp6y0IPvuP4sJtoiKcGD9Ei4N0mRmqTUjDV2AdChSYJUu7o0dq64y5mINfdnFBXUQuJ+EZ7rCHyXtc65/kkw4ToIulAA1clScWioOEnkQ9JukmuzRgwooQIESbURpzoVqI4yn+xnLdR5VYUW87k+EWOJsP4Kop0twDz6HhL3grCULMxLJFEjWUqjjygWsEXoSeJc0YK01bIgEsOpCJJEpvU70cdaFLVtmDZX8ZnNyeIzn8EtvpQrYyZz/4i5w/ejbW3uJyR7BDkHJVTirr3AM6rHnu2T+Y8SysEeeRINotyyaccF6a/9RpifMlDtFnMuOzBBKrfomo9rwuV8yPfipONZNta2T4m7cMZhkp+4tiXuUraIEtNCtSXu4UnOoLpRMh94D4dS+WvOiZqFGyCxJffJ3LM976TxHbRm1PjeIBcJLiVzUQAF0wbzPZG3MjNa6j3TIzws3jzOWLEvCKict0g/CKXcOZ6IQPxrzIm27DkZA2bYkRoQyszMXfaloBXqYjCkJRztv3L/JrFWlOVe5sBmFT/7j38G889N/PMf+bXIpeXQhb2cLoogsrk5JtJmM8ZcwgYxzxxBIsrPWnMiJ4znPTLyFQpUUYw+Yi+2azPMpojiDkfuaxKkrSQsMrYmCVMWGaqEwtCcE+d5YN9vLDwKRSL2vazzyJgDrVXc9xfc7nfEssQjCjKo5lMhcsZWSlKYOWBnKC1F4UvdSLiZPSxcQfLT7c774nFQ3XSMThKpOO63O++Rj5O2d9F3EwBCtQlI8lUQzJzFe3kGSnJRnFiRivcaamkcj+ustM6zUQRoLlEgJiteKUg4fc7V5Z5gxrWokkUvQV6K+JAFvmah6ufOO6cGuUlS5XBCI7/MGHDFlFxnuX8/E5E1ikEtSLLf5vvEewN0Kn7il34Cf+O/+hv48V//cbzTyt7be3tv7+29vbc/Wu123N6JSu/tveEPQFLaSoU0YeLRhCofIVtPm5erysjdMayvi7hkFQ4cs1NFp5YSoBjWZViKLMlz3rcG5hSUygrkEhU/biQk5GW2lKvKqlX6fjNRHPY3UUULIZCqENiMqvnS6K0uZalOlJCeVzC51vYNAG3dWstKeALRcEOrkahFJPW0BAgQ9k4BMKgUoICqPJDVNyJRKaTMXXok7wwTUgRaK0rdoHVDqRW1NFZfelTbCquqRFlVmRVbmdSbk8QcADgeb5T6Be1spgmO+RZgeDwPAuAIcg3BgEx6MwFUg2TVWkO77Whbg9nA6B1jstr95eUDAA3QySFmeHs78PnzZ9Ra8XK/QxurJHvMi5dtI3A7AvBoFR+/+AgXp4Wg1EVQen19xRxnqBt0jNGx7xtsEvy/v9ypQqIVKvwO2IzLd1QquUZ/z0jCEJhoDTDtSAuArED3AKxznFMFxiaTETlH026m1IaJEUA5MNwI9C95bQLf2hpmgM18R0WtDZlJYAWlRGKcY+XiFLjxCyRxJfGgj4sMYBB8+PASuU/B43xj30ayWUulvP/oqJF09dHRRaBtA1RxngdUDLVsmPPEsKzqMmx3ErfmNLgCUkrMaQOyeg+ZgCMocRWmhY0LmLx05oGRFjyZwJ+hOlWksHpfwhZEGuCyLB3nPFG0MSFqBINRmdQfQSD7vQCpg+ofwyYthGplpbxUKhuhRWKT4EHRhjknjscJL5SJJ9ph0LoDxXFrO4qB1WpOqXyooNUAIozAxhwdcFD5SwVTSJistx3ncaANxSasZNdaIWMyqSi02bJZ0Wph0juS35RWl1CHUzyOR1T8s7qathQjQDCwfzuT/7Qlcuz7HSiGum04x2NlfDOFX8pF9nEM1EYVsNIqXKkCJQjFsABMHEBtJOOUIpjGim2VtLu8kno2Ox6fT9QPL6iqrH48DohuTMSeA7d9o9KYUglGVFFDWcGMdmAOAiW9PyAuAYRmQpfknATrhhn644G2bzBzDNCeY6skHjAhSZIQ1YGoVLXVEjgNE93qE9PTtqbSUsRBsp5cVgESFZu1EqgcECp5KeNTKUApbcWeYUH2axWjO1CoakhiJC09zQYVAp0E3qJAKxUegHZRJv2HcZ5oqAcoqFggHiQ9SVUyRy0N2hT9ODEHAaNiwPSOuu2QWTA9K+997S3urJrd7hVzmziOjsfjgAqVChI4Pc+OOTtut7YqxcfomLPCnJWgDirIIEipe9nQwHd6nA8mo51AxJwTR3/FHMca52EDo59QZ0KXFcgCqQ2f7necY+LsDoyoEDfaTUKYiLdhC0i51JkYPdJmswSxckwSRGtr8EEioQmVHKYZLfLCZnXYDBUxxTi575kbStUgll7kAAJwij5OSOG5R5SxKiub02KNCotcC32cuL/ckdYP5+h4nOfqK/iEGuNS2rY4uFZeP7/h68/HAlCoYmn4zd/8DYgLzsfBeVx0AULneeDoJ37ke99FazvGOfH5h59xnidqqfj05Ue8fHrBrTV8/cMHv88GYB371mDnxOevH/j45Sd8/OJLfPXDrwkszIG9VHz9+TPMO25fvHBvHFQrYz9RRczmJMg2iDiQwAASaGMPznOjlCe1tkK7JAuVGwOtQsckAXFOI9ALkkeKKC0Bc/91J6m6D6qDPYMCAYyOVEMM0KsEIKRFUGoLnxBB2wqaTcgCchViisAmgrAzMCf1BM0M+96AWtCPOO98S1vu+WndkjZAM8gdglQIyq0ngHNkhTrXX6rPpQJJWn7wSwSL74MAzB1LDS+VZiyJgMjzeFaTC+SJBAPjv5N0wg9OlRjztDcKSypJdTPuCyQbIcA4PuuH4wU/9cs/iR/77R+DjgLV6108AC8JBRyeW+KekJBhPusiZ/G/rg4IIDkBMYK3HsqxhQSl+CtBrowd7IuLU5QDkTZ8Oad517IF+ruQQJf//fosko1z7JaSR5LFghijStUTLde5PIkUtbW1bpKASFUz3gFaqM46uDbguMgNQfYpSisYwEPlJqyL4n5gQX6axuKCVI0RSXJTiX0LF3lELjho2bF4Kp7SvpzcSQvKjl19IBdpTUO9YPV7kD9ynTguct9SLXZbikZr0ALwTjUNxbMNYBCebB23sFRvArRchIuYT0kalFA+dge2ra01QntQ7qe5pyfpRda8oXIcFaW4TygXI1VUcn7CQyUrwXos5aMLUr1g8zU9n5N4Enj8umRcJKD8ubQf1FAFVc0+eFKYElA5dymipKWQrL5iF+kiw+T/pjquilApB0mQAhBqYUk+TrLhHDPu/4AGIU6juKBK5R0/vifnc96FzWm5mu9VwgZoQeGVsbWYAcKCprT0c88YN2B+qWlwfcqyJc08Bi0WCdoHP2LlIlasNVvEWxJ0wnrLFRK5nYuWk+OJRSDK/nJJ20yevXm2TzUiX8SN5HlN84izOWhBogmVtOS2qir7O8bRnJZUGkVpPIXmegPPD08E1wmjdXJ+jwTAj9gf4p36GCxUE1kxMVW0SKSLs/+M8920pdTCeVSiP/IMeMX9fBbPBS1JWA3yUA5I7HMa57Rrj2M8KkVZZDU9bOEithhzaBPzG+GFdoVPSiuS85H3FvZc7slAEtqSfJrqaGJhrRmEIHcASpv4VA4TyX32UuYqoXRrFsVliDlTrnhqYfOcZ4I8Q5vZpd4U8zaJd0U4Lme/VOHTam76WISYnHsW+QRE/k1Vodbwl//Jz0JE8Ws/+msYM2aCX++/zhOxWC4SF+fRFZuu54dfSnqwJxKMhhpbkGvSZpo5Tov9mutEoWGz61ecj5xBLDgUlCs2edjyArE/8fwxxgj1vEtBa0zO8xIK0aIC9TxPcaVnvHl7e6xYyyJIwXFQDWl0WlfnQk2Sms9O6+/KfE/vHeNkoWBrFdtto6KQAe7M/8HmUjE7j4Ht1vDh04e4bzIeVI07Uj9RW3k6XxjyfFIid839fkVG/l0Q97d8z8hhiCFta7kM8lxlMaei++n7jVQNlIhhuTfAHVobtHjcBYFFXIwhtCAFPoVortHYOxFrtRRBsesZM2g6nHmgeG83Fh+LSVh9h4W3Xd/73r5FzYHv/s538e//1/8+fvq/+2lsffvDfqL39t7e23t7b+/tvf3/2N6JSu/tvf1BSEp1o4JRJuXNImlnC+yZ4XOOuCijsFpXS8H00GxRJWjqDie6H5VvMyrTlNVpc0bSP8DEJ4DwAn0ineWswm2NqhWnOOYgIOEzpLLVKS8taSegVAIC0M8J1QmfhqYVpeys6omkEBUTgK02fHzh74xuKFGpaW5hcUJFJ41qXCbuWZGiGvLfuCrhS2FlUAkrGC2FgKNRaalA0LSgtg112yBaScAArY7O3tFKQdl3yjYrk/DneWKOjtnPRe5wAOM8qZJQKRHdbQY5KDONTBxYAHpZTZUJv2EE7Gqjmsi27fj48RMrm2zg68eB2SdK3Qic9YGitCvyojiOE29vbwAUL/cPuN9uOENpq7UdgOPoJ+YYqHWDSMX+cgcr2Tr2bYNNw8hquUgU9H7CfWKvFbCJVis+ffzIxFNpJEnMjrbvkWgRTO9UaxpzJXhZ9ccEXi1tjS3tBtLWz5ZVWlakw5/AtUjeZhWmjRn2F5QZr8WjwpaVvgQ4GtfInAFKSFRLMnlVSg0LhMAtopIxK7s1rA1EAR+sCq21shKrbihQPI4TIkzovOw3lFKwbzXUxkiMMhs4fKCPA3PSbu1eCh5jYAotAVUVZas4jw5XpToSSKxRAfa9LZLClAmxTPYpwVkBaomK/VIx5sQYnYlhpzJVHxM/+Op38eWnL/Dh5QOaNsz5IPCkAiCs7VQgmJhBJCsBNktT+KAlmEKA6TjOE9Oo4GWhQtW2yupNLaGCRnBxOJOn930HxsA5+R2iDSKOOYHzPHG8HrC6oRRFu5FEqRWog0lCB62umJCN/nMBtKAUqtLBmfSHT4JpThByKyToiZA8I4WksjkGWqV1mEc5YCkbEFXt5zQcc8IGUIsSqBbBxMSm96UolVV67gTzUplq24KkKIBoQYEDJ/s1rZmYGxe4kVhEMiPj1fH2GdY79A4UUKlh2gBQ4NbhblSfswmbtHWcYyyQ9DwfaLWQ+GlU6SulQhtBztoaju44D4KTTUFZ+wBwE9ykcg4TgLUpSTXd+D6iSIvDUit6SqBDI2FYUVXCZsOhzXDbKh6vb3h9nFQyUmBToSqU9IiRoeJRFJgGG0A/Dd4KZesVgDAeiMuyuimtRrazYkxawLUWCV8IXAgouwG9T8hGZYcxeyTca0jHE+h2UEFnDsNWFDgVWkmUklAggFMJraRNijmqttwGYh+6ALcS66ODwE7dFNMA87EUMfadQBqVIgBxKiCIk9iBLe1xLJ7TAK14efmAx/mG0Wkbt20VSQx1F0ir2O9K5Zo5ESYXaLVh2zcYDOdx4u3xwOvrG6AkVPkci7TQZ6d6YGlBhCbRVuAkdqgAspHgC4dMhFodULWiiGKkmkIUvs9IxnuCCinl71TKmMBSYiG51C5yQ5AeXaimMYdFEnzCNWJDrZCwl0owcobShDpJRSSIA7OTIOwBGvUTQGkYgwStGuerbdsixnaYFmzbho4z5gsJB9vW4OboR8fj0RcRytXx4X7Dx493fP31G+bZUbVEMjyIi0IyrtvA6+sbav2MOWjIB+G+8Pn1M23Ltg3dDLoVvNxfqHYyHMcY8KK4f/qITy9fQOvvsOL689c4HgQ4Sq340e9/D1Ubfus3fxvjOCA1wamCWhscB1USPEk+XBtaLlVPniKESnOB1YgoWtjlTDCO1tpY1Q0qYNVtA3TAjhMVJYAFWtT0GbaGGLT3ygVVCtwn+tnR6oZUVyyFShYlSMMTQaKVgq1utMCxGTYkitu+wYxg0QjCow9DnwfcqFxXSlkqnt/GVoQxDKlOk4Crp/oELhaAX1iraok1l4ouEiqnINAaxQup4LGISqFqcakaxWeYL+UFRIEEcJ19+cFpWeUkKqUVyrJWy58PddQZtonO+0YJS7d8oYqGH/uNH8Nf/OWfxCf7yLNcCXJVAKAainVJcMoMRfaPiCJr6wmgBdFFJe44WAAqyQ6hFKthhxZqnaK6yCcz71wxZ1fhw0xVVXtSGkm1IFtgmOBSvfAcNGAROC7AMokVl8VIKodubYNWqpv0s8cZm/uLm8GERQZQknOTMNEqrbeTXEQyEW1dafHFvag8EZ3y3mqhhJpthlIKVfxsEZs0+ovPMhfgjyDyUA3oUqNNWz3oNf7LPivG9JmQ5wHqAnm2v+x+Ejg2uwgcSDhaLsUrEq4IIKc9UM5nfr6H+pGH+msCydyPHbLOdBzYoLkEkSZJrGNclqxbkMMW6TPOCiaG6eyTVDOsGpabwCJfq/JugPhnibWIWDvwtFUKsB5X37mnQhEgUpAWthEcworYcBwn9m3j/CpUgTJq+rD/zSGSdrpxBlCu5TzLa/av5z6c8SPO50EgE73GDNHvtPMuyEIfR2yawncYk8rBHvFtKwItcV6z+F6wQIWf66Eow74oovDi3EOTlBiEMsbbIAIKYs1GLIQ9zeuYK1qi6EKDLMLPUVxEG3csVcgci2Xp5niy8CzXvdhDWSdUtCFYfcUQ8RzsY87OyT0uYlZZtl8K5N4e839Mu0g98Rw2RgqJhbJvrB8t8EKFYYfDBwlCCHWUJKGnkkrGXoD3jeIWynNBvkiCUgD6OeaIApOiSqWqmMelFMavPjDinE0LL182TkhFs1ABcwSBAZzzusgPepFaknQaa4icf64HWapGoYQFCYUzqqglmVVUEXLYax4zR+erW4ISsWKLQK/YFGqWS2kpNwzE8MZ+oZEr4dyiGpHNGXteEjcvklHuvaTQC88BNWzjOen4X0LliAVnmcPKB4g7c61U8R0ZARB7UEE15lvGHCSgB8HMo5DPY3PMc7kHuRSh9rbPHT/7j38G98cNv/wnfxlHOYMzQ7JXUYU6ic0ziCwMK8975qW2yP/iSKXI/CHOB6zDkcuzgg9g069YEOMqnnPJY1yvTTo0oa7Yarb2gVQiplIT7W5LFOqxqJQFoFSfZ3+ZOQu/Ql3SjGrbsfBJXqyKbas4z4Hj8Yh9l0rdpWrYqbNf5hjoZw/FaouhdPTRgU6Vp6JBbGwVtRXAGBdcOOb3lxfUNvF4nChzYJzHKgDc9obbfsPxOHEex9rrgVR5DLVuv4iUOacWcR153knCXi5hXedLj39nfVgo4SoL9HyEanXs38BlVQrMtc+7R6EvLsLqM7n8maSUO6YjVJ9SzTemW9XIO0du3SN+mhu8G4lKkoXG7+3b1Fpv+Nlf/Fn8wt/6BXzx1Re46PLv7b29t/f23t7be/uj2pKo9N3f+S7+3v/i7+Hczz/sR3pv7+1/0vb7RjGsz/CxxqoORVQMZ2XQSmDaZW9l7iuhoevSdyWRAADPAJ441JmcqLWi7Y1fGtVCo0+kepJqBWyEvDEvY0c/mCzSqPgbVHOQyoSIgsmg0hqB2rNDHGj3itIq9rahtRby3nUlSIso9i0sRIKUlP7rY/a4aBaqQSmlwUVo/WbGhIE5q0drLZGsKGjbFgoWYXcFkjSkUrFpu20orRFkjopNJsCdQHZU6aVqznTDHKwIHpGwnGNi9JMgsJIsMUan6lKoACGuN2lTIMoq5JqEMgnwyAyvjwOtAaVuGAFsvj7eoCL48OkTWt1gmbQSAkcJrm47Qbetbeid1bVt2wEHHo83qNIuTKVBteJ2uwMFqGCCUprj7CfBShvonUmG223D1irO46CsfJ/YtOI8D4zTUJpAW0FVSuGPg0ksLQW1kSygKCjaImlOcpdqVNobk+CCsC0y9pgpWMHllAi3SK5IUcAHPMg0nOYORCWpBICFSHD6dIhHha04kwaRQp+YOG3AB5PQrVWkegUgQfJg4tYCkGF+hPPL4LS98khiiwLFQy1kI2AeMuceiZ+iJMic5wFxx32/g+ouWWkZqhSwsDAk+IUEQoRgVS1lJaFTjt1qVM5OJrxKoa0EXGB9Yt9v+O53Q0lKlZaSc1JN6zyx7zc4GIOqIuYg4B7gsxl6PzEj/dhnx+M44CUUG8DqwSYVDiNJRKj+ZNPx9uh4fTwwXgz3yjX3+fVAUVa8jtkBMWy3BmkbK7/9BGCoSsuX3ju6TVgQBBtNRVjNC+XaC5ADJhge1YdR4dtHDzGGIK0BsH6gqpPgQckq9D4AmSTz1BpzWdCnRYJQIZWkT1HaIb2+vkYs5Hruk7/bx6DKjSrO3tGNFe/j7ASCVqZXCHBpklK5PlT5nF4K5nnCnLZvUoQKQ2Y4zxGy4RVb3Ug4KJXqMuOA+0SrDTOsklhNXzGmo25Upqs11A1cI0E6gQD2s2o0Ab5SKmyeUEgQAQm69DlR4nPMJqZlwo7VnWYjc/RUIxsdEmD1GBPb/UYCS2lQoXoOAJiFil7bMH3CO4HFWqkiNcMWldW1obwBhYnCfKLWLQqC2d82uWYLCrRU9H7g7GcA4Vjgj5nhtjWYCeXh+4T3DkNBt/83e3/XbNuSXIdhI7Oq5lx7n3Nuf+KzGyBAACQNUiTUoaDMUJiWCIYkvjj4pAeFfoT/jv3u8INfzCeJFkGbfKAlBcUPyaaNLxIUARAEwEb3vffsveasqkw/jMya68IRUlMihSa0q+N23z5n77XmR1VWVo6RYwDNhfEkibWx33qR6MwFjrMHeB0FcE9AU6J4WlA3RZ8DMlnUhVUWeocDCZQX2nHMPgGdmD5j3Qla1aXqp4VzuG0b6lbw+ecfcR4dMiiJ348DvRv6YEz48P49Pn7+OfpBRR4HZf7rEHQQbOnnnQSYzq55Cws6CfKNiOCcaa9JBTXpY4HWLYkSN0U/DkAEW61cj3NAS8M5Oi3uXEB3zFAYLAKNIvYYqZBEgGoEBIwgWkwbGGkpYyFrIVduYe7YbzvOeWAuGxVciocg4Dkt7BwegdRa4IPzvG0VFZU5jZP0VwOknnOgFsW2NRzHsUDwOS1sEg5eVmGMdgDvPryP3OZzvH7+ET5IGD7Pjv1pR91o0dAqyYefffop3r37gFu7QcxxD2K0HickrERb0QU+vvZXzN5xfHzFy6cvkFmhUvH0zO7Q1+OOaZyX3/3u56EaB5S2wfoJWILxim3bMf2kgpYA5oLeB263HYJCwGMSwEtAn2ZXoI0UksR0gavTCXqUWqh66A4Mg/cBAzDHxB0kVKuWWO+yVDVUC4YNnJ22dwIBU4RCe1oZkG7xTOciIouEwkO8/1oqpFb4YD5eNOKzAzAS6nOdfT+ORTL3hOASgHtUR7kIILy1S6Ei9yJJYM8zh00lVr47yT8PkL4EsENClH3xvQtJKfw+7vsWtrmQVPmIs00QxVP1apHVbYL8Qg1bJjZpJAj6/PKEn/y1n8QP/u4PYK87sXb3RS4CAhxa+SFWfp+fASRgbgvcTku4VPIEfCnzpK22xv2ndUoSKHKfS1stgoiMS2ljmc0hj4oUjK24yEHxYalCQULEBZxeKpZIrBjuhj4MRStU494H81UAax1xHgALoA1ljWUFFopH+WdwkkxFJJR5uNem5c9aUwBm5E8eRC2AhMFSSIQCnPGwIixZM1dLuzHAQ61pEb8CuE/Lr9UIEvm125VOUb0AS/BnqbMg30+QJmbOC6y18zjnkxi1nnl8BiR5H0GOwcO7tFBSQZINsIBtidw1SVRp/+V+kajWd/HAglT7WoqDwVvR2AtnqM7VWnNqr/XOdeJBkMAD6OqJ/K49ldyLUH7Qh/Nr5H8J8PukzZbcJMhtsq6fROwZYC+C6EEL4STlxAviGnggkNEG9rpG3iNzuFTbyvc3hqGPAWtO8rsD53lZulHZOKwiY/1KaiAJn920GQSVUMsJFSOS+C5FOv6TDS6+1FMy98gYyzloa+3nfHt8r+JxNhMqayxlKOUzYJ1FSRLIeegkUrHWYzn9kEqqMxQ5zIznZjCvdGONIVd4TnGN+Ar3IBwxblFtSENdxNb6XmQo0aWKrChB8r5IA1w6ee4MwpWtJ5OsDmSATCJJEjV4zi0Rh4K4ESpEa36tWYkHQhM/3+ZYSmNzTmgta41oqNGwoU2XCg9z3qtuRuvSIGYL12UScQFaWbFpIhVvcJGRPElqoUIszBdVBG7RjBXfmWeGVKPMrTvVmH5/nOf26uwDEVxzAHkNEnvSpTjm0fCl0RySe3R+D+dkNEbGXCbpNkJDxsLYY0otkCE8byaZyKlGw+atyInB+oHlsxI+Vwv1Le4JV3OB5HUgzrvKszxi3mjs1ToK/uiv/VF8+dtfxi//5K/gu0/fBR26bVlYkyDGZo+MOfk5bJBTiFisH6rdJrlsWYPGOdc91FTBeuvjZ604GkpJs4+Iq1eDRdZoopDyyNnlszPOAdoll1ASD8s7kBjkTm2uWgrUNJpWfdU5JuZF4FQAbiil4bbvEB2h1DsWQUZmkP6UquoCKi61tlFVUUhITVValFhnQuKeQjCczafmhn50nBpK/rXBlOraFkTn0Sde7R5zkecr8bniRclzbZCYEUQiLaz92rSwa8v8MoiDJkg7OKaqoaAWKle5N6tqNKoaMFNR8Wr+lVAfu8hQftXNItYWCXtJSTWtVJhlDXpaxsCICcZzqQqJrohYrZFv8w9ybb6RlL5vhgNf/92v49/9G/8u/sT/50+g2vdvQ8rbeBtv4228jbfxNv7Fx+244ef/+s/jp/7hT+E//4v/Of7pj/zTqHm8jbfxh3987ySlCWirqFVwvL4SWKuNnTwI2fEoIFXdAIlifhRNeVAOCyi3ZY9eUiLafXVqZZFXa0G77ezEPB3qTrlaD6JEdkG7QYqjbhWl3OB94rgTHIJTRaeUDYICVdrV+CR4upWKWgq2QlWNtu1IK4r8X5ihShTU4+DMwk/aqoTdTwnFCvAeFEA/eygsUNmlVaqRSLns61qpfF6FdkXbfoPoRuWD247admjdCKRGh0ytSqsiA2x2Ehv6gRkFUQ81g9FPzHHCRnQl141WKP2EjZMFBseyY1MAqg6oAyhXsS2ADwil5wGSsz5+/BhFO8GHD++jYNoxh2CaoO4NvZ84Xu/QUoJgo7ifJ7sta8E5Jp9Pa3j3/h22pydoWHbVohjGbsrRB/pxx8vHzwCfsMEu6W2/4fb0jGkHpChqu0HrDbVtKJioFdBN0RqLivNuS6q7lIJSK6aTwNHi/VkQq9wVGkU3CZKRu2A6VX3EAB8AkBU5YIwDwwQWJc+q2aFPkFLDas6FthuOLGJG8atsLIimpDaAooZRDG27QQ2Xw4MKxjgXqAQVNG1QFAxz2jCJ4Pn5aXXKs0gS5WoD+jwXGCYOKD0JaVU3BooAPlkgnm6hxsMCF7tPJ1QdT7dnFC0Y457ljSgyKwwKUYfMiXGSFJOlsGmOsm0LwGpKu7PhhmN0+KScOIlkDpsHFWagOINMoko7LC0Vw4OsNxWqjvMM+XafcAhK3QBtOEcCwOy43arAbeL15QUfXw9staBpCzWuE8dpEDVsewVAMsmympwEr28i8GIoDqgX9BFghDiGj+imlSjuUgnFgwwixWECWCh3QaObsbNT2+YZ9gSOtinGOdDniHkCzNlJf2kFlz2MUM0r4oY6lYLMBlQ3Fq2KQqvAp8DsALwBUmHCXnNtBZhU7ShuUKl8lk6iH4K86O4oFdj2HedxQuFwiU7UeS4iyBzR/mkkAnIKUV2nQNAT7Isi6v31FbXtOE8SfIg1GcwEQxins4haosjMtcsios+rY1Q0CrxO8HLOSbJAZcHeovtWK60zISXWvKHVHS4kmpa4rzGpzOIAMBxoF+rbaiGxrTNOmXm8v7C/HMIi6zkwVSHaEIwIaHXAC4u5wt9vpUJQWRiuChtUQIIDPciEtSjV7AIMcJtQrXAbcJ8wJ+loAXw2IuaQqKhhWWnRvTnHCFUPgoFpvdIkbTsM7lSdgwUIICApxzvUSwB1M/aGiaN3EimnopQJlRm3vUF0QlBQRMK6bOJ8fcU8OuOPGe7HCccdT083qhHWSrsxOFqjCsTEoNphEMjG7KhBIJ69w6qiOLtI7/eBEWQZ1AoFcJhDt502Y66A6wJWqnJdz3hWbhKg3aTSmBH8hcqlPFIEWkmQRCioFSlwI0CHEp34KBBTtOz+zuK/kVDmShWaGlayCWBLUbSyoYBAMhqL3KXcVswf00NZcaJsJA8aJhSK/ekGCYUhAdWAjrPzc7VAnAREKvo5iYT7jhFo4tk7+jTcnnaU2qCuuL+eePn8BTYMT8/PQbJxHOcdow/MbYMIsL97xjkde9vw/P4Z/bsDL5/f4fa7+O7+KbRu2OoN/bhDjXvtHBOvHwdqqbjtG/bnDa8vwGkd99cOwx3bvmELezcSuZLWwWL+hKIIgQVFKICEKo8XWhqbc80SADf4dJg6464UzEHFSHZ2aygYGq3tWkW73dhBjwvII4Yd+WOJeSICc6HCpnp0rDPGqNL2j+s01DjgoV5Ccke1CgOtRzXm8JN//8r+u3kAXYIxOq2gksCCmNdJbAmQ8iIE/H6VhuvAngSU/I4EYpMArDXVTEJBwdNqKEF+X2CyVoUYySEJuAEB1oP7giRIaA5HKAnkdwXoJCJQF/zob/0IfuIf/xHs950ECCdolIoRSAviACGTWJXPQ0SCnJqkEV0WW4vIlIQp+Hp2pTQCvSKojc0dqaqRlncL3PYLkKYKUdp8+ALXLdSJ3En6NgsVIZuLQOJAWN2GQlR42STAtt4xQi0D3Ev6eS4QfN+3eJ8WYiCy9qkZwGKJM+ci5KlG0wWBtW3fopGjXFZ/Hk02k+eA3k+eE0NxREtFa5WqSJLquNEUowZ1qt1o2D/5SEUpCQLbZRdY0nIIttSukOcBv6ZdxiWxUNFDEEigsCDEejJ+klUiSTXPKZ9rJpF7W88k//ey3uEzL7Us2kr+i41HxZBU5iKZwGJ/SBXS/C5eK9/3TCWYuEyqoUgQnnnGTEUpT+uiuLdUTBIArZBUbDaSPRLzNbVUSOC2UNChxl3OExKFNL5fG5WMOaf5/dAkZQVBQGjTjVh7M6yILIgRSWJhQwfnpQAQZQPRCOULxP2lck/vHecgUbukatE0+DBA7FKzzDoKwHO90VLel+ouSQHxsJmbu8MSuBYEsSLjZ6zafF6RS8Cz4WjG54RaWeQZEgVQc4PYVY95jN2PamC0bbKlPCJJ4oycnHWDGqTf+F0N4m5cD9OI+QDAS5AEuMYdbHIpQVBxH2veuV/EVg+lJ4uzhRauNcNVi5pzoID7PElzuQM4zLmube0FEsomfP+GJGoCWQ8J5hFjdc7fIDEmiSnjuAeZJsk3qvKF9XOREkDSvzpSLc3B/J41L78UAFMFzVif4DoCoCXmd8wrYSNV1t6SwPloW5bvYgYJtWh+H6t33Hs9biTIREtF6WEt59x7UJvOeOBhOeUSJAvwXFbjYy3P1AjlOA+CE+IHhKHNw94u1+Nl8ReNkc61xmtWuM2oM3L/mkEwzXuttXCu2xXDo3yxyHWM16G6Fc+BhOjIG7xQuXsYtAi+9t2v4sP/+9/EP/rhf4Rf/5HfwKlXJ3ROIRXhuSytJR1A1AhYJ8q4r7E/xwssl0WYR9Mcbb6BpKOKCAmkkVdk0xTc4flaVowPomFMEK0KWOQTKc6laQmXZD0SKDUbzYTnyqIK3+pajw42rxYXQBVV4j3GsxSPWkr8fBJ4VIQq8k6SzegDbseVuzjjgs0JqzMIywooYKpojaq859lxf72HAqAudXzMmO9uJPyH3WLbGuukUZces3OOlgKAzWypp5TPkLmbfzHOycouoSVqxaFSlgQxqiHFs/BHBSxZZ7c5Zyh1F7hdinCcQLkHZ42WMcYhtKSMH/Mkv8cZYpGcQp1NYt9Lpfcv3JsIasHb+IMeDqgpfu7v/xz+/N/88/jSd7+EN/Wkt/E23sbbeBtv4w/nEAh+4td+Av/J/+k/wd/6c38Lf/vf+tu43+542/rfxh/28T2TlIZPyHRAw+rCqG4ywz5IBFeHLhxpRfQILCS4YFEktLBi8zig6oNKi5aCbd+XBO12Y2f+iZM2K85r2eqG29NGVQIF5iQpQTx4NllEmywaiGSXGtBKxb43VC2gzT0PmVtlQducxKJaG1p0RIPNmGiqC/gAWMQYxs6eJdMcRCsqfzi2othahVYSY9IiqBYqIlFYp4C2PVToKEp1HweC1ISlSDXnwHmnQpLFu2DRht1BZhOzkyzQlBdeiuB8ecGwgXDGuGrYRaOoG6oPngXMKFIbO75dDMWElnLeUWvFu+d32LaKUng/r4PEl/O44zheoSjYtxadlyOUhArBwVIguuHd8zOtZiQ6NU3wcj942Ibh/vEj7q+fAz6w1w232xPmNGxhMTa7YWs7nm7PSOudEoUTrO70CmBA036tNQLmALTUUC/K+gltA011FRRqwQIzZ3Q7AoALZcWTjJCFfXaeKa2DCq0mWBwn2F8bv5ud43UBSIjiBpyXL0YCWw0Szvo++LIBY5dpgZbGwg3Y4VxrxZyAm0JKQSlAFYW60lIDiI5+klKA7C5kGabUtkDS3k8UUbR9Y3HYWJQsWgFXmAnMCswFUkoU7gluzTlI2NIgXyA6xeFwY4eaiIflVSi4uMGsk1RTtigsG4axOEYQyMLtK0ArFJiTuNTHgVJkKRo4wi4h1WRgtCzKZw3H+3c37LcNNdZpaRVbdOPBJlqo36Bk4dRWoY+kFyX5xxVFNwDsLp6Y8Cj8ailrvZdKeGWKopQNmyiO11c0CbDFWIBtbQcEGJOFs6ZhFen8/NFP1Ns7kghayYo45vRFiDQHbrcbgbmlfoMoeof1nfN9NAWKOlQMM8AAMZbhSmXQoEoB5/ScE9oaTARaN/TjYAwrYdA1bK25jMEQiy51Fv9WwU4IGNBqirZ5Y04WFw1wpx2TouA8WPi9bYzT7Hzl3HKw6NjPvjpYExCbY0bX8qT1qKSiyeCeUAvcFWKMa4ChVOB1CvocIE+R9qW6NYzBtd8PEhSo3NAWoTbVUCz2zlIVNghS2XTASSiDc19ptWIagY4+aE9SNEArAcqmdLyQiv22Y9xPzictmEFA1cL99+wHpACqVFhxEHxNm8oihByKCGDGblsynTBskKvlAjGLrn3H7Cc+fv4R2/4ECBW7igrUSVy0ACAWkQ8kuG1NcR4DGgTU4/6RwLN19H4Htg3SKkoA1EVp79hDHdCcVgx+97DlFAgKLTVFAnQUHPPOBlYz2hXqRqUdE/TXE0M7itBqwBUk6jmVoLCTXGaT+cacJKikKkGViin9QV0k9qwAk7QKSV3xrEoQe+FA7wPZpapBPLIsGMNhw2B9AoUkUwtLlloLxhQoSHDODvQSipa1aigoRS4mjP1FC87zBHzSHs8dpdUARAIUc+Dp+Yl5Xacy5ERY5aJgvz3h+d2OYhPjPDGOBGgJrtz2DbfbjZ3UtcaapErEZx8/xxgdT/sNrSrOk8RqoKJoxTw7XASHDTzfbvjw4R3w2QuBsSKozeF2YJ53HK93zNkXoD59YKjgad/w4faET0/Oz+4T5anhed9xKPDyegDTUQvnfSq31CJA7xie8UgABZ4+POP9+3d4vZ84Xk7mLZ1d2mN0DOtQqVQQS4JHbCK0sqSC4tZINu+9x8crVZoi7ppRScYCjNUEAUFlzT7Gml8JENL+ClTnCBuOUgrBCAvisAhK+/4lKRkCiJGw0giCgmVnP/DQ5JAwz3WeABKsC6DI+XmheUEAtlxgThLSPUChpTiUoJ+DoLZSWdO46cLjfWYelp/1SPBZZxblGlVI9mtA4XjqT/iZX/kZfO13v4riughMogn0XyQhxo9LFRBIzIkT/lGNSJUkfuTnIc9caaGGYLMzF12gWYC5eXa57POoumqhYLgIAxb2Ku5LWSrJIiI8B7iFvXZe6gLpAtyMv7yUHUKFQEjIUvCzye1UbNu2VFxSsQFxthljMHeuNcgkdn0fCKRCFFvYHnrmNw7aW4P3O/pJgr9zj6mVSrkkjRAsLFp5RsClhmWZLDrWvVzPtACpzqKhZLXeYqpK5Ny91FSTQLKgT7nm2cVLIulCVULt4FK9kpBqSJKLZb4Rn491FQK4xPkrP4tEzEWY0CTdxudrWUQFCGM+uSeh7iBBsoMsMigJ9tmaEef9XMNBtDBJ0l1YXSKIKUhiE+LPUrGFKn1ZS3AL5ZdQHMsowddti1RsPmDzInnlOaeQdoHgVwcozs/XUDxSL0EsR8xZ2ocVXISviEb8bCRxi88HcGytMi4EgU21oJSrRlIQTIgMMH4RDDIviDILROo1j9xCASbJjCQApGkT13YQvsfg28y5IGlPSWDcLSzhSij2OfNybW09jxxu+TmMvbVUmMxrjqzHccVeT3XtrC0knh4qrIt3l3EFoQ6iuhSsPOywS+63+CIJxoPsM20i9bvjYHtdDwsomBYEGMFSLuNfayiOGGrBRTKMeyE5GDwvrPXE2JNEAs4/j7Nx1ASyaU+V+T34vhVONWs3zBkKMGuv8nXeDdZq2Pph2VzyukONSLLxIOZ6EEnFSVTTXGPI5o0Z+xSfJec8YwPVgeMegwTh+VRDjcndLsIDow885uYVbWKPtcviMZUR4WEx5tfvHMcdEnaVVPHku1Wfax3mvpLvs5ZKFcoYI5RRqdgVTUw8rIfwId+ZzRFKNsw7+rhiP3DV9tyTiNcBeAi7z4u8F7m/zYEptsicqW649Q0/809+Gl//ztfxSz/+y/jOu+/y+QVB0/z3q+Bdayfj2dpII85ceVCo7a5aZ66trHtxz/XpEMO634wvmS9lM9lSiZKL7BwVmlhnHsTkWDuF81iiNpnryGIflcKmmrR+s1zfWrBvNRqMJmyQ2iNB7JMgGHE/upTFIGFV7WzaKUXZiGITbmwEYT5GorWWwpqiA8uOsAAizJPnGEvdj78FKhYWY8PidIxUSitsuvQx0cGGHNGLHE67RjY1pqojp7+gVMXt6QZAcBw8m0uuVzeMOaF2kfSvgIh1tsxcWUuSsh2ZEy5Ccjz/EfkBSWq+CEgiHraDuan5IlCa+TrDcl+VtTb98Zrexh/Y+PDZB/yl//Qv4Y/98h9DnW/qSW/jbbyNt/E23sYf9iEQPL8+4y/83/8CfvpXfxp/7ef/Gn79m78e54K38Tb+cI7vOcvNYm/RsNEYA6/HwQN1gGuKkBxekuH2UDC/iuRYBzouvDknzIDSNIDUEt2vVGCY0UlZqqJuFTrjkG4sks1p6KEygugogoJgnwMtwE4P1SA45eZVFTYmZKP9mNlkgSaKt3BavbRaCArGga5k+TYlzRG+4aVQvUcuq7da27ID22pFUUHbdyCKxRogogbhgGSlsgpmMBYPNAoINg2uhvM8cH+lNUoWmdghNujdPk4ICBykrPU02mD1cRC8dyo8AUKSVhQT5wxrvyhEpsqSIO2uTmxtg5uitoLb04bn59uS0LYAPj/7+JEWb9tGBacoPG77DnfH68sLGgr2/T1cK7RsqG0Hu45ZPLi/3NHnxDlP2OxQpAoXi8jPz0+h1HRC6wZoRZarLN5RVnjdWOCY00g+CbKR1hYWESw0FQBzjCBlsWiVBau6FRIkDEAhUKJiMLC4OJ22WqXQbrCUBtXoSgvAzaMo3Taq8cx+BysGSgKH0dpMwwbLLeT9hcXJmQCIOckE0RmuotjbTosrG6BDYCoe8ZmMQaJDKTUISwRCE5x2CIvac1BpbKvo40QpG22OuqHcGgBdQFaJjuTzJEki7dlgjsrHFMosLGqZU3WoFl0brLgC1uGpSOUk7AC2AAR3R6sVEuRBDEMJYCRjyuxXRy/EQOpF3L8kYYsFr31vODrjVVoQHnDcmuAGEslUgjgSBEDzAZUKcRaWx+gkbW0Eo+c0TAimsRhdwj6rREGKJJQoakch1IdTY84V55gkhIghmFcE1lqD+8TWSPRLkg8tE2ZYgVjgUYp92+BOa6VSCrbthmGDhdsg32FOqADHODEn1R7ClS4IbRLkFdo9jHFSZaDSVhFK5RCABTAtitVEL4ptu61OXDNAS4M/FNaKFgADqgWvx0Qfjq1uVA6YJHLUwthbVFFnSMgHqFArbdNKIdGQMv0WZLfomh4durcg2URnqjnUQRu7UuAQjN4BEdz2GyYMr8fADqW94VJdu2xIS5CyYFQzyqLvcT+CSMA97368IjuAe8/CuuL1eMUmDVspVLKCBLhC8O08BsYw0FKCioM2CcqdJ99paw3DOokqtcIa8Hp/5TU7ldmmAULTHhRtKCLoHnZeWriOlOBbRHuCZ06STm0kktqYOANNEhGSfoVxqJ8ntttGqXthd7rNcYGFiBKw85lJkE8yftDaYMJshEXbwOvoq3Av2c0duUNtBfuN5C8ShRu0vEPbaU06Zsf95RWYXJ9aFU02aGtQD7ErgN2185VKOlXZoRrA+W1/ghXDHE4bMQjfxRyYRnBDS8F0ksxqRRAxSfrStJVSodoVsuM59tjozBaJvSGAu9pIhB7nxHmccGf385V7KKzPsHkEZszh2hrgXC/nmJgRX12ZM40xUIUWnT0JqE6rJnZOzwfiBoG8upPYOU7mZwJFKyQRn68v8FCHKlDMfuL++oI+Hc9PT6ilYpZJq12npSTuL7g97Wh7ZSzygeKC87Wjbhu2p4IxTtRKgujt+Qlf+eqXYe747u99in4eVIR0WsUQZCHCShKWwcXw/O4dvvr+6zj6QcHP7YY2DR650pgzrHYbLNQbHDOIgAPP+zOent8HWDYin1OqOk5D2vosZbSYwwoCv16oyGFzAi1jAfOBOewiOyywKBKW2D9EnEqZUiK/JXhZlAQ8WgdHd3MlOWmOuRRM3EEw6Pt4JKmBag4EqvqkdQiCpLXA3iB0+AoBF6EHuMBpuAQpgT+rBctCV0M6MsFVKHOjBLUuVSbGrFQQXah7YDqOIHLiAvsAxkGN/Bkl8soh+Po//zp+8jd/El/67BMAtNZaNmF8ENCIRxLXt3JuCbswEJTVANiTMJDnDK38mQSBBdlAQXBV9LKJjqtlLooL1LY5qAgWFkRAAsth7RYqFAIs9SIL0pLFviVJCEDkA0FEuBpU8vnyubJhJRQGS5K3GN9bo1qDBkjt5jj6pcYoWtbaK/XKk1QcdaOFsUg0liDszcyo4Ga8bvfrnvKeW22M74O5v6ist2zIe/J1H7R5Y2zW2Ksk9v78Xo09PRU9sMhNCBKxwEyQarrxZmJCBGisSYJlPpnXRRxa1lxRSSIZzxNUyMnPCKWKh7lgFt+FsCWP70v5uBK2PjOIBal8ksopOV8430IZzcj6WZ8lsv69qIb1cKHFu8X7k6tBKd+FheU2SQQBPMc6yfmUdl0kGJX1uwINJax8exKKkEECmLzrIpwfKtlwgUvNI66bDToIAkAC4Fy7JRSBEPNyBvFAhXaPMBKWY4Uvwk7OO/t9KjsWJK0aZIkktVm86xX3PO3qLJQy8i1KEFdJXpkjSDXJ0IizeVHuP3k+SQWcJKplzE0SXi1pLxvW3g8kaTYWJHnC470y1+b7C0JiEiIiljLfvSyWM5fiASLJJEkeYiPMNf8ChI97k8izNIif04A+LPZeX/Gc3x+2Xg9EOvh1xueZoiAtPdc8zrkRZ82899wiYGFpBZ49aGnHOlOqMpOP64CHui3yeyXIYY41zYL45GZA1KDYYMCHYkF2lPh8Wm3VK0df18ZrITmoxJ/F3hn3MG3GWS6sLYVk/Tk60v4JiDw01X+DzDCDwOqQtUclWYncmlBlie/i9hm2yEnsj/VA9dZJEj0Y41LZ79qgsezOUmnp2r99fTfPQKGUs9TulHWBfOlCJbrWaD/Jx65oTR7Iu3Pl9TYm1UdDqU2CFAh41CEHUlAt8woSeyp+4PMfwLt/8B7/7U/9v/DbX/ltpLpTqhIuYlacq+CX9WvOyy9sVrHn5j6+8p6Yt4h1kTFhBjklP83BfMQmzyOqtlQ/NYipSUhacx2Zl5BYr8o4N3MfzX2fATTyvApghlo9GzaTVHVZjPVlmZjEt9l7NJuxOc+D6Acpcc6jsrKWS23TY67DDLVRrVtcgvDseLrtKNFEYXOs579sJXGtl+G0rxMVvHt6TxLgNBI/i8MwFjHbPPJ85LrEipelVNaFg0xXvvBsZyhp5Vx7yGnzWec792tvUY0zRjYJx7N3IEu6VN6N3KmGYqsibThjP4r6WoR7pJUx1YAzB76W3tv4AxgOtNHw07/80/h3/ta/g2/8xjcecvm38Tbextt4G2/jbfwvYagrfuIf/wT+4//zf4y/8r/7K/jFP/6Lb0Slt/GHdnzvJCVR9DnQ+0S7KbZKKfaPL/c4mBvVJlKuPOVkUzpY9SpGSMhpx6EXWdCAhHqFo88TEo5t2VU5Rhxi40B/9E4bklBKGV/wCp/wJEPVEuBAqtEUZMNRqy0Kk1TRIEB8YCsV27atbtzV8eMsqpUa8uWehY0CRWHHUpXozGWBKjuCkxRT60aSQkipl0bwmN9TWeRxqkmxvixxkAXGnLjfT5znnQdmIbBsk/Znc/SlpIQo+m11wzk77v0MUOAqDBFgVcxQp8AMK6JC6WsqPvGx5uEaqAEu0Rah1QbE9Y8x8fHjCz7//HNIKbjdnmAumEHauu031KI4e0fddrx/fkZ7eoZLCdWBkM0XgflEa4q2FbTJbtLjZZDg09hFdZ4nO7lF0LYNbWsBzBRoraByDgufswfJC4JaG5+1KFQb54cAHU4VKvdV7PGQ0N+2trSTBVQjEiFQWaWurnAJsLfWsJWxiVYbzEmqIKBRqFJhA9OA8xzQApSZtkgsKhpobeGT6hcExyt6FJNskHBTKxVUtm1Hql5BgRmkNcFFqGulkvDVGlQLmhiVVjAxRkhO21wFQyllkQ9VFa1tUSwlKYZF4M77S4JbFI9LSpIjSpxO2yEzREc648UIWwB25rE70sAC8TzHUiJh0T6VSARzsMCkzvcLEbx8/BzaSliqdLRQSBGhvVc/bVn/FQ3bA+iy18m1CCjmdKgZ9taokFEFdd9goarxdHsKoS4quR29Y9NUSeOz6f1EKbTImAGGaDzT2QfMBoYZphWYCVorqEqC5BgkFmEMiDr6nKhFYcou9GET5oPEQ2EHnfmAvU5sra77HnPiOE6UtmGMgbOfaKFYYJJKPROzx+fbhHsNEIbkvqMPlNuGKgW9D5TaMISEP3MjUcoYO3w6bSyDU2TuAU7pKrzWovApi+h2OgXuW9sw58lCowJwFuUkgPmMmyKOcR6YnmQqKhPBuUeUh2JvFu1ZlHWICRUzohhYCov3Nifg/BkzkjeX1d50tBLqDLnPwUK5jzeqheWj3jsQKk2AY9saxpi4HwfatuHpdgMUATwMuMRccwnwVTB7BzDQ6g4RwdkHMEG1ssnO0dkJINcKXiu5cTjPE/1+x9PthhmqdkUKxuzcFwBK7pNeCQS4xJpndqFn9ZJzSpwkCg2UySG4PT1jTO61RQsVF5WEYgIDfKczgLwxxiJbjGkLnd+2gt4LznNiDHaxUnFqYIy+bEJb24Ax0E8SFrc99x4B8S2ByDOen99j23a8fPwcL/eXsCnCyklaKZhloDsgbmihIEb8j+BGqQVbrPvzOKNrv8JD1WuOKGLXGri/AosIZ7GHAXDGEJkCgF3vZ6fSUCkFMEErBa4WqglRJB8Rox8As7rRpnIEcW7O+UBI4F5VJAkLsogZooJdN1QtqFpwjg4HsNcdqI5TGYOSNKCquO2Nyl/g9X77905oWOnMMUKx7Ya2VQwBXl9fcb93YBo++eQDalOg7Cit4jg64LTYrVvD8/4Ox3Ew+1OHVKVNHCQIWII+Oj5+fA0SBZ+lFKA6CQwJzPRBVa761PDh3ZeBLvAB9PvEy8srnp+fULcKlLBR6wQPaB9aoJMxlJYPhs8++xzTJr7y5a/g6j5mDDco2kZidO8zlKaoPkllzg1mvN/eJ3qs9yQVS+aMPgEPdQXCcyhOMP4cD6CDX0AxQjHE5lx7ebBPSPQJ4mraOT6qDn2/DRVdz7uUIKwK3/3w6Kp/uIcEIC+U7lIeuEb+PYIEoBeo7XOBNwugjTNHAuJzEmBOG2e+qFD1iOdMKVVdigzLKiWugGpYgg+ffoKf+dWfwieffuC5QLnWSymXZVWSAZJIhOteJJVakogpacNxfW+qbvDPI9YEIevxZ657jCYNScyL4OM0qly65XkMC+S1BGej8USF69+MMcj9IoxgEasEFvZmCOA0z4VUDpL4rCCFPqjxlCB4OdIuyXGePQjwglKpKpsWVlQsTMuZgr01aG2xH9UggoRqGfhdpSgtZo1nylQuZG4xFjhXtCzFyFRK8Ic5lkoYANY7gDw25MRUtEvxBpIkhUsZl3htKHPF9NR4/yYPSrehjsX8kbbTiO+57HFJGMl9WsQj/0KopAZhI0g9HkB9qnblHEiSddFQJ4wDc9rWLYUaQyjIkvQsQeS2md/lkSsQLGZDgK75lefii8SFh7NCrO8HYP4xpCUZIXhXeIwEOV8lV1MQ/hN8FSlUOUyV3fgKs4tAmaSpPjrt3cG8pUT+I0G+meaR0+Q5h1ezlNAkQXRZ+WaN/F9QYj3xd1upkXZd6jxa6xdqkNzz47lHmFJN0qAF6SSUWsCzEVWZw2bOL1u9RVwRrhOYwxFWo0hlDaB3W4RBxPmSFtx1NQaoBJlJPOyQIudPi1Iri0xi7qH8zLPztFRq43xlDcehhiC2UOFJg4hKYkCqVmcTTOat/IlUosp6j1vWS67PSBVLj3hJRRxH2n3NiF+5H5eYoJZfk+vasl7wqLLHl0OiTTbIJZmAcbdkrI59x2J+juFr4ZOkHxrPzrpIKv6wUSLIWLkn4oF8ZbFoci1hrHVtNqn4K4yFtOEOMiR7FzDj/sxpxVlDKSpJTTmfEPUSksajJrDqY7LWdq7JJH5xi/X1PhgTdb1zwKOeEPvwvGS3mFrnGSUJvjlFSYCZM3K9iM1s0EmL+NjHIbBhSNK3FF3Xy7dX49oa+nGgj5O1QLvWkYqEIhaJH6nqt6JSkMn2ueNP/tLPov1Yw298/TdghfGA1tap1BV7R1zbF6y95IF8ZqBinadqlIUali4inke+4/nMJfbV+EjRsO0eVLrLOISCL7yvtIvnZ12EU55ffCnsllB1xJwRj/IlswFDC9eKueE4DpzHlcfZnKhaY9+q6GcPa9cJvfFzCxw1rGpnnDsBYNu3lc8g3n8SZ5diFYxNrzOJRJGTBJl7kf88nlVR1NsGNcbuMQz382QNt7A5w4ErpsqliJlLjw1aobhrjloyJ2EjVX63ui4SGZ9yNiGw/somBIfPAUO9Ytz1eJHKpBE1LnKbezTEJUEtJ1fsen6pJQmuMwdLJ1lP//4+T/xhHWKCH/mnP4L/8K/+h/jmr38T6vo//Etv4228jbfxNt7G2/hDO55fn/GX/8pfxl//C38df+/P/D30rf9BX9LbeBv/0sf3TFI6+4kxqTR0HoLzcHQjacnmDDUAof1MAnaX6PgqyDtIvlHQJgB5qAzwPoHCx4Nc0UZrOMUCDCw6VIrws8Z5HQQVLGbXWiGqqI1WKCRMRPe2C1qo6ViqIJUCICzeSokCB5CdkxKdkYcZaFPETh8RWgWosBsuO2ep2MLPYtGgkNAT8tGtEuyupVJVhu3dtEDJYrPxelhANPTjwHHcwz6B3WFwxzgJPrtP3kOh73qtFWMO3O93FhMNOA9DrYrbHgX+pZwkkDhEa63Q0kIp6YmgRO8Qp91UrRW3241ErtsTtDbcjzs+fvYR9/uAFMW+byh1Q2k7tqcntKIsMJjhqW14fvcee2s4+gCcdlUoRNtFyiJvuRtwdAwjgUFFsd82kqrcsO87WrtBQ32rhg0aLcQ60i5EQYB/TI9CVKjluMAGi7M+HT3e+xbgYqrwJ4YjABW3NG05JAgiJLuwhB9dtqG8kKoftdKCRdxomxOy4VpvkCAqQHiNPrnpEEhgkaAUzmnKmws7tDSk1yE4X+8BbJTVAZ/FOLhd8uqh5ODZCW+2iA+IIjqE3VpVqTRTS0EtG7sJx0Db2E1Lq6+xOupoDZIFWxY7tRSMyaJna2V1ePG5skicBZvjPlB3qmL4HCyACZaqi4Q0+Zg9lFsc3llioZrOxDg7bu2GolT9KWULmyXnTIga8ofnZ/TeY61N9GkAKp5vO7RUfPbyAheC8XaeaEkGaQKxtInjfYwxLrBrkHzkNTo3g5BWilBFJax6Zl5TxKanraEoYLMzPiJIAT5RILQnQRTVnBLqDgIZ0xz3ceLWbgEICUSD7DVGkIScKlbbhgJZyg0EKjh/+zyhUOi28/10Pqx9a/A5cXrnOlXGq+w2ZR2Y99/nBKyjlgb2gWc3v6xi+JwD/egsGIuhBRg7jPO5CiLusLC+bVTwGjbZMYwOiKMfA6UWdsVrzN0oNDqRNVSttNyLzngSlAw2BuODsaO9jxO1VIKAMJyDtie08BvAnEu5SInRobZCwp1EB7yQjON+kkiKidEJtqZqUFOSKSkcdu2PFtebHIRa09rzxP24kzgaKj0WwJBogRjJP1VBK09G8bBIcPSj4/46YC54//5dkH4Y/9jpThusBEwgJOqYTZIIhAp5txbWdAHamjmK0E6s97D3ayRz1klLqhmgb9pqTDAoEORL1UV24NaiGG5hc0UlRYY/X/mCilIRYw5IpRqhO4L8SxC8VCEAGMSp86WT/GJzkQVKa1AYMHypCD7K3Rcp2LYKlSfAgZfXO6ZRuUhsQsxRIJBJ8quExWgN8NmEqiCYocziQKplpBWVJoKsvsDJ7AZ2J0B6228sVEfe4SpMshBdxkGG5saiAbI61STd0X3Ag8A1bS4CA4CwNSmRpSWpm5VuM6oTtFqhG+d7Pw1j0u5RiuD5tsf7pb1Ym8D0ibOfKKXgHCfGfWKKhPocoAkUA5Ai+PDuE7T9mQV8AxwndtBSEXA8PfPvRr+vgn/akZBYCgwDGgiSHufAcXZABbd3z4wNWrBJRWsbPv/sFffXA6okZKbVUVHaQg6feH1hHrrvO9wMrRa8e/8On33+gm1ruN1u+O53PqV1rUaOK4DWgi1sdErYfnrMqVoKunmoiAWArAUiBTYNp3fadIK/V4tGTpBxSwLUBNzDPs4Ew+NdGwJAChW5+Qjbf3+NYSRaiQMTk8RlD1vFUDxIACb36oUKx7gIIqm0FgooQdYhYVbWr6WSXgJXuP7qUuaI77UA2fitErbBukC+JNbkdSlIAn3/+h7f+CffwA/98x/CZhtoIRf2GW5wL0vFLAH76UleM6RgnIY6Zf6TwL4iSVFB7NGyfiqtiUQ1iIoXUQm4SB2IcwqchPwRRNoka5AsMAP8iowp1J801GPHGBGvqGSrCfBK5hR8B7QbARAKQ1pCfdGDEKxAKpbWaDwocW6bY+A8eygKylKZTaXdpV7lJJ22jcQi2iM5HBOWpChRqDq0YZEETRBKMsIGgLD14/7A/EbiecYvIRsWCBCS/G6ReyP2bg9fIhcPkJLAZ37XI9Zni4MTSlSxF/L8y8nvMVc0SAyqEuTvy5Ion6cFWVpSoSmIHebc5+ISOack9+S000PkAEHwEQSB+jqfJ4BJXsZFLkgVh3XO95hPcX8XMS+fT5xLHghKmiQwibUq5fqsXKkB3EMFHuQkLfG8kc8ryYecf2OEmlUQkvgCU8Eo6w2Rd4pj8mh9xZZQnqzlUsUR0VCuw+IhCJzqfIsgxM8qTltkETbnOKLhZ0YKLfzfS5fNV0zKfIzrMRU/Yu7ZZZuV+ULmU/xQNlSlwrUHKVxUgriMB8tsxFk23n0QLoYZaklFm4yBVD1aOWs0XVCEKaDuJHjEd1HllQQQG9c6cwTRBld8BZIglp+VJIYkm2RMDELT4oE498J4L5qkCs95y+c2l1pMxLMZ+0ISfKJ+Qzs8BGHngVQazRJY94uVU03PfPYizmReBUklP1nrwVZRIWJl5Mb80ItEm+/GnbWDVEZ2suq4B6lC/CIv2MP2n0QGjZ9lLWgusjYES/lHg1wl8fOp8CpR28j1eZ4dZh21Vua5GfMh67szz5TYz2gNFxaecBToen85/VWZl87BPbikpSkQqmL+sOZk2Qem8tFi4CDJYlE/y/w6HjHVu+aqiWSwKjFvJIg+uX9uW+w3d4d1Ngjld5VU0ONGvQini/STeYMLnuYNP/trP4t3n7/DL/7EL8HEkKR7ZRBd+zRjayg6I8h6Ra+fiXvP95r5S96L5B6e8zFyZ6oY+3oe0PyuB+J1fn9Kn8XzTcJ2kgAzNcs1ud571HIhF0kzLdJFGbd9ItRDSR7mP2yqkkL7Y5sTcw7ar0W8yOiQ+cr1f4DSKtpGtfqaylyY8Mn73/aGgjzvjSDDa+6+cY9f3LeoYO5h/QpoUWg2GU2nMpMZUGStEb4zknonHPf7nU2UMTtbY55jZthaxXE/0fuI2Bn7HLAsJBFkKBL4+Ewn5tq/LPeyVKea3OMWOcn5c1k7QOYiogBm5EwCRD0z10uuJXsMKG/jX+1w4Ad/5wfxZ//LP4s/+Q/+JJ7uT3/QV/Q23sbbeBtv4228je+T8XR/wl/6T/8Sfuif/RD+s//gP8No4w/6kt7G2/iXOr5nktL9PGCTtkiCHr7gkwVREaQly5wTPh0Qkht44goLg1WR5WGqBPmGRWFZxT0oosjK4qBbFDc1QE0B9rbBJgFqEyC7n4tSzQUOWvioQJwqRwWNkrcCWrhFEbqWhlpbkJgMLQhLWRBwZ/G21ooj7EaWGpE5VWxKWV0ytRZ24wSo4FE8SLUOjWtQdUBJVsou51IJxEsUUttGOw/YRO8nbAwCFZXddXM4ej8wktCgjlIFrTbs+47jILidnboOQZGKrdHGDgD4uKI4HgBIrRtK23C77dhvG15fX2FmeNp37FqxbZRNrrUCUvDyeuCz734H1gf2/R1u756hTVHahn1/hhZFS3KaAzU6ou99YIyBrVWUBKNEINogTQOsOKGiqKWh7C3UpxQmFkWPUCUaVIIaGnYCs8B9YnoWy0KOH4JhjlaFVmfgXKyr4FkgbQM03mMfJJoVzam8gCNBCXIai7CONFdiESw7w8ZDQRkAbNCKS2pFH8737kF6kEaQ0bneZqgJbYXdyBgE1Gpt2LYNY95pa6WFajNRFJ5hn1Jqgc2BmjaKLnClaskMSeo5+A+EZAyRijkmatsxhmFrfH9mAwjbhN6DuZtrxH11eWdX7rQBaGVhTdjN3UK9SEoAu46wUAEcCi2Na3wr6PcBEyoeiRh677QHAIlQ3Ud0RwNb2wEB2kY7EFr3FZSyobUdUghjjB4qVDZxHPcoxirGnKilYasNYxpsHFSJgUEmVdSKg52A/YQ5bQXgUaQP8HP2EZYGM0geaXkp8Dmj65kFd4vibZEgeI2Ouhd4Qfwd7Vx88H3e9j06olmM92ksEAvfjUoBAmB4vXdaSG60Sdj3HdMFtTWoBImvRxegzQWo1tpgw9f/F+HzFRGC4jagrdHOAiHRH93domzBbVuFz4mjHyiFdneMLQnSEyCBlohfJwQFswNT2JkpKrHuGoldLtGtWdHqxvdRHO/e3ZBoWVGhDZwA8zQszCZAFlqSBFASRT1ak3FOmhmGABDDOBy1NgAFrWyAFIwZthWu2CrVBRNM0FCSEw0lrpjT7H5jFbUUhWPCnQo65xy0xFKSZlOy32ONFIDvcxjXkgH77R0JiMOgxmt9ub/i6dbw/sM73I8D4gWykXQlwsItBok70AKJ+EvLAaBtNyqFGRVeco+utTC+gip+7rIUE6kGBna7m+Kz7/wupk18+NJ7bPuGcisoo+McZ+yhilaecY7BNRWkZCpyGFqphEGM31Uq1Q5s2iKFUj1sLLuH437i9lRRS8U5CNKWWlBqw/NTwd6YW2y14ThOvB53nCcJ11oKnsozxAwaFlO6CMWyuvtLETzddsxQGYRSGcqOA4CQWOPO2Fg04ovDSxCioyh/dXo7tm0LUjanSapMZAdwDRJZAqGqCtcE0DKPwipyl1A3caLhD6CWLRDxHAOY7ETWILtqgAINjuokTLvRtmJG0brPA8WAL79/j1c/8dnLC7ZNsbWGWiq2rcAg2J6eUMorjvsr+uio9YZWC+7H4PwTZ7JhQD9o3aS14Pn9e3z5Kz+I4z7w8tlnSOsDM8Nnn38KCwU+qQJT2gvOuOfb0zO2reK439FfT3x+OO59wovgS1/5Er72ta/h5bMXfOc73yVwZ+zShgyud3WqEDmJbqiImA3USuJH2W/RyRwWKGZ4vj1h32+Y8zVyDKpiWOyHZWswdMwzyMRpyeW0VQUIttUSdhlzkvRODBj34diqY2skec45lpUuAtBJgGkMW13ctdYrnn8fD5I4g3A4L8uwnNipCPFotaNBBksIZ3WKR6xC9kVokC8tVTASLEOshyR+JBGE5FI3AmZJlJAFE/FnVqe7M0dOmx6F4JPXD/ix3/wmfvB3fhB1bkjrMkTcWsTAIGokQO5BjMnvJLAXMUh15SbZ5Q8JNc4F/CFsOjlE0waOly1xjQniaQlgKshzaXFFgFcAs6UmlMmZSqgKFe7zVM4LMDKI/iXmcfzpIvIEmrks2mqlwmzvHQ4SP2rVyJ9ChUEEvU+cxz3IAhsVk4qGRfFFUJJ45UVJ3KWSJBs74igRKilB3Anifj4/2jCnhV6QGcKYyicttTyIzRbEG8t5EUdbD1BeJUm3EfeRjz2IThLGQKnskQeJ9fb4NnPOCXCBhZwaK4+0kA9KElASbBHEYdX8ds5QBLicZIs5HUU9GjBoGSaF4LV72P7FWfCROCsJvkb+SqVKvuNpl0pPkrM4F0j0NrfVPFHLZWGOtdZD/SWezaXKoguQNwuliDXXwk4aQehYQG3OwyDgA6iFZ09fX3ERvfMVZP6FNafY+MB1m4STAPklgf8gFPil0pLviMS+tDiaS0VU/Ip2cCz1rotE8UVyDmJOeKgiZt0l1ahyHqw4IEHimgZU3p8JCYOpzONBUFaNEk2cbXi/JZSa494hkdteaqFUu6XNs8Q6SbIHSRYX6cUlCRWpUINQUStL9YeNAXlWfyA/rPcTZDvzUMDJH7jAd8RaNBvxojU4DHzmogiiJXMbC0kkngsAM0V9ILbmV2s0l1DdK88TQSVIkmwuyCBNSMwNX0Qzg8Xe4UmQsrniTdpFpjqPPFg15hpI6qoI1npcL925RzHGp03U9VweCQ6ZH06bJJxHLYtEJTaQAI7WKtRI9JNKO3v3GQ17WOpRqcYFhI2tFsjD/r321DjTihSeX92DCMjGsbWvC/Po8zjR9obWSswz1idS2UVUIWEbeMUIrhNaz0Vcz2aQh3Ab2zNmMhIFQFiFl1KDzOEQ5TWWUqkUJBJ5c8ccVCDPGFBKpRogrwSXmiFW6iIAqhb8+O/8GNyBX/qjvwQvDh+h6BYxKs8D7sBEKLPCVt7hER/5TrkHI+ak5vN4OCewjhhzM4mJ+R/P5i9Zz4JzwqhWpKxrZR6iqTw0U2lJgVhbENYEHslJaTdIsiPjYNtCUT7ItTVUJls0nWjsR71nc49fZ/fcs2MepHIfycwFT0/PANh0wPM2b2uMDkgQJMUADbVjy/desO1UCDMbGEdfZM22Nzw/P0NF8fLxlc2yzjmPaMrNPVYzqC4iLM+RrHvH3MpYHHtga23ZCsKpzJT74SJsRa1r1RiA9fyCSRakslDJMzblGQQul6W3+5WneM6HCGEW37PmrshaW2/jX+0QE5KT/qs/i5/9Bz+L2/22TiFv4228jbfxNt7G23gbOdQV3/o73wIc+Kv/wV99U1R6G3+oxvdMUvI5WByqCvMR1VkelKWwS2gG8J3FLZcah63wSxcEMGehhctCGoshhfhVdGuULJo4oC3UiSaLRdu+w6fB+gmxCZMSssO0YGI3aYGqo1ZBLYoqBeoKMUVVxb5tJKaUys7cPGA7i+i0oAggCAIXwwCJFdU1DpwFWvJQKtBWMWYoUCC7UozSx6LYo4OJBR3aJBXdaCHS2pIPnlHkpdUaLY3GeUc/z+jiLnCl3PQcJ/8+ZLCb0jZNRPDyeoRKDEF7FEcrPAyzYGOQQoKDgmAq5dZplyZacNxPiPFg/fz8HmKO59uNgBl1KPB6f8Xnn36KOQa2fcftwzP2p2eSFdqG0TvsPuG3jUSeKPJJIRCgwoL1NMOwE1U2mJFkVlVgXlDKDXOeMO+oALwDGAp3BVrDaQOaYF6tUHF2Y0kSvoABzgsD7dWmUfeIhW9FD9CmqCyrLHeD22AxYXRMOKSSKKVZJNQCh4Xkv0CFgOTwA6YOE4VH8WaMEyWs11ioJfB/3jtKEbTGQpMAqPE5T7cnzLYBIEh6P47owkKo7Si0bFHgNch0qm3BsG8tVLYEUhVj0MZoDlKpbFKRxJx6N+JBsIlCU9pFqCpGp/JTrRukVPROm6tte4aUyncJoJQaxEFEt3AQp2xASwGCtMFYEiREqUg7uLpXKg0NxgebVDoZ50QPifoWBLnzpCWYFA8rq4paEcwJPnuowqN+V0RQQwmhbBvuLx9RRLBtDeoOiGFahyvtps7jjq02AAO3StLbeaelokjea3QmO62a3AefGxBKbSz4VW1hz2AoyviwSGiDVlIaAKs6YJ2xtWpBrYIxO2xMlNY4t1WA7hAjEWPMiQKnbZBNnKOjosKFxEsAEExax9WL3KDC+Hp2BHC447QDOvtCyWrjO2mN8RQllItMV0e7Q+CTRCuCrSSy1EbrMjGHzCAGGfeC4+zoY+A8T74DOMFBMyDmuBihyGlzqdO5OEZ3SMRrg8PECSwpr6lqw7YrTBxn7xDQNmtEUY+FOxJTa60wdfgIS7MiJOkVgaijH6/YCq2/XCpk2ircjsGioPiEwVCtQJ1KTa4ado49QFNCEjDDgGGC3dENG61LLVRGnEpiwwa0svD4tD9DxFlQdQLcUpQqZPsNXivq1nBDBeYrxIHjdMCArSlMDWMGJCIEF1mzZhxAWBikOkOfHVVqEP6CfBhFayErMSwVHdum+OQrH3AcdygANZLlWgUQhMk5qCQCXIXhaRMecXrMINlFzHEI6tYwB4lyKkpbP5lw4V4/58DsB9wG1yIE3UMVpQrcKt69/wBVxcvrgdp2vB4vuL++YIxUc2AnqYEF3+zmBRy320bCIhy1CUon6F1rg09+vzvWe1MHoFRGsW4wUWgFaO8VoBZYLBco5qCaTC0KaUpLPoxAKpwCSzaBRsK0OKBCOx+EqsKYHXMMwIXKauIoclEX2M1tiyyRWIRKKLgIC/AitJudnUpEx3GQeGeATsFnH+9U1sCM4rzgfu8woUpVVYtYuoVNpKOWDbdbxe09Fes+fvo5xIECvu95nxi/83s4TqDdbvjs5SP662vcY0efjJMfPrwDBKFQRyU/lILRFNtGxStxZQ45B2YfeP1U8V1p0LKhlh1zDLycB/rsQAFUKiS64RWCtu2oxQAbkALc9id45Gu1KGan9eowEmOnBSgghgIhQXoaYBUoDXWvGPOgBSiCCNOCgByxbIa6IZIwIGFJNwyvfVAFhG3/YRvaCJi1DSOsQkUcZfEgkwxjMLkIPt93wy1A4wRREWSHy+6EU8xDEiIIBwhg7YHwB7uIBflRWgJU8yRqYP2caADgfoFaaQMFt9gTZDFAPMGfwDxVSSUps+LD55/gR3/nh/Gjv/cj2CbfDaouhRRalcbvBuCYn2lIIMgXGWDh45oAFve1BCOD0QC4Mo9JhQIhQVe0hM11qiklbu7rOlbOFzlEWQA/84a0eHMAxUkgggB9TBK1guUhgjj7lUUqS7YYbyeSLklSBeMdnMqIrW6Ag/m6ali4AbMPnOex1EzaVlHatsDFOQ1zjFBu0uRuYak3INU8DJhUyXUPYnygtiqV+4hNElQnmIcSYaU9KZiH0EqJBAUINQtIhghyCkhuK0mai/PNDLKCivCcFS9jqQQlqUPLmm8i+ZkezQ+ImwPMaXPsAHyRxycuAgIChCahhAqmmidRpC1hrQ2uoaojJWy7UrmMnycPShsCX+AprclmHBBI8kgFEwlywDrbIPL+XNpI5QZEDkhSuEZD0IxYXFpbc0eAB/BckFJjgiCdBIGGayaVmmIBBSNAa9hQm0YMCFWY6UHE5XqmSlIQYCSJnrrUixwknGCtYZIB1n5aCi1awX+XiF9uBgui4RyTdQXj/8LD6ilILgT3I4y5R249kJSCJJUjiUr5pIMFQUA57XkerMQ8ai8qca88l5AUFeeXIFHA016etQzOfTYVKBkOS62RyjGRi3jkt5FTz/j8nPskpvO+VAXTJZ6bwBLYN7nqSvGsc04lWTPJGGYGjftcSjGhOjiDtFBKqDJFLI8Q8bBmPJ5nxEkLGz1gxedc4wLlPisZWx6IZLn2g+SR8R4euZpgrREpeq19sHFHvSyFGot3oqRngyfCeBYCOHQRApfyqceOIpzTKsK8Arz/ZfXorBFAgniaZMaIVUlqQc5fLahaAe+YPuAj1o8AUrHIDIypl4JSKnzDY81AFtGklhZbusa6ukB4CQsqFce2V4heuYFEcx+kQHSGKFqcB32uNeRBJl4kssjREHsSeUt53WygSUvQ3APXegrFJweJRWaMTztYE+vaobOwgTCIoyQ98mUlIVHiPEFlXJ7/1BU/+ls/gu3Y8Ms/8Sv4dP9ufMZ6iNEclPEyiMNJtkLmNg/qhR4/90gayryBb2HlEklUUqG6rRtirQd5s3CP84uWe8W+3Gf1iuuCqNMCkKKouGzvvdtSUE5CVB8kHK58ThiTjnMsQjhrKNdZRkRRKusKWhTH/WDjEmLrM4fdO8w+x7bvGGOin2eQQo3NTnbidtuZjwVZcxFQBXDTaCSNuGVU9J4ncMidqu1S2Ag1BsxDaawsOVM+iyBmFzMAofxfasxv2jMnCfX0HipoJDtl7DOjGh9EILVCBslTPqkmXTStIC9FTo19L144n7kZhqcSYyqnTRiyyZi2feaxz8v1svlcrhj3Nv4lDwfqqPjGb34D/8Z/82/gT/6DP/lGTnobb+NtvI238Tbexv/gUFd86+9+C598+gn+2l/8a/jtH/xtvKUPb+MPw/ieSUpU/QBqrQQcPQv3PLjMsK2qbQOKfaEIk2N1BQYJh4VCFk9024AiPIB5dIQpSRnsSmRH8n674RwD8zyXrHcN2XB3FpZa29AaO5q2VpFdz601IBQwnm57AA7R6ePZTaSrQwUgoQfCou+Ig2GrJTqUAa2hgmK0L9m3FoSFIJpUxfONtlOlNmztBverq0ZLpWIPUv3A133Mc8Kso/cDNjqLJ1GEcAz0fqKfd9iMwmfUIsxYaBlhtWPmaFs8x+gUq7WSFFBIDpPo3Iaw0MYu0LLAjbJVzDlCwlgxJf3YJ14+/Qx2Dtyednzy1S/j9vweom2BI7U1oG7hSa8IhxZgTszeAxgZVKNqLebHxDxP9Nmj4MiD9pwnxkk7o1Ib2rajbCR3YA5ISDq7d5I+Uio8SGzmgDg7BG2M9d6PmKutNWxaV7HN4Kg3EoRGD6LEmKitYS+FBVMBXDgHLYpmNkcUpmQB/DOUbywKb4QD2C05nGSyIhu6dxgmJAoaE4K234AxMOGoG23t5pxhh+QhM037oVWEFsFptLBTCGoUzXwS5DcRnONEykOJECi16KArlWsHEsUSm9j3DaJ1zeFWNhayRWllF0pogIfqTHY8h7LHwEMR/wJC+ghiTyjIqCjmmFS6kuhijQKzCTDNoSUALnOIUM3CZie4F2veneCdGy1KXs879tsGE8N8HRAnAcdskPwXhSyqXxv2raJKwf1+B/YdgOEMJQzaTLBwaKGkVVqFmGEM2pS4k6gHF8zZIZjs5lMBUACwcDXshM2JJjUUa2h1JQHQbtuGUiqOceIcd2ACrVSqHvnApg1bLTh7h6X9lQqqOpo43E54rHWooad1ljaYEDAFuHbOOTACuKeFWlvl8iWwIALDQC2Nc0VLdODNK9abYW+0lDThVlMK748AKcmeBkWxiBdgpy6VdBTNZRXOUk5/mOEcfF8aqK55kOqUhb5SFNNpqael4KmmrR/tMNOihq9aYAugCcsYy9hpfH/RuV9bhYAg2vCTFntHX12gGlZOUeMGRLDtDVaUamflsmdxA263W8QNh40DKgWtKuZ5QkTQzwOzDzQNckKhfakbbRJKIdl0k8aYMmNfjpj91IDRQeJwqaGUYdA50LYGdsiHQhCooEQVBkrJjz5QywYpVAyck4XZEvL4BoKI4sDz04Z9Y/fqtHOBvR7F/YmBMQ/Os1D5ATifCNRNqqZVqv1lbEv3C4LTJG3UspHI5JzL4/UF++0ZxzS4FiioalhqRQGw7Y45ZYFXcMf9frDTVkI9IIqyPfIbWr5RGcy04LZtmGNCeocVhWwV5HYZZuxnNi2UTEjkmmfIr0rYyEXeIBILCbR0m0NRjHlH7x2zMwYajAFPcv4HiGYW+Q/J0mfvUBGcowOzYqb1BFETgqSlYEubpFCasWkLSO39DhHFVsITyQjPPD/t+PClT3A/7gTjS0XaWRzHweL3mPBSUQqw1w3uE8fs2J82fPLuE0xznGPCVfD0fMPT0xO++93P8Xp/xTDg9twXyGs+Y68fmN1w3gVHK4wZTpIISYYAfOLp6YatNYzR8fLxjnJ2AOzA/r1vfxtPT+/wpQ8fcH890I9X+Bx879NQlWpF276jbjv6cZJkqYCLYoJkPS1UkCgosGOE8g//gc0FRo2zR2ezY2sbrSeEeZKHqmGZBDiqUhEprXwS7BNgxdHeT5Ra0LaKOY0k51JRpQXpRSFKgGnaxHQSgWstQe78/hypapD2YcvSKeZVArYaiiXuD+AagjTgCYYiMbh15iihzEP7OAAJ9ibi5xaAV4388wIHl1VLXGvRVHEgqXg/N3z50y/jj/zmH8Enn36CIoVngob1DtfZRx7ISc73DXCfTeA9ldsi1VrAt4B5Uqod5N/VVqGgQksp9eIBCZZiD2JvW+QVhE2K24q1qaLkEfup5jXWXHycPXNZjfAdqKR6Cr9cVVEq7yVJ2YFcrveZ6iMiGvskid18NImmOfpJm9RSK25PN54pU4Uo9mc8vJO0DX48X454v7nfXnbGtuaMgzmKzYuYUwotqTTIHh6kCuZ3l81eKis5b27lmADBwtQxU9XV7BLaQFTGBBs0LM5nJAzImj9JVOG7TUWPJB1gqbdY7I+XMkPYoQc5QJGxMgg98ZhLraHe49czyucHX+swOQtJKJhBPBCEqmgkMjnLkmiURKIFkrqvs3Y8sjhjBNEs1p2WIN4E2WWB4nEfCVxzeVkQy3S9G+B6r4wzQDww2Px9yi7Iz123S7JWEBZI4LGH5ybrOjO/HXOE4qPAB+eeFpImZM3ZnG+GUnhfY6Qsu6/zbdonresTgvGSQLlxHV1/RsXGVAYLM8gQ9WBOV+LsxJ8LUhHic4uG5dcIVZxYL0HgKBk/o5FMhSSREqQCTzWVJHQ5gpSQiitYpIkk9GkQ7uK0sXJfkq9YcwCStvJgJwV+TlGlOnWQdRYJwmNnCGVacV3vD/BFBl78j9gPRKjIPG2uZ+JxBQxhSXkU5gTRmMTmtuu8Y25B8ngg3YIxTjNWOM9ZKlgqeCIIMkS0trlHrOU5xnNLfLhunnOCeBcEV4m6TympaHSprWmSosA8b4QFvcZcIXlVg6YPQAzFCy5rS14oFazB825Y5jGmA+YTKnWpEy0FxLw+UN3XzeBq1zwVXTnoteNwrhRV6BaNIWb8ffh69wZb5JwknCUZzT1zitxvcj5c8+nxOtMWK8la/TzZqCeK4Y5agXTPFWVzYolnnit2jIEx5lK4Is8kyNLzsllOZbGqCisVP/B7X8PTyw2/+mP/EL/71d/GqT16FGJvK3I965Wzy3rPOU8zh3KLhsrFW8r1KetZIfeDiDsiVy0DEYdmqA5a7nkP7yZj5VKJ5J/gUss3zMnnXbIxMfYlLYr9tkMkmnfkUptyN4zO/FnB3KlEzJjRgLHddlCBKa0DBfttxxgDx9HZwDVn7K1z1WOT7AgImzqCCCRrQoQVoyq2nbWsMQaG9aX2dR4nxjDc9h21NNyjKdfdME+SOhHK2a1uD/lF2udJqK4KBclxWTTyP4xXj++SjRlJ5pWlmmuhqidFIcaGlsxd3WzNjxy5Z7lb5DnhXuCy9Bt5Rn3Iwc1h+sWz69v4lzQcePfxHX78n/w4/tz/88/hG7/xDajpQxx8G2/jbbyNt/E23sbb+O8f6oqf+ZWfwVd/76v4G//bv4Ff/GO/iHM//6Av6228jf9J43smKU33RdiZUXQS8eiy9VVk1iVXHQevKAxkp6YEOOuGsFgBsjuwFMVkm3L8+fXdtVbaMA2DjwmxKBwVdkYRpGahoRRBC8nffdtY7Af/fBqVVOBUKtJQ3Zg2l40A62mhlKQlav6K4rQaWoX26LDVIDbVWlFawzkN8zzQ6obb/oS9bVHUpzWaCGg9EIQgZKHdnaC0TRz3g4X6ojCnpPQcHRWUNrZ5Aupo2wa4sQPbWai06eijY8k9Kw+oVFsA9m3H7faEbSMxoBW+07bvtIXpHed5EmDftgB8BKU0YLA4OaZjzBP3lxdMm7g9vcP7Tz7g9vwet6d38Ojiy6K+GVAKC6tzdgLQ1DLB09PTmjsA38X980/x+vEjLYhi7tVaMfqJOTpuT8/Yn54gpWBLC6xOpSmb4wEsMpS6XcVtmxCweIvCIoX5fOh2pJ2LQsML/upONMmuXJarCW4B6uwE9ZiHLPLSTnAMHvB7nwvcGYMWXeyqaqg7UKYGqW4Hu5mjo9ZYSBozCsPTsmaFMeel3uHO5+GgcpJyntnqtAagtLSjXPqAhaqUlsLCszll6OUqShEMF0wdIXEe3b/TaMlVqfBRSmOX5TQo2DHoLix6pcc9sphmsClU4YmuYrOJbd9YNwpPhvMcGNNCHhtROEMQvhzTWeinLHquQwFltyUAhyjAmdFybG9o+47aGooIxGi5Y04VmTFDwU0IDimia1ScylGii7D4fNsx3EIuXqAe4J2ycF+CpMZSJVUICJIqgqoFl+i4F8U5qFS1bw1t2zCMHY0h2AHKvW1BXjKIswg354GiHnFiQvpAa1S2GudEK4Xz0KmWstUNx/G65NchBYBh324ET1RpOQeBSwlgZZDYNqniQB0igl+9DwhYSKyFCikCRdVC+4soBmth7Eyg8DxOSCmotaFKw/3+QiWiRrKRlkJVC3Uq/TiJW+fo0VVbWJwLUD7l10uAEaWR9KEedmkHrc+qCIYzOmlpEK1BjHAqPkmBK1BbC5DpQglKbTjuPSxKSZIqlYXnrZWl1iC1QmG0t5Gw2hIESZNglrhgnmGF5Wl7QMB8a3z+sw9aaiKCiwBzOGoraLvQqmNOiE30OTCcRMtStwB/HdAN3lkoLRsBMrcBmwQeSDjjLC2hbDIHr0OUNmZaFBBDawofjJs+HDPIjq1W+OA68QaMyfsVL+jnQA8LtOkDGFSuGpJkBBbFh5E4VpVpyVYb3BzDCbBnx/x5TvRu2G4bILHTqAa5xwA1HPNzxrW2oW0b2iYQF/Q+cBwH5yNkERMJPlYYgD4n1Ca2tKwIm9vbvkNF8PL6ypiwb3CwcH2enfdnJIqyPlyobDQmwVfVUJPKwr3AlaDT7Fy7CKKBYaBuBTKZD0kJoGUYXMH3EmpzEBI99r0CYFG71HYREmJvqkUBvSGtkoCwsFICZOd5AhCUnWohgiBgjoHj9R7k0XhmbpwjQf6ER3xyRatUEnr57IDBSNIzwSeffBkf372DiuP56QnHMfF6P3D0Ay8vn2OODhsnSYpjsNtcHD4HXj7/SNJYJakwO7Cfnp/w4f17nMeJ4wjysii0Kbbbjt4HfJ5UQ8REppdNFcfg/nLbN5jTThdKpc5aFD0sNrtNbHvDdqvQraHf7xide4+AucGcTGpFBTKA+3HHue1o+45SeM0ThrY1bEXhxwGFYSsVo3fMwRyz9xkKotnBrqF4cRFc3EmC3baGUgT3Yy4bWzjJxK1UlK19D5n9H8xIm2cgsewEsUMlIIC3/HvxC8ZBxO6LweD5b/yHDINQZLqIMjl4HimrC33ZLoLvIH4daQOVlo3v7T2++c++iR/5pz+M/dwJeusFDCUAv7BSFaTST3zQup4iBRqgfipipDJKfq8G2MX5NaFaqCAZykWZQyS5m4NPIcn4VHrzWKO+wEyC6mysyA56CAk0tLO7Mhc2PQTo+0g8CnJFKZVk8UpSCfcTD4s3DQvwSbWnOEsQrC3BNrksmkbnuaXWIA62beXv+ZITGCcZI5RzZ9i3ggQc5DwQvu9+Hhj9ZA6NPCsqm2LMUFsLi00S11QEPmeQlw3XJHIgGhL4V6lSlP8VZ60kvOHBpkmvubrm7AOZlLnRNf8Qt3ydR5OQlVakfCwzyW4KAAW14AIWSwU87UwlMfi4PoKQCT2aJ1mZX1pb5Y8EKL5IaQhwO95jEo59/TlbE3gPj/OSz4YiIx45XNQJ4vz7SAIjv4RzNK0P10Ei3rbmgjNbjSJwLALUemXAIv9fcYXXqJpW9L6uEXl/6+cuIP1SvYqzU9QRkpicJKZU6UmA/noSfPbZMJREtdZq5LC2iCfQUB7FpeoTbwupaLMYEfnJ+Y5n5hrRpOO8f/d4jCxEXOot0wGkHWJZoDbmDKt6g00qyFBxmTGoqISKrS81NECCCMfnkMB6gvVU6421Yfk7BmgQP2L+cz/w1aS2rmmxZ7BqTBZkORHlmc4Mc4TldZ65LkbC2kvmHFQSyX1DZKl3UW02begQlmSxH42wAhfWlyz2HC/x7CI+UC0t95ZLTY/NPddzzv2damWpeGKXclbk51TGcoy4V6wnzrWq0TiVIZNqcbyBOZOYEs8+VLdKwdVAAcaZafy8klbm7rR0D42mzPnMs/FwRlCOc35ESUGoQwWZlPd67a2s2eTaA0xCRS6IhUULFWfB+GBGlVtegoVye6gExh611K3coYXXoUHyJ8FjrjVjRhIRCZM8w+RcmEG+m9bhhXGwVDb3aTynjCvMGVL/KuNMNB0a1S4l1LkFYS0Gku4/HO/wp3/1T+E73/4OfuWP/Aq+e/suRKg0C/AM62BjG+dG7IMxhwEsMpwoa4Rpo8j5m02RJWq33I8yFq8sjC8Alha64vBFkMVSVmIKbnAUtCJLfTIbTyRyhmVXvfI1Pigbg/lOxnpYqHIhSPucr0nYqK3Rvt0tiKyC2jZs24beT2z7vvLnc3TI6NDzqqte+Q4fVu8daWUPCulG3sHmzVYq7v0ePXe8v9xP2DSVVn6I/V9Yy7GJEjFuTt6jFsYfd/DMRDYjWiMx2YXzOWtuSWhMlTsRYf4W5zrVJL5HrGsNI+osGos+aNcx96IGGM8/rVdL1MstFMmYQxTMGSqxmQqEAl9Z8eFt/E8aDnzy6Sf41t/9Fn7u7/4cPnz+YTUovY238Tbextt4G2/jbfyLDoHg6//86/jL/9e/jH/0k/8Iv/AXfgG/9cO/BU9F2rfxNv41G98zSakGsNV754Eoij3iyN4PAKFik8VvPBQEo1DPojdtQVQUwwks9d5RQARpToOqR5EitLgVq/sw/c8XFwrsTmutETxWRQ0/c59RVBVWtW06ukd3GXR1ZwkItGKBBuxIzjtRoWJSEmla3QEFWi3RlcaCkwiLdoBg3zbs24ZWt+jE3xfAp1qznsNDpPHgPvtBj/t+ANMxrRBIhAFjos8ZYPVE26hORBCAoPAccylj5EFaJQBuBwSKp+f3PNRHUb0P+sN7gD/qwPN+g9Ya5A4AIqiVhLQxJfziK95/8iWoVrR6w+3pCXXbILpFV2F0iLtF5zQ7zWjJ1qBScNsatFQq5gA4zwMvLx/RXz5DP6k4UxsP5jDK3u+3Z7x7/wlK26nQcHTsW0OeqmsUjcdkkWQcJBVUFbSQ7waC8yE8sLdKpSsqi3QSmKJhzcZcnfksSl5dkZCCbOZH4RyfZti3jUWGKDDP6F6kW5NjWFi3FGBvG1phwVdM4F6o5mATEvYKw09ADT4MNYo7CRx5FG4oXx3rwg011FTGoEWTK4CqmKfjPDtqU0BoNwYBWm3oUSwtwk41CbsDfjZtdmi7Injabyi1oG47ZijeQFZPFmolOeYcJ7awOlxdmCqolffcGuXYzTg/qlbMPvHy8oK278jO6Gm2ilrml3XAGJ2fXUnsGp1qKrUoiUVwPG07RBpejwPnObn+hEpB5oIxs4uOxdjRBwkZZphOlS/GHxbiS2sh6TFRwa5PURLcpp2hsEVSxDSS4rRURDkbjizyYYGy+/7E+FV1dfaec+I4T+xaMI6O275h14ahHaIkckQdE6oV+63QCqQIMIFSNhKv0CAIgpyQGDSsM74qULWSyNkU936Giha7piEkCQlotSAaqmFjBljG2Npqw9kPtMY4qE7C4DQSK9gxnhYfir00HGcU0KZhazsJUUVwjoMFtgDzWJQjeXCvjV2Os1O1xQylVWyt4TzOUD9qUaydGO7o7rBYS2aGoQVq7GZ1MB7DO27bhmNwT1LQWoaOZbSoGJ0WOcMGXApgglZaqGpNxmwAU4zFRPfVCbkUAzS7xlksdVyANEQxzgHrFgXmFntKxZxU2CleAZ0sIIMF29YqXGg51ueIzuAoSM8A4wpILlMjmceoVFK2RpKn8f0k0Fi0QcN+KmEQC3DpfiehZbhBtwItDTaim1xI7KWNoAA7CULmtJSb4rQABS2EVB9sfMwxjoPF4sY5KMKivFkSngumG84+UBufZw1gpygwZsfZTxbOa8WXv/JVqiuqogdYLnDc8QpRw3key0qCYAOL4VRTAs7RqWbTGmot0FpQj/vqGm6VinpaBMf9XPmDwwLkDQAgiMNrzQewpUKxJDMS/va9oW0EzQcGFeKM9hBX5ZjxmqAF/8Cde5+fE2lZ4UYVgQlDKdGBbI45T5LkIhZDuM7dHGc/g9RdMI3kHX9xQK9u9Mz1Mt9bIG1RDDcUCTvO1zs+/b3vQLRBXLG1DZ9//AyvH1+5tlpFP07c7y9INRdaSpGwtjeSueYYJAKH1ZKG7RmkEngzxevrmS8wAMoZAFjHx8++C4GiKeCVMZ6qA1fx/jwPiBSqJy1yCaBm0D6o+OVUgjTDAv6oCEjy7wiCqED43GRB97RZArDte6jO0d6wViRqDIWjW3iKB1AqIuhjoBaSN+cwzD4wxkDbQtUqlAJsUunR3bB9H5OUNAGZmEMLPHYEApwEjcxbOZYFEICUVkySj0oqoiJyl4uksj4+Px8XyUYCwMuvT6A6VY6e+o5v/MY38M3f+TE8nbf4HeKx5mGzIQQCF0tCGFsX4QRJIpB1PxIgrQTxD4KlpiN5rwnUufFME/bUKnIB60CcV+IhRRKYSgK0K0mFmwCVg9hhywop9vZHK6IAli+1iHw2+SB5Xzx3Ud1TlPkvc70VVtBKY04SZA2BLAU+82xmUGz7be13pfI8RyA/v41gJ7H5SxmA5zJFq7ryQzhV//romOe5wLpUYEpSTKkNre1hCxeE2Ac13VQAIvBNVbRUv9J85fE+uYekmqnGeTdIAnFe9bRIChBbkKSWmCaeuln5yKMZKHJP94fPiM4I9xnKH1QWNr/O5x7WsAgbGcYeNhn5TFLcg5pwEGJkTV4uOBWBVg1lHiwg3i1IdEHKT4JG0RJrI0Dc+L312aGqgjh3pn2flhoR+ZEcFg1Q5qHmd6k/sKkgrKDi/SbgTkVg5ja990Vgu1RVcl2ugINUQUIQo7JpQSXJ0nzGCkUfY52TIEn+SKA5lbGCpB8JhjkJKDavvIpKjlznBfl7YeMU5FfE3GMtg2fXJB/wfjOOSjzPGnEiahzKM92crL+YkURfpIR9buRukvOZVpgIMD7Vacmxj7OsMy/mu54rN0hrQehFwlJl0UYVGJ3xSDTWiUionY0VK1UKUlmk1FCYCCUZCZswHj/iPF8elZ8QeXEqbmasyI8PJW9HKLUILOx/Y9WhlgqTtMXWeN4eZ0JEPhLncJDYUbAeHt9lNO0xl9RrnSND8ApsocYtPHmUK1bAk0S3tq4HpaIkI/iqCaTqGvcV5io+g/Qc9xoaa+tMTaVPzZAUOUVZ527NfUj4gR5WfYj8hvkWolmoLKUoi72FhLtUoovGolRij/szZ0Mai21sQDHPN3mptkvRlaez0Yl7uUs+zyt+mee5k+pXF4kqYphjEapI9qQl/NqDY8Ism2EHdmFNSkTRkLat/DATB0uaV3zOJoi0xkulu1J01aok4sEPfvYD+Mo/+DL+2Zf/GX7th/8xvnP7ziKOivB6FlFUOJ/jdMF5kNM743nEnaIZnwQIhSOJXCUjrIrAl+ojnw1zoKwlRlw1p/qsspHTcz7mWnRfz5RzNW0zQ/0r1G/zPIyHe8jYfN1wNv/FuW+cOO9UfK3V13t4eX0l4VYvgtAYGUPTahvr782oTriWq+r6PnOqKM7p0XCFlWuw1gv080DRAnEqimM+WFbG4p6Zm4ismiNnc+S0Eas8SZl5zw97Ekn0V64851j1RglSewlFTbOxcl716zPXWlmB/YqHXPuxfpOMiiv3zFzQoknobfyPHPEuPnz2Ad/6O99a1ixvqklv4228jbfxNt7G2/iXNYoV/NSv/hS++evfxC/+8V/Ef/G//i/wWz/0RlZ6G//6je+ZpFTCzoZNXXGYszh4ZxEIab3gC1wBoqPPrsWRMsF5ijIzdqhlgSStNeI7aNXFQ18JgEmjIpykJIFgaw21kZxQNLpAA1jXqBKXVqGiBKXTikqA1rJ4yS6eVMpINRjK7GocjivBpVawbVsUXPhBIgKfJ1QKVCt8Ah2T3c8OmI+raAgq9bAQamG1MBH9UnBQ+tgni9w+O8woU6wi7BJUoVKKO47jQJ/ZdRjFv5S4FxYUtn1H22mhwAJhgTZjN2TvLOzVhm3bcD/vsDGgtWJrO2ptKE2CkOLYCpUC2naLYmko6jg7f0q8QxZuJ47jTuBx39Fao0rMNIx54jhPFhbOA6OHhV1R1P2Gfd9pNQfHtt9Qy0Y1pzFQa+O8DKUpwDFhUCvkZYmGgg2AUOSRnM/skaLajhaMPqITjcSj6SMK9oYziiuiArGwhGiF4KEQpGeHmZEwYAbAUCsB/d5PbG2jUpEq4IJ9Y/dXAVDLRjsqP3HcO4F5YXd5CAuhGtDNcJfsJgOacE7uT/vqDK+FhaatFJTKYvV0ocVXdODWQiWhMc4oyLM4Yw5UXHZCKQevURgnIMTOyn3b4HJ1GNda4JNECDcLQLUTxHjo5JewxuhjoDQW34tUGDifiwifU9g4Mn5QhWJGwWTfdoKxc0BrwTQW+WwMyHSSzGpAHTZx9jMIQBWtcY6S42QkV0QxsrUotBKmRxY8l3pa1egsFFquFFm2U45LlaEUBSrgQfJiRyZjT5LCsuPXo+Ct0iCQUE8KlYIKbFLgGFTmUUeBQwoLj0ULLAraKgUISXQgCUW8T06mscCyaR2uEyoNyuoi5hiXOpyT+TQ6SRzHcUertGrbSoMCcEmgJ+NmgU1DVyHBC8DoHShUrXNMWJJYUBbIRwDpALH2Db2HbZYCs0+0raCWihmYFddvRQ+bJXh0QyNKe34VTVOBoopCS8OZ4JQRMJpm6NPQ9OpWXYpMUcgenTaXJI4pOyRBC5FaGkZ0VNdCkK1PxzEmOhy6bxRsc+6TpZQF7kAKST9miDZbAtFN8NnHj5huePfuA7IDe2tbKL6VACTDts5ZvDY4zjFIuBSCrxiC0zvtWON+c65IFN8JZsR+KQQBSpWwC3UWn2GoTWGYKBDcz4E+B/anDdWNChhRmAVY9FUngF+UBB+RilkUVk8c9xOnpVITQcet8hqGhbLSmNF5nJmD8+fj+Y3Rub726DIOVQxYdtMDdSuAnZS2F6C0hnbb8ZXtq/js0+/g48cD/Typ7FcIOhUtsOGYQjBh27fY3fnfVQqqNrgS0PRa8PS0Y2sNe9vQQ2nNR+c6iQ7hpSKG4BlLKi6FTWDcZeY5EkQEMZKP2flagTIDVBRse6jM2aXKwH1gJhbHfaJUfPLhA+NPH7SoGzOAs3LZl0haIPkCT6jiONF2ApY2xwUqOHOVEuDmdKMColMty8bAuL/C/I775y/QUmlJJ0ZFo0oCJeel48MnH9BfD3z8/OMCJwSOOQKoVfDZQFGkYAzHt7/9Hcg0HMfJfEgJVp5nDyIy8Br3WoqibYXqiGaYlqAux/PTM7QoPv/4AodhaxWbaBSZCZKrFAIfMSfGmEECvCygEpCdYWeB2Cd774hNjYBaFRI8ImcS4X49bIY9FyiqKAJTAqeybGEm7M492pFkFwKpvY+HdfP9NxIsuuxXHogacRDwRMryz+IleQBlCdhKAEc5PIBOSVBXuEdT7SIAGEvrnQfZVicZNgHZr3z+ZfzYb/0YvvLpl/F0PgEJAiqvhe85ANSlZMTPKpL2JV8ExwJdihjMuccOdb67Guebhw8jWT2B5QS2CzMUuD1gT/ncgGBKAElICiufmdaCANyo7slcBF9oHjGnBZLZ4yXHOzIg7Xm0Vmipy4pEQvlQJBV44iylBT3icyq7aJzbNPLbIhVaU2E01uWDgsMCjkHC8gx1wlrqZWkUJJMRRD2bI1QYLUgXdam6rHOA1jjPeoCQAc5Zqv8FoQFcZ+ZUmXsE7TJvyijOfCHVjuJ3c29cxN8Et4PgqYrpRiUGvciTaVUE8Nw7gshJAhcWgaWEwpYAVLGcaZ1rcW3c3xPY1rD5HUkScwTlmTFIAlxNdYYk0GlRGB4Ihuv+CQhLTKjoIVjKQgmIc55cCGo2BPG9Y8WFJHOTgOPrnMycPsDwjAuR21AxyJeiichFQmBs5M+6OW33Ih8spaz5I0oVWE+Vrjw0Bo6dsVejaaloWZ9rCQivUEAySJKOcrFdNolU0kjyxlJyCyA7SWOqSUKUK5dg8IuaQf5uxCYH40XEiFRV1mhUQTTbMJRRJTjPNF7y2mXFX895FsQcTv28r1Sm4buUx7pOvB9x2hElEY45tEM96zlJR8ooy89H/M611KjYw1pMELOyGQpZa+Cfz0kVUrewPgtbW42aEUQwh696isU6cvFF4JZ4mFwzfjXKALTDM+c7MF+2Talb8rgnmdGePJO/pSyMfJdpqVSRxCetsubWsLRi1FA7vd4R11c2NfCaQjiN+URRdKN6ddtK2BEHkQmCpRKmD3M3vmCmMg6YC8IZEzIvS5JVNqRRvSfrTcyBuGcq0j7OIzBIzEnhI6G6TVEq4SY5IkgvSJJUXFwSR4uSBGpCNeylZo2sW8QZ30OhzHOHzDP9pb6UJLYk6qU6F2N45NGVNTuEejKfm2IPldV+dlCReazZnCuRewltQwt8ra9UaswJ06zhG7/7o/jBb/8A/tE3fg2/8YO/iXulwrpcrybiQxyKPeZUfKUGuQd59sz3EXPG3CFxVkDGY/f1/zNHWLeQZ2pc56CtbbG+uK7WXOCmFHFLFiEGiGYUY51EFA/KwmsxZJYVcxNRv+mRU5N4rCK49wG5l4t0Hflcq7oIQtu2Ac5GCIv5J0iVIrDWI7RVLPGu+tkxzhHnXzb7MT9ibpHK/RbkPdU4N0LgM2NubBmq2LYNZ++Y5sG/01gnDyqbca8ZD8wYb5Pwy7qjkFjOhwyEivGkDNSqYaWqYjYxprsB7e5ibcTenspsSYRLEu7KyqOOPyabX9/G/4jhwI/9+o/hz/5XfxY//t/9+Bs56W28jbfxNt7G23gb/8qGQHA7bvjT/82fxp/4//4J/M3/zd/E3/u5v4eP7z7iLf14G/+6jO+ZpJRdYBex6KFA4VSWyMOxREHBs7gouIp9CIwmDrAIcYDsqKMMMYto7GyrKKrox8HC47wOXjXINE/7hq3VICfpQ4eIwIIkUEtK0GuA+wSvtJDo5CE3nd2GVzkkAF3JTjiLg2e7uqAkClpRwJtjrgN+qY12RnVjZ7WyINePk/8fBN/Ms2hUCdZvtO0a8wTCiqi1gvZ0oyWDISxY+DyO80Sf9I+ntHEUqmYAtlvD0/MzXDUKKyFTLwr4wBwDtTSwa//Ey/EKGwN7a3h6ekJpG6U4QhGjlA2tkaBUCjv2LQCUlGRujVYDc3SM81zFVol/VNgZCiM4b6NDYRCjWknddrRtZ4Grh4JNSRUti65Y/r4bC/LTBhxUFhEle4N160v6Pm1Q5pxR9BZ4N/RzBoDhmNKh4LxpId9OAFtpyQagT4L/bdsCKMrO0CA2ACSWYEJbAdQJhDvQygapnPzn6HATjHGHecfwiaZpX+VhY8Aq+ZJk9/wvWfLXvXdUFWxhHwWZmB5y0tNgfZLA4yFLPzrEBtVU6hYEN74T8cnOLKlodQv7MxYba+F8niAQVWVQ7KxwzdsM+4IAD7WQPMW3wQ7l1lp0OXaICzuTS4V7Rx8zQHk+gzkHqpYlme1JgoJDlKAXjOu+BjGHhWMqCdRa0WqLAmQW+ScswSB1dqsJMLxTLQUFmIJaAjA2CzBMFhCQ31GK4Dx7AFgCmYJ+zuh0nBBpACrjUnP4NMAkyHBXR77NGcS7gqoKEyLUtIlUzBKqQONEqwXbvrFrdrKK2jttIUsR7E87vA60tqEbcH89oFJC0UAxbQTIUiidL44J55+rLhl7AFx3WwO0wIRAWD9JKqqV6lFjdtgxMQ2opWHapMWZkbyymZBc6CRFjG6LODqtQ2SiVoV5R++Gfr6ilopaCM4e5wEIAUwH0I1Wh310bLedwkJZZOx9WV2wiMr4mYROFcE8+yJ0tFbRAMx5wHyitAo7SVjUQssviXetEGoNCYvqMFoVjH5CWsFeG+O6sQjvk89VhdZwRoYNUmlHyfYK0ITF7aoFHz68wzlOuMwLlJICrSTYaalQoRoTwi4RfnXN18L5rrVAKnAerxkSWKyegyDPMAwbqLFnz+mhEHNtgNMcry93uApuTzfGavD33rcnPO9cy8c5cHR6IO9tw3TB/aSF4Zgdt31H2oDu+w7vk+/bOtKq1UPtYoJKM0uNIAry2X1cAlBw92UlVytjK5UkAIHBx4F5elhRVEx32oPCcH/dcNuB3k/cj9cApXTFHTggNWKTC9IGBUqlrAl2flcl2VB3hd1uOMbE63FCjjsV/QavD/5gVwIEyQ+orUJ3hc60IEqiVRJAqQIBkNRTggxsk++/RBE9C93QUHZIq47YR47Xk/udexA2guDiAhF2JKsk8cJIEgv1FncSGHrvtBqJHMsDIBChIoGD8e04XmH7jqIgwOCOaYLpFWMOaBUIBratYWsF3RVP757x1a9+DffPXtGPgRHKiQkeqQjaVtH2He/ffQAg+PjxdQHfX/ryl1HccLx8jvO1o2wbNmWH8Uh1TgX21oJcPfHx5RW1hKqnDdzvdzw/PaOVhloVn3zpGW4T3/3O5xjT0apiw4Y5afl3u5E4OOhDSrA2iMga1063BM6Dfp6wLexpjcRyqk7w3c0gqKZlsrujj4mtUq2GJKbGbu8gCdjIbn7hPhmkkaXS8H04mC5d15dnhQh2F1gaQCv/NckO+TMX0cH1oewfhJqLHBY/ZhZznETTtBLyALdUaenxbjzjm7/9Dfz4b34T26QiphSEpbUE+CTry5LUlLkFQWPeVcbuR/g94dZHkDLt55aCitkX/n3dWuzZmoSUuIwFqMulqIAgPaQSD8mHVCmDEyzTsOuFEfy7SL8TM4kQiyyR5AeqRFUyuhfJZKl3xLxMYoWZoU8qUVQtaLWFUlEAZJjrnkppi5iUx80k8xRNJQcLddlQ6sv3EsRAD7JRKmjkRZdSQz2N50vkO8jcPQgX/BVb4DaAsCcKnZNUPohza6oPZJxyAJgIUDKARiFAnkQfLMIJ1TwBEgK4x5X8a+TtXY0wPD+upp54/1pqEOVSwQGxf1IVMK2yeH1yzcUHohXPuvlnsuyJtSRJM4iDAa76mpfx7IwWxCRc1UVIybVwqXqUK78IchbJGAEcJzGCR54g/viKA0nKuNa7rms0myRbxTkXCNKtZ871AC5D8m2vWCSx/5nRhllV1nri3h1nSL2eWyq/QajYfEW1nNtBEDAAoaTs+dkqKJYEJI2zGTBHkrMAOK1CETGSsUe5r+jDXETOKc4LqqDNRbwkiSEbtqjwkmorpWgQtZx5pAA2g9gReTM0CNBOBcyCq2azLOqgcKfqoAcpo2i+G1uEEAS5ExIqSv6oiJaqITEf4sw754iAMEOps/CZQQJ899gaeO7SIFKl+hZgUKlIRWSbHoSUi3jjxgYVFUAsSL9OUtqMeJFEAgFCKcmC0IZQ3GI+AZth5R2WZmaLFCsZTPPFxRxPW+OlKBXxXoIpw3UXuWk+11wbQVjJOYyHvac12nGmrWFuo6Jhq5hkJ0RssvmFeXz9fRAm4jlfTQRBa4h4QyvPKx4m0THjzByXQnFJezy3IJnwnUxzWB9Urgvy0py0V79UbRR4UNLz2OMkv5Otk0FWCtIRLlJO7isOhBpukJYslYKw8gm+owk3wIYDUmINlossZYbqXHeZG5MwiVW3FAEUjAMQEpaSLGyRm7sqbnLD/+o3/gR+7Hd/DP/dD/86fuNrv4HX+rpqfrl/pq1bNugIJJqYLgspEgGxaiCpnONOcuuq7+bcxEXMQcz7y+KMexqtq0fUYuLDM/74lXuQ/PiQx2uJukjMWU8yIpAq5WklmtdsQcyttaymSzc2xqbKGMThUQ/yQtLrfruhSMFHc5zniaXwFPNfVaN5raG1Rttu41yuraGpwMfAnKwHtEpL7bSxhNLKrbWG2gAcfb3zzM+pos5ab9saWlMc92Opqycx3cxQ6kWyBDzkWhHP4oGwHdF+jAGTiRoqkO5RG4u9ctnGZbhB7AuCpVwY28IiBFreG656Pq8Rb+NfZHgoJ/3db+Hf/i//bTy/Pv9BX9HbeBtv4228jbfxNv4XMgSC/dzxF3/hL+Jbf/db+Nv/1t/G3//Tfx8vzy9XHeZtvI3v0/E9k5RYQGFXqUWB8rEjBUF+8KqQwuJb1H4xJ5A+2Hk6FM3Cn6ziiyiB3GkGTMfedqyuH3k4UM3J7qXW8P75hr1t0VkHIIgsRRSm7BLTPIhrSmqzy59AbxSNNbqLRdjNq7QrYuGXct4k1hSosNPXSIGKDlB2rwgE7257EKie0BrVZmoWeqPIct7vJHzUOEhXAWaBT0VBw5AD4zzDykqw3W643XaCChLPexe8vL4Q+IoCicFJ8AiAppSG2+2Gp3fvcHv3nqQILTDQuuj++hFFgFuQn2ypEym253dBNBJMA6wTlN1uG/bbMwuuWnB2XiOm0WJHw/LODGMM/r0IqtKaSVsDpMIxYGIYc6CfB+YcOI47eu/Y9p1AtjtmP1CEQEFtfG9wBwbltw3Orm/C8yhaYc7D/3SDWHSHxXy1KH6S8KQYc8LE0W47zIxqGDZo7UR0CoVsG84JiSJRdFmxcDVZTHUWTGtRVKVygkoWzECCSnSrjuFQsKBlIGhNZaUJj0I5nO8yyX7itA4ryiKNCtBuN0wPgEoAlRrfK5xLY0KicNtDihxuGH1gKxW1EqCuBauAo6WhaF1F6XOw675WdtEWIUiqovAJdj8GmFKLQoI4oRVU3rAJaTeM4ShoAApKCWUZc8xOe6X7OVdtRsMyTcAC4H2cLEw6SAZSAQywAMeB6BpDdLtNhw/H09NzFJkAuON+3lFvGxQONaoBuBi7GZ2kt7I1SCGITICLxbHioQowBgZOPj+tMDG4KrA1zN7x8vI5ilKJw2co9rijOiDGdypRdEXEwhmkA3fDdNod1NqQhM/7yYKXDSqX1NIANdwxGbdao0qPGYGGKIQKHFoFbtFdHmQbWrOQPECHDCoGiFBxwdwgtQJW0OoNFuTAPk5AU9JdIKVirwV9RGf9vOy5VAoLaCi0SjJyUMfsfPaFaihA4xqwCRuGOQS324avfe2rXNcviqMP9JMdfaUpRC06dLmmZ+w54opxdtRW4XAc09CPjlvdodrQQ1lnKYAp95Q+J445UbdCpYdQh9BQORIIxuxhD0H1q+nG/cIK5nTcrUOLkzg0Jk4rKI1KDT4ppz/nwF4LSnEUl1C2mVG4FkwFWHJWzEErStprSMzxgn6S0LltVJUTAVolcdcT3BEHxNBqQ9VCtaPq6OfJQn/EHE+gIwCrfkySoQzR9WoQMcCVNm1zotSKWxESUl7vKFuoDYVt3YQtFZ/inAezEzSFExAvRbBLC3WxTpVBAYACWAJYDhuTNpeF5fxhVJQpKjhHqHO5o0rBDNDosnoAxmuHFINqQ91utBr1gf7uPaCvKKXg48eG+3hhHJlGNTozyFSgWBBeqWClIrgVFtrHODFGuRSkCvC+bXj3/IzX+x2vxx0vr3ecR9p3CkoJEAPRJRt2GLUWoCj6CDDMWaSf4HOeCGLhtkGqQF3RO23QSpDpxqAaohbFCLA2JC9xHK+oqrjdblDQvtIMGD7h44j4yLh7u22439m9XVvFmB6E0YhBoSAlRaCT85JkD6AGWH72A+/fPUPdUVVgNqAMdMwCg7Q3beL2/Axxwbd/+9uwM1SG3DCCPMEueMUcDnfBWTqtXAw4zjsIVzL/mOCe1F/uwEZwrlUCsOd5fAGcuLUaViFU37wfB87zBKSgVECq8XmFIsPt+RkFgvM4aM1XG1ormDYIOAlBM1ENogcDnhTa4yAUYOq20Zqw82dUmduUTXEenQqWqotg2b3DQXselboALUT+Wh6UXSRAaAKd35+DjyKAYccC6ZZXj2enuyyiBpCEjYV35mkCAdHFn1/ATp4f4B5r5EFNKQFnIwmpasGPfueH8TP/3c/g3eu7C6BMgDbPKbjAG/PMO2QBa0BqtGpyFwimxpVeNIYg9oR+jcHDJowkhPysrdZFDqe6pAS5FQGcpqoQCYza6rpeGJWNDIJpB3MyoaJQrSW+34n1VzCeBCAHDwqXPRJECmqtqK2hbhtShcMBjElioyYApnrliBq2cJpEEV+EKK0ECZOwYEaVtUVIC5JFEk5mgtBaAmiOvSIVxpxAtRutpadxvyqV5wZP1UVh/pHkJvhlv3vZcqZ9HInEtHhWpM6RBGnAH+bbNINLqEdaKFr6pYSy5mbM1AUuuwXJgyBlrmP3JD7IpZCXh2sPYkHu4QggPe3eFEupygNI5u0y14Nf1kgeRIhSwy5OQt3H8+x+qWwlqcKdOQQ8bT9zTgWZKLg8KgqUVBfDAkKTTKFxO8LAdimTuafz9gLabRFaKqbn2qISTInzS8aWYVceIpFXZc44bFw1hThf5XPyCCOp+irRoARz1FaRtlIAY7gWWv9IEj/8uidOYQUKz+YAgvxisccHIUN4LlAUFGFTDlTh09D7CQ1LRvilJsnviHw+zmQmjwSV2JmDNKCh2gfw2SwQ24DSqDA45uB3h2U012nMVr/A66RDel5HxDBLCN0Rdo9BiIKHahTWHsZrs1hXWEG+hIruGLYsIzNs0hqzrHmfn2M2HwiDF8GIDXVcM7fnG7QUzDmW2uAYSXK55p1H4Pa4b5+hylUK1cfGWOQOeP4uIgeKWOWhLBqk5SSIPBIPmKte5NSYvkG6YyzznEepohKK3vzZUAlDEvMAMcS5T9c7ybl4kRUugotKWJyPUKiC8EzhjlY3zqDFGaY6XmuNZ1dPW9GYS/mfjN1B/Eq+9FJGelAQT/JXbaHeNtikJvlOgiCae6141Bss7NWQexUWeZCEuKveuOZvrAtLl2O98oES+9icc+UGovUiCcf0H8OWkpiWyuYlAZu5DFEnFDaZ4ItKTCTkMChLJjYiKFVQ4KF0KLgsVh0f+gf8qV//WXzz29/AL/3YL+G3P/kdzt0g00jh3gHHsnOQuKelxrPeOdZ8MnPODlWgyPU+hi2VLYumhmXNlms/iFgIUm029+VemM2CGQdLLdCJaBbIdeXrOtgCiHjvScF5zO5CBRIaao/gu3/Yiy47TYt6VsV5P/kd0Xiae+u1V+pqTjEtUFA1aO2FqEH+EarCJukq8nmzCQyHq0eOFgqGiH3AqCCPWOPeDaLR8BmqbvvWeDaZfPdaFBrWghrPPd+crYUo/MxQk3Zl3FkNDs48sgSpK5tokfHeHWMAGsRABGEs8xjgIkJdscrxNr63ISb447/4x/Hzv/Dz+Po///oXnuXbeBtv4228jbfxNt7G/1xDIPjat7+Gf///9u/jT/23fwq/8PO/gH/4R/8h3lKTt/H9PL5nkhILr1jdbewgulLv7HjxaXDNA2j6WdtVNJWr8JodhcgCm4OAv3eUWrDvG/rZA5VghwztcEi82beGbWurEFJqCSUbiWI/C6pN2zpYo1zd5uYECVOovxR2dI45eDhXoNWdFjEhfy9gZ5sbMAbghcSDoi2AL8G+35BqRan8NOKg2EdfHcwECtpVZHEPyy/DHCQoiRlEUpae1gZzDCC68M+zYwyCv0l4yX7tWivevXuP9x8+oO473JXgWyl4Pe84zhNuju32hNIazvOEz4l937C1DduNahxzBDAJR20bttszNOyXqFBSoGIEHQEgigf3476KAtACSBTybOL1fgIw2kP1A+dxpzWYAG0jaWbOQTKHpyUQiWrTBgH1VXjKYgrJA9MmO7dk4Oy0M6NEeoErVb/MQHBIroO3OYGFlIWfY8BEUSqt8SSq5VoUNjqKYHW0WwAocEUJwCv6wYPihiiiNtq+RSEgn48bu0MFCOnvAq+KcUYBJxQ2WqMKFAt6Yc4g2fVLIl4RqttIpSKJaxB2BEDh5/ic7CxvjfPUQ+o7rCdabbT/C+WBrVYA7MgsqrAxAKedk4gBklYNitoqMAXnMAxj+aluO8Z0nC4oUzBsolUqmgnYRa6iAf6BBf9CZReJTmSqXUdRapCcttWKbX/CfH2FIGynbMbzIiHjuL9yTkVxNLuti+pSD5hmaLcbbtsT7TTMABuY84RBUIosyWxErGC3XHS/lsJirwjuMW9EFMPCNkwAMUc/OlQcdWsEF6dTBQoEMPa2sbuutSD9TKqQzEGgH6AtmVChZGsbIIVzXhTb3gC7Ctu0OgDgij47IBWSKkNlw/QZKguDpEAD7vc7DDNezMRWCcr06Mr2OUgugKNtLKSd/WRcrgTqi2YnPsH/x05lCOPsnANjdvSThIPjOFAqUNqG5lxbYw6UWvGlr3wFn373I17nASmOttVQ3eEqG3PAnCpEWgDVRtLQeQLK9XieA1AW2UspMEyYEsw3M3QBTEm221oU98bEHIKqjTLtmJgBsBKkDZvT2NtSlQhwiDhej47j5RW3fcP7285irRYUS/DP4dFx6pPPpndbnbgahdNUGxhhfUi7mCCFBQExYSODcf2rsrA7EWRKEqRmWE2VrQYQNKN7mOGU60NCjS/uNbqwFbbUCmGG437HCUPpnd6E4ig1gL8RdjZh7+AwgJxPkqPMqFhTKvoQUBzDYRqEN0LEkCoBqJHQilJXMf04DhJna0VHEH2m4+gd01gMJ7EjCacE/PZW8f7Dl1C2Hcf2itttxzGecRwnjtcXnDio6DUHvCu8CkmBIMAvNgO4aRAUYPREjgN8AJ5vNyqetQ33+8lrnTOAA6qezcxBhPGZoHlZFgowoGkBSgMt0mTZXJnT4sLi99zDJjJbx5X7QqsF1tk1XWuDu+PsZ4AjFSJhjZT7uTAzfPf+GS+vr1Q+ipyu1ooxD5JvjMogBoOuwn8Su4VkuNtOZb8grw43qISSXNEAeBXH/Y7RCayJMbdUZ1xzoUXb8/MTpg18fDnw6fgu9v0WAAVz0/N4RSCF2LeKsx9Qdbx79wwzw/1+x3QSMUop0DlRVTAm1bTeffiA2/MTzrPjfpyAGtq+4en5PRQNx3FgjBO3p3e47XusQUFrG4nOXD7MmcLi2CdtXgjsBzHfQukBtC5lZzmYG7aCfd8Z08YgGcwM7oXvoBYkkTjtK0qQ56m61CFzRi78vWb3//OPBaAn8BFY4uNY5AH/faB7KEkkdJO/9wUMJY4gJKCk1V8JosgFHKqQzP7sz/jpf/xT+NHf+VGUqZFWppJCKiVhAaFJHE4CeoJJSf5IsEcD3Mkcv4Q1mYbKQaqlEdgNNkb8mQbIWEtdf/YIslmQcRLY0wDD17PwtHdzzqNpkMdnBFkd/yTPzdgb7PqAgCYFQFqXtG0LRUNZ1z/moPKiO6RUKjTaBMxCwUiWVfdas2DcSpI8/8pDmcrXmTDBzDHHAtiSVMB7tSB/8O/mnGHzxj9LchrJJtfnZcLtPuNWZc2day45UuHFQlEz47sI8zC+D8bCfKeewGk2z6TCrAvSTgiCsJoOEsR6nheZIMHXVOuKK+L9BBmX6lCSj2PNkUXsQxIjJJS08hp9zZdUY40b4M/EnF8WXoU5N+K7PdYG1yTzjWXjmHM7nqLqpYCx7I0QNQRhrpHXfl0HP18LibbT0hKMSpLTU2WJIDSfE74AWmu+q4gvSUiQeN0XkQeLUMbawCApJHLlEmpJc07aDYVyBdaZoASJjGvJ4EFguBRxEbZojkttZL1NjXNf/qyG9RqY+wAkHS7RkLhqG1TaRKrY5mfGM6nZiBXnIYdD3JaalAsemiTmmku5l5fKnOlaaxcZ1LLjIP5O46ye9u60ZZWVX/K7g5AStk+a4Hi8Mxdnc1EQRWqjBbCKwiSIcnqR3XItX6pzM2xTY75hkljuVz1IoWhtg2rF/ThRsqlO0rbvWkN82B5qwI4ReSnnLAneyPjrDntoxptgI4PIperjcNig0tAVq+dai5JNT8i9g2Sbi6QAnEeHKO2Ra4m9xmLd+BW1Pch+7liEtLWvZZyK+Mk1HeczTcVCX+uXBNCId/Fdi5D58HsqodrsvuJPxlB5CKwisUuG5SCyBmaGM56vRlMC1QO5eCMVWISlJJNkPVGjRujKOlGwhqgKGC9XJRWlgFRuzb2bqsATaXtW8p7S+tQjHsZGqlH3kTizS2HjQNWCZg3TBkYfce6Kn41zK8l2nLeivJ8CZ3Oa2Lq3zHO+8vIl/Ju//HP4Jz/06/jVb/xD3MHzBPKZRJNiqs55zlNVSAZKjxOzPijOe4Z8j1zBI/JEfDRnE6ckkTWV37ByD6qSU7ER681EfSsIZbVViMYZLi86lHLT/jTVZiWebT6Dpd40J9rWqHQVxFH2RzIGs67HmlQ/T7C6e+0HqYiuShXoUhTneeKcJ+b0UBy8iPKnnZH7SOzvHr9X0DvVs2cyIMdcPzfGRG0NtxtVpRkDw2qyNpQCdFB1ycxQW0UfI65Nosacikj5HGMO57N/SHhpYxk2iRDQUhaA+rITnnMgSaFrvefnrXyc6yX34GXn+psK/NcA/vd4G/99w4F3H9/h3/t//Hv4M3//z6CN9gd9RW/jbbyNt/E23sbbeBsQCL7xT7+B/+j/8h/h73zr7+Bv/Pm/gWM//v/qr2/jbfwrGf81gP8jgP/D9/bj3zNJKTtyEGov+vsL2EUxEF2CkAUGuIdkcBQIzBBkIHYG9wDDa6U6EbtyFDY7RIFtK7BBJaJaKva2Yd93bEHWSGlnViEJkIvTPmwqi/A1uqFY4KCtFEJ9QlcXmxMAEnYyqlAueWsNWiq2tvHwWGoQZQyQEgVgkkpqawRJleCIzYnj5YUFdI8OX5t4en7G8/MTtn3DnLQNGict0YYbXdVsYs4OuEG8xOWVJVF/P19xv7/SZiqIIrYKy4Ln53d49+ETPD0/s3giitcXgmz7vkMF2LeGfX/C0+0JALsDSRQpUeTjy+1h3dS2G+p+A4SKKEV4PaVEl6A6xAzHOfgZxuJWHyfOw/B822kPNTvcDed5xzw77ZmioNRqwbY19B7giqW1wwWGOCY7xpXEsewqwszORKrizCDSSBbAosDkzp+bHt2EnmBQQa0F9/sBM8e2b6glneopAw+JDqWwFUuCjyO637KwrZPWUE6iDu3QCrQ1sLtOo6gXhfko/s05QRc4w+hnFCwqIBUVYdtBBIAkCQOO42Dnm4TNjAqK69XKO6Mw5IYqFV4EwxQ1wHBEZ3XvHVusMcqpR2HUqOCA8F6YxiK9Cu+vSMEwFqIlCEyjD4xBW4oxWRiZLng5Dti9o5WCD+92tMKO2rI1YA60LCCCaileWIC9v7zCVVADhM5utdOBaa9R9CepopUGgcOshwrNxBgkWLk7brWhto0ggDnGOIEomkNIkhsz+lOFyiAaqliUBicJzPsMYkqQRcRQ0Yh+aMN9DpQJVDj2phA37KXCYHg9D5JVhCRLEUNVzr/sIk6FhBkEtjFY5Erg5uhnqM9VKGvEETu5ZooWuHMd1NqWldDTFgplk8C5qsCFFhyigm3bYVJhmBivA/fjQHfDbdvhNqFtwzz5jmtjOdNRYJOl+VIk1C4EEgVjhCy8xRy/3W6MLccJwQRswIOAIkUwnEXG7/zet6nasz8DposQOc4eMvucP60QxBxm68/mnCQolULSjRr6PMPeZkbnf10KMYBi29gVe76+rs5DM+CwiW3bITWUqYrAnXZkWgr66DjHRFHFQEdaqow58fnrHYDhw1ODIFTNpkNqi32RxKg+jOQrN4xhqPWyjUqXRw1Am+BkvUADZSGzFEVBgQ5gTIegUelAFarcj2sTDOkXYaxEkdgAkwBFRkcVxXQSI8dwOGgRJzCwj51xdzKiATYgcIzegzjBWDQQn1muwnmCT3MCtSpavaF3ofJeWFLAfQHrbavo5z2A0SS8TdQi6NNx7x3VaccIeJBSw14P3KvNBs7BdZcqXrenJ+z7hnmeOI4n9FvHfdvxerzifn8hcdepCEgbIa7PpopuTnJys2VJIgLMMXG/3wER3IJ02FrDtlWqSRnJAK/2/2Pv737tS7brMGzMWVVrn/Pr7nsvdSl+U+CHLCYkpZCWo0Ax7NggAih+kGDYcgA/5e/IQ/6LvOUtQF6cT+VBBAIljoMgjh3FiuBQvNSnQUmUSEoUb9/+nb1Xfcw8jDFr7aYD5F5AClvkKYK3u885e+21alXNqppjzDEu3QFzEjfXMrRGoOtxf4AYmOHWmtboiS5Al6Aj7UHCmEwmqBhSyBJZ0blWjUl7s6Mx5hA4DlkZMVvtWsvv5wO34waYoc9B65NSNWYMUWRBswgwT2MVeJ9L9nsCBWeHNQIXrVbAJsIC5zkwBxKJJ7nUTu2zisBmWaoUx+vrC263A2MY+sE48ng8kORsb7TcSAJItYB7wCr7fq5AXQAW42J1x+wnaIVk+Ph24u3jF3j97FO8Hh+oNBZAKQd6n/jii484H3cch2OdfL+9j80He3l5IRida8EChggV5/lAkeKea7syxsDrrWE1xxi01hxzwofjdtwuEsYmOnDejzGQ5H/G9yRzMK6OMS6rjPLVPnUmx1woyf65AZuUnU9wKTBAELntf3OB/klCCsg+MwFtN2AlocPhi7ZMboaXeMGP/JMfwR/7jT+G17fXDQZlXE6wJgF981STyb/hvjRBN0tQDKAKiqYWQWHXvtG3YoUJDM15JRSZwJyXbe+bdiujcx0FgLSvaa2hlibbHKkgThKYEixO269tmxWxCeEBqqeMMbaNGjK+639rbThuN1SpIcGcCoALIiME7bZlrQsA62RxwiZiCRFba2JM2jV7rRtkTkWfy96P72LO56p+KY/Ose22qaZAInfufbbVjtOKcz6BtLuvk1QCqZ8kGEqMeIPaBD3j4mqkvVdQYS//LjaZTiC8X1bgK0iWcin38LpSPgEEoAJIwhqSKECyCceWqbBGZIMnUtqeEtih/CI56Wczph6b67ZrnvFcb5ssORP4fiIS5bNZJOFykZDiqdYiRYan+1hzbWu0BJ43qeTpvmNKbc72lMplgT+bsrVUsM0CIiq8Ms/gbri1etngFSra7eIkw5f6anSSijfxS8D0mgs9xo5DiC+rs5QkAy3u9cIC1Vy2wNgFNST+8AHS2jP70PUOxqQFLckzsed1kk8hG0QAIl2QpOzgms1tne35ayqMSMXNorPgtv4B91NQTJgq5mC85f6Dc6DAZMfkeicrSAoAaG/sXhBG0mBNYsImoHAcZ2zfxDURf2ZfskD2vYfMfVMqNKW1ZqrFxL6w9h9PZ/q0SCxSSNIk1+ogy0WwWK6fJ87zRGsNpIFR3fQiGvJ8FSKJUF1IP0uKnhmKiFwk2yfhJfYzZzENC4eMCrFazyxkXVeqiMSxQ/8SoTZioc+JtLPcsyeAPhcwF1q91PnYEfalpTS30ZA1bMaQnNOKFhqnUqR7yvPtNcC0/i1wDCPtGhkXoWLFJJB+2WqK487084wZUcqT0mM+Ha+zMn5kwI2FJZtqFoRhP2SShZP4lusdx36lTdheq3V/ofNbFvP8nu9La77FRRvlKcVEfsc1zuecJBhFoAQLUG63gmgsJpyzoZaBPjrG6Nq/xc5t5dq4xxNY5PZMMsoz81oLBxp+6jd+At/83W/iV3/yW/idT34HAebKBpg3zLUNGUOde8FNQAaJV9tmTyo7+/1p3oTOJdq8XKQmzam5Fnoq2eabFBHYntZBmEhE81rDIlL5U4PVr+/ne4LWoiRkx77oVhXXPm+ZlOUyYRmBMGM80ZoLu4o7OD6KziNAqVJTDT4PQLVyklxpExtLxB/tx90LvGR/SRlvLRUdkGzazxPtdqiw0FhAoBjalfc0FevE5DumCjH3speFKWNRLPb9WrRVvYjuHLsFzJOPPMsHC5SiFkY6S6K2fWmOUi1ZxMCtqhT7fUQE8NcA/6tf4aqHr0B7/fiKn/8vfx5/5j//M/j+335XT3pv7+29vbf39t7e21evvTxe8Gf/b38WP/l3fxK//Od+Gb/+Y7+OVdbv9229tz/o7X+OfzEkJZeKTHmuDNzJd2beQsmrrIyhbK881jPJKcD/dhy0qllvvBF3hEg/pRRMLFqEtRs8ixGMKkitMNmRicc5maRK+f/iVNypSi5RXSJEQLpkt4NZJKo/gXYxZga/US3m5bgpGUdVoq0CBQIIZq5EeUFWpWX5+pwLbx8/0orEEmhOEklBKbS8IoFi4uwnD6lF1iQBjFJQm+E4Dpg5zvsdMSse5x3f+fgdkmlmbJKQ14JWG15fXvH1b3wfXl5esQLoIgDMwapmd+B23GCFZKRQidjtOAhii6xDCf+ALaCViqPd0BptfVIynkm7TGSKKKVEackqzuKYvUOjRQf0E70/eF9zoFRHrSRBmBIrefg3JdBZgUzLwblM6j+GWj0FFBBroTYm0WZnkrdAFe+xSIQAAfQcN5mMzyToWhO3g+Cy6zuyAqmYLCNAx715ngAMpbatYuFGpa0wAixwhxVadgRcMs7AnF0krLGTROaGZZA9GSsDbTExUitJWnDaQuU7sEKLRTgtfhCTqkN9AJOAONZC84KYUwomGrOBDaBAicQVSwkTzvdaSerLJPSu2DcmX0Pz0CIrWaeSpgux0uqQyeyXW8MK2oMVgOChc4YOKQtl9d6IiVIbHueDYKTT7ueoFWsMWvnBpQbEOdaOF/5uLrgfaEcVw0OKJZXWY6yAA21GCslWtCUE2nHIvfICb7xUeKGiRSkH5iR5ge+UJAWDYfSOsRa+/cUbwh1HbYABzQpiDcwYVLBZhi7bLIIdhB8AYIxOEMkcCxCRoEp9iCB7aUmWJM1hhT69gAhXkt73HDEEiUHAtlQBMqetmCvlgyWQoYDiOGTFObCr/QvGPDkPI9BPkrdaa1SHkaoIpI5wnh1mJLq93G5Yc+Ht7W1Xd2/bETjub50KYHNiFfZnnCfePna8vnxKJZeg1RnVfibJCbXCVgVAVTJWU6uyfmWydxKYsYCtwBrBuUJ2leI0LfK8NtoUImSdJYLLojpRa4yjJsueovWhygrQBLwcR8En0fCNr33KCvEVJEwY1RPcC+jHYjBnkrOqSjPjEit7DTH1PmvRe1tYwXFD8tLaOV+q77FiN4JWdqUUfmepOJxKdQjO3xlMYI9IktlAXyAxJdfeahtcR/ar1jP2oYAIMDguWZa02wFzrg+jD6CyErm4YY7A+ehM1DqRgJszIfyYVBUMc7TasGKSXGZMPI94oBaHN5NiFpWDqjvj/ZRtBmIDEj46otlWDahO0mG0A6UNvH38iFIKjtsNrTY8HnecvePsJ2ItjNEx50ATWdkKY1dF1VpChTNzx+hUIKKi1MLt1oCDCnXneeLADT4Xk8omgHNOWuZaKhJxL2FSHppp0YCQEoRehZSKZtHaLNLK0RqqO+34zr7VUkhUIKF2rSS0cC2tikkrgLECj5OV+1Xnl6l5VAxY+V1joIehr4U+xo4vY1DRpHjZaoM78b0IYseQ90YsvLzcMCcV8RAL9Xbg61/7DGMMvImU9OHDB+6v3h5Yc2htJEg5RFKwUtDaDaVVUE2r4Ztf+zr3KX3iO9/+NtU3BM61aiQTnQduL/zM49HxW7/526jeMMeEgUp3IbL5eT5QgqTF23FjXDbHxMRwvp9aSU4i9kIABtoLvt5uKKXifh+IR8eIiTkmOk6C+8URwX2smWOOiRFUiQAoClerFEEXgZ2idX3lXuUr2kzod1ryaGuhX27IC5cd0xPwtX+bIBj3mrU4zjVIAsAF1CWQZRBR3A0fPn7Aj/zDH8E3f/eP4NP7pyKgQ3uaVG8UoIsn8sy+N8i6yDYQyH9q3xAQ4JNqMVRB3cSPBIM2s0RFE5vU8wRwaG/Ye6dNqvlWJHHZYJNA4BqbIWUDAlIJdsXk+afoO6gi6bJkPjHH/BLIDCcI2GrD7eUVtVbtF5dA9xA5Hnv9y7U8IkSY1H4xCQZ6cUXKgMXLM68lOQjI6ZLv2OKJQGSpPMTPjSRkpdLSmpvYd4HZ15e4CP35PklQsP13bsZCkyWoVnF4WzPhUv8IWdBkDM5rB64BHbE0h20T1vSLfV4M7U+XzgKms+zzuKdCbYhIQqJYwNVnAhTXkwJMCMQ3qiPmWQ05dpxxYh+ensZb8u4C3BuHYRNc8rzodgH93GNangj1rmLP02eikAu4zjlvnu8C2EpKbiJEXeQdHqqkqiLSTK3sgyqyTRJwArHjol4e358X2fkk8SIEMMfeK0cq/EAA9VYeclgp+wUuwwadE1RPdZQFEt8N4yo6yL4B35952bkEzPEUR2ITSpZUL89OC7bisnSE1KxWXDbjERehYs8OjdsgfXLqXbjU95b23amktUQquWiBpjGW+41rj1dVYMLn/9IAEjlM+5T9MwBwkTpszwHztH1dyufw/RQRNEOFSpyLrn4VGaUUACRMUDntuh83EtgD7ENyVdcmcZpV5jNi6IkholHaED4pFYtQY54D1/fzzViyH9NcQjIcBfprnluSZHhpKT6LjOtAUZ/QnV4qw5s8knM2UIuh1gMtre2y70NEo4zfignFHFMT/5kslop/nPJ6Xyrcel4/oVEbl1bk7s+tmuU8N02pu+UZfq2p+Cm7yzwfgH2w17oM+GZbzWbbme2lI3YegIevVK+G8nGsy5pjYUwSjpjz43kiC6k49wuJShh7HY4AbLFYaNjU+hNa52Vh6bqhLACQrXWEPc0r7tW9VEBngbQXdj95ztL6jAisNWTZbXvfUdQvJsKUu6uIkGP9088/wS/8v/9b+Ps/+uv4+z/y9/FW3mh1aU/KjRBxx2KTjWhfeZEOU3npUpSLHEo8J4uYZXbFDdsqbyLQPCnkJRHPpc62n0dzeYl4xFxXqq5d1nw7ikRaYqeK1aXslGdk4MtrS57z8TQf3KikO4aIy2a43bhX76Mjkkhb+DdraF9RfBdsbDUhqaO7FNduL6+wIjXtfuIcc69BxZnfmXOoKJb3eb8/0M+ptZ1nNtOT06JQhL1UJdTeIyKwjPmXInLSc0vCltcC64OFQTP7S2NAk4n7YBFnV6jARWtqqrshu1H2w/8KgN/+r33tH/pmy/D9v/39+Nf+6r+Gn/y7P4nv/+3vh6fH7Xt7b+/tvb239/be3ttXsBkMP/yPfhj/4f/iP8R/+t/5T/Gf/Zn/DF98+sXv9229tz/I7d8B8Cvf/Z9/TyQlVnt3AQVZ52o7YdCOCkQmrEwHzdgJmzy8OuwiZwA7KV6Y6QWM9jy344bmJKYIQaByj6qsp5JSKxx9TLTGw/TStzFxuDahKJP5WTWbCZdUq3EpmVwHNSYSAUMfA7U0JVYSyCsw2WctJX0ouUwCSih5H2NiiIwBGB73E62dgHX0PvAYD1pGSH2ilMZqyJcPmL1TPUUA19v9Iz5+/AJv54MkG9VWtlbx4dNPcHt5xcvrB9yOVwSYhK71hmUD7TBWQx8VxUniOR9vBOkOVkjXo+znSCnsVhrgVLLycFUZSkkqE70wrCCJxpwEB1tpDsDKpTEGHo8HPn7xRju2eVLZoFGxqrYGxNw2MlCyhmAdqyuZYGqgMkaQsKOE+wSTGn0GUACvBNhtgUkBAP1+orabKtpjJ0y8kEgEALd2oFQqHtWsdtb4MIhAJMsn19jaiW3ZCbobxuhwJ0mm1IoFEg4KDAsEetcY2EWNQRs3zismSD2UKMHEMBEcKt+F4ao+9eIotWH2uUGF5ZReh4FqJ4PWZbEWXssBM0NfExUcz7VWQCCvl6vazt0lW+9oSsqstWhxluBLAmRB8hZJeUx8ApnLDlQDzAMfXioKoMozvudpBVCFcMQgoL4Mj8eJs98xFgHmzz75RMm7iUgVryCRzs2woOcGaC81SZCZETjvA1YAXx0xAx9eXlC8EtB/IThPa0NoLFfMcFaxmaS6rWB2qoZQ/40WBTBHjxOBIGEnE+etofexyXdJCruViuYVpVLqe8FEEArND1pKtXqIOLbwxcc31HrAS0WR+hdJgLT6mWawQuW4GQPH0eC1Ksb5VuxYc6IVqkydvUsZaG0A0fT8tTpu/gKMgfv9LiKUkn0vN6S1I4KEojkHjlpRSsU5ByuRiSbApRyUEvEEZRsmHrQN9IKjHLK7IBmIIBGAMLRW0FrFeLxhhdaOIAG2GhRHbnA3nI8T9/uJWCSk1MakfwNBKi8NqMBj0g6Sk5BVjLT0bFIfC3h1VGskrM6C+/kF+vnA7Xbje+4CNsOR1afFCfgcbijlhqM4bDGGLROpCktAIyvn3Qy1FXgAx62R6LJUTa04s3pnfKy5hi4cet9Q8jQBVAgoy2rfJNTNMQQAErTn76mohKDi2FqFoPWOvw6E3gVY0V8r72nEItF3TREkQBJuNcXVAiAQY+J2o90YFYBCpEuSb/qYaKXgtd64/gVwGiXwH3NhTNrNzpi4NRIWoxjq0fChccy1QkLxWgtvb6esSgfCZYeJAsyFHp33v0T+QKAcBz4pBaOfGI+DiopwwE+EOeboGL2jj4E+qcBjbpvgmYB8cZLxeil4nCfGnAJTL3CYQ9pgc2L1IYvZ2JXWpV02oiYSI4L2bKFYkPuQcw7EOWG3gxYZiwpHt9uN6otOq07DhO8q8AQJpUZptOrrvcMC+PD1b2D2gcfnn6P3QYDyYGxmQr9jG5wJTJ4LJINcWyvMuXCOgdcbya5eGsoEzDv64wQgGyTuGPB4eyAiaHXrAFbBvXfZOUrVzw1uFfCTSm1kBgt4UDxDYex1xzc+/YzkLqnGwRZqreilcJ2JyTg5F20xKFWIWIH7eQfm21Zk+XhfeL3dpC5ChcLVJ8Y50I4q4IdErfM8Sci/VdTWpHTUpV6yNuiaewlD2jqJEK15lxZQVnJupcJJgdeCcZ60JUxA3yA1ja9uI5A5VSWOPV5yn0+LnXKRJ4IjeNuFIfcUAlR11jCB5hui34Qh2qZ99vYpfuwf/Ch+4Ld+ALUnscY2wUNfxXeSReXXXQsI5tXzs4J/L2w4AUa7VESw/4afJfBYNhnBZR8LNxFNLrAwATsgK/ZzvKggYkzMsrbiTJLeEzhMslStTcS81EqgimuXwkNW0xsMVqhoWmpDrU1WlwTTqKg2GXtlX2dOFZqhM12R0qZL2ea652ciViqBPNEiRDCxfN96J+QbxSbewHhGGYNnKEOSWS7bsVQjy30XgK0exV1bAvdSSkmQX+9wkaW0VRy4fuKyzFN8c+fvkqCWoC2EJRbnHjqQVnZ6oE3Eueyukjy1CfJIUhWkZJFgNq2QYj1bt6xNsjDZchVPzeOcExc5RPi+SHQi2yypLTnJ+WuuPd9StTHJKrEEKkeIhLWP71f/R5KDbJ/1TSqHZtgqSyHiR64dJtINlD4wvbsNSOs9ptBHU5HCEkmCymeXLVPYEhGJ+6Gp9SRWUKXQ8qxi+3m3AtDKocd9ObenqV6XRD2eI48q8vLivjGJULSqFkkEWbTlW01oTZGk1lWcAwBdujEElS+SUJKvQrHFnGosVK+UKqzeWQawa39fdp/3TkVSE7E7FXlJ5OH+z7bSU+jcrH0MSGBLIhkLVaiaQmKJ5rxflks5/5sZzn4SlA+O0ZpnTd0nnshhJNQpbmruesn4cY2t/dDGeVtL5TMoZxFIxTDT+cnRpwExlaYyqkOC622pIlMW7hPXEiHYAy41L5eNq3vl2Ru6jhRS09IqjGotSVAV7YXjqA8sl6I42W/J2dH7vebvUXk/ude+xqrikolYgnyfLMBYSTRbVIU2PcCKYKgy5ctMqska87nCXSRYXpyFKJciEPmOTwum4SK1GPMzyD7GtX7l3ifXzCRIhNbzVL5LgijKRQotXhWK146RWvmpoATgKJVEjAgMxZMFKB7kdVRYtoDSaFeefZqkEFo9Lq0HXNcybmYfFJ1bZlBFsLUDq0ysWeCDir59DgQcy1JdmDaQmxStPKGF3hNUHGJVZDzO7RYVP/HrP4Fvfvub+Ns/9rfxW1//bYRNqV1fxQAxJiDL01ThA/JVqIgj1h5Ha+V+w/fajnha0xWz3ESGehp30HvLObDmotpcKSLk3/kMa4FlalSk8xDR0PbwINHM8j61HoDPVkQ2L8rR2gqRrnPflHFyYQxadELr2lyBFWMT1oCQgtraXx6IXQCbhRW5TzxuLGyh/TnDzTLfsSvXu6ozTea/k/A0x0PrGc/OuTobpG4HqkDxfM37SbXnrZb8ZOGG3DdF7PmTG7zUAt0EupITV3twPO9nscn2u5gEWpt/0oCfeq+y3y2AH/itH8Cf+b//Gfzcr/wcXu4v197qvb239/be3tt7e2/v7V+Cdjtv+Df/L/8mfurv/hT+4//ef4y//dN/G+/bmff2L6T99/X/32X7rklKW/7WbCfASKxhwqQ0Sdz2gTVW4ti7GiP/N5NomdCqtW3grtSyE0LFqWphKDiOKwHqUj7CAgwCcoyV7wskKgAhYJQ34FaoGqSKYibPaVFlZiQKFP5/PQ6qI0g5Zimh517pJ+4VLusrg2PN2EngtQJxsuJuqSo+ItClDoQ+0GVBNseg3RL2yOAAAQAASURBVIE7yV1OQspxHKiNFnf+AsxWd7L07e0Nn3/7CzzOO9ZkdqpUgn8vLx/w9a9/A+W4YUzg8y/eUIyKENWp8tAOJiVKcTzePuLbv/M5ijs++ewDDqkPURGDCbtMCrhXtHoAUmYxyeuvIGmtmKOEkQgTA9seRzL+ORAiJh6PE6OfqMWwxinwj8pRvdOey5PI4YVVl6rSdaP9EEDSSKlV5DAAmPACVGuqIhew4YDVihgDXRL/XipmBEqsrWJTS9vy+OXGiil4RTHHeQ7EMtzPB6rIFV0Vrke74ThumIvqEaxaWjCvsEqFkSy+jUFljbkICM05tyPbmhPHcZDM1U8Sw8xZsQ5QjcgJSidiMDorwdpxbJCLiRkSZdZk0m3tpI6SpsulkNQQzsTO+XiQXFUKSi1Im4CFYHV3kbpGqiSBoBRzsIaxBrrktQsq5upUBIMLNANsBVotlHxfEyGCWcARM9CK7OesIAy43++0BJT0/VJi+fF4YIYUNIoqztaidQgYIz55fcEpJRNLIpUDHlkNzQqykFpLEsiq7awY3CsejzuJChgCbSYes2OOBwYcR2moYTjvd5R2KCEbeD0cczIeFQjYp+I5xlg4qqMaiSFzDindVGzrv5hKTpIAQeLFQLvdYME4RIn4KUJHUBVKjK1zDNyOQ0DUwq3Q3qAUAyQPX2rZiV53xleS2i5VhxETx+1AmOMMEioMIJFlTow1VcXOuABbBJ8D6P2haxeEFZIHiRxzDRDw0p3V/u04CIRAyl4IPE7aTLbS0CeJEX0Z7r2jlFDf3ND7go2hCkuClZ++vuDjx/tWJisgSfPj40SA9l8WJAa248DoAvzWwOgnTOokCKAECUoLwO3lBf18w5id9pVj4fXlRSBBklET0CIIuqbuygL1VkQADfQ5EeEEkHvHOB9wY+X88gKTLP0IkXjBsYHwDQQxL68oOFi5b17AJXARqDMqo9Vgovl8ENzd6oFmCA+sQdAbqsq8qlwJqLg5rTnJS5b8fYWvRUJVKknkNYPziqDCZYdVm0t1bTG2WEFMxpwegVUM/aRyAsdqhVXg7INWQQ6u+25otxccjSBwKU2gm6Eei6p9g7L67gWQAt9YVO/zQmJazMDqjG3FK/zFUVoDSsH44js4Xl5wnndajL29cS1ZAtMF0kVJoDVo2WrAiIUii6TVO6ykvQBt2nxMKRbNDdyPQcCgHje8HEqUD4FBi3uNOQOIofhi6LFIWD0azGmlsfrE26NzDyDLwzmXrFKlgDUY/4oA4bUWzhX49rc/B0BVqLTBPB8nisl293bD43xgQRakKwgqxoJvUBQiDQ28vBwwd7RyQ7UK4I3r12JV9OTmjjZ5AYLvTuLTeNDC7BCB9+3tjrSjXWForeHsHTGuhD19ORbu9zc8Hg+0duB8u3PtHoNWO27oY6LapXLTHycebyfOlaSAiXYrUjyYVHkaBcftwPFo6IPWs0PvNq1CElBIZZsxLgCc4Fzg7XHCvQlwZgw3ULkmQW8TIB+gqlkpBY4QOMG5bQYsSE1GIF2qJH5VmxvS6HCD18BFYkiQfi5ZVgAbeEH+u5EMnWQcXlcAsK6TAOkxb/jpv/nT+OHf/iHcgmqgIVsVRHC4RKpmZpGCbXIL1XEA9i0BfSThBCLJJ1CpgghThX7eHwG9VFxKsokUfwQUbYBPzzilCJFkj8CTcsYTYHmp+Eg9zi7VJFrbGKwC7mv31VZQkh0Z+4/31GrD7fYCKxWxQDU1457bpSDnQrbNuRd93B9wcxL+PIGztcdh6jtspaBUGUGIuBKbhGACyFc++yLAn/2UqiS0sBlaawZSheLLfWKyGUqCkO4BOUdEehAZI0m+5gaLcqnxCEA1L9u+ic8vddQE9N32XpzKG0Xfqz21zoxrzF2gsIseZGue1nx5uoTG07NC8baZ0t9m3wGMn16ygGKiGM/DWTSAnBtSFnYTKT7PXepnKkvSQisE8CeAG5FvVfOtFBExdLaxJ6Ke+i+fFSr2SZWKa4JrPUWqskhRdE0WMGiOCIrlXOOCQSVGzVssKsiEiUBhkJ0hFWqTHGlg8VVsclOSCp8Ja1TamzNEjBJBAab4S9s3CylriTiS4y+bm2EM7uupbCGi0+iIxSKFoiIuWhUlQXWhFRYwuBs8EkyW9dUMkSr4HlakzWMqlAJZuuViHKRNIm3q8uyIfX5ASBVKs5a2qLI21DjN622VanMsu977Evnets2ds7igOK3iV9n2kqY+nUtKYnkvyPHtUnCLXZi01c9ERNuWiSIQl8ocTc4r7puWciAknow1pMz8pHJE7WVEH6itoPilerIscMqaHsEz60BsslAGChL9sedcyF4a2cXaT3Ndd+1n1o6XXlxq21zjkyxkSUCMvAUpKYukQIKMSBfBfM5KkkMSxqxw7X1aaESjQI6WuLYkyn9lvEjCyNz7+6Jz+0wirZliHaR2GyKfFNrj6VlWYI/DjK9pGW9eoA7c5NCci9v+SrFovzdTDg5GJRxddoE5igVgq09DJEydR3IMkjvoVKnKdUIxodSGWabyn9oNcPOFibXXcy5Zu/P4WS/wgzF83u84asGatCekNRnzMG752OtpfcrjnW3CLAmgfMBvfP51/Py3fh6/8sf/Bn7zm7+JYVLkyT1FUH3IC5XWuZ5qvx+xC1aWcmtm7LQkfW9S/QoWpKzY8ycLUs1FcBKJa1PbRJQ6e4erYCbfXyq6GjSGENcab0nW1nZ+b3kCEwtpC+elam8OWbaNa08HIOaSrb1GQjji/tg5Z3Oq+ZIwn++UsW2MDhIM2T+mNbL3IaL22qp8Y1CRi8Sl0DM55gz0xwMz8iHWjtPQ2F2LZO/aCtZ5KUZlsWDOwXzmfH/5fsG3hjEXTJbuuVcFQjl37Nn9XL/gpTJ2rGtznfFmYW2SOHqwUOYPewvg9e0V//b/6d/Gn/wv/+Q7Oem9vbf39t7e23t7b/9SN4Phx//+j+Pf/1/9+/hLf/4v4W/8N/7GO1Hpvf3zbQHgo/756Xf3ke+apLQmARbagBF0YR0LEBYiJWWlP5OBWXGTh6JUM2LujInhUnjgPlpFqWVbvrTacGttH2JdwC8AqhIVw9FuuB0H4AX3x7kTwaVWtOPGg+JWRQolTrIK3aUWw6TwIWu3rAA12RAwabTgVimxXRsr+hHoUj8olYm/3gfmDHgseHUqEEQgFhNV53mXbQhAa5MXtJcXqVI0lCJdlmDFbTlumIv2YnOyMp9JvavCr9YDrR14+fDKzy7D7A8q04wTj7Vg9gG3l4Mg4gr87rd/F9/5/Nu41QNf/+wztNd2AWoz1T0EZMwFan6Y5MdDMt7MbKe9VbXCysMCkZdOJryNfuxjkiR0Pu6oRYnXW2MyTao4DtrOlMpK7RULNUzWFqrIhZHsManQEsAGXWenzVMqW9WWFlmUc0d1tHpjgn4BrXGMLFClZUyC/1kMmFLyULXvWsA0UJlp2rbvoz0XlBBmMniutZPHCGD2AQspOExg9Kn+orz9Mlb+nmcXULWQVWoLQflvP1hBxYwM1hok9ikZe94fymEMLATG44TFpN2MlD/SXoqqDlQ+qq3CqyotYyKMJLDWKubsVKkw2vSZrCsiDOfoKG5o7SDgrHG/sFiFbwSZt0IWDMdxQ8xJW54uAozGh08m/OBUopgIWDVUVNziUBKK7741JnAXlgCMikd/wEw2GUXfhUxsBXzxnd5eXjBHx70/0MfEWoYoBaW8AFlFPJRctAYqjJwoa2CNTKgxtp3niQkCDXMtRCl4aQX9POExcdvESCeJqhDQdsuxM3DOiXMGoncqx4l4d9xuQMq8i4hyOxpejhdUr0xArwFNIVI6m+MxTgRoI0ViiWFOQ58nraV092sJbFiBx/kAE2hOkGMpoWaG837CYGjhOImXcc4VWrkFM/skB4oAchTHy+1QDC5YUhixUnF/3DHHQLNbQnAkus0FWwulcF1YxgrLs1O9r0ShCtkqMG8IWUquJTU8ON7eTny8fwevteAHvvlHMfrAdz5+rkSx4bVRZWfMQSJXK6hhQF+ygDAUK7BKpSomVaVY5oZyFJg1eAmp7hnGWHicD9zSCjMBICipOQbCgekLE4HmsZXzqtFSa80hVRTeVx8DYRO1Hgiv6H2g3CoQE/OcQDS0Q8pjSMl9x4yBx9sdrR0ENZyqhGaMqV4JJBFjDxFyCdQBgWa0JyTxhPEhiVBzBkqjciHiItCFAaVxXbTCRPwQQTctWdYkuPq4d/Rx4mYH45EqfGstQOe6ONbCNEN5OYCxsDrBtOWGNg6sIGB+tAPLWf68jGuhh6OfE6VVFK+wg4QtT+efBcAcLyKUkDzCJO4agwnn2UWgrvj6Z19Hu1HJ7PG44/Fg3378+BExpwDS0DsHWFkemAGcfWJ0gltHIfEyyQCtNvF3Sbo6fcAKK9pp6dhgKLSLrIY7HlhdyNEKlMikMwnZNaSwMqkkApNNz1zwR4cfJIHbdFl5OkmpRqLPnCIYGS1mzsfbVi4gydURayCsYpwn6q3hdhzo49x7unEO2f9cyW6HIxZwdq5pGIP7oLQ4hVOBIMHdBIsL41Bo/tTWsPRcZ79jC3SCoOOtSvEulhQggONoQA988cV30NoNs9MS6hydamoVAnpIBKulIiSV4ZhULJASwJxBa13zvbd4fX0B3u6IQoKffSn5b6ghxQPQwpPA4kLxieIV57lQytp7DYLnVIJqsq+rIlMQSQCVOydtWaaIbW6O2+3AaiTlJdgyE/z7CrYNvrmRDLoCGyDLd2u4qtPnZcF0qRY5yRvaB/KckOQQ2UKZ4Wuffw0/+zd/Fl+7fyYSiVRZNFITjPNaZGFEMgGM31VSLQ0XGeoCdEiONLPLXtrS6viyFNsV7kjg0kUkLRtspQprIO2wkugGiEQiID3JIWvMS3UEsdUwE4BNy1HimlQfowVXIJVov0ROKrSA2ha/7AAsqevEWpg9YDh05iG4db/fRXKvuN0O2rzhGVi7JgbXat6yP80XMW25p4mQgh1rHEiUZXEHVY9CNpVL50w+v0vpAQLdDNiqLwniJzkp+wwCy9Name1SLlpkQnL/qDNjWqcRLE5L8cvqPEkGJB3YBgZJ1jGEZRGI5oBuhYQczusvTQS7lL5Mf7zmRcwgP1TPpr9deqczLdr8UhgJcK+YSrim9xQiWKfi7xzJDhQ5TgUKToYh54xe5goqdlyWR675FduaMGNn0p/WnFQL0do5NcfZd1Pxjs9JFY/AilQi5PMUgcX8/rXBc85pjvUIqvsshQwqeCjm6N1va7FUtXSukwlAOvB7xnXGL9/KjSMYe8k5dY0NquyG9u+u8Zskrqn3hFRFk61ZWv/AeEZcg31VLMkT/I5w5z5E43rF2pbCwNykpCQC8Kwdm6BSFfNcZJ6QfZVZKvtRzTPvCS5FlgWeFeMinWSOBYa9nzQxHjLGJclsBs/7KnPZ958EkJxHSWCJhU0SShIMVWG45ve1RI667IooKqbx5rH7f45F62ozqiat7P+1CQo5n9YMvPUH1pr45PUVrRU8Hg907cOs+O6bqXsoIq4giYNJlBT5EIDmL23CaV8G6namUt5iTiBJuNlc51/AMDXvnI/B7zWS2NbujyThkaTkAZTq+/ecBxMrXCpZuWBk3KbaqS+RaUHypszaYRqjy6iMk4SmVG2iLfyl8JLknZxDa+U7lJXYXld5NgjtedJWMudcxqU1qcDK4pvcD+S1FJekWgmpZ1vazrmhRFoe8kwbhWtD3rsbCxEXQkpf15qfsTsMT4pOWlWsIMmjJJNRQavVBns1qYJSWbOUidMfKvp6WjOTbCLCzYrYynbFDWZlF5Dc5oGf/Vs/CzPHP/q+f4RpdqngPpFvHA6vfinsaq2wgMiPsWPXJoCFyE4iBy3ZvmeulMpIF7k119rcuxjAognNkf1zVniwkM64x1pZA5fj5ek8wWsZEFRDYhfFLhC8vi2LTJMAG5vUiYitWmVWAe2pTikShcYtROo15XojFtwrQlbo53nyWtqjUXX7ylGTXBVS/Y8dG92q9jRJQNcnDHsdybViK/shtBfOZ9Mav2QRaqG8O/Pye7/njNPcT/j+WSo2xu4X5ccjCzM4bqiqNbH+fgD/GyB6AP9j/OFtAfzoP/hR/IX/3V/AH/3tP7r3Bu/tvb239/be3tt7e2//srfX+yv+/F/680AAf+O/+U5Uem//HNv/A8D/CMAbgL/z3X3keyApMbGI4EGT5ybbACbGyvOhEthV0t8A7YuYQCmVikReVOULQ22Ol+OGUgumLK3cCG6Z1A6YcCS4xkrdgmKO1prOkwcQRissJROLk4DEgyePutUbAgSYj+OA1YLRB22cYErO85A3YqG1hjUcrUrlZq1tPbDl9ZdhzBNzDtzvHa04KiqtSxAoBiVflGxXAgvgwfTwNJYhIaYUqb9Ego4GC8fr6ytKJckhYARlvVKJohT29VxSPcokpeFojf0ZgX4+8MV3voNxDnz2+gG18TBOGem5E2qLmV148L7WGMAa6ALsAaC26+B7Pu7wVlGtAAsbeOyd5KTeO0afqNXQjqIDeaAVlz0eKzVpH1GByuQru3qJ1Ba49w4YlWTyu8egJVBWaRmy6pwJFrNCYoUqi92ZkKu1Ys2FaiTnmImAEusJZKDizDxJ/AgUkpQWU/cJFGZ1by1SB9oJDI4XW0mkGpJipzz/mIPPXi57sFYbK/M8VQEu8KP3QRWqmKyMBChfPYYSTx3mWWG/NlCwE4IuWXSEvpdArBut+iYWx5XAZXOnAtmknHtaQwSAWm0T65iMDSAGijdZhmV12cQcnXNfYBCvJbBJCZxwRx8nPEiCigWEUe3KV6A6UatZC45WcLRK9a7FeXqeJywo8T8QOFqBBVVKSuG7JhkrM2GqFCwOLxXj7OiLsWEOKny4FZRmmKNzXM1JImKtuBUqkdzvH5nwjoVqjonA+TgJ+K8lkkTDXJOxwRv644GICnNaOzYHCRr3EwbHy+uNKi9GxRWYo1kBCqTcMXZmcc+TtTAHE3jeGtrtRql3Y8XwmhMjOK5u7QAs0OeSwhjJRMWNYBSgxOMFniDWtvALzY3qFUdrTDSKlDLGAz4US0XcK15hLhWwUlCtMBFa1ia1JOllYpGAJzu1oqJR84Y+aHHZjATWVitJXFaANfFxdMAq3BuJgLJioXJKQV8DpTmBB0yMScLHiImPjwdeXl5xHC9YRiKCFyb4H9Zp37i0HqHIBiDwctzQV+AxThwCLftaaEpwH16V6GSMOUrFlB1UJlRHELAYi7ZmpTYlog0xB5Y57vc3mJHs0O9U7DNfrEoHYwmT9qdIWRW2wcmCVDcsReMIcwODtVQS/ozjvzb26xiM4aU0tMNlG8l57UVVuUZCVnn9IAKMgWS/AJyJYOIngdoqTCDJ7JNk20KSZa0Nc4igYRU2DFYWrBngBWMOfFY+wUvvtDjSd92OG861tIbSBtOCgHATEXnMof43EVc7Rl+qDk3wNjbwvEYnmLUCzQqsNTTZHhWvaLWh906gVSo2Z+8iGpDUEsF37UayaqkH3+9YVMtaPTFoGQMkIVvEi7lw//hAadwv2TTEDGAxzsANpVVIVAlmWamftioGA4GM0QfVf1rDXHxe2ioSMIvJd19ARQgrnG8A9y5pjoRYtGnBxNEaCgoJ615IXk77I9Ooo5QI520VATiVFqVkuK1rEhxeYyfN3bl+jdk3eJ79HQC+9rVP8dlnn+LxdmI+BpYAi3ytZoZ+njCvmGtgdtrpjf6Ah6FVWsmefWAWrX1hOFzV2Wuh96n3ROuYicAIWheOPqjwV2kHqM0jAYJJ9YRJRHlX7M9FslYEVd9o6xbo5GFgDAJIx9FQG+37LJLkEBgz1/fYFjQ5jyA7xbUSzPxqNu6BbANh1y8uwATC6tI++AKP848vO7VL8YDjvpWK1/MVP/QbP4wf/I0fwmt/EasiiUY8D6QCjEnBpJRUNWJzKZQkOOT7dyy+eFYmSeWaDUzD9vopTFvg35JKqG+CFPD03CAxKGJx3piR3DxGXornCQuSU4MEUoD3Uza4jd03umPEJAHGjOszFaBkcmpFe06XegKAiG13s5IY4rKxCu5/+6OTwNdEDEOCwyIKiRO0bX1gVIESwSrVdFIJysy4j5XCCyDQF0lMmlLYomIdlQN9E2hIbgiRfmRllUDjfvM8kQ0B/vm+4Nf9pOKD5PK0TGisIRVQrnHoxo0Khxf/aZ4/05kg0kZmPhGQ8jgYWwEjFCtSkSqBfSA1KlJNSaAmUvFBCmxO8J2KSr6B0PxkYp8cq3aByjonpj1frKlxpglpRPADELmJ143g/nMrVBi2EkYRETmUMyARQv+fAwSAlyf1j9wzaE1O9SgLqdbkOUKkCfn0Pj0HdPaQ0i5RfiRhwkLkIM172rT6jkdeCm1xTQq+AA6NMRJlCP6b+u4KWGAcclodrZibeJKERXffa0GswEAS1m2vjQwIIftWiDAlkofUpWItqmuq0CWQqmxBlVEE5uDzl1p5T9lfZlKI1Yqa95NjFzzPrLiU31LpFZrLK67xuslhsTb47uoHxqhQDAmpccpmXXERKzQcUhFKsRGOiIkJKsYqusDtytOQuFZ2bE7rMc4LjqMp8vZFKtMcUS6mmKsQS3a5GppzUsk4lYn4zqXmbdhqX6kCs9UBJxUbYcxzBVzknostzzza4nk3I2OOdXPaXQFIuz2SqjT2Igd1SN3IaWmFi8Qw9RBL866KMJ2kxJGkFMWRCdC6zjgn+I6Z45qQIrRlbLW9PhhMMSY2gdPNEVKgAkiQT8VRrlWGWpqsI0UgTFItMjfWOC5zP6V4abB9D+YssiJRhPtUns/sUmlaUj50qsqZU2I7EGiVuYpne7RSSPRlHR6pdBmnacmKXQgH/SzWzrTA9jtOwpLGI9I2jPviVLc2G8pjzR33UxlvraU+yuJFkb5yvYTUowKoveBnfvVPYP4rE7/xjd/AprhojSKpRjkyp3IZlbVzndZeIffkueRtUlGSw0VmgUi6ORKf1si18t+xe4POryLt5uYO1zpbUETSjT3/kkDGvQx/xrxKql5e95MFDgqee3+X4xgi7+z7z9wKQuQl5sM+fHgFVuxCm3wnGbvWWjDto5YU1VKtqii2rkUlolIUa21/jYis11gGSKJthUWVjCKeQll8DndM5a1S1en67UVcZL4xFfXAtTt4pvAk22vOaZYjg0TOu7SrNTdaFP4ngfinwCZ9/WFrAXz9d7+OP/1X/zR+8a/9Ij79zqf7vb239/be3tt7e2/v7b39QWmv91f8+f/9nwcM74pK7+2fT/tdAP8TAL/yvX3suyYpmaUiAzBsYOmgHM6q8QRM8iC7q5uL7A+cSfCadgHgganVgloLwehqKDCcZxd5gcnHrGKt5dhJ4dvtUCJNlm2twEL2T8XRjhuB013po6TQmqhHpaqJDomlFMnAp7JD8ohIcmnthlbrTo5OVTDTco1qKjzbF9RCEO/xuAOLii9T1cFjUCacFZbAioE+B3w6XhYJB4AOsqqqh9OqCLFgpaAs2SctVWmaC9QCXl8blVicSki3xv5ujWDY2/mGL774HKM/eHjFwv1xRw1asfDZWaEDo7LPnBOYJ5oVnI9J4B9QBWBVggh49BMegWXOw3arGP2BOTumkhwvrzcUBw4BabT0o/0ZjIm8BVqwuPPwTHAfgButX+bC0RoOVYpTLn8iionMEKjFUY9G4gIMMFaZZ4U9h8HESgBKY7VWF0lJSb4pwAFUrDEQNKpW4NV3gtqV1MnEap8n5krygCvJS1ArwCQQHATOIaKQQKjigBcI5GZ1diaHe7+jeME5E7xwVlOODlZs8zkchuqOpWTwTBAz529MzABKNalaBcbZsSJwux241crE5FwIENjpp6wpDEibptpIQglcQMccA+1oTFaaUWWrVMQiqab3jsOZYG+NKkof73eRFxf8VrDGUqK9QDlUqmKZYaxAq7R0THJNALT0KSQotFowg+QBAg60JnHFsTkn+uhYSrjO0XE4LYfcDX0MJYJZeYkQiAFV4sZERCexwE2KCJTNXqvDjBaOxauIMUy4tuqwmDjPhxLZARQmmKsFajvwNq7kX4g80hdjzZiDlke2MOYDXittqoLAe60VHiQLtOLwteAO2kkkIGMk10yBoHOSQGZEbZQUtE1yAaRmgIUYC46FsQLTSMhLBYJTwAor8KgolJXo4UDBElml4CYSykjFoMUq09E7qiuhR8gYsAL3oGJTdKAAbhOAS4mHJCC3hvv5hoDh9eUTWAyEBb729U8wzfF4dMw5qExkhg9wnOcDmBNDP69uiDHwNj8CoKJOayTIGkiyIEmN4H8/Q8pmgWmGPieq0zqqmOEc81IVmJPEyOKASHtjLS40oLJOrEDzggXagzoMWCTiWBAAMGc87KMDp0AnjE1kKAU40o7GgLpYSe0CreTkIeEKgvOZcDYzeG0ox0ElNtD2LczQ+ynLQJJTPYFsvbuiBHfGgcMdp1wx5pggFBdY0YEFzL5w9geOoyJaVVXoZWEy1HelOLrsNapUVaw6/NZgtQJwNK8Yb2/o944wElk/Oz5BdcccE29vD66tIjrOkOWLQO1kQ2w7HROoMidmEGiCSEfujtYOEJi+o3eSk8d5PlXzBopTDWRCJIIxsXxJ4UAkASewZABaoSVt75l2pvXEWgvzHAJTIZBH9rEBeFl8jyZQG7YVWKjsIeWBxWpmgkm89gCt6G6FhOKphHyCqanMMkS+mQi4CeAahpgd9ZCi3ZpSo2DSP9dSwWIYY9A6U3E2VRjoixeyDJkbiKC6oNThCgnIIfKdJ5DqwMvLgaO94PEF31WCFrFikw3mHLi/faE+4JpejNaIwxxuFX2RCBjL4OXA6murMiYA44W2vMsCY000AcWLImYb0GjHsVWM0mq11LKtPEjC4HpoTuu8KXXB1WPH5cdjwvy2yR2lFMRc+/+9iKTdB+aSzaPAYjNs66evZBORxuCCf9gixysEluhv85ScAHsqb7iXDbC5cU2oUfFDv/WD+OP/1U/jeNy0j+E+BSHwx7DJN2YQMAkkMlfoJynlBJ0LTKDX4h0TiJMCj1hxefZZIq2nNVQSZwB+r0upFQiOlSRXhO2xQ0K9VC91BkhlhAXuYQnC685DFlnLNp+EfYoNwsGwQTdzF6nbRX5gP6/FcVxbRUUqVWWBiZQ/EJizo58n98baS43BtWbb2QG44C+BektKQ5P7GkPOH2zwe86ltYrkEXGQqa4GkRka51SpLoA0z27PYCVkw8d/F29hg/drcQ33BGCDf7+7I1Uat2KSCTC9CFUhsk+qNulRt5JJquQ8KzsQUM2CHNvjOqHbSBJNUAlh5d9BpkxJ5tGciPlsW2Qag1PjV2OPaOcmflGFyiB88zpPrUuNIe/HpUQRAknTFpCPE9oHyvYN2KqnSZ7kEBeIH/xu03sMKXG4YheSkIHApeJHyygS/QxrSmkjFXVzDQEtRk37SHtSEklSE3AprbAvy/6ufHdzDBTNXYLhsUey8ei1wfO0j4Mpb7CWVH45DucaAucVkQPXf3sWkSyk5drEZXcZS6Cz7LxhtBYsKMq7rG2zheD5Mu8ryVG53wBMpCCpl6hvYZe6CDQnSCqQqpDOuAhaGUUSip7GeAiUJ6ll7r7AuPKbvIbi5BN5iT21pBJle9yljZd72WMsCXo6SQPgGacYSURJfr6Iftg2gNnrwQnBfFURCSV3KqkuKlWgwIQ7CwZWBI6j4tVfcJ4iyRvzTWGXesuai+RJ57save99NhBS/UkSHvc2jC2hd+RSd+NaVE3qRIr71aj6FEgCIMmESeiJqfel6ydJZK+iGmuhdwntMy1sK+tpuGuu6A3FogJbBNYTwQLK0QSwA/mlluMiBhesoKUh3GkbnnahZlKKtk2MebYB26TfoDVWki8tSVARPFPMyXOs7TCSN6W+SYLXpc6TpNZWlTczEtWogDuxymIBTS2MTyKvTBXDMaRecxhJetE6YCqus8J+22TP7K8QMRos9pqT6utL4zjfhSmur73Wx0Wifdp31NHwM9/6Exg/PfBbf/S3kCruuVYAOb9T0T3Xhuu9W/479Bhf+m/bcSJAZa4dqyEF+FpgSa7KypgQabgE9ycrcF1VXzEmUo0wCxdS8TLXSH96/jEHfN/3yg3EdZ857g17zwaovwMi/UhRTIOlFJ57Rp+ImDmAOL7X2mvkGB1JloPiRp45XARhaF6mTWYWPSYZfSsf2lVOCKSVW76rte17975SFqO2zxO5t0xFz3rtOZM8F7HnBwnogZL8rHXZ56WyElUODfarDvs7ChzPPnF/SFo7G372b/wsfumv/BI++/yzp5j33t7be3tv7+29vbf39gevvSsqvbd/ru0vAfg/fO8f+65JSuGmgyBUbUZLDS+0akmrHAMIvhsrlEsyGxBK4goUAHC0glqKLN+UxA3bEtIE8CrK0VT1K4laIxDXKkkAXpgMcNA2zlXpiwhZZzSUWnGODpgITGIsZGVTKEmqgmSCsfVAbQcTd0oaUflGVhCqQFpLVgsGTB+IVpk0Wx1rDsx+Yix5lTNHs4FQc1Y5hpKdzQrG2THPzsNpNYzJ7xp9ofhB4tNYApBddkissK9F5Jh2o+1dK0AM3N8+4nd/95/ifDwATNRaCUoCmW0EwORyqQV9TTz6Sel3LAwMnI+BCEdrFYiFKkuS8zxFIiv8bneMcaKfJ6v7UhWgNgF1cx+4hyrbipKw5+B/JxCygmoXFkyqucCkqkQDLccIwCICrRRaAOKygrJiGp+0SeB3y1ojQT0k4JCV6UzsGIAYA0hbiSSxiaSW1zLQ+ukcJ6bIMXDgsnvIRBGTLnPRKojV2AmIkRAxZ0dWgl/ZP6pUFKflRCYasnKv1obz8cDj8cDtKDt7YV6EnxmQ1Y4D8EIlIofArOKosvpgBegFLkUEpnV+dgEfP3/gi+/c8fVvfAMvLzfEesDgVFAzqEqrok+C8oHBeT2BPju8NQGHg3PqfKCfD7x8eAEnG7+bSl20BzvHwNEKRiysPqgEFIGYWcnLxFepFXMtAhVLiXYlX4tICL0TEHZVMyLYt7VUKch0xAL6HAAWyZOl8r5iiswUWOOEe0Wrh5KvwFEbAZvqOGrD/TxxO24oBZh98r2E0a5OYM0UYGUOWDGMESgRqOHoJwmIxRtWdJRiaIehz8Djfkcs4PZyYwLPHY/HncDXNJxjoBjQDtqzmJJdc/D5i7JUc1Elqo8FrKVnapgJDBTDigGvhhiseIcTaARSojwT01clr6mKmEliAf6VsXpGx+P+2GBVaD7UcsBcgGSfCM2hIoKAF2Pir9peB2ptCJDQ+VJfuA65495PlFuhFdKiah2MZMzbjcnqAVZDO0jCXTEx55C1B8cKAWwq2w1QqUvoAYl24cAYtFgrQBJqqAq4EFKxMg9Mc8xzys6QpNyiit9QdXcVII6l/o9B1SI4zsdCbbQdWGthLJKvihfYChSrKM3RVyqlSX2lnzvOeVHlthXU6ogx0WVBaFIwDHNgOe6Px7Y1o22mqsed6wqXasbdVChYKvVMEBAJ1kntzSNwFMda0rWQwpSpQpzjiaS4uRbO3reVj4lw4LWglEagdAG32khkMdoJjUlrxjkXPv/iO4AbPnn9gEUEdc+XVLGZk8lbAp4TESZQsGAt2wQUPi+JuHbctvJeKXWvg4bAHCdJlCBoRRtWJsrTjqK4oxUH0FCMxIjRKu6PkzEYhirVp1RiuB03nIFtvbOkJoK0xjBDzMm1TeTZJKHNOVG9wauIQpMqHNVdgFfFxKAlhTuO1lCdVng99z2QLQT4mRWB0irWHCjFd0ypjQp9WKocnkMADKvmSdpxzWER0rR21FrJCyMrnECbgURXiBRKFg4+//zbeLwN9EdgrQ53kVJlx6mgfVkaycqSAN1CjBCRnvvbNQeA3H9wxqR6wpydypKVYLjXCmsF6+z8Pq2ZRSDnbLRZzTsBpPLTKkq5CfwF91PA03fGngfZ50lkXhGYk+PMnVX8tRakFRjmEHGHpJKvckuQKsmO/HftbQRS5d4cCWLiIpNQXUVnCgClGD77+Cl+8td/Aj/4T37wApF0nlhLNHidJRJcy32fSZlAGBzjwZO6DxCyYqSKK+Wg2M8JKglX5vrnTmBM4I57uRQ59DfPBAdsRbFUgxB0XqgElIDSXEtk4ksBgfMilaR8kyfcC2LMvecmEVm47gq4Fam1sI/CAIhgkmpIVFYqipe215PH/Y22eIo1m4qUL0QAqLthRmCkGgwY3+fQeS8tcfXuZ9pX5Tsyrvlzjg2okSyVxL+1gbqtOCIQfeY+OEk98QzXxx5DRXvtEde1+Fy2lYBSXSp/n1vzBEHDE/T+Evy63+kez+x8kV1s/4xFMSkKlLExiZe874D264iNGQoO3X2/lbOkukElWmxwGQk858NsYsh13+5FBPZBEth6/lvsfweymCIVEXlDroOuu+1ij7w+RTpEIEVgPCbOc+D28rLt5AHmBPSkepfqp+QSBQlcqRqFlXZEAzFZ2JAdFFJQotLnwBSpluvj5HkSsdfZtO5JUHotquclcYzFG6b5GFtVyY2WZCRAF5FLZFO9ckwBaVl1kW+wVV5KKVRBMdOaCFl1+1a/NZfln5StSp6Xda61CO7hFPdWiD48g2dScwRyH8R7G3MC2idnzKMCJRCT5D0H949Z3GMixaRVLHMlMwPczte4FIpiB8m1k54ZLtjnuSe8Prv/DrzvPYciqPrzRA5a8/pugKSULExKgshF8tN3CujPoqPneePbtjNVolR44Nd8o6p13eMkwqlybCxK4d4+yRVL+17Gp1QR3go5IrCOqTzIfnYpyAQJXZF7GgSW5pjCwp6aqZiTeblrLcUmvcxULMu5vEBSnfbyJB1qHMUVIWJNrj5firdSPDeSHFL5JyJVl5znwKn8ggh47CuoEOBZBVT7pqdYy/HO8zK0RwKYvir+tN6rh/EUy2Oyv+ZMpay8PgfhRUTVvsr53UlSpJ05C0TOPmhpn+tevm97/k7F96d1YsGA3R+ZYeG4rlupCkgr+D3GFtdwnqVj/zPXBi7thrDAbd3wc3/rZ/Fr5Vv4J9/8JzjjlO1nrjdJsDYpXqfimvpO733hWuuyeCOVr/gqOPa9pOpi7ntM5CJw76B9B8887N8xB9L6EJGZNsV6d2yumdF2jjagxu/UOh9rSbUcKuIQoVo/VyThmd+ucYSnPRpjjdTbdEZ6+/gRsUzxde2+zTmSc+w5Tu01FVehR15/aY3KeRwqVLhinO811Urh/itvUt/D3LfvTXPubfPevCbBF1ds9osgdp0puAfecdccMa9xxn0OENl7v7moAg+Q3PmHpQXwA7/1A/g3/pN/Az/3Kz8HD////Zn39t7e23t7b+/tvb23PwAtiUoWhm/9zLcw61dXnf+9fcXbr4LJze+xffd2bxHoZ2eCAFDyw1XlgS17mwkLwEC8lpLetGcrqE4iRHWSm4pTzaUWYGayLRqTasVwFNoJJQqQsuKs+KRCzO12Y8XQiqcEW1oSXJZUn7we8NaQFmGj09KpuOMQ8ITQd9gljbsWAVpaLPHguwQ+MXHDxH8xQ20VzWnxcv84MHqXtRhJHGtRYrodNyoy6N4GJhyO87zj4+dfoIKg1GkLXRX9awZebje0W8NxYwV2n5Mg/KTMursLNHElUVllf54P9NHRWsPXvvY11HagtYMAf4QUdxaakmS2ArfD0EpDP0+8vX1EqQ1YwON84JNPPpBooX768KEp3bIw+0A/3xDjhAM4Xm/CXyilnQkYKkTx50naYvbIpG5SYVYxelf17EKrDUehgs/b/Q0LC+2otKgxE+mtbOCCmSyCEM+VzEetqAJjESn1fYHsrGJn/6UawlIlFaSeoIvpERa6LFgMTOQiVBFeliwFKC//xcePsnICmktC3yHlJ81ikb1SHSCBm6W8NOa8EhRGa5kVC15oiyT60a4EXyIA1lIAVaY6MsEbOFqFuaPPIfWqpwr9GYA1wANnP9FebvhaO+CV9LWtxLJik0diMXlOcoiTCOIkM3bnnCHJhon/YgZXorzLyseDyeAFAFKiIujB5F5tDVNz+KhV6iiywlnAvZ84jgOlNT67UYEpSWBzAeis3kNQ7YQAZMVjPvD5dz7i5eXAixX02RXRgAiOxb7mVr2CqpzHWogpazoY3AKPt8+BduB2fMAK4DwHVmFa7nGeJCe2gn4OrAXaT3phgoyDAWtNtHbDGBxjYxD4cI1HK/ybFRPHjfN0LKB4RcKZBZSUn72rzLlcpAAAY57oM+0SmZicsbAGbRohpZNYgVYM46SyyRRomESlx+PxZLlZROSYVCGyrL73i+ChhHrMwHmeOF4YG80K+kqJfD4foqivRfgI2siZTRw44N5IOKsNXoBHp9JMawd6HxiLVk+huVLNgbJwniciggpFBrRaUepBcpEZFmW3UEQIabUiNOdbbbg1l80aAYBYBBzHoAJZa0WEA1U5g3GzGBP7IQBgXYEFU3OD/35iRMEK4P52x+1oWEvkDZ8CrRbuZ0eZRfG2Ui1H5IZ20MaAYJHvJGnaz3SR1Y7jhSS4k0oZWFRHm6poRpIAVb3uDnRV5S/Ne7OCcCZb++rAopWBg4p3ZrRRc6eYTnMqSY01n4hjhvtj4OPbG8pRcdRKYnI4ep84xx2tFaqUtYrjaFhuONbE2Qd6EjfccM6OFgPVDxSvO+nOtaiLLKoK6t7hZqitod2ODdDNOWHd8VgPTF+0pBPxEeY4jhvHvBkej49wL6j12GBvHwMxCVpxLJHY1VCxptTy7LLmyTWsFirSwQ2lkrD9uD8Y87VeWCbu+bgkpyoOj0krRa8FYUBrjWp2fTBWac2EGSKVabxKZarguL3ARVJaa8pqDFsNxt1xlAOW6nuq1CfZJ+1hs5rdpCoggkCuMTthz5jRtBcIKZQAtHccQ9ahR8Pt5YYVC28fP2KcAXMSW1tJ65fYRJ+1SAncSllScIo1MaQEuIGxoKodSWYCraUoaCtgK3A+HrBYWEYrmgXaJBLn4rs94iD4E6maQHA7FbyOWmBwKpo4LeOOaBCfcJO1i95PqVRN4B6YIOqYVB2dIZKrG2Cxrce+qo176MvyKs8Mu9DhmeiRgPJTJbdZ2jTZBpC+9vEz/Pyv/Dw+eXwQYCngpZRNXqlJTN6X9Q3EhUA8/t42WGiWgLQrtrFfW2ub5J4WqHBXjNsI036mtCcJ4FK+yP5Y+bxrfzeMAGDR50c/typQdd/KE+4kGhUvSGbHku0HVd46iXJmmBZXRf/ifrxUp6AZeA4olaSlEMF/z9PdTxNjkqxdSkFrVYSMsol2S9dPwAxBxSbuAQd6HyI2UQGDfZl7JoM3EYEF+s0xuM8BSRQ8a+Q+nfN6iUQB/dy0zpKoMS+V3KU+XmlxK3WE2Xc8QwKA2oNveF4EGkK9IWCX6gypPHNheYbEfXP8RKQdm8aXiB3/3+bHzDFhgOWTJduE8DDWAnp/XGSr4lI6uogHCQIngSkLK3R7e79nOVbNnu5T9oW47tMEVPOM7dd14np2KyJZbUW5J1JHSs+BBSteC25aC5EFHiC5wRSTU2UsSW+hRTICu7Coy8pTmDjFE9dSMY4IE0iyg23iALT3SqKdW9oWxkWQCBUZlCJSnQGpxrRIJOPfrR0f1lxwK3pPE2c/RUDPsygJC5DaCgnpqaCjgpK4iCAkXZAADS+0y4JjREfqCs1FJRYvvokJa9GS9xqY2ic4FXNTUYzge+ruXCTFS3kET++b54kkeZmIAiR1lD1vU8UDOe+M9pLZv6b8iktZKUk0yHkIqlqF9s1U3PFrDEOkKM1z03kYUopK9bgdp2G7uCzYOUj7cr5vrrkmArDHNaepkAIWv6S9nRR8rnuuYKHRRKzg2It1nYPWM1Eylz3HtghUDCuFajTZR9mHGRcuW80FX5ftJElcIjDm5/R1K0lyjILqv7TaTjIS9y8mmygWGSUd1vfeJXbsvWIc8yBJ+s3z4yD5fS0MWY3RSt0pqhWKP0+EOxgVk55JRnlvue9ZUjLiesGf87747oqUDSMWVgD5ikLn69A+6lILg9Yk2wURrVWOX2MeJ8mGWWg21hRZ1rY64/M6uceviHPmskBHEowCNhfGHHsvwth2nU2S6LVE0jVbu2+3HRwu4l0pDg+g4gV/6m/9PH7jd/8xfvUnfxVnufYO294TKopxhxn39SFNn00a0rjLeW+QMiFs52RgtF2PFSTl21VEl/E+CVzMjTmq1YtopPOy73mo8a/Yu9QfKd/2vDcMEfFEw9GYsR3TobUQXlB3ZIs9XyKwiY2tUYGI5zXFyIK9n8t9KW1n1Se6Iqex75hkWkfyd7wG59pFjtd8CRLoBqhYG3bldlj0of2u9kd4WqsjrnU8bXhXsFA1xwPfmea1XxbJ7g6HY6lIiop6S/NZz/HjWkhD+80/DC2AH/rHP4S/+B/9RXzzn37z9/tu3tt7e2/v7b29t/f23v7/3l4fr/h3/7f/Lv76n/zr+OU/98voR//9vqX39i9j+7Mg42h8bx/7HuzelARS1YkVymbnwWztxA8o76zPuTmBxUxwr4UVhmgFFrSCayIiLVCC+3YcrPhdgWpFShnxpcPVnBOlNFpLhcCxBbSqxIlLxLtVLJFXvDZViJIc00pFVpe6FBVYJVfRGokvY0zMYGIlEwbPz0WpdRIULvuYScJQrXj99DPcjoriJoUagpm1NtTSSJQAD4hznrjf7/jOF99BdB3EWz5rxYdPP4W3pyq7UvFSKwkLMHz68oHEGwOKBbB4vbTS+fD6GV5eDrQqyzgvrPBZki33gib1oQjgqKYsXMBQEWFAcXzyyQe8fvigxOzahJxYBC4e/SE55IWqhKVbVpReCg+ZKGn1gMsOxcwwd2Juquo7RO46UFvBXAOPMWGNIL87yWFJgMrkyHOFdY6bTE6UKuUJGCBCG8GOTJYQ/I1gpfxWfwogq7/DVAm3ghZgwLYeiAXEmPBSOUbnKQKKbO6ctnpmTODN3gn2NiY+XABEWqSZA7XddhLHJPluYAZuqqIdmeAyJqlTmWCNzkrZQqJCLY5iFQipWrBYkpV1qkQzA8FP0BLHHKiV4KI7q3yLST7fDEggPJgsX1IyIrDE91FbFXmQCUOE6rrMcPaxE9CZXI0xcSsVBcAaJxC0s6rmaF6AynmYCddMpMSUWthau7J6jUXC1JzoffAdSpEiZtd7Jjhwe2lY8fIELjL5009J8wfH9ThPzpt24Jxzy+WP3uGji6xDcN3wgDcSJWcSb2A4JyW9xzgBc9xeXpjkCiqShBXMHkgAc00DUJGVjwTrAiuYdPIp2XXJ1gPAxIJZ23ZusEAfJ8INh1M9qsAZI81R3XEftGt7aQduR8XHj1+g947H/Q21NhQvrPZ0aG4s2TAmmLk4RolgYE1g+MJRGkZIxnyACjSmSn6jPdmtypYOio8rq/UrCTBKSB7HjRi3V7TmiMH4AQtMOOawnaRjdeBCLQ1pUdMXCQq85pKa3kLvgZejod0axjg1/8FYv2hrCCMxdHbZA5rhRKAY6Wy1OEIqgMUCa3Sq3s2J43jleIXIlEZCLR83RIxdCDcsW6puVGX/GjgfE/X4BAaHRcHqi2CdkpbFG9xJ5gmjNVRWqTJRP+VMsDDWwu2lYYyJNTsCJNSMOXG0hpgEf5jEp/XlWrR9i6UEPsWkCBt4gzsVz2jTt4AYqGZAkFbjVnhtTKzR0ReVzCykiremwKSBWgLHQdIugTved8zAOQbOOvD68krAwak+VLzifHSc84EPry948RvcDe3gmrHWBSK4EsEuJQS3A5fNimyegqRIk2LB4wwR7UDwJXhfCV8f7QXudRtZzbHwdn/D43wQdFu0v0tAz2uRlU1BONecOQeAQIuKxxhYRjs+gl8L52PBFpToV/K6OFC43zmOG2wFydUJGEBgoUhNYwxaSSkGe1BpDd5pi2us0j8fJ8YY5EA4BFAs7l9kV9JAYHauqT1LwVEOAsoCDcYYIk8E3j7eBYqntQyeyAwiVczJzxiBoNYaDIbZF97mA8dLQ62G2TvBu9UwMfYeAwJAsjJ5hsaZGxwFZ58kjs2FWgxHPajkuSaq+VZ6awfjw9knRl/aHzB2HEfBEtkLIQtGA+duEAgtRSRsxYm0FknxiATGrdhFQrIE+LMym11USsEYHStEGlsAkEohBeH6fnyFW+4ZwDnjTypJW8EHYF/pr/JjSfLc79aAzz5+hp//VhKUXAoHSerwvS9zXL+7gN1UUhKQnNcN0BIDFzDPcS9ilJQXUmHNVS3P+9wQ6lbzAKQMGtiKQEnSA2QPlIgynoAscK7CC9qRqqMm0JHjhTYpRWOE4yYWCxz6eZJoDgAlQdCCdhy0XdMaCLOtygUAtTWkNbUbz25DZFOCerethAuptqTyjAVgJUnw4D5TJAYsKEqyP49KlVUkaPekMhOxZHcmFbcE+Pin6iPZvXGWU1XwSYUk535sAI57plJkWSpyOwlmuZX1ray1wc/QdZDqbvoCwyY67BGdZB8p8zxPxoss86TsYKlSccUsds+zIkMqrThCCi1J8CDZg3vgLDrZcdUIKmd/zSxwkMrlngvBfaSttQlSSRzdhQeahCE1r/QULElkS2KRpreLWHQRDnKNLJpWPD9pKOx+SNJJEoeSALTf/ybE6EynvVOSdTj35wbb9TBApM04yS0RJDQUnZngWpPj6VnTqth5xjett0nCW3oP2U/+RFIgyYi2dw1Nd5j3yPekEQPu7ecGl+da2y7WkoQnUshaCxMDVsp1X7r6jICti7xTVWxluAjyuWakvS6VEWOP08zlJGmXJLdL4S5iYRW/zhP5LDoTZgwpKihwSwUt7nqP2jAHreBH79wjl1RnvGyV3BOMjz13rzs0FRBV5ERyd5z9SYEmUu2Ef0cBGV4rya3uRYp32LbdXJP4z6XKoID26JqzIavSTcra/8e+WphIpaUVAV+8fpJsMl7xWkuijwujPxGnXONM76LooM5YyvPHJqFbrj+aBa77tee+Sw2z0NyX7aRyFaSe+V7Tgi9kq+Ms5WKgQoOcp5tkpHmXqnhr8twacSlmplJsqogxtq29fqZVar7mQFr8UoGaa/OCm/RedBtcq0IE4MFneT6Lat/rFrR1q1pncjYGcwQ5pkj6ZSyrpSCM+cDihtsLLc1dpI9UajPlCXJfC0ipVGtHki6TSJaElaE55VInSrvM7GM3B0pFKnjlXpqWxLJOTgJZkEJYUPBjv/VjAAzf+ulvoZeu5wy41L4gYgt2Pz2tVXlmMBUPlLrzCjs+qi3tCWawWCbjhxttXWFS5BHBdM5UCc3C1mA+Lcdc5LvlWji1htdSkaTO0O8hhamtFmWKDjn/Lcmu+NL5hzHC9xo7OklnXL+SlJb7SPAeNfeh3CXXwC/vBXL/ahbci1iqHvEeVizNY1y5a8sY5VcOU/33bE+IfGaNvSRoma63x5TlFpvP7uoz7NunVV+O2/xFrom517EfceAbAP4Z/tC0H/pHP4T/4D/6D/B9v/N9v9+38t7e23t7b+/tvb239/b71tpo+Ff/i38VFoa//D/4y+9Epff2vbf/NoAfB/B3v7ePfdckpblY9RzmTIHoYJYVyKmwkGlaAJL41aFdaYcxJlpxVKd6BzK5H05bJSuYIXUOZ4VOLUV+576TDa0eSorblXjeCX8miahcpDO3Etdrqcq/XPc/JxM0pVb+Uwof53liKHkN2UHE0gFT1xpjoLZDFVIicBjVm27Hocq4wBgnlRnagSrrHij5MnpHP++Ske7o/YHRWd1TQbDxuN3wyYcPgBecjwdKO9BKkUpA4HbccBwvCFel2Xhg9I7vfPE51ho4Xl5w1AOuitwEyWiDxbTJmIG3tztfXWE18dvbG9YyvLy+oh0N9XbbRK0xp1RLCJyc944xxwYV3RsBQVyVaB0n5oQSVkx4eGW/eqtIlYlA4NE7qohHh/qYB/4JFFbIA0wa11KVAEy1ElXmZqJMijH57O4kr4XGTtXzkvixkGD/XIPA6xi74ppjlkM9EzI1x4g5jtIQIRlspXA9VXZi4TgaEBPLlSxQpX+RWhSJOnq3qohvpSpBh20FwqRHCMxmgjvWQjkSrOLYn1Is6OPBKs3KqvU1B2K5ACJeZ621bWICoBR0BGBTpEKRE2HwkA1fLFx5DmOlopL6zQHCtlRfWUFVkFYqbq3ilMKIW6FO0RhMtMCw+kB1x1pdSSspJ3iR6vuVzE2STKuNCfoxkIoSc3aMtdDDcKy6x97rywvnb3FJm/PFrjGosIPFhLc1WkeYoU+OybUWvBDIM6gi3F2kOoJAx+3GuGgEu2ZQxQmgzD719AvaUXDUglJotcbqfQLbblQoWz4BTBJ9AoAV1KMAa8AKx0iMCZjj3jtV7KRIVfgowCASZLVS1WhOHK1inbTx41wznGfHfTDGrEXbvBiB5g3LqXpwPh54uX2QqgFV9hJcbO3QHCQgymduXEeS0DInaqH6CHOnaxPl+ujoa6LVybGpOepGBbCYE8Ubai24NakoMBcu6HNhTWCOVAhINRUCw1XKEdUKHLKFc4eVRrWONTEndvL/OCrMqSwUqRYmxbhaCs7zjtZe0I4DywLj7Jp/U1W51zx3EQfDArOfBM2qb8AbMJgDMwbMC2YMVKmtmfNZamV8wAqEGyvikcTMgdoqjtpgAuTXU3VsJtUdWT3pGGuQGOETmAkPMA4GnhK8QZJGMcMaEwtc++YChhSo1gqOS4GTxV3qOoGxhpQCdE9JHljAxy/e0NqBUise5wnMgeaGWhc+aQduHz4QDFlX1f8cA/3RcT4Yo7wUjDXx4eUVt3bQztLAim2NxWKyGXNVI88JKh0s9DngCJEe095hCtCoiEWwAi83lFp2tbwNkrGmFIZiUjWsVNv3FQV4ebltxYAkv4zRMWOiAtuGKQCUsrCiASYgegz0IBHqXCfMjesIGsZJS5aj3XDcDhEWQ+Ab+773DkzVSXPxoMLMWuiqmq3uMBHYZgCl962SkuvJGIOV0LUKCltUNwhawq0E2QVEnKtvYHPOidr4uVIcc4qAC8MqXP+wSMyLuMgfIyvR4TAbKA6MmKBlTBKF6l5Dq/aiU5bEcMialfOA4AhBjW15C9CSdwVa4Vin+pmj9445tSdyJwlrTfj5wOtx4CiOIQiA1sed67A5Zsn9qehqxhhcjwaTukAMEmrrUbAEvPmQ7Qq4x2A/kdyXW+wlMiMgAsKaQPhej7Zy5FewJQlok1UAAYrQv9vv/USiLk9QC4AV+PTjZ/iTv/bzeH28bsIIFOuQ4HiCPm5bgcj2FxJMuuD2BIJMP3sinSSqmWcPkVASgEJw7hVLRY7rcytJzPreBK98k3sSwEpFouBeAhwzVDRZ135D6kkXaYuXpqoq93Jzzv3vCJCkJZvm1qi4mtX9xX2TqEqpqIU21Hwmkvke54nA0l6hXEQv9VX2MxL4E3k+yZ1jDKyAlA5Jak8Cyy5ikKrInJ0gnpQbstBgjx/NZRL1kqRnX7JtCr2TyD7TtXe/mY6tSbIBtior497KAflfI+tc9oO2vytJB89jOZVaDSblmrWJh/z9BWhD/ZckHJhUYLUv2BSXTQQJnVdDhDopb8QF0hK0TOJBkmkuJcVrPuSUSqUpgfrZ55oRkevvmrCSamP6exgc9SkGXcA8507O3gUPEkWWeBSWqkLxpHQB0JZUc87tUrQY8yLnpn1qKgJf93yRgGJl8UtSAU3EKN/Asz2NYc4D37ZysOucERFYOgOlMk+tdVv9PGUisJDKglIdAkgmhpRzRDIqnoTpS03FgmRgrpk806YqGgH8y3aLeZlU39P5zC5bSyoF5nkp1+kQYYmfSUUNOKR4ZZdNozYnvAN9bs83/j1t3djHeQZfWUSjghVYvguHS3VwxYLrMxGp/Btcz9zhsk3P95fjMQH1CGBh7aKlTWpULOhjSIGIfbLVWSyLmfhz2nuKJBtiO2g/E0vqrUhFtHzOq3+52aSlrasgwBRjVgSfseh7Z0jJyfb8yX02C3raLtabK2CxNqE51860VWS8fSKyGTQeOL5pd2+7iGZTfxnCqHyGJCxe+YXMP1ClJdXOOK/yGr7PB4xjM1UykWusyOxIxR+FOoQILHyZK60MpRxEsnDmqmLPT1iO28ioAiRhjN+KMZgLqZVja42hQrRArST7u+JmxuklJaAxVHRQFtbgmDmkTl4LEOVJPc5yX6peWdeea8dnkV3Xugjzrp/BQHU2v2whI6g+u/Zav76UY4HyI0Vkr7UyLyVSb6wU2wMi8KO/9SMwB37tp/8mZhlaCy+izlyMh1Qqy/MaCa6lFBa4aD+Ug2affYBtWZg3uPcAAMk3eT63tW0rs20135JjOAl52OtVrhgWlyoVkHNPqnZaG2YWzJrsQvV5inQpTq60yyUZKdnMtFIMlOB8rLVoz+jqW5G4tDTvOLQCa5PQc+94jQFyB1U4VgwxoPyREh6Kw2k1W8wR2rea21ZfSxvK3Ldu8rTlGsw+S+U8kp20R4FLXZnjZK2FEbSufy7qvI4MWl8+BPz7HPE7e3fzB7bZMvzgP/5B/MX/5V/EH/mdP/L7fTvv7b29t/f23t7be3tvv+/NYPiF/9cvAAb85T/3TlR6b99j+wEAP4V/cSSloxU8FpVtTId7wKgBzlyqFHUCi1g5ioH2GJYKRI5SG15uDbdblaQ2D621HWiVCakxmZiulYoe80nOm8pKBVaoCsK654VbTQKSDl47mRegdVYReKhDnqrcCZaogl5VxZBk+lCiJG1M3JVMNSZgKatP9SHiYlMWPgVrTfQHQWiqtRxo9UZAOTJBOXE+3vB4e8N5vuE8HwIpKtqHA2cnqPfZ174GK7Rwuj/uOB8nD9juqEdFOw4mjcF+irVwf/uIt+98xOgPHoyLI7wAkZU9S0l133LHo5NokUnTjx877o+O28srSjuAMJRlgC+ck8lRbw1enRZaAiwj1aYAAWeGmFRViTAlf5mMMgGSCbQM9SE5HLR7S6IaEghsDQjH6ATGaz1QStuKEsWlXFNk/aKKuV3dLrAx5nxK4krBIxZBxmDybStJLY6zGZR6rm6oRuUCJtYJ0Jq7Ks00TsIwTya455wcu25Yk0pAtTqWGzo61hwcu7ANFMBA0pCJVBQLiMoKOHeqThVXVd2Jo5J4EQgpKhCQqbWgD0d5IdnLQXuquTqsh+TwDfCClaCRyE1rjK1MBuPvzYHeT8xhKMexFZNMKiWP80S9HShwFCnPjD4ww1QdOnEUoNWC41YxETjvH5V0KRgzSDqxhRldwP1lTejF0WNCUYWJbKUo3QzH7YbiFaWSRILeMQK0TYLh9VbhsSip77QgWBP43S8+x+vrK7wQ5HdntSoceIyBj2fHp6+Go5FURSCQdmtWEqqTbUOnhVaC294cZz/R71TduL1WLCz0PjESKJUuve9xMrFAckZWPM6gssuMARTqaR1W4JiYIHGFCildcW+gBG0hbCsjFBE1gOGOqEVqOBP3c+B2e6EVpTvgabtmJAO6o8+JPk4ALlKVlBI28Y/fwepe2jdmVfDH+4N2FGPCQYLgeb4BAMwa3CsG+K5sdMaK40AfExgLrfK9sCKeZAsSPwBEYE5NW0Bjx3YSjlZelUSHRYs3rE6goDh8FlQP9KCFEy04OMrWorXfXG+43Q4mua3AW/A9xIBFUN2u0+KrxMJQJSjB6Aovqox0Jjgha4MwAh3M2ztePn3VHJOV0CRsV2vDcdxwDlVRJ6AZASpCOSZoNcg+LQIXF7Z2QqHdoZWCGqmmIRu0JUuINVlp6abEuqGL9FtaJeHscUdWtY4pdYVBwpstzm/DwkTBGAAQO+bGWlgW7MMPLyQwDq69aw4YHO040OfC6CRottJwtIZzDgxdOUbHx/OO2qiydQ+C4U1rU1bjeqnAMsVpriPnSqJyiEQT6GtQrWwFii1VOXNcr8nUcG2NqmwsgMeH1w84S+U6PlgVbAKgVqelTSkN1RO8H5hjcmzMQC1GC89MrOvnW3klXIQIqZSEFKUKSQe+ZAMmu7WznwIGCGgFCvrqiEXSQPGCOfpWeyiKn5A6YNppdNDi0GURasZq9nnS6myNiWZUp0sQYKNOwLa4y/k3sVBaFVGnkug8FsyoRoZYWINzAYCM1HRJCwKRss/hPoZJ/CXy4K2JFA2SGccknLYQOGrBTfvLngSllaA859zZp/YSA0cp+OTDDR8/Bs5JBTBz555zMR4sqGbdFiYM08AYKxCjWMAqES2qJhGUHyJ/pu3Hmjzw1eIIFO5bexIi4kt7NiCBdReRgWDFklpgKQSYUjznq9hKkreAi6wBKI4BwEXcSDUaLn8Z5wx1NPzoP/4x/NQ//Am8rleJ+fDvXDZesIukxLNGArUEb/JnX1LCCVosrkXo00V6Ip5k20aMBRMJ0BEUjhysUmHYyjihuQxsSyfL70vCQVDpye2yoEviDQlpY+9jzYosPVznCRAMnoMqW08KaWZUGk1CxO24Qf5uJBaOCQNJ2CWVkZBQO9U2Vqci01KMCp2hEJd6B//3GrNzJTGWMbj3JXJyU4EByY0wgtVUPCgC5tYGtH3D4XzGjRLq4HmdH7CVND2BvgTMA4AUb5PIkI1FMqluAqRtXYKNuVaFiSim9XbfleW+RyB5XlqxdgPXOYef8L7QmcjDkWo1SVQIESI2aUD9m9dLJZ/8Oe87lYiW5slF1MpmljbmVDHBEiwsskWOR55nfYOiMOLBRaQnW7JGShAeUtky7Dmy58W+hdhEHp5Wbc+7uea+poS5eN0gUdVLgSO49klZKA2RESQCFRehWGssY4gI2dxysc+B3Teh/YAEnTZpZJON7HrOtIpPYD8VUmrJ96bxHHyv936iVVqA8XpSXNYz9blwuMluC1TRjCxUyTf7THCbm1xjxbjnGnz22pLYG1jTdlGVSR0EOY5xkQ6CI2WPOViuaaZVk0okBL91Xl5UtArjfy882f4pfIcU5wLax2t8huboShIQjMqmm7iHq99xETw3SB+ZM7jIEH1QWdoCBOf1GVGFOFbNZQ/NsVJUGETlZPZz0frixnP1pcKUZIq87kBOcqq3PBEiyGZCkuzELAQJ0qnAlWQOxq61JvflXpB2Zwau60l2psrauhSOdF4wncXNpJ+3Y49tAlLyvWhvVrnHZgDYc6xUknSTaM8FKC/oSDrQFQpcYzPXsAwukGLV79186OCg+LCvbyJvOSfglPKvIoWUyyIvvecl1XRyHb3Wh00QKQUoJEwtEVXmmlIR59/NwXGZCl6hcg6oAGVNzUEvOLW/TkKnRqfmJTi//dmG0DRfrlig5QqBi3i7ydqWJEHIcpUFeWMMhM0dOw1ArNzjuIowXPF6YS4mCEJdbMEx/0P/8IewZuBbP/1rWGUiIollfI5cH5Jcl3ssAxCTa8Fcl5UlTNEhUtWKJLGLgEaVfG6ZTOcO2qZH9p3i4bbK1Z45ngi02Z7fb84BMyrUFlnLu6xOaakdOz7wM1RC5b3pWnb9F8OCYozeS5KKXETBJCbl8m2K+3xnlwrUs9rb0pnJC8dh1b3OOUXmI6nxeSxA+5W9nuT+JeMKp97FC0syIRfbvbdcMaWA5lRlXddz7Dm2Sdh7hj31EPskfiDgf9effvoHr93uN/zp/+efxr/+f/3X8eHjh9/v23lv7+29vbf39t7e23v7yjQPxy/+F78IBN4Vld7b995+AcBf+d4+8r0pKVmgVSax59RRTeoZtR4wM5yPByB1GSYAqGbgZrBSCY6LWlBLkV1AFaDgKKXBq5LkkjFO4gOCCS4e8CeVACIo940gCKgKKWaNJrLK1SxBCT6Le8WarNxrrSKCKgG1VibMZlbiKV1nwHl23i+KDujYiQRfstAqBWt1UJ2nyIrhSuBlRVvvDzzub7jfv0AMAgsB4OX1E9xeX2Hu6GOhesPt9gFnH3g8HhhKLlLxpuB2HAQCVd1JK5uOx+MjgIXXTz6gtoLjliSpAmxlDSWqp3zmK7Nda3XMMfD2dqK1A7faUMJQWkM9blgx8VIPJc6A3h84H3dgTVaDggpTUage1LygtqwcMwQcc/FQftwqeOquCON4cHdgDlhM3ArJAF7KBl1qqeg94H6oatSpSKBEnJUCGwPNGwoKegwmWWFbAWJJejyTGHOSMAElzDIJDVDZpXi5Ktqg6to+qa5ENGsn0JT6Z2UXAtNBosNSlSvAn7kk0E0S1kb7rzE6itediHAEqhv6zGpyk62fYcwTQOccK0YloCDY4zAUB1o9MNdEqQUrKvpQItQLqhdWcE29GzPE6KxyduN9uACfOZloFSgHJXOrYdslzjEIwIr48/agIoq5o74cwILUt5iQLU6QPebg3HcAqkxkVfPE0Q4lNfUdc6G1pnlcsAAm1d0wpC7hlVWojzFImvMGTFb232RVdr8/BFQ4vDjujwfCHPfz5Nz5cGPSSwm2mIZabzAnuWhNR/GKFScOLwTfx4nqDeGQEksmysFkNiqKd1QHiuzprBlWAqUzUKxijQD1uGNb3iQZxWKheOBxPhCTKmNrGLD4+6MdGMEq0FIr7R88YxMwx8SnrzfcCm0My83w+towzhP3udDaATOn2pMIi4zfih1z4cPtAMxxf5zMq7dUXSDJ8DwHwfgJ2DJ9P9Xyzjm3uo5h4dEnHifVtbxUHMeBai4Fp4lpgegD7o3kV9ndMPaSHDEjMEOgDKQIsSbcFe9LJVhihjlI5DID7evOgRm0fynumCNgMYG5cO9Lku0N1Q5YEVGpL9R6IIIVxh7APDtaK5mpRGsHxui026oC2lBweIXXhrU6rSDXki2CURwGTFqPs28ZeaoLUqkl5sTsgZgCga1g6FlgnE/mWmcrCF6vAQNVzkopeAjY4urmsJAlhR0IC7y8OI7jwMf7R4w1CH4CikOcd6Wov0XUyXtdso6gegPJaqzsJMhRZNfHjCpB+FqZTB0RgFWgFqq+FSZYz7H0zkng6feBx0kQsh2NwOGcaI0WjzY6ASfZl5ZCtUZXcn/GQsxEcVKVh/HIUv1sLhQpwJ1TzGupohXjKuqFldKoFa1QOa56QZ8dCFYb870z/poxdhxHwbCBsRb7V6CEWcGCY9wfVEkIbGIssRmjYlcE1joxzhNN+6N1cg+x5sKjd0JiAk5SywK4EulzTSk4JKAsYkap8OgkWYDJ7lqr9kxcBx73O6YS3C/tuAA6xWxatYQAca43rbGqfQ4+L7ePBQtUZAxP4lpaehA28gTKcYE8tLAR4WuesKA1ZGDhdhyo7QAwYAs4R0dW3k/nNZfUrBKYNW5Std5Twe8xOo5W8fJyQzxOnIPrQHHahJZUbCmcQ/PseqbLJioSvAGAtMJcgTVkZCnVvbR6tMr3UJ1xIRXS0iolrY4TpIJdygTVXNaSFck/+Kq2pX7fyjdJbojcp2s8jrkfg7GOe7ajH/jZb/0cvu+f/REqgNUnlTiB0gBI5kkOz5fGKIHFTRBSPwcu1Z9SkjRzVbxnX+c/CRBdJDKqg/AL11pbfTNErnGBQRayRXH++zNytIIxNQs4+NlLYYgWWIIsBZBSManzHDEvwk1ptBuFZRFHQakHFWee+jYi7VRzn8vfOIBYi1a0YKx1N1kE1z0v93UkB7ftTQxai5fsImmjk+QlLxUB2kLnNeaamEPqmZZgNUG4sWin6vudsD/Fi+LeFBkvXEo5IpTFZb/ixjUg5yvj67W/ptKE7fj5rH6RZ63QHCRZZe31b5Ob1C/ml/pSjosvkQ7z3uPJ1lH736tvRRaJVJYgdcUjrRJDhIRQ3NZnjWc7T7Ug43hxkTYIthrSaolKtCJtSimK93NZ07oXjfmyz3JuIh+XC0jO9xOphAXuay4kOzaxIjSXSPpJsFhkJMWKwMIYqbhp8Jo24/pu5DukUuOzvfcK3cFW+MFFdFiBVM1KAhB0Ldq4xh5vYxJEz99RWZnqjGMMINfatEIGlYgArn9830k8TjtZFZUsnQG2/Tr/vcjGMS3S95wLrjtuk/0PXEpA6k9oFqd94NVMZA1s8gnXQxa1xALPE5DSEdalaqOxmEU/qfpTknAgldIlpeWMiRFA5FEItt8NkHOapGUS+JM4Iat4yKLOtV0zjiWTQqam8o6rPffGimkoUjUS6WjqYrRDAtIiKYtgIkgdyLh8EbsUeXOsApeKqz4/RirHxDXv9Nk1SWgoXnd8Cu1Hit5Z7nRCKkOZo8gxPuaEeeG5NERwKyxEsJIEaU1+vXa3awy4SCAr56P675l9wfEgxRkDzxIa25A1VY6dVMpZgb2XJLlQpJZgvL3dHHORPJtaOlQLu4guvHnF0MwBJDl/x7AkFS+knWruCwHuIUgId8BoC10q7dHNHb5c93sprq1Ju6+M8zDbynDcA2tNhuxLtW/JeYR8xTnJFMQ3qcq4VjuoKrVVbbTv5pzOdZ55GK/Mnc7JuIOYurTs8YrOCyGbMn33mLw3B9fDVL79wX/8w5gI/M2f+jUM19qf46EUTEwpy4KkmBU7xze3CuS6YlyOS1xzdeU4ted4ns9nW5kxyTOcE1JEBM8NTcVR+dm9TiALtUzv0raiNqSolDElYu74DmAryuYzW+b+djRMsrpU2JZRaR1AAbSPw35GBIleOQcQl+IV8jvyPBwqcgwSxoo2pDHXJuwChrRsA3h/kHV2KhHi+Y6fN6JP93DFqGwag6VcMcSTWKe9t6oZbI/p3HvoPf2MA38VwB9QPOqT73yCf+9//e/hJ/7eT8CT8P/e3tt7e2/v7b29t/f23nYzGH7xr/0iYO+KSu/te2gG4N8B8D8FcP/uP/Zdk5QWDKUeMFzVqXCDL9uHozFIBslq3OIVxStqMZFULvnZlNN2q6ilsfrRDI/edxUrbdiY+Joz4EfhoduZKOm9K2HekFYAVgnQZOKAkssEqw2yLZDUOZRkHmNhjbvUepgsTiuYOZU8yUM2ZAMD2mPNMWkPVQuO1uAlk39xJRqhZIsFIibG+cD97SPO+xvGOBGLRKv2Qssg86aq4oWX11cq4TQqFK3Rcbwc+OzTT9GOJtnlS2J+9jvOxxuKG14+/UA1CTfUVgBkNQz7cK1QNT9tUWo74AicbyfOx4PPYoEYJ47XVywPjKCVG4IH6dFPzD6AOTHGgwkoY+JsqHKblg6SdI6sbDSg+E4ieqEyxxhDlacOeGAG1a9qgnEC7AAmeGtxAINJCSuSUud3rQS+QBuwMSaVdHSGLxaAOXoXAKNBk1XcEYH7/U4AWMnhVivmJHGJVf0FrM6WUkQEfAP+jqOSGNLPjjHXfgYrCaI5sAzFG84hOwpjotgilTMCa3TNk0ZwYOFLYBICtJkz25YhpTTNXRHqYCKxLUqMG8kctG1gAschCwIAxRrHRlHacTGpFEHg3t1wkzXceZ58p675XysAVfbPy06l1IJYY0u1ZzL2KA23Tw7AAud5Yq2x7esI7sYGAQCgq1queAKehtmpwlJKIRkt5zEc8IoSgTXeEIBU0kj6gAlQLI52u6nvFx73O5YUNQxG0qE7bo2Z8l3FXRyRgM6C4guTacetwWshyfDOit/XT15ZSa0+RCwc9cBURTCCpAwqyWWSln+35rjsEYxk0fNxwo9GFZEBYAVuIhq9nR2s0oS+pwGtMNkI3l+5HTjPByYMrVWUQnJHTSWkoKIWXQVD821twIvVj7QvoPCSbB6NIHxRsi/FC47a8LG/oVTHURvOMRBRACuynlxS5nJMmziOAyMCYw7c2rGTieGQLSitox5jwA04apHl00QpoLJNkNi67a0mENEpez4DgYnWLhznOx/fqLxyHBiPgVoNrTUUd5yRwAMBkrN33I4qkFJKC4VjNO2YqhsB2WWqouxU8ipM6HaMDQyVQpW4Pk7UWvDhwysAYC6CX0XARZWa2Nlp/+WyA5lzYE5ndlV9z8SuACaBY9jAXexKWKpDhYAorglrGNYcmCLxJsjhZohCUuYcJHoxeU9yagG2rUYChgQlLuA9k+Ln+UA7GgGlRHxUcT/nYvIwlsi3jjEEjsjuKxX5lgFN63haw9RaYFId2TidEu+p+nEcFWsVFBfYO0NrTZKgIUJ0oTrOWhjLt7Vpa1RJKroX68DovHbU2MBtH1KEKBVlAUejnWOrDpTQXKflSakV53nHOhfKhTGTOHg0jLlQRPqMRYJykhr5fpcAN/ZRLCkkyS7DRD5NkDurbGmrCmQle+bHDUDaV5kXxOD3jnNqn8O/nTPtKWivQYIi904FtLpcuhdscD/BZa7RWbCeIHXRO83vLgLVSzEMAYtrcS2ZjwdaXahecRwVAd4TLWdD5J8kf3WOc6vI1PyYUySRwONx4jgajka71bHSWkiEzQj00QlyTapr1hJU0xSRgRENBGdC/bTBTwEcejYC2vobkQAhQN5F3PMqEg0cHgnY8vO0fuLz7qr3r2SzywYqgXcBTDlH15z7d+62ianf/Gd/BD/16z+Jb3z7G6qGvxSMDLTOzMKAKfWPJApt8kMEDCVvBTAp/xjH1C5uEDh18SriS0+BJDhpkhCcDcQgsXPpMwRzBS7qvQjH3sAS1WGCChfuVGfJftmknwv4S9ubORdGZ2HBki23maO0LNjQ3HHf5PZNrlkLXgtux23vmZNQZQasNTAnn8WrrGgdl1KOzkSbU7Cf9wLjVu+0tzT99ZLto1GXJN9fkva3gucc1/phFxnMNjkvx7dv8lfuDQjeEgR0yKYobZyAbaUD9UH2jz+BxWFJlgMFUVYgMay0xvu9iiHsMxW4GG2x8v0jWAiDwGWZLPJEqholCEtK0HXtiCwauIj6PIfnLxWkIwTSG4m4GpN5PlQ38MwoomUSKp/CErAJB9D7ZdzNcbuxUn3W4Drf5hu9iBWhvnb12UXE4HVIBLpUTQCuzYYE8P2JaCj7U6ddubuJbHYRrhAk3hYvnNdzyTKOf+cib6wnItVWlbKLlJ+qLnu+RL5L1zvKcp9LjW/bzGlfWmSRZeB+P4KWR2YkOrtJuSxiE3ioeqROvKgXik1UaCOwz3hVW9rrxfX8tei/RWqIEEHbnt7xFRND/R/BIgbLs/Vin1X6I5MsYUm2JLmrJEkOWSRES1RTjKd6iAEu8qjiXWzWERAx95NmwM1+LSZls2QD4ZmgyLPlEDGa+YAApu35aBk/nUUgJEe6VHVTSU37vux2u1SFitvej6QSX0Rwv6u4DZcitax2I8k9lio+JGcfRxOhaurdS5FxXSSEqTxBzk3GH7vWB826bd8XuZeS5ZzZnlNY2ETXOSfQgzkhIwmD7zJt+KA4u3Y89tDeMNYG8JMG8SWC6p7T1/+63iGvQ+VPR4Grf1INM+0qr09yH5qKRDAVBChG5VhLMs/zNycZdIkAQgKh7sNc6l4i0eNab1JtcausAVsJzO0pXum5U3En/zvy85F7dBYrsF8VWy2H9u9Zz6yIqMyiNs4rrkXhSXKaLAzVfnnlvnEl0dg3MamWEDk3v0+EWzP82G/+KBCBX/vpXwPK2tON4zBgHiQnZZDIYK69B8fUEtkI1z7WdufsOXftI2ivTrJRzrNUaso+5Hk9VqqhkXSUoWrbo271sCtGbmK03r/lYM7YHgG/Nid8Nn/aGz/nafMz0mFDgAr8i2tKFjZybxFSULr28msrIGre5vl7rb2mWEj1UOcW7ltcpMMc94zntO7L/c01167N1jUl8ty+/1Bxb+8icvHP96Tcg7nR8cCNxNSnuWxusD9mWD8biH+AP1gtgJ/6Oz+Ff+v//G/hx3/9x/HlWf7e3tt7e2/v7b29t/f23p6bwfALf+0XALwTld7b99D+uwD+hwD+8+/+I989SSmMuLaSL1ltapZ+66pULQXF2/YeL17RKkFyquRUVQgxcbVClZ5zAF62z/qcrKD3UkCXA8nj2lTezFCP21bRafVArceWDH8GN0J2NsjEjgBKU0LSzGXZRoWd3pnstye1jV1l4hW9nxidlmvneceaE+cDuLujtYrb7YbWGnbWN1LRIPB4vOHt7Y0EiDlk+/SCerygtIrabvBa8XjQSglmXwIaP/nkA1ptlNReQVuXNXG0itE7Ru94fX1RZWwSYVJSGzD4Jkak3VlptqWs+6Pj/naieEM9ig67BWfvmACaOUphVdp4nJjzxOwPvH38DtxJ9EkSBSA58ARlgod8uKE9gT+ufj677JdGwFpFOWTxFiSLERhUUnqniAmkwJakuJUiKLR1ALCrXGk/Ufk+wOo5cyY+mWg8mMhzjskYcwPQY00sAAPM25BwtCjFvJi4JjhWmcwXwFIm4IvVbEejSskyUJlJ5JyIVE9yVZwvuE1Wlwdl9jORyHk2NaYDcw3ZQBm8ETgl6Dxx7yRuHcW3PZ3JksqsIeG1UgpcSjhrTkpcryCAyylPQo0IVG6BpsSOl/Kcq8IaE6VetmvFKxNPk/aJ7VaQVVphVKwac2K+PQBQzcYKEJ3KL7UUgokRMCUXzU0qAAvLUyFgIovVa22YY3KMh2GB6gA2h3JTS+PJWT28gFgkkgADzR2OghmBPoPzBAMxBl5eXlBBwgytKacAMyNZKEGh4iTfzAXHFGAgBTbLileqh3zy+gEWoFKHk9hzjgdmVIQ7xcDNUA6SpCaAt8dEsUqQ/nwgluE8WQmNBfTxwADt3Fot8DCYyDjeaKG5zPReDaNPlFJxeMEaA/f7HfCK24cPaPWAG/DFd07cz45ww3ICXXMtAcglww0JJBaI6E9KGanG5yj1QHUm2tciqfHl5QWj39H7ws1pi8kqQvbxjIUxOgwLry+vmR8mmLFBZJIGJgK32rAGYB44joI+BtwWYp3oU2poJaRK5hhjopWCfnbMFThuryLzNQADS2aa1Qrcqaq3Fku6S6F91RQ5oFK0B28fH1KiIKDxcjsAGHofCEy8FMfsgdIKSgHu4wRQEIPWVWmx1fsDsEIy7eqgfgHJuWMNxdCSGUyp92Xc71fC3x2m60Ay9mKj7LVximicKoaAiGNe4bD9PteaWkMNIwZGTIxJkpPlQLDYSeEN2kD2kQkIrIUhTMnWxOtxoNgN93FSsWEocS3Q+n7/Drw4Xl4/QWkFKxhDLBztRoW0UhstaaC120XSw3raExCQBK6+IZADwEhCxVxw0FbRatE4D6kVkHRcg9WxtO2i1UWrlQSzQtJUeQKSRh8kM9W61ye4y9IiAA9Euyx97GgoDpgVAmtzYsZEXVRbe/TJ+SjLo7VI+qpetZZ2WeglWMV3UQoVJK247HPiqU+UqJfdHKuLxyZdeym41UoS1eMhoCTgtezv2dcDQbvZU9mC+69Uqixm8Eqi+Hl2kGyMvT90iKyShIHiO/lP+6oCr5WkUwFFa5FotGag6X5qLXufutbieh4LCeOnreMKKlvNcBxN8XUO1HZQIa539N5lEUIyrz0BHitEeowFOpbGHovEWNOuJ+Hn2MRhbRX1Ti7ge4UsEMNQ60F7RgNKEQl3zQ3MLKmK5Dv4qrYQoSIVEwg2kRgGXCoVacVmZqhR8cP/+Ifxx//eT+OY7fpdgt9I3Ix7RqRV1gbrsopcoNIKLE8MMXg2cZERExh/AvTNEsRKoJ8kEYvs9yRs2B7rBLLmFf/MNoAvRoJUvThvs+gAAIaRtFGkyPrcEqMfs8s6knGbpH+qnpkUSM38yzY6mpduBj9IvHWzDRyvRfvJNTi2aq1U+NqAIjtaXUGbSCjGw8Cpy+efc2qPoQICIoFUpIHUojIOT607c6L3k4TnDeg+PTvyHSiWA/sa2cdmSXIDsCYgYgKff+n+Xdd5Uv3hwOC7VTFL6J7TIs6RQH4g+ehIIpL6KBWBksTEc8rce8O0IJJAsMg7gSRtXA9zqcjpYWDBe9iKDNC43IpAT6BuxP73HJ/7PVkC85G8Ed5H/t6pfGGKVXMTVNgXHJEpYYOn8SHyFUjMyzN3ngmBywpQoXCfLXJ+bdJIgqfI6WKgoioQa8JKhT31QSrmrRGbtGGmv8XT9YH9/FvVagP64rgknpuxNBSbMj6ttDeKa/6vpb1vEluoXpakhLlCPBue6WutcJENTGeZbXU6nu555wECti6iYiDfEc/DMKB5A08yU33DgqvwBP5Nc/dZfSUu8sQaJEzMq6CH51+Ok1QMM/UBSkFameX+YyUJDlTCnHOy0KY25YhIpn88+j7T8foiNmgvy3Vea6VIjeREXWuEOdIBaf+spiKcCrC81N1nfF/6HXj2yzGWESbHB0nSssMtXKSK21biydxBqqvR5dOkLAoRGmRHV8rOTZCUtfZ84d6TStHQuhaKe6nINxZJ9RZBy+8ilZyg5V/ReKDanjGegue0LBxjSipVYKQCLgthqloqK+AXZG9PczMgQqDilptvxZ2LaJzrLZ+LpK0cS8bzvIUKZ56Kz9bac3kiCaCxYzuDNjbxQh/j90sl6lJ4ynU8UIsUuva9XeqJY3TEWtzfVQOs7iK1kjby2k/xs0v7zosku+waOwYWzpjinLYJe21NTml4ztm0AWee0talcpe95e5wjePggivCGM+VfF9126JGzS+JHTOjXGSVH//tH0Utjr/9J/4Opg+RWdUvZ1o85vy7FKcC2LnTrXyVMVTj+vlnaeeYz5FrXuYFc5KZO211i18k3owDsD2W9rhSvOUW6mm91VziKDXFbD2b4r7lRURQNf+yjVmqbSVnNd/h4uIIMxVemiM89ncnMTG+dLXci2q+aD+Hvd90FU+MJwKW1I6eLsM1mf2Q2l6mEbbnz3W715F+ZYbU9hqe546QMh50rs0rbNXJHMxhLFL8C5ZCXn8gWusNf+qv/yn80l/5JXx4e7d3e2/v7b29t/f23t7be/tu2rZ+A/DLf+6XcR7n7/MdvbevfHsB8D8D8D2cJb5rktI+NGXSMK4KzUOVfCm77lZo3+IGdybBa3XcpOqDQiUEFY4oGRNb9lkZSAAib1iRIlARgMVEZfEiK5CyPdyBK2G7LIEfSfUrSUOrr0riDjJvNTFHHjZ5CE/QyvxKGoZsFfrjzgRaTBWxEgAcA0AE+uOkstILQeM1J+6PNzwebzgfJ8bZcbSGzz79DLeXF1ilMsL9caLM4HcF8PbxjlIKjtcXvBwHE40CNLcKkZ63OFBebuwLd5EvACBYSYolGfpJEEcJ2mWBWAOjP3A+ThKnXm4olaoKpRy0Q/KC1gocjjk61uw47284zze4x1aIYMU4gDxIAyRlmKVA964I3LYeCJRWpaxBxR+HySqAKVAPATUBKkshqEgCl3JLiIRiiVYAEVvtoihRGVIKCsOWqE+Z/AQ/Eyy6tUbViMkkGsGkgtYOlKJErQCTtQyrT9TKMXfeH5iSOl/q+9Ya+py43zuO0qj8lVYuYLK6SFUqVqBUqVC44XHeAYTsCak0k8B0Zu3SImTOhTXXtsZyI1FkYcGs4BxMeNbGhCGrQG0nAPuashfjdGTFmBQ5bAFWkYpOWZWWoMOaAJyqZYwbtHGci1YkBGUH+ngwwTOxq6OLD5RqGzw++0Rrl4rC6LQhqkdFrTe0UjFGhxufmeAn1XPWoIrSGUzUtugkYBVa4a15xZh+Ll6zkdhwKwdjnDmsNISROIIYWBMwkNgy58BaC1VqK70PlHJDqs2ZCBEJlMNITLmPj1iro7WD78ErrFQkecOLiCBKWGeScKyJcy5EuEgnC61eNgDkzWhOPcU5oQus/o2lqnj2gWOgKqH4OB/oc+A+J8oMrM8/R2sVtZK0dUrdbs5ATTA8AhhTJM6CMQme1iJylsDiMQZqqSSGAZgxMR6UZYdRZasUzqPzMVR5y0Q87bMWRj8xakPdJFCSrNacJO+IKOlOCfsVQ2PTRRzl/D5P2slUGJYtjNlx3k2WXB3H7RAo57i9vmKcDyrrGQlqj8eJWiuO28FnWYHaGtYInH2IOKlE8uwwt233toKWIasWJkvHIFAHAhokNpD4VJ0KU6yiZXzwWjCWlAtDlkEzlHxPUgmJSsRffc8zJiQdRVYhNCJhvJqyO5iLil2RKoIuG1ZVi6/ZsQEkkGRlxWF9kPxnRuLLTqDaTu4jgPv5wFwLt1Zl/Gq4iVU1+9i458e3N3gAmJOkqlbQ1gt/XgfCqcS1BNge7UbwU/sEqjoEkFag7ghz9D733sQEYPXeaVXq7PeIEyGbs7nmrkxeY2CWqgrtglZJxByTpMi1ArUeeL0Fzm5K6M9N8vnw4WXHS66tBWUMjMcDj8cDUzZtUELbnFaXDqDUCi+Os4OEy1jwCHitWI1rkU9grCUg1XC0a40o5rtqHcC2hUpCxQZ5QEvDJA2IBgCrtBltQeIFSbRVQAKJwxxrti14xxhwGEZfANifRfezEoCKp3V3iWws4MzcNG8FQJhjaC1a6ttw2nfEmohlWIXPXovjcZJQdFQR/pbALVCviIqNV5LeDZtI2meHl0bL1n5qrzVw9knyRiP5EbVQMQOgG0YhuDjGTBQNWTkOv4ASVnhzrUwwdq2FGONSF9D8cdnYptqNBfdU7JMQcT+0RZfC4peA169YSyQxnmGsZ4IPLpIAHJ/eP8FP/72fwvf/0x9AgcGrbesupODHhaljCcy6rsO1fq0vk4gAbRVxqfDkHkoozSZS7HkTORb5+4vokIpQAsIFmG4GCC4AKAkciMt6UFcT+Mp721X1kzaqViuJ4YsA65yD+3kB2ceh/b8KMKjWyLNZANdeWCTDDSojlSkc7kniYYxKKxkC+tjPnKAW1RWSzKPHxRKRdSCtZr0QCGeMSBL7VeQSa1KRb3Zt3wXWsze/PH4EOgbw1PdAMqVDYCMHgu3+DAHItMq62mXVJmsyS+W/DYfv8bBk/7vvTecJhUlkHNF2mpDgYh+VtKkU4YQKQq7iHBOwrL4OwBSfuX5PPc713C4FjCSBwn3Hmhyz+/OKpzm0kxSRADxkf/WsFpZjMVZIfelSBkqwlQQDji9XfEsVW44VPNnaROLn15zY92v7HLP7e48nzeHg7/a+M6TouJZUckNrAZCvP0HY0H2lbV+OB2is1ErweW2yxJ6NfL7F/556OS77O46VtW9vrdj2nFQombBt3809cmivmiC6iaSR6rjFyp7/SVbf/Q6eLao51/kJ9Og6O4oorPG556oLME9mR8aXkL0ZIyCoYsr1N5UVn/tqW26J8JMqJRd5c3HMgjmitSbtG/PZOkmVtbIPUsHGWJ2xiVr5HkkGZlEQLe2WijZUeAKD4yKmzJXqmKY0gN7fjK0+w7OU1sjgu6omu+qMNiIDOZ6JlHz/STx0c6nWiPwMqpjBAItF2+hat5JPrTyzeKFSZsx5KbJoj9paFu/xfJXnlVgkKiPjbQRsOZYnOQIIqYtte7Rg/KIFJIsYtn2l3mHuE3geWzuOMv2Wf7cQduVeGPviab1N2qjt/6aF3VWgkPGDsThJ6I4V+b7WJvLBgaL4m+Rah20yTMbhfH9rBS16VeBo4NYnLe6mMqJDCn2mWGUGlNrQz5Nns+IqtuGetJZ69cFz7FI8dyUPc7ya+tilCBrBXAfMkepNyL1N7jWVK0s1UZf6G6SwE1KCrFLFTiW5JPnX6ti9Ys4CsVU478bYBGkoN1PcYVHxI7/5o6i14m/+8b8FeFehR44Z5mhznptIoQzLBdVItHYYUCBVSo6NLGoAcv1bes9pkybSkIoNkgAm3SIqbc+kaKXC79M6pHcewSIK1xoIraWw5xFyrb+5tmLv7b7cVl4TS5Z+Wi8jCXiA+ZdV0tyvtSInh+eapZ/slecpx11c/Sci/NA5q4jYu9a6ClhyzmmcafrhUrLO8QntJ/FEelNc0J7mulHtjSytbDmfaW9rOyZnLnC//O8aLfgKtwC+/7e/H7/0f/wl/My3fubd3u29vbf39t7e23t7b+/te2yGd0Wl9/Y9torv6SzxPZCU0loqgFAyqxS0worzWur2FncruN0IbBdvAuMMR6kIBHp0mCy5EizISrc1ZSUUrIYJAPWoO0lXS0ErFeZ1pxBT2cDMWPWboFcEuhKEBOV5/7Ue2xrH7KoYxpbS5uGvSIWpD1WyLymMqIKuCDz0KgJCGLAC4ySj0MCD7P184JTKEYLJmloO3F5eUdsrvDbUVjHWuQ/ZJF9Q/efl9YbX1w9wuJJ1tLBZQelurIU1O9xIqCmlqOoSOshiJ2aTgFOKY84OmGHEwuwDo5M49fJ6g3vB7eUF7bgB5nCpj7gVxJx4PN5kK9TRWlGChuAgAClq4AJCqwBSJS+hZGcsAke08avA0vtcoByyyA9eGyDp/GpUHFoxlSBmArhUR8QQSSetNqjWASV/MuGa9l5rThytISWuN6i1OLbm5LhohYD6GCQElQKqXyhxu+JKAowxaBkCJkjG6ohYeDkqExSd1a61NlrfGKXdMSerk1WRZgKqs4IUyNzyNUaV9xIeyYQ2FqvbGwKtFFQYZqeKjdeDBIc5UUvB+egILJItguxYMyBK9hOJRm5KtsaEW+X7WyTNeGHlK6v6LAVKtgXTHEy6kcA29d6vir16HIhwnP0hG7zYalYmYkFWgwcCFguIIrCb/TLXQKxAazcsBBV/FtDHwrDKeOQEFiToI8WNQYvFHJLB5OFUnrDWFyVtmFj3UlBU1VbqDX103M833B933NpBdRK/lBVcVnUsyuezPx5MTtfGpOrZJ06nwtnRCqoVEtXGgrlUrAqTSaU0+CIRrjiASQJFRODxGDu2IYCjVTC9y77MimCTjZstWbK4JMdLRZkL98dAPwOP8YbPPvuE9g3BNOLL6ysT6oMgPYmgE6XVLZ1fyo0JWtko1PLKMZyKE2ECS6QOI9W6erxgjY6Pbx1eboCLRBpGUqCZQMyFsIEKEURGF4EmtpLVnIG5AATtJl02de4Fj/NEKRP9lNpZJSGynxNnHwgjSezD6wtqOxgbuuzYBKjUxjFD20PNmcn4Uqzg8fgIg+N4OWQ3Znse1QqcC7jPhYYA+kIrBS+Vdo33s6OPoSchQPV2dqy5UJN08vQ7s8AcXE+b7Hz6OTC7YrGzH4ruoyBBUoOVQrC7X6TVCBIamdwMKQ/NC+wcUELfsMaJWh3TFhAV1ZjsHo9T9oENbhzDYzA211JRq9FaTaC9w6iKMC57r1IWioCbKMAcC14aHn1hTMcaC7fmeP3wQrDKSfpiXrzAPXB7eeG6u8H1hdIqHFzPzQqAovlksvFhInkskg6t+gYfIgAsWoxZqHJWQDDAPc4aBH+Z6O0Y2jMBSkSbkeSr+Vyl/FRqwegDfQysfmdiX+oyc07YBGgFx1h3lIr6+oplQLih9y6rENmrgMDFS234/7D3f0/bLdtVGDbm7O71vN+39zlCQjJCIECKAWORUmGbiqssuxxykwtfkdh3Lpf/s6QqV/6RXKV847gqKZKiktghCEMFiDAWPwQGH0mcvb/3Wat7zlyMMXs9W/nBcUyVDva7pH32j+99n2etXt2zZ88x5hhznbSKdD7Ltj2LxAKB2z4a99V122EQgGFnbxEcSIBeN+CrinxEYIybaEm1Kduqldd5IdbCOA6BWIFWZEPtZ6a1VDZLN8BygwtUreIKWFHEZHWkM5IJCC9buYmJxOgDb48D1gx5JeIi2YDgc8puhyC+Cai6ak8O5gajD5x20u7VSBiei/FvjIG4Tu6FERuUS8i2QXahpUZgcROKXOTxApPq3cBuNRDYTXjdscgd7kOgjexgpAZUihw/ntfLvSVBknrHvfkmmGQAP/0Pfxp/9Nf/WXz95WvGcqf9hesdkXhNsHXbZXnNgXgBawQu6xwCqYo2ETGx51qp8tjOB/n3UsYxvdfK8fU7JqC2ALP6WX7aC1Em9t+pqpc79poICCRWEO2KKdspAAtUP1yxbnK6ctDWB9WgzKnWs25iTwFqEYlxDFk7286ryvKxKY6VHRjza9lz1jgUWULrc6vdiJS1wKaIIsn3zpyotw5vJEZJCIHkhKQVEnN1xsgNMoKEVzeXXQ7XagFxQBF2NJWIier9MXf2eocFvhlEhLR7j9XewM+833+p72UoZ9kg5f3+obnFfDdkyYYb8M97uqdUEWqf4TsSSQOlwHGD/cCLKpL+U82tPsY+59KGr20CBS1cJAexCVcasxfbOwD7Hs3uezbkBpE5ZCRqkLCBTdgxEWhqLyhSQWuy0KpzUVnFlUKgvZCoRLYhyH2ruKTOEze+agJr7z2Xe2wtAz5T84bcQDBuNasiOejcZC+/Y7iJhkAB6rf64BRhJyIRxhjlGqf63G1F16X+arfiC+eDwb1v4LcII0XO6mZYxjxpiqj6Spas91pxwXTva6mxQfvEWoGld06LIsaHskJaSQu1BEg6E8nOX94/Upah3vSdpUzM785MLMUVBQW+ZvNtd02lzkYQfjEHtAH0xjGIoC1dpu5NYPnKgNWZMkqJqnJ4g1vf6oU1R6hexTVfTU2tdyAD12RcorVibtJa733Px1Vj4O0+a+4Ype/RO9yWt6oBmZWqGolHrTe9Y2BeS009JG57Y3xecyKsYuq9X4X2/O+cIc120xFV7fodHdKVnwemGtU8ed7s7ggAYbnV+8rweK4iWwLoXYvfdhwtgoK/xP95LcV9vW+rvyq2Mm8qQkq9U32cPjdUu+B4ujkWluoYDqzbJpDxsKlesJTrUfmlrFPrGiKAFQGo4rMrvwNIfAokeud80baL6ClFG95tHxyPmyhca89F/ruVTreFrJvOA2CdReu/VKhyAWXZ96o4RfIVFP9SsRmb2Gatwb1hrYmGFJmZMYrfXXWWVLyjWiRtJu99f5USWkhFOBO/7+/8LADDX/sjfx2XfYEZawbbvjADMV9UH3WPVJwkESpF6kHcZ6F611QEtQp+asLZr2wTyKrWtep9am+ot7vJay9xPFHPfDcA1Lu4o2XN1Tt21nmivqPmSZYSXt6kNHshXHFWcT8rRUCqkzW936UzcyUizAFLRfU1fy8L4qn31cxwiajY1EwRyF3LqzNC5bF730qOsYpL+7+H9pb6GQB7vu8zvinev96bntJxq2Hd+e7rIv6n87Iw/PG/+sfxZ/53fwY/8w9+Zsemj+vj+rg+ro/r4/q4Pq6P67/Z9aqo9B//T/5jfPv5W3ykVh/XP6nrR+cz5VIxV2Vddzz6gfHo+yBGkI8kmU/H40Xam0WbVUWkTLQmeXUkgd5GW7iVwLpYWCLQfgBVbNOhewwekuda6iZ3pFQveMCDClQs/JnxZ+YKHL1hPA5aixlBejMTOI3dxWNVaGiBKwLnlxPrmkgVPoHYfvEEsQhK5YpdcJnzJHAPWoiECmGP8cDj81f4/L3v4/PbJ8AM7893ZBg+jQcAKmq00fDp8YbjoDLLl+cXuANfffokpaLEmu94//Itej9wjE+7MFbvCBZYuVgGN1mlNSrlrDlxPEj6er6/ozXH29vQ8xkSLCAiE80Ils7zC87zSZA1FkapnyQBghVL6laSp/eGMAc0dxIhFQba3SSqCCyCRZcikkA27wT5IhcQLtIOWKRXAYsNbLdqRSbFN8wWynIqOKhABBWnOolcZpRKj8WSVuakIk1IAYuVQyCvXbxPBOaaANRtlymwSmpRKkSsmEjQam04n2vOJ4vJ/WAHYyxKtoM2VZnBm+8dzQ8ggetaG/R1HzAf7ILOeReEnBLpVYZs7kBvGyQ1Z0Em5qSajixA1rrQu7rsrEtK/iS4LKWlpLY9Mhffh6ToARYiY/E9QcVw2gCw0NjGwMLElZPvnC29SJBwKEgA16KRXmsPFkjWhd4S81p4PicOFeyPMTAXSRWXLcyZ+Ie//Vv4/HbgJz59giFI7BsNsQzdQcuvIRsyAHOdqE7WeV3oreE4VJwzEteaTzyOA9Wt/rwoQ76ugPeGFQszLlyTWjRmidEdSHoPeHOcX054uJTfpErTGvoD6KByF4Ee2Tx4x/tz4vtfvyFiIrKD1c1AYFEdaon4lBdcnXNLdmgrOPF7B6wRNGdxumHlQhuH1OqAxCJYr3+PDDSw83kMw089vkLrX+0OwyqUjt4wmmE6bZoQBiwWxnsfKqpdaJ3AzmgHgugq/7ktzDWxrok+qNYWkcg1YdmQ1rFsAlgYVpYmExG092RHqQPJd2cDmBct4KzTmuk8144bmUDL3EVflXfRRsM4HuxQDkM7BtXS1iLpwBf6AMbxBiQLiNfzC3IFyTYFeIAWYA6SRBKG1g2Pz2+yJKTK0mMMEkBA8kFXhC3llvfzue9vBXCtiU9vn9SVa/DeQVe5UjhzJBqe80SXxUShoW5AmOwSTHZoIHELUltAA2CMNanCN9UGuW9d14V5nWjab80h60VgiTTYDBhtMC6kisFlx+WNBMGYUl/jnpwzMAOAk0xjuO0EmqxI2qAdiNuByIUxOoEMC1gavv7+1yRiusEbcPRBoC4TvTfMi+TWAgp6bwQgfAC4AASW5gQQWHNJJacjYmGuJ5Ug7YHznLAVtLQT6OBIdEtci0RZ7pYk5ro743gMXNfJPaIzTzgn8O074//R+54brQ/07hvY9G7ow/F8PvG8TjyTxEz+BQywqI3maKPjPM+t+mXOMYX2rpyyoxwd0/Lu/HWSj4i8B7oThJy2YA3ohwMzEdn4I01KdefEaLTwLAJxcsIxB+wOz4V5yWLJfe9f3hsiLlzzKZtQA3KhG9+7NyqHrSX7OJE/QsmjWYpgB8xcaO6axlRYKKDBAWSSXGyZmEFQLdbENQPWG47jwVxxMW6uXIiLlo9mjGeRJCmttfB4PNjV7g3eHX4J/ErahK61MPqg8hkDJqasFpcQ4JWBnKDVpRnQSC4stbkoUNhewHMpnmGBtjkGvjPZ+7ksYYFEyhIsk8oTZRf3Y3kV+KGrAJ+yewaAsQ78wq/9An7/3/9ZWoB2AqYkNdygNIKgJwCUAogZSOwVMbZARSrZYAPiZr7zVW7/Ug0qUKxwHgH1JDOIyCMwiE0BIpg5wXXyim5VGoPxXZpA47lIUMlUHpB7OHbXfyof5AgRaEz+bBQ4B1o7tjEwjgfBWiP5GsFmBw4319MYg0ShTJxzCpgcO4/MmCL9Nlr18j8SwPZ6ddtERHsMUEp5rTU0o9WtO5UeNoEIt2WMRCgQa241SuZ/pQLA4QgpIb3OGQKUHMvc677U4PizK2Q9WoQl3cH9UdptN8ieW/0Ffv8Mxw2btAKsG9gsoPAFKDZABE6OT5Ex6/y11RkgMF7QYEjZtkifBub0BWySbEcVmU3QAxU1ODXbPheZ/l7/J4SccUREiE1Gcp7NgLKsuufgPfQiQwY2X2Zj1nHnGaGGEPL1qAApiibCGC/L8q+snKw8saDh1TlSDCBUq0eRndjEEFgINCk/Ffh6K2TUepe6CcAmCWe8n7MUTqAz3kIuknUzgW/f3zF6w9sYAssDvb0Q1YxNKrGKVFDqTWrI2WfHF0DZQuQ7xoilOkEk0LR+2BhRQH2RaTgfDYa4AhZSxS3VEHd4C6CUbl4BZaN65+Pomjuu+QCdw2sdOcyWVpaUoDL2XN1qQlJwu8+UavyqRV1zVWu14q4ZcBwNb4++SRibAIqybBShVwohyFvBiCS8UuZk0wq0Z7rz/TDPkYKqB2wpftdeYdhrmSpAC/BB9VrNsq3+lQCbYEjE2MShem7Fnv2jyXncpU6bUoQyzYtQbmxJhazWuwhJjHnM3W5CD3caACJxmAHetb5fyBh817njTttLibaCReAAON+8Oc8OkJpR6wBEGuIJQNZfag4Bz0ouBlKACrAVnH3bedmeE6imsF0TEbEvY5P3SYRdKIJe0TQzUwTP+5ns/h8+VzJvTZGSkSQyR71b1H3cJA/GORbTuS9wlEL1i34MeKnGvuadm6ir7Viys+Q0M25SgSbuZWA8Q8NUDwL3OFiiu0vJODfBpua/VRzZLB6RlnVPkH0h313AS4R3BXLlJvZSrce3SiFQz27w5Tx7yz7ZEvjZv/v78L3f/Bp/8Y/+Kn7r82/Lss1E2rN6gep0qeaW3MTFqD1hh96bNOz8VyqMNdvNc0uxC0islTB/JZHnJgaViKG7AbPqEI61c6+brPYd8qZjKxtS1bRse6vhRnuG1otpPwrwfFFzN++XynWl+7tTQ6mFK3eF9oqqQSMSq9IJPS/riUDTmTC1B1oomkRuZagiFLmknFjylebUznOkClyxQHHO9PuRpdKlYIV7nKoRCcqnoHjLP2Y8kokA97ffqWb5T9H16dtP+DP/yZ/BL//FX8ZxHb/bt/NxfVwf18f1cX1cH9fH9U/9ZaCi0h/8W38Q/+Gf/Q/x937f39t1nY/r4/pvc/3IJCUWZNk103vD0TuOcaC3Jtl4w+hDpJWGYxzqeDZJe2MrEpVVHA/ppQQSMDvQzLEsdbAjCHqIuINM2oi4VJeCSg9FVArcBbBSCwJYiLxmkGuStCqKkBT5xcN4TH1WQvZzgWslsALn88R1PtWwwmKuOTs2d+f0nBvUoGRuItdCFX9X0vrDfeDt8Rnf+/5PYHz6jIThfH/HeU2wsS7RR8cYD3x+HFT+eD+hpmACuXNJoeDE+7ffSIFlqHipotCaJMUsqof0PvYhNINqTOm0P/rmH32D8/2Jrz59xnUFeqdsNEDg3czQDHg/37HmBDKwggBHdXumCnytdRWXqKIAA5oXAYT/3vsQSCTwLahcwZJnAlJpgKlWrUN2hLoS1aFU9nDznPAxpNgA/SwIVJYNjROMtOZokNIUWFheuWAC/aACRhXKqvhQSj1VjeneEblE3gDWOtFsbJubUoWYc6G3QwWrBjSgo6H1gbkW5rzYEZ2GDKdlQePcDhcAo/nWB4lL1VVpKgBCc75543y26hD3FwvDwHmd7OTsTUX3oNpZo8XZ0X0DUgS+EzgGHAJP3HcHegqwcwt0ty377ZbwRhu9eZLIZq3jOp84hsNE3OiNyi4LVBNATs47AdsrKXGPpPLXckOu3F2UVdieOfGbv/nb+K0wjD/ws/hkBusm2CVwVIelOt1giU9SjXquxXeUCzkTb28PxFK3YTOgJc5zYljb3XzndcmiI3HOC3MGjt4BC7yfF4YPfP3111w3Ap67CAlwkiIDDef5xOgDMQPXdQENWNckYe0asqaaKqRRGj9lS9Wd48fa8ZREOvD2qSPC8e37FyQM3//+ATPH+Zxow9H7YCyS0hsKNAGL5zFZYI5roo+OY3zCeZ0qdBG0dJBsSmJpU1clFR3WNW/ClXEqhYWIbBNLIYDWZVJHaQ0J/n6sidEavv/pgetiIfzxoCrT+/PEcqmDWCksBZ5fvqC3jjlPjPEJ1gae54l5rhv8muddGE6SEoFAWOJ8ElBcGbhWYC6SYro3WALn+wlzx3gcCFxY52KBeFLuPnJhgoTJ61okWbauLm1tYpG4rqVY6CRFlbT7iq1EY9ojaZfoOGdgzQt9PNDbA8fRMNeJmZx7kZPkxAACDUjaaowuRRyI5JksOK61gGwwpyravEohMLWHC9iaExGJOQNnXJgReHt0nGtKXaxhBtWV1pyy8nQEuCfMOalGZKa1AWRrquWTDMcK9mKR2lQkdRICvRncGs6YiLkQzbDSUB33rVPdys2wnB3kZmMr6vReeyCQSfCI6jq21dOq47jyiozAuUggcpGazUgMtdYQsnZszrVOZQWiH2V5RBIyrSdghnEcABLXKWAJTtsX5SlIWlCsMDxaI+CYVCQMJI7jAW8dj+MN5/MdEQQYLIF8HPj2+U5yV++IuGSdJFUHJyEgTKo8yX2X75aF9e4dkLJPSp2l1B24hwZabwgV892MCim2NoCUEQi77UQzaWdia1IRwdjpP68pu1XtiaAKx4qA9yEQkkpyqzWc58XP6gOORtLcCjQpyEUQ2HdzkjMFyK8Eu/EtaXuXSVJtRbpI5EVQo/cD6JDKJffUKyZGH5ilMgC+I/eJ3rvss3z/GcdBpNU5N8Cz481aG1zn84cI0M4u+TSsuTYxK6XuNUolRcqNVuPbmFfkjE2gLsW+ygXKBqcXQP/jeIlwYmDe1dy5vwiE/f5v/QT+B7/+i/i9v/nTVDtqTTljgdqyvyhWBeyF0KOcDw5IUeAGvpvWcOVNTiC7QBgROoCij/B3iwBnVkBkKQbYDVpl3OQUKXEWkM2zCX9wKZaYgLNNZLpZQDdol5X/plKztXNTCMRsvePxeGNjBkxApFQ6RN7w1raS3pyxv8sKeATvf16ncsmXOJDMyaurv+xngSJM6F2KdHCeJJH7GFSWcfBdgGpfHEcS0Auo36QZKcBoaLbqiWkM9zgl42+aibiiZ+GDkOCwX2CNcSnp1DCz4cA2oC6AfAWVqEIEsrw/lyeA+u8QPn+T0UpFy/bbrzlShHR+f313PWyd3QjaM1+nqqkUlkzn0lAurnnLx5H9WVAdpZQ0UyoWWwHK9kQliOxNqnj3HLxJLDrH6n0VqyyVKwGpJg8q7YgvgFKVXGUXDeZ6a6mhIl9UnaCxw02T4HjiBkp1ZqQ9c5GrZHFdalFm+7yVSNk+B8rmusDgmgMZSaXYvEORCa2OSLw/n3h/N7TvUWERXjpXL8ScSJFhSd4GElMfRBWZxbqH9kST4NCKpffKAVtrldSllM6ohmsoVWrHGA+pb6yXdX//lY3E3ia1JI4NUGrAGTchGyiFGBIQ1iSJyF8WnbsIBbKSukQueThzubVCBPFaL2vHSTORC1Ak3tS5OdGOsec2Y4dvMsrM3GD+Jmakmqpe5+XLPL7VywpSh0hMYLRQ7Dl6lyplynbSd75maqCr1Rpz7Tlnxj17lkJhqe+YrNwM+3NLoa3U6lLEhxUaK7/t6+clYsPoWNe511nNJxIdrLgvjNswlO0fcCvy3IQOrtHaA61iTAJlT5lZtnmMHU2qxZnMJcqWmjHfpNQVFcGQgU0o4dmHTQMk+SoX1BZcdmShmlbGfS91RnFL2TP73vd5dpS6WlbEv8l7rA/wLMB4lBQpNTAmx02gTWhpvcRHrgdorDRtlaOaBo7kwoq9JbJY5JRUHn+r7oTYiLb3QM7dWPcZ1KF5aYHagtaqG8G9VoC9PmmjVgRVxv3WmggwWhOotbLfEsnPauosZcBUI0hHp0rzYsNlZuJ7336Nf/E//1P49Z/+W/g7P/d38eXty1afczM1nnAsUvXD2h8cXEt8Jn9RwQuRCl/ilG73ttgSjTfvXCnul8Lvyxc1qrwJUjnvWEYVfNuqfinynCke9eYkhedNSr/JTVC9TO9Xtmc1ujWJSyGsrtxJROVpalhtfStQhc6V23a2Po4LEb3376iB3ZftWPKqGAeUwp/2AJdqlPb4yo2ZB+Te89IcDr/jdeYmgCXuGLLPpS8118rDkHfO+E/VlcDP//rP41//3//r+MVf+0V8qCd9XB/Xx/VxfVwf18f1cf2TuzwdP/Nf/Qz+7f/Vv42/8Mt/Af/pv/if4gc/+QN8pFwf13+b67+B3RuAZMHk8Tgo2Z1UeSmbNdq6UcGj9b4PyZQPhrp/Er0TqBujDqKyQNdBaPSB3vomO0EH3yqgnNcpiWD+Xmu3vD7P6rYlhHs/+O/VeWtgEX2VAgJPZdXFtQvokTivJ9Y8qSihQaCcv4rnLwfqIuqwb1QFh1XFd1rHeRv46tNX+PTVVzgeb4hMvL+/k6SQAMDO+D4eOB4D1pwEDla1d0fM+/s7EonWDJ8+fULvnWB/UlL9Op84n++ACCKP4xPSCeqlisvP53OPATLw+e0zP8ccfdxkm3qu53VhCjhEnDBjseZ8irTRHN2HijhJoNcd1pskumUH5g1w+c6r2JyWOPrB4jlUzFWxgQUw351cUHG7oQABgYHXxS41sHsbaTjfLxyj3YfzkJqDiv6exmKcsaDEeneD2YDh2oX7QALqqryuiWEdR6ddljcqTayYtABoxo47lThocdHgbcBao+pYsrPxPE/Ma8IBXOcFQM/rnUW1NbEmbcaK6HKeJ6ojep5TwBMBuQbflmu00EusyYLgXIH388Q4DI/ecQzaCRqAiLnBkzmpJGMmK7BsCJtUrKhO7KTCEoFr2jeFdJxoTeYCffgeIw3H8SaNJ9n3yX4vRSbsjYUiQ9BOCi7rosTjcRDgDaqeuHfGl2Zoy/DTv/enEJOFm5UsIHsuNOs4RsOMibmolNaMJD8q03T2kQr8uWS38/bpE7w1vRPchEcDvJH4R8WuFAGzwcLwnCeeuOCSTG/uVJ8RGce94Xg88Pz2xLlIdOrmGN5YjPcGuOH9Ar7+3mccgxaM6wJycV55JrAmVtBm05oh1oUOKlwBjjYGehvqBC4iGpVZqmDopfghgkjlEa01QOp1cxbYaVSCkzVJyYlH0IIr1h3b57oA8M8LfDMY4Cr0h6O3A2YL10WrSCi2f/r0hrUWznNqHnXalsUUyc9ot2mOTwdVSxaAayUmJnxcCCTGQZJbEQo8XGRLWt0FJkYbHP8GXHmh+ZDNG2Owk0oDw4JJoewYn3AFAGs44wkkyQatN4w+0DrXXvNSjzBcmndDKjEbYGqGXBNTahpNFdXmTeCAYfSOTMM1FwFkkVOvNXFeF5o1PI7BbloEjv5SDJbaFDIwvBGYSAFEIjDR+jNFkEyYCGWOxOPo6LLi21BFYIMN1hzrWipiJo4x0KXeU52lJO+SZOGtY4GE4kyup7lKDUBKhyESn0BxNvA65jVlX9K49iLRndZoX57f4O0T8NVXn2CNhJu5Lu7rC3u+H51qIWsX80vx0PAYBxLJd5XcAxhnjMoe7ng8+C4iAnNeKNtKb1QSbG1gXtd+/hlUNxjjwbzo2ZB4InAh17rB32R8+XauDaoSAmrASjQw33p7HFjrwnmeON+f8EZyThoV2MIgomHf+3wCWNprMhg3R+tYRqJWRIjEYEjn2DaRY2YV2V+IGRxd7ZdJUHQViKU5v0FW78g1BZo78uSfjTZu9T0HCRNYIoYBCMNXD+4V7+fEmgF0Ea5SncHgewuUJahRlVCYeKgIn+pypsqfI66FmCQqh0COMYaUZBITtJMsMHPbBzWSk6IUW7zsjEKkbcbRGSSsFvDqZiRwFaAVsXORyESTsoVZ/d02EFVEqNZJOCCJh+uEinwFJubOQynCGFKUfFUW+fG7ilBCspgsXJL2hj/5mz+JX/p//El8mm9bLapURQp8hRE3yyTxCEjai9bnWwFcpTjlAp0dG6jX3Ca5XWAvcKvuaVyLHFXKBkV6qHFfa+33cCs5YK+bIiitWFz7UbY5gHgZm7Twai+yyRUFmBXQVWQA51lpjENWyqB154qX+xZBqTUpuFTOX7Q97vMJNgRQ/bYsfrAJrFTurNg+dCQRuQnJz6hGhKQNYlnH3aSaIqSSKMx7SU5cgYM1d+tMVeODio1u++wX+xmU31uRhaTIsaHEFyJYKfTUYdD2bLxBPZ3dNlArHHgt7gkmAqgm38v33P9cgGqRWC1L+cr2GTWzbKYc3WmhTqKqiCBFgNUz8F40B71tMJvAO0ktRVDk2FauB5RlExtURHiouS/QOErtU4ewfa86+xOrjA34z7W496Fv62VOaZG0LLcF5U0Oc2ybono7SdUz2+dcKf4Yx6H1IqBASmLMk3y/XRHMRJQwZzNP3TinV+U4jKlbjU33VrbzZonPnz6j7OxCz0xxJ5dqcO6zPsm5sRs4SIysWMY8ro/xnbW3gWtwDa8i6uG2jQVkLY7FvEbkiPaiMGUib665RPagimYT0aJyzbmA4zjgQ6TA6t1JkKAXBLldRFAqBirQvCj2VaOGaw9cc23CBYmDUDWlLpECnDWB0PdkJCBVK6t/1+kv43cQLgpU/0581pvNQIaImo6tNFc30HtXfI9N1Kaqz20vVn/WmovUG/e6bCJfNENLkY+3Wo8IOSLMFtEFMDbXGIl7KMLTizZREX+4jw+UbScbjzh/WmNDU+73eK+/1DqtetW2eFQdQiFQe1WpyNomNiwRYoqsvrIIcokhK7kVrC9VzSlrPSmvKFtVFd72eytrte8EDkDKqE2qNorVKMJESqnwJd6I8FEqcjW+W8mnCBNuJOPpnbMv5CYeh9W43POICpqmmCirSg3wdZ2AGR6PrhoF4yJe5lW9O7Mi6ChXzNS8uhViuZXd74hz947hzFdrft7zvHK3m/xacY6xK4LzKbBeyNo3sWauUqqqOKsGNJ1Pe5NdWwbmNfE5PuMX/84v4Gf/q9+P3/jZ38Df+n1/G18e72xiUNMRYxewKoZpPiFe9jsFgL3fgHElVhGh73dVc7qGtepJ39mrUek184eb+KQmilbEpJd8LF5ywQS6N3g3XKsI3vfMzC1l910ymmntZk3n3FmY6jm3ihPsJsib1mVrSTtn5RHtheBTa6rqE6zlUsEbSXXEyjFaDVSNd/07DBa1bqDcQnkJpHQV9/nXXvcNfQ7XsGuvr2fEHkcoHu+G4Jfc9J+KK4Ff+C9+AX/2P/yz+N433/vdvpuP6+P6uD6uj+vj+rg+rv9OXgbD1998jX/l//Sv4Jf/4i/jL/zyX8B/9i/8Zx9kpY/r/+/rRyYpuXcYnIUf56Hs+bzQmrMA5u3/7S+eaVSASgI/j8cAkqAxILn1IEi7u30EVHp3jEMyupIN3z/TqQLSnVY4c4VUbUIFRwI9BsOlwn0igXCUFHxTMWFOFQKNSgFrTlzXE9f5JBgJgu7NDePxUMdtSLK9uj1VvM7EmheLhuqqZiez49PjQH8M+JAixkpc88I1J9YVOI4H3j59Vke07FWSljnneSHmkhWD49PbA609dJhlUXLlwpxPrDgx5zu6O47xRkKJVCZiTby/f8EPv/kGzRu++vwZn9++wnXxu463B0kNvSMtMddJewLZtGQsNAce46AiigqRJsAtknZOb8eBMQ7AOwzV+UcSxZpUQzIzhDpMzznRG8EoWqXJXlAKUrtIpIN0ClxwkSXmNYHmcGuyUJksoKtYkVVAnwsX2Nna1IXWe4N1Ewgt2MN44D+vC1AB9+6m5/yScwjGaHAcLP7D0N1FAuAPsJBiuKQ083Y8cD5PwDqsJ96vC+Ysia9MeBUX3NAHyTkpdPYuBoUKGpQvp10YQHWSQHbHXARJhorKX33NuWXuBPKtoTvfwZSN1ZZ0V01yquhf3eal2OTeaZe2FvACErlR0WvOUJG4AejEVNeUSlEV/xJzLhXpCcBc14XzXGgZHF8zuDpJ4Y5rPWHL0I2KVB2O739mp/Egrw7N+D5XAO/rxDXPl/tmgTUAggfqQmaRtbPwGFVQagJC5+6KrbXu1nAMR0bD88sU0YoKDQUWdZN1jNF2ocPx27/9Q3zzfrJAy/oeMidBxE6A59PXn/DH/sQ/h/HZcL4/8Tf/xt/Eb/3gtwEAb48H1zhKOjzVvWdS6Gk4Hm9wNBzNseAwKfrQmmPhcRyA7OZ4f/osZ1GOCmXVzStwpLG72zIxrwsQsPWqRAF1VgKQPURZ55Tah1ElSMXp+sy3t4Ev74kv5yVlK0cb7Hb88v4txjGATHz58oVrKRZyNuQYSCuL0MRjGcY40MdAZOLL+xfSPTrgzXEtEmTDadnVnDGlDXZa53mhJYlfQOJ5nrjmkpNFcq+BU83MqaTUzIAJpCeGbHNSIKkdjhGNII0AhXmt3aleYFcsduG37opnE6M5vvr8hmslns8L13nxfag4/vb4ROu5M3BeE8fb0HtdWksOT0czFkhrH6K4XwAuws050dxxXSdtAv0uULZG4geJSiaAjKBampEoCHbAV9ewAzh6w3HQlu/92y9YkrCvvmjG3VrzVGFyzeFzUgVnW3O4S/mry6pJIHWCCgIeen8TbTU0Yzd8eqA/xlbU4zpecAsMWUGSpEUlAyrZsIjPWjHb2AnUcI5HBHpz5hAAci3YktpdZ+c5sRaHGy0Oyp6CqkgNsC+Y11P2osC6SH6Z2luawJjYIHmSqCw1EnftzQA+PQIXFoaVmoMDg+BT2TrAG3oP4BJIrnd4TRbD2R0PtD6YZ62FPrpAeZKb4LbVlCoXIwEHItpg51RmTCkLTK7C/hhdezRBlhmLZLkIYE6MfltyvT34PM1Da4SoAcdp4aiueDdE2WSsBYNv6walClJN4NpdEHgjoCQzcJ4EOh4HyUokb8cGPiIqnzRcK9Ab3zu7s6mCtyIxDilZCmC8rmtbl9zYZHKOtSLB8K9Xkgxq1DJEqGnb/ol5TMKH7HRfSAmhVPtWFsJNSPkxvCqPKuWVTM69n/qtn8Kf+Kv/PB7rsWOmCUy5KQkcUDOeFYo8WJ+LTQYpAsJNiHoF/8oirkAnpEi1LvaTlEmwCU03Ea+ssUJnG+jzLbGbMurcQ4WJyfWWlTNX573ve95WL1ZAOJ90xQsAWHC3gMbWmixNuI+UPRGttRpzW0oZaU0KFFXOU+BT7415ls4TSNqfrKSFcsTUnj44VjrbZTBvPKW4eowhm1mCeqPrHOb2nThRn8l3RSDxBtsNNeOpyBA8GzQq4hUJpN5LEcTSmMvUmPlWVSmS0q1WpKGEvkTAnW1ub4GPBWQXscZFxijwvQgsN+lGRJNSWhK6azqvRKlQ6Bkqp6781vRugbbvb6ssWc1R3kPZ5nRvJB6Yw5zkoeoqSpiUK3ROLbWojb4y5yzklmTJiiO3wo/ZTbopZ53jGCRLwQTW35Z2kbclYSnq7thcfAfU+fhlnHXeINHP9lwoBSmYIYueVAQWv0mFN2BfzSc8p7NxRmtLRCADcxurNZdUu3mMhshgfgjc6z758yGVvSIsFqmRNY8UqUHEAM05JgwVwzQuRSnQ3GlOC9Qlpb9t6SdSybbtAfMKT8M8T5wigue2++GeVQS6fgz83p/5vWiDqn2/+YPfxPv7E7Qd6oiYe/w4ng4E839X3YNnYv49JMNRBKKyObvnOfb6JEnhVl/Z70b/nZZor+QGu9epyAg1Pjd59PVn77XIdSTSdWs8u1qtdbXIqAHHW2OTjknjTUpJZUm5kio/g0kxx1NETJeacKkAmYUU5qg4zYMc6xjIuwkjFsmZJHTxc+ha1rAsEcZzA0INVWpwqR3dFR/cmuabbXWgLV2bzBGYc2vMlAwNNYzNFduKOsrmqTXUtheLf9bGEAei9ivO7z1mfDG7BsaaxwKyVG9o31msD947jx+oeCEyRiqfa5orVG5KhXjuz1RLp1JgncNpdVaEp3v+MJ5qfEQwMb2HFGHNjWpOVSdEJhrG3tsgRTwTidDNkd03IYW7P60jtQugFMAzXlZ4bd11psFLM0ntC0VA2RNceUKNnVU8lqqSOcYYgLGWk8p/WCuqs0M1GPhN4knstbjJLs5Te28dn+cn/OLf+QX83N//Ofy9n/77+Ic/9Q/xm7/nB7RDTtaYSqmo1rJ7nZlyj82dZ0ktSo9VDQSmyVB7zU2KvIlaZQN+D4s2kbybJ6kS58pTcn+PWamZYu8dHqHmxz3wahZ4iSJKRvf41Tb5O/YaRbsXAhs3NTavsUGt9YFlaxOvSVa7CYqbgKn7ZmMilcTazlt571P1S3+JBwnshqY9bbSWXq/Km0kUtvu/7Ryk6qiyttw7s54bd77yT82VwC/8jV/An/3f/Fl8/c3Xv9t383F9XB/Xx/VxfVwf18f13/nLYPjeD7+HX/k//gr+1F/4U/hLv/SX8Ff/+F/F3/xDfxOr3QqzH9fH9Y+7fmSS0uhjgwrJ+iFaa2ito/cDY/TdBW7WJHnPuViAkhXxRkUCwEkKqSKmsfByqJsfTtux6rQj0N13hykMWwJ/zUB4FQpl/1YVAjIBCN7N5y4QLFC9hl0nlDXPuTDPJ1ZOGAKjsTjTe9vPSAC/ilPszH8tOhOAm0iXhYVD5BAWIc9YiAvIReuHuQJjDLx9oprRkroGXAWjmHAE+tHw+dOBc17qhq0iKLudE4ExHBnAp08PtHag90PFI6myrItWcCBg//b2Bo5S4vH2hnEc6I0A8zlPFoQycF0nYl0CjhsudchWl3sGCSemd6AfvMk93uC9A0aVBsjypA8qEmTQ2mQhSU5xErVmALkugYBVcCmIG0BW0YggcqhA1lrKgoD/LVKqC5Q5QrMOgEWQdQXSCZ6cC5ROV9GxSG9LhdxmBusNUwW4WBMtS3khOL6S/3Z1urs73r88AZEj3t+/3aCCl42ZVceTbzWEUgAADOkEIJobF19w3pqKVAYgRfKKCHUwA300XCK2pcApLOpfuAd7nlsBSCSHbdBX8771xkK0ANHWBwswmQhrgHeS3748ZcfYaCMwBi1/XJ2C1wWoi374AZij9QMmOXpa5VCGvI2G5oYZtMqi+Jqhj8cunqzqGte8Yye4US4lKPOd10RcF3rrJCRloD0OxKQdUe9dgBzwvBZi8R4fj47Rjw0mFhhX9ck2Gjs4kwB8Ju0dLllo9cYxmRfVu1aC1meZGKMhY2IctDV6nwsP67AJNDS058Lf+7Vfx+evPiOHYX6ZsJUkqfSGQMdQgZvckFtmvboP55zspHPG0dCzrrkI0mXS7isCfTS0MTh+aJgXVcRaALFY8BtHY/yKQAvn+E2g+QA6CU/XRfJVdZeHAKo1J3orQMbwPC+YN3R0xJwokuV1TRI0zTGkuGNLe4cBMMacbg3XmggD44M5vvr8Gd/7+jMej+NWCDAqWr0dB9YC/tE37zgvWjQiaX8Ic1gH1nndRbkwSdwvACyIx1xIqfFMBMbjQeuBVEGxk2wDAZUVW/rxSXFosfC+kvYRubDWRXKKOw4pWHgDspEse355x1L3fnt0tlUagdrWGq7zxJoEe8ZgAXvIUmqum5SZVsoJ3DNJoOi0ZRyMdZkLcwLjkAqUVBAMjJkkfgKjHbIiFLjohpgTU4SJQ4Sy67y2iqGpQ/XxGIhrSf2mozvB4DUDRQwNC7Q+dpdv6w1HA84vVLhxc4zu6G0g5kIfB67rHfN6xxVcC9c88fZGW7aMwFwTiBNuwAwRlvMWJrnmlNUZCBAl98ay3HERnKwW/7YRVR6TzAnUrEqgTHO9aa9cM+Ct4zgO2qMIgJlGuwITgBBGdasqYDcjKBMplQ0zuBFYhDmO1tC6YuciSDl6wyMPXPPC0/jcj9YxMzAjQBfPjisvxvtIrIv0tuomhu5pzQXuEkOEB96jmWGqrbpUJTmnF/eTAm4EfPfOXG+tKWAUBLwEpAZ4X9dzoo8TvZOEkXAqcIn8AzDnY0y9rRJSuV4phoWIdJHB1yUMz3DbOFHZhXHmOhfn2jE4/vPELtSvQEoNacVEE9BFxSzAsNDQASxcV9kAkdyJlIqo065orZD1R+JcTyo6lR2OVAzKZm8DtkK5lohYJHBTmQfgXCkrJKRiPhHIf2xe/7t1uZRgCoRtYfjDf/MX8Qd/4w/iLT5tC5nb6qOAaOzxcCvbtVdwCngFzM1ly7zPGCIvbfKIAErgBj4FbJndRBXgBhp3N77ypJeQf39O1jkgRYBcm2hQqhBFfrvBPoGpug/T2jERour+Sx3KjKQ4EoJIOKRSCAHuMcat3FVWNxkoGZXWqPJSDSB130BuGkVzw0paDbuRJJn6HJKuZH8NNn10zWEkcyTfqmAFgsU+ixXxByYF0Lyfb3fvQ+OvBodqBCEhhqSVIqg5mQ+AAOtSfmQKbTvviSIAvoDa+/VlESvtBl0Fot7kHewx2OQK3EpRBfRVTo37N/YcveezbYDfYftdbOs5EX2gcWgifs+5NDeBGXOPiYmUsJVnXsfSbP93vJy5IZXhUpjd1kpNILJhK5i4FDhMRJINeGstJTYOuucdcKsplcVcsyIvAGwoapxPWrSZbDwpomJINaJITolASjFsSVGDZ/mSn6Ee4SqyhHPNLY2p67177SkQiI+K7Vp7MBFYpCoTnPdFGIlMWqKWslKRTADMlbvJqYlQuOHfKEIV9lkRiktUhi7FqqX553vtkKyBnas0ryYwkq1nJDpfKBwGX4FvfvDb6GMATdb2KdqG8Wzpmgep4o5VLqt3SaLUvV4LPK99EFnkTZFj/EVtTL/fe9VOsMdqq1DlEimFMQa451ypzJWR1wwS2SvW1xx0sWy4ZHOvw5pDfDV7wWodljUjG3Kgs0jrXSqL1ZTHORCLzRcOw3nRHppxxG8CostCcW8a2HECyWakyEDGXb9hE5zWhd+EvLuay89rrWt/rzOGSTnvJuglpBYmArClYu+qfBVbGbi+oxRsymKwbnfHp0jlw7nJHLVPcW2LyKR7y5XaG3yvpXsgQud3bFW32N9V+4ty7pf173YrBAJ574EhK2WxuYukwb2D31oqYGZ8t5gLUUqbRpVKzumGSBIRA+uOB84jISCrMCyRmUV8UYxI5Faf0cRgvGg3UYexp8ggQDWcVW5huFXf+PpzP7M2ajZ2WcWKRhVx5RezSKeKYPlC4LnjcjVcae7mvYa8OT4vxx/6uz+PP/gbfwA/+D0/wP/zn/3r+Obtm02YJjGrzinQ4Nx5aGgtpb0SYlmXWSLoNat8/nVP3RFSczlk14w9L6C54o05talO9l1S2B13MCeOo/MMIeWzVJ5cOUEpEqHmt/KAnR9skqXWYoRyyMrPuQZqwlGlrBoc+h3HX/MKzY3m9x6TqHp5qX7Frl+LZqeYxpibIlfSnjZ2zKxzQK1r131+h+hZ70jn2D1na9zuKuvrVvBjf7XZ8K/+uX8Vf/r/8qfx1bdf/W7fzsf1cX1cH9fH9XF9XB/Xf68uA5WV/uX/87+Mf+k//Zfwa7/4a/iP/qf/EX7wUz/43b61j+ufkutHJimxSHpbJ7gZfPRdfANAT/sqpqp71wq2C+wu+jAW9kNKPEUU4GFzoDfZF1SHJJbIT4bRqPKhatAu5rDgTsIUiRsB5MJ5XXBAcvRrgx4hYkSTwkNcF57ffhHqH6DbCgGlIZApM3GepyzCWCg9Hm8EHl8O+aM3fPvtF5DkMWAGjKPjcXyGjwMJxzUJ8DXv+N7Xn9D7gHvDeZ0sVI5GBH5NYE0MNxb5cuF6foH3BzA63A4CHgIWLBPHOGj9kuyKNgPVa9YCFkkwx3hg9IHzWujecLy9YRwPwKh+M2cgguosKaUiFsmbyAwsbhRh7IpTZXaqyVwX35znuguWa+EphYGjl9JWqMjUYGmY14n+1qnKIlKEJaXmTUU0CBBYiwWhUKdsHf5JGPFNUloiaxSBp7Umz/ilgmyD9yS+gYVrsjvu7ugmYNRUS1hzYrlheIMFi+VtqCCWQO8NU4VsIBFz4jgGfAxMkb1YbKamSLUwEnxOgRRNhdy2ixOlFlEWM61Tuhs57sKEOVrrJOCMjoRhTpHcemfnme5rrYUFWiF6yUKtRMYJC9pYsXdR3aCa32a0IbSkitkVXGfP68QBA54LMMcVLNY0AzJkB4Kk+o0KeYuVStqrTRKrvJHYEFAhs93gR8UXN6l2ZeLLlxOtdzzeOteNCD3H4w1rXbjmyQJlJEELv27QH3yv3huuk8SVjIXHo0th5oJb0lZJRfQE51x1fB7j2Ooi6SaVrBsoGgLbM4HWHVgJ844M4JqGcxrGYCx7n4E4v8V//Rs/xOPtJ/AYjut6F9FPxe8wqu7AEVOWSc3YOW20HcokupQr0McDgBREYFiTCilzTgAsmo6uglcEsAhiLGCT70pRZEbgmozzARIq6meIAsgSRcDfeU0VuFk4HKPBhwBCAOeVOM8L3gdGIwi05gU7AGtAt7YVBt4eJLZFkLzZuiHOi4p1q+N6PkDnBK6h4QPWgEdriGb44TfvmOe1CSLndSGdSmoRa79njskAZEMIADkaDLTUzBk4WsfjONS1eqv3FeBBrMw2qbc32nXR2khWoji3XQQUI0kabMhFwsZCAo37qVtXAXzBW+BoQDRHD+23oG2kqbA9Y4kod+HxeLAY3xtWBObzqb1TShWD1gPP50nbT3D+VAf7krJPxIRZRwbl8x20ZXB1h6e6rTPV7V/AkQBVEi1lBbqqOB0i9ST6g4DfvLifnuvCcXT0zg5TpFRJAJznxDkBeMAE8JO3Qiu4eK6tfvAUySjz2opMJM42nNdEgoScY4ybqKOox2J8oHXGvqG5Q/UIgV1O4J3KA1SHhICA4xi4pBLHnEd7WyZaG6ASzG3RFVH2D4FrUXFkAbBMdC/FqcCKxKej4210dG/48nyy+Ly4Y7TOvMTVmXtGIE+qOLXmgH5vrSkLED2ygMHRmhqXCXqslO2DmbqgnQSw9K2GsWIKbOHAeGswkYLGMXCeF8xpv0cCNG6wRET2cy6MMaBQKfDwZd+KRdXE1gSKEKRq9tL5DKiDGQAcvhhzCqMsEoqPjtFpsTgnVWPG8QZ0kiuvU/N+BonCRvW0AmgAqqBdc+LtMUBFDBFDRI5aBYpngX1FMCDATFUuAVRSfPB6Dw0kWUE41powgZiZq/gmWMq+KhcnSFGKgD++V4Ggf/jX/wj+8N/6BTS4VBNIOrYkOcytUBImWdXNXypEBc5GlE2txtKorllqQgBuhQZgx+f7fqQRoXNOk0VnAd5r3R3t8RIjqEZju9MeK6Q4SBAJpndoNyEdwLZBAZ9Cltltg2xmhuVOpSLUeYdKIL0dIuXo2KJnPo6x8zQS27BBPAuSlJrV3kTlV5MNs2mv3aBU5rYZ5OMWsGmbJHE3K/gm9bfe4U7CcQG7NVeR2HGwSGqmcaxxYeMB8ykDiVjATeIqQG3OiVK53aOYuQFEkshKkUu2WXoOA5STFvGJIOorEak+rxXgnSk8cbMcBDzGbqYBjCCj833nusFOfuQNnhO3VWCS6ggV/27rwlJdqJtKkGRlsqBOWbJKP0SEE7y8s9zz/CbcGcFx2P37XgB6Aer20hii+CuFGAPJGjsxF3CbisH2Cvrm4lnBCZVWjlRvwQx7XZnTqnctNkwUSdfgbDbBgr/sSfWeSoXslay1QvagYg8XufBW4Hl5F5pTgcA1qZrSlZNDv1fEZRMxhflaArH2vmJGYlAWKbXWmyywqbRSQPirakgyL0XIut32nrHUWALT+5VlZdUbkFHCWSQCBwlmMMMViZwXvlwnWn9QpVq2tnuOZ1kCmhRZsw5bjH1FRBABxBsbfOoNhpQHi2CH8E1Mr3O54XdYBr0E3VerKxJHSoG2chKqIwGlcFTWR1xjVGrSzpBUxk7lWMgQgdw2KaFiTtmSJ8pavNY7iQG5GibifhYz2rcbFOsS13UT8DIWc97GhgGe6bHXneu7mQe3vWLLJrF3Wert56sY8xJvKlI6gPRNuAweirTH6ExR09wNSJFr1iKJ0U16ZCYStlR+WpE4dO8vJMRUDvjaQOVVo1ux13zqvTRrm/C4VbGSMYa29LfSjak2QzVS1Q4d9zNbqf8otmge1dpFqVPBsWxt9cnaF5Zqhkt5/L5vsjXEE1fdiskX341iJKTiyTpf3NN3E/cMZY0YuxZVefhNcq699SbaFtmr7E9xq/+h5r7UkLPG0pmfrrXP1kWS5c/XTqkcArJoK3JM3rmrS+1Nx364U5kv3WFzItLwMz/4abz95Qf+8i/9Zfzw8UNkoyVpgmeruYpYy/w9E7tJqaJM7UvW9CzK7+o95t73uRfuxiQU0bfyDte7TdlgvpBni4Bdv6i5EslzxCbigXuo6TPjZc9IzYNE7RMmQif2O0UpoCnm8rtyxwjWvvkctKrvVHDWuY7b/U1YNu2h9U4SKeLtnQ9Vs+eqn1Mek1BMtrhjC4psiq0sCUUbBbw9H7MIUalvrj1Vf98WlnonP/ZXAr/y534F/9r/4V+TguTH9XF9XB/Xx/VxfVwf18f1u3X11fHH/tofw9c//Br//v/83/+wgPu4fqTrRyYpVXdm7x1jdBhS9kZNyhlA7+y2b60Kb1XwUMHfqI4SbvAEoqXIAgBg8EYrqvKrLxnxCVexj8fddBaEGhzNHG10XDY34LG2yo86m6rgk9WpEndRcl24rhPX+RQhgWQWrFDnVGCFYV0E9M3ucvDjeGD0N6kkYQNjrR/43vcP9D4EGpVijklRwYFwHGPg8XbIDkrAbNCOZsW1lZbWWrDRcU7a/iDVKScLBJgE5BNYMwE40g3XmlS9kY99yWlT8cpVlKaqgo0DkY6eroLHQi7+tdYTFEcSgJPsdpxrIfOCL6BRt5xe7aomsZjod4EYQeDTDTMmYA22SJbofeDKJXWUAn0uKvOkoRltzxoIlM46jK+JnCK6OIs9kZQzt3GokExbGkp7q7JgLBhc14UxHuh+gEUb2i7FUuFXY9sA3QtYXOpNXY9d9jUkObF+xmfsXV3dcILRUcVeJ8FiLaoRZRXraNVmbngchwgxC8gpQIhgxVLRdkWid2CYSCLqOqPL24CrqB6LHegLKkasgHdHrklCAquR7OYmYwcA50jrXIMcR64hWwnkoiz1aEAA8VzoxyDZYUMmjSos68KKiS5SWxsPtN7x/uULlkCmDGBmwppRzQcCJ5vhaAPIwDgGogdi8rPOK/DN88Lf/8Fv4+gdv//3/QywKu4Az/NCxqL6S+tUNtA6mO8TzTver4BEv2Aw3v8E5nnhS8jyZAZar46zC00EOpijtUMF8U6rPCnZZC6psBGMfhtH1fwBKWVFAG9HJ6BnDYaJMQyZE8doaA6sdWLOwLUSj4eD8vKJ82KnHpBbzr/3AaTh/Tkx18SnN87Xuc7dFX8cHdd54Zsv3yJWKd84zvenVI8W1lw0b/SJMQasU5VhqcAdEJDhBusEFjJVSDPg/fnEMQaaOYZ3WhiCIKClYysjeGMsXBPdcCvEtNgEqPSGFiQGpJ41A/j0+ATr6oBdJK58+/4t1qRSUO8Nj08P9N7xzAuRwPmcJFrlxaJeC6wIPM+FjMCnMWAuu7SWyJnoGAScsLBi4jEeOGTrZmlo/SBoZ4mmguOKAEJAcxJwad1lqSiAOLS/JYFcNksGyRTW4N0xwVjft0cCO5M9HYkJ71xPGQXY2SY5ji4AVaSFmYDTi4jzJSZWilwksh3ncEecjA+lPECyLQvTN+k4KUFfFjwZwPKt8ACD7DIG332RsVpn8TBlJbYJUlLAcxK0iuQMFVlN1qxH71hzItaFdjS8HcDon7DWwvO8SJwSMB5YuNTBipWYuQDcgGGuE+4DA+yGngHENZHdt0qLecImla9oW0QC6WjYY918U9M2GSKloFGxvfbc7obshkCXgpRjuGHNF+J07/BMvL+TMMsiMbu+0xinbSvbObwNDO+4pjp8jWTPiED3jrSlvU14FVENeG/wBtgJCAWBm6GnFFZaYCSL/1O2eBFBdbzkcy8rUKrBMm4gFk5gPwvcYsxsTrXBMQ4qXZwL3jqad/RuyqFCHdsL1xTJOflMaCL6CNhPBxClJiA7vs2GgNSEAte6qJCWKtQLR2wrZV+TAjtNwNKB1gYiv2BdF5o1AaFFdOY+sjKRi2RA9wccDZFA7wcmLnhwH+P+PrEWwb/WgsqSTlLuxMW9sHekyJptNO4pybiZwTWV50JvECnsVmoJgGA2bvWDH9+r9kbHT/2jn8TP/8YfxGiVe3K83G41CGHVG1QvELcs9op8ksgNrm/lGIF+XuogfpOaCrUhKKvPbIqJ+pxSRrCa6wKvNiAsokoBU7EWcztZSfHsITWeJMEtV+ypWHfRGok9pmcGCkRqeDzKQvt+LmJyAvS0vvpoG3zayivttiUpKzi4bJVLCcT9d4xXqULc3fQrcwORVLpdm5CxATJT7G5lG6e5WOs1g80iXiAgNmkIYC5cUPwNzGtvy0SLApGxidNmijnusLgJ1ZFJm0pNnsyyavKtuMbptJFGERQSxQ/QW+AckBLOywx++V3GJKrsNKpEJGDg2WTPz8JPs4hj+vcCJEWkIE8k9xwEsNV7EmVHzTEtsHtbEGZ9R271ENeZpMgTmqr7fLTJFG5b6aM0pXhk8d1MwRzu5R4FziaC3yPyVtata91R/eJWxdgzP7FVCr3xc3MxHr+C1TCDReWbJBJxvTJOTBHiSQ6Dnp3Bnv+OG0ROkX0a16KJOHHNwDdf3tG84Xv9836OBLbKbBHyav/nWXfqHBj3lEWpDPI8OUFyUNkfp/KxijswE3mFsT24MH9HfOLKpPUhiTpbHM1qX2IctSLYIGRby7wkgnZgrYs0ZmwGqWGuWHs3n2GThwAgU7UWcAzXYuMCVZ2UNyoP3GpzAHKu/U6bajsvvMUNhKcILDDIlu1CSn3OIAWWDb5zfL3mmc5ClsCm+6opbilGZALNpHjl/PkmYuVuOMjEXBdW3NZopSpMYnXgmnPHLYBEH0RudUoqIymvt8RSnHOpTJY2yiH73k1mqnihmtsmNOhxGX8ZRNigZbCQHaCxqYkx8VZOoYo360uu+V/zSgWam+yx8p4M4Oe0Ztuk2UWi3TZ9Ff+CZwXaOnJ9ujmbqxTva8/1IgMrRhQ5JF5IFYCUcir+oxTR2iYDV8yC8swUAbfm3iaaaExSJPA0BoTmso5WTbCPIrNJ9V3Wd1uRbudjueepVx6St1oi9M5IatJmkjw7e+UTrvswxXNZ/pFTqbwERZ4pImqRatQ4GcYzcVOeWXVPqcjW7zRj3nqpMaTGC2rugBsQtTnZS6MF48NPfPt9/NJf/pP4S3/iV/GPxj/auc5rzDAzmHKnBaoMl0ObmyNkiZ2VA+nmQg0SrvdS5CWT3ShyjwQqvQudRUkW5LnO3TDldFr5DM9iuYmXK6XaDWAToRk6aR2t56eKYaKJ8FVzNfkSdaRU/rDfFvjMtS5q31U8b91hc2Hm5DvX89Q+2WqvUoNKpsvevnKhqKO14vC9BlPNfTsGKjZsNe2UoiTu5+GzU2kWWXsZdkxIUD25at4vqeCP7fXzv/7z+NP/1z/9QVD6uD6uj+vj+rg+ro/r4/oxun7/3/39+Lf+/X8L/96/+e99KCp9XP/Y60cmKR2dFmytNfTWCdQbO+/cDUPWYaUEcM4T1yQQ23tXUZ1F4wQLfa2z8Hw8hkg8/iJL77tYksHCcWRi2hL5qApcvklJPHQSCKoO3zrIRSTmWrvwYwDmmjif75jzJDiOKhLxr+534XzOi4f3xoLH0ah8ZHAc/UElEyQuTDweb9u2zZLWS9c1gWzsNA7gOB6wTkAmVv05O4JjnliL99ME1Mx5qfje8OntE0kmYGdYSYuf1wWsUp0Choguzy9PuCciLsQ1qYuT9KA/Hg88Pn0FOw4W+0AFjLkuzOsL5pooWe01eUjuzg65a14E55ujWUd3p0uSNb2TRSBOh+Lm7YXcZAJpWDw6r3fwVA88r/ddxHp7o1KH+tfYdemgTVIughK50H1gJckCmYuy0nOSPGSdxXFLdVNNgrPBe6e9oG81nCsWIhPdXNZE7DcrJZ0xaM1E0kuB2ZxTvesdq4vdVVCGJeZ10TIMVNFyFaeakaxXIIoJYHE9C4tRJF+YU0FiTVr2zTl35xYt6QyJJlnrwLwmRqOc+sog+OYNqbXAgmjIksRw7UrE4n2HoWwcA1L4wKTVXQSuJwvPxzEIokq+2l+KomksVi11ihmoXDYXxznnxErOV8qVG97GA/Mi0FfPHxmYsUT+Mng4egN++qd/Ao/HgdYXznXB20DzA8/rZNEuAw8noe+cCy0biUwq2DUzYE5kJIZsGdltnPBOhS9vjrdPB374zQ+BpOpGeGLlRbKks2AXV0nD9x1rqgZI8kpQjW0tfP7qM4t6k0odR29Ac1qsYSHiiczAeX0B4Hi+Jz6NjtH4nhLqmC4lABjMOo7DgPOJeZ7oBqRPzGThcYXuAwRdVjjOJVD9mrS+ui705gTGsWCTdoz8JYOhC1Tj2uPFZ3PtFRmJ1RLv5xMZt1JUoqTqgQ6y+o7HAav47UCTReK8TmQaej/QInHGiYUAvNEWMkmMdYWYOak6A2M3fH4BrJ9Uj4DfxU91yvbeEdeJNPDng0SdFXMrXJzzotKfU70pPdDccC52kD6OAwRQee8kHgHzutD6QJUxWejvmMZ7tGboPgBQ+WrOS2QeKYA499oCFK55wXGScNgGFhLXecJtkJiBCap1heJPEzmV4OYs4DxfOqRjIq1RmSgmmuwIZ0zkIvAdmZiLBekGAtBmJFg0CGiKECjO9d1lq7hiYdgQQEYirpX6HIDeGomJZiKmLMSkYlgbBVDymbp1xJKC2Vw414T1gX7QWrIsMs0TsSbiWjApD3pK5CsMcyXOtUSABt6fpzrZCXg+n+/oq1PxC7T5c2e8z7lQFi2ZVODKCHQp/DCByE1qSBG8kJBqX6JIEK2RIOQrsK4TwEJcRSyomGE4T5KoPz1oq1idwmN09M51f4po2bxhBpV/ZlBpkI44UvcJWsX1lrhiMv4nFSIsCKRlBOK6ULYX3J8JaJKU6WgRLFy7A4dt0kEzKWVu67GXHCwIevbRYCu5f1VRvAiPTkArYuF5niRBgfN1jMH5kQIBE/DRBZangLGFRZYgzNveozOpWEO+mmK+bA2vcwpEfNnnMrHOCYpNDVSHtacUXdSm31uTyhPg/QaT5xQQKPLG7rCPRGIyb7i4X5uIJ6UmUaA4Gp8rYAgjqGKN82KJeFfqEoBIL4BIiYTOqjv9x/EqFYtuDX/kb/0RvK1PXKPaK91pNVvg4Ao1Hig2up4tC8Aqgg1yq65qOAV42X73BSASFFVbv+E74G7unykLnSxOi4iHsUkKW/1n0VoyY4kUpO/Wz2xxGaSUgQpTspuABGPuIHAskFIlIkhk2ktIyuO8cfhtAwTlczUvzaT2R1mvUm4I2VC5GdoxCPpaqfpwbJbOXQUIF2lhzglbIHAqFRCAeX9rXbZSPFq6xj1yYcW1c2xAJE9gE4ZI9sU+/7nX2Pk+39mNtO25UCDnDZhD5ye+11lkMQPM+ouKxh0P+NwmYk/cylMQASFvxRiYbJnsfj6u89AZWUo3eatxbJKBgNtEgYWyj6rnQM1ZzQuRgXzneLnJIrR0Ljs47DVAADY38Ggb5n8h2yX3B+ZDt5rLbQNUlj08Y5ve0VYMFRlkA6iCausZIyvHrH0Re22VLVTWfeo7SfK6xzBTewNK4elWeqh1WFDkkqJl4t5zXIqJkaAC4YqbIFRrOoI5eN5r9PPnN/TWYBaK99zXpt6/4c7RSO4hK4q3Ws1RRLKbcoNqUKG1PH93DFr2VpwJM4TOhQVGv1qHm8Yx97q+VTcQgT5YRzHlYs3U0JX17pdiKc+Jay705ug6m9Xn3mQSrmBvYPPHWiIS8C8qfL2sIb3HFSSThNQ3t5qb7rmsbetsVGrGeqsE/DXXSXxqO2ZH5bciQ22Cjea3mYtsXCssN8E9FHd5NhPxY5METGdur7ChNTJRkiVziiBCqsmtblY1LU3ypTUWEcwR0zahYSsLac2R9IO9x92KZQpn+7PuNX7/d+XHOk9VzaTGqSylANu5gjfftYmMepaGEGlnbSUr7T5JMkcsfkapRCZMnyHCVJFyVJULKQ6JRidrdt/7aKkMFRWlSDeRta8nXl4OShnNgU1M3ZOUQYd7QzWCQfcdtuMNx0gqUbBNUEvN0TTGYuaSd/wz3Hs952QpXbF3ZGEnGvsdcn6XKirVHeu7Q/kgFPsqDlbs5lpRpSRvQvWrStweH80Jq3XunGOxeB4lUaliAJ/3vGhZ3GQFW/tG77WvvO4zJEdFAp9/+2v8c//5P49f/eN/Ec/PX7i3QXUqFCGKRJnmuRWlECmF4iIf3qQxwHbtFAA6TCZ73IMqf36NBwyXGi89R+RN4MmXcVGUZ86s+kNC6pCZmzxddb49jvqc0JxLgH+e9/kvX+ZakWkjExNSk64Yp5jouicqT0t9rfJXfYYr12At5yYobsKtYqbdQQoJznNNOo5v3nMqkWr83W9An8+1tYnjtnfw+/x6c7l/7C9fjl/5c7+Cr7/5+nf7Vj6uj+vj+rg+ro/r4/q4Pq6Xy2D42d/4Wfyb/8G/+aGo9HH9Y68fmaRkdtsDAASHm8grLiJS/XlEYM5FWyF1YbTqGk0Asg8Y44A7iR1szWcXV3V5Lh3eqnM+M6WS0XcRIXOqTkXVhpgqrAb/OzviyvaDnuQrFq7rwvP5jrhOsAjNgkprjsfjYOFoTlqhzIVV3udQkQeJ83zSqMZoUXEcA4/jk1QjgIiT8tXeYJD1XO/og2Bdaw3fvn/BdZ2ISPR2wM1xXlQ+GePgkXoC3cvCgSSxyIWVi5ZAa6H3jqN1WJfssWwuzucT5ReSK9Bbx8LCeLzhq6++RxUoEc8iSMaKNbHmhcwp0pEhKJmgYtqFlWD3Tm/o40BvQ5ZEssQwE+ikwmbS7qY3FWwCu8POXYQulRBKUWED4HkBIGnrmhPWHHNOjNbhTZYy3dFShdQmda8EhjcS42RVQ+WBgFuXGtWAt8GuuTrjJ1XCDEAKTIxIhC+0RiUxKoYQAEECDZRjTnV2SYMHloG3twdiniQauGNFFZwK+MUGM2CgAhIS3hPncyKzoXnH6CzyzTVRVcwaa3bILozjAWvjLuY22jCec21wxdB2MXZOWidVsTniXkvXOTE6sHKyi1Lrmp3ED8Ad87qQ1wWV1gjqt05VqEkLrZqPAdoGQuSkeV4YQ4pPcyFnIAdtLDISHrT6MWfB/VqL1kzHA70ZzhVAOkY3HENkhnEg0WQzFEBjGXSqaAgHzjkBfQdt/BzeEo/jtkw6jgORQMyFo1Pxh+paRdYzhHOsSNiawAoS+FiNAhXU2gbeIhPXNdGPAyHA3WTX4U7bp7IpmevEmt8yBnZ2I69zopuhu+Ht6OjjwPv7O8EY7zBzzElw1JNEr7ej48t8YubC8zoJMCZQijIRVGtZIvIALIg9rxNjPHaHuFvbcdYAkmrUpZ0RVBIxk13YIaCPRd9liXNNPPpjy/x3kQYbqPwVUJGxOdUkQKD6nBOXNcAaQTWnahlt7PoGr/uL3Qyw0LvBWyCSAKd7ACbygFG5phnV/QILn94GGkiWuaI6xw1zLvSDcRgLeM8L7oG1JlprmPOUwpzjPCeunGjNSQYSKTBheJ4n44mU4Nw7O8QdAuaw96ButJW4goXzAJ87O7vvpxTphjV0P+CeWPHENSfV3iBw0ACTBcJoHROTRLLmCCsVB9kJiOBkrSwSVPheAm2tUfEvFxCBY3D9PM8Tb4+DiltG27Q+GkHVk/F69DcAKTeClCoRwTqY7EObYcExF9BainQjguoLASrnBWuO0Q7Og5SSCoLx3ACshZwE6IYsdIx3hHVx7pxzibhT4EDsHCci8HxO2m/AcWHisM4u4JDNYVRXt++CbgDbdqW1JrW0QEEPIcClmaw+WgMwYdlhduczGfce+vXXX+E8B5rnBm6P3tEabR4RBqwCSjne3KMZa+acjGGjofcDDzPECSl2pFghXEfXohrCQoFeJNDdEIIIGwKgkbVXdxH/wPvx2JZAa0kBClKh6Ae++up7OM8T55wI2equtfbPVgf00sdlBIYUC8vqb61A80WlLqPZrXcq7tVe1jrJ9JdsLQksCGi+Eq03RONYuUi3wCTwnACa7GalgpVl4ap7MnO8HQ9ELIHBN6h0Xdd+X8QQY5PH52QMZFxytP1sUViXchUCNgBkw7JgTYo8eiPskCfYyPyDIFHExG6d/jG8CqT6Z37jn8FP/uAnsS2kBagWMb6wuFCcT0s4uM5LiWiTM0T0uclbBeYJWNcBZFtagESNfa4xdZUzGJNorbhz/yXgL+u7IYLmosJbMI+tH3D3m2wlJZZY9Z5rvy8QmqZ9BUR6c/TWt/oOUDmqfmctAvAv1jvXvDgfQ0o97sgiETbCbRZFNpUSjcssWtZIBZS7GazbvlfACNpnog5prhjaWmPuKVnKyr+jLHKkmlcqEaG9gGSYdZ8NjYq6rs8AbrCt3tkejUidx+wGLp15XoGaDgBFZtAncJ2HPoNA/qsqkzenLY1iXRkjAQQq8+U+buKQ7dzCrG1wsX6x1HKKjFixyKzJilwRVhO+niHtVkgSPIsu9cqV6wbmtabqu2q2GsA4YCSbhXJmjrPd36mfD+ULW5VE7yI3OI+bJGdFMGj3nMwC3TXaeT9/rBCB5CaihMDa1pVfrhTxne+s4m9I4cpkq1O2ciuC548kEF1WsrRPA4V0aj0DIpDkBvNv4kNZCrr2Wu567rTMNnOggFwpgVD1TaT/ItxoqTgMNhqbUpJrL2FS5xBpQuS6In3A7nNvqWk0cwqcFKBvfhOYNJeLjFXzke+p3XMiIfWpi8piToA9FjN+b4beeMaZF4mzdX4pspklSblF/K2GkVjV1JJbAaisa18rjyQJkBiQi3O4SB9m2J+z7y14fog59cwmIoJIdcmX6yJKlGKz7TmnFepFcDN4JlbO3exV3MYAABEg01gnue3e9UkGuDNecXpqhZlEaBa/nHZUa5NwQ6SUunetDn4+bgXIbZVXhBjFyIwllR0+VzPlDlKthGJJkaBhtQYrTqaaocC8IF8mqSZSKS7Rkq6aSda9xquul7nVX9wNWcpqNXd3LJSKlc561qy49YDGgrODZ8AZS+qmajgEMEbfY2Km70PjenXc5xVAKjn1XL7jVFl9YRNxNBf2/gDlslRtu7mutp/DNpmoYiTJP9xJSeIpC197me9axTt3jiJBVWzKFzIpqj5lm3R5x/s6c4uwGrWu6tOx1cdcNRY2DjaKala+k5yLvXftGbHjP8zRHXdzAachSKIJbKXvTHz+zc/4E7/6J/BX/uRfxvOrJ1rvLC9KstA4SbkGM3YcU/SSCtTrLq5Br92q9l/FO9S7eNmjKrdKaaSPYwBV53WqHufe57G/O1/yQI6X5mjF4OA5t0Iz84HvEkxJCsy9sd3jlWq0ECmocqaUxWJCiv68NkktOf51H83bXk9aapw/Re7WQ4TyQOYOQNXHrWKQFfl7D4DeIe+vUmQ2m+wf2bOfa5dqTpsUZ9+d3z9u1y//xV/GL/7aL/5u38bH9XF9XB/Xx/VxfVwf18f1/+Ey2Iei0sf1I10/MkmpOvlMZAT6bDeB9CxSlqc6oCL4YOGhSeId7gKh21YrKkChimm9ZPojSHZIdZxXsQRSt1HRClIEoOqEChZ5H28hpRp206ooOC/M8wmDDurBe3OjLU9iYc6USo/8wXenH+9tZeAKQ1uG66IVVfcBH4608kpXMdgMfThaJ5BGGzjKfxC0WnBjQfP5fuLzpzeMXvZQgd777sjjIZlHyVhU8jmOUnUiuHGMIbIJMHrHMqJux+MzgcAYeLx9RjtoabLWwroujs+aJHfEApvyWWByuFT7pVQRgbfHZ7Te2OndOo7eAalZAXfBfc3JApd3rLgA47O3RssagHZuJEQBmfK5L1UAFTGqWNnM0ftBwEMHZzNg5a1oUd1IeAG9UgX4UsDaXemhQmIkRicwZLKX671jJZUqkCwOzmsSOBIZrfcuaeVErolIgtOtO/roqI6s3pwqMBlw77I/pO3aLiY251x0jvc4DsyLhKM+nFLTISl1J0FLbc1obaCPA3NVF28phvHZWjeM3qS84rrPFEmJ6hsZLHysFYgpJQ1AJC4VfowKJN4pCU6wgOQv03xPEPg1cH2ZCqS9D86Ha7L8tDhO1MU3zHNuAsQCVVk8kkSINKz5jt4Grnnhm/cL15X46quH1nzD0T7hfE7EmngcB6450b1RNe39wlY0yID095Erd70IGTivCwZsiz6CaIHzy4m1qOrRW4d1zcfWMC+pKCQwxkMAncOcSjKtN2jWo7lhACqyJr9zTRzjgW5NtmkkuIxuSDgtgA6B0u74NA700fHDH07kXHj7NDDnUsFy4f38guaf0FbDXAR1qtOZpCgW4L58+YLj6IhF1aLPnz8DY+A67547gqsTuUJzfgFYmFJWW3Ox+9SzYFYSBWE4Wse0wDlpmzB6B8wwXIQL75gu2XIRFlPqL6MNxvu10LrDW2eROgGPxHpeAi2kWhKLlncolb4AQvHYTOpYgeZDJLWF0Q/AaNeEBOYKLIDkzSTR8rouPPrAYzzwzfuJ3kksqI7wOWldGZlS0+DzRwQsJjINbdAGdZ2nuvRp8bCuSwQJEpNGa4qTjAcrCGp7OrAMDaZCM8vUa10CSPqep4C6173RcksqNZ5356yjI23uNdvHgTlPxh7FUTPa6XVvSFm2cGtQh3vreBwNKxce7iIP06bLveE4Dsx50ZayCr4i+ybRIwGiAuRUuOWfJm20ZGO0UiTLwaJ47w2YU0pMjj4OeFLFhEQiKul5Am00GBqByLWw1OFdhe+YU2N0d/fOZchostAiCIqLMS4p9SJSrkAHY16RAkKK7FSfxw7/pi5nblMhsnSCigZvb2+4rovvbvLPmhk+vz0QOXcR2g1oY2A0FqjXzPu9UsZtqylEBpoNEe64D2fIosIboLTGC2BqjUQFA1Y2xHVtUJ35CPO/DY4J/CmcgcoFLqvKJdUblxUBUKBJkSDGMdCShJAC7EpBbK2FqqHPk93fNX9aZ8f7vC6YbC5ugpNvNav6bzUvC+hfcyFy4fADow8gb3u+AO9vZRHeF2YGhjsBaoEWcy2uZakiJPislZOstQQ0CkSQAlWRlVzd/UVOdHPZVA6RhIOEZiz0YbRyVa7A9QztU8Z4kqAKoACPH2dM4Sd/6/egRcMf+i//MDxIMvfqYheo/GpXR0DGdj5d8akIPaUqUc9cj14qMqWSQcwy9mcCd5d6CphBvsaCvIGx+lwRRwCIqxPKxaVSp88uwlStH2RZ+95qOASDCLjFAjwMa0nh0w6SrOveUgAUSCxw1zzwW3GPgD//gU0HT4zRNzESIhMwH9Z6ST4ZyR/Ya5NxS2QnDgVtYCBllDH4PJ5o/SAxXPGwbOIyo1DBG3hM7LMKiRkk2PU+tk2LuXLjrWSFG6iU+sRWP1UeXioI0J8VV7wAyw04C7ArMiTz7vZyZuRnkLzwuohMcwP7nRjqneg5UGoPptgrwt0G90XK3RIFuZUla/IWkSdT6qdFPNGeU8lqqd4ssz2eXmdPHYJNG8YG6cvGJxV/BMDXWNTaM1CBhnuW9oYdUO61UPZeqOdPEYdRVjSKv/ECgFu9S/03g1SOlZ9sgD7vdwIALvUJlEIERPYhabj2gVJ8QZIcsFWZoDpGknATMMQp1UCR9SMSY3TNV4ebFJjAWL/JM5Evtj2CkvV4GY5S3yERkmSKm9AMEZFJJmxaN6YJW2SEWIxNTTaDdf53f1mTsL1eam4X6QXK/+AGS/45xVK0vpt+3KXs6IYztBbHsckemWyMMRsid93kOZ4nYs+NOScAR6oxqncqfc5aw4zGrCvUeGm1kShQBK1EidFlktTjmplw1oAyEmilxlbzHyBJl8F5K7EoljXN5yhSkuabGedRKYNtV1iRY7gebD+7QukmPN17V/LMtu1+VQfxe6+iujCtjdeKfS7bqytCelI36asUljl/yhbYMWOKhGSAY9fGNuHDDWU5VfvcVp5TTKpmQ2UpIncwz4uVVCeV2iTJFzVPaVtX8dYs9jt1bzv2mxnSi0ABkMRZ8e5WXUtAzXIkrTatN4iYxXrR2jGDY5mb0PG6vzFGJFxEHdPLqPxcK1Z7gsh6oOV8EX5aE+FEv1cKQ63OnKXwIys2cMrdBLKX/40skqrWtBSKcsVWlaOSj99rQnmj1bMycO6cpmJ+bvUpxrsQGbj3OvNoPS2OXW8uUv0dx80M3pvqFvowzQGzUu3kOe37334fv/RX/iT+8j//n+Obty9cM3qfZb1nbsAC6xabBG57PVe85Fqr+ainsqoD3tGBZ8aERf2MFqDi051vASTN3meUV4UgZHKfUK6z8zpXrVHqZi/hfM+rVLPdq1pu/RTHl1XFJucAJEn1XGp2v1fVA70Ocwk1uIh8u8meRbAEqskNWelUEaHu56tlX++uYgrdD9red+ps0Nww9Vn7e+qh3dCyyKpszLn/8Mfr+iP/xR/BOAd+5c/9CsYav9u383F9XB/Xx/VxfVwf18f1cf1/uT4UlT6uH+X6b0xS2p2V6qakygHgvrC7Scs7HixI9N5JAGokbbTGgwRllnlgszpcxV1gj1NFQK+zUh00WRShjQz/e6McDcYhBYMLuzN/xcScF5o7nu/veD+fmxCSBqDdSk+ZgXmxwGQJqVhUx7MOsZaAOs4gyfMxHnh8+izLkiklG34OrV0aho99+l5zUkXGnQfImXieT3z+/EbSw6KVQussNpTCDcCOIXfDOA70Q0oCqfvVIb5UUhKUGndvMO9o3tG9YzzeEEng5/COmCR2hOwqbAXQGq6TykpmJFqsoDpWEdNiJY6j7a6dtZaUq24Qk88olZbALn7O6ymrrI5CS81ECpM61+4w1eG8NUc3ScA3/llcEy1l62CAy4aod3XjNR3yo8AjjteaLDoUnylBqxaoc9eSHeimIn6zxp+JRZsXMxyj0xauJ65nqPMXVBPpHXDHeV2Y10Tr6pIC51tTIe+8LnUmsrDfQkQVKZhQxeHuUB2yEvTWJEGtddlIsriusmOrrn1HawPHccCSCke0h1sCaNm93JsDTUVzGKY694/jwPOcBIbd0Tqtl87rQjeqe8Fiy86v3dktIN9p63SeT3gacgUejwfGGHuuuNMqZM6nAD9HmKGz7AOgIddEb4Z1XVQQm6H75bqIBM73L5jnBZhUvIzWJmVVYM0R82Lz2Cb9Ba65YC1wXhOXOrPH4FgaHnh7e8PjMDzPi8/ZEjkvXAsYskvB6DivhaE5X0SgiMSaBPiylyKVZP0VS758ecdv/tYX/ORPfIU+3tCOA6MtdCTOk2DkOLTmJpDpIgk5vjyfCHwL9w6XCs14DPzw228x10IbnbaAeLEQChbHH48H3BKPQbu3pKeB4jvVQIrYRLslge+rOpw7iZ1zUX0AiYQTnHDgPM9tE1YxuBmLs2/HQ/sAi+LzWhiNa98LNDlpswmn7VueFwvrAOaTAKy3ISWLgFls0o/ZoNKLOg9HP7AW1cBa60iRJxgLTsQMrKR613F8hrnhOp+4ZmIYle+OPrgu987Iot8mMZo6/t1kx8Yi8ef2Ffpx4HSIYNgEKrCo3DAEwichYAHyTZaPz/O5O9yXLTQ0AXMJ8w4k470YeLtYvACo+RcmtS3Ob2yw1WD8DJtcs40WcJC6RBMYHWaw6ATNAiJi9irh8r+vlKXlRB9c44nESpJP1qT9nzUCGYIOEbFgCMWngj6AdU14Tyo4mYvEKYUecC7FXOijsRgOwA8pyaTBQXJvdbEevWOuq3idMACzwCxjRz+tkxzvJ1X7uvGZ1qKyIFXzFtYEfNi2E6m4WcCLGckEpm7XZtyk7VJ8XIkHBpYADBeYzLzlgpuUA40g42sxHki044BZw5wL1zWRK3HkodhHwoSmFDKCykXnJDnTaL/Xum8g0t3RBRpMkQpW0qaUhfXQXLfbagbsml+KJwT52D2/clGJUiQ9ZOJczK9ab9uKDdsWo+x0AmgikWYAIgzPRUufuTRvpZJQamorvgtq50XVrZQVYEjdqTV12EfQltEdozWqP0kBwRpzvk1gFdHdQUJIgBaMkUB35kEGwLtTOSBz5599uNRHJhWgGhXC3KH9Lzb4EIvWet06t4a1kLlwKqeuXBwiARQYYq0JjGTeHfMGUH4crz/1f/9TANQ5XkDNJnMBhtv6CxCwaBBxwF9AKeXhqPz4xuqzgDBAROzYYPU+T7wAdaWSdRNosMmGBQwZsOeqG0H5VxvpNMVa4zvaBCV9BzY4W/O0SFAC9vRnZZu2QW3UOanI+i5Ajj9/KwGJGBVU0ByjbyJlRtwEh7zHqxQ46pxSw1JgHlAg6a2GZyJqakZSUUE/1wT40/IutvKAaS+sM54rz04oF4KUZpQnF+GnrOuw45/mRWJbpwEpC+MC3G0HggKdSVIzAdx8Ri/S10bQsZV+aiJZ3uuuQOP67A0UAxswT8VTxuHQ+SXvz9P91udFjZHxXGCc8MxnBERSXYIH4RVS6DMHPPf62Ional6BKTfJe7y4fko9IvRczAvbVkTKrZxZqkmuvKLOl2ZO9aOsvF+Kla3WYpGgsNdnqeUUOaMsmIpcVpYzVJaIPYYp5RWE7caUSJHj9X6p8tP2WjVjQxSnoD5H76sOfBmyRFPuGEkCskkxJzKBefG+rcBwbLD3DiE3YbHiMQnqFSuWtD343B0821ozLKwXso+A5+rWERln27/lHeeK2OJ77O69ADCqKMaFT4+hc0GDWaKBNZdSajPjFguRb82caoy4UMpiZrS9PueFbYVYa0QhreJcEXDLEp57m23CQFjZXub9e0VUyVvpxjSgJlKReamzhaxp732/iajmraOZb3u5ygfcDc2w52hKKdKas86RsnRaS/+dpCT+fpErAaQsKFHbhmzDpHxUcbJI0bFIJlpBO3qSetZ+p3CSclap7ymiFNmpxgdQyIxSpiliEffOjLKpKxIIVaYqTDETsL23uSdi3vMupE4E/W7FSXEiUGQSKCZX4xqbHSrmxJ4rFR9q/2NMzj1nXok4mYBL/bXUliqG3GPJ2gf59w1FgHTlqqW2hiJqaMevc1kpF9beXXaFqR+oeZWaf1XHqJjJfC93/shxsL0nIEoRjl/tqVvYE4XrlM1CYANGYlvDNdS6Vv4s9WUovFcuY3gltiSQ2ruqNqjYsUW+jPU9vmPGqBB57iY33eTTyiv4PlWHa43rhU8LWgM6fs+3vwe/9Ff+h/jVf+4v4h+NH9Yko5BqEaCMv2GggliaoTVscib0PrTloKpGZhKZK6U5UPkugb1XulHOKiNxRdmz3rUEiMRTVtBZYxc1oNW4cBvV1TuvHPQ1fzZADRLY87r29E22zlTetdBbv59JeQUM3BP0mTVnKodgQ9K6LRXTANW4E7gtfP3ON0oZrRp+S/EMih1GSVaqaG6f2dR5RTlB5TAvTQGACGf7z6wy1R+769/5X/47v9u38HF9XB/Xx/VxfVwf18f1cf2Il+FDUenj+v99/egkJSsJXx7CzioYu+PxeKjoXAVOgpAwZ7G9D3hrkjmvwyVEUJoC54CIaxc+SIACWh8CH22DMq4iJk3leQiesvR46vS7ZmDOKYLPRKwL5/uJNU8epv0WY27q9i8QaAoYzMZ7ITDQSKPxBNxwPB5wHwAOwDrG2xtWJt7f36mmE6HDL7v+YS5AlxYqtMp50upt0bLtOBrGaDCnWg+soVlHrCqGJua6YOYY/aCakIDrZo7rOXGeFzIDj9HZYe/Q+He4OpWbt7tov0i6ylxYceGKuQGz+VxY1xLRBKjCOm9GCktO8k5k4ryeoL95yObngLehwhELAU2F+SVLOSuFDcjCBW3LXpvmmqloS5JS9SyHZNSpLsMCwWRh0DuO4wG4AL9ueD7fSR5oDcBigVpWGlRuWupYZCE5AcS6YCJCLXUTB7B/163tosRMWsJ1HwAWzutEB9D7gRWSVFd3J7LIbnzvYbnBobkmYlLVhoVkA3JpfZSMPq8qVrMznh3a7NAqC4nAJWBgRsDmhMWlosVBYh9UgBGxwt0I2K67CO6NHblfnl9gmfiqU7UhronLSGpYkQKNgZTln9BdJKg8lrHQx4GlArNLkSy3BvcEXHWkBGIGphsmHOc3X5BGxbKYLEp99b3v4e3TA76eMCSuKSutg+MxHp3rKKhMYI0FzufzYoxCwxgDz0WrNo8qvqrzz/ksVwRGlm2TQCcsnOcFbwPnvAgk6TO/+Uff4ng7cBwPfDm/qFD3QO/A9XzHWnzc1htJVyvw5csXBBzzenKdHJ/x9Vdf45tvvgUa7QOumepknsh3PlM/Hogv7yzaZiAvdrz11rFG4LyeOKQwE2oPLkJmkfgiLgL0DKciRA3MuBBLRDYA9MBkETDTcV4TX331QObCFYFPx8Bbe0NcLD5e1ynS5iKRa1G9qywrx3HgvE4SIQQ4QB3GboaVwNvbA8858X498egPACRGIAXcOQQGkIgwRodZE6DQ0EbDNRdJTausPUSm8sRKMMa1AcRETtqyhUh5tMekeknEwjFIOixQOGZuYgGJN6YhKoCVxdkZE/P9gnXH+3nJEoJA9zGGujCBzLlJfmyOT1hvaMehYi3Bt0g+D1bA24SNhvEYKOIv7QNLzYZWAlAY9jaQa+4C7XUumC00zffzOjFESAxQje/TMXBeF7759oLYTYhcaFIPgfZQW/caKrCUymAqzrrTCvY6t5IMssi1Kka7YV4FUhpc6nTWaNHRvJFoZU3KANhgvpgM/Jvez7yoLuVZgAZvJja4IFuTFAkKSeJeh0ApWXi6YRlVnnqjWsB5ve+9FRtwJ0jiXgp9JPilbEAiDFi5yWBmgKcUHqTQlbLIqLXqG/TLFwIk906K6TXkJes+dXbP1qiSNgPneeKSXVlrTfNk7rnL30vZyyQsywL3O1kg1a2kdCbNLoSUQmgxs6hEJJAFzWhHpyJ4BBAooKj27VD3dr3LAoS55xfBMpNrf3e3L1l/SJWmlBsVxrhGg7lkCgh0By1qNQ/NDPOa6Mr/ouIKEQ6hJSzoj0HyxHlNbW3M5byRTD3PCy5lDJR9DQqsj23d9rqH13tEUlFzxcK3X95xPi9mTFJNW+puzyUbZCf4QuHFUoogEBFrveIrP5bXJpkAKEIXQMJCax2bSITCeGzvTS5w1s1uYk+B4HErNtzkIM29xG2NtAH9AqagucPviQiS2ABA861ifkqV65prK2bUNynl11dwXWzbEYFVLlKiAajJymcmGRtweFlaq1mhwHxkna347KZzUY1hiPSaynmKCL3VMazdOJ0IQAY2SrhsuAERV1aQjJ/6LAFtXhZzr0pWuIE65vOhM0XscSFpnrGhvp9AdNOZI1+UyIpgz/W3SrGkFKjqzepnCeoFeFKshogX9Z/a/qRaViAzX0np9uieAKkkxlZKYRMM54f5bXtnL/OobJl4PyJQlNIesBsYAIYVtcCAQHEBxMrrs9SieJ9rLXgDrEi3EnXQLxCsL9WpAoohILPigRWIn3v8M2+CRZHCWoGqyH0OKVA7g0QOWhWHmIVUhr1VuXRfKHWbsvmpe3CYG+akYqkfjH9FfN2KSkWcML1LgeD3vYb20BozrnEC+oy5pcLCMw4QZgg4npfUa0VkMjMcxwN9NFgUyUUxvNluagqtB9tqZGwaqhXt1hC5BKSLdLRnGLgW88bK700vdOZqUtbK/ZnXeVKxuLHOYYAav4Al9dbMG6imgtpkzSRIlPHmOI4D13kiRe4tq73IAKaUo1pjo4KKANUY5W4It62Yu0kRmvf3+tLcJ/q914cr5yCR3mt67HM9YFtRrDUqBrobHv2ggk2arKehNWboapoiUdhFEueqqrlgSBL5jblsU2NaBK09S5WGlnH3/UYpNanGVeSUrYb1MicrjtTMKwXA1hquxfwua3+rtZnVxAWtp7XznYwkgcq3/sueO6n5nea45sXPRuIUMave1d15JRtYfXfqvXAu658VKxBSC9J5wd133qUdeH9/afkwRTfAHEVmqbpDxZG5YpMLtT2qAY0qtZGQUg5zNPGhdG+OmDp7h5pAzDZppZIErsF8mYecwuYAnGTzlRX1VZuo2O1FyLJd06xx549RXX3bXwPIGd8lNNXYiLDGs0vtP9yj2utZJRURiiCq2unKxaa4zRoTc8sqV8He76vZj8/HDcFgIrZqKKRABktNibIKexknVO229tOAt5RiGJW6zYDwRIpYHCvx/R9+D7/0V34Jv/rHfhVfPn0h4R5AqecBvnPx1P9pBLCDR977dO6f1M/YTZLe6ayeAcoJa2+t+lPlcZGK+q9joQHc+wyU3tc3JDgHN+loD9B9xxF7X0XFOL/PZ9CfhVVTQQU6KJ7en+mqr9U5tN5HfWMmyYR1Xqt7uEldewixn0jrzGCa5swLn88710Upd1WJLioT4b1WTOIIv1hE/phevyNKflwf18f1cX1cH9fH9XF9XD/m16ui0n/wP/sP8F//1H+Nj5Tu46rrRyYpNXcVvV+KvqkTmjmqScWdQJ+pmNtapx2YDt0GqjDNWdL4QFXqIwO5lhQAHOYiF6hwTds1FgGmANDHOHAtWqS0xgP0nFdh6VKyWOx6j7mf4QYwHEfveBwH264S6Ed1mPHY1nsnoSUDicA4Oh5SIlrLgSTZ43k9Ma+J+Tzh7nh8/oy7U63s2lhEuM5TnVSBc14YzSgzD5JMxvHYhZOZCw2+CwqAYc6Ai7yQCZzrwvvzBHTIZnGMRICHd2ADC8DKheocAxJnXAQfBXK07njOJ+YZ6Ac7/hGBbgb0hiuWSDrjLtLuAjXvr4+D1kuJ+x0ni6XX+Y7WWDA8rydsnhjHG4uXZvBksbTMi7qKEb33bWFW3bUxJ8Z4QzNDj4lrUaUBKiCZGc4zCGiCgBE7G2W5Yi6FBM41dm/x9N6lIhOAABLZbYVsL+IuyllzWGP1Z05ap7VeRVv+fV4nOgbeHocYCAbvxsJH0u4ik+SoWBPNh8gj7PRjMYtqCcRQC+CVUogAgTQSgljMbiQtGAuXrR1ID7RxIFa8dC8D85rwRouulEpKpFREAvj22yda61hJy6vuLoCiifDFIsfjGCoCs/jyPAm4dm94tIH3mAgznDGhplbaMK3AaANmjuf7N+zbOz5hLoCiVwYkyUbWF7AC1/OJlgFYoPWBNCewyLZmWuRAwLViQeskTl5X4Jv3JyIWPg2CLK2RABhBZSl7HHA02nJZdUEmzucTzxk4zDEK2DNDPwbe3xOZXiVrKnDFQnUuErxLFToPPB4P/NRPfg+JhqM70hpiLjzPCXSOa5FMprobzR3v708cx8BoHc0o300rKc6p5o6VLGZf14lHH4C5VHhI/mvNsEJdnkGrAoBkyGrJDAukbGi8lR0iwaE1Ga+P41Cc71RRQCKto4+Gx+dPcG94XifO5xNYQRtEA57X3AopBRCc51Nz/iYprDUxNYeL6GJV6AVt5FRmZeEYS/ZWXFO2gXxBlEYo85yyTnAHhgFr7s/KWMhFyzACkgTJAonrunD0QRJLBlZMwB3NqTgHGM6TZNc+Ouaisk9Dw7aGmwQPmztmBtAMuUg+ilh46wfgIeKEAEIEuh9IAE8p/RCwTxE4BdSIXDHGYPc7KEN/FaEOVGNr7sDRcF1ck0jgWgsmhb8ZEzkvgUwGs44AlQtghismRjO9cxb02xg77gHqNlY1dDQS1Z7PSwQT5gjdOyIX1rrQvcEHFYJKGYFzjgQMEzE2LZEraP0GIEUuhUBvyyq8E5C5rolvv3zB2+eHwOMlWw/D+/sFHw3HGNtqjl3SmyHMvbEJXA0Rr3IBMdEzYWFY65Q1YQMF4US49YZcGlujah6SikOYXNtUR2Fu4r5wHEBrgRVUXmRsL8u9QO8O600xG3yHGTikRDLccU3H8lJZcbyLWPB8PgE41kyYawyjwBaBrtbYpo1F2yJzRCcguYLxeq2AddvEAzfOZeaCjdZ4L0XuIuSm2W2FUOB3UDWzaU4nkp3HIvh4I7ko6IFGJaYC67Hr6iytG8mfsQhS8nMbvLli2CBQtxZiBZ7nicfjgMR0ROyatIeVdWUuKmMBJAX0XrZMS+REwzkv2FK3d5OS3qKtapGKS5GDJGQSissy7pJKz8pFInkkrSWVZ287xYSIkb8zHxAx8scbV9gEI6v5YVuLQgBawaACXQROmdTv7EYpGWviJpps0kWRMOz+jNv6g+cNwjAphQ3I7nCJJGHffWfgnCR5SCS+TfwoAIkNA1QD0n/zW50IICBbYHcRJXrvIoFshEikIypymBnzaXt9xvuL654T/OdtBWwVY0Vu4cDs91Dkr1ulKbe1TTV+cD+R3ViTXbCAaRMZN3GrLC0RHF/Hf8YiIVL2dchSEyEIVqSn3KDlCzAJ5d9+W1wVHl25YxFpViws8HyiF87fsFJaKOBYpIxC/PTJEVTS8z0/sM+8KSB0aX3XOy0rpJpbm6RQ58xN9ADqwV5tzhMiOG2gMl/mPLZighWurv+LoE147cX1ruo5vdGOKRfzN3O/1Z4QL9/j1TtBiDhTzTlaM+CDcix8k1sgK9aEc3/LG4gmkMv1sW1c9f5CZ89LJNE4lwBb7Dyr6gUwqad47Ptbk4zW5rbVaGlPGjsmBKjY5VI5nCKfexubwIKdT9rOT2hxzfdFCyCIiJCadrbnoO135SLWpFSIaG9be1HvTc+vPRWVy93XmgszEl2EKOhde2uYEygLPaqp6D22inOyBoyEgQ0Ab2+8x9buWLfWIqtVajJUTypFKxKgmjfaWdXw1Jk+ao7eqoTNS3nrtpImkaPyT3xHoee2wdIMFuOMKsKyLVcsL8JVzUGWEAzpxvzc9B4mm25Me+hcS+/3BuUjQpaItLhEMmaQNGIoMkREorqjai2b4uX+v9X259Y8f1Wi2URy1cRs+SboACki/R2aSDhivKWtFhsvbpWWIoHZ/dnNdS8kM1UkrJhbtqbQ+l6KH81NKo+lFASSMkBC0gzmw7H3yjsuvVo+ljLfVm6TulaRTapeJMoDMgMz2TizrSjjVmwiIU/ktKB6XFO8BbhfvqokbnvJ5LkeThXe2PtxxaVUHcS24vSqf9fPpfZ+U95RMcv2eAcSTQFtnzBRZLTrZCNbF5FEE0F5JVUBSWaqP9v/c/88ErHsrvPYgmff88kNN2kJNXfYKHRbn2p+1cfrHzg12VxVebUpF4VyHOw9V+veHZYkZs11qYnT4MkGA0ueN2HA7/n2J/Ev/uq/hL/+h/46/u5P/QZmY67Ls6jpjJ57LtZcrRw9PfdcjSzrU+WFqEaF3PkY82DOrL3XvMSIyo3ufRd7Tt6jnbVwt5IyVKPbn/GSfFQOisRW5du5pBpsaceovUjEYO43ei8pAqD2i02s2d+Tm3ReBCrX3l+1A9ScLeVVPQftcm/yWeVSodoBkqrpMNLGaGNfzab8fegcZf5CSMa9t2R+Nx/7uD6uj+vj+rg+ro/r4/q4Pq7/NpeBikr/7v/i38V/8j/+T/CX/uRfwjWuXeL8uP77e/3IJKXH8UAfBPEBEKxMw5oE0CBVC0tad40x1GHSVQRSJ63UYCICbdDSoLqRUsBYdbKQlNKkcgP07ipikUTyvEhOcqNCSWZsgKa1RpJFBI7HgTEcyKliGgsRawaucwJypG9toI+h5vnqBCM4xPsPjMcDb2/HS8ciUNLBCBbY4Ibj7Y0qHLnQZQPzvC5kLlojgV10VwYex8DnT59wdwapS5xt8iwwJyS7z6IUO2QCNgMraOWSAJVEwI7lGYkWCXQdfPMFwHKjwtScgFMenkUpdmVVgdR6w8qFT2Ogt4YQUOjGYh2fPam2ZL6tCFobKN/2kg12B+Z1ApIjJ+DxiR3puC33YIZ0bAn+qY6f3gVSpTq8I+Aq5EHAT2sCM0rtYQbS2Ik3r6kxbbhmog8AGYT1NecmJoHv5hxLbyQNAABUQGsGuDqUoULS6IAtRC54a/h0DMAS13WyQG0qRGdiDFpNrQg0zQOXXUF3xwTHn9117OCei4Q0FwgGGN6fJ9ogUWJlEtz3sjkQ+QLJ7mBvat9OKXvElsMfBxUyVi44BkETd65pAGtOFZ64pvoYQNLAYAzaCBgIJpxz4v39uYGJJQCqW6MdBxzdDWcG5gwM75wnDjzPC6cFSYOfP2Gti4DXearIIvABBfyyg5vWGEuFes6fPoxWUT5wXRcSiQbDvC5Q2YnvqQXw9umBvC51rwe8DxxjQBAYkEvqYFTqodJaE/hAMkxvXaAG1eMSoOKGYlvAcFXsEsBSBEYzR+8EEcOc8e680FrDkFWQd8dSF+m51F3Zud6OQTJbNKruZCQsOK8mHCscvR+YeaEXsXAuIBbSJC1vDd6bSBKT4ONasAZc8wmzASQBjmoQ7N2w1oUAO57XDFz5DgsSYliiNnwab/A2GCuuhTEI1DyvC2mNZAtppISKlCyusbjbjKo+w0jgWrL+iuqiPvou2FVxfUbgmgFfwDH6tuwAqBBhzpkUsWAJnFNAhzVZfjnmPCW9TtInVTYG2niA1mlgl7ZAr7Z3Ehb0av8pALBbR4ZAqwLbluOaJHWFJLbSSbRa60LrhgECHiscITKZeWKMIkw6GvhnTV3yqcHoneAZZfALROAd5iRINxrV9Urt59OnByK4HiOXvvcdpQxlViouDogUherG7F3WfpNd88n8oLeGJRUAaM8j+BqKf65Obr4Pz4AL2GrWMLoKwCkrUwt0JxHItY7aBkq4Nb0/35EG2pytwOfjDZ8+fcI1L6x1Ao1rtHnDGB3xUuhekUCsTe65rgvnSXvB7o4TsUkAERPXMwSIkoTjxrW0iumctOdhWAxaHmaipWMJdIxddHa4D0QY3ElMowqcOn/DsOaUEoXysSTI8+W8MI43DLuJPs0bxnFsC9VxHST8XBfJT544+kCA+1cmCPrA4GnbsqGbYZbammlvSq4ndN9kkZWBnrUSeK1VcZC/7wKGS5Ehl8B05/ONMdAfA907Vpu45iRg3QwWRVBi2TxEigBSijDqhJddlYuM2UaptPBq7ltZK6U+8Xij8mOELLaQmygw1wWfgcCCHEhBi8KmWMt4xP0y0JOEjlIUa1LyM+3vAHMCLlWRctoN3JbdDkrFT/sTc6rG3X1BSgDMNYoMVcDxj+vVZOe51SJ2ji0FrM08U+4o1cdNVClQad0gF1VCXwBN/sb+HBcppZQIqJJ2q1OsIsviVsqpRgoSavj+enNk60C2G/AF58iSghYSsNa2PU3tTTfzhPGydVk/iRCwlWIKwMzUvO9bbaLGZokoRWAVG2Rl3jDu30eBj/VDWjcFCKIAqSLS3c+xm1JS6jkatw0Tbl6IibAXG1BHfXMWAG8iJYVyVUO6M4evQQS0RhwFu0Z+9z5epSL296h5xXvHWjc4uZ/eICJabpIMzxO8y1BzghXKa7ZJVEXIMYh8oe/KFbc6RYAKVwUw6mGWVDtIGnMUYbbGT98GyLaoCBMEpW/rst6UMwTJ2a7niTl1bioVqwJlyxLQUXpg29IOOgqUGpnGZ4qcjJdx2ySRrPmgBiKtV0Op1uSes2Vbm6WQofgGvcNSyCoygVMyknuVLIOryWlGkCj+MkeLWFXqEs2ACX5fgwgc4N5rygv6oCVwgMTmIjbVWRpFqitCofbtrYdnRdRrspmrGKu8te7LDb1pbgj9dnPZiCov26SikC07EeKm3IBiQ6w7AIaystrKYtK9YF53z3WAQLXX/qqRjEiOoUjQZUtX63btX+L5qpQ7sl54kBxlZsyR0uAilbveTK3Dik1lTVjKLAog/IxcWid+J1zJx6Uy8dykza2CaLcCJK3SpTRnS5ZIZRmbVPXKqNH+TiytfyTxgieUsIrPpoYAnYlCq0C52n5G5Rel9JmKi9wr+AVUfrOtJGs7Jip+JolS0M94v0txpjzC9r8rrpjtOYss8j/fcdm7I27iUN23blb3KTtO8Dh3qxjflm8wsMagffH1qrMDP1KEnlrf/BoSWnpDWeu1ftfPyt6L9pI198HYW8Q03M/InhSdTZTblL1bqacxbhgyyj66tlkHtEYq1hZZhiRp3LEp71hVY85GFt9jv+LahFE2unWMMbBysbbklYvaJq3yzd3zkHkpx25N1dxcjVRZiQQwcyq3T6BR0armZ72Xypt2bgHZForMztxGz1TrMhNu0s0pAiGK6L2w3GGrxkDkPXA+1F6J2hdU82vxPfzS3/iT+Lm/9wfw6z/3X+If/NQ/4H7s2E0mgVBN7nVeG14VojiXRcDcJOAXSzMUgedFYcnA/djq1L3TG9VaFMPTpKDakBaqHWi/xG39lhqj+r8irFXexOXEWmYRlPbYmyOy1ui9X7gba8P53dWUWTVEIDVer1Z9lZemcuKqySJfrJ5dg1BpZfK5014nMvZz7PNP7v+591Tc8aTuP/N35KIf18f1cX1cH9fH9XF9XB/Xx/VP6DIYvvfD7+Hf+N/+G/gX/m//Av78v/zn8Vf/6F/FdVy/27f2cf0uXj8ySYlkBENvLH7zjBOUX9ah1VVoY10rMZwKSquKnyokzovEmK5aM2X62y66sqjXqGDRC2gjOJkia6QnTB3wyMA6n+omJjh8HJ/w6W2gt76lreckwD5Gx4rAdbGgcM1A5oW2En1WwdDRD3bszRUY44Hj84Od1iq2ZCbWLIsJFrfGGHj79MYimkBaN+D9y7f48vwWj8eBY3QRTRKWDofLworg3N2ZVwVUvoMmIgPxe4P3gRks4vfO90MLl8Db4w1Iklvy+YR32pM1Zwf+tRZyJd7ePuH9+S3MWDDNNDmVsGM9dGRdtqEOgdWToKzIGq21DQ54dRSBxfKugtV1lX1U13fx4D0k235eF8kNlvAIjGZIawKHqBIT64KBBZ5MWbattclqozf+szp+4Ylka+cu3kfatmEoD/vqfESQwHEcxy7wQiDBdT3h/lJ4dnbmuTVASlRNtgfsTJyy01BXFIBrBR5pOPrgfc+L1le9b2CIhCJspZGrilkJko+aACNjwbs3EpVaa5jX2pYmS8/c20Cs2EVxAJjPd8AG0khQW3PCkRidYD3ccbSG55cnrnWh9YHvf+8T67ZY6L2jm2POC1Bxbs5FOfBYmNeFMd5gbjifXwgIpeFcE7HmrlQdxwPPJ1XFPn3+jK8/f0IVQa9r4nxeaC3x8EbVm5Bdx0w8jgNjNDQDnnORTxRAfwy0ThLIvC6Mo2OeF67rApUtJMudwTkeVCCBsSt8LeDoXUUqEpoS7DClXYRhtA7kkwCLNZJngp2DrTec84muAiLnNTbwFKmCVtDuksV8huJVHct7TANzTcwgMJ0A+uiUXLeyJIBIDCwwlcrQjCUig4Bep0rVigkDyQtYjCUrAzED0HiOTsWtROBcT0ScGOMAWtknVYEesE4wacUiMGYNppg/I/DbP/wGZiTbIU1xqOO8TqnDAIaKqwTtx2C3+bxkb+HsZr3OCwskJ1IxjeQ5i4QdjrmqoOwbKImYBAtBslOuJdUZdtrDWSyfayKxEPPClzPweBtS9wH6ccjG8MJjPDbppuIHtdVtx880AgVrhtR+uG+uNeGQrWMs2cg41lwY3uAIvTvAI5Ez0R8Nn7/6DIPheS788MuJNRd6O0COXtugYmvcr2gjZsJZpPxxXZiyxIMsea7rkp2ful5fFDColrPgABZO7ktRSgcESdecBOydRW6+j4MFz3hnzLvUPW3AuibMCNaskJmSc72EbFdWxeWWQFCZYBXxAowzzRzNAGvOTvGgzR2VjS6YLbjG4pK1izWgm2NJAaL1ttVnEiqCi3BdoE8Vdnu/ldbmxbEI2Y2lQcpE3KNpCSs7pACJkcGAXlY9sSo2dzTv3BuDll8BgEpsTR3LBApUjyfZoDfMdYmYpnxBBKIrAm9vB5piFvR04yvDY3U85sDj0XGdJ57niZgXMg3hjrfHG94S+Pabd/4ZgGyN6pREYTYIVgAe1kJO7otbjKAq5vr5Weouvd3zLEJgsG+wyRaL49da8PPC0QaOY6A9Gi1LpSqXIDhQpJwiKU0AniTsAkWsgIhWJClRbYgEYwKfVDGbsYBn4u1N67tsXwU41rwsPMSTtosRBGu7O07dY8gOrLUD5lTycHe00WApuEUgSdnMNvotcl/HrSYSEZg5SVRBEQFkT5ylrDWpnme+ySsFRv44XiRR2E1GAgQ26VBgL2CiwCp3klu56QhggfZzs32YuYEsbCUFuDPuqKXeiswpgK+IIktE0YgpUFT3Osa2wCyQ+dVKKUs9ECISrlAY4BcwNkvlLrn39iIe7Zh7K5AAXOdUD+ublFGA5JwXrjnRu0tdExw7E4D+ku8WMcVMoHO+zK/76wioi3TkIqjXOac3jm5GYmKi7MkFTg0xAABeNElEQVQKpCuQr7eBtS4UsAvU17lwZ+UNpixPRMICXUvVw71UykxCN7mBY9N9r0VF2JpL9Vw8W6Qs0mjzVMQe3nDZqkE5sggIKXJFqQJqjPI78w14RVtJ9lAc3KC+6f+NxFs1bSCLXmIisK79bEUgigKyq8FDk3Mre2zioZRTNL7enPFJyqtbbadutB4d9czY79Ms9hwAsAF29yIRGICb/OfetDZEUkCSbGlFpr7J+O6+1QrdfBM43R2PxyDwi1LYchHIobP1TViPLHWssgLTHKjv0vj7IIkogyqSVCeGGnSaVLdSirg3cSOCREBvpAYsrccaW3fs/NSbbNKjzhEF674of2jPrXjQrWl+UsWqXkjl7IyDU2tGCjMCkt00V7TPL41RKcG8qoNFkjR7W6Diu2QJjSUWgf1a63XPxWkRy4NjrD2UduKbtoVqKIsisCnfSe2xJIKVkpCL4AblawW6+/0MuMn1CcZu7vOuZgAO4XVNXFKMvkkDbeck94ynJW+9RzNs2zXHbcVZdYCmnMG1UEqlmqGByjUkilbOUQrZeY9NqaSIjEkb4cC8plTBi+go9cSkDXFrtaYqk2c+Jf4Ucv9dcU3vt+osqwj+ZlvNCmbbcRdZSrWcB8cxmO8m1WyXmmXIu1egSNlR7fwK99xVLW//m+JjqJmoiIf370glqMhbkQh/eTgp0tJOzahCJ5KmN+ZuzO5kDayXXPdmVmORqvHIPrxWpu6FVqTSVs5bSQmgSrZp34nai3E/O0liOmtEoDep4oQBqk8ibBPcDbYJVRVvTf9T1oouBU1kjRLHvmKNGRvNYGwCQ3Jvr9oOQ0Si7MfqTLHAc3RoL4PmL0z1k3whZVk1epTKlimckjQ6VbOrPcqqZtYb1Zsz0ZbjOH8Gv/fXfhK/+Rs/wN/+A38L/9VP/QOgO3pz+LWkjEu7x6V8nY/GZoCKPZvsp+nxnSz2ZR0weIlkWztY3oSwogRlSAFKZMeuhkB/+Zn9ciofynr3iXB/abfgHu5ZMfDOcV73Q8D2WjWr5i/FRRTJT3OyYlaY0tv7Xe4AYLea4rYZTGx1qRq3PUyJTUq9g/rLM+zGhzveu1V9Vx8QLzHjJbZ+XB/Xx/VxfVwf18f1cX1cH9c/yatFw8//rZ/Hz/2vfw5/+w/8bfz5/9Gfx1/7o3/tQ1npv6fXj0xSOh5jAyJ1IDSkAE+CeN3vDl6eu2mvNNdCXtcufPbO4nzvHe4kLpgZHo8Dy1xAAbutWdCFlHpEEijFEwPcEte8CAIZ7d/ePn3C5+999aI6RMuE7iS8RJKUAUA2NonzuoBrorpPW6MFTqnHVKH9Oieu69JzsIjVWkdr2EWyrq5vFtB54FzrIrEFBOkLVDAk3r+8A+H49NWne8CNQFqoE6y1JmJK251F7+dJUsbo6qaVxZe+fyMIKuL3xgLvtSbMHcenxy56FPABA+ZkgfU4Gnyw3SyuSVWbGbLwa1t5ZBezARIZMGlD4rY7wIBFfOilQ2qtwLTqnFehP9jB3o7jOwfvTukJEnbUEU7LtYTkrNCbOuBZmsOKIHgHEuaqg8qswRvVVqoQSWWGEMGpsWjXXPZaHaX0NETcmtTgL6QD8wVY2q8Q2EXra5HERsutRvLCXKoFkuQReduOuIlIlqGCeUm2O7rTjo0KSR1zXjiOY5PnvHVcix33h6zXgMS8LqxF8keuQBsmGzGCg4/jQUl2EZncHKM3hMkSIGkj12QvxvXRAQ9aHVX1UAUw7wROrFGJJuaCtU9Y6YA1tM5u4cdxYFhy7Y6Ob775Ia73CW8Dn8cDc114f5JU0gdJZ2+fOhBLa4fjMsbBYnrQIsd7qrApkMMbRj9YmAnAvWOuhfO8tiWTCzhcAY25IcLh3jE6AeShYnczx5oBHwMhhS93qpzEWkgHujsu4zt8KI5YUnXl/fkk6TFpZ8UiM4ewaU15pwUin1GKJulYIkWuXBv8uM65C46ZiT4c8C6SBPB4fIIh8HxOjNHQx4HzPFlgNqNNYJLYkUgcjzc8zxNzklyFBCxF/MmF1gaicb3QsuBCbywwr7XQwXG74kKgAAfaSsw5saCCenLDeD7f8cNvvsHnz19hHOosbAUIC8xrhgwWz8cxsEDLqbILO89L4zYUlxbHbojgKYuqwu+yuuuV/TQjifM8F67rvElEAlEcUl8SybHiSebCt+9PIDkPW2s0UlAh+LouvnunQhPVrMoObtCOdC2M1jEGMIzKSHNNXOfC5Sc8DdfFzsoiq3YpZ9XaG0ffJAl2m7dNiBm9yxoGOLqjReB50h615r1nV9xMdHNIEIuFX+NajrVAAo2hVwwGbahiLrauRpVeSYY6tWd6p8pQWYasuIDmiAXMFVsFIJIAbuvc90uJBzDMK5CNBADvzr07WKylWuJE647Pnz/hmoF+PHCeT6zFODmOr0Q4dXzVGq7rwvP9yVCeAaDjOIosLJUM68pHEmvdijwJFp69gfsqgOdFoKVLbXDuOdkRQfUFrtFAVNstGNdWLq4/AS9Nz8484wXkQgIiu0DzymHo/YFIgzXuny4sgOAHc5vRO47WMY8D1zXxfp54P2m9+Xh7g62EXQ0DA9+cX/Dp8xuueWKWnazyJqxAdxLKCxSg3W+/7QXcsZKWamslDllFZSZqEZbNQMp6p6waciae68R50ULvGFzT7SEbUsjiKiESB4EpQyAKwDXmNx60p3Rw7VR+do/93spxzYXHONBxqznCOvroMCn3ZCTmSQs+h2+Vy9Gp/JlFejbaBdN+F4pfUgoBBARKXSUSQ2pLWQQIKXAFQNVFEdHcGJIv5dXVgm2WzKNfiMA/jlfvlZsXgMz73+Ql/b2A49wYVO58Bijw2zd5xU3KXsrDw14ULEpNQAD/tkjZoBA/NZKxyfQZfQyMl3gAJErtKQUAR7zOQ/75Wq/2M46yTCtiLnSvSxaWBJRMJBPsPN82IF0qcfX9+nmUIhDPQ/Oa3IcOETT0P9UZz88UeCXlGUANDck1S1L9rcyzccAaAxOAHUvLmGfAuk+gLKCgMyMJtC51twLrSKpx5f++wbJSHXA1hWyAVLdAtSEAcuMEBFiDeSr2z1EdyUQQK2UR9/s91geQtPGqmFJKTbKPfAHrWxEpUOQpWqvVvhBKWkoFhnNDa1+L2E0ELM3RvVzz1a7qu+vmu/Y3LpL8i0213niRPl+BUILn2DGzgHQX8aJsFKl0dSvjWfOt3HArlZEctAz7HMQ5c9/wkC1xKSi5Hii9wG6RaqT6FKvGJlFKTEJt95yrCb3iVmPiyHH9G0i0cPAc3N1xnSfmYp42RGZhDsh9OxGKR4F10ZrKjQRBEmN47m7NgCKuJolOroYSvKz9VUQYg+7JNolAkUbnZh3PNU9pR577fFvvZ6t8CKCm4mJKVUN1BGNzAlwKbcpP7zipefMCRLuWtadtq954mUP1HBUnnQ9EwjuA0Tugc3zTXFxr4dUrKdXmFIvKk4EiOyWUTmndiRxRsQ6VWwVa1/gFaPOLWw2tLlo75z1HEshceD6ffAcuq6tSHMIrQdW0DkxnG9od0jV7iRRW6mGx14SVQkrUemXsqflY3ADzWn9LyoG32tfeg15U3tjLQRXo0Lpq7dXqMvec2CTrxCY4dj1vRik4lhrcrXi25lJzRoUN5hrcb0WYzQWHVP5kC5elfqU9p4kQ1JwWzGz8u+Mqfyf2Wm57fYuQ5kVoqz1FaWHqTAHQcflFWQ9VAywixiY6y5pVaoO3yl5tXriVG7M+vcKXSL1G0uDK+I7qIpVrG2KRbEdS2QI8qWS8qA42pJ4717rf6Vq0fatYwJT9rhOW7fGeN1lZBgxU3E5u6TCIeKTcAkVYwb0vQr8fCJ0x7n2gmuVuRTrOi01wqfOI1ZqAmI5s5jHQlrm+rz7TjU0OIzrG+z+Dn/xrP4UffPVb+Bt/7L/Atz/xDaxdaNlw4uIsah2xJi3Pv/OOchOU67IiUb48534vcNUIbpWqynfyd2yeDIeBSzVI2t+V4ixEYMzdgAXtkchNPVa+V0Qou8cL98/uf9YTraASrreGUkJNMIbogxQfStlJOXHFcU+grHp1pvJdezDcs6fei333HWt/302v+34V/5RvAi/E3YrhO8bc3/NxfVwf18f1cf2/2nu3XduW5DgsMqtqzLX3Pt2kusmmTFGUIAmyBUkPBiTQD363fkJ/54/gD+iBsCHAgKg7QNMUyaaa7OblnLPXHKOq0g8RWWOe1oPaNlo6tCr7ci57rTnHpSqrKiMyYseOHTt2/DyizIJf/71fx6/9h1/D7/+138dv/i+/iT/41T9A+N6H/rcUPzNJiUBsqHsYq6Bjbiil4hAwm93Jqp8JjJw3iOAFrVR4ralALCsSKnxARZzsUD8ejXLR6jAuAvU9gOGdykGzw6vjqA3f+fRdvL19YOOuZ2ey7GWyMKFuSPSuovQAG4ioNz5E9phz8tpUfB9j4DxPXNeF2ip6J9Hh7Y3KFONkh9tQEaEURzsKxqBySYwBzLY8wUvBKvAdj7fVAUwwgWoCFrJwK45xUT3I3dGvgZgdpZalzgSpsZRSb2lsHTIfx8GiSgDFK8/Wc+LLL79EF7nARBCLUAe3VA9IYCDJid2sOnBLUn5MykyzqzCLAYCFCdxXZ78bvFVQ6pqEHBf4U9wR40KBLxn2APQeVeqKjlb0Yo3f1fulolHFBIFQGO2cWAAuHE+D48eroVTHlB2ROUl11+iLJOClgZLe2e0VevYDRzmAMdBPkdxUDGSx5GWOrCIyVRaS7FXbA7VWSn3PWGpMXSoi5uzGI3ll4nlS+j47Yr00TBDQnXOgYKrbe8JQ1JmfXVSg3RzYyVsKbQ/MgGgH+gwCwOZorQnwAK7z5Hdmt18M9E4bgOIVxWizNPVcq3HOfvziA2CO96+/Qq1O8qAK3ef5hIHWS+X4iOfnJz5+OHBeA2+t4sNBIPfPv/wKX3/5FWICbw8AIGA7sgZsWGpbWfK/JfZJbotOch8AYAJWHY+3N1znExgGs4bRB97eKlxzJkXs2dmKVey8RkeEAPnqeDwcHEoTYySo5lJrGwCpN1RHG4H6aIgBRPEF4LiAV/OcT1mey2IdI+ZEmQVmlVZCY9xgGREfFcEdCHYNNyk+zH7Bq+PhDf2qGGdKy1ccxxsAqpDVZpSWN0NxYPaTBa0wfPX+js/vJ8bV8fHtgKNgXAQbvBSEGdpxoPcL1QrcBs7ecY2JVqhEdXZa9i2gY4G4IWUZrK5rd8cXn74DGAmE9SisoE8CLuf7E26hvPqGMYE+A7WywzUM6OPiPPOKAAmGFoChLjAOIja1RrLfHHfH86NW9AGEU2HBvCJt52pzXT+BlufziYhArSQ1jkHLpd4nPnz4ACS5RgVWM0crBQ6SulqhjP4cJDvQuoggx5Aq2IyCfnbMeQLRcXXAysHxNjoujadaGt6f7/j89TvXllpJNp1UZqpVlmiVRNV+spBfS8Xn5ztVbgKIQZ5orQ1Tnf1mHCO5LiSInApjJpUqkkZpM2AWiFKkmBFUYBLwcI2gIlYW2megGHOPF3VjB4lkriJ6gpgwRym+9gEs1juKrHtsVJwnu1dLqwgRZo+jAf1CxEQfFyKCuV5F/ng8qI4QQ/uaVJRgfs91FwBaewAYzElgcqI1qJQfZuB6nhgCUN6fT94bQkQZAZELJOEYCkzgYg4pyukUaylSmrhtlJjfpXbVA0NWkXMYnteJr/COt0fTOCIZoFaHl0awOGiZUspArQdqufD5eeG6CK6cM2D1ARsXRgSO4wOqV5xPqRMgNCamrFmUjxMguzjHFtDJG+V4dCkuvKKMuEGTBahO5llEYJy0zkwSlJeCotw3BudXLEOIVFnJpKqC/kz1l/tZhk1ak4xINgWtb0HC9RwXLWMnVR49RObIfTFw33/Qbo7kAJGOx0A7DpKFE2ADBISmZaKpOz7J7xUToW758vqE1rXTMpLqiwRPuKccY2LOC29vj2+sJd++SDWbVCOxF/6L1HTM17qRiNiM1CvCepepvJNRvOAmeJFQMgX+FZHnc6NKYoyA4UlwkmpZBF0fx0P7jW8SRBbACBKZ3e8/y/+kYgGCSnBU1ClwqerFvOeIg4Ax7XCZCzH6Ij4k4JT2UAlWZhd9kk2W+oKUVfnMmH+TyFoEsHNtuq1TIXDXS+G4XHilZapCaA3Ps4ohQTGR8c9zPXdbIC/38EvxDVJo1b5/kRMErk3tP/wFbEtQPMkaEIichPq0fk1CFdeNua7P7ptBQufM6QmOF6UnAYUviinAnauSqJbXkGfgXCPuM8Bcn1/8bixJsDP/PJ9jjFSms5S/WQ0Pi3yptcgWmUPWVC7FjtwjR9o9CcQO3U+QGJ3qL9Dc4VkwQc1bYcPWmL/3pbcyLBuGPG3MPJssSLYhOYljs3cq24asrSyVdHKOw5TruVa59rbteAAwqdCl6g3HMM/UhmETVhp6H2iVY7oURys8hz/PE9d58txbAcxbYShziudY11qRNx86w415j4Mcv7UKZAcJR3NONe4QJc/Mm8SgHMecDzfpp7zkIj3Z9X6ZGxcFS/UPX+jyfV64x/ZqzMprNbuvY0oBWKT7vKfUWlnXbTfg7cVRctwVo5WUrFkBiBxdAe1pHEXEM1s5LvNVHyQ0XictCmuVLbthrXNLuQwkivWYuDr3x0UEs/n6LvTeflrpQ9g/WjuYU0QkZ67hWjq0ySZhgc12Q2dyfoZIJnOiysKQ74bFLTdHWk2lcl0SEReJSEonPSaokugAfJEZ/IUMQeVV1aYCq2lpxAWgrTmcpBILh5f7HRfzNf/X7nKdr0LPiTukqw8MG6qXaM+mpsJU37NgQwltVNn0xZ6YUFNckiO4D893dHXaRLMBkLkFlsTX+yw4QiqFq74z19wIvf/btSqU1/0+K+sGI7BqdvmHZrJqSwW8173mmpyZjw1mda3XASxl7RKp+sP9hnsgLGRfXkhE1Z5hrZsASsgq+GUNudehmwhjgCxhZa2leW7uqIu8hHVvuXb0MUSUwportzpSqPblS6XJcu8ZscbhK2nlvrK59t5QPWTOwPN54tGOez1ciroi3Gqcu/OcVEbB97/6Pr74P76Ln3z/J/jhL/4QP/4rf6IzCxs2vTYMJJk51ryBASZbs8i9uohuqRx9T/Qkz/30eeLlVa85tk5czMODiu2pauaqcy7y2hpjWOPi3gdpmdCaayt5kjiVY1iXiB5UH6cqnmwpNU5j3kqGEzp36jv4XI0qS6qBB+ban5lYZ5kXXPsoaA/g0+GV5N1b/fZ1nGONzVQIzYvJ/dYQyS4bBnbs2LFjx44dO3bs+HmGh+Ov/4e/jn/6v/5T/Lu/8+/wr/7ev9rKSv8Nxc9MUqKCA6XSAeI5rTXUo63ufJeqgllCwalcY2jtEKGDRZ/ZLwQIGiBoTSQJBrhAahsq0MJwnk84nASToCXP7FTzKIXFiI9vH9Ha2zfAHPcBK1UAmexeUKhEU2gBcY4hSIEHylA3I5V/Bt7fn4igHUgfg5YzI3BUEotSQp71Qj6fwoooxhi4rgulOIHrLIxUdgAdjwc7Vfv9rLsk8QFDbQRI+pD6yAwAjmYNb0dDOyreHg0lgY9X2W32A5JU0mmd5BZSUxp4vwjQP94OyT1PKYB0hE2YHYgxYcXRjrY6J6nIUDCFXXgxWCqduOPxeMPZu9QF1OEZQx197C52uzsRDUAMPgAC3wYXWDzD2Ok5Q8SsyfeZpdtSgFJx6eAfZsCYaI2F1TE7VXVMCjHTMM6Ofl205TpTcYD2fhHs3s4+aQPterKQ+f68dGhvSw0jQrLsUr6hAtZAmQ0IX4BVggPs+hxywJAks4pDDgDFMMepoh+AAC3bJolS7HYaiMHn4Y83mLGIOObE1Z842mOBs7ybSavEx4EudbNaCh6tro6yUJfq4QXVCwkmAj9KKSil4f39iWsRQqhc88UXn+ARGLhkWRfAGHieXQpEFfYoKrwb3Kh6BUxcfaDVAqsVEQMUwmqoDYg68dX7l3gcHzlGguPFpeZSq6O0h2zeWLzic6W1o4EkwA9vFed14XlecBRej4r7biQYOAhOzxk4+0AU5priLPxfFzuGr0vFLVClwdWFVlTM7kFws5W0IEk1EVkeWVnS4bWQfOi1IvqAV5cqh8aPVUTPXKTOXtCeYymFiTwTYfBa8eHtDW+tArPjHBeeveNob+QvxsSYgevi2At3wCfKqCrUAc9xEQAsBT4GjuKw8sbvsFAHO207rJBoGTERl4h8CHhlic2CtmxdQvYzaA/moXt3AF6BGsDkPKil4vl84jpJCkiCocHVsfqEuVExCVQbK6XRsjAGiQQI1OI4Owv5xR3P5xPHccDImiFY0ucqCDanQhMVERzhB65xAhZ41Ibzulb3dBKtaq0YgxaC1R3t7YGrdqZImhYA7ujjUrdm3CpOBmTXeIHBasU1T3QAJtEg1iUJKBzHQ8QhEmxm7/BCUCsi1X5Elpp8Do83x/l+LtAjYuLqzNNnHzAEjlpxzIYxJx6PCjhwzhNzXgIKioAokgqqF7hPtjcLaOU4ZJG2B1UDqxmmAe1xKEdewGRx9ZoDV6c9lYFKVq1RaQMIXFm8DebHlNCPoHIMYLB2P6OYnTZi5qi1ccxMdiG31mCT4I95gUd2r5pUCqmwFgV4jkn5DAMV+wKy4DMphQ0pSiSoFOv6qPRYYX7Qdk5WhXMMPK8TYcChrvFykCg6LgK17DonUSamqDYCF+YUcM5VHb2PZVtZqqM1WsWeV8fZA5fItF9/9SXmoIJUkyrhCMfH+gG1FI3hCR8dtTIneq24+sTZL8zzgkXg46dPmBYk62ACUTHD9T1JBgqpYjrJNYNrbvHAZdrDFUPv+rNyCMjXKu4h0BuLPMQJQsJbwih9TNRwTLDj2Zz2uFAuCAEWiISHIOA21QTwDXUILgEimMYlVQyCSs/z4j5EIEwqJ97bNBX0MTGlEpbrd3HmkH5dtLbwgdoqznHpu2+VkhEhUrZIHte1nif3cWlrIzsQWaYUkY5fLW+m/jrGxPv7O/eb39IYk6CKLRCRZEsvt4LSDaIJ8F6An6zT7AXgn7dSH6A9PEiMTLUjdr7z9/sQmXiRiwZBHXeYNxgCrTa4c69pQu8JzCWYk+pMgWn3nw2pA6T6YIhUkIoAXXvdmaQFpLJIW8QeEj3vE7hbkmZuG5hW24LCSAqR+uwL+AhAynf6HH8h9SxlpdDZqog8UETovWMm4SeSlJM2e1h70i4QsbZUv+LYHpbKV2UBqUVWN8hno+/jvjtBvpsQMsYNUKYqTWquJOC7REwF5Fnkp/Cfb/KG9gBDe/ckuIVIQp5W0Bp7umZIMSVJNFMg5ZD1F+3Mhggktp41AXqdJ7SOGKCz0dS4KzcJC/eceM2H+b0LRHxRO7rft72Qi5JEBp3dbwWpzFehczEfyCQAL/nEVIiJ2W8yfZ7XdIGWQHaElBW5j9T/8YwvMk4XkQsA0i6wdyrvJDg+xsDRDv3mQFrW0c71tjBsNcFYwCyWKtF4JUkhEN0AK7qcwDVOWu/plpl4REgSoSwtCJMuAUv1Qv61HiTq9DlXw1HOVTOTlTuWrfSYgyTSYuu9p2LFnKbnb3fdAryntUZaKo3ZGqMzMrHc79ql9pOWVa9k3BzDr4S/Ozh/+L4hqy2Or1YbCTpR0OfACBH/KUnIOo8IwmweUsNO7ljSpsidzQIxX6yjXqD8iHwV3yBjxMqxWKQULXjKk0Y75ZIqeaoLIJbNYOjslSpVoSJM1qOAVE9zjR+Hl9CekXsHKsCRTFeqk+yHXG+C+0mNoYiQ0tpqS+Fz0vzh2ReqZRSRBfhuw5NyQRW/8Fg1NdP3zVVEUr5QDuU36a9Jcr8fl/ZDkGKZodaGQOfPTFlAJulNP5wKNgY2I64GkzUvbnW2PqSopCYs11wdGOvnTOeeQKxRQutGvuvMMeTSkNDNvMTn6Z4WaQNJ6wvc+1CLCUxbpG0gcyrWXLkpIJzPue7PoTEZ99zhWlU135Q/le84wESMV51mDq479/O/80taZ7tJQixkpcgLw22el4pHtshjU++BeXCQcJzv3LkmZ07hvHzZB8Wdrzl99DT0LudqwpCamHLXmKxzImjNfUauS2rMGRPN2yLa53PJ85C5w0fB40/+Kr73R9/Hl48v8ZNf+jH++Ht/gr/44s/R/QQK14uYgSFl1FxLVg5PoqYXwHLNVlNP3ATuNSz9XvfyuqC/1caN+SVW1VdNsGosNNoOIt/BN3ZC0JkiP07PNJNW5mnkZ2M98977vT97IW/mOSU/J59hKiKlytHQ50wT0fxFxSn3yGkJBzBfTkxgYK1R2eTyOi+mDmJZj+Df52PjFY7egfozwwU7duzYsWPHjh07dvx/jrfnG/7hb/9D/P1/+ffxx7/0x/i3f/ff4t//nX+PH/7KD/H+4f2/9uXt+DnFz3zqyMNj9VQBqjjaG+DZMWxLbT6LJq3eykqAVJXGRFVBJjviPA/bi5RhaEbC0+gXrn7RYg2OhiqS0gDCCDzTqBu1PWBeBEYA8EJ58JmgljpPZ9PB3jGuC7M7zpi4+qVDvaGgCpgyfPz0WPYvbsCYJnAxJE/NQi542yx+S4nFOw+nBGEAbwWPtwO1VdRquPo7YKAd0eRhMH3MARZdMVi+yE5p17MlSMVuxBiTKjuT6lIxgeOoLFoFFT6e7+9IeeAQmHcctNy7Tl5jqVTbIYgBKomoe61PoJW6urAgElrMAAQimJmK3CwI8X4uFRHjBlwFKM5BhQSSolSUMcAtO6RYyC8g+NNHRwVQ68ECEetK6oJyFYBuUJEFGtmvqNvrvDr6oApVdZeyAQBzXP3EEFmrVadKxcXOzz5ZmObTo5JM71SSSKn+tCFwJ1kpOguRQyo35GVNcHTIpsxoATjOCxYTHRO9nyxSBjD6ieJpdUVFndE7EKAKTj1wiDCRYM15sfu4VY6R5/OJCWB0gua9swM0bR0Aki96DBQjGPY8TwK3EYjouM6O3gfq0XAcD3yojp/85E9xniS2PP/8S7TjwMePD/QxMTow0Aneg/aJVJgJfHg7aJVWC56jI776DIC2cVSzGiQQ1YLWaD0YAmAtgGIHHu3AiBNjDpzjopqJscA1rsF7qiwwDgGDbDQLWR+SfOZFpBuWoQVqFxWcqARmBtR2oPd3+AyUesBs4jovERQLam1L7l6ZEBF8/i7bAwALYMgO+DkG3A1vbx8I9n31NWoh6bObgMeZ5D4Ao2Ma4KWiHQ2wwHlRhe7z+zvGSQWiPjsGAlEcH9/eELIcag8Wq0Z2pqvQV2tFLRWQfVExqjZ5IRkgbMC8wiLQDs8GWTRkJ3llwdMKzjHhNlFawTg7fBa0o+H989dLXcvNUKphSPEnOzxLq+jnE5+//hpeqdJnYegWGMMINl0dYQe8Ppgb1WlKpQw+/1Zoqwinuki/Ai7bx9YIfLq7bPQmLllU1dowjIRGmwQ4jlZxnSdMhfpUJDNzKnjxzeJoRMuuq6NfJ+pRpTbgyqknArSqWzVUhJ4FyaQkKQUGAl5ISB0i0nplF3fvXc+RqlEULiDIMsZAXCwkW5kL4KJ6BhVm+iSBdJqjtgPz+cS8aJNmlcSLiOx0dtqGAZgXbSbT/q4WQ4hIdvWLnegGXAhaa5yGozWpLA2MiwBtOxrGeWL0iWGG6CfJQiqYusBiC85TgCSjooL2HF0d2BzLvRPo5WdIvWGye3WNYysEMUB7TVjABdguEF4qJr1fVB+B5gHbvhegnWsdFSxulRKbd4E9nEDXInINkgvmuPgejUCgATivid4DM2Tp1kXGEsFsDJKert7xfL5jxIkvPn3gfDUIuOU+7ZQSUO8X+uy4Pp8k+M3g/uo4lrLKNQZQALSCMmiZ8rAC+/B4AfUmricBbEPHOUJbR64TJAgGCT64bXioFMKfK15puZeKI+q6Zk5mHujPVC0SQbsWlEYixhwDIfXFWl05nfOaYOYN8H4DmNA+BGYLkEESSqQ8YAGB08SdUv3sPLvIlA50YPT+YiGRxIYARMKgA15HMYKaFtz/nBY4SlvWQWlH9gpEWHE4ytqfXb0jOTWrt3sB1bQnrjMwB58DXVpuZbqBwNfvn/FtjiRvJ/EgxzLw+vpuZYBlnaTfnpNjLkkZtG9K6DMEttxjYgHqIYs17hyRSgi5fujHZRHm63pSdYeAf4L9JKDk98w5EW4ii97qB5n/AWh/Q1KKBTTnbyWEGzTX100si6eY+AbQRNU8kotoZdRvIFjgc6rmLNBZ4NQrkaVISSAJTmlLRrKObOBkmQZI/VN2pTcEjBcyIMdsEgTv73xRTJJa0q0Gc4OOzCV6dgIrAd2P1i7+vG4t1KCwiDC3CkN+Dix0Tk0lKuaDVIE1sxe3G50hk4S23uX9nTx72GoOsPryfToDL/B8kZulopCkkLlOY4A+q3ha092AMsfBXGfrJG+UJDwa9C75H7r0iCRnzJ83qcm0D76VvphzSYqB04o5VZNN95HqgjCTmhxJgCMJIEVqKTnmPQl3/Hc812be5JrNMzSJceaGz+9T8ybQn7Tbra2uZwWA9QPwnF0r979t2aFzbY/rykLEUh00C5EXTEQcjf/gE6N64ViKUKmK4gapOGosBpaiE/wGw1MVzvwmKAGx8tvKKxrLXgr3Mco7uc5NrgTcz40c+pEcA75fyxlha7yb1r0kKFXZS6faZNqGLnJgBFI5KoIko1rz2Y61j52LmKGzrxuOWtd49CSvhAgzSRwQaepW4CCxcCJW/ktwnufim4jz00pfEbTiLSJjci9TAPCcY0YlpILycg2ZswHXWgw3FK/rO7r2/KGcZbIoXPk3Mv+Y7L/0bJDERBIvyW925bwCN86l0P7S4ChSZKVaGP++99yP3OTCtHiD1r1aUwWNZGg2N5nyrM65IiGE5RLK/DDXddpSV/OXPSV/VyToyZpa5P4bd66JmJrbdzNeEqSTKDX1nSQ0FZ5rK+CeNmwBIJvTbDXGIcmX+v9sduT5lPcyc18AWv7xflKFRmuMiIyAGjWW2vI9Rzlf2MyUakn84JwLJrIIVUwtc7HydCrb5AbFzZdqFu8u16N8VkkqnMAkyd1Fsk97Y9id5zM3RmaJJOBCapC6o9B89Jd3sLKDapNLXTDzgvbdeqRUYdXaNfqFWqnimXPQDLfFpeZUNiFkAxwMsHqTVfO6SEqkOq8FcJSCX3x+F7/4B9/F3/ijX8dXx5f4yS/8CX74vT/En376M3Qf6/1G7+sese5Y1UDts7xUTAzaSkcAL+9y5ZU5FtGR89iWat7aY0yeU/O7h9TmM7d+Y3ys/H2P19e9mHHw6u/vATu1ryF5KBXflAtymxH3+M57LktN7ybJU133m3vefFaZE9b3+63Y9kpqTWIVnxNz21TDEO/pZc8RN+E96zY7duzYsWPHjh07dvyXDA/HD370A/zgRz/Ab/zWb+DHf+XH+J2/9Tv4l3/vX+IP/7s/3ApL/z+Ln5mkVJshoqCqwFNLo+WE8yBj6oKeg1ZLtVVULwtEJJDIQ2M5GguHgP5cxS3HKmjVMISDSkJUjmeHrzkiCroXRMzVTU6wgMob9KSnNVUgi+uDhz4zRA+kdcg0k+oGCTDsjCyyhQscH97w6dN34I3qLQ0FpTZ1ggOwBCDVxV94KJ4CJ4vAAnMTueNADHYkklNiqOVAv0SQguFoBwuEUqNBsNDVHgc+fThUKKYlnqPgGoGwQPGJeQU7Cw+Cg+d1IpKQoOLS7J2koaAyxef3d4wxcTwOVCdxJ2QdJqRHgJABpaxusYA6g+cUaUbdgzH1rkjyqK2sn8uipiSrgJgC2AuVXcxQ4ARRVRCLYCddPRwWB+YEztHvwpyIWzWwnnWooDnDqYpTCvrnE5i0Pqq1wIyAeQnK1KflAFRQOq+Cfp6wEZhpMQR26o5Bi8Ax2DVJk56AXRdSAn6MrgJsgTmVd+hGN2CFXY/VWRyfUlsZI3D2jnocJJgY7eks2FVYrFDFJDh2pznmZFfZW6NNTJ8GQHYEYYjiGDCMGLDe+QxKgdci4Fm6UUFyFtT1/HY8UErB+9WplDQv1OaoslO4+sAXX3yB1g5c70/Q7cjwfH8Cbnj79IHvcXQ8jg8EliMw+8TXX36F87zwi3/luzha5fjsQ7ZGA3N0ABXFm4qWEzEHCkyAGtCvp6T5CXCSFDdQ64MkE3NUrwKXJtpR0UpFMacaCfW2MTV2a23w6OrcJ+ny6kAtvmw1vBjGvNCj4KgN/iir2N2cZcRLZA8vToWoOVEm84q1imd/UlWG8Biyy/Lz11/DkmSn4qvDMZ4XtQUiMIuhlKbuYsPsmocTKiIaojSgDzz7yYK206ZydgGnykW9n7BJG4yItIpxxAj0J+0kKSvvmDBYVFAUnzZPiZQQQDJMOBADQMPVL7gBHx8Vb4+K2QGbwNHe0L0jiuPZO6o5MCh9HhN4xgUrJLF89dVnPOqBWgCfg+mnHRhxYYBEnY9vbzBMYJCM9Lw6HschpRcSoKJU/MIvfAefn0+q3Khj1UBgqxSuCxZtzX8XKab3C9ekfcWUWp4XEiS9SJ1NcxEAfBJM6TOWEpKbul1BpQV3wIXksXMbqAbElepFFV0qFdd5oXrBxEAMw+PDm8zVIAtK2ROFY0YXaUbF2Eggx/kewVw7J4GPOQPXIGCKWvEcF2xKhc+y6BpwZ98zxmTnq7xcx3WhFhaghw+qMATQR5Aw6rLTiSRwArO/gM/GtRkJ/rtxPsxBtbQgGO2DHcdUeSBhKkTCc6ct6XVdMNBikkBCwEtdqiVHI5G0D+4PCirG7AIdqUpSvKB3EqkwDX3qIo0KAzYFQEqZacBoP6r5PybQytQeRN3qreIB2tMUAwkFxkI87WUBmCOCyoMLqzC+n2ZgJ/Z0XF0jtxTMbrj6AAb3KmH8vg9HQfWGs1PljmQyKvTAHM/z5Foehqt3vD8voBS0RhJZq8wvhxvenx1np52uBYHg9uEDrpj87EYb2c/vJ/roGJP2NzfodiuqhNMqMK1gDATors6cUw5H6UMkjIGYAx0iSD4ahjmucXIvOQCrTsWpAaCLxGGpqKD9ihSV5qCVlrstUH/OwPQJ9AmL28IQCXgNzqOlElIK1TunBoH2AZagxQyMa6A1goClALUVnCcJ9eOkNcuIKfUVkpDMHLVVqsYVqckY1ScXDp7zwGQjKlJDqovMObU3uMEozrcX4OtbFgRGXQDubdkmt5dlvzG1zzbXO/IpkDEWAYc5TiSbuGEtCroI1AqCeaWYyCtpfUTAaAySUTyVOAykeixCiMaziawQIXxHBEYMAWUEDgeS+JSJlPdVSqWymRuV5JzjOJUaANyKCEhCwVyEgAV+GedTKtHOOZciS1pOL5KGCDgksOrfu6MUw9HKvf+DzmO6DtfaHjNoZQWBeFNWNiYCzCSRM8HfPtLajg0OSxViIXw38MX9O78sV4aIJCoufsZSocm/B7DAWXMq6ZpAVNO8SiaRJdCWSkyR6zjHVeAG8PNB0C7oPuMkkTiQtmWGMalGaC4FIc1LC/3dAh65P5smclxIeatonchxbnlPeRm6Zn13kkDcTWRJgdYv5A4XCSeJKnPe5IsEXnOMh0gFmScB7mM8wDOC1K0otCTAVGfPVJC9VTh8qWFBcxiLqMIaQBI+xyBBOKS0655WhVO28Y7Zx7LSGb0DJlVhgOeA0vScOD4vEZ4fHx4iG4kMYoAZFU2osJSKrlIXQipVcN3R7Efa5sScatQZygu+7o1WaCIhjFSKsUVCLdrDFNcZLQRq61klRjy11rCWUW/CR/AtTe0/qTzKvZcpJ0HNMIhFm9UzmlJczLNd6H7T5hE50BfZm8D5C2EiRJ/TmklFKFpZ8fwbSxXUZUOZvIu1BmdOGVSAy/vP8bboAbJ5uie2APIce+Be27WPSCIIn3NbajWpkGf6jKHPXdc3ASuGYiFFoYKQgsuIiSrbrxwbQwQf7pvHmp+PowEeuPptP3pvbIEwkolyEXeQkMD1Yq5lgXOH6xfsJnymjleu83dO0BJkemdZh8nf0NgpyHWDDW9Ta8GQKlKOUyoSkswEu5WltMghiyI57pdSYXAPvtTd9J7XMia1pC6SZn4cl4C7QaeIbAFzzC5LcrPkTmg/kzXGXEpzvYp7vGpxsLUhgwinWr+BpTJuMCp/610V86WSxz2Ar1yLVIDSXAmAecuwLMkwVaCMudS7DLQBztonmzLXkpADfanhxFSOUl6greFUY4V+y7ifKdTeRa4LaW0K5Z/8jqXyo/U3h2euxzM4thaJP27iN28wUI3K0LRqnNpT2lIknXNqD2/3fjRI2A81dxXVuIYNzuFh+PTlR3zx5Qf89T/8VXz19jX+4/d+hL94+wv8+Bd+jK+Oz1Lduy1cMz/5eq9a76Lcc24mGQ5rTQnV8iJoVQhAtpyGKfI1Js8Zr/UMPrdUOc2Uf7898bMWwS8yV865cmq+iEWQy3cdOf51XSvxYe2RTO+mOLS/0d5V+WfNXcS65rXvdV85PYm7i/z9ktvyZ/I7A7nfA22wlZ8zpyC+OXp37NixY8eOHTt27PgvHa03/MqPfgU/+NEP8I//t3+MH3/vx/g3f/ff4Ee//CP8zt/6Hfz5d/4cL9vrHX8J4/+BklIWfqmiVGoVwMijIxV9XrroU4kHWdhIIILFuOzSr60IcCAwXYqJ4HMTJxBpFyclo67u19rY3ZmF/jkQDlkJFHWpCiA2qj/0qy+yzOwE180aSiFANyeLprUWPB4P1IM2Hc0PtPqAIe2/eJLs15kyPKi1rHNcFifzQPr29saDsKy2XDYjnt2bY9xADQzX6Hh/ElAs5hj9wvF44Hi8ESDViTvlyMfswFA3ok7WV7/Qx4UYVDRIe4hyHJhj4Hx/skAVgePx4P3WwiKjrI3SPsjM0FpRUZUAUR+0SstuYYC1EncDJnANAsYsdk+YFbinPQLtB1qtiDHRakOPSa6BOnJZeAmU2nTQn/AJXP3kvQuMuKXzqeaSHUg9O9dRECNg6uarJa0CdJAflLM2FZ2LCufP68R1XThqQ2uNXWQXgVjaawzaH1mos5YFR6q08J220mSvY3ieJ1AdzR0VBUBBf3b448Dz0vsEiTU+WYBm59pQEZaFMALJBbCKq1N96wlaubkXKeYQ6BkRiItFtREsKrfjweIKBGaOQTJEbWitIjsGH6WhtQOlNnz47geUVvGTP/kJzs8n+hgY18Tx9rbUulpNkMLxve99D4+H4yc/+Qs8zwnvVPiquv/2qLBisDlQUdExUaoBkx3btRziisVS+QKA1pxMEDfN44Jr0GKglIp+PUnWCCpc9etCf6YyVlv2HCy2scN4dv4+VVdI6hgx8Hzy/b893nC0gmqO1h44AfRrYKjKuayDRqDrf+Uo6vZTYdQDHz8+YLWhXIbzPFGNxLwJ2vv1MWGm7vpJZZgIx/v713g7+F4wKs7nwIc3zsWzd5z9CTcwP2n8lkdDx4Ndgire11oxrknyVISsOco3ANDiBc/rZAdlfWBcJ4qIXmMGnv1CjIHjcWDMQMyOJnCZRdaKWhrO54XeJ/oQUOhZ5DK0epBoYwPUMOcCY+oSjAnUUvDx7RO8VJhAiux8n6fUg6ph9ifVYDqJYW+PN0RQSazPiVoeJONpjbLiqNUxLoFUHnruBoRT3SEc1jv69YTXCm8kgrTHm8hhtxVREmRjDDhs2RXFGAsIi5A9BKUIACss1oLkjXCCn1YqYnQBrbfKxUSC0IF4/4xWGzAG1ZsooYIIWlOYOqFHDBikDhMhwuagjD0cMKoSGYDRJ8lW8KVo1bzx+gdoR4okwvpaY4rWmT44plptUlggsEOFuSK1F5KUIgwWE9f5ZD4vUtMAZP8gZbveSU4u6hyPQuJXdCkDGC0IzhOtHfrngRgTSF0rEUpKcSlXTEzcY/043oQjBWATExcJoQgUOMqcAnwAmyTFeTReZSnAhIAWqr9h3GACBOIAgcfjQEy9JxX4yT0YtC4LoMxAs8B0EgGu66l7ki2bO2qjbWSpB5o60XN9dpFe3ahcBRMxzQtaOwBQXeqrz08U7yTDXhcV7zDx6eMbvvj4hlYMxQw+CbCMEeiTCn+p1JMgbmkNxQPVG/q4MMaljnfDJbs04LbRjAS49YysOGzmGl/h1VHhwBwieQTOk3utJLPMoOKUGwnstD8IjQkSsRMTuAvyQTVNXXN2tXuq5oS6kUV+MyFkgVh7OBhtTGa/7j1u3EpAqebkToCGwGNfPzd6R1qyZvM1CVncjx4BlNqQRnUuwnIqVGBOEmlkzZqWYBMkQ1qCHXGDIAvN+RbGyp1IFQi/19EkUbwSWRI0FIKTSjWpVJDhIg0GsCzhUpkrVXAQgHtd5ITMs9llb5bgjN6FrjNBUfIatX8aUhKFutznra4Usr0ml8DWmWmIoOxO1YKuvTAAkbN1L1JtSUDWsjPeaAWUZPzXcUg7IIHfAh9JGOB+PQIi99Hu1wtJ1Hh51vyMuZ5jPqjxokxAu2aqv7TGPcTstLVKBbVUeOJHCAiFVHvMXshGvMlU7nkFA0N4KSZEJOIeOclDlnuCOfWc+YzSrm5ZxxjPIBwjstvRFwyBrN8cawRruc9/BfkAVxNFEiHSIgdIQtSdR9a6ZiT+k9BFu+zQswgkUJ9r4QtVQUo0CXbTVtTXuIngOmymRoZJm9mRezrl6pRYCct10bgWK9cUKe0Mne0GAlY1f6ROsuag7M0JsrrmmR4nApHqbtmAoTmQYLWbo75Rzfjz1+8Yal6aM2Txa4jo67lOM3z48AGlGN4/nyAH6FY/c+dZmoQ0ERIiwWGNi6XgBNn8AbSJE8HNOO4mkjDGZzomFRmXOq7WSzc9MwjYjZt8nfkEcCnSMFP3TuWSVuuykXarGND6OG5So+WznFTkKcqRa68sm2rzgj5yT5HfJeWMpdSRxBNeYe+dezdd43VB9nl5NicpLBvGzNgoExBJDSTAFmNTwhrnmW8inz/zOac119sk1yWhJce1G0l7SQoy6FGEIS2vrn4hWvsG+E8lrlS/yzUi7zQJLrKzLBWhPVLEvTxqm8amupA1cNYeSl2KYL13qXmSWJ/z9ia13ONoqeLp7GLB5jCYFLvyd9OmLskJL2sZc5+eYe6mNLA53l72HwHmI8O991n7rTufrnUMEHEjUJDEtzsP5UO+SW65L+IfZZ7M2ktaEuaFUy0aKdR15+D5eo3QnhCLNIHc74DNXeCOfY2vZZUbSVDS58gCzT2f5ZqBAGKpHa0GBpeVXK4dmm8cj1mHi6WYmjee4zGJeCNukhpJI3p2ylE80ehaIkkj+pE5AbWckBR7n/k4lwpeXp0eLfektBNMYtnMxINIJs4kyTif85UKpsp3QBJskvx1q1jS9W6ue3HtN0hGilt1MJjnR+fYSEvFoebRx9Fezl6hmg1VfCFScEzDx68/4de//ICJiatd+OEv/Uf8x+/9Ef70O3+KbkmA4vpgwCJThZKA6EH/CTHICs/yzIU8e845YUN7ANPpOgJjmuqOhiEl8UU8yvev9QXgXNMu8+V7bY3htYXJtSRyVb/t7cxd5/HMVxpjuQOIwAytaYu1l9dsGtOv+yV+75DKYRIQXwfRrbil845nPsG6jiTzrZruOsl9e88TO3bs2LFjx44dO/7bCoOhzIJf/uNfxi//8S9j2sTXH7/Gv/gH/wL/+n/41/i9X/s9jLqVQP8yxs9MUkow1oyqIhHAdXaUpuJWH0vRpoiUAeCleCNrNkiJYAZa4+fRFq6iNgF5zgPp+/s75hyoldY4VDk4YVkEV5GaZyqqw5QiZZPeaW8VE601tCow3niYvZ6dPzMmzpNkhDl4AH97+4i3t48krZR6Xy9I4Kl14hwXrusEOg/AZkZCwGCxPWXGs6Dfe4f1QKlUT0lP+SyuH48HiS0xcV605AoAXisKDLUdtAHwgno4CiqKV5TaUAsVgygdftvXdAFqtclaSIhJbQ3DDW0OjDHx6eN3cLSHiidD3TSTUtaDig+llNWN2Oe1CgcAJeqXtDwmen/i+ZTVTmlULYhJyxmB91WWcFe/kCYS2XHGQo3Tqg8kdAViWWmlJQe/M1ZHVBaLrs5DehVR7VJR1oxjyCxghT89x6DCV4BkDFMNZ4Y6PwcCFdfosFIwU+kDgesa+PjhDYhBYH1OjT+geEP1UCcju/2butGLFMeu64KVivf3JwLsqu+UxkGZHEtd34sA3p/v+PThDROBarQaRDF4PRCYOK++ALU5qcw1uuO83vFoFR+OA+cYuK6T8wHq7rNKq4pSRKggScVqwxwDx/HALz6+ACLwRANs4OoTcOA8L9pgxeDYCeDjF18g5sTnrz4DetfspDZUo7z2d774xPfarwXUEqQBFUesoKsA7kZVMYJQfEdn7yo6QqoL+dzLAvBmBG0dpgrnI0lZVAipraE1R317Q0iRImKilSp7C8OHTw+0WmFzYF4qoFpF2MAYHV4qqjqgyf8wlIMKbtlJjDmlwDTgw4AReLQHSVWDKkAhcCQL7yw+J5gLXGMIqAACBBII1g0B2gPeqXp0nk+UUuFWaBPVZX1hvkCqVivG6Jiyksw8VKvBC6W9B1hYtLwHWcpk/ioiqdZWCWp2gKo9J0qjFcmUSkIRaH5+pgJaaxVwknXGGGjFBVreHdOqwEmtKEQ6dLg1xJx4e2u45kCpJKVe/cL780RpDVhZhcXj69kxJdPh7vBWMQZ9bFPJygC0Ihs3r7AigKZUDI3tzF8EF+bLGCwLHIsI1EIFi0hVC5A0WWrjPc5AsQAGge0J5Q4RNFxdjsULQkpDpSqHXacAlQBE+rzmQDnqKtqO3tdnjEFJfCtJFK6AFcxxYfQLiVDwMucC0OaUWksfqwucr1P3XJlfS6PCoVsg4gJwEUCclOSPmVaSIk8JjIZRESLvjyDBlWV+qUAAVOQZsrAJ9CCoUETc7L2jtbYAlpy7CwBWd3JoLDQAEQIhZH93A5O27GUCsVRvbvulBGSa1AGCNjdSOuhSKeJaHbABVK8YRsvVgHMMaUEOqeRQCYk5qtaKN9l0EEBgXn74A71r7R20o/3y/Iw+Lzy88brCMEbH++d3PM8T7XgA4HwrRmuZtJ+9+kXr06ACEPCg2kUESjF8eBwoxVBPAtVTVqFUhchOZdm1iuhgIUvCRjA0iRYui6GwWPuSAsN0ki29OEqtJKmWApsDxMOpApckJWiOjT5QW1U+fCEsvID+JM+rK12WvwHuY7wQwJvXWOOleHkBaUP7nZsIctQKuC2i+xzBtRlSswmgXxOjP3EcJDavvagAHYQIVe6yvjHMHnjOE8eD429gCPwksGJxq+OYJ3hCEHpaLGCLKl+BAJUWW338Z/f1/7XitTs+QcCRiiFxKyUxNSQoKOBeYKwvWyyu60kQTbWUJDmEQJjRu9TZyjqHTI3b1/GVmgMkEdxgupYjxLKGuoHctLJewN2LrWFtTbZUUm6KWMpXBmi/LusSMoyEshlMikw3bUEwlZTCbmLCDV6bzkJJKBra5wNY3fPFChYxTCo7tMVykZ9iqWrcgPRtZWw83CyQPgCgyBL88SCQL+A0gWcz3AQl5Vr+8Vzki0CemezlXofeG88EqXhR8h5nrHPfnBMJ5w2R0zL5L3IT72qpTaUVl+c71Xky1U6WOsPLWFiKInMSzvV7bM6RzTEA9O+RwHoQWB6RinuGVMGYc8gq+34OJkzRXbbec3JdcUeJmxwSOqMSLO5IouJSrxVwvpQVjOu6i+ipJVgKFCRQjSELVDMk4XoGiXS1UMFw6Jy0SGgBJBBrarjhn0OEeJ7dP0gJqQtEzb3y6MrH+cwQXMNmSBVRtte65rzux0GiMok+Sdy7c81SF3vZVy9SCfId8/lBOQd6tiSX650aczIi3/cL0WaprdabSKG1NJuyWkniXqzcI8kdjBlLtQdSWIXbel9JooJIHzNCNsec768NO1jDmNe4aBZ5JIkkiWqsh+ZK5hGNazfuJ0KDmURMqetUW99hUuTSMFt5iPkYS6km7cgWiSfzALDAeCrpGFVsdB8BKrMtNZDMm1J0ogoVr2+sdUP3IyXPPFNM5bUZmWuoIlnE2g8DyfWT5H2P/3RMxFLe0b7SuXcPESnvRhNRVDi5eK6T6hof3dS7ynyoNWWNU6x/LiI0ZW7gCCTpj9yfJDJh7SFMeS4t/lbeQpJtTDmT2SjXkBnfVISh0p9qQhEiX9z2Z9yjTj0DXfTLeHsl/uY5d4kM8uVLAS5TNtc1HlhZz9GPvXz+TaZFvGhPaUwxtS6/xFxi9AW+CCfz/nSSl+ZtHwy7SbWaKXxSZmt8Z60v3/trbshxCuWY/JQk5GY+erVnhfJwrvP8xrwEQxLTxrznYuj8vuYVXiY9gFbLsuzMiy25UCLXl8A1aOPqxZSnpFDWVUeQQljek+E+E6eFPG3BqHhv1sCeRZFm3ODdMEUmJvE579FxnAf+2u/9Kv7q7/0KfvILP8b/9au/h69+4Ss8jwsIWiOWeNmXaA6l1WbWCvO9hE2RHOd6f2POl+eU4zRWvs3xsnKm3r8BVEjLdTxnYO7rtJjMbIBLorTWUW6Z5vo+WrzX1eSpKcXam8bqHJx3U+SwUtjwQwIdPzPzkNlNxB+dtdRFtst74k3kcFY962VfzT/WGnNP4tCas2PHjh07duzYsWPHtzE8HF989QV+47d+A//of/9H+N1f/1381v/0W/j9X/19fPXpq2+cjXZ8u+Nnt3vzArOCsoghsYom5/PE83mheKEMNkCgSh2HxPdUEJiB6xwotalTylH84MFfhferX7JcCVqfIXA+n+jjQlMBFbiLyxFBkNJlHTdViJK6Q6osQIfbMTrGuPjX3vl9gyogx+MjPnz4BJf6QK11ddMmiWGAhQQrtEjqsouabiitrgJUFuhiTvSYAnHZgZwS36l8woOi0aLqKLBCMsaYEx+OBx7HG6w4jkN2b56kBtdBf6i711iYcUNrfBcIWvMUJ+kKAkbbo8H74GcbFZ2yiJPqV60di2iWIAWLV44Cgvtvb28AJMsPWsy5G1olmAMjIJON4LXyvfXeARhq4TB0u+2xANpshWWHZYDqH1m8u+WtS6lL1ryUgtGpdjSNRawhGXEDAWUqrBSQtEFbIIcRyK0sNrKgZCK4NUwDzuvCBC1lsnM2zDCNtkzsFDTYSMuFULF/qMhYVhG+jwvnGHirlGyuIjAhDJ/Pjurs1i7mOBoVSg4BGAYCS9d1wqzieb1TacMrlTZMxXU3fP3VO6oH/Ci0LWsks0VQGWfCSDJSp/+0wDCSt96vC46BGoY/+KM/gQE4r44ZjlIN1Q3n2ZkHVKiegzYDY07UQnWWJLBZSGq7FXg4jnrgKo7Pn7+Cg0UxB9Q5HlBFDROT3fo5DjsL+3N0YA648f2PEYjecV4X6uFLuQVzYnZaBrq5OndZMGYhaK4icxaKSTLQnJgXiSpXx5z6XHNaujmJC+5FVVehSqpKzRm0J3LH2SdwPRGTRLXeu+YAyXN9DDweH/B4NMTkXJpx4fF4yLKDsHY9ABQsKyuqnzF3Fi/s+I5UFyAppc+Bc2Qnv+zAUHCNkwo5hSpnfXbmDqmtGdhJ3PuFdhz48HYw/46JGBND46i2A3NcmusTzRswTcX/glILZg8cbx8IFs+Am9YQI7EhwT+HwLN+YvYnSXjmKLUA14DVhmETfjR8mHVJ87fmuK5UyQIetaF6wegX+uRzmkJvvFD5DqAFT+9deSKo3GN1dZuHgeOns4u11UpLtyG1BHN4ZYGyK/cc7QAG8xvz6a3sYA6M2VGOQrn/IJFyjgkPAwqfGxYgw7Fai6zCEqQRuBwx0aNjXgHzsu6fRVeqNkyB6HNAVoT8jCHgr5TK9doLECQLVK8anyRQ9Sn7uWp4SE3x6lQ3Ena2VBUSpF/F+DDM0VFc0vGykAsAMaXGYY4wrqkDHFsx+1L+WCC2nmOBy2pzol8XSq2oAqvTjgcQSUsFVvOCWk3Po+PsJCkDzE21NMQM9OjcO7ihD60pM5WzEuBxnCfHG7uWmU9SHRGAOrZfQZshpQouzFzHCmZxhIfyOK/xuk4kIZAfz7lcnEpv7/3C8+oIBD5agVtZpKBSnJD87LieEx4PPFpB+3Cgd9mfWeBrCwyQkNSqDCjNgWKoRQQGo3pk2rFe759xjYEwEhq8FbRqMGu4UhUjmG/PkeSLAAYJxZYkRRjMBqZNOAqK08KPAEMhIU77uVBn9yJQwBZwFrjVF3O9LRDYK5JPduCPPtCOst7VslIZzEdU4OxLTYR7VgJBz0nCe611jZmlruI3KWTOiff3icfjwHFw/0mlqbHGDwkt2vdFkAQ2uiyT5+pmduXqWuoCX8KSQCKABiQteOG4S2LFpWv8NkZ2hnOuAAk6ASLIjkG7ieo3UWJlvldwCdq7S2kEIhUgFZXmUjvKdR0GzWeRfPRxdksrkfAE3Ps8fW/ajs0l4yCS/HwF6mjVR3J/Q61UuCT4KIKPvdqExPr+pU6RwJ1smWG0q0r0auZ7TvBcIHACmHh5WndHPdUXqlc2CWjvvAA0/T4JSjNvms/RvglMkmh3qz3BdK0iDJkoeDeczOdWXGuW1uHIz9Y6F6G9ObLBhfMCdtv8kgETCxh2AYtJtDAnXJ95Wng79+TAygXATRh4JZxp6Kxc2HXWgKValr6bA1lr0U26MjepKt6WM0maKTlPoTUyz7Haw4ROj2PMG8APgfZrvIVUnkQmCRKcxqSVNc8afPdTZ8jQTbnGw4wJpIqLchLzE0lOi3ymrayJOHCdHa5GAzeDVVuqFhzPtpR3F8YJqrja5DnIAfz5lwRu19omwsQY46eUqdgEc8ZcoKnZbfdlflvbFFlqX9eQ4sk9HxY5QddJFZH1SNf1Q+qqSXSiGu2EF4iAZYtws4gLL3+fBIUkI+ZcXCqXIh2u8+GUogtMhI811DjOg6pJGaE5gzBZF4815qBcByQxN1AL1UxS1TGSDK89EhBIt7E8UxeXdfMaGy6rKlIJzHgmW2A/IMIHlR1zTBMP59zywiYxy7EMNvBQXU7/Rp/HMSe1Fpd6mvLLjBfVuxzLlqphzOexCHKBxYoC5/8QQZv7dn3ODKAUks313mYAXn2R/BD3WgyEmp1uwhucz23M/Jn5QmynGpjjfu5JaGUph/uq3GfghbyVainlp/MUOD7mN/b6SRZ7yRF4sUG9GUN8HkaCuM0k+PCTI3MMAiZCOnATGRaZSmdnmMP9Jl9MqS7l2rrGiN1rU5I6kmxbapLTfNkK5lrvViCD0aVYDciiU2ftVPB8nY/cK+Wc5HMcuY9E3KpOWII3SHJYWiwW7XFhqaQYsji9fx5mKPk7EasJACK+IyASkaN6Kurce418JyQe3nP3VvfTe1lk5XtpBm4y5Lp3vtx73L7sCZDrO/Jr7zW9y3K6z8BRfO3RON9mPjVMncWqzltFuczdcF6sg6WKYipO5VriOvPZ4N6bQs+sfUDznARcwy/9xS/je//m+/h8fMb/+Wu/i9//lT9Ye4Jca0j61b7KDDZT1TzvWYTKl/ycOXrNtXxmWg9CY3Xl93xW+t9SV9J7hd+2wUl21YLykiNE4BQJLa/fpax2q9Hbyk/5zbkn5JR3NnfMsT4ziYYvt8EcoCaXzKm5LuWaaNrE5Hu9h9Q9X1cY1tqyY8eOHTt27NixY8e3NQyGOir+9u/8bfzN3/2b+LPv/hn+2f/8z/DP/8d/ThXRHd/6+JlJSgBW4TGgTh9zqXH0pWLEE62tA/zqnBMJKVUPWjtUxLXVDeseAKhoUWpBCSp1UBUCeEhm2FIZIKXhARUOJOuMoLpGWiIAUqwYOMeJ2S8UI4FpyB6myN7t7fGR5B4ncH5UknSu0TFAoGB1sUyIPOPrHqJTntpXh2jX4c5km6OJ0w54TdJQAEYCzZSySDH+mR0kJrX2UOcfyRDhABDq4JYFSZg6vNUBG1gEGXcW+fpkl30xg4Wz47pPRAzUxiJgvzpaOUiumipClSKymUnZhwfqBc6pIOVu+PB2LGCERUMSSmJO2QAYZdOrSw2LRZbaKglJz0lwCQIvRMYCaEdgUhFKVSUWggIRnVZ6nt3WOrCbupTVKZ4S7MUKSjWMHiTqtAKbE+d5qRsMshl0Sl17wWHAvKhA8zgOxKDGR60Hu55mYIBFpjknrFAZpnis8cYCaMUhmfrAbQEEUKnEzDAduCJQQSvEN3eqL1nBnIYRBrOpjn9eo5sjnKSeFsDbo6LVihnANQJv7UCrFe9XR79IWphB3RlTkbNWWqHEBCBFlQ4SLq5O0sCjNo2BiRkDxSsJe5MdzmNcJHrQ+wYAcJ0DPQxVtdgh24XH8YFWIXOwFDkF1kR23qpzWuSltAdoXnH2gXI0vH9+h4Ey/QR0ChWyBm3Nsm4Eo1KMrcKZoY+O+qhSxyGYcNQDXaQbCNy2UjUOJ2a/UMuh56R3HU7ii7usWQzXxbF9ybLvOi+Mc+B4Y8FpXB29X7iiAyg4GlCOgvBQYVMqEAKjSiPA3rMLfw6Cd6XSBsNpH9fVxXsXvZ32dMGCfB+CML2qk1bEsHBEVNCWgEkuwVJaXNiybBiD/z7ccY3Q59O2jwQfh8Xd8cy5X0lK8ECMjmtMtOOBmMD5pG0VbTNjKWSZGXqkWsDAdVHp5MPbYxXgSDgqMBWjS6mY14mIid4nzBuvXRYpMHYKcm5WkBNkfIZkcKA22tzFGLSBLPmMIEJIAjJFoFcAk6TLUqnGM2ZfnfMAZPUwOVatoDmtWS6wo7QQyoCqy7yXVOaZgSGABKAlXhZUaynMWSHgWWTe3jstDwSGJ3iWuRhWF5hTZK9AOykDFsmtrPUkP2vOAfhL9687qDJUlKOpfgQbSLulWgpaM8yoeMfJ9zgN1bJv2jFkaQkAxUiyOfvIx4GJQIeAnXC4B/o5SBhzo71lvocqCwOTFU6ELNmkWFAKot6A5ZxjWf8w3/A9khxLVTkk2CEACCIMmfJGEpRZwM61R2S24ihjYEohhyIIjhgAnMCY0h8MXHMhgo3E4KgYMKlINQcT6eNoso8qfG/u+PTpE47HgT4H+nkBc2AO7stqqUAJmFEpKQz49PEDPhwHxHVEbQT3qxf46LRTlGLcW9CukSQqjlF3kjbNtEZoPF4iCC+yQQSOB1WfhtYrAIsUkcAxO+85jtxIcBsJRkh5apF2QkSFyv1CGB/iDUzc4GoMoJ+0bUmiCH9Ec0V7RpN6wlJGkDrKNU/UVlFLRY8ha0WSXr8BFiFw9ZP7k1JgFkvhhCTccVu4aL7360KZ5YWUJrDSA32KeGAJDibxLvRt3N/Wynd09Ynr+nbL21qiPrjBvuyKd0vSERZoe2dR6N1wzhbPZ3yDlHxvmlBGEL+A55PIvVZJUsCtmpTgE2HNG/AheGb3M9d3kJA0BWDnvlNAmyxmi6xFTGtICKyaspl6wbSW2kgqZSBB/wR8520vR/6STlduWi99jQjzu2HDILU37cmS4PoK4gNJ2rsJsvy8W8lpgWUC1xdhh5sJ8l4mSVRLuWSkdS3nE8+P31SiuoFAy69e31NrlVrF/b8kkCRonqQas3tOuac1YtrIZU64wbpXoDqv5bY1mgLcbf1+xiJEJdkdXBsTsKVFc1n3n0RqksJsfS5zEglvVIrhO6WqYo6zFyBapCg3KsAMWVyZ8yyV7zOtcQCmDNNYmXETleoCHpOE8vJszLSO8+68ODzYOJIkqzl5ZnOnymWMm3D3Mm1xq6hg5WuZQWkdhfbody42KXvEnPCqPAy+z0zrY51dNIdEliqlUYUHmY/vF0zyWqw1a30feJ1jkoje1XCTaisIXc9PEQUcWDWGHMdzBlpJ9R3+bPVK8pboeNlgBL+BdU9jKAHYQKwmn7yHXIemFkoSz+ciHZKQKRVUGCKJK4a1r0J+/0ziHs2dMte5cf8+4+WeItY4z8Q9RV4xqBFN5wyOVV9rVSxbbCkIJYkkf+UeqZzbdltW5usrIpz5S76aqZSGnPdcY0371THUTOfMfbSj1ncg9xpTZ6uJ4sdaV1KJJc+eHLfMizNC9QPeY4xYpOIcT1AeW+/KcrwlCQtL4RO538lNNl7+ebDWkfkyG2kyB6a6bs6nXMOoyv1CUsLUZ/PhpWUkubY3+SjnFp/XFBlHxCt7UW3JefOy5ub8QhLcMi9aWWSh+96S6GR6JqFzpY6s+jtfY0H7txhrfTZAZGLDMNP5R9f/8v33npK/R2LnrTolmrfyZBKFSZKeni8VOgu9zMfIbBd6pqx1lapzo9ao1zDlnIq8/1Ce4poduf1YsyI3SbHu7d4DiQps8x5v+jHLz3v5eVM9IOuyzFmaoyK5TOW/bOICWO8speLxdiuVKdFpHhusmCwSK+dSqTi0bmcdab2bCKl7BfNqDVTwvJDXkfPFYfj4/Ij//nf+LuYx8Yff/yGmcouF1OeKbEWl0JWE6G8+L8v/5tNUzrV7DAO3BSRwz4ccROtzmZ/zz9J+HNp75TfkuRgGNiOtvW4udRpnJeuSGgsva+gibRpJzSV3Gq41O8eX2frM/BKeufQZa8xwcMR0rc0v83c9r1g5pZjW+xmr+WnHjh07duzYsWPHjr8MUWbB9/70e/gnv/lP8P54x2//g9/+r31JO36G+JlJSixIfFMi9xoXirGjxlBlCSOpXTP5drOLbI6J0QcOdaLfRJOUiC6yYiOI0/vA+/MzzIDmwFEIhFOVoxJMMh6mhw57Qx2gtBmTlrGKrBOBfp04rwutUHHgeT7RLxZpP33xCW9vD9QkzzTa8gAiU8xBxZF2ICaBuNl5iKM9D+WjfQYGWDDt88L5fAcgRZ5yINxQ2gErtF3L4kTanPXeBShUVKsC83gpY054dDy8EtjuFwyB4kCrFTGA8/0d5sDhBwsK14VaG0Fzo0UfYsJbAyQVTjsowEQ4ArCKwdMAL3WBLFSluAkEIXlnrwKVjLLNVFkZgH5mAqD9uUCaro7CuItuJulwlFvxJky2A/WAmePqTyqwPJoIbrx/kqg6oseqKZCAJjlmVzFmTBSnWsY5add1jgvXvPDWPqLPgffnO3qnYhImgBpqtnQcRksYeIF5hXnFdXZK3weAcDyf5yr2rYLbCPRxItWcHI6jkhwxZGdR3NFKxaNI5Sgmwg0XJlo78LFWvPOOAHOUCpQKzKkiMFw2IlAX8cTHt4KzB/oAbASqD/R5YRQV1r3g7a2Behos/PA6CvqTlnH9vACjZVlRoX1cFwkkALuqS8U4A6U2HEdD7x3XYJfuVGfhCLAzMYxF9BmYF0kcpTaMTvUQj8DRGi321M33/jxxVAIMDloosH2xkcDiVHizAI5aMaatdxEVeDxSVazTWsnuQk8fE+/PJz48UmWMCm9hBTFZxB/gs6jF8fHtgX4a+jlRWoM7FVViklpXjsZnNONWF2qOboEL4klIAvw8L7x//SU+ffcLlNJuIpbs7Wpl0S+aYwyA4ioNUQJvR0OcJ9EazZ3SDo4niNgiIoOLYBDDSTYAAZ56FHgYZmf+LFaoFKUO2pjAJSu/Wh+0zDMDiUwsUg4QqL+ujrfjwJwdIyaq5j7JCAAEzpVaUD2AEuifn/AA5gCaH4jZqZZnAUNBK44+gN6pTBJj4DkGphme7yfm+0mC6Xc/ocARuCSNboha0HvHc1w4vNIyEBPnOaQmxAJg7wOIomRXYTHwqMzLafUCkUKpikI1pAS0xwzaJ0bA6kG1wPeL4JnLfiVJrbioQmZAheM7nz7h8/MdT82XMTreUhVE4zTGRLWqOTSoSuAEc1zKDH1MkvtekNQZkz+b5WaBilyUmTeuATweD9icwOhUYqs3cc1M61+fMCsCw0iIcKcFRSsPkTCGwFhHBEkrgSkZe5JuauFziwnZL06SRUX/NZGUTcCpq6g+fXA/MUMkwILRdSPKsWlnQIBmADhQ68F1bMYiRUZMtKou3Jgi3xhGnwg9+1Kd4IUB5hWtOeZFNRyqRHWBT3ndNxCb9hkE+FyANG0R21FQzo7nlfaSej8D+PR4w3mRyDIBoBT4FGnZnapGE9orFHz49AY0dnFXY84IEEwuUl2ss2OIMNF7FuZFkphUoCzFUB2IPtS17lJJ4j3DHO1owBhoRhJPbQeu68TzeeK8hpSpLkQMtEXEoA2Q1wr4hJfG8WiOfg300NjQfmkpKHHALCzoVnMYC2gyAWam35uTBHIqfBTuPy6SvSEQ1QwaQ7RgdSmpQTtEfnJ+d4JnIgwlbBYDo1MRZiQguLqnX5QOTONAgHcpzMfcs2GtmzCm0Zy2cwxea9qowKjEN4feu0gFg99JRbhbQWxawEpBDQLa3954faq2CAUGqkcmsVlb+MR37n1VEBxO5UD+XAJ+Wrv08xw7VNSEpaXSrUTqUghLwC0sVXz4/DI/5PUgUlGARM8i4JtzgCDScTQ2SpivBoF157kYgGN1AouosgD7hWQJBg3mtTE6kmDtLjWytFHJZxZ5jbLQM7ttlDRXEnCewTNMFCkkgORdF8GGz4xNIwsk1zMPrQ2mvUZeeJ4hwmyRrpKUkKTenNwzlRBwv+RXxToIkEwCihe8gMP3JnvZmH2DAKHRpc9aZJ+0adS51KQkSRAcel568pLYeAUAs1GGSS4W+DukIDLm4P6nNMyYuMaLCh+wyL1U6uA6bEZl1/z93FvATKot97TJ8Tll750qDsXTEu4mcLqTOEZcme9igASu5gUd4wZceazQvVoKmQrc5Z7Hm/a1iY0Okgpv0NtR603+TNKLm/N6NW9WnUBkrwX05vfoXG0iIM45eH4AREB6IcyEiAwIxJA6mhQhSQy6rQHzWdEC11/uzdYZd8Jk65PKQiJjB99FcTX3ADw3xcsYA/N+B1Ape4llE6adAt/hbZ1YayUJd4TO0bQADd2TqZYRcRNeioi6Q7mhax0dc6CfJ47HQbKOFIXSDirJLknMHgOgrzEt42LM9bOAagJJLNSYDI3znDAma6oI1gpI/pNdLcDaToLg+suYE/VF5Yzvk5+Z9z3mTdxK1ZXMD8hU9zJfaXc71zxRJQLJb+T1kfh9iThZnGtuBPeHs/MM7K3y/JR7aH1+aD8GpwKyiVRxXV3qZZobodylBcyhhhOR8mZe0wzut14IZJE52LDWwTF47k1FwSQhDpHzTXuWJrLue9yqjggo93My5zVkZWzOkJpdPktTTn0h2GjfNRG3GlbcOW0RskRIKe5SP80UnmSvvB9+dir6Arf9WXHlYp294j6AwR1SmcVqmlGyR1rwmeZarjecdTdhyWGYRlreIhVnHlGnQJLTlmJUTJjN1RiJyBw413zieIx7bxdgY0A2sCCVnVgvQSRhSoTKRQBOOrbuQOSbXBMiv8ddRFOArvGpKGbAhNTCZWuqZ5vEZdOzv/MRUFHwsIYIqi0vgqfur6ipa82FuM+bFpA6srG5Qyptkrha8wCRZN1C9zYHmhpea6noo8tyOZbVmRvgUfHFV1/Avo+lJG+GRTznMJ8ib65d073mvowGzYI112wljP+UVJbnjwieV18jyUNrvfVv/mq8/P/awCLWXj//iGfpe0+03m/81M/n9UtdbSl8RY5vrWMa6KGLjNcxru9dZwX9J9UBScbX/i+/0aAxjB07duzYsWPHjh07/tJF6w0/+NEP8NvYJKW/DGER++ixY8eOHTt27NixY8eOHTt27NixY8eOHTt27NixY8eOHTt27NixY8eOn1/4f/5HduzYsWPHjh07duzYsWPHjh07duzYsWPHjh07duzYsWPHjh07duzYseP/fWyS0o4dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO36usUlKO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs+LnGJint2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LHj5xqbpLRjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx46fa2yS0o4dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO36usUlKO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs+LnGJint2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LHj5xqbpLRjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx44dO3bs2LFjx46fa/zfBdlKFBVsPogAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m현재 셀 또는 이전 셀에서 코드를 실행하는 동안 Kernel이 충돌했습니다. \n", - "\u001b[1;31m셀의 코드를 검토하여 가능한 오류 원인을 식별하세요. \n", - "\u001b[1;31m자세한 내용을 보려면 여기를 클릭하세요. \n", - "\u001b[1;31m자세한 내용은 Jupyter 로그를 참조하세요." - ] } ], "source": [ diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/20240809_154950.log b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/20240809_154950.log new file mode 100644 index 0000000..f6c4946 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/20240809_154950.log @@ -0,0 +1,4828 @@ +2024/08/09 15:49:52 - mmengine - INFO - +------------------------------------------------------------ +System environment: + sys.platform: linux + Python: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] + CUDA available: True + MUSA available: False + numpy_random_seed: 678117218 + GPU 0,1: Quadro RTX 5000 + CUDA_HOME: /usr/local/cuda-12.1 + NVCC: Cuda compilation tools, release 12.1, V12.1.105 + GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 + PyTorch: 2.1.0+cu121 + PyTorch compiling details: PyTorch built with: + - GCC 9.3 + - C++ Version: 201703 + - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications + - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4) + - OpenMP 201511 (a.k.a. OpenMP 4.5) + - LAPACK is enabled (usually provided by MKL) + - NNPACK is enabled + - CPU capability usage: AVX512 + - CUDA Runtime 12.1 + - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90 + - CuDNN 8.9.7 (built against CUDA 12.2) + - Built with CuDNN 8.9.2 + - Magma 2.6.1 + - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, + + TorchVision: 0.16.0+cu121 + OpenCV: 4.10.0 + MMEngine: 0.10.4 + +Runtime environment: + cudnn_benchmark: True + mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} + dist_cfg: {'backend': 'nccl'} + seed: 678117218 + Distributed launcher: pytorch + Distributed training: True + GPU number: 2 +------------------------------------------------------------ + +2024/08/09 15:49:52 - mmengine - INFO - Config: +crop_size = ( + 512, + 1024, +) +data_preprocessor = dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor') +data_root = 'dataset/Preprocessed_2DSS' +dataset_type = 'seg2DSSDataset' +default_hooks = dict( + checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), + logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), + param_scheduler=dict(type='ParamSchedulerHook'), + sampler_seed=dict(type='DistSamplerSeedHook'), + timer=dict(type='IterTimerHook'), + visualization=dict(type='SegVisualizationHook')) +default_scope = 'mmseg' +env_cfg = dict( + cudnn_benchmark=True, + dist_cfg=dict(backend='nccl'), + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) +img_ratios = [ + 0.5, + 0.75, + 1.0, + 1.25, + 1.5, + 1.75, +] +launcher = 'pytorch' +load_from = None +log_level = 'INFO' +log_processor = dict(by_epoch=False) +model = dict( + auxiliary_head=dict( + align_corners=False, + channels=256, + concat_input=False, + dropout_ratio=0.1, + in_channels=1024, + in_index=2, + loss_decode=dict( + loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + num_convs=1, + type='FCNHead'), + backbone=dict( + contract_dilation=True, + depth=50, + dilations=( + 1, + 1, + 2, + 4, + ), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + norm_eval=False, + num_stages=4, + out_indices=( + 0, + 1, + 2, + 3, + ), + strides=( + 1, + 2, + 1, + 1, + ), + style='pytorch', + type='ResNetV1c'), + data_preprocessor=dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor'), + decode_head=dict( + align_corners=False, + channels=512, + dropout_ratio=0.1, + in_channels=2048, + in_index=3, + loss_decode=dict( + loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + pool_scales=( + 1, + 2, + 3, + 6, + ), + type='PSPHead'), + pretrained='open-mmlab://resnet50_v1c', + test_cfg=dict(mode='whole'), + train_cfg=dict(), + type='EncoderDecoder') +norm_cfg = dict(requires_grad=True, type='SyncBN') +optim_wrapper = dict( + clip_grad=None, + optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005), + type='OptimWrapper') +optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) +param_scheduler = [ + dict( + begin=0, + by_epoch=False, + end=160000, + eta_min=0.0001, + power=0.9, + type='PolyLR'), +] +resume = False +test_cfg = dict(type='TestLoop') +test_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/test', seg_map_path='annotations/test'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +test_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), +] +train_cfg = dict( + max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) +train_dataloader = dict( + batch_size=3, + dataset=dict( + data_prefix=dict( + img_path='images/training', seg_map_path='annotations/training'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict( + cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=True, type='InfiniteSampler')) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict(cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), +] +tta_model = dict(type='SegTTAModel') +tta_pipeline = [ + dict(backend_args=None, type='LoadImageFromFile'), + dict( + transforms=[ + [ + dict(keep_ratio=True, scale_factor=0.5, type='Resize'), + dict(keep_ratio=True, scale_factor=0.75, type='Resize'), + dict(keep_ratio=True, scale_factor=1.0, type='Resize'), + dict(keep_ratio=True, scale_factor=1.25, type='Resize'), + dict(keep_ratio=True, scale_factor=1.5, type='Resize'), + dict(keep_ratio=True, scale_factor=1.75, type='Resize'), + ], + [ + dict(direction='horizontal', prob=0.0, type='RandomFlip'), + dict(direction='horizontal', prob=1.0, type='RandomFlip'), + ], + [ + dict(type='LoadAnnotations'), + ], + [ + dict(type='PackSegInputs'), + ], + ], + type='TestTimeAug'), +] +val_cfg = dict(type='ValLoop') +val_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +val_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +vis_backends = [ + dict(type='LocalVisBackend'), +] +visualizer = dict( + name='visualizer', + type='SegLocalVisualizer', + vis_backends=[ + dict(type='LocalVisBackend'), + ]) +work_dir = './work_dirs/pspnet_160k' + +2024/08/09 15:49:53 - mmengine - INFO - Hooks will be executed in the following order: +before_run: +(VERY_HIGH ) RuntimeInfoHook +(BELOW_NORMAL) LoggerHook + -------------------- +before_train: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(VERY_LOW ) CheckpointHook + -------------------- +before_train_epoch: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(NORMAL ) DistSamplerSeedHook + -------------------- +before_train_iter: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook + -------------------- +after_train_iter: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(BELOW_NORMAL) LoggerHook +(LOW ) ParamSchedulerHook +(VERY_LOW ) CheckpointHook + -------------------- +after_train_epoch: +(NORMAL ) IterTimerHook +(LOW ) ParamSchedulerHook +(VERY_LOW ) CheckpointHook + -------------------- +before_val: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +before_val_epoch: +(NORMAL ) IterTimerHook + -------------------- +before_val_iter: +(NORMAL ) IterTimerHook + -------------------- +after_val_iter: +(NORMAL ) IterTimerHook +(NORMAL ) SegVisualizationHook +(BELOW_NORMAL) LoggerHook + -------------------- +after_val_epoch: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(BELOW_NORMAL) LoggerHook +(LOW ) ParamSchedulerHook +(VERY_LOW ) CheckpointHook + -------------------- +after_val: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +after_train: +(VERY_HIGH ) RuntimeInfoHook +(VERY_LOW ) CheckpointHook + -------------------- +before_test: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +before_test_epoch: +(NORMAL ) IterTimerHook + -------------------- +before_test_iter: +(NORMAL ) IterTimerHook + -------------------- +after_test_iter: +(NORMAL ) IterTimerHook +(NORMAL ) SegVisualizationHook +(BELOW_NORMAL) LoggerHook + -------------------- +after_test_epoch: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(BELOW_NORMAL) LoggerHook + -------------------- +after_test: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +after_run: +(BELOW_NORMAL) LoggerHook + -------------------- +2024/08/09 15:49:54 - mmengine - WARNING - The prefix is not set in metric class IoUMetric. +2024/08/09 15:49:54 - mmengine - INFO - load model from: open-mmlab://resnet50_v1c +2024/08/09 15:49:54 - mmengine - INFO - Loads checkpoint by openmmlab backend from path: open-mmlab://resnet50_v1c +2024/08/09 15:49:55 - mmengine - WARNING - The model and loaded state dict do not match exactly + +unexpected key in source state_dict: fc.weight, fc.bias + +Name of parameter - Initialization information + +backbone.stem.0.weight - torch.Size([32, 3, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.1.weight - torch.Size([32]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.1.bias - torch.Size([32]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.3.weight - torch.Size([32, 32, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.4.weight - torch.Size([32]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.4.bias - torch.Size([32]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.6.weight - torch.Size([64, 32, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.7.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.stem.7.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.bn1.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.bn1.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.bn2.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.bn2.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.bn3.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.bn3.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.downsample.1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.0.downsample.1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.bn1.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.bn1.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.bn2.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.bn2.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.bn3.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.1.bn3.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.bn1.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.bn1.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.bn2.weight - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.bn2.bias - torch.Size([64]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.bn3.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer1.2.bn3.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.bn1.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.bn1.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.bn2.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.bn2.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.bn3.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.bn3.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.downsample.1.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.0.downsample.1.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.bn1.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.bn1.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.bn2.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.bn2.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.bn3.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.1.bn3.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.bn1.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.bn1.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.bn2.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.bn2.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.bn3.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.2.bn3.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.bn1.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.bn1.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.bn2.weight - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.bn2.bias - torch.Size([128]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.bn3.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer2.3.bn3.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.bn1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.bn1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.bn2.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.bn2.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.bn3.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.bn3.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.downsample.1.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.0.downsample.1.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.bn1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.bn1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.bn2.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.bn2.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.bn3.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.1.bn3.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.bn1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.bn1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.bn2.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.bn2.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.bn3.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.2.bn3.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.bn1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.bn1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.bn2.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.bn2.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.bn3.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.3.bn3.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.bn1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.bn1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.bn2.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.bn2.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.bn3.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.4.bn3.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.bn1.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.bn1.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.bn2.weight - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.bn2.bias - torch.Size([256]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.bn3.weight - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer3.5.bn3.bias - torch.Size([1024]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.bn1.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.bn1.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.bn2.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.bn2.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.bn3.weight - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.bn3.bias - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.downsample.1.weight - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.0.downsample.1.bias - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.bn1.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.bn1.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.bn2.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.bn2.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.bn3.weight - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.1.bn3.bias - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.bn1.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.bn1.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.bn2.weight - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.bn2.bias - torch.Size([512]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.bn3.weight - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +backbone.layer4.2.bn3.bias - torch.Size([2048]): +PretrainedInit: load from open-mmlab://resnet50_v1c + +decode_head.conv_seg.weight - torch.Size([24, 512, 1, 1]): +NormalInit: mean=0, std=0.01, bias=0 + +decode_head.conv_seg.bias - torch.Size([24]): +NormalInit: mean=0, std=0.01, bias=0 + +decode_head.psp_modules.0.1.conv.weight - torch.Size([512, 2048, 1, 1]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.0.1.bn.weight - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.0.1.bn.bias - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.1.1.conv.weight - torch.Size([512, 2048, 1, 1]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.1.1.bn.weight - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.1.1.bn.bias - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.2.1.conv.weight - torch.Size([512, 2048, 1, 1]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.2.1.bn.weight - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.2.1.bn.bias - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.3.1.conv.weight - torch.Size([512, 2048, 1, 1]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.3.1.bn.weight - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.psp_modules.3.1.bn.bias - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.bottleneck.conv.weight - torch.Size([512, 4096, 3, 3]): +Initialized by user-defined `init_weights` in ConvModule + +decode_head.bottleneck.bn.weight - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +decode_head.bottleneck.bn.bias - torch.Size([512]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +auxiliary_head.conv_seg.weight - torch.Size([24, 256, 1, 1]): +NormalInit: mean=0, std=0.01, bias=0 + +auxiliary_head.conv_seg.bias - torch.Size([24]): +NormalInit: mean=0, std=0.01, bias=0 + +auxiliary_head.convs.0.conv.weight - torch.Size([256, 1024, 3, 3]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +auxiliary_head.convs.0.bn.weight - torch.Size([256]): +The value is the same before and after calling `init_weights` of EncoderDecoder + +auxiliary_head.convs.0.bn.bias - torch.Size([256]): +The value is the same before and after calling `init_weights` of EncoderDecoder +2024/08/09 15:49:55 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io +2024/08/09 15:49:55 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future. +2024/08/09 15:49:55 - mmengine - INFO - Checkpoints will be saved to /home/students/cs/the0807/Autonomous-Driving-Model/segment/mmseg/work_dirs/pspnet_160k. +2024/08/09 15:51:20 - mmengine - INFO - Iter(train) [ 50/160000] lr: 9.9973e-03 eta: 3 days, 3:38:55 time: 1.1120 data_time: 0.0075 memory: 12655 loss: 2.2964 decode.loss_ce: 1.5067 decode.acc_seg: 72.9778 aux.loss_ce: 0.7898 aux.acc_seg: 38.3795 +2024/08/09 15:52:15 - mmengine - INFO - Iter(train) [ 100/160000] lr: 9.9945e-03 eta: 2 days, 14:32:03 time: 1.1150 data_time: 0.0076 memory: 8703 loss: 1.8986 decode.loss_ce: 1.2576 decode.acc_seg: 68.7206 aux.loss_ce: 0.6410 aux.acc_seg: 57.4579 +2024/08/09 15:53:11 - mmengine - INFO - Iter(train) [ 150/160000] lr: 9.9917e-03 eta: 2 days, 10:11:15 time: 1.1193 data_time: 0.0099 memory: 8702 loss: 1.3991 decode.loss_ce: 0.9392 decode.acc_seg: 73.6874 aux.loss_ce: 0.4599 aux.acc_seg: 55.0376 +2024/08/09 15:54:07 - mmengine - INFO - Iter(train) [ 200/160000] lr: 9.9889e-03 eta: 2 days, 8:01:04 time: 1.1193 data_time: 0.0089 memory: 8702 loss: 1.3432 decode.loss_ce: 0.8647 decode.acc_seg: 73.0713 aux.loss_ce: 0.4784 aux.acc_seg: 67.8794 +2024/08/09 15:55:03 - mmengine - INFO - Iter(train) [ 250/160000] lr: 9.9861e-03 eta: 2 days, 6:42:06 time: 1.1167 data_time: 0.0058 memory: 8702 loss: 1.2498 decode.loss_ce: 0.8080 decode.acc_seg: 67.1811 aux.loss_ce: 0.4419 aux.acc_seg: 67.9569 +2024/08/09 15:55:59 - mmengine - INFO - Iter(train) [ 300/160000] lr: 9.9833e-03 eta: 2 days, 5:48:46 time: 1.1181 data_time: 0.0068 memory: 8703 loss: 1.0083 decode.loss_ce: 0.6297 decode.acc_seg: 83.2844 aux.loss_ce: 0.3786 aux.acc_seg: 76.6996 +2024/08/09 15:56:55 - mmengine - INFO - Iter(train) [ 350/160000] lr: 9.9806e-03 eta: 2 days, 5:12:21 time: 1.1218 data_time: 0.0099 memory: 8704 loss: 1.1990 decode.loss_ce: 0.7633 decode.acc_seg: 78.0649 aux.loss_ce: 0.4357 aux.acc_seg: 64.2137 +2024/08/09 15:57:50 - mmengine - INFO - Iter(train) [ 400/160000] lr: 9.9778e-03 eta: 2 days, 4:43:45 time: 1.1186 data_time: 0.0090 memory: 8702 loss: 0.7768 decode.loss_ce: 0.4776 decode.acc_seg: 91.9760 aux.loss_ce: 0.2992 aux.acc_seg: 86.8053 +2024/08/09 15:58:46 - mmengine - INFO - Iter(train) [ 450/160000] lr: 9.9750e-03 eta: 2 days, 4:21:31 time: 1.1169 data_time: 0.0085 memory: 8703 loss: 1.0801 decode.loss_ce: 0.6856 decode.acc_seg: 82.8260 aux.loss_ce: 0.3946 aux.acc_seg: 80.9879 +2024/08/09 15:59:42 - mmengine - INFO - Iter(train) [ 500/160000] lr: 9.9722e-03 eta: 2 days, 4:03:19 time: 1.1193 data_time: 0.0101 memory: 8702 loss: 0.8905 decode.loss_ce: 0.5634 decode.acc_seg: 74.8229 aux.loss_ce: 0.3270 aux.acc_seg: 70.1466 +2024/08/09 16:00:38 - mmengine - INFO - Iter(train) [ 550/160000] lr: 9.9694e-03 eta: 2 days, 3:47:34 time: 1.1129 data_time: 0.0063 memory: 8702 loss: 0.9910 decode.loss_ce: 0.6259 decode.acc_seg: 79.6749 aux.loss_ce: 0.3652 aux.acc_seg: 74.0839 +2024/08/09 16:01:34 - mmengine - INFO - Iter(train) [ 600/160000] lr: 9.9666e-03 eta: 2 days, 3:34:56 time: 1.1195 data_time: 0.0084 memory: 8703 loss: 1.0668 decode.loss_ce: 0.6649 decode.acc_seg: 82.4718 aux.loss_ce: 0.4019 aux.acc_seg: 77.5473 +2024/08/09 16:02:29 - mmengine - INFO - Iter(train) [ 650/160000] lr: 9.9639e-03 eta: 2 days, 3:23:39 time: 1.1131 data_time: 0.0068 memory: 8703 loss: 1.1027 decode.loss_ce: 0.6935 decode.acc_seg: 72.8235 aux.loss_ce: 0.4092 aux.acc_seg: 66.6058 +2024/08/09 16:03:25 - mmengine - INFO - Iter(train) [ 700/160000] lr: 9.9611e-03 eta: 2 days, 3:14:09 time: 1.1187 data_time: 0.0089 memory: 8703 loss: 1.0477 decode.loss_ce: 0.6448 decode.acc_seg: 81.2432 aux.loss_ce: 0.4029 aux.acc_seg: 77.5060 +2024/08/09 16:04:21 - mmengine - INFO - Iter(train) [ 750/160000] lr: 9.9583e-03 eta: 2 days, 3:05:29 time: 1.1161 data_time: 0.0072 memory: 8703 loss: 1.0045 decode.loss_ce: 0.6486 decode.acc_seg: 79.1417 aux.loss_ce: 0.3558 aux.acc_seg: 72.4977 +2024/08/09 16:05:17 - mmengine - INFO - Iter(train) [ 800/160000] lr: 9.9555e-03 eta: 2 days, 2:58:14 time: 1.1134 data_time: 0.0074 memory: 8703 loss: 0.9484 decode.loss_ce: 0.5966 decode.acc_seg: 84.6442 aux.loss_ce: 0.3518 aux.acc_seg: 74.9345 +2024/08/09 16:06:12 - mmengine - INFO - Iter(train) [ 850/160000] lr: 9.9527e-03 eta: 2 days, 2:51:22 time: 1.1213 data_time: 0.0079 memory: 8703 loss: 0.9796 decode.loss_ce: 0.5963 decode.acc_seg: 92.2979 aux.loss_ce: 0.3833 aux.acc_seg: 86.7781 +2024/08/09 16:07:08 - mmengine - INFO - Iter(train) [ 900/160000] lr: 9.9499e-03 eta: 2 days, 2:45:30 time: 1.1171 data_time: 0.0078 memory: 8702 loss: 1.0963 decode.loss_ce: 0.6912 decode.acc_seg: 90.4543 aux.loss_ce: 0.4051 aux.acc_seg: 80.7743 +2024/08/09 16:08:04 - mmengine - INFO - Iter(train) [ 950/160000] lr: 9.9471e-03 eta: 2 days, 2:40:00 time: 1.1193 data_time: 0.0072 memory: 8703 loss: 0.9095 decode.loss_ce: 0.5722 decode.acc_seg: 80.2827 aux.loss_ce: 0.3373 aux.acc_seg: 73.7809 +2024/08/09 16:09:00 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 16:09:00 - mmengine - INFO - Iter(train) [ 1000/160000] lr: 9.9444e-03 eta: 2 days, 2:35:11 time: 1.1208 data_time: 0.0075 memory: 8703 loss: 0.9250 decode.loss_ce: 0.5776 decode.acc_seg: 81.5313 aux.loss_ce: 0.3474 aux.acc_seg: 73.2913 +2024/08/09 16:09:56 - mmengine - INFO - Iter(train) [ 1050/160000] lr: 9.9416e-03 eta: 2 days, 2:31:02 time: 1.1229 data_time: 0.0080 memory: 8703 loss: 0.8911 decode.loss_ce: 0.5520 decode.acc_seg: 75.9924 aux.loss_ce: 0.3392 aux.acc_seg: 70.5672 +2024/08/09 16:10:52 - mmengine - INFO - Iter(train) [ 1100/160000] lr: 9.9388e-03 eta: 2 days, 2:26:51 time: 1.1159 data_time: 0.0079 memory: 8702 loss: 0.7153 decode.loss_ce: 0.4606 decode.acc_seg: 92.0238 aux.loss_ce: 0.2547 aux.acc_seg: 86.4754 +2024/08/09 16:11:48 - mmengine - INFO - Iter(train) [ 1150/160000] lr: 9.9360e-03 eta: 2 days, 2:23:01 time: 1.1157 data_time: 0.0074 memory: 8702 loss: 0.7906 decode.loss_ce: 0.5037 decode.acc_seg: 90.5248 aux.loss_ce: 0.2869 aux.acc_seg: 89.9964 +2024/08/09 16:12:44 - mmengine - INFO - Iter(train) [ 1200/160000] lr: 9.9332e-03 eta: 2 days, 2:19:08 time: 1.1116 data_time: 0.0066 memory: 8702 loss: 0.7025 decode.loss_ce: 0.4399 decode.acc_seg: 92.5441 aux.loss_ce: 0.2626 aux.acc_seg: 83.5405 +2024/08/09 16:13:39 - mmengine - INFO - Iter(train) [ 1250/160000] lr: 9.9304e-03 eta: 2 days, 2:15:40 time: 1.1190 data_time: 0.0094 memory: 8702 loss: 0.7937 decode.loss_ce: 0.5060 decode.acc_seg: 85.5570 aux.loss_ce: 0.2876 aux.acc_seg: 84.2072 +2024/08/09 16:14:35 - mmengine - INFO - Iter(train) [ 1300/160000] lr: 9.9276e-03 eta: 2 days, 2:12:18 time: 1.1159 data_time: 0.0077 memory: 8703 loss: 0.6956 decode.loss_ce: 0.4381 decode.acc_seg: 90.9400 aux.loss_ce: 0.2575 aux.acc_seg: 87.9226 +2024/08/09 16:15:31 - mmengine - INFO - Iter(train) [ 1350/160000] lr: 9.9248e-03 eta: 2 days, 2:09:03 time: 1.1121 data_time: 0.0073 memory: 8703 loss: 0.6852 decode.loss_ce: 0.4399 decode.acc_seg: 87.2427 aux.loss_ce: 0.2452 aux.acc_seg: 78.0469 +2024/08/09 16:16:27 - mmengine - INFO - Iter(train) [ 1400/160000] lr: 9.9221e-03 eta: 2 days, 2:06:03 time: 1.1150 data_time: 0.0079 memory: 8703 loss: 0.6350 decode.loss_ce: 0.3950 decode.acc_seg: 93.3798 aux.loss_ce: 0.2400 aux.acc_seg: 89.3627 +2024/08/09 16:17:23 - mmengine - INFO - Iter(train) [ 1450/160000] lr: 9.9193e-03 eta: 2 days, 2:03:13 time: 1.1132 data_time: 0.0070 memory: 8703 loss: 0.7225 decode.loss_ce: 0.4597 decode.acc_seg: 85.8739 aux.loss_ce: 0.2628 aux.acc_seg: 70.8242 +2024/08/09 16:18:18 - mmengine - INFO - Iter(train) [ 1500/160000] lr: 9.9165e-03 eta: 2 days, 2:00:16 time: 1.1119 data_time: 0.0077 memory: 8704 loss: 0.9395 decode.loss_ce: 0.5984 decode.acc_seg: 80.3362 aux.loss_ce: 0.3411 aux.acc_seg: 77.8660 +2024/08/09 16:19:14 - mmengine - INFO - Iter(train) [ 1550/160000] lr: 9.9137e-03 eta: 2 days, 1:57:37 time: 1.1147 data_time: 0.0083 memory: 8703 loss: 0.6343 decode.loss_ce: 0.3858 decode.acc_seg: 89.2014 aux.loss_ce: 0.2485 aux.acc_seg: 72.2460 +2024/08/09 16:20:10 - mmengine - INFO - Iter(train) [ 1600/160000] lr: 9.9109e-03 eta: 2 days, 1:55:10 time: 1.1143 data_time: 0.0072 memory: 8703 loss: 0.8354 decode.loss_ce: 0.5312 decode.acc_seg: 91.7681 aux.loss_ce: 0.3042 aux.acc_seg: 87.3760 +2024/08/09 16:21:06 - mmengine - INFO - Iter(train) [ 1650/160000] lr: 9.9081e-03 eta: 2 days, 1:52:47 time: 1.1173 data_time: 0.0070 memory: 8703 loss: 0.7183 decode.loss_ce: 0.4566 decode.acc_seg: 90.4696 aux.loss_ce: 0.2617 aux.acc_seg: 74.7440 +2024/08/09 16:22:02 - mmengine - INFO - Iter(train) [ 1700/160000] lr: 9.9053e-03 eta: 2 days, 1:50:32 time: 1.1189 data_time: 0.0074 memory: 8702 loss: 0.6725 decode.loss_ce: 0.4350 decode.acc_seg: 92.1834 aux.loss_ce: 0.2374 aux.acc_seg: 88.8466 +2024/08/09 16:22:57 - mmengine - INFO - Iter(train) [ 1750/160000] lr: 9.9025e-03 eta: 2 days, 1:48:19 time: 1.1110 data_time: 0.0064 memory: 8703 loss: 0.8967 decode.loss_ce: 0.5753 decode.acc_seg: 92.4125 aux.loss_ce: 0.3214 aux.acc_seg: 91.7930 +2024/08/09 16:23:53 - mmengine - INFO - Iter(train) [ 1800/160000] lr: 9.8998e-03 eta: 2 days, 1:46:09 time: 1.1167 data_time: 0.0076 memory: 8702 loss: 0.6084 decode.loss_ce: 0.3665 decode.acc_seg: 90.5663 aux.loss_ce: 0.2419 aux.acc_seg: 88.3748 +2024/08/09 16:24:49 - mmengine - INFO - Iter(train) [ 1850/160000] lr: 9.8970e-03 eta: 2 days, 1:44:01 time: 1.1165 data_time: 0.0078 memory: 8702 loss: 0.8774 decode.loss_ce: 0.5490 decode.acc_seg: 89.6066 aux.loss_ce: 0.3284 aux.acc_seg: 66.4143 +2024/08/09 16:25:45 - mmengine - INFO - Iter(train) [ 1900/160000] lr: 9.8942e-03 eta: 2 days, 1:41:53 time: 1.1151 data_time: 0.0079 memory: 8703 loss: 0.8061 decode.loss_ce: 0.4962 decode.acc_seg: 89.2424 aux.loss_ce: 0.3099 aux.acc_seg: 84.1736 +2024/08/09 16:26:41 - mmengine - INFO - Iter(train) [ 1950/160000] lr: 9.8914e-03 eta: 2 days, 1:39:46 time: 1.1156 data_time: 0.0065 memory: 8703 loss: 0.5973 decode.loss_ce: 0.3710 decode.acc_seg: 81.7860 aux.loss_ce: 0.2264 aux.acc_seg: 82.1308 +2024/08/09 16:27:36 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 16:27:36 - mmengine - INFO - Iter(train) [ 2000/160000] lr: 9.8886e-03 eta: 2 days, 1:37:53 time: 1.1152 data_time: 0.0077 memory: 8703 loss: 0.9687 decode.loss_ce: 0.6162 decode.acc_seg: 79.2336 aux.loss_ce: 0.3524 aux.acc_seg: 70.9301 +2024/08/09 16:28:32 - mmengine - INFO - Iter(train) [ 2050/160000] lr: 9.8858e-03 eta: 2 days, 1:35:59 time: 1.1163 data_time: 0.0074 memory: 8702 loss: 0.8039 decode.loss_ce: 0.4900 decode.acc_seg: 82.4162 aux.loss_ce: 0.3139 aux.acc_seg: 71.9993 +2024/08/09 16:29:28 - mmengine - INFO - Iter(train) [ 2100/160000] lr: 9.8830e-03 eta: 2 days, 1:33:51 time: 1.1093 data_time: 0.0056 memory: 8703 loss: 0.7353 decode.loss_ce: 0.4587 decode.acc_seg: 86.5340 aux.loss_ce: 0.2767 aux.acc_seg: 81.2913 +2024/08/09 16:30:23 - mmengine - INFO - Iter(train) [ 2150/160000] lr: 9.8802e-03 eta: 2 days, 1:31:56 time: 1.1172 data_time: 0.0094 memory: 8703 loss: 0.7921 decode.loss_ce: 0.5104 decode.acc_seg: 92.0420 aux.loss_ce: 0.2818 aux.acc_seg: 91.1125 +2024/08/09 16:31:19 - mmengine - INFO - Iter(train) [ 2200/160000] lr: 9.8775e-03 eta: 2 days, 1:30:07 time: 1.1188 data_time: 0.0090 memory: 8703 loss: 0.5260 decode.loss_ce: 0.3138 decode.acc_seg: 96.3565 aux.loss_ce: 0.2123 aux.acc_seg: 95.2400 +2024/08/09 16:32:15 - mmengine - INFO - Iter(train) [ 2250/160000] lr: 9.8747e-03 eta: 2 days, 1:28:19 time: 1.1196 data_time: 0.0088 memory: 8703 loss: 0.6825 decode.loss_ce: 0.4354 decode.acc_seg: 88.2345 aux.loss_ce: 0.2471 aux.acc_seg: 80.2279 +2024/08/09 16:33:11 - mmengine - INFO - Iter(train) [ 2300/160000] lr: 9.8719e-03 eta: 2 days, 1:26:30 time: 1.1143 data_time: 0.0076 memory: 8702 loss: 0.8291 decode.loss_ce: 0.5134 decode.acc_seg: 89.9751 aux.loss_ce: 0.3157 aux.acc_seg: 80.6063 +2024/08/09 16:34:06 - mmengine - INFO - Iter(train) [ 2350/160000] lr: 9.8691e-03 eta: 2 days, 1:24:46 time: 1.1120 data_time: 0.0060 memory: 8702 loss: 0.8124 decode.loss_ce: 0.5361 decode.acc_seg: 62.8395 aux.loss_ce: 0.2763 aux.acc_seg: 62.1131 +2024/08/09 16:35:02 - mmengine - INFO - Iter(train) [ 2400/160000] lr: 9.8663e-03 eta: 2 days, 1:23:11 time: 1.1182 data_time: 0.0093 memory: 8702 loss: 0.7995 decode.loss_ce: 0.5031 decode.acc_seg: 89.4523 aux.loss_ce: 0.2965 aux.acc_seg: 86.0207 +2024/08/09 16:35:58 - mmengine - INFO - Iter(train) [ 2450/160000] lr: 9.8635e-03 eta: 2 days, 1:21:30 time: 1.1128 data_time: 0.0075 memory: 8703 loss: 0.9531 decode.loss_ce: 0.6202 decode.acc_seg: 81.5828 aux.loss_ce: 0.3330 aux.acc_seg: 73.4741 +2024/08/09 16:36:54 - mmengine - INFO - Iter(train) [ 2500/160000] lr: 9.8607e-03 eta: 2 days, 1:19:51 time: 1.1154 data_time: 0.0079 memory: 8703 loss: 0.6623 decode.loss_ce: 0.3961 decode.acc_seg: 91.0947 aux.loss_ce: 0.2662 aux.acc_seg: 87.3969 +2024/08/09 16:37:49 - mmengine - INFO - Iter(train) [ 2550/160000] lr: 9.8579e-03 eta: 2 days, 1:18:12 time: 1.1146 data_time: 0.0066 memory: 8703 loss: 0.6888 decode.loss_ce: 0.4369 decode.acc_seg: 86.7431 aux.loss_ce: 0.2518 aux.acc_seg: 76.0886 +2024/08/09 16:38:45 - mmengine - INFO - Iter(train) [ 2600/160000] lr: 9.8551e-03 eta: 2 days, 1:16:38 time: 1.1144 data_time: 0.0075 memory: 8703 loss: 0.7970 decode.loss_ce: 0.4785 decode.acc_seg: 85.8103 aux.loss_ce: 0.3185 aux.acc_seg: 83.3101 +2024/08/09 16:39:41 - mmengine - INFO - Iter(train) [ 2650/160000] lr: 9.8524e-03 eta: 2 days, 1:15:03 time: 1.1145 data_time: 0.0086 memory: 8703 loss: 0.7585 decode.loss_ce: 0.4771 decode.acc_seg: 92.8751 aux.loss_ce: 0.2814 aux.acc_seg: 88.5971 +2024/08/09 16:40:36 - mmengine - INFO - Iter(train) [ 2700/160000] lr: 9.8496e-03 eta: 2 days, 1:13:27 time: 1.1152 data_time: 0.0081 memory: 8703 loss: 0.6364 decode.loss_ce: 0.4133 decode.acc_seg: 90.8177 aux.loss_ce: 0.2231 aux.acc_seg: 91.3120 +2024/08/09 16:41:32 - mmengine - INFO - Iter(train) [ 2750/160000] lr: 9.8468e-03 eta: 2 days, 1:11:55 time: 1.1158 data_time: 0.0065 memory: 8703 loss: 0.6827 decode.loss_ce: 0.4108 decode.acc_seg: 74.1091 aux.loss_ce: 0.2719 aux.acc_seg: 64.4114 +2024/08/09 16:42:28 - mmengine - INFO - Iter(train) [ 2800/160000] lr: 9.8440e-03 eta: 2 days, 1:10:31 time: 1.1182 data_time: 0.0083 memory: 8703 loss: 0.6319 decode.loss_ce: 0.3888 decode.acc_seg: 91.1355 aux.loss_ce: 0.2431 aux.acc_seg: 87.9803 +2024/08/09 16:43:24 - mmengine - INFO - Iter(train) [ 2850/160000] lr: 9.8412e-03 eta: 2 days, 1:09:01 time: 1.1114 data_time: 0.0064 memory: 8703 loss: 0.5247 decode.loss_ce: 0.3301 decode.acc_seg: 91.9652 aux.loss_ce: 0.1945 aux.acc_seg: 90.0726 +2024/08/09 16:44:19 - mmengine - INFO - Iter(train) [ 2900/160000] lr: 9.8384e-03 eta: 2 days, 1:07:34 time: 1.1197 data_time: 0.0091 memory: 8703 loss: 0.5829 decode.loss_ce: 0.3745 decode.acc_seg: 95.0541 aux.loss_ce: 0.2083 aux.acc_seg: 91.8051 +2024/08/09 16:45:15 - mmengine - INFO - Iter(train) [ 2950/160000] lr: 9.8356e-03 eta: 2 days, 1:06:12 time: 1.1193 data_time: 0.0077 memory: 8703 loss: 0.6123 decode.loss_ce: 0.3880 decode.acc_seg: 91.5408 aux.loss_ce: 0.2242 aux.acc_seg: 88.2341 +2024/08/09 16:46:11 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 16:46:11 - mmengine - INFO - Iter(train) [ 3000/160000] lr: 9.8328e-03 eta: 2 days, 1:04:45 time: 1.1138 data_time: 0.0066 memory: 8702 loss: 0.6655 decode.loss_ce: 0.4013 decode.acc_seg: 95.0210 aux.loss_ce: 0.2642 aux.acc_seg: 93.1004 +2024/08/09 16:47:07 - mmengine - INFO - Iter(train) [ 3050/160000] lr: 9.8300e-03 eta: 2 days, 1:03:31 time: 1.1168 data_time: 0.0084 memory: 8703 loss: 0.7712 decode.loss_ce: 0.5032 decode.acc_seg: 93.5160 aux.loss_ce: 0.2680 aux.acc_seg: 88.0904 +2024/08/09 16:48:03 - mmengine - INFO - Iter(train) [ 3100/160000] lr: 9.8273e-03 eta: 2 days, 1:02:14 time: 1.1144 data_time: 0.0066 memory: 8702 loss: 0.9190 decode.loss_ce: 0.5857 decode.acc_seg: 84.4335 aux.loss_ce: 0.3333 aux.acc_seg: 75.4597 +2024/08/09 16:48:59 - mmengine - INFO - Iter(train) [ 3150/160000] lr: 9.8245e-03 eta: 2 days, 1:01:04 time: 1.1175 data_time: 0.0085 memory: 8702 loss: 0.4557 decode.loss_ce: 0.2824 decode.acc_seg: 92.7071 aux.loss_ce: 0.1733 aux.acc_seg: 91.1444 +2024/08/09 16:49:55 - mmengine - INFO - Iter(train) [ 3200/160000] lr: 9.8217e-03 eta: 2 days, 0:59:52 time: 1.1203 data_time: 0.0090 memory: 8703 loss: 0.5845 decode.loss_ce: 0.3585 decode.acc_seg: 86.7315 aux.loss_ce: 0.2260 aux.acc_seg: 80.2416 +2024/08/09 16:50:50 - mmengine - INFO - Iter(train) [ 3250/160000] lr: 9.8189e-03 eta: 2 days, 0:58:39 time: 1.1184 data_time: 0.0094 memory: 8702 loss: 0.7730 decode.loss_ce: 0.4708 decode.acc_seg: 95.0881 aux.loss_ce: 0.3022 aux.acc_seg: 66.1469 +2024/08/09 16:51:46 - mmengine - INFO - Iter(train) [ 3300/160000] lr: 9.8161e-03 eta: 2 days, 0:57:31 time: 1.1209 data_time: 0.0090 memory: 8702 loss: 0.4434 decode.loss_ce: 0.2757 decode.acc_seg: 94.5888 aux.loss_ce: 0.1677 aux.acc_seg: 86.2156 +2024/08/09 16:52:42 - mmengine - INFO - Iter(train) [ 3350/160000] lr: 9.8133e-03 eta: 2 days, 0:56:15 time: 1.1164 data_time: 0.0074 memory: 8702 loss: 0.8440 decode.loss_ce: 0.5497 decode.acc_seg: 75.1143 aux.loss_ce: 0.2944 aux.acc_seg: 71.1685 +2024/08/09 16:53:38 - mmengine - INFO - Iter(train) [ 3400/160000] lr: 9.8105e-03 eta: 2 days, 0:54:55 time: 1.1176 data_time: 0.0078 memory: 8703 loss: 0.6586 decode.loss_ce: 0.4026 decode.acc_seg: 74.6101 aux.loss_ce: 0.2559 aux.acc_seg: 64.7037 +2024/08/09 16:54:34 - mmengine - INFO - Iter(train) [ 3450/160000] lr: 9.8077e-03 eta: 2 days, 0:53:39 time: 1.1189 data_time: 0.0074 memory: 8703 loss: 0.8247 decode.loss_ce: 0.5279 decode.acc_seg: 83.4043 aux.loss_ce: 0.2968 aux.acc_seg: 83.9012 +2024/08/09 16:55:30 - mmengine - INFO - Iter(train) [ 3500/160000] lr: 9.8049e-03 eta: 2 days, 0:52:23 time: 1.1179 data_time: 0.0097 memory: 8703 loss: 0.5301 decode.loss_ce: 0.3183 decode.acc_seg: 91.4170 aux.loss_ce: 0.2117 aux.acc_seg: 87.6763 +2024/08/09 16:56:25 - mmengine - INFO - Iter(train) [ 3550/160000] lr: 9.8021e-03 eta: 2 days, 0:51:06 time: 1.1137 data_time: 0.0058 memory: 8702 loss: 0.6840 decode.loss_ce: 0.4272 decode.acc_seg: 88.9392 aux.loss_ce: 0.2568 aux.acc_seg: 82.0818 +2024/08/09 16:57:21 - mmengine - INFO - Iter(train) [ 3600/160000] lr: 9.7994e-03 eta: 2 days, 0:49:52 time: 1.1162 data_time: 0.0087 memory: 8703 loss: 0.7251 decode.loss_ce: 0.4415 decode.acc_seg: 92.0929 aux.loss_ce: 0.2835 aux.acc_seg: 79.4991 +2024/08/09 16:58:17 - mmengine - INFO - Iter(train) [ 3650/160000] lr: 9.7966e-03 eta: 2 days, 0:48:32 time: 1.1147 data_time: 0.0073 memory: 8702 loss: 0.9957 decode.loss_ce: 0.6298 decode.acc_seg: 85.4213 aux.loss_ce: 0.3659 aux.acc_seg: 82.7856 +2024/08/09 16:59:12 - mmengine - INFO - Iter(train) [ 3700/160000] lr: 9.7938e-03 eta: 2 days, 0:47:14 time: 1.1069 data_time: 0.0052 memory: 8703 loss: 0.7211 decode.loss_ce: 0.4643 decode.acc_seg: 91.8609 aux.loss_ce: 0.2568 aux.acc_seg: 88.0213 +2024/08/09 17:00:08 - mmengine - INFO - Iter(train) [ 3750/160000] lr: 9.7910e-03 eta: 2 days, 0:46:04 time: 1.1202 data_time: 0.0096 memory: 8702 loss: 0.7294 decode.loss_ce: 0.4489 decode.acc_seg: 85.5068 aux.loss_ce: 0.2804 aux.acc_seg: 82.5751 +2024/08/09 17:01:04 - mmengine - INFO - Iter(train) [ 3800/160000] lr: 9.7882e-03 eta: 2 days, 0:44:50 time: 1.1116 data_time: 0.0068 memory: 8702 loss: 0.5956 decode.loss_ce: 0.3729 decode.acc_seg: 96.3125 aux.loss_ce: 0.2227 aux.acc_seg: 94.5285 +2024/08/09 17:02:00 - mmengine - INFO - Iter(train) [ 3850/160000] lr: 9.7854e-03 eta: 2 days, 0:43:34 time: 1.1092 data_time: 0.0063 memory: 8703 loss: 0.5412 decode.loss_ce: 0.3408 decode.acc_seg: 89.7676 aux.loss_ce: 0.2004 aux.acc_seg: 81.2926 +2024/08/09 17:02:55 - mmengine - INFO - Iter(train) [ 3900/160000] lr: 9.7826e-03 eta: 2 days, 0:42:17 time: 1.1152 data_time: 0.0078 memory: 8704 loss: 0.5917 decode.loss_ce: 0.3666 decode.acc_seg: 88.8437 aux.loss_ce: 0.2251 aux.acc_seg: 86.4305 +2024/08/09 17:03:51 - mmengine - INFO - Iter(train) [ 3950/160000] lr: 9.7798e-03 eta: 2 days, 0:41:04 time: 1.1155 data_time: 0.0069 memory: 8703 loss: 0.6319 decode.loss_ce: 0.3754 decode.acc_seg: 89.3311 aux.loss_ce: 0.2565 aux.acc_seg: 82.7583 +2024/08/09 17:04:32 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 17:04:47 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 17:04:47 - mmengine - INFO - Iter(train) [ 4000/160000] lr: 9.7770e-03 eta: 2 days, 0:39:49 time: 1.1143 data_time: 0.0086 memory: 8702 loss: 0.7147 decode.loss_ce: 0.4514 decode.acc_seg: 93.5123 aux.loss_ce: 0.2633 aux.acc_seg: 88.5675 +2024/08/09 17:05:43 - mmengine - INFO - Iter(train) [ 4050/160000] lr: 9.7742e-03 eta: 2 days, 0:38:41 time: 1.1214 data_time: 0.0087 memory: 8702 loss: 0.5330 decode.loss_ce: 0.3250 decode.acc_seg: 79.3812 aux.loss_ce: 0.2080 aux.acc_seg: 71.5916 +2024/08/09 17:06:38 - mmengine - INFO - Iter(train) [ 4100/160000] lr: 9.7714e-03 eta: 2 days, 0:37:34 time: 1.1165 data_time: 0.0085 memory: 8702 loss: 0.3808 decode.loss_ce: 0.2411 decode.acc_seg: 92.7885 aux.loss_ce: 0.1397 aux.acc_seg: 87.2411 +2024/08/09 17:07:34 - mmengine - INFO - Iter(train) [ 4150/160000] lr: 9.7686e-03 eta: 2 days, 0:36:18 time: 1.1095 data_time: 0.0060 memory: 8703 loss: 0.5052 decode.loss_ce: 0.3222 decode.acc_seg: 92.7741 aux.loss_ce: 0.1830 aux.acc_seg: 92.6073 +2024/08/09 17:08:30 - mmengine - INFO - Iter(train) [ 4200/160000] lr: 9.7659e-03 eta: 2 days, 0:35:12 time: 1.1178 data_time: 0.0077 memory: 8702 loss: 0.5424 decode.loss_ce: 0.3392 decode.acc_seg: 93.5126 aux.loss_ce: 0.2032 aux.acc_seg: 93.0328 +2024/08/09 17:09:26 - mmengine - INFO - Iter(train) [ 4250/160000] lr: 9.7631e-03 eta: 2 days, 0:34:03 time: 1.1185 data_time: 0.0078 memory: 8702 loss: 0.5591 decode.loss_ce: 0.3570 decode.acc_seg: 89.7918 aux.loss_ce: 0.2021 aux.acc_seg: 77.0357 +2024/08/09 17:10:21 - mmengine - INFO - Iter(train) [ 4300/160000] lr: 9.7603e-03 eta: 2 days, 0:32:53 time: 1.1126 data_time: 0.0056 memory: 8702 loss: 0.6050 decode.loss_ce: 0.3625 decode.acc_seg: 94.5139 aux.loss_ce: 0.2425 aux.acc_seg: 93.3418 +2024/08/09 17:11:17 - mmengine - INFO - Iter(train) [ 4350/160000] lr: 9.7575e-03 eta: 2 days, 0:31:46 time: 1.1186 data_time: 0.0099 memory: 8702 loss: 0.4212 decode.loss_ce: 0.2602 decode.acc_seg: 88.8289 aux.loss_ce: 0.1609 aux.acc_seg: 86.0116 +2024/08/09 17:12:13 - mmengine - INFO - Iter(train) [ 4400/160000] lr: 9.7547e-03 eta: 2 days, 0:30:41 time: 1.1181 data_time: 0.0086 memory: 8703 loss: 0.5925 decode.loss_ce: 0.3620 decode.acc_seg: 88.6933 aux.loss_ce: 0.2305 aux.acc_seg: 70.8111 +2024/08/09 17:13:09 - mmengine - INFO - Iter(train) [ 4450/160000] lr: 9.7519e-03 eta: 2 days, 0:29:34 time: 1.1145 data_time: 0.0091 memory: 8703 loss: 0.7904 decode.loss_ce: 0.4926 decode.acc_seg: 92.0162 aux.loss_ce: 0.2977 aux.acc_seg: 90.5444 +2024/08/09 17:14:05 - mmengine - INFO - Iter(train) [ 4500/160000] lr: 9.7491e-03 eta: 2 days, 0:28:22 time: 1.1054 data_time: 0.0052 memory: 8702 loss: 0.5023 decode.loss_ce: 0.2786 decode.acc_seg: 84.0438 aux.loss_ce: 0.2237 aux.acc_seg: 69.4513 +2024/08/09 17:15:00 - mmengine - INFO - Iter(train) [ 4550/160000] lr: 9.7463e-03 eta: 2 days, 0:27:11 time: 1.1146 data_time: 0.0073 memory: 8703 loss: 0.4442 decode.loss_ce: 0.2736 decode.acc_seg: 93.0928 aux.loss_ce: 0.1706 aux.acc_seg: 91.7579 +2024/08/09 17:15:56 - mmengine - INFO - Iter(train) [ 4600/160000] lr: 9.7435e-03 eta: 2 days, 0:26:00 time: 1.1138 data_time: 0.0080 memory: 8702 loss: 0.5346 decode.loss_ce: 0.3188 decode.acc_seg: 94.3754 aux.loss_ce: 0.2158 aux.acc_seg: 90.6951 +2024/08/09 17:16:52 - mmengine - INFO - Iter(train) [ 4650/160000] lr: 9.7407e-03 eta: 2 days, 0:24:48 time: 1.1106 data_time: 0.0064 memory: 8702 loss: 0.6904 decode.loss_ce: 0.4202 decode.acc_seg: 92.3230 aux.loss_ce: 0.2702 aux.acc_seg: 90.7053 +2024/08/09 17:17:47 - mmengine - INFO - Iter(train) [ 4700/160000] lr: 9.7379e-03 eta: 2 days, 0:23:38 time: 1.1158 data_time: 0.0070 memory: 8703 loss: 0.5211 decode.loss_ce: 0.3163 decode.acc_seg: 90.7434 aux.loss_ce: 0.2048 aux.acc_seg: 90.2596 +2024/08/09 17:18:43 - mmengine - INFO - Iter(train) [ 4750/160000] lr: 9.7351e-03 eta: 2 days, 0:22:30 time: 1.1114 data_time: 0.0072 memory: 8702 loss: 0.6760 decode.loss_ce: 0.3954 decode.acc_seg: 85.1900 aux.loss_ce: 0.2806 aux.acc_seg: 83.4101 +2024/08/09 17:19:39 - mmengine - INFO - Iter(train) [ 4800/160000] lr: 9.7323e-03 eta: 2 days, 0:21:20 time: 1.1147 data_time: 0.0091 memory: 8702 loss: 0.5245 decode.loss_ce: 0.3267 decode.acc_seg: 91.6152 aux.loss_ce: 0.1978 aux.acc_seg: 81.1967 +2024/08/09 17:20:34 - mmengine - INFO - Iter(train) [ 4850/160000] lr: 9.7296e-03 eta: 2 days, 0:20:10 time: 1.1151 data_time: 0.0080 memory: 8703 loss: 0.8968 decode.loss_ce: 0.5768 decode.acc_seg: 84.3500 aux.loss_ce: 0.3199 aux.acc_seg: 84.0169 +2024/08/09 17:21:30 - mmengine - INFO - Iter(train) [ 4900/160000] lr: 9.7268e-03 eta: 2 days, 0:19:04 time: 1.1180 data_time: 0.0089 memory: 8702 loss: 0.7182 decode.loss_ce: 0.4537 decode.acc_seg: 87.5318 aux.loss_ce: 0.2645 aux.acc_seg: 82.3790 +2024/08/09 17:22:26 - mmengine - INFO - Iter(train) [ 4950/160000] lr: 9.7240e-03 eta: 2 days, 0:17:55 time: 1.1063 data_time: 0.0052 memory: 8702 loss: 0.5705 decode.loss_ce: 0.3516 decode.acc_seg: 93.3480 aux.loss_ce: 0.2189 aux.acc_seg: 87.5415 +2024/08/09 17:23:22 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 17:23:22 - mmengine - INFO - Iter(train) [ 5000/160000] lr: 9.7212e-03 eta: 2 days, 0:16:50 time: 1.1137 data_time: 0.0080 memory: 8702 loss: 0.5079 decode.loss_ce: 0.3093 decode.acc_seg: 82.7091 aux.loss_ce: 0.1986 aux.acc_seg: 68.2921 +2024/08/09 17:24:17 - mmengine - INFO - Iter(train) [ 5050/160000] lr: 9.7184e-03 eta: 2 days, 0:15:41 time: 1.1153 data_time: 0.0086 memory: 8702 loss: 0.6648 decode.loss_ce: 0.4070 decode.acc_seg: 87.5880 aux.loss_ce: 0.2577 aux.acc_seg: 78.8671 +2024/08/09 17:25:13 - mmengine - INFO - Iter(train) [ 5100/160000] lr: 9.7156e-03 eta: 2 days, 0:14:33 time: 1.1119 data_time: 0.0074 memory: 8704 loss: 0.5585 decode.loss_ce: 0.3492 decode.acc_seg: 83.1841 aux.loss_ce: 0.2093 aux.acc_seg: 76.7316 +2024/08/09 17:26:09 - mmengine - INFO - Iter(train) [ 5150/160000] lr: 9.7128e-03 eta: 2 days, 0:13:27 time: 1.1151 data_time: 0.0077 memory: 8702 loss: 0.6494 decode.loss_ce: 0.4020 decode.acc_seg: 85.6329 aux.loss_ce: 0.2473 aux.acc_seg: 74.3618 +2024/08/09 17:27:04 - mmengine - INFO - Iter(train) [ 5200/160000] lr: 9.7100e-03 eta: 2 days, 0:12:16 time: 1.1125 data_time: 0.0079 memory: 8703 loss: 0.5882 decode.loss_ce: 0.3799 decode.acc_seg: 92.8121 aux.loss_ce: 0.2084 aux.acc_seg: 90.6632 +2024/08/09 17:28:00 - mmengine - INFO - Iter(train) [ 5250/160000] lr: 9.7072e-03 eta: 2 days, 0:11:12 time: 1.1126 data_time: 0.0071 memory: 8703 loss: 0.4410 decode.loss_ce: 0.2602 decode.acc_seg: 84.6165 aux.loss_ce: 0.1808 aux.acc_seg: 83.9134 +2024/08/09 17:28:55 - mmengine - INFO - Iter(train) [ 5300/160000] lr: 9.7044e-03 eta: 2 days, 0:10:03 time: 1.1128 data_time: 0.0059 memory: 8703 loss: 0.5863 decode.loss_ce: 0.3545 decode.acc_seg: 86.9814 aux.loss_ce: 0.2318 aux.acc_seg: 81.5259 +2024/08/09 17:29:51 - mmengine - INFO - Iter(train) [ 5350/160000] lr: 9.7016e-03 eta: 2 days, 0:08:57 time: 1.1099 data_time: 0.0059 memory: 8703 loss: 0.5485 decode.loss_ce: 0.3426 decode.acc_seg: 86.2354 aux.loss_ce: 0.2059 aux.acc_seg: 83.5944 +2024/08/09 17:30:47 - mmengine - INFO - Iter(train) [ 5400/160000] lr: 9.6988e-03 eta: 2 days, 0:07:51 time: 1.1123 data_time: 0.0070 memory: 8703 loss: 0.5417 decode.loss_ce: 0.3531 decode.acc_seg: 80.6318 aux.loss_ce: 0.1886 aux.acc_seg: 76.4231 +2024/08/09 17:31:43 - mmengine - INFO - Iter(train) [ 5450/160000] lr: 9.6960e-03 eta: 2 days, 0:06:46 time: 1.1117 data_time: 0.0069 memory: 8702 loss: 0.6195 decode.loss_ce: 0.3909 decode.acc_seg: 65.7235 aux.loss_ce: 0.2287 aux.acc_seg: 64.5444 +2024/08/09 17:32:38 - mmengine - INFO - Iter(train) [ 5500/160000] lr: 9.6932e-03 eta: 2 days, 0:05:44 time: 1.1183 data_time: 0.0080 memory: 8703 loss: 0.5498 decode.loss_ce: 0.3414 decode.acc_seg: 92.8227 aux.loss_ce: 0.2084 aux.acc_seg: 83.9102 +2024/08/09 17:33:34 - mmengine - INFO - Iter(train) [ 5550/160000] lr: 9.6904e-03 eta: 2 days, 0:04:36 time: 1.1131 data_time: 0.0088 memory: 8702 loss: 0.7205 decode.loss_ce: 0.4667 decode.acc_seg: 90.1888 aux.loss_ce: 0.2537 aux.acc_seg: 88.2186 +2024/08/09 17:34:30 - mmengine - INFO - Iter(train) [ 5600/160000] lr: 9.6877e-03 eta: 2 days, 0:03:31 time: 1.1164 data_time: 0.0075 memory: 8703 loss: 0.4623 decode.loss_ce: 0.2867 decode.acc_seg: 91.8693 aux.loss_ce: 0.1756 aux.acc_seg: 88.8644 +2024/08/09 17:35:25 - mmengine - INFO - Iter(train) [ 5650/160000] lr: 9.6849e-03 eta: 2 days, 0:02:24 time: 1.1140 data_time: 0.0072 memory: 8703 loss: 0.4648 decode.loss_ce: 0.2937 decode.acc_seg: 88.6836 aux.loss_ce: 0.1712 aux.acc_seg: 82.3489 +2024/08/09 17:36:21 - mmengine - INFO - Iter(train) [ 5700/160000] lr: 9.6821e-03 eta: 2 days, 0:01:17 time: 1.1148 data_time: 0.0076 memory: 8703 loss: 0.3882 decode.loss_ce: 0.2324 decode.acc_seg: 91.3462 aux.loss_ce: 0.1558 aux.acc_seg: 90.4790 +2024/08/09 17:37:17 - mmengine - INFO - Iter(train) [ 5750/160000] lr: 9.6793e-03 eta: 2 days, 0:00:16 time: 1.1180 data_time: 0.0082 memory: 8703 loss: 0.5435 decode.loss_ce: 0.3327 decode.acc_seg: 86.3236 aux.loss_ce: 0.2108 aux.acc_seg: 84.6621 +2024/08/09 17:38:13 - mmengine - INFO - Iter(train) [ 5800/160000] lr: 9.6765e-03 eta: 1 day, 23:59:14 time: 1.1162 data_time: 0.0094 memory: 8703 loss: 0.5760 decode.loss_ce: 0.3621 decode.acc_seg: 92.7243 aux.loss_ce: 0.2139 aux.acc_seg: 85.8264 +2024/08/09 17:39:08 - mmengine - INFO - Iter(train) [ 5850/160000] lr: 9.6737e-03 eta: 1 day, 23:58:10 time: 1.1125 data_time: 0.0069 memory: 8702 loss: 0.7152 decode.loss_ce: 0.4201 decode.acc_seg: 96.1139 aux.loss_ce: 0.2951 aux.acc_seg: 94.6437 +2024/08/09 17:40:04 - mmengine - INFO - Iter(train) [ 5900/160000] lr: 9.6709e-03 eta: 1 day, 23:57:04 time: 1.1135 data_time: 0.0082 memory: 8703 loss: 0.5468 decode.loss_ce: 0.3428 decode.acc_seg: 93.5008 aux.loss_ce: 0.2040 aux.acc_seg: 88.3393 +2024/08/09 17:41:00 - mmengine - INFO - Iter(train) [ 5950/160000] lr: 9.6681e-03 eta: 1 day, 23:56:03 time: 1.1222 data_time: 0.0092 memory: 8703 loss: 0.5680 decode.loss_ce: 0.3456 decode.acc_seg: 91.7876 aux.loss_ce: 0.2224 aux.acc_seg: 86.2040 +2024/08/09 17:41:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 17:41:56 - mmengine - INFO - Iter(train) [ 6000/160000] lr: 9.6653e-03 eta: 1 day, 23:55:00 time: 1.1204 data_time: 0.0096 memory: 8702 loss: 0.5620 decode.loss_ce: 0.3389 decode.acc_seg: 88.2472 aux.loss_ce: 0.2231 aux.acc_seg: 67.6025 +2024/08/09 17:42:51 - mmengine - INFO - Iter(train) [ 6050/160000] lr: 9.6625e-03 eta: 1 day, 23:53:57 time: 1.1117 data_time: 0.0073 memory: 8702 loss: 0.6279 decode.loss_ce: 0.4000 decode.acc_seg: 74.9870 aux.loss_ce: 0.2279 aux.acc_seg: 67.8681 +2024/08/09 17:43:47 - mmengine - INFO - Iter(train) [ 6100/160000] lr: 9.6597e-03 eta: 1 day, 23:52:52 time: 1.1147 data_time: 0.0088 memory: 8703 loss: 0.6737 decode.loss_ce: 0.4373 decode.acc_seg: 92.3991 aux.loss_ce: 0.2364 aux.acc_seg: 87.3757 +2024/08/09 17:44:43 - mmengine - INFO - Iter(train) [ 6150/160000] lr: 9.6569e-03 eta: 1 day, 23:51:50 time: 1.1150 data_time: 0.0079 memory: 8703 loss: 0.5313 decode.loss_ce: 0.3229 decode.acc_seg: 94.4724 aux.loss_ce: 0.2084 aux.acc_seg: 87.5973 +2024/08/09 17:45:39 - mmengine - INFO - Iter(train) [ 6200/160000] lr: 9.6541e-03 eta: 1 day, 23:50:50 time: 1.1152 data_time: 0.0074 memory: 8703 loss: 0.4956 decode.loss_ce: 0.3143 decode.acc_seg: 83.9099 aux.loss_ce: 0.1813 aux.acc_seg: 80.6351 +2024/08/09 17:46:34 - mmengine - INFO - Iter(train) [ 6250/160000] lr: 9.6513e-03 eta: 1 day, 23:49:49 time: 1.1159 data_time: 0.0063 memory: 8703 loss: 0.4285 decode.loss_ce: 0.2677 decode.acc_seg: 90.3397 aux.loss_ce: 0.1608 aux.acc_seg: 91.2890 +2024/08/09 17:47:30 - mmengine - INFO - Iter(train) [ 6300/160000] lr: 9.6485e-03 eta: 1 day, 23:48:45 time: 1.1177 data_time: 0.0079 memory: 8703 loss: 0.4710 decode.loss_ce: 0.2904 decode.acc_seg: 87.8534 aux.loss_ce: 0.1806 aux.acc_seg: 84.5642 +2024/08/09 17:48:26 - mmengine - INFO - Iter(train) [ 6350/160000] lr: 9.6457e-03 eta: 1 day, 23:47:45 time: 1.1144 data_time: 0.0076 memory: 8702 loss: 0.6362 decode.loss_ce: 0.3940 decode.acc_seg: 88.2719 aux.loss_ce: 0.2422 aux.acc_seg: 85.6422 +2024/08/09 17:49:21 - mmengine - INFO - Iter(train) [ 6400/160000] lr: 9.6429e-03 eta: 1 day, 23:46:41 time: 1.1148 data_time: 0.0094 memory: 8703 loss: 0.4659 decode.loss_ce: 0.2798 decode.acc_seg: 94.7170 aux.loss_ce: 0.1862 aux.acc_seg: 91.5569 +2024/08/09 17:50:17 - mmengine - INFO - Iter(train) [ 6450/160000] lr: 9.6401e-03 eta: 1 day, 23:45:38 time: 1.1110 data_time: 0.0073 memory: 8702 loss: 0.4662 decode.loss_ce: 0.2896 decode.acc_seg: 88.7316 aux.loss_ce: 0.1766 aux.acc_seg: 82.2817 +2024/08/09 17:51:13 - mmengine - INFO - Iter(train) [ 6500/160000] lr: 9.6373e-03 eta: 1 day, 23:44:33 time: 1.1140 data_time: 0.0080 memory: 8703 loss: 0.6642 decode.loss_ce: 0.4113 decode.acc_seg: 92.7970 aux.loss_ce: 0.2529 aux.acc_seg: 91.7851 +2024/08/09 17:52:08 - mmengine - INFO - Iter(train) [ 6550/160000] lr: 9.6345e-03 eta: 1 day, 23:43:30 time: 1.1145 data_time: 0.0086 memory: 8702 loss: 0.5468 decode.loss_ce: 0.3317 decode.acc_seg: 86.9374 aux.loss_ce: 0.2152 aux.acc_seg: 81.0459 +2024/08/09 17:53:04 - mmengine - INFO - Iter(train) [ 6600/160000] lr: 9.6317e-03 eta: 1 day, 23:42:25 time: 1.1072 data_time: 0.0053 memory: 8702 loss: 0.6668 decode.loss_ce: 0.4208 decode.acc_seg: 83.0207 aux.loss_ce: 0.2460 aux.acc_seg: 70.7507 +2024/08/09 17:54:00 - mmengine - INFO - Iter(train) [ 6650/160000] lr: 9.6290e-03 eta: 1 day, 23:41:20 time: 1.1107 data_time: 0.0071 memory: 8702 loss: 0.5725 decode.loss_ce: 0.3692 decode.acc_seg: 95.1312 aux.loss_ce: 0.2033 aux.acc_seg: 95.4429 +2024/08/09 17:54:55 - mmengine - INFO - Iter(train) [ 6700/160000] lr: 9.6262e-03 eta: 1 day, 23:40:20 time: 1.1129 data_time: 0.0083 memory: 8703 loss: 0.5405 decode.loss_ce: 0.3524 decode.acc_seg: 93.1829 aux.loss_ce: 0.1881 aux.acc_seg: 92.5109 +2024/08/09 17:55:51 - mmengine - INFO - Iter(train) [ 6750/160000] lr: 9.6234e-03 eta: 1 day, 23:39:18 time: 1.1128 data_time: 0.0057 memory: 8703 loss: 0.6009 decode.loss_ce: 0.3670 decode.acc_seg: 89.7413 aux.loss_ce: 0.2339 aux.acc_seg: 86.8457 +2024/08/09 17:56:47 - mmengine - INFO - Iter(train) [ 6800/160000] lr: 9.6206e-03 eta: 1 day, 23:38:15 time: 1.1140 data_time: 0.0080 memory: 8703 loss: 0.5625 decode.loss_ce: 0.3563 decode.acc_seg: 94.6249 aux.loss_ce: 0.2063 aux.acc_seg: 88.2832 +2024/08/09 17:57:42 - mmengine - INFO - Iter(train) [ 6850/160000] lr: 9.6178e-03 eta: 1 day, 23:37:11 time: 1.1154 data_time: 0.0083 memory: 8703 loss: 0.5775 decode.loss_ce: 0.3521 decode.acc_seg: 92.9811 aux.loss_ce: 0.2255 aux.acc_seg: 86.8565 +2024/08/09 17:58:38 - mmengine - INFO - Iter(train) [ 6900/160000] lr: 9.6150e-03 eta: 1 day, 23:36:12 time: 1.1169 data_time: 0.0067 memory: 8703 loss: 0.5991 decode.loss_ce: 0.3637 decode.acc_seg: 90.1209 aux.loss_ce: 0.2354 aux.acc_seg: 87.8379 +2024/08/09 17:59:34 - mmengine - INFO - Iter(train) [ 6950/160000] lr: 9.6122e-03 eta: 1 day, 23:35:15 time: 1.1184 data_time: 0.0087 memory: 8703 loss: 0.5134 decode.loss_ce: 0.3243 decode.acc_seg: 86.9184 aux.loss_ce: 0.1891 aux.acc_seg: 84.9232 +2024/08/09 18:00:30 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 18:00:30 - mmengine - INFO - Iter(train) [ 7000/160000] lr: 9.6094e-03 eta: 1 day, 23:34:14 time: 1.1139 data_time: 0.0068 memory: 8703 loss: 0.7637 decode.loss_ce: 0.4883 decode.acc_seg: 92.8661 aux.loss_ce: 0.2753 aux.acc_seg: 85.3594 +2024/08/09 18:01:26 - mmengine - INFO - Iter(train) [ 7050/160000] lr: 9.6066e-03 eta: 1 day, 23:33:13 time: 1.1154 data_time: 0.0071 memory: 8702 loss: 0.4960 decode.loss_ce: 0.2848 decode.acc_seg: 77.5000 aux.loss_ce: 0.2111 aux.acc_seg: 62.7092 +2024/08/09 18:02:21 - mmengine - INFO - Iter(train) [ 7100/160000] lr: 9.6038e-03 eta: 1 day, 23:32:12 time: 1.1144 data_time: 0.0073 memory: 8702 loss: 0.5276 decode.loss_ce: 0.3359 decode.acc_seg: 81.3969 aux.loss_ce: 0.1917 aux.acc_seg: 72.9109 +2024/08/09 18:03:17 - mmengine - INFO - Iter(train) [ 7150/160000] lr: 9.6010e-03 eta: 1 day, 23:31:14 time: 1.1173 data_time: 0.0076 memory: 8702 loss: 1.0539 decode.loss_ce: 0.7136 decode.acc_seg: 84.8972 aux.loss_ce: 0.3403 aux.acc_seg: 69.9987 +2024/08/09 18:04:13 - mmengine - INFO - Iter(train) [ 7200/160000] lr: 9.5982e-03 eta: 1 day, 23:30:13 time: 1.1164 data_time: 0.0080 memory: 8702 loss: 0.6139 decode.loss_ce: 0.4047 decode.acc_seg: 93.9786 aux.loss_ce: 0.2092 aux.acc_seg: 93.7279 +2024/08/09 18:05:09 - mmengine - INFO - Iter(train) [ 7250/160000] lr: 9.5954e-03 eta: 1 day, 23:29:12 time: 1.1173 data_time: 0.0091 memory: 8703 loss: 0.5814 decode.loss_ce: 0.3714 decode.acc_seg: 90.0747 aux.loss_ce: 0.2100 aux.acc_seg: 88.3815 +2024/08/09 18:06:04 - mmengine - INFO - Iter(train) [ 7300/160000] lr: 9.5926e-03 eta: 1 day, 23:28:09 time: 1.1120 data_time: 0.0084 memory: 8702 loss: 0.6469 decode.loss_ce: 0.4240 decode.acc_seg: 92.2753 aux.loss_ce: 0.2229 aux.acc_seg: 91.1488 +2024/08/09 18:07:00 - mmengine - INFO - Iter(train) [ 7350/160000] lr: 9.5898e-03 eta: 1 day, 23:27:08 time: 1.1152 data_time: 0.0067 memory: 8702 loss: 0.5955 decode.loss_ce: 0.3746 decode.acc_seg: 93.7211 aux.loss_ce: 0.2209 aux.acc_seg: 91.4042 +2024/08/09 18:07:56 - mmengine - INFO - Iter(train) [ 7400/160000] lr: 9.5870e-03 eta: 1 day, 23:26:08 time: 1.1144 data_time: 0.0082 memory: 8702 loss: 0.5306 decode.loss_ce: 0.3296 decode.acc_seg: 80.7946 aux.loss_ce: 0.2010 aux.acc_seg: 76.6085 +2024/08/09 18:08:51 - mmengine - INFO - Iter(train) [ 7450/160000] lr: 9.5842e-03 eta: 1 day, 23:25:05 time: 1.1124 data_time: 0.0074 memory: 8703 loss: 0.5133 decode.loss_ce: 0.3082 decode.acc_seg: 95.9246 aux.loss_ce: 0.2052 aux.acc_seg: 92.0805 +2024/08/09 18:09:47 - mmengine - INFO - Iter(train) [ 7500/160000] lr: 9.5814e-03 eta: 1 day, 23:24:08 time: 1.1201 data_time: 0.0083 memory: 8704 loss: 0.4062 decode.loss_ce: 0.2464 decode.acc_seg: 93.2000 aux.loss_ce: 0.1597 aux.acc_seg: 91.5554 +2024/08/09 18:10:43 - mmengine - INFO - Iter(train) [ 7550/160000] lr: 9.5786e-03 eta: 1 day, 23:23:08 time: 1.1147 data_time: 0.0067 memory: 8703 loss: 0.4573 decode.loss_ce: 0.2910 decode.acc_seg: 95.1857 aux.loss_ce: 0.1664 aux.acc_seg: 88.7604 +2024/08/09 18:11:39 - mmengine - INFO - Iter(train) [ 7600/160000] lr: 9.5758e-03 eta: 1 day, 23:22:12 time: 1.1137 data_time: 0.0072 memory: 8702 loss: 0.5645 decode.loss_ce: 0.3583 decode.acc_seg: 91.5202 aux.loss_ce: 0.2062 aux.acc_seg: 88.2139 +2024/08/09 18:12:35 - mmengine - INFO - Iter(train) [ 7650/160000] lr: 9.5730e-03 eta: 1 day, 23:21:12 time: 1.1173 data_time: 0.0066 memory: 8702 loss: 0.5399 decode.loss_ce: 0.3453 decode.acc_seg: 95.8591 aux.loss_ce: 0.1946 aux.acc_seg: 95.2613 +2024/08/09 18:13:31 - mmengine - INFO - Iter(train) [ 7700/160000] lr: 9.5702e-03 eta: 1 day, 23:20:16 time: 1.1262 data_time: 0.0072 memory: 8702 loss: 0.5152 decode.loss_ce: 0.3258 decode.acc_seg: 95.1636 aux.loss_ce: 0.1893 aux.acc_seg: 90.5058 +2024/08/09 18:14:26 - mmengine - INFO - Iter(train) [ 7750/160000] lr: 9.5674e-03 eta: 1 day, 23:19:15 time: 1.1139 data_time: 0.0078 memory: 8703 loss: 0.5737 decode.loss_ce: 0.3855 decode.acc_seg: 89.8802 aux.loss_ce: 0.1882 aux.acc_seg: 86.9393 +2024/08/09 18:15:22 - mmengine - INFO - Iter(train) [ 7800/160000] lr: 9.5646e-03 eta: 1 day, 23:18:17 time: 1.1155 data_time: 0.0080 memory: 8702 loss: 0.4897 decode.loss_ce: 0.3119 decode.acc_seg: 89.8976 aux.loss_ce: 0.1777 aux.acc_seg: 78.8014 +2024/08/09 18:16:18 - mmengine - INFO - Iter(train) [ 7850/160000] lr: 9.5618e-03 eta: 1 day, 23:17:17 time: 1.1128 data_time: 0.0070 memory: 8702 loss: 0.4196 decode.loss_ce: 0.2580 decode.acc_seg: 85.8885 aux.loss_ce: 0.1617 aux.acc_seg: 80.7091 +2024/08/09 18:17:14 - mmengine - INFO - Iter(train) [ 7900/160000] lr: 9.5590e-03 eta: 1 day, 23:16:17 time: 1.1152 data_time: 0.0089 memory: 8703 loss: 0.5594 decode.loss_ce: 0.3473 decode.acc_seg: 74.4973 aux.loss_ce: 0.2120 aux.acc_seg: 68.6197 +2024/08/09 18:18:10 - mmengine - INFO - Iter(train) [ 7950/160000] lr: 9.5562e-03 eta: 1 day, 23:15:20 time: 1.1196 data_time: 0.0091 memory: 8703 loss: 0.5056 decode.loss_ce: 0.3254 decode.acc_seg: 92.3504 aux.loss_ce: 0.1803 aux.acc_seg: 90.0426 +2024/08/09 18:19:05 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 18:19:05 - mmengine - INFO - Iter(train) [ 8000/160000] lr: 9.5534e-03 eta: 1 day, 23:14:18 time: 1.1171 data_time: 0.0081 memory: 8703 loss: 0.5325 decode.loss_ce: 0.3408 decode.acc_seg: 82.3056 aux.loss_ce: 0.1916 aux.acc_seg: 76.3462 +2024/08/09 18:20:01 - mmengine - INFO - Iter(train) [ 8050/160000] lr: 9.5506e-03 eta: 1 day, 23:13:21 time: 1.1211 data_time: 0.0085 memory: 8702 loss: 0.6601 decode.loss_ce: 0.4273 decode.acc_seg: 90.5126 aux.loss_ce: 0.2328 aux.acc_seg: 90.1936 +2024/08/09 18:20:57 - mmengine - INFO - Iter(train) [ 8100/160000] lr: 9.5478e-03 eta: 1 day, 23:12:20 time: 1.1140 data_time: 0.0068 memory: 8702 loss: 0.4235 decode.loss_ce: 0.2562 decode.acc_seg: 94.7841 aux.loss_ce: 0.1674 aux.acc_seg: 89.4623 +2024/08/09 18:21:53 - mmengine - INFO - Iter(train) [ 8150/160000] lr: 9.5450e-03 eta: 1 day, 23:11:24 time: 1.1208 data_time: 0.0089 memory: 8703 loss: 0.5206 decode.loss_ce: 0.3132 decode.acc_seg: 94.7329 aux.loss_ce: 0.2074 aux.acc_seg: 93.4916 +2024/08/09 18:22:48 - mmengine - INFO - Iter(train) [ 8200/160000] lr: 9.5422e-03 eta: 1 day, 23:10:24 time: 1.1160 data_time: 0.0086 memory: 8703 loss: 0.4989 decode.loss_ce: 0.3010 decode.acc_seg: 91.6023 aux.loss_ce: 0.1979 aux.acc_seg: 91.1226 +2024/08/09 18:23:44 - mmengine - INFO - Iter(train) [ 8250/160000] lr: 9.5394e-03 eta: 1 day, 23:09:25 time: 1.1134 data_time: 0.0078 memory: 8702 loss: 0.3885 decode.loss_ce: 0.2480 decode.acc_seg: 82.2634 aux.loss_ce: 0.1405 aux.acc_seg: 80.4814 +2024/08/09 18:24:40 - mmengine - INFO - Iter(train) [ 8300/160000] lr: 9.5366e-03 eta: 1 day, 23:08:26 time: 1.1139 data_time: 0.0064 memory: 8703 loss: 0.5347 decode.loss_ce: 0.3329 decode.acc_seg: 94.5216 aux.loss_ce: 0.2018 aux.acc_seg: 94.2456 +2024/08/09 18:25:36 - mmengine - INFO - Iter(train) [ 8350/160000] lr: 9.5338e-03 eta: 1 day, 23:07:26 time: 1.1172 data_time: 0.0085 memory: 8702 loss: 0.4907 decode.loss_ce: 0.2996 decode.acc_seg: 84.5938 aux.loss_ce: 0.1911 aux.acc_seg: 76.6337 +2024/08/09 18:26:31 - mmengine - INFO - Iter(train) [ 8400/160000] lr: 9.5310e-03 eta: 1 day, 23:06:26 time: 1.1155 data_time: 0.0069 memory: 8703 loss: 0.4761 decode.loss_ce: 0.2895 decode.acc_seg: 93.2505 aux.loss_ce: 0.1865 aux.acc_seg: 92.2088 +2024/08/09 18:27:27 - mmengine - INFO - Iter(train) [ 8450/160000] lr: 9.5282e-03 eta: 1 day, 23:05:26 time: 1.1175 data_time: 0.0075 memory: 8702 loss: 0.6178 decode.loss_ce: 0.3961 decode.acc_seg: 94.2308 aux.loss_ce: 0.2217 aux.acc_seg: 89.4562 +2024/08/09 18:28:23 - mmengine - INFO - Iter(train) [ 8500/160000] lr: 9.5254e-03 eta: 1 day, 23:04:25 time: 1.1176 data_time: 0.0073 memory: 8702 loss: 0.6982 decode.loss_ce: 0.4366 decode.acc_seg: 88.9045 aux.loss_ce: 0.2616 aux.acc_seg: 87.8760 +2024/08/09 18:29:19 - mmengine - INFO - Iter(train) [ 8550/160000] lr: 9.5226e-03 eta: 1 day, 23:03:27 time: 1.1178 data_time: 0.0075 memory: 8703 loss: 0.6491 decode.loss_ce: 0.3978 decode.acc_seg: 88.7383 aux.loss_ce: 0.2513 aux.acc_seg: 85.2797 +2024/08/09 18:30:15 - mmengine - INFO - Iter(train) [ 8600/160000] lr: 9.5198e-03 eta: 1 day, 23:02:31 time: 1.1157 data_time: 0.0075 memory: 8703 loss: 0.4455 decode.loss_ce: 0.2716 decode.acc_seg: 93.8639 aux.loss_ce: 0.1738 aux.acc_seg: 91.4988 +2024/08/09 18:31:10 - mmengine - INFO - Iter(train) [ 8650/160000] lr: 9.5170e-03 eta: 1 day, 23:01:35 time: 1.1200 data_time: 0.0083 memory: 8703 loss: 0.5977 decode.loss_ce: 0.3686 decode.acc_seg: 84.8492 aux.loss_ce: 0.2291 aux.acc_seg: 69.6272 +2024/08/09 18:32:06 - mmengine - INFO - Iter(train) [ 8700/160000] lr: 9.5142e-03 eta: 1 day, 23:00:37 time: 1.1162 data_time: 0.0080 memory: 8702 loss: 0.6171 decode.loss_ce: 0.3909 decode.acc_seg: 77.5229 aux.loss_ce: 0.2262 aux.acc_seg: 76.7875 +2024/08/09 18:33:02 - mmengine - INFO - Iter(train) [ 8750/160000] lr: 9.5114e-03 eta: 1 day, 22:59:40 time: 1.1182 data_time: 0.0082 memory: 8703 loss: 0.6370 decode.loss_ce: 0.3970 decode.acc_seg: 89.6432 aux.loss_ce: 0.2400 aux.acc_seg: 85.9890 +2024/08/09 18:33:58 - mmengine - INFO - Iter(train) [ 8800/160000] lr: 9.5086e-03 eta: 1 day, 22:58:42 time: 1.1181 data_time: 0.0081 memory: 8703 loss: 0.3381 decode.loss_ce: 0.2102 decode.acc_seg: 92.5855 aux.loss_ce: 0.1278 aux.acc_seg: 90.8044 +2024/08/09 18:34:54 - mmengine - INFO - Iter(train) [ 8850/160000] lr: 9.5058e-03 eta: 1 day, 22:57:42 time: 1.1115 data_time: 0.0070 memory: 8702 loss: 0.4851 decode.loss_ce: 0.3036 decode.acc_seg: 94.0694 aux.loss_ce: 0.1815 aux.acc_seg: 90.2320 +2024/08/09 18:35:49 - mmengine - INFO - Iter(train) [ 8900/160000] lr: 9.5030e-03 eta: 1 day, 22:56:42 time: 1.1153 data_time: 0.0086 memory: 8703 loss: 0.4290 decode.loss_ce: 0.2671 decode.acc_seg: 94.7796 aux.loss_ce: 0.1620 aux.acc_seg: 93.5682 +2024/08/09 18:36:45 - mmengine - INFO - Iter(train) [ 8950/160000] lr: 9.5002e-03 eta: 1 day, 22:55:44 time: 1.1162 data_time: 0.0082 memory: 8702 loss: 0.4737 decode.loss_ce: 0.2852 decode.acc_seg: 89.6504 aux.loss_ce: 0.1885 aux.acc_seg: 87.2748 +2024/08/09 18:37:41 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 18:37:41 - mmengine - INFO - Iter(train) [ 9000/160000] lr: 9.4974e-03 eta: 1 day, 22:54:44 time: 1.1165 data_time: 0.0085 memory: 8702 loss: 0.3539 decode.loss_ce: 0.2132 decode.acc_seg: 95.4185 aux.loss_ce: 0.1407 aux.acc_seg: 93.1314 +2024/08/09 18:38:37 - mmengine - INFO - Iter(train) [ 9050/160000] lr: 9.4946e-03 eta: 1 day, 22:53:46 time: 1.1152 data_time: 0.0087 memory: 8702 loss: 0.5785 decode.loss_ce: 0.3547 decode.acc_seg: 84.5673 aux.loss_ce: 0.2238 aux.acc_seg: 79.2895 +2024/08/09 18:39:32 - mmengine - INFO - Iter(train) [ 9100/160000] lr: 9.4918e-03 eta: 1 day, 22:52:46 time: 1.1184 data_time: 0.0088 memory: 8702 loss: 0.3981 decode.loss_ce: 0.2302 decode.acc_seg: 87.7958 aux.loss_ce: 0.1679 aux.acc_seg: 75.3420 +2024/08/09 18:40:28 - mmengine - INFO - Iter(train) [ 9150/160000] lr: 9.4890e-03 eta: 1 day, 22:51:44 time: 1.1083 data_time: 0.0066 memory: 8703 loss: 0.6753 decode.loss_ce: 0.4324 decode.acc_seg: 86.6086 aux.loss_ce: 0.2430 aux.acc_seg: 80.0436 +2024/08/09 18:41:23 - mmengine - INFO - Iter(train) [ 9200/160000] lr: 9.4862e-03 eta: 1 day, 22:50:44 time: 1.1129 data_time: 0.0082 memory: 8702 loss: 0.5252 decode.loss_ce: 0.3394 decode.acc_seg: 88.5736 aux.loss_ce: 0.1858 aux.acc_seg: 84.5571 +2024/08/09 18:42:19 - mmengine - INFO - Iter(train) [ 9250/160000] lr: 9.4834e-03 eta: 1 day, 22:49:46 time: 1.1168 data_time: 0.0093 memory: 8702 loss: 0.4540 decode.loss_ce: 0.2850 decode.acc_seg: 91.6419 aux.loss_ce: 0.1691 aux.acc_seg: 90.2339 +2024/08/09 18:43:15 - mmengine - INFO - Iter(train) [ 9300/160000] lr: 9.4806e-03 eta: 1 day, 22:48:47 time: 1.1164 data_time: 0.0083 memory: 8702 loss: 0.5529 decode.loss_ce: 0.3537 decode.acc_seg: 87.9647 aux.loss_ce: 0.1991 aux.acc_seg: 84.8165 +2024/08/09 18:44:11 - mmengine - INFO - Iter(train) [ 9350/160000] lr: 9.4778e-03 eta: 1 day, 22:47:49 time: 1.1146 data_time: 0.0077 memory: 8703 loss: 0.3423 decode.loss_ce: 0.2150 decode.acc_seg: 92.5058 aux.loss_ce: 0.1273 aux.acc_seg: 90.3926 +2024/08/09 18:45:07 - mmengine - INFO - Iter(train) [ 9400/160000] lr: 9.4750e-03 eta: 1 day, 22:46:52 time: 1.1173 data_time: 0.0095 memory: 8702 loss: 0.4076 decode.loss_ce: 0.2537 decode.acc_seg: 93.5395 aux.loss_ce: 0.1539 aux.acc_seg: 93.1794 +2024/08/09 18:46:02 - mmengine - INFO - Iter(train) [ 9450/160000] lr: 9.4722e-03 eta: 1 day, 22:45:53 time: 1.1119 data_time: 0.0055 memory: 8703 loss: 0.5464 decode.loss_ce: 0.3319 decode.acc_seg: 90.2348 aux.loss_ce: 0.2145 aux.acc_seg: 76.6541 +2024/08/09 18:46:58 - mmengine - INFO - Iter(train) [ 9500/160000] lr: 9.4694e-03 eta: 1 day, 22:44:57 time: 1.1180 data_time: 0.0068 memory: 8703 loss: 0.5088 decode.loss_ce: 0.3299 decode.acc_seg: 91.1800 aux.loss_ce: 0.1790 aux.acc_seg: 85.2606 +2024/08/09 18:47:54 - mmengine - INFO - Iter(train) [ 9550/160000] lr: 9.4666e-03 eta: 1 day, 22:43:58 time: 1.1116 data_time: 0.0067 memory: 8703 loss: 0.5042 decode.loss_ce: 0.2938 decode.acc_seg: 84.5879 aux.loss_ce: 0.2104 aux.acc_seg: 80.7738 +2024/08/09 18:48:50 - mmengine - INFO - Iter(train) [ 9600/160000] lr: 9.4638e-03 eta: 1 day, 22:43:00 time: 1.1159 data_time: 0.0069 memory: 8703 loss: 0.5452 decode.loss_ce: 0.3455 decode.acc_seg: 91.3278 aux.loss_ce: 0.1997 aux.acc_seg: 89.5066 +2024/08/09 18:49:46 - mmengine - INFO - Iter(train) [ 9650/160000] lr: 9.4610e-03 eta: 1 day, 22:42:02 time: 1.1161 data_time: 0.0082 memory: 8703 loss: 0.4181 decode.loss_ce: 0.2510 decode.acc_seg: 94.1364 aux.loss_ce: 0.1672 aux.acc_seg: 91.2003 +2024/08/09 18:50:41 - mmengine - INFO - Iter(train) [ 9700/160000] lr: 9.4582e-03 eta: 1 day, 22:41:04 time: 1.1127 data_time: 0.0061 memory: 8703 loss: 0.5395 decode.loss_ce: 0.3382 decode.acc_seg: 91.6986 aux.loss_ce: 0.2013 aux.acc_seg: 87.3639 +2024/08/09 18:51:37 - mmengine - INFO - Iter(train) [ 9750/160000] lr: 9.4554e-03 eta: 1 day, 22:40:07 time: 1.1176 data_time: 0.0074 memory: 8703 loss: 0.5396 decode.loss_ce: 0.3345 decode.acc_seg: 87.5550 aux.loss_ce: 0.2051 aux.acc_seg: 69.2145 +2024/08/09 18:52:33 - mmengine - INFO - Iter(train) [ 9800/160000] lr: 9.4526e-03 eta: 1 day, 22:39:09 time: 1.1133 data_time: 0.0075 memory: 8702 loss: 0.6721 decode.loss_ce: 0.3920 decode.acc_seg: 86.1491 aux.loss_ce: 0.2802 aux.acc_seg: 79.5958 +2024/08/09 18:53:29 - mmengine - INFO - Iter(train) [ 9850/160000] lr: 9.4498e-03 eta: 1 day, 22:38:09 time: 1.1144 data_time: 0.0078 memory: 8703 loss: 0.6062 decode.loss_ce: 0.3915 decode.acc_seg: 83.8847 aux.loss_ce: 0.2147 aux.acc_seg: 73.9311 +2024/08/09 18:54:24 - mmengine - INFO - Iter(train) [ 9900/160000] lr: 9.4470e-03 eta: 1 day, 22:37:11 time: 1.1127 data_time: 0.0083 memory: 8702 loss: 0.7219 decode.loss_ce: 0.4619 decode.acc_seg: 89.0723 aux.loss_ce: 0.2599 aux.acc_seg: 86.0411 +2024/08/09 18:55:20 - mmengine - INFO - Iter(train) [ 9950/160000] lr: 9.4442e-03 eta: 1 day, 22:36:11 time: 1.1128 data_time: 0.0076 memory: 8702 loss: 0.3872 decode.loss_ce: 0.2260 decode.acc_seg: 87.1783 aux.loss_ce: 0.1612 aux.acc_seg: 81.3521 +2024/08/09 18:56:16 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 18:56:16 - mmengine - INFO - Iter(train) [ 10000/160000] lr: 9.4414e-03 eta: 1 day, 22:35:13 time: 1.1156 data_time: 0.0070 memory: 8703 loss: 0.5790 decode.loss_ce: 0.3655 decode.acc_seg: 93.5113 aux.loss_ce: 0.2136 aux.acc_seg: 92.4221 +2024/08/09 18:57:12 - mmengine - INFO - Iter(train) [ 10050/160000] lr: 9.4386e-03 eta: 1 day, 22:34:16 time: 1.1107 data_time: 0.0054 memory: 8702 loss: 0.5809 decode.loss_ce: 0.3697 decode.acc_seg: 84.2336 aux.loss_ce: 0.2112 aux.acc_seg: 70.8103 +2024/08/09 18:58:07 - mmengine - INFO - Iter(train) [ 10100/160000] lr: 9.4358e-03 eta: 1 day, 22:33:20 time: 1.1174 data_time: 0.0074 memory: 8703 loss: 0.4872 decode.loss_ce: 0.3053 decode.acc_seg: 94.8250 aux.loss_ce: 0.1818 aux.acc_seg: 90.7587 +2024/08/09 18:59:03 - mmengine - INFO - Iter(train) [ 10150/160000] lr: 9.4330e-03 eta: 1 day, 22:32:23 time: 1.1183 data_time: 0.0072 memory: 8702 loss: 0.5240 decode.loss_ce: 0.3186 decode.acc_seg: 85.4661 aux.loss_ce: 0.2054 aux.acc_seg: 80.1246 +2024/08/09 18:59:59 - mmengine - INFO - Iter(train) [ 10200/160000] lr: 9.4302e-03 eta: 1 day, 22:31:24 time: 1.1137 data_time: 0.0072 memory: 8703 loss: 0.4568 decode.loss_ce: 0.2667 decode.acc_seg: 86.8491 aux.loss_ce: 0.1901 aux.acc_seg: 80.6190 +2024/08/09 19:00:55 - mmengine - INFO - Iter(train) [ 10250/160000] lr: 9.4274e-03 eta: 1 day, 22:30:25 time: 1.1136 data_time: 0.0081 memory: 8704 loss: 0.6755 decode.loss_ce: 0.4119 decode.acc_seg: 87.4977 aux.loss_ce: 0.2636 aux.acc_seg: 80.8650 +2024/08/09 19:01:50 - mmengine - INFO - Iter(train) [ 10300/160000] lr: 9.4246e-03 eta: 1 day, 22:29:27 time: 1.1157 data_time: 0.0076 memory: 8703 loss: 0.3916 decode.loss_ce: 0.2491 decode.acc_seg: 88.7236 aux.loss_ce: 0.1425 aux.acc_seg: 82.0438 +2024/08/09 19:02:46 - mmengine - INFO - Iter(train) [ 10350/160000] lr: 9.4218e-03 eta: 1 day, 22:28:29 time: 1.1158 data_time: 0.0069 memory: 8703 loss: 0.4478 decode.loss_ce: 0.2764 decode.acc_seg: 94.8018 aux.loss_ce: 0.1714 aux.acc_seg: 93.9768 +2024/08/09 19:03:42 - mmengine - INFO - Iter(train) [ 10400/160000] lr: 9.4190e-03 eta: 1 day, 22:27:31 time: 1.1167 data_time: 0.0092 memory: 8703 loss: 0.4493 decode.loss_ce: 0.2901 decode.acc_seg: 84.9561 aux.loss_ce: 0.1591 aux.acc_seg: 85.2070 +2024/08/09 19:04:38 - mmengine - INFO - Iter(train) [ 10450/160000] lr: 9.4162e-03 eta: 1 day, 22:26:30 time: 1.1111 data_time: 0.0066 memory: 8703 loss: 0.6030 decode.loss_ce: 0.3710 decode.acc_seg: 91.8798 aux.loss_ce: 0.2320 aux.acc_seg: 86.8293 +2024/08/09 19:05:33 - mmengine - INFO - Iter(train) [ 10500/160000] lr: 9.4134e-03 eta: 1 day, 22:25:31 time: 1.1140 data_time: 0.0075 memory: 8702 loss: 0.4483 decode.loss_ce: 0.2813 decode.acc_seg: 84.0818 aux.loss_ce: 0.1671 aux.acc_seg: 81.4318 +2024/08/09 19:06:29 - mmengine - INFO - Iter(train) [ 10550/160000] lr: 9.4106e-03 eta: 1 day, 22:24:32 time: 1.1156 data_time: 0.0073 memory: 8702 loss: 0.5387 decode.loss_ce: 0.3249 decode.acc_seg: 90.9663 aux.loss_ce: 0.2138 aux.acc_seg: 89.7628 +2024/08/09 19:07:25 - mmengine - INFO - Iter(train) [ 10600/160000] lr: 9.4078e-03 eta: 1 day, 22:23:33 time: 1.1152 data_time: 0.0071 memory: 8703 loss: 0.5376 decode.loss_ce: 0.3256 decode.acc_seg: 95.9158 aux.loss_ce: 0.2120 aux.acc_seg: 92.3272 +2024/08/09 19:08:20 - mmengine - INFO - Iter(train) [ 10650/160000] lr: 9.4050e-03 eta: 1 day, 22:22:34 time: 1.1127 data_time: 0.0054 memory: 8703 loss: 0.5498 decode.loss_ce: 0.3589 decode.acc_seg: 93.7780 aux.loss_ce: 0.1910 aux.acc_seg: 92.0890 +2024/08/09 19:09:16 - mmengine - INFO - Iter(train) [ 10700/160000] lr: 9.4022e-03 eta: 1 day, 22:21:37 time: 1.1185 data_time: 0.0080 memory: 8703 loss: 0.4948 decode.loss_ce: 0.2908 decode.acc_seg: 95.6502 aux.loss_ce: 0.2040 aux.acc_seg: 95.0944 +2024/08/09 19:10:12 - mmengine - INFO - Iter(train) [ 10750/160000] lr: 9.3993e-03 eta: 1 day, 22:20:38 time: 1.1112 data_time: 0.0058 memory: 8702 loss: 0.5561 decode.loss_ce: 0.3496 decode.acc_seg: 92.2109 aux.loss_ce: 0.2065 aux.acc_seg: 88.5277 +2024/08/09 19:11:07 - mmengine - INFO - Iter(train) [ 10800/160000] lr: 9.3965e-03 eta: 1 day, 22:19:39 time: 1.1144 data_time: 0.0072 memory: 8703 loss: 0.4969 decode.loss_ce: 0.2995 decode.acc_seg: 95.3875 aux.loss_ce: 0.1974 aux.acc_seg: 94.3232 +2024/08/09 19:12:03 - mmengine - INFO - Iter(train) [ 10850/160000] lr: 9.3937e-03 eta: 1 day, 22:18:42 time: 1.1159 data_time: 0.0083 memory: 8702 loss: 0.4887 decode.loss_ce: 0.3029 decode.acc_seg: 89.4604 aux.loss_ce: 0.1858 aux.acc_seg: 86.9637 +2024/08/09 19:12:59 - mmengine - INFO - Iter(train) [ 10900/160000] lr: 9.3909e-03 eta: 1 day, 22:17:43 time: 1.1123 data_time: 0.0061 memory: 8702 loss: 0.6409 decode.loss_ce: 0.3943 decode.acc_seg: 71.2082 aux.loss_ce: 0.2466 aux.acc_seg: 58.5989 +2024/08/09 19:13:55 - mmengine - INFO - Iter(train) [ 10950/160000] lr: 9.3881e-03 eta: 1 day, 22:16:44 time: 1.1177 data_time: 0.0083 memory: 8703 loss: 0.5352 decode.loss_ce: 0.3451 decode.acc_seg: 89.5276 aux.loss_ce: 0.1901 aux.acc_seg: 88.2531 +2024/08/09 19:14:50 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 19:14:50 - mmengine - INFO - Iter(train) [ 11000/160000] lr: 9.3853e-03 eta: 1 day, 22:15:46 time: 1.1139 data_time: 0.0061 memory: 8702 loss: 0.5749 decode.loss_ce: 0.3566 decode.acc_seg: 84.5387 aux.loss_ce: 0.2184 aux.acc_seg: 85.0649 +2024/08/09 19:15:46 - mmengine - INFO - Iter(train) [ 11050/160000] lr: 9.3825e-03 eta: 1 day, 22:14:47 time: 1.1143 data_time: 0.0081 memory: 8702 loss: 0.5593 decode.loss_ce: 0.3467 decode.acc_seg: 84.5491 aux.loss_ce: 0.2125 aux.acc_seg: 81.0865 +2024/08/09 19:16:42 - mmengine - INFO - Iter(train) [ 11100/160000] lr: 9.3797e-03 eta: 1 day, 22:13:48 time: 1.1133 data_time: 0.0080 memory: 8703 loss: 0.5547 decode.loss_ce: 0.3447 decode.acc_seg: 92.2887 aux.loss_ce: 0.2100 aux.acc_seg: 91.9748 +2024/08/09 19:17:37 - mmengine - INFO - Iter(train) [ 11150/160000] lr: 9.3769e-03 eta: 1 day, 22:12:51 time: 1.1152 data_time: 0.0075 memory: 8703 loss: 0.4944 decode.loss_ce: 0.3067 decode.acc_seg: 92.4159 aux.loss_ce: 0.1877 aux.acc_seg: 90.7999 +2024/08/09 19:18:33 - mmengine - INFO - Iter(train) [ 11200/160000] lr: 9.3741e-03 eta: 1 day, 22:11:56 time: 1.1208 data_time: 0.0088 memory: 8703 loss: 0.4274 decode.loss_ce: 0.2533 decode.acc_seg: 91.9748 aux.loss_ce: 0.1741 aux.acc_seg: 89.4892 +2024/08/09 19:19:29 - mmengine - INFO - Iter(train) [ 11250/160000] lr: 9.3713e-03 eta: 1 day, 22:10:59 time: 1.1183 data_time: 0.0076 memory: 8703 loss: 0.5333 decode.loss_ce: 0.3344 decode.acc_seg: 90.2728 aux.loss_ce: 0.1988 aux.acc_seg: 85.8810 +2024/08/09 19:20:25 - mmengine - INFO - Iter(train) [ 11300/160000] lr: 9.3685e-03 eta: 1 day, 22:10:02 time: 1.1120 data_time: 0.0059 memory: 8703 loss: 0.4950 decode.loss_ce: 0.3197 decode.acc_seg: 93.4731 aux.loss_ce: 0.1753 aux.acc_seg: 89.7184 +2024/08/09 19:21:21 - mmengine - INFO - Iter(train) [ 11350/160000] lr: 9.3657e-03 eta: 1 day, 22:09:04 time: 1.1134 data_time: 0.0083 memory: 8703 loss: 0.4572 decode.loss_ce: 0.2790 decode.acc_seg: 93.3174 aux.loss_ce: 0.1782 aux.acc_seg: 77.3235 +2024/08/09 19:22:16 - mmengine - INFO - Iter(train) [ 11400/160000] lr: 9.3629e-03 eta: 1 day, 22:08:06 time: 1.1109 data_time: 0.0074 memory: 8703 loss: 0.3856 decode.loss_ce: 0.2546 decode.acc_seg: 88.9800 aux.loss_ce: 0.1310 aux.acc_seg: 87.7762 +2024/08/09 19:23:12 - mmengine - INFO - Iter(train) [ 11450/160000] lr: 9.3601e-03 eta: 1 day, 22:07:08 time: 1.1106 data_time: 0.0068 memory: 8702 loss: 0.4064 decode.loss_ce: 0.2617 decode.acc_seg: 94.0241 aux.loss_ce: 0.1448 aux.acc_seg: 94.0714 +2024/08/09 19:24:08 - mmengine - INFO - Iter(train) [ 11500/160000] lr: 9.3573e-03 eta: 1 day, 22:06:11 time: 1.1166 data_time: 0.0093 memory: 8703 loss: 0.4885 decode.loss_ce: 0.2976 decode.acc_seg: 86.1038 aux.loss_ce: 0.1908 aux.acc_seg: 80.3486 +2024/08/09 19:25:04 - mmengine - INFO - Iter(train) [ 11550/160000] lr: 9.3545e-03 eta: 1 day, 22:05:13 time: 1.1157 data_time: 0.0097 memory: 8702 loss: 0.5339 decode.loss_ce: 0.3313 decode.acc_seg: 80.7469 aux.loss_ce: 0.2025 aux.acc_seg: 73.0580 +2024/08/09 19:26:00 - mmengine - INFO - Iter(train) [ 11600/160000] lr: 9.3517e-03 eta: 1 day, 22:04:17 time: 1.1149 data_time: 0.0081 memory: 8703 loss: 0.5013 decode.loss_ce: 0.2958 decode.acc_seg: 92.7090 aux.loss_ce: 0.2056 aux.acc_seg: 84.0743 +2024/08/09 19:26:55 - mmengine - INFO - Iter(train) [ 11650/160000] lr: 9.3489e-03 eta: 1 day, 22:03:18 time: 1.1153 data_time: 0.0081 memory: 8703 loss: 0.6358 decode.loss_ce: 0.3988 decode.acc_seg: 89.9721 aux.loss_ce: 0.2371 aux.acc_seg: 83.5832 +2024/08/09 19:27:51 - mmengine - INFO - Iter(train) [ 11700/160000] lr: 9.3461e-03 eta: 1 day, 22:02:21 time: 1.1167 data_time: 0.0074 memory: 8702 loss: 0.6265 decode.loss_ce: 0.4182 decode.acc_seg: 94.2546 aux.loss_ce: 0.2083 aux.acc_seg: 92.8883 +2024/08/09 19:28:47 - mmengine - INFO - Iter(train) [ 11750/160000] lr: 9.3433e-03 eta: 1 day, 22:01:24 time: 1.1136 data_time: 0.0066 memory: 8703 loss: 0.7145 decode.loss_ce: 0.4647 decode.acc_seg: 88.5987 aux.loss_ce: 0.2498 aux.acc_seg: 84.4080 +2024/08/09 19:29:43 - mmengine - INFO - Iter(train) [ 11800/160000] lr: 9.3404e-03 eta: 1 day, 22:00:28 time: 1.1192 data_time: 0.0072 memory: 8702 loss: 0.4615 decode.loss_ce: 0.2955 decode.acc_seg: 94.0940 aux.loss_ce: 0.1660 aux.acc_seg: 91.5833 +2024/08/09 19:30:39 - mmengine - INFO - Iter(train) [ 11850/160000] lr: 9.3376e-03 eta: 1 day, 21:59:33 time: 1.1164 data_time: 0.0073 memory: 8702 loss: 0.6134 decode.loss_ce: 0.3776 decode.acc_seg: 89.2987 aux.loss_ce: 0.2358 aux.acc_seg: 84.3925 +2024/08/09 19:31:35 - mmengine - INFO - Iter(train) [ 11900/160000] lr: 9.3348e-03 eta: 1 day, 21:58:38 time: 1.1161 data_time: 0.0082 memory: 8704 loss: 0.5579 decode.loss_ce: 0.3471 decode.acc_seg: 89.8833 aux.loss_ce: 0.2107 aux.acc_seg: 87.7234 +2024/08/09 19:32:30 - mmengine - INFO - Iter(train) [ 11950/160000] lr: 9.3320e-03 eta: 1 day, 21:57:40 time: 1.1168 data_time: 0.0088 memory: 8702 loss: 0.5408 decode.loss_ce: 0.3276 decode.acc_seg: 92.3493 aux.loss_ce: 0.2132 aux.acc_seg: 91.3744 +2024/08/09 19:33:26 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 19:33:26 - mmengine - INFO - Iter(train) [ 12000/160000] lr: 9.3292e-03 eta: 1 day, 21:56:43 time: 1.1132 data_time: 0.0070 memory: 8703 loss: 0.5012 decode.loss_ce: 0.2935 decode.acc_seg: 73.5757 aux.loss_ce: 0.2076 aux.acc_seg: 65.6448 +2024/08/09 19:34:22 - mmengine - INFO - Iter(train) [ 12050/160000] lr: 9.3264e-03 eta: 1 day, 21:55:44 time: 1.1105 data_time: 0.0070 memory: 8703 loss: 0.4786 decode.loss_ce: 0.2898 decode.acc_seg: 94.1272 aux.loss_ce: 0.1888 aux.acc_seg: 93.5023 +2024/08/09 19:35:17 - mmengine - INFO - Iter(train) [ 12100/160000] lr: 9.3236e-03 eta: 1 day, 21:54:47 time: 1.1108 data_time: 0.0070 memory: 8702 loss: 0.4786 decode.loss_ce: 0.3043 decode.acc_seg: 93.7400 aux.loss_ce: 0.1743 aux.acc_seg: 92.7432 +2024/08/09 19:36:13 - mmengine - INFO - Iter(train) [ 12150/160000] lr: 9.3208e-03 eta: 1 day, 21:53:49 time: 1.1135 data_time: 0.0079 memory: 8702 loss: 0.4512 decode.loss_ce: 0.2832 decode.acc_seg: 91.2020 aux.loss_ce: 0.1681 aux.acc_seg: 91.8550 +2024/08/09 19:37:09 - mmengine - INFO - Iter(train) [ 12200/160000] lr: 9.3180e-03 eta: 1 day, 21:52:52 time: 1.1095 data_time: 0.0063 memory: 8703 loss: 0.4544 decode.loss_ce: 0.3012 decode.acc_seg: 93.2529 aux.loss_ce: 0.1533 aux.acc_seg: 92.1634 +2024/08/09 19:38:05 - mmengine - INFO - Iter(train) [ 12250/160000] lr: 9.3152e-03 eta: 1 day, 21:51:56 time: 1.1168 data_time: 0.0073 memory: 8702 loss: 0.4607 decode.loss_ce: 0.2913 decode.acc_seg: 95.2281 aux.loss_ce: 0.1694 aux.acc_seg: 84.4758 +2024/08/09 19:39:01 - mmengine - INFO - Iter(train) [ 12300/160000] lr: 9.3124e-03 eta: 1 day, 21:50:59 time: 1.1156 data_time: 0.0087 memory: 8702 loss: 0.4202 decode.loss_ce: 0.2585 decode.acc_seg: 94.6213 aux.loss_ce: 0.1617 aux.acc_seg: 94.3598 +2024/08/09 19:39:56 - mmengine - INFO - Iter(train) [ 12350/160000] lr: 9.3096e-03 eta: 1 day, 21:50:03 time: 1.1203 data_time: 0.0083 memory: 8702 loss: 0.6180 decode.loss_ce: 0.3650 decode.acc_seg: 93.5697 aux.loss_ce: 0.2529 aux.acc_seg: 92.5098 +2024/08/09 19:40:52 - mmengine - INFO - Iter(train) [ 12400/160000] lr: 9.3068e-03 eta: 1 day, 21:49:06 time: 1.1151 data_time: 0.0070 memory: 8703 loss: 0.4692 decode.loss_ce: 0.2907 decode.acc_seg: 91.9552 aux.loss_ce: 0.1785 aux.acc_seg: 85.2229 +2024/08/09 19:41:48 - mmengine - INFO - Iter(train) [ 12450/160000] lr: 9.3040e-03 eta: 1 day, 21:48:09 time: 1.1137 data_time: 0.0076 memory: 8704 loss: 0.5885 decode.loss_ce: 0.3861 decode.acc_seg: 95.6499 aux.loss_ce: 0.2024 aux.acc_seg: 94.4956 +2024/08/09 19:42:44 - mmengine - INFO - Iter(train) [ 12500/160000] lr: 9.3012e-03 eta: 1 day, 21:47:12 time: 1.1132 data_time: 0.0075 memory: 8703 loss: 0.5338 decode.loss_ce: 0.3096 decode.acc_seg: 92.8499 aux.loss_ce: 0.2242 aux.acc_seg: 89.1049 +2024/08/09 19:43:39 - mmengine - INFO - Iter(train) [ 12550/160000] lr: 9.2984e-03 eta: 1 day, 21:46:14 time: 1.1122 data_time: 0.0070 memory: 8702 loss: 0.4511 decode.loss_ce: 0.2860 decode.acc_seg: 90.6571 aux.loss_ce: 0.1651 aux.acc_seg: 90.2767 +2024/08/09 19:44:35 - mmengine - INFO - Iter(train) [ 12600/160000] lr: 9.2955e-03 eta: 1 day, 21:45:15 time: 1.1176 data_time: 0.0084 memory: 8703 loss: 0.5361 decode.loss_ce: 0.3328 decode.acc_seg: 84.6008 aux.loss_ce: 0.2034 aux.acc_seg: 78.4894 +2024/08/09 19:45:31 - mmengine - INFO - Iter(train) [ 12650/160000] lr: 9.2927e-03 eta: 1 day, 21:44:18 time: 1.1137 data_time: 0.0080 memory: 8703 loss: 0.3308 decode.loss_ce: 0.2054 decode.acc_seg: 95.2984 aux.loss_ce: 0.1254 aux.acc_seg: 93.6854 +2024/08/09 19:46:27 - mmengine - INFO - Iter(train) [ 12700/160000] lr: 9.2899e-03 eta: 1 day, 21:43:21 time: 1.1154 data_time: 0.0072 memory: 8703 loss: 0.4613 decode.loss_ce: 0.2920 decode.acc_seg: 91.8531 aux.loss_ce: 0.1693 aux.acc_seg: 85.0546 +2024/08/09 19:47:23 - mmengine - INFO - Iter(train) [ 12750/160000] lr: 9.2871e-03 eta: 1 day, 21:42:25 time: 1.1186 data_time: 0.0084 memory: 8704 loss: 0.4178 decode.loss_ce: 0.2640 decode.acc_seg: 90.6445 aux.loss_ce: 0.1538 aux.acc_seg: 85.9072 +2024/08/09 19:48:18 - mmengine - INFO - Iter(train) [ 12800/160000] lr: 9.2843e-03 eta: 1 day, 21:41:29 time: 1.1172 data_time: 0.0090 memory: 8702 loss: 0.6727 decode.loss_ce: 0.4470 decode.acc_seg: 94.5087 aux.loss_ce: 0.2258 aux.acc_seg: 93.1801 +2024/08/09 19:49:14 - mmengine - INFO - Iter(train) [ 12850/160000] lr: 9.2815e-03 eta: 1 day, 21:40:32 time: 1.1122 data_time: 0.0082 memory: 8703 loss: 0.4913 decode.loss_ce: 0.2927 decode.acc_seg: 91.1821 aux.loss_ce: 0.1986 aux.acc_seg: 86.7612 +2024/08/09 19:50:10 - mmengine - INFO - Iter(train) [ 12900/160000] lr: 9.2787e-03 eta: 1 day, 21:39:36 time: 1.1119 data_time: 0.0070 memory: 8702 loss: 0.3982 decode.loss_ce: 0.2468 decode.acc_seg: 87.0764 aux.loss_ce: 0.1514 aux.acc_seg: 84.4097 +2024/08/09 19:51:06 - mmengine - INFO - Iter(train) [ 12950/160000] lr: 9.2759e-03 eta: 1 day, 21:38:39 time: 1.1156 data_time: 0.0082 memory: 8703 loss: 0.4494 decode.loss_ce: 0.2839 decode.acc_seg: 92.7762 aux.loss_ce: 0.1655 aux.acc_seg: 90.3374 +2024/08/09 19:52:01 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 19:52:01 - mmengine - INFO - Iter(train) [ 13000/160000] lr: 9.2731e-03 eta: 1 day, 21:37:41 time: 1.1143 data_time: 0.0068 memory: 8702 loss: 0.4220 decode.loss_ce: 0.2679 decode.acc_seg: 95.5009 aux.loss_ce: 0.1541 aux.acc_seg: 95.1378 +2024/08/09 19:52:57 - mmengine - INFO - Iter(train) [ 13050/160000] lr: 9.2703e-03 eta: 1 day, 21:36:43 time: 1.1135 data_time: 0.0081 memory: 8702 loss: 0.5505 decode.loss_ce: 0.3463 decode.acc_seg: 84.4094 aux.loss_ce: 0.2042 aux.acc_seg: 79.0146 +2024/08/09 19:53:53 - mmengine - INFO - Iter(train) [ 13100/160000] lr: 9.2675e-03 eta: 1 day, 21:35:46 time: 1.1138 data_time: 0.0066 memory: 8703 loss: 0.4750 decode.loss_ce: 0.2997 decode.acc_seg: 89.9053 aux.loss_ce: 0.1753 aux.acc_seg: 83.0856 +2024/08/09 19:54:49 - mmengine - INFO - Iter(train) [ 13150/160000] lr: 9.2647e-03 eta: 1 day, 21:34:49 time: 1.1141 data_time: 0.0087 memory: 8703 loss: 0.4785 decode.loss_ce: 0.2913 decode.acc_seg: 79.9735 aux.loss_ce: 0.1872 aux.acc_seg: 77.7451 +2024/08/09 19:55:44 - mmengine - INFO - Iter(train) [ 13200/160000] lr: 9.2618e-03 eta: 1 day, 21:33:52 time: 1.1103 data_time: 0.0073 memory: 8702 loss: 0.7653 decode.loss_ce: 0.5161 decode.acc_seg: 63.4226 aux.loss_ce: 0.2493 aux.acc_seg: 68.1983 +2024/08/09 19:56:40 - mmengine - INFO - Iter(train) [ 13250/160000] lr: 9.2590e-03 eta: 1 day, 21:32:55 time: 1.1160 data_time: 0.0070 memory: 8703 loss: 0.4736 decode.loss_ce: 0.2935 decode.acc_seg: 88.2857 aux.loss_ce: 0.1801 aux.acc_seg: 80.3495 +2024/08/09 19:57:36 - mmengine - INFO - Iter(train) [ 13300/160000] lr: 9.2562e-03 eta: 1 day, 21:31:59 time: 1.1175 data_time: 0.0087 memory: 8702 loss: 0.7893 decode.loss_ce: 0.4884 decode.acc_seg: 83.3046 aux.loss_ce: 0.3008 aux.acc_seg: 81.2410 +2024/08/09 19:58:32 - mmengine - INFO - Iter(train) [ 13350/160000] lr: 9.2534e-03 eta: 1 day, 21:31:03 time: 1.1164 data_time: 0.0092 memory: 8702 loss: 0.5901 decode.loss_ce: 0.3819 decode.acc_seg: 85.2211 aux.loss_ce: 0.2082 aux.acc_seg: 81.7615 +2024/08/09 19:59:28 - mmengine - INFO - Iter(train) [ 13400/160000] lr: 9.2506e-03 eta: 1 day, 21:30:07 time: 1.1160 data_time: 0.0068 memory: 8702 loss: 0.6462 decode.loss_ce: 0.4024 decode.acc_seg: 67.7676 aux.loss_ce: 0.2438 aux.acc_seg: 59.3278 +2024/08/09 20:00:24 - mmengine - INFO - Iter(train) [ 13450/160000] lr: 9.2478e-03 eta: 1 day, 21:29:10 time: 1.1163 data_time: 0.0089 memory: 8703 loss: 0.5950 decode.loss_ce: 0.3616 decode.acc_seg: 91.4258 aux.loss_ce: 0.2334 aux.acc_seg: 80.0841 +2024/08/09 20:01:19 - mmengine - INFO - Iter(train) [ 13500/160000] lr: 9.2450e-03 eta: 1 day, 21:28:13 time: 1.1162 data_time: 0.0078 memory: 8703 loss: 0.3496 decode.loss_ce: 0.2088 decode.acc_seg: 97.0833 aux.loss_ce: 0.1408 aux.acc_seg: 92.2829 +2024/08/09 20:02:15 - mmengine - INFO - Iter(train) [ 13550/160000] lr: 9.2422e-03 eta: 1 day, 21:27:15 time: 1.1113 data_time: 0.0075 memory: 8703 loss: 0.4960 decode.loss_ce: 0.3246 decode.acc_seg: 90.0554 aux.loss_ce: 0.1714 aux.acc_seg: 88.9177 +2024/08/09 20:03:11 - mmengine - INFO - Iter(train) [ 13600/160000] lr: 9.2394e-03 eta: 1 day, 21:26:17 time: 1.1080 data_time: 0.0055 memory: 8702 loss: 0.5079 decode.loss_ce: 0.3235 decode.acc_seg: 73.6809 aux.loss_ce: 0.1844 aux.acc_seg: 67.5242 +2024/08/09 20:04:06 - mmengine - INFO - Iter(train) [ 13650/160000] lr: 9.2366e-03 eta: 1 day, 21:25:18 time: 1.1147 data_time: 0.0082 memory: 8703 loss: 0.4908 decode.loss_ce: 0.2929 decode.acc_seg: 94.7354 aux.loss_ce: 0.1979 aux.acc_seg: 93.7296 +2024/08/09 20:05:02 - mmengine - INFO - Iter(train) [ 13700/160000] lr: 9.2338e-03 eta: 1 day, 21:24:21 time: 1.1134 data_time: 0.0078 memory: 8702 loss: 0.6784 decode.loss_ce: 0.4337 decode.acc_seg: 92.0710 aux.loss_ce: 0.2447 aux.acc_seg: 91.1504 +2024/08/09 20:05:58 - mmengine - INFO - Iter(train) [ 13750/160000] lr: 9.2309e-03 eta: 1 day, 21:23:26 time: 1.1174 data_time: 0.0086 memory: 8703 loss: 0.5096 decode.loss_ce: 0.3050 decode.acc_seg: 94.6460 aux.loss_ce: 0.2046 aux.acc_seg: 91.7193 +2024/08/09 20:06:54 - mmengine - INFO - Iter(train) [ 13800/160000] lr: 9.2281e-03 eta: 1 day, 21:22:30 time: 1.1192 data_time: 0.0086 memory: 8702 loss: 0.7444 decode.loss_ce: 0.4457 decode.acc_seg: 73.7207 aux.loss_ce: 0.2987 aux.acc_seg: 63.4281 +2024/08/09 20:07:50 - mmengine - INFO - Iter(train) [ 13850/160000] lr: 9.2253e-03 eta: 1 day, 21:21:33 time: 1.1171 data_time: 0.0083 memory: 8702 loss: 0.5891 decode.loss_ce: 0.3575 decode.acc_seg: 89.9369 aux.loss_ce: 0.2316 aux.acc_seg: 89.2854 +2024/08/09 20:08:45 - mmengine - INFO - Iter(train) [ 13900/160000] lr: 9.2225e-03 eta: 1 day, 21:20:37 time: 1.1178 data_time: 0.0083 memory: 8703 loss: 0.4168 decode.loss_ce: 0.2646 decode.acc_seg: 94.2111 aux.loss_ce: 0.1522 aux.acc_seg: 94.2337 +2024/08/09 20:09:41 - mmengine - INFO - Iter(train) [ 13950/160000] lr: 9.2197e-03 eta: 1 day, 21:19:40 time: 1.1171 data_time: 0.0079 memory: 8702 loss: 0.4256 decode.loss_ce: 0.2656 decode.acc_seg: 93.3397 aux.loss_ce: 0.1601 aux.acc_seg: 84.0062 +2024/08/09 20:10:37 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 20:10:37 - mmengine - INFO - Iter(train) [ 14000/160000] lr: 9.2169e-03 eta: 1 day, 21:18:43 time: 1.1167 data_time: 0.0091 memory: 8703 loss: 0.5282 decode.loss_ce: 0.3254 decode.acc_seg: 94.2116 aux.loss_ce: 0.2028 aux.acc_seg: 82.6841 +2024/08/09 20:11:33 - mmengine - INFO - Iter(train) [ 14050/160000] lr: 9.2141e-03 eta: 1 day, 21:17:46 time: 1.1147 data_time: 0.0083 memory: 8703 loss: 0.5588 decode.loss_ce: 0.3605 decode.acc_seg: 70.6224 aux.loss_ce: 0.1984 aux.acc_seg: 72.8288 +2024/08/09 20:12:28 - mmengine - INFO - Iter(train) [ 14100/160000] lr: 9.2113e-03 eta: 1 day, 21:16:48 time: 1.1189 data_time: 0.0083 memory: 8703 loss: 0.4672 decode.loss_ce: 0.2907 decode.acc_seg: 84.1101 aux.loss_ce: 0.1765 aux.acc_seg: 74.8859 +2024/08/09 20:13:24 - mmengine - INFO - Iter(train) [ 14150/160000] lr: 9.2085e-03 eta: 1 day, 21:15:50 time: 1.1092 data_time: 0.0060 memory: 8703 loss: 0.5024 decode.loss_ce: 0.3257 decode.acc_seg: 89.5119 aux.loss_ce: 0.1766 aux.acc_seg: 88.9592 +2024/08/09 20:14:20 - mmengine - INFO - Iter(train) [ 14200/160000] lr: 9.2057e-03 eta: 1 day, 21:14:53 time: 1.1179 data_time: 0.0073 memory: 8703 loss: 0.4843 decode.loss_ce: 0.3119 decode.acc_seg: 94.6987 aux.loss_ce: 0.1723 aux.acc_seg: 95.1256 +2024/08/09 20:15:16 - mmengine - INFO - Iter(train) [ 14250/160000] lr: 9.2028e-03 eta: 1 day, 21:13:57 time: 1.1148 data_time: 0.0086 memory: 8702 loss: 0.4511 decode.loss_ce: 0.2847 decode.acc_seg: 86.2997 aux.loss_ce: 0.1664 aux.acc_seg: 85.8539 +2024/08/09 20:16:11 - mmengine - INFO - Iter(train) [ 14300/160000] lr: 9.2000e-03 eta: 1 day, 21:13:00 time: 1.1132 data_time: 0.0066 memory: 8703 loss: 0.4868 decode.loss_ce: 0.2892 decode.acc_seg: 94.8503 aux.loss_ce: 0.1976 aux.acc_seg: 89.6317 +2024/08/09 20:17:07 - mmengine - INFO - Iter(train) [ 14350/160000] lr: 9.1972e-03 eta: 1 day, 21:12:03 time: 1.1220 data_time: 0.0093 memory: 8703 loss: 0.6315 decode.loss_ce: 0.3794 decode.acc_seg: 92.3218 aux.loss_ce: 0.2520 aux.acc_seg: 83.5293 +2024/08/09 20:18:03 - mmengine - INFO - Iter(train) [ 14400/160000] lr: 9.1944e-03 eta: 1 day, 21:11:07 time: 1.1131 data_time: 0.0069 memory: 8703 loss: 0.4921 decode.loss_ce: 0.2948 decode.acc_seg: 90.0316 aux.loss_ce: 0.1973 aux.acc_seg: 90.4608 +2024/08/09 20:18:59 - mmengine - INFO - Iter(train) [ 14450/160000] lr: 9.1916e-03 eta: 1 day, 21:10:11 time: 1.1193 data_time: 0.0092 memory: 8703 loss: 0.3784 decode.loss_ce: 0.2423 decode.acc_seg: 94.4923 aux.loss_ce: 0.1361 aux.acc_seg: 90.0418 +2024/08/09 20:19:55 - mmengine - INFO - Iter(train) [ 14500/160000] lr: 9.1888e-03 eta: 1 day, 21:09:13 time: 1.1166 data_time: 0.0078 memory: 8702 loss: 0.3881 decode.loss_ce: 0.2446 decode.acc_seg: 97.0720 aux.loss_ce: 0.1435 aux.acc_seg: 92.0455 +2024/08/09 20:20:50 - mmengine - INFO - Iter(train) [ 14550/160000] lr: 9.1860e-03 eta: 1 day, 21:08:14 time: 1.1069 data_time: 0.0052 memory: 8703 loss: 0.5187 decode.loss_ce: 0.3135 decode.acc_seg: 84.8127 aux.loss_ce: 0.2053 aux.acc_seg: 74.5290 +2024/08/09 20:21:46 - mmengine - INFO - Iter(train) [ 14600/160000] lr: 9.1832e-03 eta: 1 day, 21:07:16 time: 1.1125 data_time: 0.0090 memory: 8702 loss: 0.4570 decode.loss_ce: 0.2788 decode.acc_seg: 92.4308 aux.loss_ce: 0.1782 aux.acc_seg: 85.1205 +2024/08/09 20:22:41 - mmengine - INFO - Iter(train) [ 14650/160000] lr: 9.1804e-03 eta: 1 day, 21:06:19 time: 1.1144 data_time: 0.0079 memory: 8702 loss: 0.3568 decode.loss_ce: 0.2243 decode.acc_seg: 90.8006 aux.loss_ce: 0.1325 aux.acc_seg: 87.7862 +2024/08/09 20:23:37 - mmengine - INFO - Iter(train) [ 14700/160000] lr: 9.1776e-03 eta: 1 day, 21:05:22 time: 1.1163 data_time: 0.0089 memory: 8702 loss: 0.7823 decode.loss_ce: 0.4926 decode.acc_seg: 76.2365 aux.loss_ce: 0.2896 aux.acc_seg: 68.2081 +2024/08/09 20:24:33 - mmengine - INFO - Iter(train) [ 14750/160000] lr: 9.1747e-03 eta: 1 day, 21:04:26 time: 1.1158 data_time: 0.0079 memory: 8703 loss: 0.4995 decode.loss_ce: 0.3109 decode.acc_seg: 80.2291 aux.loss_ce: 0.1886 aux.acc_seg: 74.6766 +2024/08/09 20:25:29 - mmengine - INFO - Iter(train) [ 14800/160000] lr: 9.1719e-03 eta: 1 day, 21:03:29 time: 1.1176 data_time: 0.0075 memory: 8703 loss: 0.5068 decode.loss_ce: 0.3270 decode.acc_seg: 88.3158 aux.loss_ce: 0.1799 aux.acc_seg: 85.7948 +2024/08/09 20:26:24 - mmengine - INFO - Iter(train) [ 14850/160000] lr: 9.1691e-03 eta: 1 day, 21:02:31 time: 1.1175 data_time: 0.0085 memory: 8702 loss: 0.5564 decode.loss_ce: 0.3463 decode.acc_seg: 92.2864 aux.loss_ce: 0.2101 aux.acc_seg: 83.6096 +2024/08/09 20:27:20 - mmengine - INFO - Iter(train) [ 14900/160000] lr: 9.1663e-03 eta: 1 day, 21:01:35 time: 1.1200 data_time: 0.0084 memory: 8702 loss: 0.6313 decode.loss_ce: 0.3716 decode.acc_seg: 80.4651 aux.loss_ce: 0.2597 aux.acc_seg: 75.6194 +2024/08/09 20:28:16 - mmengine - INFO - Iter(train) [ 14950/160000] lr: 9.1635e-03 eta: 1 day, 21:00:39 time: 1.1138 data_time: 0.0071 memory: 8702 loss: 0.4761 decode.loss_ce: 0.2931 decode.acc_seg: 96.7028 aux.loss_ce: 0.1831 aux.acc_seg: 96.0500 +2024/08/09 20:29:12 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 20:29:12 - mmengine - INFO - Iter(train) [ 15000/160000] lr: 9.1607e-03 eta: 1 day, 20:59:42 time: 1.1123 data_time: 0.0054 memory: 8703 loss: 0.5703 decode.loss_ce: 0.3339 decode.acc_seg: 93.2573 aux.loss_ce: 0.2363 aux.acc_seg: 82.0522 +2024/08/09 20:30:08 - mmengine - INFO - Iter(train) [ 15050/160000] lr: 9.1579e-03 eta: 1 day, 20:58:46 time: 1.1146 data_time: 0.0074 memory: 8702 loss: 0.5603 decode.loss_ce: 0.3476 decode.acc_seg: 69.3418 aux.loss_ce: 0.2127 aux.acc_seg: 60.9307 +2024/08/09 20:31:03 - mmengine - INFO - Iter(train) [ 15100/160000] lr: 9.1551e-03 eta: 1 day, 20:57:49 time: 1.1125 data_time: 0.0069 memory: 8703 loss: 0.5003 decode.loss_ce: 0.3139 decode.acc_seg: 86.4464 aux.loss_ce: 0.1864 aux.acc_seg: 80.4160 +2024/08/09 20:31:59 - mmengine - INFO - Iter(train) [ 15150/160000] lr: 9.1522e-03 eta: 1 day, 20:56:52 time: 1.1159 data_time: 0.0070 memory: 8703 loss: 0.6379 decode.loss_ce: 0.3718 decode.acc_seg: 88.0638 aux.loss_ce: 0.2661 aux.acc_seg: 65.5475 +2024/08/09 20:32:55 - mmengine - INFO - Iter(train) [ 15200/160000] lr: 9.1494e-03 eta: 1 day, 20:55:55 time: 1.1158 data_time: 0.0092 memory: 8703 loss: 0.4051 decode.loss_ce: 0.2419 decode.acc_seg: 94.4250 aux.loss_ce: 0.1632 aux.acc_seg: 93.7108 +2024/08/09 20:33:51 - mmengine - INFO - Iter(train) [ 15250/160000] lr: 9.1466e-03 eta: 1 day, 20:54:59 time: 1.1144 data_time: 0.0073 memory: 8702 loss: 0.6087 decode.loss_ce: 0.3917 decode.acc_seg: 67.7928 aux.loss_ce: 0.2170 aux.acc_seg: 60.4497 +2024/08/09 20:34:47 - mmengine - INFO - Iter(train) [ 15300/160000] lr: 9.1438e-03 eta: 1 day, 20:54:03 time: 1.1183 data_time: 0.0083 memory: 8702 loss: 0.5720 decode.loss_ce: 0.3690 decode.acc_seg: 91.1283 aux.loss_ce: 0.2030 aux.acc_seg: 89.0020 +2024/08/09 20:35:42 - mmengine - INFO - Iter(train) [ 15350/160000] lr: 9.1410e-03 eta: 1 day, 20:53:06 time: 1.1171 data_time: 0.0077 memory: 8703 loss: 0.4159 decode.loss_ce: 0.2567 decode.acc_seg: 91.5407 aux.loss_ce: 0.1592 aux.acc_seg: 82.1838 +2024/08/09 20:36:38 - mmengine - INFO - Iter(train) [ 15400/160000] lr: 9.1382e-03 eta: 1 day, 20:52:10 time: 1.1158 data_time: 0.0078 memory: 8703 loss: 0.6443 decode.loss_ce: 0.4012 decode.acc_seg: 92.3001 aux.loss_ce: 0.2430 aux.acc_seg: 89.3713 +2024/08/09 20:37:34 - mmengine - INFO - Iter(train) [ 15450/160000] lr: 9.1354e-03 eta: 1 day, 20:51:13 time: 1.1152 data_time: 0.0090 memory: 8703 loss: 0.4585 decode.loss_ce: 0.2842 decode.acc_seg: 88.9673 aux.loss_ce: 0.1744 aux.acc_seg: 83.2714 +2024/08/09 20:38:30 - mmengine - INFO - Iter(train) [ 15500/160000] lr: 9.1326e-03 eta: 1 day, 20:50:16 time: 1.1157 data_time: 0.0075 memory: 8702 loss: 0.4667 decode.loss_ce: 0.2954 decode.acc_seg: 96.4438 aux.loss_ce: 0.1713 aux.acc_seg: 95.1611 +2024/08/09 20:39:25 - mmengine - INFO - Iter(train) [ 15550/160000] lr: 9.1297e-03 eta: 1 day, 20:49:19 time: 1.1161 data_time: 0.0091 memory: 8702 loss: 0.5913 decode.loss_ce: 0.3751 decode.acc_seg: 83.1388 aux.loss_ce: 0.2162 aux.acc_seg: 77.6009 +2024/08/09 20:40:21 - mmengine - INFO - Iter(train) [ 15600/160000] lr: 9.1269e-03 eta: 1 day, 20:48:21 time: 1.1160 data_time: 0.0083 memory: 8702 loss: 0.5633 decode.loss_ce: 0.3642 decode.acc_seg: 97.3176 aux.loss_ce: 0.1991 aux.acc_seg: 92.6029 +2024/08/09 20:41:17 - mmengine - INFO - Iter(train) [ 15650/160000] lr: 9.1241e-03 eta: 1 day, 20:47:25 time: 1.1164 data_time: 0.0079 memory: 8702 loss: 0.4734 decode.loss_ce: 0.2805 decode.acc_seg: 91.7575 aux.loss_ce: 0.1930 aux.acc_seg: 88.5485 +2024/08/09 20:42:13 - mmengine - INFO - Iter(train) [ 15700/160000] lr: 9.1213e-03 eta: 1 day, 20:46:30 time: 1.1183 data_time: 0.0079 memory: 8703 loss: 0.4222 decode.loss_ce: 0.2584 decode.acc_seg: 90.8563 aux.loss_ce: 0.1638 aux.acc_seg: 88.7141 +2024/08/09 20:43:09 - mmengine - INFO - Iter(train) [ 15750/160000] lr: 9.1185e-03 eta: 1 day, 20:45:35 time: 1.1187 data_time: 0.0077 memory: 8702 loss: 0.5760 decode.loss_ce: 0.3881 decode.acc_seg: 95.0216 aux.loss_ce: 0.1879 aux.acc_seg: 92.8197 +2024/08/09 20:44:05 - mmengine - INFO - Iter(train) [ 15800/160000] lr: 9.1157e-03 eta: 1 day, 20:44:40 time: 1.1145 data_time: 0.0068 memory: 8703 loss: 0.5146 decode.loss_ce: 0.3304 decode.acc_seg: 90.1205 aux.loss_ce: 0.1842 aux.acc_seg: 89.8333 +2024/08/09 20:45:01 - mmengine - INFO - Iter(train) [ 15850/160000] lr: 9.1129e-03 eta: 1 day, 20:43:44 time: 1.1194 data_time: 0.0072 memory: 8703 loss: 0.7033 decode.loss_ce: 0.4612 decode.acc_seg: 95.4451 aux.loss_ce: 0.2421 aux.acc_seg: 94.6581 +2024/08/09 20:45:56 - mmengine - INFO - Iter(train) [ 15900/160000] lr: 9.1101e-03 eta: 1 day, 20:42:48 time: 1.1153 data_time: 0.0072 memory: 8702 loss: 0.5150 decode.loss_ce: 0.3020 decode.acc_seg: 83.1234 aux.loss_ce: 0.2130 aux.acc_seg: 79.2053 +2024/08/09 20:46:52 - mmengine - INFO - Iter(train) [ 15950/160000] lr: 9.1072e-03 eta: 1 day, 20:41:52 time: 1.1161 data_time: 0.0075 memory: 8703 loss: 0.5092 decode.loss_ce: 0.3188 decode.acc_seg: 94.5226 aux.loss_ce: 0.1903 aux.acc_seg: 85.4190 +2024/08/09 20:47:48 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 20:47:48 - mmengine - INFO - Iter(train) [ 16000/160000] lr: 9.1044e-03 eta: 1 day, 20:40:56 time: 1.1164 data_time: 0.0091 memory: 8702 loss: 0.4318 decode.loss_ce: 0.2781 decode.acc_seg: 93.0724 aux.loss_ce: 0.1537 aux.acc_seg: 91.1769 +2024/08/09 20:47:48 - mmengine - INFO - Saving checkpoint at 16000 iterations +2024/08/09 20:48:08 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:04:29 time: 0.2703 data_time: 0.0041 memory: 10267 +2024/08/09 20:48:22 - mmengine - INFO - Iter(val) [100/750] eta: 0:03:33 time: 0.2704 data_time: 0.0035 memory: 1724 +2024/08/09 20:48:35 - mmengine - INFO - Iter(val) [150/750] eta: 0:03:05 time: 0.2704 data_time: 0.0035 memory: 1724 +2024/08/09 20:48:49 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:44 time: 0.2705 data_time: 0.0034 memory: 1724 +2024/08/09 20:49:02 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:27 time: 0.2697 data_time: 0.0035 memory: 1724 +2024/08/09 20:49:16 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:10 time: 0.2704 data_time: 0.0034 memory: 1724 +2024/08/09 20:49:30 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:55 time: 0.2713 data_time: 0.0040 memory: 1724 +2024/08/09 20:49:43 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:39 time: 0.2704 data_time: 0.0038 memory: 1724 +2024/08/09 20:49:57 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:25 time: 0.2706 data_time: 0.0041 memory: 1724 +2024/08/09 20:50:10 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:10 time: 0.2708 data_time: 0.0035 memory: 1724 +2024/08/09 20:50:24 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:56 time: 0.2723 data_time: 0.0041 memory: 1724 +2024/08/09 20:50:38 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:42 time: 0.2715 data_time: 0.0041 memory: 1724 +2024/08/09 20:50:51 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:28 time: 0.2699 data_time: 0.0035 memory: 1724 +2024/08/09 20:51:05 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2709 data_time: 0.0035 memory: 1724 +2024/08/09 20:51:18 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2722 data_time: 0.0039 memory: 1724 +2024/08/09 20:51:28 - mmengine - INFO - per class results: +2024/08/09 20:51:28 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 88.64 | 92.67 | +| sidewalk | 61.83 | 67.02 | +| road roughness | 48.11 | 54.8 | +| road boundaries | 48.31 | 59.82 | +| crosswalks | 89.48 | 93.75 | +| lane | 63.87 | 75.49 | +| road color guide | 72.88 | 77.26 | +| road marking | 35.76 | 38.4 | +| parking | 33.66 | 36.74 | +| traffic sign | 38.31 | 65.63 | +| traffic light | 56.38 | 74.03 | +| pole/structural object | 65.65 | 76.14 | +| building | 72.74 | 84.81 | +| tunnel | 92.6 | 97.81 | +| bridge | 42.76 | 78.98 | +| pedestrian | 42.47 | 51.31 | +| vehicle | 57.04 | 91.65 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 0.0 | 0.0 | +| personal mobility | 5.67 | 5.69 | +| dynamic | 31.1 | 35.5 | +| vegetation | 80.41 | 88.75 | +| sky | 96.5 | 98.53 | +| static | 52.78 | 69.41 | ++------------------------+-------+-------+ +2024/08/09 20:51:28 - mmengine - INFO - Iter(val) [750/750] aAcc: 90.1600 mIoU: 53.2100 mAcc: 63.0900 data_time: 0.0049 time: 0.2790 +2024/08/09 20:52:23 - mmengine - INFO - Iter(train) [ 16050/160000] lr: 9.1016e-03 eta: 1 day, 20:41:23 time: 1.1113 data_time: 0.0058 memory: 8704 loss: 0.4936 decode.loss_ce: 0.2983 decode.acc_seg: 88.2408 aux.loss_ce: 0.1953 aux.acc_seg: 81.3859 +2024/08/09 20:53:19 - mmengine - INFO - Iter(train) [ 16100/160000] lr: 9.0988e-03 eta: 1 day, 20:40:26 time: 1.1153 data_time: 0.0071 memory: 8704 loss: 0.4645 decode.loss_ce: 0.2783 decode.acc_seg: 77.6593 aux.loss_ce: 0.1861 aux.acc_seg: 64.8282 +2024/08/09 20:54:15 - mmengine - INFO - Iter(train) [ 16150/160000] lr: 9.0960e-03 eta: 1 day, 20:39:28 time: 1.1133 data_time: 0.0063 memory: 8703 loss: 0.4089 decode.loss_ce: 0.2571 decode.acc_seg: 89.6027 aux.loss_ce: 0.1519 aux.acc_seg: 86.0848 +2024/08/09 20:55:11 - mmengine - INFO - Iter(train) [ 16200/160000] lr: 9.0932e-03 eta: 1 day, 20:38:32 time: 1.1177 data_time: 0.0084 memory: 8704 loss: 0.6403 decode.loss_ce: 0.3798 decode.acc_seg: 76.4779 aux.loss_ce: 0.2606 aux.acc_seg: 65.6291 +2024/08/09 20:56:06 - mmengine - INFO - Iter(train) [ 16250/160000] lr: 9.0904e-03 eta: 1 day, 20:37:34 time: 1.1129 data_time: 0.0070 memory: 8705 loss: 0.5369 decode.loss_ce: 0.3172 decode.acc_seg: 86.5361 aux.loss_ce: 0.2197 aux.acc_seg: 77.9418 +2024/08/09 20:57:02 - mmengine - INFO - Iter(train) [ 16300/160000] lr: 9.0875e-03 eta: 1 day, 20:36:38 time: 1.1178 data_time: 0.0069 memory: 8703 loss: 0.5049 decode.loss_ce: 0.3094 decode.acc_seg: 93.9122 aux.loss_ce: 0.1955 aux.acc_seg: 92.9068 +2024/08/09 20:57:58 - mmengine - INFO - Iter(train) [ 16350/160000] lr: 9.0847e-03 eta: 1 day, 20:35:41 time: 1.1142 data_time: 0.0061 memory: 8704 loss: 0.3928 decode.loss_ce: 0.2395 decode.acc_seg: 94.6823 aux.loss_ce: 0.1534 aux.acc_seg: 84.2835 +2024/08/09 20:58:54 - mmengine - INFO - Iter(train) [ 16400/160000] lr: 9.0819e-03 eta: 1 day, 20:34:44 time: 1.1173 data_time: 0.0071 memory: 8704 loss: 0.5018 decode.loss_ce: 0.3092 decode.acc_seg: 93.3274 aux.loss_ce: 0.1926 aux.acc_seg: 82.4855 +2024/08/09 20:59:49 - mmengine - INFO - Iter(train) [ 16450/160000] lr: 9.0791e-03 eta: 1 day, 20:33:47 time: 1.1163 data_time: 0.0073 memory: 8703 loss: 0.4587 decode.loss_ce: 0.2686 decode.acc_seg: 96.6166 aux.loss_ce: 0.1901 aux.acc_seg: 95.3630 +2024/08/09 21:00:45 - mmengine - INFO - Iter(train) [ 16500/160000] lr: 9.0763e-03 eta: 1 day, 20:32:51 time: 1.1120 data_time: 0.0065 memory: 8704 loss: 0.3987 decode.loss_ce: 0.2332 decode.acc_seg: 94.8516 aux.loss_ce: 0.1656 aux.acc_seg: 93.7504 +2024/08/09 21:01:41 - mmengine - INFO - Iter(train) [ 16550/160000] lr: 9.0735e-03 eta: 1 day, 20:31:55 time: 1.1159 data_time: 0.0061 memory: 8704 loss: 0.4373 decode.loss_ce: 0.2819 decode.acc_seg: 92.0310 aux.loss_ce: 0.1554 aux.acc_seg: 91.4042 +2024/08/09 21:02:37 - mmengine - INFO - Iter(train) [ 16600/160000] lr: 9.0706e-03 eta: 1 day, 20:31:00 time: 1.1159 data_time: 0.0064 memory: 8704 loss: 0.4028 decode.loss_ce: 0.2523 decode.acc_seg: 92.7003 aux.loss_ce: 0.1505 aux.acc_seg: 89.1482 +2024/08/09 21:03:33 - mmengine - INFO - Iter(train) [ 16650/160000] lr: 9.0678e-03 eta: 1 day, 20:30:03 time: 1.1193 data_time: 0.0068 memory: 8703 loss: 0.3628 decode.loss_ce: 0.2296 decode.acc_seg: 84.6110 aux.loss_ce: 0.1333 aux.acc_seg: 83.2553 +2024/08/09 21:04:29 - mmengine - INFO - Iter(train) [ 16700/160000] lr: 9.0650e-03 eta: 1 day, 20:29:06 time: 1.1116 data_time: 0.0054 memory: 8703 loss: 0.3328 decode.loss_ce: 0.2091 decode.acc_seg: 95.0823 aux.loss_ce: 0.1238 aux.acc_seg: 93.9103 +2024/08/09 21:05:24 - mmengine - INFO - Iter(train) [ 16750/160000] lr: 9.0622e-03 eta: 1 day, 20:28:09 time: 1.1164 data_time: 0.0075 memory: 8703 loss: 0.4517 decode.loss_ce: 0.2422 decode.acc_seg: 92.2407 aux.loss_ce: 0.2095 aux.acc_seg: 90.0436 +2024/08/09 21:06:20 - mmengine - INFO - Iter(train) [ 16800/160000] lr: 9.0594e-03 eta: 1 day, 20:27:12 time: 1.1183 data_time: 0.0064 memory: 8704 loss: 0.5985 decode.loss_ce: 0.3733 decode.acc_seg: 94.9914 aux.loss_ce: 0.2252 aux.acc_seg: 89.0364 +2024/08/09 21:07:16 - mmengine - INFO - Iter(train) [ 16850/160000] lr: 9.0566e-03 eta: 1 day, 20:26:15 time: 1.1160 data_time: 0.0085 memory: 8703 loss: 0.4165 decode.loss_ce: 0.2602 decode.acc_seg: 92.4040 aux.loss_ce: 0.1563 aux.acc_seg: 91.2924 +2024/08/09 21:08:12 - mmengine - INFO - Iter(train) [ 16900/160000] lr: 9.0538e-03 eta: 1 day, 20:25:19 time: 1.1191 data_time: 0.0081 memory: 8703 loss: 0.4294 decode.loss_ce: 0.2659 decode.acc_seg: 96.1151 aux.loss_ce: 0.1635 aux.acc_seg: 92.6514 +2024/08/09 21:09:07 - mmengine - INFO - Iter(train) [ 16950/160000] lr: 9.0509e-03 eta: 1 day, 20:24:22 time: 1.1102 data_time: 0.0061 memory: 8704 loss: 0.6164 decode.loss_ce: 0.3740 decode.acc_seg: 94.7371 aux.loss_ce: 0.2424 aux.acc_seg: 92.5097 +2024/08/09 21:10:03 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 21:10:03 - mmengine - INFO - Iter(train) [ 17000/160000] lr: 9.0481e-03 eta: 1 day, 20:23:25 time: 1.1153 data_time: 0.0069 memory: 8703 loss: 0.4938 decode.loss_ce: 0.3122 decode.acc_seg: 90.8222 aux.loss_ce: 0.1816 aux.acc_seg: 91.2554 +2024/08/09 21:10:59 - mmengine - INFO - Iter(train) [ 17050/160000] lr: 9.0453e-03 eta: 1 day, 20:22:28 time: 1.1148 data_time: 0.0076 memory: 8704 loss: 0.5330 decode.loss_ce: 0.3460 decode.acc_seg: 84.2304 aux.loss_ce: 0.1870 aux.acc_seg: 82.0838 +2024/08/09 21:11:55 - mmengine - INFO - Iter(train) [ 17100/160000] lr: 9.0425e-03 eta: 1 day, 20:21:33 time: 1.1164 data_time: 0.0072 memory: 8705 loss: 0.4520 decode.loss_ce: 0.2920 decode.acc_seg: 94.6124 aux.loss_ce: 0.1600 aux.acc_seg: 92.4354 +2024/08/09 21:12:51 - mmengine - INFO - Iter(train) [ 17150/160000] lr: 9.0397e-03 eta: 1 day, 20:20:35 time: 1.1179 data_time: 0.0078 memory: 8704 loss: 0.4452 decode.loss_ce: 0.2725 decode.acc_seg: 91.7908 aux.loss_ce: 0.1727 aux.acc_seg: 85.4040 +2024/08/09 21:13:46 - mmengine - INFO - Iter(train) [ 17200/160000] lr: 9.0369e-03 eta: 1 day, 20:19:39 time: 1.1189 data_time: 0.0087 memory: 8705 loss: 0.5279 decode.loss_ce: 0.3280 decode.acc_seg: 94.7416 aux.loss_ce: 0.1999 aux.acc_seg: 87.7820 +2024/08/09 21:14:42 - mmengine - INFO - Iter(train) [ 17250/160000] lr: 9.0340e-03 eta: 1 day, 20:18:43 time: 1.1133 data_time: 0.0065 memory: 8703 loss: 0.6425 decode.loss_ce: 0.3993 decode.acc_seg: 85.2589 aux.loss_ce: 0.2432 aux.acc_seg: 75.5356 +2024/08/09 21:15:38 - mmengine - INFO - Iter(train) [ 17300/160000] lr: 9.0312e-03 eta: 1 day, 20:17:46 time: 1.1139 data_time: 0.0065 memory: 8704 loss: 0.4550 decode.loss_ce: 0.2939 decode.acc_seg: 84.7638 aux.loss_ce: 0.1611 aux.acc_seg: 80.1493 +2024/08/09 21:16:34 - mmengine - INFO - Iter(train) [ 17350/160000] lr: 9.0284e-03 eta: 1 day, 20:16:49 time: 1.1170 data_time: 0.0072 memory: 8703 loss: 0.5629 decode.loss_ce: 0.3615 decode.acc_seg: 89.6326 aux.loss_ce: 0.2013 aux.acc_seg: 86.3428 +2024/08/09 21:17:30 - mmengine - INFO - Iter(train) [ 17400/160000] lr: 9.0256e-03 eta: 1 day, 20:15:54 time: 1.1136 data_time: 0.0067 memory: 8703 loss: 0.5763 decode.loss_ce: 0.3574 decode.acc_seg: 86.0114 aux.loss_ce: 0.2189 aux.acc_seg: 87.3067 +2024/08/09 21:18:26 - mmengine - INFO - Iter(train) [ 17450/160000] lr: 9.0228e-03 eta: 1 day, 20:14:58 time: 1.1191 data_time: 0.0071 memory: 8704 loss: 0.4369 decode.loss_ce: 0.2609 decode.acc_seg: 88.8527 aux.loss_ce: 0.1759 aux.acc_seg: 88.0245 +2024/08/09 21:19:21 - mmengine - INFO - Iter(train) [ 17500/160000] lr: 9.0200e-03 eta: 1 day, 20:14:02 time: 1.1173 data_time: 0.0077 memory: 8703 loss: 0.5702 decode.loss_ce: 0.3529 decode.acc_seg: 68.9625 aux.loss_ce: 0.2173 aux.acc_seg: 64.4274 +2024/08/09 21:20:17 - mmengine - INFO - Iter(train) [ 17550/160000] lr: 9.0171e-03 eta: 1 day, 20:13:06 time: 1.1132 data_time: 0.0056 memory: 8704 loss: 0.4334 decode.loss_ce: 0.2709 decode.acc_seg: 93.2192 aux.loss_ce: 0.1624 aux.acc_seg: 90.3645 +2024/08/09 21:21:14 - mmengine - INFO - Iter(train) [ 17600/160000] lr: 9.0143e-03 eta: 1 day, 20:12:13 time: 1.1457 data_time: 0.0063 memory: 8703 loss: 0.4337 decode.loss_ce: 0.2629 decode.acc_seg: 93.5930 aux.loss_ce: 0.1708 aux.acc_seg: 89.7954 +2024/08/09 21:22:21 - mmengine - INFO - Iter(train) [ 17650/160000] lr: 9.0115e-03 eta: 1 day, 20:12:51 time: 1.3760 data_time: 0.0056 memory: 8703 loss: 0.4818 decode.loss_ce: 0.2927 decode.acc_seg: 86.4346 aux.loss_ce: 0.1891 aux.acc_seg: 76.9626 +2024/08/09 21:23:30 - mmengine - INFO - Iter(train) [ 17700/160000] lr: 9.0087e-03 eta: 1 day, 20:13:41 time: 1.3811 data_time: 0.0075 memory: 8703 loss: 0.4007 decode.loss_ce: 0.2330 decode.acc_seg: 94.0628 aux.loss_ce: 0.1678 aux.acc_seg: 93.7849 +2024/08/09 21:24:39 - mmengine - INFO - Iter(train) [ 17750/160000] lr: 9.0059e-03 eta: 1 day, 20:14:30 time: 1.3840 data_time: 0.0073 memory: 8704 loss: 0.4699 decode.loss_ce: 0.3097 decode.acc_seg: 94.4164 aux.loss_ce: 0.1602 aux.acc_seg: 93.3669 +2024/08/09 21:25:48 - mmengine - INFO - Iter(train) [ 17800/160000] lr: 9.0031e-03 eta: 1 day, 20:15:19 time: 1.3873 data_time: 0.0068 memory: 8703 loss: 0.6556 decode.loss_ce: 0.4005 decode.acc_seg: 95.8778 aux.loss_ce: 0.2551 aux.acc_seg: 93.6841 +2024/08/09 21:26:58 - mmengine - INFO - Iter(train) [ 17850/160000] lr: 9.0002e-03 eta: 1 day, 20:16:08 time: 1.3800 data_time: 0.0055 memory: 8703 loss: 0.5583 decode.loss_ce: 0.3809 decode.acc_seg: 91.5215 aux.loss_ce: 0.1774 aux.acc_seg: 90.3914 +2024/08/09 21:28:07 - mmengine - INFO - Iter(train) [ 17900/160000] lr: 8.9974e-03 eta: 1 day, 20:16:56 time: 1.3842 data_time: 0.0065 memory: 8703 loss: 0.5059 decode.loss_ce: 0.3083 decode.acc_seg: 93.1546 aux.loss_ce: 0.1976 aux.acc_seg: 83.9005 +2024/08/09 21:29:16 - mmengine - INFO - Iter(train) [ 17950/160000] lr: 8.9946e-03 eta: 1 day, 20:17:44 time: 1.3908 data_time: 0.0071 memory: 8704 loss: 0.4741 decode.loss_ce: 0.2900 decode.acc_seg: 91.5526 aux.loss_ce: 0.1840 aux.acc_seg: 91.9826 +2024/08/09 21:30:25 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 21:30:25 - mmengine - INFO - Iter(train) [ 18000/160000] lr: 8.9918e-03 eta: 1 day, 20:18:26 time: 1.3100 data_time: 0.0062 memory: 8703 loss: 0.4720 decode.loss_ce: 0.3005 decode.acc_seg: 92.3687 aux.loss_ce: 0.1715 aux.acc_seg: 91.2209 +2024/08/09 21:31:21 - mmengine - INFO - Iter(train) [ 18050/160000] lr: 8.9890e-03 eta: 1 day, 20:17:30 time: 1.1219 data_time: 0.0078 memory: 8703 loss: 0.4765 decode.loss_ce: 0.3081 decode.acc_seg: 90.4249 aux.loss_ce: 0.1684 aux.acc_seg: 88.7948 +2024/08/09 21:32:17 - mmengine - INFO - Iter(train) [ 18100/160000] lr: 8.9862e-03 eta: 1 day, 20:16:32 time: 1.1176 data_time: 0.0079 memory: 8704 loss: 0.5136 decode.loss_ce: 0.3050 decode.acc_seg: 86.8151 aux.loss_ce: 0.2085 aux.acc_seg: 74.8824 +2024/08/09 21:33:12 - mmengine - INFO - Iter(train) [ 18150/160000] lr: 8.9833e-03 eta: 1 day, 20:15:33 time: 1.1183 data_time: 0.0073 memory: 8704 loss: 0.6414 decode.loss_ce: 0.3981 decode.acc_seg: 88.4652 aux.loss_ce: 0.2433 aux.acc_seg: 76.3042 +2024/08/09 21:34:08 - mmengine - INFO - Iter(train) [ 18200/160000] lr: 8.9805e-03 eta: 1 day, 20:14:35 time: 1.1159 data_time: 0.0061 memory: 8703 loss: 0.4094 decode.loss_ce: 0.2513 decode.acc_seg: 93.6663 aux.loss_ce: 0.1581 aux.acc_seg: 88.0699 +2024/08/09 21:35:04 - mmengine - INFO - Iter(train) [ 18250/160000] lr: 8.9777e-03 eta: 1 day, 20:13:37 time: 1.1173 data_time: 0.0059 memory: 8704 loss: 0.3986 decode.loss_ce: 0.2462 decode.acc_seg: 94.5204 aux.loss_ce: 0.1524 aux.acc_seg: 92.8722 +2024/08/09 21:36:00 - mmengine - INFO - Iter(train) [ 18300/160000] lr: 8.9749e-03 eta: 1 day, 20:12:38 time: 1.1179 data_time: 0.0064 memory: 8704 loss: 0.5935 decode.loss_ce: 0.3665 decode.acc_seg: 77.6307 aux.loss_ce: 0.2270 aux.acc_seg: 69.0352 +2024/08/09 21:36:56 - mmengine - INFO - Iter(train) [ 18350/160000] lr: 8.9721e-03 eta: 1 day, 20:11:40 time: 1.1177 data_time: 0.0078 memory: 8705 loss: 0.4419 decode.loss_ce: 0.2750 decode.acc_seg: 93.4568 aux.loss_ce: 0.1668 aux.acc_seg: 89.4894 +2024/08/09 21:37:52 - mmengine - INFO - Iter(train) [ 18400/160000] lr: 8.9692e-03 eta: 1 day, 20:10:41 time: 1.1181 data_time: 0.0070 memory: 8704 loss: 0.4326 decode.loss_ce: 0.2674 decode.acc_seg: 91.8829 aux.loss_ce: 0.1653 aux.acc_seg: 90.8810 +2024/08/09 21:38:48 - mmengine - INFO - Iter(train) [ 18450/160000] lr: 8.9664e-03 eta: 1 day, 20:09:43 time: 1.1105 data_time: 0.0059 memory: 8703 loss: 0.5841 decode.loss_ce: 0.3558 decode.acc_seg: 80.8392 aux.loss_ce: 0.2284 aux.acc_seg: 76.3991 +2024/08/09 21:39:43 - mmengine - INFO - Iter(train) [ 18500/160000] lr: 8.9636e-03 eta: 1 day, 20:08:43 time: 1.1140 data_time: 0.0069 memory: 8704 loss: 0.4482 decode.loss_ce: 0.2797 decode.acc_seg: 82.4743 aux.loss_ce: 0.1686 aux.acc_seg: 73.1930 +2024/08/09 21:40:39 - mmengine - INFO - Iter(train) [ 18550/160000] lr: 8.9608e-03 eta: 1 day, 20:07:44 time: 1.1103 data_time: 0.0057 memory: 8704 loss: 0.3992 decode.loss_ce: 0.2371 decode.acc_seg: 94.0522 aux.loss_ce: 0.1621 aux.acc_seg: 91.8320 +2024/08/09 21:41:35 - mmengine - INFO - Iter(train) [ 18600/160000] lr: 8.9580e-03 eta: 1 day, 20:06:45 time: 1.1205 data_time: 0.0089 memory: 8704 loss: 0.6494 decode.loss_ce: 0.4149 decode.acc_seg: 80.2017 aux.loss_ce: 0.2345 aux.acc_seg: 72.5564 +2024/08/09 21:42:31 - mmengine - INFO - Iter(train) [ 18650/160000] lr: 8.9551e-03 eta: 1 day, 20:05:44 time: 1.1130 data_time: 0.0073 memory: 8704 loss: 0.5554 decode.loss_ce: 0.3404 decode.acc_seg: 71.0695 aux.loss_ce: 0.2150 aux.acc_seg: 63.3483 +2024/08/09 21:43:26 - mmengine - INFO - Iter(train) [ 18700/160000] lr: 8.9523e-03 eta: 1 day, 20:04:46 time: 1.1175 data_time: 0.0077 memory: 8703 loss: 0.3473 decode.loss_ce: 0.2000 decode.acc_seg: 96.1269 aux.loss_ce: 0.1473 aux.acc_seg: 93.8324 +2024/08/09 21:44:22 - mmengine - INFO - Iter(train) [ 18750/160000] lr: 8.9495e-03 eta: 1 day, 20:03:48 time: 1.1142 data_time: 0.0064 memory: 8704 loss: 0.6791 decode.loss_ce: 0.4433 decode.acc_seg: 91.6265 aux.loss_ce: 0.2358 aux.acc_seg: 78.5999 +2024/08/09 21:45:18 - mmengine - INFO - Iter(train) [ 18800/160000] lr: 8.9467e-03 eta: 1 day, 20:02:49 time: 1.1188 data_time: 0.0090 memory: 8704 loss: 0.4042 decode.loss_ce: 0.2570 decode.acc_seg: 95.2009 aux.loss_ce: 0.1472 aux.acc_seg: 93.1498 +2024/08/09 21:46:14 - mmengine - INFO - Iter(train) [ 18850/160000] lr: 8.9439e-03 eta: 1 day, 20:01:50 time: 1.1147 data_time: 0.0064 memory: 8704 loss: 0.4237 decode.loss_ce: 0.2602 decode.acc_seg: 94.4858 aux.loss_ce: 0.1635 aux.acc_seg: 93.4216 +2024/08/09 21:47:10 - mmengine - INFO - Iter(train) [ 18900/160000] lr: 8.9411e-03 eta: 1 day, 20:00:51 time: 1.1165 data_time: 0.0064 memory: 8703 loss: 0.5781 decode.loss_ce: 0.3671 decode.acc_seg: 86.1527 aux.loss_ce: 0.2111 aux.acc_seg: 87.0681 +2024/08/09 21:48:05 - mmengine - INFO - Iter(train) [ 18950/160000] lr: 8.9382e-03 eta: 1 day, 19:59:53 time: 1.1167 data_time: 0.0067 memory: 8704 loss: 0.6003 decode.loss_ce: 0.3756 decode.acc_seg: 91.0260 aux.loss_ce: 0.2247 aux.acc_seg: 88.8284 +2024/08/09 21:49:01 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 21:49:01 - mmengine - INFO - Iter(train) [ 19000/160000] lr: 8.9354e-03 eta: 1 day, 19:58:54 time: 1.1212 data_time: 0.0078 memory: 8703 loss: 0.5397 decode.loss_ce: 0.3396 decode.acc_seg: 91.0859 aux.loss_ce: 0.2002 aux.acc_seg: 90.1937 +2024/08/09 21:49:58 - mmengine - INFO - Iter(train) [ 19050/160000] lr: 8.9326e-03 eta: 1 day, 19:58:05 time: 1.1156 data_time: 0.0064 memory: 8703 loss: 0.4687 decode.loss_ce: 0.2944 decode.acc_seg: 90.2645 aux.loss_ce: 0.1743 aux.acc_seg: 88.0419 +2024/08/09 21:50:55 - mmengine - INFO - Iter(train) [ 19100/160000] lr: 8.9298e-03 eta: 1 day, 19:57:12 time: 1.1379 data_time: 0.0059 memory: 8703 loss: 0.5437 decode.loss_ce: 0.3316 decode.acc_seg: 92.0543 aux.loss_ce: 0.2122 aux.acc_seg: 90.3339 +2024/08/09 21:51:52 - mmengine - INFO - Iter(train) [ 19150/160000] lr: 8.9270e-03 eta: 1 day, 19:56:21 time: 1.1366 data_time: 0.0071 memory: 8703 loss: 0.5942 decode.loss_ce: 0.3875 decode.acc_seg: 91.8714 aux.loss_ce: 0.2068 aux.acc_seg: 86.5421 +2024/08/09 21:52:48 - mmengine - INFO - Iter(train) [ 19200/160000] lr: 8.9241e-03 eta: 1 day, 19:55:28 time: 1.1163 data_time: 0.0070 memory: 8704 loss: 0.4237 decode.loss_ce: 0.2589 decode.acc_seg: 86.8216 aux.loss_ce: 0.1648 aux.acc_seg: 85.5626 +2024/08/09 21:53:45 - mmengine - INFO - Iter(train) [ 19250/160000] lr: 8.9213e-03 eta: 1 day, 19:54:37 time: 1.1453 data_time: 0.0070 memory: 8703 loss: 0.3780 decode.loss_ce: 0.2323 decode.acc_seg: 92.5830 aux.loss_ce: 0.1457 aux.acc_seg: 90.9260 +2024/08/09 21:54:42 - mmengine - INFO - Iter(train) [ 19300/160000] lr: 8.9185e-03 eta: 1 day, 19:53:44 time: 1.1409 data_time: 0.0078 memory: 8704 loss: 0.4290 decode.loss_ce: 0.2752 decode.acc_seg: 86.8486 aux.loss_ce: 0.1538 aux.acc_seg: 85.0566 +2024/08/09 21:55:39 - mmengine - INFO - Iter(train) [ 19350/160000] lr: 8.9157e-03 eta: 1 day, 19:52:52 time: 1.1213 data_time: 0.0079 memory: 8704 loss: 0.4191 decode.loss_ce: 0.2682 decode.acc_seg: 89.7370 aux.loss_ce: 0.1509 aux.acc_seg: 84.1294 +2024/08/09 21:56:35 - mmengine - INFO - Iter(train) [ 19400/160000] lr: 8.9129e-03 eta: 1 day, 19:51:54 time: 1.1182 data_time: 0.0082 memory: 8703 loss: 0.3712 decode.loss_ce: 0.2160 decode.acc_seg: 95.6456 aux.loss_ce: 0.1552 aux.acc_seg: 92.0165 +2024/08/09 21:57:30 - mmengine - INFO - Iter(train) [ 19450/160000] lr: 8.9100e-03 eta: 1 day, 19:50:55 time: 1.1130 data_time: 0.0060 memory: 8703 loss: 0.3401 decode.loss_ce: 0.1988 decode.acc_seg: 93.3233 aux.loss_ce: 0.1413 aux.acc_seg: 92.9739 +2024/08/09 21:58:27 - mmengine - INFO - Iter(train) [ 19500/160000] lr: 8.9072e-03 eta: 1 day, 19:50:02 time: 1.1375 data_time: 0.0071 memory: 8704 loss: 0.4925 decode.loss_ce: 0.2987 decode.acc_seg: 92.8162 aux.loss_ce: 0.1938 aux.acc_seg: 93.1935 +2024/08/09 21:59:24 - mmengine - INFO - Iter(train) [ 19550/160000] lr: 8.9044e-03 eta: 1 day, 19:49:10 time: 1.1307 data_time: 0.0074 memory: 8703 loss: 0.5133 decode.loss_ce: 0.3106 decode.acc_seg: 78.9778 aux.loss_ce: 0.2027 aux.acc_seg: 71.6120 +2024/08/09 22:00:20 - mmengine - INFO - Iter(train) [ 19600/160000] lr: 8.9016e-03 eta: 1 day, 19:48:17 time: 1.1349 data_time: 0.0075 memory: 8703 loss: 0.6203 decode.loss_ce: 0.3963 decode.acc_seg: 84.6342 aux.loss_ce: 0.2240 aux.acc_seg: 85.0611 +2024/08/09 22:01:16 - mmengine - INFO - Iter(train) [ 19650/160000] lr: 8.8987e-03 eta: 1 day, 19:47:20 time: 1.1183 data_time: 0.0065 memory: 8703 loss: 0.5288 decode.loss_ce: 0.3323 decode.acc_seg: 91.6857 aux.loss_ce: 0.1966 aux.acc_seg: 87.5371 +2024/08/09 22:02:13 - mmengine - INFO - Iter(train) [ 19700/160000] lr: 8.8959e-03 eta: 1 day, 19:46:28 time: 1.1392 data_time: 0.0074 memory: 8704 loss: 0.5927 decode.loss_ce: 0.3804 decode.acc_seg: 83.8613 aux.loss_ce: 0.2123 aux.acc_seg: 82.0565 +2024/08/09 22:03:09 - mmengine - INFO - Iter(train) [ 19750/160000] lr: 8.8931e-03 eta: 1 day, 19:45:31 time: 1.1117 data_time: 0.0068 memory: 8703 loss: 0.4879 decode.loss_ce: 0.2893 decode.acc_seg: 91.7519 aux.loss_ce: 0.1986 aux.acc_seg: 88.7749 +2024/08/09 22:04:06 - mmengine - INFO - Iter(train) [ 19800/160000] lr: 8.8903e-03 eta: 1 day, 19:44:38 time: 1.1207 data_time: 0.0083 memory: 8703 loss: 0.5144 decode.loss_ce: 0.3219 decode.acc_seg: 83.9973 aux.loss_ce: 0.1925 aux.acc_seg: 91.3709 +2024/08/09 22:05:04 - mmengine - INFO - Iter(train) [ 19850/160000] lr: 8.8875e-03 eta: 1 day, 19:44:00 time: 1.1768 data_time: 0.0051 memory: 8704 loss: 0.4717 decode.loss_ce: 0.2994 decode.acc_seg: 87.1056 aux.loss_ce: 0.1723 aux.acc_seg: 76.6045 +2024/08/09 22:06:03 - mmengine - INFO - Iter(train) [ 19900/160000] lr: 8.8846e-03 eta: 1 day, 19:43:22 time: 1.1738 data_time: 0.0059 memory: 8703 loss: 0.4747 decode.loss_ce: 0.2984 decode.acc_seg: 87.9044 aux.loss_ce: 0.1763 aux.acc_seg: 82.0302 +2024/08/09 22:07:02 - mmengine - INFO - Iter(train) [ 19950/160000] lr: 8.8818e-03 eta: 1 day, 19:42:43 time: 1.1465 data_time: 0.0068 memory: 8704 loss: 0.3888 decode.loss_ce: 0.2343 decode.acc_seg: 87.4848 aux.loss_ce: 0.1545 aux.acc_seg: 84.2007 +2024/08/09 22:08:03 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 22:08:03 - mmengine - INFO - Iter(train) [ 20000/160000] lr: 8.8790e-03 eta: 1 day, 19:42:20 time: 1.1781 data_time: 0.0079 memory: 8703 loss: 0.3584 decode.loss_ce: 0.2323 decode.acc_seg: 94.0288 aux.loss_ce: 0.1261 aux.acc_seg: 93.8284 +2024/08/09 22:08:59 - mmengine - INFO - Iter(train) [ 20050/160000] lr: 8.8762e-03 eta: 1 day, 19:41:22 time: 1.1145 data_time: 0.0054 memory: 8703 loss: 0.5268 decode.loss_ce: 0.3337 decode.acc_seg: 97.0891 aux.loss_ce: 0.1930 aux.acc_seg: 91.6922 +2024/08/09 22:09:57 - mmengine - INFO - Iter(train) [ 20100/160000] lr: 8.8734e-03 eta: 1 day, 19:40:41 time: 1.1926 data_time: 0.0070 memory: 8704 loss: 0.4824 decode.loss_ce: 0.2902 decode.acc_seg: 89.4279 aux.loss_ce: 0.1921 aux.acc_seg: 83.7240 +2024/08/09 22:10:53 - mmengine - INFO - Iter(train) [ 20150/160000] lr: 8.8705e-03 eta: 1 day, 19:39:43 time: 1.1206 data_time: 0.0068 memory: 8703 loss: 0.4834 decode.loss_ce: 0.3091 decode.acc_seg: 85.0946 aux.loss_ce: 0.1743 aux.acc_seg: 77.5878 +2024/08/09 22:11:49 - mmengine - INFO - Iter(train) [ 20200/160000] lr: 8.8677e-03 eta: 1 day, 19:38:47 time: 1.1442 data_time: 0.0075 memory: 8703 loss: 0.5720 decode.loss_ce: 0.3420 decode.acc_seg: 94.2530 aux.loss_ce: 0.2300 aux.acc_seg: 92.1300 +2024/08/09 22:12:47 - mmengine - INFO - Iter(train) [ 20250/160000] lr: 8.8649e-03 eta: 1 day, 19:38:05 time: 1.1170 data_time: 0.0061 memory: 8703 loss: 0.5761 decode.loss_ce: 0.3610 decode.acc_seg: 94.5635 aux.loss_ce: 0.2151 aux.acc_seg: 88.6408 +2024/08/09 22:13:43 - mmengine - INFO - Iter(train) [ 20300/160000] lr: 8.8621e-03 eta: 1 day, 19:37:07 time: 1.1153 data_time: 0.0076 memory: 8703 loss: 0.5224 decode.loss_ce: 0.3230 decode.acc_seg: 85.6696 aux.loss_ce: 0.1994 aux.acc_seg: 78.0733 +2024/08/09 22:14:42 - mmengine - INFO - Iter(train) [ 20350/160000] lr: 8.8592e-03 eta: 1 day, 19:36:25 time: 1.2471 data_time: 0.0057 memory: 8704 loss: 0.4427 decode.loss_ce: 0.2717 decode.acc_seg: 80.4697 aux.loss_ce: 0.1710 aux.acc_seg: 71.6461 +2024/08/09 22:15:40 - mmengine - INFO - Iter(train) [ 20400/160000] lr: 8.8564e-03 eta: 1 day, 19:35:40 time: 1.1892 data_time: 0.0060 memory: 8703 loss: 0.5027 decode.loss_ce: 0.3191 decode.acc_seg: 77.6359 aux.loss_ce: 0.1836 aux.acc_seg: 72.6894 +2024/08/09 22:16:40 - mmengine - INFO - Iter(train) [ 20450/160000] lr: 8.8536e-03 eta: 1 day, 19:35:16 time: 1.2007 data_time: 0.0056 memory: 8703 loss: 0.5171 decode.loss_ce: 0.2936 decode.acc_seg: 96.2196 aux.loss_ce: 0.2235 aux.acc_seg: 93.8255 +2024/08/09 22:17:41 - mmengine - INFO - Iter(train) [ 20500/160000] lr: 8.8508e-03 eta: 1 day, 19:34:49 time: 1.2812 data_time: 0.0060 memory: 8703 loss: 0.3213 decode.loss_ce: 0.1840 decode.acc_seg: 93.8534 aux.loss_ce: 0.1373 aux.acc_seg: 82.1877 +2024/08/09 22:18:40 - mmengine - INFO - Iter(train) [ 20550/160000] lr: 8.8480e-03 eta: 1 day, 19:34:11 time: 1.2418 data_time: 0.0076 memory: 8703 loss: 0.3261 decode.loss_ce: 0.2000 decode.acc_seg: 96.6103 aux.loss_ce: 0.1261 aux.acc_seg: 95.6776 +2024/08/09 22:19:37 - mmengine - INFO - Iter(train) [ 20600/160000] lr: 8.8451e-03 eta: 1 day, 19:33:21 time: 1.1161 data_time: 0.0062 memory: 8704 loss: 0.4714 decode.loss_ce: 0.2991 decode.acc_seg: 90.5069 aux.loss_ce: 0.1723 aux.acc_seg: 88.0834 +2024/08/09 22:20:33 - mmengine - INFO - Iter(train) [ 20650/160000] lr: 8.8423e-03 eta: 1 day, 19:32:24 time: 1.1228 data_time: 0.0070 memory: 8703 loss: 0.4406 decode.loss_ce: 0.2846 decode.acc_seg: 88.1128 aux.loss_ce: 0.1560 aux.acc_seg: 82.6142 +2024/08/09 22:21:29 - mmengine - INFO - Iter(train) [ 20700/160000] lr: 8.8395e-03 eta: 1 day, 19:31:26 time: 1.1104 data_time: 0.0057 memory: 8704 loss: 0.5013 decode.loss_ce: 0.3105 decode.acc_seg: 83.9949 aux.loss_ce: 0.1908 aux.acc_seg: 65.8136 +2024/08/09 22:22:25 - mmengine - INFO - Iter(train) [ 20750/160000] lr: 8.8367e-03 eta: 1 day, 19:30:28 time: 1.1184 data_time: 0.0073 memory: 8703 loss: 0.4801 decode.loss_ce: 0.2801 decode.acc_seg: 87.2169 aux.loss_ce: 0.2000 aux.acc_seg: 77.5165 +2024/08/09 22:23:23 - mmengine - INFO - Iter(train) [ 20800/160000] lr: 8.8338e-03 eta: 1 day, 19:29:45 time: 1.2670 data_time: 0.0067 memory: 8704 loss: 0.4212 decode.loss_ce: 0.2470 decode.acc_seg: 95.7772 aux.loss_ce: 0.1742 aux.acc_seg: 94.9883 +2024/08/09 22:24:19 - mmengine - INFO - Iter(train) [ 20850/160000] lr: 8.8310e-03 eta: 1 day, 19:28:46 time: 1.1167 data_time: 0.0059 memory: 8704 loss: 0.4482 decode.loss_ce: 0.2821 decode.acc_seg: 93.3267 aux.loss_ce: 0.1661 aux.acc_seg: 79.5542 +2024/08/09 22:25:15 - mmengine - INFO - Iter(train) [ 20900/160000] lr: 8.8282e-03 eta: 1 day, 19:27:47 time: 1.1183 data_time: 0.0074 memory: 8704 loss: 0.5321 decode.loss_ce: 0.3331 decode.acc_seg: 75.9999 aux.loss_ce: 0.1990 aux.acc_seg: 69.1832 +2024/08/09 22:26:11 - mmengine - INFO - Iter(train) [ 20950/160000] lr: 8.8254e-03 eta: 1 day, 19:26:47 time: 1.1195 data_time: 0.0087 memory: 8704 loss: 0.5216 decode.loss_ce: 0.3257 decode.acc_seg: 92.6355 aux.loss_ce: 0.1959 aux.acc_seg: 85.4088 +2024/08/09 22:27:07 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 22:27:07 - mmengine - INFO - Iter(train) [ 21000/160000] lr: 8.8225e-03 eta: 1 day, 19:25:49 time: 1.1137 data_time: 0.0062 memory: 8703 loss: 0.4268 decode.loss_ce: 0.2699 decode.acc_seg: 92.9632 aux.loss_ce: 0.1569 aux.acc_seg: 93.3528 +2024/08/09 22:28:03 - mmengine - INFO - Iter(train) [ 21050/160000] lr: 8.8197e-03 eta: 1 day, 19:24:51 time: 1.1193 data_time: 0.0057 memory: 8705 loss: 0.4624 decode.loss_ce: 0.2647 decode.acc_seg: 96.2367 aux.loss_ce: 0.1977 aux.acc_seg: 94.7862 +2024/08/09 22:28:58 - mmengine - INFO - Iter(train) [ 21100/160000] lr: 8.8169e-03 eta: 1 day, 19:23:52 time: 1.1152 data_time: 0.0050 memory: 8703 loss: 0.4050 decode.loss_ce: 0.2560 decode.acc_seg: 80.1535 aux.loss_ce: 0.1490 aux.acc_seg: 88.3417 +2024/08/09 22:29:54 - mmengine - INFO - Iter(train) [ 21150/160000] lr: 8.8141e-03 eta: 1 day, 19:22:54 time: 1.1169 data_time: 0.0084 memory: 8704 loss: 0.4637 decode.loss_ce: 0.2968 decode.acc_seg: 95.7103 aux.loss_ce: 0.1669 aux.acc_seg: 94.6414 +2024/08/09 22:30:50 - mmengine - INFO - Iter(train) [ 21200/160000] lr: 8.8112e-03 eta: 1 day, 19:21:54 time: 1.1199 data_time: 0.0074 memory: 8705 loss: 0.3595 decode.loss_ce: 0.2177 decode.acc_seg: 85.5391 aux.loss_ce: 0.1418 aux.acc_seg: 81.3368 +2024/08/09 22:31:46 - mmengine - INFO - Iter(train) [ 21250/160000] lr: 8.8084e-03 eta: 1 day, 19:20:55 time: 1.1165 data_time: 0.0066 memory: 8704 loss: 0.5542 decode.loss_ce: 0.3476 decode.acc_seg: 88.8298 aux.loss_ce: 0.2066 aux.acc_seg: 84.7334 +2024/08/09 22:32:42 - mmengine - INFO - Iter(train) [ 21300/160000] lr: 8.8056e-03 eta: 1 day, 19:19:55 time: 1.1197 data_time: 0.0076 memory: 8704 loss: 0.4932 decode.loss_ce: 0.3120 decode.acc_seg: 76.0721 aux.loss_ce: 0.1811 aux.acc_seg: 73.2565 +2024/08/09 22:33:37 - mmengine - INFO - Iter(train) [ 21350/160000] lr: 8.8028e-03 eta: 1 day, 19:18:56 time: 1.1173 data_time: 0.0069 memory: 8704 loss: 0.5356 decode.loss_ce: 0.3396 decode.acc_seg: 79.1093 aux.loss_ce: 0.1960 aux.acc_seg: 72.7406 +2024/08/09 22:34:33 - mmengine - INFO - Iter(train) [ 21400/160000] lr: 8.7999e-03 eta: 1 day, 19:17:58 time: 1.1196 data_time: 0.0088 memory: 8703 loss: 0.6167 decode.loss_ce: 0.3765 decode.acc_seg: 75.1705 aux.loss_ce: 0.2402 aux.acc_seg: 69.5368 +2024/08/09 22:35:29 - mmengine - INFO - Iter(train) [ 21450/160000] lr: 8.7971e-03 eta: 1 day, 19:16:59 time: 1.1152 data_time: 0.0064 memory: 8704 loss: 0.5586 decode.loss_ce: 0.3683 decode.acc_seg: 93.2441 aux.loss_ce: 0.1904 aux.acc_seg: 87.2104 +2024/08/09 22:36:25 - mmengine - INFO - Iter(train) [ 21500/160000] lr: 8.7943e-03 eta: 1 day, 19:16:01 time: 1.1164 data_time: 0.0073 memory: 8704 loss: 0.5629 decode.loss_ce: 0.3681 decode.acc_seg: 96.1640 aux.loss_ce: 0.1948 aux.acc_seg: 94.7336 +2024/08/09 22:37:21 - mmengine - INFO - Iter(train) [ 21550/160000] lr: 8.7915e-03 eta: 1 day, 19:15:02 time: 1.1172 data_time: 0.0062 memory: 8703 loss: 0.4261 decode.loss_ce: 0.2614 decode.acc_seg: 92.8510 aux.loss_ce: 0.1647 aux.acc_seg: 82.8854 +2024/08/09 22:38:17 - mmengine - INFO - Iter(train) [ 21600/160000] lr: 8.7886e-03 eta: 1 day, 19:14:04 time: 1.1204 data_time: 0.0074 memory: 8704 loss: 0.5688 decode.loss_ce: 0.3364 decode.acc_seg: 93.5485 aux.loss_ce: 0.2323 aux.acc_seg: 85.8323 +2024/08/09 22:39:13 - mmengine - INFO - Iter(train) [ 21650/160000] lr: 8.7858e-03 eta: 1 day, 19:13:05 time: 1.1149 data_time: 0.0077 memory: 8703 loss: 0.5199 decode.loss_ce: 0.3399 decode.acc_seg: 95.6577 aux.loss_ce: 0.1800 aux.acc_seg: 95.2518 +2024/08/09 22:40:08 - mmengine - INFO - Iter(train) [ 21700/160000] lr: 8.7830e-03 eta: 1 day, 19:12:06 time: 1.1146 data_time: 0.0053 memory: 8703 loss: 0.4083 decode.loss_ce: 0.2591 decode.acc_seg: 95.4092 aux.loss_ce: 0.1492 aux.acc_seg: 94.1212 +2024/08/09 22:41:04 - mmengine - INFO - Iter(train) [ 21750/160000] lr: 8.7802e-03 eta: 1 day, 19:11:07 time: 1.1115 data_time: 0.0056 memory: 8704 loss: 0.6019 decode.loss_ce: 0.3549 decode.acc_seg: 76.2768 aux.loss_ce: 0.2470 aux.acc_seg: 55.8440 +2024/08/09 22:42:00 - mmengine - INFO - Iter(train) [ 21800/160000] lr: 8.7773e-03 eta: 1 day, 19:10:07 time: 1.1111 data_time: 0.0056 memory: 8704 loss: 0.6219 decode.loss_ce: 0.4102 decode.acc_seg: 91.0463 aux.loss_ce: 0.2116 aux.acc_seg: 90.6942 +2024/08/09 22:42:56 - mmengine - INFO - Iter(train) [ 21850/160000] lr: 8.7745e-03 eta: 1 day, 19:09:07 time: 1.1132 data_time: 0.0056 memory: 8703 loss: 0.3278 decode.loss_ce: 0.1902 decode.acc_seg: 91.9826 aux.loss_ce: 0.1376 aux.acc_seg: 81.4302 +2024/08/09 22:43:51 - mmengine - INFO - Iter(train) [ 21900/160000] lr: 8.7717e-03 eta: 1 day, 19:08:08 time: 1.1111 data_time: 0.0057 memory: 8704 loss: 0.4949 decode.loss_ce: 0.3157 decode.acc_seg: 81.5690 aux.loss_ce: 0.1792 aux.acc_seg: 75.9818 +2024/08/09 22:44:47 - mmengine - INFO - Iter(train) [ 21950/160000] lr: 8.7689e-03 eta: 1 day, 19:07:09 time: 1.1183 data_time: 0.0059 memory: 8705 loss: 0.4565 decode.loss_ce: 0.2821 decode.acc_seg: 91.4117 aux.loss_ce: 0.1745 aux.acc_seg: 88.5509 +2024/08/09 22:45:43 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 22:45:43 - mmengine - INFO - Iter(train) [ 22000/160000] lr: 8.7660e-03 eta: 1 day, 19:06:11 time: 1.1183 data_time: 0.0066 memory: 8704 loss: 0.4874 decode.loss_ce: 0.2969 decode.acc_seg: 92.5831 aux.loss_ce: 0.1905 aux.acc_seg: 89.7825 +2024/08/09 22:46:39 - mmengine - INFO - Iter(train) [ 22050/160000] lr: 8.7632e-03 eta: 1 day, 19:05:13 time: 1.1194 data_time: 0.0073 memory: 8704 loss: 0.6123 decode.loss_ce: 0.3745 decode.acc_seg: 74.5284 aux.loss_ce: 0.2377 aux.acc_seg: 67.9814 +2024/08/09 22:47:35 - mmengine - INFO - Iter(train) [ 22100/160000] lr: 8.7604e-03 eta: 1 day, 19:04:14 time: 1.1154 data_time: 0.0072 memory: 8704 loss: 0.6311 decode.loss_ce: 0.3883 decode.acc_seg: 88.5667 aux.loss_ce: 0.2428 aux.acc_seg: 84.0517 +2024/08/09 22:48:30 - mmengine - INFO - Iter(train) [ 22150/160000] lr: 8.7576e-03 eta: 1 day, 19:03:14 time: 1.1152 data_time: 0.0075 memory: 8703 loss: 0.5546 decode.loss_ce: 0.3549 decode.acc_seg: 84.8717 aux.loss_ce: 0.1997 aux.acc_seg: 81.1090 +2024/08/09 22:49:26 - mmengine - INFO - Iter(train) [ 22200/160000] lr: 8.7547e-03 eta: 1 day, 19:02:15 time: 1.1151 data_time: 0.0061 memory: 8703 loss: 0.4765 decode.loss_ce: 0.3105 decode.acc_seg: 91.7815 aux.loss_ce: 0.1660 aux.acc_seg: 91.1353 +2024/08/09 22:50:22 - mmengine - INFO - Iter(train) [ 22250/160000] lr: 8.7519e-03 eta: 1 day, 19:01:17 time: 1.1102 data_time: 0.0059 memory: 8704 loss: 0.3432 decode.loss_ce: 0.2099 decode.acc_seg: 96.3322 aux.loss_ce: 0.1333 aux.acc_seg: 94.8532 +2024/08/09 22:51:18 - mmengine - INFO - Iter(train) [ 22300/160000] lr: 8.7491e-03 eta: 1 day, 19:00:16 time: 1.1120 data_time: 0.0065 memory: 8704 loss: 0.3242 decode.loss_ce: 0.1909 decode.acc_seg: 95.3190 aux.loss_ce: 0.1332 aux.acc_seg: 93.7083 +2024/08/09 22:52:13 - mmengine - INFO - Iter(train) [ 22350/160000] lr: 8.7463e-03 eta: 1 day, 18:59:17 time: 1.1131 data_time: 0.0060 memory: 8704 loss: 0.6166 decode.loss_ce: 0.3865 decode.acc_seg: 89.9863 aux.loss_ce: 0.2300 aux.acc_seg: 88.8657 +2024/08/09 22:53:09 - mmengine - INFO - Iter(train) [ 22400/160000] lr: 8.7434e-03 eta: 1 day, 18:58:17 time: 1.1123 data_time: 0.0065 memory: 8703 loss: 0.4344 decode.loss_ce: 0.2816 decode.acc_seg: 84.2563 aux.loss_ce: 0.1528 aux.acc_seg: 78.7289 +2024/08/09 22:54:05 - mmengine - INFO - Iter(train) [ 22450/160000] lr: 8.7406e-03 eta: 1 day, 18:57:19 time: 1.1218 data_time: 0.0069 memory: 8704 loss: 0.5322 decode.loss_ce: 0.3363 decode.acc_seg: 92.7095 aux.loss_ce: 0.1959 aux.acc_seg: 92.3278 +2024/08/09 22:55:01 - mmengine - INFO - Iter(train) [ 22500/160000] lr: 8.7378e-03 eta: 1 day, 18:56:20 time: 1.1198 data_time: 0.0065 memory: 8704 loss: 0.4848 decode.loss_ce: 0.3087 decode.acc_seg: 84.0130 aux.loss_ce: 0.1761 aux.acc_seg: 81.5536 +2024/08/09 22:55:56 - mmengine - INFO - Iter(train) [ 22550/160000] lr: 8.7350e-03 eta: 1 day, 18:55:22 time: 1.1186 data_time: 0.0070 memory: 8703 loss: 0.6072 decode.loss_ce: 0.3956 decode.acc_seg: 92.9715 aux.loss_ce: 0.2115 aux.acc_seg: 91.2497 +2024/08/09 22:56:52 - mmengine - INFO - Iter(train) [ 22600/160000] lr: 8.7321e-03 eta: 1 day, 18:54:23 time: 1.1153 data_time: 0.0063 memory: 8704 loss: 0.4851 decode.loss_ce: 0.3013 decode.acc_seg: 85.0386 aux.loss_ce: 0.1838 aux.acc_seg: 80.7887 +2024/08/09 22:57:48 - mmengine - INFO - Iter(train) [ 22650/160000] lr: 8.7293e-03 eta: 1 day, 18:53:24 time: 1.1154 data_time: 0.0062 memory: 8703 loss: 0.5049 decode.loss_ce: 0.3138 decode.acc_seg: 95.2983 aux.loss_ce: 0.1911 aux.acc_seg: 94.9483 +2024/08/09 22:58:44 - mmengine - INFO - Iter(train) [ 22700/160000] lr: 8.7265e-03 eta: 1 day, 18:52:26 time: 1.1151 data_time: 0.0066 memory: 8704 loss: 0.4968 decode.loss_ce: 0.3069 decode.acc_seg: 89.9562 aux.loss_ce: 0.1899 aux.acc_seg: 88.4879 +2024/08/09 22:59:40 - mmengine - INFO - Iter(train) [ 22750/160000] lr: 8.7236e-03 eta: 1 day, 18:51:27 time: 1.1173 data_time: 0.0078 memory: 8703 loss: 0.5754 decode.loss_ce: 0.3554 decode.acc_seg: 74.9097 aux.loss_ce: 0.2201 aux.acc_seg: 69.5279 +2024/08/09 23:00:35 - mmengine - INFO - Iter(train) [ 22800/160000] lr: 8.7208e-03 eta: 1 day, 18:50:28 time: 1.1192 data_time: 0.0078 memory: 8704 loss: 0.5135 decode.loss_ce: 0.3204 decode.acc_seg: 94.7234 aux.loss_ce: 0.1931 aux.acc_seg: 93.8203 +2024/08/09 23:01:31 - mmengine - INFO - Iter(train) [ 22850/160000] lr: 8.7180e-03 eta: 1 day, 18:49:30 time: 1.1177 data_time: 0.0083 memory: 8703 loss: 0.4770 decode.loss_ce: 0.2975 decode.acc_seg: 75.2828 aux.loss_ce: 0.1795 aux.acc_seg: 69.9399 +2024/08/09 23:02:27 - mmengine - INFO - Iter(train) [ 22900/160000] lr: 8.7152e-03 eta: 1 day, 18:48:32 time: 1.1172 data_time: 0.0061 memory: 8704 loss: 0.4055 decode.loss_ce: 0.2558 decode.acc_seg: 94.2189 aux.loss_ce: 0.1497 aux.acc_seg: 92.6425 +2024/08/09 23:03:23 - mmengine - INFO - Iter(train) [ 22950/160000] lr: 8.7123e-03 eta: 1 day, 18:47:34 time: 1.1172 data_time: 0.0066 memory: 8704 loss: 0.3922 decode.loss_ce: 0.2470 decode.acc_seg: 94.4960 aux.loss_ce: 0.1452 aux.acc_seg: 91.0409 +2024/08/09 23:04:19 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 23:04:19 - mmengine - INFO - Iter(train) [ 23000/160000] lr: 8.7095e-03 eta: 1 day, 18:46:35 time: 1.1163 data_time: 0.0055 memory: 8704 loss: 0.3831 decode.loss_ce: 0.2430 decode.acc_seg: 88.3521 aux.loss_ce: 0.1402 aux.acc_seg: 86.6849 +2024/08/09 23:05:15 - mmengine - INFO - Iter(train) [ 23050/160000] lr: 8.7067e-03 eta: 1 day, 18:45:37 time: 1.1198 data_time: 0.0074 memory: 8703 loss: 0.5019 decode.loss_ce: 0.3098 decode.acc_seg: 87.3096 aux.loss_ce: 0.1921 aux.acc_seg: 85.6909 +2024/08/09 23:06:11 - mmengine - INFO - Iter(train) [ 23100/160000] lr: 8.7038e-03 eta: 1 day, 18:44:38 time: 1.1158 data_time: 0.0073 memory: 8703 loss: 0.4125 decode.loss_ce: 0.2519 decode.acc_seg: 92.8354 aux.loss_ce: 0.1606 aux.acc_seg: 91.8073 +2024/08/09 23:07:06 - mmengine - INFO - Iter(train) [ 23150/160000] lr: 8.7010e-03 eta: 1 day, 18:43:40 time: 1.1169 data_time: 0.0071 memory: 8704 loss: 0.4605 decode.loss_ce: 0.2884 decode.acc_seg: 83.3123 aux.loss_ce: 0.1721 aux.acc_seg: 79.0129 +2024/08/09 23:08:02 - mmengine - INFO - Iter(train) [ 23200/160000] lr: 8.6982e-03 eta: 1 day, 18:42:41 time: 1.1107 data_time: 0.0058 memory: 8704 loss: 0.3655 decode.loss_ce: 0.2163 decode.acc_seg: 95.7352 aux.loss_ce: 0.1492 aux.acc_seg: 94.0905 +2024/08/09 23:08:58 - mmengine - INFO - Iter(train) [ 23250/160000] lr: 8.6954e-03 eta: 1 day, 18:41:42 time: 1.1189 data_time: 0.0077 memory: 8703 loss: 0.5442 decode.loss_ce: 0.3409 decode.acc_seg: 94.9958 aux.loss_ce: 0.2033 aux.acc_seg: 86.1567 +2024/08/09 23:09:54 - mmengine - INFO - Iter(train) [ 23300/160000] lr: 8.6925e-03 eta: 1 day, 18:40:43 time: 1.1161 data_time: 0.0060 memory: 8704 loss: 0.5392 decode.loss_ce: 0.3310 decode.acc_seg: 97.1370 aux.loss_ce: 0.2082 aux.acc_seg: 94.1059 +2024/08/09 23:10:50 - mmengine - INFO - Iter(train) [ 23350/160000] lr: 8.6897e-03 eta: 1 day, 18:39:45 time: 1.1198 data_time: 0.0083 memory: 8704 loss: 0.5619 decode.loss_ce: 0.3500 decode.acc_seg: 93.8238 aux.loss_ce: 0.2118 aux.acc_seg: 88.0752 +2024/08/09 23:11:45 - mmengine - INFO - Iter(train) [ 23400/160000] lr: 8.6869e-03 eta: 1 day, 18:38:47 time: 1.1232 data_time: 0.0082 memory: 8703 loss: 0.5131 decode.loss_ce: 0.3283 decode.acc_seg: 93.7919 aux.loss_ce: 0.1848 aux.acc_seg: 92.6716 +2024/08/09 23:12:41 - mmengine - INFO - Iter(train) [ 23450/160000] lr: 8.6840e-03 eta: 1 day, 18:37:50 time: 1.1177 data_time: 0.0078 memory: 8704 loss: 0.3665 decode.loss_ce: 0.2132 decode.acc_seg: 86.5758 aux.loss_ce: 0.1533 aux.acc_seg: 64.2913 +2024/08/09 23:13:37 - mmengine - INFO - Iter(train) [ 23500/160000] lr: 8.6812e-03 eta: 1 day, 18:36:51 time: 1.1133 data_time: 0.0062 memory: 8704 loss: 0.3681 decode.loss_ce: 0.2336 decode.acc_seg: 85.1522 aux.loss_ce: 0.1345 aux.acc_seg: 81.7776 +2024/08/09 23:14:33 - mmengine - INFO - Iter(train) [ 23550/160000] lr: 8.6784e-03 eta: 1 day, 18:35:53 time: 1.1138 data_time: 0.0052 memory: 8703 loss: 0.5555 decode.loss_ce: 0.3607 decode.acc_seg: 96.5874 aux.loss_ce: 0.1948 aux.acc_seg: 88.9381 +2024/08/09 23:15:29 - mmengine - INFO - Iter(train) [ 23600/160000] lr: 8.6756e-03 eta: 1 day, 18:34:54 time: 1.1143 data_time: 0.0054 memory: 8703 loss: 0.4383 decode.loss_ce: 0.2671 decode.acc_seg: 90.0364 aux.loss_ce: 0.1712 aux.acc_seg: 86.1032 +2024/08/09 23:16:25 - mmengine - INFO - Iter(train) [ 23650/160000] lr: 8.6727e-03 eta: 1 day, 18:33:56 time: 1.1191 data_time: 0.0081 memory: 8704 loss: 0.4218 decode.loss_ce: 0.2622 decode.acc_seg: 94.6999 aux.loss_ce: 0.1596 aux.acc_seg: 86.8628 +2024/08/09 23:17:20 - mmengine - INFO - Iter(train) [ 23700/160000] lr: 8.6699e-03 eta: 1 day, 18:32:58 time: 1.1179 data_time: 0.0084 memory: 8704 loss: 0.2996 decode.loss_ce: 0.1899 decode.acc_seg: 93.2473 aux.loss_ce: 0.1097 aux.acc_seg: 83.9470 +2024/08/09 23:18:16 - mmengine - INFO - Iter(train) [ 23750/160000] lr: 8.6671e-03 eta: 1 day, 18:31:59 time: 1.1161 data_time: 0.0067 memory: 8703 loss: 0.4349 decode.loss_ce: 0.2683 decode.acc_seg: 93.1168 aux.loss_ce: 0.1667 aux.acc_seg: 89.5086 +2024/08/09 23:19:12 - mmengine - INFO - Iter(train) [ 23800/160000] lr: 8.6642e-03 eta: 1 day, 18:31:02 time: 1.1175 data_time: 0.0063 memory: 8703 loss: 0.3577 decode.loss_ce: 0.2170 decode.acc_seg: 95.1198 aux.loss_ce: 0.1407 aux.acc_seg: 91.1453 +2024/08/09 23:20:08 - mmengine - INFO - Iter(train) [ 23850/160000] lr: 8.6614e-03 eta: 1 day, 18:30:04 time: 1.1213 data_time: 0.0083 memory: 8704 loss: 0.4612 decode.loss_ce: 0.3004 decode.acc_seg: 88.8591 aux.loss_ce: 0.1608 aux.acc_seg: 86.9876 +2024/08/09 23:21:04 - mmengine - INFO - Iter(train) [ 23900/160000] lr: 8.6586e-03 eta: 1 day, 18:29:06 time: 1.1175 data_time: 0.0077 memory: 8703 loss: 0.4836 decode.loss_ce: 0.3154 decode.acc_seg: 87.6965 aux.loss_ce: 0.1681 aux.acc_seg: 86.6986 +2024/08/09 23:22:00 - mmengine - INFO - Iter(train) [ 23950/160000] lr: 8.6558e-03 eta: 1 day, 18:28:07 time: 1.1147 data_time: 0.0067 memory: 8704 loss: 0.4099 decode.loss_ce: 0.2591 decode.acc_seg: 91.1940 aux.loss_ce: 0.1507 aux.acc_seg: 84.2573 +2024/08/09 23:22:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 23:22:56 - mmengine - INFO - Iter(train) [ 24000/160000] lr: 8.6529e-03 eta: 1 day, 18:27:10 time: 1.1183 data_time: 0.0051 memory: 8703 loss: 0.4695 decode.loss_ce: 0.2972 decode.acc_seg: 92.8236 aux.loss_ce: 0.1723 aux.acc_seg: 88.9814 +2024/08/09 23:23:51 - mmengine - INFO - Iter(train) [ 24050/160000] lr: 8.6501e-03 eta: 1 day, 18:26:11 time: 1.1181 data_time: 0.0075 memory: 8703 loss: 0.4136 decode.loss_ce: 0.2645 decode.acc_seg: 74.1494 aux.loss_ce: 0.1492 aux.acc_seg: 58.0477 +2024/08/09 23:24:47 - mmengine - INFO - Iter(train) [ 24100/160000] lr: 8.6473e-03 eta: 1 day, 18:25:13 time: 1.1182 data_time: 0.0086 memory: 8703 loss: 0.4161 decode.loss_ce: 0.2708 decode.acc_seg: 92.1105 aux.loss_ce: 0.1453 aux.acc_seg: 91.3315 +2024/08/09 23:25:43 - mmengine - INFO - Iter(train) [ 24150/160000] lr: 8.6444e-03 eta: 1 day, 18:24:14 time: 1.1127 data_time: 0.0065 memory: 8703 loss: 0.6440 decode.loss_ce: 0.3859 decode.acc_seg: 93.0583 aux.loss_ce: 0.2581 aux.acc_seg: 86.5506 +2024/08/09 23:26:39 - mmengine - INFO - Iter(train) [ 24200/160000] lr: 8.6416e-03 eta: 1 day, 18:23:16 time: 1.1156 data_time: 0.0065 memory: 8703 loss: 0.5432 decode.loss_ce: 0.3423 decode.acc_seg: 93.0736 aux.loss_ce: 0.2009 aux.acc_seg: 88.4659 +2024/08/09 23:27:35 - mmengine - INFO - Iter(train) [ 24250/160000] lr: 8.6388e-03 eta: 1 day, 18:22:18 time: 1.1180 data_time: 0.0070 memory: 8704 loss: 0.4393 decode.loss_ce: 0.2695 decode.acc_seg: 90.6626 aux.loss_ce: 0.1697 aux.acc_seg: 89.9019 +2024/08/09 23:28:31 - mmengine - INFO - Iter(train) [ 24300/160000] lr: 8.6359e-03 eta: 1 day, 18:21:21 time: 1.1213 data_time: 0.0085 memory: 8703 loss: 0.4629 decode.loss_ce: 0.2767 decode.acc_seg: 93.3692 aux.loss_ce: 0.1862 aux.acc_seg: 83.4045 +2024/08/09 23:29:27 - mmengine - INFO - Iter(train) [ 24350/160000] lr: 8.6331e-03 eta: 1 day, 18:20:23 time: 1.1172 data_time: 0.0050 memory: 8703 loss: 0.4753 decode.loss_ce: 0.3021 decode.acc_seg: 86.0969 aux.loss_ce: 0.1732 aux.acc_seg: 84.9500 +2024/08/09 23:30:23 - mmengine - INFO - Iter(train) [ 24400/160000] lr: 8.6303e-03 eta: 1 day, 18:19:26 time: 1.1235 data_time: 0.0078 memory: 8704 loss: 0.6348 decode.loss_ce: 0.3913 decode.acc_seg: 88.4837 aux.loss_ce: 0.2435 aux.acc_seg: 81.7741 +2024/08/09 23:31:18 - mmengine - INFO - Iter(train) [ 24450/160000] lr: 8.6275e-03 eta: 1 day, 18:18:27 time: 1.1186 data_time: 0.0071 memory: 8703 loss: 0.5377 decode.loss_ce: 0.3370 decode.acc_seg: 92.2081 aux.loss_ce: 0.2006 aux.acc_seg: 87.3955 +2024/08/09 23:32:14 - mmengine - INFO - Iter(train) [ 24500/160000] lr: 8.6246e-03 eta: 1 day, 18:17:29 time: 1.1163 data_time: 0.0078 memory: 8704 loss: 0.4389 decode.loss_ce: 0.2700 decode.acc_seg: 86.7949 aux.loss_ce: 0.1689 aux.acc_seg: 86.8625 +2024/08/09 23:33:10 - mmengine - INFO - Iter(train) [ 24550/160000] lr: 8.6218e-03 eta: 1 day, 18:16:31 time: 1.1201 data_time: 0.0074 memory: 8704 loss: 0.5701 decode.loss_ce: 0.3610 decode.acc_seg: 93.2205 aux.loss_ce: 0.2091 aux.acc_seg: 90.0900 +2024/08/09 23:34:06 - mmengine - INFO - Iter(train) [ 24600/160000] lr: 8.6190e-03 eta: 1 day, 18:15:32 time: 1.1161 data_time: 0.0066 memory: 8704 loss: 0.4431 decode.loss_ce: 0.2731 decode.acc_seg: 94.3858 aux.loss_ce: 0.1700 aux.acc_seg: 88.3528 +2024/08/09 23:35:02 - mmengine - INFO - Iter(train) [ 24650/160000] lr: 8.6161e-03 eta: 1 day, 18:14:34 time: 1.1144 data_time: 0.0065 memory: 8703 loss: 0.5254 decode.loss_ce: 0.3022 decode.acc_seg: 84.6766 aux.loss_ce: 0.2231 aux.acc_seg: 68.0191 +2024/08/09 23:35:57 - mmengine - INFO - Iter(train) [ 24700/160000] lr: 8.6133e-03 eta: 1 day, 18:13:35 time: 1.1191 data_time: 0.0077 memory: 8703 loss: 0.5153 decode.loss_ce: 0.3241 decode.acc_seg: 84.4575 aux.loss_ce: 0.1912 aux.acc_seg: 81.3271 +2024/08/09 23:36:53 - mmengine - INFO - Iter(train) [ 24750/160000] lr: 8.6105e-03 eta: 1 day, 18:12:37 time: 1.1122 data_time: 0.0059 memory: 8703 loss: 0.4921 decode.loss_ce: 0.3026 decode.acc_seg: 95.9954 aux.loss_ce: 0.1895 aux.acc_seg: 94.9416 +2024/08/09 23:37:49 - mmengine - INFO - Iter(train) [ 24800/160000] lr: 8.6076e-03 eta: 1 day, 18:11:39 time: 1.1158 data_time: 0.0058 memory: 8704 loss: 0.5421 decode.loss_ce: 0.3412 decode.acc_seg: 75.1003 aux.loss_ce: 0.2009 aux.acc_seg: 63.9907 +2024/08/09 23:38:45 - mmengine - INFO - Iter(train) [ 24850/160000] lr: 8.6048e-03 eta: 1 day, 18:10:41 time: 1.1138 data_time: 0.0064 memory: 8703 loss: 0.4257 decode.loss_ce: 0.2624 decode.acc_seg: 94.1618 aux.loss_ce: 0.1633 aux.acc_seg: 93.2148 +2024/08/09 23:39:41 - mmengine - INFO - Iter(train) [ 24900/160000] lr: 8.6020e-03 eta: 1 day, 18:09:43 time: 1.1176 data_time: 0.0067 memory: 8705 loss: 0.4546 decode.loss_ce: 0.2648 decode.acc_seg: 93.9627 aux.loss_ce: 0.1898 aux.acc_seg: 89.8902 +2024/08/09 23:40:36 - mmengine - INFO - Iter(train) [ 24950/160000] lr: 8.5991e-03 eta: 1 day, 18:08:45 time: 1.1185 data_time: 0.0066 memory: 8703 loss: 0.5516 decode.loss_ce: 0.3628 decode.acc_seg: 88.8747 aux.loss_ce: 0.1888 aux.acc_seg: 88.6452 +2024/08/09 23:41:32 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/09 23:41:32 - mmengine - INFO - Iter(train) [ 25000/160000] lr: 8.5963e-03 eta: 1 day, 18:07:46 time: 1.1145 data_time: 0.0067 memory: 8703 loss: 0.3309 decode.loss_ce: 0.2091 decode.acc_seg: 85.6799 aux.loss_ce: 0.1218 aux.acc_seg: 77.2886 +2024/08/09 23:42:28 - mmengine - INFO - Iter(train) [ 25050/160000] lr: 8.5935e-03 eta: 1 day, 18:06:48 time: 1.1141 data_time: 0.0073 memory: 8703 loss: 0.4339 decode.loss_ce: 0.2712 decode.acc_seg: 95.8205 aux.loss_ce: 0.1627 aux.acc_seg: 93.5478 +2024/08/09 23:43:24 - mmengine - INFO - Iter(train) [ 25100/160000] lr: 8.5906e-03 eta: 1 day, 18:05:50 time: 1.1115 data_time: 0.0064 memory: 8704 loss: 0.4377 decode.loss_ce: 0.2529 decode.acc_seg: 76.0571 aux.loss_ce: 0.1848 aux.acc_seg: 63.5092 +2024/08/09 23:44:20 - mmengine - INFO - Iter(train) [ 25150/160000] lr: 8.5878e-03 eta: 1 day, 18:04:52 time: 1.1112 data_time: 0.0063 memory: 8703 loss: 0.4067 decode.loss_ce: 0.2582 decode.acc_seg: 96.0106 aux.loss_ce: 0.1486 aux.acc_seg: 91.7056 +2024/08/09 23:45:15 - mmengine - INFO - Iter(train) [ 25200/160000] lr: 8.5850e-03 eta: 1 day, 18:03:54 time: 1.1171 data_time: 0.0077 memory: 8703 loss: 0.4443 decode.loss_ce: 0.2783 decode.acc_seg: 92.8587 aux.loss_ce: 0.1660 aux.acc_seg: 90.4842 +2024/08/09 23:46:11 - mmengine - INFO - Iter(train) [ 25250/160000] lr: 8.5821e-03 eta: 1 day, 18:02:56 time: 1.1168 data_time: 0.0079 memory: 8703 loss: 0.5208 decode.loss_ce: 0.3504 decode.acc_seg: 62.6540 aux.loss_ce: 0.1704 aux.acc_seg: 65.8713 +2024/08/09 23:47:07 - mmengine - INFO - Iter(train) [ 25300/160000] lr: 8.5793e-03 eta: 1 day, 18:01:58 time: 1.1181 data_time: 0.0073 memory: 8703 loss: 0.4330 decode.loss_ce: 0.2760 decode.acc_seg: 94.6987 aux.loss_ce: 0.1570 aux.acc_seg: 93.7775 +2024/08/09 23:48:03 - mmengine - INFO - Iter(train) [ 25350/160000] lr: 8.5765e-03 eta: 1 day, 18:01:01 time: 1.1187 data_time: 0.0080 memory: 8704 loss: 0.6190 decode.loss_ce: 0.4067 decode.acc_seg: 78.3522 aux.loss_ce: 0.2123 aux.acc_seg: 76.6736 +2024/08/09 23:48:59 - mmengine - INFO - Iter(train) [ 25400/160000] lr: 8.5736e-03 eta: 1 day, 18:00:02 time: 1.1146 data_time: 0.0069 memory: 8703 loss: 0.6527 decode.loss_ce: 0.4194 decode.acc_seg: 91.3592 aux.loss_ce: 0.2333 aux.acc_seg: 87.4985 +2024/08/09 23:49:55 - mmengine - INFO - Iter(train) [ 25450/160000] lr: 8.5708e-03 eta: 1 day, 17:59:04 time: 1.1139 data_time: 0.0072 memory: 8704 loss: 0.4317 decode.loss_ce: 0.2746 decode.acc_seg: 94.6048 aux.loss_ce: 0.1571 aux.acc_seg: 90.5682 +2024/08/09 23:50:50 - mmengine - INFO - Iter(train) [ 25500/160000] lr: 8.5680e-03 eta: 1 day, 17:58:05 time: 1.1169 data_time: 0.0067 memory: 8703 loss: 0.4394 decode.loss_ce: 0.2993 decode.acc_seg: 93.2243 aux.loss_ce: 0.1401 aux.acc_seg: 90.5434 +2024/08/09 23:51:46 - mmengine - INFO - Iter(train) [ 25550/160000] lr: 8.5651e-03 eta: 1 day, 17:57:07 time: 1.1158 data_time: 0.0062 memory: 8704 loss: 0.5248 decode.loss_ce: 0.3364 decode.acc_seg: 91.9041 aux.loss_ce: 0.1884 aux.acc_seg: 83.8241 +2024/08/09 23:52:42 - mmengine - INFO - Iter(train) [ 25600/160000] lr: 8.5623e-03 eta: 1 day, 17:56:09 time: 1.1138 data_time: 0.0070 memory: 8703 loss: 0.5362 decode.loss_ce: 0.3413 decode.acc_seg: 94.3285 aux.loss_ce: 0.1949 aux.acc_seg: 81.2770 +2024/08/09 23:53:38 - mmengine - INFO - Iter(train) [ 25650/160000] lr: 8.5595e-03 eta: 1 day, 17:55:11 time: 1.1194 data_time: 0.0080 memory: 8704 loss: 0.5119 decode.loss_ce: 0.2968 decode.acc_seg: 87.1695 aux.loss_ce: 0.2151 aux.acc_seg: 84.2675 +2024/08/09 23:54:33 - mmengine - INFO - Iter(train) [ 25700/160000] lr: 8.5566e-03 eta: 1 day, 17:54:13 time: 1.1247 data_time: 0.0069 memory: 8703 loss: 0.4334 decode.loss_ce: 0.2650 decode.acc_seg: 90.5065 aux.loss_ce: 0.1684 aux.acc_seg: 88.9496 +2024/08/09 23:55:29 - mmengine - INFO - Iter(train) [ 25750/160000] lr: 8.5538e-03 eta: 1 day, 17:53:15 time: 1.1152 data_time: 0.0053 memory: 8704 loss: 0.4565 decode.loss_ce: 0.2789 decode.acc_seg: 90.9285 aux.loss_ce: 0.1775 aux.acc_seg: 87.2818 +2024/08/09 23:56:25 - mmengine - INFO - Iter(train) [ 25800/160000] lr: 8.5510e-03 eta: 1 day, 17:52:17 time: 1.1125 data_time: 0.0067 memory: 8704 loss: 0.5199 decode.loss_ce: 0.3292 decode.acc_seg: 96.4974 aux.loss_ce: 0.1907 aux.acc_seg: 83.7081 +2024/08/09 23:57:21 - mmengine - INFO - Iter(train) [ 25850/160000] lr: 8.5481e-03 eta: 1 day, 17:51:18 time: 1.1161 data_time: 0.0062 memory: 8704 loss: 0.5813 decode.loss_ce: 0.3679 decode.acc_seg: 74.1759 aux.loss_ce: 0.2133 aux.acc_seg: 71.7232 +2024/08/09 23:58:17 - mmengine - INFO - Iter(train) [ 25900/160000] lr: 8.5453e-03 eta: 1 day, 17:50:21 time: 1.1222 data_time: 0.0082 memory: 8704 loss: 0.5119 decode.loss_ce: 0.3251 decode.acc_seg: 82.3586 aux.loss_ce: 0.1868 aux.acc_seg: 80.5923 +2024/08/09 23:59:12 - mmengine - INFO - Iter(train) [ 25950/160000] lr: 8.5425e-03 eta: 1 day, 17:49:22 time: 1.1134 data_time: 0.0060 memory: 8704 loss: 0.4917 decode.loss_ce: 0.3225 decode.acc_seg: 96.7057 aux.loss_ce: 0.1692 aux.acc_seg: 96.8234 +2024/08/10 00:00:08 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 00:00:08 - mmengine - INFO - Iter(train) [ 26000/160000] lr: 8.5396e-03 eta: 1 day, 17:48:24 time: 1.1125 data_time: 0.0061 memory: 8704 loss: 0.5047 decode.loss_ce: 0.3178 decode.acc_seg: 87.7789 aux.loss_ce: 0.1869 aux.acc_seg: 86.2466 +2024/08/10 00:01:04 - mmengine - INFO - Iter(train) [ 26050/160000] lr: 8.5368e-03 eta: 1 day, 17:47:26 time: 1.1174 data_time: 0.0067 memory: 8704 loss: 0.4082 decode.loss_ce: 0.2496 decode.acc_seg: 88.2577 aux.loss_ce: 0.1586 aux.acc_seg: 77.2395 +2024/08/10 00:02:00 - mmengine - INFO - Iter(train) [ 26100/160000] lr: 8.5340e-03 eta: 1 day, 17:46:28 time: 1.1125 data_time: 0.0055 memory: 8703 loss: 0.3330 decode.loss_ce: 0.2061 decode.acc_seg: 93.9003 aux.loss_ce: 0.1269 aux.acc_seg: 92.8294 +2024/08/10 00:02:56 - mmengine - INFO - Iter(train) [ 26150/160000] lr: 8.5311e-03 eta: 1 day, 17:45:31 time: 1.1250 data_time: 0.0085 memory: 8704 loss: 0.4553 decode.loss_ce: 0.2833 decode.acc_seg: 84.7118 aux.loss_ce: 0.1720 aux.acc_seg: 82.3494 +2024/08/10 00:03:52 - mmengine - INFO - Iter(train) [ 26200/160000] lr: 8.5283e-03 eta: 1 day, 17:44:33 time: 1.1125 data_time: 0.0059 memory: 8703 loss: 0.4186 decode.loss_ce: 0.2626 decode.acc_seg: 91.2865 aux.loss_ce: 0.1561 aux.acc_seg: 88.5894 +2024/08/10 00:04:47 - mmengine - INFO - Iter(train) [ 26250/160000] lr: 8.5255e-03 eta: 1 day, 17:43:36 time: 1.1159 data_time: 0.0070 memory: 8704 loss: 0.5541 decode.loss_ce: 0.3623 decode.acc_seg: 94.5030 aux.loss_ce: 0.1918 aux.acc_seg: 89.9308 +2024/08/10 00:05:43 - mmengine - INFO - Iter(train) [ 26300/160000] lr: 8.5226e-03 eta: 1 day, 17:42:38 time: 1.1167 data_time: 0.0078 memory: 8703 loss: 0.5364 decode.loss_ce: 0.3342 decode.acc_seg: 92.0851 aux.loss_ce: 0.2022 aux.acc_seg: 89.8526 +2024/08/10 00:06:39 - mmengine - INFO - Iter(train) [ 26350/160000] lr: 8.5198e-03 eta: 1 day, 17:41:41 time: 1.1198 data_time: 0.0072 memory: 8704 loss: 0.5374 decode.loss_ce: 0.3248 decode.acc_seg: 93.5092 aux.loss_ce: 0.2126 aux.acc_seg: 85.6827 +2024/08/10 00:07:35 - mmengine - INFO - Iter(train) [ 26400/160000] lr: 8.5170e-03 eta: 1 day, 17:40:43 time: 1.1125 data_time: 0.0065 memory: 8703 loss: 0.4474 decode.loss_ce: 0.2729 decode.acc_seg: 96.3927 aux.loss_ce: 0.1746 aux.acc_seg: 93.1098 +2024/08/10 00:08:31 - mmengine - INFO - Iter(train) [ 26450/160000] lr: 8.5141e-03 eta: 1 day, 17:39:45 time: 1.1097 data_time: 0.0050 memory: 8704 loss: 0.4759 decode.loss_ce: 0.2964 decode.acc_seg: 91.6320 aux.loss_ce: 0.1795 aux.acc_seg: 84.1560 +2024/08/10 00:09:27 - mmengine - INFO - Iter(train) [ 26500/160000] lr: 8.5113e-03 eta: 1 day, 17:38:47 time: 1.1166 data_time: 0.0072 memory: 8704 loss: 0.3160 decode.loss_ce: 0.1986 decode.acc_seg: 91.9162 aux.loss_ce: 0.1174 aux.acc_seg: 85.6878 +2024/08/10 00:10:22 - mmengine - INFO - Iter(train) [ 26550/160000] lr: 8.5085e-03 eta: 1 day, 17:37:49 time: 1.1211 data_time: 0.0072 memory: 8704 loss: 0.5497 decode.loss_ce: 0.3371 decode.acc_seg: 96.4300 aux.loss_ce: 0.2126 aux.acc_seg: 93.2271 +2024/08/10 00:11:18 - mmengine - INFO - Iter(train) [ 26600/160000] lr: 8.5056e-03 eta: 1 day, 17:36:51 time: 1.1217 data_time: 0.0083 memory: 8703 loss: 0.4505 decode.loss_ce: 0.2882 decode.acc_seg: 72.3310 aux.loss_ce: 0.1623 aux.acc_seg: 68.1123 +2024/08/10 00:12:14 - mmengine - INFO - Iter(train) [ 26650/160000] lr: 8.5028e-03 eta: 1 day, 17:35:55 time: 1.1161 data_time: 0.0062 memory: 8703 loss: 0.4923 decode.loss_ce: 0.3169 decode.acc_seg: 96.4170 aux.loss_ce: 0.1753 aux.acc_seg: 95.7878 +2024/08/10 00:13:10 - mmengine - INFO - Iter(train) [ 26700/160000] lr: 8.5000e-03 eta: 1 day, 17:34:57 time: 1.1170 data_time: 0.0068 memory: 8704 loss: 0.4564 decode.loss_ce: 0.2742 decode.acc_seg: 93.1316 aux.loss_ce: 0.1822 aux.acc_seg: 92.8668 +2024/08/10 00:14:06 - mmengine - INFO - Iter(train) [ 26750/160000] lr: 8.4971e-03 eta: 1 day, 17:34:01 time: 1.1203 data_time: 0.0060 memory: 8703 loss: 0.3454 decode.loss_ce: 0.2123 decode.acc_seg: 94.6419 aux.loss_ce: 0.1331 aux.acc_seg: 93.8386 +2024/08/10 00:15:02 - mmengine - INFO - Iter(train) [ 26800/160000] lr: 8.4943e-03 eta: 1 day, 17:33:02 time: 1.1131 data_time: 0.0059 memory: 8703 loss: 0.4595 decode.loss_ce: 0.2999 decode.acc_seg: 91.6964 aux.loss_ce: 0.1596 aux.acc_seg: 87.8228 +2024/08/10 00:15:58 - mmengine - INFO - Iter(train) [ 26850/160000] lr: 8.4914e-03 eta: 1 day, 17:32:04 time: 1.1124 data_time: 0.0065 memory: 8704 loss: 0.4240 decode.loss_ce: 0.2646 decode.acc_seg: 93.3517 aux.loss_ce: 0.1594 aux.acc_seg: 92.4618 +2024/08/10 00:16:54 - mmengine - INFO - Iter(train) [ 26900/160000] lr: 8.4886e-03 eta: 1 day, 17:31:07 time: 1.1179 data_time: 0.0069 memory: 8703 loss: 0.4043 decode.loss_ce: 0.2600 decode.acc_seg: 96.0405 aux.loss_ce: 0.1443 aux.acc_seg: 95.7839 +2024/08/10 00:17:49 - mmengine - INFO - Iter(train) [ 26950/160000] lr: 8.4858e-03 eta: 1 day, 17:30:09 time: 1.1101 data_time: 0.0060 memory: 8703 loss: 0.4889 decode.loss_ce: 0.3030 decode.acc_seg: 87.4142 aux.loss_ce: 0.1859 aux.acc_seg: 83.0016 +2024/08/10 00:18:45 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 00:18:45 - mmengine - INFO - Iter(train) [ 27000/160000] lr: 8.4829e-03 eta: 1 day, 17:29:11 time: 1.1202 data_time: 0.0070 memory: 8704 loss: 0.4833 decode.loss_ce: 0.3004 decode.acc_seg: 85.2983 aux.loss_ce: 0.1829 aux.acc_seg: 77.7263 +2024/08/10 00:19:41 - mmengine - INFO - Iter(train) [ 27050/160000] lr: 8.4801e-03 eta: 1 day, 17:28:14 time: 1.1227 data_time: 0.0081 memory: 8704 loss: 0.4453 decode.loss_ce: 0.2899 decode.acc_seg: 76.7903 aux.loss_ce: 0.1554 aux.acc_seg: 75.1696 +2024/08/10 00:20:37 - mmengine - INFO - Iter(train) [ 27100/160000] lr: 8.4773e-03 eta: 1 day, 17:27:17 time: 1.1159 data_time: 0.0055 memory: 8704 loss: 0.5542 decode.loss_ce: 0.3552 decode.acc_seg: 88.0273 aux.loss_ce: 0.1990 aux.acc_seg: 79.6671 +2024/08/10 00:21:33 - mmengine - INFO - Iter(train) [ 27150/160000] lr: 8.4744e-03 eta: 1 day, 17:26:19 time: 1.1124 data_time: 0.0063 memory: 8703 loss: 0.4419 decode.loss_ce: 0.2868 decode.acc_seg: 88.1360 aux.loss_ce: 0.1551 aux.acc_seg: 78.9508 +2024/08/10 00:22:29 - mmengine - INFO - Iter(train) [ 27200/160000] lr: 8.4716e-03 eta: 1 day, 17:25:22 time: 1.1166 data_time: 0.0082 memory: 8704 loss: 0.5119 decode.loss_ce: 0.3160 decode.acc_seg: 87.8808 aux.loss_ce: 0.1959 aux.acc_seg: 86.3967 +2024/08/10 00:23:25 - mmengine - INFO - Iter(train) [ 27250/160000] lr: 8.4688e-03 eta: 1 day, 17:24:24 time: 1.1165 data_time: 0.0071 memory: 8703 loss: 0.5652 decode.loss_ce: 0.3460 decode.acc_seg: 64.5856 aux.loss_ce: 0.2192 aux.acc_seg: 63.8320 +2024/08/10 00:24:21 - mmengine - INFO - Iter(train) [ 27300/160000] lr: 8.4659e-03 eta: 1 day, 17:23:26 time: 1.1160 data_time: 0.0057 memory: 8704 loss: 0.5838 decode.loss_ce: 0.3656 decode.acc_seg: 97.3365 aux.loss_ce: 0.2181 aux.acc_seg: 92.0684 +2024/08/10 00:25:16 - mmengine - INFO - Iter(train) [ 27350/160000] lr: 8.4631e-03 eta: 1 day, 17:22:28 time: 1.1193 data_time: 0.0073 memory: 8703 loss: 0.5650 decode.loss_ce: 0.3586 decode.acc_seg: 95.4560 aux.loss_ce: 0.2065 aux.acc_seg: 89.2127 +2024/08/10 00:26:12 - mmengine - INFO - Iter(train) [ 27400/160000] lr: 8.4602e-03 eta: 1 day, 17:21:31 time: 1.1209 data_time: 0.0079 memory: 8704 loss: 0.3311 decode.loss_ce: 0.2105 decode.acc_seg: 85.4855 aux.loss_ce: 0.1206 aux.acc_seg: 84.5612 +2024/08/10 00:27:08 - mmengine - INFO - Iter(train) [ 27450/160000] lr: 8.4574e-03 eta: 1 day, 17:20:34 time: 1.1225 data_time: 0.0078 memory: 8704 loss: 0.5475 decode.loss_ce: 0.3609 decode.acc_seg: 85.4761 aux.loss_ce: 0.1866 aux.acc_seg: 85.4122 +2024/08/10 00:28:04 - mmengine - INFO - Iter(train) [ 27500/160000] lr: 8.4546e-03 eta: 1 day, 17:19:37 time: 1.1190 data_time: 0.0083 memory: 8704 loss: 0.3904 decode.loss_ce: 0.2479 decode.acc_seg: 94.2042 aux.loss_ce: 0.1425 aux.acc_seg: 93.4160 +2024/08/10 00:29:00 - mmengine - INFO - Iter(train) [ 27550/160000] lr: 8.4517e-03 eta: 1 day, 17:18:40 time: 1.1232 data_time: 0.0086 memory: 8704 loss: 0.4630 decode.loss_ce: 0.2938 decode.acc_seg: 87.2766 aux.loss_ce: 0.1692 aux.acc_seg: 84.8448 +2024/08/10 00:29:56 - mmengine - INFO - Iter(train) [ 27600/160000] lr: 8.4489e-03 eta: 1 day, 17:17:43 time: 1.1191 data_time: 0.0061 memory: 8704 loss: 0.5812 decode.loss_ce: 0.3706 decode.acc_seg: 91.6908 aux.loss_ce: 0.2106 aux.acc_seg: 87.2765 +2024/08/10 00:30:52 - mmengine - INFO - Iter(train) [ 27650/160000] lr: 8.4461e-03 eta: 1 day, 17:16:45 time: 1.1155 data_time: 0.0060 memory: 8703 loss: 0.4429 decode.loss_ce: 0.2692 decode.acc_seg: 93.4382 aux.loss_ce: 0.1737 aux.acc_seg: 88.3886 +2024/08/10 00:31:48 - mmengine - INFO - Iter(train) [ 27700/160000] lr: 8.4432e-03 eta: 1 day, 17:15:47 time: 1.1164 data_time: 0.0067 memory: 8703 loss: 0.5514 decode.loss_ce: 0.3590 decode.acc_seg: 97.1153 aux.loss_ce: 0.1924 aux.acc_seg: 95.1691 +2024/08/10 00:32:43 - mmengine - INFO - Iter(train) [ 27750/160000] lr: 8.4404e-03 eta: 1 day, 17:14:49 time: 1.1149 data_time: 0.0068 memory: 8704 loss: 0.4198 decode.loss_ce: 0.2625 decode.acc_seg: 94.7500 aux.loss_ce: 0.1574 aux.acc_seg: 94.3975 +2024/08/10 00:33:39 - mmengine - INFO - Iter(train) [ 27800/160000] lr: 8.4375e-03 eta: 1 day, 17:13:51 time: 1.1177 data_time: 0.0075 memory: 8704 loss: 0.4516 decode.loss_ce: 0.2896 decode.acc_seg: 90.2742 aux.loss_ce: 0.1620 aux.acc_seg: 90.2468 +2024/08/10 00:34:35 - mmengine - INFO - Iter(train) [ 27850/160000] lr: 8.4347e-03 eta: 1 day, 17:12:53 time: 1.1151 data_time: 0.0060 memory: 8703 loss: 0.5327 decode.loss_ce: 0.3395 decode.acc_seg: 93.4185 aux.loss_ce: 0.1932 aux.acc_seg: 82.0012 +2024/08/10 00:35:31 - mmengine - INFO - Iter(train) [ 27900/160000] lr: 8.4319e-03 eta: 1 day, 17:11:57 time: 1.1179 data_time: 0.0078 memory: 8704 loss: 0.4443 decode.loss_ce: 0.2707 decode.acc_seg: 92.6957 aux.loss_ce: 0.1736 aux.acc_seg: 89.1446 +2024/08/10 00:36:27 - mmengine - INFO - Iter(train) [ 27950/160000] lr: 8.4290e-03 eta: 1 day, 17:11:00 time: 1.1164 data_time: 0.0064 memory: 8705 loss: 0.6192 decode.loss_ce: 0.3820 decode.acc_seg: 87.4191 aux.loss_ce: 0.2371 aux.acc_seg: 81.2919 +2024/08/10 00:37:23 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 00:37:23 - mmengine - INFO - Iter(train) [ 28000/160000] lr: 8.4262e-03 eta: 1 day, 17:10:02 time: 1.1135 data_time: 0.0059 memory: 8703 loss: 0.5180 decode.loss_ce: 0.3344 decode.acc_seg: 84.5439 aux.loss_ce: 0.1835 aux.acc_seg: 84.7254 +2024/08/10 00:38:19 - mmengine - INFO - Iter(train) [ 28050/160000] lr: 8.4233e-03 eta: 1 day, 17:09:04 time: 1.1157 data_time: 0.0076 memory: 8703 loss: 0.4491 decode.loss_ce: 0.2669 decode.acc_seg: 96.3731 aux.loss_ce: 0.1822 aux.acc_seg: 88.7147 +2024/08/10 00:39:15 - mmengine - INFO - Iter(train) [ 28100/160000] lr: 8.4205e-03 eta: 1 day, 17:08:07 time: 1.1172 data_time: 0.0081 memory: 8704 loss: 0.4241 decode.loss_ce: 0.2532 decode.acc_seg: 89.0208 aux.loss_ce: 0.1709 aux.acc_seg: 83.3371 +2024/08/10 00:40:10 - mmengine - INFO - Iter(train) [ 28150/160000] lr: 8.4177e-03 eta: 1 day, 17:07:10 time: 1.1186 data_time: 0.0060 memory: 8703 loss: 0.5569 decode.loss_ce: 0.3542 decode.acc_seg: 74.2521 aux.loss_ce: 0.2027 aux.acc_seg: 70.0546 +2024/08/10 00:41:06 - mmengine - INFO - Iter(train) [ 28200/160000] lr: 8.4148e-03 eta: 1 day, 17:06:12 time: 1.1182 data_time: 0.0087 memory: 8704 loss: 0.3896 decode.loss_ce: 0.2345 decode.acc_seg: 90.1189 aux.loss_ce: 0.1552 aux.acc_seg: 85.3680 +2024/08/10 00:42:02 - mmengine - INFO - Iter(train) [ 28250/160000] lr: 8.4120e-03 eta: 1 day, 17:05:15 time: 1.1173 data_time: 0.0067 memory: 8704 loss: 0.2876 decode.loss_ce: 0.1798 decode.acc_seg: 95.8124 aux.loss_ce: 0.1077 aux.acc_seg: 95.0977 +2024/08/10 00:42:58 - mmengine - INFO - Iter(train) [ 28300/160000] lr: 8.4092e-03 eta: 1 day, 17:04:18 time: 1.1145 data_time: 0.0058 memory: 8704 loss: 0.2851 decode.loss_ce: 0.1745 decode.acc_seg: 95.1443 aux.loss_ce: 0.1106 aux.acc_seg: 91.1662 +2024/08/10 00:43:54 - mmengine - INFO - Iter(train) [ 28350/160000] lr: 8.4063e-03 eta: 1 day, 17:03:20 time: 1.1099 data_time: 0.0055 memory: 8704 loss: 0.4481 decode.loss_ce: 0.2847 decode.acc_seg: 88.1779 aux.loss_ce: 0.1633 aux.acc_seg: 86.0696 +2024/08/10 00:44:50 - mmengine - INFO - Iter(train) [ 28400/160000] lr: 8.4035e-03 eta: 1 day, 17:02:23 time: 1.1171 data_time: 0.0066 memory: 8703 loss: 0.3759 decode.loss_ce: 0.2259 decode.acc_seg: 95.3416 aux.loss_ce: 0.1500 aux.acc_seg: 93.9284 +2024/08/10 00:45:46 - mmengine - INFO - Iter(train) [ 28450/160000] lr: 8.4006e-03 eta: 1 day, 17:01:25 time: 1.1147 data_time: 0.0071 memory: 8703 loss: 0.3528 decode.loss_ce: 0.2177 decode.acc_seg: 93.4384 aux.loss_ce: 0.1351 aux.acc_seg: 91.6085 +2024/08/10 00:46:41 - mmengine - INFO - Iter(train) [ 28500/160000] lr: 8.3978e-03 eta: 1 day, 17:00:28 time: 1.1144 data_time: 0.0068 memory: 8703 loss: 0.5656 decode.loss_ce: 0.3767 decode.acc_seg: 70.2737 aux.loss_ce: 0.1888 aux.acc_seg: 67.0943 +2024/08/10 00:47:37 - mmengine - INFO - Iter(train) [ 28550/160000] lr: 8.3950e-03 eta: 1 day, 16:59:30 time: 1.1157 data_time: 0.0078 memory: 8704 loss: 0.4254 decode.loss_ce: 0.2523 decode.acc_seg: 95.0561 aux.loss_ce: 0.1732 aux.acc_seg: 89.2565 +2024/08/10 00:48:33 - mmengine - INFO - Iter(train) [ 28600/160000] lr: 8.3921e-03 eta: 1 day, 16:58:32 time: 1.1173 data_time: 0.0067 memory: 8704 loss: 0.4226 decode.loss_ce: 0.2683 decode.acc_seg: 90.3565 aux.loss_ce: 0.1543 aux.acc_seg: 85.4539 +2024/08/10 00:49:29 - mmengine - INFO - Iter(train) [ 28650/160000] lr: 8.3893e-03 eta: 1 day, 16:57:34 time: 1.1179 data_time: 0.0083 memory: 8703 loss: 0.4632 decode.loss_ce: 0.3028 decode.acc_seg: 95.6919 aux.loss_ce: 0.1604 aux.acc_seg: 94.2824 +2024/08/10 00:50:25 - mmengine - INFO - Iter(train) [ 28700/160000] lr: 8.3864e-03 eta: 1 day, 16:56:37 time: 1.1200 data_time: 0.0079 memory: 8703 loss: 0.4407 decode.loss_ce: 0.2762 decode.acc_seg: 87.0760 aux.loss_ce: 0.1645 aux.acc_seg: 83.9437 +2024/08/10 00:51:20 - mmengine - INFO - Iter(train) [ 28750/160000] lr: 8.3836e-03 eta: 1 day, 16:55:39 time: 1.1178 data_time: 0.0074 memory: 8703 loss: 0.5260 decode.loss_ce: 0.3311 decode.acc_seg: 85.0648 aux.loss_ce: 0.1948 aux.acc_seg: 79.9080 +2024/08/10 00:52:16 - mmengine - INFO - Iter(train) [ 28800/160000] lr: 8.3808e-03 eta: 1 day, 16:54:43 time: 1.1210 data_time: 0.0072 memory: 8703 loss: 0.4628 decode.loss_ce: 0.2850 decode.acc_seg: 89.3026 aux.loss_ce: 0.1778 aux.acc_seg: 85.7658 +2024/08/10 00:53:12 - mmengine - INFO - Iter(train) [ 28850/160000] lr: 8.3779e-03 eta: 1 day, 16:53:45 time: 1.1154 data_time: 0.0068 memory: 8705 loss: 0.6413 decode.loss_ce: 0.3917 decode.acc_seg: 85.3268 aux.loss_ce: 0.2496 aux.acc_seg: 76.7717 +2024/08/10 00:54:08 - mmengine - INFO - Iter(train) [ 28900/160000] lr: 8.3751e-03 eta: 1 day, 16:52:47 time: 1.1147 data_time: 0.0068 memory: 8703 loss: 0.6745 decode.loss_ce: 0.4537 decode.acc_seg: 76.9646 aux.loss_ce: 0.2208 aux.acc_seg: 71.4489 +2024/08/10 00:55:04 - mmengine - INFO - Iter(train) [ 28950/160000] lr: 8.3722e-03 eta: 1 day, 16:51:50 time: 1.1138 data_time: 0.0064 memory: 8703 loss: 0.6089 decode.loss_ce: 0.3646 decode.acc_seg: 83.1640 aux.loss_ce: 0.2444 aux.acc_seg: 80.9847 +2024/08/10 00:56:00 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 00:56:00 - mmengine - INFO - Iter(train) [ 29000/160000] lr: 8.3694e-03 eta: 1 day, 16:50:52 time: 1.1171 data_time: 0.0067 memory: 8704 loss: 0.6384 decode.loss_ce: 0.4110 decode.acc_seg: 93.9323 aux.loss_ce: 0.2273 aux.acc_seg: 92.3739 +2024/08/10 00:56:55 - mmengine - INFO - Iter(train) [ 29050/160000] lr: 8.3666e-03 eta: 1 day, 16:49:55 time: 1.1182 data_time: 0.0064 memory: 8703 loss: 0.4117 decode.loss_ce: 0.2542 decode.acc_seg: 89.4439 aux.loss_ce: 0.1575 aux.acc_seg: 82.0057 +2024/08/10 00:57:51 - mmengine - INFO - Iter(train) [ 29100/160000] lr: 8.3637e-03 eta: 1 day, 16:48:57 time: 1.1128 data_time: 0.0067 memory: 8704 loss: 0.6054 decode.loss_ce: 0.3768 decode.acc_seg: 79.1484 aux.loss_ce: 0.2286 aux.acc_seg: 70.1625 +2024/08/10 00:58:47 - mmengine - INFO - Iter(train) [ 29150/160000] lr: 8.3609e-03 eta: 1 day, 16:47:59 time: 1.1190 data_time: 0.0076 memory: 8704 loss: 0.4056 decode.loss_ce: 0.2418 decode.acc_seg: 81.3685 aux.loss_ce: 0.1637 aux.acc_seg: 71.5535 +2024/08/10 00:59:43 - mmengine - INFO - Iter(train) [ 29200/160000] lr: 8.3580e-03 eta: 1 day, 16:47:02 time: 1.1169 data_time: 0.0059 memory: 8704 loss: 0.4284 decode.loss_ce: 0.2818 decode.acc_seg: 93.8750 aux.loss_ce: 0.1466 aux.acc_seg: 89.7146 +2024/08/10 01:00:39 - mmengine - INFO - Iter(train) [ 29250/160000] lr: 8.3552e-03 eta: 1 day, 16:46:04 time: 1.1216 data_time: 0.0087 memory: 8704 loss: 0.6829 decode.loss_ce: 0.4461 decode.acc_seg: 89.6814 aux.loss_ce: 0.2368 aux.acc_seg: 86.7208 +2024/08/10 01:01:35 - mmengine - INFO - Iter(train) [ 29300/160000] lr: 8.3524e-03 eta: 1 day, 16:45:07 time: 1.1174 data_time: 0.0047 memory: 8703 loss: 0.5755 decode.loss_ce: 0.3553 decode.acc_seg: 87.1340 aux.loss_ce: 0.2202 aux.acc_seg: 80.8383 +2024/08/10 01:02:31 - mmengine - INFO - Iter(train) [ 29350/160000] lr: 8.3495e-03 eta: 1 day, 16:44:10 time: 1.1200 data_time: 0.0066 memory: 8704 loss: 0.4727 decode.loss_ce: 0.2750 decode.acc_seg: 94.3625 aux.loss_ce: 0.1977 aux.acc_seg: 83.5124 +2024/08/10 01:03:26 - mmengine - INFO - Iter(train) [ 29400/160000] lr: 8.3467e-03 eta: 1 day, 16:43:13 time: 1.1147 data_time: 0.0062 memory: 8703 loss: 0.4288 decode.loss_ce: 0.2754 decode.acc_seg: 93.4813 aux.loss_ce: 0.1533 aux.acc_seg: 91.8963 +2024/08/10 01:04:22 - mmengine - INFO - Iter(train) [ 29450/160000] lr: 8.3438e-03 eta: 1 day, 16:42:16 time: 1.1151 data_time: 0.0067 memory: 8703 loss: 0.4926 decode.loss_ce: 0.3086 decode.acc_seg: 90.7419 aux.loss_ce: 0.1840 aux.acc_seg: 88.6352 +2024/08/10 01:05:18 - mmengine - INFO - Iter(train) [ 29500/160000] lr: 8.3410e-03 eta: 1 day, 16:41:18 time: 1.1155 data_time: 0.0065 memory: 8704 loss: 0.3674 decode.loss_ce: 0.2212 decode.acc_seg: 91.5548 aux.loss_ce: 0.1462 aux.acc_seg: 88.8578 +2024/08/10 01:06:14 - mmengine - INFO - Iter(train) [ 29550/160000] lr: 8.3381e-03 eta: 1 day, 16:40:20 time: 1.1160 data_time: 0.0074 memory: 8704 loss: 0.4227 decode.loss_ce: 0.2698 decode.acc_seg: 92.4165 aux.loss_ce: 0.1529 aux.acc_seg: 92.3108 +2024/08/10 01:07:09 - mmengine - INFO - Iter(train) [ 29600/160000] lr: 8.3353e-03 eta: 1 day, 16:39:22 time: 1.1139 data_time: 0.0053 memory: 8703 loss: 0.3899 decode.loss_ce: 0.2437 decode.acc_seg: 92.1851 aux.loss_ce: 0.1462 aux.acc_seg: 90.3657 +2024/08/10 01:08:05 - mmengine - INFO - Iter(train) [ 29650/160000] lr: 8.3325e-03 eta: 1 day, 16:38:25 time: 1.1158 data_time: 0.0061 memory: 8704 loss: 0.6976 decode.loss_ce: 0.4473 decode.acc_seg: 77.0268 aux.loss_ce: 0.2503 aux.acc_seg: 75.1962 +2024/08/10 01:09:01 - mmengine - INFO - Iter(train) [ 29700/160000] lr: 8.3296e-03 eta: 1 day, 16:37:28 time: 1.1195 data_time: 0.0068 memory: 8704 loss: 0.3778 decode.loss_ce: 0.2409 decode.acc_seg: 93.7006 aux.loss_ce: 0.1368 aux.acc_seg: 93.4903 +2024/08/10 01:09:57 - mmengine - INFO - Iter(train) [ 29750/160000] lr: 8.3268e-03 eta: 1 day, 16:36:31 time: 1.1238 data_time: 0.0085 memory: 8704 loss: 0.3527 decode.loss_ce: 0.2126 decode.acc_seg: 89.5937 aux.loss_ce: 0.1401 aux.acc_seg: 86.7179 +2024/08/10 01:10:53 - mmengine - INFO - Iter(train) [ 29800/160000] lr: 8.3239e-03 eta: 1 day, 16:35:34 time: 1.1196 data_time: 0.0067 memory: 8704 loss: 0.6138 decode.loss_ce: 0.4013 decode.acc_seg: 84.8885 aux.loss_ce: 0.2126 aux.acc_seg: 78.8870 +2024/08/10 01:11:49 - mmengine - INFO - Iter(train) [ 29850/160000] lr: 8.3211e-03 eta: 1 day, 16:34:36 time: 1.1159 data_time: 0.0071 memory: 8704 loss: 0.6014 decode.loss_ce: 0.3956 decode.acc_seg: 83.7680 aux.loss_ce: 0.2058 aux.acc_seg: 81.2234 +2024/08/10 01:12:45 - mmengine - INFO - Iter(train) [ 29900/160000] lr: 8.3182e-03 eta: 1 day, 16:33:39 time: 1.1163 data_time: 0.0068 memory: 8703 loss: 0.5146 decode.loss_ce: 0.3229 decode.acc_seg: 93.0815 aux.loss_ce: 0.1917 aux.acc_seg: 92.4775 +2024/08/10 01:13:40 - mmengine - INFO - Iter(train) [ 29950/160000] lr: 8.3154e-03 eta: 1 day, 16:32:41 time: 1.1121 data_time: 0.0067 memory: 8703 loss: 0.3772 decode.loss_ce: 0.2095 decode.acc_seg: 94.1751 aux.loss_ce: 0.1677 aux.acc_seg: 91.7950 +2024/08/10 01:14:36 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 01:14:36 - mmengine - INFO - Iter(train) [ 30000/160000] lr: 8.3126e-03 eta: 1 day, 16:31:43 time: 1.1168 data_time: 0.0058 memory: 8704 loss: 0.3353 decode.loss_ce: 0.2127 decode.acc_seg: 85.9406 aux.loss_ce: 0.1225 aux.acc_seg: 87.2346 +2024/08/10 01:15:32 - mmengine - INFO - Iter(train) [ 30050/160000] lr: 8.3097e-03 eta: 1 day, 16:30:46 time: 1.1150 data_time: 0.0052 memory: 8704 loss: 0.6495 decode.loss_ce: 0.3910 decode.acc_seg: 84.4061 aux.loss_ce: 0.2585 aux.acc_seg: 71.3627 +2024/08/10 01:16:28 - mmengine - INFO - Iter(train) [ 30100/160000] lr: 8.3069e-03 eta: 1 day, 16:29:48 time: 1.1185 data_time: 0.0079 memory: 8703 loss: 0.4908 decode.loss_ce: 0.3235 decode.acc_seg: 74.2629 aux.loss_ce: 0.1673 aux.acc_seg: 75.7826 +2024/08/10 01:17:24 - mmengine - INFO - Iter(train) [ 30150/160000] lr: 8.3040e-03 eta: 1 day, 16:28:52 time: 1.1206 data_time: 0.0074 memory: 8704 loss: 0.2913 decode.loss_ce: 0.1739 decode.acc_seg: 95.3285 aux.loss_ce: 0.1174 aux.acc_seg: 94.9938 +2024/08/10 01:18:20 - mmengine - INFO - Iter(train) [ 30200/160000] lr: 8.3012e-03 eta: 1 day, 16:27:55 time: 1.1212 data_time: 0.0072 memory: 8704 loss: 0.5637 decode.loss_ce: 0.3638 decode.acc_seg: 96.5338 aux.loss_ce: 0.1999 aux.acc_seg: 94.5378 +2024/08/10 01:19:16 - mmengine - INFO - Iter(train) [ 30250/160000] lr: 8.2983e-03 eta: 1 day, 16:26:58 time: 1.1190 data_time: 0.0064 memory: 8703 loss: 0.3862 decode.loss_ce: 0.2468 decode.acc_seg: 86.8966 aux.loss_ce: 0.1394 aux.acc_seg: 82.0666 +2024/08/10 01:20:11 - mmengine - INFO - Iter(train) [ 30300/160000] lr: 8.2955e-03 eta: 1 day, 16:26:00 time: 1.1101 data_time: 0.0059 memory: 8704 loss: 0.5091 decode.loss_ce: 0.2809 decode.acc_seg: 93.7252 aux.loss_ce: 0.2282 aux.acc_seg: 57.9544 +2024/08/10 01:21:07 - mmengine - INFO - Iter(train) [ 30350/160000] lr: 8.2927e-03 eta: 1 day, 16:25:03 time: 1.1184 data_time: 0.0062 memory: 8703 loss: 0.4565 decode.loss_ce: 0.3017 decode.acc_seg: 96.9325 aux.loss_ce: 0.1548 aux.acc_seg: 95.9969 +2024/08/10 01:22:03 - mmengine - INFO - Iter(train) [ 30400/160000] lr: 8.2898e-03 eta: 1 day, 16:24:06 time: 1.1151 data_time: 0.0064 memory: 8703 loss: 0.3309 decode.loss_ce: 0.2049 decode.acc_seg: 96.2411 aux.loss_ce: 0.1260 aux.acc_seg: 95.2481 +2024/08/10 01:22:59 - mmengine - INFO - Iter(train) [ 30450/160000] lr: 8.2870e-03 eta: 1 day, 16:23:08 time: 1.1166 data_time: 0.0075 memory: 8703 loss: 0.3969 decode.loss_ce: 0.2426 decode.acc_seg: 91.9279 aux.loss_ce: 0.1543 aux.acc_seg: 88.2023 +2024/08/10 01:23:55 - mmengine - INFO - Iter(train) [ 30500/160000] lr: 8.2841e-03 eta: 1 day, 16:22:11 time: 1.1193 data_time: 0.0074 memory: 8704 loss: 0.4312 decode.loss_ce: 0.2736 decode.acc_seg: 94.0697 aux.loss_ce: 0.1577 aux.acc_seg: 92.1683 +2024/08/10 01:24:51 - mmengine - INFO - Iter(train) [ 30550/160000] lr: 8.2813e-03 eta: 1 day, 16:21:14 time: 1.1191 data_time: 0.0081 memory: 8704 loss: 0.6038 decode.loss_ce: 0.4069 decode.acc_seg: 96.6358 aux.loss_ce: 0.1970 aux.acc_seg: 94.7275 +2024/08/10 01:25:47 - mmengine - INFO - Iter(train) [ 30600/160000] lr: 8.2784e-03 eta: 1 day, 16:20:17 time: 1.1123 data_time: 0.0056 memory: 8703 loss: 0.4075 decode.loss_ce: 0.2450 decode.acc_seg: 89.3480 aux.loss_ce: 0.1625 aux.acc_seg: 83.7683 +2024/08/10 01:26:42 - mmengine - INFO - Iter(train) [ 30650/160000] lr: 8.2756e-03 eta: 1 day, 16:19:20 time: 1.1206 data_time: 0.0085 memory: 8704 loss: 0.4496 decode.loss_ce: 0.2764 decode.acc_seg: 83.0149 aux.loss_ce: 0.1733 aux.acc_seg: 73.4842 +2024/08/10 01:27:38 - mmengine - INFO - Iter(train) [ 30700/160000] lr: 8.2728e-03 eta: 1 day, 16:18:23 time: 1.1244 data_time: 0.0098 memory: 8703 loss: 0.3959 decode.loss_ce: 0.2497 decode.acc_seg: 92.3075 aux.loss_ce: 0.1462 aux.acc_seg: 79.0309 +2024/08/10 01:28:34 - mmengine - INFO - Iter(train) [ 30750/160000] lr: 8.2699e-03 eta: 1 day, 16:17:25 time: 1.1126 data_time: 0.0066 memory: 8704 loss: 0.5406 decode.loss_ce: 0.3427 decode.acc_seg: 95.1116 aux.loss_ce: 0.1979 aux.acc_seg: 94.1446 +2024/08/10 01:29:30 - mmengine - INFO - Iter(train) [ 30800/160000] lr: 8.2671e-03 eta: 1 day, 16:16:28 time: 1.1124 data_time: 0.0054 memory: 8704 loss: 0.6035 decode.loss_ce: 0.3601 decode.acc_seg: 96.9625 aux.loss_ce: 0.2434 aux.acc_seg: 95.2913 +2024/08/10 01:30:26 - mmengine - INFO - Iter(train) [ 30850/160000] lr: 8.2642e-03 eta: 1 day, 16:15:30 time: 1.1148 data_time: 0.0059 memory: 8704 loss: 0.4168 decode.loss_ce: 0.2582 decode.acc_seg: 95.4278 aux.loss_ce: 0.1586 aux.acc_seg: 91.5176 +2024/08/10 01:31:21 - mmengine - INFO - Iter(train) [ 30900/160000] lr: 8.2614e-03 eta: 1 day, 16:14:32 time: 1.1144 data_time: 0.0062 memory: 8704 loss: 0.3546 decode.loss_ce: 0.2178 decode.acc_seg: 94.7905 aux.loss_ce: 0.1368 aux.acc_seg: 94.5910 +2024/08/10 01:32:17 - mmengine - INFO - Iter(train) [ 30950/160000] lr: 8.2585e-03 eta: 1 day, 16:13:35 time: 1.1134 data_time: 0.0052 memory: 8704 loss: 0.3852 decode.loss_ce: 0.2343 decode.acc_seg: 92.0347 aux.loss_ce: 0.1509 aux.acc_seg: 89.3984 +2024/08/10 01:33:13 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 01:33:13 - mmengine - INFO - Iter(train) [ 31000/160000] lr: 8.2557e-03 eta: 1 day, 16:12:38 time: 1.1154 data_time: 0.0062 memory: 8704 loss: 0.4784 decode.loss_ce: 0.2959 decode.acc_seg: 89.3881 aux.loss_ce: 0.1825 aux.acc_seg: 87.4413 +2024/08/10 01:34:09 - mmengine - INFO - Iter(train) [ 31050/160000] lr: 8.2528e-03 eta: 1 day, 16:11:41 time: 1.1186 data_time: 0.0068 memory: 8703 loss: 0.4740 decode.loss_ce: 0.2750 decode.acc_seg: 80.1176 aux.loss_ce: 0.1991 aux.acc_seg: 63.1992 +2024/08/10 01:35:05 - mmengine - INFO - Iter(train) [ 31100/160000] lr: 8.2500e-03 eta: 1 day, 16:10:44 time: 1.1158 data_time: 0.0067 memory: 8703 loss: 0.4572 decode.loss_ce: 0.2744 decode.acc_seg: 95.5372 aux.loss_ce: 0.1828 aux.acc_seg: 92.0894 +2024/08/10 01:36:00 - mmengine - INFO - Iter(train) [ 31150/160000] lr: 8.2471e-03 eta: 1 day, 16:09:46 time: 1.1188 data_time: 0.0064 memory: 8703 loss: 0.5103 decode.loss_ce: 0.3026 decode.acc_seg: 91.0604 aux.loss_ce: 0.2077 aux.acc_seg: 87.0305 +2024/08/10 01:36:56 - mmengine - INFO - Iter(train) [ 31200/160000] lr: 8.2443e-03 eta: 1 day, 16:08:49 time: 1.1156 data_time: 0.0062 memory: 8703 loss: 0.3613 decode.loss_ce: 0.2179 decode.acc_seg: 81.1221 aux.loss_ce: 0.1434 aux.acc_seg: 80.3106 +2024/08/10 01:37:52 - mmengine - INFO - Iter(train) [ 31250/160000] lr: 8.2415e-03 eta: 1 day, 16:07:51 time: 1.1096 data_time: 0.0057 memory: 8704 loss: 0.4735 decode.loss_ce: 0.2871 decode.acc_seg: 92.0674 aux.loss_ce: 0.1864 aux.acc_seg: 88.4026 +2024/08/10 01:38:48 - mmengine - INFO - Iter(train) [ 31300/160000] lr: 8.2386e-03 eta: 1 day, 16:06:53 time: 1.1172 data_time: 0.0069 memory: 8703 loss: 0.5043 decode.loss_ce: 0.3153 decode.acc_seg: 86.0625 aux.loss_ce: 0.1890 aux.acc_seg: 83.9949 +2024/08/10 01:39:44 - mmengine - INFO - Iter(train) [ 31350/160000] lr: 8.2358e-03 eta: 1 day, 16:05:56 time: 1.1179 data_time: 0.0081 memory: 8704 loss: 0.4335 decode.loss_ce: 0.2739 decode.acc_seg: 81.6177 aux.loss_ce: 0.1596 aux.acc_seg: 77.3739 +2024/08/10 01:40:39 - mmengine - INFO - Iter(train) [ 31400/160000] lr: 8.2329e-03 eta: 1 day, 16:04:59 time: 1.1171 data_time: 0.0078 memory: 8703 loss: 0.3837 decode.loss_ce: 0.2482 decode.acc_seg: 93.7009 aux.loss_ce: 0.1355 aux.acc_seg: 91.2757 +2024/08/10 01:41:35 - mmengine - INFO - Iter(train) [ 31450/160000] lr: 8.2301e-03 eta: 1 day, 16:04:02 time: 1.1183 data_time: 0.0069 memory: 8703 loss: 0.4033 decode.loss_ce: 0.2514 decode.acc_seg: 91.4911 aux.loss_ce: 0.1519 aux.acc_seg: 85.4469 +2024/08/10 01:42:31 - mmengine - INFO - Iter(train) [ 31500/160000] lr: 8.2272e-03 eta: 1 day, 16:03:05 time: 1.1180 data_time: 0.0069 memory: 8703 loss: 0.3934 decode.loss_ce: 0.2487 decode.acc_seg: 93.7059 aux.loss_ce: 0.1447 aux.acc_seg: 92.6420 +2024/08/10 01:43:27 - mmengine - INFO - Iter(train) [ 31550/160000] lr: 8.2244e-03 eta: 1 day, 16:02:07 time: 1.1156 data_time: 0.0056 memory: 8704 loss: 0.4417 decode.loss_ce: 0.2568 decode.acc_seg: 87.8814 aux.loss_ce: 0.1849 aux.acc_seg: 81.5203 +2024/08/10 01:44:23 - mmengine - INFO - Iter(train) [ 31600/160000] lr: 8.2215e-03 eta: 1 day, 16:01:10 time: 1.1128 data_time: 0.0060 memory: 8704 loss: 0.6382 decode.loss_ce: 0.4165 decode.acc_seg: 86.3463 aux.loss_ce: 0.2217 aux.acc_seg: 86.3916 +2024/08/10 01:45:18 - mmengine - INFO - Iter(train) [ 31650/160000] lr: 8.2187e-03 eta: 1 day, 16:00:12 time: 1.1138 data_time: 0.0060 memory: 8703 loss: 0.6800 decode.loss_ce: 0.4262 decode.acc_seg: 80.3710 aux.loss_ce: 0.2539 aux.acc_seg: 73.0642 +2024/08/10 01:46:14 - mmengine - INFO - Iter(train) [ 31700/160000] lr: 8.2158e-03 eta: 1 day, 15:59:14 time: 1.1092 data_time: 0.0056 memory: 8703 loss: 0.4824 decode.loss_ce: 0.3004 decode.acc_seg: 81.5835 aux.loss_ce: 0.1821 aux.acc_seg: 77.9299 +2024/08/10 01:47:10 - mmengine - INFO - Iter(train) [ 31750/160000] lr: 8.2130e-03 eta: 1 day, 15:58:16 time: 1.1168 data_time: 0.0049 memory: 8704 loss: 0.4849 decode.loss_ce: 0.2840 decode.acc_seg: 95.1142 aux.loss_ce: 0.2008 aux.acc_seg: 92.1952 +2024/08/10 01:48:06 - mmengine - INFO - Iter(train) [ 31800/160000] lr: 8.2101e-03 eta: 1 day, 15:57:19 time: 1.1153 data_time: 0.0067 memory: 8704 loss: 0.4508 decode.loss_ce: 0.2739 decode.acc_seg: 88.0477 aux.loss_ce: 0.1768 aux.acc_seg: 85.9025 +2024/08/10 01:49:01 - mmengine - INFO - Iter(train) [ 31850/160000] lr: 8.2073e-03 eta: 1 day, 15:56:22 time: 1.1154 data_time: 0.0070 memory: 8704 loss: 0.4434 decode.loss_ce: 0.2775 decode.acc_seg: 88.5116 aux.loss_ce: 0.1659 aux.acc_seg: 85.4305 +2024/08/10 01:49:57 - mmengine - INFO - Iter(train) [ 31900/160000] lr: 8.2045e-03 eta: 1 day, 15:55:25 time: 1.1172 data_time: 0.0076 memory: 8703 loss: 0.5474 decode.loss_ce: 0.3559 decode.acc_seg: 88.1833 aux.loss_ce: 0.1914 aux.acc_seg: 87.6100 +2024/08/10 01:50:53 - mmengine - INFO - Iter(train) [ 31950/160000] lr: 8.2016e-03 eta: 1 day, 15:54:28 time: 1.1141 data_time: 0.0057 memory: 8704 loss: 0.4020 decode.loss_ce: 0.2540 decode.acc_seg: 93.9588 aux.loss_ce: 0.1480 aux.acc_seg: 93.9650 +2024/08/10 01:51:49 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 01:51:49 - mmengine - INFO - Iter(train) [ 32000/160000] lr: 8.1988e-03 eta: 1 day, 15:53:31 time: 1.1188 data_time: 0.0072 memory: 8704 loss: 0.3970 decode.loss_ce: 0.2447 decode.acc_seg: 91.4485 aux.loss_ce: 0.1523 aux.acc_seg: 91.1411 +2024/08/10 01:51:49 - mmengine - INFO - Saving checkpoint at 32000 iterations +2024/08/10 01:52:04 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:09 time: 0.2693 data_time: 0.0034 memory: 1724 +2024/08/10 01:52:17 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2702 data_time: 0.0037 memory: 1724 +2024/08/10 01:52:31 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2710 data_time: 0.0038 memory: 1724 +2024/08/10 01:52:44 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2726 data_time: 0.0049 memory: 1724 +2024/08/10 01:52:58 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2707 data_time: 0.0034 memory: 1724 +2024/08/10 01:53:11 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2728 data_time: 0.0041 memory: 1724 +2024/08/10 01:53:25 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2704 data_time: 0.0035 memory: 1724 +2024/08/10 01:53:38 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:34 time: 0.2705 data_time: 0.0035 memory: 1724 +2024/08/10 01:53:52 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2700 data_time: 0.0035 memory: 1724 +2024/08/10 01:54:06 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2696 data_time: 0.0034 memory: 1724 +2024/08/10 01:54:19 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2733 data_time: 0.0053 memory: 1724 +2024/08/10 01:54:33 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2723 data_time: 0.0041 memory: 1724 +2024/08/10 01:54:46 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2708 data_time: 0.0035 memory: 1724 +2024/08/10 01:55:00 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2710 data_time: 0.0035 memory: 1724 +2024/08/10 01:55:13 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2727 data_time: 0.0047 memory: 1724 +2024/08/10 01:55:23 - mmengine - INFO - per class results: +2024/08/10 01:55:23 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 84.12 | 87.95 | +| sidewalk | 55.22 | 59.85 | +| road roughness | 49.72 | 60.17 | +| road boundaries | 41.36 | 46.35 | +| crosswalks | 90.9 | 94.5 | +| lane | 62.02 | 68.11 | +| road color guide | 75.78 | 80.92 | +| road marking | 48.65 | 55.8 | +| parking | 35.73 | 44.66 | +| traffic sign | 50.23 | 56.31 | +| traffic light | 63.98 | 76.72 | +| pole/structural object | 58.23 | 65.6 | +| building | 68.82 | 94.67 | +| tunnel | 81.74 | 99.4 | +| bridge | 33.71 | 50.96 | +| pedestrian | 37.94 | 40.23 | +| vehicle | 71.86 | 90.89 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 0.0 | 0.0 | +| personal mobility | 22.46 | 23.1 | +| dynamic | 31.01 | 32.78 | +| vegetation | 71.97 | 76.34 | +| sky | 97.31 | 98.46 | +| static | 42.5 | 75.91 | ++------------------------+-------+-------+ +2024/08/10 01:55:23 - mmengine - INFO - Iter(val) [750/750] aAcc: 87.7600 mIoU: 53.1400 mAcc: 61.6500 data_time: 0.0040 time: 0.2712 +2024/08/10 01:56:19 - mmengine - INFO - Iter(train) [ 32050/160000] lr: 8.1959e-03 eta: 1 day, 15:53:12 time: 1.1171 data_time: 0.0073 memory: 8704 loss: 0.4823 decode.loss_ce: 0.3079 decode.acc_seg: 96.4481 aux.loss_ce: 0.1745 aux.acc_seg: 95.7047 +2024/08/10 01:57:15 - mmengine - INFO - Iter(train) [ 32100/160000] lr: 8.1931e-03 eta: 1 day, 15:52:15 time: 1.1192 data_time: 0.0080 memory: 8705 loss: 0.6577 decode.loss_ce: 0.4132 decode.acc_seg: 83.5248 aux.loss_ce: 0.2445 aux.acc_seg: 79.0941 +2024/08/10 01:58:10 - mmengine - INFO - Iter(train) [ 32150/160000] lr: 8.1902e-03 eta: 1 day, 15:51:17 time: 1.1142 data_time: 0.0060 memory: 8703 loss: 0.3456 decode.loss_ce: 0.2151 decode.acc_seg: 85.2985 aux.loss_ce: 0.1305 aux.acc_seg: 80.0688 +2024/08/10 01:59:06 - mmengine - INFO - Iter(train) [ 32200/160000] lr: 8.1874e-03 eta: 1 day, 15:50:20 time: 1.1134 data_time: 0.0063 memory: 8704 loss: 0.3261 decode.loss_ce: 0.1985 decode.acc_seg: 94.0983 aux.loss_ce: 0.1276 aux.acc_seg: 92.8823 +2024/08/10 02:00:02 - mmengine - INFO - Iter(train) [ 32250/160000] lr: 8.1845e-03 eta: 1 day, 15:49:23 time: 1.1192 data_time: 0.0086 memory: 8703 loss: 0.4426 decode.loss_ce: 0.2621 decode.acc_seg: 89.1046 aux.loss_ce: 0.1805 aux.acc_seg: 85.2469 +2024/08/10 02:00:58 - mmengine - INFO - Iter(train) [ 32300/160000] lr: 8.1817e-03 eta: 1 day, 15:48:25 time: 1.1167 data_time: 0.0068 memory: 8703 loss: 0.4642 decode.loss_ce: 0.2659 decode.acc_seg: 86.8978 aux.loss_ce: 0.1983 aux.acc_seg: 85.8526 +2024/08/10 02:01:54 - mmengine - INFO - Iter(train) [ 32350/160000] lr: 8.1788e-03 eta: 1 day, 15:47:28 time: 1.1120 data_time: 0.0070 memory: 8703 loss: 0.4354 decode.loss_ce: 0.2456 decode.acc_seg: 88.5303 aux.loss_ce: 0.1898 aux.acc_seg: 71.4681 +2024/08/10 02:02:49 - mmengine - INFO - Iter(train) [ 32400/160000] lr: 8.1760e-03 eta: 1 day, 15:46:30 time: 1.1168 data_time: 0.0066 memory: 8703 loss: 0.4128 decode.loss_ce: 0.2476 decode.acc_seg: 91.4378 aux.loss_ce: 0.1652 aux.acc_seg: 86.8610 +2024/08/10 02:03:45 - mmengine - INFO - Iter(train) [ 32450/160000] lr: 8.1731e-03 eta: 1 day, 15:45:33 time: 1.1183 data_time: 0.0067 memory: 8704 loss: 0.6016 decode.loss_ce: 0.3717 decode.acc_seg: 90.2362 aux.loss_ce: 0.2299 aux.acc_seg: 86.5195 +2024/08/10 02:04:41 - mmengine - INFO - Iter(train) [ 32500/160000] lr: 8.1703e-03 eta: 1 day, 15:44:36 time: 1.1205 data_time: 0.0086 memory: 8704 loss: 0.3402 decode.loss_ce: 0.2205 decode.acc_seg: 90.1234 aux.loss_ce: 0.1197 aux.acc_seg: 83.1069 +2024/08/10 02:05:37 - mmengine - INFO - Iter(train) [ 32550/160000] lr: 8.1674e-03 eta: 1 day, 15:43:39 time: 1.1222 data_time: 0.0081 memory: 8704 loss: 0.5696 decode.loss_ce: 0.3559 decode.acc_seg: 68.9721 aux.loss_ce: 0.2137 aux.acc_seg: 65.0095 +2024/08/10 02:06:33 - mmengine - INFO - Iter(train) [ 32600/160000] lr: 8.1646e-03 eta: 1 day, 15:42:41 time: 1.1153 data_time: 0.0061 memory: 8704 loss: 0.3405 decode.loss_ce: 0.1869 decode.acc_seg: 90.2473 aux.loss_ce: 0.1536 aux.acc_seg: 86.4286 +2024/08/10 02:07:28 - mmengine - INFO - Iter(train) [ 32650/160000] lr: 8.1617e-03 eta: 1 day, 15:41:44 time: 1.1174 data_time: 0.0069 memory: 8704 loss: 0.4130 decode.loss_ce: 0.2484 decode.acc_seg: 88.9900 aux.loss_ce: 0.1647 aux.acc_seg: 81.4668 +2024/08/10 02:08:24 - mmengine - INFO - Iter(train) [ 32700/160000] lr: 8.1589e-03 eta: 1 day, 15:40:47 time: 1.1195 data_time: 0.0074 memory: 8704 loss: 0.4513 decode.loss_ce: 0.2857 decode.acc_seg: 87.9883 aux.loss_ce: 0.1656 aux.acc_seg: 74.3284 +2024/08/10 02:09:20 - mmengine - INFO - Iter(train) [ 32750/160000] lr: 8.1560e-03 eta: 1 day, 15:39:49 time: 1.1137 data_time: 0.0079 memory: 8703 loss: 0.4132 decode.loss_ce: 0.2485 decode.acc_seg: 96.2308 aux.loss_ce: 0.1647 aux.acc_seg: 94.5569 +2024/08/10 02:10:16 - mmengine - INFO - Iter(train) [ 32800/160000] lr: 8.1532e-03 eta: 1 day, 15:38:51 time: 1.1095 data_time: 0.0064 memory: 8704 loss: 0.3352 decode.loss_ce: 0.2087 decode.acc_seg: 97.9685 aux.loss_ce: 0.1264 aux.acc_seg: 97.5017 +2024/08/10 02:11:11 - mmengine - INFO - Iter(train) [ 32850/160000] lr: 8.1503e-03 eta: 1 day, 15:37:54 time: 1.1146 data_time: 0.0073 memory: 8703 loss: 0.5217 decode.loss_ce: 0.3373 decode.acc_seg: 88.3448 aux.loss_ce: 0.1844 aux.acc_seg: 86.9254 +2024/08/10 02:12:07 - mmengine - INFO - Iter(train) [ 32900/160000] lr: 8.1475e-03 eta: 1 day, 15:36:57 time: 1.1139 data_time: 0.0058 memory: 8703 loss: 0.3719 decode.loss_ce: 0.2226 decode.acc_seg: 90.0851 aux.loss_ce: 0.1493 aux.acc_seg: 81.0886 +2024/08/10 02:13:03 - mmengine - INFO - Iter(train) [ 32950/160000] lr: 8.1446e-03 eta: 1 day, 15:36:00 time: 1.1239 data_time: 0.0085 memory: 8703 loss: 0.4649 decode.loss_ce: 0.2808 decode.acc_seg: 86.7039 aux.loss_ce: 0.1840 aux.acc_seg: 85.0137 +2024/08/10 02:13:59 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 02:13:59 - mmengine - INFO - Iter(train) [ 33000/160000] lr: 8.1418e-03 eta: 1 day, 15:35:03 time: 1.1126 data_time: 0.0061 memory: 8703 loss: 0.6647 decode.loss_ce: 0.4081 decode.acc_seg: 79.2992 aux.loss_ce: 0.2566 aux.acc_seg: 76.0706 +2024/08/10 02:14:55 - mmengine - INFO - Iter(train) [ 33050/160000] lr: 8.1389e-03 eta: 1 day, 15:34:06 time: 1.1206 data_time: 0.0052 memory: 8703 loss: 0.4110 decode.loss_ce: 0.2412 decode.acc_seg: 90.2682 aux.loss_ce: 0.1698 aux.acc_seg: 88.4590 +2024/08/10 02:15:51 - mmengine - INFO - Iter(train) [ 33100/160000] lr: 8.1361e-03 eta: 1 day, 15:33:09 time: 1.1176 data_time: 0.0077 memory: 8703 loss: 0.4063 decode.loss_ce: 0.2551 decode.acc_seg: 89.4531 aux.loss_ce: 0.1512 aux.acc_seg: 88.0660 +2024/08/10 02:16:47 - mmengine - INFO - Iter(train) [ 33150/160000] lr: 8.1332e-03 eta: 1 day, 15:32:12 time: 1.1224 data_time: 0.0089 memory: 8703 loss: 0.4682 decode.loss_ce: 0.2847 decode.acc_seg: 97.4527 aux.loss_ce: 0.1835 aux.acc_seg: 96.4223 +2024/08/10 02:17:42 - mmengine - INFO - Iter(train) [ 33200/160000] lr: 8.1304e-03 eta: 1 day, 15:31:15 time: 1.1170 data_time: 0.0083 memory: 8703 loss: 0.3638 decode.loss_ce: 0.2093 decode.acc_seg: 93.5333 aux.loss_ce: 0.1545 aux.acc_seg: 92.1855 +2024/08/10 02:18:38 - mmengine - INFO - Iter(train) [ 33250/160000] lr: 8.1275e-03 eta: 1 day, 15:30:17 time: 1.1155 data_time: 0.0080 memory: 8703 loss: 0.7344 decode.loss_ce: 0.4678 decode.acc_seg: 86.8355 aux.loss_ce: 0.2667 aux.acc_seg: 82.7749 +2024/08/10 02:19:34 - mmengine - INFO - Iter(train) [ 33300/160000] lr: 8.1247e-03 eta: 1 day, 15:29:20 time: 1.1181 data_time: 0.0070 memory: 8704 loss: 0.4549 decode.loss_ce: 0.2872 decode.acc_seg: 95.0135 aux.loss_ce: 0.1677 aux.acc_seg: 91.4722 +2024/08/10 02:20:30 - mmengine - INFO - Iter(train) [ 33350/160000] lr: 8.1218e-03 eta: 1 day, 15:28:24 time: 1.1142 data_time: 0.0061 memory: 8703 loss: 0.6404 decode.loss_ce: 0.3990 decode.acc_seg: 87.4504 aux.loss_ce: 0.2413 aux.acc_seg: 83.5117 +2024/08/10 02:21:26 - mmengine - INFO - Iter(train) [ 33400/160000] lr: 8.1190e-03 eta: 1 day, 15:27:27 time: 1.1147 data_time: 0.0066 memory: 8703 loss: 0.3580 decode.loss_ce: 0.2152 decode.acc_seg: 88.1610 aux.loss_ce: 0.1428 aux.acc_seg: 74.6861 +2024/08/10 02:22:22 - mmengine - INFO - Iter(train) [ 33450/160000] lr: 8.1161e-03 eta: 1 day, 15:26:29 time: 1.1159 data_time: 0.0069 memory: 8704 loss: 0.5784 decode.loss_ce: 0.3488 decode.acc_seg: 86.0095 aux.loss_ce: 0.2296 aux.acc_seg: 83.0045 +2024/08/10 02:23:18 - mmengine - INFO - Iter(train) [ 33500/160000] lr: 8.1133e-03 eta: 1 day, 15:25:32 time: 1.1162 data_time: 0.0081 memory: 8703 loss: 0.5042 decode.loss_ce: 0.3250 decode.acc_seg: 93.7408 aux.loss_ce: 0.1793 aux.acc_seg: 91.1339 +2024/08/10 02:24:14 - mmengine - INFO - Iter(train) [ 33550/160000] lr: 8.1104e-03 eta: 1 day, 15:24:36 time: 1.1188 data_time: 0.0079 memory: 8703 loss: 0.3589 decode.loss_ce: 0.2196 decode.acc_seg: 96.7977 aux.loss_ce: 0.1393 aux.acc_seg: 95.7830 +2024/08/10 02:25:09 - mmengine - INFO - Iter(train) [ 33600/160000] lr: 8.1076e-03 eta: 1 day, 15:23:38 time: 1.1137 data_time: 0.0060 memory: 8703 loss: 0.4042 decode.loss_ce: 0.2366 decode.acc_seg: 94.8529 aux.loss_ce: 0.1676 aux.acc_seg: 72.9227 +2024/08/10 02:26:05 - mmengine - INFO - Iter(train) [ 33650/160000] lr: 8.1047e-03 eta: 1 day, 15:22:41 time: 1.1174 data_time: 0.0076 memory: 8703 loss: 0.3602 decode.loss_ce: 0.2207 decode.acc_seg: 86.9068 aux.loss_ce: 0.1395 aux.acc_seg: 86.1864 +2024/08/10 02:27:01 - mmengine - INFO - Iter(train) [ 33700/160000] lr: 8.1019e-03 eta: 1 day, 15:21:44 time: 1.1113 data_time: 0.0054 memory: 8703 loss: 0.6082 decode.loss_ce: 0.3988 decode.acc_seg: 95.3930 aux.loss_ce: 0.2093 aux.acc_seg: 91.2380 +2024/08/10 02:27:57 - mmengine - INFO - Iter(train) [ 33750/160000] lr: 8.0990e-03 eta: 1 day, 15:20:47 time: 1.1174 data_time: 0.0083 memory: 8703 loss: 0.4826 decode.loss_ce: 0.2918 decode.acc_seg: 93.2423 aux.loss_ce: 0.1908 aux.acc_seg: 88.9805 +2024/08/10 02:28:53 - mmengine - INFO - Iter(train) [ 33800/160000] lr: 8.0962e-03 eta: 1 day, 15:19:50 time: 1.1139 data_time: 0.0074 memory: 8703 loss: 0.4724 decode.loss_ce: 0.2937 decode.acc_seg: 88.3428 aux.loss_ce: 0.1787 aux.acc_seg: 81.3486 +2024/08/10 02:29:48 - mmengine - INFO - Iter(train) [ 33850/160000] lr: 8.0933e-03 eta: 1 day, 15:18:53 time: 1.1126 data_time: 0.0064 memory: 8704 loss: 0.4741 decode.loss_ce: 0.3015 decode.acc_seg: 95.2014 aux.loss_ce: 0.1726 aux.acc_seg: 91.0897 +2024/08/10 02:30:44 - mmengine - INFO - Iter(train) [ 33900/160000] lr: 8.0905e-03 eta: 1 day, 15:17:56 time: 1.1162 data_time: 0.0058 memory: 8704 loss: 0.4142 decode.loss_ce: 0.2590 decode.acc_seg: 92.0072 aux.loss_ce: 0.1551 aux.acc_seg: 87.6664 +2024/08/10 02:31:40 - mmengine - INFO - Iter(train) [ 33950/160000] lr: 8.0876e-03 eta: 1 day, 15:16:59 time: 1.1170 data_time: 0.0066 memory: 8704 loss: 0.3511 decode.loss_ce: 0.2041 decode.acc_seg: 91.3920 aux.loss_ce: 0.1470 aux.acc_seg: 85.1330 +2024/08/10 02:32:36 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 02:32:36 - mmengine - INFO - Iter(train) [ 34000/160000] lr: 8.0848e-03 eta: 1 day, 15:16:02 time: 1.1215 data_time: 0.0078 memory: 8704 loss: 0.3849 decode.loss_ce: 0.2388 decode.acc_seg: 98.1403 aux.loss_ce: 0.1462 aux.acc_seg: 97.5681 +2024/08/10 02:33:32 - mmengine - INFO - Iter(train) [ 34050/160000] lr: 8.0819e-03 eta: 1 day, 15:15:05 time: 1.1181 data_time: 0.0076 memory: 8704 loss: 0.4969 decode.loss_ce: 0.3125 decode.acc_seg: 92.2643 aux.loss_ce: 0.1844 aux.acc_seg: 90.8157 +2024/08/10 02:34:27 - mmengine - INFO - Iter(train) [ 34100/160000] lr: 8.0791e-03 eta: 1 day, 15:14:07 time: 1.1074 data_time: 0.0054 memory: 8704 loss: 0.5120 decode.loss_ce: 0.3112 decode.acc_seg: 93.4666 aux.loss_ce: 0.2008 aux.acc_seg: 79.6030 +2024/08/10 02:35:23 - mmengine - INFO - Iter(train) [ 34150/160000] lr: 8.0762e-03 eta: 1 day, 15:13:09 time: 1.1112 data_time: 0.0054 memory: 8703 loss: 0.5252 decode.loss_ce: 0.3207 decode.acc_seg: 90.8489 aux.loss_ce: 0.2044 aux.acc_seg: 87.5605 +2024/08/10 02:36:19 - mmengine - INFO - Iter(train) [ 34200/160000] lr: 8.0734e-03 eta: 1 day, 15:12:12 time: 1.1161 data_time: 0.0069 memory: 8704 loss: 0.4431 decode.loss_ce: 0.2532 decode.acc_seg: 94.1816 aux.loss_ce: 0.1899 aux.acc_seg: 94.1128 +2024/08/10 02:37:15 - mmengine - INFO - Iter(train) [ 34250/160000] lr: 8.0705e-03 eta: 1 day, 15:11:15 time: 1.1181 data_time: 0.0081 memory: 8703 loss: 0.4721 decode.loss_ce: 0.2984 decode.acc_seg: 83.1458 aux.loss_ce: 0.1737 aux.acc_seg: 82.1269 +2024/08/10 02:38:11 - mmengine - INFO - Iter(train) [ 34300/160000] lr: 8.0677e-03 eta: 1 day, 15:10:19 time: 1.1224 data_time: 0.0067 memory: 8704 loss: 0.3409 decode.loss_ce: 0.2202 decode.acc_seg: 92.1913 aux.loss_ce: 0.1207 aux.acc_seg: 81.4857 +2024/08/10 02:39:07 - mmengine - INFO - Iter(train) [ 34350/160000] lr: 8.0648e-03 eta: 1 day, 15:09:22 time: 1.1153 data_time: 0.0072 memory: 8704 loss: 0.5394 decode.loss_ce: 0.3355 decode.acc_seg: 95.7129 aux.loss_ce: 0.2040 aux.acc_seg: 95.4550 +2024/08/10 02:40:03 - mmengine - INFO - Iter(train) [ 34400/160000] lr: 8.0620e-03 eta: 1 day, 15:08:25 time: 1.1206 data_time: 0.0075 memory: 8704 loss: 0.5237 decode.loss_ce: 0.3146 decode.acc_seg: 97.3372 aux.loss_ce: 0.2091 aux.acc_seg: 91.7019 +2024/08/10 02:40:58 - mmengine - INFO - Iter(train) [ 34450/160000] lr: 8.0591e-03 eta: 1 day, 15:07:27 time: 1.1129 data_time: 0.0057 memory: 8704 loss: 0.4534 decode.loss_ce: 0.2840 decode.acc_seg: 92.9218 aux.loss_ce: 0.1694 aux.acc_seg: 89.3405 +2024/08/10 02:41:54 - mmengine - INFO - Iter(train) [ 34500/160000] lr: 8.0563e-03 eta: 1 day, 15:06:31 time: 1.1174 data_time: 0.0075 memory: 8704 loss: 0.4484 decode.loss_ce: 0.2812 decode.acc_seg: 81.5276 aux.loss_ce: 0.1672 aux.acc_seg: 80.0405 +2024/08/10 02:42:50 - mmengine - INFO - Iter(train) [ 34550/160000] lr: 8.0534e-03 eta: 1 day, 15:05:33 time: 1.1182 data_time: 0.0070 memory: 8704 loss: 0.5041 decode.loss_ce: 0.3095 decode.acc_seg: 86.0579 aux.loss_ce: 0.1947 aux.acc_seg: 72.7254 +2024/08/10 02:43:46 - mmengine - INFO - Iter(train) [ 34600/160000] lr: 8.0506e-03 eta: 1 day, 15:04:36 time: 1.1196 data_time: 0.0078 memory: 8704 loss: 0.4922 decode.loss_ce: 0.2931 decode.acc_seg: 85.8610 aux.loss_ce: 0.1990 aux.acc_seg: 80.4168 +2024/08/10 02:44:42 - mmengine - INFO - Iter(train) [ 34650/160000] lr: 8.0477e-03 eta: 1 day, 15:03:40 time: 1.1179 data_time: 0.0062 memory: 8704 loss: 0.5171 decode.loss_ce: 0.3274 decode.acc_seg: 89.8048 aux.loss_ce: 0.1897 aux.acc_seg: 87.5395 +2024/08/10 02:45:38 - mmengine - INFO - Iter(train) [ 34700/160000] lr: 8.0448e-03 eta: 1 day, 15:02:43 time: 1.1160 data_time: 0.0061 memory: 8703 loss: 0.3585 decode.loss_ce: 0.2118 decode.acc_seg: 90.6740 aux.loss_ce: 0.1467 aux.acc_seg: 81.4322 +2024/08/10 02:46:34 - mmengine - INFO - Iter(train) [ 34750/160000] lr: 8.0420e-03 eta: 1 day, 15:01:46 time: 1.1145 data_time: 0.0062 memory: 8703 loss: 0.3817 decode.loss_ce: 0.2469 decode.acc_seg: 90.2950 aux.loss_ce: 0.1348 aux.acc_seg: 85.8685 +2024/08/10 02:47:29 - mmengine - INFO - Iter(train) [ 34800/160000] lr: 8.0391e-03 eta: 1 day, 15:00:49 time: 1.1164 data_time: 0.0068 memory: 8703 loss: 0.4086 decode.loss_ce: 0.2513 decode.acc_seg: 89.5068 aux.loss_ce: 0.1573 aux.acc_seg: 85.8414 +2024/08/10 02:48:25 - mmengine - INFO - Iter(train) [ 34850/160000] lr: 8.0363e-03 eta: 1 day, 14:59:52 time: 1.1182 data_time: 0.0073 memory: 8705 loss: 0.5880 decode.loss_ce: 0.3649 decode.acc_seg: 96.8282 aux.loss_ce: 0.2232 aux.acc_seg: 95.5848 +2024/08/10 02:49:21 - mmengine - INFO - Iter(train) [ 34900/160000] lr: 8.0334e-03 eta: 1 day, 14:58:54 time: 1.1153 data_time: 0.0067 memory: 8704 loss: 0.3901 decode.loss_ce: 0.2294 decode.acc_seg: 73.5605 aux.loss_ce: 0.1607 aux.acc_seg: 58.8636 +2024/08/10 02:50:17 - mmengine - INFO - Iter(train) [ 34950/160000] lr: 8.0306e-03 eta: 1 day, 14:57:57 time: 1.1083 data_time: 0.0051 memory: 8703 loss: 0.3536 decode.loss_ce: 0.2010 decode.acc_seg: 92.1679 aux.loss_ce: 0.1526 aux.acc_seg: 86.8074 +2024/08/10 02:51:12 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 02:51:12 - mmengine - INFO - Iter(train) [ 35000/160000] lr: 8.0277e-03 eta: 1 day, 14:56:59 time: 1.1149 data_time: 0.0074 memory: 8703 loss: 0.4449 decode.loss_ce: 0.2897 decode.acc_seg: 93.1929 aux.loss_ce: 0.1552 aux.acc_seg: 92.5001 +2024/08/10 02:52:08 - mmengine - INFO - Iter(train) [ 35050/160000] lr: 8.0249e-03 eta: 1 day, 14:56:02 time: 1.1173 data_time: 0.0074 memory: 8704 loss: 0.3717 decode.loss_ce: 0.2283 decode.acc_seg: 94.8040 aux.loss_ce: 0.1433 aux.acc_seg: 88.8884 +2024/08/10 02:53:04 - mmengine - INFO - Iter(train) [ 35100/160000] lr: 8.0220e-03 eta: 1 day, 14:55:05 time: 1.1146 data_time: 0.0085 memory: 8704 loss: 0.4077 decode.loss_ce: 0.2586 decode.acc_seg: 93.7351 aux.loss_ce: 0.1491 aux.acc_seg: 92.0002 +2024/08/10 02:54:00 - mmengine - INFO - Iter(train) [ 35150/160000] lr: 8.0192e-03 eta: 1 day, 14:54:08 time: 1.1165 data_time: 0.0075 memory: 8703 loss: 0.6147 decode.loss_ce: 0.3929 decode.acc_seg: 87.4678 aux.loss_ce: 0.2218 aux.acc_seg: 84.0439 +2024/08/10 02:54:56 - mmengine - INFO - Iter(train) [ 35200/160000] lr: 8.0163e-03 eta: 1 day, 14:53:11 time: 1.1153 data_time: 0.0069 memory: 8703 loss: 0.3781 decode.loss_ce: 0.2234 decode.acc_seg: 91.2188 aux.loss_ce: 0.1547 aux.acc_seg: 80.2538 +2024/08/10 02:55:51 - mmengine - INFO - Iter(train) [ 35250/160000] lr: 8.0135e-03 eta: 1 day, 14:52:14 time: 1.1194 data_time: 0.0078 memory: 8704 loss: 0.3527 decode.loss_ce: 0.2098 decode.acc_seg: 95.3175 aux.loss_ce: 0.1430 aux.acc_seg: 91.0670 +2024/08/10 02:56:47 - mmengine - INFO - Iter(train) [ 35300/160000] lr: 8.0106e-03 eta: 1 day, 14:51:17 time: 1.1203 data_time: 0.0066 memory: 8704 loss: 0.4783 decode.loss_ce: 0.2989 decode.acc_seg: 96.5972 aux.loss_ce: 0.1794 aux.acc_seg: 91.3639 +2024/08/10 02:57:43 - mmengine - INFO - Iter(train) [ 35350/160000] lr: 8.0077e-03 eta: 1 day, 14:50:19 time: 1.1132 data_time: 0.0055 memory: 8703 loss: 0.4375 decode.loss_ce: 0.2503 decode.acc_seg: 93.8089 aux.loss_ce: 0.1872 aux.acc_seg: 64.5417 +2024/08/10 02:58:39 - mmengine - INFO - Iter(train) [ 35400/160000] lr: 8.0049e-03 eta: 1 day, 14:49:22 time: 1.1151 data_time: 0.0088 memory: 8703 loss: 0.4619 decode.loss_ce: 0.2818 decode.acc_seg: 93.2290 aux.loss_ce: 0.1801 aux.acc_seg: 90.0503 +2024/08/10 02:59:34 - mmengine - INFO - Iter(train) [ 35450/160000] lr: 8.0020e-03 eta: 1 day, 14:48:25 time: 1.1178 data_time: 0.0074 memory: 8704 loss: 0.3237 decode.loss_ce: 0.2038 decode.acc_seg: 93.7630 aux.loss_ce: 0.1199 aux.acc_seg: 91.9800 +2024/08/10 03:00:30 - mmengine - INFO - Iter(train) [ 35500/160000] lr: 7.9992e-03 eta: 1 day, 14:47:28 time: 1.1169 data_time: 0.0061 memory: 8703 loss: 0.4995 decode.loss_ce: 0.3027 decode.acc_seg: 88.0475 aux.loss_ce: 0.1968 aux.acc_seg: 85.5166 +2024/08/10 03:01:26 - mmengine - INFO - Iter(train) [ 35550/160000] lr: 7.9963e-03 eta: 1 day, 14:46:31 time: 1.1197 data_time: 0.0058 memory: 8703 loss: 0.5145 decode.loss_ce: 0.3250 decode.acc_seg: 95.2384 aux.loss_ce: 0.1895 aux.acc_seg: 94.2280 +2024/08/10 03:02:22 - mmengine - INFO - Iter(train) [ 35600/160000] lr: 7.9935e-03 eta: 1 day, 14:45:34 time: 1.1188 data_time: 0.0068 memory: 8704 loss: 0.6825 decode.loss_ce: 0.4278 decode.acc_seg: 93.6240 aux.loss_ce: 0.2546 aux.acc_seg: 89.1780 +2024/08/10 03:03:18 - mmengine - INFO - Iter(train) [ 35650/160000] lr: 7.9906e-03 eta: 1 day, 14:44:37 time: 1.1192 data_time: 0.0077 memory: 8704 loss: 0.4555 decode.loss_ce: 0.2816 decode.acc_seg: 83.7741 aux.loss_ce: 0.1739 aux.acc_seg: 75.2893 +2024/08/10 03:04:14 - mmengine - INFO - Iter(train) [ 35700/160000] lr: 7.9878e-03 eta: 1 day, 14:43:40 time: 1.1176 data_time: 0.0079 memory: 8703 loss: 0.3400 decode.loss_ce: 0.2102 decode.acc_seg: 85.3545 aux.loss_ce: 0.1298 aux.acc_seg: 83.2104 +2024/08/10 03:05:09 - mmengine - INFO - Iter(train) [ 35750/160000] lr: 7.9849e-03 eta: 1 day, 14:42:43 time: 1.1189 data_time: 0.0081 memory: 8705 loss: 0.4215 decode.loss_ce: 0.2694 decode.acc_seg: 94.7143 aux.loss_ce: 0.1521 aux.acc_seg: 94.0958 +2024/08/10 03:06:05 - mmengine - INFO - Iter(train) [ 35800/160000] lr: 7.9820e-03 eta: 1 day, 14:41:46 time: 1.1143 data_time: 0.0049 memory: 8704 loss: 0.4495 decode.loss_ce: 0.2701 decode.acc_seg: 93.6994 aux.loss_ce: 0.1794 aux.acc_seg: 89.6046 +2024/08/10 03:07:01 - mmengine - INFO - Iter(train) [ 35850/160000] lr: 7.9792e-03 eta: 1 day, 14:40:48 time: 1.1179 data_time: 0.0086 memory: 8703 loss: 0.4119 decode.loss_ce: 0.2610 decode.acc_seg: 95.2358 aux.loss_ce: 0.1509 aux.acc_seg: 76.2918 +2024/08/10 03:07:57 - mmengine - INFO - Iter(train) [ 35900/160000] lr: 7.9763e-03 eta: 1 day, 14:39:52 time: 1.1210 data_time: 0.0076 memory: 8704 loss: 0.4164 decode.loss_ce: 0.2597 decode.acc_seg: 89.4581 aux.loss_ce: 0.1567 aux.acc_seg: 83.0891 +2024/08/10 03:08:53 - mmengine - INFO - Iter(train) [ 35950/160000] lr: 7.9735e-03 eta: 1 day, 14:38:55 time: 1.1231 data_time: 0.0082 memory: 8704 loss: 0.5170 decode.loss_ce: 0.3326 decode.acc_seg: 94.9468 aux.loss_ce: 0.1843 aux.acc_seg: 91.9159 +2024/08/10 03:09:49 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 03:09:49 - mmengine - INFO - Iter(train) [ 36000/160000] lr: 7.9706e-03 eta: 1 day, 14:37:58 time: 1.1173 data_time: 0.0059 memory: 8703 loss: 0.4341 decode.loss_ce: 0.2534 decode.acc_seg: 89.7738 aux.loss_ce: 0.1807 aux.acc_seg: 76.8128 +2024/08/10 03:10:44 - mmengine - INFO - Iter(train) [ 36050/160000] lr: 7.9678e-03 eta: 1 day, 14:37:01 time: 1.1116 data_time: 0.0069 memory: 8704 loss: 0.3750 decode.loss_ce: 0.2407 decode.acc_seg: 91.3690 aux.loss_ce: 0.1343 aux.acc_seg: 90.1327 +2024/08/10 03:11:40 - mmengine - INFO - Iter(train) [ 36100/160000] lr: 7.9649e-03 eta: 1 day, 14:36:04 time: 1.1127 data_time: 0.0054 memory: 8703 loss: 0.4864 decode.loss_ce: 0.2879 decode.acc_seg: 89.3078 aux.loss_ce: 0.1985 aux.acc_seg: 85.6442 +2024/08/10 03:12:36 - mmengine - INFO - Iter(train) [ 36150/160000] lr: 7.9621e-03 eta: 1 day, 14:35:07 time: 1.1136 data_time: 0.0060 memory: 8703 loss: 0.3442 decode.loss_ce: 0.2117 decode.acc_seg: 94.7064 aux.loss_ce: 0.1325 aux.acc_seg: 94.3907 +2024/08/10 03:13:32 - mmengine - INFO - Iter(train) [ 36200/160000] lr: 7.9592e-03 eta: 1 day, 14:34:10 time: 1.1182 data_time: 0.0079 memory: 8704 loss: 0.4556 decode.loss_ce: 0.2681 decode.acc_seg: 93.7311 aux.loss_ce: 0.1875 aux.acc_seg: 76.3175 +2024/08/10 03:14:27 - mmengine - INFO - Iter(train) [ 36250/160000] lr: 7.9563e-03 eta: 1 day, 14:33:13 time: 1.1158 data_time: 0.0072 memory: 8704 loss: 0.3384 decode.loss_ce: 0.2075 decode.acc_seg: 84.5384 aux.loss_ce: 0.1309 aux.acc_seg: 79.6633 +2024/08/10 03:15:23 - mmengine - INFO - Iter(train) [ 36300/160000] lr: 7.9535e-03 eta: 1 day, 14:32:15 time: 1.1179 data_time: 0.0079 memory: 8703 loss: 0.4131 decode.loss_ce: 0.2536 decode.acc_seg: 93.5795 aux.loss_ce: 0.1595 aux.acc_seg: 91.8879 +2024/08/10 03:16:19 - mmengine - INFO - Iter(train) [ 36350/160000] lr: 7.9506e-03 eta: 1 day, 14:31:18 time: 1.1164 data_time: 0.0060 memory: 8704 loss: 0.3885 decode.loss_ce: 0.2331 decode.acc_seg: 95.8966 aux.loss_ce: 0.1554 aux.acc_seg: 93.4097 +2024/08/10 03:17:15 - mmengine - INFO - Iter(train) [ 36400/160000] lr: 7.9478e-03 eta: 1 day, 14:30:21 time: 1.1187 data_time: 0.0067 memory: 8704 loss: 0.3165 decode.loss_ce: 0.2002 decode.acc_seg: 94.9594 aux.loss_ce: 0.1162 aux.acc_seg: 92.1693 +2024/08/10 03:18:11 - mmengine - INFO - Iter(train) [ 36450/160000] lr: 7.9449e-03 eta: 1 day, 14:29:24 time: 1.1153 data_time: 0.0077 memory: 8703 loss: 0.3998 decode.loss_ce: 0.2398 decode.acc_seg: 94.2415 aux.loss_ce: 0.1600 aux.acc_seg: 89.7580 +2024/08/10 03:19:07 - mmengine - INFO - Iter(train) [ 36500/160000] lr: 7.9421e-03 eta: 1 day, 14:28:28 time: 1.1175 data_time: 0.0058 memory: 8704 loss: 0.3642 decode.loss_ce: 0.2168 decode.acc_seg: 97.7584 aux.loss_ce: 0.1473 aux.acc_seg: 96.6316 +2024/08/10 03:20:02 - mmengine - INFO - Iter(train) [ 36550/160000] lr: 7.9392e-03 eta: 1 day, 14:27:31 time: 1.1132 data_time: 0.0058 memory: 8704 loss: 0.4036 decode.loss_ce: 0.2480 decode.acc_seg: 90.3713 aux.loss_ce: 0.1556 aux.acc_seg: 88.1586 +2024/08/10 03:20:58 - mmengine - INFO - Iter(train) [ 36600/160000] lr: 7.9363e-03 eta: 1 day, 14:26:33 time: 1.1088 data_time: 0.0068 memory: 8703 loss: 0.4176 decode.loss_ce: 0.2663 decode.acc_seg: 85.5038 aux.loss_ce: 0.1513 aux.acc_seg: 83.6359 +2024/08/10 03:21:54 - mmengine - INFO - Iter(train) [ 36650/160000] lr: 7.9335e-03 eta: 1 day, 14:25:36 time: 1.1123 data_time: 0.0065 memory: 8703 loss: 0.4737 decode.loss_ce: 0.2924 decode.acc_seg: 96.6846 aux.loss_ce: 0.1813 aux.acc_seg: 95.0104 +2024/08/10 03:22:49 - mmengine - INFO - Iter(train) [ 36700/160000] lr: 7.9306e-03 eta: 1 day, 14:24:39 time: 1.1171 data_time: 0.0081 memory: 8703 loss: 0.3861 decode.loss_ce: 0.2359 decode.acc_seg: 91.1936 aux.loss_ce: 0.1502 aux.acc_seg: 88.1631 +2024/08/10 03:23:45 - mmengine - INFO - Iter(train) [ 36750/160000] lr: 7.9278e-03 eta: 1 day, 14:23:42 time: 1.1188 data_time: 0.0073 memory: 8703 loss: 0.5232 decode.loss_ce: 0.3394 decode.acc_seg: 86.5828 aux.loss_ce: 0.1838 aux.acc_seg: 91.9999 +2024/08/10 03:24:41 - mmengine - INFO - Iter(train) [ 36800/160000] lr: 7.9249e-03 eta: 1 day, 14:22:44 time: 1.1153 data_time: 0.0063 memory: 8704 loss: 0.4529 decode.loss_ce: 0.2834 decode.acc_seg: 79.6829 aux.loss_ce: 0.1695 aux.acc_seg: 70.9307 +2024/08/10 03:25:37 - mmengine - INFO - Iter(train) [ 36850/160000] lr: 7.9221e-03 eta: 1 day, 14:21:48 time: 1.1213 data_time: 0.0088 memory: 8703 loss: 0.4419 decode.loss_ce: 0.2731 decode.acc_seg: 95.7242 aux.loss_ce: 0.1689 aux.acc_seg: 93.4721 +2024/08/10 03:26:33 - mmengine - INFO - Iter(train) [ 36900/160000] lr: 7.9192e-03 eta: 1 day, 14:20:51 time: 1.1238 data_time: 0.0100 memory: 8703 loss: 0.5259 decode.loss_ce: 0.3333 decode.acc_seg: 91.6384 aux.loss_ce: 0.1926 aux.acc_seg: 89.6463 +2024/08/10 03:27:28 - mmengine - INFO - Iter(train) [ 36950/160000] lr: 7.9163e-03 eta: 1 day, 14:19:54 time: 1.1108 data_time: 0.0060 memory: 8704 loss: 0.6613 decode.loss_ce: 0.3993 decode.acc_seg: 75.2116 aux.loss_ce: 0.2620 aux.acc_seg: 68.9161 +2024/08/10 03:28:24 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 03:28:24 - mmengine - INFO - Iter(train) [ 37000/160000] lr: 7.9135e-03 eta: 1 day, 14:18:57 time: 1.1131 data_time: 0.0064 memory: 8704 loss: 0.5045 decode.loss_ce: 0.3225 decode.acc_seg: 83.8630 aux.loss_ce: 0.1820 aux.acc_seg: 80.6436 +2024/08/10 03:29:20 - mmengine - INFO - Iter(train) [ 37050/160000] lr: 7.9106e-03 eta: 1 day, 14:17:59 time: 1.1130 data_time: 0.0071 memory: 8704 loss: 0.3267 decode.loss_ce: 0.2020 decode.acc_seg: 94.6863 aux.loss_ce: 0.1247 aux.acc_seg: 92.2195 +2024/08/10 03:30:16 - mmengine - INFO - Iter(train) [ 37100/160000] lr: 7.9078e-03 eta: 1 day, 14:17:02 time: 1.1104 data_time: 0.0072 memory: 8703 loss: 0.3901 decode.loss_ce: 0.2426 decode.acc_seg: 96.5939 aux.loss_ce: 0.1475 aux.acc_seg: 91.8428 +2024/08/10 03:31:11 - mmengine - INFO - Iter(train) [ 37150/160000] lr: 7.9049e-03 eta: 1 day, 14:16:05 time: 1.1153 data_time: 0.0077 memory: 8703 loss: 0.3579 decode.loss_ce: 0.2160 decode.acc_seg: 93.0868 aux.loss_ce: 0.1419 aux.acc_seg: 91.2048 +2024/08/10 03:32:07 - mmengine - INFO - Iter(train) [ 37200/160000] lr: 7.9020e-03 eta: 1 day, 14:15:08 time: 1.1141 data_time: 0.0070 memory: 8703 loss: 0.4962 decode.loss_ce: 0.3264 decode.acc_seg: 86.5417 aux.loss_ce: 0.1699 aux.acc_seg: 82.2187 +2024/08/10 03:33:03 - mmengine - INFO - Iter(train) [ 37250/160000] lr: 7.8992e-03 eta: 1 day, 14:14:11 time: 1.1153 data_time: 0.0076 memory: 8703 loss: 0.5393 decode.loss_ce: 0.3233 decode.acc_seg: 85.4098 aux.loss_ce: 0.2160 aux.acc_seg: 83.5999 +2024/08/10 03:33:59 - mmengine - INFO - Iter(train) [ 37300/160000] lr: 7.8963e-03 eta: 1 day, 14:13:14 time: 1.1130 data_time: 0.0062 memory: 8704 loss: 0.3572 decode.loss_ce: 0.2270 decode.acc_seg: 93.1495 aux.loss_ce: 0.1302 aux.acc_seg: 89.3378 +2024/08/10 03:34:55 - mmengine - INFO - Iter(train) [ 37350/160000] lr: 7.8935e-03 eta: 1 day, 14:12:18 time: 1.1224 data_time: 0.0077 memory: 8703 loss: 0.4637 decode.loss_ce: 0.2851 decode.acc_seg: 84.7036 aux.loss_ce: 0.1787 aux.acc_seg: 75.3284 +2024/08/10 03:35:51 - mmengine - INFO - Iter(train) [ 37400/160000] lr: 7.8906e-03 eta: 1 day, 14:11:21 time: 1.1182 data_time: 0.0082 memory: 8703 loss: 0.5218 decode.loss_ce: 0.3207 decode.acc_seg: 76.1837 aux.loss_ce: 0.2011 aux.acc_seg: 68.1246 +2024/08/10 03:36:46 - mmengine - INFO - Iter(train) [ 37450/160000] lr: 7.8877e-03 eta: 1 day, 14:10:24 time: 1.1115 data_time: 0.0055 memory: 8703 loss: 0.4443 decode.loss_ce: 0.2664 decode.acc_seg: 87.7219 aux.loss_ce: 0.1779 aux.acc_seg: 87.2484 +2024/08/10 03:37:42 - mmengine - INFO - Iter(train) [ 37500/160000] lr: 7.8849e-03 eta: 1 day, 14:09:27 time: 1.1104 data_time: 0.0058 memory: 8703 loss: 0.4121 decode.loss_ce: 0.2561 decode.acc_seg: 95.6706 aux.loss_ce: 0.1559 aux.acc_seg: 95.1745 +2024/08/10 03:38:38 - mmengine - INFO - Iter(train) [ 37550/160000] lr: 7.8820e-03 eta: 1 day, 14:08:30 time: 1.1155 data_time: 0.0060 memory: 8704 loss: 0.5112 decode.loss_ce: 0.3188 decode.acc_seg: 74.2032 aux.loss_ce: 0.1924 aux.acc_seg: 73.6147 +2024/08/10 03:39:34 - mmengine - INFO - Iter(train) [ 37600/160000] lr: 7.8792e-03 eta: 1 day, 14:07:33 time: 1.1190 data_time: 0.0084 memory: 8704 loss: 0.3639 decode.loss_ce: 0.2360 decode.acc_seg: 89.8879 aux.loss_ce: 0.1279 aux.acc_seg: 81.9249 +2024/08/10 03:40:30 - mmengine - INFO - Iter(train) [ 37650/160000] lr: 7.8763e-03 eta: 1 day, 14:06:36 time: 1.1189 data_time: 0.0073 memory: 8704 loss: 0.4109 decode.loss_ce: 0.2564 decode.acc_seg: 85.1447 aux.loss_ce: 0.1545 aux.acc_seg: 69.3925 +2024/08/10 03:41:25 - mmengine - INFO - Iter(train) [ 37700/160000] lr: 7.8734e-03 eta: 1 day, 14:05:39 time: 1.1152 data_time: 0.0069 memory: 8703 loss: 0.3934 decode.loss_ce: 0.2399 decode.acc_seg: 89.3353 aux.loss_ce: 0.1535 aux.acc_seg: 87.7261 +2024/08/10 03:42:21 - mmengine - INFO - Iter(train) [ 37750/160000] lr: 7.8706e-03 eta: 1 day, 14:04:42 time: 1.1191 data_time: 0.0070 memory: 8704 loss: 0.3541 decode.loss_ce: 0.2242 decode.acc_seg: 94.1892 aux.loss_ce: 0.1299 aux.acc_seg: 92.8331 +2024/08/10 03:43:17 - mmengine - INFO - Iter(train) [ 37800/160000] lr: 7.8677e-03 eta: 1 day, 14:03:45 time: 1.1144 data_time: 0.0075 memory: 8704 loss: 0.4676 decode.loss_ce: 0.2887 decode.acc_seg: 83.9066 aux.loss_ce: 0.1790 aux.acc_seg: 74.5293 +2024/08/10 03:44:13 - mmengine - INFO - Iter(train) [ 37850/160000] lr: 7.8649e-03 eta: 1 day, 14:02:49 time: 1.1162 data_time: 0.0068 memory: 8704 loss: 0.3888 decode.loss_ce: 0.2274 decode.acc_seg: 97.2022 aux.loss_ce: 0.1614 aux.acc_seg: 96.5118 +2024/08/10 03:45:09 - mmengine - INFO - Iter(train) [ 37900/160000] lr: 7.8620e-03 eta: 1 day, 14:01:52 time: 1.1163 data_time: 0.0065 memory: 8703 loss: 0.5816 decode.loss_ce: 0.3624 decode.acc_seg: 87.9356 aux.loss_ce: 0.2192 aux.acc_seg: 83.0502 +2024/08/10 03:46:04 - mmengine - INFO - Iter(train) [ 37950/160000] lr: 7.8591e-03 eta: 1 day, 14:00:54 time: 1.1161 data_time: 0.0073 memory: 8703 loss: 0.4679 decode.loss_ce: 0.2985 decode.acc_seg: 88.8407 aux.loss_ce: 0.1694 aux.acc_seg: 87.7826 +2024/08/10 03:47:00 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 03:47:00 - mmengine - INFO - Iter(train) [ 38000/160000] lr: 7.8563e-03 eta: 1 day, 13:59:57 time: 1.1162 data_time: 0.0070 memory: 8703 loss: 0.4031 decode.loss_ce: 0.2490 decode.acc_seg: 91.2725 aux.loss_ce: 0.1540 aux.acc_seg: 84.7852 +2024/08/10 03:47:56 - mmengine - INFO - Iter(train) [ 38050/160000] lr: 7.8534e-03 eta: 1 day, 13:59:01 time: 1.1134 data_time: 0.0060 memory: 8704 loss: 0.4382 decode.loss_ce: 0.2666 decode.acc_seg: 92.7286 aux.loss_ce: 0.1716 aux.acc_seg: 90.9534 +2024/08/10 03:48:52 - mmengine - INFO - Iter(train) [ 38100/160000] lr: 7.8506e-03 eta: 1 day, 13:58:04 time: 1.1119 data_time: 0.0055 memory: 8703 loss: 0.3822 decode.loss_ce: 0.2380 decode.acc_seg: 89.0376 aux.loss_ce: 0.1442 aux.acc_seg: 86.2047 +2024/08/10 03:49:48 - mmengine - INFO - Iter(train) [ 38150/160000] lr: 7.8477e-03 eta: 1 day, 13:57:07 time: 1.1171 data_time: 0.0072 memory: 8704 loss: 0.4494 decode.loss_ce: 0.2822 decode.acc_seg: 93.7631 aux.loss_ce: 0.1672 aux.acc_seg: 93.6952 +2024/08/10 03:50:44 - mmengine - INFO - Iter(train) [ 38200/160000] lr: 7.8448e-03 eta: 1 day, 13:56:10 time: 1.1200 data_time: 0.0079 memory: 8704 loss: 0.5147 decode.loss_ce: 0.3282 decode.acc_seg: 95.1316 aux.loss_ce: 0.1865 aux.acc_seg: 76.9924 +2024/08/10 03:51:39 - mmengine - INFO - Iter(train) [ 38250/160000] lr: 7.8420e-03 eta: 1 day, 13:55:13 time: 1.1170 data_time: 0.0068 memory: 8704 loss: 0.4943 decode.loss_ce: 0.3189 decode.acc_seg: 90.7548 aux.loss_ce: 0.1754 aux.acc_seg: 83.9178 +2024/08/10 03:52:35 - mmengine - INFO - Iter(train) [ 38300/160000] lr: 7.8391e-03 eta: 1 day, 13:54:17 time: 1.1131 data_time: 0.0074 memory: 8703 loss: 0.6027 decode.loss_ce: 0.3869 decode.acc_seg: 95.1014 aux.loss_ce: 0.2158 aux.acc_seg: 90.8567 +2024/08/10 03:53:31 - mmengine - INFO - Iter(train) [ 38350/160000] lr: 7.8363e-03 eta: 1 day, 13:53:20 time: 1.1165 data_time: 0.0071 memory: 8704 loss: 0.5167 decode.loss_ce: 0.3201 decode.acc_seg: 92.8265 aux.loss_ce: 0.1966 aux.acc_seg: 82.7521 +2024/08/10 03:54:27 - mmengine - INFO - Iter(train) [ 38400/160000] lr: 7.8334e-03 eta: 1 day, 13:52:23 time: 1.1194 data_time: 0.0077 memory: 8705 loss: 0.4821 decode.loss_ce: 0.2968 decode.acc_seg: 90.6026 aux.loss_ce: 0.1854 aux.acc_seg: 79.3561 +2024/08/10 03:55:23 - mmengine - INFO - Iter(train) [ 38450/160000] lr: 7.8305e-03 eta: 1 day, 13:51:26 time: 1.1106 data_time: 0.0050 memory: 8703 loss: 0.5380 decode.loss_ce: 0.3208 decode.acc_seg: 87.4718 aux.loss_ce: 0.2171 aux.acc_seg: 81.1909 +2024/08/10 03:56:18 - mmengine - INFO - Iter(train) [ 38500/160000] lr: 7.8277e-03 eta: 1 day, 13:50:29 time: 1.1152 data_time: 0.0081 memory: 8704 loss: 0.4237 decode.loss_ce: 0.2571 decode.acc_seg: 91.4764 aux.loss_ce: 0.1667 aux.acc_seg: 89.2318 +2024/08/10 03:57:14 - mmengine - INFO - Iter(train) [ 38550/160000] lr: 7.8248e-03 eta: 1 day, 13:49:33 time: 1.1200 data_time: 0.0057 memory: 8703 loss: 0.4915 decode.loss_ce: 0.3078 decode.acc_seg: 95.6301 aux.loss_ce: 0.1838 aux.acc_seg: 92.7431 +2024/08/10 03:58:10 - mmengine - INFO - Iter(train) [ 38600/160000] lr: 7.8219e-03 eta: 1 day, 13:48:36 time: 1.1136 data_time: 0.0061 memory: 8704 loss: 0.3694 decode.loss_ce: 0.2324 decode.acc_seg: 97.4333 aux.loss_ce: 0.1370 aux.acc_seg: 97.1614 +2024/08/10 03:59:06 - mmengine - INFO - Iter(train) [ 38650/160000] lr: 7.8191e-03 eta: 1 day, 13:47:40 time: 1.1105 data_time: 0.0054 memory: 8704 loss: 0.6156 decode.loss_ce: 0.3892 decode.acc_seg: 96.1406 aux.loss_ce: 0.2264 aux.acc_seg: 95.6696 +2024/08/10 04:00:02 - mmengine - INFO - Iter(train) [ 38700/160000] lr: 7.8162e-03 eta: 1 day, 13:46:43 time: 1.1164 data_time: 0.0077 memory: 8703 loss: 0.4507 decode.loss_ce: 0.2750 decode.acc_seg: 89.6628 aux.loss_ce: 0.1757 aux.acc_seg: 87.5186 +2024/08/10 04:00:58 - mmengine - INFO - Iter(train) [ 38750/160000] lr: 7.8134e-03 eta: 1 day, 13:45:46 time: 1.1171 data_time: 0.0061 memory: 8703 loss: 0.5416 decode.loss_ce: 0.3377 decode.acc_seg: 88.6214 aux.loss_ce: 0.2040 aux.acc_seg: 83.8161 +2024/08/10 04:01:54 - mmengine - INFO - Iter(train) [ 38800/160000] lr: 7.8105e-03 eta: 1 day, 13:44:49 time: 1.1117 data_time: 0.0069 memory: 8703 loss: 0.4372 decode.loss_ce: 0.2805 decode.acc_seg: 88.0177 aux.loss_ce: 0.1567 aux.acc_seg: 84.9733 +2024/08/10 04:02:49 - mmengine - INFO - Iter(train) [ 38850/160000] lr: 7.8076e-03 eta: 1 day, 13:43:52 time: 1.1194 data_time: 0.0077 memory: 8703 loss: 0.5281 decode.loss_ce: 0.3380 decode.acc_seg: 88.1551 aux.loss_ce: 0.1901 aux.acc_seg: 84.0751 +2024/08/10 04:03:45 - mmengine - INFO - Iter(train) [ 38900/160000] lr: 7.8048e-03 eta: 1 day, 13:42:55 time: 1.1186 data_time: 0.0079 memory: 8704 loss: 0.4128 decode.loss_ce: 0.2610 decode.acc_seg: 94.8483 aux.loss_ce: 0.1518 aux.acc_seg: 94.9092 +2024/08/10 04:04:41 - mmengine - INFO - Iter(train) [ 38950/160000] lr: 7.8019e-03 eta: 1 day, 13:41:58 time: 1.1165 data_time: 0.0083 memory: 8704 loss: 0.6879 decode.loss_ce: 0.4307 decode.acc_seg: 90.6008 aux.loss_ce: 0.2573 aux.acc_seg: 84.0654 +2024/08/10 04:05:37 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 04:05:37 - mmengine - INFO - Iter(train) [ 39000/160000] lr: 7.7990e-03 eta: 1 day, 13:41:01 time: 1.1162 data_time: 0.0064 memory: 8704 loss: 0.7568 decode.loss_ce: 0.4869 decode.acc_seg: 95.7514 aux.loss_ce: 0.2699 aux.acc_seg: 94.0439 +2024/08/10 04:06:33 - mmengine - INFO - Iter(train) [ 39050/160000] lr: 7.7962e-03 eta: 1 day, 13:40:05 time: 1.1171 data_time: 0.0064 memory: 8704 loss: 0.5558 decode.loss_ce: 0.3364 decode.acc_seg: 96.1372 aux.loss_ce: 0.2194 aux.acc_seg: 92.9110 +2024/08/10 04:07:29 - mmengine - INFO - Iter(train) [ 39100/160000] lr: 7.7933e-03 eta: 1 day, 13:39:08 time: 1.1211 data_time: 0.0081 memory: 8703 loss: 0.5612 decode.loss_ce: 0.3321 decode.acc_seg: 92.4470 aux.loss_ce: 0.2291 aux.acc_seg: 89.7474 +2024/08/10 04:08:24 - mmengine - INFO - Iter(train) [ 39150/160000] lr: 7.7904e-03 eta: 1 day, 13:38:12 time: 1.1165 data_time: 0.0079 memory: 8703 loss: 0.4524 decode.loss_ce: 0.2673 decode.acc_seg: 95.2127 aux.loss_ce: 0.1851 aux.acc_seg: 95.0039 +2024/08/10 04:09:20 - mmengine - INFO - Iter(train) [ 39200/160000] lr: 7.7876e-03 eta: 1 day, 13:37:15 time: 1.1138 data_time: 0.0063 memory: 8703 loss: 0.3790 decode.loss_ce: 0.2361 decode.acc_seg: 95.0578 aux.loss_ce: 0.1428 aux.acc_seg: 92.2745 +2024/08/10 04:10:16 - mmengine - INFO - Iter(train) [ 39250/160000] lr: 7.7847e-03 eta: 1 day, 13:36:18 time: 1.1186 data_time: 0.0081 memory: 8703 loss: 0.2592 decode.loss_ce: 0.1561 decode.acc_seg: 96.7700 aux.loss_ce: 0.1032 aux.acc_seg: 97.1226 +2024/08/10 04:11:12 - mmengine - INFO - Iter(train) [ 39300/160000] lr: 7.7819e-03 eta: 1 day, 13:35:21 time: 1.1184 data_time: 0.0080 memory: 8703 loss: 0.4170 decode.loss_ce: 0.2509 decode.acc_seg: 93.4608 aux.loss_ce: 0.1661 aux.acc_seg: 90.9594 +2024/08/10 04:12:08 - mmengine - INFO - Iter(train) [ 39350/160000] lr: 7.7790e-03 eta: 1 day, 13:34:24 time: 1.1148 data_time: 0.0066 memory: 8704 loss: 0.4468 decode.loss_ce: 0.2838 decode.acc_seg: 93.0854 aux.loss_ce: 0.1629 aux.acc_seg: 92.6584 +2024/08/10 04:13:03 - mmengine - INFO - Iter(train) [ 39400/160000] lr: 7.7761e-03 eta: 1 day, 13:33:27 time: 1.1158 data_time: 0.0068 memory: 8704 loss: 0.3654 decode.loss_ce: 0.2241 decode.acc_seg: 94.3380 aux.loss_ce: 0.1414 aux.acc_seg: 93.9432 +2024/08/10 04:13:59 - mmengine - INFO - Iter(train) [ 39450/160000] lr: 7.7733e-03 eta: 1 day, 13:32:31 time: 1.1204 data_time: 0.0080 memory: 8704 loss: 0.5384 decode.loss_ce: 0.3208 decode.acc_seg: 95.0695 aux.loss_ce: 0.2176 aux.acc_seg: 93.7993 +2024/08/10 04:14:55 - mmengine - INFO - Iter(train) [ 39500/160000] lr: 7.7704e-03 eta: 1 day, 13:31:34 time: 1.1165 data_time: 0.0063 memory: 8704 loss: 0.4826 decode.loss_ce: 0.3107 decode.acc_seg: 88.2463 aux.loss_ce: 0.1719 aux.acc_seg: 80.8710 +2024/08/10 04:15:51 - mmengine - INFO - Iter(train) [ 39550/160000] lr: 7.7675e-03 eta: 1 day, 13:30:37 time: 1.1139 data_time: 0.0068 memory: 8703 loss: 0.4230 decode.loss_ce: 0.2576 decode.acc_seg: 95.0401 aux.loss_ce: 0.1654 aux.acc_seg: 86.5663 +2024/08/10 04:16:47 - mmengine - INFO - Iter(train) [ 39600/160000] lr: 7.7647e-03 eta: 1 day, 13:29:40 time: 1.1165 data_time: 0.0073 memory: 8704 loss: 0.4907 decode.loss_ce: 0.2915 decode.acc_seg: 72.9904 aux.loss_ce: 0.1992 aux.acc_seg: 60.1650 +2024/08/10 04:17:42 - mmengine - INFO - Iter(train) [ 39650/160000] lr: 7.7618e-03 eta: 1 day, 13:28:43 time: 1.1121 data_time: 0.0074 memory: 8704 loss: 0.4041 decode.loss_ce: 0.2259 decode.acc_seg: 98.1078 aux.loss_ce: 0.1781 aux.acc_seg: 94.8985 +2024/08/10 04:18:38 - mmengine - INFO - Iter(train) [ 39700/160000] lr: 7.7589e-03 eta: 1 day, 13:27:46 time: 1.1158 data_time: 0.0062 memory: 8704 loss: 0.6264 decode.loss_ce: 0.4248 decode.acc_seg: 91.3311 aux.loss_ce: 0.2015 aux.acc_seg: 90.7190 +2024/08/10 04:19:34 - mmengine - INFO - Iter(train) [ 39750/160000] lr: 7.7561e-03 eta: 1 day, 13:26:49 time: 1.1144 data_time: 0.0060 memory: 8703 loss: 0.5807 decode.loss_ce: 0.3435 decode.acc_seg: 95.2113 aux.loss_ce: 0.2372 aux.acc_seg: 94.7976 +2024/08/10 04:20:30 - mmengine - INFO - Iter(train) [ 39800/160000] lr: 7.7532e-03 eta: 1 day, 13:25:52 time: 1.1149 data_time: 0.0064 memory: 8704 loss: 0.4286 decode.loss_ce: 0.2665 decode.acc_seg: 92.7564 aux.loss_ce: 0.1621 aux.acc_seg: 89.1329 +2024/08/10 04:21:26 - mmengine - INFO - Iter(train) [ 39850/160000] lr: 7.7503e-03 eta: 1 day, 13:24:55 time: 1.1132 data_time: 0.0052 memory: 8703 loss: 0.6198 decode.loss_ce: 0.3695 decode.acc_seg: 95.6116 aux.loss_ce: 0.2504 aux.acc_seg: 86.6073 +2024/08/10 04:22:21 - mmengine - INFO - Iter(train) [ 39900/160000] lr: 7.7475e-03 eta: 1 day, 13:23:59 time: 1.1184 data_time: 0.0083 memory: 8704 loss: 0.4845 decode.loss_ce: 0.3039 decode.acc_seg: 88.1883 aux.loss_ce: 0.1806 aux.acc_seg: 82.7231 +2024/08/10 04:23:17 - mmengine - INFO - Iter(train) [ 39950/160000] lr: 7.7446e-03 eta: 1 day, 13:23:02 time: 1.1196 data_time: 0.0085 memory: 8703 loss: 0.4378 decode.loss_ce: 0.2728 decode.acc_seg: 95.5621 aux.loss_ce: 0.1650 aux.acc_seg: 94.5719 +2024/08/10 04:24:13 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 04:24:13 - mmengine - INFO - Iter(train) [ 40000/160000] lr: 7.7417e-03 eta: 1 day, 13:22:06 time: 1.1144 data_time: 0.0067 memory: 8703 loss: 0.3708 decode.loss_ce: 0.2212 decode.acc_seg: 91.4705 aux.loss_ce: 0.1497 aux.acc_seg: 87.5771 +2024/08/10 04:25:09 - mmengine - INFO - Iter(train) [ 40050/160000] lr: 7.7389e-03 eta: 1 day, 13:21:09 time: 1.1160 data_time: 0.0080 memory: 8703 loss: 0.4445 decode.loss_ce: 0.2913 decode.acc_seg: 94.6682 aux.loss_ce: 0.1532 aux.acc_seg: 91.4920 +2024/08/10 04:26:05 - mmengine - INFO - Iter(train) [ 40100/160000] lr: 7.7360e-03 eta: 1 day, 13:20:12 time: 1.1115 data_time: 0.0053 memory: 8704 loss: 0.3566 decode.loss_ce: 0.2189 decode.acc_seg: 96.8307 aux.loss_ce: 0.1376 aux.acc_seg: 95.2963 +2024/08/10 04:27:00 - mmengine - INFO - Iter(train) [ 40150/160000] lr: 7.7332e-03 eta: 1 day, 13:19:15 time: 1.1218 data_time: 0.0074 memory: 8704 loss: 0.4525 decode.loss_ce: 0.2676 decode.acc_seg: 85.1001 aux.loss_ce: 0.1849 aux.acc_seg: 69.5009 +2024/08/10 04:27:56 - mmengine - INFO - Iter(train) [ 40200/160000] lr: 7.7303e-03 eta: 1 day, 13:18:18 time: 1.1173 data_time: 0.0086 memory: 8703 loss: 0.4152 decode.loss_ce: 0.2632 decode.acc_seg: 93.1487 aux.loss_ce: 0.1520 aux.acc_seg: 91.8165 +2024/08/10 04:28:52 - mmengine - INFO - Iter(train) [ 40250/160000] lr: 7.7274e-03 eta: 1 day, 13:17:21 time: 1.1188 data_time: 0.0077 memory: 8703 loss: 0.4403 decode.loss_ce: 0.2643 decode.acc_seg: 87.5584 aux.loss_ce: 0.1760 aux.acc_seg: 77.4681 +2024/08/10 04:29:48 - mmengine - INFO - Iter(train) [ 40300/160000] lr: 7.7246e-03 eta: 1 day, 13:16:24 time: 1.1168 data_time: 0.0066 memory: 8704 loss: 0.4083 decode.loss_ce: 0.2601 decode.acc_seg: 88.4448 aux.loss_ce: 0.1482 aux.acc_seg: 83.3741 +2024/08/10 04:30:44 - mmengine - INFO - Iter(train) [ 40350/160000] lr: 7.7217e-03 eta: 1 day, 13:15:28 time: 1.1112 data_time: 0.0057 memory: 8704 loss: 0.3829 decode.loss_ce: 0.2440 decode.acc_seg: 94.9930 aux.loss_ce: 0.1390 aux.acc_seg: 92.5698 +2024/08/10 04:31:40 - mmengine - INFO - Iter(train) [ 40400/160000] lr: 7.7188e-03 eta: 1 day, 13:14:31 time: 1.1179 data_time: 0.0066 memory: 8704 loss: 0.4998 decode.loss_ce: 0.3165 decode.acc_seg: 89.6708 aux.loss_ce: 0.1833 aux.acc_seg: 82.1120 +2024/08/10 04:32:35 - mmengine - INFO - Iter(train) [ 40450/160000] lr: 7.7160e-03 eta: 1 day, 13:13:34 time: 1.1144 data_time: 0.0068 memory: 8703 loss: 0.4536 decode.loss_ce: 0.2759 decode.acc_seg: 95.0865 aux.loss_ce: 0.1777 aux.acc_seg: 94.2816 +2024/08/10 04:33:31 - mmengine - INFO - Iter(train) [ 40500/160000] lr: 7.7131e-03 eta: 1 day, 13:12:37 time: 1.1148 data_time: 0.0073 memory: 8704 loss: 0.5817 decode.loss_ce: 0.3706 decode.acc_seg: 95.7684 aux.loss_ce: 0.2110 aux.acc_seg: 78.4333 +2024/08/10 04:34:27 - mmengine - INFO - Iter(train) [ 40550/160000] lr: 7.7102e-03 eta: 1 day, 13:11:40 time: 1.1135 data_time: 0.0068 memory: 8703 loss: 0.3877 decode.loss_ce: 0.2406 decode.acc_seg: 91.0979 aux.loss_ce: 0.1471 aux.acc_seg: 87.8436 +2024/08/10 04:35:23 - mmengine - INFO - Iter(train) [ 40600/160000] lr: 7.7074e-03 eta: 1 day, 13:10:43 time: 1.1154 data_time: 0.0078 memory: 8703 loss: 0.4115 decode.loss_ce: 0.2615 decode.acc_seg: 91.0129 aux.loss_ce: 0.1500 aux.acc_seg: 87.0125 +2024/08/10 04:36:18 - mmengine - INFO - Iter(train) [ 40650/160000] lr: 7.7045e-03 eta: 1 day, 13:09:46 time: 1.1165 data_time: 0.0069 memory: 8704 loss: 0.3863 decode.loss_ce: 0.2431 decode.acc_seg: 96.8021 aux.loss_ce: 0.1433 aux.acc_seg: 92.1535 +2024/08/10 04:37:14 - mmengine - INFO - Iter(train) [ 40700/160000] lr: 7.7016e-03 eta: 1 day, 13:08:50 time: 1.1156 data_time: 0.0073 memory: 8704 loss: 0.3894 decode.loss_ce: 0.2556 decode.acc_seg: 94.9332 aux.loss_ce: 0.1338 aux.acc_seg: 93.9131 +2024/08/10 04:38:10 - mmengine - INFO - Iter(train) [ 40750/160000] lr: 7.6988e-03 eta: 1 day, 13:07:53 time: 1.1122 data_time: 0.0060 memory: 8704 loss: 0.5778 decode.loss_ce: 0.3796 decode.acc_seg: 96.9043 aux.loss_ce: 0.1982 aux.acc_seg: 96.0982 +2024/08/10 04:39:06 - mmengine - INFO - Iter(train) [ 40800/160000] lr: 7.6959e-03 eta: 1 day, 13:06:56 time: 1.1169 data_time: 0.0066 memory: 8703 loss: 0.4822 decode.loss_ce: 0.3022 decode.acc_seg: 93.1140 aux.loss_ce: 0.1800 aux.acc_seg: 88.3880 +2024/08/10 04:40:02 - mmengine - INFO - Iter(train) [ 40850/160000] lr: 7.6930e-03 eta: 1 day, 13:05:59 time: 1.1165 data_time: 0.0078 memory: 8703 loss: 0.4159 decode.loss_ce: 0.2604 decode.acc_seg: 95.4523 aux.loss_ce: 0.1555 aux.acc_seg: 95.0849 +2024/08/10 04:40:57 - mmengine - INFO - Iter(train) [ 40900/160000] lr: 7.6901e-03 eta: 1 day, 13:05:02 time: 1.1180 data_time: 0.0069 memory: 8704 loss: 0.3318 decode.loss_ce: 0.2132 decode.acc_seg: 86.4482 aux.loss_ce: 0.1186 aux.acc_seg: 79.6812 +2024/08/10 04:41:53 - mmengine - INFO - Iter(train) [ 40950/160000] lr: 7.6873e-03 eta: 1 day, 13:04:05 time: 1.1181 data_time: 0.0065 memory: 8703 loss: 0.4263 decode.loss_ce: 0.2638 decode.acc_seg: 90.6832 aux.loss_ce: 0.1625 aux.acc_seg: 86.7903 +2024/08/10 04:42:49 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 04:42:49 - mmengine - INFO - Iter(train) [ 41000/160000] lr: 7.6844e-03 eta: 1 day, 13:03:09 time: 1.1163 data_time: 0.0077 memory: 8703 loss: 0.5193 decode.loss_ce: 0.3203 decode.acc_seg: 94.9902 aux.loss_ce: 0.1990 aux.acc_seg: 94.1817 +2024/08/10 04:43:45 - mmengine - INFO - Iter(train) [ 41050/160000] lr: 7.6815e-03 eta: 1 day, 13:02:12 time: 1.1182 data_time: 0.0079 memory: 8703 loss: 0.5964 decode.loss_ce: 0.3695 decode.acc_seg: 65.4532 aux.loss_ce: 0.2269 aux.acc_seg: 59.9526 +2024/08/10 04:44:41 - mmengine - INFO - Iter(train) [ 41100/160000] lr: 7.6787e-03 eta: 1 day, 13:01:15 time: 1.1176 data_time: 0.0075 memory: 8703 loss: 0.5040 decode.loss_ce: 0.2972 decode.acc_seg: 90.2695 aux.loss_ce: 0.2067 aux.acc_seg: 85.4166 +2024/08/10 04:45:36 - mmengine - INFO - Iter(train) [ 41150/160000] lr: 7.6758e-03 eta: 1 day, 13:00:19 time: 1.1175 data_time: 0.0085 memory: 8703 loss: 0.7639 decode.loss_ce: 0.4740 decode.acc_seg: 95.3692 aux.loss_ce: 0.2900 aux.acc_seg: 92.0541 +2024/08/10 04:46:32 - mmengine - INFO - Iter(train) [ 41200/160000] lr: 7.6729e-03 eta: 1 day, 12:59:22 time: 1.1191 data_time: 0.0087 memory: 8704 loss: 0.2970 decode.loss_ce: 0.1869 decode.acc_seg: 91.0554 aux.loss_ce: 0.1100 aux.acc_seg: 89.3302 +2024/08/10 04:47:28 - mmengine - INFO - Iter(train) [ 41250/160000] lr: 7.6701e-03 eta: 1 day, 12:58:26 time: 1.1135 data_time: 0.0067 memory: 8703 loss: 0.4098 decode.loss_ce: 0.2451 decode.acc_seg: 90.9237 aux.loss_ce: 0.1647 aux.acc_seg: 88.2062 +2024/08/10 04:48:24 - mmengine - INFO - Iter(train) [ 41300/160000] lr: 7.6672e-03 eta: 1 day, 12:57:29 time: 1.1155 data_time: 0.0069 memory: 8704 loss: 0.3355 decode.loss_ce: 0.1957 decode.acc_seg: 86.1041 aux.loss_ce: 0.1398 aux.acc_seg: 66.1836 +2024/08/10 04:49:20 - mmengine - INFO - Iter(train) [ 41350/160000] lr: 7.6643e-03 eta: 1 day, 12:56:32 time: 1.1191 data_time: 0.0072 memory: 8703 loss: 0.6367 decode.loss_ce: 0.4037 decode.acc_seg: 89.0479 aux.loss_ce: 0.2330 aux.acc_seg: 88.5699 +2024/08/10 04:50:15 - mmengine - INFO - Iter(train) [ 41400/160000] lr: 7.6615e-03 eta: 1 day, 12:55:35 time: 1.1123 data_time: 0.0054 memory: 8704 loss: 0.3663 decode.loss_ce: 0.2195 decode.acc_seg: 92.2015 aux.loss_ce: 0.1468 aux.acc_seg: 89.3276 +2024/08/10 04:51:11 - mmengine - INFO - Iter(train) [ 41450/160000] lr: 7.6586e-03 eta: 1 day, 12:54:38 time: 1.1201 data_time: 0.0076 memory: 8703 loss: 0.7464 decode.loss_ce: 0.4874 decode.acc_seg: 88.6623 aux.loss_ce: 0.2590 aux.acc_seg: 80.6874 +2024/08/10 04:52:07 - mmengine - INFO - Iter(train) [ 41500/160000] lr: 7.6557e-03 eta: 1 day, 12:53:42 time: 1.1167 data_time: 0.0062 memory: 8703 loss: 0.5699 decode.loss_ce: 0.3613 decode.acc_seg: 90.4006 aux.loss_ce: 0.2086 aux.acc_seg: 80.3903 +2024/08/10 04:53:03 - mmengine - INFO - Iter(train) [ 41550/160000] lr: 7.6529e-03 eta: 1 day, 12:52:45 time: 1.1179 data_time: 0.0076 memory: 8703 loss: 0.4409 decode.loss_ce: 0.2642 decode.acc_seg: 93.4881 aux.loss_ce: 0.1766 aux.acc_seg: 90.0568 +2024/08/10 04:53:59 - mmengine - INFO - Iter(train) [ 41600/160000] lr: 7.6500e-03 eta: 1 day, 12:51:49 time: 1.1195 data_time: 0.0075 memory: 8703 loss: 0.3826 decode.loss_ce: 0.2326 decode.acc_seg: 94.0802 aux.loss_ce: 0.1500 aux.acc_seg: 81.8239 +2024/08/10 04:54:55 - mmengine - INFO - Iter(train) [ 41650/160000] lr: 7.6471e-03 eta: 1 day, 12:50:52 time: 1.1140 data_time: 0.0060 memory: 8703 loss: 0.5079 decode.loss_ce: 0.3066 decode.acc_seg: 91.5290 aux.loss_ce: 0.2013 aux.acc_seg: 78.5887 +2024/08/10 04:55:51 - mmengine - INFO - Iter(train) [ 41700/160000] lr: 7.6442e-03 eta: 1 day, 12:49:55 time: 1.1189 data_time: 0.0072 memory: 8704 loss: 0.4336 decode.loss_ce: 0.2704 decode.acc_seg: 95.2632 aux.loss_ce: 0.1632 aux.acc_seg: 89.8133 +2024/08/10 04:56:46 - mmengine - INFO - Iter(train) [ 41750/160000] lr: 7.6414e-03 eta: 1 day, 12:48:59 time: 1.1190 data_time: 0.0064 memory: 8705 loss: 0.6450 decode.loss_ce: 0.4090 decode.acc_seg: 91.6058 aux.loss_ce: 0.2360 aux.acc_seg: 91.1084 +2024/08/10 04:57:42 - mmengine - INFO - Iter(train) [ 41800/160000] lr: 7.6385e-03 eta: 1 day, 12:48:02 time: 1.1134 data_time: 0.0071 memory: 8704 loss: 0.3561 decode.loss_ce: 0.2192 decode.acc_seg: 94.1125 aux.loss_ce: 0.1369 aux.acc_seg: 92.4102 +2024/08/10 04:58:38 - mmengine - INFO - Iter(train) [ 41850/160000] lr: 7.6356e-03 eta: 1 day, 12:47:05 time: 1.1190 data_time: 0.0069 memory: 8704 loss: 0.5168 decode.loss_ce: 0.3143 decode.acc_seg: 92.3613 aux.loss_ce: 0.2025 aux.acc_seg: 88.8419 +2024/08/10 04:59:34 - mmengine - INFO - Iter(train) [ 41900/160000] lr: 7.6328e-03 eta: 1 day, 12:46:08 time: 1.1106 data_time: 0.0062 memory: 8703 loss: 0.5512 decode.loss_ce: 0.3423 decode.acc_seg: 89.5089 aux.loss_ce: 0.2090 aux.acc_seg: 87.5401 +2024/08/10 05:00:29 - mmengine - INFO - Iter(train) [ 41950/160000] lr: 7.6299e-03 eta: 1 day, 12:45:12 time: 1.1177 data_time: 0.0076 memory: 8704 loss: 0.3235 decode.loss_ce: 0.1873 decode.acc_seg: 87.2653 aux.loss_ce: 0.1362 aux.acc_seg: 83.5309 +2024/08/10 05:01:25 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 05:01:25 - mmengine - INFO - Iter(train) [ 42000/160000] lr: 7.6270e-03 eta: 1 day, 12:44:15 time: 1.1124 data_time: 0.0054 memory: 8703 loss: 0.3395 decode.loss_ce: 0.2114 decode.acc_seg: 94.9677 aux.loss_ce: 0.1281 aux.acc_seg: 92.9972 +2024/08/10 05:02:21 - mmengine - INFO - Iter(train) [ 42050/160000] lr: 7.6242e-03 eta: 1 day, 12:43:18 time: 1.1143 data_time: 0.0075 memory: 8703 loss: 0.3753 decode.loss_ce: 0.2299 decode.acc_seg: 92.6491 aux.loss_ce: 0.1453 aux.acc_seg: 92.7097 +2024/08/10 05:03:17 - mmengine - INFO - Iter(train) [ 42100/160000] lr: 7.6213e-03 eta: 1 day, 12:42:22 time: 1.1143 data_time: 0.0049 memory: 8703 loss: 0.3405 decode.loss_ce: 0.2090 decode.acc_seg: 92.3618 aux.loss_ce: 0.1315 aux.acc_seg: 85.3263 +2024/08/10 05:04:13 - mmengine - INFO - Iter(train) [ 42150/160000] lr: 7.6184e-03 eta: 1 day, 12:41:25 time: 1.1142 data_time: 0.0063 memory: 8704 loss: 0.4403 decode.loss_ce: 0.2692 decode.acc_seg: 94.4102 aux.loss_ce: 0.1711 aux.acc_seg: 94.0891 +2024/08/10 05:05:08 - mmengine - INFO - Iter(train) [ 42200/160000] lr: 7.6155e-03 eta: 1 day, 12:40:28 time: 1.1137 data_time: 0.0072 memory: 8704 loss: 0.3848 decode.loss_ce: 0.2329 decode.acc_seg: 95.8122 aux.loss_ce: 0.1518 aux.acc_seg: 95.1356 +2024/08/10 05:06:04 - mmengine - INFO - Iter(train) [ 42250/160000] lr: 7.6127e-03 eta: 1 day, 12:39:31 time: 1.1128 data_time: 0.0070 memory: 8704 loss: 0.5795 decode.loss_ce: 0.3751 decode.acc_seg: 96.1031 aux.loss_ce: 0.2043 aux.acc_seg: 95.3775 +2024/08/10 05:07:00 - mmengine - INFO - Iter(train) [ 42300/160000] lr: 7.6098e-03 eta: 1 day, 12:38:34 time: 1.1185 data_time: 0.0077 memory: 8703 loss: 0.4231 decode.loss_ce: 0.2546 decode.acc_seg: 92.2596 aux.loss_ce: 0.1685 aux.acc_seg: 87.7561 +2024/08/10 05:07:56 - mmengine - INFO - Iter(train) [ 42350/160000] lr: 7.6069e-03 eta: 1 day, 12:37:37 time: 1.1112 data_time: 0.0062 memory: 8703 loss: 0.4091 decode.loss_ce: 0.2518 decode.acc_seg: 86.2755 aux.loss_ce: 0.1573 aux.acc_seg: 86.0056 +2024/08/10 05:08:51 - mmengine - INFO - Iter(train) [ 42400/160000] lr: 7.6041e-03 eta: 1 day, 12:36:40 time: 1.1171 data_time: 0.0076 memory: 8704 loss: 0.3156 decode.loss_ce: 0.1899 decode.acc_seg: 95.5640 aux.loss_ce: 0.1257 aux.acc_seg: 93.5698 +2024/08/10 05:09:47 - mmengine - INFO - Iter(train) [ 42450/160000] lr: 7.6012e-03 eta: 1 day, 12:35:44 time: 1.1134 data_time: 0.0064 memory: 8704 loss: 0.3710 decode.loss_ce: 0.2261 decode.acc_seg: 88.4945 aux.loss_ce: 0.1449 aux.acc_seg: 82.7152 +2024/08/10 05:10:43 - mmengine - INFO - Iter(train) [ 42500/160000] lr: 7.5983e-03 eta: 1 day, 12:34:47 time: 1.1168 data_time: 0.0082 memory: 8704 loss: 0.3753 decode.loss_ce: 0.2220 decode.acc_seg: 92.3155 aux.loss_ce: 0.1533 aux.acc_seg: 90.2925 +2024/08/10 05:11:39 - mmengine - INFO - Iter(train) [ 42550/160000] lr: 7.5954e-03 eta: 1 day, 12:33:51 time: 1.1194 data_time: 0.0076 memory: 8703 loss: 0.3697 decode.loss_ce: 0.2341 decode.acc_seg: 91.7126 aux.loss_ce: 0.1356 aux.acc_seg: 91.3170 +2024/08/10 05:12:35 - mmengine - INFO - Iter(train) [ 42600/160000] lr: 7.5926e-03 eta: 1 day, 12:32:55 time: 1.1168 data_time: 0.0076 memory: 8703 loss: 0.5190 decode.loss_ce: 0.3052 decode.acc_seg: 80.7343 aux.loss_ce: 0.2138 aux.acc_seg: 68.6249 +2024/08/10 05:13:31 - mmengine - INFO - Iter(train) [ 42650/160000] lr: 7.5897e-03 eta: 1 day, 12:31:58 time: 1.1144 data_time: 0.0075 memory: 8704 loss: 0.4225 decode.loss_ce: 0.2675 decode.acc_seg: 91.9519 aux.loss_ce: 0.1550 aux.acc_seg: 91.3149 +2024/08/10 05:14:26 - mmengine - INFO - Iter(train) [ 42700/160000] lr: 7.5868e-03 eta: 1 day, 12:31:01 time: 1.1178 data_time: 0.0064 memory: 8704 loss: 0.4911 decode.loss_ce: 0.2848 decode.acc_seg: 81.5238 aux.loss_ce: 0.2063 aux.acc_seg: 78.1767 +2024/08/10 05:15:22 - mmengine - INFO - Iter(train) [ 42750/160000] lr: 7.5840e-03 eta: 1 day, 12:30:04 time: 1.1203 data_time: 0.0081 memory: 8703 loss: 0.3592 decode.loss_ce: 0.2275 decode.acc_seg: 97.5775 aux.loss_ce: 0.1317 aux.acc_seg: 96.6209 +2024/08/10 05:16:18 - mmengine - INFO - Iter(train) [ 42800/160000] lr: 7.5811e-03 eta: 1 day, 12:29:08 time: 1.1192 data_time: 0.0063 memory: 8703 loss: 0.5589 decode.loss_ce: 0.3327 decode.acc_seg: 73.8818 aux.loss_ce: 0.2263 aux.acc_seg: 69.4440 +2024/08/10 05:17:14 - mmengine - INFO - Iter(train) [ 42850/160000] lr: 7.5782e-03 eta: 1 day, 12:28:11 time: 1.1200 data_time: 0.0084 memory: 8703 loss: 0.3918 decode.loss_ce: 0.2305 decode.acc_seg: 89.9996 aux.loss_ce: 0.1613 aux.acc_seg: 83.5670 +2024/08/10 05:18:10 - mmengine - INFO - Iter(train) [ 42900/160000] lr: 7.5753e-03 eta: 1 day, 12:27:15 time: 1.1210 data_time: 0.0069 memory: 8703 loss: 0.3704 decode.loss_ce: 0.2187 decode.acc_seg: 92.7458 aux.loss_ce: 0.1517 aux.acc_seg: 85.9108 +2024/08/10 05:19:06 - mmengine - INFO - Iter(train) [ 42950/160000] lr: 7.5725e-03 eta: 1 day, 12:26:18 time: 1.1126 data_time: 0.0067 memory: 8704 loss: 0.3955 decode.loss_ce: 0.2351 decode.acc_seg: 93.7500 aux.loss_ce: 0.1604 aux.acc_seg: 93.5396 +2024/08/10 05:20:02 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 05:20:02 - mmengine - INFO - Iter(train) [ 43000/160000] lr: 7.5696e-03 eta: 1 day, 12:25:22 time: 1.1176 data_time: 0.0066 memory: 8703 loss: 0.5246 decode.loss_ce: 0.3026 decode.acc_seg: 95.7608 aux.loss_ce: 0.2220 aux.acc_seg: 94.5287 +2024/08/10 05:20:58 - mmengine - INFO - Iter(train) [ 43050/160000] lr: 7.5667e-03 eta: 1 day, 12:24:25 time: 1.1172 data_time: 0.0076 memory: 8703 loss: 0.3405 decode.loss_ce: 0.2107 decode.acc_seg: 92.2639 aux.loss_ce: 0.1297 aux.acc_seg: 90.1526 +2024/08/10 05:21:53 - mmengine - INFO - Iter(train) [ 43100/160000] lr: 7.5638e-03 eta: 1 day, 12:23:28 time: 1.1150 data_time: 0.0077 memory: 8703 loss: 0.3029 decode.loss_ce: 0.1895 decode.acc_seg: 95.8829 aux.loss_ce: 0.1133 aux.acc_seg: 95.7339 +2024/08/10 05:22:49 - mmengine - INFO - Iter(train) [ 43150/160000] lr: 7.5610e-03 eta: 1 day, 12:22:32 time: 1.1196 data_time: 0.0090 memory: 8704 loss: 0.4075 decode.loss_ce: 0.2531 decode.acc_seg: 95.8652 aux.loss_ce: 0.1544 aux.acc_seg: 95.0946 +2024/08/10 05:23:45 - mmengine - INFO - Iter(train) [ 43200/160000] lr: 7.5581e-03 eta: 1 day, 12:21:35 time: 1.1192 data_time: 0.0071 memory: 8705 loss: 0.4867 decode.loss_ce: 0.2860 decode.acc_seg: 95.5757 aux.loss_ce: 0.2008 aux.acc_seg: 93.7154 +2024/08/10 05:24:41 - mmengine - INFO - Iter(train) [ 43250/160000] lr: 7.5552e-03 eta: 1 day, 12:20:39 time: 1.1187 data_time: 0.0067 memory: 8703 loss: 0.3902 decode.loss_ce: 0.2492 decode.acc_seg: 92.5797 aux.loss_ce: 0.1410 aux.acc_seg: 91.8913 +2024/08/10 05:25:37 - mmengine - INFO - Iter(train) [ 43300/160000] lr: 7.5524e-03 eta: 1 day, 12:19:43 time: 1.1139 data_time: 0.0073 memory: 8703 loss: 0.3094 decode.loss_ce: 0.1850 decode.acc_seg: 92.5728 aux.loss_ce: 0.1243 aux.acc_seg: 91.3570 +2024/08/10 05:26:33 - mmengine - INFO - Iter(train) [ 43350/160000] lr: 7.5495e-03 eta: 1 day, 12:18:46 time: 1.1163 data_time: 0.0076 memory: 8703 loss: 0.4223 decode.loss_ce: 0.2653 decode.acc_seg: 96.7321 aux.loss_ce: 0.1570 aux.acc_seg: 94.3198 +2024/08/10 05:27:29 - mmengine - INFO - Iter(train) [ 43400/160000] lr: 7.5466e-03 eta: 1 day, 12:17:50 time: 1.1166 data_time: 0.0072 memory: 8704 loss: 0.4989 decode.loss_ce: 0.3250 decode.acc_seg: 84.6723 aux.loss_ce: 0.1739 aux.acc_seg: 73.6423 +2024/08/10 05:28:24 - mmengine - INFO - Iter(train) [ 43450/160000] lr: 7.5437e-03 eta: 1 day, 12:16:53 time: 1.1140 data_time: 0.0081 memory: 8704 loss: 0.3624 decode.loss_ce: 0.2239 decode.acc_seg: 96.9625 aux.loss_ce: 0.1385 aux.acc_seg: 96.0355 +2024/08/10 05:29:20 - mmengine - INFO - Iter(train) [ 43500/160000] lr: 7.5409e-03 eta: 1 day, 12:15:56 time: 1.1126 data_time: 0.0069 memory: 8704 loss: 0.3524 decode.loss_ce: 0.2261 decode.acc_seg: 97.0536 aux.loss_ce: 0.1263 aux.acc_seg: 96.3010 +2024/08/10 05:30:16 - mmengine - INFO - Iter(train) [ 43550/160000] lr: 7.5380e-03 eta: 1 day, 12:15:00 time: 1.1193 data_time: 0.0075 memory: 8704 loss: 0.4343 decode.loss_ce: 0.2821 decode.acc_seg: 80.1976 aux.loss_ce: 0.1522 aux.acc_seg: 69.5803 +2024/08/10 05:31:12 - mmengine - INFO - Iter(train) [ 43600/160000] lr: 7.5351e-03 eta: 1 day, 12:14:03 time: 1.1172 data_time: 0.0078 memory: 8704 loss: 0.5069 decode.loss_ce: 0.3221 decode.acc_seg: 93.5380 aux.loss_ce: 0.1848 aux.acc_seg: 83.7919 +2024/08/10 05:32:08 - mmengine - INFO - Iter(train) [ 43650/160000] lr: 7.5322e-03 eta: 1 day, 12:13:07 time: 1.1165 data_time: 0.0057 memory: 8704 loss: 0.6205 decode.loss_ce: 0.3994 decode.acc_seg: 60.3764 aux.loss_ce: 0.2212 aux.acc_seg: 52.7191 +2024/08/10 05:33:04 - mmengine - INFO - Iter(train) [ 43700/160000] lr: 7.5294e-03 eta: 1 day, 12:12:10 time: 1.1213 data_time: 0.0077 memory: 8703 loss: 0.4630 decode.loss_ce: 0.2825 decode.acc_seg: 91.8249 aux.loss_ce: 0.1804 aux.acc_seg: 89.0072 +2024/08/10 05:33:59 - mmengine - INFO - Iter(train) [ 43750/160000] lr: 7.5265e-03 eta: 1 day, 12:11:14 time: 1.1222 data_time: 0.0098 memory: 8704 loss: 0.4485 decode.loss_ce: 0.2581 decode.acc_seg: 90.7197 aux.loss_ce: 0.1904 aux.acc_seg: 82.8572 +2024/08/10 05:34:55 - mmengine - INFO - Iter(train) [ 43800/160000] lr: 7.5236e-03 eta: 1 day, 12:10:17 time: 1.1161 data_time: 0.0076 memory: 8704 loss: 0.3874 decode.loss_ce: 0.2546 decode.acc_seg: 97.4244 aux.loss_ce: 0.1328 aux.acc_seg: 96.8593 +2024/08/10 05:35:51 - mmengine - INFO - Iter(train) [ 43850/160000] lr: 7.5207e-03 eta: 1 day, 12:09:20 time: 1.1151 data_time: 0.0072 memory: 8704 loss: 0.3588 decode.loss_ce: 0.2198 decode.acc_seg: 92.5364 aux.loss_ce: 0.1390 aux.acc_seg: 92.6814 +2024/08/10 05:36:47 - mmengine - INFO - Iter(train) [ 43900/160000] lr: 7.5179e-03 eta: 1 day, 12:08:24 time: 1.1179 data_time: 0.0090 memory: 8703 loss: 0.3384 decode.loss_ce: 0.2073 decode.acc_seg: 91.2508 aux.loss_ce: 0.1310 aux.acc_seg: 84.7025 +2024/08/10 05:37:42 - mmengine - INFO - Iter(train) [ 43950/160000] lr: 7.5150e-03 eta: 1 day, 12:07:27 time: 1.1103 data_time: 0.0056 memory: 8704 loss: 0.5751 decode.loss_ce: 0.3724 decode.acc_seg: 94.0186 aux.loss_ce: 0.2028 aux.acc_seg: 92.8902 +2024/08/10 05:38:38 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 05:38:38 - mmengine - INFO - Iter(train) [ 44000/160000] lr: 7.5121e-03 eta: 1 day, 12:06:30 time: 1.1153 data_time: 0.0074 memory: 8704 loss: 0.4016 decode.loss_ce: 0.2503 decode.acc_seg: 93.1717 aux.loss_ce: 0.1513 aux.acc_seg: 84.8963 +2024/08/10 05:39:34 - mmengine - INFO - Iter(train) [ 44050/160000] lr: 7.5092e-03 eta: 1 day, 12:05:34 time: 1.1187 data_time: 0.0073 memory: 8703 loss: 0.3818 decode.loss_ce: 0.2327 decode.acc_seg: 86.1977 aux.loss_ce: 0.1491 aux.acc_seg: 81.5767 +2024/08/10 05:40:30 - mmengine - INFO - Iter(train) [ 44100/160000] lr: 7.5064e-03 eta: 1 day, 12:04:37 time: 1.1176 data_time: 0.0064 memory: 8703 loss: 0.5511 decode.loss_ce: 0.3500 decode.acc_seg: 95.4566 aux.loss_ce: 0.2011 aux.acc_seg: 88.9554 +2024/08/10 05:41:26 - mmengine - INFO - Iter(train) [ 44150/160000] lr: 7.5035e-03 eta: 1 day, 12:03:41 time: 1.1185 data_time: 0.0071 memory: 8703 loss: 0.3977 decode.loss_ce: 0.2482 decode.acc_seg: 91.4404 aux.loss_ce: 0.1495 aux.acc_seg: 88.7779 +2024/08/10 05:42:22 - mmengine - INFO - Iter(train) [ 44200/160000] lr: 7.5006e-03 eta: 1 day, 12:02:44 time: 1.1150 data_time: 0.0067 memory: 8703 loss: 0.4353 decode.loss_ce: 0.2635 decode.acc_seg: 88.1204 aux.loss_ce: 0.1718 aux.acc_seg: 81.7181 +2024/08/10 05:43:18 - mmengine - INFO - Iter(train) [ 44250/160000] lr: 7.4977e-03 eta: 1 day, 12:01:48 time: 1.1151 data_time: 0.0086 memory: 8704 loss: 0.5678 decode.loss_ce: 0.3627 decode.acc_seg: 90.8457 aux.loss_ce: 0.2051 aux.acc_seg: 90.4306 +2024/08/10 05:44:13 - mmengine - INFO - Iter(train) [ 44300/160000] lr: 7.4949e-03 eta: 1 day, 12:00:51 time: 1.1144 data_time: 0.0066 memory: 8703 loss: 0.3027 decode.loss_ce: 0.1821 decode.acc_seg: 94.2257 aux.loss_ce: 0.1206 aux.acc_seg: 93.2297 +2024/08/10 05:45:09 - mmengine - INFO - Iter(train) [ 44350/160000] lr: 7.4920e-03 eta: 1 day, 11:59:54 time: 1.1160 data_time: 0.0078 memory: 8704 loss: 0.4236 decode.loss_ce: 0.2705 decode.acc_seg: 95.3493 aux.loss_ce: 0.1531 aux.acc_seg: 90.4394 +2024/08/10 05:46:05 - mmengine - INFO - Iter(train) [ 44400/160000] lr: 7.4891e-03 eta: 1 day, 11:58:57 time: 1.1122 data_time: 0.0069 memory: 8704 loss: 0.5122 decode.loss_ce: 0.3062 decode.acc_seg: 83.8593 aux.loss_ce: 0.2060 aux.acc_seg: 78.9750 +2024/08/10 05:47:01 - mmengine - INFO - Iter(train) [ 44450/160000] lr: 7.4862e-03 eta: 1 day, 11:58:01 time: 1.1175 data_time: 0.0081 memory: 8704 loss: 0.3995 decode.loss_ce: 0.2399 decode.acc_seg: 95.7184 aux.loss_ce: 0.1597 aux.acc_seg: 94.9664 +2024/08/10 05:47:57 - mmengine - INFO - Iter(train) [ 44500/160000] lr: 7.4833e-03 eta: 1 day, 11:57:05 time: 1.1155 data_time: 0.0061 memory: 8703 loss: 0.3428 decode.loss_ce: 0.2110 decode.acc_seg: 93.3181 aux.loss_ce: 0.1318 aux.acc_seg: 90.7423 +2024/08/10 05:48:52 - mmengine - INFO - Iter(train) [ 44550/160000] lr: 7.4805e-03 eta: 1 day, 11:56:08 time: 1.1105 data_time: 0.0058 memory: 8703 loss: 0.3589 decode.loss_ce: 0.2150 decode.acc_seg: 85.0136 aux.loss_ce: 0.1439 aux.acc_seg: 81.1056 +2024/08/10 05:49:48 - mmengine - INFO - Iter(train) [ 44600/160000] lr: 7.4776e-03 eta: 1 day, 11:55:12 time: 1.1153 data_time: 0.0062 memory: 8703 loss: 0.3715 decode.loss_ce: 0.2427 decode.acc_seg: 86.4429 aux.loss_ce: 0.1288 aux.acc_seg: 84.4629 +2024/08/10 05:50:44 - mmengine - INFO - Iter(train) [ 44650/160000] lr: 7.4747e-03 eta: 1 day, 11:54:15 time: 1.1162 data_time: 0.0070 memory: 8704 loss: 0.5866 decode.loss_ce: 0.3577 decode.acc_seg: 90.4393 aux.loss_ce: 0.2290 aux.acc_seg: 84.6537 +2024/08/10 05:51:40 - mmengine - INFO - Iter(train) [ 44700/160000] lr: 7.4718e-03 eta: 1 day, 11:53:18 time: 1.1130 data_time: 0.0054 memory: 8704 loss: 0.4686 decode.loss_ce: 0.2725 decode.acc_seg: 95.0635 aux.loss_ce: 0.1960 aux.acc_seg: 93.0753 +2024/08/10 05:52:36 - mmengine - INFO - Iter(train) [ 44750/160000] lr: 7.4690e-03 eta: 1 day, 11:52:22 time: 1.1196 data_time: 0.0083 memory: 8703 loss: 0.3389 decode.loss_ce: 0.2035 decode.acc_seg: 95.1311 aux.loss_ce: 0.1355 aux.acc_seg: 94.0889 +2024/08/10 05:53:31 - mmengine - INFO - Iter(train) [ 44800/160000] lr: 7.4661e-03 eta: 1 day, 11:51:25 time: 1.1083 data_time: 0.0061 memory: 8703 loss: 0.5958 decode.loss_ce: 0.3850 decode.acc_seg: 91.7987 aux.loss_ce: 0.2108 aux.acc_seg: 88.4423 +2024/08/10 05:54:27 - mmengine - INFO - Iter(train) [ 44850/160000] lr: 7.4632e-03 eta: 1 day, 11:50:28 time: 1.1175 data_time: 0.0066 memory: 8704 loss: 0.5041 decode.loss_ce: 0.2874 decode.acc_seg: 97.4696 aux.loss_ce: 0.2167 aux.acc_seg: 93.4425 +2024/08/10 05:55:23 - mmengine - INFO - Iter(train) [ 44900/160000] lr: 7.4603e-03 eta: 1 day, 11:49:31 time: 1.1164 data_time: 0.0079 memory: 8703 loss: 0.3626 decode.loss_ce: 0.2259 decode.acc_seg: 93.7335 aux.loss_ce: 0.1367 aux.acc_seg: 92.1455 +2024/08/10 05:56:19 - mmengine - INFO - Iter(train) [ 44950/160000] lr: 7.4575e-03 eta: 1 day, 11:48:35 time: 1.1155 data_time: 0.0054 memory: 8703 loss: 0.4078 decode.loss_ce: 0.2456 decode.acc_seg: 97.6881 aux.loss_ce: 0.1621 aux.acc_seg: 96.8246 +2024/08/10 05:57:15 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 05:57:15 - mmengine - INFO - Iter(train) [ 45000/160000] lr: 7.4546e-03 eta: 1 day, 11:47:39 time: 1.1204 data_time: 0.0095 memory: 8703 loss: 0.4844 decode.loss_ce: 0.3044 decode.acc_seg: 94.8108 aux.loss_ce: 0.1800 aux.acc_seg: 82.6699 +2024/08/10 05:58:11 - mmengine - INFO - Iter(train) [ 45050/160000] lr: 7.4517e-03 eta: 1 day, 11:46:42 time: 1.1157 data_time: 0.0069 memory: 8704 loss: 0.4385 decode.loss_ce: 0.2619 decode.acc_seg: 92.9213 aux.loss_ce: 0.1766 aux.acc_seg: 89.6658 +2024/08/10 05:59:06 - mmengine - INFO - Iter(train) [ 45100/160000] lr: 7.4488e-03 eta: 1 day, 11:45:46 time: 1.1164 data_time: 0.0075 memory: 8703 loss: 0.3682 decode.loss_ce: 0.2221 decode.acc_seg: 93.1470 aux.loss_ce: 0.1461 aux.acc_seg: 91.8515 +2024/08/10 06:00:02 - mmengine - INFO - Iter(train) [ 45150/160000] lr: 7.4459e-03 eta: 1 day, 11:44:49 time: 1.1142 data_time: 0.0059 memory: 8704 loss: 0.4008 decode.loss_ce: 0.2596 decode.acc_seg: 87.0611 aux.loss_ce: 0.1412 aux.acc_seg: 83.3752 +2024/08/10 06:00:58 - mmengine - INFO - Iter(train) [ 45200/160000] lr: 7.4431e-03 eta: 1 day, 11:43:52 time: 1.1103 data_time: 0.0062 memory: 8703 loss: 0.4186 decode.loss_ce: 0.2470 decode.acc_seg: 96.4071 aux.loss_ce: 0.1716 aux.acc_seg: 93.6087 +2024/08/10 06:01:54 - mmengine - INFO - Iter(train) [ 45250/160000] lr: 7.4402e-03 eta: 1 day, 11:42:55 time: 1.1134 data_time: 0.0071 memory: 8704 loss: 0.3782 decode.loss_ce: 0.2211 decode.acc_seg: 93.3863 aux.loss_ce: 0.1571 aux.acc_seg: 90.1796 +2024/08/10 06:02:49 - mmengine - INFO - Iter(train) [ 45300/160000] lr: 7.4373e-03 eta: 1 day, 11:41:58 time: 1.1134 data_time: 0.0072 memory: 8703 loss: 0.3556 decode.loss_ce: 0.2250 decode.acc_seg: 92.2784 aux.loss_ce: 0.1306 aux.acc_seg: 88.0828 +2024/08/10 06:03:45 - mmengine - INFO - Iter(train) [ 45350/160000] lr: 7.4344e-03 eta: 1 day, 11:41:02 time: 1.1141 data_time: 0.0068 memory: 8704 loss: 0.4955 decode.loss_ce: 0.2913 decode.acc_seg: 89.5307 aux.loss_ce: 0.2043 aux.acc_seg: 65.1267 +2024/08/10 06:04:41 - mmengine - INFO - Iter(train) [ 45400/160000] lr: 7.4316e-03 eta: 1 day, 11:40:06 time: 1.1181 data_time: 0.0085 memory: 8703 loss: 0.4350 decode.loss_ce: 0.2683 decode.acc_seg: 93.0366 aux.loss_ce: 0.1667 aux.acc_seg: 91.8069 +2024/08/10 06:05:37 - mmengine - INFO - Iter(train) [ 45450/160000] lr: 7.4287e-03 eta: 1 day, 11:39:09 time: 1.1165 data_time: 0.0071 memory: 8703 loss: 0.3859 decode.loss_ce: 0.2382 decode.acc_seg: 96.1185 aux.loss_ce: 0.1476 aux.acc_seg: 95.5233 +2024/08/10 06:06:33 - mmengine - INFO - Iter(train) [ 45500/160000] lr: 7.4258e-03 eta: 1 day, 11:38:13 time: 1.1161 data_time: 0.0082 memory: 8703 loss: 0.4564 decode.loss_ce: 0.2704 decode.acc_seg: 83.5888 aux.loss_ce: 0.1860 aux.acc_seg: 76.9412 +2024/08/10 06:07:29 - mmengine - INFO - Iter(train) [ 45550/160000] lr: 7.4229e-03 eta: 1 day, 11:37:16 time: 1.1198 data_time: 0.0083 memory: 8703 loss: 0.4265 decode.loss_ce: 0.2663 decode.acc_seg: 92.9875 aux.loss_ce: 0.1602 aux.acc_seg: 91.4078 +2024/08/10 06:08:25 - mmengine - INFO - Iter(train) [ 45600/160000] lr: 7.4200e-03 eta: 1 day, 11:36:20 time: 1.1187 data_time: 0.0077 memory: 8703 loss: 0.5273 decode.loss_ce: 0.3236 decode.acc_seg: 94.5766 aux.loss_ce: 0.2037 aux.acc_seg: 92.5583 +2024/08/10 06:09:20 - mmengine - INFO - Iter(train) [ 45650/160000] lr: 7.4172e-03 eta: 1 day, 11:35:23 time: 1.1136 data_time: 0.0070 memory: 8703 loss: 0.3699 decode.loss_ce: 0.2284 decode.acc_seg: 96.8218 aux.loss_ce: 0.1415 aux.acc_seg: 88.6786 +2024/08/10 06:10:16 - mmengine - INFO - Iter(train) [ 45700/160000] lr: 7.4143e-03 eta: 1 day, 11:34:27 time: 1.1184 data_time: 0.0073 memory: 8703 loss: 0.3874 decode.loss_ce: 0.2471 decode.acc_seg: 86.7629 aux.loss_ce: 0.1403 aux.acc_seg: 80.8662 +2024/08/10 06:11:12 - mmengine - INFO - Iter(train) [ 45750/160000] lr: 7.4114e-03 eta: 1 day, 11:33:30 time: 1.1175 data_time: 0.0065 memory: 8704 loss: 0.3659 decode.loss_ce: 0.2445 decode.acc_seg: 89.0173 aux.loss_ce: 0.1214 aux.acc_seg: 88.5189 +2024/08/10 06:12:08 - mmengine - INFO - Iter(train) [ 45800/160000] lr: 7.4085e-03 eta: 1 day, 11:32:33 time: 1.1166 data_time: 0.0071 memory: 8704 loss: 0.6024 decode.loss_ce: 0.3423 decode.acc_seg: 87.9697 aux.loss_ce: 0.2601 aux.acc_seg: 83.9527 +2024/08/10 06:13:04 - mmengine - INFO - Iter(train) [ 45850/160000] lr: 7.4056e-03 eta: 1 day, 11:31:37 time: 1.1167 data_time: 0.0072 memory: 8703 loss: 0.5068 decode.loss_ce: 0.3093 decode.acc_seg: 86.9641 aux.loss_ce: 0.1975 aux.acc_seg: 83.7308 +2024/08/10 06:14:00 - mmengine - INFO - Iter(train) [ 45900/160000] lr: 7.4028e-03 eta: 1 day, 11:30:41 time: 1.1212 data_time: 0.0080 memory: 8704 loss: 0.4947 decode.loss_ce: 0.2997 decode.acc_seg: 95.8441 aux.loss_ce: 0.1951 aux.acc_seg: 94.2884 +2024/08/10 06:14:55 - mmengine - INFO - Iter(train) [ 45950/160000] lr: 7.3999e-03 eta: 1 day, 11:29:44 time: 1.1183 data_time: 0.0062 memory: 8704 loss: 0.4312 decode.loss_ce: 0.2769 decode.acc_seg: 95.4184 aux.loss_ce: 0.1543 aux.acc_seg: 94.2358 +2024/08/10 06:15:51 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 06:15:51 - mmengine - INFO - Iter(train) [ 46000/160000] lr: 7.3970e-03 eta: 1 day, 11:28:48 time: 1.1140 data_time: 0.0068 memory: 8704 loss: 0.4405 decode.loss_ce: 0.2827 decode.acc_seg: 86.6485 aux.loss_ce: 0.1578 aux.acc_seg: 74.4866 +2024/08/10 06:16:47 - mmengine - INFO - Iter(train) [ 46050/160000] lr: 7.3941e-03 eta: 1 day, 11:27:51 time: 1.1185 data_time: 0.0066 memory: 8704 loss: 0.4231 decode.loss_ce: 0.2663 decode.acc_seg: 92.9584 aux.loss_ce: 0.1568 aux.acc_seg: 88.3856 +2024/08/10 06:17:43 - mmengine - INFO - Iter(train) [ 46100/160000] lr: 7.3912e-03 eta: 1 day, 11:26:54 time: 1.1134 data_time: 0.0069 memory: 8704 loss: 0.4209 decode.loss_ce: 0.2671 decode.acc_seg: 90.4187 aux.loss_ce: 0.1538 aux.acc_seg: 83.1563 +2024/08/10 06:18:38 - mmengine - INFO - Iter(train) [ 46150/160000] lr: 7.3884e-03 eta: 1 day, 11:25:58 time: 1.1111 data_time: 0.0056 memory: 8704 loss: 0.5454 decode.loss_ce: 0.3276 decode.acc_seg: 66.4354 aux.loss_ce: 0.2178 aux.acc_seg: 64.1118 +2024/08/10 06:19:34 - mmengine - INFO - Iter(train) [ 46200/160000] lr: 7.3855e-03 eta: 1 day, 11:25:01 time: 1.1194 data_time: 0.0074 memory: 8704 loss: 0.3855 decode.loss_ce: 0.2448 decode.acc_seg: 90.6811 aux.loss_ce: 0.1407 aux.acc_seg: 90.4083 +2024/08/10 06:20:30 - mmengine - INFO - Iter(train) [ 46250/160000] lr: 7.3826e-03 eta: 1 day, 11:24:05 time: 1.1195 data_time: 0.0073 memory: 8703 loss: 0.5005 decode.loss_ce: 0.3129 decode.acc_seg: 91.2695 aux.loss_ce: 0.1876 aux.acc_seg: 80.3858 +2024/08/10 06:21:26 - mmengine - INFO - Iter(train) [ 46300/160000] lr: 7.3797e-03 eta: 1 day, 11:23:08 time: 1.1142 data_time: 0.0069 memory: 8704 loss: 0.4217 decode.loss_ce: 0.2637 decode.acc_seg: 90.4719 aux.loss_ce: 0.1580 aux.acc_seg: 85.6735 +2024/08/10 06:22:22 - mmengine - INFO - Iter(train) [ 46350/160000] lr: 7.3768e-03 eta: 1 day, 11:22:12 time: 1.1133 data_time: 0.0066 memory: 8704 loss: 0.4457 decode.loss_ce: 0.2802 decode.acc_seg: 91.1385 aux.loss_ce: 0.1655 aux.acc_seg: 81.4566 +2024/08/10 06:23:18 - mmengine - INFO - Iter(train) [ 46400/160000] lr: 7.3739e-03 eta: 1 day, 11:21:15 time: 1.1138 data_time: 0.0070 memory: 8704 loss: 0.4190 decode.loss_ce: 0.2676 decode.acc_seg: 94.1820 aux.loss_ce: 0.1514 aux.acc_seg: 88.3020 +2024/08/10 06:24:13 - mmengine - INFO - Iter(train) [ 46450/160000] lr: 7.3711e-03 eta: 1 day, 11:20:19 time: 1.1152 data_time: 0.0076 memory: 8704 loss: 0.3335 decode.loss_ce: 0.2060 decode.acc_seg: 96.8303 aux.loss_ce: 0.1276 aux.acc_seg: 95.2431 +2024/08/10 06:25:09 - mmengine - INFO - Iter(train) [ 46500/160000] lr: 7.3682e-03 eta: 1 day, 11:19:22 time: 1.1162 data_time: 0.0075 memory: 8705 loss: 0.4198 decode.loss_ce: 0.2657 decode.acc_seg: 96.3738 aux.loss_ce: 0.1541 aux.acc_seg: 88.8608 +2024/08/10 06:26:05 - mmengine - INFO - Iter(train) [ 46550/160000] lr: 7.3653e-03 eta: 1 day, 11:18:25 time: 1.1179 data_time: 0.0061 memory: 8704 loss: 0.3769 decode.loss_ce: 0.2319 decode.acc_seg: 88.6208 aux.loss_ce: 0.1449 aux.acc_seg: 85.7798 +2024/08/10 06:27:01 - mmengine - INFO - Iter(train) [ 46600/160000] lr: 7.3624e-03 eta: 1 day, 11:17:29 time: 1.1126 data_time: 0.0066 memory: 8704 loss: 0.2511 decode.loss_ce: 0.1521 decode.acc_seg: 92.4420 aux.loss_ce: 0.0990 aux.acc_seg: 86.6271 +2024/08/10 06:27:57 - mmengine - INFO - Iter(train) [ 46650/160000] lr: 7.3595e-03 eta: 1 day, 11:16:32 time: 1.1174 data_time: 0.0066 memory: 8704 loss: 0.6607 decode.loss_ce: 0.4490 decode.acc_seg: 94.7865 aux.loss_ce: 0.2118 aux.acc_seg: 93.6963 +2024/08/10 06:28:52 - mmengine - INFO - Iter(train) [ 46700/160000] lr: 7.3567e-03 eta: 1 day, 11:15:36 time: 1.1164 data_time: 0.0064 memory: 8703 loss: 0.5786 decode.loss_ce: 0.3695 decode.acc_seg: 80.3694 aux.loss_ce: 0.2091 aux.acc_seg: 72.2698 +2024/08/10 06:29:48 - mmengine - INFO - Iter(train) [ 46750/160000] lr: 7.3538e-03 eta: 1 day, 11:14:40 time: 1.1185 data_time: 0.0057 memory: 8704 loss: 0.4937 decode.loss_ce: 0.3300 decode.acc_seg: 92.7337 aux.loss_ce: 0.1638 aux.acc_seg: 90.7840 +2024/08/10 06:30:44 - mmengine - INFO - Iter(train) [ 46800/160000] lr: 7.3509e-03 eta: 1 day, 11:13:43 time: 1.1189 data_time: 0.0062 memory: 8704 loss: 0.3834 decode.loss_ce: 0.2219 decode.acc_seg: 93.0731 aux.loss_ce: 0.1616 aux.acc_seg: 83.6326 +2024/08/10 06:31:40 - mmengine - INFO - Iter(train) [ 46850/160000] lr: 7.3480e-03 eta: 1 day, 11:12:47 time: 1.1162 data_time: 0.0068 memory: 8704 loss: 0.4669 decode.loss_ce: 0.2948 decode.acc_seg: 91.2656 aux.loss_ce: 0.1720 aux.acc_seg: 85.7658 +2024/08/10 06:32:36 - mmengine - INFO - Iter(train) [ 46900/160000] lr: 7.3451e-03 eta: 1 day, 11:11:50 time: 1.1156 data_time: 0.0057 memory: 8703 loss: 0.3255 decode.loss_ce: 0.2016 decode.acc_seg: 93.2164 aux.loss_ce: 0.1239 aux.acc_seg: 90.4413 +2024/08/10 06:33:32 - mmengine - INFO - Iter(train) [ 46950/160000] lr: 7.3422e-03 eta: 1 day, 11:10:53 time: 1.1141 data_time: 0.0063 memory: 8703 loss: 0.3900 decode.loss_ce: 0.2319 decode.acc_seg: 90.0599 aux.loss_ce: 0.1581 aux.acc_seg: 88.3904 +2024/08/10 06:34:27 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 06:34:27 - mmengine - INFO - Iter(train) [ 47000/160000] lr: 7.3394e-03 eta: 1 day, 11:09:57 time: 1.1159 data_time: 0.0066 memory: 8704 loss: 0.3230 decode.loss_ce: 0.1879 decode.acc_seg: 95.3773 aux.loss_ce: 0.1351 aux.acc_seg: 87.9832 +2024/08/10 06:35:23 - mmengine - INFO - Iter(train) [ 47050/160000] lr: 7.3365e-03 eta: 1 day, 11:09:00 time: 1.1143 data_time: 0.0066 memory: 8703 loss: 0.4595 decode.loss_ce: 0.2784 decode.acc_seg: 94.5812 aux.loss_ce: 0.1811 aux.acc_seg: 81.2353 +2024/08/10 06:36:19 - mmengine - INFO - Iter(train) [ 47100/160000] lr: 7.3336e-03 eta: 1 day, 11:08:04 time: 1.1170 data_time: 0.0063 memory: 8703 loss: 0.3240 decode.loss_ce: 0.1902 decode.acc_seg: 94.3864 aux.loss_ce: 0.1338 aux.acc_seg: 93.5554 +2024/08/10 06:37:15 - mmengine - INFO - Iter(train) [ 47150/160000] lr: 7.3307e-03 eta: 1 day, 11:07:07 time: 1.1138 data_time: 0.0065 memory: 8704 loss: 0.4204 decode.loss_ce: 0.2579 decode.acc_seg: 95.8681 aux.loss_ce: 0.1625 aux.acc_seg: 95.8169 +2024/08/10 06:38:11 - mmengine - INFO - Iter(train) [ 47200/160000] lr: 7.3278e-03 eta: 1 day, 11:06:11 time: 1.1145 data_time: 0.0072 memory: 8703 loss: 0.5092 decode.loss_ce: 0.2928 decode.acc_seg: 91.6014 aux.loss_ce: 0.2164 aux.acc_seg: 91.3528 +2024/08/10 06:39:06 - mmengine - INFO - Iter(train) [ 47250/160000] lr: 7.3249e-03 eta: 1 day, 11:05:14 time: 1.1175 data_time: 0.0064 memory: 8703 loss: 0.4920 decode.loss_ce: 0.2934 decode.acc_seg: 84.3971 aux.loss_ce: 0.1986 aux.acc_seg: 83.9927 +2024/08/10 06:40:02 - mmengine - INFO - Iter(train) [ 47300/160000] lr: 7.3221e-03 eta: 1 day, 11:04:18 time: 1.1123 data_time: 0.0064 memory: 8704 loss: 0.4919 decode.loss_ce: 0.3006 decode.acc_seg: 95.5641 aux.loss_ce: 0.1913 aux.acc_seg: 93.7153 +2024/08/10 06:40:58 - mmengine - INFO - Iter(train) [ 47350/160000] lr: 7.3192e-03 eta: 1 day, 11:03:21 time: 1.1117 data_time: 0.0050 memory: 8703 loss: 0.3539 decode.loss_ce: 0.2300 decode.acc_seg: 90.7756 aux.loss_ce: 0.1239 aux.acc_seg: 87.0127 +2024/08/10 06:41:54 - mmengine - INFO - Iter(train) [ 47400/160000] lr: 7.3163e-03 eta: 1 day, 11:02:24 time: 1.1140 data_time: 0.0078 memory: 8704 loss: 0.2824 decode.loss_ce: 0.1715 decode.acc_seg: 90.2694 aux.loss_ce: 0.1109 aux.acc_seg: 82.7477 +2024/08/10 06:42:49 - mmengine - INFO - Iter(train) [ 47450/160000] lr: 7.3134e-03 eta: 1 day, 11:01:28 time: 1.1198 data_time: 0.0092 memory: 8703 loss: 0.7077 decode.loss_ce: 0.4542 decode.acc_seg: 96.2630 aux.loss_ce: 0.2535 aux.acc_seg: 95.6326 +2024/08/10 06:43:45 - mmengine - INFO - Iter(train) [ 47500/160000] lr: 7.3105e-03 eta: 1 day, 11:00:31 time: 1.1153 data_time: 0.0061 memory: 8704 loss: 0.5607 decode.loss_ce: 0.3441 decode.acc_seg: 95.7684 aux.loss_ce: 0.2167 aux.acc_seg: 79.8758 +2024/08/10 06:44:41 - mmengine - INFO - Iter(train) [ 47550/160000] lr: 7.3076e-03 eta: 1 day, 10:59:35 time: 1.1229 data_time: 0.0078 memory: 8703 loss: 0.3659 decode.loss_ce: 0.2292 decode.acc_seg: 96.0642 aux.loss_ce: 0.1367 aux.acc_seg: 95.0888 +2024/08/10 06:45:37 - mmengine - INFO - Iter(train) [ 47600/160000] lr: 7.3048e-03 eta: 1 day, 10:58:38 time: 1.1150 data_time: 0.0067 memory: 8704 loss: 0.2891 decode.loss_ce: 0.1672 decode.acc_seg: 88.5194 aux.loss_ce: 0.1220 aux.acc_seg: 86.3178 +2024/08/10 06:46:32 - mmengine - INFO - Iter(train) [ 47650/160000] lr: 7.3019e-03 eta: 1 day, 10:57:41 time: 1.1162 data_time: 0.0067 memory: 8704 loss: 0.6085 decode.loss_ce: 0.4038 decode.acc_seg: 78.6407 aux.loss_ce: 0.2047 aux.acc_seg: 76.0831 +2024/08/10 06:47:28 - mmengine - INFO - Iter(train) [ 47700/160000] lr: 7.2990e-03 eta: 1 day, 10:56:45 time: 1.1159 data_time: 0.0065 memory: 8703 loss: 0.3961 decode.loss_ce: 0.2501 decode.acc_seg: 94.2470 aux.loss_ce: 0.1460 aux.acc_seg: 92.8272 +2024/08/10 06:48:24 - mmengine - INFO - Iter(train) [ 47750/160000] lr: 7.2961e-03 eta: 1 day, 10:55:48 time: 1.1125 data_time: 0.0063 memory: 8703 loss: 0.4159 decode.loss_ce: 0.2665 decode.acc_seg: 88.8438 aux.loss_ce: 0.1494 aux.acc_seg: 84.4071 +2024/08/10 06:49:20 - mmengine - INFO - Iter(train) [ 47800/160000] lr: 7.2932e-03 eta: 1 day, 10:54:51 time: 1.1075 data_time: 0.0049 memory: 8703 loss: 0.4320 decode.loss_ce: 0.2764 decode.acc_seg: 94.0988 aux.loss_ce: 0.1556 aux.acc_seg: 92.7660 +2024/08/10 06:50:15 - mmengine - INFO - Iter(train) [ 47850/160000] lr: 7.2903e-03 eta: 1 day, 10:53:54 time: 1.1143 data_time: 0.0069 memory: 8704 loss: 0.4714 decode.loss_ce: 0.2915 decode.acc_seg: 93.7740 aux.loss_ce: 0.1800 aux.acc_seg: 86.5279 +2024/08/10 06:51:11 - mmengine - INFO - Iter(train) [ 47900/160000] lr: 7.2874e-03 eta: 1 day, 10:52:58 time: 1.1140 data_time: 0.0064 memory: 8703 loss: 0.3572 decode.loss_ce: 0.2176 decode.acc_seg: 89.7831 aux.loss_ce: 0.1396 aux.acc_seg: 86.6808 +2024/08/10 06:52:07 - mmengine - INFO - Iter(train) [ 47950/160000] lr: 7.2846e-03 eta: 1 day, 10:52:01 time: 1.1143 data_time: 0.0065 memory: 8703 loss: 0.4074 decode.loss_ce: 0.2495 decode.acc_seg: 93.4362 aux.loss_ce: 0.1579 aux.acc_seg: 92.6918 +2024/08/10 06:53:03 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 06:53:03 - mmengine - INFO - Iter(train) [ 48000/160000] lr: 7.2817e-03 eta: 1 day, 10:51:05 time: 1.1140 data_time: 0.0059 memory: 8703 loss: 0.5614 decode.loss_ce: 0.3397 decode.acc_seg: 93.4785 aux.loss_ce: 0.2217 aux.acc_seg: 92.7125 +2024/08/10 06:53:03 - mmengine - INFO - Saving checkpoint at 48000 iterations +2024/08/10 06:53:17 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:09 time: 0.2712 data_time: 0.0043 memory: 1724 +2024/08/10 06:53:31 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:55 time: 0.2711 data_time: 0.0040 memory: 1724 +2024/08/10 06:53:44 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2740 data_time: 0.0058 memory: 1724 +2024/08/10 06:53:58 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2701 data_time: 0.0034 memory: 1724 +2024/08/10 06:54:11 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2720 data_time: 0.0046 memory: 1724 +2024/08/10 06:54:25 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2722 data_time: 0.0045 memory: 1724 +2024/08/10 06:54:38 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2707 data_time: 0.0040 memory: 1724 +2024/08/10 06:54:52 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:34 time: 0.2720 data_time: 0.0052 memory: 1724 +2024/08/10 06:55:05 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2711 data_time: 0.0040 memory: 1724 +2024/08/10 06:55:19 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2693 data_time: 0.0035 memory: 1724 +2024/08/10 06:55:33 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2717 data_time: 0.0046 memory: 1724 +2024/08/10 06:55:46 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2736 data_time: 0.0056 memory: 1724 +2024/08/10 06:56:00 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2709 data_time: 0.0041 memory: 1724 +2024/08/10 06:56:13 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2728 data_time: 0.0054 memory: 1724 +2024/08/10 06:56:27 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2740 data_time: 0.0053 memory: 1724 +2024/08/10 06:56:36 - mmengine - INFO - per class results: +2024/08/10 06:56:36 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 80.16 | 83.47 | +| sidewalk | 48.66 | 52.21 | +| road roughness | 50.84 | 55.23 | +| road boundaries | 41.24 | 50.69 | +| crosswalks | 89.51 | 91.3 | +| lane | 60.7 | 68.3 | +| road color guide | 74.98 | 77.29 | +| road marking | 50.92 | 57.08 | +| parking | 46.16 | 49.58 | +| traffic sign | 48.96 | 51.37 | +| traffic light | 63.84 | 74.64 | +| pole/structural object | 38.74 | 82.55 | +| building | 66.8 | 72.52 | +| tunnel | 64.33 | 72.13 | +| bridge | 45.02 | 54.71 | +| pedestrian | 37.95 | 79.15 | +| vehicle | 43.43 | 93.83 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 6.22 | 6.25 | +| personal mobility | 4.54 | 4.63 | +| dynamic | 33.73 | 36.65 | +| vegetation | 74.39 | 80.18 | +| sky | 97.22 | 98.48 | +| static | 23.86 | 41.57 | ++------------------------+-------+-------+ +2024/08/10 06:56:36 - mmengine - INFO - Iter(val) [750/750] aAcc: 83.0700 mIoU: 49.6800 mAcc: 59.7400 data_time: 0.0041 time: 0.2710 +2024/08/10 06:57:32 - mmengine - INFO - Iter(train) [ 48050/160000] lr: 7.2788e-03 eta: 1 day, 10:50:30 time: 1.1143 data_time: 0.0085 memory: 8704 loss: 0.3815 decode.loss_ce: 0.2237 decode.acc_seg: 94.1491 aux.loss_ce: 0.1578 aux.acc_seg: 89.5056 +2024/08/10 06:58:28 - mmengine - INFO - Iter(train) [ 48100/160000] lr: 7.2759e-03 eta: 1 day, 10:49:33 time: 1.1185 data_time: 0.0064 memory: 8705 loss: 0.5938 decode.loss_ce: 0.3654 decode.acc_seg: 91.2916 aux.loss_ce: 0.2284 aux.acc_seg: 87.6149 +2024/08/10 06:59:24 - mmengine - INFO - Iter(train) [ 48150/160000] lr: 7.2730e-03 eta: 1 day, 10:48:37 time: 1.1160 data_time: 0.0070 memory: 8703 loss: 0.4088 decode.loss_ce: 0.2541 decode.acc_seg: 86.0720 aux.loss_ce: 0.1547 aux.acc_seg: 85.3348 +2024/08/10 07:00:19 - mmengine - INFO - Iter(train) [ 48200/160000] lr: 7.2701e-03 eta: 1 day, 10:47:40 time: 1.1151 data_time: 0.0064 memory: 8704 loss: 0.5283 decode.loss_ce: 0.3355 decode.acc_seg: 75.7958 aux.loss_ce: 0.1928 aux.acc_seg: 66.0278 +2024/08/10 07:01:15 - mmengine - INFO - Iter(train) [ 48250/160000] lr: 7.2672e-03 eta: 1 day, 10:46:44 time: 1.1139 data_time: 0.0065 memory: 8704 loss: 0.4014 decode.loss_ce: 0.2643 decode.acc_seg: 94.8633 aux.loss_ce: 0.1371 aux.acc_seg: 91.9531 +2024/08/10 07:02:11 - mmengine - INFO - Iter(train) [ 48300/160000] lr: 7.2644e-03 eta: 1 day, 10:45:47 time: 1.1141 data_time: 0.0066 memory: 8703 loss: 0.5070 decode.loss_ce: 0.3152 decode.acc_seg: 84.7508 aux.loss_ce: 0.1918 aux.acc_seg: 79.2974 +2024/08/10 07:03:07 - mmengine - INFO - Iter(train) [ 48350/160000] lr: 7.2615e-03 eta: 1 day, 10:44:50 time: 1.1127 data_time: 0.0063 memory: 8704 loss: 0.5015 decode.loss_ce: 0.3116 decode.acc_seg: 80.1193 aux.loss_ce: 0.1899 aux.acc_seg: 69.5922 +2024/08/10 07:04:02 - mmengine - INFO - Iter(train) [ 48400/160000] lr: 7.2586e-03 eta: 1 day, 10:43:54 time: 1.1123 data_time: 0.0063 memory: 8703 loss: 0.4099 decode.loss_ce: 0.2529 decode.acc_seg: 93.7234 aux.loss_ce: 0.1570 aux.acc_seg: 91.8715 +2024/08/10 07:04:58 - mmengine - INFO - Iter(train) [ 48450/160000] lr: 7.2557e-03 eta: 1 day, 10:42:57 time: 1.1185 data_time: 0.0064 memory: 8704 loss: 0.5149 decode.loss_ce: 0.3395 decode.acc_seg: 68.0399 aux.loss_ce: 0.1754 aux.acc_seg: 68.6719 +2024/08/10 07:05:54 - mmengine - INFO - Iter(train) [ 48500/160000] lr: 7.2528e-03 eta: 1 day, 10:42:00 time: 1.1107 data_time: 0.0064 memory: 8703 loss: 0.4485 decode.loss_ce: 0.2936 decode.acc_seg: 75.0127 aux.loss_ce: 0.1548 aux.acc_seg: 62.3035 +2024/08/10 07:06:50 - mmengine - INFO - Iter(train) [ 48550/160000] lr: 7.2499e-03 eta: 1 day, 10:41:04 time: 1.1183 data_time: 0.0070 memory: 8704 loss: 0.4460 decode.loss_ce: 0.2825 decode.acc_seg: 91.3169 aux.loss_ce: 0.1635 aux.acc_seg: 88.3856 +2024/08/10 07:07:46 - mmengine - INFO - Iter(train) [ 48600/160000] lr: 7.2470e-03 eta: 1 day, 10:40:08 time: 1.1175 data_time: 0.0080 memory: 8704 loss: 0.5372 decode.loss_ce: 0.3480 decode.acc_seg: 91.1646 aux.loss_ce: 0.1892 aux.acc_seg: 90.7232 +2024/08/10 07:08:41 - mmengine - INFO - Iter(train) [ 48650/160000] lr: 7.2442e-03 eta: 1 day, 10:39:11 time: 1.1156 data_time: 0.0060 memory: 8703 loss: 0.4216 decode.loss_ce: 0.2741 decode.acc_seg: 94.0412 aux.loss_ce: 0.1474 aux.acc_seg: 93.9313 +2024/08/10 07:09:37 - mmengine - INFO - Iter(train) [ 48700/160000] lr: 7.2413e-03 eta: 1 day, 10:38:15 time: 1.1180 data_time: 0.0071 memory: 8703 loss: 0.4367 decode.loss_ce: 0.2601 decode.acc_seg: 86.1414 aux.loss_ce: 0.1766 aux.acc_seg: 70.9734 +2024/08/10 07:10:33 - mmengine - INFO - Iter(train) [ 48750/160000] lr: 7.2384e-03 eta: 1 day, 10:37:18 time: 1.1143 data_time: 0.0049 memory: 8703 loss: 0.5509 decode.loss_ce: 0.3504 decode.acc_seg: 93.2637 aux.loss_ce: 0.2004 aux.acc_seg: 90.6760 +2024/08/10 07:11:29 - mmengine - INFO - Iter(train) [ 48800/160000] lr: 7.2355e-03 eta: 1 day, 10:36:22 time: 1.1161 data_time: 0.0065 memory: 8704 loss: 0.3554 decode.loss_ce: 0.2128 decode.acc_seg: 92.2166 aux.loss_ce: 0.1425 aux.acc_seg: 88.9781 +2024/08/10 07:12:25 - mmengine - INFO - Iter(train) [ 48850/160000] lr: 7.2326e-03 eta: 1 day, 10:35:25 time: 1.1147 data_time: 0.0059 memory: 8704 loss: 0.3803 decode.loss_ce: 0.2422 decode.acc_seg: 94.9303 aux.loss_ce: 0.1381 aux.acc_seg: 92.5442 +2024/08/10 07:13:20 - mmengine - INFO - Iter(train) [ 48900/160000] lr: 7.2297e-03 eta: 1 day, 10:34:29 time: 1.1171 data_time: 0.0087 memory: 8703 loss: 0.5263 decode.loss_ce: 0.3142 decode.acc_seg: 92.3131 aux.loss_ce: 0.2121 aux.acc_seg: 83.7010 +2024/08/10 07:14:16 - mmengine - INFO - Iter(train) [ 48950/160000] lr: 7.2268e-03 eta: 1 day, 10:33:32 time: 1.1194 data_time: 0.0077 memory: 8704 loss: 0.5633 decode.loss_ce: 0.3554 decode.acc_seg: 88.1804 aux.loss_ce: 0.2080 aux.acc_seg: 66.6916 +2024/08/10 07:15:12 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 07:15:12 - mmengine - INFO - Iter(train) [ 49000/160000] lr: 7.2239e-03 eta: 1 day, 10:32:36 time: 1.1193 data_time: 0.0080 memory: 8704 loss: 0.3416 decode.loss_ce: 0.2135 decode.acc_seg: 95.4212 aux.loss_ce: 0.1281 aux.acc_seg: 92.0384 +2024/08/10 07:16:08 - mmengine - INFO - Iter(train) [ 49050/160000] lr: 7.2211e-03 eta: 1 day, 10:31:39 time: 1.1204 data_time: 0.0083 memory: 8704 loss: 0.4399 decode.loss_ce: 0.2765 decode.acc_seg: 95.0882 aux.loss_ce: 0.1634 aux.acc_seg: 89.3434 +2024/08/10 07:17:04 - mmengine - INFO - Iter(train) [ 49100/160000] lr: 7.2182e-03 eta: 1 day, 10:30:43 time: 1.1149 data_time: 0.0064 memory: 8704 loss: 0.2918 decode.loss_ce: 0.1813 decode.acc_seg: 93.7097 aux.loss_ce: 0.1105 aux.acc_seg: 90.8064 +2024/08/10 07:18:00 - mmengine - INFO - Iter(train) [ 49150/160000] lr: 7.2153e-03 eta: 1 day, 10:29:47 time: 1.1171 data_time: 0.0070 memory: 8704 loss: 0.4273 decode.loss_ce: 0.2648 decode.acc_seg: 93.7010 aux.loss_ce: 0.1625 aux.acc_seg: 89.2337 +2024/08/10 07:18:56 - mmengine - INFO - Iter(train) [ 49200/160000] lr: 7.2124e-03 eta: 1 day, 10:28:50 time: 1.1188 data_time: 0.0075 memory: 8703 loss: 0.4100 decode.loss_ce: 0.2236 decode.acc_seg: 90.7544 aux.loss_ce: 0.1864 aux.acc_seg: 83.3149 +2024/08/10 07:19:51 - mmengine - INFO - Iter(train) [ 49250/160000] lr: 7.2095e-03 eta: 1 day, 10:27:54 time: 1.1116 data_time: 0.0069 memory: 8703 loss: 0.5746 decode.loss_ce: 0.3651 decode.acc_seg: 88.4570 aux.loss_ce: 0.2095 aux.acc_seg: 80.2011 +2024/08/10 07:20:47 - mmengine - INFO - Iter(train) [ 49300/160000] lr: 7.2066e-03 eta: 1 day, 10:26:57 time: 1.1171 data_time: 0.0071 memory: 8704 loss: 0.4064 decode.loss_ce: 0.2255 decode.acc_seg: 94.8554 aux.loss_ce: 0.1808 aux.acc_seg: 88.0853 +2024/08/10 07:21:43 - mmengine - INFO - Iter(train) [ 49350/160000] lr: 7.2037e-03 eta: 1 day, 10:26:01 time: 1.1167 data_time: 0.0068 memory: 8704 loss: 0.5036 decode.loss_ce: 0.3356 decode.acc_seg: 84.8493 aux.loss_ce: 0.1680 aux.acc_seg: 79.6750 +2024/08/10 07:22:39 - mmengine - INFO - Iter(train) [ 49400/160000] lr: 7.2008e-03 eta: 1 day, 10:25:04 time: 1.1103 data_time: 0.0071 memory: 8704 loss: 0.3690 decode.loss_ce: 0.2357 decode.acc_seg: 78.3934 aux.loss_ce: 0.1334 aux.acc_seg: 73.4456 +2024/08/10 07:23:34 - mmengine - INFO - Iter(train) [ 49450/160000] lr: 7.1979e-03 eta: 1 day, 10:24:07 time: 1.1144 data_time: 0.0060 memory: 8703 loss: 0.5990 decode.loss_ce: 0.3850 decode.acc_seg: 92.0755 aux.loss_ce: 0.2139 aux.acc_seg: 83.9671 +2024/08/10 07:24:30 - mmengine - INFO - Iter(train) [ 49500/160000] lr: 7.1951e-03 eta: 1 day, 10:23:11 time: 1.1149 data_time: 0.0058 memory: 8703 loss: 0.4204 decode.loss_ce: 0.2457 decode.acc_seg: 88.5407 aux.loss_ce: 0.1747 aux.acc_seg: 78.7298 +2024/08/10 07:25:26 - mmengine - INFO - Iter(train) [ 49550/160000] lr: 7.1922e-03 eta: 1 day, 10:22:15 time: 1.1184 data_time: 0.0056 memory: 8703 loss: 0.3472 decode.loss_ce: 0.2133 decode.acc_seg: 92.7848 aux.loss_ce: 0.1339 aux.acc_seg: 91.6369 +2024/08/10 07:26:22 - mmengine - INFO - Iter(train) [ 49600/160000] lr: 7.1893e-03 eta: 1 day, 10:21:18 time: 1.1151 data_time: 0.0063 memory: 8703 loss: 0.3992 decode.loss_ce: 0.2429 decode.acc_seg: 92.6225 aux.loss_ce: 0.1563 aux.acc_seg: 91.1915 +2024/08/10 07:27:18 - mmengine - INFO - Iter(train) [ 49650/160000] lr: 7.1864e-03 eta: 1 day, 10:20:21 time: 1.1167 data_time: 0.0068 memory: 8703 loss: 0.4042 decode.loss_ce: 0.2423 decode.acc_seg: 84.3353 aux.loss_ce: 0.1620 aux.acc_seg: 80.5552 +2024/08/10 07:28:13 - mmengine - INFO - Iter(train) [ 49700/160000] lr: 7.1835e-03 eta: 1 day, 10:19:25 time: 1.1136 data_time: 0.0067 memory: 8703 loss: 0.4429 decode.loss_ce: 0.2791 decode.acc_seg: 94.5687 aux.loss_ce: 0.1638 aux.acc_seg: 93.8082 +2024/08/10 07:29:09 - mmengine - INFO - Iter(train) [ 49750/160000] lr: 7.1806e-03 eta: 1 day, 10:18:28 time: 1.1160 data_time: 0.0065 memory: 8704 loss: 0.3425 decode.loss_ce: 0.2082 decode.acc_seg: 95.0201 aux.loss_ce: 0.1344 aux.acc_seg: 94.2960 +2024/08/10 07:30:05 - mmengine - INFO - Iter(train) [ 49800/160000] lr: 7.1777e-03 eta: 1 day, 10:17:32 time: 1.1134 data_time: 0.0075 memory: 8703 loss: 0.5566 decode.loss_ce: 0.3495 decode.acc_seg: 91.7840 aux.loss_ce: 0.2071 aux.acc_seg: 86.9710 +2024/08/10 07:31:01 - mmengine - INFO - Iter(train) [ 49850/160000] lr: 7.1748e-03 eta: 1 day, 10:16:35 time: 1.1082 data_time: 0.0049 memory: 8704 loss: 0.4348 decode.loss_ce: 0.2630 decode.acc_seg: 93.5687 aux.loss_ce: 0.1718 aux.acc_seg: 92.0185 +2024/08/10 07:31:57 - mmengine - INFO - Iter(train) [ 49900/160000] lr: 7.1719e-03 eta: 1 day, 10:15:39 time: 1.1210 data_time: 0.0071 memory: 8703 loss: 0.4319 decode.loss_ce: 0.2647 decode.acc_seg: 89.9947 aux.loss_ce: 0.1672 aux.acc_seg: 83.2422 +2024/08/10 07:32:52 - mmengine - INFO - Iter(train) [ 49950/160000] lr: 7.1690e-03 eta: 1 day, 10:14:42 time: 1.1165 data_time: 0.0059 memory: 8703 loss: 0.3808 decode.loss_ce: 0.2251 decode.acc_seg: 87.1220 aux.loss_ce: 0.1557 aux.acc_seg: 82.1565 +2024/08/10 07:33:48 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 07:33:48 - mmengine - INFO - Iter(train) [ 50000/160000] lr: 7.1662e-03 eta: 1 day, 10:13:46 time: 1.1155 data_time: 0.0066 memory: 8704 loss: 0.3960 decode.loss_ce: 0.2468 decode.acc_seg: 87.1077 aux.loss_ce: 0.1492 aux.acc_seg: 89.2995 +2024/08/10 07:34:44 - mmengine - INFO - Iter(train) [ 50050/160000] lr: 7.1633e-03 eta: 1 day, 10:12:50 time: 1.1151 data_time: 0.0063 memory: 8703 loss: 0.2992 decode.loss_ce: 0.1771 decode.acc_seg: 94.4755 aux.loss_ce: 0.1221 aux.acc_seg: 82.0415 +2024/08/10 07:35:40 - mmengine - INFO - Iter(train) [ 50100/160000] lr: 7.1604e-03 eta: 1 day, 10:11:53 time: 1.1129 data_time: 0.0080 memory: 8704 loss: 0.4659 decode.loss_ce: 0.3024 decode.acc_seg: 94.2123 aux.loss_ce: 0.1635 aux.acc_seg: 87.9009 +2024/08/10 07:36:36 - mmengine - INFO - Iter(train) [ 50150/160000] lr: 7.1575e-03 eta: 1 day, 10:10:57 time: 1.1135 data_time: 0.0057 memory: 8704 loss: 0.3814 decode.loss_ce: 0.2436 decode.acc_seg: 87.0000 aux.loss_ce: 0.1377 aux.acc_seg: 87.2550 +2024/08/10 07:37:31 - mmengine - INFO - Iter(train) [ 50200/160000] lr: 7.1546e-03 eta: 1 day, 10:10:00 time: 1.1178 data_time: 0.0079 memory: 8704 loss: 0.3777 decode.loss_ce: 0.2368 decode.acc_seg: 92.6168 aux.loss_ce: 0.1409 aux.acc_seg: 90.3536 +2024/08/10 07:38:27 - mmengine - INFO - Iter(train) [ 50250/160000] lr: 7.1517e-03 eta: 1 day, 10:09:03 time: 1.1078 data_time: 0.0055 memory: 8704 loss: 0.4619 decode.loss_ce: 0.2668 decode.acc_seg: 83.0051 aux.loss_ce: 0.1951 aux.acc_seg: 72.4798 +2024/08/10 07:39:23 - mmengine - INFO - Iter(train) [ 50300/160000] lr: 7.1488e-03 eta: 1 day, 10:08:06 time: 1.1147 data_time: 0.0077 memory: 8703 loss: 0.4731 decode.loss_ce: 0.2896 decode.acc_seg: 94.9620 aux.loss_ce: 0.1835 aux.acc_seg: 94.3828 +2024/08/10 07:40:19 - mmengine - INFO - Iter(train) [ 50350/160000] lr: 7.1459e-03 eta: 1 day, 10:07:10 time: 1.1146 data_time: 0.0061 memory: 8703 loss: 0.4087 decode.loss_ce: 0.2389 decode.acc_seg: 97.1738 aux.loss_ce: 0.1698 aux.acc_seg: 87.9607 +2024/08/10 07:41:14 - mmengine - INFO - Iter(train) [ 50400/160000] lr: 7.1430e-03 eta: 1 day, 10:06:13 time: 1.1133 data_time: 0.0061 memory: 8703 loss: 0.5078 decode.loss_ce: 0.3043 decode.acc_seg: 90.2542 aux.loss_ce: 0.2035 aux.acc_seg: 79.6780 +2024/08/10 07:42:10 - mmengine - INFO - Iter(train) [ 50450/160000] lr: 7.1401e-03 eta: 1 day, 10:05:17 time: 1.1203 data_time: 0.0077 memory: 8704 loss: 0.3731 decode.loss_ce: 0.2297 decode.acc_seg: 93.2489 aux.loss_ce: 0.1434 aux.acc_seg: 91.2842 +2024/08/10 07:43:06 - mmengine - INFO - Iter(train) [ 50500/160000] lr: 7.1372e-03 eta: 1 day, 10:04:21 time: 1.1144 data_time: 0.0056 memory: 8703 loss: 0.5860 decode.loss_ce: 0.3521 decode.acc_seg: 91.7183 aux.loss_ce: 0.2339 aux.acc_seg: 88.4435 +2024/08/10 07:44:02 - mmengine - INFO - Iter(train) [ 50550/160000] lr: 7.1343e-03 eta: 1 day, 10:03:24 time: 1.1156 data_time: 0.0068 memory: 8703 loss: 0.4955 decode.loss_ce: 0.3127 decode.acc_seg: 91.9252 aux.loss_ce: 0.1828 aux.acc_seg: 86.4400 +2024/08/10 07:44:58 - mmengine - INFO - Iter(train) [ 50600/160000] lr: 7.1315e-03 eta: 1 day, 10:02:28 time: 1.1129 data_time: 0.0051 memory: 8704 loss: 0.4129 decode.loss_ce: 0.2481 decode.acc_seg: 93.8917 aux.loss_ce: 0.1648 aux.acc_seg: 87.1818 +2024/08/10 07:45:54 - mmengine - INFO - Iter(train) [ 50650/160000] lr: 7.1286e-03 eta: 1 day, 10:01:31 time: 1.1148 data_time: 0.0068 memory: 8703 loss: 0.5202 decode.loss_ce: 0.3150 decode.acc_seg: 87.4170 aux.loss_ce: 0.2051 aux.acc_seg: 69.6116 +2024/08/10 07:46:49 - mmengine - INFO - Iter(train) [ 50700/160000] lr: 7.1257e-03 eta: 1 day, 10:00:35 time: 1.1180 data_time: 0.0087 memory: 8704 loss: 0.4083 decode.loss_ce: 0.2477 decode.acc_seg: 96.0102 aux.loss_ce: 0.1605 aux.acc_seg: 94.3282 +2024/08/10 07:47:45 - mmengine - INFO - Iter(train) [ 50750/160000] lr: 7.1228e-03 eta: 1 day, 9:59:39 time: 1.1224 data_time: 0.0072 memory: 8703 loss: 0.4483 decode.loss_ce: 0.2804 decode.acc_seg: 87.9712 aux.loss_ce: 0.1679 aux.acc_seg: 77.0803 +2024/08/10 07:48:41 - mmengine - INFO - Iter(train) [ 50800/160000] lr: 7.1199e-03 eta: 1 day, 9:58:42 time: 1.1163 data_time: 0.0064 memory: 8704 loss: 0.4518 decode.loss_ce: 0.2834 decode.acc_seg: 83.0001 aux.loss_ce: 0.1684 aux.acc_seg: 77.8044 +2024/08/10 07:49:37 - mmengine - INFO - Iter(train) [ 50850/160000] lr: 7.1170e-03 eta: 1 day, 9:57:46 time: 1.1181 data_time: 0.0064 memory: 8703 loss: 0.3208 decode.loss_ce: 0.2066 decode.acc_seg: 95.5943 aux.loss_ce: 0.1141 aux.acc_seg: 93.3168 +2024/08/10 07:50:33 - mmengine - INFO - Iter(train) [ 50900/160000] lr: 7.1141e-03 eta: 1 day, 9:56:50 time: 1.1155 data_time: 0.0075 memory: 8703 loss: 0.4481 decode.loss_ce: 0.2707 decode.acc_seg: 94.7812 aux.loss_ce: 0.1775 aux.acc_seg: 93.1567 +2024/08/10 07:51:29 - mmengine - INFO - Iter(train) [ 50950/160000] lr: 7.1112e-03 eta: 1 day, 9:55:53 time: 1.1146 data_time: 0.0052 memory: 8703 loss: 0.4672 decode.loss_ce: 0.2927 decode.acc_seg: 92.7784 aux.loss_ce: 0.1744 aux.acc_seg: 90.2201 +2024/08/10 07:52:25 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 07:52:25 - mmengine - INFO - Iter(train) [ 51000/160000] lr: 7.1083e-03 eta: 1 day, 9:54:57 time: 1.1148 data_time: 0.0057 memory: 8704 loss: 0.3585 decode.loss_ce: 0.2033 decode.acc_seg: 85.2865 aux.loss_ce: 0.1552 aux.acc_seg: 78.9551 +2024/08/10 07:53:20 - mmengine - INFO - Iter(train) [ 51050/160000] lr: 7.1054e-03 eta: 1 day, 9:54:00 time: 1.1181 data_time: 0.0073 memory: 8704 loss: 0.5287 decode.loss_ce: 0.3214 decode.acc_seg: 95.1743 aux.loss_ce: 0.2072 aux.acc_seg: 92.4872 +2024/08/10 07:54:16 - mmengine - INFO - Iter(train) [ 51100/160000] lr: 7.1025e-03 eta: 1 day, 9:53:04 time: 1.1183 data_time: 0.0064 memory: 8703 loss: 0.4433 decode.loss_ce: 0.2785 decode.acc_seg: 90.0160 aux.loss_ce: 0.1649 aux.acc_seg: 85.0257 +2024/08/10 07:55:12 - mmengine - INFO - Iter(train) [ 51150/160000] lr: 7.0996e-03 eta: 1 day, 9:52:07 time: 1.1086 data_time: 0.0065 memory: 8703 loss: 0.4223 decode.loss_ce: 0.2519 decode.acc_seg: 95.1902 aux.loss_ce: 0.1704 aux.acc_seg: 90.3215 +2024/08/10 07:56:07 - mmengine - INFO - Iter(train) [ 51200/160000] lr: 7.0967e-03 eta: 1 day, 9:51:10 time: 1.1167 data_time: 0.0068 memory: 8703 loss: 0.3256 decode.loss_ce: 0.2052 decode.acc_seg: 93.1376 aux.loss_ce: 0.1203 aux.acc_seg: 86.9307 +2024/08/10 07:57:03 - mmengine - INFO - Iter(train) [ 51250/160000] lr: 7.0938e-03 eta: 1 day, 9:50:14 time: 1.1159 data_time: 0.0067 memory: 8703 loss: 0.4638 decode.loss_ce: 0.2821 decode.acc_seg: 96.0768 aux.loss_ce: 0.1817 aux.acc_seg: 90.8428 +2024/08/10 07:57:59 - mmengine - INFO - Iter(train) [ 51300/160000] lr: 7.0910e-03 eta: 1 day, 9:49:18 time: 1.1161 data_time: 0.0062 memory: 8703 loss: 0.5262 decode.loss_ce: 0.3100 decode.acc_seg: 93.2645 aux.loss_ce: 0.2161 aux.acc_seg: 81.1074 +2024/08/10 07:58:55 - mmengine - INFO - Iter(train) [ 51350/160000] lr: 7.0881e-03 eta: 1 day, 9:48:21 time: 1.1133 data_time: 0.0059 memory: 8703 loss: 0.4645 decode.loss_ce: 0.2926 decode.acc_seg: 90.3926 aux.loss_ce: 0.1720 aux.acc_seg: 90.6148 +2024/08/10 07:59:51 - mmengine - INFO - Iter(train) [ 51400/160000] lr: 7.0852e-03 eta: 1 day, 9:47:25 time: 1.1167 data_time: 0.0065 memory: 8704 loss: 0.5029 decode.loss_ce: 0.3377 decode.acc_seg: 84.1652 aux.loss_ce: 0.1652 aux.acc_seg: 78.4357 +2024/08/10 08:00:46 - mmengine - INFO - Iter(train) [ 51450/160000] lr: 7.0823e-03 eta: 1 day, 9:46:28 time: 1.1111 data_time: 0.0070 memory: 8704 loss: 0.4316 decode.loss_ce: 0.2567 decode.acc_seg: 79.1232 aux.loss_ce: 0.1749 aux.acc_seg: 71.6195 +2024/08/10 08:01:42 - mmengine - INFO - Iter(train) [ 51500/160000] lr: 7.0794e-03 eta: 1 day, 9:45:31 time: 1.1102 data_time: 0.0066 memory: 8704 loss: 0.3852 decode.loss_ce: 0.2279 decode.acc_seg: 90.7703 aux.loss_ce: 0.1572 aux.acc_seg: 80.0909 +2024/08/10 08:02:38 - mmengine - INFO - Iter(train) [ 51550/160000] lr: 7.0765e-03 eta: 1 day, 9:44:35 time: 1.1130 data_time: 0.0070 memory: 8704 loss: 0.4062 decode.loss_ce: 0.2489 decode.acc_seg: 90.1153 aux.loss_ce: 0.1572 aux.acc_seg: 76.7982 +2024/08/10 08:03:33 - mmengine - INFO - Iter(train) [ 51600/160000] lr: 7.0736e-03 eta: 1 day, 9:43:38 time: 1.1157 data_time: 0.0073 memory: 8704 loss: 0.5242 decode.loss_ce: 0.3388 decode.acc_seg: 87.1476 aux.loss_ce: 0.1854 aux.acc_seg: 84.7811 +2024/08/10 08:04:29 - mmengine - INFO - Iter(train) [ 51650/160000] lr: 7.0707e-03 eta: 1 day, 9:42:42 time: 1.1204 data_time: 0.0071 memory: 8704 loss: 0.4125 decode.loss_ce: 0.2640 decode.acc_seg: 92.5131 aux.loss_ce: 0.1484 aux.acc_seg: 90.2770 +2024/08/10 08:05:25 - mmengine - INFO - Iter(train) [ 51700/160000] lr: 7.0678e-03 eta: 1 day, 9:41:45 time: 1.1165 data_time: 0.0068 memory: 8704 loss: 0.3891 decode.loss_ce: 0.2384 decode.acc_seg: 93.6050 aux.loss_ce: 0.1507 aux.acc_seg: 92.2302 +2024/08/10 08:06:21 - mmengine - INFO - Iter(train) [ 51750/160000] lr: 7.0649e-03 eta: 1 day, 9:40:49 time: 1.1166 data_time: 0.0065 memory: 8704 loss: 0.4467 decode.loss_ce: 0.2604 decode.acc_seg: 93.4708 aux.loss_ce: 0.1863 aux.acc_seg: 85.2142 +2024/08/10 08:07:17 - mmengine - INFO - Iter(train) [ 51800/160000] lr: 7.0620e-03 eta: 1 day, 9:39:53 time: 1.1188 data_time: 0.0077 memory: 8704 loss: 0.3315 decode.loss_ce: 0.2028 decode.acc_seg: 88.7168 aux.loss_ce: 0.1287 aux.acc_seg: 85.5705 +2024/08/10 08:08:13 - mmengine - INFO - Iter(train) [ 51850/160000] lr: 7.0591e-03 eta: 1 day, 9:38:56 time: 1.1152 data_time: 0.0065 memory: 8705 loss: 0.2473 decode.loss_ce: 0.1624 decode.acc_seg: 94.6252 aux.loss_ce: 0.0849 aux.acc_seg: 93.8016 +2024/08/10 08:09:08 - mmengine - INFO - Iter(train) [ 51900/160000] lr: 7.0562e-03 eta: 1 day, 9:37:59 time: 1.1113 data_time: 0.0062 memory: 8703 loss: 0.3450 decode.loss_ce: 0.2129 decode.acc_seg: 93.0024 aux.loss_ce: 0.1321 aux.acc_seg: 90.4688 +2024/08/10 08:10:04 - mmengine - INFO - Iter(train) [ 51950/160000] lr: 7.0533e-03 eta: 1 day, 9:37:03 time: 1.1141 data_time: 0.0064 memory: 8703 loss: 0.5569 decode.loss_ce: 0.3193 decode.acc_seg: 97.4662 aux.loss_ce: 0.2376 aux.acc_seg: 97.3786 +2024/08/10 08:11:00 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 08:11:00 - mmengine - INFO - Iter(train) [ 52000/160000] lr: 7.0504e-03 eta: 1 day, 9:36:06 time: 1.1121 data_time: 0.0064 memory: 8703 loss: 0.3812 decode.loss_ce: 0.2359 decode.acc_seg: 96.9449 aux.loss_ce: 0.1453 aux.acc_seg: 96.2844 +2024/08/10 08:11:55 - mmengine - INFO - Iter(train) [ 52050/160000] lr: 7.0475e-03 eta: 1 day, 9:35:09 time: 1.1106 data_time: 0.0066 memory: 8704 loss: 0.4706 decode.loss_ce: 0.2912 decode.acc_seg: 95.6267 aux.loss_ce: 0.1794 aux.acc_seg: 94.4137 +2024/08/10 08:12:51 - mmengine - INFO - Iter(train) [ 52100/160000] lr: 7.0446e-03 eta: 1 day, 9:34:13 time: 1.1141 data_time: 0.0077 memory: 8704 loss: 0.3801 decode.loss_ce: 0.2420 decode.acc_seg: 96.6972 aux.loss_ce: 0.1381 aux.acc_seg: 96.3663 +2024/08/10 08:13:47 - mmengine - INFO - Iter(train) [ 52150/160000] lr: 7.0417e-03 eta: 1 day, 9:33:16 time: 1.1154 data_time: 0.0065 memory: 8703 loss: 0.6270 decode.loss_ce: 0.4027 decode.acc_seg: 87.6726 aux.loss_ce: 0.2243 aux.acc_seg: 86.4610 +2024/08/10 08:14:43 - mmengine - INFO - Iter(train) [ 52200/160000] lr: 7.0388e-03 eta: 1 day, 9:32:20 time: 1.1200 data_time: 0.0062 memory: 8703 loss: 0.3129 decode.loss_ce: 0.1973 decode.acc_seg: 88.8247 aux.loss_ce: 0.1157 aux.acc_seg: 82.4435 +2024/08/10 08:15:39 - mmengine - INFO - Iter(train) [ 52250/160000] lr: 7.0359e-03 eta: 1 day, 9:31:24 time: 1.1119 data_time: 0.0060 memory: 8703 loss: 0.3681 decode.loss_ce: 0.2333 decode.acc_seg: 96.9809 aux.loss_ce: 0.1348 aux.acc_seg: 96.2290 +2024/08/10 08:16:34 - mmengine - INFO - Iter(train) [ 52300/160000] lr: 7.0330e-03 eta: 1 day, 9:30:27 time: 1.1135 data_time: 0.0067 memory: 8703 loss: 0.3813 decode.loss_ce: 0.2531 decode.acc_seg: 92.3536 aux.loss_ce: 0.1281 aux.acc_seg: 84.9795 +2024/08/10 08:17:30 - mmengine - INFO - Iter(train) [ 52350/160000] lr: 7.0301e-03 eta: 1 day, 9:29:31 time: 1.1103 data_time: 0.0056 memory: 8704 loss: 0.3761 decode.loss_ce: 0.2282 decode.acc_seg: 90.3960 aux.loss_ce: 0.1479 aux.acc_seg: 85.1071 +2024/08/10 08:18:26 - mmengine - INFO - Iter(train) [ 52400/160000] lr: 7.0272e-03 eta: 1 day, 9:28:34 time: 1.1087 data_time: 0.0055 memory: 8703 loss: 0.3602 decode.loss_ce: 0.2197 decode.acc_seg: 94.6558 aux.loss_ce: 0.1405 aux.acc_seg: 92.7062 +2024/08/10 08:19:21 - mmengine - INFO - Iter(train) [ 52450/160000] lr: 7.0244e-03 eta: 1 day, 9:27:37 time: 1.1138 data_time: 0.0064 memory: 8703 loss: 0.4625 decode.loss_ce: 0.2689 decode.acc_seg: 93.2095 aux.loss_ce: 0.1937 aux.acc_seg: 78.2134 +2024/08/10 08:20:17 - mmengine - INFO - Iter(train) [ 52500/160000] lr: 7.0215e-03 eta: 1 day, 9:26:41 time: 1.1115 data_time: 0.0062 memory: 8703 loss: 0.3766 decode.loss_ce: 0.2298 decode.acc_seg: 87.5108 aux.loss_ce: 0.1468 aux.acc_seg: 84.8448 +2024/08/10 08:21:13 - mmengine - INFO - Iter(train) [ 52550/160000] lr: 7.0186e-03 eta: 1 day, 9:25:44 time: 1.1174 data_time: 0.0073 memory: 8704 loss: 0.3806 decode.loss_ce: 0.2316 decode.acc_seg: 92.4390 aux.loss_ce: 0.1490 aux.acc_seg: 88.1329 +2024/08/10 08:22:09 - mmengine - INFO - Iter(train) [ 52600/160000] lr: 7.0157e-03 eta: 1 day, 9:24:48 time: 1.1180 data_time: 0.0064 memory: 8703 loss: 0.5332 decode.loss_ce: 0.3376 decode.acc_seg: 94.8746 aux.loss_ce: 0.1956 aux.acc_seg: 93.8212 +2024/08/10 08:23:05 - mmengine - INFO - Iter(train) [ 52650/160000] lr: 7.0128e-03 eta: 1 day, 9:23:52 time: 1.1160 data_time: 0.0062 memory: 8703 loss: 0.4643 decode.loss_ce: 0.2914 decode.acc_seg: 89.5341 aux.loss_ce: 0.1728 aux.acc_seg: 86.5384 +2024/08/10 08:24:00 - mmengine - INFO - Iter(train) [ 52700/160000] lr: 7.0099e-03 eta: 1 day, 9:22:55 time: 1.1128 data_time: 0.0054 memory: 8703 loss: 0.4076 decode.loss_ce: 0.2485 decode.acc_seg: 93.3548 aux.loss_ce: 0.1590 aux.acc_seg: 87.5392 +2024/08/10 08:24:56 - mmengine - INFO - Iter(train) [ 52750/160000] lr: 7.0070e-03 eta: 1 day, 9:21:59 time: 1.1159 data_time: 0.0063 memory: 8703 loss: 0.4415 decode.loss_ce: 0.2723 decode.acc_seg: 93.7392 aux.loss_ce: 0.1692 aux.acc_seg: 92.5658 +2024/08/10 08:25:52 - mmengine - INFO - Iter(train) [ 52800/160000] lr: 7.0041e-03 eta: 1 day, 9:21:02 time: 1.1114 data_time: 0.0058 memory: 8703 loss: 0.3922 decode.loss_ce: 0.2373 decode.acc_seg: 91.4405 aux.loss_ce: 0.1549 aux.acc_seg: 89.5007 +2024/08/10 08:26:48 - mmengine - INFO - Iter(train) [ 52850/160000] lr: 7.0012e-03 eta: 1 day, 9:20:06 time: 1.1130 data_time: 0.0058 memory: 8704 loss: 0.3837 decode.loss_ce: 0.2422 decode.acc_seg: 96.5595 aux.loss_ce: 0.1414 aux.acc_seg: 95.9321 +2024/08/10 08:27:43 - mmengine - INFO - Iter(train) [ 52900/160000] lr: 6.9983e-03 eta: 1 day, 9:19:09 time: 1.1121 data_time: 0.0068 memory: 8704 loss: 0.3744 decode.loss_ce: 0.2196 decode.acc_seg: 88.1720 aux.loss_ce: 0.1547 aux.acc_seg: 81.0603 +2024/08/10 08:28:39 - mmengine - INFO - Iter(train) [ 52950/160000] lr: 6.9954e-03 eta: 1 day, 9:18:13 time: 1.1114 data_time: 0.0066 memory: 8704 loss: 0.5353 decode.loss_ce: 0.3064 decode.acc_seg: 95.8465 aux.loss_ce: 0.2290 aux.acc_seg: 95.1725 +2024/08/10 08:29:35 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 08:29:35 - mmengine - INFO - Iter(train) [ 53000/160000] lr: 6.9925e-03 eta: 1 day, 9:17:16 time: 1.1131 data_time: 0.0067 memory: 8704 loss: 0.3601 decode.loss_ce: 0.2085 decode.acc_seg: 90.0876 aux.loss_ce: 0.1516 aux.acc_seg: 84.2729 +2024/08/10 08:30:31 - mmengine - INFO - Iter(train) [ 53050/160000] lr: 6.9896e-03 eta: 1 day, 9:16:20 time: 1.1169 data_time: 0.0069 memory: 8703 loss: 0.4015 decode.loss_ce: 0.2404 decode.acc_seg: 96.6719 aux.loss_ce: 0.1612 aux.acc_seg: 89.3622 +2024/08/10 08:31:26 - mmengine - INFO - Iter(train) [ 53100/160000] lr: 6.9867e-03 eta: 1 day, 9:15:23 time: 1.1151 data_time: 0.0078 memory: 8704 loss: 0.3971 decode.loss_ce: 0.2332 decode.acc_seg: 93.9980 aux.loss_ce: 0.1639 aux.acc_seg: 90.4185 +2024/08/10 08:32:22 - mmengine - INFO - Iter(train) [ 53150/160000] lr: 6.9838e-03 eta: 1 day, 9:14:27 time: 1.1145 data_time: 0.0070 memory: 8704 loss: 0.4248 decode.loss_ce: 0.2641 decode.acc_seg: 96.4302 aux.loss_ce: 0.1606 aux.acc_seg: 92.1513 +2024/08/10 08:33:18 - mmengine - INFO - Iter(train) [ 53200/160000] lr: 6.9809e-03 eta: 1 day, 9:13:30 time: 1.1149 data_time: 0.0071 memory: 8704 loss: 0.4685 decode.loss_ce: 0.2902 decode.acc_seg: 94.8959 aux.loss_ce: 0.1783 aux.acc_seg: 91.6766 +2024/08/10 08:34:14 - mmengine - INFO - Iter(train) [ 53250/160000] lr: 6.9780e-03 eta: 1 day, 9:12:34 time: 1.1140 data_time: 0.0063 memory: 8703 loss: 0.3548 decode.loss_ce: 0.2241 decode.acc_seg: 94.3793 aux.loss_ce: 0.1307 aux.acc_seg: 93.2377 +2024/08/10 08:35:10 - mmengine - INFO - Iter(train) [ 53300/160000] lr: 6.9751e-03 eta: 1 day, 9:11:38 time: 1.1169 data_time: 0.0080 memory: 8704 loss: 0.4441 decode.loss_ce: 0.2824 decode.acc_seg: 85.1653 aux.loss_ce: 0.1617 aux.acc_seg: 83.5934 +2024/08/10 08:36:06 - mmengine - INFO - Iter(train) [ 53350/160000] lr: 6.9722e-03 eta: 1 day, 9:10:41 time: 1.1198 data_time: 0.0072 memory: 8703 loss: 0.3866 decode.loss_ce: 0.2354 decode.acc_seg: 92.1600 aux.loss_ce: 0.1512 aux.acc_seg: 89.7681 +2024/08/10 08:37:01 - mmengine - INFO - Iter(train) [ 53400/160000] lr: 6.9693e-03 eta: 1 day, 9:09:45 time: 1.1135 data_time: 0.0064 memory: 8704 loss: 0.4354 decode.loss_ce: 0.2855 decode.acc_seg: 91.0142 aux.loss_ce: 0.1499 aux.acc_seg: 90.3092 +2024/08/10 08:37:57 - mmengine - INFO - Iter(train) [ 53450/160000] lr: 6.9664e-03 eta: 1 day, 9:08:48 time: 1.1126 data_time: 0.0059 memory: 8703 loss: 0.4420 decode.loss_ce: 0.2630 decode.acc_seg: 86.9235 aux.loss_ce: 0.1790 aux.acc_seg: 82.1455 +2024/08/10 08:38:53 - mmengine - INFO - Iter(train) [ 53500/160000] lr: 6.9635e-03 eta: 1 day, 9:07:52 time: 1.1128 data_time: 0.0062 memory: 8704 loss: 0.4577 decode.loss_ce: 0.2864 decode.acc_seg: 96.6833 aux.loss_ce: 0.1713 aux.acc_seg: 95.9572 +2024/08/10 08:39:49 - mmengine - INFO - Iter(train) [ 53550/160000] lr: 6.9606e-03 eta: 1 day, 9:06:56 time: 1.1185 data_time: 0.0067 memory: 8703 loss: 0.3455 decode.loss_ce: 0.2116 decode.acc_seg: 82.7132 aux.loss_ce: 0.1339 aux.acc_seg: 78.2502 +2024/08/10 08:40:45 - mmengine - INFO - Iter(train) [ 53600/160000] lr: 6.9577e-03 eta: 1 day, 9:06:00 time: 1.1202 data_time: 0.0067 memory: 8703 loss: 0.4639 decode.loss_ce: 0.2710 decode.acc_seg: 94.4897 aux.loss_ce: 0.1928 aux.acc_seg: 91.6811 +2024/08/10 08:41:40 - mmengine - INFO - Iter(train) [ 53650/160000] lr: 6.9548e-03 eta: 1 day, 9:05:03 time: 1.1169 data_time: 0.0063 memory: 8704 loss: 0.3137 decode.loss_ce: 0.1956 decode.acc_seg: 95.6155 aux.loss_ce: 0.1180 aux.acc_seg: 85.4866 +2024/08/10 08:42:36 - mmengine - INFO - Iter(train) [ 53700/160000] lr: 6.9519e-03 eta: 1 day, 9:04:07 time: 1.1175 data_time: 0.0081 memory: 8703 loss: 0.3756 decode.loss_ce: 0.2340 decode.acc_seg: 90.0664 aux.loss_ce: 0.1416 aux.acc_seg: 91.7027 +2024/08/10 08:43:32 - mmengine - INFO - Iter(train) [ 53750/160000] lr: 6.9490e-03 eta: 1 day, 9:03:10 time: 1.1107 data_time: 0.0066 memory: 8704 loss: 0.4725 decode.loss_ce: 0.2863 decode.acc_seg: 84.5154 aux.loss_ce: 0.1861 aux.acc_seg: 72.1415 +2024/08/10 08:44:28 - mmengine - INFO - Iter(train) [ 53800/160000] lr: 6.9461e-03 eta: 1 day, 9:02:14 time: 1.1136 data_time: 0.0064 memory: 8704 loss: 0.3836 decode.loss_ce: 0.2404 decode.acc_seg: 93.3469 aux.loss_ce: 0.1432 aux.acc_seg: 91.4085 +2024/08/10 08:45:24 - mmengine - INFO - Iter(train) [ 53850/160000] lr: 6.9432e-03 eta: 1 day, 9:01:17 time: 1.1144 data_time: 0.0067 memory: 8703 loss: 0.3601 decode.loss_ce: 0.2312 decode.acc_seg: 93.0936 aux.loss_ce: 0.1290 aux.acc_seg: 92.2065 +2024/08/10 08:46:20 - mmengine - INFO - Iter(train) [ 53900/160000] lr: 6.9403e-03 eta: 1 day, 9:00:21 time: 1.1218 data_time: 0.0082 memory: 8704 loss: 0.4354 decode.loss_ce: 0.2788 decode.acc_seg: 71.1194 aux.loss_ce: 0.1566 aux.acc_seg: 73.0529 +2024/08/10 08:47:15 - mmengine - INFO - Iter(train) [ 53950/160000] lr: 6.9374e-03 eta: 1 day, 8:59:25 time: 1.1216 data_time: 0.0074 memory: 8703 loss: 0.4219 decode.loss_ce: 0.2534 decode.acc_seg: 90.8543 aux.loss_ce: 0.1685 aux.acc_seg: 84.6264 +2024/08/10 08:48:11 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 08:48:11 - mmengine - INFO - Iter(train) [ 54000/160000] lr: 6.9345e-03 eta: 1 day, 8:58:29 time: 1.1142 data_time: 0.0061 memory: 8704 loss: 0.3729 decode.loss_ce: 0.2260 decode.acc_seg: 94.5998 aux.loss_ce: 0.1469 aux.acc_seg: 90.0283 +2024/08/10 08:49:07 - mmengine - INFO - Iter(train) [ 54050/160000] lr: 6.9316e-03 eta: 1 day, 8:57:33 time: 1.1171 data_time: 0.0071 memory: 8703 loss: 0.3756 decode.loss_ce: 0.2245 decode.acc_seg: 93.2983 aux.loss_ce: 0.1511 aux.acc_seg: 89.5782 +2024/08/10 08:50:03 - mmengine - INFO - Iter(train) [ 54100/160000] lr: 6.9287e-03 eta: 1 day, 8:56:36 time: 1.1155 data_time: 0.0081 memory: 8704 loss: 0.3872 decode.loss_ce: 0.2263 decode.acc_seg: 94.2259 aux.loss_ce: 0.1609 aux.acc_seg: 81.6077 +2024/08/10 08:50:59 - mmengine - INFO - Iter(train) [ 54150/160000] lr: 6.9258e-03 eta: 1 day, 8:55:40 time: 1.1158 data_time: 0.0063 memory: 8704 loss: 0.5342 decode.loss_ce: 0.3502 decode.acc_seg: 78.6712 aux.loss_ce: 0.1840 aux.acc_seg: 71.5747 +2024/08/10 08:51:54 - mmengine - INFO - Iter(train) [ 54200/160000] lr: 6.9229e-03 eta: 1 day, 8:54:43 time: 1.1077 data_time: 0.0051 memory: 8703 loss: 0.3035 decode.loss_ce: 0.1791 decode.acc_seg: 95.6760 aux.loss_ce: 0.1244 aux.acc_seg: 94.6222 +2024/08/10 08:52:50 - mmengine - INFO - Iter(train) [ 54250/160000] lr: 6.9200e-03 eta: 1 day, 8:53:46 time: 1.1113 data_time: 0.0051 memory: 8703 loss: 0.3787 decode.loss_ce: 0.2332 decode.acc_seg: 92.8434 aux.loss_ce: 0.1455 aux.acc_seg: 90.8923 +2024/08/10 08:53:46 - mmengine - INFO - Iter(train) [ 54300/160000] lr: 6.9171e-03 eta: 1 day, 8:52:50 time: 1.1121 data_time: 0.0066 memory: 8704 loss: 0.4567 decode.loss_ce: 0.2798 decode.acc_seg: 81.3982 aux.loss_ce: 0.1769 aux.acc_seg: 68.8745 +2024/08/10 08:54:42 - mmengine - INFO - Iter(train) [ 54350/160000] lr: 6.9142e-03 eta: 1 day, 8:51:53 time: 1.1173 data_time: 0.0076 memory: 8703 loss: 0.7778 decode.loss_ce: 0.5241 decode.acc_seg: 90.4804 aux.loss_ce: 0.2537 aux.acc_seg: 84.4237 +2024/08/10 08:55:37 - mmengine - INFO - Iter(train) [ 54400/160000] lr: 6.9113e-03 eta: 1 day, 8:50:57 time: 1.1170 data_time: 0.0063 memory: 8703 loss: 0.3744 decode.loss_ce: 0.2225 decode.acc_seg: 92.9459 aux.loss_ce: 0.1519 aux.acc_seg: 90.3996 +2024/08/10 08:56:33 - mmengine - INFO - Iter(train) [ 54450/160000] lr: 6.9084e-03 eta: 1 day, 8:50:01 time: 1.1157 data_time: 0.0064 memory: 8703 loss: 0.4622 decode.loss_ce: 0.2933 decode.acc_seg: 93.0398 aux.loss_ce: 0.1689 aux.acc_seg: 91.6023 +2024/08/10 08:57:29 - mmengine - INFO - Iter(train) [ 54500/160000] lr: 6.9055e-03 eta: 1 day, 8:49:04 time: 1.1164 data_time: 0.0068 memory: 8704 loss: 0.4205 decode.loss_ce: 0.2812 decode.acc_seg: 93.7557 aux.loss_ce: 0.1393 aux.acc_seg: 91.0404 +2024/08/10 08:58:25 - mmengine - INFO - Iter(train) [ 54550/160000] lr: 6.9025e-03 eta: 1 day, 8:48:08 time: 1.1162 data_time: 0.0076 memory: 8703 loss: 0.3596 decode.loss_ce: 0.2164 decode.acc_seg: 89.2432 aux.loss_ce: 0.1432 aux.acc_seg: 82.6138 +2024/08/10 08:59:21 - mmengine - INFO - Iter(train) [ 54600/160000] lr: 6.8996e-03 eta: 1 day, 8:47:12 time: 1.1151 data_time: 0.0056 memory: 8703 loss: 0.4768 decode.loss_ce: 0.2933 decode.acc_seg: 90.5874 aux.loss_ce: 0.1835 aux.acc_seg: 77.8360 +2024/08/10 09:00:17 - mmengine - INFO - Iter(train) [ 54650/160000] lr: 6.8967e-03 eta: 1 day, 8:46:16 time: 1.1152 data_time: 0.0063 memory: 8704 loss: 0.4484 decode.loss_ce: 0.2867 decode.acc_seg: 93.2778 aux.loss_ce: 0.1617 aux.acc_seg: 90.4482 +2024/08/10 09:01:12 - mmengine - INFO - Iter(train) [ 54700/160000] lr: 6.8938e-03 eta: 1 day, 8:45:19 time: 1.1146 data_time: 0.0072 memory: 8703 loss: 0.3202 decode.loss_ce: 0.1885 decode.acc_seg: 94.6296 aux.loss_ce: 0.1318 aux.acc_seg: 93.4608 +2024/08/10 09:02:08 - mmengine - INFO - Iter(train) [ 54750/160000] lr: 6.8909e-03 eta: 1 day, 8:44:23 time: 1.1159 data_time: 0.0068 memory: 8703 loss: 0.3490 decode.loss_ce: 0.2132 decode.acc_seg: 89.0877 aux.loss_ce: 0.1358 aux.acc_seg: 82.8646 +2024/08/10 09:03:04 - mmengine - INFO - Iter(train) [ 54800/160000] lr: 6.8880e-03 eta: 1 day, 8:43:26 time: 1.1147 data_time: 0.0087 memory: 8704 loss: 0.6658 decode.loss_ce: 0.4372 decode.acc_seg: 90.3401 aux.loss_ce: 0.2286 aux.acc_seg: 85.4258 +2024/08/10 09:04:00 - mmengine - INFO - Iter(train) [ 54850/160000] lr: 6.8851e-03 eta: 1 day, 8:42:30 time: 1.1201 data_time: 0.0075 memory: 8703 loss: 0.3963 decode.loss_ce: 0.2400 decode.acc_seg: 93.8754 aux.loss_ce: 0.1563 aux.acc_seg: 87.6315 +2024/08/10 09:04:55 - mmengine - INFO - Iter(train) [ 54900/160000] lr: 6.8822e-03 eta: 1 day, 8:41:34 time: 1.1128 data_time: 0.0067 memory: 8704 loss: 0.3905 decode.loss_ce: 0.2493 decode.acc_seg: 79.7368 aux.loss_ce: 0.1412 aux.acc_seg: 80.4301 +2024/08/10 09:05:51 - mmengine - INFO - Iter(train) [ 54950/160000] lr: 6.8793e-03 eta: 1 day, 8:40:37 time: 1.1114 data_time: 0.0061 memory: 8704 loss: 0.3957 decode.loss_ce: 0.2463 decode.acc_seg: 95.0356 aux.loss_ce: 0.1494 aux.acc_seg: 91.9112 +2024/08/10 09:06:47 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 09:06:47 - mmengine - INFO - Iter(train) [ 55000/160000] lr: 6.8764e-03 eta: 1 day, 8:39:41 time: 1.1196 data_time: 0.0073 memory: 8704 loss: 0.6866 decode.loss_ce: 0.4331 decode.acc_seg: 88.7584 aux.loss_ce: 0.2535 aux.acc_seg: 85.8590 +2024/08/10 09:07:43 - mmengine - INFO - Iter(train) [ 55050/160000] lr: 6.8735e-03 eta: 1 day, 8:38:44 time: 1.1176 data_time: 0.0054 memory: 8703 loss: 0.4248 decode.loss_ce: 0.2506 decode.acc_seg: 94.4289 aux.loss_ce: 0.1742 aux.acc_seg: 93.0871 +2024/08/10 09:08:39 - mmengine - INFO - Iter(train) [ 55100/160000] lr: 6.8706e-03 eta: 1 day, 8:37:48 time: 1.1158 data_time: 0.0066 memory: 8704 loss: 0.5741 decode.loss_ce: 0.3882 decode.acc_seg: 95.1831 aux.loss_ce: 0.1860 aux.acc_seg: 92.4226 +2024/08/10 09:09:34 - mmengine - INFO - Iter(train) [ 55150/160000] lr: 6.8677e-03 eta: 1 day, 8:36:52 time: 1.1190 data_time: 0.0081 memory: 8703 loss: 0.5995 decode.loss_ce: 0.3888 decode.acc_seg: 96.0745 aux.loss_ce: 0.2107 aux.acc_seg: 93.4754 +2024/08/10 09:10:30 - mmengine - INFO - Iter(train) [ 55200/160000] lr: 6.8648e-03 eta: 1 day, 8:35:55 time: 1.1172 data_time: 0.0072 memory: 8703 loss: 0.4008 decode.loss_ce: 0.2513 decode.acc_seg: 95.7258 aux.loss_ce: 0.1494 aux.acc_seg: 95.0801 +2024/08/10 09:11:26 - mmengine - INFO - Iter(train) [ 55250/160000] lr: 6.8619e-03 eta: 1 day, 8:34:59 time: 1.1131 data_time: 0.0059 memory: 8703 loss: 0.4223 decode.loss_ce: 0.2426 decode.acc_seg: 90.5913 aux.loss_ce: 0.1797 aux.acc_seg: 89.9811 +2024/08/10 09:12:22 - mmengine - INFO - Iter(train) [ 55300/160000] lr: 6.8590e-03 eta: 1 day, 8:34:02 time: 1.1180 data_time: 0.0075 memory: 8703 loss: 0.3920 decode.loss_ce: 0.2463 decode.acc_seg: 89.0429 aux.loss_ce: 0.1456 aux.acc_seg: 86.3787 +2024/08/10 09:13:17 - mmengine - INFO - Iter(train) [ 55350/160000] lr: 6.8561e-03 eta: 1 day, 8:33:06 time: 1.1164 data_time: 0.0067 memory: 8703 loss: 0.4381 decode.loss_ce: 0.2604 decode.acc_seg: 92.8589 aux.loss_ce: 0.1777 aux.acc_seg: 89.3688 +2024/08/10 09:14:13 - mmengine - INFO - Iter(train) [ 55400/160000] lr: 6.8532e-03 eta: 1 day, 8:32:10 time: 1.1147 data_time: 0.0054 memory: 8703 loss: 0.3659 decode.loss_ce: 0.2354 decode.acc_seg: 96.6406 aux.loss_ce: 0.1305 aux.acc_seg: 95.0429 +2024/08/10 09:15:09 - mmengine - INFO - Iter(train) [ 55450/160000] lr: 6.8503e-03 eta: 1 day, 8:31:13 time: 1.1182 data_time: 0.0072 memory: 8704 loss: 0.2955 decode.loss_ce: 0.1810 decode.acc_seg: 95.4319 aux.loss_ce: 0.1144 aux.acc_seg: 93.6649 +2024/08/10 09:16:05 - mmengine - INFO - Iter(train) [ 55500/160000] lr: 6.8474e-03 eta: 1 day, 8:30:17 time: 1.1152 data_time: 0.0077 memory: 8703 loss: 0.4727 decode.loss_ce: 0.3036 decode.acc_seg: 94.4375 aux.loss_ce: 0.1691 aux.acc_seg: 85.3218 +2024/08/10 09:17:01 - mmengine - INFO - Iter(train) [ 55550/160000] lr: 6.8445e-03 eta: 1 day, 8:29:21 time: 1.1175 data_time: 0.0072 memory: 8703 loss: 0.4809 decode.loss_ce: 0.2994 decode.acc_seg: 95.8574 aux.loss_ce: 0.1814 aux.acc_seg: 95.0527 +2024/08/10 09:17:56 - mmengine - INFO - Iter(train) [ 55600/160000] lr: 6.8416e-03 eta: 1 day, 8:28:24 time: 1.1161 data_time: 0.0074 memory: 8704 loss: 0.4659 decode.loss_ce: 0.2815 decode.acc_seg: 90.6758 aux.loss_ce: 0.1844 aux.acc_seg: 76.5833 +2024/08/10 09:18:52 - mmengine - INFO - Iter(train) [ 55650/160000] lr: 6.8386e-03 eta: 1 day, 8:27:28 time: 1.1128 data_time: 0.0057 memory: 8703 loss: 0.4097 decode.loss_ce: 0.2608 decode.acc_seg: 96.8725 aux.loss_ce: 0.1489 aux.acc_seg: 95.9227 +2024/08/10 09:19:48 - mmengine - INFO - Iter(train) [ 55700/160000] lr: 6.8357e-03 eta: 1 day, 8:26:31 time: 1.1166 data_time: 0.0076 memory: 8703 loss: 0.4753 decode.loss_ce: 0.2927 decode.acc_seg: 89.2592 aux.loss_ce: 0.1826 aux.acc_seg: 85.9160 +2024/08/10 09:20:44 - mmengine - INFO - Iter(train) [ 55750/160000] lr: 6.8328e-03 eta: 1 day, 8:25:35 time: 1.1151 data_time: 0.0074 memory: 8703 loss: 0.3339 decode.loss_ce: 0.2084 decode.acc_seg: 93.9372 aux.loss_ce: 0.1255 aux.acc_seg: 89.6048 +2024/08/10 09:21:39 - mmengine - INFO - Iter(train) [ 55800/160000] lr: 6.8299e-03 eta: 1 day, 8:24:38 time: 1.1181 data_time: 0.0079 memory: 8703 loss: 0.4974 decode.loss_ce: 0.3027 decode.acc_seg: 83.2898 aux.loss_ce: 0.1946 aux.acc_seg: 72.8904 +2024/08/10 09:22:35 - mmengine - INFO - Iter(train) [ 55850/160000] lr: 6.8270e-03 eta: 1 day, 8:23:42 time: 1.1165 data_time: 0.0067 memory: 8704 loss: 0.4073 decode.loss_ce: 0.2223 decode.acc_seg: 90.5231 aux.loss_ce: 0.1849 aux.acc_seg: 81.7245 +2024/08/10 09:23:31 - mmengine - INFO - Iter(train) [ 55900/160000] lr: 6.8241e-03 eta: 1 day, 8:22:46 time: 1.1160 data_time: 0.0071 memory: 8703 loss: 0.6503 decode.loss_ce: 0.4145 decode.acc_seg: 97.1160 aux.loss_ce: 0.2358 aux.acc_seg: 88.9361 +2024/08/10 09:24:27 - mmengine - INFO - Iter(train) [ 55950/160000] lr: 6.8212e-03 eta: 1 day, 8:21:49 time: 1.1172 data_time: 0.0064 memory: 8703 loss: 0.3367 decode.loss_ce: 0.2002 decode.acc_seg: 97.1651 aux.loss_ce: 0.1365 aux.acc_seg: 96.2697 +2024/08/10 09:25:23 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 09:25:23 - mmengine - INFO - Iter(train) [ 56000/160000] lr: 6.8183e-03 eta: 1 day, 8:20:53 time: 1.1142 data_time: 0.0063 memory: 8703 loss: 0.3388 decode.loss_ce: 0.2122 decode.acc_seg: 95.6238 aux.loss_ce: 0.1266 aux.acc_seg: 95.1804 +2024/08/10 09:26:19 - mmengine - INFO - Iter(train) [ 56050/160000] lr: 6.8154e-03 eta: 1 day, 8:19:57 time: 1.1168 data_time: 0.0058 memory: 8703 loss: 0.6605 decode.loss_ce: 0.3704 decode.acc_seg: 89.2407 aux.loss_ce: 0.2901 aux.acc_seg: 85.1507 +2024/08/10 09:27:14 - mmengine - INFO - Iter(train) [ 56100/160000] lr: 6.8125e-03 eta: 1 day, 8:19:01 time: 1.1164 data_time: 0.0077 memory: 8704 loss: 0.5387 decode.loss_ce: 0.3450 decode.acc_seg: 65.7866 aux.loss_ce: 0.1937 aux.acc_seg: 75.6979 +2024/08/10 09:28:10 - mmengine - INFO - Iter(train) [ 56150/160000] lr: 6.8096e-03 eta: 1 day, 8:18:04 time: 1.1144 data_time: 0.0076 memory: 8704 loss: 0.4061 decode.loss_ce: 0.2410 decode.acc_seg: 96.8641 aux.loss_ce: 0.1650 aux.acc_seg: 91.5384 +2024/08/10 09:29:06 - mmengine - INFO - Iter(train) [ 56200/160000] lr: 6.8067e-03 eta: 1 day, 8:17:08 time: 1.1120 data_time: 0.0058 memory: 8703 loss: 0.3959 decode.loss_ce: 0.2405 decode.acc_seg: 90.0502 aux.loss_ce: 0.1554 aux.acc_seg: 84.1795 +2024/08/10 09:30:02 - mmengine - INFO - Iter(train) [ 56250/160000] lr: 6.8038e-03 eta: 1 day, 8:16:11 time: 1.1108 data_time: 0.0050 memory: 8704 loss: 0.4549 decode.loss_ce: 0.2906 decode.acc_seg: 89.4442 aux.loss_ce: 0.1643 aux.acc_seg: 90.4184 +2024/08/10 09:30:57 - mmengine - INFO - Iter(train) [ 56300/160000] lr: 6.8009e-03 eta: 1 day, 8:15:15 time: 1.1136 data_time: 0.0073 memory: 8704 loss: 0.4011 decode.loss_ce: 0.2299 decode.acc_seg: 93.5658 aux.loss_ce: 0.1713 aux.acc_seg: 90.9253 +2024/08/10 09:31:53 - mmengine - INFO - Iter(train) [ 56350/160000] lr: 6.7980e-03 eta: 1 day, 8:14:18 time: 1.1147 data_time: 0.0068 memory: 8704 loss: 0.5081 decode.loss_ce: 0.3146 decode.acc_seg: 91.8722 aux.loss_ce: 0.1935 aux.acc_seg: 74.7569 +2024/08/10 09:32:49 - mmengine - INFO - Iter(train) [ 56400/160000] lr: 6.7950e-03 eta: 1 day, 8:13:22 time: 1.1165 data_time: 0.0063 memory: 8704 loss: 0.3808 decode.loss_ce: 0.2284 decode.acc_seg: 94.0723 aux.loss_ce: 0.1524 aux.acc_seg: 89.1428 +2024/08/10 09:33:45 - mmengine - INFO - Iter(train) [ 56450/160000] lr: 6.7921e-03 eta: 1 day, 8:12:26 time: 1.1142 data_time: 0.0066 memory: 8703 loss: 0.3969 decode.loss_ce: 0.2404 decode.acc_seg: 94.3628 aux.loss_ce: 0.1565 aux.acc_seg: 91.7073 +2024/08/10 09:34:41 - mmengine - INFO - Iter(train) [ 56500/160000] lr: 6.7892e-03 eta: 1 day, 8:11:29 time: 1.1175 data_time: 0.0054 memory: 8704 loss: 0.4853 decode.loss_ce: 0.3033 decode.acc_seg: 90.4715 aux.loss_ce: 0.1820 aux.acc_seg: 88.9161 +2024/08/10 09:35:36 - mmengine - INFO - Iter(train) [ 56550/160000] lr: 6.7863e-03 eta: 1 day, 8:10:33 time: 1.1176 data_time: 0.0077 memory: 8703 loss: 0.4156 decode.loss_ce: 0.2522 decode.acc_seg: 91.9638 aux.loss_ce: 0.1634 aux.acc_seg: 90.5284 +2024/08/10 09:36:32 - mmengine - INFO - Iter(train) [ 56600/160000] lr: 6.7834e-03 eta: 1 day, 8:09:37 time: 1.1103 data_time: 0.0058 memory: 8704 loss: 0.3532 decode.loss_ce: 0.2107 decode.acc_seg: 92.9141 aux.loss_ce: 0.1425 aux.acc_seg: 84.7686 +2024/08/10 09:37:28 - mmengine - INFO - Iter(train) [ 56650/160000] lr: 6.7805e-03 eta: 1 day, 8:08:40 time: 1.1112 data_time: 0.0065 memory: 8703 loss: 0.4759 decode.loss_ce: 0.3008 decode.acc_seg: 79.1336 aux.loss_ce: 0.1751 aux.acc_seg: 74.9971 +2024/08/10 09:38:24 - mmengine - INFO - Iter(train) [ 56700/160000] lr: 6.7776e-03 eta: 1 day, 8:07:44 time: 1.1114 data_time: 0.0064 memory: 8703 loss: 0.4347 decode.loss_ce: 0.2844 decode.acc_seg: 95.4792 aux.loss_ce: 0.1503 aux.acc_seg: 86.4076 +2024/08/10 09:39:19 - mmengine - INFO - Iter(train) [ 56750/160000] lr: 6.7747e-03 eta: 1 day, 8:06:47 time: 1.1117 data_time: 0.0062 memory: 8704 loss: 0.4616 decode.loss_ce: 0.2872 decode.acc_seg: 90.5088 aux.loss_ce: 0.1743 aux.acc_seg: 81.4986 +2024/08/10 09:40:15 - mmengine - INFO - Iter(train) [ 56800/160000] lr: 6.7718e-03 eta: 1 day, 8:05:51 time: 1.1167 data_time: 0.0070 memory: 8704 loss: 0.3913 decode.loss_ce: 0.2469 decode.acc_seg: 96.0344 aux.loss_ce: 0.1444 aux.acc_seg: 94.5059 +2024/08/10 09:41:11 - mmengine - INFO - Iter(train) [ 56850/160000] lr: 6.7689e-03 eta: 1 day, 8:04:54 time: 1.1155 data_time: 0.0058 memory: 8704 loss: 0.3423 decode.loss_ce: 0.2035 decode.acc_seg: 92.6452 aux.loss_ce: 0.1388 aux.acc_seg: 88.3963 +2024/08/10 09:42:06 - mmengine - INFO - Iter(train) [ 56900/160000] lr: 6.7660e-03 eta: 1 day, 8:03:58 time: 1.1129 data_time: 0.0051 memory: 8703 loss: 0.4006 decode.loss_ce: 0.2592 decode.acc_seg: 83.4276 aux.loss_ce: 0.1414 aux.acc_seg: 83.0940 +2024/08/10 09:43:02 - mmengine - INFO - Iter(train) [ 56950/160000] lr: 6.7630e-03 eta: 1 day, 8:03:02 time: 1.1193 data_time: 0.0082 memory: 8704 loss: 0.4037 decode.loss_ce: 0.2528 decode.acc_seg: 95.1626 aux.loss_ce: 0.1509 aux.acc_seg: 91.1100 +2024/08/10 09:43:58 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 09:43:58 - mmengine - INFO - Iter(train) [ 57000/160000] lr: 6.7601e-03 eta: 1 day, 8:02:05 time: 1.1182 data_time: 0.0077 memory: 8703 loss: 0.4261 decode.loss_ce: 0.2711 decode.acc_seg: 95.4594 aux.loss_ce: 0.1551 aux.acc_seg: 93.8903 +2024/08/10 09:44:54 - mmengine - INFO - Iter(train) [ 57050/160000] lr: 6.7572e-03 eta: 1 day, 8:01:09 time: 1.1187 data_time: 0.0070 memory: 8704 loss: 0.6073 decode.loss_ce: 0.3933 decode.acc_seg: 86.3131 aux.loss_ce: 0.2140 aux.acc_seg: 87.3661 +2024/08/10 09:45:50 - mmengine - INFO - Iter(train) [ 57100/160000] lr: 6.7543e-03 eta: 1 day, 8:00:13 time: 1.1134 data_time: 0.0060 memory: 8704 loss: 0.3827 decode.loss_ce: 0.2314 decode.acc_seg: 96.5800 aux.loss_ce: 0.1513 aux.acc_seg: 92.8309 +2024/08/10 09:46:45 - mmengine - INFO - Iter(train) [ 57150/160000] lr: 6.7514e-03 eta: 1 day, 7:59:16 time: 1.1087 data_time: 0.0057 memory: 8704 loss: 0.4366 decode.loss_ce: 0.2674 decode.acc_seg: 85.5139 aux.loss_ce: 0.1692 aux.acc_seg: 82.6038 +2024/08/10 09:47:41 - mmengine - INFO - Iter(train) [ 57200/160000] lr: 6.7485e-03 eta: 1 day, 7:58:20 time: 1.1116 data_time: 0.0060 memory: 8703 loss: 0.3720 decode.loss_ce: 0.2419 decode.acc_seg: 92.4054 aux.loss_ce: 0.1301 aux.acc_seg: 92.2483 +2024/08/10 09:48:37 - mmengine - INFO - Iter(train) [ 57250/160000] lr: 6.7456e-03 eta: 1 day, 7:57:23 time: 1.1071 data_time: 0.0059 memory: 8704 loss: 0.3524 decode.loss_ce: 0.2031 decode.acc_seg: 95.7816 aux.loss_ce: 0.1494 aux.acc_seg: 95.0619 +2024/08/10 09:49:32 - mmengine - INFO - Iter(train) [ 57300/160000] lr: 6.7427e-03 eta: 1 day, 7:56:26 time: 1.1125 data_time: 0.0061 memory: 8703 loss: 0.2947 decode.loss_ce: 0.1786 decode.acc_seg: 93.7172 aux.loss_ce: 0.1161 aux.acc_seg: 91.0352 +2024/08/10 09:50:28 - mmengine - INFO - Iter(train) [ 57350/160000] lr: 6.7398e-03 eta: 1 day, 7:55:30 time: 1.1117 data_time: 0.0061 memory: 8703 loss: 0.4593 decode.loss_ce: 0.2736 decode.acc_seg: 81.8370 aux.loss_ce: 0.1857 aux.acc_seg: 76.7408 +2024/08/10 09:51:24 - mmengine - INFO - Iter(train) [ 57400/160000] lr: 6.7369e-03 eta: 1 day, 7:54:34 time: 1.1206 data_time: 0.0082 memory: 8703 loss: 0.4071 decode.loss_ce: 0.2546 decode.acc_seg: 91.6920 aux.loss_ce: 0.1525 aux.acc_seg: 89.9265 +2024/08/10 09:52:20 - mmengine - INFO - Iter(train) [ 57450/160000] lr: 6.7339e-03 eta: 1 day, 7:53:38 time: 1.1160 data_time: 0.0061 memory: 8705 loss: 0.5852 decode.loss_ce: 0.3757 decode.acc_seg: 91.0209 aux.loss_ce: 0.2095 aux.acc_seg: 89.3683 +2024/08/10 09:53:16 - mmengine - INFO - Iter(train) [ 57500/160000] lr: 6.7310e-03 eta: 1 day, 7:52:41 time: 1.1166 data_time: 0.0071 memory: 8704 loss: 0.2775 decode.loss_ce: 0.1715 decode.acc_seg: 94.3083 aux.loss_ce: 0.1061 aux.acc_seg: 93.5651 +2024/08/10 09:54:11 - mmengine - INFO - Iter(train) [ 57550/160000] lr: 6.7281e-03 eta: 1 day, 7:51:45 time: 1.1122 data_time: 0.0052 memory: 8703 loss: 0.5410 decode.loss_ce: 0.3426 decode.acc_seg: 86.9767 aux.loss_ce: 0.1983 aux.acc_seg: 85.7257 +2024/08/10 09:55:07 - mmengine - INFO - Iter(train) [ 57600/160000] lr: 6.7252e-03 eta: 1 day, 7:50:48 time: 1.1127 data_time: 0.0065 memory: 8703 loss: 0.6191 decode.loss_ce: 0.3785 decode.acc_seg: 92.8733 aux.loss_ce: 0.2406 aux.acc_seg: 84.5231 +2024/08/10 09:56:03 - mmengine - INFO - Iter(train) [ 57650/160000] lr: 6.7223e-03 eta: 1 day, 7:49:52 time: 1.1107 data_time: 0.0059 memory: 8703 loss: 0.3282 decode.loss_ce: 0.2044 decode.acc_seg: 92.4290 aux.loss_ce: 0.1238 aux.acc_seg: 88.5621 +2024/08/10 09:56:59 - mmengine - INFO - Iter(train) [ 57700/160000] lr: 6.7194e-03 eta: 1 day, 7:48:55 time: 1.1194 data_time: 0.0088 memory: 8704 loss: 0.4071 decode.loss_ce: 0.2255 decode.acc_seg: 88.7574 aux.loss_ce: 0.1816 aux.acc_seg: 79.7175 +2024/08/10 09:57:54 - mmengine - INFO - Iter(train) [ 57750/160000] lr: 6.7165e-03 eta: 1 day, 7:47:59 time: 1.1128 data_time: 0.0064 memory: 8703 loss: 0.2531 decode.loss_ce: 0.1489 decode.acc_seg: 92.1739 aux.loss_ce: 0.1042 aux.acc_seg: 92.1209 +2024/08/10 09:58:50 - mmengine - INFO - Iter(train) [ 57800/160000] lr: 6.7136e-03 eta: 1 day, 7:47:02 time: 1.1128 data_time: 0.0065 memory: 8704 loss: 0.3987 decode.loss_ce: 0.2440 decode.acc_seg: 95.5896 aux.loss_ce: 0.1547 aux.acc_seg: 93.8258 +2024/08/10 09:59:46 - mmengine - INFO - Iter(train) [ 57850/160000] lr: 6.7107e-03 eta: 1 day, 7:46:06 time: 1.1156 data_time: 0.0061 memory: 8703 loss: 0.4995 decode.loss_ce: 0.2931 decode.acc_seg: 91.1958 aux.loss_ce: 0.2064 aux.acc_seg: 83.4791 +2024/08/10 10:00:41 - mmengine - INFO - Iter(train) [ 57900/160000] lr: 6.7077e-03 eta: 1 day, 7:45:10 time: 1.1136 data_time: 0.0056 memory: 8703 loss: 0.4623 decode.loss_ce: 0.2710 decode.acc_seg: 97.2491 aux.loss_ce: 0.1913 aux.acc_seg: 88.0253 +2024/08/10 10:01:37 - mmengine - INFO - Iter(train) [ 57950/160000] lr: 6.7048e-03 eta: 1 day, 7:44:13 time: 1.1180 data_time: 0.0069 memory: 8704 loss: 0.4484 decode.loss_ce: 0.2778 decode.acc_seg: 94.4010 aux.loss_ce: 0.1705 aux.acc_seg: 93.7523 +2024/08/10 10:02:33 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 10:02:33 - mmengine - INFO - Iter(train) [ 58000/160000] lr: 6.7019e-03 eta: 1 day, 7:43:17 time: 1.1152 data_time: 0.0065 memory: 8704 loss: 0.3360 decode.loss_ce: 0.2043 decode.acc_seg: 92.7217 aux.loss_ce: 0.1317 aux.acc_seg: 87.9360 +2024/08/10 10:03:29 - mmengine - INFO - Iter(train) [ 58050/160000] lr: 6.6990e-03 eta: 1 day, 7:42:21 time: 1.1151 data_time: 0.0063 memory: 8704 loss: 0.4793 decode.loss_ce: 0.2824 decode.acc_seg: 92.8816 aux.loss_ce: 0.1970 aux.acc_seg: 88.3704 +2024/08/10 10:04:25 - mmengine - INFO - Iter(train) [ 58100/160000] lr: 6.6961e-03 eta: 1 day, 7:41:25 time: 1.1132 data_time: 0.0057 memory: 8703 loss: 0.6240 decode.loss_ce: 0.3862 decode.acc_seg: 94.8105 aux.loss_ce: 0.2377 aux.acc_seg: 92.8147 +2024/08/10 10:05:21 - mmengine - INFO - Iter(train) [ 58150/160000] lr: 6.6932e-03 eta: 1 day, 7:40:28 time: 1.1155 data_time: 0.0073 memory: 8704 loss: 0.4537 decode.loss_ce: 0.2800 decode.acc_seg: 85.9538 aux.loss_ce: 0.1738 aux.acc_seg: 84.0123 +2024/08/10 10:06:16 - mmengine - INFO - Iter(train) [ 58200/160000] lr: 6.6903e-03 eta: 1 day, 7:39:32 time: 1.1097 data_time: 0.0072 memory: 8704 loss: 0.4517 decode.loss_ce: 0.2985 decode.acc_seg: 92.0163 aux.loss_ce: 0.1532 aux.acc_seg: 82.8209 +2024/08/10 10:07:12 - mmengine - INFO - Iter(train) [ 58250/160000] lr: 6.6873e-03 eta: 1 day, 7:38:35 time: 1.1154 data_time: 0.0066 memory: 8704 loss: 0.5471 decode.loss_ce: 0.3298 decode.acc_seg: 89.0143 aux.loss_ce: 0.2173 aux.acc_seg: 89.1884 +2024/08/10 10:08:08 - mmengine - INFO - Iter(train) [ 58300/160000] lr: 6.6844e-03 eta: 1 day, 7:37:39 time: 1.1107 data_time: 0.0065 memory: 8703 loss: 0.3476 decode.loss_ce: 0.2152 decode.acc_seg: 94.6784 aux.loss_ce: 0.1324 aux.acc_seg: 93.4685 +2024/08/10 10:09:04 - mmengine - INFO - Iter(train) [ 58350/160000] lr: 6.6815e-03 eta: 1 day, 7:36:43 time: 1.1188 data_time: 0.0069 memory: 8703 loss: 0.4950 decode.loss_ce: 0.3018 decode.acc_seg: 86.3074 aux.loss_ce: 0.1931 aux.acc_seg: 81.5044 +2024/08/10 10:10:00 - mmengine - INFO - Iter(train) [ 58400/160000] lr: 6.6786e-03 eta: 1 day, 7:35:47 time: 1.1177 data_time: 0.0072 memory: 8704 loss: 0.5286 decode.loss_ce: 0.3383 decode.acc_seg: 90.5350 aux.loss_ce: 0.1903 aux.acc_seg: 90.9967 +2024/08/10 10:10:55 - mmengine - INFO - Iter(train) [ 58450/160000] lr: 6.6757e-03 eta: 1 day, 7:34:51 time: 1.1179 data_time: 0.0072 memory: 8704 loss: 0.2707 decode.loss_ce: 0.1728 decode.acc_seg: 91.5854 aux.loss_ce: 0.0978 aux.acc_seg: 90.9796 +2024/08/10 10:11:51 - mmengine - INFO - Iter(train) [ 58500/160000] lr: 6.6728e-03 eta: 1 day, 7:33:54 time: 1.1229 data_time: 0.0080 memory: 8703 loss: 0.4809 decode.loss_ce: 0.2783 decode.acc_seg: 96.5658 aux.loss_ce: 0.2026 aux.acc_seg: 92.4800 +2024/08/10 10:12:47 - mmengine - INFO - Iter(train) [ 58550/160000] lr: 6.6699e-03 eta: 1 day, 7:32:58 time: 1.1176 data_time: 0.0063 memory: 8704 loss: 0.3621 decode.loss_ce: 0.2151 decode.acc_seg: 95.2485 aux.loss_ce: 0.1471 aux.acc_seg: 90.5947 +2024/08/10 10:13:43 - mmengine - INFO - Iter(train) [ 58600/160000] lr: 6.6670e-03 eta: 1 day, 7:32:01 time: 1.1143 data_time: 0.0050 memory: 8704 loss: 0.3772 decode.loss_ce: 0.2311 decode.acc_seg: 94.2595 aux.loss_ce: 0.1461 aux.acc_seg: 92.7357 +2024/08/10 10:14:38 - mmengine - INFO - Iter(train) [ 58650/160000] lr: 6.6640e-03 eta: 1 day, 7:31:05 time: 1.1126 data_time: 0.0072 memory: 8704 loss: 0.5404 decode.loss_ce: 0.3312 decode.acc_seg: 85.7323 aux.loss_ce: 0.2093 aux.acc_seg: 83.6418 +2024/08/10 10:15:34 - mmengine - INFO - Iter(train) [ 58700/160000] lr: 6.6611e-03 eta: 1 day, 7:30:09 time: 1.1185 data_time: 0.0073 memory: 8704 loss: 0.3384 decode.loss_ce: 0.2073 decode.acc_seg: 96.4581 aux.loss_ce: 0.1312 aux.acc_seg: 94.5647 +2024/08/10 10:16:30 - mmengine - INFO - Iter(train) [ 58750/160000] lr: 6.6582e-03 eta: 1 day, 7:29:12 time: 1.1100 data_time: 0.0065 memory: 8703 loss: 0.3440 decode.loss_ce: 0.2116 decode.acc_seg: 88.3979 aux.loss_ce: 0.1324 aux.acc_seg: 86.9318 +2024/08/10 10:17:26 - mmengine - INFO - Iter(train) [ 58800/160000] lr: 6.6553e-03 eta: 1 day, 7:28:16 time: 1.1184 data_time: 0.0065 memory: 8704 loss: 0.4748 decode.loss_ce: 0.2753 decode.acc_seg: 94.2775 aux.loss_ce: 0.1996 aux.acc_seg: 92.4103 +2024/08/10 10:18:21 - mmengine - INFO - Iter(train) [ 58850/160000] lr: 6.6524e-03 eta: 1 day, 7:27:19 time: 1.1126 data_time: 0.0059 memory: 8704 loss: 0.4143 decode.loss_ce: 0.2488 decode.acc_seg: 93.7846 aux.loss_ce: 0.1655 aux.acc_seg: 90.9595 +2024/08/10 10:19:17 - mmengine - INFO - Iter(train) [ 58900/160000] lr: 6.6495e-03 eta: 1 day, 7:26:23 time: 1.1186 data_time: 0.0072 memory: 8704 loss: 0.3164 decode.loss_ce: 0.2008 decode.acc_seg: 95.5262 aux.loss_ce: 0.1157 aux.acc_seg: 92.2747 +2024/08/10 10:20:13 - mmengine - INFO - Iter(train) [ 58950/160000] lr: 6.6465e-03 eta: 1 day, 7:25:27 time: 1.1122 data_time: 0.0058 memory: 8705 loss: 0.3971 decode.loss_ce: 0.2432 decode.acc_seg: 88.3291 aux.loss_ce: 0.1540 aux.acc_seg: 82.5495 +2024/08/10 10:21:09 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 10:21:09 - mmengine - INFO - Iter(train) [ 59000/160000] lr: 6.6436e-03 eta: 1 day, 7:24:31 time: 1.1178 data_time: 0.0074 memory: 8704 loss: 0.5102 decode.loss_ce: 0.3099 decode.acc_seg: 93.9749 aux.loss_ce: 0.2003 aux.acc_seg: 91.5895 +2024/08/10 10:22:05 - mmengine - INFO - Iter(train) [ 59050/160000] lr: 6.6407e-03 eta: 1 day, 7:23:34 time: 1.1177 data_time: 0.0071 memory: 8704 loss: 0.4438 decode.loss_ce: 0.2690 decode.acc_seg: 88.2780 aux.loss_ce: 0.1749 aux.acc_seg: 73.3712 +2024/08/10 10:23:00 - mmengine - INFO - Iter(train) [ 59100/160000] lr: 6.6378e-03 eta: 1 day, 7:22:38 time: 1.1180 data_time: 0.0082 memory: 8703 loss: 0.3936 decode.loss_ce: 0.2439 decode.acc_seg: 96.3015 aux.loss_ce: 0.1497 aux.acc_seg: 94.2629 +2024/08/10 10:23:56 - mmengine - INFO - Iter(train) [ 59150/160000] lr: 6.6349e-03 eta: 1 day, 7:21:41 time: 1.1142 data_time: 0.0080 memory: 8703 loss: 0.4452 decode.loss_ce: 0.2713 decode.acc_seg: 86.1958 aux.loss_ce: 0.1739 aux.acc_seg: 81.0745 +2024/08/10 10:24:52 - mmengine - INFO - Iter(train) [ 59200/160000] lr: 6.6320e-03 eta: 1 day, 7:20:45 time: 1.1142 data_time: 0.0065 memory: 8704 loss: 0.4707 decode.loss_ce: 0.3020 decode.acc_seg: 93.6469 aux.loss_ce: 0.1687 aux.acc_seg: 91.1810 +2024/08/10 10:25:47 - mmengine - INFO - Iter(train) [ 59250/160000] lr: 6.6291e-03 eta: 1 day, 7:19:48 time: 1.1111 data_time: 0.0065 memory: 8704 loss: 0.4451 decode.loss_ce: 0.2570 decode.acc_seg: 85.9807 aux.loss_ce: 0.1880 aux.acc_seg: 84.4970 +2024/08/10 10:26:43 - mmengine - INFO - Iter(train) [ 59300/160000] lr: 6.6261e-03 eta: 1 day, 7:18:52 time: 1.1100 data_time: 0.0060 memory: 8703 loss: 0.4539 decode.loss_ce: 0.2676 decode.acc_seg: 90.8300 aux.loss_ce: 0.1864 aux.acc_seg: 88.3673 +2024/08/10 10:27:39 - mmengine - INFO - Iter(train) [ 59350/160000] lr: 6.6232e-03 eta: 1 day, 7:17:55 time: 1.1148 data_time: 0.0059 memory: 8704 loss: 0.3489 decode.loss_ce: 0.2182 decode.acc_seg: 92.9143 aux.loss_ce: 0.1307 aux.acc_seg: 83.2537 +2024/08/10 10:28:35 - mmengine - INFO - Iter(train) [ 59400/160000] lr: 6.6203e-03 eta: 1 day, 7:16:59 time: 1.1152 data_time: 0.0055 memory: 8704 loss: 0.3985 decode.loss_ce: 0.2442 decode.acc_seg: 92.9384 aux.loss_ce: 0.1543 aux.acc_seg: 89.2095 +2024/08/10 10:29:30 - mmengine - INFO - Iter(train) [ 59450/160000] lr: 6.6174e-03 eta: 1 day, 7:16:03 time: 1.1203 data_time: 0.0073 memory: 8703 loss: 0.3197 decode.loss_ce: 0.2044 decode.acc_seg: 97.5374 aux.loss_ce: 0.1153 aux.acc_seg: 96.1256 +2024/08/10 10:30:26 - mmengine - INFO - Iter(train) [ 59500/160000] lr: 6.6145e-03 eta: 1 day, 7:15:07 time: 1.1116 data_time: 0.0051 memory: 8704 loss: 0.4084 decode.loss_ce: 0.2552 decode.acc_seg: 91.3035 aux.loss_ce: 0.1532 aux.acc_seg: 90.2170 +2024/08/10 10:31:22 - mmengine - INFO - Iter(train) [ 59550/160000] lr: 6.6116e-03 eta: 1 day, 7:14:11 time: 1.1166 data_time: 0.0057 memory: 8703 loss: 0.3769 decode.loss_ce: 0.2199 decode.acc_seg: 89.4674 aux.loss_ce: 0.1570 aux.acc_seg: 88.2732 +2024/08/10 10:32:18 - mmengine - INFO - Iter(train) [ 59600/160000] lr: 6.6086e-03 eta: 1 day, 7:13:14 time: 1.1160 data_time: 0.0068 memory: 8704 loss: 0.2810 decode.loss_ce: 0.1709 decode.acc_seg: 97.0341 aux.loss_ce: 0.1101 aux.acc_seg: 95.9093 +2024/08/10 10:33:14 - mmengine - INFO - Iter(train) [ 59650/160000] lr: 6.6057e-03 eta: 1 day, 7:12:18 time: 1.1190 data_time: 0.0079 memory: 8704 loss: 0.3667 decode.loss_ce: 0.2124 decode.acc_seg: 95.3177 aux.loss_ce: 0.1543 aux.acc_seg: 94.9598 +2024/08/10 10:34:09 - mmengine - INFO - Iter(train) [ 59700/160000] lr: 6.6028e-03 eta: 1 day, 7:11:22 time: 1.1098 data_time: 0.0056 memory: 8703 loss: 0.4082 decode.loss_ce: 0.2499 decode.acc_seg: 93.8758 aux.loss_ce: 0.1583 aux.acc_seg: 92.3673 +2024/08/10 10:35:05 - mmengine - INFO - Iter(train) [ 59750/160000] lr: 6.5999e-03 eta: 1 day, 7:10:25 time: 1.1109 data_time: 0.0062 memory: 8704 loss: 0.4763 decode.loss_ce: 0.2938 decode.acc_seg: 93.3184 aux.loss_ce: 0.1825 aux.acc_seg: 87.6641 +2024/08/10 10:36:01 - mmengine - INFO - Iter(train) [ 59800/160000] lr: 6.5970e-03 eta: 1 day, 7:09:29 time: 1.1143 data_time: 0.0068 memory: 8704 loss: 0.4012 decode.loss_ce: 0.2521 decode.acc_seg: 84.8420 aux.loss_ce: 0.1491 aux.acc_seg: 79.8450 +2024/08/10 10:36:57 - mmengine - INFO - Iter(train) [ 59850/160000] lr: 6.5940e-03 eta: 1 day, 7:08:33 time: 1.1160 data_time: 0.0064 memory: 8704 loss: 0.3450 decode.loss_ce: 0.2292 decode.acc_seg: 93.4732 aux.loss_ce: 0.1157 aux.acc_seg: 92.4998 +2024/08/10 10:37:52 - mmengine - INFO - Iter(train) [ 59900/160000] lr: 6.5911e-03 eta: 1 day, 7:07:36 time: 1.1190 data_time: 0.0072 memory: 8703 loss: 0.2854 decode.loss_ce: 0.1726 decode.acc_seg: 93.6760 aux.loss_ce: 0.1128 aux.acc_seg: 92.4948 +2024/08/10 10:38:48 - mmengine - INFO - Iter(train) [ 59950/160000] lr: 6.5882e-03 eta: 1 day, 7:06:40 time: 1.1245 data_time: 0.0078 memory: 8703 loss: 0.4611 decode.loss_ce: 0.3001 decode.acc_seg: 92.3995 aux.loss_ce: 0.1610 aux.acc_seg: 90.2511 +2024/08/10 10:39:44 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 10:39:44 - mmengine - INFO - Iter(train) [ 60000/160000] lr: 6.5853e-03 eta: 1 day, 7:05:44 time: 1.1123 data_time: 0.0064 memory: 8704 loss: 0.4135 decode.loss_ce: 0.2579 decode.acc_seg: 95.9761 aux.loss_ce: 0.1556 aux.acc_seg: 94.5966 +2024/08/10 10:40:40 - mmengine - INFO - Iter(train) [ 60050/160000] lr: 6.5824e-03 eta: 1 day, 7:04:48 time: 1.1156 data_time: 0.0070 memory: 8704 loss: 0.3903 decode.loss_ce: 0.2372 decode.acc_seg: 98.0597 aux.loss_ce: 0.1530 aux.acc_seg: 97.4785 +2024/08/10 10:41:36 - mmengine - INFO - Iter(train) [ 60100/160000] lr: 6.5795e-03 eta: 1 day, 7:03:51 time: 1.1098 data_time: 0.0061 memory: 8704 loss: 0.4297 decode.loss_ce: 0.2805 decode.acc_seg: 85.7876 aux.loss_ce: 0.1492 aux.acc_seg: 85.7473 +2024/08/10 10:42:31 - mmengine - INFO - Iter(train) [ 60150/160000] lr: 6.5765e-03 eta: 1 day, 7:02:55 time: 1.1150 data_time: 0.0062 memory: 8703 loss: 0.5269 decode.loss_ce: 0.3379 decode.acc_seg: 95.5626 aux.loss_ce: 0.1890 aux.acc_seg: 94.4613 +2024/08/10 10:43:27 - mmengine - INFO - Iter(train) [ 60200/160000] lr: 6.5736e-03 eta: 1 day, 7:01:58 time: 1.1105 data_time: 0.0068 memory: 8703 loss: 0.4089 decode.loss_ce: 0.2554 decode.acc_seg: 86.9490 aux.loss_ce: 0.1535 aux.acc_seg: 91.8550 +2024/08/10 10:44:23 - mmengine - INFO - Iter(train) [ 60250/160000] lr: 6.5707e-03 eta: 1 day, 7:01:02 time: 1.1164 data_time: 0.0066 memory: 8704 loss: 0.2900 decode.loss_ce: 0.1776 decode.acc_seg: 95.1218 aux.loss_ce: 0.1124 aux.acc_seg: 94.3859 +2024/08/10 10:45:18 - mmengine - INFO - Iter(train) [ 60300/160000] lr: 6.5678e-03 eta: 1 day, 7:00:05 time: 1.1098 data_time: 0.0067 memory: 8703 loss: 0.3553 decode.loss_ce: 0.2150 decode.acc_seg: 95.4007 aux.loss_ce: 0.1403 aux.acc_seg: 94.6855 +2024/08/10 10:46:14 - mmengine - INFO - Iter(train) [ 60350/160000] lr: 6.5649e-03 eta: 1 day, 6:59:09 time: 1.1180 data_time: 0.0087 memory: 8704 loss: 0.5681 decode.loss_ce: 0.3382 decode.acc_seg: 88.4343 aux.loss_ce: 0.2299 aux.acc_seg: 87.2957 +2024/08/10 10:47:10 - mmengine - INFO - Iter(train) [ 60400/160000] lr: 6.5619e-03 eta: 1 day, 6:58:13 time: 1.1199 data_time: 0.0075 memory: 8703 loss: 0.4328 decode.loss_ce: 0.2619 decode.acc_seg: 94.5951 aux.loss_ce: 0.1708 aux.acc_seg: 92.4152 +2024/08/10 10:48:06 - mmengine - INFO - Iter(train) [ 60450/160000] lr: 6.5590e-03 eta: 1 day, 6:57:16 time: 1.1202 data_time: 0.0079 memory: 8703 loss: 0.4250 decode.loss_ce: 0.2438 decode.acc_seg: 94.0391 aux.loss_ce: 0.1811 aux.acc_seg: 91.9245 +2024/08/10 10:49:02 - mmengine - INFO - Iter(train) [ 60500/160000] lr: 6.5561e-03 eta: 1 day, 6:56:20 time: 1.1224 data_time: 0.0082 memory: 8704 loss: 0.3568 decode.loss_ce: 0.2156 decode.acc_seg: 91.4886 aux.loss_ce: 0.1412 aux.acc_seg: 84.6521 +2024/08/10 10:49:58 - mmengine - INFO - Iter(train) [ 60550/160000] lr: 6.5532e-03 eta: 1 day, 6:55:24 time: 1.1194 data_time: 0.0080 memory: 8703 loss: 0.4445 decode.loss_ce: 0.2774 decode.acc_seg: 95.5977 aux.loss_ce: 0.1671 aux.acc_seg: 94.6697 +2024/08/10 10:50:53 - mmengine - INFO - Iter(train) [ 60600/160000] lr: 6.5503e-03 eta: 1 day, 6:54:28 time: 1.1137 data_time: 0.0065 memory: 8703 loss: 0.4016 decode.loss_ce: 0.2534 decode.acc_seg: 91.1213 aux.loss_ce: 0.1483 aux.acc_seg: 80.9397 +2024/08/10 10:51:49 - mmengine - INFO - Iter(train) [ 60650/160000] lr: 6.5473e-03 eta: 1 day, 6:53:32 time: 1.1160 data_time: 0.0076 memory: 8703 loss: 0.3748 decode.loss_ce: 0.2056 decode.acc_seg: 93.5502 aux.loss_ce: 0.1692 aux.acc_seg: 92.3911 +2024/08/10 10:52:45 - mmengine - INFO - Iter(train) [ 60700/160000] lr: 6.5444e-03 eta: 1 day, 6:52:35 time: 1.1131 data_time: 0.0062 memory: 8703 loss: 0.5265 decode.loss_ce: 0.3156 decode.acc_seg: 79.4814 aux.loss_ce: 0.2109 aux.acc_seg: 68.0660 +2024/08/10 10:53:41 - mmengine - INFO - Iter(train) [ 60750/160000] lr: 6.5415e-03 eta: 1 day, 6:51:39 time: 1.1126 data_time: 0.0065 memory: 8704 loss: 0.4366 decode.loss_ce: 0.2710 decode.acc_seg: 91.2184 aux.loss_ce: 0.1656 aux.acc_seg: 87.2194 +2024/08/10 10:54:36 - mmengine - INFO - Iter(train) [ 60800/160000] lr: 6.5386e-03 eta: 1 day, 6:50:43 time: 1.1137 data_time: 0.0063 memory: 8704 loss: 0.4655 decode.loss_ce: 0.2844 decode.acc_seg: 95.7458 aux.loss_ce: 0.1811 aux.acc_seg: 94.5174 +2024/08/10 10:55:32 - mmengine - INFO - Iter(train) [ 60850/160000] lr: 6.5357e-03 eta: 1 day, 6:49:46 time: 1.1122 data_time: 0.0069 memory: 8704 loss: 0.4533 decode.loss_ce: 0.2696 decode.acc_seg: 92.9991 aux.loss_ce: 0.1837 aux.acc_seg: 90.9864 +2024/08/10 10:56:28 - mmengine - INFO - Iter(train) [ 60900/160000] lr: 6.5327e-03 eta: 1 day, 6:48:50 time: 1.1175 data_time: 0.0079 memory: 8703 loss: 0.6008 decode.loss_ce: 0.3827 decode.acc_seg: 81.3628 aux.loss_ce: 0.2181 aux.acc_seg: 71.8396 +2024/08/10 10:57:24 - mmengine - INFO - Iter(train) [ 60950/160000] lr: 6.5298e-03 eta: 1 day, 6:47:54 time: 1.1160 data_time: 0.0066 memory: 8703 loss: 0.3790 decode.loss_ce: 0.2320 decode.acc_seg: 92.6287 aux.loss_ce: 0.1470 aux.acc_seg: 92.0547 +2024/08/10 10:58:19 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 10:58:19 - mmengine - INFO - Iter(train) [ 61000/160000] lr: 6.5269e-03 eta: 1 day, 6:46:57 time: 1.1148 data_time: 0.0074 memory: 8704 loss: 0.5857 decode.loss_ce: 0.3662 decode.acc_seg: 83.7529 aux.loss_ce: 0.2195 aux.acc_seg: 77.7254 +2024/08/10 10:59:15 - mmengine - INFO - Iter(train) [ 61050/160000] lr: 6.5240e-03 eta: 1 day, 6:46:01 time: 1.1154 data_time: 0.0057 memory: 8704 loss: 0.4226 decode.loss_ce: 0.2717 decode.acc_seg: 94.6242 aux.loss_ce: 0.1509 aux.acc_seg: 92.7435 +2024/08/10 11:00:11 - mmengine - INFO - Iter(train) [ 61100/160000] lr: 6.5211e-03 eta: 1 day, 6:45:05 time: 1.1179 data_time: 0.0081 memory: 8704 loss: 0.4111 decode.loss_ce: 0.2426 decode.acc_seg: 95.5709 aux.loss_ce: 0.1685 aux.acc_seg: 93.8017 +2024/08/10 11:01:07 - mmengine - INFO - Iter(train) [ 61150/160000] lr: 6.5181e-03 eta: 1 day, 6:44:09 time: 1.1153 data_time: 0.0060 memory: 8703 loss: 0.3915 decode.loss_ce: 0.2533 decode.acc_seg: 96.5799 aux.loss_ce: 0.1382 aux.acc_seg: 92.9918 +2024/08/10 11:02:03 - mmengine - INFO - Iter(train) [ 61200/160000] lr: 6.5152e-03 eta: 1 day, 6:43:12 time: 1.1117 data_time: 0.0073 memory: 8704 loss: 0.5189 decode.loss_ce: 0.3222 decode.acc_seg: 93.4626 aux.loss_ce: 0.1967 aux.acc_seg: 85.7092 +2024/08/10 11:02:58 - mmengine - INFO - Iter(train) [ 61250/160000] lr: 6.5123e-03 eta: 1 day, 6:42:16 time: 1.1189 data_time: 0.0075 memory: 8703 loss: 0.5776 decode.loss_ce: 0.3554 decode.acc_seg: 90.5641 aux.loss_ce: 0.2222 aux.acc_seg: 83.7871 +2024/08/10 11:03:54 - mmengine - INFO - Iter(train) [ 61300/160000] lr: 6.5094e-03 eta: 1 day, 6:41:20 time: 1.1148 data_time: 0.0066 memory: 8703 loss: 0.4548 decode.loss_ce: 0.2965 decode.acc_seg: 95.2293 aux.loss_ce: 0.1583 aux.acc_seg: 93.8301 +2024/08/10 11:04:50 - mmengine - INFO - Iter(train) [ 61350/160000] lr: 6.5064e-03 eta: 1 day, 6:40:23 time: 1.1139 data_time: 0.0072 memory: 8703 loss: 0.3073 decode.loss_ce: 0.1971 decode.acc_seg: 94.2006 aux.loss_ce: 0.1102 aux.acc_seg: 93.2438 +2024/08/10 11:05:46 - mmengine - INFO - Iter(train) [ 61400/160000] lr: 6.5035e-03 eta: 1 day, 6:39:27 time: 1.1126 data_time: 0.0062 memory: 8704 loss: 0.3960 decode.loss_ce: 0.2246 decode.acc_seg: 95.8767 aux.loss_ce: 0.1714 aux.acc_seg: 95.4692 +2024/08/10 11:06:41 - mmengine - INFO - Iter(train) [ 61450/160000] lr: 6.5006e-03 eta: 1 day, 6:38:31 time: 1.1110 data_time: 0.0071 memory: 8704 loss: 0.4080 decode.loss_ce: 0.2470 decode.acc_seg: 95.5158 aux.loss_ce: 0.1610 aux.acc_seg: 92.9014 +2024/08/10 11:07:37 - mmengine - INFO - Iter(train) [ 61500/160000] lr: 6.4977e-03 eta: 1 day, 6:37:34 time: 1.1142 data_time: 0.0062 memory: 8704 loss: 0.3718 decode.loss_ce: 0.2185 decode.acc_seg: 83.3336 aux.loss_ce: 0.1534 aux.acc_seg: 75.2459 +2024/08/10 11:08:32 - mmengine - INFO - Iter(train) [ 61550/160000] lr: 6.4948e-03 eta: 1 day, 6:36:38 time: 1.1140 data_time: 0.0060 memory: 8703 loss: 0.3321 decode.loss_ce: 0.1864 decode.acc_seg: 96.1983 aux.loss_ce: 0.1457 aux.acc_seg: 88.7345 +2024/08/10 11:09:28 - mmengine - INFO - Iter(train) [ 61600/160000] lr: 6.4918e-03 eta: 1 day, 6:35:41 time: 1.1145 data_time: 0.0066 memory: 8703 loss: 0.4604 decode.loss_ce: 0.2909 decode.acc_seg: 86.9741 aux.loss_ce: 0.1695 aux.acc_seg: 84.1415 +2024/08/10 11:10:24 - mmengine - INFO - Iter(train) [ 61650/160000] lr: 6.4889e-03 eta: 1 day, 6:34:45 time: 1.1172 data_time: 0.0078 memory: 8704 loss: 0.2816 decode.loss_ce: 0.1779 decode.acc_seg: 93.3985 aux.loss_ce: 0.1036 aux.acc_seg: 91.6330 +2024/08/10 11:11:20 - mmengine - INFO - Iter(train) [ 61700/160000] lr: 6.4860e-03 eta: 1 day, 6:33:49 time: 1.1184 data_time: 0.0091 memory: 8704 loss: 0.4670 decode.loss_ce: 0.2911 decode.acc_seg: 96.2215 aux.loss_ce: 0.1759 aux.acc_seg: 92.6079 +2024/08/10 11:12:16 - mmengine - INFO - Iter(train) [ 61750/160000] lr: 6.4831e-03 eta: 1 day, 6:32:53 time: 1.1147 data_time: 0.0059 memory: 8704 loss: 0.4019 decode.loss_ce: 0.2453 decode.acc_seg: 96.3892 aux.loss_ce: 0.1566 aux.acc_seg: 95.8640 +2024/08/10 11:13:11 - mmengine - INFO - Iter(train) [ 61800/160000] lr: 6.4801e-03 eta: 1 day, 6:31:56 time: 1.1145 data_time: 0.0058 memory: 8704 loss: 0.4082 decode.loss_ce: 0.2598 decode.acc_seg: 83.5044 aux.loss_ce: 0.1484 aux.acc_seg: 79.2810 +2024/08/10 11:14:07 - mmengine - INFO - Iter(train) [ 61850/160000] lr: 6.4772e-03 eta: 1 day, 6:31:00 time: 1.1179 data_time: 0.0072 memory: 8704 loss: 0.2650 decode.loss_ce: 0.1514 decode.acc_seg: 96.8338 aux.loss_ce: 0.1136 aux.acc_seg: 96.0554 +2024/08/10 11:15:03 - mmengine - INFO - Iter(train) [ 61900/160000] lr: 6.4743e-03 eta: 1 day, 6:30:04 time: 1.1112 data_time: 0.0060 memory: 8704 loss: 0.3753 decode.loss_ce: 0.2401 decode.acc_seg: 96.1755 aux.loss_ce: 0.1352 aux.acc_seg: 95.1645 +2024/08/10 11:15:59 - mmengine - INFO - Iter(train) [ 61950/160000] lr: 6.4714e-03 eta: 1 day, 6:29:07 time: 1.1089 data_time: 0.0064 memory: 8704 loss: 0.4923 decode.loss_ce: 0.3042 decode.acc_seg: 89.6147 aux.loss_ce: 0.1881 aux.acc_seg: 89.9522 +2024/08/10 11:16:54 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 11:16:54 - mmengine - INFO - Iter(train) [ 62000/160000] lr: 6.4684e-03 eta: 1 day, 6:28:11 time: 1.1134 data_time: 0.0062 memory: 8703 loss: 0.3787 decode.loss_ce: 0.2115 decode.acc_seg: 87.0551 aux.loss_ce: 0.1671 aux.acc_seg: 82.1491 +2024/08/10 11:17:50 - mmengine - INFO - Iter(train) [ 62050/160000] lr: 6.4655e-03 eta: 1 day, 6:27:14 time: 1.1228 data_time: 0.0093 memory: 8704 loss: 0.2936 decode.loss_ce: 0.1766 decode.acc_seg: 93.1595 aux.loss_ce: 0.1169 aux.acc_seg: 81.3451 +2024/08/10 11:18:46 - mmengine - INFO - Iter(train) [ 62100/160000] lr: 6.4626e-03 eta: 1 day, 6:26:18 time: 1.1110 data_time: 0.0058 memory: 8704 loss: 0.2957 decode.loss_ce: 0.1721 decode.acc_seg: 96.8762 aux.loss_ce: 0.1236 aux.acc_seg: 94.0175 +2024/08/10 11:19:41 - mmengine - INFO - Iter(train) [ 62150/160000] lr: 6.4597e-03 eta: 1 day, 6:25:22 time: 1.1151 data_time: 0.0069 memory: 8704 loss: 0.3489 decode.loss_ce: 0.2121 decode.acc_seg: 93.0974 aux.loss_ce: 0.1368 aux.acc_seg: 92.1297 +2024/08/10 11:20:37 - mmengine - INFO - Iter(train) [ 62200/160000] lr: 6.4567e-03 eta: 1 day, 6:24:25 time: 1.1109 data_time: 0.0065 memory: 8704 loss: 0.6086 decode.loss_ce: 0.3707 decode.acc_seg: 89.8514 aux.loss_ce: 0.2379 aux.acc_seg: 86.1363 +2024/08/10 11:21:33 - mmengine - INFO - Iter(train) [ 62250/160000] lr: 6.4538e-03 eta: 1 day, 6:23:29 time: 1.1192 data_time: 0.0076 memory: 8704 loss: 0.3959 decode.loss_ce: 0.2357 decode.acc_seg: 91.0553 aux.loss_ce: 0.1602 aux.acc_seg: 90.8006 +2024/08/10 11:22:29 - mmengine - INFO - Iter(train) [ 62300/160000] lr: 6.4509e-03 eta: 1 day, 6:22:33 time: 1.1204 data_time: 0.0070 memory: 8703 loss: 0.3752 decode.loss_ce: 0.2456 decode.acc_seg: 91.0440 aux.loss_ce: 0.1295 aux.acc_seg: 89.4833 +2024/08/10 11:23:25 - mmengine - INFO - Iter(train) [ 62350/160000] lr: 6.4480e-03 eta: 1 day, 6:21:37 time: 1.1166 data_time: 0.0076 memory: 8704 loss: 0.4686 decode.loss_ce: 0.2705 decode.acc_seg: 84.3897 aux.loss_ce: 0.1981 aux.acc_seg: 80.5848 +2024/08/10 11:24:20 - mmengine - INFO - Iter(train) [ 62400/160000] lr: 6.4450e-03 eta: 1 day, 6:20:41 time: 1.1138 data_time: 0.0063 memory: 8704 loss: 0.4835 decode.loss_ce: 0.2824 decode.acc_seg: 92.6559 aux.loss_ce: 0.2011 aux.acc_seg: 84.5374 +2024/08/10 11:25:16 - mmengine - INFO - Iter(train) [ 62450/160000] lr: 6.4421e-03 eta: 1 day, 6:19:44 time: 1.1150 data_time: 0.0072 memory: 8704 loss: 0.4149 decode.loss_ce: 0.2496 decode.acc_seg: 92.2370 aux.loss_ce: 0.1653 aux.acc_seg: 82.5529 +2024/08/10 11:26:12 - mmengine - INFO - Iter(train) [ 62500/160000] lr: 6.4392e-03 eta: 1 day, 6:18:48 time: 1.1146 data_time: 0.0075 memory: 8703 loss: 0.4570 decode.loss_ce: 0.2833 decode.acc_seg: 84.9453 aux.loss_ce: 0.1737 aux.acc_seg: 77.7929 +2024/08/10 11:27:08 - mmengine - INFO - Iter(train) [ 62550/160000] lr: 6.4363e-03 eta: 1 day, 6:17:52 time: 1.1217 data_time: 0.0072 memory: 8704 loss: 0.5997 decode.loss_ce: 0.4055 decode.acc_seg: 89.2260 aux.loss_ce: 0.1942 aux.acc_seg: 85.8884 +2024/08/10 11:28:03 - mmengine - INFO - Iter(train) [ 62600/160000] lr: 6.4333e-03 eta: 1 day, 6:16:55 time: 1.1217 data_time: 0.0074 memory: 8704 loss: 0.3350 decode.loss_ce: 0.2073 decode.acc_seg: 96.0594 aux.loss_ce: 0.1277 aux.acc_seg: 94.1127 +2024/08/10 11:28:59 - mmengine - INFO - Iter(train) [ 62650/160000] lr: 6.4304e-03 eta: 1 day, 6:15:59 time: 1.1155 data_time: 0.0055 memory: 8704 loss: 0.3260 decode.loss_ce: 0.1942 decode.acc_seg: 88.6877 aux.loss_ce: 0.1318 aux.acc_seg: 79.8314 +2024/08/10 11:29:55 - mmengine - INFO - Iter(train) [ 62700/160000] lr: 6.4275e-03 eta: 1 day, 6:15:03 time: 1.1159 data_time: 0.0069 memory: 8703 loss: 0.4891 decode.loss_ce: 0.2959 decode.acc_seg: 86.3722 aux.loss_ce: 0.1933 aux.acc_seg: 77.6531 +2024/08/10 11:30:51 - mmengine - INFO - Iter(train) [ 62750/160000] lr: 6.4246e-03 eta: 1 day, 6:14:06 time: 1.1111 data_time: 0.0058 memory: 8703 loss: 0.3906 decode.loss_ce: 0.2267 decode.acc_seg: 91.2224 aux.loss_ce: 0.1639 aux.acc_seg: 90.2225 +2024/08/10 11:31:47 - mmengine - INFO - Iter(train) [ 62800/160000] lr: 6.4216e-03 eta: 1 day, 6:13:10 time: 1.1170 data_time: 0.0073 memory: 8703 loss: 0.4943 decode.loss_ce: 0.3071 decode.acc_seg: 89.8683 aux.loss_ce: 0.1872 aux.acc_seg: 81.9871 +2024/08/10 11:32:42 - mmengine - INFO - Iter(train) [ 62850/160000] lr: 6.4187e-03 eta: 1 day, 6:12:14 time: 1.1124 data_time: 0.0073 memory: 8704 loss: 0.3349 decode.loss_ce: 0.2159 decode.acc_seg: 88.8236 aux.loss_ce: 0.1190 aux.acc_seg: 84.2890 +2024/08/10 11:33:38 - mmengine - INFO - Iter(train) [ 62900/160000] lr: 6.4158e-03 eta: 1 day, 6:11:18 time: 1.1121 data_time: 0.0068 memory: 8703 loss: 0.3358 decode.loss_ce: 0.2075 decode.acc_seg: 93.8093 aux.loss_ce: 0.1283 aux.acc_seg: 93.3236 +2024/08/10 11:34:34 - mmengine - INFO - Iter(train) [ 62950/160000] lr: 6.4129e-03 eta: 1 day, 6:10:22 time: 1.1178 data_time: 0.0073 memory: 8703 loss: 0.3161 decode.loss_ce: 0.1998 decode.acc_seg: 85.1603 aux.loss_ce: 0.1163 aux.acc_seg: 83.2123 +2024/08/10 11:35:30 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 11:35:30 - mmengine - INFO - Iter(train) [ 63000/160000] lr: 6.4099e-03 eta: 1 day, 6:09:25 time: 1.1146 data_time: 0.0066 memory: 8704 loss: 0.2925 decode.loss_ce: 0.1818 decode.acc_seg: 92.7717 aux.loss_ce: 0.1107 aux.acc_seg: 88.2998 +2024/08/10 11:36:25 - mmengine - INFO - Iter(train) [ 63050/160000] lr: 6.4070e-03 eta: 1 day, 6:08:29 time: 1.1148 data_time: 0.0075 memory: 8703 loss: 0.3617 decode.loss_ce: 0.2246 decode.acc_seg: 90.0052 aux.loss_ce: 0.1371 aux.acc_seg: 86.3806 +2024/08/10 11:37:21 - mmengine - INFO - Iter(train) [ 63100/160000] lr: 6.4041e-03 eta: 1 day, 6:07:33 time: 1.1152 data_time: 0.0056 memory: 8704 loss: 0.4806 decode.loss_ce: 0.3042 decode.acc_seg: 95.1785 aux.loss_ce: 0.1764 aux.acc_seg: 88.2998 +2024/08/10 11:38:17 - mmengine - INFO - Iter(train) [ 63150/160000] lr: 6.4011e-03 eta: 1 day, 6:06:37 time: 1.1239 data_time: 0.0072 memory: 8703 loss: 0.2979 decode.loss_ce: 0.1798 decode.acc_seg: 93.1009 aux.loss_ce: 0.1181 aux.acc_seg: 80.0589 +2024/08/10 11:39:13 - mmengine - INFO - Iter(train) [ 63200/160000] lr: 6.3982e-03 eta: 1 day, 6:05:40 time: 1.1163 data_time: 0.0067 memory: 8704 loss: 0.3745 decode.loss_ce: 0.2211 decode.acc_seg: 93.9446 aux.loss_ce: 0.1534 aux.acc_seg: 82.0510 +2024/08/10 11:40:09 - mmengine - INFO - Iter(train) [ 63250/160000] lr: 6.3953e-03 eta: 1 day, 6:04:44 time: 1.1164 data_time: 0.0071 memory: 8703 loss: 0.4470 decode.loss_ce: 0.2894 decode.acc_seg: 91.6004 aux.loss_ce: 0.1576 aux.acc_seg: 89.9724 +2024/08/10 11:41:04 - mmengine - INFO - Iter(train) [ 63300/160000] lr: 6.3924e-03 eta: 1 day, 6:03:48 time: 1.1172 data_time: 0.0083 memory: 8703 loss: 0.4215 decode.loss_ce: 0.2460 decode.acc_seg: 93.8891 aux.loss_ce: 0.1756 aux.acc_seg: 91.1124 +2024/08/10 11:42:00 - mmengine - INFO - Iter(train) [ 63350/160000] lr: 6.3894e-03 eta: 1 day, 6:02:52 time: 1.1163 data_time: 0.0064 memory: 8705 loss: 0.4553 decode.loss_ce: 0.2749 decode.acc_seg: 95.6175 aux.loss_ce: 0.1804 aux.acc_seg: 90.0061 +2024/08/10 11:42:56 - mmengine - INFO - Iter(train) [ 63400/160000] lr: 6.3865e-03 eta: 1 day, 6:01:56 time: 1.1154 data_time: 0.0064 memory: 8704 loss: 0.4655 decode.loss_ce: 0.2770 decode.acc_seg: 92.6938 aux.loss_ce: 0.1885 aux.acc_seg: 91.8936 +2024/08/10 11:43:52 - mmengine - INFO - Iter(train) [ 63450/160000] lr: 6.3836e-03 eta: 1 day, 6:00:59 time: 1.1132 data_time: 0.0064 memory: 8704 loss: 0.4175 decode.loss_ce: 0.2513 decode.acc_seg: 97.5727 aux.loss_ce: 0.1662 aux.acc_seg: 96.3356 +2024/08/10 11:44:48 - mmengine - INFO - Iter(train) [ 63500/160000] lr: 6.3806e-03 eta: 1 day, 6:00:03 time: 1.1186 data_time: 0.0071 memory: 8703 loss: 0.3826 decode.loss_ce: 0.2455 decode.acc_seg: 98.2715 aux.loss_ce: 0.1371 aux.acc_seg: 98.0645 +2024/08/10 11:45:43 - mmengine - INFO - Iter(train) [ 63550/160000] lr: 6.3777e-03 eta: 1 day, 5:59:07 time: 1.1143 data_time: 0.0053 memory: 8704 loss: 0.4017 decode.loss_ce: 0.2371 decode.acc_seg: 94.8105 aux.loss_ce: 0.1646 aux.acc_seg: 91.5580 +2024/08/10 11:46:39 - mmengine - INFO - Iter(train) [ 63600/160000] lr: 6.3748e-03 eta: 1 day, 5:58:10 time: 1.1158 data_time: 0.0074 memory: 8704 loss: 0.4727 decode.loss_ce: 0.2993 decode.acc_seg: 96.3975 aux.loss_ce: 0.1734 aux.acc_seg: 90.2894 +2024/08/10 11:47:35 - mmengine - INFO - Iter(train) [ 63650/160000] lr: 6.3719e-03 eta: 1 day, 5:57:14 time: 1.1172 data_time: 0.0076 memory: 8703 loss: 0.3872 decode.loss_ce: 0.2439 decode.acc_seg: 92.9856 aux.loss_ce: 0.1434 aux.acc_seg: 92.7047 +2024/08/10 11:48:31 - mmengine - INFO - Iter(train) [ 63700/160000] lr: 6.3689e-03 eta: 1 day, 5:56:18 time: 1.1176 data_time: 0.0055 memory: 8703 loss: 0.4398 decode.loss_ce: 0.2588 decode.acc_seg: 96.8569 aux.loss_ce: 0.1811 aux.acc_seg: 92.1077 +2024/08/10 11:49:26 - mmengine - INFO - Iter(train) [ 63750/160000] lr: 6.3660e-03 eta: 1 day, 5:55:22 time: 1.1113 data_time: 0.0053 memory: 8704 loss: 0.5160 decode.loss_ce: 0.2996 decode.acc_seg: 93.6112 aux.loss_ce: 0.2164 aux.acc_seg: 88.1682 +2024/08/10 11:50:22 - mmengine - INFO - Iter(train) [ 63800/160000] lr: 6.3631e-03 eta: 1 day, 5:54:25 time: 1.1172 data_time: 0.0070 memory: 8703 loss: 0.5735 decode.loss_ce: 0.3546 decode.acc_seg: 90.3241 aux.loss_ce: 0.2190 aux.acc_seg: 79.4447 +2024/08/10 11:51:18 - mmengine - INFO - Iter(train) [ 63850/160000] lr: 6.3601e-03 eta: 1 day, 5:53:29 time: 1.1135 data_time: 0.0064 memory: 8703 loss: 0.2923 decode.loss_ce: 0.1820 decode.acc_seg: 88.6210 aux.loss_ce: 0.1103 aux.acc_seg: 86.6506 +2024/08/10 11:52:14 - mmengine - INFO - Iter(train) [ 63900/160000] lr: 6.3572e-03 eta: 1 day, 5:52:33 time: 1.1157 data_time: 0.0075 memory: 8703 loss: 0.4378 decode.loss_ce: 0.2833 decode.acc_seg: 96.7247 aux.loss_ce: 0.1544 aux.acc_seg: 93.0099 +2024/08/10 11:53:10 - mmengine - INFO - Iter(train) [ 63950/160000] lr: 6.3543e-03 eta: 1 day, 5:51:37 time: 1.1161 data_time: 0.0054 memory: 8703 loss: 0.3971 decode.loss_ce: 0.2307 decode.acc_seg: 91.8535 aux.loss_ce: 0.1664 aux.acc_seg: 88.6393 +2024/08/10 11:54:06 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 11:54:06 - mmengine - INFO - Iter(train) [ 64000/160000] lr: 6.3513e-03 eta: 1 day, 5:50:41 time: 1.1162 data_time: 0.0073 memory: 8703 loss: 0.4662 decode.loss_ce: 0.2870 decode.acc_seg: 87.1201 aux.loss_ce: 0.1793 aux.acc_seg: 79.6127 +2024/08/10 11:54:06 - mmengine - INFO - Saving checkpoint at 64000 iterations +2024/08/10 11:54:20 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:09 time: 0.2705 data_time: 0.0039 memory: 1724 +2024/08/10 11:54:33 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:55 time: 0.2707 data_time: 0.0040 memory: 1724 +2024/08/10 11:54:47 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2726 data_time: 0.0051 memory: 1724 +2024/08/10 11:55:01 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:28 time: 0.2720 data_time: 0.0040 memory: 1724 +2024/08/10 11:55:14 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2696 data_time: 0.0033 memory: 1724 +2024/08/10 11:55:28 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:01 time: 0.2709 data_time: 0.0040 memory: 1724 +2024/08/10 11:55:41 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2722 data_time: 0.0046 memory: 1724 +2024/08/10 11:55:55 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:34 time: 0.2721 data_time: 0.0041 memory: 1724 +2024/08/10 11:56:08 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2716 data_time: 0.0040 memory: 1724 +2024/08/10 11:56:22 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2701 data_time: 0.0036 memory: 1724 +2024/08/10 11:56:35 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2729 data_time: 0.0051 memory: 1724 +2024/08/10 11:56:49 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2712 data_time: 0.0040 memory: 1724 +2024/08/10 11:57:02 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2728 data_time: 0.0041 memory: 1724 +2024/08/10 11:57:16 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2710 data_time: 0.0045 memory: 1724 +2024/08/10 11:57:29 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2696 data_time: 0.0034 memory: 1724 +2024/08/10 11:57:39 - mmengine - INFO - per class results: +2024/08/10 11:57:39 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 91.89 | 96.86 | +| sidewalk | 65.73 | 71.64 | +| road roughness | 55.51 | 63.49 | +| road boundaries | 56.75 | 66.8 | +| crosswalks | 92.19 | 96.84 | +| lane | 69.13 | 78.58 | +| road color guide | 79.18 | 83.37 | +| road marking | 57.06 | 66.89 | +| parking | 50.38 | 56.87 | +| traffic sign | 58.04 | 67.16 | +| traffic light | 61.28 | 71.97 | +| pole/structural object | 69.48 | 83.21 | +| building | 80.57 | 93.41 | +| tunnel | 95.83 | 99.43 | +| bridge | 47.48 | 72.7 | +| pedestrian | 59.9 | 79.8 | +| vehicle | 85.82 | 92.43 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 22.06 | 26.09 | +| personal mobility | 55.7 | 78.55 | +| dynamic | 35.34 | 38.13 | +| vegetation | 84.7 | 91.84 | +| sky | 97.74 | 98.64 | +| static | 60.07 | 67.28 | ++------------------------+-------+-------+ +2024/08/10 11:57:39 - mmengine - INFO - Iter(val) [750/750] aAcc: 93.1500 mIoU: 63.8300 mAcc: 72.5800 data_time: 0.0039 time: 0.2708 +2024/08/10 11:58:35 - mmengine - INFO - Iter(train) [ 64050/160000] lr: 6.3484e-03 eta: 1 day, 5:49:59 time: 1.1134 data_time: 0.0078 memory: 8703 loss: 0.3530 decode.loss_ce: 0.2209 decode.acc_seg: 95.0726 aux.loss_ce: 0.1321 aux.acc_seg: 93.9592 +2024/08/10 11:59:30 - mmengine - INFO - Iter(train) [ 64100/160000] lr: 6.3455e-03 eta: 1 day, 5:49:02 time: 1.1099 data_time: 0.0056 memory: 8704 loss: 0.4197 decode.loss_ce: 0.2549 decode.acc_seg: 96.6560 aux.loss_ce: 0.1648 aux.acc_seg: 95.8312 +2024/08/10 12:00:26 - mmengine - INFO - Iter(train) [ 64150/160000] lr: 6.3426e-03 eta: 1 day, 5:48:05 time: 1.1107 data_time: 0.0066 memory: 8703 loss: 0.2929 decode.loss_ce: 0.1606 decode.acc_seg: 97.5540 aux.loss_ce: 0.1323 aux.acc_seg: 94.6832 +2024/08/10 12:01:21 - mmengine - INFO - Iter(train) [ 64200/160000] lr: 6.3396e-03 eta: 1 day, 5:47:09 time: 1.1108 data_time: 0.0057 memory: 8704 loss: 0.3945 decode.loss_ce: 0.2383 decode.acc_seg: 93.0364 aux.loss_ce: 0.1562 aux.acc_seg: 88.8030 +2024/08/10 12:02:17 - mmengine - INFO - Iter(train) [ 64250/160000] lr: 6.3367e-03 eta: 1 day, 5:46:12 time: 1.1135 data_time: 0.0079 memory: 8703 loss: 0.3466 decode.loss_ce: 0.2124 decode.acc_seg: 87.4683 aux.loss_ce: 0.1342 aux.acc_seg: 85.2358 +2024/08/10 12:03:13 - mmengine - INFO - Iter(train) [ 64300/160000] lr: 6.3338e-03 eta: 1 day, 5:45:16 time: 1.1135 data_time: 0.0076 memory: 8704 loss: 0.3666 decode.loss_ce: 0.2228 decode.acc_seg: 88.9125 aux.loss_ce: 0.1437 aux.acc_seg: 79.8183 +2024/08/10 12:04:08 - mmengine - INFO - Iter(train) [ 64350/160000] lr: 6.3308e-03 eta: 1 day, 5:44:20 time: 1.1152 data_time: 0.0073 memory: 8703 loss: 0.4741 decode.loss_ce: 0.2933 decode.acc_seg: 88.2601 aux.loss_ce: 0.1808 aux.acc_seg: 80.4494 +2024/08/10 12:05:04 - mmengine - INFO - Iter(train) [ 64400/160000] lr: 6.3279e-03 eta: 1 day, 5:43:24 time: 1.1225 data_time: 0.0084 memory: 8703 loss: 0.3398 decode.loss_ce: 0.2160 decode.acc_seg: 90.0756 aux.loss_ce: 0.1238 aux.acc_seg: 79.9739 +2024/08/10 12:06:00 - mmengine - INFO - Iter(train) [ 64450/160000] lr: 6.3250e-03 eta: 1 day, 5:42:27 time: 1.1167 data_time: 0.0063 memory: 8703 loss: 0.3796 decode.loss_ce: 0.2288 decode.acc_seg: 96.3914 aux.loss_ce: 0.1508 aux.acc_seg: 95.4839 +2024/08/10 12:06:56 - mmengine - INFO - Iter(train) [ 64500/160000] lr: 6.3220e-03 eta: 1 day, 5:41:31 time: 1.1165 data_time: 0.0070 memory: 8704 loss: 0.6084 decode.loss_ce: 0.3667 decode.acc_seg: 83.3312 aux.loss_ce: 0.2416 aux.acc_seg: 76.5420 +2024/08/10 12:07:52 - mmengine - INFO - Iter(train) [ 64550/160000] lr: 6.3191e-03 eta: 1 day, 5:40:35 time: 1.1193 data_time: 0.0072 memory: 8703 loss: 0.5143 decode.loss_ce: 0.3203 decode.acc_seg: 95.0827 aux.loss_ce: 0.1941 aux.acc_seg: 94.5810 +2024/08/10 12:08:47 - mmengine - INFO - Iter(train) [ 64600/160000] lr: 6.3162e-03 eta: 1 day, 5:39:39 time: 1.1169 data_time: 0.0064 memory: 8703 loss: 0.4746 decode.loss_ce: 0.2899 decode.acc_seg: 83.4542 aux.loss_ce: 0.1847 aux.acc_seg: 66.2195 +2024/08/10 12:09:43 - mmengine - INFO - Iter(train) [ 64650/160000] lr: 6.3132e-03 eta: 1 day, 5:38:42 time: 1.1108 data_time: 0.0059 memory: 8704 loss: 0.5936 decode.loss_ce: 0.3945 decode.acc_seg: 77.4060 aux.loss_ce: 0.1991 aux.acc_seg: 78.3689 +2024/08/10 12:10:39 - mmengine - INFO - Iter(train) [ 64700/160000] lr: 6.3103e-03 eta: 1 day, 5:37:46 time: 1.1155 data_time: 0.0063 memory: 8704 loss: 0.4653 decode.loss_ce: 0.2913 decode.acc_seg: 87.2890 aux.loss_ce: 0.1740 aux.acc_seg: 83.1005 +2024/08/10 12:11:35 - mmengine - INFO - Iter(train) [ 64750/160000] lr: 6.3074e-03 eta: 1 day, 5:36:50 time: 1.1109 data_time: 0.0056 memory: 8704 loss: 0.4515 decode.loss_ce: 0.2816 decode.acc_seg: 93.1656 aux.loss_ce: 0.1699 aux.acc_seg: 92.1240 +2024/08/10 12:12:30 - mmengine - INFO - Iter(train) [ 64800/160000] lr: 6.3044e-03 eta: 1 day, 5:35:53 time: 1.1102 data_time: 0.0070 memory: 8704 loss: 0.4361 decode.loss_ce: 0.2694 decode.acc_seg: 93.4814 aux.loss_ce: 0.1667 aux.acc_seg: 91.4668 +2024/08/10 12:13:26 - mmengine - INFO - Iter(train) [ 64850/160000] lr: 6.3015e-03 eta: 1 day, 5:34:57 time: 1.1103 data_time: 0.0067 memory: 8705 loss: 0.6445 decode.loss_ce: 0.4164 decode.acc_seg: 92.1897 aux.loss_ce: 0.2282 aux.acc_seg: 80.7800 +2024/08/10 12:14:22 - mmengine - INFO - Iter(train) [ 64900/160000] lr: 6.2986e-03 eta: 1 day, 5:34:00 time: 1.1127 data_time: 0.0078 memory: 8704 loss: 0.5327 decode.loss_ce: 0.3276 decode.acc_seg: 94.1193 aux.loss_ce: 0.2052 aux.acc_seg: 91.9235 +2024/08/10 12:15:17 - mmengine - INFO - Iter(train) [ 64950/160000] lr: 6.2956e-03 eta: 1 day, 5:33:04 time: 1.1205 data_time: 0.0075 memory: 8704 loss: 0.3348 decode.loss_ce: 0.2097 decode.acc_seg: 90.7798 aux.loss_ce: 0.1251 aux.acc_seg: 87.1328 +2024/08/10 12:16:13 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 12:16:13 - mmengine - INFO - Iter(train) [ 65000/160000] lr: 6.2927e-03 eta: 1 day, 5:32:08 time: 1.1180 data_time: 0.0076 memory: 8703 loss: 0.4838 decode.loss_ce: 0.3033 decode.acc_seg: 94.0389 aux.loss_ce: 0.1805 aux.acc_seg: 91.5858 +2024/08/10 12:17:09 - mmengine - INFO - Iter(train) [ 65050/160000] lr: 6.2898e-03 eta: 1 day, 5:31:12 time: 1.1212 data_time: 0.0084 memory: 8704 loss: 0.4274 decode.loss_ce: 0.2523 decode.acc_seg: 84.9348 aux.loss_ce: 0.1751 aux.acc_seg: 74.2238 +2024/08/10 12:18:05 - mmengine - INFO - Iter(train) [ 65100/160000] lr: 6.2868e-03 eta: 1 day, 5:30:16 time: 1.1198 data_time: 0.0080 memory: 8704 loss: 0.4102 decode.loss_ce: 0.2453 decode.acc_seg: 97.2932 aux.loss_ce: 0.1648 aux.acc_seg: 92.0296 +2024/08/10 12:19:01 - mmengine - INFO - Iter(train) [ 65150/160000] lr: 6.2839e-03 eta: 1 day, 5:29:19 time: 1.1155 data_time: 0.0073 memory: 8704 loss: 0.3796 decode.loss_ce: 0.2499 decode.acc_seg: 93.3855 aux.loss_ce: 0.1297 aux.acc_seg: 91.7233 +2024/08/10 12:19:56 - mmengine - INFO - Iter(train) [ 65200/160000] lr: 6.2810e-03 eta: 1 day, 5:28:23 time: 1.1195 data_time: 0.0092 memory: 8703 loss: 0.3479 decode.loss_ce: 0.1954 decode.acc_seg: 96.1323 aux.loss_ce: 0.1525 aux.acc_seg: 87.2340 +2024/08/10 12:20:52 - mmengine - INFO - Iter(train) [ 65250/160000] lr: 6.2780e-03 eta: 1 day, 5:27:27 time: 1.1140 data_time: 0.0066 memory: 8703 loss: 0.4158 decode.loss_ce: 0.2670 decode.acc_seg: 95.2488 aux.loss_ce: 0.1487 aux.acc_seg: 94.2165 +2024/08/10 12:21:48 - mmengine - INFO - Iter(train) [ 65300/160000] lr: 6.2751e-03 eta: 1 day, 5:26:31 time: 1.1154 data_time: 0.0070 memory: 8704 loss: 0.5442 decode.loss_ce: 0.3491 decode.acc_seg: 93.4659 aux.loss_ce: 0.1951 aux.acc_seg: 90.7826 +2024/08/10 12:22:44 - mmengine - INFO - Iter(train) [ 65350/160000] lr: 6.2722e-03 eta: 1 day, 5:25:35 time: 1.1165 data_time: 0.0064 memory: 8704 loss: 0.4309 decode.loss_ce: 0.2579 decode.acc_seg: 84.6043 aux.loss_ce: 0.1730 aux.acc_seg: 79.1530 +2024/08/10 12:23:40 - mmengine - INFO - Iter(train) [ 65400/160000] lr: 6.2692e-03 eta: 1 day, 5:24:38 time: 1.1165 data_time: 0.0081 memory: 8703 loss: 0.3357 decode.loss_ce: 0.2017 decode.acc_seg: 91.5717 aux.loss_ce: 0.1340 aux.acc_seg: 90.0490 +2024/08/10 12:24:35 - mmengine - INFO - Iter(train) [ 65450/160000] lr: 6.2663e-03 eta: 1 day, 5:23:42 time: 1.1162 data_time: 0.0075 memory: 8704 loss: 0.4174 decode.loss_ce: 0.2593 decode.acc_seg: 95.7322 aux.loss_ce: 0.1581 aux.acc_seg: 95.0951 +2024/08/10 12:25:31 - mmengine - INFO - Iter(train) [ 65500/160000] lr: 6.2634e-03 eta: 1 day, 5:22:46 time: 1.1140 data_time: 0.0066 memory: 8704 loss: 0.4123 decode.loss_ce: 0.2408 decode.acc_seg: 91.3816 aux.loss_ce: 0.1715 aux.acc_seg: 83.6833 +2024/08/10 12:26:27 - mmengine - INFO - Iter(train) [ 65550/160000] lr: 6.2604e-03 eta: 1 day, 5:21:49 time: 1.1096 data_time: 0.0050 memory: 8704 loss: 0.4131 decode.loss_ce: 0.2353 decode.acc_seg: 81.9783 aux.loss_ce: 0.1778 aux.acc_seg: 68.3791 +2024/08/10 12:27:22 - mmengine - INFO - Iter(train) [ 65600/160000] lr: 6.2575e-03 eta: 1 day, 5:20:53 time: 1.1104 data_time: 0.0067 memory: 8703 loss: 0.6487 decode.loss_ce: 0.4077 decode.acc_seg: 88.5658 aux.loss_ce: 0.2410 aux.acc_seg: 88.2119 +2024/08/10 12:28:18 - mmengine - INFO - Iter(train) [ 65650/160000] lr: 6.2546e-03 eta: 1 day, 5:19:57 time: 1.1214 data_time: 0.0096 memory: 8703 loss: 0.3352 decode.loss_ce: 0.2004 decode.acc_seg: 93.6984 aux.loss_ce: 0.1348 aux.acc_seg: 92.3983 +2024/08/10 12:29:14 - mmengine - INFO - Iter(train) [ 65700/160000] lr: 6.2516e-03 eta: 1 day, 5:19:01 time: 1.1213 data_time: 0.0075 memory: 8704 loss: 0.3318 decode.loss_ce: 0.2044 decode.acc_seg: 94.1950 aux.loss_ce: 0.1274 aux.acc_seg: 91.5614 +2024/08/10 12:30:10 - mmengine - INFO - Iter(train) [ 65750/160000] lr: 6.2487e-03 eta: 1 day, 5:18:04 time: 1.1214 data_time: 0.0067 memory: 8703 loss: 0.3915 decode.loss_ce: 0.2451 decode.acc_seg: 95.3115 aux.loss_ce: 0.1464 aux.acc_seg: 90.6109 +2024/08/10 12:31:06 - mmengine - INFO - Iter(train) [ 65800/160000] lr: 6.2458e-03 eta: 1 day, 5:17:08 time: 1.1109 data_time: 0.0062 memory: 8704 loss: 0.4246 decode.loss_ce: 0.2615 decode.acc_seg: 87.9892 aux.loss_ce: 0.1631 aux.acc_seg: 87.5979 +2024/08/10 12:32:01 - mmengine - INFO - Iter(train) [ 65850/160000] lr: 6.2428e-03 eta: 1 day, 5:16:12 time: 1.1097 data_time: 0.0062 memory: 8703 loss: 0.3513 decode.loss_ce: 0.2106 decode.acc_seg: 97.2687 aux.loss_ce: 0.1407 aux.acc_seg: 94.2870 +2024/08/10 12:32:57 - mmengine - INFO - Iter(train) [ 65900/160000] lr: 6.2399e-03 eta: 1 day, 5:15:15 time: 1.1152 data_time: 0.0077 memory: 8703 loss: 0.3950 decode.loss_ce: 0.2443 decode.acc_seg: 84.7572 aux.loss_ce: 0.1508 aux.acc_seg: 84.0914 +2024/08/10 12:33:53 - mmengine - INFO - Iter(train) [ 65950/160000] lr: 6.2369e-03 eta: 1 day, 5:14:19 time: 1.1153 data_time: 0.0087 memory: 8704 loss: 0.4726 decode.loss_ce: 0.3035 decode.acc_seg: 95.1311 aux.loss_ce: 0.1691 aux.acc_seg: 85.6008 +2024/08/10 12:34:48 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 12:34:48 - mmengine - INFO - Iter(train) [ 66000/160000] lr: 6.2340e-03 eta: 1 day, 5:13:23 time: 1.1139 data_time: 0.0063 memory: 8704 loss: 0.5112 decode.loss_ce: 0.2891 decode.acc_seg: 95.0759 aux.loss_ce: 0.2221 aux.acc_seg: 93.7885 +2024/08/10 12:35:44 - mmengine - INFO - Iter(train) [ 66050/160000] lr: 6.2311e-03 eta: 1 day, 5:12:27 time: 1.1178 data_time: 0.0068 memory: 8704 loss: 0.4389 decode.loss_ce: 0.2825 decode.acc_seg: 91.1545 aux.loss_ce: 0.1565 aux.acc_seg: 83.7484 +2024/08/10 12:36:40 - mmengine - INFO - Iter(train) [ 66100/160000] lr: 6.2281e-03 eta: 1 day, 5:11:30 time: 1.1136 data_time: 0.0064 memory: 8704 loss: 0.4206 decode.loss_ce: 0.2652 decode.acc_seg: 88.9301 aux.loss_ce: 0.1554 aux.acc_seg: 87.8728 +2024/08/10 12:37:36 - mmengine - INFO - Iter(train) [ 66150/160000] lr: 6.2252e-03 eta: 1 day, 5:10:34 time: 1.1203 data_time: 0.0078 memory: 8704 loss: 0.3937 decode.loss_ce: 0.2447 decode.acc_seg: 86.2881 aux.loss_ce: 0.1490 aux.acc_seg: 84.4743 +2024/08/10 12:38:32 - mmengine - INFO - Iter(train) [ 66200/160000] lr: 6.2223e-03 eta: 1 day, 5:09:38 time: 1.1156 data_time: 0.0073 memory: 8704 loss: 0.3455 decode.loss_ce: 0.2101 decode.acc_seg: 94.7367 aux.loss_ce: 0.1355 aux.acc_seg: 92.7537 +2024/08/10 12:39:28 - mmengine - INFO - Iter(train) [ 66250/160000] lr: 6.2193e-03 eta: 1 day, 5:08:42 time: 1.1166 data_time: 0.0079 memory: 8703 loss: 0.4138 decode.loss_ce: 0.2363 decode.acc_seg: 89.4315 aux.loss_ce: 0.1775 aux.acc_seg: 87.5901 +2024/08/10 12:40:23 - mmengine - INFO - Iter(train) [ 66300/160000] lr: 6.2164e-03 eta: 1 day, 5:07:46 time: 1.1164 data_time: 0.0067 memory: 8704 loss: 0.4565 decode.loss_ce: 0.2689 decode.acc_seg: 92.3457 aux.loss_ce: 0.1875 aux.acc_seg: 87.9335 +2024/08/10 12:41:19 - mmengine - INFO - Iter(train) [ 66350/160000] lr: 6.2135e-03 eta: 1 day, 5:06:50 time: 1.1149 data_time: 0.0063 memory: 8703 loss: 0.3968 decode.loss_ce: 0.2249 decode.acc_seg: 96.7234 aux.loss_ce: 0.1719 aux.acc_seg: 90.7077 +2024/08/10 12:42:15 - mmengine - INFO - Iter(train) [ 66400/160000] lr: 6.2105e-03 eta: 1 day, 5:05:53 time: 1.1130 data_time: 0.0063 memory: 8704 loss: 0.2980 decode.loss_ce: 0.1915 decode.acc_seg: 89.8127 aux.loss_ce: 0.1065 aux.acc_seg: 88.2642 +2024/08/10 12:43:10 - mmengine - INFO - Iter(train) [ 66450/160000] lr: 6.2076e-03 eta: 1 day, 5:04:57 time: 1.1143 data_time: 0.0079 memory: 8703 loss: 0.4428 decode.loss_ce: 0.2640 decode.acc_seg: 97.6508 aux.loss_ce: 0.1788 aux.acc_seg: 93.1585 +2024/08/10 12:44:06 - mmengine - INFO - Iter(train) [ 66500/160000] lr: 6.2046e-03 eta: 1 day, 5:04:01 time: 1.1142 data_time: 0.0055 memory: 8704 loss: 0.3422 decode.loss_ce: 0.1904 decode.acc_seg: 95.6647 aux.loss_ce: 0.1518 aux.acc_seg: 95.5499 +2024/08/10 12:45:02 - mmengine - INFO - Iter(train) [ 66550/160000] lr: 6.2017e-03 eta: 1 day, 5:03:04 time: 1.1169 data_time: 0.0078 memory: 8704 loss: 0.4992 decode.loss_ce: 0.2865 decode.acc_seg: 90.5769 aux.loss_ce: 0.2128 aux.acc_seg: 82.0567 +2024/08/10 12:45:58 - mmengine - INFO - Iter(train) [ 66600/160000] lr: 6.1988e-03 eta: 1 day, 5:02:08 time: 1.1158 data_time: 0.0068 memory: 8703 loss: 0.5247 decode.loss_ce: 0.3123 decode.acc_seg: 94.1130 aux.loss_ce: 0.2124 aux.acc_seg: 92.1831 +2024/08/10 12:46:53 - mmengine - INFO - Iter(train) [ 66650/160000] lr: 6.1958e-03 eta: 1 day, 5:01:12 time: 1.1104 data_time: 0.0060 memory: 8704 loss: 0.3920 decode.loss_ce: 0.2481 decode.acc_seg: 79.2007 aux.loss_ce: 0.1439 aux.acc_seg: 80.7622 +2024/08/10 12:47:49 - mmengine - INFO - Iter(train) [ 66700/160000] lr: 6.1929e-03 eta: 1 day, 5:00:15 time: 1.1135 data_time: 0.0060 memory: 8704 loss: 0.4749 decode.loss_ce: 0.2612 decode.acc_seg: 90.9693 aux.loss_ce: 0.2138 aux.acc_seg: 87.9417 +2024/08/10 12:48:45 - mmengine - INFO - Iter(train) [ 66750/160000] lr: 6.1899e-03 eta: 1 day, 4:59:19 time: 1.1185 data_time: 0.0069 memory: 8704 loss: 0.4349 decode.loss_ce: 0.2643 decode.acc_seg: 95.0538 aux.loss_ce: 0.1707 aux.acc_seg: 94.1877 +2024/08/10 12:49:41 - mmengine - INFO - Iter(train) [ 66800/160000] lr: 6.1870e-03 eta: 1 day, 4:58:23 time: 1.1162 data_time: 0.0067 memory: 8703 loss: 0.4767 decode.loss_ce: 0.2996 decode.acc_seg: 88.3274 aux.loss_ce: 0.1771 aux.acc_seg: 87.1355 +2024/08/10 12:50:36 - mmengine - INFO - Iter(train) [ 66850/160000] lr: 6.1841e-03 eta: 1 day, 4:57:27 time: 1.1153 data_time: 0.0075 memory: 8704 loss: 0.4069 decode.loss_ce: 0.2576 decode.acc_seg: 93.7322 aux.loss_ce: 0.1493 aux.acc_seg: 91.9947 +2024/08/10 12:51:32 - mmengine - INFO - Iter(train) [ 66900/160000] lr: 6.1811e-03 eta: 1 day, 4:56:30 time: 1.1145 data_time: 0.0069 memory: 8704 loss: 0.3192 decode.loss_ce: 0.1982 decode.acc_seg: 89.3277 aux.loss_ce: 0.1209 aux.acc_seg: 86.1179 +2024/08/10 12:52:28 - mmengine - INFO - Iter(train) [ 66950/160000] lr: 6.1782e-03 eta: 1 day, 4:55:34 time: 1.1116 data_time: 0.0059 memory: 8703 loss: 0.3228 decode.loss_ce: 0.1871 decode.acc_seg: 91.8707 aux.loss_ce: 0.1358 aux.acc_seg: 82.4373 +2024/08/10 12:53:23 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 12:53:23 - mmengine - INFO - Iter(train) [ 67000/160000] lr: 6.1753e-03 eta: 1 day, 4:54:38 time: 1.1134 data_time: 0.0065 memory: 8703 loss: 0.3504 decode.loss_ce: 0.2014 decode.acc_seg: 87.0452 aux.loss_ce: 0.1489 aux.acc_seg: 79.5906 +2024/08/10 12:54:19 - mmengine - INFO - Iter(train) [ 67050/160000] lr: 6.1723e-03 eta: 1 day, 4:53:41 time: 1.1199 data_time: 0.0084 memory: 8703 loss: 0.4038 decode.loss_ce: 0.2488 decode.acc_seg: 94.6517 aux.loss_ce: 0.1550 aux.acc_seg: 95.9348 +2024/08/10 12:55:15 - mmengine - INFO - Iter(train) [ 67100/160000] lr: 6.1694e-03 eta: 1 day, 4:52:45 time: 1.1088 data_time: 0.0055 memory: 8703 loss: 0.3542 decode.loss_ce: 0.2135 decode.acc_seg: 92.5176 aux.loss_ce: 0.1408 aux.acc_seg: 81.1277 +2024/08/10 12:56:11 - mmengine - INFO - Iter(train) [ 67150/160000] lr: 6.1664e-03 eta: 1 day, 4:51:49 time: 1.1188 data_time: 0.0078 memory: 8704 loss: 0.5715 decode.loss_ce: 0.3598 decode.acc_seg: 92.2927 aux.loss_ce: 0.2117 aux.acc_seg: 85.1340 +2024/08/10 12:57:06 - mmengine - INFO - Iter(train) [ 67200/160000] lr: 6.1635e-03 eta: 1 day, 4:50:52 time: 1.1132 data_time: 0.0061 memory: 8703 loss: 0.3351 decode.loss_ce: 0.2124 decode.acc_seg: 97.6045 aux.loss_ce: 0.1227 aux.acc_seg: 94.3736 +2024/08/10 12:58:02 - mmengine - INFO - Iter(train) [ 67250/160000] lr: 6.1606e-03 eta: 1 day, 4:49:56 time: 1.1199 data_time: 0.0079 memory: 8704 loss: 0.4472 decode.loss_ce: 0.2726 decode.acc_seg: 95.7591 aux.loss_ce: 0.1746 aux.acc_seg: 94.7866 +2024/08/10 12:58:58 - mmengine - INFO - Iter(train) [ 67300/160000] lr: 6.1576e-03 eta: 1 day, 4:49:00 time: 1.1180 data_time: 0.0058 memory: 8703 loss: 0.4496 decode.loss_ce: 0.2715 decode.acc_seg: 96.2714 aux.loss_ce: 0.1781 aux.acc_seg: 95.7372 +2024/08/10 12:59:54 - mmengine - INFO - Iter(train) [ 67350/160000] lr: 6.1547e-03 eta: 1 day, 4:48:04 time: 1.1196 data_time: 0.0073 memory: 8704 loss: 0.3581 decode.loss_ce: 0.2055 decode.acc_seg: 88.0485 aux.loss_ce: 0.1526 aux.acc_seg: 84.1734 +2024/08/10 13:00:49 - mmengine - INFO - Iter(train) [ 67400/160000] lr: 6.1517e-03 eta: 1 day, 4:47:08 time: 1.1167 data_time: 0.0079 memory: 8703 loss: 0.4209 decode.loss_ce: 0.2678 decode.acc_seg: 91.4442 aux.loss_ce: 0.1531 aux.acc_seg: 88.4138 +2024/08/10 13:01:45 - mmengine - INFO - Iter(train) [ 67450/160000] lr: 6.1488e-03 eta: 1 day, 4:46:11 time: 1.1149 data_time: 0.0073 memory: 8705 loss: 0.3673 decode.loss_ce: 0.2346 decode.acc_seg: 94.5207 aux.loss_ce: 0.1326 aux.acc_seg: 92.9631 +2024/08/10 13:02:41 - mmengine - INFO - Iter(train) [ 67500/160000] lr: 6.1458e-03 eta: 1 day, 4:45:15 time: 1.1166 data_time: 0.0060 memory: 8703 loss: 0.3672 decode.loss_ce: 0.2375 decode.acc_seg: 90.6049 aux.loss_ce: 0.1297 aux.acc_seg: 86.7728 +2024/08/10 13:03:37 - mmengine - INFO - Iter(train) [ 67550/160000] lr: 6.1429e-03 eta: 1 day, 4:44:19 time: 1.1127 data_time: 0.0062 memory: 8703 loss: 0.6943 decode.loss_ce: 0.4787 decode.acc_seg: 79.3505 aux.loss_ce: 0.2156 aux.acc_seg: 67.1775 +2024/08/10 13:04:32 - mmengine - INFO - Iter(train) [ 67600/160000] lr: 6.1400e-03 eta: 1 day, 4:43:22 time: 1.1174 data_time: 0.0069 memory: 8703 loss: 0.4320 decode.loss_ce: 0.2550 decode.acc_seg: 92.9969 aux.loss_ce: 0.1770 aux.acc_seg: 91.7862 +2024/08/10 13:05:28 - mmengine - INFO - Iter(train) [ 67650/160000] lr: 6.1370e-03 eta: 1 day, 4:42:26 time: 1.1071 data_time: 0.0054 memory: 8703 loss: 0.4550 decode.loss_ce: 0.2817 decode.acc_seg: 87.9919 aux.loss_ce: 0.1733 aux.acc_seg: 85.2824 +2024/08/10 13:06:24 - mmengine - INFO - Iter(train) [ 67700/160000] lr: 6.1341e-03 eta: 1 day, 4:41:30 time: 1.1157 data_time: 0.0079 memory: 8704 loss: 0.4144 decode.loss_ce: 0.2545 decode.acc_seg: 84.2744 aux.loss_ce: 0.1599 aux.acc_seg: 81.9126 +2024/08/10 13:07:19 - mmengine - INFO - Iter(train) [ 67750/160000] lr: 6.1311e-03 eta: 1 day, 4:40:34 time: 1.1129 data_time: 0.0066 memory: 8703 loss: 0.3126 decode.loss_ce: 0.1899 decode.acc_seg: 87.7319 aux.loss_ce: 0.1227 aux.acc_seg: 79.8185 +2024/08/10 13:08:15 - mmengine - INFO - Iter(train) [ 67800/160000] lr: 6.1282e-03 eta: 1 day, 4:39:37 time: 1.1121 data_time: 0.0078 memory: 8704 loss: 0.3874 decode.loss_ce: 0.2376 decode.acc_seg: 94.9182 aux.loss_ce: 0.1498 aux.acc_seg: 91.8763 +2024/08/10 13:09:11 - mmengine - INFO - Iter(train) [ 67850/160000] lr: 6.1253e-03 eta: 1 day, 4:38:41 time: 1.1161 data_time: 0.0057 memory: 8704 loss: 0.4426 decode.loss_ce: 0.2651 decode.acc_seg: 93.6815 aux.loss_ce: 0.1775 aux.acc_seg: 93.0400 +2024/08/10 13:10:07 - mmengine - INFO - Iter(train) [ 67900/160000] lr: 6.1223e-03 eta: 1 day, 4:37:45 time: 1.1200 data_time: 0.0072 memory: 8703 loss: 0.3330 decode.loss_ce: 0.2052 decode.acc_seg: 97.1719 aux.loss_ce: 0.1278 aux.acc_seg: 96.5426 +2024/08/10 13:11:03 - mmengine - INFO - Iter(train) [ 67950/160000] lr: 6.1194e-03 eta: 1 day, 4:36:49 time: 1.1204 data_time: 0.0077 memory: 8704 loss: 0.5231 decode.loss_ce: 0.3228 decode.acc_seg: 84.6556 aux.loss_ce: 0.2003 aux.acc_seg: 76.7000 +2024/08/10 13:11:58 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 13:11:58 - mmengine - INFO - Iter(train) [ 68000/160000] lr: 6.1164e-03 eta: 1 day, 4:35:53 time: 1.1170 data_time: 0.0055 memory: 8704 loss: 0.5369 decode.loss_ce: 0.3262 decode.acc_seg: 75.7242 aux.loss_ce: 0.2107 aux.acc_seg: 71.2170 +2024/08/10 13:12:54 - mmengine - INFO - Iter(train) [ 68050/160000] lr: 6.1135e-03 eta: 1 day, 4:34:57 time: 1.1206 data_time: 0.0071 memory: 8703 loss: 0.5167 decode.loss_ce: 0.3293 decode.acc_seg: 86.4382 aux.loss_ce: 0.1874 aux.acc_seg: 83.2123 +2024/08/10 13:13:50 - mmengine - INFO - Iter(train) [ 68100/160000] lr: 6.1105e-03 eta: 1 day, 4:34:01 time: 1.1197 data_time: 0.0056 memory: 8704 loss: 0.4653 decode.loss_ce: 0.2857 decode.acc_seg: 86.6789 aux.loss_ce: 0.1796 aux.acc_seg: 82.8725 +2024/08/10 13:14:46 - mmengine - INFO - Iter(train) [ 68150/160000] lr: 6.1076e-03 eta: 1 day, 4:33:04 time: 1.1123 data_time: 0.0056 memory: 8704 loss: 0.6661 decode.loss_ce: 0.4244 decode.acc_seg: 80.2377 aux.loss_ce: 0.2417 aux.acc_seg: 64.6877 +2024/08/10 13:15:42 - mmengine - INFO - Iter(train) [ 68200/160000] lr: 6.1047e-03 eta: 1 day, 4:32:08 time: 1.1167 data_time: 0.0067 memory: 8703 loss: 0.5414 decode.loss_ce: 0.3281 decode.acc_seg: 88.1260 aux.loss_ce: 0.2133 aux.acc_seg: 76.8724 +2024/08/10 13:16:37 - mmengine - INFO - Iter(train) [ 68250/160000] lr: 6.1017e-03 eta: 1 day, 4:31:12 time: 1.1145 data_time: 0.0076 memory: 8704 loss: 0.3379 decode.loss_ce: 0.2022 decode.acc_seg: 95.9524 aux.loss_ce: 0.1358 aux.acc_seg: 93.6796 +2024/08/10 13:17:33 - mmengine - INFO - Iter(train) [ 68300/160000] lr: 6.0988e-03 eta: 1 day, 4:30:16 time: 1.1117 data_time: 0.0059 memory: 8704 loss: 0.5095 decode.loss_ce: 0.3349 decode.acc_seg: 91.0774 aux.loss_ce: 0.1745 aux.acc_seg: 88.5360 +2024/08/10 13:18:29 - mmengine - INFO - Iter(train) [ 68350/160000] lr: 6.0958e-03 eta: 1 day, 4:29:19 time: 1.1183 data_time: 0.0071 memory: 8704 loss: 0.4372 decode.loss_ce: 0.2576 decode.acc_seg: 89.3230 aux.loss_ce: 0.1796 aux.acc_seg: 85.3050 +2024/08/10 13:19:24 - mmengine - INFO - Iter(train) [ 68400/160000] lr: 6.0929e-03 eta: 1 day, 4:28:23 time: 1.1151 data_time: 0.0080 memory: 8704 loss: 0.3464 decode.loss_ce: 0.2170 decode.acc_seg: 96.1890 aux.loss_ce: 0.1294 aux.acc_seg: 95.6634 +2024/08/10 13:20:20 - mmengine - INFO - Iter(train) [ 68450/160000] lr: 6.0899e-03 eta: 1 day, 4:27:27 time: 1.1126 data_time: 0.0074 memory: 8703 loss: 0.4316 decode.loss_ce: 0.2598 decode.acc_seg: 95.8717 aux.loss_ce: 0.1718 aux.acc_seg: 94.1282 +2024/08/10 13:21:16 - mmengine - INFO - Iter(train) [ 68500/160000] lr: 6.0870e-03 eta: 1 day, 4:26:30 time: 1.1171 data_time: 0.0081 memory: 8703 loss: 0.4304 decode.loss_ce: 0.2647 decode.acc_seg: 90.2508 aux.loss_ce: 0.1657 aux.acc_seg: 82.5141 +2024/08/10 13:22:12 - mmengine - INFO - Iter(train) [ 68550/160000] lr: 6.0840e-03 eta: 1 day, 4:25:34 time: 1.1179 data_time: 0.0063 memory: 8703 loss: 0.3318 decode.loss_ce: 0.2079 decode.acc_seg: 94.2078 aux.loss_ce: 0.1238 aux.acc_seg: 93.5485 +2024/08/10 13:23:07 - mmengine - INFO - Iter(train) [ 68600/160000] lr: 6.0811e-03 eta: 1 day, 4:24:38 time: 1.1160 data_time: 0.0059 memory: 8703 loss: 0.3817 decode.loss_ce: 0.2359 decode.acc_seg: 93.8724 aux.loss_ce: 0.1458 aux.acc_seg: 91.4106 +2024/08/10 13:24:03 - mmengine - INFO - Iter(train) [ 68650/160000] lr: 6.0782e-03 eta: 1 day, 4:23:42 time: 1.1166 data_time: 0.0069 memory: 8704 loss: 0.5761 decode.loss_ce: 0.3754 decode.acc_seg: 91.8236 aux.loss_ce: 0.2007 aux.acc_seg: 88.6555 +2024/08/10 13:24:59 - mmengine - INFO - Iter(train) [ 68700/160000] lr: 6.0752e-03 eta: 1 day, 4:22:46 time: 1.1171 data_time: 0.0060 memory: 8704 loss: 0.4776 decode.loss_ce: 0.2644 decode.acc_seg: 93.1518 aux.loss_ce: 0.2132 aux.acc_seg: 78.5643 +2024/08/10 13:25:55 - mmengine - INFO - Iter(train) [ 68750/160000] lr: 6.0723e-03 eta: 1 day, 4:21:50 time: 1.1131 data_time: 0.0054 memory: 8703 loss: 0.6655 decode.loss_ce: 0.3965 decode.acc_seg: 91.1829 aux.loss_ce: 0.2690 aux.acc_seg: 68.6887 +2024/08/10 13:26:51 - mmengine - INFO - Iter(train) [ 68800/160000] lr: 6.0693e-03 eta: 1 day, 4:20:54 time: 1.1187 data_time: 0.0075 memory: 8703 loss: 0.4414 decode.loss_ce: 0.2938 decode.acc_seg: 69.5229 aux.loss_ce: 0.1476 aux.acc_seg: 67.2434 +2024/08/10 13:27:47 - mmengine - INFO - Iter(train) [ 68850/160000] lr: 6.0664e-03 eta: 1 day, 4:19:57 time: 1.1136 data_time: 0.0072 memory: 8703 loss: 0.4834 decode.loss_ce: 0.2974 decode.acc_seg: 95.2258 aux.loss_ce: 0.1860 aux.acc_seg: 93.7903 +2024/08/10 13:28:43 - mmengine - INFO - Iter(train) [ 68900/160000] lr: 6.0634e-03 eta: 1 day, 4:19:01 time: 1.1159 data_time: 0.0070 memory: 8704 loss: 0.3397 decode.loss_ce: 0.2166 decode.acc_seg: 93.5475 aux.loss_ce: 0.1231 aux.acc_seg: 89.8929 +2024/08/10 13:29:38 - mmengine - INFO - Iter(train) [ 68950/160000] lr: 6.0605e-03 eta: 1 day, 4:18:05 time: 1.1126 data_time: 0.0074 memory: 8704 loss: 0.3344 decode.loss_ce: 0.2040 decode.acc_seg: 82.6384 aux.loss_ce: 0.1305 aux.acc_seg: 77.1077 +2024/08/10 13:30:34 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 13:30:34 - mmengine - INFO - Iter(train) [ 69000/160000] lr: 6.0575e-03 eta: 1 day, 4:17:09 time: 1.1123 data_time: 0.0072 memory: 8704 loss: 0.4460 decode.loss_ce: 0.2476 decode.acc_seg: 96.3607 aux.loss_ce: 0.1984 aux.acc_seg: 95.5739 +2024/08/10 13:31:30 - mmengine - INFO - Iter(train) [ 69050/160000] lr: 6.0546e-03 eta: 1 day, 4:16:13 time: 1.1149 data_time: 0.0078 memory: 8703 loss: 0.3293 decode.loss_ce: 0.1927 decode.acc_seg: 96.6498 aux.loss_ce: 0.1365 aux.acc_seg: 92.1888 +2024/08/10 13:32:25 - mmengine - INFO - Iter(train) [ 69100/160000] lr: 6.0516e-03 eta: 1 day, 4:15:16 time: 1.1131 data_time: 0.0063 memory: 8704 loss: 0.3542 decode.loss_ce: 0.2164 decode.acc_seg: 92.8796 aux.loss_ce: 0.1378 aux.acc_seg: 87.5055 +2024/08/10 13:33:21 - mmengine - INFO - Iter(train) [ 69150/160000] lr: 6.0487e-03 eta: 1 day, 4:14:20 time: 1.1125 data_time: 0.0060 memory: 8704 loss: 0.2973 decode.loss_ce: 0.1804 decode.acc_seg: 92.2905 aux.loss_ce: 0.1169 aux.acc_seg: 87.1534 +2024/08/10 13:34:17 - mmengine - INFO - Iter(train) [ 69200/160000] lr: 6.0458e-03 eta: 1 day, 4:13:24 time: 1.1151 data_time: 0.0078 memory: 8703 loss: 0.3813 decode.loss_ce: 0.2279 decode.acc_seg: 88.4710 aux.loss_ce: 0.1534 aux.acc_seg: 81.6676 +2024/08/10 13:35:13 - mmengine - INFO - Iter(train) [ 69250/160000] lr: 6.0428e-03 eta: 1 day, 4:12:28 time: 1.1199 data_time: 0.0087 memory: 8704 loss: 0.4295 decode.loss_ce: 0.2535 decode.acc_seg: 83.1424 aux.loss_ce: 0.1759 aux.acc_seg: 67.8680 +2024/08/10 13:36:08 - mmengine - INFO - Iter(train) [ 69300/160000] lr: 6.0399e-03 eta: 1 day, 4:11:31 time: 1.1166 data_time: 0.0080 memory: 8703 loss: 0.3980 decode.loss_ce: 0.2497 decode.acc_seg: 93.5336 aux.loss_ce: 0.1483 aux.acc_seg: 91.2989 +2024/08/10 13:37:04 - mmengine - INFO - Iter(train) [ 69350/160000] lr: 6.0369e-03 eta: 1 day, 4:10:35 time: 1.1205 data_time: 0.0079 memory: 8704 loss: 0.3556 decode.loss_ce: 0.2153 decode.acc_seg: 96.6972 aux.loss_ce: 0.1403 aux.acc_seg: 96.4714 +2024/08/10 13:38:00 - mmengine - INFO - Iter(train) [ 69400/160000] lr: 6.0340e-03 eta: 1 day, 4:09:39 time: 1.1167 data_time: 0.0059 memory: 8703 loss: 0.3309 decode.loss_ce: 0.2050 decode.acc_seg: 93.9782 aux.loss_ce: 0.1259 aux.acc_seg: 86.0280 +2024/08/10 13:38:56 - mmengine - INFO - Iter(train) [ 69450/160000] lr: 6.0310e-03 eta: 1 day, 4:08:43 time: 1.1158 data_time: 0.0062 memory: 8703 loss: 0.4334 decode.loss_ce: 0.2716 decode.acc_seg: 89.4069 aux.loss_ce: 0.1618 aux.acc_seg: 86.7019 +2024/08/10 13:39:52 - mmengine - INFO - Iter(train) [ 69500/160000] lr: 6.0281e-03 eta: 1 day, 4:07:47 time: 1.1129 data_time: 0.0064 memory: 8704 loss: 0.4167 decode.loss_ce: 0.2545 decode.acc_seg: 92.0055 aux.loss_ce: 0.1622 aux.acc_seg: 88.6368 +2024/08/10 13:40:47 - mmengine - INFO - Iter(train) [ 69550/160000] lr: 6.0251e-03 eta: 1 day, 4:06:51 time: 1.1153 data_time: 0.0060 memory: 8704 loss: 0.3906 decode.loss_ce: 0.2267 decode.acc_seg: 90.8527 aux.loss_ce: 0.1639 aux.acc_seg: 82.2183 +2024/08/10 13:41:43 - mmengine - INFO - Iter(train) [ 69600/160000] lr: 6.0222e-03 eta: 1 day, 4:05:54 time: 1.1109 data_time: 0.0072 memory: 8704 loss: 0.3986 decode.loss_ce: 0.2418 decode.acc_seg: 94.6079 aux.loss_ce: 0.1568 aux.acc_seg: 91.5468 +2024/08/10 13:42:39 - mmengine - INFO - Iter(train) [ 69650/160000] lr: 6.0192e-03 eta: 1 day, 4:04:58 time: 1.1102 data_time: 0.0058 memory: 8704 loss: 0.3705 decode.loss_ce: 0.2241 decode.acc_seg: 90.0420 aux.loss_ce: 0.1464 aux.acc_seg: 88.6849 +2024/08/10 13:43:35 - mmengine - INFO - Iter(train) [ 69700/160000] lr: 6.0163e-03 eta: 1 day, 4:04:02 time: 1.1110 data_time: 0.0060 memory: 8704 loss: 0.4354 decode.loss_ce: 0.2669 decode.acc_seg: 96.2081 aux.loss_ce: 0.1685 aux.acc_seg: 95.8387 +2024/08/10 13:44:30 - mmengine - INFO - Iter(train) [ 69750/160000] lr: 6.0133e-03 eta: 1 day, 4:03:06 time: 1.1129 data_time: 0.0063 memory: 8703 loss: 0.4342 decode.loss_ce: 0.2611 decode.acc_seg: 96.7583 aux.loss_ce: 0.1731 aux.acc_seg: 95.5541 +2024/08/10 13:45:26 - mmengine - INFO - Iter(train) [ 69800/160000] lr: 6.0104e-03 eta: 1 day, 4:02:09 time: 1.1106 data_time: 0.0055 memory: 8703 loss: 0.3377 decode.loss_ce: 0.1979 decode.acc_seg: 93.4883 aux.loss_ce: 0.1398 aux.acc_seg: 90.3023 +2024/08/10 13:46:22 - mmengine - INFO - Iter(train) [ 69850/160000] lr: 6.0074e-03 eta: 1 day, 4:01:13 time: 1.1149 data_time: 0.0069 memory: 8705 loss: 0.4262 decode.loss_ce: 0.2594 decode.acc_seg: 94.4219 aux.loss_ce: 0.1668 aux.acc_seg: 94.6933 +2024/08/10 13:47:17 - mmengine - INFO - Iter(train) [ 69900/160000] lr: 6.0045e-03 eta: 1 day, 4:00:17 time: 1.1120 data_time: 0.0061 memory: 8703 loss: 0.4224 decode.loss_ce: 0.2594 decode.acc_seg: 97.2191 aux.loss_ce: 0.1630 aux.acc_seg: 96.9276 +2024/08/10 13:48:13 - mmengine - INFO - Iter(train) [ 69950/160000] lr: 6.0015e-03 eta: 1 day, 3:59:21 time: 1.1174 data_time: 0.0082 memory: 8704 loss: 0.4237 decode.loss_ce: 0.2392 decode.acc_seg: 97.2333 aux.loss_ce: 0.1844 aux.acc_seg: 94.6357 +2024/08/10 13:49:09 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 13:49:09 - mmengine - INFO - Iter(train) [ 70000/160000] lr: 5.9986e-03 eta: 1 day, 3:58:25 time: 1.1185 data_time: 0.0086 memory: 8704 loss: 0.4242 decode.loss_ce: 0.2520 decode.acc_seg: 96.9773 aux.loss_ce: 0.1723 aux.acc_seg: 96.3334 +2024/08/10 13:50:05 - mmengine - INFO - Iter(train) [ 70050/160000] lr: 5.9956e-03 eta: 1 day, 3:57:29 time: 1.1185 data_time: 0.0076 memory: 8704 loss: 0.5814 decode.loss_ce: 0.3667 decode.acc_seg: 95.1895 aux.loss_ce: 0.2147 aux.acc_seg: 93.8879 +2024/08/10 13:51:01 - mmengine - INFO - Iter(train) [ 70100/160000] lr: 5.9927e-03 eta: 1 day, 3:56:33 time: 1.1185 data_time: 0.0088 memory: 8703 loss: 0.5251 decode.loss_ce: 0.3111 decode.acc_seg: 95.6442 aux.loss_ce: 0.2139 aux.acc_seg: 94.8756 +2024/08/10 13:51:57 - mmengine - INFO - Iter(train) [ 70150/160000] lr: 5.9897e-03 eta: 1 day, 3:55:36 time: 1.1150 data_time: 0.0070 memory: 8704 loss: 0.3355 decode.loss_ce: 0.2039 decode.acc_seg: 94.3156 aux.loss_ce: 0.1315 aux.acc_seg: 92.1268 +2024/08/10 13:52:52 - mmengine - INFO - Iter(train) [ 70200/160000] lr: 5.9868e-03 eta: 1 day, 3:54:40 time: 1.1139 data_time: 0.0060 memory: 8704 loss: 0.4119 decode.loss_ce: 0.2478 decode.acc_seg: 95.1918 aux.loss_ce: 0.1641 aux.acc_seg: 94.4452 +2024/08/10 13:53:48 - mmengine - INFO - Iter(train) [ 70250/160000] lr: 5.9838e-03 eta: 1 day, 3:53:44 time: 1.1146 data_time: 0.0062 memory: 8704 loss: 0.3906 decode.loss_ce: 0.2329 decode.acc_seg: 97.4960 aux.loss_ce: 0.1577 aux.acc_seg: 95.9041 +2024/08/10 13:54:44 - mmengine - INFO - Iter(train) [ 70300/160000] lr: 5.9809e-03 eta: 1 day, 3:52:48 time: 1.1108 data_time: 0.0069 memory: 8704 loss: 0.3731 decode.loss_ce: 0.2382 decode.acc_seg: 98.3529 aux.loss_ce: 0.1349 aux.acc_seg: 98.2912 +2024/08/10 13:55:39 - mmengine - INFO - Iter(train) [ 70350/160000] lr: 5.9779e-03 eta: 1 day, 3:51:51 time: 1.1161 data_time: 0.0076 memory: 8703 loss: 0.3403 decode.loss_ce: 0.2155 decode.acc_seg: 95.1501 aux.loss_ce: 0.1248 aux.acc_seg: 94.7104 +2024/08/10 13:56:35 - mmengine - INFO - Iter(train) [ 70400/160000] lr: 5.9750e-03 eta: 1 day, 3:50:55 time: 1.1256 data_time: 0.0075 memory: 8703 loss: 0.4678 decode.loss_ce: 0.3056 decode.acc_seg: 94.5641 aux.loss_ce: 0.1622 aux.acc_seg: 92.1497 +2024/08/10 13:57:31 - mmengine - INFO - Iter(train) [ 70450/160000] lr: 5.9720e-03 eta: 1 day, 3:49:59 time: 1.1146 data_time: 0.0059 memory: 8704 loss: 0.3178 decode.loss_ce: 0.1939 decode.acc_seg: 95.3754 aux.loss_ce: 0.1239 aux.acc_seg: 91.7614 +2024/08/10 13:58:27 - mmengine - INFO - Iter(train) [ 70500/160000] lr: 5.9691e-03 eta: 1 day, 3:49:03 time: 1.1126 data_time: 0.0079 memory: 8703 loss: 0.3510 decode.loss_ce: 0.2238 decode.acc_seg: 88.0386 aux.loss_ce: 0.1273 aux.acc_seg: 84.6898 +2024/08/10 13:59:22 - mmengine - INFO - Iter(train) [ 70550/160000] lr: 5.9661e-03 eta: 1 day, 3:48:07 time: 1.1139 data_time: 0.0058 memory: 8703 loss: 0.4751 decode.loss_ce: 0.2900 decode.acc_seg: 84.9371 aux.loss_ce: 0.1852 aux.acc_seg: 82.1288 +2024/08/10 14:00:18 - mmengine - INFO - Iter(train) [ 70600/160000] lr: 5.9632e-03 eta: 1 day, 3:47:10 time: 1.1128 data_time: 0.0064 memory: 8704 loss: 0.3208 decode.loss_ce: 0.2068 decode.acc_seg: 88.2718 aux.loss_ce: 0.1140 aux.acc_seg: 87.9416 +2024/08/10 14:01:14 - mmengine - INFO - Iter(train) [ 70650/160000] lr: 5.9602e-03 eta: 1 day, 3:46:14 time: 1.1206 data_time: 0.0087 memory: 8704 loss: 0.3552 decode.loss_ce: 0.2202 decode.acc_seg: 91.8607 aux.loss_ce: 0.1351 aux.acc_seg: 90.3059 +2024/08/10 14:02:10 - mmengine - INFO - Iter(train) [ 70700/160000] lr: 5.9573e-03 eta: 1 day, 3:45:18 time: 1.1182 data_time: 0.0083 memory: 8703 loss: 0.5050 decode.loss_ce: 0.3010 decode.acc_seg: 93.7825 aux.loss_ce: 0.2040 aux.acc_seg: 84.3283 +2024/08/10 14:03:06 - mmengine - INFO - Iter(train) [ 70750/160000] lr: 5.9543e-03 eta: 1 day, 3:44:22 time: 1.1148 data_time: 0.0067 memory: 8703 loss: 0.4525 decode.loss_ce: 0.2854 decode.acc_seg: 91.1247 aux.loss_ce: 0.1671 aux.acc_seg: 87.9754 +2024/08/10 14:04:01 - mmengine - INFO - Iter(train) [ 70800/160000] lr: 5.9514e-03 eta: 1 day, 3:43:26 time: 1.1177 data_time: 0.0065 memory: 8703 loss: 0.4833 decode.loss_ce: 0.3120 decode.acc_seg: 94.8840 aux.loss_ce: 0.1713 aux.acc_seg: 86.0233 +2024/08/10 14:04:57 - mmengine - INFO - Iter(train) [ 70850/160000] lr: 5.9484e-03 eta: 1 day, 3:42:30 time: 1.1130 data_time: 0.0065 memory: 8703 loss: 0.3257 decode.loss_ce: 0.2015 decode.acc_seg: 96.3926 aux.loss_ce: 0.1242 aux.acc_seg: 95.3534 +2024/08/10 14:05:53 - mmengine - INFO - Iter(train) [ 70900/160000] lr: 5.9455e-03 eta: 1 day, 3:41:33 time: 1.1103 data_time: 0.0060 memory: 8703 loss: 0.2975 decode.loss_ce: 0.1720 decode.acc_seg: 93.6989 aux.loss_ce: 0.1255 aux.acc_seg: 88.6656 +2024/08/10 14:06:49 - mmengine - INFO - Iter(train) [ 70950/160000] lr: 5.9425e-03 eta: 1 day, 3:40:37 time: 1.1146 data_time: 0.0070 memory: 8703 loss: 0.3582 decode.loss_ce: 0.2366 decode.acc_seg: 91.4886 aux.loss_ce: 0.1216 aux.acc_seg: 89.0911 +2024/08/10 14:07:44 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 14:07:44 - mmengine - INFO - Iter(train) [ 71000/160000] lr: 5.9396e-03 eta: 1 day, 3:39:41 time: 1.1186 data_time: 0.0074 memory: 8704 loss: 0.5639 decode.loss_ce: 0.3414 decode.acc_seg: 96.1613 aux.loss_ce: 0.2224 aux.acc_seg: 95.3408 +2024/08/10 14:08:40 - mmengine - INFO - Iter(train) [ 71050/160000] lr: 5.9366e-03 eta: 1 day, 3:38:45 time: 1.1152 data_time: 0.0081 memory: 8703 loss: 0.5011 decode.loss_ce: 0.3019 decode.acc_seg: 96.8447 aux.loss_ce: 0.1992 aux.acc_seg: 95.4260 +2024/08/10 14:09:36 - mmengine - INFO - Iter(train) [ 71100/160000] lr: 5.9337e-03 eta: 1 day, 3:37:48 time: 1.1068 data_time: 0.0058 memory: 8703 loss: 0.4415 decode.loss_ce: 0.2645 decode.acc_seg: 93.3895 aux.loss_ce: 0.1770 aux.acc_seg: 90.5719 +2024/08/10 14:10:31 - mmengine - INFO - Iter(train) [ 71150/160000] lr: 5.9307e-03 eta: 1 day, 3:36:52 time: 1.1151 data_time: 0.0083 memory: 8703 loss: 0.4775 decode.loss_ce: 0.2677 decode.acc_seg: 96.2240 aux.loss_ce: 0.2098 aux.acc_seg: 92.7964 +2024/08/10 14:11:27 - mmengine - INFO - Iter(train) [ 71200/160000] lr: 5.9278e-03 eta: 1 day, 3:35:56 time: 1.1111 data_time: 0.0056 memory: 8704 loss: 0.3944 decode.loss_ce: 0.2273 decode.acc_seg: 82.2550 aux.loss_ce: 0.1670 aux.acc_seg: 65.7192 +2024/08/10 14:12:23 - mmengine - INFO - Iter(train) [ 71250/160000] lr: 5.9248e-03 eta: 1 day, 3:35:00 time: 1.1203 data_time: 0.0082 memory: 8703 loss: 0.3917 decode.loss_ce: 0.2351 decode.acc_seg: 72.2281 aux.loss_ce: 0.1566 aux.acc_seg: 67.1507 +2024/08/10 14:13:19 - mmengine - INFO - Iter(train) [ 71300/160000] lr: 5.9218e-03 eta: 1 day, 3:34:04 time: 1.1165 data_time: 0.0070 memory: 8704 loss: 0.5810 decode.loss_ce: 0.3543 decode.acc_seg: 87.5219 aux.loss_ce: 0.2268 aux.acc_seg: 75.1113 +2024/08/10 14:14:15 - mmengine - INFO - Iter(train) [ 71350/160000] lr: 5.9189e-03 eta: 1 day, 3:33:07 time: 1.1151 data_time: 0.0059 memory: 8704 loss: 0.5306 decode.loss_ce: 0.3291 decode.acc_seg: 87.3567 aux.loss_ce: 0.2015 aux.acc_seg: 81.4471 +2024/08/10 14:15:10 - mmengine - INFO - Iter(train) [ 71400/160000] lr: 5.9159e-03 eta: 1 day, 3:32:11 time: 1.1172 data_time: 0.0062 memory: 8704 loss: 0.4731 decode.loss_ce: 0.2703 decode.acc_seg: 81.6147 aux.loss_ce: 0.2028 aux.acc_seg: 70.2181 +2024/08/10 14:16:06 - mmengine - INFO - Iter(train) [ 71450/160000] lr: 5.9130e-03 eta: 1 day, 3:31:15 time: 1.1160 data_time: 0.0069 memory: 8704 loss: 0.5539 decode.loss_ce: 0.3528 decode.acc_seg: 85.1720 aux.loss_ce: 0.2011 aux.acc_seg: 81.3794 +2024/08/10 14:17:02 - mmengine - INFO - Iter(train) [ 71500/160000] lr: 5.9100e-03 eta: 1 day, 3:30:19 time: 1.1144 data_time: 0.0052 memory: 8703 loss: 0.3498 decode.loss_ce: 0.2123 decode.acc_seg: 91.0101 aux.loss_ce: 0.1375 aux.acc_seg: 79.6907 +2024/08/10 14:17:58 - mmengine - INFO - Iter(train) [ 71550/160000] lr: 5.9071e-03 eta: 1 day, 3:29:23 time: 1.1148 data_time: 0.0068 memory: 8704 loss: 0.4703 decode.loss_ce: 0.3019 decode.acc_seg: 96.9500 aux.loss_ce: 0.1684 aux.acc_seg: 95.1547 +2024/08/10 14:18:53 - mmengine - INFO - Iter(train) [ 71600/160000] lr: 5.9041e-03 eta: 1 day, 3:28:27 time: 1.1170 data_time: 0.0068 memory: 8703 loss: 0.4431 decode.loss_ce: 0.2617 decode.acc_seg: 92.0916 aux.loss_ce: 0.1815 aux.acc_seg: 90.8581 +2024/08/10 14:19:49 - mmengine - INFO - Iter(train) [ 71650/160000] lr: 5.9012e-03 eta: 1 day, 3:27:31 time: 1.1178 data_time: 0.0085 memory: 8703 loss: 0.6132 decode.loss_ce: 0.3821 decode.acc_seg: 89.3218 aux.loss_ce: 0.2311 aux.acc_seg: 88.4307 +2024/08/10 14:20:45 - mmengine - INFO - Iter(train) [ 71700/160000] lr: 5.8982e-03 eta: 1 day, 3:26:34 time: 1.1162 data_time: 0.0064 memory: 8704 loss: 0.4514 decode.loss_ce: 0.2831 decode.acc_seg: 92.7432 aux.loss_ce: 0.1683 aux.acc_seg: 88.1560 +2024/08/10 14:21:41 - mmengine - INFO - Iter(train) [ 71750/160000] lr: 5.8953e-03 eta: 1 day, 3:25:38 time: 1.1090 data_time: 0.0057 memory: 8704 loss: 0.6426 decode.loss_ce: 0.4431 decode.acc_seg: 62.6341 aux.loss_ce: 0.1995 aux.acc_seg: 64.0451 +2024/08/10 14:22:37 - mmengine - INFO - Iter(train) [ 71800/160000] lr: 5.8923e-03 eta: 1 day, 3:24:42 time: 1.1170 data_time: 0.0078 memory: 8704 loss: 0.4752 decode.loss_ce: 0.2839 decode.acc_seg: 92.6386 aux.loss_ce: 0.1913 aux.acc_seg: 70.7725 +2024/08/10 14:23:32 - mmengine - INFO - Iter(train) [ 71850/160000] lr: 5.8893e-03 eta: 1 day, 3:23:46 time: 1.1132 data_time: 0.0069 memory: 8704 loss: 0.4380 decode.loss_ce: 0.2708 decode.acc_seg: 76.4103 aux.loss_ce: 0.1672 aux.acc_seg: 63.1327 +2024/08/10 14:24:28 - mmengine - INFO - Iter(train) [ 71900/160000] lr: 5.8864e-03 eta: 1 day, 3:22:50 time: 1.1173 data_time: 0.0061 memory: 8703 loss: 0.3092 decode.loss_ce: 0.1787 decode.acc_seg: 93.5801 aux.loss_ce: 0.1305 aux.acc_seg: 86.2369 +2024/08/10 14:25:24 - mmengine - INFO - Iter(train) [ 71950/160000] lr: 5.8834e-03 eta: 1 day, 3:21:54 time: 1.1192 data_time: 0.0072 memory: 8704 loss: 0.5076 decode.loss_ce: 0.3164 decode.acc_seg: 95.9323 aux.loss_ce: 0.1912 aux.acc_seg: 93.4193 +2024/08/10 14:26:20 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 14:26:20 - mmengine - INFO - Iter(train) [ 72000/160000] lr: 5.8805e-03 eta: 1 day, 3:20:58 time: 1.1141 data_time: 0.0070 memory: 8704 loss: 0.4530 decode.loss_ce: 0.2639 decode.acc_seg: 95.0182 aux.loss_ce: 0.1891 aux.acc_seg: 93.4671 +2024/08/10 14:27:16 - mmengine - INFO - Iter(train) [ 72050/160000] lr: 5.8775e-03 eta: 1 day, 3:20:01 time: 1.1123 data_time: 0.0068 memory: 8703 loss: 0.5067 decode.loss_ce: 0.3245 decode.acc_seg: 88.5691 aux.loss_ce: 0.1822 aux.acc_seg: 85.0309 +2024/08/10 14:28:11 - mmengine - INFO - Iter(train) [ 72100/160000] lr: 5.8746e-03 eta: 1 day, 3:19:05 time: 1.1176 data_time: 0.0083 memory: 8703 loss: 0.3773 decode.loss_ce: 0.2274 decode.acc_seg: 94.4372 aux.loss_ce: 0.1498 aux.acc_seg: 89.6763 +2024/08/10 14:29:07 - mmengine - INFO - Iter(train) [ 72150/160000] lr: 5.8716e-03 eta: 1 day, 3:18:09 time: 1.1129 data_time: 0.0073 memory: 8703 loss: 0.4803 decode.loss_ce: 0.3045 decode.acc_seg: 96.0383 aux.loss_ce: 0.1757 aux.acc_seg: 94.4916 +2024/08/10 14:30:03 - mmengine - INFO - Iter(train) [ 72200/160000] lr: 5.8687e-03 eta: 1 day, 3:17:13 time: 1.1139 data_time: 0.0056 memory: 8703 loss: 0.4893 decode.loss_ce: 0.2969 decode.acc_seg: 87.0730 aux.loss_ce: 0.1924 aux.acc_seg: 83.9801 +2024/08/10 14:30:59 - mmengine - INFO - Iter(train) [ 72250/160000] lr: 5.8657e-03 eta: 1 day, 3:16:17 time: 1.1131 data_time: 0.0070 memory: 8703 loss: 0.3306 decode.loss_ce: 0.1868 decode.acc_seg: 90.4798 aux.loss_ce: 0.1438 aux.acc_seg: 89.4385 +2024/08/10 14:31:54 - mmengine - INFO - Iter(train) [ 72300/160000] lr: 5.8627e-03 eta: 1 day, 3:15:21 time: 1.1161 data_time: 0.0079 memory: 8703 loss: 0.3764 decode.loss_ce: 0.2210 decode.acc_seg: 92.5795 aux.loss_ce: 0.1554 aux.acc_seg: 91.7422 +2024/08/10 14:32:50 - mmengine - INFO - Iter(train) [ 72350/160000] lr: 5.8598e-03 eta: 1 day, 3:14:24 time: 1.1163 data_time: 0.0084 memory: 8703 loss: 0.4557 decode.loss_ce: 0.2667 decode.acc_seg: 93.9896 aux.loss_ce: 0.1889 aux.acc_seg: 90.2587 +2024/08/10 14:33:46 - mmengine - INFO - Iter(train) [ 72400/160000] lr: 5.8568e-03 eta: 1 day, 3:13:28 time: 1.1142 data_time: 0.0071 memory: 8704 loss: 0.3401 decode.loss_ce: 0.2108 decode.acc_seg: 94.8167 aux.loss_ce: 0.1293 aux.acc_seg: 93.2513 +2024/08/10 14:34:42 - mmengine - INFO - Iter(train) [ 72450/160000] lr: 5.8539e-03 eta: 1 day, 3:12:32 time: 1.1123 data_time: 0.0060 memory: 8704 loss: 0.6141 decode.loss_ce: 0.4105 decode.acc_seg: 97.4816 aux.loss_ce: 0.2036 aux.acc_seg: 95.3047 +2024/08/10 14:35:38 - mmengine - INFO - Iter(train) [ 72500/160000] lr: 5.8509e-03 eta: 1 day, 3:11:36 time: 1.1144 data_time: 0.0060 memory: 8704 loss: 0.3805 decode.loss_ce: 0.2414 decode.acc_seg: 89.9665 aux.loss_ce: 0.1391 aux.acc_seg: 87.0621 +2024/08/10 14:36:33 - mmengine - INFO - Iter(train) [ 72550/160000] lr: 5.8480e-03 eta: 1 day, 3:10:40 time: 1.1190 data_time: 0.0066 memory: 8704 loss: 0.3723 decode.loss_ce: 0.2304 decode.acc_seg: 95.0711 aux.loss_ce: 0.1418 aux.acc_seg: 89.7211 +2024/08/10 14:37:29 - mmengine - INFO - Iter(train) [ 72600/160000] lr: 5.8450e-03 eta: 1 day, 3:09:44 time: 1.1187 data_time: 0.0072 memory: 8704 loss: 0.5870 decode.loss_ce: 0.3466 decode.acc_seg: 95.4821 aux.loss_ce: 0.2404 aux.acc_seg: 92.9872 +2024/08/10 14:38:25 - mmengine - INFO - Iter(train) [ 72650/160000] lr: 5.8420e-03 eta: 1 day, 3:08:48 time: 1.1139 data_time: 0.0059 memory: 8704 loss: 0.4328 decode.loss_ce: 0.2718 decode.acc_seg: 93.5685 aux.loss_ce: 0.1610 aux.acc_seg: 92.1935 +2024/08/10 14:39:21 - mmengine - INFO - Iter(train) [ 72700/160000] lr: 5.8391e-03 eta: 1 day, 3:07:52 time: 1.1139 data_time: 0.0057 memory: 8704 loss: 0.3855 decode.loss_ce: 0.2573 decode.acc_seg: 96.6285 aux.loss_ce: 0.1282 aux.acc_seg: 93.0175 +2024/08/10 14:40:17 - mmengine - INFO - Iter(train) [ 72750/160000] lr: 5.8361e-03 eta: 1 day, 3:06:56 time: 1.1175 data_time: 0.0081 memory: 8703 loss: 0.4393 decode.loss_ce: 0.2636 decode.acc_seg: 96.8376 aux.loss_ce: 0.1757 aux.acc_seg: 96.3499 +2024/08/10 14:41:13 - mmengine - INFO - Iter(train) [ 72800/160000] lr: 5.8332e-03 eta: 1 day, 3:06:00 time: 1.1143 data_time: 0.0068 memory: 8704 loss: 0.4224 decode.loss_ce: 0.2520 decode.acc_seg: 94.7818 aux.loss_ce: 0.1704 aux.acc_seg: 94.1236 +2024/08/10 14:42:08 - mmengine - INFO - Iter(train) [ 72850/160000] lr: 5.8302e-03 eta: 1 day, 3:05:03 time: 1.1140 data_time: 0.0066 memory: 8703 loss: 0.5274 decode.loss_ce: 0.3353 decode.acc_seg: 92.6950 aux.loss_ce: 0.1921 aux.acc_seg: 86.9931 +2024/08/10 14:43:04 - mmengine - INFO - Iter(train) [ 72900/160000] lr: 5.8272e-03 eta: 1 day, 3:04:07 time: 1.1133 data_time: 0.0070 memory: 8703 loss: 0.3646 decode.loss_ce: 0.1966 decode.acc_seg: 85.7497 aux.loss_ce: 0.1680 aux.acc_seg: 83.4234 +2024/08/10 14:44:00 - mmengine - INFO - Iter(train) [ 72950/160000] lr: 5.8243e-03 eta: 1 day, 3:03:11 time: 1.1159 data_time: 0.0065 memory: 8704 loss: 0.4903 decode.loss_ce: 0.3064 decode.acc_seg: 87.5132 aux.loss_ce: 0.1838 aux.acc_seg: 84.4906 +2024/08/10 14:44:55 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 14:44:55 - mmengine - INFO - Iter(train) [ 73000/160000] lr: 5.8213e-03 eta: 1 day, 3:02:15 time: 1.1130 data_time: 0.0063 memory: 8703 loss: 0.5118 decode.loss_ce: 0.3029 decode.acc_seg: 71.7714 aux.loss_ce: 0.2088 aux.acc_seg: 66.8770 +2024/08/10 14:45:51 - mmengine - INFO - Iter(train) [ 73050/160000] lr: 5.8184e-03 eta: 1 day, 3:01:18 time: 1.1143 data_time: 0.0059 memory: 8703 loss: 0.3880 decode.loss_ce: 0.2324 decode.acc_seg: 95.3876 aux.loss_ce: 0.1556 aux.acc_seg: 92.1491 +2024/08/10 14:46:47 - mmengine - INFO - Iter(train) [ 73100/160000] lr: 5.8154e-03 eta: 1 day, 3:00:22 time: 1.1128 data_time: 0.0064 memory: 8704 loss: 0.4345 decode.loss_ce: 0.2611 decode.acc_seg: 92.0969 aux.loss_ce: 0.1734 aux.acc_seg: 89.2855 +2024/08/10 14:47:43 - mmengine - INFO - Iter(train) [ 73150/160000] lr: 5.8125e-03 eta: 1 day, 2:59:26 time: 1.1155 data_time: 0.0062 memory: 8704 loss: 0.4516 decode.loss_ce: 0.2585 decode.acc_seg: 88.8561 aux.loss_ce: 0.1931 aux.acc_seg: 79.4259 +2024/08/10 14:48:38 - mmengine - INFO - Iter(train) [ 73200/160000] lr: 5.8095e-03 eta: 1 day, 2:58:30 time: 1.1148 data_time: 0.0069 memory: 8704 loss: 0.3364 decode.loss_ce: 0.1895 decode.acc_seg: 97.6147 aux.loss_ce: 0.1469 aux.acc_seg: 96.7705 +2024/08/10 14:49:34 - mmengine - INFO - Iter(train) [ 73250/160000] lr: 5.8065e-03 eta: 1 day, 2:57:34 time: 1.1188 data_time: 0.0080 memory: 8704 loss: 0.3807 decode.loss_ce: 0.2380 decode.acc_seg: 97.4971 aux.loss_ce: 0.1427 aux.acc_seg: 97.3591 +2024/08/10 14:50:30 - mmengine - INFO - Iter(train) [ 73300/160000] lr: 5.8036e-03 eta: 1 day, 2:56:38 time: 1.1214 data_time: 0.0078 memory: 8704 loss: 0.4696 decode.loss_ce: 0.2957 decode.acc_seg: 93.3214 aux.loss_ce: 0.1739 aux.acc_seg: 91.6564 +2024/08/10 14:51:26 - mmengine - INFO - Iter(train) [ 73350/160000] lr: 5.8006e-03 eta: 1 day, 2:55:42 time: 1.1201 data_time: 0.0090 memory: 8703 loss: 0.4499 decode.loss_ce: 0.2760 decode.acc_seg: 89.6101 aux.loss_ce: 0.1739 aux.acc_seg: 86.8688 +2024/08/10 14:52:22 - mmengine - INFO - Iter(train) [ 73400/160000] lr: 5.7976e-03 eta: 1 day, 2:54:46 time: 1.1102 data_time: 0.0066 memory: 8704 loss: 0.3837 decode.loss_ce: 0.2472 decode.acc_seg: 95.4680 aux.loss_ce: 0.1365 aux.acc_seg: 94.4719 +2024/08/10 14:53:18 - mmengine - INFO - Iter(train) [ 73450/160000] lr: 5.7947e-03 eta: 1 day, 2:53:50 time: 1.1159 data_time: 0.0066 memory: 8703 loss: 0.3358 decode.loss_ce: 0.2140 decode.acc_seg: 92.4112 aux.loss_ce: 0.1219 aux.acc_seg: 86.3381 +2024/08/10 14:54:13 - mmengine - INFO - Iter(train) [ 73500/160000] lr: 5.7917e-03 eta: 1 day, 2:52:54 time: 1.1155 data_time: 0.0066 memory: 8704 loss: 0.3645 decode.loss_ce: 0.2254 decode.acc_seg: 94.9018 aux.loss_ce: 0.1391 aux.acc_seg: 90.9974 +2024/08/10 14:55:09 - mmengine - INFO - Iter(train) [ 73550/160000] lr: 5.7888e-03 eta: 1 day, 2:51:57 time: 1.1177 data_time: 0.0065 memory: 8703 loss: 0.4436 decode.loss_ce: 0.2686 decode.acc_seg: 90.5861 aux.loss_ce: 0.1750 aux.acc_seg: 88.0933 +2024/08/10 14:56:05 - mmengine - INFO - Iter(train) [ 73600/160000] lr: 5.7858e-03 eta: 1 day, 2:51:01 time: 1.1178 data_time: 0.0077 memory: 8704 loss: 0.4321 decode.loss_ce: 0.2493 decode.acc_seg: 95.9751 aux.loss_ce: 0.1829 aux.acc_seg: 91.5148 +2024/08/10 14:57:01 - mmengine - INFO - Iter(train) [ 73650/160000] lr: 5.7828e-03 eta: 1 day, 2:50:05 time: 1.1140 data_time: 0.0052 memory: 8703 loss: 0.3941 decode.loss_ce: 0.2467 decode.acc_seg: 94.7442 aux.loss_ce: 0.1473 aux.acc_seg: 92.5805 +2024/08/10 14:57:56 - mmengine - INFO - Iter(train) [ 73700/160000] lr: 5.7799e-03 eta: 1 day, 2:49:09 time: 1.1151 data_time: 0.0066 memory: 8704 loss: 0.3918 decode.loss_ce: 0.2325 decode.acc_seg: 92.7356 aux.loss_ce: 0.1593 aux.acc_seg: 89.0138 +2024/08/10 14:58:52 - mmengine - INFO - Iter(train) [ 73750/160000] lr: 5.7769e-03 eta: 1 day, 2:48:13 time: 1.1165 data_time: 0.0084 memory: 8704 loss: 0.4393 decode.loss_ce: 0.2792 decode.acc_seg: 86.5274 aux.loss_ce: 0.1601 aux.acc_seg: 82.3519 +2024/08/10 14:59:48 - mmengine - INFO - Iter(train) [ 73800/160000] lr: 5.7740e-03 eta: 1 day, 2:47:16 time: 1.1162 data_time: 0.0070 memory: 8704 loss: 0.5033 decode.loss_ce: 0.3086 decode.acc_seg: 91.2167 aux.loss_ce: 0.1947 aux.acc_seg: 88.2552 +2024/08/10 15:00:44 - mmengine - INFO - Iter(train) [ 73850/160000] lr: 5.7710e-03 eta: 1 day, 2:46:20 time: 1.1159 data_time: 0.0080 memory: 8704 loss: 0.3889 decode.loss_ce: 0.2316 decode.acc_seg: 94.2137 aux.loss_ce: 0.1573 aux.acc_seg: 93.3846 +2024/08/10 15:01:39 - mmengine - INFO - Iter(train) [ 73900/160000] lr: 5.7680e-03 eta: 1 day, 2:45:24 time: 1.1158 data_time: 0.0056 memory: 8704 loss: 0.3944 decode.loss_ce: 0.2325 decode.acc_seg: 95.9554 aux.loss_ce: 0.1619 aux.acc_seg: 90.5587 +2024/08/10 15:02:35 - mmengine - INFO - Iter(train) [ 73950/160000] lr: 5.7651e-03 eta: 1 day, 2:44:28 time: 1.1140 data_time: 0.0056 memory: 8704 loss: 0.4554 decode.loss_ce: 0.2753 decode.acc_seg: 89.7814 aux.loss_ce: 0.1802 aux.acc_seg: 80.4719 +2024/08/10 15:03:31 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 15:03:31 - mmengine - INFO - Iter(train) [ 74000/160000] lr: 5.7621e-03 eta: 1 day, 2:43:32 time: 1.1177 data_time: 0.0063 memory: 8703 loss: 0.3250 decode.loss_ce: 0.1955 decode.acc_seg: 94.9494 aux.loss_ce: 0.1295 aux.acc_seg: 92.9166 +2024/08/10 15:04:27 - mmengine - INFO - Iter(train) [ 74050/160000] lr: 5.7591e-03 eta: 1 day, 2:42:36 time: 1.1151 data_time: 0.0061 memory: 8704 loss: 0.3657 decode.loss_ce: 0.2229 decode.acc_seg: 95.1561 aux.loss_ce: 0.1429 aux.acc_seg: 92.8720 +2024/08/10 15:05:23 - mmengine - INFO - Iter(train) [ 74100/160000] lr: 5.7562e-03 eta: 1 day, 2:41:40 time: 1.1120 data_time: 0.0066 memory: 8703 loss: 0.3557 decode.loss_ce: 0.2181 decode.acc_seg: 98.1532 aux.loss_ce: 0.1376 aux.acc_seg: 94.4484 +2024/08/10 15:06:19 - mmengine - INFO - Iter(train) [ 74150/160000] lr: 5.7532e-03 eta: 1 day, 2:40:44 time: 1.1162 data_time: 0.0073 memory: 8704 loss: 0.3408 decode.loss_ce: 0.2125 decode.acc_seg: 85.5614 aux.loss_ce: 0.1284 aux.acc_seg: 83.0114 +2024/08/10 15:07:14 - mmengine - INFO - Iter(train) [ 74200/160000] lr: 5.7503e-03 eta: 1 day, 2:39:48 time: 1.1166 data_time: 0.0084 memory: 8704 loss: 0.3931 decode.loss_ce: 0.2381 decode.acc_seg: 98.0933 aux.loss_ce: 0.1551 aux.acc_seg: 95.7790 +2024/08/10 15:08:10 - mmengine - INFO - Iter(train) [ 74250/160000] lr: 5.7473e-03 eta: 1 day, 2:38:52 time: 1.1168 data_time: 0.0064 memory: 8704 loss: 0.3876 decode.loss_ce: 0.2413 decode.acc_seg: 95.7562 aux.loss_ce: 0.1463 aux.acc_seg: 95.3710 +2024/08/10 15:09:06 - mmengine - INFO - Iter(train) [ 74300/160000] lr: 5.7443e-03 eta: 1 day, 2:37:56 time: 1.1175 data_time: 0.0073 memory: 8703 loss: 0.3671 decode.loss_ce: 0.2281 decode.acc_seg: 95.8270 aux.loss_ce: 0.1389 aux.acc_seg: 92.6115 +2024/08/10 15:10:02 - mmengine - INFO - Iter(train) [ 74350/160000] lr: 5.7414e-03 eta: 1 day, 2:37:00 time: 1.1161 data_time: 0.0072 memory: 8704 loss: 0.3107 decode.loss_ce: 0.1863 decode.acc_seg: 93.7681 aux.loss_ce: 0.1244 aux.acc_seg: 83.1376 +2024/08/10 15:10:58 - mmengine - INFO - Iter(train) [ 74400/160000] lr: 5.7384e-03 eta: 1 day, 2:36:03 time: 1.1107 data_time: 0.0062 memory: 8704 loss: 0.3559 decode.loss_ce: 0.2242 decode.acc_seg: 94.8811 aux.loss_ce: 0.1317 aux.acc_seg: 89.6429 +2024/08/10 15:11:53 - mmengine - INFO - Iter(train) [ 74450/160000] lr: 5.7354e-03 eta: 1 day, 2:35:07 time: 1.1115 data_time: 0.0065 memory: 8703 loss: 0.4529 decode.loss_ce: 0.2781 decode.acc_seg: 83.1798 aux.loss_ce: 0.1748 aux.acc_seg: 78.4449 +2024/08/10 15:12:49 - mmengine - INFO - Iter(train) [ 74500/160000] lr: 5.7325e-03 eta: 1 day, 2:34:11 time: 1.1138 data_time: 0.0078 memory: 8704 loss: 0.2771 decode.loss_ce: 0.1670 decode.acc_seg: 94.6694 aux.loss_ce: 0.1101 aux.acc_seg: 91.5577 +2024/08/10 15:13:45 - mmengine - INFO - Iter(train) [ 74550/160000] lr: 5.7295e-03 eta: 1 day, 2:33:15 time: 1.1133 data_time: 0.0067 memory: 8703 loss: 0.4466 decode.loss_ce: 0.2624 decode.acc_seg: 79.0233 aux.loss_ce: 0.1843 aux.acc_seg: 77.6828 +2024/08/10 15:14:40 - mmengine - INFO - Iter(train) [ 74600/160000] lr: 5.7265e-03 eta: 1 day, 2:32:19 time: 1.1142 data_time: 0.0070 memory: 8704 loss: 0.3663 decode.loss_ce: 0.2337 decode.acc_seg: 95.5053 aux.loss_ce: 0.1325 aux.acc_seg: 94.3849 +2024/08/10 15:15:36 - mmengine - INFO - Iter(train) [ 74650/160000] lr: 5.7236e-03 eta: 1 day, 2:31:22 time: 1.1209 data_time: 0.0086 memory: 8704 loss: 0.4647 decode.loss_ce: 0.3023 decode.acc_seg: 63.8841 aux.loss_ce: 0.1624 aux.acc_seg: 59.5742 +2024/08/10 15:16:32 - mmengine - INFO - Iter(train) [ 74700/160000] lr: 5.7206e-03 eta: 1 day, 2:30:26 time: 1.1137 data_time: 0.0074 memory: 8704 loss: 0.3050 decode.loss_ce: 0.1966 decode.acc_seg: 90.3541 aux.loss_ce: 0.1084 aux.acc_seg: 87.7359 +2024/08/10 15:17:28 - mmengine - INFO - Iter(train) [ 74750/160000] lr: 5.7176e-03 eta: 1 day, 2:29:30 time: 1.1148 data_time: 0.0081 memory: 8704 loss: 0.4015 decode.loss_ce: 0.2547 decode.acc_seg: 97.6734 aux.loss_ce: 0.1468 aux.acc_seg: 94.0150 +2024/08/10 15:18:23 - mmengine - INFO - Iter(train) [ 74800/160000] lr: 5.7147e-03 eta: 1 day, 2:28:34 time: 1.1123 data_time: 0.0049 memory: 8703 loss: 0.5031 decode.loss_ce: 0.3055 decode.acc_seg: 94.1485 aux.loss_ce: 0.1977 aux.acc_seg: 82.6725 +2024/08/10 15:19:19 - mmengine - INFO - Iter(train) [ 74850/160000] lr: 5.7117e-03 eta: 1 day, 2:27:38 time: 1.1143 data_time: 0.0081 memory: 8704 loss: 0.5423 decode.loss_ce: 0.3424 decode.acc_seg: 92.7261 aux.loss_ce: 0.1999 aux.acc_seg: 80.0611 +2024/08/10 15:20:15 - mmengine - INFO - Iter(train) [ 74900/160000] lr: 5.7088e-03 eta: 1 day, 2:26:42 time: 1.1189 data_time: 0.0065 memory: 8705 loss: 0.4041 decode.loss_ce: 0.2482 decode.acc_seg: 85.7413 aux.loss_ce: 0.1559 aux.acc_seg: 76.0274 +2024/08/10 15:21:11 - mmengine - INFO - Iter(train) [ 74950/160000] lr: 5.7058e-03 eta: 1 day, 2:25:46 time: 1.1133 data_time: 0.0062 memory: 8704 loss: 0.3555 decode.loss_ce: 0.2222 decode.acc_seg: 93.2613 aux.loss_ce: 0.1333 aux.acc_seg: 90.1223 +2024/08/10 15:22:06 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 15:22:06 - mmengine - INFO - Iter(train) [ 75000/160000] lr: 5.7028e-03 eta: 1 day, 2:24:49 time: 1.1130 data_time: 0.0060 memory: 8704 loss: 0.3192 decode.loss_ce: 0.1782 decode.acc_seg: 93.8316 aux.loss_ce: 0.1409 aux.acc_seg: 91.9836 +2024/08/10 15:23:02 - mmengine - INFO - Iter(train) [ 75050/160000] lr: 5.6999e-03 eta: 1 day, 2:23:53 time: 1.1120 data_time: 0.0057 memory: 8703 loss: 0.4670 decode.loss_ce: 0.2897 decode.acc_seg: 92.4388 aux.loss_ce: 0.1773 aux.acc_seg: 79.9657 +2024/08/10 15:23:58 - mmengine - INFO - Iter(train) [ 75100/160000] lr: 5.6969e-03 eta: 1 day, 2:22:57 time: 1.1194 data_time: 0.0074 memory: 8703 loss: 0.5982 decode.loss_ce: 0.3402 decode.acc_seg: 94.6137 aux.loss_ce: 0.2580 aux.acc_seg: 91.5812 +2024/08/10 15:24:54 - mmengine - INFO - Iter(train) [ 75150/160000] lr: 5.6939e-03 eta: 1 day, 2:22:01 time: 1.1169 data_time: 0.0058 memory: 8703 loss: 0.4500 decode.loss_ce: 0.2625 decode.acc_seg: 90.9038 aux.loss_ce: 0.1875 aux.acc_seg: 89.2925 +2024/08/10 15:25:50 - mmengine - INFO - Iter(train) [ 75200/160000] lr: 5.6910e-03 eta: 1 day, 2:21:05 time: 1.1112 data_time: 0.0067 memory: 8703 loss: 0.4521 decode.loss_ce: 0.2852 decode.acc_seg: 93.8648 aux.loss_ce: 0.1670 aux.acc_seg: 90.5138 +2024/08/10 15:26:46 - mmengine - INFO - Iter(train) [ 75250/160000] lr: 5.6880e-03 eta: 1 day, 2:20:09 time: 1.1179 data_time: 0.0063 memory: 8703 loss: 0.4271 decode.loss_ce: 0.2590 decode.acc_seg: 89.1493 aux.loss_ce: 0.1681 aux.acc_seg: 83.6133 +2024/08/10 15:27:41 - mmengine - INFO - Iter(train) [ 75300/160000] lr: 5.6850e-03 eta: 1 day, 2:19:13 time: 1.1134 data_time: 0.0062 memory: 8704 loss: 0.4647 decode.loss_ce: 0.2726 decode.acc_seg: 84.1463 aux.loss_ce: 0.1921 aux.acc_seg: 64.2842 +2024/08/10 15:28:37 - mmengine - INFO - Iter(train) [ 75350/160000] lr: 5.6821e-03 eta: 1 day, 2:18:17 time: 1.1132 data_time: 0.0064 memory: 8703 loss: 0.4464 decode.loss_ce: 0.2945 decode.acc_seg: 93.8425 aux.loss_ce: 0.1519 aux.acc_seg: 91.6032 +2024/08/10 15:29:33 - mmengine - INFO - Iter(train) [ 75400/160000] lr: 5.6791e-03 eta: 1 day, 2:17:21 time: 1.1158 data_time: 0.0073 memory: 8703 loss: 0.3666 decode.loss_ce: 0.2263 decode.acc_seg: 94.6080 aux.loss_ce: 0.1403 aux.acc_seg: 93.5711 +2024/08/10 15:30:29 - mmengine - INFO - Iter(train) [ 75450/160000] lr: 5.6761e-03 eta: 1 day, 2:16:24 time: 1.1171 data_time: 0.0091 memory: 8703 loss: 0.3735 decode.loss_ce: 0.2282 decode.acc_seg: 95.6408 aux.loss_ce: 0.1453 aux.acc_seg: 94.4897 +2024/08/10 15:31:24 - mmengine - INFO - Iter(train) [ 75500/160000] lr: 5.6731e-03 eta: 1 day, 2:15:28 time: 1.1103 data_time: 0.0063 memory: 8703 loss: 0.4931 decode.loss_ce: 0.3044 decode.acc_seg: 94.0795 aux.loss_ce: 0.1887 aux.acc_seg: 91.7512 +2024/08/10 15:32:20 - mmengine - INFO - Iter(train) [ 75550/160000] lr: 5.6702e-03 eta: 1 day, 2:14:32 time: 1.1217 data_time: 0.0081 memory: 8704 loss: 0.3189 decode.loss_ce: 0.2020 decode.acc_seg: 89.2939 aux.loss_ce: 0.1169 aux.acc_seg: 88.1916 +2024/08/10 15:33:16 - mmengine - INFO - Iter(train) [ 75600/160000] lr: 5.6672e-03 eta: 1 day, 2:13:36 time: 1.1199 data_time: 0.0079 memory: 8704 loss: 0.3777 decode.loss_ce: 0.2183 decode.acc_seg: 93.3451 aux.loss_ce: 0.1594 aux.acc_seg: 91.7609 +2024/08/10 15:34:12 - mmengine - INFO - Iter(train) [ 75650/160000] lr: 5.6642e-03 eta: 1 day, 2:12:40 time: 1.1128 data_time: 0.0065 memory: 8703 loss: 0.3667 decode.loss_ce: 0.2189 decode.acc_seg: 90.7511 aux.loss_ce: 0.1478 aux.acc_seg: 74.4534 +2024/08/10 15:35:08 - mmengine - INFO - Iter(train) [ 75700/160000] lr: 5.6613e-03 eta: 1 day, 2:11:44 time: 1.1112 data_time: 0.0054 memory: 8704 loss: 0.4349 decode.loss_ce: 0.2735 decode.acc_seg: 82.6518 aux.loss_ce: 0.1614 aux.acc_seg: 79.2159 +2024/08/10 15:36:03 - mmengine - INFO - Iter(train) [ 75750/160000] lr: 5.6583e-03 eta: 1 day, 2:10:48 time: 1.1171 data_time: 0.0055 memory: 8703 loss: 0.4400 decode.loss_ce: 0.2631 decode.acc_seg: 93.7460 aux.loss_ce: 0.1769 aux.acc_seg: 89.4843 +2024/08/10 15:36:59 - mmengine - INFO - Iter(train) [ 75800/160000] lr: 5.6553e-03 eta: 1 day, 2:09:52 time: 1.1172 data_time: 0.0070 memory: 8704 loss: 0.5924 decode.loss_ce: 0.3730 decode.acc_seg: 92.5105 aux.loss_ce: 0.2194 aux.acc_seg: 89.8539 +2024/08/10 15:37:55 - mmengine - INFO - Iter(train) [ 75850/160000] lr: 5.6524e-03 eta: 1 day, 2:08:55 time: 1.1124 data_time: 0.0059 memory: 8703 loss: 0.4527 decode.loss_ce: 0.2843 decode.acc_seg: 90.8108 aux.loss_ce: 0.1684 aux.acc_seg: 82.8725 +2024/08/10 15:38:51 - mmengine - INFO - Iter(train) [ 75900/160000] lr: 5.6494e-03 eta: 1 day, 2:07:59 time: 1.1180 data_time: 0.0079 memory: 8703 loss: 0.3233 decode.loss_ce: 0.1942 decode.acc_seg: 96.0445 aux.loss_ce: 0.1291 aux.acc_seg: 92.2203 +2024/08/10 15:39:46 - mmengine - INFO - Iter(train) [ 75950/160000] lr: 5.6464e-03 eta: 1 day, 2:07:03 time: 1.1164 data_time: 0.0069 memory: 8703 loss: 0.3298 decode.loss_ce: 0.1841 decode.acc_seg: 92.8793 aux.loss_ce: 0.1456 aux.acc_seg: 83.6880 +2024/08/10 15:40:42 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 15:40:42 - mmengine - INFO - Iter(train) [ 76000/160000] lr: 5.6435e-03 eta: 1 day, 2:06:07 time: 1.1171 data_time: 0.0078 memory: 8703 loss: 0.4207 decode.loss_ce: 0.2641 decode.acc_seg: 92.3913 aux.loss_ce: 0.1567 aux.acc_seg: 85.1398 +2024/08/10 15:41:38 - mmengine - INFO - Iter(train) [ 76050/160000] lr: 5.6405e-03 eta: 1 day, 2:05:11 time: 1.1169 data_time: 0.0078 memory: 8703 loss: 0.3524 decode.loss_ce: 0.2204 decode.acc_seg: 93.2406 aux.loss_ce: 0.1320 aux.acc_seg: 91.9601 +2024/08/10 15:42:34 - mmengine - INFO - Iter(train) [ 76100/160000] lr: 5.6375e-03 eta: 1 day, 2:04:15 time: 1.1176 data_time: 0.0070 memory: 8703 loss: 0.4148 decode.loss_ce: 0.2513 decode.acc_seg: 94.9664 aux.loss_ce: 0.1635 aux.acc_seg: 93.0491 +2024/08/10 15:43:29 - mmengine - INFO - Iter(train) [ 76150/160000] lr: 5.6346e-03 eta: 1 day, 2:03:19 time: 1.1115 data_time: 0.0067 memory: 8704 loss: 0.3843 decode.loss_ce: 0.2249 decode.acc_seg: 94.1769 aux.loss_ce: 0.1594 aux.acc_seg: 91.5415 +2024/08/10 15:44:25 - mmengine - INFO - Iter(train) [ 76200/160000] lr: 5.6316e-03 eta: 1 day, 2:02:22 time: 1.1151 data_time: 0.0071 memory: 8703 loss: 0.4088 decode.loss_ce: 0.2603 decode.acc_seg: 81.9009 aux.loss_ce: 0.1484 aux.acc_seg: 81.3201 +2024/08/10 15:45:21 - mmengine - INFO - Iter(train) [ 76250/160000] lr: 5.6286e-03 eta: 1 day, 2:01:26 time: 1.1180 data_time: 0.0080 memory: 8704 loss: 0.3791 decode.loss_ce: 0.2293 decode.acc_seg: 94.1019 aux.loss_ce: 0.1498 aux.acc_seg: 89.2693 +2024/08/10 15:46:17 - mmengine - INFO - Iter(train) [ 76300/160000] lr: 5.6256e-03 eta: 1 day, 2:00:30 time: 1.1165 data_time: 0.0077 memory: 8704 loss: 0.3589 decode.loss_ce: 0.2303 decode.acc_seg: 95.8516 aux.loss_ce: 0.1286 aux.acc_seg: 95.9353 +2024/08/10 15:47:13 - mmengine - INFO - Iter(train) [ 76350/160000] lr: 5.6227e-03 eta: 1 day, 1:59:34 time: 1.1167 data_time: 0.0068 memory: 8703 loss: 0.5330 decode.loss_ce: 0.2977 decode.acc_seg: 91.3170 aux.loss_ce: 0.2353 aux.acc_seg: 82.9208 +2024/08/10 15:48:08 - mmengine - INFO - Iter(train) [ 76400/160000] lr: 5.6197e-03 eta: 1 day, 1:58:38 time: 1.1219 data_time: 0.0077 memory: 8704 loss: 0.4046 decode.loss_ce: 0.2426 decode.acc_seg: 96.8807 aux.loss_ce: 0.1621 aux.acc_seg: 96.4750 +2024/08/10 15:49:04 - mmengine - INFO - Iter(train) [ 76450/160000] lr: 5.6167e-03 eta: 1 day, 1:57:42 time: 1.1248 data_time: 0.0075 memory: 8704 loss: 0.4604 decode.loss_ce: 0.2801 decode.acc_seg: 94.8771 aux.loss_ce: 0.1803 aux.acc_seg: 94.5911 +2024/08/10 15:50:00 - mmengine - INFO - Iter(train) [ 76500/160000] lr: 5.6138e-03 eta: 1 day, 1:56:47 time: 1.1149 data_time: 0.0067 memory: 8703 loss: 0.4016 decode.loss_ce: 0.2334 decode.acc_seg: 96.9117 aux.loss_ce: 0.1682 aux.acc_seg: 93.1334 +2024/08/10 15:50:56 - mmengine - INFO - Iter(train) [ 76550/160000] lr: 5.6108e-03 eta: 1 day, 1:55:50 time: 1.1139 data_time: 0.0065 memory: 8703 loss: 0.5053 decode.loss_ce: 0.3251 decode.acc_seg: 94.0115 aux.loss_ce: 0.1802 aux.acc_seg: 93.4917 +2024/08/10 15:51:52 - mmengine - INFO - Iter(train) [ 76600/160000] lr: 5.6078e-03 eta: 1 day, 1:54:54 time: 1.1158 data_time: 0.0065 memory: 8704 loss: 0.2613 decode.loss_ce: 0.1611 decode.acc_seg: 94.7717 aux.loss_ce: 0.1002 aux.acc_seg: 93.8052 +2024/08/10 15:52:48 - mmengine - INFO - Iter(train) [ 76650/160000] lr: 5.6048e-03 eta: 1 day, 1:53:58 time: 1.1109 data_time: 0.0056 memory: 8703 loss: 0.5163 decode.loss_ce: 0.3416 decode.acc_seg: 86.9537 aux.loss_ce: 0.1747 aux.acc_seg: 83.1184 +2024/08/10 15:53:44 - mmengine - INFO - Iter(train) [ 76700/160000] lr: 5.6019e-03 eta: 1 day, 1:53:02 time: 1.1214 data_time: 0.0067 memory: 8704 loss: 0.4937 decode.loss_ce: 0.3147 decode.acc_seg: 93.2295 aux.loss_ce: 0.1790 aux.acc_seg: 87.9194 +2024/08/10 15:54:39 - mmengine - INFO - Iter(train) [ 76750/160000] lr: 5.5989e-03 eta: 1 day, 1:52:06 time: 1.1143 data_time: 0.0075 memory: 8703 loss: 0.3349 decode.loss_ce: 0.1861 decode.acc_seg: 89.7638 aux.loss_ce: 0.1487 aux.acc_seg: 78.9151 +2024/08/10 15:55:35 - mmengine - INFO - Iter(train) [ 76800/160000] lr: 5.5959e-03 eta: 1 day, 1:51:10 time: 1.1229 data_time: 0.0095 memory: 8703 loss: 0.3440 decode.loss_ce: 0.2091 decode.acc_seg: 90.4421 aux.loss_ce: 0.1349 aux.acc_seg: 87.9335 +2024/08/10 15:56:31 - mmengine - INFO - Iter(train) [ 76850/160000] lr: 5.5930e-03 eta: 1 day, 1:50:14 time: 1.1170 data_time: 0.0077 memory: 8703 loss: 0.6142 decode.loss_ce: 0.3934 decode.acc_seg: 71.5384 aux.loss_ce: 0.2208 aux.acc_seg: 73.1339 +2024/08/10 15:57:27 - mmengine - INFO - Iter(train) [ 76900/160000] lr: 5.5900e-03 eta: 1 day, 1:49:18 time: 1.1173 data_time: 0.0081 memory: 8703 loss: 0.3326 decode.loss_ce: 0.1957 decode.acc_seg: 92.0100 aux.loss_ce: 0.1369 aux.acc_seg: 85.6279 +2024/08/10 15:58:23 - mmengine - INFO - Iter(train) [ 76950/160000] lr: 5.5870e-03 eta: 1 day, 1:48:22 time: 1.1163 data_time: 0.0069 memory: 8704 loss: 0.4152 decode.loss_ce: 0.2607 decode.acc_seg: 95.3530 aux.loss_ce: 0.1545 aux.acc_seg: 94.3418 +2024/08/10 15:59:19 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 15:59:19 - mmengine - INFO - Iter(train) [ 77000/160000] lr: 5.5840e-03 eta: 1 day, 1:47:26 time: 1.1157 data_time: 0.0071 memory: 8703 loss: 0.5584 decode.loss_ce: 0.3516 decode.acc_seg: 94.1939 aux.loss_ce: 0.2068 aux.acc_seg: 92.2797 +2024/08/10 16:00:14 - mmengine - INFO - Iter(train) [ 77050/160000] lr: 5.5811e-03 eta: 1 day, 1:46:30 time: 1.1182 data_time: 0.0079 memory: 8704 loss: 0.4708 decode.loss_ce: 0.2992 decode.acc_seg: 97.2903 aux.loss_ce: 0.1716 aux.acc_seg: 97.1216 +2024/08/10 16:01:10 - mmengine - INFO - Iter(train) [ 77100/160000] lr: 5.5781e-03 eta: 1 day, 1:45:33 time: 1.1126 data_time: 0.0073 memory: 8704 loss: 0.4303 decode.loss_ce: 0.2829 decode.acc_seg: 93.3786 aux.loss_ce: 0.1475 aux.acc_seg: 91.9072 +2024/08/10 16:02:06 - mmengine - INFO - Iter(train) [ 77150/160000] lr: 5.5751e-03 eta: 1 day, 1:44:37 time: 1.1115 data_time: 0.0057 memory: 8704 loss: 0.4020 decode.loss_ce: 0.2299 decode.acc_seg: 91.8121 aux.loss_ce: 0.1721 aux.acc_seg: 85.8154 +2024/08/10 16:03:01 - mmengine - INFO - Iter(train) [ 77200/160000] lr: 5.5721e-03 eta: 1 day, 1:43:41 time: 1.1125 data_time: 0.0077 memory: 8703 loss: 0.2904 decode.loss_ce: 0.1873 decode.acc_seg: 91.1245 aux.loss_ce: 0.1031 aux.acc_seg: 91.2117 +2024/08/10 16:03:57 - mmengine - INFO - Iter(train) [ 77250/160000] lr: 5.5692e-03 eta: 1 day, 1:42:45 time: 1.1124 data_time: 0.0070 memory: 8704 loss: 0.3782 decode.loss_ce: 0.2444 decode.acc_seg: 92.7177 aux.loss_ce: 0.1338 aux.acc_seg: 82.4092 +2024/08/10 16:04:53 - mmengine - INFO - Iter(train) [ 77300/160000] lr: 5.5662e-03 eta: 1 day, 1:41:49 time: 1.1120 data_time: 0.0056 memory: 8703 loss: 0.4249 decode.loss_ce: 0.2647 decode.acc_seg: 93.0071 aux.loss_ce: 0.1602 aux.acc_seg: 87.7258 +2024/08/10 16:05:49 - mmengine - INFO - Iter(train) [ 77350/160000] lr: 5.5632e-03 eta: 1 day, 1:40:53 time: 1.1156 data_time: 0.0070 memory: 8704 loss: 0.3381 decode.loss_ce: 0.2078 decode.acc_seg: 97.2567 aux.loss_ce: 0.1303 aux.acc_seg: 92.9530 +2024/08/10 16:06:44 - mmengine - INFO - Iter(train) [ 77400/160000] lr: 5.5602e-03 eta: 1 day, 1:39:56 time: 1.1101 data_time: 0.0066 memory: 8704 loss: 0.5503 decode.loss_ce: 0.3550 decode.acc_seg: 93.1992 aux.loss_ce: 0.1953 aux.acc_seg: 91.5345 +2024/08/10 16:07:40 - mmengine - INFO - Iter(train) [ 77450/160000] lr: 5.5573e-03 eta: 1 day, 1:39:00 time: 1.1099 data_time: 0.0048 memory: 8703 loss: 0.4387 decode.loss_ce: 0.2787 decode.acc_seg: 93.8613 aux.loss_ce: 0.1600 aux.acc_seg: 93.1906 +2024/08/10 16:08:36 - mmengine - INFO - Iter(train) [ 77500/160000] lr: 5.5543e-03 eta: 1 day, 1:38:04 time: 1.1119 data_time: 0.0069 memory: 8703 loss: 0.6131 decode.loss_ce: 0.4177 decode.acc_seg: 95.2116 aux.loss_ce: 0.1954 aux.acc_seg: 89.1492 +2024/08/10 16:09:31 - mmengine - INFO - Iter(train) [ 77550/160000] lr: 5.5513e-03 eta: 1 day, 1:37:08 time: 1.1166 data_time: 0.0070 memory: 8704 loss: 0.3529 decode.loss_ce: 0.2168 decode.acc_seg: 87.6385 aux.loss_ce: 0.1362 aux.acc_seg: 77.6397 +2024/08/10 16:10:27 - mmengine - INFO - Iter(train) [ 77600/160000] lr: 5.5483e-03 eta: 1 day, 1:36:12 time: 1.1159 data_time: 0.0088 memory: 8704 loss: 0.5017 decode.loss_ce: 0.3144 decode.acc_seg: 93.4774 aux.loss_ce: 0.1873 aux.acc_seg: 91.9474 +2024/08/10 16:11:23 - mmengine - INFO - Iter(train) [ 77650/160000] lr: 5.5454e-03 eta: 1 day, 1:35:16 time: 1.1139 data_time: 0.0079 memory: 8704 loss: 0.4826 decode.loss_ce: 0.3216 decode.acc_seg: 97.2796 aux.loss_ce: 0.1610 aux.acc_seg: 96.9912 +2024/08/10 16:12:19 - mmengine - INFO - Iter(train) [ 77700/160000] lr: 5.5424e-03 eta: 1 day, 1:34:19 time: 1.1130 data_time: 0.0063 memory: 8704 loss: 0.2587 decode.loss_ce: 0.1657 decode.acc_seg: 95.4412 aux.loss_ce: 0.0930 aux.acc_seg: 93.0163 +2024/08/10 16:13:14 - mmengine - INFO - Iter(train) [ 77750/160000] lr: 5.5394e-03 eta: 1 day, 1:33:23 time: 1.1150 data_time: 0.0059 memory: 8704 loss: 0.4234 decode.loss_ce: 0.2482 decode.acc_seg: 94.8060 aux.loss_ce: 0.1751 aux.acc_seg: 90.9311 +2024/08/10 16:14:10 - mmengine - INFO - Iter(train) [ 77800/160000] lr: 5.5364e-03 eta: 1 day, 1:32:27 time: 1.1154 data_time: 0.0069 memory: 8704 loss: 0.4196 decode.loss_ce: 0.2847 decode.acc_seg: 89.4040 aux.loss_ce: 0.1349 aux.acc_seg: 84.1988 +2024/08/10 16:15:06 - mmengine - INFO - Iter(train) [ 77850/160000] lr: 5.5335e-03 eta: 1 day, 1:31:31 time: 1.1177 data_time: 0.0061 memory: 8703 loss: 0.4458 decode.loss_ce: 0.2888 decode.acc_seg: 91.4033 aux.loss_ce: 0.1570 aux.acc_seg: 87.3990 +2024/08/10 16:16:02 - mmengine - INFO - Iter(train) [ 77900/160000] lr: 5.5305e-03 eta: 1 day, 1:30:35 time: 1.1139 data_time: 0.0063 memory: 8704 loss: 0.4157 decode.loss_ce: 0.2612 decode.acc_seg: 74.9632 aux.loss_ce: 0.1545 aux.acc_seg: 81.0055 +2024/08/10 16:16:58 - mmengine - INFO - Iter(train) [ 77950/160000] lr: 5.5275e-03 eta: 1 day, 1:29:39 time: 1.1128 data_time: 0.0066 memory: 8704 loss: 0.2823 decode.loss_ce: 0.1679 decode.acc_seg: 89.1352 aux.loss_ce: 0.1144 aux.acc_seg: 88.1713 +2024/08/10 16:17:54 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 16:17:54 - mmengine - INFO - Iter(train) [ 78000/160000] lr: 5.5245e-03 eta: 1 day, 1:28:43 time: 1.1180 data_time: 0.0067 memory: 8704 loss: 0.5994 decode.loss_ce: 0.3957 decode.acc_seg: 95.0301 aux.loss_ce: 0.2037 aux.acc_seg: 92.3095 +2024/08/10 16:18:49 - mmengine - INFO - Iter(train) [ 78050/160000] lr: 5.5216e-03 eta: 1 day, 1:27:47 time: 1.1133 data_time: 0.0064 memory: 8703 loss: 0.4110 decode.loss_ce: 0.2649 decode.acc_seg: 93.9977 aux.loss_ce: 0.1461 aux.acc_seg: 90.3968 +2024/08/10 16:19:45 - mmengine - INFO - Iter(train) [ 78100/160000] lr: 5.5186e-03 eta: 1 day, 1:26:51 time: 1.1130 data_time: 0.0060 memory: 8703 loss: 0.6405 decode.loss_ce: 0.4131 decode.acc_seg: 93.8452 aux.loss_ce: 0.2273 aux.acc_seg: 92.0740 +2024/08/10 16:20:41 - mmengine - INFO - Iter(train) [ 78150/160000] lr: 5.5156e-03 eta: 1 day, 1:25:55 time: 1.1126 data_time: 0.0072 memory: 8703 loss: 0.4324 decode.loss_ce: 0.2730 decode.acc_seg: 95.7134 aux.loss_ce: 0.1593 aux.acc_seg: 92.5151 +2024/08/10 16:21:37 - mmengine - INFO - Iter(train) [ 78200/160000] lr: 5.5126e-03 eta: 1 day, 1:24:59 time: 1.1150 data_time: 0.0060 memory: 8704 loss: 0.4367 decode.loss_ce: 0.2766 decode.acc_seg: 94.9886 aux.loss_ce: 0.1601 aux.acc_seg: 94.4963 +2024/08/10 16:22:32 - mmengine - INFO - Iter(train) [ 78250/160000] lr: 5.5096e-03 eta: 1 day, 1:24:03 time: 1.1137 data_time: 0.0063 memory: 8704 loss: 0.4136 decode.loss_ce: 0.2551 decode.acc_seg: 96.6878 aux.loss_ce: 0.1585 aux.acc_seg: 94.6512 +2024/08/10 16:23:28 - mmengine - INFO - Iter(train) [ 78300/160000] lr: 5.5067e-03 eta: 1 day, 1:23:06 time: 1.1127 data_time: 0.0063 memory: 8704 loss: 0.3610 decode.loss_ce: 0.2297 decode.acc_seg: 95.1803 aux.loss_ce: 0.1313 aux.acc_seg: 94.3374 +2024/08/10 16:24:24 - mmengine - INFO - Iter(train) [ 78350/160000] lr: 5.5037e-03 eta: 1 day, 1:22:10 time: 1.1160 data_time: 0.0054 memory: 8703 loss: 0.4904 decode.loss_ce: 0.3239 decode.acc_seg: 86.1514 aux.loss_ce: 0.1665 aux.acc_seg: 83.0302 +2024/08/10 16:25:20 - mmengine - INFO - Iter(train) [ 78400/160000] lr: 5.5007e-03 eta: 1 day, 1:21:14 time: 1.1171 data_time: 0.0078 memory: 8703 loss: 0.3623 decode.loss_ce: 0.2207 decode.acc_seg: 94.6674 aux.loss_ce: 0.1416 aux.acc_seg: 94.3802 +2024/08/10 16:26:16 - mmengine - INFO - Iter(train) [ 78450/160000] lr: 5.4977e-03 eta: 1 day, 1:20:18 time: 1.1149 data_time: 0.0072 memory: 8703 loss: 0.4151 decode.loss_ce: 0.2559 decode.acc_seg: 82.6557 aux.loss_ce: 0.1592 aux.acc_seg: 70.0679 +2024/08/10 16:27:11 - mmengine - INFO - Iter(train) [ 78500/160000] lr: 5.4948e-03 eta: 1 day, 1:19:22 time: 1.1205 data_time: 0.0084 memory: 8704 loss: 0.3023 decode.loss_ce: 0.1789 decode.acc_seg: 85.4526 aux.loss_ce: 0.1235 aux.acc_seg: 79.6643 +2024/08/10 16:28:07 - mmengine - INFO - Iter(train) [ 78550/160000] lr: 5.4918e-03 eta: 1 day, 1:18:26 time: 1.1147 data_time: 0.0080 memory: 8704 loss: 0.3866 decode.loss_ce: 0.2298 decode.acc_seg: 84.9427 aux.loss_ce: 0.1569 aux.acc_seg: 68.2870 +2024/08/10 16:29:03 - mmengine - INFO - Iter(train) [ 78600/160000] lr: 5.4888e-03 eta: 1 day, 1:17:30 time: 1.1175 data_time: 0.0080 memory: 8703 loss: 0.3895 decode.loss_ce: 0.2288 decode.acc_seg: 95.8686 aux.loss_ce: 0.1607 aux.acc_seg: 94.9792 +2024/08/10 16:29:59 - mmengine - INFO - Iter(train) [ 78650/160000] lr: 5.4858e-03 eta: 1 day, 1:16:34 time: 1.1105 data_time: 0.0058 memory: 8703 loss: 0.2963 decode.loss_ce: 0.1801 decode.acc_seg: 90.6754 aux.loss_ce: 0.1162 aux.acc_seg: 81.3936 +2024/08/10 16:30:55 - mmengine - INFO - Iter(train) [ 78700/160000] lr: 5.4828e-03 eta: 1 day, 1:15:38 time: 1.1186 data_time: 0.0076 memory: 8704 loss: 0.4114 decode.loss_ce: 0.2619 decode.acc_seg: 96.6255 aux.loss_ce: 0.1495 aux.acc_seg: 80.1525 +2024/08/10 16:31:50 - mmengine - INFO - Iter(train) [ 78750/160000] lr: 5.4799e-03 eta: 1 day, 1:14:42 time: 1.1174 data_time: 0.0082 memory: 8704 loss: 0.3445 decode.loss_ce: 0.2080 decode.acc_seg: 95.2404 aux.loss_ce: 0.1365 aux.acc_seg: 94.3157 +2024/08/10 16:32:46 - mmengine - INFO - Iter(train) [ 78800/160000] lr: 5.4769e-03 eta: 1 day, 1:13:46 time: 1.1175 data_time: 0.0076 memory: 8704 loss: 0.3535 decode.loss_ce: 0.2119 decode.acc_seg: 95.2617 aux.loss_ce: 0.1416 aux.acc_seg: 93.9728 +2024/08/10 16:33:42 - mmengine - INFO - Iter(train) [ 78850/160000] lr: 5.4739e-03 eta: 1 day, 1:12:50 time: 1.1122 data_time: 0.0063 memory: 8703 loss: 0.4991 decode.loss_ce: 0.3258 decode.acc_seg: 91.5915 aux.loss_ce: 0.1732 aux.acc_seg: 91.1278 +2024/08/10 16:34:38 - mmengine - INFO - Iter(train) [ 78900/160000] lr: 5.4709e-03 eta: 1 day, 1:11:54 time: 1.1078 data_time: 0.0050 memory: 8704 loss: 0.3793 decode.loss_ce: 0.2415 decode.acc_seg: 95.5801 aux.loss_ce: 0.1378 aux.acc_seg: 92.5552 +2024/08/10 16:35:33 - mmengine - INFO - Iter(train) [ 78950/160000] lr: 5.4679e-03 eta: 1 day, 1:10:58 time: 1.1134 data_time: 0.0066 memory: 8704 loss: 0.3011 decode.loss_ce: 0.1837 decode.acc_seg: 93.7143 aux.loss_ce: 0.1174 aux.acc_seg: 93.2434 +2024/08/10 16:36:29 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 16:36:29 - mmengine - INFO - Iter(train) [ 79000/160000] lr: 5.4650e-03 eta: 1 day, 1:10:01 time: 1.1166 data_time: 0.0074 memory: 8704 loss: 0.4226 decode.loss_ce: 0.2657 decode.acc_seg: 94.2566 aux.loss_ce: 0.1569 aux.acc_seg: 92.2858 +2024/08/10 16:37:25 - mmengine - INFO - Iter(train) [ 79050/160000] lr: 5.4620e-03 eta: 1 day, 1:09:05 time: 1.1112 data_time: 0.0070 memory: 8704 loss: 0.7147 decode.loss_ce: 0.4394 decode.acc_seg: 81.4402 aux.loss_ce: 0.2753 aux.acc_seg: 78.2935 +2024/08/10 16:38:21 - mmengine - INFO - Iter(train) [ 79100/160000] lr: 5.4590e-03 eta: 1 day, 1:08:09 time: 1.1143 data_time: 0.0066 memory: 8704 loss: 0.4561 decode.loss_ce: 0.2734 decode.acc_seg: 94.0430 aux.loss_ce: 0.1827 aux.acc_seg: 89.4119 +2024/08/10 16:39:16 - mmengine - INFO - Iter(train) [ 79150/160000] lr: 5.4560e-03 eta: 1 day, 1:07:13 time: 1.1131 data_time: 0.0063 memory: 8704 loss: 0.3657 decode.loss_ce: 0.2159 decode.acc_seg: 94.2668 aux.loss_ce: 0.1498 aux.acc_seg: 91.7417 +2024/08/10 16:40:12 - mmengine - INFO - Iter(train) [ 79200/160000] lr: 5.4530e-03 eta: 1 day, 1:06:17 time: 1.1152 data_time: 0.0061 memory: 8703 loss: 0.3868 decode.loss_ce: 0.2399 decode.acc_seg: 97.9025 aux.loss_ce: 0.1469 aux.acc_seg: 96.4972 +2024/08/10 16:41:08 - mmengine - INFO - Iter(train) [ 79250/160000] lr: 5.4501e-03 eta: 1 day, 1:05:21 time: 1.1106 data_time: 0.0062 memory: 8703 loss: 0.4480 decode.loss_ce: 0.2714 decode.acc_seg: 92.9872 aux.loss_ce: 0.1766 aux.acc_seg: 87.5987 +2024/08/10 16:42:03 - mmengine - INFO - Iter(train) [ 79300/160000] lr: 5.4471e-03 eta: 1 day, 1:04:24 time: 1.1128 data_time: 0.0054 memory: 8704 loss: 0.5109 decode.loss_ce: 0.3002 decode.acc_seg: 72.1604 aux.loss_ce: 0.2106 aux.acc_seg: 69.9219 +2024/08/10 16:42:59 - mmengine - INFO - Iter(train) [ 79350/160000] lr: 5.4441e-03 eta: 1 day, 1:03:28 time: 1.1143 data_time: 0.0061 memory: 8704 loss: 0.5609 decode.loss_ce: 0.3364 decode.acc_seg: 78.1090 aux.loss_ce: 0.2245 aux.acc_seg: 72.3206 +2024/08/10 16:43:55 - mmengine - INFO - Iter(train) [ 79400/160000] lr: 5.4411e-03 eta: 1 day, 1:02:32 time: 1.1119 data_time: 0.0061 memory: 8704 loss: 0.5112 decode.loss_ce: 0.2998 decode.acc_seg: 95.4269 aux.loss_ce: 0.2114 aux.acc_seg: 84.3766 +2024/08/10 16:44:51 - mmengine - INFO - Iter(train) [ 79450/160000] lr: 5.4381e-03 eta: 1 day, 1:01:36 time: 1.1118 data_time: 0.0058 memory: 8704 loss: 0.4003 decode.loss_ce: 0.2322 decode.acc_seg: 96.4105 aux.loss_ce: 0.1680 aux.acc_seg: 91.0670 +2024/08/10 16:45:46 - mmengine - INFO - Iter(train) [ 79500/160000] lr: 5.4351e-03 eta: 1 day, 1:00:40 time: 1.1147 data_time: 0.0073 memory: 8703 loss: 0.3870 decode.loss_ce: 0.2577 decode.acc_seg: 92.4409 aux.loss_ce: 0.1293 aux.acc_seg: 92.1814 +2024/08/10 16:46:42 - mmengine - INFO - Iter(train) [ 79550/160000] lr: 5.4322e-03 eta: 1 day, 0:59:44 time: 1.1130 data_time: 0.0080 memory: 8704 loss: 0.3413 decode.loss_ce: 0.1972 decode.acc_seg: 95.2404 aux.loss_ce: 0.1441 aux.acc_seg: 91.7049 +2024/08/10 16:47:38 - mmengine - INFO - Iter(train) [ 79600/160000] lr: 5.4292e-03 eta: 1 day, 0:58:48 time: 1.1114 data_time: 0.0063 memory: 8704 loss: 0.4025 decode.loss_ce: 0.2371 decode.acc_seg: 92.7134 aux.loss_ce: 0.1654 aux.acc_seg: 90.1572 +2024/08/10 16:48:34 - mmengine - INFO - Iter(train) [ 79650/160000] lr: 5.4262e-03 eta: 1 day, 0:57:51 time: 1.1135 data_time: 0.0079 memory: 8704 loss: 0.4508 decode.loss_ce: 0.2847 decode.acc_seg: 95.7667 aux.loss_ce: 0.1661 aux.acc_seg: 88.8869 +2024/08/10 16:49:29 - mmengine - INFO - Iter(train) [ 79700/160000] lr: 5.4232e-03 eta: 1 day, 0:56:55 time: 1.1156 data_time: 0.0070 memory: 8704 loss: 0.3617 decode.loss_ce: 0.2277 decode.acc_seg: 93.5883 aux.loss_ce: 0.1340 aux.acc_seg: 91.6409 +2024/08/10 16:50:25 - mmengine - INFO - Iter(train) [ 79750/160000] lr: 5.4202e-03 eta: 1 day, 0:55:59 time: 1.1163 data_time: 0.0071 memory: 8704 loss: 0.4263 decode.loss_ce: 0.2374 decode.acc_seg: 97.5983 aux.loss_ce: 0.1888 aux.acc_seg: 91.5834 +2024/08/10 16:51:21 - mmengine - INFO - Iter(train) [ 79800/160000] lr: 5.4172e-03 eta: 1 day, 0:55:03 time: 1.1164 data_time: 0.0068 memory: 8703 loss: 0.3095 decode.loss_ce: 0.1832 decode.acc_seg: 91.4753 aux.loss_ce: 0.1263 aux.acc_seg: 91.4130 +2024/08/10 16:52:17 - mmengine - INFO - Iter(train) [ 79850/160000] lr: 5.4143e-03 eta: 1 day, 0:54:07 time: 1.1160 data_time: 0.0071 memory: 8704 loss: 0.5953 decode.loss_ce: 0.3459 decode.acc_seg: 91.8983 aux.loss_ce: 0.2494 aux.acc_seg: 85.5496 +2024/08/10 16:53:12 - mmengine - INFO - Iter(train) [ 79900/160000] lr: 5.4113e-03 eta: 1 day, 0:53:11 time: 1.1164 data_time: 0.0071 memory: 8703 loss: 0.3266 decode.loss_ce: 0.1938 decode.acc_seg: 95.3166 aux.loss_ce: 0.1327 aux.acc_seg: 91.0179 +2024/08/10 16:54:08 - mmengine - INFO - Iter(train) [ 79950/160000] lr: 5.4083e-03 eta: 1 day, 0:52:15 time: 1.1110 data_time: 0.0071 memory: 8704 loss: 0.3544 decode.loss_ce: 0.2037 decode.acc_seg: 97.2698 aux.loss_ce: 0.1506 aux.acc_seg: 96.1839 +2024/08/10 16:55:04 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 16:55:04 - mmengine - INFO - Iter(train) [ 80000/160000] lr: 5.4053e-03 eta: 1 day, 0:51:19 time: 1.1115 data_time: 0.0071 memory: 8704 loss: 0.2839 decode.loss_ce: 0.1755 decode.acc_seg: 92.8424 aux.loss_ce: 0.1084 aux.acc_seg: 92.3388 +2024/08/10 16:55:04 - mmengine - INFO - Saving checkpoint at 80000 iterations +2024/08/10 16:55:18 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:10 time: 0.2712 data_time: 0.0045 memory: 1724 +2024/08/10 16:55:32 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2691 data_time: 0.0033 memory: 1724 +2024/08/10 16:55:45 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2701 data_time: 0.0034 memory: 1724 +2024/08/10 16:55:59 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:28 time: 0.2704 data_time: 0.0033 memory: 1724 +2024/08/10 16:56:12 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2709 data_time: 0.0034 memory: 1724 +2024/08/10 16:56:26 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:01 time: 0.2701 data_time: 0.0035 memory: 1724 +2024/08/10 16:56:40 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2722 data_time: 0.0041 memory: 1724 +2024/08/10 16:56:53 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:34 time: 0.2720 data_time: 0.0044 memory: 1724 +2024/08/10 16:57:07 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2701 data_time: 0.0035 memory: 1724 +2024/08/10 16:57:20 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2723 data_time: 0.0044 memory: 1724 +2024/08/10 16:57:34 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2707 data_time: 0.0042 memory: 1724 +2024/08/10 16:57:47 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2719 data_time: 0.0042 memory: 1724 +2024/08/10 16:58:01 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2708 data_time: 0.0035 memory: 1724 +2024/08/10 16:58:15 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2705 data_time: 0.0035 memory: 1724 +2024/08/10 16:58:28 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2712 data_time: 0.0047 memory: 1724 +2024/08/10 16:58:37 - mmengine - INFO - per class results: +2024/08/10 16:58:37 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 93.07 | 96.95 | +| sidewalk | 68.48 | 80.72 | +| road roughness | 58.27 | 64.67 | +| road boundaries | 61.71 | 73.57 | +| crosswalks | 92.74 | 97.22 | +| lane | 71.48 | 82.39 | +| road color guide | 80.03 | 88.88 | +| road marking | 62.31 | 75.29 | +| parking | 52.53 | 57.71 | +| traffic sign | 36.54 | 78.87 | +| traffic light | 66.59 | 81.6 | +| pole/structural object | 73.89 | 85.65 | +| building | 84.5 | 92.17 | +| tunnel | 94.74 | 95.58 | +| bridge | 53.18 | 71.93 | +| pedestrian | 60.96 | 67.63 | +| vehicle | 88.43 | 93.72 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 20.85 | 25.22 | +| personal mobility | 58.39 | 78.77 | +| dynamic | 41.25 | 67.63 | +| vegetation | 86.41 | 93.83 | +| sky | 97.86 | 98.72 | +| static | 65.49 | 76.33 | ++------------------------+-------+-------+ +2024/08/10 16:58:37 - mmengine - INFO - Iter(val) [750/750] aAcc: 94.0200 mIoU: 65.4000 mAcc: 76.0400 data_time: 0.0041 time: 0.2713 +2024/08/10 16:59:33 - mmengine - INFO - Iter(train) [ 80050/160000] lr: 5.4023e-03 eta: 1 day, 0:50:32 time: 1.1162 data_time: 0.0091 memory: 8704 loss: 0.3233 decode.loss_ce: 0.1919 decode.acc_seg: 96.4335 aux.loss_ce: 0.1314 aux.acc_seg: 92.5622 +2024/08/10 17:00:29 - mmengine - INFO - Iter(train) [ 80100/160000] lr: 5.3993e-03 eta: 1 day, 0:49:36 time: 1.1149 data_time: 0.0055 memory: 8704 loss: 0.3081 decode.loss_ce: 0.1874 decode.acc_seg: 92.8284 aux.loss_ce: 0.1207 aux.acc_seg: 90.1821 +2024/08/10 17:01:25 - mmengine - INFO - Iter(train) [ 80150/160000] lr: 5.3964e-03 eta: 1 day, 0:48:40 time: 1.1183 data_time: 0.0076 memory: 8704 loss: 0.4238 decode.loss_ce: 0.2594 decode.acc_seg: 97.2993 aux.loss_ce: 0.1645 aux.acc_seg: 96.9548 +2024/08/10 17:02:21 - mmengine - INFO - Iter(train) [ 80200/160000] lr: 5.3934e-03 eta: 1 day, 0:47:44 time: 1.1121 data_time: 0.0055 memory: 8703 loss: 0.3145 decode.loss_ce: 0.1916 decode.acc_seg: 96.7727 aux.loss_ce: 0.1229 aux.acc_seg: 94.3545 +2024/08/10 17:03:16 - mmengine - INFO - Iter(train) [ 80250/160000] lr: 5.3904e-03 eta: 1 day, 0:46:48 time: 1.1172 data_time: 0.0059 memory: 8703 loss: 0.4830 decode.loss_ce: 0.2865 decode.acc_seg: 94.4897 aux.loss_ce: 0.1965 aux.acc_seg: 93.4556 +2024/08/10 17:04:12 - mmengine - INFO - Iter(train) [ 80300/160000] lr: 5.3874e-03 eta: 1 day, 0:45:51 time: 1.1089 data_time: 0.0053 memory: 8703 loss: 0.2582 decode.loss_ce: 0.1567 decode.acc_seg: 91.1575 aux.loss_ce: 0.1015 aux.acc_seg: 90.7650 +2024/08/10 17:05:08 - mmengine - INFO - Iter(train) [ 80350/160000] lr: 5.3844e-03 eta: 1 day, 0:44:55 time: 1.1133 data_time: 0.0064 memory: 8703 loss: 0.3353 decode.loss_ce: 0.1982 decode.acc_seg: 91.7974 aux.loss_ce: 0.1372 aux.acc_seg: 86.0771 +2024/08/10 17:06:03 - mmengine - INFO - Iter(train) [ 80400/160000] lr: 5.3814e-03 eta: 1 day, 0:43:59 time: 1.1167 data_time: 0.0064 memory: 8703 loss: 0.4868 decode.loss_ce: 0.2691 decode.acc_seg: 89.3916 aux.loss_ce: 0.2176 aux.acc_seg: 91.5494 +2024/08/10 17:06:59 - mmengine - INFO - Iter(train) [ 80450/160000] lr: 5.3784e-03 eta: 1 day, 0:43:03 time: 1.1116 data_time: 0.0055 memory: 8703 loss: 0.4132 decode.loss_ce: 0.2561 decode.acc_seg: 95.8896 aux.loss_ce: 0.1571 aux.acc_seg: 95.5741 +2024/08/10 17:07:55 - mmengine - INFO - Iter(train) [ 80500/160000] lr: 5.3755e-03 eta: 1 day, 0:42:07 time: 1.1151 data_time: 0.0071 memory: 8703 loss: 0.3672 decode.loss_ce: 0.2301 decode.acc_seg: 95.3166 aux.loss_ce: 0.1371 aux.acc_seg: 93.0729 +2024/08/10 17:08:51 - mmengine - INFO - Iter(train) [ 80550/160000] lr: 5.3725e-03 eta: 1 day, 0:41:11 time: 1.1094 data_time: 0.0061 memory: 8704 loss: 0.4022 decode.loss_ce: 0.2452 decode.acc_seg: 93.0899 aux.loss_ce: 0.1570 aux.acc_seg: 92.3309 +2024/08/10 17:09:46 - mmengine - INFO - Iter(train) [ 80600/160000] lr: 5.3695e-03 eta: 1 day, 0:40:14 time: 1.1161 data_time: 0.0067 memory: 8703 loss: 0.3533 decode.loss_ce: 0.2318 decode.acc_seg: 91.3196 aux.loss_ce: 0.1215 aux.acc_seg: 87.3608 +2024/08/10 17:10:42 - mmengine - INFO - Iter(train) [ 80650/160000] lr: 5.3665e-03 eta: 1 day, 0:39:18 time: 1.1143 data_time: 0.0065 memory: 8703 loss: 0.4997 decode.loss_ce: 0.2910 decode.acc_seg: 97.9412 aux.loss_ce: 0.2087 aux.acc_seg: 91.5736 +2024/08/10 17:11:38 - mmengine - INFO - Iter(train) [ 80700/160000] lr: 5.3635e-03 eta: 1 day, 0:38:22 time: 1.1098 data_time: 0.0067 memory: 8703 loss: 0.3728 decode.loss_ce: 0.2229 decode.acc_seg: 96.0748 aux.loss_ce: 0.1499 aux.acc_seg: 95.4174 +2024/08/10 17:12:33 - mmengine - INFO - Iter(train) [ 80750/160000] lr: 5.3605e-03 eta: 1 day, 0:37:26 time: 1.1103 data_time: 0.0062 memory: 8703 loss: 0.2952 decode.loss_ce: 0.1833 decode.acc_seg: 94.1563 aux.loss_ce: 0.1119 aux.acc_seg: 92.7168 +2024/08/10 17:13:29 - mmengine - INFO - Iter(train) [ 80800/160000] lr: 5.3575e-03 eta: 1 day, 0:36:30 time: 1.1141 data_time: 0.0074 memory: 8703 loss: 0.3981 decode.loss_ce: 0.2279 decode.acc_seg: 96.7971 aux.loss_ce: 0.1701 aux.acc_seg: 92.3574 +2024/08/10 17:14:25 - mmengine - INFO - Iter(train) [ 80850/160000] lr: 5.3545e-03 eta: 1 day, 0:35:34 time: 1.1101 data_time: 0.0058 memory: 8704 loss: 0.3063 decode.loss_ce: 0.1832 decode.acc_seg: 94.5752 aux.loss_ce: 0.1230 aux.acc_seg: 91.9609 +2024/08/10 17:15:21 - mmengine - INFO - Iter(train) [ 80900/160000] lr: 5.3516e-03 eta: 1 day, 0:34:38 time: 1.1149 data_time: 0.0062 memory: 8704 loss: 0.3770 decode.loss_ce: 0.2285 decode.acc_seg: 94.9245 aux.loss_ce: 0.1485 aux.acc_seg: 89.0415 +2024/08/10 17:16:17 - mmengine - INFO - Iter(train) [ 80950/160000] lr: 5.3486e-03 eta: 1 day, 0:33:42 time: 1.1152 data_time: 0.0074 memory: 8703 loss: 0.4037 decode.loss_ce: 0.2562 decode.acc_seg: 95.7147 aux.loss_ce: 0.1475 aux.acc_seg: 88.0527 +2024/08/10 17:17:12 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 17:17:12 - mmengine - INFO - Iter(train) [ 81000/160000] lr: 5.3456e-03 eta: 1 day, 0:32:46 time: 1.1129 data_time: 0.0067 memory: 8703 loss: 0.3120 decode.loss_ce: 0.1810 decode.acc_seg: 95.3677 aux.loss_ce: 0.1310 aux.acc_seg: 92.7439 +2024/08/10 17:18:08 - mmengine - INFO - Iter(train) [ 81050/160000] lr: 5.3426e-03 eta: 1 day, 0:31:49 time: 1.1137 data_time: 0.0069 memory: 8703 loss: 0.3326 decode.loss_ce: 0.2114 decode.acc_seg: 89.4164 aux.loss_ce: 0.1212 aux.acc_seg: 87.4056 +2024/08/10 17:19:04 - mmengine - INFO - Iter(train) [ 81100/160000] lr: 5.3396e-03 eta: 1 day, 0:30:53 time: 1.1213 data_time: 0.0090 memory: 8703 loss: 0.3699 decode.loss_ce: 0.2232 decode.acc_seg: 90.7887 aux.loss_ce: 0.1467 aux.acc_seg: 87.5893 +2024/08/10 17:19:59 - mmengine - INFO - Iter(train) [ 81150/160000] lr: 5.3366e-03 eta: 1 day, 0:29:57 time: 1.1083 data_time: 0.0063 memory: 8703 loss: 0.6106 decode.loss_ce: 0.3870 decode.acc_seg: 89.8212 aux.loss_ce: 0.2236 aux.acc_seg: 84.6592 +2024/08/10 17:20:55 - mmengine - INFO - Iter(train) [ 81200/160000] lr: 5.3336e-03 eta: 1 day, 0:29:01 time: 1.1133 data_time: 0.0075 memory: 8705 loss: 0.3901 decode.loss_ce: 0.2347 decode.acc_seg: 94.6397 aux.loss_ce: 0.1554 aux.acc_seg: 90.1127 +2024/08/10 17:21:51 - mmengine - INFO - Iter(train) [ 81250/160000] lr: 5.3306e-03 eta: 1 day, 0:28:05 time: 1.1136 data_time: 0.0050 memory: 8704 loss: 0.3299 decode.loss_ce: 0.2047 decode.acc_seg: 91.1349 aux.loss_ce: 0.1253 aux.acc_seg: 87.3039 +2024/08/10 17:22:47 - mmengine - INFO - Iter(train) [ 81300/160000] lr: 5.3277e-03 eta: 1 day, 0:27:09 time: 1.1169 data_time: 0.0066 memory: 8704 loss: 0.4405 decode.loss_ce: 0.2697 decode.acc_seg: 91.1218 aux.loss_ce: 0.1707 aux.acc_seg: 85.4659 +2024/08/10 17:23:42 - mmengine - INFO - Iter(train) [ 81350/160000] lr: 5.3247e-03 eta: 1 day, 0:26:13 time: 1.1124 data_time: 0.0080 memory: 8704 loss: 0.2933 decode.loss_ce: 0.1782 decode.acc_seg: 94.2868 aux.loss_ce: 0.1151 aux.acc_seg: 89.8559 +2024/08/10 17:24:38 - mmengine - INFO - Iter(train) [ 81400/160000] lr: 5.3217e-03 eta: 1 day, 0:25:16 time: 1.1151 data_time: 0.0069 memory: 8703 loss: 0.2525 decode.loss_ce: 0.1486 decode.acc_seg: 93.1015 aux.loss_ce: 0.1039 aux.acc_seg: 84.8354 +2024/08/10 17:25:34 - mmengine - INFO - Iter(train) [ 81450/160000] lr: 5.3187e-03 eta: 1 day, 0:24:20 time: 1.1172 data_time: 0.0065 memory: 8703 loss: 0.3021 decode.loss_ce: 0.1901 decode.acc_seg: 97.0889 aux.loss_ce: 0.1120 aux.acc_seg: 95.3285 +2024/08/10 17:26:30 - mmengine - INFO - Iter(train) [ 81500/160000] lr: 5.3157e-03 eta: 1 day, 0:23:24 time: 1.1143 data_time: 0.0061 memory: 8704 loss: 0.3977 decode.loss_ce: 0.2488 decode.acc_seg: 94.8197 aux.loss_ce: 0.1488 aux.acc_seg: 92.0158 +2024/08/10 17:27:25 - mmengine - INFO - Iter(train) [ 81550/160000] lr: 5.3127e-03 eta: 1 day, 0:22:28 time: 1.1129 data_time: 0.0066 memory: 8703 loss: 0.2645 decode.loss_ce: 0.1617 decode.acc_seg: 95.6517 aux.loss_ce: 0.1028 aux.acc_seg: 90.4439 +2024/08/10 17:28:21 - mmengine - INFO - Iter(train) [ 81600/160000] lr: 5.3097e-03 eta: 1 day, 0:21:32 time: 1.1122 data_time: 0.0063 memory: 8703 loss: 0.4337 decode.loss_ce: 0.2472 decode.acc_seg: 96.1873 aux.loss_ce: 0.1865 aux.acc_seg: 92.4287 +2024/08/10 17:29:17 - mmengine - INFO - Iter(train) [ 81650/160000] lr: 5.3067e-03 eta: 1 day, 0:20:36 time: 1.1110 data_time: 0.0070 memory: 8705 loss: 0.2949 decode.loss_ce: 0.1923 decode.acc_seg: 96.3456 aux.loss_ce: 0.1025 aux.acc_seg: 92.5467 +2024/08/10 17:30:12 - mmengine - INFO - Iter(train) [ 81700/160000] lr: 5.3037e-03 eta: 1 day, 0:19:40 time: 1.1105 data_time: 0.0054 memory: 8704 loss: 0.5695 decode.loss_ce: 0.3755 decode.acc_seg: 76.9323 aux.loss_ce: 0.1940 aux.acc_seg: 72.7936 +2024/08/10 17:31:08 - mmengine - INFO - Iter(train) [ 81750/160000] lr: 5.3007e-03 eta: 1 day, 0:18:44 time: 1.1176 data_time: 0.0077 memory: 8703 loss: 0.3170 decode.loss_ce: 0.1908 decode.acc_seg: 83.7231 aux.loss_ce: 0.1262 aux.acc_seg: 68.5017 +2024/08/10 17:32:04 - mmengine - INFO - Iter(train) [ 81800/160000] lr: 5.2978e-03 eta: 1 day, 0:17:48 time: 1.1192 data_time: 0.0074 memory: 8704 loss: 0.4428 decode.loss_ce: 0.2848 decode.acc_seg: 94.8034 aux.loss_ce: 0.1580 aux.acc_seg: 93.2637 +2024/08/10 17:33:00 - mmengine - INFO - Iter(train) [ 81850/160000] lr: 5.2948e-03 eta: 1 day, 0:16:52 time: 1.1217 data_time: 0.0070 memory: 8703 loss: 0.3591 decode.loss_ce: 0.2257 decode.acc_seg: 96.3729 aux.loss_ce: 0.1334 aux.acc_seg: 92.0602 +2024/08/10 17:33:55 - mmengine - INFO - Iter(train) [ 81900/160000] lr: 5.2918e-03 eta: 1 day, 0:15:55 time: 1.1129 data_time: 0.0067 memory: 8704 loss: 0.3621 decode.loss_ce: 0.2349 decode.acc_seg: 93.5539 aux.loss_ce: 0.1272 aux.acc_seg: 91.4846 +2024/08/10 17:34:51 - mmengine - INFO - Iter(train) [ 81950/160000] lr: 5.2888e-03 eta: 1 day, 0:14:59 time: 1.1181 data_time: 0.0083 memory: 8703 loss: 0.3945 decode.loss_ce: 0.2154 decode.acc_seg: 97.6065 aux.loss_ce: 0.1791 aux.acc_seg: 97.3541 +2024/08/10 17:35:47 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 17:35:47 - mmengine - INFO - Iter(train) [ 82000/160000] lr: 5.2858e-03 eta: 1 day, 0:14:03 time: 1.1167 data_time: 0.0069 memory: 8704 loss: 0.3890 decode.loss_ce: 0.2425 decode.acc_seg: 90.3720 aux.loss_ce: 0.1465 aux.acc_seg: 89.2924 +2024/08/10 17:36:43 - mmengine - INFO - Iter(train) [ 82050/160000] lr: 5.2828e-03 eta: 1 day, 0:13:07 time: 1.1113 data_time: 0.0070 memory: 8704 loss: 0.5136 decode.loss_ce: 0.3070 decode.acc_seg: 86.2759 aux.loss_ce: 0.2066 aux.acc_seg: 76.7949 +2024/08/10 17:37:38 - mmengine - INFO - Iter(train) [ 82100/160000] lr: 5.2798e-03 eta: 1 day, 0:12:11 time: 1.1122 data_time: 0.0056 memory: 8703 loss: 0.4158 decode.loss_ce: 0.2629 decode.acc_seg: 84.1893 aux.loss_ce: 0.1529 aux.acc_seg: 77.7086 +2024/08/10 17:38:34 - mmengine - INFO - Iter(train) [ 82150/160000] lr: 5.2768e-03 eta: 1 day, 0:11:15 time: 1.1182 data_time: 0.0073 memory: 8704 loss: 0.3988 decode.loss_ce: 0.2712 decode.acc_seg: 92.9562 aux.loss_ce: 0.1276 aux.acc_seg: 92.3158 +2024/08/10 17:39:30 - mmengine - INFO - Iter(train) [ 82200/160000] lr: 5.2738e-03 eta: 1 day, 0:10:19 time: 1.1176 data_time: 0.0070 memory: 8704 loss: 0.3551 decode.loss_ce: 0.2090 decode.acc_seg: 95.7837 aux.loss_ce: 0.1461 aux.acc_seg: 95.5620 +2024/08/10 17:40:26 - mmengine - INFO - Iter(train) [ 82250/160000] lr: 5.2708e-03 eta: 1 day, 0:09:23 time: 1.1176 data_time: 0.0077 memory: 8703 loss: 0.3574 decode.loss_ce: 0.2059 decode.acc_seg: 93.0253 aux.loss_ce: 0.1515 aux.acc_seg: 83.9436 +2024/08/10 17:41:22 - mmengine - INFO - Iter(train) [ 82300/160000] lr: 5.2678e-03 eta: 1 day, 0:08:27 time: 1.1133 data_time: 0.0073 memory: 8704 loss: 0.3199 decode.loss_ce: 0.1966 decode.acc_seg: 94.6576 aux.loss_ce: 0.1233 aux.acc_seg: 90.7054 +2024/08/10 17:42:17 - mmengine - INFO - Iter(train) [ 82350/160000] lr: 5.2648e-03 eta: 1 day, 0:07:31 time: 1.1181 data_time: 0.0074 memory: 8703 loss: 0.3624 decode.loss_ce: 0.2220 decode.acc_seg: 86.5247 aux.loss_ce: 0.1405 aux.acc_seg: 82.8895 +2024/08/10 17:43:13 - mmengine - INFO - Iter(train) [ 82400/160000] lr: 5.2618e-03 eta: 1 day, 0:06:35 time: 1.1195 data_time: 0.0071 memory: 8704 loss: 0.4014 decode.loss_ce: 0.2586 decode.acc_seg: 85.6418 aux.loss_ce: 0.1428 aux.acc_seg: 83.4354 +2024/08/10 17:44:09 - mmengine - INFO - Iter(train) [ 82450/160000] lr: 5.2589e-03 eta: 1 day, 0:05:39 time: 1.1153 data_time: 0.0065 memory: 8703 loss: 0.3287 decode.loss_ce: 0.1997 decode.acc_seg: 96.4870 aux.loss_ce: 0.1290 aux.acc_seg: 89.6598 +2024/08/10 17:45:05 - mmengine - INFO - Iter(train) [ 82500/160000] lr: 5.2559e-03 eta: 1 day, 0:04:42 time: 1.1113 data_time: 0.0070 memory: 8703 loss: 0.4463 decode.loss_ce: 0.2718 decode.acc_seg: 95.6852 aux.loss_ce: 0.1745 aux.acc_seg: 95.2909 +2024/08/10 17:46:01 - mmengine - INFO - Iter(train) [ 82550/160000] lr: 5.2529e-03 eta: 1 day, 0:03:46 time: 1.1139 data_time: 0.0076 memory: 8704 loss: 0.3984 decode.loss_ce: 0.2437 decode.acc_seg: 88.2948 aux.loss_ce: 0.1547 aux.acc_seg: 82.5233 +2024/08/10 17:46:56 - mmengine - INFO - Iter(train) [ 82600/160000] lr: 5.2499e-03 eta: 1 day, 0:02:50 time: 1.1182 data_time: 0.0067 memory: 8705 loss: 0.3672 decode.loss_ce: 0.2162 decode.acc_seg: 97.8816 aux.loss_ce: 0.1510 aux.acc_seg: 92.0673 +2024/08/10 17:47:52 - mmengine - INFO - Iter(train) [ 82650/160000] lr: 5.2469e-03 eta: 1 day, 0:01:54 time: 1.1124 data_time: 0.0069 memory: 8704 loss: 0.3587 decode.loss_ce: 0.2046 decode.acc_seg: 96.8442 aux.loss_ce: 0.1541 aux.acc_seg: 95.5634 +2024/08/10 17:48:48 - mmengine - INFO - Iter(train) [ 82700/160000] lr: 5.2439e-03 eta: 1 day, 0:00:58 time: 1.1150 data_time: 0.0072 memory: 8703 loss: 0.5475 decode.loss_ce: 0.3141 decode.acc_seg: 92.9494 aux.loss_ce: 0.2334 aux.acc_seg: 88.1643 +2024/08/10 17:49:44 - mmengine - INFO - Iter(train) [ 82750/160000] lr: 5.2409e-03 eta: 1 day, 0:00:02 time: 1.1141 data_time: 0.0064 memory: 8704 loss: 0.2639 decode.loss_ce: 0.1597 decode.acc_seg: 95.7968 aux.loss_ce: 0.1042 aux.acc_seg: 95.4439 +2024/08/10 17:50:39 - mmengine - INFO - Iter(train) [ 82800/160000] lr: 5.2379e-03 eta: 23:59:06 time: 1.1136 data_time: 0.0063 memory: 8704 loss: 0.3503 decode.loss_ce: 0.2089 decode.acc_seg: 94.9429 aux.loss_ce: 0.1415 aux.acc_seg: 90.8267 +2024/08/10 17:51:35 - mmengine - INFO - Iter(train) [ 82850/160000] lr: 5.2349e-03 eta: 23:58:10 time: 1.1131 data_time: 0.0060 memory: 8704 loss: 0.2596 decode.loss_ce: 0.1513 decode.acc_seg: 92.2952 aux.loss_ce: 0.1084 aux.acc_seg: 90.4985 +2024/08/10 17:52:31 - mmengine - INFO - Iter(train) [ 82900/160000] lr: 5.2319e-03 eta: 23:57:14 time: 1.1081 data_time: 0.0063 memory: 8703 loss: 0.4083 decode.loss_ce: 0.2493 decode.acc_seg: 94.6430 aux.loss_ce: 0.1590 aux.acc_seg: 93.5910 +2024/08/10 17:53:26 - mmengine - INFO - Iter(train) [ 82950/160000] lr: 5.2289e-03 eta: 23:56:17 time: 1.1165 data_time: 0.0061 memory: 8703 loss: 0.3441 decode.loss_ce: 0.2048 decode.acc_seg: 93.0186 aux.loss_ce: 0.1393 aux.acc_seg: 91.7884 +2024/08/10 17:54:22 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 17:54:22 - mmengine - INFO - Iter(train) [ 83000/160000] lr: 5.2259e-03 eta: 23:55:21 time: 1.1110 data_time: 0.0066 memory: 8703 loss: 0.3075 decode.loss_ce: 0.1918 decode.acc_seg: 95.4468 aux.loss_ce: 0.1157 aux.acc_seg: 95.2204 +2024/08/10 17:55:18 - mmengine - INFO - Iter(train) [ 83050/160000] lr: 5.2229e-03 eta: 23:54:25 time: 1.1187 data_time: 0.0084 memory: 8704 loss: 0.3928 decode.loss_ce: 0.2386 decode.acc_seg: 95.8988 aux.loss_ce: 0.1543 aux.acc_seg: 95.1228 +2024/08/10 17:56:14 - mmengine - INFO - Iter(train) [ 83100/160000] lr: 5.2199e-03 eta: 23:53:29 time: 1.1162 data_time: 0.0072 memory: 8703 loss: 0.3651 decode.loss_ce: 0.2139 decode.acc_seg: 94.9770 aux.loss_ce: 0.1512 aux.acc_seg: 92.7258 +2024/08/10 17:57:09 - mmengine - INFO - Iter(train) [ 83150/160000] lr: 5.2169e-03 eta: 23:52:33 time: 1.1122 data_time: 0.0058 memory: 8704 loss: 0.3416 decode.loss_ce: 0.2007 decode.acc_seg: 90.2895 aux.loss_ce: 0.1409 aux.acc_seg: 90.6709 +2024/08/10 17:58:05 - mmengine - INFO - Iter(train) [ 83200/160000] lr: 5.2139e-03 eta: 23:51:37 time: 1.1240 data_time: 0.0065 memory: 8703 loss: 0.5845 decode.loss_ce: 0.3499 decode.acc_seg: 72.2424 aux.loss_ce: 0.2346 aux.acc_seg: 56.7066 +2024/08/10 17:59:01 - mmengine - INFO - Iter(train) [ 83250/160000] lr: 5.2109e-03 eta: 23:50:41 time: 1.1181 data_time: 0.0066 memory: 8703 loss: 0.3888 decode.loss_ce: 0.2266 decode.acc_seg: 94.9938 aux.loss_ce: 0.1623 aux.acc_seg: 92.7558 +2024/08/10 17:59:57 - mmengine - INFO - Iter(train) [ 83300/160000] lr: 5.2079e-03 eta: 23:49:45 time: 1.1163 data_time: 0.0073 memory: 8704 loss: 0.4237 decode.loss_ce: 0.2641 decode.acc_seg: 95.6242 aux.loss_ce: 0.1596 aux.acc_seg: 94.2797 +2024/08/10 18:00:53 - mmengine - INFO - Iter(train) [ 83350/160000] lr: 5.2049e-03 eta: 23:48:49 time: 1.1186 data_time: 0.0080 memory: 8703 loss: 0.3960 decode.loss_ce: 0.2405 decode.acc_seg: 97.1367 aux.loss_ce: 0.1556 aux.acc_seg: 92.6285 +2024/08/10 18:01:49 - mmengine - INFO - Iter(train) [ 83400/160000] lr: 5.2019e-03 eta: 23:47:53 time: 1.1167 data_time: 0.0079 memory: 8703 loss: 0.3665 decode.loss_ce: 0.2240 decode.acc_seg: 94.6187 aux.loss_ce: 0.1425 aux.acc_seg: 87.3586 +2024/08/10 18:02:45 - mmengine - INFO - Iter(train) [ 83450/160000] lr: 5.1989e-03 eta: 23:46:57 time: 1.1179 data_time: 0.0071 memory: 8704 loss: 0.3199 decode.loss_ce: 0.1958 decode.acc_seg: 91.4864 aux.loss_ce: 0.1241 aux.acc_seg: 89.0481 +2024/08/10 18:03:40 - mmengine - INFO - Iter(train) [ 83500/160000] lr: 5.1959e-03 eta: 23:46:01 time: 1.1163 data_time: 0.0066 memory: 8704 loss: 0.4242 decode.loss_ce: 0.2580 decode.acc_seg: 96.6515 aux.loss_ce: 0.1663 aux.acc_seg: 96.0365 +2024/08/10 18:04:36 - mmengine - INFO - Iter(train) [ 83550/160000] lr: 5.1929e-03 eta: 23:45:05 time: 1.1168 data_time: 0.0070 memory: 8703 loss: 0.3940 decode.loss_ce: 0.2346 decode.acc_seg: 95.6457 aux.loss_ce: 0.1594 aux.acc_seg: 94.8057 +2024/08/10 18:05:32 - mmengine - INFO - Iter(train) [ 83600/160000] lr: 5.1900e-03 eta: 23:44:09 time: 1.1120 data_time: 0.0059 memory: 8704 loss: 0.3670 decode.loss_ce: 0.2296 decode.acc_seg: 88.1269 aux.loss_ce: 0.1374 aux.acc_seg: 88.3168 +2024/08/10 18:06:27 - mmengine - INFO - Iter(train) [ 83650/160000] lr: 5.1870e-03 eta: 23:43:13 time: 1.1128 data_time: 0.0070 memory: 8704 loss: 0.3810 decode.loss_ce: 0.2224 decode.acc_seg: 95.7066 aux.loss_ce: 0.1587 aux.acc_seg: 81.4395 +2024/08/10 18:07:23 - mmengine - INFO - Iter(train) [ 83700/160000] lr: 5.1840e-03 eta: 23:42:17 time: 1.1090 data_time: 0.0055 memory: 8704 loss: 0.4089 decode.loss_ce: 0.2641 decode.acc_seg: 93.5904 aux.loss_ce: 0.1448 aux.acc_seg: 85.9895 +2024/08/10 18:08:19 - mmengine - INFO - Iter(train) [ 83750/160000] lr: 5.1810e-03 eta: 23:41:20 time: 1.1142 data_time: 0.0071 memory: 8703 loss: 0.4004 decode.loss_ce: 0.2349 decode.acc_seg: 92.3388 aux.loss_ce: 0.1655 aux.acc_seg: 86.9153 +2024/08/10 18:09:15 - mmengine - INFO - Iter(train) [ 83800/160000] lr: 5.1780e-03 eta: 23:40:24 time: 1.1176 data_time: 0.0078 memory: 8703 loss: 0.4233 decode.loss_ce: 0.2612 decode.acc_seg: 90.4051 aux.loss_ce: 0.1620 aux.acc_seg: 82.2630 +2024/08/10 18:10:10 - mmengine - INFO - Iter(train) [ 83850/160000] lr: 5.1750e-03 eta: 23:39:28 time: 1.1221 data_time: 0.0092 memory: 8703 loss: 0.3091 decode.loss_ce: 0.1877 decode.acc_seg: 92.1644 aux.loss_ce: 0.1214 aux.acc_seg: 86.8284 +2024/08/10 18:11:06 - mmengine - INFO - Iter(train) [ 83900/160000] lr: 5.1720e-03 eta: 23:38:32 time: 1.1142 data_time: 0.0067 memory: 8703 loss: 0.3218 decode.loss_ce: 0.1973 decode.acc_seg: 96.5834 aux.loss_ce: 0.1245 aux.acc_seg: 92.6378 +2024/08/10 18:12:02 - mmengine - INFO - Iter(train) [ 83950/160000] lr: 5.1690e-03 eta: 23:37:36 time: 1.1181 data_time: 0.0070 memory: 8703 loss: 0.3329 decode.loss_ce: 0.1966 decode.acc_seg: 93.1243 aux.loss_ce: 0.1364 aux.acc_seg: 87.2368 +2024/08/10 18:12:58 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 18:12:58 - mmengine - INFO - Iter(train) [ 84000/160000] lr: 5.1660e-03 eta: 23:36:40 time: 1.1156 data_time: 0.0076 memory: 8704 loss: 0.4710 decode.loss_ce: 0.2876 decode.acc_seg: 93.1857 aux.loss_ce: 0.1834 aux.acc_seg: 92.1181 +2024/08/10 18:13:54 - mmengine - INFO - Iter(train) [ 84050/160000] lr: 5.1630e-03 eta: 23:35:44 time: 1.1148 data_time: 0.0057 memory: 8703 loss: 0.3566 decode.loss_ce: 0.2264 decode.acc_seg: 94.8089 aux.loss_ce: 0.1303 aux.acc_seg: 94.2190 +2024/08/10 18:14:49 - mmengine - INFO - Iter(train) [ 84100/160000] lr: 5.1600e-03 eta: 23:34:48 time: 1.1150 data_time: 0.0076 memory: 8704 loss: 0.3477 decode.loss_ce: 0.2222 decode.acc_seg: 93.0621 aux.loss_ce: 0.1255 aux.acc_seg: 90.5842 +2024/08/10 18:15:45 - mmengine - INFO - Iter(train) [ 84150/160000] lr: 5.1570e-03 eta: 23:33:52 time: 1.1145 data_time: 0.0053 memory: 8704 loss: 0.5261 decode.loss_ce: 0.3307 decode.acc_seg: 79.5116 aux.loss_ce: 0.1954 aux.acc_seg: 59.2191 +2024/08/10 18:16:41 - mmengine - INFO - Iter(train) [ 84200/160000] lr: 5.1540e-03 eta: 23:32:56 time: 1.1105 data_time: 0.0055 memory: 8703 loss: 0.3995 decode.loss_ce: 0.2408 decode.acc_seg: 94.3572 aux.loss_ce: 0.1587 aux.acc_seg: 92.5789 +2024/08/10 18:17:37 - mmengine - INFO - Iter(train) [ 84250/160000] lr: 5.1510e-03 eta: 23:32:00 time: 1.1105 data_time: 0.0072 memory: 8703 loss: 0.2780 decode.loss_ce: 0.1447 decode.acc_seg: 94.8214 aux.loss_ce: 0.1332 aux.acc_seg: 86.2687 +2024/08/10 18:18:32 - mmengine - INFO - Iter(train) [ 84300/160000] lr: 5.1480e-03 eta: 23:31:04 time: 1.1139 data_time: 0.0061 memory: 8704 loss: 0.3478 decode.loss_ce: 0.2233 decode.acc_seg: 94.4186 aux.loss_ce: 0.1245 aux.acc_seg: 91.9795 +2024/08/10 18:19:28 - mmengine - INFO - Iter(train) [ 84350/160000] lr: 5.1450e-03 eta: 23:30:08 time: 1.1161 data_time: 0.0072 memory: 8703 loss: 0.4733 decode.loss_ce: 0.2958 decode.acc_seg: 90.3867 aux.loss_ce: 0.1775 aux.acc_seg: 86.1924 +2024/08/10 18:20:24 - mmengine - INFO - Iter(train) [ 84400/160000] lr: 5.1420e-03 eta: 23:29:12 time: 1.1126 data_time: 0.0066 memory: 8704 loss: 0.4477 decode.loss_ce: 0.2717 decode.acc_seg: 92.8636 aux.loss_ce: 0.1760 aux.acc_seg: 86.7969 +2024/08/10 18:21:20 - mmengine - INFO - Iter(train) [ 84450/160000] lr: 5.1390e-03 eta: 23:28:16 time: 1.1182 data_time: 0.0068 memory: 8703 loss: 0.3351 decode.loss_ce: 0.2024 decode.acc_seg: 96.6893 aux.loss_ce: 0.1326 aux.acc_seg: 95.8793 +2024/08/10 18:22:16 - mmengine - INFO - Iter(train) [ 84500/160000] lr: 5.1360e-03 eta: 23:27:20 time: 1.1168 data_time: 0.0077 memory: 8704 loss: 0.4216 decode.loss_ce: 0.2748 decode.acc_seg: 95.2684 aux.loss_ce: 0.1468 aux.acc_seg: 92.6601 +2024/08/10 18:23:11 - mmengine - INFO - Iter(train) [ 84550/160000] lr: 5.1330e-03 eta: 23:26:24 time: 1.1128 data_time: 0.0063 memory: 8703 loss: 0.4088 decode.loss_ce: 0.2404 decode.acc_seg: 95.5454 aux.loss_ce: 0.1684 aux.acc_seg: 93.9243 +2024/08/10 18:24:07 - mmengine - INFO - Iter(train) [ 84600/160000] lr: 5.1300e-03 eta: 23:25:27 time: 1.1141 data_time: 0.0058 memory: 8704 loss: 0.2493 decode.loss_ce: 0.1481 decode.acc_seg: 94.6746 aux.loss_ce: 0.1012 aux.acc_seg: 93.8217 +2024/08/10 18:25:03 - mmengine - INFO - Iter(train) [ 84650/160000] lr: 5.1270e-03 eta: 23:24:31 time: 1.1148 data_time: 0.0080 memory: 8703 loss: 0.4616 decode.loss_ce: 0.2909 decode.acc_seg: 92.1752 aux.loss_ce: 0.1708 aux.acc_seg: 82.4971 +2024/08/10 18:25:59 - mmengine - INFO - Iter(train) [ 84700/160000] lr: 5.1239e-03 eta: 23:23:35 time: 1.1109 data_time: 0.0073 memory: 8703 loss: 0.5049 decode.loss_ce: 0.2954 decode.acc_seg: 87.8612 aux.loss_ce: 0.2095 aux.acc_seg: 74.3641 +2024/08/10 18:26:54 - mmengine - INFO - Iter(train) [ 84750/160000] lr: 5.1209e-03 eta: 23:22:39 time: 1.1140 data_time: 0.0053 memory: 8704 loss: 0.3931 decode.loss_ce: 0.2362 decode.acc_seg: 89.0562 aux.loss_ce: 0.1569 aux.acc_seg: 79.3266 +2024/08/10 18:27:50 - mmengine - INFO - Iter(train) [ 84800/160000] lr: 5.1179e-03 eta: 23:21:43 time: 1.1148 data_time: 0.0057 memory: 8704 loss: 0.4258 decode.loss_ce: 0.2513 decode.acc_seg: 94.1774 aux.loss_ce: 0.1745 aux.acc_seg: 89.5768 +2024/08/10 18:28:46 - mmengine - INFO - Iter(train) [ 84850/160000] lr: 5.1149e-03 eta: 23:20:47 time: 1.1121 data_time: 0.0068 memory: 8704 loss: 0.2764 decode.loss_ce: 0.1756 decode.acc_seg: 96.5974 aux.loss_ce: 0.1008 aux.acc_seg: 92.9066 +2024/08/10 18:29:42 - mmengine - INFO - Iter(train) [ 84900/160000] lr: 5.1119e-03 eta: 23:19:51 time: 1.1126 data_time: 0.0065 memory: 8704 loss: 0.3098 decode.loss_ce: 0.1918 decode.acc_seg: 92.6871 aux.loss_ce: 0.1180 aux.acc_seg: 90.6785 +2024/08/10 18:30:37 - mmengine - INFO - Iter(train) [ 84950/160000] lr: 5.1089e-03 eta: 23:18:55 time: 1.1185 data_time: 0.0073 memory: 8703 loss: 0.4140 decode.loss_ce: 0.2630 decode.acc_seg: 94.1898 aux.loss_ce: 0.1510 aux.acc_seg: 90.1323 +2024/08/10 18:31:33 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 18:31:33 - mmengine - INFO - Iter(train) [ 85000/160000] lr: 5.1059e-03 eta: 23:17:59 time: 1.1124 data_time: 0.0063 memory: 8703 loss: 0.3401 decode.loss_ce: 0.1981 decode.acc_seg: 87.6845 aux.loss_ce: 0.1420 aux.acc_seg: 79.5076 +2024/08/10 18:32:29 - mmengine - INFO - Iter(train) [ 85050/160000] lr: 5.1029e-03 eta: 23:17:03 time: 1.1163 data_time: 0.0087 memory: 8703 loss: 0.4067 decode.loss_ce: 0.2617 decode.acc_seg: 94.9065 aux.loss_ce: 0.1450 aux.acc_seg: 91.7799 +2024/08/10 18:33:25 - mmengine - INFO - Iter(train) [ 85100/160000] lr: 5.0999e-03 eta: 23:16:07 time: 1.1156 data_time: 0.0054 memory: 8703 loss: 0.2847 decode.loss_ce: 0.1755 decode.acc_seg: 97.2530 aux.loss_ce: 0.1092 aux.acc_seg: 96.7391 +2024/08/10 18:34:20 - mmengine - INFO - Iter(train) [ 85150/160000] lr: 5.0969e-03 eta: 23:15:11 time: 1.1144 data_time: 0.0065 memory: 8703 loss: 0.3224 decode.loss_ce: 0.1820 decode.acc_seg: 95.1880 aux.loss_ce: 0.1405 aux.acc_seg: 94.0523 +2024/08/10 18:35:16 - mmengine - INFO - Iter(train) [ 85200/160000] lr: 5.0939e-03 eta: 23:14:15 time: 1.1184 data_time: 0.0074 memory: 8703 loss: 0.4787 decode.loss_ce: 0.3000 decode.acc_seg: 96.8499 aux.loss_ce: 0.1787 aux.acc_seg: 94.0012 +2024/08/10 18:36:12 - mmengine - INFO - Iter(train) [ 85250/160000] lr: 5.0909e-03 eta: 23:13:18 time: 1.1160 data_time: 0.0069 memory: 8704 loss: 0.5069 decode.loss_ce: 0.3141 decode.acc_seg: 86.6079 aux.loss_ce: 0.1928 aux.acc_seg: 82.7421 +2024/08/10 18:37:08 - mmengine - INFO - Iter(train) [ 85300/160000] lr: 5.0879e-03 eta: 23:12:22 time: 1.1143 data_time: 0.0070 memory: 8704 loss: 0.4437 decode.loss_ce: 0.2645 decode.acc_seg: 92.7350 aux.loss_ce: 0.1791 aux.acc_seg: 91.8976 +2024/08/10 18:38:03 - mmengine - INFO - Iter(train) [ 85350/160000] lr: 5.0849e-03 eta: 23:11:26 time: 1.1112 data_time: 0.0060 memory: 8703 loss: 0.5197 decode.loss_ce: 0.3316 decode.acc_seg: 78.2099 aux.loss_ce: 0.1880 aux.acc_seg: 64.9432 +2024/08/10 18:38:59 - mmengine - INFO - Iter(train) [ 85400/160000] lr: 5.0819e-03 eta: 23:10:30 time: 1.1161 data_time: 0.0059 memory: 8703 loss: 0.3043 decode.loss_ce: 0.1745 decode.acc_seg: 91.5141 aux.loss_ce: 0.1297 aux.acc_seg: 92.0368 +2024/08/10 18:39:55 - mmengine - INFO - Iter(train) [ 85450/160000] lr: 5.0789e-03 eta: 23:09:34 time: 1.1091 data_time: 0.0055 memory: 8703 loss: 0.4377 decode.loss_ce: 0.2580 decode.acc_seg: 95.1438 aux.loss_ce: 0.1797 aux.acc_seg: 93.3733 +2024/08/10 18:40:51 - mmengine - INFO - Iter(train) [ 85500/160000] lr: 5.0759e-03 eta: 23:08:38 time: 1.1145 data_time: 0.0068 memory: 8704 loss: 0.4159 decode.loss_ce: 0.2731 decode.acc_seg: 94.1561 aux.loss_ce: 0.1428 aux.acc_seg: 91.9764 +2024/08/10 18:41:46 - mmengine - INFO - Iter(train) [ 85550/160000] lr: 5.0729e-03 eta: 23:07:42 time: 1.1145 data_time: 0.0063 memory: 8703 loss: 0.3581 decode.loss_ce: 0.2061 decode.acc_seg: 95.4960 aux.loss_ce: 0.1520 aux.acc_seg: 95.3201 +2024/08/10 18:42:42 - mmengine - INFO - Iter(train) [ 85600/160000] lr: 5.0699e-03 eta: 23:06:46 time: 1.1117 data_time: 0.0060 memory: 8704 loss: 0.3895 decode.loss_ce: 0.2378 decode.acc_seg: 96.9105 aux.loss_ce: 0.1517 aux.acc_seg: 96.1391 +2024/08/10 18:43:38 - mmengine - INFO - Iter(train) [ 85650/160000] lr: 5.0669e-03 eta: 23:05:50 time: 1.1185 data_time: 0.0076 memory: 8704 loss: 0.3762 decode.loss_ce: 0.2318 decode.acc_seg: 92.7881 aux.loss_ce: 0.1444 aux.acc_seg: 88.5136 +2024/08/10 18:44:34 - mmengine - INFO - Iter(train) [ 85700/160000] lr: 5.0639e-03 eta: 23:04:54 time: 1.1127 data_time: 0.0061 memory: 8704 loss: 0.4733 decode.loss_ce: 0.2764 decode.acc_seg: 94.2344 aux.loss_ce: 0.1969 aux.acc_seg: 89.2460 +2024/08/10 18:45:30 - mmengine - INFO - Iter(train) [ 85750/160000] lr: 5.0609e-03 eta: 23:03:58 time: 1.1184 data_time: 0.0064 memory: 8704 loss: 0.3396 decode.loss_ce: 0.2003 decode.acc_seg: 93.2761 aux.loss_ce: 0.1393 aux.acc_seg: 92.1345 +2024/08/10 18:46:25 - mmengine - INFO - Iter(train) [ 85800/160000] lr: 5.0578e-03 eta: 23:03:02 time: 1.1247 data_time: 0.0080 memory: 8703 loss: 0.3022 decode.loss_ce: 0.1793 decode.acc_seg: 92.3953 aux.loss_ce: 0.1228 aux.acc_seg: 90.8498 +2024/08/10 18:47:22 - mmengine - INFO - Iter(train) [ 85850/160000] lr: 5.0548e-03 eta: 23:02:06 time: 1.1194 data_time: 0.0068 memory: 8703 loss: 0.3363 decode.loss_ce: 0.2001 decode.acc_seg: 90.0990 aux.loss_ce: 0.1363 aux.acc_seg: 84.4417 +2024/08/10 18:48:17 - mmengine - INFO - Iter(train) [ 85900/160000] lr: 5.0518e-03 eta: 23:01:10 time: 1.1146 data_time: 0.0065 memory: 8704 loss: 0.4585 decode.loss_ce: 0.2976 decode.acc_seg: 93.8668 aux.loss_ce: 0.1609 aux.acc_seg: 92.3276 +2024/08/10 18:49:13 - mmengine - INFO - Iter(train) [ 85950/160000] lr: 5.0488e-03 eta: 23:00:14 time: 1.1149 data_time: 0.0062 memory: 8703 loss: 0.4427 decode.loss_ce: 0.2738 decode.acc_seg: 84.9484 aux.loss_ce: 0.1689 aux.acc_seg: 80.8874 +2024/08/10 18:50:09 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 18:50:09 - mmengine - INFO - Iter(train) [ 86000/160000] lr: 5.0458e-03 eta: 22:59:18 time: 1.1110 data_time: 0.0062 memory: 8704 loss: 0.4088 decode.loss_ce: 0.2658 decode.acc_seg: 95.8321 aux.loss_ce: 0.1430 aux.acc_seg: 84.9736 +2024/08/10 18:51:05 - mmengine - INFO - Iter(train) [ 86050/160000] lr: 5.0428e-03 eta: 22:58:22 time: 1.1144 data_time: 0.0066 memory: 8704 loss: 0.3186 decode.loss_ce: 0.1933 decode.acc_seg: 93.5207 aux.loss_ce: 0.1252 aux.acc_seg: 88.0704 +2024/08/10 18:52:00 - mmengine - INFO - Iter(train) [ 86100/160000] lr: 5.0398e-03 eta: 22:57:26 time: 1.1175 data_time: 0.0088 memory: 8703 loss: 0.4023 decode.loss_ce: 0.2270 decode.acc_seg: 95.7483 aux.loss_ce: 0.1753 aux.acc_seg: 90.8681 +2024/08/10 18:52:56 - mmengine - INFO - Iter(train) [ 86150/160000] lr: 5.0368e-03 eta: 22:56:30 time: 1.1077 data_time: 0.0062 memory: 8704 loss: 0.3694 decode.loss_ce: 0.2210 decode.acc_seg: 96.4720 aux.loss_ce: 0.1484 aux.acc_seg: 92.3223 +2024/08/10 18:53:52 - mmengine - INFO - Iter(train) [ 86200/160000] lr: 5.0338e-03 eta: 22:55:34 time: 1.1119 data_time: 0.0068 memory: 8704 loss: 0.4556 decode.loss_ce: 0.2359 decode.acc_seg: 90.9140 aux.loss_ce: 0.2197 aux.acc_seg: 73.9592 +2024/08/10 18:54:47 - mmengine - INFO - Iter(train) [ 86250/160000] lr: 5.0308e-03 eta: 22:54:38 time: 1.1142 data_time: 0.0068 memory: 8704 loss: 0.3104 decode.loss_ce: 0.1885 decode.acc_seg: 96.6708 aux.loss_ce: 0.1219 aux.acc_seg: 96.3081 +2024/08/10 18:55:43 - mmengine - INFO - Iter(train) [ 86300/160000] lr: 5.0278e-03 eta: 22:53:41 time: 1.1102 data_time: 0.0065 memory: 8703 loss: 0.4064 decode.loss_ce: 0.2498 decode.acc_seg: 95.0782 aux.loss_ce: 0.1566 aux.acc_seg: 84.9989 +2024/08/10 18:56:39 - mmengine - INFO - Iter(train) [ 86350/160000] lr: 5.0248e-03 eta: 22:52:45 time: 1.1168 data_time: 0.0074 memory: 8703 loss: 0.4539 decode.loss_ce: 0.2714 decode.acc_seg: 86.0350 aux.loss_ce: 0.1825 aux.acc_seg: 83.5657 +2024/08/10 18:57:35 - mmengine - INFO - Iter(train) [ 86400/160000] lr: 5.0218e-03 eta: 22:51:49 time: 1.1197 data_time: 0.0085 memory: 8703 loss: 0.4132 decode.loss_ce: 0.2661 decode.acc_seg: 96.5700 aux.loss_ce: 0.1472 aux.acc_seg: 96.3502 +2024/08/10 18:58:31 - mmengine - INFO - Iter(train) [ 86450/160000] lr: 5.0187e-03 eta: 22:50:54 time: 1.1186 data_time: 0.0049 memory: 8704 loss: 0.3126 decode.loss_ce: 0.1968 decode.acc_seg: 77.0625 aux.loss_ce: 0.1158 aux.acc_seg: 78.9918 +2024/08/10 18:59:27 - mmengine - INFO - Iter(train) [ 86500/160000] lr: 5.0157e-03 eta: 22:49:58 time: 1.1176 data_time: 0.0074 memory: 8703 loss: 0.3276 decode.loss_ce: 0.2134 decode.acc_seg: 95.5315 aux.loss_ce: 0.1142 aux.acc_seg: 91.3101 +2024/08/10 19:00:22 - mmengine - INFO - Iter(train) [ 86550/160000] lr: 5.0127e-03 eta: 22:49:01 time: 1.1158 data_time: 0.0071 memory: 8704 loss: 0.3590 decode.loss_ce: 0.2030 decode.acc_seg: 92.4397 aux.loss_ce: 0.1560 aux.acc_seg: 90.8423 +2024/08/10 19:01:18 - mmengine - INFO - Iter(train) [ 86600/160000] lr: 5.0097e-03 eta: 22:48:05 time: 1.1119 data_time: 0.0060 memory: 8704 loss: 0.4151 decode.loss_ce: 0.2656 decode.acc_seg: 85.5024 aux.loss_ce: 0.1495 aux.acc_seg: 85.8754 +2024/08/10 19:02:14 - mmengine - INFO - Iter(train) [ 86650/160000] lr: 5.0067e-03 eta: 22:47:09 time: 1.1139 data_time: 0.0070 memory: 8703 loss: 0.4494 decode.loss_ce: 0.2742 decode.acc_seg: 92.3159 aux.loss_ce: 0.1752 aux.acc_seg: 91.6216 +2024/08/10 19:03:09 - mmengine - INFO - Iter(train) [ 86700/160000] lr: 5.0037e-03 eta: 22:46:13 time: 1.1177 data_time: 0.0075 memory: 8703 loss: 0.3059 decode.loss_ce: 0.1836 decode.acc_seg: 96.9508 aux.loss_ce: 0.1223 aux.acc_seg: 96.1451 +2024/08/10 19:04:05 - mmengine - INFO - Iter(train) [ 86750/160000] lr: 5.0007e-03 eta: 22:45:17 time: 1.1153 data_time: 0.0073 memory: 8703 loss: 0.4886 decode.loss_ce: 0.3217 decode.acc_seg: 71.8599 aux.loss_ce: 0.1669 aux.acc_seg: 73.6183 +2024/08/10 19:05:01 - mmengine - INFO - Iter(train) [ 86800/160000] lr: 4.9977e-03 eta: 22:44:21 time: 1.1164 data_time: 0.0076 memory: 8704 loss: 0.4098 decode.loss_ce: 0.2547 decode.acc_seg: 93.6819 aux.loss_ce: 0.1552 aux.acc_seg: 89.4009 +2024/08/10 19:05:57 - mmengine - INFO - Iter(train) [ 86850/160000] lr: 4.9947e-03 eta: 22:43:25 time: 1.1136 data_time: 0.0062 memory: 8703 loss: 0.3894 decode.loss_ce: 0.2347 decode.acc_seg: 95.8143 aux.loss_ce: 0.1547 aux.acc_seg: 89.2485 +2024/08/10 19:06:53 - mmengine - INFO - Iter(train) [ 86900/160000] lr: 4.9916e-03 eta: 22:42:29 time: 1.1217 data_time: 0.0076 memory: 8704 loss: 0.4513 decode.loss_ce: 0.2956 decode.acc_seg: 95.0649 aux.loss_ce: 0.1557 aux.acc_seg: 92.6880 +2024/08/10 19:07:48 - mmengine - INFO - Iter(train) [ 86950/160000] lr: 4.9886e-03 eta: 22:41:33 time: 1.1143 data_time: 0.0064 memory: 8703 loss: 0.3935 decode.loss_ce: 0.2472 decode.acc_seg: 95.7319 aux.loss_ce: 0.1463 aux.acc_seg: 92.2147 +2024/08/10 19:08:44 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 19:08:44 - mmengine - INFO - Iter(train) [ 87000/160000] lr: 4.9856e-03 eta: 22:40:37 time: 1.1218 data_time: 0.0079 memory: 8703 loss: 0.3599 decode.loss_ce: 0.2334 decode.acc_seg: 96.9106 aux.loss_ce: 0.1265 aux.acc_seg: 93.5325 +2024/08/10 19:09:40 - mmengine - INFO - Iter(train) [ 87050/160000] lr: 4.9826e-03 eta: 22:39:41 time: 1.1142 data_time: 0.0073 memory: 8704 loss: 0.4255 decode.loss_ce: 0.2654 decode.acc_seg: 91.8297 aux.loss_ce: 0.1601 aux.acc_seg: 79.8694 +2024/08/10 19:10:36 - mmengine - INFO - Iter(train) [ 87100/160000] lr: 4.9796e-03 eta: 22:38:45 time: 1.1135 data_time: 0.0080 memory: 8704 loss: 0.3230 decode.loss_ce: 0.2058 decode.acc_seg: 87.9471 aux.loss_ce: 0.1172 aux.acc_seg: 75.8414 +2024/08/10 19:11:32 - mmengine - INFO - Iter(train) [ 87150/160000] lr: 4.9766e-03 eta: 22:37:49 time: 1.1157 data_time: 0.0071 memory: 8704 loss: 0.3542 decode.loss_ce: 0.2009 decode.acc_seg: 95.5221 aux.loss_ce: 0.1534 aux.acc_seg: 88.9880 +2024/08/10 19:12:28 - mmengine - INFO - Iter(train) [ 87200/160000] lr: 4.9736e-03 eta: 22:36:53 time: 1.1163 data_time: 0.0068 memory: 8704 loss: 0.4247 decode.loss_ce: 0.2566 decode.acc_seg: 96.7985 aux.loss_ce: 0.1681 aux.acc_seg: 94.9603 +2024/08/10 19:13:23 - mmengine - INFO - Iter(train) [ 87250/160000] lr: 4.9706e-03 eta: 22:35:57 time: 1.1081 data_time: 0.0057 memory: 8704 loss: 0.4234 decode.loss_ce: 0.2531 decode.acc_seg: 95.8875 aux.loss_ce: 0.1703 aux.acc_seg: 94.6453 +2024/08/10 19:14:19 - mmengine - INFO - Iter(train) [ 87300/160000] lr: 4.9676e-03 eta: 22:35:01 time: 1.1140 data_time: 0.0054 memory: 8705 loss: 0.4401 decode.loss_ce: 0.2677 decode.acc_seg: 93.7946 aux.loss_ce: 0.1724 aux.acc_seg: 91.4933 +2024/08/10 19:15:15 - mmengine - INFO - Iter(train) [ 87350/160000] lr: 4.9645e-03 eta: 22:34:05 time: 1.1221 data_time: 0.0079 memory: 8705 loss: 0.3465 decode.loss_ce: 0.2042 decode.acc_seg: 93.8765 aux.loss_ce: 0.1423 aux.acc_seg: 92.0710 +2024/08/10 19:16:10 - mmengine - INFO - Iter(train) [ 87400/160000] lr: 4.9615e-03 eta: 22:33:09 time: 1.1171 data_time: 0.0067 memory: 8704 loss: 0.4209 decode.loss_ce: 0.2599 decode.acc_seg: 87.3474 aux.loss_ce: 0.1609 aux.acc_seg: 80.5195 +2024/08/10 19:17:06 - mmengine - INFO - Iter(train) [ 87450/160000] lr: 4.9585e-03 eta: 22:32:13 time: 1.1203 data_time: 0.0073 memory: 8703 loss: 0.3972 decode.loss_ce: 0.2398 decode.acc_seg: 84.9583 aux.loss_ce: 0.1574 aux.acc_seg: 80.6431 +2024/08/10 19:18:02 - mmengine - INFO - Iter(train) [ 87500/160000] lr: 4.9555e-03 eta: 22:31:17 time: 1.1157 data_time: 0.0060 memory: 8703 loss: 0.4470 decode.loss_ce: 0.2548 decode.acc_seg: 94.4814 aux.loss_ce: 0.1922 aux.acc_seg: 93.3132 +2024/08/10 19:18:58 - mmengine - INFO - Iter(train) [ 87550/160000] lr: 4.9525e-03 eta: 22:30:21 time: 1.1151 data_time: 0.0066 memory: 8704 loss: 0.3241 decode.loss_ce: 0.2092 decode.acc_seg: 79.4880 aux.loss_ce: 0.1149 aux.acc_seg: 81.5701 +2024/08/10 19:19:54 - mmengine - INFO - Iter(train) [ 87600/160000] lr: 4.9495e-03 eta: 22:29:25 time: 1.1153 data_time: 0.0064 memory: 8703 loss: 0.3592 decode.loss_ce: 0.2202 decode.acc_seg: 80.4651 aux.loss_ce: 0.1390 aux.acc_seg: 67.9720 +2024/08/10 19:20:50 - mmengine - INFO - Iter(train) [ 87650/160000] lr: 4.9465e-03 eta: 22:28:29 time: 1.1164 data_time: 0.0070 memory: 8703 loss: 0.3857 decode.loss_ce: 0.2289 decode.acc_seg: 91.9147 aux.loss_ce: 0.1568 aux.acc_seg: 87.0516 +2024/08/10 19:21:46 - mmengine - INFO - Iter(train) [ 87700/160000] lr: 4.9434e-03 eta: 22:27:33 time: 1.1142 data_time: 0.0068 memory: 8704 loss: 0.4247 decode.loss_ce: 0.2651 decode.acc_seg: 81.3494 aux.loss_ce: 0.1595 aux.acc_seg: 70.8040 +2024/08/10 19:22:41 - mmengine - INFO - Iter(train) [ 87750/160000] lr: 4.9404e-03 eta: 22:26:37 time: 1.1164 data_time: 0.0072 memory: 8703 loss: 0.3638 decode.loss_ce: 0.2162 decode.acc_seg: 94.7800 aux.loss_ce: 0.1476 aux.acc_seg: 92.3527 +2024/08/10 19:23:37 - mmengine - INFO - Iter(train) [ 87800/160000] lr: 4.9374e-03 eta: 22:25:41 time: 1.1124 data_time: 0.0072 memory: 8704 loss: 0.3601 decode.loss_ce: 0.2203 decode.acc_seg: 92.1842 aux.loss_ce: 0.1397 aux.acc_seg: 86.0835 +2024/08/10 19:24:33 - mmengine - INFO - Iter(train) [ 87850/160000] lr: 4.9344e-03 eta: 22:24:45 time: 1.1142 data_time: 0.0083 memory: 8704 loss: 0.3227 decode.loss_ce: 0.1977 decode.acc_seg: 96.1453 aux.loss_ce: 0.1251 aux.acc_seg: 95.1341 +2024/08/10 19:25:29 - mmengine - INFO - Iter(train) [ 87900/160000] lr: 4.9314e-03 eta: 22:23:49 time: 1.1169 data_time: 0.0076 memory: 8703 loss: 0.2825 decode.loss_ce: 0.1658 decode.acc_seg: 97.1632 aux.loss_ce: 0.1167 aux.acc_seg: 96.6145 +2024/08/10 19:26:24 - mmengine - INFO - Iter(train) [ 87950/160000] lr: 4.9284e-03 eta: 22:22:53 time: 1.1132 data_time: 0.0063 memory: 8704 loss: 0.4022 decode.loss_ce: 0.2630 decode.acc_seg: 90.6355 aux.loss_ce: 0.1392 aux.acc_seg: 85.8896 +2024/08/10 19:27:20 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 19:27:20 - mmengine - INFO - Iter(train) [ 88000/160000] lr: 4.9254e-03 eta: 22:21:57 time: 1.1169 data_time: 0.0071 memory: 8704 loss: 0.3761 decode.loss_ce: 0.2322 decode.acc_seg: 94.9975 aux.loss_ce: 0.1439 aux.acc_seg: 86.3013 +2024/08/10 19:28:16 - mmengine - INFO - Iter(train) [ 88050/160000] lr: 4.9223e-03 eta: 22:21:01 time: 1.1164 data_time: 0.0080 memory: 8704 loss: 0.3360 decode.loss_ce: 0.2139 decode.acc_seg: 94.6786 aux.loss_ce: 0.1220 aux.acc_seg: 94.0904 +2024/08/10 19:29:12 - mmengine - INFO - Iter(train) [ 88100/160000] lr: 4.9193e-03 eta: 22:20:05 time: 1.1152 data_time: 0.0067 memory: 8704 loss: 0.5277 decode.loss_ce: 0.3370 decode.acc_seg: 80.2691 aux.loss_ce: 0.1907 aux.acc_seg: 73.4135 +2024/08/10 19:30:08 - mmengine - INFO - Iter(train) [ 88150/160000] lr: 4.9163e-03 eta: 22:19:09 time: 1.1144 data_time: 0.0070 memory: 8703 loss: 0.4042 decode.loss_ce: 0.2356 decode.acc_seg: 88.0468 aux.loss_ce: 0.1686 aux.acc_seg: 86.0554 +2024/08/10 19:31:04 - mmengine - INFO - Iter(train) [ 88200/160000] lr: 4.9133e-03 eta: 22:18:13 time: 1.1205 data_time: 0.0082 memory: 8703 loss: 0.3191 decode.loss_ce: 0.2090 decode.acc_seg: 89.1349 aux.loss_ce: 0.1100 aux.acc_seg: 88.0039 +2024/08/10 19:31:59 - mmengine - INFO - Iter(train) [ 88250/160000] lr: 4.9103e-03 eta: 22:17:17 time: 1.1123 data_time: 0.0067 memory: 8703 loss: 0.4698 decode.loss_ce: 0.3015 decode.acc_seg: 88.3020 aux.loss_ce: 0.1682 aux.acc_seg: 87.5154 +2024/08/10 19:32:55 - mmengine - INFO - Iter(train) [ 88300/160000] lr: 4.9073e-03 eta: 22:16:21 time: 1.1090 data_time: 0.0071 memory: 8704 loss: 0.3568 decode.loss_ce: 0.2190 decode.acc_seg: 92.3003 aux.loss_ce: 0.1378 aux.acc_seg: 89.7446 +2024/08/10 19:33:51 - mmengine - INFO - Iter(train) [ 88350/160000] lr: 4.9042e-03 eta: 22:15:25 time: 1.1168 data_time: 0.0076 memory: 8703 loss: 0.4074 decode.loss_ce: 0.2454 decode.acc_seg: 93.4980 aux.loss_ce: 0.1620 aux.acc_seg: 87.6168 +2024/08/10 19:34:47 - mmengine - INFO - Iter(train) [ 88400/160000] lr: 4.9012e-03 eta: 22:14:29 time: 1.1160 data_time: 0.0074 memory: 8703 loss: 0.4457 decode.loss_ce: 0.2865 decode.acc_seg: 89.1909 aux.loss_ce: 0.1592 aux.acc_seg: 89.8082 +2024/08/10 19:35:43 - mmengine - INFO - Iter(train) [ 88450/160000] lr: 4.8982e-03 eta: 22:13:33 time: 1.1177 data_time: 0.0072 memory: 8703 loss: 0.3182 decode.loss_ce: 0.1926 decode.acc_seg: 94.1404 aux.loss_ce: 0.1256 aux.acc_seg: 92.6945 +2024/08/10 19:36:39 - mmengine - INFO - Iter(train) [ 88500/160000] lr: 4.8952e-03 eta: 22:12:37 time: 1.1197 data_time: 0.0069 memory: 8703 loss: 0.3752 decode.loss_ce: 0.2398 decode.acc_seg: 86.4729 aux.loss_ce: 0.1354 aux.acc_seg: 85.3809 +2024/08/10 19:37:34 - mmengine - INFO - Iter(train) [ 88550/160000] lr: 4.8922e-03 eta: 22:11:41 time: 1.1165 data_time: 0.0075 memory: 8703 loss: 0.3655 decode.loss_ce: 0.2204 decode.acc_seg: 85.9700 aux.loss_ce: 0.1451 aux.acc_seg: 83.9879 +2024/08/10 19:38:30 - mmengine - INFO - Iter(train) [ 88600/160000] lr: 4.8891e-03 eta: 22:10:45 time: 1.1174 data_time: 0.0077 memory: 8703 loss: 0.3258 decode.loss_ce: 0.1933 decode.acc_seg: 94.6244 aux.loss_ce: 0.1325 aux.acc_seg: 91.4851 +2024/08/10 19:39:26 - mmengine - INFO - Iter(train) [ 88650/160000] lr: 4.8861e-03 eta: 22:09:49 time: 1.1195 data_time: 0.0082 memory: 8703 loss: 0.5418 decode.loss_ce: 0.3321 decode.acc_seg: 88.1447 aux.loss_ce: 0.2097 aux.acc_seg: 86.0632 +2024/08/10 19:40:22 - mmengine - INFO - Iter(train) [ 88700/160000] lr: 4.8831e-03 eta: 22:08:53 time: 1.1260 data_time: 0.0065 memory: 8703 loss: 0.3729 decode.loss_ce: 0.2371 decode.acc_seg: 94.9374 aux.loss_ce: 0.1358 aux.acc_seg: 93.5873 +2024/08/10 19:41:18 - mmengine - INFO - Iter(train) [ 88750/160000] lr: 4.8801e-03 eta: 22:07:57 time: 1.1157 data_time: 0.0080 memory: 8704 loss: 0.3788 decode.loss_ce: 0.2342 decode.acc_seg: 78.3300 aux.loss_ce: 0.1447 aux.acc_seg: 66.2200 +2024/08/10 19:42:14 - mmengine - INFO - Iter(train) [ 88800/160000] lr: 4.8771e-03 eta: 22:07:01 time: 1.1164 data_time: 0.0074 memory: 8703 loss: 0.4774 decode.loss_ce: 0.2921 decode.acc_seg: 92.2362 aux.loss_ce: 0.1853 aux.acc_seg: 82.6031 +2024/08/10 19:43:09 - mmengine - INFO - Iter(train) [ 88850/160000] lr: 4.8741e-03 eta: 22:06:05 time: 1.1171 data_time: 0.0084 memory: 8704 loss: 0.4907 decode.loss_ce: 0.2834 decode.acc_seg: 95.2402 aux.loss_ce: 0.2073 aux.acc_seg: 92.2400 +2024/08/10 19:44:05 - mmengine - INFO - Iter(train) [ 88900/160000] lr: 4.8710e-03 eta: 22:05:09 time: 1.1197 data_time: 0.0067 memory: 8704 loss: 0.3015 decode.loss_ce: 0.1764 decode.acc_seg: 94.1991 aux.loss_ce: 0.1251 aux.acc_seg: 88.2693 +2024/08/10 19:45:01 - mmengine - INFO - Iter(train) [ 88950/160000] lr: 4.8680e-03 eta: 22:04:13 time: 1.1162 data_time: 0.0070 memory: 8703 loss: 0.3160 decode.loss_ce: 0.1983 decode.acc_seg: 94.7083 aux.loss_ce: 0.1177 aux.acc_seg: 92.9227 +2024/08/10 19:45:57 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 19:45:57 - mmengine - INFO - Iter(train) [ 89000/160000] lr: 4.8650e-03 eta: 22:03:17 time: 1.1134 data_time: 0.0053 memory: 8705 loss: 0.4433 decode.loss_ce: 0.2680 decode.acc_seg: 96.6198 aux.loss_ce: 0.1753 aux.acc_seg: 96.0760 +2024/08/10 19:46:53 - mmengine - INFO - Iter(train) [ 89050/160000] lr: 4.8620e-03 eta: 22:02:21 time: 1.1139 data_time: 0.0070 memory: 8704 loss: 0.5471 decode.loss_ce: 0.3282 decode.acc_seg: 86.8095 aux.loss_ce: 0.2189 aux.acc_seg: 82.5656 +2024/08/10 19:47:48 - mmengine - INFO - Iter(train) [ 89100/160000] lr: 4.8590e-03 eta: 22:01:25 time: 1.1151 data_time: 0.0068 memory: 8704 loss: 0.4383 decode.loss_ce: 0.2724 decode.acc_seg: 89.0882 aux.loss_ce: 0.1659 aux.acc_seg: 75.4128 +2024/08/10 19:48:44 - mmengine - INFO - Iter(train) [ 89150/160000] lr: 4.8559e-03 eta: 22:00:29 time: 1.1177 data_time: 0.0066 memory: 8704 loss: 0.3662 decode.loss_ce: 0.2333 decode.acc_seg: 91.8310 aux.loss_ce: 0.1329 aux.acc_seg: 91.1188 +2024/08/10 19:49:40 - mmengine - INFO - Iter(train) [ 89200/160000] lr: 4.8529e-03 eta: 21:59:33 time: 1.1247 data_time: 0.0086 memory: 8704 loss: 0.5313 decode.loss_ce: 0.3139 decode.acc_seg: 89.9308 aux.loss_ce: 0.2174 aux.acc_seg: 80.0327 +2024/08/10 19:50:36 - mmengine - INFO - Iter(train) [ 89250/160000] lr: 4.8499e-03 eta: 21:58:37 time: 1.1177 data_time: 0.0067 memory: 8703 loss: 0.3875 decode.loss_ce: 0.2372 decode.acc_seg: 95.7448 aux.loss_ce: 0.1503 aux.acc_seg: 94.0673 +2024/08/10 19:51:32 - mmengine - INFO - Iter(train) [ 89300/160000] lr: 4.8469e-03 eta: 21:57:41 time: 1.1141 data_time: 0.0070 memory: 8703 loss: 0.3349 decode.loss_ce: 0.2090 decode.acc_seg: 90.2400 aux.loss_ce: 0.1258 aux.acc_seg: 80.6992 +2024/08/10 19:52:27 - mmengine - INFO - Iter(train) [ 89350/160000] lr: 4.8438e-03 eta: 21:56:45 time: 1.1118 data_time: 0.0074 memory: 8704 loss: 0.3512 decode.loss_ce: 0.2066 decode.acc_seg: 94.0991 aux.loss_ce: 0.1446 aux.acc_seg: 83.2050 +2024/08/10 19:53:23 - mmengine - INFO - Iter(train) [ 89400/160000] lr: 4.8408e-03 eta: 21:55:49 time: 1.1163 data_time: 0.0072 memory: 8703 loss: 0.3553 decode.loss_ce: 0.2012 decode.acc_seg: 94.1970 aux.loss_ce: 0.1541 aux.acc_seg: 92.6785 +2024/08/10 19:54:19 - mmengine - INFO - Iter(train) [ 89450/160000] lr: 4.8378e-03 eta: 21:54:53 time: 1.1167 data_time: 0.0061 memory: 8703 loss: 0.2556 decode.loss_ce: 0.1564 decode.acc_seg: 90.7738 aux.loss_ce: 0.0993 aux.acc_seg: 88.3278 +2024/08/10 19:55:15 - mmengine - INFO - Iter(train) [ 89500/160000] lr: 4.8348e-03 eta: 21:53:57 time: 1.1185 data_time: 0.0078 memory: 8703 loss: 0.4801 decode.loss_ce: 0.2916 decode.acc_seg: 90.2182 aux.loss_ce: 0.1884 aux.acc_seg: 89.6903 +2024/08/10 19:56:11 - mmengine - INFO - Iter(train) [ 89550/160000] lr: 4.8318e-03 eta: 21:53:01 time: 1.1156 data_time: 0.0067 memory: 8703 loss: 0.6119 decode.loss_ce: 0.3973 decode.acc_seg: 96.5774 aux.loss_ce: 0.2146 aux.acc_seg: 88.3740 +2024/08/10 19:57:07 - mmengine - INFO - Iter(train) [ 89600/160000] lr: 4.8287e-03 eta: 21:52:05 time: 1.1194 data_time: 0.0076 memory: 8704 loss: 0.4176 decode.loss_ce: 0.2589 decode.acc_seg: 93.1892 aux.loss_ce: 0.1587 aux.acc_seg: 92.6573 +2024/08/10 19:58:02 - mmengine - INFO - Iter(train) [ 89650/160000] lr: 4.8257e-03 eta: 21:51:09 time: 1.1163 data_time: 0.0064 memory: 8704 loss: 0.5014 decode.loss_ce: 0.3271 decode.acc_seg: 94.8888 aux.loss_ce: 0.1743 aux.acc_seg: 92.8750 +2024/08/10 19:58:58 - mmengine - INFO - Iter(train) [ 89700/160000] lr: 4.8227e-03 eta: 21:50:13 time: 1.1125 data_time: 0.0065 memory: 8703 loss: 0.3609 decode.loss_ce: 0.2223 decode.acc_seg: 88.3277 aux.loss_ce: 0.1385 aux.acc_seg: 83.9097 +2024/08/10 19:59:54 - mmengine - INFO - Iter(train) [ 89750/160000] lr: 4.8197e-03 eta: 21:49:17 time: 1.1160 data_time: 0.0073 memory: 8704 loss: 0.5406 decode.loss_ce: 0.3264 decode.acc_seg: 93.7249 aux.loss_ce: 0.2143 aux.acc_seg: 71.7080 +2024/08/10 20:00:50 - mmengine - INFO - Iter(train) [ 89800/160000] lr: 4.8166e-03 eta: 21:48:21 time: 1.1135 data_time: 0.0067 memory: 8703 loss: 0.4077 decode.loss_ce: 0.2581 decode.acc_seg: 95.3521 aux.loss_ce: 0.1495 aux.acc_seg: 91.0964 +2024/08/10 20:01:45 - mmengine - INFO - Iter(train) [ 89850/160000] lr: 4.8136e-03 eta: 21:47:25 time: 1.1123 data_time: 0.0066 memory: 8703 loss: 0.4363 decode.loss_ce: 0.2654 decode.acc_seg: 93.7202 aux.loss_ce: 0.1709 aux.acc_seg: 85.0036 +2024/08/10 20:02:41 - mmengine - INFO - Iter(train) [ 89900/160000] lr: 4.8106e-03 eta: 21:46:29 time: 1.1152 data_time: 0.0065 memory: 8704 loss: 0.3367 decode.loss_ce: 0.2010 decode.acc_seg: 93.0516 aux.loss_ce: 0.1357 aux.acc_seg: 80.7595 +2024/08/10 20:03:37 - mmengine - INFO - Iter(train) [ 89950/160000] lr: 4.8076e-03 eta: 21:45:32 time: 1.1112 data_time: 0.0070 memory: 8704 loss: 0.3381 decode.loss_ce: 0.2106 decode.acc_seg: 87.1436 aux.loss_ce: 0.1275 aux.acc_seg: 80.8287 +2024/08/10 20:04:33 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 20:04:33 - mmengine - INFO - Iter(train) [ 90000/160000] lr: 4.8045e-03 eta: 21:44:36 time: 1.1157 data_time: 0.0058 memory: 8704 loss: 0.3458 decode.loss_ce: 0.2007 decode.acc_seg: 95.9650 aux.loss_ce: 0.1452 aux.acc_seg: 95.2510 +2024/08/10 20:05:28 - mmengine - INFO - Iter(train) [ 90050/160000] lr: 4.8015e-03 eta: 21:43:40 time: 1.1156 data_time: 0.0067 memory: 8703 loss: 0.3090 decode.loss_ce: 0.1880 decode.acc_seg: 96.1061 aux.loss_ce: 0.1210 aux.acc_seg: 88.9245 +2024/08/10 20:06:24 - mmengine - INFO - Iter(train) [ 90100/160000] lr: 4.7985e-03 eta: 21:42:44 time: 1.1191 data_time: 0.0088 memory: 8703 loss: 0.3123 decode.loss_ce: 0.1869 decode.acc_seg: 84.1067 aux.loss_ce: 0.1254 aux.acc_seg: 82.0816 +2024/08/10 20:07:20 - mmengine - INFO - Iter(train) [ 90150/160000] lr: 4.7955e-03 eta: 21:41:48 time: 1.1190 data_time: 0.0078 memory: 8704 loss: 0.3029 decode.loss_ce: 0.1900 decode.acc_seg: 94.4848 aux.loss_ce: 0.1129 aux.acc_seg: 93.7925 +2024/08/10 20:08:16 - mmengine - INFO - Iter(train) [ 90200/160000] lr: 4.7924e-03 eta: 21:40:52 time: 1.1158 data_time: 0.0059 memory: 8703 loss: 0.5400 decode.loss_ce: 0.3588 decode.acc_seg: 74.7759 aux.loss_ce: 0.1812 aux.acc_seg: 70.9673 +2024/08/10 20:09:12 - mmengine - INFO - Iter(train) [ 90250/160000] lr: 4.7894e-03 eta: 21:39:56 time: 1.1159 data_time: 0.0073 memory: 8703 loss: 0.4049 decode.loss_ce: 0.2355 decode.acc_seg: 95.7211 aux.loss_ce: 0.1693 aux.acc_seg: 93.9260 +2024/08/10 20:10:07 - mmengine - INFO - Iter(train) [ 90300/160000] lr: 4.7864e-03 eta: 21:39:00 time: 1.1146 data_time: 0.0063 memory: 8703 loss: 0.4096 decode.loss_ce: 0.2612 decode.acc_seg: 97.4442 aux.loss_ce: 0.1484 aux.acc_seg: 97.3008 +2024/08/10 20:11:03 - mmengine - INFO - Iter(train) [ 90350/160000] lr: 4.7834e-03 eta: 21:38:05 time: 1.1166 data_time: 0.0070 memory: 8704 loss: 0.5262 decode.loss_ce: 0.3242 decode.acc_seg: 91.5747 aux.loss_ce: 0.2021 aux.acc_seg: 89.7586 +2024/08/10 20:11:59 - mmengine - INFO - Iter(train) [ 90400/160000] lr: 4.7803e-03 eta: 21:37:08 time: 1.1136 data_time: 0.0058 memory: 8704 loss: 0.4510 decode.loss_ce: 0.2755 decode.acc_seg: 95.7512 aux.loss_ce: 0.1755 aux.acc_seg: 91.6069 +2024/08/10 20:12:55 - mmengine - INFO - Iter(train) [ 90450/160000] lr: 4.7773e-03 eta: 21:36:12 time: 1.1092 data_time: 0.0057 memory: 8704 loss: 0.3247 decode.loss_ce: 0.1970 decode.acc_seg: 95.6251 aux.loss_ce: 0.1278 aux.acc_seg: 93.6921 +2024/08/10 20:13:51 - mmengine - INFO - Iter(train) [ 90500/160000] lr: 4.7743e-03 eta: 21:35:16 time: 1.1155 data_time: 0.0077 memory: 8703 loss: 0.3510 decode.loss_ce: 0.2129 decode.acc_seg: 96.1931 aux.loss_ce: 0.1380 aux.acc_seg: 91.6636 +2024/08/10 20:14:46 - mmengine - INFO - Iter(train) [ 90550/160000] lr: 4.7713e-03 eta: 21:34:20 time: 1.1181 data_time: 0.0079 memory: 8704 loss: 0.3218 decode.loss_ce: 0.1968 decode.acc_seg: 92.5540 aux.loss_ce: 0.1250 aux.acc_seg: 83.4400 +2024/08/10 20:15:42 - mmengine - INFO - Iter(train) [ 90600/160000] lr: 4.7682e-03 eta: 21:33:24 time: 1.1183 data_time: 0.0081 memory: 8704 loss: 0.3376 decode.loss_ce: 0.2164 decode.acc_seg: 81.4309 aux.loss_ce: 0.1212 aux.acc_seg: 79.0374 +2024/08/10 20:16:38 - mmengine - INFO - Iter(train) [ 90650/160000] lr: 4.7652e-03 eta: 21:32:28 time: 1.1150 data_time: 0.0062 memory: 8703 loss: 0.3789 decode.loss_ce: 0.2319 decode.acc_seg: 88.5484 aux.loss_ce: 0.1470 aux.acc_seg: 85.0192 +2024/08/10 20:17:34 - mmengine - INFO - Iter(train) [ 90700/160000] lr: 4.7622e-03 eta: 21:31:32 time: 1.1169 data_time: 0.0057 memory: 8705 loss: 0.3420 decode.loss_ce: 0.2241 decode.acc_seg: 87.7600 aux.loss_ce: 0.1178 aux.acc_seg: 83.1651 +2024/08/10 20:18:30 - mmengine - INFO - Iter(train) [ 90750/160000] lr: 4.7592e-03 eta: 21:30:36 time: 1.1212 data_time: 0.0055 memory: 8704 loss: 0.3483 decode.loss_ce: 0.2047 decode.acc_seg: 96.3504 aux.loss_ce: 0.1437 aux.acc_seg: 88.7549 +2024/08/10 20:19:26 - mmengine - INFO - Iter(train) [ 90800/160000] lr: 4.7561e-03 eta: 21:29:41 time: 1.1187 data_time: 0.0084 memory: 8704 loss: 0.3235 decode.loss_ce: 0.2058 decode.acc_seg: 90.6023 aux.loss_ce: 0.1177 aux.acc_seg: 85.7957 +2024/08/10 20:20:21 - mmengine - INFO - Iter(train) [ 90850/160000] lr: 4.7531e-03 eta: 21:28:45 time: 1.1174 data_time: 0.0072 memory: 8703 loss: 0.4262 decode.loss_ce: 0.2385 decode.acc_seg: 94.5113 aux.loss_ce: 0.1877 aux.acc_seg: 92.9773 +2024/08/10 20:21:17 - mmengine - INFO - Iter(train) [ 90900/160000] lr: 4.7501e-03 eta: 21:27:48 time: 1.1147 data_time: 0.0070 memory: 8704 loss: 0.3641 decode.loss_ce: 0.2301 decode.acc_seg: 92.3456 aux.loss_ce: 0.1339 aux.acc_seg: 85.0190 +2024/08/10 20:22:13 - mmengine - INFO - Iter(train) [ 90950/160000] lr: 4.7470e-03 eta: 21:26:52 time: 1.1167 data_time: 0.0065 memory: 8704 loss: 0.3824 decode.loss_ce: 0.2395 decode.acc_seg: 94.8059 aux.loss_ce: 0.1428 aux.acc_seg: 91.8530 +2024/08/10 20:23:09 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 20:23:09 - mmengine - INFO - Iter(train) [ 91000/160000] lr: 4.7440e-03 eta: 21:25:56 time: 1.1119 data_time: 0.0058 memory: 8703 loss: 0.3723 decode.loss_ce: 0.2368 decode.acc_seg: 94.5324 aux.loss_ce: 0.1355 aux.acc_seg: 93.6356 +2024/08/10 20:24:04 - mmengine - INFO - Iter(train) [ 91050/160000] lr: 4.7410e-03 eta: 21:25:00 time: 1.1191 data_time: 0.0068 memory: 8704 loss: 0.4040 decode.loss_ce: 0.2363 decode.acc_seg: 88.1487 aux.loss_ce: 0.1677 aux.acc_seg: 83.1780 +2024/08/10 20:25:00 - mmengine - INFO - Iter(train) [ 91100/160000] lr: 4.7380e-03 eta: 21:24:04 time: 1.1169 data_time: 0.0063 memory: 8705 loss: 0.3123 decode.loss_ce: 0.1965 decode.acc_seg: 95.5812 aux.loss_ce: 0.1158 aux.acc_seg: 94.3021 +2024/08/10 20:25:56 - mmengine - INFO - Iter(train) [ 91150/160000] lr: 4.7349e-03 eta: 21:23:09 time: 1.1168 data_time: 0.0067 memory: 8703 loss: 0.5854 decode.loss_ce: 0.3937 decode.acc_seg: 95.5888 aux.loss_ce: 0.1916 aux.acc_seg: 91.7904 +2024/08/10 20:26:52 - mmengine - INFO - Iter(train) [ 91200/160000] lr: 4.7319e-03 eta: 21:22:13 time: 1.1197 data_time: 0.0061 memory: 8704 loss: 0.4037 decode.loss_ce: 0.2476 decode.acc_seg: 92.3495 aux.loss_ce: 0.1561 aux.acc_seg: 89.6558 +2024/08/10 20:27:48 - mmengine - INFO - Iter(train) [ 91250/160000] lr: 4.7289e-03 eta: 21:21:17 time: 1.1172 data_time: 0.0068 memory: 8704 loss: 0.3859 decode.loss_ce: 0.2093 decode.acc_seg: 96.4072 aux.loss_ce: 0.1766 aux.acc_seg: 91.0837 +2024/08/10 20:28:44 - mmengine - INFO - Iter(train) [ 91300/160000] lr: 4.7258e-03 eta: 21:20:21 time: 1.1162 data_time: 0.0074 memory: 8704 loss: 0.4003 decode.loss_ce: 0.2481 decode.acc_seg: 93.5278 aux.loss_ce: 0.1523 aux.acc_seg: 91.3591 +2024/08/10 20:29:40 - mmengine - INFO - Iter(train) [ 91350/160000] lr: 4.7228e-03 eta: 21:19:25 time: 1.1161 data_time: 0.0061 memory: 8704 loss: 0.2349 decode.loss_ce: 0.1384 decode.acc_seg: 96.6800 aux.loss_ce: 0.0965 aux.acc_seg: 95.4177 +2024/08/10 20:30:35 - mmengine - INFO - Iter(train) [ 91400/160000] lr: 4.7198e-03 eta: 21:18:29 time: 1.1182 data_time: 0.0072 memory: 8704 loss: 0.4088 decode.loss_ce: 0.2606 decode.acc_seg: 94.3106 aux.loss_ce: 0.1482 aux.acc_seg: 92.1772 +2024/08/10 20:31:31 - mmengine - INFO - Iter(train) [ 91450/160000] lr: 4.7168e-03 eta: 21:17:33 time: 1.1147 data_time: 0.0069 memory: 8704 loss: 0.4339 decode.loss_ce: 0.2791 decode.acc_seg: 94.7680 aux.loss_ce: 0.1548 aux.acc_seg: 92.9892 +2024/08/10 20:32:27 - mmengine - INFO - Iter(train) [ 91500/160000] lr: 4.7137e-03 eta: 21:16:37 time: 1.1141 data_time: 0.0069 memory: 8704 loss: 0.4850 decode.loss_ce: 0.2971 decode.acc_seg: 89.5631 aux.loss_ce: 0.1879 aux.acc_seg: 79.9170 +2024/08/10 20:33:23 - mmengine - INFO - Iter(train) [ 91550/160000] lr: 4.7107e-03 eta: 21:15:40 time: 1.1131 data_time: 0.0068 memory: 8703 loss: 0.2270 decode.loss_ce: 0.1452 decode.acc_seg: 97.1671 aux.loss_ce: 0.0819 aux.acc_seg: 96.5565 +2024/08/10 20:34:18 - mmengine - INFO - Iter(train) [ 91600/160000] lr: 4.7077e-03 eta: 21:14:44 time: 1.1173 data_time: 0.0066 memory: 8704 loss: 0.3194 decode.loss_ce: 0.2012 decode.acc_seg: 95.1852 aux.loss_ce: 0.1182 aux.acc_seg: 93.4729 +2024/08/10 20:35:14 - mmengine - INFO - Iter(train) [ 91650/160000] lr: 4.7046e-03 eta: 21:13:49 time: 1.1159 data_time: 0.0063 memory: 8704 loss: 0.3371 decode.loss_ce: 0.2079 decode.acc_seg: 92.6391 aux.loss_ce: 0.1292 aux.acc_seg: 92.4729 +2024/08/10 20:36:10 - mmengine - INFO - Iter(train) [ 91700/160000] lr: 4.7016e-03 eta: 21:12:53 time: 1.1201 data_time: 0.0052 memory: 8703 loss: 0.2857 decode.loss_ce: 0.1812 decode.acc_seg: 94.1047 aux.loss_ce: 0.1045 aux.acc_seg: 89.3454 +2024/08/10 20:37:06 - mmengine - INFO - Iter(train) [ 91750/160000] lr: 4.6986e-03 eta: 21:11:57 time: 1.1142 data_time: 0.0057 memory: 8704 loss: 0.4087 decode.loss_ce: 0.2357 decode.acc_seg: 95.7223 aux.loss_ce: 0.1730 aux.acc_seg: 91.4650 +2024/08/10 20:38:02 - mmengine - INFO - Iter(train) [ 91800/160000] lr: 4.6955e-03 eta: 21:11:01 time: 1.1188 data_time: 0.0066 memory: 8703 loss: 0.3076 decode.loss_ce: 0.1960 decode.acc_seg: 96.6193 aux.loss_ce: 0.1116 aux.acc_seg: 96.3471 +2024/08/10 20:38:57 - mmengine - INFO - Iter(train) [ 91850/160000] lr: 4.6925e-03 eta: 21:10:05 time: 1.1082 data_time: 0.0060 memory: 8704 loss: 0.3775 decode.loss_ce: 0.2301 decode.acc_seg: 94.9221 aux.loss_ce: 0.1474 aux.acc_seg: 92.8872 +2024/08/10 20:39:53 - mmengine - INFO - Iter(train) [ 91900/160000] lr: 4.6895e-03 eta: 21:09:09 time: 1.1151 data_time: 0.0063 memory: 8704 loss: 0.3133 decode.loss_ce: 0.1896 decode.acc_seg: 95.5399 aux.loss_ce: 0.1237 aux.acc_seg: 89.8556 +2024/08/10 20:40:49 - mmengine - INFO - Iter(train) [ 91950/160000] lr: 4.6864e-03 eta: 21:08:12 time: 1.1129 data_time: 0.0058 memory: 8704 loss: 0.3273 decode.loss_ce: 0.1940 decode.acc_seg: 94.1018 aux.loss_ce: 0.1333 aux.acc_seg: 89.7160 +2024/08/10 20:41:45 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 20:41:45 - mmengine - INFO - Iter(train) [ 92000/160000] lr: 4.6834e-03 eta: 21:07:16 time: 1.1173 data_time: 0.0064 memory: 8703 loss: 0.4964 decode.loss_ce: 0.3001 decode.acc_seg: 92.3845 aux.loss_ce: 0.1963 aux.acc_seg: 88.9103 +2024/08/10 20:42:40 - mmengine - INFO - Iter(train) [ 92050/160000] lr: 4.6804e-03 eta: 21:06:20 time: 1.1135 data_time: 0.0061 memory: 8704 loss: 0.2891 decode.loss_ce: 0.1811 decode.acc_seg: 96.0377 aux.loss_ce: 0.1079 aux.acc_seg: 94.1079 +2024/08/10 20:43:36 - mmengine - INFO - Iter(train) [ 92100/160000] lr: 4.6773e-03 eta: 21:05:24 time: 1.1195 data_time: 0.0070 memory: 8703 loss: 0.2711 decode.loss_ce: 0.1679 decode.acc_seg: 95.2965 aux.loss_ce: 0.1032 aux.acc_seg: 94.1157 +2024/08/10 20:44:32 - mmengine - INFO - Iter(train) [ 92150/160000] lr: 4.6743e-03 eta: 21:04:28 time: 1.1159 data_time: 0.0054 memory: 8704 loss: 0.3258 decode.loss_ce: 0.2116 decode.acc_seg: 95.4561 aux.loss_ce: 0.1142 aux.acc_seg: 89.5574 +2024/08/10 20:45:28 - mmengine - INFO - Iter(train) [ 92200/160000] lr: 4.6713e-03 eta: 21:03:32 time: 1.1177 data_time: 0.0060 memory: 8704 loss: 0.3698 decode.loss_ce: 0.2319 decode.acc_seg: 96.7690 aux.loss_ce: 0.1379 aux.acc_seg: 94.2724 +2024/08/10 20:46:24 - mmengine - INFO - Iter(train) [ 92250/160000] lr: 4.6682e-03 eta: 21:02:37 time: 1.1128 data_time: 0.0060 memory: 8703 loss: 0.4329 decode.loss_ce: 0.2551 decode.acc_seg: 92.3782 aux.loss_ce: 0.1778 aux.acc_seg: 89.6744 +2024/08/10 20:47:20 - mmengine - INFO - Iter(train) [ 92300/160000] lr: 4.6652e-03 eta: 21:01:41 time: 1.1152 data_time: 0.0065 memory: 8704 loss: 0.4896 decode.loss_ce: 0.3104 decode.acc_seg: 86.8347 aux.loss_ce: 0.1792 aux.acc_seg: 85.8733 +2024/08/10 20:48:16 - mmengine - INFO - Iter(train) [ 92350/160000] lr: 4.6622e-03 eta: 21:00:45 time: 1.1159 data_time: 0.0056 memory: 8704 loss: 0.4774 decode.loss_ce: 0.2945 decode.acc_seg: 94.4839 aux.loss_ce: 0.1829 aux.acc_seg: 88.7322 +2024/08/10 20:49:11 - mmengine - INFO - Iter(train) [ 92400/160000] lr: 4.6591e-03 eta: 20:59:49 time: 1.1167 data_time: 0.0055 memory: 8704 loss: 0.3579 decode.loss_ce: 0.2240 decode.acc_seg: 90.7463 aux.loss_ce: 0.1340 aux.acc_seg: 88.7496 +2024/08/10 20:50:07 - mmengine - INFO - Iter(train) [ 92450/160000] lr: 4.6561e-03 eta: 20:58:52 time: 1.1145 data_time: 0.0067 memory: 8703 loss: 0.3844 decode.loss_ce: 0.2288 decode.acc_seg: 96.0449 aux.loss_ce: 0.1556 aux.acc_seg: 94.8679 +2024/08/10 20:51:03 - mmengine - INFO - Iter(train) [ 92500/160000] lr: 4.6531e-03 eta: 20:57:56 time: 1.1130 data_time: 0.0065 memory: 8703 loss: 0.4461 decode.loss_ce: 0.2683 decode.acc_seg: 92.4489 aux.loss_ce: 0.1778 aux.acc_seg: 87.2674 +2024/08/10 20:51:58 - mmengine - INFO - Iter(train) [ 92550/160000] lr: 4.6500e-03 eta: 20:57:00 time: 1.1133 data_time: 0.0061 memory: 8704 loss: 0.4283 decode.loss_ce: 0.2646 decode.acc_seg: 98.0508 aux.loss_ce: 0.1637 aux.acc_seg: 92.3297 +2024/08/10 20:52:54 - mmengine - INFO - Iter(train) [ 92600/160000] lr: 4.6470e-03 eta: 20:56:04 time: 1.1144 data_time: 0.0059 memory: 8703 loss: 0.4712 decode.loss_ce: 0.3020 decode.acc_seg: 94.0898 aux.loss_ce: 0.1692 aux.acc_seg: 92.1042 +2024/08/10 20:53:50 - mmengine - INFO - Iter(train) [ 92650/160000] lr: 4.6439e-03 eta: 20:55:09 time: 1.1147 data_time: 0.0061 memory: 8704 loss: 0.4266 decode.loss_ce: 0.2367 decode.acc_seg: 95.3756 aux.loss_ce: 0.1898 aux.acc_seg: 94.1426 +2024/08/10 20:54:46 - mmengine - INFO - Iter(train) [ 92700/160000] lr: 4.6409e-03 eta: 20:54:13 time: 1.1166 data_time: 0.0062 memory: 8704 loss: 0.3586 decode.loss_ce: 0.2150 decode.acc_seg: 91.8006 aux.loss_ce: 0.1436 aux.acc_seg: 83.9841 +2024/08/10 20:55:42 - mmengine - INFO - Iter(train) [ 92750/160000] lr: 4.6379e-03 eta: 20:53:17 time: 1.1132 data_time: 0.0053 memory: 8703 loss: 0.3000 decode.loss_ce: 0.1800 decode.acc_seg: 90.7443 aux.loss_ce: 0.1200 aux.acc_seg: 88.3401 +2024/08/10 20:56:38 - mmengine - INFO - Iter(train) [ 92800/160000] lr: 4.6348e-03 eta: 20:52:21 time: 1.1169 data_time: 0.0065 memory: 8703 loss: 0.3207 decode.loss_ce: 0.1809 decode.acc_seg: 93.0997 aux.loss_ce: 0.1398 aux.acc_seg: 88.8892 +2024/08/10 20:57:33 - mmengine - INFO - Iter(train) [ 92850/160000] lr: 4.6318e-03 eta: 20:51:25 time: 1.1184 data_time: 0.0077 memory: 8703 loss: 0.3745 decode.loss_ce: 0.2329 decode.acc_seg: 85.1994 aux.loss_ce: 0.1416 aux.acc_seg: 81.1224 +2024/08/10 20:58:29 - mmengine - INFO - Iter(train) [ 92900/160000] lr: 4.6288e-03 eta: 20:50:29 time: 1.1170 data_time: 0.0075 memory: 8703 loss: 0.2625 decode.loss_ce: 0.1525 decode.acc_seg: 96.4138 aux.loss_ce: 0.1101 aux.acc_seg: 91.8420 +2024/08/10 20:59:25 - mmengine - INFO - Iter(train) [ 92950/160000] lr: 4.6257e-03 eta: 20:49:33 time: 1.1144 data_time: 0.0064 memory: 8704 loss: 0.3558 decode.loss_ce: 0.2252 decode.acc_seg: 87.0762 aux.loss_ce: 0.1305 aux.acc_seg: 84.5580 +2024/08/10 21:00:21 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 21:00:21 - mmengine - INFO - Iter(train) [ 93000/160000] lr: 4.6227e-03 eta: 20:48:36 time: 1.1111 data_time: 0.0061 memory: 8704 loss: 0.3099 decode.loss_ce: 0.1828 decode.acc_seg: 97.2809 aux.loss_ce: 0.1271 aux.acc_seg: 97.0011 +2024/08/10 21:01:16 - mmengine - INFO - Iter(train) [ 93050/160000] lr: 4.6197e-03 eta: 20:47:40 time: 1.1122 data_time: 0.0051 memory: 8704 loss: 0.3575 decode.loss_ce: 0.2285 decode.acc_seg: 81.7842 aux.loss_ce: 0.1289 aux.acc_seg: 80.8643 +2024/08/10 21:02:12 - mmengine - INFO - Iter(train) [ 93100/160000] lr: 4.6166e-03 eta: 20:46:44 time: 1.1126 data_time: 0.0065 memory: 8703 loss: 0.4561 decode.loss_ce: 0.2957 decode.acc_seg: 96.6801 aux.loss_ce: 0.1605 aux.acc_seg: 95.2728 +2024/08/10 21:03:08 - mmengine - INFO - Iter(train) [ 93150/160000] lr: 4.6136e-03 eta: 20:45:48 time: 1.1183 data_time: 0.0056 memory: 8703 loss: 0.3105 decode.loss_ce: 0.1911 decode.acc_seg: 86.1362 aux.loss_ce: 0.1194 aux.acc_seg: 86.8298 +2024/08/10 21:04:04 - mmengine - INFO - Iter(train) [ 93200/160000] lr: 4.6105e-03 eta: 20:44:52 time: 1.1166 data_time: 0.0073 memory: 8704 loss: 0.2315 decode.loss_ce: 0.1416 decode.acc_seg: 91.3442 aux.loss_ce: 0.0899 aux.acc_seg: 85.3615 +2024/08/10 21:04:59 - mmengine - INFO - Iter(train) [ 93250/160000] lr: 4.6075e-03 eta: 20:43:56 time: 1.1172 data_time: 0.0074 memory: 8703 loss: 0.3546 decode.loss_ce: 0.2063 decode.acc_seg: 94.0404 aux.loss_ce: 0.1483 aux.acc_seg: 92.8540 +2024/08/10 21:05:55 - mmengine - INFO - Iter(train) [ 93300/160000] lr: 4.6045e-03 eta: 20:43:00 time: 1.1142 data_time: 0.0061 memory: 8704 loss: 0.4739 decode.loss_ce: 0.2513 decode.acc_seg: 94.5642 aux.loss_ce: 0.2226 aux.acc_seg: 92.5379 +2024/08/10 21:06:51 - mmengine - INFO - Iter(train) [ 93350/160000] lr: 4.6014e-03 eta: 20:42:04 time: 1.1151 data_time: 0.0071 memory: 8703 loss: 0.3723 decode.loss_ce: 0.2276 decode.acc_seg: 89.0107 aux.loss_ce: 0.1447 aux.acc_seg: 80.6151 +2024/08/10 21:07:47 - mmengine - INFO - Iter(train) [ 93400/160000] lr: 4.5984e-03 eta: 20:41:08 time: 1.1130 data_time: 0.0070 memory: 8703 loss: 0.3893 decode.loss_ce: 0.2277 decode.acc_seg: 88.9641 aux.loss_ce: 0.1616 aux.acc_seg: 86.5698 +2024/08/10 21:08:43 - mmengine - INFO - Iter(train) [ 93450/160000] lr: 4.5953e-03 eta: 20:40:12 time: 1.1168 data_time: 0.0085 memory: 8705 loss: 0.2969 decode.loss_ce: 0.1864 decode.acc_seg: 97.4845 aux.loss_ce: 0.1105 aux.acc_seg: 96.5094 +2024/08/10 21:09:38 - mmengine - INFO - Iter(train) [ 93500/160000] lr: 4.5923e-03 eta: 20:39:16 time: 1.1112 data_time: 0.0058 memory: 8703 loss: 0.3770 decode.loss_ce: 0.2291 decode.acc_seg: 96.7973 aux.loss_ce: 0.1479 aux.acc_seg: 92.4974 +2024/08/10 21:10:34 - mmengine - INFO - Iter(train) [ 93550/160000] lr: 4.5893e-03 eta: 20:38:20 time: 1.1181 data_time: 0.0078 memory: 8704 loss: 0.4061 decode.loss_ce: 0.2466 decode.acc_seg: 96.5065 aux.loss_ce: 0.1594 aux.acc_seg: 95.2310 +2024/08/10 21:11:30 - mmengine - INFO - Iter(train) [ 93600/160000] lr: 4.5862e-03 eta: 20:37:24 time: 1.1141 data_time: 0.0072 memory: 8703 loss: 0.2528 decode.loss_ce: 0.1532 decode.acc_seg: 96.4633 aux.loss_ce: 0.0997 aux.acc_seg: 94.0123 +2024/08/10 21:12:26 - mmengine - INFO - Iter(train) [ 93650/160000] lr: 4.5832e-03 eta: 20:36:28 time: 1.1195 data_time: 0.0077 memory: 8703 loss: 0.3303 decode.loss_ce: 0.2051 decode.acc_seg: 90.1497 aux.loss_ce: 0.1252 aux.acc_seg: 88.4627 +2024/08/10 21:13:22 - mmengine - INFO - Iter(train) [ 93700/160000] lr: 4.5801e-03 eta: 20:35:32 time: 1.1104 data_time: 0.0055 memory: 8704 loss: 0.3980 decode.loss_ce: 0.2375 decode.acc_seg: 92.4107 aux.loss_ce: 0.1605 aux.acc_seg: 92.6800 +2024/08/10 21:14:17 - mmengine - INFO - Iter(train) [ 93750/160000] lr: 4.5771e-03 eta: 20:34:36 time: 1.1198 data_time: 0.0076 memory: 8704 loss: 0.5405 decode.loss_ce: 0.3601 decode.acc_seg: 90.7248 aux.loss_ce: 0.1804 aux.acc_seg: 85.8842 +2024/08/10 21:15:13 - mmengine - INFO - Iter(train) [ 93800/160000] lr: 4.5741e-03 eta: 20:33:40 time: 1.1152 data_time: 0.0069 memory: 8704 loss: 0.3742 decode.loss_ce: 0.2255 decode.acc_seg: 95.6412 aux.loss_ce: 0.1487 aux.acc_seg: 95.0472 +2024/08/10 21:16:09 - mmengine - INFO - Iter(train) [ 93850/160000] lr: 4.5710e-03 eta: 20:32:45 time: 1.1163 data_time: 0.0073 memory: 8704 loss: 0.3162 decode.loss_ce: 0.2062 decode.acc_seg: 95.2902 aux.loss_ce: 0.1100 aux.acc_seg: 92.1457 +2024/08/10 21:17:05 - mmengine - INFO - Iter(train) [ 93900/160000] lr: 4.5680e-03 eta: 20:31:48 time: 1.1121 data_time: 0.0064 memory: 8703 loss: 0.4656 decode.loss_ce: 0.2988 decode.acc_seg: 94.4842 aux.loss_ce: 0.1668 aux.acc_seg: 89.2462 +2024/08/10 21:18:01 - mmengine - INFO - Iter(train) [ 93950/160000] lr: 4.5649e-03 eta: 20:30:52 time: 1.1115 data_time: 0.0080 memory: 8703 loss: 0.3379 decode.loss_ce: 0.2050 decode.acc_seg: 93.5497 aux.loss_ce: 0.1329 aux.acc_seg: 86.1266 +2024/08/10 21:18:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 21:18:56 - mmengine - INFO - Iter(train) [ 94000/160000] lr: 4.5619e-03 eta: 20:29:56 time: 1.1135 data_time: 0.0074 memory: 8703 loss: 0.3415 decode.loss_ce: 0.2126 decode.acc_seg: 94.4692 aux.loss_ce: 0.1289 aux.acc_seg: 91.5085 +2024/08/10 21:19:52 - mmengine - INFO - Iter(train) [ 94050/160000] lr: 4.5589e-03 eta: 20:29:01 time: 1.1230 data_time: 0.0089 memory: 8703 loss: 0.3611 decode.loss_ce: 0.2156 decode.acc_seg: 87.5466 aux.loss_ce: 0.1455 aux.acc_seg: 82.7271 +2024/08/10 21:20:48 - mmengine - INFO - Iter(train) [ 94100/160000] lr: 4.5558e-03 eta: 20:28:05 time: 1.1153 data_time: 0.0069 memory: 8703 loss: 0.4042 decode.loss_ce: 0.2519 decode.acc_seg: 96.9325 aux.loss_ce: 0.1523 aux.acc_seg: 95.2803 +2024/08/10 21:21:44 - mmengine - INFO - Iter(train) [ 94150/160000] lr: 4.5528e-03 eta: 20:27:09 time: 1.1183 data_time: 0.0063 memory: 8703 loss: 0.3495 decode.loss_ce: 0.2056 decode.acc_seg: 93.7946 aux.loss_ce: 0.1439 aux.acc_seg: 88.4113 +2024/08/10 21:22:40 - mmengine - INFO - Iter(train) [ 94200/160000] lr: 4.5497e-03 eta: 20:26:13 time: 1.1160 data_time: 0.0066 memory: 8704 loss: 0.4047 decode.loss_ce: 0.2492 decode.acc_seg: 94.6926 aux.loss_ce: 0.1556 aux.acc_seg: 90.1422 +2024/08/10 21:23:36 - mmengine - INFO - Iter(train) [ 94250/160000] lr: 4.5467e-03 eta: 20:25:17 time: 1.1146 data_time: 0.0056 memory: 8704 loss: 0.3739 decode.loss_ce: 0.2218 decode.acc_seg: 93.5021 aux.loss_ce: 0.1521 aux.acc_seg: 92.4305 +2024/08/10 21:24:31 - mmengine - INFO - Iter(train) [ 94300/160000] lr: 4.5436e-03 eta: 20:24:21 time: 1.1122 data_time: 0.0068 memory: 8704 loss: 0.3161 decode.loss_ce: 0.1991 decode.acc_seg: 95.5234 aux.loss_ce: 0.1170 aux.acc_seg: 94.2376 +2024/08/10 21:25:27 - mmengine - INFO - Iter(train) [ 94350/160000] lr: 4.5406e-03 eta: 20:23:25 time: 1.1167 data_time: 0.0063 memory: 8704 loss: 0.3516 decode.loss_ce: 0.2060 decode.acc_seg: 97.7346 aux.loss_ce: 0.1457 aux.acc_seg: 94.0943 +2024/08/10 21:26:23 - mmengine - INFO - Iter(train) [ 94400/160000] lr: 4.5375e-03 eta: 20:22:29 time: 1.1127 data_time: 0.0068 memory: 8704 loss: 0.3987 decode.loss_ce: 0.2450 decode.acc_seg: 84.4988 aux.loss_ce: 0.1537 aux.acc_seg: 78.6568 +2024/08/10 21:27:19 - mmengine - INFO - Iter(train) [ 94450/160000] lr: 4.5345e-03 eta: 20:21:33 time: 1.1147 data_time: 0.0075 memory: 8704 loss: 0.3243 decode.loss_ce: 0.2007 decode.acc_seg: 92.7540 aux.loss_ce: 0.1236 aux.acc_seg: 90.9445 +2024/08/10 21:28:15 - mmengine - INFO - Iter(train) [ 94500/160000] lr: 4.5315e-03 eta: 20:20:37 time: 1.1149 data_time: 0.0059 memory: 8704 loss: 0.3374 decode.loss_ce: 0.2069 decode.acc_seg: 91.4753 aux.loss_ce: 0.1305 aux.acc_seg: 89.6751 +2024/08/10 21:29:11 - mmengine - INFO - Iter(train) [ 94550/160000] lr: 4.5284e-03 eta: 20:19:41 time: 1.1166 data_time: 0.0061 memory: 8704 loss: 0.5235 decode.loss_ce: 0.2976 decode.acc_seg: 86.1444 aux.loss_ce: 0.2258 aux.acc_seg: 74.3830 +2024/08/10 21:30:06 - mmengine - INFO - Iter(train) [ 94600/160000] lr: 4.5254e-03 eta: 20:18:45 time: 1.1165 data_time: 0.0063 memory: 8703 loss: 0.4408 decode.loss_ce: 0.2700 decode.acc_seg: 91.8947 aux.loss_ce: 0.1708 aux.acc_seg: 86.7029 +2024/08/10 21:31:02 - mmengine - INFO - Iter(train) [ 94650/160000] lr: 4.5223e-03 eta: 20:17:49 time: 1.1202 data_time: 0.0070 memory: 8703 loss: 0.2670 decode.loss_ce: 0.1679 decode.acc_seg: 93.1521 aux.loss_ce: 0.0991 aux.acc_seg: 92.7453 +2024/08/10 21:31:58 - mmengine - INFO - Iter(train) [ 94700/160000] lr: 4.5193e-03 eta: 20:16:53 time: 1.1151 data_time: 0.0065 memory: 8704 loss: 0.4876 decode.loss_ce: 0.3060 decode.acc_seg: 93.9519 aux.loss_ce: 0.1816 aux.acc_seg: 91.7707 +2024/08/10 21:32:54 - mmengine - INFO - Iter(train) [ 94750/160000] lr: 4.5162e-03 eta: 20:15:57 time: 1.1147 data_time: 0.0067 memory: 8704 loss: 0.3216 decode.loss_ce: 0.2025 decode.acc_seg: 92.5957 aux.loss_ce: 0.1192 aux.acc_seg: 89.3987 +2024/08/10 21:33:50 - mmengine - INFO - Iter(train) [ 94800/160000] lr: 4.5132e-03 eta: 20:15:01 time: 1.1163 data_time: 0.0072 memory: 8703 loss: 0.3325 decode.loss_ce: 0.2061 decode.acc_seg: 94.9915 aux.loss_ce: 0.1264 aux.acc_seg: 91.0069 +2024/08/10 21:34:46 - mmengine - INFO - Iter(train) [ 94850/160000] lr: 4.5101e-03 eta: 20:14:05 time: 1.1176 data_time: 0.0081 memory: 8703 loss: 0.4567 decode.loss_ce: 0.2718 decode.acc_seg: 85.4331 aux.loss_ce: 0.1849 aux.acc_seg: 79.8319 +2024/08/10 21:35:42 - mmengine - INFO - Iter(train) [ 94900/160000] lr: 4.5071e-03 eta: 20:13:09 time: 1.1103 data_time: 0.0062 memory: 8703 loss: 0.4249 decode.loss_ce: 0.2759 decode.acc_seg: 93.6646 aux.loss_ce: 0.1491 aux.acc_seg: 91.5050 +2024/08/10 21:36:37 - mmengine - INFO - Iter(train) [ 94950/160000] lr: 4.5040e-03 eta: 20:12:13 time: 1.1155 data_time: 0.0071 memory: 8703 loss: 0.3371 decode.loss_ce: 0.2052 decode.acc_seg: 96.7173 aux.loss_ce: 0.1319 aux.acc_seg: 95.7965 +2024/08/10 21:37:33 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 21:37:33 - mmengine - INFO - Iter(train) [ 95000/160000] lr: 4.5010e-03 eta: 20:11:17 time: 1.1163 data_time: 0.0074 memory: 8704 loss: 0.5456 decode.loss_ce: 0.3493 decode.acc_seg: 88.3409 aux.loss_ce: 0.1963 aux.acc_seg: 79.4014 +2024/08/10 21:38:29 - mmengine - INFO - Iter(train) [ 95050/160000] lr: 4.4980e-03 eta: 20:10:21 time: 1.1216 data_time: 0.0071 memory: 8703 loss: 0.4264 decode.loss_ce: 0.2540 decode.acc_seg: 88.2695 aux.loss_ce: 0.1724 aux.acc_seg: 84.2561 +2024/08/10 21:39:25 - mmengine - INFO - Iter(train) [ 95100/160000] lr: 4.4949e-03 eta: 20:09:25 time: 1.1145 data_time: 0.0057 memory: 8703 loss: 0.5978 decode.loss_ce: 0.3940 decode.acc_seg: 63.1357 aux.loss_ce: 0.2037 aux.acc_seg: 60.5662 +2024/08/10 21:40:21 - mmengine - INFO - Iter(train) [ 95150/160000] lr: 4.4919e-03 eta: 20:08:29 time: 1.1172 data_time: 0.0058 memory: 8704 loss: 0.4247 decode.loss_ce: 0.2579 decode.acc_seg: 96.7553 aux.loss_ce: 0.1669 aux.acc_seg: 92.7933 +2024/08/10 21:41:16 - mmengine - INFO - Iter(train) [ 95200/160000] lr: 4.4888e-03 eta: 20:07:33 time: 1.1168 data_time: 0.0080 memory: 8704 loss: 0.5738 decode.loss_ce: 0.3601 decode.acc_seg: 96.4868 aux.loss_ce: 0.2137 aux.acc_seg: 94.7829 +2024/08/10 21:42:12 - mmengine - INFO - Iter(train) [ 95250/160000] lr: 4.4858e-03 eta: 20:06:37 time: 1.1115 data_time: 0.0075 memory: 8704 loss: 0.4140 decode.loss_ce: 0.2462 decode.acc_seg: 96.2975 aux.loss_ce: 0.1677 aux.acc_seg: 95.6740 +2024/08/10 21:43:08 - mmengine - INFO - Iter(train) [ 95300/160000] lr: 4.4827e-03 eta: 20:05:41 time: 1.1087 data_time: 0.0057 memory: 8704 loss: 0.3217 decode.loss_ce: 0.1874 decode.acc_seg: 96.9005 aux.loss_ce: 0.1342 aux.acc_seg: 90.0435 +2024/08/10 21:44:04 - mmengine - INFO - Iter(train) [ 95350/160000] lr: 4.4797e-03 eta: 20:04:45 time: 1.1177 data_time: 0.0069 memory: 8704 loss: 0.3074 decode.loss_ce: 0.1720 decode.acc_seg: 97.8316 aux.loss_ce: 0.1355 aux.acc_seg: 96.8904 +2024/08/10 21:44:59 - mmengine - INFO - Iter(train) [ 95400/160000] lr: 4.4766e-03 eta: 20:03:49 time: 1.1220 data_time: 0.0074 memory: 8703 loss: 0.3935 decode.loss_ce: 0.2133 decode.acc_seg: 96.3331 aux.loss_ce: 0.1803 aux.acc_seg: 95.6568 +2024/08/10 21:45:55 - mmengine - INFO - Iter(train) [ 95450/160000] lr: 4.4736e-03 eta: 20:02:53 time: 1.1232 data_time: 0.0057 memory: 8703 loss: 0.3193 decode.loss_ce: 0.2078 decode.acc_seg: 97.1885 aux.loss_ce: 0.1115 aux.acc_seg: 94.2019 +2024/08/10 21:46:51 - mmengine - INFO - Iter(train) [ 95500/160000] lr: 4.4705e-03 eta: 20:01:57 time: 1.1125 data_time: 0.0063 memory: 8704 loss: 0.3597 decode.loss_ce: 0.2170 decode.acc_seg: 95.3890 aux.loss_ce: 0.1427 aux.acc_seg: 90.4332 +2024/08/10 21:47:47 - mmengine - INFO - Iter(train) [ 95550/160000] lr: 4.4675e-03 eta: 20:01:02 time: 1.1199 data_time: 0.0072 memory: 8704 loss: 0.3830 decode.loss_ce: 0.2334 decode.acc_seg: 93.9241 aux.loss_ce: 0.1496 aux.acc_seg: 93.3883 +2024/08/10 21:48:43 - mmengine - INFO - Iter(train) [ 95600/160000] lr: 4.4644e-03 eta: 20:00:06 time: 1.1204 data_time: 0.0062 memory: 8704 loss: 0.3237 decode.loss_ce: 0.1992 decode.acc_seg: 92.4220 aux.loss_ce: 0.1245 aux.acc_seg: 90.5957 +2024/08/10 21:49:39 - mmengine - INFO - Iter(train) [ 95650/160000] lr: 4.4614e-03 eta: 19:59:10 time: 1.1206 data_time: 0.0072 memory: 8704 loss: 0.4548 decode.loss_ce: 0.2765 decode.acc_seg: 89.0581 aux.loss_ce: 0.1783 aux.acc_seg: 78.6474 +2024/08/10 21:50:35 - mmengine - INFO - Iter(train) [ 95700/160000] lr: 4.4583e-03 eta: 19:58:14 time: 1.1199 data_time: 0.0081 memory: 8703 loss: 0.4363 decode.loss_ce: 0.2743 decode.acc_seg: 93.1767 aux.loss_ce: 0.1621 aux.acc_seg: 90.0649 +2024/08/10 21:51:31 - mmengine - INFO - Iter(train) [ 95750/160000] lr: 4.4553e-03 eta: 19:57:18 time: 1.1190 data_time: 0.0072 memory: 8704 loss: 0.3528 decode.loss_ce: 0.2182 decode.acc_seg: 91.6347 aux.loss_ce: 0.1346 aux.acc_seg: 84.9711 +2024/08/10 21:52:27 - mmengine - INFO - Iter(train) [ 95800/160000] lr: 4.4522e-03 eta: 19:56:22 time: 1.1108 data_time: 0.0067 memory: 8705 loss: 0.3130 decode.loss_ce: 0.1720 decode.acc_seg: 87.9283 aux.loss_ce: 0.1410 aux.acc_seg: 63.5485 +2024/08/10 21:53:22 - mmengine - INFO - Iter(train) [ 95850/160000] lr: 4.4492e-03 eta: 19:55:26 time: 1.1105 data_time: 0.0066 memory: 8703 loss: 0.2682 decode.loss_ce: 0.1677 decode.acc_seg: 90.5643 aux.loss_ce: 0.1005 aux.acc_seg: 91.6604 +2024/08/10 21:54:18 - mmengine - INFO - Iter(train) [ 95900/160000] lr: 4.4461e-03 eta: 19:54:30 time: 1.1161 data_time: 0.0074 memory: 8703 loss: 0.4859 decode.loss_ce: 0.2946 decode.acc_seg: 93.8719 aux.loss_ce: 0.1913 aux.acc_seg: 90.1836 +2024/08/10 21:55:14 - mmengine - INFO - Iter(train) [ 95950/160000] lr: 4.4431e-03 eta: 19:53:34 time: 1.1157 data_time: 0.0063 memory: 8704 loss: 0.2607 decode.loss_ce: 0.1497 decode.acc_seg: 95.2007 aux.loss_ce: 0.1111 aux.acc_seg: 89.4217 +2024/08/10 21:56:10 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 21:56:10 - mmengine - INFO - Iter(train) [ 96000/160000] lr: 4.4400e-03 eta: 19:52:38 time: 1.1148 data_time: 0.0075 memory: 8703 loss: 0.3277 decode.loss_ce: 0.1917 decode.acc_seg: 95.0328 aux.loss_ce: 0.1360 aux.acc_seg: 92.7907 +2024/08/10 21:56:10 - mmengine - INFO - Saving checkpoint at 96000 iterations +2024/08/10 21:56:24 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:10 time: 0.2727 data_time: 0.0045 memory: 1724 +2024/08/10 21:56:37 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2721 data_time: 0.0038 memory: 1724 +2024/08/10 21:56:51 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2704 data_time: 0.0034 memory: 1724 +2024/08/10 21:57:05 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2729 data_time: 0.0045 memory: 1724 +2024/08/10 21:57:18 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2705 data_time: 0.0040 memory: 1724 +2024/08/10 21:57:32 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2718 data_time: 0.0042 memory: 1724 +2024/08/10 21:57:45 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2699 data_time: 0.0036 memory: 1724 +2024/08/10 21:57:59 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:34 time: 0.2710 data_time: 0.0040 memory: 1724 +2024/08/10 21:58:12 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2701 data_time: 0.0036 memory: 1724 +2024/08/10 21:58:26 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2714 data_time: 0.0040 memory: 1724 +2024/08/10 21:58:40 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2710 data_time: 0.0037 memory: 1724 +2024/08/10 21:58:53 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2728 data_time: 0.0047 memory: 1724 +2024/08/10 21:59:07 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2709 data_time: 0.0036 memory: 1724 +2024/08/10 21:59:20 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2717 data_time: 0.0045 memory: 1724 +2024/08/10 21:59:34 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2701 data_time: 0.0036 memory: 1724 +2024/08/10 21:59:44 - mmengine - INFO - per class results: +2024/08/10 21:59:44 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 93.03 | 95.91 | +| sidewalk | 72.56 | 81.47 | +| road roughness | 61.33 | 69.41 | +| road boundaries | 64.07 | 74.44 | +| crosswalks | 93.2 | 95.87 | +| lane | 72.18 | 84.05 | +| road color guide | 83.52 | 87.19 | +| road marking | 64.27 | 74.45 | +| parking | 51.06 | 54.94 | +| traffic sign | 60.52 | 72.58 | +| traffic light | 65.96 | 75.55 | +| pole/structural object | 77.48 | 84.88 | +| building | 84.83 | 95.52 | +| tunnel | 98.02 | 98.88 | +| bridge | 57.95 | 82.73 | +| pedestrian | 66.14 | 83.35 | +| vehicle | 90.38 | 94.56 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 29.94 | 36.89 | +| personal mobility | 48.61 | 51.5 | +| dynamic | 47.14 | 54.49 | +| vegetation | 86.73 | 93.61 | +| sky | 97.63 | 98.33 | +| static | 63.99 | 80.78 | ++------------------------+-------+-------+ +2024/08/10 21:59:44 - mmengine - INFO - Iter(val) [750/750] aAcc: 94.2700 mIoU: 67.9400 mAcc: 75.8900 data_time: 0.0040 time: 0.2711 +2024/08/10 22:00:40 - mmengine - INFO - Iter(train) [ 96050/160000] lr: 4.4370e-03 eta: 19:51:49 time: 1.1137 data_time: 0.0062 memory: 8703 loss: 0.2922 decode.loss_ce: 0.1855 decode.acc_seg: 96.1199 aux.loss_ce: 0.1067 aux.acc_seg: 89.7818 +2024/08/10 22:01:35 - mmengine - INFO - Iter(train) [ 96100/160000] lr: 4.4339e-03 eta: 19:50:52 time: 1.1116 data_time: 0.0072 memory: 8703 loss: 0.4156 decode.loss_ce: 0.2671 decode.acc_seg: 75.0226 aux.loss_ce: 0.1485 aux.acc_seg: 71.0932 +2024/08/10 22:02:31 - mmengine - INFO - Iter(train) [ 96150/160000] lr: 4.4309e-03 eta: 19:49:56 time: 1.1162 data_time: 0.0089 memory: 8703 loss: 0.4652 decode.loss_ce: 0.2606 decode.acc_seg: 88.2525 aux.loss_ce: 0.2046 aux.acc_seg: 81.6972 +2024/08/10 22:03:27 - mmengine - INFO - Iter(train) [ 96200/160000] lr: 4.4278e-03 eta: 19:49:00 time: 1.1098 data_time: 0.0069 memory: 8703 loss: 0.4785 decode.loss_ce: 0.3090 decode.acc_seg: 90.3161 aux.loss_ce: 0.1696 aux.acc_seg: 83.7093 +2024/08/10 22:04:22 - mmengine - INFO - Iter(train) [ 96250/160000] lr: 4.4248e-03 eta: 19:48:04 time: 1.1167 data_time: 0.0059 memory: 8703 loss: 0.3919 decode.loss_ce: 0.2290 decode.acc_seg: 91.1403 aux.loss_ce: 0.1629 aux.acc_seg: 85.2466 +2024/08/10 22:05:18 - mmengine - INFO - Iter(train) [ 96300/160000] lr: 4.4217e-03 eta: 19:47:08 time: 1.1175 data_time: 0.0062 memory: 8704 loss: 0.2890 decode.loss_ce: 0.1799 decode.acc_seg: 96.1576 aux.loss_ce: 0.1092 aux.acc_seg: 93.2272 +2024/08/10 22:06:14 - mmengine - INFO - Iter(train) [ 96350/160000] lr: 4.4187e-03 eta: 19:46:12 time: 1.1174 data_time: 0.0080 memory: 8703 loss: 0.3562 decode.loss_ce: 0.2109 decode.acc_seg: 93.9181 aux.loss_ce: 0.1453 aux.acc_seg: 83.2207 +2024/08/10 22:07:10 - mmengine - INFO - Iter(train) [ 96400/160000] lr: 4.4156e-03 eta: 19:45:16 time: 1.1207 data_time: 0.0075 memory: 8703 loss: 0.4130 decode.loss_ce: 0.2807 decode.acc_seg: 93.1017 aux.loss_ce: 0.1324 aux.acc_seg: 90.8514 +2024/08/10 22:08:06 - mmengine - INFO - Iter(train) [ 96450/160000] lr: 4.4125e-03 eta: 19:44:20 time: 1.1161 data_time: 0.0082 memory: 8704 loss: 0.4237 decode.loss_ce: 0.2374 decode.acc_seg: 94.9123 aux.loss_ce: 0.1863 aux.acc_seg: 93.6444 +2024/08/10 22:09:02 - mmengine - INFO - Iter(train) [ 96500/160000] lr: 4.4095e-03 eta: 19:43:25 time: 1.1155 data_time: 0.0079 memory: 8704 loss: 0.3769 decode.loss_ce: 0.2423 decode.acc_seg: 97.1721 aux.loss_ce: 0.1346 aux.acc_seg: 95.1297 +2024/08/10 22:09:58 - mmengine - INFO - Iter(train) [ 96550/160000] lr: 4.4064e-03 eta: 19:42:29 time: 1.1205 data_time: 0.0079 memory: 8703 loss: 0.3262 decode.loss_ce: 0.1986 decode.acc_seg: 94.0692 aux.loss_ce: 0.1276 aux.acc_seg: 92.4594 +2024/08/10 22:10:53 - mmengine - INFO - Iter(train) [ 96600/160000] lr: 4.4034e-03 eta: 19:41:33 time: 1.1204 data_time: 0.0077 memory: 8704 loss: 0.3292 decode.loss_ce: 0.2055 decode.acc_seg: 95.0162 aux.loss_ce: 0.1237 aux.acc_seg: 94.4038 +2024/08/10 22:11:49 - mmengine - INFO - Iter(train) [ 96650/160000] lr: 4.4003e-03 eta: 19:40:37 time: 1.1143 data_time: 0.0068 memory: 8705 loss: 0.4458 decode.loss_ce: 0.2712 decode.acc_seg: 90.8858 aux.loss_ce: 0.1746 aux.acc_seg: 89.7184 +2024/08/10 22:12:45 - mmengine - INFO - Iter(train) [ 96700/160000] lr: 4.3973e-03 eta: 19:39:41 time: 1.1153 data_time: 0.0079 memory: 8703 loss: 0.3638 decode.loss_ce: 0.2358 decode.acc_seg: 93.9889 aux.loss_ce: 0.1280 aux.acc_seg: 91.7664 +2024/08/10 22:13:41 - mmengine - INFO - Iter(train) [ 96750/160000] lr: 4.3942e-03 eta: 19:38:45 time: 1.1143 data_time: 0.0057 memory: 8703 loss: 0.2713 decode.loss_ce: 0.1576 decode.acc_seg: 91.6822 aux.loss_ce: 0.1136 aux.acc_seg: 80.6752 +2024/08/10 22:14:36 - mmengine - INFO - Iter(train) [ 96800/160000] lr: 4.3912e-03 eta: 19:37:49 time: 1.1152 data_time: 0.0077 memory: 8704 loss: 0.2269 decode.loss_ce: 0.1415 decode.acc_seg: 94.1727 aux.loss_ce: 0.0854 aux.acc_seg: 92.3117 +2024/08/10 22:15:32 - mmengine - INFO - Iter(train) [ 96850/160000] lr: 4.3881e-03 eta: 19:36:53 time: 1.1204 data_time: 0.0082 memory: 8704 loss: 0.3572 decode.loss_ce: 0.2179 decode.acc_seg: 92.6767 aux.loss_ce: 0.1393 aux.acc_seg: 86.3816 +2024/08/10 22:16:28 - mmengine - INFO - Iter(train) [ 96900/160000] lr: 4.3851e-03 eta: 19:35:57 time: 1.1165 data_time: 0.0068 memory: 8704 loss: 0.3096 decode.loss_ce: 0.1828 decode.acc_seg: 94.2109 aux.loss_ce: 0.1268 aux.acc_seg: 74.2403 +2024/08/10 22:17:24 - mmengine - INFO - Iter(train) [ 96950/160000] lr: 4.3820e-03 eta: 19:35:01 time: 1.1188 data_time: 0.0070 memory: 8703 loss: 0.4590 decode.loss_ce: 0.3046 decode.acc_seg: 86.9560 aux.loss_ce: 0.1544 aux.acc_seg: 88.2544 +2024/08/10 22:18:20 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 22:18:20 - mmengine - INFO - Iter(train) [ 97000/160000] lr: 4.3789e-03 eta: 19:34:05 time: 1.1183 data_time: 0.0085 memory: 8703 loss: 0.4201 decode.loss_ce: 0.2401 decode.acc_seg: 71.5666 aux.loss_ce: 0.1800 aux.acc_seg: 50.3041 +2024/08/10 22:19:16 - mmengine - INFO - Iter(train) [ 97050/160000] lr: 4.3759e-03 eta: 19:33:09 time: 1.1136 data_time: 0.0063 memory: 8704 loss: 0.4589 decode.loss_ce: 0.2932 decode.acc_seg: 91.7992 aux.loss_ce: 0.1658 aux.acc_seg: 85.5618 +2024/08/10 22:20:12 - mmengine - INFO - Iter(train) [ 97100/160000] lr: 4.3728e-03 eta: 19:32:13 time: 1.1142 data_time: 0.0070 memory: 8704 loss: 0.4344 decode.loss_ce: 0.2843 decode.acc_seg: 90.7990 aux.loss_ce: 0.1501 aux.acc_seg: 88.2573 +2024/08/10 22:21:07 - mmengine - INFO - Iter(train) [ 97150/160000] lr: 4.3698e-03 eta: 19:31:17 time: 1.1110 data_time: 0.0060 memory: 8704 loss: 0.3835 decode.loss_ce: 0.2400 decode.acc_seg: 92.8435 aux.loss_ce: 0.1435 aux.acc_seg: 91.8538 +2024/08/10 22:22:03 - mmengine - INFO - Iter(train) [ 97200/160000] lr: 4.3667e-03 eta: 19:30:21 time: 1.1123 data_time: 0.0078 memory: 8704 loss: 0.3019 decode.loss_ce: 0.1813 decode.acc_seg: 94.8216 aux.loss_ce: 0.1205 aux.acc_seg: 93.8540 +2024/08/10 22:22:59 - mmengine - INFO - Iter(train) [ 97250/160000] lr: 4.3637e-03 eta: 19:29:25 time: 1.1104 data_time: 0.0061 memory: 8703 loss: 0.3017 decode.loss_ce: 0.1727 decode.acc_seg: 97.0820 aux.loss_ce: 0.1290 aux.acc_seg: 96.3959 +2024/08/10 22:23:54 - mmengine - INFO - Iter(train) [ 97300/160000] lr: 4.3606e-03 eta: 19:28:29 time: 1.1189 data_time: 0.0069 memory: 8703 loss: 0.3512 decode.loss_ce: 0.2217 decode.acc_seg: 93.0563 aux.loss_ce: 0.1294 aux.acc_seg: 90.0237 +2024/08/10 22:24:50 - mmengine - INFO - Iter(train) [ 97350/160000] lr: 4.3575e-03 eta: 19:27:33 time: 1.1127 data_time: 0.0067 memory: 8704 loss: 0.3236 decode.loss_ce: 0.1907 decode.acc_seg: 98.5003 aux.loss_ce: 0.1329 aux.acc_seg: 97.6391 +2024/08/10 22:25:46 - mmengine - INFO - Iter(train) [ 97400/160000] lr: 4.3545e-03 eta: 19:26:37 time: 1.1188 data_time: 0.0071 memory: 8704 loss: 0.2564 decode.loss_ce: 0.1533 decode.acc_seg: 95.2984 aux.loss_ce: 0.1031 aux.acc_seg: 92.9360 +2024/08/10 22:26:42 - mmengine - INFO - Iter(train) [ 97450/160000] lr: 4.3514e-03 eta: 19:25:41 time: 1.1140 data_time: 0.0070 memory: 8704 loss: 0.3422 decode.loss_ce: 0.2082 decode.acc_seg: 88.6480 aux.loss_ce: 0.1339 aux.acc_seg: 87.4250 +2024/08/10 22:27:38 - mmengine - INFO - Iter(train) [ 97500/160000] lr: 4.3484e-03 eta: 19:24:45 time: 1.1175 data_time: 0.0064 memory: 8703 loss: 0.3434 decode.loss_ce: 0.2166 decode.acc_seg: 96.7859 aux.loss_ce: 0.1267 aux.acc_seg: 92.6155 +2024/08/10 22:28:34 - mmengine - INFO - Iter(train) [ 97550/160000] lr: 4.3453e-03 eta: 19:23:49 time: 1.1167 data_time: 0.0075 memory: 8704 loss: 0.3993 decode.loss_ce: 0.2441 decode.acc_seg: 91.0531 aux.loss_ce: 0.1553 aux.acc_seg: 90.3821 +2024/08/10 22:29:29 - mmengine - INFO - Iter(train) [ 97600/160000] lr: 4.3422e-03 eta: 19:22:53 time: 1.1150 data_time: 0.0056 memory: 8703 loss: 0.3471 decode.loss_ce: 0.1982 decode.acc_seg: 97.5001 aux.loss_ce: 0.1489 aux.acc_seg: 89.8638 +2024/08/10 22:30:25 - mmengine - INFO - Iter(train) [ 97650/160000] lr: 4.3392e-03 eta: 19:21:57 time: 1.1127 data_time: 0.0065 memory: 8704 loss: 0.4295 decode.loss_ce: 0.2454 decode.acc_seg: 93.7923 aux.loss_ce: 0.1841 aux.acc_seg: 74.9353 +2024/08/10 22:31:21 - mmengine - INFO - Iter(train) [ 97700/160000] lr: 4.3361e-03 eta: 19:21:01 time: 1.1145 data_time: 0.0077 memory: 8704 loss: 0.4366 decode.loss_ce: 0.2559 decode.acc_seg: 90.1496 aux.loss_ce: 0.1806 aux.acc_seg: 59.9973 +2024/08/10 22:32:17 - mmengine - INFO - Iter(train) [ 97750/160000] lr: 4.3331e-03 eta: 19:20:05 time: 1.1181 data_time: 0.0078 memory: 8704 loss: 0.3808 decode.loss_ce: 0.2369 decode.acc_seg: 94.5913 aux.loss_ce: 0.1439 aux.acc_seg: 93.8591 +2024/08/10 22:33:12 - mmengine - INFO - Iter(train) [ 97800/160000] lr: 4.3300e-03 eta: 19:19:09 time: 1.1177 data_time: 0.0077 memory: 8704 loss: 0.3670 decode.loss_ce: 0.2272 decode.acc_seg: 93.6255 aux.loss_ce: 0.1399 aux.acc_seg: 90.6513 +2024/08/10 22:34:08 - mmengine - INFO - Iter(train) [ 97850/160000] lr: 4.3269e-03 eta: 19:18:13 time: 1.1126 data_time: 0.0060 memory: 8704 loss: 0.3562 decode.loss_ce: 0.2232 decode.acc_seg: 95.9093 aux.loss_ce: 0.1330 aux.acc_seg: 94.4815 +2024/08/10 22:35:04 - mmengine - INFO - Iter(train) [ 97900/160000] lr: 4.3239e-03 eta: 19:17:17 time: 1.1163 data_time: 0.0060 memory: 8704 loss: 0.2388 decode.loss_ce: 0.1459 decode.acc_seg: 96.0400 aux.loss_ce: 0.0929 aux.acc_seg: 93.1601 +2024/08/10 22:36:00 - mmengine - INFO - Iter(train) [ 97950/160000] lr: 4.3208e-03 eta: 19:16:21 time: 1.1155 data_time: 0.0073 memory: 8703 loss: 0.4415 decode.loss_ce: 0.2786 decode.acc_seg: 95.7898 aux.loss_ce: 0.1629 aux.acc_seg: 95.3189 +2024/08/10 22:36:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 22:36:56 - mmengine - INFO - Iter(train) [ 98000/160000] lr: 4.3178e-03 eta: 19:15:25 time: 1.1154 data_time: 0.0070 memory: 8704 loss: 0.3396 decode.loss_ce: 0.2054 decode.acc_seg: 93.9416 aux.loss_ce: 0.1342 aux.acc_seg: 92.6511 +2024/08/10 22:37:51 - mmengine - INFO - Iter(train) [ 98050/160000] lr: 4.3147e-03 eta: 19:14:29 time: 1.1176 data_time: 0.0082 memory: 8703 loss: 0.5331 decode.loss_ce: 0.3576 decode.acc_seg: 96.8667 aux.loss_ce: 0.1755 aux.acc_seg: 91.1083 +2024/08/10 22:38:47 - mmengine - INFO - Iter(train) [ 98100/160000] lr: 4.3116e-03 eta: 19:13:33 time: 1.1164 data_time: 0.0074 memory: 8703 loss: 0.2680 decode.loss_ce: 0.1616 decode.acc_seg: 94.6866 aux.loss_ce: 0.1065 aux.acc_seg: 94.6924 +2024/08/10 22:39:43 - mmengine - INFO - Iter(train) [ 98150/160000] lr: 4.3086e-03 eta: 19:12:37 time: 1.1165 data_time: 0.0079 memory: 8704 loss: 0.3291 decode.loss_ce: 0.1917 decode.acc_seg: 95.1660 aux.loss_ce: 0.1374 aux.acc_seg: 94.0551 +2024/08/10 22:40:39 - mmengine - INFO - Iter(train) [ 98200/160000] lr: 4.3055e-03 eta: 19:11:41 time: 1.1146 data_time: 0.0061 memory: 8703 loss: 0.4299 decode.loss_ce: 0.2733 decode.acc_seg: 91.8624 aux.loss_ce: 0.1566 aux.acc_seg: 91.0840 +2024/08/10 22:41:35 - mmengine - INFO - Iter(train) [ 98250/160000] lr: 4.3025e-03 eta: 19:10:45 time: 1.1180 data_time: 0.0063 memory: 8703 loss: 0.4152 decode.loss_ce: 0.2395 decode.acc_seg: 85.0109 aux.loss_ce: 0.1757 aux.acc_seg: 78.3418 +2024/08/10 22:42:30 - mmengine - INFO - Iter(train) [ 98300/160000] lr: 4.2994e-03 eta: 19:09:49 time: 1.1111 data_time: 0.0054 memory: 8704 loss: 0.3076 decode.loss_ce: 0.1892 decode.acc_seg: 97.1492 aux.loss_ce: 0.1184 aux.acc_seg: 96.5985 +2024/08/10 22:43:26 - mmengine - INFO - Iter(train) [ 98350/160000] lr: 4.2963e-03 eta: 19:08:53 time: 1.1168 data_time: 0.0067 memory: 8703 loss: 0.3240 decode.loss_ce: 0.1966 decode.acc_seg: 85.4658 aux.loss_ce: 0.1274 aux.acc_seg: 79.5431 +2024/08/10 22:44:22 - mmengine - INFO - Iter(train) [ 98400/160000] lr: 4.2933e-03 eta: 19:07:57 time: 1.1171 data_time: 0.0074 memory: 8704 loss: 0.2961 decode.loss_ce: 0.1827 decode.acc_seg: 90.2359 aux.loss_ce: 0.1134 aux.acc_seg: 86.7987 +2024/08/10 22:45:18 - mmengine - INFO - Iter(train) [ 98450/160000] lr: 4.2902e-03 eta: 19:07:01 time: 1.1198 data_time: 0.0084 memory: 8703 loss: 0.3702 decode.loss_ce: 0.2248 decode.acc_seg: 96.5354 aux.loss_ce: 0.1455 aux.acc_seg: 95.5264 +2024/08/10 22:46:14 - mmengine - INFO - Iter(train) [ 98500/160000] lr: 4.2871e-03 eta: 19:06:05 time: 1.1174 data_time: 0.0079 memory: 8703 loss: 0.3343 decode.loss_ce: 0.2050 decode.acc_seg: 92.1905 aux.loss_ce: 0.1294 aux.acc_seg: 87.8023 +2024/08/10 22:47:10 - mmengine - INFO - Iter(train) [ 98550/160000] lr: 4.2841e-03 eta: 19:05:09 time: 1.1119 data_time: 0.0061 memory: 8704 loss: 0.2778 decode.loss_ce: 0.1600 decode.acc_seg: 90.3693 aux.loss_ce: 0.1178 aux.acc_seg: 86.1617 +2024/08/10 22:48:05 - mmengine - INFO - Iter(train) [ 98600/160000] lr: 4.2810e-03 eta: 19:04:13 time: 1.1164 data_time: 0.0083 memory: 8703 loss: 0.3090 decode.loss_ce: 0.1970 decode.acc_seg: 82.6783 aux.loss_ce: 0.1120 aux.acc_seg: 85.2371 +2024/08/10 22:49:01 - mmengine - INFO - Iter(train) [ 98650/160000] lr: 4.2779e-03 eta: 19:03:17 time: 1.1179 data_time: 0.0078 memory: 8705 loss: 0.4079 decode.loss_ce: 0.2477 decode.acc_seg: 95.8458 aux.loss_ce: 0.1602 aux.acc_seg: 85.6614 +2024/08/10 22:49:57 - mmengine - INFO - Iter(train) [ 98700/160000] lr: 4.2749e-03 eta: 19:02:21 time: 1.1178 data_time: 0.0065 memory: 8703 loss: 0.2587 decode.loss_ce: 0.1534 decode.acc_seg: 96.5224 aux.loss_ce: 0.1053 aux.acc_seg: 95.6405 +2024/08/10 22:50:53 - mmengine - INFO - Iter(train) [ 98750/160000] lr: 4.2718e-03 eta: 19:01:25 time: 1.1181 data_time: 0.0075 memory: 8703 loss: 0.4408 decode.loss_ce: 0.2783 decode.acc_seg: 93.0035 aux.loss_ce: 0.1625 aux.acc_seg: 90.9725 +2024/08/10 22:51:49 - mmengine - INFO - Iter(train) [ 98800/160000] lr: 4.2688e-03 eta: 19:00:30 time: 1.1184 data_time: 0.0062 memory: 8703 loss: 0.3118 decode.loss_ce: 0.1893 decode.acc_seg: 92.4658 aux.loss_ce: 0.1225 aux.acc_seg: 91.2772 +2024/08/10 22:52:45 - mmengine - INFO - Iter(train) [ 98850/160000] lr: 4.2657e-03 eta: 18:59:34 time: 1.1156 data_time: 0.0058 memory: 8704 loss: 0.4595 decode.loss_ce: 0.2906 decode.acc_seg: 69.6081 aux.loss_ce: 0.1689 aux.acc_seg: 45.7131 +2024/08/10 22:53:41 - mmengine - INFO - Iter(train) [ 98900/160000] lr: 4.2626e-03 eta: 18:58:38 time: 1.1187 data_time: 0.0075 memory: 8704 loss: 0.3891 decode.loss_ce: 0.2449 decode.acc_seg: 95.5233 aux.loss_ce: 0.1442 aux.acc_seg: 95.0254 +2024/08/10 22:54:36 - mmengine - INFO - Iter(train) [ 98950/160000] lr: 4.2596e-03 eta: 18:57:42 time: 1.1154 data_time: 0.0076 memory: 8704 loss: 0.3407 decode.loss_ce: 0.2170 decode.acc_seg: 93.1902 aux.loss_ce: 0.1237 aux.acc_seg: 90.3459 +2024/08/10 22:55:32 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 22:55:32 - mmengine - INFO - Iter(train) [ 99000/160000] lr: 4.2565e-03 eta: 18:56:46 time: 1.1096 data_time: 0.0061 memory: 8704 loss: 0.2999 decode.loss_ce: 0.1777 decode.acc_seg: 90.6427 aux.loss_ce: 0.1222 aux.acc_seg: 86.7017 +2024/08/10 22:56:28 - mmengine - INFO - Iter(train) [ 99050/160000] lr: 4.2534e-03 eta: 18:55:49 time: 1.1063 data_time: 0.0053 memory: 8704 loss: 0.3464 decode.loss_ce: 0.2123 decode.acc_seg: 97.1295 aux.loss_ce: 0.1341 aux.acc_seg: 96.3866 +2024/08/10 22:57:23 - mmengine - INFO - Iter(train) [ 99100/160000] lr: 4.2504e-03 eta: 18:54:53 time: 1.1100 data_time: 0.0064 memory: 8703 loss: 0.3261 decode.loss_ce: 0.1893 decode.acc_seg: 94.7533 aux.loss_ce: 0.1368 aux.acc_seg: 93.9430 +2024/08/10 22:58:19 - mmengine - INFO - Iter(train) [ 99150/160000] lr: 4.2473e-03 eta: 18:53:57 time: 1.1150 data_time: 0.0066 memory: 8704 loss: 0.3445 decode.loss_ce: 0.2088 decode.acc_seg: 96.1187 aux.loss_ce: 0.1358 aux.acc_seg: 94.9107 +2024/08/10 22:59:15 - mmengine - INFO - Iter(train) [ 99200/160000] lr: 4.2442e-03 eta: 18:53:01 time: 1.1161 data_time: 0.0072 memory: 8703 loss: 0.2845 decode.loss_ce: 0.1756 decode.acc_seg: 89.5239 aux.loss_ce: 0.1089 aux.acc_seg: 82.7334 +2024/08/10 23:00:10 - mmengine - INFO - Iter(train) [ 99250/160000] lr: 4.2412e-03 eta: 18:52:05 time: 1.1160 data_time: 0.0066 memory: 8703 loss: 0.2719 decode.loss_ce: 0.1577 decode.acc_seg: 93.2879 aux.loss_ce: 0.1142 aux.acc_seg: 91.4333 +2024/08/10 23:01:06 - mmengine - INFO - Iter(train) [ 99300/160000] lr: 4.2381e-03 eta: 18:51:09 time: 1.1109 data_time: 0.0054 memory: 8703 loss: 0.4489 decode.loss_ce: 0.2813 decode.acc_seg: 96.5085 aux.loss_ce: 0.1676 aux.acc_seg: 86.1079 +2024/08/10 23:02:02 - mmengine - INFO - Iter(train) [ 99350/160000] lr: 4.2350e-03 eta: 18:50:13 time: 1.1164 data_time: 0.0064 memory: 8704 loss: 0.3348 decode.loss_ce: 0.2090 decode.acc_seg: 94.0519 aux.loss_ce: 0.1258 aux.acc_seg: 93.5561 +2024/08/10 23:02:58 - mmengine - INFO - Iter(train) [ 99400/160000] lr: 4.2319e-03 eta: 18:49:17 time: 1.1156 data_time: 0.0068 memory: 8703 loss: 0.3726 decode.loss_ce: 0.2354 decode.acc_seg: 95.1495 aux.loss_ce: 0.1372 aux.acc_seg: 94.6455 +2024/08/10 23:03:54 - mmengine - INFO - Iter(train) [ 99450/160000] lr: 4.2289e-03 eta: 18:48:21 time: 1.1172 data_time: 0.0070 memory: 8703 loss: 0.3976 decode.loss_ce: 0.2486 decode.acc_seg: 92.3508 aux.loss_ce: 0.1490 aux.acc_seg: 91.0192 +2024/08/10 23:04:49 - mmengine - INFO - Iter(train) [ 99500/160000] lr: 4.2258e-03 eta: 18:47:25 time: 1.1086 data_time: 0.0064 memory: 8705 loss: 0.4328 decode.loss_ce: 0.2561 decode.acc_seg: 84.4754 aux.loss_ce: 0.1767 aux.acc_seg: 81.6690 +2024/08/10 23:05:45 - mmengine - INFO - Iter(train) [ 99550/160000] lr: 4.2227e-03 eta: 18:46:29 time: 1.1158 data_time: 0.0081 memory: 8703 loss: 0.4984 decode.loss_ce: 0.3173 decode.acc_seg: 92.7811 aux.loss_ce: 0.1811 aux.acc_seg: 88.5560 +2024/08/10 23:06:41 - mmengine - INFO - Iter(train) [ 99600/160000] lr: 4.2197e-03 eta: 18:45:33 time: 1.1141 data_time: 0.0062 memory: 8704 loss: 0.3661 decode.loss_ce: 0.2163 decode.acc_seg: 97.8921 aux.loss_ce: 0.1498 aux.acc_seg: 83.6195 +2024/08/10 23:07:37 - mmengine - INFO - Iter(train) [ 99650/160000] lr: 4.2166e-03 eta: 18:44:37 time: 1.1144 data_time: 0.0071 memory: 8703 loss: 0.3410 decode.loss_ce: 0.2151 decode.acc_seg: 95.7478 aux.loss_ce: 0.1260 aux.acc_seg: 96.2672 +2024/08/10 23:08:32 - mmengine - INFO - Iter(train) [ 99700/160000] lr: 4.2135e-03 eta: 18:43:41 time: 1.1170 data_time: 0.0064 memory: 8704 loss: 0.4747 decode.loss_ce: 0.2863 decode.acc_seg: 84.8941 aux.loss_ce: 0.1884 aux.acc_seg: 81.0553 +2024/08/10 23:09:28 - mmengine - INFO - Iter(train) [ 99750/160000] lr: 4.2105e-03 eta: 18:42:45 time: 1.1197 data_time: 0.0071 memory: 8703 loss: 0.3672 decode.loss_ce: 0.2320 decode.acc_seg: 96.1510 aux.loss_ce: 0.1352 aux.acc_seg: 92.7655 +2024/08/10 23:10:24 - mmengine - INFO - Iter(train) [ 99800/160000] lr: 4.2074e-03 eta: 18:41:49 time: 1.1194 data_time: 0.0082 memory: 8704 loss: 0.3314 decode.loss_ce: 0.2152 decode.acc_seg: 87.6834 aux.loss_ce: 0.1162 aux.acc_seg: 84.5702 +2024/08/10 23:11:20 - mmengine - INFO - Iter(train) [ 99850/160000] lr: 4.2043e-03 eta: 18:40:54 time: 1.1130 data_time: 0.0054 memory: 8704 loss: 0.3563 decode.loss_ce: 0.2137 decode.acc_seg: 91.0159 aux.loss_ce: 0.1426 aux.acc_seg: 78.7189 +2024/08/10 23:12:16 - mmengine - INFO - Iter(train) [ 99900/160000] lr: 4.2013e-03 eta: 18:39:58 time: 1.1194 data_time: 0.0067 memory: 8704 loss: 0.3968 decode.loss_ce: 0.2263 decode.acc_seg: 97.0657 aux.loss_ce: 0.1705 aux.acc_seg: 93.7013 +2024/08/10 23:13:11 - mmengine - INFO - Iter(train) [ 99950/160000] lr: 4.1982e-03 eta: 18:39:02 time: 1.1119 data_time: 0.0057 memory: 8703 loss: 0.3977 decode.loss_ce: 0.2491 decode.acc_seg: 96.2644 aux.loss_ce: 0.1486 aux.acc_seg: 94.2787 +2024/08/10 23:14:07 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 23:14:07 - mmengine - INFO - Iter(train) [100000/160000] lr: 4.1951e-03 eta: 18:38:06 time: 1.1124 data_time: 0.0064 memory: 8704 loss: 0.3582 decode.loss_ce: 0.2107 decode.acc_seg: 92.2938 aux.loss_ce: 0.1476 aux.acc_seg: 87.9421 +2024/08/10 23:15:03 - mmengine - INFO - Iter(train) [100050/160000] lr: 4.1920e-03 eta: 18:37:09 time: 1.1113 data_time: 0.0063 memory: 8703 loss: 0.4690 decode.loss_ce: 0.3010 decode.acc_seg: 91.2975 aux.loss_ce: 0.1680 aux.acc_seg: 89.3197 +2024/08/10 23:15:59 - mmengine - INFO - Iter(train) [100100/160000] lr: 4.1890e-03 eta: 18:36:14 time: 1.1162 data_time: 0.0062 memory: 8703 loss: 0.3269 decode.loss_ce: 0.2086 decode.acc_seg: 96.2692 aux.loss_ce: 0.1183 aux.acc_seg: 95.0991 +2024/08/10 23:16:54 - mmengine - INFO - Iter(train) [100150/160000] lr: 4.1859e-03 eta: 18:35:18 time: 1.1146 data_time: 0.0064 memory: 8704 loss: 0.4746 decode.loss_ce: 0.2809 decode.acc_seg: 95.5108 aux.loss_ce: 0.1938 aux.acc_seg: 89.8505 +2024/08/10 23:17:50 - mmengine - INFO - Iter(train) [100200/160000] lr: 4.1828e-03 eta: 18:34:21 time: 1.1124 data_time: 0.0055 memory: 8703 loss: 0.3350 decode.loss_ce: 0.2036 decode.acc_seg: 96.8453 aux.loss_ce: 0.1314 aux.acc_seg: 95.5944 +2024/08/10 23:18:46 - mmengine - INFO - Iter(train) [100250/160000] lr: 4.1798e-03 eta: 18:33:25 time: 1.1168 data_time: 0.0068 memory: 8704 loss: 0.3576 decode.loss_ce: 0.2277 decode.acc_seg: 94.6743 aux.loss_ce: 0.1299 aux.acc_seg: 90.4432 +2024/08/10 23:19:42 - mmengine - INFO - Iter(train) [100300/160000] lr: 4.1767e-03 eta: 18:32:30 time: 1.1147 data_time: 0.0068 memory: 8704 loss: 0.2972 decode.loss_ce: 0.1892 decode.acc_seg: 97.4029 aux.loss_ce: 0.1080 aux.acc_seg: 93.5463 +2024/08/10 23:20:38 - mmengine - INFO - Iter(train) [100350/160000] lr: 4.1736e-03 eta: 18:31:34 time: 1.1153 data_time: 0.0058 memory: 8704 loss: 0.3895 decode.loss_ce: 0.2291 decode.acc_seg: 92.6772 aux.loss_ce: 0.1604 aux.acc_seg: 83.0947 +2024/08/10 23:21:33 - mmengine - INFO - Iter(train) [100400/160000] lr: 4.1705e-03 eta: 18:30:38 time: 1.1137 data_time: 0.0068 memory: 8704 loss: 0.3248 decode.loss_ce: 0.1854 decode.acc_seg: 97.6934 aux.loss_ce: 0.1393 aux.acc_seg: 97.4790 +2024/08/10 23:22:29 - mmengine - INFO - Iter(train) [100450/160000] lr: 4.1675e-03 eta: 18:29:42 time: 1.1161 data_time: 0.0082 memory: 8704 loss: 0.3329 decode.loss_ce: 0.2004 decode.acc_seg: 92.2171 aux.loss_ce: 0.1325 aux.acc_seg: 89.8230 +2024/08/10 23:23:25 - mmengine - INFO - Iter(train) [100500/160000] lr: 4.1644e-03 eta: 18:28:46 time: 1.1141 data_time: 0.0080 memory: 8704 loss: 0.1939 decode.loss_ce: 0.1188 decode.acc_seg: 97.3883 aux.loss_ce: 0.0751 aux.acc_seg: 96.0872 +2024/08/10 23:24:21 - mmengine - INFO - Iter(train) [100550/160000] lr: 4.1613e-03 eta: 18:27:50 time: 1.1157 data_time: 0.0067 memory: 8704 loss: 0.4235 decode.loss_ce: 0.2675 decode.acc_seg: 96.0131 aux.loss_ce: 0.1559 aux.acc_seg: 95.2073 +2024/08/10 23:25:16 - mmengine - INFO - Iter(train) [100600/160000] lr: 4.1582e-03 eta: 18:26:54 time: 1.1154 data_time: 0.0073 memory: 8704 loss: 0.3687 decode.loss_ce: 0.2101 decode.acc_seg: 93.3889 aux.loss_ce: 0.1586 aux.acc_seg: 89.8024 +2024/08/10 23:26:12 - mmengine - INFO - Iter(train) [100650/160000] lr: 4.1552e-03 eta: 18:25:58 time: 1.1164 data_time: 0.0068 memory: 8704 loss: 0.3997 decode.loss_ce: 0.2434 decode.acc_seg: 86.3182 aux.loss_ce: 0.1563 aux.acc_seg: 80.7192 +2024/08/10 23:27:08 - mmengine - INFO - Iter(train) [100700/160000] lr: 4.1521e-03 eta: 18:25:02 time: 1.1154 data_time: 0.0061 memory: 8704 loss: 0.3584 decode.loss_ce: 0.2176 decode.acc_seg: 89.2805 aux.loss_ce: 0.1408 aux.acc_seg: 92.9590 +2024/08/10 23:28:04 - mmengine - INFO - Iter(train) [100750/160000] lr: 4.1490e-03 eta: 18:24:06 time: 1.1153 data_time: 0.0058 memory: 8704 loss: 0.2491 decode.loss_ce: 0.1481 decode.acc_seg: 91.7510 aux.loss_ce: 0.1010 aux.acc_seg: 91.1281 +2024/08/10 23:29:00 - mmengine - INFO - Iter(train) [100800/160000] lr: 4.1459e-03 eta: 18:23:10 time: 1.1132 data_time: 0.0060 memory: 8703 loss: 0.3800 decode.loss_ce: 0.2461 decode.acc_seg: 95.4472 aux.loss_ce: 0.1339 aux.acc_seg: 95.0554 +2024/08/10 23:29:55 - mmengine - INFO - Iter(train) [100850/160000] lr: 4.1429e-03 eta: 18:22:14 time: 1.1168 data_time: 0.0067 memory: 8703 loss: 0.2803 decode.loss_ce: 0.1704 decode.acc_seg: 94.6083 aux.loss_ce: 0.1099 aux.acc_seg: 95.2714 +2024/08/10 23:30:51 - mmengine - INFO - Iter(train) [100900/160000] lr: 4.1398e-03 eta: 18:21:18 time: 1.1165 data_time: 0.0072 memory: 8703 loss: 0.3640 decode.loss_ce: 0.2281 decode.acc_seg: 94.8823 aux.loss_ce: 0.1359 aux.acc_seg: 94.4176 +2024/08/10 23:31:47 - mmengine - INFO - Iter(train) [100950/160000] lr: 4.1367e-03 eta: 18:20:22 time: 1.1159 data_time: 0.0067 memory: 8704 loss: 0.2705 decode.loss_ce: 0.1712 decode.acc_seg: 90.8347 aux.loss_ce: 0.0992 aux.acc_seg: 87.7906 +2024/08/10 23:32:43 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 23:32:43 - mmengine - INFO - Iter(train) [101000/160000] lr: 4.1336e-03 eta: 18:19:26 time: 1.1131 data_time: 0.0059 memory: 8703 loss: 0.3448 decode.loss_ce: 0.2105 decode.acc_seg: 90.1883 aux.loss_ce: 0.1343 aux.acc_seg: 86.8247 +2024/08/10 23:33:39 - mmengine - INFO - Iter(train) [101050/160000] lr: 4.1306e-03 eta: 18:18:30 time: 1.1115 data_time: 0.0062 memory: 8703 loss: 0.3182 decode.loss_ce: 0.1975 decode.acc_seg: 80.5844 aux.loss_ce: 0.1207 aux.acc_seg: 78.1760 +2024/08/10 23:34:34 - mmengine - INFO - Iter(train) [101100/160000] lr: 4.1275e-03 eta: 18:17:34 time: 1.1094 data_time: 0.0053 memory: 8703 loss: 0.5216 decode.loss_ce: 0.3262 decode.acc_seg: 72.2853 aux.loss_ce: 0.1954 aux.acc_seg: 65.5694 +2024/08/10 23:35:30 - mmengine - INFO - Iter(train) [101150/160000] lr: 4.1244e-03 eta: 18:16:38 time: 1.1232 data_time: 0.0094 memory: 8704 loss: 0.5388 decode.loss_ce: 0.3546 decode.acc_seg: 83.9228 aux.loss_ce: 0.1843 aux.acc_seg: 81.3831 +2024/08/10 23:36:26 - mmengine - INFO - Iter(train) [101200/160000] lr: 4.1213e-03 eta: 18:15:42 time: 1.1203 data_time: 0.0080 memory: 8704 loss: 0.4770 decode.loss_ce: 0.2904 decode.acc_seg: 98.1370 aux.loss_ce: 0.1866 aux.acc_seg: 96.6670 +2024/08/10 23:37:22 - mmengine - INFO - Iter(train) [101250/160000] lr: 4.1182e-03 eta: 18:14:46 time: 1.1152 data_time: 0.0066 memory: 8704 loss: 0.3479 decode.loss_ce: 0.1942 decode.acc_seg: 92.6631 aux.loss_ce: 0.1536 aux.acc_seg: 92.0066 +2024/08/10 23:38:18 - mmengine - INFO - Iter(train) [101300/160000] lr: 4.1152e-03 eta: 18:13:50 time: 1.1170 data_time: 0.0068 memory: 8703 loss: 0.3286 decode.loss_ce: 0.1967 decode.acc_seg: 95.4512 aux.loss_ce: 0.1319 aux.acc_seg: 92.3175 +2024/08/10 23:39:13 - mmengine - INFO - Iter(train) [101350/160000] lr: 4.1121e-03 eta: 18:12:54 time: 1.1134 data_time: 0.0059 memory: 8704 loss: 0.3286 decode.loss_ce: 0.2023 decode.acc_seg: 94.1259 aux.loss_ce: 0.1263 aux.acc_seg: 92.8080 +2024/08/10 23:40:09 - mmengine - INFO - Iter(train) [101400/160000] lr: 4.1090e-03 eta: 18:11:58 time: 1.1199 data_time: 0.0085 memory: 8704 loss: 0.3932 decode.loss_ce: 0.2379 decode.acc_seg: 90.4601 aux.loss_ce: 0.1554 aux.acc_seg: 83.2446 +2024/08/10 23:41:05 - mmengine - INFO - Iter(train) [101450/160000] lr: 4.1059e-03 eta: 18:11:02 time: 1.1177 data_time: 0.0064 memory: 8703 loss: 0.4118 decode.loss_ce: 0.2407 decode.acc_seg: 93.1769 aux.loss_ce: 0.1710 aux.acc_seg: 93.3730 +2024/08/10 23:42:01 - mmengine - INFO - Iter(train) [101500/160000] lr: 4.1029e-03 eta: 18:10:06 time: 1.1142 data_time: 0.0073 memory: 8704 loss: 0.3577 decode.loss_ce: 0.2118 decode.acc_seg: 89.7669 aux.loss_ce: 0.1459 aux.acc_seg: 91.0565 +2024/08/10 23:42:56 - mmengine - INFO - Iter(train) [101550/160000] lr: 4.0998e-03 eta: 18:09:10 time: 1.1197 data_time: 0.0079 memory: 8703 loss: 0.3869 decode.loss_ce: 0.2213 decode.acc_seg: 91.3739 aux.loss_ce: 0.1656 aux.acc_seg: 80.1100 +2024/08/10 23:43:52 - mmengine - INFO - Iter(train) [101600/160000] lr: 4.0967e-03 eta: 18:08:14 time: 1.1176 data_time: 0.0075 memory: 8703 loss: 0.4574 decode.loss_ce: 0.2707 decode.acc_seg: 84.7466 aux.loss_ce: 0.1867 aux.acc_seg: 81.5255 +2024/08/10 23:44:48 - mmengine - INFO - Iter(train) [101650/160000] lr: 4.0936e-03 eta: 18:07:18 time: 1.1168 data_time: 0.0064 memory: 8704 loss: 0.4216 decode.loss_ce: 0.2743 decode.acc_seg: 96.4456 aux.loss_ce: 0.1472 aux.acc_seg: 96.3103 +2024/08/10 23:45:44 - mmengine - INFO - Iter(train) [101700/160000] lr: 4.0905e-03 eta: 18:06:22 time: 1.1268 data_time: 0.0090 memory: 8703 loss: 0.2206 decode.loss_ce: 0.1329 decode.acc_seg: 95.6277 aux.loss_ce: 0.0878 aux.acc_seg: 90.9116 +2024/08/10 23:46:40 - mmengine - INFO - Iter(train) [101750/160000] lr: 4.0875e-03 eta: 18:05:26 time: 1.1172 data_time: 0.0079 memory: 8704 loss: 0.3934 decode.loss_ce: 0.2463 decode.acc_seg: 86.9954 aux.loss_ce: 0.1472 aux.acc_seg: 89.0578 +2024/08/10 23:47:36 - mmengine - INFO - Iter(train) [101800/160000] lr: 4.0844e-03 eta: 18:04:30 time: 1.1179 data_time: 0.0071 memory: 8703 loss: 0.5758 decode.loss_ce: 0.3772 decode.acc_seg: 95.9520 aux.loss_ce: 0.1987 aux.acc_seg: 94.9693 +2024/08/10 23:48:31 - mmengine - INFO - Iter(train) [101850/160000] lr: 4.0813e-03 eta: 18:03:34 time: 1.1150 data_time: 0.0072 memory: 8703 loss: 0.3502 decode.loss_ce: 0.2259 decode.acc_seg: 90.8417 aux.loss_ce: 0.1243 aux.acc_seg: 87.3832 +2024/08/10 23:49:27 - mmengine - INFO - Iter(train) [101900/160000] lr: 4.0782e-03 eta: 18:02:38 time: 1.1147 data_time: 0.0073 memory: 8703 loss: 0.3855 decode.loss_ce: 0.2348 decode.acc_seg: 97.8808 aux.loss_ce: 0.1508 aux.acc_seg: 97.2462 +2024/08/10 23:50:23 - mmengine - INFO - Iter(train) [101950/160000] lr: 4.0751e-03 eta: 18:01:42 time: 1.1146 data_time: 0.0064 memory: 8703 loss: 0.4750 decode.loss_ce: 0.3123 decode.acc_seg: 67.8232 aux.loss_ce: 0.1627 aux.acc_seg: 70.8340 +2024/08/10 23:51:19 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/10 23:51:19 - mmengine - INFO - Iter(train) [102000/160000] lr: 4.0721e-03 eta: 18:00:46 time: 1.1138 data_time: 0.0057 memory: 8703 loss: 0.3139 decode.loss_ce: 0.1851 decode.acc_seg: 93.5251 aux.loss_ce: 0.1288 aux.acc_seg: 91.1555 +2024/08/10 23:52:14 - mmengine - INFO - Iter(train) [102050/160000] lr: 4.0690e-03 eta: 17:59:50 time: 1.1138 data_time: 0.0062 memory: 8705 loss: 0.3253 decode.loss_ce: 0.1802 decode.acc_seg: 94.8579 aux.loss_ce: 0.1451 aux.acc_seg: 93.7632 +2024/08/10 23:53:10 - mmengine - INFO - Iter(train) [102100/160000] lr: 4.0659e-03 eta: 17:58:54 time: 1.1182 data_time: 0.0087 memory: 8703 loss: 0.3424 decode.loss_ce: 0.2152 decode.acc_seg: 89.6059 aux.loss_ce: 0.1272 aux.acc_seg: 79.0832 +2024/08/10 23:54:06 - mmengine - INFO - Iter(train) [102150/160000] lr: 4.0628e-03 eta: 17:57:59 time: 1.1200 data_time: 0.0076 memory: 8704 loss: 0.2702 decode.loss_ce: 0.1615 decode.acc_seg: 93.1293 aux.loss_ce: 0.1087 aux.acc_seg: 91.4340 +2024/08/10 23:55:02 - mmengine - INFO - Iter(train) [102200/160000] lr: 4.0597e-03 eta: 17:57:03 time: 1.1162 data_time: 0.0081 memory: 8703 loss: 0.3219 decode.loss_ce: 0.2022 decode.acc_seg: 94.9595 aux.loss_ce: 0.1197 aux.acc_seg: 94.5107 +2024/08/10 23:55:58 - mmengine - INFO - Iter(train) [102250/160000] lr: 4.0566e-03 eta: 17:56:07 time: 1.1123 data_time: 0.0061 memory: 8704 loss: 0.3204 decode.loss_ce: 0.1972 decode.acc_seg: 93.2074 aux.loss_ce: 0.1232 aux.acc_seg: 76.9986 +2024/08/10 23:56:53 - mmengine - INFO - Iter(train) [102300/160000] lr: 4.0536e-03 eta: 17:55:11 time: 1.1136 data_time: 0.0055 memory: 8703 loss: 0.3038 decode.loss_ce: 0.1920 decode.acc_seg: 96.5345 aux.loss_ce: 0.1117 aux.acc_seg: 95.6489 +2024/08/10 23:57:49 - mmengine - INFO - Iter(train) [102350/160000] lr: 4.0505e-03 eta: 17:54:15 time: 1.1185 data_time: 0.0063 memory: 8704 loss: 0.3155 decode.loss_ce: 0.1808 decode.acc_seg: 95.8108 aux.loss_ce: 0.1347 aux.acc_seg: 74.9191 +2024/08/10 23:58:45 - mmengine - INFO - Iter(train) [102400/160000] lr: 4.0474e-03 eta: 17:53:19 time: 1.1188 data_time: 0.0083 memory: 8704 loss: 0.4208 decode.loss_ce: 0.2421 decode.acc_seg: 95.8960 aux.loss_ce: 0.1788 aux.acc_seg: 94.5184 +2024/08/10 23:59:41 - mmengine - INFO - Iter(train) [102450/160000] lr: 4.0443e-03 eta: 17:52:23 time: 1.1142 data_time: 0.0081 memory: 8704 loss: 0.2663 decode.loss_ce: 0.1630 decode.acc_seg: 96.1676 aux.loss_ce: 0.1034 aux.acc_seg: 90.3285 +2024/08/11 00:00:36 - mmengine - INFO - Iter(train) [102500/160000] lr: 4.0412e-03 eta: 17:51:27 time: 1.1181 data_time: 0.0063 memory: 8703 loss: 0.3021 decode.loss_ce: 0.1785 decode.acc_seg: 85.8267 aux.loss_ce: 0.1236 aux.acc_seg: 84.7675 +2024/08/11 00:01:32 - mmengine - INFO - Iter(train) [102550/160000] lr: 4.0381e-03 eta: 17:50:31 time: 1.1160 data_time: 0.0077 memory: 8703 loss: 0.2951 decode.loss_ce: 0.1754 decode.acc_seg: 94.5048 aux.loss_ce: 0.1197 aux.acc_seg: 93.6363 +2024/08/11 00:02:28 - mmengine - INFO - Iter(train) [102600/160000] lr: 4.0351e-03 eta: 17:49:35 time: 1.1157 data_time: 0.0062 memory: 8703 loss: 0.5355 decode.loss_ce: 0.3238 decode.acc_seg: 83.5733 aux.loss_ce: 0.2117 aux.acc_seg: 73.7278 +2024/08/11 00:03:24 - mmengine - INFO - Iter(train) [102650/160000] lr: 4.0320e-03 eta: 17:48:39 time: 1.1180 data_time: 0.0080 memory: 8704 loss: 0.2873 decode.loss_ce: 0.1749 decode.acc_seg: 97.7314 aux.loss_ce: 0.1124 aux.acc_seg: 93.4081 +2024/08/11 00:04:20 - mmengine - INFO - Iter(train) [102700/160000] lr: 4.0289e-03 eta: 17:47:43 time: 1.1117 data_time: 0.0071 memory: 8703 loss: 0.3932 decode.loss_ce: 0.2400 decode.acc_seg: 89.7589 aux.loss_ce: 0.1532 aux.acc_seg: 88.3359 +2024/08/11 00:05:15 - mmengine - INFO - Iter(train) [102750/160000] lr: 4.0258e-03 eta: 17:46:47 time: 1.1110 data_time: 0.0051 memory: 8704 loss: 0.5063 decode.loss_ce: 0.3130 decode.acc_seg: 76.9312 aux.loss_ce: 0.1933 aux.acc_seg: 65.2869 +2024/08/11 00:06:11 - mmengine - INFO - Iter(train) [102800/160000] lr: 4.0227e-03 eta: 17:45:51 time: 1.1137 data_time: 0.0060 memory: 8703 loss: 0.3660 decode.loss_ce: 0.2058 decode.acc_seg: 94.5084 aux.loss_ce: 0.1602 aux.acc_seg: 93.3904 +2024/08/11 00:07:07 - mmengine - INFO - Iter(train) [102850/160000] lr: 4.0196e-03 eta: 17:44:55 time: 1.1132 data_time: 0.0066 memory: 8703 loss: 0.3085 decode.loss_ce: 0.1879 decode.acc_seg: 93.5666 aux.loss_ce: 0.1206 aux.acc_seg: 90.3646 +2024/08/11 00:08:02 - mmengine - INFO - Iter(train) [102900/160000] lr: 4.0165e-03 eta: 17:43:59 time: 1.1155 data_time: 0.0082 memory: 8703 loss: 0.4080 decode.loss_ce: 0.2519 decode.acc_seg: 86.7647 aux.loss_ce: 0.1561 aux.acc_seg: 78.1272 +2024/08/11 00:08:58 - mmengine - INFO - Iter(train) [102950/160000] lr: 4.0134e-03 eta: 17:43:03 time: 1.1155 data_time: 0.0075 memory: 8704 loss: 0.4169 decode.loss_ce: 0.2628 decode.acc_seg: 96.4849 aux.loss_ce: 0.1541 aux.acc_seg: 95.7672 +2024/08/11 00:09:54 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 00:09:54 - mmengine - INFO - Iter(train) [103000/160000] lr: 4.0104e-03 eta: 17:42:07 time: 1.1220 data_time: 0.0090 memory: 8703 loss: 0.3008 decode.loss_ce: 0.1863 decode.acc_seg: 91.7396 aux.loss_ce: 0.1145 aux.acc_seg: 92.7347 +2024/08/11 00:10:50 - mmengine - INFO - Iter(train) [103050/160000] lr: 4.0073e-03 eta: 17:41:11 time: 1.1206 data_time: 0.0080 memory: 8703 loss: 0.4974 decode.loss_ce: 0.3080 decode.acc_seg: 90.1412 aux.loss_ce: 0.1894 aux.acc_seg: 78.8633 +2024/08/11 00:11:46 - mmengine - INFO - Iter(train) [103100/160000] lr: 4.0042e-03 eta: 17:40:15 time: 1.1115 data_time: 0.0060 memory: 8704 loss: 0.5574 decode.loss_ce: 0.3460 decode.acc_seg: 93.5921 aux.loss_ce: 0.2114 aux.acc_seg: 91.1801 +2024/08/11 00:12:41 - mmengine - INFO - Iter(train) [103150/160000] lr: 4.0011e-03 eta: 17:39:19 time: 1.1160 data_time: 0.0077 memory: 8703 loss: 0.3483 decode.loss_ce: 0.2150 decode.acc_seg: 91.3899 aux.loss_ce: 0.1333 aux.acc_seg: 86.2109 +2024/08/11 00:13:37 - mmengine - INFO - Iter(train) [103200/160000] lr: 3.9980e-03 eta: 17:38:23 time: 1.1200 data_time: 0.0068 memory: 8704 loss: 0.2401 decode.loss_ce: 0.1442 decode.acc_seg: 95.0032 aux.loss_ce: 0.0959 aux.acc_seg: 92.9045 +2024/08/11 00:14:33 - mmengine - INFO - Iter(train) [103250/160000] lr: 3.9949e-03 eta: 17:37:27 time: 1.1126 data_time: 0.0062 memory: 8703 loss: 0.2976 decode.loss_ce: 0.1879 decode.acc_seg: 88.2824 aux.loss_ce: 0.1097 aux.acc_seg: 84.7593 +2024/08/11 00:15:29 - mmengine - INFO - Iter(train) [103300/160000] lr: 3.9918e-03 eta: 17:36:31 time: 1.1159 data_time: 0.0083 memory: 8703 loss: 0.3865 decode.loss_ce: 0.2355 decode.acc_seg: 86.9650 aux.loss_ce: 0.1510 aux.acc_seg: 90.3698 +2024/08/11 00:16:24 - mmengine - INFO - Iter(train) [103350/160000] lr: 3.9887e-03 eta: 17:35:35 time: 1.1094 data_time: 0.0061 memory: 8704 loss: 0.3472 decode.loss_ce: 0.2120 decode.acc_seg: 98.6900 aux.loss_ce: 0.1352 aux.acc_seg: 92.7326 +2024/08/11 00:17:20 - mmengine - INFO - Iter(train) [103400/160000] lr: 3.9857e-03 eta: 17:34:39 time: 1.1159 data_time: 0.0071 memory: 8704 loss: 0.4721 decode.loss_ce: 0.2646 decode.acc_seg: 94.2288 aux.loss_ce: 0.2075 aux.acc_seg: 81.6854 +2024/08/11 00:18:16 - mmengine - INFO - Iter(train) [103450/160000] lr: 3.9826e-03 eta: 17:33:43 time: 1.1197 data_time: 0.0085 memory: 8703 loss: 0.3572 decode.loss_ce: 0.2244 decode.acc_seg: 98.3634 aux.loss_ce: 0.1328 aux.acc_seg: 98.0659 +2024/08/11 00:19:11 - mmengine - INFO - Iter(train) [103500/160000] lr: 3.9795e-03 eta: 17:32:47 time: 1.1123 data_time: 0.0057 memory: 8703 loss: 0.6594 decode.loss_ce: 0.4481 decode.acc_seg: 95.3763 aux.loss_ce: 0.2113 aux.acc_seg: 95.2885 +2024/08/11 00:20:07 - mmengine - INFO - Iter(train) [103550/160000] lr: 3.9764e-03 eta: 17:31:51 time: 1.1197 data_time: 0.0073 memory: 8704 loss: 0.3914 decode.loss_ce: 0.2418 decode.acc_seg: 70.3219 aux.loss_ce: 0.1497 aux.acc_seg: 66.0500 +2024/08/11 00:21:03 - mmengine - INFO - Iter(train) [103600/160000] lr: 3.9733e-03 eta: 17:30:55 time: 1.1180 data_time: 0.0072 memory: 8704 loss: 0.4298 decode.loss_ce: 0.2672 decode.acc_seg: 95.4621 aux.loss_ce: 0.1625 aux.acc_seg: 93.7848 +2024/08/11 00:21:59 - mmengine - INFO - Iter(train) [103650/160000] lr: 3.9702e-03 eta: 17:29:59 time: 1.1151 data_time: 0.0057 memory: 8704 loss: 0.2938 decode.loss_ce: 0.1805 decode.acc_seg: 90.7841 aux.loss_ce: 0.1132 aux.acc_seg: 82.1577 +2024/08/11 00:22:55 - mmengine - INFO - Iter(train) [103700/160000] lr: 3.9671e-03 eta: 17:29:03 time: 1.1169 data_time: 0.0062 memory: 8703 loss: 0.4761 decode.loss_ce: 0.3015 decode.acc_seg: 72.3003 aux.loss_ce: 0.1746 aux.acc_seg: 68.0872 +2024/08/11 00:23:51 - mmengine - INFO - Iter(train) [103750/160000] lr: 3.9640e-03 eta: 17:28:07 time: 1.1102 data_time: 0.0061 memory: 8704 loss: 0.3612 decode.loss_ce: 0.2273 decode.acc_seg: 94.9118 aux.loss_ce: 0.1339 aux.acc_seg: 89.4415 +2024/08/11 00:24:47 - mmengine - INFO - Iter(train) [103800/160000] lr: 3.9609e-03 eta: 17:27:11 time: 1.1302 data_time: 0.0080 memory: 8703 loss: 0.3515 decode.loss_ce: 0.1900 decode.acc_seg: 97.7509 aux.loss_ce: 0.1615 aux.acc_seg: 97.2608 +2024/08/11 00:25:42 - mmengine - INFO - Iter(train) [103850/160000] lr: 3.9578e-03 eta: 17:26:15 time: 1.1191 data_time: 0.0069 memory: 8704 loss: 0.2960 decode.loss_ce: 0.1714 decode.acc_seg: 96.4581 aux.loss_ce: 0.1245 aux.acc_seg: 96.2281 +2024/08/11 00:26:38 - mmengine - INFO - Iter(train) [103900/160000] lr: 3.9548e-03 eta: 17:25:19 time: 1.1186 data_time: 0.0065 memory: 8704 loss: 0.3818 decode.loss_ce: 0.2368 decode.acc_seg: 93.2947 aux.loss_ce: 0.1450 aux.acc_seg: 87.7708 +2024/08/11 00:27:34 - mmengine - INFO - Iter(train) [103950/160000] lr: 3.9517e-03 eta: 17:24:23 time: 1.1224 data_time: 0.0082 memory: 8704 loss: 0.3447 decode.loss_ce: 0.2178 decode.acc_seg: 95.1734 aux.loss_ce: 0.1269 aux.acc_seg: 92.7487 +2024/08/11 00:28:30 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 00:28:30 - mmengine - INFO - Iter(train) [104000/160000] lr: 3.9486e-03 eta: 17:23:28 time: 1.1167 data_time: 0.0066 memory: 8703 loss: 0.3161 decode.loss_ce: 0.1770 decode.acc_seg: 90.9146 aux.loss_ce: 0.1391 aux.acc_seg: 89.7602 +2024/08/11 00:29:26 - mmengine - INFO - Iter(train) [104050/160000] lr: 3.9455e-03 eta: 17:22:32 time: 1.1135 data_time: 0.0065 memory: 8704 loss: 0.5670 decode.loss_ce: 0.3518 decode.acc_seg: 87.9697 aux.loss_ce: 0.2152 aux.acc_seg: 76.8269 +2024/08/11 00:30:22 - mmengine - INFO - Iter(train) [104100/160000] lr: 3.9424e-03 eta: 17:21:36 time: 1.1207 data_time: 0.0067 memory: 8704 loss: 0.3472 decode.loss_ce: 0.2100 decode.acc_seg: 88.0768 aux.loss_ce: 0.1372 aux.acc_seg: 86.7640 +2024/08/11 00:31:18 - mmengine - INFO - Iter(train) [104150/160000] lr: 3.9393e-03 eta: 17:20:40 time: 1.1174 data_time: 0.0086 memory: 8703 loss: 0.3252 decode.loss_ce: 0.2051 decode.acc_seg: 95.7875 aux.loss_ce: 0.1200 aux.acc_seg: 95.5551 +2024/08/11 00:32:13 - mmengine - INFO - Iter(train) [104200/160000] lr: 3.9362e-03 eta: 17:19:44 time: 1.1097 data_time: 0.0060 memory: 8703 loss: 0.3145 decode.loss_ce: 0.1900 decode.acc_seg: 95.3447 aux.loss_ce: 0.1245 aux.acc_seg: 93.8949 +2024/08/11 00:33:09 - mmengine - INFO - Iter(train) [104250/160000] lr: 3.9331e-03 eta: 17:18:48 time: 1.1085 data_time: 0.0052 memory: 8703 loss: 0.3242 decode.loss_ce: 0.1832 decode.acc_seg: 93.6818 aux.loss_ce: 0.1410 aux.acc_seg: 87.6370 +2024/08/11 00:34:05 - mmengine - INFO - Iter(train) [104300/160000] lr: 3.9300e-03 eta: 17:17:52 time: 1.1137 data_time: 0.0084 memory: 8703 loss: 0.4253 decode.loss_ce: 0.2817 decode.acc_seg: 96.9614 aux.loss_ce: 0.1436 aux.acc_seg: 96.4925 +2024/08/11 00:35:01 - mmengine - INFO - Iter(train) [104350/160000] lr: 3.9269e-03 eta: 17:16:56 time: 1.1149 data_time: 0.0077 memory: 8704 loss: 0.3237 decode.loss_ce: 0.2015 decode.acc_seg: 86.5327 aux.loss_ce: 0.1222 aux.acc_seg: 85.4314 +2024/08/11 00:35:57 - mmengine - INFO - Iter(train) [104400/160000] lr: 3.9238e-03 eta: 17:16:00 time: 1.1190 data_time: 0.0081 memory: 8704 loss: 0.4031 decode.loss_ce: 0.2460 decode.acc_seg: 88.1560 aux.loss_ce: 0.1571 aux.acc_seg: 88.5438 +2024/08/11 00:36:53 - mmengine - INFO - Iter(train) [104450/160000] lr: 3.9207e-03 eta: 17:15:04 time: 1.1227 data_time: 0.0085 memory: 8704 loss: 0.3072 decode.loss_ce: 0.1842 decode.acc_seg: 92.7350 aux.loss_ce: 0.1230 aux.acc_seg: 91.7800 +2024/08/11 00:37:49 - mmengine - INFO - Iter(train) [104500/160000] lr: 3.9176e-03 eta: 17:14:08 time: 1.1138 data_time: 0.0070 memory: 8703 loss: 0.3229 decode.loss_ce: 0.1943 decode.acc_seg: 93.1182 aux.loss_ce: 0.1286 aux.acc_seg: 89.4536 +2024/08/11 00:38:45 - mmengine - INFO - Iter(train) [104550/160000] lr: 3.9145e-03 eta: 17:13:12 time: 1.1141 data_time: 0.0059 memory: 8703 loss: 0.2766 decode.loss_ce: 0.1771 decode.acc_seg: 96.1367 aux.loss_ce: 0.0994 aux.acc_seg: 94.7968 +2024/08/11 00:39:40 - mmengine - INFO - Iter(train) [104600/160000] lr: 3.9114e-03 eta: 17:12:16 time: 1.1168 data_time: 0.0062 memory: 8704 loss: 0.3762 decode.loss_ce: 0.2350 decode.acc_seg: 96.8269 aux.loss_ce: 0.1412 aux.acc_seg: 96.3905 +2024/08/11 00:40:36 - mmengine - INFO - Iter(train) [104650/160000] lr: 3.9083e-03 eta: 17:11:20 time: 1.1148 data_time: 0.0072 memory: 8703 loss: 0.3891 decode.loss_ce: 0.2496 decode.acc_seg: 89.5851 aux.loss_ce: 0.1396 aux.acc_seg: 86.5567 +2024/08/11 00:41:32 - mmengine - INFO - Iter(train) [104700/160000] lr: 3.9052e-03 eta: 17:10:25 time: 1.1229 data_time: 0.0078 memory: 8703 loss: 0.5241 decode.loss_ce: 0.3466 decode.acc_seg: 79.9536 aux.loss_ce: 0.1775 aux.acc_seg: 86.8897 +2024/08/11 00:42:28 - mmengine - INFO - Iter(train) [104750/160000] lr: 3.9021e-03 eta: 17:09:29 time: 1.1189 data_time: 0.0071 memory: 8704 loss: 0.3933 decode.loss_ce: 0.2369 decode.acc_seg: 94.1773 aux.loss_ce: 0.1564 aux.acc_seg: 85.1278 +2024/08/11 00:43:24 - mmengine - INFO - Iter(train) [104800/160000] lr: 3.8990e-03 eta: 17:08:33 time: 1.1155 data_time: 0.0075 memory: 8704 loss: 0.4114 decode.loss_ce: 0.2405 decode.acc_seg: 91.4101 aux.loss_ce: 0.1709 aux.acc_seg: 79.4011 +2024/08/11 00:44:20 - mmengine - INFO - Iter(train) [104850/160000] lr: 3.8960e-03 eta: 17:07:37 time: 1.1186 data_time: 0.0078 memory: 8704 loss: 0.3555 decode.loss_ce: 0.2214 decode.acc_seg: 89.2904 aux.loss_ce: 0.1342 aux.acc_seg: 86.4918 +2024/08/11 00:45:16 - mmengine - INFO - Iter(train) [104900/160000] lr: 3.8929e-03 eta: 17:06:41 time: 1.1213 data_time: 0.0077 memory: 8704 loss: 0.2758 decode.loss_ce: 0.1698 decode.acc_seg: 93.1601 aux.loss_ce: 0.1060 aux.acc_seg: 93.6522 +2024/08/11 00:46:12 - mmengine - INFO - Iter(train) [104950/160000] lr: 3.8898e-03 eta: 17:05:45 time: 1.1202 data_time: 0.0084 memory: 8704 loss: 0.3136 decode.loss_ce: 0.1937 decode.acc_seg: 91.6150 aux.loss_ce: 0.1200 aux.acc_seg: 87.4964 +2024/08/11 00:47:07 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 00:47:07 - mmengine - INFO - Iter(train) [105000/160000] lr: 3.8867e-03 eta: 17:04:49 time: 1.1195 data_time: 0.0071 memory: 8703 loss: 0.2715 decode.loss_ce: 0.1740 decode.acc_seg: 95.9618 aux.loss_ce: 0.0975 aux.acc_seg: 92.6885 +2024/08/11 00:48:03 - mmengine - INFO - Iter(train) [105050/160000] lr: 3.8836e-03 eta: 17:03:53 time: 1.1159 data_time: 0.0075 memory: 8704 loss: 0.3930 decode.loss_ce: 0.2280 decode.acc_seg: 96.1282 aux.loss_ce: 0.1651 aux.acc_seg: 91.7189 +2024/08/11 00:48:59 - mmengine - INFO - Iter(train) [105100/160000] lr: 3.8805e-03 eta: 17:02:57 time: 1.1148 data_time: 0.0078 memory: 8703 loss: 0.3111 decode.loss_ce: 0.1875 decode.acc_seg: 90.0843 aux.loss_ce: 0.1236 aux.acc_seg: 89.4532 +2024/08/11 00:49:55 - mmengine - INFO - Iter(train) [105150/160000] lr: 3.8774e-03 eta: 17:02:01 time: 1.1162 data_time: 0.0064 memory: 8703 loss: 0.2728 decode.loss_ce: 0.1571 decode.acc_seg: 91.7648 aux.loss_ce: 0.1156 aux.acc_seg: 88.8832 +2024/08/11 00:50:51 - mmengine - INFO - Iter(train) [105200/160000] lr: 3.8743e-03 eta: 17:01:05 time: 1.1210 data_time: 0.0079 memory: 8705 loss: 0.3901 decode.loss_ce: 0.2231 decode.acc_seg: 90.2763 aux.loss_ce: 0.1670 aux.acc_seg: 87.4487 +2024/08/11 00:51:47 - mmengine - INFO - Iter(train) [105250/160000] lr: 3.8712e-03 eta: 17:00:09 time: 1.1151 data_time: 0.0070 memory: 8703 loss: 0.3680 decode.loss_ce: 0.2203 decode.acc_seg: 93.4119 aux.loss_ce: 0.1478 aux.acc_seg: 87.5579 +2024/08/11 00:52:42 - mmengine - INFO - Iter(train) [105300/160000] lr: 3.8681e-03 eta: 16:59:13 time: 1.1137 data_time: 0.0060 memory: 8703 loss: 0.3514 decode.loss_ce: 0.2100 decode.acc_seg: 87.9641 aux.loss_ce: 0.1414 aux.acc_seg: 86.8536 +2024/08/11 00:53:38 - mmengine - INFO - Iter(train) [105350/160000] lr: 3.8650e-03 eta: 16:58:17 time: 1.1166 data_time: 0.0073 memory: 8703 loss: 0.3318 decode.loss_ce: 0.2026 decode.acc_seg: 91.6355 aux.loss_ce: 0.1292 aux.acc_seg: 78.4925 +2024/08/11 00:54:34 - mmengine - INFO - Iter(train) [105400/160000] lr: 3.8619e-03 eta: 16:57:22 time: 1.1217 data_time: 0.0062 memory: 8704 loss: 0.3174 decode.loss_ce: 0.1834 decode.acc_seg: 96.0154 aux.loss_ce: 0.1339 aux.acc_seg: 95.5880 +2024/08/11 00:55:30 - mmengine - INFO - Iter(train) [105450/160000] lr: 3.8588e-03 eta: 16:56:26 time: 1.1153 data_time: 0.0074 memory: 8703 loss: 0.4128 decode.loss_ce: 0.2462 decode.acc_seg: 95.5149 aux.loss_ce: 0.1667 aux.acc_seg: 93.4737 +2024/08/11 00:56:26 - mmengine - INFO - Iter(train) [105500/160000] lr: 3.8557e-03 eta: 16:55:30 time: 1.1155 data_time: 0.0068 memory: 8704 loss: 0.3075 decode.loss_ce: 0.1954 decode.acc_seg: 95.4078 aux.loss_ce: 0.1121 aux.acc_seg: 95.2457 +2024/08/11 00:57:22 - mmengine - INFO - Iter(train) [105550/160000] lr: 3.8526e-03 eta: 16:54:34 time: 1.1206 data_time: 0.0081 memory: 8704 loss: 0.3799 decode.loss_ce: 0.2243 decode.acc_seg: 94.9236 aux.loss_ce: 0.1555 aux.acc_seg: 94.6150 +2024/08/11 00:58:17 - mmengine - INFO - Iter(train) [105600/160000] lr: 3.8495e-03 eta: 16:53:38 time: 1.1146 data_time: 0.0077 memory: 8703 loss: 0.3845 decode.loss_ce: 0.2349 decode.acc_seg: 95.9540 aux.loss_ce: 0.1497 aux.acc_seg: 94.6008 +2024/08/11 00:59:13 - mmengine - INFO - Iter(train) [105650/160000] lr: 3.8464e-03 eta: 16:52:42 time: 1.1204 data_time: 0.0081 memory: 8704 loss: 0.3377 decode.loss_ce: 0.1894 decode.acc_seg: 96.4527 aux.loss_ce: 0.1483 aux.acc_seg: 89.2346 +2024/08/11 01:00:09 - mmengine - INFO - Iter(train) [105700/160000] lr: 3.8433e-03 eta: 16:51:46 time: 1.1184 data_time: 0.0081 memory: 8703 loss: 0.3299 decode.loss_ce: 0.2020 decode.acc_seg: 93.7065 aux.loss_ce: 0.1279 aux.acc_seg: 94.5006 +2024/08/11 01:01:05 - mmengine - INFO - Iter(train) [105750/160000] lr: 3.8402e-03 eta: 16:50:50 time: 1.1200 data_time: 0.0074 memory: 8703 loss: 0.2573 decode.loss_ce: 0.1532 decode.acc_seg: 94.5240 aux.loss_ce: 0.1041 aux.acc_seg: 92.0248 +2024/08/11 01:02:00 - mmengine - INFO - Iter(train) [105800/160000] lr: 3.8371e-03 eta: 16:49:54 time: 1.1157 data_time: 0.0067 memory: 8704 loss: 0.2306 decode.loss_ce: 0.1343 decode.acc_seg: 96.3217 aux.loss_ce: 0.0963 aux.acc_seg: 95.1862 +2024/08/11 01:02:56 - mmengine - INFO - Iter(train) [105850/160000] lr: 3.8339e-03 eta: 16:48:58 time: 1.1203 data_time: 0.0075 memory: 8703 loss: 0.3030 decode.loss_ce: 0.1678 decode.acc_seg: 97.2515 aux.loss_ce: 0.1352 aux.acc_seg: 95.5762 +2024/08/11 01:03:52 - mmengine - INFO - Iter(train) [105900/160000] lr: 3.8308e-03 eta: 16:48:02 time: 1.1170 data_time: 0.0061 memory: 8703 loss: 0.4515 decode.loss_ce: 0.2742 decode.acc_seg: 94.2424 aux.loss_ce: 0.1773 aux.acc_seg: 93.5416 +2024/08/11 01:04:48 - mmengine - INFO - Iter(train) [105950/160000] lr: 3.8277e-03 eta: 16:47:06 time: 1.1190 data_time: 0.0079 memory: 8703 loss: 0.4191 decode.loss_ce: 0.2742 decode.acc_seg: 95.4545 aux.loss_ce: 0.1449 aux.acc_seg: 93.9055 +2024/08/11 01:05:44 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 01:05:44 - mmengine - INFO - Iter(train) [106000/160000] lr: 3.8246e-03 eta: 16:46:10 time: 1.1121 data_time: 0.0056 memory: 8704 loss: 0.3715 decode.loss_ce: 0.2419 decode.acc_seg: 89.5325 aux.loss_ce: 0.1296 aux.acc_seg: 87.6420 +2024/08/11 01:06:39 - mmengine - INFO - Iter(train) [106050/160000] lr: 3.8215e-03 eta: 16:45:14 time: 1.1151 data_time: 0.0074 memory: 8703 loss: 0.3370 decode.loss_ce: 0.1889 decode.acc_seg: 93.6921 aux.loss_ce: 0.1481 aux.acc_seg: 93.7331 +2024/08/11 01:07:35 - mmengine - INFO - Iter(train) [106100/160000] lr: 3.8184e-03 eta: 16:44:18 time: 1.1146 data_time: 0.0064 memory: 8704 loss: 0.3935 decode.loss_ce: 0.2552 decode.acc_seg: 94.4283 aux.loss_ce: 0.1383 aux.acc_seg: 94.2247 +2024/08/11 01:08:31 - mmengine - INFO - Iter(train) [106150/160000] lr: 3.8153e-03 eta: 16:43:22 time: 1.1194 data_time: 0.0079 memory: 8704 loss: 0.2648 decode.loss_ce: 0.1621 decode.acc_seg: 93.5032 aux.loss_ce: 0.1027 aux.acc_seg: 86.7999 +2024/08/11 01:09:27 - mmengine - INFO - Iter(train) [106200/160000] lr: 3.8122e-03 eta: 16:42:26 time: 1.1144 data_time: 0.0067 memory: 8703 loss: 0.3392 decode.loss_ce: 0.2117 decode.acc_seg: 87.2372 aux.loss_ce: 0.1275 aux.acc_seg: 86.1383 +2024/08/11 01:10:23 - mmengine - INFO - Iter(train) [106250/160000] lr: 3.8091e-03 eta: 16:41:30 time: 1.1177 data_time: 0.0074 memory: 8704 loss: 0.2595 decode.loss_ce: 0.1540 decode.acc_seg: 93.9075 aux.loss_ce: 0.1055 aux.acc_seg: 89.7312 +2024/08/11 01:11:19 - mmengine - INFO - Iter(train) [106300/160000] lr: 3.8060e-03 eta: 16:40:34 time: 1.1215 data_time: 0.0068 memory: 8704 loss: 0.3300 decode.loss_ce: 0.1985 decode.acc_seg: 96.7786 aux.loss_ce: 0.1315 aux.acc_seg: 95.1377 +2024/08/11 01:12:15 - mmengine - INFO - Iter(train) [106350/160000] lr: 3.8029e-03 eta: 16:39:38 time: 1.1185 data_time: 0.0083 memory: 8703 loss: 0.3669 decode.loss_ce: 0.2304 decode.acc_seg: 86.0282 aux.loss_ce: 0.1365 aux.acc_seg: 81.9497 +2024/08/11 01:13:10 - mmengine - INFO - Iter(train) [106400/160000] lr: 3.7998e-03 eta: 16:38:43 time: 1.1155 data_time: 0.0065 memory: 8703 loss: 0.4368 decode.loss_ce: 0.2428 decode.acc_seg: 93.8564 aux.loss_ce: 0.1939 aux.acc_seg: 85.1093 +2024/08/11 01:14:06 - mmengine - INFO - Iter(train) [106450/160000] lr: 3.7967e-03 eta: 16:37:47 time: 1.1183 data_time: 0.0071 memory: 8704 loss: 0.3363 decode.loss_ce: 0.2136 decode.acc_seg: 92.1700 aux.loss_ce: 0.1227 aux.acc_seg: 92.1611 +2024/08/11 01:15:02 - mmengine - INFO - Iter(train) [106500/160000] lr: 3.7936e-03 eta: 16:36:51 time: 1.1134 data_time: 0.0065 memory: 8704 loss: 0.3178 decode.loss_ce: 0.1885 decode.acc_seg: 88.9866 aux.loss_ce: 0.1293 aux.acc_seg: 88.5628 +2024/08/11 01:15:58 - mmengine - INFO - Iter(train) [106550/160000] lr: 3.7905e-03 eta: 16:35:55 time: 1.1146 data_time: 0.0064 memory: 8704 loss: 0.2942 decode.loss_ce: 0.1884 decode.acc_seg: 96.5302 aux.loss_ce: 0.1059 aux.acc_seg: 96.1197 +2024/08/11 01:16:53 - mmengine - INFO - Iter(train) [106600/160000] lr: 3.7874e-03 eta: 16:34:59 time: 1.1106 data_time: 0.0066 memory: 8704 loss: 0.3363 decode.loss_ce: 0.2134 decode.acc_seg: 96.3322 aux.loss_ce: 0.1229 aux.acc_seg: 92.8125 +2024/08/11 01:17:49 - mmengine - INFO - Iter(train) [106650/160000] lr: 3.7843e-03 eta: 16:34:03 time: 1.1167 data_time: 0.0063 memory: 8704 loss: 0.4263 decode.loss_ce: 0.2637 decode.acc_seg: 95.6718 aux.loss_ce: 0.1627 aux.acc_seg: 93.5809 +2024/08/11 01:18:45 - mmengine - INFO - Iter(train) [106700/160000] lr: 3.7812e-03 eta: 16:33:07 time: 1.1158 data_time: 0.0061 memory: 8703 loss: 0.3825 decode.loss_ce: 0.2323 decode.acc_seg: 96.1973 aux.loss_ce: 0.1501 aux.acc_seg: 94.4330 +2024/08/11 01:19:41 - mmengine - INFO - Iter(train) [106750/160000] lr: 3.7780e-03 eta: 16:32:11 time: 1.1142 data_time: 0.0068 memory: 8703 loss: 0.4423 decode.loss_ce: 0.2688 decode.acc_seg: 94.3246 aux.loss_ce: 0.1735 aux.acc_seg: 93.8251 +2024/08/11 01:20:37 - mmengine - INFO - Iter(train) [106800/160000] lr: 3.7749e-03 eta: 16:31:15 time: 1.1193 data_time: 0.0077 memory: 8703 loss: 0.3676 decode.loss_ce: 0.2231 decode.acc_seg: 86.7632 aux.loss_ce: 0.1445 aux.acc_seg: 84.2255 +2024/08/11 01:21:33 - mmengine - INFO - Iter(train) [106850/160000] lr: 3.7718e-03 eta: 16:30:19 time: 1.1171 data_time: 0.0067 memory: 8703 loss: 0.4107 decode.loss_ce: 0.2499 decode.acc_seg: 95.6823 aux.loss_ce: 0.1608 aux.acc_seg: 88.7459 +2024/08/11 01:22:29 - mmengine - INFO - Iter(train) [106900/160000] lr: 3.7687e-03 eta: 16:29:23 time: 1.1193 data_time: 0.0076 memory: 8703 loss: 0.3520 decode.loss_ce: 0.2030 decode.acc_seg: 94.5280 aux.loss_ce: 0.1490 aux.acc_seg: 92.1534 +2024/08/11 01:23:25 - mmengine - INFO - Iter(train) [106950/160000] lr: 3.7656e-03 eta: 16:28:28 time: 1.1158 data_time: 0.0067 memory: 8703 loss: 0.3416 decode.loss_ce: 0.2026 decode.acc_seg: 93.5034 aux.loss_ce: 0.1390 aux.acc_seg: 89.6605 +2024/08/11 01:24:21 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 01:24:21 - mmengine - INFO - Iter(train) [107000/160000] lr: 3.7625e-03 eta: 16:27:32 time: 1.1143 data_time: 0.0068 memory: 8704 loss: 0.2932 decode.loss_ce: 0.1789 decode.acc_seg: 94.9409 aux.loss_ce: 0.1142 aux.acc_seg: 95.1409 +2024/08/11 01:25:17 - mmengine - INFO - Iter(train) [107050/160000] lr: 3.7594e-03 eta: 16:26:36 time: 1.1182 data_time: 0.0064 memory: 8704 loss: 0.2425 decode.loss_ce: 0.1475 decode.acc_seg: 96.6277 aux.loss_ce: 0.0951 aux.acc_seg: 95.8311 +2024/08/11 01:26:13 - mmengine - INFO - Iter(train) [107100/160000] lr: 3.7563e-03 eta: 16:25:40 time: 1.1202 data_time: 0.0079 memory: 8704 loss: 0.3923 decode.loss_ce: 0.2486 decode.acc_seg: 97.0229 aux.loss_ce: 0.1438 aux.acc_seg: 93.3444 +2024/08/11 01:27:09 - mmengine - INFO - Iter(train) [107150/160000] lr: 3.7532e-03 eta: 16:24:44 time: 1.1203 data_time: 0.0065 memory: 8705 loss: 0.3620 decode.loss_ce: 0.2158 decode.acc_seg: 89.3078 aux.loss_ce: 0.1462 aux.acc_seg: 87.6323 +2024/08/11 01:28:05 - mmengine - INFO - Iter(train) [107200/160000] lr: 3.7501e-03 eta: 16:23:48 time: 1.1168 data_time: 0.0066 memory: 8704 loss: 0.2859 decode.loss_ce: 0.1861 decode.acc_seg: 94.9834 aux.loss_ce: 0.0998 aux.acc_seg: 94.0589 +2024/08/11 01:29:00 - mmengine - INFO - Iter(train) [107250/160000] lr: 3.7470e-03 eta: 16:22:52 time: 1.1135 data_time: 0.0059 memory: 8704 loss: 0.2684 decode.loss_ce: 0.1661 decode.acc_seg: 96.7199 aux.loss_ce: 0.1023 aux.acc_seg: 95.4466 +2024/08/11 01:29:56 - mmengine - INFO - Iter(train) [107300/160000] lr: 3.7438e-03 eta: 16:21:56 time: 1.1127 data_time: 0.0060 memory: 8704 loss: 0.3745 decode.loss_ce: 0.2207 decode.acc_seg: 88.2969 aux.loss_ce: 0.1538 aux.acc_seg: 74.9758 +2024/08/11 01:30:52 - mmengine - INFO - Iter(train) [107350/160000] lr: 3.7407e-03 eta: 16:21:00 time: 1.1228 data_time: 0.0077 memory: 8703 loss: 0.4266 decode.loss_ce: 0.2746 decode.acc_seg: 94.1422 aux.loss_ce: 0.1520 aux.acc_seg: 88.7526 +2024/08/11 01:31:48 - mmengine - INFO - Iter(train) [107400/160000] lr: 3.7376e-03 eta: 16:20:04 time: 1.1096 data_time: 0.0051 memory: 8704 loss: 0.3107 decode.loss_ce: 0.1903 decode.acc_seg: 96.2667 aux.loss_ce: 0.1204 aux.acc_seg: 95.8117 +2024/08/11 01:32:44 - mmengine - INFO - Iter(train) [107450/160000] lr: 3.7345e-03 eta: 16:19:08 time: 1.1162 data_time: 0.0070 memory: 8703 loss: 0.3654 decode.loss_ce: 0.2259 decode.acc_seg: 88.4282 aux.loss_ce: 0.1394 aux.acc_seg: 77.6912 +2024/08/11 01:33:40 - mmengine - INFO - Iter(train) [107500/160000] lr: 3.7314e-03 eta: 16:18:12 time: 1.1144 data_time: 0.0066 memory: 8704 loss: 0.4082 decode.loss_ce: 0.2322 decode.acc_seg: 87.6087 aux.loss_ce: 0.1760 aux.acc_seg: 65.4776 +2024/08/11 01:34:36 - mmengine - INFO - Iter(train) [107550/160000] lr: 3.7283e-03 eta: 16:17:17 time: 1.1178 data_time: 0.0054 memory: 8704 loss: 0.3780 decode.loss_ce: 0.2200 decode.acc_seg: 91.7573 aux.loss_ce: 0.1580 aux.acc_seg: 90.2967 +2024/08/11 01:35:31 - mmengine - INFO - Iter(train) [107600/160000] lr: 3.7252e-03 eta: 16:16:21 time: 1.1185 data_time: 0.0059 memory: 8704 loss: 0.3207 decode.loss_ce: 0.1847 decode.acc_seg: 95.3623 aux.loss_ce: 0.1360 aux.acc_seg: 89.7250 +2024/08/11 01:36:27 - mmengine - INFO - Iter(train) [107650/160000] lr: 3.7221e-03 eta: 16:15:25 time: 1.1161 data_time: 0.0063 memory: 8703 loss: 0.3566 decode.loss_ce: 0.1981 decode.acc_seg: 95.4974 aux.loss_ce: 0.1584 aux.acc_seg: 89.7753 +2024/08/11 01:37:23 - mmengine - INFO - Iter(train) [107700/160000] lr: 3.7189e-03 eta: 16:14:29 time: 1.1139 data_time: 0.0047 memory: 8703 loss: 0.2507 decode.loss_ce: 0.1456 decode.acc_seg: 95.1464 aux.loss_ce: 0.1051 aux.acc_seg: 92.4629 +2024/08/11 01:38:19 - mmengine - INFO - Iter(train) [107750/160000] lr: 3.7158e-03 eta: 16:13:33 time: 1.1145 data_time: 0.0064 memory: 8704 loss: 0.3282 decode.loss_ce: 0.2004 decode.acc_seg: 94.3035 aux.loss_ce: 0.1279 aux.acc_seg: 94.9959 +2024/08/11 01:39:15 - mmengine - INFO - Iter(train) [107800/160000] lr: 3.7127e-03 eta: 16:12:37 time: 1.1167 data_time: 0.0062 memory: 8703 loss: 0.3256 decode.loss_ce: 0.1995 decode.acc_seg: 91.0529 aux.loss_ce: 0.1261 aux.acc_seg: 90.4325 +2024/08/11 01:40:11 - mmengine - INFO - Iter(train) [107850/160000] lr: 3.7096e-03 eta: 16:11:41 time: 1.1192 data_time: 0.0075 memory: 8703 loss: 0.3766 decode.loss_ce: 0.2320 decode.acc_seg: 95.0894 aux.loss_ce: 0.1446 aux.acc_seg: 92.5437 +2024/08/11 01:41:06 - mmengine - INFO - Iter(train) [107900/160000] lr: 3.7065e-03 eta: 16:10:45 time: 1.1163 data_time: 0.0062 memory: 8703 loss: 0.3860 decode.loss_ce: 0.2279 decode.acc_seg: 86.4402 aux.loss_ce: 0.1581 aux.acc_seg: 82.9620 +2024/08/11 01:42:02 - mmengine - INFO - Iter(train) [107950/160000] lr: 3.7034e-03 eta: 16:09:49 time: 1.1168 data_time: 0.0074 memory: 8704 loss: 0.3150 decode.loss_ce: 0.1865 decode.acc_seg: 95.5879 aux.loss_ce: 0.1285 aux.acc_seg: 93.2144 +2024/08/11 01:42:58 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 01:42:58 - mmengine - INFO - Iter(train) [108000/160000] lr: 3.7003e-03 eta: 16:08:53 time: 1.1219 data_time: 0.0087 memory: 8703 loss: 0.3739 decode.loss_ce: 0.2220 decode.acc_seg: 92.0596 aux.loss_ce: 0.1518 aux.acc_seg: 87.8402 +2024/08/11 01:43:54 - mmengine - INFO - Iter(train) [108050/160000] lr: 3.6971e-03 eta: 16:07:57 time: 1.1175 data_time: 0.0067 memory: 8704 loss: 0.3141 decode.loss_ce: 0.1777 decode.acc_seg: 96.6024 aux.loss_ce: 0.1364 aux.acc_seg: 95.8787 +2024/08/11 01:44:50 - mmengine - INFO - Iter(train) [108100/160000] lr: 3.6940e-03 eta: 16:07:02 time: 1.1346 data_time: 0.0075 memory: 8703 loss: 0.2609 decode.loss_ce: 0.1566 decode.acc_seg: 96.3654 aux.loss_ce: 0.1043 aux.acc_seg: 94.4642 +2024/08/11 01:45:47 - mmengine - INFO - Iter(train) [108150/160000] lr: 3.6909e-03 eta: 16:06:06 time: 1.1228 data_time: 0.0078 memory: 8703 loss: 0.4036 decode.loss_ce: 0.2593 decode.acc_seg: 96.5287 aux.loss_ce: 0.1443 aux.acc_seg: 96.9687 +2024/08/11 01:46:43 - mmengine - INFO - Iter(train) [108200/160000] lr: 3.6878e-03 eta: 16:05:10 time: 1.1276 data_time: 0.0092 memory: 8704 loss: 0.5251 decode.loss_ce: 0.3310 decode.acc_seg: 96.3346 aux.loss_ce: 0.1941 aux.acc_seg: 96.0616 +2024/08/11 01:47:39 - mmengine - INFO - Iter(train) [108250/160000] lr: 3.6847e-03 eta: 16:04:15 time: 1.1302 data_time: 0.0091 memory: 8704 loss: 0.4239 decode.loss_ce: 0.2553 decode.acc_seg: 91.4272 aux.loss_ce: 0.1686 aux.acc_seg: 89.9687 +2024/08/11 01:48:36 - mmengine - INFO - Iter(train) [108300/160000] lr: 3.6816e-03 eta: 16:03:19 time: 1.1279 data_time: 0.0082 memory: 8703 loss: 0.3231 decode.loss_ce: 0.1952 decode.acc_seg: 88.4588 aux.loss_ce: 0.1279 aux.acc_seg: 77.2252 +2024/08/11 01:49:32 - mmengine - INFO - Iter(train) [108350/160000] lr: 3.6784e-03 eta: 16:02:23 time: 1.1159 data_time: 0.0073 memory: 8704 loss: 0.3066 decode.loss_ce: 0.2008 decode.acc_seg: 89.5507 aux.loss_ce: 0.1058 aux.acc_seg: 89.6953 +2024/08/11 01:50:28 - mmengine - INFO - Iter(train) [108400/160000] lr: 3.6753e-03 eta: 16:01:27 time: 1.1218 data_time: 0.0078 memory: 8704 loss: 0.3774 decode.loss_ce: 0.2352 decode.acc_seg: 93.0188 aux.loss_ce: 0.1422 aux.acc_seg: 90.5612 +2024/08/11 01:51:24 - mmengine - INFO - Iter(train) [108450/160000] lr: 3.6722e-03 eta: 16:00:31 time: 1.1180 data_time: 0.0080 memory: 8704 loss: 0.3599 decode.loss_ce: 0.1987 decode.acc_seg: 91.1292 aux.loss_ce: 0.1612 aux.acc_seg: 83.4461 +2024/08/11 01:52:20 - mmengine - INFO - Iter(train) [108500/160000] lr: 3.6691e-03 eta: 15:59:35 time: 1.1155 data_time: 0.0061 memory: 8704 loss: 0.4532 decode.loss_ce: 0.2573 decode.acc_seg: 74.9519 aux.loss_ce: 0.1959 aux.acc_seg: 65.2066 +2024/08/11 01:53:16 - mmengine - INFO - Iter(train) [108550/160000] lr: 3.6660e-03 eta: 15:58:39 time: 1.1132 data_time: 0.0068 memory: 8703 loss: 0.3039 decode.loss_ce: 0.1908 decode.acc_seg: 93.4842 aux.loss_ce: 0.1131 aux.acc_seg: 91.1439 +2024/08/11 01:54:12 - mmengine - INFO - Iter(train) [108600/160000] lr: 3.6628e-03 eta: 15:57:44 time: 1.1189 data_time: 0.0068 memory: 8703 loss: 0.3187 decode.loss_ce: 0.1971 decode.acc_seg: 93.1852 aux.loss_ce: 0.1216 aux.acc_seg: 85.6059 +2024/08/11 01:55:07 - mmengine - INFO - Iter(train) [108650/160000] lr: 3.6597e-03 eta: 15:56:48 time: 1.1142 data_time: 0.0058 memory: 8704 loss: 0.4525 decode.loss_ce: 0.2482 decode.acc_seg: 82.9025 aux.loss_ce: 0.2043 aux.acc_seg: 81.6215 +2024/08/11 01:56:03 - mmengine - INFO - Iter(train) [108700/160000] lr: 3.6566e-03 eta: 15:55:52 time: 1.1130 data_time: 0.0063 memory: 8703 loss: 0.2949 decode.loss_ce: 0.1764 decode.acc_seg: 89.1556 aux.loss_ce: 0.1184 aux.acc_seg: 75.2645 +2024/08/11 01:56:59 - mmengine - INFO - Iter(train) [108750/160000] lr: 3.6535e-03 eta: 15:54:56 time: 1.1132 data_time: 0.0066 memory: 8704 loss: 0.3724 decode.loss_ce: 0.1958 decode.acc_seg: 97.5797 aux.loss_ce: 0.1766 aux.acc_seg: 94.5941 +2024/08/11 01:57:55 - mmengine - INFO - Iter(train) [108800/160000] lr: 3.6504e-03 eta: 15:54:00 time: 1.1673 data_time: 0.0072 memory: 8704 loss: 0.3696 decode.loss_ce: 0.2107 decode.acc_seg: 93.4125 aux.loss_ce: 0.1589 aux.acc_seg: 89.1217 +2024/08/11 01:59:22 - mmengine - INFO - Iter(train) [108850/160000] lr: 3.6472e-03 eta: 15:53:19 time: 2.0031 data_time: 0.0083 memory: 8703 loss: 0.2909 decode.loss_ce: 0.1778 decode.acc_seg: 94.5501 aux.loss_ce: 0.1131 aux.acc_seg: 93.6595 +2024/08/11 02:00:57 - mmengine - INFO - Iter(train) [108900/160000] lr: 3.6441e-03 eta: 15:52:41 time: 1.4153 data_time: 0.0094 memory: 8704 loss: 0.3238 decode.loss_ce: 0.2020 decode.acc_seg: 95.7404 aux.loss_ce: 0.1218 aux.acc_seg: 93.7082 +2024/08/11 02:01:54 - mmengine - INFO - Iter(train) [108950/160000] lr: 3.6410e-03 eta: 15:51:45 time: 1.1182 data_time: 0.0079 memory: 8704 loss: 0.3368 decode.loss_ce: 0.1962 decode.acc_seg: 90.2261 aux.loss_ce: 0.1406 aux.acc_seg: 89.5013 +2024/08/11 02:02:50 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 02:02:50 - mmengine - INFO - Iter(train) [109000/160000] lr: 3.6379e-03 eta: 15:50:50 time: 1.1245 data_time: 0.0083 memory: 8703 loss: 0.5454 decode.loss_ce: 0.3373 decode.acc_seg: 95.6342 aux.loss_ce: 0.2082 aux.acc_seg: 92.0041 +2024/08/11 02:03:46 - mmengine - INFO - Iter(train) [109050/160000] lr: 3.6348e-03 eta: 15:49:54 time: 1.1154 data_time: 0.0067 memory: 8704 loss: 0.3440 decode.loss_ce: 0.2213 decode.acc_seg: 89.6284 aux.loss_ce: 0.1228 aux.acc_seg: 85.7517 +2024/08/11 02:04:41 - mmengine - INFO - Iter(train) [109100/160000] lr: 3.6316e-03 eta: 15:48:58 time: 1.1091 data_time: 0.0061 memory: 8704 loss: 0.2529 decode.loss_ce: 0.1499 decode.acc_seg: 96.2456 aux.loss_ce: 0.1030 aux.acc_seg: 94.6278 +2024/08/11 02:05:37 - mmengine - INFO - Iter(train) [109150/160000] lr: 3.6285e-03 eta: 15:48:02 time: 1.1164 data_time: 0.0072 memory: 8703 loss: 0.3140 decode.loss_ce: 0.1974 decode.acc_seg: 91.0926 aux.loss_ce: 0.1166 aux.acc_seg: 87.7392 +2024/08/11 02:06:33 - mmengine - INFO - Iter(train) [109200/160000] lr: 3.6254e-03 eta: 15:47:06 time: 1.1182 data_time: 0.0079 memory: 8703 loss: 0.3543 decode.loss_ce: 0.2070 decode.acc_seg: 93.1139 aux.loss_ce: 0.1473 aux.acc_seg: 85.9289 +2024/08/11 02:07:29 - mmengine - INFO - Iter(train) [109250/160000] lr: 3.6223e-03 eta: 15:46:10 time: 1.1168 data_time: 0.0075 memory: 8705 loss: 0.4061 decode.loss_ce: 0.2569 decode.acc_seg: 69.9733 aux.loss_ce: 0.1492 aux.acc_seg: 70.2004 +2024/08/11 02:08:25 - mmengine - INFO - Iter(train) [109300/160000] lr: 3.6191e-03 eta: 15:45:14 time: 1.1154 data_time: 0.0059 memory: 8704 loss: 0.3307 decode.loss_ce: 0.1928 decode.acc_seg: 92.1682 aux.loss_ce: 0.1378 aux.acc_seg: 91.9217 +2024/08/11 02:09:21 - mmengine - INFO - Iter(train) [109350/160000] lr: 3.6160e-03 eta: 15:44:18 time: 1.1163 data_time: 0.0073 memory: 8704 loss: 0.5528 decode.loss_ce: 0.3617 decode.acc_seg: 88.5485 aux.loss_ce: 0.1912 aux.acc_seg: 81.8839 +2024/08/11 02:10:17 - mmengine - INFO - Iter(train) [109400/160000] lr: 3.6129e-03 eta: 15:43:22 time: 1.1164 data_time: 0.0078 memory: 8704 loss: 0.3887 decode.loss_ce: 0.2373 decode.acc_seg: 93.0218 aux.loss_ce: 0.1514 aux.acc_seg: 89.8445 +2024/08/11 02:11:13 - mmengine - INFO - Iter(train) [109450/160000] lr: 3.6098e-03 eta: 15:42:26 time: 1.1151 data_time: 0.0068 memory: 8704 loss: 0.2544 decode.loss_ce: 0.1446 decode.acc_seg: 95.0788 aux.loss_ce: 0.1098 aux.acc_seg: 89.2529 +2024/08/11 02:12:08 - mmengine - INFO - Iter(train) [109500/160000] lr: 3.6066e-03 eta: 15:41:30 time: 1.1131 data_time: 0.0061 memory: 8704 loss: 0.5000 decode.loss_ce: 0.3247 decode.acc_seg: 96.8730 aux.loss_ce: 0.1753 aux.acc_seg: 94.7534 +2024/08/11 02:13:04 - mmengine - INFO - Iter(train) [109550/160000] lr: 3.6035e-03 eta: 15:40:34 time: 1.1207 data_time: 0.0072 memory: 8704 loss: 0.5579 decode.loss_ce: 0.3421 decode.acc_seg: 83.0163 aux.loss_ce: 0.2158 aux.acc_seg: 79.9121 +2024/08/11 02:14:00 - mmengine - INFO - Iter(train) [109600/160000] lr: 3.6004e-03 eta: 15:39:38 time: 1.1200 data_time: 0.0061 memory: 8704 loss: 0.3375 decode.loss_ce: 0.2022 decode.acc_seg: 90.8868 aux.loss_ce: 0.1353 aux.acc_seg: 86.6471 +2024/08/11 02:14:56 - mmengine - INFO - Iter(train) [109650/160000] lr: 3.5973e-03 eta: 15:38:42 time: 1.1196 data_time: 0.0066 memory: 8704 loss: 0.3292 decode.loss_ce: 0.2025 decode.acc_seg: 93.1033 aux.loss_ce: 0.1267 aux.acc_seg: 91.8133 +2024/08/11 02:15:52 - mmengine - INFO - Iter(train) [109700/160000] lr: 3.5941e-03 eta: 15:37:46 time: 1.1159 data_time: 0.0070 memory: 8703 loss: 0.3558 decode.loss_ce: 0.2207 decode.acc_seg: 92.6828 aux.loss_ce: 0.1351 aux.acc_seg: 88.9856 +2024/08/11 02:16:48 - mmengine - INFO - Iter(train) [109750/160000] lr: 3.5910e-03 eta: 15:36:50 time: 1.1140 data_time: 0.0060 memory: 8703 loss: 0.3607 decode.loss_ce: 0.2178 decode.acc_seg: 88.6674 aux.loss_ce: 0.1429 aux.acc_seg: 86.5848 +2024/08/11 02:17:44 - mmengine - INFO - Iter(train) [109800/160000] lr: 3.5879e-03 eta: 15:35:54 time: 1.1182 data_time: 0.0063 memory: 8703 loss: 0.4521 decode.loss_ce: 0.2781 decode.acc_seg: 74.4918 aux.loss_ce: 0.1740 aux.acc_seg: 73.9815 +2024/08/11 02:18:39 - mmengine - INFO - Iter(train) [109850/160000] lr: 3.5848e-03 eta: 15:34:58 time: 1.1126 data_time: 0.0062 memory: 8703 loss: 0.3481 decode.loss_ce: 0.2219 decode.acc_seg: 95.7523 aux.loss_ce: 0.1263 aux.acc_seg: 94.3582 +2024/08/11 02:19:35 - mmengine - INFO - Iter(train) [109900/160000] lr: 3.5816e-03 eta: 15:34:02 time: 1.1157 data_time: 0.0063 memory: 8703 loss: 0.3990 decode.loss_ce: 0.2591 decode.acc_seg: 92.3635 aux.loss_ce: 0.1399 aux.acc_seg: 88.8011 +2024/08/11 02:20:31 - mmengine - INFO - Iter(train) [109950/160000] lr: 3.5785e-03 eta: 15:33:06 time: 1.1220 data_time: 0.0073 memory: 8703 loss: 0.4698 decode.loss_ce: 0.2936 decode.acc_seg: 95.7775 aux.loss_ce: 0.1762 aux.acc_seg: 94.7493 +2024/08/11 02:21:27 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 02:21:27 - mmengine - INFO - Iter(train) [110000/160000] lr: 3.5754e-03 eta: 15:32:10 time: 1.1155 data_time: 0.0059 memory: 8704 loss: 0.3425 decode.loss_ce: 0.2148 decode.acc_seg: 87.4890 aux.loss_ce: 0.1278 aux.acc_seg: 86.2670 +2024/08/11 02:22:23 - mmengine - INFO - Iter(train) [110050/160000] lr: 3.5723e-03 eta: 15:31:14 time: 1.1167 data_time: 0.0063 memory: 8703 loss: 0.3427 decode.loss_ce: 0.1947 decode.acc_seg: 97.6165 aux.loss_ce: 0.1481 aux.acc_seg: 94.4994 +2024/08/11 02:23:18 - mmengine - INFO - Iter(train) [110100/160000] lr: 3.5691e-03 eta: 15:30:18 time: 1.1186 data_time: 0.0067 memory: 8703 loss: 0.3409 decode.loss_ce: 0.2118 decode.acc_seg: 96.8206 aux.loss_ce: 0.1291 aux.acc_seg: 96.5024 +2024/08/11 02:24:15 - mmengine - INFO - Iter(train) [110150/160000] lr: 3.5660e-03 eta: 15:29:22 time: 1.1265 data_time: 0.0079 memory: 8704 loss: 0.4025 decode.loss_ce: 0.2399 decode.acc_seg: 94.1741 aux.loss_ce: 0.1626 aux.acc_seg: 92.7364 +2024/08/11 02:25:11 - mmengine - INFO - Iter(train) [110200/160000] lr: 3.5629e-03 eta: 15:28:26 time: 1.1160 data_time: 0.0067 memory: 8704 loss: 0.4316 decode.loss_ce: 0.2808 decode.acc_seg: 88.7972 aux.loss_ce: 0.1507 aux.acc_seg: 78.5674 +2024/08/11 02:26:07 - mmengine - INFO - Iter(train) [110250/160000] lr: 3.5597e-03 eta: 15:27:30 time: 1.1193 data_time: 0.0075 memory: 8703 loss: 0.2332 decode.loss_ce: 0.1412 decode.acc_seg: 96.4921 aux.loss_ce: 0.0920 aux.acc_seg: 95.9245 +2024/08/11 02:27:03 - mmengine - INFO - Iter(train) [110300/160000] lr: 3.5566e-03 eta: 15:26:35 time: 1.1156 data_time: 0.0064 memory: 8704 loss: 0.3614 decode.loss_ce: 0.2110 decode.acc_seg: 87.1492 aux.loss_ce: 0.1504 aux.acc_seg: 87.0993 +2024/08/11 02:27:59 - mmengine - INFO - Iter(train) [110350/160000] lr: 3.5535e-03 eta: 15:25:39 time: 1.1158 data_time: 0.0067 memory: 8704 loss: 0.3105 decode.loss_ce: 0.1854 decode.acc_seg: 88.3371 aux.loss_ce: 0.1251 aux.acc_seg: 75.9433 +2024/08/11 02:28:55 - mmengine - INFO - Iter(train) [110400/160000] lr: 3.5504e-03 eta: 15:24:43 time: 1.1153 data_time: 0.0071 memory: 8704 loss: 0.5811 decode.loss_ce: 0.3533 decode.acc_seg: 87.5414 aux.loss_ce: 0.2278 aux.acc_seg: 83.1065 +2024/08/11 02:29:50 - mmengine - INFO - Iter(train) [110450/160000] lr: 3.5472e-03 eta: 15:23:47 time: 1.1081 data_time: 0.0058 memory: 8704 loss: 0.2797 decode.loss_ce: 0.1693 decode.acc_seg: 95.8583 aux.loss_ce: 0.1104 aux.acc_seg: 89.9052 +2024/08/11 02:30:46 - mmengine - INFO - Iter(train) [110500/160000] lr: 3.5441e-03 eta: 15:22:51 time: 1.1136 data_time: 0.0072 memory: 8703 loss: 0.4266 decode.loss_ce: 0.2850 decode.acc_seg: 64.5501 aux.loss_ce: 0.1417 aux.acc_seg: 62.1753 +2024/08/11 02:31:42 - mmengine - INFO - Iter(train) [110550/160000] lr: 3.5410e-03 eta: 15:21:55 time: 1.1209 data_time: 0.0074 memory: 8704 loss: 0.2767 decode.loss_ce: 0.1719 decode.acc_seg: 88.1779 aux.loss_ce: 0.1048 aux.acc_seg: 84.0322 +2024/08/11 02:32:38 - mmengine - INFO - Iter(train) [110600/160000] lr: 3.5378e-03 eta: 15:20:59 time: 1.1203 data_time: 0.0087 memory: 8703 loss: 0.4425 decode.loss_ce: 0.2642 decode.acc_seg: 96.7377 aux.loss_ce: 0.1783 aux.acc_seg: 96.1952 +2024/08/11 02:33:34 - mmengine - INFO - Iter(train) [110650/160000] lr: 3.5347e-03 eta: 15:20:03 time: 1.1187 data_time: 0.0081 memory: 8704 loss: 0.3041 decode.loss_ce: 0.1886 decode.acc_seg: 94.5872 aux.loss_ce: 0.1155 aux.acc_seg: 91.5632 +2024/08/11 02:34:30 - mmengine - INFO - Iter(train) [110700/160000] lr: 3.5316e-03 eta: 15:19:07 time: 1.1162 data_time: 0.0082 memory: 8704 loss: 0.3487 decode.loss_ce: 0.2171 decode.acc_seg: 93.6496 aux.loss_ce: 0.1316 aux.acc_seg: 92.1670 +2024/08/11 02:35:26 - mmengine - INFO - Iter(train) [110750/160000] lr: 3.5284e-03 eta: 15:18:11 time: 1.1184 data_time: 0.0070 memory: 8703 loss: 0.3668 decode.loss_ce: 0.2258 decode.acc_seg: 93.3436 aux.loss_ce: 0.1410 aux.acc_seg: 91.6224 +2024/08/11 02:36:22 - mmengine - INFO - Iter(train) [110800/160000] lr: 3.5253e-03 eta: 15:17:15 time: 1.1171 data_time: 0.0091 memory: 8704 loss: 0.3598 decode.loss_ce: 0.2104 decode.acc_seg: 95.7324 aux.loss_ce: 0.1494 aux.acc_seg: 89.7856 +2024/08/11 02:37:17 - mmengine - INFO - Iter(train) [110850/160000] lr: 3.5222e-03 eta: 15:16:19 time: 1.1162 data_time: 0.0067 memory: 8704 loss: 0.4365 decode.loss_ce: 0.2827 decode.acc_seg: 83.3853 aux.loss_ce: 0.1537 aux.acc_seg: 83.8475 +2024/08/11 02:38:13 - mmengine - INFO - Iter(train) [110900/160000] lr: 3.5190e-03 eta: 15:15:23 time: 1.1190 data_time: 0.0080 memory: 8703 loss: 0.3005 decode.loss_ce: 0.1790 decode.acc_seg: 91.6046 aux.loss_ce: 0.1214 aux.acc_seg: 89.0697 +2024/08/11 02:39:09 - mmengine - INFO - Iter(train) [110950/160000] lr: 3.5159e-03 eta: 15:14:27 time: 1.1171 data_time: 0.0075 memory: 8704 loss: 0.3552 decode.loss_ce: 0.2055 decode.acc_seg: 94.5835 aux.loss_ce: 0.1498 aux.acc_seg: 93.9444 +2024/08/11 02:40:05 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 02:40:05 - mmengine - INFO - Iter(train) [111000/160000] lr: 3.5128e-03 eta: 15:13:31 time: 1.1168 data_time: 0.0064 memory: 8703 loss: 0.3945 decode.loss_ce: 0.2503 decode.acc_seg: 88.0768 aux.loss_ce: 0.1442 aux.acc_seg: 89.2250 +2024/08/11 02:41:01 - mmengine - INFO - Iter(train) [111050/160000] lr: 3.5096e-03 eta: 15:12:35 time: 1.1171 data_time: 0.0059 memory: 8703 loss: 0.3905 decode.loss_ce: 0.2397 decode.acc_seg: 95.2579 aux.loss_ce: 0.1508 aux.acc_seg: 94.9098 +2024/08/11 02:41:57 - mmengine - INFO - Iter(train) [111100/160000] lr: 3.5065e-03 eta: 15:11:39 time: 1.1191 data_time: 0.0071 memory: 8704 loss: 0.2905 decode.loss_ce: 0.1767 decode.acc_seg: 92.7267 aux.loss_ce: 0.1138 aux.acc_seg: 88.5858 +2024/08/11 02:42:53 - mmengine - INFO - Iter(train) [111150/160000] lr: 3.5034e-03 eta: 15:10:43 time: 1.1157 data_time: 0.0069 memory: 8703 loss: 0.3371 decode.loss_ce: 0.2065 decode.acc_seg: 92.6693 aux.loss_ce: 0.1306 aux.acc_seg: 79.9604 +2024/08/11 02:43:49 - mmengine - INFO - Iter(train) [111200/160000] lr: 3.5002e-03 eta: 15:09:47 time: 1.1193 data_time: 0.0073 memory: 8704 loss: 0.3439 decode.loss_ce: 0.2273 decode.acc_seg: 93.7969 aux.loss_ce: 0.1165 aux.acc_seg: 93.6989 +2024/08/11 02:44:45 - mmengine - INFO - Iter(train) [111250/160000] lr: 3.4971e-03 eta: 15:08:52 time: 1.1147 data_time: 0.0067 memory: 8704 loss: 0.3059 decode.loss_ce: 0.1905 decode.acc_seg: 96.5064 aux.loss_ce: 0.1154 aux.acc_seg: 96.2978 +2024/08/11 02:45:40 - mmengine - INFO - Iter(train) [111300/160000] lr: 3.4940e-03 eta: 15:07:56 time: 1.1147 data_time: 0.0066 memory: 8703 loss: 0.3459 decode.loss_ce: 0.2128 decode.acc_seg: 75.7756 aux.loss_ce: 0.1331 aux.acc_seg: 65.2640 +2024/08/11 02:46:36 - mmengine - INFO - Iter(train) [111350/160000] lr: 3.4908e-03 eta: 15:07:00 time: 1.1142 data_time: 0.0061 memory: 8704 loss: 0.3525 decode.loss_ce: 0.2098 decode.acc_seg: 97.7205 aux.loss_ce: 0.1427 aux.acc_seg: 96.6239 +2024/08/11 02:47:32 - mmengine - INFO - Iter(train) [111400/160000] lr: 3.4877e-03 eta: 15:06:04 time: 1.1129 data_time: 0.0061 memory: 8703 loss: 0.3292 decode.loss_ce: 0.2033 decode.acc_seg: 96.2404 aux.loss_ce: 0.1259 aux.acc_seg: 95.9940 +2024/08/11 02:48:28 - mmengine - INFO - Iter(train) [111450/160000] lr: 3.4845e-03 eta: 15:05:08 time: 1.1179 data_time: 0.0056 memory: 8704 loss: 0.4124 decode.loss_ce: 0.2600 decode.acc_seg: 57.9126 aux.loss_ce: 0.1525 aux.acc_seg: 56.3594 +2024/08/11 02:49:24 - mmengine - INFO - Iter(train) [111500/160000] lr: 3.4814e-03 eta: 15:04:12 time: 1.1212 data_time: 0.0080 memory: 8704 loss: 0.4328 decode.loss_ce: 0.2555 decode.acc_seg: 88.0372 aux.loss_ce: 0.1773 aux.acc_seg: 71.3720 +2024/08/11 02:50:20 - mmengine - INFO - Iter(train) [111550/160000] lr: 3.4783e-03 eta: 15:03:16 time: 1.1225 data_time: 0.0081 memory: 8704 loss: 0.3015 decode.loss_ce: 0.1790 decode.acc_seg: 87.9028 aux.loss_ce: 0.1225 aux.acc_seg: 81.5454 +2024/08/11 02:51:16 - mmengine - INFO - Iter(train) [111600/160000] lr: 3.4751e-03 eta: 15:02:20 time: 1.1118 data_time: 0.0067 memory: 8704 loss: 0.4852 decode.loss_ce: 0.3138 decode.acc_seg: 91.5319 aux.loss_ce: 0.1714 aux.acc_seg: 90.3513 +2024/08/11 02:52:12 - mmengine - INFO - Iter(train) [111650/160000] lr: 3.4720e-03 eta: 15:01:24 time: 1.1150 data_time: 0.0071 memory: 8704 loss: 0.3994 decode.loss_ce: 0.2288 decode.acc_seg: 96.7103 aux.loss_ce: 0.1707 aux.acc_seg: 95.7712 +2024/08/11 02:53:07 - mmengine - INFO - Iter(train) [111700/160000] lr: 3.4689e-03 eta: 15:00:28 time: 1.1115 data_time: 0.0078 memory: 8704 loss: 0.4252 decode.loss_ce: 0.2619 decode.acc_seg: 80.8396 aux.loss_ce: 0.1633 aux.acc_seg: 76.3955 +2024/08/11 02:54:03 - mmengine - INFO - Iter(train) [111750/160000] lr: 3.4657e-03 eta: 14:59:32 time: 1.1177 data_time: 0.0073 memory: 8704 loss: 0.3944 decode.loss_ce: 0.2465 decode.acc_seg: 84.2889 aux.loss_ce: 0.1479 aux.acc_seg: 80.0535 +2024/08/11 02:54:59 - mmengine - INFO - Iter(train) [111800/160000] lr: 3.4626e-03 eta: 14:58:36 time: 1.1140 data_time: 0.0066 memory: 8703 loss: 0.5076 decode.loss_ce: 0.3067 decode.acc_seg: 84.0247 aux.loss_ce: 0.2009 aux.acc_seg: 72.3786 +2024/08/11 02:55:55 - mmengine - INFO - Iter(train) [111850/160000] lr: 3.4594e-03 eta: 14:57:40 time: 1.1198 data_time: 0.0066 memory: 8704 loss: 0.2908 decode.loss_ce: 0.1840 decode.acc_seg: 93.2978 aux.loss_ce: 0.1069 aux.acc_seg: 92.6689 +2024/08/11 02:56:51 - mmengine - INFO - Iter(train) [111900/160000] lr: 3.4563e-03 eta: 14:56:44 time: 1.1186 data_time: 0.0081 memory: 8704 loss: 0.4784 decode.loss_ce: 0.2741 decode.acc_seg: 95.2419 aux.loss_ce: 0.2043 aux.acc_seg: 66.7105 +2024/08/11 02:57:46 - mmengine - INFO - Iter(train) [111950/160000] lr: 3.4532e-03 eta: 14:55:48 time: 1.1142 data_time: 0.0068 memory: 8704 loss: 0.3056 decode.loss_ce: 0.1816 decode.acc_seg: 98.0056 aux.loss_ce: 0.1240 aux.acc_seg: 90.3601 +2024/08/11 02:58:42 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 02:58:42 - mmengine - INFO - Iter(train) [112000/160000] lr: 3.4500e-03 eta: 14:54:52 time: 1.1236 data_time: 0.0088 memory: 8704 loss: 0.4479 decode.loss_ce: 0.2892 decode.acc_seg: 90.3510 aux.loss_ce: 0.1588 aux.acc_seg: 76.3314 +2024/08/11 02:58:42 - mmengine - INFO - Saving checkpoint at 112000 iterations +2024/08/11 02:58:57 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:10 time: 0.2718 data_time: 0.0043 memory: 1724 +2024/08/11 02:59:10 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2726 data_time: 0.0044 memory: 1724 +2024/08/11 02:59:24 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:43 time: 0.2715 data_time: 0.0038 memory: 1724 +2024/08/11 02:59:38 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2703 data_time: 0.0037 memory: 1724 +2024/08/11 02:59:51 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:16 time: 0.2732 data_time: 0.0050 memory: 1724 +2024/08/11 03:00:05 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2706 data_time: 0.0038 memory: 1724 +2024/08/11 03:00:18 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2702 data_time: 0.0037 memory: 1724 +2024/08/11 03:00:32 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:35 time: 0.2711 data_time: 0.0038 memory: 1724 +2024/08/11 03:00:45 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2709 data_time: 0.0037 memory: 1724 +2024/08/11 03:00:59 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2726 data_time: 0.0044 memory: 1724 +2024/08/11 03:01:13 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2720 data_time: 0.0043 memory: 1724 +2024/08/11 03:01:26 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2716 data_time: 0.0044 memory: 1724 +2024/08/11 03:01:40 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2724 data_time: 0.0040 memory: 1724 +2024/08/11 03:01:53 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2717 data_time: 0.0043 memory: 1724 +2024/08/11 03:02:07 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2697 data_time: 0.0037 memory: 1724 +2024/08/11 03:02:16 - mmengine - INFO - per class results: +2024/08/11 03:02:16 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 93.09 | 95.92 | +| sidewalk | 71.79 | 81.08 | +| road roughness | 61.34 | 69.89 | +| road boundaries | 62.68 | 74.61 | +| crosswalks | 93.52 | 96.35 | +| lane | 72.3 | 81.92 | +| road color guide | 82.0 | 86.91 | +| road marking | 61.86 | 70.28 | +| parking | 51.7 | 55.56 | +| traffic sign | 61.51 | 69.3 | +| traffic light | 68.56 | 78.42 | +| pole/structural object | 72.69 | 79.71 | +| building | 81.83 | 94.93 | +| tunnel | 95.36 | 99.72 | +| bridge | 52.74 | 74.77 | +| pedestrian | 56.88 | 61.42 | +| vehicle | 87.24 | 94.51 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 24.58 | 29.99 | +| personal mobility | 67.06 | 69.95 | +| dynamic | 38.83 | 45.77 | +| vegetation | 85.76 | 94.85 | +| sky | 97.87 | 98.63 | +| static | 66.06 | 75.49 | ++------------------------+-------+-------+ +2024/08/11 03:02:16 - mmengine - INFO - Iter(val) [750/750] aAcc: 93.9300 mIoU: 66.9700 mAcc: 74.1700 data_time: 0.0042 time: 0.2715 +2024/08/11 03:03:12 - mmengine - INFO - Iter(train) [112050/160000] lr: 3.4469e-03 eta: 14:54:00 time: 1.1150 data_time: 0.0082 memory: 8703 loss: 0.4033 decode.loss_ce: 0.2485 decode.acc_seg: 89.3464 aux.loss_ce: 0.1548 aux.acc_seg: 88.5237 +2024/08/11 03:04:08 - mmengine - INFO - Iter(train) [112100/160000] lr: 3.4437e-03 eta: 14:53:04 time: 1.1166 data_time: 0.0067 memory: 8704 loss: 0.3498 decode.loss_ce: 0.2170 decode.acc_seg: 81.1077 aux.loss_ce: 0.1328 aux.acc_seg: 77.4576 +2024/08/11 03:05:03 - mmengine - INFO - Iter(train) [112150/160000] lr: 3.4406e-03 eta: 14:52:08 time: 1.1155 data_time: 0.0068 memory: 8703 loss: 0.2560 decode.loss_ce: 0.1586 decode.acc_seg: 95.9208 aux.loss_ce: 0.0974 aux.acc_seg: 94.0434 +2024/08/11 03:05:59 - mmengine - INFO - Iter(train) [112200/160000] lr: 3.4374e-03 eta: 14:51:12 time: 1.1180 data_time: 0.0064 memory: 8704 loss: 0.3378 decode.loss_ce: 0.2009 decode.acc_seg: 97.7291 aux.loss_ce: 0.1369 aux.acc_seg: 96.5059 +2024/08/11 03:06:55 - mmengine - INFO - Iter(train) [112250/160000] lr: 3.4343e-03 eta: 14:50:16 time: 1.1144 data_time: 0.0074 memory: 8704 loss: 0.3543 decode.loss_ce: 0.2195 decode.acc_seg: 92.5421 aux.loss_ce: 0.1348 aux.acc_seg: 88.2258 +2024/08/11 03:07:51 - mmengine - INFO - Iter(train) [112300/160000] lr: 3.4312e-03 eta: 14:49:20 time: 1.1158 data_time: 0.0071 memory: 8704 loss: 0.3720 decode.loss_ce: 0.2375 decode.acc_seg: 95.9050 aux.loss_ce: 0.1345 aux.acc_seg: 95.0480 +2024/08/11 03:08:47 - mmengine - INFO - Iter(train) [112350/160000] lr: 3.4280e-03 eta: 14:48:24 time: 1.1119 data_time: 0.0072 memory: 8704 loss: 0.3828 decode.loss_ce: 0.2388 decode.acc_seg: 91.6354 aux.loss_ce: 0.1440 aux.acc_seg: 89.6207 +2024/08/11 03:09:42 - mmengine - INFO - Iter(train) [112400/160000] lr: 3.4249e-03 eta: 14:47:28 time: 1.1139 data_time: 0.0074 memory: 8704 loss: 0.4636 decode.loss_ce: 0.2870 decode.acc_seg: 93.9432 aux.loss_ce: 0.1766 aux.acc_seg: 89.8832 +2024/08/11 03:10:38 - mmengine - INFO - Iter(train) [112450/160000] lr: 3.4217e-03 eta: 14:46:32 time: 1.1161 data_time: 0.0081 memory: 8704 loss: 0.4730 decode.loss_ce: 0.2790 decode.acc_seg: 97.2819 aux.loss_ce: 0.1940 aux.acc_seg: 94.9713 +2024/08/11 03:11:34 - mmengine - INFO - Iter(train) [112500/160000] lr: 3.4186e-03 eta: 14:45:36 time: 1.1156 data_time: 0.0071 memory: 8704 loss: 0.3002 decode.loss_ce: 0.1786 decode.acc_seg: 90.2173 aux.loss_ce: 0.1216 aux.acc_seg: 80.3362 +2024/08/11 03:12:30 - mmengine - INFO - Iter(train) [112550/160000] lr: 3.4154e-03 eta: 14:44:40 time: 1.1171 data_time: 0.0070 memory: 8704 loss: 0.3510 decode.loss_ce: 0.2146 decode.acc_seg: 87.0344 aux.loss_ce: 0.1364 aux.acc_seg: 82.5153 +2024/08/11 03:13:26 - mmengine - INFO - Iter(train) [112600/160000] lr: 3.4123e-03 eta: 14:43:44 time: 1.1192 data_time: 0.0082 memory: 8703 loss: 0.3858 decode.loss_ce: 0.2413 decode.acc_seg: 80.4764 aux.loss_ce: 0.1445 aux.acc_seg: 78.2967 +2024/08/11 03:14:22 - mmengine - INFO - Iter(train) [112650/160000] lr: 3.4092e-03 eta: 14:42:48 time: 1.1224 data_time: 0.0074 memory: 8703 loss: 0.5140 decode.loss_ce: 0.2925 decode.acc_seg: 95.8656 aux.loss_ce: 0.2214 aux.acc_seg: 95.4626 +2024/08/11 03:15:17 - mmengine - INFO - Iter(train) [112700/160000] lr: 3.4060e-03 eta: 14:41:52 time: 1.1223 data_time: 0.0077 memory: 8704 loss: 0.3612 decode.loss_ce: 0.2073 decode.acc_seg: 95.2064 aux.loss_ce: 0.1539 aux.acc_seg: 91.2910 +2024/08/11 03:16:13 - mmengine - INFO - Iter(train) [112750/160000] lr: 3.4029e-03 eta: 14:40:56 time: 1.1161 data_time: 0.0064 memory: 8704 loss: 0.3944 decode.loss_ce: 0.2258 decode.acc_seg: 91.2454 aux.loss_ce: 0.1686 aux.acc_seg: 94.8641 +2024/08/11 03:17:09 - mmengine - INFO - Iter(train) [112800/160000] lr: 3.3997e-03 eta: 14:40:00 time: 1.1204 data_time: 0.0072 memory: 8704 loss: 0.3309 decode.loss_ce: 0.1845 decode.acc_seg: 97.3218 aux.loss_ce: 0.1464 aux.acc_seg: 96.8600 +2024/08/11 03:18:05 - mmengine - INFO - Iter(train) [112850/160000] lr: 3.3966e-03 eta: 14:39:04 time: 1.1173 data_time: 0.0066 memory: 8703 loss: 0.2490 decode.loss_ce: 0.1450 decode.acc_seg: 96.7157 aux.loss_ce: 0.1039 aux.acc_seg: 95.5779 +2024/08/11 03:19:01 - mmengine - INFO - Iter(train) [112900/160000] lr: 3.3934e-03 eta: 14:38:08 time: 1.1128 data_time: 0.0071 memory: 8704 loss: 0.4060 decode.loss_ce: 0.2561 decode.acc_seg: 92.6694 aux.loss_ce: 0.1499 aux.acc_seg: 84.7206 +2024/08/11 03:19:57 - mmengine - INFO - Iter(train) [112950/160000] lr: 3.3903e-03 eta: 14:37:12 time: 1.1176 data_time: 0.0073 memory: 8704 loss: 0.2369 decode.loss_ce: 0.1459 decode.acc_seg: 90.7425 aux.loss_ce: 0.0910 aux.acc_seg: 88.1870 +2024/08/11 03:20:52 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 03:20:52 - mmengine - INFO - Iter(train) [113000/160000] lr: 3.3871e-03 eta: 14:36:16 time: 1.1153 data_time: 0.0071 memory: 8704 loss: 0.3506 decode.loss_ce: 0.2306 decode.acc_seg: 95.6051 aux.loss_ce: 0.1201 aux.acc_seg: 94.4566 +2024/08/11 03:21:48 - mmengine - INFO - Iter(train) [113050/160000] lr: 3.3840e-03 eta: 14:35:20 time: 1.1224 data_time: 0.0083 memory: 8703 loss: 0.5317 decode.loss_ce: 0.3157 decode.acc_seg: 83.1084 aux.loss_ce: 0.2161 aux.acc_seg: 80.7828 +2024/08/11 03:22:44 - mmengine - INFO - Iter(train) [113100/160000] lr: 3.3808e-03 eta: 14:34:24 time: 1.1151 data_time: 0.0075 memory: 8704 loss: 0.3108 decode.loss_ce: 0.2100 decode.acc_seg: 93.3997 aux.loss_ce: 0.1007 aux.acc_seg: 91.5012 +2024/08/11 03:23:40 - mmengine - INFO - Iter(train) [113150/160000] lr: 3.3777e-03 eta: 14:33:28 time: 1.1119 data_time: 0.0061 memory: 8703 loss: 0.3531 decode.loss_ce: 0.2022 decode.acc_seg: 97.8469 aux.loss_ce: 0.1509 aux.acc_seg: 97.2359 +2024/08/11 03:24:36 - mmengine - INFO - Iter(train) [113200/160000] lr: 3.3745e-03 eta: 14:32:32 time: 1.1212 data_time: 0.0077 memory: 8703 loss: 0.3527 decode.loss_ce: 0.2162 decode.acc_seg: 89.1191 aux.loss_ce: 0.1365 aux.acc_seg: 87.1560 +2024/08/11 03:25:32 - mmengine - INFO - Iter(train) [113250/160000] lr: 3.3714e-03 eta: 14:31:36 time: 1.1151 data_time: 0.0062 memory: 8703 loss: 0.2950 decode.loss_ce: 0.1869 decode.acc_seg: 93.7928 aux.loss_ce: 0.1081 aux.acc_seg: 92.6859 +2024/08/11 03:26:27 - mmengine - INFO - Iter(train) [113300/160000] lr: 3.3682e-03 eta: 14:30:40 time: 1.1147 data_time: 0.0068 memory: 8703 loss: 0.5048 decode.loss_ce: 0.3105 decode.acc_seg: 93.5072 aux.loss_ce: 0.1943 aux.acc_seg: 92.7683 +2024/08/11 03:27:23 - mmengine - INFO - Iter(train) [113350/160000] lr: 3.3651e-03 eta: 14:29:44 time: 1.1158 data_time: 0.0077 memory: 8703 loss: 0.4137 decode.loss_ce: 0.2389 decode.acc_seg: 95.9430 aux.loss_ce: 0.1748 aux.acc_seg: 95.6522 +2024/08/11 03:28:19 - mmengine - INFO - Iter(train) [113400/160000] lr: 3.3619e-03 eta: 14:28:48 time: 1.1171 data_time: 0.0082 memory: 8703 loss: 0.3541 decode.loss_ce: 0.2098 decode.acc_seg: 90.8071 aux.loss_ce: 0.1443 aux.acc_seg: 82.3739 +2024/08/11 03:29:15 - mmengine - INFO - Iter(train) [113450/160000] lr: 3.3588e-03 eta: 14:27:52 time: 1.1193 data_time: 0.0067 memory: 8704 loss: 0.2885 decode.loss_ce: 0.1742 decode.acc_seg: 93.5371 aux.loss_ce: 0.1143 aux.acc_seg: 90.7953 +2024/08/11 03:30:11 - mmengine - INFO - Iter(train) [113500/160000] lr: 3.3556e-03 eta: 14:26:56 time: 1.1183 data_time: 0.0076 memory: 8703 loss: 0.3297 decode.loss_ce: 0.2103 decode.acc_seg: 93.5606 aux.loss_ce: 0.1194 aux.acc_seg: 90.8422 +2024/08/11 03:31:07 - mmengine - INFO - Iter(train) [113550/160000] lr: 3.3525e-03 eta: 14:26:00 time: 1.1162 data_time: 0.0069 memory: 8704 loss: 0.3269 decode.loss_ce: 0.1893 decode.acc_seg: 94.3328 aux.loss_ce: 0.1375 aux.acc_seg: 86.8603 +2024/08/11 03:32:02 - mmengine - INFO - Iter(train) [113600/160000] lr: 3.3493e-03 eta: 14:25:04 time: 1.1161 data_time: 0.0067 memory: 8703 loss: 0.2487 decode.loss_ce: 0.1461 decode.acc_seg: 92.5012 aux.loss_ce: 0.1026 aux.acc_seg: 87.2835 +2024/08/11 03:32:58 - mmengine - INFO - Iter(train) [113650/160000] lr: 3.3462e-03 eta: 14:24:08 time: 1.1190 data_time: 0.0073 memory: 8704 loss: 0.3684 decode.loss_ce: 0.2192 decode.acc_seg: 94.6137 aux.loss_ce: 0.1492 aux.acc_seg: 91.2297 +2024/08/11 03:33:54 - mmengine - INFO - Iter(train) [113700/160000] lr: 3.3430e-03 eta: 14:23:12 time: 1.1142 data_time: 0.0061 memory: 8703 loss: 0.3199 decode.loss_ce: 0.1885 decode.acc_seg: 93.6695 aux.loss_ce: 0.1314 aux.acc_seg: 87.1356 +2024/08/11 03:34:50 - mmengine - INFO - Iter(train) [113750/160000] lr: 3.3399e-03 eta: 14:22:16 time: 1.1127 data_time: 0.0073 memory: 8703 loss: 0.3285 decode.loss_ce: 0.1908 decode.acc_seg: 90.3610 aux.loss_ce: 0.1377 aux.acc_seg: 90.0785 +2024/08/11 03:35:46 - mmengine - INFO - Iter(train) [113800/160000] lr: 3.3367e-03 eta: 14:21:20 time: 1.1153 data_time: 0.0071 memory: 8703 loss: 0.2893 decode.loss_ce: 0.1677 decode.acc_seg: 96.1122 aux.loss_ce: 0.1216 aux.acc_seg: 95.1896 +2024/08/11 03:36:41 - mmengine - INFO - Iter(train) [113850/160000] lr: 3.3336e-03 eta: 14:20:24 time: 1.1183 data_time: 0.0074 memory: 8704 loss: 0.3535 decode.loss_ce: 0.1941 decode.acc_seg: 94.5678 aux.loss_ce: 0.1594 aux.acc_seg: 93.8424 +2024/08/11 03:37:37 - mmengine - INFO - Iter(train) [113900/160000] lr: 3.3304e-03 eta: 14:19:28 time: 1.1156 data_time: 0.0077 memory: 8704 loss: 0.2644 decode.loss_ce: 0.1541 decode.acc_seg: 90.1543 aux.loss_ce: 0.1103 aux.acc_seg: 86.5379 +2024/08/11 03:38:33 - mmengine - INFO - Iter(train) [113950/160000] lr: 3.3273e-03 eta: 14:18:32 time: 1.1192 data_time: 0.0071 memory: 8704 loss: 0.3272 decode.loss_ce: 0.2006 decode.acc_seg: 92.6951 aux.loss_ce: 0.1267 aux.acc_seg: 92.2739 +2024/08/11 03:39:29 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 03:39:29 - mmengine - INFO - Iter(train) [114000/160000] lr: 3.3241e-03 eta: 14:17:37 time: 1.1170 data_time: 0.0080 memory: 8704 loss: 0.4584 decode.loss_ce: 0.2549 decode.acc_seg: 94.6188 aux.loss_ce: 0.2036 aux.acc_seg: 93.2356 +2024/08/11 03:40:25 - mmengine - INFO - Iter(train) [114050/160000] lr: 3.3210e-03 eta: 14:16:41 time: 1.1140 data_time: 0.0071 memory: 8704 loss: 0.2129 decode.loss_ce: 0.1258 decode.acc_seg: 96.6466 aux.loss_ce: 0.0871 aux.acc_seg: 95.2955 +2024/08/11 03:41:21 - mmengine - INFO - Iter(train) [114100/160000] lr: 3.3178e-03 eta: 14:15:45 time: 1.1153 data_time: 0.0073 memory: 8704 loss: 0.3261 decode.loss_ce: 0.2079 decode.acc_seg: 93.2839 aux.loss_ce: 0.1183 aux.acc_seg: 89.1541 +2024/08/11 03:42:16 - mmengine - INFO - Iter(train) [114150/160000] lr: 3.3147e-03 eta: 14:14:49 time: 1.1117 data_time: 0.0075 memory: 8704 loss: 0.3061 decode.loss_ce: 0.1853 decode.acc_seg: 97.4773 aux.loss_ce: 0.1208 aux.acc_seg: 96.1533 +2024/08/11 03:43:12 - mmengine - INFO - Iter(train) [114200/160000] lr: 3.3115e-03 eta: 14:13:53 time: 1.1176 data_time: 0.0089 memory: 8704 loss: 0.2847 decode.loss_ce: 0.1774 decode.acc_seg: 94.5362 aux.loss_ce: 0.1072 aux.acc_seg: 93.0751 +2024/08/11 03:44:08 - mmengine - INFO - Iter(train) [114250/160000] lr: 3.3083e-03 eta: 14:12:57 time: 1.1134 data_time: 0.0064 memory: 8703 loss: 0.3708 decode.loss_ce: 0.2323 decode.acc_seg: 93.1131 aux.loss_ce: 0.1385 aux.acc_seg: 91.3687 +2024/08/11 03:45:04 - mmengine - INFO - Iter(train) [114300/160000] lr: 3.3052e-03 eta: 14:12:01 time: 1.1175 data_time: 0.0063 memory: 8703 loss: 0.3241 decode.loss_ce: 0.2075 decode.acc_seg: 78.6315 aux.loss_ce: 0.1165 aux.acc_seg: 76.1750 +2024/08/11 03:46:00 - mmengine - INFO - Iter(train) [114350/160000] lr: 3.3020e-03 eta: 14:11:05 time: 1.1206 data_time: 0.0072 memory: 8704 loss: 0.5194 decode.loss_ce: 0.3065 decode.acc_seg: 92.2493 aux.loss_ce: 0.2129 aux.acc_seg: 90.2062 +2024/08/11 03:46:56 - mmengine - INFO - Iter(train) [114400/160000] lr: 3.2989e-03 eta: 14:10:09 time: 1.1163 data_time: 0.0075 memory: 8704 loss: 0.2981 decode.loss_ce: 0.1790 decode.acc_seg: 92.4990 aux.loss_ce: 0.1191 aux.acc_seg: 85.2999 +2024/08/11 03:47:52 - mmengine - INFO - Iter(train) [114450/160000] lr: 3.2957e-03 eta: 14:09:13 time: 1.1144 data_time: 0.0070 memory: 8704 loss: 0.3478 decode.loss_ce: 0.1982 decode.acc_seg: 93.5938 aux.loss_ce: 0.1496 aux.acc_seg: 87.7388 +2024/08/11 03:48:47 - mmengine - INFO - Iter(train) [114500/160000] lr: 3.2926e-03 eta: 14:08:17 time: 1.1155 data_time: 0.0071 memory: 8704 loss: 0.3387 decode.loss_ce: 0.2016 decode.acc_seg: 91.3733 aux.loss_ce: 0.1371 aux.acc_seg: 88.0585 +2024/08/11 03:49:43 - mmengine - INFO - Iter(train) [114550/160000] lr: 3.2894e-03 eta: 14:07:21 time: 1.1156 data_time: 0.0059 memory: 8704 loss: 0.2849 decode.loss_ce: 0.1812 decode.acc_seg: 92.4692 aux.loss_ce: 0.1038 aux.acc_seg: 91.2826 +2024/08/11 03:50:39 - mmengine - INFO - Iter(train) [114600/160000] lr: 3.2863e-03 eta: 14:06:25 time: 1.1144 data_time: 0.0082 memory: 8703 loss: 0.3133 decode.loss_ce: 0.1882 decode.acc_seg: 96.2756 aux.loss_ce: 0.1251 aux.acc_seg: 92.4259 +2024/08/11 03:51:35 - mmengine - INFO - Iter(train) [114650/160000] lr: 3.2831e-03 eta: 14:05:29 time: 1.1154 data_time: 0.0064 memory: 8704 loss: 0.2940 decode.loss_ce: 0.1847 decode.acc_seg: 84.2545 aux.loss_ce: 0.1093 aux.acc_seg: 82.7531 +2024/08/11 03:52:30 - mmengine - INFO - Iter(train) [114700/160000] lr: 3.2799e-03 eta: 14:04:33 time: 1.1166 data_time: 0.0075 memory: 8704 loss: 0.3240 decode.loss_ce: 0.1972 decode.acc_seg: 93.4819 aux.loss_ce: 0.1268 aux.acc_seg: 91.4374 +2024/08/11 03:53:26 - mmengine - INFO - Iter(train) [114750/160000] lr: 3.2768e-03 eta: 14:03:37 time: 1.1135 data_time: 0.0068 memory: 8704 loss: 0.4797 decode.loss_ce: 0.3008 decode.acc_seg: 95.7537 aux.loss_ce: 0.1788 aux.acc_seg: 91.8596 +2024/08/11 03:54:22 - mmengine - INFO - Iter(train) [114800/160000] lr: 3.2736e-03 eta: 14:02:41 time: 1.1189 data_time: 0.0067 memory: 8704 loss: 0.2738 decode.loss_ce: 0.1597 decode.acc_seg: 94.0488 aux.loss_ce: 0.1141 aux.acc_seg: 89.7472 +2024/08/11 03:55:18 - mmengine - INFO - Iter(train) [114850/160000] lr: 3.2705e-03 eta: 14:01:45 time: 1.1181 data_time: 0.0076 memory: 8704 loss: 0.4933 decode.loss_ce: 0.3233 decode.acc_seg: 90.8666 aux.loss_ce: 0.1700 aux.acc_seg: 85.4865 +2024/08/11 03:56:14 - mmengine - INFO - Iter(train) [114900/160000] lr: 3.2673e-03 eta: 14:00:49 time: 1.1244 data_time: 0.0078 memory: 8704 loss: 0.3738 decode.loss_ce: 0.2232 decode.acc_seg: 95.6844 aux.loss_ce: 0.1506 aux.acc_seg: 91.8992 +2024/08/11 03:57:10 - mmengine - INFO - Iter(train) [114950/160000] lr: 3.2641e-03 eta: 13:59:53 time: 1.1174 data_time: 0.0071 memory: 8704 loss: 0.3717 decode.loss_ce: 0.2296 decode.acc_seg: 96.0328 aux.loss_ce: 0.1421 aux.acc_seg: 93.8878 +2024/08/11 03:58:06 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 03:58:06 - mmengine - INFO - Iter(train) [115000/160000] lr: 3.2610e-03 eta: 13:58:57 time: 1.1149 data_time: 0.0067 memory: 8704 loss: 0.4037 decode.loss_ce: 0.2434 decode.acc_seg: 91.3116 aux.loss_ce: 0.1602 aux.acc_seg: 89.1570 +2024/08/11 03:59:01 - mmengine - INFO - Iter(train) [115050/160000] lr: 3.2578e-03 eta: 13:58:01 time: 1.1160 data_time: 0.0075 memory: 8704 loss: 0.2925 decode.loss_ce: 0.1761 decode.acc_seg: 95.8811 aux.loss_ce: 0.1164 aux.acc_seg: 93.9888 +2024/08/11 03:59:57 - mmengine - INFO - Iter(train) [115100/160000] lr: 3.2547e-03 eta: 13:57:05 time: 1.1200 data_time: 0.0070 memory: 8703 loss: 0.2174 decode.loss_ce: 0.1324 decode.acc_seg: 94.5101 aux.loss_ce: 0.0850 aux.acc_seg: 90.8272 +2024/08/11 04:00:53 - mmengine - INFO - Iter(train) [115150/160000] lr: 3.2515e-03 eta: 13:56:09 time: 1.1135 data_time: 0.0060 memory: 8704 loss: 0.2908 decode.loss_ce: 0.1805 decode.acc_seg: 90.7855 aux.loss_ce: 0.1103 aux.acc_seg: 90.3244 +2024/08/11 04:01:49 - mmengine - INFO - Iter(train) [115200/160000] lr: 3.2483e-03 eta: 13:55:13 time: 1.1166 data_time: 0.0079 memory: 8704 loss: 0.4243 decode.loss_ce: 0.2636 decode.acc_seg: 87.0371 aux.loss_ce: 0.1606 aux.acc_seg: 86.3932 +2024/08/11 04:02:45 - mmengine - INFO - Iter(train) [115250/160000] lr: 3.2452e-03 eta: 13:54:17 time: 1.1165 data_time: 0.0063 memory: 8704 loss: 0.2834 decode.loss_ce: 0.1676 decode.acc_seg: 94.1328 aux.loss_ce: 0.1159 aux.acc_seg: 90.5905 +2024/08/11 04:03:41 - mmengine - INFO - Iter(train) [115300/160000] lr: 3.2420e-03 eta: 13:53:21 time: 1.1203 data_time: 0.0087 memory: 8704 loss: 0.6512 decode.loss_ce: 0.4350 decode.acc_seg: 93.6939 aux.loss_ce: 0.2163 aux.acc_seg: 87.5518 +2024/08/11 04:04:37 - mmengine - INFO - Iter(train) [115350/160000] lr: 3.2388e-03 eta: 13:52:25 time: 1.1192 data_time: 0.0070 memory: 8704 loss: 0.3502 decode.loss_ce: 0.2023 decode.acc_seg: 83.9972 aux.loss_ce: 0.1480 aux.acc_seg: 79.5251 +2024/08/11 04:05:32 - mmengine - INFO - Iter(train) [115400/160000] lr: 3.2357e-03 eta: 13:51:29 time: 1.1154 data_time: 0.0064 memory: 8703 loss: 0.2858 decode.loss_ce: 0.1850 decode.acc_seg: 95.8401 aux.loss_ce: 0.1009 aux.acc_seg: 95.5486 +2024/08/11 04:06:28 - mmengine - INFO - Iter(train) [115450/160000] lr: 3.2325e-03 eta: 13:50:33 time: 1.1169 data_time: 0.0066 memory: 8704 loss: 0.3303 decode.loss_ce: 0.2013 decode.acc_seg: 90.5833 aux.loss_ce: 0.1291 aux.acc_seg: 85.0957 +2024/08/11 04:07:24 - mmengine - INFO - Iter(train) [115500/160000] lr: 3.2293e-03 eta: 13:49:37 time: 1.1093 data_time: 0.0056 memory: 8704 loss: 0.2812 decode.loss_ce: 0.1710 decode.acc_seg: 91.9140 aux.loss_ce: 0.1102 aux.acc_seg: 87.4695 +2024/08/11 04:08:20 - mmengine - INFO - Iter(train) [115550/160000] lr: 3.2262e-03 eta: 13:48:41 time: 1.1185 data_time: 0.0074 memory: 8704 loss: 0.2660 decode.loss_ce: 0.1601 decode.acc_seg: 93.3913 aux.loss_ce: 0.1059 aux.acc_seg: 91.5023 +2024/08/11 04:09:15 - mmengine - INFO - Iter(train) [115600/160000] lr: 3.2230e-03 eta: 13:47:45 time: 1.1115 data_time: 0.0068 memory: 8704 loss: 0.3396 decode.loss_ce: 0.2125 decode.acc_seg: 97.3205 aux.loss_ce: 0.1271 aux.acc_seg: 97.2029 +2024/08/11 04:10:11 - mmengine - INFO - Iter(train) [115650/160000] lr: 3.2199e-03 eta: 13:46:49 time: 1.1173 data_time: 0.0070 memory: 8704 loss: 0.3445 decode.loss_ce: 0.2064 decode.acc_seg: 89.3563 aux.loss_ce: 0.1382 aux.acc_seg: 74.4983 +2024/08/11 04:11:07 - mmengine - INFO - Iter(train) [115700/160000] lr: 3.2167e-03 eta: 13:45:53 time: 1.1150 data_time: 0.0074 memory: 8704 loss: 0.2681 decode.loss_ce: 0.1621 decode.acc_seg: 95.9513 aux.loss_ce: 0.1060 aux.acc_seg: 92.8446 +2024/08/11 04:12:03 - mmengine - INFO - Iter(train) [115750/160000] lr: 3.2135e-03 eta: 13:44:57 time: 1.1201 data_time: 0.0082 memory: 8704 loss: 0.3266 decode.loss_ce: 0.1990 decode.acc_seg: 91.7768 aux.loss_ce: 0.1276 aux.acc_seg: 83.7315 +2024/08/11 04:12:59 - mmengine - INFO - Iter(train) [115800/160000] lr: 3.2104e-03 eta: 13:44:01 time: 1.1195 data_time: 0.0070 memory: 8703 loss: 0.2803 decode.loss_ce: 0.1580 decode.acc_seg: 94.5084 aux.loss_ce: 0.1223 aux.acc_seg: 92.7754 +2024/08/11 04:13:55 - mmengine - INFO - Iter(train) [115850/160000] lr: 3.2072e-03 eta: 13:43:05 time: 1.1177 data_time: 0.0071 memory: 8704 loss: 0.3189 decode.loss_ce: 0.1919 decode.acc_seg: 94.4474 aux.loss_ce: 0.1271 aux.acc_seg: 90.5409 +2024/08/11 04:14:50 - mmengine - INFO - Iter(train) [115900/160000] lr: 3.2040e-03 eta: 13:42:09 time: 1.1132 data_time: 0.0066 memory: 8704 loss: 0.2272 decode.loss_ce: 0.1415 decode.acc_seg: 94.7014 aux.loss_ce: 0.0857 aux.acc_seg: 93.3034 +2024/08/11 04:15:46 - mmengine - INFO - Iter(train) [115950/160000] lr: 3.2009e-03 eta: 13:41:13 time: 1.1098 data_time: 0.0064 memory: 8704 loss: 0.2903 decode.loss_ce: 0.1840 decode.acc_seg: 95.7149 aux.loss_ce: 0.1063 aux.acc_seg: 93.2090 +2024/08/11 04:16:42 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 04:16:42 - mmengine - INFO - Iter(train) [116000/160000] lr: 3.1977e-03 eta: 13:40:17 time: 1.1169 data_time: 0.0075 memory: 8703 loss: 0.2301 decode.loss_ce: 0.1446 decode.acc_seg: 94.1529 aux.loss_ce: 0.0855 aux.acc_seg: 91.9163 +2024/08/11 04:17:38 - mmengine - INFO - Iter(train) [116050/160000] lr: 3.1945e-03 eta: 13:39:21 time: 1.1183 data_time: 0.0074 memory: 8703 loss: 0.2471 decode.loss_ce: 0.1559 decode.acc_seg: 94.7430 aux.loss_ce: 0.0912 aux.acc_seg: 93.7523 +2024/08/11 04:18:34 - mmengine - INFO - Iter(train) [116100/160000] lr: 3.1913e-03 eta: 13:38:26 time: 1.1163 data_time: 0.0065 memory: 8703 loss: 0.4718 decode.loss_ce: 0.3050 decode.acc_seg: 86.1538 aux.loss_ce: 0.1668 aux.acc_seg: 82.0272 +2024/08/11 04:19:30 - mmengine - INFO - Iter(train) [116150/160000] lr: 3.1882e-03 eta: 13:37:30 time: 1.1116 data_time: 0.0071 memory: 8703 loss: 0.3288 decode.loss_ce: 0.2021 decode.acc_seg: 96.0928 aux.loss_ce: 0.1268 aux.acc_seg: 95.8053 +2024/08/11 04:20:26 - mmengine - INFO - Iter(train) [116200/160000] lr: 3.1850e-03 eta: 13:36:34 time: 1.1205 data_time: 0.0069 memory: 8703 loss: 0.3249 decode.loss_ce: 0.1985 decode.acc_seg: 90.0255 aux.loss_ce: 0.1265 aux.acc_seg: 84.5875 +2024/08/11 04:21:21 - mmengine - INFO - Iter(train) [116250/160000] lr: 3.1818e-03 eta: 13:35:38 time: 1.1139 data_time: 0.0070 memory: 8703 loss: 0.2829 decode.loss_ce: 0.1709 decode.acc_seg: 94.4140 aux.loss_ce: 0.1120 aux.acc_seg: 92.0792 +2024/08/11 04:22:17 - mmengine - INFO - Iter(train) [116300/160000] lr: 3.1787e-03 eta: 13:34:42 time: 1.1185 data_time: 0.0078 memory: 8704 loss: 0.4080 decode.loss_ce: 0.2352 decode.acc_seg: 95.4471 aux.loss_ce: 0.1727 aux.acc_seg: 90.0590 +2024/08/11 04:23:13 - mmengine - INFO - Iter(train) [116350/160000] lr: 3.1755e-03 eta: 13:33:46 time: 1.1175 data_time: 0.0068 memory: 8704 loss: 0.2917 decode.loss_ce: 0.1765 decode.acc_seg: 95.3889 aux.loss_ce: 0.1152 aux.acc_seg: 94.5394 +2024/08/11 04:24:09 - mmengine - INFO - Iter(train) [116400/160000] lr: 3.1723e-03 eta: 13:32:50 time: 1.1127 data_time: 0.0075 memory: 8704 loss: 0.5116 decode.loss_ce: 0.3167 decode.acc_seg: 95.2916 aux.loss_ce: 0.1949 aux.acc_seg: 94.9891 +2024/08/11 04:25:05 - mmengine - INFO - Iter(train) [116450/160000] lr: 3.1692e-03 eta: 13:31:54 time: 1.1132 data_time: 0.0055 memory: 8704 loss: 0.3387 decode.loss_ce: 0.1804 decode.acc_seg: 95.0448 aux.loss_ce: 0.1583 aux.acc_seg: 92.8343 +2024/08/11 04:26:01 - mmengine - INFO - Iter(train) [116500/160000] lr: 3.1660e-03 eta: 13:30:58 time: 1.1170 data_time: 0.0077 memory: 8704 loss: 0.3798 decode.loss_ce: 0.2150 decode.acc_seg: 93.4874 aux.loss_ce: 0.1648 aux.acc_seg: 71.9321 +2024/08/11 04:26:56 - mmengine - INFO - Iter(train) [116550/160000] lr: 3.1628e-03 eta: 13:30:02 time: 1.1144 data_time: 0.0064 memory: 8704 loss: 0.2527 decode.loss_ce: 0.1531 decode.acc_seg: 94.2572 aux.loss_ce: 0.0996 aux.acc_seg: 87.7719 +2024/08/11 04:27:52 - mmengine - INFO - Iter(train) [116600/160000] lr: 3.1596e-03 eta: 13:29:06 time: 1.1172 data_time: 0.0071 memory: 8703 loss: 0.3468 decode.loss_ce: 0.2033 decode.acc_seg: 91.0585 aux.loss_ce: 0.1435 aux.acc_seg: 89.9206 +2024/08/11 04:28:48 - mmengine - INFO - Iter(train) [116650/160000] lr: 3.1565e-03 eta: 13:28:10 time: 1.1176 data_time: 0.0071 memory: 8704 loss: 0.5663 decode.loss_ce: 0.3664 decode.acc_seg: 88.4402 aux.loss_ce: 0.1999 aux.acc_seg: 87.6203 +2024/08/11 04:29:44 - mmengine - INFO - Iter(train) [116700/160000] lr: 3.1533e-03 eta: 13:27:14 time: 1.1162 data_time: 0.0065 memory: 8703 loss: 0.3159 decode.loss_ce: 0.1942 decode.acc_seg: 88.6475 aux.loss_ce: 0.1217 aux.acc_seg: 87.6563 +2024/08/11 04:30:40 - mmengine - INFO - Iter(train) [116750/160000] lr: 3.1501e-03 eta: 13:26:18 time: 1.1154 data_time: 0.0073 memory: 8704 loss: 0.2946 decode.loss_ce: 0.1871 decode.acc_seg: 91.4232 aux.loss_ce: 0.1074 aux.acc_seg: 86.9497 +2024/08/11 04:31:35 - mmengine - INFO - Iter(train) [116800/160000] lr: 3.1469e-03 eta: 13:25:22 time: 1.1157 data_time: 0.0076 memory: 8704 loss: 0.3304 decode.loss_ce: 0.2063 decode.acc_seg: 94.8270 aux.loss_ce: 0.1241 aux.acc_seg: 93.8545 +2024/08/11 04:32:31 - mmengine - INFO - Iter(train) [116850/160000] lr: 3.1438e-03 eta: 13:24:26 time: 1.1161 data_time: 0.0074 memory: 8703 loss: 0.2484 decode.loss_ce: 0.1605 decode.acc_seg: 91.5529 aux.loss_ce: 0.0879 aux.acc_seg: 88.2682 +2024/08/11 04:33:27 - mmengine - INFO - Iter(train) [116900/160000] lr: 3.1406e-03 eta: 13:23:30 time: 1.1175 data_time: 0.0079 memory: 8704 loss: 0.2959 decode.loss_ce: 0.1754 decode.acc_seg: 95.7595 aux.loss_ce: 0.1206 aux.acc_seg: 94.6786 +2024/08/11 04:34:23 - mmengine - INFO - Iter(train) [116950/160000] lr: 3.1374e-03 eta: 13:22:34 time: 1.1184 data_time: 0.0072 memory: 8703 loss: 0.3106 decode.loss_ce: 0.1871 decode.acc_seg: 89.1429 aux.loss_ce: 0.1235 aux.acc_seg: 85.8448 +2024/08/11 04:35:19 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 04:35:19 - mmengine - INFO - Iter(train) [117000/160000] lr: 3.1342e-03 eta: 13:21:38 time: 1.1227 data_time: 0.0077 memory: 8703 loss: 0.3030 decode.loss_ce: 0.1888 decode.acc_seg: 93.4814 aux.loss_ce: 0.1142 aux.acc_seg: 91.1318 +2024/08/11 04:36:15 - mmengine - INFO - Iter(train) [117050/160000] lr: 3.1311e-03 eta: 13:20:42 time: 1.1161 data_time: 0.0069 memory: 8704 loss: 0.3488 decode.loss_ce: 0.2148 decode.acc_seg: 95.2210 aux.loss_ce: 0.1340 aux.acc_seg: 88.8891 +2024/08/11 04:37:10 - mmengine - INFO - Iter(train) [117100/160000] lr: 3.1279e-03 eta: 13:19:46 time: 1.1134 data_time: 0.0062 memory: 8704 loss: 0.4758 decode.loss_ce: 0.3042 decode.acc_seg: 89.6702 aux.loss_ce: 0.1716 aux.acc_seg: 87.0830 +2024/08/11 04:38:06 - mmengine - INFO - Iter(train) [117150/160000] lr: 3.1247e-03 eta: 13:18:50 time: 1.1214 data_time: 0.0072 memory: 8704 loss: 0.2255 decode.loss_ce: 0.1395 decode.acc_seg: 97.5096 aux.loss_ce: 0.0860 aux.acc_seg: 97.3047 +2024/08/11 04:39:02 - mmengine - INFO - Iter(train) [117200/160000] lr: 3.1215e-03 eta: 13:17:54 time: 1.1147 data_time: 0.0067 memory: 8704 loss: 0.3461 decode.loss_ce: 0.2170 decode.acc_seg: 92.6931 aux.loss_ce: 0.1291 aux.acc_seg: 91.0147 +2024/08/11 04:39:58 - mmengine - INFO - Iter(train) [117250/160000] lr: 3.1184e-03 eta: 13:16:58 time: 1.1159 data_time: 0.0057 memory: 8704 loss: 0.4200 decode.loss_ce: 0.2519 decode.acc_seg: 94.8577 aux.loss_ce: 0.1680 aux.acc_seg: 91.2174 +2024/08/11 04:40:54 - mmengine - INFO - Iter(train) [117300/160000] lr: 3.1152e-03 eta: 13:16:02 time: 1.1153 data_time: 0.0076 memory: 8704 loss: 0.2965 decode.loss_ce: 0.1661 decode.acc_seg: 91.5870 aux.loss_ce: 0.1304 aux.acc_seg: 78.3087 +2024/08/11 04:41:49 - mmengine - INFO - Iter(train) [117350/160000] lr: 3.1120e-03 eta: 13:15:06 time: 1.1167 data_time: 0.0057 memory: 8704 loss: 0.3720 decode.loss_ce: 0.2255 decode.acc_seg: 84.6472 aux.loss_ce: 0.1465 aux.acc_seg: 78.6810 +2024/08/11 04:42:45 - mmengine - INFO - Iter(train) [117400/160000] lr: 3.1088e-03 eta: 13:14:10 time: 1.1178 data_time: 0.0061 memory: 8703 loss: 0.3480 decode.loss_ce: 0.2054 decode.acc_seg: 88.8879 aux.loss_ce: 0.1425 aux.acc_seg: 84.8116 +2024/08/11 04:43:41 - mmengine - INFO - Iter(train) [117450/160000] lr: 3.1057e-03 eta: 13:13:14 time: 1.1153 data_time: 0.0073 memory: 8704 loss: 0.3171 decode.loss_ce: 0.2051 decode.acc_seg: 95.1921 aux.loss_ce: 0.1120 aux.acc_seg: 94.4517 +2024/08/11 04:44:37 - mmengine - INFO - Iter(train) [117500/160000] lr: 3.1025e-03 eta: 13:12:18 time: 1.1174 data_time: 0.0072 memory: 8704 loss: 0.2731 decode.loss_ce: 0.1724 decode.acc_seg: 95.2256 aux.loss_ce: 0.1008 aux.acc_seg: 94.6016 +2024/08/11 04:45:33 - mmengine - INFO - Iter(train) [117550/160000] lr: 3.0993e-03 eta: 13:11:23 time: 1.1209 data_time: 0.0073 memory: 8704 loss: 0.4488 decode.loss_ce: 0.2800 decode.acc_seg: 95.6797 aux.loss_ce: 0.1687 aux.acc_seg: 94.6630 +2024/08/11 04:46:29 - mmengine - INFO - Iter(train) [117600/160000] lr: 3.0961e-03 eta: 13:10:27 time: 1.1133 data_time: 0.0080 memory: 8704 loss: 0.3346 decode.loss_ce: 0.2091 decode.acc_seg: 94.1383 aux.loss_ce: 0.1255 aux.acc_seg: 94.7158 +2024/08/11 04:47:25 - mmengine - INFO - Iter(train) [117650/160000] lr: 3.0929e-03 eta: 13:09:31 time: 1.1158 data_time: 0.0070 memory: 8703 loss: 0.3404 decode.loss_ce: 0.2076 decode.acc_seg: 95.0226 aux.loss_ce: 0.1328 aux.acc_seg: 94.6555 +2024/08/11 04:48:21 - mmengine - INFO - Iter(train) [117700/160000] lr: 3.0898e-03 eta: 13:08:35 time: 1.1111 data_time: 0.0072 memory: 8704 loss: 0.2647 decode.loss_ce: 0.1546 decode.acc_seg: 94.1390 aux.loss_ce: 0.1101 aux.acc_seg: 87.4906 +2024/08/11 04:49:16 - mmengine - INFO - Iter(train) [117750/160000] lr: 3.0866e-03 eta: 13:07:39 time: 1.1175 data_time: 0.0080 memory: 8704 loss: 0.3593 decode.loss_ce: 0.2345 decode.acc_seg: 91.4892 aux.loss_ce: 0.1248 aux.acc_seg: 89.1441 +2024/08/11 04:50:12 - mmengine - INFO - Iter(train) [117800/160000] lr: 3.0834e-03 eta: 13:06:43 time: 1.1192 data_time: 0.0069 memory: 8703 loss: 0.3038 decode.loss_ce: 0.1759 decode.acc_seg: 97.2202 aux.loss_ce: 0.1279 aux.acc_seg: 96.5049 +2024/08/11 04:51:08 - mmengine - INFO - Iter(train) [117850/160000] lr: 3.0802e-03 eta: 13:05:47 time: 1.1188 data_time: 0.0067 memory: 8704 loss: 0.5490 decode.loss_ce: 0.3364 decode.acc_seg: 95.6719 aux.loss_ce: 0.2126 aux.acc_seg: 95.7440 +2024/08/11 04:52:04 - mmengine - INFO - Iter(train) [117900/160000] lr: 3.0770e-03 eta: 13:04:51 time: 1.1150 data_time: 0.0063 memory: 8704 loss: 0.4127 decode.loss_ce: 0.2496 decode.acc_seg: 83.7051 aux.loss_ce: 0.1632 aux.acc_seg: 81.5012 +2024/08/11 04:53:00 - mmengine - INFO - Iter(train) [117950/160000] lr: 3.0738e-03 eta: 13:03:55 time: 1.1149 data_time: 0.0065 memory: 8704 loss: 0.2763 decode.loss_ce: 0.1786 decode.acc_seg: 95.0407 aux.loss_ce: 0.0977 aux.acc_seg: 92.9882 +2024/08/11 04:53:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 04:53:56 - mmengine - INFO - Iter(train) [118000/160000] lr: 3.0707e-03 eta: 13:02:59 time: 1.1202 data_time: 0.0077 memory: 8703 loss: 0.2543 decode.loss_ce: 0.1477 decode.acc_seg: 94.8688 aux.loss_ce: 0.1066 aux.acc_seg: 92.7684 +2024/08/11 04:54:52 - mmengine - INFO - Iter(train) [118050/160000] lr: 3.0675e-03 eta: 13:02:03 time: 1.1189 data_time: 0.0077 memory: 8703 loss: 0.3963 decode.loss_ce: 0.2319 decode.acc_seg: 94.6326 aux.loss_ce: 0.1645 aux.acc_seg: 88.0882 +2024/08/11 04:55:47 - mmengine - INFO - Iter(train) [118100/160000] lr: 3.0643e-03 eta: 13:01:07 time: 1.1172 data_time: 0.0058 memory: 8703 loss: 0.3529 decode.loss_ce: 0.2042 decode.acc_seg: 90.4183 aux.loss_ce: 0.1487 aux.acc_seg: 77.7382 +2024/08/11 04:56:43 - mmengine - INFO - Iter(train) [118150/160000] lr: 3.0611e-03 eta: 13:00:11 time: 1.1128 data_time: 0.0074 memory: 8703 loss: 0.3123 decode.loss_ce: 0.1806 decode.acc_seg: 94.9507 aux.loss_ce: 0.1316 aux.acc_seg: 89.6068 +2024/08/11 04:57:39 - mmengine - INFO - Iter(train) [118200/160000] lr: 3.0579e-03 eta: 12:59:15 time: 1.1175 data_time: 0.0074 memory: 8703 loss: 0.2566 decode.loss_ce: 0.1656 decode.acc_seg: 91.6054 aux.loss_ce: 0.0909 aux.acc_seg: 89.9737 +2024/08/11 04:58:35 - mmengine - INFO - Iter(train) [118250/160000] lr: 3.0547e-03 eta: 12:58:19 time: 1.1183 data_time: 0.0073 memory: 8704 loss: 0.4653 decode.loss_ce: 0.2691 decode.acc_seg: 94.7884 aux.loss_ce: 0.1962 aux.acc_seg: 72.9837 +2024/08/11 04:59:31 - mmengine - INFO - Iter(train) [118300/160000] lr: 3.0516e-03 eta: 12:57:23 time: 1.1185 data_time: 0.0069 memory: 8704 loss: 0.4665 decode.loss_ce: 0.2644 decode.acc_seg: 91.0492 aux.loss_ce: 0.2021 aux.acc_seg: 89.8128 +2024/08/11 05:00:27 - mmengine - INFO - Iter(train) [118350/160000] lr: 3.0484e-03 eta: 12:56:27 time: 1.1201 data_time: 0.0068 memory: 8704 loss: 0.5069 decode.loss_ce: 0.3103 decode.acc_seg: 90.7230 aux.loss_ce: 0.1966 aux.acc_seg: 89.3772 +2024/08/11 05:01:22 - mmengine - INFO - Iter(train) [118400/160000] lr: 3.0452e-03 eta: 12:55:31 time: 1.1157 data_time: 0.0058 memory: 8703 loss: 0.2947 decode.loss_ce: 0.1823 decode.acc_seg: 97.0222 aux.loss_ce: 0.1124 aux.acc_seg: 96.8819 +2024/08/11 05:02:18 - mmengine - INFO - Iter(train) [118450/160000] lr: 3.0420e-03 eta: 12:54:35 time: 1.1138 data_time: 0.0062 memory: 8704 loss: 0.3475 decode.loss_ce: 0.2064 decode.acc_seg: 94.8449 aux.loss_ce: 0.1411 aux.acc_seg: 81.2044 +2024/08/11 05:03:14 - mmengine - INFO - Iter(train) [118500/160000] lr: 3.0388e-03 eta: 12:53:39 time: 1.1160 data_time: 0.0066 memory: 8703 loss: 0.2778 decode.loss_ce: 0.1693 decode.acc_seg: 91.4819 aux.loss_ce: 0.1085 aux.acc_seg: 86.3135 +2024/08/11 05:04:10 - mmengine - INFO - Iter(train) [118550/160000] lr: 3.0356e-03 eta: 12:52:43 time: 1.1157 data_time: 0.0072 memory: 8704 loss: 0.4218 decode.loss_ce: 0.2477 decode.acc_seg: 94.3900 aux.loss_ce: 0.1742 aux.acc_seg: 91.7198 +2024/08/11 05:05:05 - mmengine - INFO - Iter(train) [118600/160000] lr: 3.0324e-03 eta: 12:51:47 time: 1.1136 data_time: 0.0072 memory: 8703 loss: 0.3158 decode.loss_ce: 0.1846 decode.acc_seg: 94.9916 aux.loss_ce: 0.1312 aux.acc_seg: 89.7215 +2024/08/11 05:06:01 - mmengine - INFO - Iter(train) [118650/160000] lr: 3.0293e-03 eta: 12:50:51 time: 1.1152 data_time: 0.0071 memory: 8703 loss: 0.3378 decode.loss_ce: 0.2166 decode.acc_seg: 93.2779 aux.loss_ce: 0.1212 aux.acc_seg: 90.8356 +2024/08/11 05:06:57 - mmengine - INFO - Iter(train) [118700/160000] lr: 3.0261e-03 eta: 12:49:55 time: 1.1160 data_time: 0.0062 memory: 8703 loss: 0.3456 decode.loss_ce: 0.1922 decode.acc_seg: 89.9891 aux.loss_ce: 0.1534 aux.acc_seg: 84.7233 +2024/08/11 05:07:53 - mmengine - INFO - Iter(train) [118750/160000] lr: 3.0229e-03 eta: 12:48:59 time: 1.1181 data_time: 0.0079 memory: 8704 loss: 0.4501 decode.loss_ce: 0.2504 decode.acc_seg: 87.9894 aux.loss_ce: 0.1997 aux.acc_seg: 64.4269 +2024/08/11 05:08:49 - mmengine - INFO - Iter(train) [118800/160000] lr: 3.0197e-03 eta: 12:48:03 time: 1.1210 data_time: 0.0065 memory: 8704 loss: 0.3515 decode.loss_ce: 0.2279 decode.acc_seg: 95.7528 aux.loss_ce: 0.1236 aux.acc_seg: 93.6682 +2024/08/11 05:09:45 - mmengine - INFO - Iter(train) [118850/160000] lr: 3.0165e-03 eta: 12:47:07 time: 1.1165 data_time: 0.0063 memory: 8704 loss: 0.2993 decode.loss_ce: 0.1739 decode.acc_seg: 96.4197 aux.loss_ce: 0.1253 aux.acc_seg: 95.3498 +2024/08/11 05:10:40 - mmengine - INFO - Iter(train) [118900/160000] lr: 3.0133e-03 eta: 12:46:11 time: 1.1106 data_time: 0.0066 memory: 8703 loss: 0.3703 decode.loss_ce: 0.2204 decode.acc_seg: 96.1340 aux.loss_ce: 0.1500 aux.acc_seg: 86.6363 +2024/08/11 05:11:36 - mmengine - INFO - Iter(train) [118950/160000] lr: 3.0101e-03 eta: 12:45:15 time: 1.1148 data_time: 0.0055 memory: 8703 loss: 0.3240 decode.loss_ce: 0.2018 decode.acc_seg: 94.8746 aux.loss_ce: 0.1223 aux.acc_seg: 91.4600 +2024/08/11 05:12:32 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 05:12:32 - mmengine - INFO - Iter(train) [119000/160000] lr: 3.0069e-03 eta: 12:44:19 time: 1.1158 data_time: 0.0063 memory: 8704 loss: 0.3195 decode.loss_ce: 0.1777 decode.acc_seg: 92.6027 aux.loss_ce: 0.1418 aux.acc_seg: 93.2330 +2024/08/11 05:13:28 - mmengine - INFO - Iter(train) [119050/160000] lr: 3.0037e-03 eta: 12:43:23 time: 1.1157 data_time: 0.0079 memory: 8704 loss: 0.2741 decode.loss_ce: 0.1752 decode.acc_seg: 92.7665 aux.loss_ce: 0.0989 aux.acc_seg: 90.2001 +2024/08/11 05:14:24 - mmengine - INFO - Iter(train) [119100/160000] lr: 3.0006e-03 eta: 12:42:27 time: 1.1202 data_time: 0.0058 memory: 8703 loss: 0.3471 decode.loss_ce: 0.2160 decode.acc_seg: 92.3309 aux.loss_ce: 0.1312 aux.acc_seg: 90.0862 +2024/08/11 05:15:19 - mmengine - INFO - Iter(train) [119150/160000] lr: 2.9974e-03 eta: 12:41:31 time: 1.1165 data_time: 0.0052 memory: 8704 loss: 0.2966 decode.loss_ce: 0.1852 decode.acc_seg: 95.4466 aux.loss_ce: 0.1114 aux.acc_seg: 91.4143 +2024/08/11 05:16:15 - mmengine - INFO - Iter(train) [119200/160000] lr: 2.9942e-03 eta: 12:40:36 time: 1.1193 data_time: 0.0071 memory: 8703 loss: 0.4047 decode.loss_ce: 0.2499 decode.acc_seg: 96.8170 aux.loss_ce: 0.1548 aux.acc_seg: 94.9711 +2024/08/11 05:17:11 - mmengine - INFO - Iter(train) [119250/160000] lr: 2.9910e-03 eta: 12:39:40 time: 1.1172 data_time: 0.0079 memory: 8703 loss: 0.3384 decode.loss_ce: 0.2075 decode.acc_seg: 93.6305 aux.loss_ce: 0.1309 aux.acc_seg: 86.2248 +2024/08/11 05:18:07 - mmengine - INFO - Iter(train) [119300/160000] lr: 2.9878e-03 eta: 12:38:44 time: 1.1126 data_time: 0.0065 memory: 8704 loss: 0.3114 decode.loss_ce: 0.1972 decode.acc_seg: 96.3169 aux.loss_ce: 0.1142 aux.acc_seg: 95.0293 +2024/08/11 05:19:03 - mmengine - INFO - Iter(train) [119350/160000] lr: 2.9846e-03 eta: 12:37:48 time: 1.1162 data_time: 0.0077 memory: 8704 loss: 0.2710 decode.loss_ce: 0.1575 decode.acc_seg: 90.3685 aux.loss_ce: 0.1135 aux.acc_seg: 87.6210 +2024/08/11 05:19:59 - mmengine - INFO - Iter(train) [119400/160000] lr: 2.9814e-03 eta: 12:36:52 time: 1.1107 data_time: 0.0077 memory: 8704 loss: 0.3283 decode.loss_ce: 0.2017 decode.acc_seg: 91.3704 aux.loss_ce: 0.1266 aux.acc_seg: 90.4350 +2024/08/11 05:20:54 - mmengine - INFO - Iter(train) [119450/160000] lr: 2.9782e-03 eta: 12:35:56 time: 1.1182 data_time: 0.0085 memory: 8704 loss: 0.2980 decode.loss_ce: 0.1763 decode.acc_seg: 90.1961 aux.loss_ce: 0.1218 aux.acc_seg: 85.4181 +2024/08/11 05:21:50 - mmengine - INFO - Iter(train) [119500/160000] lr: 2.9750e-03 eta: 12:35:00 time: 1.1149 data_time: 0.0070 memory: 8704 loss: 0.2458 decode.loss_ce: 0.1573 decode.acc_seg: 91.3939 aux.loss_ce: 0.0884 aux.acc_seg: 94.4750 +2024/08/11 05:22:46 - mmengine - INFO - Iter(train) [119550/160000] lr: 2.9718e-03 eta: 12:34:04 time: 1.1158 data_time: 0.0066 memory: 8705 loss: 0.2639 decode.loss_ce: 0.1602 decode.acc_seg: 93.7594 aux.loss_ce: 0.1037 aux.acc_seg: 87.6268 +2024/08/11 05:23:42 - mmengine - INFO - Iter(train) [119600/160000] lr: 2.9686e-03 eta: 12:33:08 time: 1.1160 data_time: 0.0084 memory: 8704 loss: 0.3994 decode.loss_ce: 0.2634 decode.acc_seg: 96.0292 aux.loss_ce: 0.1360 aux.acc_seg: 96.9241 +2024/08/11 05:24:37 - mmengine - INFO - Iter(train) [119650/160000] lr: 2.9654e-03 eta: 12:32:12 time: 1.1165 data_time: 0.0067 memory: 8703 loss: 0.2818 decode.loss_ce: 0.1653 decode.acc_seg: 94.0224 aux.loss_ce: 0.1165 aux.acc_seg: 92.3629 +2024/08/11 05:25:33 - mmengine - INFO - Iter(train) [119700/160000] lr: 2.9622e-03 eta: 12:31:16 time: 1.1159 data_time: 0.0080 memory: 8704 loss: 0.3922 decode.loss_ce: 0.2237 decode.acc_seg: 95.6663 aux.loss_ce: 0.1685 aux.acc_seg: 94.4429 +2024/08/11 05:26:29 - mmengine - INFO - Iter(train) [119750/160000] lr: 2.9590e-03 eta: 12:30:20 time: 1.1149 data_time: 0.0088 memory: 8703 loss: 0.4113 decode.loss_ce: 0.2543 decode.acc_seg: 78.9003 aux.loss_ce: 0.1570 aux.acc_seg: 72.6800 +2024/08/11 05:27:25 - mmengine - INFO - Iter(train) [119800/160000] lr: 2.9558e-03 eta: 12:29:24 time: 1.1153 data_time: 0.0071 memory: 8704 loss: 0.3314 decode.loss_ce: 0.2082 decode.acc_seg: 96.2187 aux.loss_ce: 0.1232 aux.acc_seg: 94.4676 +2024/08/11 05:28:20 - mmengine - INFO - Iter(train) [119850/160000] lr: 2.9526e-03 eta: 12:28:28 time: 1.1132 data_time: 0.0067 memory: 8704 loss: 0.2761 decode.loss_ce: 0.1507 decode.acc_seg: 96.4046 aux.loss_ce: 0.1254 aux.acc_seg: 95.7527 +2024/08/11 05:29:16 - mmengine - INFO - Iter(train) [119900/160000] lr: 2.9494e-03 eta: 12:27:32 time: 1.1158 data_time: 0.0076 memory: 8703 loss: 0.4263 decode.loss_ce: 0.2559 decode.acc_seg: 96.7341 aux.loss_ce: 0.1704 aux.acc_seg: 96.3044 +2024/08/11 05:30:12 - mmengine - INFO - Iter(train) [119950/160000] lr: 2.9462e-03 eta: 12:26:36 time: 1.1168 data_time: 0.0059 memory: 8704 loss: 0.3525 decode.loss_ce: 0.2026 decode.acc_seg: 94.6985 aux.loss_ce: 0.1499 aux.acc_seg: 89.1571 +2024/08/11 05:31:08 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 05:31:08 - mmengine - INFO - Iter(train) [120000/160000] lr: 2.9430e-03 eta: 12:25:40 time: 1.1193 data_time: 0.0070 memory: 8704 loss: 0.3773 decode.loss_ce: 0.2271 decode.acc_seg: 94.4556 aux.loss_ce: 0.1502 aux.acc_seg: 92.2977 +2024/08/11 05:32:04 - mmengine - INFO - Iter(train) [120050/160000] lr: 2.9398e-03 eta: 12:24:44 time: 1.1166 data_time: 0.0062 memory: 8703 loss: 0.3035 decode.loss_ce: 0.1855 decode.acc_seg: 84.0020 aux.loss_ce: 0.1180 aux.acc_seg: 81.1855 +2024/08/11 05:33:00 - mmengine - INFO - Iter(train) [120100/160000] lr: 2.9366e-03 eta: 12:23:48 time: 1.1139 data_time: 0.0076 memory: 8704 loss: 0.2528 decode.loss_ce: 0.1628 decode.acc_seg: 95.0683 aux.loss_ce: 0.0900 aux.acc_seg: 93.4378 +2024/08/11 05:33:55 - mmengine - INFO - Iter(train) [120150/160000] lr: 2.9334e-03 eta: 12:22:52 time: 1.1127 data_time: 0.0067 memory: 8704 loss: 0.3485 decode.loss_ce: 0.2085 decode.acc_seg: 89.3787 aux.loss_ce: 0.1399 aux.acc_seg: 84.6367 +2024/08/11 05:34:51 - mmengine - INFO - Iter(train) [120200/160000] lr: 2.9302e-03 eta: 12:21:56 time: 1.1167 data_time: 0.0076 memory: 8704 loss: 0.2232 decode.loss_ce: 0.1355 decode.acc_seg: 95.7515 aux.loss_ce: 0.0876 aux.acc_seg: 89.9780 +2024/08/11 05:35:47 - mmengine - INFO - Iter(train) [120250/160000] lr: 2.9270e-03 eta: 12:21:00 time: 1.1161 data_time: 0.0070 memory: 8704 loss: 0.3266 decode.loss_ce: 0.2027 decode.acc_seg: 92.3829 aux.loss_ce: 0.1240 aux.acc_seg: 93.8958 +2024/08/11 05:36:43 - mmengine - INFO - Iter(train) [120300/160000] lr: 2.9238e-03 eta: 12:20:04 time: 1.1174 data_time: 0.0079 memory: 8704 loss: 0.3448 decode.loss_ce: 0.2205 decode.acc_seg: 89.7821 aux.loss_ce: 0.1243 aux.acc_seg: 77.8157 +2024/08/11 05:37:38 - mmengine - INFO - Iter(train) [120350/160000] lr: 2.9206e-03 eta: 12:19:08 time: 1.1092 data_time: 0.0052 memory: 8704 loss: 0.2240 decode.loss_ce: 0.1403 decode.acc_seg: 94.9201 aux.loss_ce: 0.0836 aux.acc_seg: 93.6629 +2024/08/11 05:38:34 - mmengine - INFO - Iter(train) [120400/160000] lr: 2.9174e-03 eta: 12:18:12 time: 1.1108 data_time: 0.0056 memory: 8704 loss: 0.4317 decode.loss_ce: 0.3021 decode.acc_seg: 92.6884 aux.loss_ce: 0.1296 aux.acc_seg: 88.6894 +2024/08/11 05:39:30 - mmengine - INFO - Iter(train) [120450/160000] lr: 2.9142e-03 eta: 12:17:16 time: 1.1210 data_time: 0.0071 memory: 8704 loss: 0.4158 decode.loss_ce: 0.2299 decode.acc_seg: 97.5599 aux.loss_ce: 0.1859 aux.acc_seg: 96.9320 +2024/08/11 05:40:26 - mmengine - INFO - Iter(train) [120500/160000] lr: 2.9110e-03 eta: 12:16:20 time: 1.1184 data_time: 0.0077 memory: 8703 loss: 0.2619 decode.loss_ce: 0.1562 decode.acc_seg: 92.8235 aux.loss_ce: 0.1056 aux.acc_seg: 89.2408 +2024/08/11 05:41:22 - mmengine - INFO - Iter(train) [120550/160000] lr: 2.9078e-03 eta: 12:15:24 time: 1.1204 data_time: 0.0068 memory: 8703 loss: 0.3071 decode.loss_ce: 0.1907 decode.acc_seg: 95.9091 aux.loss_ce: 0.1164 aux.acc_seg: 94.6629 +2024/08/11 05:42:18 - mmengine - INFO - Iter(train) [120600/160000] lr: 2.9046e-03 eta: 12:14:28 time: 1.1239 data_time: 0.0082 memory: 8704 loss: 0.3438 decode.loss_ce: 0.2184 decode.acc_seg: 75.2813 aux.loss_ce: 0.1254 aux.acc_seg: 69.8633 +2024/08/11 05:43:13 - mmengine - INFO - Iter(train) [120650/160000] lr: 2.9014e-03 eta: 12:13:32 time: 1.1150 data_time: 0.0073 memory: 8703 loss: 0.4174 decode.loss_ce: 0.2521 decode.acc_seg: 95.4936 aux.loss_ce: 0.1653 aux.acc_seg: 93.4509 +2024/08/11 05:44:09 - mmengine - INFO - Iter(train) [120700/160000] lr: 2.8982e-03 eta: 12:12:36 time: 1.1142 data_time: 0.0071 memory: 8704 loss: 0.3762 decode.loss_ce: 0.2227 decode.acc_seg: 95.0809 aux.loss_ce: 0.1535 aux.acc_seg: 86.2129 +2024/08/11 05:45:05 - mmengine - INFO - Iter(train) [120750/160000] lr: 2.8950e-03 eta: 12:11:40 time: 1.1119 data_time: 0.0068 memory: 8704 loss: 0.2299 decode.loss_ce: 0.1385 decode.acc_seg: 96.5527 aux.loss_ce: 0.0914 aux.acc_seg: 95.2808 +2024/08/11 05:46:01 - mmengine - INFO - Iter(train) [120800/160000] lr: 2.8918e-03 eta: 12:10:44 time: 1.1144 data_time: 0.0060 memory: 8703 loss: 0.3093 decode.loss_ce: 0.1990 decode.acc_seg: 94.8138 aux.loss_ce: 0.1103 aux.acc_seg: 90.6829 +2024/08/11 05:46:56 - mmengine - INFO - Iter(train) [120850/160000] lr: 2.8886e-03 eta: 12:09:48 time: 1.1194 data_time: 0.0075 memory: 8703 loss: 0.2479 decode.loss_ce: 0.1549 decode.acc_seg: 96.0679 aux.loss_ce: 0.0929 aux.acc_seg: 92.7808 +2024/08/11 05:47:52 - mmengine - INFO - Iter(train) [120900/160000] lr: 2.8854e-03 eta: 12:08:52 time: 1.1118 data_time: 0.0074 memory: 8704 loss: 0.2943 decode.loss_ce: 0.1813 decode.acc_seg: 90.7923 aux.loss_ce: 0.1130 aux.acc_seg: 80.7657 +2024/08/11 05:48:48 - mmengine - INFO - Iter(train) [120950/160000] lr: 2.8822e-03 eta: 12:07:56 time: 1.1140 data_time: 0.0074 memory: 8704 loss: 0.3492 decode.loss_ce: 0.2157 decode.acc_seg: 95.5565 aux.loss_ce: 0.1335 aux.acc_seg: 92.8036 +2024/08/11 05:49:44 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 05:49:44 - mmengine - INFO - Iter(train) [121000/160000] lr: 2.8790e-03 eta: 12:07:01 time: 1.1147 data_time: 0.0066 memory: 8703 loss: 0.3456 decode.loss_ce: 0.2078 decode.acc_seg: 94.4471 aux.loss_ce: 0.1378 aux.acc_seg: 90.9899 +2024/08/11 05:50:40 - mmengine - INFO - Iter(train) [121050/160000] lr: 2.8758e-03 eta: 12:06:05 time: 1.1140 data_time: 0.0063 memory: 8704 loss: 0.4685 decode.loss_ce: 0.2884 decode.acc_seg: 89.6222 aux.loss_ce: 0.1801 aux.acc_seg: 86.9434 +2024/08/11 05:51:36 - mmengine - INFO - Iter(train) [121100/160000] lr: 2.8726e-03 eta: 12:05:09 time: 1.1181 data_time: 0.0080 memory: 8704 loss: 0.5074 decode.loss_ce: 0.2958 decode.acc_seg: 94.4258 aux.loss_ce: 0.2116 aux.acc_seg: 93.0885 +2024/08/11 05:52:31 - mmengine - INFO - Iter(train) [121150/160000] lr: 2.8694e-03 eta: 12:04:13 time: 1.1122 data_time: 0.0064 memory: 8703 loss: 0.3396 decode.loss_ce: 0.1964 decode.acc_seg: 91.0873 aux.loss_ce: 0.1432 aux.acc_seg: 82.5467 +2024/08/11 05:53:27 - mmengine - INFO - Iter(train) [121200/160000] lr: 2.8662e-03 eta: 12:03:17 time: 1.1127 data_time: 0.0066 memory: 8704 loss: 0.4110 decode.loss_ce: 0.2448 decode.acc_seg: 92.0177 aux.loss_ce: 0.1661 aux.acc_seg: 87.5120 +2024/08/11 05:54:23 - mmengine - INFO - Iter(train) [121250/160000] lr: 2.8630e-03 eta: 12:02:21 time: 1.1153 data_time: 0.0057 memory: 8704 loss: 0.2341 decode.loss_ce: 0.1482 decode.acc_seg: 93.4975 aux.loss_ce: 0.0858 aux.acc_seg: 89.4562 +2024/08/11 05:55:19 - mmengine - INFO - Iter(train) [121300/160000] lr: 2.8597e-03 eta: 12:01:25 time: 1.1158 data_time: 0.0062 memory: 8704 loss: 0.4115 decode.loss_ce: 0.2512 decode.acc_seg: 88.8311 aux.loss_ce: 0.1603 aux.acc_seg: 87.0309 +2024/08/11 05:56:14 - mmengine - INFO - Iter(train) [121350/160000] lr: 2.8565e-03 eta: 12:00:29 time: 1.1149 data_time: 0.0063 memory: 8703 loss: 0.3171 decode.loss_ce: 0.1919 decode.acc_seg: 98.1239 aux.loss_ce: 0.1252 aux.acc_seg: 96.8112 +2024/08/11 05:57:10 - mmengine - INFO - Iter(train) [121400/160000] lr: 2.8533e-03 eta: 11:59:33 time: 1.1203 data_time: 0.0082 memory: 8704 loss: 0.3432 decode.loss_ce: 0.1961 decode.acc_seg: 97.8353 aux.loss_ce: 0.1471 aux.acc_seg: 96.3765 +2024/08/11 05:58:06 - mmengine - INFO - Iter(train) [121450/160000] lr: 2.8501e-03 eta: 11:58:37 time: 1.1165 data_time: 0.0080 memory: 8704 loss: 0.3351 decode.loss_ce: 0.2018 decode.acc_seg: 96.4352 aux.loss_ce: 0.1333 aux.acc_seg: 91.3315 +2024/08/11 05:59:02 - mmengine - INFO - Iter(train) [121500/160000] lr: 2.8469e-03 eta: 11:57:41 time: 1.1129 data_time: 0.0080 memory: 8704 loss: 0.3098 decode.loss_ce: 0.1885 decode.acc_seg: 92.2993 aux.loss_ce: 0.1213 aux.acc_seg: 88.1673 +2024/08/11 05:59:58 - mmengine - INFO - Iter(train) [121550/160000] lr: 2.8437e-03 eta: 11:56:45 time: 1.1150 data_time: 0.0075 memory: 8704 loss: 0.2632 decode.loss_ce: 0.1681 decode.acc_seg: 96.0785 aux.loss_ce: 0.0952 aux.acc_seg: 93.1757 +2024/08/11 06:00:54 - mmengine - INFO - Iter(train) [121600/160000] lr: 2.8405e-03 eta: 11:55:49 time: 1.1135 data_time: 0.0075 memory: 8703 loss: 0.2395 decode.loss_ce: 0.1454 decode.acc_seg: 94.1605 aux.loss_ce: 0.0941 aux.acc_seg: 94.2181 +2024/08/11 06:01:49 - mmengine - INFO - Iter(train) [121650/160000] lr: 2.8373e-03 eta: 11:54:53 time: 1.1162 data_time: 0.0074 memory: 8704 loss: 0.3003 decode.loss_ce: 0.1710 decode.acc_seg: 98.6876 aux.loss_ce: 0.1294 aux.acc_seg: 96.1812 +2024/08/11 06:02:45 - mmengine - INFO - Iter(train) [121700/160000] lr: 2.8341e-03 eta: 11:53:57 time: 1.1111 data_time: 0.0059 memory: 8704 loss: 0.2578 decode.loss_ce: 0.1494 decode.acc_seg: 96.1214 aux.loss_ce: 0.1084 aux.acc_seg: 94.6124 +2024/08/11 06:03:41 - mmengine - INFO - Iter(train) [121750/160000] lr: 2.8309e-03 eta: 11:53:01 time: 1.1182 data_time: 0.0066 memory: 8704 loss: 0.3373 decode.loss_ce: 0.1885 decode.acc_seg: 87.8801 aux.loss_ce: 0.1488 aux.acc_seg: 79.9764 +2024/08/11 06:04:37 - mmengine - INFO - Iter(train) [121800/160000] lr: 2.8276e-03 eta: 11:52:05 time: 1.1157 data_time: 0.0071 memory: 8704 loss: 0.4178 decode.loss_ce: 0.2441 decode.acc_seg: 90.0226 aux.loss_ce: 0.1737 aux.acc_seg: 84.7291 +2024/08/11 06:05:33 - mmengine - INFO - Iter(train) [121850/160000] lr: 2.8244e-03 eta: 11:51:09 time: 1.1169 data_time: 0.0078 memory: 8703 loss: 0.4185 decode.loss_ce: 0.2434 decode.acc_seg: 91.2198 aux.loss_ce: 0.1751 aux.acc_seg: 86.3190 +2024/08/11 06:06:28 - mmengine - INFO - Iter(train) [121900/160000] lr: 2.8212e-03 eta: 11:50:13 time: 1.1152 data_time: 0.0068 memory: 8703 loss: 0.2359 decode.loss_ce: 0.1476 decode.acc_seg: 92.0087 aux.loss_ce: 0.0882 aux.acc_seg: 86.3248 +2024/08/11 06:07:24 - mmengine - INFO - Iter(train) [121950/160000] lr: 2.8180e-03 eta: 11:49:17 time: 1.1192 data_time: 0.0073 memory: 8704 loss: 0.2771 decode.loss_ce: 0.1697 decode.acc_seg: 93.0437 aux.loss_ce: 0.1074 aux.acc_seg: 88.3673 +2024/08/11 06:08:20 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 06:08:20 - mmengine - INFO - Iter(train) [122000/160000] lr: 2.8148e-03 eta: 11:48:21 time: 1.1151 data_time: 0.0067 memory: 8704 loss: 0.3249 decode.loss_ce: 0.1909 decode.acc_seg: 96.0459 aux.loss_ce: 0.1340 aux.acc_seg: 94.1572 +2024/08/11 06:09:16 - mmengine - INFO - Iter(train) [122050/160000] lr: 2.8116e-03 eta: 11:47:25 time: 1.1111 data_time: 0.0061 memory: 8703 loss: 0.3343 decode.loss_ce: 0.2042 decode.acc_seg: 88.7796 aux.loss_ce: 0.1301 aux.acc_seg: 83.1197 +2024/08/11 06:10:11 - mmengine - INFO - Iter(train) [122100/160000] lr: 2.8084e-03 eta: 11:46:29 time: 1.1114 data_time: 0.0059 memory: 8703 loss: 0.2840 decode.loss_ce: 0.1628 decode.acc_seg: 93.6675 aux.loss_ce: 0.1212 aux.acc_seg: 92.2941 +2024/08/11 06:11:07 - mmengine - INFO - Iter(train) [122150/160000] lr: 2.8051e-03 eta: 11:45:33 time: 1.1175 data_time: 0.0076 memory: 8704 loss: 0.3024 decode.loss_ce: 0.1910 decode.acc_seg: 95.7884 aux.loss_ce: 0.1114 aux.acc_seg: 92.7862 +2024/08/11 06:12:03 - mmengine - INFO - Iter(train) [122200/160000] lr: 2.8019e-03 eta: 11:44:37 time: 1.1159 data_time: 0.0069 memory: 8703 loss: 0.4634 decode.loss_ce: 0.2966 decode.acc_seg: 95.6003 aux.loss_ce: 0.1667 aux.acc_seg: 92.9707 +2024/08/11 06:12:59 - mmengine - INFO - Iter(train) [122250/160000] lr: 2.7987e-03 eta: 11:43:41 time: 1.1174 data_time: 0.0068 memory: 8704 loss: 0.2708 decode.loss_ce: 0.1655 decode.acc_seg: 90.1214 aux.loss_ce: 0.1053 aux.acc_seg: 82.9164 +2024/08/11 06:13:55 - mmengine - INFO - Iter(train) [122300/160000] lr: 2.7955e-03 eta: 11:42:45 time: 1.1163 data_time: 0.0075 memory: 8704 loss: 0.3043 decode.loss_ce: 0.1881 decode.acc_seg: 94.9050 aux.loss_ce: 0.1162 aux.acc_seg: 93.7913 +2024/08/11 06:14:51 - mmengine - INFO - Iter(train) [122350/160000] lr: 2.7923e-03 eta: 11:41:49 time: 1.1149 data_time: 0.0078 memory: 8704 loss: 0.2641 decode.loss_ce: 0.1569 decode.acc_seg: 96.8320 aux.loss_ce: 0.1072 aux.acc_seg: 92.4047 +2024/08/11 06:15:46 - mmengine - INFO - Iter(train) [122400/160000] lr: 2.7890e-03 eta: 11:40:53 time: 1.1109 data_time: 0.0075 memory: 8703 loss: 0.3869 decode.loss_ce: 0.2276 decode.acc_seg: 91.5569 aux.loss_ce: 0.1593 aux.acc_seg: 83.7645 +2024/08/11 06:16:42 - mmengine - INFO - Iter(train) [122450/160000] lr: 2.7858e-03 eta: 11:39:57 time: 1.1119 data_time: 0.0063 memory: 8704 loss: 0.3675 decode.loss_ce: 0.2229 decode.acc_seg: 76.7565 aux.loss_ce: 0.1446 aux.acc_seg: 76.2071 +2024/08/11 06:17:38 - mmengine - INFO - Iter(train) [122500/160000] lr: 2.7826e-03 eta: 11:39:02 time: 1.1137 data_time: 0.0072 memory: 8704 loss: 0.4089 decode.loss_ce: 0.2633 decode.acc_seg: 96.4471 aux.loss_ce: 0.1456 aux.acc_seg: 94.7957 +2024/08/11 06:18:34 - mmengine - INFO - Iter(train) [122550/160000] lr: 2.7794e-03 eta: 11:38:06 time: 1.1145 data_time: 0.0065 memory: 8704 loss: 0.2514 decode.loss_ce: 0.1525 decode.acc_seg: 92.8783 aux.loss_ce: 0.0989 aux.acc_seg: 90.0146 +2024/08/11 06:19:29 - mmengine - INFO - Iter(train) [122600/160000] lr: 2.7762e-03 eta: 11:37:10 time: 1.1139 data_time: 0.0064 memory: 8704 loss: 0.2396 decode.loss_ce: 0.1452 decode.acc_seg: 96.6120 aux.loss_ce: 0.0944 aux.acc_seg: 95.3838 +2024/08/11 06:20:25 - mmengine - INFO - Iter(train) [122650/160000] lr: 2.7730e-03 eta: 11:36:14 time: 1.1170 data_time: 0.0072 memory: 8704 loss: 0.2813 decode.loss_ce: 0.1736 decode.acc_seg: 93.3842 aux.loss_ce: 0.1077 aux.acc_seg: 86.0215 +2024/08/11 06:21:21 - mmengine - INFO - Iter(train) [122700/160000] lr: 2.7697e-03 eta: 11:35:18 time: 1.1219 data_time: 0.0091 memory: 8703 loss: 0.3485 decode.loss_ce: 0.2151 decode.acc_seg: 85.3615 aux.loss_ce: 0.1335 aux.acc_seg: 82.2085 +2024/08/11 06:22:17 - mmengine - INFO - Iter(train) [122750/160000] lr: 2.7665e-03 eta: 11:34:22 time: 1.1142 data_time: 0.0078 memory: 8704 loss: 0.2859 decode.loss_ce: 0.1684 decode.acc_seg: 95.1084 aux.loss_ce: 0.1175 aux.acc_seg: 94.9538 +2024/08/11 06:23:13 - mmengine - INFO - Iter(train) [122800/160000] lr: 2.7633e-03 eta: 11:33:26 time: 1.1173 data_time: 0.0069 memory: 8704 loss: 0.2621 decode.loss_ce: 0.1568 decode.acc_seg: 94.1782 aux.loss_ce: 0.1053 aux.acc_seg: 92.7273 +2024/08/11 06:24:08 - mmengine - INFO - Iter(train) [122850/160000] lr: 2.7601e-03 eta: 11:32:30 time: 1.1149 data_time: 0.0079 memory: 8703 loss: 0.4320 decode.loss_ce: 0.2620 decode.acc_seg: 90.4173 aux.loss_ce: 0.1700 aux.acc_seg: 84.5053 +2024/08/11 06:25:04 - mmengine - INFO - Iter(train) [122900/160000] lr: 2.7568e-03 eta: 11:31:34 time: 1.1148 data_time: 0.0071 memory: 8704 loss: 0.3198 decode.loss_ce: 0.2044 decode.acc_seg: 89.8469 aux.loss_ce: 0.1154 aux.acc_seg: 84.5800 +2024/08/11 06:26:00 - mmengine - INFO - Iter(train) [122950/160000] lr: 2.7536e-03 eta: 11:30:38 time: 1.1113 data_time: 0.0068 memory: 8704 loss: 0.3081 decode.loss_ce: 0.1854 decode.acc_seg: 93.1684 aux.loss_ce: 0.1227 aux.acc_seg: 87.0782 +2024/08/11 06:26:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 06:26:56 - mmengine - INFO - Iter(train) [123000/160000] lr: 2.7504e-03 eta: 11:29:42 time: 1.1174 data_time: 0.0068 memory: 8703 loss: 0.3245 decode.loss_ce: 0.1890 decode.acc_seg: 94.8269 aux.loss_ce: 0.1354 aux.acc_seg: 88.0475 +2024/08/11 06:27:52 - mmengine - INFO - Iter(train) [123050/160000] lr: 2.7472e-03 eta: 11:28:46 time: 1.1183 data_time: 0.0079 memory: 8703 loss: 0.2955 decode.loss_ce: 0.1827 decode.acc_seg: 94.4207 aux.loss_ce: 0.1128 aux.acc_seg: 92.3964 +2024/08/11 06:28:48 - mmengine - INFO - Iter(train) [123100/160000] lr: 2.7440e-03 eta: 11:27:50 time: 1.1171 data_time: 0.0069 memory: 8704 loss: 0.3584 decode.loss_ce: 0.2083 decode.acc_seg: 91.6655 aux.loss_ce: 0.1500 aux.acc_seg: 92.1187 +2024/08/11 06:29:43 - mmengine - INFO - Iter(train) [123150/160000] lr: 2.7407e-03 eta: 11:26:54 time: 1.1182 data_time: 0.0076 memory: 8703 loss: 0.4624 decode.loss_ce: 0.2759 decode.acc_seg: 87.6619 aux.loss_ce: 0.1865 aux.acc_seg: 80.5729 +2024/08/11 06:30:39 - mmengine - INFO - Iter(train) [123200/160000] lr: 2.7375e-03 eta: 11:25:58 time: 1.1204 data_time: 0.0083 memory: 8703 loss: 0.2731 decode.loss_ce: 0.1706 decode.acc_seg: 91.3654 aux.loss_ce: 0.1026 aux.acc_seg: 91.8329 +2024/08/11 06:31:35 - mmengine - INFO - Iter(train) [123250/160000] lr: 2.7343e-03 eta: 11:25:02 time: 1.1110 data_time: 0.0074 memory: 8703 loss: 0.2608 decode.loss_ce: 0.1585 decode.acc_seg: 97.3461 aux.loss_ce: 0.1023 aux.acc_seg: 97.2973 +2024/08/11 06:32:31 - mmengine - INFO - Iter(train) [123300/160000] lr: 2.7311e-03 eta: 11:24:06 time: 1.1120 data_time: 0.0076 memory: 8703 loss: 0.3308 decode.loss_ce: 0.1972 decode.acc_seg: 97.0748 aux.loss_ce: 0.1336 aux.acc_seg: 96.0740 +2024/08/11 06:33:26 - mmengine - INFO - Iter(train) [123350/160000] lr: 2.7278e-03 eta: 11:23:10 time: 1.1106 data_time: 0.0060 memory: 8704 loss: 0.2848 decode.loss_ce: 0.1792 decode.acc_seg: 96.8838 aux.loss_ce: 0.1055 aux.acc_seg: 95.9278 +2024/08/11 06:34:22 - mmengine - INFO - Iter(train) [123400/160000] lr: 2.7246e-03 eta: 11:22:14 time: 1.1147 data_time: 0.0064 memory: 8703 loss: 0.2350 decode.loss_ce: 0.1396 decode.acc_seg: 91.1668 aux.loss_ce: 0.0955 aux.acc_seg: 85.0486 +2024/08/11 06:35:18 - mmengine - INFO - Iter(train) [123450/160000] lr: 2.7214e-03 eta: 11:21:18 time: 1.1228 data_time: 0.0073 memory: 8704 loss: 0.3537 decode.loss_ce: 0.2096 decode.acc_seg: 94.3616 aux.loss_ce: 0.1441 aux.acc_seg: 91.6862 +2024/08/11 06:36:14 - mmengine - INFO - Iter(train) [123500/160000] lr: 2.7181e-03 eta: 11:20:22 time: 1.1168 data_time: 0.0071 memory: 8704 loss: 0.3197 decode.loss_ce: 0.1821 decode.acc_seg: 97.3735 aux.loss_ce: 0.1376 aux.acc_seg: 91.9167 +2024/08/11 06:37:10 - mmengine - INFO - Iter(train) [123550/160000] lr: 2.7149e-03 eta: 11:19:26 time: 1.1189 data_time: 0.0067 memory: 8703 loss: 0.3408 decode.loss_ce: 0.2099 decode.acc_seg: 94.8540 aux.loss_ce: 0.1308 aux.acc_seg: 94.3677 +2024/08/11 06:38:06 - mmengine - INFO - Iter(train) [123600/160000] lr: 2.7117e-03 eta: 11:18:30 time: 1.1176 data_time: 0.0069 memory: 8703 loss: 0.2775 decode.loss_ce: 0.1654 decode.acc_seg: 89.7461 aux.loss_ce: 0.1121 aux.acc_seg: 88.6356 +2024/08/11 06:39:02 - mmengine - INFO - Iter(train) [123650/160000] lr: 2.7085e-03 eta: 11:17:34 time: 1.1207 data_time: 0.0070 memory: 8703 loss: 0.2755 decode.loss_ce: 0.1626 decode.acc_seg: 96.5169 aux.loss_ce: 0.1128 aux.acc_seg: 96.0009 +2024/08/11 06:39:57 - mmengine - INFO - Iter(train) [123700/160000] lr: 2.7052e-03 eta: 11:16:38 time: 1.1168 data_time: 0.0067 memory: 8705 loss: 0.4424 decode.loss_ce: 0.2751 decode.acc_seg: 93.4067 aux.loss_ce: 0.1673 aux.acc_seg: 90.4581 +2024/08/11 06:40:53 - mmengine - INFO - Iter(train) [123750/160000] lr: 2.7020e-03 eta: 11:15:43 time: 1.1168 data_time: 0.0058 memory: 8703 loss: 0.4510 decode.loss_ce: 0.2893 decode.acc_seg: 90.7017 aux.loss_ce: 0.1617 aux.acc_seg: 82.7773 +2024/08/11 06:41:49 - mmengine - INFO - Iter(train) [123800/160000] lr: 2.6988e-03 eta: 11:14:47 time: 1.1119 data_time: 0.0072 memory: 8703 loss: 0.3036 decode.loss_ce: 0.1705 decode.acc_seg: 88.8870 aux.loss_ce: 0.1332 aux.acc_seg: 82.9131 +2024/08/11 06:42:45 - mmengine - INFO - Iter(train) [123850/160000] lr: 2.6955e-03 eta: 11:13:51 time: 1.1120 data_time: 0.0057 memory: 8703 loss: 0.3846 decode.loss_ce: 0.2344 decode.acc_seg: 96.3194 aux.loss_ce: 0.1502 aux.acc_seg: 96.1009 +2024/08/11 06:43:41 - mmengine - INFO - Iter(train) [123900/160000] lr: 2.6923e-03 eta: 11:12:55 time: 1.1160 data_time: 0.0061 memory: 8704 loss: 0.2827 decode.loss_ce: 0.1777 decode.acc_seg: 94.9850 aux.loss_ce: 0.1050 aux.acc_seg: 93.3114 +2024/08/11 06:44:36 - mmengine - INFO - Iter(train) [123950/160000] lr: 2.6891e-03 eta: 11:11:59 time: 1.1184 data_time: 0.0081 memory: 8704 loss: 0.2678 decode.loss_ce: 0.1645 decode.acc_seg: 91.2408 aux.loss_ce: 0.1034 aux.acc_seg: 87.5648 +2024/08/11 06:45:32 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 06:45:32 - mmengine - INFO - Iter(train) [124000/160000] lr: 2.6858e-03 eta: 11:11:03 time: 1.1155 data_time: 0.0076 memory: 8703 loss: 0.3535 decode.loss_ce: 0.2198 decode.acc_seg: 96.3953 aux.loss_ce: 0.1337 aux.acc_seg: 95.3431 +2024/08/11 06:46:28 - mmengine - INFO - Iter(train) [124050/160000] lr: 2.6826e-03 eta: 11:10:07 time: 1.1146 data_time: 0.0072 memory: 8704 loss: 0.3054 decode.loss_ce: 0.1809 decode.acc_seg: 95.5400 aux.loss_ce: 0.1246 aux.acc_seg: 91.8371 +2024/08/11 06:47:24 - mmengine - INFO - Iter(train) [124100/160000] lr: 2.6794e-03 eta: 11:09:11 time: 1.1171 data_time: 0.0074 memory: 8704 loss: 0.2795 decode.loss_ce: 0.1638 decode.acc_seg: 95.2205 aux.loss_ce: 0.1157 aux.acc_seg: 93.3897 +2024/08/11 06:48:20 - mmengine - INFO - Iter(train) [124150/160000] lr: 2.6761e-03 eta: 11:08:15 time: 1.1182 data_time: 0.0093 memory: 8704 loss: 0.4992 decode.loss_ce: 0.3379 decode.acc_seg: 88.2618 aux.loss_ce: 0.1613 aux.acc_seg: 83.8902 +2024/08/11 06:49:16 - mmengine - INFO - Iter(train) [124200/160000] lr: 2.6729e-03 eta: 11:07:19 time: 1.1155 data_time: 0.0082 memory: 8703 loss: 0.2828 decode.loss_ce: 0.1677 decode.acc_seg: 93.2783 aux.loss_ce: 0.1150 aux.acc_seg: 88.6631 +2024/08/11 06:50:11 - mmengine - INFO - Iter(train) [124250/160000] lr: 2.6697e-03 eta: 11:06:23 time: 1.1166 data_time: 0.0059 memory: 8704 loss: 0.3501 decode.loss_ce: 0.2051 decode.acc_seg: 94.0986 aux.loss_ce: 0.1450 aux.acc_seg: 91.9938 +2024/08/11 06:51:07 - mmengine - INFO - Iter(train) [124300/160000] lr: 2.6664e-03 eta: 11:05:27 time: 1.1207 data_time: 0.0057 memory: 8703 loss: 0.3150 decode.loss_ce: 0.1862 decode.acc_seg: 93.1220 aux.loss_ce: 0.1288 aux.acc_seg: 83.8081 +2024/08/11 06:52:03 - mmengine - INFO - Iter(train) [124350/160000] lr: 2.6632e-03 eta: 11:04:31 time: 1.1168 data_time: 0.0077 memory: 8703 loss: 0.3732 decode.loss_ce: 0.2330 decode.acc_seg: 93.9149 aux.loss_ce: 0.1402 aux.acc_seg: 86.1784 +2024/08/11 06:52:59 - mmengine - INFO - Iter(train) [124400/160000] lr: 2.6600e-03 eta: 11:03:35 time: 1.1155 data_time: 0.0063 memory: 8703 loss: 0.3735 decode.loss_ce: 0.2192 decode.acc_seg: 85.9879 aux.loss_ce: 0.1543 aux.acc_seg: 77.6128 +2024/08/11 06:53:55 - mmengine - INFO - Iter(train) [124450/160000] lr: 2.6567e-03 eta: 11:02:39 time: 1.1223 data_time: 0.0080 memory: 8703 loss: 0.2933 decode.loss_ce: 0.1441 decode.acc_seg: 92.4798 aux.loss_ce: 0.1492 aux.acc_seg: 64.3695 +2024/08/11 06:54:51 - mmengine - INFO - Iter(train) [124500/160000] lr: 2.6535e-03 eta: 11:01:43 time: 1.1117 data_time: 0.0060 memory: 8703 loss: 0.4000 decode.loss_ce: 0.2282 decode.acc_seg: 95.9043 aux.loss_ce: 0.1719 aux.acc_seg: 94.2495 +2024/08/11 06:55:46 - mmengine - INFO - Iter(train) [124550/160000] lr: 2.6503e-03 eta: 11:00:47 time: 1.1126 data_time: 0.0058 memory: 8704 loss: 0.2602 decode.loss_ce: 0.1639 decode.acc_seg: 91.0374 aux.loss_ce: 0.0963 aux.acc_seg: 87.6862 +2024/08/11 06:56:42 - mmengine - INFO - Iter(train) [124600/160000] lr: 2.6470e-03 eta: 10:59:51 time: 1.1132 data_time: 0.0054 memory: 8703 loss: 0.2659 decode.loss_ce: 0.1646 decode.acc_seg: 95.6000 aux.loss_ce: 0.1012 aux.acc_seg: 94.2313 +2024/08/11 06:57:38 - mmengine - INFO - Iter(train) [124650/160000] lr: 2.6438e-03 eta: 10:58:55 time: 1.1175 data_time: 0.0062 memory: 8703 loss: 0.2921 decode.loss_ce: 0.1616 decode.acc_seg: 96.3455 aux.loss_ce: 0.1305 aux.acc_seg: 94.7833 +2024/08/11 06:58:33 - mmengine - INFO - Iter(train) [124700/160000] lr: 2.6405e-03 eta: 10:57:59 time: 1.1125 data_time: 0.0070 memory: 8703 loss: 0.3272 decode.loss_ce: 0.2018 decode.acc_seg: 96.4825 aux.loss_ce: 0.1254 aux.acc_seg: 95.2714 +2024/08/11 06:59:29 - mmengine - INFO - Iter(train) [124750/160000] lr: 2.6373e-03 eta: 10:57:03 time: 1.1099 data_time: 0.0053 memory: 8704 loss: 0.2699 decode.loss_ce: 0.1602 decode.acc_seg: 96.0180 aux.loss_ce: 0.1097 aux.acc_seg: 94.9154 +2024/08/11 07:00:25 - mmengine - INFO - Iter(train) [124800/160000] lr: 2.6341e-03 eta: 10:56:07 time: 1.1176 data_time: 0.0069 memory: 8704 loss: 0.3627 decode.loss_ce: 0.2230 decode.acc_seg: 96.7415 aux.loss_ce: 0.1397 aux.acc_seg: 95.7403 +2024/08/11 07:01:21 - mmengine - INFO - Iter(train) [124850/160000] lr: 2.6308e-03 eta: 10:55:11 time: 1.1145 data_time: 0.0059 memory: 8704 loss: 0.2687 decode.loss_ce: 0.1621 decode.acc_seg: 97.0090 aux.loss_ce: 0.1065 aux.acc_seg: 94.9928 +2024/08/11 07:02:17 - mmengine - INFO - Iter(train) [124900/160000] lr: 2.6276e-03 eta: 10:54:16 time: 1.1171 data_time: 0.0071 memory: 8704 loss: 0.3299 decode.loss_ce: 0.1965 decode.acc_seg: 96.4634 aux.loss_ce: 0.1334 aux.acc_seg: 92.5611 +2024/08/11 07:03:13 - mmengine - INFO - Iter(train) [124950/160000] lr: 2.6243e-03 eta: 10:53:20 time: 1.1160 data_time: 0.0067 memory: 8703 loss: 0.2875 decode.loss_ce: 0.1611 decode.acc_seg: 95.0418 aux.loss_ce: 0.1264 aux.acc_seg: 91.0158 +2024/08/11 07:04:08 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 07:04:08 - mmengine - INFO - Iter(train) [125000/160000] lr: 2.6211e-03 eta: 10:52:24 time: 1.1181 data_time: 0.0064 memory: 8704 loss: 0.2562 decode.loss_ce: 0.1437 decode.acc_seg: 96.2271 aux.loss_ce: 0.1125 aux.acc_seg: 95.5214 +2024/08/11 07:05:04 - mmengine - INFO - Iter(train) [125050/160000] lr: 2.6179e-03 eta: 10:51:28 time: 1.1117 data_time: 0.0066 memory: 8703 loss: 0.2782 decode.loss_ce: 0.1608 decode.acc_seg: 96.4374 aux.loss_ce: 0.1173 aux.acc_seg: 96.1452 +2024/08/11 07:06:00 - mmengine - INFO - Iter(train) [125100/160000] lr: 2.6146e-03 eta: 10:50:32 time: 1.1110 data_time: 0.0069 memory: 8703 loss: 0.2468 decode.loss_ce: 0.1478 decode.acc_seg: 97.0547 aux.loss_ce: 0.0990 aux.acc_seg: 96.2170 +2024/08/11 07:06:56 - mmengine - INFO - Iter(train) [125150/160000] lr: 2.6114e-03 eta: 10:49:36 time: 1.1174 data_time: 0.0078 memory: 8704 loss: 0.3193 decode.loss_ce: 0.1924 decode.acc_seg: 94.6353 aux.loss_ce: 0.1269 aux.acc_seg: 87.6472 +2024/08/11 07:07:52 - mmengine - INFO - Iter(train) [125200/160000] lr: 2.6081e-03 eta: 10:48:40 time: 1.1161 data_time: 0.0067 memory: 8705 loss: 0.3352 decode.loss_ce: 0.2047 decode.acc_seg: 82.6684 aux.loss_ce: 0.1305 aux.acc_seg: 76.3944 +2024/08/11 07:08:47 - mmengine - INFO - Iter(train) [125250/160000] lr: 2.6049e-03 eta: 10:47:44 time: 1.1142 data_time: 0.0069 memory: 8704 loss: 0.2842 decode.loss_ce: 0.1780 decode.acc_seg: 97.8509 aux.loss_ce: 0.1062 aux.acc_seg: 97.6330 +2024/08/11 07:09:43 - mmengine - INFO - Iter(train) [125300/160000] lr: 2.6016e-03 eta: 10:46:48 time: 1.1157 data_time: 0.0063 memory: 8703 loss: 0.3408 decode.loss_ce: 0.1903 decode.acc_seg: 95.3036 aux.loss_ce: 0.1506 aux.acc_seg: 91.6077 +2024/08/11 07:10:39 - mmengine - INFO - Iter(train) [125350/160000] lr: 2.5984e-03 eta: 10:45:52 time: 1.1138 data_time: 0.0050 memory: 8703 loss: 0.3457 decode.loss_ce: 0.1978 decode.acc_seg: 89.0381 aux.loss_ce: 0.1479 aux.acc_seg: 81.5364 +2024/08/11 07:11:35 - mmengine - INFO - Iter(train) [125400/160000] lr: 2.5952e-03 eta: 10:44:56 time: 1.1174 data_time: 0.0061 memory: 8704 loss: 0.2338 decode.loss_ce: 0.1475 decode.acc_seg: 96.9797 aux.loss_ce: 0.0862 aux.acc_seg: 95.2195 +2024/08/11 07:12:31 - mmengine - INFO - Iter(train) [125450/160000] lr: 2.5919e-03 eta: 10:44:00 time: 1.1149 data_time: 0.0062 memory: 8704 loss: 0.3537 decode.loss_ce: 0.2085 decode.acc_seg: 90.8507 aux.loss_ce: 0.1452 aux.acc_seg: 89.8946 +2024/08/11 07:13:26 - mmengine - INFO - Iter(train) [125500/160000] lr: 2.5887e-03 eta: 10:43:04 time: 1.1137 data_time: 0.0071 memory: 8703 loss: 0.3397 decode.loss_ce: 0.1943 decode.acc_seg: 95.9032 aux.loss_ce: 0.1454 aux.acc_seg: 93.7052 +2024/08/11 07:14:22 - mmengine - INFO - Iter(train) [125550/160000] lr: 2.5854e-03 eta: 10:42:08 time: 1.1151 data_time: 0.0074 memory: 8704 loss: 0.3002 decode.loss_ce: 0.1803 decode.acc_seg: 88.2034 aux.loss_ce: 0.1200 aux.acc_seg: 84.1298 +2024/08/11 07:15:18 - mmengine - INFO - Iter(train) [125600/160000] lr: 2.5822e-03 eta: 10:41:12 time: 1.1177 data_time: 0.0063 memory: 8704 loss: 0.2785 decode.loss_ce: 0.1678 decode.acc_seg: 93.3568 aux.loss_ce: 0.1108 aux.acc_seg: 79.5254 +2024/08/11 07:16:14 - mmengine - INFO - Iter(train) [125650/160000] lr: 2.5789e-03 eta: 10:40:16 time: 1.1176 data_time: 0.0066 memory: 8703 loss: 0.2361 decode.loss_ce: 0.1487 decode.acc_seg: 93.4094 aux.loss_ce: 0.0874 aux.acc_seg: 87.4617 +2024/08/11 07:17:10 - mmengine - INFO - Iter(train) [125700/160000] lr: 2.5757e-03 eta: 10:39:20 time: 1.1166 data_time: 0.0087 memory: 8703 loss: 0.3462 decode.loss_ce: 0.2165 decode.acc_seg: 95.7029 aux.loss_ce: 0.1298 aux.acc_seg: 89.9630 +2024/08/11 07:18:05 - mmengine - INFO - Iter(train) [125750/160000] lr: 2.5724e-03 eta: 10:38:24 time: 1.1139 data_time: 0.0057 memory: 8703 loss: 0.2946 decode.loss_ce: 0.1797 decode.acc_seg: 93.9627 aux.loss_ce: 0.1149 aux.acc_seg: 88.7551 +2024/08/11 07:19:01 - mmengine - INFO - Iter(train) [125800/160000] lr: 2.5692e-03 eta: 10:37:28 time: 1.1179 data_time: 0.0072 memory: 8704 loss: 0.2277 decode.loss_ce: 0.1280 decode.acc_seg: 98.0436 aux.loss_ce: 0.0997 aux.acc_seg: 97.2996 +2024/08/11 07:19:57 - mmengine - INFO - Iter(train) [125850/160000] lr: 2.5659e-03 eta: 10:36:32 time: 1.1197 data_time: 0.0063 memory: 8704 loss: 0.3516 decode.loss_ce: 0.1988 decode.acc_seg: 96.5811 aux.loss_ce: 0.1528 aux.acc_seg: 97.0087 +2024/08/11 07:20:53 - mmengine - INFO - Iter(train) [125900/160000] lr: 2.5627e-03 eta: 10:35:36 time: 1.1130 data_time: 0.0064 memory: 8703 loss: 0.3342 decode.loss_ce: 0.2084 decode.acc_seg: 96.7908 aux.loss_ce: 0.1258 aux.acc_seg: 95.5559 +2024/08/11 07:21:48 - mmengine - INFO - Iter(train) [125950/160000] lr: 2.5594e-03 eta: 10:34:40 time: 1.1120 data_time: 0.0064 memory: 8704 loss: 0.2742 decode.loss_ce: 0.1648 decode.acc_seg: 95.8727 aux.loss_ce: 0.1094 aux.acc_seg: 95.2209 +2024/08/11 07:22:44 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 07:22:44 - mmengine - INFO - Iter(train) [126000/160000] lr: 2.5562e-03 eta: 10:33:44 time: 1.1141 data_time: 0.0065 memory: 8703 loss: 0.2989 decode.loss_ce: 0.1875 decode.acc_seg: 94.0827 aux.loss_ce: 0.1114 aux.acc_seg: 91.1942 +2024/08/11 07:23:40 - mmengine - INFO - Iter(train) [126050/160000] lr: 2.5529e-03 eta: 10:32:48 time: 1.1190 data_time: 0.0069 memory: 8704 loss: 0.3235 decode.loss_ce: 0.1929 decode.acc_seg: 88.0019 aux.loss_ce: 0.1306 aux.acc_seg: 85.6708 +2024/08/11 07:24:36 - mmengine - INFO - Iter(train) [126100/160000] lr: 2.5497e-03 eta: 10:31:52 time: 1.1177 data_time: 0.0070 memory: 8704 loss: 0.3266 decode.loss_ce: 0.2102 decode.acc_seg: 95.9748 aux.loss_ce: 0.1164 aux.acc_seg: 95.1385 +2024/08/11 07:25:32 - mmengine - INFO - Iter(train) [126150/160000] lr: 2.5464e-03 eta: 10:30:57 time: 1.1149 data_time: 0.0062 memory: 8703 loss: 0.2732 decode.loss_ce: 0.1499 decode.acc_seg: 96.9001 aux.loss_ce: 0.1233 aux.acc_seg: 88.8963 +2024/08/11 07:26:27 - mmengine - INFO - Iter(train) [126200/160000] lr: 2.5432e-03 eta: 10:30:01 time: 1.1177 data_time: 0.0064 memory: 8703 loss: 0.3853 decode.loss_ce: 0.2442 decode.acc_seg: 90.1792 aux.loss_ce: 0.1411 aux.acc_seg: 87.0055 +2024/08/11 07:27:23 - mmengine - INFO - Iter(train) [126250/160000] lr: 2.5399e-03 eta: 10:29:05 time: 1.1131 data_time: 0.0071 memory: 8704 loss: 0.3758 decode.loss_ce: 0.2291 decode.acc_seg: 88.5386 aux.loss_ce: 0.1468 aux.acc_seg: 86.7781 +2024/08/11 07:28:19 - mmengine - INFO - Iter(train) [126300/160000] lr: 2.5367e-03 eta: 10:28:09 time: 1.1135 data_time: 0.0077 memory: 8703 loss: 0.2647 decode.loss_ce: 0.1684 decode.acc_seg: 83.6124 aux.loss_ce: 0.0963 aux.acc_seg: 92.3373 +2024/08/11 07:29:15 - mmengine - INFO - Iter(train) [126350/160000] lr: 2.5334e-03 eta: 10:27:13 time: 1.1147 data_time: 0.0071 memory: 8703 loss: 0.4122 decode.loss_ce: 0.2439 decode.acc_seg: 97.7514 aux.loss_ce: 0.1684 aux.acc_seg: 93.0589 +2024/08/11 07:30:10 - mmengine - INFO - Iter(train) [126400/160000] lr: 2.5302e-03 eta: 10:26:17 time: 1.1140 data_time: 0.0056 memory: 8704 loss: 0.2747 decode.loss_ce: 0.1582 decode.acc_seg: 92.6496 aux.loss_ce: 0.1165 aux.acc_seg: 91.5134 +2024/08/11 07:31:06 - mmengine - INFO - Iter(train) [126450/160000] lr: 2.5269e-03 eta: 10:25:21 time: 1.1151 data_time: 0.0071 memory: 8703 loss: 0.2263 decode.loss_ce: 0.1344 decode.acc_seg: 97.8119 aux.loss_ce: 0.0919 aux.acc_seg: 97.6838 +2024/08/11 07:32:02 - mmengine - INFO - Iter(train) [126500/160000] lr: 2.5237e-03 eta: 10:24:25 time: 1.1144 data_time: 0.0058 memory: 8704 loss: 0.5626 decode.loss_ce: 0.3678 decode.acc_seg: 91.3348 aux.loss_ce: 0.1948 aux.acc_seg: 85.2826 +2024/08/11 07:32:58 - mmengine - INFO - Iter(train) [126550/160000] lr: 2.5204e-03 eta: 10:23:29 time: 1.1169 data_time: 0.0061 memory: 8703 loss: 0.2436 decode.loss_ce: 0.1393 decode.acc_seg: 95.8947 aux.loss_ce: 0.1043 aux.acc_seg: 95.3981 +2024/08/11 07:33:54 - mmengine - INFO - Iter(train) [126600/160000] lr: 2.5171e-03 eta: 10:22:33 time: 1.1173 data_time: 0.0078 memory: 8703 loss: 0.2751 decode.loss_ce: 0.1684 decode.acc_seg: 91.1842 aux.loss_ce: 0.1067 aux.acc_seg: 87.2695 +2024/08/11 07:34:50 - mmengine - INFO - Iter(train) [126650/160000] lr: 2.5139e-03 eta: 10:21:37 time: 1.1196 data_time: 0.0065 memory: 8703 loss: 0.2205 decode.loss_ce: 0.1325 decode.acc_seg: 96.5442 aux.loss_ce: 0.0880 aux.acc_seg: 96.1079 +2024/08/11 07:35:46 - mmengine - INFO - Iter(train) [126700/160000] lr: 2.5106e-03 eta: 10:20:41 time: 1.1153 data_time: 0.0077 memory: 8704 loss: 0.2142 decode.loss_ce: 0.1313 decode.acc_seg: 97.4294 aux.loss_ce: 0.0829 aux.acc_seg: 96.7537 +2024/08/11 07:36:41 - mmengine - INFO - Iter(train) [126750/160000] lr: 2.5074e-03 eta: 10:19:45 time: 1.1134 data_time: 0.0081 memory: 8704 loss: 0.2749 decode.loss_ce: 0.1711 decode.acc_seg: 92.0958 aux.loss_ce: 0.1038 aux.acc_seg: 84.0382 +2024/08/11 07:37:37 - mmengine - INFO - Iter(train) [126800/160000] lr: 2.5041e-03 eta: 10:18:49 time: 1.1137 data_time: 0.0064 memory: 8703 loss: 0.2853 decode.loss_ce: 0.1901 decode.acc_seg: 96.5148 aux.loss_ce: 0.0952 aux.acc_seg: 91.5937 +2024/08/11 07:38:33 - mmengine - INFO - Iter(train) [126850/160000] lr: 2.5008e-03 eta: 10:17:53 time: 1.1092 data_time: 0.0052 memory: 8703 loss: 0.3593 decode.loss_ce: 0.2356 decode.acc_seg: 97.2700 aux.loss_ce: 0.1237 aux.acc_seg: 94.8565 +2024/08/11 07:39:29 - mmengine - INFO - Iter(train) [126900/160000] lr: 2.4976e-03 eta: 10:16:57 time: 1.1184 data_time: 0.0082 memory: 8704 loss: 0.3778 decode.loss_ce: 0.2419 decode.acc_seg: 97.0947 aux.loss_ce: 0.1359 aux.acc_seg: 96.4495 +2024/08/11 07:40:24 - mmengine - INFO - Iter(train) [126950/160000] lr: 2.4943e-03 eta: 10:16:01 time: 1.1121 data_time: 0.0057 memory: 8704 loss: 0.2859 decode.loss_ce: 0.1743 decode.acc_seg: 93.2372 aux.loss_ce: 0.1116 aux.acc_seg: 87.3798 +2024/08/11 07:41:20 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 07:41:20 - mmengine - INFO - Iter(train) [127000/160000] lr: 2.4911e-03 eta: 10:15:05 time: 1.1197 data_time: 0.0062 memory: 8704 loss: 0.2822 decode.loss_ce: 0.1788 decode.acc_seg: 93.4240 aux.loss_ce: 0.1034 aux.acc_seg: 85.6866 +2024/08/11 07:42:16 - mmengine - INFO - Iter(train) [127050/160000] lr: 2.4878e-03 eta: 10:14:09 time: 1.1156 data_time: 0.0062 memory: 8703 loss: 0.2808 decode.loss_ce: 0.1804 decode.acc_seg: 89.3889 aux.loss_ce: 0.1004 aux.acc_seg: 84.7953 +2024/08/11 07:43:12 - mmengine - INFO - Iter(train) [127100/160000] lr: 2.4845e-03 eta: 10:13:14 time: 1.1107 data_time: 0.0051 memory: 8704 loss: 0.5553 decode.loss_ce: 0.3687 decode.acc_seg: 86.7978 aux.loss_ce: 0.1865 aux.acc_seg: 84.1251 +2024/08/11 07:44:08 - mmengine - INFO - Iter(train) [127150/160000] lr: 2.4813e-03 eta: 10:12:18 time: 1.1137 data_time: 0.0063 memory: 8704 loss: 0.3430 decode.loss_ce: 0.2044 decode.acc_seg: 92.6941 aux.loss_ce: 0.1386 aux.acc_seg: 91.2470 +2024/08/11 07:45:04 - mmengine - INFO - Iter(train) [127200/160000] lr: 2.4780e-03 eta: 10:11:22 time: 1.1131 data_time: 0.0061 memory: 8704 loss: 0.3527 decode.loss_ce: 0.2208 decode.acc_seg: 96.5734 aux.loss_ce: 0.1319 aux.acc_seg: 94.8601 +2024/08/11 07:45:59 - mmengine - INFO - Iter(train) [127250/160000] lr: 2.4748e-03 eta: 10:10:26 time: 1.1141 data_time: 0.0073 memory: 8703 loss: 0.2973 decode.loss_ce: 0.1722 decode.acc_seg: 94.2416 aux.loss_ce: 0.1251 aux.acc_seg: 83.9421 +2024/08/11 07:46:55 - mmengine - INFO - Iter(train) [127300/160000] lr: 2.4715e-03 eta: 10:09:30 time: 1.1104 data_time: 0.0068 memory: 8703 loss: 0.2543 decode.loss_ce: 0.1578 decode.acc_seg: 94.2318 aux.loss_ce: 0.0965 aux.acc_seg: 92.8425 +2024/08/11 07:47:51 - mmengine - INFO - Iter(train) [127350/160000] lr: 2.4682e-03 eta: 10:08:34 time: 1.1175 data_time: 0.0075 memory: 8703 loss: 0.3523 decode.loss_ce: 0.2094 decode.acc_seg: 90.0987 aux.loss_ce: 0.1429 aux.acc_seg: 84.3257 +2024/08/11 07:48:47 - mmengine - INFO - Iter(train) [127400/160000] lr: 2.4650e-03 eta: 10:07:38 time: 1.1149 data_time: 0.0068 memory: 8704 loss: 0.2844 decode.loss_ce: 0.1630 decode.acc_seg: 95.4114 aux.loss_ce: 0.1215 aux.acc_seg: 88.2460 +2024/08/11 07:49:43 - mmengine - INFO - Iter(train) [127450/160000] lr: 2.4617e-03 eta: 10:06:42 time: 1.1174 data_time: 0.0069 memory: 8703 loss: 0.2697 decode.loss_ce: 0.1660 decode.acc_seg: 90.6450 aux.loss_ce: 0.1036 aux.acc_seg: 85.6895 +2024/08/11 07:50:38 - mmengine - INFO - Iter(train) [127500/160000] lr: 2.4584e-03 eta: 10:05:46 time: 1.1161 data_time: 0.0061 memory: 8703 loss: 0.3636 decode.loss_ce: 0.2255 decode.acc_seg: 71.9514 aux.loss_ce: 0.1381 aux.acc_seg: 68.7657 +2024/08/11 07:51:34 - mmengine - INFO - Iter(train) [127550/160000] lr: 2.4552e-03 eta: 10:04:50 time: 1.1206 data_time: 0.0074 memory: 8704 loss: 0.3784 decode.loss_ce: 0.2234 decode.acc_seg: 97.2812 aux.loss_ce: 0.1550 aux.acc_seg: 96.8686 +2024/08/11 07:52:30 - mmengine - INFO - Iter(train) [127600/160000] lr: 2.4519e-03 eta: 10:03:54 time: 1.1105 data_time: 0.0067 memory: 8704 loss: 0.3709 decode.loss_ce: 0.2334 decode.acc_seg: 97.1826 aux.loss_ce: 0.1375 aux.acc_seg: 95.1112 +2024/08/11 07:53:26 - mmengine - INFO - Iter(train) [127650/160000] lr: 2.4486e-03 eta: 10:02:58 time: 1.1162 data_time: 0.0078 memory: 8703 loss: 0.3268 decode.loss_ce: 0.1891 decode.acc_seg: 95.7780 aux.loss_ce: 0.1376 aux.acc_seg: 93.0195 +2024/08/11 07:54:22 - mmengine - INFO - Iter(train) [127700/160000] lr: 2.4454e-03 eta: 10:02:02 time: 1.1152 data_time: 0.0072 memory: 8704 loss: 0.2046 decode.loss_ce: 0.1231 decode.acc_seg: 97.2860 aux.loss_ce: 0.0815 aux.acc_seg: 96.9288 +2024/08/11 07:55:17 - mmengine - INFO - Iter(train) [127750/160000] lr: 2.4421e-03 eta: 10:01:06 time: 1.1140 data_time: 0.0063 memory: 8704 loss: 0.3427 decode.loss_ce: 0.2072 decode.acc_seg: 82.0010 aux.loss_ce: 0.1356 aux.acc_seg: 73.6111 +2024/08/11 07:56:13 - mmengine - INFO - Iter(train) [127800/160000] lr: 2.4388e-03 eta: 10:00:10 time: 1.1155 data_time: 0.0070 memory: 8704 loss: 0.4647 decode.loss_ce: 0.2864 decode.acc_seg: 93.7270 aux.loss_ce: 0.1783 aux.acc_seg: 89.2880 +2024/08/11 07:57:09 - mmengine - INFO - Iter(train) [127850/160000] lr: 2.4356e-03 eta: 9:59:14 time: 1.1143 data_time: 0.0065 memory: 8704 loss: 0.2905 decode.loss_ce: 0.1711 decode.acc_seg: 91.6871 aux.loss_ce: 0.1195 aux.acc_seg: 91.2295 +2024/08/11 07:58:05 - mmengine - INFO - Iter(train) [127900/160000] lr: 2.4323e-03 eta: 9:58:18 time: 1.1184 data_time: 0.0076 memory: 8704 loss: 0.2962 decode.loss_ce: 0.1651 decode.acc_seg: 96.4086 aux.loss_ce: 0.1311 aux.acc_seg: 91.7489 +2024/08/11 07:59:01 - mmengine - INFO - Iter(train) [127950/160000] lr: 2.4290e-03 eta: 9:57:22 time: 1.1142 data_time: 0.0079 memory: 8705 loss: 0.2911 decode.loss_ce: 0.1776 decode.acc_seg: 96.5476 aux.loss_ce: 0.1135 aux.acc_seg: 96.1543 +2024/08/11 07:59:56 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 07:59:56 - mmengine - INFO - Iter(train) [128000/160000] lr: 2.4258e-03 eta: 9:56:26 time: 1.1139 data_time: 0.0070 memory: 8704 loss: 0.2939 decode.loss_ce: 0.1757 decode.acc_seg: 89.4141 aux.loss_ce: 0.1181 aux.acc_seg: 84.8402 +2024/08/11 07:59:56 - mmengine - INFO - Saving checkpoint at 128000 iterations +2024/08/11 08:00:11 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:10 time: 0.2706 data_time: 0.0040 memory: 1724 +2024/08/11 08:00:25 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2723 data_time: 0.0052 memory: 1724 +2024/08/11 08:00:38 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:43 time: 0.2724 data_time: 0.0046 memory: 1724 +2024/08/11 08:00:52 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2710 data_time: 0.0040 memory: 1724 +2024/08/11 08:01:05 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2707 data_time: 0.0040 memory: 1724 +2024/08/11 08:01:19 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2705 data_time: 0.0040 memory: 1724 +2024/08/11 08:01:33 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2711 data_time: 0.0039 memory: 1724 +2024/08/11 08:01:46 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:35 time: 0.2714 data_time: 0.0040 memory: 1724 +2024/08/11 08:02:00 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2707 data_time: 0.0040 memory: 1724 +2024/08/11 08:02:13 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2736 data_time: 0.0053 memory: 1724 +2024/08/11 08:02:27 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2730 data_time: 0.0043 memory: 1724 +2024/08/11 08:02:41 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2710 data_time: 0.0039 memory: 1724 +2024/08/11 08:02:54 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2758 data_time: 0.0067 memory: 1724 +2024/08/11 08:03:08 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2741 data_time: 0.0056 memory: 1724 +2024/08/11 08:03:21 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2714 data_time: 0.0045 memory: 1724 +2024/08/11 08:03:31 - mmengine - INFO - per class results: +2024/08/11 08:03:31 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 92.07 | 95.3 | +| sidewalk | 68.64 | 79.65 | +| road roughness | 48.26 | 72.27 | +| road boundaries | 58.02 | 64.16 | +| crosswalks | 93.46 | 96.04 | +| lane | 71.83 | 82.85 | +| road color guide | 80.35 | 82.14 | +| road marking | 62.49 | 73.31 | +| parking | 56.56 | 62.15 | +| traffic sign | 58.08 | 66.15 | +| traffic light | 64.95 | 71.96 | +| pole/structural object | 76.11 | 83.61 | +| building | 81.51 | 94.58 | +| tunnel | 84.7 | 99.45 | +| bridge | 56.01 | 85.7 | +| pedestrian | 62.52 | 68.87 | +| vehicle | 88.01 | 92.96 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 30.91 | 38.99 | +| personal mobility | 69.68 | 82.68 | +| dynamic | 38.37 | 41.35 | +| vegetation | 84.43 | 91.89 | +| sky | 97.91 | 98.89 | +| static | 61.46 | 70.72 | ++------------------------+-------+-------+ +2024/08/11 08:03:31 - mmengine - INFO - Iter(val) [750/750] aAcc: 93.2700 mIoU: 66.1000 mAcc: 74.8200 data_time: 0.0044 time: 0.2718 +2024/08/11 08:04:26 - mmengine - INFO - Iter(train) [128050/160000] lr: 2.4225e-03 eta: 9:55:33 time: 1.1132 data_time: 0.0076 memory: 8703 loss: 0.2914 decode.loss_ce: 0.1594 decode.acc_seg: 95.9750 aux.loss_ce: 0.1320 aux.acc_seg: 90.9300 +2024/08/11 08:05:22 - mmengine - INFO - Iter(train) [128100/160000] lr: 2.4192e-03 eta: 9:54:37 time: 1.1149 data_time: 0.0062 memory: 8703 loss: 0.3489 decode.loss_ce: 0.2106 decode.acc_seg: 86.6268 aux.loss_ce: 0.1383 aux.acc_seg: 78.9124 +2024/08/11 08:06:18 - mmengine - INFO - Iter(train) [128150/160000] lr: 2.4159e-03 eta: 9:53:41 time: 1.1119 data_time: 0.0070 memory: 8703 loss: 0.2006 decode.loss_ce: 0.1290 decode.acc_seg: 96.3702 aux.loss_ce: 0.0716 aux.acc_seg: 95.7432 +2024/08/11 08:07:14 - mmengine - INFO - Iter(train) [128200/160000] lr: 2.4127e-03 eta: 9:52:45 time: 1.1133 data_time: 0.0067 memory: 8704 loss: 0.3779 decode.loss_ce: 0.2140 decode.acc_seg: 95.3308 aux.loss_ce: 0.1639 aux.acc_seg: 92.6840 +2024/08/11 08:08:09 - mmengine - INFO - Iter(train) [128250/160000] lr: 2.4094e-03 eta: 9:51:49 time: 1.1146 data_time: 0.0075 memory: 8703 loss: 0.4174 decode.loss_ce: 0.2818 decode.acc_seg: 90.6443 aux.loss_ce: 0.1356 aux.acc_seg: 89.4976 +2024/08/11 08:09:05 - mmengine - INFO - Iter(train) [128300/160000] lr: 2.4061e-03 eta: 9:50:53 time: 1.1164 data_time: 0.0070 memory: 8703 loss: 0.3535 decode.loss_ce: 0.2257 decode.acc_seg: 97.2355 aux.loss_ce: 0.1278 aux.acc_seg: 96.9559 +2024/08/11 08:10:01 - mmengine - INFO - Iter(train) [128350/160000] lr: 2.4029e-03 eta: 9:49:57 time: 1.1096 data_time: 0.0061 memory: 8703 loss: 0.2837 decode.loss_ce: 0.1710 decode.acc_seg: 94.8103 aux.loss_ce: 0.1127 aux.acc_seg: 91.1578 +2024/08/11 08:10:56 - mmengine - INFO - Iter(train) [128400/160000] lr: 2.3996e-03 eta: 9:49:01 time: 1.1123 data_time: 0.0056 memory: 8704 loss: 0.3569 decode.loss_ce: 0.2196 decode.acc_seg: 96.7503 aux.loss_ce: 0.1374 aux.acc_seg: 94.5059 +2024/08/11 08:11:52 - mmengine - INFO - Iter(train) [128450/160000] lr: 2.3963e-03 eta: 9:48:05 time: 1.1136 data_time: 0.0074 memory: 8703 loss: 0.3391 decode.loss_ce: 0.2067 decode.acc_seg: 81.7416 aux.loss_ce: 0.1323 aux.acc_seg: 74.2072 +2024/08/11 08:12:48 - mmengine - INFO - Iter(train) [128500/160000] lr: 2.3930e-03 eta: 9:47:09 time: 1.1184 data_time: 0.0073 memory: 8703 loss: 0.2347 decode.loss_ce: 0.1424 decode.acc_seg: 96.2940 aux.loss_ce: 0.0923 aux.acc_seg: 93.6844 +2024/08/11 08:13:44 - mmengine - INFO - Iter(train) [128550/160000] lr: 2.3898e-03 eta: 9:46:13 time: 1.1164 data_time: 0.0072 memory: 8704 loss: 0.3276 decode.loss_ce: 0.1865 decode.acc_seg: 95.8871 aux.loss_ce: 0.1412 aux.acc_seg: 90.5898 +2024/08/11 08:14:39 - mmengine - INFO - Iter(train) [128600/160000] lr: 2.3865e-03 eta: 9:45:17 time: 1.1173 data_time: 0.0062 memory: 8704 loss: 0.2740 decode.loss_ce: 0.1537 decode.acc_seg: 97.6136 aux.loss_ce: 0.1203 aux.acc_seg: 96.6571 +2024/08/11 08:15:35 - mmengine - INFO - Iter(train) [128650/160000] lr: 2.3832e-03 eta: 9:44:21 time: 1.1199 data_time: 0.0072 memory: 8703 loss: 0.2707 decode.loss_ce: 0.1559 decode.acc_seg: 96.1349 aux.loss_ce: 0.1148 aux.acc_seg: 94.2684 +2024/08/11 08:16:31 - mmengine - INFO - Iter(train) [128700/160000] lr: 2.3799e-03 eta: 9:43:25 time: 1.1219 data_time: 0.0091 memory: 8703 loss: 0.2876 decode.loss_ce: 0.1838 decode.acc_seg: 97.5893 aux.loss_ce: 0.1038 aux.acc_seg: 94.5712 +2024/08/11 08:17:27 - mmengine - INFO - Iter(train) [128750/160000] lr: 2.3766e-03 eta: 9:42:29 time: 1.1151 data_time: 0.0072 memory: 8704 loss: 0.3352 decode.loss_ce: 0.1880 decode.acc_seg: 93.7557 aux.loss_ce: 0.1472 aux.acc_seg: 84.3127 +2024/08/11 08:18:23 - mmengine - INFO - Iter(train) [128800/160000] lr: 2.3734e-03 eta: 9:41:33 time: 1.1167 data_time: 0.0064 memory: 8703 loss: 0.3466 decode.loss_ce: 0.2111 decode.acc_seg: 76.3174 aux.loss_ce: 0.1355 aux.acc_seg: 72.7699 +2024/08/11 08:19:18 - mmengine - INFO - Iter(train) [128850/160000] lr: 2.3701e-03 eta: 9:40:37 time: 1.1123 data_time: 0.0070 memory: 8704 loss: 0.2742 decode.loss_ce: 0.1757 decode.acc_seg: 95.6495 aux.loss_ce: 0.0985 aux.acc_seg: 95.1672 +2024/08/11 08:20:14 - mmengine - INFO - Iter(train) [128900/160000] lr: 2.3668e-03 eta: 9:39:41 time: 1.1149 data_time: 0.0061 memory: 8704 loss: 0.3661 decode.loss_ce: 0.2301 decode.acc_seg: 91.5325 aux.loss_ce: 0.1360 aux.acc_seg: 85.9720 +2024/08/11 08:21:10 - mmengine - INFO - Iter(train) [128950/160000] lr: 2.3635e-03 eta: 9:38:45 time: 1.1159 data_time: 0.0080 memory: 8704 loss: 0.4339 decode.loss_ce: 0.2485 decode.acc_seg: 86.1176 aux.loss_ce: 0.1853 aux.acc_seg: 82.1885 +2024/08/11 08:22:06 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 08:22:06 - mmengine - INFO - Iter(train) [129000/160000] lr: 2.3602e-03 eta: 9:37:49 time: 1.1121 data_time: 0.0060 memory: 8703 loss: 0.3679 decode.loss_ce: 0.2312 decode.acc_seg: 93.6227 aux.loss_ce: 0.1367 aux.acc_seg: 86.5979 +2024/08/11 08:23:01 - mmengine - INFO - Iter(train) [129050/160000] lr: 2.3570e-03 eta: 9:36:53 time: 1.1168 data_time: 0.0065 memory: 8705 loss: 0.4398 decode.loss_ce: 0.2847 decode.acc_seg: 95.3044 aux.loss_ce: 0.1551 aux.acc_seg: 87.1398 +2024/08/11 08:23:57 - mmengine - INFO - Iter(train) [129100/160000] lr: 2.3537e-03 eta: 9:35:58 time: 1.1197 data_time: 0.0074 memory: 8704 loss: 0.3347 decode.loss_ce: 0.2054 decode.acc_seg: 94.6266 aux.loss_ce: 0.1293 aux.acc_seg: 93.2552 +2024/08/11 08:24:53 - mmengine - INFO - Iter(train) [129150/160000] lr: 2.3504e-03 eta: 9:35:02 time: 1.1126 data_time: 0.0073 memory: 8704 loss: 0.3001 decode.loss_ce: 0.1829 decode.acc_seg: 91.9580 aux.loss_ce: 0.1172 aux.acc_seg: 89.1520 +2024/08/11 08:25:49 - mmengine - INFO - Iter(train) [129200/160000] lr: 2.3471e-03 eta: 9:34:06 time: 1.1158 data_time: 0.0071 memory: 8704 loss: 0.4892 decode.loss_ce: 0.3355 decode.acc_seg: 96.6274 aux.loss_ce: 0.1537 aux.acc_seg: 91.7594 +2024/08/11 08:26:45 - mmengine - INFO - Iter(train) [129250/160000] lr: 2.3438e-03 eta: 9:33:10 time: 1.1121 data_time: 0.0075 memory: 8703 loss: 0.2485 decode.loss_ce: 0.1565 decode.acc_seg: 92.4206 aux.loss_ce: 0.0920 aux.acc_seg: 90.0643 +2024/08/11 08:27:40 - mmengine - INFO - Iter(train) [129300/160000] lr: 2.3405e-03 eta: 9:32:14 time: 1.1166 data_time: 0.0090 memory: 8703 loss: 0.2282 decode.loss_ce: 0.1271 decode.acc_seg: 97.9188 aux.loss_ce: 0.1011 aux.acc_seg: 82.8355 +2024/08/11 08:28:36 - mmengine - INFO - Iter(train) [129350/160000] lr: 2.3373e-03 eta: 9:31:18 time: 1.1153 data_time: 0.0074 memory: 8703 loss: 0.3265 decode.loss_ce: 0.1943 decode.acc_seg: 98.0709 aux.loss_ce: 0.1321 aux.acc_seg: 97.9229 +2024/08/11 08:29:32 - mmengine - INFO - Iter(train) [129400/160000] lr: 2.3340e-03 eta: 9:30:22 time: 1.1193 data_time: 0.0078 memory: 8703 loss: 0.3291 decode.loss_ce: 0.1976 decode.acc_seg: 91.8615 aux.loss_ce: 0.1315 aux.acc_seg: 85.2806 +2024/08/11 08:30:28 - mmengine - INFO - Iter(train) [129450/160000] lr: 2.3307e-03 eta: 9:29:26 time: 1.1169 data_time: 0.0082 memory: 8703 loss: 0.2802 decode.loss_ce: 0.1701 decode.acc_seg: 95.1146 aux.loss_ce: 0.1101 aux.acc_seg: 94.8320 +2024/08/11 08:31:24 - mmengine - INFO - Iter(train) [129500/160000] lr: 2.3274e-03 eta: 9:28:30 time: 1.1161 data_time: 0.0068 memory: 8704 loss: 0.3468 decode.loss_ce: 0.2015 decode.acc_seg: 92.4561 aux.loss_ce: 0.1453 aux.acc_seg: 91.1688 +2024/08/11 08:32:19 - mmengine - INFO - Iter(train) [129550/160000] lr: 2.3241e-03 eta: 9:27:34 time: 1.1189 data_time: 0.0070 memory: 8704 loss: 0.3717 decode.loss_ce: 0.2192 decode.acc_seg: 91.6666 aux.loss_ce: 0.1525 aux.acc_seg: 89.2368 +2024/08/11 08:33:15 - mmengine - INFO - Iter(train) [129600/160000] lr: 2.3208e-03 eta: 9:26:38 time: 1.1167 data_time: 0.0070 memory: 8703 loss: 0.3599 decode.loss_ce: 0.2105 decode.acc_seg: 95.0110 aux.loss_ce: 0.1494 aux.acc_seg: 82.2659 +2024/08/11 08:34:11 - mmengine - INFO - Iter(train) [129650/160000] lr: 2.3175e-03 eta: 9:25:42 time: 1.1192 data_time: 0.0064 memory: 8704 loss: 0.3216 decode.loss_ce: 0.1956 decode.acc_seg: 93.1733 aux.loss_ce: 0.1260 aux.acc_seg: 84.8314 +2024/08/11 08:35:07 - mmengine - INFO - Iter(train) [129700/160000] lr: 2.3143e-03 eta: 9:24:46 time: 1.1138 data_time: 0.0071 memory: 8704 loss: 0.2354 decode.loss_ce: 0.1423 decode.acc_seg: 97.6818 aux.loss_ce: 0.0931 aux.acc_seg: 96.4427 +2024/08/11 08:36:03 - mmengine - INFO - Iter(train) [129750/160000] lr: 2.3110e-03 eta: 9:23:50 time: 1.1128 data_time: 0.0071 memory: 8703 loss: 0.2532 decode.loss_ce: 0.1625 decode.acc_seg: 94.5045 aux.loss_ce: 0.0907 aux.acc_seg: 94.1593 +2024/08/11 08:36:58 - mmengine - INFO - Iter(train) [129800/160000] lr: 2.3077e-03 eta: 9:22:54 time: 1.1143 data_time: 0.0062 memory: 8703 loss: 0.3821 decode.loss_ce: 0.2279 decode.acc_seg: 96.3263 aux.loss_ce: 0.1543 aux.acc_seg: 95.4385 +2024/08/11 08:37:54 - mmengine - INFO - Iter(train) [129850/160000] lr: 2.3044e-03 eta: 9:21:58 time: 1.1148 data_time: 0.0061 memory: 8704 loss: 0.3140 decode.loss_ce: 0.1862 decode.acc_seg: 92.4444 aux.loss_ce: 0.1278 aux.acc_seg: 87.2811 +2024/08/11 08:38:50 - mmengine - INFO - Iter(train) [129900/160000] lr: 2.3011e-03 eta: 9:21:02 time: 1.1145 data_time: 0.0062 memory: 8704 loss: 0.2933 decode.loss_ce: 0.1835 decode.acc_seg: 85.6827 aux.loss_ce: 0.1098 aux.acc_seg: 77.1487 +2024/08/11 08:39:46 - mmengine - INFO - Iter(train) [129950/160000] lr: 2.2978e-03 eta: 9:20:06 time: 1.1196 data_time: 0.0071 memory: 8703 loss: 0.2698 decode.loss_ce: 0.1639 decode.acc_seg: 94.2085 aux.loss_ce: 0.1059 aux.acc_seg: 89.2275 +2024/08/11 08:40:42 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 08:40:42 - mmengine - INFO - Iter(train) [130000/160000] lr: 2.2945e-03 eta: 9:19:10 time: 1.1188 data_time: 0.0080 memory: 8703 loss: 0.4092 decode.loss_ce: 0.2497 decode.acc_seg: 90.6849 aux.loss_ce: 0.1595 aux.acc_seg: 78.7736 +2024/08/11 08:41:37 - mmengine - INFO - Iter(train) [130050/160000] lr: 2.2912e-03 eta: 9:18:14 time: 1.1154 data_time: 0.0068 memory: 8703 loss: 0.3157 decode.loss_ce: 0.1948 decode.acc_seg: 96.2624 aux.loss_ce: 0.1209 aux.acc_seg: 94.1327 +2024/08/11 08:42:33 - mmengine - INFO - Iter(train) [130100/160000] lr: 2.2879e-03 eta: 9:17:19 time: 1.1185 data_time: 0.0067 memory: 8703 loss: 0.3208 decode.loss_ce: 0.2021 decode.acc_seg: 95.3959 aux.loss_ce: 0.1188 aux.acc_seg: 85.1918 +2024/08/11 08:43:29 - mmengine - INFO - Iter(train) [130150/160000] lr: 2.2846e-03 eta: 9:16:23 time: 1.1113 data_time: 0.0064 memory: 8703 loss: 0.2538 decode.loss_ce: 0.1577 decode.acc_seg: 91.5949 aux.loss_ce: 0.0961 aux.acc_seg: 87.0745 +2024/08/11 08:44:25 - mmengine - INFO - Iter(train) [130200/160000] lr: 2.2813e-03 eta: 9:15:27 time: 1.1148 data_time: 0.0060 memory: 8704 loss: 0.3233 decode.loss_ce: 0.2023 decode.acc_seg: 81.4406 aux.loss_ce: 0.1210 aux.acc_seg: 76.6312 +2024/08/11 08:45:20 - mmengine - INFO - Iter(train) [130250/160000] lr: 2.2781e-03 eta: 9:14:31 time: 1.1109 data_time: 0.0064 memory: 8703 loss: 0.3641 decode.loss_ce: 0.2335 decode.acc_seg: 94.1904 aux.loss_ce: 0.1305 aux.acc_seg: 88.7667 +2024/08/11 08:46:16 - mmengine - INFO - Iter(train) [130300/160000] lr: 2.2748e-03 eta: 9:13:35 time: 1.1164 data_time: 0.0083 memory: 8703 loss: 0.3442 decode.loss_ce: 0.1976 decode.acc_seg: 90.2607 aux.loss_ce: 0.1465 aux.acc_seg: 82.5204 +2024/08/11 08:47:12 - mmengine - INFO - Iter(train) [130350/160000] lr: 2.2715e-03 eta: 9:12:39 time: 1.1172 data_time: 0.0073 memory: 8703 loss: 0.2778 decode.loss_ce: 0.1707 decode.acc_seg: 89.1540 aux.loss_ce: 0.1071 aux.acc_seg: 86.0176 +2024/08/11 08:48:08 - mmengine - INFO - Iter(train) [130400/160000] lr: 2.2682e-03 eta: 9:11:43 time: 1.1122 data_time: 0.0060 memory: 8703 loss: 0.3806 decode.loss_ce: 0.2314 decode.acc_seg: 92.1863 aux.loss_ce: 0.1491 aux.acc_seg: 89.6781 +2024/08/11 08:49:04 - mmengine - INFO - Iter(train) [130450/160000] lr: 2.2649e-03 eta: 9:10:47 time: 1.1203 data_time: 0.0082 memory: 8704 loss: 0.2356 decode.loss_ce: 0.1449 decode.acc_seg: 95.8328 aux.loss_ce: 0.0907 aux.acc_seg: 93.7023 +2024/08/11 08:49:59 - mmengine - INFO - Iter(train) [130500/160000] lr: 2.2616e-03 eta: 9:09:51 time: 1.1121 data_time: 0.0064 memory: 8703 loss: 0.4310 decode.loss_ce: 0.2601 decode.acc_seg: 89.6100 aux.loss_ce: 0.1709 aux.acc_seg: 89.2037 +2024/08/11 08:50:55 - mmengine - INFO - Iter(train) [130550/160000] lr: 2.2583e-03 eta: 9:08:55 time: 1.1175 data_time: 0.0076 memory: 8703 loss: 0.3844 decode.loss_ce: 0.2289 decode.acc_seg: 95.8462 aux.loss_ce: 0.1555 aux.acc_seg: 95.1138 +2024/08/11 08:51:51 - mmengine - INFO - Iter(train) [130600/160000] lr: 2.2550e-03 eta: 9:07:59 time: 1.1149 data_time: 0.0074 memory: 8703 loss: 0.4176 decode.loss_ce: 0.2528 decode.acc_seg: 85.8128 aux.loss_ce: 0.1648 aux.acc_seg: 81.3849 +2024/08/11 08:52:47 - mmengine - INFO - Iter(train) [130650/160000] lr: 2.2517e-03 eta: 9:07:03 time: 1.1111 data_time: 0.0065 memory: 8704 loss: 0.4110 decode.loss_ce: 0.2670 decode.acc_seg: 95.5357 aux.loss_ce: 0.1440 aux.acc_seg: 92.4547 +2024/08/11 08:53:42 - mmengine - INFO - Iter(train) [130700/160000] lr: 2.2484e-03 eta: 9:06:07 time: 1.1178 data_time: 0.0069 memory: 8704 loss: 0.3377 decode.loss_ce: 0.2160 decode.acc_seg: 95.0575 aux.loss_ce: 0.1217 aux.acc_seg: 94.2221 +2024/08/11 08:54:38 - mmengine - INFO - Iter(train) [130750/160000] lr: 2.2451e-03 eta: 9:05:11 time: 1.1190 data_time: 0.0079 memory: 8703 loss: 0.3339 decode.loss_ce: 0.2017 decode.acc_seg: 96.3239 aux.loss_ce: 0.1322 aux.acc_seg: 95.0304 +2024/08/11 08:55:34 - mmengine - INFO - Iter(train) [130800/160000] lr: 2.2418e-03 eta: 9:04:15 time: 1.1078 data_time: 0.0057 memory: 8704 loss: 0.3695 decode.loss_ce: 0.2274 decode.acc_seg: 95.3634 aux.loss_ce: 0.1421 aux.acc_seg: 89.1973 +2024/08/11 08:56:30 - mmengine - INFO - Iter(train) [130850/160000] lr: 2.2385e-03 eta: 9:03:19 time: 1.1163 data_time: 0.0085 memory: 8703 loss: 0.4185 decode.loss_ce: 0.2492 decode.acc_seg: 92.9776 aux.loss_ce: 0.1693 aux.acc_seg: 89.4227 +2024/08/11 08:57:25 - mmengine - INFO - Iter(train) [130900/160000] lr: 2.2352e-03 eta: 9:02:23 time: 1.1161 data_time: 0.0072 memory: 8704 loss: 0.2707 decode.loss_ce: 0.1657 decode.acc_seg: 95.3571 aux.loss_ce: 0.1050 aux.acc_seg: 91.6779 +2024/08/11 08:58:21 - mmengine - INFO - Iter(train) [130950/160000] lr: 2.2319e-03 eta: 9:01:27 time: 1.1184 data_time: 0.0081 memory: 8704 loss: 0.3096 decode.loss_ce: 0.1862 decode.acc_seg: 91.2833 aux.loss_ce: 0.1234 aux.acc_seg: 83.4410 +2024/08/11 08:59:17 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 08:59:17 - mmengine - INFO - Iter(train) [131000/160000] lr: 2.2286e-03 eta: 9:00:31 time: 1.1160 data_time: 0.0067 memory: 8704 loss: 0.3219 decode.loss_ce: 0.1974 decode.acc_seg: 96.6080 aux.loss_ce: 0.1245 aux.acc_seg: 93.1722 +2024/08/11 09:00:13 - mmengine - INFO - Iter(train) [131050/160000] lr: 2.2253e-03 eta: 8:59:35 time: 1.1200 data_time: 0.0081 memory: 8704 loss: 0.3603 decode.loss_ce: 0.2131 decode.acc_seg: 92.6742 aux.loss_ce: 0.1472 aux.acc_seg: 76.9016 +2024/08/11 09:01:09 - mmengine - INFO - Iter(train) [131100/160000] lr: 2.2220e-03 eta: 8:58:40 time: 1.1136 data_time: 0.0069 memory: 8704 loss: 0.2980 decode.loss_ce: 0.1783 decode.acc_seg: 94.5759 aux.loss_ce: 0.1197 aux.acc_seg: 91.6520 +2024/08/11 09:02:05 - mmengine - INFO - Iter(train) [131150/160000] lr: 2.2187e-03 eta: 8:57:44 time: 1.1142 data_time: 0.0084 memory: 8703 loss: 0.2808 decode.loss_ce: 0.1789 decode.acc_seg: 92.0773 aux.loss_ce: 0.1019 aux.acc_seg: 81.9729 +2024/08/11 09:03:00 - mmengine - INFO - Iter(train) [131200/160000] lr: 2.2154e-03 eta: 8:56:48 time: 1.1138 data_time: 0.0062 memory: 8703 loss: 0.2699 decode.loss_ce: 0.1528 decode.acc_seg: 96.8448 aux.loss_ce: 0.1171 aux.acc_seg: 96.1937 +2024/08/11 09:03:56 - mmengine - INFO - Iter(train) [131250/160000] lr: 2.2120e-03 eta: 8:55:52 time: 1.1145 data_time: 0.0089 memory: 8704 loss: 0.3278 decode.loss_ce: 0.1991 decode.acc_seg: 92.1965 aux.loss_ce: 0.1286 aux.acc_seg: 89.2826 +2024/08/11 09:04:52 - mmengine - INFO - Iter(train) [131300/160000] lr: 2.2087e-03 eta: 8:54:56 time: 1.1146 data_time: 0.0071 memory: 8704 loss: 0.2760 decode.loss_ce: 0.1584 decode.acc_seg: 92.5087 aux.loss_ce: 0.1176 aux.acc_seg: 89.6006 +2024/08/11 09:05:47 - mmengine - INFO - Iter(train) [131350/160000] lr: 2.2054e-03 eta: 8:54:00 time: 1.1166 data_time: 0.0078 memory: 8704 loss: 0.3023 decode.loss_ce: 0.1788 decode.acc_seg: 96.2011 aux.loss_ce: 0.1234 aux.acc_seg: 90.9615 +2024/08/11 09:06:43 - mmengine - INFO - Iter(train) [131400/160000] lr: 2.2021e-03 eta: 8:53:04 time: 1.1157 data_time: 0.0073 memory: 8703 loss: 0.3047 decode.loss_ce: 0.1809 decode.acc_seg: 93.5784 aux.loss_ce: 0.1239 aux.acc_seg: 91.7441 +2024/08/11 09:07:39 - mmengine - INFO - Iter(train) [131450/160000] lr: 2.1988e-03 eta: 8:52:08 time: 1.1113 data_time: 0.0065 memory: 8703 loss: 0.3702 decode.loss_ce: 0.2272 decode.acc_seg: 95.3828 aux.loss_ce: 0.1430 aux.acc_seg: 95.9296 +2024/08/11 09:08:35 - mmengine - INFO - Iter(train) [131500/160000] lr: 2.1955e-03 eta: 8:51:12 time: 1.1131 data_time: 0.0067 memory: 8704 loss: 0.2750 decode.loss_ce: 0.1593 decode.acc_seg: 94.0275 aux.loss_ce: 0.1156 aux.acc_seg: 93.4510 +2024/08/11 09:09:31 - mmengine - INFO - Iter(train) [131550/160000] lr: 2.1922e-03 eta: 8:50:16 time: 1.1145 data_time: 0.0068 memory: 8703 loss: 0.3371 decode.loss_ce: 0.2147 decode.acc_seg: 85.9817 aux.loss_ce: 0.1224 aux.acc_seg: 84.8502 +2024/08/11 09:10:26 - mmengine - INFO - Iter(train) [131600/160000] lr: 2.1889e-03 eta: 8:49:20 time: 1.1098 data_time: 0.0062 memory: 8703 loss: 0.2602 decode.loss_ce: 0.1591 decode.acc_seg: 96.3416 aux.loss_ce: 0.1011 aux.acc_seg: 87.9208 +2024/08/11 09:11:22 - mmengine - INFO - Iter(train) [131650/160000] lr: 2.1856e-03 eta: 8:48:24 time: 1.1108 data_time: 0.0065 memory: 8703 loss: 0.2747 decode.loss_ce: 0.1606 decode.acc_seg: 94.0262 aux.loss_ce: 0.1142 aux.acc_seg: 88.9490 +2024/08/11 09:12:18 - mmengine - INFO - Iter(train) [131700/160000] lr: 2.1823e-03 eta: 8:47:28 time: 1.1132 data_time: 0.0077 memory: 8704 loss: 0.3953 decode.loss_ce: 0.2097 decode.acc_seg: 96.8792 aux.loss_ce: 0.1856 aux.acc_seg: 85.5278 +2024/08/11 09:13:14 - mmengine - INFO - Iter(train) [131750/160000] lr: 2.1790e-03 eta: 8:46:32 time: 1.1148 data_time: 0.0073 memory: 8703 loss: 0.3204 decode.loss_ce: 0.1981 decode.acc_seg: 72.5052 aux.loss_ce: 0.1223 aux.acc_seg: 75.2638 +2024/08/11 09:14:09 - mmengine - INFO - Iter(train) [131800/160000] lr: 2.1756e-03 eta: 8:45:36 time: 1.1135 data_time: 0.0056 memory: 8703 loss: 0.2562 decode.loss_ce: 0.1548 decode.acc_seg: 91.4931 aux.loss_ce: 0.1014 aux.acc_seg: 89.2549 +2024/08/11 09:15:05 - mmengine - INFO - Iter(train) [131850/160000] lr: 2.1723e-03 eta: 8:44:40 time: 1.1144 data_time: 0.0075 memory: 8704 loss: 0.3571 decode.loss_ce: 0.2037 decode.acc_seg: 88.6112 aux.loss_ce: 0.1534 aux.acc_seg: 81.4375 +2024/08/11 09:16:01 - mmengine - INFO - Iter(train) [131900/160000] lr: 2.1690e-03 eta: 8:43:44 time: 1.1205 data_time: 0.0087 memory: 8703 loss: 0.3040 decode.loss_ce: 0.1808 decode.acc_seg: 95.4721 aux.loss_ce: 0.1232 aux.acc_seg: 94.5046 +2024/08/11 09:16:57 - mmengine - INFO - Iter(train) [131950/160000] lr: 2.1657e-03 eta: 8:42:48 time: 1.1166 data_time: 0.0068 memory: 8705 loss: 0.2459 decode.loss_ce: 0.1552 decode.acc_seg: 93.8878 aux.loss_ce: 0.0906 aux.acc_seg: 90.2128 +2024/08/11 09:17:53 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 09:17:53 - mmengine - INFO - Iter(train) [132000/160000] lr: 2.1624e-03 eta: 8:41:52 time: 1.1168 data_time: 0.0071 memory: 8704 loss: 0.4511 decode.loss_ce: 0.2758 decode.acc_seg: 95.3505 aux.loss_ce: 0.1753 aux.acc_seg: 77.9016 +2024/08/11 09:18:49 - mmengine - INFO - Iter(train) [132050/160000] lr: 2.1591e-03 eta: 8:40:56 time: 1.1164 data_time: 0.0062 memory: 8704 loss: 0.3452 decode.loss_ce: 0.2063 decode.acc_seg: 89.8046 aux.loss_ce: 0.1389 aux.acc_seg: 88.1875 +2024/08/11 09:19:44 - mmengine - INFO - Iter(train) [132100/160000] lr: 2.1558e-03 eta: 8:40:01 time: 1.1153 data_time: 0.0070 memory: 8703 loss: 0.2696 decode.loss_ce: 0.1612 decode.acc_seg: 95.1556 aux.loss_ce: 0.1084 aux.acc_seg: 93.7835 +2024/08/11 09:20:40 - mmengine - INFO - Iter(train) [132150/160000] lr: 2.1524e-03 eta: 8:39:05 time: 1.1146 data_time: 0.0068 memory: 8704 loss: 0.3234 decode.loss_ce: 0.2065 decode.acc_seg: 90.4079 aux.loss_ce: 0.1169 aux.acc_seg: 86.4729 +2024/08/11 09:21:36 - mmengine - INFO - Iter(train) [132200/160000] lr: 2.1491e-03 eta: 8:38:09 time: 1.1145 data_time: 0.0072 memory: 8704 loss: 0.3079 decode.loss_ce: 0.1811 decode.acc_seg: 92.6660 aux.loss_ce: 0.1268 aux.acc_seg: 82.6341 +2024/08/11 09:22:32 - mmengine - INFO - Iter(train) [132250/160000] lr: 2.1458e-03 eta: 8:37:13 time: 1.1137 data_time: 0.0071 memory: 8703 loss: 0.2256 decode.loss_ce: 0.1371 decode.acc_seg: 94.5848 aux.loss_ce: 0.0885 aux.acc_seg: 89.0317 +2024/08/11 09:23:27 - mmengine - INFO - Iter(train) [132300/160000] lr: 2.1425e-03 eta: 8:36:17 time: 1.1140 data_time: 0.0082 memory: 8703 loss: 0.2429 decode.loss_ce: 0.1444 decode.acc_seg: 95.9656 aux.loss_ce: 0.0986 aux.acc_seg: 89.9017 +2024/08/11 09:24:23 - mmengine - INFO - Iter(train) [132350/160000] lr: 2.1392e-03 eta: 8:35:21 time: 1.1165 data_time: 0.0072 memory: 8703 loss: 0.2054 decode.loss_ce: 0.1270 decode.acc_seg: 93.1456 aux.loss_ce: 0.0783 aux.acc_seg: 89.3466 +2024/08/11 09:25:19 - mmengine - INFO - Iter(train) [132400/160000] lr: 2.1359e-03 eta: 8:34:25 time: 1.1164 data_time: 0.0076 memory: 8704 loss: 0.3001 decode.loss_ce: 0.1867 decode.acc_seg: 94.0629 aux.loss_ce: 0.1135 aux.acc_seg: 89.2863 +2024/08/11 09:26:15 - mmengine - INFO - Iter(train) [132450/160000] lr: 2.1325e-03 eta: 8:33:29 time: 1.1150 data_time: 0.0077 memory: 8703 loss: 0.3287 decode.loss_ce: 0.2051 decode.acc_seg: 93.0774 aux.loss_ce: 0.1236 aux.acc_seg: 92.9420 +2024/08/11 09:27:11 - mmengine - INFO - Iter(train) [132500/160000] lr: 2.1292e-03 eta: 8:32:33 time: 1.1143 data_time: 0.0063 memory: 8703 loss: 0.2492 decode.loss_ce: 0.1318 decode.acc_seg: 91.2768 aux.loss_ce: 0.1174 aux.acc_seg: 86.3012 +2024/08/11 09:28:06 - mmengine - INFO - Iter(train) [132550/160000] lr: 2.1259e-03 eta: 8:31:37 time: 1.1214 data_time: 0.0069 memory: 8703 loss: 0.2684 decode.loss_ce: 0.1570 decode.acc_seg: 95.4186 aux.loss_ce: 0.1114 aux.acc_seg: 93.1506 +2024/08/11 09:29:02 - mmengine - INFO - Iter(train) [132600/160000] lr: 2.1226e-03 eta: 8:30:41 time: 1.1107 data_time: 0.0064 memory: 8704 loss: 0.3957 decode.loss_ce: 0.2483 decode.acc_seg: 95.5775 aux.loss_ce: 0.1474 aux.acc_seg: 90.7717 +2024/08/11 09:29:58 - mmengine - INFO - Iter(train) [132650/160000] lr: 2.1193e-03 eta: 8:29:45 time: 1.1141 data_time: 0.0069 memory: 8703 loss: 0.2941 decode.loss_ce: 0.1734 decode.acc_seg: 96.0808 aux.loss_ce: 0.1207 aux.acc_seg: 96.5415 +2024/08/11 09:30:54 - mmengine - INFO - Iter(train) [132700/160000] lr: 2.1159e-03 eta: 8:28:49 time: 1.1185 data_time: 0.0078 memory: 8703 loss: 0.7174 decode.loss_ce: 0.4725 decode.acc_seg: 93.3170 aux.loss_ce: 0.2449 aux.acc_seg: 85.9156 +2024/08/11 09:31:49 - mmengine - INFO - Iter(train) [132750/160000] lr: 2.1126e-03 eta: 8:27:53 time: 1.1118 data_time: 0.0068 memory: 8704 loss: 0.2697 decode.loss_ce: 0.1626 decode.acc_seg: 94.1685 aux.loss_ce: 0.1070 aux.acc_seg: 91.3462 +2024/08/11 09:32:45 - mmengine - INFO - Iter(train) [132800/160000] lr: 2.1093e-03 eta: 8:26:57 time: 1.1126 data_time: 0.0071 memory: 8705 loss: 0.4209 decode.loss_ce: 0.2560 decode.acc_seg: 94.5495 aux.loss_ce: 0.1649 aux.acc_seg: 92.8870 +2024/08/11 09:33:41 - mmengine - INFO - Iter(train) [132850/160000] lr: 2.1060e-03 eta: 8:26:01 time: 1.1124 data_time: 0.0066 memory: 8703 loss: 0.3857 decode.loss_ce: 0.2341 decode.acc_seg: 97.3153 aux.loss_ce: 0.1517 aux.acc_seg: 91.8614 +2024/08/11 09:34:37 - mmengine - INFO - Iter(train) [132900/160000] lr: 2.1026e-03 eta: 8:25:05 time: 1.1160 data_time: 0.0074 memory: 8704 loss: 0.3467 decode.loss_ce: 0.1947 decode.acc_seg: 97.4751 aux.loss_ce: 0.1520 aux.acc_seg: 94.9525 +2024/08/11 09:35:32 - mmengine - INFO - Iter(train) [132950/160000] lr: 2.0993e-03 eta: 8:24:09 time: 1.1122 data_time: 0.0057 memory: 8704 loss: 0.3447 decode.loss_ce: 0.2106 decode.acc_seg: 87.3854 aux.loss_ce: 0.1341 aux.acc_seg: 82.1816 +2024/08/11 09:36:28 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 09:36:28 - mmengine - INFO - Iter(train) [133000/160000] lr: 2.0960e-03 eta: 8:23:13 time: 1.1138 data_time: 0.0074 memory: 8704 loss: 0.3578 decode.loss_ce: 0.2086 decode.acc_seg: 95.2948 aux.loss_ce: 0.1492 aux.acc_seg: 91.9907 +2024/08/11 09:37:24 - mmengine - INFO - Iter(train) [133050/160000] lr: 2.0927e-03 eta: 8:22:17 time: 1.1117 data_time: 0.0071 memory: 8703 loss: 0.2494 decode.loss_ce: 0.1578 decode.acc_seg: 93.5909 aux.loss_ce: 0.0916 aux.acc_seg: 85.9544 +2024/08/11 09:38:20 - mmengine - INFO - Iter(train) [133100/160000] lr: 2.0893e-03 eta: 8:21:22 time: 1.1233 data_time: 0.0079 memory: 8704 loss: 0.2361 decode.loss_ce: 0.1416 decode.acc_seg: 94.1835 aux.loss_ce: 0.0945 aux.acc_seg: 90.6628 +2024/08/11 09:39:16 - mmengine - INFO - Iter(train) [133150/160000] lr: 2.0860e-03 eta: 8:20:26 time: 1.1165 data_time: 0.0074 memory: 8704 loss: 0.2922 decode.loss_ce: 0.1774 decode.acc_seg: 93.2194 aux.loss_ce: 0.1148 aux.acc_seg: 92.1352 +2024/08/11 09:40:11 - mmengine - INFO - Iter(train) [133200/160000] lr: 2.0827e-03 eta: 8:19:30 time: 1.1152 data_time: 0.0070 memory: 8704 loss: 0.2759 decode.loss_ce: 0.1616 decode.acc_seg: 97.1465 aux.loss_ce: 0.1143 aux.acc_seg: 90.2154 +2024/08/11 09:41:07 - mmengine - INFO - Iter(train) [133250/160000] lr: 2.0793e-03 eta: 8:18:34 time: 1.1196 data_time: 0.0082 memory: 8703 loss: 0.3507 decode.loss_ce: 0.2225 decode.acc_seg: 91.2329 aux.loss_ce: 0.1282 aux.acc_seg: 83.7602 +2024/08/11 09:42:03 - mmengine - INFO - Iter(train) [133300/160000] lr: 2.0760e-03 eta: 8:17:38 time: 1.1114 data_time: 0.0074 memory: 8704 loss: 0.3592 decode.loss_ce: 0.2145 decode.acc_seg: 93.8993 aux.loss_ce: 0.1448 aux.acc_seg: 89.5441 +2024/08/11 09:42:59 - mmengine - INFO - Iter(train) [133350/160000] lr: 2.0727e-03 eta: 8:16:42 time: 1.1168 data_time: 0.0074 memory: 8704 loss: 0.2413 decode.loss_ce: 0.1440 decode.acc_seg: 92.8956 aux.loss_ce: 0.0973 aux.acc_seg: 92.6032 +2024/08/11 09:43:54 - mmengine - INFO - Iter(train) [133400/160000] lr: 2.0694e-03 eta: 8:15:46 time: 1.1169 data_time: 0.0070 memory: 8703 loss: 0.2796 decode.loss_ce: 0.1745 decode.acc_seg: 95.6830 aux.loss_ce: 0.1051 aux.acc_seg: 89.7507 +2024/08/11 09:44:50 - mmengine - INFO - Iter(train) [133450/160000] lr: 2.0660e-03 eta: 8:14:50 time: 1.1182 data_time: 0.0068 memory: 8704 loss: 0.4062 decode.loss_ce: 0.2614 decode.acc_seg: 95.7789 aux.loss_ce: 0.1447 aux.acc_seg: 93.7019 +2024/08/11 09:45:46 - mmengine - INFO - Iter(train) [133500/160000] lr: 2.0627e-03 eta: 8:13:54 time: 1.1160 data_time: 0.0071 memory: 8703 loss: 0.3309 decode.loss_ce: 0.2023 decode.acc_seg: 95.7154 aux.loss_ce: 0.1287 aux.acc_seg: 89.5414 +2024/08/11 09:46:42 - mmengine - INFO - Iter(train) [133550/160000] lr: 2.0594e-03 eta: 8:12:58 time: 1.1177 data_time: 0.0075 memory: 8704 loss: 0.2925 decode.loss_ce: 0.1634 decode.acc_seg: 92.4892 aux.loss_ce: 0.1291 aux.acc_seg: 81.9713 +2024/08/11 09:47:38 - mmengine - INFO - Iter(train) [133600/160000] lr: 2.0560e-03 eta: 8:12:02 time: 1.1156 data_time: 0.0072 memory: 8703 loss: 0.2895 decode.loss_ce: 0.1739 decode.acc_seg: 95.6774 aux.loss_ce: 0.1156 aux.acc_seg: 92.3551 +2024/08/11 09:48:34 - mmengine - INFO - Iter(train) [133650/160000] lr: 2.0527e-03 eta: 8:11:06 time: 1.1168 data_time: 0.0073 memory: 8704 loss: 0.3062 decode.loss_ce: 0.1793 decode.acc_seg: 96.4146 aux.loss_ce: 0.1269 aux.acc_seg: 95.4905 +2024/08/11 09:49:29 - mmengine - INFO - Iter(train) [133700/160000] lr: 2.0494e-03 eta: 8:10:10 time: 1.1156 data_time: 0.0081 memory: 8703 loss: 0.2676 decode.loss_ce: 0.1580 decode.acc_seg: 92.2718 aux.loss_ce: 0.1096 aux.acc_seg: 87.7816 +2024/08/11 09:50:25 - mmengine - INFO - Iter(train) [133750/160000] lr: 2.0460e-03 eta: 8:09:14 time: 1.1106 data_time: 0.0063 memory: 8703 loss: 0.3415 decode.loss_ce: 0.2190 decode.acc_seg: 82.7213 aux.loss_ce: 0.1225 aux.acc_seg: 82.0295 +2024/08/11 09:51:21 - mmengine - INFO - Iter(train) [133800/160000] lr: 2.0427e-03 eta: 8:08:18 time: 1.1133 data_time: 0.0074 memory: 8704 loss: 0.3461 decode.loss_ce: 0.1859 decode.acc_seg: 90.5227 aux.loss_ce: 0.1602 aux.acc_seg: 77.5279 +2024/08/11 09:52:17 - mmengine - INFO - Iter(train) [133850/160000] lr: 2.0393e-03 eta: 8:07:22 time: 1.1131 data_time: 0.0066 memory: 8703 loss: 0.3338 decode.loss_ce: 0.2094 decode.acc_seg: 97.3233 aux.loss_ce: 0.1244 aux.acc_seg: 96.5836 +2024/08/11 09:53:13 - mmengine - INFO - Iter(train) [133900/160000] lr: 2.0360e-03 eta: 8:06:26 time: 1.1220 data_time: 0.0059 memory: 8704 loss: 0.2811 decode.loss_ce: 0.1741 decode.acc_seg: 96.6237 aux.loss_ce: 0.1070 aux.acc_seg: 92.9491 +2024/08/11 09:54:09 - mmengine - INFO - Iter(train) [133950/160000] lr: 2.0327e-03 eta: 8:05:31 time: 1.1219 data_time: 0.0094 memory: 8704 loss: 0.4025 decode.loss_ce: 0.2442 decode.acc_seg: 94.2167 aux.loss_ce: 0.1583 aux.acc_seg: 92.1711 +2024/08/11 09:55:04 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 09:55:04 - mmengine - INFO - Iter(train) [134000/160000] lr: 2.0293e-03 eta: 8:04:35 time: 1.1205 data_time: 0.0090 memory: 8703 loss: 0.2565 decode.loss_ce: 0.1472 decode.acc_seg: 92.9791 aux.loss_ce: 0.1092 aux.acc_seg: 91.3425 +2024/08/11 09:56:00 - mmengine - INFO - Iter(train) [134050/160000] lr: 2.0260e-03 eta: 8:03:39 time: 1.1204 data_time: 0.0062 memory: 8703 loss: 0.2977 decode.loss_ce: 0.1640 decode.acc_seg: 88.6209 aux.loss_ce: 0.1337 aux.acc_seg: 83.3295 +2024/08/11 09:56:56 - mmengine - INFO - Iter(train) [134100/160000] lr: 2.0226e-03 eta: 8:02:43 time: 1.1148 data_time: 0.0064 memory: 8703 loss: 0.3254 decode.loss_ce: 0.1979 decode.acc_seg: 90.3352 aux.loss_ce: 0.1275 aux.acc_seg: 86.9540 +2024/08/11 09:57:52 - mmengine - INFO - Iter(train) [134150/160000] lr: 2.0193e-03 eta: 8:01:47 time: 1.1142 data_time: 0.0070 memory: 8704 loss: 0.2285 decode.loss_ce: 0.1326 decode.acc_seg: 94.3876 aux.loss_ce: 0.0959 aux.acc_seg: 89.1112 +2024/08/11 09:58:48 - mmengine - INFO - Iter(train) [134200/160000] lr: 2.0160e-03 eta: 8:00:51 time: 1.1130 data_time: 0.0062 memory: 8704 loss: 0.2854 decode.loss_ce: 0.1663 decode.acc_seg: 94.8309 aux.loss_ce: 0.1191 aux.acc_seg: 78.3183 +2024/08/11 09:59:43 - mmengine - INFO - Iter(train) [134250/160000] lr: 2.0126e-03 eta: 7:59:55 time: 1.1105 data_time: 0.0074 memory: 8704 loss: 0.2720 decode.loss_ce: 0.1560 decode.acc_seg: 95.9557 aux.loss_ce: 0.1160 aux.acc_seg: 95.0226 +2024/08/11 10:00:39 - mmengine - INFO - Iter(train) [134300/160000] lr: 2.0093e-03 eta: 7:58:59 time: 1.1112 data_time: 0.0054 memory: 8703 loss: 0.2879 decode.loss_ce: 0.1725 decode.acc_seg: 94.7768 aux.loss_ce: 0.1154 aux.acc_seg: 94.7470 +2024/08/11 10:01:35 - mmengine - INFO - Iter(train) [134350/160000] lr: 2.0059e-03 eta: 7:58:03 time: 1.1188 data_time: 0.0079 memory: 8704 loss: 0.3719 decode.loss_ce: 0.2317 decode.acc_seg: 95.4358 aux.loss_ce: 0.1402 aux.acc_seg: 93.3666 +2024/08/11 10:02:31 - mmengine - INFO - Iter(train) [134400/160000] lr: 2.0026e-03 eta: 7:57:07 time: 1.1118 data_time: 0.0070 memory: 8704 loss: 0.3775 decode.loss_ce: 0.2373 decode.acc_seg: 96.3717 aux.loss_ce: 0.1401 aux.acc_seg: 95.2568 +2024/08/11 10:03:26 - mmengine - INFO - Iter(train) [134450/160000] lr: 1.9992e-03 eta: 7:56:11 time: 1.1139 data_time: 0.0071 memory: 8704 loss: 0.3182 decode.loss_ce: 0.1887 decode.acc_seg: 95.2612 aux.loss_ce: 0.1295 aux.acc_seg: 93.9990 +2024/08/11 10:04:22 - mmengine - INFO - Iter(train) [134500/160000] lr: 1.9959e-03 eta: 7:55:15 time: 1.1133 data_time: 0.0059 memory: 8703 loss: 0.2945 decode.loss_ce: 0.1752 decode.acc_seg: 94.5050 aux.loss_ce: 0.1193 aux.acc_seg: 92.0021 +2024/08/11 10:05:18 - mmengine - INFO - Iter(train) [134550/160000] lr: 1.9926e-03 eta: 7:54:19 time: 1.1156 data_time: 0.0078 memory: 8704 loss: 0.3205 decode.loss_ce: 0.1883 decode.acc_seg: 91.0877 aux.loss_ce: 0.1323 aux.acc_seg: 84.6039 +2024/08/11 10:06:14 - mmengine - INFO - Iter(train) [134600/160000] lr: 1.9892e-03 eta: 7:53:23 time: 1.1156 data_time: 0.0068 memory: 8704 loss: 0.2748 decode.loss_ce: 0.1692 decode.acc_seg: 95.6036 aux.loss_ce: 0.1056 aux.acc_seg: 94.1779 +2024/08/11 10:07:10 - mmengine - INFO - Iter(train) [134650/160000] lr: 1.9859e-03 eta: 7:52:27 time: 1.1169 data_time: 0.0069 memory: 8704 loss: 0.2981 decode.loss_ce: 0.1742 decode.acc_seg: 93.5839 aux.loss_ce: 0.1240 aux.acc_seg: 91.5016 +2024/08/11 10:08:05 - mmengine - INFO - Iter(train) [134700/160000] lr: 1.9825e-03 eta: 7:51:32 time: 1.1101 data_time: 0.0061 memory: 8703 loss: 0.2917 decode.loss_ce: 0.1771 decode.acc_seg: 93.9084 aux.loss_ce: 0.1146 aux.acc_seg: 91.7666 +2024/08/11 10:09:01 - mmengine - INFO - Iter(train) [134750/160000] lr: 1.9792e-03 eta: 7:50:36 time: 1.1078 data_time: 0.0058 memory: 8703 loss: 0.2317 decode.loss_ce: 0.1365 decode.acc_seg: 92.7971 aux.loss_ce: 0.0953 aux.acc_seg: 92.2576 +2024/08/11 10:09:57 - mmengine - INFO - Iter(train) [134800/160000] lr: 1.9758e-03 eta: 7:49:40 time: 1.1173 data_time: 0.0086 memory: 8703 loss: 0.3312 decode.loss_ce: 0.2112 decode.acc_seg: 97.2313 aux.loss_ce: 0.1200 aux.acc_seg: 95.5881 +2024/08/11 10:10:53 - mmengine - INFO - Iter(train) [134850/160000] lr: 1.9725e-03 eta: 7:48:44 time: 1.1136 data_time: 0.0078 memory: 8703 loss: 0.3786 decode.loss_ce: 0.2174 decode.acc_seg: 85.2861 aux.loss_ce: 0.1611 aux.acc_seg: 77.8650 +2024/08/11 10:11:48 - mmengine - INFO - Iter(train) [134900/160000] lr: 1.9691e-03 eta: 7:47:48 time: 1.1180 data_time: 0.0074 memory: 8704 loss: 0.3262 decode.loss_ce: 0.2065 decode.acc_seg: 96.1904 aux.loss_ce: 0.1197 aux.acc_seg: 92.5189 +2024/08/11 10:12:44 - mmengine - INFO - Iter(train) [134950/160000] lr: 1.9658e-03 eta: 7:46:52 time: 1.1107 data_time: 0.0061 memory: 8703 loss: 0.2895 decode.loss_ce: 0.1800 decode.acc_seg: 93.9555 aux.loss_ce: 0.1096 aux.acc_seg: 92.5733 +2024/08/11 10:13:40 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 10:13:40 - mmengine - INFO - Iter(train) [135000/160000] lr: 1.9624e-03 eta: 7:45:56 time: 1.1192 data_time: 0.0093 memory: 8704 loss: 0.2969 decode.loss_ce: 0.1828 decode.acc_seg: 96.4942 aux.loss_ce: 0.1141 aux.acc_seg: 94.3775 +2024/08/11 10:14:36 - mmengine - INFO - Iter(train) [135050/160000] lr: 1.9591e-03 eta: 7:45:00 time: 1.1181 data_time: 0.0072 memory: 8703 loss: 0.3355 decode.loss_ce: 0.2132 decode.acc_seg: 96.1765 aux.loss_ce: 0.1223 aux.acc_seg: 95.4187 +2024/08/11 10:15:32 - mmengine - INFO - Iter(train) [135100/160000] lr: 1.9557e-03 eta: 7:44:04 time: 1.1191 data_time: 0.0076 memory: 8704 loss: 0.3353 decode.loss_ce: 0.1958 decode.acc_seg: 96.1815 aux.loss_ce: 0.1395 aux.acc_seg: 95.3218 +2024/08/11 10:16:28 - mmengine - INFO - Iter(train) [135150/160000] lr: 1.9524e-03 eta: 7:43:08 time: 1.1172 data_time: 0.0063 memory: 8704 loss: 0.2922 decode.loss_ce: 0.1862 decode.acc_seg: 93.3396 aux.loss_ce: 0.1060 aux.acc_seg: 91.9335 +2024/08/11 10:17:23 - mmengine - INFO - Iter(train) [135200/160000] lr: 1.9490e-03 eta: 7:42:12 time: 1.1157 data_time: 0.0075 memory: 8703 loss: 0.3648 decode.loss_ce: 0.2225 decode.acc_seg: 97.0237 aux.loss_ce: 0.1423 aux.acc_seg: 96.2472 +2024/08/11 10:18:19 - mmengine - INFO - Iter(train) [135250/160000] lr: 1.9456e-03 eta: 7:41:16 time: 1.1133 data_time: 0.0070 memory: 8703 loss: 0.2638 decode.loss_ce: 0.1665 decode.acc_seg: 95.3334 aux.loss_ce: 0.0973 aux.acc_seg: 91.0322 +2024/08/11 10:19:15 - mmengine - INFO - Iter(train) [135300/160000] lr: 1.9423e-03 eta: 7:40:20 time: 1.1127 data_time: 0.0078 memory: 8703 loss: 0.2868 decode.loss_ce: 0.1828 decode.acc_seg: 95.5711 aux.loss_ce: 0.1040 aux.acc_seg: 93.5153 +2024/08/11 10:20:11 - mmengine - INFO - Iter(train) [135350/160000] lr: 1.9389e-03 eta: 7:39:24 time: 1.1125 data_time: 0.0082 memory: 8704 loss: 0.2967 decode.loss_ce: 0.1813 decode.acc_seg: 81.7649 aux.loss_ce: 0.1154 aux.acc_seg: 79.1727 +2024/08/11 10:21:06 - mmengine - INFO - Iter(train) [135400/160000] lr: 1.9356e-03 eta: 7:38:28 time: 1.1133 data_time: 0.0073 memory: 8705 loss: 0.4459 decode.loss_ce: 0.2701 decode.acc_seg: 90.0417 aux.loss_ce: 0.1757 aux.acc_seg: 89.5775 +2024/08/11 10:22:02 - mmengine - INFO - Iter(train) [135450/160000] lr: 1.9322e-03 eta: 7:37:32 time: 1.1193 data_time: 0.0087 memory: 8703 loss: 0.3590 decode.loss_ce: 0.2338 decode.acc_seg: 93.8735 aux.loss_ce: 0.1252 aux.acc_seg: 91.4780 +2024/08/11 10:22:58 - mmengine - INFO - Iter(train) [135500/160000] lr: 1.9289e-03 eta: 7:36:36 time: 1.1181 data_time: 0.0073 memory: 8703 loss: 0.3295 decode.loss_ce: 0.1963 decode.acc_seg: 89.2951 aux.loss_ce: 0.1332 aux.acc_seg: 88.3805 +2024/08/11 10:23:54 - mmengine - INFO - Iter(train) [135550/160000] lr: 1.9255e-03 eta: 7:35:41 time: 1.1189 data_time: 0.0066 memory: 8703 loss: 0.2234 decode.loss_ce: 0.1235 decode.acc_seg: 98.2559 aux.loss_ce: 0.1000 aux.acc_seg: 97.4593 +2024/08/11 10:24:50 - mmengine - INFO - Iter(train) [135600/160000] lr: 1.9221e-03 eta: 7:34:45 time: 1.1222 data_time: 0.0078 memory: 8704 loss: 0.3083 decode.loss_ce: 0.1796 decode.acc_seg: 96.3646 aux.loss_ce: 0.1286 aux.acc_seg: 91.2526 +2024/08/11 10:25:46 - mmengine - INFO - Iter(train) [135650/160000] lr: 1.9188e-03 eta: 7:33:49 time: 1.1158 data_time: 0.0082 memory: 8704 loss: 0.2168 decode.loss_ce: 0.1091 decode.acc_seg: 94.9963 aux.loss_ce: 0.1077 aux.acc_seg: 89.6043 +2024/08/11 10:26:42 - mmengine - INFO - Iter(train) [135700/160000] lr: 1.9154e-03 eta: 7:32:53 time: 1.1184 data_time: 0.0076 memory: 8703 loss: 0.2429 decode.loss_ce: 0.1408 decode.acc_seg: 95.7007 aux.loss_ce: 0.1022 aux.acc_seg: 86.5722 +2024/08/11 10:27:37 - mmengine - INFO - Iter(train) [135750/160000] lr: 1.9121e-03 eta: 7:31:57 time: 1.1109 data_time: 0.0066 memory: 8704 loss: 0.3622 decode.loss_ce: 0.2173 decode.acc_seg: 97.2928 aux.loss_ce: 0.1449 aux.acc_seg: 96.4977 +2024/08/11 10:28:33 - mmengine - INFO - Iter(train) [135800/160000] lr: 1.9087e-03 eta: 7:31:01 time: 1.1119 data_time: 0.0057 memory: 8703 loss: 0.2357 decode.loss_ce: 0.1336 decode.acc_seg: 96.4933 aux.loss_ce: 0.1020 aux.acc_seg: 96.2645 +2024/08/11 10:29:29 - mmengine - INFO - Iter(train) [135850/160000] lr: 1.9053e-03 eta: 7:30:05 time: 1.1136 data_time: 0.0080 memory: 8704 loss: 0.2389 decode.loss_ce: 0.1447 decode.acc_seg: 95.7499 aux.loss_ce: 0.0941 aux.acc_seg: 84.7014 +2024/08/11 10:30:25 - mmengine - INFO - Iter(train) [135900/160000] lr: 1.9020e-03 eta: 7:29:09 time: 1.1177 data_time: 0.0070 memory: 8703 loss: 0.3358 decode.loss_ce: 0.2086 decode.acc_seg: 93.8024 aux.loss_ce: 0.1272 aux.acc_seg: 91.0427 +2024/08/11 10:31:20 - mmengine - INFO - Iter(train) [135950/160000] lr: 1.8986e-03 eta: 7:28:13 time: 1.1160 data_time: 0.0071 memory: 8703 loss: 0.2953 decode.loss_ce: 0.1840 decode.acc_seg: 96.4627 aux.loss_ce: 0.1114 aux.acc_seg: 95.3912 +2024/08/11 10:32:16 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 10:32:16 - mmengine - INFO - Iter(train) [136000/160000] lr: 1.8952e-03 eta: 7:27:17 time: 1.1159 data_time: 0.0075 memory: 8703 loss: 0.4142 decode.loss_ce: 0.2556 decode.acc_seg: 96.0571 aux.loss_ce: 0.1586 aux.acc_seg: 90.4043 +2024/08/11 10:33:12 - mmengine - INFO - Iter(train) [136050/160000] lr: 1.8919e-03 eta: 7:26:21 time: 1.1151 data_time: 0.0071 memory: 8704 loss: 0.2538 decode.loss_ce: 0.1554 decode.acc_seg: 96.5715 aux.loss_ce: 0.0984 aux.acc_seg: 95.9898 +2024/08/11 10:34:08 - mmengine - INFO - Iter(train) [136100/160000] lr: 1.8885e-03 eta: 7:25:25 time: 1.1174 data_time: 0.0075 memory: 8704 loss: 0.2304 decode.loss_ce: 0.1398 decode.acc_seg: 96.8211 aux.loss_ce: 0.0905 aux.acc_seg: 96.3798 +2024/08/11 10:35:04 - mmengine - INFO - Iter(train) [136150/160000] lr: 1.8851e-03 eta: 7:24:29 time: 1.1159 data_time: 0.0075 memory: 8704 loss: 0.2700 decode.loss_ce: 0.1528 decode.acc_seg: 96.6739 aux.loss_ce: 0.1172 aux.acc_seg: 95.8031 +2024/08/11 10:36:00 - mmengine - INFO - Iter(train) [136200/160000] lr: 1.8818e-03 eta: 7:23:33 time: 1.1195 data_time: 0.0084 memory: 8704 loss: 0.3489 decode.loss_ce: 0.2233 decode.acc_seg: 94.1264 aux.loss_ce: 0.1256 aux.acc_seg: 95.6217 +2024/08/11 10:36:55 - mmengine - INFO - Iter(train) [136250/160000] lr: 1.8784e-03 eta: 7:22:38 time: 1.1121 data_time: 0.0067 memory: 8704 loss: 0.3187 decode.loss_ce: 0.1893 decode.acc_seg: 89.2533 aux.loss_ce: 0.1295 aux.acc_seg: 75.6497 +2024/08/11 10:37:51 - mmengine - INFO - Iter(train) [136300/160000] lr: 1.8750e-03 eta: 7:21:42 time: 1.1159 data_time: 0.0070 memory: 8705 loss: 0.3312 decode.loss_ce: 0.1896 decode.acc_seg: 96.4799 aux.loss_ce: 0.1417 aux.acc_seg: 92.8045 +2024/08/11 10:38:47 - mmengine - INFO - Iter(train) [136350/160000] lr: 1.8716e-03 eta: 7:20:46 time: 1.1105 data_time: 0.0064 memory: 8704 loss: 0.2676 decode.loss_ce: 0.1628 decode.acc_seg: 96.1281 aux.loss_ce: 0.1049 aux.acc_seg: 94.7335 +2024/08/11 10:39:43 - mmengine - INFO - Iter(train) [136400/160000] lr: 1.8683e-03 eta: 7:19:50 time: 1.1085 data_time: 0.0057 memory: 8704 loss: 0.2897 decode.loss_ce: 0.1700 decode.acc_seg: 94.0769 aux.loss_ce: 0.1196 aux.acc_seg: 94.1590 +2024/08/11 10:40:38 - mmengine - INFO - Iter(train) [136450/160000] lr: 1.8649e-03 eta: 7:18:54 time: 1.1124 data_time: 0.0076 memory: 8703 loss: 0.3436 decode.loss_ce: 0.2073 decode.acc_seg: 87.3759 aux.loss_ce: 0.1363 aux.acc_seg: 87.5680 +2024/08/11 10:41:34 - mmengine - INFO - Iter(train) [136500/160000] lr: 1.8615e-03 eta: 7:17:58 time: 1.1151 data_time: 0.0065 memory: 8704 loss: 0.2915 decode.loss_ce: 0.1616 decode.acc_seg: 92.7322 aux.loss_ce: 0.1299 aux.acc_seg: 85.6732 +2024/08/11 10:42:30 - mmengine - INFO - Iter(train) [136550/160000] lr: 1.8582e-03 eta: 7:17:02 time: 1.1142 data_time: 0.0063 memory: 8704 loss: 0.3315 decode.loss_ce: 0.1912 decode.acc_seg: 83.2623 aux.loss_ce: 0.1403 aux.acc_seg: 84.6835 +2024/08/11 10:43:25 - mmengine - INFO - Iter(train) [136600/160000] lr: 1.8548e-03 eta: 7:16:06 time: 1.1149 data_time: 0.0065 memory: 8704 loss: 0.2030 decode.loss_ce: 0.1275 decode.acc_seg: 94.6330 aux.loss_ce: 0.0755 aux.acc_seg: 92.5879 +2024/08/11 10:44:21 - mmengine - INFO - Iter(train) [136650/160000] lr: 1.8514e-03 eta: 7:15:10 time: 1.1223 data_time: 0.0073 memory: 8703 loss: 0.2848 decode.loss_ce: 0.1772 decode.acc_seg: 94.1836 aux.loss_ce: 0.1075 aux.acc_seg: 93.4843 +2024/08/11 10:45:17 - mmengine - INFO - Iter(train) [136700/160000] lr: 1.8480e-03 eta: 7:14:14 time: 1.1209 data_time: 0.0095 memory: 8704 loss: 0.2591 decode.loss_ce: 0.1634 decode.acc_seg: 92.8479 aux.loss_ce: 0.0957 aux.acc_seg: 90.5354 +2024/08/11 10:46:13 - mmengine - INFO - Iter(train) [136750/160000] lr: 1.8447e-03 eta: 7:13:18 time: 1.1176 data_time: 0.0080 memory: 8703 loss: 0.2954 decode.loss_ce: 0.1862 decode.acc_seg: 96.9884 aux.loss_ce: 0.1092 aux.acc_seg: 94.2619 +2024/08/11 10:47:09 - mmengine - INFO - Iter(train) [136800/160000] lr: 1.8413e-03 eta: 7:12:22 time: 1.1132 data_time: 0.0067 memory: 8704 loss: 0.2892 decode.loss_ce: 0.1695 decode.acc_seg: 93.7900 aux.loss_ce: 0.1197 aux.acc_seg: 86.6898 +2024/08/11 10:48:04 - mmengine - INFO - Iter(train) [136850/160000] lr: 1.8379e-03 eta: 7:11:26 time: 1.1096 data_time: 0.0054 memory: 8703 loss: 0.3601 decode.loss_ce: 0.2112 decode.acc_seg: 90.3904 aux.loss_ce: 0.1488 aux.acc_seg: 87.9361 +2024/08/11 10:49:00 - mmengine - INFO - Iter(train) [136900/160000] lr: 1.8345e-03 eta: 7:10:30 time: 1.1132 data_time: 0.0077 memory: 8703 loss: 0.2444 decode.loss_ce: 0.1401 decode.acc_seg: 90.5293 aux.loss_ce: 0.1043 aux.acc_seg: 84.4405 +2024/08/11 10:49:56 - mmengine - INFO - Iter(train) [136950/160000] lr: 1.8311e-03 eta: 7:09:34 time: 1.1125 data_time: 0.0062 memory: 8703 loss: 0.3251 decode.loss_ce: 0.2055 decode.acc_seg: 97.0865 aux.loss_ce: 0.1196 aux.acc_seg: 91.5220 +2024/08/11 10:50:52 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 10:50:52 - mmengine - INFO - Iter(train) [137000/160000] lr: 1.8278e-03 eta: 7:08:38 time: 1.1174 data_time: 0.0055 memory: 8704 loss: 0.2557 decode.loss_ce: 0.1523 decode.acc_seg: 90.3821 aux.loss_ce: 0.1034 aux.acc_seg: 87.7195 +2024/08/11 10:51:47 - mmengine - INFO - Iter(train) [137050/160000] lr: 1.8244e-03 eta: 7:07:42 time: 1.1077 data_time: 0.0065 memory: 8704 loss: 0.1885 decode.loss_ce: 0.1109 decode.acc_seg: 98.2024 aux.loss_ce: 0.0776 aux.acc_seg: 97.2010 +2024/08/11 10:52:43 - mmengine - INFO - Iter(train) [137100/160000] lr: 1.8210e-03 eta: 7:06:47 time: 1.1190 data_time: 0.0080 memory: 8704 loss: 0.2140 decode.loss_ce: 0.1302 decode.acc_seg: 95.1642 aux.loss_ce: 0.0838 aux.acc_seg: 91.3553 +2024/08/11 10:53:39 - mmengine - INFO - Iter(train) [137150/160000] lr: 1.8176e-03 eta: 7:05:51 time: 1.1154 data_time: 0.0059 memory: 8704 loss: 0.2025 decode.loss_ce: 0.1220 decode.acc_seg: 91.9949 aux.loss_ce: 0.0806 aux.acc_seg: 87.7269 +2024/08/11 10:54:35 - mmengine - INFO - Iter(train) [137200/160000] lr: 1.8142e-03 eta: 7:04:55 time: 1.1154 data_time: 0.0067 memory: 8704 loss: 0.3622 decode.loss_ce: 0.2248 decode.acc_seg: 90.4619 aux.loss_ce: 0.1374 aux.acc_seg: 85.9248 +2024/08/11 10:55:31 - mmengine - INFO - Iter(train) [137250/160000] lr: 1.8109e-03 eta: 7:03:59 time: 1.1209 data_time: 0.0067 memory: 8704 loss: 0.3574 decode.loss_ce: 0.1927 decode.acc_seg: 93.5148 aux.loss_ce: 0.1647 aux.acc_seg: 91.6761 +2024/08/11 10:56:26 - mmengine - INFO - Iter(train) [137300/160000] lr: 1.8075e-03 eta: 7:03:03 time: 1.1187 data_time: 0.0066 memory: 8703 loss: 0.2103 decode.loss_ce: 0.1232 decode.acc_seg: 97.6700 aux.loss_ce: 0.0871 aux.acc_seg: 97.5185 +2024/08/11 10:57:22 - mmengine - INFO - Iter(train) [137350/160000] lr: 1.8041e-03 eta: 7:02:07 time: 1.1173 data_time: 0.0087 memory: 8704 loss: 0.2075 decode.loss_ce: 0.1232 decode.acc_seg: 94.4935 aux.loss_ce: 0.0843 aux.acc_seg: 93.2507 +2024/08/11 10:58:18 - mmengine - INFO - Iter(train) [137400/160000] lr: 1.8007e-03 eta: 7:01:11 time: 1.1169 data_time: 0.0079 memory: 8704 loss: 0.3347 decode.loss_ce: 0.2048 decode.acc_seg: 86.6142 aux.loss_ce: 0.1299 aux.acc_seg: 85.0529 +2024/08/11 10:59:14 - mmengine - INFO - Iter(train) [137450/160000] lr: 1.7973e-03 eta: 7:00:15 time: 1.1137 data_time: 0.0077 memory: 8704 loss: 0.2395 decode.loss_ce: 0.1531 decode.acc_seg: 96.7438 aux.loss_ce: 0.0864 aux.acc_seg: 95.7226 +2024/08/11 11:00:10 - mmengine - INFO - Iter(train) [137500/160000] lr: 1.7939e-03 eta: 6:59:19 time: 1.1159 data_time: 0.0068 memory: 8703 loss: 0.3316 decode.loss_ce: 0.1990 decode.acc_seg: 76.9953 aux.loss_ce: 0.1326 aux.acc_seg: 75.5365 +2024/08/11 11:01:05 - mmengine - INFO - Iter(train) [137550/160000] lr: 1.7905e-03 eta: 6:58:23 time: 1.1108 data_time: 0.0067 memory: 8704 loss: 0.2057 decode.loss_ce: 0.1177 decode.acc_seg: 94.7820 aux.loss_ce: 0.0880 aux.acc_seg: 69.7028 +2024/08/11 11:02:01 - mmengine - INFO - Iter(train) [137600/160000] lr: 1.7871e-03 eta: 6:57:27 time: 1.1169 data_time: 0.0067 memory: 8703 loss: 0.2215 decode.loss_ce: 0.1439 decode.acc_seg: 94.8561 aux.loss_ce: 0.0776 aux.acc_seg: 93.2753 +2024/08/11 11:02:57 - mmengine - INFO - Iter(train) [137650/160000] lr: 1.7838e-03 eta: 6:56:31 time: 1.1161 data_time: 0.0075 memory: 8704 loss: 0.2453 decode.loss_ce: 0.1351 decode.acc_seg: 94.0929 aux.loss_ce: 0.1103 aux.acc_seg: 78.4007 +2024/08/11 11:03:52 - mmengine - INFO - Iter(train) [137700/160000] lr: 1.7804e-03 eta: 6:55:35 time: 1.1140 data_time: 0.0065 memory: 8703 loss: 0.3023 decode.loss_ce: 0.1719 decode.acc_seg: 93.7373 aux.loss_ce: 0.1304 aux.acc_seg: 90.0048 +2024/08/11 11:04:48 - mmengine - INFO - Iter(train) [137750/160000] lr: 1.7770e-03 eta: 6:54:39 time: 1.1211 data_time: 0.0074 memory: 8704 loss: 0.2718 decode.loss_ce: 0.1569 decode.acc_seg: 96.3955 aux.loss_ce: 0.1149 aux.acc_seg: 91.6460 +2024/08/11 11:05:44 - mmengine - INFO - Iter(train) [137800/160000] lr: 1.7736e-03 eta: 6:53:43 time: 1.1209 data_time: 0.0083 memory: 8704 loss: 0.2286 decode.loss_ce: 0.1364 decode.acc_seg: 96.4655 aux.loss_ce: 0.0922 aux.acc_seg: 95.6503 +2024/08/11 11:06:40 - mmengine - INFO - Iter(train) [137850/160000] lr: 1.7702e-03 eta: 6:52:48 time: 1.1156 data_time: 0.0077 memory: 8704 loss: 0.1844 decode.loss_ce: 0.1153 decode.acc_seg: 96.7536 aux.loss_ce: 0.0691 aux.acc_seg: 95.8913 +2024/08/11 11:07:36 - mmengine - INFO - Iter(train) [137900/160000] lr: 1.7668e-03 eta: 6:51:52 time: 1.1126 data_time: 0.0064 memory: 8703 loss: 0.2911 decode.loss_ce: 0.1760 decode.acc_seg: 95.8137 aux.loss_ce: 0.1150 aux.acc_seg: 93.4505 +2024/08/11 11:08:31 - mmengine - INFO - Iter(train) [137950/160000] lr: 1.7634e-03 eta: 6:50:56 time: 1.1138 data_time: 0.0070 memory: 8703 loss: 0.2302 decode.loss_ce: 0.1478 decode.acc_seg: 96.2298 aux.loss_ce: 0.0823 aux.acc_seg: 94.2111 +2024/08/11 11:09:27 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 11:09:27 - mmengine - INFO - Iter(train) [138000/160000] lr: 1.7600e-03 eta: 6:50:00 time: 1.1122 data_time: 0.0069 memory: 8704 loss: 0.2813 decode.loss_ce: 0.1655 decode.acc_seg: 95.0639 aux.loss_ce: 0.1158 aux.acc_seg: 90.1315 +2024/08/11 11:10:23 - mmengine - INFO - Iter(train) [138050/160000] lr: 1.7566e-03 eta: 6:49:04 time: 1.1153 data_time: 0.0070 memory: 8703 loss: 0.4318 decode.loss_ce: 0.2629 decode.acc_seg: 96.1519 aux.loss_ce: 0.1689 aux.acc_seg: 90.5930 +2024/08/11 11:11:19 - mmengine - INFO - Iter(train) [138100/160000] lr: 1.7532e-03 eta: 6:48:08 time: 1.1132 data_time: 0.0075 memory: 8703 loss: 0.4025 decode.loss_ce: 0.2502 decode.acc_seg: 92.9911 aux.loss_ce: 0.1523 aux.acc_seg: 92.2526 +2024/08/11 11:12:14 - mmengine - INFO - Iter(train) [138150/160000] lr: 1.7498e-03 eta: 6:47:12 time: 1.1144 data_time: 0.0074 memory: 8703 loss: 0.2017 decode.loss_ce: 0.1250 decode.acc_seg: 94.8652 aux.loss_ce: 0.0767 aux.acc_seg: 89.5051 +2024/08/11 11:13:10 - mmengine - INFO - Iter(train) [138200/160000] lr: 1.7464e-03 eta: 6:46:16 time: 1.1120 data_time: 0.0063 memory: 8703 loss: 0.1959 decode.loss_ce: 0.1203 decode.acc_seg: 97.2573 aux.loss_ce: 0.0757 aux.acc_seg: 96.3743 +2024/08/11 11:14:06 - mmengine - INFO - Iter(train) [138250/160000] lr: 1.7430e-03 eta: 6:45:20 time: 1.1166 data_time: 0.0090 memory: 8704 loss: 0.2581 decode.loss_ce: 0.1570 decode.acc_seg: 92.5558 aux.loss_ce: 0.1011 aux.acc_seg: 90.6171 +2024/08/11 11:15:02 - mmengine - INFO - Iter(train) [138300/160000] lr: 1.7396e-03 eta: 6:44:24 time: 1.1207 data_time: 0.0061 memory: 8704 loss: 0.3083 decode.loss_ce: 0.1812 decode.acc_seg: 85.4288 aux.loss_ce: 0.1271 aux.acc_seg: 79.1056 +2024/08/11 11:15:57 - mmengine - INFO - Iter(train) [138350/160000] lr: 1.7362e-03 eta: 6:43:28 time: 1.1125 data_time: 0.0064 memory: 8704 loss: 0.2760 decode.loss_ce: 0.1579 decode.acc_seg: 94.4582 aux.loss_ce: 0.1180 aux.acc_seg: 89.3021 +2024/08/11 11:16:53 - mmengine - INFO - Iter(train) [138400/160000] lr: 1.7328e-03 eta: 6:42:32 time: 1.1106 data_time: 0.0069 memory: 8704 loss: 0.2380 decode.loss_ce: 0.1465 decode.acc_seg: 89.7527 aux.loss_ce: 0.0915 aux.acc_seg: 90.4638 +2024/08/11 11:17:49 - mmengine - INFO - Iter(train) [138450/160000] lr: 1.7294e-03 eta: 6:41:36 time: 1.1166 data_time: 0.0071 memory: 8704 loss: 0.2749 decode.loss_ce: 0.1576 decode.acc_seg: 97.2214 aux.loss_ce: 0.1172 aux.acc_seg: 95.3061 +2024/08/11 11:18:45 - mmengine - INFO - Iter(train) [138500/160000] lr: 1.7260e-03 eta: 6:40:40 time: 1.1161 data_time: 0.0060 memory: 8704 loss: 0.2298 decode.loss_ce: 0.1349 decode.acc_seg: 94.4693 aux.loss_ce: 0.0949 aux.acc_seg: 85.6617 +2024/08/11 11:19:40 - mmengine - INFO - Iter(train) [138550/160000] lr: 1.7226e-03 eta: 6:39:44 time: 1.1128 data_time: 0.0075 memory: 8704 loss: 0.3731 decode.loss_ce: 0.2308 decode.acc_seg: 95.2819 aux.loss_ce: 0.1423 aux.acc_seg: 93.7077 +2024/08/11 11:20:36 - mmengine - INFO - Iter(train) [138600/160000] lr: 1.7192e-03 eta: 6:38:48 time: 1.1173 data_time: 0.0068 memory: 8703 loss: 0.2607 decode.loss_ce: 0.1598 decode.acc_seg: 96.2543 aux.loss_ce: 0.1009 aux.acc_seg: 94.8143 +2024/08/11 11:21:32 - mmengine - INFO - Iter(train) [138650/160000] lr: 1.7158e-03 eta: 6:37:53 time: 1.1113 data_time: 0.0063 memory: 8703 loss: 0.2746 decode.loss_ce: 0.1594 decode.acc_seg: 97.1147 aux.loss_ce: 0.1152 aux.acc_seg: 94.5553 +2024/08/11 11:22:28 - mmengine - INFO - Iter(train) [138700/160000] lr: 1.7124e-03 eta: 6:36:57 time: 1.1147 data_time: 0.0069 memory: 8703 loss: 0.2563 decode.loss_ce: 0.1541 decode.acc_seg: 95.0180 aux.loss_ce: 0.1022 aux.acc_seg: 88.6764 +2024/08/11 11:23:23 - mmengine - INFO - Iter(train) [138750/160000] lr: 1.7090e-03 eta: 6:36:01 time: 1.1140 data_time: 0.0060 memory: 8703 loss: 0.3902 decode.loss_ce: 0.2129 decode.acc_seg: 95.4742 aux.loss_ce: 0.1773 aux.acc_seg: 92.9354 +2024/08/11 11:24:19 - mmengine - INFO - Iter(train) [138800/160000] lr: 1.7056e-03 eta: 6:35:05 time: 1.1142 data_time: 0.0076 memory: 8704 loss: 0.3284 decode.loss_ce: 0.1885 decode.acc_seg: 98.2051 aux.loss_ce: 0.1400 aux.acc_seg: 97.9127 +2024/08/11 11:25:15 - mmengine - INFO - Iter(train) [138850/160000] lr: 1.7022e-03 eta: 6:34:09 time: 1.1209 data_time: 0.0066 memory: 8704 loss: 0.3285 decode.loss_ce: 0.1950 decode.acc_seg: 95.1386 aux.loss_ce: 0.1335 aux.acc_seg: 94.1966 +2024/08/11 11:26:11 - mmengine - INFO - Iter(train) [138900/160000] lr: 1.6988e-03 eta: 6:33:13 time: 1.1163 data_time: 0.0075 memory: 8703 loss: 0.3151 decode.loss_ce: 0.1866 decode.acc_seg: 95.1562 aux.loss_ce: 0.1285 aux.acc_seg: 91.9909 +2024/08/11 11:27:06 - mmengine - INFO - Iter(train) [138950/160000] lr: 1.6954e-03 eta: 6:32:17 time: 1.1176 data_time: 0.0057 memory: 8704 loss: 0.2930 decode.loss_ce: 0.1731 decode.acc_seg: 90.0518 aux.loss_ce: 0.1199 aux.acc_seg: 87.9781 +2024/08/11 11:28:02 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 11:28:02 - mmengine - INFO - Iter(train) [139000/160000] lr: 1.6919e-03 eta: 6:31:21 time: 1.1151 data_time: 0.0070 memory: 8703 loss: 0.2478 decode.loss_ce: 0.1477 decode.acc_seg: 96.3258 aux.loss_ce: 0.1001 aux.acc_seg: 96.1867 +2024/08/11 11:28:58 - mmengine - INFO - Iter(train) [139050/160000] lr: 1.6885e-03 eta: 6:30:25 time: 1.1181 data_time: 0.0070 memory: 8703 loss: 0.3194 decode.loss_ce: 0.1986 decode.acc_seg: 97.4571 aux.loss_ce: 0.1208 aux.acc_seg: 97.0756 +2024/08/11 11:29:54 - mmengine - INFO - Iter(train) [139100/160000] lr: 1.6851e-03 eta: 6:29:29 time: 1.1158 data_time: 0.0062 memory: 8703 loss: 0.3825 decode.loss_ce: 0.2493 decode.acc_seg: 94.8538 aux.loss_ce: 0.1332 aux.acc_seg: 92.1186 +2024/08/11 11:30:50 - mmengine - INFO - Iter(train) [139150/160000] lr: 1.6817e-03 eta: 6:28:33 time: 1.1146 data_time: 0.0057 memory: 8704 loss: 0.4147 decode.loss_ce: 0.2645 decode.acc_seg: 96.2661 aux.loss_ce: 0.1502 aux.acc_seg: 95.8588 +2024/08/11 11:31:45 - mmengine - INFO - Iter(train) [139200/160000] lr: 1.6783e-03 eta: 6:27:37 time: 1.1165 data_time: 0.0073 memory: 8703 loss: 0.2586 decode.loss_ce: 0.1560 decode.acc_seg: 92.5657 aux.loss_ce: 0.1026 aux.acc_seg: 89.0927 +2024/08/11 11:32:41 - mmengine - INFO - Iter(train) [139250/160000] lr: 1.6749e-03 eta: 6:26:41 time: 1.1161 data_time: 0.0080 memory: 8704 loss: 0.3094 decode.loss_ce: 0.1926 decode.acc_seg: 92.8743 aux.loss_ce: 0.1168 aux.acc_seg: 87.4556 +2024/08/11 11:33:37 - mmengine - INFO - Iter(train) [139300/160000] lr: 1.6715e-03 eta: 6:25:45 time: 1.1148 data_time: 0.0070 memory: 8703 loss: 0.3466 decode.loss_ce: 0.2086 decode.acc_seg: 89.4144 aux.loss_ce: 0.1379 aux.acc_seg: 87.2586 +2024/08/11 11:34:33 - mmengine - INFO - Iter(train) [139350/160000] lr: 1.6680e-03 eta: 6:24:49 time: 1.1140 data_time: 0.0074 memory: 8704 loss: 0.2981 decode.loss_ce: 0.1913 decode.acc_seg: 94.1577 aux.loss_ce: 0.1068 aux.acc_seg: 90.2302 +2024/08/11 11:35:28 - mmengine - INFO - Iter(train) [139400/160000] lr: 1.6646e-03 eta: 6:23:54 time: 1.1146 data_time: 0.0086 memory: 8704 loss: 0.2661 decode.loss_ce: 0.1657 decode.acc_seg: 91.7296 aux.loss_ce: 0.1004 aux.acc_seg: 90.1895 +2024/08/11 11:36:24 - mmengine - INFO - Iter(train) [139450/160000] lr: 1.6612e-03 eta: 6:22:58 time: 1.1139 data_time: 0.0057 memory: 8703 loss: 0.2550 decode.loss_ce: 0.1583 decode.acc_seg: 96.4258 aux.loss_ce: 0.0967 aux.acc_seg: 93.9119 +2024/08/11 11:37:20 - mmengine - INFO - Iter(train) [139500/160000] lr: 1.6578e-03 eta: 6:22:02 time: 1.1190 data_time: 0.0065 memory: 8704 loss: 0.3466 decode.loss_ce: 0.2110 decode.acc_seg: 89.6701 aux.loss_ce: 0.1356 aux.acc_seg: 84.0227 +2024/08/11 11:38:16 - mmengine - INFO - Iter(train) [139550/160000] lr: 1.6544e-03 eta: 6:21:06 time: 1.1140 data_time: 0.0068 memory: 8704 loss: 0.2135 decode.loss_ce: 0.1259 decode.acc_seg: 95.2482 aux.loss_ce: 0.0876 aux.acc_seg: 95.1878 +2024/08/11 11:39:12 - mmengine - INFO - Iter(train) [139600/160000] lr: 1.6509e-03 eta: 6:20:10 time: 1.1180 data_time: 0.0070 memory: 8704 loss: 0.2581 decode.loss_ce: 0.1519 decode.acc_seg: 93.2815 aux.loss_ce: 0.1061 aux.acc_seg: 90.9696 +2024/08/11 11:40:08 - mmengine - INFO - Iter(train) [139650/160000] lr: 1.6475e-03 eta: 6:19:14 time: 1.1154 data_time: 0.0062 memory: 8703 loss: 0.2141 decode.loss_ce: 0.1334 decode.acc_seg: 95.7949 aux.loss_ce: 0.0807 aux.acc_seg: 89.3163 +2024/08/11 11:41:03 - mmengine - INFO - Iter(train) [139700/160000] lr: 1.6441e-03 eta: 6:18:18 time: 1.1112 data_time: 0.0063 memory: 8704 loss: 0.2578 decode.loss_ce: 0.1661 decode.acc_seg: 94.3721 aux.loss_ce: 0.0917 aux.acc_seg: 93.3249 +2024/08/11 11:41:59 - mmengine - INFO - Iter(train) [139750/160000] lr: 1.6407e-03 eta: 6:17:22 time: 1.1136 data_time: 0.0067 memory: 8704 loss: 0.2581 decode.loss_ce: 0.1610 decode.acc_seg: 90.2559 aux.loss_ce: 0.0970 aux.acc_seg: 81.4377 +2024/08/11 11:42:55 - mmengine - INFO - Iter(train) [139800/160000] lr: 1.6373e-03 eta: 6:16:26 time: 1.1089 data_time: 0.0064 memory: 8703 loss: 0.2353 decode.loss_ce: 0.1448 decode.acc_seg: 96.5377 aux.loss_ce: 0.0905 aux.acc_seg: 96.1698 +2024/08/11 11:43:50 - mmengine - INFO - Iter(train) [139850/160000] lr: 1.6338e-03 eta: 6:15:30 time: 1.1196 data_time: 0.0069 memory: 8703 loss: 0.2184 decode.loss_ce: 0.1268 decode.acc_seg: 96.0943 aux.loss_ce: 0.0916 aux.acc_seg: 95.3633 +2024/08/11 11:44:46 - mmengine - INFO - Iter(train) [139900/160000] lr: 1.6304e-03 eta: 6:14:34 time: 1.1152 data_time: 0.0075 memory: 8704 loss: 0.2790 decode.loss_ce: 0.1718 decode.acc_seg: 96.2117 aux.loss_ce: 0.1073 aux.acc_seg: 95.6447 +2024/08/11 11:45:42 - mmengine - INFO - Iter(train) [139950/160000] lr: 1.6270e-03 eta: 6:13:38 time: 1.1133 data_time: 0.0069 memory: 8704 loss: 0.2641 decode.loss_ce: 0.1601 decode.acc_seg: 93.3419 aux.loss_ce: 0.1040 aux.acc_seg: 91.8945 +2024/08/11 11:46:37 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 11:46:37 - mmengine - INFO - Iter(train) [140000/160000] lr: 1.6235e-03 eta: 6:12:42 time: 1.1150 data_time: 0.0058 memory: 8703 loss: 0.2155 decode.loss_ce: 0.1341 decode.acc_seg: 92.3155 aux.loss_ce: 0.0814 aux.acc_seg: 88.7536 +2024/08/11 11:47:33 - mmengine - INFO - Iter(train) [140050/160000] lr: 1.6201e-03 eta: 6:11:46 time: 1.1115 data_time: 0.0075 memory: 8704 loss: 0.2209 decode.loss_ce: 0.1372 decode.acc_seg: 93.9641 aux.loss_ce: 0.0837 aux.acc_seg: 93.2795 +2024/08/11 11:48:29 - mmengine - INFO - Iter(train) [140100/160000] lr: 1.6167e-03 eta: 6:10:51 time: 1.1121 data_time: 0.0071 memory: 8704 loss: 0.3340 decode.loss_ce: 0.2163 decode.acc_seg: 97.7811 aux.loss_ce: 0.1177 aux.acc_seg: 96.2826 +2024/08/11 11:49:25 - mmengine - INFO - Iter(train) [140150/160000] lr: 1.6133e-03 eta: 6:09:55 time: 1.1205 data_time: 0.0076 memory: 8703 loss: 0.3942 decode.loss_ce: 0.2263 decode.acc_seg: 96.7555 aux.loss_ce: 0.1679 aux.acc_seg: 95.8422 +2024/08/11 11:50:21 - mmengine - INFO - Iter(train) [140200/160000] lr: 1.6098e-03 eta: 6:08:59 time: 1.1187 data_time: 0.0074 memory: 8703 loss: 0.2593 decode.loss_ce: 0.1459 decode.acc_seg: 97.4401 aux.loss_ce: 0.1133 aux.acc_seg: 96.9045 +2024/08/11 11:51:17 - mmengine - INFO - Iter(train) [140250/160000] lr: 1.6064e-03 eta: 6:08:03 time: 1.1132 data_time: 0.0067 memory: 8703 loss: 0.2815 decode.loss_ce: 0.1628 decode.acc_seg: 90.8802 aux.loss_ce: 0.1187 aux.acc_seg: 85.2458 +2024/08/11 11:52:12 - mmengine - INFO - Iter(train) [140300/160000] lr: 1.6030e-03 eta: 6:07:07 time: 1.1128 data_time: 0.0070 memory: 8703 loss: 0.3030 decode.loss_ce: 0.1855 decode.acc_seg: 94.3431 aux.loss_ce: 0.1175 aux.acc_seg: 92.3349 +2024/08/11 11:53:08 - mmengine - INFO - Iter(train) [140350/160000] lr: 1.5995e-03 eta: 6:06:11 time: 1.1165 data_time: 0.0067 memory: 8704 loss: 0.3695 decode.loss_ce: 0.2251 decode.acc_seg: 92.0562 aux.loss_ce: 0.1444 aux.acc_seg: 86.5300 +2024/08/11 11:54:04 - mmengine - INFO - Iter(train) [140400/160000] lr: 1.5961e-03 eta: 6:05:15 time: 1.1188 data_time: 0.0080 memory: 8704 loss: 0.3863 decode.loss_ce: 0.2286 decode.acc_seg: 92.8929 aux.loss_ce: 0.1577 aux.acc_seg: 78.8619 +2024/08/11 11:55:00 - mmengine - INFO - Iter(train) [140450/160000] lr: 1.5927e-03 eta: 6:04:19 time: 1.1173 data_time: 0.0066 memory: 8704 loss: 0.2787 decode.loss_ce: 0.1610 decode.acc_seg: 95.0553 aux.loss_ce: 0.1177 aux.acc_seg: 94.0024 +2024/08/11 11:55:55 - mmengine - INFO - Iter(train) [140500/160000] lr: 1.5892e-03 eta: 6:03:23 time: 1.1087 data_time: 0.0066 memory: 8703 loss: 0.5275 decode.loss_ce: 0.3085 decode.acc_seg: 92.9837 aux.loss_ce: 0.2191 aux.acc_seg: 89.8116 +2024/08/11 11:56:51 - mmengine - INFO - Iter(train) [140550/160000] lr: 1.5858e-03 eta: 6:02:27 time: 1.1087 data_time: 0.0064 memory: 8703 loss: 0.2465 decode.loss_ce: 0.1585 decode.acc_seg: 96.6579 aux.loss_ce: 0.0880 aux.acc_seg: 93.9756 +2024/08/11 11:57:47 - mmengine - INFO - Iter(train) [140600/160000] lr: 1.5824e-03 eta: 6:01:31 time: 1.1139 data_time: 0.0057 memory: 8703 loss: 0.2980 decode.loss_ce: 0.1855 decode.acc_seg: 85.5927 aux.loss_ce: 0.1125 aux.acc_seg: 83.5175 +2024/08/11 11:58:42 - mmengine - INFO - Iter(train) [140650/160000] lr: 1.5789e-03 eta: 6:00:35 time: 1.1169 data_time: 0.0072 memory: 8704 loss: 0.3847 decode.loss_ce: 0.2340 decode.acc_seg: 87.7813 aux.loss_ce: 0.1506 aux.acc_seg: 84.2840 +2024/08/11 11:59:38 - mmengine - INFO - Iter(train) [140700/160000] lr: 1.5755e-03 eta: 5:59:39 time: 1.1151 data_time: 0.0067 memory: 8703 loss: 0.4148 decode.loss_ce: 0.2415 decode.acc_seg: 91.8176 aux.loss_ce: 0.1734 aux.acc_seg: 81.1083 +2024/08/11 12:00:34 - mmengine - INFO - Iter(train) [140750/160000] lr: 1.5720e-03 eta: 5:58:43 time: 1.1174 data_time: 0.0073 memory: 8704 loss: 0.2788 decode.loss_ce: 0.1585 decode.acc_seg: 96.2917 aux.loss_ce: 0.1203 aux.acc_seg: 94.4074 +2024/08/11 12:01:30 - mmengine - INFO - Iter(train) [140800/160000] lr: 1.5686e-03 eta: 5:57:47 time: 1.1089 data_time: 0.0057 memory: 8703 loss: 0.3172 decode.loss_ce: 0.1940 decode.acc_seg: 94.5585 aux.loss_ce: 0.1232 aux.acc_seg: 89.4003 +2024/08/11 12:02:25 - mmengine - INFO - Iter(train) [140850/160000] lr: 1.5651e-03 eta: 5:56:52 time: 1.1149 data_time: 0.0069 memory: 8704 loss: 0.3066 decode.loss_ce: 0.1891 decode.acc_seg: 96.9292 aux.loss_ce: 0.1175 aux.acc_seg: 94.4532 +2024/08/11 12:03:21 - mmengine - INFO - Iter(train) [140900/160000] lr: 1.5617e-03 eta: 5:55:56 time: 1.1202 data_time: 0.0088 memory: 8704 loss: 0.3278 decode.loss_ce: 0.1932 decode.acc_seg: 79.8899 aux.loss_ce: 0.1346 aux.acc_seg: 73.1930 +2024/08/11 12:04:17 - mmengine - INFO - Iter(train) [140950/160000] lr: 1.5583e-03 eta: 5:55:00 time: 1.1107 data_time: 0.0078 memory: 8704 loss: 0.2975 decode.loss_ce: 0.1806 decode.acc_seg: 93.9204 aux.loss_ce: 0.1169 aux.acc_seg: 92.2291 +2024/08/11 12:05:13 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 12:05:13 - mmengine - INFO - Iter(train) [141000/160000] lr: 1.5548e-03 eta: 5:54:04 time: 1.1150 data_time: 0.0075 memory: 8703 loss: 0.2397 decode.loss_ce: 0.1461 decode.acc_seg: 94.7545 aux.loss_ce: 0.0936 aux.acc_seg: 93.7521 +2024/08/11 12:06:08 - mmengine - INFO - Iter(train) [141050/160000] lr: 1.5514e-03 eta: 5:53:08 time: 1.1110 data_time: 0.0070 memory: 8704 loss: 0.3141 decode.loss_ce: 0.1864 decode.acc_seg: 90.6186 aux.loss_ce: 0.1278 aux.acc_seg: 90.9350 +2024/08/11 12:07:04 - mmengine - INFO - Iter(train) [141100/160000] lr: 1.5479e-03 eta: 5:52:12 time: 1.1152 data_time: 0.0067 memory: 8704 loss: 0.3505 decode.loss_ce: 0.2214 decode.acc_seg: 96.5411 aux.loss_ce: 0.1291 aux.acc_seg: 94.7143 +2024/08/11 12:07:59 - mmengine - INFO - Iter(train) [141150/160000] lr: 1.5445e-03 eta: 5:51:16 time: 1.1118 data_time: 0.0057 memory: 8703 loss: 0.2901 decode.loss_ce: 0.1723 decode.acc_seg: 91.3470 aux.loss_ce: 0.1178 aux.acc_seg: 86.4511 +2024/08/11 12:08:55 - mmengine - INFO - Iter(train) [141200/160000] lr: 1.5410e-03 eta: 5:50:20 time: 1.1175 data_time: 0.0072 memory: 8704 loss: 0.4090 decode.loss_ce: 0.2528 decode.acc_seg: 88.8516 aux.loss_ce: 0.1563 aux.acc_seg: 87.4299 +2024/08/11 12:09:51 - mmengine - INFO - Iter(train) [141250/160000] lr: 1.5376e-03 eta: 5:49:24 time: 1.1148 data_time: 0.0059 memory: 8704 loss: 0.3470 decode.loss_ce: 0.1936 decode.acc_seg: 94.2270 aux.loss_ce: 0.1534 aux.acc_seg: 92.7444 +2024/08/11 12:10:47 - mmengine - INFO - Iter(train) [141300/160000] lr: 1.5341e-03 eta: 5:48:28 time: 1.1147 data_time: 0.0065 memory: 8705 loss: 0.2741 decode.loss_ce: 0.1571 decode.acc_seg: 96.3783 aux.loss_ce: 0.1171 aux.acc_seg: 95.6283 +2024/08/11 12:11:42 - mmengine - INFO - Iter(train) [141350/160000] lr: 1.5307e-03 eta: 5:47:32 time: 1.1116 data_time: 0.0072 memory: 8704 loss: 0.2301 decode.loss_ce: 0.1323 decode.acc_seg: 97.0488 aux.loss_ce: 0.0977 aux.acc_seg: 96.5665 +2024/08/11 12:12:38 - mmengine - INFO - Iter(train) [141400/160000] lr: 1.5272e-03 eta: 5:46:36 time: 1.1210 data_time: 0.0078 memory: 8704 loss: 0.2444 decode.loss_ce: 0.1505 decode.acc_seg: 90.7692 aux.loss_ce: 0.0939 aux.acc_seg: 88.9224 +2024/08/11 12:13:34 - mmengine - INFO - Iter(train) [141450/160000] lr: 1.5238e-03 eta: 5:45:40 time: 1.1113 data_time: 0.0057 memory: 8703 loss: 0.2589 decode.loss_ce: 0.1491 decode.acc_seg: 96.3327 aux.loss_ce: 0.1098 aux.acc_seg: 94.5545 +2024/08/11 12:14:30 - mmengine - INFO - Iter(train) [141500/160000] lr: 1.5203e-03 eta: 5:44:44 time: 1.1147 data_time: 0.0068 memory: 8703 loss: 0.2088 decode.loss_ce: 0.1231 decode.acc_seg: 97.0557 aux.loss_ce: 0.0857 aux.acc_seg: 96.7630 +2024/08/11 12:15:25 - mmengine - INFO - Iter(train) [141550/160000] lr: 1.5169e-03 eta: 5:43:49 time: 1.1163 data_time: 0.0081 memory: 8704 loss: 0.3167 decode.loss_ce: 0.1813 decode.acc_seg: 96.9893 aux.loss_ce: 0.1354 aux.acc_seg: 94.6710 +2024/08/11 12:16:21 - mmengine - INFO - Iter(train) [141600/160000] lr: 1.5134e-03 eta: 5:42:53 time: 1.1129 data_time: 0.0067 memory: 8704 loss: 0.2445 decode.loss_ce: 0.1561 decode.acc_seg: 97.3189 aux.loss_ce: 0.0884 aux.acc_seg: 96.3447 +2024/08/11 12:17:17 - mmengine - INFO - Iter(train) [141650/160000] lr: 1.5099e-03 eta: 5:41:57 time: 1.1138 data_time: 0.0078 memory: 8704 loss: 0.3020 decode.loss_ce: 0.1746 decode.acc_seg: 97.0167 aux.loss_ce: 0.1275 aux.acc_seg: 95.4091 +2024/08/11 12:18:13 - mmengine - INFO - Iter(train) [141700/160000] lr: 1.5065e-03 eta: 5:41:01 time: 1.1118 data_time: 0.0059 memory: 8705 loss: 0.2255 decode.loss_ce: 0.1312 decode.acc_seg: 94.7287 aux.loss_ce: 0.0942 aux.acc_seg: 94.0394 +2024/08/11 12:19:08 - mmengine - INFO - Iter(train) [141750/160000] lr: 1.5030e-03 eta: 5:40:05 time: 1.1137 data_time: 0.0059 memory: 8703 loss: 0.2043 decode.loss_ce: 0.1186 decode.acc_seg: 96.9821 aux.loss_ce: 0.0857 aux.acc_seg: 96.5928 +2024/08/11 12:20:04 - mmengine - INFO - Iter(train) [141800/160000] lr: 1.4996e-03 eta: 5:39:09 time: 1.1161 data_time: 0.0060 memory: 8704 loss: 0.2920 decode.loss_ce: 0.1652 decode.acc_seg: 88.7842 aux.loss_ce: 0.1268 aux.acc_seg: 71.0773 +2024/08/11 12:21:00 - mmengine - INFO - Iter(train) [141850/160000] lr: 1.4961e-03 eta: 5:38:13 time: 1.1110 data_time: 0.0075 memory: 8703 loss: 0.2361 decode.loss_ce: 0.1569 decode.acc_seg: 88.7141 aux.loss_ce: 0.0793 aux.acc_seg: 83.8838 +2024/08/11 12:21:55 - mmengine - INFO - Iter(train) [141900/160000] lr: 1.4926e-03 eta: 5:37:17 time: 1.1117 data_time: 0.0059 memory: 8704 loss: 0.2192 decode.loss_ce: 0.1301 decode.acc_seg: 95.4590 aux.loss_ce: 0.0891 aux.acc_seg: 93.2651 +2024/08/11 12:22:51 - mmengine - INFO - Iter(train) [141950/160000] lr: 1.4892e-03 eta: 5:36:21 time: 1.1160 data_time: 0.0062 memory: 8704 loss: 0.3937 decode.loss_ce: 0.2298 decode.acc_seg: 83.4285 aux.loss_ce: 0.1639 aux.acc_seg: 81.2057 +2024/08/11 12:23:47 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 12:23:47 - mmengine - INFO - Iter(train) [142000/160000] lr: 1.4857e-03 eta: 5:35:25 time: 1.1164 data_time: 0.0079 memory: 8704 loss: 0.2444 decode.loss_ce: 0.1532 decode.acc_seg: 95.4158 aux.loss_ce: 0.0912 aux.acc_seg: 93.7504 +2024/08/11 12:24:43 - mmengine - INFO - Iter(train) [142050/160000] lr: 1.4823e-03 eta: 5:34:29 time: 1.1153 data_time: 0.0059 memory: 8703 loss: 0.2696 decode.loss_ce: 0.1693 decode.acc_seg: 95.6987 aux.loss_ce: 0.1003 aux.acc_seg: 94.9422 +2024/08/11 12:25:38 - mmengine - INFO - Iter(train) [142100/160000] lr: 1.4788e-03 eta: 5:33:33 time: 1.1163 data_time: 0.0075 memory: 8704 loss: 0.3373 decode.loss_ce: 0.2047 decode.acc_seg: 93.1174 aux.loss_ce: 0.1325 aux.acc_seg: 89.7311 +2024/08/11 12:26:34 - mmengine - INFO - Iter(train) [142150/160000] lr: 1.4753e-03 eta: 5:32:37 time: 1.1174 data_time: 0.0092 memory: 8703 loss: 0.2568 decode.loss_ce: 0.1548 decode.acc_seg: 97.3076 aux.loss_ce: 0.1019 aux.acc_seg: 95.0341 +2024/08/11 12:27:30 - mmengine - INFO - Iter(train) [142200/160000] lr: 1.4719e-03 eta: 5:31:41 time: 1.1131 data_time: 0.0070 memory: 8704 loss: 0.2529 decode.loss_ce: 0.1476 decode.acc_seg: 94.4567 aux.loss_ce: 0.1053 aux.acc_seg: 80.7328 +2024/08/11 12:28:26 - mmengine - INFO - Iter(train) [142250/160000] lr: 1.4684e-03 eta: 5:30:46 time: 1.1144 data_time: 0.0070 memory: 8703 loss: 0.2586 decode.loss_ce: 0.1591 decode.acc_seg: 96.3296 aux.loss_ce: 0.0995 aux.acc_seg: 96.1444 +2024/08/11 12:29:22 - mmengine - INFO - Iter(train) [142300/160000] lr: 1.4649e-03 eta: 5:29:50 time: 1.1086 data_time: 0.0052 memory: 8703 loss: 0.2655 decode.loss_ce: 0.1653 decode.acc_seg: 83.3997 aux.loss_ce: 0.1001 aux.acc_seg: 83.0827 +2024/08/11 12:30:17 - mmengine - INFO - Iter(train) [142350/160000] lr: 1.4614e-03 eta: 5:28:54 time: 1.1139 data_time: 0.0063 memory: 8703 loss: 0.2420 decode.loss_ce: 0.1396 decode.acc_seg: 91.8253 aux.loss_ce: 0.1024 aux.acc_seg: 91.5767 +2024/08/11 12:31:13 - mmengine - INFO - Iter(train) [142400/160000] lr: 1.4580e-03 eta: 5:27:58 time: 1.1178 data_time: 0.0074 memory: 8703 loss: 0.2760 decode.loss_ce: 0.1690 decode.acc_seg: 94.7282 aux.loss_ce: 0.1070 aux.acc_seg: 91.6257 +2024/08/11 12:32:09 - mmengine - INFO - Iter(train) [142450/160000] lr: 1.4545e-03 eta: 5:27:02 time: 1.1135 data_time: 0.0065 memory: 8703 loss: 0.2168 decode.loss_ce: 0.1320 decode.acc_seg: 98.2073 aux.loss_ce: 0.0847 aux.acc_seg: 97.7355 +2024/08/11 12:33:04 - mmengine - INFO - Iter(train) [142500/160000] lr: 1.4510e-03 eta: 5:26:06 time: 1.1106 data_time: 0.0058 memory: 8704 loss: 0.2193 decode.loss_ce: 0.1315 decode.acc_seg: 95.3009 aux.loss_ce: 0.0878 aux.acc_seg: 95.1183 +2024/08/11 12:34:00 - mmengine - INFO - Iter(train) [142550/160000] lr: 1.4476e-03 eta: 5:25:10 time: 1.1130 data_time: 0.0079 memory: 8704 loss: 0.2235 decode.loss_ce: 0.1364 decode.acc_seg: 88.2458 aux.loss_ce: 0.0871 aux.acc_seg: 81.4330 +2024/08/11 12:34:56 - mmengine - INFO - Iter(train) [142600/160000] lr: 1.4441e-03 eta: 5:24:14 time: 1.1152 data_time: 0.0069 memory: 8704 loss: 0.2465 decode.loss_ce: 0.1495 decode.acc_seg: 92.4715 aux.loss_ce: 0.0970 aux.acc_seg: 89.2848 +2024/08/11 12:35:52 - mmengine - INFO - Iter(train) [142650/160000] lr: 1.4406e-03 eta: 5:23:18 time: 1.1159 data_time: 0.0079 memory: 8703 loss: 0.2397 decode.loss_ce: 0.1388 decode.acc_seg: 96.6878 aux.loss_ce: 0.1009 aux.acc_seg: 95.5893 +2024/08/11 12:36:48 - mmengine - INFO - Iter(train) [142700/160000] lr: 1.4371e-03 eta: 5:22:22 time: 1.1164 data_time: 0.0074 memory: 8704 loss: 0.2210 decode.loss_ce: 0.1406 decode.acc_seg: 97.2574 aux.loss_ce: 0.0803 aux.acc_seg: 92.3195 +2024/08/11 12:37:43 - mmengine - INFO - Iter(train) [142750/160000] lr: 1.4336e-03 eta: 5:21:26 time: 1.1161 data_time: 0.0063 memory: 8703 loss: 0.4603 decode.loss_ce: 0.2993 decode.acc_seg: 95.5568 aux.loss_ce: 0.1611 aux.acc_seg: 91.9779 +2024/08/11 12:38:39 - mmengine - INFO - Iter(train) [142800/160000] lr: 1.4302e-03 eta: 5:20:30 time: 1.1215 data_time: 0.0089 memory: 8703 loss: 0.3411 decode.loss_ce: 0.2076 decode.acc_seg: 88.7579 aux.loss_ce: 0.1335 aux.acc_seg: 87.0839 +2024/08/11 12:39:35 - mmengine - INFO - Iter(train) [142850/160000] lr: 1.4267e-03 eta: 5:19:34 time: 1.1185 data_time: 0.0075 memory: 8705 loss: 0.2145 decode.loss_ce: 0.1255 decode.acc_seg: 97.3418 aux.loss_ce: 0.0890 aux.acc_seg: 96.9499 +2024/08/11 12:40:31 - mmengine - INFO - Iter(train) [142900/160000] lr: 1.4232e-03 eta: 5:18:39 time: 1.1143 data_time: 0.0060 memory: 8703 loss: 0.2597 decode.loss_ce: 0.1514 decode.acc_seg: 98.0450 aux.loss_ce: 0.1083 aux.acc_seg: 89.9273 +2024/08/11 12:41:27 - mmengine - INFO - Iter(train) [142950/160000] lr: 1.4197e-03 eta: 5:17:43 time: 1.1134 data_time: 0.0061 memory: 8704 loss: 0.2146 decode.loss_ce: 0.1285 decode.acc_seg: 97.4024 aux.loss_ce: 0.0861 aux.acc_seg: 96.6799 +2024/08/11 12:42:22 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 12:42:22 - mmengine - INFO - Iter(train) [143000/160000] lr: 1.4162e-03 eta: 5:16:47 time: 1.1142 data_time: 0.0081 memory: 8703 loss: 0.2534 decode.loss_ce: 0.1586 decode.acc_seg: 95.3637 aux.loss_ce: 0.0948 aux.acc_seg: 93.2189 +2024/08/11 12:43:18 - mmengine - INFO - Iter(train) [143050/160000] lr: 1.4128e-03 eta: 5:15:51 time: 1.1139 data_time: 0.0069 memory: 8704 loss: 0.2822 decode.loss_ce: 0.1527 decode.acc_seg: 90.5690 aux.loss_ce: 0.1295 aux.acc_seg: 86.9675 +2024/08/11 12:44:14 - mmengine - INFO - Iter(train) [143100/160000] lr: 1.4093e-03 eta: 5:14:55 time: 1.1125 data_time: 0.0074 memory: 8704 loss: 0.2954 decode.loss_ce: 0.1699 decode.acc_seg: 93.2316 aux.loss_ce: 0.1255 aux.acc_seg: 82.9793 +2024/08/11 12:45:09 - mmengine - INFO - Iter(train) [143150/160000] lr: 1.4058e-03 eta: 5:13:59 time: 1.1116 data_time: 0.0082 memory: 8703 loss: 0.2314 decode.loss_ce: 0.1364 decode.acc_seg: 96.5635 aux.loss_ce: 0.0950 aux.acc_seg: 90.2894 +2024/08/11 12:46:05 - mmengine - INFO - Iter(train) [143200/160000] lr: 1.4023e-03 eta: 5:13:03 time: 1.1125 data_time: 0.0076 memory: 8703 loss: 0.2738 decode.loss_ce: 0.1693 decode.acc_seg: 94.9630 aux.loss_ce: 0.1045 aux.acc_seg: 93.2606 +2024/08/11 12:47:01 - mmengine - INFO - Iter(train) [143250/160000] lr: 1.3988e-03 eta: 5:12:07 time: 1.1178 data_time: 0.0076 memory: 8703 loss: 0.3395 decode.loss_ce: 0.2051 decode.acc_seg: 95.3151 aux.loss_ce: 0.1344 aux.acc_seg: 89.1555 +2024/08/11 12:47:56 - mmengine - INFO - Iter(train) [143300/160000] lr: 1.3953e-03 eta: 5:11:11 time: 1.1166 data_time: 0.0062 memory: 8705 loss: 0.5176 decode.loss_ce: 0.3187 decode.acc_seg: 92.9379 aux.loss_ce: 0.1989 aux.acc_seg: 85.0646 +2024/08/11 12:48:52 - mmengine - INFO - Iter(train) [143350/160000] lr: 1.3918e-03 eta: 5:10:15 time: 1.1170 data_time: 0.0068 memory: 8704 loss: 0.2828 decode.loss_ce: 0.1754 decode.acc_seg: 96.4394 aux.loss_ce: 0.1074 aux.acc_seg: 96.0187 +2024/08/11 12:49:48 - mmengine - INFO - Iter(train) [143400/160000] lr: 1.3883e-03 eta: 5:09:19 time: 1.1153 data_time: 0.0055 memory: 8703 loss: 0.2795 decode.loss_ce: 0.1847 decode.acc_seg: 94.8257 aux.loss_ce: 0.0949 aux.acc_seg: 94.0417 +2024/08/11 12:50:44 - mmengine - INFO - Iter(train) [143450/160000] lr: 1.3848e-03 eta: 5:08:23 time: 1.1196 data_time: 0.0063 memory: 8704 loss: 0.2634 decode.loss_ce: 0.1534 decode.acc_seg: 97.4040 aux.loss_ce: 0.1101 aux.acc_seg: 97.0323 +2024/08/11 12:51:40 - mmengine - INFO - Iter(train) [143500/160000] lr: 1.3813e-03 eta: 5:07:27 time: 1.1233 data_time: 0.0075 memory: 8704 loss: 0.2717 decode.loss_ce: 0.1603 decode.acc_seg: 95.9855 aux.loss_ce: 0.1114 aux.acc_seg: 95.3829 +2024/08/11 12:52:35 - mmengine - INFO - Iter(train) [143550/160000] lr: 1.3778e-03 eta: 5:06:32 time: 1.1111 data_time: 0.0066 memory: 8703 loss: 0.2823 decode.loss_ce: 0.1722 decode.acc_seg: 94.2541 aux.loss_ce: 0.1101 aux.acc_seg: 90.8085 +2024/08/11 12:53:31 - mmengine - INFO - Iter(train) [143600/160000] lr: 1.3744e-03 eta: 5:05:36 time: 1.1123 data_time: 0.0059 memory: 8703 loss: 0.2940 decode.loss_ce: 0.1608 decode.acc_seg: 94.9697 aux.loss_ce: 0.1332 aux.acc_seg: 88.8728 +2024/08/11 12:54:27 - mmengine - INFO - Iter(train) [143650/160000] lr: 1.3709e-03 eta: 5:04:40 time: 1.1140 data_time: 0.0058 memory: 8704 loss: 0.3220 decode.loss_ce: 0.1808 decode.acc_seg: 97.4873 aux.loss_ce: 0.1412 aux.acc_seg: 97.0790 +2024/08/11 12:55:22 - mmengine - INFO - Iter(train) [143700/160000] lr: 1.3674e-03 eta: 5:03:44 time: 1.1129 data_time: 0.0072 memory: 8703 loss: 0.2539 decode.loss_ce: 0.1605 decode.acc_seg: 94.3230 aux.loss_ce: 0.0934 aux.acc_seg: 91.2383 +2024/08/11 12:56:18 - mmengine - INFO - Iter(train) [143750/160000] lr: 1.3639e-03 eta: 5:02:48 time: 1.1129 data_time: 0.0069 memory: 8704 loss: 0.3094 decode.loss_ce: 0.2026 decode.acc_seg: 96.5197 aux.loss_ce: 0.1068 aux.acc_seg: 95.0289 +2024/08/11 12:57:14 - mmengine - INFO - Iter(train) [143800/160000] lr: 1.3604e-03 eta: 5:01:52 time: 1.1198 data_time: 0.0081 memory: 8704 loss: 0.2220 decode.loss_ce: 0.1335 decode.acc_seg: 95.6591 aux.loss_ce: 0.0885 aux.acc_seg: 93.6290 +2024/08/11 12:58:10 - mmengine - INFO - Iter(train) [143850/160000] lr: 1.3569e-03 eta: 5:00:56 time: 1.1137 data_time: 0.0060 memory: 8704 loss: 0.1979 decode.loss_ce: 0.1227 decode.acc_seg: 95.6259 aux.loss_ce: 0.0752 aux.acc_seg: 95.0415 +2024/08/11 12:59:05 - mmengine - INFO - Iter(train) [143900/160000] lr: 1.3534e-03 eta: 5:00:00 time: 1.1133 data_time: 0.0067 memory: 8704 loss: 0.2155 decode.loss_ce: 0.1342 decode.acc_seg: 96.5756 aux.loss_ce: 0.0813 aux.acc_seg: 95.4822 +2024/08/11 13:00:01 - mmengine - INFO - Iter(train) [143950/160000] lr: 1.3498e-03 eta: 4:59:04 time: 1.1133 data_time: 0.0085 memory: 8704 loss: 0.2457 decode.loss_ce: 0.1430 decode.acc_seg: 94.1142 aux.loss_ce: 0.1028 aux.acc_seg: 89.5810 +2024/08/11 13:00:57 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 13:00:57 - mmengine - INFO - Iter(train) [144000/160000] lr: 1.3463e-03 eta: 4:58:08 time: 1.1169 data_time: 0.0078 memory: 8704 loss: 0.2888 decode.loss_ce: 0.1594 decode.acc_seg: 93.0000 aux.loss_ce: 0.1294 aux.acc_seg: 82.9102 +2024/08/11 13:00:57 - mmengine - INFO - Saving checkpoint at 144000 iterations +2024/08/11 13:01:11 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:10 time: 0.2720 data_time: 0.0050 memory: 1724 +2024/08/11 13:01:25 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2705 data_time: 0.0035 memory: 1724 +2024/08/11 13:01:38 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2707 data_time: 0.0041 memory: 1724 +2024/08/11 13:01:52 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2717 data_time: 0.0041 memory: 1724 +2024/08/11 13:02:05 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2724 data_time: 0.0041 memory: 1724 +2024/08/11 13:02:19 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2706 data_time: 0.0035 memory: 1724 +2024/08/11 13:02:33 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2693 data_time: 0.0035 memory: 1724 +2024/08/11 13:02:46 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:35 time: 0.2736 data_time: 0.0058 memory: 1724 +2024/08/11 13:03:00 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2702 data_time: 0.0036 memory: 1724 +2024/08/11 13:03:13 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2723 data_time: 0.0046 memory: 1724 +2024/08/11 13:03:27 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2725 data_time: 0.0041 memory: 1724 +2024/08/11 13:03:40 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2716 data_time: 0.0035 memory: 1724 +2024/08/11 13:03:54 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2727 data_time: 0.0049 memory: 1724 +2024/08/11 13:04:08 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2749 data_time: 0.0053 memory: 1724 +2024/08/11 13:04:21 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2716 data_time: 0.0042 memory: 1724 +2024/08/11 13:04:31 - mmengine - INFO - per class results: +2024/08/11 13:04:31 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 93.97 | 96.96 | +| sidewalk | 72.04 | 77.96 | +| road roughness | 64.5 | 72.89 | +| road boundaries | 67.58 | 77.87 | +| crosswalks | 94.34 | 96.98 | +| lane | 73.81 | 84.43 | +| road color guide | 83.47 | 86.93 | +| road marking | 68.96 | 80.21 | +| parking | 61.27 | 70.8 | +| traffic sign | 60.11 | 79.04 | +| traffic light | 68.39 | 87.15 | +| pole/structural object | 78.67 | 85.34 | +| building | 86.49 | 94.95 | +| tunnel | 95.38 | 99.62 | +| bridge | 52.63 | 87.5 | +| pedestrian | 72.27 | 81.88 | +| vehicle | 91.78 | 95.31 | +| bicycle | 0.04 | 0.04 | +| motorcycle | 26.24 | 43.24 | +| personal mobility | 83.26 | 89.94 | +| dynamic | 48.84 | 60.57 | +| vegetation | 87.04 | 95.72 | +| sky | 98.23 | 98.91 | +| static | 67.99 | 74.85 | ++------------------------+-------+-------+ +2024/08/11 13:04:31 - mmengine - INFO - Iter(val) [750/750] aAcc: 94.8600 mIoU: 70.7200 mAcc: 79.9600 data_time: 0.0042 time: 0.2715 +2024/08/11 13:05:27 - mmengine - INFO - Iter(train) [144050/160000] lr: 1.3428e-03 eta: 4:57:13 time: 1.1137 data_time: 0.0071 memory: 8704 loss: 0.2637 decode.loss_ce: 0.1634 decode.acc_seg: 96.6966 aux.loss_ce: 0.1004 aux.acc_seg: 94.2893 +2024/08/11 13:06:22 - mmengine - INFO - Iter(train) [144100/160000] lr: 1.3393e-03 eta: 4:56:17 time: 1.1112 data_time: 0.0071 memory: 8704 loss: 0.2723 decode.loss_ce: 0.1624 decode.acc_seg: 92.8745 aux.loss_ce: 0.1099 aux.acc_seg: 91.4600 +2024/08/11 13:07:18 - mmengine - INFO - Iter(train) [144150/160000] lr: 1.3358e-03 eta: 4:55:21 time: 1.1133 data_time: 0.0061 memory: 8704 loss: 0.5122 decode.loss_ce: 0.3328 decode.acc_seg: 95.2319 aux.loss_ce: 0.1793 aux.acc_seg: 94.2253 +2024/08/11 13:08:14 - mmengine - INFO - Iter(train) [144200/160000] lr: 1.3323e-03 eta: 4:54:26 time: 1.1163 data_time: 0.0060 memory: 8705 loss: 0.2710 decode.loss_ce: 0.1583 decode.acc_seg: 93.4242 aux.loss_ce: 0.1127 aux.acc_seg: 91.6326 +2024/08/11 13:09:10 - mmengine - INFO - Iter(train) [144250/160000] lr: 1.3288e-03 eta: 4:53:30 time: 1.1148 data_time: 0.0072 memory: 8703 loss: 0.2860 decode.loss_ce: 0.1702 decode.acc_seg: 96.7669 aux.loss_ce: 0.1158 aux.acc_seg: 95.9979 +2024/08/11 13:10:05 - mmengine - INFO - Iter(train) [144300/160000] lr: 1.3253e-03 eta: 4:52:34 time: 1.1198 data_time: 0.0070 memory: 8703 loss: 0.2744 decode.loss_ce: 0.1542 decode.acc_seg: 91.9165 aux.loss_ce: 0.1202 aux.acc_seg: 89.9544 +2024/08/11 13:11:01 - mmengine - INFO - Iter(train) [144350/160000] lr: 1.3218e-03 eta: 4:51:38 time: 1.1170 data_time: 0.0068 memory: 8704 loss: 0.3492 decode.loss_ce: 0.1986 decode.acc_seg: 92.0193 aux.loss_ce: 0.1506 aux.acc_seg: 90.5277 +2024/08/11 13:11:57 - mmengine - INFO - Iter(train) [144400/160000] lr: 1.3183e-03 eta: 4:50:42 time: 1.1150 data_time: 0.0073 memory: 8704 loss: 0.3598 decode.loss_ce: 0.2082 decode.acc_seg: 96.3432 aux.loss_ce: 0.1516 aux.acc_seg: 95.7512 +2024/08/11 13:12:52 - mmengine - INFO - Iter(train) [144450/160000] lr: 1.3148e-03 eta: 4:49:46 time: 1.1164 data_time: 0.0072 memory: 8703 loss: 0.2488 decode.loss_ce: 0.1506 decode.acc_seg: 96.2658 aux.loss_ce: 0.0982 aux.acc_seg: 95.7287 +2024/08/11 13:13:48 - mmengine - INFO - Iter(train) [144500/160000] lr: 1.3112e-03 eta: 4:48:50 time: 1.1117 data_time: 0.0076 memory: 8704 loss: 0.3255 decode.loss_ce: 0.1862 decode.acc_seg: 95.1075 aux.loss_ce: 0.1394 aux.acc_seg: 84.5749 +2024/08/11 13:14:44 - mmengine - INFO - Iter(train) [144550/160000] lr: 1.3077e-03 eta: 4:47:54 time: 1.1169 data_time: 0.0083 memory: 8703 loss: 0.2246 decode.loss_ce: 0.1354 decode.acc_seg: 96.9591 aux.loss_ce: 0.0891 aux.acc_seg: 95.5260 +2024/08/11 13:15:40 - mmengine - INFO - Iter(train) [144600/160000] lr: 1.3042e-03 eta: 4:46:58 time: 1.1138 data_time: 0.0066 memory: 8704 loss: 0.3377 decode.loss_ce: 0.1897 decode.acc_seg: 91.2420 aux.loss_ce: 0.1480 aux.acc_seg: 91.3528 +2024/08/11 13:16:35 - mmengine - INFO - Iter(train) [144650/160000] lr: 1.3007e-03 eta: 4:46:02 time: 1.1141 data_time: 0.0057 memory: 8704 loss: 0.2451 decode.loss_ce: 0.1527 decode.acc_seg: 90.8959 aux.loss_ce: 0.0924 aux.acc_seg: 91.4750 +2024/08/11 13:17:31 - mmengine - INFO - Iter(train) [144700/160000] lr: 1.2972e-03 eta: 4:45:06 time: 1.1158 data_time: 0.0062 memory: 8705 loss: 0.3563 decode.loss_ce: 0.2135 decode.acc_seg: 96.1537 aux.loss_ce: 0.1429 aux.acc_seg: 92.0041 +2024/08/11 13:18:27 - mmengine - INFO - Iter(train) [144750/160000] lr: 1.2936e-03 eta: 4:44:10 time: 1.1169 data_time: 0.0060 memory: 8704 loss: 0.2359 decode.loss_ce: 0.1440 decode.acc_seg: 92.6861 aux.loss_ce: 0.0919 aux.acc_seg: 79.4463 +2024/08/11 13:19:23 - mmengine - INFO - Iter(train) [144800/160000] lr: 1.2901e-03 eta: 4:43:14 time: 1.1169 data_time: 0.0062 memory: 8703 loss: 0.2292 decode.loss_ce: 0.1468 decode.acc_seg: 96.7455 aux.loss_ce: 0.0824 aux.acc_seg: 95.3541 +2024/08/11 13:20:19 - mmengine - INFO - Iter(train) [144850/160000] lr: 1.2866e-03 eta: 4:42:19 time: 1.1169 data_time: 0.0061 memory: 8704 loss: 0.2163 decode.loss_ce: 0.1340 decode.acc_seg: 97.1078 aux.loss_ce: 0.0823 aux.acc_seg: 96.8051 +2024/08/11 13:21:15 - mmengine - INFO - Iter(train) [144900/160000] lr: 1.2831e-03 eta: 4:41:23 time: 1.1163 data_time: 0.0073 memory: 8704 loss: 0.2718 decode.loss_ce: 0.1608 decode.acc_seg: 84.7205 aux.loss_ce: 0.1111 aux.acc_seg: 80.5619 +2024/08/11 13:22:10 - mmengine - INFO - Iter(train) [144950/160000] lr: 1.2795e-03 eta: 4:40:27 time: 1.1133 data_time: 0.0068 memory: 8704 loss: 0.2202 decode.loss_ce: 0.1282 decode.acc_seg: 91.9289 aux.loss_ce: 0.0920 aux.acc_seg: 90.3674 +2024/08/11 13:23:06 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 13:23:06 - mmengine - INFO - Iter(train) [145000/160000] lr: 1.2760e-03 eta: 4:39:31 time: 1.1150 data_time: 0.0078 memory: 8704 loss: 0.2558 decode.loss_ce: 0.1545 decode.acc_seg: 93.0998 aux.loss_ce: 0.1012 aux.acc_seg: 92.8129 +2024/08/11 13:24:02 - mmengine - INFO - Iter(train) [145050/160000] lr: 1.2725e-03 eta: 4:38:35 time: 1.1156 data_time: 0.0076 memory: 8703 loss: 0.2035 decode.loss_ce: 0.1267 decode.acc_seg: 93.8763 aux.loss_ce: 0.0768 aux.acc_seg: 91.6299 +2024/08/11 13:24:58 - mmengine - INFO - Iter(train) [145100/160000] lr: 1.2690e-03 eta: 4:37:39 time: 1.1142 data_time: 0.0065 memory: 8703 loss: 0.2546 decode.loss_ce: 0.1461 decode.acc_seg: 95.5415 aux.loss_ce: 0.1084 aux.acc_seg: 94.8586 +2024/08/11 13:25:53 - mmengine - INFO - Iter(train) [145150/160000] lr: 1.2654e-03 eta: 4:36:43 time: 1.1089 data_time: 0.0068 memory: 8704 loss: 0.2554 decode.loss_ce: 0.1634 decode.acc_seg: 92.5228 aux.loss_ce: 0.0920 aux.acc_seg: 88.5216 +2024/08/11 13:26:49 - mmengine - INFO - Iter(train) [145200/160000] lr: 1.2619e-03 eta: 4:35:47 time: 1.1141 data_time: 0.0067 memory: 8704 loss: 0.2471 decode.loss_ce: 0.1489 decode.acc_seg: 97.6112 aux.loss_ce: 0.0982 aux.acc_seg: 90.6474 +2024/08/11 13:27:45 - mmengine - INFO - Iter(train) [145250/160000] lr: 1.2584e-03 eta: 4:34:51 time: 1.1148 data_time: 0.0064 memory: 8704 loss: 0.2442 decode.loss_ce: 0.1550 decode.acc_seg: 96.5632 aux.loss_ce: 0.0892 aux.acc_seg: 96.2185 +2024/08/11 13:28:40 - mmengine - INFO - Iter(train) [145300/160000] lr: 1.2548e-03 eta: 4:33:55 time: 1.1158 data_time: 0.0061 memory: 8703 loss: 0.3145 decode.loss_ce: 0.1944 decode.acc_seg: 96.7654 aux.loss_ce: 0.1200 aux.acc_seg: 95.5479 +2024/08/11 13:29:36 - mmengine - INFO - Iter(train) [145350/160000] lr: 1.2513e-03 eta: 4:32:59 time: 1.1190 data_time: 0.0065 memory: 8704 loss: 0.2076 decode.loss_ce: 0.1258 decode.acc_seg: 96.6681 aux.loss_ce: 0.0818 aux.acc_seg: 93.9721 +2024/08/11 13:30:32 - mmengine - INFO - Iter(train) [145400/160000] lr: 1.2477e-03 eta: 4:32:03 time: 1.1149 data_time: 0.0064 memory: 8703 loss: 0.1949 decode.loss_ce: 0.1154 decode.acc_seg: 91.5655 aux.loss_ce: 0.0795 aux.acc_seg: 86.6035 +2024/08/11 13:31:28 - mmengine - INFO - Iter(train) [145450/160000] lr: 1.2442e-03 eta: 4:31:08 time: 1.1225 data_time: 0.0092 memory: 8704 loss: 0.2539 decode.loss_ce: 0.1381 decode.acc_seg: 94.8966 aux.loss_ce: 0.1158 aux.acc_seg: 93.4727 +2024/08/11 13:32:24 - mmengine - INFO - Iter(train) [145500/160000] lr: 1.2407e-03 eta: 4:30:12 time: 1.1141 data_time: 0.0064 memory: 8703 loss: 0.1795 decode.loss_ce: 0.1123 decode.acc_seg: 91.2588 aux.loss_ce: 0.0672 aux.acc_seg: 86.5019 +2024/08/11 13:33:20 - mmengine - INFO - Iter(train) [145550/160000] lr: 1.2371e-03 eta: 4:29:16 time: 1.1177 data_time: 0.0083 memory: 8704 loss: 0.3241 decode.loss_ce: 0.2132 decode.acc_seg: 96.0895 aux.loss_ce: 0.1108 aux.acc_seg: 94.2423 +2024/08/11 13:34:15 - mmengine - INFO - Iter(train) [145600/160000] lr: 1.2336e-03 eta: 4:28:20 time: 1.1177 data_time: 0.0065 memory: 8703 loss: 0.2633 decode.loss_ce: 0.1466 decode.acc_seg: 91.3829 aux.loss_ce: 0.1167 aux.acc_seg: 81.5681 +2024/08/11 13:35:11 - mmengine - INFO - Iter(train) [145650/160000] lr: 1.2300e-03 eta: 4:27:24 time: 1.1141 data_time: 0.0063 memory: 8704 loss: 0.2887 decode.loss_ce: 0.1564 decode.acc_seg: 95.8201 aux.loss_ce: 0.1324 aux.acc_seg: 95.7595 +2024/08/11 13:36:07 - mmengine - INFO - Iter(train) [145700/160000] lr: 1.2265e-03 eta: 4:26:28 time: 1.1154 data_time: 0.0072 memory: 8703 loss: 0.3019 decode.loss_ce: 0.1838 decode.acc_seg: 95.6205 aux.loss_ce: 0.1181 aux.acc_seg: 93.6626 +2024/08/11 13:37:03 - mmengine - INFO - Iter(train) [145750/160000] lr: 1.2230e-03 eta: 4:25:32 time: 1.1127 data_time: 0.0066 memory: 8704 loss: 0.2765 decode.loss_ce: 0.1596 decode.acc_seg: 89.5145 aux.loss_ce: 0.1169 aux.acc_seg: 72.3777 +2024/08/11 13:37:58 - mmengine - INFO - Iter(train) [145800/160000] lr: 1.2194e-03 eta: 4:24:36 time: 1.1145 data_time: 0.0070 memory: 8703 loss: 0.2257 decode.loss_ce: 0.1312 decode.acc_seg: 95.0818 aux.loss_ce: 0.0945 aux.acc_seg: 93.8462 +2024/08/11 13:38:54 - mmengine - INFO - Iter(train) [145850/160000] lr: 1.2159e-03 eta: 4:23:40 time: 1.1132 data_time: 0.0071 memory: 8704 loss: 0.2088 decode.loss_ce: 0.1257 decode.acc_seg: 95.6529 aux.loss_ce: 0.0830 aux.acc_seg: 92.4503 +2024/08/11 13:39:50 - mmengine - INFO - Iter(train) [145900/160000] lr: 1.2123e-03 eta: 4:22:44 time: 1.1138 data_time: 0.0082 memory: 8704 loss: 0.2611 decode.loss_ce: 0.1614 decode.acc_seg: 96.5600 aux.loss_ce: 0.0997 aux.acc_seg: 93.5575 +2024/08/11 13:40:46 - mmengine - INFO - Iter(train) [145950/160000] lr: 1.2088e-03 eta: 4:21:48 time: 1.1088 data_time: 0.0066 memory: 8703 loss: 0.2904 decode.loss_ce: 0.1781 decode.acc_seg: 94.7003 aux.loss_ce: 0.1123 aux.acc_seg: 90.3661 +2024/08/11 13:41:41 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 13:41:41 - mmengine - INFO - Iter(train) [146000/160000] lr: 1.2052e-03 eta: 4:20:52 time: 1.1066 data_time: 0.0052 memory: 8703 loss: 0.4218 decode.loss_ce: 0.2702 decode.acc_seg: 98.0668 aux.loss_ce: 0.1516 aux.acc_seg: 97.7213 +2024/08/11 13:42:37 - mmengine - INFO - Iter(train) [146050/160000] lr: 1.2017e-03 eta: 4:19:56 time: 1.1118 data_time: 0.0071 memory: 8704 loss: 0.2448 decode.loss_ce: 0.1470 decode.acc_seg: 95.8615 aux.loss_ce: 0.0978 aux.acc_seg: 92.3495 +2024/08/11 13:43:33 - mmengine - INFO - Iter(train) [146100/160000] lr: 1.1981e-03 eta: 4:19:01 time: 1.1143 data_time: 0.0072 memory: 8704 loss: 0.2785 decode.loss_ce: 0.1746 decode.acc_seg: 90.8627 aux.loss_ce: 0.1039 aux.acc_seg: 85.2015 +2024/08/11 13:44:28 - mmengine - INFO - Iter(train) [146150/160000] lr: 1.1945e-03 eta: 4:18:05 time: 1.1147 data_time: 0.0075 memory: 8703 loss: 0.3344 decode.loss_ce: 0.2239 decode.acc_seg: 96.6711 aux.loss_ce: 0.1105 aux.acc_seg: 96.1065 +2024/08/11 13:45:24 - mmengine - INFO - Iter(train) [146200/160000] lr: 1.1910e-03 eta: 4:17:09 time: 1.1161 data_time: 0.0070 memory: 8703 loss: 0.2563 decode.loss_ce: 0.1598 decode.acc_seg: 97.8888 aux.loss_ce: 0.0965 aux.acc_seg: 96.6004 +2024/08/11 13:46:20 - mmengine - INFO - Iter(train) [146250/160000] lr: 1.1874e-03 eta: 4:16:13 time: 1.1170 data_time: 0.0090 memory: 8704 loss: 0.4407 decode.loss_ce: 0.2579 decode.acc_seg: 85.4463 aux.loss_ce: 0.1827 aux.acc_seg: 74.0307 +2024/08/11 13:47:16 - mmengine - INFO - Iter(train) [146300/160000] lr: 1.1839e-03 eta: 4:15:17 time: 1.1125 data_time: 0.0065 memory: 8704 loss: 0.2172 decode.loss_ce: 0.1359 decode.acc_seg: 96.5642 aux.loss_ce: 0.0812 aux.acc_seg: 95.2739 +2024/08/11 13:48:12 - mmengine - INFO - Iter(train) [146350/160000] lr: 1.1803e-03 eta: 4:14:21 time: 1.1172 data_time: 0.0071 memory: 8704 loss: 0.2878 decode.loss_ce: 0.1805 decode.acc_seg: 96.9707 aux.loss_ce: 0.1073 aux.acc_seg: 96.0733 +2024/08/11 13:49:08 - mmengine - INFO - Iter(train) [146400/160000] lr: 1.1767e-03 eta: 4:13:25 time: 1.1145 data_time: 0.0070 memory: 8704 loss: 0.2501 decode.loss_ce: 0.1493 decode.acc_seg: 93.9404 aux.loss_ce: 0.1008 aux.acc_seg: 89.6742 +2024/08/11 13:50:03 - mmengine - INFO - Iter(train) [146450/160000] lr: 1.1732e-03 eta: 4:12:29 time: 1.1157 data_time: 0.0071 memory: 8704 loss: 0.3265 decode.loss_ce: 0.1956 decode.acc_seg: 89.9877 aux.loss_ce: 0.1309 aux.acc_seg: 84.2813 +2024/08/11 13:50:59 - mmengine - INFO - Iter(train) [146500/160000] lr: 1.1696e-03 eta: 4:11:33 time: 1.1132 data_time: 0.0078 memory: 8703 loss: 0.2115 decode.loss_ce: 0.1303 decode.acc_seg: 95.4775 aux.loss_ce: 0.0813 aux.acc_seg: 92.3873 +2024/08/11 13:51:55 - mmengine - INFO - Iter(train) [146550/160000] lr: 1.1661e-03 eta: 4:10:37 time: 1.1139 data_time: 0.0056 memory: 8703 loss: 0.2556 decode.loss_ce: 0.1579 decode.acc_seg: 89.4094 aux.loss_ce: 0.0976 aux.acc_seg: 85.2167 +2024/08/11 13:52:51 - mmengine - INFO - Iter(train) [146600/160000] lr: 1.1625e-03 eta: 4:09:41 time: 1.1094 data_time: 0.0062 memory: 8703 loss: 0.2283 decode.loss_ce: 0.1408 decode.acc_seg: 95.3200 aux.loss_ce: 0.0875 aux.acc_seg: 93.2410 +2024/08/11 13:53:46 - mmengine - INFO - Iter(train) [146650/160000] lr: 1.1589e-03 eta: 4:08:45 time: 1.1172 data_time: 0.0072 memory: 8703 loss: 0.2601 decode.loss_ce: 0.1551 decode.acc_seg: 95.9490 aux.loss_ce: 0.1051 aux.acc_seg: 94.8447 +2024/08/11 13:54:42 - mmengine - INFO - Iter(train) [146700/160000] lr: 1.1553e-03 eta: 4:07:50 time: 1.1179 data_time: 0.0067 memory: 8704 loss: 0.2514 decode.loss_ce: 0.1571 decode.acc_seg: 96.9698 aux.loss_ce: 0.0943 aux.acc_seg: 96.1640 +2024/08/11 13:55:37 - mmengine - INFO - Iter(train) [146750/160000] lr: 1.1518e-03 eta: 4:06:54 time: 1.1110 data_time: 0.0062 memory: 8704 loss: 0.3032 decode.loss_ce: 0.1908 decode.acc_seg: 97.4399 aux.loss_ce: 0.1124 aux.acc_seg: 96.9243 +2024/08/11 13:56:33 - mmengine - INFO - Iter(train) [146800/160000] lr: 1.1482e-03 eta: 4:05:58 time: 1.1133 data_time: 0.0056 memory: 8704 loss: 0.2252 decode.loss_ce: 0.1310 decode.acc_seg: 97.1281 aux.loss_ce: 0.0942 aux.acc_seg: 96.8351 +2024/08/11 13:57:29 - mmengine - INFO - Iter(train) [146850/160000] lr: 1.1446e-03 eta: 4:05:02 time: 1.1124 data_time: 0.0059 memory: 8704 loss: 0.3171 decode.loss_ce: 0.1812 decode.acc_seg: 96.0447 aux.loss_ce: 0.1358 aux.acc_seg: 90.7553 +2024/08/11 13:58:24 - mmengine - INFO - Iter(train) [146900/160000] lr: 1.1411e-03 eta: 4:04:06 time: 1.1158 data_time: 0.0074 memory: 8704 loss: 0.2263 decode.loss_ce: 0.1346 decode.acc_seg: 88.9154 aux.loss_ce: 0.0917 aux.acc_seg: 83.5826 +2024/08/11 13:59:20 - mmengine - INFO - Iter(train) [146950/160000] lr: 1.1375e-03 eta: 4:03:10 time: 1.1149 data_time: 0.0065 memory: 8704 loss: 0.2106 decode.loss_ce: 0.1281 decode.acc_seg: 94.1796 aux.loss_ce: 0.0825 aux.acc_seg: 93.2749 +2024/08/11 14:00:16 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 14:00:16 - mmengine - INFO - Iter(train) [147000/160000] lr: 1.1339e-03 eta: 4:02:14 time: 1.1128 data_time: 0.0063 memory: 8703 loss: 0.2199 decode.loss_ce: 0.1307 decode.acc_seg: 97.6322 aux.loss_ce: 0.0892 aux.acc_seg: 96.8506 +2024/08/11 14:01:12 - mmengine - INFO - Iter(train) [147050/160000] lr: 1.1303e-03 eta: 4:01:18 time: 1.1185 data_time: 0.0071 memory: 8704 loss: 0.2985 decode.loss_ce: 0.1694 decode.acc_seg: 85.6253 aux.loss_ce: 0.1291 aux.acc_seg: 77.7391 +2024/08/11 14:02:08 - mmengine - INFO - Iter(train) [147100/160000] lr: 1.1267e-03 eta: 4:00:22 time: 1.1137 data_time: 0.0060 memory: 8704 loss: 0.2242 decode.loss_ce: 0.1303 decode.acc_seg: 96.4020 aux.loss_ce: 0.0939 aux.acc_seg: 94.8481 +2024/08/11 14:03:03 - mmengine - INFO - Iter(train) [147150/160000] lr: 1.1232e-03 eta: 3:59:26 time: 1.1186 data_time: 0.0076 memory: 8704 loss: 0.2228 decode.loss_ce: 0.1268 decode.acc_seg: 93.6310 aux.loss_ce: 0.0960 aux.acc_seg: 78.2022 +2024/08/11 14:03:59 - mmengine - INFO - Iter(train) [147200/160000] lr: 1.1196e-03 eta: 3:58:30 time: 1.1125 data_time: 0.0058 memory: 8703 loss: 0.2767 decode.loss_ce: 0.1733 decode.acc_seg: 97.0580 aux.loss_ce: 0.1035 aux.acc_seg: 96.5787 +2024/08/11 14:04:55 - mmengine - INFO - Iter(train) [147250/160000] lr: 1.1160e-03 eta: 3:57:34 time: 1.1113 data_time: 0.0062 memory: 8703 loss: 0.2066 decode.loss_ce: 0.1264 decode.acc_seg: 97.3762 aux.loss_ce: 0.0803 aux.acc_seg: 97.2405 +2024/08/11 14:05:50 - mmengine - INFO - Iter(train) [147300/160000] lr: 1.1124e-03 eta: 3:56:39 time: 1.1146 data_time: 0.0063 memory: 8704 loss: 0.1960 decode.loss_ce: 0.1210 decode.acc_seg: 96.2931 aux.loss_ce: 0.0750 aux.acc_seg: 95.2827 +2024/08/11 14:06:46 - mmengine - INFO - Iter(train) [147350/160000] lr: 1.1088e-03 eta: 3:55:43 time: 1.1142 data_time: 0.0077 memory: 8703 loss: 0.2029 decode.loss_ce: 0.1325 decode.acc_seg: 94.6173 aux.loss_ce: 0.0704 aux.acc_seg: 93.0530 +2024/08/11 14:07:42 - mmengine - INFO - Iter(train) [147400/160000] lr: 1.1052e-03 eta: 3:54:47 time: 1.1146 data_time: 0.0065 memory: 8703 loss: 0.2060 decode.loss_ce: 0.1264 decode.acc_seg: 92.2483 aux.loss_ce: 0.0796 aux.acc_seg: 88.0905 +2024/08/11 14:08:38 - mmengine - INFO - Iter(train) [147450/160000] lr: 1.1016e-03 eta: 3:53:51 time: 1.1197 data_time: 0.0074 memory: 8703 loss: 0.3565 decode.loss_ce: 0.2205 decode.acc_seg: 90.3584 aux.loss_ce: 0.1360 aux.acc_seg: 89.8003 +2024/08/11 14:09:33 - mmengine - INFO - Iter(train) [147500/160000] lr: 1.0980e-03 eta: 3:52:55 time: 1.1087 data_time: 0.0059 memory: 8704 loss: 0.2130 decode.loss_ce: 0.1267 decode.acc_seg: 97.2608 aux.loss_ce: 0.0863 aux.acc_seg: 96.1903 +2024/08/11 14:10:29 - mmengine - INFO - Iter(train) [147550/160000] lr: 1.0944e-03 eta: 3:51:59 time: 1.1108 data_time: 0.0061 memory: 8704 loss: 0.3275 decode.loss_ce: 0.1930 decode.acc_seg: 95.1391 aux.loss_ce: 0.1346 aux.acc_seg: 95.0392 +2024/08/11 14:11:25 - mmengine - INFO - Iter(train) [147600/160000] lr: 1.0909e-03 eta: 3:51:03 time: 1.1149 data_time: 0.0067 memory: 8704 loss: 0.2144 decode.loss_ce: 0.1167 decode.acc_seg: 95.1137 aux.loss_ce: 0.0977 aux.acc_seg: 90.5731 +2024/08/11 14:12:20 - mmengine - INFO - Iter(train) [147650/160000] lr: 1.0873e-03 eta: 3:50:07 time: 1.1128 data_time: 0.0078 memory: 8704 loss: 0.3520 decode.loss_ce: 0.2064 decode.acc_seg: 93.6286 aux.loss_ce: 0.1456 aux.acc_seg: 91.1543 +2024/08/11 14:13:16 - mmengine - INFO - Iter(train) [147700/160000] lr: 1.0837e-03 eta: 3:49:11 time: 1.1144 data_time: 0.0078 memory: 8703 loss: 0.2569 decode.loss_ce: 0.1621 decode.acc_seg: 89.4687 aux.loss_ce: 0.0948 aux.acc_seg: 85.1620 +2024/08/11 14:14:12 - mmengine - INFO - Iter(train) [147750/160000] lr: 1.0801e-03 eta: 3:48:15 time: 1.1092 data_time: 0.0070 memory: 8704 loss: 0.2727 decode.loss_ce: 0.1709 decode.acc_seg: 93.6764 aux.loss_ce: 0.1018 aux.acc_seg: 92.7327 +2024/08/11 14:15:07 - mmengine - INFO - Iter(train) [147800/160000] lr: 1.0765e-03 eta: 3:47:19 time: 1.1176 data_time: 0.0063 memory: 8704 loss: 0.2901 decode.loss_ce: 0.1776 decode.acc_seg: 91.4701 aux.loss_ce: 0.1124 aux.acc_seg: 86.5954 +2024/08/11 14:16:03 - mmengine - INFO - Iter(train) [147850/160000] lr: 1.0729e-03 eta: 3:46:23 time: 1.1133 data_time: 0.0069 memory: 8705 loss: 0.2828 decode.loss_ce: 0.1550 decode.acc_seg: 93.3669 aux.loss_ce: 0.1278 aux.acc_seg: 92.2430 +2024/08/11 14:16:59 - mmengine - INFO - Iter(train) [147900/160000] lr: 1.0693e-03 eta: 3:45:28 time: 1.1168 data_time: 0.0060 memory: 8704 loss: 0.2738 decode.loss_ce: 0.1453 decode.acc_seg: 97.0542 aux.loss_ce: 0.1285 aux.acc_seg: 95.0340 +2024/08/11 14:17:55 - mmengine - INFO - Iter(train) [147950/160000] lr: 1.0656e-03 eta: 3:44:32 time: 1.1210 data_time: 0.0075 memory: 8703 loss: 0.2992 decode.loss_ce: 0.1835 decode.acc_seg: 96.2517 aux.loss_ce: 0.1158 aux.acc_seg: 94.7981 +2024/08/11 14:18:51 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 14:18:51 - mmengine - INFO - Iter(train) [148000/160000] lr: 1.0620e-03 eta: 3:43:36 time: 1.1130 data_time: 0.0066 memory: 8704 loss: 0.1960 decode.loss_ce: 0.1225 decode.acc_seg: 97.5549 aux.loss_ce: 0.0735 aux.acc_seg: 96.4509 +2024/08/11 14:19:46 - mmengine - INFO - Iter(train) [148050/160000] lr: 1.0584e-03 eta: 3:42:40 time: 1.1140 data_time: 0.0058 memory: 8703 loss: 0.2668 decode.loss_ce: 0.1616 decode.acc_seg: 94.1528 aux.loss_ce: 0.1052 aux.acc_seg: 89.9243 +2024/08/11 14:20:42 - mmengine - INFO - Iter(train) [148100/160000] lr: 1.0548e-03 eta: 3:41:44 time: 1.1095 data_time: 0.0065 memory: 8703 loss: 0.2184 decode.loss_ce: 0.1338 decode.acc_seg: 96.8718 aux.loss_ce: 0.0845 aux.acc_seg: 96.5411 +2024/08/11 14:21:38 - mmengine - INFO - Iter(train) [148150/160000] lr: 1.0512e-03 eta: 3:40:48 time: 1.1094 data_time: 0.0059 memory: 8704 loss: 0.2431 decode.loss_ce: 0.1360 decode.acc_seg: 95.8383 aux.loss_ce: 0.1071 aux.acc_seg: 92.7861 +2024/08/11 14:22:33 - mmengine - INFO - Iter(train) [148200/160000] lr: 1.0476e-03 eta: 3:39:52 time: 1.1132 data_time: 0.0072 memory: 8704 loss: 0.2176 decode.loss_ce: 0.1289 decode.acc_seg: 95.5478 aux.loss_ce: 0.0887 aux.acc_seg: 93.9943 +2024/08/11 14:23:29 - mmengine - INFO - Iter(train) [148250/160000] lr: 1.0440e-03 eta: 3:38:56 time: 1.1146 data_time: 0.0065 memory: 8703 loss: 0.3024 decode.loss_ce: 0.1860 decode.acc_seg: 97.2766 aux.loss_ce: 0.1164 aux.acc_seg: 95.5158 +2024/08/11 14:24:25 - mmengine - INFO - Iter(train) [148300/160000] lr: 1.0404e-03 eta: 3:38:00 time: 1.1171 data_time: 0.0072 memory: 8703 loss: 0.2811 decode.loss_ce: 0.1729 decode.acc_seg: 92.9377 aux.loss_ce: 0.1082 aux.acc_seg: 91.9217 +2024/08/11 14:25:21 - mmengine - INFO - Iter(train) [148350/160000] lr: 1.0367e-03 eta: 3:37:04 time: 1.1135 data_time: 0.0067 memory: 8703 loss: 0.2671 decode.loss_ce: 0.1460 decode.acc_seg: 95.3680 aux.loss_ce: 0.1211 aux.acc_seg: 88.0590 +2024/08/11 14:26:16 - mmengine - INFO - Iter(train) [148400/160000] lr: 1.0331e-03 eta: 3:36:08 time: 1.1174 data_time: 0.0072 memory: 8704 loss: 0.1702 decode.loss_ce: 0.1069 decode.acc_seg: 95.0227 aux.loss_ce: 0.0633 aux.acc_seg: 94.0918 +2024/08/11 14:27:12 - mmengine - INFO - Iter(train) [148450/160000] lr: 1.0295e-03 eta: 3:35:12 time: 1.1143 data_time: 0.0072 memory: 8704 loss: 0.2420 decode.loss_ce: 0.1461 decode.acc_seg: 95.7995 aux.loss_ce: 0.0959 aux.acc_seg: 92.2103 +2024/08/11 14:28:08 - mmengine - INFO - Iter(train) [148500/160000] lr: 1.0259e-03 eta: 3:34:17 time: 1.1110 data_time: 0.0067 memory: 8704 loss: 0.2060 decode.loss_ce: 0.1235 decode.acc_seg: 95.5956 aux.loss_ce: 0.0826 aux.acc_seg: 92.0509 +2024/08/11 14:29:03 - mmengine - INFO - Iter(train) [148550/160000] lr: 1.0223e-03 eta: 3:33:21 time: 1.1109 data_time: 0.0064 memory: 8704 loss: 0.2113 decode.loss_ce: 0.1216 decode.acc_seg: 98.0446 aux.loss_ce: 0.0897 aux.acc_seg: 94.5438 +2024/08/11 14:29:59 - mmengine - INFO - Iter(train) [148600/160000] lr: 1.0186e-03 eta: 3:32:25 time: 1.1118 data_time: 0.0070 memory: 8703 loss: 0.3951 decode.loss_ce: 0.2494 decode.acc_seg: 93.8913 aux.loss_ce: 0.1457 aux.acc_seg: 91.4512 +2024/08/11 14:30:55 - mmengine - INFO - Iter(train) [148650/160000] lr: 1.0150e-03 eta: 3:31:29 time: 1.1145 data_time: 0.0061 memory: 8703 loss: 0.3444 decode.loss_ce: 0.2085 decode.acc_seg: 92.3759 aux.loss_ce: 0.1359 aux.acc_seg: 92.0444 +2024/08/11 14:31:50 - mmengine - INFO - Iter(train) [148700/160000] lr: 1.0114e-03 eta: 3:30:33 time: 1.1157 data_time: 0.0071 memory: 8703 loss: 0.1923 decode.loss_ce: 0.1202 decode.acc_seg: 97.2201 aux.loss_ce: 0.0722 aux.acc_seg: 96.9822 +2024/08/11 14:32:46 - mmengine - INFO - Iter(train) [148750/160000] lr: 1.0078e-03 eta: 3:29:37 time: 1.1148 data_time: 0.0065 memory: 8704 loss: 0.2318 decode.loss_ce: 0.1349 decode.acc_seg: 94.6313 aux.loss_ce: 0.0969 aux.acc_seg: 94.1632 +2024/08/11 14:33:42 - mmengine - INFO - Iter(train) [148800/160000] lr: 1.0041e-03 eta: 3:28:41 time: 1.1164 data_time: 0.0079 memory: 8703 loss: 0.2735 decode.loss_ce: 0.1624 decode.acc_seg: 94.6375 aux.loss_ce: 0.1111 aux.acc_seg: 93.5188 +2024/08/11 14:34:38 - mmengine - INFO - Iter(train) [148850/160000] lr: 1.0005e-03 eta: 3:27:45 time: 1.1149 data_time: 0.0062 memory: 8704 loss: 0.3427 decode.loss_ce: 0.2387 decode.acc_seg: 97.0078 aux.loss_ce: 0.1040 aux.acc_seg: 96.0243 +2024/08/11 14:35:33 - mmengine - INFO - Iter(train) [148900/160000] lr: 9.9685e-04 eta: 3:26:49 time: 1.1140 data_time: 0.0063 memory: 8704 loss: 0.3144 decode.loss_ce: 0.1920 decode.acc_seg: 95.6003 aux.loss_ce: 0.1224 aux.acc_seg: 95.5379 +2024/08/11 14:36:29 - mmengine - INFO - Iter(train) [148950/160000] lr: 9.9321e-04 eta: 3:25:53 time: 1.1144 data_time: 0.0059 memory: 8703 loss: 0.2538 decode.loss_ce: 0.1564 decode.acc_seg: 97.1159 aux.loss_ce: 0.0973 aux.acc_seg: 96.6169 +2024/08/11 14:37:25 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 14:37:25 - mmengine - INFO - Iter(train) [149000/160000] lr: 9.8958e-04 eta: 3:24:57 time: 1.1163 data_time: 0.0077 memory: 8703 loss: 0.2907 decode.loss_ce: 0.1756 decode.acc_seg: 91.4771 aux.loss_ce: 0.1152 aux.acc_seg: 87.5760 +2024/08/11 14:38:21 - mmengine - INFO - Iter(train) [149050/160000] lr: 9.8594e-04 eta: 3:24:01 time: 1.1128 data_time: 0.0058 memory: 8705 loss: 0.2432 decode.loss_ce: 0.1463 decode.acc_seg: 94.8514 aux.loss_ce: 0.0969 aux.acc_seg: 93.5489 +2024/08/11 14:39:16 - mmengine - INFO - Iter(train) [149100/160000] lr: 9.8229e-04 eta: 3:23:06 time: 1.1129 data_time: 0.0065 memory: 8703 loss: 0.3092 decode.loss_ce: 0.1757 decode.acc_seg: 81.2062 aux.loss_ce: 0.1335 aux.acc_seg: 71.6073 +2024/08/11 14:40:12 - mmengine - INFO - Iter(train) [149150/160000] lr: 9.7865e-04 eta: 3:22:10 time: 1.1156 data_time: 0.0074 memory: 8704 loss: 0.2284 decode.loss_ce: 0.1327 decode.acc_seg: 97.0796 aux.loss_ce: 0.0957 aux.acc_seg: 96.5881 +2024/08/11 14:41:08 - mmengine - INFO - Iter(train) [149200/160000] lr: 9.7501e-04 eta: 3:21:14 time: 1.1107 data_time: 0.0061 memory: 8704 loss: 0.2666 decode.loss_ce: 0.1616 decode.acc_seg: 91.6561 aux.loss_ce: 0.1050 aux.acc_seg: 86.3754 +2024/08/11 14:42:03 - mmengine - INFO - Iter(train) [149250/160000] lr: 9.7136e-04 eta: 3:20:18 time: 1.1121 data_time: 0.0062 memory: 8703 loss: 0.3256 decode.loss_ce: 0.1787 decode.acc_seg: 95.7216 aux.loss_ce: 0.1469 aux.acc_seg: 94.8588 +2024/08/11 14:42:59 - mmengine - INFO - Iter(train) [149300/160000] lr: 9.6771e-04 eta: 3:19:22 time: 1.1142 data_time: 0.0077 memory: 8704 loss: 0.2119 decode.loss_ce: 0.1328 decode.acc_seg: 88.4519 aux.loss_ce: 0.0791 aux.acc_seg: 93.1491 +2024/08/11 14:43:55 - mmengine - INFO - Iter(train) [149350/160000] lr: 9.6406e-04 eta: 3:18:26 time: 1.1150 data_time: 0.0070 memory: 8703 loss: 0.2972 decode.loss_ce: 0.1829 decode.acc_seg: 92.2302 aux.loss_ce: 0.1144 aux.acc_seg: 89.0863 +2024/08/11 14:44:51 - mmengine - INFO - Iter(train) [149400/160000] lr: 9.6041e-04 eta: 3:17:30 time: 1.1125 data_time: 0.0083 memory: 8703 loss: 0.2613 decode.loss_ce: 0.1589 decode.acc_seg: 96.7709 aux.loss_ce: 0.1025 aux.acc_seg: 95.5822 +2024/08/11 14:45:46 - mmengine - INFO - Iter(train) [149450/160000] lr: 9.5676e-04 eta: 3:16:34 time: 1.1117 data_time: 0.0071 memory: 8703 loss: 0.2808 decode.loss_ce: 0.1620 decode.acc_seg: 94.8849 aux.loss_ce: 0.1188 aux.acc_seg: 93.2044 +2024/08/11 14:46:42 - mmengine - INFO - Iter(train) [149500/160000] lr: 9.5310e-04 eta: 3:15:38 time: 1.1150 data_time: 0.0090 memory: 8704 loss: 0.2299 decode.loss_ce: 0.1441 decode.acc_seg: 86.3373 aux.loss_ce: 0.0858 aux.acc_seg: 79.3449 +2024/08/11 14:47:38 - mmengine - INFO - Iter(train) [149550/160000] lr: 9.4944e-04 eta: 3:14:42 time: 1.1125 data_time: 0.0072 memory: 8704 loss: 0.2047 decode.loss_ce: 0.1328 decode.acc_seg: 96.5106 aux.loss_ce: 0.0719 aux.acc_seg: 94.4108 +2024/08/11 14:48:33 - mmengine - INFO - Iter(train) [149600/160000] lr: 9.4578e-04 eta: 3:13:46 time: 1.1183 data_time: 0.0087 memory: 8704 loss: 0.1959 decode.loss_ce: 0.1189 decode.acc_seg: 98.3605 aux.loss_ce: 0.0770 aux.acc_seg: 98.0019 +2024/08/11 14:49:29 - mmengine - INFO - Iter(train) [149650/160000] lr: 9.4212e-04 eta: 3:12:50 time: 1.1157 data_time: 0.0074 memory: 8704 loss: 0.2898 decode.loss_ce: 0.1687 decode.acc_seg: 92.2110 aux.loss_ce: 0.1211 aux.acc_seg: 87.5956 +2024/08/11 14:50:25 - mmengine - INFO - Iter(train) [149700/160000] lr: 9.3846e-04 eta: 3:11:55 time: 1.1209 data_time: 0.0078 memory: 8705 loss: 0.2740 decode.loss_ce: 0.1562 decode.acc_seg: 95.5954 aux.loss_ce: 0.1178 aux.acc_seg: 94.8493 +2024/08/11 14:51:21 - mmengine - INFO - Iter(train) [149750/160000] lr: 9.3480e-04 eta: 3:10:59 time: 1.1171 data_time: 0.0076 memory: 8703 loss: 0.2439 decode.loss_ce: 0.1518 decode.acc_seg: 95.8802 aux.loss_ce: 0.0922 aux.acc_seg: 93.6001 +2024/08/11 14:52:17 - mmengine - INFO - Iter(train) [149800/160000] lr: 9.3113e-04 eta: 3:10:03 time: 1.1151 data_time: 0.0082 memory: 8703 loss: 0.2402 decode.loss_ce: 0.1464 decode.acc_seg: 96.4879 aux.loss_ce: 0.0939 aux.acc_seg: 94.6064 +2024/08/11 14:53:13 - mmengine - INFO - Iter(train) [149850/160000] lr: 9.2746e-04 eta: 3:09:07 time: 1.1146 data_time: 0.0064 memory: 8703 loss: 0.3110 decode.loss_ce: 0.1830 decode.acc_seg: 94.7185 aux.loss_ce: 0.1280 aux.acc_seg: 93.6685 +2024/08/11 14:54:09 - mmengine - INFO - Iter(train) [149900/160000] lr: 9.2379e-04 eta: 3:08:11 time: 1.1175 data_time: 0.0076 memory: 8703 loss: 0.2027 decode.loss_ce: 0.1247 decode.acc_seg: 98.5910 aux.loss_ce: 0.0780 aux.acc_seg: 97.7193 +2024/08/11 14:55:05 - mmengine - INFO - Iter(train) [149950/160000] lr: 9.2012e-04 eta: 3:07:15 time: 1.1149 data_time: 0.0063 memory: 8704 loss: 0.2586 decode.loss_ce: 0.1534 decode.acc_seg: 96.8751 aux.loss_ce: 0.1052 aux.acc_seg: 96.1846 +2024/08/11 14:56:01 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 14:56:01 - mmengine - INFO - Iter(train) [150000/160000] lr: 9.1645e-04 eta: 3:06:19 time: 1.1136 data_time: 0.0063 memory: 8703 loss: 0.2822 decode.loss_ce: 0.1638 decode.acc_seg: 95.0776 aux.loss_ce: 0.1185 aux.acc_seg: 88.8359 +2024/08/11 14:56:56 - mmengine - INFO - Iter(train) [150050/160000] lr: 9.1278e-04 eta: 3:05:23 time: 1.1138 data_time: 0.0059 memory: 8703 loss: 0.1962 decode.loss_ce: 0.1199 decode.acc_seg: 95.3890 aux.loss_ce: 0.0763 aux.acc_seg: 94.5272 +2024/08/11 14:57:52 - mmengine - INFO - Iter(train) [150100/160000] lr: 9.0910e-04 eta: 3:04:27 time: 1.1197 data_time: 0.0094 memory: 8703 loss: 0.2811 decode.loss_ce: 0.1750 decode.acc_seg: 93.2856 aux.loss_ce: 0.1062 aux.acc_seg: 92.1630 +2024/08/11 14:58:48 - mmengine - INFO - Iter(train) [150150/160000] lr: 9.0542e-04 eta: 3:03:31 time: 1.1166 data_time: 0.0085 memory: 8703 loss: 0.2011 decode.loss_ce: 0.1200 decode.acc_seg: 96.1424 aux.loss_ce: 0.0810 aux.acc_seg: 95.4923 +2024/08/11 14:59:44 - mmengine - INFO - Iter(train) [150200/160000] lr: 9.0174e-04 eta: 3:02:36 time: 1.1100 data_time: 0.0063 memory: 8704 loss: 0.2265 decode.loss_ce: 0.1441 decode.acc_seg: 96.8740 aux.loss_ce: 0.0825 aux.acc_seg: 96.4264 +2024/08/11 15:00:40 - mmengine - INFO - Iter(train) [150250/160000] lr: 8.9806e-04 eta: 3:01:40 time: 1.1150 data_time: 0.0070 memory: 8703 loss: 0.1825 decode.loss_ce: 0.1173 decode.acc_seg: 95.7249 aux.loss_ce: 0.0652 aux.acc_seg: 95.1935 +2024/08/11 15:01:35 - mmengine - INFO - Iter(train) [150300/160000] lr: 8.9437e-04 eta: 3:00:44 time: 1.1142 data_time: 0.0074 memory: 8703 loss: 0.2483 decode.loss_ce: 0.1382 decode.acc_seg: 95.4674 aux.loss_ce: 0.1100 aux.acc_seg: 93.5052 +2024/08/11 15:02:31 - mmengine - INFO - Iter(train) [150350/160000] lr: 8.9069e-04 eta: 2:59:48 time: 1.1098 data_time: 0.0057 memory: 8703 loss: 0.2473 decode.loss_ce: 0.1465 decode.acc_seg: 93.3692 aux.loss_ce: 0.1008 aux.acc_seg: 91.0006 +2024/08/11 15:03:27 - mmengine - INFO - Iter(train) [150400/160000] lr: 8.8700e-04 eta: 2:58:52 time: 1.1135 data_time: 0.0082 memory: 8704 loss: 0.2835 decode.loss_ce: 0.1775 decode.acc_seg: 89.8454 aux.loss_ce: 0.1061 aux.acc_seg: 86.9431 +2024/08/11 15:04:22 - mmengine - INFO - Iter(train) [150450/160000] lr: 8.8331e-04 eta: 2:57:56 time: 1.1109 data_time: 0.0064 memory: 8704 loss: 0.1974 decode.loss_ce: 0.1196 decode.acc_seg: 93.2522 aux.loss_ce: 0.0778 aux.acc_seg: 91.6328 +2024/08/11 15:05:18 - mmengine - INFO - Iter(train) [150500/160000] lr: 8.7962e-04 eta: 2:57:00 time: 1.1126 data_time: 0.0071 memory: 8703 loss: 0.2497 decode.loss_ce: 0.1477 decode.acc_seg: 93.7971 aux.loss_ce: 0.1020 aux.acc_seg: 92.1998 +2024/08/11 15:06:14 - mmengine - INFO - Iter(train) [150550/160000] lr: 8.7592e-04 eta: 2:56:04 time: 1.1169 data_time: 0.0085 memory: 8705 loss: 0.2198 decode.loss_ce: 0.1363 decode.acc_seg: 90.6520 aux.loss_ce: 0.0834 aux.acc_seg: 89.2653 +2024/08/11 15:07:09 - mmengine - INFO - Iter(train) [150600/160000] lr: 8.7223e-04 eta: 2:55:08 time: 1.1195 data_time: 0.0073 memory: 8704 loss: 0.2368 decode.loss_ce: 0.1455 decode.acc_seg: 96.7354 aux.loss_ce: 0.0913 aux.acc_seg: 94.3185 +2024/08/11 15:08:05 - mmengine - INFO - Iter(train) [150650/160000] lr: 8.6853e-04 eta: 2:54:12 time: 1.1196 data_time: 0.0083 memory: 8704 loss: 0.2286 decode.loss_ce: 0.1327 decode.acc_seg: 94.6187 aux.loss_ce: 0.0960 aux.acc_seg: 93.2775 +2024/08/11 15:09:01 - mmengine - INFO - Iter(train) [150700/160000] lr: 8.6483e-04 eta: 2:53:16 time: 1.1158 data_time: 0.0060 memory: 8704 loss: 0.2626 decode.loss_ce: 0.1598 decode.acc_seg: 95.8514 aux.loss_ce: 0.1027 aux.acc_seg: 94.7285 +2024/08/11 15:09:57 - mmengine - INFO - Iter(train) [150750/160000] lr: 8.6113e-04 eta: 2:52:21 time: 1.1212 data_time: 0.0082 memory: 8703 loss: 0.3016 decode.loss_ce: 0.1847 decode.acc_seg: 94.8450 aux.loss_ce: 0.1170 aux.acc_seg: 93.9097 +2024/08/11 15:10:53 - mmengine - INFO - Iter(train) [150800/160000] lr: 8.5742e-04 eta: 2:51:25 time: 1.1124 data_time: 0.0067 memory: 8703 loss: 0.2082 decode.loss_ce: 0.1188 decode.acc_seg: 90.5742 aux.loss_ce: 0.0894 aux.acc_seg: 85.6826 +2024/08/11 15:11:49 - mmengine - INFO - Iter(train) [150850/160000] lr: 8.5372e-04 eta: 2:50:29 time: 1.1174 data_time: 0.0082 memory: 8704 loss: 0.2366 decode.loss_ce: 0.1450 decode.acc_seg: 96.8711 aux.loss_ce: 0.0916 aux.acc_seg: 95.5821 +2024/08/11 15:12:45 - mmengine - INFO - Iter(train) [150900/160000] lr: 8.5001e-04 eta: 2:49:33 time: 1.1153 data_time: 0.0078 memory: 8704 loss: 0.3021 decode.loss_ce: 0.1653 decode.acc_seg: 94.7217 aux.loss_ce: 0.1368 aux.acc_seg: 92.8698 +2024/08/11 15:13:41 - mmengine - INFO - Iter(train) [150950/160000] lr: 8.4630e-04 eta: 2:48:37 time: 1.1144 data_time: 0.0077 memory: 8703 loss: 0.3203 decode.loss_ce: 0.2053 decode.acc_seg: 97.5467 aux.loss_ce: 0.1149 aux.acc_seg: 96.4892 +2024/08/11 15:14:37 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 15:14:37 - mmengine - INFO - Iter(train) [151000/160000] lr: 8.4259e-04 eta: 2:47:41 time: 1.1195 data_time: 0.0065 memory: 8703 loss: 0.2366 decode.loss_ce: 0.1439 decode.acc_seg: 95.9379 aux.loss_ce: 0.0927 aux.acc_seg: 92.1222 +2024/08/11 15:15:33 - mmengine - INFO - Iter(train) [151050/160000] lr: 8.3887e-04 eta: 2:46:45 time: 1.1127 data_time: 0.0057 memory: 8703 loss: 0.3452 decode.loss_ce: 0.2020 decode.acc_seg: 93.5725 aux.loss_ce: 0.1432 aux.acc_seg: 91.9399 +2024/08/11 15:16:29 - mmengine - INFO - Iter(train) [151100/160000] lr: 8.3516e-04 eta: 2:45:49 time: 1.1105 data_time: 0.0051 memory: 8704 loss: 0.2925 decode.loss_ce: 0.1696 decode.acc_seg: 93.5849 aux.loss_ce: 0.1229 aux.acc_seg: 86.9476 +2024/08/11 15:17:25 - mmengine - INFO - Iter(train) [151150/160000] lr: 8.3144e-04 eta: 2:44:53 time: 1.1159 data_time: 0.0070 memory: 8704 loss: 0.2618 decode.loss_ce: 0.1592 decode.acc_seg: 96.1761 aux.loss_ce: 0.1027 aux.acc_seg: 95.0733 +2024/08/11 15:18:21 - mmengine - INFO - Iter(train) [151200/160000] lr: 8.2772e-04 eta: 2:43:58 time: 1.1140 data_time: 0.0065 memory: 8704 loss: 0.2381 decode.loss_ce: 0.1371 decode.acc_seg: 96.1249 aux.loss_ce: 0.1010 aux.acc_seg: 94.2071 +2024/08/11 15:19:17 - mmengine - INFO - Iter(train) [151250/160000] lr: 8.2400e-04 eta: 2:43:02 time: 1.1166 data_time: 0.0074 memory: 8703 loss: 0.1728 decode.loss_ce: 0.1018 decode.acc_seg: 96.2831 aux.loss_ce: 0.0709 aux.acc_seg: 94.3121 +2024/08/11 15:20:13 - mmengine - INFO - Iter(train) [151300/160000] lr: 8.2027e-04 eta: 2:42:06 time: 1.1156 data_time: 0.0071 memory: 8703 loss: 0.2489 decode.loss_ce: 0.1395 decode.acc_seg: 98.1333 aux.loss_ce: 0.1094 aux.acc_seg: 97.8014 +2024/08/11 15:21:08 - mmengine - INFO - Iter(train) [151350/160000] lr: 8.1655e-04 eta: 2:41:10 time: 1.1147 data_time: 0.0075 memory: 8703 loss: 0.2011 decode.loss_ce: 0.1237 decode.acc_seg: 92.0312 aux.loss_ce: 0.0774 aux.acc_seg: 90.0864 +2024/08/11 15:22:04 - mmengine - INFO - Iter(train) [151400/160000] lr: 8.1282e-04 eta: 2:40:14 time: 1.1148 data_time: 0.0065 memory: 8704 loss: 0.3094 decode.loss_ce: 0.1918 decode.acc_seg: 92.0458 aux.loss_ce: 0.1176 aux.acc_seg: 83.8182 +2024/08/11 15:23:00 - mmengine - INFO - Iter(train) [151450/160000] lr: 8.0909e-04 eta: 2:39:18 time: 1.1149 data_time: 0.0070 memory: 8704 loss: 0.2903 decode.loss_ce: 0.1763 decode.acc_seg: 89.9787 aux.loss_ce: 0.1140 aux.acc_seg: 86.3316 +2024/08/11 15:23:56 - mmengine - INFO - Iter(train) [151500/160000] lr: 8.0535e-04 eta: 2:38:22 time: 1.1188 data_time: 0.0080 memory: 8704 loss: 0.3566 decode.loss_ce: 0.2204 decode.acc_seg: 92.5857 aux.loss_ce: 0.1362 aux.acc_seg: 92.8541 +2024/08/11 15:24:51 - mmengine - INFO - Iter(train) [151550/160000] lr: 8.0162e-04 eta: 2:37:26 time: 1.1131 data_time: 0.0076 memory: 8704 loss: 0.3584 decode.loss_ce: 0.2143 decode.acc_seg: 97.0257 aux.loss_ce: 0.1441 aux.acc_seg: 96.9382 +2024/08/11 15:25:47 - mmengine - INFO - Iter(train) [151600/160000] lr: 7.9788e-04 eta: 2:36:30 time: 1.1145 data_time: 0.0060 memory: 8703 loss: 0.3280 decode.loss_ce: 0.2105 decode.acc_seg: 96.9761 aux.loss_ce: 0.1175 aux.acc_seg: 96.3860 +2024/08/11 15:26:43 - mmengine - INFO - Iter(train) [151650/160000] lr: 7.9414e-04 eta: 2:35:34 time: 1.1185 data_time: 0.0075 memory: 8704 loss: 0.2119 decode.loss_ce: 0.1254 decode.acc_seg: 96.7901 aux.loss_ce: 0.0865 aux.acc_seg: 96.5394 +2024/08/11 15:27:39 - mmengine - INFO - Iter(train) [151700/160000] lr: 7.9040e-04 eta: 2:34:38 time: 1.1164 data_time: 0.0062 memory: 8703 loss: 0.2971 decode.loss_ce: 0.1863 decode.acc_seg: 95.2178 aux.loss_ce: 0.1109 aux.acc_seg: 92.9137 +2024/08/11 15:28:35 - mmengine - INFO - Iter(train) [151750/160000] lr: 7.8665e-04 eta: 2:33:43 time: 1.1173 data_time: 0.0069 memory: 8703 loss: 0.1846 decode.loss_ce: 0.1115 decode.acc_seg: 93.2026 aux.loss_ce: 0.0731 aux.acc_seg: 91.1777 +2024/08/11 15:29:31 - mmengine - INFO - Iter(train) [151800/160000] lr: 7.8291e-04 eta: 2:32:47 time: 1.1125 data_time: 0.0060 memory: 8703 loss: 0.2499 decode.loss_ce: 0.1448 decode.acc_seg: 93.2806 aux.loss_ce: 0.1050 aux.acc_seg: 93.8101 +2024/08/11 15:30:27 - mmengine - INFO - Iter(train) [151850/160000] lr: 7.7916e-04 eta: 2:31:51 time: 1.1166 data_time: 0.0064 memory: 8704 loss: 0.1742 decode.loss_ce: 0.1120 decode.acc_seg: 95.2380 aux.loss_ce: 0.0622 aux.acc_seg: 93.2074 +2024/08/11 15:31:23 - mmengine - INFO - Iter(train) [151900/160000] lr: 7.7541e-04 eta: 2:30:55 time: 1.1165 data_time: 0.0072 memory: 8703 loss: 0.1904 decode.loss_ce: 0.1159 decode.acc_seg: 94.9766 aux.loss_ce: 0.0746 aux.acc_seg: 92.1438 +2024/08/11 15:32:19 - mmengine - INFO - Iter(train) [151950/160000] lr: 7.7165e-04 eta: 2:29:59 time: 1.1159 data_time: 0.0075 memory: 8704 loss: 0.2970 decode.loss_ce: 0.1792 decode.acc_seg: 95.7158 aux.loss_ce: 0.1179 aux.acc_seg: 89.4152 +2024/08/11 15:33:15 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 15:33:15 - mmengine - INFO - Iter(train) [152000/160000] lr: 7.6790e-04 eta: 2:29:03 time: 1.1195 data_time: 0.0084 memory: 8703 loss: 0.2384 decode.loss_ce: 0.1421 decode.acc_seg: 94.7064 aux.loss_ce: 0.0963 aux.acc_seg: 89.0026 +2024/08/11 15:34:11 - mmengine - INFO - Iter(train) [152050/160000] lr: 7.6414e-04 eta: 2:28:07 time: 1.1225 data_time: 0.0069 memory: 8704 loss: 0.2582 decode.loss_ce: 0.1586 decode.acc_seg: 95.6949 aux.loss_ce: 0.0995 aux.acc_seg: 95.3093 +2024/08/11 15:35:07 - mmengine - INFO - Iter(train) [152100/160000] lr: 7.6038e-04 eta: 2:27:11 time: 1.1543 data_time: 0.0081 memory: 8703 loss: 0.2262 decode.loss_ce: 0.1318 decode.acc_seg: 95.5473 aux.loss_ce: 0.0944 aux.acc_seg: 94.5572 +2024/08/11 15:37:03 - mmengine - INFO - Iter(train) [152150/160000] lr: 7.5662e-04 eta: 2:26:19 time: 2.5242 data_time: 0.0094 memory: 8704 loss: 0.2512 decode.loss_ce: 0.1512 decode.acc_seg: 95.7768 aux.loss_ce: 0.1000 aux.acc_seg: 94.2336 +2024/08/11 15:39:08 - mmengine - INFO - Iter(train) [152200/160000] lr: 7.5285e-04 eta: 2:25:26 time: 2.4892 data_time: 0.0098 memory: 8704 loss: 0.2018 decode.loss_ce: 0.1238 decode.acc_seg: 95.5468 aux.loss_ce: 0.0780 aux.acc_seg: 93.5308 +2024/08/11 15:41:15 - mmengine - INFO - Iter(train) [152250/160000] lr: 7.4908e-04 eta: 2:24:34 time: 2.5940 data_time: 0.0087 memory: 8703 loss: 0.2570 decode.loss_ce: 0.1521 decode.acc_seg: 93.2468 aux.loss_ce: 0.1049 aux.acc_seg: 85.5108 +2024/08/11 15:43:21 - mmengine - INFO - Iter(train) [152300/160000] lr: 7.4531e-04 eta: 2:23:41 time: 2.4494 data_time: 0.0100 memory: 8703 loss: 0.2624 decode.loss_ce: 0.1561 decode.acc_seg: 96.5283 aux.loss_ce: 0.1063 aux.acc_seg: 95.6323 +2024/08/11 15:45:27 - mmengine - INFO - Iter(train) [152350/160000] lr: 7.4154e-04 eta: 2:22:49 time: 2.4768 data_time: 0.0106 memory: 8703 loss: 0.2610 decode.loss_ce: 0.1559 decode.acc_seg: 96.0939 aux.loss_ce: 0.1051 aux.acc_seg: 93.0994 +2024/08/11 15:47:32 - mmengine - INFO - Iter(train) [152400/160000] lr: 7.3777e-04 eta: 2:21:56 time: 2.4600 data_time: 0.0102 memory: 8704 loss: 0.2162 decode.loss_ce: 0.1297 decode.acc_seg: 94.0810 aux.loss_ce: 0.0866 aux.acc_seg: 89.4815 +2024/08/11 15:49:37 - mmengine - INFO - Iter(train) [152450/160000] lr: 7.3399e-04 eta: 2:21:04 time: 2.4656 data_time: 0.0125 memory: 8704 loss: 0.2316 decode.loss_ce: 0.1368 decode.acc_seg: 97.6612 aux.loss_ce: 0.0948 aux.acc_seg: 95.8999 +2024/08/11 15:51:43 - mmengine - INFO - Iter(train) [152500/160000] lr: 7.3021e-04 eta: 2:20:11 time: 2.5766 data_time: 0.0076 memory: 8704 loss: 0.2689 decode.loss_ce: 0.1639 decode.acc_seg: 92.0414 aux.loss_ce: 0.1050 aux.acc_seg: 77.4244 +2024/08/11 15:53:50 - mmengine - INFO - Iter(train) [152550/160000] lr: 7.2643e-04 eta: 2:19:19 time: 2.6157 data_time: 0.0099 memory: 8704 loss: 0.2148 decode.loss_ce: 0.1304 decode.acc_seg: 92.9475 aux.loss_ce: 0.0844 aux.acc_seg: 95.1410 +2024/08/11 15:55:57 - mmengine - INFO - Iter(train) [152600/160000] lr: 7.2264e-04 eta: 2:18:26 time: 2.5498 data_time: 0.0083 memory: 8703 loss: 0.2288 decode.loss_ce: 0.1397 decode.acc_seg: 94.7473 aux.loss_ce: 0.0891 aux.acc_seg: 93.0420 +2024/08/11 15:58:05 - mmengine - INFO - Iter(train) [152650/160000] lr: 7.1885e-04 eta: 2:17:33 time: 2.5552 data_time: 0.0100 memory: 8704 loss: 0.2394 decode.loss_ce: 0.1329 decode.acc_seg: 93.5897 aux.loss_ce: 0.1064 aux.acc_seg: 88.0080 +2024/08/11 16:00:13 - mmengine - INFO - Iter(train) [152700/160000] lr: 7.1506e-04 eta: 2:16:41 time: 2.5223 data_time: 0.0112 memory: 8703 loss: 0.3424 decode.loss_ce: 0.1886 decode.acc_seg: 82.1504 aux.loss_ce: 0.1539 aux.acc_seg: 74.7958 +2024/08/11 16:02:22 - mmengine - INFO - Iter(train) [152750/160000] lr: 7.1127e-04 eta: 2:15:48 time: 2.6279 data_time: 0.0150 memory: 8704 loss: 0.2433 decode.loss_ce: 0.1439 decode.acc_seg: 96.6761 aux.loss_ce: 0.0994 aux.acc_seg: 95.7907 +2024/08/11 16:04:29 - mmengine - INFO - Iter(train) [152800/160000] lr: 7.0748e-04 eta: 2:14:55 time: 2.5731 data_time: 0.0104 memory: 8704 loss: 0.1922 decode.loss_ce: 0.1189 decode.acc_seg: 97.3071 aux.loss_ce: 0.0733 aux.acc_seg: 96.0755 +2024/08/11 16:06:37 - mmengine - INFO - Iter(train) [152850/160000] lr: 7.0368e-04 eta: 2:14:02 time: 2.5287 data_time: 0.0072 memory: 8703 loss: 0.3130 decode.loss_ce: 0.1918 decode.acc_seg: 96.8997 aux.loss_ce: 0.1212 aux.acc_seg: 96.6773 +2024/08/11 16:08:44 - mmengine - INFO - Iter(train) [152900/160000] lr: 6.9988e-04 eta: 2:13:09 time: 2.5612 data_time: 0.0109 memory: 8703 loss: 0.2513 decode.loss_ce: 0.1408 decode.acc_seg: 95.0577 aux.loss_ce: 0.1105 aux.acc_seg: 90.3996 +2024/08/11 16:10:51 - mmengine - INFO - Iter(train) [152950/160000] lr: 6.9607e-04 eta: 2:12:16 time: 2.4957 data_time: 0.0100 memory: 8705 loss: 0.2655 decode.loss_ce: 0.1423 decode.acc_seg: 97.2671 aux.loss_ce: 0.1232 aux.acc_seg: 94.9083 +2024/08/11 16:12:58 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 16:12:58 - mmengine - INFO - Iter(train) [153000/160000] lr: 6.9227e-04 eta: 2:11:23 time: 2.5385 data_time: 0.0133 memory: 8703 loss: 0.3472 decode.loss_ce: 0.2070 decode.acc_seg: 97.3163 aux.loss_ce: 0.1401 aux.acc_seg: 92.0665 +2024/08/11 16:14:48 - mmengine - INFO - Iter(train) [153050/160000] lr: 6.8846e-04 eta: 2:10:29 time: 1.6336 data_time: 0.0075 memory: 8703 loss: 0.1843 decode.loss_ce: 0.1168 decode.acc_seg: 95.9504 aux.loss_ce: 0.0675 aux.acc_seg: 96.0438 +2024/08/11 16:16:27 - mmengine - INFO - Iter(train) [153100/160000] lr: 6.8465e-04 eta: 2:09:35 time: 2.5294 data_time: 0.0092 memory: 8704 loss: 0.2236 decode.loss_ce: 0.1303 decode.acc_seg: 90.5197 aux.loss_ce: 0.0933 aux.acc_seg: 72.7004 +2024/08/11 16:18:35 - mmengine - INFO - Iter(train) [153150/160000] lr: 6.8083e-04 eta: 2:08:42 time: 2.5160 data_time: 0.0102 memory: 8704 loss: 0.2590 decode.loss_ce: 0.1417 decode.acc_seg: 97.2389 aux.loss_ce: 0.1174 aux.acc_seg: 96.6868 +2024/08/11 16:20:43 - mmengine - INFO - Iter(train) [153200/160000] lr: 6.7702e-04 eta: 2:07:48 time: 2.6796 data_time: 0.0106 memory: 8704 loss: 0.2619 decode.loss_ce: 0.1461 decode.acc_seg: 96.6623 aux.loss_ce: 0.1158 aux.acc_seg: 96.1414 +2024/08/11 16:22:49 - mmengine - INFO - Iter(train) [153250/160000] lr: 6.7320e-04 eta: 2:06:55 time: 2.4578 data_time: 0.0100 memory: 8703 loss: 0.2126 decode.loss_ce: 0.1187 decode.acc_seg: 98.3893 aux.loss_ce: 0.0939 aux.acc_seg: 97.3804 +2024/08/11 16:24:54 - mmengine - INFO - Iter(train) [153300/160000] lr: 6.6937e-04 eta: 2:06:02 time: 2.5222 data_time: 0.0127 memory: 8704 loss: 0.2392 decode.loss_ce: 0.1395 decode.acc_seg: 97.3460 aux.loss_ce: 0.0996 aux.acc_seg: 96.8757 +2024/08/11 16:27:00 - mmengine - INFO - Iter(train) [153350/160000] lr: 6.6555e-04 eta: 2:05:08 time: 2.4777 data_time: 0.0128 memory: 8703 loss: 0.2115 decode.loss_ce: 0.1300 decode.acc_seg: 94.4372 aux.loss_ce: 0.0815 aux.acc_seg: 88.5925 +2024/08/11 16:29:08 - mmengine - INFO - Iter(train) [153400/160000] lr: 6.6172e-04 eta: 2:04:15 time: 2.5659 data_time: 0.0091 memory: 8703 loss: 0.2640 decode.loss_ce: 0.1542 decode.acc_seg: 93.7296 aux.loss_ce: 0.1098 aux.acc_seg: 92.1581 +2024/08/11 16:31:13 - mmengine - INFO - Iter(train) [153450/160000] lr: 6.5789e-04 eta: 2:03:21 time: 2.5058 data_time: 0.0118 memory: 8705 loss: 0.2343 decode.loss_ce: 0.1384 decode.acc_seg: 96.8460 aux.loss_ce: 0.0960 aux.acc_seg: 95.8949 +2024/08/11 16:33:19 - mmengine - INFO - Iter(train) [153500/160000] lr: 6.5405e-04 eta: 2:02:28 time: 2.4999 data_time: 0.0096 memory: 8703 loss: 0.2169 decode.loss_ce: 0.1300 decode.acc_seg: 95.7618 aux.loss_ce: 0.0869 aux.acc_seg: 94.3989 +2024/08/11 16:35:26 - mmengine - INFO - Iter(train) [153550/160000] lr: 6.5022e-04 eta: 2:01:34 time: 2.5806 data_time: 0.0088 memory: 8704 loss: 0.2924 decode.loss_ce: 0.1775 decode.acc_seg: 94.1136 aux.loss_ce: 0.1149 aux.acc_seg: 92.1846 +2024/08/11 16:37:33 - mmengine - INFO - Iter(train) [153600/160000] lr: 6.4638e-04 eta: 2:00:41 time: 2.5520 data_time: 0.0104 memory: 8703 loss: 0.2331 decode.loss_ce: 0.1377 decode.acc_seg: 96.7751 aux.loss_ce: 0.0954 aux.acc_seg: 96.5227 +2024/08/11 16:39:40 - mmengine - INFO - Iter(train) [153650/160000] lr: 6.4253e-04 eta: 1:59:47 time: 2.5063 data_time: 0.0078 memory: 8704 loss: 0.2694 decode.loss_ce: 0.1719 decode.acc_seg: 96.8335 aux.loss_ce: 0.0975 aux.acc_seg: 96.4779 +2024/08/11 16:41:46 - mmengine - INFO - Iter(train) [153700/160000] lr: 6.3869e-04 eta: 1:58:53 time: 2.5113 data_time: 0.0085 memory: 8703 loss: 0.2491 decode.loss_ce: 0.1597 decode.acc_seg: 97.5627 aux.loss_ce: 0.0894 aux.acc_seg: 96.7941 +2024/08/11 16:43:52 - mmengine - INFO - Iter(train) [153750/160000] lr: 6.3484e-04 eta: 1:57:59 time: 2.4659 data_time: 0.0090 memory: 8703 loss: 0.2080 decode.loss_ce: 0.1271 decode.acc_seg: 97.1774 aux.loss_ce: 0.0810 aux.acc_seg: 96.6345 +2024/08/11 16:45:58 - mmengine - INFO - Iter(train) [153800/160000] lr: 6.3098e-04 eta: 1:57:06 time: 2.5793 data_time: 0.0080 memory: 8705 loss: 0.2520 decode.loss_ce: 0.1688 decode.acc_seg: 97.3316 aux.loss_ce: 0.0832 aux.acc_seg: 96.6702 +2024/08/11 16:48:06 - mmengine - INFO - Iter(train) [153850/160000] lr: 6.2713e-04 eta: 1:56:12 time: 2.4900 data_time: 0.0087 memory: 8703 loss: 0.2157 decode.loss_ce: 0.1349 decode.acc_seg: 94.2975 aux.loss_ce: 0.0809 aux.acc_seg: 92.3477 +2024/08/11 16:50:13 - mmengine - INFO - Iter(train) [153900/160000] lr: 6.2327e-04 eta: 1:55:18 time: 2.5684 data_time: 0.0105 memory: 8703 loss: 0.1770 decode.loss_ce: 0.1106 decode.acc_seg: 96.6435 aux.loss_ce: 0.0664 aux.acc_seg: 95.5628 +2024/08/11 16:52:22 - mmengine - INFO - Iter(train) [153950/160000] lr: 6.1941e-04 eta: 1:54:24 time: 2.5697 data_time: 0.0099 memory: 8704 loss: 0.2252 decode.loss_ce: 0.1329 decode.acc_seg: 95.6208 aux.loss_ce: 0.0923 aux.acc_seg: 93.9277 +2024/08/11 16:54:29 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 16:54:29 - mmengine - INFO - Iter(train) [154000/160000] lr: 6.1554e-04 eta: 1:53:30 time: 2.5178 data_time: 0.0116 memory: 8704 loss: 0.2151 decode.loss_ce: 0.1325 decode.acc_seg: 98.5989 aux.loss_ce: 0.0825 aux.acc_seg: 97.3967 +2024/08/11 16:55:55 - mmengine - INFO - Iter(train) [154050/160000] lr: 6.1168e-04 eta: 1:52:34 time: 1.7238 data_time: 0.0082 memory: 8704 loss: 0.2375 decode.loss_ce: 0.1218 decode.acc_seg: 93.3837 aux.loss_ce: 0.1157 aux.acc_seg: 76.9036 +2024/08/11 16:57:37 - mmengine - INFO - Iter(train) [154100/160000] lr: 6.0780e-04 eta: 1:51:39 time: 1.1198 data_time: 0.0071 memory: 8704 loss: 0.2979 decode.loss_ce: 0.1760 decode.acc_seg: 94.9509 aux.loss_ce: 0.1219 aux.acc_seg: 92.9012 +2024/08/11 16:58:33 - mmengine - INFO - Iter(train) [154150/160000] lr: 6.0393e-04 eta: 1:50:43 time: 1.1164 data_time: 0.0068 memory: 8704 loss: 0.2016 decode.loss_ce: 0.1211 decode.acc_seg: 97.3946 aux.loss_ce: 0.0805 aux.acc_seg: 96.4060 +2024/08/11 16:59:29 - mmengine - INFO - Iter(train) [154200/160000] lr: 6.0005e-04 eta: 1:49:46 time: 1.1239 data_time: 0.0082 memory: 8704 loss: 0.2334 decode.loss_ce: 0.1177 decode.acc_seg: 97.4552 aux.loss_ce: 0.1157 aux.acc_seg: 94.5930 +2024/08/11 17:00:25 - mmengine - INFO - Iter(train) [154250/160000] lr: 5.9617e-04 eta: 1:48:49 time: 1.1191 data_time: 0.0076 memory: 8704 loss: 0.3378 decode.loss_ce: 0.2172 decode.acc_seg: 96.2402 aux.loss_ce: 0.1206 aux.acc_seg: 93.4587 +2024/08/11 17:01:20 - mmengine - INFO - Iter(train) [154300/160000] lr: 5.9229e-04 eta: 1:47:52 time: 1.1151 data_time: 0.0072 memory: 8704 loss: 0.2115 decode.loss_ce: 0.1240 decode.acc_seg: 96.9589 aux.loss_ce: 0.0875 aux.acc_seg: 97.0238 +2024/08/11 17:02:16 - mmengine - INFO - Iter(train) [154350/160000] lr: 5.8840e-04 eta: 1:46:55 time: 1.1175 data_time: 0.0071 memory: 8703 loss: 0.2906 decode.loss_ce: 0.1771 decode.acc_seg: 90.9561 aux.loss_ce: 0.1135 aux.acc_seg: 85.2004 +2024/08/11 17:03:12 - mmengine - INFO - Iter(train) [154400/160000] lr: 5.8451e-04 eta: 1:45:58 time: 1.1160 data_time: 0.0075 memory: 8703 loss: 0.2685 decode.loss_ce: 0.1540 decode.acc_seg: 94.2960 aux.loss_ce: 0.1145 aux.acc_seg: 92.3076 +2024/08/11 17:04:08 - mmengine - INFO - Iter(train) [154450/160000] lr: 5.8061e-04 eta: 1:45:02 time: 1.1135 data_time: 0.0070 memory: 8704 loss: 0.2891 decode.loss_ce: 0.1654 decode.acc_seg: 88.8579 aux.loss_ce: 0.1237 aux.acc_seg: 79.4643 +2024/08/11 17:05:04 - mmengine - INFO - Iter(train) [154500/160000] lr: 5.7671e-04 eta: 1:44:05 time: 1.1161 data_time: 0.0076 memory: 8704 loss: 0.1924 decode.loss_ce: 0.1109 decode.acc_seg: 97.4734 aux.loss_ce: 0.0815 aux.acc_seg: 96.2290 +2024/08/11 17:06:00 - mmengine - INFO - Iter(train) [154550/160000] lr: 5.7281e-04 eta: 1:43:08 time: 1.1159 data_time: 0.0074 memory: 8703 loss: 0.2680 decode.loss_ce: 0.1561 decode.acc_seg: 91.9390 aux.loss_ce: 0.1119 aux.acc_seg: 82.6761 +2024/08/11 17:06:56 - mmengine - INFO - Iter(train) [154600/160000] lr: 5.6890e-04 eta: 1:42:11 time: 1.1110 data_time: 0.0056 memory: 8704 loss: 0.2068 decode.loss_ce: 0.1250 decode.acc_seg: 95.6229 aux.loss_ce: 0.0819 aux.acc_seg: 95.1936 +2024/08/11 17:07:51 - mmengine - INFO - Iter(train) [154650/160000] lr: 5.6499e-04 eta: 1:41:14 time: 1.1116 data_time: 0.0074 memory: 8704 loss: 0.2235 decode.loss_ce: 0.1343 decode.acc_seg: 96.4986 aux.loss_ce: 0.0892 aux.acc_seg: 93.3606 +2024/08/11 17:08:47 - mmengine - INFO - Iter(train) [154700/160000] lr: 5.6108e-04 eta: 1:40:18 time: 1.1192 data_time: 0.0071 memory: 8703 loss: 0.2536 decode.loss_ce: 0.1495 decode.acc_seg: 97.7514 aux.loss_ce: 0.1040 aux.acc_seg: 96.6977 +2024/08/11 17:09:43 - mmengine - INFO - Iter(train) [154750/160000] lr: 5.5717e-04 eta: 1:39:21 time: 1.1169 data_time: 0.0064 memory: 8704 loss: 0.2541 decode.loss_ce: 0.1512 decode.acc_seg: 94.3252 aux.loss_ce: 0.1029 aux.acc_seg: 89.2022 +2024/08/11 17:10:38 - mmengine - INFO - Iter(train) [154800/160000] lr: 5.5324e-04 eta: 1:38:24 time: 1.1116 data_time: 0.0073 memory: 8704 loss: 0.2485 decode.loss_ce: 0.1544 decode.acc_seg: 91.6012 aux.loss_ce: 0.0941 aux.acc_seg: 90.0238 +2024/08/11 17:11:34 - mmengine - INFO - Iter(train) [154850/160000] lr: 5.4932e-04 eta: 1:37:27 time: 1.1129 data_time: 0.0062 memory: 8703 loss: 0.1909 decode.loss_ce: 0.1165 decode.acc_seg: 95.4357 aux.loss_ce: 0.0744 aux.acc_seg: 92.8051 +2024/08/11 17:12:30 - mmengine - INFO - Iter(train) [154900/160000] lr: 5.4539e-04 eta: 1:36:30 time: 1.1180 data_time: 0.0068 memory: 8704 loss: 0.3021 decode.loss_ce: 0.1731 decode.acc_seg: 96.6829 aux.loss_ce: 0.1289 aux.acc_seg: 96.8711 +2024/08/11 17:13:26 - mmengine - INFO - Iter(train) [154950/160000] lr: 5.4146e-04 eta: 1:35:34 time: 1.1162 data_time: 0.0085 memory: 8703 loss: 0.2761 decode.loss_ce: 0.1585 decode.acc_seg: 95.0389 aux.loss_ce: 0.1175 aux.acc_seg: 87.9307 +2024/08/11 17:14:21 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 17:14:21 - mmengine - INFO - Iter(train) [155000/160000] lr: 5.3752e-04 eta: 1:34:37 time: 1.1083 data_time: 0.0065 memory: 8703 loss: 0.2199 decode.loss_ce: 0.1273 decode.acc_seg: 96.3974 aux.loss_ce: 0.0926 aux.acc_seg: 96.1196 +2024/08/11 17:15:17 - mmengine - INFO - Iter(train) [155050/160000] lr: 5.3359e-04 eta: 1:33:40 time: 1.1133 data_time: 0.0075 memory: 8704 loss: 0.2615 decode.loss_ce: 0.1483 decode.acc_seg: 95.0411 aux.loss_ce: 0.1132 aux.acc_seg: 93.3047 +2024/08/11 17:16:13 - mmengine - INFO - Iter(train) [155100/160000] lr: 5.2964e-04 eta: 1:32:43 time: 1.1184 data_time: 0.0066 memory: 8704 loss: 0.2315 decode.loss_ce: 0.1274 decode.acc_seg: 93.1077 aux.loss_ce: 0.1041 aux.acc_seg: 89.3720 +2024/08/11 17:17:08 - mmengine - INFO - Iter(train) [155150/160000] lr: 5.2569e-04 eta: 1:31:46 time: 1.1155 data_time: 0.0082 memory: 8703 loss: 0.2995 decode.loss_ce: 0.1885 decode.acc_seg: 95.9843 aux.loss_ce: 0.1109 aux.acc_seg: 94.6651 +2024/08/11 17:18:04 - mmengine - INFO - Iter(train) [155200/160000] lr: 5.2174e-04 eta: 1:30:50 time: 1.1112 data_time: 0.0057 memory: 8703 loss: 0.1793 decode.loss_ce: 0.1050 decode.acc_seg: 96.5300 aux.loss_ce: 0.0743 aux.acc_seg: 93.0928 +2024/08/11 17:18:59 - mmengine - INFO - Iter(train) [155250/160000] lr: 5.1779e-04 eta: 1:29:53 time: 1.1101 data_time: 0.0064 memory: 8703 loss: 0.3520 decode.loss_ce: 0.2077 decode.acc_seg: 92.6032 aux.loss_ce: 0.1444 aux.acc_seg: 92.0802 +2024/08/11 17:19:55 - mmengine - INFO - Iter(train) [155300/160000] lr: 5.1383e-04 eta: 1:28:56 time: 1.1133 data_time: 0.0070 memory: 8703 loss: 0.2232 decode.loss_ce: 0.1361 decode.acc_seg: 87.5003 aux.loss_ce: 0.0871 aux.acc_seg: 83.0591 +2024/08/11 17:20:51 - mmengine - INFO - Iter(train) [155350/160000] lr: 5.0986e-04 eta: 1:27:59 time: 1.1152 data_time: 0.0077 memory: 8703 loss: 0.2171 decode.loss_ce: 0.1247 decode.acc_seg: 95.1731 aux.loss_ce: 0.0925 aux.acc_seg: 91.0941 +2024/08/11 17:21:47 - mmengine - INFO - Iter(train) [155400/160000] lr: 5.0589e-04 eta: 1:27:02 time: 1.1118 data_time: 0.0073 memory: 8703 loss: 0.1968 decode.loss_ce: 0.1180 decode.acc_seg: 93.5326 aux.loss_ce: 0.0788 aux.acc_seg: 96.1440 +2024/08/11 17:22:43 - mmengine - INFO - Iter(train) [155450/160000] lr: 5.0192e-04 eta: 1:26:06 time: 1.1141 data_time: 0.0081 memory: 8703 loss: 0.1938 decode.loss_ce: 0.1110 decode.acc_seg: 97.3608 aux.loss_ce: 0.0828 aux.acc_seg: 97.1152 +2024/08/11 17:23:38 - mmengine - INFO - Iter(train) [155500/160000] lr: 4.9794e-04 eta: 1:25:09 time: 1.1155 data_time: 0.0074 memory: 8703 loss: 0.2565 decode.loss_ce: 0.1575 decode.acc_seg: 93.6225 aux.loss_ce: 0.0990 aux.acc_seg: 90.3840 +2024/08/11 17:24:34 - mmengine - INFO - Iter(train) [155550/160000] lr: 4.9396e-04 eta: 1:24:12 time: 1.1122 data_time: 0.0074 memory: 8704 loss: 0.2694 decode.loss_ce: 0.1418 decode.acc_seg: 81.0456 aux.loss_ce: 0.1276 aux.acc_seg: 65.7206 +2024/08/11 17:25:30 - mmengine - INFO - Iter(train) [155600/160000] lr: 4.8998e-04 eta: 1:23:15 time: 1.1157 data_time: 0.0072 memory: 8704 loss: 0.1855 decode.loss_ce: 0.1177 decode.acc_seg: 97.2125 aux.loss_ce: 0.0678 aux.acc_seg: 96.7069 +2024/08/11 17:26:25 - mmengine - INFO - Iter(train) [155650/160000] lr: 4.8598e-04 eta: 1:22:18 time: 1.1140 data_time: 0.0081 memory: 8704 loss: 0.2069 decode.loss_ce: 0.1242 decode.acc_seg: 95.8948 aux.loss_ce: 0.0826 aux.acc_seg: 93.5056 +2024/08/11 17:27:21 - mmengine - INFO - Iter(train) [155700/160000] lr: 4.8199e-04 eta: 1:21:22 time: 1.1111 data_time: 0.0064 memory: 8704 loss: 0.2814 decode.loss_ce: 0.1680 decode.acc_seg: 96.9463 aux.loss_ce: 0.1134 aux.acc_seg: 95.6922 +2024/08/11 17:28:17 - mmengine - INFO - Iter(train) [155750/160000] lr: 4.7799e-04 eta: 1:20:25 time: 1.1126 data_time: 0.0064 memory: 8704 loss: 0.3432 decode.loss_ce: 0.2198 decode.acc_seg: 93.6861 aux.loss_ce: 0.1234 aux.acc_seg: 91.3387 +2024/08/11 17:29:12 - mmengine - INFO - Iter(train) [155800/160000] lr: 4.7398e-04 eta: 1:19:28 time: 1.1091 data_time: 0.0069 memory: 8703 loss: 0.2323 decode.loss_ce: 0.1447 decode.acc_seg: 96.5445 aux.loss_ce: 0.0876 aux.acc_seg: 94.5260 +2024/08/11 17:30:08 - mmengine - INFO - Iter(train) [155850/160000] lr: 4.6998e-04 eta: 1:18:31 time: 1.1145 data_time: 0.0064 memory: 8703 loss: 0.2350 decode.loss_ce: 0.1321 decode.acc_seg: 96.9017 aux.loss_ce: 0.1029 aux.acc_seg: 95.5948 +2024/08/11 17:31:04 - mmengine - INFO - Iter(train) [155900/160000] lr: 4.6596e-04 eta: 1:17:34 time: 1.1156 data_time: 0.0079 memory: 8704 loss: 0.1801 decode.loss_ce: 0.1124 decode.acc_seg: 95.7808 aux.loss_ce: 0.0676 aux.acc_seg: 92.9497 +2024/08/11 17:31:59 - mmengine - INFO - Iter(train) [155950/160000] lr: 4.6194e-04 eta: 1:16:38 time: 1.1086 data_time: 0.0054 memory: 8704 loss: 0.2207 decode.loss_ce: 0.1350 decode.acc_seg: 95.7055 aux.loss_ce: 0.0857 aux.acc_seg: 94.2107 +2024/08/11 17:32:55 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 17:32:55 - mmengine - INFO - Iter(train) [156000/160000] lr: 4.5792e-04 eta: 1:15:41 time: 1.1105 data_time: 0.0067 memory: 8704 loss: 0.2342 decode.loss_ce: 0.1441 decode.acc_seg: 96.7984 aux.loss_ce: 0.0901 aux.acc_seg: 93.6355 +2024/08/11 17:33:51 - mmengine - INFO - Iter(train) [156050/160000] lr: 4.5389e-04 eta: 1:14:44 time: 1.1145 data_time: 0.0066 memory: 8703 loss: 0.2776 decode.loss_ce: 0.1778 decode.acc_seg: 93.8861 aux.loss_ce: 0.0998 aux.acc_seg: 90.0105 +2024/08/11 17:34:46 - mmengine - INFO - Iter(train) [156100/160000] lr: 4.4985e-04 eta: 1:13:47 time: 1.1147 data_time: 0.0077 memory: 8704 loss: 0.2148 decode.loss_ce: 0.1298 decode.acc_seg: 97.2373 aux.loss_ce: 0.0850 aux.acc_seg: 96.5305 +2024/08/11 17:35:42 - mmengine - INFO - Iter(train) [156150/160000] lr: 4.4582e-04 eta: 1:12:50 time: 1.1132 data_time: 0.0073 memory: 8705 loss: 0.2372 decode.loss_ce: 0.1369 decode.acc_seg: 95.0840 aux.loss_ce: 0.1003 aux.acc_seg: 90.8405 +2024/08/11 17:36:38 - mmengine - INFO - Iter(train) [156200/160000] lr: 4.4177e-04 eta: 1:11:54 time: 1.1098 data_time: 0.0060 memory: 8704 loss: 0.1815 decode.loss_ce: 0.1127 decode.acc_seg: 95.9345 aux.loss_ce: 0.0688 aux.acc_seg: 94.2347 +2024/08/11 17:37:33 - mmengine - INFO - Iter(train) [156250/160000] lr: 4.3772e-04 eta: 1:10:57 time: 1.1132 data_time: 0.0077 memory: 8704 loss: 0.2119 decode.loss_ce: 0.1260 decode.acc_seg: 97.3435 aux.loss_ce: 0.0858 aux.acc_seg: 95.9585 +2024/08/11 17:38:29 - mmengine - INFO - Iter(train) [156300/160000] lr: 4.3367e-04 eta: 1:10:00 time: 1.1194 data_time: 0.0064 memory: 8704 loss: 0.2450 decode.loss_ce: 0.1444 decode.acc_seg: 96.0520 aux.loss_ce: 0.1006 aux.acc_seg: 95.4859 +2024/08/11 17:39:25 - mmengine - INFO - Iter(train) [156350/160000] lr: 4.2960e-04 eta: 1:09:03 time: 1.1166 data_time: 0.0084 memory: 8704 loss: 0.2574 decode.loss_ce: 0.1502 decode.acc_seg: 97.6770 aux.loss_ce: 0.1072 aux.acc_seg: 96.6132 +2024/08/11 17:40:20 - mmengine - INFO - Iter(train) [156400/160000] lr: 4.2554e-04 eta: 1:08:06 time: 1.1114 data_time: 0.0069 memory: 8704 loss: 0.2158 decode.loss_ce: 0.1185 decode.acc_seg: 94.4376 aux.loss_ce: 0.0973 aux.acc_seg: 93.0066 +2024/08/11 17:41:16 - mmengine - INFO - Iter(train) [156450/160000] lr: 4.2147e-04 eta: 1:07:10 time: 1.1078 data_time: 0.0063 memory: 8703 loss: 0.2105 decode.loss_ce: 0.1268 decode.acc_seg: 95.2202 aux.loss_ce: 0.0837 aux.acc_seg: 86.0507 +2024/08/11 17:42:11 - mmengine - INFO - Iter(train) [156500/160000] lr: 4.1739e-04 eta: 1:06:13 time: 1.1104 data_time: 0.0069 memory: 8704 loss: 0.1798 decode.loss_ce: 0.1120 decode.acc_seg: 96.7569 aux.loss_ce: 0.0678 aux.acc_seg: 95.9880 +2024/08/11 17:43:07 - mmengine - INFO - Iter(train) [156550/160000] lr: 4.1330e-04 eta: 1:05:16 time: 1.1122 data_time: 0.0067 memory: 8703 loss: 0.2372 decode.loss_ce: 0.1482 decode.acc_seg: 95.4357 aux.loss_ce: 0.0890 aux.acc_seg: 92.9311 +2024/08/11 17:44:03 - mmengine - INFO - Iter(train) [156600/160000] lr: 4.0922e-04 eta: 1:04:19 time: 1.1197 data_time: 0.0076 memory: 8703 loss: 0.2844 decode.loss_ce: 0.1627 decode.acc_seg: 96.9937 aux.loss_ce: 0.1217 aux.acc_seg: 91.8070 +2024/08/11 17:44:58 - mmengine - INFO - Iter(train) [156650/160000] lr: 4.0512e-04 eta: 1:03:22 time: 1.1115 data_time: 0.0070 memory: 8704 loss: 0.2948 decode.loss_ce: 0.1803 decode.acc_seg: 96.1297 aux.loss_ce: 0.1145 aux.acc_seg: 92.8069 +2024/08/11 17:45:54 - mmengine - INFO - Iter(train) [156700/160000] lr: 4.0102e-04 eta: 1:02:26 time: 1.1060 data_time: 0.0055 memory: 8704 loss: 0.1874 decode.loss_ce: 0.1189 decode.acc_seg: 92.3336 aux.loss_ce: 0.0685 aux.acc_seg: 91.0782 +2024/08/11 17:46:50 - mmengine - INFO - Iter(train) [156750/160000] lr: 3.9691e-04 eta: 1:01:29 time: 1.1121 data_time: 0.0055 memory: 8704 loss: 0.2547 decode.loss_ce: 0.1534 decode.acc_seg: 93.6104 aux.loss_ce: 0.1013 aux.acc_seg: 93.1248 +2024/08/11 17:47:45 - mmengine - INFO - Iter(train) [156800/160000] lr: 3.9280e-04 eta: 1:00:32 time: 1.1170 data_time: 0.0082 memory: 8703 loss: 0.3187 decode.loss_ce: 0.1971 decode.acc_seg: 94.0160 aux.loss_ce: 0.1216 aux.acc_seg: 90.7512 +2024/08/11 17:48:41 - mmengine - INFO - Iter(train) [156850/160000] lr: 3.8867e-04 eta: 0:59:35 time: 1.1097 data_time: 0.0077 memory: 8703 loss: 0.2158 decode.loss_ce: 0.1275 decode.acc_seg: 96.5706 aux.loss_ce: 0.0883 aux.acc_seg: 95.2140 +2024/08/11 17:49:37 - mmengine - INFO - Iter(train) [156900/160000] lr: 3.8455e-04 eta: 0:58:39 time: 1.1102 data_time: 0.0062 memory: 8704 loss: 0.1539 decode.loss_ce: 0.0943 decode.acc_seg: 97.1718 aux.loss_ce: 0.0596 aux.acc_seg: 96.8588 +2024/08/11 17:50:32 - mmengine - INFO - Iter(train) [156950/160000] lr: 3.8041e-04 eta: 0:57:42 time: 1.1139 data_time: 0.0075 memory: 8704 loss: 0.1638 decode.loss_ce: 0.1011 decode.acc_seg: 97.6322 aux.loss_ce: 0.0627 aux.acc_seg: 95.3004 +2024/08/11 17:51:28 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 17:51:28 - mmengine - INFO - Iter(train) [157000/160000] lr: 3.7627e-04 eta: 0:56:45 time: 1.1116 data_time: 0.0076 memory: 8704 loss: 0.2492 decode.loss_ce: 0.1495 decode.acc_seg: 96.0874 aux.loss_ce: 0.0997 aux.acc_seg: 94.7266 +2024/08/11 17:52:24 - mmengine - INFO - Iter(train) [157050/160000] lr: 3.7213e-04 eta: 0:55:48 time: 1.1156 data_time: 0.0071 memory: 8703 loss: 0.2642 decode.loss_ce: 0.1542 decode.acc_seg: 93.5486 aux.loss_ce: 0.1100 aux.acc_seg: 91.6201 +2024/08/11 17:53:19 - mmengine - INFO - Iter(train) [157100/160000] lr: 3.6797e-04 eta: 0:54:51 time: 1.1100 data_time: 0.0062 memory: 8704 loss: 0.2035 decode.loss_ce: 0.1315 decode.acc_seg: 97.2815 aux.loss_ce: 0.0719 aux.acc_seg: 96.4095 +2024/08/11 17:54:15 - mmengine - INFO - Iter(train) [157150/160000] lr: 3.6381e-04 eta: 0:53:55 time: 1.1120 data_time: 0.0075 memory: 8704 loss: 0.2425 decode.loss_ce: 0.1409 decode.acc_seg: 94.3013 aux.loss_ce: 0.1016 aux.acc_seg: 92.9452 +2024/08/11 17:55:11 - mmengine - INFO - Iter(train) [157200/160000] lr: 3.5964e-04 eta: 0:52:58 time: 1.1131 data_time: 0.0070 memory: 8703 loss: 0.2312 decode.loss_ce: 0.1318 decode.acc_seg: 96.2811 aux.loss_ce: 0.0994 aux.acc_seg: 85.8712 +2024/08/11 17:56:06 - mmengine - INFO - Iter(train) [157250/160000] lr: 3.5546e-04 eta: 0:52:01 time: 1.1095 data_time: 0.0071 memory: 8705 loss: 0.3194 decode.loss_ce: 0.1937 decode.acc_seg: 86.4685 aux.loss_ce: 0.1256 aux.acc_seg: 76.4895 +2024/08/11 17:57:02 - mmengine - INFO - Iter(train) [157300/160000] lr: 3.5128e-04 eta: 0:51:04 time: 1.1118 data_time: 0.0056 memory: 8704 loss: 0.2241 decode.loss_ce: 0.1320 decode.acc_seg: 95.9995 aux.loss_ce: 0.0920 aux.acc_seg: 93.4453 +2024/08/11 17:57:57 - mmengine - INFO - Iter(train) [157350/160000] lr: 3.4709e-04 eta: 0:50:08 time: 1.1088 data_time: 0.0067 memory: 8703 loss: 0.2037 decode.loss_ce: 0.1242 decode.acc_seg: 97.5882 aux.loss_ce: 0.0795 aux.acc_seg: 96.7976 +2024/08/11 17:58:53 - mmengine - INFO - Iter(train) [157400/160000] lr: 3.4289e-04 eta: 0:49:11 time: 1.1055 data_time: 0.0051 memory: 8703 loss: 0.1940 decode.loss_ce: 0.1155 decode.acc_seg: 98.2428 aux.loss_ce: 0.0785 aux.acc_seg: 97.0744 +2024/08/11 17:59:48 - mmengine - INFO - Iter(train) [157450/160000] lr: 3.3868e-04 eta: 0:48:14 time: 1.1155 data_time: 0.0075 memory: 8704 loss: 0.1639 decode.loss_ce: 0.0919 decode.acc_seg: 96.0501 aux.loss_ce: 0.0720 aux.acc_seg: 94.4308 +2024/08/11 18:00:44 - mmengine - INFO - Iter(train) [157500/160000] lr: 3.3446e-04 eta: 0:47:17 time: 1.1128 data_time: 0.0063 memory: 8704 loss: 0.2101 decode.loss_ce: 0.1309 decode.acc_seg: 88.3616 aux.loss_ce: 0.0792 aux.acc_seg: 87.5615 +2024/08/11 18:01:40 - mmengine - INFO - Iter(train) [157550/160000] lr: 3.3024e-04 eta: 0:46:20 time: 1.1152 data_time: 0.0078 memory: 8704 loss: 0.2584 decode.loss_ce: 0.1592 decode.acc_seg: 94.5606 aux.loss_ce: 0.0992 aux.acc_seg: 92.7689 +2024/08/11 18:02:35 - mmengine - INFO - Iter(train) [157600/160000] lr: 3.2601e-04 eta: 0:45:24 time: 1.1160 data_time: 0.0073 memory: 8704 loss: 0.1877 decode.loss_ce: 0.1169 decode.acc_seg: 95.4131 aux.loss_ce: 0.0708 aux.acc_seg: 94.7001 +2024/08/11 18:03:31 - mmengine - INFO - Iter(train) [157650/160000] lr: 3.2176e-04 eta: 0:44:27 time: 1.1115 data_time: 0.0081 memory: 8703 loss: 0.2121 decode.loss_ce: 0.1214 decode.acc_seg: 93.6364 aux.loss_ce: 0.0907 aux.acc_seg: 81.6263 +2024/08/11 18:04:27 - mmengine - INFO - Iter(train) [157700/160000] lr: 3.1751e-04 eta: 0:43:30 time: 1.1114 data_time: 0.0072 memory: 8703 loss: 0.2018 decode.loss_ce: 0.1239 decode.acc_seg: 95.6834 aux.loss_ce: 0.0779 aux.acc_seg: 92.7168 +2024/08/11 18:05:22 - mmengine - INFO - Iter(train) [157750/160000] lr: 3.1325e-04 eta: 0:42:33 time: 1.1094 data_time: 0.0056 memory: 8704 loss: 0.1980 decode.loss_ce: 0.1245 decode.acc_seg: 95.2912 aux.loss_ce: 0.0735 aux.acc_seg: 94.5616 +2024/08/11 18:06:18 - mmengine - INFO - Iter(train) [157800/160000] lr: 3.0898e-04 eta: 0:41:37 time: 1.1120 data_time: 0.0062 memory: 8703 loss: 0.1825 decode.loss_ce: 0.1069 decode.acc_seg: 97.8189 aux.loss_ce: 0.0756 aux.acc_seg: 97.3245 +2024/08/11 18:07:13 - mmengine - INFO - Iter(train) [157850/160000] lr: 3.0470e-04 eta: 0:40:40 time: 1.1071 data_time: 0.0054 memory: 8704 loss: 0.2270 decode.loss_ce: 0.1386 decode.acc_seg: 95.8531 aux.loss_ce: 0.0884 aux.acc_seg: 94.2746 +2024/08/11 18:08:09 - mmengine - INFO - Iter(train) [157900/160000] lr: 3.0041e-04 eta: 0:39:43 time: 1.1116 data_time: 0.0072 memory: 8704 loss: 0.3270 decode.loss_ce: 0.2015 decode.acc_seg: 92.6235 aux.loss_ce: 0.1255 aux.acc_seg: 87.7069 +2024/08/11 18:09:05 - mmengine - INFO - Iter(train) [157950/160000] lr: 2.9611e-04 eta: 0:38:46 time: 1.1124 data_time: 0.0063 memory: 8704 loss: 0.2396 decode.loss_ce: 0.1400 decode.acc_seg: 96.0964 aux.loss_ce: 0.0996 aux.acc_seg: 94.9971 +2024/08/11 18:10:00 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 18:10:00 - mmengine - INFO - Iter(train) [158000/160000] lr: 2.9180e-04 eta: 0:37:50 time: 1.1104 data_time: 0.0060 memory: 8704 loss: 0.2013 decode.loss_ce: 0.1260 decode.acc_seg: 92.9190 aux.loss_ce: 0.0753 aux.acc_seg: 90.8676 +2024/08/11 18:10:56 - mmengine - INFO - Iter(train) [158050/160000] lr: 2.8748e-04 eta: 0:36:53 time: 1.1098 data_time: 0.0057 memory: 8704 loss: 0.2436 decode.loss_ce: 0.1396 decode.acc_seg: 94.3179 aux.loss_ce: 0.1040 aux.acc_seg: 87.4831 +2024/08/11 18:11:51 - mmengine - INFO - Iter(train) [158100/160000] lr: 2.8315e-04 eta: 0:35:56 time: 1.1112 data_time: 0.0072 memory: 8703 loss: 0.2186 decode.loss_ce: 0.1327 decode.acc_seg: 97.1703 aux.loss_ce: 0.0858 aux.acc_seg: 96.2231 +2024/08/11 18:12:47 - mmengine - INFO - Iter(train) [158150/160000] lr: 2.7881e-04 eta: 0:34:59 time: 1.1079 data_time: 0.0056 memory: 8704 loss: 0.1634 decode.loss_ce: 0.1018 decode.acc_seg: 98.4302 aux.loss_ce: 0.0616 aux.acc_seg: 98.1230 +2024/08/11 18:13:43 - mmengine - INFO - Iter(train) [158200/160000] lr: 2.7445e-04 eta: 0:34:02 time: 1.1136 data_time: 0.0069 memory: 8703 loss: 0.1791 decode.loss_ce: 0.1086 decode.acc_seg: 95.2140 aux.loss_ce: 0.0706 aux.acc_seg: 94.7727 +2024/08/11 18:14:38 - mmengine - INFO - Iter(train) [158250/160000] lr: 2.7008e-04 eta: 0:33:06 time: 1.1096 data_time: 0.0063 memory: 8703 loss: 0.1521 decode.loss_ce: 0.0950 decode.acc_seg: 97.6270 aux.loss_ce: 0.0571 aux.acc_seg: 97.3626 +2024/08/11 18:15:34 - mmengine - INFO - Iter(train) [158300/160000] lr: 2.6570e-04 eta: 0:32:09 time: 1.1129 data_time: 0.0061 memory: 8705 loss: 0.3352 decode.loss_ce: 0.1953 decode.acc_seg: 96.1784 aux.loss_ce: 0.1400 aux.acc_seg: 91.3735 +2024/08/11 18:16:30 - mmengine - INFO - Iter(train) [158350/160000] lr: 2.6131e-04 eta: 0:31:12 time: 1.1193 data_time: 0.0073 memory: 8704 loss: 0.1942 decode.loss_ce: 0.1261 decode.acc_seg: 97.5420 aux.loss_ce: 0.0681 aux.acc_seg: 96.6031 +2024/08/11 18:17:25 - mmengine - INFO - Iter(train) [158400/160000] lr: 2.5691e-04 eta: 0:30:15 time: 1.1111 data_time: 0.0074 memory: 8704 loss: 0.1917 decode.loss_ce: 0.1010 decode.acc_seg: 95.4732 aux.loss_ce: 0.0906 aux.acc_seg: 92.6664 +2024/08/11 18:18:21 - mmengine - INFO - Iter(train) [158450/160000] lr: 2.5249e-04 eta: 0:29:19 time: 1.1141 data_time: 0.0063 memory: 8703 loss: 0.2119 decode.loss_ce: 0.1229 decode.acc_seg: 97.1578 aux.loss_ce: 0.0890 aux.acc_seg: 92.4829 +2024/08/11 18:19:17 - mmengine - INFO - Iter(train) [158500/160000] lr: 2.4805e-04 eta: 0:28:22 time: 1.1101 data_time: 0.0068 memory: 8703 loss: 0.1643 decode.loss_ce: 0.0946 decode.acc_seg: 97.4606 aux.loss_ce: 0.0697 aux.acc_seg: 96.4982 +2024/08/11 18:20:13 - mmengine - INFO - Iter(train) [158550/160000] lr: 2.4360e-04 eta: 0:27:25 time: 1.1114 data_time: 0.0062 memory: 8704 loss: 0.2060 decode.loss_ce: 0.1225 decode.acc_seg: 92.6592 aux.loss_ce: 0.0835 aux.acc_seg: 88.6984 +2024/08/11 18:21:08 - mmengine - INFO - Iter(train) [158600/160000] lr: 2.3914e-04 eta: 0:26:28 time: 1.1145 data_time: 0.0080 memory: 8704 loss: 0.2541 decode.loss_ce: 0.1478 decode.acc_seg: 84.9165 aux.loss_ce: 0.1063 aux.acc_seg: 75.0135 +2024/08/11 18:22:04 - mmengine - INFO - Iter(train) [158650/160000] lr: 2.3466e-04 eta: 0:25:32 time: 1.1091 data_time: 0.0057 memory: 8704 loss: 0.3840 decode.loss_ce: 0.2317 decode.acc_seg: 95.4122 aux.loss_ce: 0.1523 aux.acc_seg: 93.4338 +2024/08/11 18:23:00 - mmengine - INFO - Iter(train) [158700/160000] lr: 2.3016e-04 eta: 0:24:35 time: 1.1127 data_time: 0.0074 memory: 8703 loss: 0.2413 decode.loss_ce: 0.1428 decode.acc_seg: 97.8966 aux.loss_ce: 0.0985 aux.acc_seg: 95.9563 +2024/08/11 18:23:55 - mmengine - INFO - Iter(train) [158750/160000] lr: 2.2565e-04 eta: 0:23:38 time: 1.1120 data_time: 0.0083 memory: 8704 loss: 0.2154 decode.loss_ce: 0.1286 decode.acc_seg: 96.1350 aux.loss_ce: 0.0868 aux.acc_seg: 94.8534 +2024/08/11 18:24:51 - mmengine - INFO - Iter(train) [158800/160000] lr: 2.2111e-04 eta: 0:22:41 time: 1.1123 data_time: 0.0065 memory: 8703 loss: 0.1915 decode.loss_ce: 0.1135 decode.acc_seg: 96.5507 aux.loss_ce: 0.0780 aux.acc_seg: 96.2153 +2024/08/11 18:25:46 - mmengine - INFO - Iter(train) [158850/160000] lr: 2.1656e-04 eta: 0:21:45 time: 1.1134 data_time: 0.0074 memory: 8704 loss: 0.2017 decode.loss_ce: 0.1221 decode.acc_seg: 96.5415 aux.loss_ce: 0.0796 aux.acc_seg: 96.1002 +2024/08/11 18:26:42 - mmengine - INFO - Iter(train) [158900/160000] lr: 2.1199e-04 eta: 0:20:48 time: 1.1079 data_time: 0.0064 memory: 8705 loss: 0.1849 decode.loss_ce: 0.1063 decode.acc_seg: 94.7121 aux.loss_ce: 0.0786 aux.acc_seg: 92.7310 +2024/08/11 18:27:38 - mmengine - INFO - Iter(train) [158950/160000] lr: 2.0740e-04 eta: 0:19:51 time: 1.1126 data_time: 0.0066 memory: 8703 loss: 0.2173 decode.loss_ce: 0.1323 decode.acc_seg: 95.0986 aux.loss_ce: 0.0849 aux.acc_seg: 94.0334 +2024/08/11 18:28:33 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 18:28:33 - mmengine - INFO - Iter(train) [159000/160000] lr: 2.0278e-04 eta: 0:18:54 time: 1.1097 data_time: 0.0063 memory: 8703 loss: 0.2622 decode.loss_ce: 0.1492 decode.acc_seg: 97.1158 aux.loss_ce: 0.1130 aux.acc_seg: 95.8757 +2024/08/11 18:29:29 - mmengine - INFO - Iter(train) [159050/160000] lr: 1.9815e-04 eta: 0:17:58 time: 1.1140 data_time: 0.0085 memory: 8703 loss: 0.1801 decode.loss_ce: 0.1110 decode.acc_seg: 96.9710 aux.loss_ce: 0.0691 aux.acc_seg: 96.1608 +2024/08/11 18:30:24 - mmengine - INFO - Iter(train) [159100/160000] lr: 1.9349e-04 eta: 0:17:01 time: 1.1115 data_time: 0.0069 memory: 8704 loss: 0.2593 decode.loss_ce: 0.1659 decode.acc_seg: 94.3674 aux.loss_ce: 0.0933 aux.acc_seg: 93.6274 +2024/08/11 18:31:20 - mmengine - INFO - Iter(train) [159150/160000] lr: 1.8880e-04 eta: 0:16:04 time: 1.1105 data_time: 0.0065 memory: 8704 loss: 0.1959 decode.loss_ce: 0.1195 decode.acc_seg: 95.9622 aux.loss_ce: 0.0764 aux.acc_seg: 95.0765 +2024/08/11 18:32:16 - mmengine - INFO - Iter(train) [159200/160000] lr: 1.8408e-04 eta: 0:15:07 time: 1.1116 data_time: 0.0063 memory: 8703 loss: 0.2016 decode.loss_ce: 0.1243 decode.acc_seg: 97.3969 aux.loss_ce: 0.0773 aux.acc_seg: 96.0576 +2024/08/11 18:33:11 - mmengine - INFO - Iter(train) [159250/160000] lr: 1.7934e-04 eta: 0:14:11 time: 1.1069 data_time: 0.0061 memory: 8704 loss: 0.2035 decode.loss_ce: 0.1240 decode.acc_seg: 95.5372 aux.loss_ce: 0.0794 aux.acc_seg: 94.4228 +2024/08/11 18:34:07 - mmengine - INFO - Iter(train) [159300/160000] lr: 1.7456e-04 eta: 0:13:14 time: 1.1090 data_time: 0.0068 memory: 8703 loss: 0.1532 decode.loss_ce: 0.0943 decode.acc_seg: 96.6654 aux.loss_ce: 0.0590 aux.acc_seg: 94.9201 +2024/08/11 18:35:02 - mmengine - INFO - Iter(train) [159350/160000] lr: 1.6975e-04 eta: 0:12:17 time: 1.1133 data_time: 0.0070 memory: 8704 loss: 0.2122 decode.loss_ce: 0.1235 decode.acc_seg: 97.1425 aux.loss_ce: 0.0888 aux.acc_seg: 96.7123 +2024/08/11 18:35:58 - mmengine - INFO - Iter(train) [159400/160000] lr: 1.6490e-04 eta: 0:11:20 time: 1.1145 data_time: 0.0083 memory: 8704 loss: 0.1903 decode.loss_ce: 0.1189 decode.acc_seg: 97.0137 aux.loss_ce: 0.0714 aux.acc_seg: 96.2030 +2024/08/11 18:36:54 - mmengine - INFO - Iter(train) [159450/160000] lr: 1.6001e-04 eta: 0:10:24 time: 1.1163 data_time: 0.0073 memory: 8704 loss: 0.2811 decode.loss_ce: 0.1679 decode.acc_seg: 93.4353 aux.loss_ce: 0.1132 aux.acc_seg: 92.0366 +2024/08/11 18:37:49 - mmengine - INFO - Iter(train) [159500/160000] lr: 1.5508e-04 eta: 0:09:27 time: 1.1070 data_time: 0.0064 memory: 8703 loss: 0.2509 decode.loss_ce: 0.1312 decode.acc_seg: 96.5385 aux.loss_ce: 0.1197 aux.acc_seg: 93.9176 +2024/08/11 18:38:45 - mmengine - INFO - Iter(train) [159550/160000] lr: 1.5010e-04 eta: 0:08:30 time: 1.1179 data_time: 0.0069 memory: 8703 loss: 0.1696 decode.loss_ce: 0.1006 decode.acc_seg: 96.9323 aux.loss_ce: 0.0690 aux.acc_seg: 96.7899 +2024/08/11 18:39:40 - mmengine - INFO - Iter(train) [159600/160000] lr: 1.4506e-04 eta: 0:07:33 time: 1.1104 data_time: 0.0067 memory: 8703 loss: 0.2647 decode.loss_ce: 0.1563 decode.acc_seg: 85.0139 aux.loss_ce: 0.1085 aux.acc_seg: 84.4218 +2024/08/11 18:40:36 - mmengine - INFO - Iter(train) [159650/160000] lr: 1.3996e-04 eta: 0:06:37 time: 1.1064 data_time: 0.0064 memory: 8704 loss: 0.1959 decode.loss_ce: 0.1196 decode.acc_seg: 96.7406 aux.loss_ce: 0.0764 aux.acc_seg: 93.4229 +2024/08/11 18:41:31 - mmengine - INFO - Iter(train) [159700/160000] lr: 1.3478e-04 eta: 0:05:40 time: 1.1075 data_time: 0.0062 memory: 8704 loss: 0.3490 decode.loss_ce: 0.2151 decode.acc_seg: 95.9885 aux.loss_ce: 0.1339 aux.acc_seg: 94.6862 +2024/08/11 18:42:27 - mmengine - INFO - Iter(train) [159750/160000] lr: 1.2952e-04 eta: 0:04:43 time: 1.1149 data_time: 0.0074 memory: 8704 loss: 0.1766 decode.loss_ce: 0.1050 decode.acc_seg: 97.8586 aux.loss_ce: 0.0716 aux.acc_seg: 97.5499 +2024/08/11 18:43:23 - mmengine - INFO - Iter(train) [159800/160000] lr: 1.2415e-04 eta: 0:03:46 time: 1.1155 data_time: 0.0083 memory: 8705 loss: 0.1749 decode.loss_ce: 0.1121 decode.acc_seg: 94.9017 aux.loss_ce: 0.0628 aux.acc_seg: 91.4844 +2024/08/11 18:44:18 - mmengine - INFO - Iter(train) [159850/160000] lr: 1.1864e-04 eta: 0:02:50 time: 1.1104 data_time: 0.0068 memory: 8703 loss: 0.2263 decode.loss_ce: 0.1326 decode.acc_seg: 95.1837 aux.loss_ce: 0.0937 aux.acc_seg: 91.8986 +2024/08/11 18:45:14 - mmengine - INFO - Iter(train) [159900/160000] lr: 1.1294e-04 eta: 0:01:53 time: 1.1128 data_time: 0.0083 memory: 8704 loss: 0.1802 decode.loss_ce: 0.1097 decode.acc_seg: 96.5525 aux.loss_ce: 0.0705 aux.acc_seg: 96.1290 +2024/08/11 18:46:10 - mmengine - INFO - Iter(train) [159950/160000] lr: 1.0693e-04 eta: 0:00:56 time: 1.1120 data_time: 0.0076 memory: 8703 loss: 0.2300 decode.loss_ce: 0.1451 decode.acc_seg: 96.7021 aux.loss_ce: 0.0849 aux.acc_seg: 96.3809 +2024/08/11 18:47:05 - mmengine - INFO - Exp name: pspnet_160k_20240809_154950 +2024/08/11 18:47:05 - mmengine - INFO - Iter(train) [160000/160000] lr: 1.0000e-04 eta: 0:00:00 time: 1.1141 data_time: 0.0074 memory: 8704 loss: 0.3561 decode.loss_ce: 0.2280 decode.acc_seg: 97.7339 aux.loss_ce: 0.1281 aux.acc_seg: 97.4226 +2024/08/11 18:47:05 - mmengine - INFO - Saving checkpoint at 160000 iterations +2024/08/11 18:47:20 - mmengine - INFO - Iter(val) [ 50/750] eta: 0:03:10 time: 0.2704 data_time: 0.0039 memory: 1724 +2024/08/11 18:47:33 - mmengine - INFO - Iter(val) [100/750] eta: 0:02:56 time: 0.2722 data_time: 0.0044 memory: 1724 +2024/08/11 18:47:47 - mmengine - INFO - Iter(val) [150/750] eta: 0:02:42 time: 0.2707 data_time: 0.0038 memory: 1724 +2024/08/11 18:48:01 - mmengine - INFO - Iter(val) [200/750] eta: 0:02:29 time: 0.2715 data_time: 0.0038 memory: 1724 +2024/08/11 18:48:14 - mmengine - INFO - Iter(val) [250/750] eta: 0:02:15 time: 0.2702 data_time: 0.0038 memory: 1724 +2024/08/11 18:48:28 - mmengine - INFO - Iter(val) [300/750] eta: 0:02:02 time: 0.2713 data_time: 0.0037 memory: 1724 +2024/08/11 18:48:41 - mmengine - INFO - Iter(val) [350/750] eta: 0:01:48 time: 0.2729 data_time: 0.0047 memory: 1724 +2024/08/11 18:48:55 - mmengine - INFO - Iter(val) [400/750] eta: 0:01:35 time: 0.2721 data_time: 0.0039 memory: 1724 +2024/08/11 18:49:08 - mmengine - INFO - Iter(val) [450/750] eta: 0:01:21 time: 0.2724 data_time: 0.0044 memory: 1724 +2024/08/11 18:49:22 - mmengine - INFO - Iter(val) [500/750] eta: 0:01:07 time: 0.2707 data_time: 0.0038 memory: 1724 +2024/08/11 18:49:36 - mmengine - INFO - Iter(val) [550/750] eta: 0:00:54 time: 0.2714 data_time: 0.0044 memory: 1724 +2024/08/11 18:49:49 - mmengine - INFO - Iter(val) [600/750] eta: 0:00:40 time: 0.2722 data_time: 0.0044 memory: 1724 +2024/08/11 18:50:03 - mmengine - INFO - Iter(val) [650/750] eta: 0:00:27 time: 0.2703 data_time: 0.0038 memory: 1724 +2024/08/11 18:50:16 - mmengine - INFO - Iter(val) [700/750] eta: 0:00:13 time: 0.2739 data_time: 0.0053 memory: 1724 +2024/08/11 18:50:30 - mmengine - INFO - Iter(val) [750/750] eta: 0:00:00 time: 0.2710 data_time: 0.0040 memory: 1724 +2024/08/11 18:50:39 - mmengine - INFO - per class results: +2024/08/11 18:50:39 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 95.22 | 97.64 | +| sidewalk | 76.36 | 84.41 | +| road roughness | 67.51 | 75.85 | +| road boundaries | 72.68 | 82.48 | +| crosswalks | 94.95 | 97.78 | +| lane | 74.65 | 83.93 | +| road color guide | 85.61 | 88.12 | +| road marking | 70.37 | 79.92 | +| parking | 63.81 | 69.22 | +| traffic sign | 67.86 | 75.88 | +| traffic light | 71.19 | 83.06 | +| pole/structural object | 82.79 | 89.6 | +| building | 89.51 | 95.21 | +| tunnel | 98.4 | 99.35 | +| bridge | 72.38 | 85.86 | +| pedestrian | 77.06 | 88.86 | +| vehicle | 93.16 | 96.8 | +| bicycle | 0.0 | 0.0 | +| motorcycle | 31.98 | 42.48 | +| personal mobility | 80.36 | 95.07 | +| dynamic | 52.19 | 65.66 | +| vegetation | 90.21 | 95.44 | +| sky | 98.35 | 98.99 | +| static | 76.09 | 87.08 | ++------------------------+-------+-------+ +2024/08/11 18:50:39 - mmengine - INFO - Iter(val) [750/750] aAcc: 95.9900 mIoU: 74.2800 mAcc: 81.6100 data_time: 0.0042 time: 0.2715 diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/20240809_154950.json b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/20240809_154950.json new file mode 100644 index 0000000..f4337a0 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/20240809_154950.json @@ -0,0 +1,3210 @@ +{"lr": 0.009997271253657354, "data_time": 0.007485890388488769, "loss": 2.2964284777641297, "decode.loss_ce": 1.506650012731552, "decode.acc_seg": 72.97782897949219, "aux.loss_ce": 0.789778470993042, "aux.acc_seg": 38.379539489746094, "time": 1.1120189666748046, "iter": 50, "memory": 12655, "step": 50} +{"lr": 0.00999448673244192, "data_time": 0.007558369636535644, "loss": 1.8986098170280457, "decode.loss_ce": 1.257573276758194, "decode.acc_seg": 68.7205581665039, "aux.loss_ce": 0.6410365641117096, "aux.acc_seg": 57.45792007446289, "time": 1.1150005340576172, "iter": 100, "memory": 8703, "step": 100} +{"lr": 0.00999170212415443, "data_time": 0.009940314292907714, "loss": 1.3991286695003509, "decode.loss_ce": 0.939179104566574, "decode.acc_seg": 73.68742370605469, "aux.loss_ce": 0.45994956642389295, "aux.acc_seg": 55.03762435913086, "time": 1.1193443059921264, "iter": 150, "memory": 8702, "step": 150} +{"lr": 0.009988917428764899, "data_time": 0.008862924575805665, "loss": 1.3431594252586365, "decode.loss_ce": 0.8647369265556335, "decode.acc_seg": 73.0712890625, "aux.loss_ce": 0.47842249274253845, "aux.acc_seg": 67.87935638427734, "time": 1.1193435907363891, "iter": 200, "memory": 8702, "step": 200} +{"lr": 0.00998613264624337, "data_time": 0.005770754814147949, "loss": 1.2498217523097992, "decode.loss_ce": 0.8079711079597474, "decode.acc_seg": 67.18113708496094, "aux.loss_ce": 0.44185066521167754, "aux.acc_seg": 67.95692443847656, "time": 1.1167064905166626, "iter": 250, "memory": 8702, "step": 250} +{"lr": 0.009983347776559829, "data_time": 0.006764650344848633, "loss": 1.0082671463489532, "decode.loss_ce": 0.6297035306692124, "decode.acc_seg": 83.2844467163086, "aux.loss_ce": 0.37856361716985704, "aux.acc_seg": 76.6996078491211, "time": 1.118143653869629, "iter": 300, "memory": 8703, "step": 300} +{"lr": 0.009980562819684263, "data_time": 0.009905266761779784, "loss": 1.1990495681762696, "decode.loss_ce": 0.7633046358823776, "decode.acc_seg": 78.06488800048828, "aux.loss_ce": 0.43574494421482085, "aux.acc_seg": 64.21372985839844, "time": 1.1217756509780883, "iter": 350, "memory": 8704, "step": 350} +{"lr": 0.009977777775586647, "data_time": 0.00903646945953369, "loss": 0.7768030881881713, "decode.loss_ce": 0.47763468474149706, "decode.acc_seg": 91.97603607177734, "aux.loss_ce": 0.29916840344667434, "aux.acc_seg": 86.8052749633789, "time": 1.1186116933822632, "iter": 400, "memory": 8702, "step": 400} +{"lr": 0.009974992644236888, "data_time": 0.008510971069335937, "loss": 1.0801362633705138, "decode.loss_ce": 0.6855680972337723, "decode.acc_seg": 82.82597351074219, "aux.loss_ce": 0.3945681661367416, "aux.acc_seg": 80.98790740966797, "time": 1.1169110059738159, "iter": 450, "memory": 8703, "step": 450} +{"lr": 0.009972207425604932, "data_time": 0.010095691680908203, "loss": 0.8904866337776184, "decode.loss_ce": 0.563438156247139, "decode.acc_seg": 74.82286834716797, "aux.loss_ce": 0.3270484656095505, "aux.acc_seg": 70.14662170410156, "time": 1.1193033456802368, "iter": 500, "memory": 8702, "step": 500} +{"lr": 0.009969422119660676, "data_time": 0.006265568733215332, "loss": 0.9910454481840134, "decode.loss_ce": 0.625863853096962, "decode.acc_seg": 79.67485046386719, "aux.loss_ce": 0.36518158465623857, "aux.acc_seg": 74.08390045166016, "time": 1.1128976106643678, "iter": 550, "memory": 8702, "step": 550} +{"lr": 0.009966636726374004, "data_time": 0.008400583267211914, "loss": 1.0668312817811967, "decode.loss_ce": 0.664896696805954, "decode.acc_seg": 82.4717788696289, "aux.loss_ce": 0.4019345760345459, "aux.acc_seg": 77.5472640991211, "time": 1.119528865814209, "iter": 600, "memory": 8703, "step": 600} +{"lr": 0.009963851245714783, "data_time": 0.00678713321685791, "loss": 1.1026509910821916, "decode.loss_ce": 0.6934732347726822, "decode.acc_seg": 72.82345581054688, "aux.loss_ce": 0.4091777615249157, "aux.acc_seg": 66.60575866699219, "time": 1.1131059169769286, "iter": 650, "memory": 8703, "step": 650} +{"lr": 0.009961065677652849, "data_time": 0.008921313285827636, "loss": 1.047666820883751, "decode.loss_ce": 0.644815194606781, "decode.acc_seg": 81.24319458007812, "aux.loss_ce": 0.40285161286592486, "aux.acc_seg": 77.50599670410156, "time": 1.1186763048171997, "iter": 700, "memory": 8703, "step": 700} +{"lr": 0.00995828002215802, "data_time": 0.007221674919128418, "loss": 1.0044538378715515, "decode.loss_ce": 0.6486341089010239, "decode.acc_seg": 79.14173889160156, "aux.loss_ce": 0.3558197245001793, "aux.acc_seg": 72.4976806640625, "time": 1.1161054611206054, "iter": 750, "memory": 8703, "step": 750} +{"lr": 0.009955494279200118, "data_time": 0.007376194000244141, "loss": 0.9484157979488372, "decode.loss_ce": 0.596601152420044, "decode.acc_seg": 84.64424896240234, "aux.loss_ce": 0.35181465446949006, "aux.acc_seg": 74.93450927734375, "time": 1.1134058952331543, "iter": 800, "memory": 8703, "step": 800} +{"lr": 0.009952708448748904, "data_time": 0.007855868339538575, "loss": 0.9795614302158355, "decode.loss_ce": 0.5962632656097412, "decode.acc_seg": 92.29793548583984, "aux.loss_ce": 0.38329814970493314, "aux.acc_seg": 86.77808380126953, "time": 1.1212723970413208, "iter": 850, "memory": 8703, "step": 850} +{"lr": 0.009949922530774154, "data_time": 0.007839393615722657, "loss": 1.0963295161724091, "decode.loss_ce": 0.6911907330155372, "decode.acc_seg": 90.45429229736328, "aux.loss_ce": 0.40513876378536223, "aux.acc_seg": 80.77430725097656, "time": 1.1170740127563477, "iter": 900, "memory": 8702, "step": 900} +{"lr": 0.009947136525245611, "data_time": 0.007232069969177246, "loss": 0.9094848692417145, "decode.loss_ce": 0.5722101271152497, "decode.acc_seg": 80.28265380859375, "aux.loss_ce": 0.3372747406363487, "aux.acc_seg": 73.78094482421875, "time": 1.1193119525909423, "iter": 950, "memory": 8703, "step": 950} +{"lr": 0.009944350432132988, "data_time": 0.007461428642272949, "loss": 0.9249741613864899, "decode.loss_ce": 0.5775936484336853, "decode.acc_seg": 81.5313491821289, "aux.loss_ce": 0.3473805323243141, "aux.acc_seg": 73.29130554199219, "time": 1.1207738876342774, "iter": 1000, "memory": 8703, "step": 1000} +{"lr": 0.009941564251405991, "data_time": 0.007991957664489745, "loss": 0.8911315828561783, "decode.loss_ce": 0.5519798099994659, "decode.acc_seg": 75.99239349365234, "aux.loss_ce": 0.3391517594456673, "aux.acc_seg": 70.56719207763672, "time": 1.1228835105895996, "iter": 1050, "memory": 8703, "step": 1050} +{"lr": 0.009938777983034325, "data_time": 0.00786128044128418, "loss": 0.7152692675590515, "decode.loss_ce": 0.46060948073863983, "decode.acc_seg": 92.02384948730469, "aux.loss_ce": 0.25465978384017945, "aux.acc_seg": 86.47537231445312, "time": 1.1158659696578979, "iter": 1100, "memory": 8702, "step": 1100} +{"lr": 0.009935991626987618, "data_time": 0.007376194000244141, "loss": 0.790592896938324, "decode.loss_ce": 0.5037155121564865, "decode.acc_seg": 90.52479553222656, "aux.loss_ce": 0.28687736988067625, "aux.acc_seg": 89.99639892578125, "time": 1.115672755241394, "iter": 1150, "memory": 8702, "step": 1150} +{"lr": 0.009933205183235533, "data_time": 0.0065708160400390625, "loss": 0.7024855226278305, "decode.loss_ce": 0.4398741200566292, "decode.acc_seg": 92.54411315917969, "aux.loss_ce": 0.2626113884150982, "aux.acc_seg": 83.54054260253906, "time": 1.1115902185440063, "iter": 1200, "memory": 8702, "step": 1200} +{"lr": 0.009930418651747694, "data_time": 0.009378314018249512, "loss": 0.7936880141496658, "decode.loss_ce": 0.5060440599918365, "decode.acc_seg": 85.5569839477539, "aux.loss_ce": 0.28764394372701646, "aux.acc_seg": 84.20719146728516, "time": 1.118958830833435, "iter": 1250, "memory": 8702, "step": 1250} +{"lr": 0.009927632032493697, "data_time": 0.00774087905883789, "loss": 0.695601761341095, "decode.loss_ce": 0.4380529418587685, "decode.acc_seg": 90.94002532958984, "aux.loss_ce": 0.25754882842302323, "aux.acc_seg": 87.92259979248047, "time": 1.1158739566802978, "iter": 1300, "memory": 8703, "step": 1300} +{"lr": 0.009924845325443136, "data_time": 0.007314825057983398, "loss": 0.6851732075214386, "decode.loss_ce": 0.43992566168308256, "decode.acc_seg": 87.2426986694336, "aux.loss_ce": 0.24524754881858826, "aux.acc_seg": 78.04685974121094, "time": 1.1120719909667969, "iter": 1350, "memory": 8703, "step": 1350} +{"lr": 0.009922058530565565, "data_time": 0.007890892028808594, "loss": 0.6350485950708389, "decode.loss_ce": 0.3950468048453331, "decode.acc_seg": 93.37984466552734, "aux.loss_ce": 0.240001779794693, "aux.acc_seg": 89.36271667480469, "time": 1.1149598598480224, "iter": 1400, "memory": 8703, "step": 1400} +{"lr": 0.009919271647830517, "data_time": 0.006950497627258301, "loss": 0.7224893033504486, "decode.loss_ce": 0.4597009152173996, "decode.acc_seg": 85.8739242553711, "aux.loss_ce": 0.26278838366270063, "aux.acc_seg": 70.8241958618164, "time": 1.1132191658020019, "iter": 1450, "memory": 8703, "step": 1450} +{"lr": 0.00991648467720753, "data_time": 0.007731771469116211, "loss": 0.939487487077713, "decode.loss_ce": 0.5984254807233811, "decode.acc_seg": 80.33618927001953, "aux.loss_ce": 0.341062006354332, "aux.acc_seg": 77.86598205566406, "time": 1.1119452476501466, "iter": 1500, "memory": 8704, "step": 1500} +{"lr": 0.0099136976186661, "data_time": 0.008274984359741212, "loss": 0.6342964679002762, "decode.loss_ce": 0.38575920313596723, "decode.acc_seg": 89.20135498046875, "aux.loss_ce": 0.248537278175354, "aux.acc_seg": 72.24597930908203, "time": 1.1147346496582031, "iter": 1550, "memory": 8703, "step": 1550} +{"lr": 0.009910910472175703, "data_time": 0.007243752479553223, "loss": 0.8353709816932678, "decode.loss_ce": 0.53115414083004, "decode.acc_seg": 91.76813507080078, "aux.loss_ce": 0.3042168289422989, "aux.acc_seg": 87.37601470947266, "time": 1.1143346786499024, "iter": 1600, "memory": 8703, "step": 1600} +{"lr": 0.009908123237705813, "data_time": 0.007040071487426758, "loss": 0.7182566285133362, "decode.loss_ce": 0.4565575152635574, "decode.acc_seg": 90.46955871582031, "aux.loss_ce": 0.2616991110146046, "aux.acc_seg": 74.74400329589844, "time": 1.1172787189483642, "iter": 1650, "memory": 8703, "step": 1650} +{"lr": 0.00990533591522586, "data_time": 0.00743863582611084, "loss": 0.672456905245781, "decode.loss_ce": 0.43501672297716143, "decode.acc_seg": 92.18344116210938, "aux.loss_ce": 0.23744016736745835, "aux.acc_seg": 88.84664154052734, "time": 1.118904423713684, "iter": 1700, "memory": 8702, "step": 1700} +{"lr": 0.009902548504705278, "data_time": 0.006414079666137695, "loss": 0.8967171430587768, "decode.loss_ce": 0.5753070950508118, "decode.acc_seg": 92.41251373291016, "aux.loss_ce": 0.3214100353419781, "aux.acc_seg": 91.79303741455078, "time": 1.1110018014907836, "iter": 1750, "memory": 8703, "step": 1750} +{"lr": 0.009899761006113455, "data_time": 0.007605123519897461, "loss": 0.6083735942840576, "decode.loss_ce": 0.36650105118751525, "decode.acc_seg": 90.56631469726562, "aux.loss_ce": 0.241872538626194, "aux.acc_seg": 88.37477111816406, "time": 1.116659951210022, "iter": 1800, "memory": 8702, "step": 1800} +{"lr": 0.009896973419419773, "data_time": 0.0078030586242675785, "loss": 0.8773641884326935, "decode.loss_ce": 0.5489868462085724, "decode.acc_seg": 89.60659790039062, "aux.loss_ce": 0.32837735414505004, "aux.acc_seg": 66.41432189941406, "time": 1.1164842128753663, "iter": 1850, "memory": 8702, "step": 1850} +{"lr": 0.009894185744593607, "data_time": 0.007916688919067383, "loss": 0.8061408132314682, "decode.loss_ce": 0.496216407418251, "decode.acc_seg": 89.24236297607422, "aux.loss_ce": 0.30992441028356554, "aux.acc_seg": 84.173583984375, "time": 1.1150681257247925, "iter": 1900, "memory": 8703, "step": 1900} +{"lr": 0.009891397981604278, "data_time": 0.006489872932434082, "loss": 0.5973233550786972, "decode.loss_ce": 0.37096530199050903, "decode.acc_seg": 81.78602600097656, "aux.loss_ce": 0.2263580486178398, "aux.acc_seg": 82.13081359863281, "time": 1.115644145011902, "iter": 1950, "memory": 8703, "step": 1950} +{"lr": 0.009888610130421114, "data_time": 0.007730007171630859, "loss": 0.9686542749404907, "decode.loss_ce": 0.6162137791514397, "decode.acc_seg": 79.23361206054688, "aux.loss_ce": 0.35244048237800596, "aux.acc_seg": 70.93009948730469, "time": 1.1152220010757445, "iter": 2000, "memory": 8703, "step": 2000} +{"lr": 0.009885822191013416, "data_time": 0.007368206977844238, "loss": 0.8039223849773407, "decode.loss_ce": 0.49003698229789733, "decode.acc_seg": 82.41615295410156, "aux.loss_ce": 0.3138854056596756, "aux.acc_seg": 71.9992904663086, "time": 1.1163463830947875, "iter": 2050, "memory": 8702, "step": 2050} +{"lr": 0.00988303416335047, "data_time": 0.005628633499145508, "loss": 0.7353476524353028, "decode.loss_ce": 0.4586926609277725, "decode.acc_seg": 86.53398895263672, "aux.loss_ce": 0.27665499597787857, "aux.acc_seg": 81.291259765625, "time": 1.109302043914795, "iter": 2100, "memory": 8703, "step": 2100} +{"lr": 0.009880246047401512, "data_time": 0.009383034706115723, "loss": 0.7921241760253906, "decode.loss_ce": 0.5103660434484482, "decode.acc_seg": 92.0419692993164, "aux.loss_ce": 0.2817581191658974, "aux.acc_seg": 91.11251831054688, "time": 1.11723153591156, "iter": 2150, "memory": 8703, "step": 2150} +{"lr": 0.009877457843135802, "data_time": 0.009013509750366211, "loss": 0.5260480582714081, "decode.loss_ce": 0.31377322897315024, "decode.acc_seg": 96.35645294189453, "aux.loss_ce": 0.21227483078837395, "aux.acc_seg": 95.23995208740234, "time": 1.1188156604766846, "iter": 2200, "memory": 8703, "step": 2200} +{"lr": 0.009874669550522547, "data_time": 0.008813238143920899, "loss": 0.6824995964765549, "decode.loss_ce": 0.43539117872714994, "decode.acc_seg": 88.2345199584961, "aux.loss_ce": 0.24710841104388237, "aux.acc_seg": 80.22785186767578, "time": 1.1196126461029052, "iter": 2250, "memory": 8703, "step": 2250} +{"lr": 0.009871881169530935, "data_time": 0.007583141326904297, "loss": 0.8291426748037338, "decode.loss_ce": 0.5134469166398048, "decode.acc_seg": 89.97509765625, "aux.loss_ce": 0.3156957566738129, "aux.acc_seg": 80.60626983642578, "time": 1.1143367052078248, "iter": 2300, "memory": 8702, "step": 2300} +{"lr": 0.009869092700130155, "data_time": 0.006018590927124023, "loss": 0.8123698025941849, "decode.loss_ce": 0.5361051112413406, "decode.acc_seg": 62.83950424194336, "aux.loss_ce": 0.2762646831572056, "aux.acc_seg": 62.113059997558594, "time": 1.112019419670105, "iter": 2350, "memory": 8702, "step": 2350} +{"lr": 0.009866304142289362, "data_time": 0.009346508979797363, "loss": 0.7995362788438797, "decode.loss_ce": 0.5030646532773971, "decode.acc_seg": 89.4522933959961, "aux.loss_ce": 0.2964716225862503, "aux.acc_seg": 86.02066040039062, "time": 1.1182017087936402, "iter": 2400, "memory": 8702, "step": 2400} +{"lr": 0.009863515495977693, "data_time": 0.007544946670532226, "loss": 0.9531241863965988, "decode.loss_ce": 0.6201601475477219, "decode.acc_seg": 81.58283233642578, "aux.loss_ce": 0.3329640418291092, "aux.acc_seg": 73.47405242919922, "time": 1.1127679347991943, "iter": 2450, "memory": 8703, "step": 2450} +{"lr": 0.009860726761164252, "data_time": 0.007938671112060546, "loss": 0.6622580111026763, "decode.loss_ce": 0.39605048298835754, "decode.acc_seg": 91.09465026855469, "aux.loss_ce": 0.26620751395821574, "aux.acc_seg": 87.39685821533203, "time": 1.115364956855774, "iter": 2500, "memory": 8703, "step": 2500} +{"lr": 0.009857937937818145, "data_time": 0.006608510017395019, "loss": 0.6887801170349122, "decode.loss_ce": 0.43693487644195556, "decode.acc_seg": 86.74309539794922, "aux.loss_ce": 0.25184525102376937, "aux.acc_seg": 76.08858489990234, "time": 1.1146154403686523, "iter": 2550, "memory": 8703, "step": 2550} +{"lr": 0.009855149025908446, "data_time": 0.007481431961059571, "loss": 0.7969649016857148, "decode.loss_ce": 0.47845719903707506, "decode.acc_seg": 85.8102798461914, "aux.loss_ce": 0.3185077115893364, "aux.acc_seg": 83.31005859375, "time": 1.1144386768341064, "iter": 2600, "memory": 8703, "step": 2600} +{"lr": 0.009852360025404194, "data_time": 0.008591723442077637, "loss": 0.7585386544466018, "decode.loss_ce": 0.4770944073796272, "decode.acc_seg": 92.8750991821289, "aux.loss_ce": 0.2814442478120327, "aux.acc_seg": 88.59710693359375, "time": 1.1144936561584473, "iter": 2650, "memory": 8703, "step": 2650} +{"lr": 0.009849570936274438, "data_time": 0.008050227165222168, "loss": 0.6364193916320801, "decode.loss_ce": 0.4132893607020378, "decode.acc_seg": 90.81770324707031, "aux.loss_ce": 0.22313002571463586, "aux.acc_seg": 91.31202697753906, "time": 1.1151942014694214, "iter": 2700, "memory": 8703, "step": 2700} +{"lr": 0.009846781758488177, "data_time": 0.006524848937988281, "loss": 0.6826987624168396, "decode.loss_ce": 0.41078168004751203, "decode.acc_seg": 74.10907745361328, "aux.loss_ce": 0.2719170778989792, "aux.acc_seg": 64.41141510009766, "time": 1.1158205270767212, "iter": 2750, "memory": 8703, "step": 2750} +{"lr": 0.00984399249201441, "data_time": 0.008290863037109375, "loss": 0.6319358363747597, "decode.loss_ce": 0.38883200436830523, "decode.acc_seg": 91.13546752929688, "aux.loss_ce": 0.24310383051633835, "aux.acc_seg": 87.98033142089844, "time": 1.1181880474090575, "iter": 2800, "memory": 8703, "step": 2800} +{"lr": 0.009841203136822092, "data_time": 0.006411075592041016, "loss": 0.5246843278408051, "decode.loss_ce": 0.3301485538482666, "decode.acc_seg": 91.96522521972656, "aux.loss_ce": 0.19453577920794488, "aux.acc_seg": 90.0726318359375, "time": 1.11142156124115, "iter": 2850, "memory": 8703, "step": 2850} +{"lr": 0.009838413692880197, "data_time": 0.009089493751525879, "loss": 0.5828624531626702, "decode.loss_ce": 0.3745246611535549, "decode.acc_seg": 95.05411529541016, "aux.loss_ce": 0.2083377830684185, "aux.acc_seg": 91.8050765991211, "time": 1.119707703590393, "iter": 2900, "memory": 8703, "step": 2900} +{"lr": 0.00983562416015764, "data_time": 0.007690739631652832, "loss": 0.6122641205787659, "decode.loss_ce": 0.38801613450050354, "decode.acc_seg": 91.54077911376953, "aux.loss_ce": 0.2242479830980301, "aux.acc_seg": 88.23413848876953, "time": 1.1192596197128295, "iter": 2950, "memory": 8703, "step": 2950} +{"lr": 0.009832834538623323, "data_time": 0.00659787654876709, "loss": 0.6654832780361175, "decode.loss_ce": 0.4013011515140533, "decode.acc_seg": 95.02095031738281, "aux.loss_ce": 0.26418212428689003, "aux.acc_seg": 93.10041046142578, "time": 1.1138416051864624, "iter": 3000, "memory": 8702, "step": 3000} +{"lr": 0.009830044828246134, "data_time": 0.008360862731933594, "loss": 0.7711624413728714, "decode.loss_ce": 0.5031546890735626, "decode.acc_seg": 93.51602935791016, "aux.loss_ce": 0.26800776124000547, "aux.acc_seg": 88.09044647216797, "time": 1.1167510986328124, "iter": 3050, "memory": 8703, "step": 3050} +{"lr": 0.009827255028994956, "data_time": 0.006577754020690918, "loss": 0.9189931988716126, "decode.loss_ce": 0.5857357561588288, "decode.acc_seg": 84.43346405029297, "aux.loss_ce": 0.3332574352622032, "aux.acc_seg": 75.45972442626953, "time": 1.1143873453140258, "iter": 3100, "memory": 8702, "step": 3100} +{"lr": 0.009824465140838616, "data_time": 0.00854480266571045, "loss": 0.4557092607021332, "decode.loss_ce": 0.2824335262179375, "decode.acc_seg": 92.70706176757812, "aux.loss_ce": 0.17327573895454407, "aux.acc_seg": 91.14437103271484, "time": 1.1175188064575194, "iter": 3150, "memory": 8702, "step": 3150} +{"lr": 0.009821675163745954, "data_time": 0.009023404121398926, "loss": 0.5844878137111664, "decode.loss_ce": 0.35852167308330535, "decode.acc_seg": 86.73152923583984, "aux.loss_ce": 0.22596612423658372, "aux.acc_seg": 80.24164581298828, "time": 1.1203237056732178, "iter": 3200, "memory": 8703, "step": 3200} +{"lr": 0.009818885097685767, "data_time": 0.009415292739868164, "loss": 0.772989672422409, "decode.loss_ce": 0.4707692593336105, "decode.acc_seg": 95.08812713623047, "aux.loss_ce": 0.3022204257547855, "aux.acc_seg": 66.14691162109375, "time": 1.118424940109253, "iter": 3250, "memory": 8702, "step": 3250} +{"lr": 0.009816094942626823, "data_time": 0.008964323997497558, "loss": 0.4434017390012741, "decode.loss_ce": 0.27569735497236253, "decode.acc_seg": 94.5887680053711, "aux.loss_ce": 0.16770438626408576, "aux.acc_seg": 86.2155990600586, "time": 1.1208679676055908, "iter": 3300, "memory": 8702, "step": 3300} +{"lr": 0.009813304698537905, "data_time": 0.007361459732055664, "loss": 0.844034394621849, "decode.loss_ce": 0.5496563136577606, "decode.acc_seg": 75.11431121826172, "aux.loss_ce": 0.2943780854344368, "aux.acc_seg": 71.16851806640625, "time": 1.1164101600646972, "iter": 3350, "memory": 8702, "step": 3350} +{"lr": 0.009810514365387749, "data_time": 0.007806062698364258, "loss": 0.6585678160190582, "decode.loss_ce": 0.4026242896914482, "decode.acc_seg": 74.61006927490234, "aux.loss_ce": 0.2559435248374939, "aux.acc_seg": 64.70368194580078, "time": 1.1175676822662353, "iter": 3400, "memory": 8703, "step": 3400} +{"lr": 0.009807723943145072, "data_time": 0.007359218597412109, "loss": 0.824736675620079, "decode.loss_ce": 0.527945776283741, "decode.acc_seg": 83.40428161621094, "aux.loss_ce": 0.2967908948659897, "aux.acc_seg": 83.90121459960938, "time": 1.1188748836517335, "iter": 3450, "memory": 8703, "step": 3450} +{"lr": 0.009804933431778568, "data_time": 0.009712576866149902, "loss": 0.5300509005784988, "decode.loss_ce": 0.31834071278572085, "decode.acc_seg": 91.41703033447266, "aux.loss_ce": 0.21171019822359086, "aux.acc_seg": 87.67633056640625, "time": 1.1179024219512939, "iter": 3500, "memory": 8703, "step": 3500} +{"lr": 0.009802142831256919, "data_time": 0.005777835845947266, "loss": 0.6840366810560227, "decode.loss_ce": 0.4272418931126595, "decode.acc_seg": 88.93915557861328, "aux.loss_ce": 0.2567947804927826, "aux.acc_seg": 82.08179473876953, "time": 1.1136529207229615, "iter": 3550, "memory": 8702, "step": 3550} +{"lr": 0.009799352141548786, "data_time": 0.008704137802124024, "loss": 0.7250639200210571, "decode.loss_ce": 0.441536046564579, "decode.acc_seg": 92.0928955078125, "aux.loss_ce": 0.2835278794169426, "aux.acc_seg": 79.49905395507812, "time": 1.1162297010421753, "iter": 3600, "memory": 8703, "step": 3600} +{"lr": 0.0097965613626228, "data_time": 0.007305788993835449, "loss": 0.9956748157739639, "decode.loss_ce": 0.6298190012574196, "decode.acc_seg": 85.42130279541016, "aux.loss_ce": 0.3658558174967766, "aux.acc_seg": 82.78560638427734, "time": 1.1147404432296752, "iter": 3650, "memory": 8702, "step": 3650} +{"lr": 0.009793770494447582, "data_time": 0.005245375633239746, "loss": 0.7210933715105057, "decode.loss_ce": 0.4643118068575859, "decode.acc_seg": 91.86094665527344, "aux.loss_ce": 0.25678157433867455, "aux.acc_seg": 88.0212631225586, "time": 1.1069210529327393, "iter": 3700, "memory": 8703, "step": 3700} +{"lr": 0.009790979536991718, "data_time": 0.009572744369506836, "loss": 0.7293543696403504, "decode.loss_ce": 0.4489235237240791, "decode.acc_seg": 85.50675201416016, "aux.loss_ce": 0.28043084144592284, "aux.acc_seg": 82.5750961303711, "time": 1.120165967941284, "iter": 3750, "memory": 8702, "step": 3750} +{"lr": 0.009788188490223778, "data_time": 0.006817150115966797, "loss": 0.5955570310354232, "decode.loss_ce": 0.3729046739637852, "decode.acc_seg": 96.31250762939453, "aux.loss_ce": 0.22265234664082528, "aux.acc_seg": 94.5284652709961, "time": 1.1116113901138305, "iter": 3800, "memory": 8702, "step": 3800} +{"lr": 0.009785397354112331, "data_time": 0.00626370906829834, "loss": 0.5411696135997772, "decode.loss_ce": 0.3408071145415306, "decode.acc_seg": 89.76764678955078, "aux.loss_ce": 0.20036250203847886, "aux.acc_seg": 81.29259490966797, "time": 1.1092063665390015, "iter": 3850, "memory": 8703, "step": 3850} +{"lr": 0.009782606128625899, "data_time": 0.007774901390075683, "loss": 0.591671934723854, "decode.loss_ce": 0.3665923595428467, "decode.acc_seg": 88.84365844726562, "aux.loss_ce": 0.22507958263158798, "aux.acc_seg": 86.43054962158203, "time": 1.1152272939682006, "iter": 3900, "memory": 8704, "step": 3900} +{"lr": 0.009779814813732995, "data_time": 0.006913971900939941, "loss": 0.6318886816501618, "decode.loss_ce": 0.3754230491816998, "decode.acc_seg": 89.33106231689453, "aux.loss_ce": 0.25646563321352006, "aux.acc_seg": 82.7583236694336, "time": 1.11553213596344, "iter": 3950, "memory": 8703, "step": 3950} +{"lr": 0.009777023409402098, "data_time": 0.0086273193359375, "loss": 0.7147280514240265, "decode.loss_ce": 0.45138200670480727, "decode.acc_seg": 93.51227569580078, "aux.loss_ce": 0.2633460447192192, "aux.acc_seg": 88.56754302978516, "time": 1.1142657995224, "iter": 4000, "memory": 8702, "step": 4000} +{"lr": 0.009774231915601674, "data_time": 0.008709931373596191, "loss": 0.5330475091934204, "decode.loss_ce": 0.32501811981201173, "decode.acc_seg": 79.38117980957031, "aux.loss_ce": 0.20802938416600228, "aux.acc_seg": 71.59156799316406, "time": 1.1214357614517212, "iter": 4050, "memory": 8702, "step": 4050} +{"lr": 0.009771440332300171, "data_time": 0.008463740348815918, "loss": 0.3808051824569702, "decode.loss_ce": 0.24114157110452653, "decode.acc_seg": 92.78850555419922, "aux.loss_ce": 0.1396636076271534, "aux.acc_seg": 87.24110412597656, "time": 1.1164555549621582, "iter": 4100, "memory": 8702, "step": 4100} +{"lr": 0.009768648659466016, "data_time": 0.005973100662231445, "loss": 0.5051627099514008, "decode.loss_ce": 0.3221702054142952, "decode.acc_seg": 92.7741470336914, "aux.loss_ce": 0.18299250677227974, "aux.acc_seg": 92.60728454589844, "time": 1.1095227956771851, "iter": 4150, "memory": 8703, "step": 4150} +{"lr": 0.00976585689706762, "data_time": 0.007730817794799805, "loss": 0.5423969715833664, "decode.loss_ce": 0.33923921138048174, "decode.acc_seg": 93.5125961303711, "aux.loss_ce": 0.2031577467918396, "aux.acc_seg": 93.0328369140625, "time": 1.1177527904510498, "iter": 4200, "memory": 8702, "step": 4200} +{"lr": 0.009763065045073346, "data_time": 0.007822823524475098, "loss": 0.5591088742017746, "decode.loss_ce": 0.3570221170783043, "decode.acc_seg": 89.79175567626953, "aux.loss_ce": 0.20208675339818, "aux.acc_seg": 77.03573608398438, "time": 1.1184822559356689, "iter": 4250, "memory": 8702, "step": 4250} +{"lr": 0.009760273103451565, "data_time": 0.005627822875976562, "loss": 0.6050178319215774, "decode.loss_ce": 0.36249118149280546, "decode.acc_seg": 94.5138931274414, "aux.loss_ce": 0.2425266459584236, "aux.acc_seg": 93.34182739257812, "time": 1.1126067161560058, "iter": 4300, "memory": 8702, "step": 4300} +{"lr": 0.009757481072170615, "data_time": 0.009890174865722657, "loss": 0.4211685448884964, "decode.loss_ce": 0.26022892594337466, "decode.acc_seg": 88.82891082763672, "aux.loss_ce": 0.1609396182000637, "aux.acc_seg": 86.01162719726562, "time": 1.1186393976211548, "iter": 4350, "memory": 8702, "step": 4350} +{"lr": 0.009754688951198817, "data_time": 0.008601021766662598, "loss": 0.5924766033887863, "decode.loss_ce": 0.362008049339056, "decode.acc_seg": 88.69329833984375, "aux.loss_ce": 0.23046855628490448, "aux.acc_seg": 70.81108093261719, "time": 1.1181248903274537, "iter": 4400, "memory": 8703, "step": 4400} +{"lr": 0.009751896740504463, "data_time": 0.009088635444641113, "loss": 0.7903630286455154, "decode.loss_ce": 0.4926216393709183, "decode.acc_seg": 92.01615142822266, "aux.loss_ce": 0.29774137437343595, "aux.acc_seg": 90.54438018798828, "time": 1.1144559383392334, "iter": 4450, "memory": 8703, "step": 4450} +{"lr": 0.009749104440055827, "data_time": 0.0051665067672729496, "loss": 0.5023391216993331, "decode.loss_ce": 0.27864663004875184, "decode.acc_seg": 84.04381561279297, "aux.loss_ce": 0.22369248941540718, "aux.acc_seg": 69.45126342773438, "time": 1.10536789894104, "iter": 4500, "memory": 8702, "step": 4500} +{"lr": 0.009746312049821175, "data_time": 0.007260346412658691, "loss": 0.4441978484392166, "decode.loss_ce": 0.2735714867711067, "decode.acc_seg": 93.09276580810547, "aux.loss_ce": 0.17062636092305183, "aux.acc_seg": 91.75790405273438, "time": 1.114622950553894, "iter": 4550, "memory": 8703, "step": 4550} +{"lr": 0.00974351956976873, "data_time": 0.00804901123046875, "loss": 0.5346442848443985, "decode.loss_ce": 0.318836173415184, "decode.acc_seg": 94.37535095214844, "aux.loss_ce": 0.21580810770392417, "aux.acc_seg": 90.69512176513672, "time": 1.1138161420822144, "iter": 4600, "memory": 8702, "step": 4600} +{"lr": 0.0097407269998667, "data_time": 0.006415843963623047, "loss": 0.6903807565569877, "decode.loss_ce": 0.42018884271383283, "decode.acc_seg": 92.32304382324219, "aux.loss_ce": 0.27019192203879355, "aux.acc_seg": 90.7052993774414, "time": 1.11057767868042, "iter": 4650, "memory": 8702, "step": 4650} +{"lr": 0.009737934340083272, "data_time": 0.006998467445373535, "loss": 0.5210630536079407, "decode.loss_ce": 0.3162789598107338, "decode.acc_seg": 90.74337768554688, "aux.loss_ce": 0.20478409230709077, "aux.acc_seg": 90.25955200195312, "time": 1.1158343076705932, "iter": 4700, "memory": 8703, "step": 4700} +{"lr": 0.00973514159038661, "data_time": 0.007221007347106933, "loss": 0.6760282695293427, "decode.loss_ce": 0.3954185903072357, "decode.acc_seg": 85.19001007080078, "aux.loss_ce": 0.2806096814572811, "aux.acc_seg": 83.41007232666016, "time": 1.111423635482788, "iter": 4750, "memory": 8702, "step": 4750} +{"lr": 0.009732348750744886, "data_time": 0.009067130088806153, "loss": 0.5245109528303147, "decode.loss_ce": 0.3267013967037201, "decode.acc_seg": 91.61522674560547, "aux.loss_ce": 0.1978095553815365, "aux.acc_seg": 81.19671630859375, "time": 1.1147331476211548, "iter": 4800, "memory": 8702, "step": 4800} +{"lr": 0.009729555821126196, "data_time": 0.007955718040466308, "loss": 0.896783570945263, "decode.loss_ce": 0.5768459141254425, "decode.acc_seg": 84.34999084472656, "aux.loss_ce": 0.3199376553297043, "aux.acc_seg": 84.01686096191406, "time": 1.1151206254959107, "iter": 4850, "memory": 8703, "step": 4850} +{"lr": 0.009726762801498654, "data_time": 0.008938264846801759, "loss": 0.7181874841451645, "decode.loss_ce": 0.45369252264499665, "decode.acc_seg": 87.53179931640625, "aux.loss_ce": 0.2644949585199356, "aux.acc_seg": 82.37902069091797, "time": 1.1179613828659059, "iter": 4900, "memory": 8702, "step": 4900} +{"lr": 0.009723969691830344, "data_time": 0.005166435241699218, "loss": 0.5704752698540687, "decode.loss_ce": 0.35157405138015746, "decode.acc_seg": 93.34799194335938, "aux.loss_ce": 0.21890122070908546, "aux.acc_seg": 87.54151153564453, "time": 1.1063483238220215, "iter": 4950, "memory": 8702, "step": 4950} +{"lr": 0.009721176492089327, "data_time": 0.008017420768737793, "loss": 0.5078634142875671, "decode.loss_ce": 0.3092820651829243, "decode.acc_seg": 82.70912170410156, "aux.loss_ce": 0.19858134537935257, "aux.acc_seg": 68.29210662841797, "time": 1.1136881113052368, "iter": 5000, "memory": 8702, "step": 5000} +{"lr": 0.009718383202243648, "data_time": 0.008579087257385255, "loss": 0.6647669643163681, "decode.loss_ce": 0.4070450082421303, "decode.acc_seg": 87.58802032470703, "aux.loss_ce": 0.2577219568192959, "aux.acc_seg": 78.8670654296875, "time": 1.1153318881988525, "iter": 5050, "memory": 8702, "step": 5050} +{"lr": 0.009715589822261297, "data_time": 0.0074035882949829105, "loss": 0.5584781765937805, "decode.loss_ce": 0.34917654246091845, "decode.acc_seg": 83.18414306640625, "aux.loss_ce": 0.2093016378581524, "aux.acc_seg": 76.73160552978516, "time": 1.1119148492813111, "iter": 5100, "memory": 8704, "step": 5100} +{"lr": 0.009712796352110292, "data_time": 0.007722282409667968, "loss": 0.6493570119142532, "decode.loss_ce": 0.40201454907655715, "decode.acc_seg": 85.63289642333984, "aux.loss_ce": 0.24734246954321862, "aux.acc_seg": 74.36180114746094, "time": 1.1151059865951538, "iter": 5150, "memory": 8702, "step": 5150} +{"lr": 0.009710002791758588, "data_time": 0.007902836799621582, "loss": 0.5882468685507775, "decode.loss_ce": 0.3798796206712723, "decode.acc_seg": 92.81211853027344, "aux.loss_ce": 0.20836724191904069, "aux.acc_seg": 90.66316223144531, "time": 1.112476634979248, "iter": 5200, "memory": 8703, "step": 5200} +{"lr": 0.009707209141174162, "data_time": 0.007069134712219238, "loss": 0.4409880131483078, "decode.loss_ce": 0.2602024286985397, "decode.acc_seg": 84.61653137207031, "aux.loss_ce": 0.18078558146953583, "aux.acc_seg": 83.9133529663086, "time": 1.1126359462738038, "iter": 5250, "memory": 8703, "step": 5250} +{"lr": 0.009704415400324925, "data_time": 0.0059082269668579105, "loss": 0.5863273978233338, "decode.loss_ce": 0.35448174774646757, "decode.acc_seg": 86.98136901855469, "aux.loss_ce": 0.23184565603733062, "aux.acc_seg": 81.52592468261719, "time": 1.112778091430664, "iter": 5300, "memory": 8703, "step": 5300} +{"lr": 0.009701621569178793, "data_time": 0.0059182167053222655, "loss": 0.5484964221715927, "decode.loss_ce": 0.3425845943391323, "decode.acc_seg": 86.23535919189453, "aux.loss_ce": 0.20591182708740235, "aux.acc_seg": 83.5943832397461, "time": 1.1098769664764405, "iter": 5350, "memory": 8703, "step": 5350} +{"lr": 0.009698827647703637, "data_time": 0.006991815567016601, "loss": 0.5416613325476647, "decode.loss_ce": 0.35306364819407465, "decode.acc_seg": 80.63175964355469, "aux.loss_ce": 0.18859768584370612, "aux.acc_seg": 76.42313385009766, "time": 1.112295937538147, "iter": 5400, "memory": 8703, "step": 5400} +{"lr": 0.009696033635867343, "data_time": 0.006861495971679688, "loss": 0.6195392876863479, "decode.loss_ce": 0.39087332487106324, "decode.acc_seg": 65.72354125976562, "aux.loss_ce": 0.2286659523844719, "aux.acc_seg": 64.54435729980469, "time": 1.1117233276367187, "iter": 5450, "memory": 8702, "step": 5450} +{"lr": 0.009693239533637741, "data_time": 0.008005404472351074, "loss": 0.5497587025165558, "decode.loss_ce": 0.34138618111610414, "decode.acc_seg": 92.82270812988281, "aux.loss_ce": 0.2083725206553936, "aux.acc_seg": 83.9101791381836, "time": 1.118292498588562, "iter": 5500, "memory": 8703, "step": 5500} +{"lr": 0.009690445340982644, "data_time": 0.00875849723815918, "loss": 0.7204507410526275, "decode.loss_ce": 0.4667391449213028, "decode.acc_seg": 90.18878936767578, "aux.loss_ce": 0.25371158868074417, "aux.acc_seg": 88.21855926513672, "time": 1.113147759437561, "iter": 5550, "memory": 8702, "step": 5550} +{"lr": 0.009687651057869878, "data_time": 0.007468032836914063, "loss": 0.46231100559234617, "decode.loss_ce": 0.28666624426841736, "decode.acc_seg": 91.8692855834961, "aux.loss_ce": 0.17564476951956748, "aux.acc_seg": 88.86438751220703, "time": 1.1163851499557496, "iter": 5600, "memory": 8703, "step": 5600} +{"lr": 0.009684856684267192, "data_time": 0.0072476863861083984, "loss": 0.46481469422578814, "decode.loss_ce": 0.2936528965830803, "decode.acc_seg": 88.68363189697266, "aux.loss_ce": 0.17116180136799813, "aux.acc_seg": 82.34894561767578, "time": 1.1140248775482178, "iter": 5650, "memory": 8703, "step": 5650} +{"lr": 0.009682062220142352, "data_time": 0.0075512886047363285, "loss": 0.3882167637348175, "decode.loss_ce": 0.2324376404285431, "decode.acc_seg": 91.3461685180664, "aux.loss_ce": 0.15577911883592604, "aux.acc_seg": 90.47895812988281, "time": 1.114819598197937, "iter": 5700, "memory": 8703, "step": 5700} +{"lr": 0.009679267665463091, "data_time": 0.008193159103393554, "loss": 0.5434808850288391, "decode.loss_ce": 0.3327047601342201, "decode.acc_seg": 86.3236083984375, "aux.loss_ce": 0.21077612265944481, "aux.acc_seg": 84.66205596923828, "time": 1.1179760932922362, "iter": 5750, "memory": 8703, "step": 5750} +{"lr": 0.009676473020197118, "data_time": 0.009403467178344727, "loss": 0.5759929209947586, "decode.loss_ce": 0.3621275693178177, "decode.acc_seg": 92.72428894042969, "aux.loss_ce": 0.21386535912752153, "aux.acc_seg": 85.82642364501953, "time": 1.1161940097808838, "iter": 5800, "memory": 8703, "step": 5800} +{"lr": 0.009673678284312134, "data_time": 0.006920719146728515, "loss": 0.7152012616395951, "decode.loss_ce": 0.4201433017849922, "decode.acc_seg": 96.11389923095703, "aux.loss_ce": 0.29505796208977697, "aux.acc_seg": 94.64371490478516, "time": 1.1125384092330932, "iter": 5850, "memory": 8702, "step": 5850} +{"lr": 0.009670883457775786, "data_time": 0.008162379264831543, "loss": 0.5468237608671188, "decode.loss_ce": 0.3428305432200432, "decode.acc_seg": 93.50083923339844, "aux.loss_ce": 0.2039932206273079, "aux.acc_seg": 88.33928680419922, "time": 1.1134700298309326, "iter": 5900, "memory": 8703, "step": 5900} +{"lr": 0.009668088540555722, "data_time": 0.009213542938232422, "loss": 0.5680165350437164, "decode.loss_ce": 0.34558378607034684, "decode.acc_seg": 91.78759002685547, "aux.loss_ce": 0.2224327579140663, "aux.acc_seg": 86.2039566040039, "time": 1.122226309776306, "iter": 5950, "memory": 8703, "step": 5950} +{"lr": 0.009665293532619579, "data_time": 0.009638810157775879, "loss": 0.5620070368051528, "decode.loss_ce": 0.33887267112731934, "decode.acc_seg": 88.24723052978516, "aux.loss_ce": 0.22313436791300773, "aux.acc_seg": 67.60247039794922, "time": 1.1204001426696777, "iter": 6000, "memory": 8702, "step": 6000} +{"lr": 0.009662498433934942, "data_time": 0.007290339469909668, "loss": 0.6278651267290115, "decode.loss_ce": 0.3999667912721634, "decode.acc_seg": 74.9869613647461, "aux.loss_ce": 0.22789832577109337, "aux.acc_seg": 67.86810302734375, "time": 1.1117462396621705, "iter": 6050, "memory": 8702, "step": 6050} +{"lr": 0.009659703244469402, "data_time": 0.008766436576843261, "loss": 0.6737369805574417, "decode.loss_ce": 0.437335966527462, "decode.acc_seg": 92.3991470336914, "aux.loss_ce": 0.23640100732445718, "aux.acc_seg": 87.37570190429688, "time": 1.1146759510040283, "iter": 6100, "memory": 8703, "step": 6100} +{"lr": 0.009656907964190515, "data_time": 0.007921504974365234, "loss": 0.5312811732292175, "decode.loss_ce": 0.3228941738605499, "decode.acc_seg": 94.47237396240234, "aux.loss_ce": 0.20838700383901596, "aux.acc_seg": 87.59727478027344, "time": 1.115035605430603, "iter": 6150, "memory": 8703, "step": 6150} +{"lr": 0.009654112593065816, "data_time": 0.007378792762756348, "loss": 0.49559883773326874, "decode.loss_ce": 0.31433753818273547, "decode.acc_seg": 83.90985870361328, "aux.loss_ce": 0.1812613021582365, "aux.acc_seg": 80.63507080078125, "time": 1.115209150314331, "iter": 6200, "memory": 8703, "step": 6200} +{"lr": 0.009651317131062811, "data_time": 0.006287384033203125, "loss": 0.42845271825790404, "decode.loss_ce": 0.2676699608564377, "decode.acc_seg": 90.33966064453125, "aux.loss_ce": 0.16078275665640832, "aux.acc_seg": 91.28900909423828, "time": 1.11593177318573, "iter": 6250, "memory": 8703, "step": 6250} +{"lr": 0.009648521578148992, "data_time": 0.007912087440490722, "loss": 0.47102268785238266, "decode.loss_ce": 0.290383180975914, "decode.acc_seg": 87.85336303710938, "aux.loss_ce": 0.1806395012885332, "aux.acc_seg": 84.564208984375, "time": 1.117657470703125, "iter": 6300, "memory": 8703, "step": 6300} +{"lr": 0.00964572593429183, "data_time": 0.007589292526245117, "loss": 0.6362166732549668, "decode.loss_ce": 0.3939825281500816, "decode.acc_seg": 88.27190399169922, "aux.loss_ce": 0.24223414286971093, "aux.acc_seg": 85.64217376708984, "time": 1.114410138130188, "iter": 6350, "memory": 8702, "step": 6350} +{"lr": 0.009642930199458761, "data_time": 0.009401416778564453, "loss": 0.4659405678510666, "decode.loss_ce": 0.2797830946743488, "decode.acc_seg": 94.71702575683594, "aux.loss_ce": 0.18615747541189193, "aux.acc_seg": 91.55693054199219, "time": 1.1147599458694457, "iter": 6400, "memory": 8703, "step": 6400} +{"lr": 0.009640134373617219, "data_time": 0.0073173284530639645, "loss": 0.46620979011058805, "decode.loss_ce": 0.28962827324867246, "decode.acc_seg": 88.73160552978516, "aux.loss_ce": 0.17658151909708977, "aux.acc_seg": 82.28173065185547, "time": 1.11103994846344, "iter": 6450, "memory": 8702, "step": 6450} +{"lr": 0.009637338456734602, "data_time": 0.007988357543945312, "loss": 0.6642387270927429, "decode.loss_ce": 0.4113162010908127, "decode.acc_seg": 92.7970199584961, "aux.loss_ce": 0.25292251706123353, "aux.acc_seg": 91.78511047363281, "time": 1.1140495777130126, "iter": 6500, "memory": 8703, "step": 6500} +{"lr": 0.009634542448778293, "data_time": 0.008606243133544921, "loss": 0.5468447983264924, "decode.loss_ce": 0.33165742456912994, "decode.acc_seg": 86.93744659423828, "aux.loss_ce": 0.2151873677968979, "aux.acc_seg": 81.04590606689453, "time": 1.1144566774368285, "iter": 6550, "memory": 8702, "step": 6550} +{"lr": 0.009631746349715638, "data_time": 0.0053225278854370115, "loss": 0.6668227553367615, "decode.loss_ce": 0.42082094103097917, "decode.acc_seg": 83.0206527709961, "aux.loss_ce": 0.24600181579589844, "aux.acc_seg": 70.75067901611328, "time": 1.1072173357009887, "iter": 6600, "memory": 8702, "step": 6600} +{"lr": 0.009628950159513983, "data_time": 0.007095813751220703, "loss": 0.5724902361631393, "decode.loss_ce": 0.36916102916002275, "decode.acc_seg": 95.13123321533203, "aux.loss_ce": 0.2033292107284069, "aux.acc_seg": 95.4428939819336, "time": 1.1107419013977051, "iter": 6650, "memory": 8702, "step": 6650} +{"lr": 0.009626153878140635, "data_time": 0.00834484100341797, "loss": 0.5404765769839287, "decode.loss_ce": 0.35238215923309324, "decode.acc_seg": 93.18287658691406, "aux.loss_ce": 0.18809441179037095, "aux.acc_seg": 92.51091766357422, "time": 1.1129185914993287, "iter": 6700, "memory": 8703, "step": 6700} +{"lr": 0.009623357505562884, "data_time": 0.005712723731994629, "loss": 0.6009182900190353, "decode.loss_ce": 0.3670095711946487, "decode.acc_seg": 89.74125671386719, "aux.loss_ce": 0.23390872403979301, "aux.acc_seg": 86.84571075439453, "time": 1.1128121852874755, "iter": 6750, "memory": 8703, "step": 6750} +{"lr": 0.009620561041747992, "data_time": 0.007975172996520997, "loss": 0.5625426083803177, "decode.loss_ce": 0.356255030632019, "decode.acc_seg": 94.6249008178711, "aux.loss_ce": 0.20628757774829865, "aux.acc_seg": 88.28315734863281, "time": 1.1140270709991456, "iter": 6800, "memory": 8703, "step": 6800} +{"lr": 0.00961776448666321, "data_time": 0.00830080509185791, "loss": 0.5775380849838256, "decode.loss_ce": 0.3520605772733688, "decode.acc_seg": 92.9810791015625, "aux.loss_ce": 0.22547751367092134, "aux.acc_seg": 86.85646057128906, "time": 1.1153632402420044, "iter": 6850, "memory": 8703, "step": 6850} +{"lr": 0.009614967840275764, "data_time": 0.006679153442382813, "loss": 0.5990722417831421, "decode.loss_ce": 0.36365566998720167, "decode.acc_seg": 90.1209487915039, "aux.loss_ce": 0.23541656956076623, "aux.acc_seg": 87.8379135131836, "time": 1.1169057369232178, "iter": 6900, "memory": 8703, "step": 6900} +{"lr": 0.009612171102552839, "data_time": 0.00865778923034668, "loss": 0.5134092509746552, "decode.loss_ce": 0.32434101998806, "decode.acc_seg": 86.9184341430664, "aux.loss_ce": 0.18906822726130484, "aux.acc_seg": 84.9232406616211, "time": 1.1184186935424805, "iter": 6950, "memory": 8703, "step": 6950} +{"lr": 0.009609374273461618, "data_time": 0.006816792488098145, "loss": 0.7636522561311722, "decode.loss_ce": 0.4883278489112854, "decode.acc_seg": 92.8660659790039, "aux.loss_ce": 0.2753244176506996, "aux.acc_seg": 85.35944366455078, "time": 1.1139482498168944, "iter": 7000, "memory": 8703, "step": 7000} +{"lr": 0.009606577352969261, "data_time": 0.007131099700927734, "loss": 0.4959655165672302, "decode.loss_ce": 0.2848344951868057, "decode.acc_seg": 77.5000228881836, "aux.loss_ce": 0.21113101318478583, "aux.acc_seg": 62.709232330322266, "time": 1.1153937578201294, "iter": 7050, "memory": 8702, "step": 7050} +{"lr": 0.009603780341042898, "data_time": 0.007292318344116211, "loss": 0.5275825440883637, "decode.loss_ce": 0.3358787730336189, "decode.acc_seg": 81.39690399169922, "aux.loss_ce": 0.19170377552509307, "aux.acc_seg": 72.91089630126953, "time": 1.114372181892395, "iter": 7100, "memory": 8702, "step": 7100} +{"lr": 0.009600983237649645, "data_time": 0.007576513290405274, "loss": 1.0538880780339241, "decode.loss_ce": 0.7135917872190476, "decode.acc_seg": 84.89716339111328, "aux.loss_ce": 0.3402962677180767, "aux.acc_seg": 69.99867248535156, "time": 1.1172674894332886, "iter": 7150, "memory": 8702, "step": 7150} +{"lr": 0.00959818604275658, "data_time": 0.008023405075073242, "loss": 0.6138743981719017, "decode.loss_ce": 0.40472007393836973, "decode.acc_seg": 93.97862243652344, "aux.loss_ce": 0.20915432199835776, "aux.acc_seg": 93.72793579101562, "time": 1.11639404296875, "iter": 7200, "memory": 8702, "step": 7200} +{"lr": 0.009595388756330763, "data_time": 0.009070062637329101, "loss": 0.5814131379127503, "decode.loss_ce": 0.37138005197048185, "decode.acc_seg": 90.07466125488281, "aux.loss_ce": 0.21003307774662971, "aux.acc_seg": 88.3814926147461, "time": 1.1172892808914185, "iter": 7250, "memory": 8703, "step": 7250} +{"lr": 0.009592591378339241, "data_time": 0.008419322967529296, "loss": 0.6468689560890197, "decode.loss_ce": 0.42401058673858644, "decode.acc_seg": 92.27529907226562, "aux.loss_ce": 0.22285837233066558, "aux.acc_seg": 91.14881896972656, "time": 1.1119951486587525, "iter": 7300, "memory": 8702, "step": 7300} +{"lr": 0.009589793908749037, "data_time": 0.006696915626525879, "loss": 0.5955039694905281, "decode.loss_ce": 0.37461079508066175, "decode.acc_seg": 93.72106170654297, "aux.loss_ce": 0.22089318111538886, "aux.acc_seg": 91.40422821044922, "time": 1.115157461166382, "iter": 7350, "memory": 8702, "step": 7350} +{"lr": 0.009586996347527148, "data_time": 0.00824429988861084, "loss": 0.5306392535567284, "decode.loss_ce": 0.32960135862231255, "decode.acc_seg": 80.79458618164062, "aux.loss_ce": 0.20103789642453193, "aux.acc_seg": 76.60852813720703, "time": 1.1143605947494506, "iter": 7400, "memory": 8702, "step": 7400} +{"lr": 0.009584198694640542, "data_time": 0.007372498512268066, "loss": 0.5133263498544693, "decode.loss_ce": 0.30815432220697403, "decode.acc_seg": 95.92456817626953, "aux.loss_ce": 0.2051720254123211, "aux.acc_seg": 92.08049774169922, "time": 1.112411880493164, "iter": 7450, "memory": 8703, "step": 7450} +{"lr": 0.009581400950056163, "data_time": 0.008326959609985352, "loss": 0.40617319345474245, "decode.loss_ce": 0.24644515812397003, "decode.acc_seg": 93.19998168945312, "aux.loss_ce": 0.159728030115366, "aux.acc_seg": 91.55540466308594, "time": 1.120082426071167, "iter": 7500, "memory": 8704, "step": 7500} +{"lr": 0.009578603113740952, "data_time": 0.006654953956604004, "loss": 0.45732242166996, "decode.loss_ce": 0.29096155166625975, "decode.acc_seg": 95.18572235107422, "aux.loss_ce": 0.16636087521910667, "aux.acc_seg": 88.7603759765625, "time": 1.1147320747375489, "iter": 7550, "memory": 8703, "step": 7550} +{"lr": 0.009575805185661816, "data_time": 0.007205581665039063, "loss": 0.564527815580368, "decode.loss_ce": 0.35828927382826803, "decode.acc_seg": 91.52017974853516, "aux.loss_ce": 0.2062385454773903, "aux.acc_seg": 88.21392059326172, "time": 1.1137148857116699, "iter": 7600, "memory": 8702, "step": 7600} +{"lr": 0.009573007165785628, "data_time": 0.006615948677062988, "loss": 0.5398595303297042, "decode.loss_ce": 0.34530633464455607, "decode.acc_seg": 95.85914611816406, "aux.loss_ce": 0.19455319531261922, "aux.acc_seg": 95.2612533569336, "time": 1.1173171043395995, "iter": 7650, "memory": 8702, "step": 7650} +{"lr": 0.009570209054079255, "data_time": 0.0072323322296142575, "loss": 0.5151662081480026, "decode.loss_ce": 0.3258349567651749, "decode.acc_seg": 95.1635971069336, "aux.loss_ce": 0.18933125212788582, "aux.acc_seg": 90.50579833984375, "time": 1.1262222528457642, "iter": 7700, "memory": 8702, "step": 7700} +{"lr": 0.00956741085050953, "data_time": 0.007773303985595703, "loss": 0.5737471342086792, "decode.loss_ce": 0.3855167254805565, "decode.acc_seg": 89.88018035888672, "aux.loss_ce": 0.18823040947318076, "aux.acc_seg": 86.93930053710938, "time": 1.113919234275818, "iter": 7750, "memory": 8703, "step": 7750} +{"lr": 0.009564612555043255, "data_time": 0.007950830459594726, "loss": 0.4896685749292374, "decode.loss_ce": 0.31193442940711974, "decode.acc_seg": 89.89764404296875, "aux.loss_ce": 0.17773414105176927, "aux.acc_seg": 78.80142211914062, "time": 1.115458869934082, "iter": 7800, "memory": 8702, "step": 7800} +{"lr": 0.009561814167647236, "data_time": 0.006966805458068848, "loss": 0.4196470886468887, "decode.loss_ce": 0.2579805590212345, "decode.acc_seg": 85.88854217529297, "aux.loss_ce": 0.16166653707623482, "aux.acc_seg": 80.70907592773438, "time": 1.1127870798110961, "iter": 7850, "memory": 8702, "step": 7850} +{"lr": 0.009559015688288245, "data_time": 0.008941125869750977, "loss": 0.5593734294176101, "decode.loss_ce": 0.34732900857925414, "decode.acc_seg": 74.49734497070312, "aux.loss_ce": 0.21204441264271737, "aux.acc_seg": 68.6197280883789, "time": 1.1151992082595825, "iter": 7900, "memory": 8703, "step": 7900} +{"lr": 0.009556217116933023, "data_time": 0.009072327613830566, "loss": 0.5056440591812134, "decode.loss_ce": 0.3253545328974724, "decode.acc_seg": 92.35040283203125, "aux.loss_ce": 0.1802895188331604, "aux.acc_seg": 90.04264068603516, "time": 1.1195557355880736, "iter": 7950, "memory": 8703, "step": 7950} +{"lr": 0.009553418453548288, "data_time": 0.008094072341918945, "loss": 0.5324634075164795, "decode.loss_ce": 0.34082729518413546, "decode.acc_seg": 82.30564880371094, "aux.loss_ce": 0.1916361078619957, "aux.acc_seg": 76.34620666503906, "time": 1.1170777082443237, "iter": 8000, "memory": 8703, "step": 8000} +{"lr": 0.009550619698100747, "data_time": 0.008545327186584472, "loss": 0.6600792199373245, "decode.loss_ce": 0.4272986978292465, "decode.acc_seg": 90.51258850097656, "aux.loss_ce": 0.23278051540255545, "aux.acc_seg": 90.19355773925781, "time": 1.1210690498352052, "iter": 8050, "memory": 8702, "step": 8050} +{"lr": 0.009547820850557064, "data_time": 0.006773900985717773, "loss": 0.42353148460388185, "decode.loss_ce": 0.25615337044000625, "decode.acc_seg": 94.78409576416016, "aux.loss_ce": 0.1673781156539917, "aux.acc_seg": 89.4622802734375, "time": 1.1139983415603638, "iter": 8100, "memory": 8702, "step": 8100} +{"lr": 0.009545021910883897, "data_time": 0.008935093879699707, "loss": 0.5205827593803406, "decode.loss_ce": 0.31321037858724593, "decode.acc_seg": 94.7329330444336, "aux.loss_ce": 0.20737237483263016, "aux.acc_seg": 93.49159240722656, "time": 1.1207622289657593, "iter": 8150, "memory": 8703, "step": 8150} +{"lr": 0.009542222879047877, "data_time": 0.00860140323638916, "loss": 0.49894038736820223, "decode.loss_ce": 0.3010251820087433, "decode.acc_seg": 91.60232543945312, "aux.loss_ce": 0.1979152023792267, "aux.acc_seg": 91.12255859375, "time": 1.115953254699707, "iter": 8200, "memory": 8703, "step": 8200} +{"lr": 0.00953942375501562, "data_time": 0.007842421531677246, "loss": 0.38853925168514253, "decode.loss_ce": 0.24804357439279556, "decode.acc_seg": 82.26343536376953, "aux.loss_ce": 0.14049567580223082, "aux.acc_seg": 80.48139953613281, "time": 1.1134071350097656, "iter": 8250, "memory": 8702, "step": 8250} +{"lr": 0.009536624538753702, "data_time": 0.006438708305358887, "loss": 0.5346789851784706, "decode.loss_ce": 0.3328573614358902, "decode.acc_seg": 94.52159118652344, "aux.loss_ce": 0.20182162523269653, "aux.acc_seg": 94.24559783935547, "time": 1.1139065742492675, "iter": 8300, "memory": 8703, "step": 8300} +{"lr": 0.009533825230228674, "data_time": 0.00854475498199463, "loss": 0.49068237841129303, "decode.loss_ce": 0.29959163069725037, "decode.acc_seg": 84.59380340576172, "aux.loss_ce": 0.19109075367450715, "aux.acc_seg": 76.63374328613281, "time": 1.1172166824340821, "iter": 8350, "memory": 8702, "step": 8350} +{"lr": 0.009531025829407095, "data_time": 0.006879615783691406, "loss": 0.4760682299733162, "decode.loss_ce": 0.28953423276543616, "decode.acc_seg": 93.2504653930664, "aux.loss_ce": 0.18653400167822837, "aux.acc_seg": 92.20879364013672, "time": 1.1154962301254272, "iter": 8400, "memory": 8703, "step": 8400} +{"lr": 0.009528226336255463, "data_time": 0.007491016387939453, "loss": 0.6177978545427323, "decode.loss_ce": 0.39613521844148636, "decode.acc_seg": 94.23075103759766, "aux.loss_ce": 0.22166264578700065, "aux.acc_seg": 89.45618438720703, "time": 1.1175312042236327, "iter": 8450, "memory": 8702, "step": 8450} +{"lr": 0.009525426750740267, "data_time": 0.007264852523803711, "loss": 0.6981833666563034, "decode.loss_ce": 0.4365993797779083, "decode.acc_seg": 88.90450286865234, "aux.loss_ce": 0.2615839794278145, "aux.acc_seg": 87.8759994506836, "time": 1.1176129817962646, "iter": 8500, "memory": 8702, "step": 8500} +{"lr": 0.009522627072827984, "data_time": 0.007514452934265137, "loss": 0.6491053193807602, "decode.loss_ce": 0.39780041128396987, "decode.acc_seg": 88.73831176757812, "aux.loss_ce": 0.2513049043715, "aux.acc_seg": 85.27965545654297, "time": 1.1177842140197753, "iter": 8550, "memory": 8703, "step": 8550} +{"lr": 0.009519827302485072, "data_time": 0.007502317428588867, "loss": 0.4454535245895386, "decode.loss_ce": 0.27163914740085604, "decode.acc_seg": 93.8638687133789, "aux.loss_ce": 0.1738143727183342, "aux.acc_seg": 91.49881744384766, "time": 1.1156570434570312, "iter": 8600, "memory": 8703, "step": 8600} +{"lr": 0.00951702743967793, "data_time": 0.008251094818115234, "loss": 0.5977265775203705, "decode.loss_ce": 0.36864161640405657, "decode.acc_seg": 84.84922790527344, "aux.loss_ce": 0.2290849581360817, "aux.acc_seg": 69.62718963623047, "time": 1.1199714899063111, "iter": 8650, "memory": 8703, "step": 8650} +{"lr": 0.00951422748437297, "data_time": 0.007985472679138184, "loss": 0.6171100676059723, "decode.loss_ce": 0.39091824293136596, "decode.acc_seg": 77.52293395996094, "aux.loss_ce": 0.2261918306350708, "aux.acc_seg": 76.78749084472656, "time": 1.116234588623047, "iter": 8700, "memory": 8702, "step": 8700} +{"lr": 0.009511427436536565, "data_time": 0.008229327201843262, "loss": 0.6370061650872231, "decode.loss_ce": 0.3970233120024204, "decode.acc_seg": 89.64315795898438, "aux.loss_ce": 0.23998284973204137, "aux.acc_seg": 85.98902130126953, "time": 1.1182148694992065, "iter": 8750, "memory": 8703, "step": 8750} +{"lr": 0.009508627296135061, "data_time": 0.008127284049987794, "loss": 0.33808575570583344, "decode.loss_ce": 0.21023982763290405, "decode.acc_seg": 92.58549499511719, "aux.loss_ce": 0.12784593179821968, "aux.acc_seg": 90.80441284179688, "time": 1.1180670261383057, "iter": 8800, "memory": 8703, "step": 8800} +{"lr": 0.009505827063134782, "data_time": 0.0069866180419921875, "loss": 0.4850769773125648, "decode.loss_ce": 0.3035505905747414, "decode.acc_seg": 94.06941223144531, "aux.loss_ce": 0.18152638897299767, "aux.acc_seg": 90.23201751708984, "time": 1.1115177392959594, "iter": 8850, "memory": 8702, "step": 8850} +{"lr": 0.00950302673750204, "data_time": 0.008627557754516601, "loss": 0.429033936560154, "decode.loss_ce": 0.26708279773592947, "decode.acc_seg": 94.77957153320312, "aux.loss_ce": 0.16195113845169545, "aux.acc_seg": 93.56819915771484, "time": 1.1152740955352782, "iter": 8900, "memory": 8703, "step": 8900} +{"lr": 0.009500226319203125, "data_time": 0.00824568271636963, "loss": 0.47367900907993316, "decode.loss_ce": 0.28519182503223417, "decode.acc_seg": 89.65040588378906, "aux.loss_ce": 0.18848719373345374, "aux.acc_seg": 87.2748031616211, "time": 1.1161653518676757, "iter": 8950, "memory": 8702, "step": 8950} +{"lr": 0.009497425808204283, "data_time": 0.008491420745849609, "loss": 0.35393607020378115, "decode.loss_ce": 0.21323362588882447, "decode.acc_seg": 95.4184799194336, "aux.loss_ce": 0.1407024346292019, "aux.acc_seg": 93.1314468383789, "time": 1.1164738655090332, "iter": 9000, "memory": 8702, "step": 9000} +{"lr": 0.00949462520447175, "data_time": 0.00869443416595459, "loss": 0.5785193800926208, "decode.loss_ce": 0.35468763411045073, "decode.acc_seg": 84.56729125976562, "aux.loss_ce": 0.22383174300193787, "aux.acc_seg": 79.28948974609375, "time": 1.1151856184005737, "iter": 9050, "memory": 8702, "step": 9050} +{"lr": 0.009491824507971737, "data_time": 0.008838176727294922, "loss": 0.39810084700584414, "decode.loss_ce": 0.2301826372742653, "decode.acc_seg": 87.79582977294922, "aux.loss_ce": 0.16791820526123047, "aux.acc_seg": 75.34204864501953, "time": 1.1184139490127563, "iter": 9100, "memory": 8702, "step": 9100} +{"lr": 0.009489023718670437, "data_time": 0.006601858139038086, "loss": 0.6753402665257454, "decode.loss_ce": 0.4323676832020283, "decode.acc_seg": 86.60856628417969, "aux.loss_ce": 0.2429725717753172, "aux.acc_seg": 80.04356384277344, "time": 1.1082588672637939, "iter": 9150, "memory": 8703, "step": 9150} +{"lr": 0.009486222836534011, "data_time": 0.008212804794311523, "loss": 0.525243328511715, "decode.loss_ce": 0.33942491337656977, "decode.acc_seg": 88.57357788085938, "aux.loss_ce": 0.18581840880215167, "aux.acc_seg": 84.55708312988281, "time": 1.1129327058792113, "iter": 9200, "memory": 8702, "step": 9200} +{"lr": 0.009483421861528596, "data_time": 0.00931093692779541, "loss": 0.45404089987277985, "decode.loss_ce": 0.2849599435925484, "decode.acc_seg": 91.6418685913086, "aux.loss_ce": 0.169080962985754, "aux.acc_seg": 90.2338638305664, "time": 1.116804599761963, "iter": 9250, "memory": 8702, "step": 9250} +{"lr": 0.00948062079362031, "data_time": 0.008334589004516602, "loss": 0.5528641641139984, "decode.loss_ce": 0.3537164553999901, "decode.acc_seg": 87.96469116210938, "aux.loss_ce": 0.19914771467447281, "aux.acc_seg": 84.81648254394531, "time": 1.1164018154144286, "iter": 9300, "memory": 8702, "step": 9300} +{"lr": 0.009477819632775247, "data_time": 0.007695984840393066, "loss": 0.34234059751033785, "decode.loss_ce": 0.21500155180692673, "decode.acc_seg": 92.50576782226562, "aux.loss_ce": 0.12733904048800468, "aux.acc_seg": 90.39261627197266, "time": 1.1146272897720337, "iter": 9350, "memory": 8703, "step": 9350} +{"lr": 0.009475018378959477, "data_time": 0.00947110652923584, "loss": 0.4076133668422699, "decode.loss_ce": 0.2536784037947655, "decode.acc_seg": 93.53948974609375, "aux.loss_ce": 0.1539349664002657, "aux.acc_seg": 93.179443359375, "time": 1.1173390388488769, "iter": 9400, "memory": 8702, "step": 9400} +{"lr": 0.009472217032139046, "data_time": 0.005461430549621582, "loss": 0.546375647187233, "decode.loss_ce": 0.33190437257289884, "decode.acc_seg": 90.23475646972656, "aux.loss_ce": 0.21447127237915992, "aux.acc_seg": 76.65411376953125, "time": 1.111896014213562, "iter": 9450, "memory": 8703, "step": 9450} +{"lr": 0.009469415592279987, "data_time": 0.006768250465393066, "loss": 0.5088446348905563, "decode.loss_ce": 0.32985411733388903, "decode.acc_seg": 91.17996978759766, "aux.loss_ce": 0.17899051308631897, "aux.acc_seg": 85.2606430053711, "time": 1.1180236339569092, "iter": 9500, "memory": 8703, "step": 9500} +{"lr": 0.009466614059348287, "data_time": 0.0067081451416015625, "loss": 0.5042263895273209, "decode.loss_ce": 0.2938408687710762, "decode.acc_seg": 84.58786010742188, "aux.loss_ce": 0.21038552597165108, "aux.acc_seg": 80.77379608154297, "time": 1.1116430044174195, "iter": 9550, "memory": 8703, "step": 9550} +{"lr": 0.009463812433309916, "data_time": 0.006869387626647949, "loss": 0.5452361583709717, "decode.loss_ce": 0.3455400258302689, "decode.acc_seg": 91.32780456542969, "aux.loss_ce": 0.19969613030552863, "aux.acc_seg": 89.50664520263672, "time": 1.1159394025802611, "iter": 9600, "memory": 8703, "step": 9600} +{"lr": 0.009461010714130831, "data_time": 0.008195114135742188, "loss": 0.41812186539173124, "decode.loss_ce": 0.25095021575689314, "decode.acc_seg": 94.13642883300781, "aux.loss_ce": 0.16717165485024452, "aux.acc_seg": 91.2003173828125, "time": 1.116066861152649, "iter": 9650, "memory": 8703, "step": 9650} +{"lr": 0.009458208901776963, "data_time": 0.006073403358459473, "loss": 0.5394922852516174, "decode.loss_ce": 0.3382260501384735, "decode.acc_seg": 91.69857788085938, "aux.loss_ce": 0.2012662336230278, "aux.acc_seg": 87.36393737792969, "time": 1.1127239227294923, "iter": 9700, "memory": 8703, "step": 9700} +{"lr": 0.00945540699621421, "data_time": 0.007441806793212891, "loss": 0.5395542651414871, "decode.loss_ce": 0.33448458164930345, "decode.acc_seg": 87.55497741699219, "aux.loss_ce": 0.2050696775317192, "aux.acc_seg": 69.2144775390625, "time": 1.1176430702209472, "iter": 9750, "memory": 8703, "step": 9750} +{"lr": 0.009452604997408449, "data_time": 0.0074947595596313475, "loss": 0.672122323513031, "decode.loss_ce": 0.391954243183136, "decode.acc_seg": 86.1491470336914, "aux.loss_ce": 0.28016807660460474, "aux.acc_seg": 79.59575653076172, "time": 1.1133177757263184, "iter": 9800, "memory": 8702, "step": 9800} +{"lr": 0.00944980290532554, "data_time": 0.007811164855957032, "loss": 0.6062169045209884, "decode.loss_ce": 0.3915257453918457, "decode.acc_seg": 83.88468170166016, "aux.loss_ce": 0.21469115912914277, "aux.acc_seg": 73.9310531616211, "time": 1.1144186496734618, "iter": 9850, "memory": 8703, "step": 9850} +{"lr": 0.00944700071993132, "data_time": 0.00833594799041748, "loss": 0.72186259329319, "decode.loss_ce": 0.46193100810050963, "decode.acc_seg": 89.07228088378906, "aux.loss_ce": 0.2599315844476223, "aux.acc_seg": 86.0411376953125, "time": 1.1126941442489624, "iter": 9900, "memory": 8702, "step": 9900} +{"lr": 0.009444198441191596, "data_time": 0.0076220989227294925, "loss": 0.3872078686952591, "decode.loss_ce": 0.22597436904907225, "decode.acc_seg": 87.17829132080078, "aux.loss_ce": 0.16123348996043205, "aux.acc_seg": 81.35210418701172, "time": 1.1127984285354615, "iter": 9950, "memory": 8702, "step": 9950} +{"lr": 0.009441396069072157, "data_time": 0.007042884826660156, "loss": 0.579007987678051, "decode.loss_ce": 0.3654564619064331, "decode.acc_seg": 93.51132202148438, "aux.loss_ce": 0.21355152502655983, "aux.acc_seg": 92.42210388183594, "time": 1.115577483177185, "iter": 10000, "memory": 8703, "step": 10000} +{"lr": 0.00943859360353875, "data_time": 0.0054242610931396484, "loss": 0.580880081653595, "decode.loss_ce": 0.36965271085500717, "decode.acc_seg": 84.23359680175781, "aux.loss_ce": 0.21122736260294914, "aux.acc_seg": 70.81031799316406, "time": 1.1106919765472412, "iter": 10050, "memory": 8702, "step": 10050} +{"lr": 0.009435791044557112, "data_time": 0.007394146919250488, "loss": 0.48716086745262144, "decode.loss_ce": 0.3053414821624756, "decode.acc_seg": 94.82504272460938, "aux.loss_ce": 0.1818193845450878, "aux.acc_seg": 90.75874328613281, "time": 1.1173502206802368, "iter": 10100, "memory": 8703, "step": 10100} +{"lr": 0.009432988392092966, "data_time": 0.007216715812683105, "loss": 0.5239996328949929, "decode.loss_ce": 0.3185881197452545, "decode.acc_seg": 85.46612548828125, "aux.loss_ce": 0.20541151203215122, "aux.acc_seg": 80.12459564208984, "time": 1.1183018207550048, "iter": 10150, "memory": 8702, "step": 10150} +{"lr": 0.009430185646111982, "data_time": 0.007185554504394532, "loss": 0.4567819729447365, "decode.loss_ce": 0.266696372628212, "decode.acc_seg": 86.84908294677734, "aux.loss_ce": 0.19008559361100197, "aux.acc_seg": 80.61904907226562, "time": 1.1137414932250977, "iter": 10200, "memory": 8703, "step": 10200} +{"lr": 0.009427382806579843, "data_time": 0.00810554027557373, "loss": 0.6755287855863571, "decode.loss_ce": 0.411924721300602, "decode.acc_seg": 87.49771118164062, "aux.loss_ce": 0.26360407620668413, "aux.acc_seg": 80.86502838134766, "time": 1.1135693073272706, "iter": 10250, "memory": 8704, "step": 10250} +{"lr": 0.009424579873462176, "data_time": 0.007589030265808106, "loss": 0.3915521800518036, "decode.loss_ce": 0.24907048642635346, "decode.acc_seg": 88.72356414794922, "aux.loss_ce": 0.1424816906452179, "aux.acc_seg": 82.04383850097656, "time": 1.1157143354415893, "iter": 10300, "memory": 8703, "step": 10300} +{"lr": 0.009421776846724603, "data_time": 0.006899976730346679, "loss": 0.4477821230888367, "decode.loss_ce": 0.2764015182852745, "decode.acc_seg": 94.80177307128906, "aux.loss_ce": 0.17138059437274933, "aux.acc_seg": 93.97684478759766, "time": 1.1158025979995727, "iter": 10350, "memory": 8703, "step": 10350} +{"lr": 0.00941897372633272, "data_time": 0.00923171043395996, "loss": 0.4492537349462509, "decode.loss_ce": 0.29010978564620016, "decode.acc_seg": 84.95610046386719, "aux.loss_ce": 0.15914394110441207, "aux.acc_seg": 85.20698547363281, "time": 1.1167269229888916, "iter": 10400, "memory": 8703, "step": 10400} +{"lr": 0.0094161705122521, "data_time": 0.006571531295776367, "loss": 0.6030430480837822, "decode.loss_ce": 0.3710274904966354, "decode.acc_seg": 91.87977600097656, "aux.loss_ce": 0.23201555870473384, "aux.acc_seg": 86.82930755615234, "time": 1.1111132383346558, "iter": 10450, "memory": 8703, "step": 10450} +{"lr": 0.009413367204448263, "data_time": 0.0074967145919799805, "loss": 0.44833570420742036, "decode.loss_ce": 0.28125161975622176, "decode.acc_seg": 84.08184051513672, "aux.loss_ce": 0.16708408147096634, "aux.acc_seg": 81.43177032470703, "time": 1.1139979839324952, "iter": 10500, "memory": 8702, "step": 10500} +{"lr": 0.00941056380288675, "data_time": 0.007276201248168945, "loss": 0.5387304663658142, "decode.loss_ce": 0.32494296729564665, "decode.acc_seg": 90.9662857055664, "aux.loss_ce": 0.2137874945998192, "aux.acc_seg": 89.76280975341797, "time": 1.115595006942749, "iter": 10550, "memory": 8702, "step": 10550} +{"lr": 0.009407760307533047, "data_time": 0.007098507881164551, "loss": 0.5376152455806732, "decode.loss_ce": 0.3256294555962086, "decode.acc_seg": 95.9157943725586, "aux.loss_ce": 0.2119857981801033, "aux.acc_seg": 92.32717895507812, "time": 1.1152087211608888, "iter": 10600, "memory": 8703, "step": 10600} +{"lr": 0.009404956718352623, "data_time": 0.005411887168884277, "loss": 0.549838301539421, "decode.loss_ce": 0.35885625034570695, "decode.acc_seg": 93.77796936035156, "aux.loss_ce": 0.19098204597830773, "aux.acc_seg": 92.08895111083984, "time": 1.1127320766448974, "iter": 10650, "memory": 8703, "step": 10650} +{"lr": 0.009402153035310936, "data_time": 0.0080427885055542, "loss": 0.49476592391729357, "decode.loss_ce": 0.2907807372510433, "decode.acc_seg": 95.65022277832031, "aux.loss_ce": 0.20398519262671472, "aux.acc_seg": 95.0943603515625, "time": 1.1185416221618651, "iter": 10700, "memory": 8703, "step": 10700} +{"lr": 0.009399349258373397, "data_time": 0.005847668647766114, "loss": 0.5560923159122467, "decode.loss_ce": 0.3495638698339462, "decode.acc_seg": 92.21089172363281, "aux.loss_ce": 0.20652844831347467, "aux.acc_seg": 88.52774047851562, "time": 1.1112066507339478, "iter": 10750, "memory": 8702, "step": 10750} +{"lr": 0.009396545387505409, "data_time": 0.007188940048217773, "loss": 0.49694746136665346, "decode.loss_ce": 0.2995282895863056, "decode.acc_seg": 95.38751983642578, "aux.loss_ce": 0.19741918034851552, "aux.acc_seg": 94.3232192993164, "time": 1.1143643140792847, "iter": 10800, "memory": 8703, "step": 10800} +{"lr": 0.00939374142267234, "data_time": 0.008301901817321777, "loss": 0.48867457509040835, "decode.loss_ce": 0.30290945023298266, "decode.acc_seg": 89.46043395996094, "aux.loss_ce": 0.18576512932777406, "aux.acc_seg": 86.96365356445312, "time": 1.1159199476242065, "iter": 10850, "memory": 8702, "step": 10850} +{"lr": 0.009390937363839542, "data_time": 0.006149768829345703, "loss": 0.6408650785684585, "decode.loss_ce": 0.3942598730325699, "decode.acc_seg": 71.20816040039062, "aux.loss_ce": 0.24660521373152733, "aux.acc_seg": 58.598854064941406, "time": 1.1122690439224243, "iter": 10900, "memory": 8702, "step": 10900} +{"lr": 0.009388133210972344, "data_time": 0.0083054780960083, "loss": 0.5352200776338577, "decode.loss_ce": 0.34511415660381317, "decode.acc_seg": 89.52764892578125, "aux.loss_ce": 0.19010591730475426, "aux.acc_seg": 88.2530517578125, "time": 1.1177172899246215, "iter": 10950, "memory": 8703, "step": 10950} +{"lr": 0.009385328964036039, "data_time": 0.006105566024780273, "loss": 0.5749269545078277, "decode.loss_ce": 0.35655094385147096, "decode.acc_seg": 84.53871154785156, "aux.loss_ce": 0.218376025557518, "aux.acc_seg": 85.06488800048828, "time": 1.113904857635498, "iter": 11000, "memory": 8702, "step": 11000} +{"lr": 0.009382524622995918, "data_time": 0.008077311515808105, "loss": 0.5592598393559456, "decode.loss_ce": 0.3467486768960953, "decode.acc_seg": 84.54914093017578, "aux.loss_ce": 0.21251114308834076, "aux.acc_seg": 81.08647155761719, "time": 1.1143051385879517, "iter": 11050, "memory": 8702, "step": 11050} +{"lr": 0.00937972018781722, "data_time": 0.007974529266357422, "loss": 0.554663211107254, "decode.loss_ce": 0.3446931466460228, "decode.acc_seg": 92.28865051269531, "aux.loss_ce": 0.20997005924582482, "aux.acc_seg": 91.9748306274414, "time": 1.1133039474487305, "iter": 11100, "memory": 8703, "step": 11100} +{"lr": 0.009376915658465169, "data_time": 0.007547569274902344, "loss": 0.49437121748924256, "decode.loss_ce": 0.30667003989219666, "decode.acc_seg": 92.41593170166016, "aux.loss_ce": 0.1877011850476265, "aux.acc_seg": 90.7999038696289, "time": 1.1151788473129272, "iter": 11150, "memory": 8703, "step": 11150} +{"lr": 0.009374111034904965, "data_time": 0.008798313140869141, "loss": 0.42739592045545577, "decode.loss_ce": 0.2532604709267616, "decode.acc_seg": 91.9748306274414, "aux.loss_ce": 0.17413544654846191, "aux.acc_seg": 89.4892349243164, "time": 1.1208478927612304, "iter": 11200, "memory": 8703, "step": 11200} +{"lr": 0.0093713063171018, "data_time": 0.007598209381103516, "loss": 0.5332687288522721, "decode.loss_ce": 0.3344345986843109, "decode.acc_seg": 90.27277374267578, "aux.loss_ce": 0.19883413538336753, "aux.acc_seg": 85.88104248046875, "time": 1.1182581186294556, "iter": 11250, "memory": 8703, "step": 11250} +{"lr": 0.00936850150502082, "data_time": 0.005897927284240723, "loss": 0.49504172503948213, "decode.loss_ce": 0.31969491839408876, "decode.acc_seg": 93.47305297851562, "aux.loss_ce": 0.1753468059003353, "aux.acc_seg": 89.71843719482422, "time": 1.1119639873504639, "iter": 11300, "memory": 8703, "step": 11300} +{"lr": 0.009365696598627151, "data_time": 0.008338260650634765, "loss": 0.4572128802537918, "decode.loss_ce": 0.27901825308799744, "decode.acc_seg": 93.31741333007812, "aux.loss_ce": 0.1781946174800396, "aux.acc_seg": 77.3234634399414, "time": 1.1133930921554565, "iter": 11350, "memory": 8703, "step": 11350} +{"lr": 0.009362891597885897, "data_time": 0.00735318660736084, "loss": 0.3856101483106613, "decode.loss_ce": 0.2546141393482685, "decode.acc_seg": 88.97997283935547, "aux.loss_ce": 0.1309960052371025, "aux.acc_seg": 87.7762451171875, "time": 1.1108656167984008, "iter": 11400, "memory": 8703, "step": 11400} +{"lr": 0.009360086502762143, "data_time": 0.006771540641784668, "loss": 0.40641313791275024, "decode.loss_ce": 0.261661771684885, "decode.acc_seg": 94.02408599853516, "aux.loss_ce": 0.14475136995315552, "aux.acc_seg": 94.07144927978516, "time": 1.110579752922058, "iter": 11450, "memory": 8702, "step": 11450} +{"lr": 0.009357281313220932, "data_time": 0.009317421913146972, "loss": 0.48846064805984496, "decode.loss_ce": 0.2976317211985588, "decode.acc_seg": 86.10375213623047, "aux.loss_ce": 0.19082892909646035, "aux.acc_seg": 80.34858703613281, "time": 1.1165740251541139, "iter": 11500, "memory": 8703, "step": 11500} +{"lr": 0.009354476029227312, "data_time": 0.009727787971496583, "loss": 0.533870306611061, "decode.loss_ce": 0.3313402563333511, "decode.acc_seg": 80.74687957763672, "aux.loss_ce": 0.2025300495326519, "aux.acc_seg": 73.05795288085938, "time": 1.1157277584075929, "iter": 11550, "memory": 8702, "step": 11550} +{"lr": 0.009351670650746274, "data_time": 0.008139896392822265, "loss": 0.5013417184352875, "decode.loss_ce": 0.2957696333527565, "decode.acc_seg": 92.70903015136719, "aux.loss_ce": 0.20557207763195037, "aux.acc_seg": 84.07427215576172, "time": 1.1149244785308838, "iter": 11600, "memory": 8703, "step": 11600} +{"lr": 0.009348865177742804, "data_time": 0.008056569099426269, "loss": 0.6358482658863067, "decode.loss_ce": 0.39876778721809386, "decode.acc_seg": 89.97211456298828, "aux.loss_ce": 0.23708047345280647, "aux.acc_seg": 83.58319091796875, "time": 1.115283203125, "iter": 11650, "memory": 8703, "step": 11650} +{"lr": 0.009346059610181862, "data_time": 0.007435822486877441, "loss": 0.626480869948864, "decode.loss_ce": 0.4181524321436882, "decode.acc_seg": 94.25455474853516, "aux.loss_ce": 0.20832843482494354, "aux.acc_seg": 92.88832092285156, "time": 1.1166554927825927, "iter": 11700, "memory": 8702, "step": 11700} +{"lr": 0.00934325394802837, "data_time": 0.006551909446716309, "loss": 0.7145095020532608, "decode.loss_ce": 0.464687941968441, "decode.acc_seg": 88.59869384765625, "aux.loss_ce": 0.24982155188918115, "aux.acc_seg": 84.40799713134766, "time": 1.1135962724685669, "iter": 11750, "memory": 8703, "step": 11750} +{"lr": 0.009340448191247238, "data_time": 0.00719156265258789, "loss": 0.4615473747253418, "decode.loss_ce": 0.29553624987602234, "decode.acc_seg": 94.09395599365234, "aux.loss_ce": 0.16601112931966783, "aux.acc_seg": 91.58331298828125, "time": 1.119239330291748, "iter": 11800, "memory": 8702, "step": 11800} +{"lr": 0.009337642339803344, "data_time": 0.00730435848236084, "loss": 0.6133783638477326, "decode.loss_ce": 0.3775901451706886, "decode.acc_seg": 89.29869079589844, "aux.loss_ce": 0.23578821867704391, "aux.acc_seg": 84.3924789428711, "time": 1.1164169788360596, "iter": 11850, "memory": 8702, "step": 11850} +{"lr": 0.009334836393661545, "data_time": 0.008194851875305175, "loss": 0.5578682005405426, "decode.loss_ce": 0.3471390515565872, "decode.acc_seg": 89.88329315185547, "aux.loss_ce": 0.21072914078831673, "aux.acc_seg": 87.72335052490234, "time": 1.1160809516906738, "iter": 11900, "memory": 8704, "step": 11900} +{"lr": 0.009332030352786682, "data_time": 0.00876314640045166, "loss": 0.5408096447587013, "decode.loss_ce": 0.3276325583457947, "decode.acc_seg": 92.34930419921875, "aux.loss_ce": 0.21317709535360335, "aux.acc_seg": 91.37439727783203, "time": 1.116823673248291, "iter": 11950, "memory": 8702, "step": 11950} +{"lr": 0.009329224217143547, "data_time": 0.0069779157638549805, "loss": 0.5011744290590286, "decode.loss_ce": 0.29352730363607404, "decode.acc_seg": 73.57565307617188, "aux.loss_ce": 0.20764711871743202, "aux.acc_seg": 65.64483642578125, "time": 1.11317138671875, "iter": 12000, "memory": 8703, "step": 12000} +{"lr": 0.009326417986696933, "data_time": 0.0070242643356323246, "loss": 0.47861480712890625, "decode.loss_ce": 0.2897711768746376, "decode.acc_seg": 94.1272201538086, "aux.loss_ce": 0.18884363807737828, "aux.acc_seg": 93.50228881835938, "time": 1.1104604482650757, "iter": 12050, "memory": 8703, "step": 12050} +{"lr": 0.009323611661411588, "data_time": 0.006962370872497558, "loss": 0.4785872265696526, "decode.loss_ce": 0.304275344312191, "decode.acc_seg": 93.7400131225586, "aux.loss_ce": 0.174311875551939, "aux.acc_seg": 92.74323272705078, "time": 1.1107985258102417, "iter": 12100, "memory": 8702, "step": 12100} +{"lr": 0.009320805241252257, "data_time": 0.007871222496032716, "loss": 0.4512050300836563, "decode.loss_ce": 0.2831519111990929, "decode.acc_seg": 91.20203399658203, "aux.loss_ce": 0.16805311366915704, "aux.acc_seg": 91.85504913330078, "time": 1.1135074853897096, "iter": 12150, "memory": 8702, "step": 12150} +{"lr": 0.009317998726183645, "data_time": 0.006264710426330566, "loss": 0.45442329794168473, "decode.loss_ce": 0.3011569887399673, "decode.acc_seg": 93.25287628173828, "aux.loss_ce": 0.15326630026102067, "aux.acc_seg": 92.16339874267578, "time": 1.109470534324646, "iter": 12200, "memory": 8703, "step": 12200} +{"lr": 0.009315192116170415, "data_time": 0.007257914543151856, "loss": 0.4607341557741165, "decode.loss_ce": 0.2913007870316505, "decode.acc_seg": 95.2281265258789, "aux.loss_ce": 0.16943336725234986, "aux.acc_seg": 84.475830078125, "time": 1.116751003265381, "iter": 12250, "memory": 8702, "step": 12250} +{"lr": 0.009312385411177234, "data_time": 0.008735418319702148, "loss": 0.4202154979109764, "decode.loss_ce": 0.25849241465330125, "decode.acc_seg": 94.621337890625, "aux.loss_ce": 0.16172307617962361, "aux.acc_seg": 94.35977935791016, "time": 1.1156076431274413, "iter": 12300, "memory": 8702, "step": 12300} +{"lr": 0.009309578611168734, "data_time": 0.008255648612976074, "loss": 0.617954495549202, "decode.loss_ce": 0.3650406375527382, "decode.acc_seg": 93.56968688964844, "aux.loss_ce": 0.2529138535261154, "aux.acc_seg": 92.50984191894531, "time": 1.1202897310256958, "iter": 12350, "memory": 8702, "step": 12350} +{"lr": 0.009306771716109519, "data_time": 0.007024550437927246, "loss": 0.4692255467176437, "decode.loss_ce": 0.29070238322019576, "decode.acc_seg": 91.95518493652344, "aux.loss_ce": 0.17852315828204154, "aux.acc_seg": 85.22293853759766, "time": 1.115135908126831, "iter": 12400, "memory": 8703, "step": 12400} +{"lr": 0.009303964725964172, "data_time": 0.00759885311126709, "loss": 0.5884921088814735, "decode.loss_ce": 0.3860663801431656, "decode.acc_seg": 95.64990997314453, "aux.loss_ce": 0.2024257369339466, "aux.acc_seg": 94.49564361572266, "time": 1.113709306716919, "iter": 12450, "memory": 8704, "step": 12450} +{"lr": 0.009301157640697251, "data_time": 0.007497167587280274, "loss": 0.5337946325540542, "decode.loss_ce": 0.3095797851681709, "decode.acc_seg": 92.84992218017578, "aux.loss_ce": 0.2242148518562317, "aux.acc_seg": 89.10490417480469, "time": 1.1131592988967896, "iter": 12500, "memory": 8703, "step": 12500} +{"lr": 0.00929835046027328, "data_time": 0.007017350196838379, "loss": 0.45110962092876433, "decode.loss_ce": 0.28604826927185056, "decode.acc_seg": 90.6571044921875, "aux.loss_ce": 0.16506135538220407, "aux.acc_seg": 90.27671813964844, "time": 1.112235689163208, "iter": 12550, "memory": 8702, "step": 12550} +{"lr": 0.009295543184656769, "data_time": 0.008355164527893066, "loss": 0.5361273288726807, "decode.loss_ce": 0.33277216404676435, "decode.acc_seg": 84.60076141357422, "aux.loss_ce": 0.20335516333580017, "aux.acc_seg": 78.48936462402344, "time": 1.1176324129104613, "iter": 12600, "memory": 8703, "step": 12600} +{"lr": 0.00929273581381219, "data_time": 0.008018422126770019, "loss": 0.33078358620405196, "decode.loss_ce": 0.20543215796351433, "decode.acc_seg": 95.29844665527344, "aux.loss_ce": 0.12535142786800862, "aux.acc_seg": 93.6854019165039, "time": 1.1136736154556275, "iter": 12650, "memory": 8703, "step": 12650} +{"lr": 0.009289928347704007, "data_time": 0.007234525680541992, "loss": 0.461270797252655, "decode.loss_ce": 0.2919853515923023, "decode.acc_seg": 91.85314178466797, "aux.loss_ce": 0.16928544007241725, "aux.acc_seg": 85.0545883178711, "time": 1.1154488563537597, "iter": 12700, "memory": 8703, "step": 12700} +{"lr": 0.009287120786296645, "data_time": 0.008418512344360352, "loss": 0.41777803003787994, "decode.loss_ce": 0.26397452503442764, "decode.acc_seg": 90.64451599121094, "aux.loss_ce": 0.15380350276827812, "aux.acc_seg": 85.90723419189453, "time": 1.1186180591583252, "iter": 12750, "memory": 8704, "step": 12750} +{"lr": 0.009284313129554505, "data_time": 0.00901172161102295, "loss": 0.6727332085371017, "decode.loss_ce": 0.44697421193122866, "decode.acc_seg": 94.50867462158203, "aux.loss_ce": 0.22575899809598923, "aux.acc_seg": 93.18008422851562, "time": 1.1171764135360718, "iter": 12800, "memory": 8702, "step": 12800} +{"lr": 0.009281505377441969, "data_time": 0.008186912536621094, "loss": 0.49125139564275744, "decode.loss_ce": 0.292679762840271, "decode.acc_seg": 91.18206787109375, "aux.loss_ce": 0.19857163801789285, "aux.acc_seg": 86.76121520996094, "time": 1.1121829271316528, "iter": 12850, "memory": 8703, "step": 12850} +{"lr": 0.009278697529923389, "data_time": 0.007012057304382324, "loss": 0.3982192948460579, "decode.loss_ce": 0.2467946782708168, "decode.acc_seg": 87.07637786865234, "aux.loss_ce": 0.15142462104558946, "aux.acc_seg": 84.40971374511719, "time": 1.1119361400604248, "iter": 12900, "memory": 8702, "step": 12900} +{"lr": 0.009275889586963095, "data_time": 0.008162951469421387, "loss": 0.4493821024894714, "decode.loss_ce": 0.28388973474502566, "decode.acc_seg": 92.77616882324219, "aux.loss_ce": 0.16549236848950385, "aux.acc_seg": 90.33743286132812, "time": 1.1156404972076417, "iter": 12950, "memory": 8703, "step": 12950} +{"lr": 0.009273081548525384, "data_time": 0.006770658493041992, "loss": 0.4220243215560913, "decode.loss_ce": 0.2678936496376991, "decode.acc_seg": 95.50094604492188, "aux.loss_ce": 0.1541306644678116, "aux.acc_seg": 95.13784790039062, "time": 1.1143256187438966, "iter": 13000, "memory": 8702, "step": 13000} +{"lr": 0.009270273414574533, "data_time": 0.008113574981689454, "loss": 0.5504650086164474, "decode.loss_ce": 0.34629172682762144, "decode.acc_seg": 84.40939331054688, "aux.loss_ce": 0.2041732758283615, "aux.acc_seg": 79.0146484375, "time": 1.1135390281677247, "iter": 13050, "memory": 8702, "step": 13050} +{"lr": 0.0092674651850748, "data_time": 0.006566667556762695, "loss": 0.47498937845230105, "decode.loss_ce": 0.29972059577703475, "decode.acc_seg": 89.90528869628906, "aux.loss_ce": 0.1752687804400921, "aux.acc_seg": 83.08556365966797, "time": 1.1138296604156495, "iter": 13100, "memory": 8703, "step": 13100} +{"lr": 0.009264656859990396, "data_time": 0.008662915229797364, "loss": 0.478478442132473, "decode.loss_ce": 0.29125296100974085, "decode.acc_seg": 79.9735336303711, "aux.loss_ce": 0.1872254718095064, "aux.acc_seg": 77.74505615234375, "time": 1.1140808820724488, "iter": 13150, "memory": 8703, "step": 13150} +{"lr": 0.009261848439285542, "data_time": 0.0073271989822387695, "loss": 0.7653138667345047, "decode.loss_ce": 0.516062693297863, "decode.acc_seg": 63.422645568847656, "aux.loss_ce": 0.2492511600255966, "aux.acc_seg": 68.1982650756836, "time": 1.1103109836578369, "iter": 13200, "memory": 8702, "step": 13200} +{"lr": 0.009259039922924399, "data_time": 0.006952452659606934, "loss": 0.47360212802886964, "decode.loss_ce": 0.2934921234846115, "decode.acc_seg": 88.28569793701172, "aux.loss_ce": 0.18011000230908394, "aux.acc_seg": 80.34947204589844, "time": 1.115980052947998, "iter": 13250, "memory": 8703, "step": 13250} +{"lr": 0.009256231310871115, "data_time": 0.00874624252319336, "loss": 0.7892740473151207, "decode.loss_ce": 0.48843656927347184, "decode.acc_seg": 83.30459594726562, "aux.loss_ce": 0.30083748772740365, "aux.acc_seg": 81.240966796875, "time": 1.1175223112106323, "iter": 13300, "memory": 8702, "step": 13300} +{"lr": 0.009253422603089808, "data_time": 0.009171080589294434, "loss": 0.590056636929512, "decode.loss_ce": 0.3819005325436592, "decode.acc_seg": 85.22111511230469, "aux.loss_ce": 0.20815610587596894, "aux.acc_seg": 81.7614517211914, "time": 1.1164167642593383, "iter": 13350, "memory": 8702, "step": 13350} +{"lr": 0.00925061379954458, "data_time": 0.0067588090896606445, "loss": 0.6462374061346055, "decode.loss_ce": 0.4023981958627701, "decode.acc_seg": 67.76764678955078, "aux.loss_ce": 0.24383919909596444, "aux.acc_seg": 59.327823638916016, "time": 1.1159844160079957, "iter": 13400, "memory": 8702, "step": 13400} +{"lr": 0.009247804900199514, "data_time": 0.008891582489013672, "loss": 0.5950441777706146, "decode.loss_ce": 0.36161265671253207, "decode.acc_seg": 91.42576599121094, "aux.loss_ce": 0.23343150913715363, "aux.acc_seg": 80.08409881591797, "time": 1.1163344144821168, "iter": 13450, "memory": 8703, "step": 13450} +{"lr": 0.009244995905018651, "data_time": 0.007827520370483398, "loss": 0.34958384931087494, "decode.loss_ce": 0.20877514481544496, "decode.acc_seg": 97.08328247070312, "aux.loss_ce": 0.14080870300531387, "aux.acc_seg": 92.28286743164062, "time": 1.1161736726760865, "iter": 13500, "memory": 8703, "step": 13500} +{"lr": 0.009242186813966007, "data_time": 0.0074858427047729496, "loss": 0.49598072171211244, "decode.loss_ce": 0.32461332678794863, "decode.acc_seg": 90.0553970336914, "aux.loss_ce": 0.17136738896369935, "aux.acc_seg": 88.91773223876953, "time": 1.1113263368606567, "iter": 13550, "memory": 8703, "step": 13550} +{"lr": 0.00923937762700557, "data_time": 0.0055258750915527345, "loss": 0.5078708589076996, "decode.loss_ce": 0.323473297059536, "decode.acc_seg": 73.68087768554688, "aux.loss_ce": 0.1843975678086281, "aux.acc_seg": 67.52420806884766, "time": 1.1079852342605592, "iter": 13600, "memory": 8702, "step": 13600} +{"lr": 0.00923656834410132, "data_time": 0.008235812187194824, "loss": 0.49083331376314165, "decode.loss_ce": 0.2929310485720634, "decode.acc_seg": 94.73539733886719, "aux.loss_ce": 0.19790227189660073, "aux.acc_seg": 93.7295913696289, "time": 1.1147361993789673, "iter": 13650, "memory": 8703, "step": 13650} +{"lr": 0.009233758965217196, "data_time": 0.0077941656112670895, "loss": 0.6784069925546646, "decode.loss_ce": 0.4336593568325043, "decode.acc_seg": 92.07096099853516, "aux.loss_ce": 0.24474763199687005, "aux.acc_seg": 91.1503677368164, "time": 1.113369846343994, "iter": 13700, "memory": 8702, "step": 13700} +{"lr": 0.00923094949031711, "data_time": 0.008645057678222656, "loss": 0.5095956474542618, "decode.loss_ce": 0.30500863343477247, "decode.acc_seg": 94.64600372314453, "aux.loss_ce": 0.20458701625466347, "aux.acc_seg": 91.71930694580078, "time": 1.11743061542511, "iter": 13750, "memory": 8703, "step": 13750} +{"lr": 0.009228139919364955, "data_time": 0.008604645729064941, "loss": 0.7444051176309585, "decode.loss_ce": 0.4456920802593231, "decode.acc_seg": 73.72074127197266, "aux.loss_ce": 0.29871303737163546, "aux.acc_seg": 63.4281120300293, "time": 1.1191807031631469, "iter": 13800, "memory": 8702, "step": 13800} +{"lr": 0.009225330252324608, "data_time": 0.008334875106811523, "loss": 0.58909902125597, "decode.loss_ce": 0.35753092020750044, "decode.acc_seg": 89.93692016601562, "aux.loss_ce": 0.23156811073422431, "aux.acc_seg": 89.28543853759766, "time": 1.1170558691024781, "iter": 13850, "memory": 8702, "step": 13850} +{"lr": 0.00922252048915989, "data_time": 0.008269524574279786, "loss": 0.4168366104364395, "decode.loss_ce": 0.2646314948797226, "decode.acc_seg": 94.21106719970703, "aux.loss_ce": 0.1522051140666008, "aux.acc_seg": 94.23370361328125, "time": 1.1178398609161377, "iter": 13900, "memory": 8703, "step": 13900} +{"lr": 0.00921971062983462, "data_time": 0.007871770858764648, "loss": 0.42563700675964355, "decode.loss_ce": 0.2655605308711529, "decode.acc_seg": 93.33972930908203, "aux.loss_ce": 0.16007647439837455, "aux.acc_seg": 84.00624084472656, "time": 1.117090392112732, "iter": 13950, "memory": 8702, "step": 13950} +{"lr": 0.009216900674312588, "data_time": 0.009062957763671876, "loss": 0.5282009989023209, "decode.loss_ce": 0.3253611594438553, "decode.acc_seg": 94.21159362792969, "aux.loss_ce": 0.2028398372232914, "aux.acc_seg": 82.6841049194336, "time": 1.116689682006836, "iter": 14000, "memory": 8703, "step": 14000} +{"lr": 0.009214090622557552, "data_time": 0.008271527290344239, "loss": 0.5588414311408997, "decode.loss_ce": 0.36048431098461153, "decode.acc_seg": 70.62244415283203, "aux.loss_ce": 0.19835712239146233, "aux.acc_seg": 72.82879638671875, "time": 1.114723229408264, "iter": 14050, "memory": 8703, "step": 14050} +{"lr": 0.009211280474533238, "data_time": 0.008308649063110352, "loss": 0.46720632165670395, "decode.loss_ce": 0.2906922407448292, "decode.acc_seg": 84.1101303100586, "aux.loss_ce": 0.17651408165693283, "aux.acc_seg": 74.88587188720703, "time": 1.1188904523849488, "iter": 14100, "memory": 8703, "step": 14100} +{"lr": 0.009208470230203372, "data_time": 0.006002211570739746, "loss": 0.5023560360074043, "decode.loss_ce": 0.32573883682489396, "decode.acc_seg": 89.51189422607422, "aux.loss_ce": 0.17661719471216203, "aux.acc_seg": 88.95917510986328, "time": 1.1091569423675538, "iter": 14150, "memory": 8703, "step": 14150} +{"lr": 0.009205659889531634, "data_time": 0.007277011871337891, "loss": 0.4842511385679245, "decode.loss_ce": 0.31191892772912977, "decode.acc_seg": 94.69871520996094, "aux.loss_ce": 0.17233220711350442, "aux.acc_seg": 95.12557983398438, "time": 1.1179280757904053, "iter": 14200, "memory": 8703, "step": 14200} +{"lr": 0.009202849452481666, "data_time": 0.008603334426879883, "loss": 0.4511049836874008, "decode.loss_ce": 0.28466453701257705, "decode.acc_seg": 86.2997055053711, "aux.loss_ce": 0.16644044518470763, "aux.acc_seg": 85.85388946533203, "time": 1.1147754907608032, "iter": 14250, "memory": 8702, "step": 14250} +{"lr": 0.009200038919017111, "data_time": 0.0066029071807861325, "loss": 0.48676511347293855, "decode.loss_ce": 0.28916535526514053, "decode.acc_seg": 94.85034942626953, "aux.loss_ce": 0.19759975448250772, "aux.acc_seg": 89.6317138671875, "time": 1.1132301568984986, "iter": 14300, "memory": 8703, "step": 14300} +{"lr": 0.009197228289101574, "data_time": 0.009334349632263183, "loss": 0.6314759314060211, "decode.loss_ce": 0.37944434583187103, "decode.acc_seg": 92.32183837890625, "aux.loss_ce": 0.2520315803587437, "aux.acc_seg": 83.52928161621094, "time": 1.1219995498657227, "iter": 14350, "memory": 8703, "step": 14350} +{"lr": 0.00919441756269862, "data_time": 0.006893682479858399, "loss": 0.4920510917901993, "decode.loss_ce": 0.2947724975645542, "decode.acc_seg": 90.03155517578125, "aux.loss_ce": 0.19727859646081924, "aux.acc_seg": 90.46077728271484, "time": 1.1131255388259889, "iter": 14400, "memory": 8703, "step": 14400} +{"lr": 0.009191606739771811, "data_time": 0.009175920486450195, "loss": 0.3783652275800705, "decode.loss_ce": 0.24227167218923568, "decode.acc_seg": 94.49234008789062, "aux.loss_ce": 0.13609355464577674, "aux.acc_seg": 90.04179382324219, "time": 1.1193481922149657, "iter": 14450, "memory": 8703, "step": 14450} +{"lr": 0.00918879582028467, "data_time": 0.007805585861206055, "loss": 0.3881181120872498, "decode.loss_ce": 0.2445728749036789, "decode.acc_seg": 97.07198333740234, "aux.loss_ce": 0.14354524239897729, "aux.acc_seg": 92.04545593261719, "time": 1.1166253566741944, "iter": 14500, "memory": 8702, "step": 14500} +{"lr": 0.009185984804200692, "data_time": 0.005188488960266113, "loss": 0.5187131613492966, "decode.loss_ce": 0.3134563684463501, "decode.acc_seg": 84.81266784667969, "aux.loss_ce": 0.20525679588317872, "aux.acc_seg": 74.52900695800781, "time": 1.1068869352340698, "iter": 14550, "memory": 8703, "step": 14550} +{"lr": 0.009183173691483356, "data_time": 0.009004640579223632, "loss": 0.45703746378421783, "decode.loss_ce": 0.2788448430597782, "decode.acc_seg": 92.4308090209961, "aux.loss_ce": 0.17819262221455573, "aux.acc_seg": 85.12051391601562, "time": 1.112492036819458, "iter": 14600, "memory": 8702, "step": 14600} +{"lr": 0.00918036248209611, "data_time": 0.007893085479736328, "loss": 0.3567575693130493, "decode.loss_ce": 0.22428158447146415, "decode.acc_seg": 90.80059814453125, "aux.loss_ce": 0.13247598111629486, "aux.acc_seg": 87.78616333007812, "time": 1.1143965244293212, "iter": 14650, "memory": 8702, "step": 14650} +{"lr": 0.00917755117600237, "data_time": 0.008850312232971192, "loss": 0.7822621762752533, "decode.loss_ce": 0.4926317065954208, "decode.acc_seg": 76.23646545410156, "aux.loss_ce": 0.2896304689347744, "aux.acc_seg": 68.20805358886719, "time": 1.1162803649902344, "iter": 14700, "memory": 8702, "step": 14700} +{"lr": 0.009174739773165519, "data_time": 0.007942485809326171, "loss": 0.4995165005326271, "decode.loss_ce": 0.31093012988567353, "decode.acc_seg": 80.22905731201172, "aux.loss_ce": 0.18858637139201165, "aux.acc_seg": 74.67657470703125, "time": 1.1157821416854858, "iter": 14750, "memory": 8703, "step": 14750} +{"lr": 0.00917192827354894, "data_time": 0.007464265823364258, "loss": 0.5068286791443825, "decode.loss_ce": 0.3269762933254242, "decode.acc_seg": 88.31583404541016, "aux.loss_ce": 0.1798523873090744, "aux.acc_seg": 85.79483032226562, "time": 1.1176109552383422, "iter": 14800, "memory": 8703, "step": 14800} +{"lr": 0.009169116677115969, "data_time": 0.008461332321166993, "loss": 0.5563778772950172, "decode.loss_ce": 0.3463043600320816, "decode.acc_seg": 92.28636169433594, "aux.loss_ce": 0.21007350981235504, "aux.acc_seg": 83.6096420288086, "time": 1.1174885034561157, "iter": 14850, "memory": 8702, "step": 14850} +{"lr": 0.009166304983829922, "data_time": 0.00842902660369873, "loss": 0.6313254654407501, "decode.loss_ce": 0.3715759336948395, "decode.acc_seg": 80.46505737304688, "aux.loss_ce": 0.2597495332360268, "aux.acc_seg": 75.61937713623047, "time": 1.1199986696243287, "iter": 14900, "memory": 8702, "step": 14900} +{"lr": 0.009163493193654077, "data_time": 0.007073831558227539, "loss": 0.4761192098259926, "decode.loss_ce": 0.2930608749389648, "decode.acc_seg": 96.70276641845703, "aux.loss_ce": 0.183058325573802, "aux.acc_seg": 96.05000305175781, "time": 1.1138387441635131, "iter": 14950, "memory": 8702, "step": 14950} +{"lr": 0.009160681306551696, "data_time": 0.005381560325622559, "loss": 0.5702622517943382, "decode.loss_ce": 0.3339205488562584, "decode.acc_seg": 93.25733184814453, "aux.loss_ce": 0.23634170964360238, "aux.acc_seg": 82.05216217041016, "time": 1.1123101711273193, "iter": 15000, "memory": 8703, "step": 15000} +{"lr": 0.009157869322486021, "data_time": 0.007378196716308594, "loss": 0.5603364244103431, "decode.loss_ce": 0.3475928418338299, "decode.acc_seg": 69.341796875, "aux.loss_ce": 0.21274357996881008, "aux.acc_seg": 60.93070983886719, "time": 1.114649772644043, "iter": 15050, "memory": 8702, "step": 15050} +{"lr": 0.009155057241420262, "data_time": 0.0068798065185546875, "loss": 0.5002894937992096, "decode.loss_ce": 0.3138665959239006, "decode.acc_seg": 86.44639587402344, "aux.loss_ce": 0.18642290011048318, "aux.acc_seg": 80.41597747802734, "time": 1.112503433227539, "iter": 15100, "memory": 8703, "step": 15100} +{"lr": 0.009152245063317596, "data_time": 0.007043194770812988, "loss": 0.6379233330488205, "decode.loss_ce": 0.3717898204922676, "decode.acc_seg": 88.06381225585938, "aux.loss_ce": 0.26613351702690125, "aux.acc_seg": 65.54749298095703, "time": 1.1158791780471802, "iter": 15150, "memory": 8703, "step": 15150} +{"lr": 0.009149432788141164, "data_time": 0.009168219566345216, "loss": 0.4051056832075119, "decode.loss_ce": 0.24193261861801146, "decode.acc_seg": 94.42501068115234, "aux.loss_ce": 0.16317305862903594, "aux.acc_seg": 93.71076965332031, "time": 1.1158464193344115, "iter": 15200, "memory": 8703, "step": 15200} +{"lr": 0.009146620415854106, "data_time": 0.007302713394165039, "loss": 0.6087362200021744, "decode.loss_ce": 0.3917421936988831, "decode.acc_seg": 67.7928237915039, "aux.loss_ce": 0.21699402779340743, "aux.acc_seg": 60.44966125488281, "time": 1.1144004344940186, "iter": 15250, "memory": 8702, "step": 15250} +{"lr": 0.009143807946419518, "data_time": 0.008342576026916505, "loss": 0.5720440417528152, "decode.loss_ce": 0.3690296202898026, "decode.acc_seg": 91.12834930419922, "aux.loss_ce": 0.20301442220807076, "aux.acc_seg": 89.00196838378906, "time": 1.118312406539917, "iter": 15300, "memory": 8702, "step": 15300} +{"lr": 0.009140995379800477, "data_time": 0.007742619514465332, "loss": 0.4158723473548889, "decode.loss_ce": 0.25670183151960374, "decode.acc_seg": 91.54071807861328, "aux.loss_ce": 0.15917051061987877, "aux.acc_seg": 82.183837890625, "time": 1.1171336889266967, "iter": 15350, "memory": 8703, "step": 15350} +{"lr": 0.009138182715960032, "data_time": 0.007826519012451173, "loss": 0.6442586869001389, "decode.loss_ce": 0.40121140480041506, "decode.acc_seg": 92.3000717163086, "aux.loss_ce": 0.24304727613925933, "aux.acc_seg": 89.37125396728516, "time": 1.1157994985580444, "iter": 15400, "memory": 8703, "step": 15400} +{"lr": 0.009135369954861198, "data_time": 0.00903635025024414, "loss": 0.4585230231285095, "decode.loss_ce": 0.2841609761118889, "decode.acc_seg": 88.96732330322266, "aux.loss_ce": 0.17436204180121423, "aux.acc_seg": 83.27140808105469, "time": 1.1151543617248536, "iter": 15450, "memory": 8703, "step": 15450} +{"lr": 0.009132557096466978, "data_time": 0.007508373260498047, "loss": 0.4667225569486618, "decode.loss_ce": 0.2954453743994236, "decode.acc_seg": 96.44377136230469, "aux.loss_ce": 0.1712771885097027, "aux.acc_seg": 95.16111755371094, "time": 1.1157060146331788, "iter": 15500, "memory": 8702, "step": 15500} +{"lr": 0.009129744140740326, "data_time": 0.009090662002563477, "loss": 0.5912667512893677, "decode.loss_ce": 0.3750528648495674, "decode.acc_seg": 83.13877868652344, "aux.loss_ce": 0.21621388867497443, "aux.acc_seg": 77.60092163085938, "time": 1.116136384010315, "iter": 15550, "memory": 8702, "step": 15550} +{"lr": 0.009126931087644192, "data_time": 0.008280348777770997, "loss": 0.5633022755384445, "decode.loss_ce": 0.3642404839396477, "decode.acc_seg": 97.31756591796875, "aux.loss_ce": 0.1990617945790291, "aux.acc_seg": 92.60285186767578, "time": 1.1160074949264527, "iter": 15600, "memory": 8702, "step": 15600} +{"lr": 0.00912411793714148, "data_time": 0.007945513725280762, "loss": 0.4734333962202072, "decode.loss_ce": 0.28048322796821595, "decode.acc_seg": 91.75751495361328, "aux.loss_ce": 0.19295016750693322, "aux.acc_seg": 88.54846954345703, "time": 1.1163657426834106, "iter": 15650, "memory": 8702, "step": 15650} +{"lr": 0.009121304689195074, "data_time": 0.007877802848815918, "loss": 0.4221990630030632, "decode.loss_ce": 0.2583587259054184, "decode.acc_seg": 90.85628509521484, "aux.loss_ce": 0.16384034641087056, "aux.acc_seg": 88.71414184570312, "time": 1.1183454513549804, "iter": 15700, "memory": 8703, "step": 15700} +{"lr": 0.009118491343767847, "data_time": 0.007733035087585449, "loss": 0.5759500652551651, "decode.loss_ce": 0.3880861684679985, "decode.acc_seg": 95.0216293334961, "aux.loss_ce": 0.18786389455199243, "aux.acc_seg": 92.81971740722656, "time": 1.1186619520187377, "iter": 15750, "memory": 8702, "step": 15750} +{"lr": 0.009115677900822622, "data_time": 0.006768155097961426, "loss": 0.5146069139242172, "decode.loss_ce": 0.33042205274105074, "decode.acc_seg": 90.1205062866211, "aux.loss_ce": 0.18418485894799233, "aux.acc_seg": 89.83325958251953, "time": 1.1145062923431397, "iter": 15800, "memory": 8703, "step": 15800} +{"lr": 0.009112864360322211, "data_time": 0.00723259449005127, "loss": 0.7032974094152451, "decode.loss_ce": 0.4612150013446808, "decode.acc_seg": 95.44506072998047, "aux.loss_ce": 0.2420824073255062, "aux.acc_seg": 94.65814971923828, "time": 1.1193652868270874, "iter": 15850, "memory": 8703, "step": 15850} +{"lr": 0.00911005072222938, "data_time": 0.007155323028564453, "loss": 0.5149936735630035, "decode.loss_ce": 0.3019541412591934, "decode.acc_seg": 83.12339782714844, "aux.loss_ce": 0.2130395293235779, "aux.acc_seg": 79.20525360107422, "time": 1.1152884244918824, "iter": 15900, "memory": 8702, "step": 15900} +{"lr": 0.009107236986506879, "data_time": 0.007546830177307129, "loss": 0.5091515153646469, "decode.loss_ce": 0.31881840229034425, "decode.acc_seg": 94.52259826660156, "aux.loss_ce": 0.19033310189843178, "aux.acc_seg": 85.41895294189453, "time": 1.1161476135253907, "iter": 15950, "memory": 8703, "step": 15950} +{"lr": 0.009104423153117436, "data_time": 0.009074091911315918, "loss": 0.4317841276526451, "decode.loss_ce": 0.2780620738863945, "decode.acc_seg": 93.07244110107422, "aux.loss_ce": 0.1537220522761345, "aux.acc_seg": 91.17691802978516, "time": 1.1164405345916748, "iter": 16000, "memory": 8702, "step": 16000} +{"aAcc": 90.16, "mIoU": 53.21, "mAcc": 63.09, "data_time": 0.0049295212427775065, "time": 0.2789914229710897, "step": 16000} +{"lr": 0.009101609222023741, "data_time": 0.005840802192687988, "loss": 0.49356108009815214, "decode.loss_ce": 0.2982664853334427, "decode.acc_seg": 88.24081420898438, "aux.loss_ce": 0.19529459103941918, "aux.acc_seg": 81.38592529296875, "time": 1.111287569999695, "iter": 16050, "memory": 8704, "step": 16050} +{"lr": 0.009098795193188468, "data_time": 0.007058405876159668, "loss": 0.4644893631339073, "decode.loss_ce": 0.27834108620882037, "decode.acc_seg": 77.65928649902344, "aux.loss_ce": 0.18614827319979668, "aux.acc_seg": 64.82817077636719, "time": 1.1153173446655273, "iter": 16100, "memory": 8704, "step": 16100} +{"lr": 0.009095981066574266, "data_time": 0.006293034553527832, "loss": 0.40892926007509234, "decode.loss_ce": 0.25705478340387344, "decode.acc_seg": 89.6026611328125, "aux.loss_ce": 0.15187447294592857, "aux.acc_seg": 86.08480834960938, "time": 1.1132972240447998, "iter": 16150, "memory": 8703, "step": 16150} +{"lr": 0.009093166842143736, "data_time": 0.008371543884277344, "loss": 0.6403240323066711, "decode.loss_ce": 0.37975907027721406, "decode.acc_seg": 76.47787475585938, "aux.loss_ce": 0.26056496426463127, "aux.acc_seg": 65.6291275024414, "time": 1.117744469642639, "iter": 16200, "memory": 8704, "step": 16200} +{"lr": 0.009090352519859478, "data_time": 0.006959319114685059, "loss": 0.5368921384215355, "decode.loss_ce": 0.3172251783311367, "decode.acc_seg": 86.53614807128906, "aux.loss_ce": 0.21966695114970208, "aux.acc_seg": 77.94182586669922, "time": 1.11290283203125, "iter": 16250, "memory": 8705, "step": 16250} +{"lr": 0.009087538099684035, "data_time": 0.006885385513305664, "loss": 0.5048981606960297, "decode.loss_ce": 0.30936777740716936, "decode.acc_seg": 93.91218566894531, "aux.loss_ce": 0.19553037658333777, "aux.acc_seg": 92.90682220458984, "time": 1.1177716970443725, "iter": 16300, "memory": 8703, "step": 16300} +{"lr": 0.009084723581579945, "data_time": 0.006053423881530762, "loss": 0.39283458739519117, "decode.loss_ce": 0.2394604504108429, "decode.acc_seg": 94.68230438232422, "aux.loss_ce": 0.1533741384744644, "aux.acc_seg": 84.28349304199219, "time": 1.1142414331436157, "iter": 16350, "memory": 8704, "step": 16350} +{"lr": 0.009081908965509719, "data_time": 0.007089734077453613, "loss": 0.5018170505762101, "decode.loss_ce": 0.3091995924711227, "decode.acc_seg": 93.327392578125, "aux.loss_ce": 0.19261745363473892, "aux.acc_seg": 82.48551177978516, "time": 1.117298173904419, "iter": 16400, "memory": 8704, "step": 16400} +{"lr": 0.009079094251435839, "data_time": 0.007327723503112793, "loss": 0.45868386775255204, "decode.loss_ce": 0.26856538876891134, "decode.acc_seg": 96.61661529541016, "aux.loss_ce": 0.1901184730231762, "aux.acc_seg": 95.36297607421875, "time": 1.1163137435913086, "iter": 16450, "memory": 8703, "step": 16450} +{"lr": 0.009076279439320751, "data_time": 0.006530117988586426, "loss": 0.3987219721078873, "decode.loss_ce": 0.23316237330436707, "decode.acc_seg": 94.85161590576172, "aux.loss_ce": 0.165559596568346, "aux.acc_seg": 93.75038146972656, "time": 1.1120009660720824, "iter": 16500, "memory": 8704, "step": 16500} +{"lr": 0.009073464529126864, "data_time": 0.006114888191223145, "loss": 0.43731539249420165, "decode.loss_ce": 0.2818683758378029, "decode.acc_seg": 92.03096771240234, "aux.loss_ce": 0.15544700622558594, "aux.acc_seg": 91.40421295166016, "time": 1.1158578395843506, "iter": 16550, "memory": 8704, "step": 16550} +{"lr": 0.009070649520816591, "data_time": 0.006390714645385742, "loss": 0.40277871638536455, "decode.loss_ce": 0.25225481316447257, "decode.acc_seg": 92.70025634765625, "aux.loss_ce": 0.1505239024758339, "aux.acc_seg": 89.14820098876953, "time": 1.1158521175384521, "iter": 16600, "memory": 8704, "step": 16600} +{"lr": 0.00906783441435229, "data_time": 0.0067967653274536135, "loss": 0.36284419894218445, "decode.loss_ce": 0.229551200568676, "decode.acc_seg": 84.61100006103516, "aux.loss_ce": 0.13329299539327621, "aux.acc_seg": 83.25525665283203, "time": 1.1192673444747925, "iter": 16650, "memory": 8703, "step": 16650} +{"lr": 0.0090650192096963, "data_time": 0.005441427230834961, "loss": 0.33284172266721723, "decode.loss_ce": 0.20906757414340973, "decode.acc_seg": 95.08234405517578, "aux.loss_ce": 0.12377414405345917, "aux.acc_seg": 93.9102783203125, "time": 1.111599826812744, "iter": 16700, "memory": 8703, "step": 16700} +{"lr": 0.009062203906810944, "data_time": 0.007542252540588379, "loss": 0.451736144721508, "decode.loss_ce": 0.24223122000694275, "decode.acc_seg": 92.24071502685547, "aux.loss_ce": 0.20950492843985558, "aux.acc_seg": 90.04364013671875, "time": 1.1163650751113892, "iter": 16750, "memory": 8703, "step": 16750} +{"lr": 0.009059388505658501, "data_time": 0.006445455551147461, "loss": 0.5985468924045563, "decode.loss_ce": 0.3733271136879921, "decode.acc_seg": 94.99136352539062, "aux.loss_ce": 0.2252197705209255, "aux.acc_seg": 89.03643035888672, "time": 1.1183408498764038, "iter": 16800, "memory": 8704, "step": 16800} +{"lr": 0.009056573006201225, "data_time": 0.008534884452819825, "loss": 0.4165379673242569, "decode.loss_ce": 0.2602334603667259, "decode.acc_seg": 92.40404510498047, "aux.loss_ce": 0.15630450919270517, "aux.acc_seg": 91.2923812866211, "time": 1.1160056829452514, "iter": 16850, "memory": 8703, "step": 16850} +{"lr": 0.009053757408401353, "data_time": 0.00805211067199707, "loss": 0.4294134914875031, "decode.loss_ce": 0.26587042957544327, "decode.acc_seg": 96.11506652832031, "aux.loss_ce": 0.1635430634021759, "aux.acc_seg": 92.65135955810547, "time": 1.1190897703170777, "iter": 16900, "memory": 8703, "step": 16900} +{"lr": 0.009050941712221082, "data_time": 0.006062364578247071, "loss": 0.6164124727249145, "decode.loss_ce": 0.3740378201007843, "decode.acc_seg": 94.73706817626953, "aux.loss_ce": 0.24237466007471084, "aux.acc_seg": 92.50971984863281, "time": 1.1102101802825928, "iter": 16950, "memory": 8704, "step": 16950} +{"lr": 0.009048125917622572, "data_time": 0.006948542594909668, "loss": 0.4938255727291107, "decode.loss_ce": 0.31223582327365873, "decode.acc_seg": 90.82215118408203, "aux.loss_ce": 0.18158975765109062, "aux.acc_seg": 91.25537872314453, "time": 1.1152781009674073, "iter": 17000, "memory": 8703, "step": 17000} +{"lr": 0.009045310024567993, "data_time": 0.007576417922973633, "loss": 0.5329630970954895, "decode.loss_ce": 0.3459595702588558, "decode.acc_seg": 84.2304458618164, "aux.loss_ce": 0.18700352758169175, "aux.acc_seg": 82.08383178710938, "time": 1.114838433265686, "iter": 17050, "memory": 8704, "step": 17050} +{"lr": 0.009042494033019448, "data_time": 0.007206487655639649, "loss": 0.45201258063316346, "decode.loss_ce": 0.2919904850423336, "decode.acc_seg": 94.61237335205078, "aux.loss_ce": 0.160022097453475, "aux.acc_seg": 92.43538665771484, "time": 1.1164466381072997, "iter": 17100, "memory": 8705, "step": 17100} +{"lr": 0.009039677942939039, "data_time": 0.00779731273651123, "loss": 0.4452218621969223, "decode.loss_ce": 0.2725320100784302, "decode.acc_seg": 91.79083251953125, "aux.loss_ce": 0.17268984988331795, "aux.acc_seg": 85.40401458740234, "time": 1.117912220954895, "iter": 17150, "memory": 8704, "step": 17150} +{"lr": 0.00903686175428882, "data_time": 0.008739471435546875, "loss": 0.5278814643621444, "decode.loss_ce": 0.32801605239510534, "decode.acc_seg": 94.74156188964844, "aux.loss_ce": 0.1998654067516327, "aux.acc_seg": 87.78196716308594, "time": 1.1188556909561158, "iter": 17200, "memory": 8705, "step": 17200} +{"lr": 0.00903404546703082, "data_time": 0.00651552677154541, "loss": 0.6425197958946228, "decode.loss_ce": 0.3992703005671501, "decode.acc_seg": 85.25887298583984, "aux.loss_ce": 0.2432494968175888, "aux.acc_seg": 75.53562927246094, "time": 1.1133297443389893, "iter": 17250, "memory": 8703, "step": 17250} +{"lr": 0.009031229081127051, "data_time": 0.006471848487854004, "loss": 0.45500319451093674, "decode.loss_ce": 0.2938830129802227, "decode.acc_seg": 84.76377868652344, "aux.loss_ce": 0.16112018674612044, "aux.acc_seg": 80.1492691040039, "time": 1.1139323949813842, "iter": 17300, "memory": 8704, "step": 17300} +{"lr": 0.009028412596539501, "data_time": 0.00722200870513916, "loss": 0.5628548055887223, "decode.loss_ce": 0.36150490418076514, "decode.acc_seg": 89.63260650634766, "aux.loss_ce": 0.201349900662899, "aux.acc_seg": 86.34281158447266, "time": 1.117020034790039, "iter": 17350, "memory": 8703, "step": 17350} +{"lr": 0.009025596013230117, "data_time": 0.006675601005554199, "loss": 0.5762740671634674, "decode.loss_ce": 0.35740154683589936, "decode.acc_seg": 86.01143646240234, "aux.loss_ce": 0.21887252554297448, "aux.acc_seg": 87.30665588378906, "time": 1.1136360168457031, "iter": 17400, "memory": 8703, "step": 17400} +{"lr": 0.009022779331160807, "data_time": 0.007066106796264649, "loss": 0.4368675768375397, "decode.loss_ce": 0.2609493777155876, "decode.acc_seg": 88.85269165039062, "aux.loss_ce": 0.17591819316148757, "aux.acc_seg": 88.02452087402344, "time": 1.1191304206848145, "iter": 17450, "memory": 8704, "step": 17450} +{"lr": 0.009019962550293479, "data_time": 0.007723474502563476, "loss": 0.5702316462993622, "decode.loss_ce": 0.3528919517993927, "decode.acc_seg": 68.96247863769531, "aux.loss_ce": 0.21733968928456307, "aux.acc_seg": 64.42737579345703, "time": 1.117259407043457, "iter": 17500, "memory": 8703, "step": 17500} +{"lr": 0.009017145670590003, "data_time": 0.005647206306457519, "loss": 0.433365073800087, "decode.loss_ce": 0.27094159722328187, "decode.acc_seg": 93.21918487548828, "aux.loss_ce": 0.16242347583174704, "aux.acc_seg": 90.36451721191406, "time": 1.113163685798645, "iter": 17550, "memory": 8704, "step": 17550} +{"lr": 0.00901432869201221, "data_time": 0.00626063346862793, "loss": 0.43366248309612276, "decode.loss_ce": 0.26286440938711164, "decode.acc_seg": 93.59304809570312, "aux.loss_ce": 0.17079806327819824, "aux.acc_seg": 89.79541778564453, "time": 1.1456792831420899, "iter": 17600, "memory": 8703, "step": 17600} +{"lr": 0.009011511614521923, "data_time": 0.005550909042358399, "loss": 0.48182413876056673, "decode.loss_ce": 0.2926999792456627, "decode.acc_seg": 86.43461608886719, "aux.loss_ce": 0.18912415727972984, "aux.acc_seg": 76.96259307861328, "time": 1.3759926795959472, "iter": 17650, "memory": 8703, "step": 17650} +{"lr": 0.009008694438080906, "data_time": 0.007473564147949219, "loss": 0.40074732303619387, "decode.loss_ce": 0.23296139761805534, "decode.acc_seg": 94.06281280517578, "aux.loss_ce": 0.1677859291434288, "aux.acc_seg": 93.78492736816406, "time": 1.3811373710632324, "iter": 17700, "memory": 8703, "step": 17700} +{"lr": 0.009005877162650926, "data_time": 0.007287287712097168, "loss": 0.4699386924505234, "decode.loss_ce": 0.30974355936050413, "decode.acc_seg": 94.41642761230469, "aux.loss_ce": 0.16019512787461282, "aux.acc_seg": 93.36687469482422, "time": 1.3839998722076416, "iter": 17750, "memory": 8704, "step": 17750} +{"lr": 0.009003059788193712, "data_time": 0.006829953193664551, "loss": 0.6556176394224167, "decode.loss_ce": 0.4005169704556465, "decode.acc_seg": 95.87776947021484, "aux.loss_ce": 0.2551006741821766, "aux.acc_seg": 93.68412780761719, "time": 1.3873322010040283, "iter": 17800, "memory": 8703, "step": 17800} +{"lr": 0.009000242314670946, "data_time": 0.005456614494323731, "loss": 0.5582735985517502, "decode.loss_ce": 0.3808730930089951, "decode.acc_seg": 91.52145385742188, "aux.loss_ce": 0.17740050628781318, "aux.acc_seg": 90.39141082763672, "time": 1.3799763679504395, "iter": 17850, "memory": 8703, "step": 17850} +{"lr": 0.008997424742044308, "data_time": 0.006537985801696777, "loss": 0.5058923482894897, "decode.loss_ce": 0.308250130712986, "decode.acc_seg": 93.15464782714844, "aux.loss_ce": 0.1976422116160393, "aux.acc_seg": 83.9005126953125, "time": 1.3841721534729003, "iter": 17900, "memory": 8703, "step": 17900} +{"lr": 0.008994607070275435, "data_time": 0.007139968872070313, "loss": 0.4740634083747864, "decode.loss_ce": 0.2900299489498138, "decode.acc_seg": 91.55260467529297, "aux.loss_ce": 0.18403345644474028, "aux.acc_seg": 91.98258209228516, "time": 1.3908138036727906, "iter": 17950, "memory": 8704, "step": 17950} +{"lr": 0.008991789299325946, "data_time": 0.006151437759399414, "loss": 0.4719622313976288, "decode.loss_ce": 0.3004835218191147, "decode.acc_seg": 92.36869812011719, "aux.loss_ce": 0.17147871032357215, "aux.acc_seg": 91.22085571289062, "time": 1.3100159883499145, "iter": 18000, "memory": 8703, "step": 18000} +{"lr": 0.008988971429157418, "data_time": 0.0078033447265625, "loss": 0.4765422195196152, "decode.loss_ce": 0.30809461027383805, "decode.acc_seg": 90.42485046386719, "aux.loss_ce": 0.16844760328531266, "aux.acc_seg": 88.79483032226562, "time": 1.1219080924987792, "iter": 18050, "memory": 8703, "step": 18050} +{"lr": 0.008986153459731406, "data_time": 0.007851505279541015, "loss": 0.5135627239942551, "decode.loss_ce": 0.3050330102443695, "decode.acc_seg": 86.81513214111328, "aux.loss_ce": 0.2085297055542469, "aux.acc_seg": 74.88237762451172, "time": 1.1175959348678588, "iter": 18100, "memory": 8704, "step": 18100} +{"lr": 0.008983335391009447, "data_time": 0.007324743270874024, "loss": 0.6414234042167664, "decode.loss_ce": 0.39811464101076127, "decode.acc_seg": 88.46517944335938, "aux.loss_ce": 0.24330876767635345, "aux.acc_seg": 76.30424499511719, "time": 1.1183448076248168, "iter": 18150, "memory": 8704, "step": 18150} +{"lr": 0.008980517222953042, "data_time": 0.006078672409057617, "loss": 0.4094185188412666, "decode.loss_ce": 0.2513494461774826, "decode.acc_seg": 93.66626739501953, "aux.loss_ce": 0.15806906074285507, "aux.acc_seg": 88.06991577148438, "time": 1.115871047973633, "iter": 18200, "memory": 8703, "step": 18200} +{"lr": 0.008977698955523646, "data_time": 0.005915713310241699, "loss": 0.3986060231924057, "decode.loss_ce": 0.24622855037450792, "decode.acc_seg": 94.52037811279297, "aux.loss_ce": 0.15237746611237526, "aux.acc_seg": 92.8721694946289, "time": 1.117281985282898, "iter": 18250, "memory": 8704, "step": 18250} +{"lr": 0.008974880588682708, "data_time": 0.006439924240112305, "loss": 0.5935043618083, "decode.loss_ce": 0.3665410168468952, "decode.acc_seg": 77.63070678710938, "aux.loss_ce": 0.22696334682404995, "aux.acc_seg": 69.03523254394531, "time": 1.1178545713424684, "iter": 18300, "memory": 8704, "step": 18300} +{"lr": 0.00897206212239165, "data_time": 0.007837128639221192, "loss": 0.4418760806322098, "decode.loss_ce": 0.27504844665527345, "decode.acc_seg": 93.45677947998047, "aux.loss_ce": 0.16682762354612352, "aux.acc_seg": 89.48938751220703, "time": 1.1177461624145508, "iter": 18350, "memory": 8705, "step": 18350} +{"lr": 0.00896924355661184, "data_time": 0.006958413124084473, "loss": 0.43263457119464876, "decode.loss_ce": 0.267376521229744, "decode.acc_seg": 91.88286590576172, "aux.loss_ce": 0.16525805070996286, "aux.acc_seg": 90.88104248046875, "time": 1.1180638790130615, "iter": 18400, "memory": 8704, "step": 18400} +{"lr": 0.008966424891304652, "data_time": 0.005948185920715332, "loss": 0.5841435641050339, "decode.loss_ce": 0.3557630643248558, "decode.acc_seg": 80.83921813964844, "aux.loss_ce": 0.22838049978017808, "aux.acc_seg": 76.39910125732422, "time": 1.1104700088500976, "iter": 18450, "memory": 8703, "step": 18450} +{"lr": 0.008963606126431399, "data_time": 0.006908059120178223, "loss": 0.44824138581752776, "decode.loss_ce": 0.2796717256307602, "decode.acc_seg": 82.47425842285156, "aux.loss_ce": 0.16856966242194177, "aux.acc_seg": 73.19296264648438, "time": 1.1140426635742187, "iter": 18500, "memory": 8704, "step": 18500} +{"lr": 0.008960787261953387, "data_time": 0.005720400810241699, "loss": 0.39918783605098723, "decode.loss_ce": 0.23712175711989403, "decode.acc_seg": 94.05218505859375, "aux.loss_ce": 0.1620660737156868, "aux.acc_seg": 91.83197021484375, "time": 1.110255527496338, "iter": 18550, "memory": 8704, "step": 18550} +{"lr": 0.008957968297831877, "data_time": 0.008874225616455077, "loss": 0.6493750512599945, "decode.loss_ce": 0.41491765677928927, "decode.acc_seg": 80.20165252685547, "aux.loss_ce": 0.23445739969611168, "aux.acc_seg": 72.55642700195312, "time": 1.1204776525497437, "iter": 18600, "memory": 8704, "step": 18600} +{"lr": 0.008955149234028115, "data_time": 0.007323694229125976, "loss": 0.5554096579551697, "decode.loss_ce": 0.3404073178768158, "decode.acc_seg": 71.0694580078125, "aux.loss_ce": 0.21500233113765715, "aux.acc_seg": 63.348323822021484, "time": 1.1129663467407227, "iter": 18650, "memory": 8704, "step": 18650} +{"lr": 0.008952330070503316, "data_time": 0.007650232315063477, "loss": 0.34731018990278245, "decode.loss_ce": 0.20000040233135224, "decode.acc_seg": 96.12686920166016, "aux.loss_ce": 0.14730978533625602, "aux.acc_seg": 93.8323974609375, "time": 1.1174983739852906, "iter": 18700, "memory": 8703, "step": 18700} +{"lr": 0.008949510807218663, "data_time": 0.006371545791625977, "loss": 0.6791111350059509, "decode.loss_ce": 0.44333305209875107, "decode.acc_seg": 91.62654876708984, "aux.loss_ce": 0.23577806800603868, "aux.acc_seg": 78.59986114501953, "time": 1.1142287015914918, "iter": 18750, "memory": 8704, "step": 18750} +{"lr": 0.008946691444135313, "data_time": 0.009009838104248047, "loss": 0.40423144698143004, "decode.loss_ce": 0.2570027455687523, "decode.acc_seg": 95.20085144042969, "aux.loss_ce": 0.14722870141267777, "aux.acc_seg": 93.1497573852539, "time": 1.118785309791565, "iter": 18800, "memory": 8704, "step": 18800} +{"lr": 0.008943871981214387, "data_time": 0.006392049789428711, "loss": 0.42367222607135774, "decode.loss_ce": 0.2601883873343468, "decode.acc_seg": 94.48583221435547, "aux.loss_ce": 0.1634838454425335, "aux.acc_seg": 93.42156982421875, "time": 1.1146864652633668, "iter": 18850, "memory": 8704, "step": 18850} +{"lr": 0.008941052418416988, "data_time": 0.0063805818557739254, "loss": 0.578126847743988, "decode.loss_ce": 0.3670529618859291, "decode.acc_seg": 86.1527099609375, "aux.loss_ce": 0.2110738970339298, "aux.acc_seg": 87.06810760498047, "time": 1.116464877128601, "iter": 18900, "memory": 8703, "step": 18900} +{"lr": 0.00893823275570418, "data_time": 0.006720638275146485, "loss": 0.6003365218639374, "decode.loss_ce": 0.3756480783224106, "decode.acc_seg": 91.02604675292969, "aux.loss_ce": 0.22468844801187515, "aux.acc_seg": 88.82839965820312, "time": 1.1166514158248901, "iter": 18950, "memory": 8704, "step": 18950} +{"lr": 0.008935412993037, "data_time": 0.00781576633453369, "loss": 0.5397396117448807, "decode.loss_ce": 0.339569965004921, "decode.acc_seg": 91.0859375, "aux.loss_ce": 0.20016965493559838, "aux.acc_seg": 90.19367980957031, "time": 1.1211984872817993, "iter": 19000, "memory": 8703, "step": 19000} +{"lr": 0.008932593130376464, "data_time": 0.006404900550842285, "loss": 0.4687305837869644, "decode.loss_ce": 0.2944225609302521, "decode.acc_seg": 90.26451110839844, "aux.loss_ce": 0.17430801391601564, "aux.acc_seg": 88.04193878173828, "time": 1.115625, "iter": 19050, "memory": 8703, "step": 19050} +{"lr": 0.008929773167683551, "data_time": 0.005877375602722168, "loss": 0.5437497198581696, "decode.loss_ce": 0.3315655097365379, "decode.acc_seg": 92.0542984008789, "aux.loss_ce": 0.21218420267105104, "aux.acc_seg": 90.33393859863281, "time": 1.1378760576248168, "iter": 19100, "memory": 8703, "step": 19100} +{"lr": 0.008926953104919212, "data_time": 0.007099056243896484, "loss": 0.5942359611392021, "decode.loss_ce": 0.38746880143880846, "decode.acc_seg": 91.87138366699219, "aux.loss_ce": 0.20676715523004532, "aux.acc_seg": 86.54206085205078, "time": 1.1366451740264893, "iter": 19150, "memory": 8703, "step": 19150} +{"lr": 0.008924132942044374, "data_time": 0.00697021484375, "loss": 0.42366923987865446, "decode.loss_ce": 0.2588881000876427, "decode.acc_seg": 86.82161712646484, "aux.loss_ce": 0.1647811435163021, "aux.acc_seg": 85.56263732910156, "time": 1.116335654258728, "iter": 19200, "memory": 8704, "step": 19200} +{"lr": 0.008921312679019923, "data_time": 0.007040190696716309, "loss": 0.37801084518432615, "decode.loss_ce": 0.23230923488736152, "decode.acc_seg": 92.58295440673828, "aux.loss_ce": 0.14570161178708077, "aux.acc_seg": 90.92597961425781, "time": 1.1453327417373658, "iter": 19250, "memory": 8703, "step": 19250} +{"lr": 0.008918492315806726, "data_time": 0.007810187339782715, "loss": 0.42902161180973053, "decode.loss_ce": 0.2752377539873123, "decode.acc_seg": 86.84864044189453, "aux.loss_ce": 0.1537838600575924, "aux.acc_seg": 85.0566177368164, "time": 1.1408723592758179, "iter": 19300, "memory": 8704, "step": 19300} +{"lr": 0.008915671852365617, "data_time": 0.007949757575988769, "loss": 0.4191231444478035, "decode.loss_ce": 0.26818266585469247, "decode.acc_seg": 89.73699951171875, "aux.loss_ce": 0.15094048231840135, "aux.acc_seg": 84.12939453125, "time": 1.121286392211914, "iter": 19350, "memory": 8704, "step": 19350} +{"lr": 0.008912851288657415, "data_time": 0.008214163780212402, "loss": 0.37122699022293093, "decode.loss_ce": 0.21603649333119393, "decode.acc_seg": 95.64564514160156, "aux.loss_ce": 0.15519049987196923, "aux.acc_seg": 92.01653289794922, "time": 1.1181955814361573, "iter": 19400, "memory": 8703, "step": 19400} +{"lr": 0.008910030624642882, "data_time": 0.00595240592956543, "loss": 0.3401381358504295, "decode.loss_ce": 0.19882936775684357, "decode.acc_seg": 93.32332611083984, "aux.loss_ce": 0.14130876250565053, "aux.acc_seg": 92.9738998413086, "time": 1.112994408607483, "iter": 19450, "memory": 8703, "step": 19450} +{"lr": 0.008907209860282773, "data_time": 0.007133984565734863, "loss": 0.49245248138904574, "decode.loss_ce": 0.2986893028020859, "decode.acc_seg": 92.81623840332031, "aux.loss_ce": 0.1937631756067276, "aux.acc_seg": 93.19346618652344, "time": 1.1374662399291993, "iter": 19500, "memory": 8704, "step": 19500} +{"lr": 0.008904388995537802, "data_time": 0.007373356819152832, "loss": 0.5133101537823677, "decode.loss_ce": 0.31056528463959693, "decode.acc_seg": 78.97777557373047, "aux.loss_ce": 0.20274486541748046, "aux.acc_seg": 71.61197662353516, "time": 1.1307312488555907, "iter": 19550, "memory": 8703, "step": 19550} +{"lr": 0.008901568030368656, "data_time": 0.007547211647033691, "loss": 0.6202882200479507, "decode.loss_ce": 0.3963042214512825, "decode.acc_seg": 84.63420867919922, "aux.loss_ce": 0.2239839881658554, "aux.acc_seg": 85.06107330322266, "time": 1.1348708391189575, "iter": 19600, "memory": 8703, "step": 19600} +{"lr": 0.008898746964735988, "data_time": 0.006503462791442871, "loss": 0.5288215786218643, "decode.loss_ce": 0.33227025121450426, "decode.acc_seg": 91.68573760986328, "aux.loss_ce": 0.1965513199567795, "aux.acc_seg": 87.53706359863281, "time": 1.1183479070663451, "iter": 19650, "memory": 8703, "step": 19650} +{"lr": 0.008895925798600443, "data_time": 0.007443070411682129, "loss": 0.5926656305789948, "decode.loss_ce": 0.38038079589605334, "decode.acc_seg": 83.86128234863281, "aux.loss_ce": 0.21228483468294143, "aux.acc_seg": 82.05654907226562, "time": 1.1392313957214355, "iter": 19700, "memory": 8704, "step": 19700} +{"lr": 0.008893104531922607, "data_time": 0.006780266761779785, "loss": 0.48789052516222, "decode.loss_ce": 0.28932332396507265, "decode.acc_seg": 91.75192260742188, "aux.loss_ce": 0.19856720194220542, "aux.acc_seg": 88.77487182617188, "time": 1.111655592918396, "iter": 19750, "memory": 8703, "step": 19750} +{"lr": 0.008890283164663063, "data_time": 0.008321809768676757, "loss": 0.5143593281507493, "decode.loss_ce": 0.3219002649188042, "decode.acc_seg": 83.99732208251953, "aux.loss_ce": 0.19245907217264174, "aux.acc_seg": 91.37091827392578, "time": 1.1206731081008912, "iter": 19800, "memory": 8703, "step": 19800} +{"lr": 0.008887461696782348, "data_time": 0.005146598815917969, "loss": 0.47169066667556764, "decode.loss_ce": 0.29940373450517654, "decode.acc_seg": 87.10562133789062, "aux.loss_ce": 0.17228693664073944, "aux.acc_seg": 76.60446166992188, "time": 1.1768483161926269, "iter": 19850, "memory": 8704, "step": 19850} +{"lr": 0.008884640128240976, "data_time": 0.005855250358581543, "loss": 0.4747125878930092, "decode.loss_ce": 0.2983726039528847, "decode.acc_seg": 87.90435791015625, "aux.loss_ce": 0.17633998095989228, "aux.acc_seg": 82.03016662597656, "time": 1.1738210916519165, "iter": 19900, "memory": 8703, "step": 19900} +{"lr": 0.008881818458999428, "data_time": 0.006769227981567383, "loss": 0.38878934234380724, "decode.loss_ce": 0.23433101177215576, "decode.acc_seg": 87.48480224609375, "aux.loss_ce": 0.15445833280682564, "aux.acc_seg": 84.20072937011719, "time": 1.146481204032898, "iter": 19950, "memory": 8704, "step": 19950} +{"lr": 0.008878996689018148, "data_time": 0.007897591590881348, "loss": 0.3583577945828438, "decode.loss_ce": 0.23226672708988189, "decode.acc_seg": 94.02881622314453, "aux.loss_ce": 0.12609106451272964, "aux.acc_seg": 93.828369140625, "time": 1.178060531616211, "iter": 20000, "memory": 8703, "step": 20000} +{"lr": 0.008876174818257565, "data_time": 0.005441188812255859, "loss": 0.5267789661884308, "decode.loss_ce": 0.33374912291765213, "decode.acc_seg": 97.08908081054688, "aux.loss_ce": 0.19302984774112703, "aux.acc_seg": 91.69217681884766, "time": 1.1145351886749268, "iter": 20050, "memory": 8703, "step": 20050} +{"lr": 0.008873352846678081, "data_time": 0.006990504264831543, "loss": 0.4823610633611679, "decode.loss_ce": 0.2902185767889023, "decode.acc_seg": 89.42794799804688, "aux.loss_ce": 0.19214249029755592, "aux.acc_seg": 83.7240219116211, "time": 1.192627215385437, "iter": 20100, "memory": 8704, "step": 20100} +{"lr": 0.008870530774240042, "data_time": 0.0068190574645996095, "loss": 0.4834062933921814, "decode.loss_ce": 0.309141643345356, "decode.acc_seg": 85.09464263916016, "aux.loss_ce": 0.17426464706659317, "aux.acc_seg": 77.58775329589844, "time": 1.1205604314804076, "iter": 20150, "memory": 8703, "step": 20150} +{"lr": 0.0088677086009038, "data_time": 0.007463645935058594, "loss": 0.5720330476760864, "decode.loss_ce": 0.34200184792280197, "decode.acc_seg": 94.2530288696289, "aux.loss_ce": 0.2300311978906393, "aux.acc_seg": 92.13002014160156, "time": 1.1442447423934936, "iter": 20200, "memory": 8703, "step": 20200} +{"lr": 0.008864886326629667, "data_time": 0.006146025657653808, "loss": 0.5760990172624588, "decode.loss_ce": 0.361002242565155, "decode.acc_seg": 94.56354522705078, "aux.loss_ce": 0.21509676575660705, "aux.acc_seg": 88.64078521728516, "time": 1.116960048675537, "iter": 20250, "memory": 8703, "step": 20250} +{"lr": 0.008862063951377886, "data_time": 0.007631516456604004, "loss": 0.5224067866802216, "decode.loss_ce": 0.3230124175548553, "decode.acc_seg": 85.6695785522461, "aux.loss_ce": 0.1993943676352501, "aux.acc_seg": 78.07331085205078, "time": 1.1152904272079467, "iter": 20300, "memory": 8703, "step": 20300} +{"lr": 0.008859241475108715, "data_time": 0.005748295783996582, "loss": 0.44271548837423325, "decode.loss_ce": 0.2716809809207916, "decode.acc_seg": 80.4697036743164, "aux.loss_ce": 0.1710345044732094, "aux.acc_seg": 71.6461181640625, "time": 1.247141456604004, "iter": 20350, "memory": 8704, "step": 20350} +{"lr": 0.008856418897782374, "data_time": 0.0060215950012207035, "loss": 0.5026893660426139, "decode.loss_ce": 0.3191206306219101, "decode.acc_seg": 77.6358871459961, "aux.loss_ce": 0.18356873840093613, "aux.acc_seg": 72.68943786621094, "time": 1.18922860622406, "iter": 20400, "memory": 8703, "step": 20400} +{"lr": 0.008853596219359047, "data_time": 0.005582857131958008, "loss": 0.5170647725462914, "decode.loss_ce": 0.2936080813407898, "decode.acc_seg": 96.21956634521484, "aux.loss_ce": 0.2234566815197468, "aux.acc_seg": 93.82553100585938, "time": 1.2006842136383056, "iter": 20450, "memory": 8703, "step": 20450} +{"lr": 0.00885077343979889, "data_time": 0.005998373031616211, "loss": 0.32127045691013334, "decode.loss_ce": 0.18395551145076752, "decode.acc_seg": 93.85337829589844, "aux.loss_ce": 0.13731494396924973, "aux.acc_seg": 82.18765258789062, "time": 1.2811702966690064, "iter": 20500, "memory": 8703, "step": 20500} +{"lr": 0.008847950559062014, "data_time": 0.0076381444931030275, "loss": 0.3261154472827911, "decode.loss_ce": 0.1999855101108551, "decode.acc_seg": 96.61032104492188, "aux.loss_ce": 0.12612993717193605, "aux.acc_seg": 95.67762756347656, "time": 1.2418486833572389, "iter": 20550, "memory": 8703, "step": 20550} +{"lr": 0.008845127577108527, "data_time": 0.006217336654663086, "loss": 0.47141638249158857, "decode.loss_ce": 0.29910560697317123, "decode.acc_seg": 90.50689697265625, "aux.loss_ce": 0.17231076620519162, "aux.acc_seg": 88.08344268798828, "time": 1.116132426261902, "iter": 20600, "memory": 8704, "step": 20600} +{"lr": 0.00884230449389849, "data_time": 0.006976819038391114, "loss": 0.4405779168009758, "decode.loss_ce": 0.28459382727742194, "decode.acc_seg": 88.11283111572266, "aux.loss_ce": 0.1559840939939022, "aux.acc_seg": 82.61419677734375, "time": 1.1228436470031737, "iter": 20650, "memory": 8703, "step": 20650} +{"lr": 0.008839481309391932, "data_time": 0.005748939514160156, "loss": 0.5013420701026916, "decode.loss_ce": 0.3105258598923683, "decode.acc_seg": 83.99486541748047, "aux.loss_ce": 0.19081620648503303, "aux.acc_seg": 65.81356811523438, "time": 1.1104207277297973, "iter": 20700, "memory": 8704, "step": 20700} +{"lr": 0.00883665802354886, "data_time": 0.007330894470214844, "loss": 0.4800908133387566, "decode.loss_ce": 0.28008433878421785, "decode.acc_seg": 87.21688079833984, "aux.loss_ce": 0.20000647902488708, "aux.acc_seg": 77.51648712158203, "time": 1.1183944702148438, "iter": 20750, "memory": 8703, "step": 20750} +{"lr": 0.00883383463632925, "data_time": 0.006717562675476074, "loss": 0.421191032230854, "decode.loss_ce": 0.24702921137213707, "decode.acc_seg": 95.77719116210938, "aux.loss_ce": 0.17416182421147824, "aux.acc_seg": 94.98831176757812, "time": 1.2670159578323363, "iter": 20800, "memory": 8704, "step": 20800} +{"lr": 0.008831011147693042, "data_time": 0.0058737039566040036, "loss": 0.44816760122776034, "decode.loss_ce": 0.28210027813911437, "decode.acc_seg": 93.32669067382812, "aux.loss_ce": 0.16606732383370398, "aux.acc_seg": 79.55423736572266, "time": 1.116664719581604, "iter": 20850, "memory": 8704, "step": 20850} +{"lr": 0.008828187557600163, "data_time": 0.007396388053894043, "loss": 0.5320831030607224, "decode.loss_ce": 0.33312715739011767, "decode.acc_seg": 75.99989318847656, "aux.loss_ce": 0.19895594306290149, "aux.acc_seg": 69.18315887451172, "time": 1.1183258533477782, "iter": 20900, "memory": 8704, "step": 20900} +{"lr": 0.008825363866010483, "data_time": 0.008738875389099121, "loss": 0.5216119527816773, "decode.loss_ce": 0.32566282749176023, "decode.acc_seg": 92.63553619384766, "aux.loss_ce": 0.19594912678003312, "aux.acc_seg": 85.40884399414062, "time": 1.1195387363433837, "iter": 20950, "memory": 8704, "step": 20950} +{"lr": 0.008822540072883857, "data_time": 0.006159448623657226, "loss": 0.42675704061985015, "decode.loss_ce": 0.26986208483576773, "decode.acc_seg": 92.96315002441406, "aux.loss_ce": 0.15689495354890823, "aux.acc_seg": 93.3527603149414, "time": 1.1137331247329711, "iter": 21000, "memory": 8703, "step": 21000} +{"lr": 0.008819716178180111, "data_time": 0.005717778205871582, "loss": 0.46236023008823396, "decode.loss_ce": 0.2646774768829346, "decode.acc_seg": 96.23673248291016, "aux.loss_ce": 0.19768275320529938, "aux.acc_seg": 94.78619384765625, "time": 1.1192569017410279, "iter": 21050, "memory": 8705, "step": 21050} +{"lr": 0.008816892181859026, "data_time": 0.00501093864440918, "loss": 0.40498937368392945, "decode.loss_ce": 0.2559616707265377, "decode.acc_seg": 80.1534652709961, "aux.loss_ce": 0.14902770034968854, "aux.acc_seg": 88.34171295166016, "time": 1.1152191162109375, "iter": 21100, "memory": 8703, "step": 21100} +{"lr": 0.008814068083880374, "data_time": 0.008359289169311524, "loss": 0.46372117698192594, "decode.loss_ce": 0.29683865159749984, "decode.acc_seg": 95.7103042602539, "aux.loss_ce": 0.1668825276196003, "aux.acc_seg": 94.64142608642578, "time": 1.1169433116912841, "iter": 21150, "memory": 8704, "step": 21150} +{"lr": 0.008811243884203897, "data_time": 0.007420730590820312, "loss": 0.3595054715871811, "decode.loss_ce": 0.2176773026585579, "decode.acc_seg": 85.53911590576172, "aux.loss_ce": 0.14182816222310066, "aux.acc_seg": 81.33684539794922, "time": 1.1199150085449219, "iter": 21200, "memory": 8705, "step": 21200} +{"lr": 0.00880841958278929, "data_time": 0.006562352180480957, "loss": 0.5541867464780807, "decode.loss_ce": 0.3475810378789902, "decode.acc_seg": 88.82981872558594, "aux.loss_ce": 0.20660570859909058, "aux.acc_seg": 84.7334213256836, "time": 1.1165242195129395, "iter": 21250, "memory": 8704, "step": 21250} +{"lr": 0.00880559517959621, "data_time": 0.0076315879821777345, "loss": 0.49316523373126986, "decode.loss_ce": 0.31203126460313796, "decode.acc_seg": 76.0721206665039, "aux.loss_ce": 0.18113396987318992, "aux.acc_seg": 73.2564926147461, "time": 1.1196701526641846, "iter": 21300, "memory": 8704, "step": 21300} +{"lr": 0.008802770674584312, "data_time": 0.006883645057678222, "loss": 0.5355828836560249, "decode.loss_ce": 0.3395624436438084, "decode.acc_seg": 79.1092529296875, "aux.loss_ce": 0.196020445227623, "aux.acc_seg": 72.74055480957031, "time": 1.1173252582550048, "iter": 21350, "memory": 8704, "step": 21350} +{"lr": 0.008799946067713196, "data_time": 0.008840799331665039, "loss": 0.6166656613349915, "decode.loss_ce": 0.3764959618449211, "decode.acc_seg": 75.17051696777344, "aux.loss_ce": 0.2401696965098381, "aux.acc_seg": 69.53678131103516, "time": 1.1196139812469483, "iter": 21400, "memory": 8703, "step": 21400} +{"lr": 0.008797121358942448, "data_time": 0.006433463096618653, "loss": 0.5586403042078019, "decode.loss_ce": 0.36826200038194656, "decode.acc_seg": 93.24411010742188, "aux.loss_ce": 0.1903783019632101, "aux.acc_seg": 87.21040344238281, "time": 1.1151934385299682, "iter": 21450, "memory": 8704, "step": 21450} +{"lr": 0.00879429654823161, "data_time": 0.007290053367614746, "loss": 0.5628921777009964, "decode.loss_ce": 0.36809505969285966, "decode.acc_seg": 96.16404724121094, "aux.loss_ce": 0.19479711949825287, "aux.acc_seg": 94.73358154296875, "time": 1.1164183616638184, "iter": 21500, "memory": 8704, "step": 21500} +{"lr": 0.008791471635540197, "data_time": 0.00622107982635498, "loss": 0.4261042237281799, "decode.loss_ce": 0.2614313423633575, "decode.acc_seg": 92.85099792480469, "aux.loss_ce": 0.16467288434505462, "aux.acc_seg": 82.88542175292969, "time": 1.1172107458114624, "iter": 21550, "memory": 8703, "step": 21550} +{"lr": 0.008788646620827708, "data_time": 0.0074158191680908205, "loss": 0.5687727928161621, "decode.loss_ce": 0.3364497050642967, "decode.acc_seg": 93.54845428466797, "aux.loss_ce": 0.2323230892419815, "aux.acc_seg": 85.832275390625, "time": 1.1204041957855224, "iter": 21600, "memory": 8704, "step": 21600} +{"lr": 0.008785821504053593, "data_time": 0.007739567756652832, "loss": 0.5198718532919884, "decode.loss_ce": 0.33987817764282224, "decode.acc_seg": 95.65766143798828, "aux.loss_ce": 0.17999368011951447, "aux.acc_seg": 95.25184631347656, "time": 1.1148754596710204, "iter": 21650, "memory": 8703, "step": 21650} +{"lr": 0.008782996285177275, "data_time": 0.005331707000732422, "loss": 0.4082928314805031, "decode.loss_ce": 0.25908539444208145, "decode.acc_seg": 95.4092025756836, "aux.loss_ce": 0.14920743480324744, "aux.acc_seg": 94.12117004394531, "time": 1.1146405220031739, "iter": 21700, "memory": 8703, "step": 21700} +{"lr": 0.008780170964158156, "data_time": 0.005620551109313965, "loss": 0.6018950343132019, "decode.loss_ce": 0.3549399241805077, "decode.acc_seg": 76.27684020996094, "aux.loss_ce": 0.2469551257789135, "aux.acc_seg": 55.84398651123047, "time": 1.1115005254745483, "iter": 21750, "memory": 8704, "step": 21750} +{"lr": 0.008777345540955595, "data_time": 0.005617570877075195, "loss": 0.6218745782971382, "decode.loss_ce": 0.41022854298353195, "decode.acc_seg": 91.0462646484375, "aux.loss_ce": 0.21164602488279344, "aux.acc_seg": 90.6942367553711, "time": 1.1110631942749023, "iter": 21800, "memory": 8704, "step": 21800} +{"lr": 0.008774520015528926, "data_time": 0.005606889724731445, "loss": 0.32779603600502016, "decode.loss_ce": 0.1901876375079155, "decode.acc_seg": 91.98258209228516, "aux.loss_ce": 0.13760839626193047, "aux.acc_seg": 81.43017578125, "time": 1.1131871700286866, "iter": 21850, "memory": 8703, "step": 21850} +{"lr": 0.008771694387837446, "data_time": 0.005664992332458496, "loss": 0.49493096470832826, "decode.loss_ce": 0.31570793837308886, "decode.acc_seg": 81.5689697265625, "aux.loss_ce": 0.179223021119833, "aux.acc_seg": 75.98180389404297, "time": 1.1110554456710815, "iter": 21900, "memory": 8704, "step": 21900} +{"lr": 0.00876886865784043, "data_time": 0.005912280082702637, "loss": 0.4565425381064415, "decode.loss_ce": 0.2820639744400978, "decode.acc_seg": 91.41171264648438, "aux.loss_ce": 0.17447856217622756, "aux.acc_seg": 88.5508804321289, "time": 1.1183193683624268, "iter": 21950, "memory": 8705, "step": 21950} +{"lr": 0.008766042825497127, "data_time": 0.006560111045837402, "loss": 0.4873507350683212, "decode.loss_ce": 0.29686188995838164, "decode.acc_seg": 92.58308410644531, "aux.loss_ce": 0.19048884510993958, "aux.acc_seg": 89.78252410888672, "time": 1.1183432340621948, "iter": 22000, "memory": 8704, "step": 22000} +{"lr": 0.008763216890766727, "data_time": 0.007279682159423828, "loss": 0.6122558385133743, "decode.loss_ce": 0.3745098412036896, "decode.acc_seg": 74.52843475341797, "aux.loss_ce": 0.23774599209427832, "aux.acc_seg": 67.98139953613281, "time": 1.1194441318511963, "iter": 22050, "memory": 8704, "step": 22050} +{"lr": 0.008760390853608423, "data_time": 0.007229351997375488, "loss": 0.6311151444911957, "decode.loss_ce": 0.38830719888210297, "decode.acc_seg": 88.56671142578125, "aux.loss_ce": 0.24280793219804764, "aux.acc_seg": 84.05170440673828, "time": 1.1154090404510497, "iter": 22100, "memory": 8704, "step": 22100} +{"lr": 0.008757564713981347, "data_time": 0.007549428939819336, "loss": 0.5545893773436547, "decode.loss_ce": 0.354876434803009, "decode.acc_seg": 84.87167358398438, "aux.loss_ce": 0.19971294030547143, "aux.acc_seg": 81.10904693603516, "time": 1.1151935338974, "iter": 22150, "memory": 8703, "step": 22150} +{"lr": 0.008754738471844627, "data_time": 0.00613560676574707, "loss": 0.4765424966812134, "decode.loss_ce": 0.31049685925245285, "decode.acc_seg": 91.78148651123047, "aux.loss_ce": 0.16604563780128956, "aux.acc_seg": 91.1352767944336, "time": 1.1150643825531006, "iter": 22200, "memory": 8703, "step": 22200} +{"lr": 0.008751912127157346, "data_time": 0.005866551399230957, "loss": 0.34319991022348406, "decode.loss_ce": 0.20988086238503456, "decode.acc_seg": 96.33219146728516, "aux.loss_ce": 0.13331904709339143, "aux.acc_seg": 94.8531723022461, "time": 1.1102180480957031, "iter": 22250, "memory": 8704, "step": 22250} +{"lr": 0.008749085679878565, "data_time": 0.006510114669799805, "loss": 0.3241773508489132, "decode.loss_ce": 0.19092892482876778, "decode.acc_seg": 95.31897735595703, "aux.loss_ce": 0.13324842527508735, "aux.acc_seg": 93.70832061767578, "time": 1.1120199680328369, "iter": 22300, "memory": 8704, "step": 22300} +{"lr": 0.008746259129967295, "data_time": 0.006017827987670898, "loss": 0.6165547013282776, "decode.loss_ce": 0.3865153521299362, "decode.acc_seg": 89.98628997802734, "aux.loss_ce": 0.23003935366868972, "aux.acc_seg": 88.86566162109375, "time": 1.1131404638290405, "iter": 22350, "memory": 8704, "step": 22350} +{"lr": 0.00874343247738253, "data_time": 0.006489610671997071, "loss": 0.43443751633167266, "decode.loss_ce": 0.2815967448055744, "decode.acc_seg": 84.25629425048828, "aux.loss_ce": 0.15284076556563378, "aux.acc_seg": 78.72886657714844, "time": 1.1123032569885254, "iter": 22400, "memory": 8703, "step": 22400} +{"lr": 0.008740605722083225, "data_time": 0.006882953643798828, "loss": 0.5322321459650994, "decode.loss_ce": 0.33629997819662094, "decode.acc_seg": 92.70954132080078, "aux.loss_ce": 0.19593217521905898, "aux.acc_seg": 92.32775115966797, "time": 1.1217521667480468, "iter": 22450, "memory": 8704, "step": 22450} +{"lr": 0.00873777886402832, "data_time": 0.006495428085327148, "loss": 0.48484880924224855, "decode.loss_ce": 0.3087138161063194, "decode.acc_seg": 84.01298522949219, "aux.loss_ce": 0.1761349853128195, "aux.acc_seg": 81.55358123779297, "time": 1.1197777032852172, "iter": 22500, "memory": 8704, "step": 22500} +{"lr": 0.008734951903176703, "data_time": 0.00699465274810791, "loss": 0.6071513056755066, "decode.loss_ce": 0.39564699232578276, "decode.acc_seg": 92.97148132324219, "aux.loss_ce": 0.21150431483983995, "aux.acc_seg": 91.24971771240234, "time": 1.118622398376465, "iter": 22550, "memory": 8703, "step": 22550} +{"lr": 0.008732124839487241, "data_time": 0.006294775009155274, "loss": 0.48511354625225067, "decode.loss_ce": 0.30127745270729067, "decode.acc_seg": 85.03862762451172, "aux.loss_ce": 0.18383608907461166, "aux.acc_seg": 80.78873443603516, "time": 1.1153408288955688, "iter": 22600, "memory": 8704, "step": 22600} +{"lr": 0.008729297672918766, "data_time": 0.006227374076843262, "loss": 0.5048678651452064, "decode.loss_ce": 0.31380087286233904, "decode.acc_seg": 95.2983169555664, "aux.loss_ce": 0.1910669893026352, "aux.acc_seg": 94.94825744628906, "time": 1.1153935432434081, "iter": 22650, "memory": 8703, "step": 22650} +{"lr": 0.008726470403430085, "data_time": 0.006583261489868164, "loss": 0.496848438680172, "decode.loss_ce": 0.30694573521614077, "decode.acc_seg": 89.95621490478516, "aux.loss_ce": 0.1899027034640312, "aux.acc_seg": 88.48787689208984, "time": 1.115089726448059, "iter": 22700, "memory": 8704, "step": 22700} +{"lr": 0.008723643030979975, "data_time": 0.007757019996643066, "loss": 0.5754264742136002, "decode.loss_ce": 0.3553712032735348, "decode.acc_seg": 74.90971374511719, "aux.loss_ce": 0.22005527168512345, "aux.acc_seg": 69.52787780761719, "time": 1.1173296928405763, "iter": 22750, "memory": 8703, "step": 22750} +{"lr": 0.008720815555527167, "data_time": 0.007786464691162109, "loss": 0.5134522527456283, "decode.loss_ce": 0.32036343961954117, "decode.acc_seg": 94.72344207763672, "aux.loss_ce": 0.19308881238102912, "aux.acc_seg": 93.8203125, "time": 1.119233536720276, "iter": 22800, "memory": 8704, "step": 22800} +{"lr": 0.008717987977030375, "data_time": 0.008275437355041503, "loss": 0.47695772647857665, "decode.loss_ce": 0.2974909208714962, "decode.acc_seg": 75.28276062011719, "aux.loss_ce": 0.17946680448949337, "aux.acc_seg": 69.93990325927734, "time": 1.1176771163940429, "iter": 22850, "memory": 8703, "step": 22850} +{"lr": 0.00871516029544827, "data_time": 0.006104683876037598, "loss": 0.40548514425754545, "decode.loss_ce": 0.2557879090309143, "decode.acc_seg": 94.21888732910156, "aux.loss_ce": 0.14969723410904406, "aux.acc_seg": 92.64252471923828, "time": 1.1172473430633545, "iter": 22900, "memory": 8704, "step": 22900} +{"lr": 0.008712332510739489, "data_time": 0.006627917289733887, "loss": 0.39215890914201734, "decode.loss_ce": 0.24697733372449876, "decode.acc_seg": 94.49602508544922, "aux.loss_ce": 0.1451815739274025, "aux.acc_seg": 91.04092407226562, "time": 1.1172455549240112, "iter": 22950, "memory": 8704, "step": 22950} +{"lr": 0.008709504622862655, "data_time": 0.005505228042602539, "loss": 0.3831159546971321, "decode.loss_ce": 0.24295912608504294, "decode.acc_seg": 88.35213470458984, "aux.loss_ce": 0.14015683643519877, "aux.acc_seg": 86.68486022949219, "time": 1.1162511825561523, "iter": 23000, "memory": 8704, "step": 23000} +{"lr": 0.008706676631776352, "data_time": 0.007351875305175781, "loss": 0.5018880814313889, "decode.loss_ce": 0.30981338694691657, "decode.acc_seg": 87.30964660644531, "aux.loss_ce": 0.19207470044493674, "aux.acc_seg": 85.69087982177734, "time": 1.1197668790817261, "iter": 23050, "memory": 8703, "step": 23050} +{"lr": 0.008703848537439125, "data_time": 0.007317852973937988, "loss": 0.41247977018356324, "decode.loss_ce": 0.25189691931009295, "decode.acc_seg": 92.83535766601562, "aux.loss_ce": 0.1605828505009413, "aux.acc_seg": 91.80729675292969, "time": 1.1158045053482055, "iter": 23100, "memory": 8703, "step": 23100} +{"lr": 0.008701020339809497, "data_time": 0.007098388671875, "loss": 0.46049661189317703, "decode.loss_ce": 0.28837122917175295, "decode.acc_seg": 83.31234741210938, "aux.loss_ce": 0.17212537974119185, "aux.acc_seg": 79.01287078857422, "time": 1.116907286643982, "iter": 23150, "memory": 8704, "step": 23150} +{"lr": 0.008698192038845943, "data_time": 0.005811500549316406, "loss": 0.3654537618160248, "decode.loss_ce": 0.21625647693872452, "decode.acc_seg": 95.73516845703125, "aux.loss_ce": 0.14919728338718413, "aux.acc_seg": 94.09052276611328, "time": 1.1106688737869264, "iter": 23200, "memory": 8704, "step": 23200} +{"lr": 0.008695363634506927, "data_time": 0.0076619148254394535, "loss": 0.544168908894062, "decode.loss_ce": 0.34091065227985384, "decode.acc_seg": 94.99581146240234, "aux.loss_ce": 0.20325826108455658, "aux.acc_seg": 86.15665435791016, "time": 1.118894839286804, "iter": 23250, "memory": 8703, "step": 23250} +{"lr": 0.00869253512675087, "data_time": 0.006034636497497558, "loss": 0.5391855806112289, "decode.loss_ce": 0.33099479749798777, "decode.acc_seg": 97.13700103759766, "aux.loss_ce": 0.20819077715277673, "aux.acc_seg": 94.10591125488281, "time": 1.1161158084869385, "iter": 23300, "memory": 8704, "step": 23300} +{"lr": 0.008689706515536154, "data_time": 0.008336091041564941, "loss": 0.5618818938732147, "decode.loss_ce": 0.3500438190996647, "decode.acc_seg": 93.82381439208984, "aux.loss_ce": 0.21183807104825975, "aux.acc_seg": 88.07518768310547, "time": 1.119817066192627, "iter": 23350, "memory": 8704, "step": 23350} +{"lr": 0.008686877800821153, "data_time": 0.008223962783813477, "loss": 0.5131027311086654, "decode.loss_ce": 0.3282688207924366, "decode.acc_seg": 93.7918930053711, "aux.loss_ce": 0.1848339017480612, "aux.acc_seg": 92.67158508300781, "time": 1.123186206817627, "iter": 23400, "memory": 8703, "step": 23400} +{"lr": 0.008684048982564177, "data_time": 0.007751846313476562, "loss": 0.3665427714586258, "decode.loss_ce": 0.2132131800055504, "decode.acc_seg": 86.57583618164062, "aux.loss_ce": 0.15332959182560443, "aux.acc_seg": 64.29132080078125, "time": 1.1177322149276734, "iter": 23450, "memory": 8704, "step": 23450} +{"lr": 0.008681220060723535, "data_time": 0.00623617172241211, "loss": 0.3681049644947052, "decode.loss_ce": 0.23358656615018844, "decode.acc_seg": 85.15217590332031, "aux.loss_ce": 0.1345184002071619, "aux.acc_seg": 81.77757263183594, "time": 1.1132871389389039, "iter": 23500, "memory": 8704, "step": 23500} +{"lr": 0.00867839103525748, "data_time": 0.005180907249450683, "loss": 0.5554511770606041, "decode.loss_ce": 0.3606885612010956, "decode.acc_seg": 96.58739471435547, "aux.loss_ce": 0.19476260989904404, "aux.acc_seg": 88.9381332397461, "time": 1.1138069868087768, "iter": 23550, "memory": 8703, "step": 23550} +{"lr": 0.008675561906124235, "data_time": 0.005419588088989258, "loss": 0.4382850229740143, "decode.loss_ce": 0.2671189717948437, "decode.acc_seg": 90.03644561767578, "aux.loss_ce": 0.17116605192422868, "aux.acc_seg": 86.10319519042969, "time": 1.1143401861190796, "iter": 23600, "memory": 8703, "step": 23600} +{"lr": 0.008672732673282021, "data_time": 0.008077645301818847, "loss": 0.42182130813598634, "decode.loss_ce": 0.2622112736105919, "decode.acc_seg": 94.69992065429688, "aux.loss_ce": 0.15961004346609114, "aux.acc_seg": 86.86275482177734, "time": 1.1190904378890991, "iter": 23650, "memory": 8704, "step": 23650} +{"lr": 0.008669903336688987, "data_time": 0.00838005542755127, "loss": 0.2995807856321335, "decode.loss_ce": 0.1898793824017048, "decode.acc_seg": 93.24734497070312, "aux.loss_ce": 0.1097013983875513, "aux.acc_seg": 83.94699096679688, "time": 1.1179460048675538, "iter": 23700, "memory": 8704, "step": 23700} +{"lr": 0.008667073896303258, "data_time": 0.006728863716125489, "loss": 0.4349141001701355, "decode.loss_ce": 0.26825486719608305, "decode.acc_seg": 93.1168212890625, "aux.loss_ce": 0.16665923744440078, "aux.acc_seg": 89.50856018066406, "time": 1.1160804510116578, "iter": 23750, "memory": 8703, "step": 23750} +{"lr": 0.008664244352082962, "data_time": 0.006251764297485351, "loss": 0.3576837956905365, "decode.loss_ce": 0.21699274182319642, "decode.acc_seg": 95.11978912353516, "aux.loss_ce": 0.14069105237722396, "aux.acc_seg": 91.14525604248047, "time": 1.11749370098114, "iter": 23800, "memory": 8703, "step": 23800} +{"lr": 0.008661414703986145, "data_time": 0.00826435089111328, "loss": 0.46120390892028806, "decode.loss_ce": 0.3003775507211685, "decode.acc_seg": 88.8591079711914, "aux.loss_ce": 0.1608263574540615, "aux.acc_seg": 86.98761749267578, "time": 1.1212550163269044, "iter": 23850, "memory": 8704, "step": 23850} +{"lr": 0.008658584951970848, "data_time": 0.007661128044128418, "loss": 0.48359151631593705, "decode.loss_ce": 0.3154480025172234, "decode.acc_seg": 87.69648742675781, "aux.loss_ce": 0.16814351081848145, "aux.acc_seg": 86.69862365722656, "time": 1.1175342321395874, "iter": 23900, "memory": 8703, "step": 23900} +{"lr": 0.00865575509599509, "data_time": 0.006742358207702637, "loss": 0.4098642811179161, "decode.loss_ce": 0.25911567360162735, "decode.acc_seg": 91.1939697265625, "aux.loss_ce": 0.15074860937893392, "aux.acc_seg": 84.25728607177734, "time": 1.1146511077880858, "iter": 23950, "memory": 8704, "step": 23950} +{"lr": 0.008652925136016815, "data_time": 0.005136013031005859, "loss": 0.46954585015773775, "decode.loss_ce": 0.29723758772015574, "decode.acc_seg": 92.82360076904297, "aux.loss_ce": 0.1723082721233368, "aux.acc_seg": 88.98143768310547, "time": 1.1183378219604492, "iter": 24000, "memory": 8703, "step": 24000} +{"lr": 0.00865009507199398, "data_time": 0.007506442070007324, "loss": 0.4136171355843544, "decode.loss_ce": 0.26446336731314657, "decode.acc_seg": 74.14936065673828, "aux.loss_ce": 0.14915375895798205, "aux.acc_seg": 58.04774475097656, "time": 1.1180572271347047, "iter": 24050, "memory": 8703, "step": 24050} +{"lr": 0.00864726490388451, "data_time": 0.008623862266540527, "loss": 0.4161006540060043, "decode.loss_ce": 0.2708143323659897, "decode.acc_seg": 92.11050415039062, "aux.loss_ce": 0.14528633132576943, "aux.acc_seg": 91.33148193359375, "time": 1.118198823928833, "iter": 24100, "memory": 8703, "step": 24100} +{"lr": 0.008644434631646249, "data_time": 0.006458806991577149, "loss": 0.6440274536609649, "decode.loss_ce": 0.3859122976660728, "decode.acc_seg": 93.0583267211914, "aux.loss_ce": 0.2581151582300663, "aux.acc_seg": 86.55058288574219, "time": 1.1127164602279662, "iter": 24150, "memory": 8703, "step": 24150} +{"lr": 0.008641604255237051, "data_time": 0.006502127647399903, "loss": 0.5431691855192184, "decode.loss_ce": 0.34229405149817466, "decode.acc_seg": 93.0735855102539, "aux.loss_ce": 0.2008751343935728, "aux.acc_seg": 88.46588134765625, "time": 1.11563880443573, "iter": 24200, "memory": 8703, "step": 24200} +{"lr": 0.008638773774614725, "data_time": 0.006979727745056152, "loss": 0.43925429731607435, "decode.loss_ce": 0.26952152252197265, "decode.acc_seg": 90.66264343261719, "aux.loss_ce": 0.16973277255892755, "aux.acc_seg": 89.90187072753906, "time": 1.1179874897003175, "iter": 24250, "memory": 8704, "step": 24250} +{"lr": 0.008635943189737039, "data_time": 0.008512568473815919, "loss": 0.4628853857517242, "decode.loss_ce": 0.2766717165708542, "decode.acc_seg": 93.3691635131836, "aux.loss_ce": 0.18621366694569588, "aux.acc_seg": 83.40447235107422, "time": 1.1212998390197755, "iter": 24300, "memory": 8703, "step": 24300} +{"lr": 0.00863311250056175, "data_time": 0.004991793632507324, "loss": 0.47533310800790785, "decode.loss_ce": 0.3021251425147057, "decode.acc_seg": 86.09688568115234, "aux.loss_ce": 0.17320796251296997, "aux.acc_seg": 84.94999694824219, "time": 1.117189645767212, "iter": 24350, "memory": 8703, "step": 24350} +{"lr": 0.008630281707046569, "data_time": 0.007843613624572754, "loss": 0.6347966879606247, "decode.loss_ce": 0.39126654267311095, "decode.acc_seg": 88.48368835449219, "aux.loss_ce": 0.24353013895452022, "aux.acc_seg": 81.77407836914062, "time": 1.123529839515686, "iter": 24400, "memory": 8704, "step": 24400} +{"lr": 0.008627450809149175, "data_time": 0.007146883010864258, "loss": 0.5376663476228714, "decode.loss_ce": 0.3370423004031181, "decode.acc_seg": 92.20806121826172, "aux.loss_ce": 0.20062404051423072, "aux.acc_seg": 87.39552307128906, "time": 1.1185514450073242, "iter": 24450, "memory": 8703, "step": 24450} +{"lr": 0.008624619806827202, "data_time": 0.00778200626373291, "loss": 0.43892629742622374, "decode.loss_ce": 0.2699890837073326, "decode.acc_seg": 86.79485321044922, "aux.loss_ce": 0.16893720924854277, "aux.acc_seg": 86.86249542236328, "time": 1.1163060188293457, "iter": 24500, "memory": 8704, "step": 24500} +{"lr": 0.008621788700038267, "data_time": 0.007381916046142578, "loss": 0.5701194405555725, "decode.loss_ce": 0.3609897196292877, "decode.acc_seg": 93.22045135498047, "aux.loss_ce": 0.2091297209262848, "aux.acc_seg": 90.09004974365234, "time": 1.1200663566589355, "iter": 24550, "memory": 8704, "step": 24550} +{"lr": 0.008618957488739946, "data_time": 0.006611466407775879, "loss": 0.44309170693159106, "decode.loss_ce": 0.27310502603650094, "decode.acc_seg": 94.38575744628906, "aux.loss_ce": 0.16998667679727078, "aux.acc_seg": 88.35276794433594, "time": 1.1161222219467164, "iter": 24600, "memory": 8704, "step": 24600} +{"lr": 0.008616126172889793, "data_time": 0.006486678123474121, "loss": 0.5253550708293915, "decode.loss_ce": 0.30223367661237716, "decode.acc_seg": 84.67655181884766, "aux.loss_ce": 0.22312140315771103, "aux.acc_seg": 68.01910400390625, "time": 1.1144150972366333, "iter": 24650, "memory": 8703, "step": 24650} +{"lr": 0.008613294752445322, "data_time": 0.007663106918334961, "loss": 0.5153075888752937, "decode.loss_ce": 0.32408916503190993, "decode.acc_seg": 84.45751953125, "aux.loss_ce": 0.1912184279412031, "aux.acc_seg": 81.32711791992188, "time": 1.1191028356552124, "iter": 24700, "memory": 8703, "step": 24700} +{"lr": 0.00861046322736401, "data_time": 0.005916810035705567, "loss": 0.4920861527323723, "decode.loss_ce": 0.30258139595389366, "decode.acc_seg": 95.9953842163086, "aux.loss_ce": 0.18950475454330445, "aux.acc_seg": 94.94156646728516, "time": 1.1121965408325196, "iter": 24750, "memory": 8703, "step": 24750} +{"lr": 0.008607631597603308, "data_time": 0.005826616287231445, "loss": 0.5420782133936882, "decode.loss_ce": 0.3411680981516838, "decode.acc_seg": 75.10032653808594, "aux.loss_ce": 0.20091010257601738, "aux.acc_seg": 63.99065399169922, "time": 1.1157747507095337, "iter": 24800, "memory": 8704, "step": 24800} +{"lr": 0.008604799863120632, "data_time": 0.006428647041320801, "loss": 0.4256654754281044, "decode.loss_ce": 0.26239737719297407, "decode.acc_seg": 94.16179656982422, "aux.loss_ce": 0.1632680930197239, "aux.acc_seg": 93.21479797363281, "time": 1.1137540340423584, "iter": 24850, "memory": 8703, "step": 24850} +{"lr": 0.008601968023873363, "data_time": 0.006701827049255371, "loss": 0.4545693382620811, "decode.loss_ce": 0.26478504538536074, "decode.acc_seg": 93.96273040771484, "aux.loss_ce": 0.18978428691625596, "aux.acc_seg": 89.8901596069336, "time": 1.1175693988800048, "iter": 24900, "memory": 8705, "step": 24900} +{"lr": 0.008599136079818853, "data_time": 0.006566619873046875, "loss": 0.5515924274921418, "decode.loss_ce": 0.36280365139245985, "decode.acc_seg": 88.87474822998047, "aux.loss_ce": 0.18878877237439157, "aux.acc_seg": 88.64517211914062, "time": 1.1184684991836549, "iter": 24950, "memory": 8703, "step": 24950} +{"lr": 0.008596304030914421, "data_time": 0.006717562675476074, "loss": 0.3309319123625755, "decode.loss_ce": 0.20909473225474356, "decode.acc_seg": 85.67987823486328, "aux.loss_ce": 0.12183718383312225, "aux.acc_seg": 77.28855895996094, "time": 1.1144954919815064, "iter": 25000, "memory": 8703, "step": 25000} +{"lr": 0.008593471877117332, "data_time": 0.007284331321716309, "loss": 0.43389111161231997, "decode.loss_ce": 0.27117435336112977, "decode.acc_seg": 95.82054901123047, "aux.loss_ce": 0.16271676123142242, "aux.acc_seg": 93.54782104492188, "time": 1.1141093730926515, "iter": 25050, "memory": 8703, "step": 25050} +{"lr": 0.008590639618384861, "data_time": 0.006356549263000488, "loss": 0.4376698717474937, "decode.loss_ce": 0.2529098868370056, "decode.acc_seg": 76.05711364746094, "aux.loss_ce": 0.1847599796950817, "aux.acc_seg": 63.509239196777344, "time": 1.1115278959274293, "iter": 25100, "memory": 8704, "step": 25100} +{"lr": 0.008587807254674208, "data_time": 0.006292939186096191, "loss": 0.4067206397652626, "decode.loss_ce": 0.25816255807876587, "decode.acc_seg": 96.01063537597656, "aux.loss_ce": 0.1485580824315548, "aux.acc_seg": 91.70555877685547, "time": 1.1112481355667114, "iter": 25150, "memory": 8703, "step": 25150} +{"lr": 0.008584974785942551, "data_time": 0.0076914548873901365, "loss": 0.44428529739379885, "decode.loss_ce": 0.2782874196767807, "decode.acc_seg": 92.85869598388672, "aux.loss_ce": 0.16599787697196006, "aux.acc_seg": 90.48416900634766, "time": 1.1170701742172242, "iter": 25200, "memory": 8703, "step": 25200} +{"lr": 0.008582142212147049, "data_time": 0.007924175262451172, "loss": 0.5208041846752167, "decode.loss_ce": 0.35043812692165377, "decode.acc_seg": 62.65403366088867, "aux.loss_ce": 0.1703660547733307, "aux.acc_seg": 65.87128448486328, "time": 1.1167646169662475, "iter": 25250, "memory": 8703, "step": 25250} +{"lr": 0.008579309533244818, "data_time": 0.007334327697753907, "loss": 0.4329818084836006, "decode.loss_ce": 0.2759839825332165, "decode.acc_seg": 94.69871520996094, "aux.loss_ce": 0.1569978255778551, "aux.acc_seg": 93.77752685546875, "time": 1.1180529594421387, "iter": 25300, "memory": 8703, "step": 25300} +{"lr": 0.008576476749192936, "data_time": 0.008003640174865722, "loss": 0.6190480992197991, "decode.loss_ce": 0.4066999383270741, "decode.acc_seg": 78.35216522216797, "aux.loss_ce": 0.21234815195202827, "aux.acc_seg": 76.67362976074219, "time": 1.1187229394912719, "iter": 25350, "memory": 8704, "step": 25350} +{"lr": 0.008573643859948453, "data_time": 0.0068634748458862305, "loss": 0.6527213633060456, "decode.loss_ce": 0.41939795687794684, "decode.acc_seg": 91.35919952392578, "aux.loss_ce": 0.2333234041929245, "aux.acc_seg": 87.49847412109375, "time": 1.114638900756836, "iter": 25400, "memory": 8703, "step": 25400} +{"lr": 0.008570810865468386, "data_time": 0.007202839851379395, "loss": 0.4317351818084717, "decode.loss_ce": 0.2746362805366516, "decode.acc_seg": 94.60480499267578, "aux.loss_ce": 0.1570988990366459, "aux.acc_seg": 90.56822204589844, "time": 1.1139482498168944, "iter": 25450, "memory": 8704, "step": 25450} +{"lr": 0.008567977765709712, "data_time": 0.006676101684570312, "loss": 0.4394163593649864, "decode.loss_ce": 0.2993321046233177, "decode.acc_seg": 93.22431945800781, "aux.loss_ce": 0.14008425287902354, "aux.acc_seg": 90.54339599609375, "time": 1.1169233322143555, "iter": 25500, "memory": 8703, "step": 25500} +{"lr": 0.008565144560629394, "data_time": 0.006198525428771973, "loss": 0.524773183465004, "decode.loss_ce": 0.33638499230146407, "decode.acc_seg": 91.90412902832031, "aux.loss_ce": 0.18838820084929467, "aux.acc_seg": 83.82408905029297, "time": 1.1157768726348878, "iter": 25550, "memory": 8704, "step": 25550} +{"lr": 0.008562311250184331, "data_time": 0.006978535652160644, "loss": 0.536225187778473, "decode.loss_ce": 0.3412781998515129, "decode.acc_seg": 94.32849884033203, "aux.loss_ce": 0.19494699239730834, "aux.acc_seg": 81.27704620361328, "time": 1.1137654304504394, "iter": 25600, "memory": 8703, "step": 25600} +{"lr": 0.008559477834331405, "data_time": 0.008014941215515136, "loss": 0.5118942737579346, "decode.loss_ce": 0.29678034484386445, "decode.acc_seg": 87.16951751708984, "aux.loss_ce": 0.21511393040418625, "aux.acc_seg": 84.26754760742188, "time": 1.119355607032776, "iter": 25650, "memory": 8704, "step": 25650} +{"lr": 0.008556644313027474, "data_time": 0.006910252571105957, "loss": 0.4333552271127701, "decode.loss_ce": 0.26496438309550285, "decode.acc_seg": 90.50648498535156, "aux.loss_ce": 0.1683908373117447, "aux.acc_seg": 88.9495849609375, "time": 1.1247225046157836, "iter": 25700, "memory": 8703, "step": 25700} +{"lr": 0.008553810686229346, "data_time": 0.005327701568603516, "loss": 0.45645352005958556, "decode.loss_ce": 0.27893516421318054, "decode.acc_seg": 90.92845916748047, "aux.loss_ce": 0.1775183603167534, "aux.acc_seg": 87.28179931640625, "time": 1.1151879549026489, "iter": 25750, "memory": 8704, "step": 25750} +{"lr": 0.008550976953893806, "data_time": 0.006655550003051758, "loss": 0.5198762327432632, "decode.loss_ce": 0.3291877552866936, "decode.acc_seg": 96.49740600585938, "aux.loss_ce": 0.19068848490715026, "aux.acc_seg": 83.70812225341797, "time": 1.1124563455581664, "iter": 25800, "memory": 8704, "step": 25800} +{"lr": 0.008548143115977588, "data_time": 0.006161355972290039, "loss": 0.5812692657113075, "decode.loss_ce": 0.3679457388818264, "decode.acc_seg": 74.17589569091797, "aux.loss_ce": 0.21332351192831994, "aux.acc_seg": 71.72323608398438, "time": 1.1161044359207153, "iter": 25850, "memory": 8704, "step": 25850} +{"lr": 0.008545309172437418, "data_time": 0.008155369758605957, "loss": 0.511894078552723, "decode.loss_ce": 0.3251002609729767, "decode.acc_seg": 82.35861206054688, "aux.loss_ce": 0.18679381608963014, "aux.acc_seg": 80.59227752685547, "time": 1.122231364250183, "iter": 25900, "memory": 8704, "step": 25900} +{"lr": 0.00854247512322996, "data_time": 0.005950546264648438, "loss": 0.4916763320565224, "decode.loss_ce": 0.3225258611142635, "decode.acc_seg": 96.7056884765625, "aux.loss_ce": 0.16915047354996204, "aux.acc_seg": 96.82337188720703, "time": 1.1134025573730468, "iter": 25950, "memory": 8704, "step": 25950} +{"lr": 0.008539640968311868, "data_time": 0.006147527694702148, "loss": 0.504697048664093, "decode.loss_ce": 0.3177597984671593, "decode.acc_seg": 87.77891540527344, "aux.loss_ce": 0.18693725988268853, "aux.acc_seg": 86.24661254882812, "time": 1.1124778032302856, "iter": 26000, "memory": 8704, "step": 26000} +{"lr": 0.00853680670763976, "data_time": 0.006653881072998047, "loss": 0.40824928134679794, "decode.loss_ce": 0.24964823424816132, "decode.acc_seg": 88.25765991210938, "aux.loss_ce": 0.15860104486346244, "aux.acc_seg": 77.23954010009766, "time": 1.117420220375061, "iter": 26050, "memory": 8704, "step": 26050} +{"lr": 0.0085339723411702, "data_time": 0.005525660514831543, "loss": 0.3329943001270294, "decode.loss_ce": 0.2060972757637501, "decode.acc_seg": 93.90029907226562, "aux.loss_ce": 0.12689702473580838, "aux.acc_seg": 92.8294448852539, "time": 1.112538456916809, "iter": 26100, "memory": 8703, "step": 26100} +{"lr": 0.008531137868859728, "data_time": 0.008522129058837891, "loss": 0.45530323684215546, "decode.loss_ce": 0.2833040714263916, "decode.acc_seg": 84.71175384521484, "aux.loss_ce": 0.17199917063117026, "aux.acc_seg": 82.34944915771484, "time": 1.1250436544418334, "iter": 26150, "memory": 8704, "step": 26150} +{"lr": 0.008528303290664865, "data_time": 0.0059316158294677734, "loss": 0.418623811006546, "decode.loss_ce": 0.26255819499492644, "decode.acc_seg": 91.28646850585938, "aux.loss_ce": 0.15606560781598092, "aux.acc_seg": 88.58940887451172, "time": 1.1125263452529908, "iter": 26200, "memory": 8703, "step": 26200} +{"lr": 0.008525468606542077, "data_time": 0.006996440887451172, "loss": 0.554119935631752, "decode.loss_ce": 0.36229397654533385, "decode.acc_seg": 94.50299835205078, "aux.loss_ce": 0.1918259546160698, "aux.acc_seg": 89.93079376220703, "time": 1.1158776521682738, "iter": 26250, "memory": 8704, "step": 26250} +{"lr": 0.008522633816447807, "data_time": 0.007766985893249511, "loss": 0.5364118844270707, "decode.loss_ce": 0.3342470645904541, "decode.acc_seg": 92.08513641357422, "aux.loss_ce": 0.20216482877731323, "aux.acc_seg": 89.85258483886719, "time": 1.116698956489563, "iter": 26300, "memory": 8703, "step": 26300} +{"lr": 0.008519798920338452, "data_time": 0.007227110862731934, "loss": 0.537445142865181, "decode.loss_ce": 0.32483530044555664, "decode.acc_seg": 93.50916290283203, "aux.loss_ce": 0.21260983422398566, "aux.acc_seg": 85.6827392578125, "time": 1.1197639465332032, "iter": 26350, "memory": 8704, "step": 26350} +{"lr": 0.008516963918170396, "data_time": 0.006481099128723145, "loss": 0.44740826487541197, "decode.loss_ce": 0.272855706512928, "decode.acc_seg": 96.39273834228516, "aux.loss_ce": 0.17455255314707757, "aux.acc_seg": 93.10983276367188, "time": 1.1125464200973512, "iter": 26400, "memory": 8703, "step": 26400} +{"lr": 0.00851412880989997, "data_time": 0.004970002174377442, "loss": 0.4759154438972473, "decode.loss_ce": 0.29642129093408587, "decode.acc_seg": 91.63195037841797, "aux.loss_ce": 0.17949414998292923, "aux.acc_seg": 84.15603637695312, "time": 1.109730339050293, "iter": 26450, "memory": 8704, "step": 26450} +{"lr": 0.008511293595483478, "data_time": 0.00718686580657959, "loss": 0.3159950837492943, "decode.loss_ce": 0.19863299280405045, "decode.acc_seg": 91.91620635986328, "aux.loss_ce": 0.11736209616065026, "aux.acc_seg": 85.68777465820312, "time": 1.1165886163711547, "iter": 26500, "memory": 8704, "step": 26500} +{"lr": 0.008508458274877189, "data_time": 0.007156276702880859, "loss": 0.5497231245040893, "decode.loss_ce": 0.33710807412862775, "decode.acc_seg": 96.43001556396484, "aux.loss_ce": 0.2126150570809841, "aux.acc_seg": 93.22706604003906, "time": 1.1211233854293823, "iter": 26550, "memory": 8704, "step": 26550} +{"lr": 0.008505622848037337, "data_time": 0.00826563835144043, "loss": 0.450500950217247, "decode.loss_ce": 0.2882083341479301, "decode.acc_seg": 72.33104705810547, "aux.loss_ce": 0.16229260712862015, "aux.acc_seg": 68.1123046875, "time": 1.1216737747192382, "iter": 26600, "memory": 8703, "step": 26600} +{"lr": 0.008502787314920126, "data_time": 0.006160998344421386, "loss": 0.4922562509775162, "decode.loss_ce": 0.31691000089049337, "decode.acc_seg": 96.41704559326172, "aux.loss_ce": 0.17534623965620993, "aux.acc_seg": 95.78781127929688, "time": 1.11610848903656, "iter": 26650, "memory": 8703, "step": 26650} +{"lr": 0.008499951675481716, "data_time": 0.0068054676055908205, "loss": 0.45642161667346953, "decode.loss_ce": 0.2742166295647621, "decode.acc_seg": 93.13159942626953, "aux.loss_ce": 0.18220498859882356, "aux.acc_seg": 92.86676788330078, "time": 1.1169828653335572, "iter": 26700, "memory": 8704, "step": 26700} +{"lr": 0.008497115929678237, "data_time": 0.0059633016586303714, "loss": 0.3454257220029831, "decode.loss_ce": 0.21228284984827042, "decode.acc_seg": 94.64193725585938, "aux.loss_ce": 0.13314286842942238, "aux.acc_seg": 93.838623046875, "time": 1.1202520847320556, "iter": 26750, "memory": 8703, "step": 26750} +{"lr": 0.00849428007746579, "data_time": 0.005897831916809082, "loss": 0.45949408411979675, "decode.loss_ce": 0.29986017644405366, "decode.acc_seg": 91.69641876220703, "aux.loss_ce": 0.15963390246033668, "aux.acc_seg": 87.82278442382812, "time": 1.1130915641784669, "iter": 26800, "memory": 8703, "step": 26800} +{"lr": 0.008491444118800434, "data_time": 0.006543469429016113, "loss": 0.4239844486117363, "decode.loss_ce": 0.2645922780036926, "decode.acc_seg": 93.35167694091797, "aux.loss_ce": 0.1593921709805727, "aux.acc_seg": 92.46183776855469, "time": 1.1123827695846558, "iter": 26850, "memory": 8704, "step": 26850} +{"lr": 0.00848860805363819, "data_time": 0.006873464584350586, "loss": 0.4043205663561821, "decode.loss_ce": 0.25998952984809875, "decode.acc_seg": 96.04046630859375, "aux.loss_ce": 0.1443310398608446, "aux.acc_seg": 95.78392791748047, "time": 1.1179001092910767, "iter": 26900, "memory": 8703, "step": 26900} +{"lr": 0.008485771881935063, "data_time": 0.006029081344604492, "loss": 0.48890138864517213, "decode.loss_ce": 0.30296093225479126, "decode.acc_seg": 87.41415405273438, "aux.loss_ce": 0.18594044893980027, "aux.acc_seg": 83.00164031982422, "time": 1.1101370811462403, "iter": 26950, "memory": 8703, "step": 26950} +{"lr": 0.008482935603647004, "data_time": 0.006991434097290039, "loss": 0.4833199605345726, "decode.loss_ce": 0.3004039466381073, "decode.acc_seg": 85.29829406738281, "aux.loss_ce": 0.1829160138964653, "aux.acc_seg": 77.72627258300781, "time": 1.1202166080474854, "iter": 27000, "memory": 8704, "step": 27000} +{"lr": 0.008480099218729937, "data_time": 0.00807485580444336, "loss": 0.44531903862953187, "decode.loss_ce": 0.28986978679895403, "decode.acc_seg": 76.79029846191406, "aux.loss_ce": 0.1554492510855198, "aux.acc_seg": 75.16962432861328, "time": 1.1227309226989746, "iter": 27050, "memory": 8704, "step": 27050} +{"lr": 0.008477262727139754, "data_time": 0.005513310432434082, "loss": 0.554208742082119, "decode.loss_ce": 0.35519163608551024, "decode.acc_seg": 88.02733612060547, "aux.loss_ce": 0.19901710078120233, "aux.acc_seg": 79.66709899902344, "time": 1.1159413814544679, "iter": 27100, "memory": 8704, "step": 27100} +{"lr": 0.00847442612883229, "data_time": 0.0063106298446655275, "loss": 0.4419486463069916, "decode.loss_ce": 0.2868399046361446, "decode.acc_seg": 88.13597106933594, "aux.loss_ce": 0.15510873571038247, "aux.acc_seg": 78.95081329345703, "time": 1.1123587608337402, "iter": 27150, "memory": 8703, "step": 27150} +{"lr": 0.008471589423763377, "data_time": 0.00816187858581543, "loss": 0.5118624269962311, "decode.loss_ce": 0.31597706526517866, "decode.acc_seg": 87.88076782226562, "aux.loss_ce": 0.19588535651564598, "aux.acc_seg": 86.39665985107422, "time": 1.1165854454040527, "iter": 27200, "memory": 8704, "step": 27200} +{"lr": 0.008468752611888793, "data_time": 0.007059669494628907, "loss": 0.5652255117893219, "decode.loss_ce": 0.3460152342915535, "decode.acc_seg": 64.58561706542969, "aux.loss_ce": 0.21921026296913623, "aux.acc_seg": 63.83196258544922, "time": 1.1165481328964233, "iter": 27250, "memory": 8703, "step": 27250} +{"lr": 0.008465915693164287, "data_time": 0.005669927597045899, "loss": 0.5837680295109748, "decode.loss_ce": 0.3656300984323025, "decode.acc_seg": 97.33650970458984, "aux.loss_ce": 0.21813793182373048, "aux.acc_seg": 92.06841278076172, "time": 1.1160172700881958, "iter": 27300, "memory": 8704, "step": 27300} +{"lr": 0.00846307866754557, "data_time": 0.007294678688049316, "loss": 0.5650492504239082, "decode.loss_ce": 0.35858514308929446, "decode.acc_seg": 95.45599365234375, "aux.loss_ce": 0.20646410658955575, "aux.acc_seg": 89.21273040771484, "time": 1.119325041770935, "iter": 27350, "memory": 8703, "step": 27350} +{"lr": 0.008460241534988335, "data_time": 0.007881689071655273, "loss": 0.331142058968544, "decode.loss_ce": 0.2105415165424347, "decode.acc_seg": 85.48551940917969, "aux.loss_ce": 0.12060054689645767, "aux.acc_seg": 84.56121826171875, "time": 1.1208792209625245, "iter": 27400, "memory": 8704, "step": 27400} +{"lr": 0.008457404295448202, "data_time": 0.007819914817810058, "loss": 0.5475357949733735, "decode.loss_ce": 0.36091058030724527, "decode.acc_seg": 85.47611236572266, "aux.loss_ce": 0.1866252079606056, "aux.acc_seg": 85.41221618652344, "time": 1.1225280523300172, "iter": 27450, "memory": 8704, "step": 27450} +{"lr": 0.008454566948880806, "data_time": 0.008271193504333496, "loss": 0.3904229819774628, "decode.loss_ce": 0.24792009741067886, "decode.acc_seg": 94.2042007446289, "aux.loss_ce": 0.1425028845667839, "aux.acc_seg": 93.41602325439453, "time": 1.1189690351486206, "iter": 27500, "memory": 8704, "step": 27500} +{"lr": 0.008451729495241703, "data_time": 0.008649802207946778, "loss": 0.46295878738164903, "decode.loss_ce": 0.2937923692166805, "decode.acc_seg": 87.27662658691406, "aux.loss_ce": 0.16916640996932983, "aux.acc_seg": 84.84475708007812, "time": 1.1231943368911743, "iter": 27550, "memory": 8704, "step": 27550} +{"lr": 0.008448891934486438, "data_time": 0.00609738826751709, "loss": 0.5811953201889992, "decode.loss_ce": 0.37063552886247636, "decode.acc_seg": 91.69078063964844, "aux.loss_ce": 0.2105597946792841, "aux.acc_seg": 87.27653503417969, "time": 1.119127583503723, "iter": 27600, "memory": 8704, "step": 27600} +{"lr": 0.0084460542665705, "data_time": 0.006046700477600098, "loss": 0.4428963601589203, "decode.loss_ce": 0.2692066252231598, "decode.acc_seg": 93.43816375732422, "aux.loss_ce": 0.17368973270058632, "aux.acc_seg": 88.38860321044922, "time": 1.1155135869979858, "iter": 27650, "memory": 8703, "step": 27650} +{"lr": 0.008443216491449365, "data_time": 0.00670170783996582, "loss": 0.5514266952872277, "decode.loss_ce": 0.35898164510726926, "decode.acc_seg": 97.11532592773438, "aux.loss_ce": 0.1924450471997261, "aux.acc_seg": 95.16912841796875, "time": 1.1164203882217407, "iter": 27700, "memory": 8703, "step": 27700} +{"lr": 0.008440378609078454, "data_time": 0.006752872467041015, "loss": 0.4198368936777115, "decode.loss_ce": 0.26245853751897813, "decode.acc_seg": 94.7500228881836, "aux.loss_ce": 0.1573783539235592, "aux.acc_seg": 94.39747619628906, "time": 1.1149075984954835, "iter": 27750, "memory": 8704, "step": 27750} +{"lr": 0.008437540619413184, "data_time": 0.007501983642578125, "loss": 0.4515615850687027, "decode.loss_ce": 0.2896109730005264, "decode.acc_seg": 90.274169921875, "aux.loss_ce": 0.16195061504840852, "aux.acc_seg": 90.24677276611328, "time": 1.11773521900177, "iter": 27800, "memory": 8704, "step": 27800} +{"lr": 0.008434702522408898, "data_time": 0.005955696105957031, "loss": 0.5327499091625214, "decode.loss_ce": 0.3395156875252724, "decode.acc_seg": 93.41850280761719, "aux.loss_ce": 0.19323421642184258, "aux.acc_seg": 82.00123596191406, "time": 1.1151219129562377, "iter": 27850, "memory": 8703, "step": 27850} +{"lr": 0.008431864318020926, "data_time": 0.00782616138458252, "loss": 0.44433258175849916, "decode.loss_ce": 0.2707004740834236, "decode.acc_seg": 92.6956787109375, "aux.loss_ce": 0.17363210394978523, "aux.acc_seg": 89.14463806152344, "time": 1.1178695917129517, "iter": 27900, "memory": 8704, "step": 27900} +{"lr": 0.008429026006204567, "data_time": 0.006447982788085937, "loss": 0.6191864013671875, "decode.loss_ce": 0.38204883337020873, "decode.acc_seg": 87.41912841796875, "aux.loss_ce": 0.23713755905628203, "aux.acc_seg": 81.2918930053711, "time": 1.1164252281188964, "iter": 27950, "memory": 8705, "step": 27950} +{"lr": 0.008426187586915069, "data_time": 0.005890393257141113, "loss": 0.5179525330662728, "decode.loss_ce": 0.33442874997854233, "decode.acc_seg": 84.5439224243164, "aux.loss_ce": 0.18352378010749817, "aux.acc_seg": 84.7254409790039, "time": 1.1134599924087525, "iter": 28000, "memory": 8703, "step": 28000} +{"lr": 0.00842334906010765, "data_time": 0.007562828063964844, "loss": 0.44905074685811996, "decode.loss_ce": 0.26686341837048533, "decode.acc_seg": 96.37310791015625, "aux.loss_ce": 0.1821873240172863, "aux.acc_seg": 88.71466064453125, "time": 1.115710186958313, "iter": 28050, "memory": 8703, "step": 28050} +{"lr": 0.008420510425737493, "data_time": 0.008135771751403809, "loss": 0.4240903124213219, "decode.loss_ce": 0.2531740814447403, "decode.acc_seg": 89.02079010009766, "aux.loss_ce": 0.17091622389853, "aux.acc_seg": 83.33714294433594, "time": 1.1171738147735595, "iter": 28100, "memory": 8704, "step": 28100} +{"lr": 0.008417671683759745, "data_time": 0.005979180335998535, "loss": 0.556917953491211, "decode.loss_ce": 0.35421222969889643, "decode.acc_seg": 74.25212860107422, "aux.loss_ce": 0.20270572006702423, "aux.acc_seg": 70.05462646484375, "time": 1.1185519218444824, "iter": 28150, "memory": 8703, "step": 28150} +{"lr": 0.008414832834129509, "data_time": 0.008694911003112793, "loss": 0.3896375834941864, "decode.loss_ce": 0.23446857333183288, "decode.acc_seg": 90.11891174316406, "aux.loss_ce": 0.15516900196671485, "aux.acc_seg": 85.36796569824219, "time": 1.118178915977478, "iter": 28200, "memory": 8704, "step": 28200} +{"lr": 0.00841199387680187, "data_time": 0.006729626655578613, "loss": 0.2875703513622284, "decode.loss_ce": 0.1798429772257805, "decode.acc_seg": 95.81241607666016, "aux.loss_ce": 0.10772736892104148, "aux.acc_seg": 95.09773254394531, "time": 1.1172807931900024, "iter": 28250, "memory": 8704, "step": 28250} +{"lr": 0.00840915481173187, "data_time": 0.005845212936401367, "loss": 0.2851166486740112, "decode.loss_ce": 0.1745417222380638, "decode.acc_seg": 95.14432525634766, "aux.loss_ce": 0.11057492941617966, "aux.acc_seg": 91.1662368774414, "time": 1.114486002922058, "iter": 28300, "memory": 8704, "step": 28300} +{"lr": 0.008406315638874517, "data_time": 0.005493569374084473, "loss": 0.44805647134780885, "decode.loss_ce": 0.28474823832511903, "decode.acc_seg": 88.17787170410156, "aux.loss_ce": 0.1633082412183285, "aux.acc_seg": 86.06961059570312, "time": 1.1098863124847411, "iter": 28350, "memory": 8704, "step": 28350} +{"lr": 0.008403476358184775, "data_time": 0.006630659103393555, "loss": 0.37589422315359117, "decode.loss_ce": 0.22588390335440636, "decode.acc_seg": 95.341552734375, "aux.loss_ce": 0.15001032091677188, "aux.acc_seg": 93.92839813232422, "time": 1.1171289682388306, "iter": 28400, "memory": 8703, "step": 28400} +{"lr": 0.00840063696961757, "data_time": 0.007107377052307129, "loss": 0.3527577593922615, "decode.loss_ce": 0.2176605075597763, "decode.acc_seg": 93.43840789794922, "aux.loss_ce": 0.13509725034236908, "aux.acc_seg": 91.60848236083984, "time": 1.1146660566329956, "iter": 28450, "memory": 8703, "step": 28450} +{"lr": 0.008397797473127803, "data_time": 0.006847095489501953, "loss": 0.5655857920646667, "decode.loss_ce": 0.37673909217119217, "decode.acc_seg": 70.27371215820312, "aux.loss_ce": 0.1888466916978359, "aux.acc_seg": 67.09429168701172, "time": 1.1144358158111571, "iter": 28500, "memory": 8703, "step": 28500} +{"lr": 0.008394957868670328, "data_time": 0.007832884788513184, "loss": 0.4254142940044403, "decode.loss_ce": 0.25225993394851687, "decode.acc_seg": 95.05608367919922, "aux.loss_ce": 0.1731543645262718, "aux.acc_seg": 89.25653839111328, "time": 1.1156898260116577, "iter": 28550, "memory": 8704, "step": 28550} +{"lr": 0.008392118156199991, "data_time": 0.0067024707794189455, "loss": 0.42258767038583755, "decode.loss_ce": 0.26829993054270745, "decode.acc_seg": 90.35645294189453, "aux.loss_ce": 0.154287738353014, "aux.acc_seg": 85.45391845703125, "time": 1.1173234462738038, "iter": 28600, "memory": 8704, "step": 28600} +{"lr": 0.008389278335671558, "data_time": 0.008272171020507812, "loss": 0.46318061649799347, "decode.loss_ce": 0.3027737751603127, "decode.acc_seg": 95.69193267822266, "aux.loss_ce": 0.16040684878826142, "aux.acc_seg": 94.28240203857422, "time": 1.117861008644104, "iter": 28650, "memory": 8703, "step": 28650} +{"lr": 0.008386438407039792, "data_time": 0.007866430282592773, "loss": 0.44070479869842527, "decode.loss_ce": 0.27622900158166885, "decode.acc_seg": 87.07599639892578, "aux.loss_ce": 0.16447580307722093, "aux.acc_seg": 83.94367980957031, "time": 1.120031762123108, "iter": 28700, "memory": 8703, "step": 28700} +{"lr": 0.008383598370259407, "data_time": 0.007427835464477539, "loss": 0.5259693667292595, "decode.loss_ce": 0.3311358645558357, "decode.acc_seg": 85.06475830078125, "aux.loss_ce": 0.19483350664377214, "aux.acc_seg": 79.90798950195312, "time": 1.1177501916885375, "iter": 28750, "memory": 8703, "step": 28750} +{"lr": 0.008380758225285072, "data_time": 0.00715324878692627, "loss": 0.4627836972475052, "decode.loss_ce": 0.2850168526172638, "decode.acc_seg": 89.3026351928711, "aux.loss_ce": 0.17776684910058976, "aux.acc_seg": 85.76583862304688, "time": 1.121031904220581, "iter": 28800, "memory": 8703, "step": 28800} +{"lr": 0.008377917972071448, "data_time": 0.0067512750625610355, "loss": 0.6413387000560761, "decode.loss_ce": 0.391701740026474, "decode.acc_seg": 85.32682800292969, "aux.loss_ce": 0.2496369495987892, "aux.acc_seg": 76.77166748046875, "time": 1.1153736114501953, "iter": 28850, "memory": 8705, "step": 28850} +{"lr": 0.008375077610573128, "data_time": 0.0068261146545410155, "loss": 0.6745476722717285, "decode.loss_ce": 0.4537141382694244, "decode.acc_seg": 76.96458435058594, "aux.loss_ce": 0.22083354890346527, "aux.acc_seg": 71.44888305664062, "time": 1.1146925687789917, "iter": 28900, "memory": 8703, "step": 28900} +{"lr": 0.008372237140744683, "data_time": 0.006399297714233398, "loss": 0.6089233621954918, "decode.loss_ce": 0.36455934792757033, "decode.acc_seg": 83.16402435302734, "aux.loss_ce": 0.24436401575803757, "aux.acc_seg": 80.98470306396484, "time": 1.1138365507125854, "iter": 28950, "memory": 8703, "step": 28950} +{"lr": 0.00836939656254066, "data_time": 0.006655383110046387, "loss": 0.6383890450000763, "decode.loss_ce": 0.4110467717051506, "decode.acc_seg": 93.93234252929688, "aux.loss_ce": 0.22734226509928704, "aux.acc_seg": 92.37390899658203, "time": 1.1171438217163085, "iter": 29000, "memory": 8704, "step": 29000} +{"lr": 0.00836655587591555, "data_time": 0.006409382820129395, "loss": 0.41170653849840166, "decode.loss_ce": 0.25422677844762803, "decode.acc_seg": 89.44390106201172, "aux.loss_ce": 0.15747975781559945, "aux.acc_seg": 82.00569152832031, "time": 1.1182164907455445, "iter": 29050, "memory": 8703, "step": 29050} +{"lr": 0.008363715080823808, "data_time": 0.006735992431640625, "loss": 0.6054051101207734, "decode.loss_ce": 0.37681841254234316, "decode.acc_seg": 79.14835357666016, "aux.loss_ce": 0.22858669608831406, "aux.acc_seg": 70.16251373291016, "time": 1.1127522945404054, "iter": 29100, "memory": 8704, "step": 29100} +{"lr": 0.008360874177219866, "data_time": 0.0075714349746704105, "loss": 0.40557705909013747, "decode.loss_ce": 0.24184943586587906, "decode.acc_seg": 81.3685073852539, "aux.loss_ce": 0.16372762322425843, "aux.acc_seg": 71.55354309082031, "time": 1.1189658641815186, "iter": 29150, "memory": 8704, "step": 29150} +{"lr": 0.008358033165058123, "data_time": 0.0058934688568115234, "loss": 0.42840335369110105, "decode.loss_ce": 0.28175920993089676, "decode.acc_seg": 93.87499237060547, "aux.loss_ce": 0.14664414525032043, "aux.acc_seg": 89.71455383300781, "time": 1.1168887615203857, "iter": 29200, "memory": 8704, "step": 29200} +{"lr": 0.008355192044292914, "data_time": 0.008713626861572265, "loss": 0.6829231292009353, "decode.loss_ce": 0.4461435914039612, "decode.acc_seg": 89.68143463134766, "aux.loss_ce": 0.2367795318365097, "aux.acc_seg": 86.7208480834961, "time": 1.1216065168380738, "iter": 29250, "memory": 8704, "step": 29250} +{"lr": 0.00835235081487855, "data_time": 0.004732513427734375, "loss": 0.5754919499158859, "decode.loss_ce": 0.35526612848043443, "decode.acc_seg": 87.13404083251953, "aux.loss_ce": 0.22022582069039345, "aux.acc_seg": 80.83826446533203, "time": 1.1174081563949585, "iter": 29300, "memory": 8703, "step": 29300} +{"lr": 0.008349509476769323, "data_time": 0.0066150188446044925, "loss": 0.4727295279502869, "decode.loss_ce": 0.2750390022993088, "decode.acc_seg": 94.36251068115234, "aux.loss_ce": 0.19769051745533944, "aux.acc_seg": 83.51236724853516, "time": 1.119990634918213, "iter": 29350, "memory": 8704, "step": 29350} +{"lr": 0.008346668029919468, "data_time": 0.006239199638366699, "loss": 0.4287740334868431, "decode.loss_ce": 0.2754245541989803, "decode.acc_seg": 93.48125457763672, "aux.loss_ce": 0.1533494770526886, "aux.acc_seg": 91.89630889892578, "time": 1.1147043466567994, "iter": 29400, "memory": 8703, "step": 29400} +{"lr": 0.008343826474283196, "data_time": 0.006669259071350098, "loss": 0.492613872885704, "decode.loss_ce": 0.3085698440670967, "decode.acc_seg": 90.74185180664062, "aux.loss_ce": 0.1840440273284912, "aux.acc_seg": 88.63518524169922, "time": 1.1150978088378907, "iter": 29450, "memory": 8703, "step": 29450} +{"lr": 0.008340984809814673, "data_time": 0.006477642059326172, "loss": 0.36743575930595396, "decode.loss_ce": 0.22123211845755578, "decode.acc_seg": 91.5548324584961, "aux.loss_ce": 0.14620364233851432, "aux.acc_seg": 88.85784149169922, "time": 1.115458369255066, "iter": 29500, "memory": 8704, "step": 29500} +{"lr": 0.008338143036468022, "data_time": 0.007390785217285156, "loss": 0.4227103441953659, "decode.loss_ce": 0.26982237249612806, "decode.acc_seg": 92.41650390625, "aux.loss_ce": 0.1528879724442959, "aux.acc_seg": 92.31077575683594, "time": 1.116043496131897, "iter": 29550, "memory": 8704, "step": 29550} +{"lr": 0.00833530115419735, "data_time": 0.005321955680847168, "loss": 0.3898690640926361, "decode.loss_ce": 0.243661530315876, "decode.acc_seg": 92.1850814819336, "aux.loss_ce": 0.14620753079652787, "aux.acc_seg": 90.36566162109375, "time": 1.1138720989227295, "iter": 29600, "memory": 8703, "step": 29600} +{"lr": 0.008332459162956702, "data_time": 0.0061283111572265625, "loss": 0.6976263672113419, "decode.loss_ce": 0.4473192185163498, "decode.acc_seg": 77.02684783935547, "aux.loss_ce": 0.2503071494400501, "aux.acc_seg": 75.19617462158203, "time": 1.1157797574996948, "iter": 29650, "memory": 8704, "step": 29650} +{"lr": 0.008329617062700106, "data_time": 0.006826615333557129, "loss": 0.377756330370903, "decode.loss_ce": 0.24093596190214156, "decode.acc_seg": 93.7005844116211, "aux.loss_ce": 0.13682036846876144, "aux.acc_seg": 93.49029541015625, "time": 1.1195191383361816, "iter": 29700, "memory": 8704, "step": 29700} +{"lr": 0.008326774853381553, "data_time": 0.008520293235778808, "loss": 0.35270906239748, "decode.loss_ce": 0.2125886306166649, "decode.acc_seg": 89.59366607666016, "aux.loss_ce": 0.14012043215334416, "aux.acc_seg": 86.7178955078125, "time": 1.1237919092178346, "iter": 29750, "memory": 8704, "step": 29750} +{"lr": 0.008323932534954974, "data_time": 0.0066792964935302734, "loss": 0.6138407737016678, "decode.loss_ce": 0.40127282962203026, "decode.acc_seg": 84.88845825195312, "aux.loss_ce": 0.2125679489225149, "aux.acc_seg": 78.88704681396484, "time": 1.1195616245269775, "iter": 29800, "memory": 8704, "step": 29800} +{"lr": 0.00832109010737428, "data_time": 0.007127928733825684, "loss": 0.6014212042093277, "decode.loss_ce": 0.39562086164951327, "decode.acc_seg": 83.76801300048828, "aux.loss_ce": 0.20580033585429192, "aux.acc_seg": 81.22341918945312, "time": 1.11590473651886, "iter": 29850, "memory": 8704, "step": 29850} +{"lr": 0.008318247570593351, "data_time": 0.006842041015625, "loss": 0.5146063283085823, "decode.loss_ce": 0.3229190371930599, "decode.acc_seg": 93.08153533935547, "aux.loss_ce": 0.19168729335069656, "aux.acc_seg": 92.47747802734375, "time": 1.1163121938705445, "iter": 29900, "memory": 8703, "step": 29900} +{"lr": 0.008315404924566009, "data_time": 0.006658530235290528, "loss": 0.37724417746067046, "decode.loss_ce": 0.20950644612312316, "decode.acc_seg": 94.1751480102539, "aux.loss_ce": 0.1677377350628376, "aux.acc_seg": 91.79496765136719, "time": 1.1120704889297486, "iter": 29950, "memory": 8703, "step": 29950} +{"lr": 0.008312562169246055, "data_time": 0.005841064453125, "loss": 0.3352588519454002, "decode.loss_ce": 0.21271646469831468, "decode.acc_seg": 85.94061279296875, "aux.loss_ce": 0.1225423838943243, "aux.acc_seg": 87.234619140625, "time": 1.1168441295623779, "iter": 30000, "memory": 8704, "step": 30000} +{"lr": 0.008309719304587264, "data_time": 0.005246305465698242, "loss": 0.6495398253202438, "decode.loss_ce": 0.3910132423043251, "decode.acc_seg": 84.40608978271484, "aux.loss_ce": 0.2585265785455704, "aux.acc_seg": 71.36268615722656, "time": 1.1150134086608887, "iter": 30050, "memory": 8704, "step": 30050} +{"lr": 0.008306876330543327, "data_time": 0.007898759841918946, "loss": 0.4907722383737564, "decode.loss_ce": 0.3234541520476341, "decode.acc_seg": 74.26293182373047, "aux.loss_ce": 0.16731807887554168, "aux.acc_seg": 75.78264617919922, "time": 1.1184954643249512, "iter": 30100, "memory": 8703, "step": 30100} +{"lr": 0.008304033247067966, "data_time": 0.007436919212341309, "loss": 0.2913335055112839, "decode.loss_ce": 0.1739459976553917, "decode.acc_seg": 95.32853698730469, "aux.loss_ce": 0.11738750487565994, "aux.acc_seg": 94.9937515258789, "time": 1.1206129312515258, "iter": 30150, "memory": 8704, "step": 30150} +{"lr": 0.008301190054114808, "data_time": 0.007157015800476074, "loss": 0.5637168556451797, "decode.loss_ce": 0.363773562759161, "decode.acc_seg": 96.53377532958984, "aux.loss_ce": 0.19994328618049623, "aux.acc_seg": 94.53779602050781, "time": 1.121206283569336, "iter": 30200, "memory": 8704, "step": 30200} +{"lr": 0.008298346751637469, "data_time": 0.006397318840026855, "loss": 0.3861642748117447, "decode.loss_ce": 0.24678217023611068, "decode.acc_seg": 86.89657592773438, "aux.loss_ce": 0.13938209861516954, "aux.acc_seg": 82.06659698486328, "time": 1.1190017461776733, "iter": 30250, "memory": 8703, "step": 30250} +{"lr": 0.008295503339589522, "data_time": 0.005907011032104492, "loss": 0.5091076582670212, "decode.loss_ce": 0.28092629462480545, "decode.acc_seg": 93.72520446777344, "aux.loss_ce": 0.2281813658773899, "aux.acc_seg": 57.954402923583984, "time": 1.1100722074508667, "iter": 30300, "memory": 8704, "step": 30300} +{"lr": 0.008292659817924503, "data_time": 0.006247258186340332, "loss": 0.4564723774790764, "decode.loss_ce": 0.30170829892158507, "decode.acc_seg": 96.93253326416016, "aux.loss_ce": 0.15476407408714293, "aux.acc_seg": 95.99693298339844, "time": 1.1183579444885254, "iter": 30350, "memory": 8703, "step": 30350} +{"lr": 0.0082898161865959, "data_time": 0.0063514232635498045, "loss": 0.3309068515896797, "decode.loss_ce": 0.20493499413132668, "decode.acc_seg": 96.24111938476562, "aux.loss_ce": 0.12597185634076596, "aux.acc_seg": 95.24809265136719, "time": 1.115056037902832, "iter": 30400, "memory": 8703, "step": 30400} +{"lr": 0.008286972445557188, "data_time": 0.0074967145919799805, "loss": 0.39694206416606903, "decode.loss_ce": 0.24259332790970803, "decode.acc_seg": 91.92790985107422, "aux.loss_ce": 0.15434873402118682, "aux.acc_seg": 88.20228576660156, "time": 1.1166409730911255, "iter": 30450, "memory": 8703, "step": 30450} +{"lr": 0.008284128594761775, "data_time": 0.007354927062988281, "loss": 0.43121411800384524, "decode.loss_ce": 0.2735627144575119, "decode.acc_seg": 94.06973266601562, "aux.loss_ce": 0.1576514083892107, "aux.acc_seg": 92.16829681396484, "time": 1.1192551612854005, "iter": 30500, "memory": 8704, "step": 30500} +{"lr": 0.008281284634163048, "data_time": 0.008089447021484375, "loss": 0.6038241609930992, "decode.loss_ce": 0.4068580538034439, "decode.acc_seg": 96.63582611083984, "aux.loss_ce": 0.19696610867977143, "aux.acc_seg": 94.72748565673828, "time": 1.1191306829452514, "iter": 30550, "memory": 8704, "step": 30550} +{"lr": 0.008278440563714353, "data_time": 0.005645394325256348, "loss": 0.4075247377157211, "decode.loss_ce": 0.24498598799109458, "decode.acc_seg": 89.34803009033203, "aux.loss_ce": 0.16253874376416205, "aux.acc_seg": 83.76827239990234, "time": 1.1122771501541138, "iter": 30600, "memory": 8703, "step": 30600} +{"lr": 0.008275596383369006, "data_time": 0.008499813079833985, "loss": 0.44961969256401063, "decode.loss_ce": 0.27636875957250595, "decode.acc_seg": 83.0148696899414, "aux.loss_ce": 0.17325092926621438, "aux.acc_seg": 73.48416137695312, "time": 1.1206389665603638, "iter": 30650, "memory": 8704, "step": 30650} +{"lr": 0.00827275209308027, "data_time": 0.009753823280334473, "loss": 0.39593675136566164, "decode.loss_ce": 0.24968837648630143, "decode.acc_seg": 92.3074722290039, "aux.loss_ce": 0.14624837040901184, "aux.acc_seg": 79.03092193603516, "time": 1.1244111776351928, "iter": 30700, "memory": 8703, "step": 30700} +{"lr": 0.00826990769280138, "data_time": 0.0065812826156616214, "loss": 0.5406430959701538, "decode.loss_ce": 0.3426988564431667, "decode.acc_seg": 95.11158752441406, "aux.loss_ce": 0.19794424213469028, "aux.acc_seg": 94.1446304321289, "time": 1.1125505685806274, "iter": 30750, "memory": 8704, "step": 30750} +{"lr": 0.008267063182485528, "data_time": 0.005353569984436035, "loss": 0.6034632980823517, "decode.loss_ce": 0.36005229502916336, "decode.acc_seg": 96.9625473022461, "aux.loss_ce": 0.24341100454330444, "aux.acc_seg": 95.291259765625, "time": 1.1123772144317627, "iter": 30800, "memory": 8704, "step": 30800} +{"lr": 0.00826421856208588, "data_time": 0.0059002161026000975, "loss": 0.41678049936890604, "decode.loss_ce": 0.2582037918269634, "decode.acc_seg": 95.42782592773438, "aux.loss_ce": 0.1585767038166523, "aux.acc_seg": 91.51763916015625, "time": 1.1147850275039672, "iter": 30850, "memory": 8704, "step": 30850} +{"lr": 0.008261373831555553, "data_time": 0.006230020523071289, "loss": 0.354571533203125, "decode.loss_ce": 0.21775454431772232, "decode.acc_seg": 94.79051971435547, "aux.loss_ce": 0.1368169866502285, "aux.acc_seg": 94.59101104736328, "time": 1.114420771598816, "iter": 30900, "memory": 8704, "step": 30900} +{"lr": 0.008258528990847615, "data_time": 0.005173182487487793, "loss": 0.38515902906656263, "decode.loss_ce": 0.2342616230249405, "decode.acc_seg": 92.03472137451172, "aux.loss_ce": 0.15089741125702857, "aux.acc_seg": 89.39844512939453, "time": 1.1134381532669066, "iter": 30950, "memory": 8704, "step": 30950} +{"lr": 0.008255684039915131, "data_time": 0.006235074996948242, "loss": 0.4783815503120422, "decode.loss_ce": 0.2958719253540039, "decode.acc_seg": 89.3880844116211, "aux.loss_ce": 0.1825096197426319, "aux.acc_seg": 87.44125366210938, "time": 1.1154404640197755, "iter": 31000, "memory": 8704, "step": 31000} +{"lr": 0.008252838978711083, "data_time": 0.00675203800201416, "loss": 0.4740126222372055, "decode.loss_ce": 0.2749600067734718, "decode.acc_seg": 80.11760711669922, "aux.loss_ce": 0.19905262142419816, "aux.acc_seg": 63.1992301940918, "time": 1.1186177730560303, "iter": 31050, "memory": 8703, "step": 31050} +{"lr": 0.008249993807188436, "data_time": 0.006721687316894531, "loss": 0.4571945458650589, "decode.loss_ce": 0.2743574619293213, "decode.acc_seg": 95.53718566894531, "aux.loss_ce": 0.18283708542585372, "aux.acc_seg": 92.08939361572266, "time": 1.1157517910003663, "iter": 31100, "memory": 8703, "step": 31100} +{"lr": 0.008247148525300133, "data_time": 0.006379890441894531, "loss": 0.5103047654032707, "decode.loss_ce": 0.30256922245025636, "decode.acc_seg": 91.0604476928711, "aux.loss_ce": 0.20773553848266602, "aux.acc_seg": 87.03047180175781, "time": 1.1187744617462159, "iter": 31150, "memory": 8703, "step": 31150} +{"lr": 0.008244303132999056, "data_time": 0.006165218353271484, "loss": 0.3612850934267044, "decode.loss_ce": 0.2179170571267605, "decode.acc_seg": 81.12213897705078, "aux.loss_ce": 0.14336803629994394, "aux.acc_seg": 80.31063079833984, "time": 1.115558648109436, "iter": 31200, "memory": 8703, "step": 31200} +{"lr": 0.00824145763023806, "data_time": 0.005654525756835937, "loss": 0.4734604299068451, "decode.loss_ce": 0.2870554722845554, "decode.acc_seg": 92.06739807128906, "aux.loss_ce": 0.18640495054423808, "aux.acc_seg": 88.40255737304688, "time": 1.109583282470703, "iter": 31250, "memory": 8704, "step": 31250} +{"lr": 0.008238612016969944, "data_time": 0.006944012641906738, "loss": 0.5043195381760597, "decode.loss_ce": 0.3153452783823013, "decode.acc_seg": 86.0625228881836, "aux.loss_ce": 0.18897426165640355, "aux.acc_seg": 83.99491882324219, "time": 1.1171534776687622, "iter": 31300, "memory": 8703, "step": 31300} +{"lr": 0.008235766293147503, "data_time": 0.008079123497009278, "loss": 0.4334895521402359, "decode.loss_ce": 0.2738760009407997, "decode.acc_seg": 81.61766815185547, "aux.loss_ce": 0.15961354821920395, "aux.acc_seg": 77.37388610839844, "time": 1.1179112434387206, "iter": 31350, "memory": 8704, "step": 31350} +{"lr": 0.008232920458723456, "data_time": 0.007781553268432617, "loss": 0.3836867079138756, "decode.loss_ce": 0.24815120100975036, "decode.acc_seg": 93.70085144042969, "aux.loss_ce": 0.13553550764918326, "aux.acc_seg": 91.27571868896484, "time": 1.117070770263672, "iter": 31400, "memory": 8703, "step": 31400} +{"lr": 0.008230074513650501, "data_time": 0.006896352767944336, "loss": 0.4032953605055809, "decode.loss_ce": 0.2513719588518143, "decode.acc_seg": 91.49105834960938, "aux.loss_ce": 0.15192340388894082, "aux.acc_seg": 85.44692993164062, "time": 1.1183201551437378, "iter": 31450, "memory": 8703, "step": 31450} +{"lr": 0.008227228457881298, "data_time": 0.006933832168579101, "loss": 0.3933772027492523, "decode.loss_ce": 0.24871462732553482, "decode.acc_seg": 93.70587158203125, "aux.loss_ce": 0.14466258212924005, "aux.acc_seg": 92.64195251464844, "time": 1.1179849624633789, "iter": 31500, "memory": 8703, "step": 31500} +{"lr": 0.008224382291368473, "data_time": 0.0055846691131591795, "loss": 0.4416953146457672, "decode.loss_ce": 0.25675382018089293, "decode.acc_seg": 87.88137817382812, "aux.loss_ce": 0.18494149446487426, "aux.acc_seg": 81.52033233642578, "time": 1.1156447649002075, "iter": 31550, "memory": 8704, "step": 31550} +{"lr": 0.008221536014064605, "data_time": 0.005958676338195801, "loss": 0.638212913274765, "decode.loss_ce": 0.41648558229207994, "decode.acc_seg": 86.34630584716797, "aux.loss_ce": 0.2217273272573948, "aux.acc_seg": 86.39163970947266, "time": 1.1127710342407227, "iter": 31600, "memory": 8704, "step": 31600} +{"lr": 0.00821868962592223, "data_time": 0.006035637855529785, "loss": 0.6800440013408661, "decode.loss_ce": 0.42617021799087523, "decode.acc_seg": 80.37102508544922, "aux.loss_ce": 0.2538737773895264, "aux.acc_seg": 73.06416320800781, "time": 1.1137665510177612, "iter": 31650, "memory": 8703, "step": 31650} +{"lr": 0.008215843126893857, "data_time": 0.005567741394042969, "loss": 0.48244835138320924, "decode.loss_ce": 0.3003717795014381, "decode.acc_seg": 81.58352661132812, "aux.loss_ce": 0.18207657039165498, "aux.acc_seg": 77.92987823486328, "time": 1.1091949462890625, "iter": 31700, "memory": 8703, "step": 31700} +{"lr": 0.008212996516931947, "data_time": 0.0049032926559448246, "loss": 0.4848539441823959, "decode.loss_ce": 0.2840484783053398, "decode.acc_seg": 95.11419677734375, "aux.loss_ce": 0.20080546364188195, "aux.acc_seg": 92.1951904296875, "time": 1.116830587387085, "iter": 31750, "memory": 8704, "step": 31750} +{"lr": 0.008210149795988924, "data_time": 0.006677794456481934, "loss": 0.45076707005500793, "decode.loss_ce": 0.27393053025007247, "decode.acc_seg": 88.04772186279297, "aux.loss_ce": 0.17683653943240643, "aux.acc_seg": 85.9024658203125, "time": 1.1152762651443482, "iter": 31800, "memory": 8704, "step": 31800} +{"lr": 0.008207302964017178, "data_time": 0.0070236921310424805, "loss": 0.443424691259861, "decode.loss_ce": 0.27753324136137963, "decode.acc_seg": 88.51163482666016, "aux.loss_ce": 0.1658914491534233, "aux.acc_seg": 85.43051147460938, "time": 1.1153705835342407, "iter": 31850, "memory": 8704, "step": 31850} +{"lr": 0.008204456020969048, "data_time": 0.007632732391357422, "loss": 0.5473581656813622, "decode.loss_ce": 0.35593572109937666, "decode.acc_seg": 88.18333435058594, "aux.loss_ce": 0.19142243638634682, "aux.acc_seg": 87.6099853515625, "time": 1.1171825885772706, "iter": 31900, "memory": 8703, "step": 31900} +{"lr": 0.008201608966796847, "data_time": 0.005684041976928711, "loss": 0.40198845267295835, "decode.loss_ce": 0.25401144847273827, "decode.acc_seg": 93.95878601074219, "aux.loss_ce": 0.14797700047492982, "aux.acc_seg": 93.96495819091797, "time": 1.1140576124191284, "iter": 31950, "memory": 8704, "step": 31950} +{"lr": 0.008198761801452844, "data_time": 0.007189798355102539, "loss": 0.3969561234116554, "decode.loss_ce": 0.2446759209036827, "decode.acc_seg": 91.4484634399414, "aux.loss_ce": 0.15228020772337914, "aux.acc_seg": 91.14112854003906, "time": 1.118840765953064, "iter": 32000, "memory": 8704, "step": 32000} +{"aAcc": 87.76, "mIoU": 53.14, "mAcc": 61.65, "data_time": 0.004041742865794826, "time": 0.27118560763078425, "step": 32000} +{"lr": 0.008195914524889268, "data_time": 0.007335042953491211, "loss": 0.4823166161775589, "decode.loss_ce": 0.30786077976226806, "decode.acc_seg": 96.44806671142578, "aux.loss_ce": 0.17445582896471024, "aux.acc_seg": 95.7047119140625, "time": 1.1171413660049438, "iter": 32050, "memory": 8704, "step": 32050} +{"lr": 0.008193067137058311, "data_time": 0.007963156700134278, "loss": 0.6576606899499893, "decode.loss_ce": 0.4131653279066086, "decode.acc_seg": 83.52482604980469, "aux.loss_ce": 0.24449534416198732, "aux.acc_seg": 79.09405517578125, "time": 1.119227695465088, "iter": 32100, "memory": 8705, "step": 32100} +{"lr": 0.008190219637912126, "data_time": 0.0059670209884643555, "loss": 0.3456364065408707, "decode.loss_ce": 0.21512901782989502, "decode.acc_seg": 85.29846954345703, "aux.loss_ce": 0.1305073894560337, "aux.acc_seg": 80.06884002685547, "time": 1.1142338752746581, "iter": 32150, "memory": 8703, "step": 32150} +{"lr": 0.008187372027402827, "data_time": 0.006347060203552246, "loss": 0.3261101275682449, "decode.loss_ce": 0.19853297621011734, "decode.acc_seg": 94.09834289550781, "aux.loss_ce": 0.12757715061306954, "aux.acc_seg": 92.8823471069336, "time": 1.1134173154830933, "iter": 32200, "memory": 8704, "step": 32200} +{"lr": 0.008184524305482489, "data_time": 0.008579087257385255, "loss": 0.4425747632980347, "decode.loss_ce": 0.2620887652039528, "decode.acc_seg": 89.10456085205078, "aux.loss_ce": 0.18048600032925605, "aux.acc_seg": 85.24691772460938, "time": 1.1191540718078614, "iter": 32250, "memory": 8703, "step": 32250} +{"lr": 0.008181676472103131, "data_time": 0.006760168075561524, "loss": 0.4641724839806557, "decode.loss_ce": 0.2658513687551022, "decode.acc_seg": 86.89778137207031, "aux.loss_ce": 0.1983211047947407, "aux.acc_seg": 85.85255432128906, "time": 1.11668221950531, "iter": 32300, "memory": 8703, "step": 32300} +{"lr": 0.008178828527216759, "data_time": 0.006970930099487305, "loss": 0.43536036312580106, "decode.loss_ce": 0.24555405974388123, "decode.acc_seg": 88.53028106689453, "aux.loss_ce": 0.18980630114674568, "aux.acc_seg": 71.46809387207031, "time": 1.111981177330017, "iter": 32350, "memory": 8703, "step": 32350} +{"lr": 0.00817598047077532, "data_time": 0.0065980195999145504, "loss": 0.41275119185447695, "decode.loss_ce": 0.2475676119327545, "decode.acc_seg": 91.4378433227539, "aux.loss_ce": 0.1651835858821869, "aux.acc_seg": 86.86096954345703, "time": 1.1167829990386964, "iter": 32400, "memory": 8703, "step": 32400} +{"lr": 0.00817313230273074, "data_time": 0.006685018539428711, "loss": 0.6016236692667007, "decode.loss_ce": 0.3716785840690136, "decode.acc_seg": 90.23616790771484, "aux.loss_ce": 0.22994508892297744, "aux.acc_seg": 86.51953887939453, "time": 1.1183089017868042, "iter": 32450, "memory": 8704, "step": 32450} +{"lr": 0.00817028402303488, "data_time": 0.008554339408874512, "loss": 0.34022570252418516, "decode.loss_ce": 0.2205118015408516, "decode.acc_seg": 90.12342834472656, "aux.loss_ce": 0.11971389874815941, "aux.acc_seg": 83.10686492919922, "time": 1.1204880237579347, "iter": 32500, "memory": 8704, "step": 32500} +{"lr": 0.008167435631639582, "data_time": 0.008147430419921876, "loss": 0.569564537703991, "decode.loss_ce": 0.35588281527161597, "decode.acc_seg": 68.97213745117188, "aux.loss_ce": 0.21368173211812974, "aux.acc_seg": 65.0094985961914, "time": 1.1221993684768676, "iter": 32550, "memory": 8704, "step": 32550} +{"lr": 0.008164587128496653, "data_time": 0.006105256080627441, "loss": 0.3405087932944298, "decode.loss_ce": 0.1869283452630043, "decode.acc_seg": 90.24727630615234, "aux.loss_ce": 0.15358045138418674, "aux.acc_seg": 86.42864227294922, "time": 1.1153140544891358, "iter": 32600, "memory": 8704, "step": 32600} +{"lr": 0.008161738513557847, "data_time": 0.006920671463012696, "loss": 0.4130461722612381, "decode.loss_ce": 0.2483791008591652, "decode.acc_seg": 88.98995208740234, "aux.loss_ce": 0.16466706469655037, "aux.acc_seg": 81.466796875, "time": 1.117427396774292, "iter": 32650, "memory": 8704, "step": 32650} +{"lr": 0.008158889786774863, "data_time": 0.007400774955749511, "loss": 0.4513086050748825, "decode.loss_ce": 0.2856818072497845, "decode.acc_seg": 87.98828125, "aux.loss_ce": 0.1656267996877432, "aux.acc_seg": 74.32835388183594, "time": 1.1194953441619873, "iter": 32700, "memory": 8704, "step": 32700} +{"lr": 0.008156040948099394, "data_time": 0.007916736602783202, "loss": 0.413168278336525, "decode.loss_ce": 0.24847440421581268, "decode.acc_seg": 96.23081970214844, "aux.loss_ce": 0.164693883061409, "aux.acc_seg": 94.55686950683594, "time": 1.1136762857437135, "iter": 32750, "memory": 8703, "step": 32750} +{"lr": 0.00815319199748307, "data_time": 0.006400060653686523, "loss": 0.335164999961853, "decode.loss_ce": 0.2087311789393425, "decode.acc_seg": 97.96854400634766, "aux.loss_ce": 0.12643382288515567, "aux.acc_seg": 97.5016860961914, "time": 1.109469962120056, "iter": 32800, "memory": 8704, "step": 32800} +{"lr": 0.00815034293487748, "data_time": 0.007292056083679199, "loss": 0.5216738492250442, "decode.loss_ce": 0.3372501865029335, "decode.acc_seg": 88.3448257446289, "aux.loss_ce": 0.18442365825176238, "aux.acc_seg": 86.9254379272461, "time": 1.1145641088485718, "iter": 32850, "memory": 8703, "step": 32850} +{"lr": 0.008147493760234199, "data_time": 0.005776739120483399, "loss": 0.3719240576028824, "decode.loss_ce": 0.22258084565401076, "decode.acc_seg": 90.08509063720703, "aux.loss_ce": 0.14934321269392967, "aux.acc_seg": 81.08856964111328, "time": 1.113902497291565, "iter": 32900, "memory": 8703, "step": 32900} +{"lr": 0.00814464447350474, "data_time": 0.008528327941894532, "loss": 0.46487730741500854, "decode.loss_ce": 0.28084826171398164, "decode.acc_seg": 86.70387268066406, "aux.loss_ce": 0.18402905240654946, "aux.acc_seg": 85.01370239257812, "time": 1.1238686800003053, "iter": 32950, "memory": 8703, "step": 32950} +{"lr": 0.008141795074640572, "data_time": 0.006103777885437011, "loss": 0.6646720737218856, "decode.loss_ce": 0.4080809399485588, "decode.acc_seg": 79.2991943359375, "aux.loss_ce": 0.2565911404788494, "aux.acc_seg": 76.07061004638672, "time": 1.1125640869140625, "iter": 33000, "memory": 8703, "step": 33000} +{"lr": 0.008138945563593137, "data_time": 0.005220627784729004, "loss": 0.4109855487942696, "decode.loss_ce": 0.24118286967277527, "decode.acc_seg": 90.26819610595703, "aux.loss_ce": 0.1698026806116104, "aux.acc_seg": 88.45901489257812, "time": 1.1205784320831298, "iter": 33050, "memory": 8703, "step": 33050} +{"lr": 0.008136095940313826, "data_time": 0.007651185989379883, "loss": 0.4062811076641083, "decode.loss_ce": 0.2550719082355499, "decode.acc_seg": 89.453125, "aux.loss_ce": 0.15120919644832612, "aux.acc_seg": 88.06597137451172, "time": 1.117555809020996, "iter": 33100, "memory": 8703, "step": 33100} +{"lr": 0.008133246204753999, "data_time": 0.008916282653808593, "loss": 0.4682183340191841, "decode.loss_ce": 0.28467186242341996, "decode.acc_seg": 97.4527359008789, "aux.loss_ce": 0.18354647122323514, "aux.acc_seg": 96.42231750488281, "time": 1.1224190711975097, "iter": 33150, "memory": 8703, "step": 33150} +{"lr": 0.008130396356864977, "data_time": 0.008275127410888672, "loss": 0.363842311501503, "decode.loss_ce": 0.20929907485842705, "decode.acc_seg": 93.5333251953125, "aux.loss_ce": 0.15454323962330818, "aux.acc_seg": 92.1855239868164, "time": 1.1169764518737793, "iter": 33200, "memory": 8703, "step": 33200} +{"lr": 0.008127546396598032, "data_time": 0.007950496673583985, "loss": 0.7344094902276993, "decode.loss_ce": 0.467751669883728, "decode.acc_seg": 86.83554077148438, "aux.loss_ce": 0.26665781885385514, "aux.acc_seg": 82.77485656738281, "time": 1.1155349016189575, "iter": 33250, "memory": 8703, "step": 33250} +{"lr": 0.00812469632390439, "data_time": 0.0070296525955200195, "loss": 0.45486268401145935, "decode.loss_ce": 0.28716538548469545, "decode.acc_seg": 95.01347351074219, "aux.loss_ce": 0.16769728511571885, "aux.acc_seg": 91.47217559814453, "time": 1.118096375465393, "iter": 33300, "memory": 8704, "step": 33300} +{"lr": 0.00812184613873525, "data_time": 0.006126928329467774, "loss": 0.640350216627121, "decode.loss_ce": 0.39900427013635636, "decode.acc_seg": 87.45040893554688, "aux.loss_ce": 0.24134593680500985, "aux.acc_seg": 83.51173400878906, "time": 1.1142081022262573, "iter": 33350, "memory": 8703, "step": 33350} +{"lr": 0.008118995841041775, "data_time": 0.006594014167785644, "loss": 0.3580052763223648, "decode.loss_ce": 0.21517218574881553, "decode.acc_seg": 88.16101837158203, "aux.loss_ce": 0.1428330797702074, "aux.acc_seg": 74.68611145019531, "time": 1.1146713495254517, "iter": 33400, "memory": 8703, "step": 33400} +{"lr": 0.008116145430775079, "data_time": 0.006899785995483398, "loss": 0.5784109339118004, "decode.loss_ce": 0.34877751022577286, "decode.acc_seg": 86.00949096679688, "aux.loss_ce": 0.22963342852890492, "aux.acc_seg": 83.00448608398438, "time": 1.1159401178359984, "iter": 33450, "memory": 8704, "step": 33450} +{"lr": 0.008113294907886237, "data_time": 0.00809164047241211, "loss": 0.5042188242077827, "decode.loss_ce": 0.32496733516454696, "decode.acc_seg": 93.74077606201172, "aux.loss_ce": 0.17925148457288742, "aux.acc_seg": 91.13388061523438, "time": 1.1162410259246827, "iter": 33500, "memory": 8703, "step": 33500} +{"lr": 0.008110444272326267, "data_time": 0.007930588722229005, "loss": 0.3588882341980934, "decode.loss_ce": 0.2195590190589428, "decode.acc_seg": 96.79768371582031, "aux.loss_ce": 0.13932921439409257, "aux.acc_seg": 95.78297424316406, "time": 1.118840217590332, "iter": 33550, "memory": 8703, "step": 33550} +{"lr": 0.008107593524046173, "data_time": 0.006032633781433106, "loss": 0.4042047157883644, "decode.loss_ce": 0.2366466447710991, "decode.acc_seg": 94.85293579101562, "aux.loss_ce": 0.16755806878209115, "aux.acc_seg": 72.92273712158203, "time": 1.1137121438980102, "iter": 33600, "memory": 8703, "step": 33600} +{"lr": 0.008104742662996897, "data_time": 0.007635974884033203, "loss": 0.3601902395486832, "decode.loss_ce": 0.22067430019378662, "decode.acc_seg": 86.90681457519531, "aux.loss_ce": 0.13951594159007072, "aux.acc_seg": 86.18640899658203, "time": 1.117449736595154, "iter": 33650, "memory": 8703, "step": 33650} +{"lr": 0.008101891689129372, "data_time": 0.005411839485168457, "loss": 0.6081782922148704, "decode.loss_ce": 0.39884926825761796, "decode.acc_seg": 95.39299011230469, "aux.loss_ce": 0.20932901985943317, "aux.acc_seg": 91.23795318603516, "time": 1.1113028049468994, "iter": 33700, "memory": 8703, "step": 33700} +{"lr": 0.008099040602394445, "data_time": 0.008333611488342284, "loss": 0.48259087055921557, "decode.loss_ce": 0.2918271288275719, "decode.acc_seg": 93.24226379394531, "aux.loss_ce": 0.1907637357711792, "aux.acc_seg": 88.98054504394531, "time": 1.1174108743667603, "iter": 33750, "memory": 8703, "step": 33750} +{"lr": 0.008096189402742952, "data_time": 0.0073899030685424805, "loss": 0.4723797902464867, "decode.loss_ce": 0.29366992264986036, "decode.acc_seg": 88.34278869628906, "aux.loss_ce": 0.17870986759662627, "aux.acc_seg": 81.3486099243164, "time": 1.1138889789581299, "iter": 33800, "memory": 8703, "step": 33800} +{"lr": 0.008093338090125678, "data_time": 0.0064105987548828125, "loss": 0.4740810915827751, "decode.loss_ce": 0.3015039019286633, "decode.acc_seg": 95.20142364501953, "aux.loss_ce": 0.1725771799683571, "aux.acc_seg": 91.08969116210938, "time": 1.1125930070877075, "iter": 33850, "memory": 8704, "step": 33850} +{"lr": 0.008090486664493376, "data_time": 0.005848240852355957, "loss": 0.4141519904136658, "decode.loss_ce": 0.25904289856553075, "decode.acc_seg": 92.00715637207031, "aux.loss_ce": 0.15510909259319305, "aux.acc_seg": 87.6663589477539, "time": 1.1161698818206787, "iter": 33900, "memory": 8704, "step": 33900} +{"lr": 0.008087635125796761, "data_time": 0.006632566452026367, "loss": 0.35112017542123797, "decode.loss_ce": 0.2041359543800354, "decode.acc_seg": 91.39200592041016, "aux.loss_ce": 0.14698421582579613, "aux.acc_seg": 85.13298034667969, "time": 1.1169859647750855, "iter": 33950, "memory": 8704, "step": 33950} +{"lr": 0.008084783473986482, "data_time": 0.007776737213134766, "loss": 0.3849423885345459, "decode.loss_ce": 0.23875877484679223, "decode.acc_seg": 98.14026641845703, "aux.loss_ce": 0.14618360735476016, "aux.acc_seg": 97.56813049316406, "time": 1.1214730739593506, "iter": 34000, "memory": 8704, "step": 34000} +{"lr": 0.008081931709013161, "data_time": 0.007630777359008789, "loss": 0.49686977714300157, "decode.loss_ce": 0.3124742120504379, "decode.acc_seg": 92.26429748535156, "aux.loss_ce": 0.18439556695520878, "aux.acc_seg": 90.81573486328125, "time": 1.1180994272232057, "iter": 34050, "memory": 8704, "step": 34050} +{"lr": 0.008079079830827392, "data_time": 0.005396318435668945, "loss": 0.5120432764291764, "decode.loss_ce": 0.3112428173422813, "decode.acc_seg": 93.46662902832031, "aux.loss_ce": 0.20080045834183693, "aux.acc_seg": 79.6030044555664, "time": 1.1074196815490722, "iter": 34100, "memory": 8704, "step": 34100} +{"lr": 0.00807622783937971, "data_time": 0.005358266830444336, "loss": 0.5251844674348831, "decode.loss_ce": 0.3207366555929184, "decode.acc_seg": 90.84893035888672, "aux.loss_ce": 0.2044478204101324, "aux.acc_seg": 87.56053161621094, "time": 1.1111948251724244, "iter": 34150, "memory": 8703, "step": 34150} +{"lr": 0.00807337573462062, "data_time": 0.006942534446716308, "loss": 0.4431040331721306, "decode.loss_ce": 0.25320190340280535, "decode.acc_seg": 94.18160247802734, "aux.loss_ce": 0.1899021379649639, "aux.acc_seg": 94.11283111572266, "time": 1.1161338567733765, "iter": 34200, "memory": 8704, "step": 34200} +{"lr": 0.008070523516500587, "data_time": 0.008130478858947753, "loss": 0.4721391901373863, "decode.loss_ce": 0.2984178751707077, "decode.acc_seg": 83.14583587646484, "aux.loss_ce": 0.17372131571173668, "aux.acc_seg": 82.12686920166016, "time": 1.1181155681610107, "iter": 34250, "memory": 8703, "step": 34250} +{"lr": 0.008067671184970015, "data_time": 0.006679630279541016, "loss": 0.34092011451721194, "decode.loss_ce": 0.22021927013993264, "decode.acc_seg": 92.1912612915039, "aux.loss_ce": 0.12070083990693092, "aux.acc_seg": 81.48565673828125, "time": 1.1224259614944458, "iter": 34300, "memory": 8704, "step": 34300} +{"lr": 0.008064818739979284, "data_time": 0.007215046882629394, "loss": 0.5394174233078957, "decode.loss_ce": 0.33545500561594965, "decode.acc_seg": 95.71292114257812, "aux.loss_ce": 0.2039624188095331, "aux.acc_seg": 95.4549789428711, "time": 1.1153465032577514, "iter": 34350, "memory": 8704, "step": 34350} +{"lr": 0.008061966181478739, "data_time": 0.0075435638427734375, "loss": 0.523653294146061, "decode.loss_ce": 0.31456765457987784, "decode.acc_seg": 97.33722686767578, "aux.loss_ce": 0.20908563770353794, "aux.acc_seg": 91.70187377929688, "time": 1.1205503702163697, "iter": 34400, "memory": 8704, "step": 34400} +{"lr": 0.008059113509418658, "data_time": 0.005748128890991211, "loss": 0.45339624881744384, "decode.loss_ce": 0.2839740447700024, "decode.acc_seg": 92.92176055908203, "aux.loss_ce": 0.16942219994962215, "aux.acc_seg": 89.34046173095703, "time": 1.1129063367843628, "iter": 34450, "memory": 8704, "step": 34450} +{"lr": 0.008056260723749306, "data_time": 0.0074547529220581055, "loss": 0.44842960238456725, "decode.loss_ce": 0.2812184877693653, "decode.acc_seg": 81.5276107788086, "aux.loss_ce": 0.16721111983060838, "aux.acc_seg": 80.04054260253906, "time": 1.1174381971359253, "iter": 34500, "memory": 8704, "step": 34500} +{"lr": 0.008053407824420891, "data_time": 0.006962418556213379, "loss": 0.5041279926896095, "decode.loss_ce": 0.3094613514840603, "decode.acc_seg": 86.05791473388672, "aux.loss_ce": 0.19466664046049117, "aux.acc_seg": 72.72541809082031, "time": 1.11823468208313, "iter": 34550, "memory": 8704, "step": 34550} +{"lr": 0.008050554811383576, "data_time": 0.007782793045043946, "loss": 0.4921562746167183, "decode.loss_ce": 0.29313981235027314, "decode.acc_seg": 85.86101531982422, "aux.loss_ce": 0.19901646338403226, "aux.acc_seg": 80.41680145263672, "time": 1.119558072090149, "iter": 34600, "memory": 8704, "step": 34600} +{"lr": 0.008047701684587481, "data_time": 0.006223821640014648, "loss": 0.5171276509761811, "decode.loss_ce": 0.32738056778907776, "decode.acc_seg": 89.80477142333984, "aux.loss_ce": 0.18974708989262581, "aux.acc_seg": 87.53948211669922, "time": 1.1179012537002564, "iter": 34650, "memory": 8704, "step": 34650} +{"lr": 0.008044848443982707, "data_time": 0.006063318252563477, "loss": 0.35851330757141114, "decode.loss_ce": 0.2118154540657997, "decode.acc_seg": 90.6739501953125, "aux.loss_ce": 0.1466978520154953, "aux.acc_seg": 81.43221282958984, "time": 1.1159958839416504, "iter": 34700, "memory": 8703, "step": 34700} +{"lr": 0.008041995089519284, "data_time": 0.006227517127990722, "loss": 0.381671179831028, "decode.loss_ce": 0.24688968509435655, "decode.acc_seg": 90.29496002197266, "aux.loss_ce": 0.13478149548172952, "aux.acc_seg": 85.86851501464844, "time": 1.1145253896713256, "iter": 34750, "memory": 8703, "step": 34750} +{"lr": 0.008039141621147215, "data_time": 0.006761670112609863, "loss": 0.40863314270973206, "decode.loss_ce": 0.25130860731005666, "decode.acc_seg": 89.50678253173828, "aux.loss_ce": 0.15732454024255277, "aux.acc_seg": 85.84136962890625, "time": 1.1164235591888427, "iter": 34800, "memory": 8703, "step": 34800} +{"lr": 0.00803628803881647, "data_time": 0.007258892059326172, "loss": 0.5880263939499855, "decode.loss_ce": 0.36487366780638697, "decode.acc_seg": 96.82820129394531, "aux.loss_ce": 0.22315271869301795, "aux.acc_seg": 95.58480072021484, "time": 1.1182002067565917, "iter": 34850, "memory": 8705, "step": 34850} +{"lr": 0.008033434342476954, "data_time": 0.006721663475036621, "loss": 0.3900663986802101, "decode.loss_ce": 0.22940074056386947, "decode.acc_seg": 73.56045532226562, "aux.loss_ce": 0.16066564694046975, "aux.acc_seg": 58.8636360168457, "time": 1.115258812904358, "iter": 34900, "memory": 8704, "step": 34900} +{"lr": 0.008030580532078549, "data_time": 0.005066609382629395, "loss": 0.3535566940903664, "decode.loss_ce": 0.2009538948535919, "decode.acc_seg": 92.16791534423828, "aux.loss_ce": 0.15260280035436152, "aux.acc_seg": 86.807373046875, "time": 1.108347773551941, "iter": 34950, "memory": 8703, "step": 34950} +{"lr": 0.008027726607571086, "data_time": 0.007396960258483886, "loss": 0.44492289125919343, "decode.loss_ce": 0.289692784845829, "decode.acc_seg": 93.19292449951172, "aux.loss_ce": 0.15523010566830636, "aux.acc_seg": 92.50011444091797, "time": 1.1149014234542847, "iter": 35000, "memory": 8703, "step": 35000} +{"lr": 0.00802487256890436, "data_time": 0.007352972030639648, "loss": 0.37167859971523287, "decode.loss_ce": 0.22833532094955444, "decode.acc_seg": 94.80400085449219, "aux.loss_ce": 0.14334328547120095, "aux.acc_seg": 88.88835906982422, "time": 1.117284631729126, "iter": 35050, "memory": 8704, "step": 35050} +{"lr": 0.008022018416028115, "data_time": 0.008527684211730956, "loss": 0.4076823636889458, "decode.loss_ce": 0.2585977494716644, "decode.acc_seg": 93.73512268066406, "aux.loss_ce": 0.14908460937440396, "aux.acc_seg": 92.00019836425781, "time": 1.1145727634429932, "iter": 35100, "memory": 8704, "step": 35100} +{"lr": 0.008019164148892066, "data_time": 0.007462000846862793, "loss": 0.6146886110305786, "decode.loss_ce": 0.3929045483469963, "decode.acc_seg": 87.46776580810547, "aux.loss_ce": 0.22178406566381453, "aux.acc_seg": 84.0439453125, "time": 1.1164632797241212, "iter": 35150, "memory": 8703, "step": 35150} +{"lr": 0.008016309767445851, "data_time": 0.006895661354064941, "loss": 0.37807864546775816, "decode.loss_ce": 0.22336741983890535, "decode.acc_seg": 91.21881866455078, "aux.loss_ce": 0.15471122041344643, "aux.acc_seg": 80.25379180908203, "time": 1.1152981758117675, "iter": 35200, "memory": 8703, "step": 35200} +{"lr": 0.008013455271639111, "data_time": 0.007778573036193848, "loss": 0.35271215066313744, "decode.loss_ce": 0.2097584255039692, "decode.acc_seg": 95.31752014160156, "aux.loss_ce": 0.14295372366905212, "aux.acc_seg": 91.0669937133789, "time": 1.119414258003235, "iter": 35250, "memory": 8704, "step": 35250} +{"lr": 0.008010600661421442, "data_time": 0.006596946716308593, "loss": 0.4782525718212128, "decode.loss_ce": 0.29890038520097734, "decode.acc_seg": 96.59716033935547, "aux.loss_ce": 0.17935218587517737, "aux.acc_seg": 91.36390686035156, "time": 1.1203479528427125, "iter": 35300, "memory": 8704, "step": 35300} +{"lr": 0.008007745936742354, "data_time": 0.005470633506774902, "loss": 0.4375485673546791, "decode.loss_ce": 0.25030526146292686, "decode.acc_seg": 93.8089370727539, "aux.loss_ce": 0.18724330738186837, "aux.acc_seg": 64.541748046875, "time": 1.1131718635559082, "iter": 35350, "memory": 8703, "step": 35350} +{"lr": 0.008004891097551356, "data_time": 0.008795619010925293, "loss": 0.4618844985961914, "decode.loss_ce": 0.28183210343122483, "decode.acc_seg": 93.22898864746094, "aux.loss_ce": 0.18005238994956016, "aux.acc_seg": 90.05030059814453, "time": 1.1151264905929565, "iter": 35400, "memory": 8703, "step": 35400} +{"lr": 0.008002036143797901, "data_time": 0.007370519638061524, "loss": 0.323711758852005, "decode.loss_ce": 0.20384738370776176, "decode.acc_seg": 93.76296997070312, "aux.loss_ce": 0.11986437439918518, "aux.acc_seg": 91.97998046875, "time": 1.1178258180618286, "iter": 35450, "memory": 8704, "step": 35450} +{"lr": 0.00799918107543139, "data_time": 0.006073188781738281, "loss": 0.4994610816240311, "decode.loss_ce": 0.3026683822274208, "decode.acc_seg": 88.04753112792969, "aux.loss_ce": 0.19679270535707474, "aux.acc_seg": 85.51660919189453, "time": 1.1169491529464721, "iter": 35500, "memory": 8703, "step": 35500} +{"lr": 0.007996325892401191, "data_time": 0.00579538345336914, "loss": 0.5145476803183555, "decode.loss_ce": 0.3250121518969536, "decode.acc_seg": 95.23837280273438, "aux.loss_ce": 0.1895355198532343, "aux.acc_seg": 94.2280044555664, "time": 1.1196834325790406, "iter": 35550, "memory": 8703, "step": 35550} +{"lr": 0.007993470594656625, "data_time": 0.006789016723632813, "loss": 0.6824515849351883, "decode.loss_ce": 0.42784909158945084, "decode.acc_seg": 93.6240463256836, "aux.loss_ce": 0.2546025007963181, "aux.acc_seg": 89.17801666259766, "time": 1.1188492059707642, "iter": 35600, "memory": 8704, "step": 35600} +{"lr": 0.00799061518214698, "data_time": 0.007714319229125977, "loss": 0.4554693937301636, "decode.loss_ce": 0.28160703331232073, "decode.acc_seg": 83.77411651611328, "aux.loss_ce": 0.17386235818266868, "aux.acc_seg": 75.2892837524414, "time": 1.1192224025726318, "iter": 35650, "memory": 8704, "step": 35650} +{"lr": 0.0079877596548215, "data_time": 0.007891654968261719, "loss": 0.3399870052933693, "decode.loss_ce": 0.21021415144205094, "decode.acc_seg": 85.35448455810547, "aux.loss_ce": 0.12977285534143448, "aux.acc_seg": 83.21037292480469, "time": 1.1176475048065186, "iter": 35700, "memory": 8703, "step": 35700} +{"lr": 0.007984904012629373, "data_time": 0.008050537109375, "loss": 0.4215055614709854, "decode.loss_ce": 0.26938635259866717, "decode.acc_seg": 94.71429443359375, "aux.loss_ce": 0.15211920514702798, "aux.acc_seg": 94.09579467773438, "time": 1.11891028881073, "iter": 35750, "memory": 8705, "step": 35750} +{"lr": 0.007982048255519748, "data_time": 0.004903864860534668, "loss": 0.4494971677660942, "decode.loss_ce": 0.27010059729218483, "decode.acc_seg": 93.69938659667969, "aux.loss_ce": 0.17939656414091587, "aux.acc_seg": 89.60462951660156, "time": 1.1142605066299438, "iter": 35800, "memory": 8704, "step": 35800} +{"lr": 0.007979192383441733, "data_time": 0.00858476161956787, "loss": 0.4118539676070213, "decode.loss_ce": 0.26096159815788267, "decode.acc_seg": 95.23582458496094, "aux.loss_ce": 0.15089236199855804, "aux.acc_seg": 76.2918472290039, "time": 1.117854857444763, "iter": 35850, "memory": 8703, "step": 35850} +{"lr": 0.007976336396344404, "data_time": 0.007630634307861328, "loss": 0.4163750737905502, "decode.loss_ce": 0.2596725523471832, "decode.acc_seg": 89.45814514160156, "aux.loss_ce": 0.1567025136202574, "aux.acc_seg": 83.08906555175781, "time": 1.1210078001022339, "iter": 35900, "memory": 8704, "step": 35900} +{"lr": 0.00797348029417678, "data_time": 0.008154940605163575, "loss": 0.5169515758752823, "decode.loss_ce": 0.33264229595661166, "decode.acc_seg": 94.94679260253906, "aux.loss_ce": 0.184309271723032, "aux.acc_seg": 91.9158935546875, "time": 1.1231204509735107, "iter": 35950, "memory": 8704, "step": 35950} +{"lr": 0.007970624076887842, "data_time": 0.0059408903121948246, "loss": 0.4340771481394768, "decode.loss_ce": 0.2533623792231083, "decode.acc_seg": 89.77375030517578, "aux.loss_ce": 0.18071476519107818, "aux.acc_seg": 76.81280517578125, "time": 1.117316722869873, "iter": 36000, "memory": 8703, "step": 36000} +{"lr": 0.007967767744426523, "data_time": 0.006918692588806152, "loss": 0.3750166118144989, "decode.loss_ce": 0.24068787544965745, "decode.acc_seg": 91.36898803710938, "aux.loss_ce": 0.13432873524725436, "aux.acc_seg": 90.1326904296875, "time": 1.111595368385315, "iter": 36050, "memory": 8704, "step": 36050} +{"lr": 0.007964911296741732, "data_time": 0.0053911924362182615, "loss": 0.48636521100997926, "decode.loss_ce": 0.28787546455860136, "decode.acc_seg": 89.30778503417969, "aux.loss_ce": 0.19848974272608758, "aux.acc_seg": 85.64421081542969, "time": 1.1126960039138794, "iter": 36100, "memory": 8703, "step": 36100} +{"lr": 0.007962054733782297, "data_time": 0.006020164489746094, "loss": 0.3441978693008423, "decode.loss_ce": 0.21173142418265342, "decode.acc_seg": 94.70640563964844, "aux.loss_ce": 0.13246644362807275, "aux.acc_seg": 94.39067840576172, "time": 1.113574743270874, "iter": 36150, "memory": 8703, "step": 36150} +{"lr": 0.007959198055497043, "data_time": 0.007857728004455566, "loss": 0.4556053727865219, "decode.loss_ce": 0.2680646851658821, "decode.acc_seg": 93.73111724853516, "aux.loss_ce": 0.1875406913459301, "aux.acc_seg": 76.31746673583984, "time": 1.1182286262512207, "iter": 36200, "memory": 8704, "step": 36200} +{"lr": 0.00795634126183473, "data_time": 0.007235312461853027, "loss": 0.3383970156311989, "decode.loss_ce": 0.20747515186667442, "decode.acc_seg": 84.53839111328125, "aux.loss_ce": 0.13092186190187932, "aux.acc_seg": 79.66327667236328, "time": 1.1157762050628661, "iter": 36250, "memory": 8704, "step": 36250} +{"lr": 0.007953484352744072, "data_time": 0.007899332046508788, "loss": 0.4131273031234741, "decode.loss_ce": 0.25360039845108984, "decode.acc_seg": 93.57948303222656, "aux.loss_ce": 0.15952690467238426, "aux.acc_seg": 91.88785552978516, "time": 1.1178694248199463, "iter": 36300, "memory": 8703, "step": 36300} +{"lr": 0.007950627328173743, "data_time": 0.005969429016113281, "loss": 0.38850317895412445, "decode.loss_ce": 0.2330618232488632, "decode.acc_seg": 95.89659118652344, "aux.loss_ce": 0.15544135123491287, "aux.acc_seg": 93.40966033935547, "time": 1.1163774490356446, "iter": 36350, "memory": 8704, "step": 36350} +{"lr": 0.007947770188072382, "data_time": 0.0067376852035522464, "loss": 0.3164572507143021, "decode.loss_ce": 0.20023248344659805, "decode.acc_seg": 94.9594497680664, "aux.loss_ce": 0.11622476987540722, "aux.acc_seg": 92.1693115234375, "time": 1.1186709642410277, "iter": 36400, "memory": 8704, "step": 36400} +{"lr": 0.007944912932388578, "data_time": 0.007697391510009766, "loss": 0.3997643381357193, "decode.loss_ce": 0.23975591808557511, "decode.acc_seg": 94.241455078125, "aux.loss_ce": 0.16000841930508614, "aux.acc_seg": 89.75798034667969, "time": 1.1153083086013793, "iter": 36450, "memory": 8703, "step": 36450} +{"lr": 0.007942055561070877, "data_time": 0.005781745910644532, "loss": 0.36418456584215164, "decode.loss_ce": 0.21683574244379997, "decode.acc_seg": 97.75841522216797, "aux.loss_ce": 0.14734881557524204, "aux.acc_seg": 96.63155364990234, "time": 1.117539072036743, "iter": 36500, "memory": 8704, "step": 36500} +{"lr": 0.007939198074067783, "data_time": 0.005840563774108886, "loss": 0.4036194384098053, "decode.loss_ce": 0.24799327552318573, "decode.acc_seg": 90.37125396728516, "aux.loss_ce": 0.15562615916132927, "aux.acc_seg": 88.15860748291016, "time": 1.1132041692733765, "iter": 36550, "memory": 8704, "step": 36550} +{"lr": 0.00793634047132775, "data_time": 0.0067522525787353516, "loss": 0.4176266729831696, "decode.loss_ce": 0.26630528420209887, "decode.acc_seg": 85.50379943847656, "aux.loss_ce": 0.1513213872909546, "aux.acc_seg": 83.63587951660156, "time": 1.1088252782821655, "iter": 36600, "memory": 8703, "step": 36600} +{"lr": 0.007933482752799204, "data_time": 0.006538605690002442, "loss": 0.47368246465921404, "decode.loss_ce": 0.29240469411015513, "decode.acc_seg": 96.68457794189453, "aux.loss_ce": 0.18127776682376862, "aux.acc_seg": 95.01042938232422, "time": 1.1123399972915649, "iter": 36650, "memory": 8703, "step": 36650} +{"lr": 0.0079306249184305, "data_time": 0.008051037788391113, "loss": 0.3860548198223114, "decode.loss_ce": 0.23588281720876694, "decode.acc_seg": 91.1935806274414, "aux.loss_ce": 0.15017200261354446, "aux.acc_seg": 88.16311645507812, "time": 1.1170848608016968, "iter": 36700, "memory": 8703, "step": 36700} +{"lr": 0.007927766968169974, "data_time": 0.007262802124023438, "loss": 0.523205429315567, "decode.loss_ce": 0.3393902465701103, "decode.acc_seg": 86.58275604248047, "aux.loss_ce": 0.18381517380475998, "aux.acc_seg": 91.9998779296875, "time": 1.1187950372695923, "iter": 36750, "memory": 8703, "step": 36750} +{"lr": 0.007924908901965916, "data_time": 0.00632781982421875, "loss": 0.4529395654797554, "decode.loss_ce": 0.28339696750044824, "decode.acc_seg": 79.68285369873047, "aux.loss_ce": 0.16954260393977166, "aux.acc_seg": 70.93073272705078, "time": 1.115257453918457, "iter": 36800, "memory": 8704, "step": 36800} +{"lr": 0.007922050719766548, "data_time": 0.008827996253967286, "loss": 0.44192413464188574, "decode.loss_ce": 0.2730654038488865, "decode.acc_seg": 95.72416687011719, "aux.loss_ce": 0.1688587347045541, "aux.acc_seg": 93.47209930419922, "time": 1.1213019132614135, "iter": 36850, "memory": 8703, "step": 36850} +{"lr": 0.007919192421520066, "data_time": 0.0100128173828125, "loss": 0.5258978500962257, "decode.loss_ce": 0.33333708345890045, "decode.acc_seg": 91.63837432861328, "aux.loss_ce": 0.1925607591867447, "aux.acc_seg": 89.6463394165039, "time": 1.1238295316696167, "iter": 36900, "memory": 8703, "step": 36900} +{"lr": 0.00791633400717462, "data_time": 0.005972170829772949, "loss": 0.6612928509712219, "decode.loss_ce": 0.399323096871376, "decode.acc_seg": 75.2116470336914, "aux.loss_ce": 0.2619697585701942, "aux.acc_seg": 68.91613006591797, "time": 1.1107571125030518, "iter": 36950, "memory": 8704, "step": 36950} +{"lr": 0.007913475476678328, "data_time": 0.006356453895568848, "loss": 0.5045168831944465, "decode.loss_ce": 0.32248269617557523, "decode.acc_seg": 83.86296844482422, "aux.loss_ce": 0.18203418850898742, "aux.acc_seg": 80.64363861083984, "time": 1.1131056070327758, "iter": 37000, "memory": 8704, "step": 37000} +{"lr": 0.007910616829979218, "data_time": 0.0071029186248779295, "loss": 0.32674568742513654, "decode.loss_ce": 0.2020489364862442, "decode.acc_seg": 94.68631744384766, "aux.loss_ce": 0.12469675280153751, "aux.acc_seg": 92.21954345703125, "time": 1.1129504442214966, "iter": 37050, "memory": 8704, "step": 37050} +{"lr": 0.007907758067025334, "data_time": 0.007225394248962402, "loss": 0.39007598757743833, "decode.loss_ce": 0.2425822786986828, "decode.acc_seg": 96.59391784667969, "aux.loss_ce": 0.14749370366334916, "aux.acc_seg": 91.84284210205078, "time": 1.1103761196136475, "iter": 37100, "memory": 8703, "step": 37100} +{"lr": 0.007904899187764648, "data_time": 0.007696747779846191, "loss": 0.35790169388055804, "decode.loss_ce": 0.2159559413790703, "decode.acc_seg": 93.0868148803711, "aux.loss_ce": 0.1419457510113716, "aux.acc_seg": 91.20476531982422, "time": 1.1153098344802856, "iter": 37150, "memory": 8703, "step": 37150} +{"lr": 0.007902040192145082, "data_time": 0.007030653953552246, "loss": 0.4962176024913788, "decode.loss_ce": 0.32635738998651503, "decode.acc_seg": 86.541748046875, "aux.loss_ce": 0.16986022144556046, "aux.acc_seg": 82.21874237060547, "time": 1.1141090869903565, "iter": 37200, "memory": 8703, "step": 37200} +{"lr": 0.00789918108011454, "data_time": 0.00759131908416748, "loss": 0.5393495336174965, "decode.loss_ce": 0.32333628088235855, "decode.acc_seg": 85.40979766845703, "aux.loss_ce": 0.2160132545977831, "aux.acc_seg": 83.599853515625, "time": 1.1153111219406129, "iter": 37250, "memory": 8703, "step": 37250} +{"lr": 0.007896321851620843, "data_time": 0.006160879135131836, "loss": 0.3571653082966805, "decode.loss_ce": 0.226979111880064, "decode.acc_seg": 93.14949798583984, "aux.loss_ce": 0.13018619157373906, "aux.acc_seg": 89.3377914428711, "time": 1.1130087614059447, "iter": 37300, "memory": 8704, "step": 37300} +{"lr": 0.007893462506611795, "data_time": 0.007705163955688476, "loss": 0.46374748200178145, "decode.loss_ce": 0.28508472740650176, "decode.acc_seg": 84.7036361694336, "aux.loss_ce": 0.17866275161504747, "aux.acc_seg": 75.32837677001953, "time": 1.12238290309906, "iter": 37350, "memory": 8703, "step": 37350} +{"lr": 0.007890603045035133, "data_time": 0.008198428153991699, "loss": 0.5218153864145278, "decode.loss_ce": 0.3207303285598755, "decode.acc_seg": 76.18370056152344, "aux.loss_ce": 0.20108505859971046, "aux.acc_seg": 68.12458038330078, "time": 1.118156099319458, "iter": 37400, "memory": 8703, "step": 37400} +{"lr": 0.007887743466838574, "data_time": 0.0055080890655517575, "loss": 0.44434552937746047, "decode.loss_ce": 0.26642380356788636, "decode.acc_seg": 87.7219467163086, "aux.loss_ce": 0.17792172059416772, "aux.acc_seg": 87.24842071533203, "time": 1.1115370035171508, "iter": 37450, "memory": 8703, "step": 37450} +{"lr": 0.007884883771969777, "data_time": 0.005782413482666016, "loss": 0.41207968145608903, "decode.loss_ce": 0.25613963305950166, "decode.acc_seg": 95.67057037353516, "aux.loss_ce": 0.1559400450438261, "aux.acc_seg": 95.17453002929688, "time": 1.1103713035583496, "iter": 37500, "memory": 8703, "step": 37500} +{"lr": 0.007882023960376352, "data_time": 0.005968141555786133, "loss": 0.5111816629767418, "decode.loss_ce": 0.3187669709324837, "decode.acc_seg": 74.20317077636719, "aux.loss_ce": 0.19241469651460646, "aux.acc_seg": 73.61469268798828, "time": 1.1154749393463135, "iter": 37550, "memory": 8704, "step": 37550} +{"lr": 0.007879164032005868, "data_time": 0.008375120162963868, "loss": 0.3639309525489807, "decode.loss_ce": 0.23602889254689216, "decode.acc_seg": 89.88787078857422, "aux.loss_ce": 0.12790205478668212, "aux.acc_seg": 81.92488098144531, "time": 1.118971872329712, "iter": 37600, "memory": 8704, "step": 37600} +{"lr": 0.007876303986805859, "data_time": 0.00729057788848877, "loss": 0.41091128885746003, "decode.loss_ce": 0.2563979133963585, "decode.acc_seg": 85.1446762084961, "aux.loss_ce": 0.1545133750885725, "aux.acc_seg": 69.3924560546875, "time": 1.1188806533813476, "iter": 37650, "memory": 8704, "step": 37650} +{"lr": 0.007873443824723799, "data_time": 0.006949663162231445, "loss": 0.39342562556266786, "decode.loss_ce": 0.23993916139006616, "decode.acc_seg": 89.33531188964844, "aux.loss_ce": 0.15348646156489848, "aux.acc_seg": 87.72608184814453, "time": 1.1152204275131226, "iter": 37700, "memory": 8703, "step": 37700} +{"lr": 0.007870583545707138, "data_time": 0.007039451599121093, "loss": 0.35409944504499435, "decode.loss_ce": 0.22424157783389093, "decode.acc_seg": 94.18917083740234, "aux.loss_ce": 0.12985787019133568, "aux.acc_seg": 92.83311462402344, "time": 1.1191243171691894, "iter": 37750, "memory": 8704, "step": 37750} +{"lr": 0.007867723149703246, "data_time": 0.007545781135559082, "loss": 0.46764610409736634, "decode.loss_ce": 0.2886666774749756, "decode.acc_seg": 83.90664672851562, "aux.loss_ce": 0.17897942215204238, "aux.acc_seg": 74.5292739868164, "time": 1.114443826675415, "iter": 37800, "memory": 8704, "step": 37800} +{"lr": 0.007864862636659484, "data_time": 0.006801915168762207, "loss": 0.3888434752821922, "decode.loss_ce": 0.22744169384241103, "decode.acc_seg": 97.2021713256836, "aux.loss_ce": 0.16140178069472313, "aux.acc_seg": 96.5118408203125, "time": 1.1161741256713866, "iter": 37850, "memory": 8704, "step": 37850} +{"lr": 0.007862002006523138, "data_time": 0.006513071060180664, "loss": 0.5816218867897988, "decode.loss_ce": 0.3624230071902275, "decode.acc_seg": 87.9355697631836, "aux.loss_ce": 0.21919888406991958, "aux.acc_seg": 83.05015563964844, "time": 1.1163479566574097, "iter": 37900, "memory": 8703, "step": 37900} +{"lr": 0.00785914125924147, "data_time": 0.007303881645202637, "loss": 0.4679430350661278, "decode.loss_ce": 0.2985333174467087, "decode.acc_seg": 88.8406753540039, "aux.loss_ce": 0.16940971091389656, "aux.acc_seg": 87.78260040283203, "time": 1.1161087036132813, "iter": 37950, "memory": 8703, "step": 37950} +{"lr": 0.007856280394761677, "data_time": 0.007046103477478027, "loss": 0.4030669771134853, "decode.loss_ce": 0.24903649315238, "decode.acc_seg": 91.27249908447266, "aux.loss_ce": 0.1540304720401764, "aux.acc_seg": 84.78524017333984, "time": 1.11616849899292, "iter": 38000, "memory": 8703, "step": 38000} +{"lr": 0.007853419413030945, "data_time": 0.006001114845275879, "loss": 0.4382171079516411, "decode.loss_ce": 0.2666400566697121, "decode.acc_seg": 92.72856903076172, "aux.loss_ce": 0.17157703973352909, "aux.acc_seg": 90.95343780517578, "time": 1.1134356260299683, "iter": 38050, "memory": 8704, "step": 38050} +{"lr": 0.007850558313996378, "data_time": 0.005541229248046875, "loss": 0.3821889072656631, "decode.loss_ce": 0.23801516592502595, "decode.acc_seg": 89.03759765625, "aux.loss_ce": 0.1441737435758114, "aux.acc_seg": 86.20469665527344, "time": 1.1119315385818482, "iter": 38100, "memory": 8703, "step": 38100} +{"lr": 0.007847697097605048, "data_time": 0.007227873802185059, "loss": 0.44944494515657424, "decode.loss_ce": 0.28224060907959936, "decode.acc_seg": 93.76314544677734, "aux.loss_ce": 0.1672043327242136, "aux.acc_seg": 93.69523620605469, "time": 1.1171311855316162, "iter": 38150, "memory": 8704, "step": 38150} +{"lr": 0.007844835763803976, "data_time": 0.00788424015045166, "loss": 0.5146815076470375, "decode.loss_ce": 0.32821798995137214, "decode.acc_seg": 95.1316146850586, "aux.loss_ce": 0.186463513225317, "aux.acc_seg": 76.99241638183594, "time": 1.1200409173965453, "iter": 38200, "memory": 8704, "step": 38200} +{"lr": 0.00784197431254017, "data_time": 0.006762647628784179, "loss": 0.49433383494615557, "decode.loss_ce": 0.31890808045864105, "decode.acc_seg": 90.75482177734375, "aux.loss_ce": 0.1754257544875145, "aux.acc_seg": 83.91780853271484, "time": 1.116986083984375, "iter": 38250, "memory": 8704, "step": 38250} +{"lr": 0.007839112743760547, "data_time": 0.007399940490722656, "loss": 0.6026890635490417, "decode.loss_ce": 0.3869162440299988, "decode.acc_seg": 95.10135650634766, "aux.loss_ce": 0.21577282547950744, "aux.acc_seg": 90.85667419433594, "time": 1.113076114654541, "iter": 38300, "memory": 8703, "step": 38300} +{"lr": 0.007836251057412006, "data_time": 0.007137584686279297, "loss": 0.5167031139135361, "decode.loss_ce": 0.3201208099722862, "decode.acc_seg": 92.82645416259766, "aux.loss_ce": 0.19658230096101761, "aux.acc_seg": 82.7520523071289, "time": 1.1165391683578492, "iter": 38350, "memory": 8704, "step": 38350} +{"lr": 0.007833389253441373, "data_time": 0.007658028602600097, "loss": 0.482133486866951, "decode.loss_ce": 0.29677821695804596, "decode.acc_seg": 90.60261535644531, "aux.loss_ce": 0.18535526730120183, "aux.acc_seg": 79.35606384277344, "time": 1.1193991899490356, "iter": 38400, "memory": 8705, "step": 38400} +{"lr": 0.007830527331795458, "data_time": 0.005006718635559082, "loss": 0.5379508048295975, "decode.loss_ce": 0.3208221673965454, "decode.acc_seg": 87.47177124023438, "aux.loss_ce": 0.2171286314725876, "aux.acc_seg": 81.19087219238281, "time": 1.1106101751327515, "iter": 38450, "memory": 8703, "step": 38450} +{"lr": 0.007827665292421005, "data_time": 0.008128046989440918, "loss": 0.4237496957182884, "decode.loss_ce": 0.2570728436112404, "decode.acc_seg": 91.4764404296875, "aux.loss_ce": 0.1666768543422222, "aux.acc_seg": 89.2318115234375, "time": 1.1152286291122437, "iter": 38500, "memory": 8704, "step": 38500} +{"lr": 0.007824803135264735, "data_time": 0.005736041069030762, "loss": 0.491524937748909, "decode.loss_ce": 0.30775085017085074, "decode.acc_seg": 95.63013458251953, "aux.loss_ce": 0.18377408608794213, "aux.acc_seg": 92.74311065673828, "time": 1.1199876070022583, "iter": 38550, "memory": 8703, "step": 38550} +{"lr": 0.007821940860273305, "data_time": 0.006124520301818847, "loss": 0.36935928612947466, "decode.loss_ce": 0.23236659318208694, "decode.acc_seg": 97.4333267211914, "aux.loss_ce": 0.13699268959462643, "aux.acc_seg": 97.16138458251953, "time": 1.1136204481124878, "iter": 38600, "memory": 8704, "step": 38600} +{"lr": 0.007819078467393327, "data_time": 0.005392789840698242, "loss": 0.6155748248100281, "decode.loss_ce": 0.38915983140468596, "decode.acc_seg": 96.1406021118164, "aux.loss_ce": 0.2264149822294712, "aux.acc_seg": 95.6695556640625, "time": 1.1104925394058227, "iter": 38650, "memory": 8704, "step": 38650} +{"lr": 0.007816215956571358, "data_time": 0.007689094543457032, "loss": 0.4506727457046509, "decode.loss_ce": 0.2750032007694244, "decode.acc_seg": 89.66280364990234, "aux.loss_ce": 0.17566954120993614, "aux.acc_seg": 87.51856231689453, "time": 1.1164068460464478, "iter": 38700, "memory": 8703, "step": 38700} +{"lr": 0.007813353327753922, "data_time": 0.006064176559448242, "loss": 0.5416336983442307, "decode.loss_ce": 0.3376572571694851, "decode.acc_seg": 88.62139129638672, "aux.loss_ce": 0.20397643893957138, "aux.acc_seg": 83.81614685058594, "time": 1.1170538902282714, "iter": 38750, "memory": 8703, "step": 38750} +{"lr": 0.007810490580887516, "data_time": 0.006914782524108887, "loss": 0.4372414141893387, "decode.loss_ce": 0.28049951419234276, "decode.acc_seg": 88.01771545410156, "aux.loss_ce": 0.15674189738929273, "aux.acc_seg": 84.9732666015625, "time": 1.111665630340576, "iter": 38800, "memory": 8703, "step": 38800} +{"lr": 0.00780762771591856, "data_time": 0.007673072814941406, "loss": 0.5281341552734375, "decode.loss_ce": 0.33800188452005386, "decode.acc_seg": 88.15510559082031, "aux.loss_ce": 0.1901322692632675, "aux.acc_seg": 84.0750503540039, "time": 1.1194233417510986, "iter": 38850, "memory": 8703, "step": 38850} +{"lr": 0.007804764732793425, "data_time": 0.007927155494689942, "loss": 0.41277301758527757, "decode.loss_ce": 0.2609917402267456, "decode.acc_seg": 94.84831237792969, "aux.loss_ce": 0.15178127586841583, "aux.acc_seg": 94.90921783447266, "time": 1.1186446666717529, "iter": 38900, "memory": 8704, "step": 38900} +{"lr": 0.007801901631458452, "data_time": 0.008304142951965332, "loss": 0.6879366278648377, "decode.loss_ce": 0.43065162301063536, "decode.acc_seg": 90.60083770751953, "aux.loss_ce": 0.2572850130498409, "aux.acc_seg": 84.06536865234375, "time": 1.116473174095154, "iter": 38950, "memory": 8704, "step": 38950} +{"lr": 0.0077990384118599345, "data_time": 0.0063600301742553714, "loss": 0.7567720904946327, "decode.loss_ce": 0.4869056925177574, "decode.acc_seg": 95.75140380859375, "aux.loss_ce": 0.2698664031922817, "aux.acc_seg": 94.04393768310547, "time": 1.116183376312256, "iter": 39000, "memory": 8704, "step": 39000} +{"lr": 0.007796175073944104, "data_time": 0.006372809410095215, "loss": 0.5558449029922485, "decode.loss_ce": 0.336411751806736, "decode.acc_seg": 96.13716125488281, "aux.loss_ce": 0.21943314895033836, "aux.acc_seg": 92.91095733642578, "time": 1.1171084880828857, "iter": 39050, "memory": 8704, "step": 39050} +{"lr": 0.007793311617657162, "data_time": 0.008072233200073243, "loss": 0.5611812204122544, "decode.loss_ce": 0.33205324709415435, "decode.acc_seg": 92.44696044921875, "aux.loss_ce": 0.2291279748082161, "aux.acc_seg": 89.74742889404297, "time": 1.1210788249969483, "iter": 39100, "memory": 8703, "step": 39100} +{"lr": 0.0077904480429452526, "data_time": 0.007887458801269532, "loss": 0.4524376720190048, "decode.loss_ce": 0.2673496171832085, "decode.acc_seg": 95.21270751953125, "aux.loss_ce": 0.18508805856108665, "aux.acc_seg": 95.00391387939453, "time": 1.1165067672729492, "iter": 39150, "memory": 8703, "step": 39150} +{"lr": 0.007787584349754493, "data_time": 0.006308174133300782, "loss": 0.37897160202264785, "decode.loss_ce": 0.23613804206252098, "decode.acc_seg": 95.05780029296875, "aux.loss_ce": 0.14283355809748172, "aux.acc_seg": 92.2745361328125, "time": 1.113848090171814, "iter": 39200, "memory": 8703, "step": 39200} +{"lr": 0.007784720538030924, "data_time": 0.008126354217529297, "loss": 0.25921971127390864, "decode.loss_ce": 0.15606310740113258, "decode.acc_seg": 96.76996612548828, "aux.loss_ce": 0.10315660163760185, "aux.acc_seg": 97.12263488769531, "time": 1.1185751676559448, "iter": 39250, "memory": 8703, "step": 39250} +{"lr": 0.007781856607720566, "data_time": 0.007999324798583984, "loss": 0.4170175164937973, "decode.loss_ce": 0.2509151488542557, "decode.acc_seg": 93.46077728271484, "aux.loss_ce": 0.1661023713648319, "aux.acc_seg": 90.95935821533203, "time": 1.1184329986572266, "iter": 39300, "memory": 8703, "step": 39300} +{"lr": 0.007778992558769372, "data_time": 0.0066365480422973635, "loss": 0.44675656855106355, "decode.loss_ce": 0.2838454246520996, "decode.acc_seg": 93.08541107177734, "aux.loss_ce": 0.1629111386835575, "aux.acc_seg": 92.6584243774414, "time": 1.114841365814209, "iter": 39350, "memory": 8704, "step": 39350} +{"lr": 0.0077761283911232625, "data_time": 0.00679163932800293, "loss": 0.36543611288070676, "decode.loss_ce": 0.224073389172554, "decode.acc_seg": 94.33795928955078, "aux.loss_ce": 0.1413627214729786, "aux.acc_seg": 93.94315338134766, "time": 1.1158414602279663, "iter": 39400, "memory": 8704, "step": 39400} +{"lr": 0.007773264104728095, "data_time": 0.007988476753234863, "loss": 0.5383904412388801, "decode.loss_ce": 0.32083830535411834, "decode.acc_seg": 95.06950378417969, "aux.loss_ce": 0.21755213662981987, "aux.acc_seg": 93.79933166503906, "time": 1.120398259162903, "iter": 39450, "memory": 8704, "step": 39450} +{"lr": 0.007770399699529699, "data_time": 0.006259632110595703, "loss": 0.4825802356004715, "decode.loss_ce": 0.3106697857379913, "decode.acc_seg": 88.24634552001953, "aux.loss_ce": 0.17191044390201568, "aux.acc_seg": 80.87100982666016, "time": 1.1164693593978883, "iter": 39500, "memory": 8704, "step": 39500} +{"lr": 0.007767535175473845, "data_time": 0.006814789772033691, "loss": 0.42300170063972475, "decode.loss_ce": 0.2575736835598946, "decode.acc_seg": 95.04014587402344, "aux.loss_ce": 0.16542801782488822, "aux.acc_seg": 86.56634521484375, "time": 1.113853645324707, "iter": 39550, "memory": 8703, "step": 39550} +{"lr": 0.007764670532506258, "data_time": 0.0072901248931884766, "loss": 0.4906574562191963, "decode.loss_ce": 0.2914994157850742, "decode.acc_seg": 72.99041748046875, "aux.loss_ce": 0.19915804415941238, "aux.acc_seg": 60.16501998901367, "time": 1.1165252685546876, "iter": 39600, "memory": 8704, "step": 39600} +{"lr": 0.007761805770572625, "data_time": 0.007397794723510742, "loss": 0.40406299084424974, "decode.loss_ce": 0.22592225819826126, "decode.acc_seg": 98.10784149169922, "aux.loss_ce": 0.17814072743058204, "aux.acc_seg": 94.89847564697266, "time": 1.1121315956115723, "iter": 39650, "memory": 8704, "step": 39650} +{"lr": 0.007758940889618574, "data_time": 0.00619196891784668, "loss": 0.6263519436120987, "decode.loss_ce": 0.42484692186117173, "decode.acc_seg": 91.33110046386719, "aux.loss_ce": 0.201505009457469, "aux.acc_seg": 90.71903228759766, "time": 1.1157638311386109, "iter": 39700, "memory": 8704, "step": 39700} +{"lr": 0.0077560758895896835, "data_time": 0.006034326553344726, "loss": 0.5807120025157928, "decode.loss_ce": 0.343534417450428, "decode.acc_seg": 95.21134185791016, "aux.loss_ce": 0.23717758879065515, "aux.acc_seg": 94.79763793945312, "time": 1.1143659353256226, "iter": 39750, "memory": 8703, "step": 39750} +{"lr": 0.007753210770431492, "data_time": 0.0063970088958740234, "loss": 0.42859429568052293, "decode.loss_ce": 0.2664620041847229, "decode.acc_seg": 92.75639343261719, "aux.loss_ce": 0.16213229596614837, "aux.acc_seg": 89.13294219970703, "time": 1.1148563861846923, "iter": 39800, "memory": 8704, "step": 39800} +{"lr": 0.007750345532089488, "data_time": 0.005227136611938477, "loss": 0.6198158949613571, "decode.loss_ce": 0.36946470141410825, "decode.acc_seg": 95.611572265625, "aux.loss_ce": 0.25035118907690046, "aux.acc_seg": 86.60729217529297, "time": 1.11321964263916, "iter": 39850, "memory": 8703, "step": 39850} +{"lr": 0.007747480174509112, "data_time": 0.008328557014465332, "loss": 0.4845068246126175, "decode.loss_ce": 0.3038664683699608, "decode.acc_seg": 88.18826293945312, "aux.loss_ce": 0.18064035028219222, "aux.acc_seg": 82.72306060791016, "time": 1.1183971405029296, "iter": 39900, "memory": 8704, "step": 39900} +{"lr": 0.007744614697635758, "data_time": 0.008473372459411621, "loss": 0.4377609327435493, "decode.loss_ce": 0.2727913588285446, "decode.acc_seg": 95.56210327148438, "aux.loss_ce": 0.1649695735424757, "aux.acc_seg": 94.57193756103516, "time": 1.119619107246399, "iter": 39950, "memory": 8703, "step": 39950} +{"lr": 0.0077417491014147724, "data_time": 0.006659197807312012, "loss": 0.37084787636995314, "decode.loss_ce": 0.22116914615035058, "decode.acc_seg": 91.470458984375, "aux.loss_ce": 0.1496787253767252, "aux.acc_seg": 87.57705688476562, "time": 1.1143803119659423, "iter": 40000, "memory": 8703, "step": 40000} +{"lr": 0.007738883385791452, "data_time": 0.008031272888183593, "loss": 0.44450086951255796, "decode.loss_ce": 0.29132330492138864, "decode.acc_seg": 94.66819763183594, "aux.loss_ce": 0.153177560120821, "aux.acc_seg": 91.49195098876953, "time": 1.1159584045410156, "iter": 40050, "memory": 8703, "step": 40050} +{"lr": 0.007736017550711047, "data_time": 0.005307579040527343, "loss": 0.356558196246624, "decode.loss_ce": 0.21893584504723548, "decode.acc_seg": 96.83074951171875, "aux.loss_ce": 0.13762235306203366, "aux.acc_seg": 95.2962875366211, "time": 1.1115121364593505, "iter": 40100, "memory": 8704, "step": 40100} +{"lr": 0.007733151596118765, "data_time": 0.007427620887756348, "loss": 0.4525328755378723, "decode.loss_ce": 0.2676030069589615, "decode.acc_seg": 85.10010528564453, "aux.loss_ce": 0.18492987118661403, "aux.acc_seg": 69.5008544921875, "time": 1.1217687606811524, "iter": 40150, "memory": 8704, "step": 40150} +{"lr": 0.007730285521959757, "data_time": 0.008561444282531739, "loss": 0.4152074411511421, "decode.loss_ce": 0.26324553564190867, "decode.acc_seg": 93.14867401123047, "aux.loss_ce": 0.15196189880371094, "aux.acc_seg": 91.81645202636719, "time": 1.117340660095215, "iter": 40200, "memory": 8703, "step": 40200} +{"lr": 0.007727419328179123, "data_time": 0.007669782638549805, "loss": 0.4402916878461838, "decode.loss_ce": 0.2642650410532951, "decode.acc_seg": 87.55842590332031, "aux.loss_ce": 0.1760266400873661, "aux.acc_seg": 77.46810913085938, "time": 1.118831253051758, "iter": 40250, "memory": 8703, "step": 40250} +{"lr": 0.0077245530147219245, "data_time": 0.006593894958496094, "loss": 0.40828448832035064, "decode.loss_ce": 0.260091669857502, "decode.acc_seg": 88.4448013305664, "aux.loss_ce": 0.1481928162276745, "aux.acc_seg": 83.3741455078125, "time": 1.1167778730392457, "iter": 40300, "memory": 8704, "step": 40300} +{"lr": 0.00772168658153317, "data_time": 0.005707168579101562, "loss": 0.3829207196831703, "decode.loss_ce": 0.24396856501698494, "decode.acc_seg": 94.99295043945312, "aux.loss_ce": 0.13895215205848216, "aux.acc_seg": 92.56979370117188, "time": 1.1111977815628051, "iter": 40350, "memory": 8704, "step": 40350} +{"lr": 0.007718820028557828, "data_time": 0.006596040725708008, "loss": 0.49981915950775146, "decode.loss_ce": 0.3164706103503704, "decode.acc_seg": 89.6707534790039, "aux.loss_ce": 0.18334855064749717, "aux.acc_seg": 82.11199188232422, "time": 1.1178833723068238, "iter": 40400, "memory": 8704, "step": 40400} +{"lr": 0.007715953355740804, "data_time": 0.006844210624694824, "loss": 0.45361478328704835, "decode.loss_ce": 0.27593039721250534, "decode.acc_seg": 95.0865249633789, "aux.loss_ce": 0.17768438160419464, "aux.acc_seg": 94.28162384033203, "time": 1.114379620552063, "iter": 40450, "memory": 8703, "step": 40450} +{"lr": 0.00771308656302696, "data_time": 0.007337141036987305, "loss": 0.5816664040088654, "decode.loss_ce": 0.37064755856990816, "decode.acc_seg": 95.76841735839844, "aux.loss_ce": 0.21101885363459588, "aux.acc_seg": 78.43328857421875, "time": 1.1147841215133667, "iter": 40500, "memory": 8704, "step": 40500} +{"lr": 0.007710219650361125, "data_time": 0.006777215003967285, "loss": 0.3877484202384949, "decode.loss_ce": 0.24061006903648377, "decode.acc_seg": 91.09789276123047, "aux.loss_ce": 0.14713835455477237, "aux.acc_seg": 87.84357452392578, "time": 1.113508129119873, "iter": 40550, "memory": 8703, "step": 40550} +{"lr": 0.007707352617688052, "data_time": 0.007848167419433593, "loss": 0.4114884495735168, "decode.loss_ce": 0.2615164861083031, "decode.acc_seg": 91.01288604736328, "aux.loss_ce": 0.14997195899486543, "aux.acc_seg": 87.01254272460938, "time": 1.1153909683227539, "iter": 40600, "memory": 8703, "step": 40600} +{"lr": 0.007704485464952471, "data_time": 0.006868696212768555, "loss": 0.3863282442092896, "decode.loss_ce": 0.24305371791124344, "decode.acc_seg": 96.80207061767578, "aux.loss_ce": 0.14327452406287194, "aux.acc_seg": 92.15354919433594, "time": 1.1165427923202516, "iter": 40650, "memory": 8704, "step": 40650} +{"lr": 0.0077016181920990445, "data_time": 0.007315969467163086, "loss": 0.38935723900794983, "decode.loss_ce": 0.2555976375937462, "decode.acc_seg": 94.93324279785156, "aux.loss_ce": 0.1337595943361521, "aux.acc_seg": 93.91312408447266, "time": 1.1156018018722533, "iter": 40700, "memory": 8704, "step": 40700} +{"lr": 0.007698750799072399, "data_time": 0.006033539772033691, "loss": 0.5778084054589272, "decode.loss_ce": 0.379591254144907, "decode.acc_seg": 96.90430450439453, "aux.loss_ce": 0.1982171569019556, "aux.acc_seg": 96.09819793701172, "time": 1.1121580362319947, "iter": 40750, "memory": 8704, "step": 40750} +{"lr": 0.007695883285817111, "data_time": 0.006559848785400391, "loss": 0.48215397298336027, "decode.loss_ce": 0.3021768666803837, "decode.acc_seg": 93.11402130126953, "aux.loss_ce": 0.1799771174788475, "aux.acc_seg": 88.38799285888672, "time": 1.116917610168457, "iter": 40800, "memory": 8703, "step": 40800} +{"lr": 0.0076930156522777016, "data_time": 0.007764291763305664, "loss": 0.4159175857901573, "decode.loss_ce": 0.26042592003941534, "decode.acc_seg": 95.45230865478516, "aux.loss_ce": 0.15549166910350323, "aux.acc_seg": 95.08488464355469, "time": 1.11647469997406, "iter": 40850, "memory": 8703, "step": 40850} +{"lr": 0.0076901478983986415, "data_time": 0.006934237480163574, "loss": 0.33182562291622164, "decode.loss_ce": 0.21324229314923288, "decode.acc_seg": 86.4482192993164, "aux.loss_ce": 0.11858332641422749, "aux.acc_seg": 79.68120574951172, "time": 1.1179712057113647, "iter": 40900, "memory": 8704, "step": 40900} +{"lr": 0.007687280024124361, "data_time": 0.006520700454711914, "loss": 0.4263143613934517, "decode.loss_ce": 0.2637896008789539, "decode.acc_seg": 90.68323516845703, "aux.loss_ce": 0.16252476647496222, "aux.acc_seg": 86.79027557373047, "time": 1.1181017398834228, "iter": 40950, "memory": 8703, "step": 40950} +{"lr": 0.007684412029399242, "data_time": 0.007688784599304199, "loss": 0.5192607492208481, "decode.loss_ce": 0.32025541216135023, "decode.acc_seg": 94.99016571044922, "aux.loss_ce": 0.19900534003973008, "aux.acc_seg": 94.1816635131836, "time": 1.1162959575653075, "iter": 41000, "memory": 8703, "step": 41000} +{"lr": 0.007681543914167599, "data_time": 0.007884788513183593, "loss": 0.5964396163821221, "decode.loss_ce": 0.3695372872054577, "decode.acc_seg": 65.45323181152344, "aux.loss_ce": 0.22690233998000622, "aux.acc_seg": 59.95262908935547, "time": 1.1182244539260864, "iter": 41050, "memory": 8703, "step": 41050} +{"lr": 0.007678675678373718, "data_time": 0.007483172416687012, "loss": 0.5039879560470581, "decode.loss_ce": 0.29724369049072263, "decode.acc_seg": 90.26953125, "aux.loss_ce": 0.20674426332116128, "aux.acc_seg": 85.4166030883789, "time": 1.1176339149475099, "iter": 41100, "memory": 8703, "step": 41100} +{"lr": 0.007675807321961835, "data_time": 0.008463716506958008, "loss": 0.7639497131109237, "decode.loss_ce": 0.4739838793873787, "decode.acc_seg": 95.36920928955078, "aux.loss_ce": 0.2899658426642418, "aux.acc_seg": 92.05410766601562, "time": 1.1174998521804809, "iter": 41150, "memory": 8703, "step": 41150} +{"lr": 0.0076729388448761255, "data_time": 0.008670639991760255, "loss": 0.2969639927148819, "decode.loss_ce": 0.1869349479675293, "decode.acc_seg": 91.05535888671875, "aux.loss_ce": 0.1100290421396494, "aux.acc_seg": 89.3302230834961, "time": 1.1191225051879883, "iter": 41200, "memory": 8704, "step": 41200} +{"lr": 0.007670070247060722, "data_time": 0.006691431999206543, "loss": 0.4097928822040558, "decode.loss_ce": 0.24505749419331552, "decode.acc_seg": 90.92365264892578, "aux.loss_ce": 0.16473539620637895, "aux.acc_seg": 88.20618438720703, "time": 1.1135267734527587, "iter": 41250, "memory": 8703, "step": 41250} +{"lr": 0.007667201528459703, "data_time": 0.006883430480957031, "loss": 0.335485452413559, "decode.loss_ce": 0.19568255990743638, "decode.acc_seg": 86.10413360595703, "aux.loss_ce": 0.13980290070176124, "aux.acc_seg": 66.18359375, "time": 1.1154825210571289, "iter": 41300, "memory": 8704, "step": 41300} +{"lr": 0.007664332689017114, "data_time": 0.0072427034378051754, "loss": 0.6367338299751282, "decode.loss_ce": 0.40370931625366213, "decode.acc_seg": 89.04788970947266, "aux.loss_ce": 0.233024512976408, "aux.acc_seg": 88.56993103027344, "time": 1.1190983295440673, "iter": 41350, "memory": 8703, "step": 41350} +{"lr": 0.007661463728676915, "data_time": 0.005378127098083496, "loss": 0.3662622332572937, "decode.loss_ce": 0.21948466300964356, "decode.acc_seg": 92.20148468017578, "aux.loss_ce": 0.14677757248282433, "aux.acc_seg": 89.32755279541016, "time": 1.1122684240341187, "iter": 41400, "memory": 8704, "step": 41400} +{"lr": 0.007658594647383061, "data_time": 0.007627606391906738, "loss": 0.7463749825954438, "decode.loss_ce": 0.4873674735426903, "decode.acc_seg": 88.66233825683594, "aux.loss_ce": 0.2590075135231018, "aux.acc_seg": 80.68739318847656, "time": 1.1201085329055787, "iter": 41450, "memory": 8703, "step": 41450} +{"lr": 0.0076557254450794225, "data_time": 0.006169247627258301, "loss": 0.5698736250400543, "decode.loss_ce": 0.36125653982162476, "decode.acc_seg": 90.40062713623047, "aux.loss_ce": 0.2086170919239521, "aux.acc_seg": 80.39028930664062, "time": 1.1167215585708619, "iter": 41500, "memory": 8703, "step": 41500} +{"lr": 0.00765285612170984, "data_time": 0.00758209228515625, "loss": 0.44087194204330443, "decode.loss_ce": 0.2642446607351303, "decode.acc_seg": 93.48805236816406, "aux.loss_ce": 0.17662729024887086, "aux.acc_seg": 90.05680084228516, "time": 1.1178800821304322, "iter": 41550, "memory": 8703, "step": 41550} +{"lr": 0.007649986677218096, "data_time": 0.0075243949890136715, "loss": 0.3826216787099838, "decode.loss_ce": 0.23259365558624268, "decode.acc_seg": 94.08016204833984, "aux.loss_ce": 0.15002801977097988, "aux.acc_seg": 81.82392120361328, "time": 1.1194860696792603, "iter": 41600, "memory": 8703, "step": 41600} +{"lr": 0.0076471171115479195, "data_time": 0.006047654151916504, "loss": 0.5078997194766999, "decode.loss_ce": 0.3065525159239769, "decode.acc_seg": 91.52901458740234, "aux.loss_ce": 0.20134720131754874, "aux.acc_seg": 78.58867645263672, "time": 1.1139779090881348, "iter": 41650, "memory": 8703, "step": 41650} +{"lr": 0.007644247424642997, "data_time": 0.007194042205810547, "loss": 0.4336418956518173, "decode.loss_ce": 0.27042470946908, "decode.acc_seg": 95.2631607055664, "aux.loss_ce": 0.16321719475090504, "aux.acc_seg": 89.81329345703125, "time": 1.1189383506774901, "iter": 41700, "memory": 8704, "step": 41700} +{"lr": 0.00764137761644697, "data_time": 0.006351494789123535, "loss": 0.6449752926826477, "decode.loss_ce": 0.40896243005990984, "decode.acc_seg": 91.60581970214844, "aux.loss_ce": 0.23601286113262177, "aux.acc_seg": 91.10838317871094, "time": 1.1190118074417115, "iter": 41750, "memory": 8705, "step": 41750} +{"lr": 0.007638507686903423, "data_time": 0.007147789001464844, "loss": 0.35609707832336424, "decode.loss_ce": 0.21924618110060692, "decode.acc_seg": 94.11245727539062, "aux.loss_ce": 0.13685089349746704, "aux.acc_seg": 92.41020965576172, "time": 1.1134164094924928, "iter": 41800, "memory": 8704, "step": 41800} +{"lr": 0.007635637635955888, "data_time": 0.006931686401367187, "loss": 0.5167606726288796, "decode.loss_ce": 0.3142771556973457, "decode.acc_seg": 92.361328125, "aux.loss_ce": 0.20248351208865642, "aux.acc_seg": 88.84194946289062, "time": 1.1190325260162353, "iter": 41850, "memory": 8704, "step": 41850} +{"lr": 0.007632767463547842, "data_time": 0.006222295761108399, "loss": 0.5512420952320098, "decode.loss_ce": 0.3422631278634071, "decode.acc_seg": 89.50888061523438, "aux.loss_ce": 0.20897895991802215, "aux.acc_seg": 87.54005432128906, "time": 1.1106213092803956, "iter": 41900, "memory": 8703, "step": 41900} +{"lr": 0.007629897169622722, "data_time": 0.007634472846984863, "loss": 0.3235302522778511, "decode.loss_ce": 0.187349783629179, "decode.acc_seg": 87.26526641845703, "aux.loss_ce": 0.13618047013878823, "aux.acc_seg": 83.53092956542969, "time": 1.117679238319397, "iter": 41950, "memory": 8704, "step": 41950} +{"lr": 0.007627026754123913, "data_time": 0.005384087562561035, "loss": 0.33954266756772994, "decode.loss_ce": 0.21144502162933348, "decode.acc_seg": 94.9676513671875, "aux.loss_ce": 0.12809764295816423, "aux.acc_seg": 92.99723052978516, "time": 1.112423872947693, "iter": 42000, "memory": 8703, "step": 42000} +{"lr": 0.007624156216994745, "data_time": 0.007499814033508301, "loss": 0.37525416612625123, "decode.loss_ce": 0.22994397282600404, "decode.acc_seg": 92.64907836914062, "aux.loss_ce": 0.14531019516289234, "aux.acc_seg": 92.70966339111328, "time": 1.1142947912216186, "iter": 42050, "memory": 8703, "step": 42050} +{"lr": 0.00762128555817851, "data_time": 0.0048755168914794925, "loss": 0.3404864713549614, "decode.loss_ce": 0.20903148204088212, "decode.acc_seg": 92.36176300048828, "aux.loss_ce": 0.13145498670637606, "aux.acc_seg": 85.3263168334961, "time": 1.1143482446670532, "iter": 42100, "memory": 8703, "step": 42100} +{"lr": 0.007618414777618428, "data_time": 0.006304025650024414, "loss": 0.4403489321470261, "decode.loss_ce": 0.26920863091945646, "decode.acc_seg": 94.41023254394531, "aux.loss_ce": 0.17114030420780182, "aux.acc_seg": 94.0891342163086, "time": 1.11423978805542, "iter": 42150, "memory": 8704, "step": 42150} +{"lr": 0.007615543875257684, "data_time": 0.007227182388305664, "loss": 0.3847734108567238, "decode.loss_ce": 0.23293754532933236, "decode.acc_seg": 95.81222534179688, "aux.loss_ce": 0.15183586142957212, "aux.acc_seg": 95.1356201171875, "time": 1.1137484312057495, "iter": 42200, "memory": 8704, "step": 42200} +{"lr": 0.007612672851039414, "data_time": 0.006964254379272461, "loss": 0.5794525474309922, "decode.loss_ce": 0.37510497570037843, "decode.acc_seg": 96.10309600830078, "aux.loss_ce": 0.20434757508337498, "aux.acc_seg": 95.37747192382812, "time": 1.1127850532531738, "iter": 42250, "memory": 8704, "step": 42250} +{"lr": 0.007609801704906696, "data_time": 0.007721471786499024, "loss": 0.4230899512767792, "decode.loss_ce": 0.2546032428741455, "decode.acc_seg": 92.25959777832031, "aux.loss_ce": 0.16848671510815622, "aux.acc_seg": 87.75608825683594, "time": 1.1184590339660645, "iter": 42300, "memory": 8703, "step": 42300} +{"lr": 0.00760693043680256, "data_time": 0.006162047386169434, "loss": 0.40906650722026827, "decode.loss_ce": 0.25176975280046465, "decode.acc_seg": 86.27554321289062, "aux.loss_ce": 0.15729675032198429, "aux.acc_seg": 86.0055923461914, "time": 1.1112293481826783, "iter": 42350, "memory": 8703, "step": 42350} +{"lr": 0.0076040590466699845, "data_time": 0.007574462890625, "loss": 0.315625037252903, "decode.loss_ce": 0.18990035578608513, "decode.acc_seg": 95.5639877319336, "aux.loss_ce": 0.1257246784865856, "aux.acc_seg": 93.56979370117188, "time": 1.1170989274978638, "iter": 42400, "memory": 8704, "step": 42400} +{"lr": 0.007601187534451897, "data_time": 0.00640108585357666, "loss": 0.3709719404578209, "decode.loss_ce": 0.2260734722018242, "decode.acc_seg": 88.49449157714844, "aux.loss_ce": 0.14489846751093866, "aux.acc_seg": 82.71522521972656, "time": 1.113361692428589, "iter": 42450, "memory": 8704, "step": 42450} +{"lr": 0.007598315900091171, "data_time": 0.008239364624023438, "loss": 0.3752942144870758, "decode.loss_ce": 0.2219667285680771, "decode.acc_seg": 92.31548309326172, "aux.loss_ce": 0.15332748591899872, "aux.acc_seg": 90.29248046875, "time": 1.1168160438537598, "iter": 42500, "memory": 8704, "step": 42500} +{"lr": 0.007595444143530633, "data_time": 0.007555270195007324, "loss": 0.36972235292196276, "decode.loss_ce": 0.23407874777913093, "decode.acc_seg": 91.71263122558594, "aux.loss_ce": 0.13564360067248343, "aux.acc_seg": 91.31698608398438, "time": 1.119370174407959, "iter": 42550, "memory": 8703, "step": 42550} +{"lr": 0.007592572264713055, "data_time": 0.007574820518493652, "loss": 0.5189561158418655, "decode.loss_ce": 0.3051901802420616, "decode.acc_seg": 80.7342529296875, "aux.loss_ce": 0.21376593559980392, "aux.acc_seg": 68.6248779296875, "time": 1.1168162822723389, "iter": 42600, "memory": 8703, "step": 42600} +{"lr": 0.007589700263581163, "data_time": 0.00747983455657959, "loss": 0.4224770814180374, "decode.loss_ce": 0.2674586147069931, "decode.acc_seg": 91.95194244384766, "aux.loss_ce": 0.15501846373081207, "aux.acc_seg": 91.31488800048828, "time": 1.1143908023834228, "iter": 42650, "memory": 8704, "step": 42650} +{"lr": 0.007586828140077636, "data_time": 0.006434392929077148, "loss": 0.4911236971616745, "decode.loss_ce": 0.2847868576645851, "decode.acc_seg": 81.5238265991211, "aux.loss_ce": 0.20633683428168298, "aux.acc_seg": 78.17668914794922, "time": 1.117791771888733, "iter": 42700, "memory": 8704, "step": 42700} +{"lr": 0.007583955894145087, "data_time": 0.008148193359375, "loss": 0.3591682106256485, "decode.loss_ce": 0.22748971953988076, "decode.acc_seg": 97.57747650146484, "aux.loss_ce": 0.13167849518358707, "aux.acc_seg": 96.6208724975586, "time": 1.1203219413757324, "iter": 42750, "memory": 8703, "step": 42750} +{"lr": 0.007581083525726088, "data_time": 0.006306314468383789, "loss": 0.5589207246899605, "decode.loss_ce": 0.33265221789479255, "decode.acc_seg": 73.88176727294922, "aux.loss_ce": 0.22626850455999375, "aux.acc_seg": 69.44396209716797, "time": 1.1191693544387817, "iter": 42800, "memory": 8703, "step": 42800} +{"lr": 0.007578211034763153, "data_time": 0.008383512496948242, "loss": 0.3917991936206818, "decode.loss_ce": 0.23047481775283812, "decode.acc_seg": 89.99957275390625, "aux.loss_ce": 0.16132437735795974, "aux.acc_seg": 83.56695556640625, "time": 1.1199568271636964, "iter": 42850, "memory": 8703, "step": 42850} +{"lr": 0.007575338421198757, "data_time": 0.006940650939941406, "loss": 0.3703611969947815, "decode.loss_ce": 0.21867075562477112, "decode.acc_seg": 92.74578094482422, "aux.loss_ce": 0.15169044211506844, "aux.acc_seg": 85.91079711914062, "time": 1.1209583044052125, "iter": 42900, "memory": 8703, "step": 42900} +{"lr": 0.007572465684975313, "data_time": 0.00665280818939209, "loss": 0.3954513132572174, "decode.loss_ce": 0.23508507758378983, "decode.acc_seg": 93.75, "aux.loss_ce": 0.16036623381078244, "aux.acc_seg": 93.53961944580078, "time": 1.1126446723937988, "iter": 42950, "memory": 8704, "step": 42950} +{"lr": 0.007569592826035175, "data_time": 0.006551766395568847, "loss": 0.5246243983507156, "decode.loss_ce": 0.3025768235325813, "decode.acc_seg": 95.76078796386719, "aux.loss_ce": 0.22204757779836654, "aux.acc_seg": 94.52870178222656, "time": 1.1175617933273316, "iter": 43000, "memory": 8703, "step": 43000} +{"lr": 0.007566719844320659, "data_time": 0.007587623596191406, "loss": 0.34045894891023637, "decode.loss_ce": 0.21072239875793458, "decode.acc_seg": 92.26392364501953, "aux.loss_ce": 0.12973654605448245, "aux.acc_seg": 90.15258026123047, "time": 1.1171545505523681, "iter": 43050, "memory": 8703, "step": 43050} +{"lr": 0.0075638467397740276, "data_time": 0.0077342033386230465, "loss": 0.3028946131467819, "decode.loss_ce": 0.18954717814922334, "decode.acc_seg": 95.88292694091797, "aux.loss_ce": 0.11334743425250053, "aux.acc_seg": 95.73387908935547, "time": 1.1149919033050537, "iter": 43100, "memory": 8703, "step": 43100} +{"lr": 0.007560973512337493, "data_time": 0.00896918773651123, "loss": 0.40749877095222475, "decode.loss_ce": 0.2530856214463711, "decode.acc_seg": 95.86524963378906, "aux.loss_ce": 0.15441314578056337, "aux.acc_seg": 95.09455108642578, "time": 1.1195982694625854, "iter": 43150, "memory": 8704, "step": 43150} +{"lr": 0.007558100161953201, "data_time": 0.0071408748626708984, "loss": 0.48671968281269073, "decode.loss_ce": 0.28596466928720476, "decode.acc_seg": 95.57569122314453, "aux.loss_ce": 0.20075501799583434, "aux.acc_seg": 93.7153549194336, "time": 1.1191560983657838, "iter": 43200, "memory": 8705, "step": 43200} +{"lr": 0.007555226688563252, "data_time": 0.006660032272338867, "loss": 0.39018667936325074, "decode.loss_ce": 0.2492321252822876, "decode.acc_seg": 92.57970428466797, "aux.loss_ce": 0.1409545473754406, "aux.acc_seg": 91.89125061035156, "time": 1.118653655052185, "iter": 43250, "memory": 8703, "step": 43250} +{"lr": 0.007552353092109711, "data_time": 0.007251429557800293, "loss": 0.30936878770589826, "decode.loss_ce": 0.18504821211099626, "decode.acc_seg": 92.57284545898438, "aux.loss_ce": 0.12432057186961173, "aux.acc_seg": 91.35697174072266, "time": 1.1139080762863158, "iter": 43300, "memory": 8703, "step": 43300} +{"lr": 0.00754947937253457, "data_time": 0.007554316520690918, "loss": 0.4222519934177399, "decode.loss_ce": 0.2652729466557503, "decode.acc_seg": 96.73213958740234, "aux.loss_ce": 0.15697905272245408, "aux.acc_seg": 94.3198471069336, "time": 1.1163038253784179, "iter": 43350, "memory": 8703, "step": 43350} +{"lr": 0.007546605529779775, "data_time": 0.007217502593994141, "loss": 0.4989155441522598, "decode.loss_ce": 0.3250162251293659, "decode.acc_seg": 84.67228698730469, "aux.loss_ce": 0.17389931455254554, "aux.acc_seg": 73.64234924316406, "time": 1.1165589809417724, "iter": 43400, "memory": 8704, "step": 43400} +{"lr": 0.007543731563787226, "data_time": 0.00805060863494873, "loss": 0.36241421550512315, "decode.loss_ce": 0.22393110394477844, "decode.acc_seg": 96.96246337890625, "aux.loss_ce": 0.13848311118781567, "aux.acc_seg": 96.03553009033203, "time": 1.1140452384948731, "iter": 43450, "memory": 8704, "step": 43450} +{"lr": 0.007540857474498765, "data_time": 0.006921529769897461, "loss": 0.3524277970194817, "decode.loss_ce": 0.2261093132197857, "decode.acc_seg": 97.05364990234375, "aux.loss_ce": 0.1263184815645218, "aux.acc_seg": 96.30101013183594, "time": 1.1126403093338013, "iter": 43500, "memory": 8704, "step": 43500} +{"lr": 0.007537983261856183, "data_time": 0.007501220703125, "loss": 0.43427748382091524, "decode.loss_ce": 0.28208626583218577, "decode.acc_seg": 80.19758605957031, "aux.loss_ce": 0.15219121612608433, "aux.acc_seg": 69.58026885986328, "time": 1.1193044185638428, "iter": 43550, "memory": 8704, "step": 43550} +{"lr": 0.007535108925801212, "data_time": 0.007827281951904297, "loss": 0.5069193512201309, "decode.loss_ce": 0.32207228392362597, "decode.acc_seg": 93.53802490234375, "aux.loss_ce": 0.18484706208109855, "aux.acc_seg": 83.79185485839844, "time": 1.117203164100647, "iter": 43600, "memory": 8704, "step": 43600} +{"lr": 0.007532234466275544, "data_time": 0.005674934387207032, "loss": 0.6205445617437363, "decode.loss_ce": 0.3993623942136765, "decode.acc_seg": 60.3763542175293, "aux.loss_ce": 0.2211821623146534, "aux.acc_seg": 52.719112396240234, "time": 1.1164970636367797, "iter": 43650, "memory": 8704, "step": 43650} +{"lr": 0.007529359883220812, "data_time": 0.0077125787734985355, "loss": 0.46295354664325716, "decode.loss_ce": 0.282538914680481, "decode.acc_seg": 91.82491302490234, "aux.loss_ce": 0.18041463531553745, "aux.acc_seg": 89.00724792480469, "time": 1.1213308095932006, "iter": 43700, "memory": 8703, "step": 43700} +{"lr": 0.007526485176578593, "data_time": 0.009758567810058594, "loss": 0.4485112428665161, "decode.loss_ce": 0.2581112965941429, "decode.acc_seg": 90.7197265625, "aux.loss_ce": 0.190399944037199, "aux.acc_seg": 82.85719299316406, "time": 1.1222131967544555, "iter": 43750, "memory": 8704, "step": 43750} +{"lr": 0.007523610346290412, "data_time": 0.007561349868774414, "loss": 0.38744616955518724, "decode.loss_ce": 0.25460240989923477, "decode.acc_seg": 97.42438507080078, "aux.loss_ce": 0.1328437641263008, "aux.acc_seg": 96.85932159423828, "time": 1.1160741567611694, "iter": 43800, "memory": 8704, "step": 43800} +{"lr": 0.007520735392297746, "data_time": 0.007191705703735352, "loss": 0.3588480085134506, "decode.loss_ce": 0.21981560587882995, "decode.acc_seg": 92.5363540649414, "aux.loss_ce": 0.13903239741921425, "aux.acc_seg": 92.6813735961914, "time": 1.1150991439819335, "iter": 43850, "memory": 8704, "step": 43850} +{"lr": 0.007517860314542015, "data_time": 0.008965754508972168, "loss": 0.33835319578647616, "decode.loss_ce": 0.20732334330677987, "decode.acc_seg": 91.25080108642578, "aux.loss_ce": 0.13102985061705114, "aux.acc_seg": 84.7024917602539, "time": 1.1178701162338256, "iter": 43900, "memory": 8703, "step": 43900} +{"lr": 0.007514985112964593, "data_time": 0.005604696273803711, "loss": 0.5751234412193298, "decode.loss_ce": 0.37235527485609055, "decode.acc_seg": 94.0185546875, "aux.loss_ce": 0.2027681775391102, "aux.acc_seg": 92.89022827148438, "time": 1.1102541208267211, "iter": 43950, "memory": 8704, "step": 43950} +{"lr": 0.007512109787506788, "data_time": 0.007370877265930176, "loss": 0.40158628225326537, "decode.loss_ce": 0.2503264293074608, "decode.acc_seg": 93.17169189453125, "aux.loss_ce": 0.1512598529458046, "aux.acc_seg": 84.8963394165039, "time": 1.1152750492095946, "iter": 44000, "memory": 8704, "step": 44000} +{"lr": 0.007509234338109868, "data_time": 0.007298851013183593, "loss": 0.38177698850631714, "decode.loss_ce": 0.23267606124281884, "decode.acc_seg": 86.19766235351562, "aux.loss_ce": 0.1491009246557951, "aux.acc_seg": 81.57666015625, "time": 1.118701982498169, "iter": 44050, "memory": 8703, "step": 44050} +{"lr": 0.0075063587647150425, "data_time": 0.006369757652282715, "loss": 0.5511015370488167, "decode.loss_ce": 0.3499552056193352, "decode.acc_seg": 95.45662689208984, "aux.loss_ce": 0.20114633291959763, "aux.acc_seg": 88.95542907714844, "time": 1.1175750255584718, "iter": 44100, "memory": 8703, "step": 44100} +{"lr": 0.007503483067263463, "data_time": 0.007126903533935547, "loss": 0.3976940780878067, "decode.loss_ce": 0.24816168695688248, "decode.acc_seg": 91.44039154052734, "aux.loss_ce": 0.14953238815069197, "aux.acc_seg": 88.77792358398438, "time": 1.1184827089309692, "iter": 44150, "memory": 8703, "step": 44150} +{"lr": 0.007500607245696233, "data_time": 0.006665158271789551, "loss": 0.43528490588068963, "decode.loss_ce": 0.2634723663330078, "decode.acc_seg": 88.12039184570312, "aux.loss_ce": 0.1718125343322754, "aux.acc_seg": 81.71806335449219, "time": 1.1150001525878905, "iter": 44200, "memory": 8703, "step": 44200} +{"lr": 0.007497731299954403, "data_time": 0.008579778671264648, "loss": 0.5677636563777924, "decode.loss_ce": 0.3626681461930275, "decode.acc_seg": 90.8456802368164, "aux.loss_ce": 0.2050955131649971, "aux.acc_seg": 90.43057250976562, "time": 1.1151217460632323, "iter": 44250, "memory": 8704, "step": 44250} +{"lr": 0.0074948552299789585, "data_time": 0.0066372394561767575, "loss": 0.3026659458875656, "decode.loss_ce": 0.18209453001618386, "decode.acc_seg": 94.22569274902344, "aux.loss_ce": 0.12057141214609146, "aux.acc_seg": 93.22967529296875, "time": 1.1144293069839477, "iter": 44300, "memory": 8703, "step": 44300} +{"lr": 0.007491979035710858, "data_time": 0.007815814018249512, "loss": 0.42362149357795714, "decode.loss_ce": 0.27054015547037125, "decode.acc_seg": 95.34928131103516, "aux.loss_ce": 0.15308134034276008, "aux.acc_seg": 90.43938446044922, "time": 1.1159798622131347, "iter": 44350, "memory": 8704, "step": 44350} +{"lr": 0.007489102717090991, "data_time": 0.006939482688903808, "loss": 0.5122115612030029, "decode.loss_ce": 0.30620103180408476, "decode.acc_seg": 83.8592529296875, "aux.loss_ce": 0.20601053386926652, "aux.acc_seg": 78.9749755859375, "time": 1.1121849775314332, "iter": 44400, "memory": 8704, "step": 44400} +{"lr": 0.007486226274060174, "data_time": 0.008106470108032227, "loss": 0.39953197091817855, "decode.loss_ce": 0.23987155854701997, "decode.acc_seg": 95.71844482421875, "aux.loss_ce": 0.15966041013598442, "aux.acc_seg": 94.96637725830078, "time": 1.1175337791442872, "iter": 44450, "memory": 8704, "step": 44450} +{"lr": 0.0074833497065592055, "data_time": 0.006108283996582031, "loss": 0.3428378224372864, "decode.loss_ce": 0.21099713146686555, "decode.acc_seg": 93.31810760498047, "aux.loss_ce": 0.13184069767594336, "aux.acc_seg": 90.74230194091797, "time": 1.1154666662216186, "iter": 44500, "memory": 8703, "step": 44500} +{"lr": 0.0074804730145288005, "data_time": 0.00576314926147461, "loss": 0.35891405642032626, "decode.loss_ce": 0.215044866502285, "decode.acc_seg": 85.01358032226562, "aux.loss_ce": 0.14386918693780898, "aux.acc_seg": 81.10563659667969, "time": 1.1105271339416505, "iter": 44550, "memory": 8703, "step": 44550} +{"lr": 0.007477596197909641, "data_time": 0.006221151351928711, "loss": 0.3714961677789688, "decode.loss_ce": 0.2427380472421646, "decode.acc_seg": 86.44294738769531, "aux.loss_ce": 0.12875812575221063, "aux.acc_seg": 84.46286010742188, "time": 1.1153461694717408, "iter": 44600, "memory": 8703, "step": 44600} +{"lr": 0.007474719256642348, "data_time": 0.007025003433227539, "loss": 0.5866381853818894, "decode.loss_ce": 0.3576556801795959, "decode.acc_seg": 90.43926239013672, "aux.loss_ce": 0.2289825014770031, "aux.acc_seg": 84.65372467041016, "time": 1.1161917686462401, "iter": 44650, "memory": 8704, "step": 44650} +{"lr": 0.007471842190667475, "data_time": 0.005395579338073731, "loss": 0.46857032775878904, "decode.loss_ce": 0.27254997491836547, "decode.acc_seg": 95.06352233886719, "aux.loss_ce": 0.19602034911513327, "aux.acc_seg": 93.07530975341797, "time": 1.1130002021789551, "iter": 44700, "memory": 8704, "step": 44700} +{"lr": 0.007468964999925542, "data_time": 0.008317923545837403, "loss": 0.33893020302057264, "decode.loss_ce": 0.20347347408533095, "decode.acc_seg": 95.13111114501953, "aux.loss_ce": 0.13545672968029976, "aux.acc_seg": 94.08893585205078, "time": 1.1195983171463013, "iter": 44750, "memory": 8703, "step": 44750} +{"lr": 0.0074660876843570005, "data_time": 0.006057476997375489, "loss": 0.5957851707935333, "decode.loss_ce": 0.3850145250558853, "decode.acc_seg": 91.79869079589844, "aux.loss_ce": 0.21077063642442226, "aux.acc_seg": 88.44233703613281, "time": 1.1083479881286622, "iter": 44800, "memory": 8703, "step": 44800} +{"lr": 0.007463210243902259, "data_time": 0.006633377075195313, "loss": 0.5040875941514968, "decode.loss_ce": 0.2873902007937431, "decode.acc_seg": 97.46964263916016, "aux.loss_ce": 0.21669738814234735, "aux.acc_seg": 93.44246673583984, "time": 1.1174727201461792, "iter": 44850, "memory": 8704, "step": 44850} +{"lr": 0.007460332678501662, "data_time": 0.007881903648376464, "loss": 0.36259629875421523, "decode.loss_ce": 0.22590228468179702, "decode.acc_seg": 93.73348236083984, "aux.loss_ce": 0.13669401481747628, "aux.acc_seg": 92.14552307128906, "time": 1.116351318359375, "iter": 44900, "memory": 8703, "step": 44900} +{"lr": 0.007457454988095508, "data_time": 0.005424618721008301, "loss": 0.40778383761644366, "decode.loss_ce": 0.24564036205410958, "decode.acc_seg": 97.68810272216797, "aux.loss_ce": 0.16214347630739212, "aux.acc_seg": 96.82457733154297, "time": 1.1155150175094604, "iter": 44950, "memory": 8703, "step": 44950} +{"lr": 0.007454577172624031, "data_time": 0.009534573554992676, "loss": 0.48435637950897215, "decode.loss_ce": 0.30435999780893325, "decode.acc_seg": 94.81077575683594, "aux.loss_ce": 0.17999638468027115, "aux.acc_seg": 82.6698989868164, "time": 1.1204462766647338, "iter": 45000, "memory": 8703, "step": 45000} +{"lr": 0.007451699232027419, "data_time": 0.006908559799194336, "loss": 0.4384840801358223, "decode.loss_ce": 0.2619135156273842, "decode.acc_seg": 92.92131805419922, "aux.loss_ce": 0.17657057121396064, "aux.acc_seg": 89.6657943725586, "time": 1.1157283067703248, "iter": 45050, "memory": 8704, "step": 45050} +{"lr": 0.0074488211662458005, "data_time": 0.007525110244750976, "loss": 0.36822125911712644, "decode.loss_ce": 0.22212268263101578, "decode.acc_seg": 93.14695739746094, "aux.loss_ce": 0.14609857574105262, "aux.acc_seg": 91.85154724121094, "time": 1.1163908243179321, "iter": 45100, "memory": 8703, "step": 45100} +{"lr": 0.007445942975219253, "data_time": 0.005850148200988769, "loss": 0.4007527083158493, "decode.loss_ce": 0.25956924706697465, "decode.acc_seg": 87.06111907958984, "aux.loss_ce": 0.14118346832692624, "aux.acc_seg": 83.37522888183594, "time": 1.1141584157943725, "iter": 45150, "memory": 8704, "step": 45150} +{"lr": 0.0074430646588877925, "data_time": 0.006234931945800781, "loss": 0.4186119049787521, "decode.loss_ce": 0.24697243198752403, "decode.acc_seg": 96.4071273803711, "aux.loss_ce": 0.17163947001099586, "aux.acc_seg": 93.6086654663086, "time": 1.1103407144546509, "iter": 45200, "memory": 8703, "step": 45200} +{"lr": 0.007440186217191393, "data_time": 0.007079076766967773, "loss": 0.37815482169389725, "decode.loss_ce": 0.22106655836105346, "decode.acc_seg": 93.3863296508789, "aux.loss_ce": 0.15708826445043086, "aux.acc_seg": 90.17958068847656, "time": 1.1134371995925902, "iter": 45250, "memory": 8704, "step": 45250} +{"lr": 0.007437307650069958, "data_time": 0.0072335958480834964, "loss": 0.3555989310145378, "decode.loss_ce": 0.22500675842165946, "decode.acc_seg": 92.27841186523438, "aux.loss_ce": 0.13059217445552349, "aux.acc_seg": 88.08281707763672, "time": 1.113368606567383, "iter": 45300, "memory": 8703, "step": 45300} +{"lr": 0.0074344289574633455, "data_time": 0.006820273399353027, "loss": 0.4955312669277191, "decode.loss_ce": 0.29125713258981706, "decode.acc_seg": 89.53068542480469, "aux.loss_ce": 0.20427413210272788, "aux.acc_seg": 65.12667083740234, "time": 1.1141067504882813, "iter": 45350, "memory": 8704, "step": 45350} +{"lr": 0.007431550139311358, "data_time": 0.008493137359619141, "loss": 0.43497560918331146, "decode.loss_ce": 0.26832276955246925, "decode.acc_seg": 93.03658294677734, "aux.loss_ce": 0.16665283292531968, "aux.acc_seg": 91.80685424804688, "time": 1.1181209087371826, "iter": 45400, "memory": 8703, "step": 45400} +{"lr": 0.007428671195553742, "data_time": 0.007148361206054688, "loss": 0.3858736604452133, "decode.loss_ce": 0.2382367491722107, "decode.acc_seg": 96.11854553222656, "aux.loss_ce": 0.14763691425323486, "aux.acc_seg": 95.52332305908203, "time": 1.1164661645889282, "iter": 45450, "memory": 8703, "step": 45450} +{"lr": 0.00742579212613019, "data_time": 0.008169007301330567, "loss": 0.4564428389072418, "decode.loss_ce": 0.2703980624675751, "decode.acc_seg": 83.58879089355469, "aux.loss_ce": 0.18604477643966674, "aux.acc_seg": 76.94123077392578, "time": 1.1161161184310913, "iter": 45500, "memory": 8703, "step": 45500} +{"lr": 0.00742291293098033, "data_time": 0.008254623413085938, "loss": 0.42647256702184677, "decode.loss_ce": 0.2662773869931698, "decode.acc_seg": 92.98751831054688, "aux.loss_ce": 0.16019517593085766, "aux.acc_seg": 91.40782928466797, "time": 1.119764232635498, "iter": 45550, "memory": 8703, "step": 45550} +{"lr": 0.007420033610043745, "data_time": 0.007741570472717285, "loss": 0.5272822141647339, "decode.loss_ce": 0.32356045618653295, "decode.acc_seg": 94.57660675048828, "aux.loss_ce": 0.20372175574302673, "aux.acc_seg": 92.55826568603516, "time": 1.1186563968658447, "iter": 45600, "memory": 8703, "step": 45600} +{"lr": 0.0074171541632599555, "data_time": 0.0069977760314941405, "loss": 0.3699121206998825, "decode.loss_ce": 0.2284058466553688, "decode.acc_seg": 96.82178497314453, "aux.loss_ce": 0.14150627255439757, "aux.acc_seg": 88.67855072021484, "time": 1.1136406421661378, "iter": 45650, "memory": 8703, "step": 45650} +{"lr": 0.007414274590568431, "data_time": 0.007344365119934082, "loss": 0.3874055862426758, "decode.loss_ce": 0.24712121710181237, "decode.acc_seg": 86.76285552978516, "aux.loss_ce": 0.14028437472879887, "aux.acc_seg": 80.86620330810547, "time": 1.118352222442627, "iter": 45700, "memory": 8703, "step": 45700} +{"lr": 0.0074113948919085895, "data_time": 0.006494665145874023, "loss": 0.3659201830625534, "decode.loss_ce": 0.24449708685278893, "decode.acc_seg": 89.01734924316406, "aux.loss_ce": 0.12142309248447418, "aux.acc_seg": 88.51888275146484, "time": 1.1175353288650514, "iter": 45750, "memory": 8704, "step": 45750} +{"lr": 0.007408515067219791, "data_time": 0.007125949859619141, "loss": 0.6024254932999611, "decode.loss_ce": 0.34232660457491876, "decode.acc_seg": 87.96971130371094, "aux.loss_ce": 0.2600988756865263, "aux.acc_seg": 83.95271301269531, "time": 1.1165966033935546, "iter": 45800, "memory": 8704, "step": 45800} +{"lr": 0.007405635116441331, "data_time": 0.007175374031066895, "loss": 0.5068018764257431, "decode.loss_ce": 0.3092711389064789, "decode.acc_seg": 86.96409606933594, "aux.loss_ce": 0.19753073751926423, "aux.acc_seg": 83.73081970214844, "time": 1.116681170463562, "iter": 45850, "memory": 8703, "step": 45850} +{"lr": 0.00740275503951246, "data_time": 0.008017730712890626, "loss": 0.4947294041514397, "decode.loss_ce": 0.2996555231511593, "decode.acc_seg": 95.84407806396484, "aux.loss_ce": 0.195073876157403, "aux.acc_seg": 94.28837585449219, "time": 1.1211959838867187, "iter": 45900, "memory": 8704, "step": 45900} +{"lr": 0.007399874836372365, "data_time": 0.006212472915649414, "loss": 0.4312054827809334, "decode.loss_ce": 0.27694546729326247, "decode.acc_seg": 95.4183578491211, "aux.loss_ce": 0.15426001697778702, "aux.acc_seg": 94.23580169677734, "time": 1.1182897567749024, "iter": 45950, "memory": 8704, "step": 45950} +{"lr": 0.007396994506960175, "data_time": 0.006844806671142578, "loss": 0.4404559716582298, "decode.loss_ce": 0.2826898112893105, "decode.acc_seg": 86.64849090576172, "aux.loss_ce": 0.1577661655843258, "aux.acc_seg": 74.48660278320312, "time": 1.1140024423599244, "iter": 46000, "memory": 8704, "step": 46000} +{"lr": 0.007394114051214975, "data_time": 0.006595611572265625, "loss": 0.4231017753481865, "decode.loss_ce": 0.2662687197327614, "decode.acc_seg": 92.9583969116211, "aux.loss_ce": 0.1568330589681864, "aux.acc_seg": 88.3856430053711, "time": 1.1184741020202638, "iter": 46050, "memory": 8704, "step": 46050} +{"lr": 0.007391233469075782, "data_time": 0.006926608085632324, "loss": 0.4209241420030594, "decode.loss_ce": 0.2671359717845917, "decode.acc_seg": 90.41874694824219, "aux.loss_ce": 0.15378817021846772, "aux.acc_seg": 83.15632629394531, "time": 1.1134374618530274, "iter": 46100, "memory": 8704, "step": 46100} +{"lr": 0.00738835276048157, "data_time": 0.005551552772521973, "loss": 0.5454199105501175, "decode.loss_ce": 0.327621828019619, "decode.acc_seg": 66.43536376953125, "aux.loss_ce": 0.21779807694256306, "aux.acc_seg": 64.11177062988281, "time": 1.111100172996521, "iter": 46150, "memory": 8704, "step": 46150} +{"lr": 0.007385471925371237, "data_time": 0.007389378547668457, "loss": 0.3854724183678627, "decode.loss_ce": 0.24481625854969025, "decode.acc_seg": 90.68110656738281, "aux.loss_ce": 0.14065615758299826, "aux.acc_seg": 90.40827178955078, "time": 1.119387936592102, "iter": 46200, "memory": 8704, "step": 46200} +{"lr": 0.007382590963683648, "data_time": 0.0072880744934082035, "loss": 0.5005428627133369, "decode.loss_ce": 0.31291747391223906, "decode.acc_seg": 91.26949310302734, "aux.loss_ce": 0.18762538731098174, "aux.acc_seg": 80.38578033447266, "time": 1.1195160150527954, "iter": 46250, "memory": 8703, "step": 46250} +{"lr": 0.007379709875357596, "data_time": 0.006908559799194336, "loss": 0.4217261478304863, "decode.loss_ce": 0.2637055143713951, "decode.acc_seg": 90.4719009399414, "aux.loss_ce": 0.15802063047885895, "aux.acc_seg": 85.67352294921875, "time": 1.114239478111267, "iter": 46300, "memory": 8704, "step": 46300} +{"lr": 0.007376828660331807, "data_time": 0.006644558906555176, "loss": 0.445713110268116, "decode.loss_ce": 0.2801931992173195, "decode.acc_seg": 91.13851928710938, "aux.loss_ce": 0.16551992073655128, "aux.acc_seg": 81.45662689208984, "time": 1.113286304473877, "iter": 46350, "memory": 8704, "step": 46350} +{"lr": 0.007373947318544977, "data_time": 0.007026529312133789, "loss": 0.41899242997169495, "decode.loss_ce": 0.2676271140575409, "decode.acc_seg": 94.18201446533203, "aux.loss_ce": 0.15136532187461854, "aux.acc_seg": 88.30197143554688, "time": 1.1138375997543335, "iter": 46400, "memory": 8704, "step": 46400} +{"lr": 0.0073710658499357325, "data_time": 0.007554936408996582, "loss": 0.33351201862096785, "decode.loss_ce": 0.20595646426081657, "decode.acc_seg": 96.8302993774414, "aux.loss_ce": 0.12755555137991906, "aux.acc_seg": 95.24307250976562, "time": 1.115168285369873, "iter": 46450, "memory": 8704, "step": 46450} +{"lr": 0.007368184254442643, "data_time": 0.0074890851974487305, "loss": 0.41975044906139375, "decode.loss_ce": 0.2656606897711754, "decode.acc_seg": 96.37380981445312, "aux.loss_ce": 0.15408976152539253, "aux.acc_seg": 88.86082458496094, "time": 1.1161829710006714, "iter": 46500, "memory": 8705, "step": 46500} +{"lr": 0.007365302532004218, "data_time": 0.0061438560485839845, "loss": 0.376864455640316, "decode.loss_ce": 0.23194056674838065, "decode.acc_seg": 88.62081909179688, "aux.loss_ce": 0.14492388516664506, "aux.acc_seg": 85.7797622680664, "time": 1.1179385662078858, "iter": 46550, "memory": 8704, "step": 46550} +{"lr": 0.00736242068255892, "data_time": 0.0066073894500732425, "loss": 0.25110640525817873, "decode.loss_ce": 0.1520856127142906, "decode.acc_seg": 92.44200134277344, "aux.loss_ce": 0.0990207962691784, "aux.acc_seg": 86.62712860107422, "time": 1.1126036643981934, "iter": 46600, "memory": 8704, "step": 46600} +{"lr": 0.007359538706045135, "data_time": 0.0066339969635009766, "loss": 0.6607408374547958, "decode.loss_ce": 0.4489845931529999, "decode.acc_seg": 94.78645324707031, "aux.loss_ce": 0.2117562361061573, "aux.acc_seg": 93.69627380371094, "time": 1.1173929929733277, "iter": 46650, "memory": 8704, "step": 46650} +{"lr": 0.007356656602401223, "data_time": 0.006354594230651855, "loss": 0.578642837703228, "decode.loss_ce": 0.3695039480924606, "decode.acc_seg": 80.36937713623047, "aux.loss_ce": 0.2091388925909996, "aux.acc_seg": 72.26982116699219, "time": 1.116409683227539, "iter": 46700, "memory": 8703, "step": 46700} +{"lr": 0.007353774371565456, "data_time": 0.0056751489639282225, "loss": 0.49374140053987503, "decode.loss_ce": 0.32997911274433134, "decode.acc_seg": 92.73369598388672, "aux.loss_ce": 0.16376229748129845, "aux.acc_seg": 90.78400421142578, "time": 1.118529748916626, "iter": 46750, "memory": 8704, "step": 46750} +{"lr": 0.00735089201347607, "data_time": 0.0062469482421875, "loss": 0.38344917744398116, "decode.loss_ce": 0.22188771963119508, "decode.acc_seg": 93.0731430053711, "aux.loss_ce": 0.16156145855784415, "aux.acc_seg": 83.6325912475586, "time": 1.1189243078231812, "iter": 46800, "memory": 8704, "step": 46800} +{"lr": 0.007348009528071228, "data_time": 0.006808328628540039, "loss": 0.4668507441878319, "decode.loss_ce": 0.29484919309616087, "decode.acc_seg": 91.26556396484375, "aux.loss_ce": 0.17200155183672905, "aux.acc_seg": 85.76583862304688, "time": 1.116173768043518, "iter": 46850, "memory": 8704, "step": 46850} +{"lr": 0.00734512691528905, "data_time": 0.00566551685333252, "loss": 0.32545956820249555, "decode.loss_ce": 0.20155098512768746, "decode.acc_seg": 93.21638488769531, "aux.loss_ce": 0.12390858046710491, "aux.acc_seg": 90.44132232666016, "time": 1.1155796289443969, "iter": 46900, "memory": 8703, "step": 46900} +{"lr": 0.007342244175067583, "data_time": 0.006267142295837402, "loss": 0.3900229573249817, "decode.loss_ce": 0.23192249238491058, "decode.acc_seg": 90.05985260009766, "aux.loss_ce": 0.15810046419501306, "aux.acc_seg": 88.39035034179688, "time": 1.1141040086746217, "iter": 46950, "memory": 8703, "step": 46950} +{"lr": 0.007339361307344828, "data_time": 0.006596183776855469, "loss": 0.3229648515582085, "decode.loss_ce": 0.18787125796079635, "decode.acc_seg": 95.37728881835938, "aux.loss_ce": 0.13509358949959277, "aux.acc_seg": 87.98322296142578, "time": 1.115865659713745, "iter": 47000, "memory": 8704, "step": 47000} +{"lr": 0.007336478312058741, "data_time": 0.0066056489944458004, "loss": 0.4595127612352371, "decode.loss_ce": 0.27837407439947126, "decode.acc_seg": 94.58122253417969, "aux.loss_ce": 0.18113868087530136, "aux.acc_seg": 81.23531341552734, "time": 1.1142693281173706, "iter": 47050, "memory": 8703, "step": 47050} +{"lr": 0.00733359518914718, "data_time": 0.006341719627380371, "loss": 0.32400650084018706, "decode.loss_ce": 0.1902434341609478, "decode.acc_seg": 94.3863525390625, "aux.loss_ce": 0.13376306556165218, "aux.acc_seg": 93.55538177490234, "time": 1.1169558763504028, "iter": 47100, "memory": 8703, "step": 47100} +{"lr": 0.007330711938547987, "data_time": 0.006462287902832031, "loss": 0.4204000309109688, "decode.loss_ce": 0.25793944001197816, "decode.acc_seg": 95.86811065673828, "aux.loss_ce": 0.16246058903634547, "aux.acc_seg": 95.81686401367188, "time": 1.1138171911239625, "iter": 47150, "memory": 8704, "step": 47150} +{"lr": 0.007327828560198918, "data_time": 0.007175755500793457, "loss": 0.5092318236827851, "decode.loss_ce": 0.2928339682519436, "decode.acc_seg": 91.60137176513672, "aux.loss_ce": 0.21639785468578338, "aux.acc_seg": 91.35277557373047, "time": 1.1145328760147095, "iter": 47200, "memory": 8703, "step": 47200} +{"lr": 0.007324945054037691, "data_time": 0.00642697811126709, "loss": 0.49202349931001665, "decode.loss_ce": 0.2934286296367645, "decode.acc_seg": 84.39712524414062, "aux.loss_ce": 0.1985948644578457, "aux.acc_seg": 83.9926986694336, "time": 1.117472243309021, "iter": 47250, "memory": 8703, "step": 47250} +{"lr": 0.007322061420001951, "data_time": 0.0064427852630615234, "loss": 0.49192479252815247, "decode.loss_ce": 0.30062237977981565, "decode.acc_seg": 95.56414031982422, "aux.loss_ce": 0.19130241200327874, "aux.acc_seg": 93.71528625488281, "time": 1.1123473644256592, "iter": 47300, "memory": 8704, "step": 47300} +{"lr": 0.007319177658029295, "data_time": 0.0050285100936889645, "loss": 0.3538540281355381, "decode.loss_ce": 0.22995141446590422, "decode.acc_seg": 90.7756118774414, "aux.loss_ce": 0.12390261776745319, "aux.acc_seg": 87.01273345947266, "time": 1.111745023727417, "iter": 47350, "memory": 8703, "step": 47350} +{"lr": 0.007316293768057257, "data_time": 0.00777895450592041, "loss": 0.2824066370725632, "decode.loss_ce": 0.17147775292396544, "decode.acc_seg": 90.2693862915039, "aux.loss_ce": 0.11092888340353965, "aux.acc_seg": 82.74772644042969, "time": 1.1140231847763062, "iter": 47400, "memory": 8704, "step": 47400} +{"lr": 0.0073134097500233185, "data_time": 0.009157586097717284, "loss": 0.7076987475156784, "decode.loss_ce": 0.454152824729681, "decode.acc_seg": 96.2629623413086, "aux.loss_ce": 0.25354591086506845, "aux.acc_seg": 95.63257598876953, "time": 1.1198487758636475, "iter": 47450, "memory": 8703, "step": 47450} +{"lr": 0.007310525603864887, "data_time": 0.0060985803604125975, "loss": 0.560737469792366, "decode.loss_ce": 0.34407727271318433, "decode.acc_seg": 95.76835632324219, "aux.loss_ce": 0.21666018292307854, "aux.acc_seg": 79.87581634521484, "time": 1.1152500629425048, "iter": 47500, "memory": 8704, "step": 47500} +{"lr": 0.0073076413295193356, "data_time": 0.007763338088989258, "loss": 0.3658779293298721, "decode.loss_ce": 0.22915225774049758, "decode.acc_seg": 96.0641860961914, "aux.loss_ce": 0.13672566935420036, "aux.acc_seg": 95.08882904052734, "time": 1.1228782892227174, "iter": 47550, "memory": 8703, "step": 47550} +{"lr": 0.007304756926923952, "data_time": 0.006682753562927246, "loss": 0.28912936747074125, "decode.loss_ce": 0.16717122122645378, "decode.acc_seg": 88.5194091796875, "aux.loss_ce": 0.12195814102888107, "aux.acc_seg": 86.31775665283203, "time": 1.1150078296661377, "iter": 47600, "memory": 8704, "step": 47600} +{"lr": 0.007301872396015989, "data_time": 0.006745290756225586, "loss": 0.6084776356816292, "decode.loss_ce": 0.4038122735917568, "decode.acc_seg": 78.64067840576172, "aux.loss_ce": 0.20466535687446594, "aux.acc_seg": 76.08305358886719, "time": 1.1161999940872191, "iter": 47650, "memory": 8704, "step": 47650} +{"lr": 0.007298987736732631, "data_time": 0.006548142433166504, "loss": 0.3960990861058235, "decode.loss_ce": 0.25011430531740186, "decode.acc_seg": 94.24696350097656, "aux.loss_ce": 0.1459847778081894, "aux.acc_seg": 92.82721710205078, "time": 1.115864634513855, "iter": 47700, "memory": 8703, "step": 47700} +{"lr": 0.007296102949010996, "data_time": 0.006305503845214844, "loss": 0.41590033620595934, "decode.loss_ce": 0.26654709652066233, "decode.acc_seg": 88.84381103515625, "aux.loss_ce": 0.14935324229300023, "aux.acc_seg": 84.4071273803711, "time": 1.1124860525131226, "iter": 47750, "memory": 8703, "step": 47750} +{"lr": 0.007293218032788156, "data_time": 0.004914045333862305, "loss": 0.43197162747383117, "decode.loss_ce": 0.2763946145772934, "decode.acc_seg": 94.09878540039062, "aux.loss_ce": 0.15557702034711837, "aux.acc_seg": 92.76599884033203, "time": 1.107521390914917, "iter": 47800, "memory": 8703, "step": 47800} +{"lr": 0.007290332988001114, "data_time": 0.00689394474029541, "loss": 0.471437469124794, "decode.loss_ce": 0.29146796017885207, "decode.acc_seg": 93.77396392822266, "aux.loss_ce": 0.17996950969099998, "aux.acc_seg": 86.52788543701172, "time": 1.1143059492111207, "iter": 47850, "memory": 8704, "step": 47850} +{"lr": 0.007287447814586829, "data_time": 0.006405425071716308, "loss": 0.35719782263040545, "decode.loss_ce": 0.217647023499012, "decode.acc_seg": 89.78309631347656, "aux.loss_ce": 0.1395507961511612, "aux.acc_seg": 86.68079376220703, "time": 1.114020586013794, "iter": 47900, "memory": 8703, "step": 47900} +{"lr": 0.007284562512482182, "data_time": 0.0064795494079589845, "loss": 0.40735107511281965, "decode.loss_ce": 0.24947300031781197, "decode.acc_seg": 93.43617248535156, "aux.loss_ce": 0.15787807554006578, "aux.acc_seg": 92.69180297851562, "time": 1.1143024921417237, "iter": 47950, "memory": 8703, "step": 47950} +{"lr": 0.007281677081624, "data_time": 0.005917835235595703, "loss": 0.5614495620131492, "decode.loss_ce": 0.33970881551504134, "decode.acc_seg": 93.478515625, "aux.loss_ce": 0.22174074798822402, "aux.acc_seg": 92.71246337890625, "time": 1.1139671325683593, "iter": 48000, "memory": 8703, "step": 48000} +{"aAcc": 83.07, "mIoU": 49.68, "mAcc": 59.74, "data_time": 0.004066631416188734, "time": 0.27103237115273304, "step": 48000} +{"lr": 0.0072787915219490705, "data_time": 0.008495807647705078, "loss": 0.38146677911281585, "decode.loss_ce": 0.22368702441453933, "decode.acc_seg": 94.14913940429688, "aux.loss_ce": 0.15777975097298622, "aux.acc_seg": 89.5056381225586, "time": 1.1143446445465088, "iter": 48050, "memory": 8704, "step": 48050} +{"lr": 0.007275905833394091, "data_time": 0.006398224830627441, "loss": 0.5938381552696228, "decode.loss_ce": 0.36544625610113146, "decode.acc_seg": 91.29161834716797, "aux.loss_ce": 0.22839189395308496, "aux.acc_seg": 87.61494445800781, "time": 1.118470811843872, "iter": 48100, "memory": 8705, "step": 48100} +{"lr": 0.007273020015895723, "data_time": 0.006970715522766113, "loss": 0.40879840552806856, "decode.loss_ce": 0.25411805510520935, "decode.acc_seg": 86.07197570800781, "aux.loss_ce": 0.1546803493052721, "aux.acc_seg": 85.33484649658203, "time": 1.1160124778747558, "iter": 48150, "memory": 8703, "step": 48150} +{"lr": 0.007270134069390549, "data_time": 0.006401205062866211, "loss": 0.5282719910144806, "decode.loss_ce": 0.33547369986772535, "decode.acc_seg": 75.79580688476562, "aux.loss_ce": 0.1927982859313488, "aux.acc_seg": 66.02776336669922, "time": 1.1150771856307984, "iter": 48200, "memory": 8704, "step": 48200} +{"lr": 0.007267247993815109, "data_time": 0.006461882591247558, "loss": 0.40144456923007965, "decode.loss_ce": 0.2643103331327438, "decode.acc_seg": 94.86331939697266, "aux.loss_ce": 0.1371342409402132, "aux.acc_seg": 91.95308685302734, "time": 1.1139459371566773, "iter": 48250, "memory": 8704, "step": 48250} +{"lr": 0.007264361789105885, "data_time": 0.006584787368774414, "loss": 0.5070029571652412, "decode.loss_ce": 0.3152300134301186, "decode.acc_seg": 84.75080871582031, "aux.loss_ce": 0.19177294708788395, "aux.acc_seg": 79.29737854003906, "time": 1.1140960931777955, "iter": 48300, "memory": 8703, "step": 48300} +{"lr": 0.007261475455199278, "data_time": 0.00631871223449707, "loss": 0.5014851301908493, "decode.loss_ce": 0.31160915791988375, "decode.acc_seg": 80.11927032470703, "aux.loss_ce": 0.1898759663105011, "aux.acc_seg": 69.59217834472656, "time": 1.1127151012420655, "iter": 48350, "memory": 8704, "step": 48350} +{"lr": 0.007258588992031655, "data_time": 0.006287145614624024, "loss": 0.40987262278795245, "decode.loss_ce": 0.25292138159275057, "decode.acc_seg": 93.72335815429688, "aux.loss_ce": 0.1569512441754341, "aux.acc_seg": 91.87151336669922, "time": 1.1123010396957398, "iter": 48400, "memory": 8703, "step": 48400} +{"lr": 0.007255702399539302, "data_time": 0.006376504898071289, "loss": 0.5148957893252373, "decode.loss_ce": 0.3394845090806484, "decode.acc_seg": 68.03990173339844, "aux.loss_ce": 0.17541128098964692, "aux.acc_seg": 68.67189025878906, "time": 1.118481945991516, "iter": 48450, "memory": 8704, "step": 48450} +{"lr": 0.007252815677658462, "data_time": 0.006408286094665527, "loss": 0.4484641835093498, "decode.loss_ce": 0.29362685009837153, "decode.acc_seg": 75.01271057128906, "aux.loss_ce": 0.15483734309673308, "aux.acc_seg": 62.3034782409668, "time": 1.1106688261032105, "iter": 48500, "memory": 8703, "step": 48500} +{"lr": 0.0072499288263252965, "data_time": 0.006968998908996582, "loss": 0.44599860310554507, "decode.loss_ce": 0.28245014846324923, "decode.acc_seg": 91.31685638427734, "aux.loss_ce": 0.16354845240712165, "aux.acc_seg": 88.3856430053711, "time": 1.1183485031127929, "iter": 48550, "memory": 8704, "step": 48550} +{"lr": 0.007247041845475925, "data_time": 0.007991409301757813, "loss": 0.5371915966272354, "decode.loss_ce": 0.34802822917699816, "decode.acc_seg": 91.16458892822266, "aux.loss_ce": 0.18916337192058563, "aux.acc_seg": 90.72322845458984, "time": 1.11753306388855, "iter": 48600, "memory": 8704, "step": 48600} +{"lr": 0.007244154735046405, "data_time": 0.006035518646240234, "loss": 0.42156868278980253, "decode.loss_ce": 0.2741481430828571, "decode.acc_seg": 94.0412368774414, "aux.loss_ce": 0.14742053151130677, "aux.acc_seg": 93.9312973022461, "time": 1.1156452894210815, "iter": 48650, "memory": 8703, "step": 48650} +{"lr": 0.007241267494972729, "data_time": 0.007123899459838867, "loss": 0.4367490530014038, "decode.loss_ce": 0.26013218984007835, "decode.acc_seg": 86.14139556884766, "aux.loss_ce": 0.17661686539649962, "aux.acc_seg": 70.97339630126953, "time": 1.1179522037506104, "iter": 48700, "memory": 8703, "step": 48700} +{"lr": 0.007238380125190827, "data_time": 0.0049021244049072266, "loss": 0.5508714824914932, "decode.loss_ce": 0.3504263639450073, "decode.acc_seg": 93.26368713378906, "aux.loss_ce": 0.20044511556625366, "aux.acc_seg": 90.67598724365234, "time": 1.114322257041931, "iter": 48750, "memory": 8703, "step": 48750} +{"lr": 0.007235492625636576, "data_time": 0.006485486030578613, "loss": 0.3553909346461296, "decode.loss_ce": 0.21284396648406984, "decode.acc_seg": 92.216552734375, "aux.loss_ce": 0.1425469696521759, "aux.acc_seg": 88.9781265258789, "time": 1.1161267042160035, "iter": 48800, "memory": 8704, "step": 48800} +{"lr": 0.007232604996245796, "data_time": 0.005856704711914062, "loss": 0.38025203347206116, "decode.loss_ce": 0.24215094298124312, "decode.acc_seg": 94.93032836914062, "aux.loss_ce": 0.13810108937323093, "aux.acc_seg": 92.54423522949219, "time": 1.1147130012512207, "iter": 48850, "memory": 8704, "step": 48850} +{"lr": 0.007229717236954227, "data_time": 0.008713412284851074, "loss": 0.5262853503227234, "decode.loss_ce": 0.3142020583152771, "decode.acc_seg": 92.31312561035156, "aux.loss_ce": 0.21208329163491726, "aux.acc_seg": 83.70100402832031, "time": 1.1171255588531495, "iter": 48900, "memory": 8703, "step": 48900} +{"lr": 0.007226829347697564, "data_time": 0.007727670669555664, "loss": 0.5633368492126465, "decode.loss_ce": 0.35537081956863403, "decode.acc_seg": 88.18035125732422, "aux.loss_ce": 0.20796602852642537, "aux.acc_seg": 66.69158935546875, "time": 1.1194251298904419, "iter": 48950, "memory": 8704, "step": 48950} +{"lr": 0.007223941328411439, "data_time": 0.007956695556640626, "loss": 0.34162941575050354, "decode.loss_ce": 0.21352992504835128, "decode.acc_seg": 95.42121887207031, "aux.loss_ce": 0.12809948436915874, "aux.acc_seg": 92.03840637207031, "time": 1.1193110466003418, "iter": 49000, "memory": 8704, "step": 49000} +{"lr": 0.007221053179031419, "data_time": 0.008283782005310058, "loss": 0.4398620754480362, "decode.loss_ce": 0.2764651939272881, "decode.acc_seg": 95.08824920654297, "aux.loss_ce": 0.16339687779545783, "aux.acc_seg": 89.34339904785156, "time": 1.1204312801361085, "iter": 49050, "memory": 8704, "step": 49050} +{"lr": 0.007218164899493016, "data_time": 0.006400680541992188, "loss": 0.29179122895002363, "decode.loss_ce": 0.18133524134755136, "decode.acc_seg": 93.70968627929688, "aux.loss_ce": 0.11045598797500134, "aux.acc_seg": 90.80644989013672, "time": 1.1148732900619507, "iter": 49100, "memory": 8704, "step": 49100} +{"lr": 0.007215276489731679, "data_time": 0.007039952278137207, "loss": 0.4273165166378021, "decode.loss_ce": 0.2648072436451912, "decode.acc_seg": 93.70098114013672, "aux.loss_ce": 0.16250926703214646, "aux.acc_seg": 89.23371124267578, "time": 1.117100143432617, "iter": 49150, "memory": 8704, "step": 49150} +{"lr": 0.007212387949682785, "data_time": 0.007463192939758301, "loss": 0.41001649349927904, "decode.loss_ce": 0.22361739724874496, "decode.acc_seg": 90.75437927246094, "aux.loss_ce": 0.18639909736812116, "aux.acc_seg": 83.31489562988281, "time": 1.1188285112380982, "iter": 49200, "memory": 8703, "step": 49200} +{"lr": 0.007209499279281664, "data_time": 0.006949138641357422, "loss": 0.5745638161897659, "decode.loss_ce": 0.365060980618, "decode.acc_seg": 88.45704650878906, "aux.loss_ce": 0.20950283035635947, "aux.acc_seg": 80.20111083984375, "time": 1.1115766286849975, "iter": 49250, "memory": 8703, "step": 49250} +{"lr": 0.007206610478463581, "data_time": 0.007086563110351563, "loss": 0.4063514515757561, "decode.loss_ce": 0.22553854510188104, "decode.acc_seg": 94.8553695678711, "aux.loss_ce": 0.18081290535628797, "aux.acc_seg": 88.08529663085938, "time": 1.1171191692352296, "iter": 49300, "memory": 8704, "step": 49300} +{"lr": 0.007203721547163741, "data_time": 0.006801438331604004, "loss": 0.5036473825573922, "decode.loss_ce": 0.3356123581528664, "decode.acc_seg": 84.84928894042969, "aux.loss_ce": 0.1680350262671709, "aux.acc_seg": 79.67503356933594, "time": 1.1167110919952392, "iter": 49350, "memory": 8704, "step": 49350} +{"lr": 0.007200832485317286, "data_time": 0.007124161720275879, "loss": 0.36902257055044174, "decode.loss_ce": 0.2356593705713749, "decode.acc_seg": 78.39342498779297, "aux.loss_ce": 0.13336320258677006, "aux.acc_seg": 73.44557189941406, "time": 1.1102853059768676, "iter": 49400, "memory": 8704, "step": 49400} +{"lr": 0.007197943292859291, "data_time": 0.005965876579284668, "loss": 0.5989943906664849, "decode.loss_ce": 0.3850472182035446, "decode.acc_seg": 92.0755386352539, "aux.loss_ce": 0.2139471687376499, "aux.acc_seg": 83.9671401977539, "time": 1.1143617153167724, "iter": 49450, "memory": 8703, "step": 49450} +{"lr": 0.007195053969724772, "data_time": 0.0058279275894165036, "loss": 0.42036552131175997, "decode.loss_ce": 0.24569208770990372, "decode.acc_seg": 88.54071044921875, "aux.loss_ce": 0.1746734380722046, "aux.acc_seg": 78.72975158691406, "time": 1.1148977518081664, "iter": 49500, "memory": 8703, "step": 49500} +{"lr": 0.007192164515848685, "data_time": 0.0056106805801391605, "loss": 0.34722606241703036, "decode.loss_ce": 0.21330488994717597, "decode.acc_seg": 92.7848129272461, "aux.loss_ce": 0.13392116799950599, "aux.acc_seg": 91.63690948486328, "time": 1.1183937549591065, "iter": 49550, "memory": 8703, "step": 49550} +{"lr": 0.007189274931165926, "data_time": 0.006262946128845215, "loss": 0.3991986557841301, "decode.loss_ce": 0.24287664145231247, "decode.acc_seg": 92.62249755859375, "aux.loss_ce": 0.1563220124691725, "aux.acc_seg": 91.19154357910156, "time": 1.1151179790496826, "iter": 49600, "memory": 8703, "step": 49600} +{"lr": 0.0071863852156113265, "data_time": 0.006766080856323242, "loss": 0.40421331822872164, "decode.loss_ce": 0.24225838482379913, "decode.acc_seg": 84.3353271484375, "aux.loss_ce": 0.16195493824779988, "aux.acc_seg": 80.55521392822266, "time": 1.116697859764099, "iter": 49650, "memory": 8703, "step": 49650} +{"lr": 0.007183495369119657, "data_time": 0.006677699089050293, "loss": 0.4429230958223343, "decode.loss_ce": 0.2791221499443054, "decode.acc_seg": 94.56865692138672, "aux.loss_ce": 0.1638009436428547, "aux.acc_seg": 93.80815887451172, "time": 1.1136457681655885, "iter": 49700, "memory": 8703, "step": 49700} +{"lr": 0.007180605391625634, "data_time": 0.006548881530761719, "loss": 0.3425209864974022, "decode.loss_ce": 0.2081582523882389, "decode.acc_seg": 95.02006530761719, "aux.loss_ce": 0.13436272889375686, "aux.acc_seg": 94.29596710205078, "time": 1.116035032272339, "iter": 49750, "memory": 8704, "step": 49750} +{"lr": 0.007177715283063887, "data_time": 0.00747990608215332, "loss": 0.5566254526376724, "decode.loss_ce": 0.34951000809669497, "decode.acc_seg": 91.78402709960938, "aux.loss_ce": 0.20711543150246142, "aux.acc_seg": 86.97096252441406, "time": 1.1134192228317261, "iter": 49800, "memory": 8703, "step": 49800} +{"lr": 0.007174825043369013, "data_time": 0.004899907112121582, "loss": 0.43477941006422044, "decode.loss_ce": 0.26302872896194457, "decode.acc_seg": 93.56867218017578, "aux.loss_ce": 0.1717506818473339, "aux.acc_seg": 92.01850891113281, "time": 1.108249568939209, "iter": 49850, "memory": 8704, "step": 49850} +{"lr": 0.007171934672475527, "data_time": 0.0070991992950439455, "loss": 0.43186476528644563, "decode.loss_ce": 0.2646655857563019, "decode.acc_seg": 89.99474334716797, "aux.loss_ce": 0.16719917133450507, "aux.acc_seg": 83.24222564697266, "time": 1.1210371017456056, "iter": 49900, "memory": 8703, "step": 49900} +{"lr": 0.007169044170317884, "data_time": 0.005949544906616211, "loss": 0.38077692687511444, "decode.loss_ce": 0.22506761625409127, "decode.acc_seg": 87.12196350097656, "aux.loss_ce": 0.1557093109935522, "aux.acc_seg": 82.156494140625, "time": 1.116493248939514, "iter": 49950, "memory": 8703, "step": 49950} +{"lr": 0.007166153536830489, "data_time": 0.0066165924072265625, "loss": 0.396026811003685, "decode.loss_ce": 0.24681240320205688, "decode.acc_seg": 87.10771942138672, "aux.loss_ce": 0.14921441152691842, "aux.acc_seg": 89.29953002929688, "time": 1.115488600730896, "iter": 50000, "memory": 8704, "step": 50000} +{"lr": 0.007163262771947668, "data_time": 0.006291913986206055, "loss": 0.29917634576559066, "decode.loss_ce": 0.17709963619709015, "decode.acc_seg": 94.4754867553711, "aux.loss_ce": 0.12207671068608761, "aux.acc_seg": 82.04154968261719, "time": 1.1151106834411622, "iter": 50050, "memory": 8703, "step": 50050} +{"lr": 0.007160371875603695, "data_time": 0.007959556579589844, "loss": 0.46592381298542024, "decode.loss_ce": 0.30242539644241334, "decode.acc_seg": 94.21234130859375, "aux.loss_ce": 0.1634984038770199, "aux.acc_seg": 87.90092468261719, "time": 1.1128954410552978, "iter": 50100, "memory": 8704, "step": 50100} +{"lr": 0.007157480847732782, "data_time": 0.005711841583251953, "loss": 0.3813949763774872, "decode.loss_ce": 0.24364870935678482, "decode.acc_seg": 86.99995422363281, "aux.loss_ce": 0.13774626776576043, "aux.acc_seg": 87.25496673583984, "time": 1.1134522438049317, "iter": 50150, "memory": 8704, "step": 50150} +{"lr": 0.007154589688269069, "data_time": 0.007866954803466797, "loss": 0.3776978373527527, "decode.loss_ce": 0.23676941245794297, "decode.acc_seg": 92.61681365966797, "aux.loss_ce": 0.14092842489480972, "aux.acc_seg": 90.35360717773438, "time": 1.117837905883789, "iter": 50200, "memory": 8704, "step": 50200} +{"lr": 0.007151698397146642, "data_time": 0.005474638938903808, "loss": 0.46190084517002106, "decode.loss_ce": 0.2667748548090458, "decode.acc_seg": 83.00507354736328, "aux.loss_ce": 0.1951259881258011, "aux.acc_seg": 72.47982025146484, "time": 1.1078092575073242, "iter": 50250, "memory": 8704, "step": 50250} +{"lr": 0.0071488069742995245, "data_time": 0.0076689481735229496, "loss": 0.4731291592121124, "decode.loss_ce": 0.2895824983716011, "decode.acc_seg": 94.96199035644531, "aux.loss_ce": 0.18354665413498877, "aux.acc_seg": 94.38284301757812, "time": 1.1146620512008667, "iter": 50300, "memory": 8703, "step": 50300} +{"lr": 0.007145915419661661, "data_time": 0.0060639619827270504, "loss": 0.40874034613370896, "decode.loss_ce": 0.2389353781938553, "decode.acc_seg": 97.17375183105469, "aux.loss_ce": 0.16980496272444726, "aux.acc_seg": 87.96068572998047, "time": 1.1146043300628663, "iter": 50350, "memory": 8703, "step": 50350} +{"lr": 0.007143023733166948, "data_time": 0.006130146980285645, "loss": 0.5077998280525208, "decode.loss_ce": 0.3043322190642357, "decode.acc_seg": 90.25421142578125, "aux.loss_ce": 0.20346760153770446, "aux.acc_seg": 79.67802429199219, "time": 1.1133493185043335, "iter": 50400, "memory": 8703, "step": 50400} +{"lr": 0.007140131914749218, "data_time": 0.007698559761047363, "loss": 0.3731213569641113, "decode.loss_ce": 0.22973375469446183, "decode.acc_seg": 93.24893951416016, "aux.loss_ce": 0.1433876059949398, "aux.acc_seg": 91.28424072265625, "time": 1.1202633857727051, "iter": 50450, "memory": 8704, "step": 50450} +{"lr": 0.007137239964342241, "data_time": 0.005569148063659668, "loss": 0.5859572350978851, "decode.loss_ce": 0.3521015077829361, "decode.acc_seg": 91.71829223632812, "aux.loss_ce": 0.23385573253035546, "aux.acc_seg": 88.44349670410156, "time": 1.114423966407776, "iter": 50500, "memory": 8703, "step": 50500} +{"lr": 0.00713434788187971, "data_time": 0.00679173469543457, "loss": 0.4954695403575897, "decode.loss_ce": 0.3127134755253792, "decode.acc_seg": 91.9251708984375, "aux.loss_ce": 0.18275605700910091, "aux.acc_seg": 86.44004821777344, "time": 1.1156083345413208, "iter": 50550, "memory": 8703, "step": 50550} +{"lr": 0.007131455667295267, "data_time": 0.00510110855102539, "loss": 0.4129162162542343, "decode.loss_ce": 0.24809655845165252, "decode.acc_seg": 93.89173889160156, "aux.loss_ce": 0.1648196540772915, "aux.acc_seg": 87.18183135986328, "time": 1.1129383325576783, "iter": 50600, "memory": 8704, "step": 50600} +{"lr": 0.007128563320522488, "data_time": 0.006802558898925781, "loss": 0.5201505899429322, "decode.loss_ce": 0.31502057537436484, "decode.acc_seg": 87.41703033447266, "aux.loss_ce": 0.2051300197839737, "aux.acc_seg": 69.61161041259766, "time": 1.114790940284729, "iter": 50650, "memory": 8703, "step": 50650} +{"lr": 0.007125670841494885, "data_time": 0.008671236038208009, "loss": 0.4082718014717102, "decode.loss_ce": 0.24772603809833527, "decode.acc_seg": 96.01020812988281, "aux.loss_ce": 0.16054575741291047, "aux.acc_seg": 94.32817840576172, "time": 1.1180204153060913, "iter": 50700, "memory": 8704, "step": 50700} +{"lr": 0.007122778230145902, "data_time": 0.007154297828674316, "loss": 0.4483128622174263, "decode.loss_ce": 0.2803939193487167, "decode.acc_seg": 87.97123718261719, "aux.loss_ce": 0.16791894435882568, "aux.acc_seg": 77.0803451538086, "time": 1.1223536491394044, "iter": 50750, "memory": 8703, "step": 50750} +{"lr": 0.007119885486408929, "data_time": 0.006445622444152832, "loss": 0.4518100991845131, "decode.loss_ce": 0.283366484194994, "decode.acc_seg": 83.00011444091797, "aux.loss_ce": 0.1684436146169901, "aux.acc_seg": 77.80437469482422, "time": 1.116302490234375, "iter": 50800, "memory": 8704, "step": 50800} +{"lr": 0.0071169926102172855, "data_time": 0.006391835212707519, "loss": 0.32076056897640226, "decode.loss_ce": 0.20662114545702934, "decode.acc_seg": 95.5943374633789, "aux.loss_ce": 0.11413942389190197, "aux.acc_seg": 93.31684112548828, "time": 1.1180775880813598, "iter": 50850, "memory": 8703, "step": 50850} +{"lr": 0.007114099601504221, "data_time": 0.007507538795471192, "loss": 0.44813980013132093, "decode.loss_ce": 0.2706692971289158, "decode.acc_seg": 94.78117370605469, "aux.loss_ce": 0.17747050076723098, "aux.acc_seg": 93.15674591064453, "time": 1.1154885768890381, "iter": 50900, "memory": 8703, "step": 50900} +{"lr": 0.007111206460202926, "data_time": 0.005181646347045899, "loss": 0.467153525352478, "decode.loss_ce": 0.29271322935819627, "decode.acc_seg": 92.77839660644531, "aux.loss_ce": 0.17444030418992043, "aux.acc_seg": 90.22013092041016, "time": 1.1146234035491944, "iter": 50950, "memory": 8703, "step": 50950} +{"lr": 0.007108313186246531, "data_time": 0.005651354789733887, "loss": 0.358521556854248, "decode.loss_ce": 0.20329098850488664, "decode.acc_seg": 85.2865219116211, "aux.loss_ce": 0.15523056425154208, "aux.acc_seg": 78.95513916015625, "time": 1.1147924661636353, "iter": 51000, "memory": 8704, "step": 51000} +{"lr": 0.007105419779568101, "data_time": 0.007262921333312989, "loss": 0.5286766797304153, "decode.loss_ce": 0.3214332103729248, "decode.acc_seg": 95.1743392944336, "aux.loss_ce": 0.2072434552013874, "aux.acc_seg": 92.4872055053711, "time": 1.1180556774139405, "iter": 51050, "memory": 8704, "step": 51050} +{"lr": 0.007102526240100636, "data_time": 0.006386756896972656, "loss": 0.4433328002691269, "decode.loss_ce": 0.2784520462155342, "decode.acc_seg": 90.01604461669922, "aux.loss_ce": 0.16488075032830238, "aux.acc_seg": 85.0256576538086, "time": 1.1182609796524048, "iter": 51100, "memory": 8703, "step": 51100} +{"lr": 0.007099632567777059, "data_time": 0.006525254249572754, "loss": 0.4222828283905983, "decode.loss_ce": 0.25192354768514635, "decode.acc_seg": 95.19023895263672, "aux.loss_ce": 0.17035927399992942, "aux.acc_seg": 90.32154083251953, "time": 1.1085979223251343, "iter": 51150, "memory": 8703, "step": 51150} +{"lr": 0.007096738762530241, "data_time": 0.006787943840026856, "loss": 0.32557434141635894, "decode.loss_ce": 0.20523664653301238, "decode.acc_seg": 93.13761138916016, "aux.loss_ce": 0.1203376967459917, "aux.acc_seg": 86.93071746826172, "time": 1.1167018175125123, "iter": 51200, "memory": 8703, "step": 51200} +{"lr": 0.007093844824292991, "data_time": 0.0067070722579956055, "loss": 0.4638366803526878, "decode.loss_ce": 0.28213455751538274, "decode.acc_seg": 96.07683563232422, "aux.loss_ce": 0.1817021258175373, "aux.acc_seg": 90.84281921386719, "time": 1.11593599319458, "iter": 51250, "memory": 8703, "step": 51250} +{"lr": 0.007090950752998054, "data_time": 0.006216096878051758, "loss": 0.526159293949604, "decode.loss_ce": 0.3100194349884987, "decode.acc_seg": 93.26445007324219, "aux.loss_ce": 0.2161398634314537, "aux.acc_seg": 81.10739135742188, "time": 1.1160583257675172, "iter": 51300, "memory": 8703, "step": 51300} +{"lr": 0.007088056548578093, "data_time": 0.00586550235748291, "loss": 0.46450651437044144, "decode.loss_ce": 0.2925510033965111, "decode.acc_seg": 90.3925552368164, "aux.loss_ce": 0.17195551246404647, "aux.acc_seg": 90.61476135253906, "time": 1.1133446455001832, "iter": 51350, "memory": 8703, "step": 51350} +{"lr": 0.007085162210965717, "data_time": 0.006482267379760742, "loss": 0.5028974384069442, "decode.loss_ce": 0.3377053141593933, "decode.acc_seg": 84.16519165039062, "aux.loss_ce": 0.1651921197772026, "aux.acc_seg": 78.43570709228516, "time": 1.1166748523712158, "iter": 51400, "memory": 8704, "step": 51400} +{"lr": 0.007082267740093474, "data_time": 0.006980252265930176, "loss": 0.4316151261329651, "decode.loss_ce": 0.2567244812846184, "decode.acc_seg": 79.12323760986328, "aux.loss_ce": 0.17489065006375312, "aux.acc_seg": 71.61947631835938, "time": 1.1111401081085206, "iter": 51450, "memory": 8704, "step": 51450} +{"lr": 0.007079373135893838, "data_time": 0.006555533409118653, "loss": 0.3851530566811562, "decode.loss_ce": 0.2279227003455162, "decode.acc_seg": 90.77027130126953, "aux.loss_ce": 0.1572303634136915, "aux.acc_seg": 80.09090423583984, "time": 1.1101982116699218, "iter": 51500, "memory": 8704, "step": 51500} +{"lr": 0.007076478398299224, "data_time": 0.007009267807006836, "loss": 0.4061614438891411, "decode.loss_ce": 0.24891323894262313, "decode.acc_seg": 90.11528778076172, "aux.loss_ce": 0.15724819861352443, "aux.acc_seg": 76.79817962646484, "time": 1.1129796981811524, "iter": 51550, "memory": 8704, "step": 51550} +{"lr": 0.00707358352724198, "data_time": 0.007338309288024902, "loss": 0.5242187827825546, "decode.loss_ce": 0.3387717857956886, "decode.acc_seg": 87.14763641357422, "aux.loss_ce": 0.18544699028134345, "aux.acc_seg": 84.78108215332031, "time": 1.115739345550537, "iter": 51600, "memory": 8704, "step": 51600} +{"lr": 0.007070688522654387, "data_time": 0.007065391540527344, "loss": 0.41248970925807954, "decode.loss_ce": 0.26404980272054673, "decode.acc_seg": 92.5130844116211, "aux.loss_ce": 0.14843990206718444, "aux.acc_seg": 90.27703094482422, "time": 1.120396900177002, "iter": 51650, "memory": 8704, "step": 51650} +{"lr": 0.007067793384468665, "data_time": 0.006845641136169434, "loss": 0.3890841081738472, "decode.loss_ce": 0.23838033825159072, "decode.acc_seg": 93.60497283935547, "aux.loss_ce": 0.15070376880466937, "aux.acc_seg": 92.230224609375, "time": 1.1164873361587524, "iter": 51700, "memory": 8704, "step": 51700} +{"lr": 0.007064898112616969, "data_time": 0.006452393531799316, "loss": 0.4466650947928429, "decode.loss_ce": 0.26039900481700895, "decode.acc_seg": 93.4708251953125, "aux.loss_ce": 0.18626608997583388, "aux.acc_seg": 85.2142333984375, "time": 1.1165504693984984, "iter": 51750, "memory": 8704, "step": 51750} +{"lr": 0.007062002707031371, "data_time": 0.007734751701354981, "loss": 0.3315044179558754, "decode.loss_ce": 0.202849879860878, "decode.acc_seg": 88.7168197631836, "aux.loss_ce": 0.12865453138947486, "aux.acc_seg": 85.5704574584961, "time": 1.1187796592712402, "iter": 51800, "memory": 8704, "step": 51800} +{"lr": 0.007059107167643899, "data_time": 0.006479310989379883, "loss": 0.2472816526889801, "decode.loss_ce": 0.16235312819480896, "decode.acc_seg": 94.62515258789062, "aux.loss_ce": 0.08492852598428727, "aux.acc_seg": 93.80155944824219, "time": 1.1151974201202393, "iter": 51850, "memory": 8705, "step": 51850} +{"lr": 0.007056211494386505, "data_time": 0.006239533424377441, "loss": 0.3449950560927391, "decode.loss_ce": 0.212864001840353, "decode.acc_seg": 93.00237274169922, "aux.loss_ce": 0.13213105611503123, "aux.acc_seg": 90.46884155273438, "time": 1.1113118410110474, "iter": 51900, "memory": 8703, "step": 51900} +{"lr": 0.007053315687191075, "data_time": 0.006359910964965821, "loss": 0.5568614721298217, "decode.loss_ce": 0.31925192251801493, "decode.acc_seg": 97.4662094116211, "aux.loss_ce": 0.2376095425337553, "aux.acc_seg": 97.37860107421875, "time": 1.114149808883667, "iter": 51950, "memory": 8703, "step": 51950} +{"lr": 0.007050419745989432, "data_time": 0.006430125236511231, "loss": 0.3811759129166603, "decode.loss_ce": 0.23586822003126146, "decode.acc_seg": 96.9449234008789, "aux.loss_ce": 0.14530769623816014, "aux.acc_seg": 96.28443908691406, "time": 1.1120667219161988, "iter": 52000, "memory": 8703, "step": 52000} +{"lr": 0.00704752367071333, "data_time": 0.006613254547119141, "loss": 0.47056362181901934, "decode.loss_ce": 0.29116350784897804, "decode.acc_seg": 95.62674713134766, "aux.loss_ce": 0.17940011918544768, "aux.acc_seg": 94.41373443603516, "time": 1.110602355003357, "iter": 52050, "memory": 8704, "step": 52050} +{"lr": 0.0070446274612944535, "data_time": 0.0076646566390991214, "loss": 0.3800644129514694, "decode.loss_ce": 0.2419634945690632, "decode.acc_seg": 96.6971664428711, "aux.loss_ce": 0.138100915402174, "aux.acc_seg": 96.3663101196289, "time": 1.114105749130249, "iter": 52100, "memory": 8704, "step": 52100} +{"lr": 0.0070417311176644215, "data_time": 0.006538128852844239, "loss": 0.6270156517624855, "decode.loss_ce": 0.4027224540710449, "decode.acc_seg": 87.67261505126953, "aux.loss_ce": 0.22429319322109223, "aux.acc_seg": 86.46099853515625, "time": 1.1153821229934693, "iter": 52150, "memory": 8703, "step": 52150} +{"lr": 0.007038834639754797, "data_time": 0.006225872039794922, "loss": 0.3129166416823864, "decode.loss_ce": 0.19725999981164932, "decode.acc_seg": 88.82465362548828, "aux.loss_ce": 0.11565664131194353, "aux.acc_seg": 82.44348907470703, "time": 1.1200188159942628, "iter": 52200, "memory": 8703, "step": 52200} +{"lr": 0.0070359380274970665, "data_time": 0.0059872627258300785, "loss": 0.3681307718157768, "decode.loss_ce": 0.233290196955204, "decode.acc_seg": 96.98091888427734, "aux.loss_ce": 0.13484057523310183, "aux.acc_seg": 96.22904205322266, "time": 1.1118592262268066, "iter": 52250, "memory": 8703, "step": 52250} +{"lr": 0.007033041280822645, "data_time": 0.006681513786315918, "loss": 0.38126550167798995, "decode.loss_ce": 0.25314199477434157, "decode.acc_seg": 92.35363006591797, "aux.loss_ce": 0.12812351398169994, "aux.acc_seg": 84.97949981689453, "time": 1.113505744934082, "iter": 52300, "memory": 8703, "step": 52300} +{"lr": 0.007030144399662903, "data_time": 0.005630278587341308, "loss": 0.37605664134025574, "decode.loss_ce": 0.22817978411912918, "decode.acc_seg": 90.39598846435547, "aux.loss_ce": 0.14787685573101045, "aux.acc_seg": 85.10710144042969, "time": 1.1103469371795653, "iter": 52350, "memory": 8704, "step": 52350} +{"lr": 0.007027247383949112, "data_time": 0.005472302436828613, "loss": 0.36018385887146, "decode.loss_ce": 0.2197319447994232, "decode.acc_seg": 94.65577697753906, "aux.loss_ce": 0.14045191034674645, "aux.acc_seg": 92.70616149902344, "time": 1.1087196826934815, "iter": 52400, "memory": 8703, "step": 52400} +{"lr": 0.007024350233612497, "data_time": 0.00644533634185791, "loss": 0.46254867017269136, "decode.loss_ce": 0.26889504343271253, "decode.acc_seg": 93.20945739746094, "aux.loss_ce": 0.1936536207795143, "aux.acc_seg": 78.21337127685547, "time": 1.1138437509536743, "iter": 52450, "memory": 8703, "step": 52450} +{"lr": 0.007021452948584218, "data_time": 0.006215929985046387, "loss": 0.37657815515995025, "decode.loss_ce": 0.22976504787802696, "decode.acc_seg": 87.51080322265625, "aux.loss_ce": 0.1468131050467491, "aux.acc_seg": 84.84477996826172, "time": 1.1114648103713989, "iter": 52500, "memory": 8703, "step": 52500} +{"lr": 0.007018555528795353, "data_time": 0.007256841659545899, "loss": 0.3805989295244217, "decode.loss_ce": 0.23159673288464547, "decode.acc_seg": 92.43901062011719, "aux.loss_ce": 0.14900219738483428, "aux.acc_seg": 88.13285827636719, "time": 1.1174065113067626, "iter": 52550, "memory": 8704, "step": 52550} +{"lr": 0.007015657974176926, "data_time": 0.006366348266601563, "loss": 0.5331874072551728, "decode.loss_ce": 0.3375853829085827, "decode.acc_seg": 94.87464141845703, "aux.loss_ce": 0.19560202658176423, "aux.acc_seg": 93.82118225097656, "time": 1.1179625272750855, "iter": 52600, "memory": 8703, "step": 52600} +{"lr": 0.007012760284659892, "data_time": 0.006174349784851074, "loss": 0.4642504960298538, "decode.loss_ce": 0.2914051838219166, "decode.acc_seg": 89.53411865234375, "aux.loss_ce": 0.17284531556069851, "aux.acc_seg": 86.53837585449219, "time": 1.1160066604614258, "iter": 52650, "memory": 8703, "step": 52650} +{"lr": 0.007009862460175129, "data_time": 0.00544888973236084, "loss": 0.40755105167627337, "decode.loss_ce": 0.24853685200214387, "decode.acc_seg": 93.35476684570312, "aux.loss_ce": 0.15901420414447784, "aux.acc_seg": 87.53915405273438, "time": 1.1127565860748292, "iter": 52700, "memory": 8703, "step": 52700} +{"lr": 0.0070069645006534545, "data_time": 0.006346964836120605, "loss": 0.44151530265808103, "decode.loss_ce": 0.27229655236005784, "decode.acc_seg": 93.73918914794922, "aux.loss_ce": 0.1692187450826168, "aux.acc_seg": 92.56584930419922, "time": 1.1158521890640258, "iter": 52750, "memory": 8703, "step": 52750} +{"lr": 0.007004066406025607, "data_time": 0.0058018207550048825, "loss": 0.3921749010682106, "decode.loss_ce": 0.2372814431786537, "decode.acc_seg": 91.4404525756836, "aux.loss_ce": 0.15489345900714396, "aux.acc_seg": 89.50074005126953, "time": 1.1113656997680663, "iter": 52800, "memory": 8703, "step": 52800} +{"lr": 0.00700116817622228, "data_time": 0.005754590034484863, "loss": 0.38367216736078263, "decode.loss_ce": 0.24224285781383514, "decode.acc_seg": 96.55952453613281, "aux.loss_ce": 0.14142931289970875, "aux.acc_seg": 95.93212890625, "time": 1.1129749774932862, "iter": 52850, "memory": 8704, "step": 52850} +{"lr": 0.006998269811174084, "data_time": 0.006818914413452148, "loss": 0.37438135892152785, "decode.loss_ce": 0.21964930593967438, "decode.acc_seg": 88.1720199584961, "aux.loss_ce": 0.15473205409944057, "aux.acc_seg": 81.0602798461914, "time": 1.1121448278427124, "iter": 52900, "memory": 8704, "step": 52900} +{"lr": 0.006995371310811569, "data_time": 0.006643819808959961, "loss": 0.5353440076112748, "decode.loss_ce": 0.3063847318291664, "decode.acc_seg": 95.84651947021484, "aux.loss_ce": 0.2289592757821083, "aux.acc_seg": 95.17253112792969, "time": 1.111404037475586, "iter": 52950, "memory": 8704, "step": 52950} +{"lr": 0.006992472675065207, "data_time": 0.0066794872283935545, "loss": 0.3600854888558388, "decode.loss_ce": 0.20852755159139633, "decode.acc_seg": 90.08763122558594, "aux.loss_ce": 0.15155793726444244, "aux.acc_seg": 84.27288818359375, "time": 1.1131033897399902, "iter": 53000, "memory": 8704, "step": 53000} +{"lr": 0.006989573903865411, "data_time": 0.00691072940826416, "loss": 0.40151447653770445, "decode.loss_ce": 0.24035606235265733, "decode.acc_seg": 96.67192840576172, "aux.loss_ce": 0.16115842163562774, "aux.acc_seg": 89.3622055053711, "time": 1.1168814420700073, "iter": 53050, "memory": 8703, "step": 53050} +{"lr": 0.006986674997142518, "data_time": 0.00782482624053955, "loss": 0.3970517009496689, "decode.loss_ce": 0.2331959128379822, "decode.acc_seg": 93.99801635742188, "aux.loss_ce": 0.1638557832688093, "aux.acc_seg": 90.41849517822266, "time": 1.1150540590286255, "iter": 53100, "memory": 8704, "step": 53100} +{"lr": 0.00698377595482679, "data_time": 0.00698087215423584, "loss": 0.42477782964706423, "decode.loss_ce": 0.2641361191868782, "decode.acc_seg": 96.43020629882812, "aux.loss_ce": 0.16064171120524406, "aux.acc_seg": 92.15126037597656, "time": 1.1144753456115724, "iter": 53150, "memory": 8704, "step": 53150} +{"lr": 0.0069808767768484445, "data_time": 0.007148194313049317, "loss": 0.46850539147853854, "decode.loss_ce": 0.290181565284729, "decode.acc_seg": 94.89593505859375, "aux.loss_ce": 0.17832382246851922, "aux.acc_seg": 91.67658233642578, "time": 1.1148631811141967, "iter": 53200, "memory": 8704, "step": 53200} +{"lr": 0.006977977463137603, "data_time": 0.0062903881072998045, "loss": 0.3548312306404114, "decode.loss_ce": 0.22411030381917954, "decode.acc_seg": 94.37930297851562, "aux.loss_ce": 0.13072092682123185, "aux.acc_seg": 93.23768615722656, "time": 1.1139701843261718, "iter": 53250, "memory": 8703, "step": 53250} +{"lr": 0.006975078013624344, "data_time": 0.008004403114318848, "loss": 0.4441173627972603, "decode.loss_ce": 0.2824391290545464, "decode.acc_seg": 85.16533660888672, "aux.loss_ce": 0.16167823784053326, "aux.acc_seg": 83.59336853027344, "time": 1.1169131755828858, "iter": 53300, "memory": 8704, "step": 53300} +{"lr": 0.006972178428238659, "data_time": 0.007242131233215332, "loss": 0.3866103976964951, "decode.loss_ce": 0.2354081466794014, "decode.acc_seg": 92.1600341796875, "aux.loss_ce": 0.15120225474238397, "aux.acc_seg": 89.7680892944336, "time": 1.1197702169418335, "iter": 53350, "memory": 8703, "step": 53350} +{"lr": 0.00696927870691047, "data_time": 0.006408238410949707, "loss": 0.43539789468050005, "decode.loss_ce": 0.2855063661932945, "decode.acc_seg": 91.01420593261719, "aux.loss_ce": 0.1498915206640959, "aux.acc_seg": 90.30924224853516, "time": 1.113486075401306, "iter": 53400, "memory": 8704, "step": 53400} +{"lr": 0.00696637884956965, "data_time": 0.00594172477722168, "loss": 0.4420060351490974, "decode.loss_ce": 0.26301511377096176, "decode.acc_seg": 86.92350006103516, "aux.loss_ce": 0.1789909176528454, "aux.acc_seg": 82.14552307128906, "time": 1.1126477003097535, "iter": 53450, "memory": 8703, "step": 53450} +{"lr": 0.006963478856145975, "data_time": 0.00620565414428711, "loss": 0.4577150702476501, "decode.loss_ce": 0.28639860153198243, "decode.acc_seg": 96.68328857421875, "aux.loss_ce": 0.17131646797060968, "aux.acc_seg": 95.95716857910156, "time": 1.1127830028533936, "iter": 53500, "memory": 8704, "step": 53500} +{"lr": 0.006960578726569183, "data_time": 0.0067139148712158205, "loss": 0.34548834413290025, "decode.loss_ce": 0.21159741580486296, "decode.acc_seg": 82.71324920654297, "aux.loss_ce": 0.13389092572033406, "aux.acc_seg": 78.25018310546875, "time": 1.1184577703475953, "iter": 53550, "memory": 8703, "step": 53550} +{"lr": 0.006957678460768911, "data_time": 0.006711649894714356, "loss": 0.46385554522275924, "decode.loss_ce": 0.27101883143186567, "decode.acc_seg": 94.48965454101562, "aux.loss_ce": 0.1928367219865322, "aux.acc_seg": 91.68106842041016, "time": 1.120229458808899, "iter": 53600, "memory": 8703, "step": 53600} +{"lr": 0.0069547780586747465, "data_time": 0.006332969665527344, "loss": 0.3136627316474915, "decode.loss_ce": 0.19564754962921144, "decode.acc_seg": 95.61553955078125, "aux.loss_ce": 0.118015181645751, "aux.acc_seg": 85.48657989501953, "time": 1.1169101238250732, "iter": 53650, "memory": 8704, "step": 53650} +{"lr": 0.006951877520216201, "data_time": 0.008051204681396484, "loss": 0.37560799717903137, "decode.loss_ce": 0.2340031772851944, "decode.acc_seg": 90.06639862060547, "aux.loss_ce": 0.1416048277169466, "aux.acc_seg": 91.70271301269531, "time": 1.1175236701965332, "iter": 53700, "memory": 8703, "step": 53700} +{"lr": 0.006948976845322717, "data_time": 0.006640028953552246, "loss": 0.47245246171951294, "decode.loss_ce": 0.2863048121333122, "decode.acc_seg": 84.5153579711914, "aux.loss_ce": 0.18614765256643295, "aux.acc_seg": 72.14151000976562, "time": 1.110680389404297, "iter": 53750, "memory": 8704, "step": 53750} +{"lr": 0.0069460760339236675, "data_time": 0.0063910245895385746, "loss": 0.38359317630529405, "decode.loss_ce": 0.2403651013970375, "decode.acc_seg": 93.34690856933594, "aux.loss_ce": 0.14322807341814042, "aux.acc_seg": 91.4084701538086, "time": 1.1136207818984984, "iter": 53800, "memory": 8704, "step": 53800} +{"lr": 0.006943175085948358, "data_time": 0.0067169427871704105, "loss": 0.3601384699344635, "decode.loss_ce": 0.23115792348980904, "decode.acc_seg": 93.09361267089844, "aux.loss_ce": 0.12898055016994475, "aux.acc_seg": 92.20650482177734, "time": 1.1143949985504151, "iter": 53850, "memory": 8703, "step": 53850} +{"lr": 0.0069402740013260215, "data_time": 0.008184146881103516, "loss": 0.4353740975260735, "decode.loss_ce": 0.2788022503256798, "decode.acc_seg": 71.11943054199219, "aux.loss_ce": 0.1565718449652195, "aux.acc_seg": 73.05290985107422, "time": 1.1217670679092406, "iter": 53900, "memory": 8704, "step": 53900} +{"lr": 0.006937372779985819, "data_time": 0.007389616966247558, "loss": 0.4219018638134003, "decode.loss_ce": 0.2533582106232643, "decode.acc_seg": 90.85426330566406, "aux.loss_ce": 0.16854364722967147, "aux.acc_seg": 84.62644958496094, "time": 1.1216495275497436, "iter": 53950, "memory": 8703, "step": 53950} +{"lr": 0.006934471421856844, "data_time": 0.006073713302612305, "loss": 0.3729294866323471, "decode.loss_ce": 0.22598492428660394, "decode.acc_seg": 94.59978485107422, "aux.loss_ce": 0.14694455042481422, "aux.acc_seg": 90.02831268310547, "time": 1.1142206907272338, "iter": 54000, "memory": 8704, "step": 54000} +{"lr": 0.006931569926868121, "data_time": 0.007133293151855469, "loss": 0.3756302997469902, "decode.loss_ce": 0.2244933269917965, "decode.acc_seg": 93.29833984375, "aux.loss_ce": 0.1511369738727808, "aux.acc_seg": 89.5782470703125, "time": 1.1170661926269532, "iter": 54050, "memory": 8703, "step": 54050} +{"lr": 0.0069286682949486035, "data_time": 0.008077025413513184, "loss": 0.38715037405490876, "decode.loss_ce": 0.22628265917301177, "decode.acc_seg": 94.22588348388672, "aux.loss_ce": 0.16086770966649055, "aux.acc_seg": 81.6076889038086, "time": 1.1154799699783324, "iter": 54100, "memory": 8704, "step": 54100} +{"lr": 0.006925766526027171, "data_time": 0.006318187713623047, "loss": 0.5342172339558602, "decode.loss_ce": 0.35016937404870985, "decode.acc_seg": 78.67119598388672, "aux.loss_ce": 0.18404785357415676, "aux.acc_seg": 71.57465362548828, "time": 1.1157732486724854, "iter": 54150, "memory": 8704, "step": 54150} +{"lr": 0.006922864620032637, "data_time": 0.005093979835510254, "loss": 0.3035082697868347, "decode.loss_ce": 0.17910870015621186, "decode.acc_seg": 95.67597198486328, "aux.loss_ce": 0.1243995662778616, "aux.acc_seg": 94.62216186523438, "time": 1.1077035903930663, "iter": 54200, "memory": 8703, "step": 54200} +{"lr": 0.006919962576893738, "data_time": 0.005052328109741211, "loss": 0.3787425696849823, "decode.loss_ce": 0.233205546438694, "decode.acc_seg": 92.84343719482422, "aux.loss_ce": 0.14553702101111413, "aux.acc_seg": 90.89228057861328, "time": 1.1113015174865724, "iter": 54250, "memory": 8703, "step": 54250} +{"lr": 0.0069170603965391505, "data_time": 0.006610965728759766, "loss": 0.45671416968107226, "decode.loss_ce": 0.27978997081518175, "decode.acc_seg": 81.39823150634766, "aux.loss_ce": 0.17692419178783894, "aux.acc_seg": 68.87445831298828, "time": 1.112109613418579, "iter": 54300, "memory": 8704, "step": 54300} +{"lr": 0.006914158078897474, "data_time": 0.0076407909393310545, "loss": 0.7777637928724289, "decode.loss_ce": 0.5241036504507065, "decode.acc_seg": 90.48035430908203, "aux.loss_ce": 0.25366014540195464, "aux.acc_seg": 84.42369842529297, "time": 1.1173006296157837, "iter": 54350, "memory": 8703, "step": 54350} +{"lr": 0.006911255623897237, "data_time": 0.006267619132995605, "loss": 0.3743804171681404, "decode.loss_ce": 0.2224631067365408, "decode.acc_seg": 92.9459228515625, "aux.loss_ce": 0.15191730931401254, "aux.acc_seg": 90.39955139160156, "time": 1.116953730583191, "iter": 54400, "memory": 8703, "step": 54400} +{"lr": 0.006908353031466886, "data_time": 0.006435394287109375, "loss": 0.46215212196111677, "decode.loss_ce": 0.29326543062925337, "decode.acc_seg": 93.03982543945312, "aux.loss_ce": 0.1688866950571537, "aux.acc_seg": 91.60232543945312, "time": 1.1157347440719605, "iter": 54450, "memory": 8703, "step": 54450} +{"lr": 0.00690545030153482, "data_time": 0.006776046752929687, "loss": 0.42046908140182493, "decode.loss_ce": 0.2812120497226715, "decode.acc_seg": 93.75565338134766, "aux.loss_ce": 0.13925703167915343, "aux.acc_seg": 91.04042053222656, "time": 1.116353940963745, "iter": 54500, "memory": 8704, "step": 54500} +{"lr": 0.00690254743402935, "data_time": 0.007557177543640136, "loss": 0.3595794692635536, "decode.loss_ce": 0.21640139296650887, "decode.acc_seg": 89.2431869506836, "aux.loss_ce": 0.1431780755519867, "aux.acc_seg": 82.61375427246094, "time": 1.1162264585494994, "iter": 54550, "memory": 8703, "step": 54550} +{"lr": 0.006899644428878718, "data_time": 0.005577945709228515, "loss": 0.47677509784698485, "decode.loss_ce": 0.293304868042469, "decode.acc_seg": 90.5873794555664, "aux.loss_ce": 0.18347022756934167, "aux.acc_seg": 77.83599090576172, "time": 1.1150781154632567, "iter": 54600, "memory": 8703, "step": 54600} +{"lr": 0.006896741286011101, "data_time": 0.0063097476959228516, "loss": 0.4484388992190361, "decode.loss_ce": 0.2867373272776604, "decode.acc_seg": 93.27784729003906, "aux.loss_ce": 0.1617015816271305, "aux.acc_seg": 90.44822692871094, "time": 1.115190815925598, "iter": 54650, "memory": 8704, "step": 54650} +{"lr": 0.0068938380053545885, "data_time": 0.007191920280456543, "loss": 0.32023344188928604, "decode.loss_ce": 0.18847251459956169, "decode.acc_seg": 94.62960052490234, "aux.loss_ce": 0.1317609313875437, "aux.acc_seg": 93.46077728271484, "time": 1.114636206626892, "iter": 54700, "memory": 8703, "step": 54700} +{"lr": 0.0068909345868372225, "data_time": 0.0068331480026245115, "loss": 0.3489917889237404, "decode.loss_ce": 0.21323907226324082, "decode.acc_seg": 89.08773040771484, "aux.loss_ce": 0.13575272411108016, "aux.acc_seg": 82.86456298828125, "time": 1.1159095287322998, "iter": 54750, "memory": 8703, "step": 54750} +{"lr": 0.006888031030386949, "data_time": 0.008681440353393554, "loss": 0.6658155217766761, "decode.loss_ce": 0.43720944672822953, "decode.acc_seg": 90.34010314941406, "aux.loss_ce": 0.22860608100891114, "aux.acc_seg": 85.4257583618164, "time": 1.114730715751648, "iter": 54800, "memory": 8704, "step": 54800} +{"lr": 0.006885127335931659, "data_time": 0.007520246505737305, "loss": 0.39629278481006625, "decode.loss_ce": 0.23997371420264244, "decode.acc_seg": 93.87537384033203, "aux.loss_ce": 0.1563190683722496, "aux.acc_seg": 87.63147735595703, "time": 1.1200963258743286, "iter": 54850, "memory": 8703, "step": 54850} +{"lr": 0.006882223503399165, "data_time": 0.006659150123596191, "loss": 0.3905447006225586, "decode.loss_ce": 0.24934476613998413, "decode.acc_seg": 79.73682403564453, "aux.loss_ce": 0.14119993448257445, "aux.acc_seg": 80.43013763427734, "time": 1.1128017902374268, "iter": 54900, "memory": 8704, "step": 54900} +{"lr": 0.006879319532717209, "data_time": 0.006142973899841309, "loss": 0.3956706076860428, "decode.loss_ce": 0.2463025853037834, "decode.acc_seg": 95.03561401367188, "aux.loss_ce": 0.14936802089214324, "aux.acc_seg": 91.91118621826172, "time": 1.1114109754562378, "iter": 54950, "memory": 8704, "step": 54950} +{"lr": 0.006876415423813456, "data_time": 0.007325601577758789, "loss": 0.6866319090127945, "decode.loss_ce": 0.43312079310417173, "decode.acc_seg": 88.7583999633789, "aux.loss_ce": 0.2535111114382744, "aux.acc_seg": 85.85903930664062, "time": 1.1195884704589845, "iter": 55000, "memory": 8704, "step": 55000} +{"lr": 0.006873511176615509, "data_time": 0.005448436737060547, "loss": 0.4248420253396034, "decode.loss_ce": 0.2506091266870499, "decode.acc_seg": 94.42888641357422, "aux.loss_ce": 0.17423288971185685, "aux.acc_seg": 93.08706665039062, "time": 1.117615270614624, "iter": 55050, "memory": 8703, "step": 55050} +{"lr": 0.0068706067910508884, "data_time": 0.006629681587219239, "loss": 0.5741367176175117, "decode.loss_ce": 0.38816486299037933, "decode.acc_seg": 95.18305969238281, "aux.loss_ce": 0.18597185388207435, "aux.acc_seg": 92.42259216308594, "time": 1.1157775163650512, "iter": 55100, "memory": 8704, "step": 55100} +{"lr": 0.00686770226704704, "data_time": 0.008117270469665528, "loss": 0.599526870250702, "decode.loss_ce": 0.38883994370698927, "decode.acc_seg": 96.0744857788086, "aux.loss_ce": 0.21068691611289977, "aux.acc_seg": 93.47540283203125, "time": 1.119011902809143, "iter": 55150, "memory": 8703, "step": 55150} +{"lr": 0.006864797604531352, "data_time": 0.007224535942077637, "loss": 0.4007867708802223, "decode.loss_ce": 0.25134787112474444, "decode.acc_seg": 95.72575378417969, "aux.loss_ce": 0.14943889677524566, "aux.acc_seg": 95.0800552368164, "time": 1.1171935558319093, "iter": 55200, "memory": 8703, "step": 55200} +{"lr": 0.006861892803431121, "data_time": 0.005883979797363281, "loss": 0.4223321139812469, "decode.loss_ce": 0.24262193888425826, "decode.acc_seg": 90.59130096435547, "aux.loss_ce": 0.17971016988158225, "aux.acc_seg": 89.98114013671875, "time": 1.113109540939331, "iter": 55250, "memory": 8703, "step": 55250} +{"lr": 0.006858987863673589, "data_time": 0.007457327842712402, "loss": 0.39198470413684844, "decode.loss_ce": 0.2463441275060177, "decode.acc_seg": 89.04291534423828, "aux.loss_ce": 0.14564057365059851, "aux.acc_seg": 86.37866973876953, "time": 1.1179965019226075, "iter": 55300, "memory": 8703, "step": 55300} +{"lr": 0.00685608278518591, "data_time": 0.006696677207946778, "loss": 0.4380672603845596, "decode.loss_ce": 0.26036361008882525, "decode.acc_seg": 92.85894775390625, "aux.loss_ce": 0.17770364582538606, "aux.acc_seg": 89.3687515258789, "time": 1.1163732767105103, "iter": 55350, "memory": 8703, "step": 55350} +{"lr": 0.006853177567895173, "data_time": 0.005357861518859863, "loss": 0.36588319689035415, "decode.loss_ce": 0.2354004517197609, "decode.acc_seg": 96.6406478881836, "aux.loss_ce": 0.13048274740576743, "aux.acc_seg": 95.04292297363281, "time": 1.1147224664688111, "iter": 55400, "memory": 8703, "step": 55400} +{"lr": 0.006850272211728391, "data_time": 0.007155394554138184, "loss": 0.2954672083258629, "decode.loss_ce": 0.18102489709854125, "decode.acc_seg": 95.43189239501953, "aux.loss_ce": 0.11444231420755387, "aux.acc_seg": 93.66490173339844, "time": 1.1182104349136353, "iter": 55450, "memory": 8704, "step": 55450} +{"lr": 0.006847366716612504, "data_time": 0.007730507850646972, "loss": 0.4726730614900589, "decode.loss_ce": 0.30357311218976973, "decode.acc_seg": 94.43753051757812, "aux.loss_ce": 0.16909995600581168, "aux.acc_seg": 85.32180786132812, "time": 1.1152172327041625, "iter": 55500, "memory": 8703, "step": 55500} +{"lr": 0.006844461082474387, "data_time": 0.00723414421081543, "loss": 0.48087071180343627, "decode.loss_ce": 0.2994372546672821, "decode.acc_seg": 95.85742950439453, "aux.loss_ce": 0.18143346011638642, "aux.acc_seg": 95.05271911621094, "time": 1.117523431777954, "iter": 55550, "memory": 8703, "step": 55550} +{"lr": 0.006841555309240826, "data_time": 0.007412075996398926, "loss": 0.46587184965610506, "decode.loss_ce": 0.28150501996278765, "decode.acc_seg": 90.67575073242188, "aux.loss_ce": 0.18436682894825934, "aux.acc_seg": 76.58328247070312, "time": 1.1161009550094605, "iter": 55600, "memory": 8704, "step": 55600} +{"lr": 0.0068386493968385365, "data_time": 0.005735588073730469, "loss": 0.40965581089258196, "decode.loss_ce": 0.26078963428735735, "decode.acc_seg": 96.87252044677734, "aux.loss_ce": 0.14886617213487624, "aux.acc_seg": 95.92272186279297, "time": 1.112793755531311, "iter": 55650, "memory": 8703, "step": 55650} +{"lr": 0.006835743345194168, "data_time": 0.007603240013122558, "loss": 0.4752974480390549, "decode.loss_ce": 0.2927252694964409, "decode.acc_seg": 89.25920867919922, "aux.loss_ce": 0.18257217481732368, "aux.acc_seg": 85.91600799560547, "time": 1.1166116714477539, "iter": 55700, "memory": 8703, "step": 55700} +{"lr": 0.006832837154234302, "data_time": 0.007382798194885254, "loss": 0.3339292734861374, "decode.loss_ce": 0.20840943306684495, "decode.acc_seg": 93.93717193603516, "aux.loss_ce": 0.12551984041929246, "aux.acc_seg": 89.60482025146484, "time": 1.1150822639465332, "iter": 55750, "memory": 8703, "step": 55750} +{"lr": 0.006829930823885427, "data_time": 0.007912635803222656, "loss": 0.4973864659667015, "decode.loss_ce": 0.3027371056377888, "decode.acc_seg": 83.28977966308594, "aux.loss_ce": 0.1946493551135063, "aux.acc_seg": 72.8904037475586, "time": 1.1180773496627807, "iter": 55800, "memory": 8703, "step": 55800} +{"lr": 0.0068270243540739725, "data_time": 0.006741476058959961, "loss": 0.40727004408836365, "decode.loss_ce": 0.22233908325433732, "decode.acc_seg": 90.52310943603516, "aux.loss_ce": 0.18493095599114895, "aux.acc_seg": 81.7244873046875, "time": 1.1164956569671631, "iter": 55850, "memory": 8704, "step": 55850} +{"lr": 0.006824117744726282, "data_time": 0.007058858871459961, "loss": 0.6503331318497658, "decode.loss_ce": 0.414487823843956, "decode.acc_seg": 97.11602020263672, "aux.loss_ce": 0.23584530390799047, "aux.acc_seg": 88.93610382080078, "time": 1.1159825086593629, "iter": 55900, "memory": 8703, "step": 55900} +{"lr": 0.006821210995768637, "data_time": 0.006372666358947754, "loss": 0.336684912443161, "decode.loss_ce": 0.20017800778150557, "decode.acc_seg": 97.16510772705078, "aux.loss_ce": 0.1365069080144167, "aux.acc_seg": 96.26972961425781, "time": 1.1172218561172484, "iter": 55950, "memory": 8703, "step": 55950} +{"lr": 0.006818304107127247, "data_time": 0.006341981887817383, "loss": 0.33884657770395277, "decode.loss_ce": 0.2122373953461647, "decode.acc_seg": 95.62384033203125, "aux.loss_ce": 0.12660918496549128, "aux.acc_seg": 95.1804428100586, "time": 1.1141947746276855, "iter": 56000, "memory": 8703, "step": 56000} +{"lr": 0.006815397078728218, "data_time": 0.005804133415222168, "loss": 0.6604598492383957, "decode.loss_ce": 0.37038220912218095, "decode.acc_seg": 89.24070739746094, "aux.loss_ce": 0.29007764011621473, "aux.acc_seg": 85.15065002441406, "time": 1.1167541027069092, "iter": 56050, "memory": 8703, "step": 56050} +{"lr": 0.006812489910497624, "data_time": 0.007652592658996582, "loss": 0.5386691421270371, "decode.loss_ce": 0.3449935741722584, "decode.acc_seg": 65.78655242919922, "aux.loss_ce": 0.19367557838559152, "aux.acc_seg": 75.6978988647461, "time": 1.1163952112197877, "iter": 56100, "memory": 8704, "step": 56100} +{"lr": 0.006809582602361429, "data_time": 0.007579326629638672, "loss": 0.40608221888542173, "decode.loss_ce": 0.24104087501764299, "decode.acc_seg": 96.86405944824219, "aux.loss_ce": 0.16504133567214013, "aux.acc_seg": 91.5384292602539, "time": 1.114367938041687, "iter": 56150, "memory": 8704, "step": 56150} +{"lr": 0.006806675154245541, "data_time": 0.005806374549865723, "loss": 0.3959085464477539, "decode.loss_ce": 0.24052982404828072, "decode.acc_seg": 90.05018615722656, "aux.loss_ce": 0.15537871979176998, "aux.acc_seg": 84.17949676513672, "time": 1.1119940996170044, "iter": 56200, "memory": 8703, "step": 56200} +{"lr": 0.006803767566075788, "data_time": 0.005019068717956543, "loss": 0.4549306720495224, "decode.loss_ce": 0.2906396836042404, "decode.acc_seg": 89.44422912597656, "aux.loss_ce": 0.16429098770022393, "aux.acc_seg": 90.41841888427734, "time": 1.110803747177124, "iter": 56250, "memory": 8704, "step": 56250} +{"lr": 0.006800859837777922, "data_time": 0.007265734672546387, "loss": 0.40112763047218325, "decode.loss_ce": 0.2298765152692795, "decode.acc_seg": 93.56581115722656, "aux.loss_ce": 0.171251118183136, "aux.acc_seg": 90.92533874511719, "time": 1.1136162519454955, "iter": 56300, "memory": 8704, "step": 56300} +{"lr": 0.006797951969277618, "data_time": 0.006763887405395508, "loss": 0.508070421218872, "decode.loss_ce": 0.31458149552345277, "decode.acc_seg": 91.8722152709961, "aux.loss_ce": 0.1934889294207096, "aux.acc_seg": 74.75687408447266, "time": 1.1147206783294679, "iter": 56350, "memory": 8704, "step": 56350} +{"lr": 0.00679504396050048, "data_time": 0.006280446052551269, "loss": 0.38080437779426574, "decode.loss_ce": 0.22836643010377883, "decode.acc_seg": 94.07229614257812, "aux.loss_ce": 0.1524379424750805, "aux.acc_seg": 89.14281463623047, "time": 1.1164700984954834, "iter": 56400, "memory": 8704, "step": 56400} +{"lr": 0.006792135811372036, "data_time": 0.0065784454345703125, "loss": 0.3969474285840988, "decode.loss_ce": 0.2404262527823448, "decode.acc_seg": 94.36283111572266, "aux.loss_ce": 0.15652117654681205, "aux.acc_seg": 91.70732116699219, "time": 1.1142465353012085, "iter": 56450, "memory": 8703, "step": 56450} +{"lr": 0.006789227521817743, "data_time": 0.0054116487503051754, "loss": 0.48526218682527544, "decode.loss_ce": 0.3032522305846214, "decode.acc_seg": 90.4714584350586, "aux.loss_ce": 0.18200995288789273, "aux.acc_seg": 88.91607666015625, "time": 1.1174688339233398, "iter": 56500, "memory": 8704, "step": 56500} +{"lr": 0.0067863190917629695, "data_time": 0.007662200927734375, "loss": 0.41562208980321885, "decode.loss_ce": 0.25220492854714394, "decode.acc_seg": 91.9637680053711, "aux.loss_ce": 0.16341715976595877, "aux.acc_seg": 90.5284194946289, "time": 1.1176109075546266, "iter": 56550, "memory": 8703, "step": 56550} +{"lr": 0.006783410521133014, "data_time": 0.005780720710754394, "loss": 0.35317312330007555, "decode.loss_ce": 0.2106502316892147, "decode.acc_seg": 92.9140625, "aux.loss_ce": 0.14252288825809956, "aux.acc_seg": 84.76858520507812, "time": 1.110309910774231, "iter": 56600, "memory": 8704, "step": 56600} +{"lr": 0.0067805018098531025, "data_time": 0.006459188461303711, "loss": 0.47592686489224434, "decode.loss_ce": 0.3008218050003052, "decode.acc_seg": 79.13360595703125, "aux.loss_ce": 0.1751050569117069, "aux.acc_seg": 74.9970703125, "time": 1.1112283706665038, "iter": 56650, "memory": 8703, "step": 56650} +{"lr": 0.006777592957848382, "data_time": 0.006443309783935547, "loss": 0.43468971401453016, "decode.loss_ce": 0.28437311574816704, "decode.acc_seg": 95.479248046875, "aux.loss_ce": 0.1503166001290083, "aux.acc_seg": 86.4075927734375, "time": 1.111406397819519, "iter": 56700, "memory": 8703, "step": 56700} +{"lr": 0.006774683965043924, "data_time": 0.006225156784057617, "loss": 0.4615514576435089, "decode.loss_ce": 0.2872252777218819, "decode.acc_seg": 90.50877380371094, "aux.loss_ce": 0.17432617992162705, "aux.acc_seg": 81.49864959716797, "time": 1.111742949485779, "iter": 56750, "memory": 8704, "step": 56750} +{"lr": 0.006771774831364731, "data_time": 0.00699911117553711, "loss": 0.3913122981786728, "decode.loss_ce": 0.24688732251524925, "decode.acc_seg": 96.03443145751953, "aux.loss_ce": 0.1444249778985977, "aux.acc_seg": 94.50594329833984, "time": 1.116725993156433, "iter": 56800, "memory": 8704, "step": 56800} +{"lr": 0.0067688655567357215, "data_time": 0.005761384963989258, "loss": 0.342277792096138, "decode.loss_ce": 0.20352757573127747, "decode.acc_seg": 92.64519500732422, "aux.loss_ce": 0.13875021524727343, "aux.acc_seg": 88.3962631225586, "time": 1.1154963970184326, "iter": 56850, "memory": 8704, "step": 56850} +{"lr": 0.0067659561410817306, "data_time": 0.005121469497680664, "loss": 0.40062314718961717, "decode.loss_ce": 0.25924026817083357, "decode.acc_seg": 83.42761993408203, "aux.loss_ce": 0.1413828767836094, "aux.acc_seg": 83.09395599365234, "time": 1.1129210233688354, "iter": 56900, "memory": 8703, "step": 56900} +{"lr": 0.006763046584327529, "data_time": 0.008150243759155273, "loss": 0.4037028938531876, "decode.loss_ce": 0.2528111144900322, "decode.acc_seg": 95.16258239746094, "aux.loss_ce": 0.15089177563786507, "aux.acc_seg": 91.11003875732422, "time": 1.1192675352096557, "iter": 56950, "memory": 8704, "step": 56950} +{"lr": 0.006760136886397811, "data_time": 0.007707953453063965, "loss": 0.4261367991566658, "decode.loss_ce": 0.2710645027458668, "decode.acc_seg": 95.45936584472656, "aux.loss_ce": 0.15507229417562485, "aux.acc_seg": 93.89031219482422, "time": 1.1182439804077149, "iter": 57000, "memory": 8703, "step": 57000} +{"lr": 0.006757227047217188, "data_time": 0.006978082656860352, "loss": 0.6073270410299301, "decode.loss_ce": 0.3933460652828217, "decode.acc_seg": 86.31311798095703, "aux.loss_ce": 0.21398097574710845, "aux.acc_seg": 87.36610412597656, "time": 1.118693971633911, "iter": 57050, "memory": 8704, "step": 57050} +{"lr": 0.006754317066710195, "data_time": 0.0060355901718139645, "loss": 0.38268835842609406, "decode.loss_ce": 0.23143502548336983, "decode.acc_seg": 96.57999420166016, "aux.loss_ce": 0.15125333070755004, "aux.acc_seg": 92.8309097290039, "time": 1.1134382486343384, "iter": 57100, "memory": 8704, "step": 57100} +{"lr": 0.006751406944801288, "data_time": 0.005675458908081054, "loss": 0.4366397373378277, "decode.loss_ce": 0.26739052310585976, "decode.acc_seg": 85.51387786865234, "aux.loss_ce": 0.1692492201924324, "aux.acc_seg": 82.60383605957031, "time": 1.1087228298187255, "iter": 57150, "memory": 8704, "step": 57150} +{"lr": 0.006748496681414853, "data_time": 0.005989289283752442, "loss": 0.3719979614019394, "decode.loss_ce": 0.24186135530471803, "decode.acc_seg": 92.40544128417969, "aux.loss_ce": 0.1301366038620472, "aux.acc_seg": 92.24827575683594, "time": 1.1115594625473022, "iter": 57200, "memory": 8703, "step": 57200} +{"lr": 0.006745586276475192, "data_time": 0.005862092971801758, "loss": 0.35243464559316634, "decode.loss_ce": 0.20307158157229424, "decode.acc_seg": 95.78157806396484, "aux.loss_ce": 0.1493630599230528, "aux.acc_seg": 95.06193542480469, "time": 1.1070629835128785, "iter": 57250, "memory": 8704, "step": 57250} +{"lr": 0.006742675729906533, "data_time": 0.006096673011779785, "loss": 0.29471092373132707, "decode.loss_ce": 0.17861603945493698, "decode.acc_seg": 93.7171859741211, "aux.loss_ce": 0.1160948820412159, "aux.acc_seg": 91.03518676757812, "time": 1.1124923706054688, "iter": 57300, "memory": 8703, "step": 57300} +{"lr": 0.006739765041633033, "data_time": 0.006133890151977539, "loss": 0.45932584851980207, "decode.loss_ce": 0.27359357476234436, "decode.acc_seg": 81.83695220947266, "aux.loss_ce": 0.18573227450251578, "aux.acc_seg": 76.74076843261719, "time": 1.1116924047470094, "iter": 57350, "memory": 8703, "step": 57350} +{"lr": 0.006736854211578763, "data_time": 0.008153080940246582, "loss": 0.4071321576833725, "decode.loss_ce": 0.2545965738594532, "decode.acc_seg": 91.69197082519531, "aux.loss_ce": 0.15253557935357093, "aux.acc_seg": 89.92652893066406, "time": 1.1205743312835694, "iter": 57400, "memory": 8703, "step": 57400} +{"lr": 0.006733943239667708, "data_time": 0.006141066551208496, "loss": 0.5851655900478363, "decode.loss_ce": 0.3756985604763031, "decode.acc_seg": 91.0208969116211, "aux.loss_ce": 0.20946702547371387, "aux.acc_seg": 89.3683090209961, "time": 1.1159706592559815, "iter": 57450, "memory": 8705, "step": 57450} +{"lr": 0.006731032125823798, "data_time": 0.007132411003112793, "loss": 0.27754715234041216, "decode.loss_ce": 0.1714715525507927, "decode.acc_seg": 94.308349609375, "aux.loss_ce": 0.1060756005346775, "aux.acc_seg": 93.56507110595703, "time": 1.1166449546813966, "iter": 57500, "memory": 8704, "step": 57500} +{"lr": 0.006728120869970856, "data_time": 0.005191373825073242, "loss": 0.5409584969282151, "decode.loss_ce": 0.3426253952085972, "decode.acc_seg": 86.9766845703125, "aux.loss_ce": 0.19833309948444366, "aux.acc_seg": 85.72565460205078, "time": 1.1121709823608399, "iter": 57550, "memory": 8703, "step": 57550} +{"lr": 0.006725209472032662, "data_time": 0.00653228759765625, "loss": 0.6190557509660721, "decode.loss_ce": 0.37849839627742765, "decode.acc_seg": 92.8733139038086, "aux.loss_ce": 0.24055735692381858, "aux.acc_seg": 84.5230712890625, "time": 1.112740683555603, "iter": 57600, "memory": 8703, "step": 57600} +{"lr": 0.006722297931932883, "data_time": 0.005893158912658692, "loss": 0.3282106652855873, "decode.loss_ce": 0.20436268113553524, "decode.acc_seg": 92.42897033691406, "aux.loss_ce": 0.12384798377752304, "aux.acc_seg": 88.5621337890625, "time": 1.1106803178787232, "iter": 57650, "memory": 8703, "step": 57650} +{"lr": 0.006719386249595125, "data_time": 0.008759474754333496, "loss": 0.40706934183835985, "decode.loss_ce": 0.2254671037197113, "decode.acc_seg": 88.7574462890625, "aux.loss_ce": 0.18160223737359046, "aux.acc_seg": 79.7175064086914, "time": 1.1193811655044557, "iter": 57700, "memory": 8704, "step": 57700} +{"lr": 0.006716474424942924, "data_time": 0.006441497802734375, "loss": 0.2530872210860252, "decode.loss_ce": 0.14889618530869483, "decode.acc_seg": 92.17388916015625, "aux.loss_ce": 0.10419103316962719, "aux.acc_seg": 92.12086486816406, "time": 1.1127796173095703, "iter": 57750, "memory": 8703, "step": 57750} +{"lr": 0.00671356245789972, "data_time": 0.006523013114929199, "loss": 0.39872054010629654, "decode.loss_ce": 0.24403377026319503, "decode.acc_seg": 95.58956909179688, "aux.loss_ce": 0.15468676015734673, "aux.acc_seg": 93.82584381103516, "time": 1.1127548456192016, "iter": 57800, "memory": 8704, "step": 57800} +{"lr": 0.006710650348388885, "data_time": 0.00614013671875, "loss": 0.4995425745844841, "decode.loss_ce": 0.2931198477745056, "decode.acc_seg": 91.19580078125, "aux.loss_ce": 0.20642272904515266, "aux.acc_seg": 83.47911834716797, "time": 1.1156314134597778, "iter": 57850, "memory": 8703, "step": 57850} +{"lr": 0.006707738096333705, "data_time": 0.005611729621887207, "loss": 0.4622860409319401, "decode.loss_ce": 0.27100112587213515, "decode.acc_seg": 97.24909210205078, "aux.loss_ce": 0.19128491058945657, "aux.acc_seg": 88.02528381347656, "time": 1.113590955734253, "iter": 57900, "memory": 8703, "step": 57900} +{"lr": 0.006704825701657397, "data_time": 0.006885409355163574, "loss": 0.44835507720708845, "decode.loss_ce": 0.2778063386678696, "decode.acc_seg": 94.4009780883789, "aux.loss_ce": 0.17054873406887056, "aux.acc_seg": 93.75234985351562, "time": 1.117987298965454, "iter": 57950, "memory": 8704, "step": 57950} +{"lr": 0.006701913164283092, "data_time": 0.006544280052185059, "loss": 0.33604991137981416, "decode.loss_ce": 0.2043298751115799, "decode.acc_seg": 92.72174835205078, "aux.loss_ce": 0.1317200344055891, "aux.acc_seg": 87.93601989746094, "time": 1.115167498588562, "iter": 58000, "memory": 8704, "step": 58000} +{"lr": 0.006699000484133841, "data_time": 0.0062713623046875, "loss": 0.4793247193098068, "decode.loss_ce": 0.28236766457557677, "decode.acc_seg": 92.88158416748047, "aux.loss_ce": 0.1969570517539978, "aux.acc_seg": 88.3703842163086, "time": 1.115073847770691, "iter": 58050, "memory": 8704, "step": 58050} +{"lr": 0.0066960876611326155, "data_time": 0.005684876441955566, "loss": 0.6239542528986931, "decode.loss_ce": 0.3862458273768425, "decode.acc_seg": 94.81049346923828, "aux.loss_ce": 0.23770841993391514, "aux.acc_seg": 92.81465148925781, "time": 1.1131906032562255, "iter": 58100, "memory": 8703, "step": 58100} +{"lr": 0.006693174695202315, "data_time": 0.007300734519958496, "loss": 0.45374870002269746, "decode.loss_ce": 0.27995428815484047, "decode.acc_seg": 85.95377349853516, "aux.loss_ce": 0.17379441373050214, "aux.acc_seg": 84.01234436035156, "time": 1.1155054569244385, "iter": 58150, "memory": 8704, "step": 58150} +{"lr": 0.0066902615862657515, "data_time": 0.007229661941528321, "loss": 0.4516774445772171, "decode.loss_ce": 0.29850305840373037, "decode.acc_seg": 92.01634216308594, "aux.loss_ce": 0.15317438319325447, "aux.acc_seg": 82.82089233398438, "time": 1.109685516357422, "iter": 58200, "memory": 8704, "step": 58200} +{"lr": 0.006687348334245662, "data_time": 0.006588006019592285, "loss": 0.547122773528099, "decode.loss_ce": 0.3298251748085022, "decode.acc_seg": 89.0143051147461, "aux.loss_ce": 0.21729759946465493, "aux.acc_seg": 89.18844604492188, "time": 1.1154091119766236, "iter": 58250, "memory": 8704, "step": 58250} +{"lr": 0.006684434939064704, "data_time": 0.006525373458862305, "loss": 0.3475915536284447, "decode.loss_ce": 0.21516475975513458, "decode.acc_seg": 94.67838287353516, "aux.loss_ce": 0.1324267942458391, "aux.acc_seg": 93.46845245361328, "time": 1.1107178688049317, "iter": 58300, "memory": 8703, "step": 58300} +{"lr": 0.006681521400645445, "data_time": 0.006937098503112793, "loss": 0.49496960937976836, "decode.loss_ce": 0.3018405169248581, "decode.acc_seg": 86.30744171142578, "aux.loss_ce": 0.19312908947467805, "aux.acc_seg": 81.50437927246094, "time": 1.1188151121139527, "iter": 58350, "memory": 8703, "step": 58350} +{"lr": 0.00667860771891039, "data_time": 0.007155919075012207, "loss": 0.5285969316959381, "decode.loss_ce": 0.3383410073816776, "decode.acc_seg": 90.53497314453125, "aux.loss_ce": 0.19025592282414436, "aux.acc_seg": 90.99674224853516, "time": 1.1176854848861695, "iter": 58400, "memory": 8704, "step": 58400} +{"lr": 0.006675693893781952, "data_time": 0.0072421073913574215, "loss": 0.2706720605492592, "decode.loss_ce": 0.1728312000632286, "decode.acc_seg": 91.58541107177734, "aux.loss_ce": 0.09784086309373378, "aux.acc_seg": 90.97957611083984, "time": 1.1178687334060669, "iter": 58450, "memory": 8704, "step": 58450} +{"lr": 0.006672779925182462, "data_time": 0.007971429824829101, "loss": 0.4809234172105789, "decode.loss_ce": 0.27833423763513565, "decode.acc_seg": 96.5658187866211, "aux.loss_ce": 0.20258917212486266, "aux.acc_seg": 92.4799575805664, "time": 1.122865414619446, "iter": 58500, "memory": 8703, "step": 58500} +{"lr": 0.006669865813034181, "data_time": 0.006341385841369629, "loss": 0.36214310079813006, "decode.loss_ce": 0.2150900200009346, "decode.acc_seg": 95.24847412109375, "aux.loss_ce": 0.14705307483673097, "aux.acc_seg": 90.59467315673828, "time": 1.1175532579421996, "iter": 58550, "memory": 8704, "step": 58550} +{"lr": 0.006666951557259285, "data_time": 0.004982256889343261, "loss": 0.3772380530834198, "decode.loss_ce": 0.23109454661607742, "decode.acc_seg": 94.25951385498047, "aux.loss_ce": 0.14614350348711014, "aux.acc_seg": 92.73573303222656, "time": 1.1142696380615233, "iter": 58600, "memory": 8704, "step": 58600} +{"lr": 0.006664037157779862, "data_time": 0.007175302505493164, "loss": 0.540432620048523, "decode.loss_ce": 0.33118194043636323, "decode.acc_seg": 85.73226928710938, "aux.loss_ce": 0.20925066918134688, "aux.acc_seg": 83.64181518554688, "time": 1.1126463413238525, "iter": 58650, "memory": 8704, "step": 58650} +{"lr": 0.006661122614517934, "data_time": 0.007295417785644531, "loss": 0.3384494438767433, "decode.loss_ce": 0.2072848215699196, "decode.acc_seg": 96.45805358886719, "aux.loss_ce": 0.1311646245419979, "aux.acc_seg": 94.56468963623047, "time": 1.1184855222702026, "iter": 58700, "memory": 8704, "step": 58700} +{"lr": 0.006658207927395426, "data_time": 0.0064666748046875, "loss": 0.34399339184165, "decode.loss_ce": 0.21161853894591331, "decode.acc_seg": 88.3978500366211, "aux.loss_ce": 0.13237485177814962, "aux.acc_seg": 86.93180084228516, "time": 1.1099877834320069, "iter": 58750, "memory": 8703, "step": 58750} +{"lr": 0.006655293096334186, "data_time": 0.0065279722213745115, "loss": 0.47480948865413664, "decode.loss_ce": 0.2752555422484875, "decode.acc_seg": 94.27750396728516, "aux.loss_ce": 0.19955393746495248, "aux.acc_seg": 92.4102783203125, "time": 1.1183932542800903, "iter": 58800, "memory": 8704, "step": 58800} +{"lr": 0.006652378121255994, "data_time": 0.005880165100097656, "loss": 0.41433350890874865, "decode.loss_ce": 0.24878923147916793, "decode.acc_seg": 93.7846450805664, "aux.loss_ce": 0.16554427817463874, "aux.acc_seg": 90.95954895019531, "time": 1.1125755786895752, "iter": 58850, "memory": 8704, "step": 58850} +{"lr": 0.0066494630020825325, "data_time": 0.0072475910186767575, "loss": 0.31643888503313067, "decode.loss_ce": 0.2007581666111946, "decode.acc_seg": 95.52617645263672, "aux.loss_ce": 0.11568071581423282, "aux.acc_seg": 92.2746810913086, "time": 1.1185879230499267, "iter": 58900, "memory": 8704, "step": 58900} +{"lr": 0.006646547738735413, "data_time": 0.005830836296081543, "loss": 0.3971305787563324, "decode.loss_ce": 0.24315186217427254, "decode.acc_seg": 88.3291244506836, "aux.loss_ce": 0.15397871248424053, "aux.acc_seg": 82.54947662353516, "time": 1.1121709108352662, "iter": 58950, "memory": 8705, "step": 58950} +{"lr": 0.006643632331136165, "data_time": 0.007358074188232422, "loss": 0.5101666539907456, "decode.loss_ce": 0.30987374037504195, "decode.acc_seg": 93.9748764038086, "aux.loss_ce": 0.20029290914535522, "aux.acc_seg": 91.5894775390625, "time": 1.1177706718444824, "iter": 59000, "memory": 8704, "step": 59000} +{"lr": 0.0066407167792062296, "data_time": 0.007143855094909668, "loss": 0.4438117042183876, "decode.loss_ce": 0.26895071640610696, "decode.acc_seg": 88.27800750732422, "aux.loss_ce": 0.1748609919101, "aux.acc_seg": 73.37118530273438, "time": 1.1176724910736084, "iter": 59050, "memory": 8704, "step": 59050} +{"lr": 0.006637801082866964, "data_time": 0.008199429512023926, "loss": 0.39361256957054136, "decode.loss_ce": 0.24392189532518388, "decode.acc_seg": 96.30152130126953, "aux.loss_ce": 0.14969067350029946, "aux.acc_seg": 94.26294708251953, "time": 1.117972469329834, "iter": 59100, "memory": 8703, "step": 59100} +{"lr": 0.006634885242039656, "data_time": 0.007967877388000488, "loss": 0.4451999098062515, "decode.loss_ce": 0.2713412523269653, "decode.acc_seg": 86.19581604003906, "aux.loss_ce": 0.1738586600869894, "aux.acc_seg": 81.07445526123047, "time": 1.114176630973816, "iter": 59150, "memory": 8703, "step": 59150} +{"lr": 0.006631969256645507, "data_time": 0.006509232521057129, "loss": 0.4706661641597748, "decode.loss_ce": 0.3019785389304161, "decode.acc_seg": 93.64692687988281, "aux.loss_ce": 0.16868761777877808, "aux.acc_seg": 91.1810302734375, "time": 1.1142176151275636, "iter": 59200, "memory": 8704, "step": 59200} +{"lr": 0.006629053126605625, "data_time": 0.006472277641296387, "loss": 0.4450627312064171, "decode.loss_ce": 0.25701831579208373, "decode.acc_seg": 85.98066711425781, "aux.loss_ce": 0.1880444183945656, "aux.acc_seg": 84.49700164794922, "time": 1.1111063718795777, "iter": 59250, "memory": 8704, "step": 59250} +{"lr": 0.006626136851841056, "data_time": 0.006005406379699707, "loss": 0.45392940044403074, "decode.loss_ce": 0.26757693514227865, "decode.acc_seg": 90.83003997802734, "aux.loss_ce": 0.18635247200727462, "aux.acc_seg": 88.36727142333984, "time": 1.1100049257278441, "iter": 59300, "memory": 8703, "step": 59300} +{"lr": 0.006623220432272749, "data_time": 0.005930900573730469, "loss": 0.3489266648888588, "decode.loss_ce": 0.21822205036878586, "decode.acc_seg": 92.91432189941406, "aux.loss_ce": 0.13070461228489877, "aux.acc_seg": 83.25373077392578, "time": 1.1148123741149902, "iter": 59350, "memory": 8704, "step": 59350} +{"lr": 0.006620303867821576, "data_time": 0.0054610252380371095, "loss": 0.39851933866739275, "decode.loss_ce": 0.24423747658729553, "decode.acc_seg": 92.93842315673828, "aux.loss_ce": 0.15428185798227786, "aux.acc_seg": 89.20948791503906, "time": 1.115162181854248, "iter": 59400, "memory": 8704, "step": 59400} +{"lr": 0.006617387158408321, "data_time": 0.007337021827697754, "loss": 0.31970577612519263, "decode.loss_ce": 0.20436982810497284, "decode.acc_seg": 97.537353515625, "aux.loss_ce": 0.11533594653010368, "aux.acc_seg": 96.12560272216797, "time": 1.1203057289123535, "iter": 59450, "memory": 8703, "step": 59450} +{"lr": 0.006614470303953691, "data_time": 0.005108761787414551, "loss": 0.4084452986717224, "decode.loss_ce": 0.2552195660769939, "decode.acc_seg": 91.30350494384766, "aux.loss_ce": 0.15322572514414787, "aux.acc_seg": 90.2170181274414, "time": 1.1115514278411864, "iter": 59500, "memory": 8704, "step": 59500} +{"lr": 0.006611553304378308, "data_time": 0.005675387382507324, "loss": 0.37690709829330443, "decode.loss_ce": 0.21987926885485648, "decode.acc_seg": 89.4674301147461, "aux.loss_ce": 0.1570278275758028, "aux.acc_seg": 88.27323913574219, "time": 1.1166173219680786, "iter": 59550, "memory": 8703, "step": 59550} +{"lr": 0.006608636159602709, "data_time": 0.006793522834777832, "loss": 0.28102537542581557, "decode.loss_ce": 0.17091575711965562, "decode.acc_seg": 97.03413391113281, "aux.loss_ce": 0.11010961905121804, "aux.acc_seg": 95.90930938720703, "time": 1.115986156463623, "iter": 59600, "memory": 8704, "step": 59600} +{"lr": 0.006605718869547354, "data_time": 0.007911324501037598, "loss": 0.36671910285949705, "decode.loss_ce": 0.2124308317899704, "decode.acc_seg": 95.31765747070312, "aux.loss_ce": 0.15428827255964278, "aux.acc_seg": 94.95979309082031, "time": 1.1189918756484984, "iter": 59650, "memory": 8704, "step": 59650} +{"lr": 0.006602801434132614, "data_time": 0.00562129020690918, "loss": 0.40822495222091676, "decode.loss_ce": 0.24990303963422775, "decode.acc_seg": 93.87581634521484, "aux.loss_ce": 0.15832191258668898, "aux.acc_seg": 92.36729431152344, "time": 1.1098374366760253, "iter": 59700, "memory": 8703, "step": 59700} +{"lr": 0.006599883853278774, "data_time": 0.006198978424072266, "loss": 0.47632902264595034, "decode.loss_ce": 0.29379299730062486, "decode.acc_seg": 93.31836700439453, "aux.loss_ce": 0.18253602795302867, "aux.acc_seg": 87.66409301757812, "time": 1.1109345197677611, "iter": 59750, "memory": 8704, "step": 59750} +{"lr": 0.00659696612690605, "data_time": 0.006792712211608887, "loss": 0.40117805302143095, "decode.loss_ce": 0.2521103397011757, "decode.acc_seg": 84.842041015625, "aux.loss_ce": 0.1490677163004875, "aux.acc_seg": 79.84497833251953, "time": 1.1142856359481812, "iter": 59800, "memory": 8704, "step": 59800} +{"lr": 0.006594048254934554, "data_time": 0.006384348869323731, "loss": 0.3449909448623657, "decode.loss_ce": 0.22924284860491753, "decode.acc_seg": 93.47319793701172, "aux.loss_ce": 0.1157480951398611, "aux.acc_seg": 92.49982452392578, "time": 1.1160003423690796, "iter": 59850, "memory": 8704, "step": 59850} +{"lr": 0.006591130237284329, "data_time": 0.00717465877532959, "loss": 0.28541663736104966, "decode.loss_ce": 0.17260847464203835, "decode.acc_seg": 93.67596435546875, "aux.loss_ce": 0.11280816271901131, "aux.acc_seg": 92.49476623535156, "time": 1.1190123558044434, "iter": 59900, "memory": 8703, "step": 59900} +{"lr": 0.006588212073875335, "data_time": 0.007807350158691407, "loss": 0.46111134588718417, "decode.loss_ce": 0.3001331098377705, "decode.acc_seg": 92.39946746826172, "aux.loss_ce": 0.16097824275493622, "aux.acc_seg": 90.25109100341797, "time": 1.1244996309280395, "iter": 59950, "memory": 8703, "step": 59950} +{"lr": 0.006585293764627438, "data_time": 0.006368041038513184, "loss": 0.4135264217853546, "decode.loss_ce": 0.25792957842350006, "decode.acc_seg": 95.97606658935547, "aux.loss_ce": 0.1555968441069126, "aux.acc_seg": 94.59658813476562, "time": 1.1123348712921142, "iter": 60000, "memory": 8704, "step": 60000} +{"lr": 0.006582375309460423, "data_time": 0.0069705724716186525, "loss": 0.3902940697968006, "decode.loss_ce": 0.23724782913923265, "decode.acc_seg": 98.0597152709961, "aux.loss_ce": 0.15304623916745186, "aux.acc_seg": 97.47848510742188, "time": 1.115578293800354, "iter": 60050, "memory": 8704, "step": 60050} +{"lr": 0.006579456708293995, "data_time": 0.00609591007232666, "loss": 0.4296854466199875, "decode.loss_ce": 0.28045458942651746, "decode.acc_seg": 85.78758239746094, "aux.loss_ce": 0.14923084750771523, "aux.acc_seg": 85.7473373413086, "time": 1.1097931146621705, "iter": 60100, "memory": 8704, "step": 60100} +{"lr": 0.006576537961047764, "data_time": 0.006192612648010254, "loss": 0.526896683871746, "decode.loss_ce": 0.3379041954874992, "decode.acc_seg": 95.56261444091797, "aux.loss_ce": 0.18899249695241452, "aux.acc_seg": 94.46134948730469, "time": 1.114993405342102, "iter": 60150, "memory": 8703, "step": 60150} +{"lr": 0.0065736190676412756, "data_time": 0.006794476509094238, "loss": 0.40889334976673125, "decode.loss_ce": 0.2554349020123482, "decode.acc_seg": 86.94896697998047, "aux.loss_ce": 0.15345844030380248, "aux.acc_seg": 91.85504913330078, "time": 1.1105066299438477, "iter": 60200, "memory": 8703, "step": 60200} +{"lr": 0.00657070002799397, "data_time": 0.006556034088134766, "loss": 0.29001507759094236, "decode.loss_ce": 0.17762765437364578, "decode.acc_seg": 95.121826171875, "aux.loss_ce": 0.11238741800189019, "aux.acc_seg": 94.38591003417969, "time": 1.1164367914199829, "iter": 60250, "memory": 8704, "step": 60250} +{"lr": 0.006567780842025212, "data_time": 0.006710958480834961, "loss": 0.35534499436616895, "decode.loss_ce": 0.21502864733338356, "decode.acc_seg": 95.40068054199219, "aux.loss_ce": 0.1403163455426693, "aux.acc_seg": 94.68548583984375, "time": 1.1097770929336548, "iter": 60300, "memory": 8703, "step": 60300} +{"lr": 0.006564861509654284, "data_time": 0.00874764919281006, "loss": 0.5680798172950745, "decode.loss_ce": 0.33817268162965775, "decode.acc_seg": 88.43434143066406, "aux.loss_ce": 0.22990713268518448, "aux.acc_seg": 87.29572296142578, "time": 1.1180399179458618, "iter": 60350, "memory": 8704, "step": 60350} +{"lr": 0.006561942030800385, "data_time": 0.007525873184204101, "loss": 0.43275138437747956, "decode.loss_ce": 0.2619148224592209, "decode.acc_seg": 94.59507751464844, "aux.loss_ce": 0.17083655372262002, "aux.acc_seg": 92.41523742675781, "time": 1.1198905467987061, "iter": 60400, "memory": 8703, "step": 60400} +{"lr": 0.006559022405382612, "data_time": 0.007906007766723632, "loss": 0.4249542415142059, "decode.loss_ce": 0.24383470341563224, "decode.acc_seg": 94.0390853881836, "aux.loss_ce": 0.18111954145133496, "aux.acc_seg": 91.92447662353516, "time": 1.1202436685562134, "iter": 60450, "memory": 8703, "step": 60450} +{"lr": 0.006556102633319995, "data_time": 0.008246088027954101, "loss": 0.3567718923091888, "decode.loss_ce": 0.21556102111935616, "decode.acc_seg": 91.4886474609375, "aux.loss_ce": 0.14121087081730366, "aux.acc_seg": 84.65206909179688, "time": 1.1223914861679076, "iter": 60500, "memory": 8704, "step": 60500} +{"lr": 0.006553182714531467, "data_time": 0.0080003023147583, "loss": 0.444537977874279, "decode.loss_ce": 0.2774269416928291, "decode.acc_seg": 95.59765625, "aux.loss_ce": 0.1671110291033983, "aux.acc_seg": 94.66971588134766, "time": 1.1194106817245484, "iter": 60550, "memory": 8703, "step": 60550} +{"lr": 0.00655026264893588, "data_time": 0.006483674049377441, "loss": 0.40162769705057144, "decode.loss_ce": 0.2533764146268368, "decode.acc_seg": 91.12129211425781, "aux.loss_ce": 0.1482512790709734, "aux.acc_seg": 80.93973541259766, "time": 1.113689088821411, "iter": 60600, "memory": 8703, "step": 60600} +{"lr": 0.006547342436452009, "data_time": 0.0075516939163208004, "loss": 0.3748283386230469, "decode.loss_ce": 0.20562620237469673, "decode.acc_seg": 93.55023193359375, "aux.loss_ce": 0.1692021407186985, "aux.acc_seg": 92.39107513427734, "time": 1.1159990072250365, "iter": 60650, "memory": 8703, "step": 60650} +{"lr": 0.006544422076998532, "data_time": 0.0062195777893066405, "loss": 0.5265067487955093, "decode.loss_ce": 0.3155867598950863, "decode.acc_seg": 79.48137664794922, "aux.loss_ce": 0.2109199933707714, "aux.acc_seg": 68.06595611572266, "time": 1.1131173133850099, "iter": 60700, "memory": 8703, "step": 60700} +{"lr": 0.006541501570494047, "data_time": 0.0064658641815185545, "loss": 0.4366466045379639, "decode.loss_ce": 0.2710136517882347, "decode.acc_seg": 91.21837615966797, "aux.loss_ce": 0.16563294529914857, "aux.acc_seg": 87.2193603515625, "time": 1.112583327293396, "iter": 60750, "memory": 8704, "step": 60750} +{"lr": 0.006538580916857055, "data_time": 0.0062546968460083004, "loss": 0.4654638856649399, "decode.loss_ce": 0.28441279754042625, "decode.acc_seg": 95.74578094482422, "aux.loss_ce": 0.1810510866343975, "aux.acc_seg": 94.51738739013672, "time": 1.1137381553649903, "iter": 60800, "memory": 8704, "step": 60800} +{"lr": 0.006535660116005979, "data_time": 0.00694742202758789, "loss": 0.45328918695449827, "decode.loss_ce": 0.26961092799901965, "decode.acc_seg": 92.99913787841797, "aux.loss_ce": 0.1836782593280077, "aux.acc_seg": 90.98637390136719, "time": 1.112225317955017, "iter": 60850, "memory": 8704, "step": 60850} +{"lr": 0.006532739167859156, "data_time": 0.00788867473602295, "loss": 0.6008071631193161, "decode.loss_ce": 0.38272066712379454, "decode.acc_seg": 81.36284637451172, "aux.loss_ce": 0.21808649152517318, "aux.acc_seg": 71.83964538574219, "time": 1.1174504995346068, "iter": 60900, "memory": 8703, "step": 60900} +{"lr": 0.006529818072334844, "data_time": 0.006628680229187012, "loss": 0.3789666071534157, "decode.loss_ce": 0.2319663219153881, "decode.acc_seg": 92.62873077392578, "aux.loss_ce": 0.14700028151273728, "aux.acc_seg": 92.05467987060547, "time": 1.1160274267196655, "iter": 60950, "memory": 8703, "step": 60950} +{"lr": 0.006526896829351191, "data_time": 0.0074095487594604496, "loss": 0.5857058852910996, "decode.loss_ce": 0.3662381485104561, "decode.acc_seg": 83.75294494628906, "aux.loss_ce": 0.21946773827075958, "aux.acc_seg": 77.72541046142578, "time": 1.114784598350525, "iter": 61000, "memory": 8704, "step": 61000} +{"lr": 0.00652397543882629, "data_time": 0.005725789070129395, "loss": 0.4225630506873131, "decode.loss_ce": 0.2716843783855438, "decode.acc_seg": 94.62422180175781, "aux.loss_ce": 0.15087867230176927, "aux.acc_seg": 92.74351501464844, "time": 1.1153914213180542, "iter": 61050, "memory": 8704, "step": 61050} +{"lr": 0.006521053900678118, "data_time": 0.008090853691101074, "loss": 0.4110895976424217, "decode.loss_ce": 0.24259646236896515, "decode.acc_seg": 95.57087707519531, "aux.loss_ce": 0.1684931293129921, "aux.acc_seg": 93.80168914794922, "time": 1.1179375171661377, "iter": 61100, "memory": 8704, "step": 61100} +{"lr": 0.00651813221482458, "data_time": 0.006035733222961426, "loss": 0.39152001589536667, "decode.loss_ce": 0.25329260900616646, "decode.acc_seg": 96.5799331665039, "aux.loss_ce": 0.13822740986943244, "aux.acc_seg": 92.99182891845703, "time": 1.1152711391448975, "iter": 61150, "memory": 8703, "step": 61150} +{"lr": 0.006515210381183491, "data_time": 0.007321977615356445, "loss": 0.5188869535923004, "decode.loss_ce": 0.3222124993801117, "decode.acc_seg": 93.46261596679688, "aux.loss_ce": 0.19667445719242097, "aux.acc_seg": 85.70922088623047, "time": 1.1117305517196656, "iter": 61200, "memory": 8704, "step": 61200} +{"lr": 0.006512288399672575, "data_time": 0.007512021064758301, "loss": 0.5776424705982208, "decode.loss_ce": 0.35543290376663206, "decode.acc_seg": 90.5640869140625, "aux.loss_ce": 0.2222095623612404, "aux.acc_seg": 83.7870864868164, "time": 1.1188804149627685, "iter": 61250, "memory": 8703, "step": 61250} +{"lr": 0.0065093662702094875, "data_time": 0.006609511375427246, "loss": 0.4547660604119301, "decode.loss_ce": 0.2964985057711601, "decode.acc_seg": 95.2292709350586, "aux.loss_ce": 0.15826754570007323, "aux.acc_seg": 93.83010864257812, "time": 1.1147512912750244, "iter": 61300, "memory": 8703, "step": 61300} +{"lr": 0.006506443992711756, "data_time": 0.007198071479797364, "loss": 0.30734916776418686, "decode.loss_ce": 0.1971272885799408, "decode.acc_seg": 94.20057678222656, "aux.loss_ce": 0.11022187620401383, "aux.acc_seg": 93.24376678466797, "time": 1.1139324426651, "iter": 61350, "memory": 8703, "step": 61350} +{"lr": 0.0065035215670968625, "data_time": 0.006230759620666504, "loss": 0.3959860324859619, "decode.loss_ce": 0.2245539642870426, "decode.acc_seg": 95.87672424316406, "aux.loss_ce": 0.17143206670880318, "aux.acc_seg": 95.46924591064453, "time": 1.112625789642334, "iter": 61400, "memory": 8704, "step": 61400} +{"lr": 0.00650059899328218, "data_time": 0.0071239471435546875, "loss": 0.40797366201877594, "decode.loss_ce": 0.24699303805828093, "decode.acc_seg": 95.51575469970703, "aux.loss_ce": 0.16098062917590142, "aux.acc_seg": 92.90142059326172, "time": 1.1110171556472779, "iter": 61450, "memory": 8704, "step": 61450} +{"lr": 0.0064976762711850015, "data_time": 0.006202006340026855, "loss": 0.37183207720518113, "decode.loss_ce": 0.2184613212943077, "decode.acc_seg": 83.33358764648438, "aux.loss_ce": 0.15337074883282184, "aux.acc_seg": 75.24585723876953, "time": 1.1142271280288696, "iter": 61500, "memory": 8704, "step": 61500} +{"lr": 0.006494753400722524, "data_time": 0.006020593643188477, "loss": 0.3320786863565445, "decode.loss_ce": 0.18641399517655372, "decode.acc_seg": 96.19829559326172, "aux.loss_ce": 0.1456646926701069, "aux.acc_seg": 88.73451232910156, "time": 1.1140024423599244, "iter": 61550, "memory": 8703, "step": 61550} +{"lr": 0.006491830381811859, "data_time": 0.006563520431518555, "loss": 0.4604318752884865, "decode.loss_ce": 0.2909245178103447, "decode.acc_seg": 86.97407531738281, "aux.loss_ce": 0.16950734853744506, "aux.acc_seg": 84.14154052734375, "time": 1.1145253896713256, "iter": 61600, "memory": 8703, "step": 61600} +{"lr": 0.006488907214370029, "data_time": 0.007805585861206055, "loss": 0.2815593212842941, "decode.loss_ce": 0.17792530432343484, "decode.acc_seg": 93.39847564697266, "aux.loss_ce": 0.10363401249051094, "aux.acc_seg": 91.6330337524414, "time": 1.1172369480133058, "iter": 61650, "memory": 8704, "step": 61650} +{"lr": 0.00648598389831397, "data_time": 0.009072589874267577, "loss": 0.4670491561293602, "decode.loss_ce": 0.29114173725247383, "decode.acc_seg": 96.22148895263672, "aux.loss_ce": 0.17590741030871868, "aux.acc_seg": 92.60792541503906, "time": 1.1184450149536134, "iter": 61700, "memory": 8704, "step": 61700} +{"lr": 0.006483060433560528, "data_time": 0.005866599082946777, "loss": 0.4019013553857803, "decode.loss_ce": 0.24533005580306053, "decode.acc_seg": 96.38919830322266, "aux.loss_ce": 0.15657130181789397, "aux.acc_seg": 95.86397552490234, "time": 1.1146764278411865, "iter": 61750, "memory": 8704, "step": 61750} +{"lr": 0.006480136820026455, "data_time": 0.005820918083190918, "loss": 0.4082018584012985, "decode.loss_ce": 0.2597812503576279, "decode.acc_seg": 83.5044174194336, "aux.loss_ce": 0.14842060022056103, "aux.acc_seg": 79.28104400634766, "time": 1.1145114660263062, "iter": 61800, "memory": 8704, "step": 61800} +{"lr": 0.00647721305762843, "data_time": 0.007166600227355957, "loss": 0.2650442585349083, "decode.loss_ce": 0.15144741907715797, "decode.acc_seg": 96.83380126953125, "aux.loss_ce": 0.11359683834016324, "aux.acc_seg": 96.05541229248047, "time": 1.117858624458313, "iter": 61850, "memory": 8704, "step": 61850} +{"lr": 0.006474289146283026, "data_time": 0.005986166000366211, "loss": 0.3753152906894684, "decode.loss_ce": 0.2400779567658901, "decode.acc_seg": 96.17552185058594, "aux.loss_ce": 0.1352373380213976, "aux.acc_seg": 95.16446685791016, "time": 1.1112011432647706, "iter": 61900, "memory": 8704, "step": 61900} +{"lr": 0.0064713650859067355, "data_time": 0.006420254707336426, "loss": 0.49230130314826964, "decode.loss_ce": 0.30423677042126657, "decode.acc_seg": 89.61473846435547, "aux.loss_ce": 0.18806452453136444, "aux.acc_seg": 89.95220947265625, "time": 1.1089299678802491, "iter": 61950, "memory": 8704, "step": 61950} +{"lr": 0.006468440876415964, "data_time": 0.006213712692260742, "loss": 0.37868126332759855, "decode.loss_ce": 0.21153176799416543, "decode.acc_seg": 87.05513763427734, "aux.loss_ce": 0.16714949011802674, "aux.acc_seg": 82.14905548095703, "time": 1.1134117603302003, "iter": 62000, "memory": 8703, "step": 62000} +{"lr": 0.006465516517727011, "data_time": 0.00933246612548828, "loss": 0.2935541599988937, "decode.loss_ce": 0.1766180105507374, "decode.acc_seg": 93.15948486328125, "aux.loss_ce": 0.11693615131080151, "aux.acc_seg": 81.34510803222656, "time": 1.1228015184402467, "iter": 62050, "memory": 8704, "step": 62050} +{"lr": 0.006462592009756107, "data_time": 0.005760025978088379, "loss": 0.2956762194633484, "decode.loss_ce": 0.17210377678275107, "decode.acc_seg": 96.87620544433594, "aux.loss_ce": 0.12357244230806827, "aux.acc_seg": 94.01753234863281, "time": 1.1110113382339477, "iter": 62100, "memory": 8704, "step": 62100} +{"lr": 0.006459667352419382, "data_time": 0.006910872459411621, "loss": 0.34888813346624375, "decode.loss_ce": 0.21211431324481964, "decode.acc_seg": 93.09736633300781, "aux.loss_ce": 0.1367738202214241, "aux.acc_seg": 92.12970733642578, "time": 1.1150655031204224, "iter": 62150, "memory": 8704, "step": 62150} +{"lr": 0.00645674254563288, "data_time": 0.006500816345214844, "loss": 0.6085944533348083, "decode.loss_ce": 0.3707243695855141, "decode.acc_seg": 89.8514404296875, "aux.loss_ce": 0.23787008076906205, "aux.acc_seg": 86.13630676269531, "time": 1.110892939567566, "iter": 62200, "memory": 8704, "step": 62200} +{"lr": 0.006453817589312548, "data_time": 0.007562398910522461, "loss": 0.3958993822336197, "decode.loss_ce": 0.23569662496447563, "decode.acc_seg": 91.05531311035156, "aux.loss_ce": 0.16020276136696338, "aux.acc_seg": 90.80062866210938, "time": 1.119233989715576, "iter": 62250, "memory": 8704, "step": 62250} +{"lr": 0.006450892483374251, "data_time": 0.007005906105041504, "loss": 0.37515526413917544, "decode.loss_ce": 0.24561258405447006, "decode.acc_seg": 91.04397583007812, "aux.loss_ce": 0.12954268008470535, "aux.acc_seg": 89.48326110839844, "time": 1.1204247713088988, "iter": 62300, "memory": 8703, "step": 62300} +{"lr": 0.006447967227733754, "data_time": 0.0076332569122314455, "loss": 0.4685581594705582, "decode.loss_ce": 0.2704819247126579, "decode.acc_seg": 84.3897476196289, "aux.loss_ce": 0.19807623662054538, "aux.acc_seg": 80.58477783203125, "time": 1.1165719985961915, "iter": 62350, "memory": 8704, "step": 62350} +{"lr": 0.006445041822306747, "data_time": 0.006279349327087402, "loss": 0.4835202291607857, "decode.loss_ce": 0.28240628689527514, "decode.acc_seg": 92.65594482421875, "aux.loss_ce": 0.20111393555998802, "aux.acc_seg": 84.53743743896484, "time": 1.1137804985046387, "iter": 62400, "memory": 8704, "step": 62400} +{"lr": 0.006442116267008809, "data_time": 0.007150530815124512, "loss": 0.41490537375211717, "decode.loss_ce": 0.24961448237299919, "decode.acc_seg": 92.23702239990234, "aux.loss_ce": 0.16529089137911795, "aux.acc_seg": 82.55290985107422, "time": 1.1149651288986206, "iter": 62450, "memory": 8704, "step": 62450} +{"lr": 0.006439190561755438, "data_time": 0.0075080633163452145, "loss": 0.4570081025362015, "decode.loss_ce": 0.28332925885915755, "decode.acc_seg": 84.94529724121094, "aux.loss_ce": 0.17367883995175362, "aux.acc_seg": 77.79293060302734, "time": 1.114592432975769, "iter": 62500, "memory": 8703, "step": 62500} +{"lr": 0.006436264706462049, "data_time": 0.007181787490844726, "loss": 0.5996803164482116, "decode.loss_ce": 0.40552822798490523, "decode.acc_seg": 89.22595977783203, "aux.loss_ce": 0.19415208846330642, "aux.acc_seg": 85.88841247558594, "time": 1.121671438217163, "iter": 62550, "memory": 8704, "step": 62550} +{"lr": 0.006433338701043958, "data_time": 0.007417416572570801, "loss": 0.33499047458171843, "decode.loss_ce": 0.20733732208609582, "decode.acc_seg": 96.05938720703125, "aux.loss_ce": 0.12765314280986786, "aux.acc_seg": 94.11273193359375, "time": 1.1216610193252563, "iter": 62600, "memory": 8704, "step": 62600} +{"lr": 0.006430412545416384, "data_time": 0.005549836158752442, "loss": 0.3259569764137268, "decode.loss_ce": 0.19417394399642945, "decode.acc_seg": 88.68770599365234, "aux.loss_ce": 0.13178303316235543, "aux.acc_seg": 79.83143615722656, "time": 1.115502619743347, "iter": 62650, "memory": 8704, "step": 62650} +{"lr": 0.0064274862394944655, "data_time": 0.006924819946289062, "loss": 0.48914001882076263, "decode.loss_ce": 0.29586374163627627, "decode.acc_seg": 86.37224578857422, "aux.loss_ce": 0.193276284635067, "aux.acc_seg": 77.6530532836914, "time": 1.1158993244171143, "iter": 62700, "memory": 8703, "step": 62700} +{"lr": 0.006424559783193246, "data_time": 0.0058315515518188475, "loss": 0.39061954617500305, "decode.loss_ce": 0.22670867741107942, "decode.acc_seg": 91.22238159179688, "aux.loss_ce": 0.16391087621450423, "aux.acc_seg": 90.22254943847656, "time": 1.1111086368560792, "iter": 62750, "memory": 8703, "step": 62750} +{"lr": 0.006421633176427669, "data_time": 0.007335495948791504, "loss": 0.4943144619464874, "decode.loss_ce": 0.3071408897638321, "decode.acc_seg": 89.8682861328125, "aux.loss_ce": 0.1871735665947199, "aux.acc_seg": 81.987060546875, "time": 1.1169835567474364, "iter": 62800, "memory": 8703, "step": 62800} +{"lr": 0.0064187064191126, "data_time": 0.007324671745300293, "loss": 0.3348697438836098, "decode.loss_ce": 0.2158899076282978, "decode.acc_seg": 88.82363891601562, "aux.loss_ce": 0.11897983737289905, "aux.acc_seg": 84.28900909423828, "time": 1.1124072790145874, "iter": 62850, "memory": 8704, "step": 62850} +{"lr": 0.006415779511162805, "data_time": 0.006754112243652344, "loss": 0.3358397766947746, "decode.loss_ce": 0.2075410358607769, "decode.acc_seg": 93.80931854248047, "aux.loss_ce": 0.1282987367361784, "aux.acc_seg": 93.32357788085938, "time": 1.1120545625686646, "iter": 62900, "memory": 8703, "step": 62900} +{"lr": 0.006412852452492957, "data_time": 0.007326674461364746, "loss": 0.31606834232807157, "decode.loss_ce": 0.19977586045861245, "decode.acc_seg": 85.16031646728516, "aux.loss_ce": 0.11629248484969139, "aux.acc_seg": 83.21234130859375, "time": 1.1178308963775634, "iter": 62950, "memory": 8703, "step": 62950} +{"lr": 0.006409925243017636, "data_time": 0.006597781181335449, "loss": 0.29252711310982704, "decode.loss_ce": 0.1817880593240261, "decode.acc_seg": 92.77172088623047, "aux.loss_ce": 0.11073905676603317, "aux.acc_seg": 88.29975128173828, "time": 1.1146272897720337, "iter": 63000, "memory": 8704, "step": 63000} +{"lr": 0.006406997882651326, "data_time": 0.007494282722473144, "loss": 0.3617233604192734, "decode.loss_ce": 0.22458215355873107, "decode.acc_seg": 90.00524139404297, "aux.loss_ce": 0.13714120611548425, "aux.acc_seg": 86.38056182861328, "time": 1.1147794008255005, "iter": 63050, "memory": 8703, "step": 63050} +{"lr": 0.006404070371308436, "data_time": 0.005601572990417481, "loss": 0.4806241273880005, "decode.loss_ce": 0.30424564629793166, "decode.acc_seg": 95.17853546142578, "aux.loss_ce": 0.17637848779559134, "aux.acc_seg": 88.29981231689453, "time": 1.115157675743103, "iter": 63100, "memory": 8704, "step": 63100} +{"lr": 0.006401142708903264, "data_time": 0.00720221996307373, "loss": 0.29793755859136584, "decode.loss_ce": 0.1798058643937111, "decode.acc_seg": 93.10086059570312, "aux.loss_ce": 0.11813169494271278, "aux.acc_seg": 80.05892181396484, "time": 1.1238939762115479, "iter": 63150, "memory": 8703, "step": 63150} +{"lr": 0.006398214895350022, "data_time": 0.006661796569824218, "loss": 0.3744907185435295, "decode.loss_ce": 0.2210771095007658, "decode.acc_seg": 93.94459533691406, "aux.loss_ce": 0.1534136038273573, "aux.acc_seg": 82.051025390625, "time": 1.1163135051727295, "iter": 63200, "memory": 8704, "step": 63200} +{"lr": 0.006395286930562829, "data_time": 0.007052397727966309, "loss": 0.44703049659729005, "decode.loss_ce": 0.28944984897971154, "decode.acc_seg": 91.60041809082031, "aux.loss_ce": 0.1575806610286236, "aux.acc_seg": 89.97236633300781, "time": 1.1163724660873413, "iter": 63250, "memory": 8703, "step": 63250} +{"lr": 0.006392358814455706, "data_time": 0.008313703536987304, "loss": 0.42154214531183243, "decode.loss_ce": 0.2459815412759781, "decode.acc_seg": 93.88910675048828, "aux.loss_ce": 0.175560599565506, "aux.acc_seg": 91.1124496459961, "time": 1.1171602487564087, "iter": 63300, "memory": 8703, "step": 63300} +{"lr": 0.006389430546942591, "data_time": 0.006396174430847168, "loss": 0.45530818700790404, "decode.loss_ce": 0.27488023415207863, "decode.acc_seg": 95.61748504638672, "aux.loss_ce": 0.18042795583605767, "aux.acc_seg": 90.0061264038086, "time": 1.1162715673446655, "iter": 63350, "memory": 8705, "step": 63350} +{"lr": 0.00638650212793732, "data_time": 0.006394600868225098, "loss": 0.46552451848983767, "decode.loss_ce": 0.27700449526309967, "decode.acc_seg": 92.69377136230469, "aux.loss_ce": 0.18852002546191216, "aux.acc_seg": 91.89358520507812, "time": 1.1154264211654663, "iter": 63400, "memory": 8704, "step": 63400} +{"lr": 0.006383573557353635, "data_time": 0.0064013004302978516, "loss": 0.4175383597612381, "decode.loss_ce": 0.25133970007300377, "decode.acc_seg": 97.57272338867188, "aux.loss_ce": 0.16619865000247955, "aux.acc_seg": 96.33556365966797, "time": 1.1132413387298583, "iter": 63450, "memory": 8704, "step": 63450} +{"lr": 0.006380644835105183, "data_time": 0.007147574424743652, "loss": 0.3825809173285961, "decode.loss_ce": 0.2455139145255089, "decode.acc_seg": 98.27149200439453, "aux.loss_ce": 0.13706700671464206, "aux.acc_seg": 98.06448364257812, "time": 1.1185802459716796, "iter": 63500, "memory": 8703, "step": 63500} +{"lr": 0.006377715961105529, "data_time": 0.005255341529846191, "loss": 0.40172941982746124, "decode.loss_ce": 0.23710717558860778, "decode.acc_seg": 94.81048583984375, "aux.loss_ce": 0.1646222472190857, "aux.acc_seg": 91.5580062866211, "time": 1.1142831325531006, "iter": 63550, "memory": 8704, "step": 63550} +{"lr": 0.006374786935268134, "data_time": 0.00742337703704834, "loss": 0.4727055221796036, "decode.loss_ce": 0.29930220246315004, "decode.acc_seg": 96.39752197265625, "aux.loss_ce": 0.17340331822633742, "aux.acc_seg": 90.28936767578125, "time": 1.115838384628296, "iter": 63600, "memory": 8704, "step": 63600} +{"lr": 0.006371857757506368, "data_time": 0.007639074325561523, "loss": 0.38724336922168734, "decode.loss_ce": 0.2438657283782959, "decode.acc_seg": 92.985595703125, "aux.loss_ce": 0.1433776393532753, "aux.acc_seg": 92.70470428466797, "time": 1.1171634674072266, "iter": 63650, "memory": 8703, "step": 63650} +{"lr": 0.006368928427733498, "data_time": 0.0054875373840332035, "loss": 0.43984389007091523, "decode.loss_ce": 0.2587836876511574, "decode.acc_seg": 96.85694885253906, "aux.loss_ce": 0.1810602031648159, "aux.acc_seg": 92.10772705078125, "time": 1.117551851272583, "iter": 63700, "memory": 8703, "step": 63700} +{"lr": 0.00636599894586271, "data_time": 0.005252742767333984, "loss": 0.5160393714904785, "decode.loss_ce": 0.2996366247534752, "decode.acc_seg": 93.6112060546875, "aux.loss_ce": 0.2164027474820614, "aux.acc_seg": 88.16820526123047, "time": 1.1112558603286744, "iter": 63750, "memory": 8704, "step": 63750} +{"lr": 0.006363069311807078, "data_time": 0.007021164894104004, "loss": 0.5735264778137207, "decode.loss_ce": 0.3545555457472801, "decode.acc_seg": 90.32411193847656, "aux.loss_ce": 0.21897092908620835, "aux.acc_seg": 79.4446792602539, "time": 1.1171953201293945, "iter": 63800, "memory": 8703, "step": 63800} +{"lr": 0.006360139525479605, "data_time": 0.006379151344299316, "loss": 0.2922674879431725, "decode.loss_ce": 0.18196039274334908, "decode.acc_seg": 88.62100219726562, "aux.loss_ce": 0.11030709519982337, "aux.acc_seg": 86.65055847167969, "time": 1.1134727001190186, "iter": 63850, "memory": 8703, "step": 63850} +{"lr": 0.006357209586793183, "data_time": 0.007549309730529785, "loss": 0.43776859194040296, "decode.loss_ce": 0.28334152400493623, "decode.acc_seg": 96.72470092773438, "aux.loss_ce": 0.15442707017064095, "aux.acc_seg": 93.00994873046875, "time": 1.1156550645828247, "iter": 63900, "memory": 8703, "step": 63900} +{"lr": 0.006354279495660607, "data_time": 0.005427932739257813, "loss": 0.39710891991853714, "decode.loss_ce": 0.2307419955730438, "decode.acc_seg": 91.85352325439453, "aux.loss_ce": 0.16636692658066748, "aux.acc_seg": 88.63932037353516, "time": 1.116053009033203, "iter": 63950, "memory": 8703, "step": 63950} +{"lr": 0.006351349251994578, "data_time": 0.007251453399658203, "loss": 0.4662444844841957, "decode.loss_ce": 0.28696931302547457, "decode.acc_seg": 87.12005615234375, "aux.loss_ce": 0.17927517145872116, "aux.acc_seg": 79.61266326904297, "time": 1.1162461519241333, "iter": 64000, "memory": 8703, "step": 64000} +{"aAcc": 93.15, "mIoU": 63.83, "mAcc": 72.58, "data_time": 0.003926773363359759, "time": 0.2708095580379115, "step": 64000} +{"lr": 0.006348418855707714, "data_time": 0.007770228385925293, "loss": 0.3529867321252823, "decode.loss_ce": 0.22092354744672776, "decode.acc_seg": 95.07255554199219, "aux.loss_ce": 0.1320631816983223, "aux.acc_seg": 93.95916748046875, "time": 1.1133630990982055, "iter": 64050, "memory": 8703, "step": 64050} +{"lr": 0.006345488306712526, "data_time": 0.005551910400390625, "loss": 0.41967101842164994, "decode.loss_ce": 0.2548895858228207, "decode.acc_seg": 96.6560287475586, "aux.loss_ce": 0.16478143408894538, "aux.acc_seg": 95.83120727539062, "time": 1.109876036643982, "iter": 64100, "memory": 8704, "step": 64100} +{"lr": 0.006342557604921425, "data_time": 0.006598925590515137, "loss": 0.2928970456123352, "decode.loss_ce": 0.16056110188364983, "decode.acc_seg": 97.55401611328125, "aux.loss_ce": 0.13233594596385956, "aux.acc_seg": 94.68319702148438, "time": 1.1107197761535645, "iter": 64150, "memory": 8703, "step": 64150} +{"lr": 0.00633962675024674, "data_time": 0.005688142776489258, "loss": 0.39445092529058456, "decode.loss_ce": 0.23825787752866745, "decode.acc_seg": 93.03639221191406, "aux.loss_ce": 0.1561930447816849, "aux.acc_seg": 88.80297088623047, "time": 1.1108470201492309, "iter": 64200, "memory": 8704, "step": 64200} +{"lr": 0.006336695742600687, "data_time": 0.007866549491882324, "loss": 0.34659978598356245, "decode.loss_ce": 0.2124428890645504, "decode.acc_seg": 87.46826934814453, "aux.loss_ce": 0.13415690138936043, "aux.acc_seg": 85.23578643798828, "time": 1.1134685277938843, "iter": 64250, "memory": 8703, "step": 64250} +{"lr": 0.006333764581895407, "data_time": 0.007625412940979004, "loss": 0.36656322330236435, "decode.loss_ce": 0.2228493273258209, "decode.acc_seg": 88.91251373291016, "aux.loss_ce": 0.1437138918787241, "aux.acc_seg": 79.81834411621094, "time": 1.1134971380233765, "iter": 64300, "memory": 8704, "step": 64300} +{"lr": 0.00633083326804292, "data_time": 0.0072541475296020504, "loss": 0.4740771159529686, "decode.loss_ce": 0.2933223582804203, "decode.acc_seg": 88.26007843017578, "aux.loss_ce": 0.18075475730001928, "aux.acc_seg": 80.44935607910156, "time": 1.1151527404785155, "iter": 64350, "memory": 8703, "step": 64350} +{"lr": 0.00632790180095517, "data_time": 0.008400654792785645, "loss": 0.33981841802597046, "decode.loss_ce": 0.21604504063725471, "decode.acc_seg": 90.07563781738281, "aux.loss_ce": 0.12377337515354156, "aux.acc_seg": 79.97386169433594, "time": 1.1224869966506958, "iter": 64400, "memory": 8703, "step": 64400} +{"lr": 0.006324970180543996, "data_time": 0.006338334083557129, "loss": 0.37961612790822985, "decode.loss_ce": 0.22880212515592574, "decode.acc_seg": 96.391357421875, "aux.loss_ce": 0.15081399716436864, "aux.acc_seg": 95.48390197753906, "time": 1.1166567087173462, "iter": 64450, "memory": 8703, "step": 64450} +{"lr": 0.00632203840672114, "data_time": 0.006995153427124023, "loss": 0.6083626911044121, "decode.loss_ce": 0.3667237512767315, "decode.acc_seg": 83.33116912841797, "aux.loss_ce": 0.2416389413177967, "aux.acc_seg": 76.54196166992188, "time": 1.1164867639541627, "iter": 64500, "memory": 8704, "step": 64500} +{"lr": 0.0063191064793982465, "data_time": 0.007183837890625, "loss": 0.5143185958266259, "decode.loss_ce": 0.32026777490973474, "decode.acc_seg": 95.08272552490234, "aux.loss_ce": 0.1940508209168911, "aux.acc_seg": 94.58096313476562, "time": 1.1192674398422242, "iter": 64550, "memory": 8703, "step": 64550} +{"lr": 0.006316174398486867, "data_time": 0.006427145004272461, "loss": 0.4746183976531029, "decode.loss_ce": 0.2898738943040371, "decode.acc_seg": 83.45419311523438, "aux.loss_ce": 0.18474450670182704, "aux.acc_seg": 66.2195053100586, "time": 1.1168600797653199, "iter": 64600, "memory": 8703, "step": 64600} +{"lr": 0.0063132421638984445, "data_time": 0.005855727195739746, "loss": 0.5935914248228074, "decode.loss_ce": 0.3944834411144257, "decode.acc_seg": 77.40599060058594, "aux.loss_ce": 0.19910797849297523, "aux.acc_seg": 78.36888122558594, "time": 1.1107630968093871, "iter": 64650, "memory": 8704, "step": 64650} +{"lr": 0.006310309775544339, "data_time": 0.006293010711669922, "loss": 0.4652654454112053, "decode.loss_ce": 0.29127376191318033, "decode.acc_seg": 87.28904724121094, "aux.loss_ce": 0.17399168238043786, "aux.acc_seg": 83.10050964355469, "time": 1.1154978275299072, "iter": 64700, "memory": 8704, "step": 64700} +{"lr": 0.006307377233335805, "data_time": 0.005559372901916504, "loss": 0.45149656385183334, "decode.loss_ce": 0.28157750964164735, "decode.acc_seg": 93.16558837890625, "aux.loss_ce": 0.16991905197501184, "aux.acc_seg": 92.12398529052734, "time": 1.1109041929244996, "iter": 64750, "memory": 8704, "step": 64750} +{"lr": 0.006304444537184002, "data_time": 0.006985688209533691, "loss": 0.43608119934797285, "decode.loss_ce": 0.2694229319691658, "decode.acc_seg": 93.48137664794922, "aux.loss_ce": 0.166658266633749, "aux.acc_seg": 91.46683502197266, "time": 1.1101515293121338, "iter": 64800, "memory": 8704, "step": 64800} +{"lr": 0.0063015116869999865, "data_time": 0.006710219383239746, "loss": 0.6445443749427795, "decode.loss_ce": 0.416382896900177, "decode.acc_seg": 92.18965911865234, "aux.loss_ce": 0.22816147655248642, "aux.acc_seg": 80.780029296875, "time": 1.1103302717208863, "iter": 64850, "memory": 8705, "step": 64850} +{"lr": 0.00629857868269472, "data_time": 0.007780766487121582, "loss": 0.5327273175120354, "decode.loss_ce": 0.32755355834960936, "decode.acc_seg": 94.1192626953125, "aux.loss_ce": 0.205173759162426, "aux.acc_seg": 91.92352294921875, "time": 1.1126885652542113, "iter": 64900, "memory": 8704, "step": 64900} +{"lr": 0.006295645524179069, "data_time": 0.0075114727020263675, "loss": 0.33483226001262667, "decode.loss_ce": 0.20972374603152275, "decode.acc_seg": 90.77981567382812, "aux.loss_ce": 0.12510851509869098, "aux.acc_seg": 87.13275146484375, "time": 1.1204633474349976, "iter": 64950, "memory": 8704, "step": 64950} +{"lr": 0.006292712211363794, "data_time": 0.007640933990478516, "loss": 0.4837836027145386, "decode.loss_ce": 0.303305572271347, "decode.acc_seg": 94.03887176513672, "aux.loss_ce": 0.18047803193330764, "aux.acc_seg": 91.58576965332031, "time": 1.1179755926132202, "iter": 65000, "memory": 8703, "step": 65000} +{"lr": 0.006289778744159563, "data_time": 0.008429598808288575, "loss": 0.42735491544008253, "decode.loss_ce": 0.2522895708680153, "decode.acc_seg": 84.93480682373047, "aux.loss_ce": 0.17506534606218338, "aux.acc_seg": 74.22383117675781, "time": 1.1211854696273804, "iter": 65050, "memory": 8704, "step": 65050} +{"lr": 0.006286845122476948, "data_time": 0.008044004440307617, "loss": 0.41015055030584335, "decode.loss_ce": 0.24532054960727692, "decode.acc_seg": 97.293212890625, "aux.loss_ce": 0.16482999697327613, "aux.acc_seg": 92.02957153320312, "time": 1.1197565793991089, "iter": 65100, "memory": 8704, "step": 65100} +{"lr": 0.006283911346226413, "data_time": 0.007273387908935547, "loss": 0.37958272248506547, "decode.loss_ce": 0.24990665018558503, "decode.acc_seg": 93.38550567626953, "aux.loss_ce": 0.12967606782913207, "aux.acc_seg": 91.72331237792969, "time": 1.1155452251434326, "iter": 65150, "memory": 8704, "step": 65150} +{"lr": 0.006280977415318324, "data_time": 0.009180831909179687, "loss": 0.34792899191379545, "decode.loss_ce": 0.1954278714954853, "decode.acc_seg": 96.13233947753906, "aux.loss_ce": 0.152501118183136, "aux.acc_seg": 87.23404693603516, "time": 1.1195010900497437, "iter": 65200, "memory": 8703, "step": 65200} +{"lr": 0.0062780433296629546, "data_time": 0.006552934646606445, "loss": 0.4157870575785637, "decode.loss_ce": 0.2670438900589943, "decode.acc_seg": 95.24879455566406, "aux.loss_ce": 0.1487431652843952, "aux.acc_seg": 94.21653747558594, "time": 1.1140336036682128, "iter": 65250, "memory": 8703, "step": 65250} +{"lr": 0.006275109089170474, "data_time": 0.006981778144836426, "loss": 0.5441681832075119, "decode.loss_ce": 0.3491027921438217, "decode.acc_seg": 93.46586608886719, "aux.loss_ce": 0.19506538137793542, "aux.acc_seg": 90.78260803222656, "time": 1.1153895854949951, "iter": 65300, "memory": 8704, "step": 65300} +{"lr": 0.006272174693750958, "data_time": 0.006409788131713867, "loss": 0.43091893196105957, "decode.loss_ce": 0.2579468905925751, "decode.acc_seg": 84.60426330566406, "aux.loss_ce": 0.17297204211354256, "aux.acc_seg": 79.15299224853516, "time": 1.116538119316101, "iter": 65350, "memory": 8704, "step": 65350} +{"lr": 0.006269240143314377, "data_time": 0.008074140548706055, "loss": 0.33569621592760085, "decode.loss_ce": 0.20171183794736863, "decode.acc_seg": 91.57173919677734, "aux.loss_ce": 0.13398437723517417, "aux.acc_seg": 90.04898071289062, "time": 1.1165246963500977, "iter": 65400, "memory": 8703, "step": 65400} +{"lr": 0.006266305437770601, "data_time": 0.0074601411819458004, "loss": 0.41741537153720853, "decode.loss_ce": 0.25933116003870965, "decode.acc_seg": 95.73223876953125, "aux.loss_ce": 0.15808420889079572, "aux.acc_seg": 95.09506225585938, "time": 1.1162063598632812, "iter": 65450, "memory": 8704, "step": 65450} +{"lr": 0.006263370577029398, "data_time": 0.006644892692565918, "loss": 0.4122860923409462, "decode.loss_ce": 0.24080977439880372, "decode.acc_seg": 91.38157653808594, "aux.loss_ce": 0.17147631123661994, "aux.acc_seg": 83.68326568603516, "time": 1.1140347003936768, "iter": 65500, "memory": 8704, "step": 65500} +{"lr": 0.006260435561000444, "data_time": 0.004981899261474609, "loss": 0.41308562457561493, "decode.loss_ce": 0.2352706551551819, "decode.acc_seg": 81.97828674316406, "aux.loss_ce": 0.17781496196985244, "aux.acc_seg": 68.37914276123047, "time": 1.109574055671692, "iter": 65550, "memory": 8704, "step": 65550} +{"lr": 0.006257500389593302, "data_time": 0.006712007522583008, "loss": 0.6486554279923439, "decode.loss_ce": 0.4076803602278233, "decode.acc_seg": 88.56575775146484, "aux.loss_ce": 0.2409750811755657, "aux.acc_seg": 88.21194458007812, "time": 1.1103865385055542, "iter": 65600, "memory": 8703, "step": 65600} +{"lr": 0.006254565062717454, "data_time": 0.00957643985748291, "loss": 0.33516835868358613, "decode.loss_ce": 0.20039138570427895, "decode.acc_seg": 93.69843292236328, "aux.loss_ce": 0.13477697521448134, "aux.acc_seg": 92.39832305908203, "time": 1.121397352218628, "iter": 65650, "memory": 8703, "step": 65650} +{"lr": 0.006251629580282263, "data_time": 0.007497406005859375, "loss": 0.331832692027092, "decode.loss_ce": 0.20442869514226913, "decode.acc_seg": 94.19498443603516, "aux.loss_ce": 0.12740399017930032, "aux.acc_seg": 91.56143951416016, "time": 1.12129487991333, "iter": 65700, "memory": 8704, "step": 65700} +{"lr": 0.006248693942196996, "data_time": 0.006731629371643066, "loss": 0.3915183380246162, "decode.loss_ce": 0.24508728086948395, "decode.acc_seg": 95.3115463256836, "aux.loss_ce": 0.14643105566501619, "aux.acc_seg": 90.61088562011719, "time": 1.121366262435913, "iter": 65750, "memory": 8703, "step": 65750} +{"lr": 0.006245758148370828, "data_time": 0.006200122833251953, "loss": 0.4245800837874413, "decode.loss_ce": 0.26146689653396604, "decode.acc_seg": 87.9892349243164, "aux.loss_ce": 0.16311318725347518, "aux.acc_seg": 87.59790802001953, "time": 1.1108728647232056, "iter": 65800, "memory": 8704, "step": 65800} +{"lr": 0.006242822198712816, "data_time": 0.006158232688903809, "loss": 0.35130868554115297, "decode.loss_ce": 0.21061060428619385, "decode.acc_seg": 97.26873779296875, "aux.loss_ce": 0.1406980812549591, "aux.acc_seg": 94.28704071044922, "time": 1.1097148656845093, "iter": 65850, "memory": 8703, "step": 65850} +{"lr": 0.006239886093131927, "data_time": 0.007748532295227051, "loss": 0.3950420439243317, "decode.loss_ce": 0.24425226897001268, "decode.acc_seg": 84.75723266601562, "aux.loss_ce": 0.1507897734642029, "aux.acc_seg": 84.09137725830078, "time": 1.1151937007904054, "iter": 65900, "memory": 8703, "step": 65900} +{"lr": 0.006236949831537022, "data_time": 0.00872800350189209, "loss": 0.4726463407278061, "decode.loss_ce": 0.30350003838539125, "decode.acc_seg": 95.13111114501953, "aux.loss_ce": 0.16914629824459554, "aux.acc_seg": 85.60078430175781, "time": 1.1153446435928345, "iter": 65950, "memory": 8704, "step": 65950} +{"lr": 0.006234013413836869, "data_time": 0.006341481208801269, "loss": 0.5111641615629197, "decode.loss_ce": 0.2890945844352245, "decode.acc_seg": 95.07588958740234, "aux.loss_ce": 0.22206957191228865, "aux.acc_seg": 93.78852081298828, "time": 1.1139047145843506, "iter": 66000, "memory": 8704, "step": 66000} +{"lr": 0.006231076839940123, "data_time": 0.00680692195892334, "loss": 0.4389356017112732, "decode.loss_ce": 0.2824706479907036, "decode.acc_seg": 91.15447998046875, "aux.loss_ce": 0.15646495297551155, "aux.acc_seg": 83.7484359741211, "time": 1.1178168296813964, "iter": 66050, "memory": 8704, "step": 66050} +{"lr": 0.00622814010975534, "data_time": 0.006426620483398438, "loss": 0.4205967873334885, "decode.loss_ce": 0.26515732184052465, "decode.acc_seg": 88.93006134033203, "aux.loss_ce": 0.15543946698307992, "aux.acc_seg": 87.87275695800781, "time": 1.1135795831680297, "iter": 66100, "memory": 8704, "step": 66100} +{"lr": 0.006225203223190975, "data_time": 0.007775235176086426, "loss": 0.39369902908802035, "decode.loss_ce": 0.24469103962182998, "decode.acc_seg": 86.28807067871094, "aux.loss_ce": 0.1490079902112484, "aux.acc_seg": 84.47430419921875, "time": 1.1202511548995973, "iter": 66150, "memory": 8704, "step": 66150} +{"lr": 0.006222266180155383, "data_time": 0.00729212760925293, "loss": 0.3455081894993782, "decode.loss_ce": 0.2100507266819477, "decode.acc_seg": 94.73673248291016, "aux.loss_ce": 0.1354574616998434, "aux.acc_seg": 92.75372314453125, "time": 1.1156019687652587, "iter": 66200, "memory": 8704, "step": 66200} +{"lr": 0.006219328980556816, "data_time": 0.007922792434692382, "loss": 0.41379824429750445, "decode.loss_ce": 0.23625779822468757, "decode.acc_seg": 89.43150329589844, "aux.loss_ce": 0.17754044458270074, "aux.acc_seg": 87.590087890625, "time": 1.1166479349136353, "iter": 66250, "memory": 8703, "step": 66250} +{"lr": 0.006216391624303416, "data_time": 0.006717538833618164, "loss": 0.45645775496959684, "decode.loss_ce": 0.2689228817820549, "decode.acc_seg": 92.34574127197266, "aux.loss_ce": 0.18753487318754197, "aux.acc_seg": 87.93354034423828, "time": 1.1163594484329225, "iter": 66300, "memory": 8704, "step": 66300} +{"lr": 0.00621345411130323, "data_time": 0.006300449371337891, "loss": 0.3968279376626015, "decode.loss_ce": 0.22493500858545304, "decode.acc_seg": 96.72335052490234, "aux.loss_ce": 0.17189292646944523, "aux.acc_seg": 90.70769500732422, "time": 1.114881443977356, "iter": 66350, "memory": 8703, "step": 66350} +{"lr": 0.006210516441464198, "data_time": 0.006318807601928711, "loss": 0.2980155684053898, "decode.loss_ce": 0.1914702408015728, "decode.acc_seg": 89.81266021728516, "aux.loss_ce": 0.10654532685875892, "aux.acc_seg": 88.26420593261719, "time": 1.113011121749878, "iter": 66400, "memory": 8704, "step": 66400} +{"lr": 0.00620757861469416, "data_time": 0.007936596870422363, "loss": 0.44279519021511077, "decode.loss_ce": 0.26396190375089645, "decode.acc_seg": 97.65078735351562, "aux.loss_ce": 0.17883328720927238, "aux.acc_seg": 93.15853881835938, "time": 1.1143277645111085, "iter": 66450, "memory": 8703, "step": 66450} +{"lr": 0.00620464063090085, "data_time": 0.00554347038269043, "loss": 0.3421955704689026, "decode.loss_ce": 0.19041010960936547, "decode.acc_seg": 95.66474151611328, "aux.loss_ce": 0.15178545489907264, "aux.acc_seg": 95.54994201660156, "time": 1.1142266511917114, "iter": 66500, "memory": 8704, "step": 66500} +{"lr": 0.006201702489991898, "data_time": 0.007842922210693359, "loss": 0.4992337942123413, "decode.loss_ce": 0.2864754393696785, "decode.acc_seg": 90.57693481445312, "aux.loss_ce": 0.2127583622932434, "aux.acc_seg": 82.05667877197266, "time": 1.116851234436035, "iter": 66550, "memory": 8704, "step": 66550} +{"lr": 0.006198764191874826, "data_time": 0.006846094131469726, "loss": 0.5247306406497956, "decode.loss_ce": 0.31228598952293396, "decode.acc_seg": 94.11302947998047, "aux.loss_ce": 0.21244464665651322, "aux.acc_seg": 92.18311309814453, "time": 1.1158257961273192, "iter": 66600, "memory": 8703, "step": 66600} +{"lr": 0.0061958257364570675, "data_time": 0.006037616729736328, "loss": 0.39199747890233994, "decode.loss_ce": 0.2480894923210144, "decode.acc_seg": 79.20067596435547, "aux.loss_ce": 0.14390798658132553, "aux.acc_seg": 80.76216125488281, "time": 1.1103643417358398, "iter": 66650, "memory": 8704, "step": 66650} +{"lr": 0.006192887123645937, "data_time": 0.005991435050964356, "loss": 0.4749165654182434, "decode.loss_ce": 0.26115363612771036, "decode.acc_seg": 90.96927642822266, "aux.loss_ce": 0.21376293450593947, "aux.acc_seg": 87.94174194335938, "time": 1.1135104417800903, "iter": 66700, "memory": 8704, "step": 66700} +{"lr": 0.0061899483533486505, "data_time": 0.006897377967834473, "loss": 0.4349316582083702, "decode.loss_ce": 0.26427107974886893, "decode.acc_seg": 95.05379486083984, "aux.loss_ce": 0.17066057510674, "aux.acc_seg": 94.18766784667969, "time": 1.1184867858886718, "iter": 66750, "memory": 8704, "step": 66750} +{"lr": 0.0061870094254723165, "data_time": 0.006683039665222168, "loss": 0.4766890361905098, "decode.loss_ce": 0.2996123306453228, "decode.acc_seg": 88.32740783691406, "aux.loss_ce": 0.17707670778036116, "aux.acc_seg": 87.13550567626953, "time": 1.1162360191345215, "iter": 66800, "memory": 8703, "step": 66800} +{"lr": 0.006184070339923934, "data_time": 0.0075290918350219725, "loss": 0.40689886212348936, "decode.loss_ce": 0.25761910900473595, "decode.acc_seg": 93.73218536376953, "aux.loss_ce": 0.1492797490209341, "aux.acc_seg": 91.9946517944336, "time": 1.1153383255004883, "iter": 66850, "memory": 8704, "step": 66850} +{"lr": 0.00618113109661042, "data_time": 0.006864142417907715, "loss": 0.31915874034166336, "decode.loss_ce": 0.19821211695671082, "decode.acc_seg": 89.32766723632812, "aux.loss_ce": 0.12094661593437195, "aux.acc_seg": 86.11788177490234, "time": 1.1145479440689088, "iter": 66900, "memory": 8704, "step": 66900} +{"lr": 0.0061781916954385535, "data_time": 0.005878615379333496, "loss": 0.32283753901720047, "decode.loss_ce": 0.18706043511629106, "decode.acc_seg": 91.87067413330078, "aux.loss_ce": 0.1357771076261997, "aux.acc_seg": 82.43733215332031, "time": 1.1116368770599365, "iter": 66950, "memory": 8703, "step": 66950} +{"lr": 0.006175252136315036, "data_time": 0.006481313705444336, "loss": 0.3503522425889969, "decode.loss_ce": 0.20143647640943527, "decode.acc_seg": 87.04515838623047, "aux.loss_ce": 0.14891576170921325, "aux.acc_seg": 79.59060668945312, "time": 1.1133597373962403, "iter": 67000, "memory": 8703, "step": 67000} +{"lr": 0.006172312419146449, "data_time": 0.008449602127075195, "loss": 0.4037524625658989, "decode.loss_ce": 0.24878355413675307, "decode.acc_seg": 94.65166473388672, "aux.loss_ce": 0.15496890842914582, "aux.acc_seg": 95.93479919433594, "time": 1.1199108600616454, "iter": 67050, "memory": 8703, "step": 67050} +{"lr": 0.006169372543839273, "data_time": 0.005468177795410156, "loss": 0.3542300745844841, "decode.loss_ce": 0.21345950961112975, "decode.acc_seg": 92.51759338378906, "aux.loss_ce": 0.14077056311070918, "aux.acc_seg": 81.12773895263672, "time": 1.1087658405303955, "iter": 67100, "memory": 8703, "step": 67100} +{"lr": 0.006166432510299877, "data_time": 0.007809114456176758, "loss": 0.5715409964323044, "decode.loss_ce": 0.35979683697223663, "decode.acc_seg": 92.29271697998047, "aux.loss_ce": 0.21174414940178393, "aux.acc_seg": 85.13399505615234, "time": 1.1187603712081908, "iter": 67150, "memory": 8704, "step": 67150} +{"lr": 0.0061634923184345335, "data_time": 0.006121492385864258, "loss": 0.33508344888687136, "decode.loss_ce": 0.21243049800395966, "decode.acc_seg": 97.6044921875, "aux.loss_ce": 0.12265295535326004, "aux.acc_seg": 94.37357330322266, "time": 1.1131664752960204, "iter": 67200, "memory": 8703, "step": 67200} +{"lr": 0.006160551968149403, "data_time": 0.007889389991760254, "loss": 0.44717355668544767, "decode.loss_ce": 0.2725923880934715, "decode.acc_seg": 95.7591323852539, "aux.loss_ce": 0.1745811678469181, "aux.acc_seg": 94.7866439819336, "time": 1.1199045419692992, "iter": 67250, "memory": 8704, "step": 67250} +{"lr": 0.006157611459350547, "data_time": 0.005849599838256836, "loss": 0.4496027670800686, "decode.loss_ce": 0.27149627953767774, "decode.acc_seg": 96.27144622802734, "aux.loss_ce": 0.1781064871698618, "aux.acc_seg": 95.73719787597656, "time": 1.117990207672119, "iter": 67300, "memory": 8703, "step": 67300} +{"lr": 0.006154670791943907, "data_time": 0.007339859008789062, "loss": 0.35814379453659057, "decode.loss_ce": 0.2055123746395111, "decode.acc_seg": 88.0484848022461, "aux.loss_ce": 0.15263142436742783, "aux.acc_seg": 84.17339324951172, "time": 1.1196023941040039, "iter": 67350, "memory": 8704, "step": 67350} +{"lr": 0.0061517299658353335, "data_time": 0.007877588272094727, "loss": 0.42087039053440095, "decode.loss_ce": 0.2678185850381851, "decode.acc_seg": 91.44424438476562, "aux.loss_ce": 0.15305180251598358, "aux.acc_seg": 88.4137954711914, "time": 1.1166948318481444, "iter": 67400, "memory": 8703, "step": 67400} +{"lr": 0.006148788980930552, "data_time": 0.007317876815795899, "loss": 0.367284306883812, "decode.loss_ce": 0.23464876562356948, "decode.acc_seg": 94.52069091796875, "aux.loss_ce": 0.13263553641736509, "aux.acc_seg": 92.96308898925781, "time": 1.11493878364563, "iter": 67450, "memory": 8705, "step": 67450} +{"lr": 0.0061458478371352035, "data_time": 0.005950045585632324, "loss": 0.3672099277377129, "decode.loss_ce": 0.23749786913394927, "decode.acc_seg": 90.60490417480469, "aux.loss_ce": 0.12971205152571202, "aux.acc_seg": 86.77278900146484, "time": 1.1165820360183716, "iter": 67500, "memory": 8703, "step": 67500} +{"lr": 0.006142906534354804, "data_time": 0.00615692138671875, "loss": 0.6942714035511017, "decode.loss_ce": 0.4786657005548477, "decode.acc_seg": 79.35053253173828, "aux.loss_ce": 0.2156057022511959, "aux.acc_seg": 67.17745208740234, "time": 1.1127326726913451, "iter": 67550, "memory": 8703, "step": 67550} +{"lr": 0.006139965072494762, "data_time": 0.006887626647949219, "loss": 0.4319799244403839, "decode.loss_ce": 0.25496070012450217, "decode.acc_seg": 92.99689483642578, "aux.loss_ce": 0.1770192164927721, "aux.acc_seg": 91.78622436523438, "time": 1.1173658847808838, "iter": 67600, "memory": 8703, "step": 67600} +{"lr": 0.006137023451460396, "data_time": 0.005363917350769043, "loss": 0.4549966290593147, "decode.loss_ce": 0.28168047666549684, "decode.acc_seg": 87.99190521240234, "aux.loss_ce": 0.17331614568829537, "aux.acc_seg": 85.2824478149414, "time": 1.107131290435791, "iter": 67650, "memory": 8703, "step": 67650} +{"lr": 0.006134081671156901, "data_time": 0.007905149459838867, "loss": 0.41436286419630053, "decode.loss_ce": 0.2544875264167786, "decode.acc_seg": 84.2744140625, "aux.loss_ce": 0.1598753347992897, "aux.acc_seg": 81.91261291503906, "time": 1.1156789064407349, "iter": 67700, "memory": 8704, "step": 67700} +{"lr": 0.006131139731489373, "data_time": 0.006597113609313965, "loss": 0.31263255178928373, "decode.loss_ce": 0.18991715162992479, "decode.acc_seg": 87.73186492919922, "aux.loss_ce": 0.12271540015935897, "aux.acc_seg": 79.81846618652344, "time": 1.1128721237182617, "iter": 67750, "memory": 8703, "step": 67750} +{"lr": 0.006128197632362783, "data_time": 0.007750964164733887, "loss": 0.3873937875032425, "decode.loss_ce": 0.2376166269183159, "decode.acc_seg": 94.91820526123047, "aux.loss_ce": 0.14977715648710727, "aux.acc_seg": 91.87625122070312, "time": 1.112082028388977, "iter": 67800, "memory": 8704, "step": 67800} +{"lr": 0.006125255373682021, "data_time": 0.005673265457153321, "loss": 0.44262622743844987, "decode.loss_ce": 0.2651072800159454, "decode.acc_seg": 93.68145751953125, "aux.loss_ce": 0.1775189507752657, "aux.acc_seg": 93.0400161743164, "time": 1.1160979986190795, "iter": 67850, "memory": 8704, "step": 67850} +{"lr": 0.006122312955351846, "data_time": 0.007179808616638183, "loss": 0.33304076343774797, "decode.loss_ce": 0.20521748065948486, "decode.acc_seg": 97.17190551757812, "aux.loss_ce": 0.12782328352332115, "aux.acc_seg": 96.54261016845703, "time": 1.1199903726577758, "iter": 67900, "memory": 8703, "step": 67900} +{"lr": 0.006119370377276918, "data_time": 0.007680416107177734, "loss": 0.5231152355670929, "decode.loss_ce": 0.32283365055918695, "decode.acc_seg": 84.65563201904297, "aux.loss_ce": 0.20028158351778985, "aux.acc_seg": 76.70001983642578, "time": 1.1203805208206177, "iter": 67950, "memory": 8704, "step": 67950} +{"lr": 0.006116427639361783, "data_time": 0.005474209785461426, "loss": 0.5369221523404122, "decode.loss_ce": 0.32624967992305753, "decode.acc_seg": 75.72415161132812, "aux.loss_ce": 0.21067246794700623, "aux.acc_seg": 71.21696472167969, "time": 1.1170075178146361, "iter": 68000, "memory": 8704, "step": 68000} +{"lr": 0.006113484741510885, "data_time": 0.0071211099624633786, "loss": 0.5166844457387925, "decode.loss_ce": 0.329284642636776, "decode.acc_seg": 86.43817901611328, "aux.loss_ce": 0.1873997963964939, "aux.acc_seg": 83.21234130859375, "time": 1.1205502986907958, "iter": 68050, "memory": 8703, "step": 68050} +{"lr": 0.006110541683628559, "data_time": 0.0056384563446044925, "loss": 0.4652697786688805, "decode.loss_ce": 0.28568794429302213, "decode.acc_seg": 86.67888641357422, "aux.loss_ce": 0.1795818317681551, "aux.acc_seg": 82.87251281738281, "time": 1.1197316884994506, "iter": 68100, "memory": 8704, "step": 68100} +{"lr": 0.006107598465619019, "data_time": 0.005574083328247071, "loss": 0.666086944937706, "decode.loss_ce": 0.4244280785322189, "decode.acc_seg": 80.23770141601562, "aux.loss_ce": 0.24165887758135796, "aux.acc_seg": 64.68766021728516, "time": 1.1122976541519165, "iter": 68150, "memory": 8704, "step": 68150} +{"lr": 0.006104655087386386, "data_time": 0.006716442108154297, "loss": 0.5413692772388459, "decode.loss_ce": 0.32811421155929565, "decode.acc_seg": 88.12599182128906, "aux.loss_ce": 0.21325506791472434, "aux.acc_seg": 76.87244415283203, "time": 1.1167447805404662, "iter": 68200, "memory": 8703, "step": 68200} +{"lr": 0.006101711548834664, "data_time": 0.007597708702087402, "loss": 0.33792958557605746, "decode.loss_ce": 0.20216967463493346, "decode.acc_seg": 95.9524154663086, "aux.loss_ce": 0.13575990870594978, "aux.acc_seg": 93.67955017089844, "time": 1.1145398616790771, "iter": 68250, "memory": 8704, "step": 68250} +{"lr": 0.006098767849867741, "data_time": 0.005876278877258301, "loss": 0.5094663098454475, "decode.loss_ce": 0.33493382558226586, "decode.acc_seg": 91.07744598388672, "aux.loss_ce": 0.1745324783027172, "aux.acc_seg": 88.53595733642578, "time": 1.1117369174957275, "iter": 68300, "memory": 8704, "step": 68300} +{"lr": 0.006095823990389405, "data_time": 0.007066798210144043, "loss": 0.43722893446683886, "decode.loss_ce": 0.2576404847204685, "decode.acc_seg": 89.32302856445312, "aux.loss_ce": 0.17958844676613808, "aux.acc_seg": 85.30500793457031, "time": 1.118268871307373, "iter": 68350, "memory": 8704, "step": 68350} +{"lr": 0.00609287997030332, "data_time": 0.007958984375, "loss": 0.3463898330926895, "decode.loss_ce": 0.21701048240065574, "decode.acc_seg": 96.18901824951172, "aux.loss_ce": 0.12937935292720795, "aux.acc_seg": 95.66336822509766, "time": 1.1151439189910888, "iter": 68400, "memory": 8704, "step": 68400} +{"lr": 0.006089935789513055, "data_time": 0.00739288330078125, "loss": 0.4315845623612404, "decode.loss_ce": 0.25976970940828326, "decode.acc_seg": 95.87166595458984, "aux.loss_ce": 0.17181484960019588, "aux.acc_seg": 94.12815856933594, "time": 1.1126438140869142, "iter": 68450, "memory": 8703, "step": 68450} +{"lr": 0.006086991447922061, "data_time": 0.008079838752746583, "loss": 0.4304395139217377, "decode.loss_ce": 0.26474843397736547, "decode.acc_seg": 90.25078582763672, "aux.loss_ce": 0.1656910754740238, "aux.acc_seg": 82.51406860351562, "time": 1.1171473026275636, "iter": 68500, "memory": 8703, "step": 68500} +{"lr": 0.0060840469454336785, "data_time": 0.006349635124206543, "loss": 0.33176742643117907, "decode.loss_ce": 0.20794284716248512, "decode.acc_seg": 94.20782470703125, "aux.loss_ce": 0.12382457591593266, "aux.acc_seg": 93.54851531982422, "time": 1.1179322242736816, "iter": 68550, "memory": 8703, "step": 68550} +{"lr": 0.006081102281951138, "data_time": 0.0058586359024047855, "loss": 0.3816750079393387, "decode.loss_ce": 0.2358872748911381, "decode.acc_seg": 93.87238311767578, "aux.loss_ce": 0.1457877352833748, "aux.acc_seg": 91.41063690185547, "time": 1.115973949432373, "iter": 68600, "memory": 8703, "step": 68600} +{"lr": 0.006078157457377562, "data_time": 0.006899213790893555, "loss": 0.5761456578969956, "decode.loss_ce": 0.3754339411854744, "decode.acc_seg": 91.82357788085938, "aux.loss_ce": 0.20071171075105668, "aux.acc_seg": 88.65553283691406, "time": 1.1165595054626465, "iter": 68650, "memory": 8704, "step": 68650} +{"lr": 0.006075212471615954, "data_time": 0.005961084365844726, "loss": 0.4775893360376358, "decode.loss_ce": 0.2643635794520378, "decode.acc_seg": 93.15178680419922, "aux.loss_ce": 0.213225756585598, "aux.acc_seg": 78.56426239013672, "time": 1.117060089111328, "iter": 68700, "memory": 8704, "step": 68700} +{"lr": 0.006072267324569211, "data_time": 0.005417418479919433, "loss": 0.6655374303460121, "decode.loss_ce": 0.3965192332863808, "decode.acc_seg": 91.18289947509766, "aux.loss_ce": 0.26901820227503775, "aux.acc_seg": 68.68870544433594, "time": 1.1130810737609864, "iter": 68750, "memory": 8703, "step": 68750} +{"lr": 0.006069322016140121, "data_time": 0.007537150382995605, "loss": 0.44141619801521303, "decode.loss_ce": 0.29384187757968905, "decode.acc_seg": 69.52285766601562, "aux.loss_ce": 0.14757432416081429, "aux.acc_seg": 67.24344635009766, "time": 1.1186901092529298, "iter": 68800, "memory": 8703, "step": 68800} +{"lr": 0.006066376546231346, "data_time": 0.007234907150268555, "loss": 0.48343495577573775, "decode.loss_ce": 0.2974190354347229, "decode.acc_seg": 95.22583770751953, "aux.loss_ce": 0.18601592518389226, "aux.acc_seg": 93.7903060913086, "time": 1.1136165380477905, "iter": 68850, "memory": 8703, "step": 68850} +{"lr": 0.006063430914745455, "data_time": 0.0070395231246948246, "loss": 0.33971697390079497, "decode.loss_ce": 0.2165690168738365, "decode.acc_seg": 93.54753875732422, "aux.loss_ce": 0.12314795404672622, "aux.acc_seg": 89.89287567138672, "time": 1.1159362316131591, "iter": 68900, "memory": 8704, "step": 68900} +{"lr": 0.006060485121584899, "data_time": 0.0074195384979248045, "loss": 0.33444485515356065, "decode.loss_ce": 0.20395841225981712, "decode.acc_seg": 82.63842010498047, "aux.loss_ce": 0.1304864414036274, "aux.acc_seg": 77.10768127441406, "time": 1.1126203536987305, "iter": 68950, "memory": 8704, "step": 68950} +{"lr": 0.00605753916665201, "data_time": 0.0072116851806640625, "loss": 0.44597731828689574, "decode.loss_ce": 0.24757927767932414, "decode.acc_seg": 96.36071014404297, "aux.loss_ce": 0.19839803948998452, "aux.acc_seg": 95.57392883300781, "time": 1.112269639968872, "iter": 69000, "memory": 8704, "step": 69000} +{"lr": 0.006054593049849008, "data_time": 0.007816958427429199, "loss": 0.3292792603373528, "decode.loss_ce": 0.19274646714329718, "decode.acc_seg": 96.6498031616211, "aux.loss_ce": 0.13653278946876526, "aux.acc_seg": 92.18883514404297, "time": 1.1148987770080567, "iter": 69050, "memory": 8703, "step": 69050} +{"lr": 0.006051646771078006, "data_time": 0.006288671493530273, "loss": 0.3541675299406052, "decode.loss_ce": 0.21636623963713647, "decode.acc_seg": 92.87960815429688, "aux.loss_ce": 0.1378012929111719, "aux.acc_seg": 87.50546264648438, "time": 1.1130830287933349, "iter": 69100, "memory": 8704, "step": 69100} +{"lr": 0.006048700330240998, "data_time": 0.006025052070617676, "loss": 0.2972634494304657, "decode.loss_ce": 0.18035149425268174, "decode.acc_seg": 92.29051971435547, "aux.loss_ce": 0.11691195219755172, "aux.acc_seg": 87.1534194946289, "time": 1.1124696254730224, "iter": 69150, "memory": 8704, "step": 69150} +{"lr": 0.006045753727239871, "data_time": 0.0078104972839355465, "loss": 0.38127913773059846, "decode.loss_ce": 0.22792704328894614, "decode.acc_seg": 88.47103118896484, "aux.loss_ce": 0.15335209295153618, "aux.acc_seg": 81.66764068603516, "time": 1.1150528907775878, "iter": 69200, "memory": 8703, "step": 69200} +{"lr": 0.0060428069619763896, "data_time": 0.008719849586486816, "loss": 0.42945953607559206, "decode.loss_ce": 0.25351744294166567, "decode.acc_seg": 83.14240264892578, "aux.loss_ce": 0.1759420894086361, "aux.acc_seg": 67.8680419921875, "time": 1.1199339389801026, "iter": 69250, "memory": 8704, "step": 69250} +{"lr": 0.006039860034352214, "data_time": 0.007962822914123535, "loss": 0.3980324998497963, "decode.loss_ce": 0.24973404109477998, "decode.acc_seg": 93.53363800048828, "aux.loss_ce": 0.14829844906926154, "aux.acc_seg": 91.2989273071289, "time": 1.116642999649048, "iter": 69300, "memory": 8703, "step": 69300} +{"lr": 0.006036912944268886, "data_time": 0.007923698425292969, "loss": 0.35560363084077834, "decode.loss_ce": 0.21533781439065933, "decode.acc_seg": 96.69718170166016, "aux.loss_ce": 0.14026581533253193, "aux.acc_seg": 96.47138977050781, "time": 1.120524525642395, "iter": 69350, "memory": 8704, "step": 69350} +{"lr": 0.00603396569162784, "data_time": 0.005902552604675293, "loss": 0.330936661362648, "decode.loss_ce": 0.20504771023988724, "decode.acc_seg": 93.97824096679688, "aux.loss_ce": 0.12588895075023174, "aux.acc_seg": 86.02796936035156, "time": 1.1166780710220336, "iter": 69400, "memory": 8703, "step": 69400} +{"lr": 0.006031018276330383, "data_time": 0.006247687339782715, "loss": 0.4333806872367859, "decode.loss_ce": 0.27160519659519194, "decode.acc_seg": 89.40689849853516, "aux.loss_ce": 0.16177549064159394, "aux.acc_seg": 86.70189666748047, "time": 1.1157721281051636, "iter": 69450, "memory": 8703, "step": 69450} +{"lr": 0.006028070698277716, "data_time": 0.006352567672729492, "loss": 0.4167109400033951, "decode.loss_ce": 0.25449901893734933, "decode.acc_seg": 92.00553894042969, "aux.loss_ce": 0.16221193112432958, "aux.acc_seg": 88.6368408203125, "time": 1.1129064321517945, "iter": 69500, "memory": 8704, "step": 69500} +{"lr": 0.006025122957370926, "data_time": 0.006019306182861328, "loss": 0.3906384602189064, "decode.loss_ce": 0.2267189674079418, "decode.acc_seg": 90.85266876220703, "aux.loss_ce": 0.16391949430108071, "aux.acc_seg": 82.21829223632812, "time": 1.1153292655944824, "iter": 69550, "memory": 8704, "step": 69550} +{"lr": 0.006022175053510977, "data_time": 0.007181692123413086, "loss": 0.39863638058304784, "decode.loss_ce": 0.24183306321501732, "decode.acc_seg": 94.60785675048828, "aux.loss_ce": 0.15680331215262414, "aux.acc_seg": 91.54682159423828, "time": 1.1108763217926025, "iter": 69600, "memory": 8704, "step": 69600} +{"lr": 0.006019226986598737, "data_time": 0.005754685401916504, "loss": 0.3704828888177872, "decode.loss_ce": 0.22411365658044816, "decode.acc_seg": 90.04204559326172, "aux.loss_ce": 0.1463692333549261, "aux.acc_seg": 88.68490600585938, "time": 1.1102204084396363, "iter": 69650, "memory": 8704, "step": 69650} +{"lr": 0.0060162787565349405, "data_time": 0.006026554107666016, "loss": 0.4354146674275398, "decode.loss_ce": 0.2668884456157684, "decode.acc_seg": 96.20806121826172, "aux.loss_ce": 0.16852621287107467, "aux.acc_seg": 95.83873748779297, "time": 1.111007285118103, "iter": 69700, "memory": 8704, "step": 69700} +{"lr": 0.0060133303632202125, "data_time": 0.0063251018524169925, "loss": 0.434170363843441, "decode.loss_ce": 0.26107164546847345, "decode.acc_seg": 96.75827026367188, "aux.loss_ce": 0.17309871166944504, "aux.acc_seg": 95.55409240722656, "time": 1.1129472255706787, "iter": 69750, "memory": 8703, "step": 69750} +{"lr": 0.0060103818065550575, "data_time": 0.0055265665054321286, "loss": 0.33766467720270155, "decode.loss_ce": 0.19786577820777893, "decode.acc_seg": 93.48831176757812, "aux.loss_ce": 0.139798903465271, "aux.acc_seg": 90.30227661132812, "time": 1.1105679988861084, "iter": 69800, "memory": 8703, "step": 69800} +{"lr": 0.006007433086439874, "data_time": 0.00693514347076416, "loss": 0.42624358385801314, "decode.loss_ce": 0.25941093266010284, "decode.acc_seg": 94.42189025878906, "aux.loss_ce": 0.16683264821767807, "aux.acc_seg": 94.69330596923828, "time": 1.1148805141448974, "iter": 69850, "memory": 8705, "step": 69850} +{"lr": 0.0060044842027749375, "data_time": 0.006078362464904785, "loss": 0.4224270448088646, "decode.loss_ce": 0.2594072937965393, "decode.acc_seg": 97.21914672851562, "aux.loss_ce": 0.1630197487771511, "aux.acc_seg": 96.92764282226562, "time": 1.112044620513916, "iter": 69900, "memory": 8703, "step": 69900} +{"lr": 0.006001535155460411, "data_time": 0.008204841613769531, "loss": 0.42368234097957613, "decode.loss_ce": 0.23924773260951043, "decode.acc_seg": 97.23332214355469, "aux.loss_ce": 0.1844346046447754, "aux.acc_seg": 94.63570404052734, "time": 1.1173832893371582, "iter": 69950, "memory": 8704, "step": 69950} +{"lr": 0.005998585944396332, "data_time": 0.008591485023498536, "loss": 0.4242443487048149, "decode.loss_ce": 0.25196524560451505, "decode.acc_seg": 96.977294921875, "aux.loss_ce": 0.172279104962945, "aux.acc_seg": 96.33343505859375, "time": 1.1185293436050414, "iter": 70000, "memory": 8704, "step": 70000} +{"lr": 0.005995636569482638, "data_time": 0.007571816444396973, "loss": 0.5814428150653839, "decode.loss_ce": 0.3667051583528519, "decode.acc_seg": 95.1894760131836, "aux.loss_ce": 0.214737655967474, "aux.acc_seg": 93.88790130615234, "time": 1.1185058116912843, "iter": 70050, "memory": 8704, "step": 70050} +{"lr": 0.005992687030619133, "data_time": 0.008829879760742187, "loss": 0.525066827237606, "decode.loss_ce": 0.311118821054697, "decode.acc_seg": 95.6441879272461, "aux.loss_ce": 0.21394801922142506, "aux.acc_seg": 94.8755874633789, "time": 1.1185375928878785, "iter": 70100, "memory": 8703, "step": 70100} +{"lr": 0.005989737327705511, "data_time": 0.007010364532470703, "loss": 0.33548353910446166, "decode.loss_ce": 0.20393772572278976, "decode.acc_seg": 94.31559753417969, "aux.loss_ce": 0.1315458133816719, "aux.acc_seg": 92.12681579589844, "time": 1.1149829864501952, "iter": 70150, "memory": 8704, "step": 70150} +{"lr": 0.005986787460641353, "data_time": 0.005981135368347168, "loss": 0.41191397458314893, "decode.loss_ce": 0.24778278395533562, "decode.acc_seg": 95.19182586669922, "aux.loss_ce": 0.16413119845092297, "aux.acc_seg": 94.44522857666016, "time": 1.1138607501983642, "iter": 70200, "memory": 8704, "step": 70200} +{"lr": 0.005983837429326119, "data_time": 0.00623936653137207, "loss": 0.39058738499879836, "decode.loss_ce": 0.23291659727692604, "decode.acc_seg": 97.49603271484375, "aux.loss_ce": 0.15767079032957554, "aux.acc_seg": 95.90409088134766, "time": 1.1146366596221924, "iter": 70250, "memory": 8704, "step": 70250} +{"lr": 0.005980887233659145, "data_time": 0.006937503814697266, "loss": 0.37313867136836054, "decode.loss_ce": 0.23819254264235495, "decode.acc_seg": 98.35293579101562, "aux.loss_ce": 0.1349461257457733, "aux.acc_seg": 98.29120635986328, "time": 1.1108438491821289, "iter": 70300, "memory": 8704, "step": 70300} +{"lr": 0.005977936873539665, "data_time": 0.007552528381347656, "loss": 0.3403116509318352, "decode.loss_ce": 0.2155312903225422, "decode.acc_seg": 95.15005493164062, "aux.loss_ce": 0.12478036098182202, "aux.acc_seg": 94.7103500366211, "time": 1.116108512878418, "iter": 70350, "memory": 8703, "step": 70350} +{"lr": 0.005974986348866781, "data_time": 0.0075469970703125, "loss": 0.4677767679095268, "decode.loss_ce": 0.305555734783411, "decode.acc_seg": 94.56405639648438, "aux.loss_ce": 0.1622210368514061, "aux.acc_seg": 92.14973449707031, "time": 1.1255892753601073, "iter": 70400, "memory": 8703, "step": 70400} +{"lr": 0.005972035659539481, "data_time": 0.0059489250183105465, "loss": 0.31783023327589033, "decode.loss_ce": 0.19389620199799537, "decode.acc_seg": 95.37544250488281, "aux.loss_ce": 0.12393402457237243, "aux.acc_seg": 91.76139831542969, "time": 1.1146397829055785, "iter": 70450, "memory": 8704, "step": 70450} +{"lr": 0.005969084805456626, "data_time": 0.007939958572387695, "loss": 0.3510133132338524, "decode.loss_ce": 0.22375066429376603, "decode.acc_seg": 88.03861236572266, "aux.loss_ce": 0.12726264856755734, "aux.acc_seg": 84.68977355957031, "time": 1.1125990390777587, "iter": 70500, "memory": 8703, "step": 70500} +{"lr": 0.005966133786516981, "data_time": 0.0058478832244873045, "loss": 0.47514772415161133, "decode.loss_ce": 0.28995693325996397, "decode.acc_seg": 84.93709564208984, "aux.loss_ce": 0.18519078865647315, "aux.acc_seg": 82.12877655029297, "time": 1.1138645887374878, "iter": 70550, "memory": 8703, "step": 70550} +{"lr": 0.005963182602619169, "data_time": 0.006399035453796387, "loss": 0.3208361014723778, "decode.loss_ce": 0.20681459158658982, "decode.acc_seg": 88.27177429199219, "aux.loss_ce": 0.11402151584625245, "aux.acc_seg": 87.94163513183594, "time": 1.1127927541732787, "iter": 70600, "memory": 8704, "step": 70600} +{"lr": 0.005960231253661706, "data_time": 0.008692431449890136, "loss": 0.3552192524075508, "decode.loss_ce": 0.22015674710273742, "decode.acc_seg": 91.8606948852539, "aux.loss_ce": 0.13506250455975533, "aux.acc_seg": 90.30587768554688, "time": 1.1206201791763306, "iter": 70650, "memory": 8704, "step": 70650} +{"lr": 0.0059572797395429835, "data_time": 0.008339262008666993, "loss": 0.505016279220581, "decode.loss_ce": 0.30102738440036775, "decode.acc_seg": 93.78254699707031, "aux.loss_ce": 0.20398888289928435, "aux.acc_seg": 84.32833099365234, "time": 1.1181711196899413, "iter": 70700, "memory": 8703, "step": 70700} +{"lr": 0.0059543280601612745, "data_time": 0.006728935241699219, "loss": 0.452516970038414, "decode.loss_ce": 0.28542845100164416, "decode.acc_seg": 91.12472534179688, "aux.loss_ce": 0.16708851456642151, "aux.acc_seg": 87.97543334960938, "time": 1.1148043394088745, "iter": 70750, "memory": 8703, "step": 70750} +{"lr": 0.005951376215414736, "data_time": 0.006494665145874023, "loss": 0.483296275138855, "decode.loss_ce": 0.3120266444981098, "decode.acc_seg": 94.88404083251953, "aux.loss_ce": 0.17126962989568711, "aux.acc_seg": 86.02326202392578, "time": 1.1177460908889771, "iter": 70800, "memory": 8703, "step": 70800} +{"lr": 0.005948424205201395, "data_time": 0.006537961959838867, "loss": 0.32567820101976397, "decode.loss_ce": 0.20150687098503112, "decode.acc_seg": 96.39256286621094, "aux.loss_ce": 0.12417133264243603, "aux.acc_seg": 95.35343933105469, "time": 1.1130285024642945, "iter": 70850, "memory": 8703, "step": 70850} +{"lr": 0.005945472029419178, "data_time": 0.005971837043762207, "loss": 0.29753820821642873, "decode.loss_ce": 0.17203381136059762, "decode.acc_seg": 93.69894409179688, "aux.loss_ce": 0.12550439685583115, "aux.acc_seg": 88.66564178466797, "time": 1.1103253602981566, "iter": 70900, "memory": 8703, "step": 70900} +{"lr": 0.005942519687965873, "data_time": 0.006952762603759766, "loss": 0.35823038667440416, "decode.loss_ce": 0.2366242378950119, "decode.acc_seg": 91.4886474609375, "aux.loss_ce": 0.12160614728927613, "aux.acc_seg": 89.09111022949219, "time": 1.114608144760132, "iter": 70950, "memory": 8703, "step": 70950} +{"lr": 0.0059395671807391595, "data_time": 0.007369089126586914, "loss": 0.5638834998011589, "decode.loss_ce": 0.3414416640996933, "decode.acc_seg": 96.16133117675781, "aux.loss_ce": 0.22244182825088502, "aux.acc_seg": 95.34078979492188, "time": 1.1185812473297119, "iter": 71000, "memory": 8704, "step": 71000} +{"lr": 0.005936614507636581, "data_time": 0.008104252815246581, "loss": 0.5011463060975074, "decode.loss_ce": 0.3019192390143871, "decode.acc_seg": 96.84473419189453, "aux.loss_ce": 0.19922707118093969, "aux.acc_seg": 95.4260482788086, "time": 1.1151970863342284, "iter": 71050, "memory": 8703, "step": 71050} +{"lr": 0.005933661668555571, "data_time": 0.005815672874450684, "loss": 0.44150560945272443, "decode.loss_ce": 0.2645289018750191, "decode.acc_seg": 93.38948822021484, "aux.loss_ce": 0.1769767090678215, "aux.acc_seg": 90.5718994140625, "time": 1.1068147897720337, "iter": 71100, "memory": 8703, "step": 71100} +{"lr": 0.005930708663393446, "data_time": 0.008265089988708497, "loss": 0.47748917937278745, "decode.loss_ce": 0.2677161380648613, "decode.acc_seg": 96.22395324707031, "aux.loss_ce": 0.20977304503321648, "aux.acc_seg": 92.79638671875, "time": 1.1150567293167115, "iter": 71150, "memory": 8703, "step": 71150} +{"lr": 0.0059277554920473905, "data_time": 0.005593347549438477, "loss": 0.3943802431225777, "decode.loss_ce": 0.22734813392162323, "decode.acc_seg": 82.2549819946289, "aux.loss_ce": 0.1670321121811867, "aux.acc_seg": 65.71922302246094, "time": 1.1111358165740968, "iter": 71200, "memory": 8704, "step": 71200} +{"lr": 0.0059248021544144715, "data_time": 0.008152365684509277, "loss": 0.39171175211668013, "decode.loss_ce": 0.2351042777299881, "decode.acc_seg": 72.22809600830078, "aux.loss_ce": 0.15660747811198233, "aux.acc_seg": 67.15065002441406, "time": 1.1203217029571533, "iter": 71250, "memory": 8703, "step": 71250} +{"lr": 0.00592184865039164, "data_time": 0.0070188045501708984, "loss": 0.581013423204422, "decode.loss_ce": 0.354259292781353, "decode.acc_seg": 87.52193450927734, "aux.loss_ce": 0.2267541393637657, "aux.acc_seg": 75.11132049560547, "time": 1.1164740324020386, "iter": 71300, "memory": 8704, "step": 71300} +{"lr": 0.00591889497987572, "data_time": 0.005880188941955566, "loss": 0.5306052789092064, "decode.loss_ce": 0.3290836840867996, "decode.acc_seg": 87.35668182373047, "aux.loss_ce": 0.2015216015279293, "aux.acc_seg": 81.44709777832031, "time": 1.1151236772537232, "iter": 71350, "memory": 8704, "step": 71350} +{"lr": 0.005915941142763408, "data_time": 0.0062117338180541996, "loss": 0.4730877041816711, "decode.loss_ce": 0.27025460451841354, "decode.acc_seg": 81.61474609375, "aux.loss_ce": 0.2028331071138382, "aux.acc_seg": 70.21808624267578, "time": 1.117180871963501, "iter": 71400, "memory": 8704, "step": 71400} +{"lr": 0.005912987138951287, "data_time": 0.006906247138977051, "loss": 0.5539391100406647, "decode.loss_ce": 0.35280182361602785, "decode.acc_seg": 85.17195129394531, "aux.loss_ce": 0.20113727375864981, "aux.acc_seg": 81.37937927246094, "time": 1.1159914016723633, "iter": 71450, "memory": 8704, "step": 71450} +{"lr": 0.005910032968335815, "data_time": 0.0052021265029907225, "loss": 0.3498351901769638, "decode.loss_ce": 0.21231644749641418, "decode.acc_seg": 91.01009368896484, "aux.loss_ce": 0.1375187359750271, "aux.acc_seg": 79.690673828125, "time": 1.1143773078918457, "iter": 71500, "memory": 8703, "step": 71500} +{"lr": 0.005907078630813322, "data_time": 0.006849884986877441, "loss": 0.4702817276120186, "decode.loss_ce": 0.30188837051391604, "decode.acc_seg": 96.9499740600586, "aux.loss_ce": 0.1683933585882187, "aux.acc_seg": 95.15467834472656, "time": 1.114785385131836, "iter": 71550, "memory": 8704, "step": 71550} +{"lr": 0.005904124126280025, "data_time": 0.006796693801879883, "loss": 0.4431450396776199, "decode.loss_ce": 0.2616556972265244, "decode.acc_seg": 92.09162139892578, "aux.loss_ce": 0.18148934319615365, "aux.acc_seg": 90.85807800292969, "time": 1.1170275449752807, "iter": 71600, "memory": 8703, "step": 71600} +{"lr": 0.005901169454632011, "data_time": 0.008532142639160157, "loss": 0.6131924301385879, "decode.loss_ce": 0.38206174224615097, "decode.acc_seg": 89.32176971435547, "aux.loss_ce": 0.231130687892437, "aux.acc_seg": 88.43071746826172, "time": 1.117794942855835, "iter": 71650, "memory": 8703, "step": 71650} +{"lr": 0.005898214615765234, "data_time": 0.006423068046569824, "loss": 0.4514069825410843, "decode.loss_ce": 0.2831207409501076, "decode.acc_seg": 92.74323272705078, "aux.loss_ce": 0.168286245316267, "aux.acc_seg": 88.15599822998047, "time": 1.1161873817443848, "iter": 71700, "memory": 8704, "step": 71700} +{"lr": 0.00589525960957554, "data_time": 0.005703186988830567, "loss": 0.642608280479908, "decode.loss_ce": 0.44313506931066515, "decode.acc_seg": 62.63408279418945, "aux.loss_ce": 0.1994732141494751, "aux.acc_seg": 64.0451431274414, "time": 1.1089600801467896, "iter": 71750, "memory": 8704, "step": 71750} +{"lr": 0.0058923044359586495, "data_time": 0.007801365852355957, "loss": 0.4752468541264534, "decode.loss_ce": 0.28390302062034606, "decode.acc_seg": 92.63862609863281, "aux.loss_ce": 0.19134384095668794, "aux.acc_seg": 70.77253723144531, "time": 1.1170450448989868, "iter": 71800, "memory": 8704, "step": 71800} +{"lr": 0.0058893490948101505, "data_time": 0.006873822212219239, "loss": 0.4379620924592018, "decode.loss_ce": 0.2707553472369909, "decode.acc_seg": 76.41029357910156, "aux.loss_ce": 0.167206746712327, "aux.acc_seg": 63.132728576660156, "time": 1.1132418632507324, "iter": 71850, "memory": 8704, "step": 71850} +{"lr": 0.005886393586025513, "data_time": 0.006139516830444336, "loss": 0.3092056065797806, "decode.loss_ce": 0.17873801104724407, "decode.acc_seg": 93.5800552368164, "aux.loss_ce": 0.13046759665012359, "aux.acc_seg": 86.23688507080078, "time": 1.1172547817230225, "iter": 71900, "memory": 8703, "step": 71900} +{"lr": 0.0058834379095000795, "data_time": 0.0071675777435302734, "loss": 0.5076238065958023, "decode.loss_ce": 0.3164483532309532, "decode.acc_seg": 95.93225860595703, "aux.loss_ce": 0.1911754533648491, "aux.acc_seg": 93.41932678222656, "time": 1.1192157506942748, "iter": 71950, "memory": 8704, "step": 71950} +{"lr": 0.005880482065129067, "data_time": 0.007027888298034668, "loss": 0.4530102491378784, "decode.loss_ce": 0.26390994936227796, "decode.acc_seg": 95.0182113647461, "aux.loss_ce": 0.18910030350089074, "aux.acc_seg": 93.46705627441406, "time": 1.11407630443573, "iter": 72000, "memory": 8704, "step": 72000} +{"lr": 0.005877526052807571, "data_time": 0.006755518913269043, "loss": 0.5066888421773911, "decode.loss_ce": 0.32446122765541074, "decode.acc_seg": 88.56912994384766, "aux.loss_ce": 0.18222761005163193, "aux.acc_seg": 85.03086853027344, "time": 1.112322211265564, "iter": 72050, "memory": 8703, "step": 72050} +{"lr": 0.0058745698724305614, "data_time": 0.008269619941711426, "loss": 0.37728616446256635, "decode.loss_ce": 0.2274494171142578, "decode.acc_seg": 94.43721771240234, "aux.loss_ce": 0.14983674958348275, "aux.acc_seg": 89.67634582519531, "time": 1.117596697807312, "iter": 72100, "memory": 8703, "step": 72100} +{"lr": 0.005871613523892877, "data_time": 0.007306122779846191, "loss": 0.48027103394269943, "decode.loss_ce": 0.3045224703848362, "decode.acc_seg": 96.0383071899414, "aux.loss_ce": 0.17574855871498585, "aux.acc_seg": 94.49163818359375, "time": 1.1129136323928832, "iter": 72150, "memory": 8703, "step": 72150} +{"lr": 0.005868657007089243, "data_time": 0.005579543113708496, "loss": 0.4893148645758629, "decode.loss_ce": 0.29687857180833815, "decode.acc_seg": 87.07300567626953, "aux.loss_ce": 0.19243629239499568, "aux.acc_seg": 83.98011016845703, "time": 1.1139417171478272, "iter": 72200, "memory": 8703, "step": 72200} +{"lr": 0.005865700321914241, "data_time": 0.0070008039474487305, "loss": 0.3306280359625816, "decode.loss_ce": 0.1868424490094185, "decode.acc_seg": 90.47978210449219, "aux.loss_ce": 0.14378558546304704, "aux.acc_seg": 89.4384994506836, "time": 1.1130711793899537, "iter": 72250, "memory": 8703, "step": 72250} +{"lr": 0.005862743468262334, "data_time": 0.00792236328125, "loss": 0.3763757586479187, "decode.loss_ce": 0.2210201159119606, "decode.acc_seg": 92.57952117919922, "aux.loss_ce": 0.15535564348101616, "aux.acc_seg": 91.74219512939453, "time": 1.1160818099975587, "iter": 72300, "memory": 8703, "step": 72300} +{"lr": 0.005859786446027868, "data_time": 0.008360648155212402, "loss": 0.4556801736354828, "decode.loss_ce": 0.26673798114061353, "decode.acc_seg": 93.98959350585938, "aux.loss_ce": 0.1889421906322241, "aux.acc_seg": 90.25872039794922, "time": 1.1163036346435546, "iter": 72350, "memory": 8703, "step": 72350} +{"lr": 0.005856829255105054, "data_time": 0.007143759727478027, "loss": 0.34010264426469805, "decode.loss_ce": 0.21075988709926605, "decode.acc_seg": 94.81665802001953, "aux.loss_ce": 0.12934275455772876, "aux.acc_seg": 93.25128173828125, "time": 1.1141735315322876, "iter": 72400, "memory": 8704, "step": 72400} +{"lr": 0.005853871895387977, "data_time": 0.005993080139160156, "loss": 0.6141105726361274, "decode.loss_ce": 0.41051013618707655, "decode.acc_seg": 97.48162841796875, "aux.loss_ce": 0.2036004364490509, "aux.acc_seg": 95.30474090576172, "time": 1.1122722387313844, "iter": 72450, "memory": 8704, "step": 72450} +{"lr": 0.005850914366770601, "data_time": 0.006034255027770996, "loss": 0.38052645027637483, "decode.loss_ce": 0.241378752887249, "decode.acc_seg": 89.96651458740234, "aux.loss_ce": 0.13914770111441613, "aux.acc_seg": 87.0621337890625, "time": 1.1144473552703857, "iter": 72500, "memory": 8704, "step": 72500} +{"lr": 0.005847956669146747, "data_time": 0.00661008358001709, "loss": 0.37225941121578215, "decode.loss_ce": 0.23044798746705056, "decode.acc_seg": 95.07113647460938, "aux.loss_ce": 0.14181142374873162, "aux.acc_seg": 89.7210922241211, "time": 1.1189907789230347, "iter": 72550, "memory": 8704, "step": 72550} +{"lr": 0.005844998802410121, "data_time": 0.007229137420654297, "loss": 0.5870365217328072, "decode.loss_ce": 0.346630597114563, "decode.acc_seg": 95.48212432861328, "aux.loss_ce": 0.24040592201054095, "aux.acc_seg": 92.9871826171875, "time": 1.1187418222427368, "iter": 72600, "memory": 8704, "step": 72600} +{"lr": 0.0058420407664543025, "data_time": 0.005898690223693848, "loss": 0.43280970454216006, "decode.loss_ce": 0.2717764936387539, "decode.acc_seg": 93.56854248046875, "aux.loss_ce": 0.16103321090340614, "aux.acc_seg": 92.19347381591797, "time": 1.1138711452484131, "iter": 72650, "memory": 8704, "step": 72650} +{"lr": 0.005839082561172738, "data_time": 0.005677342414855957, "loss": 0.385476279258728, "decode.loss_ce": 0.2572713665664196, "decode.acc_seg": 96.62850189208984, "aux.loss_ce": 0.1282049186527729, "aux.acc_seg": 93.01750946044922, "time": 1.1138879537582398, "iter": 72700, "memory": 8704, "step": 72700} +{"lr": 0.005836124186458751, "data_time": 0.008136725425720215, "loss": 0.4392645671963692, "decode.loss_ce": 0.26357640251517295, "decode.acc_seg": 96.83760833740234, "aux.loss_ce": 0.1756881732493639, "aux.acc_seg": 96.34986877441406, "time": 1.1175026893615723, "iter": 72750, "memory": 8703, "step": 72750} +{"lr": 0.005833165642205525, "data_time": 0.006814432144165039, "loss": 0.42241913825273514, "decode.loss_ce": 0.25201765149831773, "decode.acc_seg": 94.78180694580078, "aux.loss_ce": 0.17040148340165615, "aux.acc_seg": 94.12358093261719, "time": 1.1142521619796752, "iter": 72800, "memory": 8704, "step": 72800} +{"lr": 0.00583020692830613, "data_time": 0.006604146957397461, "loss": 0.5273968786001205, "decode.loss_ce": 0.33528614938259127, "decode.acc_seg": 92.69497680664062, "aux.loss_ce": 0.1921107266098261, "aux.acc_seg": 86.99308776855469, "time": 1.11401309967041, "iter": 72850, "memory": 8703, "step": 72850} +{"lr": 0.005827248044653493, "data_time": 0.0070026636123657225, "loss": 0.36462847888469696, "decode.loss_ce": 0.19662994667887687, "decode.acc_seg": 85.74971771240234, "aux.loss_ce": 0.16799853183329105, "aux.acc_seg": 83.42341613769531, "time": 1.1132777214050293, "iter": 72900, "memory": 8703, "step": 72900} +{"lr": 0.005824288991140426, "data_time": 0.006500649452209473, "loss": 0.4902832925319672, "decode.loss_ce": 0.30643884018063544, "decode.acc_seg": 87.5131607055664, "aux.loss_ce": 0.1838444508612156, "aux.acc_seg": 84.49058532714844, "time": 1.1158788204193115, "iter": 72950, "memory": 8704, "step": 72950} +{"lr": 0.005821329767659598, "data_time": 0.006312155723571777, "loss": 0.5117798134684562, "decode.loss_ce": 0.30293570309877393, "decode.acc_seg": 71.7713623046875, "aux.loss_ce": 0.20884410440921783, "aux.acc_seg": 66.87704467773438, "time": 1.1130080223083496, "iter": 73000, "memory": 8703, "step": 73000} +{"lr": 0.005818370374103558, "data_time": 0.005924892425537109, "loss": 0.38800802677869795, "decode.loss_ce": 0.23241802230477332, "decode.acc_seg": 95.38760375976562, "aux.loss_ce": 0.1555899977684021, "aux.acc_seg": 92.14907836914062, "time": 1.1142571687698364, "iter": 73050, "memory": 8703, "step": 73050} +{"lr": 0.005815410810364725, "data_time": 0.0063599348068237305, "loss": 0.43452741801738737, "decode.loss_ce": 0.26111246198415755, "decode.acc_seg": 92.0969009399414, "aux.loss_ce": 0.17341495901346207, "aux.acc_seg": 89.28548431396484, "time": 1.112802004814148, "iter": 73100, "memory": 8704, "step": 73100} +{"lr": 0.0058124510763353805, "data_time": 0.006169652938842774, "loss": 0.45159026980400085, "decode.loss_ce": 0.2584669776260853, "decode.acc_seg": 88.85612487792969, "aux.loss_ce": 0.19312330149114132, "aux.acc_seg": 79.42587280273438, "time": 1.1155373096466064, "iter": 73150, "memory": 8704, "step": 73150} +{"lr": 0.005809491171907683, "data_time": 0.0069212675094604496, "loss": 0.3363595649600029, "decode.loss_ce": 0.18950423821806908, "decode.acc_seg": 97.61473083496094, "aux.loss_ce": 0.14685533456504346, "aux.acc_seg": 96.77047729492188, "time": 1.1147778511047364, "iter": 73200, "memory": 8704, "step": 73200} +{"lr": 0.005806531096973655, "data_time": 0.007989215850830077, "loss": 0.3806621298193932, "decode.loss_ce": 0.2379782222211361, "decode.acc_seg": 97.49710845947266, "aux.loss_ce": 0.1426839131861925, "aux.acc_seg": 97.35914611816406, "time": 1.1187723398208618, "iter": 73250, "memory": 8704, "step": 73250} +{"lr": 0.0058035708514251935, "data_time": 0.007809948921203613, "loss": 0.46961515992879865, "decode.loss_ce": 0.2957088813185692, "decode.acc_seg": 93.32141876220703, "aux.loss_ce": 0.17390628419816495, "aux.acc_seg": 91.65642547607422, "time": 1.121385383605957, "iter": 73300, "memory": 8704, "step": 73300} +{"lr": 0.0058006104351540615, "data_time": 0.009030365943908691, "loss": 0.4498897150158882, "decode.loss_ce": 0.2759681776165962, "decode.acc_seg": 89.61009979248047, "aux.loss_ce": 0.1739215400069952, "aux.acc_seg": 86.86878967285156, "time": 1.1201077938079833, "iter": 73350, "memory": 8703, "step": 73350} +{"lr": 0.005797649848051896, "data_time": 0.006599998474121094, "loss": 0.3837320566177368, "decode.loss_ce": 0.24721051901578903, "decode.acc_seg": 95.46800994873047, "aux.loss_ce": 0.1365215353667736, "aux.acc_seg": 94.47193145751953, "time": 1.1102105617523192, "iter": 73400, "memory": 8704, "step": 73400} +{"lr": 0.005794689090010198, "data_time": 0.006591486930847168, "loss": 0.33583580106496813, "decode.loss_ce": 0.21396098360419274, "decode.acc_seg": 92.41116333007812, "aux.loss_ce": 0.12187481634318828, "aux.acc_seg": 86.33810424804688, "time": 1.1158696413040161, "iter": 73450, "memory": 8703, "step": 73450} +{"lr": 0.005791728160920334, "data_time": 0.006614875793457031, "loss": 0.36449733972549436, "decode.loss_ce": 0.2254272446036339, "decode.acc_seg": 94.90184783935547, "aux.loss_ce": 0.13907009214162827, "aux.acc_seg": 90.99737548828125, "time": 1.1154513835906983, "iter": 73500, "memory": 8704, "step": 73500} +{"lr": 0.005788767060673541, "data_time": 0.0065397977828979496, "loss": 0.4435595467686653, "decode.loss_ce": 0.26856708601117135, "decode.acc_seg": 90.58611297607422, "aux.loss_ce": 0.17499246187508105, "aux.acc_seg": 88.09333038330078, "time": 1.1176871538162232, "iter": 73550, "memory": 8703, "step": 73550} +{"lr": 0.00578580578916093, "data_time": 0.007747864723205567, "loss": 0.43214608877897265, "decode.loss_ce": 0.24928360506892205, "decode.acc_seg": 95.97511291503906, "aux.loss_ce": 0.18286248482763767, "aux.acc_seg": 91.51477813720703, "time": 1.1177894353866578, "iter": 73600, "memory": 8704, "step": 73600} +{"lr": 0.00578284434627347, "data_time": 0.005177187919616699, "loss": 0.3940659135580063, "decode.loss_ce": 0.2467205762863159, "decode.acc_seg": 94.74417114257812, "aux.loss_ce": 0.14734533689916135, "aux.acc_seg": 92.58053588867188, "time": 1.1139708518981934, "iter": 73650, "memory": 8703, "step": 73650} +{"lr": 0.005779882731902006, "data_time": 0.006565237045288086, "loss": 0.3918296307325363, "decode.loss_ce": 0.23254711106419562, "decode.acc_seg": 92.73560333251953, "aux.loss_ce": 0.1592825200408697, "aux.acc_seg": 89.01384735107422, "time": 1.1150975704193116, "iter": 73700, "memory": 8704, "step": 73700} +{"lr": 0.00577692094593724, "data_time": 0.008414292335510254, "loss": 0.4392944321036339, "decode.loss_ce": 0.27915068715810776, "decode.acc_seg": 86.5274429321289, "aux.loss_ce": 0.16014374271035195, "aux.acc_seg": 82.35187530517578, "time": 1.116513991355896, "iter": 73750, "memory": 8704, "step": 73750} +{"lr": 0.005773958988269749, "data_time": 0.00703880786895752, "loss": 0.503340619802475, "decode.loss_ce": 0.30861025750637056, "decode.acc_seg": 91.21665954589844, "aux.loss_ce": 0.19473036229610444, "aux.acc_seg": 88.25524139404297, "time": 1.11618230342865, "iter": 73800, "memory": 8704, "step": 73800} +{"lr": 0.005770996858789973, "data_time": 0.008033227920532227, "loss": 0.38887330889701843, "decode.loss_ce": 0.23160761147737502, "decode.acc_seg": 94.21373748779297, "aux.loss_ce": 0.15726569443941116, "aux.acc_seg": 93.38461303710938, "time": 1.1158544778823853, "iter": 73850, "memory": 8704, "step": 73850} +{"lr": 0.0057680345573882285, "data_time": 0.005584979057312011, "loss": 0.394374980032444, "decode.loss_ce": 0.23245644122362136, "decode.acc_seg": 95.95539855957031, "aux.loss_ce": 0.1619185395538807, "aux.acc_seg": 90.55865478515625, "time": 1.1157585859298706, "iter": 73900, "memory": 8704, "step": 73900} +{"lr": 0.0057650720839546804, "data_time": 0.005561614036560058, "loss": 0.4554221913218498, "decode.loss_ce": 0.2752501621842384, "decode.acc_seg": 89.78137969970703, "aux.loss_ce": 0.18017202690243722, "aux.acc_seg": 80.471923828125, "time": 1.11396164894104, "iter": 73950, "memory": 8704, "step": 73950} +{"lr": 0.005762109438379373, "data_time": 0.006314229965209961, "loss": 0.3250285506248474, "decode.loss_ce": 0.19549349024891854, "decode.acc_seg": 94.94941711425781, "aux.loss_ce": 0.1295350544154644, "aux.acc_seg": 92.91655731201172, "time": 1.1177032709121704, "iter": 74000, "memory": 8703, "step": 74000} +{"lr": 0.005759146620552216, "data_time": 0.006144237518310547, "loss": 0.36574144959449767, "decode.loss_ce": 0.2228802666068077, "decode.acc_seg": 95.15609741210938, "aux.loss_ce": 0.14286117777228355, "aux.acc_seg": 92.8720474243164, "time": 1.1151337385177613, "iter": 74050, "memory": 8704, "step": 74050} +{"lr": 0.005756183630362975, "data_time": 0.0065654277801513675, "loss": 0.35567653477191924, "decode.loss_ce": 0.2180899426341057, "decode.acc_seg": 98.1531753540039, "aux.loss_ce": 0.13758658431470394, "aux.acc_seg": 94.44840240478516, "time": 1.1119591474533081, "iter": 74100, "memory": 8703, "step": 74100} +{"lr": 0.005753220467701286, "data_time": 0.007342791557312012, "loss": 0.3408208817243576, "decode.loss_ce": 0.21246515661478044, "decode.acc_seg": 85.56143188476562, "aux.loss_ce": 0.12835571840405463, "aux.acc_seg": 83.01136779785156, "time": 1.1162045478820801, "iter": 74150, "memory": 8704, "step": 74150} +{"lr": 0.005750257132456656, "data_time": 0.008419489860534668, "loss": 0.3931365840137005, "decode.loss_ce": 0.23806518279016017, "decode.acc_seg": 98.0932846069336, "aux.loss_ce": 0.15507140010595322, "aux.acc_seg": 95.77896881103516, "time": 1.1166323900222779, "iter": 74200, "memory": 8704, "step": 74200} +{"lr": 0.005747293624518451, "data_time": 0.00644230842590332, "loss": 0.3876385822892189, "decode.loss_ce": 0.24131663143634796, "decode.acc_seg": 95.75618743896484, "aux.loss_ce": 0.14632195085287095, "aux.acc_seg": 95.37104034423828, "time": 1.1167528867721557, "iter": 74250, "memory": 8704, "step": 74250} +{"lr": 0.005744329943775903, "data_time": 0.007345795631408691, "loss": 0.36706536561250686, "decode.loss_ce": 0.22811947017908096, "decode.acc_seg": 95.82697296142578, "aux.loss_ce": 0.13894589245319366, "aux.acc_seg": 92.61150360107422, "time": 1.117535448074341, "iter": 74300, "memory": 8703, "step": 74300} +{"lr": 0.005741366090118107, "data_time": 0.007211732864379883, "loss": 0.3106705635786057, "decode.loss_ce": 0.18627434223890305, "decode.acc_seg": 93.76811981201172, "aux.loss_ce": 0.12439621910452843, "aux.acc_seg": 83.13763427734375, "time": 1.1160656690597535, "iter": 74350, "memory": 8704, "step": 74350} +{"lr": 0.005738402063434014, "data_time": 0.006215643882751465, "loss": 0.3559027761220932, "decode.loss_ce": 0.22417712435126305, "decode.acc_seg": 94.88111877441406, "aux.loss_ce": 0.13172565251588822, "aux.acc_seg": 89.64290618896484, "time": 1.1107385396957397, "iter": 74400, "memory": 8704, "step": 74400} +{"lr": 0.005735437863612457, "data_time": 0.006475424766540528, "loss": 0.45290618389844894, "decode.loss_ce": 0.27806384637951853, "decode.acc_seg": 83.17984008789062, "aux.loss_ce": 0.17484233304858207, "aux.acc_seg": 78.44487762451172, "time": 1.1115006446838378, "iter": 74450, "memory": 8703, "step": 74450} +{"lr": 0.005732473490542118, "data_time": 0.007824420928955078, "loss": 0.2771303057670593, "decode.loss_ce": 0.16701340302824974, "decode.acc_seg": 94.66940307617188, "aux.loss_ce": 0.11011690199375153, "aux.acc_seg": 91.55769348144531, "time": 1.1137510776519775, "iter": 74500, "memory": 8704, "step": 74500} +{"lr": 0.005729508944111555, "data_time": 0.006696224212646484, "loss": 0.4466423600912094, "decode.loss_ce": 0.2623691990971565, "decode.acc_seg": 79.0233154296875, "aux.loss_ce": 0.18427315652370452, "aux.acc_seg": 77.68277740478516, "time": 1.1133447170257569, "iter": 74550, "memory": 8703, "step": 74550} +{"lr": 0.005726544224209171, "data_time": 0.007032132148742676, "loss": 0.3662754505872726, "decode.loss_ce": 0.23372961059212685, "decode.acc_seg": 95.50530242919922, "aux.loss_ce": 0.1325458414852619, "aux.acc_seg": 94.38490295410156, "time": 1.1141831398010253, "iter": 74600, "memory": 8704, "step": 74600} +{"lr": 0.005723579330723252, "data_time": 0.008578920364379882, "loss": 0.4646584287285805, "decode.loss_ce": 0.30228311866521834, "decode.acc_seg": 63.88414001464844, "aux.loss_ce": 0.16237531006336212, "aux.acc_seg": 59.574180603027344, "time": 1.1208533763885498, "iter": 74650, "memory": 8704, "step": 74650} +{"lr": 0.00572061426354193, "data_time": 0.007401967048645019, "loss": 0.3050366759300232, "decode.loss_ce": 0.19663762375712396, "decode.acc_seg": 90.35408782958984, "aux.loss_ce": 0.1083990454673767, "aux.acc_seg": 87.7359390258789, "time": 1.1136805772781373, "iter": 74700, "memory": 8704, "step": 74700} +{"lr": 0.005717649022553201, "data_time": 0.008125662803649902, "loss": 0.40154346376657485, "decode.loss_ce": 0.25474968999624253, "decode.acc_seg": 97.67343139648438, "aux.loss_ce": 0.14679378271102905, "aux.acc_seg": 94.01496887207031, "time": 1.1147981405258178, "iter": 74750, "memory": 8704, "step": 74750} +{"lr": 0.005714683607644936, "data_time": 0.004858851432800293, "loss": 0.5031491875648498, "decode.loss_ce": 0.30545559972524644, "decode.acc_seg": 94.14850616455078, "aux.loss_ce": 0.1976935938000679, "aux.acc_seg": 82.67250061035156, "time": 1.112323808670044, "iter": 74800, "memory": 8703, "step": 74800} +{"lr": 0.005711718018704859, "data_time": 0.008064675331115722, "loss": 0.5423176109790802, "decode.loss_ce": 0.3423972845077515, "decode.acc_seg": 92.72613525390625, "aux.loss_ce": 0.19992033019661903, "aux.acc_seg": 80.06108093261719, "time": 1.1143282890319823, "iter": 74850, "memory": 8704, "step": 74850} +{"lr": 0.005708752255620552, "data_time": 0.0065395116806030275, "loss": 0.4041396677494049, "decode.loss_ce": 0.2482263572514057, "decode.acc_seg": 85.74131774902344, "aux.loss_ce": 0.15591330975294113, "aux.acc_seg": 76.0274429321289, "time": 1.118853211402893, "iter": 74900, "memory": 8705, "step": 74900} +{"lr": 0.005705786318279466, "data_time": 0.006217598915100098, "loss": 0.3555224597454071, "decode.loss_ce": 0.22221098989248275, "decode.acc_seg": 93.26126861572266, "aux.loss_ce": 0.13331146277487277, "aux.acc_seg": 90.12228393554688, "time": 1.1132529497146606, "iter": 74950, "memory": 8704, "step": 74950} +{"lr": 0.005702820206568912, "data_time": 0.0060345172882080075, "loss": 0.3191546589136124, "decode.loss_ce": 0.17822192311286927, "decode.acc_seg": 93.8315658569336, "aux.loss_ce": 0.14093273654580116, "aux.acc_seg": 91.98360443115234, "time": 1.1130237340927125, "iter": 75000, "memory": 8704, "step": 75000} +{"lr": 0.005699853920376052, "data_time": 0.005715274810791015, "loss": 0.46700929701328275, "decode.loss_ce": 0.28966517746448517, "decode.acc_seg": 92.43875885009766, "aux.loss_ce": 0.1773441143333912, "aux.acc_seg": 79.96571350097656, "time": 1.112018084526062, "iter": 75050, "memory": 8703, "step": 75050} +{"lr": 0.0056968874595879244, "data_time": 0.007381582260131836, "loss": 0.5982298612594604, "decode.loss_ce": 0.34018269181251526, "decode.acc_seg": 94.61370849609375, "aux.loss_ce": 0.258047167211771, "aux.acc_seg": 91.5811538696289, "time": 1.1194284915924073, "iter": 75100, "memory": 8703, "step": 75100} +{"lr": 0.005693920824091411, "data_time": 0.005847501754760742, "loss": 0.45002277940511703, "decode.loss_ce": 0.2624990001320839, "decode.acc_seg": 90.9037857055664, "aux.loss_ce": 0.18752377033233641, "aux.acc_seg": 89.29252624511719, "time": 1.1169244766235351, "iter": 75150, "memory": 8703, "step": 75150} +{"lr": 0.00569095401377327, "data_time": 0.006682777404785156, "loss": 0.45213447213172914, "decode.loss_ce": 0.28517254143953324, "decode.acc_seg": 93.86475372314453, "aux.loss_ce": 0.16696192920207978, "aux.acc_seg": 90.51380157470703, "time": 1.1111651420593263, "iter": 75200, "memory": 8703, "step": 75200} +{"lr": 0.005687987028520104, "data_time": 0.006308078765869141, "loss": 0.4271157577633858, "decode.loss_ce": 0.2590436555445194, "decode.acc_seg": 89.14928436279297, "aux.loss_ce": 0.16807210072875023, "aux.acc_seg": 83.61326599121094, "time": 1.1179108142852783, "iter": 75250, "memory": 8703, "step": 75250} +{"lr": 0.00568501986821839, "data_time": 0.006162714958190918, "loss": 0.46467521488666536, "decode.loss_ce": 0.27257718816399573, "decode.acc_seg": 84.14630889892578, "aux.loss_ce": 0.19209803007543086, "aux.acc_seg": 64.28419494628906, "time": 1.113393449783325, "iter": 75300, "memory": 8704, "step": 75300} +{"lr": 0.005682052532754449, "data_time": 0.006431961059570312, "loss": 0.4464481040835381, "decode.loss_ce": 0.2945265769958496, "decode.acc_seg": 93.8425064086914, "aux.loss_ce": 0.15192153118550777, "aux.acc_seg": 91.60321044921875, "time": 1.1132003545761109, "iter": 75350, "memory": 8703, "step": 75350} +{"lr": 0.005679085022014472, "data_time": 0.007286667823791504, "loss": 0.3666158512234688, "decode.loss_ce": 0.22634745091199876, "decode.acc_seg": 94.60797119140625, "aux.loss_ce": 0.1402683973312378, "aux.acc_seg": 93.57109832763672, "time": 1.1158052444458009, "iter": 75400, "memory": 8703, "step": 75400} +{"lr": 0.005676117335884509, "data_time": 0.00907590389251709, "loss": 0.3734838545322418, "decode.loss_ce": 0.22818592935800552, "decode.acc_seg": 95.64080810546875, "aux.loss_ce": 0.14529792889952658, "aux.acc_seg": 94.48974609375, "time": 1.1171015501022339, "iter": 75450, "memory": 8703, "step": 75450} +{"lr": 0.00567314947425046, "data_time": 0.006252360343933105, "loss": 0.4930528551340103, "decode.loss_ce": 0.304376744478941, "decode.acc_seg": 94.07952117919922, "aux.loss_ce": 0.18867610394954681, "aux.acc_seg": 91.751220703125, "time": 1.110293197631836, "iter": 75500, "memory": 8703, "step": 75500} +{"lr": 0.005670181436998091, "data_time": 0.008118581771850587, "loss": 0.31885993033647536, "decode.loss_ce": 0.201969363540411, "decode.acc_seg": 89.29386138916016, "aux.loss_ce": 0.11689056642353535, "aux.acc_seg": 88.19160461425781, "time": 1.121699857711792, "iter": 75550, "memory": 8704, "step": 75550} +{"lr": 0.005667213224013022, "data_time": 0.007898569107055664, "loss": 0.37765385806560514, "decode.loss_ce": 0.21826334297657013, "decode.acc_seg": 93.3450698852539, "aux.loss_ce": 0.15939051210880278, "aux.acc_seg": 91.76094818115234, "time": 1.1198510885238648, "iter": 75600, "memory": 8704, "step": 75600} +{"lr": 0.005664244835180731, "data_time": 0.006547451019287109, "loss": 0.3666658654808998, "decode.loss_ce": 0.21886065900325774, "decode.acc_seg": 90.7510757446289, "aux.loss_ce": 0.1478052020072937, "aux.acc_seg": 74.45341491699219, "time": 1.112833023071289, "iter": 75650, "memory": 8703, "step": 75650} +{"lr": 0.0056612762703865584, "data_time": 0.005350255966186523, "loss": 0.4348823636770248, "decode.loss_ce": 0.27345760315656664, "decode.acc_seg": 82.6518325805664, "aux.loss_ce": 0.16142476052045823, "aux.acc_seg": 79.21587371826172, "time": 1.1112358331680299, "iter": 75700, "memory": 8704, "step": 75700} +{"lr": 0.005658307529515693, "data_time": 0.005537676811218262, "loss": 0.44003500118851663, "decode.loss_ce": 0.2631111077964306, "decode.acc_seg": 93.7459945678711, "aux.loss_ce": 0.1769238945096731, "aux.acc_seg": 89.4842758178711, "time": 1.1170746088027954, "iter": 75750, "memory": 8703, "step": 75750} +{"lr": 0.005655338612453187, "data_time": 0.007031297683715821, "loss": 0.5924414992332458, "decode.loss_ce": 0.3730308756232262, "decode.acc_seg": 92.51053619384766, "aux.loss_ce": 0.21941062733530997, "aux.acc_seg": 89.8539047241211, "time": 1.1171987295150756, "iter": 75800, "memory": 8704, "step": 75800} +{"lr": 0.005652369519083951, "data_time": 0.005898904800415039, "loss": 0.45265655517578124, "decode.loss_ce": 0.2842535927891731, "decode.acc_seg": 90.81077575683594, "aux.loss_ce": 0.16840295791625975, "aux.acc_seg": 82.87251281738281, "time": 1.112386655807495, "iter": 75850, "memory": 8703, "step": 75850} +{"lr": 0.005649400249292736, "data_time": 0.00789637565612793, "loss": 0.3233234375715256, "decode.loss_ce": 0.19419943764805794, "decode.acc_seg": 96.04447174072266, "aux.loss_ce": 0.1291240058839321, "aux.acc_seg": 92.22030639648438, "time": 1.117953634262085, "iter": 75900, "memory": 8703, "step": 75900} +{"lr": 0.005646430802964179, "data_time": 0.006932783126831055, "loss": 0.32975804060697556, "decode.loss_ce": 0.1841414675116539, "decode.acc_seg": 92.8792953491211, "aux.loss_ce": 0.14561657160520552, "aux.acc_seg": 83.68797302246094, "time": 1.1163586616516112, "iter": 75950, "memory": 8703, "step": 75950} +{"lr": 0.005643461179982739, "data_time": 0.007766819000244141, "loss": 0.4207398876547813, "decode.loss_ce": 0.2640893265604973, "decode.acc_seg": 92.39126586914062, "aux.loss_ce": 0.15665056705474853, "aux.acc_seg": 85.13984680175781, "time": 1.1171234846115112, "iter": 76000, "memory": 8703, "step": 76000} +{"lr": 0.005640491380232756, "data_time": 0.007782411575317383, "loss": 0.3523730605840683, "decode.loss_ce": 0.22036280557513238, "decode.acc_seg": 93.24063110351562, "aux.loss_ce": 0.1320102524012327, "aux.acc_seg": 91.96009826660156, "time": 1.1168903589248658, "iter": 76050, "memory": 8703, "step": 76050} +{"lr": 0.005637521403598416, "data_time": 0.007002568244934082, "loss": 0.4148349821567535, "decode.loss_ce": 0.2513013884425163, "decode.acc_seg": 94.96639251708984, "aux.loss_ce": 0.1635335896164179, "aux.acc_seg": 93.04906463623047, "time": 1.1176125526428222, "iter": 76100, "memory": 8703, "step": 76100} +{"lr": 0.005634551249963762, "data_time": 0.006731486320495606, "loss": 0.3842957466840744, "decode.loss_ce": 0.224930027872324, "decode.acc_seg": 94.17692565917969, "aux.loss_ce": 0.1593657173216343, "aux.acc_seg": 91.54154205322266, "time": 1.1115145444869996, "iter": 76150, "memory": 8704, "step": 76150} +{"lr": 0.005631580919212684, "data_time": 0.0070562601089477536, "loss": 0.40877319425344466, "decode.loss_ce": 0.26033485531806944, "decode.acc_seg": 81.90090942382812, "aux.loss_ce": 0.14843834117054938, "aux.acc_seg": 81.32012176513672, "time": 1.1150828838348388, "iter": 76200, "memory": 8703, "step": 76200} +{"lr": 0.005628610411228939, "data_time": 0.007979655265808105, "loss": 0.37914464324712754, "decode.loss_ce": 0.2293156884610653, "decode.acc_seg": 94.1019058227539, "aux.loss_ce": 0.14982895106077193, "aux.acc_seg": 89.26929473876953, "time": 1.1179905891418458, "iter": 76250, "memory": 8704, "step": 76250} +{"lr": 0.00562563972589613, "data_time": 0.007745289802551269, "loss": 0.35888646095991134, "decode.loss_ce": 0.23033176809549333, "decode.acc_seg": 95.85161590576172, "aux.loss_ce": 0.12855468802154063, "aux.acc_seg": 95.93533325195312, "time": 1.1164543867111205, "iter": 76300, "memory": 8704, "step": 76300} +{"lr": 0.005622668863097711, "data_time": 0.00684967041015625, "loss": 0.5329829901456833, "decode.loss_ce": 0.2976961426436901, "decode.acc_seg": 91.31698608398438, "aux.loss_ce": 0.23528684563934804, "aux.acc_seg": 82.92083740234375, "time": 1.116655707359314, "iter": 76350, "memory": 8703, "step": 76350} +{"lr": 0.005619697822716998, "data_time": 0.007696366310119629, "loss": 0.40460877269506457, "decode.loss_ce": 0.24255296662449838, "decode.acc_seg": 96.88069915771484, "aux.loss_ce": 0.16205580197274685, "aux.acc_seg": 96.47502136230469, "time": 1.1218993425369264, "iter": 76400, "memory": 8704, "step": 76400} +{"lr": 0.005616726604637155, "data_time": 0.007514476776123047, "loss": 0.4604083314538002, "decode.loss_ce": 0.2801209717988968, "decode.acc_seg": 94.8770523071289, "aux.loss_ce": 0.18028736636042594, "aux.acc_seg": 94.59114074707031, "time": 1.1247791051864624, "iter": 76450, "memory": 8704, "step": 76450} +{"lr": 0.005613755208741201, "data_time": 0.006688904762268066, "loss": 0.40158753246068957, "decode.loss_ce": 0.23338362351059913, "decode.acc_seg": 96.91168212890625, "aux.loss_ce": 0.1682039063423872, "aux.acc_seg": 93.13341522216797, "time": 1.1149118661880493, "iter": 76500, "memory": 8703, "step": 76500} +{"lr": 0.005610783634912019, "data_time": 0.006501007080078125, "loss": 0.5052972048521042, "decode.loss_ce": 0.32508707642555235, "decode.acc_seg": 94.0114974975586, "aux.loss_ce": 0.18021012842655182, "aux.acc_seg": 93.49174499511719, "time": 1.113933229446411, "iter": 76550, "memory": 8703, "step": 76550} +{"lr": 0.005607811883032322, "data_time": 0.006491565704345703, "loss": 0.26125281155109403, "decode.loss_ce": 0.1610843852162361, "decode.acc_seg": 94.77169799804688, "aux.loss_ce": 0.10016842260956764, "aux.acc_seg": 93.80518341064453, "time": 1.1157894611358643, "iter": 76600, "memory": 8704, "step": 76600} +{"lr": 0.0056048399529846915, "data_time": 0.005568861961364746, "loss": 0.5163310542702675, "decode.loss_ce": 0.341630532592535, "decode.acc_seg": 86.9537353515625, "aux.loss_ce": 0.17470052018761634, "aux.acc_seg": 83.11843872070312, "time": 1.1109429597854614, "iter": 76650, "memory": 8703, "step": 76650} +{"lr": 0.005601867844651554, "data_time": 0.00672905445098877, "loss": 0.4936967045068741, "decode.loss_ce": 0.3146800123155117, "decode.acc_seg": 93.2294692993164, "aux.loss_ce": 0.17901669144630433, "aux.acc_seg": 87.91936492919922, "time": 1.1214259147644043, "iter": 76700, "memory": 8704, "step": 76700} +{"lr": 0.005598895557915191, "data_time": 0.007498788833618164, "loss": 0.3348827600479126, "decode.loss_ce": 0.1861492946743965, "decode.acc_seg": 89.76376342773438, "aux.loss_ce": 0.14873346425592898, "aux.acc_seg": 78.91514587402344, "time": 1.1143088579177856, "iter": 76750, "memory": 8703, "step": 76750} +{"lr": 0.005595923092657736, "data_time": 0.009473824501037597, "loss": 0.34398104101419447, "decode.loss_ce": 0.20912414267659188, "decode.acc_seg": 90.44214630126953, "aux.loss_ce": 0.1348568953573704, "aux.acc_seg": 87.93354034423828, "time": 1.1228686571121216, "iter": 76800, "memory": 8703, "step": 76800} +{"lr": 0.005592950448761173, "data_time": 0.007700967788696289, "loss": 0.6142456024885178, "decode.loss_ce": 0.3934149816632271, "decode.acc_seg": 71.5384292602539, "aux.loss_ce": 0.22083061933517456, "aux.acc_seg": 73.13394927978516, "time": 1.1169949531555177, "iter": 76850, "memory": 8703, "step": 76850} +{"lr": 0.005589977626107335, "data_time": 0.008074450492858886, "loss": 0.3326466292142868, "decode.loss_ce": 0.19570830687880517, "decode.acc_seg": 92.01004791259766, "aux.loss_ce": 0.13693831861019135, "aux.acc_seg": 85.62793731689453, "time": 1.1172626972198487, "iter": 76900, "memory": 8703, "step": 76900} +{"lr": 0.005587004624577906, "data_time": 0.006918954849243164, "loss": 0.41519488096237184, "decode.loss_ce": 0.26074475720524787, "decode.acc_seg": 95.35301208496094, "aux.loss_ce": 0.15445012077689171, "aux.acc_seg": 94.34175109863281, "time": 1.1162607431411744, "iter": 76950, "memory": 8704, "step": 76950} +{"lr": 0.005584031444054428, "data_time": 0.007144427299499512, "loss": 0.558397576212883, "decode.loss_ce": 0.35157997310161593, "decode.acc_seg": 94.19390106201172, "aux.loss_ce": 0.20681761354207992, "aux.acc_seg": 92.27974700927734, "time": 1.1156652450561524, "iter": 77000, "memory": 8703, "step": 77000} +{"lr": 0.005581058084418282, "data_time": 0.007869338989257813, "loss": 0.4708246111869812, "decode.loss_ce": 0.29924142733216286, "decode.acc_seg": 97.29029083251953, "aux.loss_ce": 0.17158318646252155, "aux.acc_seg": 97.12155151367188, "time": 1.1181573390960693, "iter": 77050, "memory": 8704, "step": 77050} +{"lr": 0.005578084545550709, "data_time": 0.007251167297363281, "loss": 0.4303218722343445, "decode.loss_ce": 0.28286459781229495, "decode.acc_seg": 93.3786392211914, "aux.loss_ce": 0.14745727628469468, "aux.acc_seg": 91.90718078613281, "time": 1.1125768184661866, "iter": 77100, "memory": 8704, "step": 77100} +{"lr": 0.0055751108273327885, "data_time": 0.005713510513305664, "loss": 0.4020350508391857, "decode.loss_ce": 0.22993559688329696, "decode.acc_seg": 91.8121337890625, "aux.loss_ce": 0.1720994558185339, "aux.acc_seg": 85.8154296875, "time": 1.111485528945923, "iter": 77150, "memory": 8704, "step": 77150} +{"lr": 0.005572136929645455, "data_time": 0.007675337791442871, "loss": 0.29037942439317704, "decode.loss_ce": 0.187299994379282, "decode.acc_seg": 91.12446594238281, "aux.loss_ce": 0.10307943113148213, "aux.acc_seg": 91.21170043945312, "time": 1.112493872642517, "iter": 77200, "memory": 8703, "step": 77200} +{"lr": 0.005569162852369497, "data_time": 0.0069653034210205075, "loss": 0.3782463908195496, "decode.loss_ce": 0.2444360487163067, "decode.acc_seg": 92.71774291992188, "aux.loss_ce": 0.13381033688783645, "aux.acc_seg": 82.4091567993164, "time": 1.11243736743927, "iter": 77250, "memory": 8704, "step": 77250} +{"lr": 0.005566188595385544, "data_time": 0.005575656890869141, "loss": 0.42485436648130415, "decode.loss_ce": 0.26465125381946564, "decode.acc_seg": 93.00708770751953, "aux.loss_ce": 0.16020311340689658, "aux.acc_seg": 87.725830078125, "time": 1.1120346307754516, "iter": 77300, "memory": 8703, "step": 77300} +{"lr": 0.0055632141585740804, "data_time": 0.00702669620513916, "loss": 0.3381133392453194, "decode.loss_ce": 0.2078258626163006, "decode.acc_seg": 97.25672149658203, "aux.loss_ce": 0.13028747513890265, "aux.acc_seg": 92.95304107666016, "time": 1.1156014919281005, "iter": 77350, "memory": 8704, "step": 77350} +{"lr": 0.005560239541815426, "data_time": 0.0065967321395874025, "loss": 0.5503292351961135, "decode.loss_ce": 0.3550094023346901, "decode.acc_seg": 93.19915008544922, "aux.loss_ce": 0.19531982839107515, "aux.acc_seg": 91.53446197509766, "time": 1.1101096391677856, "iter": 77400, "memory": 8704, "step": 77400} +{"lr": 0.005557264744989764, "data_time": 0.0048498868942260746, "loss": 0.43870249539613726, "decode.loss_ce": 0.2787445142865181, "decode.acc_seg": 93.86132049560547, "aux.loss_ce": 0.1599579881876707, "aux.acc_seg": 93.19063568115234, "time": 1.1098805665969849, "iter": 77450, "memory": 8703, "step": 77450} +{"lr": 0.005554289767977114, "data_time": 0.006916213035583496, "loss": 0.6131133884191513, "decode.loss_ce": 0.41766530424356463, "decode.acc_seg": 95.21160125732422, "aux.loss_ce": 0.19544808939099312, "aux.acc_seg": 89.14921569824219, "time": 1.1119357585906982, "iter": 77500, "memory": 8703, "step": 77500} +{"lr": 0.005551314610657359, "data_time": 0.006981587409973145, "loss": 0.3529493764042854, "decode.loss_ce": 0.21678912714123727, "decode.acc_seg": 87.63853454589844, "aux.loss_ce": 0.13616025000810622, "aux.acc_seg": 77.63970184326172, "time": 1.1165557861328126, "iter": 77550, "memory": 8704, "step": 77550} +{"lr": 0.005548339272910204, "data_time": 0.008757495880126953, "loss": 0.5017162844538688, "decode.loss_ce": 0.3144398801028728, "decode.acc_seg": 93.47737121582031, "aux.loss_ce": 0.18727640770375728, "aux.acc_seg": 91.9473648071289, "time": 1.115910577774048, "iter": 77600, "memory": 8704, "step": 77600} +{"lr": 0.0055453637546152195, "data_time": 0.007861495018005371, "loss": 0.48263081163167953, "decode.loss_ce": 0.3216183617711067, "decode.acc_seg": 97.27960968017578, "aux.loss_ce": 0.1610124461352825, "aux.acc_seg": 96.99121856689453, "time": 1.1139081716537476, "iter": 77650, "memory": 8704, "step": 77650} +{"lr": 0.005542388055651823, "data_time": 0.006324362754821777, "loss": 0.25868309289216995, "decode.loss_ce": 0.16568231135606765, "decode.acc_seg": 95.44117736816406, "aux.loss_ce": 0.09300077892839909, "aux.acc_seg": 93.01630401611328, "time": 1.1130069971084595, "iter": 77700, "memory": 8704, "step": 77700} +{"lr": 0.005539412175899267, "data_time": 0.005891847610473633, "loss": 0.423365318775177, "decode.loss_ce": 0.24821948409080505, "decode.acc_seg": 94.80596923828125, "aux.loss_ce": 0.17514583319425583, "aux.acc_seg": 90.9311294555664, "time": 1.115031123161316, "iter": 77750, "memory": 8704, "step": 77750} +{"lr": 0.005536436115236658, "data_time": 0.006910848617553711, "loss": 0.4196389868855476, "decode.loss_ce": 0.2847419634461403, "decode.acc_seg": 89.40397644042969, "aux.loss_ce": 0.1348970215767622, "aux.acc_seg": 84.19882202148438, "time": 1.115427303314209, "iter": 77800, "memory": 8704, "step": 77800} +{"lr": 0.005533459873542939, "data_time": 0.006085991859436035, "loss": 0.4457986354827881, "decode.loss_ce": 0.28876643180847167, "decode.acc_seg": 91.40325927734375, "aux.loss_ce": 0.15703219994902612, "aux.acc_seg": 87.39903259277344, "time": 1.1176614046096802, "iter": 77850, "memory": 8703, "step": 77850} +{"lr": 0.0055304834506969104, "data_time": 0.00631711483001709, "loss": 0.4156628519296646, "decode.loss_ce": 0.2612103134393692, "decode.acc_seg": 74.96324920654297, "aux.loss_ce": 0.15445254147052764, "aux.acc_seg": 81.00547790527344, "time": 1.1138505697250367, "iter": 77900, "memory": 8704, "step": 77900} +{"lr": 0.005527506846577214, "data_time": 0.0065776586532592775, "loss": 0.2823211312294006, "decode.loss_ce": 0.16788528263568878, "decode.acc_seg": 89.13516998291016, "aux.loss_ce": 0.11443584896624089, "aux.acc_seg": 88.17131805419922, "time": 1.1128435850143432, "iter": 77950, "memory": 8704, "step": 77950} +{"lr": 0.005524530061062325, "data_time": 0.006717395782470703, "loss": 0.5993960827589035, "decode.loss_ce": 0.39569622501730917, "decode.acc_seg": 95.03014373779297, "aux.loss_ce": 0.20369985476136207, "aux.acc_seg": 92.30947875976562, "time": 1.1180215358734131, "iter": 78000, "memory": 8704, "step": 78000} +{"lr": 0.0055215530940305796, "data_time": 0.006447815895080566, "loss": 0.41099193692207336, "decode.loss_ce": 0.2648567855358124, "decode.acc_seg": 93.99765014648438, "aux.loss_ce": 0.1461351566016674, "aux.acc_seg": 90.39684295654297, "time": 1.1132761478424071, "iter": 78050, "memory": 8703, "step": 78050} +{"lr": 0.005518575945360154, "data_time": 0.006049323081970215, "loss": 0.6404501557350158, "decode.loss_ce": 0.41311450153589246, "decode.acc_seg": 93.8452377319336, "aux.loss_ce": 0.22733565643429757, "aux.acc_seg": 92.07401275634766, "time": 1.1129716157913208, "iter": 78100, "memory": 8703, "step": 78100} +{"lr": 0.005515598614929059, "data_time": 0.007221126556396484, "loss": 0.4323942080140114, "decode.loss_ce": 0.27304811477661134, "decode.acc_seg": 95.71342468261719, "aux.loss_ce": 0.15934609472751618, "aux.acc_seg": 92.51505279541016, "time": 1.1126019477844238, "iter": 78150, "memory": 8703, "step": 78150} +{"lr": 0.005512621102615162, "data_time": 0.006014466285705566, "loss": 0.43673298954963685, "decode.loss_ce": 0.2765874072909355, "decode.acc_seg": 94.98857879638672, "aux.loss_ce": 0.16014558598399162, "aux.acc_seg": 94.496337890625, "time": 1.1149803876876831, "iter": 78200, "memory": 8704, "step": 78200} +{"lr": 0.005509643408296153, "data_time": 0.006268000602722168, "loss": 0.4136046230792999, "decode.loss_ce": 0.2550878316164017, "decode.acc_seg": 96.68782043457031, "aux.loss_ce": 0.15851680114865302, "aux.acc_seg": 94.65121459960938, "time": 1.113739013671875, "iter": 78250, "memory": 8704, "step": 78250} +{"lr": 0.005506665531849585, "data_time": 0.006301021575927735, "loss": 0.3609951972961426, "decode.loss_ce": 0.22972095161676406, "decode.acc_seg": 95.18025207519531, "aux.loss_ce": 0.13127424269914628, "aux.acc_seg": 94.33739471435547, "time": 1.1126509189605713, "iter": 78300, "memory": 8704, "step": 78300} +{"lr": 0.005503687473152852, "data_time": 0.005441999435424805, "loss": 0.49042717218399046, "decode.loss_ce": 0.3238896243274212, "decode.acc_seg": 86.15143585205078, "aux.loss_ce": 0.16653755083680152, "aux.acc_seg": 83.03018951416016, "time": 1.1160073280334473, "iter": 78350, "memory": 8703, "step": 78350} +{"lr": 0.005500709232083182, "data_time": 0.007787060737609863, "loss": 0.3623239204287529, "decode.loss_ce": 0.2207147590816021, "decode.acc_seg": 94.66736602783203, "aux.loss_ce": 0.14160916209220886, "aux.acc_seg": 94.3802490234375, "time": 1.1171449184417725, "iter": 78400, "memory": 8703, "step": 78400} +{"lr": 0.005497730808517644, "data_time": 0.00717620849609375, "loss": 0.4151473164558411, "decode.loss_ce": 0.25590613186359407, "decode.acc_seg": 82.65569305419922, "aux.loss_ce": 0.1592411793768406, "aux.acc_seg": 70.06785583496094, "time": 1.1148689031600951, "iter": 78450, "memory": 8703, "step": 78450} +{"lr": 0.005494752202333157, "data_time": 0.008396100997924805, "loss": 0.30233302563428877, "decode.loss_ce": 0.17885223478078843, "decode.acc_seg": 85.45258331298828, "aux.loss_ce": 0.12348079159855843, "aux.acc_seg": 79.66429138183594, "time": 1.120466375350952, "iter": 78500, "memory": 8704, "step": 78500} +{"lr": 0.005491773413406477, "data_time": 0.007984375953674317, "loss": 0.38664021641016005, "decode.loss_ce": 0.22975155860185623, "decode.acc_seg": 84.94268798828125, "aux.loss_ce": 0.15688864700496197, "aux.acc_seg": 68.28703308105469, "time": 1.1147496938705443, "iter": 78550, "memory": 8704, "step": 78550} +{"lr": 0.005488794441614201, "data_time": 0.007993793487548828, "loss": 0.3895371899008751, "decode.loss_ce": 0.22881771996617317, "decode.acc_seg": 95.86861419677734, "aux.loss_ce": 0.16071946173906326, "aux.acc_seg": 94.97921752929688, "time": 1.1174721479415894, "iter": 78600, "memory": 8703, "step": 78600} +{"lr": 0.005485815286832766, "data_time": 0.0057752132415771484, "loss": 0.2962708741426468, "decode.loss_ce": 0.18010009229183196, "decode.acc_seg": 90.6754150390625, "aux.loss_ce": 0.11617078445851803, "aux.acc_seg": 81.3935546875, "time": 1.1104625701904296, "iter": 78650, "memory": 8703, "step": 78650} +{"lr": 0.005482835948938453, "data_time": 0.007602190971374512, "loss": 0.41141665577888487, "decode.loss_ce": 0.2618897996842861, "decode.acc_seg": 96.62545013427734, "aux.loss_ce": 0.1495268564671278, "aux.acc_seg": 80.15251159667969, "time": 1.118616271018982, "iter": 78700, "memory": 8704, "step": 78700} +{"lr": 0.005479856427807385, "data_time": 0.008227944374084473, "loss": 0.34447709918022157, "decode.loss_ce": 0.2080050937831402, "decode.acc_seg": 95.24040222167969, "aux.loss_ce": 0.1364720068871975, "aux.acc_seg": 94.3156509399414, "time": 1.117399525642395, "iter": 78750, "memory": 8704, "step": 78750} +{"lr": 0.005476876723315509, "data_time": 0.007627439498901367, "loss": 0.3534850388765335, "decode.loss_ce": 0.21189636886119842, "decode.acc_seg": 95.26168060302734, "aux.loss_ce": 0.14158866927027702, "aux.acc_seg": 93.9727554321289, "time": 1.1175196409225463, "iter": 78800, "memory": 8704, "step": 78800} +{"lr": 0.005473896835338633, "data_time": 0.0062602519989013675, "loss": 0.4990635484457016, "decode.loss_ce": 0.3258472114801407, "decode.acc_seg": 91.59151458740234, "aux.loss_ce": 0.17321633771061898, "aux.acc_seg": 91.12777709960938, "time": 1.1122002601623535, "iter": 78850, "memory": 8703, "step": 78850} +{"lr": 0.005470916763752392, "data_time": 0.0050106048583984375, "loss": 0.37928349524736404, "decode.loss_ce": 0.24149593710899353, "decode.acc_seg": 95.58006286621094, "aux.loss_ce": 0.13778754845261573, "aux.acc_seg": 92.55516815185547, "time": 1.107847476005554, "iter": 78900, "memory": 8704, "step": 78900} +{"lr": 0.005467936508432263, "data_time": 0.00655210018157959, "loss": 0.3010698229074478, "decode.loss_ce": 0.18369968757033348, "decode.acc_seg": 93.71426391601562, "aux.loss_ce": 0.11737012937664985, "aux.acc_seg": 93.243408203125, "time": 1.1133501291275025, "iter": 78950, "memory": 8704, "step": 78950} +{"lr": 0.005464956069253562, "data_time": 0.007436537742614746, "loss": 0.42255235463380814, "decode.loss_ce": 0.2656711772084236, "decode.acc_seg": 94.25655364990234, "aux.loss_ce": 0.15688117668032647, "aux.acc_seg": 92.28579711914062, "time": 1.1165568828582764, "iter": 79000, "memory": 8704, "step": 79000} +{"lr": 0.005461975446091444, "data_time": 0.0069620609283447266, "loss": 0.7146867692470551, "decode.loss_ce": 0.43935018852353097, "decode.acc_seg": 81.44022369384766, "aux.loss_ce": 0.2753365829586983, "aux.acc_seg": 78.29354095458984, "time": 1.111210560798645, "iter": 79050, "memory": 8704, "step": 79050} +{"lr": 0.005458994638820901, "data_time": 0.006603336334228516, "loss": 0.4560872226953506, "decode.loss_ce": 0.27335436567664145, "decode.acc_seg": 94.04296875, "aux.loss_ce": 0.18273285441100598, "aux.acc_seg": 89.41192626953125, "time": 1.1143439769744874, "iter": 79100, "memory": 8704, "step": 79100} +{"lr": 0.005456013647316761, "data_time": 0.006268787384033203, "loss": 0.36572064459323883, "decode.loss_ce": 0.21588588804006575, "decode.acc_seg": 94.26676177978516, "aux.loss_ce": 0.14983475282788278, "aux.acc_seg": 91.74168395996094, "time": 1.1130820989608765, "iter": 79150, "memory": 8704, "step": 79150} +{"lr": 0.005453032471453695, "data_time": 0.006127262115478515, "loss": 0.3868263065814972, "decode.loss_ce": 0.239948520809412, "decode.acc_seg": 97.9024887084961, "aux.loss_ce": 0.146877783164382, "aux.acc_seg": 96.49715423583984, "time": 1.1151999711990357, "iter": 79200, "memory": 8703, "step": 79200} +{"lr": 0.005450051111106205, "data_time": 0.006150722503662109, "loss": 0.44804807007312775, "decode.loss_ce": 0.2714062675833702, "decode.acc_seg": 92.9871826171875, "aux.loss_ce": 0.17664180360734463, "aux.acc_seg": 87.59867095947266, "time": 1.1106279611587524, "iter": 79250, "memory": 8703, "step": 79250} +{"lr": 0.005447069566148628, "data_time": 0.005448579788208008, "loss": 0.5108517348766327, "decode.loss_ce": 0.3002060055732727, "decode.acc_seg": 72.160400390625, "aux.loss_ce": 0.21064571887254716, "aux.acc_seg": 69.921875, "time": 1.112827968597412, "iter": 79300, "memory": 8704, "step": 79300} +{"lr": 0.005444087836455145, "data_time": 0.006085252761840821, "loss": 0.5608744710683823, "decode.loss_ce": 0.3363844096660614, "decode.acc_seg": 78.10897827148438, "aux.loss_ce": 0.22449006214737893, "aux.acc_seg": 72.32061767578125, "time": 1.1143166542053222, "iter": 79350, "memory": 8704, "step": 79350} +{"lr": 0.0054411059218997734, "data_time": 0.006050419807434082, "loss": 0.5112051784992218, "decode.loss_ce": 0.2997791215777397, "decode.acc_seg": 95.42694091796875, "aux.loss_ce": 0.21142606437206268, "aux.acc_seg": 84.3765869140625, "time": 1.1118754625320435, "iter": 79400, "memory": 8704, "step": 79400} +{"lr": 0.005438123822356352, "data_time": 0.00581064224243164, "loss": 0.4002517655491829, "decode.loss_ce": 0.23224976658821106, "decode.acc_seg": 96.41049194335938, "aux.loss_ce": 0.16800199449062347, "aux.acc_seg": 91.0669937133789, "time": 1.1118038892745972, "iter": 79450, "memory": 8704, "step": 79450} +{"lr": 0.005435141537698579, "data_time": 0.0072658777236938475, "loss": 0.38697687685489657, "decode.loss_ce": 0.2577180489897728, "decode.acc_seg": 92.44091796875, "aux.loss_ce": 0.12925882823765278, "aux.acc_seg": 92.181396484375, "time": 1.1146987199783325, "iter": 79500, "memory": 8703, "step": 79500} +{"lr": 0.005432159067799969, "data_time": 0.007998776435852051, "loss": 0.3412589952349663, "decode.loss_ce": 0.19720651507377623, "decode.acc_seg": 95.24040222167969, "aux.loss_ce": 0.1440524809062481, "aux.acc_seg": 91.70494079589844, "time": 1.112960648536682, "iter": 79550, "memory": 8704, "step": 79550} +{"lr": 0.005429176412533878, "data_time": 0.006313848495483399, "loss": 0.4025279864668846, "decode.loss_ce": 0.2370931826531887, "decode.acc_seg": 92.71337890625, "aux.loss_ce": 0.1654348038136959, "aux.acc_seg": 90.15719604492188, "time": 1.1114116191864014, "iter": 79600, "memory": 8704, "step": 79600} +{"lr": 0.005426193571773495, "data_time": 0.00794966220855713, "loss": 0.45080294609069826, "decode.loss_ce": 0.2846733763813972, "decode.acc_seg": 95.76673889160156, "aux.loss_ce": 0.16612957492470742, "aux.acc_seg": 88.88694763183594, "time": 1.1135310411453248, "iter": 79650, "memory": 8704, "step": 79650} +{"lr": 0.005423210545391839, "data_time": 0.006979560852050782, "loss": 0.3617421373724937, "decode.loss_ce": 0.2277390718460083, "decode.acc_seg": 93.58831787109375, "aux.loss_ce": 0.13400306627154351, "aux.acc_seg": 91.64085388183594, "time": 1.1156044483184815, "iter": 79700, "memory": 8704, "step": 79700} +{"lr": 0.005420227333261774, "data_time": 0.007105112075805664, "loss": 0.426258297264576, "decode.loss_ce": 0.23743261471390725, "decode.acc_seg": 97.59832763671875, "aux.loss_ce": 0.18882567919790744, "aux.acc_seg": 91.5833740234375, "time": 1.1162622928619386, "iter": 79750, "memory": 8704, "step": 79750} +{"lr": 0.005417243935255992, "data_time": 0.006811261177062988, "loss": 0.30948298126459123, "decode.loss_ce": 0.18323247134685516, "decode.acc_seg": 91.47529602050781, "aux.loss_ce": 0.12625050656497477, "aux.acc_seg": 91.4129867553711, "time": 1.1163509368896485, "iter": 79800, "memory": 8703, "step": 79800} +{"lr": 0.005414260351247018, "data_time": 0.007083082199096679, "loss": 0.5952945947647095, "decode.loss_ce": 0.3458909034729004, "decode.acc_seg": 91.89834594726562, "aux.loss_ce": 0.24940370246767998, "aux.acc_seg": 85.54960632324219, "time": 1.1160242557525635, "iter": 79850, "memory": 8704, "step": 79850} +{"lr": 0.0054112765811072105, "data_time": 0.007086634635925293, "loss": 0.32655966430902483, "decode.loss_ce": 0.1938105568289757, "decode.acc_seg": 95.31656646728516, "aux.loss_ce": 0.1327491044998169, "aux.acc_seg": 91.01791381835938, "time": 1.1164117097854613, "iter": 79900, "memory": 8703, "step": 79900} +{"lr": 0.005408292624708765, "data_time": 0.007105135917663574, "loss": 0.354389451444149, "decode.loss_ce": 0.20374264866113662, "decode.acc_seg": 97.26982879638672, "aux.loss_ce": 0.15064679719507695, "aux.acc_seg": 96.18392944335938, "time": 1.1109837532043456, "iter": 79950, "memory": 8704, "step": 79950} +{"lr": 0.005405308481923696, "data_time": 0.007136154174804688, "loss": 0.2839286386966705, "decode.loss_ce": 0.17554796263575553, "decode.acc_seg": 92.84236145019531, "aux.loss_ce": 0.10838067159056664, "aux.acc_seg": 92.33875274658203, "time": 1.1115131855010987, "iter": 80000, "memory": 8704, "step": 80000} +{"aAcc": 94.02, "mIoU": 65.4, "mAcc": 76.04, "data_time": 0.004078776477656257, "time": 0.2712628415992828, "step": 80000} +{"lr": 0.0054023241526238615, "data_time": 0.009114599227905274, "loss": 0.32331463098526003, "decode.loss_ce": 0.19191013649106026, "decode.acc_seg": 96.43350982666016, "aux.loss_ce": 0.13140449449419975, "aux.acc_seg": 92.56222534179688, "time": 1.1161836385726929, "iter": 80050, "memory": 8704, "step": 80050} +{"lr": 0.005399339636680947, "data_time": 0.005549168586730957, "loss": 0.3081297159194946, "decode.loss_ce": 0.18742209076881408, "decode.acc_seg": 92.828369140625, "aux.loss_ce": 0.12070762105286122, "aux.acc_seg": 90.18211364746094, "time": 1.1148527622222901, "iter": 80100, "memory": 8704, "step": 80100} +{"lr": 0.005396354933966474, "data_time": 0.0075725078582763675, "loss": 0.4238377928733826, "decode.loss_ce": 0.259366562962532, "decode.acc_seg": 97.29925537109375, "aux.loss_ce": 0.16447122544050216, "aux.acc_seg": 96.95478057861328, "time": 1.1183425664901734, "iter": 80150, "memory": 8704, "step": 80150} +{"lr": 0.005393370044351791, "data_time": 0.005504393577575683, "loss": 0.31446337401866914, "decode.loss_ce": 0.19157190173864364, "decode.acc_seg": 96.77269744873047, "aux.loss_ce": 0.12289146818220616, "aux.acc_seg": 94.35449981689453, "time": 1.1121324062347413, "iter": 80200, "memory": 8703, "step": 80200} +{"lr": 0.005390384967708075, "data_time": 0.005913138389587402, "loss": 0.48298914134502413, "decode.loss_ce": 0.2865269124507904, "decode.acc_seg": 94.48966979980469, "aux.loss_ce": 0.19646223038434982, "aux.acc_seg": 93.45556640625, "time": 1.117243218421936, "iter": 80250, "memory": 8703, "step": 80250} +{"lr": 0.00538739970390634, "data_time": 0.005327439308166504, "loss": 0.2581899479031563, "decode.loss_ce": 0.1567242845892906, "decode.acc_seg": 91.15746307373047, "aux.loss_ce": 0.10146566890180111, "aux.acc_seg": 90.76499938964844, "time": 1.1088679075241088, "iter": 80300, "memory": 8703, "step": 80300} +{"lr": 0.005384414252817429, "data_time": 0.006432271003723145, "loss": 0.3353430598974228, "decode.loss_ce": 0.19818973317742347, "decode.acc_seg": 91.79744720458984, "aux.loss_ce": 0.13715333119034767, "aux.acc_seg": 86.07711791992188, "time": 1.1132840633392334, "iter": 80350, "memory": 8703, "step": 80350} +{"lr": 0.005381428614312003, "data_time": 0.006358146667480469, "loss": 0.48675242364406585, "decode.loss_ce": 0.26910893619060516, "decode.acc_seg": 89.3915786743164, "aux.loss_ce": 0.21764348968863487, "aux.acc_seg": 91.54942321777344, "time": 1.1166683435440063, "iter": 80400, "memory": 8703, "step": 80400} +{"lr": 0.005378442788260565, "data_time": 0.005549049377441407, "loss": 0.41316568553447724, "decode.loss_ce": 0.25608326196670533, "decode.acc_seg": 95.88959503173828, "aux.loss_ce": 0.15708242654800414, "aux.acc_seg": 95.57405853271484, "time": 1.1115763664245606, "iter": 80450, "memory": 8703, "step": 80450} +{"lr": 0.005375456774533445, "data_time": 0.00708768367767334, "loss": 0.36715934574604037, "decode.loss_ce": 0.2300714984536171, "decode.acc_seg": 95.3165512084961, "aux.loss_ce": 0.1370878491550684, "aux.acc_seg": 93.07294464111328, "time": 1.1150733947753906, "iter": 80500, "memory": 8703, "step": 80500} +{"lr": 0.005372470573000801, "data_time": 0.006141304969787598, "loss": 0.40215021967887876, "decode.loss_ce": 0.2451838381588459, "decode.acc_seg": 93.0898666381836, "aux.loss_ce": 0.15696638002991675, "aux.acc_seg": 92.33086395263672, "time": 1.1094284296035766, "iter": 80550, "memory": 8704, "step": 80550} +{"lr": 0.005369484183532615, "data_time": 0.006733894348144531, "loss": 0.35334170758724215, "decode.loss_ce": 0.23180664330720901, "decode.acc_seg": 91.31958770751953, "aux.loss_ce": 0.12153505831956864, "aux.acc_seg": 87.36082458496094, "time": 1.116092324256897, "iter": 80600, "memory": 8703, "step": 80600} +{"lr": 0.005366497605998708, "data_time": 0.006469011306762695, "loss": 0.4996755808591843, "decode.loss_ce": 0.2910231128334999, "decode.acc_seg": 97.94120788574219, "aux.loss_ce": 0.20865245684981346, "aux.acc_seg": 91.57364654541016, "time": 1.1143080472946167, "iter": 80650, "memory": 8703, "step": 80650} +{"lr": 0.0053635108402687185, "data_time": 0.006694364547729492, "loss": 0.3727964460849762, "decode.loss_ce": 0.2229185000061989, "decode.acc_seg": 96.07477569580078, "aux.loss_ce": 0.14987794421613215, "aux.acc_seg": 95.41738891601562, "time": 1.1097907781600953, "iter": 80700, "memory": 8703, "step": 80700} +{"lr": 0.0053605238862121166, "data_time": 0.0061623573303222655, "loss": 0.2952006280422211, "decode.loss_ce": 0.1832858957350254, "decode.acc_seg": 94.15632629394531, "aux.loss_ce": 0.11191473305225372, "aux.acc_seg": 92.71678924560547, "time": 1.1103222846984864, "iter": 80750, "memory": 8703, "step": 80750} +{"lr": 0.005357536743698198, "data_time": 0.007424402236938477, "loss": 0.3980858951807022, "decode.loss_ce": 0.22794441655278205, "decode.acc_seg": 96.79711151123047, "aux.loss_ce": 0.17014147639274596, "aux.acc_seg": 92.3574447631836, "time": 1.1140641450881958, "iter": 80800, "memory": 8703, "step": 80800} +{"lr": 0.005354549412596082, "data_time": 0.005839681625366211, "loss": 0.3062656044960022, "decode.loss_ce": 0.18324968963861465, "decode.acc_seg": 94.57518005371094, "aux.loss_ce": 0.12301591075956822, "aux.acc_seg": 91.96090698242188, "time": 1.1101250410079957, "iter": 80850, "memory": 8704, "step": 80850} +{"lr": 0.00535156189277472, "data_time": 0.006179022789001465, "loss": 0.37697477340698243, "decode.loss_ce": 0.22850672006607056, "decode.acc_seg": 94.92454528808594, "aux.loss_ce": 0.1484680611640215, "aux.acc_seg": 89.04151916503906, "time": 1.1148584365844727, "iter": 80900, "memory": 8704, "step": 80900} +{"lr": 0.0053485741841028875, "data_time": 0.007375001907348633, "loss": 0.40369957089424136, "decode.loss_ce": 0.2562085099518299, "decode.acc_seg": 95.71469116210938, "aux.loss_ce": 0.1474910516291857, "aux.acc_seg": 88.05268096923828, "time": 1.1152379512786865, "iter": 80950, "memory": 8703, "step": 80950} +{"lr": 0.00534558628644918, "data_time": 0.006693840026855469, "loss": 0.31197638660669325, "decode.loss_ce": 0.1809646636247635, "decode.acc_seg": 95.36766052246094, "aux.loss_ce": 0.13101172707974912, "aux.acc_seg": 92.74386596679688, "time": 1.1129196643829347, "iter": 81000, "memory": 8703, "step": 81000} +{"lr": 0.005342598199682028, "data_time": 0.006902265548706055, "loss": 0.332596030831337, "decode.loss_ce": 0.21138231754302977, "decode.acc_seg": 89.41637420654297, "aux.loss_ce": 0.12121371403336526, "aux.acc_seg": 87.40564727783203, "time": 1.1137296199798583, "iter": 81050, "memory": 8703, "step": 81050} +{"lr": 0.005339609923669687, "data_time": 0.009018993377685547, "loss": 0.36988070905208587, "decode.loss_ce": 0.22319598793983458, "decode.acc_seg": 90.78871154785156, "aux.loss_ce": 0.14668471738696098, "aux.acc_seg": 87.58932495117188, "time": 1.1212945222854613, "iter": 81100, "memory": 8703, "step": 81100} +{"lr": 0.0053366214582802295, "data_time": 0.006279087066650391, "loss": 0.6106125831604003, "decode.loss_ce": 0.3870452791452408, "decode.acc_seg": 89.82124328613281, "aux.loss_ce": 0.22356730103492736, "aux.acc_seg": 84.65919494628906, "time": 1.1082608699798584, "iter": 81150, "memory": 8703, "step": 81150} +{"lr": 0.0053336328033815545, "data_time": 0.007548379898071289, "loss": 0.3901102885603905, "decode.loss_ce": 0.23467407152056693, "decode.acc_seg": 94.63971710205078, "aux.loss_ce": 0.15543621480464936, "aux.acc_seg": 90.11268615722656, "time": 1.1132648229598998, "iter": 81200, "memory": 8705, "step": 81200} +{"lr": 0.005330643958841388, "data_time": 0.004952454566955566, "loss": 0.32994411885738373, "decode.loss_ce": 0.20465376526117324, "decode.acc_seg": 91.13489532470703, "aux.loss_ce": 0.1252903539687395, "aux.acc_seg": 87.3038558959961, "time": 1.1136210918426515, "iter": 81250, "memory": 8704, "step": 81250} +{"lr": 0.00532765492452727, "data_time": 0.00658571720123291, "loss": 0.4404554173350334, "decode.loss_ce": 0.2697093829512596, "decode.acc_seg": 91.12179565429688, "aux.loss_ce": 0.1707460295408964, "aux.acc_seg": 85.46587371826172, "time": 1.1168764591217042, "iter": 81300, "memory": 8704, "step": 81300} +{"lr": 0.00532466570030658, "data_time": 0.008032083511352539, "loss": 0.2932800345122814, "decode.loss_ce": 0.1782064937055111, "decode.acc_seg": 94.28678894042969, "aux.loss_ce": 0.11507354527711869, "aux.acc_seg": 89.85588836669922, "time": 1.1124126672744752, "iter": 81350, "memory": 8704, "step": 81350} +{"lr": 0.005321676286046513, "data_time": 0.006942629814147949, "loss": 0.25246601849794387, "decode.loss_ce": 0.1486145079135895, "decode.acc_seg": 93.10150146484375, "aux.loss_ce": 0.10385151542723178, "aux.acc_seg": 84.83536529541016, "time": 1.1151344060897828, "iter": 81400, "memory": 8703, "step": 81400} +{"lr": 0.005318686681614081, "data_time": 0.00649263858795166, "loss": 0.3020610064268112, "decode.loss_ce": 0.1901051416993141, "decode.acc_seg": 97.08893585205078, "aux.loss_ce": 0.11195586174726486, "aux.acc_seg": 95.32845306396484, "time": 1.1171635866165162, "iter": 81450, "memory": 8703, "step": 81450} +{"lr": 0.005315696886876119, "data_time": 0.0061266422271728516, "loss": 0.39766054004430773, "decode.loss_ce": 0.24882130995392798, "decode.acc_seg": 94.81967163085938, "aux.loss_ce": 0.14883922934532165, "aux.acc_seg": 92.01580047607422, "time": 1.114288902282715, "iter": 81500, "memory": 8704, "step": 81500} +{"lr": 0.0053127069016993, "data_time": 0.006550359725952149, "loss": 0.2644810050725937, "decode.loss_ce": 0.16170750707387924, "decode.acc_seg": 95.65174865722656, "aux.loss_ce": 0.1027734961360693, "aux.acc_seg": 90.44386291503906, "time": 1.1129387378692628, "iter": 81550, "memory": 8703, "step": 81550} +{"lr": 0.005309716725950094, "data_time": 0.006342005729675293, "loss": 0.4336912542581558, "decode.loss_ce": 0.24715998470783235, "decode.acc_seg": 96.18727111816406, "aux.loss_ce": 0.18653127774596215, "aux.acc_seg": 92.4287109375, "time": 1.1122049331665038, "iter": 81600, "memory": 8703, "step": 81600} +{"lr": 0.00530672635949481, "data_time": 0.006959080696105957, "loss": 0.2948721036314964, "decode.loss_ce": 0.19232255667448045, "decode.acc_seg": 96.34564208984375, "aux.loss_ce": 0.10254954323172569, "aux.acc_seg": 92.54671478271484, "time": 1.1110185384750366, "iter": 81650, "memory": 8705, "step": 81650} +{"lr": 0.005303735802199574, "data_time": 0.005423188209533691, "loss": 0.5695404917001724, "decode.loss_ce": 0.37553431540727616, "decode.acc_seg": 76.93226623535156, "aux.loss_ce": 0.19400616139173507, "aux.acc_seg": 72.79364013671875, "time": 1.110509467124939, "iter": 81700, "memory": 8704, "step": 81700} +{"lr": 0.005300745053930328, "data_time": 0.007716083526611328, "loss": 0.3169928312301636, "decode.loss_ce": 0.19079322442412378, "decode.acc_seg": 83.72306823730469, "aux.loss_ce": 0.12619960866868496, "aux.acc_seg": 68.50172424316406, "time": 1.1175618410110473, "iter": 81750, "memory": 8703, "step": 81750} +{"lr": 0.005297754114552834, "data_time": 0.007353472709655762, "loss": 0.44282534420490266, "decode.loss_ce": 0.28483607321977616, "decode.acc_seg": 94.80342864990234, "aux.loss_ce": 0.15798928141593932, "aux.acc_seg": 93.26368713378906, "time": 1.1192122459411622, "iter": 81800, "memory": 8704, "step": 81800} +{"lr": 0.005294762983932681, "data_time": 0.007014822959899902, "loss": 0.35908586382865904, "decode.loss_ce": 0.22567930594086646, "decode.acc_seg": 96.37285614013672, "aux.loss_ce": 0.1334065593779087, "aux.acc_seg": 92.06021118164062, "time": 1.1216892004013062, "iter": 81850, "memory": 8703, "step": 81850} +{"lr": 0.005291771661935275, "data_time": 0.0067043304443359375, "loss": 0.36210636496543885, "decode.loss_ce": 0.23490063175559045, "decode.acc_seg": 93.5538558959961, "aux.loss_ce": 0.12720573022961618, "aux.acc_seg": 91.4846420288086, "time": 1.1128886461257934, "iter": 81900, "memory": 8704, "step": 81900} +{"lr": 0.005288780148425831, "data_time": 0.008346080780029297, "loss": 0.39454357475042345, "decode.loss_ce": 0.21540727466344833, "decode.acc_seg": 97.60652923583984, "aux.loss_ce": 0.17913630194962024, "aux.acc_seg": 97.35405731201172, "time": 1.1180954933166505, "iter": 81950, "memory": 8703, "step": 81950} +{"lr": 0.005285788443269395, "data_time": 0.006899070739746094, "loss": 0.38899011015892027, "decode.loss_ce": 0.24253034144639968, "decode.acc_seg": 90.37201690673828, "aux.loss_ce": 0.14645976349711418, "aux.acc_seg": 89.29239654541016, "time": 1.1167433500289916, "iter": 82000, "memory": 8704, "step": 82000} +{"lr": 0.005282796546330828, "data_time": 0.007038021087646484, "loss": 0.513588035106659, "decode.loss_ce": 0.3070119872689247, "decode.acc_seg": 86.27586364746094, "aux.loss_ce": 0.20657605528831482, "aux.acc_seg": 76.79493713378906, "time": 1.1113285303115845, "iter": 82050, "memory": 8704, "step": 82050} +{"lr": 0.005279804457474806, "data_time": 0.005597329139709473, "loss": 0.41580149829387664, "decode.loss_ce": 0.2629046678543091, "decode.acc_seg": 84.18928527832031, "aux.loss_ce": 0.15289684012532234, "aux.acc_seg": 77.70855712890625, "time": 1.1121680021286011, "iter": 82100, "memory": 8703, "step": 82100} +{"lr": 0.005276812176565825, "data_time": 0.007303953170776367, "loss": 0.3987658232450485, "decode.loss_ce": 0.2711604401469231, "decode.acc_seg": 92.9561767578125, "aux.loss_ce": 0.12760539054870607, "aux.acc_seg": 92.3157958984375, "time": 1.118168830871582, "iter": 82150, "memory": 8704, "step": 82150} +{"lr": 0.005273819703468195, "data_time": 0.007049393653869629, "loss": 0.35508367270231245, "decode.loss_ce": 0.20899509117007256, "decode.acc_seg": 95.78367614746094, "aux.loss_ce": 0.1460885837674141, "aux.acc_seg": 95.56198120117188, "time": 1.1175665378570556, "iter": 82200, "memory": 8704, "step": 82200} +{"lr": 0.0052708270380460555, "data_time": 0.007664275169372558, "loss": 0.3573691964149475, "decode.loss_ce": 0.20588206946849824, "decode.acc_seg": 93.02532958984375, "aux.loss_ce": 0.15148712322115898, "aux.acc_seg": 83.94355773925781, "time": 1.1176296472549438, "iter": 82250, "memory": 8703, "step": 82250} +{"lr": 0.005267834180163344, "data_time": 0.0073479413986206055, "loss": 0.3199226066470146, "decode.loss_ce": 0.19662644043564798, "decode.acc_seg": 94.65755462646484, "aux.loss_ce": 0.12329616062343121, "aux.acc_seg": 90.70539093017578, "time": 1.1132758617401124, "iter": 82300, "memory": 8704, "step": 82300} +{"lr": 0.00526484112968382, "data_time": 0.007423210144042969, "loss": 0.3624314621090889, "decode.loss_ce": 0.22195972874760628, "decode.acc_seg": 86.52470397949219, "aux.loss_ce": 0.14047173373401164, "aux.acc_seg": 82.88948822021484, "time": 1.1181010961532594, "iter": 82350, "memory": 8703, "step": 82350} +{"lr": 0.005261847886471068, "data_time": 0.007063579559326172, "loss": 0.40138923525810244, "decode.loss_ce": 0.258602973818779, "decode.acc_seg": 85.64179229736328, "aux.loss_ce": 0.14278626292943955, "aux.acc_seg": 83.43537139892578, "time": 1.1194695234298706, "iter": 82400, "memory": 8704, "step": 82400} +{"lr": 0.0052588544503884786, "data_time": 0.006536722183227539, "loss": 0.32871178835630416, "decode.loss_ce": 0.19969994127750396, "decode.acc_seg": 96.48697662353516, "aux.loss_ce": 0.12901184484362602, "aux.acc_seg": 89.6598129272461, "time": 1.1153130292892457, "iter": 82450, "memory": 8703, "step": 82450} +{"lr": 0.005255860821299257, "data_time": 0.006951093673706055, "loss": 0.4463035300374031, "decode.loss_ce": 0.2717720530927181, "decode.acc_seg": 95.68519592285156, "aux.loss_ce": 0.17453147284686565, "aux.acc_seg": 95.29087829589844, "time": 1.1113102197647096, "iter": 82500, "memory": 8703, "step": 82500} +{"lr": 0.005252866999066434, "data_time": 0.0076258182525634766, "loss": 0.398357754945755, "decode.loss_ce": 0.24366578310728074, "decode.acc_seg": 88.29479217529297, "aux.loss_ce": 0.15469197034835816, "aux.acc_seg": 82.52334594726562, "time": 1.1138574123382567, "iter": 82550, "memory": 8704, "step": 82550} +{"lr": 0.005249872983552844, "data_time": 0.006699204444885254, "loss": 0.3672028720378876, "decode.loss_ce": 0.21620003134012222, "decode.acc_seg": 97.8815689086914, "aux.loss_ce": 0.15100284218788146, "aux.acc_seg": 92.06733703613281, "time": 1.118170142173767, "iter": 82600, "memory": 8705, "step": 82600} +{"lr": 0.005246878774621141, "data_time": 0.0069138526916503905, "loss": 0.35868534743785857, "decode.loss_ce": 0.20455091670155526, "decode.acc_seg": 96.84422302246094, "aux.loss_ce": 0.15413442477583886, "aux.acc_seg": 95.56343841552734, "time": 1.1123877048492432, "iter": 82650, "memory": 8704, "step": 82650} +{"lr": 0.005243884372133781, "data_time": 0.0072228431701660155, "loss": 0.5474761217832566, "decode.loss_ce": 0.3140836149454117, "decode.acc_seg": 92.94937133789062, "aux.loss_ce": 0.23339250460267066, "aux.acc_seg": 88.16434478759766, "time": 1.1150217294692992, "iter": 82700, "memory": 8703, "step": 82700} +{"lr": 0.005240889775953051, "data_time": 0.006352448463439941, "loss": 0.26388550698757174, "decode.loss_ce": 0.1597173511981964, "decode.acc_seg": 95.79683685302734, "aux.loss_ce": 0.10416815467178822, "aux.acc_seg": 95.44391632080078, "time": 1.114081048965454, "iter": 82750, "memory": 8704, "step": 82750} +{"lr": 0.005237894985941036, "data_time": 0.006306123733520508, "loss": 0.3503299057483673, "decode.loss_ce": 0.20886491388082504, "decode.acc_seg": 94.94286346435547, "aux.loss_ce": 0.14146499671041965, "aux.acc_seg": 90.82674407958984, "time": 1.1135628700256348, "iter": 82800, "memory": 8704, "step": 82800} +{"lr": 0.005234900001959645, "data_time": 0.006037378311157226, "loss": 0.25962997823953626, "decode.loss_ce": 0.15126195102930068, "decode.acc_seg": 92.29519653320312, "aux.loss_ce": 0.10836802497506141, "aux.acc_seg": 90.49854278564453, "time": 1.113068127632141, "iter": 82850, "memory": 8704, "step": 82850} +{"lr": 0.005231904823870591, "data_time": 0.006272363662719727, "loss": 0.4082792177796364, "decode.loss_ce": 0.24929021596908568, "decode.acc_seg": 94.64295196533203, "aux.loss_ce": 0.15898899883031845, "aux.acc_seg": 93.59104919433594, "time": 1.1081420183181763, "iter": 82900, "memory": 8703, "step": 82900} +{"lr": 0.005228909451535394, "data_time": 0.0060738325119018555, "loss": 0.34406227618455887, "decode.loss_ce": 0.20479865446686746, "decode.acc_seg": 93.01859283447266, "aux.loss_ce": 0.13926361352205277, "aux.acc_seg": 91.78841400146484, "time": 1.1165067672729492, "iter": 82950, "memory": 8703, "step": 82950} +{"lr": 0.005225913884815402, "data_time": 0.006634712219238281, "loss": 0.30746928602457047, "decode.loss_ce": 0.19179213494062425, "decode.acc_seg": 95.44683837890625, "aux.loss_ce": 0.11567715480923653, "aux.acc_seg": 95.22037506103516, "time": 1.1110392093658448, "iter": 83000, "memory": 8703, "step": 83000} +{"lr": 0.0052229181235717605, "data_time": 0.008421659469604492, "loss": 0.39281069189310075, "decode.loss_ce": 0.23855542093515397, "decode.acc_seg": 95.89883422851562, "aux.loss_ce": 0.1542552776634693, "aux.acc_seg": 95.12283325195312, "time": 1.1186884641647339, "iter": 83050, "memory": 8704, "step": 83050} +{"lr": 0.005219922167665429, "data_time": 0.0071664094924926754, "loss": 0.3650956660509109, "decode.loss_ce": 0.21392233520746232, "decode.acc_seg": 94.97699737548828, "aux.loss_ce": 0.15117332972586156, "aux.acc_seg": 92.72575378417969, "time": 1.1162129640579224, "iter": 83100, "memory": 8703, "step": 83100} +{"lr": 0.005216926016957181, "data_time": 0.00583345890045166, "loss": 0.3416221603751183, "decode.loss_ce": 0.2007371135056019, "decode.acc_seg": 90.28952026367188, "aux.loss_ce": 0.1408850472420454, "aux.acc_seg": 90.6708984375, "time": 1.1121731996536255, "iter": 83150, "memory": 8704, "step": 83150} +{"lr": 0.005213929671307587, "data_time": 0.006463384628295899, "loss": 0.5845438674092293, "decode.loss_ce": 0.3498940274119377, "decode.acc_seg": 72.24241638183594, "aux.loss_ce": 0.23464984446763992, "aux.acc_seg": 56.70661544799805, "time": 1.1239641189575196, "iter": 83200, "memory": 8703, "step": 83200} +{"lr": 0.005210933130577043, "data_time": 0.006582880020141601, "loss": 0.388837893307209, "decode.loss_ce": 0.226552751660347, "decode.acc_seg": 94.99384307861328, "aux.loss_ce": 0.16228514090180396, "aux.acc_seg": 92.75582122802734, "time": 1.1180667400360107, "iter": 83250, "memory": 8703, "step": 83250} +{"lr": 0.0052079363946257486, "data_time": 0.007343101501464844, "loss": 0.4236526072025299, "decode.loss_ce": 0.2641004040837288, "decode.acc_seg": 95.62422180175781, "aux.loss_ce": 0.15955220013856888, "aux.acc_seg": 94.27967071533203, "time": 1.1163405179977417, "iter": 83300, "memory": 8704, "step": 83300} +{"lr": 0.005204939463313706, "data_time": 0.007959342002868653, "loss": 0.39603823274374006, "decode.loss_ce": 0.2404500924050808, "decode.acc_seg": 97.13674926757812, "aux.loss_ce": 0.15558813586831094, "aux.acc_seg": 92.62847900390625, "time": 1.1186400175094604, "iter": 83350, "memory": 8703, "step": 83350} +{"lr": 0.0052019423365007355, "data_time": 0.007949304580688477, "loss": 0.36652772724628446, "decode.loss_ce": 0.2240390069782734, "decode.acc_seg": 94.61866760253906, "aux.loss_ce": 0.14248871579766273, "aux.acc_seg": 87.35859680175781, "time": 1.116715145111084, "iter": 83400, "memory": 8703, "step": 83400} +{"lr": 0.005198945014046449, "data_time": 0.007071805000305176, "loss": 0.3199357897043228, "decode.loss_ce": 0.1957934871315956, "decode.acc_seg": 91.48641967773438, "aux.loss_ce": 0.12414229847490788, "aux.acc_seg": 89.04806518554688, "time": 1.1178906917572022, "iter": 83450, "memory": 8704, "step": 83450} +{"lr": 0.005195947495810289, "data_time": 0.006561684608459473, "loss": 0.4242342337965965, "decode.loss_ce": 0.25795221999287604, "decode.acc_seg": 96.65145874023438, "aux.loss_ce": 0.1662820141762495, "aux.acc_seg": 96.03646087646484, "time": 1.116269302368164, "iter": 83500, "memory": 8704, "step": 83500} +{"lr": 0.005192949781651484, "data_time": 0.0069549322128295895, "loss": 0.3939636439085007, "decode.loss_ce": 0.23459373861551286, "decode.acc_seg": 95.64571380615234, "aux.loss_ce": 0.15936990678310395, "aux.acc_seg": 94.80571746826172, "time": 1.116792130470276, "iter": 83550, "memory": 8703, "step": 83550} +{"lr": 0.0051899518714290825, "data_time": 0.0058983564376831055, "loss": 0.3669803276658058, "decode.loss_ce": 0.22959098890423774, "decode.acc_seg": 88.12687683105469, "aux.loss_ce": 0.13738932646811008, "aux.acc_seg": 88.31684875488281, "time": 1.1120167255401612, "iter": 83600, "memory": 8704, "step": 83600} +{"lr": 0.005186953765001933, "data_time": 0.006978607177734375, "loss": 0.3810360595583916, "decode.loss_ce": 0.2223770372569561, "decode.acc_seg": 95.70661926269531, "aux.loss_ce": 0.15865902453660966, "aux.acc_seg": 81.43946075439453, "time": 1.1127691745758057, "iter": 83650, "memory": 8704, "step": 83650} +{"lr": 0.005183955462228691, "data_time": 0.005549120903015137, "loss": 0.40885827839374544, "decode.loss_ce": 0.2640582635998726, "decode.acc_seg": 93.59041595458984, "aux.loss_ce": 0.14480001330375672, "aux.acc_seg": 85.989501953125, "time": 1.1090022325515747, "iter": 83700, "memory": 8704, "step": 83700} +{"lr": 0.005180956962967817, "data_time": 0.007081222534179687, "loss": 0.40043420493602755, "decode.loss_ce": 0.2349360078573227, "decode.acc_seg": 92.3388442993164, "aux.loss_ce": 0.16549819856882095, "aux.acc_seg": 86.91534423828125, "time": 1.114186668395996, "iter": 83750, "memory": 8703, "step": 83750} +{"lr": 0.005177958267077578, "data_time": 0.007797789573669433, "loss": 0.4232697024941444, "decode.loss_ce": 0.2612299919128418, "decode.acc_seg": 90.40514373779297, "aux.loss_ce": 0.16203970834612846, "aux.acc_seg": 82.26299285888672, "time": 1.1176240921020508, "iter": 83800, "memory": 8703, "step": 83800} +{"lr": 0.00517495937441605, "data_time": 0.009210705757141113, "loss": 0.30910695940256117, "decode.loss_ce": 0.1876933291554451, "decode.acc_seg": 92.16442108154297, "aux.loss_ce": 0.12141362763941288, "aux.acc_seg": 86.82835388183594, "time": 1.1221108198165894, "iter": 83850, "memory": 8703, "step": 83850} +{"lr": 0.005171960284841101, "data_time": 0.00668342113494873, "loss": 0.3218031734228134, "decode.loss_ce": 0.1973217636346817, "decode.acc_seg": 96.58342742919922, "aux.loss_ce": 0.12448141016066075, "aux.acc_seg": 92.63775634765625, "time": 1.1141634464263916, "iter": 83900, "memory": 8703, "step": 83900} +{"lr": 0.005168960998210417, "data_time": 0.007011294364929199, "loss": 0.33292961716651914, "decode.loss_ce": 0.19656311497092246, "decode.acc_seg": 93.12425994873047, "aux.loss_ce": 0.13636649698019027, "aux.acc_seg": 87.23678588867188, "time": 1.118148398399353, "iter": 83950, "memory": 8703, "step": 83950} +{"lr": 0.0051659615143814785, "data_time": 0.007569146156311035, "loss": 0.4709932073950768, "decode.loss_ce": 0.2875921443104744, "decode.acc_seg": 93.18573760986328, "aux.loss_ce": 0.18340106084942817, "aux.acc_seg": 92.11813354492188, "time": 1.1155927658081055, "iter": 84000, "memory": 8704, "step": 84000} +{"lr": 0.005162961833211573, "data_time": 0.005694079399108887, "loss": 0.3566407412290573, "decode.loss_ce": 0.2263823475688696, "decode.acc_seg": 94.80886840820312, "aux.loss_ce": 0.13025839067995548, "aux.acc_seg": 94.21903228759766, "time": 1.1147791385650634, "iter": 84050, "memory": 8703, "step": 84050} +{"lr": 0.0051599619545577855, "data_time": 0.00760502815246582, "loss": 0.34773956537246703, "decode.loss_ce": 0.22220622897148132, "decode.acc_seg": 93.06208038330078, "aux.loss_ce": 0.1255333326756954, "aux.acc_seg": 90.58418273925781, "time": 1.1150415658950805, "iter": 84100, "memory": 8704, "step": 84100} +{"lr": 0.005156961878277008, "data_time": 0.005314254760742187, "loss": 0.5261384308338165, "decode.loss_ce": 0.3307169139385223, "decode.acc_seg": 79.51164245605469, "aux.loss_ce": 0.19542151391506196, "aux.acc_seg": 59.2191047668457, "time": 1.1144817113876342, "iter": 84150, "memory": 8704, "step": 84150} +{"lr": 0.0051539616042259335, "data_time": 0.00549166202545166, "loss": 0.39946856498718264, "decode.loss_ce": 0.2407938838005066, "decode.acc_seg": 94.35723114013672, "aux.loss_ce": 0.15867467895150184, "aux.acc_seg": 92.57894897460938, "time": 1.1104568004608155, "iter": 84200, "memory": 8703, "step": 84200} +{"lr": 0.005150961132261059, "data_time": 0.0071583747863769535, "loss": 0.2779762610793114, "decode.loss_ce": 0.14472927525639534, "decode.acc_seg": 94.82135772705078, "aux.loss_ce": 0.1332469917833805, "aux.acc_seg": 86.26873779296875, "time": 1.1105414867401122, "iter": 84250, "memory": 8703, "step": 84250} +{"lr": 0.005147960462238681, "data_time": 0.006116747856140137, "loss": 0.3477988913655281, "decode.loss_ce": 0.22332945391535758, "decode.acc_seg": 94.41864776611328, "aux.loss_ce": 0.12446943484246731, "aux.acc_seg": 91.97953033447266, "time": 1.113862681388855, "iter": 84300, "memory": 8704, "step": 84300} +{"lr": 0.0051449595940148895, "data_time": 0.0071921110153198246, "loss": 0.4732988104224205, "decode.loss_ce": 0.2957968607544899, "decode.acc_seg": 90.38670349121094, "aux.loss_ce": 0.1775019496679306, "aux.acc_seg": 86.1923828125, "time": 1.116145133972168, "iter": 84350, "memory": 8703, "step": 84350} +{"lr": 0.005141958527445585, "data_time": 0.0066353797912597655, "loss": 0.4476949438452721, "decode.loss_ce": 0.2716827541589737, "decode.acc_seg": 92.86358642578125, "aux.loss_ce": 0.17601218223571777, "aux.acc_seg": 86.79688262939453, "time": 1.1126303672790527, "iter": 84400, "memory": 8704, "step": 84400} +{"lr": 0.005138957262386466, "data_time": 0.0068387269973754885, "loss": 0.335066644847393, "decode.loss_ce": 0.2024325355887413, "decode.acc_seg": 96.68934631347656, "aux.loss_ce": 0.13263410404324533, "aux.acc_seg": 95.87931060791016, "time": 1.1181808710098267, "iter": 84450, "memory": 8703, "step": 84450} +{"lr": 0.005135955798693017, "data_time": 0.007702922821044922, "loss": 0.4215772345662117, "decode.loss_ce": 0.2747823566198349, "decode.acc_seg": 95.26844024658203, "aux.loss_ce": 0.1467948764562607, "aux.acc_seg": 92.66014099121094, "time": 1.1167765617370606, "iter": 84500, "memory": 8704, "step": 84500} +{"lr": 0.005132954136220542, "data_time": 0.006275582313537598, "loss": 0.40877608507871627, "decode.loss_ce": 0.24038221165537835, "decode.acc_seg": 95.54544830322266, "aux.loss_ce": 0.1683938693255186, "aux.acc_seg": 93.92433166503906, "time": 1.1128406763076781, "iter": 84550, "memory": 8703, "step": 84550} +{"lr": 0.0051299522748241375, "data_time": 0.005766463279724121, "loss": 0.24928417801856995, "decode.loss_ce": 0.14809945449233056, "decode.acc_seg": 94.67459869384766, "aux.loss_ce": 0.10118471868336201, "aux.acc_seg": 93.82170867919922, "time": 1.1140887975692748, "iter": 84600, "memory": 8704, "step": 84600} +{"lr": 0.005126950214358693, "data_time": 0.008031797409057618, "loss": 0.46164052486419677, "decode.loss_ce": 0.29085555076599123, "decode.acc_seg": 92.17516326904297, "aux.loss_ce": 0.17078496217727662, "aux.acc_seg": 82.49708557128906, "time": 1.1147627353668212, "iter": 84650, "memory": 8703, "step": 84650} +{"lr": 0.005123947954678891, "data_time": 0.007271981239318848, "loss": 0.5048707455396653, "decode.loss_ce": 0.29536525458097457, "decode.acc_seg": 87.8611831665039, "aux.loss_ce": 0.20950549021363257, "aux.acc_seg": 74.36408996582031, "time": 1.1108511209487915, "iter": 84700, "memory": 8703, "step": 84700} +{"lr": 0.005120945495639224, "data_time": 0.00534524917602539, "loss": 0.3930822864174843, "decode.loss_ce": 0.2362039677798748, "decode.acc_seg": 89.05620574951172, "aux.loss_ce": 0.15687832422554493, "aux.acc_seg": 79.32662963867188, "time": 1.1140350103378296, "iter": 84750, "memory": 8704, "step": 84750} +{"lr": 0.005117942837093974, "data_time": 0.005730962753295899, "loss": 0.42581619918346403, "decode.loss_ce": 0.2512760356068611, "decode.acc_seg": 94.17737579345703, "aux.loss_ce": 0.17454015985131263, "aux.acc_seg": 89.57683563232422, "time": 1.1148447751998902, "iter": 84800, "memory": 8704, "step": 84800} +{"lr": 0.005114939978897221, "data_time": 0.006789517402648926, "loss": 0.2764249458909035, "decode.loss_ce": 0.17561194002628328, "decode.acc_seg": 96.59735107421875, "aux.loss_ce": 0.10081300735473633, "aux.acc_seg": 92.90663146972656, "time": 1.1121272087097167, "iter": 84850, "memory": 8704, "step": 84850} +{"lr": 0.005111936920902843, "data_time": 0.00648345947265625, "loss": 0.3098350942134857, "decode.loss_ce": 0.19181080609560014, "decode.acc_seg": 92.68709564208984, "aux.loss_ce": 0.11802429370582104, "aux.acc_seg": 90.67852783203125, "time": 1.1126102209091187, "iter": 84900, "memory": 8704, "step": 84900} +{"lr": 0.005108933662964511, "data_time": 0.007317876815795899, "loss": 0.413983491063118, "decode.loss_ce": 0.26302568316459657, "decode.acc_seg": 94.18981170654297, "aux.loss_ce": 0.15095780938863754, "aux.acc_seg": 90.13232421875, "time": 1.1185319900512696, "iter": 84950, "memory": 8703, "step": 84950} +{"lr": 0.0051059302049356855, "data_time": 0.0062549829483032225, "loss": 0.34011545330286025, "decode.loss_ce": 0.19811423271894454, "decode.acc_seg": 87.68450164794922, "aux.loss_ce": 0.14200121052563192, "aux.acc_seg": 79.507568359375, "time": 1.11237313747406, "iter": 85000, "memory": 8703, "step": 85000} +{"lr": 0.005102926546669642, "data_time": 0.008714723587036132, "loss": 0.40670565962791444, "decode.loss_ce": 0.26170194074511527, "decode.acc_seg": 94.90648651123047, "aux.loss_ce": 0.1450037185102701, "aux.acc_seg": 91.77989959716797, "time": 1.1163182020187379, "iter": 85050, "memory": 8703, "step": 85050} +{"lr": 0.005099922688019423, "data_time": 0.005390453338623047, "loss": 0.28466305136680603, "decode.loss_ce": 0.1754895955324173, "decode.acc_seg": 97.25296783447266, "aux.loss_ce": 0.10917345397174358, "aux.acc_seg": 96.73906707763672, "time": 1.1156251668930053, "iter": 85100, "memory": 8703, "step": 85100} +{"lr": 0.0050969186288378895, "data_time": 0.006486701965332031, "loss": 0.32243773341178894, "decode.loss_ce": 0.18198616355657576, "decode.acc_seg": 95.18802642822266, "aux.loss_ce": 0.14045156836509703, "aux.acc_seg": 94.05231475830078, "time": 1.1143850803375244, "iter": 85150, "memory": 8703, "step": 85150} +{"lr": 0.0050939143689776815, "data_time": 0.007420086860656738, "loss": 0.4786865681409836, "decode.loss_ce": 0.3000207647681236, "decode.acc_seg": 96.84994506835938, "aux.loss_ce": 0.17866581082344055, "aux.acc_seg": 94.0011978149414, "time": 1.118365716934204, "iter": 85200, "memory": 8703, "step": 85200} +{"lr": 0.005090909908291234, "data_time": 0.006918215751647949, "loss": 0.5069369584321975, "decode.loss_ce": 0.31411358043551446, "decode.acc_seg": 86.60790252685547, "aux.loss_ce": 0.19282336086034774, "aux.acc_seg": 82.7420654296875, "time": 1.1160466194152832, "iter": 85250, "memory": 8704, "step": 85250} +{"lr": 0.005087905246630783, "data_time": 0.00701296329498291, "loss": 0.44366118758916856, "decode.loss_ce": 0.26451387256383896, "decode.acc_seg": 92.73503112792969, "aux.loss_ce": 0.1791473187506199, "aux.acc_seg": 91.8975830078125, "time": 1.1142640113830566, "iter": 85300, "memory": 8704, "step": 85300} +{"lr": 0.005084900383848348, "data_time": 0.0059987068176269535, "loss": 0.5196534648537636, "decode.loss_ce": 0.3316300608217716, "decode.acc_seg": 78.2099380493164, "aux.loss_ce": 0.1880233883857727, "aux.acc_seg": 64.94324493408203, "time": 1.1111649990081787, "iter": 85350, "memory": 8703, "step": 85350} +{"lr": 0.005081895319795739, "data_time": 0.005894947052001953, "loss": 0.3042894683778286, "decode.loss_ce": 0.17454155310988426, "decode.acc_seg": 91.5141372680664, "aux.loss_ce": 0.1297479137778282, "aux.acc_seg": 92.03675079345703, "time": 1.116114902496338, "iter": 85400, "memory": 8703, "step": 85400} +{"lr": 0.005078890054324562, "data_time": 0.005468630790710449, "loss": 0.43766244649887087, "decode.loss_ce": 0.25797657668590546, "decode.acc_seg": 95.1438217163086, "aux.loss_ce": 0.17968586459755898, "aux.acc_seg": 93.37329864501953, "time": 1.1090649843215943, "iter": 85450, "memory": 8703, "step": 85450} +{"lr": 0.005075884587286217, "data_time": 0.006764841079711914, "loss": 0.41585336476564405, "decode.loss_ce": 0.27307531982660294, "decode.acc_seg": 94.1561050415039, "aux.loss_ce": 0.14277804866433144, "aux.acc_seg": 91.9764404296875, "time": 1.1144621610641479, "iter": 85500, "memory": 8704, "step": 85500} +{"lr": 0.005072878918531895, "data_time": 0.006253957748413086, "loss": 0.3580671101808548, "decode.loss_ce": 0.20605368986725808, "decode.acc_seg": 95.49604797363281, "aux.loss_ce": 0.1520134188234806, "aux.acc_seg": 95.32012939453125, "time": 1.1145338058471679, "iter": 85550, "memory": 8703, "step": 85550} +{"lr": 0.005069873047912564, "data_time": 0.006016755104064941, "loss": 0.3895154744386673, "decode.loss_ce": 0.23780020847916603, "decode.acc_seg": 96.91047668457031, "aux.loss_ce": 0.15171526335179805, "aux.acc_seg": 96.13914489746094, "time": 1.111694073677063, "iter": 85600, "memory": 8704, "step": 85600} +{"lr": 0.0050668669752789944, "data_time": 0.007565903663635254, "loss": 0.3762193650007248, "decode.loss_ce": 0.2317833699285984, "decode.acc_seg": 92.78812408447266, "aux.loss_ce": 0.14443599432706833, "aux.acc_seg": 88.51356506347656, "time": 1.1185442924499511, "iter": 85650, "memory": 8704, "step": 85650} +{"lr": 0.005063860700481744, "data_time": 0.006055355072021484, "loss": 0.4732712239027023, "decode.loss_ce": 0.27638796865940096, "decode.acc_seg": 94.2343978881836, "aux.loss_ce": 0.19688325375318527, "aux.acc_seg": 89.24598693847656, "time": 1.1127240180969238, "iter": 85700, "memory": 8704, "step": 85700} +{"lr": 0.005060854223371158, "data_time": 0.006391501426696778, "loss": 0.33956658095121384, "decode.loss_ce": 0.20030200704932213, "decode.acc_seg": 93.27608489990234, "aux.loss_ce": 0.1392645712941885, "aux.acc_seg": 92.13447570800781, "time": 1.118448519706726, "iter": 85750, "memory": 8704, "step": 85750} +{"lr": 0.005057847543797367, "data_time": 0.008030509948730469, "loss": 0.30215811282396315, "decode.loss_ce": 0.17932678759098053, "decode.acc_seg": 92.39525604248047, "aux.loss_ce": 0.1228313248604536, "aux.acc_seg": 90.84978485107422, "time": 1.1247016191482544, "iter": 85800, "memory": 8703, "step": 85800} +{"lr": 0.005054840661610291, "data_time": 0.006751465797424317, "loss": 0.3363229319453239, "decode.loss_ce": 0.2000532615929842, "decode.acc_seg": 90.09895324707031, "aux.loss_ce": 0.13626967258751393, "aux.acc_seg": 84.44168853759766, "time": 1.1194238424301148, "iter": 85850, "memory": 8703, "step": 85850} +{"lr": 0.005051833576659642, "data_time": 0.0065179109573364254, "loss": 0.458468833565712, "decode.loss_ce": 0.29758916795253754, "decode.acc_seg": 93.86679077148438, "aux.loss_ce": 0.1608796663582325, "aux.acc_seg": 92.32762145996094, "time": 1.1146163940429688, "iter": 85900, "memory": 8704, "step": 85900} +{"lr": 0.005048826288794914, "data_time": 0.006184697151184082, "loss": 0.44269873946905136, "decode.loss_ce": 0.273801014572382, "decode.acc_seg": 84.94841003417969, "aux.loss_ce": 0.16889772303402423, "aux.acc_seg": 80.88741302490234, "time": 1.1148977756500245, "iter": 85950, "memory": 8703, "step": 85950} +{"lr": 0.00504581879786539, "data_time": 0.006176137924194336, "loss": 0.40877257436513903, "decode.loss_ce": 0.2657677546143532, "decode.acc_seg": 95.83206176757812, "aux.loss_ce": 0.1430048167705536, "aux.acc_seg": 84.97364807128906, "time": 1.11101496219635, "iter": 86000, "memory": 8704, "step": 86000} +{"lr": 0.005042811103720138, "data_time": 0.006619811058044434, "loss": 0.31855906546115875, "decode.loss_ce": 0.19331364557147027, "decode.acc_seg": 93.52073669433594, "aux.loss_ce": 0.12524541839957237, "aux.acc_seg": 88.07041931152344, "time": 1.1143902778625487, "iter": 86050, "memory": 8704, "step": 86050} +{"lr": 0.005039803206208012, "data_time": 0.008777165412902832, "loss": 0.4022635146975517, "decode.loss_ce": 0.22699340283870698, "decode.acc_seg": 95.74826049804688, "aux.loss_ce": 0.17527010217308997, "aux.acc_seg": 90.86805725097656, "time": 1.1175037145614624, "iter": 86100, "memory": 8703, "step": 86100} +{"lr": 0.005036795105177651, "data_time": 0.006212615966796875, "loss": 0.36936686635017396, "decode.loss_ce": 0.22095651179552078, "decode.acc_seg": 96.47203826904297, "aux.loss_ce": 0.14841035716235637, "aux.acc_seg": 92.32228088378906, "time": 1.1077204465866088, "iter": 86150, "memory": 8704, "step": 86150} +{"lr": 0.00503378680047748, "data_time": 0.006790423393249511, "loss": 0.45564198940992356, "decode.loss_ce": 0.23591264933347703, "decode.acc_seg": 90.9139633178711, "aux.loss_ce": 0.21972935199737548, "aux.acc_seg": 73.95916748046875, "time": 1.1118589162826538, "iter": 86200, "memory": 8704, "step": 86200} +{"lr": 0.0050307782919557075, "data_time": 0.0068339347839355465, "loss": 0.3103869706392288, "decode.loss_ce": 0.18848049491643906, "decode.acc_seg": 96.67084503173828, "aux.loss_ce": 0.12190647758543491, "aux.acc_seg": 96.30806732177734, "time": 1.1142123699188233, "iter": 86250, "memory": 8704, "step": 86250} +{"lr": 0.005027769579460327, "data_time": 0.00652017593383789, "loss": 0.40641685128211974, "decode.loss_ce": 0.24983420521020888, "decode.acc_seg": 95.07823181152344, "aux.loss_ce": 0.15658264942467212, "aux.acc_seg": 84.99885559082031, "time": 1.110232138633728, "iter": 86300, "memory": 8703, "step": 86300} +{"lr": 0.005024760662839111, "data_time": 0.007392787933349609, "loss": 0.45388076454401016, "decode.loss_ce": 0.27141749262809756, "decode.acc_seg": 86.03496551513672, "aux.loss_ce": 0.18246326968073845, "aux.acc_seg": 83.56571197509766, "time": 1.1167692422866822, "iter": 86350, "memory": 8703, "step": 86350} +{"lr": 0.005021751541939621, "data_time": 0.00854661464691162, "loss": 0.4132197707891464, "decode.loss_ce": 0.26606588810682297, "decode.acc_seg": 96.57003784179688, "aux.loss_ce": 0.14715388119220735, "aux.acc_seg": 96.3502197265625, "time": 1.119734787940979, "iter": 86400, "memory": 8703, "step": 86400} +{"lr": 0.005018742216609198, "data_time": 0.004915428161621094, "loss": 0.31258552372455595, "decode.loss_ce": 0.19679996818304063, "decode.acc_seg": 77.0624771118164, "aux.loss_ce": 0.11578555069863797, "aux.acc_seg": 78.9918212890625, "time": 1.1185607671737672, "iter": 86450, "memory": 8704, "step": 86450} +{"lr": 0.005015732686694957, "data_time": 0.00735471248626709, "loss": 0.32758908867836, "decode.loss_ce": 0.21341416761279106, "decode.acc_seg": 95.53152465820312, "aux.loss_ce": 0.11417491436004638, "aux.acc_seg": 91.31011962890625, "time": 1.1176004648208617, "iter": 86500, "memory": 8703, "step": 86500} +{"lr": 0.005012722952043812, "data_time": 0.007140707969665527, "loss": 0.35897567570209504, "decode.loss_ce": 0.20302322059869765, "decode.acc_seg": 92.43971252441406, "aux.loss_ce": 0.15595245584845543, "aux.acc_seg": 90.8423080444336, "time": 1.1157945156097413, "iter": 86550, "memory": 8704, "step": 86550} +{"lr": 0.005009713012502443, "data_time": 0.0059898138046264645, "loss": 0.41514052003622054, "decode.loss_ce": 0.26561241000890734, "decode.acc_seg": 85.50236511230469, "aux.loss_ce": 0.14952811151742934, "aux.acc_seg": 85.87544250488281, "time": 1.111858868598938, "iter": 86600, "memory": 8704, "step": 86600} +{"lr": 0.005006702867917321, "data_time": 0.006963419914245606, "loss": 0.4493784837424755, "decode.loss_ce": 0.27422293126583097, "decode.acc_seg": 92.31592559814453, "aux.loss_ce": 0.17515555396676064, "aux.acc_seg": 91.62158966064453, "time": 1.1138648509979248, "iter": 86650, "memory": 8703, "step": 86650} +{"lr": 0.005003692518134695, "data_time": 0.007454824447631836, "loss": 0.3058710232377052, "decode.loss_ce": 0.18359965160489083, "decode.acc_seg": 96.95075225830078, "aux.loss_ce": 0.12227137126028538, "aux.acc_seg": 96.14508819580078, "time": 1.1176645755767822, "iter": 86700, "memory": 8703, "step": 86700} +{"lr": 0.005000681963000587, "data_time": 0.007264399528503418, "loss": 0.4886364385485649, "decode.loss_ce": 0.3216918855905533, "decode.acc_seg": 71.85993957519531, "aux.loss_ce": 0.1669445440173149, "aux.acc_seg": 73.6182861328125, "time": 1.1153037548065186, "iter": 86750, "memory": 8703, "step": 86750} +{"lr": 0.0049976712023608, "data_time": 0.007576751708984375, "loss": 0.40983766615390776, "decode.loss_ce": 0.25467886999249456, "decode.acc_seg": 93.6819076538086, "aux.loss_ce": 0.1551587887108326, "aux.acc_seg": 89.40092468261719, "time": 1.1164162635803223, "iter": 86800, "memory": 8704, "step": 86800} +{"lr": 0.004994660236060928, "data_time": 0.006232833862304688, "loss": 0.38942714482545854, "decode.loss_ce": 0.23469052761793135, "decode.acc_seg": 95.81432342529297, "aux.loss_ce": 0.15473661571741104, "aux.acc_seg": 89.24846649169922, "time": 1.1135849237442017, "iter": 86850, "memory": 8703, "step": 86850} +{"lr": 0.004991649063946327, "data_time": 0.007618761062622071, "loss": 0.4513168178498745, "decode.loss_ce": 0.29561050795018673, "decode.acc_seg": 95.06492614746094, "aux.loss_ce": 0.15570630468428134, "aux.acc_seg": 92.68798828125, "time": 1.1217389106750488, "iter": 86900, "memory": 8704, "step": 86900} +{"lr": 0.004988637685862141, "data_time": 0.006425714492797852, "loss": 0.3935065045952797, "decode.loss_ce": 0.24720543175935744, "decode.acc_seg": 95.73192596435547, "aux.loss_ce": 0.14630107656121255, "aux.acc_seg": 92.21470642089844, "time": 1.1142816066741943, "iter": 86950, "memory": 8703, "step": 86950} +{"lr": 0.004985626101653286, "data_time": 0.007882022857666015, "loss": 0.35989121347665787, "decode.loss_ce": 0.23342461735010148, "decode.acc_seg": 96.91059875488281, "aux.loss_ce": 0.1264665972441435, "aux.acc_seg": 93.5324935913086, "time": 1.1218003511428833, "iter": 87000, "memory": 8703, "step": 87000} +{"lr": 0.004982614311164454, "data_time": 0.007305812835693359, "loss": 0.425503508746624, "decode.loss_ce": 0.2653959184885025, "decode.acc_seg": 91.82968139648438, "aux.loss_ce": 0.1601075854152441, "aux.acc_seg": 79.86939239501953, "time": 1.1142017602920533, "iter": 87050, "memory": 8704, "step": 87050} +{"lr": 0.004979602314240129, "data_time": 0.008017945289611816, "loss": 0.32296283543109894, "decode.loss_ce": 0.20575242936611177, "decode.acc_seg": 87.9471435546875, "aux.loss_ce": 0.11721040569245815, "aux.acc_seg": 75.84139251708984, "time": 1.113524842262268, "iter": 87100, "memory": 8704, "step": 87100} +{"lr": 0.004976590110724553, "data_time": 0.007057404518127442, "loss": 0.35424034893512724, "decode.loss_ce": 0.20088334754109383, "decode.acc_seg": 95.5221176147461, "aux.loss_ce": 0.15335700213909148, "aux.acc_seg": 88.98804473876953, "time": 1.1157418489456177, "iter": 87150, "memory": 8704, "step": 87150} +{"lr": 0.004973577700461746, "data_time": 0.006764912605285644, "loss": 0.4247186049818993, "decode.loss_ce": 0.2565858460962772, "decode.acc_seg": 96.79849243164062, "aux.loss_ce": 0.16813276149332523, "aux.acc_seg": 94.9603042602539, "time": 1.1163183450698853, "iter": 87200, "memory": 8704, "step": 87200} +{"lr": 0.004970565083295503, "data_time": 0.005679965019226074, "loss": 0.4234308063983917, "decode.loss_ce": 0.2531194970011711, "decode.acc_seg": 95.88749694824219, "aux.loss_ce": 0.17031131386756898, "aux.acc_seg": 94.64530944824219, "time": 1.1081048250198364, "iter": 87250, "memory": 8704, "step": 87250} +{"lr": 0.0049675522590694075, "data_time": 0.005362701416015625, "loss": 0.4400885790586472, "decode.loss_ce": 0.26766209825873377, "decode.acc_seg": 93.79463195800781, "aux.loss_ce": 0.17242648229002952, "aux.acc_seg": 91.49334716796875, "time": 1.11395583152771, "iter": 87300, "memory": 8705, "step": 87300} +{"lr": 0.0049645392276268, "data_time": 0.007893991470336915, "loss": 0.3465202748775482, "decode.loss_ce": 0.20417698100209236, "decode.acc_seg": 93.87645721435547, "aux.loss_ce": 0.14234329611063004, "aux.acc_seg": 92.07096099853516, "time": 1.1221287250518799, "iter": 87350, "memory": 8705, "step": 87350} +{"lr": 0.004961525988810798, "data_time": 0.006690382957458496, "loss": 0.4208770155906677, "decode.loss_ce": 0.2599279671907425, "decode.acc_seg": 87.347412109375, "aux.loss_ce": 0.16094904392957687, "aux.acc_seg": 80.51948547363281, "time": 1.1170982122421265, "iter": 87400, "memory": 8704, "step": 87400} +{"lr": 0.0049585125424642966, "data_time": 0.007275438308715821, "loss": 0.39717482030391693, "decode.loss_ce": 0.23977341800928115, "decode.acc_seg": 84.9582748413086, "aux.loss_ce": 0.1574013963341713, "aux.acc_seg": 80.64312744140625, "time": 1.1202519416809082, "iter": 87450, "memory": 8703, "step": 87450} +{"lr": 0.004955498888429968, "data_time": 0.006018209457397461, "loss": 0.4470104813575745, "decode.loss_ce": 0.25476549938321114, "decode.acc_seg": 94.48139190673828, "aux.loss_ce": 0.19224497973918914, "aux.acc_seg": 93.31317138671875, "time": 1.1156805038452149, "iter": 87500, "memory": 8703, "step": 87500} +{"lr": 0.004952485026550243, "data_time": 0.0066199064254760746, "loss": 0.32408425956964493, "decode.loss_ce": 0.20921751111745834, "decode.acc_seg": 79.48799133300781, "aux.loss_ce": 0.11486674547195434, "aux.acc_seg": 81.57005310058594, "time": 1.115080213546753, "iter": 87550, "memory": 8704, "step": 87550} +{"lr": 0.004949470956667335, "data_time": 0.00641319751739502, "loss": 0.35923776030540466, "decode.loss_ce": 0.22023702263832093, "decode.acc_seg": 80.46512603759766, "aux.loss_ce": 0.13900073170661925, "aux.acc_seg": 67.97199249267578, "time": 1.1152753829956055, "iter": 87600, "memory": 8703, "step": 87600} +{"lr": 0.004946456678623216, "data_time": 0.0070488214492797855, "loss": 0.3857297584414482, "decode.loss_ce": 0.22891000658273697, "decode.acc_seg": 91.91474914550781, "aux.loss_ce": 0.15681975595653058, "aux.acc_seg": 87.05164337158203, "time": 1.1164299964904785, "iter": 87650, "memory": 8703, "step": 87650} +{"lr": 0.004943442192259652, "data_time": 0.006832742691040039, "loss": 0.4246636763215065, "decode.loss_ce": 0.2651252500712872, "decode.acc_seg": 81.34943389892578, "aux.loss_ce": 0.15953843332827092, "aux.acc_seg": 70.80402374267578, "time": 1.114189052581787, "iter": 87700, "memory": 8704, "step": 87700} +{"lr": 0.004940427497418158, "data_time": 0.007184743881225586, "loss": 0.36380775570869445, "decode.loss_ce": 0.21616667211055757, "decode.acc_seg": 94.77996826171875, "aux.loss_ce": 0.14764108508825302, "aux.acc_seg": 92.35267639160156, "time": 1.116441822052002, "iter": 87750, "memory": 8703, "step": 87750} +{"lr": 0.004937412593940029, "data_time": 0.0071979999542236325, "loss": 0.3600556969642639, "decode.loss_ce": 0.22033920735120774, "decode.acc_seg": 92.18418884277344, "aux.loss_ce": 0.13971648886799812, "aux.acc_seg": 86.0834732055664, "time": 1.112430167198181, "iter": 87800, "memory": 8704, "step": 87800} +{"lr": 0.004934397481666324, "data_time": 0.00827476978302002, "loss": 0.3227364867925644, "decode.loss_ce": 0.19767534285783767, "decode.acc_seg": 96.14530944824219, "aux.loss_ce": 0.12506114281713962, "aux.acc_seg": 95.13409423828125, "time": 1.1141873836517333, "iter": 87850, "memory": 8704, "step": 87850} +{"lr": 0.004931382160437871, "data_time": 0.0076193571090698246, "loss": 0.2824848830699921, "decode.loss_ce": 0.16582203209400176, "decode.acc_seg": 97.16320037841797, "aux.loss_ce": 0.11666285209357738, "aux.acc_seg": 96.61451721191406, "time": 1.116919708251953, "iter": 87900, "memory": 8703, "step": 87900} +{"lr": 0.0049283666300952685, "data_time": 0.006329345703125, "loss": 0.40217662155628203, "decode.loss_ce": 0.26298823654651643, "decode.acc_seg": 90.63549041748047, "aux.loss_ce": 0.1391883824020624, "aux.acc_seg": 85.8896255493164, "time": 1.1131667852401734, "iter": 87950, "memory": 8704, "step": 87950} +{"lr": 0.004925350890478883, "data_time": 0.007106518745422364, "loss": 0.3760602787137032, "decode.loss_ce": 0.23216065913438796, "decode.acc_seg": 94.99746704101562, "aux.loss_ce": 0.14389961995184422, "aux.acc_seg": 86.30130004882812, "time": 1.1169201850891113, "iter": 88000, "memory": 8704, "step": 88000} +{"lr": 0.004922334941428843, "data_time": 0.007952404022216798, "loss": 0.3359530076384544, "decode.loss_ce": 0.21394137293100357, "decode.acc_seg": 94.67855834960938, "aux.loss_ce": 0.12201163582503796, "aux.acc_seg": 94.09039306640625, "time": 1.1163590908050538, "iter": 88050, "memory": 8704, "step": 88050} +{"lr": 0.004919318782785047, "data_time": 0.00670320987701416, "loss": 0.5277262181043625, "decode.loss_ce": 0.3370039239525795, "decode.acc_seg": 80.26911163330078, "aux.loss_ce": 0.1907222904264927, "aux.acc_seg": 73.41352844238281, "time": 1.1151943445205688, "iter": 88100, "memory": 8704, "step": 88100} +{"lr": 0.004916302414387169, "data_time": 0.00698704719543457, "loss": 0.40417871475219724, "decode.loss_ce": 0.23559531271457673, "decode.acc_seg": 88.04683685302734, "aux.loss_ce": 0.16858340203762054, "aux.acc_seg": 86.05537414550781, "time": 1.1143830299377442, "iter": 88150, "memory": 8703, "step": 88150} +{"lr": 0.004913285836074631, "data_time": 0.008179140090942384, "loss": 0.3190700769424438, "decode.loss_ce": 0.2090390183031559, "decode.acc_seg": 89.1349105834961, "aux.loss_ce": 0.11003105603158474, "aux.acc_seg": 88.00392150878906, "time": 1.120529007911682, "iter": 88200, "memory": 8703, "step": 88200} +{"lr": 0.004910269047686634, "data_time": 0.006670808792114258, "loss": 0.46979402005672455, "decode.loss_ce": 0.30154779329895975, "decode.acc_seg": 88.30204010009766, "aux.loss_ce": 0.16824622936546801, "aux.acc_seg": 87.515380859375, "time": 1.1122951745986938, "iter": 88250, "memory": 8703, "step": 88250} +{"lr": 0.004907252049062141, "data_time": 0.007073092460632324, "loss": 0.3567920595407486, "decode.loss_ce": 0.21897330582141877, "decode.acc_seg": 92.30028533935547, "aux.loss_ce": 0.13781875520944595, "aux.acc_seg": 89.74456787109375, "time": 1.1089902877807618, "iter": 88300, "memory": 8704, "step": 88300} +{"lr": 0.004904234840039873, "data_time": 0.007605338096618652, "loss": 0.40740033984184265, "decode.loss_ce": 0.24542728066444397, "decode.acc_seg": 93.49800109863281, "aux.loss_ce": 0.1619730643928051, "aux.acc_seg": 87.61675262451172, "time": 1.1167963743209839, "iter": 88350, "memory": 8703, "step": 88350} +{"lr": 0.004901217420458317, "data_time": 0.007364439964294434, "loss": 0.4457108184695244, "decode.loss_ce": 0.2864939745515585, "decode.acc_seg": 89.19086456298828, "aux.loss_ce": 0.159216845408082, "aux.acc_seg": 89.8082046508789, "time": 1.1159945964813232, "iter": 88400, "memory": 8703, "step": 88400} +{"lr": 0.00489819979015573, "data_time": 0.0072056293487548825, "loss": 0.31818915009498594, "decode.loss_ce": 0.19259598925709726, "decode.acc_seg": 94.1403579711914, "aux.loss_ce": 0.1255931608378887, "aux.acc_seg": 92.69451141357422, "time": 1.1177011251449585, "iter": 88450, "memory": 8703, "step": 88450} +{"lr": 0.004895181948970128, "data_time": 0.0068748235702514645, "loss": 0.3751915588974953, "decode.loss_ce": 0.23981734588742257, "decode.acc_seg": 86.47289276123047, "aux.loss_ce": 0.13537420965731145, "aux.acc_seg": 85.38086700439453, "time": 1.119683527946472, "iter": 88500, "memory": 8703, "step": 88500} +{"lr": 0.004892163896739281, "data_time": 0.007470822334289551, "loss": 0.3654992297291756, "decode.loss_ce": 0.220438851416111, "decode.acc_seg": 85.96998596191406, "aux.loss_ce": 0.1450603760778904, "aux.acc_seg": 83.98793029785156, "time": 1.1165199279785156, "iter": 88550, "memory": 8703, "step": 88550} +{"lr": 0.004889145633300726, "data_time": 0.007676362991333008, "loss": 0.32578926980495454, "decode.loss_ce": 0.19331639781594276, "decode.acc_seg": 94.6243896484375, "aux.loss_ce": 0.132472874969244, "aux.acc_seg": 91.48514556884766, "time": 1.1173644542694092, "iter": 88600, "memory": 8703, "step": 88600} +{"lr": 0.00488612715849177, "data_time": 0.008167695999145509, "loss": 0.5418362647294999, "decode.loss_ce": 0.3321042701601982, "decode.acc_seg": 88.1446762084961, "aux.loss_ce": 0.20973199903964995, "aux.acc_seg": 86.06317138671875, "time": 1.119461989402771, "iter": 88650, "memory": 8703, "step": 88650} +{"lr": 0.004883108472149471, "data_time": 0.006534600257873535, "loss": 0.3729077443480492, "decode.loss_ce": 0.23713053092360498, "decode.acc_seg": 94.93738555908203, "aux.loss_ce": 0.1357772085815668, "aux.acc_seg": 93.5873031616211, "time": 1.1259735107421875, "iter": 88700, "memory": 8703, "step": 88700} +{"lr": 0.004880089574110643, "data_time": 0.007959365844726562, "loss": 0.3788378983736038, "decode.loss_ce": 0.23415785431861877, "decode.acc_seg": 78.32997131347656, "aux.loss_ce": 0.14468004815280439, "aux.acc_seg": 66.22002410888672, "time": 1.115742802619934, "iter": 88750, "memory": 8704, "step": 88750} +{"lr": 0.00487707046421187, "data_time": 0.007401585578918457, "loss": 0.47738719880580904, "decode.loss_ce": 0.2920668959617615, "decode.acc_seg": 92.23619842529297, "aux.loss_ce": 0.18532029762864113, "aux.acc_seg": 82.60307312011719, "time": 1.1164207696914672, "iter": 88800, "memory": 8703, "step": 88800} +{"lr": 0.00487405114228949, "data_time": 0.008434391021728516, "loss": 0.49073400646448134, "decode.loss_ce": 0.2834452949464321, "decode.acc_seg": 95.2402114868164, "aux.loss_ce": 0.20728871673345567, "aux.acc_seg": 92.23995208740234, "time": 1.1171041011810303, "iter": 88850, "memory": 8704, "step": 88850} +{"lr": 0.004871031608179596, "data_time": 0.006731629371643066, "loss": 0.30154217928647997, "decode.loss_ce": 0.17641481906175613, "decode.acc_seg": 94.19908142089844, "aux.loss_ce": 0.12512735538184644, "aux.acc_seg": 88.26925659179688, "time": 1.1197044849395752, "iter": 88900, "memory": 8704, "step": 88900} +{"lr": 0.004868011861718046, "data_time": 0.00698850154876709, "loss": 0.31599595993757246, "decode.loss_ce": 0.19832743257284163, "decode.acc_seg": 94.70831298828125, "aux.loss_ce": 0.11766852959990501, "aux.acc_seg": 92.92271423339844, "time": 1.1162310361862182, "iter": 88950, "memory": 8703, "step": 88950} +{"lr": 0.004864991902740453, "data_time": 0.005250096321105957, "loss": 0.44329798221588135, "decode.loss_ce": 0.26801280677318573, "decode.acc_seg": 96.61979675292969, "aux.loss_ce": 0.1752851691097021, "aux.acc_seg": 96.07601165771484, "time": 1.1134334087371827, "iter": 89000, "memory": 8705, "step": 89000} +{"lr": 0.004861971731082186, "data_time": 0.006972289085388184, "loss": 0.5471442937850952, "decode.loss_ce": 0.3282432794570923, "decode.acc_seg": 86.80953979492188, "aux.loss_ce": 0.21890101656317712, "aux.acc_seg": 82.56562042236328, "time": 1.113944673538208, "iter": 89050, "memory": 8704, "step": 89050} +{"lr": 0.004858951346578368, "data_time": 0.006832313537597656, "loss": 0.43830827325582505, "decode.loss_ce": 0.2724388152360916, "decode.acc_seg": 89.08824920654297, "aux.loss_ce": 0.16586946025490762, "aux.acc_seg": 75.41275024414062, "time": 1.115134882926941, "iter": 89100, "memory": 8704, "step": 89100} +{"lr": 0.004855930749063885, "data_time": 0.006597399711608887, "loss": 0.3662140563130379, "decode.loss_ce": 0.23327850699424743, "decode.acc_seg": 91.83101654052734, "aux.loss_ce": 0.13293554708361627, "aux.acc_seg": 91.11881256103516, "time": 1.1176943063735962, "iter": 89150, "memory": 8704, "step": 89150} +{"lr": 0.004852909938373371, "data_time": 0.008597111701965332, "loss": 0.5313056312501431, "decode.loss_ce": 0.3138624466955662, "decode.acc_seg": 89.9307861328125, "aux.loss_ce": 0.2174431961029768, "aux.acc_seg": 80.03273010253906, "time": 1.1247047662734986, "iter": 89200, "memory": 8704, "step": 89200} +{"lr": 0.0048498889143412174, "data_time": 0.006705784797668457, "loss": 0.3875031232833862, "decode.loss_ce": 0.23718592301011085, "decode.acc_seg": 95.74482727050781, "aux.loss_ce": 0.15031720660626888, "aux.acc_seg": 94.06731414794922, "time": 1.117703413963318, "iter": 89250, "memory": 8703, "step": 89250} +{"lr": 0.004846867676801572, "data_time": 0.007045674324035645, "loss": 0.33488119691610335, "decode.loss_ce": 0.20903330221772193, "decode.acc_seg": 90.24002838134766, "aux.loss_ce": 0.1258478932082653, "aux.acc_seg": 80.69915771484375, "time": 1.1140963315963746, "iter": 89300, "memory": 8703, "step": 89300} +{"lr": 0.0048438462255883255, "data_time": 0.007416129112243652, "loss": 0.3511800691485405, "decode.loss_ce": 0.20660146698355675, "decode.acc_seg": 94.09910583496094, "aux.loss_ce": 0.14457859769463538, "aux.acc_seg": 83.20496368408203, "time": 1.111821746826172, "iter": 89350, "memory": 8704, "step": 89350} +{"lr": 0.004840824560535135, "data_time": 0.00722963809967041, "loss": 0.35529021322727206, "decode.loss_ce": 0.20117524228990077, "decode.acc_seg": 94.19695281982422, "aux.loss_ce": 0.15411496795713903, "aux.acc_seg": 92.67845153808594, "time": 1.116291379928589, "iter": 89400, "memory": 8703, "step": 89400} +{"lr": 0.004837802681475412, "data_time": 0.006054306030273437, "loss": 0.25563129037618637, "decode.loss_ce": 0.15635705962777138, "decode.acc_seg": 90.77383422851562, "aux.loss_ce": 0.09927422851324082, "aux.acc_seg": 88.32778930664062, "time": 1.1167168617248535, "iter": 89450, "memory": 8703, "step": 89450} +{"lr": 0.004834780588242308, "data_time": 0.007838988304138183, "loss": 0.4800803229212761, "decode.loss_ce": 0.2916464418172836, "decode.acc_seg": 90.21822357177734, "aux.loss_ce": 0.18843388110399245, "aux.acc_seg": 89.69026947021484, "time": 1.118459987640381, "iter": 89500, "memory": 8703, "step": 89500} +{"lr": 0.0048317582806687255, "data_time": 0.006689882278442383, "loss": 0.6119117692112923, "decode.loss_ce": 0.39731907919049264, "decode.acc_seg": 96.5774154663086, "aux.loss_ce": 0.21459268257021905, "aux.acc_seg": 88.37397003173828, "time": 1.1155580520629882, "iter": 89550, "memory": 8703, "step": 89550} +{"lr": 0.004828735758587331, "data_time": 0.007564282417297364, "loss": 0.41758981347084045, "decode.loss_ce": 0.2588937424123287, "decode.acc_seg": 93.18917083740234, "aux.loss_ce": 0.1586960658431053, "aux.acc_seg": 92.65727996826172, "time": 1.1193956851959228, "iter": 89600, "memory": 8704, "step": 89600} +{"lr": 0.00482571302183053, "data_time": 0.006409668922424316, "loss": 0.5014060035347938, "decode.loss_ce": 0.32706781625747683, "decode.acc_seg": 94.88880920410156, "aux.loss_ce": 0.17433818094432355, "aux.acc_seg": 92.87496948242188, "time": 1.1162753105163574, "iter": 89650, "memory": 8704, "step": 89650} +{"lr": 0.00482269007023049, "data_time": 0.006476569175720215, "loss": 0.3608750820159912, "decode.loss_ce": 0.22233593091368675, "decode.acc_seg": 88.32772064208984, "aux.loss_ce": 0.13853915147483348, "aux.acc_seg": 83.90972900390625, "time": 1.1124540567398071, "iter": 89700, "memory": 8703, "step": 89700} +{"lr": 0.004819666903619115, "data_time": 0.007345342636108398, "loss": 0.5406243003904819, "decode.loss_ce": 0.32635983638465405, "decode.acc_seg": 93.72488403320312, "aux.loss_ce": 0.21426446549594402, "aux.acc_seg": 71.70803833007812, "time": 1.1159921169281006, "iter": 89750, "memory": 8704, "step": 89750} +{"lr": 0.004816643521828064, "data_time": 0.006650757789611816, "loss": 0.40766353011131284, "decode.loss_ce": 0.25811707973480225, "decode.acc_seg": 95.35210418701172, "aux.loss_ce": 0.14954644851386548, "aux.acc_seg": 91.09636688232422, "time": 1.1135326862335204, "iter": 89800, "memory": 8703, "step": 89800} +{"lr": 0.004813619924688741, "data_time": 0.006575942039489746, "loss": 0.4362878993153572, "decode.loss_ce": 0.2653706595301628, "decode.acc_seg": 93.72017669677734, "aux.loss_ce": 0.17091724127531052, "aux.acc_seg": 85.00359344482422, "time": 1.1122652053833009, "iter": 89850, "memory": 8703, "step": 89850} +{"lr": 0.0048105961120322996, "data_time": 0.006546378135681152, "loss": 0.336650612950325, "decode.loss_ce": 0.2009535551071167, "decode.acc_seg": 93.05162048339844, "aux.loss_ce": 0.1356970526278019, "aux.acc_seg": 80.75953674316406, "time": 1.1151798486709594, "iter": 89900, "memory": 8704, "step": 89900} +{"lr": 0.004807572083689638, "data_time": 0.006995344161987304, "loss": 0.3380931779742241, "decode.loss_ce": 0.21061211228370666, "decode.acc_seg": 87.14359283447266, "aux.loss_ce": 0.12748105973005294, "aux.acc_seg": 80.8287353515625, "time": 1.1111981391906738, "iter": 89950, "memory": 8704, "step": 89950} +{"lr": 0.004804547839491409, "data_time": 0.005784058570861816, "loss": 0.34583660811185835, "decode.loss_ce": 0.20066607594490052, "decode.acc_seg": 95.96503448486328, "aux.loss_ce": 0.14517053440213204, "aux.acc_seg": 95.25096893310547, "time": 1.1156842231750488, "iter": 90000, "memory": 8704, "step": 90000} +{"lr": 0.004801523379268002, "data_time": 0.00674593448638916, "loss": 0.30899338573217394, "decode.loss_ce": 0.18803591281175613, "decode.acc_seg": 96.10614776611328, "aux.loss_ce": 0.12095747403800487, "aux.acc_seg": 88.92446899414062, "time": 1.115586805343628, "iter": 90050, "memory": 8703, "step": 90050} +{"lr": 0.004798498702849555, "data_time": 0.008772158622741699, "loss": 0.31231644153594973, "decode.loss_ce": 0.18688387498259545, "decode.acc_seg": 84.10670471191406, "aux.loss_ce": 0.12543257102370262, "aux.acc_seg": 82.08160400390625, "time": 1.1191361665725708, "iter": 90100, "memory": 8703, "step": 90100} +{"lr": 0.004795473810065948, "data_time": 0.007779955863952637, "loss": 0.30286003947257994, "decode.loss_ce": 0.18996625617146493, "decode.acc_seg": 94.4847640991211, "aux.loss_ce": 0.11289378218352794, "aux.acc_seg": 93.79253387451172, "time": 1.1190279960632323, "iter": 90150, "memory": 8704, "step": 90150} +{"lr": 0.00479244870074682, "data_time": 0.005912637710571289, "loss": 0.5400104254484177, "decode.loss_ce": 0.35881912857294085, "decode.acc_seg": 74.77594757080078, "aux.loss_ce": 0.18119129315018653, "aux.acc_seg": 70.96729278564453, "time": 1.1157800436019898, "iter": 90200, "memory": 8703, "step": 90200} +{"lr": 0.004789423374721531, "data_time": 0.007339787483215332, "loss": 0.40486037731170654, "decode.loss_ce": 0.23551502749323844, "decode.acc_seg": 95.72105407714844, "aux.loss_ce": 0.16934534758329392, "aux.acc_seg": 93.92597961425781, "time": 1.1158721685409545, "iter": 90250, "memory": 8703, "step": 90250} +{"lr": 0.004786397831819206, "data_time": 0.006289386749267578, "loss": 0.4095698669552803, "decode.loss_ce": 0.26120103523135185, "decode.acc_seg": 97.44415283203125, "aux.loss_ce": 0.1483688298612833, "aux.acc_seg": 97.30078125, "time": 1.1145507097244263, "iter": 90300, "memory": 8703, "step": 90300} +{"lr": 0.004783372071868696, "data_time": 0.00700831413269043, "loss": 0.5262498497962952, "decode.loss_ce": 0.32418277114629745, "decode.acc_seg": 91.5747299194336, "aux.loss_ce": 0.20206707902252674, "aux.acc_seg": 89.75855255126953, "time": 1.1165689706802369, "iter": 90350, "memory": 8704, "step": 90350} +{"lr": 0.004780346094698597, "data_time": 0.005838871002197266, "loss": 0.45096885710954665, "decode.loss_ce": 0.2754662953317165, "decode.acc_seg": 95.75119018554688, "aux.loss_ce": 0.17550256624817848, "aux.acc_seg": 91.60690307617188, "time": 1.1136210203170775, "iter": 90400, "memory": 8704, "step": 90400} +{"lr": 0.004777319900137254, "data_time": 0.005737590789794922, "loss": 0.32471827119588853, "decode.loss_ce": 0.19695984870195388, "decode.acc_seg": 95.6250991821289, "aux.loss_ce": 0.12775841914117336, "aux.acc_seg": 93.69208526611328, "time": 1.1092370271682739, "iter": 90450, "memory": 8704, "step": 90450} +{"lr": 0.004774293488012749, "data_time": 0.00773468017578125, "loss": 0.3509622305631638, "decode.loss_ce": 0.21294680163264273, "decode.acc_seg": 96.19312286376953, "aux.loss_ce": 0.13801543451845646, "aux.acc_seg": 91.6635513305664, "time": 1.1155290603637695, "iter": 90500, "memory": 8703, "step": 90500} +{"lr": 0.004771266858152902, "data_time": 0.00786736011505127, "loss": 0.3217964515089989, "decode.loss_ce": 0.1968235783278942, "decode.acc_seg": 92.55396270751953, "aux.loss_ce": 0.12497287727892399, "aux.acc_seg": 83.44001770019531, "time": 1.1181031703948974, "iter": 90550, "memory": 8704, "step": 90550} +{"lr": 0.004768240010385268, "data_time": 0.008067822456359864, "loss": 0.3375620931386948, "decode.loss_ce": 0.21635891124606133, "decode.acc_seg": 81.43087768554688, "aux.loss_ce": 0.12120318450033665, "aux.acc_seg": 79.03740692138672, "time": 1.1182828426361084, "iter": 90600, "memory": 8704, "step": 90600} +{"lr": 0.0047652129445371555, "data_time": 0.006201243400573731, "loss": 0.3789402782917023, "decode.loss_ce": 0.23190946877002716, "decode.acc_seg": 88.54840087890625, "aux.loss_ce": 0.14703080281615258, "aux.acc_seg": 85.01917266845703, "time": 1.1150138616561889, "iter": 90650, "memory": 8703, "step": 90650} +{"lr": 0.004762185660435596, "data_time": 0.005660796165466308, "loss": 0.341975000500679, "decode.loss_ce": 0.22413148432970048, "decode.acc_seg": 87.76001739501953, "aux.loss_ce": 0.1178435131907463, "aux.acc_seg": 83.16510009765625, "time": 1.1169404983520508, "iter": 90700, "memory": 8705, "step": 90700} +{"lr": 0.004759158157907374, "data_time": 0.005454802513122558, "loss": 0.3483343556523323, "decode.loss_ce": 0.20465206429362298, "decode.acc_seg": 96.35035705566406, "aux.loss_ce": 0.14368228800594807, "aux.acc_seg": 88.7548599243164, "time": 1.1211923360824585, "iter": 90750, "memory": 8704, "step": 90750} +{"lr": 0.004756130436779, "data_time": 0.008364439010620117, "loss": 0.32347152233123777, "decode.loss_ce": 0.2057783268392086, "decode.acc_seg": 90.60230255126953, "aux.loss_ce": 0.1176931954920292, "aux.acc_seg": 85.795654296875, "time": 1.118689727783203, "iter": 90800, "memory": 8704, "step": 90800} +{"lr": 0.004753102496876724, "data_time": 0.007206153869628906, "loss": 0.4261782944202423, "decode.loss_ce": 0.23850659728050233, "decode.acc_seg": 94.51129913330078, "aux.loss_ce": 0.18767169080674648, "aux.acc_seg": 92.97734832763672, "time": 1.117387866973877, "iter": 90850, "memory": 8703, "step": 90850} +{"lr": 0.004750074338026533, "data_time": 0.0069975614547729496, "loss": 0.3640557497739792, "decode.loss_ce": 0.2301298499107361, "decode.acc_seg": 92.34555053710938, "aux.loss_ce": 0.13392589688301088, "aux.acc_seg": 85.01904296875, "time": 1.1147024154663085, "iter": 90900, "memory": 8704, "step": 90900} +{"lr": 0.004747045960054154, "data_time": 0.006495451927185059, "loss": 0.38238592743873595, "decode.loss_ce": 0.23954547941684723, "decode.acc_seg": 94.80594635009766, "aux.loss_ce": 0.14284044839441776, "aux.acc_seg": 91.8530044555664, "time": 1.1166583061218263, "iter": 90950, "memory": 8704, "step": 90950} +{"lr": 0.00474401736278504, "data_time": 0.005800628662109375, "loss": 0.3723290845751762, "decode.loss_ce": 0.23677924796938896, "decode.acc_seg": 94.53237915039062, "aux.loss_ce": 0.1355498380959034, "aux.acc_seg": 93.63563537597656, "time": 1.111949586868286, "iter": 91000, "memory": 8703, "step": 91000} +{"lr": 0.004740988546044383, "data_time": 0.006831169128417969, "loss": 0.4039869621396065, "decode.loss_ce": 0.23626718074083328, "decode.acc_seg": 88.14868927001953, "aux.loss_ce": 0.1677197813987732, "aux.acc_seg": 83.17800903320312, "time": 1.1190544605255126, "iter": 91050, "memory": 8704, "step": 91050} +{"lr": 0.004737959509657108, "data_time": 0.006293439865112304, "loss": 0.3122848987579346, "decode.loss_ce": 0.19646894708275794, "decode.acc_seg": 95.58124542236328, "aux.loss_ce": 0.11581595130264759, "aux.acc_seg": 94.30210876464844, "time": 1.1168678998947144, "iter": 91100, "memory": 8705, "step": 91100} +{"lr": 0.00473493025344788, "data_time": 0.006733393669128418, "loss": 0.585393437743187, "decode.loss_ce": 0.3937448084354401, "decode.acc_seg": 95.58880615234375, "aux.loss_ce": 0.1916486334055662, "aux.acc_seg": 91.79039001464844, "time": 1.1168399095535277, "iter": 91150, "memory": 8703, "step": 91150} +{"lr": 0.00473190077724108, "data_time": 0.006129598617553711, "loss": 0.40370473116636274, "decode.loss_ce": 0.24762592762708663, "decode.acc_seg": 92.34949493408203, "aux.loss_ce": 0.15607880055904388, "aux.acc_seg": 89.65580749511719, "time": 1.1197476387023926, "iter": 91200, "memory": 8704, "step": 91200} +{"lr": 0.00472887108086084, "data_time": 0.0067814111709594725, "loss": 0.38590550422668457, "decode.loss_ce": 0.20931873545050622, "decode.acc_seg": 96.4072494506836, "aux.loss_ce": 0.17658677101135253, "aux.acc_seg": 91.0837173461914, "time": 1.1172157287597657, "iter": 91250, "memory": 8704, "step": 91250} +{"lr": 0.0047258411641310115, "data_time": 0.007370209693908692, "loss": 0.4003314107656479, "decode.loss_ce": 0.24805710837244987, "decode.acc_seg": 93.52779388427734, "aux.loss_ce": 0.15227430388331414, "aux.acc_seg": 91.35906982421875, "time": 1.1161616563796997, "iter": 91300, "memory": 8704, "step": 91300} +{"lr": 0.004722811026875181, "data_time": 0.006064939498901367, "loss": 0.23488309159874915, "decode.loss_ce": 0.1383576389402151, "decode.acc_seg": 96.68000030517578, "aux.loss_ce": 0.0965254545211792, "aux.acc_seg": 95.41765594482422, "time": 1.1160869598388672, "iter": 91350, "memory": 8704, "step": 91350} +{"lr": 0.004719780668916666, "data_time": 0.007247400283813476, "loss": 0.40881985127925874, "decode.loss_ce": 0.26063779890537264, "decode.acc_seg": 94.31063079833984, "aux.loss_ce": 0.14818205684423447, "aux.acc_seg": 92.17720031738281, "time": 1.1182316064834594, "iter": 91400, "memory": 8704, "step": 91400} +{"lr": 0.004716750090078509, "data_time": 0.006918263435363769, "loss": 0.43391878306865694, "decode.loss_ce": 0.2791226625442505, "decode.acc_seg": 94.76801300048828, "aux.loss_ce": 0.1547961223870516, "aux.acc_seg": 92.9891586303711, "time": 1.1147179841995238, "iter": 91450, "memory": 8704, "step": 91450} +{"lr": 0.004713719290183487, "data_time": 0.00685267448425293, "loss": 0.485011550784111, "decode.loss_ce": 0.2971303462982178, "decode.acc_seg": 89.5631103515625, "aux.loss_ce": 0.18788119703531264, "aux.acc_seg": 79.91695404052734, "time": 1.1141201972961425, "iter": 91500, "memory": 8704, "step": 91500} +{"lr": 0.004710688269054096, "data_time": 0.0068196535110473635, "loss": 0.22704104632139205, "decode.loss_ce": 0.14515649974346162, "decode.acc_seg": 97.1671371459961, "aux.loss_ce": 0.08188454322516918, "aux.acc_seg": 96.55647277832031, "time": 1.1131120681762696, "iter": 91550, "memory": 8703, "step": 91550} +{"lr": 0.004707657026512571, "data_time": 0.006557536125183105, "loss": 0.3193753272294998, "decode.loss_ce": 0.20117853656411172, "decode.acc_seg": 95.18522644042969, "aux.loss_ce": 0.11819679364562034, "aux.acc_seg": 93.47288513183594, "time": 1.1173011541366578, "iter": 91600, "memory": 8704, "step": 91600} +{"lr": 0.004704625562380866, "data_time": 0.006276392936706543, "loss": 0.33705315589904783, "decode.loss_ce": 0.20787906646728516, "decode.acc_seg": 92.63909149169922, "aux.loss_ce": 0.12917409352958203, "aux.acc_seg": 92.472900390625, "time": 1.1159191846847534, "iter": 91650, "memory": 8704, "step": 91650} +{"lr": 0.0047015938764806775, "data_time": 0.005234289169311524, "loss": 0.28571857511997223, "decode.loss_ce": 0.18123129829764367, "decode.acc_seg": 94.10469818115234, "aux.loss_ce": 0.10448727756738663, "aux.acc_seg": 89.3453598022461, "time": 1.1201359987258912, "iter": 91700, "memory": 8703, "step": 91700} +{"lr": 0.004698561968633402, "data_time": 0.005746388435363769, "loss": 0.4087268278002739, "decode.loss_ce": 0.2357352040708065, "decode.acc_seg": 95.72232055664062, "aux.loss_ce": 0.1729916162788868, "aux.acc_seg": 91.46499633789062, "time": 1.114221954345703, "iter": 91750, "memory": 8704, "step": 91750} +{"lr": 0.004695529838660178, "data_time": 0.006638765335083008, "loss": 0.30763543099164964, "decode.loss_ce": 0.19602756425738335, "decode.acc_seg": 96.61934661865234, "aux.loss_ce": 0.11160786487162114, "aux.acc_seg": 96.34710693359375, "time": 1.1188256740570068, "iter": 91800, "memory": 8703, "step": 91800} +{"lr": 0.004692497486381866, "data_time": 0.006028127670288086, "loss": 0.37747223377227784, "decode.loss_ce": 0.23005227744579315, "decode.acc_seg": 94.92208099365234, "aux.loss_ce": 0.1474199540913105, "aux.acc_seg": 92.88722229003906, "time": 1.1081965684890747, "iter": 91850, "memory": 8704, "step": 91850} +{"lr": 0.004689464911619048, "data_time": 0.006343913078308105, "loss": 0.3132507652044296, "decode.loss_ce": 0.18958353474736214, "decode.acc_seg": 95.53985595703125, "aux.loss_ce": 0.12366722673177719, "aux.acc_seg": 89.85563659667969, "time": 1.1150695562362671, "iter": 91900, "memory": 8704, "step": 91900} +{"lr": 0.004686432114192031, "data_time": 0.005767607688903808, "loss": 0.32726636826992034, "decode.loss_ce": 0.19395133033394812, "decode.acc_seg": 94.10183715820312, "aux.loss_ce": 0.13331503570079803, "aux.acc_seg": 89.71595764160156, "time": 1.1128845453262328, "iter": 91950, "memory": 8704, "step": 91950} +{"lr": 0.004683399093920849, "data_time": 0.006357002258300781, "loss": 0.4964372247457504, "decode.loss_ce": 0.30010421574115753, "decode.acc_seg": 92.38452911376953, "aux.loss_ce": 0.19633300080895424, "aux.acc_seg": 88.91029357910156, "time": 1.1172901391983032, "iter": 92000, "memory": 8703, "step": 92000} +{"lr": 0.004680365850625249, "data_time": 0.006112217903137207, "loss": 0.28906617164611814, "decode.loss_ce": 0.18112934827804567, "decode.acc_seg": 96.03773498535156, "aux.loss_ce": 0.10793682374060154, "aux.acc_seg": 94.10794067382812, "time": 1.113459038734436, "iter": 92050, "memory": 8704, "step": 92050} +{"lr": 0.0046773323841247, "data_time": 0.006966066360473633, "loss": 0.27112058997154237, "decode.loss_ce": 0.16789520829916, "decode.acc_seg": 95.29653930664062, "aux.loss_ce": 0.10322538428008557, "aux.acc_seg": 94.1157455444336, "time": 1.1195432424545289, "iter": 92100, "memory": 8703, "step": 92100} +{"lr": 0.004674298694238402, "data_time": 0.0054023504257202145, "loss": 0.3257880643010139, "decode.loss_ce": 0.21156491041183473, "decode.acc_seg": 95.45610809326172, "aux.loss_ce": 0.11422315798699856, "aux.acc_seg": 89.55736541748047, "time": 1.115863823890686, "iter": 92150, "memory": 8704, "step": 92150} +{"lr": 0.004671264780785271, "data_time": 0.0060138702392578125, "loss": 0.36981066018342973, "decode.loss_ce": 0.23191332519054414, "decode.acc_seg": 96.76901245117188, "aux.loss_ce": 0.1378973327577114, "aux.acc_seg": 94.27242279052734, "time": 1.1176535129547118, "iter": 92200, "memory": 8704, "step": 92200} +{"lr": 0.004668230643583935, "data_time": 0.006037235260009766, "loss": 0.4329202651977539, "decode.loss_ce": 0.25513271540403365, "decode.acc_seg": 92.37823486328125, "aux.loss_ce": 0.17778755202889443, "aux.acc_seg": 89.67437744140625, "time": 1.112819290161133, "iter": 92250, "memory": 8703, "step": 92250} +{"lr": 0.0046651962824527495, "data_time": 0.0064766168594360355, "loss": 0.48963612467050555, "decode.loss_ce": 0.3104087680578232, "decode.acc_seg": 86.834716796875, "aux.loss_ce": 0.17922735437750817, "aux.acc_seg": 85.87334442138672, "time": 1.1152302742004394, "iter": 92300, "memory": 8704, "step": 92300} +{"lr": 0.004662161697209792, "data_time": 0.005649375915527344, "loss": 0.4774220421910286, "decode.loss_ce": 0.2945006638765335, "decode.acc_seg": 94.48388671875, "aux.loss_ce": 0.18292138464748858, "aux.acc_seg": 88.73223114013672, "time": 1.1159384489059447, "iter": 92350, "memory": 8704, "step": 92350} +{"lr": 0.004659126887672844, "data_time": 0.005516433715820312, "loss": 0.35793718248605727, "decode.loss_ce": 0.22396894097328185, "decode.acc_seg": 90.746337890625, "aux.loss_ce": 0.13396824449300765, "aux.acc_seg": 88.74959564208984, "time": 1.116700792312622, "iter": 92400, "memory": 8704, "step": 92400} +{"lr": 0.004656091853659407, "data_time": 0.006650876998901367, "loss": 0.38437328189611436, "decode.loss_ce": 0.22878493890166282, "decode.acc_seg": 96.044921875, "aux.loss_ce": 0.15558834336698055, "aux.acc_seg": 94.8678970336914, "time": 1.1144878625869752, "iter": 92450, "memory": 8703, "step": 92450} +{"lr": 0.004653056594986707, "data_time": 0.006471848487854004, "loss": 0.44609484672546384, "decode.loss_ce": 0.2683256193995476, "decode.acc_seg": 92.44886779785156, "aux.loss_ce": 0.17776922807097434, "aux.acc_seg": 87.26742553710938, "time": 1.1129584074020387, "iter": 92500, "memory": 8703, "step": 92500} +{"lr": 0.004650021111471685, "data_time": 0.006080341339111328, "loss": 0.42826908975839617, "decode.loss_ce": 0.26458386406302453, "decode.acc_seg": 98.05081176757812, "aux.loss_ce": 0.16368521973490716, "aux.acc_seg": 92.32971954345703, "time": 1.1132836818695069, "iter": 92550, "memory": 8704, "step": 92550} +{"lr": 0.004646985402930987, "data_time": 0.0059294462203979496, "loss": 0.4711629837751389, "decode.loss_ce": 0.30195121839642525, "decode.acc_seg": 94.08975982666016, "aux.loss_ce": 0.1692117743194103, "aux.acc_seg": 92.10420989990234, "time": 1.1144231319427491, "iter": 92600, "memory": 8703, "step": 92600} +{"lr": 0.004643949469180987, "data_time": 0.006104373931884765, "loss": 0.4265731081366539, "decode.loss_ce": 0.23673071041703225, "decode.acc_seg": 95.37556457519531, "aux.loss_ce": 0.18984239920973778, "aux.acc_seg": 94.14259338378906, "time": 1.114650583267212, "iter": 92650, "memory": 8704, "step": 92650} +{"lr": 0.004640913310037766, "data_time": 0.00620880126953125, "loss": 0.35861118137836456, "decode.loss_ce": 0.21504910737276078, "decode.acc_seg": 91.80062103271484, "aux.loss_ce": 0.14356207475066185, "aux.acc_seg": 83.98411560058594, "time": 1.1166002750396729, "iter": 92700, "memory": 8704, "step": 92700} +{"lr": 0.004637876925317111, "data_time": 0.005311369895935059, "loss": 0.2999949648976326, "decode.loss_ce": 0.18001707792282104, "decode.acc_seg": 90.74427032470703, "aux.loss_ce": 0.11997788809239865, "aux.acc_seg": 88.34005737304688, "time": 1.1131801843643188, "iter": 92750, "memory": 8703, "step": 92750} +{"lr": 0.00463484031483453, "data_time": 0.0064863920211791996, "loss": 0.3206991493701935, "decode.loss_ce": 0.1809249497950077, "decode.acc_seg": 93.09973907470703, "aux.loss_ce": 0.13977419771254063, "aux.acc_seg": 88.88917541503906, "time": 1.11689293384552, "iter": 92800, "memory": 8703, "step": 92800} +{"lr": 0.004631803478405246, "data_time": 0.007657265663146973, "loss": 0.3744557246565819, "decode.loss_ce": 0.2328821301460266, "decode.acc_seg": 85.19935607910156, "aux.loss_ce": 0.14157358892261981, "aux.acc_seg": 81.12239837646484, "time": 1.1183720588684083, "iter": 92850, "memory": 8703, "step": 92850} +{"lr": 0.004628766415844179, "data_time": 0.007549810409545899, "loss": 0.2625366896390915, "decode.loss_ce": 0.15247225686907767, "decode.acc_seg": 96.41375732421875, "aux.loss_ce": 0.11006443314254284, "aux.acc_seg": 91.8420181274414, "time": 1.116969847679138, "iter": 92900, "memory": 8703, "step": 92900} +{"lr": 0.004625729126965974, "data_time": 0.006356883049011231, "loss": 0.3557612106204033, "decode.loss_ce": 0.2252156116068363, "decode.acc_seg": 87.07618713378906, "aux.loss_ce": 0.13054560199379922, "aux.acc_seg": 84.55797576904297, "time": 1.1143504858016968, "iter": 92950, "memory": 8704, "step": 92950} +{"lr": 0.004622691611584978, "data_time": 0.006075835227966309, "loss": 0.30991624146699903, "decode.loss_ce": 0.18282955139875412, "decode.acc_seg": 97.2808837890625, "aux.loss_ce": 0.12708668857812883, "aux.acc_seg": 97.00113677978516, "time": 1.1110797643661499, "iter": 93000, "memory": 8704, "step": 93000} +{"lr": 0.0046196538695152485, "data_time": 0.005143809318542481, "loss": 0.35745674669742583, "decode.loss_ce": 0.22851010859012605, "decode.acc_seg": 81.7841796875, "aux.loss_ce": 0.12894663400948048, "aux.acc_seg": 80.86433410644531, "time": 1.1121802806854248, "iter": 93050, "memory": 8704, "step": 93050} +{"lr": 0.004616615900570557, "data_time": 0.006451916694641113, "loss": 0.45614823400974275, "decode.loss_ce": 0.2956547513604164, "decode.acc_seg": 96.68006896972656, "aux.loss_ce": 0.16049348674714564, "aux.acc_seg": 95.2728271484375, "time": 1.1126091480255127, "iter": 93100, "memory": 8703, "step": 93100} +{"lr": 0.004613577704564367, "data_time": 0.005613923072814941, "loss": 0.3105108618736267, "decode.loss_ce": 0.19111617803573608, "decode.acc_seg": 86.13621520996094, "aux.loss_ce": 0.1193946860730648, "aux.acc_seg": 86.829833984375, "time": 1.1182993412017823, "iter": 93150, "memory": 8703, "step": 93150} +{"lr": 0.004610539281309868, "data_time": 0.007320117950439453, "loss": 0.23150150030851363, "decode.loss_ce": 0.14163151308894156, "decode.acc_seg": 91.34419250488281, "aux.loss_ce": 0.08986998498439788, "aux.acc_seg": 85.36148071289062, "time": 1.1165730476379394, "iter": 93200, "memory": 8704, "step": 93200} +{"lr": 0.004607500630619945, "data_time": 0.007391357421875, "loss": 0.3545809045433998, "decode.loss_ce": 0.20625825449824334, "decode.acc_seg": 94.04042053222656, "aux.loss_ce": 0.14832265265285968, "aux.acc_seg": 92.85404968261719, "time": 1.117248773574829, "iter": 93250, "memory": 8703, "step": 93250} +{"lr": 0.004604461752307191, "data_time": 0.006092643737792969, "loss": 0.4738864466547966, "decode.loss_ce": 0.251255701482296, "decode.acc_seg": 94.56424713134766, "aux.loss_ce": 0.22263073734939098, "aux.acc_seg": 92.53787994384766, "time": 1.1142447948455811, "iter": 93300, "memory": 8704, "step": 93300} +{"lr": 0.004601422646183901, "data_time": 0.007080793380737305, "loss": 0.37228191941976546, "decode.loss_ce": 0.22755856364965438, "decode.acc_seg": 89.0107421875, "aux.loss_ce": 0.144723355025053, "aux.acc_seg": 80.61510467529297, "time": 1.1150717973709106, "iter": 93350, "memory": 8703, "step": 93350} +{"lr": 0.004598383312062078, "data_time": 0.00701608657836914, "loss": 0.3892807632684708, "decode.loss_ce": 0.22766755968332292, "decode.acc_seg": 88.96408081054688, "aux.loss_ce": 0.16161320209503174, "aux.acc_seg": 86.56978607177734, "time": 1.1129699230194092, "iter": 93400, "memory": 8703, "step": 93400} +{"lr": 0.004595343749753434, "data_time": 0.008540797233581542, "loss": 0.2968803897500038, "decode.loss_ce": 0.18637246564030646, "decode.acc_seg": 97.4845199584961, "aux.loss_ce": 0.1105079211294651, "aux.acc_seg": 96.5094223022461, "time": 1.1167790412902832, "iter": 93450, "memory": 8705, "step": 93450} +{"lr": 0.004592303959069373, "data_time": 0.00576627254486084, "loss": 0.3770096883177757, "decode.loss_ce": 0.22914551198482513, "decode.acc_seg": 96.79730987548828, "aux.loss_ce": 0.14786417707800864, "aux.acc_seg": 92.49740600585938, "time": 1.1111909866333007, "iter": 93500, "memory": 8703, "step": 93500} +{"lr": 0.004589263939821007, "data_time": 0.007751631736755371, "loss": 0.40606316179037094, "decode.loss_ce": 0.24663737043738365, "decode.acc_seg": 96.50650024414062, "aux.loss_ce": 0.15942579433321952, "aux.acc_seg": 95.23098754882812, "time": 1.1180700302124023, "iter": 93550, "memory": 8704, "step": 93550} +{"lr": 0.0045862236918191475, "data_time": 0.007236981391906738, "loss": 0.2528435796499252, "decode.loss_ce": 0.15317503958940507, "decode.acc_seg": 96.46326446533203, "aux.loss_ce": 0.09966854043304921, "aux.acc_seg": 94.01232147216797, "time": 1.1141281366348266, "iter": 93600, "memory": 8703, "step": 93600} +{"lr": 0.004583183214874308, "data_time": 0.00771174430847168, "loss": 0.3302804991602898, "decode.loss_ce": 0.2050603747367859, "decode.acc_seg": 90.14974975585938, "aux.loss_ce": 0.12522012554109097, "aux.acc_seg": 88.46269989013672, "time": 1.1194544553756713, "iter": 93650, "memory": 8703, "step": 93650} +{"lr": 0.0045801425087967, "data_time": 0.005527758598327636, "loss": 0.397989758849144, "decode.loss_ce": 0.2374959945678711, "decode.acc_seg": 92.41065979003906, "aux.loss_ce": 0.16049376577138902, "aux.acc_seg": 92.68003845214844, "time": 1.1104361295700074, "iter": 93700, "memory": 8704, "step": 93700} +{"lr": 0.004577101573396238, "data_time": 0.00764622688293457, "loss": 0.5405457079410553, "decode.loss_ce": 0.3601149432361126, "decode.acc_seg": 90.72481536865234, "aux.loss_ce": 0.1804307594895363, "aux.acc_seg": 85.8841552734375, "time": 1.1197900772094727, "iter": 93750, "memory": 8704, "step": 93750} +{"lr": 0.004574060408482533, "data_time": 0.006930160522460938, "loss": 0.37422006502747535, "decode.loss_ce": 0.2255062222480774, "decode.acc_seg": 95.64119720458984, "aux.loss_ce": 0.14871384240686894, "aux.acc_seg": 95.04724884033203, "time": 1.1151597499847412, "iter": 93800, "memory": 8704, "step": 93800} +{"lr": 0.004571019013864896, "data_time": 0.007270312309265137, "loss": 0.31620834171772005, "decode.loss_ce": 0.2062472701072693, "decode.acc_seg": 95.29024505615234, "aux.loss_ce": 0.10996107421815396, "aux.acc_seg": 92.14566040039062, "time": 1.116255784034729, "iter": 93850, "memory": 8704, "step": 93850} +{"lr": 0.004567977389352333, "data_time": 0.0063729524612426754, "loss": 0.4656089752912521, "decode.loss_ce": 0.2988275185227394, "decode.acc_seg": 94.48419952392578, "aux.loss_ce": 0.1667814515531063, "aux.acc_seg": 89.24617767333984, "time": 1.112076210975647, "iter": 93900, "memory": 8703, "step": 93900} +{"lr": 0.004564935534753548, "data_time": 0.00802474021911621, "loss": 0.3378905445337296, "decode.loss_ce": 0.2050305888056755, "decode.acc_seg": 93.54972839355469, "aux.loss_ce": 0.13285995423793792, "aux.acc_seg": 86.12664031982422, "time": 1.1115439176559447, "iter": 93950, "memory": 8703, "step": 93950} +{"lr": 0.004561893449876938, "data_time": 0.007389640808105469, "loss": 0.3415037602186203, "decode.loss_ce": 0.21260873824357987, "decode.acc_seg": 94.46918487548828, "aux.loss_ce": 0.1288950227200985, "aux.acc_seg": 91.50846099853516, "time": 1.1135194063186646, "iter": 94000, "memory": 8703, "step": 94000} +{"lr": 0.004558851134530604, "data_time": 0.00888679027557373, "loss": 0.3610958129167557, "decode.loss_ce": 0.2155890457332134, "decode.acc_seg": 87.546630859375, "aux.loss_ce": 0.14550676420331002, "aux.acc_seg": 82.72709655761719, "time": 1.1230302572250366, "iter": 94050, "memory": 8703, "step": 94050} +{"lr": 0.004555808588522328, "data_time": 0.0068902730941772464, "loss": 0.40423014014959335, "decode.loss_ce": 0.251897494494915, "decode.acc_seg": 96.9324722290039, "aux.loss_ce": 0.1523326516151428, "aux.acc_seg": 95.28026580810547, "time": 1.1153434276580811, "iter": 94100, "memory": 8703, "step": 94100} +{"lr": 0.004552765811659595, "data_time": 0.00629730224609375, "loss": 0.3495011836290359, "decode.loss_ce": 0.20560482442378997, "decode.acc_seg": 93.79456329345703, "aux.loss_ce": 0.1438963532447815, "aux.acc_seg": 88.41126251220703, "time": 1.1182782173156738, "iter": 94150, "memory": 8703, "step": 94150} +{"lr": 0.004549722803749584, "data_time": 0.006568455696105957, "loss": 0.4047181665897369, "decode.loss_ce": 0.24915314540266992, "decode.acc_seg": 94.69261169433594, "aux.loss_ce": 0.15556502044200898, "aux.acc_seg": 90.14218139648438, "time": 1.1160122394561767, "iter": 94200, "memory": 8704, "step": 94200} +{"lr": 0.004546679564599155, "data_time": 0.005568242073059082, "loss": 0.3738942056894302, "decode.loss_ce": 0.22175382301211358, "decode.acc_seg": 93.50210571289062, "aux.loss_ce": 0.15214038416743278, "aux.acc_seg": 92.43049621582031, "time": 1.1146272420883179, "iter": 94250, "memory": 8704, "step": 94250} +{"lr": 0.004543636094014877, "data_time": 0.006765031814575195, "loss": 0.3161349192261696, "decode.loss_ce": 0.1990999922156334, "decode.acc_seg": 95.52338409423828, "aux.loss_ce": 0.11703492179512978, "aux.acc_seg": 94.23757934570312, "time": 1.1121804475784303, "iter": 94300, "memory": 8704, "step": 94300} +{"lr": 0.004540592391802994, "data_time": 0.00626068115234375, "loss": 0.35163981318473814, "decode.loss_ce": 0.20596873462200166, "decode.acc_seg": 97.7346420288086, "aux.loss_ce": 0.145671084523201, "aux.acc_seg": 94.09427642822266, "time": 1.1167283535003663, "iter": 94350, "memory": 8704, "step": 94350} +{"lr": 0.004537548457769447, "data_time": 0.006751847267150879, "loss": 0.3986919939517975, "decode.loss_ce": 0.2449969843029976, "decode.acc_seg": 84.49884796142578, "aux.loss_ce": 0.15369501262903212, "aux.acc_seg": 78.65676879882812, "time": 1.1127475500106812, "iter": 94400, "memory": 8704, "step": 94400} +{"lr": 0.00453450429171987, "data_time": 0.007469749450683594, "loss": 0.3243007645010948, "decode.loss_ce": 0.20074232220649718, "decode.acc_seg": 92.75404357910156, "aux.loss_ce": 0.12355844303965569, "aux.acc_seg": 90.9444808959961, "time": 1.1146865367889405, "iter": 94450, "memory": 8704, "step": 94450} +{"lr": 0.004531459893459574, "data_time": 0.0059081315994262695, "loss": 0.3373990014195442, "decode.loss_ce": 0.2069377437233925, "decode.acc_seg": 91.47529602050781, "aux.loss_ce": 0.1304612562060356, "aux.acc_seg": 89.67514038085938, "time": 1.1148763656616212, "iter": 94500, "memory": 8704, "step": 94500} +{"lr": 0.004528415262793575, "data_time": 0.0060509443283081055, "loss": 0.5234745144844055, "decode.loss_ce": 0.2976428359746933, "decode.acc_seg": 86.14444732666016, "aux.loss_ce": 0.22583168521523475, "aux.acc_seg": 74.38297271728516, "time": 1.116607165336609, "iter": 94550, "memory": 8704, "step": 94550} +{"lr": 0.004525370399526558, "data_time": 0.006327033042907715, "loss": 0.4408290222287178, "decode.loss_ce": 0.26999496966600417, "decode.acc_seg": 91.89472198486328, "aux.loss_ce": 0.17083404920995235, "aux.acc_seg": 86.70291900634766, "time": 1.1164678096771241, "iter": 94600, "memory": 8703, "step": 94600} +{"lr": 0.00452232530346291, "data_time": 0.006985521316528321, "loss": 0.26698405146598814, "decode.loss_ce": 0.1679173856973648, "decode.acc_seg": 93.15208435058594, "aux.loss_ce": 0.09906666465103627, "aux.acc_seg": 92.74533081054688, "time": 1.12018563747406, "iter": 94650, "memory": 8703, "step": 94650} +{"lr": 0.004519279974406692, "data_time": 0.006543517112731934, "loss": 0.4876226752996445, "decode.loss_ce": 0.30597724467515947, "decode.acc_seg": 93.95191955566406, "aux.loss_ce": 0.18164542652666568, "aux.acc_seg": 91.77074432373047, "time": 1.1150543928146361, "iter": 94700, "memory": 8704, "step": 94700} +{"lr": 0.0045162344121616555, "data_time": 0.006724238395690918, "loss": 0.3216474108397961, "decode.loss_ce": 0.20249449238181114, "decode.acc_seg": 92.59567260742188, "aux.loss_ce": 0.11915292106568813, "aux.acc_seg": 89.39869689941406, "time": 1.11468608379364, "iter": 94750, "memory": 8704, "step": 94750} +{"lr": 0.004513188616531238, "data_time": 0.007171487808227539, "loss": 0.3324800729751587, "decode.loss_ce": 0.2060556821525097, "decode.acc_seg": 94.99153137207031, "aux.loss_ce": 0.12642438672482967, "aux.acc_seg": 91.00694274902344, "time": 1.1163322925567627, "iter": 94800, "memory": 8703, "step": 94800} +{"lr": 0.004510142587318552, "data_time": 0.0081024169921875, "loss": 0.45673676431179044, "decode.loss_ce": 0.27181144803762436, "decode.acc_seg": 85.43311309814453, "aux.loss_ce": 0.18492531031370163, "aux.acc_seg": 79.8319320678711, "time": 1.1175722122192382, "iter": 94850, "memory": 8703, "step": 94850} +{"lr": 0.004507096324326403, "data_time": 0.006245470046997071, "loss": 0.424946928024292, "decode.loss_ce": 0.2758545681834221, "decode.acc_seg": 93.66455078125, "aux.loss_ce": 0.14909235686063765, "aux.acc_seg": 91.5049819946289, "time": 1.110274314880371, "iter": 94900, "memory": 8703, "step": 94900} +{"lr": 0.004504049827357279, "data_time": 0.007139277458190918, "loss": 0.3370855912566185, "decode.loss_ce": 0.20521049275994302, "decode.acc_seg": 96.7172622680664, "aux.loss_ce": 0.1318750973790884, "aux.acc_seg": 95.79651641845703, "time": 1.115505313873291, "iter": 94950, "memory": 8703, "step": 94950} +{"lr": 0.004501003096213332, "data_time": 0.007403564453125, "loss": 0.5455649107694626, "decode.loss_ce": 0.3492958344519138, "decode.acc_seg": 88.34088134765625, "aux.loss_ce": 0.19626906849443912, "aux.acc_seg": 79.40139770507812, "time": 1.1163223505020141, "iter": 95000, "memory": 8704, "step": 95000} +{"lr": 0.004497956130696412, "data_time": 0.00711972713470459, "loss": 0.42636064291000364, "decode.loss_ce": 0.25395597368478773, "decode.acc_seg": 88.26946258544922, "aux.loss_ce": 0.1724046692252159, "aux.acc_seg": 84.25614929199219, "time": 1.1215664386749267, "iter": 95050, "memory": 8703, "step": 95050} +{"lr": 0.004494908930608044, "data_time": 0.00572657585144043, "loss": 0.5977849334478378, "decode.loss_ce": 0.3940438374876976, "decode.acc_seg": 63.13571548461914, "aux.loss_ce": 0.20374110639095305, "aux.acc_seg": 60.566200256347656, "time": 1.1144946336746215, "iter": 95100, "memory": 8703, "step": 95100} +{"lr": 0.004491861495749434, "data_time": 0.005829954147338867, "loss": 0.4247432962059975, "decode.loss_ce": 0.2578821785748005, "decode.acc_seg": 96.75534057617188, "aux.loss_ce": 0.16686111725866795, "aux.acc_seg": 92.79327392578125, "time": 1.1172482252120972, "iter": 95150, "memory": 8704, "step": 95150} +{"lr": 0.004488813825921461, "data_time": 0.007958817481994628, "loss": 0.5737781390547753, "decode.loss_ce": 0.360100444406271, "decode.acc_seg": 96.48678588867188, "aux.loss_ce": 0.21367769613862037, "aux.acc_seg": 94.78289031982422, "time": 1.1167849540710448, "iter": 95200, "memory": 8704, "step": 95200} +{"lr": 0.004485765920924679, "data_time": 0.007483243942260742, "loss": 0.41395434737205505, "decode.loss_ce": 0.2462433710694313, "decode.acc_seg": 96.29751586914062, "aux.loss_ce": 0.1677109844982624, "aux.acc_seg": 95.67400360107422, "time": 1.1115339517593383, "iter": 95250, "memory": 8704, "step": 95250} +{"lr": 0.004482717780559325, "data_time": 0.005711150169372558, "loss": 0.3216578125953674, "decode.loss_ce": 0.18741906806826591, "decode.acc_seg": 96.90052795410156, "aux.loss_ce": 0.13423874452710152, "aux.acc_seg": 90.04353332519531, "time": 1.1086885452270507, "iter": 95300, "memory": 8704, "step": 95300} +{"lr": 0.004479669404625312, "data_time": 0.006940293312072754, "loss": 0.30743445456027985, "decode.loss_ce": 0.17197626009583472, "decode.acc_seg": 97.83159637451172, "aux.loss_ce": 0.13545819669961928, "aux.acc_seg": 96.890380859375, "time": 1.117733883857727, "iter": 95350, "memory": 8704, "step": 95350} +{"lr": 0.004476620792922226, "data_time": 0.007403969764709473, "loss": 0.3935254454612732, "decode.loss_ce": 0.2132667124271393, "decode.acc_seg": 96.33312225341797, "aux.loss_ce": 0.18025873154401778, "aux.acc_seg": 95.65677642822266, "time": 1.1220427989959716, "iter": 95400, "memory": 8703, "step": 95400} +{"lr": 0.00447357194524932, "data_time": 0.005738162994384765, "loss": 0.31929292976856233, "decode.loss_ce": 0.20776658579707147, "decode.acc_seg": 97.18851470947266, "aux.loss_ce": 0.11152634397149086, "aux.acc_seg": 94.20186614990234, "time": 1.1231574058532714, "iter": 95450, "memory": 8703, "step": 95450} +{"lr": 0.0044705228614055365, "data_time": 0.006260824203491211, "loss": 0.35967444628477097, "decode.loss_ce": 0.21700190603733063, "decode.acc_seg": 95.38904571533203, "aux.loss_ce": 0.14267254024744033, "aux.acc_seg": 90.43324279785156, "time": 1.1124836683273316, "iter": 95500, "memory": 8704, "step": 95500} +{"lr": 0.004467473541189477, "data_time": 0.007220149040222168, "loss": 0.3829798772931099, "decode.loss_ce": 0.2334298312664032, "decode.acc_seg": 93.924072265625, "aux.loss_ce": 0.14955003634095193, "aux.acc_seg": 93.38829803466797, "time": 1.1198565244674683, "iter": 95550, "memory": 8704, "step": 95550} +{"lr": 0.004464423984399418, "data_time": 0.006212615966796875, "loss": 0.3237074077129364, "decode.loss_ce": 0.19918904155492784, "decode.acc_seg": 92.42203521728516, "aux.loss_ce": 0.1245183639228344, "aux.acc_seg": 90.59574890136719, "time": 1.120350217819214, "iter": 95600, "memory": 8704, "step": 95600} +{"lr": 0.004461374190833312, "data_time": 0.0071624755859375, "loss": 0.4547815576195717, "decode.loss_ce": 0.27650307938456536, "decode.acc_seg": 89.05811309814453, "aux.loss_ce": 0.17827848084270953, "aux.acc_seg": 78.64735412597656, "time": 1.1205821990966798, "iter": 95650, "memory": 8704, "step": 95650} +{"lr": 0.004458324160288778, "data_time": 0.008072185516357421, "loss": 0.4363493651151657, "decode.loss_ce": 0.2742514207959175, "decode.acc_seg": 93.17671203613281, "aux.loss_ce": 0.16209794580936432, "aux.acc_seg": 90.06487274169922, "time": 1.1198634386062623, "iter": 95700, "memory": 8703, "step": 95700} +{"lr": 0.004455273892563102, "data_time": 0.007192158699035644, "loss": 0.3527973733842373, "decode.loss_ce": 0.2181755717843771, "decode.acc_seg": 91.63468170166016, "aux.loss_ce": 0.134621811658144, "aux.acc_seg": 84.97110748291016, "time": 1.1189575672149659, "iter": 95750, "memory": 8704, "step": 95750} +{"lr": 0.00445222338745325, "data_time": 0.006685376167297363, "loss": 0.3130262210965157, "decode.loss_ce": 0.17201564460992813, "decode.acc_seg": 87.92826080322266, "aux.loss_ce": 0.14101056829094888, "aux.acc_seg": 63.548465728759766, "time": 1.1107859849929809, "iter": 95800, "memory": 8705, "step": 95800} +{"lr": 0.004449172644755841, "data_time": 0.006552958488464355, "loss": 0.2681755296885967, "decode.loss_ce": 0.16770501360297202, "decode.acc_seg": 90.56427764892578, "aux.loss_ce": 0.10047051832079887, "aux.acc_seg": 91.66043090820312, "time": 1.1105247020721436, "iter": 95850, "memory": 8703, "step": 95850} +{"lr": 0.004446121664267165, "data_time": 0.00739288330078125, "loss": 0.485927414894104, "decode.loss_ce": 0.2946247115731239, "decode.acc_seg": 93.87185668945312, "aux.loss_ce": 0.19130270406603814, "aux.acc_seg": 90.1836166381836, "time": 1.116141152381897, "iter": 95900, "memory": 8703, "step": 95900} +{"lr": 0.004443070445783183, "data_time": 0.006271815299987793, "loss": 0.2607400268316269, "decode.loss_ce": 0.14967916458845137, "decode.acc_seg": 95.20072937011719, "aux.loss_ce": 0.11106086075305939, "aux.acc_seg": 89.4216537475586, "time": 1.115680718421936, "iter": 95950, "memory": 8704, "step": 95950} +{"lr": 0.004440018989099523, "data_time": 0.007535099983215332, "loss": 0.3276670202612877, "decode.loss_ce": 0.1916815534234047, "decode.acc_seg": 95.0328140258789, "aux.loss_ce": 0.13598546534776687, "aux.acc_seg": 92.79072570800781, "time": 1.114802360534668, "iter": 96000, "memory": 8703, "step": 96000} +{"aAcc": 94.27, "mIoU": 67.94, "mAcc": 75.89, "data_time": 0.004006870577084558, "time": 0.2711475676448939, "step": 96000} +{"lr": 0.0044369672940114705, "data_time": 0.006218719482421875, "loss": 0.2921825647354126, "decode.loss_ce": 0.18546558171510696, "decode.acc_seg": 96.11988067626953, "aux.loss_ce": 0.10671698376536369, "aux.acc_seg": 89.78182220458984, "time": 1.1137331485748292, "iter": 96050, "memory": 8703, "step": 96050} +{"lr": 0.004433915360313978, "data_time": 0.007191205024719238, "loss": 0.4156376957893372, "decode.loss_ce": 0.2671320401132107, "decode.acc_seg": 75.02264404296875, "aux.loss_ce": 0.14850565269589425, "aux.acc_seg": 71.09323120117188, "time": 1.1115949153900146, "iter": 96100, "memory": 8703, "step": 96100} +{"lr": 0.004430863187801666, "data_time": 0.008850550651550293, "loss": 0.46523256301879884, "decode.loss_ce": 0.26060024946928023, "decode.acc_seg": 88.25251007080078, "aux.loss_ce": 0.2046323087066412, "aux.acc_seg": 81.69720458984375, "time": 1.116242480278015, "iter": 96150, "memory": 8703, "step": 96150} +{"lr": 0.0044278107762688096, "data_time": 0.006914567947387695, "loss": 0.4785318702459335, "decode.loss_ce": 0.30897447317838667, "decode.acc_seg": 90.31613159179688, "aux.loss_ce": 0.16955740228295327, "aux.acc_seg": 83.70926666259766, "time": 1.1098069429397583, "iter": 96200, "memory": 8703, "step": 96200} +{"lr": 0.004424758125509352, "data_time": 0.005949068069458008, "loss": 0.39193202257156373, "decode.loss_ce": 0.22902186289429666, "decode.acc_seg": 91.14031982421875, "aux.loss_ce": 0.16291015408933163, "aux.acc_seg": 85.24657440185547, "time": 1.1166849851608276, "iter": 96250, "memory": 8703, "step": 96250} +{"lr": 0.004421705235316884, "data_time": 0.006219911575317383, "loss": 0.2890112191438675, "decode.loss_ce": 0.17985547110438346, "decode.acc_seg": 96.15764617919922, "aux.loss_ce": 0.10915574803948402, "aux.acc_seg": 93.2271957397461, "time": 1.117475986480713, "iter": 96300, "memory": 8704, "step": 96300} +{"lr": 0.004418652105484673, "data_time": 0.008002710342407227, "loss": 0.3561813697218895, "decode.loss_ce": 0.2108581095933914, "decode.acc_seg": 93.91809844970703, "aux.loss_ce": 0.14532325901091098, "aux.acc_seg": 83.22073364257812, "time": 1.1173878908157349, "iter": 96350, "memory": 8703, "step": 96350} +{"lr": 0.004415598735805636, "data_time": 0.0075483560562133786, "loss": 0.413044111430645, "decode.loss_ce": 0.28066076934337614, "decode.acc_seg": 93.10169219970703, "aux.loss_ce": 0.1323833342641592, "aux.acc_seg": 90.85140228271484, "time": 1.1207287073135377, "iter": 96400, "memory": 8703, "step": 96400} +{"lr": 0.00441254512607235, "data_time": 0.008244919776916503, "loss": 0.4236768461763859, "decode.loss_ce": 0.23736646585166454, "decode.acc_seg": 94.91233825683594, "aux.loss_ce": 0.1863103810697794, "aux.acc_seg": 93.64439392089844, "time": 1.1161406993865968, "iter": 96450, "memory": 8704, "step": 96450} +{"lr": 0.004409491276077053, "data_time": 0.007924246788024902, "loss": 0.3769094437360764, "decode.loss_ce": 0.24232956767082214, "decode.acc_seg": 97.1720962524414, "aux.loss_ce": 0.1345798797905445, "aux.acc_seg": 95.12970733642578, "time": 1.1155264854431153, "iter": 96500, "memory": 8704, "step": 96500} +{"lr": 0.004406437185611635, "data_time": 0.007944965362548828, "loss": 0.3261696740984917, "decode.loss_ce": 0.19855324998497964, "decode.acc_seg": 94.06916046142578, "aux.loss_ce": 0.12761642783880234, "aux.acc_seg": 92.45941925048828, "time": 1.1204758644104005, "iter": 96550, "memory": 8703, "step": 96550} +{"lr": 0.004403382854467637, "data_time": 0.007695817947387695, "loss": 0.3291724815964699, "decode.loss_ce": 0.2054893583059311, "decode.acc_seg": 95.01615905761719, "aux.loss_ce": 0.12368312515318394, "aux.acc_seg": 94.40377044677734, "time": 1.120375919342041, "iter": 96600, "memory": 8704, "step": 96600} +{"lr": 0.004400328282436267, "data_time": 0.006762194633483887, "loss": 0.44582448303699496, "decode.loss_ce": 0.2711991906166077, "decode.acc_seg": 90.88579559326172, "aux.loss_ce": 0.17462529018521308, "aux.acc_seg": 89.71836853027344, "time": 1.1143428325653075, "iter": 96650, "memory": 8705, "step": 96650} +{"lr": 0.004397273469308378, "data_time": 0.007924723625183105, "loss": 0.3637658551335335, "decode.loss_ce": 0.23581287637352943, "decode.acc_seg": 93.98892211914062, "aux.loss_ce": 0.12795297764241695, "aux.acc_seg": 91.766357421875, "time": 1.1152862310409546, "iter": 96700, "memory": 8703, "step": 96700} +{"lr": 0.004394218414874472, "data_time": 0.0057108402252197266, "loss": 0.2712958589196205, "decode.loss_ce": 0.1576473005115986, "decode.acc_seg": 91.68217468261719, "aux.loss_ce": 0.1136485569179058, "aux.acc_seg": 80.67524719238281, "time": 1.1142930030822753, "iter": 96750, "memory": 8703, "step": 96750} +{"lr": 0.0043911631189247164, "data_time": 0.007665061950683593, "loss": 0.22691787779331207, "decode.loss_ce": 0.141484896838665, "decode.acc_seg": 94.1727294921875, "aux.loss_ce": 0.0854329764842987, "aux.acc_seg": 92.31166076660156, "time": 1.1152418613433839, "iter": 96800, "memory": 8704, "step": 96800} +{"lr": 0.004388107581248923, "data_time": 0.00821373462677002, "loss": 0.3572307974100113, "decode.loss_ce": 0.2179250419139862, "decode.acc_seg": 92.67666625976562, "aux.loss_ce": 0.1393057517707348, "aux.acc_seg": 86.381591796875, "time": 1.120449924468994, "iter": 96850, "memory": 8704, "step": 96850} +{"lr": 0.004385051801636547, "data_time": 0.006796574592590332, "loss": 0.3096139028668404, "decode.loss_ce": 0.18276649788022042, "decode.acc_seg": 94.2109146118164, "aux.loss_ce": 0.1268474120646715, "aux.acc_seg": 74.24027252197266, "time": 1.1165270328521728, "iter": 96900, "memory": 8704, "step": 96900} +{"lr": 0.004381995779876709, "data_time": 0.006959748268127441, "loss": 0.45900275707244875, "decode.loss_ce": 0.30462835878133776, "decode.acc_seg": 86.9559555053711, "aux.loss_ce": 0.15437440872192382, "aux.acc_seg": 88.25435638427734, "time": 1.1188121557235717, "iter": 96950, "memory": 8703, "step": 96950} +{"lr": 0.004378939515758163, "data_time": 0.008513498306274413, "loss": 0.4201041251420975, "decode.loss_ce": 0.24011835753917693, "decode.acc_seg": 71.56658172607422, "aux.loss_ce": 0.17998575679957868, "aux.acc_seg": 50.30409240722656, "time": 1.1183444261550903, "iter": 97000, "memory": 8703, "step": 97000} +{"lr": 0.004375883009069322, "data_time": 0.00627589225769043, "loss": 0.4589247390627861, "decode.loss_ce": 0.2931666225194931, "decode.acc_seg": 91.79923248291016, "aux.loss_ce": 0.1657581150531769, "aux.acc_seg": 85.56182861328125, "time": 1.1136418581008911, "iter": 97050, "memory": 8704, "step": 97050} +{"lr": 0.0043728262595982385, "data_time": 0.007024383544921875, "loss": 0.4344280272722244, "decode.loss_ce": 0.284328593313694, "decode.acc_seg": 90.79901123046875, "aux.loss_ce": 0.1500994313508272, "aux.acc_seg": 88.25733947753906, "time": 1.1141727447509766, "iter": 97100, "memory": 8704, "step": 97100} +{"lr": 0.0043697692671326145, "data_time": 0.006004643440246582, "loss": 0.38352103978395463, "decode.loss_ce": 0.23999253660440445, "decode.acc_seg": 92.8434829711914, "aux.loss_ce": 0.14352850392460823, "aux.acc_seg": 91.8537826538086, "time": 1.1109869956970215, "iter": 97150, "memory": 8704, "step": 97150} +{"lr": 0.0043667120314598, "data_time": 0.0077876091003417965, "loss": 0.3018639847636223, "decode.loss_ce": 0.18134207725524903, "decode.acc_seg": 94.82160949707031, "aux.loss_ce": 0.12052190899848939, "aux.acc_seg": 93.85401153564453, "time": 1.1122992038726807, "iter": 97200, "memory": 8704, "step": 97200} +{"lr": 0.004363654552366787, "data_time": 0.006118941307067871, "loss": 0.30170166194438935, "decode.loss_ce": 0.17271987944841385, "decode.acc_seg": 97.0820083618164, "aux.loss_ce": 0.12898177690804005, "aux.acc_seg": 96.3958740234375, "time": 1.1104283332824707, "iter": 97250, "memory": 8703, "step": 97250} +{"lr": 0.004360596829640204, "data_time": 0.006892180442810059, "loss": 0.351163075119257, "decode.loss_ce": 0.22173779979348182, "decode.acc_seg": 93.0562973022461, "aux.loss_ce": 0.1294252745807171, "aux.acc_seg": 90.02367401123047, "time": 1.1189012050628662, "iter": 97300, "memory": 8703, "step": 97300} +{"lr": 0.004357538863066333, "data_time": 0.00665435791015625, "loss": 0.32355113625526427, "decode.loss_ce": 0.19067924208939074, "decode.acc_seg": 98.50031280517578, "aux.loss_ce": 0.1328718900680542, "aux.acc_seg": 97.63914489746094, "time": 1.1126912832260132, "iter": 97350, "memory": 8704, "step": 97350} +{"lr": 0.0043544806524310935, "data_time": 0.007110905647277832, "loss": 0.256404247879982, "decode.loss_ce": 0.15326545834541322, "decode.acc_seg": 95.29844665527344, "aux.loss_ce": 0.1031387872993946, "aux.acc_seg": 92.93600463867188, "time": 1.1187981605529784, "iter": 97400, "memory": 8704, "step": 97400} +{"lr": 0.00435142219752005, "data_time": 0.0069714546203613285, "loss": 0.3421672984957695, "decode.loss_ce": 0.20822950154542924, "decode.acc_seg": 88.64796447753906, "aux.loss_ce": 0.13393779695034028, "aux.acc_seg": 87.42497253417969, "time": 1.114004373550415, "iter": 97450, "memory": 8704, "step": 97450} +{"lr": 0.004348363498118396, "data_time": 0.006442213058471679, "loss": 0.3433868996798992, "decode.loss_ce": 0.21664281710982322, "decode.acc_seg": 96.78592681884766, "aux.loss_ce": 0.12674408201128246, "aux.acc_seg": 92.61549377441406, "time": 1.117477822303772, "iter": 97500, "memory": 8703, "step": 97500} +{"lr": 0.004345304554010979, "data_time": 0.007547521591186523, "loss": 0.39934652149677274, "decode.loss_ce": 0.24409169778227807, "decode.acc_seg": 91.05313110351562, "aux.loss_ce": 0.15525481589138507, "aux.acc_seg": 90.38206481933594, "time": 1.1167479038238526, "iter": 97550, "memory": 8704, "step": 97550} +{"lr": 0.0043422453649822655, "data_time": 0.005587267875671387, "loss": 0.3471233993768692, "decode.loss_ce": 0.19820671454071997, "decode.acc_seg": 97.5000991821289, "aux.loss_ce": 0.14891668111085893, "aux.acc_seg": 89.86377716064453, "time": 1.114981722831726, "iter": 97600, "memory": 8703, "step": 97600} +{"lr": 0.004339185930816383, "data_time": 0.006533432006835938, "loss": 0.4294567435979843, "decode.loss_ce": 0.2453644670546055, "decode.acc_seg": 93.79227447509766, "aux.loss_ce": 0.184092278778553, "aux.acc_seg": 74.93534088134766, "time": 1.1126662731170653, "iter": 97650, "memory": 8704, "step": 97650} +{"lr": 0.0043361262512970795, "data_time": 0.007747650146484375, "loss": 0.4365815296769142, "decode.loss_ce": 0.25594848617911337, "decode.acc_seg": 90.1495590209961, "aux.loss_ce": 0.18063305020332338, "aux.acc_seg": 59.9973030090332, "time": 1.114505362510681, "iter": 97700, "memory": 8704, "step": 97700} +{"lr": 0.004333066326207735, "data_time": 0.007774543762207031, "loss": 0.3808030277490616, "decode.loss_ce": 0.23692765906453134, "decode.acc_seg": 94.5913314819336, "aux.loss_ce": 0.14387536756694316, "aux.acc_seg": 93.85910034179688, "time": 1.1181429624557495, "iter": 97750, "memory": 8704, "step": 97750} +{"lr": 0.004330006155331379, "data_time": 0.0077195405960083004, "loss": 0.36702370792627337, "decode.loss_ce": 0.22716914266347885, "decode.acc_seg": 93.62551879882812, "aux.loss_ce": 0.13985455892980098, "aux.acc_seg": 90.65132904052734, "time": 1.1177438735961913, "iter": 97800, "memory": 8704, "step": 97800} +{"lr": 0.004326945738450664, "data_time": 0.006012940406799316, "loss": 0.35622897893190386, "decode.loss_ce": 0.22323142141103744, "decode.acc_seg": 95.90933990478516, "aux.loss_ce": 0.13299755975604058, "aux.acc_seg": 94.48149108886719, "time": 1.1126487970352172, "iter": 97850, "memory": 8704, "step": 97850} +{"lr": 0.004323885075347883, "data_time": 0.006042313575744629, "loss": 0.23881543502211572, "decode.loss_ce": 0.1459125056862831, "decode.acc_seg": 96.03996276855469, "aux.loss_ce": 0.09290293045341969, "aux.acc_seg": 93.16011810302734, "time": 1.1163009881973267, "iter": 97900, "memory": 8704, "step": 97900} +{"lr": 0.004320824165804944, "data_time": 0.0073021650314331055, "loss": 0.4415226116776466, "decode.loss_ce": 0.2785977996885777, "decode.acc_seg": 95.78977966308594, "aux.loss_ce": 0.16292481534183026, "aux.acc_seg": 95.31885528564453, "time": 1.1154695749282837, "iter": 97950, "memory": 8703, "step": 97950} +{"lr": 0.004317763009603414, "data_time": 0.006952500343322754, "loss": 0.339583221077919, "decode.loss_ce": 0.20537950694561005, "decode.acc_seg": 93.94155883789062, "aux.loss_ce": 0.13420371897518635, "aux.acc_seg": 92.65110778808594, "time": 1.115352749824524, "iter": 98000, "memory": 8704, "step": 98000} +{"lr": 0.004314701606524458, "data_time": 0.008230328559875488, "loss": 0.533072903752327, "decode.loss_ce": 0.3575641691684723, "decode.acc_seg": 96.86666870117188, "aux.loss_ce": 0.1755087271332741, "aux.acc_seg": 91.10832214355469, "time": 1.1176270723342896, "iter": 98050, "memory": 8703, "step": 98050} +{"lr": 0.004311639956348893, "data_time": 0.007373499870300293, "loss": 0.2680388644337654, "decode.loss_ce": 0.16157120764255523, "decode.acc_seg": 94.6866226196289, "aux.loss_ce": 0.10646765939891338, "aux.acc_seg": 94.69237518310547, "time": 1.1164381504058838, "iter": 98100, "memory": 8703, "step": 98100} +{"lr": 0.004308578058857162, "data_time": 0.007875728607177734, "loss": 0.3291222393512726, "decode.loss_ce": 0.191703636944294, "decode.acc_seg": 95.166015625, "aux.loss_ce": 0.13741860240697862, "aux.acc_seg": 94.05510711669922, "time": 1.1165399551391602, "iter": 98150, "memory": 8704, "step": 98150} +{"lr": 0.004305515913829323, "data_time": 0.006087207794189453, "loss": 0.4299270808696747, "decode.loss_ce": 0.27332885563373566, "decode.acc_seg": 91.86235809326172, "aux.loss_ce": 0.1565982237458229, "aux.acc_seg": 91.08403015136719, "time": 1.1145610809326172, "iter": 98200, "memory": 8703, "step": 98200} +{"lr": 0.004302453521045076, "data_time": 0.006287479400634765, "loss": 0.41521373987197874, "decode.loss_ce": 0.2395149663090706, "decode.acc_seg": 85.01091003417969, "aux.loss_ce": 0.17569877430796624, "aux.acc_seg": 78.341796875, "time": 1.118035912513733, "iter": 98250, "memory": 8703, "step": 98250} +{"lr": 0.004299390880283731, "data_time": 0.005445957183837891, "loss": 0.3076318480074406, "decode.loss_ce": 0.18919714465737342, "decode.acc_seg": 97.14920806884766, "aux.loss_ce": 0.11843470074236392, "aux.acc_seg": 96.59849548339844, "time": 1.1110546112060546, "iter": 98300, "memory": 8704, "step": 98300} +{"lr": 0.004296327991324235, "data_time": 0.006650018692016602, "loss": 0.3240256041288376, "decode.loss_ce": 0.1966198280453682, "decode.acc_seg": 85.46581268310547, "aux.loss_ce": 0.1274057760834694, "aux.acc_seg": 79.5431137084961, "time": 1.1168176412582398, "iter": 98350, "memory": 8703, "step": 98350} +{"lr": 0.004293264853945149, "data_time": 0.007377743721008301, "loss": 0.296084500849247, "decode.loss_ce": 0.18266526684165002, "decode.acc_seg": 90.23590087890625, "aux.loss_ce": 0.11341923326253892, "aux.acc_seg": 86.79866790771484, "time": 1.1170744180679322, "iter": 98400, "memory": 8704, "step": 98400} +{"lr": 0.004290201467924665, "data_time": 0.008414602279663086, "loss": 0.3702435836195946, "decode.loss_ce": 0.22475891858339309, "decode.acc_seg": 96.5354232788086, "aux.loss_ce": 0.14548466466367244, "aux.acc_seg": 95.52643585205078, "time": 1.1197669744491576, "iter": 98450, "memory": 8703, "step": 98450} +{"lr": 0.00428713783304059, "data_time": 0.007863378524780274, "loss": 0.33432170301675795, "decode.loss_ce": 0.20496364384889604, "decode.acc_seg": 92.19048309326172, "aux.loss_ce": 0.12935805767774583, "aux.acc_seg": 87.80231475830078, "time": 1.1174325942993164, "iter": 98500, "memory": 8703, "step": 98500} +{"lr": 0.004284073949070354, "data_time": 0.006140708923339844, "loss": 0.27777710258960725, "decode.loss_ce": 0.1599898397922516, "decode.acc_seg": 90.36934661865234, "aux.loss_ce": 0.11778726316988468, "aux.acc_seg": 86.16167449951172, "time": 1.1119388341903687, "iter": 98550, "memory": 8704, "step": 98550} +{"lr": 0.004281009815791002, "data_time": 0.00826106071472168, "loss": 0.3090063974261284, "decode.loss_ce": 0.19698974266648292, "decode.acc_seg": 82.67826080322266, "aux.loss_ce": 0.11201665215194226, "aux.acc_seg": 85.237060546875, "time": 1.1164419889450072, "iter": 98600, "memory": 8703, "step": 98600} +{"lr": 0.004277945432979211, "data_time": 0.00783843994140625, "loss": 0.4078752502799034, "decode.loss_ce": 0.24765940755605698, "decode.acc_seg": 95.84579467773438, "aux.loss_ce": 0.16021584793925286, "aux.acc_seg": 85.66143798828125, "time": 1.1179263591766357, "iter": 98650, "memory": 8705, "step": 98650} +{"lr": 0.00427488080041126, "data_time": 0.006536793708801269, "loss": 0.258716456592083, "decode.loss_ce": 0.15343976095318795, "decode.acc_seg": 96.52241516113281, "aux.loss_ce": 0.10527669675648213, "aux.acc_seg": 95.64048767089844, "time": 1.1178133249282838, "iter": 98700, "memory": 8703, "step": 98700} +{"lr": 0.0042718159178630555, "data_time": 0.007469439506530761, "loss": 0.4408324509859085, "decode.loss_ce": 0.2782873369753361, "decode.acc_seg": 93.00346374511719, "aux.loss_ce": 0.1625451073050499, "aux.acc_seg": 90.97251892089844, "time": 1.1181185245513916, "iter": 98750, "memory": 8703, "step": 98750} +{"lr": 0.004268750785110116, "data_time": 0.006163501739501953, "loss": 0.311819426715374, "decode.loss_ce": 0.1892810806632042, "decode.acc_seg": 92.4658432006836, "aux.loss_ce": 0.12253834754228592, "aux.acc_seg": 91.2772445678711, "time": 1.118432068824768, "iter": 98800, "memory": 8703, "step": 98800} +{"lr": 0.004265685401927578, "data_time": 0.005792093276977539, "loss": 0.45949209183454515, "decode.loss_ce": 0.29059961065649986, "decode.acc_seg": 69.60811614990234, "aux.loss_ce": 0.1688924863934517, "aux.acc_seg": 45.713104248046875, "time": 1.1155898571014404, "iter": 98850, "memory": 8704, "step": 98850} +{"lr": 0.004262619768090186, "data_time": 0.007480812072753906, "loss": 0.3891493439674377, "decode.loss_ce": 0.24490429759025573, "decode.acc_seg": 95.52332305908203, "aux.loss_ce": 0.14424505196511744, "aux.acc_seg": 95.02544403076172, "time": 1.1186802387237549, "iter": 98900, "memory": 8704, "step": 98900} +{"lr": 0.004259553883372297, "data_time": 0.007576608657836914, "loss": 0.3407106027007103, "decode.loss_ce": 0.21700030118227004, "decode.acc_seg": 93.19019317626953, "aux.loss_ce": 0.12371030002832413, "aux.acc_seg": 90.34588623046875, "time": 1.1153913259506225, "iter": 98950, "memory": 8704, "step": 98950} +{"lr": 0.004256487747547892, "data_time": 0.006131100654602051, "loss": 0.29994098246097567, "decode.loss_ce": 0.17771157175302504, "decode.acc_seg": 90.64265441894531, "aux.loss_ce": 0.12222940474748611, "aux.acc_seg": 86.7016830444336, "time": 1.1096499681472778, "iter": 99000, "memory": 8704, "step": 99000} +{"lr": 0.004253421360390544, "data_time": 0.005273246765136718, "loss": 0.3464001603424549, "decode.loss_ce": 0.21230260245501995, "decode.acc_seg": 97.12945556640625, "aux.loss_ce": 0.13409755378961563, "aux.acc_seg": 96.38658142089844, "time": 1.1062570095062256, "iter": 99050, "memory": 8704, "step": 99050} +{"lr": 0.004250354721673454, "data_time": 0.006409263610839844, "loss": 0.3260923087596893, "decode.loss_ce": 0.18929270505905152, "decode.acc_seg": 94.75332641601562, "aux.loss_ce": 0.136799605935812, "aux.acc_seg": 93.94295501708984, "time": 1.1100084781646729, "iter": 99100, "memory": 8703, "step": 99100} +{"lr": 0.004247287831169417, "data_time": 0.006646871566772461, "loss": 0.3445459559559822, "decode.loss_ce": 0.20878776237368585, "decode.acc_seg": 96.11869049072266, "aux.loss_ce": 0.13575819320976734, "aux.acc_seg": 94.91067504882812, "time": 1.1149702548980713, "iter": 99150, "memory": 8704, "step": 99150} +{"lr": 0.004244220688650846, "data_time": 0.007168126106262207, "loss": 0.2844816893339157, "decode.loss_ce": 0.17559677809476854, "decode.acc_seg": 89.52391052246094, "aux.loss_ce": 0.10888491198420525, "aux.acc_seg": 82.73336791992188, "time": 1.1161325693130493, "iter": 99200, "memory": 8703, "step": 99200} +{"lr": 0.004241153293889764, "data_time": 0.006595540046691895, "loss": 0.27189970910549166, "decode.loss_ce": 0.1577395148575306, "decode.acc_seg": 93.28791046142578, "aux.loss_ce": 0.11416018679738045, "aux.acc_seg": 91.43333435058594, "time": 1.1160313129425048, "iter": 99250, "memory": 8703, "step": 99250} +{"lr": 0.004238085646657784, "data_time": 0.005371594429016113, "loss": 0.44885134547948835, "decode.loss_ce": 0.2812811188399792, "decode.acc_seg": 96.50846862792969, "aux.loss_ce": 0.1675702203065157, "aux.acc_seg": 86.1078872680664, "time": 1.1109045267105102, "iter": 99300, "memory": 8703, "step": 99300} +{"lr": 0.00423501774672614, "data_time": 0.006390500068664551, "loss": 0.3347514897584915, "decode.loss_ce": 0.20896674692630768, "decode.acc_seg": 94.05193328857422, "aux.loss_ce": 0.12578473836183549, "aux.acc_seg": 93.55614471435547, "time": 1.11635479927063, "iter": 99350, "memory": 8704, "step": 99350} +{"lr": 0.004231949593865661, "data_time": 0.006798958778381348, "loss": 0.3725773736834526, "decode.loss_ce": 0.23538820073008537, "decode.acc_seg": 95.1495132446289, "aux.loss_ce": 0.13718917183578014, "aux.acc_seg": 94.64545440673828, "time": 1.1155606508255005, "iter": 99400, "memory": 8703, "step": 99400} +{"lr": 0.0042288811878467844, "data_time": 0.00695037841796875, "loss": 0.39761834144592284, "decode.loss_ce": 0.24857441037893296, "decode.acc_seg": 92.35076904296875, "aux.loss_ce": 0.14904392287135124, "aux.acc_seg": 91.01918029785156, "time": 1.1171596765518188, "iter": 99450, "memory": 8703, "step": 99450} +{"lr": 0.00422581252843954, "data_time": 0.006369853019714355, "loss": 0.43276608288288115, "decode.loss_ce": 0.25610381066799165, "decode.acc_seg": 84.4754409790039, "aux.loss_ce": 0.17666227519512176, "aux.acc_seg": 81.66902160644531, "time": 1.108566689491272, "iter": 99500, "memory": 8705, "step": 99500} +{"lr": 0.004222743615413572, "data_time": 0.00811309814453125, "loss": 0.49835290014743805, "decode.loss_ce": 0.3172808803617954, "decode.acc_seg": 92.78106689453125, "aux.loss_ce": 0.18107202164828778, "aux.acc_seg": 88.5560073852539, "time": 1.1157676458358765, "iter": 99550, "memory": 8703, "step": 99550} +{"lr": 0.004219674448538119, "data_time": 0.006156754493713379, "loss": 0.3660665363073349, "decode.loss_ce": 0.2162681244313717, "decode.acc_seg": 97.89212036132812, "aux.loss_ce": 0.14979841075837613, "aux.acc_seg": 83.61949920654297, "time": 1.1141160011291504, "iter": 99600, "memory": 8704, "step": 99600} +{"lr": 0.004216605027582009, "data_time": 0.007060742378234864, "loss": 0.341045980155468, "decode.loss_ce": 0.21505635902285575, "decode.acc_seg": 95.747802734375, "aux.loss_ce": 0.12598961815238, "aux.acc_seg": 96.2671890258789, "time": 1.1143853902816772, "iter": 99650, "memory": 8703, "step": 99650} +{"lr": 0.004213535352313677, "data_time": 0.006350207328796387, "loss": 0.4746834099292755, "decode.loss_ce": 0.28629750907421114, "decode.acc_seg": 84.89411163330078, "aux.loss_ce": 0.18838589638471603, "aux.acc_seg": 81.05525970458984, "time": 1.1170348644256591, "iter": 99700, "memory": 8704, "step": 99700} +{"lr": 0.004210465422501162, "data_time": 0.007103490829467774, "loss": 0.367242394387722, "decode.loss_ce": 0.2320340484380722, "decode.acc_seg": 96.15103149414062, "aux.loss_ce": 0.1352083534002304, "aux.acc_seg": 92.76548767089844, "time": 1.1197345733642579, "iter": 99750, "memory": 8703, "step": 99750} +{"lr": 0.004207395237912083, "data_time": 0.008210992813110352, "loss": 0.33136423081159594, "decode.loss_ce": 0.21516656279563903, "decode.acc_seg": 87.68341827392578, "aux.loss_ce": 0.11619766391813754, "aux.acc_seg": 84.57024383544922, "time": 1.1193779945373534, "iter": 99800, "memory": 8704, "step": 99800} +{"lr": 0.004204324798313665, "data_time": 0.0054168701171875, "loss": 0.3562895506620407, "decode.loss_ce": 0.21368114054203033, "decode.acc_seg": 91.01593780517578, "aux.loss_ce": 0.1426084131002426, "aux.acc_seg": 78.71887969970703, "time": 1.1129879474639892, "iter": 99850, "memory": 8704, "step": 99850} +{"lr": 0.004201254103472718, "data_time": 0.0066823244094848635, "loss": 0.3967703804373741, "decode.loss_ce": 0.22627024948596955, "decode.acc_seg": 97.06566619873047, "aux.loss_ce": 0.17050013691186905, "aux.acc_seg": 93.7012939453125, "time": 1.1194216728210449, "iter": 99900, "memory": 8704, "step": 99900} +{"lr": 0.004198183153155657, "data_time": 0.0057465553283691405, "loss": 0.3976569652557373, "decode.loss_ce": 0.24905266091227532, "decode.acc_seg": 96.26435089111328, "aux.loss_ce": 0.14860430136322975, "aux.acc_seg": 94.2786865234375, "time": 1.111881399154663, "iter": 99950, "memory": 8703, "step": 99950} +{"lr": 0.0041951119471284725, "data_time": 0.00637667179107666, "loss": 0.35822071582078935, "decode.loss_ce": 0.2106679253280163, "decode.acc_seg": 92.2938003540039, "aux.loss_ce": 0.1475527960807085, "aux.acc_seg": 87.94212341308594, "time": 1.1123775482177733, "iter": 100000, "memory": 8704, "step": 100000} +{"lr": 0.004192040485156758, "data_time": 0.006348276138305664, "loss": 0.4690219298005104, "decode.loss_ce": 0.30101666375994685, "decode.acc_seg": 91.29753112792969, "aux.loss_ce": 0.1680052623152733, "aux.acc_seg": 89.31973266601562, "time": 1.1112659931182862, "iter": 100050, "memory": 8703, "step": 100050} +{"lr": 0.004188968767005687, "data_time": 0.006175899505615234, "loss": 0.32688702791929247, "decode.loss_ce": 0.2086141437292099, "decode.acc_seg": 96.26922607421875, "aux.loss_ce": 0.11827288642525673, "aux.acc_seg": 95.09909057617188, "time": 1.1162328958511352, "iter": 100100, "memory": 8703, "step": 100100} +{"lr": 0.004185896792440035, "data_time": 0.006432485580444336, "loss": 0.47464858889579775, "decode.loss_ce": 0.2808809891343117, "decode.acc_seg": 95.51079559326172, "aux.loss_ce": 0.19376760050654412, "aux.acc_seg": 89.85054779052734, "time": 1.1145997762680053, "iter": 100150, "memory": 8704, "step": 100150} +{"lr": 0.004182824561224152, "data_time": 0.005468297004699707, "loss": 0.3349837675690651, "decode.loss_ce": 0.2035633608698845, "decode.acc_seg": 96.84530639648438, "aux.loss_ce": 0.13142041079699993, "aux.acc_seg": 95.59440612792969, "time": 1.1124056100845336, "iter": 100200, "memory": 8703, "step": 100200} +{"lr": 0.004179752073121981, "data_time": 0.006754684448242188, "loss": 0.35761736780405046, "decode.loss_ce": 0.22768266648054122, "decode.acc_seg": 94.67430114746094, "aux.loss_ce": 0.12993469797074794, "aux.acc_seg": 90.44322967529297, "time": 1.1168113708496095, "iter": 100250, "memory": 8704, "step": 100250} +{"lr": 0.004176679327897043, "data_time": 0.00684061050415039, "loss": 0.29722963869571684, "decode.loss_ce": 0.18922706991434096, "decode.acc_seg": 97.40289306640625, "aux.loss_ce": 0.10800256952643394, "aux.acc_seg": 93.54630279541016, "time": 1.1147494554519652, "iter": 100300, "memory": 8704, "step": 100300} +{"lr": 0.004173606325312447, "data_time": 0.005811214447021484, "loss": 0.38954246789216995, "decode.loss_ce": 0.2291279137134552, "decode.acc_seg": 92.67717742919922, "aux.loss_ce": 0.16041455492377282, "aux.acc_seg": 83.09465789794922, "time": 1.115252947807312, "iter": 100350, "memory": 8704, "step": 100350} +{"lr": 0.00417053306513089, "data_time": 0.006795525550842285, "loss": 0.32475842610001565, "decode.loss_ce": 0.18544656336307525, "decode.acc_seg": 97.69337463378906, "aux.loss_ce": 0.1393118679523468, "aux.acc_seg": 97.47898864746094, "time": 1.1136991024017333, "iter": 100400, "memory": 8704, "step": 100400} +{"lr": 0.004167459547114646, "data_time": 0.00824897289276123, "loss": 0.3329195439815521, "decode.loss_ce": 0.2004349984228611, "decode.acc_seg": 92.21712493896484, "aux.loss_ce": 0.1324845440685749, "aux.acc_seg": 89.82295989990234, "time": 1.1161261320114135, "iter": 100450, "memory": 8704, "step": 100450} +{"lr": 0.0041643857710255685, "data_time": 0.008037710189819336, "loss": 0.1939283274114132, "decode.loss_ce": 0.11878720782697201, "decode.acc_seg": 97.38829040527344, "aux.loss_ce": 0.07514111995697022, "aux.acc_seg": 96.08722686767578, "time": 1.1141239404678345, "iter": 100500, "memory": 8704, "step": 100500} +{"lr": 0.004161311736625093, "data_time": 0.0066689252853393555, "loss": 0.42347481846809387, "decode.loss_ce": 0.2675320543348789, "decode.acc_seg": 96.01313781738281, "aux.loss_ce": 0.15594275817275047, "aux.acc_seg": 95.20726776123047, "time": 1.115732479095459, "iter": 100550, "memory": 8704, "step": 100550} +{"lr": 0.0041582374436742375, "data_time": 0.0072639226913452145, "loss": 0.3687003418803215, "decode.loss_ce": 0.2101326569914818, "decode.acc_seg": 93.3888931274414, "aux.loss_ce": 0.1585676848888397, "aux.acc_seg": 89.80236053466797, "time": 1.1153923273086548, "iter": 100600, "memory": 8704, "step": 100600} +{"lr": 0.004155162891933587, "data_time": 0.006785726547241211, "loss": 0.3997092470526695, "decode.loss_ce": 0.24338013753294946, "decode.acc_seg": 86.31820678710938, "aux.loss_ce": 0.15632910430431365, "aux.acc_seg": 80.71918487548828, "time": 1.1164474010467529, "iter": 100650, "memory": 8704, "step": 100650} +{"lr": 0.004152088081163317, "data_time": 0.006148910522460938, "loss": 0.35840972810983657, "decode.loss_ce": 0.2175977945327759, "decode.acc_seg": 89.28050994873047, "aux.loss_ce": 0.1408119287341833, "aux.acc_seg": 92.95902252197266, "time": 1.1153696537017823, "iter": 100700, "memory": 8704, "step": 100700} +{"lr": 0.004149013011123166, "data_time": 0.005829238891601562, "loss": 0.24912569001317025, "decode.loss_ce": 0.14809067994356157, "decode.acc_seg": 91.75102996826172, "aux.loss_ce": 0.10103500932455063, "aux.acc_seg": 91.12808990478516, "time": 1.1152671575546265, "iter": 100750, "memory": 8704, "step": 100750} +{"lr": 0.00414593768157245, "data_time": 0.006023192405700683, "loss": 0.38002108931541445, "decode.loss_ce": 0.24608297124505044, "decode.acc_seg": 95.44721984863281, "aux.loss_ce": 0.1339381206780672, "aux.acc_seg": 95.05538940429688, "time": 1.1132308483123778, "iter": 100800, "memory": 8703, "step": 100800} +{"lr": 0.004142862092270061, "data_time": 0.00672764778137207, "loss": 0.2803244538605213, "decode.loss_ce": 0.1704404793679714, "decode.acc_seg": 94.60830688476562, "aux.loss_ce": 0.10988397374749184, "aux.acc_seg": 95.27142333984375, "time": 1.116811203956604, "iter": 100850, "memory": 8703, "step": 100850} +{"lr": 0.004139786242974464, "data_time": 0.007173585891723633, "loss": 0.36400195509195327, "decode.loss_ce": 0.22809571623802186, "decode.acc_seg": 94.88226318359375, "aux.loss_ce": 0.13590624295175074, "aux.acc_seg": 94.41763305664062, "time": 1.1165208339691162, "iter": 100900, "memory": 8703, "step": 100900} +{"lr": 0.004136710133443686, "data_time": 0.006668353080749511, "loss": 0.2704639986157417, "decode.loss_ce": 0.1712474450469017, "decode.acc_seg": 90.83467864990234, "aux.loss_ce": 0.09921655915677548, "aux.acc_seg": 87.7905502319336, "time": 1.1158900022506715, "iter": 100950, "memory": 8704, "step": 100950} +{"lr": 0.004133633763435336, "data_time": 0.0059421777725219725, "loss": 0.344790144264698, "decode.loss_ce": 0.2105315610766411, "decode.acc_seg": 90.18833923339844, "aux.loss_ce": 0.1342585813254118, "aux.acc_seg": 86.8247299194336, "time": 1.113078236579895, "iter": 101000, "memory": 8703, "step": 101000} +{"lr": 0.004130557132706582, "data_time": 0.006246232986450195, "loss": 0.31818716078996656, "decode.loss_ce": 0.1974951520562172, "decode.acc_seg": 80.58439636230469, "aux.loss_ce": 0.12069200538098812, "aux.acc_seg": 78.1760482788086, "time": 1.111521339416504, "iter": 101050, "memory": 8703, "step": 101050} +{"lr": 0.004127480241014164, "data_time": 0.005317020416259766, "loss": 0.5215636327862739, "decode.loss_ce": 0.3261803790926933, "decode.acc_seg": 72.28533172607422, "aux.loss_ce": 0.1953832611441612, "aux.acc_seg": 65.56936645507812, "time": 1.109379267692566, "iter": 101100, "memory": 8703, "step": 101100} +{"lr": 0.004124403088114385, "data_time": 0.009413194656372071, "loss": 0.538829705119133, "decode.loss_ce": 0.3545794144272804, "decode.acc_seg": 83.9228286743164, "aux.loss_ce": 0.1842502813786268, "aux.acc_seg": 81.38313293457031, "time": 1.1231937408447266, "iter": 101150, "memory": 8704, "step": 101150} +{"lr": 0.0041213256737631185, "data_time": 0.007960963249206542, "loss": 0.477005460113287, "decode.loss_ce": 0.29038088507950305, "decode.acc_seg": 98.136962890625, "aux.loss_ce": 0.18662457540631294, "aux.acc_seg": 96.66703033447266, "time": 1.1203388452529908, "iter": 101200, "memory": 8704, "step": 101200} +{"lr": 0.004118247997715802, "data_time": 0.006586027145385742, "loss": 0.34786350280046463, "decode.loss_ce": 0.19424210712313653, "decode.acc_seg": 92.66307830810547, "aux.loss_ce": 0.15362139344215392, "aux.acc_seg": 92.00662994384766, "time": 1.1151514530181885, "iter": 101250, "memory": 8704, "step": 101250} +{"lr": 0.004115170059727429, "data_time": 0.0067961692810058595, "loss": 0.3285790905356407, "decode.loss_ce": 0.19666316732764244, "decode.acc_seg": 95.45116424560547, "aux.loss_ce": 0.13191591948270798, "aux.acc_seg": 92.31751251220703, "time": 1.1170373678207397, "iter": 101300, "memory": 8703, "step": 101300} +{"lr": 0.00411209185955256, "data_time": 0.005877208709716797, "loss": 0.3286208018660545, "decode.loss_ce": 0.2023092083632946, "decode.acc_seg": 94.12586975097656, "aux.loss_ce": 0.1263115968555212, "aux.acc_seg": 92.8079605102539, "time": 1.1134429216384887, "iter": 101350, "memory": 8704, "step": 101350} +{"lr": 0.004109013396945318, "data_time": 0.00846099853515625, "loss": 0.39323846250772476, "decode.loss_ce": 0.23787317350506781, "decode.acc_seg": 90.46007537841797, "aux.loss_ce": 0.15536529012024403, "aux.acc_seg": 83.24462127685547, "time": 1.1198633670806886, "iter": 101400, "memory": 8704, "step": 101400} +{"lr": 0.004105934671659377, "data_time": 0.00639495849609375, "loss": 0.4117508165538311, "decode.loss_ce": 0.24074219837784766, "decode.acc_seg": 93.1769027709961, "aux.loss_ce": 0.171008612960577, "aux.acc_seg": 93.37297821044922, "time": 1.1176983833312988, "iter": 101450, "memory": 8703, "step": 101450} +{"lr": 0.00410285568344797, "data_time": 0.00733177661895752, "loss": 0.3576802223920822, "decode.loss_ce": 0.21176141873002052, "decode.acc_seg": 89.76688385009766, "aux.loss_ce": 0.14591881446540356, "aux.acc_seg": 91.05650329589844, "time": 1.1141626358032226, "iter": 101500, "memory": 8704, "step": 101500} +{"lr": 0.004099776432063898, "data_time": 0.007945919036865234, "loss": 0.3869434162974358, "decode.loss_ce": 0.22131244763731955, "decode.acc_seg": 91.37394714355469, "aux.loss_ce": 0.16563097089529039, "aux.acc_seg": 80.11003875732422, "time": 1.1196816921234132, "iter": 101550, "memory": 8703, "step": 101550} +{"lr": 0.004096696917259511, "data_time": 0.007537937164306641, "loss": 0.4574261486530304, "decode.loss_ce": 0.2707022435963154, "decode.acc_seg": 84.74661254882812, "aux.loss_ce": 0.18672389835119246, "aux.acc_seg": 81.52554321289062, "time": 1.1175735473632813, "iter": 101600, "memory": 8703, "step": 101600} +{"lr": 0.004093617138786717, "data_time": 0.0063658952713012695, "loss": 0.42158832103013993, "decode.loss_ce": 0.27433921694755553, "decode.acc_seg": 96.44558715820312, "aux.loss_ce": 0.14724910333752633, "aux.acc_seg": 96.31029510498047, "time": 1.1168343067169189, "iter": 101650, "memory": 8704, "step": 101650} +{"lr": 0.004090537096396972, "data_time": 0.008956146240234376, "loss": 0.22064868360757828, "decode.loss_ce": 0.13286100029945375, "decode.acc_seg": 95.62771606445312, "aux.loss_ce": 0.08778768368065357, "aux.acc_seg": 90.91160583496094, "time": 1.1268211364746095, "iter": 101700, "memory": 8703, "step": 101700} +{"lr": 0.004087456789841288, "data_time": 0.007923054695129394, "loss": 0.39344194531440735, "decode.loss_ce": 0.24625374972820283, "decode.acc_seg": 86.99537658691406, "aux.loss_ce": 0.14718820229172708, "aux.acc_seg": 89.05779266357422, "time": 1.117208766937256, "iter": 101750, "memory": 8704, "step": 101750} +{"lr": 0.004084376218870224, "data_time": 0.007057380676269531, "loss": 0.5758236348628998, "decode.loss_ce": 0.37715017050504684, "decode.acc_seg": 95.95203399658203, "aux.loss_ce": 0.19867345318198204, "aux.acc_seg": 94.96929931640625, "time": 1.1179218769073487, "iter": 101800, "memory": 8703, "step": 101800} +{"lr": 0.004081295383233894, "data_time": 0.00717928409576416, "loss": 0.35021607875823973, "decode.loss_ce": 0.22589680105447768, "decode.acc_seg": 90.84172821044922, "aux.loss_ce": 0.12431927621364594, "aux.acc_seg": 87.38323211669922, "time": 1.115040898323059, "iter": 101850, "memory": 8703, "step": 101850} +{"lr": 0.004078214282681959, "data_time": 0.0072677373886108395, "loss": 0.3855463653802872, "decode.loss_ce": 0.23476428389549256, "decode.acc_seg": 97.88077545166016, "aux.loss_ce": 0.1507820837199688, "aux.acc_seg": 97.24624633789062, "time": 1.1146846294403077, "iter": 101900, "memory": 8703, "step": 101900} +{"lr": 0.004075132916963626, "data_time": 0.0064497232437133786, "loss": 0.47499454766511917, "decode.loss_ce": 0.31232658252120016, "decode.acc_seg": 67.8232192993164, "aux.loss_ce": 0.1626679604873061, "aux.acc_seg": 70.83403015136719, "time": 1.1145736932754517, "iter": 101950, "memory": 8703, "step": 101950} +{"lr": 0.004072051285827648, "data_time": 0.005671262741088867, "loss": 0.3138726592063904, "decode.loss_ce": 0.1850889131426811, "decode.acc_seg": 93.5251235961914, "aux.loss_ce": 0.1287837415933609, "aux.acc_seg": 91.1554946899414, "time": 1.113750123977661, "iter": 102000, "memory": 8703, "step": 102000} +{"lr": 0.004068969389022326, "data_time": 0.006242990493774414, "loss": 0.3252851128578186, "decode.loss_ce": 0.18022397086024283, "decode.acc_seg": 94.85794067382812, "aux.loss_ce": 0.14506114050745963, "aux.acc_seg": 93.76321411132812, "time": 1.1137675523757935, "iter": 102050, "memory": 8705, "step": 102050} +{"lr": 0.004065887226295508, "data_time": 0.008749079704284669, "loss": 0.3423891231417656, "decode.loss_ce": 0.21515880189836026, "decode.acc_seg": 89.60594177246094, "aux.loss_ce": 0.12723032739013435, "aux.acc_seg": 79.08324432373047, "time": 1.1182062864303588, "iter": 102100, "memory": 8703, "step": 102100} +{"lr": 0.004062804797394578, "data_time": 0.007637643814086914, "loss": 0.2701565265655518, "decode.loss_ce": 0.16148727983236313, "decode.acc_seg": 93.12934875488281, "aux.loss_ce": 0.10866924002766609, "aux.acc_seg": 91.43402862548828, "time": 1.1199846744537354, "iter": 102150, "memory": 8704, "step": 102150} +{"lr": 0.0040597221020664655, "data_time": 0.00813281536102295, "loss": 0.3219014719128609, "decode.loss_ce": 0.20216691866517067, "decode.acc_seg": 94.95951080322266, "aux.loss_ce": 0.11973455399274827, "aux.acc_seg": 94.51071166992188, "time": 1.1161850452423097, "iter": 102200, "memory": 8703, "step": 102200} +{"lr": 0.004056639140057636, "data_time": 0.006119465827941895, "loss": 0.32040736377239226, "decode.loss_ce": 0.19720794409513473, "decode.acc_seg": 93.20735931396484, "aux.loss_ce": 0.12319941520690918, "aux.acc_seg": 76.99864196777344, "time": 1.1123209476470948, "iter": 102250, "memory": 8704, "step": 102250} +{"lr": 0.004053555911114104, "data_time": 0.005455732345581055, "loss": 0.303753100335598, "decode.loss_ce": 0.1920488230884075, "decode.acc_seg": 96.53453826904297, "aux.loss_ce": 0.11170427724719048, "aux.acc_seg": 95.64888763427734, "time": 1.1136015892028808, "iter": 102300, "memory": 8703, "step": 102300} +{"lr": 0.0040504724149814045, "data_time": 0.006315493583679199, "loss": 0.3155048623681068, "decode.loss_ce": 0.1807923786342144, "decode.acc_seg": 95.81076049804688, "aux.loss_ce": 0.13471248373389244, "aux.acc_seg": 74.91905975341797, "time": 1.1185444593429565, "iter": 102350, "memory": 8704, "step": 102350} +{"lr": 0.004047388651404622, "data_time": 0.008313250541687012, "loss": 0.4208394929766655, "decode.loss_ce": 0.2420615792274475, "decode.acc_seg": 95.8960189819336, "aux.loss_ce": 0.17877791970968246, "aux.acc_seg": 94.51840209960938, "time": 1.1187613010406494, "iter": 102400, "memory": 8704, "step": 102400} +{"lr": 0.004044304620128378, "data_time": 0.00810399055480957, "loss": 0.26634212732315066, "decode.loss_ce": 0.16299160942435265, "decode.acc_seg": 96.1676254272461, "aux.loss_ce": 0.10335052013397217, "aux.acc_seg": 90.3284683227539, "time": 1.1142301559448242, "iter": 102450, "memory": 8704, "step": 102450} +{"lr": 0.004041220320896821, "data_time": 0.006290030479431152, "loss": 0.3021377235651016, "decode.loss_ce": 0.17851890176534652, "decode.acc_seg": 85.8266830444336, "aux.loss_ce": 0.12361881993710995, "aux.acc_seg": 84.76753234863281, "time": 1.1181348085403442, "iter": 102500, "memory": 8703, "step": 102500} +{"lr": 0.004038135753453629, "data_time": 0.007697391510009766, "loss": 0.2951340302824974, "decode.loss_ce": 0.17538473531603813, "decode.acc_seg": 94.50479888916016, "aux.loss_ce": 0.11974929198622704, "aux.acc_seg": 93.6362533569336, "time": 1.1160209894180297, "iter": 102550, "memory": 8703, "step": 102550} +{"lr": 0.004035050917542024, "data_time": 0.006244397163391114, "loss": 0.5355037689208985, "decode.loss_ce": 0.32382737547159196, "decode.acc_seg": 83.5733413696289, "aux.loss_ce": 0.21167638003826142, "aux.acc_seg": 73.72779846191406, "time": 1.115659809112549, "iter": 102600, "memory": 8703, "step": 102600} +{"lr": 0.004031965812904754, "data_time": 0.008009815216064453, "loss": 0.2873247146606445, "decode.loss_ce": 0.17488604336977004, "decode.acc_seg": 97.73139953613281, "aux.loss_ce": 0.1124386690557003, "aux.acc_seg": 93.40813446044922, "time": 1.118033528327942, "iter": 102650, "memory": 8704, "step": 102650} +{"lr": 0.004028880439284088, "data_time": 0.007081389427185059, "loss": 0.3932011291384697, "decode.loss_ce": 0.2399860218167305, "decode.acc_seg": 89.75887298583984, "aux.loss_ce": 0.15321510136127472, "aux.acc_seg": 88.33592224121094, "time": 1.1116634368896485, "iter": 102700, "memory": 8703, "step": 102700} +{"lr": 0.004025794796421831, "data_time": 0.005147075653076172, "loss": 0.5063440948724747, "decode.loss_ce": 0.31299445405602455, "decode.acc_seg": 76.93119049072266, "aux.loss_ce": 0.19334962964057922, "aux.acc_seg": 65.2868881225586, "time": 1.111006212234497, "iter": 102750, "memory": 8704, "step": 102750} +{"lr": 0.004022708884059308, "data_time": 0.006021523475646972, "loss": 0.366004878282547, "decode.loss_ce": 0.20583480596542358, "decode.acc_seg": 94.50843048095703, "aux.loss_ce": 0.16017007380723952, "aux.acc_seg": 93.39042663574219, "time": 1.1137144088745117, "iter": 102800, "memory": 8703, "step": 102800} +{"lr": 0.004019622701937375, "data_time": 0.006578707695007324, "loss": 0.3085401952266693, "decode.loss_ce": 0.18793155029416084, "decode.acc_seg": 93.56657409667969, "aux.loss_ce": 0.1206086404621601, "aux.acc_seg": 90.36457824707031, "time": 1.1131757974624634, "iter": 102850, "memory": 8703, "step": 102850} +{"lr": 0.004016536249796409, "data_time": 0.008182859420776368, "loss": 0.4079943485558033, "decode.loss_ce": 0.2519049163907766, "decode.acc_seg": 86.76471710205078, "aux.loss_ce": 0.1560894288122654, "aux.acc_seg": 78.12715911865234, "time": 1.1154757738113403, "iter": 102900, "memory": 8703, "step": 102900} +{"lr": 0.0040134495273763116, "data_time": 0.007490730285644532, "loss": 0.41687737554311755, "decode.loss_ce": 0.2627805046737194, "decode.acc_seg": 96.48487854003906, "aux.loss_ce": 0.15409686788916588, "aux.acc_seg": 95.7672119140625, "time": 1.115513062477112, "iter": 102950, "memory": 8704, "step": 102950} +{"lr": 0.004010362534416504, "data_time": 0.008976387977600097, "loss": 0.3007755115628242, "decode.loss_ce": 0.18629704415798187, "decode.acc_seg": 91.73955535888672, "aux.loss_ce": 0.11447846367955208, "aux.acc_seg": 92.73465728759766, "time": 1.1220293998718263, "iter": 103000, "memory": 8703, "step": 103000} +{"lr": 0.004007275270655925, "data_time": 0.008026409149169921, "loss": 0.4973928615450859, "decode.loss_ce": 0.30795533433556554, "decode.acc_seg": 90.14122772216797, "aux.loss_ce": 0.1894375268369913, "aux.acc_seg": 78.86326599121094, "time": 1.120568871498108, "iter": 103050, "memory": 8703, "step": 103050} +{"lr": 0.004004187735833043, "data_time": 0.005988430976867676, "loss": 0.5573817729949951, "decode.loss_ce": 0.34598072022199633, "decode.acc_seg": 93.59213256835938, "aux.loss_ce": 0.2114010527729988, "aux.acc_seg": 91.18009948730469, "time": 1.1114646911621093, "iter": 103100, "memory": 8704, "step": 103100} +{"lr": 0.004001099929685836, "data_time": 0.007738971710205078, "loss": 0.34825648963451383, "decode.loss_ce": 0.21498045325279236, "decode.acc_seg": 91.38985443115234, "aux.loss_ce": 0.13327603712677955, "aux.acc_seg": 86.21092224121094, "time": 1.116019606590271, "iter": 103150, "memory": 8703, "step": 103150} +{"lr": 0.003998011851951784, "data_time": 0.006778693199157715, "loss": 0.24009318202733992, "decode.loss_ce": 0.14415610134601592, "decode.acc_seg": 95.00318908691406, "aux.loss_ce": 0.09593707919120789, "aux.acc_seg": 92.90453338623047, "time": 1.1200273275375365, "iter": 103200, "memory": 8704, "step": 103200} +{"lr": 0.003994923502367903, "data_time": 0.006184267997741699, "loss": 0.2976031363010406, "decode.loss_ce": 0.18788950890302658, "decode.acc_seg": 88.28239440917969, "aux.loss_ce": 0.10971362590789795, "aux.acc_seg": 84.75933074951172, "time": 1.1126232624053956, "iter": 103250, "memory": 8703, "step": 103250} +{"lr": 0.003991834880670712, "data_time": 0.008321523666381836, "loss": 0.3864773869514465, "decode.loss_ce": 0.23545683398842812, "decode.acc_seg": 86.96501922607422, "aux.loss_ce": 0.15102055072784423, "aux.acc_seg": 90.36979675292969, "time": 1.1158562660217286, "iter": 103300, "memory": 8703, "step": 103300} +{"lr": 0.003988745986596246, "data_time": 0.006094431877136231, "loss": 0.3472391992807388, "decode.loss_ce": 0.21204716376960278, "decode.acc_seg": 98.6899642944336, "aux.loss_ce": 0.13519203737378122, "aux.acc_seg": 92.73262023925781, "time": 1.1094317197799684, "iter": 103350, "memory": 8704, "step": 103350} +{"lr": 0.003985656819880052, "data_time": 0.00709986686706543, "loss": 0.47209334969520567, "decode.loss_ce": 0.2645873948931694, "decode.acc_seg": 94.22880554199219, "aux.loss_ce": 0.20750595033168792, "aux.acc_seg": 81.68537902832031, "time": 1.1159157276153564, "iter": 103400, "memory": 8704, "step": 103400} +{"lr": 0.00398256738025718, "data_time": 0.008455252647399903, "loss": 0.357215978205204, "decode.loss_ce": 0.22441967576742172, "decode.acc_seg": 98.36336517333984, "aux.loss_ce": 0.13279630560427905, "aux.acc_seg": 98.06594848632812, "time": 1.1196886062622071, "iter": 103450, "memory": 8703, "step": 103450} +{"lr": 0.003979477667462192, "data_time": 0.005676746368408203, "loss": 0.6594009518623352, "decode.loss_ce": 0.4480878561735153, "decode.acc_seg": 95.37627410888672, "aux.loss_ce": 0.2113130908459425, "aux.acc_seg": 95.28846740722656, "time": 1.1123119115829467, "iter": 103500, "memory": 8703, "step": 103500} +{"lr": 0.003976387681229158, "data_time": 0.0072853326797485355, "loss": 0.3914259195327759, "decode.loss_ce": 0.24175031259655952, "decode.acc_seg": 70.3218994140625, "aux.loss_ce": 0.14967560544610023, "aux.acc_seg": 66.05001068115234, "time": 1.1197286605834962, "iter": 103550, "memory": 8704, "step": 103550} +{"lr": 0.003973297421291649, "data_time": 0.007187485694885254, "loss": 0.4297960788011551, "decode.loss_ce": 0.26724701672792434, "decode.acc_seg": 95.46205139160156, "aux.loss_ce": 0.16254905834794045, "aux.acc_seg": 93.78477478027344, "time": 1.1180310487747191, "iter": 103600, "memory": 8704, "step": 103600} +{"lr": 0.003970206887382742, "data_time": 0.005690217018127441, "loss": 0.2937538206577301, "decode.loss_ce": 0.1805263228714466, "decode.acc_seg": 90.78407287597656, "aux.loss_ce": 0.11322750188410283, "aux.acc_seg": 82.1576919555664, "time": 1.1150684595108031, "iter": 103650, "memory": 8704, "step": 103650} +{"lr": 0.003967116079235022, "data_time": 0.006156206130981445, "loss": 0.47607495039701464, "decode.loss_ce": 0.30145479962229726, "decode.acc_seg": 72.3002700805664, "aux.loss_ce": 0.17462014220654964, "aux.acc_seg": 68.08719635009766, "time": 1.1168648719787597, "iter": 103700, "memory": 8703, "step": 103700} +{"lr": 0.0039640249965805655, "data_time": 0.0061064004898071286, "loss": 0.36119394302368163, "decode.loss_ce": 0.22728074863553047, "decode.acc_seg": 94.91182708740234, "aux.loss_ce": 0.13391319513320923, "aux.acc_seg": 89.44149017333984, "time": 1.1101511716842651, "iter": 103750, "memory": 8704, "step": 103750} +{"lr": 0.003960933639150956, "data_time": 0.0079620361328125, "loss": 0.3514921389520168, "decode.loss_ce": 0.18996118903160095, "decode.acc_seg": 97.75091552734375, "aux.loss_ce": 0.16153094917535782, "aux.acc_seg": 97.26078796386719, "time": 1.1302112579345702, "iter": 103800, "memory": 8703, "step": 103800} +{"lr": 0.0039578420066772755, "data_time": 0.006884217262268066, "loss": 0.29595350176095964, "decode.loss_ce": 0.1714083269238472, "decode.acc_seg": 96.45811462402344, "aux.loss_ce": 0.1245451707392931, "aux.acc_seg": 96.2281494140625, "time": 1.1191099405288696, "iter": 103850, "memory": 8704, "step": 103850} +{"lr": 0.003954750098890102, "data_time": 0.006480264663696289, "loss": 0.3817932203412056, "decode.loss_ce": 0.23677392452955245, "decode.acc_seg": 93.29471588134766, "aux.loss_ce": 0.14501929357647897, "aux.acc_seg": 87.77084350585938, "time": 1.1185830354690551, "iter": 103900, "memory": 8704, "step": 103900} +{"lr": 0.003951657915519502, "data_time": 0.008174371719360352, "loss": 0.3447164922952652, "decode.loss_ce": 0.21784377172589303, "decode.acc_seg": 95.17338562011719, "aux.loss_ce": 0.12687271311879159, "aux.acc_seg": 92.74870300292969, "time": 1.1224001169204711, "iter": 103950, "memory": 8704, "step": 103950} +{"lr": 0.003948565456295049, "data_time": 0.0065908670425415036, "loss": 0.3160710081458092, "decode.loss_ce": 0.1769581452012062, "decode.acc_seg": 90.91461944580078, "aux.loss_ce": 0.13911286741495132, "aux.acc_seg": 89.7602310180664, "time": 1.1166754484176635, "iter": 104000, "memory": 8703, "step": 104000} +{"lr": 0.003945472720945795, "data_time": 0.0065231800079345705, "loss": 0.5669825837016106, "decode.loss_ce": 0.351791263371706, "decode.acc_seg": 87.96966552734375, "aux.loss_ce": 0.21519131809473038, "aux.acc_seg": 76.82691192626953, "time": 1.1134690523147583, "iter": 104050, "memory": 8704, "step": 104050} +{"lr": 0.0039423797092003, "data_time": 0.006720209121704101, "loss": 0.3471736192703247, "decode.loss_ce": 0.21000312343239785, "decode.acc_seg": 88.0767822265625, "aux.loss_ce": 0.1371704950928688, "aux.acc_seg": 86.76395416259766, "time": 1.1207420825958252, "iter": 104100, "memory": 8704, "step": 104100} +{"lr": 0.003939286420786604, "data_time": 0.008631610870361328, "loss": 0.3251552253961563, "decode.loss_ce": 0.20511120557785034, "decode.acc_seg": 95.78751373291016, "aux.loss_ce": 0.12004402056336402, "aux.acc_seg": 95.55511474609375, "time": 1.1174316883087159, "iter": 104150, "memory": 8703, "step": 104150} +{"lr": 0.003936192855432229, "data_time": 0.006049966812133789, "loss": 0.3144587904214859, "decode.loss_ce": 0.18996670767664908, "decode.acc_seg": 95.34466552734375, "aux.loss_ce": 0.1244920875877142, "aux.acc_seg": 93.89488983154297, "time": 1.109650182723999, "iter": 104200, "memory": 8703, "step": 104200} +{"lr": 0.0039330990128642026, "data_time": 0.0051985025405883786, "loss": 0.32422005087137223, "decode.loss_ce": 0.18323069140315057, "decode.acc_seg": 93.68177795410156, "aux.loss_ce": 0.1409893650561571, "aux.acc_seg": 87.63700866699219, "time": 1.1085452795028687, "iter": 104250, "memory": 8703, "step": 104250} +{"lr": 0.003930004892809024, "data_time": 0.008397603034973144, "loss": 0.42529362738132476, "decode.loss_ce": 0.2817244529724121, "decode.acc_seg": 96.9614028930664, "aux.loss_ce": 0.1435691762715578, "aux.acc_seg": 96.49250793457031, "time": 1.1136853694915771, "iter": 104300, "memory": 8703, "step": 104300} +{"lr": 0.00392691049499268, "data_time": 0.007693672180175781, "loss": 0.32374048233032227, "decode.loss_ce": 0.20153025537729263, "decode.acc_seg": 86.53265380859375, "aux.loss_ce": 0.12221022918820382, "aux.acc_seg": 85.43135070800781, "time": 1.1148881435394287, "iter": 104350, "memory": 8704, "step": 104350} +{"lr": 0.0039238158191406405, "data_time": 0.008064723014831543, "loss": 0.40310179591178896, "decode.loss_ce": 0.24600196182727813, "decode.acc_seg": 88.15604400634766, "aux.loss_ce": 0.15709982961416244, "aux.acc_seg": 88.54376983642578, "time": 1.1189653396606445, "iter": 104400, "memory": 8704, "step": 104400} +{"lr": 0.003920720864977862, "data_time": 0.008543062210083007, "loss": 0.3072044163942337, "decode.loss_ce": 0.18417092710733413, "decode.acc_seg": 92.73497009277344, "aux.loss_ce": 0.12303348928689957, "aux.acc_seg": 91.78002166748047, "time": 1.122666025161743, "iter": 104450, "memory": 8704, "step": 104450} +{"lr": 0.0039176256322287755, "data_time": 0.006990361213684082, "loss": 0.3229281082749367, "decode.loss_ce": 0.19429414644837378, "decode.acc_seg": 93.11815643310547, "aux.loss_ce": 0.1286339607089758, "aux.acc_seg": 89.45356750488281, "time": 1.1137754440307617, "iter": 104500, "memory": 8703, "step": 104500} +{"lr": 0.00391453012061729, "data_time": 0.005922985076904297, "loss": 0.27656401693820953, "decode.loss_ce": 0.17712971121072768, "decode.acc_seg": 96.13666534423828, "aux.loss_ce": 0.09943430498242378, "aux.acc_seg": 94.7967529296875, "time": 1.114106798171997, "iter": 104550, "memory": 8703, "step": 104550} +{"lr": 0.003911434329866794, "data_time": 0.006182479858398438, "loss": 0.3762137845158577, "decode.loss_ce": 0.23501126766204833, "decode.acc_seg": 96.82686614990234, "aux.loss_ce": 0.14120251908898354, "aux.acc_seg": 96.39046478271484, "time": 1.1168413162231445, "iter": 104600, "memory": 8704, "step": 104600} +{"lr": 0.003908338259700153, "data_time": 0.007242774963378907, "loss": 0.38914782702922823, "decode.loss_ce": 0.2495909370481968, "decode.acc_seg": 89.58511352539062, "aux.loss_ce": 0.13955688700079918, "aux.acc_seg": 86.55674743652344, "time": 1.1148147106170654, "iter": 104650, "memory": 8703, "step": 104650} +{"lr": 0.003905241909839701, "data_time": 0.007806086540222168, "loss": 0.524063740670681, "decode.loss_ce": 0.3466075904667377, "decode.acc_seg": 79.95357513427734, "aux.loss_ce": 0.17745615169405937, "aux.acc_seg": 86.88970947265625, "time": 1.1228601932525635, "iter": 104700, "memory": 8703, "step": 104700} +{"lr": 0.0039021452800072436, "data_time": 0.007103443145751953, "loss": 0.39330206215381625, "decode.loss_ce": 0.2369084596633911, "decode.acc_seg": 94.17731475830078, "aux.loss_ce": 0.15639360286295415, "aux.acc_seg": 85.12781524658203, "time": 1.1188850402832031, "iter": 104750, "memory": 8704, "step": 104750} +{"lr": 0.003899048369924067, "data_time": 0.007500147819519043, "loss": 0.41138127744197844, "decode.loss_ce": 0.24052364826202394, "decode.acc_seg": 91.41014862060547, "aux.loss_ce": 0.17085762247443198, "aux.acc_seg": 79.40110778808594, "time": 1.115486168861389, "iter": 104800, "memory": 8704, "step": 104800} +{"lr": 0.0038959511793109315, "data_time": 0.0078230619430542, "loss": 0.3555349908769131, "decode.loss_ce": 0.22135173231363298, "decode.acc_seg": 89.29036712646484, "aux.loss_ce": 0.13418326415121556, "aux.acc_seg": 86.49183654785156, "time": 1.1185981035232544, "iter": 104850, "memory": 8704, "step": 104850} +{"lr": 0.003892853707888056, "data_time": 0.007684636116027832, "loss": 0.27577936500310896, "decode.loss_ce": 0.1697893939912319, "decode.acc_seg": 93.1600570678711, "aux.loss_ce": 0.10598997063934804, "aux.acc_seg": 93.65221405029297, "time": 1.1212836027145385, "iter": 104900, "memory": 8704, "step": 104900} +{"lr": 0.003889755955375123, "data_time": 0.008448362350463867, "loss": 0.3136463716626167, "decode.loss_ce": 0.19366926997900008, "decode.acc_seg": 91.61497497558594, "aux.loss_ce": 0.11997710280120373, "aux.acc_seg": 87.49637603759766, "time": 1.1202332019805907, "iter": 104950, "memory": 8704, "step": 104950} +{"lr": 0.0038866579214912856, "data_time": 0.0070572376251220705, "loss": 0.27151711136102674, "decode.loss_ce": 0.17396729737520217, "decode.acc_seg": 95.96175384521484, "aux.loss_ce": 0.0975498154759407, "aux.acc_seg": 92.68851470947266, "time": 1.1195016145706176, "iter": 105000, "memory": 8703, "step": 105000} +{"lr": 0.003883559605955161, "data_time": 0.00754237174987793, "loss": 0.39301407188177107, "decode.loss_ce": 0.22795082479715348, "decode.acc_seg": 96.12820434570312, "aux.loss_ce": 0.1650632545351982, "aux.acc_seg": 91.71886444091797, "time": 1.1158513307571412, "iter": 105050, "memory": 8704, "step": 105050} +{"lr": 0.003880461008484828, "data_time": 0.0078277587890625, "loss": 0.31114270687103274, "decode.loss_ce": 0.18750041574239731, "decode.acc_seg": 90.08426666259766, "aux.loss_ce": 0.12364228963851928, "aux.acc_seg": 89.4532470703125, "time": 1.1147968769073486, "iter": 105100, "memory": 8703, "step": 105100} +{"lr": 0.0038773621287978254, "data_time": 0.006441783905029297, "loss": 0.27277513295412065, "decode.loss_ce": 0.1571313336491585, "decode.acc_seg": 91.76483154296875, "aux.loss_ce": 0.11564380191266536, "aux.acc_seg": 88.88320922851562, "time": 1.116218137741089, "iter": 105150, "memory": 8703, "step": 105150} +{"lr": 0.0038742629666111573, "data_time": 0.007869935035705567, "loss": 0.3901300847530365, "decode.loss_ce": 0.223138078302145, "decode.acc_seg": 90.2762680053711, "aux.loss_ce": 0.1669920027256012, "aux.acc_seg": 87.44873046875, "time": 1.1210466623306274, "iter": 105200, "memory": 8705, "step": 105200} +{"lr": 0.0038711635216412714, "data_time": 0.0069899320602416996, "loss": 0.3680226653814316, "decode.loss_ce": 0.2202553443610668, "decode.acc_seg": 93.41194915771484, "aux.loss_ce": 0.14776731580495833, "aux.acc_seg": 87.55785369873047, "time": 1.115077018737793, "iter": 105250, "memory": 8703, "step": 105250} +{"lr": 0.0038680637936040828, "data_time": 0.005997014045715332, "loss": 0.3514459252357483, "decode.loss_ce": 0.21000170558691025, "decode.acc_seg": 87.96411895751953, "aux.loss_ce": 0.14144421592354775, "aux.acc_seg": 86.85359954833984, "time": 1.113727855682373, "iter": 105300, "memory": 8703, "step": 105300} +{"lr": 0.003864963782214959, "data_time": 0.007338333129882813, "loss": 0.3317715287208557, "decode.loss_ce": 0.20258398726582527, "decode.acc_seg": 91.63551330566406, "aux.loss_ce": 0.12918754406273364, "aux.acc_seg": 78.49254608154297, "time": 1.1166313648223878, "iter": 105350, "memory": 8703, "step": 105350} +{"lr": 0.0038618634871887218, "data_time": 0.006247925758361817, "loss": 0.3173683315515518, "decode.loss_ce": 0.1834462709724903, "decode.acc_seg": 96.01539611816406, "aux.loss_ce": 0.13392206393182277, "aux.acc_seg": 95.5880126953125, "time": 1.1217018842697144, "iter": 105400, "memory": 8704, "step": 105400} +{"lr": 0.0038587629082396436, "data_time": 0.0074061393737792965, "loss": 0.4128385901451111, "decode.loss_ce": 0.24618355855345725, "decode.acc_seg": 95.5148696899414, "aux.loss_ce": 0.1666550360620022, "aux.acc_seg": 93.47374725341797, "time": 1.1152560472488404, "iter": 105450, "memory": 8703, "step": 105450} +{"lr": 0.0038556620450814452, "data_time": 0.006820464134216308, "loss": 0.3074831873178482, "decode.loss_ce": 0.1953635521233082, "decode.acc_seg": 95.40779876708984, "aux.loss_ce": 0.11211963184177876, "aux.acc_seg": 95.24574279785156, "time": 1.1155033111572266, "iter": 105500, "memory": 8704, "step": 105500} +{"lr": 0.0038525608974272945, "data_time": 0.008122396469116212, "loss": 0.37988337129354477, "decode.loss_ce": 0.22434871941804885, "decode.acc_seg": 94.92359161376953, "aux.loss_ce": 0.15553465448319911, "aux.acc_seg": 94.61504364013672, "time": 1.1205581665039062, "iter": 105550, "memory": 8704, "step": 105550} +{"lr": 0.0038494594649898127, "data_time": 0.007742571830749512, "loss": 0.3845257475972176, "decode.loss_ce": 0.23485637828707695, "decode.acc_seg": 95.9539566040039, "aux.loss_ce": 0.14966936856508256, "aux.acc_seg": 94.60075378417969, "time": 1.1146039962768555, "iter": 105600, "memory": 8703, "step": 105600} +{"lr": 0.0038463577474810587, "data_time": 0.008092689514160156, "loss": 0.3376971736550331, "decode.loss_ce": 0.18943783342838288, "decode.acc_seg": 96.45268249511719, "aux.loss_ce": 0.14825934469699859, "aux.acc_seg": 89.23455047607422, "time": 1.120405125617981, "iter": 105650, "memory": 8704, "step": 105650} +{"lr": 0.0038432557446125407, "data_time": 0.008069133758544922, "loss": 0.3298786669969559, "decode.loss_ce": 0.20201620310544968, "decode.acc_seg": 93.70648956298828, "aux.loss_ce": 0.12786246389150618, "aux.acc_seg": 94.5006103515625, "time": 1.118407416343689, "iter": 105700, "memory": 8703, "step": 105700} +{"lr": 0.0038401534560952026, "data_time": 0.007377338409423828, "loss": 0.25729460418224337, "decode.loss_ce": 0.15315660163760186, "decode.acc_seg": 94.52403259277344, "aux.loss_ce": 0.10413800403475762, "aux.acc_seg": 92.02476501464844, "time": 1.1200201749801635, "iter": 105750, "memory": 8703, "step": 105750} +{"lr": 0.003837050881639438, "data_time": 0.00667424201965332, "loss": 0.23059338331222534, "decode.loss_ce": 0.13431176617741586, "decode.acc_seg": 96.3216781616211, "aux.loss_ce": 0.09628161936998367, "aux.acc_seg": 95.18623352050781, "time": 1.1157255172729492, "iter": 105800, "memory": 8704, "step": 105800} +{"lr": 0.0038339480209550725, "data_time": 0.007462882995605468, "loss": 0.30301501601934433, "decode.loss_ce": 0.1678358756005764, "decode.acc_seg": 97.25151062011719, "aux.loss_ce": 0.13517913818359376, "aux.acc_seg": 95.57615661621094, "time": 1.1202645301818848, "iter": 105850, "memory": 8703, "step": 105850} +{"lr": 0.0038308448737513724, "data_time": 0.006108331680297852, "loss": 0.4514725998044014, "decode.loss_ce": 0.27418117970228195, "decode.acc_seg": 94.24236297607422, "aux.loss_ce": 0.17729142494499683, "aux.acc_seg": 93.54161071777344, "time": 1.117037844657898, "iter": 105900, "memory": 8703, "step": 105900} +{"lr": 0.003827741439737036, "data_time": 0.007883977890014649, "loss": 0.41908310577273367, "decode.loss_ce": 0.27420415803790094, "decode.acc_seg": 95.4544677734375, "aux.loss_ce": 0.14487894363701342, "aux.acc_seg": 93.90550994873047, "time": 1.118950080871582, "iter": 105950, "memory": 8703, "step": 105950} +{"lr": 0.0038246377186202, "data_time": 0.005637311935424804, "loss": 0.3715357452630997, "decode.loss_ce": 0.24194972291588784, "decode.acc_seg": 89.53253173828125, "aux.loss_ce": 0.1295860182493925, "aux.acc_seg": 87.64202880859375, "time": 1.1121134042739869, "iter": 106000, "memory": 8704, "step": 106000} +{"lr": 0.0038215337101084297, "data_time": 0.0074097633361816405, "loss": 0.3370248794555664, "decode.loss_ce": 0.18893771171569823, "decode.acc_seg": 93.69207763671875, "aux.loss_ce": 0.14808716252446175, "aux.acc_seg": 93.7330551147461, "time": 1.1150721549987792, "iter": 106050, "memory": 8703, "step": 106050} +{"lr": 0.003818429413908724, "data_time": 0.006397461891174317, "loss": 0.39350420236587524, "decode.loss_ce": 0.25523706078529357, "decode.acc_seg": 94.42829132080078, "aux.loss_ce": 0.1382671467959881, "aux.acc_seg": 94.22466278076172, "time": 1.1146235942840577, "iter": 106100, "memory": 8704, "step": 106100} +{"lr": 0.0038153248297275112, "data_time": 0.007904839515686036, "loss": 0.2648152604699135, "decode.loss_ce": 0.16212913319468497, "decode.acc_seg": 93.50318908691406, "aux.loss_ce": 0.10268612392246723, "aux.acc_seg": 86.79993438720703, "time": 1.119382381439209, "iter": 106150, "memory": 8704, "step": 106150} +{"lr": 0.0038122199572706477, "data_time": 0.0066699981689453125, "loss": 0.3392082780599594, "decode.loss_ce": 0.21167241558432578, "decode.acc_seg": 87.23716735839844, "aux.loss_ce": 0.12753585688769817, "aux.acc_seg": 86.13834381103516, "time": 1.114358115196228, "iter": 106200, "memory": 8703, "step": 106200} +{"lr": 0.0038091147962434095, "data_time": 0.007399320602416992, "loss": 0.2594580426812172, "decode.loss_ce": 0.15395040214061737, "decode.acc_seg": 93.90747833251953, "aux.loss_ce": 0.10550764165818691, "aux.acc_seg": 89.73116302490234, "time": 1.1176959991455078, "iter": 106250, "memory": 8704, "step": 106250} +{"lr": 0.0038060093463505055, "data_time": 0.006803488731384278, "loss": 0.32999366372823713, "decode.loss_ce": 0.19854200407862663, "decode.acc_seg": 96.77855682373047, "aux.loss_ce": 0.13145165964961053, "aux.acc_seg": 95.13774108886719, "time": 1.121451735496521, "iter": 106300, "memory": 8704, "step": 106300} +{"lr": 0.003802903607296059, "data_time": 0.008310747146606446, "loss": 0.3669097274541855, "decode.loss_ce": 0.2304091975092888, "decode.acc_seg": 86.02816009521484, "aux.loss_ce": 0.13650052919983863, "aux.acc_seg": 81.94967651367188, "time": 1.1184571266174317, "iter": 106350, "memory": 8703, "step": 106350} +{"lr": 0.0037997975787836197, "data_time": 0.006543016433715821, "loss": 0.43676006644964216, "decode.loss_ce": 0.24283750504255294, "decode.acc_seg": 93.85643005371094, "aux.loss_ce": 0.19392255395650865, "aux.acc_seg": 85.10932922363281, "time": 1.115481472015381, "iter": 106400, "memory": 8703, "step": 106400} +{"lr": 0.0037966912605161586, "data_time": 0.007079505920410156, "loss": 0.33632488548755646, "decode.loss_ce": 0.2135894477367401, "decode.acc_seg": 92.16995239257812, "aux.loss_ce": 0.12273544035851955, "aux.acc_seg": 92.1611099243164, "time": 1.1183446168899536, "iter": 106450, "memory": 8704, "step": 106450} +{"lr": 0.0037935846521960567, "data_time": 0.0065316915512084964, "loss": 0.3177868276834488, "decode.loss_ce": 0.18851650282740592, "decode.acc_seg": 88.98664855957031, "aux.loss_ce": 0.12927032262086868, "aux.acc_seg": 88.56283569335938, "time": 1.1134374618530274, "iter": 106500, "memory": 8704, "step": 106500} +{"lr": 0.0037904777535251164, "data_time": 0.0063905477523803714, "loss": 0.29424453526735306, "decode.loss_ce": 0.1883655570447445, "decode.acc_seg": 96.5301513671875, "aux.loss_ce": 0.10587897635996342, "aux.acc_seg": 96.11968994140625, "time": 1.1146071434020997, "iter": 106550, "memory": 8704, "step": 106550} +{"lr": 0.0037873705642045533, "data_time": 0.006562995910644531, "loss": 0.33630990535020827, "decode.loss_ce": 0.21336397379636765, "decode.acc_seg": 96.33222961425781, "aux.loss_ce": 0.12294593341648578, "aux.acc_seg": 92.81246948242188, "time": 1.1106388568878174, "iter": 106600, "memory": 8704, "step": 106600} +{"lr": 0.003784263083934996, "data_time": 0.006293272972106934, "loss": 0.4263027340173721, "decode.loss_ce": 0.2636504337191582, "decode.acc_seg": 95.6717758178711, "aux.loss_ce": 0.16265230551362037, "aux.acc_seg": 93.58094024658203, "time": 1.1166699886322022, "iter": 106650, "memory": 8704, "step": 106650} +{"lr": 0.0037811553124164803, "data_time": 0.0060837030410766605, "loss": 0.38246484398841857, "decode.loss_ce": 0.23232470452785492, "decode.acc_seg": 96.19734954833984, "aux.loss_ce": 0.15014013275504112, "aux.acc_seg": 94.43302154541016, "time": 1.1158299922943116, "iter": 106700, "memory": 8703, "step": 106700} +{"lr": 0.0037780472493484586, "data_time": 0.006849360466003418, "loss": 0.44227845072746275, "decode.loss_ce": 0.2687742754817009, "decode.acc_seg": 94.32461547851562, "aux.loss_ce": 0.17350417785346509, "aux.acc_seg": 93.82508087158203, "time": 1.1142117023468017, "iter": 106750, "memory": 8703, "step": 106750} +{"lr": 0.0037749388944297796, "data_time": 0.0076932191848754885, "loss": 0.3675517961382866, "decode.loss_ce": 0.2231004059314728, "decode.acc_seg": 86.76319122314453, "aux.loss_ce": 0.1444513875991106, "aux.acc_seg": 84.22552490234375, "time": 1.1192646265029906, "iter": 106800, "memory": 8703, "step": 106800} +{"lr": 0.003771830247358708, "data_time": 0.006675362586975098, "loss": 0.4107037574052811, "decode.loss_ce": 0.24990336000919341, "decode.acc_seg": 95.68233489990234, "aux.loss_ce": 0.16080039367079735, "aux.acc_seg": 88.74594116210938, "time": 1.1171239376068116, "iter": 106850, "memory": 8703, "step": 106850} +{"lr": 0.0037687213078329046, "data_time": 0.007580327987670899, "loss": 0.35195862501859665, "decode.loss_ce": 0.20298455506563187, "decode.acc_seg": 94.52803802490234, "aux.loss_ce": 0.14897406809031963, "aux.acc_seg": 92.15341186523438, "time": 1.1193169355392456, "iter": 106900, "memory": 8703, "step": 106900} +{"lr": 0.0037656120755494384, "data_time": 0.006693553924560547, "loss": 0.3416281759738922, "decode.loss_ce": 0.20262259617447853, "decode.acc_seg": 93.50337219238281, "aux.loss_ce": 0.1390055797994137, "aux.acc_seg": 89.66053009033203, "time": 1.1158064603805542, "iter": 106950, "memory": 8703, "step": 106950} +{"lr": 0.0037625025502047737, "data_time": 0.006782364845275879, "loss": 0.2931611701846123, "decode.loss_ce": 0.17891754508018493, "decode.acc_seg": 94.94087982177734, "aux.loss_ce": 0.11424361802637577, "aux.acc_seg": 95.14089965820312, "time": 1.1142985105514527, "iter": 107000, "memory": 8704, "step": 107000} +{"lr": 0.0037593927314947787, "data_time": 0.006371641159057617, "loss": 0.24251904115080833, "decode.loss_ce": 0.1474560022354126, "decode.acc_seg": 96.62765502929688, "aux.loss_ce": 0.09506303519010544, "aux.acc_seg": 95.83108520507812, "time": 1.1182390213012696, "iter": 107050, "memory": 8704, "step": 107050} +{"lr": 0.0037562826191147166, "data_time": 0.00786125659942627, "loss": 0.39231585562229154, "decode.loss_ce": 0.24856043830513955, "decode.acc_seg": 97.02294158935547, "aux.loss_ce": 0.14375541508197784, "aux.acc_seg": 93.34436798095703, "time": 1.1201911449432373, "iter": 107100, "memory": 8704, "step": 107100} +{"lr": 0.003753172212759244, "data_time": 0.006486129760742187, "loss": 0.3619599223136902, "decode.loss_ce": 0.21580202057957648, "decode.acc_seg": 89.3077621459961, "aux.loss_ce": 0.14615790024399758, "aux.acc_seg": 87.63225555419922, "time": 1.1203423261642456, "iter": 107150, "memory": 8705, "step": 107150} +{"lr": 0.0037500615121224107, "data_time": 0.006600475311279297, "loss": 0.285945200920105, "decode.loss_ce": 0.1861027106642723, "decode.acc_seg": 94.98335266113281, "aux.loss_ce": 0.0998424869030714, "aux.acc_seg": 94.0588607788086, "time": 1.1168464422225952, "iter": 107200, "memory": 8704, "step": 107200} +{"lr": 0.0037469505168976577, "data_time": 0.005924797058105469, "loss": 0.2684264570474625, "decode.loss_ce": 0.16610897406935693, "decode.acc_seg": 96.71986389160156, "aux.loss_ce": 0.10231748633086682, "aux.acc_seg": 95.44658660888672, "time": 1.1135175943374633, "iter": 107250, "memory": 8704, "step": 107250} +{"lr": 0.0037438392267778184, "data_time": 0.005978202819824219, "loss": 0.3744625307619572, "decode.loss_ce": 0.22065413519740104, "decode.acc_seg": 88.29689025878906, "aux.loss_ce": 0.15380840562283993, "aux.acc_seg": 74.97583770751953, "time": 1.1127108573913573, "iter": 107300, "memory": 8704, "step": 107300} +{"lr": 0.0037407276414551135, "data_time": 0.007682204246520996, "loss": 0.4266158640384674, "decode.loss_ce": 0.27461324632167816, "decode.acc_seg": 94.1422119140625, "aux.loss_ce": 0.15200260505080224, "aux.acc_seg": 88.75261688232422, "time": 1.1228142738342286, "iter": 107350, "memory": 8703, "step": 107350} +{"lr": 0.0037376157606211465, "data_time": 0.0050553083419799805, "loss": 0.31072653979063036, "decode.loss_ce": 0.19031439870595931, "decode.acc_seg": 96.2667465209961, "aux.loss_ce": 0.12041214182972908, "aux.acc_seg": 95.81171417236328, "time": 1.109562587738037, "iter": 107400, "memory": 8704, "step": 107400} +{"lr": 0.0037345035839669144, "data_time": 0.007029390335083008, "loss": 0.3653618395328522, "decode.loss_ce": 0.2259247839450836, "decode.acc_seg": 88.42823791503906, "aux.loss_ce": 0.1394370596855879, "aux.acc_seg": 77.69120025634766, "time": 1.1162369966506958, "iter": 107450, "memory": 8703, "step": 107450} +{"lr": 0.003731391111182783, "data_time": 0.006646251678466797, "loss": 0.4081726536154747, "decode.loss_ce": 0.23216212391853333, "decode.acc_seg": 87.60865020751953, "aux.loss_ce": 0.1760105274617672, "aux.acc_seg": 65.4775619506836, "time": 1.1143874645233154, "iter": 107500, "memory": 8704, "step": 107500} +{"lr": 0.0037282783419585117, "data_time": 0.005375814437866211, "loss": 0.37802117615938186, "decode.loss_ce": 0.2200292244553566, "decode.acc_seg": 91.75726318359375, "aux.loss_ce": 0.15799195170402527, "aux.acc_seg": 90.29667663574219, "time": 1.117819905281067, "iter": 107550, "memory": 8704, "step": 107550} +{"lr": 0.0037251652759832297, "data_time": 0.005935192108154297, "loss": 0.32067310661077497, "decode.loss_ce": 0.18470006957650184, "decode.acc_seg": 95.36234283447266, "aux.loss_ce": 0.135973035171628, "aux.acc_seg": 89.72504425048828, "time": 1.1185343742370606, "iter": 107600, "memory": 8704, "step": 107600} +{"lr": 0.003722051912945446, "data_time": 0.006270051002502441, "loss": 0.35655284076929095, "decode.loss_ce": 0.19813812300562858, "decode.acc_seg": 95.49738311767578, "aux.loss_ce": 0.158414713665843, "aux.acc_seg": 89.77527618408203, "time": 1.116094207763672, "iter": 107650, "memory": 8703, "step": 107650} +{"lr": 0.0037189382525330476, "data_time": 0.004743242263793945, "loss": 0.25068837553262713, "decode.loss_ce": 0.1456304021179676, "decode.acc_seg": 95.14643096923828, "aux.loss_ce": 0.10505797192454339, "aux.acc_seg": 92.46285247802734, "time": 1.1139268398284912, "iter": 107700, "memory": 8703, "step": 107700} +{"lr": 0.0037158242944332924, "data_time": 0.00639190673828125, "loss": 0.32823110520839693, "decode.loss_ce": 0.20037178546190262, "decode.acc_seg": 94.30345916748047, "aux.loss_ce": 0.12785931900143624, "aux.acc_seg": 94.99591827392578, "time": 1.1144904851913453, "iter": 107750, "memory": 8704, "step": 107750} +{"lr": 0.0037127100383328106, "data_time": 0.006180238723754883, "loss": 0.32557711750268936, "decode.loss_ce": 0.19948735460639, "decode.acc_seg": 91.0528793334961, "aux.loss_ce": 0.12608976811170577, "aux.acc_seg": 90.43247985839844, "time": 1.1166913509368896, "iter": 107800, "memory": 8703, "step": 107800} +{"lr": 0.0037095954839176026, "data_time": 0.007532691955566407, "loss": 0.3765595734119415, "decode.loss_ce": 0.2319912791252136, "decode.acc_seg": 95.08940124511719, "aux.loss_ce": 0.14456829093396664, "aux.acc_seg": 92.54366302490234, "time": 1.1191636323928833, "iter": 107850, "memory": 8703, "step": 107850} +{"lr": 0.0037064806308730338, "data_time": 0.0062228918075561525, "loss": 0.38599576205015185, "decode.loss_ce": 0.22789939865469933, "decode.acc_seg": 86.4402084350586, "aux.loss_ce": 0.15809636749327183, "aux.acc_seg": 82.96196746826172, "time": 1.1162501573562622, "iter": 107900, "memory": 8703, "step": 107900} +{"lr": 0.0037033654788838338, "data_time": 0.007369089126586914, "loss": 0.31496538817882536, "decode.loss_ce": 0.18650365769863128, "decode.acc_seg": 95.58792114257812, "aux.loss_ce": 0.12846172749996185, "aux.acc_seg": 93.21441650390625, "time": 1.1167536497116088, "iter": 107950, "memory": 8704, "step": 107950} +{"lr": 0.003700250027634108, "data_time": 0.00867617130279541, "loss": 0.3738819807767868, "decode.loss_ce": 0.22204130962491037, "decode.acc_seg": 92.05955505371094, "aux.loss_ce": 0.15184066705405713, "aux.acc_seg": 87.84024047851562, "time": 1.121931004524231, "iter": 108000, "memory": 8703, "step": 108000} +{"lr": 0.003697134276807308, "data_time": 0.00673823356628418, "loss": 0.3141275644302368, "decode.loss_ce": 0.17772984653711318, "decode.acc_seg": 96.60237121582031, "aux.loss_ce": 0.13639771267771722, "aux.acc_seg": 95.87872314453125, "time": 1.1174654722213746, "iter": 108050, "memory": 8704, "step": 108050} +{"lr": 0.003694018226086255, "data_time": 0.007546424865722656, "loss": 0.2608938291668892, "decode.loss_ce": 0.15655337497591973, "decode.acc_seg": 96.36537170410156, "aux.loss_ce": 0.10434045009315014, "aux.acc_seg": 94.46416473388672, "time": 1.1345510244369508, "iter": 108100, "memory": 8703, "step": 108100} +{"lr": 0.0036909018751531335, "data_time": 0.007840538024902343, "loss": 0.40360521227121354, "decode.loss_ce": 0.25931925103068354, "decode.acc_seg": 96.52874755859375, "aux.loss_ce": 0.14428596422076226, "aux.acc_seg": 96.96871185302734, "time": 1.1228286743164062, "iter": 108150, "memory": 8703, "step": 108150} +{"lr": 0.00368778522368947, "data_time": 0.009239459037780761, "loss": 0.525062607228756, "decode.loss_ce": 0.3309710405766964, "decode.acc_seg": 96.33464813232422, "aux.loss_ce": 0.19409156925976276, "aux.acc_seg": 96.06157684326172, "time": 1.1275768756866456, "iter": 108200, "memory": 8704, "step": 108200} +{"lr": 0.003684668271376152, "data_time": 0.009117531776428222, "loss": 0.4239190101623535, "decode.loss_ce": 0.2553203411400318, "decode.acc_seg": 91.42716217041016, "aux.loss_ce": 0.16859867051243782, "aux.acc_seg": 89.96874237060547, "time": 1.1301602125167847, "iter": 108250, "memory": 8704, "step": 108250} +{"lr": 0.0036815510178934262, "data_time": 0.008222484588623047, "loss": 0.3230749726295471, "decode.loss_ce": 0.19521351307630538, "decode.acc_seg": 88.45882415771484, "aux.loss_ce": 0.127861462906003, "aux.acc_seg": 77.22517395019531, "time": 1.127877950668335, "iter": 108300, "memory": 8703, "step": 108300} +{"lr": 0.0036784334629208814, "data_time": 0.007295656204223633, "loss": 0.3066101521253586, "decode.loss_ce": 0.20079958215355873, "decode.acc_seg": 89.55065155029297, "aux.loss_ce": 0.10581056624650956, "aux.acc_seg": 89.6952896118164, "time": 1.115927529335022, "iter": 108350, "memory": 8704, "step": 108350} +{"lr": 0.003675315606137452, "data_time": 0.007787156105041504, "loss": 0.37739368975162507, "decode.loss_ce": 0.23519105836749077, "decode.acc_seg": 93.01884460449219, "aux.loss_ce": 0.14220263101160527, "aux.acc_seg": 90.56122589111328, "time": 1.121841549873352, "iter": 108400, "memory": 8704, "step": 108400} +{"lr": 0.0036721974472214308, "data_time": 0.008025693893432616, "loss": 0.3599137425422668, "decode.loss_ce": 0.19873957633972167, "decode.acc_seg": 91.1291732788086, "aux.loss_ce": 0.1611741714179516, "aux.acc_seg": 83.44612121582031, "time": 1.1179813146591187, "iter": 108450, "memory": 8704, "step": 108450} +{"lr": 0.00366907898585045, "data_time": 0.006070637702941894, "loss": 0.4531935632228851, "decode.loss_ce": 0.25733968392014506, "decode.acc_seg": 74.95193481445312, "aux.loss_ce": 0.1958538766950369, "aux.acc_seg": 65.20658874511719, "time": 1.1154812574386597, "iter": 108500, "memory": 8704, "step": 108500} +{"lr": 0.003665960221701482, "data_time": 0.006786179542541504, "loss": 0.3039266347885132, "decode.loss_ce": 0.19082166850566865, "decode.acc_seg": 93.48423767089844, "aux.loss_ce": 0.11310496851801873, "aux.acc_seg": 91.14385986328125, "time": 1.1131833791732788, "iter": 108550, "memory": 8703, "step": 108550} +{"lr": 0.0036628411544508397, "data_time": 0.006849122047424316, "loss": 0.3187391936779022, "decode.loss_ce": 0.1971002511680126, "decode.acc_seg": 93.18516540527344, "aux.loss_ce": 0.12163894325494766, "aux.acc_seg": 85.60587310791016, "time": 1.1188770294189454, "iter": 108600, "memory": 8703, "step": 108600} +{"lr": 0.003659721783774178, "data_time": 0.0057654142379760746, "loss": 0.4524687573313713, "decode.loss_ce": 0.24820172488689424, "decode.acc_seg": 82.90252685546875, "aux.loss_ce": 0.20426703616976738, "aux.acc_seg": 81.6214828491211, "time": 1.1142494440078736, "iter": 108650, "memory": 8704, "step": 108650} +{"lr": 0.003656602109346486, "data_time": 0.006320571899414063, "loss": 0.2948781281709671, "decode.loss_ce": 0.17644890174269676, "decode.acc_seg": 89.1556396484375, "aux.loss_ce": 0.11842922829091548, "aux.acc_seg": 75.26448059082031, "time": 1.112960982322693, "iter": 108700, "memory": 8703, "step": 108700} +{"lr": 0.003653482130842091, "data_time": 0.006649661064147949, "loss": 0.3724033921957016, "decode.loss_ce": 0.19579140543937684, "decode.acc_seg": 97.5797348022461, "aux.loss_ce": 0.17661198675632478, "aux.acc_seg": 94.59407043457031, "time": 1.1132303953170777, "iter": 108750, "memory": 8704, "step": 108750} +{"lr": 0.0036503618479346504, "data_time": 0.007175254821777344, "loss": 0.36957581639289855, "decode.loss_ce": 0.210653106123209, "decode.acc_seg": 93.41252136230469, "aux.loss_ce": 0.15892270840704442, "aux.acc_seg": 89.12168884277344, "time": 1.1672815322875976, "iter": 108800, "memory": 8704, "step": 108800} +{"lr": 0.003647241260297152, "data_time": 0.008265519142150879, "loss": 0.29087777361273764, "decode.loss_ce": 0.1777846846729517, "decode.acc_seg": 94.55013275146484, "aux.loss_ce": 0.11309309564530849, "aux.acc_seg": 93.65946197509766, "time": 2.0031498670578003, "iter": 108850, "memory": 8703, "step": 108850} +{"lr": 0.0036441203676019166, "data_time": 0.009441018104553223, "loss": 0.32377963662147524, "decode.loss_ce": 0.20196211487054824, "decode.acc_seg": 95.74044036865234, "aux.loss_ce": 0.121817522123456, "aux.acc_seg": 93.70816040039062, "time": 1.4153357982635497, "iter": 108900, "memory": 8704, "step": 108900} +{"lr": 0.00364099916952058, "data_time": 0.00788099765777588, "loss": 0.336821074783802, "decode.loss_ce": 0.19624834433197974, "decode.acc_seg": 90.22610473632812, "aux.loss_ce": 0.14057273417711258, "aux.acc_seg": 89.50131225585938, "time": 1.1181806802749634, "iter": 108950, "memory": 8704, "step": 108950} +{"lr": 0.0036378776657241194, "data_time": 0.008256912231445312, "loss": 0.5454279385507107, "decode.loss_ce": 0.33726725950837133, "decode.acc_seg": 95.63420104980469, "aux.loss_ce": 0.20816067978739738, "aux.acc_seg": 92.00407409667969, "time": 1.1245163917541503, "iter": 109000, "memory": 8703, "step": 109000} +{"lr": 0.003634755855882821, "data_time": 0.006706786155700683, "loss": 0.3440247356891632, "decode.loss_ce": 0.22127389162778854, "decode.acc_seg": 89.62841033935547, "aux.loss_ce": 0.12275084368884563, "aux.acc_seg": 85.75165557861328, "time": 1.115401816368103, "iter": 109050, "memory": 8704, "step": 109050} +{"lr": 0.0036316337396662935, "data_time": 0.006124186515808106, "loss": 0.25291213393211365, "decode.loss_ce": 0.1499326579272747, "decode.acc_seg": 96.24557495117188, "aux.loss_ce": 0.10297947339713573, "aux.acc_seg": 94.62776184082031, "time": 1.1091156959533692, "iter": 109100, "memory": 8704, "step": 109100} +{"lr": 0.003628511316743471, "data_time": 0.007195138931274414, "loss": 0.3139942780137062, "decode.loss_ce": 0.19739139527082444, "decode.acc_seg": 91.0926284790039, "aux.loss_ce": 0.11660287864506244, "aux.acc_seg": 87.73922729492188, "time": 1.1164239406585694, "iter": 109150, "memory": 8703, "step": 109150} +{"lr": 0.003625388586782598, "data_time": 0.007860898971557617, "loss": 0.35428798347711565, "decode.loss_ce": 0.2070125497877598, "decode.acc_seg": 93.11386108398438, "aux.loss_ce": 0.14727543480694294, "aux.acc_seg": 85.92892456054688, "time": 1.1181941032409668, "iter": 109200, "memory": 8703, "step": 109200} +{"lr": 0.0036222655494512336, "data_time": 0.007525014877319336, "loss": 0.40612844228744505, "decode.loss_ce": 0.2569022297859192, "decode.acc_seg": 69.97330474853516, "aux.loss_ce": 0.14922621101140976, "aux.acc_seg": 70.20040893554688, "time": 1.1168484449386598, "iter": 109250, "memory": 8705, "step": 109250} +{"lr": 0.003619142204416255, "data_time": 0.005946469306945801, "loss": 0.3306542694568634, "decode.loss_ce": 0.1928050734102726, "decode.acc_seg": 92.16815948486328, "aux.loss_ce": 0.13784920126199723, "aux.acc_seg": 91.92167663574219, "time": 1.115414023399353, "iter": 109300, "memory": 8704, "step": 109300} +{"lr": 0.00361601855134384, "data_time": 0.007324862480163574, "loss": 0.5528331324458122, "decode.loss_ce": 0.36167377457022665, "decode.acc_seg": 88.54853057861328, "aux.loss_ce": 0.19115937501192093, "aux.acc_seg": 81.88387298583984, "time": 1.1162598371505736, "iter": 109350, "memory": 8704, "step": 109350} +{"lr": 0.003612894589899482, "data_time": 0.007803916931152344, "loss": 0.388726307451725, "decode.loss_ce": 0.23731375336647034, "decode.acc_seg": 93.02177429199219, "aux.loss_ce": 0.15141255110502244, "aux.acc_seg": 89.84451293945312, "time": 1.1163832426071167, "iter": 109400, "memory": 8704, "step": 109400} +{"lr": 0.003609770319747977, "data_time": 0.006754279136657715, "loss": 0.25435257852077486, "decode.loss_ce": 0.14456134736537934, "decode.acc_seg": 95.07878112792969, "aux.loss_ce": 0.10979123376309871, "aux.acc_seg": 89.25285339355469, "time": 1.1151196002960204, "iter": 109450, "memory": 8704, "step": 109450} +{"lr": 0.003606645740553425, "data_time": 0.006114983558654785, "loss": 0.5000230818986893, "decode.loss_ce": 0.3246787883341312, "decode.acc_seg": 96.87303161621094, "aux.loss_ce": 0.1753442957997322, "aux.acc_seg": 94.75338745117188, "time": 1.1131374835968018, "iter": 109500, "memory": 8704, "step": 109500} +{"lr": 0.003603520851979227, "data_time": 0.007189178466796875, "loss": 0.5579139232635498, "decode.loss_ce": 0.34207668602466584, "decode.acc_seg": 83.01626586914062, "aux.loss_ce": 0.21583723276853561, "aux.acc_seg": 79.91205596923828, "time": 1.1206535816192627, "iter": 109550, "memory": 8704, "step": 109550} +{"lr": 0.003600395653688086, "data_time": 0.006080889701843261, "loss": 0.3375404477119446, "decode.loss_ce": 0.2022123947739601, "decode.acc_seg": 90.88678741455078, "aux.loss_ce": 0.1353280533105135, "aux.acc_seg": 86.64708709716797, "time": 1.1200236320495605, "iter": 109600, "memory": 8704, "step": 109600} +{"lr": 0.0035972701453420002, "data_time": 0.006610441207885742, "loss": 0.32922014147043227, "decode.loss_ce": 0.202516857534647, "decode.acc_seg": 93.10327911376953, "aux.loss_ce": 0.12670328393578528, "aux.acc_seg": 91.81333923339844, "time": 1.1195823669433593, "iter": 109650, "memory": 8704, "step": 109650} +{"lr": 0.003594144326602263, "data_time": 0.006952762603759766, "loss": 0.35579912513494494, "decode.loss_ce": 0.22065138965845107, "decode.acc_seg": 92.6828384399414, "aux.loss_ce": 0.13514772951602935, "aux.acc_seg": 88.98563385009766, "time": 1.1158666372299195, "iter": 109700, "memory": 8703, "step": 109700} +{"lr": 0.003591018197129457, "data_time": 0.005953049659729004, "loss": 0.3606861785054207, "decode.loss_ce": 0.21778747141361238, "decode.acc_seg": 88.66741943359375, "aux.loss_ce": 0.14289871007204055, "aux.acc_seg": 86.58477020263672, "time": 1.1140344142913818, "iter": 109750, "memory": 8703, "step": 109750} +{"lr": 0.003587891756583463, "data_time": 0.0062744379043579105, "loss": 0.4520612969994545, "decode.loss_ce": 0.27810285091400144, "decode.acc_seg": 74.4917984008789, "aux.loss_ce": 0.1739584557712078, "aux.acc_seg": 73.98150634765625, "time": 1.1182272911071778, "iter": 109800, "memory": 8703, "step": 109800} +{"lr": 0.0035847650046234446, "data_time": 0.006192970275878906, "loss": 0.34814425855875014, "decode.loss_ce": 0.22186510637402534, "decode.acc_seg": 95.75233459472656, "aux.loss_ce": 0.12627914920449257, "aux.acc_seg": 94.35818481445312, "time": 1.1126096487045287, "iter": 109850, "memory": 8703, "step": 109850} +{"lr": 0.0035816379409078568, "data_time": 0.006251835823059082, "loss": 0.3989704817533493, "decode.loss_ce": 0.25905442535877227, "decode.acc_seg": 92.36351776123047, "aux.loss_ce": 0.13991605527698994, "aux.acc_seg": 88.80111694335938, "time": 1.1156657934188843, "iter": 109900, "memory": 8703, "step": 109900} +{"lr": 0.003578510565094435, "data_time": 0.007323455810546875, "loss": 0.4697712495923042, "decode.loss_ce": 0.29357118979096414, "decode.acc_seg": 95.77751159667969, "aux.loss_ce": 0.17620006054639817, "aux.acc_seg": 94.74925994873047, "time": 1.1219554185867309, "iter": 109950, "memory": 8703, "step": 109950} +{"lr": 0.0035753828768401944, "data_time": 0.005917835235595703, "loss": 0.34254925325512886, "decode.loss_ce": 0.21478882506489755, "decode.acc_seg": 87.48899841308594, "aux.loss_ce": 0.12776042893528938, "aux.acc_seg": 86.26702117919922, "time": 1.1154898881912232, "iter": 110000, "memory": 8704, "step": 110000} +{"lr": 0.0035722548758014357, "data_time": 0.006345176696777343, "loss": 0.34273801892995837, "decode.loss_ce": 0.19466005340218545, "decode.acc_seg": 97.61652374267578, "aux.loss_ce": 0.14807796515524388, "aux.acc_seg": 94.49942779541016, "time": 1.1166744232177734, "iter": 110050, "memory": 8703, "step": 110050} +{"lr": 0.0035691265616337323, "data_time": 0.00669565200805664, "loss": 0.3409023553133011, "decode.loss_ce": 0.21181306168437003, "decode.acc_seg": 96.82064056396484, "aux.loss_ce": 0.12908929586410522, "aux.acc_seg": 96.50242614746094, "time": 1.1185685634613036, "iter": 110100, "memory": 8703, "step": 110100} +{"lr": 0.0035659979339919367, "data_time": 0.007902264595031738, "loss": 0.40252164006233215, "decode.loss_ce": 0.2399262621998787, "decode.acc_seg": 94.17406463623047, "aux.loss_ce": 0.1625953782349825, "aux.acc_seg": 92.73641204833984, "time": 1.1265477180480956, "iter": 110150, "memory": 8704, "step": 110150} +{"lr": 0.0035628689925301725, "data_time": 0.0067193031311035155, "loss": 0.431562614440918, "decode.loss_ce": 0.2808441653847694, "decode.acc_seg": 88.79722595214844, "aux.loss_ce": 0.15071845203638076, "aux.acc_seg": 78.56741333007812, "time": 1.1159748554229736, "iter": 110200, "memory": 8704, "step": 110200} +{"lr": 0.0035597397369018283, "data_time": 0.007452249526977539, "loss": 0.233246411383152, "decode.loss_ce": 0.14121265187859536, "decode.acc_seg": 96.49212646484375, "aux.loss_ce": 0.09203376062214375, "aux.acc_seg": 95.92449951171875, "time": 1.1192902088165284, "iter": 110250, "memory": 8703, "step": 110250} +{"lr": 0.0035566101667595723, "data_time": 0.0063572883605957035, "loss": 0.36138050109148023, "decode.loss_ce": 0.21100289970636368, "decode.acc_seg": 87.14923858642578, "aux.loss_ce": 0.1503776054829359, "aux.acc_seg": 87.0992660522461, "time": 1.1155983686447144, "iter": 110300, "memory": 8704, "step": 110300} +{"lr": 0.0035534802817553312, "data_time": 0.0066851615905761715, "loss": 0.31053677424788473, "decode.loss_ce": 0.18541805669665337, "decode.acc_seg": 88.3371353149414, "aux.loss_ce": 0.12511871829628946, "aux.acc_seg": 75.94330596923828, "time": 1.1157557010650634, "iter": 110350, "memory": 8704, "step": 110350} +{"lr": 0.0035503500815402974, "data_time": 0.007072019577026367, "loss": 0.5810722410678864, "decode.loss_ce": 0.3532642662525177, "decode.acc_seg": 87.54138946533203, "aux.loss_ce": 0.2278079755604267, "aux.acc_seg": 83.10648345947266, "time": 1.1152756690979004, "iter": 110400, "memory": 8704, "step": 110400} +{"lr": 0.0035472195657649266, "data_time": 0.005768132209777832, "loss": 0.27969576567411425, "decode.loss_ce": 0.16934147477149963, "decode.acc_seg": 95.85830688476562, "aux.loss_ce": 0.11035429276525974, "aux.acc_seg": 89.90520477294922, "time": 1.1081254720687865, "iter": 110450, "memory": 8704, "step": 110450} +{"lr": 0.003544088734078934, "data_time": 0.00715787410736084, "loss": 0.42664358764886856, "decode.loss_ce": 0.2849774844944477, "decode.acc_seg": 64.55014038085938, "aux.loss_ce": 0.14166610278189182, "aux.acc_seg": 62.1753044128418, "time": 1.1136104106903075, "iter": 110500, "memory": 8703, "step": 110500} +{"lr": 0.003540957586131285, "data_time": 0.007427573204040527, "loss": 0.27667805552482605, "decode.loss_ce": 0.1719265252351761, "decode.acc_seg": 88.17791748046875, "aux.loss_ce": 0.10475152805447578, "aux.acc_seg": 84.03224182128906, "time": 1.120861554145813, "iter": 110550, "memory": 8704, "step": 110550} +{"lr": 0.003537826121570211, "data_time": 0.008683252334594726, "loss": 0.44245235770940783, "decode.loss_ce": 0.2641605734825134, "decode.acc_seg": 96.73766326904297, "aux.loss_ce": 0.17829178944230079, "aux.acc_seg": 96.19515991210938, "time": 1.1202568054199218, "iter": 110600, "memory": 8703, "step": 110600} +{"lr": 0.003534694340043183, "data_time": 0.008144474029541016, "loss": 0.3040799364447594, "decode.loss_ce": 0.1885736420750618, "decode.acc_seg": 94.58719635009766, "aux.loss_ce": 0.11550629064440728, "aux.acc_seg": 91.56322479248047, "time": 1.1187474966049193, "iter": 110650, "memory": 8704, "step": 110650} +{"lr": 0.00353156224119693, "data_time": 0.008176231384277343, "loss": 0.34868359863758086, "decode.loss_ce": 0.2170957699418068, "decode.acc_seg": 93.64960479736328, "aux.loss_ce": 0.13158782571554184, "aux.acc_seg": 92.16696166992188, "time": 1.1162300109863281, "iter": 110700, "memory": 8704, "step": 110700} +{"lr": 0.003528429824677427, "data_time": 0.007048749923706054, "loss": 0.36682883352041246, "decode.loss_ce": 0.2258370965719223, "decode.acc_seg": 93.3436050415039, "aux.loss_ce": 0.14099173247814178, "aux.acc_seg": 91.62235260009766, "time": 1.1183696269989014, "iter": 110750, "memory": 8703, "step": 110750} +{"lr": 0.0035252970901298902, "data_time": 0.00906357765197754, "loss": 0.3597947582602501, "decode.loss_ce": 0.2104273721575737, "decode.acc_seg": 95.73242950439453, "aux.loss_ce": 0.14936738461256027, "aux.acc_seg": 89.78563690185547, "time": 1.117132592201233, "iter": 110800, "memory": 8704, "step": 110800} +{"lr": 0.003522164037198789, "data_time": 0.00669713020324707, "loss": 0.436485743522644, "decode.loss_ce": 0.28274003639817236, "decode.acc_seg": 83.3852767944336, "aux.loss_ce": 0.1537457022815943, "aux.acc_seg": 83.84748840332031, "time": 1.1161771774291993, "iter": 110850, "memory": 8704, "step": 110850} +{"lr": 0.0035190306655278245, "data_time": 0.008016753196716308, "loss": 0.3004745848476887, "decode.loss_ce": 0.17902582958340646, "decode.acc_seg": 91.6046142578125, "aux.loss_ce": 0.12144875153899193, "aux.acc_seg": 89.0696792602539, "time": 1.1189577341079713, "iter": 110900, "memory": 8703, "step": 110900} +{"lr": 0.003515896974759936, "data_time": 0.007537531852722168, "loss": 0.3552314579486847, "decode.loss_ce": 0.205457716435194, "decode.acc_seg": 94.58351135253906, "aux.loss_ce": 0.14977374412119387, "aux.acc_seg": 93.94441986083984, "time": 1.1170520544052125, "iter": 110950, "memory": 8704, "step": 110950} +{"lr": 0.003512762964537302, "data_time": 0.006430482864379883, "loss": 0.3945259891450405, "decode.loss_ce": 0.2502993728965521, "decode.acc_seg": 88.07684326171875, "aux.loss_ce": 0.14422661252319813, "aux.acc_seg": 89.22500610351562, "time": 1.1168066263198853, "iter": 111000, "memory": 8703, "step": 111000} +{"lr": 0.0035096286345013324, "data_time": 0.005909585952758789, "loss": 0.3904512971639633, "decode.loss_ce": 0.23968249708414077, "decode.acc_seg": 95.25794982910156, "aux.loss_ce": 0.15076879784464836, "aux.acc_seg": 94.9097900390625, "time": 1.1171046018600463, "iter": 111050, "memory": 8703, "step": 111050} +{"lr": 0.003506493984292665, "data_time": 0.0071019411087036135, "loss": 0.290476793050766, "decode.loss_ce": 0.17669888883829116, "decode.acc_seg": 92.7267074584961, "aux.loss_ce": 0.11377790533006191, "aux.acc_seg": 88.58578491210938, "time": 1.1191166400909425, "iter": 111100, "memory": 8704, "step": 111100} +{"lr": 0.003503359013551171, "data_time": 0.006933259963989258, "loss": 0.33710702508687973, "decode.loss_ce": 0.20648552849888802, "decode.acc_seg": 92.66929626464844, "aux.loss_ce": 0.13062149435281753, "aux.acc_seg": 79.96037292480469, "time": 1.1157026767730713, "iter": 111150, "memory": 8703, "step": 111150} +{"lr": 0.0035002237219159456, "data_time": 0.007288336753845215, "loss": 0.34386072903871534, "decode.loss_ce": 0.22734250351786614, "decode.acc_seg": 93.79692077636719, "aux.loss_ce": 0.1165182214230299, "aux.acc_seg": 93.69894409179688, "time": 1.1193087100982666, "iter": 111200, "memory": 8704, "step": 111200} +{"lr": 0.003497088109025306, "data_time": 0.0067110776901245115, "loss": 0.3058776468038559, "decode.loss_ce": 0.19050362408161164, "decode.acc_seg": 96.5063705444336, "aux.loss_ce": 0.1153740257024765, "aux.acc_seg": 96.29776763916016, "time": 1.1147069215774537, "iter": 111250, "memory": 8704, "step": 111250} +{"lr": 0.0034939521745167945, "data_time": 0.006600475311279297, "loss": 0.3458969950675964, "decode.loss_ce": 0.21278527602553368, "decode.acc_seg": 75.77560424804688, "aux.loss_ce": 0.13311172910034658, "aux.acc_seg": 65.26400756835938, "time": 1.114742064476013, "iter": 111300, "memory": 8703, "step": 111300} +{"lr": 0.0034908159180271634, "data_time": 0.006110739707946777, "loss": 0.35249233394861224, "decode.loss_ce": 0.20976670533418657, "decode.acc_seg": 97.72052764892578, "aux.loss_ce": 0.14272562861442567, "aux.acc_seg": 96.62386322021484, "time": 1.1141773462295532, "iter": 111350, "memory": 8704, "step": 111350} +{"lr": 0.003487679339192394, "data_time": 0.0061151981353759766, "loss": 0.3291583940386772, "decode.loss_ce": 0.20326357036828996, "decode.acc_seg": 96.24041748046875, "aux.loss_ce": 0.12589482329785823, "aux.acc_seg": 95.9940185546875, "time": 1.112862467765808, "iter": 111400, "memory": 8703, "step": 111400} +{"lr": 0.003484542437647667, "data_time": 0.0056182146072387695, "loss": 0.4124434247612953, "decode.loss_ce": 0.259992041438818, "decode.acc_seg": 57.91257095336914, "aux.loss_ce": 0.15245138332247735, "aux.acc_seg": 56.35941696166992, "time": 1.117872953414917, "iter": 111450, "memory": 8704, "step": 111450} +{"lr": 0.0034814052130273834, "data_time": 0.007991814613342285, "loss": 0.4327957987785339, "decode.loss_ce": 0.25548305213451383, "decode.acc_seg": 88.0372314453125, "aux.loss_ce": 0.17731274887919427, "aux.acc_seg": 71.37196350097656, "time": 1.1212247610092163, "iter": 111500, "memory": 8704, "step": 111500} +{"lr": 0.00347826766496515, "data_time": 0.008090639114379882, "loss": 0.30153885036706923, "decode.loss_ce": 0.17902570962905884, "decode.acc_seg": 87.90276336669922, "aux.loss_ce": 0.12251313291490078, "aux.acc_seg": 81.54537963867188, "time": 1.122531247138977, "iter": 111550, "memory": 8704, "step": 111550} +{"lr": 0.003475129793093775, "data_time": 0.006658244132995606, "loss": 0.48522436171770095, "decode.loss_ce": 0.3137913033366203, "decode.acc_seg": 91.53194427490234, "aux.loss_ce": 0.1714330639690161, "aux.acc_seg": 90.3512954711914, "time": 1.11182758808136, "iter": 111600, "memory": 8704, "step": 111600} +{"lr": 0.0034719915970452763, "data_time": 0.007065534591674805, "loss": 0.3994449838995934, "decode.loss_ce": 0.22876770794391632, "decode.acc_seg": 96.71026611328125, "aux.loss_ce": 0.1706772767007351, "aux.acc_seg": 95.7712173461914, "time": 1.1149709939956665, "iter": 111650, "memory": 8704, "step": 111650} +{"lr": 0.0034688530764508756, "data_time": 0.007846832275390625, "loss": 0.42521149963140487, "decode.loss_ce": 0.2619486451148987, "decode.acc_seg": 80.8395767211914, "aux.loss_ce": 0.16326285898685455, "aux.acc_seg": 76.3955307006836, "time": 1.1114889144897462, "iter": 111700, "memory": 8704, "step": 111700} +{"lr": 0.003465714230940984, "data_time": 0.007255983352661133, "loss": 0.3943850353360176, "decode.loss_ce": 0.24649095833301543, "decode.acc_seg": 84.28890991210938, "aux.loss_ce": 0.1478940773755312, "aux.acc_seg": 80.05352020263672, "time": 1.1177263498306274, "iter": 111750, "memory": 8704, "step": 111750} +{"lr": 0.003462575060145214, "data_time": 0.0065991878509521484, "loss": 0.5076414227485657, "decode.loss_ce": 0.306726998090744, "decode.acc_seg": 84.0246810913086, "aux.loss_ce": 0.20091440565884114, "aux.acc_seg": 72.37860107421875, "time": 1.114025068283081, "iter": 111800, "memory": 8703, "step": 111800} +{"lr": 0.0034594355636923674, "data_time": 0.006635022163391113, "loss": 0.2908440262079239, "decode.loss_ce": 0.1839861512184143, "decode.acc_seg": 93.2978286743164, "aux.loss_ce": 0.10685787312686443, "aux.acc_seg": 92.66891479492188, "time": 1.119796919822693, "iter": 111850, "memory": 8704, "step": 111850} +{"lr": 0.0034562957412104384, "data_time": 0.008050203323364258, "loss": 0.47842639684677124, "decode.loss_ce": 0.27408530190587044, "decode.acc_seg": 95.24192810058594, "aux.loss_ce": 0.20434108674526213, "aux.acc_seg": 66.71053314208984, "time": 1.118575358390808, "iter": 111900, "memory": 8704, "step": 111900} +{"lr": 0.0034531555923266112, "data_time": 0.006755733489990234, "loss": 0.30559898242354394, "decode.loss_ce": 0.1816405586898327, "decode.acc_seg": 98.00560760498047, "aux.loss_ce": 0.12395842373371124, "aux.acc_seg": 90.36006927490234, "time": 1.1141692638397216, "iter": 111950, "memory": 8704, "step": 111950} +{"lr": 0.003450015116667249, "data_time": 0.008795452117919923, "loss": 0.4479354560375214, "decode.loss_ce": 0.28916696459054947, "decode.acc_seg": 90.35103607177734, "aux.loss_ce": 0.1587684914469719, "aux.acc_seg": 76.33139038085938, "time": 1.1236242055892944, "iter": 112000, "memory": 8704, "step": 112000} +{"aAcc": 93.93, "mIoU": 66.97, "mAcc": 74.17, "data_time": 0.004244427865100764, "time": 0.2714914881913227, "step": 112000} +{"lr": 0.0034468743138579036, "data_time": 0.008164501190185547, "loss": 0.4032560706138611, "decode.loss_ce": 0.24845658838748932, "decode.acc_seg": 89.346435546875, "aux.loss_ce": 0.15479948073625566, "aux.acc_seg": 88.52373504638672, "time": 1.1150253057479858, "iter": 112050, "memory": 8703, "step": 112050} +{"lr": 0.003443733183523308, "data_time": 0.006664943695068359, "loss": 0.34980262964963915, "decode.loss_ce": 0.21700711101293563, "decode.acc_seg": 81.10771179199219, "aux.loss_ce": 0.1327955137938261, "aux.acc_seg": 77.45755004882812, "time": 1.1165997743606568, "iter": 112100, "memory": 8704, "step": 112100} +{"lr": 0.0034405917252873673, "data_time": 0.0067891359329223635, "loss": 0.2560496062040329, "decode.loss_ce": 0.1586343415081501, "decode.acc_seg": 95.92080688476562, "aux.loss_ce": 0.09741526432335376, "aux.acc_seg": 94.04338836669922, "time": 1.1154986143112182, "iter": 112150, "memory": 8703, "step": 112150} +{"lr": 0.0034374499387731685, "data_time": 0.006389355659484864, "loss": 0.3378335490822792, "decode.loss_ce": 0.20093014016747474, "decode.acc_seg": 97.72911071777344, "aux.loss_ce": 0.136903403326869, "aux.acc_seg": 96.50592803955078, "time": 1.1180192947387695, "iter": 112200, "memory": 8704, "step": 112200} +{"lr": 0.0034343078236029577, "data_time": 0.007418584823608398, "loss": 0.3542671173810959, "decode.loss_ce": 0.2195158213376999, "decode.acc_seg": 92.54212951660156, "aux.loss_ce": 0.13475129008293152, "aux.acc_seg": 88.22576141357422, "time": 1.1143831729888916, "iter": 112250, "memory": 8704, "step": 112250} +{"lr": 0.0034311653793981612, "data_time": 0.007094931602478027, "loss": 0.3719800919294357, "decode.loss_ce": 0.2374519795179367, "decode.acc_seg": 95.90498352050781, "aux.loss_ce": 0.13452811650931834, "aux.acc_seg": 95.04801177978516, "time": 1.1158050775527955, "iter": 112300, "memory": 8704, "step": 112300} +{"lr": 0.0034280226057793713, "data_time": 0.007153511047363281, "loss": 0.382805860042572, "decode.loss_ce": 0.2387716591358185, "decode.acc_seg": 91.63538360595703, "aux.loss_ce": 0.14403419718146324, "aux.acc_seg": 89.62071228027344, "time": 1.1118808269500733, "iter": 112350, "memory": 8704, "step": 112350} +{"lr": 0.003424879502366337, "data_time": 0.007417511940002441, "loss": 0.46355251371860506, "decode.loss_ce": 0.2869591511785984, "decode.acc_seg": 93.9432144165039, "aux.loss_ce": 0.17659335359930992, "aux.acc_seg": 89.88323211669922, "time": 1.113913345336914, "iter": 112400, "memory": 8704, "step": 112400} +{"lr": 0.0034217360687779775, "data_time": 0.008108568191528321, "loss": 0.4729961723089218, "decode.loss_ce": 0.2789522834122181, "decode.acc_seg": 97.28190612792969, "aux.loss_ce": 0.19404388926923274, "aux.acc_seg": 94.97125244140625, "time": 1.1160547971725463, "iter": 112450, "memory": 8704, "step": 112450} +{"lr": 0.00341859230463237, "data_time": 0.00711355209350586, "loss": 0.30017847567796707, "decode.loss_ce": 0.17857618927955626, "decode.acc_seg": 90.21726989746094, "aux.loss_ce": 0.12160228490829468, "aux.acc_seg": 80.33618927001953, "time": 1.1156209468841554, "iter": 112500, "memory": 8704, "step": 112500} +{"lr": 0.0034154482095467365, "data_time": 0.006952166557312012, "loss": 0.35097878724336623, "decode.loss_ce": 0.21459948644042015, "decode.acc_seg": 87.03441619873047, "aux.loss_ce": 0.13637930192053319, "aux.acc_seg": 82.51533508300781, "time": 1.1171287298202515, "iter": 112550, "memory": 8704, "step": 112550} +{"lr": 0.003412303783137459, "data_time": 0.008198785781860351, "loss": 0.38577291518449786, "decode.loss_ce": 0.24126393124461173, "decode.acc_seg": 80.47637939453125, "aux.loss_ce": 0.1445089839398861, "aux.acc_seg": 78.29672241210938, "time": 1.119249200820923, "iter": 112600, "memory": 8703, "step": 112600} +{"lr": 0.003409159025020073, "data_time": 0.007369279861450195, "loss": 0.5139602556824684, "decode.loss_ce": 0.2925370454788208, "decode.acc_seg": 95.86556243896484, "aux.loss_ce": 0.22142320573329927, "aux.acc_seg": 95.46260833740234, "time": 1.122355079650879, "iter": 112650, "memory": 8703, "step": 112650} +{"lr": 0.0034060139348092607, "data_time": 0.00768887996673584, "loss": 0.36118905544281005, "decode.loss_ce": 0.20731344670057297, "decode.acc_seg": 95.20638275146484, "aux.loss_ce": 0.1538756087422371, "aux.acc_seg": 91.29104614257812, "time": 1.1223482370376587, "iter": 112700, "memory": 8704, "step": 112700} +{"lr": 0.0034028685121188433, "data_time": 0.006415653228759766, "loss": 0.3944062918424606, "decode.loss_ce": 0.22578340619802476, "decode.acc_seg": 91.24539184570312, "aux.loss_ce": 0.16862289048731327, "aux.acc_seg": 94.86408233642578, "time": 1.1161139249801635, "iter": 112750, "memory": 8704, "step": 112750} +{"lr": 0.0033997227565617867, "data_time": 0.0071896791458129885, "loss": 0.33088464960455893, "decode.loss_ce": 0.18445456326007842, "decode.acc_seg": 97.32179260253906, "aux.loss_ce": 0.1464300900697708, "aux.acc_seg": 96.85997009277344, "time": 1.1204264402389525, "iter": 112800, "memory": 8704, "step": 112800} +{"lr": 0.003396576667750196, "data_time": 0.006560087203979492, "loss": 0.24895837157964706, "decode.loss_ce": 0.14504944831132888, "decode.acc_seg": 96.71573638916016, "aux.loss_ce": 0.10390892587602138, "aux.acc_seg": 95.57787322998047, "time": 1.1173268795013427, "iter": 112850, "memory": 8703, "step": 112850} +{"lr": 0.0033934302452953142, "data_time": 0.007146525382995606, "loss": 0.40595041364431383, "decode.loss_ce": 0.25609028711915016, "decode.acc_seg": 92.66935729980469, "aux.loss_ce": 0.1498601246625185, "aux.acc_seg": 84.7206039428711, "time": 1.1128044843673706, "iter": 112900, "memory": 8704, "step": 112900} +{"lr": 0.003390283488807512, "data_time": 0.007347798347473145, "loss": 0.23691920563578606, "decode.loss_ce": 0.14591325558722018, "decode.acc_seg": 90.74250030517578, "aux.loss_ce": 0.0910059541463852, "aux.acc_seg": 88.1870346069336, "time": 1.117641520500183, "iter": 112950, "memory": 8704, "step": 112950} +{"lr": 0.0033871363978962956, "data_time": 0.007095599174499511, "loss": 0.35064838975667956, "decode.loss_ce": 0.23059138506650925, "decode.acc_seg": 95.60514831542969, "aux.loss_ce": 0.12005700096487999, "aux.acc_seg": 94.45660400390625, "time": 1.1153255224227905, "iter": 113000, "memory": 8704, "step": 113000} +{"lr": 0.0033839889721702992, "data_time": 0.008270692825317384, "loss": 0.5317420653998852, "decode.loss_ce": 0.3156886100769043, "decode.acc_seg": 83.10839080810547, "aux.loss_ce": 0.21605344936251641, "aux.acc_seg": 80.78282165527344, "time": 1.1223952293395996, "iter": 113050, "memory": 8703, "step": 113050} +{"lr": 0.00338084121123728, "data_time": 0.007483291625976563, "loss": 0.3107686936855316, "decode.loss_ce": 0.21004776135087014, "decode.acc_seg": 93.39974212646484, "aux.loss_ce": 0.10072093345224857, "aux.acc_seg": 91.50116729736328, "time": 1.1150806903839112, "iter": 113100, "memory": 8704, "step": 113100} +{"lr": 0.003377693114704118, "data_time": 0.006085085868835449, "loss": 0.35310527235269545, "decode.loss_ce": 0.20216913223266603, "decode.acc_seg": 97.84685516357422, "aux.loss_ce": 0.15093614310026168, "aux.acc_seg": 97.23587036132812, "time": 1.111862015724182, "iter": 113150, "memory": 8703, "step": 113150} +{"lr": 0.003374544682176807, "data_time": 0.007742857933044434, "loss": 0.35269096344709394, "decode.loss_ce": 0.2161830946803093, "decode.acc_seg": 89.11907958984375, "aux.loss_ce": 0.13650787100195885, "aux.acc_seg": 87.15603637695312, "time": 1.1211769342422486, "iter": 113200, "memory": 8703, "step": 113200} +{"lr": 0.003371395913260465, "data_time": 0.00620875358581543, "loss": 0.2950187548995018, "decode.loss_ce": 0.18692887350916862, "decode.acc_seg": 93.7928466796875, "aux.loss_ce": 0.1080898817628622, "aux.acc_seg": 92.6858901977539, "time": 1.1151031970977783, "iter": 113250, "memory": 8703, "step": 113250} +{"lr": 0.0033682468075593172, "data_time": 0.006829953193664551, "loss": 0.50482127815485, "decode.loss_ce": 0.310479699075222, "decode.acc_seg": 93.50719451904297, "aux.loss_ce": 0.1943415731191635, "aux.acc_seg": 92.7682876586914, "time": 1.1147106647491456, "iter": 113300, "memory": 8703, "step": 113300} +{"lr": 0.003365097364676698, "data_time": 0.007677245140075684, "loss": 0.413709768652916, "decode.loss_ce": 0.23891734182834626, "decode.acc_seg": 95.94300079345703, "aux.loss_ce": 0.17479242086410524, "aux.acc_seg": 95.6521987915039, "time": 1.1157524108886718, "iter": 113350, "memory": 8703, "step": 113350} +{"lr": 0.0033619475842150545, "data_time": 0.008220696449279785, "loss": 0.3540903478860855, "decode.loss_ce": 0.2097586788237095, "decode.acc_seg": 90.80708312988281, "aux.loss_ce": 0.1443316698074341, "aux.acc_seg": 82.37387084960938, "time": 1.1171334266662598, "iter": 113400, "memory": 8703, "step": 113400} +{"lr": 0.0033587974657759328, "data_time": 0.0066719532012939455, "loss": 0.28851441890001295, "decode.loss_ce": 0.17422026842832566, "decode.acc_seg": 93.53713989257812, "aux.loss_ce": 0.1142941527068615, "aux.acc_seg": 90.79525756835938, "time": 1.1192959070205688, "iter": 113450, "memory": 8704, "step": 113450} +{"lr": 0.0033556470089599858, "data_time": 0.007574295997619629, "loss": 0.32966409623622894, "decode.loss_ce": 0.21027156561613083, "decode.acc_seg": 93.56062316894531, "aux.loss_ce": 0.11939252689480781, "aux.acc_seg": 90.84223175048828, "time": 1.1183097600936889, "iter": 113500, "memory": 8703, "step": 113500} +{"lr": 0.00335249621336696, "data_time": 0.006926202774047851, "loss": 0.3268541067838669, "decode.loss_ce": 0.1893288843333721, "decode.acc_seg": 94.33281707763672, "aux.loss_ce": 0.1375252202153206, "aux.acc_seg": 86.86033630371094, "time": 1.116197419166565, "iter": 113550, "memory": 8704, "step": 113550} +{"lr": 0.003349345078595695, "data_time": 0.006666040420532227, "loss": 0.24872685372829437, "decode.loss_ce": 0.14612571746110917, "decode.acc_seg": 92.50122833251953, "aux.loss_ce": 0.10260113552212716, "aux.acc_seg": 87.28353118896484, "time": 1.1160802364349365, "iter": 113600, "memory": 8703, "step": 113600} +{"lr": 0.0033461936042441303, "data_time": 0.007311248779296875, "loss": 0.36840697973966596, "decode.loss_ce": 0.21921287402510642, "decode.acc_seg": 94.61370849609375, "aux.loss_ce": 0.14919411092996598, "aux.acc_seg": 91.22969055175781, "time": 1.1190294742584228, "iter": 113650, "memory": 8704, "step": 113650} +{"lr": 0.0033430417899092887, "data_time": 0.006087732315063476, "loss": 0.31994972079992295, "decode.loss_ce": 0.18850572556257247, "decode.acc_seg": 93.66949462890625, "aux.loss_ce": 0.13144399262964726, "aux.acc_seg": 87.1356430053711, "time": 1.1141746282577514, "iter": 113700, "memory": 8703, "step": 113700} +{"lr": 0.0033398896351872803, "data_time": 0.0072994232177734375, "loss": 0.32845282182097435, "decode.loss_ce": 0.19078585654497146, "decode.acc_seg": 90.36095428466797, "aux.loss_ce": 0.1376669630408287, "aux.acc_seg": 90.07847595214844, "time": 1.1127117395401, "iter": 113750, "memory": 8703, "step": 113750} +{"lr": 0.003336737139673298, "data_time": 0.00708620548248291, "loss": 0.2893052935600281, "decode.loss_ce": 0.1677062250673771, "decode.acc_seg": 96.11219787597656, "aux.loss_ce": 0.12159907072782516, "aux.acc_seg": 95.1895523071289, "time": 1.1152947902679444, "iter": 113800, "memory": 8703, "step": 113800} +{"lr": 0.0033335843029616142, "data_time": 0.007383561134338379, "loss": 0.3535272181034088, "decode.loss_ce": 0.19413001537323, "decode.acc_seg": 94.56780242919922, "aux.loss_ce": 0.1593972034752369, "aux.acc_seg": 93.84243774414062, "time": 1.1183427810668944, "iter": 113850, "memory": 8704, "step": 113850} +{"lr": 0.0033304311246455816, "data_time": 0.007652378082275391, "loss": 0.26443809270858765, "decode.loss_ce": 0.15408995375037193, "decode.acc_seg": 90.15432739257812, "aux.loss_ce": 0.1103481374680996, "aux.acc_seg": 86.5378646850586, "time": 1.1156497955322267, "iter": 113900, "memory": 8704, "step": 113900} +{"lr": 0.003327277604317621, "data_time": 0.007114100456237793, "loss": 0.3272307336330414, "decode.loss_ce": 0.2005732052028179, "decode.acc_seg": 92.69510650634766, "aux.loss_ce": 0.12665752582252027, "aux.acc_seg": 92.2739028930664, "time": 1.1192046880722046, "iter": 113950, "memory": 8704, "step": 113950} +{"lr": 0.0033241237415692257, "data_time": 0.007981133460998536, "loss": 0.45844339281320573, "decode.loss_ce": 0.25488584116101265, "decode.acc_seg": 94.6187973022461, "aux.loss_ce": 0.20355754978954793, "aux.acc_seg": 93.23558807373047, "time": 1.117038083076477, "iter": 114000, "memory": 8704, "step": 114000} +{"lr": 0.003320969535990962, "data_time": 0.007073640823364258, "loss": 0.21289448589086532, "decode.loss_ce": 0.12581428848206996, "decode.acc_seg": 96.64659118652344, "aux.loss_ce": 0.08708019889891147, "aux.acc_seg": 95.29554748535156, "time": 1.1139894723892212, "iter": 114050, "memory": 8704, "step": 114050} +{"lr": 0.0033178149871724515, "data_time": 0.007322764396667481, "loss": 0.3261394962668419, "decode.loss_ce": 0.207877317070961, "decode.acc_seg": 93.28390502929688, "aux.loss_ce": 0.11826217547059059, "aux.acc_seg": 89.15411376953125, "time": 1.1153071641921997, "iter": 114100, "memory": 8704, "step": 114100} +{"lr": 0.0033146600947023814, "data_time": 0.007451462745666504, "loss": 0.3060978680849075, "decode.loss_ce": 0.1853296935558319, "decode.acc_seg": 97.47734069824219, "aux.loss_ce": 0.12076817117631436, "aux.acc_seg": 96.1533203125, "time": 1.1117013216018676, "iter": 114150, "memory": 8704, "step": 114150} +{"lr": 0.0033115048581685027, "data_time": 0.008903074264526366, "loss": 0.2846709117293358, "decode.loss_ce": 0.1774253949522972, "decode.acc_seg": 94.53622436523438, "aux.loss_ce": 0.10724552311003208, "aux.acc_seg": 93.0750732421875, "time": 1.1176224946975708, "iter": 114200, "memory": 8704, "step": 114200} +{"lr": 0.00330834927715761, "data_time": 0.006410551071166992, "loss": 0.37078876197338106, "decode.loss_ce": 0.2323029674589634, "decode.acc_seg": 93.11306762695312, "aux.loss_ce": 0.1384857941418886, "aux.acc_seg": 91.36873626708984, "time": 1.1134051084518433, "iter": 114250, "memory": 8703, "step": 114250} +{"lr": 0.003305193351255558, "data_time": 0.006331205368041992, "loss": 0.3240517571568489, "decode.loss_ce": 0.20754929333925248, "decode.acc_seg": 78.63146209716797, "aux.loss_ce": 0.1165024608373642, "aux.acc_seg": 76.17498779296875, "time": 1.1174893856048584, "iter": 114300, "memory": 8703, "step": 114300} +{"lr": 0.003302037080047248, "data_time": 0.007182550430297851, "loss": 0.519351315498352, "decode.loss_ce": 0.30647771134972573, "decode.acc_seg": 92.24933624267578, "aux.loss_ce": 0.21287361532449722, "aux.acc_seg": 90.2061996459961, "time": 1.1205960988998414, "iter": 114350, "memory": 8704, "step": 114350} +{"lr": 0.0032988804631166237, "data_time": 0.007485342025756836, "loss": 0.2981456518173218, "decode.loss_ce": 0.17904532253742217, "decode.acc_seg": 92.49903106689453, "aux.loss_ce": 0.11910032667219639, "aux.acc_seg": 85.29987335205078, "time": 1.1163004159927368, "iter": 114400, "memory": 8704, "step": 114400} +{"lr": 0.0032957235000466707, "data_time": 0.006950259208679199, "loss": 0.34778141379356386, "decode.loss_ce": 0.1981573559343815, "decode.acc_seg": 93.5938491821289, "aux.loss_ce": 0.14962406046688556, "aux.acc_seg": 87.73880004882812, "time": 1.1144047737121583, "iter": 114450, "memory": 8704, "step": 114450} +{"lr": 0.0032925661904194166, "data_time": 0.0071179866790771484, "loss": 0.3386793524026871, "decode.loss_ce": 0.20156590715050698, "decode.acc_seg": 91.3733139038086, "aux.loss_ce": 0.1371134500950575, "aux.acc_seg": 88.05853271484375, "time": 1.1154543161392212, "iter": 114500, "memory": 8704, "step": 114500} +{"lr": 0.003289408533815922, "data_time": 0.005888104438781738, "loss": 0.284935013204813, "decode.loss_ce": 0.1811638817191124, "decode.acc_seg": 92.4692153930664, "aux.loss_ce": 0.1037711326032877, "aux.acc_seg": 91.28258514404297, "time": 1.1156208276748658, "iter": 114550, "memory": 8704, "step": 114550} +{"lr": 0.0032862505298162825, "data_time": 0.00820176601409912, "loss": 0.3132843762636185, "decode.loss_ce": 0.18822689205408097, "decode.acc_seg": 96.27564239501953, "aux.loss_ce": 0.12505748122930527, "aux.acc_seg": 92.42591857910156, "time": 1.114434576034546, "iter": 114600, "memory": 8703, "step": 114600} +{"lr": 0.003283092177999618, "data_time": 0.006382441520690918, "loss": 0.2940154753625393, "decode.loss_ce": 0.18474358692765236, "decode.acc_seg": 84.2545166015625, "aux.loss_ce": 0.10927188545465469, "aux.acc_seg": 82.75311279296875, "time": 1.115449810028076, "iter": 114650, "memory": 8704, "step": 114650} +{"lr": 0.003279933477944079, "data_time": 0.007453036308288574, "loss": 0.32400001138448714, "decode.loss_ce": 0.19722760617733, "decode.acc_seg": 93.4819107055664, "aux.loss_ce": 0.12677240371704102, "aux.acc_seg": 91.43738555908203, "time": 1.116573119163513, "iter": 114700, "memory": 8704, "step": 114700} +{"lr": 0.003276774429226831, "data_time": 0.006781387329101563, "loss": 0.4796512149274349, "decode.loss_ce": 0.30083051398396493, "decode.acc_seg": 95.75373077392578, "aux.loss_ce": 0.1788206987082958, "aux.acc_seg": 91.85962677001953, "time": 1.1134883403778075, "iter": 114750, "memory": 8704, "step": 114750} +{"lr": 0.0032736150314240675, "data_time": 0.00665440559387207, "loss": 0.27381091713905337, "decode.loss_ce": 0.15967345759272575, "decode.acc_seg": 94.048828125, "aux.loss_ce": 0.11413745619356633, "aux.acc_seg": 89.74723815917969, "time": 1.1188865423202514, "iter": 114800, "memory": 8704, "step": 114800} +{"lr": 0.0032704552841109954, "data_time": 0.007607960700988769, "loss": 0.4933314934372902, "decode.loss_ce": 0.32330453768372536, "decode.acc_seg": 90.86659240722656, "aux.loss_ce": 0.17002695500850679, "aux.acc_seg": 85.48653411865234, "time": 1.1181326627731323, "iter": 114850, "memory": 8704, "step": 114850} +{"lr": 0.003267295186861824, "data_time": 0.0077805757522583004, "loss": 0.3737860292196274, "decode.loss_ce": 0.22322159111499787, "decode.acc_seg": 95.68436431884766, "aux.loss_ce": 0.15056444257497786, "aux.acc_seg": 91.899169921875, "time": 1.124417209625244, "iter": 114900, "memory": 8704, "step": 114900} +{"lr": 0.0032641347392497796, "data_time": 0.007114267349243164, "loss": 0.37173047959804534, "decode.loss_ce": 0.22960774078965188, "decode.acc_seg": 96.03277587890625, "aux.loss_ce": 0.1421227402985096, "aux.acc_seg": 93.88783264160156, "time": 1.1174485445022584, "iter": 114950, "memory": 8704, "step": 114950} +{"lr": 0.003260973940847093, "data_time": 0.006699895858764649, "loss": 0.4036738470196724, "decode.loss_ce": 0.24342724978923796, "decode.acc_seg": 91.3116455078125, "aux.loss_ce": 0.16024659648537637, "aux.acc_seg": 89.15703582763672, "time": 1.1148710250854492, "iter": 115000, "memory": 8704, "step": 115000} +{"lr": 0.0032578127912249962, "data_time": 0.007472372055053711, "loss": 0.29250426441431043, "decode.loss_ce": 0.17607646062970161, "decode.acc_seg": 95.88111114501953, "aux.loss_ce": 0.1164278045296669, "aux.acc_seg": 93.98883056640625, "time": 1.1160056114196777, "iter": 115050, "memory": 8704, "step": 115050} +{"lr": 0.0032546512899537185, "data_time": 0.006979680061340332, "loss": 0.21738480627536774, "decode.loss_ce": 0.13239041157066822, "decode.acc_seg": 94.51007843017578, "aux.loss_ce": 0.0849943932145834, "aux.acc_seg": 90.82723999023438, "time": 1.1200125694274903, "iter": 115100, "memory": 8703, "step": 115100} +{"lr": 0.0032514894366024874, "data_time": 0.005995726585388184, "loss": 0.2908073619008064, "decode.loss_ce": 0.18051999807357788, "decode.acc_seg": 90.78546905517578, "aux.loss_ce": 0.11028736233711242, "aux.acc_seg": 90.32440185546875, "time": 1.113534927368164, "iter": 115150, "memory": 8704, "step": 115150} +{"lr": 0.0032483272307395183, "data_time": 0.007885622978210449, "loss": 0.4242656648159027, "decode.loss_ce": 0.26363945826888086, "decode.acc_seg": 87.03714752197266, "aux.loss_ce": 0.16062621027231216, "aux.acc_seg": 86.3931655883789, "time": 1.1165606498718261, "iter": 115200, "memory": 8704, "step": 115200} +{"lr": 0.003245164671932014, "data_time": 0.006258606910705566, "loss": 0.2834400191903114, "decode.loss_ce": 0.16756058409810065, "decode.acc_seg": 94.13276672363281, "aux.loss_ce": 0.11587943397462368, "aux.acc_seg": 90.59053039550781, "time": 1.1165363550186158, "iter": 115250, "memory": 8704, "step": 115250} +{"lr": 0.003242001759746165, "data_time": 0.00868382453918457, "loss": 0.651246826350689, "decode.loss_ce": 0.434986786544323, "decode.acc_seg": 93.69392395019531, "aux.loss_ce": 0.2162600491195917, "aux.acc_seg": 87.55181121826172, "time": 1.1203402280807495, "iter": 115300, "memory": 8704, "step": 115300} +{"lr": 0.0032388384937471412, "data_time": 0.007046914100646973, "loss": 0.3502494364976883, "decode.loss_ce": 0.20226257145404816, "decode.acc_seg": 83.99715423583984, "aux.loss_ce": 0.14798686355352403, "aux.acc_seg": 79.52511596679688, "time": 1.1192062139511108, "iter": 115350, "memory": 8704, "step": 115350} +{"lr": 0.0032356748734990903, "data_time": 0.0063827276229858395, "loss": 0.2858463406562805, "decode.loss_ce": 0.18497516214847565, "decode.acc_seg": 95.84013366699219, "aux.loss_ce": 0.10087117552757263, "aux.acc_seg": 95.54862976074219, "time": 1.1154244422912598, "iter": 115400, "memory": 8703, "step": 115400} +{"lr": 0.0032325108985651325, "data_time": 0.006578683853149414, "loss": 0.3303367555141449, "decode.loss_ce": 0.20128239542245865, "decode.acc_seg": 90.58331298828125, "aux.loss_ce": 0.1290543597191572, "aux.acc_seg": 85.09573364257812, "time": 1.116854190826416, "iter": 115450, "memory": 8704, "step": 115450} +{"lr": 0.003229346568507362, "data_time": 0.005646276473999024, "loss": 0.281221342086792, "decode.loss_ce": 0.17103022187948227, "decode.acc_seg": 91.91404724121094, "aux.loss_ce": 0.11019112057983875, "aux.acc_seg": 87.469482421875, "time": 1.109313678741455, "iter": 115500, "memory": 8704, "step": 115500} +{"lr": 0.003226181882886833, "data_time": 0.007355260848999024, "loss": 0.2660055607557297, "decode.loss_ce": 0.16010811775922776, "decode.acc_seg": 93.39128112792969, "aux.loss_ce": 0.10589743852615356, "aux.acc_seg": 91.50228118896484, "time": 1.118543767929077, "iter": 115550, "memory": 8704, "step": 115550} +{"lr": 0.0032230168412635696, "data_time": 0.006827545166015625, "loss": 0.3395557053387165, "decode.loss_ce": 0.212476447224617, "decode.acc_seg": 97.32052612304688, "aux.loss_ce": 0.12707925997674466, "aux.acc_seg": 97.20289611816406, "time": 1.111474609375, "iter": 115600, "memory": 8704, "step": 115600} +{"lr": 0.0032198514431965503, "data_time": 0.007018637657165527, "loss": 0.3445312589406967, "decode.loss_ce": 0.20638055056333543, "decode.acc_seg": 89.35629272460938, "aux.loss_ce": 0.13815070316195488, "aux.acc_seg": 74.49829864501953, "time": 1.1173357963562012, "iter": 115650, "memory": 8704, "step": 115650} +{"lr": 0.0032166856882437146, "data_time": 0.007448124885559082, "loss": 0.2680600568652153, "decode.loss_ce": 0.16209470480680466, "decode.acc_seg": 95.9512710571289, "aux.loss_ce": 0.10596535466611386, "aux.acc_seg": 92.84464263916016, "time": 1.1150161504745484, "iter": 115700, "memory": 8704, "step": 115700} +{"lr": 0.003213519575961948, "data_time": 0.008159279823303223, "loss": 0.32661054134368894, "decode.loss_ce": 0.19900026619434358, "decode.acc_seg": 91.77677917480469, "aux.loss_ce": 0.12761027440428735, "aux.acc_seg": 83.73146057128906, "time": 1.1200810432434083, "iter": 115750, "memory": 8704, "step": 115750} +{"lr": 0.0032103531059070886, "data_time": 0.00697178840637207, "loss": 0.28027977645397184, "decode.loss_ce": 0.15799213722348213, "decode.acc_seg": 94.50836181640625, "aux.loss_ce": 0.12228763923048973, "aux.acc_seg": 92.77540588378906, "time": 1.1195170164108277, "iter": 115800, "memory": 8703, "step": 115800} +{"lr": 0.003207186277633919, "data_time": 0.0070915699005126955, "loss": 0.3189158231019974, "decode.loss_ce": 0.19185754358768464, "decode.acc_seg": 94.44744873046875, "aux.loss_ce": 0.12705827429890632, "aux.acc_seg": 90.54094696044922, "time": 1.117659616470337, "iter": 115850, "memory": 8704, "step": 115850} +{"lr": 0.003204019090696161, "data_time": 0.006646251678466797, "loss": 0.2272185891866684, "decode.loss_ce": 0.14152514785528184, "decode.acc_seg": 94.70138549804688, "aux.loss_ce": 0.08569343872368336, "aux.acc_seg": 93.30342102050781, "time": 1.113196349143982, "iter": 115900, "memory": 8704, "step": 115900} +{"lr": 0.0032008515446464744, "data_time": 0.006420111656188965, "loss": 0.2902693197131157, "decode.loss_ce": 0.18399137184023856, "decode.acc_seg": 95.71488189697266, "aux.loss_ce": 0.10627794675529004, "aux.acc_seg": 93.2090072631836, "time": 1.1098358154296875, "iter": 115950, "memory": 8704, "step": 115950} +{"lr": 0.003197683639036453, "data_time": 0.007538318634033203, "loss": 0.2301242396235466, "decode.loss_ce": 0.14459919333457946, "decode.acc_seg": 94.15287780761719, "aux.loss_ce": 0.08552504889667034, "aux.acc_seg": 91.91634368896484, "time": 1.11688232421875, "iter": 116000, "memory": 8703, "step": 116000} +{"lr": 0.003194515373416623, "data_time": 0.007355499267578125, "loss": 0.24709585160017014, "decode.loss_ce": 0.15589323490858079, "decode.acc_seg": 94.74302673339844, "aux.loss_ce": 0.09120261557400226, "aux.acc_seg": 93.75228881835938, "time": 1.1182560205459595, "iter": 116050, "memory": 8703, "step": 116050} +{"lr": 0.003191346747336431, "data_time": 0.006532740592956543, "loss": 0.47175677567720414, "decode.loss_ce": 0.3049982115626335, "decode.acc_seg": 86.15379333496094, "aux.loss_ce": 0.16675856672227382, "aux.acc_seg": 82.02717590332031, "time": 1.1162668704986571, "iter": 116100, "memory": 8703, "step": 116100} +{"lr": 0.0031881777603442506, "data_time": 0.007053017616271973, "loss": 0.3288284480571747, "decode.loss_ce": 0.2020528309047222, "decode.acc_seg": 96.0927963256836, "aux.loss_ce": 0.1267756175249815, "aux.acc_seg": 95.80529022216797, "time": 1.111583423614502, "iter": 116150, "memory": 8703, "step": 116150} +{"lr": 0.003185008411987376, "data_time": 0.006866598129272461, "loss": 0.32491797357797625, "decode.loss_ce": 0.19845995120704174, "decode.acc_seg": 90.02545166015625, "aux.loss_ce": 0.12645802646875381, "aux.acc_seg": 84.58753967285156, "time": 1.1204532384872437, "iter": 116200, "memory": 8703, "step": 116200} +{"lr": 0.0031818387018120093, "data_time": 0.007001471519470215, "loss": 0.28286298364400864, "decode.loss_ce": 0.17090095467865468, "decode.acc_seg": 94.41400909423828, "aux.loss_ce": 0.11196203194558621, "aux.acc_seg": 92.07916259765625, "time": 1.1138704538345336, "iter": 116250, "memory": 8703, "step": 116250} +{"lr": 0.003178668629363268, "data_time": 0.007776093482971191, "loss": 0.4079652264714241, "decode.loss_ce": 0.23524610549211503, "decode.acc_seg": 95.44709014892578, "aux.loss_ce": 0.1727191161364317, "aux.acc_seg": 90.05902099609375, "time": 1.1184649467468262, "iter": 116300, "memory": 8704, "step": 116300} +{"lr": 0.003175498194185173, "data_time": 0.006797981262207031, "loss": 0.2916949212551117, "decode.loss_ce": 0.1765330873429775, "decode.acc_seg": 95.388916015625, "aux.loss_ce": 0.11516183540225029, "aux.acc_seg": 94.53938293457031, "time": 1.1175009965896607, "iter": 116350, "memory": 8704, "step": 116350} +{"lr": 0.0031723273958206527, "data_time": 0.007508659362792968, "loss": 0.5116151675581933, "decode.loss_ce": 0.3167233482003212, "decode.acc_seg": 95.29164123535156, "aux.loss_ce": 0.19489181898534297, "aux.acc_seg": 94.98907470703125, "time": 1.1127294540405273, "iter": 116400, "memory": 8704, "step": 116400} +{"lr": 0.0031691562338115337, "data_time": 0.005482387542724609, "loss": 0.33868217319250105, "decode.loss_ce": 0.18040641248226166, "decode.acc_seg": 95.04476928710938, "aux.loss_ce": 0.15827576220035552, "aux.acc_seg": 92.83428192138672, "time": 1.1132098197937013, "iter": 116450, "memory": 8704, "step": 116450} +{"lr": 0.0031659847076985362, "data_time": 0.007654428482055664, "loss": 0.37975874841213225, "decode.loss_ce": 0.21497229114174843, "decode.acc_seg": 93.48735809326172, "aux.loss_ce": 0.16478645391762256, "aux.acc_seg": 71.93209075927734, "time": 1.1169795274734498, "iter": 116500, "memory": 8704, "step": 116500} +{"lr": 0.0031628128170212697, "data_time": 0.006386184692382812, "loss": 0.2526939056813717, "decode.loss_ce": 0.15312180072069168, "decode.acc_seg": 94.25724029541016, "aux.loss_ce": 0.09957210458815098, "aux.acc_seg": 87.77194213867188, "time": 1.1144139051437378, "iter": 116550, "memory": 8704, "step": 116550} +{"lr": 0.0031596405613182367, "data_time": 0.007092332839965821, "loss": 0.34681275188922883, "decode.loss_ce": 0.20328154563903808, "decode.acc_seg": 91.05854034423828, "aux.loss_ce": 0.1435312084853649, "aux.acc_seg": 89.92061614990234, "time": 1.117173671722412, "iter": 116600, "memory": 8703, "step": 116600} +{"lr": 0.0031564679401268184, "data_time": 0.007138514518737793, "loss": 0.5662979066371918, "decode.loss_ce": 0.3664178945124149, "decode.acc_seg": 88.44017028808594, "aux.loss_ce": 0.19988000616431237, "aux.acc_seg": 87.62026977539062, "time": 1.1176252365112305, "iter": 116650, "memory": 8704, "step": 116650} +{"lr": 0.0031532949529832796, "data_time": 0.006522846221923828, "loss": 0.31590671837329865, "decode.loss_ce": 0.194244372099638, "decode.acc_seg": 88.64752197265625, "aux.loss_ce": 0.12166235074400902, "aux.acc_seg": 87.65633392333984, "time": 1.116190242767334, "iter": 116700, "memory": 8703, "step": 116700} +{"lr": 0.0031501215994227537, "data_time": 0.007254338264465332, "loss": 0.2945534512400627, "decode.loss_ce": 0.18710734099149703, "decode.acc_seg": 91.4232177734375, "aux.loss_ce": 0.10744610987603664, "aux.acc_seg": 86.9496841430664, "time": 1.1153647184371949, "iter": 116750, "memory": 8704, "step": 116750} +{"lr": 0.0031469478789792494, "data_time": 0.007635045051574707, "loss": 0.3303507924079895, "decode.loss_ce": 0.20625085905194282, "decode.acc_seg": 94.82701873779297, "aux.loss_ce": 0.12409993223845958, "aux.acc_seg": 93.85446166992188, "time": 1.1157002449035645, "iter": 116800, "memory": 8704, "step": 116800} +{"lr": 0.003143773791185646, "data_time": 0.007362818717956543, "loss": 0.24835828244686126, "decode.loss_ce": 0.16046769991517068, "decode.acc_seg": 91.55290222167969, "aux.loss_ce": 0.08789058178663253, "aux.acc_seg": 88.26823425292969, "time": 1.1160861253738403, "iter": 116850, "memory": 8703, "step": 116850} +{"lr": 0.003140599335573684, "data_time": 0.007920551300048827, "loss": 0.29592782706022264, "decode.loss_ce": 0.17535367533564566, "decode.acc_seg": 95.75951385498047, "aux.loss_ce": 0.12057414837181568, "aux.acc_seg": 94.67855834960938, "time": 1.1175287246704102, "iter": 116900, "memory": 8704, "step": 116900} +{"lr": 0.0031374245116739608, "data_time": 0.007206630706787109, "loss": 0.31057559251785277, "decode.loss_ce": 0.187081977725029, "decode.acc_seg": 89.14286041259766, "aux.loss_ce": 0.12349361628293991, "aux.acc_seg": 85.84480285644531, "time": 1.1183859825134277, "iter": 116950, "memory": 8703, "step": 116950} +{"lr": 0.0031342493190159304, "data_time": 0.007733464241027832, "loss": 0.30296679884195327, "decode.loss_ce": 0.18879801630973816, "decode.acc_seg": 93.48143768310547, "aux.loss_ce": 0.11416878290474415, "aux.acc_seg": 91.13180541992188, "time": 1.1227115631103515, "iter": 117000, "memory": 8703, "step": 117000} +{"lr": 0.003131073757127899, "data_time": 0.00690000057220459, "loss": 0.3487622529268265, "decode.loss_ce": 0.2147653542459011, "decode.acc_seg": 95.22100830078125, "aux.loss_ce": 0.13399689495563508, "aux.acc_seg": 88.88905334472656, "time": 1.1161383152008058, "iter": 117050, "memory": 8704, "step": 117050} +{"lr": 0.0031278978255370148, "data_time": 0.006170129776000977, "loss": 0.4758059725165367, "decode.loss_ce": 0.3042060241103172, "decode.acc_seg": 89.67018127441406, "aux.loss_ce": 0.17159995026886463, "aux.acc_seg": 87.0829849243164, "time": 1.1134337425231933, "iter": 117100, "memory": 8704, "step": 117100} +{"lr": 0.0031247215237692762, "data_time": 0.007233452796936035, "loss": 0.2254745550453663, "decode.loss_ce": 0.13950665667653084, "decode.acc_seg": 97.50957489013672, "aux.loss_ce": 0.08596789874136448, "aux.acc_seg": 97.30472564697266, "time": 1.1213696241378783, "iter": 117150, "memory": 8704, "step": 117150} +{"lr": 0.003121544851349511, "data_time": 0.006699132919311524, "loss": 0.3461156040430069, "decode.loss_ce": 0.21701409742236139, "decode.acc_seg": 92.69306945800781, "aux.loss_ce": 0.12910150811076165, "aux.acc_seg": 91.01473236083984, "time": 1.1146815061569213, "iter": 117200, "memory": 8704, "step": 117200} +{"lr": 0.0031183678078013904, "data_time": 0.005661678314208984, "loss": 0.4199693873524666, "decode.loss_ce": 0.2519294641911983, "decode.acc_seg": 94.85769653320312, "aux.loss_ce": 0.1680399265140295, "aux.acc_seg": 91.21736907958984, "time": 1.115942120552063, "iter": 117250, "memory": 8704, "step": 117250} +{"lr": 0.003115190392647409, "data_time": 0.007626008987426758, "loss": 0.2964787185192108, "decode.loss_ce": 0.1661066621541977, "decode.acc_seg": 91.58699798583984, "aux.loss_ce": 0.130372054874897, "aux.acc_seg": 78.3087387084961, "time": 1.1153443813323975, "iter": 117300, "memory": 8704, "step": 117300} +{"lr": 0.003112012605408892, "data_time": 0.005701088905334472, "loss": 0.37203668504953386, "decode.loss_ce": 0.2255204476416111, "decode.acc_seg": 84.64717864990234, "aux.loss_ce": 0.14651623368263245, "aux.acc_seg": 78.68099212646484, "time": 1.1166646957397461, "iter": 117350, "memory": 8704, "step": 117350} +{"lr": 0.003108834445605976, "data_time": 0.0060813665390014645, "loss": 0.347957144677639, "decode.loss_ce": 0.20542361140251159, "decode.acc_seg": 88.88790893554688, "aux.loss_ce": 0.14253353253006934, "aux.acc_seg": 84.81159210205078, "time": 1.1178385496139527, "iter": 117400, "memory": 8703, "step": 117400} +{"lr": 0.0031056559127576305, "data_time": 0.007268142700195312, "loss": 0.3171412952244282, "decode.loss_ce": 0.20514920875430107, "decode.acc_seg": 95.19214630126953, "aux.loss_ce": 0.11199207864701748, "aux.acc_seg": 94.45171356201172, "time": 1.11525502204895, "iter": 117450, "memory": 8704, "step": 117450} +{"lr": 0.0031024770063816254, "data_time": 0.007159209251403809, "loss": 0.27312838584184645, "decode.loss_ce": 0.17235603630542756, "decode.acc_seg": 95.22564697265625, "aux.loss_ce": 0.10077234879136085, "aux.acc_seg": 94.6015625, "time": 1.1174233913421632, "iter": 117500, "memory": 8704, "step": 117500} +{"lr": 0.003099297725994543, "data_time": 0.007347583770751953, "loss": 0.4487717106938362, "decode.loss_ce": 0.2800252839922905, "decode.acc_seg": 95.6796646118164, "aux.loss_ce": 0.16874641813337804, "aux.acc_seg": 94.66297912597656, "time": 1.120888090133667, "iter": 117550, "memory": 8704, "step": 117550} +{"lr": 0.0030961180711117733, "data_time": 0.0080308198928833, "loss": 0.33460231125354767, "decode.loss_ce": 0.20912556797266008, "decode.acc_seg": 94.13833618164062, "aux.loss_ce": 0.12547674030065536, "aux.acc_seg": 94.71581268310547, "time": 1.1132672309875489, "iter": 117600, "memory": 8704, "step": 117600} +{"lr": 0.0030929380412474962, "data_time": 0.006988072395324707, "loss": 0.3403663501143456, "decode.loss_ce": 0.2075917452573776, "decode.acc_seg": 95.02264404296875, "aux.loss_ce": 0.13277460634708405, "aux.acc_seg": 94.6555404663086, "time": 1.115792179107666, "iter": 117650, "memory": 8703, "step": 117650} +{"lr": 0.0030897576359147027, "data_time": 0.007238125801086426, "loss": 0.2647049769759178, "decode.loss_ce": 0.15459100753068925, "decode.acc_seg": 94.13895416259766, "aux.loss_ce": 0.1101139698177576, "aux.acc_seg": 87.49063873291016, "time": 1.11107497215271, "iter": 117700, "memory": 8704, "step": 117700} +{"lr": 0.0030865768546251616, "data_time": 0.00799729824066162, "loss": 0.3593337096273899, "decode.loss_ce": 0.2345329023897648, "decode.acc_seg": 91.48915100097656, "aux.loss_ce": 0.12480080667883157, "aux.acc_seg": 89.14413452148438, "time": 1.1174731254577637, "iter": 117750, "memory": 8704, "step": 117750} +{"lr": 0.003083395696889433, "data_time": 0.00694725513458252, "loss": 0.3037870243191719, "decode.loss_ce": 0.17585766091942787, "decode.acc_seg": 97.22023010253906, "aux.loss_ce": 0.12792936377227307, "aux.acc_seg": 96.5049057006836, "time": 1.119181227684021, "iter": 117800, "memory": 8703, "step": 117800} +{"lr": 0.0030802141622168562, "data_time": 0.006692862510681153, "loss": 0.5489982485771179, "decode.loss_ce": 0.33643380254507066, "decode.acc_seg": 95.67190551757812, "aux.loss_ce": 0.2125644337385893, "aux.acc_seg": 95.74400329589844, "time": 1.1187718152999877, "iter": 117850, "memory": 8704, "step": 117850} +{"lr": 0.0030770322501155523, "data_time": 0.006332015991210938, "loss": 0.4127472057938576, "decode.loss_ce": 0.24957438036799431, "decode.acc_seg": 83.70513916015625, "aux.loss_ce": 0.16317282393574714, "aux.acc_seg": 81.5011978149414, "time": 1.1150217294692992, "iter": 117900, "memory": 8704, "step": 117900} +{"lr": 0.0030738499600924158, "data_time": 0.0064727067947387695, "loss": 0.2763240411877632, "decode.loss_ce": 0.17861736565828323, "decode.acc_seg": 95.04066467285156, "aux.loss_ce": 0.09770667627453804, "aux.acc_seg": 92.98820495605469, "time": 1.1148774862289428, "iter": 117950, "memory": 8704, "step": 117950} +{"lr": 0.003070667291653104, "data_time": 0.007741665840148926, "loss": 0.25434042513370514, "decode.loss_ce": 0.14772662222385408, "decode.acc_seg": 94.8687515258789, "aux.loss_ce": 0.10661380402743817, "aux.acc_seg": 92.7684326171875, "time": 1.1201592922210692, "iter": 118000, "memory": 8703, "step": 118000} +{"lr": 0.0030674842443020466, "data_time": 0.007701897621154785, "loss": 0.39634569436311723, "decode.loss_ce": 0.23187801316380502, "decode.acc_seg": 94.6325912475586, "aux.loss_ce": 0.16446768008172513, "aux.acc_seg": 88.08822631835938, "time": 1.1188938856124877, "iter": 118050, "memory": 8703, "step": 118050} +{"lr": 0.0030643008175424273, "data_time": 0.005756115913391114, "loss": 0.35287865847349165, "decode.loss_ce": 0.20419825464487076, "decode.acc_seg": 90.41830444335938, "aux.loss_ce": 0.14868040643632413, "aux.acc_seg": 77.73819732666016, "time": 1.1172492980957032, "iter": 118100, "memory": 8703, "step": 118100} +{"lr": 0.0030611170108761836, "data_time": 0.007372426986694336, "loss": 0.31227714866399764, "decode.loss_ce": 0.18064976781606673, "decode.acc_seg": 94.95073699951172, "aux.loss_ce": 0.13162737861275672, "aux.acc_seg": 89.6067886352539, "time": 1.112756323814392, "iter": 118150, "memory": 8703, "step": 118150} +{"lr": 0.0030579328238040057, "data_time": 0.007433176040649414, "loss": 0.25658088773488996, "decode.loss_ce": 0.16564772352576257, "decode.acc_seg": 91.60537719726562, "aux.loss_ce": 0.0909331627190113, "aux.acc_seg": 89.97370147705078, "time": 1.117522668838501, "iter": 118200, "memory": 8703, "step": 118200} +{"lr": 0.0030547482558253296, "data_time": 0.007297372817993164, "loss": 0.4652861386537552, "decode.loss_ce": 0.26910067200660703, "decode.acc_seg": 94.78836059570312, "aux.loss_ce": 0.19618546068668366, "aux.acc_seg": 72.98367309570312, "time": 1.1183281660079956, "iter": 118250, "memory": 8704, "step": 118250} +{"lr": 0.003051563306438333, "data_time": 0.0068817138671875, "loss": 0.46645710319280625, "decode.loss_ce": 0.26438448652625085, "decode.acc_seg": 91.0491943359375, "aux.loss_ce": 0.20207262523472308, "aux.acc_seg": 89.81278228759766, "time": 1.1185096502304077, "iter": 118300, "memory": 8704, "step": 118300} +{"lr": 0.0030483779751399316, "data_time": 0.0068313837051391605, "loss": 0.5069179475307465, "decode.loss_ce": 0.3103406146168709, "decode.acc_seg": 90.72295379638672, "aux.loss_ce": 0.1965773344039917, "aux.acc_seg": 89.37723541259766, "time": 1.1201481580734254, "iter": 118350, "memory": 8704, "step": 118350} +{"lr": 0.003045192261425767, "data_time": 0.005827522277832032, "loss": 0.2946878746151924, "decode.loss_ce": 0.18231988325715065, "decode.acc_seg": 97.02223205566406, "aux.loss_ce": 0.11236799582839012, "aux.acc_seg": 96.88188934326172, "time": 1.1156659126281738, "iter": 118400, "memory": 8703, "step": 118400} +{"lr": 0.0030420061647902087, "data_time": 0.006191039085388183, "loss": 0.34748008102178574, "decode.loss_ce": 0.20641161650419235, "decode.acc_seg": 94.84493255615234, "aux.loss_ce": 0.14106846116483213, "aux.acc_seg": 81.20442199707031, "time": 1.1137662410736084, "iter": 118450, "memory": 8704, "step": 118450} +{"lr": 0.0030388196847263545, "data_time": 0.006550741195678711, "loss": 0.27781179547309875, "decode.loss_ce": 0.16926997676491737, "decode.acc_seg": 91.48190307617188, "aux.loss_ce": 0.10854181572794915, "aux.acc_seg": 86.3134994506836, "time": 1.11603581905365, "iter": 118500, "memory": 8703, "step": 118500} +{"lr": 0.0030356328207260105, "data_time": 0.007185125350952148, "loss": 0.42182189524173735, "decode.loss_ce": 0.24766406491398812, "decode.acc_seg": 94.3900375366211, "aux.loss_ce": 0.1741578210145235, "aux.acc_seg": 91.71981811523438, "time": 1.1157001495361327, "iter": 118550, "memory": 8704, "step": 118550} +{"lr": 0.0030324455722797045, "data_time": 0.007243132591247559, "loss": 0.31582423597574233, "decode.loss_ce": 0.1846282958984375, "decode.acc_seg": 94.99158477783203, "aux.loss_ce": 0.1311959370970726, "aux.acc_seg": 89.72149658203125, "time": 1.1135929584503175, "iter": 118600, "memory": 8703, "step": 118600} +{"lr": 0.0030292579388766687, "data_time": 0.007086110115051269, "loss": 0.33782235234975816, "decode.loss_ce": 0.21660812795162201, "decode.acc_seg": 93.27786254882812, "aux.loss_ce": 0.12121422365307807, "aux.acc_seg": 90.83563232421875, "time": 1.115226650238037, "iter": 118650, "memory": 8703, "step": 118650} +{"lr": 0.0030260699200048355, "data_time": 0.006153082847595215, "loss": 0.34556457698345183, "decode.loss_ce": 0.19217809289693832, "decode.acc_seg": 89.98908996582031, "aux.loss_ce": 0.15338648222386836, "aux.acc_seg": 84.72334289550781, "time": 1.1160059928894044, "iter": 118700, "memory": 8703, "step": 118700} +{"lr": 0.0030228815151508407, "data_time": 0.007898426055908203, "loss": 0.45012510418891905, "decode.loss_ce": 0.2504067398607731, "decode.acc_seg": 87.9893569946289, "aux.loss_ce": 0.19971837028861045, "aux.acc_seg": 64.42692565917969, "time": 1.1181425333023072, "iter": 118750, "memory": 8704, "step": 118750} +{"lr": 0.0030196927238000035, "data_time": 0.006512737274169922, "loss": 0.35149299800395967, "decode.loss_ce": 0.22792185097932816, "decode.acc_seg": 95.7528076171875, "aux.loss_ce": 0.1235711544752121, "aux.acc_seg": 93.66824340820312, "time": 1.121034288406372, "iter": 118800, "memory": 8704, "step": 118800} +{"lr": 0.0030165035454363435, "data_time": 0.006261944770812988, "loss": 0.29926495254039764, "decode.loss_ce": 0.17394073978066443, "decode.acc_seg": 96.41971588134766, "aux.loss_ce": 0.1253242138773203, "aux.acc_seg": 95.34981536865234, "time": 1.116506576538086, "iter": 118850, "memory": 8704, "step": 118850} +{"lr": 0.003013313979542554, "data_time": 0.006605410575866699, "loss": 0.3703486695885658, "decode.loss_ce": 0.22038237601518632, "decode.acc_seg": 96.13399505615234, "aux.loss_ce": 0.14996629841625692, "aux.acc_seg": 86.63628387451172, "time": 1.1106452941894531, "iter": 118900, "memory": 8703, "step": 118900} +{"lr": 0.003010124025600014, "data_time": 0.005490303039550781, "loss": 0.32403783649206164, "decode.loss_ce": 0.20175567343831063, "decode.acc_seg": 94.87457275390625, "aux.loss_ce": 0.12228216007351875, "aux.acc_seg": 91.45996856689453, "time": 1.1147554159164428, "iter": 118950, "memory": 8703, "step": 118950} +{"lr": 0.0030069336830887733, "data_time": 0.006254863739013672, "loss": 0.31951894909143447, "decode.loss_ce": 0.17773376367986202, "decode.acc_seg": 92.60273742675781, "aux.loss_ce": 0.14178518056869507, "aux.acc_seg": 93.23304748535156, "time": 1.1158447980880737, "iter": 119000, "memory": 8704, "step": 119000} +{"lr": 0.0030037429514875435, "data_time": 0.007919669151306152, "loss": 0.27408444285392763, "decode.loss_ce": 0.17520182505249976, "decode.acc_seg": 92.7665023803711, "aux.loss_ce": 0.09888261668384075, "aux.acc_seg": 90.20010375976562, "time": 1.1156659126281738, "iter": 119050, "memory": 8704, "step": 119050} +{"lr": 0.0030005518302737124, "data_time": 0.0057640552520751955, "loss": 0.3471384659409523, "decode.loss_ce": 0.21596683263778688, "decode.acc_seg": 92.3309326171875, "aux.loss_ce": 0.13117162995040416, "aux.acc_seg": 90.08623504638672, "time": 1.1201542139053344, "iter": 119100, "memory": 8703, "step": 119100} +{"lr": 0.0029973603189233124, "data_time": 0.005225419998168945, "loss": 0.2965935915708542, "decode.loss_ce": 0.1852022796869278, "decode.acc_seg": 95.44664764404297, "aux.loss_ce": 0.11139131300151348, "aux.acc_seg": 91.41426086425781, "time": 1.1165199279785156, "iter": 119150, "memory": 8704, "step": 119150} +{"lr": 0.0029941684169110363, "data_time": 0.007079863548278808, "loss": 0.40469392091035844, "decode.loss_ce": 0.24994288086891175, "decode.acc_seg": 96.8170166015625, "aux.loss_ce": 0.15475103482604027, "aux.acc_seg": 94.97108459472656, "time": 1.119250226020813, "iter": 119200, "memory": 8703, "step": 119200} +{"lr": 0.002990976123710227, "data_time": 0.00786886215209961, "loss": 0.33839802742004393, "decode.loss_ce": 0.20750515758991242, "decode.acc_seg": 93.63045501708984, "aux.loss_ce": 0.1308928716927767, "aux.acc_seg": 86.22480010986328, "time": 1.1171535015106202, "iter": 119250, "memory": 8703, "step": 119250} +{"lr": 0.0029877834387928674, "data_time": 0.006537914276123047, "loss": 0.3114494144916534, "decode.loss_ce": 0.1972183682024479, "decode.acc_seg": 96.31690979003906, "aux.loss_ce": 0.1142310481518507, "aux.acc_seg": 95.02925872802734, "time": 1.112645411491394, "iter": 119300, "memory": 8704, "step": 119300} +{"lr": 0.002984590361629575, "data_time": 0.007685518264770508, "loss": 0.270964577794075, "decode.loss_ce": 0.15747016072273254, "decode.acc_seg": 90.36846160888672, "aux.loss_ce": 0.11349441781640053, "aux.acc_seg": 87.62098693847656, "time": 1.1161834239959716, "iter": 119350, "memory": 8704, "step": 119350} +{"lr": 0.0029813968916896053, "data_time": 0.007703208923339843, "loss": 0.32827315777540206, "decode.loss_ce": 0.20170889869332315, "decode.acc_seg": 91.37039184570312, "aux.loss_ce": 0.12656426429748535, "aux.acc_seg": 90.4349594116211, "time": 1.1107158184051513, "iter": 119400, "memory": 8704, "step": 119400} +{"lr": 0.0029782030284408348, "data_time": 0.008459019660949706, "loss": 0.2980306357145309, "decode.loss_ce": 0.1762756884098053, "decode.acc_seg": 90.19609832763672, "aux.loss_ce": 0.12175494842231274, "aux.acc_seg": 85.41806030273438, "time": 1.1182103872299194, "iter": 119450, "memory": 8704, "step": 119450} +{"lr": 0.002975008771349773, "data_time": 0.007019710540771484, "loss": 0.24577812552452089, "decode.loss_ce": 0.15733117014169692, "decode.acc_seg": 91.39385223388672, "aux.loss_ce": 0.08844695203006267, "aux.acc_seg": 94.47498321533203, "time": 1.1148927211761475, "iter": 119500, "memory": 8704, "step": 119500} +{"lr": 0.002971814119881533, "data_time": 0.006570863723754883, "loss": 0.2639125660061836, "decode.loss_ce": 0.1601667121052742, "decode.acc_seg": 93.75940704345703, "aux.loss_ce": 0.10374585203826428, "aux.acc_seg": 87.62683868408203, "time": 1.1157951354980469, "iter": 119550, "memory": 8705, "step": 119550} +{"lr": 0.0029686190734998486, "data_time": 0.00842437744140625, "loss": 0.3993761658668518, "decode.loss_ce": 0.26338741183280945, "decode.acc_seg": 96.02921295166016, "aux.loss_ce": 0.13598875626921653, "aux.acc_seg": 96.92414093017578, "time": 1.116010570526123, "iter": 119600, "memory": 8704, "step": 119600} +{"lr": 0.002965423631667056, "data_time": 0.006718254089355469, "loss": 0.2817791372537613, "decode.loss_ce": 0.16527287140488625, "decode.acc_seg": 94.02236938476562, "aux.loss_ce": 0.11650626622140407, "aux.acc_seg": 92.36290740966797, "time": 1.116454291343689, "iter": 119650, "memory": 8703, "step": 119650} +{"lr": 0.00296222779384409, "data_time": 0.008020567893981933, "loss": 0.3921809270977974, "decode.loss_ce": 0.22367403507232667, "decode.acc_seg": 95.66634368896484, "aux.loss_ce": 0.16850689053535461, "aux.acc_seg": 94.44290924072266, "time": 1.1159380197525024, "iter": 119700, "memory": 8704, "step": 119700} +{"lr": 0.0029590315594904865, "data_time": 0.008776021003723145, "loss": 0.41129148080945016, "decode.loss_ce": 0.2542628742754459, "decode.acc_seg": 78.9002685546875, "aux.loss_ce": 0.15702860429883003, "aux.acc_seg": 72.67996215820312, "time": 1.1149466514587403, "iter": 119750, "memory": 8703, "step": 119750} +{"lr": 0.0029558349280643676, "data_time": 0.007138538360595703, "loss": 0.33141166567802427, "decode.loss_ce": 0.20821332037448884, "decode.acc_seg": 96.21868133544922, "aux.loss_ce": 0.12319834642112255, "aux.acc_seg": 94.46760559082031, "time": 1.1152779579162597, "iter": 119800, "memory": 8704, "step": 119800} +{"lr": 0.002952637899022444, "data_time": 0.006695556640625, "loss": 0.2760501056909561, "decode.loss_ce": 0.1506868213415146, "decode.acc_seg": 96.40464782714844, "aux.loss_ce": 0.1253632850944996, "aux.acc_seg": 95.75271606445312, "time": 1.113199234008789, "iter": 119850, "memory": 8704, "step": 119850} +{"lr": 0.0029494404718199948, "data_time": 0.007570481300354004, "loss": 0.42628636211156845, "decode.loss_ce": 0.2559135228395462, "decode.acc_seg": 96.7341079711914, "aux.loss_ce": 0.17037283889949323, "aux.acc_seg": 96.304443359375, "time": 1.1158007383346558, "iter": 119900, "memory": 8703, "step": 119900} +{"lr": 0.0029462426459108838, "data_time": 0.005916023254394531, "loss": 0.3524683117866516, "decode.loss_ce": 0.20256206691265105, "decode.acc_seg": 94.69845581054688, "aux.loss_ce": 0.14990624487400056, "aux.acc_seg": 89.1571044921875, "time": 1.1168493747711181, "iter": 119950, "memory": 8704, "step": 119950} +{"lr": 0.0029430444207475424, "data_time": 0.0070193767547607425, "loss": 0.37732495814561845, "decode.loss_ce": 0.22710549160838128, "decode.acc_seg": 94.4555892944336, "aux.loss_ce": 0.1502194654196501, "aux.acc_seg": 92.29767608642578, "time": 1.1193336963653564, "iter": 120000, "memory": 8704, "step": 120000} +{"lr": 0.0029398457957809584, "data_time": 0.006226634979248047, "loss": 0.3034889906644821, "decode.loss_ce": 0.18553031161427497, "decode.acc_seg": 84.00203704833984, "aux.loss_ce": 0.11795868091285229, "aux.acc_seg": 81.1855239868164, "time": 1.1166188955307006, "iter": 120050, "memory": 8703, "step": 120050} +{"lr": 0.0029366467704606803, "data_time": 0.007634353637695312, "loss": 0.2528408169746399, "decode.loss_ce": 0.16282534301280976, "decode.acc_seg": 95.06829071044922, "aux.loss_ce": 0.09001547694206238, "aux.acc_seg": 93.4377670288086, "time": 1.1139403581619263, "iter": 120100, "memory": 8704, "step": 120100} +{"lr": 0.002933447344234809, "data_time": 0.006666231155395508, "loss": 0.3484670639038086, "decode.loss_ce": 0.20853766202926635, "decode.acc_seg": 89.37866973876953, "aux.loss_ce": 0.13992940001189708, "aux.acc_seg": 84.63668823242188, "time": 1.1126919746398927, "iter": 120150, "memory": 8704, "step": 120150} +{"lr": 0.0029302475165499846, "data_time": 0.00764458179473877, "loss": 0.22318029254674912, "decode.loss_ce": 0.13554410338401796, "decode.acc_seg": 95.75150299072266, "aux.loss_ce": 0.08763619177043439, "aux.acc_seg": 89.97795867919922, "time": 1.116716170310974, "iter": 120200, "memory": 8704, "step": 120200} +{"lr": 0.0029270472868513967, "data_time": 0.006971931457519532, "loss": 0.3266331389546394, "decode.loss_ce": 0.20267633348703384, "decode.acc_seg": 92.38287353515625, "aux.loss_ce": 0.12395680844783782, "aux.acc_seg": 93.89578247070312, "time": 1.116142749786377, "iter": 120250, "memory": 8704, "step": 120250} +{"lr": 0.0029238466545827607, "data_time": 0.007878589630126952, "loss": 0.3448101431131363, "decode.loss_ce": 0.22053589895367623, "decode.acc_seg": 89.78214263916016, "aux.loss_ce": 0.12427424415946006, "aux.acc_seg": 77.81568908691406, "time": 1.1173598766326904, "iter": 120300, "memory": 8704, "step": 120300} +{"lr": 0.0029206456191863284, "data_time": 0.005203342437744141, "loss": 0.22399032413959502, "decode.loss_ce": 0.1403414525091648, "decode.acc_seg": 94.92008972167969, "aux.loss_ce": 0.08364887181669474, "aux.acc_seg": 93.66289520263672, "time": 1.1091812372207641, "iter": 120350, "memory": 8704, "step": 120350} +{"lr": 0.0029174441801028688, "data_time": 0.005622482299804688, "loss": 0.4317209079861641, "decode.loss_ce": 0.3020715244114399, "decode.acc_seg": 92.68843078613281, "aux.loss_ce": 0.12964938133955, "aux.acc_seg": 88.6893539428711, "time": 1.1108233213424683, "iter": 120400, "memory": 8704, "step": 120400} +{"lr": 0.002914242336771672, "data_time": 0.007099962234497071, "loss": 0.41581563726067544, "decode.loss_ce": 0.22988003343343735, "decode.acc_seg": 97.55992889404297, "aux.loss_ce": 0.1859356015920639, "aux.acc_seg": 96.93196105957031, "time": 1.120967483520508, "iter": 120450, "memory": 8704, "step": 120450} +{"lr": 0.002911040088630533, "data_time": 0.007696771621704101, "loss": 0.26185629665851595, "decode.loss_ce": 0.1562098614871502, "decode.acc_seg": 92.82351684570312, "aux.loss_ce": 0.10564643032848835, "aux.acc_seg": 89.24076080322266, "time": 1.118361496925354, "iter": 120500, "memory": 8703, "step": 120500} +{"lr": 0.002907837435115757, "data_time": 0.006826519966125488, "loss": 0.3070846900343895, "decode.loss_ce": 0.19070177227258683, "decode.acc_seg": 95.90914154052734, "aux.loss_ce": 0.11638291515409946, "aux.acc_seg": 94.66291046142578, "time": 1.1204313039779663, "iter": 120550, "memory": 8703, "step": 120550} +{"lr": 0.002904634375662152, "data_time": 0.00820014476776123, "loss": 0.34375978708267213, "decode.loss_ce": 0.21838681623339654, "decode.acc_seg": 75.28126525878906, "aux.loss_ce": 0.1253729734569788, "aux.acc_seg": 69.86331939697266, "time": 1.123870849609375, "iter": 120600, "memory": 8704, "step": 120600} +{"lr": 0.0029014309097030113, "data_time": 0.0072814226150512695, "loss": 0.4174360051751137, "decode.loss_ce": 0.25210496336221694, "decode.acc_seg": 95.4936294555664, "aux.loss_ce": 0.16533103920519351, "aux.acc_seg": 93.450927734375, "time": 1.114977812767029, "iter": 120650, "memory": 8703, "step": 120650} +{"lr": 0.0028982270366701233, "data_time": 0.007142972946166992, "loss": 0.3762162923812866, "decode.loss_ce": 0.2227008655667305, "decode.acc_seg": 95.08094787597656, "aux.loss_ce": 0.15351542457938194, "aux.acc_seg": 86.21292114257812, "time": 1.1141850471496582, "iter": 120700, "memory": 8704, "step": 120700} +{"lr": 0.002895022755993753, "data_time": 0.006819605827331543, "loss": 0.22988042905926703, "decode.loss_ce": 0.13847056925296783, "decode.acc_seg": 96.55266571044922, "aux.loss_ce": 0.09140986166894435, "aux.acc_seg": 95.28084564208984, "time": 1.1119460105895995, "iter": 120750, "memory": 8704, "step": 120750} +{"lr": 0.002891818067102647, "data_time": 0.0060033082962036135, "loss": 0.3093048483133316, "decode.loss_ce": 0.19904454201459884, "decode.acc_seg": 94.81378936767578, "aux.loss_ce": 0.11026030369102954, "aux.acc_seg": 90.68291473388672, "time": 1.114373230934143, "iter": 120800, "memory": 8703, "step": 120800} +{"lr": 0.002888612969424018, "data_time": 0.007468032836914063, "loss": 0.24785636961460114, "decode.loss_ce": 0.1549387738108635, "decode.acc_seg": 96.06793212890625, "aux.loss_ce": 0.09291759394109249, "aux.acc_seg": 92.78080749511719, "time": 1.1194103240966797, "iter": 120850, "memory": 8703, "step": 120850} +{"lr": 0.00288540746238354, "data_time": 0.00742337703704834, "loss": 0.29426106810569763, "decode.loss_ce": 0.18127715066075326, "decode.acc_seg": 90.79232788085938, "aux.loss_ce": 0.11298392117023467, "aux.acc_seg": 80.76573181152344, "time": 1.111829948425293, "iter": 120900, "memory": 8704, "step": 120900} +{"lr": 0.002882201545405346, "data_time": 0.007395005226135254, "loss": 0.3491523802280426, "decode.loss_ce": 0.21569156944751738, "decode.acc_seg": 95.55651092529297, "aux.loss_ce": 0.13346081525087355, "aux.acc_seg": 92.80363464355469, "time": 1.113981056213379, "iter": 120950, "memory": 8704, "step": 120950} +{"lr": 0.0028789952179120257, "data_time": 0.0066184520721435545, "loss": 0.34562835693359373, "decode.loss_ce": 0.2078423246741295, "decode.acc_seg": 94.44713592529297, "aux.loss_ce": 0.13778603561222552, "aux.acc_seg": 90.98993682861328, "time": 1.1147485733032227, "iter": 121000, "memory": 8703, "step": 121000} +{"lr": 0.0028757884793246093, "data_time": 0.0063059329986572266, "loss": 0.468480184674263, "decode.loss_ce": 0.28842399790883066, "decode.acc_seg": 89.62223815917969, "aux.loss_ce": 0.1800561875104904, "aux.acc_seg": 86.94336700439453, "time": 1.1140067815780639, "iter": 121050, "memory": 8704, "step": 121050} +{"lr": 0.002872581329062564, "data_time": 0.007961797714233398, "loss": 0.5074245780706406, "decode.loss_ce": 0.295836029946804, "decode.acc_seg": 94.42578887939453, "aux.loss_ce": 0.21158855259418488, "aux.acc_seg": 93.08848571777344, "time": 1.118094253540039, "iter": 121100, "memory": 8704, "step": 121100} +{"lr": 0.0028693737665437956, "data_time": 0.006370687484741211, "loss": 0.339640112221241, "decode.loss_ce": 0.19642542004585267, "decode.acc_seg": 91.0873031616211, "aux.loss_ce": 0.1432146940380335, "aux.acc_seg": 82.54667663574219, "time": 1.1122377634048461, "iter": 121150, "memory": 8703, "step": 121150} +{"lr": 0.0028661657911846325, "data_time": 0.006608748435974121, "loss": 0.41097469329833985, "decode.loss_ce": 0.24482840299606323, "decode.acc_seg": 92.01774597167969, "aux.loss_ce": 0.16614628955721855, "aux.acc_seg": 87.51201629638672, "time": 1.1127399444580077, "iter": 121200, "memory": 8704, "step": 121200} +{"lr": 0.0028629574023998233, "data_time": 0.0056555747985839845, "loss": 0.23408710733056068, "decode.loss_ce": 0.14824917390942574, "decode.acc_seg": 93.49752807617188, "aux.loss_ce": 0.0858379352837801, "aux.acc_seg": 89.4561767578125, "time": 1.1152667760849, "iter": 121250, "memory": 8704, "step": 121250} +{"lr": 0.002859748599602535, "data_time": 0.006188821792602539, "loss": 0.41153022050857546, "decode.loss_ce": 0.25122700706124307, "decode.acc_seg": 88.83113861083984, "aux.loss_ce": 0.16030321680009366, "aux.acc_seg": 87.03091430664062, "time": 1.1158313274383544, "iter": 121300, "memory": 8704, "step": 121300} +{"lr": 0.002856539382204338, "data_time": 0.006281805038452148, "loss": 0.3171373039484024, "decode.loss_ce": 0.19193891175091266, "decode.acc_seg": 98.12386322021484, "aux.loss_ce": 0.1251983854919672, "aux.acc_seg": 96.81122589111328, "time": 1.1149176597595214, "iter": 121350, "memory": 8703, "step": 121350} +{"lr": 0.0028533297496152066, "data_time": 0.008239269256591797, "loss": 0.34317581057548524, "decode.loss_ce": 0.19610328301787378, "decode.acc_seg": 97.83528137207031, "aux.loss_ce": 0.1470725305378437, "aux.acc_seg": 96.37648010253906, "time": 1.1203054666519165, "iter": 121400, "memory": 8704, "step": 121400} +{"lr": 0.0028501197012435102, "data_time": 0.007998847961425781, "loss": 0.3350799083709717, "decode.loss_ce": 0.2017563499510288, "decode.acc_seg": 96.43522644042969, "aux.loss_ce": 0.13332355618476868, "aux.acc_seg": 91.33154296875, "time": 1.1165306091308593, "iter": 121450, "memory": 8704, "step": 121450} +{"lr": 0.0028469092364959998, "data_time": 0.008007097244262695, "loss": 0.30979958474636077, "decode.loss_ce": 0.1885271929204464, "decode.acc_seg": 92.29933166503906, "aux.loss_ce": 0.12127239182591439, "aux.acc_seg": 88.16725158691406, "time": 1.1129414319992066, "iter": 121500, "memory": 8704, "step": 121500} +{"lr": 0.002843698354777819, "data_time": 0.007498359680175782, "loss": 0.2632279708981514, "decode.loss_ce": 0.16806065589189528, "decode.acc_seg": 96.0784912109375, "aux.loss_ce": 0.09516731463372707, "aux.acc_seg": 93.17569732666016, "time": 1.1149722337722778, "iter": 121550, "memory": 8704, "step": 121550} +{"lr": 0.0028404870554924787, "data_time": 0.007454514503479004, "loss": 0.23947480767965318, "decode.loss_ce": 0.1453869305551052, "decode.acc_seg": 94.1605224609375, "aux.loss_ce": 0.0940878763794899, "aux.acc_seg": 94.21812438964844, "time": 1.113540029525757, "iter": 121600, "memory": 8703, "step": 121600} +{"lr": 0.0028372753380418625, "data_time": 0.007420873641967774, "loss": 0.30033307522535324, "decode.loss_ce": 0.17095988057553768, "decode.acc_seg": 98.68756866455078, "aux.loss_ce": 0.12937319055199623, "aux.acc_seg": 96.18124389648438, "time": 1.116226077079773, "iter": 121650, "memory": 8704, "step": 121650} +{"lr": 0.0028340632018262163, "data_time": 0.005881810188293457, "loss": 0.2578088127076626, "decode.loss_ce": 0.14944722652435302, "decode.acc_seg": 96.12140655517578, "aux.loss_ce": 0.10836158469319343, "aux.acc_seg": 94.61237335205078, "time": 1.1111242532730103, "iter": 121700, "memory": 8704, "step": 121700} +{"lr": 0.002830850646244141, "data_time": 0.00659639835357666, "loss": 0.3372763320803642, "decode.loss_ce": 0.18850489780306817, "decode.acc_seg": 87.88006591796875, "aux.loss_ce": 0.1487714357674122, "aux.acc_seg": 79.97639465332031, "time": 1.1181802988052367, "iter": 121750, "memory": 8704, "step": 121750} +{"lr": 0.0028276376706925835, "data_time": 0.00708920955657959, "loss": 0.4177961602807045, "decode.loss_ce": 0.24413399025797844, "decode.acc_seg": 90.02262115478516, "aux.loss_ce": 0.17366217337548734, "aux.acc_seg": 84.72911071777344, "time": 1.1156651496887207, "iter": 121800, "memory": 8704, "step": 121800} +{"lr": 0.0028244242745668383, "data_time": 0.0077625751495361325, "loss": 0.41850324869155886, "decode.loss_ce": 0.2433823511004448, "decode.acc_seg": 91.21983337402344, "aux.loss_ce": 0.17512089498341082, "aux.acc_seg": 86.31903076171875, "time": 1.1168989658355712, "iter": 121850, "memory": 8703, "step": 121850} +{"lr": 0.0028212104572605326, "data_time": 0.006799459457397461, "loss": 0.23585515916347505, "decode.loss_ce": 0.1476456843316555, "decode.acc_seg": 92.00871276855469, "aux.loss_ce": 0.08820948079228401, "aux.acc_seg": 86.32481384277344, "time": 1.115212893486023, "iter": 121900, "memory": 8703, "step": 121900} +{"lr": 0.002817996218165624, "data_time": 0.007259225845336914, "loss": 0.277057746052742, "decode.loss_ce": 0.16966361701488494, "decode.acc_seg": 93.04370880126953, "aux.loss_ce": 0.10739413425326347, "aux.acc_seg": 88.36727142333984, "time": 1.1192411422729491, "iter": 121950, "memory": 8704, "step": 121950} +{"lr": 0.0028147815566723876, "data_time": 0.006708478927612305, "loss": 0.3248658195137978, "decode.loss_ce": 0.1908558040857315, "decode.acc_seg": 96.04593658447266, "aux.loss_ce": 0.1340100195258856, "aux.acc_seg": 94.15721893310547, "time": 1.1150588989257812, "iter": 122000, "memory": 8704, "step": 122000} +{"lr": 0.0028115664721694218, "data_time": 0.006127452850341797, "loss": 0.33425025194883345, "decode.loss_ce": 0.20416470766067504, "decode.acc_seg": 88.77957153320312, "aux.loss_ce": 0.13008554205298423, "aux.acc_seg": 83.11970520019531, "time": 1.111075472831726, "iter": 122050, "memory": 8703, "step": 122050} +{"lr": 0.0028083509640436247, "data_time": 0.0058820247650146484, "loss": 0.2839781939983368, "decode.loss_ce": 0.1628061607480049, "decode.acc_seg": 93.66753387451172, "aux.loss_ce": 0.12117203250527382, "aux.acc_seg": 92.29412078857422, "time": 1.111401128768921, "iter": 122100, "memory": 8703, "step": 122100} +{"lr": 0.0028051350316801974, "data_time": 0.007591080665588379, "loss": 0.30235513895750044, "decode.loss_ce": 0.1909773826599121, "decode.acc_seg": 95.78844451904297, "aux.loss_ce": 0.11137775890529156, "aux.acc_seg": 92.78621673583984, "time": 1.1174581050872803, "iter": 122150, "memory": 8704, "step": 122150} +{"lr": 0.0028019186744626416, "data_time": 0.0068874359130859375, "loss": 0.4633518859744072, "decode.loss_ce": 0.2966334491968155, "decode.acc_seg": 95.6003189086914, "aux.loss_ce": 0.1667184390127659, "aux.acc_seg": 92.97065734863281, "time": 1.1158767223358155, "iter": 122200, "memory": 8703, "step": 122200} +{"lr": 0.0027987018917727414, "data_time": 0.006844139099121094, "loss": 0.27076577544212344, "decode.loss_ce": 0.1654804192483425, "decode.acc_seg": 90.12139129638672, "aux.loss_ce": 0.10528535954654217, "aux.acc_seg": 82.9163818359375, "time": 1.1174001693725586, "iter": 122250, "memory": 8704, "step": 122250} +{"lr": 0.0027954846829905586, "data_time": 0.007475543022155762, "loss": 0.3042518779635429, "decode.loss_ce": 0.18806718960404395, "decode.acc_seg": 94.90504455566406, "aux.loss_ce": 0.1161846898496151, "aux.acc_seg": 93.79126739501953, "time": 1.116318368911743, "iter": 122300, "memory": 8704, "step": 122300} +{"lr": 0.0027922670474944335, "data_time": 0.007769584655761719, "loss": 0.2640624105930328, "decode.loss_ce": 0.1568701982498169, "decode.acc_seg": 96.83195495605469, "aux.loss_ce": 0.10719220675528049, "aux.acc_seg": 92.40467834472656, "time": 1.1148744106292725, "iter": 122350, "memory": 8704, "step": 122350} +{"lr": 0.0027890489846609714, "data_time": 0.00754544734954834, "loss": 0.3868715867400169, "decode.loss_ce": 0.227556761354208, "decode.acc_seg": 91.55693054199219, "aux.loss_ce": 0.1593148298561573, "aux.acc_seg": 83.76451873779297, "time": 1.1109422206878663, "iter": 122400, "memory": 8703, "step": 122400} +{"lr": 0.002785830493865033, "data_time": 0.006301307678222656, "loss": 0.3675309717655182, "decode.loss_ce": 0.22288656160235404, "decode.acc_seg": 76.75653839111328, "aux.loss_ce": 0.14464439637959003, "aux.acc_seg": 76.20709991455078, "time": 1.1119272470474244, "iter": 122450, "memory": 8704, "step": 122450} +{"lr": 0.002782611574479737, "data_time": 0.007247614860534668, "loss": 0.40890387296676634, "decode.loss_ce": 0.2632756747305393, "decode.acc_seg": 96.44705200195312, "aux.loss_ce": 0.14562819823622702, "aux.acc_seg": 94.79566955566406, "time": 1.1137303113937378, "iter": 122500, "memory": 8704, "step": 122500} +{"lr": 0.0027793922258764407, "data_time": 0.006491255760192871, "loss": 0.25142678022384646, "decode.loss_ce": 0.1525470219552517, "decode.acc_seg": 92.8782730102539, "aux.loss_ce": 0.09887976013123989, "aux.acc_seg": 90.0146484375, "time": 1.1144845962524415, "iter": 122550, "memory": 8704, "step": 122550} +{"lr": 0.002776172447424743, "data_time": 0.00636136531829834, "loss": 0.239635868370533, "decode.loss_ce": 0.14520516470074654, "decode.acc_seg": 96.61197662353516, "aux.loss_ce": 0.09443069994449615, "aux.acc_seg": 95.38383483886719, "time": 1.1138724088668823, "iter": 122600, "memory": 8704, "step": 122600} +{"lr": 0.002772952238492471, "data_time": 0.007179951667785645, "loss": 0.28128588050603864, "decode.loss_ce": 0.17358362823724746, "decode.acc_seg": 93.38417053222656, "aux.loss_ce": 0.10770224984735251, "aux.acc_seg": 86.021484375, "time": 1.1170386791229248, "iter": 122650, "memory": 8704, "step": 122650} +{"lr": 0.002769731598445676, "data_time": 0.009072995185852051, "loss": 0.34853348284959795, "decode.loss_ce": 0.2150833263993263, "decode.acc_seg": 85.36148071289062, "aux.loss_ce": 0.1334501590579748, "aux.acc_seg": 82.20850372314453, "time": 1.1219274282455445, "iter": 122700, "memory": 8703, "step": 122700} +{"lr": 0.0027665105266486234, "data_time": 0.007780694961547851, "loss": 0.28586436361074447, "decode.loss_ce": 0.1683704312890768, "decode.acc_seg": 95.10841369628906, "aux.loss_ce": 0.11749393828213214, "aux.acc_seg": 94.95378875732422, "time": 1.1141550302505494, "iter": 122750, "memory": 8704, "step": 122750} +{"lr": 0.002763289022463784, "data_time": 0.006917691230773926, "loss": 0.26210578083992003, "decode.loss_ce": 0.1568099446594715, "decode.acc_seg": 94.17820739746094, "aux.loss_ce": 0.1052958358079195, "aux.acc_seg": 92.72727966308594, "time": 1.1173336505889893, "iter": 122800, "memory": 8704, "step": 122800} +{"lr": 0.002760067085251833, "data_time": 0.007921957969665527, "loss": 0.432001531124115, "decode.loss_ce": 0.2619820863008499, "decode.acc_seg": 90.41728973388672, "aux.loss_ce": 0.17001944333314895, "aux.acc_seg": 84.50533294677734, "time": 1.1148648500442504, "iter": 122850, "memory": 8703, "step": 122850} +{"lr": 0.0027568447143716357, "data_time": 0.007126736640930176, "loss": 0.319801464676857, "decode.loss_ce": 0.20441577211022377, "decode.acc_seg": 89.84686279296875, "aux.loss_ce": 0.11538568809628487, "aux.acc_seg": 84.58003997802734, "time": 1.1148211717605592, "iter": 122900, "memory": 8704, "step": 122900} +{"lr": 0.0027536219091802458, "data_time": 0.006754660606384277, "loss": 0.30809091329574584, "decode.loss_ce": 0.18538695126771926, "decode.acc_seg": 93.16838073730469, "aux.loss_ce": 0.12270396314561367, "aux.acc_seg": 87.07815551757812, "time": 1.1113201141357423, "iter": 122950, "memory": 8704, "step": 122950} +{"lr": 0.0027503986690328936, "data_time": 0.006831049919128418, "loss": 0.3244614899158478, "decode.loss_ce": 0.1890313670039177, "decode.acc_seg": 94.82688903808594, "aux.loss_ce": 0.13543012253940107, "aux.acc_seg": 88.04753112792969, "time": 1.1174034595489502, "iter": 123000, "memory": 8703, "step": 123000} +{"lr": 0.002747174993282977, "data_time": 0.007918858528137207, "loss": 0.295478231459856, "decode.loss_ce": 0.18265382274985315, "decode.acc_seg": 94.42068481445312, "aux.loss_ce": 0.11282441169023513, "aux.acc_seg": 92.39641571044922, "time": 1.118278169631958, "iter": 123050, "memory": 8703, "step": 123050} +{"lr": 0.002743950881282059, "data_time": 0.006949424743652344, "loss": 0.3583738744258881, "decode.loss_ce": 0.2083335991948843, "decode.acc_seg": 91.66545104980469, "aux.loss_ce": 0.15004027411341667, "aux.acc_seg": 92.11874389648438, "time": 1.1170795440673829, "iter": 123100, "memory": 8704, "step": 123100} +{"lr": 0.002740726332379856, "data_time": 0.007629895210266113, "loss": 0.4623898923397064, "decode.loss_ce": 0.2758506819605827, "decode.acc_seg": 87.661865234375, "aux.loss_ce": 0.18653921484947206, "aux.acc_seg": 80.57289123535156, "time": 1.1182314872741699, "iter": 123150, "memory": 8703, "step": 123150} +{"lr": 0.0027375013459242327, "data_time": 0.008273768424987792, "loss": 0.27314419075846674, "decode.loss_ce": 0.17056651562452316, "decode.acc_seg": 91.36543273925781, "aux.loss_ce": 0.10257766898721457, "aux.acc_seg": 91.83292388916016, "time": 1.1203948497772216, "iter": 123200, "memory": 8703, "step": 123200} +{"lr": 0.002734275921261188, "data_time": 0.007419657707214355, "loss": 0.26077515482902525, "decode.loss_ce": 0.15849347785115242, "decode.acc_seg": 97.34606170654297, "aux.loss_ce": 0.10228167735040188, "aux.acc_seg": 97.29730224609375, "time": 1.1109809875488281, "iter": 123250, "memory": 8703, "step": 123250} +{"lr": 0.0027310500577348625, "data_time": 0.007566285133361816, "loss": 0.330755390226841, "decode.loss_ce": 0.19717988520860671, "decode.acc_seg": 97.07482147216797, "aux.loss_ce": 0.13357549905776978, "aux.acc_seg": 96.07403564453125, "time": 1.1119609594345092, "iter": 123300, "memory": 8703, "step": 123300} +{"lr": 0.00272782375468751, "data_time": 0.005996274948120117, "loss": 0.28478822857141495, "decode.loss_ce": 0.17924437671899796, "decode.acc_seg": 96.88377380371094, "aux.loss_ce": 0.10554384775459766, "aux.acc_seg": 95.9277572631836, "time": 1.110606861114502, "iter": 123350, "memory": 8704, "step": 123350} +{"lr": 0.002724597011459506, "data_time": 0.006377553939819336, "loss": 0.23503537625074386, "decode.loss_ce": 0.1395825445652008, "decode.acc_seg": 91.16683959960938, "aux.loss_ce": 0.095452830940485, "aux.acc_seg": 85.0485610961914, "time": 1.1146754503250123, "iter": 123400, "memory": 8703, "step": 123400} +{"lr": 0.0027213698273893284, "data_time": 0.007294058799743652, "loss": 0.3537108339369297, "decode.loss_ce": 0.20961564779281616, "decode.acc_seg": 94.36155700683594, "aux.loss_ce": 0.14409518167376517, "aux.acc_seg": 91.6861801147461, "time": 1.1227616786956787, "iter": 123450, "memory": 8704, "step": 123450} +{"lr": 0.002718142201813561, "data_time": 0.007131409645080566, "loss": 0.31967593133449557, "decode.loss_ce": 0.18209802582859994, "decode.acc_seg": 97.37345123291016, "aux.loss_ce": 0.13757789880037308, "aux.acc_seg": 91.91665649414062, "time": 1.116819429397583, "iter": 123500, "memory": 8704, "step": 123500} +{"lr": 0.002714914134066874, "data_time": 0.006673097610473633, "loss": 0.34076110273599625, "decode.loss_ce": 0.2099112533032894, "decode.acc_seg": 94.85397338867188, "aux.loss_ce": 0.1308498505502939, "aux.acc_seg": 94.36772155761719, "time": 1.118877148628235, "iter": 123550, "memory": 8703, "step": 123550} +{"lr": 0.0027116856234820196, "data_time": 0.006923985481262207, "loss": 0.2774568647146225, "decode.loss_ce": 0.16539322808384896, "decode.acc_seg": 89.74609375, "aux.loss_ce": 0.11206363104283809, "aux.acc_seg": 88.63563537597656, "time": 1.1176302433013916, "iter": 123600, "memory": 8703, "step": 123600} +{"lr": 0.002708456669389832, "data_time": 0.006958222389221192, "loss": 0.27545780688524246, "decode.loss_ce": 0.16264790594577788, "decode.acc_seg": 96.51692199707031, "aux.loss_ce": 0.11280990056693554, "aux.acc_seg": 96.00086212158203, "time": 1.120714044570923, "iter": 123650, "memory": 8703, "step": 123650} +{"lr": 0.0027052272711192062, "data_time": 0.006727099418640137, "loss": 0.4424294471740723, "decode.loss_ce": 0.2751129984855652, "decode.acc_seg": 93.40667724609375, "aux.loss_ce": 0.1673164412379265, "aux.acc_seg": 90.4581069946289, "time": 1.1168050050735474, "iter": 123700, "memory": 8705, "step": 123700} +{"lr": 0.0027019974279970977, "data_time": 0.005799698829650879, "loss": 0.45101987272500993, "decode.loss_ce": 0.28930436819791794, "decode.acc_seg": 90.70173645019531, "aux.loss_ce": 0.1617155008018017, "aux.acc_seg": 82.77733612060547, "time": 1.11678147315979, "iter": 123750, "memory": 8703, "step": 123750} +{"lr": 0.0026987671393485114, "data_time": 0.007179522514343261, "loss": 0.303640778362751, "decode.loss_ce": 0.1704696774482727, "decode.acc_seg": 88.88702392578125, "aux.loss_ce": 0.1331711046397686, "aux.acc_seg": 82.91307830810547, "time": 1.1118889808654786, "iter": 123800, "memory": 8703, "step": 123800} +{"lr": 0.002695536404496497, "data_time": 0.005719447135925293, "loss": 0.3846336126327515, "decode.loss_ce": 0.23440338298678398, "decode.acc_seg": 96.31938934326172, "aux.loss_ce": 0.1502302274107933, "aux.acc_seg": 96.10086822509766, "time": 1.11198091506958, "iter": 123850, "memory": 8703, "step": 123850} +{"lr": 0.0026923052227621354, "data_time": 0.0061146259307861325, "loss": 0.28268412351608274, "decode.loss_ce": 0.17768367603421212, "decode.acc_seg": 94.9850082397461, "aux.loss_ce": 0.10500044971704484, "aux.acc_seg": 93.31137084960938, "time": 1.1160072326660155, "iter": 123900, "memory": 8704, "step": 123900} +{"lr": 0.002689073593464534, "data_time": 0.00811455249786377, "loss": 0.26784960031509397, "decode.loss_ce": 0.1644825465977192, "decode.acc_seg": 91.24082946777344, "aux.loss_ce": 0.10336705558001995, "aux.acc_seg": 87.56475067138672, "time": 1.1184265613555908, "iter": 123950, "memory": 8704, "step": 123950} +{"lr": 0.002685841515920815, "data_time": 0.007628679275512695, "loss": 0.3535329014062881, "decode.loss_ce": 0.21979193314909934, "decode.acc_seg": 96.39530181884766, "aux.loss_ce": 0.13374096862971782, "aux.acc_seg": 95.3431396484375, "time": 1.1154619693756103, "iter": 124000, "memory": 8703, "step": 124000} +{"lr": 0.0026826089894461114, "data_time": 0.007176542282104492, "loss": 0.30544764548540115, "decode.loss_ce": 0.18086185231804847, "decode.acc_seg": 95.54004669189453, "aux.loss_ce": 0.1245857909321785, "aux.acc_seg": 91.83712005615234, "time": 1.1146189451217652, "iter": 124050, "memory": 8704, "step": 124050} +{"lr": 0.002679376013353552, "data_time": 0.0074428081512451175, "loss": 0.27948956191539764, "decode.loss_ce": 0.1638211004436016, "decode.acc_seg": 95.2204818725586, "aux.loss_ce": 0.11566846258938313, "aux.acc_seg": 93.38970947265625, "time": 1.1170533895492554, "iter": 124100, "memory": 8704, "step": 124100} +{"lr": 0.002676142586954262, "data_time": 0.009290814399719238, "loss": 0.49919148832559584, "decode.loss_ce": 0.33786202445626257, "decode.acc_seg": 88.26179504394531, "aux.loss_ce": 0.16132945865392684, "aux.acc_seg": 83.89021301269531, "time": 1.1182233810424804, "iter": 124150, "memory": 8704, "step": 124150} +{"lr": 0.002672908709557341, "data_time": 0.008196020126342773, "loss": 0.2827759340405464, "decode.loss_ce": 0.1677287422120571, "decode.acc_seg": 93.27825164794922, "aux.loss_ce": 0.11504718586802483, "aux.acc_seg": 88.6630859375, "time": 1.1154847383499145, "iter": 124200, "memory": 8703, "step": 124200} +{"lr": 0.002669674380469871, "data_time": 0.005912327766418457, "loss": 0.35010079592466353, "decode.loss_ce": 0.2050577223300934, "decode.acc_seg": 94.09859466552734, "aux.loss_ce": 0.14504307545721531, "aux.acc_seg": 91.99383544921875, "time": 1.1165985822677613, "iter": 124250, "memory": 8704, "step": 124250} +{"lr": 0.0026664395989968925, "data_time": 0.005708432197570801, "loss": 0.3149556517601013, "decode.loss_ce": 0.1861652359366417, "decode.acc_seg": 93.12203216552734, "aux.loss_ce": 0.1287904128432274, "aux.acc_seg": 83.80813598632812, "time": 1.1206815242767334, "iter": 124300, "memory": 8703, "step": 124300} +{"lr": 0.002663204364441406, "data_time": 0.007661151885986328, "loss": 0.3732458189129829, "decode.loss_ce": 0.23300644457340242, "decode.acc_seg": 93.91485595703125, "aux.loss_ce": 0.14023938179016113, "aux.acc_seg": 86.17839813232422, "time": 1.116830539703369, "iter": 124350, "memory": 8703, "step": 124350} +{"lr": 0.002659968676104352, "data_time": 0.0063048601150512695, "loss": 0.3735448241233826, "decode.loss_ce": 0.21923414915800093, "decode.acc_seg": 85.9879150390625, "aux.loss_ce": 0.15431067124009132, "aux.acc_seg": 77.61280822753906, "time": 1.1154863357543945, "iter": 124400, "memory": 8703, "step": 124400} +{"lr": 0.0026567325332846198, "data_time": 0.007987022399902344, "loss": 0.2933378145098686, "decode.loss_ce": 0.14409442469477654, "decode.acc_seg": 92.47982788085938, "aux.loss_ce": 0.14924339391291142, "aux.acc_seg": 64.36945343017578, "time": 1.1222769260406493, "iter": 124450, "memory": 8703, "step": 124450} +{"lr": 0.002653495935279015, "data_time": 0.006011438369750976, "loss": 0.40004436671733856, "decode.loss_ce": 0.22819344326853752, "decode.acc_seg": 95.90433502197266, "aux.loss_ce": 0.17185091823339463, "aux.acc_seg": 94.24951171875, "time": 1.1117369890213014, "iter": 124500, "memory": 8703, "step": 124500} +{"lr": 0.002650258881382276, "data_time": 0.0057831287384033205, "loss": 0.2602111309766769, "decode.loss_ce": 0.16388117522001266, "decode.acc_seg": 91.03742980957031, "aux.loss_ce": 0.09632995650172234, "aux.acc_seg": 87.68621826171875, "time": 1.1125894069671631, "iter": 124550, "memory": 8704, "step": 124550} +{"lr": 0.002647021370887044, "data_time": 0.005379581451416015, "loss": 0.2658893883228302, "decode.loss_ce": 0.16464365348219873, "decode.acc_seg": 95.5999984741211, "aux.loss_ce": 0.1012457299977541, "aux.acc_seg": 94.23128509521484, "time": 1.1132055521011353, "iter": 124600, "memory": 8703, "step": 124600} +{"lr": 0.002643783403083863, "data_time": 0.006229043006896973, "loss": 0.29205746948719025, "decode.loss_ce": 0.16160230785608293, "decode.acc_seg": 96.34552001953125, "aux.loss_ce": 0.1304551586508751, "aux.acc_seg": 94.78327178955078, "time": 1.1174965143203734, "iter": 124650, "memory": 8703, "step": 124650} +{"lr": 0.002640544977261172, "data_time": 0.00698089599609375, "loss": 0.3271510019898415, "decode.loss_ce": 0.20175503194332123, "decode.acc_seg": 96.48246765136719, "aux.loss_ce": 0.12539597190916538, "aux.acc_seg": 95.27142333984375, "time": 1.1124857902526855, "iter": 124700, "memory": 8703, "step": 124700} +{"lr": 0.002637306092705292, "data_time": 0.005251002311706543, "loss": 0.26989132463932036, "decode.loss_ce": 0.1601789228618145, "decode.acc_seg": 96.01802825927734, "aux.loss_ce": 0.10971239805221558, "aux.acc_seg": 94.91539001464844, "time": 1.1098570823669434, "iter": 124750, "memory": 8704, "step": 124750} +{"lr": 0.002634066748700416, "data_time": 0.00685875415802002, "loss": 0.36272247731685636, "decode.loss_ce": 0.22301626279950143, "decode.acc_seg": 96.74154663085938, "aux.loss_ce": 0.13970621451735496, "aux.acc_seg": 95.74031829833984, "time": 1.1175547599792481, "iter": 124800, "memory": 8704, "step": 124800} +{"lr": 0.0026308269445286044, "data_time": 0.005873346328735351, "loss": 0.26865816712379453, "decode.loss_ce": 0.16211777701973915, "decode.acc_seg": 97.00901794433594, "aux.loss_ce": 0.10654038339853286, "aux.acc_seg": 94.99282836914062, "time": 1.114537739753723, "iter": 124850, "memory": 8704, "step": 124850} +{"lr": 0.0026275866794697707, "data_time": 0.007080435752868652, "loss": 0.329897540807724, "decode.loss_ce": 0.19654279202222824, "decode.acc_seg": 96.46343994140625, "aux.loss_ce": 0.13335474878549575, "aux.acc_seg": 92.56111145019531, "time": 1.1170918226242066, "iter": 124900, "memory": 8704, "step": 124900} +{"lr": 0.0026243459528016784, "data_time": 0.006670355796813965, "loss": 0.2874975651502609, "decode.loss_ce": 0.1610960178077221, "decode.acc_seg": 95.0418472290039, "aux.loss_ce": 0.12640154585242272, "aux.acc_seg": 91.01581573486328, "time": 1.1159904718399047, "iter": 124950, "memory": 8703, "step": 124950} +{"lr": 0.0026211047637999226, "data_time": 0.006375670433044434, "loss": 0.25619612634181976, "decode.loss_ce": 0.14370445683598518, "decode.acc_seg": 96.22713470458984, "aux.loss_ce": 0.11249166503548622, "aux.acc_seg": 95.52141571044922, "time": 1.118050503730774, "iter": 125000, "memory": 8704, "step": 125000} +{"lr": 0.0026178631117379243, "data_time": 0.006599783897399902, "loss": 0.2781688585877419, "decode.loss_ce": 0.16082002520561217, "decode.acc_seg": 96.43738555908203, "aux.loss_ce": 0.11734883859753609, "aux.acc_seg": 96.14524841308594, "time": 1.111739706993103, "iter": 125050, "memory": 8703, "step": 125050} +{"lr": 0.0026146209958869257, "data_time": 0.006855225563049317, "loss": 0.24679428786039354, "decode.loss_ce": 0.14782138988375665, "decode.acc_seg": 97.05473327636719, "aux.loss_ce": 0.09897289276123047, "aux.acc_seg": 96.21702575683594, "time": 1.111047887802124, "iter": 125100, "memory": 8703, "step": 125100} +{"lr": 0.002611378415515974, "data_time": 0.007781362533569336, "loss": 0.3193087548017502, "decode.loss_ce": 0.1924412429332733, "decode.acc_seg": 94.63532257080078, "aux.loss_ce": 0.12686750702559949, "aux.acc_seg": 87.64717864990234, "time": 1.117400336265564, "iter": 125150, "memory": 8704, "step": 125150} +{"lr": 0.0026081353698919163, "data_time": 0.006697726249694824, "loss": 0.335204091668129, "decode.loss_ce": 0.2047280803322792, "decode.acc_seg": 82.66842651367188, "aux.loss_ce": 0.13047600723803043, "aux.acc_seg": 76.39439392089844, "time": 1.116116428375244, "iter": 125200, "memory": 8705, "step": 125200} +{"lr": 0.0026048918582793844, "data_time": 0.006890153884887696, "loss": 0.2841563180088997, "decode.loss_ce": 0.17795406952500342, "decode.acc_seg": 97.85086059570312, "aux.loss_ce": 0.10620224885642529, "aux.acc_seg": 97.63298034667969, "time": 1.1141992568969727, "iter": 125250, "memory": 8704, "step": 125250} +{"lr": 0.002601647879940786, "data_time": 0.0062549829483032225, "loss": 0.3408166870474815, "decode.loss_ce": 0.1902589865028858, "decode.acc_seg": 95.30359649658203, "aux.loss_ce": 0.15055770054459572, "aux.acc_seg": 91.60772705078125, "time": 1.1156664848327638, "iter": 125300, "memory": 8703, "step": 125300} +{"lr": 0.0025984034341363033, "data_time": 0.005038547515869141, "loss": 0.3456500068306923, "decode.loss_ce": 0.1977804906666279, "decode.acc_seg": 89.0380859375, "aux.loss_ce": 0.14786952398717404, "aux.acc_seg": 81.53641510009766, "time": 1.1137880563735962, "iter": 125350, "memory": 8703, "step": 125350} +{"lr": 0.002595158520123873, "data_time": 0.0061223506927490234, "loss": 0.2337658151984215, "decode.loss_ce": 0.1475194662809372, "decode.acc_seg": 96.9797134399414, "aux.loss_ce": 0.08624634407460689, "aux.acc_seg": 95.21954345703125, "time": 1.1173820495605469, "iter": 125400, "memory": 8704, "step": 125400} +{"lr": 0.002591913137159177, "data_time": 0.006175637245178223, "loss": 0.3537291049957275, "decode.loss_ce": 0.20848434790968895, "decode.acc_seg": 90.85070037841797, "aux.loss_ce": 0.1452447548508644, "aux.acc_seg": 89.89460754394531, "time": 1.1148931503295898, "iter": 125450, "memory": 8704, "step": 125450} +{"lr": 0.002588667284495639, "data_time": 0.007107949256896973, "loss": 0.3396819993853569, "decode.loss_ce": 0.19432072192430497, "decode.acc_seg": 95.90320587158203, "aux.loss_ce": 0.14536127224564552, "aux.acc_seg": 93.70523834228516, "time": 1.1137339115142821, "iter": 125500, "memory": 8703, "step": 125500} +{"lr": 0.0025854209613844084, "data_time": 0.007358002662658692, "loss": 0.3002490483224392, "decode.loss_ce": 0.18026874735951423, "decode.acc_seg": 88.20338439941406, "aux.loss_ce": 0.11998029537498951, "aux.acc_seg": 84.1297607421875, "time": 1.1150595664978027, "iter": 125550, "memory": 8704, "step": 125550} +{"lr": 0.0025821741670743544, "data_time": 0.0062759160995483395, "loss": 0.2785277530550957, "decode.loss_ce": 0.16776273101568223, "decode.acc_seg": 93.35682678222656, "aux.loss_ce": 0.1107650201767683, "aux.acc_seg": 79.52537536621094, "time": 1.1176802158355712, "iter": 125600, "memory": 8704, "step": 125600} +{"lr": 0.0025789269008120504, "data_time": 0.006633973121643067, "loss": 0.2360692337155342, "decode.loss_ce": 0.14871569573879242, "decode.acc_seg": 93.40940856933594, "aux.loss_ce": 0.08735353462398052, "aux.acc_seg": 87.46166229248047, "time": 1.1176095247268676, "iter": 125650, "memory": 8703, "step": 125650} +{"lr": 0.0025756791618417657, "data_time": 0.00867135524749756, "loss": 0.34624180793762205, "decode.loss_ce": 0.21645376235246658, "decode.acc_seg": 95.70286560058594, "aux.loss_ce": 0.1297880493104458, "aux.acc_seg": 89.96295928955078, "time": 1.11659779548645, "iter": 125700, "memory": 8703, "step": 125700} +{"lr": 0.0025724309494054606, "data_time": 0.0057265996932983395, "loss": 0.2946243017911911, "decode.loss_ce": 0.17973765581846238, "decode.acc_seg": 93.9627456665039, "aux.loss_ce": 0.11488664820790291, "aux.acc_seg": 88.75513458251953, "time": 1.1139443874359132, "iter": 125750, "memory": 8703, "step": 125750} +{"lr": 0.002569182262742768, "data_time": 0.007246470451354981, "loss": 0.22767750844359397, "decode.loss_ce": 0.12802160531282425, "decode.acc_seg": 98.04356384277344, "aux.loss_ce": 0.09965589940547943, "aux.acc_seg": 97.29957580566406, "time": 1.117872667312622, "iter": 125800, "memory": 8704, "step": 125800} +{"lr": 0.0025659331010909883, "data_time": 0.006308603286743164, "loss": 0.3516126319766045, "decode.loss_ce": 0.19877840280532838, "decode.acc_seg": 96.58113861083984, "aux.loss_ce": 0.15283422991633416, "aux.acc_seg": 97.00870513916016, "time": 1.1197179079055786, "iter": 125850, "memory": 8704, "step": 125850} +{"lr": 0.002562683463685072, "data_time": 0.006400752067565918, "loss": 0.33421436995267867, "decode.loss_ce": 0.20837922841310502, "decode.acc_seg": 96.79081726074219, "aux.loss_ce": 0.1258351419121027, "aux.acc_seg": 95.55593872070312, "time": 1.1129948139190673, "iter": 125900, "memory": 8703, "step": 125900} +{"lr": 0.002559433349757619, "data_time": 0.006390810012817383, "loss": 0.2742054581642151, "decode.loss_ce": 0.1648017294704914, "decode.acc_seg": 95.87268829345703, "aux.loss_ce": 0.10940372683107853, "aux.acc_seg": 95.220947265625, "time": 1.112038540840149, "iter": 125950, "memory": 8704, "step": 125950} +{"lr": 0.002556182758538861, "data_time": 0.006513237953186035, "loss": 0.29890156611800195, "decode.loss_ce": 0.18754520677030087, "decode.acc_seg": 94.08270263671875, "aux.loss_ce": 0.11135635543614626, "aux.acc_seg": 91.19415283203125, "time": 1.1141381502151488, "iter": 126000, "memory": 8703, "step": 126000} +{"lr": 0.002552931689256648, "data_time": 0.006939053535461426, "loss": 0.32354770302772523, "decode.loss_ce": 0.1929408386349678, "decode.acc_seg": 88.00194549560547, "aux.loss_ce": 0.13060686290264129, "aux.acc_seg": 85.67078399658203, "time": 1.1189590692520142, "iter": 126050, "memory": 8704, "step": 126050} +{"lr": 0.0025496801411364497, "data_time": 0.006958365440368652, "loss": 0.3265936434268951, "decode.loss_ce": 0.21022274270653724, "decode.acc_seg": 95.97479248046875, "aux.loss_ce": 0.1163708996027708, "aux.acc_seg": 95.13848114013672, "time": 1.1176836490631104, "iter": 126100, "memory": 8704, "step": 126100} +{"lr": 0.0025464281134013303, "data_time": 0.006152725219726563, "loss": 0.27317784130573275, "decode.loss_ce": 0.14990926459431647, "decode.acc_seg": 96.90010833740234, "aux.loss_ce": 0.12326857969164848, "aux.acc_seg": 88.89630126953125, "time": 1.1149356365203857, "iter": 126150, "memory": 8703, "step": 126150} +{"lr": 0.0025431756052719462, "data_time": 0.006372857093811035, "loss": 0.38531686514616015, "decode.loss_ce": 0.2442160926759243, "decode.acc_seg": 90.17918395996094, "aux.loss_ce": 0.14110077023506165, "aux.acc_seg": 87.00554656982422, "time": 1.117699670791626, "iter": 126200, "memory": 8703, "step": 126200} +{"lr": 0.002539922615966535, "data_time": 0.007112622261047363, "loss": 0.3758296757936478, "decode.loss_ce": 0.22907293140888213, "decode.acc_seg": 88.53857421875, "aux.loss_ce": 0.14675673879683018, "aux.acc_seg": 86.77808380126953, "time": 1.113067054748535, "iter": 126250, "memory": 8704, "step": 126250} +{"lr": 0.0025366691447008963, "data_time": 0.007705879211425781, "loss": 0.26467558890581133, "decode.loss_ce": 0.16835768893361092, "decode.acc_seg": 83.61244201660156, "aux.loss_ce": 0.09631789959967137, "aux.acc_seg": 92.33734893798828, "time": 1.1134604215621948, "iter": 126300, "memory": 8703, "step": 126300} +{"lr": 0.0025334151906883907, "data_time": 0.007067489624023438, "loss": 0.41221087872982026, "decode.loss_ce": 0.24385577738285064, "decode.acc_seg": 97.75140380859375, "aux.loss_ce": 0.16835510581731797, "aux.acc_seg": 93.05888366699219, "time": 1.114669179916382, "iter": 126350, "memory": 8703, "step": 126350} +{"lr": 0.002530160753139921, "data_time": 0.005592608451843261, "loss": 0.2747366353869438, "decode.loss_ce": 0.15819083601236344, "decode.acc_seg": 92.64958190917969, "aux.loss_ce": 0.11654579937458039, "aux.acc_seg": 91.51344299316406, "time": 1.1139854431152343, "iter": 126400, "memory": 8704, "step": 126400} +{"lr": 0.0025269058312639286, "data_time": 0.0071354866027832035, "loss": 0.22633196264505387, "decode.loss_ce": 0.1343842551112175, "decode.acc_seg": 97.8118896484375, "aux.loss_ce": 0.09194770436733961, "aux.acc_seg": 97.68377685546875, "time": 1.1151375770568848, "iter": 126450, "memory": 8703, "step": 126450} +{"lr": 0.002523650424266371, "data_time": 0.00578153133392334, "loss": 0.5625658631324768, "decode.loss_ce": 0.3677764289081097, "decode.acc_seg": 91.33478546142578, "aux.loss_ce": 0.1947894286364317, "aux.acc_seg": 85.28257751464844, "time": 1.1144482135772704, "iter": 126500, "memory": 8704, "step": 126500} +{"lr": 0.0025203945313507195, "data_time": 0.006123685836791992, "loss": 0.24362329095602037, "decode.loss_ce": 0.13930737227201462, "decode.acc_seg": 95.89468383789062, "aux.loss_ce": 0.1043159218505025, "aux.acc_seg": 95.3980712890625, "time": 1.1169277906417847, "iter": 126550, "memory": 8703, "step": 126550} +{"lr": 0.0025171381517179467, "data_time": 0.007844233512878418, "loss": 0.27513338923454284, "decode.loss_ce": 0.16839161291718482, "decode.acc_seg": 91.18423461914062, "aux.loss_ce": 0.10674178190529346, "aux.acc_seg": 87.26952362060547, "time": 1.1173225402832032, "iter": 126600, "memory": 8703, "step": 126600} +{"lr": 0.002513881284566513, "data_time": 0.006474518775939941, "loss": 0.22050071954727174, "decode.loss_ce": 0.1324910454452038, "decode.acc_seg": 96.54421997070312, "aux.loss_ce": 0.08800967410206795, "aux.acc_seg": 96.10786437988281, "time": 1.1195560932159423, "iter": 126650, "memory": 8703, "step": 126650} +{"lr": 0.002510623929092352, "data_time": 0.007701659202575683, "loss": 0.21422309502959253, "decode.loss_ce": 0.13134851977229117, "decode.acc_seg": 97.42939758300781, "aux.loss_ce": 0.08287457376718521, "aux.acc_seg": 96.75369262695312, "time": 1.115287971496582, "iter": 126700, "memory": 8704, "step": 126700} +{"lr": 0.0025073660844888647, "data_time": 0.008129310607910157, "loss": 0.2749058485031128, "decode.loss_ce": 0.17107104808092116, "decode.acc_seg": 92.09575653076172, "aux.loss_ce": 0.10383479557931423, "aux.acc_seg": 84.03816223144531, "time": 1.1134113073349, "iter": 126750, "memory": 8704, "step": 126750} +{"lr": 0.002504107749946903, "data_time": 0.0063907384872436525, "loss": 0.28525940179824827, "decode.loss_ce": 0.19007778093218802, "decode.acc_seg": 96.51482391357422, "aux.loss_ce": 0.09518161788582802, "aux.acc_seg": 91.59367370605469, "time": 1.1137105464935302, "iter": 126800, "memory": 8703, "step": 126800} +{"lr": 0.0025008489246547607, "data_time": 0.005164504051208496, "loss": 0.35933109670877456, "decode.loss_ce": 0.23560712859034538, "decode.acc_seg": 97.27001190185547, "aux.loss_ce": 0.12372396513819695, "aux.acc_seg": 94.85651397705078, "time": 1.1092205286026, "iter": 126850, "memory": 8703, "step": 126850} +{"lr": 0.0024975896077981583, "data_time": 0.008185100555419923, "loss": 0.37775252014398575, "decode.loss_ce": 0.24186520725488664, "decode.acc_seg": 97.09465789794922, "aux.loss_ce": 0.13588730692863465, "aux.acc_seg": 96.44947052001953, "time": 1.1183526754379272, "iter": 126900, "memory": 8704, "step": 126900} +{"lr": 0.0024943297985602336, "data_time": 0.005662393569946289, "loss": 0.285881806910038, "decode.loss_ce": 0.17432301640510559, "decode.acc_seg": 93.23723602294922, "aux.loss_ce": 0.11155879013240337, "aux.acc_seg": 87.37983703613281, "time": 1.1121064662933349, "iter": 126950, "memory": 8704, "step": 126950} +{"lr": 0.002491069496121534, "data_time": 0.006237554550170899, "loss": 0.28223945796489713, "decode.loss_ce": 0.1788177505135536, "decode.acc_seg": 93.42403411865234, "aux.loss_ce": 0.10342171005904674, "aux.acc_seg": 85.68661499023438, "time": 1.119672179222107, "iter": 127000, "memory": 8704, "step": 127000} +{"lr": 0.0024878086996599925, "data_time": 0.006239891052246094, "loss": 0.2808046631515026, "decode.loss_ce": 0.18036139383912086, "decode.acc_seg": 89.3888931274414, "aux.loss_ce": 0.10044326893985271, "aux.acc_seg": 84.79527282714844, "time": 1.115594172477722, "iter": 127050, "memory": 8703, "step": 127050} +{"lr": 0.0024845474083509283, "data_time": 0.005098819732666016, "loss": 0.5552733644843102, "decode.loss_ce": 0.36873476058244703, "decode.acc_seg": 86.79783630371094, "aux.loss_ce": 0.18653859570622444, "aux.acc_seg": 84.12513732910156, "time": 1.1106881380081177, "iter": 127100, "memory": 8704, "step": 127100} +{"lr": 0.0024812856213670183, "data_time": 0.006316590309143067, "loss": 0.3430136203765869, "decode.loss_ce": 0.20443520098924636, "decode.acc_seg": 92.694091796875, "aux.loss_ce": 0.1385784216225147, "aux.acc_seg": 91.2470474243164, "time": 1.1137096405029296, "iter": 127150, "memory": 8704, "step": 127150} +{"lr": 0.0024780233378783063, "data_time": 0.006110429763793945, "loss": 0.3527248382568359, "decode.loss_ce": 0.22081184163689613, "decode.acc_seg": 96.57344818115234, "aux.loss_ce": 0.13191299699246883, "aux.acc_seg": 94.86007690429688, "time": 1.113096284866333, "iter": 127200, "memory": 8704, "step": 127200} +{"lr": 0.0024747605570521742, "data_time": 0.007284760475158691, "loss": 0.2972530424594879, "decode.loss_ce": 0.17216778844594954, "decode.acc_seg": 94.24164581298828, "aux.loss_ce": 0.12508525550365449, "aux.acc_seg": 83.94209289550781, "time": 1.1141457319259644, "iter": 127250, "memory": 8703, "step": 127250} +{"lr": 0.0024714972780533343, "data_time": 0.006796026229858398, "loss": 0.25428504049777984, "decode.loss_ce": 0.15779945403337478, "decode.acc_seg": 94.23179626464844, "aux.loss_ce": 0.09648558348417283, "aux.acc_seg": 92.84254455566406, "time": 1.1104360818862915, "iter": 127300, "memory": 8703, "step": 127300} +{"lr": 0.002468233500043818, "data_time": 0.00747220516204834, "loss": 0.3522603929042816, "decode.loss_ce": 0.2094075709581375, "decode.acc_seg": 90.09870910644531, "aux.loss_ce": 0.1428528182208538, "aux.acc_seg": 84.32573699951172, "time": 1.1174687623977662, "iter": 127350, "memory": 8703, "step": 127350} +{"lr": 0.002464969222182956, "data_time": 0.006772041320800781, "loss": 0.2844124332070351, "decode.loss_ce": 0.16296012103557586, "decode.acc_seg": 95.41142272949219, "aux.loss_ce": 0.12145231626927852, "aux.acc_seg": 88.24602508544922, "time": 1.1149374961853027, "iter": 127400, "memory": 8704, "step": 127400} +{"lr": 0.0024617044436273795, "data_time": 0.006879591941833496, "loss": 0.26966131031513213, "decode.loss_ce": 0.16602473482489585, "decode.acc_seg": 90.64495849609375, "aux.loss_ce": 0.10363656990230083, "aux.acc_seg": 85.68954467773438, "time": 1.1174436569213868, "iter": 127450, "memory": 8703, "step": 127450} +{"lr": 0.002458439163530992, "data_time": 0.006095433235168457, "loss": 0.3635833546519279, "decode.loss_ce": 0.22550736740231514, "decode.acc_seg": 71.951416015625, "aux.loss_ce": 0.13807598166167737, "aux.acc_seg": 68.76570129394531, "time": 1.1161046981811524, "iter": 127500, "memory": 8703, "step": 127500} +{"lr": 0.00245517338104497, "data_time": 0.007434582710266114, "loss": 0.37838524729013445, "decode.loss_ce": 0.22342914566397667, "decode.acc_seg": 97.28119659423828, "aux.loss_ce": 0.15495609417557715, "aux.acc_seg": 96.86857604980469, "time": 1.1206423044204712, "iter": 127550, "memory": 8704, "step": 127550} +{"lr": 0.0024519070953177356, "data_time": 0.006663107872009277, "loss": 0.3708545669913292, "decode.loss_ce": 0.2333886705338955, "decode.acc_seg": 97.18258666992188, "aux.loss_ce": 0.13746589422225952, "aux.acc_seg": 95.1112060546875, "time": 1.1104812622070312, "iter": 127600, "memory": 8704, "step": 127600} +{"lr": 0.002448640305494958, "data_time": 0.007822227478027344, "loss": 0.3267693370580673, "decode.loss_ce": 0.18912818059325218, "decode.acc_seg": 95.7779541015625, "aux.loss_ce": 0.1376411598175764, "aux.acc_seg": 93.01954650878906, "time": 1.1162470817565917, "iter": 127650, "memory": 8703, "step": 127650} +{"lr": 0.0024453730107195284, "data_time": 0.00719761848449707, "loss": 0.20455907583236693, "decode.loss_ce": 0.1230621799826622, "decode.acc_seg": 97.2860336303711, "aux.loss_ce": 0.08149689696729183, "aux.acc_seg": 96.92878723144531, "time": 1.1151594877243043, "iter": 127700, "memory": 8704, "step": 127700} +{"lr": 0.0024421052101315536, "data_time": 0.006256008148193359, "loss": 0.3427482098340988, "decode.loss_ce": 0.2071657657623291, "decode.acc_seg": 82.00104522705078, "aux.loss_ce": 0.13558244332671165, "aux.acc_seg": 73.61106872558594, "time": 1.114004898071289, "iter": 127750, "memory": 8704, "step": 127750} +{"lr": 0.0024388369028683406, "data_time": 0.006982231140136718, "loss": 0.4646774396300316, "decode.loss_ce": 0.28642088919878006, "decode.acc_seg": 93.72704315185547, "aux.loss_ce": 0.17825654558837414, "aux.acc_seg": 89.28800964355469, "time": 1.1154584407806396, "iter": 127800, "memory": 8704, "step": 127800} +{"lr": 0.0024355680880643795, "data_time": 0.006485962867736816, "loss": 0.29054694846272466, "decode.loss_ce": 0.17109545543789864, "decode.acc_seg": 91.68714141845703, "aux.loss_ce": 0.11945149004459381, "aux.acc_seg": 91.2294692993164, "time": 1.1143082857131958, "iter": 127850, "memory": 8704, "step": 127850} +{"lr": 0.002432298764851338, "data_time": 0.00759885311126709, "loss": 0.2962146244943142, "decode.loss_ce": 0.16510523930191995, "decode.acc_seg": 96.40863800048828, "aux.loss_ce": 0.13110937997698785, "aux.acc_seg": 91.74885559082031, "time": 1.118357253074646, "iter": 127900, "memory": 8704, "step": 127900} +{"lr": 0.0024290289323580416, "data_time": 0.0078873872756958, "loss": 0.29109907895326614, "decode.loss_ce": 0.1776234731078148, "decode.acc_seg": 96.54756927490234, "aux.loss_ce": 0.11347560659050941, "aux.acc_seg": 96.15433502197266, "time": 1.1141588926315307, "iter": 127950, "memory": 8705, "step": 127950} +{"lr": 0.002425758589710462, "data_time": 0.007020401954650879, "loss": 0.2938701152801514, "decode.loss_ce": 0.17573824524879456, "decode.acc_seg": 89.4140853881836, "aux.loss_ce": 0.11813186630606651, "aux.acc_seg": 84.84020233154297, "time": 1.113928985595703, "iter": 128000, "memory": 8704, "step": 128000} +{"aAcc": 93.27, "mIoU": 66.1, "mAcc": 74.82, "data_time": 0.004391315932597682, "time": 0.2717580027015168, "step": 128000} +{"lr": 0.002422487736031702, "data_time": 0.007634639739990234, "loss": 0.291434234380722, "decode.loss_ce": 0.15941780880093576, "decode.acc_seg": 95.97498321533203, "aux.loss_ce": 0.13201642632484437, "aux.acc_seg": 90.92998504638672, "time": 1.1131808280944824, "iter": 128050, "memory": 8703, "step": 128050} +{"lr": 0.0024192163704419827, "data_time": 0.006169652938842774, "loss": 0.3489048793911934, "decode.loss_ce": 0.21061071157455444, "decode.acc_seg": 86.62681579589844, "aux.loss_ce": 0.1382941674441099, "aux.acc_seg": 78.912353515625, "time": 1.1148936033248902, "iter": 128100, "memory": 8703, "step": 128100} +{"lr": 0.0024159444920586292, "data_time": 0.006964921951293945, "loss": 0.20059435665607453, "decode.loss_ce": 0.12897481471300126, "decode.acc_seg": 96.37018585205078, "aux.loss_ce": 0.07161954082548619, "aux.acc_seg": 95.74317932128906, "time": 1.1119178533554077, "iter": 128150, "memory": 8703, "step": 128150} +{"lr": 0.002412672099996056, "data_time": 0.006714558601379395, "loss": 0.3778848022222519, "decode.loss_ce": 0.21397677809000015, "decode.acc_seg": 95.330810546875, "aux.loss_ce": 0.16390802338719368, "aux.acc_seg": 92.6839828491211, "time": 1.1132609128952027, "iter": 128200, "memory": 8704, "step": 128200} +{"lr": 0.0024093991933657544, "data_time": 0.007488179206848145, "loss": 0.4173940896987915, "decode.loss_ce": 0.28177434056997297, "decode.acc_seg": 90.64432525634766, "aux.loss_ce": 0.1356197487562895, "aux.acc_seg": 89.49756622314453, "time": 1.1145538568496705, "iter": 128250, "memory": 8703, "step": 128250} +{"lr": 0.0024061257712762775, "data_time": 0.007015013694763183, "loss": 0.353491722792387, "decode.loss_ce": 0.2256614200770855, "decode.acc_seg": 97.23548889160156, "aux.loss_ce": 0.12783029563724996, "aux.acc_seg": 96.95587158203125, "time": 1.116380548477173, "iter": 128300, "memory": 8703, "step": 128300} +{"lr": 0.0024028518328332235, "data_time": 0.006145930290222168, "loss": 0.2837009444832802, "decode.loss_ce": 0.17098148837685584, "decode.acc_seg": 94.8103256225586, "aux.loss_ce": 0.11271945424377919, "aux.acc_seg": 91.15776824951172, "time": 1.1096001148223877, "iter": 128350, "memory": 8703, "step": 128350} +{"lr": 0.0023995773771392213, "data_time": 0.005620002746582031, "loss": 0.3569322809576988, "decode.loss_ce": 0.2195793606340885, "decode.acc_seg": 96.75032043457031, "aux.loss_ce": 0.13735292069613933, "aux.acc_seg": 94.50594329833984, "time": 1.112267827987671, "iter": 128400, "memory": 8704, "step": 128400} +{"lr": 0.00239630240329392, "data_time": 0.007382822036743164, "loss": 0.3390598863363266, "decode.loss_ce": 0.20674426779150962, "decode.acc_seg": 81.74158477783203, "aux.loss_ce": 0.13231561779975892, "aux.acc_seg": 74.2071762084961, "time": 1.113588571548462, "iter": 128450, "memory": 8703, "step": 128450} +{"lr": 0.002393026910393977, "data_time": 0.007345080375671387, "loss": 0.2346995808184147, "decode.loss_ce": 0.1423703134059906, "decode.acc_seg": 96.29398345947266, "aux.loss_ce": 0.0923292689025402, "aux.acc_seg": 93.68436431884766, "time": 1.1184311866760255, "iter": 128500, "memory": 8703, "step": 128500} +{"lr": 0.00238975089753303, "data_time": 0.007174372673034668, "loss": 0.3276243105530739, "decode.loss_ce": 0.1864500477910042, "decode.acc_seg": 95.88711547851562, "aux.loss_ce": 0.14117426052689552, "aux.acc_seg": 90.58977508544922, "time": 1.1164082288742065, "iter": 128550, "memory": 8704, "step": 128550} +{"lr": 0.0023864743638016953, "data_time": 0.006158137321472168, "loss": 0.27401198744773864, "decode.loss_ce": 0.15374004170298577, "decode.acc_seg": 97.6136474609375, "aux.loss_ce": 0.12027194499969482, "aux.acc_seg": 96.65711212158203, "time": 1.1173389911651612, "iter": 128600, "memory": 8704, "step": 128600} +{"lr": 0.002383197308287546, "data_time": 0.007175135612487793, "loss": 0.27073136568069456, "decode.loss_ce": 0.1559196814894676, "decode.acc_seg": 96.13493347167969, "aux.loss_ce": 0.11481168381869793, "aux.acc_seg": 94.26841735839844, "time": 1.1198838233947754, "iter": 128650, "memory": 8703, "step": 128650} +{"lr": 0.0023799197300751035, "data_time": 0.009133338928222656, "loss": 0.2875808209180832, "decode.loss_ce": 0.18379819840192796, "decode.acc_seg": 97.58930206298828, "aux.loss_ce": 0.10378262177109718, "aux.acc_seg": 94.57123565673828, "time": 1.121885085105896, "iter": 128700, "memory": 8703, "step": 128700} +{"lr": 0.0023766416282458096, "data_time": 0.007175350189208984, "loss": 0.3352220579981804, "decode.loss_ce": 0.1880033940076828, "decode.acc_seg": 93.75572204589844, "aux.loss_ce": 0.14721866846084594, "aux.acc_seg": 84.31269073486328, "time": 1.1151154518127442, "iter": 128750, "memory": 8704, "step": 128750} +{"lr": 0.002373363001878027, "data_time": 0.00637667179107666, "loss": 0.34662638753652575, "decode.loss_ce": 0.21112119555473327, "decode.acc_seg": 76.3174057006836, "aux.loss_ce": 0.13550518602132797, "aux.acc_seg": 72.76985931396484, "time": 1.1166862964630127, "iter": 128800, "memory": 8703, "step": 128800} +{"lr": 0.0023700838500470144, "data_time": 0.007004451751708984, "loss": 0.27421475052833555, "decode.loss_ce": 0.17570752799510955, "decode.acc_seg": 95.64945983886719, "aux.loss_ce": 0.09850721918046475, "aux.acc_seg": 95.16716003417969, "time": 1.1123239517211914, "iter": 128850, "memory": 8704, "step": 128850} +{"lr": 0.0023668041718249077, "data_time": 0.0060549497604370115, "loss": 0.3661466225981712, "decode.loss_ce": 0.23010833114385604, "decode.acc_seg": 91.53251647949219, "aux.loss_ce": 0.1360382955521345, "aux.acc_seg": 85.97196197509766, "time": 1.1149232387542725, "iter": 128900, "memory": 8704, "step": 128900} +{"lr": 0.0023635239662807162, "data_time": 0.007992029190063477, "loss": 0.433877258002758, "decode.loss_ce": 0.2485364444553852, "decode.acc_seg": 86.1175537109375, "aux.loss_ce": 0.18534081242978573, "aux.acc_seg": 82.18853759765625, "time": 1.1158620357513427, "iter": 128950, "memory": 8704, "step": 128950} +{"lr": 0.002360243232480302, "data_time": 0.005954837799072266, "loss": 0.36785982698202135, "decode.loss_ce": 0.2311511032283306, "decode.acc_seg": 93.62271118164062, "aux.loss_ce": 0.136708727106452, "aux.acc_seg": 86.59788513183594, "time": 1.112120771408081, "iter": 129000, "memory": 8703, "step": 129000} +{"lr": 0.00235696196948636, "data_time": 0.006460261344909668, "loss": 0.4397887349128723, "decode.loss_ce": 0.2847225919365883, "decode.acc_seg": 95.3044204711914, "aux.loss_ce": 0.15506614930927753, "aux.acc_seg": 87.13982391357422, "time": 1.1168372869491576, "iter": 129050, "memory": 8705, "step": 129050} +{"lr": 0.002353680176358399, "data_time": 0.007429695129394532, "loss": 0.33467570394277574, "decode.loss_ce": 0.20536961928009986, "decode.acc_seg": 94.62661743164062, "aux.loss_ce": 0.12930608168244362, "aux.acc_seg": 93.25523376464844, "time": 1.1197494983673095, "iter": 129100, "memory": 8704, "step": 129100} +{"lr": 0.002350397852152744, "data_time": 0.0072575569152832035, "loss": 0.30005224645137785, "decode.loss_ce": 0.1828911356627941, "decode.acc_seg": 91.95804595947266, "aux.loss_ce": 0.11716111525893211, "aux.acc_seg": 89.1519546508789, "time": 1.1126373052597045, "iter": 129150, "memory": 8704, "step": 129150} +{"lr": 0.0023471149959224977, "data_time": 0.007125186920166016, "loss": 0.4891752406954765, "decode.loss_ce": 0.335478936880827, "decode.acc_seg": 96.62735748291016, "aux.loss_ce": 0.1536963079124689, "aux.acc_seg": 91.7594223022461, "time": 1.1157772064208984, "iter": 129200, "memory": 8704, "step": 129200} +{"lr": 0.0023438316067175397, "data_time": 0.007535862922668457, "loss": 0.2484907552599907, "decode.loss_ce": 0.15653006732463837, "decode.acc_seg": 92.42063903808594, "aux.loss_ce": 0.09196068495512008, "aux.acc_seg": 90.06430053710938, "time": 1.1120812892913818, "iter": 129250, "memory": 8703, "step": 129250} +{"lr": 0.002340547683584505, "data_time": 0.008987736701965333, "loss": 0.22821866422891618, "decode.loss_ce": 0.12713534981012345, "decode.acc_seg": 97.91876220703125, "aux.loss_ce": 0.10108331702649594, "aux.acc_seg": 82.83547973632812, "time": 1.1165830850601197, "iter": 129300, "memory": 8703, "step": 129300} +{"lr": 0.002337263225566765, "data_time": 0.007428479194641113, "loss": 0.32645600140094755, "decode.loss_ce": 0.1943215925246477, "decode.acc_seg": 98.07090759277344, "aux.loss_ce": 0.13213441371917725, "aux.acc_seg": 97.92289733886719, "time": 1.1153014421463012, "iter": 129350, "memory": 8703, "step": 129350} +{"lr": 0.0023339782317044156, "data_time": 0.00784766674041748, "loss": 0.3291022352874279, "decode.loss_ce": 0.19764768108725547, "decode.acc_seg": 91.86153411865234, "aux.loss_ce": 0.13145455345511436, "aux.acc_seg": 85.28060913085938, "time": 1.1193354845046997, "iter": 129400, "memory": 8703, "step": 129400} +{"lr": 0.002330692701034253, "data_time": 0.008193540573120116, "loss": 0.28021198362112043, "decode.loss_ce": 0.17011032477021218, "decode.acc_seg": 95.11457824707031, "aux.loss_ce": 0.1101016603410244, "aux.acc_seg": 94.83203887939453, "time": 1.1168725728988647, "iter": 129450, "memory": 8703, "step": 129450} +{"lr": 0.002327406632589774, "data_time": 0.00679936408996582, "loss": 0.3467847302556038, "decode.loss_ce": 0.20152331441640853, "decode.acc_seg": 92.45611572265625, "aux.loss_ce": 0.14526141807436943, "aux.acc_seg": 91.1688461303711, "time": 1.1160908222198487, "iter": 129500, "memory": 8704, "step": 129500} +{"lr": 0.0023241200254011376, "data_time": 0.007009482383728028, "loss": 0.37167801558971403, "decode.loss_ce": 0.21915292367339134, "decode.acc_seg": 91.66657257080078, "aux.loss_ce": 0.1525250945240259, "aux.acc_seg": 89.23677825927734, "time": 1.118907380104065, "iter": 129550, "memory": 8704, "step": 129550} +{"lr": 0.0023208328784951617, "data_time": 0.006961679458618164, "loss": 0.3599153533577919, "decode.loss_ce": 0.21046690344810487, "decode.acc_seg": 95.0110092163086, "aux.loss_ce": 0.14944844469428062, "aux.acc_seg": 82.26591491699219, "time": 1.1167023181915283, "iter": 129600, "memory": 8703, "step": 129600} +{"lr": 0.002317545190895307, "data_time": 0.006398987770080566, "loss": 0.32160803079605105, "decode.loss_ce": 0.19561130329966545, "decode.acc_seg": 93.17327880859375, "aux.loss_ce": 0.1259967241436243, "aux.acc_seg": 84.83142852783203, "time": 1.1191512823104859, "iter": 129650, "memory": 8704, "step": 129650} +{"lr": 0.002314256961621647, "data_time": 0.007130098342895508, "loss": 0.23537315428256989, "decode.loss_ce": 0.1423097036778927, "decode.acc_seg": 97.68180847167969, "aux.loss_ce": 0.09306344836950302, "aux.acc_seg": 96.4427261352539, "time": 1.1137504816055297, "iter": 129700, "memory": 8704, "step": 129700} +{"lr": 0.002310968189690863, "data_time": 0.007093596458435059, "loss": 0.25320936292409896, "decode.loss_ce": 0.16250813752412796, "decode.acc_seg": 94.50447845458984, "aux.loss_ce": 0.09070122465491295, "aux.acc_seg": 94.15931701660156, "time": 1.1127737998962401, "iter": 129750, "memory": 8703, "step": 129750} +{"lr": 0.0023076788741162257, "data_time": 0.006239509582519532, "loss": 0.3821453168988228, "decode.loss_ce": 0.22785815745592117, "decode.acc_seg": 96.3263168334961, "aux.loss_ce": 0.15428715758025646, "aux.acc_seg": 95.43850708007812, "time": 1.1143158674240112, "iter": 129800, "memory": 8703, "step": 129800} +{"lr": 0.0023043890139075717, "data_time": 0.006090569496154785, "loss": 0.31401617974042895, "decode.loss_ce": 0.18624263927340506, "decode.acc_seg": 92.44435119628906, "aux.loss_ce": 0.12777354791760445, "aux.acc_seg": 87.28109741210938, "time": 1.1147814035415649, "iter": 129850, "memory": 8704, "step": 129850} +{"lr": 0.002301098608071288, "data_time": 0.006238102912902832, "loss": 0.29334141314029694, "decode.loss_ce": 0.18353788554668427, "decode.acc_seg": 85.68267822265625, "aux.loss_ce": 0.10980352647602558, "aux.acc_seg": 77.14868927001953, "time": 1.1144715785980224, "iter": 129900, "memory": 8704, "step": 129900} +{"lr": 0.002297807655610297, "data_time": 0.007071971893310547, "loss": 0.26983426213264466, "decode.loss_ce": 0.1639415066689253, "decode.acc_seg": 94.20845031738281, "aux.loss_ce": 0.10589275918900967, "aux.acc_seg": 89.22753143310547, "time": 1.1196465730667113, "iter": 129950, "memory": 8703, "step": 129950} +{"lr": 0.0022945161555240428, "data_time": 0.008044886589050292, "loss": 0.40919350683689115, "decode.loss_ce": 0.24968311041593552, "decode.acc_seg": 90.68489074707031, "aux.loss_ce": 0.15951039493083954, "aux.acc_seg": 78.7735595703125, "time": 1.1187919616699218, "iter": 130000, "memory": 8703, "step": 130000} +{"lr": 0.0022912241068084537, "data_time": 0.0068225860595703125, "loss": 0.31565742939710617, "decode.loss_ce": 0.19475989751517772, "decode.acc_seg": 96.26235961914062, "aux.loss_ce": 0.12089753709733486, "aux.acc_seg": 94.13267517089844, "time": 1.1153920650482179, "iter": 130050, "memory": 8703, "step": 130050} +{"lr": 0.002287931508455949, "data_time": 0.00669713020324707, "loss": 0.32084968835115435, "decode.loss_ce": 0.20208155140280723, "decode.acc_seg": 95.3958511352539, "aux.loss_ce": 0.1187681332230568, "aux.acc_seg": 85.19184875488281, "time": 1.1184840440750121, "iter": 130100, "memory": 8703, "step": 130100} +{"lr": 0.0022846383594554032, "data_time": 0.006363320350646973, "loss": 0.25382875837385654, "decode.loss_ce": 0.15772893764078616, "decode.acc_seg": 91.5949478149414, "aux.loss_ce": 0.0960998211055994, "aux.acc_seg": 87.07453155517578, "time": 1.1113245725631713, "iter": 130150, "memory": 8703, "step": 130150} +{"lr": 0.002281344658792136, "data_time": 0.0059616327285766605, "loss": 0.3232860192656517, "decode.loss_ce": 0.2023096777498722, "decode.acc_seg": 81.44060516357422, "aux.loss_ce": 0.12097633667290211, "aux.acc_seg": 76.63116455078125, "time": 1.1147783994674683, "iter": 130200, "memory": 8704, "step": 130200} +{"lr": 0.002278050405447892, "data_time": 0.006352734565734863, "loss": 0.36405461877584455, "decode.loss_ce": 0.23352715671062468, "decode.acc_seg": 94.19036865234375, "aux.loss_ce": 0.13052746690809727, "aux.acc_seg": 88.7667007446289, "time": 1.1109359502792358, "iter": 130250, "memory": 8703, "step": 130250} +{"lr": 0.002274755598400824, "data_time": 0.008278918266296387, "loss": 0.3441690936684608, "decode.loss_ce": 0.19763203114271163, "decode.acc_seg": 90.26069641113281, "aux.loss_ce": 0.14653706252574922, "aux.acc_seg": 82.52035522460938, "time": 1.1164336681365967, "iter": 130300, "memory": 8703, "step": 130300} +{"lr": 0.0022714602366254656, "data_time": 0.0073442220687866214, "loss": 0.27775587141513824, "decode.loss_ce": 0.17067494839429856, "decode.acc_seg": 89.15398406982422, "aux.loss_ce": 0.10708092376589776, "aux.acc_seg": 86.01760864257812, "time": 1.1171683073043823, "iter": 130350, "memory": 8703, "step": 130350} +{"lr": 0.002268164319092722, "data_time": 0.005969786643981933, "loss": 0.3805562548339367, "decode.loss_ce": 0.23144383430480958, "decode.acc_seg": 92.18628692626953, "aux.loss_ce": 0.1491124201565981, "aux.acc_seg": 89.6781234741211, "time": 1.1121967792510987, "iter": 130400, "memory": 8703, "step": 130400} +{"lr": 0.0022648678447698524, "data_time": 0.0081986665725708, "loss": 0.23557949513196946, "decode.loss_ce": 0.144888586550951, "decode.acc_seg": 95.83282470703125, "aux.loss_ce": 0.0906909067183733, "aux.acc_seg": 93.70231628417969, "time": 1.1203084945678712, "iter": 130450, "memory": 8704, "step": 130450} +{"lr": 0.002261570812620436, "data_time": 0.006378960609436035, "loss": 0.4310066357254982, "decode.loss_ce": 0.2600714720785618, "decode.acc_seg": 89.60997009277344, "aux.loss_ce": 0.1709351684898138, "aux.acc_seg": 89.20370483398438, "time": 1.1120576858520508, "iter": 130500, "memory": 8703, "step": 130500} +{"lr": 0.00225827322160437, "data_time": 0.007641792297363281, "loss": 0.38436809927225113, "decode.loss_ce": 0.22890258803963662, "decode.acc_seg": 95.84623718261719, "aux.loss_ce": 0.15546550340950488, "aux.acc_seg": 95.11375427246094, "time": 1.1175243139266968, "iter": 130550, "memory": 8703, "step": 130550} +{"lr": 0.0022549750706778405, "data_time": 0.007401227951049805, "loss": 0.4176135376095772, "decode.loss_ce": 0.2528119571506977, "decode.acc_seg": 85.81275939941406, "aux.loss_ce": 0.16480158120393754, "aux.acc_seg": 81.3849105834961, "time": 1.1149261474609375, "iter": 130600, "memory": 8703, "step": 130600} +{"lr": 0.002251676358793307, "data_time": 0.006545329093933105, "loss": 0.41103838980197904, "decode.loss_ce": 0.26699524745345116, "decode.acc_seg": 95.53565979003906, "aux.loss_ce": 0.14404314160346984, "aux.acc_seg": 92.45465087890625, "time": 1.1111042737960815, "iter": 130650, "memory": 8704, "step": 130650} +{"lr": 0.00224837708489948, "data_time": 0.006942105293273926, "loss": 0.3376719981431961, "decode.loss_ce": 0.21600973680615426, "decode.acc_seg": 95.05754852294922, "aux.loss_ce": 0.12166226096451283, "aux.acc_seg": 94.22212982177734, "time": 1.1178027868270874, "iter": 130700, "memory": 8704, "step": 130700} +{"lr": 0.0022450772479413006, "data_time": 0.007893514633178712, "loss": 0.33388532400131227, "decode.loss_ce": 0.20168663561344147, "decode.acc_seg": 96.32389831542969, "aux.loss_ce": 0.13219868950545788, "aux.acc_seg": 95.03040313720703, "time": 1.1190289735794068, "iter": 130750, "memory": 8703, "step": 130750} +{"lr": 0.0022417768468599233, "data_time": 0.005707144737243652, "loss": 0.3694893904030323, "decode.loss_ce": 0.22736187949776648, "decode.acc_seg": 95.36335754394531, "aux.loss_ce": 0.14212750867009163, "aux.acc_seg": 89.19734954833984, "time": 1.1077563524246217, "iter": 130800, "memory": 8704, "step": 130800} +{"lr": 0.0022384758805926983, "data_time": 0.008473992347717285, "loss": 0.4185408025979996, "decode.loss_ce": 0.24924756065011025, "decode.acc_seg": 92.97764587402344, "aux.loss_ce": 0.16929324194788933, "aux.acc_seg": 89.4227294921875, "time": 1.1162588596343994, "iter": 130850, "memory": 8703, "step": 130850} +{"lr": 0.0022351743480731427, "data_time": 0.007247710227966308, "loss": 0.27068965807557105, "decode.loss_ce": 0.16571924462914467, "decode.acc_seg": 95.35713195800781, "aux.loss_ce": 0.10497041121125221, "aux.acc_seg": 91.67791748046875, "time": 1.1161487102508545, "iter": 130900, "memory": 8704, "step": 130900} +{"lr": 0.0022318722482309273, "data_time": 0.008094334602355957, "loss": 0.30962867140769956, "decode.loss_ce": 0.18619223609566687, "decode.acc_seg": 91.2833480834961, "aux.loss_ce": 0.12343643382191657, "aux.acc_seg": 83.44103240966797, "time": 1.1183775901794433, "iter": 130950, "memory": 8704, "step": 130950} +{"lr": 0.0022285695799918537, "data_time": 0.006698894500732422, "loss": 0.3219151541590691, "decode.loss_ce": 0.19743457511067392, "decode.acc_seg": 96.60797119140625, "aux.loss_ce": 0.12448057904839516, "aux.acc_seg": 93.17219543457031, "time": 1.1159667253494263, "iter": 131000, "memory": 8704, "step": 131000} +{"lr": 0.002225266342277837, "data_time": 0.00809650421142578, "loss": 0.36031727492809296, "decode.loss_ce": 0.2130682125687599, "decode.acc_seg": 92.67418670654297, "aux.loss_ce": 0.14724906347692013, "aux.acc_seg": 76.90155792236328, "time": 1.119970679283142, "iter": 131050, "memory": 8704, "step": 131050} +{"lr": 0.0022219625340068735, "data_time": 0.006905555725097656, "loss": 0.2980317622423172, "decode.loss_ce": 0.17828584164381028, "decode.acc_seg": 94.57594299316406, "aux.loss_ce": 0.1197459153831005, "aux.acc_seg": 91.6519775390625, "time": 1.1136060953140259, "iter": 131100, "memory": 8704, "step": 131100} +{"lr": 0.002218658154093035, "data_time": 0.008366847038269043, "loss": 0.28077650964260104, "decode.loss_ce": 0.17890157476067542, "decode.acc_seg": 92.07731628417969, "aux.loss_ce": 0.1018749326467514, "aux.acc_seg": 81.97294616699219, "time": 1.1142399549484252, "iter": 131150, "memory": 8703, "step": 131150} +{"lr": 0.0022153532014464387, "data_time": 0.006231188774108887, "loss": 0.26985719949007037, "decode.loss_ce": 0.15277406871318816, "decode.acc_seg": 96.84477996826172, "aux.loss_ce": 0.11708313338458538, "aux.acc_seg": 96.19374084472656, "time": 1.1137781620025635, "iter": 131200, "memory": 8703, "step": 131200} +{"lr": 0.0022120476749732296, "data_time": 0.00892949104309082, "loss": 0.3277756243944168, "decode.loss_ce": 0.19914782643318177, "decode.acc_seg": 92.19646453857422, "aux.loss_ce": 0.1286277987062931, "aux.acc_seg": 89.28260803222656, "time": 1.114544939994812, "iter": 131250, "memory": 8704, "step": 131250} +{"lr": 0.0022087415735755553, "data_time": 0.00709984302520752, "loss": 0.2759925127029419, "decode.loss_ce": 0.15836973935365678, "decode.acc_seg": 92.50869750976562, "aux.loss_ce": 0.11762277968227863, "aux.acc_seg": 89.60062408447266, "time": 1.114595079421997, "iter": 131300, "memory": 8704, "step": 131300} +{"lr": 0.0022054348961515467, "data_time": 0.007802915573120117, "loss": 0.3022519573569298, "decode.loss_ce": 0.17884540259838105, "decode.acc_seg": 96.20106506347656, "aux.loss_ce": 0.12340655326843261, "aux.acc_seg": 90.96145629882812, "time": 1.1165821075439453, "iter": 131350, "memory": 8704, "step": 131350} +{"lr": 0.0022021276415952963, "data_time": 0.007270622253417969, "loss": 0.30472579002380373, "decode.loss_ce": 0.18087453842163087, "decode.acc_seg": 93.57837677001953, "aux.loss_ce": 0.12385125011205673, "aux.acc_seg": 91.74410247802734, "time": 1.115725588798523, "iter": 131400, "memory": 8703, "step": 131400} +{"lr": 0.0021988198087968354, "data_time": 0.006524014472961426, "loss": 0.37018370926380156, "decode.loss_ce": 0.2271643489599228, "decode.acc_seg": 95.38282012939453, "aux.loss_ce": 0.14301936104893684, "aux.acc_seg": 95.92964935302734, "time": 1.1113348722457885, "iter": 131450, "memory": 8703, "step": 131450} +{"lr": 0.002195511396642116, "data_time": 0.006726694107055664, "loss": 0.2749760091304779, "decode.loss_ce": 0.15934924483299256, "decode.acc_seg": 94.02751922607422, "aux.loss_ce": 0.11562676429748535, "aux.acc_seg": 93.45097351074219, "time": 1.113086175918579, "iter": 131500, "memory": 8704, "step": 131500} +{"lr": 0.002192202404012983, "data_time": 0.0068361759185791016, "loss": 0.33705427050590514, "decode.loss_ce": 0.21469347029924393, "decode.acc_seg": 85.98168182373047, "aux.loss_ce": 0.1223607998341322, "aux.acc_seg": 84.8502426147461, "time": 1.1144523859024047, "iter": 131550, "memory": 8703, "step": 131550} +{"lr": 0.0021888928297871526, "data_time": 0.006165814399719238, "loss": 0.2602137789130211, "decode.loss_ce": 0.1591137409210205, "decode.acc_seg": 96.34163665771484, "aux.loss_ce": 0.10110003799200058, "aux.acc_seg": 87.92082214355469, "time": 1.1097506523132323, "iter": 131600, "memory": 8703, "step": 131600} +{"lr": 0.002185582672838194, "data_time": 0.006457281112670898, "loss": 0.2747024044394493, "decode.loss_ce": 0.16055211275815964, "decode.acc_seg": 94.02616119384766, "aux.loss_ce": 0.11415029317140579, "aux.acc_seg": 88.94901275634766, "time": 1.1108102083206177, "iter": 131650, "memory": 8703, "step": 131650} +{"lr": 0.002182271932035498, "data_time": 0.007704401016235351, "loss": 0.3953461706638336, "decode.loss_ce": 0.20973260179162026, "decode.acc_seg": 96.87919616699219, "aux.loss_ce": 0.1856135681271553, "aux.acc_seg": 85.52780151367188, "time": 1.1132061004638671, "iter": 131700, "memory": 8704, "step": 131700} +{"lr": 0.002178960606244271, "data_time": 0.0072508096694946286, "loss": 0.32041447311639787, "decode.loss_ce": 0.19806744083762168, "decode.acc_seg": 72.5052490234375, "aux.loss_ce": 0.12234703116118908, "aux.acc_seg": 75.26378631591797, "time": 1.1148086786270142, "iter": 131750, "memory": 8703, "step": 131750} +{"lr": 0.002175648694325491, "data_time": 0.005585289001464844, "loss": 0.25618438199162485, "decode.loss_ce": 0.15479663088917733, "decode.acc_seg": 91.49309539794922, "aux.loss_ce": 0.10138774886727334, "aux.acc_seg": 89.2548828125, "time": 1.1134790897369384, "iter": 131800, "memory": 8703, "step": 131800} +{"lr": 0.0021723361951359026, "data_time": 0.007503581047058105, "loss": 0.35714500695466994, "decode.loss_ce": 0.20374367907643318, "decode.acc_seg": 88.61115264892578, "aux.loss_ce": 0.15340132899582387, "aux.acc_seg": 81.43749237060547, "time": 1.114437174797058, "iter": 131850, "memory": 8704, "step": 131850} +{"lr": 0.002169023107527981, "data_time": 0.008676767349243164, "loss": 0.30398536324501035, "decode.loss_ce": 0.1807968519628048, "decode.acc_seg": 95.47207641601562, "aux.loss_ce": 0.12318850979208947, "aux.acc_seg": 94.50460815429688, "time": 1.120469832420349, "iter": 131900, "memory": 8703, "step": 131900} +{"lr": 0.0021657094303499116, "data_time": 0.0068377494812011715, "loss": 0.2458568722009659, "decode.loss_ce": 0.1552427478134632, "decode.acc_seg": 93.88777160644531, "aux.loss_ce": 0.09061412364244462, "aux.acc_seg": 90.21282196044922, "time": 1.1165839672088622, "iter": 131950, "memory": 8705, "step": 131950} +{"lr": 0.0021623951624455753, "data_time": 0.00714259147644043, "loss": 0.45106695741415026, "decode.loss_ce": 0.2757545568048954, "decode.acc_seg": 95.35051727294922, "aux.loss_ce": 0.17531239464879037, "aux.acc_seg": 77.90158081054688, "time": 1.1168068647384644, "iter": 132000, "memory": 8704, "step": 132000} +{"lr": 0.0021590803026545063, "data_time": 0.006237149238586426, "loss": 0.34523324519395826, "decode.loss_ce": 0.20629321038722992, "decode.acc_seg": 89.80464935302734, "aux.loss_ce": 0.1389400340616703, "aux.acc_seg": 88.18746948242188, "time": 1.1164474725723266, "iter": 132050, "memory": 8704, "step": 132050} +{"lr": 0.0021557648498118868, "data_time": 0.006967806816101074, "loss": 0.2696065932512283, "decode.loss_ce": 0.16124100014567375, "decode.acc_seg": 95.15564727783203, "aux.loss_ce": 0.1083655945956707, "aux.acc_seg": 93.78350067138672, "time": 1.1153237104415894, "iter": 132100, "memory": 8703, "step": 132100} +{"lr": 0.002152448802748517, "data_time": 0.006761622428894043, "loss": 0.3233657516539097, "decode.loss_ce": 0.2065016023814678, "decode.acc_seg": 90.40794372558594, "aux.loss_ce": 0.11686414256691932, "aux.acc_seg": 86.47289276123047, "time": 1.1145586490631103, "iter": 132150, "memory": 8704, "step": 132150} +{"lr": 0.002149132160290778, "data_time": 0.007167434692382813, "loss": 0.3078815802931786, "decode.loss_ce": 0.1810914047062397, "decode.acc_seg": 92.66602325439453, "aux.loss_ce": 0.12679017372429371, "aux.acc_seg": 82.63411712646484, "time": 1.1144895553588867, "iter": 132200, "memory": 8704, "step": 132200} +{"lr": 0.0021458149212606266, "data_time": 0.007056021690368652, "loss": 0.2256200060248375, "decode.loss_ce": 0.1370757907629013, "decode.acc_seg": 94.58477783203125, "aux.loss_ce": 0.08854421488940716, "aux.acc_seg": 89.03166198730469, "time": 1.1136623859405517, "iter": 132250, "memory": 8703, "step": 132250} +{"lr": 0.0021424970844755595, "data_time": 0.008187556266784668, "loss": 0.24291970282793046, "decode.loss_ce": 0.1443638950586319, "decode.acc_seg": 95.965576171875, "aux.loss_ce": 0.0985558070242405, "aux.acc_seg": 89.9017333984375, "time": 1.1139763593673706, "iter": 132300, "memory": 8703, "step": 132300} +{"lr": 0.00213917864874859, "data_time": 0.007249665260314941, "loss": 0.2053607776761055, "decode.loss_ce": 0.12701151818037032, "decode.acc_seg": 93.14556121826172, "aux.loss_ce": 0.07834925651550292, "aux.acc_seg": 89.34662628173828, "time": 1.1165220975875854, "iter": 132350, "memory": 8703, "step": 132350} +{"lr": 0.002135859612888224, "data_time": 0.007648754119873047, "loss": 0.30012607425451276, "decode.loss_ce": 0.18667484298348427, "decode.acc_seg": 94.06292724609375, "aux.loss_ce": 0.11345123164355755, "aux.acc_seg": 89.28629302978516, "time": 1.116431760787964, "iter": 132400, "memory": 8704, "step": 132400} +{"lr": 0.0021325399756984336, "data_time": 0.007676529884338379, "loss": 0.3286730617284775, "decode.loss_ce": 0.2050501137971878, "decode.acc_seg": 93.07740020751953, "aux.loss_ce": 0.12362294495105744, "aux.acc_seg": 92.94204711914062, "time": 1.1150113821029664, "iter": 132450, "memory": 8703, "step": 132450} +{"lr": 0.0021292197359786317, "data_time": 0.0062885284423828125, "loss": 0.24920786619186402, "decode.loss_ce": 0.13183823823928834, "decode.acc_seg": 91.27677917480469, "aux.loss_ce": 0.11736962907016277, "aux.acc_seg": 86.30117797851562, "time": 1.114313292503357, "iter": 132500, "memory": 8703, "step": 132500} +{"lr": 0.002125898892523648, "data_time": 0.006887197494506836, "loss": 0.2684076100587845, "decode.loss_ce": 0.156973747164011, "decode.acc_seg": 95.41860961914062, "aux.loss_ce": 0.11143386028707028, "aux.acc_seg": 93.15058135986328, "time": 1.1213581323623658, "iter": 132550, "memory": 8703, "step": 132550} +{"lr": 0.0021225774441237, "data_time": 0.006392788887023926, "loss": 0.39569097608327863, "decode.loss_ce": 0.24825456738471985, "decode.acc_seg": 95.57747650146484, "aux.loss_ce": 0.1474364146590233, "aux.acc_seg": 90.77172088623047, "time": 1.1106910705566406, "iter": 132600, "memory": 8704, "step": 132600} +{"lr": 0.002119255389564373, "data_time": 0.006931090354919433, "loss": 0.2941090792417526, "decode.loss_ce": 0.17337731197476386, "decode.acc_seg": 96.08078002929688, "aux.loss_ce": 0.12073176391422749, "aux.acc_seg": 96.5415267944336, "time": 1.1141260623931886, "iter": 132650, "memory": 8703, "step": 132650} +{"lr": 0.0021159327276265845, "data_time": 0.007847332954406738, "loss": 0.7173692435026169, "decode.loss_ce": 0.4724809929728508, "decode.acc_seg": 93.31696319580078, "aux.loss_ce": 0.2448882430791855, "aux.acc_seg": 85.91556549072266, "time": 1.1185410022735596, "iter": 132700, "memory": 8703, "step": 132700} +{"lr": 0.0021126094570865657, "data_time": 0.006844234466552734, "loss": 0.2696536049246788, "decode.loss_ce": 0.16263170465826987, "decode.acc_seg": 94.16847229003906, "aux.loss_ce": 0.10702189840376378, "aux.acc_seg": 91.3461685180664, "time": 1.1118036270141602, "iter": 132750, "memory": 8704, "step": 132750} +{"lr": 0.002109285576715832, "data_time": 0.0070937156677246095, "loss": 0.42089663743972777, "decode.loss_ce": 0.2560195818543434, "decode.acc_seg": 94.54954528808594, "aux.loss_ce": 0.16487706378102301, "aux.acc_seg": 92.8869857788086, "time": 1.1126498937606812, "iter": 132800, "memory": 8705, "step": 132800} +{"lr": 0.002105961085281153, "data_time": 0.006557822227478027, "loss": 0.38574386984109876, "decode.loss_ce": 0.23406213968992234, "decode.acc_seg": 97.31533813476562, "aux.loss_ce": 0.15168172754347325, "aux.acc_seg": 91.86140441894531, "time": 1.1123945236206054, "iter": 132850, "memory": 8703, "step": 132850} +{"lr": 0.002102635981544531, "data_time": 0.007373189926147461, "loss": 0.3466870918869972, "decode.loss_ce": 0.19465138092637063, "decode.acc_seg": 97.47505187988281, "aux.loss_ce": 0.15203570984303952, "aux.acc_seg": 94.9525146484375, "time": 1.1159573793411255, "iter": 132900, "memory": 8704, "step": 132900} +{"lr": 0.0020993102642631687, "data_time": 0.005732250213623047, "loss": 0.3447032034397125, "decode.loss_ce": 0.21060932651162148, "decode.acc_seg": 87.38542938232422, "aux.loss_ce": 0.13409387581050397, "aux.acc_seg": 82.18161010742188, "time": 1.112202262878418, "iter": 132950, "memory": 8704, "step": 132950} +{"lr": 0.0020959839321894515, "data_time": 0.007379150390625, "loss": 0.3578343838453293, "decode.loss_ce": 0.20862284004688264, "decode.acc_seg": 95.2948226928711, "aux.loss_ce": 0.1492115393280983, "aux.acc_seg": 91.99066162109375, "time": 1.1138453245162965, "iter": 133000, "memory": 8704, "step": 133000} +{"lr": 0.0020926569840709055, "data_time": 0.007092475891113281, "loss": 0.24943509548902512, "decode.loss_ce": 0.15780506879091263, "decode.acc_seg": 93.59085845947266, "aux.loss_ce": 0.09163002707064152, "aux.acc_seg": 85.95440673828125, "time": 1.1117132186889649, "iter": 133050, "memory": 8703, "step": 133050} +{"lr": 0.002089329418650173, "data_time": 0.007867765426635743, "loss": 0.23607780188322067, "decode.loss_ce": 0.1415966771543026, "decode.acc_seg": 94.1834716796875, "aux.loss_ce": 0.09448112547397614, "aux.acc_seg": 90.66276550292969, "time": 1.1232813835144042, "iter": 133100, "memory": 8704, "step": 133100} +{"lr": 0.002086001234664997, "data_time": 0.007379221916198731, "loss": 0.29217852354049684, "decode.loss_ce": 0.17742505222558974, "decode.acc_seg": 93.21937561035156, "aux.loss_ce": 0.1147534728050232, "aux.acc_seg": 92.13523864746094, "time": 1.1165016174316407, "iter": 133150, "memory": 8704, "step": 133150} +{"lr": 0.00208267243084818, "data_time": 0.007001900672912597, "loss": 0.27594458758831025, "decode.loss_ce": 0.1616143502295017, "decode.acc_seg": 97.14647674560547, "aux.loss_ce": 0.11433023661375045, "aux.acc_seg": 90.21536254882812, "time": 1.1152294874191284, "iter": 133200, "memory": 8704, "step": 133200} +{"lr": 0.002079343005927562, "data_time": 0.008179783821105957, "loss": 0.35069150030612944, "decode.loss_ce": 0.2225251540541649, "decode.acc_seg": 91.2328872680664, "aux.loss_ce": 0.12816634699702262, "aux.acc_seg": 83.76018524169922, "time": 1.1196444749832153, "iter": 133250, "memory": 8703, "step": 133250} +{"lr": 0.0020760129586259815, "data_time": 0.007400631904602051, "loss": 0.35923832654953003, "decode.loss_ce": 0.21447349488735198, "decode.acc_seg": 93.89934539794922, "aux.loss_ce": 0.14476482719182968, "aux.acc_seg": 89.54410552978516, "time": 1.1114466190338135, "iter": 133300, "memory": 8704, "step": 133300} +{"lr": 0.002072682287661263, "data_time": 0.007382249832153321, "loss": 0.24131516367197037, "decode.loss_ce": 0.14397260993719102, "decode.acc_seg": 92.8956298828125, "aux.loss_ce": 0.09734255261719227, "aux.acc_seg": 92.60323333740234, "time": 1.1168324947357178, "iter": 133350, "memory": 8704, "step": 133350} +{"lr": 0.0020693509917461728, "data_time": 0.006990909576416016, "loss": 0.2796054854989052, "decode.loss_ce": 0.17449193820357323, "decode.acc_seg": 95.68296813964844, "aux.loss_ce": 0.1051135491579771, "aux.acc_seg": 89.750732421875, "time": 1.1169079780578612, "iter": 133400, "memory": 8703, "step": 133400} +{"lr": 0.0020660190695883955, "data_time": 0.006838107109069824, "loss": 0.40616682469844817, "decode.loss_ce": 0.2614229954779148, "decode.acc_seg": 95.7789077758789, "aux.loss_ce": 0.1447438236325979, "aux.acc_seg": 93.70186614990234, "time": 1.1181747913360596, "iter": 133450, "memory": 8704, "step": 133450} +{"lr": 0.002062686519890509, "data_time": 0.007142782211303711, "loss": 0.33093988597393037, "decode.loss_ce": 0.20226777270436286, "decode.acc_seg": 95.71539306640625, "aux.loss_ce": 0.12867210917174815, "aux.acc_seg": 89.54143524169922, "time": 1.116024088859558, "iter": 133500, "memory": 8703, "step": 133500} +{"lr": 0.002059353341349945, "data_time": 0.007537698745727539, "loss": 0.29250176399946215, "decode.loss_ce": 0.16342372223734855, "decode.acc_seg": 92.48921203613281, "aux.loss_ce": 0.12907804660499095, "aux.acc_seg": 81.9713363647461, "time": 1.1177440881729126, "iter": 133550, "memory": 8704, "step": 133550} +{"lr": 0.002056019532658967, "data_time": 0.007172846794128418, "loss": 0.2894761562347412, "decode.loss_ce": 0.17387449294328688, "decode.acc_seg": 95.67737579345703, "aux.loss_ce": 0.11560166999697685, "aux.acc_seg": 92.35508728027344, "time": 1.115603256225586, "iter": 133600, "memory": 8703, "step": 133600} +{"lr": 0.0020526850925046353, "data_time": 0.007278656959533692, "loss": 0.30619478300213815, "decode.loss_ce": 0.17927661538124084, "decode.acc_seg": 96.41463470458984, "aux.loss_ce": 0.1269181676208973, "aux.acc_seg": 95.49052429199219, "time": 1.1168294429779053, "iter": 133650, "memory": 8704, "step": 133650} +{"lr": 0.002049350019568773, "data_time": 0.008062076568603516, "loss": 0.26762864738702774, "decode.loss_ce": 0.15800165832042695, "decode.acc_seg": 92.27180480957031, "aux.loss_ce": 0.10962698683142662, "aux.acc_seg": 87.78158569335938, "time": 1.1156161308288575, "iter": 133700, "memory": 8703, "step": 133700} +{"lr": 0.0020460143125279524, "data_time": 0.0063046693801879885, "loss": 0.3415160343050957, "decode.loss_ce": 0.2190186306834221, "decode.acc_seg": 82.72134399414062, "aux.loss_ce": 0.12249740064144135, "aux.acc_seg": 82.02949523925781, "time": 1.1105835914611817, "iter": 133750, "memory": 8703, "step": 133750} +{"lr": 0.002042677970053444, "data_time": 0.007393836975097656, "loss": 0.34608817398548125, "decode.loss_ce": 0.18588949516415595, "decode.acc_seg": 90.52269744873047, "aux.loss_ce": 0.16019868329167367, "aux.acc_seg": 77.52787017822266, "time": 1.1133151054382324, "iter": 133800, "memory": 8704, "step": 133800} +{"lr": 0.00203934099081119, "data_time": 0.0065888166427612305, "loss": 0.3337891519069672, "decode.loss_ce": 0.2094314195215702, "decode.acc_seg": 97.32328796386719, "aux.loss_ce": 0.12435774095356464, "aux.acc_seg": 96.5836181640625, "time": 1.113109254837036, "iter": 133850, "memory": 8703, "step": 133850} +{"lr": 0.0020360033734617817, "data_time": 0.0058563232421875, "loss": 0.28110612481832503, "decode.loss_ce": 0.17406283393502237, "decode.acc_seg": 96.62371063232422, "aux.loss_ce": 0.10704329200088977, "aux.acc_seg": 92.94914245605469, "time": 1.1219802618026733, "iter": 133900, "memory": 8704, "step": 133900} +{"lr": 0.002032665116660418, "data_time": 0.009400606155395508, "loss": 0.4025498032569885, "decode.loss_ce": 0.2442239060997963, "decode.acc_seg": 94.21672821044922, "aux.loss_ce": 0.15832588821649551, "aux.acc_seg": 92.17109680175781, "time": 1.12191801071167, "iter": 133950, "memory": 8704, "step": 133950} +{"lr": 0.0020293262190568765, "data_time": 0.008995723724365235, "loss": 0.25646419525146485, "decode.loss_ce": 0.1472264513373375, "decode.acc_seg": 92.97911071777344, "aux.loss_ce": 0.10923774130642414, "aux.acc_seg": 91.34254455566406, "time": 1.1205157995224, "iter": 134000, "memory": 8703, "step": 134000} +{"lr": 0.002025986679295484, "data_time": 0.006249761581420899, "loss": 0.29767972603440285, "decode.loss_ce": 0.16401923671364785, "decode.acc_seg": 88.6209487915039, "aux.loss_ce": 0.1336604868993163, "aux.acc_seg": 83.32947540283203, "time": 1.1204152822494506, "iter": 134050, "memory": 8703, "step": 134050} +{"lr": 0.0020226464960150774, "data_time": 0.006449651718139648, "loss": 0.32538783401250837, "decode.loss_ce": 0.19790173098444938, "decode.acc_seg": 90.335205078125, "aux.loss_ce": 0.12748610489070417, "aux.acc_seg": 86.95398712158203, "time": 1.114750361442566, "iter": 134100, "memory": 8703, "step": 134100} +{"lr": 0.0020193056678489774, "data_time": 0.007039427757263184, "loss": 0.22854111194610596, "decode.loss_ce": 0.132642213255167, "decode.acc_seg": 94.38755798339844, "aux.loss_ce": 0.09589889720082283, "aux.acc_seg": 89.11119842529297, "time": 1.1142429113388062, "iter": 134150, "memory": 8704, "step": 134150} +{"lr": 0.0020159641934249504, "data_time": 0.006169509887695312, "loss": 0.2853883892297745, "decode.loss_ce": 0.1663019560277462, "decode.acc_seg": 94.83089447021484, "aux.loss_ce": 0.11908643208444118, "aux.acc_seg": 78.3183364868164, "time": 1.1130380630493164, "iter": 134200, "memory": 8704, "step": 134200} +{"lr": 0.002012622071365183, "data_time": 0.007367944717407227, "loss": 0.2719766408205032, "decode.loss_ce": 0.15598297193646432, "decode.acc_seg": 95.95565795898438, "aux.loss_ce": 0.11599366366863251, "aux.acc_seg": 95.02264404296875, "time": 1.1104990720748902, "iter": 134250, "memory": 8704, "step": 134250} +{"lr": 0.0020092793002862365, "data_time": 0.005398368835449219, "loss": 0.2878785997629166, "decode.loss_ce": 0.1724502094089985, "decode.acc_seg": 94.77678680419922, "aux.loss_ce": 0.11542839147150516, "aux.acc_seg": 94.74703216552734, "time": 1.11118643283844, "iter": 134300, "memory": 8703, "step": 134300} +{"lr": 0.0020059358787990244, "data_time": 0.007865571975708007, "loss": 0.3718898057937622, "decode.loss_ce": 0.23172756731510163, "decode.acc_seg": 95.43583679199219, "aux.loss_ce": 0.14016224220395088, "aux.acc_seg": 93.3665542602539, "time": 1.1188378810882569, "iter": 134350, "memory": 8704, "step": 134350} +{"lr": 0.0020025918055087727, "data_time": 0.00701296329498291, "loss": 0.3774625435471535, "decode.loss_ce": 0.23733380064368248, "decode.acc_seg": 96.37173461914062, "aux.loss_ce": 0.14012874476611614, "aux.acc_seg": 95.25677490234375, "time": 1.111763095855713, "iter": 134400, "memory": 8704, "step": 134400} +{"lr": 0.0019992470790149834, "data_time": 0.007107996940612793, "loss": 0.31815345734357836, "decode.loss_ce": 0.18869589343667031, "decode.acc_seg": 95.26119232177734, "aux.loss_ce": 0.12945756800472735, "aux.acc_seg": 93.99897003173828, "time": 1.1139161348342896, "iter": 134450, "memory": 8704, "step": 134450} +{"lr": 0.0019959016979114023, "data_time": 0.005928707122802734, "loss": 0.2944733902812004, "decode.loss_ce": 0.17522045969963074, "decode.acc_seg": 94.50498962402344, "aux.loss_ce": 0.11925293207168579, "aux.acc_seg": 92.00210571289062, "time": 1.1132600069046021, "iter": 134500, "memory": 8703, "step": 134500} +{"lr": 0.0019925556607859876, "data_time": 0.007843685150146485, "loss": 0.32051636204123496, "decode.loss_ce": 0.18826211281120778, "decode.acc_seg": 91.08772277832031, "aux.loss_ce": 0.13225424494594334, "aux.acc_seg": 84.60394287109375, "time": 1.1155553102493285, "iter": 134550, "memory": 8704, "step": 134550} +{"lr": 0.001989208966220869, "data_time": 0.006822276115417481, "loss": 0.2747709095478058, "decode.loss_ce": 0.1692122347652912, "decode.acc_seg": 95.6036376953125, "aux.loss_ce": 0.10555867515504361, "aux.acc_seg": 94.17791748046875, "time": 1.115607452392578, "iter": 134600, "memory": 8704, "step": 134600} +{"lr": 0.0019858616127923145, "data_time": 0.006905269622802734, "loss": 0.29812764525413515, "decode.loss_ce": 0.1741519182920456, "decode.acc_seg": 93.58393096923828, "aux.loss_ce": 0.12397572435438634, "aux.acc_seg": 91.50161743164062, "time": 1.1169020652770996, "iter": 134650, "memory": 8704, "step": 134650} +{"lr": 0.001982513599070695, "data_time": 0.00609438419342041, "loss": 0.291716942191124, "decode.loss_ce": 0.17714021354913712, "decode.acc_seg": 93.90837097167969, "aux.loss_ce": 0.11457673087716103, "aux.acc_seg": 91.76660919189453, "time": 1.1100773096084595, "iter": 134700, "memory": 8703, "step": 134700} +{"lr": 0.0019791649236204443, "data_time": 0.005805444717407226, "loss": 0.23173680305480956, "decode.loss_ce": 0.13645980469882488, "decode.acc_seg": 92.7970962524414, "aux.loss_ce": 0.09527700170874595, "aux.acc_seg": 92.25762939453125, "time": 1.1078089237213136, "iter": 134750, "memory": 8703, "step": 134750} +{"lr": 0.0019758155850000325, "data_time": 0.008625292778015136, "loss": 0.331216037273407, "decode.loss_ce": 0.21120150163769721, "decode.acc_seg": 97.23129272460938, "aux.loss_ce": 0.12001453600823879, "aux.acc_seg": 95.5881118774414, "time": 1.117303442955017, "iter": 134800, "memory": 8703, "step": 134800} +{"lr": 0.0019724655817619174, "data_time": 0.007756090164184571, "loss": 0.3785574406385422, "decode.loss_ce": 0.21743575409054755, "decode.acc_seg": 85.28607177734375, "aux.loss_ce": 0.16112168245017527, "aux.acc_seg": 77.86495971679688, "time": 1.1135672807693482, "iter": 134850, "memory": 8703, "step": 134850} +{"lr": 0.001969114912452511, "data_time": 0.007425689697265625, "loss": 0.3261531040072441, "decode.loss_ce": 0.20645052343606948, "decode.acc_seg": 96.19038391113281, "aux.loss_ce": 0.11970258019864559, "aux.acc_seg": 92.51886749267578, "time": 1.1179998159408568, "iter": 134900, "memory": 8704, "step": 134900} +{"lr": 0.0019657635756121523, "data_time": 0.006061959266662598, "loss": 0.2895414039492607, "decode.loss_ce": 0.1799503333866596, "decode.acc_seg": 93.9555435180664, "aux.loss_ce": 0.10959107130765915, "aux.acc_seg": 92.57327270507812, "time": 1.11067955493927, "iter": 134950, "memory": 8703, "step": 134950} +{"lr": 0.001962411569775055, "data_time": 0.009264993667602538, "loss": 0.29692652374505996, "decode.loss_ce": 0.18284882232546806, "decode.acc_seg": 96.4941635131836, "aux.loss_ce": 0.11407769806683063, "aux.acc_seg": 94.37751770019531, "time": 1.1192365407943725, "iter": 135000, "memory": 8704, "step": 135000} +{"lr": 0.0019590588934692748, "data_time": 0.007227802276611328, "loss": 0.3355455413460732, "decode.loss_ce": 0.2132062517106533, "decode.acc_seg": 96.17652893066406, "aux.loss_ce": 0.122339291498065, "aux.acc_seg": 95.41873931884766, "time": 1.1180898427963257, "iter": 135050, "memory": 8703, "step": 135050} +{"lr": 0.0019557055452166764, "data_time": 0.00760502815246582, "loss": 0.3352857202291489, "decode.loss_ce": 0.19582368507981301, "decode.acc_seg": 96.18154907226562, "aux.loss_ce": 0.13946203999221324, "aux.acc_seg": 95.32184600830078, "time": 1.1191066265106202, "iter": 135100, "memory": 8704, "step": 135100} +{"lr": 0.00195235152353289, "data_time": 0.006325578689575196, "loss": 0.29221855103969574, "decode.loss_ce": 0.1862077683210373, "decode.acc_seg": 93.3395767211914, "aux.loss_ce": 0.10601078495383262, "aux.acc_seg": 91.93352508544922, "time": 1.1172337293624879, "iter": 135150, "memory": 8704, "step": 135150} +{"lr": 0.001948996826927275, "data_time": 0.007492518424987793, "loss": 0.36482951492071153, "decode.loss_ce": 0.22253938987851143, "decode.acc_seg": 97.0237045288086, "aux.loss_ce": 0.1422901213169098, "aux.acc_seg": 96.24722290039062, "time": 1.1157201528549194, "iter": 135200, "memory": 8703, "step": 135200} +{"lr": 0.0019456414539028714, "data_time": 0.007014060020446777, "loss": 0.2638430207967758, "decode.loss_ce": 0.16650884002447128, "decode.acc_seg": 95.33338928222656, "aux.loss_ce": 0.09733417853713036, "aux.acc_seg": 91.03218078613281, "time": 1.1132972955703735, "iter": 135250, "memory": 8703, "step": 135250} +{"lr": 0.0019422854029563712, "data_time": 0.007828402519226074, "loss": 0.2867891475558281, "decode.loss_ce": 0.1827515572309494, "decode.acc_seg": 95.5710678100586, "aux.loss_ce": 0.10403759479522705, "aux.acc_seg": 93.51526641845703, "time": 1.1127143383026123, "iter": 135300, "memory": 8703, "step": 135300} +{"lr": 0.0019389286725780784, "data_time": 0.008199787139892578, "loss": 0.2967007979750633, "decode.loss_ce": 0.18133709728717803, "decode.acc_seg": 81.7649154663086, "aux.loss_ce": 0.11536369323730469, "aux.acc_seg": 79.1727066040039, "time": 1.112457847595215, "iter": 135350, "memory": 8704, "step": 135350} +{"lr": 0.0019355712612518648, "data_time": 0.00728452205657959, "loss": 0.44585530310869215, "decode.loss_ce": 0.2701370641589165, "decode.acc_seg": 90.04166412353516, "aux.loss_ce": 0.17571823112666607, "aux.acc_seg": 89.57748413085938, "time": 1.1132871866226197, "iter": 135400, "memory": 8705, "step": 135400} +{"lr": 0.0019322131674551271, "data_time": 0.008736777305603027, "loss": 0.3589521750807762, "decode.loss_ce": 0.23375462740659714, "decode.acc_seg": 93.87352752685547, "aux.loss_ce": 0.1251975454390049, "aux.acc_seg": 91.47802734375, "time": 1.1193083286285401, "iter": 135450, "memory": 8703, "step": 135450} +{"lr": 0.0019288543896587515, "data_time": 0.007339215278625489, "loss": 0.32951982617378234, "decode.loss_ce": 0.1963220402598381, "decode.acc_seg": 89.29512786865234, "aux.loss_ce": 0.13319778740406035, "aux.acc_seg": 88.3804931640625, "time": 1.1180898189544677, "iter": 135500, "memory": 8703, "step": 135500} +{"lr": 0.0019254949263270685, "data_time": 0.006556105613708496, "loss": 0.22342169657349586, "decode.loss_ce": 0.12345518954098225, "decode.acc_seg": 98.25585174560547, "aux.loss_ce": 0.09996650647372007, "aux.acc_seg": 97.45927429199219, "time": 1.118853545188904, "iter": 135550, "memory": 8703, "step": 135550} +{"lr": 0.0019221347759178146, "data_time": 0.0077907323837280275, "loss": 0.3082717791199684, "decode.loss_ce": 0.1796353779733181, "decode.acc_seg": 96.3646011352539, "aux.loss_ce": 0.12863639704883098, "aux.acc_seg": 91.25260925292969, "time": 1.1221603631973267, "iter": 135600, "memory": 8704, "step": 135600} +{"lr": 0.0019187739368820905, "data_time": 0.008237957954406738, "loss": 0.21680887043476105, "decode.loss_ce": 0.10906632915139199, "decode.acc_seg": 94.99634552001953, "aux.loss_ce": 0.10774254277348519, "aux.acc_seg": 89.60430145263672, "time": 1.1158491611480712, "iter": 135650, "memory": 8704, "step": 135650} +{"lr": 0.0019154124076643146, "data_time": 0.0075910091400146484, "loss": 0.24294816553592682, "decode.loss_ce": 0.1407761089503765, "decode.acc_seg": 95.7007064819336, "aux.loss_ce": 0.1021720502525568, "aux.acc_seg": 86.57219696044922, "time": 1.1183899879455566, "iter": 135700, "memory": 8703, "step": 135700} +{"lr": 0.001912050186702182, "data_time": 0.006641411781311035, "loss": 0.36221534907817843, "decode.loss_ce": 0.21730996593832969, "decode.acc_seg": 97.29283142089844, "aux.loss_ce": 0.14490537978708745, "aux.acc_seg": 96.4976577758789, "time": 1.1109418630599976, "iter": 135750, "memory": 8704, "step": 135750} +{"lr": 0.001908687272426626, "data_time": 0.005727696418762207, "loss": 0.2356654465198517, "decode.loss_ce": 0.1336316630244255, "decode.acc_seg": 96.49333953857422, "aux.loss_ce": 0.10203378312289715, "aux.acc_seg": 96.26445770263672, "time": 1.1119248867034912, "iter": 135800, "memory": 8703, "step": 135800} +{"lr": 0.0019053236632617673, "data_time": 0.008007264137268067, "loss": 0.23889560997486115, "decode.loss_ce": 0.14474974498152732, "decode.acc_seg": 95.74994659423828, "aux.loss_ce": 0.0941458698362112, "aux.acc_seg": 84.7013931274414, "time": 1.1135648965835572, "iter": 135850, "memory": 8704, "step": 135850} +{"lr": 0.0019019593576248767, "data_time": 0.006983160972595215, "loss": 0.335833403468132, "decode.loss_ce": 0.20858948081731796, "decode.acc_seg": 93.80238342285156, "aux.loss_ce": 0.12724391631782056, "aux.acc_seg": 91.04270935058594, "time": 1.1176590204238892, "iter": 135900, "memory": 8703, "step": 135900} +{"lr": 0.0018985943539263285, "data_time": 0.00707859992980957, "loss": 0.29533390402793885, "decode.loss_ce": 0.18395052552223207, "decode.acc_seg": 96.46269226074219, "aux.loss_ce": 0.11138337813317775, "aux.acc_seg": 95.39120483398438, "time": 1.1159948587417603, "iter": 135950, "memory": 8703, "step": 135950} +{"lr": 0.0018952286505695554, "data_time": 0.007487702369689942, "loss": 0.4141623705625534, "decode.loss_ce": 0.25555335357785225, "decode.acc_seg": 96.05712890625, "aux.loss_ce": 0.1586090125143528, "aux.acc_seg": 90.4043197631836, "time": 1.1158735036849976, "iter": 136000, "memory": 8703, "step": 136000} +{"lr": 0.0018918622459510068, "data_time": 0.007063913345336914, "loss": 0.25378224477171896, "decode.loss_ce": 0.15535173639655114, "decode.acc_seg": 96.57148742675781, "aux.loss_ce": 0.09843050874769688, "aux.acc_seg": 95.98979187011719, "time": 1.1151485443115234, "iter": 136050, "memory": 8704, "step": 136050} +{"lr": 0.0018884951384600954, "data_time": 0.007458972930908203, "loss": 0.23038263022899627, "decode.loss_ce": 0.1398398108780384, "decode.acc_seg": 96.8211441040039, "aux.loss_ce": 0.09054281339049339, "aux.acc_seg": 96.3797836303711, "time": 1.1174125909805297, "iter": 136100, "memory": 8704, "step": 136100} +{"lr": 0.0018851273264791628, "data_time": 0.007527709007263184, "loss": 0.269969941675663, "decode.loss_ce": 0.152788844704628, "decode.acc_seg": 96.67389678955078, "aux.loss_ce": 0.11718109771609306, "aux.acc_seg": 95.80307006835938, "time": 1.1159435033798217, "iter": 136150, "memory": 8704, "step": 136150} +{"lr": 0.001881758808383427, "data_time": 0.00844871997833252, "loss": 0.3488726705312729, "decode.loss_ce": 0.22330213338136673, "decode.acc_seg": 94.12638092041016, "aux.loss_ce": 0.12557053864002227, "aux.acc_seg": 95.6217269897461, "time": 1.1194595336914062, "iter": 136200, "memory": 8704, "step": 136200} +{"lr": 0.0018783895825409348, "data_time": 0.006668472290039062, "loss": 0.3187419161200523, "decode.loss_ce": 0.18927625715732574, "decode.acc_seg": 89.25333404541016, "aux.loss_ce": 0.1294656593352556, "aux.acc_seg": 75.64970397949219, "time": 1.1120803117752076, "iter": 136250, "memory": 8704, "step": 136250} +{"lr": 0.001875019647312518, "data_time": 0.007033395767211914, "loss": 0.3312418282032013, "decode.loss_ce": 0.18955549448728562, "decode.acc_seg": 96.47991943359375, "aux.loss_ce": 0.14168633371591569, "aux.acc_seg": 92.80452728271484, "time": 1.1159128427505494, "iter": 136300, "memory": 8705, "step": 136300} +{"lr": 0.0018716490010517468, "data_time": 0.006408905982971192, "loss": 0.267634978890419, "decode.loss_ce": 0.16276368275284767, "decode.acc_seg": 96.12808227539062, "aux.loss_ce": 0.10487129725515842, "aux.acc_seg": 94.73348999023438, "time": 1.110517978668213, "iter": 136350, "memory": 8704, "step": 136350} +{"lr": 0.0018682776421048812, "data_time": 0.005718421936035156, "loss": 0.2896799504756927, "decode.loss_ce": 0.17004160806536675, "decode.acc_seg": 94.07685089111328, "aux.loss_ce": 0.11963834054768085, "aux.acc_seg": 94.15899658203125, "time": 1.1085157155990601, "iter": 136400, "memory": 8704, "step": 136400} +{"lr": 0.0018649055688108205, "data_time": 0.007619237899780274, "loss": 0.34363380670547483, "decode.loss_ce": 0.20731035992503166, "decode.acc_seg": 87.37590789794922, "aux.loss_ce": 0.13632344119250775, "aux.acc_seg": 87.56802368164062, "time": 1.1123611211776734, "iter": 136450, "memory": 8703, "step": 136450} +{"lr": 0.0018615327795010615, "data_time": 0.006544685363769532, "loss": 0.2914550773799419, "decode.loss_ce": 0.16155352741479873, "decode.acc_seg": 92.73223114013672, "aux.loss_ce": 0.1299015510827303, "aux.acc_seg": 85.67315673828125, "time": 1.115074372291565, "iter": 136500, "memory": 8704, "step": 136500} +{"lr": 0.001858159272499639, "data_time": 0.006276345252990723, "loss": 0.33153985887765886, "decode.loss_ce": 0.1912035934627056, "decode.acc_seg": 83.26225280761719, "aux.loss_ce": 0.14033626355230808, "aux.acc_seg": 84.68347930908203, "time": 1.1142385721206665, "iter": 136550, "memory": 8704, "step": 136550} +{"lr": 0.0018547850461230868, "data_time": 0.006536030769348144, "loss": 0.2029868632555008, "decode.loss_ce": 0.12749822586774825, "decode.acc_seg": 94.6330337524414, "aux.loss_ce": 0.07548863515257835, "aux.acc_seg": 92.58785247802734, "time": 1.1148575305938722, "iter": 136600, "memory": 8704, "step": 136600} +{"lr": 0.001851410098680381, "data_time": 0.00728304386138916, "loss": 0.2847749799489975, "decode.loss_ce": 0.17723755091428756, "decode.acc_seg": 94.18360137939453, "aux.loss_ce": 0.10753742642700673, "aux.acc_seg": 93.48430633544922, "time": 1.1223431348800659, "iter": 136650, "memory": 8703, "step": 136650} +{"lr": 0.0018480344284728966, "data_time": 0.00946044921875, "loss": 0.2590556040406227, "decode.loss_ce": 0.16340427696704865, "decode.acc_seg": 92.84794616699219, "aux.loss_ce": 0.09565132670104504, "aux.acc_seg": 90.53543090820312, "time": 1.1208812713623046, "iter": 136700, "memory": 8704, "step": 136700} +{"lr": 0.0018446580337943494, "data_time": 0.007971644401550293, "loss": 0.29538483917713165, "decode.loss_ce": 0.18618974462151527, "decode.acc_seg": 96.98841857910156, "aux.loss_ce": 0.10919509902596473, "aux.acc_seg": 94.2618637084961, "time": 1.1176352977752686, "iter": 136750, "memory": 8703, "step": 136750} +{"lr": 0.0018412809129307493, "data_time": 0.0066650390625, "loss": 0.28915793001651763, "decode.loss_ce": 0.16948564648628234, "decode.acc_seg": 93.78995513916016, "aux.loss_ce": 0.11967227943241596, "aux.acc_seg": 86.68983459472656, "time": 1.113205862045288, "iter": 136800, "memory": 8704, "step": 136800} +{"lr": 0.0018379030641603518, "data_time": 0.0053853273391723635, "loss": 0.360051691532135, "decode.loss_ce": 0.2112049825489521, "decode.acc_seg": 90.39044189453125, "aux.loss_ce": 0.14884671047329903, "aux.acc_seg": 87.93610382080078, "time": 1.1096009492874146, "iter": 136850, "memory": 8703, "step": 136850} +{"lr": 0.0018345244857535972, "data_time": 0.007687067985534668, "loss": 0.24440297186374665, "decode.loss_ce": 0.1400906316936016, "decode.acc_seg": 90.52931213378906, "aux.loss_ce": 0.104312339797616, "aux.acc_seg": 84.44048309326172, "time": 1.1131745338439942, "iter": 136900, "memory": 8703, "step": 136900} +{"lr": 0.001831145175973065, "data_time": 0.006182718276977539, "loss": 0.3251403376460075, "decode.loss_ce": 0.20552381575107576, "decode.acc_seg": 97.0865249633789, "aux.loss_ce": 0.1196165181696415, "aux.acc_seg": 91.52195739746094, "time": 1.1124679088592528, "iter": 136950, "memory": 8703, "step": 136950} +{"lr": 0.0018277651330734198, "data_time": 0.0055266618728637695, "loss": 0.25571267679333687, "decode.loss_ce": 0.15226745568215846, "decode.acc_seg": 90.38206481933594, "aux.loss_ce": 0.10344522036612033, "aux.acc_seg": 87.71946716308594, "time": 1.1174075841903686, "iter": 137000, "memory": 8704, "step": 137000} +{"lr": 0.0018243843553013572, "data_time": 0.006529092788696289, "loss": 0.18849372267723083, "decode.loss_ce": 0.11085212975740433, "decode.acc_seg": 98.20244598388672, "aux.loss_ce": 0.07764159440994263, "aux.acc_seg": 97.20096588134766, "time": 1.107660460472107, "iter": 137050, "memory": 8704, "step": 137050} +{"lr": 0.0018210028408955515, "data_time": 0.007969236373901368, "loss": 0.2140194371342659, "decode.loss_ce": 0.13020505830645562, "decode.acc_seg": 95.16423034667969, "aux.loss_ce": 0.08381437920033932, "aux.acc_seg": 91.3553237915039, "time": 1.1189701318740846, "iter": 137100, "memory": 8704, "step": 137100} +{"lr": 0.001817620588086598, "data_time": 0.0058868408203125, "loss": 0.20252904593944548, "decode.loss_ce": 0.1219528429210186, "decode.acc_seg": 91.99491882324219, "aux.loss_ce": 0.08057620376348495, "aux.acc_seg": 87.7269058227539, "time": 1.1153871536254882, "iter": 137150, "memory": 8704, "step": 137150} +{"lr": 0.001814237595096962, "data_time": 0.006749367713928223, "loss": 0.36218701899051664, "decode.loss_ce": 0.22476979196071625, "decode.acc_seg": 90.46192169189453, "aux.loss_ce": 0.1374172203242779, "aux.acc_seg": 85.92479705810547, "time": 1.115449023246765, "iter": 137200, "memory": 8704, "step": 137200} +{"lr": 0.0018108538601409204, "data_time": 0.006741189956665039, "loss": 0.3573715895414352, "decode.loss_ce": 0.19269050657749176, "decode.acc_seg": 93.51482391357422, "aux.loss_ce": 0.16468107514083385, "aux.acc_seg": 91.67607116699219, "time": 1.1209469556808471, "iter": 137250, "memory": 8704, "step": 137250} +{"lr": 0.00180746938142451, "data_time": 0.0065946817398071286, "loss": 0.210299713909626, "decode.loss_ce": 0.12319616936147212, "decode.acc_seg": 97.66998291015625, "aux.loss_ce": 0.08710354212671519, "aux.acc_seg": 97.51847076416016, "time": 1.118709969520569, "iter": 137300, "memory": 8703, "step": 137300} +{"lr": 0.0018040841571454655, "data_time": 0.008736991882324218, "loss": 0.20747504085302354, "decode.loss_ce": 0.12318828366696835, "decode.acc_seg": 94.49348449707031, "aux.loss_ce": 0.084286754950881, "aux.acc_seg": 93.25071716308594, "time": 1.1173307418823242, "iter": 137350, "memory": 8704, "step": 137350} +{"lr": 0.0018006981854931676, "data_time": 0.007863116264343262, "loss": 0.33468412458896635, "decode.loss_ce": 0.2047937609255314, "decode.acc_seg": 86.61422729492188, "aux.loss_ce": 0.12989036850631236, "aux.acc_seg": 85.05287170410156, "time": 1.1169185161590576, "iter": 137400, "memory": 8704, "step": 137400} +{"lr": 0.0017973114646485816, "data_time": 0.007746577262878418, "loss": 0.23952573537826538, "decode.loss_ce": 0.15313161984086038, "decode.acc_seg": 96.74383544921875, "aux.loss_ce": 0.08639411497861146, "aux.acc_seg": 95.72257995605469, "time": 1.1137366533279418, "iter": 137450, "memory": 8704, "step": 137450} +{"lr": 0.0017939239927842053, "data_time": 0.006766295433044434, "loss": 0.3315630882978439, "decode.loss_ce": 0.1989619791507721, "decode.acc_seg": 76.99527740478516, "aux.loss_ce": 0.13260110840201378, "aux.acc_seg": 75.53646850585938, "time": 1.1159186124801637, "iter": 137500, "memory": 8703, "step": 137500} +{"lr": 0.0017905357680640058, "data_time": 0.006743240356445313, "loss": 0.205736593157053, "decode.loss_ce": 0.11774493791162968, "decode.acc_seg": 94.78199768066406, "aux.loss_ce": 0.08799165468662977, "aux.acc_seg": 69.7027816772461, "time": 1.1107576847076417, "iter": 137550, "memory": 8704, "step": 137550} +{"lr": 0.0017871467886433614, "data_time": 0.0067359209060668945, "loss": 0.22153864204883575, "decode.loss_ce": 0.1438985660672188, "decode.acc_seg": 94.85611724853516, "aux.loss_ce": 0.07764007449150086, "aux.acc_seg": 93.2752914428711, "time": 1.1169068098068238, "iter": 137600, "memory": 8703, "step": 137600} +{"lr": 0.0017837570526690024, "data_time": 0.007507133483886719, "loss": 0.24531977027654647, "decode.loss_ce": 0.13505041152238845, "decode.acc_seg": 94.0928726196289, "aux.loss_ce": 0.1102693598717451, "aux.acc_seg": 78.4007339477539, "time": 1.1160972118377686, "iter": 137650, "memory": 8704, "step": 137650} +{"lr": 0.0017803665582789528, "data_time": 0.006530213356018067, "loss": 0.30230935886502264, "decode.loss_ce": 0.1718819409608841, "decode.acc_seg": 93.73734283447266, "aux.loss_ce": 0.1304274220019579, "aux.acc_seg": 90.00479125976562, "time": 1.1139775514602661, "iter": 137700, "memory": 8703, "step": 137700} +{"lr": 0.001776975303602468, "data_time": 0.0073795318603515625, "loss": 0.27179007455706594, "decode.loss_ce": 0.15692791491746902, "decode.acc_seg": 96.39554595947266, "aux.loss_ce": 0.11486216075718403, "aux.acc_seg": 91.64598083496094, "time": 1.1211487531661988, "iter": 137750, "memory": 8704, "step": 137750} +{"lr": 0.0017735832867599756, "data_time": 0.008336877822875977, "loss": 0.2285641387104988, "decode.loss_ce": 0.13639669641852378, "decode.acc_seg": 96.46549224853516, "aux.loss_ce": 0.09216743931174279, "aux.acc_seg": 95.6502914428711, "time": 1.1208714246749878, "iter": 137800, "memory": 8704, "step": 137800} +{"lr": 0.001770190505863007, "data_time": 0.00765833854675293, "loss": 0.18440172597765922, "decode.loss_ce": 0.11528674624860287, "decode.acc_seg": 96.75359344482422, "aux.loss_ce": 0.06911498159170151, "aux.acc_seg": 95.8913345336914, "time": 1.1155745267868042, "iter": 137850, "memory": 8704, "step": 137850} +{"lr": 0.001766796959014145, "data_time": 0.0064173460006713865, "loss": 0.29106440842151643, "decode.loss_ce": 0.17603626251220703, "decode.acc_seg": 95.81368255615234, "aux.loss_ce": 0.11502815149724484, "aux.acc_seg": 93.45047760009766, "time": 1.112562346458435, "iter": 137900, "memory": 8703, "step": 137900} +{"lr": 0.0017634026443069557, "data_time": 0.006991839408874512, "loss": 0.23015135824680327, "decode.loss_ce": 0.14784163162112235, "decode.acc_seg": 96.22980499267578, "aux.loss_ce": 0.08230972457677126, "aux.acc_seg": 94.21106719970703, "time": 1.113789701461792, "iter": 137950, "memory": 8703, "step": 137950} +{"lr": 0.0017600075598259268, "data_time": 0.006887173652648926, "loss": 0.28131613731384275, "decode.loss_ce": 0.1655374825000763, "decode.acc_seg": 95.06388854980469, "aux.loss_ce": 0.11577865481376648, "aux.acc_seg": 90.1314697265625, "time": 1.1122068166732788, "iter": 138000, "memory": 8704, "step": 138000} +{"lr": 0.0017566117036464015, "data_time": 0.006992959976196289, "loss": 0.4317642718553543, "decode.loss_ce": 0.2629113391041756, "decode.acc_seg": 96.15189361572266, "aux.loss_ce": 0.16885293684899808, "aux.acc_seg": 90.59296417236328, "time": 1.115311574935913, "iter": 138050, "memory": 8703, "step": 138050} +{"lr": 0.0017532150738345156, "data_time": 0.007535076141357422, "loss": 0.4025439277291298, "decode.loss_ce": 0.2502115458250046, "decode.acc_seg": 92.99108123779297, "aux.loss_ce": 0.15233238153159617, "aux.acc_seg": 92.25257873535156, "time": 1.113218331336975, "iter": 138100, "memory": 8703, "step": 138100} +{"lr": 0.0017498176684471339, "data_time": 0.007422327995300293, "loss": 0.20167074352502823, "decode.loss_ce": 0.12497500702738762, "decode.acc_seg": 94.86522674560547, "aux.loss_ce": 0.07669573239982128, "aux.acc_seg": 89.50506591796875, "time": 1.1144092082977295, "iter": 138150, "memory": 8703, "step": 138150} +{"lr": 0.0017464194855317744, "data_time": 0.006258678436279297, "loss": 0.19593924432992935, "decode.loss_ce": 0.12028237096965314, "decode.acc_seg": 97.25728607177734, "aux.loss_ce": 0.07565687522292137, "aux.acc_seg": 96.37433624267578, "time": 1.1120222330093383, "iter": 138200, "memory": 8703, "step": 138200} +{"lr": 0.0017430205231265589, "data_time": 0.008950614929199218, "loss": 0.25810700207948684, "decode.loss_ce": 0.1569759339094162, "decode.acc_seg": 92.55581665039062, "aux.loss_ce": 0.10113106593489647, "aux.acc_seg": 90.61707305908203, "time": 1.1165975093841554, "iter": 138250, "memory": 8704, "step": 138250} +{"lr": 0.0017396207792601335, "data_time": 0.0060645341873168945, "loss": 0.3082675263285637, "decode.loss_ce": 0.18116117045283317, "decode.acc_seg": 85.42877197265625, "aux.loss_ce": 0.12710635643452406, "aux.acc_seg": 79.10560607910156, "time": 1.1207021236419679, "iter": 138300, "memory": 8704, "step": 138300} +{"lr": 0.0017362202519516032, "data_time": 0.006412768363952636, "loss": 0.27597104758024216, "decode.loss_ce": 0.15793219804763795, "decode.acc_seg": 94.45822143554688, "aux.loss_ce": 0.11803885214030743, "aux.acc_seg": 89.30211639404297, "time": 1.1125174045562745, "iter": 138350, "memory": 8704, "step": 138350} +{"lr": 0.0017328189392104671, "data_time": 0.006919956207275391, "loss": 0.23797487318515778, "decode.loss_ce": 0.1464996226131916, "decode.acc_seg": 89.75270080566406, "aux.loss_ce": 0.09147524833679199, "aux.acc_seg": 90.46382904052734, "time": 1.1105886220932006, "iter": 138400, "memory": 8704, "step": 138400} +{"lr": 0.0017294168390365463, "data_time": 0.0071477174758911135, "loss": 0.2748819082975388, "decode.loss_ce": 0.15764409750699998, "decode.acc_seg": 97.221435546875, "aux.loss_ce": 0.11723781339824199, "aux.acc_seg": 95.30613708496094, "time": 1.1166116714477539, "iter": 138450, "memory": 8704, "step": 138450} +{"lr": 0.001726013949419914, "data_time": 0.005989956855773926, "loss": 0.2298177734017372, "decode.loss_ce": 0.13489762023091317, "decode.acc_seg": 94.46932220458984, "aux.loss_ce": 0.09492015279829502, "aux.acc_seg": 85.66169738769531, "time": 1.1160676240921021, "iter": 138500, "memory": 8704, "step": 138500} +{"lr": 0.0017226102683408281, "data_time": 0.007514595985412598, "loss": 0.3731019675731659, "decode.loss_ce": 0.23077032044529916, "decode.acc_seg": 95.28185272216797, "aux.loss_ce": 0.1423316515982151, "aux.acc_seg": 93.70771789550781, "time": 1.112761640548706, "iter": 138550, "memory": 8704, "step": 138550} +{"lr": 0.0017192057937696554, "data_time": 0.006772446632385254, "loss": 0.2606636196374893, "decode.loss_ce": 0.1597557470202446, "decode.acc_seg": 96.25428009033203, "aux.loss_ce": 0.10090787149965763, "aux.acc_seg": 94.81430053710938, "time": 1.1173381567001344, "iter": 138600, "memory": 8703, "step": 138600} +{"lr": 0.001715800523666808, "data_time": 0.006279540061950683, "loss": 0.2746144637465477, "decode.loss_ce": 0.15937422811985016, "decode.acc_seg": 97.11468505859375, "aux.loss_ce": 0.11524023823440074, "aux.acc_seg": 94.55528259277344, "time": 1.1113147735595703, "iter": 138650, "memory": 8703, "step": 138650} +{"lr": 0.0017123944559826604, "data_time": 0.006867027282714844, "loss": 0.25629853904247285, "decode.loss_ce": 0.1541370630264282, "decode.acc_seg": 95.01797485351562, "aux.loss_ce": 0.10216147843748331, "aux.acc_seg": 88.67636108398438, "time": 1.1147292852401733, "iter": 138700, "memory": 8703, "step": 138700} +{"lr": 0.001708987588657486, "data_time": 0.0060443878173828125, "loss": 0.39017530903220177, "decode.loss_ce": 0.2128923773765564, "decode.acc_seg": 95.4742431640625, "aux.loss_ce": 0.1772829320281744, "aux.acc_seg": 92.93537139892578, "time": 1.1139702320098877, "iter": 138750, "memory": 8703, "step": 138750} +{"lr": 0.001705579919621378, "data_time": 0.007554769515991211, "loss": 0.32840674966573713, "decode.loss_ce": 0.18845674097537995, "decode.acc_seg": 98.20511627197266, "aux.loss_ce": 0.13995001576840876, "aux.acc_seg": 97.9127197265625, "time": 1.114230751991272, "iter": 138800, "memory": 8704, "step": 138800} +{"lr": 0.0017021714467941778, "data_time": 0.0065507650375366214, "loss": 0.32849520444869995, "decode.loss_ce": 0.1949786938726902, "decode.acc_seg": 95.13861083984375, "aux.loss_ce": 0.1335165061056614, "aux.acc_seg": 94.1966323852539, "time": 1.1209110736846923, "iter": 138850, "memory": 8704, "step": 138850} +{"lr": 0.0016987621680853984, "data_time": 0.007547307014465332, "loss": 0.3151368021965027, "decode.loss_ce": 0.18659070655703544, "decode.acc_seg": 95.15615844726562, "aux.loss_ce": 0.12854609154164792, "aux.acc_seg": 91.99091339111328, "time": 1.1163377285003662, "iter": 138900, "memory": 8703, "step": 138900} +{"lr": 0.0016953520813941453, "data_time": 0.005692672729492187, "loss": 0.2930439606308937, "decode.loss_ce": 0.17313881143927573, "decode.acc_seg": 90.05177307128906, "aux.loss_ce": 0.1199051458388567, "aux.acc_seg": 87.97810363769531, "time": 1.1176146745681763, "iter": 138950, "memory": 8704, "step": 138950} +{"lr": 0.0016919411846090461, "data_time": 0.0069979667663574215, "loss": 0.24776250272989273, "decode.loss_ce": 0.1476997584104538, "decode.acc_seg": 96.3258056640625, "aux.loss_ce": 0.100062745064497, "aux.acc_seg": 96.18669891357422, "time": 1.115126943588257, "iter": 139000, "memory": 8703, "step": 139000} +{"lr": 0.0016885294756081703, "data_time": 0.00702667236328125, "loss": 0.3193833202123642, "decode.loss_ce": 0.1985662139952183, "decode.acc_seg": 97.4570541381836, "aux.loss_ce": 0.12081710621714592, "aux.acc_seg": 97.0755844116211, "time": 1.1180981159210206, "iter": 139050, "memory": 8703, "step": 139050} +{"lr": 0.0016851169522589516, "data_time": 0.006170439720153809, "loss": 0.3825203076004982, "decode.loss_ce": 0.249312062561512, "decode.acc_seg": 94.8537826538086, "aux.loss_ce": 0.13320823535323142, "aux.acc_seg": 92.11864471435547, "time": 1.1158299922943116, "iter": 139100, "memory": 8703, "step": 139100} +{"lr": 0.0016817036124181057, "data_time": 0.005711746215820312, "loss": 0.41471546292304995, "decode.loss_ce": 0.26450781598687173, "decode.acc_seg": 96.26610565185547, "aux.loss_ce": 0.15020764507353307, "aux.acc_seg": 95.8587646484375, "time": 1.1145649671554565, "iter": 139150, "memory": 8704, "step": 139150} +{"lr": 0.001678289453931558, "data_time": 0.007334208488464356, "loss": 0.2586344927549362, "decode.loss_ce": 0.15603221878409385, "decode.acc_seg": 92.56572723388672, "aux.loss_ce": 0.10260227359831334, "aux.acc_seg": 89.09269714355469, "time": 1.116514015197754, "iter": 139200, "memory": 8703, "step": 139200} +{"lr": 0.0016748744746343533, "data_time": 0.007956457138061524, "loss": 0.3093987137079239, "decode.loss_ce": 0.19258636608719826, "decode.acc_seg": 92.87433624267578, "aux.loss_ce": 0.11681234836578369, "aux.acc_seg": 87.45561981201172, "time": 1.1161176443099976, "iter": 139250, "memory": 8704, "step": 139250} +{"lr": 0.001671458672350584, "data_time": 0.00697481632232666, "loss": 0.3465957760810852, "decode.loss_ce": 0.20864880830049515, "decode.acc_seg": 89.4144058227539, "aux.loss_ce": 0.13794696554541588, "aux.acc_seg": 87.25859069824219, "time": 1.114833903312683, "iter": 139300, "memory": 8703, "step": 139300} +{"lr": 0.0016680420448933026, "data_time": 0.007368946075439453, "loss": 0.29805636703968047, "decode.loss_ce": 0.19126267805695535, "decode.acc_seg": 94.15766143798828, "aux.loss_ce": 0.10679368525743485, "aux.acc_seg": 90.23017883300781, "time": 1.113950753211975, "iter": 139350, "memory": 8704, "step": 139350} +{"lr": 0.0016646245900644391, "data_time": 0.00864238739013672, "loss": 0.2661008186638355, "decode.loss_ce": 0.16573015600442886, "decode.acc_seg": 91.72956848144531, "aux.loss_ce": 0.10037066247314215, "aux.acc_seg": 90.18952941894531, "time": 1.1146482944488525, "iter": 139400, "memory": 8704, "step": 139400} +{"lr": 0.0016612063056547202, "data_time": 0.0056859016418457035, "loss": 0.2549732133746147, "decode.loss_ce": 0.15826217830181122, "decode.acc_seg": 96.42581939697266, "aux.loss_ce": 0.09671103209257126, "aux.acc_seg": 93.91193389892578, "time": 1.113913655281067, "iter": 139450, "memory": 8703, "step": 139450} +{"lr": 0.001657787189443581, "data_time": 0.006505513191223144, "loss": 0.3466456286609173, "decode.loss_ce": 0.21100765690207482, "decode.acc_seg": 89.67005157470703, "aux.loss_ce": 0.13563797809183598, "aux.acc_seg": 84.02271270751953, "time": 1.119002389907837, "iter": 139500, "memory": 8704, "step": 139500} +{"lr": 0.0016543672391990838, "data_time": 0.0067681074142456055, "loss": 0.21351827830076217, "decode.loss_ce": 0.1258986733853817, "decode.acc_seg": 95.24822235107422, "aux.loss_ce": 0.0876196026802063, "aux.acc_seg": 95.18782043457031, "time": 1.1139609336853027, "iter": 139550, "memory": 8704, "step": 139550} +{"lr": 0.0016509464526778285, "data_time": 0.007023406028747558, "loss": 0.2580615982413292, "decode.loss_ce": 0.15192490816116333, "decode.acc_seg": 93.28148651123047, "aux.loss_ce": 0.10613668859004974, "aux.acc_seg": 90.96958923339844, "time": 1.1179591417312622, "iter": 139600, "memory": 8704, "step": 139600} +{"lr": 0.0016475248276248643, "data_time": 0.006183528900146484, "loss": 0.2140895664691925, "decode.loss_ce": 0.13337899297475814, "decode.acc_seg": 95.79492950439453, "aux.loss_ce": 0.08071057647466659, "aux.acc_seg": 89.31629943847656, "time": 1.1153986692428588, "iter": 139650, "memory": 8703, "step": 139650} +{"lr": 0.0016441023617736075, "data_time": 0.006315708160400391, "loss": 0.25778519585728643, "decode.loss_ce": 0.16608794704079627, "decode.acc_seg": 94.37210845947266, "aux.loss_ce": 0.09169724993407727, "aux.acc_seg": 93.32491302490234, "time": 1.1111984729766846, "iter": 139700, "memory": 8704, "step": 139700} +{"lr": 0.001640679052845748, "data_time": 0.006740140914916992, "loss": 0.25805234611034394, "decode.loss_ce": 0.1610306441783905, "decode.acc_seg": 90.255859375, "aux.loss_ce": 0.09702170453965664, "aux.acc_seg": 81.43768310546875, "time": 1.1136364459991455, "iter": 139750, "memory": 8704, "step": 139750} +{"lr": 0.001637254898551161, "data_time": 0.006366276741027832, "loss": 0.23529705703258513, "decode.loss_ce": 0.14475657567381858, "decode.acc_seg": 96.53771209716797, "aux.loss_ce": 0.09054048359394073, "aux.acc_seg": 96.16978454589844, "time": 1.108921504020691, "iter": 139800, "memory": 8703, "step": 139800} +{"lr": 0.0016338298965878162, "data_time": 0.006862759590148926, "loss": 0.21841796338558198, "decode.loss_ce": 0.12680067420005797, "decode.acc_seg": 96.09425354003906, "aux.loss_ce": 0.09161728993058205, "aux.acc_seg": 95.36329650878906, "time": 1.1195830583572388, "iter": 139850, "memory": 8703, "step": 139850} +{"lr": 0.0016304040446416855, "data_time": 0.007546186447143555, "loss": 0.2790458410978317, "decode.loss_ce": 0.1717812169343233, "decode.acc_seg": 96.21170043945312, "aux.loss_ce": 0.10726462826132774, "aux.acc_seg": 95.64470672607422, "time": 1.1152450799942017, "iter": 139900, "memory": 8704, "step": 139900} +{"lr": 0.0016269773403866515, "data_time": 0.00690000057220459, "loss": 0.2641276314854622, "decode.loss_ce": 0.16012718230485917, "decode.acc_seg": 93.34194946289062, "aux.loss_ce": 0.10400044582784176, "aux.acc_seg": 91.89446258544922, "time": 1.1133415460586549, "iter": 139950, "memory": 8704, "step": 139950} +{"lr": 0.001623549781484412, "data_time": 0.005774354934692383, "loss": 0.21546740382909774, "decode.loss_ce": 0.13409506380558014, "decode.acc_seg": 92.31548309326172, "aux.loss_ce": 0.08137233778834344, "aux.acc_seg": 88.75363159179688, "time": 1.1150110721588136, "iter": 140000, "memory": 8703, "step": 140000} +{"lr": 0.0016201213655843893, "data_time": 0.007493042945861816, "loss": 0.22091545015573502, "decode.loss_ce": 0.13723438307642938, "decode.acc_seg": 93.96412658691406, "aux.loss_ce": 0.08368106894195079, "aux.acc_seg": 93.2795181274414, "time": 1.111478614807129, "iter": 140050, "memory": 8704, "step": 140050} +{"lr": 0.0016166920903236328, "data_time": 0.007107853889465332, "loss": 0.3340110071003437, "decode.loss_ce": 0.2163414888083935, "decode.acc_seg": 97.78111267089844, "aux.loss_ce": 0.11766951829195023, "aux.acc_seg": 96.28263854980469, "time": 1.112092661857605, "iter": 140100, "memory": 8704, "step": 140100} +{"lr": 0.0016132619533267196, "data_time": 0.0075970649719238285, "loss": 0.39419319331645963, "decode.loss_ce": 0.22633466571569444, "decode.acc_seg": 96.7554702758789, "aux.loss_ce": 0.16785852536559104, "aux.acc_seg": 95.84217071533203, "time": 1.1204590559005738, "iter": 140150, "memory": 8703, "step": 140150} +{"lr": 0.0016098309522056622, "data_time": 0.007446932792663574, "loss": 0.25925668701529503, "decode.loss_ce": 0.145931376516819, "decode.acc_seg": 97.44005584716797, "aux.loss_ce": 0.11332530900835991, "aux.acc_seg": 96.90446472167969, "time": 1.1186996698379517, "iter": 140200, "memory": 8703, "step": 140200} +{"lr": 0.0016063990845598091, "data_time": 0.006731009483337403, "loss": 0.2815283976495266, "decode.loss_ce": 0.1627937451004982, "decode.acc_seg": 90.88017272949219, "aux.loss_ce": 0.11873465217649937, "aux.acc_seg": 85.24581146240234, "time": 1.1132121324539184, "iter": 140250, "memory": 8703, "step": 140250} +{"lr": 0.0016029663479757423, "data_time": 0.007011127471923828, "loss": 0.3030097559094429, "decode.loss_ce": 0.18553278148174285, "decode.acc_seg": 94.3431167602539, "aux.loss_ce": 0.11747697032988072, "aux.acc_seg": 92.3349380493164, "time": 1.1127926349639892, "iter": 140300, "memory": 8703, "step": 140300} +{"lr": 0.0015995327400271772, "data_time": 0.006735992431640625, "loss": 0.3695111349225044, "decode.loss_ce": 0.2251005731523037, "decode.acc_seg": 92.05620574951172, "aux.loss_ce": 0.14441056065261365, "aux.acc_seg": 86.53004455566406, "time": 1.1165400743484497, "iter": 140350, "memory": 8704, "step": 140350} +{"lr": 0.001596098258274866, "data_time": 0.008017373085021973, "loss": 0.38630068600177764, "decode.loss_ce": 0.2285706117749214, "decode.acc_seg": 92.89289855957031, "aux.loss_ce": 0.15773007981479167, "aux.acc_seg": 78.86186981201172, "time": 1.118752932548523, "iter": 140400, "memory": 8704, "step": 140400} +{"lr": 0.0015926629002664893, "data_time": 0.006600069999694824, "loss": 0.2787068963050842, "decode.loss_ce": 0.160978315025568, "decode.acc_seg": 95.0553207397461, "aux.loss_ce": 0.11772858127951621, "aux.acc_seg": 94.00240325927734, "time": 1.1172590970993042, "iter": 140450, "memory": 8704, "step": 140450} +{"lr": 0.0015892266635365582, "data_time": 0.00664052963256836, "loss": 0.5275491416454315, "decode.loss_ce": 0.30845868661999704, "decode.acc_seg": 92.98374938964844, "aux.loss_ce": 0.21909045204520225, "aux.acc_seg": 89.81156921386719, "time": 1.10873281955719, "iter": 140500, "memory": 8703, "step": 140500} +{"lr": 0.001585789545606302, "data_time": 0.00643923282623291, "loss": 0.2464921295642853, "decode.loss_ce": 0.15847113430500032, "decode.acc_seg": 96.65794372558594, "aux.loss_ce": 0.08802099898457527, "aux.acc_seg": 93.97557067871094, "time": 1.108655047416687, "iter": 140550, "memory": 8703, "step": 140550} +{"lr": 0.00158235154398357, "data_time": 0.005743765830993652, "loss": 0.29803076982498167, "decode.loss_ce": 0.18554226011037828, "decode.acc_seg": 85.59271240234375, "aux.loss_ce": 0.11248851232230664, "aux.acc_seg": 83.5174560546875, "time": 1.1139050483703614, "iter": 140600, "memory": 8703, "step": 140600} +{"lr": 0.0015789126561627195, "data_time": 0.007191777229309082, "loss": 0.3846816554665565, "decode.loss_ce": 0.2340402126312256, "decode.acc_seg": 87.78126525878906, "aux.loss_ce": 0.15064143836498262, "aux.acc_seg": 84.28401947021484, "time": 1.116864061355591, "iter": 140650, "memory": 8704, "step": 140650} +{"lr": 0.0015754728796245098, "data_time": 0.0067236900329589845, "loss": 0.41484135538339617, "decode.loss_ce": 0.24145321995019914, "decode.acc_seg": 91.81759643554688, "aux.loss_ce": 0.17338813357055188, "aux.acc_seg": 81.10834503173828, "time": 1.1151474952697753, "iter": 140700, "memory": 8703, "step": 140700} +{"lr": 0.0015720322118359935, "data_time": 0.007270979881286621, "loss": 0.2788493290543556, "decode.loss_ce": 0.15854034200310707, "decode.acc_seg": 96.29173278808594, "aux.loss_ce": 0.12030898854136467, "aux.acc_seg": 94.40739440917969, "time": 1.1173970222473144, "iter": 140750, "memory": 8704, "step": 140750} +{"lr": 0.0015685906502504047, "data_time": 0.005653882026672363, "loss": 0.3172393187880516, "decode.loss_ce": 0.19402975142002105, "decode.acc_seg": 94.55845642089844, "aux.loss_ce": 0.12320957146584988, "aux.acc_seg": 89.4002914428711, "time": 1.1089327096939088, "iter": 140800, "memory": 8703, "step": 140800} +{"lr": 0.001565148192307048, "data_time": 0.00691690444946289, "loss": 0.30658064857125283, "decode.loss_ce": 0.18905976749956607, "decode.acc_seg": 96.92916870117188, "aux.loss_ce": 0.11752088367938995, "aux.acc_seg": 94.45321655273438, "time": 1.1148892164230346, "iter": 140850, "memory": 8704, "step": 140850} +{"lr": 0.0015617048354311842, "data_time": 0.008780908584594727, "loss": 0.32776482254266737, "decode.loss_ce": 0.19318862110376359, "decode.acc_seg": 79.88993072509766, "aux.loss_ce": 0.1345761951059103, "aux.acc_seg": 73.19297790527344, "time": 1.120246958732605, "iter": 140900, "memory": 8704, "step": 140900} +{"lr": 0.0015582605770339212, "data_time": 0.007822275161743164, "loss": 0.2975233569741249, "decode.loss_ce": 0.1806039486080408, "decode.acc_seg": 93.9203872680664, "aux.loss_ce": 0.11691940501332283, "aux.acc_seg": 92.22908020019531, "time": 1.1107233047485352, "iter": 140950, "memory": 8704, "step": 140950} +{"lr": 0.001554815414512093, "data_time": 0.00746917724609375, "loss": 0.23971438705921172, "decode.loss_ce": 0.14610610976815225, "decode.acc_seg": 94.75452423095703, "aux.loss_ce": 0.09360827617347241, "aux.acc_seg": 93.75213623046875, "time": 1.1149703979492187, "iter": 141000, "memory": 8703, "step": 141000} +{"lr": 0.001551369345248146, "data_time": 0.007017254829406738, "loss": 0.314139324426651, "decode.loss_ce": 0.18637785762548448, "decode.acc_seg": 90.61863708496094, "aux.loss_ce": 0.12776145972311498, "aux.acc_seg": 90.93500518798828, "time": 1.111022400856018, "iter": 141050, "memory": 8704, "step": 141050} +{"lr": 0.0015479223666100225, "data_time": 0.006671929359436035, "loss": 0.3504980832338333, "decode.loss_ce": 0.22144191861152648, "decode.acc_seg": 96.5411148071289, "aux.loss_ce": 0.12905616723001004, "aux.acc_seg": 94.71427917480469, "time": 1.11519033908844, "iter": 141100, "memory": 8704, "step": 141100} +{"lr": 0.0015444744759510389, "data_time": 0.005694174766540527, "loss": 0.2901386395096779, "decode.loss_ce": 0.17231339141726493, "decode.acc_seg": 91.34699249267578, "aux.loss_ce": 0.117825248837471, "aux.acc_seg": 86.45108032226562, "time": 1.111825132369995, "iter": 141150, "memory": 8703, "step": 141150} +{"lr": 0.0015410256706097681, "data_time": 0.007189321517944336, "loss": 0.40902056992053987, "decode.loss_ce": 0.2527645334601402, "decode.acc_seg": 88.85160827636719, "aux.loss_ce": 0.156256040930748, "aux.acc_seg": 87.429931640625, "time": 1.1175216436386108, "iter": 141200, "memory": 8704, "step": 141200} +{"lr": 0.0015375759479099142, "data_time": 0.005856132507324219, "loss": 0.34696751832962036, "decode.loss_ce": 0.19361519291996956, "decode.acc_seg": 94.22695922851562, "aux.loss_ce": 0.15335232205688953, "aux.acc_seg": 92.74444580078125, "time": 1.1148470401763917, "iter": 141250, "memory": 8704, "step": 141250} +{"lr": 0.0015341253051601943, "data_time": 0.006515860557556152, "loss": 0.27414498254656794, "decode.loss_ce": 0.15705620720982552, "decode.acc_seg": 96.37825775146484, "aux.loss_ce": 0.11708878055214882, "aux.acc_seg": 95.62828826904297, "time": 1.1147414445877075, "iter": 141300, "memory": 8705, "step": 141300} +{"lr": 0.0015306737396542124, "data_time": 0.007215285301208496, "loss": 0.23006781190633774, "decode.loss_ce": 0.13234765827655792, "decode.acc_seg": 97.04882049560547, "aux.loss_ce": 0.09772015102207661, "aux.acc_seg": 96.56651306152344, "time": 1.1115519523620605, "iter": 141350, "memory": 8704, "step": 141350} +{"lr": 0.0015272212486703287, "data_time": 0.007793021202087402, "loss": 0.24443312734365463, "decode.loss_ce": 0.15053590908646583, "decode.acc_seg": 90.76923370361328, "aux.loss_ce": 0.09389721713960171, "aux.acc_seg": 88.92237854003906, "time": 1.121004056930542, "iter": 141400, "memory": 8704, "step": 141400} +{"lr": 0.0015237678294715438, "data_time": 0.005664682388305664, "loss": 0.25887020453810694, "decode.loss_ce": 0.14910222887992858, "decode.acc_seg": 96.33267211914062, "aux.loss_ce": 0.1097679778933525, "aux.acc_seg": 94.55445098876953, "time": 1.1113434553146362, "iter": 141450, "memory": 8703, "step": 141450} +{"lr": 0.0015203134793053581, "data_time": 0.006772089004516602, "loss": 0.20881878435611725, "decode.loss_ce": 0.12311547026038169, "decode.acc_seg": 97.05574798583984, "aux.loss_ce": 0.08570331446826458, "aux.acc_seg": 96.7630386352539, "time": 1.114691400527954, "iter": 141500, "memory": 8703, "step": 141500} +{"lr": 0.0015168581954036512, "data_time": 0.008054399490356445, "loss": 0.31672317534685135, "decode.loss_ce": 0.1812967799603939, "decode.acc_seg": 96.98925018310547, "aux.loss_ce": 0.13542639464139938, "aux.acc_seg": 94.67098999023438, "time": 1.1162684440612793, "iter": 141550, "memory": 8704, "step": 141550} +{"lr": 0.0015134019749825467, "data_time": 0.006725502014160156, "loss": 0.24445575326681138, "decode.loss_ce": 0.15605271682143212, "decode.acc_seg": 97.31886291503906, "aux.loss_ce": 0.08840303346514702, "aux.acc_seg": 96.34466552734375, "time": 1.1129088640213012, "iter": 141600, "memory": 8704, "step": 141600} +{"lr": 0.0015099448152422763, "data_time": 0.007819724082946778, "loss": 0.3020433738827705, "decode.loss_ce": 0.17458327934145929, "decode.acc_seg": 97.01671600341797, "aux.loss_ce": 0.12746009305119516, "aux.acc_seg": 95.40907287597656, "time": 1.1138202667236328, "iter": 141650, "memory": 8704, "step": 141650} +{"lr": 0.0015064867133670527, "data_time": 0.005931043624877929, "loss": 0.2254649817943573, "decode.loss_ce": 0.131221716850996, "decode.acc_seg": 94.72872161865234, "aux.loss_ce": 0.09424326196312904, "aux.acc_seg": 94.0394058227539, "time": 1.1118162155151368, "iter": 141700, "memory": 8705, "step": 141700} +{"lr": 0.001503027666524929, "data_time": 0.005941057205200195, "loss": 0.20429100692272187, "decode.loss_ce": 0.1185942031443119, "decode.acc_seg": 96.98206329345703, "aux.loss_ce": 0.08569680526852608, "aux.acc_seg": 96.5927734375, "time": 1.1137187004089355, "iter": 141750, "memory": 8703, "step": 141750} +{"lr": 0.0014995676718676616, "data_time": 0.00595700740814209, "loss": 0.2919662967324257, "decode.loss_ce": 0.16515767201781273, "decode.acc_seg": 88.78421783447266, "aux.loss_ce": 0.12680862583220004, "aux.acc_seg": 71.07734680175781, "time": 1.1161073207855225, "iter": 141800, "memory": 8704, "step": 141800} +{"lr": 0.0014961067265305736, "data_time": 0.007536244392395019, "loss": 0.23614228367805482, "decode.loss_ce": 0.15686151385307312, "decode.acc_seg": 88.7140884399414, "aux.loss_ce": 0.07928076647222042, "aux.acc_seg": 83.8837890625, "time": 1.1109970331192016, "iter": 141850, "memory": 8703, "step": 141850} +{"lr": 0.0014926448276324144, "data_time": 0.005892705917358398, "loss": 0.21922064647078515, "decode.loss_ce": 0.13008710630238057, "decode.acc_seg": 95.458984375, "aux.loss_ce": 0.08913353979587554, "aux.acc_seg": 93.26508331298828, "time": 1.1116528272628785, "iter": 141900, "memory": 8704, "step": 141900} +{"lr": 0.0014891819722752148, "data_time": 0.006203866004943848, "loss": 0.39368161261081697, "decode.loss_ce": 0.22978139519691468, "decode.acc_seg": 83.42850494384766, "aux.loss_ce": 0.16390021406114103, "aux.acc_seg": 81.20568084716797, "time": 1.1160468101501464, "iter": 141950, "memory": 8704, "step": 141950} +{"lr": 0.001485718157544144, "data_time": 0.007877326011657715, "loss": 0.24437346309423447, "decode.loss_ce": 0.15318473242223263, "decode.acc_seg": 95.41580963134766, "aux.loss_ce": 0.09118873327970504, "aux.acc_seg": 93.75044250488281, "time": 1.1163544416427613, "iter": 142000, "memory": 8704, "step": 142000} +{"lr": 0.001482253380507368, "data_time": 0.005932211875915527, "loss": 0.2696162313222885, "decode.loss_ce": 0.16930751875042915, "decode.acc_seg": 95.69866943359375, "aux.loss_ce": 0.1003087129443884, "aux.acc_seg": 94.94221496582031, "time": 1.115295648574829, "iter": 142050, "memory": 8703, "step": 142050} +{"lr": 0.0014787876382158986, "data_time": 0.007497334480285644, "loss": 0.33727161437273023, "decode.loss_ce": 0.2047271229326725, "decode.acc_seg": 93.11739349365234, "aux.loss_ce": 0.13254448920488357, "aux.acc_seg": 89.73114776611328, "time": 1.1162514448165894, "iter": 142100, "memory": 8704, "step": 142100} +{"lr": 0.0014753209277034486, "data_time": 0.009188032150268555, "loss": 0.2567796304821968, "decode.loss_ce": 0.15484078079462052, "decode.acc_seg": 97.30758666992188, "aux.loss_ce": 0.10193884931504726, "aux.acc_seg": 95.03408813476562, "time": 1.1173952102661133, "iter": 142150, "memory": 8703, "step": 142150} +{"lr": 0.0014718532459862769, "data_time": 0.006988048553466797, "loss": 0.252880896627903, "decode.loss_ce": 0.14757752493023873, "decode.acc_seg": 94.45673370361328, "aux.loss_ce": 0.10530337393283844, "aux.acc_seg": 80.7327880859375, "time": 1.1131150007247925, "iter": 142200, "memory": 8704, "step": 142200} +{"lr": 0.001468384590063042, "data_time": 0.006983208656311035, "loss": 0.25855106189846994, "decode.loss_ce": 0.15906410962343215, "decode.acc_seg": 96.32955932617188, "aux.loss_ce": 0.09948695078492165, "aux.acc_seg": 96.14441680908203, "time": 1.1143750190734862, "iter": 142250, "memory": 8703, "step": 142250} +{"lr": 0.0014649149569146444, "data_time": 0.005249428749084473, "loss": 0.2654618561267853, "decode.loss_ce": 0.16534925922751426, "decode.acc_seg": 83.39970397949219, "aux.loss_ce": 0.10011259280145168, "aux.acc_seg": 83.08270263671875, "time": 1.1086071729660034, "iter": 142300, "memory": 8703, "step": 142300} +{"lr": 0.00146144434350407, "data_time": 0.006291866302490234, "loss": 0.2419559270143509, "decode.loss_ce": 0.13958783075213432, "decode.acc_seg": 91.8252944946289, "aux.loss_ce": 0.10236809775233269, "aux.acc_seg": 91.57666778564453, "time": 1.113942837715149, "iter": 142350, "memory": 8703, "step": 142350} +{"lr": 0.0014579727467762377, "data_time": 0.007352852821350097, "loss": 0.2759927362203598, "decode.loss_ce": 0.16902633681893348, "decode.acc_seg": 94.72823333740234, "aux.loss_ce": 0.10696640238165855, "aux.acc_seg": 91.62568664550781, "time": 1.1177751541137695, "iter": 142400, "memory": 8703, "step": 142400} +{"lr": 0.0014545001636578365, "data_time": 0.006472730636596679, "loss": 0.21675031632184982, "decode.loss_ce": 0.13200174756348132, "decode.acc_seg": 98.20734405517578, "aux.loss_ce": 0.08474856894463301, "aux.acc_seg": 97.73546600341797, "time": 1.1135445833206177, "iter": 142450, "memory": 8703, "step": 142450} +{"lr": 0.0014510265910571655, "data_time": 0.005789279937744141, "loss": 0.21930094286799431, "decode.loss_ce": 0.13151778802275657, "decode.acc_seg": 95.30086517333984, "aux.loss_ce": 0.08778315410017967, "aux.acc_seg": 95.11833190917969, "time": 1.1105631589889526, "iter": 142500, "memory": 8704, "step": 142500} +{"lr": 0.0014475520258639702, "data_time": 0.007866454124450684, "loss": 0.22353598326444626, "decode.loss_ce": 0.13638898208737374, "decode.acc_seg": 88.24583435058594, "aux.loss_ce": 0.08714699856936932, "aux.acc_seg": 81.43297576904297, "time": 1.1130136489868163, "iter": 142550, "memory": 8704, "step": 142550} +{"lr": 0.0014440764649492775, "data_time": 0.0068700313568115234, "loss": 0.24648043215274812, "decode.loss_ce": 0.1494703121483326, "decode.acc_seg": 92.47150421142578, "aux.loss_ce": 0.09701012410223483, "aux.acc_seg": 89.2847671508789, "time": 1.1151556015014648, "iter": 142600, "memory": 8704, "step": 142600} +{"lr": 0.0014405999051652304, "data_time": 0.00785531997680664, "loss": 0.23969975262880325, "decode.loss_ce": 0.1388077072799206, "decode.acc_seg": 96.68775939941406, "aux.loss_ce": 0.10089204981923103, "aux.acc_seg": 95.5892562866211, "time": 1.115850067138672, "iter": 142650, "memory": 8703, "step": 142650} +{"lr": 0.001437122343344921, "data_time": 0.007355618476867676, "loss": 0.2209707334637642, "decode.loss_ce": 0.14064335748553275, "decode.acc_seg": 97.25735473632812, "aux.loss_ce": 0.0803273744881153, "aux.acc_seg": 92.31948852539062, "time": 1.1164174795150756, "iter": 142700, "memory": 8704, "step": 142700} +{"lr": 0.001433643776302216, "data_time": 0.006260967254638672, "loss": 0.46034356728196146, "decode.loss_ce": 0.2992515444755554, "decode.acc_seg": 95.55683135986328, "aux.loss_ce": 0.16109202355146407, "aux.acc_seg": 91.97794342041016, "time": 1.1160880088806153, "iter": 142750, "memory": 8703, "step": 142750} +{"lr": 0.001430164200831584, "data_time": 0.00890204906463623, "loss": 0.3410654902458191, "decode.loss_ce": 0.20756835490465164, "decode.acc_seg": 88.75789642333984, "aux.loss_ce": 0.1334971345961094, "aux.acc_seg": 87.08387756347656, "time": 1.121488833427429, "iter": 142800, "memory": 8703, "step": 142800} +{"lr": 0.001426683613707923, "data_time": 0.007497477531433106, "loss": 0.21449583098292352, "decode.loss_ce": 0.12554459720849992, "decode.acc_seg": 97.34178924560547, "aux.loss_ce": 0.08895123582333327, "aux.acc_seg": 96.94989013671875, "time": 1.11851065158844, "iter": 142850, "memory": 8705, "step": 142850} +{"lr": 0.001423202011686382, "data_time": 0.00602571964263916, "loss": 0.25968327224254606, "decode.loss_ce": 0.15139345526695253, "decode.acc_seg": 98.04496765136719, "aux.loss_ce": 0.10828981474041939, "aux.acc_seg": 89.92729187011719, "time": 1.114290452003479, "iter": 142900, "memory": 8703, "step": 142900} +{"lr": 0.0014197193915021845, "data_time": 0.006055760383605957, "loss": 0.2146226115524769, "decode.loss_ce": 0.12849678806960582, "decode.acc_seg": 97.40238189697266, "aux.loss_ce": 0.08612582199275494, "aux.acc_seg": 96.67993927001953, "time": 1.1134265661239624, "iter": 142950, "memory": 8704, "step": 142950} +{"lr": 0.0014162357498704431, "data_time": 0.008139944076538086, "loss": 0.2533933013677597, "decode.loss_ce": 0.1585639387369156, "decode.acc_seg": 95.36367797851562, "aux.loss_ce": 0.09482936635613441, "aux.acc_seg": 93.21892547607422, "time": 1.1141927242279053, "iter": 143000, "memory": 8703, "step": 143000} +{"lr": 0.0014127510834859793, "data_time": 0.006852912902832031, "loss": 0.28216011077165604, "decode.loss_ce": 0.15269409045577048, "decode.acc_seg": 90.56898498535156, "aux.loss_ce": 0.12946601510047911, "aux.acc_seg": 86.967529296875, "time": 1.1138643741607666, "iter": 143050, "memory": 8704, "step": 143050} +{"lr": 0.0014092653890231362, "data_time": 0.007357263565063476, "loss": 0.29537782818078995, "decode.loss_ce": 0.16991660743951797, "decode.acc_seg": 93.23158264160156, "aux.loss_ce": 0.12546121925115586, "aux.acc_seg": 82.97932434082031, "time": 1.1125356197357177, "iter": 143100, "memory": 8704, "step": 143100} +{"lr": 0.0014057786631355917, "data_time": 0.008151912689208984, "loss": 0.23141226917505264, "decode.loss_ce": 0.13636251613497735, "decode.acc_seg": 96.56352996826172, "aux.loss_ce": 0.09504975192248821, "aux.acc_seg": 90.28936767578125, "time": 1.111583137512207, "iter": 143150, "memory": 8703, "step": 143150} +{"lr": 0.0014022909024561687, "data_time": 0.007609891891479492, "loss": 0.27376779466867446, "decode.loss_ce": 0.16925861760973931, "decode.acc_seg": 94.96300506591797, "aux.loss_ce": 0.10450917780399323, "aux.acc_seg": 93.26057434082031, "time": 1.1124537229537963, "iter": 143200, "memory": 8703, "step": 143200} +{"lr": 0.0013988021035966408, "data_time": 0.007604622840881347, "loss": 0.3395335733890533, "decode.loss_ce": 0.20509584471583367, "decode.acc_seg": 95.31510162353516, "aux.loss_ce": 0.1344377242028713, "aux.acc_seg": 89.15550994873047, "time": 1.1177797079086305, "iter": 143250, "memory": 8703, "step": 143250} +{"lr": 0.0013953122631475397, "data_time": 0.006160998344421386, "loss": 0.5175988592207432, "decode.loss_ce": 0.31871877424418926, "decode.acc_seg": 92.93785095214844, "aux.loss_ce": 0.1988800833001733, "aux.acc_seg": 85.06462860107422, "time": 1.1166232824325562, "iter": 143300, "memory": 8705, "step": 143300} +{"lr": 0.0013918213776779567, "data_time": 0.00681002140045166, "loss": 0.28282052278518677, "decode.loss_ce": 0.17542276307940483, "decode.acc_seg": 96.43936157226562, "aux.loss_ce": 0.10739776007831096, "aux.acc_seg": 96.01866149902344, "time": 1.1170127391815186, "iter": 143350, "memory": 8704, "step": 143350} +{"lr": 0.001388329443735344, "data_time": 0.005534172058105469, "loss": 0.27953328415751455, "decode.loss_ce": 0.1846598505973816, "decode.acc_seg": 94.82567596435547, "aux.loss_ce": 0.09487343095242977, "aux.acc_seg": 94.04169464111328, "time": 1.1152797222137452, "iter": 143400, "memory": 8703, "step": 143400} +{"lr": 0.0013848364578453113, "data_time": 0.006337022781372071, "loss": 0.2634434744715691, "decode.loss_ce": 0.15335884764790536, "decode.acc_seg": 97.40396881103516, "aux.loss_ce": 0.1100846242159605, "aux.acc_seg": 97.03228759765625, "time": 1.1196040391921998, "iter": 143450, "memory": 8704, "step": 143450} +{"lr": 0.001381342416511422, "data_time": 0.0075006246566772464, "loss": 0.2716657117009163, "decode.loss_ce": 0.16025022566318511, "decode.acc_seg": 95.9854736328125, "aux.loss_ce": 0.11141548380255699, "aux.acc_seg": 95.38288116455078, "time": 1.1232867240905762, "iter": 143500, "memory": 8704, "step": 143500} +{"lr": 0.0013778473162149862, "data_time": 0.0065665006637573246, "loss": 0.2822641983628273, "decode.loss_ce": 0.17215468287467955, "decode.acc_seg": 94.25411224365234, "aux.loss_ce": 0.1101095125079155, "aux.acc_seg": 90.80848693847656, "time": 1.1110550880432128, "iter": 143550, "memory": 8703, "step": 143550} +{"lr": 0.00137435115341485, "data_time": 0.00591738224029541, "loss": 0.2939660340547562, "decode.loss_ce": 0.16078918278217316, "decode.acc_seg": 94.96968078613281, "aux.loss_ce": 0.13317685276269914, "aux.acc_seg": 88.87284088134766, "time": 1.1122678756713866, "iter": 143600, "memory": 8703, "step": 143600} +{"lr": 0.0013708539245471851, "data_time": 0.0058094501495361325, "loss": 0.32203369215130806, "decode.loss_ce": 0.18084994032979013, "decode.acc_seg": 97.4873275756836, "aux.loss_ce": 0.1411837564781308, "aux.acc_seg": 97.0789566040039, "time": 1.114031147956848, "iter": 143650, "memory": 8704, "step": 143650} +{"lr": 0.0013673556260252713, "data_time": 0.007191300392150879, "loss": 0.25387015044689176, "decode.loss_ce": 0.1605008862912655, "decode.acc_seg": 94.32295227050781, "aux.loss_ce": 0.09336926452815533, "aux.acc_seg": 91.23825073242188, "time": 1.1129061698913574, "iter": 143700, "memory": 8703, "step": 143700} +{"lr": 0.0013638562542392823, "data_time": 0.006874799728393555, "loss": 0.3093817368149757, "decode.loss_ce": 0.2026193432509899, "decode.acc_seg": 96.51966094970703, "aux.loss_ce": 0.10676239319145679, "aux.acc_seg": 95.02887725830078, "time": 1.112889051437378, "iter": 143750, "memory": 8704, "step": 143750} +{"lr": 0.0013603558055560608, "data_time": 0.008054971694946289, "loss": 0.22198713272809983, "decode.loss_ce": 0.13347755372524261, "decode.acc_seg": 95.65912628173828, "aux.loss_ce": 0.0885095801204443, "aux.acc_seg": 93.6290054321289, "time": 1.1198341846466064, "iter": 143800, "memory": 8704, "step": 143800} +{"lr": 0.0013568542763188983, "data_time": 0.006006693840026856, "loss": 0.1978856809437275, "decode.loss_ce": 0.12273446582257748, "decode.acc_seg": 95.62593841552734, "aux.loss_ce": 0.07515121512115001, "aux.acc_seg": 95.04146575927734, "time": 1.1136894226074219, "iter": 143850, "memory": 8704, "step": 143850} +{"lr": 0.0013533516628473079, "data_time": 0.00674741268157959, "loss": 0.21546427458524703, "decode.loss_ce": 0.13415186181664468, "decode.acc_seg": 96.57560729980469, "aux.loss_ce": 0.08131241425871849, "aux.acc_seg": 95.482177734375, "time": 1.113250184059143, "iter": 143900, "memory": 8704, "step": 143900} +{"lr": 0.0013498479614367969, "data_time": 0.00852200984954834, "loss": 0.24571572095155716, "decode.loss_ce": 0.14296057671308518, "decode.acc_seg": 94.11417388916016, "aux.loss_ce": 0.10275514386594295, "aux.acc_seg": 89.58097839355469, "time": 1.1132679224014281, "iter": 143950, "memory": 8704, "step": 143950} +{"lr": 0.001346343168358632, "data_time": 0.007839345932006836, "loss": 0.28879451006650925, "decode.loss_ce": 0.15944137722253798, "decode.acc_seg": 93.0000228881836, "aux.loss_ce": 0.12935313023626804, "aux.acc_seg": 82.91021728515625, "time": 1.1168912649154663, "iter": 144000, "memory": 8704, "step": 144000} +{"aAcc": 94.86, "mIoU": 70.72, "mAcc": 79.96, "data_time": 0.004168493611199878, "time": 0.27151568910570817, "step": 144000} +{"lr": 0.0013428372798596083, "data_time": 0.007093739509582519, "loss": 0.2637350469827652, "decode.loss_ce": 0.16335382983088492, "decode.acc_seg": 96.69659423828125, "aux.loss_ce": 0.10038121156394482, "aux.acc_seg": 94.28926849365234, "time": 1.1136813402175902, "iter": 144050, "memory": 8704, "step": 144050} +{"lr": 0.0013393302921618064, "data_time": 0.007109808921813965, "loss": 0.27227418720722196, "decode.loss_ce": 0.16240149587392808, "decode.acc_seg": 92.87445831298828, "aux.loss_ce": 0.10987268798053265, "aux.acc_seg": 91.45996856689453, "time": 1.1112417697906494, "iter": 144100, "memory": 8704, "step": 144100} +{"lr": 0.001335822201462357, "data_time": 0.006130790710449219, "loss": 0.5121829979121685, "decode.loss_ce": 0.3328484885394573, "decode.acc_seg": 95.23194885253906, "aux.loss_ce": 0.17933451756834984, "aux.acc_seg": 94.225341796875, "time": 1.1132871866226197, "iter": 144150, "memory": 8704, "step": 144150} +{"lr": 0.0013323130039331937, "data_time": 0.005995488166809082, "loss": 0.27099751979112624, "decode.loss_ce": 0.15828193500638008, "decode.acc_seg": 93.42424011230469, "aux.loss_ce": 0.11271558590233326, "aux.acc_seg": 91.63260650634766, "time": 1.1162948131561279, "iter": 144200, "memory": 8705, "step": 144200} +{"lr": 0.001328802695720805, "data_time": 0.007224154472351074, "loss": 0.28603276759386065, "decode.loss_ce": 0.17019294947385788, "decode.acc_seg": 96.76685333251953, "aux.loss_ce": 0.11583982035517693, "aux.acc_seg": 95.99793243408203, "time": 1.1147708892822266, "iter": 144250, "memory": 8703, "step": 144250} +{"lr": 0.0013252912729459852, "data_time": 0.006994414329528809, "loss": 0.2743973836302757, "decode.loss_ce": 0.154244052618742, "decode.acc_seg": 91.9165267944336, "aux.loss_ce": 0.12015332952141762, "aux.acc_seg": 89.95443725585938, "time": 1.119806694984436, "iter": 144300, "memory": 8703, "step": 144300} +{"lr": 0.0013217787317035812, "data_time": 0.0067994117736816405, "loss": 0.3491946242749691, "decode.loss_ce": 0.19861000441014767, "decode.acc_seg": 92.01927185058594, "aux.loss_ce": 0.15058461409062146, "aux.acc_seg": 90.52772521972656, "time": 1.1170448780059814, "iter": 144350, "memory": 8704, "step": 144350} +{"lr": 0.001318265068062236, "data_time": 0.007293272018432617, "loss": 0.3597507759928703, "decode.loss_ce": 0.20817180201411248, "decode.acc_seg": 96.34317779541016, "aux.loss_ce": 0.1515789683908224, "aux.acc_seg": 95.75117492675781, "time": 1.1150161981582642, "iter": 144400, "memory": 8704, "step": 144400} +{"lr": 0.001314750278064124, "data_time": 0.00720975399017334, "loss": 0.24878173172473908, "decode.loss_ce": 0.15059989579021932, "decode.acc_seg": 96.26583099365234, "aux.loss_ce": 0.09818183537572622, "aux.acc_seg": 95.72865295410156, "time": 1.116430115699768, "iter": 144450, "memory": 8703, "step": 144450} +{"lr": 0.0013112343577246959, "data_time": 0.00755312442779541, "loss": 0.325536260008812, "decode.loss_ce": 0.18618441373109818, "decode.acc_seg": 95.10746002197266, "aux.loss_ce": 0.139351848885417, "aux.acc_seg": 84.57489013671875, "time": 1.1116935968399049, "iter": 144500, "memory": 8704, "step": 144500} +{"lr": 0.0013077173030324003, "data_time": 0.008281588554382324, "loss": 0.22455528974533082, "decode.loss_ce": 0.13544424250721931, "decode.acc_seg": 96.95911407470703, "aux.loss_ce": 0.08911104463040828, "aux.acc_seg": 95.52599334716797, "time": 1.1168970346450806, "iter": 144550, "memory": 8703, "step": 144550} +{"lr": 0.0013041991099484208, "data_time": 0.006551194190979004, "loss": 0.3377159908413887, "decode.loss_ce": 0.18970247358083725, "decode.acc_seg": 91.24202728271484, "aux.loss_ce": 0.14801351688802242, "aux.acc_seg": 91.35284423828125, "time": 1.1138118743896483, "iter": 144600, "memory": 8704, "step": 144600} +{"lr": 0.0013006797744063974, "data_time": 0.005652523040771485, "loss": 0.24506016522645951, "decode.loss_ce": 0.15270138308405876, "decode.acc_seg": 90.89590454101562, "aux.loss_ce": 0.0923587828874588, "aux.acc_seg": 91.47503662109375, "time": 1.1141079187393188, "iter": 144650, "memory": 8704, "step": 144650} +{"lr": 0.0012971592923121497, "data_time": 0.00623788833618164, "loss": 0.3563012942671776, "decode.loss_ce": 0.21345005333423614, "decode.acc_seg": 96.15370178222656, "aux.loss_ce": 0.14285123348236084, "aux.acc_seg": 92.00413513183594, "time": 1.1157697200775147, "iter": 144700, "memory": 8705, "step": 144700} +{"lr": 0.0012936376595434017, "data_time": 0.006035518646240234, "loss": 0.23591038212180138, "decode.loss_ce": 0.14403028935194015, "decode.acc_seg": 92.68614196777344, "aux.loss_ce": 0.09188009053468704, "aux.acc_seg": 79.44634246826172, "time": 1.1168926000595092, "iter": 144750, "memory": 8704, "step": 144750} +{"lr": 0.0012901148719494798, "data_time": 0.006227970123291016, "loss": 0.2291886642575264, "decode.loss_ce": 0.14675309658050537, "decode.acc_seg": 96.74549102783203, "aux.loss_ce": 0.08243556842207908, "aux.acc_seg": 95.35414123535156, "time": 1.1168692350387572, "iter": 144800, "memory": 8703, "step": 144800} +{"lr": 0.0012865909253510393, "data_time": 0.006106042861938476, "loss": 0.2162877179682255, "decode.loss_ce": 0.13395803347229956, "decode.acc_seg": 97.10777282714844, "aux.loss_ce": 0.08232968673110008, "aux.acc_seg": 96.80509948730469, "time": 1.1168744087219238, "iter": 144850, "memory": 8704, "step": 144850} +{"lr": 0.0012830658155397632, "data_time": 0.007263016700744629, "loss": 0.2718467369675636, "decode.loss_ce": 0.16076040416955947, "decode.acc_seg": 84.72051239013672, "aux.loss_ce": 0.11108632832765579, "aux.acc_seg": 80.5618896484375, "time": 1.1163295030593872, "iter": 144900, "memory": 8704, "step": 144900} +{"lr": 0.0012795395382780676, "data_time": 0.0068255186080932615, "loss": 0.22022902667522432, "decode.loss_ce": 0.1281907543540001, "decode.acc_seg": 91.92892456054688, "aux.loss_ce": 0.09203827641904354, "aux.acc_seg": 90.36743927001953, "time": 1.1132575511932372, "iter": 144950, "memory": 8704, "step": 144950} +{"lr": 0.0012760120892987973, "data_time": 0.007837367057800294, "loss": 0.2557682916522026, "decode.loss_ce": 0.15453438758850097, "decode.acc_seg": 93.09978485107422, "aux.loss_ce": 0.10123390406370163, "aux.acc_seg": 92.81291961669922, "time": 1.1149653911590576, "iter": 145000, "memory": 8704, "step": 145000} +{"lr": 0.0012724834643049222, "data_time": 0.007609915733337402, "loss": 0.20352098047733308, "decode.loss_ce": 0.12669159434735774, "decode.acc_seg": 93.87632751464844, "aux.loss_ce": 0.07682938277721404, "aux.acc_seg": 91.62991333007812, "time": 1.1155792474746704, "iter": 145050, "memory": 8703, "step": 145050} +{"lr": 0.0012689536589692268, "data_time": 0.0064689874649047855, "loss": 0.25455189496278763, "decode.loss_ce": 0.1461179219186306, "decode.acc_seg": 95.54150390625, "aux.loss_ce": 0.10843397527933121, "aux.acc_seg": 94.85861206054688, "time": 1.114203405380249, "iter": 145100, "memory": 8703, "step": 145100} +{"lr": 0.0012654226689339985, "data_time": 0.006777286529541016, "loss": 0.25535414069890977, "decode.loss_ce": 0.16338758543133736, "decode.acc_seg": 92.52281188964844, "aux.loss_ce": 0.09196655303239823, "aux.acc_seg": 88.52163696289062, "time": 1.108935809135437, "iter": 145150, "memory": 8704, "step": 145150} +{"lr": 0.001261890489810705, "data_time": 0.006695294380187988, "loss": 0.24711756110191346, "decode.loss_ce": 0.14889775440096856, "decode.acc_seg": 97.61116790771484, "aux.loss_ce": 0.09821980260312557, "aux.acc_seg": 90.6474380493164, "time": 1.114121413230896, "iter": 145200, "memory": 8704, "step": 145200} +{"lr": 0.0012583571171796758, "data_time": 0.006423425674438476, "loss": 0.24417328983545303, "decode.loss_ce": 0.154986759647727, "decode.acc_seg": 96.56318664550781, "aux.loss_ce": 0.08918652944266796, "aux.acc_seg": 96.21846008300781, "time": 1.1148091793060302, "iter": 145250, "memory": 8704, "step": 145250} +{"lr": 0.0012548225465897711, "data_time": 0.0061416149139404295, "loss": 0.3144759967923164, "decode.loss_ce": 0.1944278210401535, "decode.acc_seg": 96.76544952392578, "aux.loss_ce": 0.12004817388951779, "aux.acc_seg": 95.54792785644531, "time": 1.1157635927200318, "iter": 145300, "memory": 8703, "step": 145300} +{"lr": 0.0012512867735580513, "data_time": 0.006520962715148926, "loss": 0.20762375742197037, "decode.loss_ce": 0.12577652372419834, "decode.acc_seg": 96.66805267333984, "aux.loss_ce": 0.08184723071753978, "aux.acc_seg": 93.97207641601562, "time": 1.118974494934082, "iter": 145350, "memory": 8704, "step": 145350} +{"lr": 0.0012477497935694426, "data_time": 0.006441330909729004, "loss": 0.1948663756251335, "decode.loss_ce": 0.11537993624806404, "decode.acc_seg": 91.56551361083984, "aux.loss_ce": 0.07948643788695335, "aux.acc_seg": 86.60347747802734, "time": 1.1148746013641357, "iter": 145400, "memory": 8703, "step": 145400} +{"lr": 0.0012442116020763944, "data_time": 0.009151387214660644, "loss": 0.2538553960621357, "decode.loss_ce": 0.13809405788779258, "decode.acc_seg": 94.89656829833984, "aux.loss_ce": 0.11576133705675602, "aux.acc_seg": 93.47267150878906, "time": 1.1225081920623778, "iter": 145450, "memory": 8704, "step": 145450} +{"lr": 0.001240672194498529, "data_time": 0.006424403190612793, "loss": 0.17948820516467096, "decode.loss_ce": 0.11228234507143497, "decode.acc_seg": 91.25878143310547, "aux.loss_ce": 0.06720586102455854, "aux.acc_seg": 86.50192260742188, "time": 1.1140843391418458, "iter": 145500, "memory": 8703, "step": 145500} +{"lr": 0.0012371315662222993, "data_time": 0.008306884765625, "loss": 0.32405986487865446, "decode.loss_ce": 0.2132446937263012, "decode.acc_seg": 96.08948516845703, "aux.loss_ce": 0.11081516928970814, "aux.acc_seg": 94.2422866821289, "time": 1.1176898241043092, "iter": 145550, "memory": 8704, "step": 145550} +{"lr": 0.0012335897126006254, "data_time": 0.006497907638549805, "loss": 0.2632671058177948, "decode.loss_ce": 0.1465582974255085, "decode.acc_seg": 91.3829116821289, "aux.loss_ce": 0.11670880764722824, "aux.acc_seg": 81.56814575195312, "time": 1.1176913261413575, "iter": 145600, "memory": 8703, "step": 145600} +{"lr": 0.0012300466289525364, "data_time": 0.0062988996505737305, "loss": 0.28874596431851385, "decode.loss_ce": 0.15639008842408658, "decode.acc_seg": 95.82010650634766, "aux.loss_ce": 0.13235587887465955, "aux.acc_seg": 95.75946044921875, "time": 1.1141320943832398, "iter": 145650, "memory": 8704, "step": 145650} +{"lr": 0.0012265023105628063, "data_time": 0.0072002410888671875, "loss": 0.30190280079841614, "decode.loss_ce": 0.18383111283183098, "decode.acc_seg": 95.62053680419922, "aux.loss_ce": 0.11807169057428837, "aux.acc_seg": 93.6625747680664, "time": 1.1153587102890015, "iter": 145700, "memory": 8703, "step": 145700} +{"lr": 0.0012229567526815784, "data_time": 0.006614851951599121, "loss": 0.2765318751335144, "decode.loss_ce": 0.1596152275800705, "decode.acc_seg": 89.51454162597656, "aux.loss_ce": 0.11691665165126323, "aux.acc_seg": 72.3777084350586, "time": 1.1126940965652465, "iter": 145750, "memory": 8704, "step": 145750} +{"lr": 0.0012194099505239916, "data_time": 0.0070410966873168945, "loss": 0.22572756111621856, "decode.loss_ce": 0.1312396138906479, "decode.acc_seg": 95.08177185058594, "aux.loss_ce": 0.09448794573545456, "aux.acc_seg": 93.84619140625, "time": 1.1144594430923462, "iter": 145800, "memory": 8703, "step": 145800} +{"lr": 0.0012158618992697977, "data_time": 0.007059359550476074, "loss": 0.20875483900308608, "decode.loss_ce": 0.12573564648628235, "decode.acc_seg": 95.65289306640625, "aux.loss_ce": 0.0830191943794489, "aux.acc_seg": 92.45025634765625, "time": 1.1132080554962158, "iter": 145850, "memory": 8704, "step": 145850} +{"lr": 0.0012123125940629708, "data_time": 0.008160591125488281, "loss": 0.261127744615078, "decode.loss_ce": 0.16142301708459855, "decode.acc_seg": 96.55996704101562, "aux.loss_ce": 0.09970472790300847, "aux.acc_seg": 93.55747985839844, "time": 1.1138426303863525, "iter": 145900, "memory": 8704, "step": 145900} +{"lr": 0.0012087620300113202, "data_time": 0.006551051139831543, "loss": 0.29039385765790937, "decode.loss_ce": 0.17807814553380014, "decode.acc_seg": 94.70027160644531, "aux.loss_ce": 0.11231571547687054, "aux.acc_seg": 90.36614990234375, "time": 1.1087891101837157, "iter": 145950, "memory": 8703, "step": 145950} +{"lr": 0.001205210202186086, "data_time": 0.0052319526672363285, "loss": 0.4218470960855484, "decode.loss_ce": 0.27021823562681674, "decode.acc_seg": 98.06683349609375, "aux.loss_ce": 0.1516288597136736, "aux.acc_seg": 97.7212905883789, "time": 1.1066144466400147, "iter": 146000, "memory": 8703, "step": 146000} +{"lr": 0.0012016571056215355, "data_time": 0.007050108909606933, "loss": 0.24480267986655235, "decode.loss_ce": 0.14702008962631224, "decode.acc_seg": 95.86148834228516, "aux.loss_ce": 0.09778258875012398, "aux.acc_seg": 92.34945678710938, "time": 1.1118497610092164, "iter": 146050, "memory": 8704, "step": 146050} +{"lr": 0.0011981027353145512, "data_time": 0.007230615615844727, "loss": 0.2785293832421303, "decode.loss_ce": 0.17461801320314407, "decode.acc_seg": 90.86265563964844, "aux.loss_ce": 0.10391137041151524, "aux.acc_seg": 85.2015151977539, "time": 1.114307713508606, "iter": 146100, "memory": 8704, "step": 146100} +{"lr": 0.0011945470862242179, "data_time": 0.007538342475891113, "loss": 0.3343783624470234, "decode.loss_ce": 0.22392628602683545, "decode.acc_seg": 96.67111206054688, "aux.loss_ce": 0.11045207157731056, "aux.acc_seg": 96.10651397705078, "time": 1.1147212743759156, "iter": 146150, "memory": 8703, "step": 146150} +{"lr": 0.0011909901532713965, "data_time": 0.007044863700866699, "loss": 0.2563059002161026, "decode.loss_ce": 0.15981726795434953, "decode.acc_seg": 97.88875579833984, "aux.loss_ce": 0.09648863151669503, "aux.acc_seg": 96.60040283203125, "time": 1.11606822013855, "iter": 146200, "memory": 8703, "step": 146200} +{"lr": 0.0011874319313382917, "data_time": 0.009032630920410156, "loss": 0.4406520053744316, "decode.loss_ce": 0.25794428735971453, "decode.acc_seg": 85.4462661743164, "aux.loss_ce": 0.1827077243477106, "aux.acc_seg": 74.03072357177734, "time": 1.1169764995574951, "iter": 146250, "memory": 8704, "step": 146250} +{"lr": 0.001183872415268025, "data_time": 0.006541061401367188, "loss": 0.21717017889022827, "decode.loss_ce": 0.13594989702105523, "decode.acc_seg": 96.56422424316406, "aux.loss_ce": 0.08122027851641178, "aux.acc_seg": 95.2739028930664, "time": 1.11252818107605, "iter": 146300, "memory": 8704, "step": 146300} +{"lr": 0.0011803115998641838, "data_time": 0.007050514221191406, "loss": 0.2878351256251335, "decode.loss_ce": 0.18052242174744607, "decode.acc_seg": 96.97074890136719, "aux.loss_ce": 0.10731270387768746, "aux.acc_seg": 96.0733413696289, "time": 1.117211937904358, "iter": 146350, "memory": 8704, "step": 146350} +{"lr": 0.0011767494798903741, "data_time": 0.007026767730712891, "loss": 0.2501070603728294, "decode.loss_ce": 0.14933793619275093, "decode.acc_seg": 93.94041442871094, "aux.loss_ce": 0.10076912641525268, "aux.acc_seg": 89.67424774169922, "time": 1.1144566059112548, "iter": 146400, "memory": 8704, "step": 146400} +{"lr": 0.00117318605006977, "data_time": 0.007062292098999024, "loss": 0.32650029063224795, "decode.loss_ce": 0.1955871596932411, "decode.acc_seg": 89.98768615722656, "aux.loss_ce": 0.1309131272137165, "aux.acc_seg": 84.28128051757812, "time": 1.1156662702560425, "iter": 146450, "memory": 8704, "step": 146450} +{"lr": 0.0011696213050846423, "data_time": 0.007823538780212403, "loss": 0.21153112202882768, "decode.loss_ce": 0.1302599437534809, "decode.acc_seg": 95.47745513916016, "aux.loss_ce": 0.08127117827534676, "aux.acc_seg": 92.38726806640625, "time": 1.1132022857666015, "iter": 146500, "memory": 8703, "step": 146500} +{"lr": 0.0011660552395758974, "data_time": 0.0055507183074951175, "loss": 0.25555911362171174, "decode.loss_ce": 0.15790933966636658, "decode.acc_seg": 89.40937042236328, "aux.loss_ce": 0.09764977246522903, "aux.acc_seg": 85.21665954589844, "time": 1.1139438152313232, "iter": 146550, "memory": 8703, "step": 146550} +{"lr": 0.0011624878481425983, "data_time": 0.006223559379577637, "loss": 0.22831123918294907, "decode.loss_ce": 0.1407971054315567, "decode.acc_seg": 95.31999969482422, "aux.loss_ce": 0.08751413598656654, "aux.acc_seg": 93.2409896850586, "time": 1.1093894004821778, "iter": 146600, "memory": 8703, "step": 146600} +{"lr": 0.0011589191253414742, "data_time": 0.007152032852172851, "loss": 0.2601354941725731, "decode.loss_ce": 0.15508524551987649, "decode.acc_seg": 95.94904327392578, "aux.loss_ce": 0.10505025200545788, "aux.acc_seg": 94.84468841552734, "time": 1.117199182510376, "iter": 146650, "memory": 8703, "step": 146650} +{"lr": 0.0011553490656864359, "data_time": 0.006726813316345215, "loss": 0.25137823522090913, "decode.loss_ce": 0.15711020976305007, "decode.acc_seg": 96.96979522705078, "aux.loss_ce": 0.09426802787929774, "aux.acc_seg": 96.16400146484375, "time": 1.1178968667984008, "iter": 146700, "memory": 8704, "step": 146700} +{"lr": 0.001151777663648076, "data_time": 0.00618586540222168, "loss": 0.30320012718439104, "decode.loss_ce": 0.1908409707248211, "decode.acc_seg": 97.43988800048828, "aux.loss_ce": 0.11235915645956993, "aux.acc_seg": 96.92433166503906, "time": 1.1109658241271974, "iter": 146750, "memory": 8704, "step": 146750} +{"lr": 0.0011482049136531593, "data_time": 0.005561113357543945, "loss": 0.2252083644270897, "decode.loss_ce": 0.13098414540290831, "decode.acc_seg": 97.12810516357422, "aux.loss_ce": 0.09422421865165234, "aux.acc_seg": 96.83513641357422, "time": 1.1133218288421631, "iter": 146800, "memory": 8704, "step": 146800} +{"lr": 0.0011446308100841105, "data_time": 0.0058955192565917965, "loss": 0.317062745988369, "decode.loss_ce": 0.18124758675694466, "decode.acc_seg": 96.04466247558594, "aux.loss_ce": 0.1358151573687792, "aux.acc_seg": 90.7552719116211, "time": 1.1124011039733888, "iter": 146850, "memory": 8704, "step": 146850} +{"lr": 0.0011410553472784868, "data_time": 0.007382822036743164, "loss": 0.22630640715360642, "decode.loss_ce": 0.13463512286543847, "decode.acc_seg": 88.91544342041016, "aux.loss_ce": 0.09167127944529056, "aux.acc_seg": 83.5826187133789, "time": 1.1157898902893066, "iter": 146900, "memory": 8704, "step": 146900} +{"lr": 0.0011374785195284545, "data_time": 0.006494140625, "loss": 0.2105717144906521, "decode.loss_ce": 0.12806860730051994, "decode.acc_seg": 94.17959594726562, "aux.loss_ce": 0.08250310532748699, "aux.acc_seg": 93.27494049072266, "time": 1.1149009466171265, "iter": 146950, "memory": 8704, "step": 146950} +{"lr": 0.001133900321080243, "data_time": 0.006293773651123047, "loss": 0.21989901065826417, "decode.loss_ce": 0.13073925785720347, "decode.acc_seg": 97.6322021484375, "aux.loss_ce": 0.08915975224226713, "aux.acc_seg": 96.85057067871094, "time": 1.1128499507904053, "iter": 147000, "memory": 8703, "step": 147000} +{"lr": 0.001130320746133602, "data_time": 0.007140684127807617, "loss": 0.2984768129885197, "decode.loss_ce": 0.16941421777009963, "decode.acc_seg": 85.6252670288086, "aux.loss_ce": 0.12906259186565877, "aux.acc_seg": 77.73907470703125, "time": 1.1185110807418823, "iter": 147050, "memory": 8704, "step": 147050} +{"lr": 0.0011267397888412411, "data_time": 0.006027531623840332, "loss": 0.22415443509817123, "decode.loss_ce": 0.13027759157121183, "decode.acc_seg": 96.40203857421875, "aux.loss_ce": 0.09387684315443039, "aux.acc_seg": 94.84806060791016, "time": 1.1137065887451172, "iter": 147100, "memory": 8704, "step": 147100} +{"lr": 0.0011231574433082654, "data_time": 0.007550978660583496, "loss": 0.22275943234562873, "decode.loss_ce": 0.12680671438574792, "decode.acc_seg": 93.6309814453125, "aux.loss_ce": 0.09595271721482276, "aux.acc_seg": 78.2022476196289, "time": 1.1186408996582031, "iter": 147150, "memory": 8704, "step": 147150} +{"lr": 0.0011195737035916045, "data_time": 0.005790162086486817, "loss": 0.2767417848110199, "decode.loss_ce": 0.17327843308448793, "decode.acc_seg": 97.05797576904297, "aux.loss_ce": 0.10346335060894489, "aux.acc_seg": 96.57872009277344, "time": 1.1124558448791504, "iter": 147200, "memory": 8703, "step": 147200} +{"lr": 0.0011159885636994236, "data_time": 0.0061855316162109375, "loss": 0.20663807839155196, "decode.loss_ce": 0.12635405510663986, "decode.acc_seg": 97.37621307373047, "aux.loss_ce": 0.08028402552008629, "aux.acc_seg": 97.24046325683594, "time": 1.111293363571167, "iter": 147250, "memory": 8703, "step": 147250} +{"lr": 0.0011124020175905351, "data_time": 0.006314301490783691, "loss": 0.19597534835338593, "decode.loss_ce": 0.12098556756973267, "decode.acc_seg": 96.2930679321289, "aux.loss_ce": 0.07498977966606617, "aux.acc_seg": 95.28267669677734, "time": 1.1145777463912965, "iter": 147300, "memory": 8704, "step": 147300} +{"lr": 0.0011088140591737948, "data_time": 0.0076552629470825195, "loss": 0.2028952956199646, "decode.loss_ce": 0.1324777275323868, "decode.acc_seg": 94.6173324584961, "aux.loss_ce": 0.0704175665974617, "aux.acc_seg": 93.05298614501953, "time": 1.1141998291015625, "iter": 147350, "memory": 8703, "step": 147350} +{"lr": 0.0011052246823074854, "data_time": 0.006477618217468261, "loss": 0.20600462481379508, "decode.loss_ce": 0.1263573460280895, "decode.acc_seg": 92.24832153320312, "aux.loss_ce": 0.07964728139340878, "aux.acc_seg": 88.09046173095703, "time": 1.114608931541443, "iter": 147400, "memory": 8703, "step": 147400} +{"lr": 0.0011016338807987025, "data_time": 0.007352352142333984, "loss": 0.356464096903801, "decode.loss_ce": 0.22050505205988885, "decode.acc_seg": 90.35835266113281, "aux.loss_ce": 0.13595904558897018, "aux.acc_seg": 89.80026245117188, "time": 1.1196819305419923, "iter": 147450, "memory": 8703, "step": 147450} +{"lr": 0.0010980416484027153, "data_time": 0.00591278076171875, "loss": 0.21304027661681174, "decode.loss_ce": 0.12674161419272423, "decode.acc_seg": 97.26078796386719, "aux.loss_ce": 0.08629866130650043, "aux.acc_seg": 96.19032287597656, "time": 1.1086929321289063, "iter": 147500, "memory": 8704, "step": 147500} +{"lr": 0.0010944479788223278, "data_time": 0.006067466735839844, "loss": 0.32753061056137084, "decode.loss_ce": 0.19296925738453866, "decode.acc_seg": 95.13912200927734, "aux.loss_ce": 0.13456135094165803, "aux.acc_seg": 95.03923797607422, "time": 1.110835337638855, "iter": 147550, "memory": 8704, "step": 147550} +{"lr": 0.0010908528657072249, "data_time": 0.006744170188903808, "loss": 0.21436416655778884, "decode.loss_ce": 0.11665618717670441, "decode.acc_seg": 95.11368560791016, "aux.loss_ce": 0.0977079790085554, "aux.acc_seg": 90.57305145263672, "time": 1.1148705005645752, "iter": 147600, "memory": 8704, "step": 147600} +{"lr": 0.001087256302653304, "data_time": 0.00782172679901123, "loss": 0.35200328230857847, "decode.loss_ce": 0.20636574625968934, "decode.acc_seg": 93.62862396240234, "aux.loss_ce": 0.14563754051923752, "aux.acc_seg": 91.15428924560547, "time": 1.1127617120742799, "iter": 147650, "memory": 8704, "step": 147650} +{"lr": 0.0010836582832020056, "data_time": 0.007780337333679199, "loss": 0.2569224789738655, "decode.loss_ce": 0.16210066229104997, "decode.acc_seg": 89.46869659423828, "aux.loss_ce": 0.09482181780040264, "aux.acc_seg": 85.16203308105469, "time": 1.1143797397613526, "iter": 147700, "memory": 8703, "step": 147700} +{"lr": 0.0010800588008396228, "data_time": 0.006974315643310547, "loss": 0.27270362377166746, "decode.loss_ce": 0.17094992175698281, "decode.acc_seg": 93.67637634277344, "aux.loss_ce": 0.10175370033830404, "aux.acc_seg": 92.73274230957031, "time": 1.1092233419418336, "iter": 147750, "memory": 8704, "step": 147750} +{"lr": 0.0010764578489966085, "data_time": 0.006264829635620117, "loss": 0.2900677308440208, "decode.loss_ce": 0.17764863818883897, "decode.acc_seg": 91.47014617919922, "aux.loss_ce": 0.11241908855736256, "aux.acc_seg": 86.59540557861328, "time": 1.117613935470581, "iter": 147800, "memory": 8704, "step": 147800} +{"lr": 0.0010728554210468564, "data_time": 0.006870198249816895, "loss": 0.2828458547592163, "decode.loss_ce": 0.15501385927200317, "decode.acc_seg": 93.36690521240234, "aux.loss_ce": 0.1278319951146841, "aux.acc_seg": 92.2430191040039, "time": 1.113286066055298, "iter": 147850, "memory": 8705, "step": 147850} +{"lr": 0.0010692515103069926, "data_time": 0.0059776782989501955, "loss": 0.2737668201327324, "decode.loss_ce": 0.14525855407118798, "decode.acc_seg": 97.0542221069336, "aux.loss_ce": 0.12850826196372508, "aux.acc_seg": 95.03402709960938, "time": 1.1168390035629272, "iter": 147900, "memory": 8704, "step": 147900} +{"lr": 0.0010656461100356305, "data_time": 0.007469749450683594, "loss": 0.2992328181862831, "decode.loss_ce": 0.18345367163419724, "decode.acc_seg": 96.25167846679688, "aux.loss_ce": 0.11577914208173752, "aux.acc_seg": 94.79814147949219, "time": 1.1209680557250976, "iter": 147950, "memory": 8703, "step": 147950} +{"lr": 0.0010620392134326293, "data_time": 0.0065605401992797855, "loss": 0.1960155747830868, "decode.loss_ce": 0.12252102866768837, "decode.acc_seg": 97.55490112304688, "aux.loss_ce": 0.07349454686045646, "aux.acc_seg": 96.450927734375, "time": 1.1130015134811402, "iter": 148000, "memory": 8704, "step": 148000} +{"lr": 0.001058430813638332, "data_time": 0.005834031105041504, "loss": 0.2668325111269951, "decode.loss_ce": 0.16158850044012069, "decode.acc_seg": 94.15276336669922, "aux.loss_ce": 0.10524401068687439, "aux.acc_seg": 89.92430114746094, "time": 1.1139750957489014, "iter": 148050, "memory": 8703, "step": 148050} +{"lr": 0.0010548209037327995, "data_time": 0.006489109992980957, "loss": 0.2183576837182045, "decode.loss_ce": 0.1338310182094574, "decode.acc_seg": 96.87181854248047, "aux.loss_ce": 0.0845266666263342, "aux.acc_seg": 96.54114532470703, "time": 1.1094635009765625, "iter": 148100, "memory": 8703, "step": 148100} +{"lr": 0.0010512094767350176, "data_time": 0.005928421020507812, "loss": 0.24309546798467635, "decode.loss_ce": 0.13602233901619912, "decode.acc_seg": 95.83828735351562, "aux.loss_ce": 0.10707313027232886, "aux.acc_seg": 92.78614807128906, "time": 1.1093875408172607, "iter": 148150, "memory": 8704, "step": 148150} +{"lr": 0.0010475965256021025, "data_time": 0.007178997993469239, "loss": 0.2175826445221901, "decode.loss_ce": 0.12890708968043327, "decode.acc_seg": 95.54779815673828, "aux.loss_ce": 0.08867555372416973, "aux.acc_seg": 93.9942626953125, "time": 1.113187050819397, "iter": 148200, "memory": 8704, "step": 148200} +{"lr": 0.0010439820432284858, "data_time": 0.006467413902282715, "loss": 0.3024450033903122, "decode.loss_ce": 0.18603771701455116, "decode.acc_seg": 97.27655792236328, "aux.loss_ce": 0.11640728749334812, "aux.acc_seg": 95.51575469970703, "time": 1.1145633220672608, "iter": 148250, "memory": 8703, "step": 148250} +{"lr": 0.00104036602244509, "data_time": 0.007193708419799804, "loss": 0.28107939213514327, "decode.loss_ce": 0.17285606861114503, "decode.acc_seg": 92.93766021728516, "aux.loss_ce": 0.10822332538664341, "aux.acc_seg": 91.92167663574219, "time": 1.1171159029006958, "iter": 148300, "memory": 8703, "step": 148300} +{"lr": 0.0010367484560184865, "data_time": 0.006725192070007324, "loss": 0.26708760261535647, "decode.loss_ce": 0.14600221291184426, "decode.acc_seg": 95.36795043945312, "aux.loss_ce": 0.12108539007604122, "aux.acc_seg": 88.05899810791016, "time": 1.1135445594787599, "iter": 148350, "memory": 8703, "step": 148350} +{"lr": 0.0010331293366500356, "data_time": 0.007183980941772461, "loss": 0.17019013315439224, "decode.loss_ce": 0.10691304802894593, "decode.acc_seg": 95.022705078125, "aux.loss_ce": 0.06327708438038826, "aux.acc_seg": 94.091796875, "time": 1.1173764705657958, "iter": 148400, "memory": 8704, "step": 148400} +{"lr": 0.0010295086569750175, "data_time": 0.007186341285705567, "loss": 0.2420061409473419, "decode.loss_ce": 0.14610364958643912, "decode.acc_seg": 95.79947662353516, "aux.loss_ce": 0.09590248838067054, "aux.acc_seg": 92.21033477783203, "time": 1.114251446723938, "iter": 148450, "memory": 8704, "step": 148450} +{"lr": 0.0010258864095617447, "data_time": 0.006732416152954101, "loss": 0.20604700595140457, "decode.loss_ce": 0.12349193096160889, "decode.acc_seg": 95.59555053710938, "aux.loss_ce": 0.08255507983267307, "aux.acc_seg": 92.05093383789062, "time": 1.1110413074493408, "iter": 148500, "memory": 8704, "step": 148500} +{"lr": 0.0010222625869106645, "data_time": 0.006437563896179199, "loss": 0.21128030866384506, "decode.loss_ce": 0.12159885242581367, "decode.acc_seg": 98.04464721679688, "aux.loss_ce": 0.089681451395154, "aux.acc_seg": 94.54376983642578, "time": 1.1109025955200196, "iter": 148550, "memory": 8704, "step": 148550} +{"lr": 0.0010186371814534297, "data_time": 0.006956791877746582, "loss": 0.395065513253212, "decode.loss_ce": 0.24939217269420624, "decode.acc_seg": 93.89127349853516, "aux.loss_ce": 0.14567333981394767, "aux.acc_seg": 91.45120239257812, "time": 1.1118465662002563, "iter": 148600, "memory": 8703, "step": 148600} +{"lr": 0.0010150101855519724, "data_time": 0.006071066856384278, "loss": 0.34437066316604614, "decode.loss_ce": 0.2085028648376465, "decode.acc_seg": 92.37594604492188, "aux.loss_ce": 0.1358677987009287, "aux.acc_seg": 92.04444885253906, "time": 1.114523434638977, "iter": 148650, "memory": 8703, "step": 148650} +{"lr": 0.0010113815914975458, "data_time": 0.0071376323699951175, "loss": 0.19233744144439696, "decode.loss_ce": 0.12017483338713646, "decode.acc_seg": 97.22010040283203, "aux.loss_ce": 0.07216260861605406, "aux.acc_seg": 96.98223876953125, "time": 1.1156865358352661, "iter": 148700, "memory": 8703, "step": 148700} +{"lr": 0.0010077513915097576, "data_time": 0.0064564704895019535, "loss": 0.23184166476130486, "decode.loss_ce": 0.13490121476352215, "decode.acc_seg": 94.63131713867188, "aux.loss_ce": 0.09694045037031174, "aux.acc_seg": 94.16319274902344, "time": 1.1148492813110351, "iter": 148750, "memory": 8704, "step": 148750} +{"lr": 0.0010041195777355817, "data_time": 0.007910561561584473, "loss": 0.2735313020646572, "decode.loss_ce": 0.1624074749648571, "decode.acc_seg": 94.63751983642578, "aux.loss_ce": 0.11112382635474205, "aux.acc_seg": 93.5187759399414, "time": 1.116448950767517, "iter": 148800, "memory": 8703, "step": 148800} +{"lr": 0.001000486142248353, "data_time": 0.006163263320922851, "loss": 0.3427128277719021, "decode.loss_ce": 0.23867843337357045, "decode.acc_seg": 97.00775146484375, "aux.loss_ce": 0.10403439309448004, "aux.acc_seg": 96.02432250976562, "time": 1.1149489641189576, "iter": 148850, "memory": 8704, "step": 148850} +{"lr": 0.0009968510770467405, "data_time": 0.0062541007995605465, "loss": 0.3143694490194321, "decode.loss_ce": 0.19198635146021842, "decode.acc_seg": 95.60028076171875, "aux.loss_ce": 0.12238310016691685, "aux.acc_seg": 95.53793334960938, "time": 1.113973617553711, "iter": 148900, "memory": 8704, "step": 148900} +{"lr": 0.0009932143740537117, "data_time": 0.005942225456237793, "loss": 0.2537765890359879, "decode.loss_ce": 0.15644657462835312, "decode.acc_seg": 97.11588287353516, "aux.loss_ce": 0.09733001664280891, "aux.acc_seg": 96.61691284179688, "time": 1.114434790611267, "iter": 148950, "memory": 8703, "step": 148950} +{"lr": 0.000989576025115462, "data_time": 0.007673192024230957, "loss": 0.29072895348072053, "decode.loss_ce": 0.17555581778287888, "decode.acc_seg": 91.47713470458984, "aux.loss_ce": 0.1151731364428997, "aux.acc_seg": 87.57603454589844, "time": 1.1162523984909059, "iter": 149000, "memory": 8703, "step": 149000} +{"lr": 0.0009859360220003384, "data_time": 0.005848431587219238, "loss": 0.24320309162139891, "decode.loss_ce": 0.14628181830048562, "decode.acc_seg": 94.85142517089844, "aux.loss_ce": 0.09692127034068107, "aux.acc_seg": 93.54889678955078, "time": 1.112838578224182, "iter": 149050, "memory": 8705, "step": 149050} +{"lr": 0.0009822943563977343, "data_time": 0.006461977958679199, "loss": 0.30924193412065504, "decode.loss_ce": 0.17572036013007164, "decode.acc_seg": 81.20619201660156, "aux.loss_ce": 0.13352156803011894, "aux.acc_seg": 71.60733032226562, "time": 1.1129372358322143, "iter": 149100, "memory": 8703, "step": 149100} +{"lr": 0.0009786510199169699, "data_time": 0.007390427589416504, "loss": 0.22841409146785735, "decode.loss_ce": 0.13271888792514802, "decode.acc_seg": 97.07958984375, "aux.loss_ce": 0.09569520391523838, "aux.acc_seg": 96.588134765625, "time": 1.1156087636947631, "iter": 149150, "memory": 8704, "step": 149150} +{"lr": 0.0009750060040861449, "data_time": 0.006081485748291015, "loss": 0.26662857830524445, "decode.loss_ce": 0.16161077991127967, "decode.acc_seg": 91.65611267089844, "aux.loss_ce": 0.10501779317855835, "aux.acc_seg": 86.37542724609375, "time": 1.1106816530227661, "iter": 149200, "memory": 8704, "step": 149200} +{"lr": 0.0009713593003509725, "data_time": 0.006224894523620605, "loss": 0.32561856880784035, "decode.loss_ce": 0.1787081778049469, "decode.acc_seg": 95.72162628173828, "aux.loss_ce": 0.14691038317978383, "aux.acc_seg": 94.85880279541016, "time": 1.1120503187179565, "iter": 149250, "memory": 8703, "step": 149250} +{"lr": 0.0009677109000735914, "data_time": 0.007701516151428223, "loss": 0.21185442060232162, "decode.loss_ce": 0.13277852162718773, "decode.acc_seg": 88.45188903808594, "aux.loss_ce": 0.07907589320093393, "aux.acc_seg": 93.14911651611328, "time": 1.1142281532287597, "iter": 149300, "memory": 8704, "step": 149300} +{"lr": 0.0009640607945313553, "data_time": 0.006986188888549805, "loss": 0.29723541885614396, "decode.loss_ce": 0.1828707717359066, "decode.acc_seg": 92.23015594482422, "aux.loss_ce": 0.11436464823782444, "aux.acc_seg": 89.08634185791016, "time": 1.1150481224060058, "iter": 149350, "memory": 8703, "step": 149350} +{"lr": 0.0009604089749156012, "data_time": 0.008280611038208008, "loss": 0.26132929772138597, "decode.loss_ce": 0.15886726155877112, "decode.acc_seg": 96.77085876464844, "aux.loss_ce": 0.1024620357900858, "aux.acc_seg": 95.58219909667969, "time": 1.112461304664612, "iter": 149400, "memory": 8703, "step": 149400} +{"lr": 0.0009567554323303865, "data_time": 0.007131433486938477, "loss": 0.2808368429541588, "decode.loss_ce": 0.16199177205562593, "decode.acc_seg": 94.8849105834961, "aux.loss_ce": 0.11884506829082966, "aux.acc_seg": 93.20439910888672, "time": 1.1116565227508546, "iter": 149450, "memory": 8703, "step": 149450} +{"lr": 0.000953100157791211, "data_time": 0.008959197998046875, "loss": 0.22991859167814255, "decode.loss_ce": 0.14407144486904144, "decode.acc_seg": 86.3372802734375, "aux.loss_ce": 0.08584714364260435, "aux.acc_seg": 79.3448715209961, "time": 1.1149551153182984, "iter": 149500, "memory": 8704, "step": 149500} +{"lr": 0.0009494431422237054, "data_time": 0.007248926162719727, "loss": 0.20472128838300704, "decode.loss_ce": 0.1328166514635086, "decode.acc_seg": 96.51063537597656, "aux.loss_ce": 0.0719046339392662, "aux.acc_seg": 94.41084289550781, "time": 1.1125184535980224, "iter": 149550, "memory": 8704, "step": 149550} +{"lr": 0.0009457843764623003, "data_time": 0.00871436595916748, "loss": 0.1959037221968174, "decode.loss_ce": 0.11887628138065338, "decode.acc_seg": 98.36050415039062, "aux.loss_ce": 0.07702744174748659, "aux.acc_seg": 98.00186157226562, "time": 1.1183110237121583, "iter": 149600, "memory": 8704, "step": 149600} +{"lr": 0.0009421238512488664, "data_time": 0.007421636581420898, "loss": 0.28980073258280753, "decode.loss_ce": 0.1687014065682888, "decode.acc_seg": 92.2109603881836, "aux.loss_ce": 0.12109932415187359, "aux.acc_seg": 87.59561920166016, "time": 1.1156922101974487, "iter": 149650, "memory": 8704, "step": 149650} +{"lr": 0.0009384615572313271, "data_time": 0.007803654670715332, "loss": 0.27396243065595627, "decode.loss_ce": 0.15618302673101425, "decode.acc_seg": 95.5953598022461, "aux.loss_ce": 0.11777940690517426, "aux.acc_seg": 94.8492660522461, "time": 1.120941948890686, "iter": 149700, "memory": 8705, "step": 149700} +{"lr": 0.0009347974849622451, "data_time": 0.007610845565795899, "loss": 0.24391970038414001, "decode.loss_ce": 0.15176233500242234, "decode.acc_seg": 95.88018798828125, "aux.loss_ce": 0.09215736575424671, "aux.acc_seg": 93.60012817382812, "time": 1.1171375513076782, "iter": 149750, "memory": 8703, "step": 149750} +{"lr": 0.0009311316248973799, "data_time": 0.00821669101715088, "loss": 0.24023667871952056, "decode.loss_ce": 0.1463539868593216, "decode.acc_seg": 96.48793029785156, "aux.loss_ce": 0.09388269186019897, "aux.acc_seg": 94.60639953613281, "time": 1.1151041984558105, "iter": 149800, "memory": 8703, "step": 149800} +{"lr": 0.0009274639673942154, "data_time": 0.006390213966369629, "loss": 0.31096729040145876, "decode.loss_ce": 0.1829925574362278, "decode.acc_seg": 94.7185287475586, "aux.loss_ce": 0.12797472812235355, "aux.acc_seg": 93.6684799194336, "time": 1.1145979642868042, "iter": 149850, "memory": 8703, "step": 149850} +{"lr": 0.0009237945027104604, "data_time": 0.007618403434753418, "loss": 0.20274103954434394, "decode.loss_ce": 0.12473739199340343, "decode.acc_seg": 98.59101104736328, "aux.loss_ce": 0.07800365071743727, "aux.acc_seg": 97.71926879882812, "time": 1.1175108909606934, "iter": 149900, "memory": 8703, "step": 149900} +{"lr": 0.0009201232210025165, "data_time": 0.006302762031555176, "loss": 0.2585771054029465, "decode.loss_ce": 0.15336157344281673, "decode.acc_seg": 96.87506103515625, "aux.loss_ce": 0.1052155327051878, "aux.acc_seg": 96.18460083007812, "time": 1.1148668289184571, "iter": 149950, "memory": 8704, "step": 149950} +{"lr": 0.0009164501123239134, "data_time": 0.0063212871551513675, "loss": 0.28224170953035355, "decode.loss_ce": 0.16378951892256738, "decode.acc_seg": 95.07759857177734, "aux.loss_ce": 0.11845218949019909, "aux.acc_seg": 88.83594512939453, "time": 1.1135870218276978, "iter": 150000, "memory": 8703, "step": 150000} +{"lr": 0.0009127751666237172, "data_time": 0.005864524841308593, "loss": 0.19620866924524308, "decode.loss_ce": 0.11992005109786988, "decode.acc_seg": 95.38904571533203, "aux.loss_ce": 0.07628862001001835, "aux.acc_seg": 94.52717590332031, "time": 1.1138484477996826, "iter": 150050, "memory": 8703, "step": 150050} +{"lr": 0.0009090983737448992, "data_time": 0.009373712539672851, "loss": 0.28113661631941794, "decode.loss_ce": 0.17496091350913048, "decode.acc_seg": 93.2856216430664, "aux.loss_ce": 0.1061757080256939, "aux.acc_seg": 92.16295623779297, "time": 1.1196820974349975, "iter": 150100, "memory": 8703, "step": 150100} +{"lr": 0.0009054197234226784, "data_time": 0.008459258079528808, "loss": 0.2010594815015793, "decode.loss_ce": 0.12000992894172668, "decode.acc_seg": 96.14244842529297, "aux.loss_ce": 0.08104954920709133, "aux.acc_seg": 95.49229431152344, "time": 1.116559386253357, "iter": 150150, "memory": 8703, "step": 150150} +{"lr": 0.0009017392052828204, "data_time": 0.006347489356994629, "loss": 0.22654161751270294, "decode.loss_ce": 0.144056086987257, "decode.acc_seg": 96.8740463256836, "aux.loss_ce": 0.08248553238809109, "aux.acc_seg": 96.4263916015625, "time": 1.1099665403366088, "iter": 150200, "memory": 8704, "step": 150200} +{"lr": 0.00089805680883991, "data_time": 0.007047700881958008, "loss": 0.18247140124440192, "decode.loss_ce": 0.11727290824055672, "decode.acc_seg": 95.72492980957031, "aux.loss_ce": 0.06519849747419357, "aux.acc_seg": 95.19354248046875, "time": 1.1149595975875854, "iter": 150250, "memory": 8703, "step": 150250} +{"lr": 0.0008943725234955824, "data_time": 0.007446837425231933, "loss": 0.2482653483748436, "decode.loss_ce": 0.1382330022752285, "decode.acc_seg": 95.46736907958984, "aux.loss_ce": 0.11003234721720219, "aux.acc_seg": 93.5052261352539, "time": 1.114229393005371, "iter": 150300, "memory": 8703, "step": 150300} +{"lr": 0.0008906863385367155, "data_time": 0.005734062194824219, "loss": 0.24729983359575272, "decode.loss_ce": 0.14647482484579086, "decode.acc_seg": 93.36922454833984, "aux.loss_ce": 0.100825010612607, "aux.acc_seg": 91.00061798095703, "time": 1.1098492860794067, "iter": 150350, "memory": 8703, "step": 150350} +{"lr": 0.0008869982431335892, "data_time": 0.00821073055267334, "loss": 0.2835436582565308, "decode.loss_ce": 0.17748691961169244, "decode.acc_seg": 89.84535217285156, "aux.loss_ce": 0.10605674125254154, "aux.acc_seg": 86.94305419921875, "time": 1.1135039329528809, "iter": 150400, "memory": 8704, "step": 150400} +{"lr": 0.000883308226338, "data_time": 0.006420016288757324, "loss": 0.19737909287214278, "decode.loss_ce": 0.11956290900707245, "decode.acc_seg": 93.25224304199219, "aux.loss_ce": 0.07781618125736714, "aux.acc_seg": 91.63277435302734, "time": 1.110878872871399, "iter": 150450, "memory": 8704, "step": 150450} +{"lr": 0.0008796162770813373, "data_time": 0.007137298583984375, "loss": 0.24969097822904587, "decode.loss_ce": 0.14768855944275855, "decode.acc_seg": 93.79711151123047, "aux.loss_ce": 0.1020024161785841, "aux.acc_seg": 92.19976806640625, "time": 1.1125874519348145, "iter": 150500, "memory": 8703, "step": 150500} +{"lr": 0.0008759223841726231, "data_time": 0.008483076095581054, "loss": 0.2197504982352257, "decode.loss_ce": 0.13631132170557975, "decode.acc_seg": 90.6519546508789, "aux.loss_ce": 0.08343917839229106, "aux.acc_seg": 89.26525115966797, "time": 1.1169223308563232, "iter": 150550, "memory": 8705, "step": 150550} +{"lr": 0.0008722265362964973, "data_time": 0.007326078414916992, "loss": 0.23684267252683638, "decode.loss_ce": 0.14551402181386947, "decode.acc_seg": 96.73544311523438, "aux.loss_ce": 0.09132864810526371, "aux.acc_seg": 94.31845092773438, "time": 1.119513750076294, "iter": 150600, "memory": 8704, "step": 150600} +{"lr": 0.0008685287220111706, "data_time": 0.008253788948059082, "loss": 0.22863964438438417, "decode.loss_ce": 0.13267584443092345, "decode.acc_seg": 94.61866760253906, "aux.loss_ce": 0.09596380479633808, "aux.acc_seg": 93.27754974365234, "time": 1.119633722305298, "iter": 150650, "memory": 8704, "step": 150650} +{"lr": 0.0008648289297463261, "data_time": 0.005990386009216309, "loss": 0.26255149990320203, "decode.loss_ce": 0.15982352383434772, "decode.acc_seg": 95.85144805908203, "aux.loss_ce": 0.10272797439247369, "aux.acc_seg": 94.72853088378906, "time": 1.115780234336853, "iter": 150700, "memory": 8704, "step": 150700} +{"lr": 0.0008611271478009783, "data_time": 0.008188271522521972, "loss": 0.3016498625278473, "decode.loss_ce": 0.18466152474284173, "decode.acc_seg": 94.84500885009766, "aux.loss_ce": 0.1169883381575346, "aux.acc_seg": 93.90970611572266, "time": 1.1211530208587646, "iter": 150750, "memory": 8703, "step": 150750} +{"lr": 0.0008574233643412812, "data_time": 0.006728649139404297, "loss": 0.20818658843636512, "decode.loss_ce": 0.11876797750592231, "decode.acc_seg": 90.5741958618164, "aux.loss_ce": 0.08941860944032669, "aux.acc_seg": 85.68260955810547, "time": 1.112388253211975, "iter": 150800, "memory": 8703, "step": 150800} +{"lr": 0.0008537175673982912, "data_time": 0.008228802680969238, "loss": 0.23664974570274352, "decode.loss_ce": 0.1450351320207119, "decode.acc_seg": 96.87105560302734, "aux.loss_ce": 0.09161461163312197, "aux.acc_seg": 95.58206939697266, "time": 1.1173813104629517, "iter": 150850, "memory": 8704, "step": 150850} +{"lr": 0.0008500097448656744, "data_time": 0.007777190208435059, "loss": 0.3021271079778671, "decode.loss_ce": 0.16534469202160834, "decode.acc_seg": 94.72169494628906, "aux.loss_ce": 0.13678241670131683, "aux.acc_seg": 92.8697738647461, "time": 1.1152833223342895, "iter": 150900, "memory": 8704, "step": 150900} +{"lr": 0.0008462998844973703, "data_time": 0.007737255096435547, "loss": 0.3202862784266472, "decode.loss_ce": 0.20534888729453088, "decode.acc_seg": 97.54674530029297, "aux.loss_ce": 0.1149373896420002, "aux.acc_seg": 96.4891586303711, "time": 1.1143831491470337, "iter": 150950, "memory": 8703, "step": 150950} +{"lr": 0.0008425879739051937, "data_time": 0.0064666509628295895, "loss": 0.2366073325276375, "decode.loss_ce": 0.14391681142151355, "decode.acc_seg": 95.9378662109375, "aux.loss_ce": 0.09269051849842072, "aux.acc_seg": 92.1222152709961, "time": 1.1194990158081055, "iter": 151000, "memory": 8703, "step": 151000} +{"lr": 0.0008388740005563895, "data_time": 0.005724573135375976, "loss": 0.3452164217829704, "decode.loss_ce": 0.20204451456665992, "decode.acc_seg": 93.5724868774414, "aux.loss_ce": 0.1431719072163105, "aux.acc_seg": 91.93985748291016, "time": 1.1127132654190064, "iter": 151050, "memory": 8703, "step": 151050} +{"lr": 0.0008351579517711266, "data_time": 0.005119419097900391, "loss": 0.2925265163183212, "decode.loss_ce": 0.16964195519685746, "decode.acc_seg": 93.58488464355469, "aux.loss_ce": 0.12288456410169601, "aux.acc_seg": 86.94756317138672, "time": 1.1105418443679809, "iter": 151100, "memory": 8704, "step": 151100} +{"lr": 0.000831439814719936, "data_time": 0.006972002983093262, "loss": 0.2618421658873558, "decode.loss_ce": 0.159159042686224, "decode.acc_seg": 96.17607879638672, "aux.loss_ce": 0.10268311947584152, "aux.acc_seg": 95.07331848144531, "time": 1.1158597707748412, "iter": 151150, "memory": 8704, "step": 151150} +{"lr": 0.0008277195764210894, "data_time": 0.006484198570251465, "loss": 0.2381311371922493, "decode.loss_ce": 0.13711997866630554, "decode.acc_seg": 96.1249008178711, "aux.loss_ce": 0.10101115480065345, "aux.acc_seg": 94.20712280273438, "time": 1.1140414237976075, "iter": 151200, "memory": 8704, "step": 151200} +{"lr": 0.0008239972237379156, "data_time": 0.0073821783065795895, "loss": 0.17276837080717086, "decode.loss_ce": 0.10183923169970513, "decode.acc_seg": 96.2830810546875, "aux.loss_ce": 0.07092913575470447, "aux.acc_seg": 94.31209564208984, "time": 1.1166448831558227, "iter": 151250, "memory": 8703, "step": 151250} +{"lr": 0.0008202727433760577, "data_time": 0.007053875923156738, "loss": 0.2489116869866848, "decode.loss_ce": 0.13948056884109974, "decode.acc_seg": 98.1332778930664, "aux.loss_ce": 0.10943112429231405, "aux.acc_seg": 97.80139923095703, "time": 1.1155876159667968, "iter": 151300, "memory": 8703, "step": 151300} +{"lr": 0.0008165461218806588, "data_time": 0.007516217231750488, "loss": 0.20111218541860582, "decode.loss_ce": 0.12366250157356262, "decode.acc_seg": 92.03115844726562, "aux.loss_ce": 0.07744968309998512, "aux.acc_seg": 90.08636474609375, "time": 1.1147135496139526, "iter": 151350, "memory": 8703, "step": 151350} +{"lr": 0.0008128173456334885, "data_time": 0.0065446138381958004, "loss": 0.30936825424432757, "decode.loss_ce": 0.19177423194050788, "decode.acc_seg": 92.04584503173828, "aux.loss_ce": 0.1175940278917551, "aux.acc_seg": 83.81824493408203, "time": 1.1147881031036377, "iter": 151400, "memory": 8704, "step": 151400} +{"lr": 0.0008090864008499967, "data_time": 0.006958627700805664, "loss": 0.29025848507881163, "decode.loss_ce": 0.1762552961707115, "decode.acc_seg": 89.97872161865234, "aux.loss_ce": 0.11400318965315819, "aux.acc_seg": 86.33155822753906, "time": 1.1148616313934325, "iter": 151450, "memory": 8704, "step": 151450} +{"lr": 0.0008053532735762957, "data_time": 0.007986092567443847, "loss": 0.3565514475107193, "decode.loss_ce": 0.22036756202578545, "decode.acc_seg": 92.58566284179688, "aux.loss_ce": 0.13618388250470162, "aux.acc_seg": 92.85406494140625, "time": 1.1187626600265503, "iter": 151500, "memory": 8704, "step": 151500} +{"lr": 0.000801617949686073, "data_time": 0.00761420726776123, "loss": 0.35844808593392374, "decode.loss_ce": 0.21430226266384125, "decode.acc_seg": 97.02574157714844, "aux.loss_ce": 0.1441458251327276, "aux.acc_seg": 96.93819427490234, "time": 1.1130544185638427, "iter": 151550, "memory": 8704, "step": 151550} +{"lr": 0.0007978804148774276, "data_time": 0.006005287170410156, "loss": 0.3279546782374382, "decode.loss_ce": 0.21045540533959867, "decode.acc_seg": 96.97608947753906, "aux.loss_ce": 0.11749927103519439, "aux.acc_seg": 96.38601684570312, "time": 1.11450297832489, "iter": 151600, "memory": 8703, "step": 151600} +{"lr": 0.0007941406546696271, "data_time": 0.007455778121948242, "loss": 0.21190365478396417, "decode.loss_ce": 0.12541998848319053, "decode.acc_seg": 96.79008483886719, "aux.loss_ce": 0.0864836659282446, "aux.acc_seg": 96.53938293457031, "time": 1.1184685230255127, "iter": 151650, "memory": 8704, "step": 151650} +{"lr": 0.0007903986543997904, "data_time": 0.006210470199584961, "loss": 0.2971069633960724, "decode.loss_ce": 0.18625505417585372, "decode.acc_seg": 95.21782684326172, "aux.loss_ce": 0.11085191071033478, "aux.acc_seg": 92.91368865966797, "time": 1.116403293609619, "iter": 151700, "memory": 8703, "step": 151700} +{"lr": 0.0007866543992194821, "data_time": 0.006858205795288086, "loss": 0.18459780961275102, "decode.loss_ce": 0.11151122860610485, "decode.acc_seg": 93.20259094238281, "aux.loss_ce": 0.07308658100664615, "aux.acc_seg": 91.17768096923828, "time": 1.11729736328125, "iter": 151750, "memory": 8703, "step": 151750} +{"lr": 0.0007829078740912249, "data_time": 0.006027984619140625, "loss": 0.24985236823558807, "decode.loss_ce": 0.14480692520737648, "decode.acc_seg": 93.28060150146484, "aux.loss_ce": 0.10504544451832772, "aux.acc_seg": 93.81014251708984, "time": 1.1125396490097046, "iter": 151800, "memory": 8703, "step": 151800} +{"lr": 0.0007791590637849277, "data_time": 0.006380844116210938, "loss": 0.17419994622468948, "decode.loss_ce": 0.1119572788476944, "decode.acc_seg": 95.23799133300781, "aux.loss_ce": 0.06224266961216927, "aux.acc_seg": 93.2074203491211, "time": 1.1165569067001342, "iter": 151850, "memory": 8704, "step": 151850} +{"lr": 0.0007754079528742186, "data_time": 0.00718686580657959, "loss": 0.190410977602005, "decode.loss_ce": 0.1158602349460125, "decode.acc_seg": 94.97661590576172, "aux.loss_ce": 0.07455074097961187, "aux.acc_seg": 92.1438217163086, "time": 1.116497015953064, "iter": 151900, "memory": 8703, "step": 151900} +{"lr": 0.0007716545257326895, "data_time": 0.007527780532836914, "loss": 0.29704766944050787, "decode.loss_ce": 0.1791539005935192, "decode.acc_seg": 95.71577453613281, "aux.loss_ce": 0.11789377685636282, "aux.acc_seg": 89.41522979736328, "time": 1.1159061670303345, "iter": 151950, "memory": 8704, "step": 151950} +{"lr": 0.0007678987665300423, "data_time": 0.008373332023620606, "loss": 0.23842891305685043, "decode.loss_ce": 0.14212799444794655, "decode.acc_seg": 94.70640563964844, "aux.loss_ce": 0.09630092009902, "aux.acc_seg": 89.00260925292969, "time": 1.1194567680358887, "iter": 152000, "memory": 8703, "step": 152000} +{"lr": 0.000764140659228138, "data_time": 0.006868195533752441, "loss": 0.25815819278359414, "decode.loss_ce": 0.1586372211575508, "decode.acc_seg": 95.69493103027344, "aux.loss_ce": 0.09952097609639168, "aux.acc_seg": 95.30927276611328, "time": 1.122532844543457, "iter": 152050, "memory": 8704, "step": 152050} +{"lr": 0.0007603801875769403, "data_time": 0.008140778541564942, "loss": 0.22617620676755906, "decode.loss_ce": 0.1317609541118145, "decode.acc_seg": 95.54729461669922, "aux.loss_ce": 0.09441525563597679, "aux.acc_seg": 94.55718994140625, "time": 1.1543070316314696, "iter": 152100, "memory": 8703, "step": 152100} +{"lr": 0.0007566173351103612, "data_time": 0.009412479400634766, "loss": 0.2511845797300339, "decode.loss_ce": 0.15121633633971215, "decode.acc_seg": 95.7767562866211, "aux.loss_ce": 0.09996824041008949, "aux.acc_seg": 94.23355865478516, "time": 2.5242468118667603, "iter": 152150, "memory": 8704, "step": 152150} +{"lr": 0.0007528520851419896, "data_time": 0.009757137298583985, "loss": 0.20183723494410516, "decode.loss_ce": 0.12379520907998084, "decode.acc_seg": 95.54678344726562, "aux.loss_ce": 0.07804202549159527, "aux.acc_seg": 93.53077697753906, "time": 2.489210534095764, "iter": 152200, "memory": 8704, "step": 152200} +{"lr": 0.0007490844207607136, "data_time": 0.008720874786376953, "loss": 0.2569735817611217, "decode.loss_ce": 0.15209100693464278, "decode.acc_seg": 93.24677276611328, "aux.loss_ce": 0.10488257519900798, "aux.acc_seg": 85.51082611083984, "time": 2.5939879179000855, "iter": 152250, "memory": 8703, "step": 152250} +{"lr": 0.000745314324826224, "data_time": 0.009981727600097657, "loss": 0.2623828835785389, "decode.loss_ce": 0.15605554096400737, "decode.acc_seg": 96.52830505371094, "aux.loss_ce": 0.10632734820246696, "aux.acc_seg": 95.63229370117188, "time": 2.4494492530822756, "iter": 152300, "memory": 8703, "step": 152300} +{"lr": 0.0007415417799644005, "data_time": 0.010641241073608398, "loss": 0.26098382845520973, "decode.loss_ce": 0.15585823133587837, "decode.acc_seg": 96.09394073486328, "aux.loss_ce": 0.10512559693306685, "aux.acc_seg": 93.09940338134766, "time": 2.476822018623352, "iter": 152350, "memory": 8703, "step": 152350} +{"lr": 0.0007377667685625706, "data_time": 0.010222387313842774, "loss": 0.21624182537198067, "decode.loss_ce": 0.12966249138116837, "decode.acc_seg": 94.08104705810547, "aux.loss_ce": 0.0865793313831091, "aux.acc_seg": 89.48147583007812, "time": 2.4599701881408693, "iter": 152400, "memory": 8704, "step": 152400} +{"lr": 0.0007339892727646439, "data_time": 0.012538695335388183, "loss": 0.23162551671266557, "decode.loss_ce": 0.1367880716919899, "decode.acc_seg": 97.66120910644531, "aux.loss_ce": 0.09483744576573372, "aux.acc_seg": 95.89989471435547, "time": 2.465648365020752, "iter": 152450, "memory": 8704, "step": 152450} +{"lr": 0.0007302092744661123, "data_time": 0.007597160339355469, "loss": 0.26889757737517356, "decode.loss_ce": 0.16392330080270767, "decode.acc_seg": 92.0413589477539, "aux.loss_ce": 0.10497428085654974, "aux.acc_seg": 77.4244384765625, "time": 2.5766392946243286, "iter": 152500, "memory": 8704, "step": 152500} +{"lr": 0.0007264267553089148, "data_time": 0.009949803352355957, "loss": 0.21481143981218337, "decode.loss_ce": 0.13043422996997833, "decode.acc_seg": 92.947509765625, "aux.loss_ce": 0.08437720835208892, "aux.acc_seg": 95.14096069335938, "time": 2.615695524215698, "iter": 152550, "memory": 8704, "step": 152550} +{"lr": 0.0007226416966761612, "data_time": 0.00829765796661377, "loss": 0.22881060242652893, "decode.loss_ce": 0.13971049189567566, "decode.acc_seg": 94.74728393554688, "aux.loss_ce": 0.08910010941326618, "aux.acc_seg": 93.04198455810547, "time": 2.5498027563095094, "iter": 152600, "memory": 8703, "step": 152600} +{"lr": 0.0007188540796867056, "data_time": 0.00997159481048584, "loss": 0.2393580973148346, "decode.loss_ce": 0.1329333744943142, "decode.acc_seg": 93.58965301513672, "aux.loss_ce": 0.10642472617328166, "aux.acc_seg": 88.00798797607422, "time": 2.555203342437744, "iter": 152650, "memory": 8704, "step": 152650} +{"lr": 0.000715063885189575, "data_time": 0.011230921745300293, "loss": 0.34243337288498876, "decode.loss_ce": 0.18856517150998114, "decode.acc_seg": 82.150390625, "aux.loss_ce": 0.1538682023063302, "aux.acc_seg": 74.79578399658203, "time": 2.522329020500183, "iter": 152700, "memory": 8703, "step": 152700} +{"lr": 0.0007112710937582369, "data_time": 0.014954757690429688, "loss": 0.24333515614271164, "decode.loss_ce": 0.14388808161020278, "decode.acc_seg": 96.67606353759766, "aux.loss_ce": 0.09944707117974758, "aux.acc_seg": 95.79073333740234, "time": 2.627899503707886, "iter": 152750, "memory": 8704, "step": 152750} +{"lr": 0.0007074756856847034, "data_time": 0.01042327880859375, "loss": 0.19219419434666635, "decode.loss_ce": 0.11893671825528145, "decode.acc_seg": 97.30707550048828, "aux.loss_ce": 0.07325747814029455, "aux.acc_seg": 96.07550048828125, "time": 2.5731101751327516, "iter": 152800, "memory": 8704, "step": 152800} +{"lr": 0.0007036776409734743, "data_time": 0.0071507453918457035, "loss": 0.3129694953560829, "decode.loss_ce": 0.19177915640175341, "decode.acc_seg": 96.899658203125, "aux.loss_ce": 0.1211903439834714, "aux.acc_seg": 96.67727661132812, "time": 2.5287189245224, "iter": 152850, "memory": 8703, "step": 152850} +{"lr": 0.0006998769393352974, "data_time": 0.010851812362670899, "loss": 0.2512968048453331, "decode.loss_ce": 0.14077672883868217, "decode.acc_seg": 95.0577392578125, "aux.loss_ce": 0.11052007749676704, "aux.acc_seg": 90.39955139160156, "time": 2.561156415939331, "iter": 152900, "memory": 8703, "step": 152900} +{"lr": 0.000696073560180756, "data_time": 0.00995633602142334, "loss": 0.26550334319472313, "decode.loss_ce": 0.14233270660042763, "decode.acc_seg": 97.26708221435547, "aux.loss_ce": 0.12317062932997942, "aux.acc_seg": 94.90833282470703, "time": 2.495732378959656, "iter": 152950, "memory": 8705, "step": 152950} +{"lr": 0.0006922674826136665, "data_time": 0.013331365585327149, "loss": 0.34715359658002853, "decode.loss_ce": 0.20702381506562234, "decode.acc_seg": 97.31629180908203, "aux.loss_ce": 0.14012978710234164, "aux.acc_seg": 92.0665054321289, "time": 2.538493013381958, "iter": 153000, "memory": 8703, "step": 153000} +{"lr": 0.0006884586854242828, "data_time": 0.007490324974060059, "loss": 0.18427111506462096, "decode.loss_ce": 0.11675685942173004, "decode.acc_seg": 95.950439453125, "aux.loss_ce": 0.0675142552703619, "aux.acc_seg": 96.04377746582031, "time": 1.633627676963806, "iter": 153050, "memory": 8703, "step": 153050} +{"lr": 0.0006846471470822999, "data_time": 0.009208917617797852, "loss": 0.22356820106506348, "decode.loss_ce": 0.1302880898118019, "decode.acc_seg": 90.51971435546875, "aux.loss_ce": 0.09328011199831962, "aux.acc_seg": 72.70043182373047, "time": 2.5294329166412353, "iter": 153100, "memory": 8704, "step": 153100} +{"lr": 0.0006808328457296515, "data_time": 0.010170483589172363, "loss": 0.25903683751821516, "decode.loss_ce": 0.14168376624584197, "decode.acc_seg": 97.23892211914062, "aux.loss_ce": 0.11735306568443775, "aux.acc_seg": 96.68680572509766, "time": 2.516026473045349, "iter": 153150, "memory": 8704, "step": 153150} +{"lr": 0.0006770157591730888, "data_time": 0.01059553623199463, "loss": 0.2618881791830063, "decode.loss_ce": 0.14608802050352096, "decode.acc_seg": 96.6623306274414, "aux.loss_ce": 0.11580016314983368, "aux.acc_seg": 96.14136505126953, "time": 2.679584431648254, "iter": 153200, "memory": 8704, "step": 153200} +{"lr": 0.0006731958648765365, "data_time": 0.009961462020874024, "loss": 0.21262974441051483, "decode.loss_ce": 0.1187171522527933, "decode.acc_seg": 98.3893051147461, "aux.loss_ce": 0.09391258843243122, "aux.acc_seg": 97.38044738769531, "time": 2.4578423261642457, "iter": 153250, "memory": 8703, "step": 153250} +{"lr": 0.0006693731399532223, "data_time": 0.012720441818237305, "loss": 0.2391568809747696, "decode.loss_ce": 0.1395290046930313, "decode.acc_seg": 97.34598541259766, "aux.loss_ce": 0.09962787628173828, "aux.acc_seg": 96.87569427490234, "time": 2.522199010848999, "iter": 153300, "memory": 8704, "step": 153300} +{"lr": 0.0006655475611575555, "data_time": 0.01282639503479004, "loss": 0.21146342754364014, "decode.loss_ce": 0.1299588292837143, "decode.acc_seg": 94.43721771240234, "aux.loss_ce": 0.08150459825992584, "aux.acc_seg": 88.592529296875, "time": 2.477719235420227, "iter": 153350, "memory": 8703, "step": 153350} +{"lr": 0.0006617191048767609, "data_time": 0.009069013595581054, "loss": 0.2640112772583961, "decode.loss_ce": 0.15419213995337486, "decode.acc_seg": 93.7295913696289, "aux.loss_ce": 0.10981913283467293, "aux.acc_seg": 92.1580581665039, "time": 2.5659165143966676, "iter": 153400, "memory": 8703, "step": 153400} +{"lr": 0.0006578877471222527, "data_time": 0.011818456649780273, "loss": 0.23433146327733995, "decode.loss_ce": 0.13838023096323013, "decode.acc_seg": 96.84596252441406, "aux.loss_ce": 0.0959512334316969, "aux.acc_seg": 95.89493560791016, "time": 2.505819535255432, "iter": 153450, "memory": 8705, "step": 153450} +{"lr": 0.0006540534635207386, "data_time": 0.009611082077026368, "loss": 0.21693843007087707, "decode.loss_ce": 0.13000114634633064, "decode.acc_seg": 95.76180267333984, "aux.loss_ce": 0.08693728409707546, "aux.acc_seg": 94.39894104003906, "time": 2.4998921871185305, "iter": 153500, "memory": 8703, "step": 153500} +{"lr": 0.0006502162293050398, "data_time": 0.008758783340454102, "loss": 0.29237866699695586, "decode.loss_ce": 0.1774608977138996, "decode.acc_seg": 94.1136245727539, "aux.loss_ce": 0.11491776742041111, "aux.acc_seg": 92.18463897705078, "time": 2.5806299686431884, "iter": 153550, "memory": 8704, "step": 153550} +{"lr": 0.0006463760193046245, "data_time": 0.010368418693542481, "loss": 0.2331303820014, "decode.loss_ce": 0.13772490099072457, "decode.acc_seg": 96.77511596679688, "aux.loss_ce": 0.0954054832458496, "aux.acc_seg": 96.52271270751953, "time": 2.551950144767761, "iter": 153600, "memory": 8703, "step": 153600} +{"lr": 0.0006425328079358298, "data_time": 0.007790112495422363, "loss": 0.26943759322166444, "decode.loss_ce": 0.17191771119832994, "decode.acc_seg": 96.83354187011719, "aux.loss_ce": 0.0975198868662119, "aux.acc_seg": 96.47789001464844, "time": 2.50627121925354, "iter": 153650, "memory": 8704, "step": 153650} +{"lr": 0.0006386865691917804, "data_time": 0.008522343635559083, "loss": 0.24907412603497506, "decode.loss_ce": 0.15968062952160836, "decode.acc_seg": 97.5627212524414, "aux.loss_ce": 0.08939349688589573, "aux.acc_seg": 96.79405975341797, "time": 2.511288809776306, "iter": 153700, "memory": 8703, "step": 153700} +{"lr": 0.0006348372766319647, "data_time": 0.008991479873657227, "loss": 0.2080255225300789, "decode.loss_ce": 0.12705058082938195, "decode.acc_seg": 97.17742156982422, "aux.loss_ce": 0.08097494356334209, "aux.acc_seg": 96.63448333740234, "time": 2.4658917427062987, "iter": 153750, "memory": 8703, "step": 153750} +{"lr": 0.0006309849033714807, "data_time": 0.00798952579498291, "loss": 0.25200926065444945, "decode.loss_ce": 0.16880557648837566, "decode.acc_seg": 97.33161926269531, "aux.loss_ce": 0.08320368379354477, "aux.acc_seg": 96.67015075683594, "time": 2.5792791128158568, "iter": 153800, "memory": 8705, "step": 153800} +{"lr": 0.0006271294220699194, "data_time": 0.008681654930114746, "loss": 0.2157299980521202, "decode.loss_ce": 0.1348745882511139, "decode.acc_seg": 94.2974853515625, "aux.loss_ce": 0.08085540980100632, "aux.acc_seg": 92.34774780273438, "time": 2.4900084257125856, "iter": 153850, "memory": 8703, "step": 153850} +{"lr": 0.0006232708049198784, "data_time": 0.01052999496459961, "loss": 0.17700965255498885, "decode.loss_ce": 0.11056391000747681, "decode.acc_seg": 96.64350891113281, "aux.loss_ce": 0.06644574590027333, "aux.acc_seg": 95.56280517578125, "time": 2.56844642162323, "iter": 153900, "memory": 8703, "step": 153900} +{"lr": 0.0006194090236350925, "data_time": 0.00989692211151123, "loss": 0.22516181766986848, "decode.loss_ce": 0.1329117387533188, "decode.acc_seg": 95.620849609375, "aux.loss_ce": 0.09225008115172387, "aux.acc_seg": 93.92769622802734, "time": 2.5696845769882204, "iter": 153950, "memory": 8704, "step": 153950} +{"lr": 0.0006155440494381572, "data_time": 0.011622452735900879, "loss": 0.21505613178014754, "decode.loss_ce": 0.13252802118659018, "decode.acc_seg": 98.59892272949219, "aux.loss_ce": 0.08252811282873154, "aux.acc_seg": 97.39672088623047, "time": 2.517772936820984, "iter": 154000, "memory": 8704, "step": 154000} +{"lr": 0.0006116758530478382, "data_time": 0.008200955390930176, "loss": 0.2374706469476223, "decode.loss_ce": 0.12181604132056237, "decode.acc_seg": 93.38372039794922, "aux.loss_ce": 0.11565460562705994, "aux.acc_seg": 76.90359497070312, "time": 1.7237834930419922, "iter": 154050, "memory": 8704, "step": 154050} +{"lr": 0.0006078044046659372, "data_time": 0.007058048248291015, "loss": 0.2979046568274498, "decode.loss_ce": 0.17603658214211465, "decode.acc_seg": 94.95092010498047, "aux.loss_ce": 0.12186807505786419, "aux.acc_seg": 92.90116119384766, "time": 1.119780921936035, "iter": 154100, "memory": 8704, "step": 154100} +{"lr": 0.0006039296739637064, "data_time": 0.0068217992782592775, "loss": 0.20163515359163284, "decode.loss_ce": 0.1211186021566391, "decode.acc_seg": 97.39462280273438, "aux.loss_ce": 0.0805165484547615, "aux.acc_seg": 96.40604400634766, "time": 1.1164401531219483, "iter": 154150, "memory": 8704, "step": 154150} +{"lr": 0.0006000516300677824, "data_time": 0.008164334297180175, "loss": 0.2334397554397583, "decode.loss_ce": 0.11772496402263641, "decode.acc_seg": 97.45515441894531, "aux.loss_ce": 0.11571479253470898, "aux.acc_seg": 94.59298706054688, "time": 1.1239110708236695, "iter": 154200, "memory": 8704, "step": 154200} +{"lr": 0.0005961702415456279, "data_time": 0.007578516006469726, "loss": 0.3378220334649086, "decode.loss_ce": 0.21718091666698455, "decode.acc_seg": 96.24024963378906, "aux.loss_ce": 0.12064110897481442, "aux.acc_seg": 93.45874786376953, "time": 1.1190789699554444, "iter": 154250, "memory": 8704, "step": 154250} +{"lr": 0.0005922854763904491, "data_time": 0.007201600074768067, "loss": 0.21152949556708336, "decode.loss_ce": 0.12404730170965195, "decode.acc_seg": 96.95892333984375, "aux.loss_ce": 0.08748219348490238, "aux.acc_seg": 97.02377319335938, "time": 1.115112566947937, "iter": 154300, "memory": 8704, "step": 154300} +{"lr": 0.0005883973020055716, "data_time": 0.007077789306640625, "loss": 0.29063722044229506, "decode.loss_ce": 0.17712616883218288, "decode.acc_seg": 90.95611572265625, "aux.loss_ce": 0.11351104993373155, "aux.acc_seg": 85.20043182373047, "time": 1.1174503564834595, "iter": 154350, "memory": 8703, "step": 154350} +{"lr": 0.0005845056851882525, "data_time": 0.0074567079544067385, "loss": 0.26849390417337415, "decode.loss_ce": 0.15398992858827115, "decode.acc_seg": 94.29600524902344, "aux.loss_ce": 0.11450397558510303, "aux.acc_seg": 92.3075942993164, "time": 1.1159539461135863, "iter": 154400, "memory": 8703, "step": 154400} +{"lr": 0.0005806105921128933, "data_time": 0.007034826278686524, "loss": 0.28906634300947187, "decode.loss_ce": 0.16535447016358376, "decode.acc_seg": 88.85790252685547, "aux.loss_ce": 0.12371187508106232, "aux.acc_seg": 79.46434020996094, "time": 1.1134506225585938, "iter": 154450, "memory": 8704, "step": 154450} +{"lr": 0.0005767119883136385, "data_time": 0.007635283470153809, "loss": 0.1923852950334549, "decode.loss_ce": 0.11091829538345337, "decode.acc_seg": 97.47339630126953, "aux.loss_ce": 0.08146699629724026, "aux.acc_seg": 96.2289810180664, "time": 1.1161066532135009, "iter": 154500, "memory": 8704, "step": 154500} +{"lr": 0.0005728098386663223, "data_time": 0.007362246513366699, "loss": 0.268021946400404, "decode.loss_ce": 0.15612757802009583, "decode.acc_seg": 91.93897247314453, "aux.loss_ce": 0.11189436614513397, "aux.acc_seg": 82.67605590820312, "time": 1.1159256935119628, "iter": 154550, "memory": 8703, "step": 154550} +{"lr": 0.0005689041073697378, "data_time": 0.0056449174880981445, "loss": 0.20684290453791618, "decode.loss_ce": 0.1249533899128437, "decode.acc_seg": 95.62289428710938, "aux.loss_ce": 0.08188951313495636, "aux.acc_seg": 95.19355773925781, "time": 1.1109667778015138, "iter": 154600, "memory": 8704, "step": 154600} +{"lr": 0.0005649947579261909, "data_time": 0.007380986213684082, "loss": 0.22345289140939711, "decode.loss_ce": 0.1342668928205967, "decode.acc_seg": 96.49861145019531, "aux.loss_ce": 0.08918599877506495, "aux.acc_seg": 93.36058044433594, "time": 1.111619758605957, "iter": 154650, "memory": 8704, "step": 154650} +{"lr": 0.0005610817531213119, "data_time": 0.007115316390991211, "loss": 0.25358196794986726, "decode.loss_ce": 0.14954697340726852, "decode.acc_seg": 97.75142669677734, "aux.loss_ce": 0.10403499379754066, "aux.acc_seg": 96.69773864746094, "time": 1.1192004203796386, "iter": 154700, "memory": 8703, "step": 154700} +{"lr": 0.0005571650550030865, "data_time": 0.006429648399353028, "loss": 0.2540651813149452, "decode.loss_ce": 0.15121160820126534, "decode.acc_seg": 94.32518768310547, "aux.loss_ce": 0.10285356976091861, "aux.acc_seg": 89.20217895507812, "time": 1.1168927431106568, "iter": 154750, "memory": 8704, "step": 154750} +{"lr": 0.0005532446248600649, "data_time": 0.007268452644348144, "loss": 0.24853172302246093, "decode.loss_ce": 0.15439826026558875, "decode.acc_seg": 91.60122680664062, "aux.loss_ce": 0.09413346014916897, "aux.acc_seg": 90.02384185791016, "time": 1.1116110563278199, "iter": 154800, "memory": 8704, "step": 154800} +{"lr": 0.0005493204231987125, "data_time": 0.006177330017089843, "loss": 0.19088315814733506, "decode.loss_ce": 0.11651184186339378, "decode.acc_seg": 95.43567657470703, "aux.loss_ce": 0.0743713166564703, "aux.acc_seg": 92.80509185791016, "time": 1.1129377126693725, "iter": 154850, "memory": 8703, "step": 154850} +{"lr": 0.0005453924097198577, "data_time": 0.006826877593994141, "loss": 0.30207156836986543, "decode.loss_ce": 0.17314338758587838, "decode.acc_seg": 96.68292999267578, "aux.loss_ce": 0.1289281841367483, "aux.acc_seg": 96.87105560302734, "time": 1.1179868221282958, "iter": 154900, "memory": 8704, "step": 154900} +{"lr": 0.0005414605432941957, "data_time": 0.008538579940795899, "loss": 0.2760828010737896, "decode.loss_ce": 0.15853404216468334, "decode.acc_seg": 95.03885650634766, "aux.loss_ce": 0.11754875630140305, "aux.acc_seg": 87.93067932128906, "time": 1.1161604404449463, "iter": 154950, "memory": 8703, "step": 154950} +{"lr": 0.0005375247819367933, "data_time": 0.006478738784790039, "loss": 0.2199140504002571, "decode.loss_ce": 0.12731557711958885, "decode.acc_seg": 96.39739990234375, "aux.loss_ce": 0.09259847328066825, "aux.acc_seg": 96.11962127685547, "time": 1.1083247423171998, "iter": 155000, "memory": 8703, "step": 155000} +{"lr": 0.0005335850827805484, "data_time": 0.007518577575683594, "loss": 0.26145647615194323, "decode.loss_ce": 0.14829324781894684, "decode.acc_seg": 95.04108428955078, "aux.loss_ce": 0.11316323243081569, "aux.acc_seg": 93.30469512939453, "time": 1.1133383989334107, "iter": 155050, "memory": 8704, "step": 155050} +{"lr": 0.0005296414020485542, "data_time": 0.006629657745361328, "loss": 0.231500443816185, "decode.loss_ce": 0.1274447351694107, "decode.acc_seg": 93.10768127441406, "aux.loss_ce": 0.10405570790171623, "aux.acc_seg": 89.37199401855469, "time": 1.118413543701172, "iter": 155100, "memory": 8704, "step": 155100} +{"lr": 0.0005256936950252996, "data_time": 0.008233404159545899, "loss": 0.2994664326310158, "decode.loss_ce": 0.18854477182030677, "decode.acc_seg": 95.98426055908203, "aux.loss_ce": 0.11092166006565093, "aux.acc_seg": 94.66510772705078, "time": 1.1155039548873902, "iter": 155150, "memory": 8703, "step": 155150} +{"lr": 0.0005217419160266566, "data_time": 0.005657839775085449, "loss": 0.1793497882783413, "decode.loss_ce": 0.1050018198788166, "decode.acc_seg": 96.53002166748047, "aux.loss_ce": 0.07434796802699566, "aux.acc_seg": 93.09278869628906, "time": 1.1111840963363648, "iter": 155200, "memory": 8703, "step": 155200} +{"lr": 0.0005177860183685844, "data_time": 0.006439089775085449, "loss": 0.35202398896217346, "decode.loss_ce": 0.20765186101198196, "decode.acc_seg": 92.60315704345703, "aux.loss_ce": 0.1443721257150173, "aux.acc_seg": 92.08016967773438, "time": 1.1100597143173219, "iter": 155250, "memory": 8703, "step": 155250} +{"lr": 0.0005138259543344785, "data_time": 0.007012844085693359, "loss": 0.2231966108083725, "decode.loss_ce": 0.13606912270188332, "decode.acc_seg": 87.50031280517578, "aux.loss_ce": 0.08712748810648918, "aux.acc_seg": 83.05912017822266, "time": 1.1132984161376953, "iter": 155300, "memory": 8703, "step": 155300} +{"lr": 0.0005098616751411005, "data_time": 0.007654857635498047, "loss": 0.21711916476488113, "decode.loss_ce": 0.12465674951672553, "decode.acc_seg": 95.17313385009766, "aux.loss_ce": 0.09246241301298141, "aux.acc_seg": 91.0941390991211, "time": 1.1151504278182984, "iter": 155350, "memory": 8703, "step": 155350} +{"lr": 0.0005058931309029999, "data_time": 0.007309412956237793, "loss": 0.19680529087781906, "decode.loss_ce": 0.1180361606180668, "decode.acc_seg": 93.53262329101562, "aux.loss_ce": 0.07876912839710712, "aux.acc_seg": 96.14403533935547, "time": 1.1117965698242187, "iter": 155400, "memory": 8703, "step": 155400} +{"lr": 0.0005019202705953524, "data_time": 0.008111310005187989, "loss": 0.19381246715784073, "decode.loss_ce": 0.11103946268558502, "decode.acc_seg": 97.36079406738281, "aux.loss_ce": 0.08277300260961055, "aux.acc_seg": 97.11518096923828, "time": 1.114074158668518, "iter": 155450, "memory": 8703, "step": 155450} +{"lr": 0.0004979430420151202, "data_time": 0.007412219047546386, "loss": 0.25649054646492003, "decode.loss_ce": 0.15747894272208213, "decode.acc_seg": 93.62252044677734, "aux.loss_ce": 0.09901160337030887, "aux.acc_seg": 90.384033203125, "time": 1.1154849529266357, "iter": 155500, "memory": 8703, "step": 155500} +{"lr": 0.0004939613917404462, "data_time": 0.00737917423248291, "loss": 0.26939624920487404, "decode.loss_ce": 0.1417814526706934, "decode.acc_seg": 81.04559326171875, "aux.loss_ce": 0.127614801004529, "aux.acc_seg": 65.7205581665039, "time": 1.1121578216552734, "iter": 155550, "memory": 8704, "step": 155550} +{"lr": 0.0004899752650881699, "data_time": 0.007161402702331543, "loss": 0.1855138696730137, "decode.loss_ce": 0.11769095547497273, "decode.acc_seg": 97.21247100830078, "aux.loss_ce": 0.0678229121491313, "aux.acc_seg": 96.70689392089844, "time": 1.1157007932662963, "iter": 155600, "memory": 8704, "step": 155600} +{"lr": 0.0004859846060693686, "data_time": 0.0080643892288208, "loss": 0.2068700835108757, "decode.loss_ce": 0.12422150149941444, "decode.acc_seg": 95.89481353759766, "aux.loss_ce": 0.08264858052134513, "aux.acc_seg": 93.50559997558594, "time": 1.1139525890350341, "iter": 155650, "memory": 8704, "step": 155650} +{"lr": 0.00048198935734279923, "data_time": 0.006424832344055176, "loss": 0.28139321953058244, "decode.loss_ce": 0.16800494343042374, "decode.acc_seg": 96.9462661743164, "aux.loss_ce": 0.11338827833533287, "aux.acc_seg": 95.69218444824219, "time": 1.1110699892044067, "iter": 155700, "memory": 8704, "step": 155700} +{"lr": 0.00047798946016611946, "data_time": 0.006391072273254394, "loss": 0.3432318642735481, "decode.loss_ce": 0.21981881484389304, "decode.acc_seg": 93.68614196777344, "aux.loss_ce": 0.12341304831206798, "aux.acc_seg": 91.3387222290039, "time": 1.1126302242279054, "iter": 155750, "memory": 8704, "step": 155750} +{"lr": 0.0004739848543447537, "data_time": 0.006895637512207032, "loss": 0.23227529898285865, "decode.loss_ce": 0.14465919584035875, "decode.acc_seg": 96.54451751708984, "aux.loss_ce": 0.08761610388755799, "aux.acc_seg": 94.52603149414062, "time": 1.1091245889663697, "iter": 155800, "memory": 8703, "step": 155800} +{"lr": 0.0004699754781782613, "data_time": 0.006392979621887207, "loss": 0.23496426567435263, "decode.loss_ce": 0.13208494782447816, "decode.acc_seg": 96.90170288085938, "aux.loss_ce": 0.10287931524217128, "aux.acc_seg": 95.59478759765625, "time": 1.1145213842391968, "iter": 155850, "memory": 8703, "step": 155850} +{"lr": 0.00046596126840405574, "data_time": 0.00793149471282959, "loss": 0.1800878420472145, "decode.loss_ce": 0.11244510933756828, "decode.acc_seg": 95.78081512451172, "aux.loss_ce": 0.0676427312195301, "aux.acc_seg": 92.94967651367188, "time": 1.1155954837799071, "iter": 155900, "memory": 8704, "step": 155900} +{"lr": 0.0004619421601383052, "data_time": 0.0054027318954467775, "loss": 0.22071973606944084, "decode.loss_ce": 0.13503219783306122, "decode.acc_seg": 95.70553588867188, "aux.loss_ce": 0.08568753711879254, "aux.acc_seg": 94.21068572998047, "time": 1.1086061239242553, "iter": 155950, "memory": 8704, "step": 155950} +{"lr": 0.0004579180868138413, "data_time": 0.006689763069152832, "loss": 0.23416539430618286, "decode.loss_ce": 0.14409517645835876, "decode.acc_seg": 96.79838562011719, "aux.loss_ce": 0.09007021598517895, "aux.acc_seg": 93.63549041748047, "time": 1.1104783058166503, "iter": 156000, "memory": 8704, "step": 156000} +{"lr": 0.0004538889801148815, "data_time": 0.0065554618835449215, "loss": 0.27758541479706766, "decode.loss_ce": 0.17775945626199247, "decode.acc_seg": 93.88605499267578, "aux.loss_ce": 0.09982595741748809, "aux.acc_seg": 90.01051330566406, "time": 1.1145281076431275, "iter": 156050, "memory": 8703, "step": 156050} +{"lr": 0.0004498547699083632, "data_time": 0.007701277732849121, "loss": 0.21481355279684067, "decode.loss_ce": 0.12977276891469955, "decode.acc_seg": 97.2373275756836, "aux.loss_ce": 0.08504078201949597, "aux.acc_seg": 96.53046417236328, "time": 1.1146628141403199, "iter": 156100, "memory": 8704, "step": 156100} +{"lr": 0.00044581538417166417, "data_time": 0.007263684272766113, "loss": 0.23720391988754272, "decode.loss_ce": 0.1368895284831524, "decode.acc_seg": 95.08399963378906, "aux.loss_ce": 0.1003143921494484, "aux.acc_seg": 90.84046173095703, "time": 1.1132262468338012, "iter": 156150, "memory": 8705, "step": 156150} +{"lr": 0.00044177074891647183, "data_time": 0.005961990356445313, "loss": 0.1815080836415291, "decode.loss_ce": 0.11270057335495949, "decode.acc_seg": 95.93448638916016, "aux.loss_ce": 0.0688075115904212, "aux.acc_seg": 94.23465728759766, "time": 1.1097527742385864, "iter": 156200, "memory": 8704, "step": 156200} +{"lr": 0.0004377207881085419, "data_time": 0.007703113555908203, "loss": 0.21185751482844353, "decode.loss_ce": 0.12601764351129532, "decode.acc_seg": 97.343505859375, "aux.loss_ce": 0.08583987317979336, "aux.acc_seg": 95.9585189819336, "time": 1.1131553173065185, "iter": 156250, "memory": 8704, "step": 156250} +{"lr": 0.0004336654235830674, "data_time": 0.006353545188903809, "loss": 0.24502975046634673, "decode.loss_ce": 0.14441057220101355, "decode.acc_seg": 96.0519790649414, "aux.loss_ce": 0.10061917975544929, "aux.acc_seg": 95.4859390258789, "time": 1.119425392150879, "iter": 156300, "memory": 8704, "step": 156300} +{"lr": 0.0004296045749553546, "data_time": 0.008362150192260743, "loss": 0.25741345137357713, "decode.loss_ce": 0.15024408847093582, "decode.acc_seg": 97.67697143554688, "aux.loss_ce": 0.1071693617850542, "aux.acc_seg": 96.6131820678711, "time": 1.1165992975234986, "iter": 156350, "memory": 8704, "step": 156350} +{"lr": 0.000425538159526478, "data_time": 0.006891202926635742, "loss": 0.21578961461782456, "decode.loss_ce": 0.11845421940088272, "decode.acc_seg": 94.4375991821289, "aux.loss_ce": 0.09733539670705796, "aux.acc_seg": 93.00657653808594, "time": 1.111432385444641, "iter": 156400, "memory": 8704, "step": 156400} +{"lr": 0.0004214660921835583, "data_time": 0.006275343894958496, "loss": 0.21045292541384697, "decode.loss_ce": 0.1267921097576618, "decode.acc_seg": 95.22024536132812, "aux.loss_ce": 0.08366081826388835, "aux.acc_seg": 86.05072784423828, "time": 1.107810616493225, "iter": 156450, "memory": 8703, "step": 156450} +{"lr": 0.00041738828529427695, "data_time": 0.006921052932739258, "loss": 0.1798284664750099, "decode.loss_ce": 0.11201465874910355, "decode.acc_seg": 96.75687408447266, "aux.loss_ce": 0.0678138080984354, "aux.acc_seg": 95.98800659179688, "time": 1.1103796005249023, "iter": 156500, "memory": 8704, "step": 156500} +{"lr": 0.00041330464859520616, "data_time": 0.006700301170349121, "loss": 0.237243589758873, "decode.loss_ce": 0.14820946902036666, "decode.acc_seg": 95.43571472167969, "aux.loss_ce": 0.08903411515057087, "aux.acc_seg": 92.93110656738281, "time": 1.1121922969818114, "iter": 156550, "memory": 8703, "step": 156550} +{"lr": 0.000409215089073499, "data_time": 0.007605123519897461, "loss": 0.284405817091465, "decode.loss_ce": 0.1627011127769947, "decode.acc_seg": 96.99366760253906, "aux.loss_ce": 0.12170470394194126, "aux.acc_seg": 91.80695343017578, "time": 1.1196985006332398, "iter": 156600, "memory": 8703, "step": 156600} +{"lr": 0.00040511951084143784, "data_time": 0.006991696357727051, "loss": 0.29480287060141563, "decode.loss_ce": 0.18026030883193017, "decode.acc_seg": 96.12973022460938, "aux.loss_ce": 0.11454256288707257, "aux.acc_seg": 92.80693817138672, "time": 1.1115274906158448, "iter": 156650, "memory": 8704, "step": 156650} +{"lr": 0.00040101781500330067, "data_time": 0.0054740428924560545, "loss": 0.1873987264931202, "decode.loss_ce": 0.118892090767622, "decode.acc_seg": 92.33360290527344, "aux.loss_ce": 0.06850663647055626, "aux.acc_seg": 91.0782470703125, "time": 1.1060035705566407, "iter": 156700, "memory": 8704, "step": 156700} +{"lr": 0.0003969098995139475, "data_time": 0.005472493171691894, "loss": 0.25471834689378736, "decode.loss_ce": 0.15340623557567595, "decode.acc_seg": 93.61044311523438, "aux.loss_ce": 0.1013121135532856, "aux.acc_seg": 93.12477111816406, "time": 1.1120946168899537, "iter": 156750, "memory": 8704, "step": 156750} +{"lr": 0.0003927956590284797, "data_time": 0.008190250396728516, "loss": 0.3186702117323875, "decode.loss_ce": 0.19706948697566987, "decode.acc_seg": 94.01600646972656, "aux.loss_ce": 0.12160071991384029, "aux.acc_seg": 90.7511978149414, "time": 1.1169650554656982, "iter": 156800, "memory": 8703, "step": 156800} +{"lr": 0.00038867498474225767, "data_time": 0.007669401168823242, "loss": 0.21584035828709602, "decode.loss_ce": 0.12752925977110863, "decode.acc_seg": 96.57064819335938, "aux.loss_ce": 0.08831109832972288, "aux.acc_seg": 95.2140121459961, "time": 1.1097469568252563, "iter": 156850, "memory": 8703, "step": 156850} +{"lr": 0.00038454776422049787, "data_time": 0.006190061569213867, "loss": 0.15389409884810448, "decode.loss_ce": 0.09429024681448936, "decode.acc_seg": 97.17178344726562, "aux.loss_ce": 0.05960384998470545, "aux.acc_seg": 96.8587875366211, "time": 1.1102315425872802, "iter": 156900, "memory": 8704, "step": 156900} +{"lr": 0.00038041388121658773, "data_time": 0.007498717308044434, "loss": 0.16381703168153763, "decode.loss_ce": 0.10107260160148143, "decode.acc_seg": 97.63224029541016, "aux.loss_ce": 0.06274443119764328, "aux.acc_seg": 95.30036163330078, "time": 1.113896083831787, "iter": 156950, "memory": 8704, "step": 156950} +{"lr": 0.00037627321547817956, "data_time": 0.007602071762084961, "loss": 0.2492429032921791, "decode.loss_ce": 0.14952313601970674, "decode.acc_seg": 96.08738708496094, "aux.loss_ce": 0.09971976689994336, "aux.acc_seg": 94.72662353515625, "time": 1.1116021871566772, "iter": 157000, "memory": 8704, "step": 157000} +{"lr": 0.00037212564254001756, "data_time": 0.007098269462585449, "loss": 0.26423829421401024, "decode.loss_ce": 0.15422629415988923, "decode.acc_seg": 93.54864501953125, "aux.loss_ce": 0.11001200154423714, "aux.acc_seg": 91.62006378173828, "time": 1.1156084775924682, "iter": 157050, "memory": 8703, "step": 157050} +{"lr": 0.000367971033502353, "data_time": 0.006161236763000488, "loss": 0.20345807820558548, "decode.loss_ce": 0.13151418417692184, "decode.acc_seg": 97.2815170288086, "aux.loss_ce": 0.07194389551877975, "aux.acc_seg": 96.40953826904297, "time": 1.1100037574768067, "iter": 157100, "memory": 8704, "step": 157100} +{"lr": 0.0003638092547936803, "data_time": 0.007453393936157226, "loss": 0.24253606796264648, "decode.loss_ce": 0.14090610593557357, "decode.acc_seg": 94.30128479003906, "aux.loss_ce": 0.10162995904684066, "aux.acc_seg": 92.94515991210938, "time": 1.112049436569214, "iter": 157150, "memory": 8704, "step": 157150} +{"lr": 0.00035964016791638543, "data_time": 0.006973099708557129, "loss": 0.23121745958924295, "decode.loss_ce": 0.1318426288664341, "decode.acc_seg": 96.28105163574219, "aux.loss_ce": 0.09937482923269272, "aux.acc_seg": 85.87124633789062, "time": 1.1130961894989013, "iter": 157200, "memory": 8703, "step": 157200} +{"lr": 0.00035546362917375176, "data_time": 0.007101273536682129, "loss": 0.3193698897957802, "decode.loss_ce": 0.19373070150613786, "decode.acc_seg": 86.468505859375, "aux.loss_ce": 0.12563918828964232, "aux.acc_seg": 76.48950958251953, "time": 1.1094648599624635, "iter": 157250, "memory": 8705, "step": 157250} +{"lr": 0.0003512794893765922, "data_time": 0.005633139610290527, "loss": 0.22407617196440696, "decode.loss_ce": 0.1320444166660309, "decode.acc_seg": 95.99952697753906, "aux.loss_ce": 0.09203175157308578, "aux.acc_seg": 93.44526672363281, "time": 1.11179780960083, "iter": 157300, "memory": 8704, "step": 157300} +{"lr": 0.00034708759352757994, "data_time": 0.006673574447631836, "loss": 0.20372685715556144, "decode.loss_ce": 0.12423793971538544, "decode.acc_seg": 97.5881576538086, "aux.loss_ce": 0.07948891408741474, "aux.acc_seg": 96.79756164550781, "time": 1.1087669849395752, "iter": 157350, "memory": 8703, "step": 157350} +{"lr": 0.00034288778048112986, "data_time": 0.00511939525604248, "loss": 0.19401337802410126, "decode.loss_ce": 0.11548614352941514, "decode.acc_seg": 98.24275970458984, "aux.loss_ce": 0.07852723300457001, "aux.acc_seg": 97.07437896728516, "time": 1.1054511070251465, "iter": 157400, "memory": 8703, "step": 157400} +{"lr": 0.0003386798825764288, "data_time": 0.007549953460693359, "loss": 0.16388551592826844, "decode.loss_ce": 0.09190999157726765, "decode.acc_seg": 96.05013275146484, "aux.loss_ce": 0.07197552472352982, "aux.acc_seg": 94.43079376220703, "time": 1.1155341625213624, "iter": 157450, "memory": 8704, "step": 157450} +{"lr": 0.00033446372524092684, "data_time": 0.006301665306091308, "loss": 0.21009302735328675, "decode.loss_ce": 0.1309013269841671, "decode.acc_seg": 88.36161041259766, "aux.loss_ce": 0.07919169962406158, "aux.acc_seg": 87.56147766113281, "time": 1.1128143787384033, "iter": 157500, "memory": 8704, "step": 157500} +{"lr": 0.00033023912656127266, "data_time": 0.007781004905700684, "loss": 0.25841488838195803, "decode.loss_ce": 0.15919816344976426, "decode.acc_seg": 94.56062316894531, "aux.loss_ce": 0.09921672232449055, "aux.acc_seg": 92.76885986328125, "time": 1.1151874780654907, "iter": 157550, "memory": 8704, "step": 157550} +{"lr": 0.0003260058968182989, "data_time": 0.0072871923446655275, "loss": 0.18768749088048936, "decode.loss_ce": 0.11690254583954811, "decode.acc_seg": 95.41313934326172, "aux.loss_ce": 0.07078494429588318, "aux.acc_seg": 94.70011138916016, "time": 1.1160481214523315, "iter": 157600, "memory": 8704, "step": 157600} +{"lr": 0.0003217638379822329, "data_time": 0.00809183120727539, "loss": 0.21214739456772805, "decode.loss_ce": 0.12143284603953361, "decode.acc_seg": 93.63643646240234, "aux.loss_ce": 0.09071455001831055, "aux.acc_seg": 81.62628173828125, "time": 1.1114711999893188, "iter": 157650, "memory": 8703, "step": 157650} +{"lr": 0.00031751274316380935, "data_time": 0.0072132587432861325, "loss": 0.20178757198154926, "decode.loss_ce": 0.12385035250335932, "decode.acc_seg": 95.68341064453125, "aux.loss_ce": 0.07793721836060286, "aux.acc_seg": 92.71678924560547, "time": 1.1113872528076172, "iter": 157700, "memory": 8703, "step": 157700} +{"lr": 0.0003132523960163913, "data_time": 0.005577993392944336, "loss": 0.19799116998910904, "decode.loss_ce": 0.12446180433034897, "decode.acc_seg": 95.29122161865234, "aux.loss_ce": 0.0735293660312891, "aux.acc_seg": 94.56163024902344, "time": 1.109351348876953, "iter": 157750, "memory": 8704, "step": 157750} +{"lr": 0.0003089825700835331, "data_time": 0.006227946281433106, "loss": 0.18252094984054565, "decode.loss_ce": 0.1069327887147665, "decode.acc_seg": 97.8189468383789, "aux.loss_ce": 0.07558816149830819, "aux.acc_seg": 97.32449340820312, "time": 1.1120302438735963, "iter": 157800, "memory": 8703, "step": 157800} +{"lr": 0.0003047030280856577, "data_time": 0.005393886566162109, "loss": 0.2269616425037384, "decode.loss_ce": 0.1385915033519268, "decode.acc_seg": 95.85310363769531, "aux.loss_ce": 0.08837013691663742, "aux.acc_seg": 94.27458190917969, "time": 1.1070673704147338, "iter": 157850, "memory": 8704, "step": 157850} +{"lr": 0.0003004135211386096, "data_time": 0.007189464569091797, "loss": 0.3269899427890778, "decode.loss_ce": 0.20148443803191185, "decode.acc_seg": 92.62345123291016, "aux.loss_ce": 0.12550549786537885, "aux.acc_seg": 87.70694732666016, "time": 1.1115988969802857, "iter": 157900, "memory": 8704, "step": 157900} +{"lr": 0.00029611378789580066, "data_time": 0.006293106079101563, "loss": 0.23959364518523216, "decode.loss_ce": 0.14003151059150695, "decode.acc_seg": 96.09635162353516, "aux.loss_ce": 0.09956213049590587, "aux.acc_seg": 94.99708557128906, "time": 1.1124415636062621, "iter": 157950, "memory": 8704, "step": 157950} +{"lr": 0.0002918035536044247, "data_time": 0.005987095832824707, "loss": 0.20130333304405212, "decode.loss_ce": 0.126028860360384, "decode.acc_seg": 92.9189682006836, "aux.loss_ce": 0.07527447380125522, "aux.acc_seg": 90.86761474609375, "time": 1.1104005336761475, "iter": 158000, "memory": 8704, "step": 158000} +{"lr": 0.0002874825290647697, "data_time": 0.005735850334167481, "loss": 0.24361224919557573, "decode.loss_ce": 0.1395846351981163, "decode.acc_seg": 94.31787872314453, "aux.loss_ce": 0.10402760766446591, "aux.acc_seg": 87.48314666748047, "time": 1.1097693920135498, "iter": 158050, "memory": 8704, "step": 158050} +{"lr": 0.0002831504094799226, "data_time": 0.007163548469543457, "loss": 0.218584655970335, "decode.loss_ce": 0.13274601697921753, "decode.acc_seg": 97.17025756835938, "aux.loss_ce": 0.08583863712847233, "aux.acc_seg": 96.22312927246094, "time": 1.1112450122833253, "iter": 158100, "memory": 8703, "step": 158100} +{"lr": 0.0002788068731811401, "data_time": 0.005557656288146973, "loss": 0.1634022332727909, "decode.loss_ce": 0.10177233368158341, "decode.acc_seg": 98.43018341064453, "aux.loss_ce": 0.06162989716976881, "aux.acc_seg": 98.12303924560547, "time": 1.107936716079712, "iter": 158150, "memory": 8704, "step": 158150} +{"lr": 0.000274451580211702, "data_time": 0.00686955451965332, "loss": 0.17913302630186081, "decode.loss_ce": 0.10856408923864365, "decode.acc_seg": 95.21395111083984, "aux.loss_ce": 0.07056893520057202, "aux.acc_seg": 94.77265167236328, "time": 1.113619899749756, "iter": 158200, "memory": 8703, "step": 158200} +{"lr": 0.00027008417074916185, "data_time": 0.0062542915344238285, "loss": 0.15213271528482436, "decode.loss_ce": 0.09503963738679885, "decode.acc_seg": 97.6269760131836, "aux.loss_ce": 0.05709307733923197, "aux.acc_seg": 97.36260223388672, "time": 1.1095804929733277, "iter": 158250, "memory": 8703, "step": 158250} +{"lr": 0.00026570426334239646, "data_time": 0.006137466430664063, "loss": 0.33521792888641355, "decode.loss_ce": 0.1952661655843258, "decode.acc_seg": 96.17843627929688, "aux.loss_ce": 0.13995176814496518, "aux.acc_seg": 91.37350463867188, "time": 1.1129473447799683, "iter": 158300, "memory": 8705, "step": 158300} +{"lr": 0.00026131145293560907, "data_time": 0.007343912124633789, "loss": 0.19420154690742492, "decode.loss_ce": 0.12613115459680557, "decode.acc_seg": 97.54203033447266, "aux.loss_ce": 0.06807038988918065, "aux.acc_seg": 96.60308837890625, "time": 1.11928551197052, "iter": 158350, "memory": 8704, "step": 158350} +{"lr": 0.00025690530864628597, "data_time": 0.007437372207641601, "loss": 0.19165622740983962, "decode.loss_ce": 0.10103357881307602, "decode.acc_seg": 95.47315979003906, "aux.loss_ce": 0.09062264952808619, "aux.acc_seg": 92.66643524169922, "time": 1.1111353397369386, "iter": 158400, "memory": 8704, "step": 158400} +{"lr": 0.00025248537125779343, "data_time": 0.006341314315795899, "loss": 0.2119031824171543, "decode.loss_ce": 0.12287188805639744, "decode.acc_seg": 97.15779113769531, "aux.loss_ce": 0.08903129324316979, "aux.acc_seg": 92.48294830322266, "time": 1.1140525817871094, "iter": 158450, "memory": 8703, "step": 158450} +{"lr": 0.0002480511503795539, "data_time": 0.006838583946228027, "loss": 0.164301897585392, "decode.loss_ce": 0.09458514302968979, "decode.acc_seg": 97.46055603027344, "aux.loss_ce": 0.06971675101667643, "aux.acc_seg": 96.4981689453125, "time": 1.1100919008255006, "iter": 158500, "memory": 8703, "step": 158500} +{"lr": 0.00024360212121813507, "data_time": 0.006226491928100586, "loss": 0.2060419537127018, "decode.loss_ce": 0.12253837250173091, "decode.acc_seg": 92.6591796875, "aux.loss_ce": 0.08350358493626117, "aux.acc_seg": 88.69839477539062, "time": 1.1113932371139525, "iter": 158550, "memory": 8704, "step": 158550} +{"lr": 0.0002391377208906368, "data_time": 0.007965469360351562, "loss": 0.2540624991059303, "decode.loss_ce": 0.147800899669528, "decode.acc_seg": 84.91649627685547, "aux.loss_ce": 0.10626159999519587, "aux.acc_seg": 75.01347351074219, "time": 1.114487385749817, "iter": 158600, "memory": 8704, "step": 158600} +{"lr": 0.0002346573441967633, "data_time": 0.005659365653991699, "loss": 0.38400697484612467, "decode.loss_ce": 0.2316734589636326, "decode.acc_seg": 95.41218566894531, "aux.loss_ce": 0.1523335136473179, "aux.acc_seg": 93.43382263183594, "time": 1.1090578317642212, "iter": 158650, "memory": 8704, "step": 158650} +{"lr": 0.00023016033874702043, "data_time": 0.007388424873352051, "loss": 0.2413449317216873, "decode.loss_ce": 0.1428049173206091, "decode.acc_seg": 97.89657592773438, "aux.loss_ce": 0.09854001067578792, "aux.acc_seg": 95.95629119873047, "time": 1.1126852989196778, "iter": 158700, "memory": 8703, "step": 158700} +{"lr": 0.0002256459993203254, "data_time": 0.008257174491882324, "loss": 0.21543587371706963, "decode.loss_ce": 0.128624951466918, "decode.acc_seg": 96.13504028320312, "aux.loss_ce": 0.08681091945618391, "aux.acc_seg": 94.8534164428711, "time": 1.1119757413864135, "iter": 158750, "memory": 8704, "step": 158750} +{"lr": 0.00022111356129329575, "data_time": 0.006476593017578125, "loss": 0.1914689838886261, "decode.loss_ce": 0.11350310146808625, "decode.acc_seg": 96.55066680908203, "aux.loss_ce": 0.07796587832272053, "aux.acc_seg": 96.21528625488281, "time": 1.1123023748397827, "iter": 158800, "memory": 8703, "step": 158800} +{"lr": 0.00021656219294323214, "data_time": 0.007374119758605957, "loss": 0.20169156640768052, "decode.loss_ce": 0.12211522907018661, "decode.acc_seg": 96.54146575927734, "aux.loss_ce": 0.07957634031772613, "aux.acc_seg": 96.10016632080078, "time": 1.1133916139602662, "iter": 158850, "memory": 8704, "step": 158850} +{"lr": 0.00021199098637409016, "data_time": 0.006375455856323242, "loss": 0.18487560003995895, "decode.loss_ce": 0.10626397877931595, "decode.acc_seg": 94.71212768554688, "aux.loss_ce": 0.07861162163317204, "aux.acc_seg": 92.73096466064453, "time": 1.1079477071762085, "iter": 158900, "memory": 8705, "step": 158900} +{"lr": 0.00020739894674491724, "data_time": 0.006556248664855957, "loss": 0.21726346760988235, "decode.loss_ce": 0.1323135182261467, "decode.acc_seg": 95.09864807128906, "aux.loss_ce": 0.0849499449133873, "aux.acc_seg": 94.03343200683594, "time": 1.1125789880752563, "iter": 158950, "memory": 8703, "step": 158950} +{"lr": 0.00020278497938669706, "data_time": 0.006324958801269531, "loss": 0.26219683066010474, "decode.loss_ce": 0.14919021725654602, "decode.acc_seg": 97.11576843261719, "aux.loss_ce": 0.1130066156387329, "aux.acc_seg": 95.87567138671875, "time": 1.1097403287887573, "iter": 159000, "memory": 8703, "step": 159000} +{"lr": 0.00019814787426662407, "data_time": 0.008518505096435546, "loss": 0.1801195487380028, "decode.loss_ce": 0.11098207756876946, "decode.acc_seg": 96.97100067138672, "aux.loss_ce": 0.06913747116923333, "aux.acc_seg": 96.16082000732422, "time": 1.1140081405639648, "iter": 159050, "memory": 8703, "step": 159050} +{"lr": 0.0001934862870842166, "data_time": 0.006908845901489258, "loss": 0.2592534378170967, "decode.loss_ce": 0.16594422981142998, "decode.acc_seg": 94.3674087524414, "aux.loss_ce": 0.09330920577049255, "aux.acc_seg": 93.6274185180664, "time": 1.1115271329879761, "iter": 159100, "memory": 8704, "step": 159100} +{"lr": 0.00018879871603975668, "data_time": 0.006516814231872559, "loss": 0.19594015702605247, "decode.loss_ce": 0.11950359605252743, "decode.acc_seg": 95.96220397949219, "aux.loss_ce": 0.07643655892461539, "aux.acc_seg": 95.07649230957031, "time": 1.1105477571487428, "iter": 159150, "memory": 8704, "step": 159150} +{"lr": 0.00018408347296908052, "data_time": 0.0062532186508178714, "loss": 0.20162869468331338, "decode.loss_ce": 0.12433703914284706, "decode.acc_seg": 97.3968505859375, "aux.loss_ce": 0.07729165740311146, "aux.acc_seg": 96.05757141113281, "time": 1.111576509475708, "iter": 159200, "memory": 8703, "step": 159200} +{"lr": 0.00017933864703738967, "data_time": 0.006133151054382324, "loss": 0.20345495790243148, "decode.loss_ce": 0.12402175888419151, "decode.acc_seg": 95.53718566894531, "aux.loss_ce": 0.07943320088088512, "aux.acc_seg": 94.42278289794922, "time": 1.1069365978240966, "iter": 159250, "memory": 8704, "step": 159250} +{"lr": 0.00017456205844418402, "data_time": 0.006827116012573242, "loss": 0.15322706252336502, "decode.loss_ce": 0.09427536353468895, "decode.acc_seg": 96.6653823852539, "aux.loss_ce": 0.05895169638097286, "aux.acc_seg": 94.92008972167969, "time": 1.1090437412261962, "iter": 159300, "memory": 8703, "step": 159300} +{"lr": 0.00016975119847189581, "data_time": 0.006967687606811523, "loss": 0.21224441081285478, "decode.loss_ce": 0.12346292547881603, "decode.acc_seg": 97.14253234863281, "aux.loss_ce": 0.08878148663789034, "aux.acc_seg": 96.7123031616211, "time": 1.1133449792861938, "iter": 159350, "memory": 8704, "step": 159350} +{"lr": 0.0001649031504737083, "data_time": 0.008257055282592773, "loss": 0.19032785370945932, "decode.loss_ce": 0.11892614290118217, "decode.acc_seg": 97.01366424560547, "aux.loss_ce": 0.07140171006321908, "aux.acc_seg": 96.20304107666016, "time": 1.1144568204879761, "iter": 159400, "memory": 8704, "step": 159400} +{"lr": 0.00016001448361950655, "data_time": 0.007302331924438477, "loss": 0.2810752898454666, "decode.loss_ce": 0.16790824830532075, "decode.acc_seg": 93.43534851074219, "aux.loss_ce": 0.11316704526543617, "aux.acc_seg": 92.03662872314453, "time": 1.11626296043396, "iter": 159450, "memory": 8704, "step": 159450} +{"lr": 0.0001550811066270008, "data_time": 0.0064453125, "loss": 0.2508895054459572, "decode.loss_ce": 0.1312206842005253, "decode.acc_seg": 96.5384750366211, "aux.loss_ce": 0.11966881901025772, "aux.acc_seg": 93.91758728027344, "time": 1.1069831609725953, "iter": 159500, "memory": 8703, "step": 159500} +{"lr": 0.00015009806080395642, "data_time": 0.006942129135131836, "loss": 0.16964331343770028, "decode.loss_ce": 0.10060667507350445, "decode.acc_seg": 96.93234252929688, "aux.loss_ce": 0.06903663761913777, "aux.acc_seg": 96.78986358642578, "time": 1.1178734302520752, "iter": 159550, "memory": 8703, "step": 159550} +{"lr": 0.0001450592174830742, "data_time": 0.006694579124450683, "loss": 0.2647422730922699, "decode.loss_ce": 0.15627625659108163, "decode.acc_seg": 85.01387786865234, "aux.loss_ce": 0.10846601203083991, "aux.acc_seg": 84.42183685302734, "time": 1.110437798500061, "iter": 159600, "memory": 8703, "step": 159600} +{"lr": 0.0001399568177762784, "data_time": 0.00640418529510498, "loss": 0.19594532549381255, "decode.loss_ce": 0.11958833895623684, "decode.acc_seg": 96.74056243896484, "aux.loss_ce": 0.07635698355734348, "aux.acc_seg": 93.42286682128906, "time": 1.1064094305038452, "iter": 159650, "memory": 8704, "step": 159650} +{"lr": 0.00013478073715636027, "data_time": 0.006189680099487305, "loss": 0.3490178547799587, "decode.loss_ce": 0.2151315174996853, "decode.acc_seg": 95.988525390625, "aux.loss_ce": 0.13388633746653794, "aux.acc_seg": 94.68624877929688, "time": 1.1074527740478515, "iter": 159700, "memory": 8704, "step": 159700} +{"lr": 0.0001295172341849758, "data_time": 0.007417798042297363, "loss": 0.17660508006811143, "decode.loss_ce": 0.10501324608922005, "decode.acc_seg": 97.8586196899414, "aux.loss_ce": 0.0715918369591236, "aux.acc_seg": 97.54988098144531, "time": 1.1149321794509888, "iter": 159750, "memory": 8704, "step": 159750} +{"lr": 0.0001241466367705052, "data_time": 0.008265829086303711, "loss": 0.17490566223859788, "decode.loss_ce": 0.11208665817975998, "decode.acc_seg": 94.9017333984375, "aux.loss_ce": 0.06281900592148304, "aux.acc_seg": 91.48441314697266, "time": 1.1154794931411742, "iter": 159800, "memory": 8705, "step": 159800} +{"lr": 0.00011863853554581845, "data_time": 0.006830596923828125, "loss": 0.22629523798823356, "decode.loss_ce": 0.1326141692698002, "decode.acc_seg": 95.18374633789062, "aux.loss_ce": 0.09368106536567211, "aux.acc_seg": 91.89861297607422, "time": 1.110400676727295, "iter": 159850, "memory": 8703, "step": 159850} +{"lr": 0.0001129398622500653, "data_time": 0.008263397216796874, "loss": 0.18019260391592978, "decode.loss_ce": 0.10972043015062809, "decode.acc_seg": 96.5524673461914, "aux.loss_ce": 0.07047217376530171, "aux.acc_seg": 96.12903594970703, "time": 1.1128490686416626, "iter": 159900, "memory": 8704, "step": 159900} +{"lr": 0.00010693430048424757, "data_time": 0.007636547088623047, "loss": 0.22999583631753923, "decode.loss_ce": 0.14508999288082122, "decode.acc_seg": 96.70206451416016, "aux.loss_ce": 0.0849058449268341, "aux.acc_seg": 96.38086700439453, "time": 1.111967349052429, "iter": 159950, "memory": 8703, "step": 159950} +{"lr": 0.0001, "data_time": 0.0074027061462402345, "loss": 0.35610339418053627, "decode.loss_ce": 0.22803493067622185, "decode.acc_seg": 97.73394012451172, "aux.loss_ce": 0.12806845940649508, "aux.acc_seg": 97.42259979248047, "time": 1.1140637159347535, "iter": 160000, "memory": 8704, "step": 160000} +{"aAcc": 95.99, "mIoU": 74.28, "mAcc": 81.61, "data_time": 0.00424776667761263, "time": 0.27147742847945494, "step": 160000} diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/config.py b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/config.py new file mode 100644 index 0000000..c66d518 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/config.py @@ -0,0 +1,296 @@ +crop_size = ( + 512, + 1024, +) +data_preprocessor = dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor') +data_root = 'dataset/Preprocessed_2DSS' +dataset_type = 'seg2DSSDataset' +default_hooks = dict( + checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), + logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), + param_scheduler=dict(type='ParamSchedulerHook'), + sampler_seed=dict(type='DistSamplerSeedHook'), + timer=dict(type='IterTimerHook'), + visualization=dict(type='SegVisualizationHook')) +default_scope = 'mmseg' +env_cfg = dict( + cudnn_benchmark=True, + dist_cfg=dict(backend='nccl'), + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) +img_ratios = [ + 0.5, + 0.75, + 1.0, + 1.25, + 1.5, + 1.75, +] +launcher = 'pytorch' +load_from = None +log_level = 'INFO' +log_processor = dict(by_epoch=False) +model = dict( + auxiliary_head=dict( + align_corners=False, + channels=256, + concat_input=False, + dropout_ratio=0.1, + in_channels=1024, + in_index=2, + loss_decode=dict( + loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + num_convs=1, + type='FCNHead'), + backbone=dict( + contract_dilation=True, + depth=50, + dilations=( + 1, + 1, + 2, + 4, + ), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + norm_eval=False, + num_stages=4, + out_indices=( + 0, + 1, + 2, + 3, + ), + strides=( + 1, + 2, + 1, + 1, + ), + style='pytorch', + type='ResNetV1c'), + data_preprocessor=dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor'), + decode_head=dict( + align_corners=False, + channels=512, + dropout_ratio=0.1, + in_channels=2048, + in_index=3, + loss_decode=dict( + loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + pool_scales=( + 1, + 2, + 3, + 6, + ), + type='PSPHead'), + pretrained='open-mmlab://resnet50_v1c', + test_cfg=dict(mode='whole'), + train_cfg=dict(), + type='EncoderDecoder') +norm_cfg = dict(requires_grad=True, type='SyncBN') +optim_wrapper = dict( + clip_grad=None, + optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005), + type='OptimWrapper') +optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) +param_scheduler = [ + dict( + begin=0, + by_epoch=False, + end=160000, + eta_min=0.0001, + power=0.9, + type='PolyLR'), +] +resume = False +test_cfg = dict(type='TestLoop') +test_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/test', seg_map_path='annotations/test'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +test_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), +] +train_cfg = dict( + max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) +train_dataloader = dict( + batch_size=3, + dataset=dict( + data_prefix=dict( + img_path='images/training', seg_map_path='annotations/training'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict( + cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=True, type='InfiniteSampler')) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict(cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), +] +tta_model = dict(type='SegTTAModel') +tta_pipeline = [ + dict(backend_args=None, type='LoadImageFromFile'), + dict( + transforms=[ + [ + dict(keep_ratio=True, scale_factor=0.5, type='Resize'), + dict(keep_ratio=True, scale_factor=0.75, type='Resize'), + dict(keep_ratio=True, scale_factor=1.0, type='Resize'), + dict(keep_ratio=True, scale_factor=1.25, type='Resize'), + dict(keep_ratio=True, scale_factor=1.5, type='Resize'), + dict(keep_ratio=True, scale_factor=1.75, type='Resize'), + ], + [ + dict(direction='horizontal', prob=0.0, type='RandomFlip'), + dict(direction='horizontal', prob=1.0, type='RandomFlip'), + ], + [ + dict(type='LoadAnnotations'), + ], + [ + dict(type='PackSegInputs'), + ], + ], + type='TestTimeAug'), +] +val_cfg = dict(type='ValLoop') +val_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +val_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +vis_backends = [ + dict(type='LocalVisBackend'), +] +visualizer = dict( + name='visualizer', + type='SegLocalVisualizer', + vis_backends=[ + dict(type='LocalVisBackend'), + ]) +work_dir = './work_dirs/pspnet_160k' diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/loss_plots.png b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/loss_plots.png new file mode 100644 index 0000000..a94619d Binary files /dev/null and b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/loss_plots.png differ diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/scalars.json b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/scalars.json new file mode 100644 index 0000000..f4337a0 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/scalars.json @@ -0,0 +1,3210 @@ +{"lr": 0.009997271253657354, "data_time": 0.007485890388488769, "loss": 2.2964284777641297, "decode.loss_ce": 1.506650012731552, "decode.acc_seg": 72.97782897949219, "aux.loss_ce": 0.789778470993042, "aux.acc_seg": 38.379539489746094, "time": 1.1120189666748046, "iter": 50, "memory": 12655, "step": 50} +{"lr": 0.00999448673244192, "data_time": 0.007558369636535644, "loss": 1.8986098170280457, "decode.loss_ce": 1.257573276758194, "decode.acc_seg": 68.7205581665039, "aux.loss_ce": 0.6410365641117096, "aux.acc_seg": 57.45792007446289, "time": 1.1150005340576172, "iter": 100, "memory": 8703, "step": 100} +{"lr": 0.00999170212415443, "data_time": 0.009940314292907714, "loss": 1.3991286695003509, "decode.loss_ce": 0.939179104566574, "decode.acc_seg": 73.68742370605469, "aux.loss_ce": 0.45994956642389295, "aux.acc_seg": 55.03762435913086, "time": 1.1193443059921264, "iter": 150, "memory": 8702, "step": 150} +{"lr": 0.009988917428764899, "data_time": 0.008862924575805665, "loss": 1.3431594252586365, "decode.loss_ce": 0.8647369265556335, "decode.acc_seg": 73.0712890625, "aux.loss_ce": 0.47842249274253845, "aux.acc_seg": 67.87935638427734, "time": 1.1193435907363891, "iter": 200, "memory": 8702, "step": 200} +{"lr": 0.00998613264624337, "data_time": 0.005770754814147949, "loss": 1.2498217523097992, "decode.loss_ce": 0.8079711079597474, "decode.acc_seg": 67.18113708496094, "aux.loss_ce": 0.44185066521167754, "aux.acc_seg": 67.95692443847656, "time": 1.1167064905166626, "iter": 250, "memory": 8702, "step": 250} +{"lr": 0.009983347776559829, "data_time": 0.006764650344848633, "loss": 1.0082671463489532, "decode.loss_ce": 0.6297035306692124, "decode.acc_seg": 83.2844467163086, "aux.loss_ce": 0.37856361716985704, "aux.acc_seg": 76.6996078491211, "time": 1.118143653869629, "iter": 300, "memory": 8703, "step": 300} +{"lr": 0.009980562819684263, "data_time": 0.009905266761779784, "loss": 1.1990495681762696, "decode.loss_ce": 0.7633046358823776, "decode.acc_seg": 78.06488800048828, "aux.loss_ce": 0.43574494421482085, "aux.acc_seg": 64.21372985839844, "time": 1.1217756509780883, "iter": 350, "memory": 8704, "step": 350} +{"lr": 0.009977777775586647, "data_time": 0.00903646945953369, "loss": 0.7768030881881713, "decode.loss_ce": 0.47763468474149706, "decode.acc_seg": 91.97603607177734, "aux.loss_ce": 0.29916840344667434, "aux.acc_seg": 86.8052749633789, "time": 1.1186116933822632, "iter": 400, "memory": 8702, "step": 400} +{"lr": 0.009974992644236888, "data_time": 0.008510971069335937, "loss": 1.0801362633705138, "decode.loss_ce": 0.6855680972337723, "decode.acc_seg": 82.82597351074219, "aux.loss_ce": 0.3945681661367416, "aux.acc_seg": 80.98790740966797, "time": 1.1169110059738159, "iter": 450, "memory": 8703, "step": 450} +{"lr": 0.009972207425604932, "data_time": 0.010095691680908203, "loss": 0.8904866337776184, "decode.loss_ce": 0.563438156247139, "decode.acc_seg": 74.82286834716797, "aux.loss_ce": 0.3270484656095505, "aux.acc_seg": 70.14662170410156, "time": 1.1193033456802368, "iter": 500, "memory": 8702, "step": 500} +{"lr": 0.009969422119660676, "data_time": 0.006265568733215332, "loss": 0.9910454481840134, "decode.loss_ce": 0.625863853096962, "decode.acc_seg": 79.67485046386719, "aux.loss_ce": 0.36518158465623857, "aux.acc_seg": 74.08390045166016, "time": 1.1128976106643678, "iter": 550, "memory": 8702, "step": 550} +{"lr": 0.009966636726374004, "data_time": 0.008400583267211914, "loss": 1.0668312817811967, "decode.loss_ce": 0.664896696805954, "decode.acc_seg": 82.4717788696289, "aux.loss_ce": 0.4019345760345459, "aux.acc_seg": 77.5472640991211, "time": 1.119528865814209, "iter": 600, "memory": 8703, "step": 600} +{"lr": 0.009963851245714783, "data_time": 0.00678713321685791, "loss": 1.1026509910821916, "decode.loss_ce": 0.6934732347726822, "decode.acc_seg": 72.82345581054688, "aux.loss_ce": 0.4091777615249157, "aux.acc_seg": 66.60575866699219, "time": 1.1131059169769286, "iter": 650, "memory": 8703, "step": 650} +{"lr": 0.009961065677652849, "data_time": 0.008921313285827636, "loss": 1.047666820883751, "decode.loss_ce": 0.644815194606781, "decode.acc_seg": 81.24319458007812, "aux.loss_ce": 0.40285161286592486, "aux.acc_seg": 77.50599670410156, "time": 1.1186763048171997, "iter": 700, "memory": 8703, "step": 700} +{"lr": 0.00995828002215802, "data_time": 0.007221674919128418, "loss": 1.0044538378715515, "decode.loss_ce": 0.6486341089010239, "decode.acc_seg": 79.14173889160156, "aux.loss_ce": 0.3558197245001793, "aux.acc_seg": 72.4976806640625, "time": 1.1161054611206054, "iter": 750, "memory": 8703, "step": 750} +{"lr": 0.009955494279200118, "data_time": 0.007376194000244141, "loss": 0.9484157979488372, "decode.loss_ce": 0.596601152420044, "decode.acc_seg": 84.64424896240234, "aux.loss_ce": 0.35181465446949006, "aux.acc_seg": 74.93450927734375, "time": 1.1134058952331543, "iter": 800, "memory": 8703, "step": 800} +{"lr": 0.009952708448748904, "data_time": 0.007855868339538575, "loss": 0.9795614302158355, "decode.loss_ce": 0.5962632656097412, "decode.acc_seg": 92.29793548583984, "aux.loss_ce": 0.38329814970493314, "aux.acc_seg": 86.77808380126953, "time": 1.1212723970413208, "iter": 850, "memory": 8703, "step": 850} +{"lr": 0.009949922530774154, "data_time": 0.007839393615722657, "loss": 1.0963295161724091, "decode.loss_ce": 0.6911907330155372, "decode.acc_seg": 90.45429229736328, "aux.loss_ce": 0.40513876378536223, "aux.acc_seg": 80.77430725097656, "time": 1.1170740127563477, "iter": 900, "memory": 8702, "step": 900} +{"lr": 0.009947136525245611, "data_time": 0.007232069969177246, "loss": 0.9094848692417145, "decode.loss_ce": 0.5722101271152497, "decode.acc_seg": 80.28265380859375, "aux.loss_ce": 0.3372747406363487, "aux.acc_seg": 73.78094482421875, "time": 1.1193119525909423, "iter": 950, "memory": 8703, "step": 950} +{"lr": 0.009944350432132988, "data_time": 0.007461428642272949, "loss": 0.9249741613864899, "decode.loss_ce": 0.5775936484336853, "decode.acc_seg": 81.5313491821289, "aux.loss_ce": 0.3473805323243141, "aux.acc_seg": 73.29130554199219, "time": 1.1207738876342774, "iter": 1000, "memory": 8703, "step": 1000} +{"lr": 0.009941564251405991, "data_time": 0.007991957664489745, "loss": 0.8911315828561783, "decode.loss_ce": 0.5519798099994659, "decode.acc_seg": 75.99239349365234, "aux.loss_ce": 0.3391517594456673, "aux.acc_seg": 70.56719207763672, "time": 1.1228835105895996, "iter": 1050, "memory": 8703, "step": 1050} +{"lr": 0.009938777983034325, "data_time": 0.00786128044128418, "loss": 0.7152692675590515, "decode.loss_ce": 0.46060948073863983, "decode.acc_seg": 92.02384948730469, "aux.loss_ce": 0.25465978384017945, "aux.acc_seg": 86.47537231445312, "time": 1.1158659696578979, "iter": 1100, "memory": 8702, "step": 1100} +{"lr": 0.009935991626987618, "data_time": 0.007376194000244141, "loss": 0.790592896938324, "decode.loss_ce": 0.5037155121564865, "decode.acc_seg": 90.52479553222656, "aux.loss_ce": 0.28687736988067625, "aux.acc_seg": 89.99639892578125, "time": 1.115672755241394, "iter": 1150, "memory": 8702, "step": 1150} +{"lr": 0.009933205183235533, "data_time": 0.0065708160400390625, "loss": 0.7024855226278305, "decode.loss_ce": 0.4398741200566292, "decode.acc_seg": 92.54411315917969, "aux.loss_ce": 0.2626113884150982, "aux.acc_seg": 83.54054260253906, "time": 1.1115902185440063, "iter": 1200, "memory": 8702, "step": 1200} +{"lr": 0.009930418651747694, "data_time": 0.009378314018249512, "loss": 0.7936880141496658, "decode.loss_ce": 0.5060440599918365, "decode.acc_seg": 85.5569839477539, "aux.loss_ce": 0.28764394372701646, "aux.acc_seg": 84.20719146728516, "time": 1.118958830833435, "iter": 1250, "memory": 8702, "step": 1250} +{"lr": 0.009927632032493697, "data_time": 0.00774087905883789, "loss": 0.695601761341095, "decode.loss_ce": 0.4380529418587685, "decode.acc_seg": 90.94002532958984, "aux.loss_ce": 0.25754882842302323, "aux.acc_seg": 87.92259979248047, "time": 1.1158739566802978, "iter": 1300, "memory": 8703, "step": 1300} +{"lr": 0.009924845325443136, "data_time": 0.007314825057983398, "loss": 0.6851732075214386, "decode.loss_ce": 0.43992566168308256, "decode.acc_seg": 87.2426986694336, "aux.loss_ce": 0.24524754881858826, "aux.acc_seg": 78.04685974121094, "time": 1.1120719909667969, "iter": 1350, "memory": 8703, "step": 1350} +{"lr": 0.009922058530565565, "data_time": 0.007890892028808594, "loss": 0.6350485950708389, "decode.loss_ce": 0.3950468048453331, "decode.acc_seg": 93.37984466552734, "aux.loss_ce": 0.240001779794693, "aux.acc_seg": 89.36271667480469, "time": 1.1149598598480224, "iter": 1400, "memory": 8703, "step": 1400} +{"lr": 0.009919271647830517, "data_time": 0.006950497627258301, "loss": 0.7224893033504486, "decode.loss_ce": 0.4597009152173996, "decode.acc_seg": 85.8739242553711, "aux.loss_ce": 0.26278838366270063, "aux.acc_seg": 70.8241958618164, "time": 1.1132191658020019, "iter": 1450, "memory": 8703, "step": 1450} +{"lr": 0.00991648467720753, "data_time": 0.007731771469116211, "loss": 0.939487487077713, "decode.loss_ce": 0.5984254807233811, "decode.acc_seg": 80.33618927001953, "aux.loss_ce": 0.341062006354332, "aux.acc_seg": 77.86598205566406, "time": 1.1119452476501466, "iter": 1500, "memory": 8704, "step": 1500} +{"lr": 0.0099136976186661, "data_time": 0.008274984359741212, "loss": 0.6342964679002762, "decode.loss_ce": 0.38575920313596723, "decode.acc_seg": 89.20135498046875, "aux.loss_ce": 0.248537278175354, "aux.acc_seg": 72.24597930908203, "time": 1.1147346496582031, "iter": 1550, "memory": 8703, "step": 1550} +{"lr": 0.009910910472175703, "data_time": 0.007243752479553223, "loss": 0.8353709816932678, "decode.loss_ce": 0.53115414083004, "decode.acc_seg": 91.76813507080078, "aux.loss_ce": 0.3042168289422989, "aux.acc_seg": 87.37601470947266, "time": 1.1143346786499024, "iter": 1600, "memory": 8703, "step": 1600} +{"lr": 0.009908123237705813, "data_time": 0.007040071487426758, "loss": 0.7182566285133362, "decode.loss_ce": 0.4565575152635574, "decode.acc_seg": 90.46955871582031, "aux.loss_ce": 0.2616991110146046, "aux.acc_seg": 74.74400329589844, "time": 1.1172787189483642, "iter": 1650, "memory": 8703, "step": 1650} +{"lr": 0.00990533591522586, "data_time": 0.00743863582611084, "loss": 0.672456905245781, "decode.loss_ce": 0.43501672297716143, "decode.acc_seg": 92.18344116210938, "aux.loss_ce": 0.23744016736745835, "aux.acc_seg": 88.84664154052734, "time": 1.118904423713684, "iter": 1700, "memory": 8702, "step": 1700} +{"lr": 0.009902548504705278, "data_time": 0.006414079666137695, "loss": 0.8967171430587768, "decode.loss_ce": 0.5753070950508118, "decode.acc_seg": 92.41251373291016, "aux.loss_ce": 0.3214100353419781, "aux.acc_seg": 91.79303741455078, "time": 1.1110018014907836, "iter": 1750, "memory": 8703, "step": 1750} +{"lr": 0.009899761006113455, "data_time": 0.007605123519897461, "loss": 0.6083735942840576, "decode.loss_ce": 0.36650105118751525, "decode.acc_seg": 90.56631469726562, "aux.loss_ce": 0.241872538626194, "aux.acc_seg": 88.37477111816406, "time": 1.116659951210022, "iter": 1800, "memory": 8702, "step": 1800} +{"lr": 0.009896973419419773, "data_time": 0.0078030586242675785, "loss": 0.8773641884326935, "decode.loss_ce": 0.5489868462085724, "decode.acc_seg": 89.60659790039062, "aux.loss_ce": 0.32837735414505004, "aux.acc_seg": 66.41432189941406, "time": 1.1164842128753663, "iter": 1850, "memory": 8702, "step": 1850} +{"lr": 0.009894185744593607, "data_time": 0.007916688919067383, "loss": 0.8061408132314682, "decode.loss_ce": 0.496216407418251, "decode.acc_seg": 89.24236297607422, "aux.loss_ce": 0.30992441028356554, "aux.acc_seg": 84.173583984375, "time": 1.1150681257247925, "iter": 1900, "memory": 8703, "step": 1900} +{"lr": 0.009891397981604278, "data_time": 0.006489872932434082, "loss": 0.5973233550786972, "decode.loss_ce": 0.37096530199050903, "decode.acc_seg": 81.78602600097656, "aux.loss_ce": 0.2263580486178398, "aux.acc_seg": 82.13081359863281, "time": 1.115644145011902, "iter": 1950, "memory": 8703, "step": 1950} +{"lr": 0.009888610130421114, "data_time": 0.007730007171630859, "loss": 0.9686542749404907, "decode.loss_ce": 0.6162137791514397, "decode.acc_seg": 79.23361206054688, "aux.loss_ce": 0.35244048237800596, "aux.acc_seg": 70.93009948730469, "time": 1.1152220010757445, "iter": 2000, "memory": 8703, "step": 2000} +{"lr": 0.009885822191013416, "data_time": 0.007368206977844238, "loss": 0.8039223849773407, "decode.loss_ce": 0.49003698229789733, "decode.acc_seg": 82.41615295410156, "aux.loss_ce": 0.3138854056596756, "aux.acc_seg": 71.9992904663086, "time": 1.1163463830947875, "iter": 2050, "memory": 8702, "step": 2050} +{"lr": 0.00988303416335047, "data_time": 0.005628633499145508, "loss": 0.7353476524353028, "decode.loss_ce": 0.4586926609277725, "decode.acc_seg": 86.53398895263672, "aux.loss_ce": 0.27665499597787857, "aux.acc_seg": 81.291259765625, "time": 1.109302043914795, "iter": 2100, "memory": 8703, "step": 2100} +{"lr": 0.009880246047401512, "data_time": 0.009383034706115723, "loss": 0.7921241760253906, "decode.loss_ce": 0.5103660434484482, "decode.acc_seg": 92.0419692993164, "aux.loss_ce": 0.2817581191658974, "aux.acc_seg": 91.11251831054688, "time": 1.11723153591156, "iter": 2150, "memory": 8703, "step": 2150} +{"lr": 0.009877457843135802, "data_time": 0.009013509750366211, "loss": 0.5260480582714081, "decode.loss_ce": 0.31377322897315024, "decode.acc_seg": 96.35645294189453, "aux.loss_ce": 0.21227483078837395, "aux.acc_seg": 95.23995208740234, "time": 1.1188156604766846, "iter": 2200, "memory": 8703, "step": 2200} +{"lr": 0.009874669550522547, "data_time": 0.008813238143920899, "loss": 0.6824995964765549, "decode.loss_ce": 0.43539117872714994, "decode.acc_seg": 88.2345199584961, "aux.loss_ce": 0.24710841104388237, "aux.acc_seg": 80.22785186767578, "time": 1.1196126461029052, "iter": 2250, "memory": 8703, "step": 2250} +{"lr": 0.009871881169530935, "data_time": 0.007583141326904297, "loss": 0.8291426748037338, "decode.loss_ce": 0.5134469166398048, "decode.acc_seg": 89.97509765625, "aux.loss_ce": 0.3156957566738129, "aux.acc_seg": 80.60626983642578, "time": 1.1143367052078248, "iter": 2300, "memory": 8702, "step": 2300} +{"lr": 0.009869092700130155, "data_time": 0.006018590927124023, "loss": 0.8123698025941849, "decode.loss_ce": 0.5361051112413406, "decode.acc_seg": 62.83950424194336, "aux.loss_ce": 0.2762646831572056, "aux.acc_seg": 62.113059997558594, "time": 1.112019419670105, "iter": 2350, "memory": 8702, "step": 2350} +{"lr": 0.009866304142289362, "data_time": 0.009346508979797363, "loss": 0.7995362788438797, "decode.loss_ce": 0.5030646532773971, "decode.acc_seg": 89.4522933959961, "aux.loss_ce": 0.2964716225862503, "aux.acc_seg": 86.02066040039062, "time": 1.1182017087936402, "iter": 2400, "memory": 8702, "step": 2400} +{"lr": 0.009863515495977693, "data_time": 0.007544946670532226, "loss": 0.9531241863965988, "decode.loss_ce": 0.6201601475477219, "decode.acc_seg": 81.58283233642578, "aux.loss_ce": 0.3329640418291092, "aux.acc_seg": 73.47405242919922, "time": 1.1127679347991943, "iter": 2450, "memory": 8703, "step": 2450} +{"lr": 0.009860726761164252, "data_time": 0.007938671112060546, "loss": 0.6622580111026763, "decode.loss_ce": 0.39605048298835754, "decode.acc_seg": 91.09465026855469, "aux.loss_ce": 0.26620751395821574, "aux.acc_seg": 87.39685821533203, "time": 1.115364956855774, "iter": 2500, "memory": 8703, "step": 2500} +{"lr": 0.009857937937818145, "data_time": 0.006608510017395019, "loss": 0.6887801170349122, "decode.loss_ce": 0.43693487644195556, "decode.acc_seg": 86.74309539794922, "aux.loss_ce": 0.25184525102376937, "aux.acc_seg": 76.08858489990234, "time": 1.1146154403686523, "iter": 2550, "memory": 8703, "step": 2550} +{"lr": 0.009855149025908446, "data_time": 0.007481431961059571, "loss": 0.7969649016857148, "decode.loss_ce": 0.47845719903707506, "decode.acc_seg": 85.8102798461914, "aux.loss_ce": 0.3185077115893364, "aux.acc_seg": 83.31005859375, "time": 1.1144386768341064, "iter": 2600, "memory": 8703, "step": 2600} +{"lr": 0.009852360025404194, "data_time": 0.008591723442077637, "loss": 0.7585386544466018, "decode.loss_ce": 0.4770944073796272, "decode.acc_seg": 92.8750991821289, "aux.loss_ce": 0.2814442478120327, "aux.acc_seg": 88.59710693359375, "time": 1.1144936561584473, "iter": 2650, "memory": 8703, "step": 2650} +{"lr": 0.009849570936274438, "data_time": 0.008050227165222168, "loss": 0.6364193916320801, "decode.loss_ce": 0.4132893607020378, "decode.acc_seg": 90.81770324707031, "aux.loss_ce": 0.22313002571463586, "aux.acc_seg": 91.31202697753906, "time": 1.1151942014694214, "iter": 2700, "memory": 8703, "step": 2700} +{"lr": 0.009846781758488177, "data_time": 0.006524848937988281, "loss": 0.6826987624168396, "decode.loss_ce": 0.41078168004751203, "decode.acc_seg": 74.10907745361328, "aux.loss_ce": 0.2719170778989792, "aux.acc_seg": 64.41141510009766, "time": 1.1158205270767212, "iter": 2750, "memory": 8703, "step": 2750} +{"lr": 0.00984399249201441, "data_time": 0.008290863037109375, "loss": 0.6319358363747597, "decode.loss_ce": 0.38883200436830523, "decode.acc_seg": 91.13546752929688, "aux.loss_ce": 0.24310383051633835, "aux.acc_seg": 87.98033142089844, "time": 1.1181880474090575, "iter": 2800, "memory": 8703, "step": 2800} +{"lr": 0.009841203136822092, "data_time": 0.006411075592041016, "loss": 0.5246843278408051, "decode.loss_ce": 0.3301485538482666, "decode.acc_seg": 91.96522521972656, "aux.loss_ce": 0.19453577920794488, "aux.acc_seg": 90.0726318359375, "time": 1.11142156124115, "iter": 2850, "memory": 8703, "step": 2850} +{"lr": 0.009838413692880197, "data_time": 0.009089493751525879, "loss": 0.5828624531626702, "decode.loss_ce": 0.3745246611535549, "decode.acc_seg": 95.05411529541016, "aux.loss_ce": 0.2083377830684185, "aux.acc_seg": 91.8050765991211, "time": 1.119707703590393, "iter": 2900, "memory": 8703, "step": 2900} +{"lr": 0.00983562416015764, "data_time": 0.007690739631652832, "loss": 0.6122641205787659, "decode.loss_ce": 0.38801613450050354, "decode.acc_seg": 91.54077911376953, "aux.loss_ce": 0.2242479830980301, "aux.acc_seg": 88.23413848876953, "time": 1.1192596197128295, "iter": 2950, "memory": 8703, "step": 2950} +{"lr": 0.009832834538623323, "data_time": 0.00659787654876709, "loss": 0.6654832780361175, "decode.loss_ce": 0.4013011515140533, "decode.acc_seg": 95.02095031738281, "aux.loss_ce": 0.26418212428689003, "aux.acc_seg": 93.10041046142578, "time": 1.1138416051864624, "iter": 3000, "memory": 8702, "step": 3000} +{"lr": 0.009830044828246134, "data_time": 0.008360862731933594, "loss": 0.7711624413728714, "decode.loss_ce": 0.5031546890735626, "decode.acc_seg": 93.51602935791016, "aux.loss_ce": 0.26800776124000547, "aux.acc_seg": 88.09044647216797, "time": 1.1167510986328124, "iter": 3050, "memory": 8703, "step": 3050} +{"lr": 0.009827255028994956, "data_time": 0.006577754020690918, "loss": 0.9189931988716126, "decode.loss_ce": 0.5857357561588288, "decode.acc_seg": 84.43346405029297, "aux.loss_ce": 0.3332574352622032, "aux.acc_seg": 75.45972442626953, "time": 1.1143873453140258, "iter": 3100, "memory": 8702, "step": 3100} +{"lr": 0.009824465140838616, "data_time": 0.00854480266571045, "loss": 0.4557092607021332, "decode.loss_ce": 0.2824335262179375, "decode.acc_seg": 92.70706176757812, "aux.loss_ce": 0.17327573895454407, "aux.acc_seg": 91.14437103271484, "time": 1.1175188064575194, "iter": 3150, "memory": 8702, "step": 3150} +{"lr": 0.009821675163745954, "data_time": 0.009023404121398926, "loss": 0.5844878137111664, "decode.loss_ce": 0.35852167308330535, "decode.acc_seg": 86.73152923583984, "aux.loss_ce": 0.22596612423658372, "aux.acc_seg": 80.24164581298828, "time": 1.1203237056732178, "iter": 3200, "memory": 8703, "step": 3200} +{"lr": 0.009818885097685767, "data_time": 0.009415292739868164, "loss": 0.772989672422409, "decode.loss_ce": 0.4707692593336105, "decode.acc_seg": 95.08812713623047, "aux.loss_ce": 0.3022204257547855, "aux.acc_seg": 66.14691162109375, "time": 1.118424940109253, "iter": 3250, "memory": 8702, "step": 3250} +{"lr": 0.009816094942626823, "data_time": 0.008964323997497558, "loss": 0.4434017390012741, "decode.loss_ce": 0.27569735497236253, "decode.acc_seg": 94.5887680053711, "aux.loss_ce": 0.16770438626408576, "aux.acc_seg": 86.2155990600586, "time": 1.1208679676055908, "iter": 3300, "memory": 8702, "step": 3300} +{"lr": 0.009813304698537905, "data_time": 0.007361459732055664, "loss": 0.844034394621849, "decode.loss_ce": 0.5496563136577606, "decode.acc_seg": 75.11431121826172, "aux.loss_ce": 0.2943780854344368, "aux.acc_seg": 71.16851806640625, "time": 1.1164101600646972, "iter": 3350, "memory": 8702, "step": 3350} +{"lr": 0.009810514365387749, "data_time": 0.007806062698364258, "loss": 0.6585678160190582, "decode.loss_ce": 0.4026242896914482, "decode.acc_seg": 74.61006927490234, "aux.loss_ce": 0.2559435248374939, "aux.acc_seg": 64.70368194580078, "time": 1.1175676822662353, "iter": 3400, "memory": 8703, "step": 3400} +{"lr": 0.009807723943145072, "data_time": 0.007359218597412109, "loss": 0.824736675620079, "decode.loss_ce": 0.527945776283741, "decode.acc_seg": 83.40428161621094, "aux.loss_ce": 0.2967908948659897, "aux.acc_seg": 83.90121459960938, "time": 1.1188748836517335, "iter": 3450, "memory": 8703, "step": 3450} +{"lr": 0.009804933431778568, "data_time": 0.009712576866149902, "loss": 0.5300509005784988, "decode.loss_ce": 0.31834071278572085, "decode.acc_seg": 91.41703033447266, "aux.loss_ce": 0.21171019822359086, "aux.acc_seg": 87.67633056640625, "time": 1.1179024219512939, "iter": 3500, "memory": 8703, "step": 3500} +{"lr": 0.009802142831256919, "data_time": 0.005777835845947266, "loss": 0.6840366810560227, "decode.loss_ce": 0.4272418931126595, "decode.acc_seg": 88.93915557861328, "aux.loss_ce": 0.2567947804927826, "aux.acc_seg": 82.08179473876953, "time": 1.1136529207229615, "iter": 3550, "memory": 8702, "step": 3550} +{"lr": 0.009799352141548786, "data_time": 0.008704137802124024, "loss": 0.7250639200210571, "decode.loss_ce": 0.441536046564579, "decode.acc_seg": 92.0928955078125, "aux.loss_ce": 0.2835278794169426, "aux.acc_seg": 79.49905395507812, "time": 1.1162297010421753, "iter": 3600, "memory": 8703, "step": 3600} +{"lr": 0.0097965613626228, "data_time": 0.007305788993835449, "loss": 0.9956748157739639, "decode.loss_ce": 0.6298190012574196, "decode.acc_seg": 85.42130279541016, "aux.loss_ce": 0.3658558174967766, "aux.acc_seg": 82.78560638427734, "time": 1.1147404432296752, "iter": 3650, "memory": 8702, "step": 3650} +{"lr": 0.009793770494447582, "data_time": 0.005245375633239746, "loss": 0.7210933715105057, "decode.loss_ce": 0.4643118068575859, "decode.acc_seg": 91.86094665527344, "aux.loss_ce": 0.25678157433867455, "aux.acc_seg": 88.0212631225586, "time": 1.1069210529327393, "iter": 3700, "memory": 8703, "step": 3700} +{"lr": 0.009790979536991718, "data_time": 0.009572744369506836, "loss": 0.7293543696403504, "decode.loss_ce": 0.4489235237240791, "decode.acc_seg": 85.50675201416016, "aux.loss_ce": 0.28043084144592284, "aux.acc_seg": 82.5750961303711, "time": 1.120165967941284, "iter": 3750, "memory": 8702, "step": 3750} +{"lr": 0.009788188490223778, "data_time": 0.006817150115966797, "loss": 0.5955570310354232, "decode.loss_ce": 0.3729046739637852, "decode.acc_seg": 96.31250762939453, "aux.loss_ce": 0.22265234664082528, "aux.acc_seg": 94.5284652709961, "time": 1.1116113901138305, "iter": 3800, "memory": 8702, "step": 3800} +{"lr": 0.009785397354112331, "data_time": 0.00626370906829834, "loss": 0.5411696135997772, "decode.loss_ce": 0.3408071145415306, "decode.acc_seg": 89.76764678955078, "aux.loss_ce": 0.20036250203847886, "aux.acc_seg": 81.29259490966797, "time": 1.1092063665390015, "iter": 3850, "memory": 8703, "step": 3850} +{"lr": 0.009782606128625899, "data_time": 0.007774901390075683, "loss": 0.591671934723854, "decode.loss_ce": 0.3665923595428467, "decode.acc_seg": 88.84365844726562, "aux.loss_ce": 0.22507958263158798, "aux.acc_seg": 86.43054962158203, "time": 1.1152272939682006, "iter": 3900, "memory": 8704, "step": 3900} +{"lr": 0.009779814813732995, "data_time": 0.006913971900939941, "loss": 0.6318886816501618, "decode.loss_ce": 0.3754230491816998, "decode.acc_seg": 89.33106231689453, "aux.loss_ce": 0.25646563321352006, "aux.acc_seg": 82.7583236694336, "time": 1.11553213596344, "iter": 3950, "memory": 8703, "step": 3950} +{"lr": 0.009777023409402098, "data_time": 0.0086273193359375, "loss": 0.7147280514240265, "decode.loss_ce": 0.45138200670480727, "decode.acc_seg": 93.51227569580078, "aux.loss_ce": 0.2633460447192192, "aux.acc_seg": 88.56754302978516, "time": 1.1142657995224, "iter": 4000, "memory": 8702, "step": 4000} +{"lr": 0.009774231915601674, "data_time": 0.008709931373596191, "loss": 0.5330475091934204, "decode.loss_ce": 0.32501811981201173, "decode.acc_seg": 79.38117980957031, "aux.loss_ce": 0.20802938416600228, "aux.acc_seg": 71.59156799316406, "time": 1.1214357614517212, "iter": 4050, "memory": 8702, "step": 4050} +{"lr": 0.009771440332300171, "data_time": 0.008463740348815918, "loss": 0.3808051824569702, "decode.loss_ce": 0.24114157110452653, "decode.acc_seg": 92.78850555419922, "aux.loss_ce": 0.1396636076271534, "aux.acc_seg": 87.24110412597656, "time": 1.1164555549621582, "iter": 4100, "memory": 8702, "step": 4100} +{"lr": 0.009768648659466016, "data_time": 0.005973100662231445, "loss": 0.5051627099514008, "decode.loss_ce": 0.3221702054142952, "decode.acc_seg": 92.7741470336914, "aux.loss_ce": 0.18299250677227974, "aux.acc_seg": 92.60728454589844, "time": 1.1095227956771851, "iter": 4150, "memory": 8703, "step": 4150} +{"lr": 0.00976585689706762, "data_time": 0.007730817794799805, "loss": 0.5423969715833664, "decode.loss_ce": 0.33923921138048174, "decode.acc_seg": 93.5125961303711, "aux.loss_ce": 0.2031577467918396, "aux.acc_seg": 93.0328369140625, "time": 1.1177527904510498, "iter": 4200, "memory": 8702, "step": 4200} +{"lr": 0.009763065045073346, "data_time": 0.007822823524475098, "loss": 0.5591088742017746, "decode.loss_ce": 0.3570221170783043, "decode.acc_seg": 89.79175567626953, "aux.loss_ce": 0.20208675339818, "aux.acc_seg": 77.03573608398438, "time": 1.1184822559356689, "iter": 4250, "memory": 8702, "step": 4250} +{"lr": 0.009760273103451565, "data_time": 0.005627822875976562, "loss": 0.6050178319215774, "decode.loss_ce": 0.36249118149280546, "decode.acc_seg": 94.5138931274414, "aux.loss_ce": 0.2425266459584236, "aux.acc_seg": 93.34182739257812, "time": 1.1126067161560058, "iter": 4300, "memory": 8702, "step": 4300} +{"lr": 0.009757481072170615, "data_time": 0.009890174865722657, "loss": 0.4211685448884964, "decode.loss_ce": 0.26022892594337466, "decode.acc_seg": 88.82891082763672, "aux.loss_ce": 0.1609396182000637, "aux.acc_seg": 86.01162719726562, "time": 1.1186393976211548, "iter": 4350, "memory": 8702, "step": 4350} +{"lr": 0.009754688951198817, "data_time": 0.008601021766662598, "loss": 0.5924766033887863, "decode.loss_ce": 0.362008049339056, "decode.acc_seg": 88.69329833984375, "aux.loss_ce": 0.23046855628490448, "aux.acc_seg": 70.81108093261719, "time": 1.1181248903274537, "iter": 4400, "memory": 8703, "step": 4400} +{"lr": 0.009751896740504463, "data_time": 0.009088635444641113, "loss": 0.7903630286455154, "decode.loss_ce": 0.4926216393709183, "decode.acc_seg": 92.01615142822266, "aux.loss_ce": 0.29774137437343595, "aux.acc_seg": 90.54438018798828, "time": 1.1144559383392334, "iter": 4450, "memory": 8703, "step": 4450} +{"lr": 0.009749104440055827, "data_time": 0.0051665067672729496, "loss": 0.5023391216993331, "decode.loss_ce": 0.27864663004875184, "decode.acc_seg": 84.04381561279297, "aux.loss_ce": 0.22369248941540718, "aux.acc_seg": 69.45126342773438, "time": 1.10536789894104, "iter": 4500, "memory": 8702, "step": 4500} +{"lr": 0.009746312049821175, "data_time": 0.007260346412658691, "loss": 0.4441978484392166, "decode.loss_ce": 0.2735714867711067, "decode.acc_seg": 93.09276580810547, "aux.loss_ce": 0.17062636092305183, "aux.acc_seg": 91.75790405273438, "time": 1.114622950553894, "iter": 4550, "memory": 8703, "step": 4550} +{"lr": 0.00974351956976873, "data_time": 0.00804901123046875, "loss": 0.5346442848443985, "decode.loss_ce": 0.318836173415184, "decode.acc_seg": 94.37535095214844, "aux.loss_ce": 0.21580810770392417, "aux.acc_seg": 90.69512176513672, "time": 1.1138161420822144, "iter": 4600, "memory": 8702, "step": 4600} +{"lr": 0.0097407269998667, "data_time": 0.006415843963623047, "loss": 0.6903807565569877, "decode.loss_ce": 0.42018884271383283, "decode.acc_seg": 92.32304382324219, "aux.loss_ce": 0.27019192203879355, "aux.acc_seg": 90.7052993774414, "time": 1.11057767868042, "iter": 4650, "memory": 8702, "step": 4650} +{"lr": 0.009737934340083272, "data_time": 0.006998467445373535, "loss": 0.5210630536079407, "decode.loss_ce": 0.3162789598107338, "decode.acc_seg": 90.74337768554688, "aux.loss_ce": 0.20478409230709077, "aux.acc_seg": 90.25955200195312, "time": 1.1158343076705932, "iter": 4700, "memory": 8703, "step": 4700} +{"lr": 0.00973514159038661, "data_time": 0.007221007347106933, "loss": 0.6760282695293427, "decode.loss_ce": 0.3954185903072357, "decode.acc_seg": 85.19001007080078, "aux.loss_ce": 0.2806096814572811, "aux.acc_seg": 83.41007232666016, "time": 1.111423635482788, "iter": 4750, "memory": 8702, "step": 4750} +{"lr": 0.009732348750744886, "data_time": 0.009067130088806153, "loss": 0.5245109528303147, "decode.loss_ce": 0.3267013967037201, "decode.acc_seg": 91.61522674560547, "aux.loss_ce": 0.1978095553815365, "aux.acc_seg": 81.19671630859375, "time": 1.1147331476211548, "iter": 4800, "memory": 8702, "step": 4800} +{"lr": 0.009729555821126196, "data_time": 0.007955718040466308, "loss": 0.896783570945263, "decode.loss_ce": 0.5768459141254425, "decode.acc_seg": 84.34999084472656, "aux.loss_ce": 0.3199376553297043, "aux.acc_seg": 84.01686096191406, "time": 1.1151206254959107, "iter": 4850, "memory": 8703, "step": 4850} +{"lr": 0.009726762801498654, "data_time": 0.008938264846801759, "loss": 0.7181874841451645, "decode.loss_ce": 0.45369252264499665, "decode.acc_seg": 87.53179931640625, "aux.loss_ce": 0.2644949585199356, "aux.acc_seg": 82.37902069091797, "time": 1.1179613828659059, "iter": 4900, "memory": 8702, "step": 4900} +{"lr": 0.009723969691830344, "data_time": 0.005166435241699218, "loss": 0.5704752698540687, "decode.loss_ce": 0.35157405138015746, "decode.acc_seg": 93.34799194335938, "aux.loss_ce": 0.21890122070908546, "aux.acc_seg": 87.54151153564453, "time": 1.1063483238220215, "iter": 4950, "memory": 8702, "step": 4950} +{"lr": 0.009721176492089327, "data_time": 0.008017420768737793, "loss": 0.5078634142875671, "decode.loss_ce": 0.3092820651829243, "decode.acc_seg": 82.70912170410156, "aux.loss_ce": 0.19858134537935257, "aux.acc_seg": 68.29210662841797, "time": 1.1136881113052368, "iter": 5000, "memory": 8702, "step": 5000} +{"lr": 0.009718383202243648, "data_time": 0.008579087257385255, "loss": 0.6647669643163681, "decode.loss_ce": 0.4070450082421303, "decode.acc_seg": 87.58802032470703, "aux.loss_ce": 0.2577219568192959, "aux.acc_seg": 78.8670654296875, "time": 1.1153318881988525, "iter": 5050, "memory": 8702, "step": 5050} +{"lr": 0.009715589822261297, "data_time": 0.0074035882949829105, "loss": 0.5584781765937805, "decode.loss_ce": 0.34917654246091845, "decode.acc_seg": 83.18414306640625, "aux.loss_ce": 0.2093016378581524, "aux.acc_seg": 76.73160552978516, "time": 1.1119148492813111, "iter": 5100, "memory": 8704, "step": 5100} +{"lr": 0.009712796352110292, "data_time": 0.007722282409667968, "loss": 0.6493570119142532, "decode.loss_ce": 0.40201454907655715, "decode.acc_seg": 85.63289642333984, "aux.loss_ce": 0.24734246954321862, "aux.acc_seg": 74.36180114746094, "time": 1.1151059865951538, "iter": 5150, "memory": 8702, "step": 5150} +{"lr": 0.009710002791758588, "data_time": 0.007902836799621582, "loss": 0.5882468685507775, "decode.loss_ce": 0.3798796206712723, "decode.acc_seg": 92.81211853027344, "aux.loss_ce": 0.20836724191904069, "aux.acc_seg": 90.66316223144531, "time": 1.112476634979248, "iter": 5200, "memory": 8703, "step": 5200} +{"lr": 0.009707209141174162, "data_time": 0.007069134712219238, "loss": 0.4409880131483078, "decode.loss_ce": 0.2602024286985397, "decode.acc_seg": 84.61653137207031, "aux.loss_ce": 0.18078558146953583, "aux.acc_seg": 83.9133529663086, "time": 1.1126359462738038, "iter": 5250, "memory": 8703, "step": 5250} +{"lr": 0.009704415400324925, "data_time": 0.0059082269668579105, "loss": 0.5863273978233338, "decode.loss_ce": 0.35448174774646757, "decode.acc_seg": 86.98136901855469, "aux.loss_ce": 0.23184565603733062, "aux.acc_seg": 81.52592468261719, "time": 1.112778091430664, "iter": 5300, "memory": 8703, "step": 5300} +{"lr": 0.009701621569178793, "data_time": 0.0059182167053222655, "loss": 0.5484964221715927, "decode.loss_ce": 0.3425845943391323, "decode.acc_seg": 86.23535919189453, "aux.loss_ce": 0.20591182708740235, "aux.acc_seg": 83.5943832397461, "time": 1.1098769664764405, "iter": 5350, "memory": 8703, "step": 5350} +{"lr": 0.009698827647703637, "data_time": 0.006991815567016601, "loss": 0.5416613325476647, "decode.loss_ce": 0.35306364819407465, "decode.acc_seg": 80.63175964355469, "aux.loss_ce": 0.18859768584370612, "aux.acc_seg": 76.42313385009766, "time": 1.112295937538147, "iter": 5400, "memory": 8703, "step": 5400} +{"lr": 0.009696033635867343, "data_time": 0.006861495971679688, "loss": 0.6195392876863479, "decode.loss_ce": 0.39087332487106324, "decode.acc_seg": 65.72354125976562, "aux.loss_ce": 0.2286659523844719, "aux.acc_seg": 64.54435729980469, "time": 1.1117233276367187, "iter": 5450, "memory": 8702, "step": 5450} +{"lr": 0.009693239533637741, "data_time": 0.008005404472351074, "loss": 0.5497587025165558, "decode.loss_ce": 0.34138618111610414, "decode.acc_seg": 92.82270812988281, "aux.loss_ce": 0.2083725206553936, "aux.acc_seg": 83.9101791381836, "time": 1.118292498588562, "iter": 5500, "memory": 8703, "step": 5500} +{"lr": 0.009690445340982644, "data_time": 0.00875849723815918, "loss": 0.7204507410526275, "decode.loss_ce": 0.4667391449213028, "decode.acc_seg": 90.18878936767578, "aux.loss_ce": 0.25371158868074417, "aux.acc_seg": 88.21855926513672, "time": 1.113147759437561, "iter": 5550, "memory": 8702, "step": 5550} +{"lr": 0.009687651057869878, "data_time": 0.007468032836914063, "loss": 0.46231100559234617, "decode.loss_ce": 0.28666624426841736, "decode.acc_seg": 91.8692855834961, "aux.loss_ce": 0.17564476951956748, "aux.acc_seg": 88.86438751220703, "time": 1.1163851499557496, "iter": 5600, "memory": 8703, "step": 5600} +{"lr": 0.009684856684267192, "data_time": 0.0072476863861083984, "loss": 0.46481469422578814, "decode.loss_ce": 0.2936528965830803, "decode.acc_seg": 88.68363189697266, "aux.loss_ce": 0.17116180136799813, "aux.acc_seg": 82.34894561767578, "time": 1.1140248775482178, "iter": 5650, "memory": 8703, "step": 5650} +{"lr": 0.009682062220142352, "data_time": 0.0075512886047363285, "loss": 0.3882167637348175, "decode.loss_ce": 0.2324376404285431, "decode.acc_seg": 91.3461685180664, "aux.loss_ce": 0.15577911883592604, "aux.acc_seg": 90.47895812988281, "time": 1.114819598197937, "iter": 5700, "memory": 8703, "step": 5700} +{"lr": 0.009679267665463091, "data_time": 0.008193159103393554, "loss": 0.5434808850288391, "decode.loss_ce": 0.3327047601342201, "decode.acc_seg": 86.3236083984375, "aux.loss_ce": 0.21077612265944481, "aux.acc_seg": 84.66205596923828, "time": 1.1179760932922362, "iter": 5750, "memory": 8703, "step": 5750} +{"lr": 0.009676473020197118, "data_time": 0.009403467178344727, "loss": 0.5759929209947586, "decode.loss_ce": 0.3621275693178177, "decode.acc_seg": 92.72428894042969, "aux.loss_ce": 0.21386535912752153, "aux.acc_seg": 85.82642364501953, "time": 1.1161940097808838, "iter": 5800, "memory": 8703, "step": 5800} +{"lr": 0.009673678284312134, "data_time": 0.006920719146728515, "loss": 0.7152012616395951, "decode.loss_ce": 0.4201433017849922, "decode.acc_seg": 96.11389923095703, "aux.loss_ce": 0.29505796208977697, "aux.acc_seg": 94.64371490478516, "time": 1.1125384092330932, "iter": 5850, "memory": 8702, "step": 5850} +{"lr": 0.009670883457775786, "data_time": 0.008162379264831543, "loss": 0.5468237608671188, "decode.loss_ce": 0.3428305432200432, "decode.acc_seg": 93.50083923339844, "aux.loss_ce": 0.2039932206273079, "aux.acc_seg": 88.33928680419922, "time": 1.1134700298309326, "iter": 5900, "memory": 8703, "step": 5900} +{"lr": 0.009668088540555722, "data_time": 0.009213542938232422, "loss": 0.5680165350437164, "decode.loss_ce": 0.34558378607034684, "decode.acc_seg": 91.78759002685547, "aux.loss_ce": 0.2224327579140663, "aux.acc_seg": 86.2039566040039, "time": 1.122226309776306, "iter": 5950, "memory": 8703, "step": 5950} +{"lr": 0.009665293532619579, "data_time": 0.009638810157775879, "loss": 0.5620070368051528, "decode.loss_ce": 0.33887267112731934, "decode.acc_seg": 88.24723052978516, "aux.loss_ce": 0.22313436791300773, "aux.acc_seg": 67.60247039794922, "time": 1.1204001426696777, "iter": 6000, "memory": 8702, "step": 6000} +{"lr": 0.009662498433934942, "data_time": 0.007290339469909668, "loss": 0.6278651267290115, "decode.loss_ce": 0.3999667912721634, "decode.acc_seg": 74.9869613647461, "aux.loss_ce": 0.22789832577109337, "aux.acc_seg": 67.86810302734375, "time": 1.1117462396621705, "iter": 6050, "memory": 8702, "step": 6050} +{"lr": 0.009659703244469402, "data_time": 0.008766436576843261, "loss": 0.6737369805574417, "decode.loss_ce": 0.437335966527462, "decode.acc_seg": 92.3991470336914, "aux.loss_ce": 0.23640100732445718, "aux.acc_seg": 87.37570190429688, "time": 1.1146759510040283, "iter": 6100, "memory": 8703, "step": 6100} +{"lr": 0.009656907964190515, "data_time": 0.007921504974365234, "loss": 0.5312811732292175, "decode.loss_ce": 0.3228941738605499, "decode.acc_seg": 94.47237396240234, "aux.loss_ce": 0.20838700383901596, "aux.acc_seg": 87.59727478027344, "time": 1.115035605430603, "iter": 6150, "memory": 8703, "step": 6150} +{"lr": 0.009654112593065816, "data_time": 0.007378792762756348, "loss": 0.49559883773326874, "decode.loss_ce": 0.31433753818273547, "decode.acc_seg": 83.90985870361328, "aux.loss_ce": 0.1812613021582365, "aux.acc_seg": 80.63507080078125, "time": 1.115209150314331, "iter": 6200, "memory": 8703, "step": 6200} +{"lr": 0.009651317131062811, "data_time": 0.006287384033203125, "loss": 0.42845271825790404, "decode.loss_ce": 0.2676699608564377, "decode.acc_seg": 90.33966064453125, "aux.loss_ce": 0.16078275665640832, "aux.acc_seg": 91.28900909423828, "time": 1.11593177318573, "iter": 6250, "memory": 8703, "step": 6250} +{"lr": 0.009648521578148992, "data_time": 0.007912087440490722, "loss": 0.47102268785238266, "decode.loss_ce": 0.290383180975914, "decode.acc_seg": 87.85336303710938, "aux.loss_ce": 0.1806395012885332, "aux.acc_seg": 84.564208984375, "time": 1.117657470703125, "iter": 6300, "memory": 8703, "step": 6300} +{"lr": 0.00964572593429183, "data_time": 0.007589292526245117, "loss": 0.6362166732549668, "decode.loss_ce": 0.3939825281500816, "decode.acc_seg": 88.27190399169922, "aux.loss_ce": 0.24223414286971093, "aux.acc_seg": 85.64217376708984, "time": 1.114410138130188, "iter": 6350, "memory": 8702, "step": 6350} +{"lr": 0.009642930199458761, "data_time": 0.009401416778564453, "loss": 0.4659405678510666, "decode.loss_ce": 0.2797830946743488, "decode.acc_seg": 94.71702575683594, "aux.loss_ce": 0.18615747541189193, "aux.acc_seg": 91.55693054199219, "time": 1.1147599458694457, "iter": 6400, "memory": 8703, "step": 6400} +{"lr": 0.009640134373617219, "data_time": 0.0073173284530639645, "loss": 0.46620979011058805, "decode.loss_ce": 0.28962827324867246, "decode.acc_seg": 88.73160552978516, "aux.loss_ce": 0.17658151909708977, "aux.acc_seg": 82.28173065185547, "time": 1.11103994846344, "iter": 6450, "memory": 8702, "step": 6450} +{"lr": 0.009637338456734602, "data_time": 0.007988357543945312, "loss": 0.6642387270927429, "decode.loss_ce": 0.4113162010908127, "decode.acc_seg": 92.7970199584961, "aux.loss_ce": 0.25292251706123353, "aux.acc_seg": 91.78511047363281, "time": 1.1140495777130126, "iter": 6500, "memory": 8703, "step": 6500} +{"lr": 0.009634542448778293, "data_time": 0.008606243133544921, "loss": 0.5468447983264924, "decode.loss_ce": 0.33165742456912994, "decode.acc_seg": 86.93744659423828, "aux.loss_ce": 0.2151873677968979, "aux.acc_seg": 81.04590606689453, "time": 1.1144566774368285, "iter": 6550, "memory": 8702, "step": 6550} +{"lr": 0.009631746349715638, "data_time": 0.0053225278854370115, "loss": 0.6668227553367615, "decode.loss_ce": 0.42082094103097917, "decode.acc_seg": 83.0206527709961, "aux.loss_ce": 0.24600181579589844, "aux.acc_seg": 70.75067901611328, "time": 1.1072173357009887, "iter": 6600, "memory": 8702, "step": 6600} +{"lr": 0.009628950159513983, "data_time": 0.007095813751220703, "loss": 0.5724902361631393, "decode.loss_ce": 0.36916102916002275, "decode.acc_seg": 95.13123321533203, "aux.loss_ce": 0.2033292107284069, "aux.acc_seg": 95.4428939819336, "time": 1.1107419013977051, "iter": 6650, "memory": 8702, "step": 6650} +{"lr": 0.009626153878140635, "data_time": 0.00834484100341797, "loss": 0.5404765769839287, "decode.loss_ce": 0.35238215923309324, "decode.acc_seg": 93.18287658691406, "aux.loss_ce": 0.18809441179037095, "aux.acc_seg": 92.51091766357422, "time": 1.1129185914993287, "iter": 6700, "memory": 8703, "step": 6700} +{"lr": 0.009623357505562884, "data_time": 0.005712723731994629, "loss": 0.6009182900190353, "decode.loss_ce": 0.3670095711946487, "decode.acc_seg": 89.74125671386719, "aux.loss_ce": 0.23390872403979301, "aux.acc_seg": 86.84571075439453, "time": 1.1128121852874755, "iter": 6750, "memory": 8703, "step": 6750} +{"lr": 0.009620561041747992, "data_time": 0.007975172996520997, "loss": 0.5625426083803177, "decode.loss_ce": 0.356255030632019, "decode.acc_seg": 94.6249008178711, "aux.loss_ce": 0.20628757774829865, "aux.acc_seg": 88.28315734863281, "time": 1.1140270709991456, "iter": 6800, "memory": 8703, "step": 6800} +{"lr": 0.00961776448666321, "data_time": 0.00830080509185791, "loss": 0.5775380849838256, "decode.loss_ce": 0.3520605772733688, "decode.acc_seg": 92.9810791015625, "aux.loss_ce": 0.22547751367092134, "aux.acc_seg": 86.85646057128906, "time": 1.1153632402420044, "iter": 6850, "memory": 8703, "step": 6850} +{"lr": 0.009614967840275764, "data_time": 0.006679153442382813, "loss": 0.5990722417831421, "decode.loss_ce": 0.36365566998720167, "decode.acc_seg": 90.1209487915039, "aux.loss_ce": 0.23541656956076623, "aux.acc_seg": 87.8379135131836, "time": 1.1169057369232178, "iter": 6900, "memory": 8703, "step": 6900} +{"lr": 0.009612171102552839, "data_time": 0.00865778923034668, "loss": 0.5134092509746552, "decode.loss_ce": 0.32434101998806, "decode.acc_seg": 86.9184341430664, "aux.loss_ce": 0.18906822726130484, "aux.acc_seg": 84.9232406616211, "time": 1.1184186935424805, "iter": 6950, "memory": 8703, "step": 6950} +{"lr": 0.009609374273461618, "data_time": 0.006816792488098145, "loss": 0.7636522561311722, "decode.loss_ce": 0.4883278489112854, "decode.acc_seg": 92.8660659790039, "aux.loss_ce": 0.2753244176506996, "aux.acc_seg": 85.35944366455078, "time": 1.1139482498168944, "iter": 7000, "memory": 8703, "step": 7000} +{"lr": 0.009606577352969261, "data_time": 0.007131099700927734, "loss": 0.4959655165672302, "decode.loss_ce": 0.2848344951868057, "decode.acc_seg": 77.5000228881836, "aux.loss_ce": 0.21113101318478583, "aux.acc_seg": 62.709232330322266, "time": 1.1153937578201294, "iter": 7050, "memory": 8702, "step": 7050} +{"lr": 0.009603780341042898, "data_time": 0.007292318344116211, "loss": 0.5275825440883637, "decode.loss_ce": 0.3358787730336189, "decode.acc_seg": 81.39690399169922, "aux.loss_ce": 0.19170377552509307, "aux.acc_seg": 72.91089630126953, "time": 1.114372181892395, "iter": 7100, "memory": 8702, "step": 7100} +{"lr": 0.009600983237649645, "data_time": 0.007576513290405274, "loss": 1.0538880780339241, "decode.loss_ce": 0.7135917872190476, "decode.acc_seg": 84.89716339111328, "aux.loss_ce": 0.3402962677180767, "aux.acc_seg": 69.99867248535156, "time": 1.1172674894332886, "iter": 7150, "memory": 8702, "step": 7150} +{"lr": 0.00959818604275658, "data_time": 0.008023405075073242, "loss": 0.6138743981719017, "decode.loss_ce": 0.40472007393836973, "decode.acc_seg": 93.97862243652344, "aux.loss_ce": 0.20915432199835776, "aux.acc_seg": 93.72793579101562, "time": 1.11639404296875, "iter": 7200, "memory": 8702, "step": 7200} +{"lr": 0.009595388756330763, "data_time": 0.009070062637329101, "loss": 0.5814131379127503, "decode.loss_ce": 0.37138005197048185, "decode.acc_seg": 90.07466125488281, "aux.loss_ce": 0.21003307774662971, "aux.acc_seg": 88.3814926147461, "time": 1.1172892808914185, "iter": 7250, "memory": 8703, "step": 7250} +{"lr": 0.009592591378339241, "data_time": 0.008419322967529296, "loss": 0.6468689560890197, "decode.loss_ce": 0.42401058673858644, "decode.acc_seg": 92.27529907226562, "aux.loss_ce": 0.22285837233066558, "aux.acc_seg": 91.14881896972656, "time": 1.1119951486587525, "iter": 7300, "memory": 8702, "step": 7300} +{"lr": 0.009589793908749037, "data_time": 0.006696915626525879, "loss": 0.5955039694905281, "decode.loss_ce": 0.37461079508066175, "decode.acc_seg": 93.72106170654297, "aux.loss_ce": 0.22089318111538886, "aux.acc_seg": 91.40422821044922, "time": 1.115157461166382, "iter": 7350, "memory": 8702, "step": 7350} +{"lr": 0.009586996347527148, "data_time": 0.00824429988861084, "loss": 0.5306392535567284, "decode.loss_ce": 0.32960135862231255, "decode.acc_seg": 80.79458618164062, "aux.loss_ce": 0.20103789642453193, "aux.acc_seg": 76.60852813720703, "time": 1.1143605947494506, "iter": 7400, "memory": 8702, "step": 7400} +{"lr": 0.009584198694640542, "data_time": 0.007372498512268066, "loss": 0.5133263498544693, "decode.loss_ce": 0.30815432220697403, "decode.acc_seg": 95.92456817626953, "aux.loss_ce": 0.2051720254123211, "aux.acc_seg": 92.08049774169922, "time": 1.112411880493164, "iter": 7450, "memory": 8703, "step": 7450} +{"lr": 0.009581400950056163, "data_time": 0.008326959609985352, "loss": 0.40617319345474245, "decode.loss_ce": 0.24644515812397003, "decode.acc_seg": 93.19998168945312, "aux.loss_ce": 0.159728030115366, "aux.acc_seg": 91.55540466308594, "time": 1.120082426071167, "iter": 7500, "memory": 8704, "step": 7500} +{"lr": 0.009578603113740952, "data_time": 0.006654953956604004, "loss": 0.45732242166996, "decode.loss_ce": 0.29096155166625975, "decode.acc_seg": 95.18572235107422, "aux.loss_ce": 0.16636087521910667, "aux.acc_seg": 88.7603759765625, "time": 1.1147320747375489, "iter": 7550, "memory": 8703, "step": 7550} +{"lr": 0.009575805185661816, "data_time": 0.007205581665039063, "loss": 0.564527815580368, "decode.loss_ce": 0.35828927382826803, "decode.acc_seg": 91.52017974853516, "aux.loss_ce": 0.2062385454773903, "aux.acc_seg": 88.21392059326172, "time": 1.1137148857116699, "iter": 7600, "memory": 8702, "step": 7600} +{"lr": 0.009573007165785628, "data_time": 0.006615948677062988, "loss": 0.5398595303297042, "decode.loss_ce": 0.34530633464455607, "decode.acc_seg": 95.85914611816406, "aux.loss_ce": 0.19455319531261922, "aux.acc_seg": 95.2612533569336, "time": 1.1173171043395995, "iter": 7650, "memory": 8702, "step": 7650} +{"lr": 0.009570209054079255, "data_time": 0.0072323322296142575, "loss": 0.5151662081480026, "decode.loss_ce": 0.3258349567651749, "decode.acc_seg": 95.1635971069336, "aux.loss_ce": 0.18933125212788582, "aux.acc_seg": 90.50579833984375, "time": 1.1262222528457642, "iter": 7700, "memory": 8702, "step": 7700} +{"lr": 0.00956741085050953, "data_time": 0.007773303985595703, "loss": 0.5737471342086792, "decode.loss_ce": 0.3855167254805565, "decode.acc_seg": 89.88018035888672, "aux.loss_ce": 0.18823040947318076, "aux.acc_seg": 86.93930053710938, "time": 1.113919234275818, "iter": 7750, "memory": 8703, "step": 7750} +{"lr": 0.009564612555043255, "data_time": 0.007950830459594726, "loss": 0.4896685749292374, "decode.loss_ce": 0.31193442940711974, "decode.acc_seg": 89.89764404296875, "aux.loss_ce": 0.17773414105176927, "aux.acc_seg": 78.80142211914062, "time": 1.115458869934082, "iter": 7800, "memory": 8702, "step": 7800} +{"lr": 0.009561814167647236, "data_time": 0.006966805458068848, "loss": 0.4196470886468887, "decode.loss_ce": 0.2579805590212345, "decode.acc_seg": 85.88854217529297, "aux.loss_ce": 0.16166653707623482, "aux.acc_seg": 80.70907592773438, "time": 1.1127870798110961, "iter": 7850, "memory": 8702, "step": 7850} +{"lr": 0.009559015688288245, "data_time": 0.008941125869750977, "loss": 0.5593734294176101, "decode.loss_ce": 0.34732900857925414, "decode.acc_seg": 74.49734497070312, "aux.loss_ce": 0.21204441264271737, "aux.acc_seg": 68.6197280883789, "time": 1.1151992082595825, "iter": 7900, "memory": 8703, "step": 7900} +{"lr": 0.009556217116933023, "data_time": 0.009072327613830566, "loss": 0.5056440591812134, "decode.loss_ce": 0.3253545328974724, "decode.acc_seg": 92.35040283203125, "aux.loss_ce": 0.1802895188331604, "aux.acc_seg": 90.04264068603516, "time": 1.1195557355880736, "iter": 7950, "memory": 8703, "step": 7950} +{"lr": 0.009553418453548288, "data_time": 0.008094072341918945, "loss": 0.5324634075164795, "decode.loss_ce": 0.34082729518413546, "decode.acc_seg": 82.30564880371094, "aux.loss_ce": 0.1916361078619957, "aux.acc_seg": 76.34620666503906, "time": 1.1170777082443237, "iter": 8000, "memory": 8703, "step": 8000} +{"lr": 0.009550619698100747, "data_time": 0.008545327186584472, "loss": 0.6600792199373245, "decode.loss_ce": 0.4272986978292465, "decode.acc_seg": 90.51258850097656, "aux.loss_ce": 0.23278051540255545, "aux.acc_seg": 90.19355773925781, "time": 1.1210690498352052, "iter": 8050, "memory": 8702, "step": 8050} +{"lr": 0.009547820850557064, "data_time": 0.006773900985717773, "loss": 0.42353148460388185, "decode.loss_ce": 0.25615337044000625, "decode.acc_seg": 94.78409576416016, "aux.loss_ce": 0.1673781156539917, "aux.acc_seg": 89.4622802734375, "time": 1.1139983415603638, "iter": 8100, "memory": 8702, "step": 8100} +{"lr": 0.009545021910883897, "data_time": 0.008935093879699707, "loss": 0.5205827593803406, "decode.loss_ce": 0.31321037858724593, "decode.acc_seg": 94.7329330444336, "aux.loss_ce": 0.20737237483263016, "aux.acc_seg": 93.49159240722656, "time": 1.1207622289657593, "iter": 8150, "memory": 8703, "step": 8150} +{"lr": 0.009542222879047877, "data_time": 0.00860140323638916, "loss": 0.49894038736820223, "decode.loss_ce": 0.3010251820087433, "decode.acc_seg": 91.60232543945312, "aux.loss_ce": 0.1979152023792267, "aux.acc_seg": 91.12255859375, "time": 1.115953254699707, "iter": 8200, "memory": 8703, "step": 8200} +{"lr": 0.00953942375501562, "data_time": 0.007842421531677246, "loss": 0.38853925168514253, "decode.loss_ce": 0.24804357439279556, "decode.acc_seg": 82.26343536376953, "aux.loss_ce": 0.14049567580223082, "aux.acc_seg": 80.48139953613281, "time": 1.1134071350097656, "iter": 8250, "memory": 8702, "step": 8250} +{"lr": 0.009536624538753702, "data_time": 0.006438708305358887, "loss": 0.5346789851784706, "decode.loss_ce": 0.3328573614358902, "decode.acc_seg": 94.52159118652344, "aux.loss_ce": 0.20182162523269653, "aux.acc_seg": 94.24559783935547, "time": 1.1139065742492675, "iter": 8300, "memory": 8703, "step": 8300} +{"lr": 0.009533825230228674, "data_time": 0.00854475498199463, "loss": 0.49068237841129303, "decode.loss_ce": 0.29959163069725037, "decode.acc_seg": 84.59380340576172, "aux.loss_ce": 0.19109075367450715, "aux.acc_seg": 76.63374328613281, "time": 1.1172166824340821, "iter": 8350, "memory": 8702, "step": 8350} +{"lr": 0.009531025829407095, "data_time": 0.006879615783691406, "loss": 0.4760682299733162, "decode.loss_ce": 0.28953423276543616, "decode.acc_seg": 93.2504653930664, "aux.loss_ce": 0.18653400167822837, "aux.acc_seg": 92.20879364013672, "time": 1.1154962301254272, "iter": 8400, "memory": 8703, "step": 8400} +{"lr": 0.009528226336255463, "data_time": 0.007491016387939453, "loss": 0.6177978545427323, "decode.loss_ce": 0.39613521844148636, "decode.acc_seg": 94.23075103759766, "aux.loss_ce": 0.22166264578700065, "aux.acc_seg": 89.45618438720703, "time": 1.1175312042236327, "iter": 8450, "memory": 8702, "step": 8450} +{"lr": 0.009525426750740267, "data_time": 0.007264852523803711, "loss": 0.6981833666563034, "decode.loss_ce": 0.4365993797779083, "decode.acc_seg": 88.90450286865234, "aux.loss_ce": 0.2615839794278145, "aux.acc_seg": 87.8759994506836, "time": 1.1176129817962646, "iter": 8500, "memory": 8702, "step": 8500} +{"lr": 0.009522627072827984, "data_time": 0.007514452934265137, "loss": 0.6491053193807602, "decode.loss_ce": 0.39780041128396987, "decode.acc_seg": 88.73831176757812, "aux.loss_ce": 0.2513049043715, "aux.acc_seg": 85.27965545654297, "time": 1.1177842140197753, "iter": 8550, "memory": 8703, "step": 8550} +{"lr": 0.009519827302485072, "data_time": 0.007502317428588867, "loss": 0.4454535245895386, "decode.loss_ce": 0.27163914740085604, "decode.acc_seg": 93.8638687133789, "aux.loss_ce": 0.1738143727183342, "aux.acc_seg": 91.49881744384766, "time": 1.1156570434570312, "iter": 8600, "memory": 8703, "step": 8600} +{"lr": 0.00951702743967793, "data_time": 0.008251094818115234, "loss": 0.5977265775203705, "decode.loss_ce": 0.36864161640405657, "decode.acc_seg": 84.84922790527344, "aux.loss_ce": 0.2290849581360817, "aux.acc_seg": 69.62718963623047, "time": 1.1199714899063111, "iter": 8650, "memory": 8703, "step": 8650} +{"lr": 0.00951422748437297, "data_time": 0.007985472679138184, "loss": 0.6171100676059723, "decode.loss_ce": 0.39091824293136596, "decode.acc_seg": 77.52293395996094, "aux.loss_ce": 0.2261918306350708, "aux.acc_seg": 76.78749084472656, "time": 1.116234588623047, "iter": 8700, "memory": 8702, "step": 8700} +{"lr": 0.009511427436536565, "data_time": 0.008229327201843262, "loss": 0.6370061650872231, "decode.loss_ce": 0.3970233120024204, "decode.acc_seg": 89.64315795898438, "aux.loss_ce": 0.23998284973204137, "aux.acc_seg": 85.98902130126953, "time": 1.1182148694992065, "iter": 8750, "memory": 8703, "step": 8750} +{"lr": 0.009508627296135061, "data_time": 0.008127284049987794, "loss": 0.33808575570583344, "decode.loss_ce": 0.21023982763290405, "decode.acc_seg": 92.58549499511719, "aux.loss_ce": 0.12784593179821968, "aux.acc_seg": 90.80441284179688, "time": 1.1180670261383057, "iter": 8800, "memory": 8703, "step": 8800} +{"lr": 0.009505827063134782, "data_time": 0.0069866180419921875, "loss": 0.4850769773125648, "decode.loss_ce": 0.3035505905747414, "decode.acc_seg": 94.06941223144531, "aux.loss_ce": 0.18152638897299767, "aux.acc_seg": 90.23201751708984, "time": 1.1115177392959594, "iter": 8850, "memory": 8702, "step": 8850} +{"lr": 0.00950302673750204, "data_time": 0.008627557754516601, "loss": 0.429033936560154, "decode.loss_ce": 0.26708279773592947, "decode.acc_seg": 94.77957153320312, "aux.loss_ce": 0.16195113845169545, "aux.acc_seg": 93.56819915771484, "time": 1.1152740955352782, "iter": 8900, "memory": 8703, "step": 8900} +{"lr": 0.009500226319203125, "data_time": 0.00824568271636963, "loss": 0.47367900907993316, "decode.loss_ce": 0.28519182503223417, "decode.acc_seg": 89.65040588378906, "aux.loss_ce": 0.18848719373345374, "aux.acc_seg": 87.2748031616211, "time": 1.1161653518676757, "iter": 8950, "memory": 8702, "step": 8950} +{"lr": 0.009497425808204283, "data_time": 0.008491420745849609, "loss": 0.35393607020378115, "decode.loss_ce": 0.21323362588882447, "decode.acc_seg": 95.4184799194336, "aux.loss_ce": 0.1407024346292019, "aux.acc_seg": 93.1314468383789, "time": 1.1164738655090332, "iter": 9000, "memory": 8702, "step": 9000} +{"lr": 0.00949462520447175, "data_time": 0.00869443416595459, "loss": 0.5785193800926208, "decode.loss_ce": 0.35468763411045073, "decode.acc_seg": 84.56729125976562, "aux.loss_ce": 0.22383174300193787, "aux.acc_seg": 79.28948974609375, "time": 1.1151856184005737, "iter": 9050, "memory": 8702, "step": 9050} +{"lr": 0.009491824507971737, "data_time": 0.008838176727294922, "loss": 0.39810084700584414, "decode.loss_ce": 0.2301826372742653, "decode.acc_seg": 87.79582977294922, "aux.loss_ce": 0.16791820526123047, "aux.acc_seg": 75.34204864501953, "time": 1.1184139490127563, "iter": 9100, "memory": 8702, "step": 9100} +{"lr": 0.009489023718670437, "data_time": 0.006601858139038086, "loss": 0.6753402665257454, "decode.loss_ce": 0.4323676832020283, "decode.acc_seg": 86.60856628417969, "aux.loss_ce": 0.2429725717753172, "aux.acc_seg": 80.04356384277344, "time": 1.1082588672637939, "iter": 9150, "memory": 8703, "step": 9150} +{"lr": 0.009486222836534011, "data_time": 0.008212804794311523, "loss": 0.525243328511715, "decode.loss_ce": 0.33942491337656977, "decode.acc_seg": 88.57357788085938, "aux.loss_ce": 0.18581840880215167, "aux.acc_seg": 84.55708312988281, "time": 1.1129327058792113, "iter": 9200, "memory": 8702, "step": 9200} +{"lr": 0.009483421861528596, "data_time": 0.00931093692779541, "loss": 0.45404089987277985, "decode.loss_ce": 0.2849599435925484, "decode.acc_seg": 91.6418685913086, "aux.loss_ce": 0.169080962985754, "aux.acc_seg": 90.2338638305664, "time": 1.116804599761963, "iter": 9250, "memory": 8702, "step": 9250} +{"lr": 0.00948062079362031, "data_time": 0.008334589004516602, "loss": 0.5528641641139984, "decode.loss_ce": 0.3537164553999901, "decode.acc_seg": 87.96469116210938, "aux.loss_ce": 0.19914771467447281, "aux.acc_seg": 84.81648254394531, "time": 1.1164018154144286, "iter": 9300, "memory": 8702, "step": 9300} +{"lr": 0.009477819632775247, "data_time": 0.007695984840393066, "loss": 0.34234059751033785, "decode.loss_ce": 0.21500155180692673, "decode.acc_seg": 92.50576782226562, "aux.loss_ce": 0.12733904048800468, "aux.acc_seg": 90.39261627197266, "time": 1.1146272897720337, "iter": 9350, "memory": 8703, "step": 9350} +{"lr": 0.009475018378959477, "data_time": 0.00947110652923584, "loss": 0.4076133668422699, "decode.loss_ce": 0.2536784037947655, "decode.acc_seg": 93.53948974609375, "aux.loss_ce": 0.1539349664002657, "aux.acc_seg": 93.179443359375, "time": 1.1173390388488769, "iter": 9400, "memory": 8702, "step": 9400} +{"lr": 0.009472217032139046, "data_time": 0.005461430549621582, "loss": 0.546375647187233, "decode.loss_ce": 0.33190437257289884, "decode.acc_seg": 90.23475646972656, "aux.loss_ce": 0.21447127237915992, "aux.acc_seg": 76.65411376953125, "time": 1.111896014213562, "iter": 9450, "memory": 8703, "step": 9450} +{"lr": 0.009469415592279987, "data_time": 0.006768250465393066, "loss": 0.5088446348905563, "decode.loss_ce": 0.32985411733388903, "decode.acc_seg": 91.17996978759766, "aux.loss_ce": 0.17899051308631897, "aux.acc_seg": 85.2606430053711, "time": 1.1180236339569092, "iter": 9500, "memory": 8703, "step": 9500} +{"lr": 0.009466614059348287, "data_time": 0.0067081451416015625, "loss": 0.5042263895273209, "decode.loss_ce": 0.2938408687710762, "decode.acc_seg": 84.58786010742188, "aux.loss_ce": 0.21038552597165108, "aux.acc_seg": 80.77379608154297, "time": 1.1116430044174195, "iter": 9550, "memory": 8703, "step": 9550} +{"lr": 0.009463812433309916, "data_time": 0.006869387626647949, "loss": 0.5452361583709717, "decode.loss_ce": 0.3455400258302689, "decode.acc_seg": 91.32780456542969, "aux.loss_ce": 0.19969613030552863, "aux.acc_seg": 89.50664520263672, "time": 1.1159394025802611, "iter": 9600, "memory": 8703, "step": 9600} +{"lr": 0.009461010714130831, "data_time": 0.008195114135742188, "loss": 0.41812186539173124, "decode.loss_ce": 0.25095021575689314, "decode.acc_seg": 94.13642883300781, "aux.loss_ce": 0.16717165485024452, "aux.acc_seg": 91.2003173828125, "time": 1.116066861152649, "iter": 9650, "memory": 8703, "step": 9650} +{"lr": 0.009458208901776963, "data_time": 0.006073403358459473, "loss": 0.5394922852516174, "decode.loss_ce": 0.3382260501384735, "decode.acc_seg": 91.69857788085938, "aux.loss_ce": 0.2012662336230278, "aux.acc_seg": 87.36393737792969, "time": 1.1127239227294923, "iter": 9700, "memory": 8703, "step": 9700} +{"lr": 0.00945540699621421, "data_time": 0.007441806793212891, "loss": 0.5395542651414871, "decode.loss_ce": 0.33448458164930345, "decode.acc_seg": 87.55497741699219, "aux.loss_ce": 0.2050696775317192, "aux.acc_seg": 69.2144775390625, "time": 1.1176430702209472, "iter": 9750, "memory": 8703, "step": 9750} +{"lr": 0.009452604997408449, "data_time": 0.0074947595596313475, "loss": 0.672122323513031, "decode.loss_ce": 0.391954243183136, "decode.acc_seg": 86.1491470336914, "aux.loss_ce": 0.28016807660460474, "aux.acc_seg": 79.59575653076172, "time": 1.1133177757263184, "iter": 9800, "memory": 8702, "step": 9800} +{"lr": 0.00944980290532554, "data_time": 0.007811164855957032, "loss": 0.6062169045209884, "decode.loss_ce": 0.3915257453918457, "decode.acc_seg": 83.88468170166016, "aux.loss_ce": 0.21469115912914277, "aux.acc_seg": 73.9310531616211, "time": 1.1144186496734618, "iter": 9850, "memory": 8703, "step": 9850} +{"lr": 0.00944700071993132, "data_time": 0.00833594799041748, "loss": 0.72186259329319, "decode.loss_ce": 0.46193100810050963, "decode.acc_seg": 89.07228088378906, "aux.loss_ce": 0.2599315844476223, "aux.acc_seg": 86.0411376953125, "time": 1.1126941442489624, "iter": 9900, "memory": 8702, "step": 9900} +{"lr": 0.009444198441191596, "data_time": 0.0076220989227294925, "loss": 0.3872078686952591, "decode.loss_ce": 0.22597436904907225, "decode.acc_seg": 87.17829132080078, "aux.loss_ce": 0.16123348996043205, "aux.acc_seg": 81.35210418701172, "time": 1.1127984285354615, "iter": 9950, "memory": 8702, "step": 9950} +{"lr": 0.009441396069072157, "data_time": 0.007042884826660156, "loss": 0.579007987678051, "decode.loss_ce": 0.3654564619064331, "decode.acc_seg": 93.51132202148438, "aux.loss_ce": 0.21355152502655983, "aux.acc_seg": 92.42210388183594, "time": 1.115577483177185, "iter": 10000, "memory": 8703, "step": 10000} +{"lr": 0.00943859360353875, "data_time": 0.0054242610931396484, "loss": 0.580880081653595, "decode.loss_ce": 0.36965271085500717, "decode.acc_seg": 84.23359680175781, "aux.loss_ce": 0.21122736260294914, "aux.acc_seg": 70.81031799316406, "time": 1.1106919765472412, "iter": 10050, "memory": 8702, "step": 10050} +{"lr": 0.009435791044557112, "data_time": 0.007394146919250488, "loss": 0.48716086745262144, "decode.loss_ce": 0.3053414821624756, "decode.acc_seg": 94.82504272460938, "aux.loss_ce": 0.1818193845450878, "aux.acc_seg": 90.75874328613281, "time": 1.1173502206802368, "iter": 10100, "memory": 8703, "step": 10100} +{"lr": 0.009432988392092966, "data_time": 0.007216715812683105, "loss": 0.5239996328949929, "decode.loss_ce": 0.3185881197452545, "decode.acc_seg": 85.46612548828125, "aux.loss_ce": 0.20541151203215122, "aux.acc_seg": 80.12459564208984, "time": 1.1183018207550048, "iter": 10150, "memory": 8702, "step": 10150} +{"lr": 0.009430185646111982, "data_time": 0.007185554504394532, "loss": 0.4567819729447365, "decode.loss_ce": 0.266696372628212, "decode.acc_seg": 86.84908294677734, "aux.loss_ce": 0.19008559361100197, "aux.acc_seg": 80.61904907226562, "time": 1.1137414932250977, "iter": 10200, "memory": 8703, "step": 10200} +{"lr": 0.009427382806579843, "data_time": 0.00810554027557373, "loss": 0.6755287855863571, "decode.loss_ce": 0.411924721300602, "decode.acc_seg": 87.49771118164062, "aux.loss_ce": 0.26360407620668413, "aux.acc_seg": 80.86502838134766, "time": 1.1135693073272706, "iter": 10250, "memory": 8704, "step": 10250} +{"lr": 0.009424579873462176, "data_time": 0.007589030265808106, "loss": 0.3915521800518036, "decode.loss_ce": 0.24907048642635346, "decode.acc_seg": 88.72356414794922, "aux.loss_ce": 0.1424816906452179, "aux.acc_seg": 82.04383850097656, "time": 1.1157143354415893, "iter": 10300, "memory": 8703, "step": 10300} +{"lr": 0.009421776846724603, "data_time": 0.006899976730346679, "loss": 0.4477821230888367, "decode.loss_ce": 0.2764015182852745, "decode.acc_seg": 94.80177307128906, "aux.loss_ce": 0.17138059437274933, "aux.acc_seg": 93.97684478759766, "time": 1.1158025979995727, "iter": 10350, "memory": 8703, "step": 10350} +{"lr": 0.00941897372633272, "data_time": 0.00923171043395996, "loss": 0.4492537349462509, "decode.loss_ce": 0.29010978564620016, "decode.acc_seg": 84.95610046386719, "aux.loss_ce": 0.15914394110441207, "aux.acc_seg": 85.20698547363281, "time": 1.1167269229888916, "iter": 10400, "memory": 8703, "step": 10400} +{"lr": 0.0094161705122521, "data_time": 0.006571531295776367, "loss": 0.6030430480837822, "decode.loss_ce": 0.3710274904966354, "decode.acc_seg": 91.87977600097656, "aux.loss_ce": 0.23201555870473384, "aux.acc_seg": 86.82930755615234, "time": 1.1111132383346558, "iter": 10450, "memory": 8703, "step": 10450} +{"lr": 0.009413367204448263, "data_time": 0.0074967145919799805, "loss": 0.44833570420742036, "decode.loss_ce": 0.28125161975622176, "decode.acc_seg": 84.08184051513672, "aux.loss_ce": 0.16708408147096634, "aux.acc_seg": 81.43177032470703, "time": 1.1139979839324952, "iter": 10500, "memory": 8702, "step": 10500} +{"lr": 0.00941056380288675, "data_time": 0.007276201248168945, "loss": 0.5387304663658142, "decode.loss_ce": 0.32494296729564665, "decode.acc_seg": 90.9662857055664, "aux.loss_ce": 0.2137874945998192, "aux.acc_seg": 89.76280975341797, "time": 1.115595006942749, "iter": 10550, "memory": 8702, "step": 10550} +{"lr": 0.009407760307533047, "data_time": 0.007098507881164551, "loss": 0.5376152455806732, "decode.loss_ce": 0.3256294555962086, "decode.acc_seg": 95.9157943725586, "aux.loss_ce": 0.2119857981801033, "aux.acc_seg": 92.32717895507812, "time": 1.1152087211608888, "iter": 10600, "memory": 8703, "step": 10600} +{"lr": 0.009404956718352623, "data_time": 0.005411887168884277, "loss": 0.549838301539421, "decode.loss_ce": 0.35885625034570695, "decode.acc_seg": 93.77796936035156, "aux.loss_ce": 0.19098204597830773, "aux.acc_seg": 92.08895111083984, "time": 1.1127320766448974, "iter": 10650, "memory": 8703, "step": 10650} +{"lr": 0.009402153035310936, "data_time": 0.0080427885055542, "loss": 0.49476592391729357, "decode.loss_ce": 0.2907807372510433, "decode.acc_seg": 95.65022277832031, "aux.loss_ce": 0.20398519262671472, "aux.acc_seg": 95.0943603515625, "time": 1.1185416221618651, "iter": 10700, "memory": 8703, "step": 10700} +{"lr": 0.009399349258373397, "data_time": 0.005847668647766114, "loss": 0.5560923159122467, "decode.loss_ce": 0.3495638698339462, "decode.acc_seg": 92.21089172363281, "aux.loss_ce": 0.20652844831347467, "aux.acc_seg": 88.52774047851562, "time": 1.1112066507339478, "iter": 10750, "memory": 8702, "step": 10750} +{"lr": 0.009396545387505409, "data_time": 0.007188940048217773, "loss": 0.49694746136665346, "decode.loss_ce": 0.2995282895863056, "decode.acc_seg": 95.38751983642578, "aux.loss_ce": 0.19741918034851552, "aux.acc_seg": 94.3232192993164, "time": 1.1143643140792847, "iter": 10800, "memory": 8703, "step": 10800} +{"lr": 0.00939374142267234, "data_time": 0.008301901817321777, "loss": 0.48867457509040835, "decode.loss_ce": 0.30290945023298266, "decode.acc_seg": 89.46043395996094, "aux.loss_ce": 0.18576512932777406, "aux.acc_seg": 86.96365356445312, "time": 1.1159199476242065, "iter": 10850, "memory": 8702, "step": 10850} +{"lr": 0.009390937363839542, "data_time": 0.006149768829345703, "loss": 0.6408650785684585, "decode.loss_ce": 0.3942598730325699, "decode.acc_seg": 71.20816040039062, "aux.loss_ce": 0.24660521373152733, "aux.acc_seg": 58.598854064941406, "time": 1.1122690439224243, "iter": 10900, "memory": 8702, "step": 10900} +{"lr": 0.009388133210972344, "data_time": 0.0083054780960083, "loss": 0.5352200776338577, "decode.loss_ce": 0.34511415660381317, "decode.acc_seg": 89.52764892578125, "aux.loss_ce": 0.19010591730475426, "aux.acc_seg": 88.2530517578125, "time": 1.1177172899246215, "iter": 10950, "memory": 8703, "step": 10950} +{"lr": 0.009385328964036039, "data_time": 0.006105566024780273, "loss": 0.5749269545078277, "decode.loss_ce": 0.35655094385147096, "decode.acc_seg": 84.53871154785156, "aux.loss_ce": 0.218376025557518, "aux.acc_seg": 85.06488800048828, "time": 1.113904857635498, "iter": 11000, "memory": 8702, "step": 11000} +{"lr": 0.009382524622995918, "data_time": 0.008077311515808105, "loss": 0.5592598393559456, "decode.loss_ce": 0.3467486768960953, "decode.acc_seg": 84.54914093017578, "aux.loss_ce": 0.21251114308834076, "aux.acc_seg": 81.08647155761719, "time": 1.1143051385879517, "iter": 11050, "memory": 8702, "step": 11050} +{"lr": 0.00937972018781722, "data_time": 0.007974529266357422, "loss": 0.554663211107254, "decode.loss_ce": 0.3446931466460228, "decode.acc_seg": 92.28865051269531, "aux.loss_ce": 0.20997005924582482, "aux.acc_seg": 91.9748306274414, "time": 1.1133039474487305, "iter": 11100, "memory": 8703, "step": 11100} +{"lr": 0.009376915658465169, "data_time": 0.007547569274902344, "loss": 0.49437121748924256, "decode.loss_ce": 0.30667003989219666, "decode.acc_seg": 92.41593170166016, "aux.loss_ce": 0.1877011850476265, "aux.acc_seg": 90.7999038696289, "time": 1.1151788473129272, "iter": 11150, "memory": 8703, "step": 11150} +{"lr": 0.009374111034904965, "data_time": 0.008798313140869141, "loss": 0.42739592045545577, "decode.loss_ce": 0.2532604709267616, "decode.acc_seg": 91.9748306274414, "aux.loss_ce": 0.17413544654846191, "aux.acc_seg": 89.4892349243164, "time": 1.1208478927612304, "iter": 11200, "memory": 8703, "step": 11200} +{"lr": 0.0093713063171018, "data_time": 0.007598209381103516, "loss": 0.5332687288522721, "decode.loss_ce": 0.3344345986843109, "decode.acc_seg": 90.27277374267578, "aux.loss_ce": 0.19883413538336753, "aux.acc_seg": 85.88104248046875, "time": 1.1182581186294556, "iter": 11250, "memory": 8703, "step": 11250} +{"lr": 0.00936850150502082, "data_time": 0.005897927284240723, "loss": 0.49504172503948213, "decode.loss_ce": 0.31969491839408876, "decode.acc_seg": 93.47305297851562, "aux.loss_ce": 0.1753468059003353, "aux.acc_seg": 89.71843719482422, "time": 1.1119639873504639, "iter": 11300, "memory": 8703, "step": 11300} +{"lr": 0.009365696598627151, "data_time": 0.008338260650634765, "loss": 0.4572128802537918, "decode.loss_ce": 0.27901825308799744, "decode.acc_seg": 93.31741333007812, "aux.loss_ce": 0.1781946174800396, "aux.acc_seg": 77.3234634399414, "time": 1.1133930921554565, "iter": 11350, "memory": 8703, "step": 11350} +{"lr": 0.009362891597885897, "data_time": 0.00735318660736084, "loss": 0.3856101483106613, "decode.loss_ce": 0.2546141393482685, "decode.acc_seg": 88.97997283935547, "aux.loss_ce": 0.1309960052371025, "aux.acc_seg": 87.7762451171875, "time": 1.1108656167984008, "iter": 11400, "memory": 8703, "step": 11400} +{"lr": 0.009360086502762143, "data_time": 0.006771540641784668, "loss": 0.40641313791275024, "decode.loss_ce": 0.261661771684885, "decode.acc_seg": 94.02408599853516, "aux.loss_ce": 0.14475136995315552, "aux.acc_seg": 94.07144927978516, "time": 1.110579752922058, "iter": 11450, "memory": 8702, "step": 11450} +{"lr": 0.009357281313220932, "data_time": 0.009317421913146972, "loss": 0.48846064805984496, "decode.loss_ce": 0.2976317211985588, "decode.acc_seg": 86.10375213623047, "aux.loss_ce": 0.19082892909646035, "aux.acc_seg": 80.34858703613281, "time": 1.1165740251541139, "iter": 11500, "memory": 8703, "step": 11500} +{"lr": 0.009354476029227312, "data_time": 0.009727787971496583, "loss": 0.533870306611061, "decode.loss_ce": 0.3313402563333511, "decode.acc_seg": 80.74687957763672, "aux.loss_ce": 0.2025300495326519, "aux.acc_seg": 73.05795288085938, "time": 1.1157277584075929, "iter": 11550, "memory": 8702, "step": 11550} +{"lr": 0.009351670650746274, "data_time": 0.008139896392822265, "loss": 0.5013417184352875, "decode.loss_ce": 0.2957696333527565, "decode.acc_seg": 92.70903015136719, "aux.loss_ce": 0.20557207763195037, "aux.acc_seg": 84.07427215576172, "time": 1.1149244785308838, "iter": 11600, "memory": 8703, "step": 11600} +{"lr": 0.009348865177742804, "data_time": 0.008056569099426269, "loss": 0.6358482658863067, "decode.loss_ce": 0.39876778721809386, "decode.acc_seg": 89.97211456298828, "aux.loss_ce": 0.23708047345280647, "aux.acc_seg": 83.58319091796875, "time": 1.115283203125, "iter": 11650, "memory": 8703, "step": 11650} +{"lr": 0.009346059610181862, "data_time": 0.007435822486877441, "loss": 0.626480869948864, "decode.loss_ce": 0.4181524321436882, "decode.acc_seg": 94.25455474853516, "aux.loss_ce": 0.20832843482494354, "aux.acc_seg": 92.88832092285156, "time": 1.1166554927825927, "iter": 11700, "memory": 8702, "step": 11700} +{"lr": 0.00934325394802837, "data_time": 0.006551909446716309, "loss": 0.7145095020532608, "decode.loss_ce": 0.464687941968441, "decode.acc_seg": 88.59869384765625, "aux.loss_ce": 0.24982155188918115, "aux.acc_seg": 84.40799713134766, "time": 1.1135962724685669, "iter": 11750, "memory": 8703, "step": 11750} +{"lr": 0.009340448191247238, "data_time": 0.00719156265258789, "loss": 0.4615473747253418, "decode.loss_ce": 0.29553624987602234, "decode.acc_seg": 94.09395599365234, "aux.loss_ce": 0.16601112931966783, "aux.acc_seg": 91.58331298828125, "time": 1.119239330291748, "iter": 11800, "memory": 8702, "step": 11800} +{"lr": 0.009337642339803344, "data_time": 0.00730435848236084, "loss": 0.6133783638477326, "decode.loss_ce": 0.3775901451706886, "decode.acc_seg": 89.29869079589844, "aux.loss_ce": 0.23578821867704391, "aux.acc_seg": 84.3924789428711, "time": 1.1164169788360596, "iter": 11850, "memory": 8702, "step": 11850} +{"lr": 0.009334836393661545, "data_time": 0.008194851875305175, "loss": 0.5578682005405426, "decode.loss_ce": 0.3471390515565872, "decode.acc_seg": 89.88329315185547, "aux.loss_ce": 0.21072914078831673, "aux.acc_seg": 87.72335052490234, "time": 1.1160809516906738, "iter": 11900, "memory": 8704, "step": 11900} +{"lr": 0.009332030352786682, "data_time": 0.00876314640045166, "loss": 0.5408096447587013, "decode.loss_ce": 0.3276325583457947, "decode.acc_seg": 92.34930419921875, "aux.loss_ce": 0.21317709535360335, "aux.acc_seg": 91.37439727783203, "time": 1.116823673248291, "iter": 11950, "memory": 8702, "step": 11950} +{"lr": 0.009329224217143547, "data_time": 0.0069779157638549805, "loss": 0.5011744290590286, "decode.loss_ce": 0.29352730363607404, "decode.acc_seg": 73.57565307617188, "aux.loss_ce": 0.20764711871743202, "aux.acc_seg": 65.64483642578125, "time": 1.11317138671875, "iter": 12000, "memory": 8703, "step": 12000} +{"lr": 0.009326417986696933, "data_time": 0.0070242643356323246, "loss": 0.47861480712890625, "decode.loss_ce": 0.2897711768746376, "decode.acc_seg": 94.1272201538086, "aux.loss_ce": 0.18884363807737828, "aux.acc_seg": 93.50228881835938, "time": 1.1104604482650757, "iter": 12050, "memory": 8703, "step": 12050} +{"lr": 0.009323611661411588, "data_time": 0.006962370872497558, "loss": 0.4785872265696526, "decode.loss_ce": 0.304275344312191, "decode.acc_seg": 93.7400131225586, "aux.loss_ce": 0.174311875551939, "aux.acc_seg": 92.74323272705078, "time": 1.1107985258102417, "iter": 12100, "memory": 8702, "step": 12100} +{"lr": 0.009320805241252257, "data_time": 0.007871222496032716, "loss": 0.4512050300836563, "decode.loss_ce": 0.2831519111990929, "decode.acc_seg": 91.20203399658203, "aux.loss_ce": 0.16805311366915704, "aux.acc_seg": 91.85504913330078, "time": 1.1135074853897096, "iter": 12150, "memory": 8702, "step": 12150} +{"lr": 0.009317998726183645, "data_time": 0.006264710426330566, "loss": 0.45442329794168473, "decode.loss_ce": 0.3011569887399673, "decode.acc_seg": 93.25287628173828, "aux.loss_ce": 0.15326630026102067, "aux.acc_seg": 92.16339874267578, "time": 1.109470534324646, "iter": 12200, "memory": 8703, "step": 12200} +{"lr": 0.009315192116170415, "data_time": 0.007257914543151856, "loss": 0.4607341557741165, "decode.loss_ce": 0.2913007870316505, "decode.acc_seg": 95.2281265258789, "aux.loss_ce": 0.16943336725234986, "aux.acc_seg": 84.475830078125, "time": 1.116751003265381, "iter": 12250, "memory": 8702, "step": 12250} +{"lr": 0.009312385411177234, "data_time": 0.008735418319702148, "loss": 0.4202154979109764, "decode.loss_ce": 0.25849241465330125, "decode.acc_seg": 94.621337890625, "aux.loss_ce": 0.16172307617962361, "aux.acc_seg": 94.35977935791016, "time": 1.1156076431274413, "iter": 12300, "memory": 8702, "step": 12300} +{"lr": 0.009309578611168734, "data_time": 0.008255648612976074, "loss": 0.617954495549202, "decode.loss_ce": 0.3650406375527382, "decode.acc_seg": 93.56968688964844, "aux.loss_ce": 0.2529138535261154, "aux.acc_seg": 92.50984191894531, "time": 1.1202897310256958, "iter": 12350, "memory": 8702, "step": 12350} +{"lr": 0.009306771716109519, "data_time": 0.007024550437927246, "loss": 0.4692255467176437, "decode.loss_ce": 0.29070238322019576, "decode.acc_seg": 91.95518493652344, "aux.loss_ce": 0.17852315828204154, "aux.acc_seg": 85.22293853759766, "time": 1.115135908126831, "iter": 12400, "memory": 8703, "step": 12400} +{"lr": 0.009303964725964172, "data_time": 0.00759885311126709, "loss": 0.5884921088814735, "decode.loss_ce": 0.3860663801431656, "decode.acc_seg": 95.64990997314453, "aux.loss_ce": 0.2024257369339466, "aux.acc_seg": 94.49564361572266, "time": 1.113709306716919, "iter": 12450, "memory": 8704, "step": 12450} +{"lr": 0.009301157640697251, "data_time": 0.007497167587280274, "loss": 0.5337946325540542, "decode.loss_ce": 0.3095797851681709, "decode.acc_seg": 92.84992218017578, "aux.loss_ce": 0.2242148518562317, "aux.acc_seg": 89.10490417480469, "time": 1.1131592988967896, "iter": 12500, "memory": 8703, "step": 12500} +{"lr": 0.00929835046027328, "data_time": 0.007017350196838379, "loss": 0.45110962092876433, "decode.loss_ce": 0.28604826927185056, "decode.acc_seg": 90.6571044921875, "aux.loss_ce": 0.16506135538220407, "aux.acc_seg": 90.27671813964844, "time": 1.112235689163208, "iter": 12550, "memory": 8702, "step": 12550} +{"lr": 0.009295543184656769, "data_time": 0.008355164527893066, "loss": 0.5361273288726807, "decode.loss_ce": 0.33277216404676435, "decode.acc_seg": 84.60076141357422, "aux.loss_ce": 0.20335516333580017, "aux.acc_seg": 78.48936462402344, "time": 1.1176324129104613, "iter": 12600, "memory": 8703, "step": 12600} +{"lr": 0.00929273581381219, "data_time": 0.008018422126770019, "loss": 0.33078358620405196, "decode.loss_ce": 0.20543215796351433, "decode.acc_seg": 95.29844665527344, "aux.loss_ce": 0.12535142786800862, "aux.acc_seg": 93.6854019165039, "time": 1.1136736154556275, "iter": 12650, "memory": 8703, "step": 12650} +{"lr": 0.009289928347704007, "data_time": 0.007234525680541992, "loss": 0.461270797252655, "decode.loss_ce": 0.2919853515923023, "decode.acc_seg": 91.85314178466797, "aux.loss_ce": 0.16928544007241725, "aux.acc_seg": 85.0545883178711, "time": 1.1154488563537597, "iter": 12700, "memory": 8703, "step": 12700} +{"lr": 0.009287120786296645, "data_time": 0.008418512344360352, "loss": 0.41777803003787994, "decode.loss_ce": 0.26397452503442764, "decode.acc_seg": 90.64451599121094, "aux.loss_ce": 0.15380350276827812, "aux.acc_seg": 85.90723419189453, "time": 1.1186180591583252, "iter": 12750, "memory": 8704, "step": 12750} +{"lr": 0.009284313129554505, "data_time": 0.00901172161102295, "loss": 0.6727332085371017, "decode.loss_ce": 0.44697421193122866, "decode.acc_seg": 94.50867462158203, "aux.loss_ce": 0.22575899809598923, "aux.acc_seg": 93.18008422851562, "time": 1.1171764135360718, "iter": 12800, "memory": 8702, "step": 12800} +{"lr": 0.009281505377441969, "data_time": 0.008186912536621094, "loss": 0.49125139564275744, "decode.loss_ce": 0.292679762840271, "decode.acc_seg": 91.18206787109375, "aux.loss_ce": 0.19857163801789285, "aux.acc_seg": 86.76121520996094, "time": 1.1121829271316528, "iter": 12850, "memory": 8703, "step": 12850} +{"lr": 0.009278697529923389, "data_time": 0.007012057304382324, "loss": 0.3982192948460579, "decode.loss_ce": 0.2467946782708168, "decode.acc_seg": 87.07637786865234, "aux.loss_ce": 0.15142462104558946, "aux.acc_seg": 84.40971374511719, "time": 1.1119361400604248, "iter": 12900, "memory": 8702, "step": 12900} +{"lr": 0.009275889586963095, "data_time": 0.008162951469421387, "loss": 0.4493821024894714, "decode.loss_ce": 0.28388973474502566, "decode.acc_seg": 92.77616882324219, "aux.loss_ce": 0.16549236848950385, "aux.acc_seg": 90.33743286132812, "time": 1.1156404972076417, "iter": 12950, "memory": 8703, "step": 12950} +{"lr": 0.009273081548525384, "data_time": 0.006770658493041992, "loss": 0.4220243215560913, "decode.loss_ce": 0.2678936496376991, "decode.acc_seg": 95.50094604492188, "aux.loss_ce": 0.1541306644678116, "aux.acc_seg": 95.13784790039062, "time": 1.1143256187438966, "iter": 13000, "memory": 8702, "step": 13000} +{"lr": 0.009270273414574533, "data_time": 0.008113574981689454, "loss": 0.5504650086164474, "decode.loss_ce": 0.34629172682762144, "decode.acc_seg": 84.40939331054688, "aux.loss_ce": 0.2041732758283615, "aux.acc_seg": 79.0146484375, "time": 1.1135390281677247, "iter": 13050, "memory": 8702, "step": 13050} +{"lr": 0.0092674651850748, "data_time": 0.006566667556762695, "loss": 0.47498937845230105, "decode.loss_ce": 0.29972059577703475, "decode.acc_seg": 89.90528869628906, "aux.loss_ce": 0.1752687804400921, "aux.acc_seg": 83.08556365966797, "time": 1.1138296604156495, "iter": 13100, "memory": 8703, "step": 13100} +{"lr": 0.009264656859990396, "data_time": 0.008662915229797364, "loss": 0.478478442132473, "decode.loss_ce": 0.29125296100974085, "decode.acc_seg": 79.9735336303711, "aux.loss_ce": 0.1872254718095064, "aux.acc_seg": 77.74505615234375, "time": 1.1140808820724488, "iter": 13150, "memory": 8703, "step": 13150} +{"lr": 0.009261848439285542, "data_time": 0.0073271989822387695, "loss": 0.7653138667345047, "decode.loss_ce": 0.516062693297863, "decode.acc_seg": 63.422645568847656, "aux.loss_ce": 0.2492511600255966, "aux.acc_seg": 68.1982650756836, "time": 1.1103109836578369, "iter": 13200, "memory": 8702, "step": 13200} +{"lr": 0.009259039922924399, "data_time": 0.006952452659606934, "loss": 0.47360212802886964, "decode.loss_ce": 0.2934921234846115, "decode.acc_seg": 88.28569793701172, "aux.loss_ce": 0.18011000230908394, "aux.acc_seg": 80.34947204589844, "time": 1.115980052947998, "iter": 13250, "memory": 8703, "step": 13250} +{"lr": 0.009256231310871115, "data_time": 0.00874624252319336, "loss": 0.7892740473151207, "decode.loss_ce": 0.48843656927347184, "decode.acc_seg": 83.30459594726562, "aux.loss_ce": 0.30083748772740365, "aux.acc_seg": 81.240966796875, "time": 1.1175223112106323, "iter": 13300, "memory": 8702, "step": 13300} +{"lr": 0.009253422603089808, "data_time": 0.009171080589294434, "loss": 0.590056636929512, "decode.loss_ce": 0.3819005325436592, "decode.acc_seg": 85.22111511230469, "aux.loss_ce": 0.20815610587596894, "aux.acc_seg": 81.7614517211914, "time": 1.1164167642593383, "iter": 13350, "memory": 8702, "step": 13350} +{"lr": 0.00925061379954458, "data_time": 0.0067588090896606445, "loss": 0.6462374061346055, "decode.loss_ce": 0.4023981958627701, "decode.acc_seg": 67.76764678955078, "aux.loss_ce": 0.24383919909596444, "aux.acc_seg": 59.327823638916016, "time": 1.1159844160079957, "iter": 13400, "memory": 8702, "step": 13400} +{"lr": 0.009247804900199514, "data_time": 0.008891582489013672, "loss": 0.5950441777706146, "decode.loss_ce": 0.36161265671253207, "decode.acc_seg": 91.42576599121094, "aux.loss_ce": 0.23343150913715363, "aux.acc_seg": 80.08409881591797, "time": 1.1163344144821168, "iter": 13450, "memory": 8703, "step": 13450} +{"lr": 0.009244995905018651, "data_time": 0.007827520370483398, "loss": 0.34958384931087494, "decode.loss_ce": 0.20877514481544496, "decode.acc_seg": 97.08328247070312, "aux.loss_ce": 0.14080870300531387, "aux.acc_seg": 92.28286743164062, "time": 1.1161736726760865, "iter": 13500, "memory": 8703, "step": 13500} +{"lr": 0.009242186813966007, "data_time": 0.0074858427047729496, "loss": 0.49598072171211244, "decode.loss_ce": 0.32461332678794863, "decode.acc_seg": 90.0553970336914, "aux.loss_ce": 0.17136738896369935, "aux.acc_seg": 88.91773223876953, "time": 1.1113263368606567, "iter": 13550, "memory": 8703, "step": 13550} +{"lr": 0.00923937762700557, "data_time": 0.0055258750915527345, "loss": 0.5078708589076996, "decode.loss_ce": 0.323473297059536, "decode.acc_seg": 73.68087768554688, "aux.loss_ce": 0.1843975678086281, "aux.acc_seg": 67.52420806884766, "time": 1.1079852342605592, "iter": 13600, "memory": 8702, "step": 13600} +{"lr": 0.00923656834410132, "data_time": 0.008235812187194824, "loss": 0.49083331376314165, "decode.loss_ce": 0.2929310485720634, "decode.acc_seg": 94.73539733886719, "aux.loss_ce": 0.19790227189660073, "aux.acc_seg": 93.7295913696289, "time": 1.1147361993789673, "iter": 13650, "memory": 8703, "step": 13650} +{"lr": 0.009233758965217196, "data_time": 0.0077941656112670895, "loss": 0.6784069925546646, "decode.loss_ce": 0.4336593568325043, "decode.acc_seg": 92.07096099853516, "aux.loss_ce": 0.24474763199687005, "aux.acc_seg": 91.1503677368164, "time": 1.113369846343994, "iter": 13700, "memory": 8702, "step": 13700} +{"lr": 0.00923094949031711, "data_time": 0.008645057678222656, "loss": 0.5095956474542618, "decode.loss_ce": 0.30500863343477247, "decode.acc_seg": 94.64600372314453, "aux.loss_ce": 0.20458701625466347, "aux.acc_seg": 91.71930694580078, "time": 1.11743061542511, "iter": 13750, "memory": 8703, "step": 13750} +{"lr": 0.009228139919364955, "data_time": 0.008604645729064941, "loss": 0.7444051176309585, "decode.loss_ce": 0.4456920802593231, "decode.acc_seg": 73.72074127197266, "aux.loss_ce": 0.29871303737163546, "aux.acc_seg": 63.4281120300293, "time": 1.1191807031631469, "iter": 13800, "memory": 8702, "step": 13800} +{"lr": 0.009225330252324608, "data_time": 0.008334875106811523, "loss": 0.58909902125597, "decode.loss_ce": 0.35753092020750044, "decode.acc_seg": 89.93692016601562, "aux.loss_ce": 0.23156811073422431, "aux.acc_seg": 89.28543853759766, "time": 1.1170558691024781, "iter": 13850, "memory": 8702, "step": 13850} +{"lr": 0.00922252048915989, "data_time": 0.008269524574279786, "loss": 0.4168366104364395, "decode.loss_ce": 0.2646314948797226, "decode.acc_seg": 94.21106719970703, "aux.loss_ce": 0.1522051140666008, "aux.acc_seg": 94.23370361328125, "time": 1.1178398609161377, "iter": 13900, "memory": 8703, "step": 13900} +{"lr": 0.00921971062983462, "data_time": 0.007871770858764648, "loss": 0.42563700675964355, "decode.loss_ce": 0.2655605308711529, "decode.acc_seg": 93.33972930908203, "aux.loss_ce": 0.16007647439837455, "aux.acc_seg": 84.00624084472656, "time": 1.117090392112732, "iter": 13950, "memory": 8702, "step": 13950} +{"lr": 0.009216900674312588, "data_time": 0.009062957763671876, "loss": 0.5282009989023209, "decode.loss_ce": 0.3253611594438553, "decode.acc_seg": 94.21159362792969, "aux.loss_ce": 0.2028398372232914, "aux.acc_seg": 82.6841049194336, "time": 1.116689682006836, "iter": 14000, "memory": 8703, "step": 14000} +{"lr": 0.009214090622557552, "data_time": 0.008271527290344239, "loss": 0.5588414311408997, "decode.loss_ce": 0.36048431098461153, "decode.acc_seg": 70.62244415283203, "aux.loss_ce": 0.19835712239146233, "aux.acc_seg": 72.82879638671875, "time": 1.114723229408264, "iter": 14050, "memory": 8703, "step": 14050} +{"lr": 0.009211280474533238, "data_time": 0.008308649063110352, "loss": 0.46720632165670395, "decode.loss_ce": 0.2906922407448292, "decode.acc_seg": 84.1101303100586, "aux.loss_ce": 0.17651408165693283, "aux.acc_seg": 74.88587188720703, "time": 1.1188904523849488, "iter": 14100, "memory": 8703, "step": 14100} +{"lr": 0.009208470230203372, "data_time": 0.006002211570739746, "loss": 0.5023560360074043, "decode.loss_ce": 0.32573883682489396, "decode.acc_seg": 89.51189422607422, "aux.loss_ce": 0.17661719471216203, "aux.acc_seg": 88.95917510986328, "time": 1.1091569423675538, "iter": 14150, "memory": 8703, "step": 14150} +{"lr": 0.009205659889531634, "data_time": 0.007277011871337891, "loss": 0.4842511385679245, "decode.loss_ce": 0.31191892772912977, "decode.acc_seg": 94.69871520996094, "aux.loss_ce": 0.17233220711350442, "aux.acc_seg": 95.12557983398438, "time": 1.1179280757904053, "iter": 14200, "memory": 8703, "step": 14200} +{"lr": 0.009202849452481666, "data_time": 0.008603334426879883, "loss": 0.4511049836874008, "decode.loss_ce": 0.28466453701257705, "decode.acc_seg": 86.2997055053711, "aux.loss_ce": 0.16644044518470763, "aux.acc_seg": 85.85388946533203, "time": 1.1147754907608032, "iter": 14250, "memory": 8702, "step": 14250} +{"lr": 0.009200038919017111, "data_time": 0.0066029071807861325, "loss": 0.48676511347293855, "decode.loss_ce": 0.28916535526514053, "decode.acc_seg": 94.85034942626953, "aux.loss_ce": 0.19759975448250772, "aux.acc_seg": 89.6317138671875, "time": 1.1132301568984986, "iter": 14300, "memory": 8703, "step": 14300} +{"lr": 0.009197228289101574, "data_time": 0.009334349632263183, "loss": 0.6314759314060211, "decode.loss_ce": 0.37944434583187103, "decode.acc_seg": 92.32183837890625, "aux.loss_ce": 0.2520315803587437, "aux.acc_seg": 83.52928161621094, "time": 1.1219995498657227, "iter": 14350, "memory": 8703, "step": 14350} +{"lr": 0.00919441756269862, "data_time": 0.006893682479858399, "loss": 0.4920510917901993, "decode.loss_ce": 0.2947724975645542, "decode.acc_seg": 90.03155517578125, "aux.loss_ce": 0.19727859646081924, "aux.acc_seg": 90.46077728271484, "time": 1.1131255388259889, "iter": 14400, "memory": 8703, "step": 14400} +{"lr": 0.009191606739771811, "data_time": 0.009175920486450195, "loss": 0.3783652275800705, "decode.loss_ce": 0.24227167218923568, "decode.acc_seg": 94.49234008789062, "aux.loss_ce": 0.13609355464577674, "aux.acc_seg": 90.04179382324219, "time": 1.1193481922149657, "iter": 14450, "memory": 8703, "step": 14450} +{"lr": 0.00918879582028467, "data_time": 0.007805585861206055, "loss": 0.3881181120872498, "decode.loss_ce": 0.2445728749036789, "decode.acc_seg": 97.07198333740234, "aux.loss_ce": 0.14354524239897729, "aux.acc_seg": 92.04545593261719, "time": 1.1166253566741944, "iter": 14500, "memory": 8702, "step": 14500} +{"lr": 0.009185984804200692, "data_time": 0.005188488960266113, "loss": 0.5187131613492966, "decode.loss_ce": 0.3134563684463501, "decode.acc_seg": 84.81266784667969, "aux.loss_ce": 0.20525679588317872, "aux.acc_seg": 74.52900695800781, "time": 1.1068869352340698, "iter": 14550, "memory": 8703, "step": 14550} +{"lr": 0.009183173691483356, "data_time": 0.009004640579223632, "loss": 0.45703746378421783, "decode.loss_ce": 0.2788448430597782, "decode.acc_seg": 92.4308090209961, "aux.loss_ce": 0.17819262221455573, "aux.acc_seg": 85.12051391601562, "time": 1.112492036819458, "iter": 14600, "memory": 8702, "step": 14600} +{"lr": 0.00918036248209611, "data_time": 0.007893085479736328, "loss": 0.3567575693130493, "decode.loss_ce": 0.22428158447146415, "decode.acc_seg": 90.80059814453125, "aux.loss_ce": 0.13247598111629486, "aux.acc_seg": 87.78616333007812, "time": 1.1143965244293212, "iter": 14650, "memory": 8702, "step": 14650} +{"lr": 0.00917755117600237, "data_time": 0.008850312232971192, "loss": 0.7822621762752533, "decode.loss_ce": 0.4926317065954208, "decode.acc_seg": 76.23646545410156, "aux.loss_ce": 0.2896304689347744, "aux.acc_seg": 68.20805358886719, "time": 1.1162803649902344, "iter": 14700, "memory": 8702, "step": 14700} +{"lr": 0.009174739773165519, "data_time": 0.007942485809326171, "loss": 0.4995165005326271, "decode.loss_ce": 0.31093012988567353, "decode.acc_seg": 80.22905731201172, "aux.loss_ce": 0.18858637139201165, "aux.acc_seg": 74.67657470703125, "time": 1.1157821416854858, "iter": 14750, "memory": 8703, "step": 14750} +{"lr": 0.00917192827354894, "data_time": 0.007464265823364258, "loss": 0.5068286791443825, "decode.loss_ce": 0.3269762933254242, "decode.acc_seg": 88.31583404541016, "aux.loss_ce": 0.1798523873090744, "aux.acc_seg": 85.79483032226562, "time": 1.1176109552383422, "iter": 14800, "memory": 8703, "step": 14800} +{"lr": 0.009169116677115969, "data_time": 0.008461332321166993, "loss": 0.5563778772950172, "decode.loss_ce": 0.3463043600320816, "decode.acc_seg": 92.28636169433594, "aux.loss_ce": 0.21007350981235504, "aux.acc_seg": 83.6096420288086, "time": 1.1174885034561157, "iter": 14850, "memory": 8702, "step": 14850} +{"lr": 0.009166304983829922, "data_time": 0.00842902660369873, "loss": 0.6313254654407501, "decode.loss_ce": 0.3715759336948395, "decode.acc_seg": 80.46505737304688, "aux.loss_ce": 0.2597495332360268, "aux.acc_seg": 75.61937713623047, "time": 1.1199986696243287, "iter": 14900, "memory": 8702, "step": 14900} +{"lr": 0.009163493193654077, "data_time": 0.007073831558227539, "loss": 0.4761192098259926, "decode.loss_ce": 0.2930608749389648, "decode.acc_seg": 96.70276641845703, "aux.loss_ce": 0.183058325573802, "aux.acc_seg": 96.05000305175781, "time": 1.1138387441635131, "iter": 14950, "memory": 8702, "step": 14950} +{"lr": 0.009160681306551696, "data_time": 0.005381560325622559, "loss": 0.5702622517943382, "decode.loss_ce": 0.3339205488562584, "decode.acc_seg": 93.25733184814453, "aux.loss_ce": 0.23634170964360238, "aux.acc_seg": 82.05216217041016, "time": 1.1123101711273193, "iter": 15000, "memory": 8703, "step": 15000} +{"lr": 0.009157869322486021, "data_time": 0.007378196716308594, "loss": 0.5603364244103431, "decode.loss_ce": 0.3475928418338299, "decode.acc_seg": 69.341796875, "aux.loss_ce": 0.21274357996881008, "aux.acc_seg": 60.93070983886719, "time": 1.114649772644043, "iter": 15050, "memory": 8702, "step": 15050} +{"lr": 0.009155057241420262, "data_time": 0.0068798065185546875, "loss": 0.5002894937992096, "decode.loss_ce": 0.3138665959239006, "decode.acc_seg": 86.44639587402344, "aux.loss_ce": 0.18642290011048318, "aux.acc_seg": 80.41597747802734, "time": 1.112503433227539, "iter": 15100, "memory": 8703, "step": 15100} +{"lr": 0.009152245063317596, "data_time": 0.007043194770812988, "loss": 0.6379233330488205, "decode.loss_ce": 0.3717898204922676, "decode.acc_seg": 88.06381225585938, "aux.loss_ce": 0.26613351702690125, "aux.acc_seg": 65.54749298095703, "time": 1.1158791780471802, "iter": 15150, "memory": 8703, "step": 15150} +{"lr": 0.009149432788141164, "data_time": 0.009168219566345216, "loss": 0.4051056832075119, "decode.loss_ce": 0.24193261861801146, "decode.acc_seg": 94.42501068115234, "aux.loss_ce": 0.16317305862903594, "aux.acc_seg": 93.71076965332031, "time": 1.1158464193344115, "iter": 15200, "memory": 8703, "step": 15200} +{"lr": 0.009146620415854106, "data_time": 0.007302713394165039, "loss": 0.6087362200021744, "decode.loss_ce": 0.3917421936988831, "decode.acc_seg": 67.7928237915039, "aux.loss_ce": 0.21699402779340743, "aux.acc_seg": 60.44966125488281, "time": 1.1144004344940186, "iter": 15250, "memory": 8702, "step": 15250} +{"lr": 0.009143807946419518, "data_time": 0.008342576026916505, "loss": 0.5720440417528152, "decode.loss_ce": 0.3690296202898026, "decode.acc_seg": 91.12834930419922, "aux.loss_ce": 0.20301442220807076, "aux.acc_seg": 89.00196838378906, "time": 1.118312406539917, "iter": 15300, "memory": 8702, "step": 15300} +{"lr": 0.009140995379800477, "data_time": 0.007742619514465332, "loss": 0.4158723473548889, "decode.loss_ce": 0.25670183151960374, "decode.acc_seg": 91.54071807861328, "aux.loss_ce": 0.15917051061987877, "aux.acc_seg": 82.183837890625, "time": 1.1171336889266967, "iter": 15350, "memory": 8703, "step": 15350} +{"lr": 0.009138182715960032, "data_time": 0.007826519012451173, "loss": 0.6442586869001389, "decode.loss_ce": 0.40121140480041506, "decode.acc_seg": 92.3000717163086, "aux.loss_ce": 0.24304727613925933, "aux.acc_seg": 89.37125396728516, "time": 1.1157994985580444, "iter": 15400, "memory": 8703, "step": 15400} +{"lr": 0.009135369954861198, "data_time": 0.00903635025024414, "loss": 0.4585230231285095, "decode.loss_ce": 0.2841609761118889, "decode.acc_seg": 88.96732330322266, "aux.loss_ce": 0.17436204180121423, "aux.acc_seg": 83.27140808105469, "time": 1.1151543617248536, "iter": 15450, "memory": 8703, "step": 15450} +{"lr": 0.009132557096466978, "data_time": 0.007508373260498047, "loss": 0.4667225569486618, "decode.loss_ce": 0.2954453743994236, "decode.acc_seg": 96.44377136230469, "aux.loss_ce": 0.1712771885097027, "aux.acc_seg": 95.16111755371094, "time": 1.1157060146331788, "iter": 15500, "memory": 8702, "step": 15500} +{"lr": 0.009129744140740326, "data_time": 0.009090662002563477, "loss": 0.5912667512893677, "decode.loss_ce": 0.3750528648495674, "decode.acc_seg": 83.13877868652344, "aux.loss_ce": 0.21621388867497443, "aux.acc_seg": 77.60092163085938, "time": 1.116136384010315, "iter": 15550, "memory": 8702, "step": 15550} +{"lr": 0.009126931087644192, "data_time": 0.008280348777770997, "loss": 0.5633022755384445, "decode.loss_ce": 0.3642404839396477, "decode.acc_seg": 97.31756591796875, "aux.loss_ce": 0.1990617945790291, "aux.acc_seg": 92.60285186767578, "time": 1.1160074949264527, "iter": 15600, "memory": 8702, "step": 15600} +{"lr": 0.00912411793714148, "data_time": 0.007945513725280762, "loss": 0.4734333962202072, "decode.loss_ce": 0.28048322796821595, "decode.acc_seg": 91.75751495361328, "aux.loss_ce": 0.19295016750693322, "aux.acc_seg": 88.54846954345703, "time": 1.1163657426834106, "iter": 15650, "memory": 8702, "step": 15650} +{"lr": 0.009121304689195074, "data_time": 0.007877802848815918, "loss": 0.4221990630030632, "decode.loss_ce": 0.2583587259054184, "decode.acc_seg": 90.85628509521484, "aux.loss_ce": 0.16384034641087056, "aux.acc_seg": 88.71414184570312, "time": 1.1183454513549804, "iter": 15700, "memory": 8703, "step": 15700} +{"lr": 0.009118491343767847, "data_time": 0.007733035087585449, "loss": 0.5759500652551651, "decode.loss_ce": 0.3880861684679985, "decode.acc_seg": 95.0216293334961, "aux.loss_ce": 0.18786389455199243, "aux.acc_seg": 92.81971740722656, "time": 1.1186619520187377, "iter": 15750, "memory": 8702, "step": 15750} +{"lr": 0.009115677900822622, "data_time": 0.006768155097961426, "loss": 0.5146069139242172, "decode.loss_ce": 0.33042205274105074, "decode.acc_seg": 90.1205062866211, "aux.loss_ce": 0.18418485894799233, "aux.acc_seg": 89.83325958251953, "time": 1.1145062923431397, "iter": 15800, "memory": 8703, "step": 15800} +{"lr": 0.009112864360322211, "data_time": 0.00723259449005127, "loss": 0.7032974094152451, "decode.loss_ce": 0.4612150013446808, "decode.acc_seg": 95.44506072998047, "aux.loss_ce": 0.2420824073255062, "aux.acc_seg": 94.65814971923828, "time": 1.1193652868270874, "iter": 15850, "memory": 8703, "step": 15850} +{"lr": 0.00911005072222938, "data_time": 0.007155323028564453, "loss": 0.5149936735630035, "decode.loss_ce": 0.3019541412591934, "decode.acc_seg": 83.12339782714844, "aux.loss_ce": 0.2130395293235779, "aux.acc_seg": 79.20525360107422, "time": 1.1152884244918824, "iter": 15900, "memory": 8702, "step": 15900} +{"lr": 0.009107236986506879, "data_time": 0.007546830177307129, "loss": 0.5091515153646469, "decode.loss_ce": 0.31881840229034425, "decode.acc_seg": 94.52259826660156, "aux.loss_ce": 0.19033310189843178, "aux.acc_seg": 85.41895294189453, "time": 1.1161476135253907, "iter": 15950, "memory": 8703, "step": 15950} +{"lr": 0.009104423153117436, "data_time": 0.009074091911315918, "loss": 0.4317841276526451, "decode.loss_ce": 0.2780620738863945, "decode.acc_seg": 93.07244110107422, "aux.loss_ce": 0.1537220522761345, "aux.acc_seg": 91.17691802978516, "time": 1.1164405345916748, "iter": 16000, "memory": 8702, "step": 16000} +{"aAcc": 90.16, "mIoU": 53.21, "mAcc": 63.09, "data_time": 0.0049295212427775065, "time": 0.2789914229710897, "step": 16000} +{"lr": 0.009101609222023741, "data_time": 0.005840802192687988, "loss": 0.49356108009815214, "decode.loss_ce": 0.2982664853334427, "decode.acc_seg": 88.24081420898438, "aux.loss_ce": 0.19529459103941918, "aux.acc_seg": 81.38592529296875, "time": 1.111287569999695, "iter": 16050, "memory": 8704, "step": 16050} +{"lr": 0.009098795193188468, "data_time": 0.007058405876159668, "loss": 0.4644893631339073, "decode.loss_ce": 0.27834108620882037, "decode.acc_seg": 77.65928649902344, "aux.loss_ce": 0.18614827319979668, "aux.acc_seg": 64.82817077636719, "time": 1.1153173446655273, "iter": 16100, "memory": 8704, "step": 16100} +{"lr": 0.009095981066574266, "data_time": 0.006293034553527832, "loss": 0.40892926007509234, "decode.loss_ce": 0.25705478340387344, "decode.acc_seg": 89.6026611328125, "aux.loss_ce": 0.15187447294592857, "aux.acc_seg": 86.08480834960938, "time": 1.1132972240447998, "iter": 16150, "memory": 8703, "step": 16150} +{"lr": 0.009093166842143736, "data_time": 0.008371543884277344, "loss": 0.6403240323066711, "decode.loss_ce": 0.37975907027721406, "decode.acc_seg": 76.47787475585938, "aux.loss_ce": 0.26056496426463127, "aux.acc_seg": 65.6291275024414, "time": 1.117744469642639, "iter": 16200, "memory": 8704, "step": 16200} +{"lr": 0.009090352519859478, "data_time": 0.006959319114685059, "loss": 0.5368921384215355, "decode.loss_ce": 0.3172251783311367, "decode.acc_seg": 86.53614807128906, "aux.loss_ce": 0.21966695114970208, "aux.acc_seg": 77.94182586669922, "time": 1.11290283203125, "iter": 16250, "memory": 8705, "step": 16250} +{"lr": 0.009087538099684035, "data_time": 0.006885385513305664, "loss": 0.5048981606960297, "decode.loss_ce": 0.30936777740716936, "decode.acc_seg": 93.91218566894531, "aux.loss_ce": 0.19553037658333777, "aux.acc_seg": 92.90682220458984, "time": 1.1177716970443725, "iter": 16300, "memory": 8703, "step": 16300} +{"lr": 0.009084723581579945, "data_time": 0.006053423881530762, "loss": 0.39283458739519117, "decode.loss_ce": 0.2394604504108429, "decode.acc_seg": 94.68230438232422, "aux.loss_ce": 0.1533741384744644, "aux.acc_seg": 84.28349304199219, "time": 1.1142414331436157, "iter": 16350, "memory": 8704, "step": 16350} +{"lr": 0.009081908965509719, "data_time": 0.007089734077453613, "loss": 0.5018170505762101, "decode.loss_ce": 0.3091995924711227, "decode.acc_seg": 93.327392578125, "aux.loss_ce": 0.19261745363473892, "aux.acc_seg": 82.48551177978516, "time": 1.117298173904419, "iter": 16400, "memory": 8704, "step": 16400} +{"lr": 0.009079094251435839, "data_time": 0.007327723503112793, "loss": 0.45868386775255204, "decode.loss_ce": 0.26856538876891134, "decode.acc_seg": 96.61661529541016, "aux.loss_ce": 0.1901184730231762, "aux.acc_seg": 95.36297607421875, "time": 1.1163137435913086, "iter": 16450, "memory": 8703, "step": 16450} +{"lr": 0.009076279439320751, "data_time": 0.006530117988586426, "loss": 0.3987219721078873, "decode.loss_ce": 0.23316237330436707, "decode.acc_seg": 94.85161590576172, "aux.loss_ce": 0.165559596568346, "aux.acc_seg": 93.75038146972656, "time": 1.1120009660720824, "iter": 16500, "memory": 8704, "step": 16500} +{"lr": 0.009073464529126864, "data_time": 0.006114888191223145, "loss": 0.43731539249420165, "decode.loss_ce": 0.2818683758378029, "decode.acc_seg": 92.03096771240234, "aux.loss_ce": 0.15544700622558594, "aux.acc_seg": 91.40421295166016, "time": 1.1158578395843506, "iter": 16550, "memory": 8704, "step": 16550} +{"lr": 0.009070649520816591, "data_time": 0.006390714645385742, "loss": 0.40277871638536455, "decode.loss_ce": 0.25225481316447257, "decode.acc_seg": 92.70025634765625, "aux.loss_ce": 0.1505239024758339, "aux.acc_seg": 89.14820098876953, "time": 1.1158521175384521, "iter": 16600, "memory": 8704, "step": 16600} +{"lr": 0.00906783441435229, "data_time": 0.0067967653274536135, "loss": 0.36284419894218445, "decode.loss_ce": 0.229551200568676, "decode.acc_seg": 84.61100006103516, "aux.loss_ce": 0.13329299539327621, "aux.acc_seg": 83.25525665283203, "time": 1.1192673444747925, "iter": 16650, "memory": 8703, "step": 16650} +{"lr": 0.0090650192096963, "data_time": 0.005441427230834961, "loss": 0.33284172266721723, "decode.loss_ce": 0.20906757414340973, "decode.acc_seg": 95.08234405517578, "aux.loss_ce": 0.12377414405345917, "aux.acc_seg": 93.9102783203125, "time": 1.111599826812744, "iter": 16700, "memory": 8703, "step": 16700} +{"lr": 0.009062203906810944, "data_time": 0.007542252540588379, "loss": 0.451736144721508, "decode.loss_ce": 0.24223122000694275, "decode.acc_seg": 92.24071502685547, "aux.loss_ce": 0.20950492843985558, "aux.acc_seg": 90.04364013671875, "time": 1.1163650751113892, "iter": 16750, "memory": 8703, "step": 16750} +{"lr": 0.009059388505658501, "data_time": 0.006445455551147461, "loss": 0.5985468924045563, "decode.loss_ce": 0.3733271136879921, "decode.acc_seg": 94.99136352539062, "aux.loss_ce": 0.2252197705209255, "aux.acc_seg": 89.03643035888672, "time": 1.1183408498764038, "iter": 16800, "memory": 8704, "step": 16800} +{"lr": 0.009056573006201225, "data_time": 0.008534884452819825, "loss": 0.4165379673242569, "decode.loss_ce": 0.2602334603667259, "decode.acc_seg": 92.40404510498047, "aux.loss_ce": 0.15630450919270517, "aux.acc_seg": 91.2923812866211, "time": 1.1160056829452514, "iter": 16850, "memory": 8703, "step": 16850} +{"lr": 0.009053757408401353, "data_time": 0.00805211067199707, "loss": 0.4294134914875031, "decode.loss_ce": 0.26587042957544327, "decode.acc_seg": 96.11506652832031, "aux.loss_ce": 0.1635430634021759, "aux.acc_seg": 92.65135955810547, "time": 1.1190897703170777, "iter": 16900, "memory": 8703, "step": 16900} +{"lr": 0.009050941712221082, "data_time": 0.006062364578247071, "loss": 0.6164124727249145, "decode.loss_ce": 0.3740378201007843, "decode.acc_seg": 94.73706817626953, "aux.loss_ce": 0.24237466007471084, "aux.acc_seg": 92.50971984863281, "time": 1.1102101802825928, "iter": 16950, "memory": 8704, "step": 16950} +{"lr": 0.009048125917622572, "data_time": 0.006948542594909668, "loss": 0.4938255727291107, "decode.loss_ce": 0.31223582327365873, "decode.acc_seg": 90.82215118408203, "aux.loss_ce": 0.18158975765109062, "aux.acc_seg": 91.25537872314453, "time": 1.1152781009674073, "iter": 17000, "memory": 8703, "step": 17000} +{"lr": 0.009045310024567993, "data_time": 0.007576417922973633, "loss": 0.5329630970954895, "decode.loss_ce": 0.3459595702588558, "decode.acc_seg": 84.2304458618164, "aux.loss_ce": 0.18700352758169175, "aux.acc_seg": 82.08383178710938, "time": 1.114838433265686, "iter": 17050, "memory": 8704, "step": 17050} +{"lr": 0.009042494033019448, "data_time": 0.007206487655639649, "loss": 0.45201258063316346, "decode.loss_ce": 0.2919904850423336, "decode.acc_seg": 94.61237335205078, "aux.loss_ce": 0.160022097453475, "aux.acc_seg": 92.43538665771484, "time": 1.1164466381072997, "iter": 17100, "memory": 8705, "step": 17100} +{"lr": 0.009039677942939039, "data_time": 0.00779731273651123, "loss": 0.4452218621969223, "decode.loss_ce": 0.2725320100784302, "decode.acc_seg": 91.79083251953125, "aux.loss_ce": 0.17268984988331795, "aux.acc_seg": 85.40401458740234, "time": 1.117912220954895, "iter": 17150, "memory": 8704, "step": 17150} +{"lr": 0.00903686175428882, "data_time": 0.008739471435546875, "loss": 0.5278814643621444, "decode.loss_ce": 0.32801605239510534, "decode.acc_seg": 94.74156188964844, "aux.loss_ce": 0.1998654067516327, "aux.acc_seg": 87.78196716308594, "time": 1.1188556909561158, "iter": 17200, "memory": 8705, "step": 17200} +{"lr": 0.00903404546703082, "data_time": 0.00651552677154541, "loss": 0.6425197958946228, "decode.loss_ce": 0.3992703005671501, "decode.acc_seg": 85.25887298583984, "aux.loss_ce": 0.2432494968175888, "aux.acc_seg": 75.53562927246094, "time": 1.1133297443389893, "iter": 17250, "memory": 8703, "step": 17250} +{"lr": 0.009031229081127051, "data_time": 0.006471848487854004, "loss": 0.45500319451093674, "decode.loss_ce": 0.2938830129802227, "decode.acc_seg": 84.76377868652344, "aux.loss_ce": 0.16112018674612044, "aux.acc_seg": 80.1492691040039, "time": 1.1139323949813842, "iter": 17300, "memory": 8704, "step": 17300} +{"lr": 0.009028412596539501, "data_time": 0.00722200870513916, "loss": 0.5628548055887223, "decode.loss_ce": 0.36150490418076514, "decode.acc_seg": 89.63260650634766, "aux.loss_ce": 0.201349900662899, "aux.acc_seg": 86.34281158447266, "time": 1.117020034790039, "iter": 17350, "memory": 8703, "step": 17350} +{"lr": 0.009025596013230117, "data_time": 0.006675601005554199, "loss": 0.5762740671634674, "decode.loss_ce": 0.35740154683589936, "decode.acc_seg": 86.01143646240234, "aux.loss_ce": 0.21887252554297448, "aux.acc_seg": 87.30665588378906, "time": 1.1136360168457031, "iter": 17400, "memory": 8703, "step": 17400} +{"lr": 0.009022779331160807, "data_time": 0.007066106796264649, "loss": 0.4368675768375397, "decode.loss_ce": 0.2609493777155876, "decode.acc_seg": 88.85269165039062, "aux.loss_ce": 0.17591819316148757, "aux.acc_seg": 88.02452087402344, "time": 1.1191304206848145, "iter": 17450, "memory": 8704, "step": 17450} +{"lr": 0.009019962550293479, "data_time": 0.007723474502563476, "loss": 0.5702316462993622, "decode.loss_ce": 0.3528919517993927, "decode.acc_seg": 68.96247863769531, "aux.loss_ce": 0.21733968928456307, "aux.acc_seg": 64.42737579345703, "time": 1.117259407043457, "iter": 17500, "memory": 8703, "step": 17500} +{"lr": 0.009017145670590003, "data_time": 0.005647206306457519, "loss": 0.433365073800087, "decode.loss_ce": 0.27094159722328187, "decode.acc_seg": 93.21918487548828, "aux.loss_ce": 0.16242347583174704, "aux.acc_seg": 90.36451721191406, "time": 1.113163685798645, "iter": 17550, "memory": 8704, "step": 17550} +{"lr": 0.00901432869201221, "data_time": 0.00626063346862793, "loss": 0.43366248309612276, "decode.loss_ce": 0.26286440938711164, "decode.acc_seg": 93.59304809570312, "aux.loss_ce": 0.17079806327819824, "aux.acc_seg": 89.79541778564453, "time": 1.1456792831420899, "iter": 17600, "memory": 8703, "step": 17600} +{"lr": 0.009011511614521923, "data_time": 0.005550909042358399, "loss": 0.48182413876056673, "decode.loss_ce": 0.2926999792456627, "decode.acc_seg": 86.43461608886719, "aux.loss_ce": 0.18912415727972984, "aux.acc_seg": 76.96259307861328, "time": 1.3759926795959472, "iter": 17650, "memory": 8703, "step": 17650} +{"lr": 0.009008694438080906, "data_time": 0.007473564147949219, "loss": 0.40074732303619387, "decode.loss_ce": 0.23296139761805534, "decode.acc_seg": 94.06281280517578, "aux.loss_ce": 0.1677859291434288, "aux.acc_seg": 93.78492736816406, "time": 1.3811373710632324, "iter": 17700, "memory": 8703, "step": 17700} +{"lr": 0.009005877162650926, "data_time": 0.007287287712097168, "loss": 0.4699386924505234, "decode.loss_ce": 0.30974355936050413, "decode.acc_seg": 94.41642761230469, "aux.loss_ce": 0.16019512787461282, "aux.acc_seg": 93.36687469482422, "time": 1.3839998722076416, "iter": 17750, "memory": 8704, "step": 17750} +{"lr": 0.009003059788193712, "data_time": 0.006829953193664551, "loss": 0.6556176394224167, "decode.loss_ce": 0.4005169704556465, "decode.acc_seg": 95.87776947021484, "aux.loss_ce": 0.2551006741821766, "aux.acc_seg": 93.68412780761719, "time": 1.3873322010040283, "iter": 17800, "memory": 8703, "step": 17800} +{"lr": 0.009000242314670946, "data_time": 0.005456614494323731, "loss": 0.5582735985517502, "decode.loss_ce": 0.3808730930089951, "decode.acc_seg": 91.52145385742188, "aux.loss_ce": 0.17740050628781318, "aux.acc_seg": 90.39141082763672, "time": 1.3799763679504395, "iter": 17850, "memory": 8703, "step": 17850} +{"lr": 0.008997424742044308, "data_time": 0.006537985801696777, "loss": 0.5058923482894897, "decode.loss_ce": 0.308250130712986, "decode.acc_seg": 93.15464782714844, "aux.loss_ce": 0.1976422116160393, "aux.acc_seg": 83.9005126953125, "time": 1.3841721534729003, "iter": 17900, "memory": 8703, "step": 17900} +{"lr": 0.008994607070275435, "data_time": 0.007139968872070313, "loss": 0.4740634083747864, "decode.loss_ce": 0.2900299489498138, "decode.acc_seg": 91.55260467529297, "aux.loss_ce": 0.18403345644474028, "aux.acc_seg": 91.98258209228516, "time": 1.3908138036727906, "iter": 17950, "memory": 8704, "step": 17950} +{"lr": 0.008991789299325946, "data_time": 0.006151437759399414, "loss": 0.4719622313976288, "decode.loss_ce": 0.3004835218191147, "decode.acc_seg": 92.36869812011719, "aux.loss_ce": 0.17147871032357215, "aux.acc_seg": 91.22085571289062, "time": 1.3100159883499145, "iter": 18000, "memory": 8703, "step": 18000} +{"lr": 0.008988971429157418, "data_time": 0.0078033447265625, "loss": 0.4765422195196152, "decode.loss_ce": 0.30809461027383805, "decode.acc_seg": 90.42485046386719, "aux.loss_ce": 0.16844760328531266, "aux.acc_seg": 88.79483032226562, "time": 1.1219080924987792, "iter": 18050, "memory": 8703, "step": 18050} +{"lr": 0.008986153459731406, "data_time": 0.007851505279541015, "loss": 0.5135627239942551, "decode.loss_ce": 0.3050330102443695, "decode.acc_seg": 86.81513214111328, "aux.loss_ce": 0.2085297055542469, "aux.acc_seg": 74.88237762451172, "time": 1.1175959348678588, "iter": 18100, "memory": 8704, "step": 18100} +{"lr": 0.008983335391009447, "data_time": 0.007324743270874024, "loss": 0.6414234042167664, "decode.loss_ce": 0.39811464101076127, "decode.acc_seg": 88.46517944335938, "aux.loss_ce": 0.24330876767635345, "aux.acc_seg": 76.30424499511719, "time": 1.1183448076248168, "iter": 18150, "memory": 8704, "step": 18150} +{"lr": 0.008980517222953042, "data_time": 0.006078672409057617, "loss": 0.4094185188412666, "decode.loss_ce": 0.2513494461774826, "decode.acc_seg": 93.66626739501953, "aux.loss_ce": 0.15806906074285507, "aux.acc_seg": 88.06991577148438, "time": 1.115871047973633, "iter": 18200, "memory": 8703, "step": 18200} +{"lr": 0.008977698955523646, "data_time": 0.005915713310241699, "loss": 0.3986060231924057, "decode.loss_ce": 0.24622855037450792, "decode.acc_seg": 94.52037811279297, "aux.loss_ce": 0.15237746611237526, "aux.acc_seg": 92.8721694946289, "time": 1.117281985282898, "iter": 18250, "memory": 8704, "step": 18250} +{"lr": 0.008974880588682708, "data_time": 0.006439924240112305, "loss": 0.5935043618083, "decode.loss_ce": 0.3665410168468952, "decode.acc_seg": 77.63070678710938, "aux.loss_ce": 0.22696334682404995, "aux.acc_seg": 69.03523254394531, "time": 1.1178545713424684, "iter": 18300, "memory": 8704, "step": 18300} +{"lr": 0.00897206212239165, "data_time": 0.007837128639221192, "loss": 0.4418760806322098, "decode.loss_ce": 0.27504844665527345, "decode.acc_seg": 93.45677947998047, "aux.loss_ce": 0.16682762354612352, "aux.acc_seg": 89.48938751220703, "time": 1.1177461624145508, "iter": 18350, "memory": 8705, "step": 18350} +{"lr": 0.00896924355661184, "data_time": 0.006958413124084473, "loss": 0.43263457119464876, "decode.loss_ce": 0.267376521229744, "decode.acc_seg": 91.88286590576172, "aux.loss_ce": 0.16525805070996286, "aux.acc_seg": 90.88104248046875, "time": 1.1180638790130615, "iter": 18400, "memory": 8704, "step": 18400} +{"lr": 0.008966424891304652, "data_time": 0.005948185920715332, "loss": 0.5841435641050339, "decode.loss_ce": 0.3557630643248558, "decode.acc_seg": 80.83921813964844, "aux.loss_ce": 0.22838049978017808, "aux.acc_seg": 76.39910125732422, "time": 1.1104700088500976, "iter": 18450, "memory": 8703, "step": 18450} +{"lr": 0.008963606126431399, "data_time": 0.006908059120178223, "loss": 0.44824138581752776, "decode.loss_ce": 0.2796717256307602, "decode.acc_seg": 82.47425842285156, "aux.loss_ce": 0.16856966242194177, "aux.acc_seg": 73.19296264648438, "time": 1.1140426635742187, "iter": 18500, "memory": 8704, "step": 18500} +{"lr": 0.008960787261953387, "data_time": 0.005720400810241699, "loss": 0.39918783605098723, "decode.loss_ce": 0.23712175711989403, "decode.acc_seg": 94.05218505859375, "aux.loss_ce": 0.1620660737156868, "aux.acc_seg": 91.83197021484375, "time": 1.110255527496338, "iter": 18550, "memory": 8704, "step": 18550} +{"lr": 0.008957968297831877, "data_time": 0.008874225616455077, "loss": 0.6493750512599945, "decode.loss_ce": 0.41491765677928927, "decode.acc_seg": 80.20165252685547, "aux.loss_ce": 0.23445739969611168, "aux.acc_seg": 72.55642700195312, "time": 1.1204776525497437, "iter": 18600, "memory": 8704, "step": 18600} +{"lr": 0.008955149234028115, "data_time": 0.007323694229125976, "loss": 0.5554096579551697, "decode.loss_ce": 0.3404073178768158, "decode.acc_seg": 71.0694580078125, "aux.loss_ce": 0.21500233113765715, "aux.acc_seg": 63.348323822021484, "time": 1.1129663467407227, "iter": 18650, "memory": 8704, "step": 18650} +{"lr": 0.008952330070503316, "data_time": 0.007650232315063477, "loss": 0.34731018990278245, "decode.loss_ce": 0.20000040233135224, "decode.acc_seg": 96.12686920166016, "aux.loss_ce": 0.14730978533625602, "aux.acc_seg": 93.8323974609375, "time": 1.1174983739852906, "iter": 18700, "memory": 8703, "step": 18700} +{"lr": 0.008949510807218663, "data_time": 0.006371545791625977, "loss": 0.6791111350059509, "decode.loss_ce": 0.44333305209875107, "decode.acc_seg": 91.62654876708984, "aux.loss_ce": 0.23577806800603868, "aux.acc_seg": 78.59986114501953, "time": 1.1142287015914918, "iter": 18750, "memory": 8704, "step": 18750} +{"lr": 0.008946691444135313, "data_time": 0.009009838104248047, "loss": 0.40423144698143004, "decode.loss_ce": 0.2570027455687523, "decode.acc_seg": 95.20085144042969, "aux.loss_ce": 0.14722870141267777, "aux.acc_seg": 93.1497573852539, "time": 1.118785309791565, "iter": 18800, "memory": 8704, "step": 18800} +{"lr": 0.008943871981214387, "data_time": 0.006392049789428711, "loss": 0.42367222607135774, "decode.loss_ce": 0.2601883873343468, "decode.acc_seg": 94.48583221435547, "aux.loss_ce": 0.1634838454425335, "aux.acc_seg": 93.42156982421875, "time": 1.1146864652633668, "iter": 18850, "memory": 8704, "step": 18850} +{"lr": 0.008941052418416988, "data_time": 0.0063805818557739254, "loss": 0.578126847743988, "decode.loss_ce": 0.3670529618859291, "decode.acc_seg": 86.1527099609375, "aux.loss_ce": 0.2110738970339298, "aux.acc_seg": 87.06810760498047, "time": 1.116464877128601, "iter": 18900, "memory": 8703, "step": 18900} +{"lr": 0.00893823275570418, "data_time": 0.006720638275146485, "loss": 0.6003365218639374, "decode.loss_ce": 0.3756480783224106, "decode.acc_seg": 91.02604675292969, "aux.loss_ce": 0.22468844801187515, "aux.acc_seg": 88.82839965820312, "time": 1.1166514158248901, "iter": 18950, "memory": 8704, "step": 18950} +{"lr": 0.008935412993037, "data_time": 0.00781576633453369, "loss": 0.5397396117448807, "decode.loss_ce": 0.339569965004921, "decode.acc_seg": 91.0859375, "aux.loss_ce": 0.20016965493559838, "aux.acc_seg": 90.19367980957031, "time": 1.1211984872817993, "iter": 19000, "memory": 8703, "step": 19000} +{"lr": 0.008932593130376464, "data_time": 0.006404900550842285, "loss": 0.4687305837869644, "decode.loss_ce": 0.2944225609302521, "decode.acc_seg": 90.26451110839844, "aux.loss_ce": 0.17430801391601564, "aux.acc_seg": 88.04193878173828, "time": 1.115625, "iter": 19050, "memory": 8703, "step": 19050} +{"lr": 0.008929773167683551, "data_time": 0.005877375602722168, "loss": 0.5437497198581696, "decode.loss_ce": 0.3315655097365379, "decode.acc_seg": 92.0542984008789, "aux.loss_ce": 0.21218420267105104, "aux.acc_seg": 90.33393859863281, "time": 1.1378760576248168, "iter": 19100, "memory": 8703, "step": 19100} +{"lr": 0.008926953104919212, "data_time": 0.007099056243896484, "loss": 0.5942359611392021, "decode.loss_ce": 0.38746880143880846, "decode.acc_seg": 91.87138366699219, "aux.loss_ce": 0.20676715523004532, "aux.acc_seg": 86.54206085205078, "time": 1.1366451740264893, "iter": 19150, "memory": 8703, "step": 19150} +{"lr": 0.008924132942044374, "data_time": 0.00697021484375, "loss": 0.42366923987865446, "decode.loss_ce": 0.2588881000876427, "decode.acc_seg": 86.82161712646484, "aux.loss_ce": 0.1647811435163021, "aux.acc_seg": 85.56263732910156, "time": 1.116335654258728, "iter": 19200, "memory": 8704, "step": 19200} +{"lr": 0.008921312679019923, "data_time": 0.007040190696716309, "loss": 0.37801084518432615, "decode.loss_ce": 0.23230923488736152, "decode.acc_seg": 92.58295440673828, "aux.loss_ce": 0.14570161178708077, "aux.acc_seg": 90.92597961425781, "time": 1.1453327417373658, "iter": 19250, "memory": 8703, "step": 19250} +{"lr": 0.008918492315806726, "data_time": 0.007810187339782715, "loss": 0.42902161180973053, "decode.loss_ce": 0.2752377539873123, "decode.acc_seg": 86.84864044189453, "aux.loss_ce": 0.1537838600575924, "aux.acc_seg": 85.0566177368164, "time": 1.1408723592758179, "iter": 19300, "memory": 8704, "step": 19300} +{"lr": 0.008915671852365617, "data_time": 0.007949757575988769, "loss": 0.4191231444478035, "decode.loss_ce": 0.26818266585469247, "decode.acc_seg": 89.73699951171875, "aux.loss_ce": 0.15094048231840135, "aux.acc_seg": 84.12939453125, "time": 1.121286392211914, "iter": 19350, "memory": 8704, "step": 19350} +{"lr": 0.008912851288657415, "data_time": 0.008214163780212402, "loss": 0.37122699022293093, "decode.loss_ce": 0.21603649333119393, "decode.acc_seg": 95.64564514160156, "aux.loss_ce": 0.15519049987196923, "aux.acc_seg": 92.01653289794922, "time": 1.1181955814361573, "iter": 19400, "memory": 8703, "step": 19400} +{"lr": 0.008910030624642882, "data_time": 0.00595240592956543, "loss": 0.3401381358504295, "decode.loss_ce": 0.19882936775684357, "decode.acc_seg": 93.32332611083984, "aux.loss_ce": 0.14130876250565053, "aux.acc_seg": 92.9738998413086, "time": 1.112994408607483, "iter": 19450, "memory": 8703, "step": 19450} +{"lr": 0.008907209860282773, "data_time": 0.007133984565734863, "loss": 0.49245248138904574, "decode.loss_ce": 0.2986893028020859, "decode.acc_seg": 92.81623840332031, "aux.loss_ce": 0.1937631756067276, "aux.acc_seg": 93.19346618652344, "time": 1.1374662399291993, "iter": 19500, "memory": 8704, "step": 19500} +{"lr": 0.008904388995537802, "data_time": 0.007373356819152832, "loss": 0.5133101537823677, "decode.loss_ce": 0.31056528463959693, "decode.acc_seg": 78.97777557373047, "aux.loss_ce": 0.20274486541748046, "aux.acc_seg": 71.61197662353516, "time": 1.1307312488555907, "iter": 19550, "memory": 8703, "step": 19550} +{"lr": 0.008901568030368656, "data_time": 0.007547211647033691, "loss": 0.6202882200479507, "decode.loss_ce": 0.3963042214512825, "decode.acc_seg": 84.63420867919922, "aux.loss_ce": 0.2239839881658554, "aux.acc_seg": 85.06107330322266, "time": 1.1348708391189575, "iter": 19600, "memory": 8703, "step": 19600} +{"lr": 0.008898746964735988, "data_time": 0.006503462791442871, "loss": 0.5288215786218643, "decode.loss_ce": 0.33227025121450426, "decode.acc_seg": 91.68573760986328, "aux.loss_ce": 0.1965513199567795, "aux.acc_seg": 87.53706359863281, "time": 1.1183479070663451, "iter": 19650, "memory": 8703, "step": 19650} +{"lr": 0.008895925798600443, "data_time": 0.007443070411682129, "loss": 0.5926656305789948, "decode.loss_ce": 0.38038079589605334, "decode.acc_seg": 83.86128234863281, "aux.loss_ce": 0.21228483468294143, "aux.acc_seg": 82.05654907226562, "time": 1.1392313957214355, "iter": 19700, "memory": 8704, "step": 19700} +{"lr": 0.008893104531922607, "data_time": 0.006780266761779785, "loss": 0.48789052516222, "decode.loss_ce": 0.28932332396507265, "decode.acc_seg": 91.75192260742188, "aux.loss_ce": 0.19856720194220542, "aux.acc_seg": 88.77487182617188, "time": 1.111655592918396, "iter": 19750, "memory": 8703, "step": 19750} +{"lr": 0.008890283164663063, "data_time": 0.008321809768676757, "loss": 0.5143593281507493, "decode.loss_ce": 0.3219002649188042, "decode.acc_seg": 83.99732208251953, "aux.loss_ce": 0.19245907217264174, "aux.acc_seg": 91.37091827392578, "time": 1.1206731081008912, "iter": 19800, "memory": 8703, "step": 19800} +{"lr": 0.008887461696782348, "data_time": 0.005146598815917969, "loss": 0.47169066667556764, "decode.loss_ce": 0.29940373450517654, "decode.acc_seg": 87.10562133789062, "aux.loss_ce": 0.17228693664073944, "aux.acc_seg": 76.60446166992188, "time": 1.1768483161926269, "iter": 19850, "memory": 8704, "step": 19850} +{"lr": 0.008884640128240976, "data_time": 0.005855250358581543, "loss": 0.4747125878930092, "decode.loss_ce": 0.2983726039528847, "decode.acc_seg": 87.90435791015625, "aux.loss_ce": 0.17633998095989228, "aux.acc_seg": 82.03016662597656, "time": 1.1738210916519165, "iter": 19900, "memory": 8703, "step": 19900} +{"lr": 0.008881818458999428, "data_time": 0.006769227981567383, "loss": 0.38878934234380724, "decode.loss_ce": 0.23433101177215576, "decode.acc_seg": 87.48480224609375, "aux.loss_ce": 0.15445833280682564, "aux.acc_seg": 84.20072937011719, "time": 1.146481204032898, "iter": 19950, "memory": 8704, "step": 19950} +{"lr": 0.008878996689018148, "data_time": 0.007897591590881348, "loss": 0.3583577945828438, "decode.loss_ce": 0.23226672708988189, "decode.acc_seg": 94.02881622314453, "aux.loss_ce": 0.12609106451272964, "aux.acc_seg": 93.828369140625, "time": 1.178060531616211, "iter": 20000, "memory": 8703, "step": 20000} +{"lr": 0.008876174818257565, "data_time": 0.005441188812255859, "loss": 0.5267789661884308, "decode.loss_ce": 0.33374912291765213, "decode.acc_seg": 97.08908081054688, "aux.loss_ce": 0.19302984774112703, "aux.acc_seg": 91.69217681884766, "time": 1.1145351886749268, "iter": 20050, "memory": 8703, "step": 20050} +{"lr": 0.008873352846678081, "data_time": 0.006990504264831543, "loss": 0.4823610633611679, "decode.loss_ce": 0.2902185767889023, "decode.acc_seg": 89.42794799804688, "aux.loss_ce": 0.19214249029755592, "aux.acc_seg": 83.7240219116211, "time": 1.192627215385437, "iter": 20100, "memory": 8704, "step": 20100} +{"lr": 0.008870530774240042, "data_time": 0.0068190574645996095, "loss": 0.4834062933921814, "decode.loss_ce": 0.309141643345356, "decode.acc_seg": 85.09464263916016, "aux.loss_ce": 0.17426464706659317, "aux.acc_seg": 77.58775329589844, "time": 1.1205604314804076, "iter": 20150, "memory": 8703, "step": 20150} +{"lr": 0.0088677086009038, "data_time": 0.007463645935058594, "loss": 0.5720330476760864, "decode.loss_ce": 0.34200184792280197, "decode.acc_seg": 94.2530288696289, "aux.loss_ce": 0.2300311978906393, "aux.acc_seg": 92.13002014160156, "time": 1.1442447423934936, "iter": 20200, "memory": 8703, "step": 20200} +{"lr": 0.008864886326629667, "data_time": 0.006146025657653808, "loss": 0.5760990172624588, "decode.loss_ce": 0.361002242565155, "decode.acc_seg": 94.56354522705078, "aux.loss_ce": 0.21509676575660705, "aux.acc_seg": 88.64078521728516, "time": 1.116960048675537, "iter": 20250, "memory": 8703, "step": 20250} +{"lr": 0.008862063951377886, "data_time": 0.007631516456604004, "loss": 0.5224067866802216, "decode.loss_ce": 0.3230124175548553, "decode.acc_seg": 85.6695785522461, "aux.loss_ce": 0.1993943676352501, "aux.acc_seg": 78.07331085205078, "time": 1.1152904272079467, "iter": 20300, "memory": 8703, "step": 20300} +{"lr": 0.008859241475108715, "data_time": 0.005748295783996582, "loss": 0.44271548837423325, "decode.loss_ce": 0.2716809809207916, "decode.acc_seg": 80.4697036743164, "aux.loss_ce": 0.1710345044732094, "aux.acc_seg": 71.6461181640625, "time": 1.247141456604004, "iter": 20350, "memory": 8704, "step": 20350} +{"lr": 0.008856418897782374, "data_time": 0.0060215950012207035, "loss": 0.5026893660426139, "decode.loss_ce": 0.3191206306219101, "decode.acc_seg": 77.6358871459961, "aux.loss_ce": 0.18356873840093613, "aux.acc_seg": 72.68943786621094, "time": 1.18922860622406, "iter": 20400, "memory": 8703, "step": 20400} +{"lr": 0.008853596219359047, "data_time": 0.005582857131958008, "loss": 0.5170647725462914, "decode.loss_ce": 0.2936080813407898, "decode.acc_seg": 96.21956634521484, "aux.loss_ce": 0.2234566815197468, "aux.acc_seg": 93.82553100585938, "time": 1.2006842136383056, "iter": 20450, "memory": 8703, "step": 20450} +{"lr": 0.00885077343979889, "data_time": 0.005998373031616211, "loss": 0.32127045691013334, "decode.loss_ce": 0.18395551145076752, "decode.acc_seg": 93.85337829589844, "aux.loss_ce": 0.13731494396924973, "aux.acc_seg": 82.18765258789062, "time": 1.2811702966690064, "iter": 20500, "memory": 8703, "step": 20500} +{"lr": 0.008847950559062014, "data_time": 0.0076381444931030275, "loss": 0.3261154472827911, "decode.loss_ce": 0.1999855101108551, "decode.acc_seg": 96.61032104492188, "aux.loss_ce": 0.12612993717193605, "aux.acc_seg": 95.67762756347656, "time": 1.2418486833572389, "iter": 20550, "memory": 8703, "step": 20550} +{"lr": 0.008845127577108527, "data_time": 0.006217336654663086, "loss": 0.47141638249158857, "decode.loss_ce": 0.29910560697317123, "decode.acc_seg": 90.50689697265625, "aux.loss_ce": 0.17231076620519162, "aux.acc_seg": 88.08344268798828, "time": 1.116132426261902, "iter": 20600, "memory": 8704, "step": 20600} +{"lr": 0.00884230449389849, "data_time": 0.006976819038391114, "loss": 0.4405779168009758, "decode.loss_ce": 0.28459382727742194, "decode.acc_seg": 88.11283111572266, "aux.loss_ce": 0.1559840939939022, "aux.acc_seg": 82.61419677734375, "time": 1.1228436470031737, "iter": 20650, "memory": 8703, "step": 20650} +{"lr": 0.008839481309391932, "data_time": 0.005748939514160156, "loss": 0.5013420701026916, "decode.loss_ce": 0.3105258598923683, "decode.acc_seg": 83.99486541748047, "aux.loss_ce": 0.19081620648503303, "aux.acc_seg": 65.81356811523438, "time": 1.1104207277297973, "iter": 20700, "memory": 8704, "step": 20700} +{"lr": 0.00883665802354886, "data_time": 0.007330894470214844, "loss": 0.4800908133387566, "decode.loss_ce": 0.28008433878421785, "decode.acc_seg": 87.21688079833984, "aux.loss_ce": 0.20000647902488708, "aux.acc_seg": 77.51648712158203, "time": 1.1183944702148438, "iter": 20750, "memory": 8703, "step": 20750} +{"lr": 0.00883383463632925, "data_time": 0.006717562675476074, "loss": 0.421191032230854, "decode.loss_ce": 0.24702921137213707, "decode.acc_seg": 95.77719116210938, "aux.loss_ce": 0.17416182421147824, "aux.acc_seg": 94.98831176757812, "time": 1.2670159578323363, "iter": 20800, "memory": 8704, "step": 20800} +{"lr": 0.008831011147693042, "data_time": 0.0058737039566040036, "loss": 0.44816760122776034, "decode.loss_ce": 0.28210027813911437, "decode.acc_seg": 93.32669067382812, "aux.loss_ce": 0.16606732383370398, "aux.acc_seg": 79.55423736572266, "time": 1.116664719581604, "iter": 20850, "memory": 8704, "step": 20850} +{"lr": 0.008828187557600163, "data_time": 0.007396388053894043, "loss": 0.5320831030607224, "decode.loss_ce": 0.33312715739011767, "decode.acc_seg": 75.99989318847656, "aux.loss_ce": 0.19895594306290149, "aux.acc_seg": 69.18315887451172, "time": 1.1183258533477782, "iter": 20900, "memory": 8704, "step": 20900} +{"lr": 0.008825363866010483, "data_time": 0.008738875389099121, "loss": 0.5216119527816773, "decode.loss_ce": 0.32566282749176023, "decode.acc_seg": 92.63553619384766, "aux.loss_ce": 0.19594912678003312, "aux.acc_seg": 85.40884399414062, "time": 1.1195387363433837, "iter": 20950, "memory": 8704, "step": 20950} +{"lr": 0.008822540072883857, "data_time": 0.006159448623657226, "loss": 0.42675704061985015, "decode.loss_ce": 0.26986208483576773, "decode.acc_seg": 92.96315002441406, "aux.loss_ce": 0.15689495354890823, "aux.acc_seg": 93.3527603149414, "time": 1.1137331247329711, "iter": 21000, "memory": 8703, "step": 21000} +{"lr": 0.008819716178180111, "data_time": 0.005717778205871582, "loss": 0.46236023008823396, "decode.loss_ce": 0.2646774768829346, "decode.acc_seg": 96.23673248291016, "aux.loss_ce": 0.19768275320529938, "aux.acc_seg": 94.78619384765625, "time": 1.1192569017410279, "iter": 21050, "memory": 8705, "step": 21050} +{"lr": 0.008816892181859026, "data_time": 0.00501093864440918, "loss": 0.40498937368392945, "decode.loss_ce": 0.2559616707265377, "decode.acc_seg": 80.1534652709961, "aux.loss_ce": 0.14902770034968854, "aux.acc_seg": 88.34171295166016, "time": 1.1152191162109375, "iter": 21100, "memory": 8703, "step": 21100} +{"lr": 0.008814068083880374, "data_time": 0.008359289169311524, "loss": 0.46372117698192594, "decode.loss_ce": 0.29683865159749984, "decode.acc_seg": 95.7103042602539, "aux.loss_ce": 0.1668825276196003, "aux.acc_seg": 94.64142608642578, "time": 1.1169433116912841, "iter": 21150, "memory": 8704, "step": 21150} +{"lr": 0.008811243884203897, "data_time": 0.007420730590820312, "loss": 0.3595054715871811, "decode.loss_ce": 0.2176773026585579, "decode.acc_seg": 85.53911590576172, "aux.loss_ce": 0.14182816222310066, "aux.acc_seg": 81.33684539794922, "time": 1.1199150085449219, "iter": 21200, "memory": 8705, "step": 21200} +{"lr": 0.00880841958278929, "data_time": 0.006562352180480957, "loss": 0.5541867464780807, "decode.loss_ce": 0.3475810378789902, "decode.acc_seg": 88.82981872558594, "aux.loss_ce": 0.20660570859909058, "aux.acc_seg": 84.7334213256836, "time": 1.1165242195129395, "iter": 21250, "memory": 8704, "step": 21250} +{"lr": 0.00880559517959621, "data_time": 0.0076315879821777345, "loss": 0.49316523373126986, "decode.loss_ce": 0.31203126460313796, "decode.acc_seg": 76.0721206665039, "aux.loss_ce": 0.18113396987318992, "aux.acc_seg": 73.2564926147461, "time": 1.1196701526641846, "iter": 21300, "memory": 8704, "step": 21300} +{"lr": 0.008802770674584312, "data_time": 0.006883645057678222, "loss": 0.5355828836560249, "decode.loss_ce": 0.3395624436438084, "decode.acc_seg": 79.1092529296875, "aux.loss_ce": 0.196020445227623, "aux.acc_seg": 72.74055480957031, "time": 1.1173252582550048, "iter": 21350, "memory": 8704, "step": 21350} +{"lr": 0.008799946067713196, "data_time": 0.008840799331665039, "loss": 0.6166656613349915, "decode.loss_ce": 0.3764959618449211, "decode.acc_seg": 75.17051696777344, "aux.loss_ce": 0.2401696965098381, "aux.acc_seg": 69.53678131103516, "time": 1.1196139812469483, "iter": 21400, "memory": 8703, "step": 21400} +{"lr": 0.008797121358942448, "data_time": 0.006433463096618653, "loss": 0.5586403042078019, "decode.loss_ce": 0.36826200038194656, "decode.acc_seg": 93.24411010742188, "aux.loss_ce": 0.1903783019632101, "aux.acc_seg": 87.21040344238281, "time": 1.1151934385299682, "iter": 21450, "memory": 8704, "step": 21450} +{"lr": 0.00879429654823161, "data_time": 0.007290053367614746, "loss": 0.5628921777009964, "decode.loss_ce": 0.36809505969285966, "decode.acc_seg": 96.16404724121094, "aux.loss_ce": 0.19479711949825287, "aux.acc_seg": 94.73358154296875, "time": 1.1164183616638184, "iter": 21500, "memory": 8704, "step": 21500} +{"lr": 0.008791471635540197, "data_time": 0.00622107982635498, "loss": 0.4261042237281799, "decode.loss_ce": 0.2614313423633575, "decode.acc_seg": 92.85099792480469, "aux.loss_ce": 0.16467288434505462, "aux.acc_seg": 82.88542175292969, "time": 1.1172107458114624, "iter": 21550, "memory": 8703, "step": 21550} +{"lr": 0.008788646620827708, "data_time": 0.0074158191680908205, "loss": 0.5687727928161621, "decode.loss_ce": 0.3364497050642967, "decode.acc_seg": 93.54845428466797, "aux.loss_ce": 0.2323230892419815, "aux.acc_seg": 85.832275390625, "time": 1.1204041957855224, "iter": 21600, "memory": 8704, "step": 21600} +{"lr": 0.008785821504053593, "data_time": 0.007739567756652832, "loss": 0.5198718532919884, "decode.loss_ce": 0.33987817764282224, "decode.acc_seg": 95.65766143798828, "aux.loss_ce": 0.17999368011951447, "aux.acc_seg": 95.25184631347656, "time": 1.1148754596710204, "iter": 21650, "memory": 8703, "step": 21650} +{"lr": 0.008782996285177275, "data_time": 0.005331707000732422, "loss": 0.4082928314805031, "decode.loss_ce": 0.25908539444208145, "decode.acc_seg": 95.4092025756836, "aux.loss_ce": 0.14920743480324744, "aux.acc_seg": 94.12117004394531, "time": 1.1146405220031739, "iter": 21700, "memory": 8703, "step": 21700} +{"lr": 0.008780170964158156, "data_time": 0.005620551109313965, "loss": 0.6018950343132019, "decode.loss_ce": 0.3549399241805077, "decode.acc_seg": 76.27684020996094, "aux.loss_ce": 0.2469551257789135, "aux.acc_seg": 55.84398651123047, "time": 1.1115005254745483, "iter": 21750, "memory": 8704, "step": 21750} +{"lr": 0.008777345540955595, "data_time": 0.005617570877075195, "loss": 0.6218745782971382, "decode.loss_ce": 0.41022854298353195, "decode.acc_seg": 91.0462646484375, "aux.loss_ce": 0.21164602488279344, "aux.acc_seg": 90.6942367553711, "time": 1.1110631942749023, "iter": 21800, "memory": 8704, "step": 21800} +{"lr": 0.008774520015528926, "data_time": 0.005606889724731445, "loss": 0.32779603600502016, "decode.loss_ce": 0.1901876375079155, "decode.acc_seg": 91.98258209228516, "aux.loss_ce": 0.13760839626193047, "aux.acc_seg": 81.43017578125, "time": 1.1131871700286866, "iter": 21850, "memory": 8703, "step": 21850} +{"lr": 0.008771694387837446, "data_time": 0.005664992332458496, "loss": 0.49493096470832826, "decode.loss_ce": 0.31570793837308886, "decode.acc_seg": 81.5689697265625, "aux.loss_ce": 0.179223021119833, "aux.acc_seg": 75.98180389404297, "time": 1.1110554456710815, "iter": 21900, "memory": 8704, "step": 21900} +{"lr": 0.00876886865784043, "data_time": 0.005912280082702637, "loss": 0.4565425381064415, "decode.loss_ce": 0.2820639744400978, "decode.acc_seg": 91.41171264648438, "aux.loss_ce": 0.17447856217622756, "aux.acc_seg": 88.5508804321289, "time": 1.1183193683624268, "iter": 21950, "memory": 8705, "step": 21950} +{"lr": 0.008766042825497127, "data_time": 0.006560111045837402, "loss": 0.4873507350683212, "decode.loss_ce": 0.29686188995838164, "decode.acc_seg": 92.58308410644531, "aux.loss_ce": 0.19048884510993958, "aux.acc_seg": 89.78252410888672, "time": 1.1183432340621948, "iter": 22000, "memory": 8704, "step": 22000} +{"lr": 0.008763216890766727, "data_time": 0.007279682159423828, "loss": 0.6122558385133743, "decode.loss_ce": 0.3745098412036896, "decode.acc_seg": 74.52843475341797, "aux.loss_ce": 0.23774599209427832, "aux.acc_seg": 67.98139953613281, "time": 1.1194441318511963, "iter": 22050, "memory": 8704, "step": 22050} +{"lr": 0.008760390853608423, "data_time": 0.007229351997375488, "loss": 0.6311151444911957, "decode.loss_ce": 0.38830719888210297, "decode.acc_seg": 88.56671142578125, "aux.loss_ce": 0.24280793219804764, "aux.acc_seg": 84.05170440673828, "time": 1.1154090404510497, "iter": 22100, "memory": 8704, "step": 22100} +{"lr": 0.008757564713981347, "data_time": 0.007549428939819336, "loss": 0.5545893773436547, "decode.loss_ce": 0.354876434803009, "decode.acc_seg": 84.87167358398438, "aux.loss_ce": 0.19971294030547143, "aux.acc_seg": 81.10904693603516, "time": 1.1151935338974, "iter": 22150, "memory": 8703, "step": 22150} +{"lr": 0.008754738471844627, "data_time": 0.00613560676574707, "loss": 0.4765424966812134, "decode.loss_ce": 0.31049685925245285, "decode.acc_seg": 91.78148651123047, "aux.loss_ce": 0.16604563780128956, "aux.acc_seg": 91.1352767944336, "time": 1.1150643825531006, "iter": 22200, "memory": 8703, "step": 22200} +{"lr": 0.008751912127157346, "data_time": 0.005866551399230957, "loss": 0.34319991022348406, "decode.loss_ce": 0.20988086238503456, "decode.acc_seg": 96.33219146728516, "aux.loss_ce": 0.13331904709339143, "aux.acc_seg": 94.8531723022461, "time": 1.1102180480957031, "iter": 22250, "memory": 8704, "step": 22250} +{"lr": 0.008749085679878565, "data_time": 0.006510114669799805, "loss": 0.3241773508489132, "decode.loss_ce": 0.19092892482876778, "decode.acc_seg": 95.31897735595703, "aux.loss_ce": 0.13324842527508735, "aux.acc_seg": 93.70832061767578, "time": 1.1120199680328369, "iter": 22300, "memory": 8704, "step": 22300} +{"lr": 0.008746259129967295, "data_time": 0.006017827987670898, "loss": 0.6165547013282776, "decode.loss_ce": 0.3865153521299362, "decode.acc_seg": 89.98628997802734, "aux.loss_ce": 0.23003935366868972, "aux.acc_seg": 88.86566162109375, "time": 1.1131404638290405, "iter": 22350, "memory": 8704, "step": 22350} +{"lr": 0.00874343247738253, "data_time": 0.006489610671997071, "loss": 0.43443751633167266, "decode.loss_ce": 0.2815967448055744, "decode.acc_seg": 84.25629425048828, "aux.loss_ce": 0.15284076556563378, "aux.acc_seg": 78.72886657714844, "time": 1.1123032569885254, "iter": 22400, "memory": 8703, "step": 22400} +{"lr": 0.008740605722083225, "data_time": 0.006882953643798828, "loss": 0.5322321459650994, "decode.loss_ce": 0.33629997819662094, "decode.acc_seg": 92.70954132080078, "aux.loss_ce": 0.19593217521905898, "aux.acc_seg": 92.32775115966797, "time": 1.1217521667480468, "iter": 22450, "memory": 8704, "step": 22450} +{"lr": 0.00873777886402832, "data_time": 0.006495428085327148, "loss": 0.48484880924224855, "decode.loss_ce": 0.3087138161063194, "decode.acc_seg": 84.01298522949219, "aux.loss_ce": 0.1761349853128195, "aux.acc_seg": 81.55358123779297, "time": 1.1197777032852172, "iter": 22500, "memory": 8704, "step": 22500} +{"lr": 0.008734951903176703, "data_time": 0.00699465274810791, "loss": 0.6071513056755066, "decode.loss_ce": 0.39564699232578276, "decode.acc_seg": 92.97148132324219, "aux.loss_ce": 0.21150431483983995, "aux.acc_seg": 91.24971771240234, "time": 1.118622398376465, "iter": 22550, "memory": 8703, "step": 22550} +{"lr": 0.008732124839487241, "data_time": 0.006294775009155274, "loss": 0.48511354625225067, "decode.loss_ce": 0.30127745270729067, "decode.acc_seg": 85.03862762451172, "aux.loss_ce": 0.18383608907461166, "aux.acc_seg": 80.78873443603516, "time": 1.1153408288955688, "iter": 22600, "memory": 8704, "step": 22600} +{"lr": 0.008729297672918766, "data_time": 0.006227374076843262, "loss": 0.5048678651452064, "decode.loss_ce": 0.31380087286233904, "decode.acc_seg": 95.2983169555664, "aux.loss_ce": 0.1910669893026352, "aux.acc_seg": 94.94825744628906, "time": 1.1153935432434081, "iter": 22650, "memory": 8703, "step": 22650} +{"lr": 0.008726470403430085, "data_time": 0.006583261489868164, "loss": 0.496848438680172, "decode.loss_ce": 0.30694573521614077, "decode.acc_seg": 89.95621490478516, "aux.loss_ce": 0.1899027034640312, "aux.acc_seg": 88.48787689208984, "time": 1.115089726448059, "iter": 22700, "memory": 8704, "step": 22700} +{"lr": 0.008723643030979975, "data_time": 0.007757019996643066, "loss": 0.5754264742136002, "decode.loss_ce": 0.3553712032735348, "decode.acc_seg": 74.90971374511719, "aux.loss_ce": 0.22005527168512345, "aux.acc_seg": 69.52787780761719, "time": 1.1173296928405763, "iter": 22750, "memory": 8703, "step": 22750} +{"lr": 0.008720815555527167, "data_time": 0.007786464691162109, "loss": 0.5134522527456283, "decode.loss_ce": 0.32036343961954117, "decode.acc_seg": 94.72344207763672, "aux.loss_ce": 0.19308881238102912, "aux.acc_seg": 93.8203125, "time": 1.119233536720276, "iter": 22800, "memory": 8704, "step": 22800} +{"lr": 0.008717987977030375, "data_time": 0.008275437355041503, "loss": 0.47695772647857665, "decode.loss_ce": 0.2974909208714962, "decode.acc_seg": 75.28276062011719, "aux.loss_ce": 0.17946680448949337, "aux.acc_seg": 69.93990325927734, "time": 1.1176771163940429, "iter": 22850, "memory": 8703, "step": 22850} +{"lr": 0.00871516029544827, "data_time": 0.006104683876037598, "loss": 0.40548514425754545, "decode.loss_ce": 0.2557879090309143, "decode.acc_seg": 94.21888732910156, "aux.loss_ce": 0.14969723410904406, "aux.acc_seg": 92.64252471923828, "time": 1.1172473430633545, "iter": 22900, "memory": 8704, "step": 22900} +{"lr": 0.008712332510739489, "data_time": 0.006627917289733887, "loss": 0.39215890914201734, "decode.loss_ce": 0.24697733372449876, "decode.acc_seg": 94.49602508544922, "aux.loss_ce": 0.1451815739274025, "aux.acc_seg": 91.04092407226562, "time": 1.1172455549240112, "iter": 22950, "memory": 8704, "step": 22950} +{"lr": 0.008709504622862655, "data_time": 0.005505228042602539, "loss": 0.3831159546971321, "decode.loss_ce": 0.24295912608504294, "decode.acc_seg": 88.35213470458984, "aux.loss_ce": 0.14015683643519877, "aux.acc_seg": 86.68486022949219, "time": 1.1162511825561523, "iter": 23000, "memory": 8704, "step": 23000} +{"lr": 0.008706676631776352, "data_time": 0.007351875305175781, "loss": 0.5018880814313889, "decode.loss_ce": 0.30981338694691657, "decode.acc_seg": 87.30964660644531, "aux.loss_ce": 0.19207470044493674, "aux.acc_seg": 85.69087982177734, "time": 1.1197668790817261, "iter": 23050, "memory": 8703, "step": 23050} +{"lr": 0.008703848537439125, "data_time": 0.007317852973937988, "loss": 0.41247977018356324, "decode.loss_ce": 0.25189691931009295, "decode.acc_seg": 92.83535766601562, "aux.loss_ce": 0.1605828505009413, "aux.acc_seg": 91.80729675292969, "time": 1.1158045053482055, "iter": 23100, "memory": 8703, "step": 23100} +{"lr": 0.008701020339809497, "data_time": 0.007098388671875, "loss": 0.46049661189317703, "decode.loss_ce": 0.28837122917175295, "decode.acc_seg": 83.31234741210938, "aux.loss_ce": 0.17212537974119185, "aux.acc_seg": 79.01287078857422, "time": 1.116907286643982, "iter": 23150, "memory": 8704, "step": 23150} +{"lr": 0.008698192038845943, "data_time": 0.005811500549316406, "loss": 0.3654537618160248, "decode.loss_ce": 0.21625647693872452, "decode.acc_seg": 95.73516845703125, "aux.loss_ce": 0.14919728338718413, "aux.acc_seg": 94.09052276611328, "time": 1.1106688737869264, "iter": 23200, "memory": 8704, "step": 23200} +{"lr": 0.008695363634506927, "data_time": 0.0076619148254394535, "loss": 0.544168908894062, "decode.loss_ce": 0.34091065227985384, "decode.acc_seg": 94.99581146240234, "aux.loss_ce": 0.20325826108455658, "aux.acc_seg": 86.15665435791016, "time": 1.118894839286804, "iter": 23250, "memory": 8703, "step": 23250} +{"lr": 0.00869253512675087, "data_time": 0.006034636497497558, "loss": 0.5391855806112289, "decode.loss_ce": 0.33099479749798777, "decode.acc_seg": 97.13700103759766, "aux.loss_ce": 0.20819077715277673, "aux.acc_seg": 94.10591125488281, "time": 1.1161158084869385, "iter": 23300, "memory": 8704, "step": 23300} +{"lr": 0.008689706515536154, "data_time": 0.008336091041564941, "loss": 0.5618818938732147, "decode.loss_ce": 0.3500438190996647, "decode.acc_seg": 93.82381439208984, "aux.loss_ce": 0.21183807104825975, "aux.acc_seg": 88.07518768310547, "time": 1.119817066192627, "iter": 23350, "memory": 8704, "step": 23350} +{"lr": 0.008686877800821153, "data_time": 0.008223962783813477, "loss": 0.5131027311086654, "decode.loss_ce": 0.3282688207924366, "decode.acc_seg": 93.7918930053711, "aux.loss_ce": 0.1848339017480612, "aux.acc_seg": 92.67158508300781, "time": 1.123186206817627, "iter": 23400, "memory": 8703, "step": 23400} +{"lr": 0.008684048982564177, "data_time": 0.007751846313476562, "loss": 0.3665427714586258, "decode.loss_ce": 0.2132131800055504, "decode.acc_seg": 86.57583618164062, "aux.loss_ce": 0.15332959182560443, "aux.acc_seg": 64.29132080078125, "time": 1.1177322149276734, "iter": 23450, "memory": 8704, "step": 23450} +{"lr": 0.008681220060723535, "data_time": 0.00623617172241211, "loss": 0.3681049644947052, "decode.loss_ce": 0.23358656615018844, "decode.acc_seg": 85.15217590332031, "aux.loss_ce": 0.1345184002071619, "aux.acc_seg": 81.77757263183594, "time": 1.1132871389389039, "iter": 23500, "memory": 8704, "step": 23500} +{"lr": 0.00867839103525748, "data_time": 0.005180907249450683, "loss": 0.5554511770606041, "decode.loss_ce": 0.3606885612010956, "decode.acc_seg": 96.58739471435547, "aux.loss_ce": 0.19476260989904404, "aux.acc_seg": 88.9381332397461, "time": 1.1138069868087768, "iter": 23550, "memory": 8703, "step": 23550} +{"lr": 0.008675561906124235, "data_time": 0.005419588088989258, "loss": 0.4382850229740143, "decode.loss_ce": 0.2671189717948437, "decode.acc_seg": 90.03644561767578, "aux.loss_ce": 0.17116605192422868, "aux.acc_seg": 86.10319519042969, "time": 1.1143401861190796, "iter": 23600, "memory": 8703, "step": 23600} +{"lr": 0.008672732673282021, "data_time": 0.008077645301818847, "loss": 0.42182130813598634, "decode.loss_ce": 0.2622112736105919, "decode.acc_seg": 94.69992065429688, "aux.loss_ce": 0.15961004346609114, "aux.acc_seg": 86.86275482177734, "time": 1.1190904378890991, "iter": 23650, "memory": 8704, "step": 23650} +{"lr": 0.008669903336688987, "data_time": 0.00838005542755127, "loss": 0.2995807856321335, "decode.loss_ce": 0.1898793824017048, "decode.acc_seg": 93.24734497070312, "aux.loss_ce": 0.1097013983875513, "aux.acc_seg": 83.94699096679688, "time": 1.1179460048675538, "iter": 23700, "memory": 8704, "step": 23700} +{"lr": 0.008667073896303258, "data_time": 0.006728863716125489, "loss": 0.4349141001701355, "decode.loss_ce": 0.26825486719608305, "decode.acc_seg": 93.1168212890625, "aux.loss_ce": 0.16665923744440078, "aux.acc_seg": 89.50856018066406, "time": 1.1160804510116578, "iter": 23750, "memory": 8703, "step": 23750} +{"lr": 0.008664244352082962, "data_time": 0.006251764297485351, "loss": 0.3576837956905365, "decode.loss_ce": 0.21699274182319642, "decode.acc_seg": 95.11978912353516, "aux.loss_ce": 0.14069105237722396, "aux.acc_seg": 91.14525604248047, "time": 1.11749370098114, "iter": 23800, "memory": 8703, "step": 23800} +{"lr": 0.008661414703986145, "data_time": 0.00826435089111328, "loss": 0.46120390892028806, "decode.loss_ce": 0.3003775507211685, "decode.acc_seg": 88.8591079711914, "aux.loss_ce": 0.1608263574540615, "aux.acc_seg": 86.98761749267578, "time": 1.1212550163269044, "iter": 23850, "memory": 8704, "step": 23850} +{"lr": 0.008658584951970848, "data_time": 0.007661128044128418, "loss": 0.48359151631593705, "decode.loss_ce": 0.3154480025172234, "decode.acc_seg": 87.69648742675781, "aux.loss_ce": 0.16814351081848145, "aux.acc_seg": 86.69862365722656, "time": 1.1175342321395874, "iter": 23900, "memory": 8703, "step": 23900} +{"lr": 0.00865575509599509, "data_time": 0.006742358207702637, "loss": 0.4098642811179161, "decode.loss_ce": 0.25911567360162735, "decode.acc_seg": 91.1939697265625, "aux.loss_ce": 0.15074860937893392, "aux.acc_seg": 84.25728607177734, "time": 1.1146511077880858, "iter": 23950, "memory": 8704, "step": 23950} +{"lr": 0.008652925136016815, "data_time": 0.005136013031005859, "loss": 0.46954585015773775, "decode.loss_ce": 0.29723758772015574, "decode.acc_seg": 92.82360076904297, "aux.loss_ce": 0.1723082721233368, "aux.acc_seg": 88.98143768310547, "time": 1.1183378219604492, "iter": 24000, "memory": 8703, "step": 24000} +{"lr": 0.00865009507199398, "data_time": 0.007506442070007324, "loss": 0.4136171355843544, "decode.loss_ce": 0.26446336731314657, "decode.acc_seg": 74.14936065673828, "aux.loss_ce": 0.14915375895798205, "aux.acc_seg": 58.04774475097656, "time": 1.1180572271347047, "iter": 24050, "memory": 8703, "step": 24050} +{"lr": 0.00864726490388451, "data_time": 0.008623862266540527, "loss": 0.4161006540060043, "decode.loss_ce": 0.2708143323659897, "decode.acc_seg": 92.11050415039062, "aux.loss_ce": 0.14528633132576943, "aux.acc_seg": 91.33148193359375, "time": 1.118198823928833, "iter": 24100, "memory": 8703, "step": 24100} +{"lr": 0.008644434631646249, "data_time": 0.006458806991577149, "loss": 0.6440274536609649, "decode.loss_ce": 0.3859122976660728, "decode.acc_seg": 93.0583267211914, "aux.loss_ce": 0.2581151582300663, "aux.acc_seg": 86.55058288574219, "time": 1.1127164602279662, "iter": 24150, "memory": 8703, "step": 24150} +{"lr": 0.008641604255237051, "data_time": 0.006502127647399903, "loss": 0.5431691855192184, "decode.loss_ce": 0.34229405149817466, "decode.acc_seg": 93.0735855102539, "aux.loss_ce": 0.2008751343935728, "aux.acc_seg": 88.46588134765625, "time": 1.11563880443573, "iter": 24200, "memory": 8703, "step": 24200} +{"lr": 0.008638773774614725, "data_time": 0.006979727745056152, "loss": 0.43925429731607435, "decode.loss_ce": 0.26952152252197265, "decode.acc_seg": 90.66264343261719, "aux.loss_ce": 0.16973277255892755, "aux.acc_seg": 89.90187072753906, "time": 1.1179874897003175, "iter": 24250, "memory": 8704, "step": 24250} +{"lr": 0.008635943189737039, "data_time": 0.008512568473815919, "loss": 0.4628853857517242, "decode.loss_ce": 0.2766717165708542, "decode.acc_seg": 93.3691635131836, "aux.loss_ce": 0.18621366694569588, "aux.acc_seg": 83.40447235107422, "time": 1.1212998390197755, "iter": 24300, "memory": 8703, "step": 24300} +{"lr": 0.00863311250056175, "data_time": 0.004991793632507324, "loss": 0.47533310800790785, "decode.loss_ce": 0.3021251425147057, "decode.acc_seg": 86.09688568115234, "aux.loss_ce": 0.17320796251296997, "aux.acc_seg": 84.94999694824219, "time": 1.117189645767212, "iter": 24350, "memory": 8703, "step": 24350} +{"lr": 0.008630281707046569, "data_time": 0.007843613624572754, "loss": 0.6347966879606247, "decode.loss_ce": 0.39126654267311095, "decode.acc_seg": 88.48368835449219, "aux.loss_ce": 0.24353013895452022, "aux.acc_seg": 81.77407836914062, "time": 1.123529839515686, "iter": 24400, "memory": 8704, "step": 24400} +{"lr": 0.008627450809149175, "data_time": 0.007146883010864258, "loss": 0.5376663476228714, "decode.loss_ce": 0.3370423004031181, "decode.acc_seg": 92.20806121826172, "aux.loss_ce": 0.20062404051423072, "aux.acc_seg": 87.39552307128906, "time": 1.1185514450073242, "iter": 24450, "memory": 8703, "step": 24450} +{"lr": 0.008624619806827202, "data_time": 0.00778200626373291, "loss": 0.43892629742622374, "decode.loss_ce": 0.2699890837073326, "decode.acc_seg": 86.79485321044922, "aux.loss_ce": 0.16893720924854277, "aux.acc_seg": 86.86249542236328, "time": 1.1163060188293457, "iter": 24500, "memory": 8704, "step": 24500} +{"lr": 0.008621788700038267, "data_time": 0.007381916046142578, "loss": 0.5701194405555725, "decode.loss_ce": 0.3609897196292877, "decode.acc_seg": 93.22045135498047, "aux.loss_ce": 0.2091297209262848, "aux.acc_seg": 90.09004974365234, "time": 1.1200663566589355, "iter": 24550, "memory": 8704, "step": 24550} +{"lr": 0.008618957488739946, "data_time": 0.006611466407775879, "loss": 0.44309170693159106, "decode.loss_ce": 0.27310502603650094, "decode.acc_seg": 94.38575744628906, "aux.loss_ce": 0.16998667679727078, "aux.acc_seg": 88.35276794433594, "time": 1.1161222219467164, "iter": 24600, "memory": 8704, "step": 24600} +{"lr": 0.008616126172889793, "data_time": 0.006486678123474121, "loss": 0.5253550708293915, "decode.loss_ce": 0.30223367661237716, "decode.acc_seg": 84.67655181884766, "aux.loss_ce": 0.22312140315771103, "aux.acc_seg": 68.01910400390625, "time": 1.1144150972366333, "iter": 24650, "memory": 8703, "step": 24650} +{"lr": 0.008613294752445322, "data_time": 0.007663106918334961, "loss": 0.5153075888752937, "decode.loss_ce": 0.32408916503190993, "decode.acc_seg": 84.45751953125, "aux.loss_ce": 0.1912184279412031, "aux.acc_seg": 81.32711791992188, "time": 1.1191028356552124, "iter": 24700, "memory": 8703, "step": 24700} +{"lr": 0.00861046322736401, "data_time": 0.005916810035705567, "loss": 0.4920861527323723, "decode.loss_ce": 0.30258139595389366, "decode.acc_seg": 95.9953842163086, "aux.loss_ce": 0.18950475454330445, "aux.acc_seg": 94.94156646728516, "time": 1.1121965408325196, "iter": 24750, "memory": 8703, "step": 24750} +{"lr": 0.008607631597603308, "data_time": 0.005826616287231445, "loss": 0.5420782133936882, "decode.loss_ce": 0.3411680981516838, "decode.acc_seg": 75.10032653808594, "aux.loss_ce": 0.20091010257601738, "aux.acc_seg": 63.99065399169922, "time": 1.1157747507095337, "iter": 24800, "memory": 8704, "step": 24800} +{"lr": 0.008604799863120632, "data_time": 0.006428647041320801, "loss": 0.4256654754281044, "decode.loss_ce": 0.26239737719297407, "decode.acc_seg": 94.16179656982422, "aux.loss_ce": 0.1632680930197239, "aux.acc_seg": 93.21479797363281, "time": 1.1137540340423584, "iter": 24850, "memory": 8703, "step": 24850} +{"lr": 0.008601968023873363, "data_time": 0.006701827049255371, "loss": 0.4545693382620811, "decode.loss_ce": 0.26478504538536074, "decode.acc_seg": 93.96273040771484, "aux.loss_ce": 0.18978428691625596, "aux.acc_seg": 89.8901596069336, "time": 1.1175693988800048, "iter": 24900, "memory": 8705, "step": 24900} +{"lr": 0.008599136079818853, "data_time": 0.006566619873046875, "loss": 0.5515924274921418, "decode.loss_ce": 0.36280365139245985, "decode.acc_seg": 88.87474822998047, "aux.loss_ce": 0.18878877237439157, "aux.acc_seg": 88.64517211914062, "time": 1.1184684991836549, "iter": 24950, "memory": 8703, "step": 24950} +{"lr": 0.008596304030914421, "data_time": 0.006717562675476074, "loss": 0.3309319123625755, "decode.loss_ce": 0.20909473225474356, "decode.acc_seg": 85.67987823486328, "aux.loss_ce": 0.12183718383312225, "aux.acc_seg": 77.28855895996094, "time": 1.1144954919815064, "iter": 25000, "memory": 8703, "step": 25000} +{"lr": 0.008593471877117332, "data_time": 0.007284331321716309, "loss": 0.43389111161231997, "decode.loss_ce": 0.27117435336112977, "decode.acc_seg": 95.82054901123047, "aux.loss_ce": 0.16271676123142242, "aux.acc_seg": 93.54782104492188, "time": 1.1141093730926515, "iter": 25050, "memory": 8703, "step": 25050} +{"lr": 0.008590639618384861, "data_time": 0.006356549263000488, "loss": 0.4376698717474937, "decode.loss_ce": 0.2529098868370056, "decode.acc_seg": 76.05711364746094, "aux.loss_ce": 0.1847599796950817, "aux.acc_seg": 63.509239196777344, "time": 1.1115278959274293, "iter": 25100, "memory": 8704, "step": 25100} +{"lr": 0.008587807254674208, "data_time": 0.006292939186096191, "loss": 0.4067206397652626, "decode.loss_ce": 0.25816255807876587, "decode.acc_seg": 96.01063537597656, "aux.loss_ce": 0.1485580824315548, "aux.acc_seg": 91.70555877685547, "time": 1.1112481355667114, "iter": 25150, "memory": 8703, "step": 25150} +{"lr": 0.008584974785942551, "data_time": 0.0076914548873901365, "loss": 0.44428529739379885, "decode.loss_ce": 0.2782874196767807, "decode.acc_seg": 92.85869598388672, "aux.loss_ce": 0.16599787697196006, "aux.acc_seg": 90.48416900634766, "time": 1.1170701742172242, "iter": 25200, "memory": 8703, "step": 25200} +{"lr": 0.008582142212147049, "data_time": 0.007924175262451172, "loss": 0.5208041846752167, "decode.loss_ce": 0.35043812692165377, "decode.acc_seg": 62.65403366088867, "aux.loss_ce": 0.1703660547733307, "aux.acc_seg": 65.87128448486328, "time": 1.1167646169662475, "iter": 25250, "memory": 8703, "step": 25250} +{"lr": 0.008579309533244818, "data_time": 0.007334327697753907, "loss": 0.4329818084836006, "decode.loss_ce": 0.2759839825332165, "decode.acc_seg": 94.69871520996094, "aux.loss_ce": 0.1569978255778551, "aux.acc_seg": 93.77752685546875, "time": 1.1180529594421387, "iter": 25300, "memory": 8703, "step": 25300} +{"lr": 0.008576476749192936, "data_time": 0.008003640174865722, "loss": 0.6190480992197991, "decode.loss_ce": 0.4066999383270741, "decode.acc_seg": 78.35216522216797, "aux.loss_ce": 0.21234815195202827, "aux.acc_seg": 76.67362976074219, "time": 1.1187229394912719, "iter": 25350, "memory": 8704, "step": 25350} +{"lr": 0.008573643859948453, "data_time": 0.0068634748458862305, "loss": 0.6527213633060456, "decode.loss_ce": 0.41939795687794684, "decode.acc_seg": 91.35919952392578, "aux.loss_ce": 0.2333234041929245, "aux.acc_seg": 87.49847412109375, "time": 1.114638900756836, "iter": 25400, "memory": 8703, "step": 25400} +{"lr": 0.008570810865468386, "data_time": 0.007202839851379395, "loss": 0.4317351818084717, "decode.loss_ce": 0.2746362805366516, "decode.acc_seg": 94.60480499267578, "aux.loss_ce": 0.1570988990366459, "aux.acc_seg": 90.56822204589844, "time": 1.1139482498168944, "iter": 25450, "memory": 8704, "step": 25450} +{"lr": 0.008567977765709712, "data_time": 0.006676101684570312, "loss": 0.4394163593649864, "decode.loss_ce": 0.2993321046233177, "decode.acc_seg": 93.22431945800781, "aux.loss_ce": 0.14008425287902354, "aux.acc_seg": 90.54339599609375, "time": 1.1169233322143555, "iter": 25500, "memory": 8703, "step": 25500} +{"lr": 0.008565144560629394, "data_time": 0.006198525428771973, "loss": 0.524773183465004, "decode.loss_ce": 0.33638499230146407, "decode.acc_seg": 91.90412902832031, "aux.loss_ce": 0.18838820084929467, "aux.acc_seg": 83.82408905029297, "time": 1.1157768726348878, "iter": 25550, "memory": 8704, "step": 25550} +{"lr": 0.008562311250184331, "data_time": 0.006978535652160644, "loss": 0.536225187778473, "decode.loss_ce": 0.3412781998515129, "decode.acc_seg": 94.32849884033203, "aux.loss_ce": 0.19494699239730834, "aux.acc_seg": 81.27704620361328, "time": 1.1137654304504394, "iter": 25600, "memory": 8703, "step": 25600} +{"lr": 0.008559477834331405, "data_time": 0.008014941215515136, "loss": 0.5118942737579346, "decode.loss_ce": 0.29678034484386445, "decode.acc_seg": 87.16951751708984, "aux.loss_ce": 0.21511393040418625, "aux.acc_seg": 84.26754760742188, "time": 1.119355607032776, "iter": 25650, "memory": 8704, "step": 25650} +{"lr": 0.008556644313027474, "data_time": 0.006910252571105957, "loss": 0.4333552271127701, "decode.loss_ce": 0.26496438309550285, "decode.acc_seg": 90.50648498535156, "aux.loss_ce": 0.1683908373117447, "aux.acc_seg": 88.9495849609375, "time": 1.1247225046157836, "iter": 25700, "memory": 8703, "step": 25700} +{"lr": 0.008553810686229346, "data_time": 0.005327701568603516, "loss": 0.45645352005958556, "decode.loss_ce": 0.27893516421318054, "decode.acc_seg": 90.92845916748047, "aux.loss_ce": 0.1775183603167534, "aux.acc_seg": 87.28179931640625, "time": 1.1151879549026489, "iter": 25750, "memory": 8704, "step": 25750} +{"lr": 0.008550976953893806, "data_time": 0.006655550003051758, "loss": 0.5198762327432632, "decode.loss_ce": 0.3291877552866936, "decode.acc_seg": 96.49740600585938, "aux.loss_ce": 0.19068848490715026, "aux.acc_seg": 83.70812225341797, "time": 1.1124563455581664, "iter": 25800, "memory": 8704, "step": 25800} +{"lr": 0.008548143115977588, "data_time": 0.006161355972290039, "loss": 0.5812692657113075, "decode.loss_ce": 0.3679457388818264, "decode.acc_seg": 74.17589569091797, "aux.loss_ce": 0.21332351192831994, "aux.acc_seg": 71.72323608398438, "time": 1.1161044359207153, "iter": 25850, "memory": 8704, "step": 25850} +{"lr": 0.008545309172437418, "data_time": 0.008155369758605957, "loss": 0.511894078552723, "decode.loss_ce": 0.3251002609729767, "decode.acc_seg": 82.35861206054688, "aux.loss_ce": 0.18679381608963014, "aux.acc_seg": 80.59227752685547, "time": 1.122231364250183, "iter": 25900, "memory": 8704, "step": 25900} +{"lr": 0.00854247512322996, "data_time": 0.005950546264648438, "loss": 0.4916763320565224, "decode.loss_ce": 0.3225258611142635, "decode.acc_seg": 96.7056884765625, "aux.loss_ce": 0.16915047354996204, "aux.acc_seg": 96.82337188720703, "time": 1.1134025573730468, "iter": 25950, "memory": 8704, "step": 25950} +{"lr": 0.008539640968311868, "data_time": 0.006147527694702148, "loss": 0.504697048664093, "decode.loss_ce": 0.3177597984671593, "decode.acc_seg": 87.77891540527344, "aux.loss_ce": 0.18693725988268853, "aux.acc_seg": 86.24661254882812, "time": 1.1124778032302856, "iter": 26000, "memory": 8704, "step": 26000} +{"lr": 0.00853680670763976, "data_time": 0.006653881072998047, "loss": 0.40824928134679794, "decode.loss_ce": 0.24964823424816132, "decode.acc_seg": 88.25765991210938, "aux.loss_ce": 0.15860104486346244, "aux.acc_seg": 77.23954010009766, "time": 1.117420220375061, "iter": 26050, "memory": 8704, "step": 26050} +{"lr": 0.0085339723411702, "data_time": 0.005525660514831543, "loss": 0.3329943001270294, "decode.loss_ce": 0.2060972757637501, "decode.acc_seg": 93.90029907226562, "aux.loss_ce": 0.12689702473580838, "aux.acc_seg": 92.8294448852539, "time": 1.112538456916809, "iter": 26100, "memory": 8703, "step": 26100} +{"lr": 0.008531137868859728, "data_time": 0.008522129058837891, "loss": 0.45530323684215546, "decode.loss_ce": 0.2833040714263916, "decode.acc_seg": 84.71175384521484, "aux.loss_ce": 0.17199917063117026, "aux.acc_seg": 82.34944915771484, "time": 1.1250436544418334, "iter": 26150, "memory": 8704, "step": 26150} +{"lr": 0.008528303290664865, "data_time": 0.0059316158294677734, "loss": 0.418623811006546, "decode.loss_ce": 0.26255819499492644, "decode.acc_seg": 91.28646850585938, "aux.loss_ce": 0.15606560781598092, "aux.acc_seg": 88.58940887451172, "time": 1.1125263452529908, "iter": 26200, "memory": 8703, "step": 26200} +{"lr": 0.008525468606542077, "data_time": 0.006996440887451172, "loss": 0.554119935631752, "decode.loss_ce": 0.36229397654533385, "decode.acc_seg": 94.50299835205078, "aux.loss_ce": 0.1918259546160698, "aux.acc_seg": 89.93079376220703, "time": 1.1158776521682738, "iter": 26250, "memory": 8704, "step": 26250} +{"lr": 0.008522633816447807, "data_time": 0.007766985893249511, "loss": 0.5364118844270707, "decode.loss_ce": 0.3342470645904541, "decode.acc_seg": 92.08513641357422, "aux.loss_ce": 0.20216482877731323, "aux.acc_seg": 89.85258483886719, "time": 1.116698956489563, "iter": 26300, "memory": 8703, "step": 26300} +{"lr": 0.008519798920338452, "data_time": 0.007227110862731934, "loss": 0.537445142865181, "decode.loss_ce": 0.32483530044555664, "decode.acc_seg": 93.50916290283203, "aux.loss_ce": 0.21260983422398566, "aux.acc_seg": 85.6827392578125, "time": 1.1197639465332032, "iter": 26350, "memory": 8704, "step": 26350} +{"lr": 0.008516963918170396, "data_time": 0.006481099128723145, "loss": 0.44740826487541197, "decode.loss_ce": 0.272855706512928, "decode.acc_seg": 96.39273834228516, "aux.loss_ce": 0.17455255314707757, "aux.acc_seg": 93.10983276367188, "time": 1.1125464200973512, "iter": 26400, "memory": 8703, "step": 26400} +{"lr": 0.00851412880989997, "data_time": 0.004970002174377442, "loss": 0.4759154438972473, "decode.loss_ce": 0.29642129093408587, "decode.acc_seg": 91.63195037841797, "aux.loss_ce": 0.17949414998292923, "aux.acc_seg": 84.15603637695312, "time": 1.109730339050293, "iter": 26450, "memory": 8704, "step": 26450} +{"lr": 0.008511293595483478, "data_time": 0.00718686580657959, "loss": 0.3159950837492943, "decode.loss_ce": 0.19863299280405045, "decode.acc_seg": 91.91620635986328, "aux.loss_ce": 0.11736209616065026, "aux.acc_seg": 85.68777465820312, "time": 1.1165886163711547, "iter": 26500, "memory": 8704, "step": 26500} +{"lr": 0.008508458274877189, "data_time": 0.007156276702880859, "loss": 0.5497231245040893, "decode.loss_ce": 0.33710807412862775, "decode.acc_seg": 96.43001556396484, "aux.loss_ce": 0.2126150570809841, "aux.acc_seg": 93.22706604003906, "time": 1.1211233854293823, "iter": 26550, "memory": 8704, "step": 26550} +{"lr": 0.008505622848037337, "data_time": 0.00826563835144043, "loss": 0.450500950217247, "decode.loss_ce": 0.2882083341479301, "decode.acc_seg": 72.33104705810547, "aux.loss_ce": 0.16229260712862015, "aux.acc_seg": 68.1123046875, "time": 1.1216737747192382, "iter": 26600, "memory": 8703, "step": 26600} +{"lr": 0.008502787314920126, "data_time": 0.006160998344421386, "loss": 0.4922562509775162, "decode.loss_ce": 0.31691000089049337, "decode.acc_seg": 96.41704559326172, "aux.loss_ce": 0.17534623965620993, "aux.acc_seg": 95.78781127929688, "time": 1.11610848903656, "iter": 26650, "memory": 8703, "step": 26650} +{"lr": 0.008499951675481716, "data_time": 0.0068054676055908205, "loss": 0.45642161667346953, "decode.loss_ce": 0.2742166295647621, "decode.acc_seg": 93.13159942626953, "aux.loss_ce": 0.18220498859882356, "aux.acc_seg": 92.86676788330078, "time": 1.1169828653335572, "iter": 26700, "memory": 8704, "step": 26700} +{"lr": 0.008497115929678237, "data_time": 0.0059633016586303714, "loss": 0.3454257220029831, "decode.loss_ce": 0.21228284984827042, "decode.acc_seg": 94.64193725585938, "aux.loss_ce": 0.13314286842942238, "aux.acc_seg": 93.838623046875, "time": 1.1202520847320556, "iter": 26750, "memory": 8703, "step": 26750} +{"lr": 0.00849428007746579, "data_time": 0.005897831916809082, "loss": 0.45949408411979675, "decode.loss_ce": 0.29986017644405366, "decode.acc_seg": 91.69641876220703, "aux.loss_ce": 0.15963390246033668, "aux.acc_seg": 87.82278442382812, "time": 1.1130915641784669, "iter": 26800, "memory": 8703, "step": 26800} +{"lr": 0.008491444118800434, "data_time": 0.006543469429016113, "loss": 0.4239844486117363, "decode.loss_ce": 0.2645922780036926, "decode.acc_seg": 93.35167694091797, "aux.loss_ce": 0.1593921709805727, "aux.acc_seg": 92.46183776855469, "time": 1.1123827695846558, "iter": 26850, "memory": 8704, "step": 26850} +{"lr": 0.00848860805363819, "data_time": 0.006873464584350586, "loss": 0.4043205663561821, "decode.loss_ce": 0.25998952984809875, "decode.acc_seg": 96.04046630859375, "aux.loss_ce": 0.1443310398608446, "aux.acc_seg": 95.78392791748047, "time": 1.1179001092910767, "iter": 26900, "memory": 8703, "step": 26900} +{"lr": 0.008485771881935063, "data_time": 0.006029081344604492, "loss": 0.48890138864517213, "decode.loss_ce": 0.30296093225479126, "decode.acc_seg": 87.41415405273438, "aux.loss_ce": 0.18594044893980027, "aux.acc_seg": 83.00164031982422, "time": 1.1101370811462403, "iter": 26950, "memory": 8703, "step": 26950} +{"lr": 0.008482935603647004, "data_time": 0.006991434097290039, "loss": 0.4833199605345726, "decode.loss_ce": 0.3004039466381073, "decode.acc_seg": 85.29829406738281, "aux.loss_ce": 0.1829160138964653, "aux.acc_seg": 77.72627258300781, "time": 1.1202166080474854, "iter": 27000, "memory": 8704, "step": 27000} +{"lr": 0.008480099218729937, "data_time": 0.00807485580444336, "loss": 0.44531903862953187, "decode.loss_ce": 0.28986978679895403, "decode.acc_seg": 76.79029846191406, "aux.loss_ce": 0.1554492510855198, "aux.acc_seg": 75.16962432861328, "time": 1.1227309226989746, "iter": 27050, "memory": 8704, "step": 27050} +{"lr": 0.008477262727139754, "data_time": 0.005513310432434082, "loss": 0.554208742082119, "decode.loss_ce": 0.35519163608551024, "decode.acc_seg": 88.02733612060547, "aux.loss_ce": 0.19901710078120233, "aux.acc_seg": 79.66709899902344, "time": 1.1159413814544679, "iter": 27100, "memory": 8704, "step": 27100} +{"lr": 0.00847442612883229, "data_time": 0.0063106298446655275, "loss": 0.4419486463069916, "decode.loss_ce": 0.2868399046361446, "decode.acc_seg": 88.13597106933594, "aux.loss_ce": 0.15510873571038247, "aux.acc_seg": 78.95081329345703, "time": 1.1123587608337402, "iter": 27150, "memory": 8703, "step": 27150} +{"lr": 0.008471589423763377, "data_time": 0.00816187858581543, "loss": 0.5118624269962311, "decode.loss_ce": 0.31597706526517866, "decode.acc_seg": 87.88076782226562, "aux.loss_ce": 0.19588535651564598, "aux.acc_seg": 86.39665985107422, "time": 1.1165854454040527, "iter": 27200, "memory": 8704, "step": 27200} +{"lr": 0.008468752611888793, "data_time": 0.007059669494628907, "loss": 0.5652255117893219, "decode.loss_ce": 0.3460152342915535, "decode.acc_seg": 64.58561706542969, "aux.loss_ce": 0.21921026296913623, "aux.acc_seg": 63.83196258544922, "time": 1.1165481328964233, "iter": 27250, "memory": 8703, "step": 27250} +{"lr": 0.008465915693164287, "data_time": 0.005669927597045899, "loss": 0.5837680295109748, "decode.loss_ce": 0.3656300984323025, "decode.acc_seg": 97.33650970458984, "aux.loss_ce": 0.21813793182373048, "aux.acc_seg": 92.06841278076172, "time": 1.1160172700881958, "iter": 27300, "memory": 8704, "step": 27300} +{"lr": 0.00846307866754557, "data_time": 0.007294678688049316, "loss": 0.5650492504239082, "decode.loss_ce": 0.35858514308929446, "decode.acc_seg": 95.45599365234375, "aux.loss_ce": 0.20646410658955575, "aux.acc_seg": 89.21273040771484, "time": 1.119325041770935, "iter": 27350, "memory": 8703, "step": 27350} +{"lr": 0.008460241534988335, "data_time": 0.007881689071655273, "loss": 0.331142058968544, "decode.loss_ce": 0.2105415165424347, "decode.acc_seg": 85.48551940917969, "aux.loss_ce": 0.12060054689645767, "aux.acc_seg": 84.56121826171875, "time": 1.1208792209625245, "iter": 27400, "memory": 8704, "step": 27400} +{"lr": 0.008457404295448202, "data_time": 0.007819914817810058, "loss": 0.5475357949733735, "decode.loss_ce": 0.36091058030724527, "decode.acc_seg": 85.47611236572266, "aux.loss_ce": 0.1866252079606056, "aux.acc_seg": 85.41221618652344, "time": 1.1225280523300172, "iter": 27450, "memory": 8704, "step": 27450} +{"lr": 0.008454566948880806, "data_time": 0.008271193504333496, "loss": 0.3904229819774628, "decode.loss_ce": 0.24792009741067886, "decode.acc_seg": 94.2042007446289, "aux.loss_ce": 0.1425028845667839, "aux.acc_seg": 93.41602325439453, "time": 1.1189690351486206, "iter": 27500, "memory": 8704, "step": 27500} +{"lr": 0.008451729495241703, "data_time": 0.008649802207946778, "loss": 0.46295878738164903, "decode.loss_ce": 0.2937923692166805, "decode.acc_seg": 87.27662658691406, "aux.loss_ce": 0.16916640996932983, "aux.acc_seg": 84.84475708007812, "time": 1.1231943368911743, "iter": 27550, "memory": 8704, "step": 27550} +{"lr": 0.008448891934486438, "data_time": 0.00609738826751709, "loss": 0.5811953201889992, "decode.loss_ce": 0.37063552886247636, "decode.acc_seg": 91.69078063964844, "aux.loss_ce": 0.2105597946792841, "aux.acc_seg": 87.27653503417969, "time": 1.119127583503723, "iter": 27600, "memory": 8704, "step": 27600} +{"lr": 0.0084460542665705, "data_time": 0.006046700477600098, "loss": 0.4428963601589203, "decode.loss_ce": 0.2692066252231598, "decode.acc_seg": 93.43816375732422, "aux.loss_ce": 0.17368973270058632, "aux.acc_seg": 88.38860321044922, "time": 1.1155135869979858, "iter": 27650, "memory": 8703, "step": 27650} +{"lr": 0.008443216491449365, "data_time": 0.00670170783996582, "loss": 0.5514266952872277, "decode.loss_ce": 0.35898164510726926, "decode.acc_seg": 97.11532592773438, "aux.loss_ce": 0.1924450471997261, "aux.acc_seg": 95.16912841796875, "time": 1.1164203882217407, "iter": 27700, "memory": 8703, "step": 27700} +{"lr": 0.008440378609078454, "data_time": 0.006752872467041015, "loss": 0.4198368936777115, "decode.loss_ce": 0.26245853751897813, "decode.acc_seg": 94.7500228881836, "aux.loss_ce": 0.1573783539235592, "aux.acc_seg": 94.39747619628906, "time": 1.1149075984954835, "iter": 27750, "memory": 8704, "step": 27750} +{"lr": 0.008437540619413184, "data_time": 0.007501983642578125, "loss": 0.4515615850687027, "decode.loss_ce": 0.2896109730005264, "decode.acc_seg": 90.274169921875, "aux.loss_ce": 0.16195061504840852, "aux.acc_seg": 90.24677276611328, "time": 1.11773521900177, "iter": 27800, "memory": 8704, "step": 27800} +{"lr": 0.008434702522408898, "data_time": 0.005955696105957031, "loss": 0.5327499091625214, "decode.loss_ce": 0.3395156875252724, "decode.acc_seg": 93.41850280761719, "aux.loss_ce": 0.19323421642184258, "aux.acc_seg": 82.00123596191406, "time": 1.1151219129562377, "iter": 27850, "memory": 8703, "step": 27850} +{"lr": 0.008431864318020926, "data_time": 0.00782616138458252, "loss": 0.44433258175849916, "decode.loss_ce": 0.2707004740834236, "decode.acc_seg": 92.6956787109375, "aux.loss_ce": 0.17363210394978523, "aux.acc_seg": 89.14463806152344, "time": 1.1178695917129517, "iter": 27900, "memory": 8704, "step": 27900} +{"lr": 0.008429026006204567, "data_time": 0.006447982788085937, "loss": 0.6191864013671875, "decode.loss_ce": 0.38204883337020873, "decode.acc_seg": 87.41912841796875, "aux.loss_ce": 0.23713755905628203, "aux.acc_seg": 81.2918930053711, "time": 1.1164252281188964, "iter": 27950, "memory": 8705, "step": 27950} +{"lr": 0.008426187586915069, "data_time": 0.005890393257141113, "loss": 0.5179525330662728, "decode.loss_ce": 0.33442874997854233, "decode.acc_seg": 84.5439224243164, "aux.loss_ce": 0.18352378010749817, "aux.acc_seg": 84.7254409790039, "time": 1.1134599924087525, "iter": 28000, "memory": 8703, "step": 28000} +{"lr": 0.00842334906010765, "data_time": 0.007562828063964844, "loss": 0.44905074685811996, "decode.loss_ce": 0.26686341837048533, "decode.acc_seg": 96.37310791015625, "aux.loss_ce": 0.1821873240172863, "aux.acc_seg": 88.71466064453125, "time": 1.115710186958313, "iter": 28050, "memory": 8703, "step": 28050} +{"lr": 0.008420510425737493, "data_time": 0.008135771751403809, "loss": 0.4240903124213219, "decode.loss_ce": 0.2531740814447403, "decode.acc_seg": 89.02079010009766, "aux.loss_ce": 0.17091622389853, "aux.acc_seg": 83.33714294433594, "time": 1.1171738147735595, "iter": 28100, "memory": 8704, "step": 28100} +{"lr": 0.008417671683759745, "data_time": 0.005979180335998535, "loss": 0.556917953491211, "decode.loss_ce": 0.35421222969889643, "decode.acc_seg": 74.25212860107422, "aux.loss_ce": 0.20270572006702423, "aux.acc_seg": 70.05462646484375, "time": 1.1185519218444824, "iter": 28150, "memory": 8703, "step": 28150} +{"lr": 0.008414832834129509, "data_time": 0.008694911003112793, "loss": 0.3896375834941864, "decode.loss_ce": 0.23446857333183288, "decode.acc_seg": 90.11891174316406, "aux.loss_ce": 0.15516900196671485, "aux.acc_seg": 85.36796569824219, "time": 1.118178915977478, "iter": 28200, "memory": 8704, "step": 28200} +{"lr": 0.00841199387680187, "data_time": 0.006729626655578613, "loss": 0.2875703513622284, "decode.loss_ce": 0.1798429772257805, "decode.acc_seg": 95.81241607666016, "aux.loss_ce": 0.10772736892104148, "aux.acc_seg": 95.09773254394531, "time": 1.1172807931900024, "iter": 28250, "memory": 8704, "step": 28250} +{"lr": 0.00840915481173187, "data_time": 0.005845212936401367, "loss": 0.2851166486740112, "decode.loss_ce": 0.1745417222380638, "decode.acc_seg": 95.14432525634766, "aux.loss_ce": 0.11057492941617966, "aux.acc_seg": 91.1662368774414, "time": 1.114486002922058, "iter": 28300, "memory": 8704, "step": 28300} +{"lr": 0.008406315638874517, "data_time": 0.005493569374084473, "loss": 0.44805647134780885, "decode.loss_ce": 0.28474823832511903, "decode.acc_seg": 88.17787170410156, "aux.loss_ce": 0.1633082412183285, "aux.acc_seg": 86.06961059570312, "time": 1.1098863124847411, "iter": 28350, "memory": 8704, "step": 28350} +{"lr": 0.008403476358184775, "data_time": 0.006630659103393555, "loss": 0.37589422315359117, "decode.loss_ce": 0.22588390335440636, "decode.acc_seg": 95.341552734375, "aux.loss_ce": 0.15001032091677188, "aux.acc_seg": 93.92839813232422, "time": 1.1171289682388306, "iter": 28400, "memory": 8703, "step": 28400} +{"lr": 0.00840063696961757, "data_time": 0.007107377052307129, "loss": 0.3527577593922615, "decode.loss_ce": 0.2176605075597763, "decode.acc_seg": 93.43840789794922, "aux.loss_ce": 0.13509725034236908, "aux.acc_seg": 91.60848236083984, "time": 1.1146660566329956, "iter": 28450, "memory": 8703, "step": 28450} +{"lr": 0.008397797473127803, "data_time": 0.006847095489501953, "loss": 0.5655857920646667, "decode.loss_ce": 0.37673909217119217, "decode.acc_seg": 70.27371215820312, "aux.loss_ce": 0.1888466916978359, "aux.acc_seg": 67.09429168701172, "time": 1.1144358158111571, "iter": 28500, "memory": 8703, "step": 28500} +{"lr": 0.008394957868670328, "data_time": 0.007832884788513184, "loss": 0.4254142940044403, "decode.loss_ce": 0.25225993394851687, "decode.acc_seg": 95.05608367919922, "aux.loss_ce": 0.1731543645262718, "aux.acc_seg": 89.25653839111328, "time": 1.1156898260116577, "iter": 28550, "memory": 8704, "step": 28550} +{"lr": 0.008392118156199991, "data_time": 0.0067024707794189455, "loss": 0.42258767038583755, "decode.loss_ce": 0.26829993054270745, "decode.acc_seg": 90.35645294189453, "aux.loss_ce": 0.154287738353014, "aux.acc_seg": 85.45391845703125, "time": 1.1173234462738038, "iter": 28600, "memory": 8704, "step": 28600} +{"lr": 0.008389278335671558, "data_time": 0.008272171020507812, "loss": 0.46318061649799347, "decode.loss_ce": 0.3027737751603127, "decode.acc_seg": 95.69193267822266, "aux.loss_ce": 0.16040684878826142, "aux.acc_seg": 94.28240203857422, "time": 1.117861008644104, "iter": 28650, "memory": 8703, "step": 28650} +{"lr": 0.008386438407039792, "data_time": 0.007866430282592773, "loss": 0.44070479869842527, "decode.loss_ce": 0.27622900158166885, "decode.acc_seg": 87.07599639892578, "aux.loss_ce": 0.16447580307722093, "aux.acc_seg": 83.94367980957031, "time": 1.120031762123108, "iter": 28700, "memory": 8703, "step": 28700} +{"lr": 0.008383598370259407, "data_time": 0.007427835464477539, "loss": 0.5259693667292595, "decode.loss_ce": 0.3311358645558357, "decode.acc_seg": 85.06475830078125, "aux.loss_ce": 0.19483350664377214, "aux.acc_seg": 79.90798950195312, "time": 1.1177501916885375, "iter": 28750, "memory": 8703, "step": 28750} +{"lr": 0.008380758225285072, "data_time": 0.00715324878692627, "loss": 0.4627836972475052, "decode.loss_ce": 0.2850168526172638, "decode.acc_seg": 89.3026351928711, "aux.loss_ce": 0.17776684910058976, "aux.acc_seg": 85.76583862304688, "time": 1.121031904220581, "iter": 28800, "memory": 8703, "step": 28800} +{"lr": 0.008377917972071448, "data_time": 0.0067512750625610355, "loss": 0.6413387000560761, "decode.loss_ce": 0.391701740026474, "decode.acc_seg": 85.32682800292969, "aux.loss_ce": 0.2496369495987892, "aux.acc_seg": 76.77166748046875, "time": 1.1153736114501953, "iter": 28850, "memory": 8705, "step": 28850} +{"lr": 0.008375077610573128, "data_time": 0.0068261146545410155, "loss": 0.6745476722717285, "decode.loss_ce": 0.4537141382694244, "decode.acc_seg": 76.96458435058594, "aux.loss_ce": 0.22083354890346527, "aux.acc_seg": 71.44888305664062, "time": 1.1146925687789917, "iter": 28900, "memory": 8703, "step": 28900} +{"lr": 0.008372237140744683, "data_time": 0.006399297714233398, "loss": 0.6089233621954918, "decode.loss_ce": 0.36455934792757033, "decode.acc_seg": 83.16402435302734, "aux.loss_ce": 0.24436401575803757, "aux.acc_seg": 80.98470306396484, "time": 1.1138365507125854, "iter": 28950, "memory": 8703, "step": 28950} +{"lr": 0.00836939656254066, "data_time": 0.006655383110046387, "loss": 0.6383890450000763, "decode.loss_ce": 0.4110467717051506, "decode.acc_seg": 93.93234252929688, "aux.loss_ce": 0.22734226509928704, "aux.acc_seg": 92.37390899658203, "time": 1.1171438217163085, "iter": 29000, "memory": 8704, "step": 29000} +{"lr": 0.00836655587591555, "data_time": 0.006409382820129395, "loss": 0.41170653849840166, "decode.loss_ce": 0.25422677844762803, "decode.acc_seg": 89.44390106201172, "aux.loss_ce": 0.15747975781559945, "aux.acc_seg": 82.00569152832031, "time": 1.1182164907455445, "iter": 29050, "memory": 8703, "step": 29050} +{"lr": 0.008363715080823808, "data_time": 0.006735992431640625, "loss": 0.6054051101207734, "decode.loss_ce": 0.37681841254234316, "decode.acc_seg": 79.14835357666016, "aux.loss_ce": 0.22858669608831406, "aux.acc_seg": 70.16251373291016, "time": 1.1127522945404054, "iter": 29100, "memory": 8704, "step": 29100} +{"lr": 0.008360874177219866, "data_time": 0.0075714349746704105, "loss": 0.40557705909013747, "decode.loss_ce": 0.24184943586587906, "decode.acc_seg": 81.3685073852539, "aux.loss_ce": 0.16372762322425843, "aux.acc_seg": 71.55354309082031, "time": 1.1189658641815186, "iter": 29150, "memory": 8704, "step": 29150} +{"lr": 0.008358033165058123, "data_time": 0.0058934688568115234, "loss": 0.42840335369110105, "decode.loss_ce": 0.28175920993089676, "decode.acc_seg": 93.87499237060547, "aux.loss_ce": 0.14664414525032043, "aux.acc_seg": 89.71455383300781, "time": 1.1168887615203857, "iter": 29200, "memory": 8704, "step": 29200} +{"lr": 0.008355192044292914, "data_time": 0.008713626861572265, "loss": 0.6829231292009353, "decode.loss_ce": 0.4461435914039612, "decode.acc_seg": 89.68143463134766, "aux.loss_ce": 0.2367795318365097, "aux.acc_seg": 86.7208480834961, "time": 1.1216065168380738, "iter": 29250, "memory": 8704, "step": 29250} +{"lr": 0.00835235081487855, "data_time": 0.004732513427734375, "loss": 0.5754919499158859, "decode.loss_ce": 0.35526612848043443, "decode.acc_seg": 87.13404083251953, "aux.loss_ce": 0.22022582069039345, "aux.acc_seg": 80.83826446533203, "time": 1.1174081563949585, "iter": 29300, "memory": 8703, "step": 29300} +{"lr": 0.008349509476769323, "data_time": 0.0066150188446044925, "loss": 0.4727295279502869, "decode.loss_ce": 0.2750390022993088, "decode.acc_seg": 94.36251068115234, "aux.loss_ce": 0.19769051745533944, "aux.acc_seg": 83.51236724853516, "time": 1.119990634918213, "iter": 29350, "memory": 8704, "step": 29350} +{"lr": 0.008346668029919468, "data_time": 0.006239199638366699, "loss": 0.4287740334868431, "decode.loss_ce": 0.2754245541989803, "decode.acc_seg": 93.48125457763672, "aux.loss_ce": 0.1533494770526886, "aux.acc_seg": 91.89630889892578, "time": 1.1147043466567994, "iter": 29400, "memory": 8703, "step": 29400} +{"lr": 0.008343826474283196, "data_time": 0.006669259071350098, "loss": 0.492613872885704, "decode.loss_ce": 0.3085698440670967, "decode.acc_seg": 90.74185180664062, "aux.loss_ce": 0.1840440273284912, "aux.acc_seg": 88.63518524169922, "time": 1.1150978088378907, "iter": 29450, "memory": 8703, "step": 29450} +{"lr": 0.008340984809814673, "data_time": 0.006477642059326172, "loss": 0.36743575930595396, "decode.loss_ce": 0.22123211845755578, "decode.acc_seg": 91.5548324584961, "aux.loss_ce": 0.14620364233851432, "aux.acc_seg": 88.85784149169922, "time": 1.115458369255066, "iter": 29500, "memory": 8704, "step": 29500} +{"lr": 0.008338143036468022, "data_time": 0.007390785217285156, "loss": 0.4227103441953659, "decode.loss_ce": 0.26982237249612806, "decode.acc_seg": 92.41650390625, "aux.loss_ce": 0.1528879724442959, "aux.acc_seg": 92.31077575683594, "time": 1.116043496131897, "iter": 29550, "memory": 8704, "step": 29550} +{"lr": 0.00833530115419735, "data_time": 0.005321955680847168, "loss": 0.3898690640926361, "decode.loss_ce": 0.243661530315876, "decode.acc_seg": 92.1850814819336, "aux.loss_ce": 0.14620753079652787, "aux.acc_seg": 90.36566162109375, "time": 1.1138720989227295, "iter": 29600, "memory": 8703, "step": 29600} +{"lr": 0.008332459162956702, "data_time": 0.0061283111572265625, "loss": 0.6976263672113419, "decode.loss_ce": 0.4473192185163498, "decode.acc_seg": 77.02684783935547, "aux.loss_ce": 0.2503071494400501, "aux.acc_seg": 75.19617462158203, "time": 1.1157797574996948, "iter": 29650, "memory": 8704, "step": 29650} +{"lr": 0.008329617062700106, "data_time": 0.006826615333557129, "loss": 0.377756330370903, "decode.loss_ce": 0.24093596190214156, "decode.acc_seg": 93.7005844116211, "aux.loss_ce": 0.13682036846876144, "aux.acc_seg": 93.49029541015625, "time": 1.1195191383361816, "iter": 29700, "memory": 8704, "step": 29700} +{"lr": 0.008326774853381553, "data_time": 0.008520293235778808, "loss": 0.35270906239748, "decode.loss_ce": 0.2125886306166649, "decode.acc_seg": 89.59366607666016, "aux.loss_ce": 0.14012043215334416, "aux.acc_seg": 86.7178955078125, "time": 1.1237919092178346, "iter": 29750, "memory": 8704, "step": 29750} +{"lr": 0.008323932534954974, "data_time": 0.0066792964935302734, "loss": 0.6138407737016678, "decode.loss_ce": 0.40127282962203026, "decode.acc_seg": 84.88845825195312, "aux.loss_ce": 0.2125679489225149, "aux.acc_seg": 78.88704681396484, "time": 1.1195616245269775, "iter": 29800, "memory": 8704, "step": 29800} +{"lr": 0.00832109010737428, "data_time": 0.007127928733825684, "loss": 0.6014212042093277, "decode.loss_ce": 0.39562086164951327, "decode.acc_seg": 83.76801300048828, "aux.loss_ce": 0.20580033585429192, "aux.acc_seg": 81.22341918945312, "time": 1.11590473651886, "iter": 29850, "memory": 8704, "step": 29850} +{"lr": 0.008318247570593351, "data_time": 0.006842041015625, "loss": 0.5146063283085823, "decode.loss_ce": 0.3229190371930599, "decode.acc_seg": 93.08153533935547, "aux.loss_ce": 0.19168729335069656, "aux.acc_seg": 92.47747802734375, "time": 1.1163121938705445, "iter": 29900, "memory": 8703, "step": 29900} +{"lr": 0.008315404924566009, "data_time": 0.006658530235290528, "loss": 0.37724417746067046, "decode.loss_ce": 0.20950644612312316, "decode.acc_seg": 94.1751480102539, "aux.loss_ce": 0.1677377350628376, "aux.acc_seg": 91.79496765136719, "time": 1.1120704889297486, "iter": 29950, "memory": 8703, "step": 29950} +{"lr": 0.008312562169246055, "data_time": 0.005841064453125, "loss": 0.3352588519454002, "decode.loss_ce": 0.21271646469831468, "decode.acc_seg": 85.94061279296875, "aux.loss_ce": 0.1225423838943243, "aux.acc_seg": 87.234619140625, "time": 1.1168441295623779, "iter": 30000, "memory": 8704, "step": 30000} +{"lr": 0.008309719304587264, "data_time": 0.005246305465698242, "loss": 0.6495398253202438, "decode.loss_ce": 0.3910132423043251, "decode.acc_seg": 84.40608978271484, "aux.loss_ce": 0.2585265785455704, "aux.acc_seg": 71.36268615722656, "time": 1.1150134086608887, "iter": 30050, "memory": 8704, "step": 30050} +{"lr": 0.008306876330543327, "data_time": 0.007898759841918946, "loss": 0.4907722383737564, "decode.loss_ce": 0.3234541520476341, "decode.acc_seg": 74.26293182373047, "aux.loss_ce": 0.16731807887554168, "aux.acc_seg": 75.78264617919922, "time": 1.1184954643249512, "iter": 30100, "memory": 8703, "step": 30100} +{"lr": 0.008304033247067966, "data_time": 0.007436919212341309, "loss": 0.2913335055112839, "decode.loss_ce": 0.1739459976553917, "decode.acc_seg": 95.32853698730469, "aux.loss_ce": 0.11738750487565994, "aux.acc_seg": 94.9937515258789, "time": 1.1206129312515258, "iter": 30150, "memory": 8704, "step": 30150} +{"lr": 0.008301190054114808, "data_time": 0.007157015800476074, "loss": 0.5637168556451797, "decode.loss_ce": 0.363773562759161, "decode.acc_seg": 96.53377532958984, "aux.loss_ce": 0.19994328618049623, "aux.acc_seg": 94.53779602050781, "time": 1.121206283569336, "iter": 30200, "memory": 8704, "step": 30200} +{"lr": 0.008298346751637469, "data_time": 0.006397318840026855, "loss": 0.3861642748117447, "decode.loss_ce": 0.24678217023611068, "decode.acc_seg": 86.89657592773438, "aux.loss_ce": 0.13938209861516954, "aux.acc_seg": 82.06659698486328, "time": 1.1190017461776733, "iter": 30250, "memory": 8703, "step": 30250} +{"lr": 0.008295503339589522, "data_time": 0.005907011032104492, "loss": 0.5091076582670212, "decode.loss_ce": 0.28092629462480545, "decode.acc_seg": 93.72520446777344, "aux.loss_ce": 0.2281813658773899, "aux.acc_seg": 57.954402923583984, "time": 1.1100722074508667, "iter": 30300, "memory": 8704, "step": 30300} +{"lr": 0.008292659817924503, "data_time": 0.006247258186340332, "loss": 0.4564723774790764, "decode.loss_ce": 0.30170829892158507, "decode.acc_seg": 96.93253326416016, "aux.loss_ce": 0.15476407408714293, "aux.acc_seg": 95.99693298339844, "time": 1.1183579444885254, "iter": 30350, "memory": 8703, "step": 30350} +{"lr": 0.0082898161865959, "data_time": 0.0063514232635498045, "loss": 0.3309068515896797, "decode.loss_ce": 0.20493499413132668, "decode.acc_seg": 96.24111938476562, "aux.loss_ce": 0.12597185634076596, "aux.acc_seg": 95.24809265136719, "time": 1.115056037902832, "iter": 30400, "memory": 8703, "step": 30400} +{"lr": 0.008286972445557188, "data_time": 0.0074967145919799805, "loss": 0.39694206416606903, "decode.loss_ce": 0.24259332790970803, "decode.acc_seg": 91.92790985107422, "aux.loss_ce": 0.15434873402118682, "aux.acc_seg": 88.20228576660156, "time": 1.1166409730911255, "iter": 30450, "memory": 8703, "step": 30450} +{"lr": 0.008284128594761775, "data_time": 0.007354927062988281, "loss": 0.43121411800384524, "decode.loss_ce": 0.2735627144575119, "decode.acc_seg": 94.06973266601562, "aux.loss_ce": 0.1576514083892107, "aux.acc_seg": 92.16829681396484, "time": 1.1192551612854005, "iter": 30500, "memory": 8704, "step": 30500} +{"lr": 0.008281284634163048, "data_time": 0.008089447021484375, "loss": 0.6038241609930992, "decode.loss_ce": 0.4068580538034439, "decode.acc_seg": 96.63582611083984, "aux.loss_ce": 0.19696610867977143, "aux.acc_seg": 94.72748565673828, "time": 1.1191306829452514, "iter": 30550, "memory": 8704, "step": 30550} +{"lr": 0.008278440563714353, "data_time": 0.005645394325256348, "loss": 0.4075247377157211, "decode.loss_ce": 0.24498598799109458, "decode.acc_seg": 89.34803009033203, "aux.loss_ce": 0.16253874376416205, "aux.acc_seg": 83.76827239990234, "time": 1.1122771501541138, "iter": 30600, "memory": 8703, "step": 30600} +{"lr": 0.008275596383369006, "data_time": 0.008499813079833985, "loss": 0.44961969256401063, "decode.loss_ce": 0.27636875957250595, "decode.acc_seg": 83.0148696899414, "aux.loss_ce": 0.17325092926621438, "aux.acc_seg": 73.48416137695312, "time": 1.1206389665603638, "iter": 30650, "memory": 8704, "step": 30650} +{"lr": 0.00827275209308027, "data_time": 0.009753823280334473, "loss": 0.39593675136566164, "decode.loss_ce": 0.24968837648630143, "decode.acc_seg": 92.3074722290039, "aux.loss_ce": 0.14624837040901184, "aux.acc_seg": 79.03092193603516, "time": 1.1244111776351928, "iter": 30700, "memory": 8703, "step": 30700} +{"lr": 0.00826990769280138, "data_time": 0.0065812826156616214, "loss": 0.5406430959701538, "decode.loss_ce": 0.3426988564431667, "decode.acc_seg": 95.11158752441406, "aux.loss_ce": 0.19794424213469028, "aux.acc_seg": 94.1446304321289, "time": 1.1125505685806274, "iter": 30750, "memory": 8704, "step": 30750} +{"lr": 0.008267063182485528, "data_time": 0.005353569984436035, "loss": 0.6034632980823517, "decode.loss_ce": 0.36005229502916336, "decode.acc_seg": 96.9625473022461, "aux.loss_ce": 0.24341100454330444, "aux.acc_seg": 95.291259765625, "time": 1.1123772144317627, "iter": 30800, "memory": 8704, "step": 30800} +{"lr": 0.00826421856208588, "data_time": 0.0059002161026000975, "loss": 0.41678049936890604, "decode.loss_ce": 0.2582037918269634, "decode.acc_seg": 95.42782592773438, "aux.loss_ce": 0.1585767038166523, "aux.acc_seg": 91.51763916015625, "time": 1.1147850275039672, "iter": 30850, "memory": 8704, "step": 30850} +{"lr": 0.008261373831555553, "data_time": 0.006230020523071289, "loss": 0.354571533203125, "decode.loss_ce": 0.21775454431772232, "decode.acc_seg": 94.79051971435547, "aux.loss_ce": 0.1368169866502285, "aux.acc_seg": 94.59101104736328, "time": 1.114420771598816, "iter": 30900, "memory": 8704, "step": 30900} +{"lr": 0.008258528990847615, "data_time": 0.005173182487487793, "loss": 0.38515902906656263, "decode.loss_ce": 0.2342616230249405, "decode.acc_seg": 92.03472137451172, "aux.loss_ce": 0.15089741125702857, "aux.acc_seg": 89.39844512939453, "time": 1.1134381532669066, "iter": 30950, "memory": 8704, "step": 30950} +{"lr": 0.008255684039915131, "data_time": 0.006235074996948242, "loss": 0.4783815503120422, "decode.loss_ce": 0.2958719253540039, "decode.acc_seg": 89.3880844116211, "aux.loss_ce": 0.1825096197426319, "aux.acc_seg": 87.44125366210938, "time": 1.1154404640197755, "iter": 31000, "memory": 8704, "step": 31000} +{"lr": 0.008252838978711083, "data_time": 0.00675203800201416, "loss": 0.4740126222372055, "decode.loss_ce": 0.2749600067734718, "decode.acc_seg": 80.11760711669922, "aux.loss_ce": 0.19905262142419816, "aux.acc_seg": 63.1992301940918, "time": 1.1186177730560303, "iter": 31050, "memory": 8703, "step": 31050} +{"lr": 0.008249993807188436, "data_time": 0.006721687316894531, "loss": 0.4571945458650589, "decode.loss_ce": 0.2743574619293213, "decode.acc_seg": 95.53718566894531, "aux.loss_ce": 0.18283708542585372, "aux.acc_seg": 92.08939361572266, "time": 1.1157517910003663, "iter": 31100, "memory": 8703, "step": 31100} +{"lr": 0.008247148525300133, "data_time": 0.006379890441894531, "loss": 0.5103047654032707, "decode.loss_ce": 0.30256922245025636, "decode.acc_seg": 91.0604476928711, "aux.loss_ce": 0.20773553848266602, "aux.acc_seg": 87.03047180175781, "time": 1.1187744617462159, "iter": 31150, "memory": 8703, "step": 31150} +{"lr": 0.008244303132999056, "data_time": 0.006165218353271484, "loss": 0.3612850934267044, "decode.loss_ce": 0.2179170571267605, "decode.acc_seg": 81.12213897705078, "aux.loss_ce": 0.14336803629994394, "aux.acc_seg": 80.31063079833984, "time": 1.115558648109436, "iter": 31200, "memory": 8703, "step": 31200} +{"lr": 0.00824145763023806, "data_time": 0.005654525756835937, "loss": 0.4734604299068451, "decode.loss_ce": 0.2870554722845554, "decode.acc_seg": 92.06739807128906, "aux.loss_ce": 0.18640495054423808, "aux.acc_seg": 88.40255737304688, "time": 1.109583282470703, "iter": 31250, "memory": 8704, "step": 31250} +{"lr": 0.008238612016969944, "data_time": 0.006944012641906738, "loss": 0.5043195381760597, "decode.loss_ce": 0.3153452783823013, "decode.acc_seg": 86.0625228881836, "aux.loss_ce": 0.18897426165640355, "aux.acc_seg": 83.99491882324219, "time": 1.1171534776687622, "iter": 31300, "memory": 8703, "step": 31300} +{"lr": 0.008235766293147503, "data_time": 0.008079123497009278, "loss": 0.4334895521402359, "decode.loss_ce": 0.2738760009407997, "decode.acc_seg": 81.61766815185547, "aux.loss_ce": 0.15961354821920395, "aux.acc_seg": 77.37388610839844, "time": 1.1179112434387206, "iter": 31350, "memory": 8704, "step": 31350} +{"lr": 0.008232920458723456, "data_time": 0.007781553268432617, "loss": 0.3836867079138756, "decode.loss_ce": 0.24815120100975036, "decode.acc_seg": 93.70085144042969, "aux.loss_ce": 0.13553550764918326, "aux.acc_seg": 91.27571868896484, "time": 1.117070770263672, "iter": 31400, "memory": 8703, "step": 31400} +{"lr": 0.008230074513650501, "data_time": 0.006896352767944336, "loss": 0.4032953605055809, "decode.loss_ce": 0.2513719588518143, "decode.acc_seg": 91.49105834960938, "aux.loss_ce": 0.15192340388894082, "aux.acc_seg": 85.44692993164062, "time": 1.1183201551437378, "iter": 31450, "memory": 8703, "step": 31450} +{"lr": 0.008227228457881298, "data_time": 0.006933832168579101, "loss": 0.3933772027492523, "decode.loss_ce": 0.24871462732553482, "decode.acc_seg": 93.70587158203125, "aux.loss_ce": 0.14466258212924005, "aux.acc_seg": 92.64195251464844, "time": 1.1179849624633789, "iter": 31500, "memory": 8703, "step": 31500} +{"lr": 0.008224382291368473, "data_time": 0.0055846691131591795, "loss": 0.4416953146457672, "decode.loss_ce": 0.25675382018089293, "decode.acc_seg": 87.88137817382812, "aux.loss_ce": 0.18494149446487426, "aux.acc_seg": 81.52033233642578, "time": 1.1156447649002075, "iter": 31550, "memory": 8704, "step": 31550} +{"lr": 0.008221536014064605, "data_time": 0.005958676338195801, "loss": 0.638212913274765, "decode.loss_ce": 0.41648558229207994, "decode.acc_seg": 86.34630584716797, "aux.loss_ce": 0.2217273272573948, "aux.acc_seg": 86.39163970947266, "time": 1.1127710342407227, "iter": 31600, "memory": 8704, "step": 31600} +{"lr": 0.00821868962592223, "data_time": 0.006035637855529785, "loss": 0.6800440013408661, "decode.loss_ce": 0.42617021799087523, "decode.acc_seg": 80.37102508544922, "aux.loss_ce": 0.2538737773895264, "aux.acc_seg": 73.06416320800781, "time": 1.1137665510177612, "iter": 31650, "memory": 8703, "step": 31650} +{"lr": 0.008215843126893857, "data_time": 0.005567741394042969, "loss": 0.48244835138320924, "decode.loss_ce": 0.3003717795014381, "decode.acc_seg": 81.58352661132812, "aux.loss_ce": 0.18207657039165498, "aux.acc_seg": 77.92987823486328, "time": 1.1091949462890625, "iter": 31700, "memory": 8703, "step": 31700} +{"lr": 0.008212996516931947, "data_time": 0.0049032926559448246, "loss": 0.4848539441823959, "decode.loss_ce": 0.2840484783053398, "decode.acc_seg": 95.11419677734375, "aux.loss_ce": 0.20080546364188195, "aux.acc_seg": 92.1951904296875, "time": 1.116830587387085, "iter": 31750, "memory": 8704, "step": 31750} +{"lr": 0.008210149795988924, "data_time": 0.006677794456481934, "loss": 0.45076707005500793, "decode.loss_ce": 0.27393053025007247, "decode.acc_seg": 88.04772186279297, "aux.loss_ce": 0.17683653943240643, "aux.acc_seg": 85.9024658203125, "time": 1.1152762651443482, "iter": 31800, "memory": 8704, "step": 31800} +{"lr": 0.008207302964017178, "data_time": 0.0070236921310424805, "loss": 0.443424691259861, "decode.loss_ce": 0.27753324136137963, "decode.acc_seg": 88.51163482666016, "aux.loss_ce": 0.1658914491534233, "aux.acc_seg": 85.43051147460938, "time": 1.1153705835342407, "iter": 31850, "memory": 8704, "step": 31850} +{"lr": 0.008204456020969048, "data_time": 0.007632732391357422, "loss": 0.5473581656813622, "decode.loss_ce": 0.35593572109937666, "decode.acc_seg": 88.18333435058594, "aux.loss_ce": 0.19142243638634682, "aux.acc_seg": 87.6099853515625, "time": 1.1171825885772706, "iter": 31900, "memory": 8703, "step": 31900} +{"lr": 0.008201608966796847, "data_time": 0.005684041976928711, "loss": 0.40198845267295835, "decode.loss_ce": 0.25401144847273827, "decode.acc_seg": 93.95878601074219, "aux.loss_ce": 0.14797700047492982, "aux.acc_seg": 93.96495819091797, "time": 1.1140576124191284, "iter": 31950, "memory": 8704, "step": 31950} +{"lr": 0.008198761801452844, "data_time": 0.007189798355102539, "loss": 0.3969561234116554, "decode.loss_ce": 0.2446759209036827, "decode.acc_seg": 91.4484634399414, "aux.loss_ce": 0.15228020772337914, "aux.acc_seg": 91.14112854003906, "time": 1.118840765953064, "iter": 32000, "memory": 8704, "step": 32000} +{"aAcc": 87.76, "mIoU": 53.14, "mAcc": 61.65, "data_time": 0.004041742865794826, "time": 0.27118560763078425, "step": 32000} +{"lr": 0.008195914524889268, "data_time": 0.007335042953491211, "loss": 0.4823166161775589, "decode.loss_ce": 0.30786077976226806, "decode.acc_seg": 96.44806671142578, "aux.loss_ce": 0.17445582896471024, "aux.acc_seg": 95.7047119140625, "time": 1.1171413660049438, "iter": 32050, "memory": 8704, "step": 32050} +{"lr": 0.008193067137058311, "data_time": 0.007963156700134278, "loss": 0.6576606899499893, "decode.loss_ce": 0.4131653279066086, "decode.acc_seg": 83.52482604980469, "aux.loss_ce": 0.24449534416198732, "aux.acc_seg": 79.09405517578125, "time": 1.119227695465088, "iter": 32100, "memory": 8705, "step": 32100} +{"lr": 0.008190219637912126, "data_time": 0.0059670209884643555, "loss": 0.3456364065408707, "decode.loss_ce": 0.21512901782989502, "decode.acc_seg": 85.29846954345703, "aux.loss_ce": 0.1305073894560337, "aux.acc_seg": 80.06884002685547, "time": 1.1142338752746581, "iter": 32150, "memory": 8703, "step": 32150} +{"lr": 0.008187372027402827, "data_time": 0.006347060203552246, "loss": 0.3261101275682449, "decode.loss_ce": 0.19853297621011734, "decode.acc_seg": 94.09834289550781, "aux.loss_ce": 0.12757715061306954, "aux.acc_seg": 92.8823471069336, "time": 1.1134173154830933, "iter": 32200, "memory": 8704, "step": 32200} +{"lr": 0.008184524305482489, "data_time": 0.008579087257385255, "loss": 0.4425747632980347, "decode.loss_ce": 0.2620887652039528, "decode.acc_seg": 89.10456085205078, "aux.loss_ce": 0.18048600032925605, "aux.acc_seg": 85.24691772460938, "time": 1.1191540718078614, "iter": 32250, "memory": 8703, "step": 32250} +{"lr": 0.008181676472103131, "data_time": 0.006760168075561524, "loss": 0.4641724839806557, "decode.loss_ce": 0.2658513687551022, "decode.acc_seg": 86.89778137207031, "aux.loss_ce": 0.1983211047947407, "aux.acc_seg": 85.85255432128906, "time": 1.11668221950531, "iter": 32300, "memory": 8703, "step": 32300} +{"lr": 0.008178828527216759, "data_time": 0.006970930099487305, "loss": 0.43536036312580106, "decode.loss_ce": 0.24555405974388123, "decode.acc_seg": 88.53028106689453, "aux.loss_ce": 0.18980630114674568, "aux.acc_seg": 71.46809387207031, "time": 1.111981177330017, "iter": 32350, "memory": 8703, "step": 32350} +{"lr": 0.00817598047077532, "data_time": 0.0065980195999145504, "loss": 0.41275119185447695, "decode.loss_ce": 0.2475676119327545, "decode.acc_seg": 91.4378433227539, "aux.loss_ce": 0.1651835858821869, "aux.acc_seg": 86.86096954345703, "time": 1.1167829990386964, "iter": 32400, "memory": 8703, "step": 32400} +{"lr": 0.00817313230273074, "data_time": 0.006685018539428711, "loss": 0.6016236692667007, "decode.loss_ce": 0.3716785840690136, "decode.acc_seg": 90.23616790771484, "aux.loss_ce": 0.22994508892297744, "aux.acc_seg": 86.51953887939453, "time": 1.1183089017868042, "iter": 32450, "memory": 8704, "step": 32450} +{"lr": 0.00817028402303488, "data_time": 0.008554339408874512, "loss": 0.34022570252418516, "decode.loss_ce": 0.2205118015408516, "decode.acc_seg": 90.12342834472656, "aux.loss_ce": 0.11971389874815941, "aux.acc_seg": 83.10686492919922, "time": 1.1204880237579347, "iter": 32500, "memory": 8704, "step": 32500} +{"lr": 0.008167435631639582, "data_time": 0.008147430419921876, "loss": 0.569564537703991, "decode.loss_ce": 0.35588281527161597, "decode.acc_seg": 68.97213745117188, "aux.loss_ce": 0.21368173211812974, "aux.acc_seg": 65.0094985961914, "time": 1.1221993684768676, "iter": 32550, "memory": 8704, "step": 32550} +{"lr": 0.008164587128496653, "data_time": 0.006105256080627441, "loss": 0.3405087932944298, "decode.loss_ce": 0.1869283452630043, "decode.acc_seg": 90.24727630615234, "aux.loss_ce": 0.15358045138418674, "aux.acc_seg": 86.42864227294922, "time": 1.1153140544891358, "iter": 32600, "memory": 8704, "step": 32600} +{"lr": 0.008161738513557847, "data_time": 0.006920671463012696, "loss": 0.4130461722612381, "decode.loss_ce": 0.2483791008591652, "decode.acc_seg": 88.98995208740234, "aux.loss_ce": 0.16466706469655037, "aux.acc_seg": 81.466796875, "time": 1.117427396774292, "iter": 32650, "memory": 8704, "step": 32650} +{"lr": 0.008158889786774863, "data_time": 0.007400774955749511, "loss": 0.4513086050748825, "decode.loss_ce": 0.2856818072497845, "decode.acc_seg": 87.98828125, "aux.loss_ce": 0.1656267996877432, "aux.acc_seg": 74.32835388183594, "time": 1.1194953441619873, "iter": 32700, "memory": 8704, "step": 32700} +{"lr": 0.008156040948099394, "data_time": 0.007916736602783202, "loss": 0.413168278336525, "decode.loss_ce": 0.24847440421581268, "decode.acc_seg": 96.23081970214844, "aux.loss_ce": 0.164693883061409, "aux.acc_seg": 94.55686950683594, "time": 1.1136762857437135, "iter": 32750, "memory": 8703, "step": 32750} +{"lr": 0.00815319199748307, "data_time": 0.006400060653686523, "loss": 0.335164999961853, "decode.loss_ce": 0.2087311789393425, "decode.acc_seg": 97.96854400634766, "aux.loss_ce": 0.12643382288515567, "aux.acc_seg": 97.5016860961914, "time": 1.109469962120056, "iter": 32800, "memory": 8704, "step": 32800} +{"lr": 0.00815034293487748, "data_time": 0.007292056083679199, "loss": 0.5216738492250442, "decode.loss_ce": 0.3372501865029335, "decode.acc_seg": 88.3448257446289, "aux.loss_ce": 0.18442365825176238, "aux.acc_seg": 86.9254379272461, "time": 1.1145641088485718, "iter": 32850, "memory": 8703, "step": 32850} +{"lr": 0.008147493760234199, "data_time": 0.005776739120483399, "loss": 0.3719240576028824, "decode.loss_ce": 0.22258084565401076, "decode.acc_seg": 90.08509063720703, "aux.loss_ce": 0.14934321269392967, "aux.acc_seg": 81.08856964111328, "time": 1.113902497291565, "iter": 32900, "memory": 8703, "step": 32900} +{"lr": 0.00814464447350474, "data_time": 0.008528327941894532, "loss": 0.46487730741500854, "decode.loss_ce": 0.28084826171398164, "decode.acc_seg": 86.70387268066406, "aux.loss_ce": 0.18402905240654946, "aux.acc_seg": 85.01370239257812, "time": 1.1238686800003053, "iter": 32950, "memory": 8703, "step": 32950} +{"lr": 0.008141795074640572, "data_time": 0.006103777885437011, "loss": 0.6646720737218856, "decode.loss_ce": 0.4080809399485588, "decode.acc_seg": 79.2991943359375, "aux.loss_ce": 0.2565911404788494, "aux.acc_seg": 76.07061004638672, "time": 1.1125640869140625, "iter": 33000, "memory": 8703, "step": 33000} +{"lr": 0.008138945563593137, "data_time": 0.005220627784729004, "loss": 0.4109855487942696, "decode.loss_ce": 0.24118286967277527, "decode.acc_seg": 90.26819610595703, "aux.loss_ce": 0.1698026806116104, "aux.acc_seg": 88.45901489257812, "time": 1.1205784320831298, "iter": 33050, "memory": 8703, "step": 33050} +{"lr": 0.008136095940313826, "data_time": 0.007651185989379883, "loss": 0.4062811076641083, "decode.loss_ce": 0.2550719082355499, "decode.acc_seg": 89.453125, "aux.loss_ce": 0.15120919644832612, "aux.acc_seg": 88.06597137451172, "time": 1.117555809020996, "iter": 33100, "memory": 8703, "step": 33100} +{"lr": 0.008133246204753999, "data_time": 0.008916282653808593, "loss": 0.4682183340191841, "decode.loss_ce": 0.28467186242341996, "decode.acc_seg": 97.4527359008789, "aux.loss_ce": 0.18354647122323514, "aux.acc_seg": 96.42231750488281, "time": 1.1224190711975097, "iter": 33150, "memory": 8703, "step": 33150} +{"lr": 0.008130396356864977, "data_time": 0.008275127410888672, "loss": 0.363842311501503, "decode.loss_ce": 0.20929907485842705, "decode.acc_seg": 93.5333251953125, "aux.loss_ce": 0.15454323962330818, "aux.acc_seg": 92.1855239868164, "time": 1.1169764518737793, "iter": 33200, "memory": 8703, "step": 33200} +{"lr": 0.008127546396598032, "data_time": 0.007950496673583985, "loss": 0.7344094902276993, "decode.loss_ce": 0.467751669883728, "decode.acc_seg": 86.83554077148438, "aux.loss_ce": 0.26665781885385514, "aux.acc_seg": 82.77485656738281, "time": 1.1155349016189575, "iter": 33250, "memory": 8703, "step": 33250} +{"lr": 0.00812469632390439, "data_time": 0.0070296525955200195, "loss": 0.45486268401145935, "decode.loss_ce": 0.28716538548469545, "decode.acc_seg": 95.01347351074219, "aux.loss_ce": 0.16769728511571885, "aux.acc_seg": 91.47217559814453, "time": 1.118096375465393, "iter": 33300, "memory": 8704, "step": 33300} +{"lr": 0.00812184613873525, "data_time": 0.006126928329467774, "loss": 0.640350216627121, "decode.loss_ce": 0.39900427013635636, "decode.acc_seg": 87.45040893554688, "aux.loss_ce": 0.24134593680500985, "aux.acc_seg": 83.51173400878906, "time": 1.1142081022262573, "iter": 33350, "memory": 8703, "step": 33350} +{"lr": 0.008118995841041775, "data_time": 0.006594014167785644, "loss": 0.3580052763223648, "decode.loss_ce": 0.21517218574881553, "decode.acc_seg": 88.16101837158203, "aux.loss_ce": 0.1428330797702074, "aux.acc_seg": 74.68611145019531, "time": 1.1146713495254517, "iter": 33400, "memory": 8703, "step": 33400} +{"lr": 0.008116145430775079, "data_time": 0.006899785995483398, "loss": 0.5784109339118004, "decode.loss_ce": 0.34877751022577286, "decode.acc_seg": 86.00949096679688, "aux.loss_ce": 0.22963342852890492, "aux.acc_seg": 83.00448608398438, "time": 1.1159401178359984, "iter": 33450, "memory": 8704, "step": 33450} +{"lr": 0.008113294907886237, "data_time": 0.00809164047241211, "loss": 0.5042188242077827, "decode.loss_ce": 0.32496733516454696, "decode.acc_seg": 93.74077606201172, "aux.loss_ce": 0.17925148457288742, "aux.acc_seg": 91.13388061523438, "time": 1.1162410259246827, "iter": 33500, "memory": 8703, "step": 33500} +{"lr": 0.008110444272326267, "data_time": 0.007930588722229005, "loss": 0.3588882341980934, "decode.loss_ce": 0.2195590190589428, "decode.acc_seg": 96.79768371582031, "aux.loss_ce": 0.13932921439409257, "aux.acc_seg": 95.78297424316406, "time": 1.118840217590332, "iter": 33550, "memory": 8703, "step": 33550} +{"lr": 0.008107593524046173, "data_time": 0.006032633781433106, "loss": 0.4042047157883644, "decode.loss_ce": 0.2366466447710991, "decode.acc_seg": 94.85293579101562, "aux.loss_ce": 0.16755806878209115, "aux.acc_seg": 72.92273712158203, "time": 1.1137121438980102, "iter": 33600, "memory": 8703, "step": 33600} +{"lr": 0.008104742662996897, "data_time": 0.007635974884033203, "loss": 0.3601902395486832, "decode.loss_ce": 0.22067430019378662, "decode.acc_seg": 86.90681457519531, "aux.loss_ce": 0.13951594159007072, "aux.acc_seg": 86.18640899658203, "time": 1.117449736595154, "iter": 33650, "memory": 8703, "step": 33650} +{"lr": 0.008101891689129372, "data_time": 0.005411839485168457, "loss": 0.6081782922148704, "decode.loss_ce": 0.39884926825761796, "decode.acc_seg": 95.39299011230469, "aux.loss_ce": 0.20932901985943317, "aux.acc_seg": 91.23795318603516, "time": 1.1113028049468994, "iter": 33700, "memory": 8703, "step": 33700} +{"lr": 0.008099040602394445, "data_time": 0.008333611488342284, "loss": 0.48259087055921557, "decode.loss_ce": 0.2918271288275719, "decode.acc_seg": 93.24226379394531, "aux.loss_ce": 0.1907637357711792, "aux.acc_seg": 88.98054504394531, "time": 1.1174108743667603, "iter": 33750, "memory": 8703, "step": 33750} +{"lr": 0.008096189402742952, "data_time": 0.0073899030685424805, "loss": 0.4723797902464867, "decode.loss_ce": 0.29366992264986036, "decode.acc_seg": 88.34278869628906, "aux.loss_ce": 0.17870986759662627, "aux.acc_seg": 81.3486099243164, "time": 1.1138889789581299, "iter": 33800, "memory": 8703, "step": 33800} +{"lr": 0.008093338090125678, "data_time": 0.0064105987548828125, "loss": 0.4740810915827751, "decode.loss_ce": 0.3015039019286633, "decode.acc_seg": 95.20142364501953, "aux.loss_ce": 0.1725771799683571, "aux.acc_seg": 91.08969116210938, "time": 1.1125930070877075, "iter": 33850, "memory": 8704, "step": 33850} +{"lr": 0.008090486664493376, "data_time": 0.005848240852355957, "loss": 0.4141519904136658, "decode.loss_ce": 0.25904289856553075, "decode.acc_seg": 92.00715637207031, "aux.loss_ce": 0.15510909259319305, "aux.acc_seg": 87.6663589477539, "time": 1.1161698818206787, "iter": 33900, "memory": 8704, "step": 33900} +{"lr": 0.008087635125796761, "data_time": 0.006632566452026367, "loss": 0.35112017542123797, "decode.loss_ce": 0.2041359543800354, "decode.acc_seg": 91.39200592041016, "aux.loss_ce": 0.14698421582579613, "aux.acc_seg": 85.13298034667969, "time": 1.1169859647750855, "iter": 33950, "memory": 8704, "step": 33950} +{"lr": 0.008084783473986482, "data_time": 0.007776737213134766, "loss": 0.3849423885345459, "decode.loss_ce": 0.23875877484679223, "decode.acc_seg": 98.14026641845703, "aux.loss_ce": 0.14618360735476016, "aux.acc_seg": 97.56813049316406, "time": 1.1214730739593506, "iter": 34000, "memory": 8704, "step": 34000} +{"lr": 0.008081931709013161, "data_time": 0.007630777359008789, "loss": 0.49686977714300157, "decode.loss_ce": 0.3124742120504379, "decode.acc_seg": 92.26429748535156, "aux.loss_ce": 0.18439556695520878, "aux.acc_seg": 90.81573486328125, "time": 1.1180994272232057, "iter": 34050, "memory": 8704, "step": 34050} +{"lr": 0.008079079830827392, "data_time": 0.005396318435668945, "loss": 0.5120432764291764, "decode.loss_ce": 0.3112428173422813, "decode.acc_seg": 93.46662902832031, "aux.loss_ce": 0.20080045834183693, "aux.acc_seg": 79.6030044555664, "time": 1.1074196815490722, "iter": 34100, "memory": 8704, "step": 34100} +{"lr": 0.00807622783937971, "data_time": 0.005358266830444336, "loss": 0.5251844674348831, "decode.loss_ce": 0.3207366555929184, "decode.acc_seg": 90.84893035888672, "aux.loss_ce": 0.2044478204101324, "aux.acc_seg": 87.56053161621094, "time": 1.1111948251724244, "iter": 34150, "memory": 8703, "step": 34150} +{"lr": 0.00807337573462062, "data_time": 0.006942534446716308, "loss": 0.4431040331721306, "decode.loss_ce": 0.25320190340280535, "decode.acc_seg": 94.18160247802734, "aux.loss_ce": 0.1899021379649639, "aux.acc_seg": 94.11283111572266, "time": 1.1161338567733765, "iter": 34200, "memory": 8704, "step": 34200} +{"lr": 0.008070523516500587, "data_time": 0.008130478858947753, "loss": 0.4721391901373863, "decode.loss_ce": 0.2984178751707077, "decode.acc_seg": 83.14583587646484, "aux.loss_ce": 0.17372131571173668, "aux.acc_seg": 82.12686920166016, "time": 1.1181155681610107, "iter": 34250, "memory": 8703, "step": 34250} +{"lr": 0.008067671184970015, "data_time": 0.006679630279541016, "loss": 0.34092011451721194, "decode.loss_ce": 0.22021927013993264, "decode.acc_seg": 92.1912612915039, "aux.loss_ce": 0.12070083990693092, "aux.acc_seg": 81.48565673828125, "time": 1.1224259614944458, "iter": 34300, "memory": 8704, "step": 34300} +{"lr": 0.008064818739979284, "data_time": 0.007215046882629394, "loss": 0.5394174233078957, "decode.loss_ce": 0.33545500561594965, "decode.acc_seg": 95.71292114257812, "aux.loss_ce": 0.2039624188095331, "aux.acc_seg": 95.4549789428711, "time": 1.1153465032577514, "iter": 34350, "memory": 8704, "step": 34350} +{"lr": 0.008061966181478739, "data_time": 0.0075435638427734375, "loss": 0.523653294146061, "decode.loss_ce": 0.31456765457987784, "decode.acc_seg": 97.33722686767578, "aux.loss_ce": 0.20908563770353794, "aux.acc_seg": 91.70187377929688, "time": 1.1205503702163697, "iter": 34400, "memory": 8704, "step": 34400} +{"lr": 0.008059113509418658, "data_time": 0.005748128890991211, "loss": 0.45339624881744384, "decode.loss_ce": 0.2839740447700024, "decode.acc_seg": 92.92176055908203, "aux.loss_ce": 0.16942219994962215, "aux.acc_seg": 89.34046173095703, "time": 1.1129063367843628, "iter": 34450, "memory": 8704, "step": 34450} +{"lr": 0.008056260723749306, "data_time": 0.0074547529220581055, "loss": 0.44842960238456725, "decode.loss_ce": 0.2812184877693653, "decode.acc_seg": 81.5276107788086, "aux.loss_ce": 0.16721111983060838, "aux.acc_seg": 80.04054260253906, "time": 1.1174381971359253, "iter": 34500, "memory": 8704, "step": 34500} +{"lr": 0.008053407824420891, "data_time": 0.006962418556213379, "loss": 0.5041279926896095, "decode.loss_ce": 0.3094613514840603, "decode.acc_seg": 86.05791473388672, "aux.loss_ce": 0.19466664046049117, "aux.acc_seg": 72.72541809082031, "time": 1.11823468208313, "iter": 34550, "memory": 8704, "step": 34550} +{"lr": 0.008050554811383576, "data_time": 0.007782793045043946, "loss": 0.4921562746167183, "decode.loss_ce": 0.29313981235027314, "decode.acc_seg": 85.86101531982422, "aux.loss_ce": 0.19901646338403226, "aux.acc_seg": 80.41680145263672, "time": 1.119558072090149, "iter": 34600, "memory": 8704, "step": 34600} +{"lr": 0.008047701684587481, "data_time": 0.006223821640014648, "loss": 0.5171276509761811, "decode.loss_ce": 0.32738056778907776, "decode.acc_seg": 89.80477142333984, "aux.loss_ce": 0.18974708989262581, "aux.acc_seg": 87.53948211669922, "time": 1.1179012537002564, "iter": 34650, "memory": 8704, "step": 34650} +{"lr": 0.008044848443982707, "data_time": 0.006063318252563477, "loss": 0.35851330757141114, "decode.loss_ce": 0.2118154540657997, "decode.acc_seg": 90.6739501953125, "aux.loss_ce": 0.1466978520154953, "aux.acc_seg": 81.43221282958984, "time": 1.1159958839416504, "iter": 34700, "memory": 8703, "step": 34700} +{"lr": 0.008041995089519284, "data_time": 0.006227517127990722, "loss": 0.381671179831028, "decode.loss_ce": 0.24688968509435655, "decode.acc_seg": 90.29496002197266, "aux.loss_ce": 0.13478149548172952, "aux.acc_seg": 85.86851501464844, "time": 1.1145253896713256, "iter": 34750, "memory": 8703, "step": 34750} +{"lr": 0.008039141621147215, "data_time": 0.006761670112609863, "loss": 0.40863314270973206, "decode.loss_ce": 0.25130860731005666, "decode.acc_seg": 89.50678253173828, "aux.loss_ce": 0.15732454024255277, "aux.acc_seg": 85.84136962890625, "time": 1.1164235591888427, "iter": 34800, "memory": 8703, "step": 34800} +{"lr": 0.00803628803881647, "data_time": 0.007258892059326172, "loss": 0.5880263939499855, "decode.loss_ce": 0.36487366780638697, "decode.acc_seg": 96.82820129394531, "aux.loss_ce": 0.22315271869301795, "aux.acc_seg": 95.58480072021484, "time": 1.1182002067565917, "iter": 34850, "memory": 8705, "step": 34850} +{"lr": 0.008033434342476954, "data_time": 0.006721663475036621, "loss": 0.3900663986802101, "decode.loss_ce": 0.22940074056386947, "decode.acc_seg": 73.56045532226562, "aux.loss_ce": 0.16066564694046975, "aux.acc_seg": 58.8636360168457, "time": 1.115258812904358, "iter": 34900, "memory": 8704, "step": 34900} +{"lr": 0.008030580532078549, "data_time": 0.005066609382629395, "loss": 0.3535566940903664, "decode.loss_ce": 0.2009538948535919, "decode.acc_seg": 92.16791534423828, "aux.loss_ce": 0.15260280035436152, "aux.acc_seg": 86.807373046875, "time": 1.108347773551941, "iter": 34950, "memory": 8703, "step": 34950} +{"lr": 0.008027726607571086, "data_time": 0.007396960258483886, "loss": 0.44492289125919343, "decode.loss_ce": 0.289692784845829, "decode.acc_seg": 93.19292449951172, "aux.loss_ce": 0.15523010566830636, "aux.acc_seg": 92.50011444091797, "time": 1.1149014234542847, "iter": 35000, "memory": 8703, "step": 35000} +{"lr": 0.00802487256890436, "data_time": 0.007352972030639648, "loss": 0.37167859971523287, "decode.loss_ce": 0.22833532094955444, "decode.acc_seg": 94.80400085449219, "aux.loss_ce": 0.14334328547120095, "aux.acc_seg": 88.88835906982422, "time": 1.117284631729126, "iter": 35050, "memory": 8704, "step": 35050} +{"lr": 0.008022018416028115, "data_time": 0.008527684211730956, "loss": 0.4076823636889458, "decode.loss_ce": 0.2585977494716644, "decode.acc_seg": 93.73512268066406, "aux.loss_ce": 0.14908460937440396, "aux.acc_seg": 92.00019836425781, "time": 1.1145727634429932, "iter": 35100, "memory": 8704, "step": 35100} +{"lr": 0.008019164148892066, "data_time": 0.007462000846862793, "loss": 0.6146886110305786, "decode.loss_ce": 0.3929045483469963, "decode.acc_seg": 87.46776580810547, "aux.loss_ce": 0.22178406566381453, "aux.acc_seg": 84.0439453125, "time": 1.1164632797241212, "iter": 35150, "memory": 8703, "step": 35150} +{"lr": 0.008016309767445851, "data_time": 0.006895661354064941, "loss": 0.37807864546775816, "decode.loss_ce": 0.22336741983890535, "decode.acc_seg": 91.21881866455078, "aux.loss_ce": 0.15471122041344643, "aux.acc_seg": 80.25379180908203, "time": 1.1152981758117675, "iter": 35200, "memory": 8703, "step": 35200} +{"lr": 0.008013455271639111, "data_time": 0.007778573036193848, "loss": 0.35271215066313744, "decode.loss_ce": 0.2097584255039692, "decode.acc_seg": 95.31752014160156, "aux.loss_ce": 0.14295372366905212, "aux.acc_seg": 91.0669937133789, "time": 1.119414258003235, "iter": 35250, "memory": 8704, "step": 35250} +{"lr": 0.008010600661421442, "data_time": 0.006596946716308593, "loss": 0.4782525718212128, "decode.loss_ce": 0.29890038520097734, "decode.acc_seg": 96.59716033935547, "aux.loss_ce": 0.17935218587517737, "aux.acc_seg": 91.36390686035156, "time": 1.1203479528427125, "iter": 35300, "memory": 8704, "step": 35300} +{"lr": 0.008007745936742354, "data_time": 0.005470633506774902, "loss": 0.4375485673546791, "decode.loss_ce": 0.25030526146292686, "decode.acc_seg": 93.8089370727539, "aux.loss_ce": 0.18724330738186837, "aux.acc_seg": 64.541748046875, "time": 1.1131718635559082, "iter": 35350, "memory": 8703, "step": 35350} +{"lr": 0.008004891097551356, "data_time": 0.008795619010925293, "loss": 0.4618844985961914, "decode.loss_ce": 0.28183210343122483, "decode.acc_seg": 93.22898864746094, "aux.loss_ce": 0.18005238994956016, "aux.acc_seg": 90.05030059814453, "time": 1.1151264905929565, "iter": 35400, "memory": 8703, "step": 35400} +{"lr": 0.008002036143797901, "data_time": 0.007370519638061524, "loss": 0.323711758852005, "decode.loss_ce": 0.20384738370776176, "decode.acc_seg": 93.76296997070312, "aux.loss_ce": 0.11986437439918518, "aux.acc_seg": 91.97998046875, "time": 1.1178258180618286, "iter": 35450, "memory": 8704, "step": 35450} +{"lr": 0.00799918107543139, "data_time": 0.006073188781738281, "loss": 0.4994610816240311, "decode.loss_ce": 0.3026683822274208, "decode.acc_seg": 88.04753112792969, "aux.loss_ce": 0.19679270535707474, "aux.acc_seg": 85.51660919189453, "time": 1.1169491529464721, "iter": 35500, "memory": 8703, "step": 35500} +{"lr": 0.007996325892401191, "data_time": 0.00579538345336914, "loss": 0.5145476803183555, "decode.loss_ce": 0.3250121518969536, "decode.acc_seg": 95.23837280273438, "aux.loss_ce": 0.1895355198532343, "aux.acc_seg": 94.2280044555664, "time": 1.1196834325790406, "iter": 35550, "memory": 8703, "step": 35550} +{"lr": 0.007993470594656625, "data_time": 0.006789016723632813, "loss": 0.6824515849351883, "decode.loss_ce": 0.42784909158945084, "decode.acc_seg": 93.6240463256836, "aux.loss_ce": 0.2546025007963181, "aux.acc_seg": 89.17801666259766, "time": 1.1188492059707642, "iter": 35600, "memory": 8704, "step": 35600} +{"lr": 0.00799061518214698, "data_time": 0.007714319229125977, "loss": 0.4554693937301636, "decode.loss_ce": 0.28160703331232073, "decode.acc_seg": 83.77411651611328, "aux.loss_ce": 0.17386235818266868, "aux.acc_seg": 75.2892837524414, "time": 1.1192224025726318, "iter": 35650, "memory": 8704, "step": 35650} +{"lr": 0.0079877596548215, "data_time": 0.007891654968261719, "loss": 0.3399870052933693, "decode.loss_ce": 0.21021415144205094, "decode.acc_seg": 85.35448455810547, "aux.loss_ce": 0.12977285534143448, "aux.acc_seg": 83.21037292480469, "time": 1.1176475048065186, "iter": 35700, "memory": 8703, "step": 35700} +{"lr": 0.007984904012629373, "data_time": 0.008050537109375, "loss": 0.4215055614709854, "decode.loss_ce": 0.26938635259866717, "decode.acc_seg": 94.71429443359375, "aux.loss_ce": 0.15211920514702798, "aux.acc_seg": 94.09579467773438, "time": 1.11891028881073, "iter": 35750, "memory": 8705, "step": 35750} +{"lr": 0.007982048255519748, "data_time": 0.004903864860534668, "loss": 0.4494971677660942, "decode.loss_ce": 0.27010059729218483, "decode.acc_seg": 93.69938659667969, "aux.loss_ce": 0.17939656414091587, "aux.acc_seg": 89.60462951660156, "time": 1.1142605066299438, "iter": 35800, "memory": 8704, "step": 35800} +{"lr": 0.007979192383441733, "data_time": 0.00858476161956787, "loss": 0.4118539676070213, "decode.loss_ce": 0.26096159815788267, "decode.acc_seg": 95.23582458496094, "aux.loss_ce": 0.15089236199855804, "aux.acc_seg": 76.2918472290039, "time": 1.117854857444763, "iter": 35850, "memory": 8703, "step": 35850} +{"lr": 0.007976336396344404, "data_time": 0.007630634307861328, "loss": 0.4163750737905502, "decode.loss_ce": 0.2596725523471832, "decode.acc_seg": 89.45814514160156, "aux.loss_ce": 0.1567025136202574, "aux.acc_seg": 83.08906555175781, "time": 1.1210078001022339, "iter": 35900, "memory": 8704, "step": 35900} +{"lr": 0.00797348029417678, "data_time": 0.008154940605163575, "loss": 0.5169515758752823, "decode.loss_ce": 0.33264229595661166, "decode.acc_seg": 94.94679260253906, "aux.loss_ce": 0.184309271723032, "aux.acc_seg": 91.9158935546875, "time": 1.1231204509735107, "iter": 35950, "memory": 8704, "step": 35950} +{"lr": 0.007970624076887842, "data_time": 0.0059408903121948246, "loss": 0.4340771481394768, "decode.loss_ce": 0.2533623792231083, "decode.acc_seg": 89.77375030517578, "aux.loss_ce": 0.18071476519107818, "aux.acc_seg": 76.81280517578125, "time": 1.117316722869873, "iter": 36000, "memory": 8703, "step": 36000} +{"lr": 0.007967767744426523, "data_time": 0.006918692588806152, "loss": 0.3750166118144989, "decode.loss_ce": 0.24068787544965745, "decode.acc_seg": 91.36898803710938, "aux.loss_ce": 0.13432873524725436, "aux.acc_seg": 90.1326904296875, "time": 1.111595368385315, "iter": 36050, "memory": 8704, "step": 36050} +{"lr": 0.007964911296741732, "data_time": 0.0053911924362182615, "loss": 0.48636521100997926, "decode.loss_ce": 0.28787546455860136, "decode.acc_seg": 89.30778503417969, "aux.loss_ce": 0.19848974272608758, "aux.acc_seg": 85.64421081542969, "time": 1.1126960039138794, "iter": 36100, "memory": 8703, "step": 36100} +{"lr": 0.007962054733782297, "data_time": 0.006020164489746094, "loss": 0.3441978693008423, "decode.loss_ce": 0.21173142418265342, "decode.acc_seg": 94.70640563964844, "aux.loss_ce": 0.13246644362807275, "aux.acc_seg": 94.39067840576172, "time": 1.113574743270874, "iter": 36150, "memory": 8703, "step": 36150} +{"lr": 0.007959198055497043, "data_time": 0.007857728004455566, "loss": 0.4556053727865219, "decode.loss_ce": 0.2680646851658821, "decode.acc_seg": 93.73111724853516, "aux.loss_ce": 0.1875406913459301, "aux.acc_seg": 76.31746673583984, "time": 1.1182286262512207, "iter": 36200, "memory": 8704, "step": 36200} +{"lr": 0.00795634126183473, "data_time": 0.007235312461853027, "loss": 0.3383970156311989, "decode.loss_ce": 0.20747515186667442, "decode.acc_seg": 84.53839111328125, "aux.loss_ce": 0.13092186190187932, "aux.acc_seg": 79.66327667236328, "time": 1.1157762050628661, "iter": 36250, "memory": 8704, "step": 36250} +{"lr": 0.007953484352744072, "data_time": 0.007899332046508788, "loss": 0.4131273031234741, "decode.loss_ce": 0.25360039845108984, "decode.acc_seg": 93.57948303222656, "aux.loss_ce": 0.15952690467238426, "aux.acc_seg": 91.88785552978516, "time": 1.1178694248199463, "iter": 36300, "memory": 8703, "step": 36300} +{"lr": 0.007950627328173743, "data_time": 0.005969429016113281, "loss": 0.38850317895412445, "decode.loss_ce": 0.2330618232488632, "decode.acc_seg": 95.89659118652344, "aux.loss_ce": 0.15544135123491287, "aux.acc_seg": 93.40966033935547, "time": 1.1163774490356446, "iter": 36350, "memory": 8704, "step": 36350} +{"lr": 0.007947770188072382, "data_time": 0.0067376852035522464, "loss": 0.3164572507143021, "decode.loss_ce": 0.20023248344659805, "decode.acc_seg": 94.9594497680664, "aux.loss_ce": 0.11622476987540722, "aux.acc_seg": 92.1693115234375, "time": 1.1186709642410277, "iter": 36400, "memory": 8704, "step": 36400} +{"lr": 0.007944912932388578, "data_time": 0.007697391510009766, "loss": 0.3997643381357193, "decode.loss_ce": 0.23975591808557511, "decode.acc_seg": 94.241455078125, "aux.loss_ce": 0.16000841930508614, "aux.acc_seg": 89.75798034667969, "time": 1.1153083086013793, "iter": 36450, "memory": 8703, "step": 36450} +{"lr": 0.007942055561070877, "data_time": 0.005781745910644532, "loss": 0.36418456584215164, "decode.loss_ce": 0.21683574244379997, "decode.acc_seg": 97.75841522216797, "aux.loss_ce": 0.14734881557524204, "aux.acc_seg": 96.63155364990234, "time": 1.117539072036743, "iter": 36500, "memory": 8704, "step": 36500} +{"lr": 0.007939198074067783, "data_time": 0.005840563774108886, "loss": 0.4036194384098053, "decode.loss_ce": 0.24799327552318573, "decode.acc_seg": 90.37125396728516, "aux.loss_ce": 0.15562615916132927, "aux.acc_seg": 88.15860748291016, "time": 1.1132041692733765, "iter": 36550, "memory": 8704, "step": 36550} +{"lr": 0.00793634047132775, "data_time": 0.0067522525787353516, "loss": 0.4176266729831696, "decode.loss_ce": 0.26630528420209887, "decode.acc_seg": 85.50379943847656, "aux.loss_ce": 0.1513213872909546, "aux.acc_seg": 83.63587951660156, "time": 1.1088252782821655, "iter": 36600, "memory": 8703, "step": 36600} +{"lr": 0.007933482752799204, "data_time": 0.006538605690002442, "loss": 0.47368246465921404, "decode.loss_ce": 0.29240469411015513, "decode.acc_seg": 96.68457794189453, "aux.loss_ce": 0.18127776682376862, "aux.acc_seg": 95.01042938232422, "time": 1.1123399972915649, "iter": 36650, "memory": 8703, "step": 36650} +{"lr": 0.0079306249184305, "data_time": 0.008051037788391113, "loss": 0.3860548198223114, "decode.loss_ce": 0.23588281720876694, "decode.acc_seg": 91.1935806274414, "aux.loss_ce": 0.15017200261354446, "aux.acc_seg": 88.16311645507812, "time": 1.1170848608016968, "iter": 36700, "memory": 8703, "step": 36700} +{"lr": 0.007927766968169974, "data_time": 0.007262802124023438, "loss": 0.523205429315567, "decode.loss_ce": 0.3393902465701103, "decode.acc_seg": 86.58275604248047, "aux.loss_ce": 0.18381517380475998, "aux.acc_seg": 91.9998779296875, "time": 1.1187950372695923, "iter": 36750, "memory": 8703, "step": 36750} +{"lr": 0.007924908901965916, "data_time": 0.00632781982421875, "loss": 0.4529395654797554, "decode.loss_ce": 0.28339696750044824, "decode.acc_seg": 79.68285369873047, "aux.loss_ce": 0.16954260393977166, "aux.acc_seg": 70.93073272705078, "time": 1.115257453918457, "iter": 36800, "memory": 8704, "step": 36800} +{"lr": 0.007922050719766548, "data_time": 0.008827996253967286, "loss": 0.44192413464188574, "decode.loss_ce": 0.2730654038488865, "decode.acc_seg": 95.72416687011719, "aux.loss_ce": 0.1688587347045541, "aux.acc_seg": 93.47209930419922, "time": 1.1213019132614135, "iter": 36850, "memory": 8703, "step": 36850} +{"lr": 0.007919192421520066, "data_time": 0.0100128173828125, "loss": 0.5258978500962257, "decode.loss_ce": 0.33333708345890045, "decode.acc_seg": 91.63837432861328, "aux.loss_ce": 0.1925607591867447, "aux.acc_seg": 89.6463394165039, "time": 1.1238295316696167, "iter": 36900, "memory": 8703, "step": 36900} +{"lr": 0.00791633400717462, "data_time": 0.005972170829772949, "loss": 0.6612928509712219, "decode.loss_ce": 0.399323096871376, "decode.acc_seg": 75.2116470336914, "aux.loss_ce": 0.2619697585701942, "aux.acc_seg": 68.91613006591797, "time": 1.1107571125030518, "iter": 36950, "memory": 8704, "step": 36950} +{"lr": 0.007913475476678328, "data_time": 0.006356453895568848, "loss": 0.5045168831944465, "decode.loss_ce": 0.32248269617557523, "decode.acc_seg": 83.86296844482422, "aux.loss_ce": 0.18203418850898742, "aux.acc_seg": 80.64363861083984, "time": 1.1131056070327758, "iter": 37000, "memory": 8704, "step": 37000} +{"lr": 0.007910616829979218, "data_time": 0.0071029186248779295, "loss": 0.32674568742513654, "decode.loss_ce": 0.2020489364862442, "decode.acc_seg": 94.68631744384766, "aux.loss_ce": 0.12469675280153751, "aux.acc_seg": 92.21954345703125, "time": 1.1129504442214966, "iter": 37050, "memory": 8704, "step": 37050} +{"lr": 0.007907758067025334, "data_time": 0.007225394248962402, "loss": 0.39007598757743833, "decode.loss_ce": 0.2425822786986828, "decode.acc_seg": 96.59391784667969, "aux.loss_ce": 0.14749370366334916, "aux.acc_seg": 91.84284210205078, "time": 1.1103761196136475, "iter": 37100, "memory": 8703, "step": 37100} +{"lr": 0.007904899187764648, "data_time": 0.007696747779846191, "loss": 0.35790169388055804, "decode.loss_ce": 0.2159559413790703, "decode.acc_seg": 93.0868148803711, "aux.loss_ce": 0.1419457510113716, "aux.acc_seg": 91.20476531982422, "time": 1.1153098344802856, "iter": 37150, "memory": 8703, "step": 37150} +{"lr": 0.007902040192145082, "data_time": 0.007030653953552246, "loss": 0.4962176024913788, "decode.loss_ce": 0.32635738998651503, "decode.acc_seg": 86.541748046875, "aux.loss_ce": 0.16986022144556046, "aux.acc_seg": 82.21874237060547, "time": 1.1141090869903565, "iter": 37200, "memory": 8703, "step": 37200} +{"lr": 0.00789918108011454, "data_time": 0.00759131908416748, "loss": 0.5393495336174965, "decode.loss_ce": 0.32333628088235855, "decode.acc_seg": 85.40979766845703, "aux.loss_ce": 0.2160132545977831, "aux.acc_seg": 83.599853515625, "time": 1.1153111219406129, "iter": 37250, "memory": 8703, "step": 37250} +{"lr": 0.007896321851620843, "data_time": 0.006160879135131836, "loss": 0.3571653082966805, "decode.loss_ce": 0.226979111880064, "decode.acc_seg": 93.14949798583984, "aux.loss_ce": 0.13018619157373906, "aux.acc_seg": 89.3377914428711, "time": 1.1130087614059447, "iter": 37300, "memory": 8704, "step": 37300} +{"lr": 0.007893462506611795, "data_time": 0.007705163955688476, "loss": 0.46374748200178145, "decode.loss_ce": 0.28508472740650176, "decode.acc_seg": 84.7036361694336, "aux.loss_ce": 0.17866275161504747, "aux.acc_seg": 75.32837677001953, "time": 1.12238290309906, "iter": 37350, "memory": 8703, "step": 37350} +{"lr": 0.007890603045035133, "data_time": 0.008198428153991699, "loss": 0.5218153864145278, "decode.loss_ce": 0.3207303285598755, "decode.acc_seg": 76.18370056152344, "aux.loss_ce": 0.20108505859971046, "aux.acc_seg": 68.12458038330078, "time": 1.118156099319458, "iter": 37400, "memory": 8703, "step": 37400} +{"lr": 0.007887743466838574, "data_time": 0.0055080890655517575, "loss": 0.44434552937746047, "decode.loss_ce": 0.26642380356788636, "decode.acc_seg": 87.7219467163086, "aux.loss_ce": 0.17792172059416772, "aux.acc_seg": 87.24842071533203, "time": 1.1115370035171508, "iter": 37450, "memory": 8703, "step": 37450} +{"lr": 0.007884883771969777, "data_time": 0.005782413482666016, "loss": 0.41207968145608903, "decode.loss_ce": 0.25613963305950166, "decode.acc_seg": 95.67057037353516, "aux.loss_ce": 0.1559400450438261, "aux.acc_seg": 95.17453002929688, "time": 1.1103713035583496, "iter": 37500, "memory": 8703, "step": 37500} +{"lr": 0.007882023960376352, "data_time": 0.005968141555786133, "loss": 0.5111816629767418, "decode.loss_ce": 0.3187669709324837, "decode.acc_seg": 74.20317077636719, "aux.loss_ce": 0.19241469651460646, "aux.acc_seg": 73.61469268798828, "time": 1.1154749393463135, "iter": 37550, "memory": 8704, "step": 37550} +{"lr": 0.007879164032005868, "data_time": 0.008375120162963868, "loss": 0.3639309525489807, "decode.loss_ce": 0.23602889254689216, "decode.acc_seg": 89.88787078857422, "aux.loss_ce": 0.12790205478668212, "aux.acc_seg": 81.92488098144531, "time": 1.118971872329712, "iter": 37600, "memory": 8704, "step": 37600} +{"lr": 0.007876303986805859, "data_time": 0.00729057788848877, "loss": 0.41091128885746003, "decode.loss_ce": 0.2563979133963585, "decode.acc_seg": 85.1446762084961, "aux.loss_ce": 0.1545133750885725, "aux.acc_seg": 69.3924560546875, "time": 1.1188806533813476, "iter": 37650, "memory": 8704, "step": 37650} +{"lr": 0.007873443824723799, "data_time": 0.006949663162231445, "loss": 0.39342562556266786, "decode.loss_ce": 0.23993916139006616, "decode.acc_seg": 89.33531188964844, "aux.loss_ce": 0.15348646156489848, "aux.acc_seg": 87.72608184814453, "time": 1.1152204275131226, "iter": 37700, "memory": 8703, "step": 37700} +{"lr": 0.007870583545707138, "data_time": 0.007039451599121093, "loss": 0.35409944504499435, "decode.loss_ce": 0.22424157783389093, "decode.acc_seg": 94.18917083740234, "aux.loss_ce": 0.12985787019133568, "aux.acc_seg": 92.83311462402344, "time": 1.1191243171691894, "iter": 37750, "memory": 8704, "step": 37750} +{"lr": 0.007867723149703246, "data_time": 0.007545781135559082, "loss": 0.46764610409736634, "decode.loss_ce": 0.2886666774749756, "decode.acc_seg": 83.90664672851562, "aux.loss_ce": 0.17897942215204238, "aux.acc_seg": 74.5292739868164, "time": 1.114443826675415, "iter": 37800, "memory": 8704, "step": 37800} +{"lr": 0.007864862636659484, "data_time": 0.006801915168762207, "loss": 0.3888434752821922, "decode.loss_ce": 0.22744169384241103, "decode.acc_seg": 97.2021713256836, "aux.loss_ce": 0.16140178069472313, "aux.acc_seg": 96.5118408203125, "time": 1.1161741256713866, "iter": 37850, "memory": 8704, "step": 37850} +{"lr": 0.007862002006523138, "data_time": 0.006513071060180664, "loss": 0.5816218867897988, "decode.loss_ce": 0.3624230071902275, "decode.acc_seg": 87.9355697631836, "aux.loss_ce": 0.21919888406991958, "aux.acc_seg": 83.05015563964844, "time": 1.1163479566574097, "iter": 37900, "memory": 8703, "step": 37900} +{"lr": 0.00785914125924147, "data_time": 0.007303881645202637, "loss": 0.4679430350661278, "decode.loss_ce": 0.2985333174467087, "decode.acc_seg": 88.8406753540039, "aux.loss_ce": 0.16940971091389656, "aux.acc_seg": 87.78260040283203, "time": 1.1161087036132813, "iter": 37950, "memory": 8703, "step": 37950} +{"lr": 0.007856280394761677, "data_time": 0.007046103477478027, "loss": 0.4030669771134853, "decode.loss_ce": 0.24903649315238, "decode.acc_seg": 91.27249908447266, "aux.loss_ce": 0.1540304720401764, "aux.acc_seg": 84.78524017333984, "time": 1.11616849899292, "iter": 38000, "memory": 8703, "step": 38000} +{"lr": 0.007853419413030945, "data_time": 0.006001114845275879, "loss": 0.4382171079516411, "decode.loss_ce": 0.2666400566697121, "decode.acc_seg": 92.72856903076172, "aux.loss_ce": 0.17157703973352909, "aux.acc_seg": 90.95343780517578, "time": 1.1134356260299683, "iter": 38050, "memory": 8704, "step": 38050} +{"lr": 0.007850558313996378, "data_time": 0.005541229248046875, "loss": 0.3821889072656631, "decode.loss_ce": 0.23801516592502595, "decode.acc_seg": 89.03759765625, "aux.loss_ce": 0.1441737435758114, "aux.acc_seg": 86.20469665527344, "time": 1.1119315385818482, "iter": 38100, "memory": 8703, "step": 38100} +{"lr": 0.007847697097605048, "data_time": 0.007227873802185059, "loss": 0.44944494515657424, "decode.loss_ce": 0.28224060907959936, "decode.acc_seg": 93.76314544677734, "aux.loss_ce": 0.1672043327242136, "aux.acc_seg": 93.69523620605469, "time": 1.1171311855316162, "iter": 38150, "memory": 8704, "step": 38150} +{"lr": 0.007844835763803976, "data_time": 0.00788424015045166, "loss": 0.5146815076470375, "decode.loss_ce": 0.32821798995137214, "decode.acc_seg": 95.1316146850586, "aux.loss_ce": 0.186463513225317, "aux.acc_seg": 76.99241638183594, "time": 1.1200409173965453, "iter": 38200, "memory": 8704, "step": 38200} +{"lr": 0.00784197431254017, "data_time": 0.006762647628784179, "loss": 0.49433383494615557, "decode.loss_ce": 0.31890808045864105, "decode.acc_seg": 90.75482177734375, "aux.loss_ce": 0.1754257544875145, "aux.acc_seg": 83.91780853271484, "time": 1.116986083984375, "iter": 38250, "memory": 8704, "step": 38250} +{"lr": 0.007839112743760547, "data_time": 0.007399940490722656, "loss": 0.6026890635490417, "decode.loss_ce": 0.3869162440299988, "decode.acc_seg": 95.10135650634766, "aux.loss_ce": 0.21577282547950744, "aux.acc_seg": 90.85667419433594, "time": 1.113076114654541, "iter": 38300, "memory": 8703, "step": 38300} +{"lr": 0.007836251057412006, "data_time": 0.007137584686279297, "loss": 0.5167031139135361, "decode.loss_ce": 0.3201208099722862, "decode.acc_seg": 92.82645416259766, "aux.loss_ce": 0.19658230096101761, "aux.acc_seg": 82.7520523071289, "time": 1.1165391683578492, "iter": 38350, "memory": 8704, "step": 38350} +{"lr": 0.007833389253441373, "data_time": 0.007658028602600097, "loss": 0.482133486866951, "decode.loss_ce": 0.29677821695804596, "decode.acc_seg": 90.60261535644531, "aux.loss_ce": 0.18535526730120183, "aux.acc_seg": 79.35606384277344, "time": 1.1193991899490356, "iter": 38400, "memory": 8705, "step": 38400} +{"lr": 0.007830527331795458, "data_time": 0.005006718635559082, "loss": 0.5379508048295975, "decode.loss_ce": 0.3208221673965454, "decode.acc_seg": 87.47177124023438, "aux.loss_ce": 0.2171286314725876, "aux.acc_seg": 81.19087219238281, "time": 1.1106101751327515, "iter": 38450, "memory": 8703, "step": 38450} +{"lr": 0.007827665292421005, "data_time": 0.008128046989440918, "loss": 0.4237496957182884, "decode.loss_ce": 0.2570728436112404, "decode.acc_seg": 91.4764404296875, "aux.loss_ce": 0.1666768543422222, "aux.acc_seg": 89.2318115234375, "time": 1.1152286291122437, "iter": 38500, "memory": 8704, "step": 38500} +{"lr": 0.007824803135264735, "data_time": 0.005736041069030762, "loss": 0.491524937748909, "decode.loss_ce": 0.30775085017085074, "decode.acc_seg": 95.63013458251953, "aux.loss_ce": 0.18377408608794213, "aux.acc_seg": 92.74311065673828, "time": 1.1199876070022583, "iter": 38550, "memory": 8703, "step": 38550} +{"lr": 0.007821940860273305, "data_time": 0.006124520301818847, "loss": 0.36935928612947466, "decode.loss_ce": 0.23236659318208694, "decode.acc_seg": 97.4333267211914, "aux.loss_ce": 0.13699268959462643, "aux.acc_seg": 97.16138458251953, "time": 1.1136204481124878, "iter": 38600, "memory": 8704, "step": 38600} +{"lr": 0.007819078467393327, "data_time": 0.005392789840698242, "loss": 0.6155748248100281, "decode.loss_ce": 0.38915983140468596, "decode.acc_seg": 96.1406021118164, "aux.loss_ce": 0.2264149822294712, "aux.acc_seg": 95.6695556640625, "time": 1.1104925394058227, "iter": 38650, "memory": 8704, "step": 38650} +{"lr": 0.007816215956571358, "data_time": 0.007689094543457032, "loss": 0.4506727457046509, "decode.loss_ce": 0.2750032007694244, "decode.acc_seg": 89.66280364990234, "aux.loss_ce": 0.17566954120993614, "aux.acc_seg": 87.51856231689453, "time": 1.1164068460464478, "iter": 38700, "memory": 8703, "step": 38700} +{"lr": 0.007813353327753922, "data_time": 0.006064176559448242, "loss": 0.5416336983442307, "decode.loss_ce": 0.3376572571694851, "decode.acc_seg": 88.62139129638672, "aux.loss_ce": 0.20397643893957138, "aux.acc_seg": 83.81614685058594, "time": 1.1170538902282714, "iter": 38750, "memory": 8703, "step": 38750} +{"lr": 0.007810490580887516, "data_time": 0.006914782524108887, "loss": 0.4372414141893387, "decode.loss_ce": 0.28049951419234276, "decode.acc_seg": 88.01771545410156, "aux.loss_ce": 0.15674189738929273, "aux.acc_seg": 84.9732666015625, "time": 1.111665630340576, "iter": 38800, "memory": 8703, "step": 38800} +{"lr": 0.00780762771591856, "data_time": 0.007673072814941406, "loss": 0.5281341552734375, "decode.loss_ce": 0.33800188452005386, "decode.acc_seg": 88.15510559082031, "aux.loss_ce": 0.1901322692632675, "aux.acc_seg": 84.0750503540039, "time": 1.1194233417510986, "iter": 38850, "memory": 8703, "step": 38850} +{"lr": 0.007804764732793425, "data_time": 0.007927155494689942, "loss": 0.41277301758527757, "decode.loss_ce": 0.2609917402267456, "decode.acc_seg": 94.84831237792969, "aux.loss_ce": 0.15178127586841583, "aux.acc_seg": 94.90921783447266, "time": 1.1186446666717529, "iter": 38900, "memory": 8704, "step": 38900} +{"lr": 0.007801901631458452, "data_time": 0.008304142951965332, "loss": 0.6879366278648377, "decode.loss_ce": 0.43065162301063536, "decode.acc_seg": 90.60083770751953, "aux.loss_ce": 0.2572850130498409, "aux.acc_seg": 84.06536865234375, "time": 1.116473174095154, "iter": 38950, "memory": 8704, "step": 38950} +{"lr": 0.0077990384118599345, "data_time": 0.0063600301742553714, "loss": 0.7567720904946327, "decode.loss_ce": 0.4869056925177574, "decode.acc_seg": 95.75140380859375, "aux.loss_ce": 0.2698664031922817, "aux.acc_seg": 94.04393768310547, "time": 1.116183376312256, "iter": 39000, "memory": 8704, "step": 39000} +{"lr": 0.007796175073944104, "data_time": 0.006372809410095215, "loss": 0.5558449029922485, "decode.loss_ce": 0.336411751806736, "decode.acc_seg": 96.13716125488281, "aux.loss_ce": 0.21943314895033836, "aux.acc_seg": 92.91095733642578, "time": 1.1171084880828857, "iter": 39050, "memory": 8704, "step": 39050} +{"lr": 0.007793311617657162, "data_time": 0.008072233200073243, "loss": 0.5611812204122544, "decode.loss_ce": 0.33205324709415435, "decode.acc_seg": 92.44696044921875, "aux.loss_ce": 0.2291279748082161, "aux.acc_seg": 89.74742889404297, "time": 1.1210788249969483, "iter": 39100, "memory": 8703, "step": 39100} +{"lr": 0.0077904480429452526, "data_time": 0.007887458801269532, "loss": 0.4524376720190048, "decode.loss_ce": 0.2673496171832085, "decode.acc_seg": 95.21270751953125, "aux.loss_ce": 0.18508805856108665, "aux.acc_seg": 95.00391387939453, "time": 1.1165067672729492, "iter": 39150, "memory": 8703, "step": 39150} +{"lr": 0.007787584349754493, "data_time": 0.006308174133300782, "loss": 0.37897160202264785, "decode.loss_ce": 0.23613804206252098, "decode.acc_seg": 95.05780029296875, "aux.loss_ce": 0.14283355809748172, "aux.acc_seg": 92.2745361328125, "time": 1.113848090171814, "iter": 39200, "memory": 8703, "step": 39200} +{"lr": 0.007784720538030924, "data_time": 0.008126354217529297, "loss": 0.25921971127390864, "decode.loss_ce": 0.15606310740113258, "decode.acc_seg": 96.76996612548828, "aux.loss_ce": 0.10315660163760185, "aux.acc_seg": 97.12263488769531, "time": 1.1185751676559448, "iter": 39250, "memory": 8703, "step": 39250} +{"lr": 0.007781856607720566, "data_time": 0.007999324798583984, "loss": 0.4170175164937973, "decode.loss_ce": 0.2509151488542557, "decode.acc_seg": 93.46077728271484, "aux.loss_ce": 0.1661023713648319, "aux.acc_seg": 90.95935821533203, "time": 1.1184329986572266, "iter": 39300, "memory": 8703, "step": 39300} +{"lr": 0.007778992558769372, "data_time": 0.0066365480422973635, "loss": 0.44675656855106355, "decode.loss_ce": 0.2838454246520996, "decode.acc_seg": 93.08541107177734, "aux.loss_ce": 0.1629111386835575, "aux.acc_seg": 92.6584243774414, "time": 1.114841365814209, "iter": 39350, "memory": 8704, "step": 39350} +{"lr": 0.0077761283911232625, "data_time": 0.00679163932800293, "loss": 0.36543611288070676, "decode.loss_ce": 0.224073389172554, "decode.acc_seg": 94.33795928955078, "aux.loss_ce": 0.1413627214729786, "aux.acc_seg": 93.94315338134766, "time": 1.1158414602279663, "iter": 39400, "memory": 8704, "step": 39400} +{"lr": 0.007773264104728095, "data_time": 0.007988476753234863, "loss": 0.5383904412388801, "decode.loss_ce": 0.32083830535411834, "decode.acc_seg": 95.06950378417969, "aux.loss_ce": 0.21755213662981987, "aux.acc_seg": 93.79933166503906, "time": 1.120398259162903, "iter": 39450, "memory": 8704, "step": 39450} +{"lr": 0.007770399699529699, "data_time": 0.006259632110595703, "loss": 0.4825802356004715, "decode.loss_ce": 0.3106697857379913, "decode.acc_seg": 88.24634552001953, "aux.loss_ce": 0.17191044390201568, "aux.acc_seg": 80.87100982666016, "time": 1.1164693593978883, "iter": 39500, "memory": 8704, "step": 39500} +{"lr": 0.007767535175473845, "data_time": 0.006814789772033691, "loss": 0.42300170063972475, "decode.loss_ce": 0.2575736835598946, "decode.acc_seg": 95.04014587402344, "aux.loss_ce": 0.16542801782488822, "aux.acc_seg": 86.56634521484375, "time": 1.113853645324707, "iter": 39550, "memory": 8703, "step": 39550} +{"lr": 0.007764670532506258, "data_time": 0.0072901248931884766, "loss": 0.4906574562191963, "decode.loss_ce": 0.2914994157850742, "decode.acc_seg": 72.99041748046875, "aux.loss_ce": 0.19915804415941238, "aux.acc_seg": 60.16501998901367, "time": 1.1165252685546876, "iter": 39600, "memory": 8704, "step": 39600} +{"lr": 0.007761805770572625, "data_time": 0.007397794723510742, "loss": 0.40406299084424974, "decode.loss_ce": 0.22592225819826126, "decode.acc_seg": 98.10784149169922, "aux.loss_ce": 0.17814072743058204, "aux.acc_seg": 94.89847564697266, "time": 1.1121315956115723, "iter": 39650, "memory": 8704, "step": 39650} +{"lr": 0.007758940889618574, "data_time": 0.00619196891784668, "loss": 0.6263519436120987, "decode.loss_ce": 0.42484692186117173, "decode.acc_seg": 91.33110046386719, "aux.loss_ce": 0.201505009457469, "aux.acc_seg": 90.71903228759766, "time": 1.1157638311386109, "iter": 39700, "memory": 8704, "step": 39700} +{"lr": 0.0077560758895896835, "data_time": 0.006034326553344726, "loss": 0.5807120025157928, "decode.loss_ce": 0.343534417450428, "decode.acc_seg": 95.21134185791016, "aux.loss_ce": 0.23717758879065515, "aux.acc_seg": 94.79763793945312, "time": 1.1143659353256226, "iter": 39750, "memory": 8703, "step": 39750} +{"lr": 0.007753210770431492, "data_time": 0.0063970088958740234, "loss": 0.42859429568052293, "decode.loss_ce": 0.2664620041847229, "decode.acc_seg": 92.75639343261719, "aux.loss_ce": 0.16213229596614837, "aux.acc_seg": 89.13294219970703, "time": 1.1148563861846923, "iter": 39800, "memory": 8704, "step": 39800} +{"lr": 0.007750345532089488, "data_time": 0.005227136611938477, "loss": 0.6198158949613571, "decode.loss_ce": 0.36946470141410825, "decode.acc_seg": 95.611572265625, "aux.loss_ce": 0.25035118907690046, "aux.acc_seg": 86.60729217529297, "time": 1.11321964263916, "iter": 39850, "memory": 8703, "step": 39850} +{"lr": 0.007747480174509112, "data_time": 0.008328557014465332, "loss": 0.4845068246126175, "decode.loss_ce": 0.3038664683699608, "decode.acc_seg": 88.18826293945312, "aux.loss_ce": 0.18064035028219222, "aux.acc_seg": 82.72306060791016, "time": 1.1183971405029296, "iter": 39900, "memory": 8704, "step": 39900} +{"lr": 0.007744614697635758, "data_time": 0.008473372459411621, "loss": 0.4377609327435493, "decode.loss_ce": 0.2727913588285446, "decode.acc_seg": 95.56210327148438, "aux.loss_ce": 0.1649695735424757, "aux.acc_seg": 94.57193756103516, "time": 1.119619107246399, "iter": 39950, "memory": 8703, "step": 39950} +{"lr": 0.0077417491014147724, "data_time": 0.006659197807312012, "loss": 0.37084787636995314, "decode.loss_ce": 0.22116914615035058, "decode.acc_seg": 91.470458984375, "aux.loss_ce": 0.1496787253767252, "aux.acc_seg": 87.57705688476562, "time": 1.1143803119659423, "iter": 40000, "memory": 8703, "step": 40000} +{"lr": 0.007738883385791452, "data_time": 0.008031272888183593, "loss": 0.44450086951255796, "decode.loss_ce": 0.29132330492138864, "decode.acc_seg": 94.66819763183594, "aux.loss_ce": 0.153177560120821, "aux.acc_seg": 91.49195098876953, "time": 1.1159584045410156, "iter": 40050, "memory": 8703, "step": 40050} +{"lr": 0.007736017550711047, "data_time": 0.005307579040527343, "loss": 0.356558196246624, "decode.loss_ce": 0.21893584504723548, "decode.acc_seg": 96.83074951171875, "aux.loss_ce": 0.13762235306203366, "aux.acc_seg": 95.2962875366211, "time": 1.1115121364593505, "iter": 40100, "memory": 8704, "step": 40100} +{"lr": 0.007733151596118765, "data_time": 0.007427620887756348, "loss": 0.4525328755378723, "decode.loss_ce": 0.2676030069589615, "decode.acc_seg": 85.10010528564453, "aux.loss_ce": 0.18492987118661403, "aux.acc_seg": 69.5008544921875, "time": 1.1217687606811524, "iter": 40150, "memory": 8704, "step": 40150} +{"lr": 0.007730285521959757, "data_time": 0.008561444282531739, "loss": 0.4152074411511421, "decode.loss_ce": 0.26324553564190867, "decode.acc_seg": 93.14867401123047, "aux.loss_ce": 0.15196189880371094, "aux.acc_seg": 91.81645202636719, "time": 1.117340660095215, "iter": 40200, "memory": 8703, "step": 40200} +{"lr": 0.007727419328179123, "data_time": 0.007669782638549805, "loss": 0.4402916878461838, "decode.loss_ce": 0.2642650410532951, "decode.acc_seg": 87.55842590332031, "aux.loss_ce": 0.1760266400873661, "aux.acc_seg": 77.46810913085938, "time": 1.118831253051758, "iter": 40250, "memory": 8703, "step": 40250} +{"lr": 0.0077245530147219245, "data_time": 0.006593894958496094, "loss": 0.40828448832035064, "decode.loss_ce": 0.260091669857502, "decode.acc_seg": 88.4448013305664, "aux.loss_ce": 0.1481928162276745, "aux.acc_seg": 83.3741455078125, "time": 1.1167778730392457, "iter": 40300, "memory": 8704, "step": 40300} +{"lr": 0.00772168658153317, "data_time": 0.005707168579101562, "loss": 0.3829207196831703, "decode.loss_ce": 0.24396856501698494, "decode.acc_seg": 94.99295043945312, "aux.loss_ce": 0.13895215205848216, "aux.acc_seg": 92.56979370117188, "time": 1.1111977815628051, "iter": 40350, "memory": 8704, "step": 40350} +{"lr": 0.007718820028557828, "data_time": 0.006596040725708008, "loss": 0.49981915950775146, "decode.loss_ce": 0.3164706103503704, "decode.acc_seg": 89.6707534790039, "aux.loss_ce": 0.18334855064749717, "aux.acc_seg": 82.11199188232422, "time": 1.1178833723068238, "iter": 40400, "memory": 8704, "step": 40400} +{"lr": 0.007715953355740804, "data_time": 0.006844210624694824, "loss": 0.45361478328704835, "decode.loss_ce": 0.27593039721250534, "decode.acc_seg": 95.0865249633789, "aux.loss_ce": 0.17768438160419464, "aux.acc_seg": 94.28162384033203, "time": 1.114379620552063, "iter": 40450, "memory": 8703, "step": 40450} +{"lr": 0.00771308656302696, "data_time": 0.007337141036987305, "loss": 0.5816664040088654, "decode.loss_ce": 0.37064755856990816, "decode.acc_seg": 95.76841735839844, "aux.loss_ce": 0.21101885363459588, "aux.acc_seg": 78.43328857421875, "time": 1.1147841215133667, "iter": 40500, "memory": 8704, "step": 40500} +{"lr": 0.007710219650361125, "data_time": 0.006777215003967285, "loss": 0.3877484202384949, "decode.loss_ce": 0.24061006903648377, "decode.acc_seg": 91.09789276123047, "aux.loss_ce": 0.14713835455477237, "aux.acc_seg": 87.84357452392578, "time": 1.113508129119873, "iter": 40550, "memory": 8703, "step": 40550} +{"lr": 0.007707352617688052, "data_time": 0.007848167419433593, "loss": 0.4114884495735168, "decode.loss_ce": 0.2615164861083031, "decode.acc_seg": 91.01288604736328, "aux.loss_ce": 0.14997195899486543, "aux.acc_seg": 87.01254272460938, "time": 1.1153909683227539, "iter": 40600, "memory": 8703, "step": 40600} +{"lr": 0.007704485464952471, "data_time": 0.006868696212768555, "loss": 0.3863282442092896, "decode.loss_ce": 0.24305371791124344, "decode.acc_seg": 96.80207061767578, "aux.loss_ce": 0.14327452406287194, "aux.acc_seg": 92.15354919433594, "time": 1.1165427923202516, "iter": 40650, "memory": 8704, "step": 40650} +{"lr": 0.0077016181920990445, "data_time": 0.007315969467163086, "loss": 0.38935723900794983, "decode.loss_ce": 0.2555976375937462, "decode.acc_seg": 94.93324279785156, "aux.loss_ce": 0.1337595943361521, "aux.acc_seg": 93.91312408447266, "time": 1.1156018018722533, "iter": 40700, "memory": 8704, "step": 40700} +{"lr": 0.007698750799072399, "data_time": 0.006033539772033691, "loss": 0.5778084054589272, "decode.loss_ce": 0.379591254144907, "decode.acc_seg": 96.90430450439453, "aux.loss_ce": 0.1982171569019556, "aux.acc_seg": 96.09819793701172, "time": 1.1121580362319947, "iter": 40750, "memory": 8704, "step": 40750} +{"lr": 0.007695883285817111, "data_time": 0.006559848785400391, "loss": 0.48215397298336027, "decode.loss_ce": 0.3021768666803837, "decode.acc_seg": 93.11402130126953, "aux.loss_ce": 0.1799771174788475, "aux.acc_seg": 88.38799285888672, "time": 1.116917610168457, "iter": 40800, "memory": 8703, "step": 40800} +{"lr": 0.0076930156522777016, "data_time": 0.007764291763305664, "loss": 0.4159175857901573, "decode.loss_ce": 0.26042592003941534, "decode.acc_seg": 95.45230865478516, "aux.loss_ce": 0.15549166910350323, "aux.acc_seg": 95.08488464355469, "time": 1.11647469997406, "iter": 40850, "memory": 8703, "step": 40850} +{"lr": 0.0076901478983986415, "data_time": 0.006934237480163574, "loss": 0.33182562291622164, "decode.loss_ce": 0.21324229314923288, "decode.acc_seg": 86.4482192993164, "aux.loss_ce": 0.11858332641422749, "aux.acc_seg": 79.68120574951172, "time": 1.1179712057113647, "iter": 40900, "memory": 8704, "step": 40900} +{"lr": 0.007687280024124361, "data_time": 0.006520700454711914, "loss": 0.4263143613934517, "decode.loss_ce": 0.2637896008789539, "decode.acc_seg": 90.68323516845703, "aux.loss_ce": 0.16252476647496222, "aux.acc_seg": 86.79027557373047, "time": 1.1181017398834228, "iter": 40950, "memory": 8703, "step": 40950} +{"lr": 0.007684412029399242, "data_time": 0.007688784599304199, "loss": 0.5192607492208481, "decode.loss_ce": 0.32025541216135023, "decode.acc_seg": 94.99016571044922, "aux.loss_ce": 0.19900534003973008, "aux.acc_seg": 94.1816635131836, "time": 1.1162959575653075, "iter": 41000, "memory": 8703, "step": 41000} +{"lr": 0.007681543914167599, "data_time": 0.007884788513183593, "loss": 0.5964396163821221, "decode.loss_ce": 0.3695372872054577, "decode.acc_seg": 65.45323181152344, "aux.loss_ce": 0.22690233998000622, "aux.acc_seg": 59.95262908935547, "time": 1.1182244539260864, "iter": 41050, "memory": 8703, "step": 41050} +{"lr": 0.007678675678373718, "data_time": 0.007483172416687012, "loss": 0.5039879560470581, "decode.loss_ce": 0.29724369049072263, "decode.acc_seg": 90.26953125, "aux.loss_ce": 0.20674426332116128, "aux.acc_seg": 85.4166030883789, "time": 1.1176339149475099, "iter": 41100, "memory": 8703, "step": 41100} +{"lr": 0.007675807321961835, "data_time": 0.008463716506958008, "loss": 0.7639497131109237, "decode.loss_ce": 0.4739838793873787, "decode.acc_seg": 95.36920928955078, "aux.loss_ce": 0.2899658426642418, "aux.acc_seg": 92.05410766601562, "time": 1.1174998521804809, "iter": 41150, "memory": 8703, "step": 41150} +{"lr": 0.0076729388448761255, "data_time": 0.008670639991760255, "loss": 0.2969639927148819, "decode.loss_ce": 0.1869349479675293, "decode.acc_seg": 91.05535888671875, "aux.loss_ce": 0.1100290421396494, "aux.acc_seg": 89.3302230834961, "time": 1.1191225051879883, "iter": 41200, "memory": 8704, "step": 41200} +{"lr": 0.007670070247060722, "data_time": 0.006691431999206543, "loss": 0.4097928822040558, "decode.loss_ce": 0.24505749419331552, "decode.acc_seg": 90.92365264892578, "aux.loss_ce": 0.16473539620637895, "aux.acc_seg": 88.20618438720703, "time": 1.1135267734527587, "iter": 41250, "memory": 8703, "step": 41250} +{"lr": 0.007667201528459703, "data_time": 0.006883430480957031, "loss": 0.335485452413559, "decode.loss_ce": 0.19568255990743638, "decode.acc_seg": 86.10413360595703, "aux.loss_ce": 0.13980290070176124, "aux.acc_seg": 66.18359375, "time": 1.1154825210571289, "iter": 41300, "memory": 8704, "step": 41300} +{"lr": 0.007664332689017114, "data_time": 0.0072427034378051754, "loss": 0.6367338299751282, "decode.loss_ce": 0.40370931625366213, "decode.acc_seg": 89.04788970947266, "aux.loss_ce": 0.233024512976408, "aux.acc_seg": 88.56993103027344, "time": 1.1190983295440673, "iter": 41350, "memory": 8703, "step": 41350} +{"lr": 0.007661463728676915, "data_time": 0.005378127098083496, "loss": 0.3662622332572937, "decode.loss_ce": 0.21948466300964356, "decode.acc_seg": 92.20148468017578, "aux.loss_ce": 0.14677757248282433, "aux.acc_seg": 89.32755279541016, "time": 1.1122684240341187, "iter": 41400, "memory": 8704, "step": 41400} +{"lr": 0.007658594647383061, "data_time": 0.007627606391906738, "loss": 0.7463749825954438, "decode.loss_ce": 0.4873674735426903, "decode.acc_seg": 88.66233825683594, "aux.loss_ce": 0.2590075135231018, "aux.acc_seg": 80.68739318847656, "time": 1.1201085329055787, "iter": 41450, "memory": 8703, "step": 41450} +{"lr": 0.0076557254450794225, "data_time": 0.006169247627258301, "loss": 0.5698736250400543, "decode.loss_ce": 0.36125653982162476, "decode.acc_seg": 90.40062713623047, "aux.loss_ce": 0.2086170919239521, "aux.acc_seg": 80.39028930664062, "time": 1.1167215585708619, "iter": 41500, "memory": 8703, "step": 41500} +{"lr": 0.00765285612170984, "data_time": 0.00758209228515625, "loss": 0.44087194204330443, "decode.loss_ce": 0.2642446607351303, "decode.acc_seg": 93.48805236816406, "aux.loss_ce": 0.17662729024887086, "aux.acc_seg": 90.05680084228516, "time": 1.1178800821304322, "iter": 41550, "memory": 8703, "step": 41550} +{"lr": 0.007649986677218096, "data_time": 0.0075243949890136715, "loss": 0.3826216787099838, "decode.loss_ce": 0.23259365558624268, "decode.acc_seg": 94.08016204833984, "aux.loss_ce": 0.15002801977097988, "aux.acc_seg": 81.82392120361328, "time": 1.1194860696792603, "iter": 41600, "memory": 8703, "step": 41600} +{"lr": 0.0076471171115479195, "data_time": 0.006047654151916504, "loss": 0.5078997194766999, "decode.loss_ce": 0.3065525159239769, "decode.acc_seg": 91.52901458740234, "aux.loss_ce": 0.20134720131754874, "aux.acc_seg": 78.58867645263672, "time": 1.1139779090881348, "iter": 41650, "memory": 8703, "step": 41650} +{"lr": 0.007644247424642997, "data_time": 0.007194042205810547, "loss": 0.4336418956518173, "decode.loss_ce": 0.27042470946908, "decode.acc_seg": 95.2631607055664, "aux.loss_ce": 0.16321719475090504, "aux.acc_seg": 89.81329345703125, "time": 1.1189383506774901, "iter": 41700, "memory": 8704, "step": 41700} +{"lr": 0.00764137761644697, "data_time": 0.006351494789123535, "loss": 0.6449752926826477, "decode.loss_ce": 0.40896243005990984, "decode.acc_seg": 91.60581970214844, "aux.loss_ce": 0.23601286113262177, "aux.acc_seg": 91.10838317871094, "time": 1.1190118074417115, "iter": 41750, "memory": 8705, "step": 41750} +{"lr": 0.007638507686903423, "data_time": 0.007147789001464844, "loss": 0.35609707832336424, "decode.loss_ce": 0.21924618110060692, "decode.acc_seg": 94.11245727539062, "aux.loss_ce": 0.13685089349746704, "aux.acc_seg": 92.41020965576172, "time": 1.1134164094924928, "iter": 41800, "memory": 8704, "step": 41800} +{"lr": 0.007635637635955888, "data_time": 0.006931686401367187, "loss": 0.5167606726288796, "decode.loss_ce": 0.3142771556973457, "decode.acc_seg": 92.361328125, "aux.loss_ce": 0.20248351208865642, "aux.acc_seg": 88.84194946289062, "time": 1.1190325260162353, "iter": 41850, "memory": 8704, "step": 41850} +{"lr": 0.007632767463547842, "data_time": 0.006222295761108399, "loss": 0.5512420952320098, "decode.loss_ce": 0.3422631278634071, "decode.acc_seg": 89.50888061523438, "aux.loss_ce": 0.20897895991802215, "aux.acc_seg": 87.54005432128906, "time": 1.1106213092803956, "iter": 41900, "memory": 8703, "step": 41900} +{"lr": 0.007629897169622722, "data_time": 0.007634472846984863, "loss": 0.3235302522778511, "decode.loss_ce": 0.187349783629179, "decode.acc_seg": 87.26526641845703, "aux.loss_ce": 0.13618047013878823, "aux.acc_seg": 83.53092956542969, "time": 1.117679238319397, "iter": 41950, "memory": 8704, "step": 41950} +{"lr": 0.007627026754123913, "data_time": 0.005384087562561035, "loss": 0.33954266756772994, "decode.loss_ce": 0.21144502162933348, "decode.acc_seg": 94.9676513671875, "aux.loss_ce": 0.12809764295816423, "aux.acc_seg": 92.99723052978516, "time": 1.112423872947693, "iter": 42000, "memory": 8703, "step": 42000} +{"lr": 0.007624156216994745, "data_time": 0.007499814033508301, "loss": 0.37525416612625123, "decode.loss_ce": 0.22994397282600404, "decode.acc_seg": 92.64907836914062, "aux.loss_ce": 0.14531019516289234, "aux.acc_seg": 92.70966339111328, "time": 1.1142947912216186, "iter": 42050, "memory": 8703, "step": 42050} +{"lr": 0.00762128555817851, "data_time": 0.0048755168914794925, "loss": 0.3404864713549614, "decode.loss_ce": 0.20903148204088212, "decode.acc_seg": 92.36176300048828, "aux.loss_ce": 0.13145498670637606, "aux.acc_seg": 85.3263168334961, "time": 1.1143482446670532, "iter": 42100, "memory": 8703, "step": 42100} +{"lr": 0.007618414777618428, "data_time": 0.006304025650024414, "loss": 0.4403489321470261, "decode.loss_ce": 0.26920863091945646, "decode.acc_seg": 94.41023254394531, "aux.loss_ce": 0.17114030420780182, "aux.acc_seg": 94.0891342163086, "time": 1.11423978805542, "iter": 42150, "memory": 8704, "step": 42150} +{"lr": 0.007615543875257684, "data_time": 0.007227182388305664, "loss": 0.3847734108567238, "decode.loss_ce": 0.23293754532933236, "decode.acc_seg": 95.81222534179688, "aux.loss_ce": 0.15183586142957212, "aux.acc_seg": 95.1356201171875, "time": 1.1137484312057495, "iter": 42200, "memory": 8704, "step": 42200} +{"lr": 0.007612672851039414, "data_time": 0.006964254379272461, "loss": 0.5794525474309922, "decode.loss_ce": 0.37510497570037843, "decode.acc_seg": 96.10309600830078, "aux.loss_ce": 0.20434757508337498, "aux.acc_seg": 95.37747192382812, "time": 1.1127850532531738, "iter": 42250, "memory": 8704, "step": 42250} +{"lr": 0.007609801704906696, "data_time": 0.007721471786499024, "loss": 0.4230899512767792, "decode.loss_ce": 0.2546032428741455, "decode.acc_seg": 92.25959777832031, "aux.loss_ce": 0.16848671510815622, "aux.acc_seg": 87.75608825683594, "time": 1.1184590339660645, "iter": 42300, "memory": 8703, "step": 42300} +{"lr": 0.00760693043680256, "data_time": 0.006162047386169434, "loss": 0.40906650722026827, "decode.loss_ce": 0.25176975280046465, "decode.acc_seg": 86.27554321289062, "aux.loss_ce": 0.15729675032198429, "aux.acc_seg": 86.0055923461914, "time": 1.1112293481826783, "iter": 42350, "memory": 8703, "step": 42350} +{"lr": 0.0076040590466699845, "data_time": 0.007574462890625, "loss": 0.315625037252903, "decode.loss_ce": 0.18990035578608513, "decode.acc_seg": 95.5639877319336, "aux.loss_ce": 0.1257246784865856, "aux.acc_seg": 93.56979370117188, "time": 1.1170989274978638, "iter": 42400, "memory": 8704, "step": 42400} +{"lr": 0.007601187534451897, "data_time": 0.00640108585357666, "loss": 0.3709719404578209, "decode.loss_ce": 0.2260734722018242, "decode.acc_seg": 88.49449157714844, "aux.loss_ce": 0.14489846751093866, "aux.acc_seg": 82.71522521972656, "time": 1.113361692428589, "iter": 42450, "memory": 8704, "step": 42450} +{"lr": 0.007598315900091171, "data_time": 0.008239364624023438, "loss": 0.3752942144870758, "decode.loss_ce": 0.2219667285680771, "decode.acc_seg": 92.31548309326172, "aux.loss_ce": 0.15332748591899872, "aux.acc_seg": 90.29248046875, "time": 1.1168160438537598, "iter": 42500, "memory": 8704, "step": 42500} +{"lr": 0.007595444143530633, "data_time": 0.007555270195007324, "loss": 0.36972235292196276, "decode.loss_ce": 0.23407874777913093, "decode.acc_seg": 91.71263122558594, "aux.loss_ce": 0.13564360067248343, "aux.acc_seg": 91.31698608398438, "time": 1.119370174407959, "iter": 42550, "memory": 8703, "step": 42550} +{"lr": 0.007592572264713055, "data_time": 0.007574820518493652, "loss": 0.5189561158418655, "decode.loss_ce": 0.3051901802420616, "decode.acc_seg": 80.7342529296875, "aux.loss_ce": 0.21376593559980392, "aux.acc_seg": 68.6248779296875, "time": 1.1168162822723389, "iter": 42600, "memory": 8703, "step": 42600} +{"lr": 0.007589700263581163, "data_time": 0.00747983455657959, "loss": 0.4224770814180374, "decode.loss_ce": 0.2674586147069931, "decode.acc_seg": 91.95194244384766, "aux.loss_ce": 0.15501846373081207, "aux.acc_seg": 91.31488800048828, "time": 1.1143908023834228, "iter": 42650, "memory": 8704, "step": 42650} +{"lr": 0.007586828140077636, "data_time": 0.006434392929077148, "loss": 0.4911236971616745, "decode.loss_ce": 0.2847868576645851, "decode.acc_seg": 81.5238265991211, "aux.loss_ce": 0.20633683428168298, "aux.acc_seg": 78.17668914794922, "time": 1.117791771888733, "iter": 42700, "memory": 8704, "step": 42700} +{"lr": 0.007583955894145087, "data_time": 0.008148193359375, "loss": 0.3591682106256485, "decode.loss_ce": 0.22748971953988076, "decode.acc_seg": 97.57747650146484, "aux.loss_ce": 0.13167849518358707, "aux.acc_seg": 96.6208724975586, "time": 1.1203219413757324, "iter": 42750, "memory": 8703, "step": 42750} +{"lr": 0.007581083525726088, "data_time": 0.006306314468383789, "loss": 0.5589207246899605, "decode.loss_ce": 0.33265221789479255, "decode.acc_seg": 73.88176727294922, "aux.loss_ce": 0.22626850455999375, "aux.acc_seg": 69.44396209716797, "time": 1.1191693544387817, "iter": 42800, "memory": 8703, "step": 42800} +{"lr": 0.007578211034763153, "data_time": 0.008383512496948242, "loss": 0.3917991936206818, "decode.loss_ce": 0.23047481775283812, "decode.acc_seg": 89.99957275390625, "aux.loss_ce": 0.16132437735795974, "aux.acc_seg": 83.56695556640625, "time": 1.1199568271636964, "iter": 42850, "memory": 8703, "step": 42850} +{"lr": 0.007575338421198757, "data_time": 0.006940650939941406, "loss": 0.3703611969947815, "decode.loss_ce": 0.21867075562477112, "decode.acc_seg": 92.74578094482422, "aux.loss_ce": 0.15169044211506844, "aux.acc_seg": 85.91079711914062, "time": 1.1209583044052125, "iter": 42900, "memory": 8703, "step": 42900} +{"lr": 0.007572465684975313, "data_time": 0.00665280818939209, "loss": 0.3954513132572174, "decode.loss_ce": 0.23508507758378983, "decode.acc_seg": 93.75, "aux.loss_ce": 0.16036623381078244, "aux.acc_seg": 93.53961944580078, "time": 1.1126446723937988, "iter": 42950, "memory": 8704, "step": 42950} +{"lr": 0.007569592826035175, "data_time": 0.006551766395568847, "loss": 0.5246243983507156, "decode.loss_ce": 0.3025768235325813, "decode.acc_seg": 95.76078796386719, "aux.loss_ce": 0.22204757779836654, "aux.acc_seg": 94.52870178222656, "time": 1.1175617933273316, "iter": 43000, "memory": 8703, "step": 43000} +{"lr": 0.007566719844320659, "data_time": 0.007587623596191406, "loss": 0.34045894891023637, "decode.loss_ce": 0.21072239875793458, "decode.acc_seg": 92.26392364501953, "aux.loss_ce": 0.12973654605448245, "aux.acc_seg": 90.15258026123047, "time": 1.1171545505523681, "iter": 43050, "memory": 8703, "step": 43050} +{"lr": 0.0075638467397740276, "data_time": 0.0077342033386230465, "loss": 0.3028946131467819, "decode.loss_ce": 0.18954717814922334, "decode.acc_seg": 95.88292694091797, "aux.loss_ce": 0.11334743425250053, "aux.acc_seg": 95.73387908935547, "time": 1.1149919033050537, "iter": 43100, "memory": 8703, "step": 43100} +{"lr": 0.007560973512337493, "data_time": 0.00896918773651123, "loss": 0.40749877095222475, "decode.loss_ce": 0.2530856214463711, "decode.acc_seg": 95.86524963378906, "aux.loss_ce": 0.15441314578056337, "aux.acc_seg": 95.09455108642578, "time": 1.1195982694625854, "iter": 43150, "memory": 8704, "step": 43150} +{"lr": 0.007558100161953201, "data_time": 0.0071408748626708984, "loss": 0.48671968281269073, "decode.loss_ce": 0.28596466928720476, "decode.acc_seg": 95.57569122314453, "aux.loss_ce": 0.20075501799583434, "aux.acc_seg": 93.7153549194336, "time": 1.1191560983657838, "iter": 43200, "memory": 8705, "step": 43200} +{"lr": 0.007555226688563252, "data_time": 0.006660032272338867, "loss": 0.39018667936325074, "decode.loss_ce": 0.2492321252822876, "decode.acc_seg": 92.57970428466797, "aux.loss_ce": 0.1409545473754406, "aux.acc_seg": 91.89125061035156, "time": 1.118653655052185, "iter": 43250, "memory": 8703, "step": 43250} +{"lr": 0.007552353092109711, "data_time": 0.007251429557800293, "loss": 0.30936878770589826, "decode.loss_ce": 0.18504821211099626, "decode.acc_seg": 92.57284545898438, "aux.loss_ce": 0.12432057186961173, "aux.acc_seg": 91.35697174072266, "time": 1.1139080762863158, "iter": 43300, "memory": 8703, "step": 43300} +{"lr": 0.00754947937253457, "data_time": 0.007554316520690918, "loss": 0.4222519934177399, "decode.loss_ce": 0.2652729466557503, "decode.acc_seg": 96.73213958740234, "aux.loss_ce": 0.15697905272245408, "aux.acc_seg": 94.3198471069336, "time": 1.1163038253784179, "iter": 43350, "memory": 8703, "step": 43350} +{"lr": 0.007546605529779775, "data_time": 0.007217502593994141, "loss": 0.4989155441522598, "decode.loss_ce": 0.3250162251293659, "decode.acc_seg": 84.67228698730469, "aux.loss_ce": 0.17389931455254554, "aux.acc_seg": 73.64234924316406, "time": 1.1165589809417724, "iter": 43400, "memory": 8704, "step": 43400} +{"lr": 0.007543731563787226, "data_time": 0.00805060863494873, "loss": 0.36241421550512315, "decode.loss_ce": 0.22393110394477844, "decode.acc_seg": 96.96246337890625, "aux.loss_ce": 0.13848311118781567, "aux.acc_seg": 96.03553009033203, "time": 1.1140452384948731, "iter": 43450, "memory": 8704, "step": 43450} +{"lr": 0.007540857474498765, "data_time": 0.006921529769897461, "loss": 0.3524277970194817, "decode.loss_ce": 0.2261093132197857, "decode.acc_seg": 97.05364990234375, "aux.loss_ce": 0.1263184815645218, "aux.acc_seg": 96.30101013183594, "time": 1.1126403093338013, "iter": 43500, "memory": 8704, "step": 43500} +{"lr": 0.007537983261856183, "data_time": 0.007501220703125, "loss": 0.43427748382091524, "decode.loss_ce": 0.28208626583218577, "decode.acc_seg": 80.19758605957031, "aux.loss_ce": 0.15219121612608433, "aux.acc_seg": 69.58026885986328, "time": 1.1193044185638428, "iter": 43550, "memory": 8704, "step": 43550} +{"lr": 0.007535108925801212, "data_time": 0.007827281951904297, "loss": 0.5069193512201309, "decode.loss_ce": 0.32207228392362597, "decode.acc_seg": 93.53802490234375, "aux.loss_ce": 0.18484706208109855, "aux.acc_seg": 83.79185485839844, "time": 1.117203164100647, "iter": 43600, "memory": 8704, "step": 43600} +{"lr": 0.007532234466275544, "data_time": 0.005674934387207032, "loss": 0.6205445617437363, "decode.loss_ce": 0.3993623942136765, "decode.acc_seg": 60.3763542175293, "aux.loss_ce": 0.2211821623146534, "aux.acc_seg": 52.719112396240234, "time": 1.1164970636367797, "iter": 43650, "memory": 8704, "step": 43650} +{"lr": 0.007529359883220812, "data_time": 0.0077125787734985355, "loss": 0.46295354664325716, "decode.loss_ce": 0.282538914680481, "decode.acc_seg": 91.82491302490234, "aux.loss_ce": 0.18041463531553745, "aux.acc_seg": 89.00724792480469, "time": 1.1213308095932006, "iter": 43700, "memory": 8703, "step": 43700} +{"lr": 0.007526485176578593, "data_time": 0.009758567810058594, "loss": 0.4485112428665161, "decode.loss_ce": 0.2581112965941429, "decode.acc_seg": 90.7197265625, "aux.loss_ce": 0.190399944037199, "aux.acc_seg": 82.85719299316406, "time": 1.1222131967544555, "iter": 43750, "memory": 8704, "step": 43750} +{"lr": 0.007523610346290412, "data_time": 0.007561349868774414, "loss": 0.38744616955518724, "decode.loss_ce": 0.25460240989923477, "decode.acc_seg": 97.42438507080078, "aux.loss_ce": 0.1328437641263008, "aux.acc_seg": 96.85932159423828, "time": 1.1160741567611694, "iter": 43800, "memory": 8704, "step": 43800} +{"lr": 0.007520735392297746, "data_time": 0.007191705703735352, "loss": 0.3588480085134506, "decode.loss_ce": 0.21981560587882995, "decode.acc_seg": 92.5363540649414, "aux.loss_ce": 0.13903239741921425, "aux.acc_seg": 92.6813735961914, "time": 1.1150991439819335, "iter": 43850, "memory": 8704, "step": 43850} +{"lr": 0.007517860314542015, "data_time": 0.008965754508972168, "loss": 0.33835319578647616, "decode.loss_ce": 0.20732334330677987, "decode.acc_seg": 91.25080108642578, "aux.loss_ce": 0.13102985061705114, "aux.acc_seg": 84.7024917602539, "time": 1.1178701162338256, "iter": 43900, "memory": 8703, "step": 43900} +{"lr": 0.007514985112964593, "data_time": 0.005604696273803711, "loss": 0.5751234412193298, "decode.loss_ce": 0.37235527485609055, "decode.acc_seg": 94.0185546875, "aux.loss_ce": 0.2027681775391102, "aux.acc_seg": 92.89022827148438, "time": 1.1102541208267211, "iter": 43950, "memory": 8704, "step": 43950} +{"lr": 0.007512109787506788, "data_time": 0.007370877265930176, "loss": 0.40158628225326537, "decode.loss_ce": 0.2503264293074608, "decode.acc_seg": 93.17169189453125, "aux.loss_ce": 0.1512598529458046, "aux.acc_seg": 84.8963394165039, "time": 1.1152750492095946, "iter": 44000, "memory": 8704, "step": 44000} +{"lr": 0.007509234338109868, "data_time": 0.007298851013183593, "loss": 0.38177698850631714, "decode.loss_ce": 0.23267606124281884, "decode.acc_seg": 86.19766235351562, "aux.loss_ce": 0.1491009246557951, "aux.acc_seg": 81.57666015625, "time": 1.118701982498169, "iter": 44050, "memory": 8703, "step": 44050} +{"lr": 0.0075063587647150425, "data_time": 0.006369757652282715, "loss": 0.5511015370488167, "decode.loss_ce": 0.3499552056193352, "decode.acc_seg": 95.45662689208984, "aux.loss_ce": 0.20114633291959763, "aux.acc_seg": 88.95542907714844, "time": 1.1175750255584718, "iter": 44100, "memory": 8703, "step": 44100} +{"lr": 0.007503483067263463, "data_time": 0.007126903533935547, "loss": 0.3976940780878067, "decode.loss_ce": 0.24816168695688248, "decode.acc_seg": 91.44039154052734, "aux.loss_ce": 0.14953238815069197, "aux.acc_seg": 88.77792358398438, "time": 1.1184827089309692, "iter": 44150, "memory": 8703, "step": 44150} +{"lr": 0.007500607245696233, "data_time": 0.006665158271789551, "loss": 0.43528490588068963, "decode.loss_ce": 0.2634723663330078, "decode.acc_seg": 88.12039184570312, "aux.loss_ce": 0.1718125343322754, "aux.acc_seg": 81.71806335449219, "time": 1.1150001525878905, "iter": 44200, "memory": 8703, "step": 44200} +{"lr": 0.007497731299954403, "data_time": 0.008579778671264648, "loss": 0.5677636563777924, "decode.loss_ce": 0.3626681461930275, "decode.acc_seg": 90.8456802368164, "aux.loss_ce": 0.2050955131649971, "aux.acc_seg": 90.43057250976562, "time": 1.1151217460632323, "iter": 44250, "memory": 8704, "step": 44250} +{"lr": 0.0074948552299789585, "data_time": 0.0066372394561767575, "loss": 0.3026659458875656, "decode.loss_ce": 0.18209453001618386, "decode.acc_seg": 94.22569274902344, "aux.loss_ce": 0.12057141214609146, "aux.acc_seg": 93.22967529296875, "time": 1.1144293069839477, "iter": 44300, "memory": 8703, "step": 44300} +{"lr": 0.007491979035710858, "data_time": 0.007815814018249512, "loss": 0.42362149357795714, "decode.loss_ce": 0.27054015547037125, "decode.acc_seg": 95.34928131103516, "aux.loss_ce": 0.15308134034276008, "aux.acc_seg": 90.43938446044922, "time": 1.1159798622131347, "iter": 44350, "memory": 8704, "step": 44350} +{"lr": 0.007489102717090991, "data_time": 0.006939482688903808, "loss": 0.5122115612030029, "decode.loss_ce": 0.30620103180408476, "decode.acc_seg": 83.8592529296875, "aux.loss_ce": 0.20601053386926652, "aux.acc_seg": 78.9749755859375, "time": 1.1121849775314332, "iter": 44400, "memory": 8704, "step": 44400} +{"lr": 0.007486226274060174, "data_time": 0.008106470108032227, "loss": 0.39953197091817855, "decode.loss_ce": 0.23987155854701997, "decode.acc_seg": 95.71844482421875, "aux.loss_ce": 0.15966041013598442, "aux.acc_seg": 94.96637725830078, "time": 1.1175337791442872, "iter": 44450, "memory": 8704, "step": 44450} +{"lr": 0.0074833497065592055, "data_time": 0.006108283996582031, "loss": 0.3428378224372864, "decode.loss_ce": 0.21099713146686555, "decode.acc_seg": 93.31810760498047, "aux.loss_ce": 0.13184069767594336, "aux.acc_seg": 90.74230194091797, "time": 1.1154666662216186, "iter": 44500, "memory": 8703, "step": 44500} +{"lr": 0.0074804730145288005, "data_time": 0.00576314926147461, "loss": 0.35891405642032626, "decode.loss_ce": 0.215044866502285, "decode.acc_seg": 85.01358032226562, "aux.loss_ce": 0.14386918693780898, "aux.acc_seg": 81.10563659667969, "time": 1.1105271339416505, "iter": 44550, "memory": 8703, "step": 44550} +{"lr": 0.007477596197909641, "data_time": 0.006221151351928711, "loss": 0.3714961677789688, "decode.loss_ce": 0.2427380472421646, "decode.acc_seg": 86.44294738769531, "aux.loss_ce": 0.12875812575221063, "aux.acc_seg": 84.46286010742188, "time": 1.1153461694717408, "iter": 44600, "memory": 8703, "step": 44600} +{"lr": 0.007474719256642348, "data_time": 0.007025003433227539, "loss": 0.5866381853818894, "decode.loss_ce": 0.3576556801795959, "decode.acc_seg": 90.43926239013672, "aux.loss_ce": 0.2289825014770031, "aux.acc_seg": 84.65372467041016, "time": 1.1161917686462401, "iter": 44650, "memory": 8704, "step": 44650} +{"lr": 0.007471842190667475, "data_time": 0.005395579338073731, "loss": 0.46857032775878904, "decode.loss_ce": 0.27254997491836547, "decode.acc_seg": 95.06352233886719, "aux.loss_ce": 0.19602034911513327, "aux.acc_seg": 93.07530975341797, "time": 1.1130002021789551, "iter": 44700, "memory": 8704, "step": 44700} +{"lr": 0.007468964999925542, "data_time": 0.008317923545837403, "loss": 0.33893020302057264, "decode.loss_ce": 0.20347347408533095, "decode.acc_seg": 95.13111114501953, "aux.loss_ce": 0.13545672968029976, "aux.acc_seg": 94.08893585205078, "time": 1.1195983171463013, "iter": 44750, "memory": 8703, "step": 44750} +{"lr": 0.0074660876843570005, "data_time": 0.006057476997375489, "loss": 0.5957851707935333, "decode.loss_ce": 0.3850145250558853, "decode.acc_seg": 91.79869079589844, "aux.loss_ce": 0.21077063642442226, "aux.acc_seg": 88.44233703613281, "time": 1.1083479881286622, "iter": 44800, "memory": 8703, "step": 44800} +{"lr": 0.007463210243902259, "data_time": 0.006633377075195313, "loss": 0.5040875941514968, "decode.loss_ce": 0.2873902007937431, "decode.acc_seg": 97.46964263916016, "aux.loss_ce": 0.21669738814234735, "aux.acc_seg": 93.44246673583984, "time": 1.1174727201461792, "iter": 44850, "memory": 8704, "step": 44850} +{"lr": 0.007460332678501662, "data_time": 0.007881903648376464, "loss": 0.36259629875421523, "decode.loss_ce": 0.22590228468179702, "decode.acc_seg": 93.73348236083984, "aux.loss_ce": 0.13669401481747628, "aux.acc_seg": 92.14552307128906, "time": 1.116351318359375, "iter": 44900, "memory": 8703, "step": 44900} +{"lr": 0.007457454988095508, "data_time": 0.005424618721008301, "loss": 0.40778383761644366, "decode.loss_ce": 0.24564036205410958, "decode.acc_seg": 97.68810272216797, "aux.loss_ce": 0.16214347630739212, "aux.acc_seg": 96.82457733154297, "time": 1.1155150175094604, "iter": 44950, "memory": 8703, "step": 44950} +{"lr": 0.007454577172624031, "data_time": 0.009534573554992676, "loss": 0.48435637950897215, "decode.loss_ce": 0.30435999780893325, "decode.acc_seg": 94.81077575683594, "aux.loss_ce": 0.17999638468027115, "aux.acc_seg": 82.6698989868164, "time": 1.1204462766647338, "iter": 45000, "memory": 8703, "step": 45000} +{"lr": 0.007451699232027419, "data_time": 0.006908559799194336, "loss": 0.4384840801358223, "decode.loss_ce": 0.2619135156273842, "decode.acc_seg": 92.92131805419922, "aux.loss_ce": 0.17657057121396064, "aux.acc_seg": 89.6657943725586, "time": 1.1157283067703248, "iter": 45050, "memory": 8704, "step": 45050} +{"lr": 0.0074488211662458005, "data_time": 0.007525110244750976, "loss": 0.36822125911712644, "decode.loss_ce": 0.22212268263101578, "decode.acc_seg": 93.14695739746094, "aux.loss_ce": 0.14609857574105262, "aux.acc_seg": 91.85154724121094, "time": 1.1163908243179321, "iter": 45100, "memory": 8703, "step": 45100} +{"lr": 0.007445942975219253, "data_time": 0.005850148200988769, "loss": 0.4007527083158493, "decode.loss_ce": 0.25956924706697465, "decode.acc_seg": 87.06111907958984, "aux.loss_ce": 0.14118346832692624, "aux.acc_seg": 83.37522888183594, "time": 1.1141584157943725, "iter": 45150, "memory": 8704, "step": 45150} +{"lr": 0.0074430646588877925, "data_time": 0.006234931945800781, "loss": 0.4186119049787521, "decode.loss_ce": 0.24697243198752403, "decode.acc_seg": 96.4071273803711, "aux.loss_ce": 0.17163947001099586, "aux.acc_seg": 93.6086654663086, "time": 1.1103407144546509, "iter": 45200, "memory": 8703, "step": 45200} +{"lr": 0.007440186217191393, "data_time": 0.007079076766967773, "loss": 0.37815482169389725, "decode.loss_ce": 0.22106655836105346, "decode.acc_seg": 93.3863296508789, "aux.loss_ce": 0.15708826445043086, "aux.acc_seg": 90.17958068847656, "time": 1.1134371995925902, "iter": 45250, "memory": 8704, "step": 45250} +{"lr": 0.007437307650069958, "data_time": 0.0072335958480834964, "loss": 0.3555989310145378, "decode.loss_ce": 0.22500675842165946, "decode.acc_seg": 92.27841186523438, "aux.loss_ce": 0.13059217445552349, "aux.acc_seg": 88.08281707763672, "time": 1.113368606567383, "iter": 45300, "memory": 8703, "step": 45300} +{"lr": 0.0074344289574633455, "data_time": 0.006820273399353027, "loss": 0.4955312669277191, "decode.loss_ce": 0.29125713258981706, "decode.acc_seg": 89.53068542480469, "aux.loss_ce": 0.20427413210272788, "aux.acc_seg": 65.12667083740234, "time": 1.1141067504882813, "iter": 45350, "memory": 8704, "step": 45350} +{"lr": 0.007431550139311358, "data_time": 0.008493137359619141, "loss": 0.43497560918331146, "decode.loss_ce": 0.26832276955246925, "decode.acc_seg": 93.03658294677734, "aux.loss_ce": 0.16665283292531968, "aux.acc_seg": 91.80685424804688, "time": 1.1181209087371826, "iter": 45400, "memory": 8703, "step": 45400} +{"lr": 0.007428671195553742, "data_time": 0.007148361206054688, "loss": 0.3858736604452133, "decode.loss_ce": 0.2382367491722107, "decode.acc_seg": 96.11854553222656, "aux.loss_ce": 0.14763691425323486, "aux.acc_seg": 95.52332305908203, "time": 1.1164661645889282, "iter": 45450, "memory": 8703, "step": 45450} +{"lr": 0.00742579212613019, "data_time": 0.008169007301330567, "loss": 0.4564428389072418, "decode.loss_ce": 0.2703980624675751, "decode.acc_seg": 83.58879089355469, "aux.loss_ce": 0.18604477643966674, "aux.acc_seg": 76.94123077392578, "time": 1.1161161184310913, "iter": 45500, "memory": 8703, "step": 45500} +{"lr": 0.00742291293098033, "data_time": 0.008254623413085938, "loss": 0.42647256702184677, "decode.loss_ce": 0.2662773869931698, "decode.acc_seg": 92.98751831054688, "aux.loss_ce": 0.16019517593085766, "aux.acc_seg": 91.40782928466797, "time": 1.119764232635498, "iter": 45550, "memory": 8703, "step": 45550} +{"lr": 0.007420033610043745, "data_time": 0.007741570472717285, "loss": 0.5272822141647339, "decode.loss_ce": 0.32356045618653295, "decode.acc_seg": 94.57660675048828, "aux.loss_ce": 0.20372175574302673, "aux.acc_seg": 92.55826568603516, "time": 1.1186563968658447, "iter": 45600, "memory": 8703, "step": 45600} +{"lr": 0.0074171541632599555, "data_time": 0.0069977760314941405, "loss": 0.3699121206998825, "decode.loss_ce": 0.2284058466553688, "decode.acc_seg": 96.82178497314453, "aux.loss_ce": 0.14150627255439757, "aux.acc_seg": 88.67855072021484, "time": 1.1136406421661378, "iter": 45650, "memory": 8703, "step": 45650} +{"lr": 0.007414274590568431, "data_time": 0.007344365119934082, "loss": 0.3874055862426758, "decode.loss_ce": 0.24712121710181237, "decode.acc_seg": 86.76285552978516, "aux.loss_ce": 0.14028437472879887, "aux.acc_seg": 80.86620330810547, "time": 1.118352222442627, "iter": 45700, "memory": 8703, "step": 45700} +{"lr": 0.0074113948919085895, "data_time": 0.006494665145874023, "loss": 0.3659201830625534, "decode.loss_ce": 0.24449708685278893, "decode.acc_seg": 89.01734924316406, "aux.loss_ce": 0.12142309248447418, "aux.acc_seg": 88.51888275146484, "time": 1.1175353288650514, "iter": 45750, "memory": 8704, "step": 45750} +{"lr": 0.007408515067219791, "data_time": 0.007125949859619141, "loss": 0.6024254932999611, "decode.loss_ce": 0.34232660457491876, "decode.acc_seg": 87.96971130371094, "aux.loss_ce": 0.2600988756865263, "aux.acc_seg": 83.95271301269531, "time": 1.1165966033935546, "iter": 45800, "memory": 8704, "step": 45800} +{"lr": 0.007405635116441331, "data_time": 0.007175374031066895, "loss": 0.5068018764257431, "decode.loss_ce": 0.3092711389064789, "decode.acc_seg": 86.96409606933594, "aux.loss_ce": 0.19753073751926423, "aux.acc_seg": 83.73081970214844, "time": 1.116681170463562, "iter": 45850, "memory": 8703, "step": 45850} +{"lr": 0.00740275503951246, "data_time": 0.008017730712890626, "loss": 0.4947294041514397, "decode.loss_ce": 0.2996555231511593, "decode.acc_seg": 95.84407806396484, "aux.loss_ce": 0.195073876157403, "aux.acc_seg": 94.28837585449219, "time": 1.1211959838867187, "iter": 45900, "memory": 8704, "step": 45900} +{"lr": 0.007399874836372365, "data_time": 0.006212472915649414, "loss": 0.4312054827809334, "decode.loss_ce": 0.27694546729326247, "decode.acc_seg": 95.4183578491211, "aux.loss_ce": 0.15426001697778702, "aux.acc_seg": 94.23580169677734, "time": 1.1182897567749024, "iter": 45950, "memory": 8704, "step": 45950} +{"lr": 0.007396994506960175, "data_time": 0.006844806671142578, "loss": 0.4404559716582298, "decode.loss_ce": 0.2826898112893105, "decode.acc_seg": 86.64849090576172, "aux.loss_ce": 0.1577661655843258, "aux.acc_seg": 74.48660278320312, "time": 1.1140024423599244, "iter": 46000, "memory": 8704, "step": 46000} +{"lr": 0.007394114051214975, "data_time": 0.006595611572265625, "loss": 0.4231017753481865, "decode.loss_ce": 0.2662687197327614, "decode.acc_seg": 92.9583969116211, "aux.loss_ce": 0.1568330589681864, "aux.acc_seg": 88.3856430053711, "time": 1.1184741020202638, "iter": 46050, "memory": 8704, "step": 46050} +{"lr": 0.007391233469075782, "data_time": 0.006926608085632324, "loss": 0.4209241420030594, "decode.loss_ce": 0.2671359717845917, "decode.acc_seg": 90.41874694824219, "aux.loss_ce": 0.15378817021846772, "aux.acc_seg": 83.15632629394531, "time": 1.1134374618530274, "iter": 46100, "memory": 8704, "step": 46100} +{"lr": 0.00738835276048157, "data_time": 0.005551552772521973, "loss": 0.5454199105501175, "decode.loss_ce": 0.327621828019619, "decode.acc_seg": 66.43536376953125, "aux.loss_ce": 0.21779807694256306, "aux.acc_seg": 64.11177062988281, "time": 1.111100172996521, "iter": 46150, "memory": 8704, "step": 46150} +{"lr": 0.007385471925371237, "data_time": 0.007389378547668457, "loss": 0.3854724183678627, "decode.loss_ce": 0.24481625854969025, "decode.acc_seg": 90.68110656738281, "aux.loss_ce": 0.14065615758299826, "aux.acc_seg": 90.40827178955078, "time": 1.119387936592102, "iter": 46200, "memory": 8704, "step": 46200} +{"lr": 0.007382590963683648, "data_time": 0.0072880744934082035, "loss": 0.5005428627133369, "decode.loss_ce": 0.31291747391223906, "decode.acc_seg": 91.26949310302734, "aux.loss_ce": 0.18762538731098174, "aux.acc_seg": 80.38578033447266, "time": 1.1195160150527954, "iter": 46250, "memory": 8703, "step": 46250} +{"lr": 0.007379709875357596, "data_time": 0.006908559799194336, "loss": 0.4217261478304863, "decode.loss_ce": 0.2637055143713951, "decode.acc_seg": 90.4719009399414, "aux.loss_ce": 0.15802063047885895, "aux.acc_seg": 85.67352294921875, "time": 1.114239478111267, "iter": 46300, "memory": 8704, "step": 46300} +{"lr": 0.007376828660331807, "data_time": 0.006644558906555176, "loss": 0.445713110268116, "decode.loss_ce": 0.2801931992173195, "decode.acc_seg": 91.13851928710938, "aux.loss_ce": 0.16551992073655128, "aux.acc_seg": 81.45662689208984, "time": 1.113286304473877, "iter": 46350, "memory": 8704, "step": 46350} +{"lr": 0.007373947318544977, "data_time": 0.007026529312133789, "loss": 0.41899242997169495, "decode.loss_ce": 0.2676271140575409, "decode.acc_seg": 94.18201446533203, "aux.loss_ce": 0.15136532187461854, "aux.acc_seg": 88.30197143554688, "time": 1.1138375997543335, "iter": 46400, "memory": 8704, "step": 46400} +{"lr": 0.0073710658499357325, "data_time": 0.007554936408996582, "loss": 0.33351201862096785, "decode.loss_ce": 0.20595646426081657, "decode.acc_seg": 96.8302993774414, "aux.loss_ce": 0.12755555137991906, "aux.acc_seg": 95.24307250976562, "time": 1.115168285369873, "iter": 46450, "memory": 8704, "step": 46450} +{"lr": 0.007368184254442643, "data_time": 0.0074890851974487305, "loss": 0.41975044906139375, "decode.loss_ce": 0.2656606897711754, "decode.acc_seg": 96.37380981445312, "aux.loss_ce": 0.15408976152539253, "aux.acc_seg": 88.86082458496094, "time": 1.1161829710006714, "iter": 46500, "memory": 8705, "step": 46500} +{"lr": 0.007365302532004218, "data_time": 0.0061438560485839845, "loss": 0.376864455640316, "decode.loss_ce": 0.23194056674838065, "decode.acc_seg": 88.62081909179688, "aux.loss_ce": 0.14492388516664506, "aux.acc_seg": 85.7797622680664, "time": 1.1179385662078858, "iter": 46550, "memory": 8704, "step": 46550} +{"lr": 0.00736242068255892, "data_time": 0.0066073894500732425, "loss": 0.25110640525817873, "decode.loss_ce": 0.1520856127142906, "decode.acc_seg": 92.44200134277344, "aux.loss_ce": 0.0990207962691784, "aux.acc_seg": 86.62712860107422, "time": 1.1126036643981934, "iter": 46600, "memory": 8704, "step": 46600} +{"lr": 0.007359538706045135, "data_time": 0.0066339969635009766, "loss": 0.6607408374547958, "decode.loss_ce": 0.4489845931529999, "decode.acc_seg": 94.78645324707031, "aux.loss_ce": 0.2117562361061573, "aux.acc_seg": 93.69627380371094, "time": 1.1173929929733277, "iter": 46650, "memory": 8704, "step": 46650} +{"lr": 0.007356656602401223, "data_time": 0.006354594230651855, "loss": 0.578642837703228, "decode.loss_ce": 0.3695039480924606, "decode.acc_seg": 80.36937713623047, "aux.loss_ce": 0.2091388925909996, "aux.acc_seg": 72.26982116699219, "time": 1.116409683227539, "iter": 46700, "memory": 8703, "step": 46700} +{"lr": 0.007353774371565456, "data_time": 0.0056751489639282225, "loss": 0.49374140053987503, "decode.loss_ce": 0.32997911274433134, "decode.acc_seg": 92.73369598388672, "aux.loss_ce": 0.16376229748129845, "aux.acc_seg": 90.78400421142578, "time": 1.118529748916626, "iter": 46750, "memory": 8704, "step": 46750} +{"lr": 0.00735089201347607, "data_time": 0.0062469482421875, "loss": 0.38344917744398116, "decode.loss_ce": 0.22188771963119508, "decode.acc_seg": 93.0731430053711, "aux.loss_ce": 0.16156145855784415, "aux.acc_seg": 83.6325912475586, "time": 1.1189243078231812, "iter": 46800, "memory": 8704, "step": 46800} +{"lr": 0.007348009528071228, "data_time": 0.006808328628540039, "loss": 0.4668507441878319, "decode.loss_ce": 0.29484919309616087, "decode.acc_seg": 91.26556396484375, "aux.loss_ce": 0.17200155183672905, "aux.acc_seg": 85.76583862304688, "time": 1.116173768043518, "iter": 46850, "memory": 8704, "step": 46850} +{"lr": 0.00734512691528905, "data_time": 0.00566551685333252, "loss": 0.32545956820249555, "decode.loss_ce": 0.20155098512768746, "decode.acc_seg": 93.21638488769531, "aux.loss_ce": 0.12390858046710491, "aux.acc_seg": 90.44132232666016, "time": 1.1155796289443969, "iter": 46900, "memory": 8703, "step": 46900} +{"lr": 0.007342244175067583, "data_time": 0.006267142295837402, "loss": 0.3900229573249817, "decode.loss_ce": 0.23192249238491058, "decode.acc_seg": 90.05985260009766, "aux.loss_ce": 0.15810046419501306, "aux.acc_seg": 88.39035034179688, "time": 1.1141040086746217, "iter": 46950, "memory": 8703, "step": 46950} +{"lr": 0.007339361307344828, "data_time": 0.006596183776855469, "loss": 0.3229648515582085, "decode.loss_ce": 0.18787125796079635, "decode.acc_seg": 95.37728881835938, "aux.loss_ce": 0.13509358949959277, "aux.acc_seg": 87.98322296142578, "time": 1.115865659713745, "iter": 47000, "memory": 8704, "step": 47000} +{"lr": 0.007336478312058741, "data_time": 0.0066056489944458004, "loss": 0.4595127612352371, "decode.loss_ce": 0.27837407439947126, "decode.acc_seg": 94.58122253417969, "aux.loss_ce": 0.18113868087530136, "aux.acc_seg": 81.23531341552734, "time": 1.1142693281173706, "iter": 47050, "memory": 8703, "step": 47050} +{"lr": 0.00733359518914718, "data_time": 0.006341719627380371, "loss": 0.32400650084018706, "decode.loss_ce": 0.1902434341609478, "decode.acc_seg": 94.3863525390625, "aux.loss_ce": 0.13376306556165218, "aux.acc_seg": 93.55538177490234, "time": 1.1169558763504028, "iter": 47100, "memory": 8703, "step": 47100} +{"lr": 0.007330711938547987, "data_time": 0.006462287902832031, "loss": 0.4204000309109688, "decode.loss_ce": 0.25793944001197816, "decode.acc_seg": 95.86811065673828, "aux.loss_ce": 0.16246058903634547, "aux.acc_seg": 95.81686401367188, "time": 1.1138171911239625, "iter": 47150, "memory": 8704, "step": 47150} +{"lr": 0.007327828560198918, "data_time": 0.007175755500793457, "loss": 0.5092318236827851, "decode.loss_ce": 0.2928339682519436, "decode.acc_seg": 91.60137176513672, "aux.loss_ce": 0.21639785468578338, "aux.acc_seg": 91.35277557373047, "time": 1.1145328760147095, "iter": 47200, "memory": 8703, "step": 47200} +{"lr": 0.007324945054037691, "data_time": 0.00642697811126709, "loss": 0.49202349931001665, "decode.loss_ce": 0.2934286296367645, "decode.acc_seg": 84.39712524414062, "aux.loss_ce": 0.1985948644578457, "aux.acc_seg": 83.9926986694336, "time": 1.117472243309021, "iter": 47250, "memory": 8703, "step": 47250} +{"lr": 0.007322061420001951, "data_time": 0.0064427852630615234, "loss": 0.49192479252815247, "decode.loss_ce": 0.30062237977981565, "decode.acc_seg": 95.56414031982422, "aux.loss_ce": 0.19130241200327874, "aux.acc_seg": 93.71528625488281, "time": 1.1123473644256592, "iter": 47300, "memory": 8704, "step": 47300} +{"lr": 0.007319177658029295, "data_time": 0.0050285100936889645, "loss": 0.3538540281355381, "decode.loss_ce": 0.22995141446590422, "decode.acc_seg": 90.7756118774414, "aux.loss_ce": 0.12390261776745319, "aux.acc_seg": 87.01273345947266, "time": 1.111745023727417, "iter": 47350, "memory": 8703, "step": 47350} +{"lr": 0.007316293768057257, "data_time": 0.00777895450592041, "loss": 0.2824066370725632, "decode.loss_ce": 0.17147775292396544, "decode.acc_seg": 90.2693862915039, "aux.loss_ce": 0.11092888340353965, "aux.acc_seg": 82.74772644042969, "time": 1.1140231847763062, "iter": 47400, "memory": 8704, "step": 47400} +{"lr": 0.0073134097500233185, "data_time": 0.009157586097717284, "loss": 0.7076987475156784, "decode.loss_ce": 0.454152824729681, "decode.acc_seg": 96.2629623413086, "aux.loss_ce": 0.25354591086506845, "aux.acc_seg": 95.63257598876953, "time": 1.1198487758636475, "iter": 47450, "memory": 8703, "step": 47450} +{"lr": 0.007310525603864887, "data_time": 0.0060985803604125975, "loss": 0.560737469792366, "decode.loss_ce": 0.34407727271318433, "decode.acc_seg": 95.76835632324219, "aux.loss_ce": 0.21666018292307854, "aux.acc_seg": 79.87581634521484, "time": 1.1152500629425048, "iter": 47500, "memory": 8704, "step": 47500} +{"lr": 0.0073076413295193356, "data_time": 0.007763338088989258, "loss": 0.3658779293298721, "decode.loss_ce": 0.22915225774049758, "decode.acc_seg": 96.0641860961914, "aux.loss_ce": 0.13672566935420036, "aux.acc_seg": 95.08882904052734, "time": 1.1228782892227174, "iter": 47550, "memory": 8703, "step": 47550} +{"lr": 0.007304756926923952, "data_time": 0.006682753562927246, "loss": 0.28912936747074125, "decode.loss_ce": 0.16717122122645378, "decode.acc_seg": 88.5194091796875, "aux.loss_ce": 0.12195814102888107, "aux.acc_seg": 86.31775665283203, "time": 1.1150078296661377, "iter": 47600, "memory": 8704, "step": 47600} +{"lr": 0.007301872396015989, "data_time": 0.006745290756225586, "loss": 0.6084776356816292, "decode.loss_ce": 0.4038122735917568, "decode.acc_seg": 78.64067840576172, "aux.loss_ce": 0.20466535687446594, "aux.acc_seg": 76.08305358886719, "time": 1.1161999940872191, "iter": 47650, "memory": 8704, "step": 47650} +{"lr": 0.007298987736732631, "data_time": 0.006548142433166504, "loss": 0.3960990861058235, "decode.loss_ce": 0.25011430531740186, "decode.acc_seg": 94.24696350097656, "aux.loss_ce": 0.1459847778081894, "aux.acc_seg": 92.82721710205078, "time": 1.115864634513855, "iter": 47700, "memory": 8703, "step": 47700} +{"lr": 0.007296102949010996, "data_time": 0.006305503845214844, "loss": 0.41590033620595934, "decode.loss_ce": 0.26654709652066233, "decode.acc_seg": 88.84381103515625, "aux.loss_ce": 0.14935324229300023, "aux.acc_seg": 84.4071273803711, "time": 1.1124860525131226, "iter": 47750, "memory": 8703, "step": 47750} +{"lr": 0.007293218032788156, "data_time": 0.004914045333862305, "loss": 0.43197162747383117, "decode.loss_ce": 0.2763946145772934, "decode.acc_seg": 94.09878540039062, "aux.loss_ce": 0.15557702034711837, "aux.acc_seg": 92.76599884033203, "time": 1.107521390914917, "iter": 47800, "memory": 8703, "step": 47800} +{"lr": 0.007290332988001114, "data_time": 0.00689394474029541, "loss": 0.471437469124794, "decode.loss_ce": 0.29146796017885207, "decode.acc_seg": 93.77396392822266, "aux.loss_ce": 0.17996950969099998, "aux.acc_seg": 86.52788543701172, "time": 1.1143059492111207, "iter": 47850, "memory": 8704, "step": 47850} +{"lr": 0.007287447814586829, "data_time": 0.006405425071716308, "loss": 0.35719782263040545, "decode.loss_ce": 0.217647023499012, "decode.acc_seg": 89.78309631347656, "aux.loss_ce": 0.1395507961511612, "aux.acc_seg": 86.68079376220703, "time": 1.114020586013794, "iter": 47900, "memory": 8703, "step": 47900} +{"lr": 0.007284562512482182, "data_time": 0.0064795494079589845, "loss": 0.40735107511281965, "decode.loss_ce": 0.24947300031781197, "decode.acc_seg": 93.43617248535156, "aux.loss_ce": 0.15787807554006578, "aux.acc_seg": 92.69180297851562, "time": 1.1143024921417237, "iter": 47950, "memory": 8703, "step": 47950} +{"lr": 0.007281677081624, "data_time": 0.005917835235595703, "loss": 0.5614495620131492, "decode.loss_ce": 0.33970881551504134, "decode.acc_seg": 93.478515625, "aux.loss_ce": 0.22174074798822402, "aux.acc_seg": 92.71246337890625, "time": 1.1139671325683593, "iter": 48000, "memory": 8703, "step": 48000} +{"aAcc": 83.07, "mIoU": 49.68, "mAcc": 59.74, "data_time": 0.004066631416188734, "time": 0.27103237115273304, "step": 48000} +{"lr": 0.0072787915219490705, "data_time": 0.008495807647705078, "loss": 0.38146677911281585, "decode.loss_ce": 0.22368702441453933, "decode.acc_seg": 94.14913940429688, "aux.loss_ce": 0.15777975097298622, "aux.acc_seg": 89.5056381225586, "time": 1.1143446445465088, "iter": 48050, "memory": 8704, "step": 48050} +{"lr": 0.007275905833394091, "data_time": 0.006398224830627441, "loss": 0.5938381552696228, "decode.loss_ce": 0.36544625610113146, "decode.acc_seg": 91.29161834716797, "aux.loss_ce": 0.22839189395308496, "aux.acc_seg": 87.61494445800781, "time": 1.118470811843872, "iter": 48100, "memory": 8705, "step": 48100} +{"lr": 0.007273020015895723, "data_time": 0.006970715522766113, "loss": 0.40879840552806856, "decode.loss_ce": 0.25411805510520935, "decode.acc_seg": 86.07197570800781, "aux.loss_ce": 0.1546803493052721, "aux.acc_seg": 85.33484649658203, "time": 1.1160124778747558, "iter": 48150, "memory": 8703, "step": 48150} +{"lr": 0.007270134069390549, "data_time": 0.006401205062866211, "loss": 0.5282719910144806, "decode.loss_ce": 0.33547369986772535, "decode.acc_seg": 75.79580688476562, "aux.loss_ce": 0.1927982859313488, "aux.acc_seg": 66.02776336669922, "time": 1.1150771856307984, "iter": 48200, "memory": 8704, "step": 48200} +{"lr": 0.007267247993815109, "data_time": 0.006461882591247558, "loss": 0.40144456923007965, "decode.loss_ce": 0.2643103331327438, "decode.acc_seg": 94.86331939697266, "aux.loss_ce": 0.1371342409402132, "aux.acc_seg": 91.95308685302734, "time": 1.1139459371566773, "iter": 48250, "memory": 8704, "step": 48250} +{"lr": 0.007264361789105885, "data_time": 0.006584787368774414, "loss": 0.5070029571652412, "decode.loss_ce": 0.3152300134301186, "decode.acc_seg": 84.75080871582031, "aux.loss_ce": 0.19177294708788395, "aux.acc_seg": 79.29737854003906, "time": 1.1140960931777955, "iter": 48300, "memory": 8703, "step": 48300} +{"lr": 0.007261475455199278, "data_time": 0.00631871223449707, "loss": 0.5014851301908493, "decode.loss_ce": 0.31160915791988375, "decode.acc_seg": 80.11927032470703, "aux.loss_ce": 0.1898759663105011, "aux.acc_seg": 69.59217834472656, "time": 1.1127151012420655, "iter": 48350, "memory": 8704, "step": 48350} +{"lr": 0.007258588992031655, "data_time": 0.006287145614624024, "loss": 0.40987262278795245, "decode.loss_ce": 0.25292138159275057, "decode.acc_seg": 93.72335815429688, "aux.loss_ce": 0.1569512441754341, "aux.acc_seg": 91.87151336669922, "time": 1.1123010396957398, "iter": 48400, "memory": 8703, "step": 48400} +{"lr": 0.007255702399539302, "data_time": 0.006376504898071289, "loss": 0.5148957893252373, "decode.loss_ce": 0.3394845090806484, "decode.acc_seg": 68.03990173339844, "aux.loss_ce": 0.17541128098964692, "aux.acc_seg": 68.67189025878906, "time": 1.118481945991516, "iter": 48450, "memory": 8704, "step": 48450} +{"lr": 0.007252815677658462, "data_time": 0.006408286094665527, "loss": 0.4484641835093498, "decode.loss_ce": 0.29362685009837153, "decode.acc_seg": 75.01271057128906, "aux.loss_ce": 0.15483734309673308, "aux.acc_seg": 62.3034782409668, "time": 1.1106688261032105, "iter": 48500, "memory": 8703, "step": 48500} +{"lr": 0.0072499288263252965, "data_time": 0.006968998908996582, "loss": 0.44599860310554507, "decode.loss_ce": 0.28245014846324923, "decode.acc_seg": 91.31685638427734, "aux.loss_ce": 0.16354845240712165, "aux.acc_seg": 88.3856430053711, "time": 1.1183485031127929, "iter": 48550, "memory": 8704, "step": 48550} +{"lr": 0.007247041845475925, "data_time": 0.007991409301757813, "loss": 0.5371915966272354, "decode.loss_ce": 0.34802822917699816, "decode.acc_seg": 91.16458892822266, "aux.loss_ce": 0.18916337192058563, "aux.acc_seg": 90.72322845458984, "time": 1.11753306388855, "iter": 48600, "memory": 8704, "step": 48600} +{"lr": 0.007244154735046405, "data_time": 0.006035518646240234, "loss": 0.42156868278980253, "decode.loss_ce": 0.2741481430828571, "decode.acc_seg": 94.0412368774414, "aux.loss_ce": 0.14742053151130677, "aux.acc_seg": 93.9312973022461, "time": 1.1156452894210815, "iter": 48650, "memory": 8703, "step": 48650} +{"lr": 0.007241267494972729, "data_time": 0.007123899459838867, "loss": 0.4367490530014038, "decode.loss_ce": 0.26013218984007835, "decode.acc_seg": 86.14139556884766, "aux.loss_ce": 0.17661686539649962, "aux.acc_seg": 70.97339630126953, "time": 1.1179522037506104, "iter": 48700, "memory": 8703, "step": 48700} +{"lr": 0.007238380125190827, "data_time": 0.0049021244049072266, "loss": 0.5508714824914932, "decode.loss_ce": 0.3504263639450073, "decode.acc_seg": 93.26368713378906, "aux.loss_ce": 0.20044511556625366, "aux.acc_seg": 90.67598724365234, "time": 1.114322257041931, "iter": 48750, "memory": 8703, "step": 48750} +{"lr": 0.007235492625636576, "data_time": 0.006485486030578613, "loss": 0.3553909346461296, "decode.loss_ce": 0.21284396648406984, "decode.acc_seg": 92.216552734375, "aux.loss_ce": 0.1425469696521759, "aux.acc_seg": 88.9781265258789, "time": 1.1161267042160035, "iter": 48800, "memory": 8704, "step": 48800} +{"lr": 0.007232604996245796, "data_time": 0.005856704711914062, "loss": 0.38025203347206116, "decode.loss_ce": 0.24215094298124312, "decode.acc_seg": 94.93032836914062, "aux.loss_ce": 0.13810108937323093, "aux.acc_seg": 92.54423522949219, "time": 1.1147130012512207, "iter": 48850, "memory": 8704, "step": 48850} +{"lr": 0.007229717236954227, "data_time": 0.008713412284851074, "loss": 0.5262853503227234, "decode.loss_ce": 0.3142020583152771, "decode.acc_seg": 92.31312561035156, "aux.loss_ce": 0.21208329163491726, "aux.acc_seg": 83.70100402832031, "time": 1.1171255588531495, "iter": 48900, "memory": 8703, "step": 48900} +{"lr": 0.007226829347697564, "data_time": 0.007727670669555664, "loss": 0.5633368492126465, "decode.loss_ce": 0.35537081956863403, "decode.acc_seg": 88.18035125732422, "aux.loss_ce": 0.20796602852642537, "aux.acc_seg": 66.69158935546875, "time": 1.1194251298904419, "iter": 48950, "memory": 8704, "step": 48950} +{"lr": 0.007223941328411439, "data_time": 0.007956695556640626, "loss": 0.34162941575050354, "decode.loss_ce": 0.21352992504835128, "decode.acc_seg": 95.42121887207031, "aux.loss_ce": 0.12809948436915874, "aux.acc_seg": 92.03840637207031, "time": 1.1193110466003418, "iter": 49000, "memory": 8704, "step": 49000} +{"lr": 0.007221053179031419, "data_time": 0.008283782005310058, "loss": 0.4398620754480362, "decode.loss_ce": 0.2764651939272881, "decode.acc_seg": 95.08824920654297, "aux.loss_ce": 0.16339687779545783, "aux.acc_seg": 89.34339904785156, "time": 1.1204312801361085, "iter": 49050, "memory": 8704, "step": 49050} +{"lr": 0.007218164899493016, "data_time": 0.006400680541992188, "loss": 0.29179122895002363, "decode.loss_ce": 0.18133524134755136, "decode.acc_seg": 93.70968627929688, "aux.loss_ce": 0.11045598797500134, "aux.acc_seg": 90.80644989013672, "time": 1.1148732900619507, "iter": 49100, "memory": 8704, "step": 49100} +{"lr": 0.007215276489731679, "data_time": 0.007039952278137207, "loss": 0.4273165166378021, "decode.loss_ce": 0.2648072436451912, "decode.acc_seg": 93.70098114013672, "aux.loss_ce": 0.16250926703214646, "aux.acc_seg": 89.23371124267578, "time": 1.117100143432617, "iter": 49150, "memory": 8704, "step": 49150} +{"lr": 0.007212387949682785, "data_time": 0.007463192939758301, "loss": 0.41001649349927904, "decode.loss_ce": 0.22361739724874496, "decode.acc_seg": 90.75437927246094, "aux.loss_ce": 0.18639909736812116, "aux.acc_seg": 83.31489562988281, "time": 1.1188285112380982, "iter": 49200, "memory": 8703, "step": 49200} +{"lr": 0.007209499279281664, "data_time": 0.006949138641357422, "loss": 0.5745638161897659, "decode.loss_ce": 0.365060980618, "decode.acc_seg": 88.45704650878906, "aux.loss_ce": 0.20950283035635947, "aux.acc_seg": 80.20111083984375, "time": 1.1115766286849975, "iter": 49250, "memory": 8703, "step": 49250} +{"lr": 0.007206610478463581, "data_time": 0.007086563110351563, "loss": 0.4063514515757561, "decode.loss_ce": 0.22553854510188104, "decode.acc_seg": 94.8553695678711, "aux.loss_ce": 0.18081290535628797, "aux.acc_seg": 88.08529663085938, "time": 1.1171191692352296, "iter": 49300, "memory": 8704, "step": 49300} +{"lr": 0.007203721547163741, "data_time": 0.006801438331604004, "loss": 0.5036473825573922, "decode.loss_ce": 0.3356123581528664, "decode.acc_seg": 84.84928894042969, "aux.loss_ce": 0.1680350262671709, "aux.acc_seg": 79.67503356933594, "time": 1.1167110919952392, "iter": 49350, "memory": 8704, "step": 49350} +{"lr": 0.007200832485317286, "data_time": 0.007124161720275879, "loss": 0.36902257055044174, "decode.loss_ce": 0.2356593705713749, "decode.acc_seg": 78.39342498779297, "aux.loss_ce": 0.13336320258677006, "aux.acc_seg": 73.44557189941406, "time": 1.1102853059768676, "iter": 49400, "memory": 8704, "step": 49400} +{"lr": 0.007197943292859291, "data_time": 0.005965876579284668, "loss": 0.5989943906664849, "decode.loss_ce": 0.3850472182035446, "decode.acc_seg": 92.0755386352539, "aux.loss_ce": 0.2139471687376499, "aux.acc_seg": 83.9671401977539, "time": 1.1143617153167724, "iter": 49450, "memory": 8703, "step": 49450} +{"lr": 0.007195053969724772, "data_time": 0.0058279275894165036, "loss": 0.42036552131175997, "decode.loss_ce": 0.24569208770990372, "decode.acc_seg": 88.54071044921875, "aux.loss_ce": 0.1746734380722046, "aux.acc_seg": 78.72975158691406, "time": 1.1148977518081664, "iter": 49500, "memory": 8703, "step": 49500} +{"lr": 0.007192164515848685, "data_time": 0.0056106805801391605, "loss": 0.34722606241703036, "decode.loss_ce": 0.21330488994717597, "decode.acc_seg": 92.7848129272461, "aux.loss_ce": 0.13392116799950599, "aux.acc_seg": 91.63690948486328, "time": 1.1183937549591065, "iter": 49550, "memory": 8703, "step": 49550} +{"lr": 0.007189274931165926, "data_time": 0.006262946128845215, "loss": 0.3991986557841301, "decode.loss_ce": 0.24287664145231247, "decode.acc_seg": 92.62249755859375, "aux.loss_ce": 0.1563220124691725, "aux.acc_seg": 91.19154357910156, "time": 1.1151179790496826, "iter": 49600, "memory": 8703, "step": 49600} +{"lr": 0.0071863852156113265, "data_time": 0.006766080856323242, "loss": 0.40421331822872164, "decode.loss_ce": 0.24225838482379913, "decode.acc_seg": 84.3353271484375, "aux.loss_ce": 0.16195493824779988, "aux.acc_seg": 80.55521392822266, "time": 1.116697859764099, "iter": 49650, "memory": 8703, "step": 49650} +{"lr": 0.007183495369119657, "data_time": 0.006677699089050293, "loss": 0.4429230958223343, "decode.loss_ce": 0.2791221499443054, "decode.acc_seg": 94.56865692138672, "aux.loss_ce": 0.1638009436428547, "aux.acc_seg": 93.80815887451172, "time": 1.1136457681655885, "iter": 49700, "memory": 8703, "step": 49700} +{"lr": 0.007180605391625634, "data_time": 0.006548881530761719, "loss": 0.3425209864974022, "decode.loss_ce": 0.2081582523882389, "decode.acc_seg": 95.02006530761719, "aux.loss_ce": 0.13436272889375686, "aux.acc_seg": 94.29596710205078, "time": 1.116035032272339, "iter": 49750, "memory": 8704, "step": 49750} +{"lr": 0.007177715283063887, "data_time": 0.00747990608215332, "loss": 0.5566254526376724, "decode.loss_ce": 0.34951000809669497, "decode.acc_seg": 91.78402709960938, "aux.loss_ce": 0.20711543150246142, "aux.acc_seg": 86.97096252441406, "time": 1.1134192228317261, "iter": 49800, "memory": 8703, "step": 49800} +{"lr": 0.007174825043369013, "data_time": 0.004899907112121582, "loss": 0.43477941006422044, "decode.loss_ce": 0.26302872896194457, "decode.acc_seg": 93.56867218017578, "aux.loss_ce": 0.1717506818473339, "aux.acc_seg": 92.01850891113281, "time": 1.108249568939209, "iter": 49850, "memory": 8704, "step": 49850} +{"lr": 0.007171934672475527, "data_time": 0.0070991992950439455, "loss": 0.43186476528644563, "decode.loss_ce": 0.2646655857563019, "decode.acc_seg": 89.99474334716797, "aux.loss_ce": 0.16719917133450507, "aux.acc_seg": 83.24222564697266, "time": 1.1210371017456056, "iter": 49900, "memory": 8703, "step": 49900} +{"lr": 0.007169044170317884, "data_time": 0.005949544906616211, "loss": 0.38077692687511444, "decode.loss_ce": 0.22506761625409127, "decode.acc_seg": 87.12196350097656, "aux.loss_ce": 0.1557093109935522, "aux.acc_seg": 82.156494140625, "time": 1.116493248939514, "iter": 49950, "memory": 8703, "step": 49950} +{"lr": 0.007166153536830489, "data_time": 0.0066165924072265625, "loss": 0.396026811003685, "decode.loss_ce": 0.24681240320205688, "decode.acc_seg": 87.10771942138672, "aux.loss_ce": 0.14921441152691842, "aux.acc_seg": 89.29953002929688, "time": 1.115488600730896, "iter": 50000, "memory": 8704, "step": 50000} +{"lr": 0.007163262771947668, "data_time": 0.006291913986206055, "loss": 0.29917634576559066, "decode.loss_ce": 0.17709963619709015, "decode.acc_seg": 94.4754867553711, "aux.loss_ce": 0.12207671068608761, "aux.acc_seg": 82.04154968261719, "time": 1.1151106834411622, "iter": 50050, "memory": 8703, "step": 50050} +{"lr": 0.007160371875603695, "data_time": 0.007959556579589844, "loss": 0.46592381298542024, "decode.loss_ce": 0.30242539644241334, "decode.acc_seg": 94.21234130859375, "aux.loss_ce": 0.1634984038770199, "aux.acc_seg": 87.90092468261719, "time": 1.1128954410552978, "iter": 50100, "memory": 8704, "step": 50100} +{"lr": 0.007157480847732782, "data_time": 0.005711841583251953, "loss": 0.3813949763774872, "decode.loss_ce": 0.24364870935678482, "decode.acc_seg": 86.99995422363281, "aux.loss_ce": 0.13774626776576043, "aux.acc_seg": 87.25496673583984, "time": 1.1134522438049317, "iter": 50150, "memory": 8704, "step": 50150} +{"lr": 0.007154589688269069, "data_time": 0.007866954803466797, "loss": 0.3776978373527527, "decode.loss_ce": 0.23676941245794297, "decode.acc_seg": 92.61681365966797, "aux.loss_ce": 0.14092842489480972, "aux.acc_seg": 90.35360717773438, "time": 1.117837905883789, "iter": 50200, "memory": 8704, "step": 50200} +{"lr": 0.007151698397146642, "data_time": 0.005474638938903808, "loss": 0.46190084517002106, "decode.loss_ce": 0.2667748548090458, "decode.acc_seg": 83.00507354736328, "aux.loss_ce": 0.1951259881258011, "aux.acc_seg": 72.47982025146484, "time": 1.1078092575073242, "iter": 50250, "memory": 8704, "step": 50250} +{"lr": 0.0071488069742995245, "data_time": 0.0076689481735229496, "loss": 0.4731291592121124, "decode.loss_ce": 0.2895824983716011, "decode.acc_seg": 94.96199035644531, "aux.loss_ce": 0.18354665413498877, "aux.acc_seg": 94.38284301757812, "time": 1.1146620512008667, "iter": 50300, "memory": 8703, "step": 50300} +{"lr": 0.007145915419661661, "data_time": 0.0060639619827270504, "loss": 0.40874034613370896, "decode.loss_ce": 0.2389353781938553, "decode.acc_seg": 97.17375183105469, "aux.loss_ce": 0.16980496272444726, "aux.acc_seg": 87.96068572998047, "time": 1.1146043300628663, "iter": 50350, "memory": 8703, "step": 50350} +{"lr": 0.007143023733166948, "data_time": 0.006130146980285645, "loss": 0.5077998280525208, "decode.loss_ce": 0.3043322190642357, "decode.acc_seg": 90.25421142578125, "aux.loss_ce": 0.20346760153770446, "aux.acc_seg": 79.67802429199219, "time": 1.1133493185043335, "iter": 50400, "memory": 8703, "step": 50400} +{"lr": 0.007140131914749218, "data_time": 0.007698559761047363, "loss": 0.3731213569641113, "decode.loss_ce": 0.22973375469446183, "decode.acc_seg": 93.24893951416016, "aux.loss_ce": 0.1433876059949398, "aux.acc_seg": 91.28424072265625, "time": 1.1202633857727051, "iter": 50450, "memory": 8704, "step": 50450} +{"lr": 0.007137239964342241, "data_time": 0.005569148063659668, "loss": 0.5859572350978851, "decode.loss_ce": 0.3521015077829361, "decode.acc_seg": 91.71829223632812, "aux.loss_ce": 0.23385573253035546, "aux.acc_seg": 88.44349670410156, "time": 1.114423966407776, "iter": 50500, "memory": 8703, "step": 50500} +{"lr": 0.00713434788187971, "data_time": 0.00679173469543457, "loss": 0.4954695403575897, "decode.loss_ce": 0.3127134755253792, "decode.acc_seg": 91.9251708984375, "aux.loss_ce": 0.18275605700910091, "aux.acc_seg": 86.44004821777344, "time": 1.1156083345413208, "iter": 50550, "memory": 8703, "step": 50550} +{"lr": 0.007131455667295267, "data_time": 0.00510110855102539, "loss": 0.4129162162542343, "decode.loss_ce": 0.24809655845165252, "decode.acc_seg": 93.89173889160156, "aux.loss_ce": 0.1648196540772915, "aux.acc_seg": 87.18183135986328, "time": 1.1129383325576783, "iter": 50600, "memory": 8704, "step": 50600} +{"lr": 0.007128563320522488, "data_time": 0.006802558898925781, "loss": 0.5201505899429322, "decode.loss_ce": 0.31502057537436484, "decode.acc_seg": 87.41703033447266, "aux.loss_ce": 0.2051300197839737, "aux.acc_seg": 69.61161041259766, "time": 1.114790940284729, "iter": 50650, "memory": 8703, "step": 50650} +{"lr": 0.007125670841494885, "data_time": 0.008671236038208009, "loss": 0.4082718014717102, "decode.loss_ce": 0.24772603809833527, "decode.acc_seg": 96.01020812988281, "aux.loss_ce": 0.16054575741291047, "aux.acc_seg": 94.32817840576172, "time": 1.1180204153060913, "iter": 50700, "memory": 8704, "step": 50700} +{"lr": 0.007122778230145902, "data_time": 0.007154297828674316, "loss": 0.4483128622174263, "decode.loss_ce": 0.2803939193487167, "decode.acc_seg": 87.97123718261719, "aux.loss_ce": 0.16791894435882568, "aux.acc_seg": 77.0803451538086, "time": 1.1223536491394044, "iter": 50750, "memory": 8703, "step": 50750} +{"lr": 0.007119885486408929, "data_time": 0.006445622444152832, "loss": 0.4518100991845131, "decode.loss_ce": 0.283366484194994, "decode.acc_seg": 83.00011444091797, "aux.loss_ce": 0.1684436146169901, "aux.acc_seg": 77.80437469482422, "time": 1.116302490234375, "iter": 50800, "memory": 8704, "step": 50800} +{"lr": 0.0071169926102172855, "data_time": 0.006391835212707519, "loss": 0.32076056897640226, "decode.loss_ce": 0.20662114545702934, "decode.acc_seg": 95.5943374633789, "aux.loss_ce": 0.11413942389190197, "aux.acc_seg": 93.31684112548828, "time": 1.1180775880813598, "iter": 50850, "memory": 8703, "step": 50850} +{"lr": 0.007114099601504221, "data_time": 0.007507538795471192, "loss": 0.44813980013132093, "decode.loss_ce": 0.2706692971289158, "decode.acc_seg": 94.78117370605469, "aux.loss_ce": 0.17747050076723098, "aux.acc_seg": 93.15674591064453, "time": 1.1154885768890381, "iter": 50900, "memory": 8703, "step": 50900} +{"lr": 0.007111206460202926, "data_time": 0.005181646347045899, "loss": 0.467153525352478, "decode.loss_ce": 0.29271322935819627, "decode.acc_seg": 92.77839660644531, "aux.loss_ce": 0.17444030418992043, "aux.acc_seg": 90.22013092041016, "time": 1.1146234035491944, "iter": 50950, "memory": 8703, "step": 50950} +{"lr": 0.007108313186246531, "data_time": 0.005651354789733887, "loss": 0.358521556854248, "decode.loss_ce": 0.20329098850488664, "decode.acc_seg": 85.2865219116211, "aux.loss_ce": 0.15523056425154208, "aux.acc_seg": 78.95513916015625, "time": 1.1147924661636353, "iter": 51000, "memory": 8704, "step": 51000} +{"lr": 0.007105419779568101, "data_time": 0.007262921333312989, "loss": 0.5286766797304153, "decode.loss_ce": 0.3214332103729248, "decode.acc_seg": 95.1743392944336, "aux.loss_ce": 0.2072434552013874, "aux.acc_seg": 92.4872055053711, "time": 1.1180556774139405, "iter": 51050, "memory": 8704, "step": 51050} +{"lr": 0.007102526240100636, "data_time": 0.006386756896972656, "loss": 0.4433328002691269, "decode.loss_ce": 0.2784520462155342, "decode.acc_seg": 90.01604461669922, "aux.loss_ce": 0.16488075032830238, "aux.acc_seg": 85.0256576538086, "time": 1.1182609796524048, "iter": 51100, "memory": 8703, "step": 51100} +{"lr": 0.007099632567777059, "data_time": 0.006525254249572754, "loss": 0.4222828283905983, "decode.loss_ce": 0.25192354768514635, "decode.acc_seg": 95.19023895263672, "aux.loss_ce": 0.17035927399992942, "aux.acc_seg": 90.32154083251953, "time": 1.1085979223251343, "iter": 51150, "memory": 8703, "step": 51150} +{"lr": 0.007096738762530241, "data_time": 0.006787943840026856, "loss": 0.32557434141635894, "decode.loss_ce": 0.20523664653301238, "decode.acc_seg": 93.13761138916016, "aux.loss_ce": 0.1203376967459917, "aux.acc_seg": 86.93071746826172, "time": 1.1167018175125123, "iter": 51200, "memory": 8703, "step": 51200} +{"lr": 0.007093844824292991, "data_time": 0.0067070722579956055, "loss": 0.4638366803526878, "decode.loss_ce": 0.28213455751538274, "decode.acc_seg": 96.07683563232422, "aux.loss_ce": 0.1817021258175373, "aux.acc_seg": 90.84281921386719, "time": 1.11593599319458, "iter": 51250, "memory": 8703, "step": 51250} +{"lr": 0.007090950752998054, "data_time": 0.006216096878051758, "loss": 0.526159293949604, "decode.loss_ce": 0.3100194349884987, "decode.acc_seg": 93.26445007324219, "aux.loss_ce": 0.2161398634314537, "aux.acc_seg": 81.10739135742188, "time": 1.1160583257675172, "iter": 51300, "memory": 8703, "step": 51300} +{"lr": 0.007088056548578093, "data_time": 0.00586550235748291, "loss": 0.46450651437044144, "decode.loss_ce": 0.2925510033965111, "decode.acc_seg": 90.3925552368164, "aux.loss_ce": 0.17195551246404647, "aux.acc_seg": 90.61476135253906, "time": 1.1133446455001832, "iter": 51350, "memory": 8703, "step": 51350} +{"lr": 0.007085162210965717, "data_time": 0.006482267379760742, "loss": 0.5028974384069442, "decode.loss_ce": 0.3377053141593933, "decode.acc_seg": 84.16519165039062, "aux.loss_ce": 0.1651921197772026, "aux.acc_seg": 78.43570709228516, "time": 1.1166748523712158, "iter": 51400, "memory": 8704, "step": 51400} +{"lr": 0.007082267740093474, "data_time": 0.006980252265930176, "loss": 0.4316151261329651, "decode.loss_ce": 0.2567244812846184, "decode.acc_seg": 79.12323760986328, "aux.loss_ce": 0.17489065006375312, "aux.acc_seg": 71.61947631835938, "time": 1.1111401081085206, "iter": 51450, "memory": 8704, "step": 51450} +{"lr": 0.007079373135893838, "data_time": 0.006555533409118653, "loss": 0.3851530566811562, "decode.loss_ce": 0.2279227003455162, "decode.acc_seg": 90.77027130126953, "aux.loss_ce": 0.1572303634136915, "aux.acc_seg": 80.09090423583984, "time": 1.1101982116699218, "iter": 51500, "memory": 8704, "step": 51500} +{"lr": 0.007076478398299224, "data_time": 0.007009267807006836, "loss": 0.4061614438891411, "decode.loss_ce": 0.24891323894262313, "decode.acc_seg": 90.11528778076172, "aux.loss_ce": 0.15724819861352443, "aux.acc_seg": 76.79817962646484, "time": 1.1129796981811524, "iter": 51550, "memory": 8704, "step": 51550} +{"lr": 0.00707358352724198, "data_time": 0.007338309288024902, "loss": 0.5242187827825546, "decode.loss_ce": 0.3387717857956886, "decode.acc_seg": 87.14763641357422, "aux.loss_ce": 0.18544699028134345, "aux.acc_seg": 84.78108215332031, "time": 1.115739345550537, "iter": 51600, "memory": 8704, "step": 51600} +{"lr": 0.007070688522654387, "data_time": 0.007065391540527344, "loss": 0.41248970925807954, "decode.loss_ce": 0.26404980272054673, "decode.acc_seg": 92.5130844116211, "aux.loss_ce": 0.14843990206718444, "aux.acc_seg": 90.27703094482422, "time": 1.120396900177002, "iter": 51650, "memory": 8704, "step": 51650} +{"lr": 0.007067793384468665, "data_time": 0.006845641136169434, "loss": 0.3890841081738472, "decode.loss_ce": 0.23838033825159072, "decode.acc_seg": 93.60497283935547, "aux.loss_ce": 0.15070376880466937, "aux.acc_seg": 92.230224609375, "time": 1.1164873361587524, "iter": 51700, "memory": 8704, "step": 51700} +{"lr": 0.007064898112616969, "data_time": 0.006452393531799316, "loss": 0.4466650947928429, "decode.loss_ce": 0.26039900481700895, "decode.acc_seg": 93.4708251953125, "aux.loss_ce": 0.18626608997583388, "aux.acc_seg": 85.2142333984375, "time": 1.1165504693984984, "iter": 51750, "memory": 8704, "step": 51750} +{"lr": 0.007062002707031371, "data_time": 0.007734751701354981, "loss": 0.3315044179558754, "decode.loss_ce": 0.202849879860878, "decode.acc_seg": 88.7168197631836, "aux.loss_ce": 0.12865453138947486, "aux.acc_seg": 85.5704574584961, "time": 1.1187796592712402, "iter": 51800, "memory": 8704, "step": 51800} +{"lr": 0.007059107167643899, "data_time": 0.006479310989379883, "loss": 0.2472816526889801, "decode.loss_ce": 0.16235312819480896, "decode.acc_seg": 94.62515258789062, "aux.loss_ce": 0.08492852598428727, "aux.acc_seg": 93.80155944824219, "time": 1.1151974201202393, "iter": 51850, "memory": 8705, "step": 51850} +{"lr": 0.007056211494386505, "data_time": 0.006239533424377441, "loss": 0.3449950560927391, "decode.loss_ce": 0.212864001840353, "decode.acc_seg": 93.00237274169922, "aux.loss_ce": 0.13213105611503123, "aux.acc_seg": 90.46884155273438, "time": 1.1113118410110474, "iter": 51900, "memory": 8703, "step": 51900} +{"lr": 0.007053315687191075, "data_time": 0.006359910964965821, "loss": 0.5568614721298217, "decode.loss_ce": 0.31925192251801493, "decode.acc_seg": 97.4662094116211, "aux.loss_ce": 0.2376095425337553, "aux.acc_seg": 97.37860107421875, "time": 1.114149808883667, "iter": 51950, "memory": 8703, "step": 51950} +{"lr": 0.007050419745989432, "data_time": 0.006430125236511231, "loss": 0.3811759129166603, "decode.loss_ce": 0.23586822003126146, "decode.acc_seg": 96.9449234008789, "aux.loss_ce": 0.14530769623816014, "aux.acc_seg": 96.28443908691406, "time": 1.1120667219161988, "iter": 52000, "memory": 8703, "step": 52000} +{"lr": 0.00704752367071333, "data_time": 0.006613254547119141, "loss": 0.47056362181901934, "decode.loss_ce": 0.29116350784897804, "decode.acc_seg": 95.62674713134766, "aux.loss_ce": 0.17940011918544768, "aux.acc_seg": 94.41373443603516, "time": 1.110602355003357, "iter": 52050, "memory": 8704, "step": 52050} +{"lr": 0.0070446274612944535, "data_time": 0.0076646566390991214, "loss": 0.3800644129514694, "decode.loss_ce": 0.2419634945690632, "decode.acc_seg": 96.6971664428711, "aux.loss_ce": 0.138100915402174, "aux.acc_seg": 96.3663101196289, "time": 1.114105749130249, "iter": 52100, "memory": 8704, "step": 52100} +{"lr": 0.0070417311176644215, "data_time": 0.006538128852844239, "loss": 0.6270156517624855, "decode.loss_ce": 0.4027224540710449, "decode.acc_seg": 87.67261505126953, "aux.loss_ce": 0.22429319322109223, "aux.acc_seg": 86.46099853515625, "time": 1.1153821229934693, "iter": 52150, "memory": 8703, "step": 52150} +{"lr": 0.007038834639754797, "data_time": 0.006225872039794922, "loss": 0.3129166416823864, "decode.loss_ce": 0.19725999981164932, "decode.acc_seg": 88.82465362548828, "aux.loss_ce": 0.11565664131194353, "aux.acc_seg": 82.44348907470703, "time": 1.1200188159942628, "iter": 52200, "memory": 8703, "step": 52200} +{"lr": 0.0070359380274970665, "data_time": 0.0059872627258300785, "loss": 0.3681307718157768, "decode.loss_ce": 0.233290196955204, "decode.acc_seg": 96.98091888427734, "aux.loss_ce": 0.13484057523310183, "aux.acc_seg": 96.22904205322266, "time": 1.1118592262268066, "iter": 52250, "memory": 8703, "step": 52250} +{"lr": 0.007033041280822645, "data_time": 0.006681513786315918, "loss": 0.38126550167798995, "decode.loss_ce": 0.25314199477434157, "decode.acc_seg": 92.35363006591797, "aux.loss_ce": 0.12812351398169994, "aux.acc_seg": 84.97949981689453, "time": 1.113505744934082, "iter": 52300, "memory": 8703, "step": 52300} +{"lr": 0.007030144399662903, "data_time": 0.005630278587341308, "loss": 0.37605664134025574, "decode.loss_ce": 0.22817978411912918, "decode.acc_seg": 90.39598846435547, "aux.loss_ce": 0.14787685573101045, "aux.acc_seg": 85.10710144042969, "time": 1.1103469371795653, "iter": 52350, "memory": 8704, "step": 52350} +{"lr": 0.007027247383949112, "data_time": 0.005472302436828613, "loss": 0.36018385887146, "decode.loss_ce": 0.2197319447994232, "decode.acc_seg": 94.65577697753906, "aux.loss_ce": 0.14045191034674645, "aux.acc_seg": 92.70616149902344, "time": 1.1087196826934815, "iter": 52400, "memory": 8703, "step": 52400} +{"lr": 0.007024350233612497, "data_time": 0.00644533634185791, "loss": 0.46254867017269136, "decode.loss_ce": 0.26889504343271253, "decode.acc_seg": 93.20945739746094, "aux.loss_ce": 0.1936536207795143, "aux.acc_seg": 78.21337127685547, "time": 1.1138437509536743, "iter": 52450, "memory": 8703, "step": 52450} +{"lr": 0.007021452948584218, "data_time": 0.006215929985046387, "loss": 0.37657815515995025, "decode.loss_ce": 0.22976504787802696, "decode.acc_seg": 87.51080322265625, "aux.loss_ce": 0.1468131050467491, "aux.acc_seg": 84.84477996826172, "time": 1.1114648103713989, "iter": 52500, "memory": 8703, "step": 52500} +{"lr": 0.007018555528795353, "data_time": 0.007256841659545899, "loss": 0.3805989295244217, "decode.loss_ce": 0.23159673288464547, "decode.acc_seg": 92.43901062011719, "aux.loss_ce": 0.14900219738483428, "aux.acc_seg": 88.13285827636719, "time": 1.1174065113067626, "iter": 52550, "memory": 8704, "step": 52550} +{"lr": 0.007015657974176926, "data_time": 0.006366348266601563, "loss": 0.5331874072551728, "decode.loss_ce": 0.3375853829085827, "decode.acc_seg": 94.87464141845703, "aux.loss_ce": 0.19560202658176423, "aux.acc_seg": 93.82118225097656, "time": 1.1179625272750855, "iter": 52600, "memory": 8703, "step": 52600} +{"lr": 0.007012760284659892, "data_time": 0.006174349784851074, "loss": 0.4642504960298538, "decode.loss_ce": 0.2914051838219166, "decode.acc_seg": 89.53411865234375, "aux.loss_ce": 0.17284531556069851, "aux.acc_seg": 86.53837585449219, "time": 1.1160066604614258, "iter": 52650, "memory": 8703, "step": 52650} +{"lr": 0.007009862460175129, "data_time": 0.00544888973236084, "loss": 0.40755105167627337, "decode.loss_ce": 0.24853685200214387, "decode.acc_seg": 93.35476684570312, "aux.loss_ce": 0.15901420414447784, "aux.acc_seg": 87.53915405273438, "time": 1.1127565860748292, "iter": 52700, "memory": 8703, "step": 52700} +{"lr": 0.0070069645006534545, "data_time": 0.006346964836120605, "loss": 0.44151530265808103, "decode.loss_ce": 0.27229655236005784, "decode.acc_seg": 93.73918914794922, "aux.loss_ce": 0.1692187450826168, "aux.acc_seg": 92.56584930419922, "time": 1.1158521890640258, "iter": 52750, "memory": 8703, "step": 52750} +{"lr": 0.007004066406025607, "data_time": 0.0058018207550048825, "loss": 0.3921749010682106, "decode.loss_ce": 0.2372814431786537, "decode.acc_seg": 91.4404525756836, "aux.loss_ce": 0.15489345900714396, "aux.acc_seg": 89.50074005126953, "time": 1.1113656997680663, "iter": 52800, "memory": 8703, "step": 52800} +{"lr": 0.00700116817622228, "data_time": 0.005754590034484863, "loss": 0.38367216736078263, "decode.loss_ce": 0.24224285781383514, "decode.acc_seg": 96.55952453613281, "aux.loss_ce": 0.14142931289970875, "aux.acc_seg": 95.93212890625, "time": 1.1129749774932862, "iter": 52850, "memory": 8704, "step": 52850} +{"lr": 0.006998269811174084, "data_time": 0.006818914413452148, "loss": 0.37438135892152785, "decode.loss_ce": 0.21964930593967438, "decode.acc_seg": 88.1720199584961, "aux.loss_ce": 0.15473205409944057, "aux.acc_seg": 81.0602798461914, "time": 1.1121448278427124, "iter": 52900, "memory": 8704, "step": 52900} +{"lr": 0.006995371310811569, "data_time": 0.006643819808959961, "loss": 0.5353440076112748, "decode.loss_ce": 0.3063847318291664, "decode.acc_seg": 95.84651947021484, "aux.loss_ce": 0.2289592757821083, "aux.acc_seg": 95.17253112792969, "time": 1.111404037475586, "iter": 52950, "memory": 8704, "step": 52950} +{"lr": 0.006992472675065207, "data_time": 0.0066794872283935545, "loss": 0.3600854888558388, "decode.loss_ce": 0.20852755159139633, "decode.acc_seg": 90.08763122558594, "aux.loss_ce": 0.15155793726444244, "aux.acc_seg": 84.27288818359375, "time": 1.1131033897399902, "iter": 53000, "memory": 8704, "step": 53000} +{"lr": 0.006989573903865411, "data_time": 0.00691072940826416, "loss": 0.40151447653770445, "decode.loss_ce": 0.24035606235265733, "decode.acc_seg": 96.67192840576172, "aux.loss_ce": 0.16115842163562774, "aux.acc_seg": 89.3622055053711, "time": 1.1168814420700073, "iter": 53050, "memory": 8703, "step": 53050} +{"lr": 0.006986674997142518, "data_time": 0.00782482624053955, "loss": 0.3970517009496689, "decode.loss_ce": 0.2331959128379822, "decode.acc_seg": 93.99801635742188, "aux.loss_ce": 0.1638557832688093, "aux.acc_seg": 90.41849517822266, "time": 1.1150540590286255, "iter": 53100, "memory": 8704, "step": 53100} +{"lr": 0.00698377595482679, "data_time": 0.00698087215423584, "loss": 0.42477782964706423, "decode.loss_ce": 0.2641361191868782, "decode.acc_seg": 96.43020629882812, "aux.loss_ce": 0.16064171120524406, "aux.acc_seg": 92.15126037597656, "time": 1.1144753456115724, "iter": 53150, "memory": 8704, "step": 53150} +{"lr": 0.0069808767768484445, "data_time": 0.007148194313049317, "loss": 0.46850539147853854, "decode.loss_ce": 0.290181565284729, "decode.acc_seg": 94.89593505859375, "aux.loss_ce": 0.17832382246851922, "aux.acc_seg": 91.67658233642578, "time": 1.1148631811141967, "iter": 53200, "memory": 8704, "step": 53200} +{"lr": 0.006977977463137603, "data_time": 0.0062903881072998045, "loss": 0.3548312306404114, "decode.loss_ce": 0.22411030381917954, "decode.acc_seg": 94.37930297851562, "aux.loss_ce": 0.13072092682123185, "aux.acc_seg": 93.23768615722656, "time": 1.1139701843261718, "iter": 53250, "memory": 8703, "step": 53250} +{"lr": 0.006975078013624344, "data_time": 0.008004403114318848, "loss": 0.4441173627972603, "decode.loss_ce": 0.2824391290545464, "decode.acc_seg": 85.16533660888672, "aux.loss_ce": 0.16167823784053326, "aux.acc_seg": 83.59336853027344, "time": 1.1169131755828858, "iter": 53300, "memory": 8704, "step": 53300} +{"lr": 0.006972178428238659, "data_time": 0.007242131233215332, "loss": 0.3866103976964951, "decode.loss_ce": 0.2354081466794014, "decode.acc_seg": 92.1600341796875, "aux.loss_ce": 0.15120225474238397, "aux.acc_seg": 89.7680892944336, "time": 1.1197702169418335, "iter": 53350, "memory": 8703, "step": 53350} +{"lr": 0.00696927870691047, "data_time": 0.006408238410949707, "loss": 0.43539789468050005, "decode.loss_ce": 0.2855063661932945, "decode.acc_seg": 91.01420593261719, "aux.loss_ce": 0.1498915206640959, "aux.acc_seg": 90.30924224853516, "time": 1.113486075401306, "iter": 53400, "memory": 8704, "step": 53400} +{"lr": 0.00696637884956965, "data_time": 0.00594172477722168, "loss": 0.4420060351490974, "decode.loss_ce": 0.26301511377096176, "decode.acc_seg": 86.92350006103516, "aux.loss_ce": 0.1789909176528454, "aux.acc_seg": 82.14552307128906, "time": 1.1126477003097535, "iter": 53450, "memory": 8703, "step": 53450} +{"lr": 0.006963478856145975, "data_time": 0.00620565414428711, "loss": 0.4577150702476501, "decode.loss_ce": 0.28639860153198243, "decode.acc_seg": 96.68328857421875, "aux.loss_ce": 0.17131646797060968, "aux.acc_seg": 95.95716857910156, "time": 1.1127830028533936, "iter": 53500, "memory": 8704, "step": 53500} +{"lr": 0.006960578726569183, "data_time": 0.0067139148712158205, "loss": 0.34548834413290025, "decode.loss_ce": 0.21159741580486296, "decode.acc_seg": 82.71324920654297, "aux.loss_ce": 0.13389092572033406, "aux.acc_seg": 78.25018310546875, "time": 1.1184577703475953, "iter": 53550, "memory": 8703, "step": 53550} +{"lr": 0.006957678460768911, "data_time": 0.006711649894714356, "loss": 0.46385554522275924, "decode.loss_ce": 0.27101883143186567, "decode.acc_seg": 94.48965454101562, "aux.loss_ce": 0.1928367219865322, "aux.acc_seg": 91.68106842041016, "time": 1.120229458808899, "iter": 53600, "memory": 8703, "step": 53600} +{"lr": 0.0069547780586747465, "data_time": 0.006332969665527344, "loss": 0.3136627316474915, "decode.loss_ce": 0.19564754962921144, "decode.acc_seg": 95.61553955078125, "aux.loss_ce": 0.118015181645751, "aux.acc_seg": 85.48657989501953, "time": 1.1169101238250732, "iter": 53650, "memory": 8704, "step": 53650} +{"lr": 0.006951877520216201, "data_time": 0.008051204681396484, "loss": 0.37560799717903137, "decode.loss_ce": 0.2340031772851944, "decode.acc_seg": 90.06639862060547, "aux.loss_ce": 0.1416048277169466, "aux.acc_seg": 91.70271301269531, "time": 1.1175236701965332, "iter": 53700, "memory": 8703, "step": 53700} +{"lr": 0.006948976845322717, "data_time": 0.006640028953552246, "loss": 0.47245246171951294, "decode.loss_ce": 0.2863048121333122, "decode.acc_seg": 84.5153579711914, "aux.loss_ce": 0.18614765256643295, "aux.acc_seg": 72.14151000976562, "time": 1.110680389404297, "iter": 53750, "memory": 8704, "step": 53750} +{"lr": 0.0069460760339236675, "data_time": 0.0063910245895385746, "loss": 0.38359317630529405, "decode.loss_ce": 0.2403651013970375, "decode.acc_seg": 93.34690856933594, "aux.loss_ce": 0.14322807341814042, "aux.acc_seg": 91.4084701538086, "time": 1.1136207818984984, "iter": 53800, "memory": 8704, "step": 53800} +{"lr": 0.006943175085948358, "data_time": 0.0067169427871704105, "loss": 0.3601384699344635, "decode.loss_ce": 0.23115792348980904, "decode.acc_seg": 93.09361267089844, "aux.loss_ce": 0.12898055016994475, "aux.acc_seg": 92.20650482177734, "time": 1.1143949985504151, "iter": 53850, "memory": 8703, "step": 53850} +{"lr": 0.0069402740013260215, "data_time": 0.008184146881103516, "loss": 0.4353740975260735, "decode.loss_ce": 0.2788022503256798, "decode.acc_seg": 71.11943054199219, "aux.loss_ce": 0.1565718449652195, "aux.acc_seg": 73.05290985107422, "time": 1.1217670679092406, "iter": 53900, "memory": 8704, "step": 53900} +{"lr": 0.006937372779985819, "data_time": 0.007389616966247558, "loss": 0.4219018638134003, "decode.loss_ce": 0.2533582106232643, "decode.acc_seg": 90.85426330566406, "aux.loss_ce": 0.16854364722967147, "aux.acc_seg": 84.62644958496094, "time": 1.1216495275497436, "iter": 53950, "memory": 8703, "step": 53950} +{"lr": 0.006934471421856844, "data_time": 0.006073713302612305, "loss": 0.3729294866323471, "decode.loss_ce": 0.22598492428660394, "decode.acc_seg": 94.59978485107422, "aux.loss_ce": 0.14694455042481422, "aux.acc_seg": 90.02831268310547, "time": 1.1142206907272338, "iter": 54000, "memory": 8704, "step": 54000} +{"lr": 0.006931569926868121, "data_time": 0.007133293151855469, "loss": 0.3756302997469902, "decode.loss_ce": 0.2244933269917965, "decode.acc_seg": 93.29833984375, "aux.loss_ce": 0.1511369738727808, "aux.acc_seg": 89.5782470703125, "time": 1.1170661926269532, "iter": 54050, "memory": 8703, "step": 54050} +{"lr": 0.0069286682949486035, "data_time": 0.008077025413513184, "loss": 0.38715037405490876, "decode.loss_ce": 0.22628265917301177, "decode.acc_seg": 94.22588348388672, "aux.loss_ce": 0.16086770966649055, "aux.acc_seg": 81.6076889038086, "time": 1.1154799699783324, "iter": 54100, "memory": 8704, "step": 54100} +{"lr": 0.006925766526027171, "data_time": 0.006318187713623047, "loss": 0.5342172339558602, "decode.loss_ce": 0.35016937404870985, "decode.acc_seg": 78.67119598388672, "aux.loss_ce": 0.18404785357415676, "aux.acc_seg": 71.57465362548828, "time": 1.1157732486724854, "iter": 54150, "memory": 8704, "step": 54150} +{"lr": 0.006922864620032637, "data_time": 0.005093979835510254, "loss": 0.3035082697868347, "decode.loss_ce": 0.17910870015621186, "decode.acc_seg": 95.67597198486328, "aux.loss_ce": 0.1243995662778616, "aux.acc_seg": 94.62216186523438, "time": 1.1077035903930663, "iter": 54200, "memory": 8703, "step": 54200} +{"lr": 0.006919962576893738, "data_time": 0.005052328109741211, "loss": 0.3787425696849823, "decode.loss_ce": 0.233205546438694, "decode.acc_seg": 92.84343719482422, "aux.loss_ce": 0.14553702101111413, "aux.acc_seg": 90.89228057861328, "time": 1.1113015174865724, "iter": 54250, "memory": 8703, "step": 54250} +{"lr": 0.0069170603965391505, "data_time": 0.006610965728759766, "loss": 0.45671416968107226, "decode.loss_ce": 0.27978997081518175, "decode.acc_seg": 81.39823150634766, "aux.loss_ce": 0.17692419178783894, "aux.acc_seg": 68.87445831298828, "time": 1.112109613418579, "iter": 54300, "memory": 8704, "step": 54300} +{"lr": 0.006914158078897474, "data_time": 0.0076407909393310545, "loss": 0.7777637928724289, "decode.loss_ce": 0.5241036504507065, "decode.acc_seg": 90.48035430908203, "aux.loss_ce": 0.25366014540195464, "aux.acc_seg": 84.42369842529297, "time": 1.1173006296157837, "iter": 54350, "memory": 8703, "step": 54350} +{"lr": 0.006911255623897237, "data_time": 0.006267619132995605, "loss": 0.3743804171681404, "decode.loss_ce": 0.2224631067365408, "decode.acc_seg": 92.9459228515625, "aux.loss_ce": 0.15191730931401254, "aux.acc_seg": 90.39955139160156, "time": 1.116953730583191, "iter": 54400, "memory": 8703, "step": 54400} +{"lr": 0.006908353031466886, "data_time": 0.006435394287109375, "loss": 0.46215212196111677, "decode.loss_ce": 0.29326543062925337, "decode.acc_seg": 93.03982543945312, "aux.loss_ce": 0.1688866950571537, "aux.acc_seg": 91.60232543945312, "time": 1.1157347440719605, "iter": 54450, "memory": 8703, "step": 54450} +{"lr": 0.00690545030153482, "data_time": 0.006776046752929687, "loss": 0.42046908140182493, "decode.loss_ce": 0.2812120497226715, "decode.acc_seg": 93.75565338134766, "aux.loss_ce": 0.13925703167915343, "aux.acc_seg": 91.04042053222656, "time": 1.116353940963745, "iter": 54500, "memory": 8704, "step": 54500} +{"lr": 0.00690254743402935, "data_time": 0.007557177543640136, "loss": 0.3595794692635536, "decode.loss_ce": 0.21640139296650887, "decode.acc_seg": 89.2431869506836, "aux.loss_ce": 0.1431780755519867, "aux.acc_seg": 82.61375427246094, "time": 1.1162264585494994, "iter": 54550, "memory": 8703, "step": 54550} +{"lr": 0.006899644428878718, "data_time": 0.005577945709228515, "loss": 0.47677509784698485, "decode.loss_ce": 0.293304868042469, "decode.acc_seg": 90.5873794555664, "aux.loss_ce": 0.18347022756934167, "aux.acc_seg": 77.83599090576172, "time": 1.1150781154632567, "iter": 54600, "memory": 8703, "step": 54600} +{"lr": 0.006896741286011101, "data_time": 0.0063097476959228516, "loss": 0.4484388992190361, "decode.loss_ce": 0.2867373272776604, "decode.acc_seg": 93.27784729003906, "aux.loss_ce": 0.1617015816271305, "aux.acc_seg": 90.44822692871094, "time": 1.115190815925598, "iter": 54650, "memory": 8704, "step": 54650} +{"lr": 0.0068938380053545885, "data_time": 0.007191920280456543, "loss": 0.32023344188928604, "decode.loss_ce": 0.18847251459956169, "decode.acc_seg": 94.62960052490234, "aux.loss_ce": 0.1317609313875437, "aux.acc_seg": 93.46077728271484, "time": 1.114636206626892, "iter": 54700, "memory": 8703, "step": 54700} +{"lr": 0.0068909345868372225, "data_time": 0.0068331480026245115, "loss": 0.3489917889237404, "decode.loss_ce": 0.21323907226324082, "decode.acc_seg": 89.08773040771484, "aux.loss_ce": 0.13575272411108016, "aux.acc_seg": 82.86456298828125, "time": 1.1159095287322998, "iter": 54750, "memory": 8703, "step": 54750} +{"lr": 0.006888031030386949, "data_time": 0.008681440353393554, "loss": 0.6658155217766761, "decode.loss_ce": 0.43720944672822953, "decode.acc_seg": 90.34010314941406, "aux.loss_ce": 0.22860608100891114, "aux.acc_seg": 85.4257583618164, "time": 1.114730715751648, "iter": 54800, "memory": 8704, "step": 54800} +{"lr": 0.006885127335931659, "data_time": 0.007520246505737305, "loss": 0.39629278481006625, "decode.loss_ce": 0.23997371420264244, "decode.acc_seg": 93.87537384033203, "aux.loss_ce": 0.1563190683722496, "aux.acc_seg": 87.63147735595703, "time": 1.1200963258743286, "iter": 54850, "memory": 8703, "step": 54850} +{"lr": 0.006882223503399165, "data_time": 0.006659150123596191, "loss": 0.3905447006225586, "decode.loss_ce": 0.24934476613998413, "decode.acc_seg": 79.73682403564453, "aux.loss_ce": 0.14119993448257445, "aux.acc_seg": 80.43013763427734, "time": 1.1128017902374268, "iter": 54900, "memory": 8704, "step": 54900} +{"lr": 0.006879319532717209, "data_time": 0.006142973899841309, "loss": 0.3956706076860428, "decode.loss_ce": 0.2463025853037834, "decode.acc_seg": 95.03561401367188, "aux.loss_ce": 0.14936802089214324, "aux.acc_seg": 91.91118621826172, "time": 1.1114109754562378, "iter": 54950, "memory": 8704, "step": 54950} +{"lr": 0.006876415423813456, "data_time": 0.007325601577758789, "loss": 0.6866319090127945, "decode.loss_ce": 0.43312079310417173, "decode.acc_seg": 88.7583999633789, "aux.loss_ce": 0.2535111114382744, "aux.acc_seg": 85.85903930664062, "time": 1.1195884704589845, "iter": 55000, "memory": 8704, "step": 55000} +{"lr": 0.006873511176615509, "data_time": 0.005448436737060547, "loss": 0.4248420253396034, "decode.loss_ce": 0.2506091266870499, "decode.acc_seg": 94.42888641357422, "aux.loss_ce": 0.17423288971185685, "aux.acc_seg": 93.08706665039062, "time": 1.117615270614624, "iter": 55050, "memory": 8703, "step": 55050} +{"lr": 0.0068706067910508884, "data_time": 0.006629681587219239, "loss": 0.5741367176175117, "decode.loss_ce": 0.38816486299037933, "decode.acc_seg": 95.18305969238281, "aux.loss_ce": 0.18597185388207435, "aux.acc_seg": 92.42259216308594, "time": 1.1157775163650512, "iter": 55100, "memory": 8704, "step": 55100} +{"lr": 0.00686770226704704, "data_time": 0.008117270469665528, "loss": 0.599526870250702, "decode.loss_ce": 0.38883994370698927, "decode.acc_seg": 96.0744857788086, "aux.loss_ce": 0.21068691611289977, "aux.acc_seg": 93.47540283203125, "time": 1.119011902809143, "iter": 55150, "memory": 8703, "step": 55150} +{"lr": 0.006864797604531352, "data_time": 0.007224535942077637, "loss": 0.4007867708802223, "decode.loss_ce": 0.25134787112474444, "decode.acc_seg": 95.72575378417969, "aux.loss_ce": 0.14943889677524566, "aux.acc_seg": 95.0800552368164, "time": 1.1171935558319093, "iter": 55200, "memory": 8703, "step": 55200} +{"lr": 0.006861892803431121, "data_time": 0.005883979797363281, "loss": 0.4223321139812469, "decode.loss_ce": 0.24262193888425826, "decode.acc_seg": 90.59130096435547, "aux.loss_ce": 0.17971016988158225, "aux.acc_seg": 89.98114013671875, "time": 1.113109540939331, "iter": 55250, "memory": 8703, "step": 55250} +{"lr": 0.006858987863673589, "data_time": 0.007457327842712402, "loss": 0.39198470413684844, "decode.loss_ce": 0.2463441275060177, "decode.acc_seg": 89.04291534423828, "aux.loss_ce": 0.14564057365059851, "aux.acc_seg": 86.37866973876953, "time": 1.1179965019226075, "iter": 55300, "memory": 8703, "step": 55300} +{"lr": 0.00685608278518591, "data_time": 0.006696677207946778, "loss": 0.4380672603845596, "decode.loss_ce": 0.26036361008882525, "decode.acc_seg": 92.85894775390625, "aux.loss_ce": 0.17770364582538606, "aux.acc_seg": 89.3687515258789, "time": 1.1163732767105103, "iter": 55350, "memory": 8703, "step": 55350} +{"lr": 0.006853177567895173, "data_time": 0.005357861518859863, "loss": 0.36588319689035415, "decode.loss_ce": 0.2354004517197609, "decode.acc_seg": 96.6406478881836, "aux.loss_ce": 0.13048274740576743, "aux.acc_seg": 95.04292297363281, "time": 1.1147224664688111, "iter": 55400, "memory": 8703, "step": 55400} +{"lr": 0.006850272211728391, "data_time": 0.007155394554138184, "loss": 0.2954672083258629, "decode.loss_ce": 0.18102489709854125, "decode.acc_seg": 95.43189239501953, "aux.loss_ce": 0.11444231420755387, "aux.acc_seg": 93.66490173339844, "time": 1.1182104349136353, "iter": 55450, "memory": 8704, "step": 55450} +{"lr": 0.006847366716612504, "data_time": 0.007730507850646972, "loss": 0.4726730614900589, "decode.loss_ce": 0.30357311218976973, "decode.acc_seg": 94.43753051757812, "aux.loss_ce": 0.16909995600581168, "aux.acc_seg": 85.32180786132812, "time": 1.1152172327041625, "iter": 55500, "memory": 8703, "step": 55500} +{"lr": 0.006844461082474387, "data_time": 0.00723414421081543, "loss": 0.48087071180343627, "decode.loss_ce": 0.2994372546672821, "decode.acc_seg": 95.85742950439453, "aux.loss_ce": 0.18143346011638642, "aux.acc_seg": 95.05271911621094, "time": 1.117523431777954, "iter": 55550, "memory": 8703, "step": 55550} +{"lr": 0.006841555309240826, "data_time": 0.007412075996398926, "loss": 0.46587184965610506, "decode.loss_ce": 0.28150501996278765, "decode.acc_seg": 90.67575073242188, "aux.loss_ce": 0.18436682894825934, "aux.acc_seg": 76.58328247070312, "time": 1.1161009550094605, "iter": 55600, "memory": 8704, "step": 55600} +{"lr": 0.0068386493968385365, "data_time": 0.005735588073730469, "loss": 0.40965581089258196, "decode.loss_ce": 0.26078963428735735, "decode.acc_seg": 96.87252044677734, "aux.loss_ce": 0.14886617213487624, "aux.acc_seg": 95.92272186279297, "time": 1.112793755531311, "iter": 55650, "memory": 8703, "step": 55650} +{"lr": 0.006835743345194168, "data_time": 0.007603240013122558, "loss": 0.4752974480390549, "decode.loss_ce": 0.2927252694964409, "decode.acc_seg": 89.25920867919922, "aux.loss_ce": 0.18257217481732368, "aux.acc_seg": 85.91600799560547, "time": 1.1166116714477539, "iter": 55700, "memory": 8703, "step": 55700} +{"lr": 0.006832837154234302, "data_time": 0.007382798194885254, "loss": 0.3339292734861374, "decode.loss_ce": 0.20840943306684495, "decode.acc_seg": 93.93717193603516, "aux.loss_ce": 0.12551984041929246, "aux.acc_seg": 89.60482025146484, "time": 1.1150822639465332, "iter": 55750, "memory": 8703, "step": 55750} +{"lr": 0.006829930823885427, "data_time": 0.007912635803222656, "loss": 0.4973864659667015, "decode.loss_ce": 0.3027371056377888, "decode.acc_seg": 83.28977966308594, "aux.loss_ce": 0.1946493551135063, "aux.acc_seg": 72.8904037475586, "time": 1.1180773496627807, "iter": 55800, "memory": 8703, "step": 55800} +{"lr": 0.0068270243540739725, "data_time": 0.006741476058959961, "loss": 0.40727004408836365, "decode.loss_ce": 0.22233908325433732, "decode.acc_seg": 90.52310943603516, "aux.loss_ce": 0.18493095599114895, "aux.acc_seg": 81.7244873046875, "time": 1.1164956569671631, "iter": 55850, "memory": 8704, "step": 55850} +{"lr": 0.006824117744726282, "data_time": 0.007058858871459961, "loss": 0.6503331318497658, "decode.loss_ce": 0.414487823843956, "decode.acc_seg": 97.11602020263672, "aux.loss_ce": 0.23584530390799047, "aux.acc_seg": 88.93610382080078, "time": 1.1159825086593629, "iter": 55900, "memory": 8703, "step": 55900} +{"lr": 0.006821210995768637, "data_time": 0.006372666358947754, "loss": 0.336684912443161, "decode.loss_ce": 0.20017800778150557, "decode.acc_seg": 97.16510772705078, "aux.loss_ce": 0.1365069080144167, "aux.acc_seg": 96.26972961425781, "time": 1.1172218561172484, "iter": 55950, "memory": 8703, "step": 55950} +{"lr": 0.006818304107127247, "data_time": 0.006341981887817383, "loss": 0.33884657770395277, "decode.loss_ce": 0.2122373953461647, "decode.acc_seg": 95.62384033203125, "aux.loss_ce": 0.12660918496549128, "aux.acc_seg": 95.1804428100586, "time": 1.1141947746276855, "iter": 56000, "memory": 8703, "step": 56000} +{"lr": 0.006815397078728218, "data_time": 0.005804133415222168, "loss": 0.6604598492383957, "decode.loss_ce": 0.37038220912218095, "decode.acc_seg": 89.24070739746094, "aux.loss_ce": 0.29007764011621473, "aux.acc_seg": 85.15065002441406, "time": 1.1167541027069092, "iter": 56050, "memory": 8703, "step": 56050} +{"lr": 0.006812489910497624, "data_time": 0.007652592658996582, "loss": 0.5386691421270371, "decode.loss_ce": 0.3449935741722584, "decode.acc_seg": 65.78655242919922, "aux.loss_ce": 0.19367557838559152, "aux.acc_seg": 75.6978988647461, "time": 1.1163952112197877, "iter": 56100, "memory": 8704, "step": 56100} +{"lr": 0.006809582602361429, "data_time": 0.007579326629638672, "loss": 0.40608221888542173, "decode.loss_ce": 0.24104087501764299, "decode.acc_seg": 96.86405944824219, "aux.loss_ce": 0.16504133567214013, "aux.acc_seg": 91.5384292602539, "time": 1.114367938041687, "iter": 56150, "memory": 8704, "step": 56150} +{"lr": 0.006806675154245541, "data_time": 0.005806374549865723, "loss": 0.3959085464477539, "decode.loss_ce": 0.24052982404828072, "decode.acc_seg": 90.05018615722656, "aux.loss_ce": 0.15537871979176998, "aux.acc_seg": 84.17949676513672, "time": 1.1119940996170044, "iter": 56200, "memory": 8703, "step": 56200} +{"lr": 0.006803767566075788, "data_time": 0.005019068717956543, "loss": 0.4549306720495224, "decode.loss_ce": 0.2906396836042404, "decode.acc_seg": 89.44422912597656, "aux.loss_ce": 0.16429098770022393, "aux.acc_seg": 90.41841888427734, "time": 1.110803747177124, "iter": 56250, "memory": 8704, "step": 56250} +{"lr": 0.006800859837777922, "data_time": 0.007265734672546387, "loss": 0.40112763047218325, "decode.loss_ce": 0.2298765152692795, "decode.acc_seg": 93.56581115722656, "aux.loss_ce": 0.171251118183136, "aux.acc_seg": 90.92533874511719, "time": 1.1136162519454955, "iter": 56300, "memory": 8704, "step": 56300} +{"lr": 0.006797951969277618, "data_time": 0.006763887405395508, "loss": 0.508070421218872, "decode.loss_ce": 0.31458149552345277, "decode.acc_seg": 91.8722152709961, "aux.loss_ce": 0.1934889294207096, "aux.acc_seg": 74.75687408447266, "time": 1.1147206783294679, "iter": 56350, "memory": 8704, "step": 56350} +{"lr": 0.00679504396050048, "data_time": 0.006280446052551269, "loss": 0.38080437779426574, "decode.loss_ce": 0.22836643010377883, "decode.acc_seg": 94.07229614257812, "aux.loss_ce": 0.1524379424750805, "aux.acc_seg": 89.14281463623047, "time": 1.1164700984954834, "iter": 56400, "memory": 8704, "step": 56400} +{"lr": 0.006792135811372036, "data_time": 0.0065784454345703125, "loss": 0.3969474285840988, "decode.loss_ce": 0.2404262527823448, "decode.acc_seg": 94.36283111572266, "aux.loss_ce": 0.15652117654681205, "aux.acc_seg": 91.70732116699219, "time": 1.1142465353012085, "iter": 56450, "memory": 8703, "step": 56450} +{"lr": 0.006789227521817743, "data_time": 0.0054116487503051754, "loss": 0.48526218682527544, "decode.loss_ce": 0.3032522305846214, "decode.acc_seg": 90.4714584350586, "aux.loss_ce": 0.18200995288789273, "aux.acc_seg": 88.91607666015625, "time": 1.1174688339233398, "iter": 56500, "memory": 8704, "step": 56500} +{"lr": 0.0067863190917629695, "data_time": 0.007662200927734375, "loss": 0.41562208980321885, "decode.loss_ce": 0.25220492854714394, "decode.acc_seg": 91.9637680053711, "aux.loss_ce": 0.16341715976595877, "aux.acc_seg": 90.5284194946289, "time": 1.1176109075546266, "iter": 56550, "memory": 8703, "step": 56550} +{"lr": 0.006783410521133014, "data_time": 0.005780720710754394, "loss": 0.35317312330007555, "decode.loss_ce": 0.2106502316892147, "decode.acc_seg": 92.9140625, "aux.loss_ce": 0.14252288825809956, "aux.acc_seg": 84.76858520507812, "time": 1.110309910774231, "iter": 56600, "memory": 8704, "step": 56600} +{"lr": 0.0067805018098531025, "data_time": 0.006459188461303711, "loss": 0.47592686489224434, "decode.loss_ce": 0.3008218050003052, "decode.acc_seg": 79.13360595703125, "aux.loss_ce": 0.1751050569117069, "aux.acc_seg": 74.9970703125, "time": 1.1112283706665038, "iter": 56650, "memory": 8703, "step": 56650} +{"lr": 0.006777592957848382, "data_time": 0.006443309783935547, "loss": 0.43468971401453016, "decode.loss_ce": 0.28437311574816704, "decode.acc_seg": 95.479248046875, "aux.loss_ce": 0.1503166001290083, "aux.acc_seg": 86.4075927734375, "time": 1.111406397819519, "iter": 56700, "memory": 8703, "step": 56700} +{"lr": 0.006774683965043924, "data_time": 0.006225156784057617, "loss": 0.4615514576435089, "decode.loss_ce": 0.2872252777218819, "decode.acc_seg": 90.50877380371094, "aux.loss_ce": 0.17432617992162705, "aux.acc_seg": 81.49864959716797, "time": 1.111742949485779, "iter": 56750, "memory": 8704, "step": 56750} +{"lr": 0.006771774831364731, "data_time": 0.00699911117553711, "loss": 0.3913122981786728, "decode.loss_ce": 0.24688732251524925, "decode.acc_seg": 96.03443145751953, "aux.loss_ce": 0.1444249778985977, "aux.acc_seg": 94.50594329833984, "time": 1.116725993156433, "iter": 56800, "memory": 8704, "step": 56800} +{"lr": 0.0067688655567357215, "data_time": 0.005761384963989258, "loss": 0.342277792096138, "decode.loss_ce": 0.20352757573127747, "decode.acc_seg": 92.64519500732422, "aux.loss_ce": 0.13875021524727343, "aux.acc_seg": 88.3962631225586, "time": 1.1154963970184326, "iter": 56850, "memory": 8704, "step": 56850} +{"lr": 0.0067659561410817306, "data_time": 0.005121469497680664, "loss": 0.40062314718961717, "decode.loss_ce": 0.25924026817083357, "decode.acc_seg": 83.42761993408203, "aux.loss_ce": 0.1413828767836094, "aux.acc_seg": 83.09395599365234, "time": 1.1129210233688354, "iter": 56900, "memory": 8703, "step": 56900} +{"lr": 0.006763046584327529, "data_time": 0.008150243759155273, "loss": 0.4037028938531876, "decode.loss_ce": 0.2528111144900322, "decode.acc_seg": 95.16258239746094, "aux.loss_ce": 0.15089177563786507, "aux.acc_seg": 91.11003875732422, "time": 1.1192675352096557, "iter": 56950, "memory": 8704, "step": 56950} +{"lr": 0.006760136886397811, "data_time": 0.007707953453063965, "loss": 0.4261367991566658, "decode.loss_ce": 0.2710645027458668, "decode.acc_seg": 95.45936584472656, "aux.loss_ce": 0.15507229417562485, "aux.acc_seg": 93.89031219482422, "time": 1.1182439804077149, "iter": 57000, "memory": 8703, "step": 57000} +{"lr": 0.006757227047217188, "data_time": 0.006978082656860352, "loss": 0.6073270410299301, "decode.loss_ce": 0.3933460652828217, "decode.acc_seg": 86.31311798095703, "aux.loss_ce": 0.21398097574710845, "aux.acc_seg": 87.36610412597656, "time": 1.118693971633911, "iter": 57050, "memory": 8704, "step": 57050} +{"lr": 0.006754317066710195, "data_time": 0.0060355901718139645, "loss": 0.38268835842609406, "decode.loss_ce": 0.23143502548336983, "decode.acc_seg": 96.57999420166016, "aux.loss_ce": 0.15125333070755004, "aux.acc_seg": 92.8309097290039, "time": 1.1134382486343384, "iter": 57100, "memory": 8704, "step": 57100} +{"lr": 0.006751406944801288, "data_time": 0.005675458908081054, "loss": 0.4366397373378277, "decode.loss_ce": 0.26739052310585976, "decode.acc_seg": 85.51387786865234, "aux.loss_ce": 0.1692492201924324, "aux.acc_seg": 82.60383605957031, "time": 1.1087228298187255, "iter": 57150, "memory": 8704, "step": 57150} +{"lr": 0.006748496681414853, "data_time": 0.005989289283752442, "loss": 0.3719979614019394, "decode.loss_ce": 0.24186135530471803, "decode.acc_seg": 92.40544128417969, "aux.loss_ce": 0.1301366038620472, "aux.acc_seg": 92.24827575683594, "time": 1.1115594625473022, "iter": 57200, "memory": 8703, "step": 57200} +{"lr": 0.006745586276475192, "data_time": 0.005862092971801758, "loss": 0.35243464559316634, "decode.loss_ce": 0.20307158157229424, "decode.acc_seg": 95.78157806396484, "aux.loss_ce": 0.1493630599230528, "aux.acc_seg": 95.06193542480469, "time": 1.1070629835128785, "iter": 57250, "memory": 8704, "step": 57250} +{"lr": 0.006742675729906533, "data_time": 0.006096673011779785, "loss": 0.29471092373132707, "decode.loss_ce": 0.17861603945493698, "decode.acc_seg": 93.7171859741211, "aux.loss_ce": 0.1160948820412159, "aux.acc_seg": 91.03518676757812, "time": 1.1124923706054688, "iter": 57300, "memory": 8703, "step": 57300} +{"lr": 0.006739765041633033, "data_time": 0.006133890151977539, "loss": 0.45932584851980207, "decode.loss_ce": 0.27359357476234436, "decode.acc_seg": 81.83695220947266, "aux.loss_ce": 0.18573227450251578, "aux.acc_seg": 76.74076843261719, "time": 1.1116924047470094, "iter": 57350, "memory": 8703, "step": 57350} +{"lr": 0.006736854211578763, "data_time": 0.008153080940246582, "loss": 0.4071321576833725, "decode.loss_ce": 0.2545965738594532, "decode.acc_seg": 91.69197082519531, "aux.loss_ce": 0.15253557935357093, "aux.acc_seg": 89.92652893066406, "time": 1.1205743312835694, "iter": 57400, "memory": 8703, "step": 57400} +{"lr": 0.006733943239667708, "data_time": 0.006141066551208496, "loss": 0.5851655900478363, "decode.loss_ce": 0.3756985604763031, "decode.acc_seg": 91.0208969116211, "aux.loss_ce": 0.20946702547371387, "aux.acc_seg": 89.3683090209961, "time": 1.1159706592559815, "iter": 57450, "memory": 8705, "step": 57450} +{"lr": 0.006731032125823798, "data_time": 0.007132411003112793, "loss": 0.27754715234041216, "decode.loss_ce": 0.1714715525507927, "decode.acc_seg": 94.308349609375, "aux.loss_ce": 0.1060756005346775, "aux.acc_seg": 93.56507110595703, "time": 1.1166449546813966, "iter": 57500, "memory": 8704, "step": 57500} +{"lr": 0.006728120869970856, "data_time": 0.005191373825073242, "loss": 0.5409584969282151, "decode.loss_ce": 0.3426253952085972, "decode.acc_seg": 86.9766845703125, "aux.loss_ce": 0.19833309948444366, "aux.acc_seg": 85.72565460205078, "time": 1.1121709823608399, "iter": 57550, "memory": 8703, "step": 57550} +{"lr": 0.006725209472032662, "data_time": 0.00653228759765625, "loss": 0.6190557509660721, "decode.loss_ce": 0.37849839627742765, "decode.acc_seg": 92.8733139038086, "aux.loss_ce": 0.24055735692381858, "aux.acc_seg": 84.5230712890625, "time": 1.112740683555603, "iter": 57600, "memory": 8703, "step": 57600} +{"lr": 0.006722297931932883, "data_time": 0.005893158912658692, "loss": 0.3282106652855873, "decode.loss_ce": 0.20436268113553524, "decode.acc_seg": 92.42897033691406, "aux.loss_ce": 0.12384798377752304, "aux.acc_seg": 88.5621337890625, "time": 1.1106803178787232, "iter": 57650, "memory": 8703, "step": 57650} +{"lr": 0.006719386249595125, "data_time": 0.008759474754333496, "loss": 0.40706934183835985, "decode.loss_ce": 0.2254671037197113, "decode.acc_seg": 88.7574462890625, "aux.loss_ce": 0.18160223737359046, "aux.acc_seg": 79.7175064086914, "time": 1.1193811655044557, "iter": 57700, "memory": 8704, "step": 57700} +{"lr": 0.006716474424942924, "data_time": 0.006441497802734375, "loss": 0.2530872210860252, "decode.loss_ce": 0.14889618530869483, "decode.acc_seg": 92.17388916015625, "aux.loss_ce": 0.10419103316962719, "aux.acc_seg": 92.12086486816406, "time": 1.1127796173095703, "iter": 57750, "memory": 8703, "step": 57750} +{"lr": 0.00671356245789972, "data_time": 0.006523013114929199, "loss": 0.39872054010629654, "decode.loss_ce": 0.24403377026319503, "decode.acc_seg": 95.58956909179688, "aux.loss_ce": 0.15468676015734673, "aux.acc_seg": 93.82584381103516, "time": 1.1127548456192016, "iter": 57800, "memory": 8704, "step": 57800} +{"lr": 0.006710650348388885, "data_time": 0.00614013671875, "loss": 0.4995425745844841, "decode.loss_ce": 0.2931198477745056, "decode.acc_seg": 91.19580078125, "aux.loss_ce": 0.20642272904515266, "aux.acc_seg": 83.47911834716797, "time": 1.1156314134597778, "iter": 57850, "memory": 8703, "step": 57850} +{"lr": 0.006707738096333705, "data_time": 0.005611729621887207, "loss": 0.4622860409319401, "decode.loss_ce": 0.27100112587213515, "decode.acc_seg": 97.24909210205078, "aux.loss_ce": 0.19128491058945657, "aux.acc_seg": 88.02528381347656, "time": 1.113590955734253, "iter": 57900, "memory": 8703, "step": 57900} +{"lr": 0.006704825701657397, "data_time": 0.006885409355163574, "loss": 0.44835507720708845, "decode.loss_ce": 0.2778063386678696, "decode.acc_seg": 94.4009780883789, "aux.loss_ce": 0.17054873406887056, "aux.acc_seg": 93.75234985351562, "time": 1.117987298965454, "iter": 57950, "memory": 8704, "step": 57950} +{"lr": 0.006701913164283092, "data_time": 0.006544280052185059, "loss": 0.33604991137981416, "decode.loss_ce": 0.2043298751115799, "decode.acc_seg": 92.72174835205078, "aux.loss_ce": 0.1317200344055891, "aux.acc_seg": 87.93601989746094, "time": 1.115167498588562, "iter": 58000, "memory": 8704, "step": 58000} +{"lr": 0.006699000484133841, "data_time": 0.0062713623046875, "loss": 0.4793247193098068, "decode.loss_ce": 0.28236766457557677, "decode.acc_seg": 92.88158416748047, "aux.loss_ce": 0.1969570517539978, "aux.acc_seg": 88.3703842163086, "time": 1.115073847770691, "iter": 58050, "memory": 8704, "step": 58050} +{"lr": 0.0066960876611326155, "data_time": 0.005684876441955566, "loss": 0.6239542528986931, "decode.loss_ce": 0.3862458273768425, "decode.acc_seg": 94.81049346923828, "aux.loss_ce": 0.23770841993391514, "aux.acc_seg": 92.81465148925781, "time": 1.1131906032562255, "iter": 58100, "memory": 8703, "step": 58100} +{"lr": 0.006693174695202315, "data_time": 0.007300734519958496, "loss": 0.45374870002269746, "decode.loss_ce": 0.27995428815484047, "decode.acc_seg": 85.95377349853516, "aux.loss_ce": 0.17379441373050214, "aux.acc_seg": 84.01234436035156, "time": 1.1155054569244385, "iter": 58150, "memory": 8704, "step": 58150} +{"lr": 0.0066902615862657515, "data_time": 0.007229661941528321, "loss": 0.4516774445772171, "decode.loss_ce": 0.29850305840373037, "decode.acc_seg": 92.01634216308594, "aux.loss_ce": 0.15317438319325447, "aux.acc_seg": 82.82089233398438, "time": 1.109685516357422, "iter": 58200, "memory": 8704, "step": 58200} +{"lr": 0.006687348334245662, "data_time": 0.006588006019592285, "loss": 0.547122773528099, "decode.loss_ce": 0.3298251748085022, "decode.acc_seg": 89.0143051147461, "aux.loss_ce": 0.21729759946465493, "aux.acc_seg": 89.18844604492188, "time": 1.1154091119766236, "iter": 58250, "memory": 8704, "step": 58250} +{"lr": 0.006684434939064704, "data_time": 0.006525373458862305, "loss": 0.3475915536284447, "decode.loss_ce": 0.21516475975513458, "decode.acc_seg": 94.67838287353516, "aux.loss_ce": 0.1324267942458391, "aux.acc_seg": 93.46845245361328, "time": 1.1107178688049317, "iter": 58300, "memory": 8703, "step": 58300} +{"lr": 0.006681521400645445, "data_time": 0.006937098503112793, "loss": 0.49496960937976836, "decode.loss_ce": 0.3018405169248581, "decode.acc_seg": 86.30744171142578, "aux.loss_ce": 0.19312908947467805, "aux.acc_seg": 81.50437927246094, "time": 1.1188151121139527, "iter": 58350, "memory": 8703, "step": 58350} +{"lr": 0.00667860771891039, "data_time": 0.007155919075012207, "loss": 0.5285969316959381, "decode.loss_ce": 0.3383410073816776, "decode.acc_seg": 90.53497314453125, "aux.loss_ce": 0.19025592282414436, "aux.acc_seg": 90.99674224853516, "time": 1.1176854848861695, "iter": 58400, "memory": 8704, "step": 58400} +{"lr": 0.006675693893781952, "data_time": 0.0072421073913574215, "loss": 0.2706720605492592, "decode.loss_ce": 0.1728312000632286, "decode.acc_seg": 91.58541107177734, "aux.loss_ce": 0.09784086309373378, "aux.acc_seg": 90.97957611083984, "time": 1.1178687334060669, "iter": 58450, "memory": 8704, "step": 58450} +{"lr": 0.006672779925182462, "data_time": 0.007971429824829101, "loss": 0.4809234172105789, "decode.loss_ce": 0.27833423763513565, "decode.acc_seg": 96.5658187866211, "aux.loss_ce": 0.20258917212486266, "aux.acc_seg": 92.4799575805664, "time": 1.122865414619446, "iter": 58500, "memory": 8703, "step": 58500} +{"lr": 0.006669865813034181, "data_time": 0.006341385841369629, "loss": 0.36214310079813006, "decode.loss_ce": 0.2150900200009346, "decode.acc_seg": 95.24847412109375, "aux.loss_ce": 0.14705307483673097, "aux.acc_seg": 90.59467315673828, "time": 1.1175532579421996, "iter": 58550, "memory": 8704, "step": 58550} +{"lr": 0.006666951557259285, "data_time": 0.004982256889343261, "loss": 0.3772380530834198, "decode.loss_ce": 0.23109454661607742, "decode.acc_seg": 94.25951385498047, "aux.loss_ce": 0.14614350348711014, "aux.acc_seg": 92.73573303222656, "time": 1.1142696380615233, "iter": 58600, "memory": 8704, "step": 58600} +{"lr": 0.006664037157779862, "data_time": 0.007175302505493164, "loss": 0.540432620048523, "decode.loss_ce": 0.33118194043636323, "decode.acc_seg": 85.73226928710938, "aux.loss_ce": 0.20925066918134688, "aux.acc_seg": 83.64181518554688, "time": 1.1126463413238525, "iter": 58650, "memory": 8704, "step": 58650} +{"lr": 0.006661122614517934, "data_time": 0.007295417785644531, "loss": 0.3384494438767433, "decode.loss_ce": 0.2072848215699196, "decode.acc_seg": 96.45805358886719, "aux.loss_ce": 0.1311646245419979, "aux.acc_seg": 94.56468963623047, "time": 1.1184855222702026, "iter": 58700, "memory": 8704, "step": 58700} +{"lr": 0.006658207927395426, "data_time": 0.0064666748046875, "loss": 0.34399339184165, "decode.loss_ce": 0.21161853894591331, "decode.acc_seg": 88.3978500366211, "aux.loss_ce": 0.13237485177814962, "aux.acc_seg": 86.93180084228516, "time": 1.1099877834320069, "iter": 58750, "memory": 8703, "step": 58750} +{"lr": 0.006655293096334186, "data_time": 0.0065279722213745115, "loss": 0.47480948865413664, "decode.loss_ce": 0.2752555422484875, "decode.acc_seg": 94.27750396728516, "aux.loss_ce": 0.19955393746495248, "aux.acc_seg": 92.4102783203125, "time": 1.1183932542800903, "iter": 58800, "memory": 8704, "step": 58800} +{"lr": 0.006652378121255994, "data_time": 0.005880165100097656, "loss": 0.41433350890874865, "decode.loss_ce": 0.24878923147916793, "decode.acc_seg": 93.7846450805664, "aux.loss_ce": 0.16554427817463874, "aux.acc_seg": 90.95954895019531, "time": 1.1125755786895752, "iter": 58850, "memory": 8704, "step": 58850} +{"lr": 0.0066494630020825325, "data_time": 0.0072475910186767575, "loss": 0.31643888503313067, "decode.loss_ce": 0.2007581666111946, "decode.acc_seg": 95.52617645263672, "aux.loss_ce": 0.11568071581423282, "aux.acc_seg": 92.2746810913086, "time": 1.1185879230499267, "iter": 58900, "memory": 8704, "step": 58900} +{"lr": 0.006646547738735413, "data_time": 0.005830836296081543, "loss": 0.3971305787563324, "decode.loss_ce": 0.24315186217427254, "decode.acc_seg": 88.3291244506836, "aux.loss_ce": 0.15397871248424053, "aux.acc_seg": 82.54947662353516, "time": 1.1121709108352662, "iter": 58950, "memory": 8705, "step": 58950} +{"lr": 0.006643632331136165, "data_time": 0.007358074188232422, "loss": 0.5101666539907456, "decode.loss_ce": 0.30987374037504195, "decode.acc_seg": 93.9748764038086, "aux.loss_ce": 0.20029290914535522, "aux.acc_seg": 91.5894775390625, "time": 1.1177706718444824, "iter": 59000, "memory": 8704, "step": 59000} +{"lr": 0.0066407167792062296, "data_time": 0.007143855094909668, "loss": 0.4438117042183876, "decode.loss_ce": 0.26895071640610696, "decode.acc_seg": 88.27800750732422, "aux.loss_ce": 0.1748609919101, "aux.acc_seg": 73.37118530273438, "time": 1.1176724910736084, "iter": 59050, "memory": 8704, "step": 59050} +{"lr": 0.006637801082866964, "data_time": 0.008199429512023926, "loss": 0.39361256957054136, "decode.loss_ce": 0.24392189532518388, "decode.acc_seg": 96.30152130126953, "aux.loss_ce": 0.14969067350029946, "aux.acc_seg": 94.26294708251953, "time": 1.117972469329834, "iter": 59100, "memory": 8703, "step": 59100} +{"lr": 0.006634885242039656, "data_time": 0.007967877388000488, "loss": 0.4451999098062515, "decode.loss_ce": 0.2713412523269653, "decode.acc_seg": 86.19581604003906, "aux.loss_ce": 0.1738586600869894, "aux.acc_seg": 81.07445526123047, "time": 1.114176630973816, "iter": 59150, "memory": 8703, "step": 59150} +{"lr": 0.006631969256645507, "data_time": 0.006509232521057129, "loss": 0.4706661641597748, "decode.loss_ce": 0.3019785389304161, "decode.acc_seg": 93.64692687988281, "aux.loss_ce": 0.16868761777877808, "aux.acc_seg": 91.1810302734375, "time": 1.1142176151275636, "iter": 59200, "memory": 8704, "step": 59200} +{"lr": 0.006629053126605625, "data_time": 0.006472277641296387, "loss": 0.4450627312064171, "decode.loss_ce": 0.25701831579208373, "decode.acc_seg": 85.98066711425781, "aux.loss_ce": 0.1880444183945656, "aux.acc_seg": 84.49700164794922, "time": 1.1111063718795777, "iter": 59250, "memory": 8704, "step": 59250} +{"lr": 0.006626136851841056, "data_time": 0.006005406379699707, "loss": 0.45392940044403074, "decode.loss_ce": 0.26757693514227865, "decode.acc_seg": 90.83003997802734, "aux.loss_ce": 0.18635247200727462, "aux.acc_seg": 88.36727142333984, "time": 1.1100049257278441, "iter": 59300, "memory": 8703, "step": 59300} +{"lr": 0.006623220432272749, "data_time": 0.005930900573730469, "loss": 0.3489266648888588, "decode.loss_ce": 0.21822205036878586, "decode.acc_seg": 92.91432189941406, "aux.loss_ce": 0.13070461228489877, "aux.acc_seg": 83.25373077392578, "time": 1.1148123741149902, "iter": 59350, "memory": 8704, "step": 59350} +{"lr": 0.006620303867821576, "data_time": 0.0054610252380371095, "loss": 0.39851933866739275, "decode.loss_ce": 0.24423747658729553, "decode.acc_seg": 92.93842315673828, "aux.loss_ce": 0.15428185798227786, "aux.acc_seg": 89.20948791503906, "time": 1.115162181854248, "iter": 59400, "memory": 8704, "step": 59400} +{"lr": 0.006617387158408321, "data_time": 0.007337021827697754, "loss": 0.31970577612519263, "decode.loss_ce": 0.20436982810497284, "decode.acc_seg": 97.537353515625, "aux.loss_ce": 0.11533594653010368, "aux.acc_seg": 96.12560272216797, "time": 1.1203057289123535, "iter": 59450, "memory": 8703, "step": 59450} +{"lr": 0.006614470303953691, "data_time": 0.005108761787414551, "loss": 0.4084452986717224, "decode.loss_ce": 0.2552195660769939, "decode.acc_seg": 91.30350494384766, "aux.loss_ce": 0.15322572514414787, "aux.acc_seg": 90.2170181274414, "time": 1.1115514278411864, "iter": 59500, "memory": 8704, "step": 59500} +{"lr": 0.006611553304378308, "data_time": 0.005675387382507324, "loss": 0.37690709829330443, "decode.loss_ce": 0.21987926885485648, "decode.acc_seg": 89.4674301147461, "aux.loss_ce": 0.1570278275758028, "aux.acc_seg": 88.27323913574219, "time": 1.1166173219680786, "iter": 59550, "memory": 8703, "step": 59550} +{"lr": 0.006608636159602709, "data_time": 0.006793522834777832, "loss": 0.28102537542581557, "decode.loss_ce": 0.17091575711965562, "decode.acc_seg": 97.03413391113281, "aux.loss_ce": 0.11010961905121804, "aux.acc_seg": 95.90930938720703, "time": 1.115986156463623, "iter": 59600, "memory": 8704, "step": 59600} +{"lr": 0.006605718869547354, "data_time": 0.007911324501037598, "loss": 0.36671910285949705, "decode.loss_ce": 0.2124308317899704, "decode.acc_seg": 95.31765747070312, "aux.loss_ce": 0.15428827255964278, "aux.acc_seg": 94.95979309082031, "time": 1.1189918756484984, "iter": 59650, "memory": 8704, "step": 59650} +{"lr": 0.006602801434132614, "data_time": 0.00562129020690918, "loss": 0.40822495222091676, "decode.loss_ce": 0.24990303963422775, "decode.acc_seg": 93.87581634521484, "aux.loss_ce": 0.15832191258668898, "aux.acc_seg": 92.36729431152344, "time": 1.1098374366760253, "iter": 59700, "memory": 8703, "step": 59700} +{"lr": 0.006599883853278774, "data_time": 0.006198978424072266, "loss": 0.47632902264595034, "decode.loss_ce": 0.29379299730062486, "decode.acc_seg": 93.31836700439453, "aux.loss_ce": 0.18253602795302867, "aux.acc_seg": 87.66409301757812, "time": 1.1109345197677611, "iter": 59750, "memory": 8704, "step": 59750} +{"lr": 0.00659696612690605, "data_time": 0.006792712211608887, "loss": 0.40117805302143095, "decode.loss_ce": 0.2521103397011757, "decode.acc_seg": 84.842041015625, "aux.loss_ce": 0.1490677163004875, "aux.acc_seg": 79.84497833251953, "time": 1.1142856359481812, "iter": 59800, "memory": 8704, "step": 59800} +{"lr": 0.006594048254934554, "data_time": 0.006384348869323731, "loss": 0.3449909448623657, "decode.loss_ce": 0.22924284860491753, "decode.acc_seg": 93.47319793701172, "aux.loss_ce": 0.1157480951398611, "aux.acc_seg": 92.49982452392578, "time": 1.1160003423690796, "iter": 59850, "memory": 8704, "step": 59850} +{"lr": 0.006591130237284329, "data_time": 0.00717465877532959, "loss": 0.28541663736104966, "decode.loss_ce": 0.17260847464203835, "decode.acc_seg": 93.67596435546875, "aux.loss_ce": 0.11280816271901131, "aux.acc_seg": 92.49476623535156, "time": 1.1190123558044434, "iter": 59900, "memory": 8703, "step": 59900} +{"lr": 0.006588212073875335, "data_time": 0.007807350158691407, "loss": 0.46111134588718417, "decode.loss_ce": 0.3001331098377705, "decode.acc_seg": 92.39946746826172, "aux.loss_ce": 0.16097824275493622, "aux.acc_seg": 90.25109100341797, "time": 1.1244996309280395, "iter": 59950, "memory": 8703, "step": 59950} +{"lr": 0.006585293764627438, "data_time": 0.006368041038513184, "loss": 0.4135264217853546, "decode.loss_ce": 0.25792957842350006, "decode.acc_seg": 95.97606658935547, "aux.loss_ce": 0.1555968441069126, "aux.acc_seg": 94.59658813476562, "time": 1.1123348712921142, "iter": 60000, "memory": 8704, "step": 60000} +{"lr": 0.006582375309460423, "data_time": 0.0069705724716186525, "loss": 0.3902940697968006, "decode.loss_ce": 0.23724782913923265, "decode.acc_seg": 98.0597152709961, "aux.loss_ce": 0.15304623916745186, "aux.acc_seg": 97.47848510742188, "time": 1.115578293800354, "iter": 60050, "memory": 8704, "step": 60050} +{"lr": 0.006579456708293995, "data_time": 0.00609591007232666, "loss": 0.4296854466199875, "decode.loss_ce": 0.28045458942651746, "decode.acc_seg": 85.78758239746094, "aux.loss_ce": 0.14923084750771523, "aux.acc_seg": 85.7473373413086, "time": 1.1097931146621705, "iter": 60100, "memory": 8704, "step": 60100} +{"lr": 0.006576537961047764, "data_time": 0.006192612648010254, "loss": 0.526896683871746, "decode.loss_ce": 0.3379041954874992, "decode.acc_seg": 95.56261444091797, "aux.loss_ce": 0.18899249695241452, "aux.acc_seg": 94.46134948730469, "time": 1.114993405342102, "iter": 60150, "memory": 8703, "step": 60150} +{"lr": 0.0065736190676412756, "data_time": 0.006794476509094238, "loss": 0.40889334976673125, "decode.loss_ce": 0.2554349020123482, "decode.acc_seg": 86.94896697998047, "aux.loss_ce": 0.15345844030380248, "aux.acc_seg": 91.85504913330078, "time": 1.1105066299438477, "iter": 60200, "memory": 8703, "step": 60200} +{"lr": 0.00657070002799397, "data_time": 0.006556034088134766, "loss": 0.29001507759094236, "decode.loss_ce": 0.17762765437364578, "decode.acc_seg": 95.121826171875, "aux.loss_ce": 0.11238741800189019, "aux.acc_seg": 94.38591003417969, "time": 1.1164367914199829, "iter": 60250, "memory": 8704, "step": 60250} +{"lr": 0.006567780842025212, "data_time": 0.006710958480834961, "loss": 0.35534499436616895, "decode.loss_ce": 0.21502864733338356, "decode.acc_seg": 95.40068054199219, "aux.loss_ce": 0.1403163455426693, "aux.acc_seg": 94.68548583984375, "time": 1.1097770929336548, "iter": 60300, "memory": 8703, "step": 60300} +{"lr": 0.006564861509654284, "data_time": 0.00874764919281006, "loss": 0.5680798172950745, "decode.loss_ce": 0.33817268162965775, "decode.acc_seg": 88.43434143066406, "aux.loss_ce": 0.22990713268518448, "aux.acc_seg": 87.29572296142578, "time": 1.1180399179458618, "iter": 60350, "memory": 8704, "step": 60350} +{"lr": 0.006561942030800385, "data_time": 0.007525873184204101, "loss": 0.43275138437747956, "decode.loss_ce": 0.2619148224592209, "decode.acc_seg": 94.59507751464844, "aux.loss_ce": 0.17083655372262002, "aux.acc_seg": 92.41523742675781, "time": 1.1198905467987061, "iter": 60400, "memory": 8703, "step": 60400} +{"lr": 0.006559022405382612, "data_time": 0.007906007766723632, "loss": 0.4249542415142059, "decode.loss_ce": 0.24383470341563224, "decode.acc_seg": 94.0390853881836, "aux.loss_ce": 0.18111954145133496, "aux.acc_seg": 91.92447662353516, "time": 1.1202436685562134, "iter": 60450, "memory": 8703, "step": 60450} +{"lr": 0.006556102633319995, "data_time": 0.008246088027954101, "loss": 0.3567718923091888, "decode.loss_ce": 0.21556102111935616, "decode.acc_seg": 91.4886474609375, "aux.loss_ce": 0.14121087081730366, "aux.acc_seg": 84.65206909179688, "time": 1.1223914861679076, "iter": 60500, "memory": 8704, "step": 60500} +{"lr": 0.006553182714531467, "data_time": 0.0080003023147583, "loss": 0.444537977874279, "decode.loss_ce": 0.2774269416928291, "decode.acc_seg": 95.59765625, "aux.loss_ce": 0.1671110291033983, "aux.acc_seg": 94.66971588134766, "time": 1.1194106817245484, "iter": 60550, "memory": 8703, "step": 60550} +{"lr": 0.00655026264893588, "data_time": 0.006483674049377441, "loss": 0.40162769705057144, "decode.loss_ce": 0.2533764146268368, "decode.acc_seg": 91.12129211425781, "aux.loss_ce": 0.1482512790709734, "aux.acc_seg": 80.93973541259766, "time": 1.113689088821411, "iter": 60600, "memory": 8703, "step": 60600} +{"lr": 0.006547342436452009, "data_time": 0.0075516939163208004, "loss": 0.3748283386230469, "decode.loss_ce": 0.20562620237469673, "decode.acc_seg": 93.55023193359375, "aux.loss_ce": 0.1692021407186985, "aux.acc_seg": 92.39107513427734, "time": 1.1159990072250365, "iter": 60650, "memory": 8703, "step": 60650} +{"lr": 0.006544422076998532, "data_time": 0.0062195777893066405, "loss": 0.5265067487955093, "decode.loss_ce": 0.3155867598950863, "decode.acc_seg": 79.48137664794922, "aux.loss_ce": 0.2109199933707714, "aux.acc_seg": 68.06595611572266, "time": 1.1131173133850099, "iter": 60700, "memory": 8703, "step": 60700} +{"lr": 0.006541501570494047, "data_time": 0.0064658641815185545, "loss": 0.4366466045379639, "decode.loss_ce": 0.2710136517882347, "decode.acc_seg": 91.21837615966797, "aux.loss_ce": 0.16563294529914857, "aux.acc_seg": 87.2193603515625, "time": 1.112583327293396, "iter": 60750, "memory": 8704, "step": 60750} +{"lr": 0.006538580916857055, "data_time": 0.0062546968460083004, "loss": 0.4654638856649399, "decode.loss_ce": 0.28441279754042625, "decode.acc_seg": 95.74578094482422, "aux.loss_ce": 0.1810510866343975, "aux.acc_seg": 94.51738739013672, "time": 1.1137381553649903, "iter": 60800, "memory": 8704, "step": 60800} +{"lr": 0.006535660116005979, "data_time": 0.00694742202758789, "loss": 0.45328918695449827, "decode.loss_ce": 0.26961092799901965, "decode.acc_seg": 92.99913787841797, "aux.loss_ce": 0.1836782593280077, "aux.acc_seg": 90.98637390136719, "time": 1.112225317955017, "iter": 60850, "memory": 8704, "step": 60850} +{"lr": 0.006532739167859156, "data_time": 0.00788867473602295, "loss": 0.6008071631193161, "decode.loss_ce": 0.38272066712379454, "decode.acc_seg": 81.36284637451172, "aux.loss_ce": 0.21808649152517318, "aux.acc_seg": 71.83964538574219, "time": 1.1174504995346068, "iter": 60900, "memory": 8703, "step": 60900} +{"lr": 0.006529818072334844, "data_time": 0.006628680229187012, "loss": 0.3789666071534157, "decode.loss_ce": 0.2319663219153881, "decode.acc_seg": 92.62873077392578, "aux.loss_ce": 0.14700028151273728, "aux.acc_seg": 92.05467987060547, "time": 1.1160274267196655, "iter": 60950, "memory": 8703, "step": 60950} +{"lr": 0.006526896829351191, "data_time": 0.0074095487594604496, "loss": 0.5857058852910996, "decode.loss_ce": 0.3662381485104561, "decode.acc_seg": 83.75294494628906, "aux.loss_ce": 0.21946773827075958, "aux.acc_seg": 77.72541046142578, "time": 1.114784598350525, "iter": 61000, "memory": 8704, "step": 61000} +{"lr": 0.00652397543882629, "data_time": 0.005725789070129395, "loss": 0.4225630506873131, "decode.loss_ce": 0.2716843783855438, "decode.acc_seg": 94.62422180175781, "aux.loss_ce": 0.15087867230176927, "aux.acc_seg": 92.74351501464844, "time": 1.1153914213180542, "iter": 61050, "memory": 8704, "step": 61050} +{"lr": 0.006521053900678118, "data_time": 0.008090853691101074, "loss": 0.4110895976424217, "decode.loss_ce": 0.24259646236896515, "decode.acc_seg": 95.57087707519531, "aux.loss_ce": 0.1684931293129921, "aux.acc_seg": 93.80168914794922, "time": 1.1179375171661377, "iter": 61100, "memory": 8704, "step": 61100} +{"lr": 0.00651813221482458, "data_time": 0.006035733222961426, "loss": 0.39152001589536667, "decode.loss_ce": 0.25329260900616646, "decode.acc_seg": 96.5799331665039, "aux.loss_ce": 0.13822740986943244, "aux.acc_seg": 92.99182891845703, "time": 1.1152711391448975, "iter": 61150, "memory": 8703, "step": 61150} +{"lr": 0.006515210381183491, "data_time": 0.007321977615356445, "loss": 0.5188869535923004, "decode.loss_ce": 0.3222124993801117, "decode.acc_seg": 93.46261596679688, "aux.loss_ce": 0.19667445719242097, "aux.acc_seg": 85.70922088623047, "time": 1.1117305517196656, "iter": 61200, "memory": 8704, "step": 61200} +{"lr": 0.006512288399672575, "data_time": 0.007512021064758301, "loss": 0.5776424705982208, "decode.loss_ce": 0.35543290376663206, "decode.acc_seg": 90.5640869140625, "aux.loss_ce": 0.2222095623612404, "aux.acc_seg": 83.7870864868164, "time": 1.1188804149627685, "iter": 61250, "memory": 8703, "step": 61250} +{"lr": 0.0065093662702094875, "data_time": 0.006609511375427246, "loss": 0.4547660604119301, "decode.loss_ce": 0.2964985057711601, "decode.acc_seg": 95.2292709350586, "aux.loss_ce": 0.15826754570007323, "aux.acc_seg": 93.83010864257812, "time": 1.1147512912750244, "iter": 61300, "memory": 8703, "step": 61300} +{"lr": 0.006506443992711756, "data_time": 0.007198071479797364, "loss": 0.30734916776418686, "decode.loss_ce": 0.1971272885799408, "decode.acc_seg": 94.20057678222656, "aux.loss_ce": 0.11022187620401383, "aux.acc_seg": 93.24376678466797, "time": 1.1139324426651, "iter": 61350, "memory": 8703, "step": 61350} +{"lr": 0.0065035215670968625, "data_time": 0.006230759620666504, "loss": 0.3959860324859619, "decode.loss_ce": 0.2245539642870426, "decode.acc_seg": 95.87672424316406, "aux.loss_ce": 0.17143206670880318, "aux.acc_seg": 95.46924591064453, "time": 1.112625789642334, "iter": 61400, "memory": 8704, "step": 61400} +{"lr": 0.00650059899328218, "data_time": 0.0071239471435546875, "loss": 0.40797366201877594, "decode.loss_ce": 0.24699303805828093, "decode.acc_seg": 95.51575469970703, "aux.loss_ce": 0.16098062917590142, "aux.acc_seg": 92.90142059326172, "time": 1.1110171556472779, "iter": 61450, "memory": 8704, "step": 61450} +{"lr": 0.0064976762711850015, "data_time": 0.006202006340026855, "loss": 0.37183207720518113, "decode.loss_ce": 0.2184613212943077, "decode.acc_seg": 83.33358764648438, "aux.loss_ce": 0.15337074883282184, "aux.acc_seg": 75.24585723876953, "time": 1.1142271280288696, "iter": 61500, "memory": 8704, "step": 61500} +{"lr": 0.006494753400722524, "data_time": 0.006020593643188477, "loss": 0.3320786863565445, "decode.loss_ce": 0.18641399517655372, "decode.acc_seg": 96.19829559326172, "aux.loss_ce": 0.1456646926701069, "aux.acc_seg": 88.73451232910156, "time": 1.1140024423599244, "iter": 61550, "memory": 8703, "step": 61550} +{"lr": 0.006491830381811859, "data_time": 0.006563520431518555, "loss": 0.4604318752884865, "decode.loss_ce": 0.2909245178103447, "decode.acc_seg": 86.97407531738281, "aux.loss_ce": 0.16950734853744506, "aux.acc_seg": 84.14154052734375, "time": 1.1145253896713256, "iter": 61600, "memory": 8703, "step": 61600} +{"lr": 0.006488907214370029, "data_time": 0.007805585861206055, "loss": 0.2815593212842941, "decode.loss_ce": 0.17792530432343484, "decode.acc_seg": 93.39847564697266, "aux.loss_ce": 0.10363401249051094, "aux.acc_seg": 91.6330337524414, "time": 1.1172369480133058, "iter": 61650, "memory": 8704, "step": 61650} +{"lr": 0.00648598389831397, "data_time": 0.009072589874267577, "loss": 0.4670491561293602, "decode.loss_ce": 0.29114173725247383, "decode.acc_seg": 96.22148895263672, "aux.loss_ce": 0.17590741030871868, "aux.acc_seg": 92.60792541503906, "time": 1.1184450149536134, "iter": 61700, "memory": 8704, "step": 61700} +{"lr": 0.006483060433560528, "data_time": 0.005866599082946777, "loss": 0.4019013553857803, "decode.loss_ce": 0.24533005580306053, "decode.acc_seg": 96.38919830322266, "aux.loss_ce": 0.15657130181789397, "aux.acc_seg": 95.86397552490234, "time": 1.1146764278411865, "iter": 61750, "memory": 8704, "step": 61750} +{"lr": 0.006480136820026455, "data_time": 0.005820918083190918, "loss": 0.4082018584012985, "decode.loss_ce": 0.2597812503576279, "decode.acc_seg": 83.5044174194336, "aux.loss_ce": 0.14842060022056103, "aux.acc_seg": 79.28104400634766, "time": 1.1145114660263062, "iter": 61800, "memory": 8704, "step": 61800} +{"lr": 0.00647721305762843, "data_time": 0.007166600227355957, "loss": 0.2650442585349083, "decode.loss_ce": 0.15144741907715797, "decode.acc_seg": 96.83380126953125, "aux.loss_ce": 0.11359683834016324, "aux.acc_seg": 96.05541229248047, "time": 1.117858624458313, "iter": 61850, "memory": 8704, "step": 61850} +{"lr": 0.006474289146283026, "data_time": 0.005986166000366211, "loss": 0.3753152906894684, "decode.loss_ce": 0.2400779567658901, "decode.acc_seg": 96.17552185058594, "aux.loss_ce": 0.1352373380213976, "aux.acc_seg": 95.16446685791016, "time": 1.1112011432647706, "iter": 61900, "memory": 8704, "step": 61900} +{"lr": 0.0064713650859067355, "data_time": 0.006420254707336426, "loss": 0.49230130314826964, "decode.loss_ce": 0.30423677042126657, "decode.acc_seg": 89.61473846435547, "aux.loss_ce": 0.18806452453136444, "aux.acc_seg": 89.95220947265625, "time": 1.1089299678802491, "iter": 61950, "memory": 8704, "step": 61950} +{"lr": 0.006468440876415964, "data_time": 0.006213712692260742, "loss": 0.37868126332759855, "decode.loss_ce": 0.21153176799416543, "decode.acc_seg": 87.05513763427734, "aux.loss_ce": 0.16714949011802674, "aux.acc_seg": 82.14905548095703, "time": 1.1134117603302003, "iter": 62000, "memory": 8703, "step": 62000} +{"lr": 0.006465516517727011, "data_time": 0.00933246612548828, "loss": 0.2935541599988937, "decode.loss_ce": 0.1766180105507374, "decode.acc_seg": 93.15948486328125, "aux.loss_ce": 0.11693615131080151, "aux.acc_seg": 81.34510803222656, "time": 1.1228015184402467, "iter": 62050, "memory": 8704, "step": 62050} +{"lr": 0.006462592009756107, "data_time": 0.005760025978088379, "loss": 0.2956762194633484, "decode.loss_ce": 0.17210377678275107, "decode.acc_seg": 96.87620544433594, "aux.loss_ce": 0.12357244230806827, "aux.acc_seg": 94.01753234863281, "time": 1.1110113382339477, "iter": 62100, "memory": 8704, "step": 62100} +{"lr": 0.006459667352419382, "data_time": 0.006910872459411621, "loss": 0.34888813346624375, "decode.loss_ce": 0.21211431324481964, "decode.acc_seg": 93.09736633300781, "aux.loss_ce": 0.1367738202214241, "aux.acc_seg": 92.12970733642578, "time": 1.1150655031204224, "iter": 62150, "memory": 8704, "step": 62150} +{"lr": 0.00645674254563288, "data_time": 0.006500816345214844, "loss": 0.6085944533348083, "decode.loss_ce": 0.3707243695855141, "decode.acc_seg": 89.8514404296875, "aux.loss_ce": 0.23787008076906205, "aux.acc_seg": 86.13630676269531, "time": 1.110892939567566, "iter": 62200, "memory": 8704, "step": 62200} +{"lr": 0.006453817589312548, "data_time": 0.007562398910522461, "loss": 0.3958993822336197, "decode.loss_ce": 0.23569662496447563, "decode.acc_seg": 91.05531311035156, "aux.loss_ce": 0.16020276136696338, "aux.acc_seg": 90.80062866210938, "time": 1.119233989715576, "iter": 62250, "memory": 8704, "step": 62250} +{"lr": 0.006450892483374251, "data_time": 0.007005906105041504, "loss": 0.37515526413917544, "decode.loss_ce": 0.24561258405447006, "decode.acc_seg": 91.04397583007812, "aux.loss_ce": 0.12954268008470535, "aux.acc_seg": 89.48326110839844, "time": 1.1204247713088988, "iter": 62300, "memory": 8703, "step": 62300} +{"lr": 0.006447967227733754, "data_time": 0.0076332569122314455, "loss": 0.4685581594705582, "decode.loss_ce": 0.2704819247126579, "decode.acc_seg": 84.3897476196289, "aux.loss_ce": 0.19807623662054538, "aux.acc_seg": 80.58477783203125, "time": 1.1165719985961915, "iter": 62350, "memory": 8704, "step": 62350} +{"lr": 0.006445041822306747, "data_time": 0.006279349327087402, "loss": 0.4835202291607857, "decode.loss_ce": 0.28240628689527514, "decode.acc_seg": 92.65594482421875, "aux.loss_ce": 0.20111393555998802, "aux.acc_seg": 84.53743743896484, "time": 1.1137804985046387, "iter": 62400, "memory": 8704, "step": 62400} +{"lr": 0.006442116267008809, "data_time": 0.007150530815124512, "loss": 0.41490537375211717, "decode.loss_ce": 0.24961448237299919, "decode.acc_seg": 92.23702239990234, "aux.loss_ce": 0.16529089137911795, "aux.acc_seg": 82.55290985107422, "time": 1.1149651288986206, "iter": 62450, "memory": 8704, "step": 62450} +{"lr": 0.006439190561755438, "data_time": 0.0075080633163452145, "loss": 0.4570081025362015, "decode.loss_ce": 0.28332925885915755, "decode.acc_seg": 84.94529724121094, "aux.loss_ce": 0.17367883995175362, "aux.acc_seg": 77.79293060302734, "time": 1.114592432975769, "iter": 62500, "memory": 8703, "step": 62500} +{"lr": 0.006436264706462049, "data_time": 0.007181787490844726, "loss": 0.5996803164482116, "decode.loss_ce": 0.40552822798490523, "decode.acc_seg": 89.22595977783203, "aux.loss_ce": 0.19415208846330642, "aux.acc_seg": 85.88841247558594, "time": 1.121671438217163, "iter": 62550, "memory": 8704, "step": 62550} +{"lr": 0.006433338701043958, "data_time": 0.007417416572570801, "loss": 0.33499047458171843, "decode.loss_ce": 0.20733732208609582, "decode.acc_seg": 96.05938720703125, "aux.loss_ce": 0.12765314280986786, "aux.acc_seg": 94.11273193359375, "time": 1.1216610193252563, "iter": 62600, "memory": 8704, "step": 62600} +{"lr": 0.006430412545416384, "data_time": 0.005549836158752442, "loss": 0.3259569764137268, "decode.loss_ce": 0.19417394399642945, "decode.acc_seg": 88.68770599365234, "aux.loss_ce": 0.13178303316235543, "aux.acc_seg": 79.83143615722656, "time": 1.115502619743347, "iter": 62650, "memory": 8704, "step": 62650} +{"lr": 0.0064274862394944655, "data_time": 0.006924819946289062, "loss": 0.48914001882076263, "decode.loss_ce": 0.29586374163627627, "decode.acc_seg": 86.37224578857422, "aux.loss_ce": 0.193276284635067, "aux.acc_seg": 77.6530532836914, "time": 1.1158993244171143, "iter": 62700, "memory": 8703, "step": 62700} +{"lr": 0.006424559783193246, "data_time": 0.0058315515518188475, "loss": 0.39061954617500305, "decode.loss_ce": 0.22670867741107942, "decode.acc_seg": 91.22238159179688, "aux.loss_ce": 0.16391087621450423, "aux.acc_seg": 90.22254943847656, "time": 1.1111086368560792, "iter": 62750, "memory": 8703, "step": 62750} +{"lr": 0.006421633176427669, "data_time": 0.007335495948791504, "loss": 0.4943144619464874, "decode.loss_ce": 0.3071408897638321, "decode.acc_seg": 89.8682861328125, "aux.loss_ce": 0.1871735665947199, "aux.acc_seg": 81.987060546875, "time": 1.1169835567474364, "iter": 62800, "memory": 8703, "step": 62800} +{"lr": 0.0064187064191126, "data_time": 0.007324671745300293, "loss": 0.3348697438836098, "decode.loss_ce": 0.2158899076282978, "decode.acc_seg": 88.82363891601562, "aux.loss_ce": 0.11897983737289905, "aux.acc_seg": 84.28900909423828, "time": 1.1124072790145874, "iter": 62850, "memory": 8704, "step": 62850} +{"lr": 0.006415779511162805, "data_time": 0.006754112243652344, "loss": 0.3358397766947746, "decode.loss_ce": 0.2075410358607769, "decode.acc_seg": 93.80931854248047, "aux.loss_ce": 0.1282987367361784, "aux.acc_seg": 93.32357788085938, "time": 1.1120545625686646, "iter": 62900, "memory": 8703, "step": 62900} +{"lr": 0.006412852452492957, "data_time": 0.007326674461364746, "loss": 0.31606834232807157, "decode.loss_ce": 0.19977586045861245, "decode.acc_seg": 85.16031646728516, "aux.loss_ce": 0.11629248484969139, "aux.acc_seg": 83.21234130859375, "time": 1.1178308963775634, "iter": 62950, "memory": 8703, "step": 62950} +{"lr": 0.006409925243017636, "data_time": 0.006597781181335449, "loss": 0.29252711310982704, "decode.loss_ce": 0.1817880593240261, "decode.acc_seg": 92.77172088623047, "aux.loss_ce": 0.11073905676603317, "aux.acc_seg": 88.29975128173828, "time": 1.1146272897720337, "iter": 63000, "memory": 8704, "step": 63000} +{"lr": 0.006406997882651326, "data_time": 0.007494282722473144, "loss": 0.3617233604192734, "decode.loss_ce": 0.22458215355873107, "decode.acc_seg": 90.00524139404297, "aux.loss_ce": 0.13714120611548425, "aux.acc_seg": 86.38056182861328, "time": 1.1147794008255005, "iter": 63050, "memory": 8703, "step": 63050} +{"lr": 0.006404070371308436, "data_time": 0.005601572990417481, "loss": 0.4806241273880005, "decode.loss_ce": 0.30424564629793166, "decode.acc_seg": 95.17853546142578, "aux.loss_ce": 0.17637848779559134, "aux.acc_seg": 88.29981231689453, "time": 1.115157675743103, "iter": 63100, "memory": 8704, "step": 63100} +{"lr": 0.006401142708903264, "data_time": 0.00720221996307373, "loss": 0.29793755859136584, "decode.loss_ce": 0.1798058643937111, "decode.acc_seg": 93.10086059570312, "aux.loss_ce": 0.11813169494271278, "aux.acc_seg": 80.05892181396484, "time": 1.1238939762115479, "iter": 63150, "memory": 8703, "step": 63150} +{"lr": 0.006398214895350022, "data_time": 0.006661796569824218, "loss": 0.3744907185435295, "decode.loss_ce": 0.2210771095007658, "decode.acc_seg": 93.94459533691406, "aux.loss_ce": 0.1534136038273573, "aux.acc_seg": 82.051025390625, "time": 1.1163135051727295, "iter": 63200, "memory": 8704, "step": 63200} +{"lr": 0.006395286930562829, "data_time": 0.007052397727966309, "loss": 0.44703049659729005, "decode.loss_ce": 0.28944984897971154, "decode.acc_seg": 91.60041809082031, "aux.loss_ce": 0.1575806610286236, "aux.acc_seg": 89.97236633300781, "time": 1.1163724660873413, "iter": 63250, "memory": 8703, "step": 63250} +{"lr": 0.006392358814455706, "data_time": 0.008313703536987304, "loss": 0.42154214531183243, "decode.loss_ce": 0.2459815412759781, "decode.acc_seg": 93.88910675048828, "aux.loss_ce": 0.175560599565506, "aux.acc_seg": 91.1124496459961, "time": 1.1171602487564087, "iter": 63300, "memory": 8703, "step": 63300} +{"lr": 0.006389430546942591, "data_time": 0.006396174430847168, "loss": 0.45530818700790404, "decode.loss_ce": 0.27488023415207863, "decode.acc_seg": 95.61748504638672, "aux.loss_ce": 0.18042795583605767, "aux.acc_seg": 90.0061264038086, "time": 1.1162715673446655, "iter": 63350, "memory": 8705, "step": 63350} +{"lr": 0.00638650212793732, "data_time": 0.006394600868225098, "loss": 0.46552451848983767, "decode.loss_ce": 0.27700449526309967, "decode.acc_seg": 92.69377136230469, "aux.loss_ce": 0.18852002546191216, "aux.acc_seg": 91.89358520507812, "time": 1.1154264211654663, "iter": 63400, "memory": 8704, "step": 63400} +{"lr": 0.006383573557353635, "data_time": 0.0064013004302978516, "loss": 0.4175383597612381, "decode.loss_ce": 0.25133970007300377, "decode.acc_seg": 97.57272338867188, "aux.loss_ce": 0.16619865000247955, "aux.acc_seg": 96.33556365966797, "time": 1.1132413387298583, "iter": 63450, "memory": 8704, "step": 63450} +{"lr": 0.006380644835105183, "data_time": 0.007147574424743652, "loss": 0.3825809173285961, "decode.loss_ce": 0.2455139145255089, "decode.acc_seg": 98.27149200439453, "aux.loss_ce": 0.13706700671464206, "aux.acc_seg": 98.06448364257812, "time": 1.1185802459716796, "iter": 63500, "memory": 8703, "step": 63500} +{"lr": 0.006377715961105529, "data_time": 0.005255341529846191, "loss": 0.40172941982746124, "decode.loss_ce": 0.23710717558860778, "decode.acc_seg": 94.81048583984375, "aux.loss_ce": 0.1646222472190857, "aux.acc_seg": 91.5580062866211, "time": 1.1142831325531006, "iter": 63550, "memory": 8704, "step": 63550} +{"lr": 0.006374786935268134, "data_time": 0.00742337703704834, "loss": 0.4727055221796036, "decode.loss_ce": 0.29930220246315004, "decode.acc_seg": 96.39752197265625, "aux.loss_ce": 0.17340331822633742, "aux.acc_seg": 90.28936767578125, "time": 1.115838384628296, "iter": 63600, "memory": 8704, "step": 63600} +{"lr": 0.006371857757506368, "data_time": 0.007639074325561523, "loss": 0.38724336922168734, "decode.loss_ce": 0.2438657283782959, "decode.acc_seg": 92.985595703125, "aux.loss_ce": 0.1433776393532753, "aux.acc_seg": 92.70470428466797, "time": 1.1171634674072266, "iter": 63650, "memory": 8703, "step": 63650} +{"lr": 0.006368928427733498, "data_time": 0.0054875373840332035, "loss": 0.43984389007091523, "decode.loss_ce": 0.2587836876511574, "decode.acc_seg": 96.85694885253906, "aux.loss_ce": 0.1810602031648159, "aux.acc_seg": 92.10772705078125, "time": 1.117551851272583, "iter": 63700, "memory": 8703, "step": 63700} +{"lr": 0.00636599894586271, "data_time": 0.005252742767333984, "loss": 0.5160393714904785, "decode.loss_ce": 0.2996366247534752, "decode.acc_seg": 93.6112060546875, "aux.loss_ce": 0.2164027474820614, "aux.acc_seg": 88.16820526123047, "time": 1.1112558603286744, "iter": 63750, "memory": 8704, "step": 63750} +{"lr": 0.006363069311807078, "data_time": 0.007021164894104004, "loss": 0.5735264778137207, "decode.loss_ce": 0.3545555457472801, "decode.acc_seg": 90.32411193847656, "aux.loss_ce": 0.21897092908620835, "aux.acc_seg": 79.4446792602539, "time": 1.1171953201293945, "iter": 63800, "memory": 8703, "step": 63800} +{"lr": 0.006360139525479605, "data_time": 0.006379151344299316, "loss": 0.2922674879431725, "decode.loss_ce": 0.18196039274334908, "decode.acc_seg": 88.62100219726562, "aux.loss_ce": 0.11030709519982337, "aux.acc_seg": 86.65055847167969, "time": 1.1134727001190186, "iter": 63850, "memory": 8703, "step": 63850} +{"lr": 0.006357209586793183, "data_time": 0.007549309730529785, "loss": 0.43776859194040296, "decode.loss_ce": 0.28334152400493623, "decode.acc_seg": 96.72470092773438, "aux.loss_ce": 0.15442707017064095, "aux.acc_seg": 93.00994873046875, "time": 1.1156550645828247, "iter": 63900, "memory": 8703, "step": 63900} +{"lr": 0.006354279495660607, "data_time": 0.005427932739257813, "loss": 0.39710891991853714, "decode.loss_ce": 0.2307419955730438, "decode.acc_seg": 91.85352325439453, "aux.loss_ce": 0.16636692658066748, "aux.acc_seg": 88.63932037353516, "time": 1.116053009033203, "iter": 63950, "memory": 8703, "step": 63950} +{"lr": 0.006351349251994578, "data_time": 0.007251453399658203, "loss": 0.4662444844841957, "decode.loss_ce": 0.28696931302547457, "decode.acc_seg": 87.12005615234375, "aux.loss_ce": 0.17927517145872116, "aux.acc_seg": 79.61266326904297, "time": 1.1162461519241333, "iter": 64000, "memory": 8703, "step": 64000} +{"aAcc": 93.15, "mIoU": 63.83, "mAcc": 72.58, "data_time": 0.003926773363359759, "time": 0.2708095580379115, "step": 64000} +{"lr": 0.006348418855707714, "data_time": 0.007770228385925293, "loss": 0.3529867321252823, "decode.loss_ce": 0.22092354744672776, "decode.acc_seg": 95.07255554199219, "aux.loss_ce": 0.1320631816983223, "aux.acc_seg": 93.95916748046875, "time": 1.1133630990982055, "iter": 64050, "memory": 8703, "step": 64050} +{"lr": 0.006345488306712526, "data_time": 0.005551910400390625, "loss": 0.41967101842164994, "decode.loss_ce": 0.2548895858228207, "decode.acc_seg": 96.6560287475586, "aux.loss_ce": 0.16478143408894538, "aux.acc_seg": 95.83120727539062, "time": 1.109876036643982, "iter": 64100, "memory": 8704, "step": 64100} +{"lr": 0.006342557604921425, "data_time": 0.006598925590515137, "loss": 0.2928970456123352, "decode.loss_ce": 0.16056110188364983, "decode.acc_seg": 97.55401611328125, "aux.loss_ce": 0.13233594596385956, "aux.acc_seg": 94.68319702148438, "time": 1.1107197761535645, "iter": 64150, "memory": 8703, "step": 64150} +{"lr": 0.00633962675024674, "data_time": 0.005688142776489258, "loss": 0.39445092529058456, "decode.loss_ce": 0.23825787752866745, "decode.acc_seg": 93.03639221191406, "aux.loss_ce": 0.1561930447816849, "aux.acc_seg": 88.80297088623047, "time": 1.1108470201492309, "iter": 64200, "memory": 8704, "step": 64200} +{"lr": 0.006336695742600687, "data_time": 0.007866549491882324, "loss": 0.34659978598356245, "decode.loss_ce": 0.2124428890645504, "decode.acc_seg": 87.46826934814453, "aux.loss_ce": 0.13415690138936043, "aux.acc_seg": 85.23578643798828, "time": 1.1134685277938843, "iter": 64250, "memory": 8703, "step": 64250} +{"lr": 0.006333764581895407, "data_time": 0.007625412940979004, "loss": 0.36656322330236435, "decode.loss_ce": 0.2228493273258209, "decode.acc_seg": 88.91251373291016, "aux.loss_ce": 0.1437138918787241, "aux.acc_seg": 79.81834411621094, "time": 1.1134971380233765, "iter": 64300, "memory": 8704, "step": 64300} +{"lr": 0.00633083326804292, "data_time": 0.0072541475296020504, "loss": 0.4740771159529686, "decode.loss_ce": 0.2933223582804203, "decode.acc_seg": 88.26007843017578, "aux.loss_ce": 0.18075475730001928, "aux.acc_seg": 80.44935607910156, "time": 1.1151527404785155, "iter": 64350, "memory": 8703, "step": 64350} +{"lr": 0.00632790180095517, "data_time": 0.008400654792785645, "loss": 0.33981841802597046, "decode.loss_ce": 0.21604504063725471, "decode.acc_seg": 90.07563781738281, "aux.loss_ce": 0.12377337515354156, "aux.acc_seg": 79.97386169433594, "time": 1.1224869966506958, "iter": 64400, "memory": 8703, "step": 64400} +{"lr": 0.006324970180543996, "data_time": 0.006338334083557129, "loss": 0.37961612790822985, "decode.loss_ce": 0.22880212515592574, "decode.acc_seg": 96.391357421875, "aux.loss_ce": 0.15081399716436864, "aux.acc_seg": 95.48390197753906, "time": 1.1166567087173462, "iter": 64450, "memory": 8703, "step": 64450} +{"lr": 0.00632203840672114, "data_time": 0.006995153427124023, "loss": 0.6083626911044121, "decode.loss_ce": 0.3667237512767315, "decode.acc_seg": 83.33116912841797, "aux.loss_ce": 0.2416389413177967, "aux.acc_seg": 76.54196166992188, "time": 1.1164867639541627, "iter": 64500, "memory": 8704, "step": 64500} +{"lr": 0.0063191064793982465, "data_time": 0.007183837890625, "loss": 0.5143185958266259, "decode.loss_ce": 0.32026777490973474, "decode.acc_seg": 95.08272552490234, "aux.loss_ce": 0.1940508209168911, "aux.acc_seg": 94.58096313476562, "time": 1.1192674398422242, "iter": 64550, "memory": 8703, "step": 64550} +{"lr": 0.006316174398486867, "data_time": 0.006427145004272461, "loss": 0.4746183976531029, "decode.loss_ce": 0.2898738943040371, "decode.acc_seg": 83.45419311523438, "aux.loss_ce": 0.18474450670182704, "aux.acc_seg": 66.2195053100586, "time": 1.1168600797653199, "iter": 64600, "memory": 8703, "step": 64600} +{"lr": 0.0063132421638984445, "data_time": 0.005855727195739746, "loss": 0.5935914248228074, "decode.loss_ce": 0.3944834411144257, "decode.acc_seg": 77.40599060058594, "aux.loss_ce": 0.19910797849297523, "aux.acc_seg": 78.36888122558594, "time": 1.1107630968093871, "iter": 64650, "memory": 8704, "step": 64650} +{"lr": 0.006310309775544339, "data_time": 0.006293010711669922, "loss": 0.4652654454112053, "decode.loss_ce": 0.29127376191318033, "decode.acc_seg": 87.28904724121094, "aux.loss_ce": 0.17399168238043786, "aux.acc_seg": 83.10050964355469, "time": 1.1154978275299072, "iter": 64700, "memory": 8704, "step": 64700} +{"lr": 0.006307377233335805, "data_time": 0.005559372901916504, "loss": 0.45149656385183334, "decode.loss_ce": 0.28157750964164735, "decode.acc_seg": 93.16558837890625, "aux.loss_ce": 0.16991905197501184, "aux.acc_seg": 92.12398529052734, "time": 1.1109041929244996, "iter": 64750, "memory": 8704, "step": 64750} +{"lr": 0.006304444537184002, "data_time": 0.006985688209533691, "loss": 0.43608119934797285, "decode.loss_ce": 0.2694229319691658, "decode.acc_seg": 93.48137664794922, "aux.loss_ce": 0.166658266633749, "aux.acc_seg": 91.46683502197266, "time": 1.1101515293121338, "iter": 64800, "memory": 8704, "step": 64800} +{"lr": 0.0063015116869999865, "data_time": 0.006710219383239746, "loss": 0.6445443749427795, "decode.loss_ce": 0.416382896900177, "decode.acc_seg": 92.18965911865234, "aux.loss_ce": 0.22816147655248642, "aux.acc_seg": 80.780029296875, "time": 1.1103302717208863, "iter": 64850, "memory": 8705, "step": 64850} +{"lr": 0.00629857868269472, "data_time": 0.007780766487121582, "loss": 0.5327273175120354, "decode.loss_ce": 0.32755355834960936, "decode.acc_seg": 94.1192626953125, "aux.loss_ce": 0.205173759162426, "aux.acc_seg": 91.92352294921875, "time": 1.1126885652542113, "iter": 64900, "memory": 8704, "step": 64900} +{"lr": 0.006295645524179069, "data_time": 0.0075114727020263675, "loss": 0.33483226001262667, "decode.loss_ce": 0.20972374603152275, "decode.acc_seg": 90.77981567382812, "aux.loss_ce": 0.12510851509869098, "aux.acc_seg": 87.13275146484375, "time": 1.1204633474349976, "iter": 64950, "memory": 8704, "step": 64950} +{"lr": 0.006292712211363794, "data_time": 0.007640933990478516, "loss": 0.4837836027145386, "decode.loss_ce": 0.303305572271347, "decode.acc_seg": 94.03887176513672, "aux.loss_ce": 0.18047803193330764, "aux.acc_seg": 91.58576965332031, "time": 1.1179755926132202, "iter": 65000, "memory": 8703, "step": 65000} +{"lr": 0.006289778744159563, "data_time": 0.008429598808288575, "loss": 0.42735491544008253, "decode.loss_ce": 0.2522895708680153, "decode.acc_seg": 84.93480682373047, "aux.loss_ce": 0.17506534606218338, "aux.acc_seg": 74.22383117675781, "time": 1.1211854696273804, "iter": 65050, "memory": 8704, "step": 65050} +{"lr": 0.006286845122476948, "data_time": 0.008044004440307617, "loss": 0.41015055030584335, "decode.loss_ce": 0.24532054960727692, "decode.acc_seg": 97.293212890625, "aux.loss_ce": 0.16482999697327613, "aux.acc_seg": 92.02957153320312, "time": 1.1197565793991089, "iter": 65100, "memory": 8704, "step": 65100} +{"lr": 0.006283911346226413, "data_time": 0.007273387908935547, "loss": 0.37958272248506547, "decode.loss_ce": 0.24990665018558503, "decode.acc_seg": 93.38550567626953, "aux.loss_ce": 0.12967606782913207, "aux.acc_seg": 91.72331237792969, "time": 1.1155452251434326, "iter": 65150, "memory": 8704, "step": 65150} +{"lr": 0.006280977415318324, "data_time": 0.009180831909179687, "loss": 0.34792899191379545, "decode.loss_ce": 0.1954278714954853, "decode.acc_seg": 96.13233947753906, "aux.loss_ce": 0.152501118183136, "aux.acc_seg": 87.23404693603516, "time": 1.1195010900497437, "iter": 65200, "memory": 8703, "step": 65200} +{"lr": 0.0062780433296629546, "data_time": 0.006552934646606445, "loss": 0.4157870575785637, "decode.loss_ce": 0.2670438900589943, "decode.acc_seg": 95.24879455566406, "aux.loss_ce": 0.1487431652843952, "aux.acc_seg": 94.21653747558594, "time": 1.1140336036682128, "iter": 65250, "memory": 8703, "step": 65250} +{"lr": 0.006275109089170474, "data_time": 0.006981778144836426, "loss": 0.5441681832075119, "decode.loss_ce": 0.3491027921438217, "decode.acc_seg": 93.46586608886719, "aux.loss_ce": 0.19506538137793542, "aux.acc_seg": 90.78260803222656, "time": 1.1153895854949951, "iter": 65300, "memory": 8704, "step": 65300} +{"lr": 0.006272174693750958, "data_time": 0.006409788131713867, "loss": 0.43091893196105957, "decode.loss_ce": 0.2579468905925751, "decode.acc_seg": 84.60426330566406, "aux.loss_ce": 0.17297204211354256, "aux.acc_seg": 79.15299224853516, "time": 1.116538119316101, "iter": 65350, "memory": 8704, "step": 65350} +{"lr": 0.006269240143314377, "data_time": 0.008074140548706055, "loss": 0.33569621592760085, "decode.loss_ce": 0.20171183794736863, "decode.acc_seg": 91.57173919677734, "aux.loss_ce": 0.13398437723517417, "aux.acc_seg": 90.04898071289062, "time": 1.1165246963500977, "iter": 65400, "memory": 8703, "step": 65400} +{"lr": 0.006266305437770601, "data_time": 0.0074601411819458004, "loss": 0.41741537153720853, "decode.loss_ce": 0.25933116003870965, "decode.acc_seg": 95.73223876953125, "aux.loss_ce": 0.15808420889079572, "aux.acc_seg": 95.09506225585938, "time": 1.1162063598632812, "iter": 65450, "memory": 8704, "step": 65450} +{"lr": 0.006263370577029398, "data_time": 0.006644892692565918, "loss": 0.4122860923409462, "decode.loss_ce": 0.24080977439880372, "decode.acc_seg": 91.38157653808594, "aux.loss_ce": 0.17147631123661994, "aux.acc_seg": 83.68326568603516, "time": 1.1140347003936768, "iter": 65500, "memory": 8704, "step": 65500} +{"lr": 0.006260435561000444, "data_time": 0.004981899261474609, "loss": 0.41308562457561493, "decode.loss_ce": 0.2352706551551819, "decode.acc_seg": 81.97828674316406, "aux.loss_ce": 0.17781496196985244, "aux.acc_seg": 68.37914276123047, "time": 1.109574055671692, "iter": 65550, "memory": 8704, "step": 65550} +{"lr": 0.006257500389593302, "data_time": 0.006712007522583008, "loss": 0.6486554279923439, "decode.loss_ce": 0.4076803602278233, "decode.acc_seg": 88.56575775146484, "aux.loss_ce": 0.2409750811755657, "aux.acc_seg": 88.21194458007812, "time": 1.1103865385055542, "iter": 65600, "memory": 8703, "step": 65600} +{"lr": 0.006254565062717454, "data_time": 0.00957643985748291, "loss": 0.33516835868358613, "decode.loss_ce": 0.20039138570427895, "decode.acc_seg": 93.69843292236328, "aux.loss_ce": 0.13477697521448134, "aux.acc_seg": 92.39832305908203, "time": 1.121397352218628, "iter": 65650, "memory": 8703, "step": 65650} +{"lr": 0.006251629580282263, "data_time": 0.007497406005859375, "loss": 0.331832692027092, "decode.loss_ce": 0.20442869514226913, "decode.acc_seg": 94.19498443603516, "aux.loss_ce": 0.12740399017930032, "aux.acc_seg": 91.56143951416016, "time": 1.12129487991333, "iter": 65700, "memory": 8704, "step": 65700} +{"lr": 0.006248693942196996, "data_time": 0.006731629371643066, "loss": 0.3915183380246162, "decode.loss_ce": 0.24508728086948395, "decode.acc_seg": 95.3115463256836, "aux.loss_ce": 0.14643105566501619, "aux.acc_seg": 90.61088562011719, "time": 1.121366262435913, "iter": 65750, "memory": 8703, "step": 65750} +{"lr": 0.006245758148370828, "data_time": 0.006200122833251953, "loss": 0.4245800837874413, "decode.loss_ce": 0.26146689653396604, "decode.acc_seg": 87.9892349243164, "aux.loss_ce": 0.16311318725347518, "aux.acc_seg": 87.59790802001953, "time": 1.1108728647232056, "iter": 65800, "memory": 8704, "step": 65800} +{"lr": 0.006242822198712816, "data_time": 0.006158232688903809, "loss": 0.35130868554115297, "decode.loss_ce": 0.21061060428619385, "decode.acc_seg": 97.26873779296875, "aux.loss_ce": 0.1406980812549591, "aux.acc_seg": 94.28704071044922, "time": 1.1097148656845093, "iter": 65850, "memory": 8703, "step": 65850} +{"lr": 0.006239886093131927, "data_time": 0.007748532295227051, "loss": 0.3950420439243317, "decode.loss_ce": 0.24425226897001268, "decode.acc_seg": 84.75723266601562, "aux.loss_ce": 0.1507897734642029, "aux.acc_seg": 84.09137725830078, "time": 1.1151937007904054, "iter": 65900, "memory": 8703, "step": 65900} +{"lr": 0.006236949831537022, "data_time": 0.00872800350189209, "loss": 0.4726463407278061, "decode.loss_ce": 0.30350003838539125, "decode.acc_seg": 95.13111114501953, "aux.loss_ce": 0.16914629824459554, "aux.acc_seg": 85.60078430175781, "time": 1.1153446435928345, "iter": 65950, "memory": 8704, "step": 65950} +{"lr": 0.006234013413836869, "data_time": 0.006341481208801269, "loss": 0.5111641615629197, "decode.loss_ce": 0.2890945844352245, "decode.acc_seg": 95.07588958740234, "aux.loss_ce": 0.22206957191228865, "aux.acc_seg": 93.78852081298828, "time": 1.1139047145843506, "iter": 66000, "memory": 8704, "step": 66000} +{"lr": 0.006231076839940123, "data_time": 0.00680692195892334, "loss": 0.4389356017112732, "decode.loss_ce": 0.2824706479907036, "decode.acc_seg": 91.15447998046875, "aux.loss_ce": 0.15646495297551155, "aux.acc_seg": 83.7484359741211, "time": 1.1178168296813964, "iter": 66050, "memory": 8704, "step": 66050} +{"lr": 0.00622814010975534, "data_time": 0.006426620483398438, "loss": 0.4205967873334885, "decode.loss_ce": 0.26515732184052465, "decode.acc_seg": 88.93006134033203, "aux.loss_ce": 0.15543946698307992, "aux.acc_seg": 87.87275695800781, "time": 1.1135795831680297, "iter": 66100, "memory": 8704, "step": 66100} +{"lr": 0.006225203223190975, "data_time": 0.007775235176086426, "loss": 0.39369902908802035, "decode.loss_ce": 0.24469103962182998, "decode.acc_seg": 86.28807067871094, "aux.loss_ce": 0.1490079902112484, "aux.acc_seg": 84.47430419921875, "time": 1.1202511548995973, "iter": 66150, "memory": 8704, "step": 66150} +{"lr": 0.006222266180155383, "data_time": 0.00729212760925293, "loss": 0.3455081894993782, "decode.loss_ce": 0.2100507266819477, "decode.acc_seg": 94.73673248291016, "aux.loss_ce": 0.1354574616998434, "aux.acc_seg": 92.75372314453125, "time": 1.1156019687652587, "iter": 66200, "memory": 8704, "step": 66200} +{"lr": 0.006219328980556816, "data_time": 0.007922792434692382, "loss": 0.41379824429750445, "decode.loss_ce": 0.23625779822468757, "decode.acc_seg": 89.43150329589844, "aux.loss_ce": 0.17754044458270074, "aux.acc_seg": 87.590087890625, "time": 1.1166479349136353, "iter": 66250, "memory": 8703, "step": 66250} +{"lr": 0.006216391624303416, "data_time": 0.006717538833618164, "loss": 0.45645775496959684, "decode.loss_ce": 0.2689228817820549, "decode.acc_seg": 92.34574127197266, "aux.loss_ce": 0.18753487318754197, "aux.acc_seg": 87.93354034423828, "time": 1.1163594484329225, "iter": 66300, "memory": 8704, "step": 66300} +{"lr": 0.00621345411130323, "data_time": 0.006300449371337891, "loss": 0.3968279376626015, "decode.loss_ce": 0.22493500858545304, "decode.acc_seg": 96.72335052490234, "aux.loss_ce": 0.17189292646944523, "aux.acc_seg": 90.70769500732422, "time": 1.114881443977356, "iter": 66350, "memory": 8703, "step": 66350} +{"lr": 0.006210516441464198, "data_time": 0.006318807601928711, "loss": 0.2980155684053898, "decode.loss_ce": 0.1914702408015728, "decode.acc_seg": 89.81266021728516, "aux.loss_ce": 0.10654532685875892, "aux.acc_seg": 88.26420593261719, "time": 1.113011121749878, "iter": 66400, "memory": 8704, "step": 66400} +{"lr": 0.00620757861469416, "data_time": 0.007936596870422363, "loss": 0.44279519021511077, "decode.loss_ce": 0.26396190375089645, "decode.acc_seg": 97.65078735351562, "aux.loss_ce": 0.17883328720927238, "aux.acc_seg": 93.15853881835938, "time": 1.1143277645111085, "iter": 66450, "memory": 8703, "step": 66450} +{"lr": 0.00620464063090085, "data_time": 0.00554347038269043, "loss": 0.3421955704689026, "decode.loss_ce": 0.19041010960936547, "decode.acc_seg": 95.66474151611328, "aux.loss_ce": 0.15178545489907264, "aux.acc_seg": 95.54994201660156, "time": 1.1142266511917114, "iter": 66500, "memory": 8704, "step": 66500} +{"lr": 0.006201702489991898, "data_time": 0.007842922210693359, "loss": 0.4992337942123413, "decode.loss_ce": 0.2864754393696785, "decode.acc_seg": 90.57693481445312, "aux.loss_ce": 0.2127583622932434, "aux.acc_seg": 82.05667877197266, "time": 1.116851234436035, "iter": 66550, "memory": 8704, "step": 66550} +{"lr": 0.006198764191874826, "data_time": 0.006846094131469726, "loss": 0.5247306406497956, "decode.loss_ce": 0.31228598952293396, "decode.acc_seg": 94.11302947998047, "aux.loss_ce": 0.21244464665651322, "aux.acc_seg": 92.18311309814453, "time": 1.1158257961273192, "iter": 66600, "memory": 8703, "step": 66600} +{"lr": 0.0061958257364570675, "data_time": 0.006037616729736328, "loss": 0.39199747890233994, "decode.loss_ce": 0.2480894923210144, "decode.acc_seg": 79.20067596435547, "aux.loss_ce": 0.14390798658132553, "aux.acc_seg": 80.76216125488281, "time": 1.1103643417358398, "iter": 66650, "memory": 8704, "step": 66650} +{"lr": 0.006192887123645937, "data_time": 0.005991435050964356, "loss": 0.4749165654182434, "decode.loss_ce": 0.26115363612771036, "decode.acc_seg": 90.96927642822266, "aux.loss_ce": 0.21376293450593947, "aux.acc_seg": 87.94174194335938, "time": 1.1135104417800903, "iter": 66700, "memory": 8704, "step": 66700} +{"lr": 0.0061899483533486505, "data_time": 0.006897377967834473, "loss": 0.4349316582083702, "decode.loss_ce": 0.26427107974886893, "decode.acc_seg": 95.05379486083984, "aux.loss_ce": 0.17066057510674, "aux.acc_seg": 94.18766784667969, "time": 1.1184867858886718, "iter": 66750, "memory": 8704, "step": 66750} +{"lr": 0.0061870094254723165, "data_time": 0.006683039665222168, "loss": 0.4766890361905098, "decode.loss_ce": 0.2996123306453228, "decode.acc_seg": 88.32740783691406, "aux.loss_ce": 0.17707670778036116, "aux.acc_seg": 87.13550567626953, "time": 1.1162360191345215, "iter": 66800, "memory": 8703, "step": 66800} +{"lr": 0.006184070339923934, "data_time": 0.0075290918350219725, "loss": 0.40689886212348936, "decode.loss_ce": 0.25761910900473595, "decode.acc_seg": 93.73218536376953, "aux.loss_ce": 0.1492797490209341, "aux.acc_seg": 91.9946517944336, "time": 1.1153383255004883, "iter": 66850, "memory": 8704, "step": 66850} +{"lr": 0.00618113109661042, "data_time": 0.006864142417907715, "loss": 0.31915874034166336, "decode.loss_ce": 0.19821211695671082, "decode.acc_seg": 89.32766723632812, "aux.loss_ce": 0.12094661593437195, "aux.acc_seg": 86.11788177490234, "time": 1.1145479440689088, "iter": 66900, "memory": 8704, "step": 66900} +{"lr": 0.0061781916954385535, "data_time": 0.005878615379333496, "loss": 0.32283753901720047, "decode.loss_ce": 0.18706043511629106, "decode.acc_seg": 91.87067413330078, "aux.loss_ce": 0.1357771076261997, "aux.acc_seg": 82.43733215332031, "time": 1.1116368770599365, "iter": 66950, "memory": 8703, "step": 66950} +{"lr": 0.006175252136315036, "data_time": 0.006481313705444336, "loss": 0.3503522425889969, "decode.loss_ce": 0.20143647640943527, "decode.acc_seg": 87.04515838623047, "aux.loss_ce": 0.14891576170921325, "aux.acc_seg": 79.59060668945312, "time": 1.1133597373962403, "iter": 67000, "memory": 8703, "step": 67000} +{"lr": 0.006172312419146449, "data_time": 0.008449602127075195, "loss": 0.4037524625658989, "decode.loss_ce": 0.24878355413675307, "decode.acc_seg": 94.65166473388672, "aux.loss_ce": 0.15496890842914582, "aux.acc_seg": 95.93479919433594, "time": 1.1199108600616454, "iter": 67050, "memory": 8703, "step": 67050} +{"lr": 0.006169372543839273, "data_time": 0.005468177795410156, "loss": 0.3542300745844841, "decode.loss_ce": 0.21345950961112975, "decode.acc_seg": 92.51759338378906, "aux.loss_ce": 0.14077056311070918, "aux.acc_seg": 81.12773895263672, "time": 1.1087658405303955, "iter": 67100, "memory": 8703, "step": 67100} +{"lr": 0.006166432510299877, "data_time": 0.007809114456176758, "loss": 0.5715409964323044, "decode.loss_ce": 0.35979683697223663, "decode.acc_seg": 92.29271697998047, "aux.loss_ce": 0.21174414940178393, "aux.acc_seg": 85.13399505615234, "time": 1.1187603712081908, "iter": 67150, "memory": 8704, "step": 67150} +{"lr": 0.0061634923184345335, "data_time": 0.006121492385864258, "loss": 0.33508344888687136, "decode.loss_ce": 0.21243049800395966, "decode.acc_seg": 97.6044921875, "aux.loss_ce": 0.12265295535326004, "aux.acc_seg": 94.37357330322266, "time": 1.1131664752960204, "iter": 67200, "memory": 8703, "step": 67200} +{"lr": 0.006160551968149403, "data_time": 0.007889389991760254, "loss": 0.44717355668544767, "decode.loss_ce": 0.2725923880934715, "decode.acc_seg": 95.7591323852539, "aux.loss_ce": 0.1745811678469181, "aux.acc_seg": 94.7866439819336, "time": 1.1199045419692992, "iter": 67250, "memory": 8704, "step": 67250} +{"lr": 0.006157611459350547, "data_time": 0.005849599838256836, "loss": 0.4496027670800686, "decode.loss_ce": 0.27149627953767774, "decode.acc_seg": 96.27144622802734, "aux.loss_ce": 0.1781064871698618, "aux.acc_seg": 95.73719787597656, "time": 1.117990207672119, "iter": 67300, "memory": 8703, "step": 67300} +{"lr": 0.006154670791943907, "data_time": 0.007339859008789062, "loss": 0.35814379453659057, "decode.loss_ce": 0.2055123746395111, "decode.acc_seg": 88.0484848022461, "aux.loss_ce": 0.15263142436742783, "aux.acc_seg": 84.17339324951172, "time": 1.1196023941040039, "iter": 67350, "memory": 8704, "step": 67350} +{"lr": 0.0061517299658353335, "data_time": 0.007877588272094727, "loss": 0.42087039053440095, "decode.loss_ce": 0.2678185850381851, "decode.acc_seg": 91.44424438476562, "aux.loss_ce": 0.15305180251598358, "aux.acc_seg": 88.4137954711914, "time": 1.1166948318481444, "iter": 67400, "memory": 8703, "step": 67400} +{"lr": 0.006148788980930552, "data_time": 0.007317876815795899, "loss": 0.367284306883812, "decode.loss_ce": 0.23464876562356948, "decode.acc_seg": 94.52069091796875, "aux.loss_ce": 0.13263553641736509, "aux.acc_seg": 92.96308898925781, "time": 1.11493878364563, "iter": 67450, "memory": 8705, "step": 67450} +{"lr": 0.0061458478371352035, "data_time": 0.005950045585632324, "loss": 0.3672099277377129, "decode.loss_ce": 0.23749786913394927, "decode.acc_seg": 90.60490417480469, "aux.loss_ce": 0.12971205152571202, "aux.acc_seg": 86.77278900146484, "time": 1.1165820360183716, "iter": 67500, "memory": 8703, "step": 67500} +{"lr": 0.006142906534354804, "data_time": 0.00615692138671875, "loss": 0.6942714035511017, "decode.loss_ce": 0.4786657005548477, "decode.acc_seg": 79.35053253173828, "aux.loss_ce": 0.2156057022511959, "aux.acc_seg": 67.17745208740234, "time": 1.1127326726913451, "iter": 67550, "memory": 8703, "step": 67550} +{"lr": 0.006139965072494762, "data_time": 0.006887626647949219, "loss": 0.4319799244403839, "decode.loss_ce": 0.25496070012450217, "decode.acc_seg": 92.99689483642578, "aux.loss_ce": 0.1770192164927721, "aux.acc_seg": 91.78622436523438, "time": 1.1173658847808838, "iter": 67600, "memory": 8703, "step": 67600} +{"lr": 0.006137023451460396, "data_time": 0.005363917350769043, "loss": 0.4549966290593147, "decode.loss_ce": 0.28168047666549684, "decode.acc_seg": 87.99190521240234, "aux.loss_ce": 0.17331614568829537, "aux.acc_seg": 85.2824478149414, "time": 1.107131290435791, "iter": 67650, "memory": 8703, "step": 67650} +{"lr": 0.006134081671156901, "data_time": 0.007905149459838867, "loss": 0.41436286419630053, "decode.loss_ce": 0.2544875264167786, "decode.acc_seg": 84.2744140625, "aux.loss_ce": 0.1598753347992897, "aux.acc_seg": 81.91261291503906, "time": 1.1156789064407349, "iter": 67700, "memory": 8704, "step": 67700} +{"lr": 0.006131139731489373, "data_time": 0.006597113609313965, "loss": 0.31263255178928373, "decode.loss_ce": 0.18991715162992479, "decode.acc_seg": 87.73186492919922, "aux.loss_ce": 0.12271540015935897, "aux.acc_seg": 79.81846618652344, "time": 1.1128721237182617, "iter": 67750, "memory": 8703, "step": 67750} +{"lr": 0.006128197632362783, "data_time": 0.007750964164733887, "loss": 0.3873937875032425, "decode.loss_ce": 0.2376166269183159, "decode.acc_seg": 94.91820526123047, "aux.loss_ce": 0.14977715648710727, "aux.acc_seg": 91.87625122070312, "time": 1.112082028388977, "iter": 67800, "memory": 8704, "step": 67800} +{"lr": 0.006125255373682021, "data_time": 0.005673265457153321, "loss": 0.44262622743844987, "decode.loss_ce": 0.2651072800159454, "decode.acc_seg": 93.68145751953125, "aux.loss_ce": 0.1775189507752657, "aux.acc_seg": 93.0400161743164, "time": 1.1160979986190795, "iter": 67850, "memory": 8704, "step": 67850} +{"lr": 0.006122312955351846, "data_time": 0.007179808616638183, "loss": 0.33304076343774797, "decode.loss_ce": 0.20521748065948486, "decode.acc_seg": 97.17190551757812, "aux.loss_ce": 0.12782328352332115, "aux.acc_seg": 96.54261016845703, "time": 1.1199903726577758, "iter": 67900, "memory": 8703, "step": 67900} +{"lr": 0.006119370377276918, "data_time": 0.007680416107177734, "loss": 0.5231152355670929, "decode.loss_ce": 0.32283365055918695, "decode.acc_seg": 84.65563201904297, "aux.loss_ce": 0.20028158351778985, "aux.acc_seg": 76.70001983642578, "time": 1.1203805208206177, "iter": 67950, "memory": 8704, "step": 67950} +{"lr": 0.006116427639361783, "data_time": 0.005474209785461426, "loss": 0.5369221523404122, "decode.loss_ce": 0.32624967992305753, "decode.acc_seg": 75.72415161132812, "aux.loss_ce": 0.21067246794700623, "aux.acc_seg": 71.21696472167969, "time": 1.1170075178146361, "iter": 68000, "memory": 8704, "step": 68000} +{"lr": 0.006113484741510885, "data_time": 0.0071211099624633786, "loss": 0.5166844457387925, "decode.loss_ce": 0.329284642636776, "decode.acc_seg": 86.43817901611328, "aux.loss_ce": 0.1873997963964939, "aux.acc_seg": 83.21234130859375, "time": 1.1205502986907958, "iter": 68050, "memory": 8703, "step": 68050} +{"lr": 0.006110541683628559, "data_time": 0.0056384563446044925, "loss": 0.4652697786688805, "decode.loss_ce": 0.28568794429302213, "decode.acc_seg": 86.67888641357422, "aux.loss_ce": 0.1795818317681551, "aux.acc_seg": 82.87251281738281, "time": 1.1197316884994506, "iter": 68100, "memory": 8704, "step": 68100} +{"lr": 0.006107598465619019, "data_time": 0.005574083328247071, "loss": 0.666086944937706, "decode.loss_ce": 0.4244280785322189, "decode.acc_seg": 80.23770141601562, "aux.loss_ce": 0.24165887758135796, "aux.acc_seg": 64.68766021728516, "time": 1.1122976541519165, "iter": 68150, "memory": 8704, "step": 68150} +{"lr": 0.006104655087386386, "data_time": 0.006716442108154297, "loss": 0.5413692772388459, "decode.loss_ce": 0.32811421155929565, "decode.acc_seg": 88.12599182128906, "aux.loss_ce": 0.21325506791472434, "aux.acc_seg": 76.87244415283203, "time": 1.1167447805404662, "iter": 68200, "memory": 8703, "step": 68200} +{"lr": 0.006101711548834664, "data_time": 0.007597708702087402, "loss": 0.33792958557605746, "decode.loss_ce": 0.20216967463493346, "decode.acc_seg": 95.9524154663086, "aux.loss_ce": 0.13575990870594978, "aux.acc_seg": 93.67955017089844, "time": 1.1145398616790771, "iter": 68250, "memory": 8704, "step": 68250} +{"lr": 0.006098767849867741, "data_time": 0.005876278877258301, "loss": 0.5094663098454475, "decode.loss_ce": 0.33493382558226586, "decode.acc_seg": 91.07744598388672, "aux.loss_ce": 0.1745324783027172, "aux.acc_seg": 88.53595733642578, "time": 1.1117369174957275, "iter": 68300, "memory": 8704, "step": 68300} +{"lr": 0.006095823990389405, "data_time": 0.007066798210144043, "loss": 0.43722893446683886, "decode.loss_ce": 0.2576404847204685, "decode.acc_seg": 89.32302856445312, "aux.loss_ce": 0.17958844676613808, "aux.acc_seg": 85.30500793457031, "time": 1.118268871307373, "iter": 68350, "memory": 8704, "step": 68350} +{"lr": 0.00609287997030332, "data_time": 0.007958984375, "loss": 0.3463898330926895, "decode.loss_ce": 0.21701048240065574, "decode.acc_seg": 96.18901824951172, "aux.loss_ce": 0.12937935292720795, "aux.acc_seg": 95.66336822509766, "time": 1.1151439189910888, "iter": 68400, "memory": 8704, "step": 68400} +{"lr": 0.006089935789513055, "data_time": 0.00739288330078125, "loss": 0.4315845623612404, "decode.loss_ce": 0.25976970940828326, "decode.acc_seg": 95.87166595458984, "aux.loss_ce": 0.17181484960019588, "aux.acc_seg": 94.12815856933594, "time": 1.1126438140869142, "iter": 68450, "memory": 8703, "step": 68450} +{"lr": 0.006086991447922061, "data_time": 0.008079838752746583, "loss": 0.4304395139217377, "decode.loss_ce": 0.26474843397736547, "decode.acc_seg": 90.25078582763672, "aux.loss_ce": 0.1656910754740238, "aux.acc_seg": 82.51406860351562, "time": 1.1171473026275636, "iter": 68500, "memory": 8703, "step": 68500} +{"lr": 0.0060840469454336785, "data_time": 0.006349635124206543, "loss": 0.33176742643117907, "decode.loss_ce": 0.20794284716248512, "decode.acc_seg": 94.20782470703125, "aux.loss_ce": 0.12382457591593266, "aux.acc_seg": 93.54851531982422, "time": 1.1179322242736816, "iter": 68550, "memory": 8703, "step": 68550} +{"lr": 0.006081102281951138, "data_time": 0.0058586359024047855, "loss": 0.3816750079393387, "decode.loss_ce": 0.2358872748911381, "decode.acc_seg": 93.87238311767578, "aux.loss_ce": 0.1457877352833748, "aux.acc_seg": 91.41063690185547, "time": 1.115973949432373, "iter": 68600, "memory": 8703, "step": 68600} +{"lr": 0.006078157457377562, "data_time": 0.006899213790893555, "loss": 0.5761456578969956, "decode.loss_ce": 0.3754339411854744, "decode.acc_seg": 91.82357788085938, "aux.loss_ce": 0.20071171075105668, "aux.acc_seg": 88.65553283691406, "time": 1.1165595054626465, "iter": 68650, "memory": 8704, "step": 68650} +{"lr": 0.006075212471615954, "data_time": 0.005961084365844726, "loss": 0.4775893360376358, "decode.loss_ce": 0.2643635794520378, "decode.acc_seg": 93.15178680419922, "aux.loss_ce": 0.213225756585598, "aux.acc_seg": 78.56426239013672, "time": 1.117060089111328, "iter": 68700, "memory": 8704, "step": 68700} +{"lr": 0.006072267324569211, "data_time": 0.005417418479919433, "loss": 0.6655374303460121, "decode.loss_ce": 0.3965192332863808, "decode.acc_seg": 91.18289947509766, "aux.loss_ce": 0.26901820227503775, "aux.acc_seg": 68.68870544433594, "time": 1.1130810737609864, "iter": 68750, "memory": 8703, "step": 68750} +{"lr": 0.006069322016140121, "data_time": 0.007537150382995605, "loss": 0.44141619801521303, "decode.loss_ce": 0.29384187757968905, "decode.acc_seg": 69.52285766601562, "aux.loss_ce": 0.14757432416081429, "aux.acc_seg": 67.24344635009766, "time": 1.1186901092529298, "iter": 68800, "memory": 8703, "step": 68800} +{"lr": 0.006066376546231346, "data_time": 0.007234907150268555, "loss": 0.48343495577573775, "decode.loss_ce": 0.2974190354347229, "decode.acc_seg": 95.22583770751953, "aux.loss_ce": 0.18601592518389226, "aux.acc_seg": 93.7903060913086, "time": 1.1136165380477905, "iter": 68850, "memory": 8703, "step": 68850} +{"lr": 0.006063430914745455, "data_time": 0.0070395231246948246, "loss": 0.33971697390079497, "decode.loss_ce": 0.2165690168738365, "decode.acc_seg": 93.54753875732422, "aux.loss_ce": 0.12314795404672622, "aux.acc_seg": 89.89287567138672, "time": 1.1159362316131591, "iter": 68900, "memory": 8704, "step": 68900} +{"lr": 0.006060485121584899, "data_time": 0.0074195384979248045, "loss": 0.33444485515356065, "decode.loss_ce": 0.20395841225981712, "decode.acc_seg": 82.63842010498047, "aux.loss_ce": 0.1304864414036274, "aux.acc_seg": 77.10768127441406, "time": 1.1126203536987305, "iter": 68950, "memory": 8704, "step": 68950} +{"lr": 0.00605753916665201, "data_time": 0.0072116851806640625, "loss": 0.44597731828689574, "decode.loss_ce": 0.24757927767932414, "decode.acc_seg": 96.36071014404297, "aux.loss_ce": 0.19839803948998452, "aux.acc_seg": 95.57392883300781, "time": 1.112269639968872, "iter": 69000, "memory": 8704, "step": 69000} +{"lr": 0.006054593049849008, "data_time": 0.007816958427429199, "loss": 0.3292792603373528, "decode.loss_ce": 0.19274646714329718, "decode.acc_seg": 96.6498031616211, "aux.loss_ce": 0.13653278946876526, "aux.acc_seg": 92.18883514404297, "time": 1.1148987770080567, "iter": 69050, "memory": 8703, "step": 69050} +{"lr": 0.006051646771078006, "data_time": 0.006288671493530273, "loss": 0.3541675299406052, "decode.loss_ce": 0.21636623963713647, "decode.acc_seg": 92.87960815429688, "aux.loss_ce": 0.1378012929111719, "aux.acc_seg": 87.50546264648438, "time": 1.1130830287933349, "iter": 69100, "memory": 8704, "step": 69100} +{"lr": 0.006048700330240998, "data_time": 0.006025052070617676, "loss": 0.2972634494304657, "decode.loss_ce": 0.18035149425268174, "decode.acc_seg": 92.29051971435547, "aux.loss_ce": 0.11691195219755172, "aux.acc_seg": 87.1534194946289, "time": 1.1124696254730224, "iter": 69150, "memory": 8704, "step": 69150} +{"lr": 0.006045753727239871, "data_time": 0.0078104972839355465, "loss": 0.38127913773059846, "decode.loss_ce": 0.22792704328894614, "decode.acc_seg": 88.47103118896484, "aux.loss_ce": 0.15335209295153618, "aux.acc_seg": 81.66764068603516, "time": 1.1150528907775878, "iter": 69200, "memory": 8703, "step": 69200} +{"lr": 0.0060428069619763896, "data_time": 0.008719849586486816, "loss": 0.42945953607559206, "decode.loss_ce": 0.25351744294166567, "decode.acc_seg": 83.14240264892578, "aux.loss_ce": 0.1759420894086361, "aux.acc_seg": 67.8680419921875, "time": 1.1199339389801026, "iter": 69250, "memory": 8704, "step": 69250} +{"lr": 0.006039860034352214, "data_time": 0.007962822914123535, "loss": 0.3980324998497963, "decode.loss_ce": 0.24973404109477998, "decode.acc_seg": 93.53363800048828, "aux.loss_ce": 0.14829844906926154, "aux.acc_seg": 91.2989273071289, "time": 1.116642999649048, "iter": 69300, "memory": 8703, "step": 69300} +{"lr": 0.006036912944268886, "data_time": 0.007923698425292969, "loss": 0.35560363084077834, "decode.loss_ce": 0.21533781439065933, "decode.acc_seg": 96.69718170166016, "aux.loss_ce": 0.14026581533253193, "aux.acc_seg": 96.47138977050781, "time": 1.120524525642395, "iter": 69350, "memory": 8704, "step": 69350} +{"lr": 0.00603396569162784, "data_time": 0.005902552604675293, "loss": 0.330936661362648, "decode.loss_ce": 0.20504771023988724, "decode.acc_seg": 93.97824096679688, "aux.loss_ce": 0.12588895075023174, "aux.acc_seg": 86.02796936035156, "time": 1.1166780710220336, "iter": 69400, "memory": 8703, "step": 69400} +{"lr": 0.006031018276330383, "data_time": 0.006247687339782715, "loss": 0.4333806872367859, "decode.loss_ce": 0.27160519659519194, "decode.acc_seg": 89.40689849853516, "aux.loss_ce": 0.16177549064159394, "aux.acc_seg": 86.70189666748047, "time": 1.1157721281051636, "iter": 69450, "memory": 8703, "step": 69450} +{"lr": 0.006028070698277716, "data_time": 0.006352567672729492, "loss": 0.4167109400033951, "decode.loss_ce": 0.25449901893734933, "decode.acc_seg": 92.00553894042969, "aux.loss_ce": 0.16221193112432958, "aux.acc_seg": 88.6368408203125, "time": 1.1129064321517945, "iter": 69500, "memory": 8704, "step": 69500} +{"lr": 0.006025122957370926, "data_time": 0.006019306182861328, "loss": 0.3906384602189064, "decode.loss_ce": 0.2267189674079418, "decode.acc_seg": 90.85266876220703, "aux.loss_ce": 0.16391949430108071, "aux.acc_seg": 82.21829223632812, "time": 1.1153292655944824, "iter": 69550, "memory": 8704, "step": 69550} +{"lr": 0.006022175053510977, "data_time": 0.007181692123413086, "loss": 0.39863638058304784, "decode.loss_ce": 0.24183306321501732, "decode.acc_seg": 94.60785675048828, "aux.loss_ce": 0.15680331215262414, "aux.acc_seg": 91.54682159423828, "time": 1.1108763217926025, "iter": 69600, "memory": 8704, "step": 69600} +{"lr": 0.006019226986598737, "data_time": 0.005754685401916504, "loss": 0.3704828888177872, "decode.loss_ce": 0.22411365658044816, "decode.acc_seg": 90.04204559326172, "aux.loss_ce": 0.1463692333549261, "aux.acc_seg": 88.68490600585938, "time": 1.1102204084396363, "iter": 69650, "memory": 8704, "step": 69650} +{"lr": 0.0060162787565349405, "data_time": 0.006026554107666016, "loss": 0.4354146674275398, "decode.loss_ce": 0.2668884456157684, "decode.acc_seg": 96.20806121826172, "aux.loss_ce": 0.16852621287107467, "aux.acc_seg": 95.83873748779297, "time": 1.111007285118103, "iter": 69700, "memory": 8704, "step": 69700} +{"lr": 0.0060133303632202125, "data_time": 0.0063251018524169925, "loss": 0.434170363843441, "decode.loss_ce": 0.26107164546847345, "decode.acc_seg": 96.75827026367188, "aux.loss_ce": 0.17309871166944504, "aux.acc_seg": 95.55409240722656, "time": 1.1129472255706787, "iter": 69750, "memory": 8703, "step": 69750} +{"lr": 0.0060103818065550575, "data_time": 0.0055265665054321286, "loss": 0.33766467720270155, "decode.loss_ce": 0.19786577820777893, "decode.acc_seg": 93.48831176757812, "aux.loss_ce": 0.139798903465271, "aux.acc_seg": 90.30227661132812, "time": 1.1105679988861084, "iter": 69800, "memory": 8703, "step": 69800} +{"lr": 0.006007433086439874, "data_time": 0.00693514347076416, "loss": 0.42624358385801314, "decode.loss_ce": 0.25941093266010284, "decode.acc_seg": 94.42189025878906, "aux.loss_ce": 0.16683264821767807, "aux.acc_seg": 94.69330596923828, "time": 1.1148805141448974, "iter": 69850, "memory": 8705, "step": 69850} +{"lr": 0.0060044842027749375, "data_time": 0.006078362464904785, "loss": 0.4224270448088646, "decode.loss_ce": 0.2594072937965393, "decode.acc_seg": 97.21914672851562, "aux.loss_ce": 0.1630197487771511, "aux.acc_seg": 96.92764282226562, "time": 1.112044620513916, "iter": 69900, "memory": 8703, "step": 69900} +{"lr": 0.006001535155460411, "data_time": 0.008204841613769531, "loss": 0.42368234097957613, "decode.loss_ce": 0.23924773260951043, "decode.acc_seg": 97.23332214355469, "aux.loss_ce": 0.1844346046447754, "aux.acc_seg": 94.63570404052734, "time": 1.1173832893371582, "iter": 69950, "memory": 8704, "step": 69950} +{"lr": 0.005998585944396332, "data_time": 0.008591485023498536, "loss": 0.4242443487048149, "decode.loss_ce": 0.25196524560451505, "decode.acc_seg": 96.977294921875, "aux.loss_ce": 0.172279104962945, "aux.acc_seg": 96.33343505859375, "time": 1.1185293436050414, "iter": 70000, "memory": 8704, "step": 70000} +{"lr": 0.005995636569482638, "data_time": 0.007571816444396973, "loss": 0.5814428150653839, "decode.loss_ce": 0.3667051583528519, "decode.acc_seg": 95.1894760131836, "aux.loss_ce": 0.214737655967474, "aux.acc_seg": 93.88790130615234, "time": 1.1185058116912843, "iter": 70050, "memory": 8704, "step": 70050} +{"lr": 0.005992687030619133, "data_time": 0.008829879760742187, "loss": 0.525066827237606, "decode.loss_ce": 0.311118821054697, "decode.acc_seg": 95.6441879272461, "aux.loss_ce": 0.21394801922142506, "aux.acc_seg": 94.8755874633789, "time": 1.1185375928878785, "iter": 70100, "memory": 8703, "step": 70100} +{"lr": 0.005989737327705511, "data_time": 0.007010364532470703, "loss": 0.33548353910446166, "decode.loss_ce": 0.20393772572278976, "decode.acc_seg": 94.31559753417969, "aux.loss_ce": 0.1315458133816719, "aux.acc_seg": 92.12681579589844, "time": 1.1149829864501952, "iter": 70150, "memory": 8704, "step": 70150} +{"lr": 0.005986787460641353, "data_time": 0.005981135368347168, "loss": 0.41191397458314893, "decode.loss_ce": 0.24778278395533562, "decode.acc_seg": 95.19182586669922, "aux.loss_ce": 0.16413119845092297, "aux.acc_seg": 94.44522857666016, "time": 1.1138607501983642, "iter": 70200, "memory": 8704, "step": 70200} +{"lr": 0.005983837429326119, "data_time": 0.00623936653137207, "loss": 0.39058738499879836, "decode.loss_ce": 0.23291659727692604, "decode.acc_seg": 97.49603271484375, "aux.loss_ce": 0.15767079032957554, "aux.acc_seg": 95.90409088134766, "time": 1.1146366596221924, "iter": 70250, "memory": 8704, "step": 70250} +{"lr": 0.005980887233659145, "data_time": 0.006937503814697266, "loss": 0.37313867136836054, "decode.loss_ce": 0.23819254264235495, "decode.acc_seg": 98.35293579101562, "aux.loss_ce": 0.1349461257457733, "aux.acc_seg": 98.29120635986328, "time": 1.1108438491821289, "iter": 70300, "memory": 8704, "step": 70300} +{"lr": 0.005977936873539665, "data_time": 0.007552528381347656, "loss": 0.3403116509318352, "decode.loss_ce": 0.2155312903225422, "decode.acc_seg": 95.15005493164062, "aux.loss_ce": 0.12478036098182202, "aux.acc_seg": 94.7103500366211, "time": 1.116108512878418, "iter": 70350, "memory": 8703, "step": 70350} +{"lr": 0.005974986348866781, "data_time": 0.0075469970703125, "loss": 0.4677767679095268, "decode.loss_ce": 0.305555734783411, "decode.acc_seg": 94.56405639648438, "aux.loss_ce": 0.1622210368514061, "aux.acc_seg": 92.14973449707031, "time": 1.1255892753601073, "iter": 70400, "memory": 8703, "step": 70400} +{"lr": 0.005972035659539481, "data_time": 0.0059489250183105465, "loss": 0.31783023327589033, "decode.loss_ce": 0.19389620199799537, "decode.acc_seg": 95.37544250488281, "aux.loss_ce": 0.12393402457237243, "aux.acc_seg": 91.76139831542969, "time": 1.1146397829055785, "iter": 70450, "memory": 8704, "step": 70450} +{"lr": 0.005969084805456626, "data_time": 0.007939958572387695, "loss": 0.3510133132338524, "decode.loss_ce": 0.22375066429376603, "decode.acc_seg": 88.03861236572266, "aux.loss_ce": 0.12726264856755734, "aux.acc_seg": 84.68977355957031, "time": 1.1125990390777587, "iter": 70500, "memory": 8703, "step": 70500} +{"lr": 0.005966133786516981, "data_time": 0.0058478832244873045, "loss": 0.47514772415161133, "decode.loss_ce": 0.28995693325996397, "decode.acc_seg": 84.93709564208984, "aux.loss_ce": 0.18519078865647315, "aux.acc_seg": 82.12877655029297, "time": 1.1138645887374878, "iter": 70550, "memory": 8703, "step": 70550} +{"lr": 0.005963182602619169, "data_time": 0.006399035453796387, "loss": 0.3208361014723778, "decode.loss_ce": 0.20681459158658982, "decode.acc_seg": 88.27177429199219, "aux.loss_ce": 0.11402151584625245, "aux.acc_seg": 87.94163513183594, "time": 1.1127927541732787, "iter": 70600, "memory": 8704, "step": 70600} +{"lr": 0.005960231253661706, "data_time": 0.008692431449890136, "loss": 0.3552192524075508, "decode.loss_ce": 0.22015674710273742, "decode.acc_seg": 91.8606948852539, "aux.loss_ce": 0.13506250455975533, "aux.acc_seg": 90.30587768554688, "time": 1.1206201791763306, "iter": 70650, "memory": 8704, "step": 70650} +{"lr": 0.0059572797395429835, "data_time": 0.008339262008666993, "loss": 0.505016279220581, "decode.loss_ce": 0.30102738440036775, "decode.acc_seg": 93.78254699707031, "aux.loss_ce": 0.20398888289928435, "aux.acc_seg": 84.32833099365234, "time": 1.1181711196899413, "iter": 70700, "memory": 8703, "step": 70700} +{"lr": 0.0059543280601612745, "data_time": 0.006728935241699219, "loss": 0.452516970038414, "decode.loss_ce": 0.28542845100164416, "decode.acc_seg": 91.12472534179688, "aux.loss_ce": 0.16708851456642151, "aux.acc_seg": 87.97543334960938, "time": 1.1148043394088745, "iter": 70750, "memory": 8703, "step": 70750} +{"lr": 0.005951376215414736, "data_time": 0.006494665145874023, "loss": 0.483296275138855, "decode.loss_ce": 0.3120266444981098, "decode.acc_seg": 94.88404083251953, "aux.loss_ce": 0.17126962989568711, "aux.acc_seg": 86.02326202392578, "time": 1.1177460908889771, "iter": 70800, "memory": 8703, "step": 70800} +{"lr": 0.005948424205201395, "data_time": 0.006537961959838867, "loss": 0.32567820101976397, "decode.loss_ce": 0.20150687098503112, "decode.acc_seg": 96.39256286621094, "aux.loss_ce": 0.12417133264243603, "aux.acc_seg": 95.35343933105469, "time": 1.1130285024642945, "iter": 70850, "memory": 8703, "step": 70850} +{"lr": 0.005945472029419178, "data_time": 0.005971837043762207, "loss": 0.29753820821642873, "decode.loss_ce": 0.17203381136059762, "decode.acc_seg": 93.69894409179688, "aux.loss_ce": 0.12550439685583115, "aux.acc_seg": 88.66564178466797, "time": 1.1103253602981566, "iter": 70900, "memory": 8703, "step": 70900} +{"lr": 0.005942519687965873, "data_time": 0.006952762603759766, "loss": 0.35823038667440416, "decode.loss_ce": 0.2366242378950119, "decode.acc_seg": 91.4886474609375, "aux.loss_ce": 0.12160614728927613, "aux.acc_seg": 89.09111022949219, "time": 1.114608144760132, "iter": 70950, "memory": 8703, "step": 70950} +{"lr": 0.0059395671807391595, "data_time": 0.007369089126586914, "loss": 0.5638834998011589, "decode.loss_ce": 0.3414416640996933, "decode.acc_seg": 96.16133117675781, "aux.loss_ce": 0.22244182825088502, "aux.acc_seg": 95.34078979492188, "time": 1.1185812473297119, "iter": 71000, "memory": 8704, "step": 71000} +{"lr": 0.005936614507636581, "data_time": 0.008104252815246581, "loss": 0.5011463060975074, "decode.loss_ce": 0.3019192390143871, "decode.acc_seg": 96.84473419189453, "aux.loss_ce": 0.19922707118093969, "aux.acc_seg": 95.4260482788086, "time": 1.1151970863342284, "iter": 71050, "memory": 8703, "step": 71050} +{"lr": 0.005933661668555571, "data_time": 0.005815672874450684, "loss": 0.44150560945272443, "decode.loss_ce": 0.2645289018750191, "decode.acc_seg": 93.38948822021484, "aux.loss_ce": 0.1769767090678215, "aux.acc_seg": 90.5718994140625, "time": 1.1068147897720337, "iter": 71100, "memory": 8703, "step": 71100} +{"lr": 0.005930708663393446, "data_time": 0.008265089988708497, "loss": 0.47748917937278745, "decode.loss_ce": 0.2677161380648613, "decode.acc_seg": 96.22395324707031, "aux.loss_ce": 0.20977304503321648, "aux.acc_seg": 92.79638671875, "time": 1.1150567293167115, "iter": 71150, "memory": 8703, "step": 71150} +{"lr": 0.0059277554920473905, "data_time": 0.005593347549438477, "loss": 0.3943802431225777, "decode.loss_ce": 0.22734813392162323, "decode.acc_seg": 82.2549819946289, "aux.loss_ce": 0.1670321121811867, "aux.acc_seg": 65.71922302246094, "time": 1.1111358165740968, "iter": 71200, "memory": 8704, "step": 71200} +{"lr": 0.0059248021544144715, "data_time": 0.008152365684509277, "loss": 0.39171175211668013, "decode.loss_ce": 0.2351042777299881, "decode.acc_seg": 72.22809600830078, "aux.loss_ce": 0.15660747811198233, "aux.acc_seg": 67.15065002441406, "time": 1.1203217029571533, "iter": 71250, "memory": 8703, "step": 71250} +{"lr": 0.00592184865039164, "data_time": 0.0070188045501708984, "loss": 0.581013423204422, "decode.loss_ce": 0.354259292781353, "decode.acc_seg": 87.52193450927734, "aux.loss_ce": 0.2267541393637657, "aux.acc_seg": 75.11132049560547, "time": 1.1164740324020386, "iter": 71300, "memory": 8704, "step": 71300} +{"lr": 0.00591889497987572, "data_time": 0.005880188941955566, "loss": 0.5306052789092064, "decode.loss_ce": 0.3290836840867996, "decode.acc_seg": 87.35668182373047, "aux.loss_ce": 0.2015216015279293, "aux.acc_seg": 81.44709777832031, "time": 1.1151236772537232, "iter": 71350, "memory": 8704, "step": 71350} +{"lr": 0.005915941142763408, "data_time": 0.0062117338180541996, "loss": 0.4730877041816711, "decode.loss_ce": 0.27025460451841354, "decode.acc_seg": 81.61474609375, "aux.loss_ce": 0.2028331071138382, "aux.acc_seg": 70.21808624267578, "time": 1.117180871963501, "iter": 71400, "memory": 8704, "step": 71400} +{"lr": 0.005912987138951287, "data_time": 0.006906247138977051, "loss": 0.5539391100406647, "decode.loss_ce": 0.35280182361602785, "decode.acc_seg": 85.17195129394531, "aux.loss_ce": 0.20113727375864981, "aux.acc_seg": 81.37937927246094, "time": 1.1159914016723633, "iter": 71450, "memory": 8704, "step": 71450} +{"lr": 0.005910032968335815, "data_time": 0.0052021265029907225, "loss": 0.3498351901769638, "decode.loss_ce": 0.21231644749641418, "decode.acc_seg": 91.01009368896484, "aux.loss_ce": 0.1375187359750271, "aux.acc_seg": 79.690673828125, "time": 1.1143773078918457, "iter": 71500, "memory": 8703, "step": 71500} +{"lr": 0.005907078630813322, "data_time": 0.006849884986877441, "loss": 0.4702817276120186, "decode.loss_ce": 0.30188837051391604, "decode.acc_seg": 96.9499740600586, "aux.loss_ce": 0.1683933585882187, "aux.acc_seg": 95.15467834472656, "time": 1.114785385131836, "iter": 71550, "memory": 8704, "step": 71550} +{"lr": 0.005904124126280025, "data_time": 0.006796693801879883, "loss": 0.4431450396776199, "decode.loss_ce": 0.2616556972265244, "decode.acc_seg": 92.09162139892578, "aux.loss_ce": 0.18148934319615365, "aux.acc_seg": 90.85807800292969, "time": 1.1170275449752807, "iter": 71600, "memory": 8703, "step": 71600} +{"lr": 0.005901169454632011, "data_time": 0.008532142639160157, "loss": 0.6131924301385879, "decode.loss_ce": 0.38206174224615097, "decode.acc_seg": 89.32176971435547, "aux.loss_ce": 0.231130687892437, "aux.acc_seg": 88.43071746826172, "time": 1.117794942855835, "iter": 71650, "memory": 8703, "step": 71650} +{"lr": 0.005898214615765234, "data_time": 0.006423068046569824, "loss": 0.4514069825410843, "decode.loss_ce": 0.2831207409501076, "decode.acc_seg": 92.74323272705078, "aux.loss_ce": 0.168286245316267, "aux.acc_seg": 88.15599822998047, "time": 1.1161873817443848, "iter": 71700, "memory": 8704, "step": 71700} +{"lr": 0.00589525960957554, "data_time": 0.005703186988830567, "loss": 0.642608280479908, "decode.loss_ce": 0.44313506931066515, "decode.acc_seg": 62.63408279418945, "aux.loss_ce": 0.1994732141494751, "aux.acc_seg": 64.0451431274414, "time": 1.1089600801467896, "iter": 71750, "memory": 8704, "step": 71750} +{"lr": 0.0058923044359586495, "data_time": 0.007801365852355957, "loss": 0.4752468541264534, "decode.loss_ce": 0.28390302062034606, "decode.acc_seg": 92.63862609863281, "aux.loss_ce": 0.19134384095668794, "aux.acc_seg": 70.77253723144531, "time": 1.1170450448989868, "iter": 71800, "memory": 8704, "step": 71800} +{"lr": 0.0058893490948101505, "data_time": 0.006873822212219239, "loss": 0.4379620924592018, "decode.loss_ce": 0.2707553472369909, "decode.acc_seg": 76.41029357910156, "aux.loss_ce": 0.167206746712327, "aux.acc_seg": 63.132728576660156, "time": 1.1132418632507324, "iter": 71850, "memory": 8704, "step": 71850} +{"lr": 0.005886393586025513, "data_time": 0.006139516830444336, "loss": 0.3092056065797806, "decode.loss_ce": 0.17873801104724407, "decode.acc_seg": 93.5800552368164, "aux.loss_ce": 0.13046759665012359, "aux.acc_seg": 86.23688507080078, "time": 1.1172547817230225, "iter": 71900, "memory": 8703, "step": 71900} +{"lr": 0.0058834379095000795, "data_time": 0.0071675777435302734, "loss": 0.5076238065958023, "decode.loss_ce": 0.3164483532309532, "decode.acc_seg": 95.93225860595703, "aux.loss_ce": 0.1911754533648491, "aux.acc_seg": 93.41932678222656, "time": 1.1192157506942748, "iter": 71950, "memory": 8704, "step": 71950} +{"lr": 0.005880482065129067, "data_time": 0.007027888298034668, "loss": 0.4530102491378784, "decode.loss_ce": 0.26390994936227796, "decode.acc_seg": 95.0182113647461, "aux.loss_ce": 0.18910030350089074, "aux.acc_seg": 93.46705627441406, "time": 1.11407630443573, "iter": 72000, "memory": 8704, "step": 72000} +{"lr": 0.005877526052807571, "data_time": 0.006755518913269043, "loss": 0.5066888421773911, "decode.loss_ce": 0.32446122765541074, "decode.acc_seg": 88.56912994384766, "aux.loss_ce": 0.18222761005163193, "aux.acc_seg": 85.03086853027344, "time": 1.112322211265564, "iter": 72050, "memory": 8703, "step": 72050} +{"lr": 0.0058745698724305614, "data_time": 0.008269619941711426, "loss": 0.37728616446256635, "decode.loss_ce": 0.2274494171142578, "decode.acc_seg": 94.43721771240234, "aux.loss_ce": 0.14983674958348275, "aux.acc_seg": 89.67634582519531, "time": 1.117596697807312, "iter": 72100, "memory": 8703, "step": 72100} +{"lr": 0.005871613523892877, "data_time": 0.007306122779846191, "loss": 0.48027103394269943, "decode.loss_ce": 0.3045224703848362, "decode.acc_seg": 96.0383071899414, "aux.loss_ce": 0.17574855871498585, "aux.acc_seg": 94.49163818359375, "time": 1.1129136323928832, "iter": 72150, "memory": 8703, "step": 72150} +{"lr": 0.005868657007089243, "data_time": 0.005579543113708496, "loss": 0.4893148645758629, "decode.loss_ce": 0.29687857180833815, "decode.acc_seg": 87.07300567626953, "aux.loss_ce": 0.19243629239499568, "aux.acc_seg": 83.98011016845703, "time": 1.1139417171478272, "iter": 72200, "memory": 8703, "step": 72200} +{"lr": 0.005865700321914241, "data_time": 0.0070008039474487305, "loss": 0.3306280359625816, "decode.loss_ce": 0.1868424490094185, "decode.acc_seg": 90.47978210449219, "aux.loss_ce": 0.14378558546304704, "aux.acc_seg": 89.4384994506836, "time": 1.1130711793899537, "iter": 72250, "memory": 8703, "step": 72250} +{"lr": 0.005862743468262334, "data_time": 0.00792236328125, "loss": 0.3763757586479187, "decode.loss_ce": 0.2210201159119606, "decode.acc_seg": 92.57952117919922, "aux.loss_ce": 0.15535564348101616, "aux.acc_seg": 91.74219512939453, "time": 1.1160818099975587, "iter": 72300, "memory": 8703, "step": 72300} +{"lr": 0.005859786446027868, "data_time": 0.008360648155212402, "loss": 0.4556801736354828, "decode.loss_ce": 0.26673798114061353, "decode.acc_seg": 93.98959350585938, "aux.loss_ce": 0.1889421906322241, "aux.acc_seg": 90.25872039794922, "time": 1.1163036346435546, "iter": 72350, "memory": 8703, "step": 72350} +{"lr": 0.005856829255105054, "data_time": 0.007143759727478027, "loss": 0.34010264426469805, "decode.loss_ce": 0.21075988709926605, "decode.acc_seg": 94.81665802001953, "aux.loss_ce": 0.12934275455772876, "aux.acc_seg": 93.25128173828125, "time": 1.1141735315322876, "iter": 72400, "memory": 8704, "step": 72400} +{"lr": 0.005853871895387977, "data_time": 0.005993080139160156, "loss": 0.6141105726361274, "decode.loss_ce": 0.41051013618707655, "decode.acc_seg": 97.48162841796875, "aux.loss_ce": 0.2036004364490509, "aux.acc_seg": 95.30474090576172, "time": 1.1122722387313844, "iter": 72450, "memory": 8704, "step": 72450} +{"lr": 0.005850914366770601, "data_time": 0.006034255027770996, "loss": 0.38052645027637483, "decode.loss_ce": 0.241378752887249, "decode.acc_seg": 89.96651458740234, "aux.loss_ce": 0.13914770111441613, "aux.acc_seg": 87.0621337890625, "time": 1.1144473552703857, "iter": 72500, "memory": 8704, "step": 72500} +{"lr": 0.005847956669146747, "data_time": 0.00661008358001709, "loss": 0.37225941121578215, "decode.loss_ce": 0.23044798746705056, "decode.acc_seg": 95.07113647460938, "aux.loss_ce": 0.14181142374873162, "aux.acc_seg": 89.7210922241211, "time": 1.1189907789230347, "iter": 72550, "memory": 8704, "step": 72550} +{"lr": 0.005844998802410121, "data_time": 0.007229137420654297, "loss": 0.5870365217328072, "decode.loss_ce": 0.346630597114563, "decode.acc_seg": 95.48212432861328, "aux.loss_ce": 0.24040592201054095, "aux.acc_seg": 92.9871826171875, "time": 1.1187418222427368, "iter": 72600, "memory": 8704, "step": 72600} +{"lr": 0.0058420407664543025, "data_time": 0.005898690223693848, "loss": 0.43280970454216006, "decode.loss_ce": 0.2717764936387539, "decode.acc_seg": 93.56854248046875, "aux.loss_ce": 0.16103321090340614, "aux.acc_seg": 92.19347381591797, "time": 1.1138711452484131, "iter": 72650, "memory": 8704, "step": 72650} +{"lr": 0.005839082561172738, "data_time": 0.005677342414855957, "loss": 0.385476279258728, "decode.loss_ce": 0.2572713665664196, "decode.acc_seg": 96.62850189208984, "aux.loss_ce": 0.1282049186527729, "aux.acc_seg": 93.01750946044922, "time": 1.1138879537582398, "iter": 72700, "memory": 8704, "step": 72700} +{"lr": 0.005836124186458751, "data_time": 0.008136725425720215, "loss": 0.4392645671963692, "decode.loss_ce": 0.26357640251517295, "decode.acc_seg": 96.83760833740234, "aux.loss_ce": 0.1756881732493639, "aux.acc_seg": 96.34986877441406, "time": 1.1175026893615723, "iter": 72750, "memory": 8703, "step": 72750} +{"lr": 0.005833165642205525, "data_time": 0.006814432144165039, "loss": 0.42241913825273514, "decode.loss_ce": 0.25201765149831773, "decode.acc_seg": 94.78180694580078, "aux.loss_ce": 0.17040148340165615, "aux.acc_seg": 94.12358093261719, "time": 1.1142521619796752, "iter": 72800, "memory": 8704, "step": 72800} +{"lr": 0.00583020692830613, "data_time": 0.006604146957397461, "loss": 0.5273968786001205, "decode.loss_ce": 0.33528614938259127, "decode.acc_seg": 92.69497680664062, "aux.loss_ce": 0.1921107266098261, "aux.acc_seg": 86.99308776855469, "time": 1.11401309967041, "iter": 72850, "memory": 8703, "step": 72850} +{"lr": 0.005827248044653493, "data_time": 0.0070026636123657225, "loss": 0.36462847888469696, "decode.loss_ce": 0.19662994667887687, "decode.acc_seg": 85.74971771240234, "aux.loss_ce": 0.16799853183329105, "aux.acc_seg": 83.42341613769531, "time": 1.1132777214050293, "iter": 72900, "memory": 8703, "step": 72900} +{"lr": 0.005824288991140426, "data_time": 0.006500649452209473, "loss": 0.4902832925319672, "decode.loss_ce": 0.30643884018063544, "decode.acc_seg": 87.5131607055664, "aux.loss_ce": 0.1838444508612156, "aux.acc_seg": 84.49058532714844, "time": 1.1158788204193115, "iter": 72950, "memory": 8704, "step": 72950} +{"lr": 0.005821329767659598, "data_time": 0.006312155723571777, "loss": 0.5117798134684562, "decode.loss_ce": 0.30293570309877393, "decode.acc_seg": 71.7713623046875, "aux.loss_ce": 0.20884410440921783, "aux.acc_seg": 66.87704467773438, "time": 1.1130080223083496, "iter": 73000, "memory": 8703, "step": 73000} +{"lr": 0.005818370374103558, "data_time": 0.005924892425537109, "loss": 0.38800802677869795, "decode.loss_ce": 0.23241802230477332, "decode.acc_seg": 95.38760375976562, "aux.loss_ce": 0.1555899977684021, "aux.acc_seg": 92.14907836914062, "time": 1.1142571687698364, "iter": 73050, "memory": 8703, "step": 73050} +{"lr": 0.005815410810364725, "data_time": 0.0063599348068237305, "loss": 0.43452741801738737, "decode.loss_ce": 0.26111246198415755, "decode.acc_seg": 92.0969009399414, "aux.loss_ce": 0.17341495901346207, "aux.acc_seg": 89.28548431396484, "time": 1.112802004814148, "iter": 73100, "memory": 8704, "step": 73100} +{"lr": 0.0058124510763353805, "data_time": 0.006169652938842774, "loss": 0.45159026980400085, "decode.loss_ce": 0.2584669776260853, "decode.acc_seg": 88.85612487792969, "aux.loss_ce": 0.19312330149114132, "aux.acc_seg": 79.42587280273438, "time": 1.1155373096466064, "iter": 73150, "memory": 8704, "step": 73150} +{"lr": 0.005809491171907683, "data_time": 0.0069212675094604496, "loss": 0.3363595649600029, "decode.loss_ce": 0.18950423821806908, "decode.acc_seg": 97.61473083496094, "aux.loss_ce": 0.14685533456504346, "aux.acc_seg": 96.77047729492188, "time": 1.1147778511047364, "iter": 73200, "memory": 8704, "step": 73200} +{"lr": 0.005806531096973655, "data_time": 0.007989215850830077, "loss": 0.3806621298193932, "decode.loss_ce": 0.2379782222211361, "decode.acc_seg": 97.49710845947266, "aux.loss_ce": 0.1426839131861925, "aux.acc_seg": 97.35914611816406, "time": 1.1187723398208618, "iter": 73250, "memory": 8704, "step": 73250} +{"lr": 0.0058035708514251935, "data_time": 0.007809948921203613, "loss": 0.46961515992879865, "decode.loss_ce": 0.2957088813185692, "decode.acc_seg": 93.32141876220703, "aux.loss_ce": 0.17390628419816495, "aux.acc_seg": 91.65642547607422, "time": 1.121385383605957, "iter": 73300, "memory": 8704, "step": 73300} +{"lr": 0.0058006104351540615, "data_time": 0.009030365943908691, "loss": 0.4498897150158882, "decode.loss_ce": 0.2759681776165962, "decode.acc_seg": 89.61009979248047, "aux.loss_ce": 0.1739215400069952, "aux.acc_seg": 86.86878967285156, "time": 1.1201077938079833, "iter": 73350, "memory": 8703, "step": 73350} +{"lr": 0.005797649848051896, "data_time": 0.006599998474121094, "loss": 0.3837320566177368, "decode.loss_ce": 0.24721051901578903, "decode.acc_seg": 95.46800994873047, "aux.loss_ce": 0.1365215353667736, "aux.acc_seg": 94.47193145751953, "time": 1.1102105617523192, "iter": 73400, "memory": 8704, "step": 73400} +{"lr": 0.005794689090010198, "data_time": 0.006591486930847168, "loss": 0.33583580106496813, "decode.loss_ce": 0.21396098360419274, "decode.acc_seg": 92.41116333007812, "aux.loss_ce": 0.12187481634318828, "aux.acc_seg": 86.33810424804688, "time": 1.1158696413040161, "iter": 73450, "memory": 8703, "step": 73450} +{"lr": 0.005791728160920334, "data_time": 0.006614875793457031, "loss": 0.36449733972549436, "decode.loss_ce": 0.2254272446036339, "decode.acc_seg": 94.90184783935547, "aux.loss_ce": 0.13907009214162827, "aux.acc_seg": 90.99737548828125, "time": 1.1154513835906983, "iter": 73500, "memory": 8704, "step": 73500} +{"lr": 0.005788767060673541, "data_time": 0.0065397977828979496, "loss": 0.4435595467686653, "decode.loss_ce": 0.26856708601117135, "decode.acc_seg": 90.58611297607422, "aux.loss_ce": 0.17499246187508105, "aux.acc_seg": 88.09333038330078, "time": 1.1176871538162232, "iter": 73550, "memory": 8703, "step": 73550} +{"lr": 0.00578580578916093, "data_time": 0.007747864723205567, "loss": 0.43214608877897265, "decode.loss_ce": 0.24928360506892205, "decode.acc_seg": 95.97511291503906, "aux.loss_ce": 0.18286248482763767, "aux.acc_seg": 91.51477813720703, "time": 1.1177894353866578, "iter": 73600, "memory": 8704, "step": 73600} +{"lr": 0.00578284434627347, "data_time": 0.005177187919616699, "loss": 0.3940659135580063, "decode.loss_ce": 0.2467205762863159, "decode.acc_seg": 94.74417114257812, "aux.loss_ce": 0.14734533689916135, "aux.acc_seg": 92.58053588867188, "time": 1.1139708518981934, "iter": 73650, "memory": 8703, "step": 73650} +{"lr": 0.005779882731902006, "data_time": 0.006565237045288086, "loss": 0.3918296307325363, "decode.loss_ce": 0.23254711106419562, "decode.acc_seg": 92.73560333251953, "aux.loss_ce": 0.1592825200408697, "aux.acc_seg": 89.01384735107422, "time": 1.1150975704193116, "iter": 73700, "memory": 8704, "step": 73700} +{"lr": 0.00577692094593724, "data_time": 0.008414292335510254, "loss": 0.4392944321036339, "decode.loss_ce": 0.27915068715810776, "decode.acc_seg": 86.5274429321289, "aux.loss_ce": 0.16014374271035195, "aux.acc_seg": 82.35187530517578, "time": 1.116513991355896, "iter": 73750, "memory": 8704, "step": 73750} +{"lr": 0.005773958988269749, "data_time": 0.00703880786895752, "loss": 0.503340619802475, "decode.loss_ce": 0.30861025750637056, "decode.acc_seg": 91.21665954589844, "aux.loss_ce": 0.19473036229610444, "aux.acc_seg": 88.25524139404297, "time": 1.11618230342865, "iter": 73800, "memory": 8704, "step": 73800} +{"lr": 0.005770996858789973, "data_time": 0.008033227920532227, "loss": 0.38887330889701843, "decode.loss_ce": 0.23160761147737502, "decode.acc_seg": 94.21373748779297, "aux.loss_ce": 0.15726569443941116, "aux.acc_seg": 93.38461303710938, "time": 1.1158544778823853, "iter": 73850, "memory": 8704, "step": 73850} +{"lr": 0.0057680345573882285, "data_time": 0.005584979057312011, "loss": 0.394374980032444, "decode.loss_ce": 0.23245644122362136, "decode.acc_seg": 95.95539855957031, "aux.loss_ce": 0.1619185395538807, "aux.acc_seg": 90.55865478515625, "time": 1.1157585859298706, "iter": 73900, "memory": 8704, "step": 73900} +{"lr": 0.0057650720839546804, "data_time": 0.005561614036560058, "loss": 0.4554221913218498, "decode.loss_ce": 0.2752501621842384, "decode.acc_seg": 89.78137969970703, "aux.loss_ce": 0.18017202690243722, "aux.acc_seg": 80.471923828125, "time": 1.11396164894104, "iter": 73950, "memory": 8704, "step": 73950} +{"lr": 0.005762109438379373, "data_time": 0.006314229965209961, "loss": 0.3250285506248474, "decode.loss_ce": 0.19549349024891854, "decode.acc_seg": 94.94941711425781, "aux.loss_ce": 0.1295350544154644, "aux.acc_seg": 92.91655731201172, "time": 1.1177032709121704, "iter": 74000, "memory": 8703, "step": 74000} +{"lr": 0.005759146620552216, "data_time": 0.006144237518310547, "loss": 0.36574144959449767, "decode.loss_ce": 0.2228802666068077, "decode.acc_seg": 95.15609741210938, "aux.loss_ce": 0.14286117777228355, "aux.acc_seg": 92.8720474243164, "time": 1.1151337385177613, "iter": 74050, "memory": 8704, "step": 74050} +{"lr": 0.005756183630362975, "data_time": 0.0065654277801513675, "loss": 0.35567653477191924, "decode.loss_ce": 0.2180899426341057, "decode.acc_seg": 98.1531753540039, "aux.loss_ce": 0.13758658431470394, "aux.acc_seg": 94.44840240478516, "time": 1.1119591474533081, "iter": 74100, "memory": 8703, "step": 74100} +{"lr": 0.005753220467701286, "data_time": 0.007342791557312012, "loss": 0.3408208817243576, "decode.loss_ce": 0.21246515661478044, "decode.acc_seg": 85.56143188476562, "aux.loss_ce": 0.12835571840405463, "aux.acc_seg": 83.01136779785156, "time": 1.1162045478820801, "iter": 74150, "memory": 8704, "step": 74150} +{"lr": 0.005750257132456656, "data_time": 0.008419489860534668, "loss": 0.3931365840137005, "decode.loss_ce": 0.23806518279016017, "decode.acc_seg": 98.0932846069336, "aux.loss_ce": 0.15507140010595322, "aux.acc_seg": 95.77896881103516, "time": 1.1166323900222779, "iter": 74200, "memory": 8704, "step": 74200} +{"lr": 0.005747293624518451, "data_time": 0.00644230842590332, "loss": 0.3876385822892189, "decode.loss_ce": 0.24131663143634796, "decode.acc_seg": 95.75618743896484, "aux.loss_ce": 0.14632195085287095, "aux.acc_seg": 95.37104034423828, "time": 1.1167528867721557, "iter": 74250, "memory": 8704, "step": 74250} +{"lr": 0.005744329943775903, "data_time": 0.007345795631408691, "loss": 0.36706536561250686, "decode.loss_ce": 0.22811947017908096, "decode.acc_seg": 95.82697296142578, "aux.loss_ce": 0.13894589245319366, "aux.acc_seg": 92.61150360107422, "time": 1.117535448074341, "iter": 74300, "memory": 8703, "step": 74300} +{"lr": 0.005741366090118107, "data_time": 0.007211732864379883, "loss": 0.3106705635786057, "decode.loss_ce": 0.18627434223890305, "decode.acc_seg": 93.76811981201172, "aux.loss_ce": 0.12439621910452843, "aux.acc_seg": 83.13763427734375, "time": 1.1160656690597535, "iter": 74350, "memory": 8704, "step": 74350} +{"lr": 0.005738402063434014, "data_time": 0.006215643882751465, "loss": 0.3559027761220932, "decode.loss_ce": 0.22417712435126305, "decode.acc_seg": 94.88111877441406, "aux.loss_ce": 0.13172565251588822, "aux.acc_seg": 89.64290618896484, "time": 1.1107385396957397, "iter": 74400, "memory": 8704, "step": 74400} +{"lr": 0.005735437863612457, "data_time": 0.006475424766540528, "loss": 0.45290618389844894, "decode.loss_ce": 0.27806384637951853, "decode.acc_seg": 83.17984008789062, "aux.loss_ce": 0.17484233304858207, "aux.acc_seg": 78.44487762451172, "time": 1.1115006446838378, "iter": 74450, "memory": 8703, "step": 74450} +{"lr": 0.005732473490542118, "data_time": 0.007824420928955078, "loss": 0.2771303057670593, "decode.loss_ce": 0.16701340302824974, "decode.acc_seg": 94.66940307617188, "aux.loss_ce": 0.11011690199375153, "aux.acc_seg": 91.55769348144531, "time": 1.1137510776519775, "iter": 74500, "memory": 8704, "step": 74500} +{"lr": 0.005729508944111555, "data_time": 0.006696224212646484, "loss": 0.4466423600912094, "decode.loss_ce": 0.2623691990971565, "decode.acc_seg": 79.0233154296875, "aux.loss_ce": 0.18427315652370452, "aux.acc_seg": 77.68277740478516, "time": 1.1133447170257569, "iter": 74550, "memory": 8703, "step": 74550} +{"lr": 0.005726544224209171, "data_time": 0.007032132148742676, "loss": 0.3662754505872726, "decode.loss_ce": 0.23372961059212685, "decode.acc_seg": 95.50530242919922, "aux.loss_ce": 0.1325458414852619, "aux.acc_seg": 94.38490295410156, "time": 1.1141831398010253, "iter": 74600, "memory": 8704, "step": 74600} +{"lr": 0.005723579330723252, "data_time": 0.008578920364379882, "loss": 0.4646584287285805, "decode.loss_ce": 0.30228311866521834, "decode.acc_seg": 63.88414001464844, "aux.loss_ce": 0.16237531006336212, "aux.acc_seg": 59.574180603027344, "time": 1.1208533763885498, "iter": 74650, "memory": 8704, "step": 74650} +{"lr": 0.00572061426354193, "data_time": 0.007401967048645019, "loss": 0.3050366759300232, "decode.loss_ce": 0.19663762375712396, "decode.acc_seg": 90.35408782958984, "aux.loss_ce": 0.1083990454673767, "aux.acc_seg": 87.7359390258789, "time": 1.1136805772781373, "iter": 74700, "memory": 8704, "step": 74700} +{"lr": 0.005717649022553201, "data_time": 0.008125662803649902, "loss": 0.40154346376657485, "decode.loss_ce": 0.25474968999624253, "decode.acc_seg": 97.67343139648438, "aux.loss_ce": 0.14679378271102905, "aux.acc_seg": 94.01496887207031, "time": 1.1147981405258178, "iter": 74750, "memory": 8704, "step": 74750} +{"lr": 0.005714683607644936, "data_time": 0.004858851432800293, "loss": 0.5031491875648498, "decode.loss_ce": 0.30545559972524644, "decode.acc_seg": 94.14850616455078, "aux.loss_ce": 0.1976935938000679, "aux.acc_seg": 82.67250061035156, "time": 1.112323808670044, "iter": 74800, "memory": 8703, "step": 74800} +{"lr": 0.005711718018704859, "data_time": 0.008064675331115722, "loss": 0.5423176109790802, "decode.loss_ce": 0.3423972845077515, "decode.acc_seg": 92.72613525390625, "aux.loss_ce": 0.19992033019661903, "aux.acc_seg": 80.06108093261719, "time": 1.1143282890319823, "iter": 74850, "memory": 8704, "step": 74850} +{"lr": 0.005708752255620552, "data_time": 0.0065395116806030275, "loss": 0.4041396677494049, "decode.loss_ce": 0.2482263572514057, "decode.acc_seg": 85.74131774902344, "aux.loss_ce": 0.15591330975294113, "aux.acc_seg": 76.0274429321289, "time": 1.118853211402893, "iter": 74900, "memory": 8705, "step": 74900} +{"lr": 0.005705786318279466, "data_time": 0.006217598915100098, "loss": 0.3555224597454071, "decode.loss_ce": 0.22221098989248275, "decode.acc_seg": 93.26126861572266, "aux.loss_ce": 0.13331146277487277, "aux.acc_seg": 90.12228393554688, "time": 1.1132529497146606, "iter": 74950, "memory": 8704, "step": 74950} +{"lr": 0.005702820206568912, "data_time": 0.0060345172882080075, "loss": 0.3191546589136124, "decode.loss_ce": 0.17822192311286927, "decode.acc_seg": 93.8315658569336, "aux.loss_ce": 0.14093273654580116, "aux.acc_seg": 91.98360443115234, "time": 1.1130237340927125, "iter": 75000, "memory": 8704, "step": 75000} +{"lr": 0.005699853920376052, "data_time": 0.005715274810791015, "loss": 0.46700929701328275, "decode.loss_ce": 0.28966517746448517, "decode.acc_seg": 92.43875885009766, "aux.loss_ce": 0.1773441143333912, "aux.acc_seg": 79.96571350097656, "time": 1.112018084526062, "iter": 75050, "memory": 8703, "step": 75050} +{"lr": 0.0056968874595879244, "data_time": 0.007381582260131836, "loss": 0.5982298612594604, "decode.loss_ce": 0.34018269181251526, "decode.acc_seg": 94.61370849609375, "aux.loss_ce": 0.258047167211771, "aux.acc_seg": 91.5811538696289, "time": 1.1194284915924073, "iter": 75100, "memory": 8703, "step": 75100} +{"lr": 0.005693920824091411, "data_time": 0.005847501754760742, "loss": 0.45002277940511703, "decode.loss_ce": 0.2624990001320839, "decode.acc_seg": 90.9037857055664, "aux.loss_ce": 0.18752377033233641, "aux.acc_seg": 89.29252624511719, "time": 1.1169244766235351, "iter": 75150, "memory": 8703, "step": 75150} +{"lr": 0.00569095401377327, "data_time": 0.006682777404785156, "loss": 0.45213447213172914, "decode.loss_ce": 0.28517254143953324, "decode.acc_seg": 93.86475372314453, "aux.loss_ce": 0.16696192920207978, "aux.acc_seg": 90.51380157470703, "time": 1.1111651420593263, "iter": 75200, "memory": 8703, "step": 75200} +{"lr": 0.005687987028520104, "data_time": 0.006308078765869141, "loss": 0.4271157577633858, "decode.loss_ce": 0.2590436555445194, "decode.acc_seg": 89.14928436279297, "aux.loss_ce": 0.16807210072875023, "aux.acc_seg": 83.61326599121094, "time": 1.1179108142852783, "iter": 75250, "memory": 8703, "step": 75250} +{"lr": 0.00568501986821839, "data_time": 0.006162714958190918, "loss": 0.46467521488666536, "decode.loss_ce": 0.27257718816399573, "decode.acc_seg": 84.14630889892578, "aux.loss_ce": 0.19209803007543086, "aux.acc_seg": 64.28419494628906, "time": 1.113393449783325, "iter": 75300, "memory": 8704, "step": 75300} +{"lr": 0.005682052532754449, "data_time": 0.006431961059570312, "loss": 0.4464481040835381, "decode.loss_ce": 0.2945265769958496, "decode.acc_seg": 93.8425064086914, "aux.loss_ce": 0.15192153118550777, "aux.acc_seg": 91.60321044921875, "time": 1.1132003545761109, "iter": 75350, "memory": 8703, "step": 75350} +{"lr": 0.005679085022014472, "data_time": 0.007286667823791504, "loss": 0.3666158512234688, "decode.loss_ce": 0.22634745091199876, "decode.acc_seg": 94.60797119140625, "aux.loss_ce": 0.1402683973312378, "aux.acc_seg": 93.57109832763672, "time": 1.1158052444458009, "iter": 75400, "memory": 8703, "step": 75400} +{"lr": 0.005676117335884509, "data_time": 0.00907590389251709, "loss": 0.3734838545322418, "decode.loss_ce": 0.22818592935800552, "decode.acc_seg": 95.64080810546875, "aux.loss_ce": 0.14529792889952658, "aux.acc_seg": 94.48974609375, "time": 1.1171015501022339, "iter": 75450, "memory": 8703, "step": 75450} +{"lr": 0.00567314947425046, "data_time": 0.006252360343933105, "loss": 0.4930528551340103, "decode.loss_ce": 0.304376744478941, "decode.acc_seg": 94.07952117919922, "aux.loss_ce": 0.18867610394954681, "aux.acc_seg": 91.751220703125, "time": 1.110293197631836, "iter": 75500, "memory": 8703, "step": 75500} +{"lr": 0.005670181436998091, "data_time": 0.008118581771850587, "loss": 0.31885993033647536, "decode.loss_ce": 0.201969363540411, "decode.acc_seg": 89.29386138916016, "aux.loss_ce": 0.11689056642353535, "aux.acc_seg": 88.19160461425781, "time": 1.121699857711792, "iter": 75550, "memory": 8704, "step": 75550} +{"lr": 0.005667213224013022, "data_time": 0.007898569107055664, "loss": 0.37765385806560514, "decode.loss_ce": 0.21826334297657013, "decode.acc_seg": 93.3450698852539, "aux.loss_ce": 0.15939051210880278, "aux.acc_seg": 91.76094818115234, "time": 1.1198510885238648, "iter": 75600, "memory": 8704, "step": 75600} +{"lr": 0.005664244835180731, "data_time": 0.006547451019287109, "loss": 0.3666658654808998, "decode.loss_ce": 0.21886065900325774, "decode.acc_seg": 90.7510757446289, "aux.loss_ce": 0.1478052020072937, "aux.acc_seg": 74.45341491699219, "time": 1.112833023071289, "iter": 75650, "memory": 8703, "step": 75650} +{"lr": 0.0056612762703865584, "data_time": 0.005350255966186523, "loss": 0.4348823636770248, "decode.loss_ce": 0.27345760315656664, "decode.acc_seg": 82.6518325805664, "aux.loss_ce": 0.16142476052045823, "aux.acc_seg": 79.21587371826172, "time": 1.1112358331680299, "iter": 75700, "memory": 8704, "step": 75700} +{"lr": 0.005658307529515693, "data_time": 0.005537676811218262, "loss": 0.44003500118851663, "decode.loss_ce": 0.2631111077964306, "decode.acc_seg": 93.7459945678711, "aux.loss_ce": 0.1769238945096731, "aux.acc_seg": 89.4842758178711, "time": 1.1170746088027954, "iter": 75750, "memory": 8703, "step": 75750} +{"lr": 0.005655338612453187, "data_time": 0.007031297683715821, "loss": 0.5924414992332458, "decode.loss_ce": 0.3730308756232262, "decode.acc_seg": 92.51053619384766, "aux.loss_ce": 0.21941062733530997, "aux.acc_seg": 89.8539047241211, "time": 1.1171987295150756, "iter": 75800, "memory": 8704, "step": 75800} +{"lr": 0.005652369519083951, "data_time": 0.005898904800415039, "loss": 0.45265655517578124, "decode.loss_ce": 0.2842535927891731, "decode.acc_seg": 90.81077575683594, "aux.loss_ce": 0.16840295791625975, "aux.acc_seg": 82.87251281738281, "time": 1.112386655807495, "iter": 75850, "memory": 8703, "step": 75850} +{"lr": 0.005649400249292736, "data_time": 0.00789637565612793, "loss": 0.3233234375715256, "decode.loss_ce": 0.19419943764805794, "decode.acc_seg": 96.04447174072266, "aux.loss_ce": 0.1291240058839321, "aux.acc_seg": 92.22030639648438, "time": 1.117953634262085, "iter": 75900, "memory": 8703, "step": 75900} +{"lr": 0.005646430802964179, "data_time": 0.006932783126831055, "loss": 0.32975804060697556, "decode.loss_ce": 0.1841414675116539, "decode.acc_seg": 92.8792953491211, "aux.loss_ce": 0.14561657160520552, "aux.acc_seg": 83.68797302246094, "time": 1.1163586616516112, "iter": 75950, "memory": 8703, "step": 75950} +{"lr": 0.005643461179982739, "data_time": 0.007766819000244141, "loss": 0.4207398876547813, "decode.loss_ce": 0.2640893265604973, "decode.acc_seg": 92.39126586914062, "aux.loss_ce": 0.15665056705474853, "aux.acc_seg": 85.13984680175781, "time": 1.1171234846115112, "iter": 76000, "memory": 8703, "step": 76000} +{"lr": 0.005640491380232756, "data_time": 0.007782411575317383, "loss": 0.3523730605840683, "decode.loss_ce": 0.22036280557513238, "decode.acc_seg": 93.24063110351562, "aux.loss_ce": 0.1320102524012327, "aux.acc_seg": 91.96009826660156, "time": 1.1168903589248658, "iter": 76050, "memory": 8703, "step": 76050} +{"lr": 0.005637521403598416, "data_time": 0.007002568244934082, "loss": 0.4148349821567535, "decode.loss_ce": 0.2513013884425163, "decode.acc_seg": 94.96639251708984, "aux.loss_ce": 0.1635335896164179, "aux.acc_seg": 93.04906463623047, "time": 1.1176125526428222, "iter": 76100, "memory": 8703, "step": 76100} +{"lr": 0.005634551249963762, "data_time": 0.006731486320495606, "loss": 0.3842957466840744, "decode.loss_ce": 0.224930027872324, "decode.acc_seg": 94.17692565917969, "aux.loss_ce": 0.1593657173216343, "aux.acc_seg": 91.54154205322266, "time": 1.1115145444869996, "iter": 76150, "memory": 8704, "step": 76150} +{"lr": 0.005631580919212684, "data_time": 0.0070562601089477536, "loss": 0.40877319425344466, "decode.loss_ce": 0.26033485531806944, "decode.acc_seg": 81.90090942382812, "aux.loss_ce": 0.14843834117054938, "aux.acc_seg": 81.32012176513672, "time": 1.1150828838348388, "iter": 76200, "memory": 8703, "step": 76200} +{"lr": 0.005628610411228939, "data_time": 0.007979655265808105, "loss": 0.37914464324712754, "decode.loss_ce": 0.2293156884610653, "decode.acc_seg": 94.1019058227539, "aux.loss_ce": 0.14982895106077193, "aux.acc_seg": 89.26929473876953, "time": 1.1179905891418458, "iter": 76250, "memory": 8704, "step": 76250} +{"lr": 0.00562563972589613, "data_time": 0.007745289802551269, "loss": 0.35888646095991134, "decode.loss_ce": 0.23033176809549333, "decode.acc_seg": 95.85161590576172, "aux.loss_ce": 0.12855468802154063, "aux.acc_seg": 95.93533325195312, "time": 1.1164543867111205, "iter": 76300, "memory": 8704, "step": 76300} +{"lr": 0.005622668863097711, "data_time": 0.00684967041015625, "loss": 0.5329829901456833, "decode.loss_ce": 0.2976961426436901, "decode.acc_seg": 91.31698608398438, "aux.loss_ce": 0.23528684563934804, "aux.acc_seg": 82.92083740234375, "time": 1.116655707359314, "iter": 76350, "memory": 8703, "step": 76350} +{"lr": 0.005619697822716998, "data_time": 0.007696366310119629, "loss": 0.40460877269506457, "decode.loss_ce": 0.24255296662449838, "decode.acc_seg": 96.88069915771484, "aux.loss_ce": 0.16205580197274685, "aux.acc_seg": 96.47502136230469, "time": 1.1218993425369264, "iter": 76400, "memory": 8704, "step": 76400} +{"lr": 0.005616726604637155, "data_time": 0.007514476776123047, "loss": 0.4604083314538002, "decode.loss_ce": 0.2801209717988968, "decode.acc_seg": 94.8770523071289, "aux.loss_ce": 0.18028736636042594, "aux.acc_seg": 94.59114074707031, "time": 1.1247791051864624, "iter": 76450, "memory": 8704, "step": 76450} +{"lr": 0.005613755208741201, "data_time": 0.006688904762268066, "loss": 0.40158753246068957, "decode.loss_ce": 0.23338362351059913, "decode.acc_seg": 96.91168212890625, "aux.loss_ce": 0.1682039063423872, "aux.acc_seg": 93.13341522216797, "time": 1.1149118661880493, "iter": 76500, "memory": 8703, "step": 76500} +{"lr": 0.005610783634912019, "data_time": 0.006501007080078125, "loss": 0.5052972048521042, "decode.loss_ce": 0.32508707642555235, "decode.acc_seg": 94.0114974975586, "aux.loss_ce": 0.18021012842655182, "aux.acc_seg": 93.49174499511719, "time": 1.113933229446411, "iter": 76550, "memory": 8703, "step": 76550} +{"lr": 0.005607811883032322, "data_time": 0.006491565704345703, "loss": 0.26125281155109403, "decode.loss_ce": 0.1610843852162361, "decode.acc_seg": 94.77169799804688, "aux.loss_ce": 0.10016842260956764, "aux.acc_seg": 93.80518341064453, "time": 1.1157894611358643, "iter": 76600, "memory": 8704, "step": 76600} +{"lr": 0.0056048399529846915, "data_time": 0.005568861961364746, "loss": 0.5163310542702675, "decode.loss_ce": 0.341630532592535, "decode.acc_seg": 86.9537353515625, "aux.loss_ce": 0.17470052018761634, "aux.acc_seg": 83.11843872070312, "time": 1.1109429597854614, "iter": 76650, "memory": 8703, "step": 76650} +{"lr": 0.005601867844651554, "data_time": 0.00672905445098877, "loss": 0.4936967045068741, "decode.loss_ce": 0.3146800123155117, "decode.acc_seg": 93.2294692993164, "aux.loss_ce": 0.17901669144630433, "aux.acc_seg": 87.91936492919922, "time": 1.1214259147644043, "iter": 76700, "memory": 8704, "step": 76700} +{"lr": 0.005598895557915191, "data_time": 0.007498788833618164, "loss": 0.3348827600479126, "decode.loss_ce": 0.1861492946743965, "decode.acc_seg": 89.76376342773438, "aux.loss_ce": 0.14873346425592898, "aux.acc_seg": 78.91514587402344, "time": 1.1143088579177856, "iter": 76750, "memory": 8703, "step": 76750} +{"lr": 0.005595923092657736, "data_time": 0.009473824501037597, "loss": 0.34398104101419447, "decode.loss_ce": 0.20912414267659188, "decode.acc_seg": 90.44214630126953, "aux.loss_ce": 0.1348568953573704, "aux.acc_seg": 87.93354034423828, "time": 1.1228686571121216, "iter": 76800, "memory": 8703, "step": 76800} +{"lr": 0.005592950448761173, "data_time": 0.007700967788696289, "loss": 0.6142456024885178, "decode.loss_ce": 0.3934149816632271, "decode.acc_seg": 71.5384292602539, "aux.loss_ce": 0.22083061933517456, "aux.acc_seg": 73.13394927978516, "time": 1.1169949531555177, "iter": 76850, "memory": 8703, "step": 76850} +{"lr": 0.005589977626107335, "data_time": 0.008074450492858886, "loss": 0.3326466292142868, "decode.loss_ce": 0.19570830687880517, "decode.acc_seg": 92.01004791259766, "aux.loss_ce": 0.13693831861019135, "aux.acc_seg": 85.62793731689453, "time": 1.1172626972198487, "iter": 76900, "memory": 8703, "step": 76900} +{"lr": 0.005587004624577906, "data_time": 0.006918954849243164, "loss": 0.41519488096237184, "decode.loss_ce": 0.26074475720524787, "decode.acc_seg": 95.35301208496094, "aux.loss_ce": 0.15445012077689171, "aux.acc_seg": 94.34175109863281, "time": 1.1162607431411744, "iter": 76950, "memory": 8704, "step": 76950} +{"lr": 0.005584031444054428, "data_time": 0.007144427299499512, "loss": 0.558397576212883, "decode.loss_ce": 0.35157997310161593, "decode.acc_seg": 94.19390106201172, "aux.loss_ce": 0.20681761354207992, "aux.acc_seg": 92.27974700927734, "time": 1.1156652450561524, "iter": 77000, "memory": 8703, "step": 77000} +{"lr": 0.005581058084418282, "data_time": 0.007869338989257813, "loss": 0.4708246111869812, "decode.loss_ce": 0.29924142733216286, "decode.acc_seg": 97.29029083251953, "aux.loss_ce": 0.17158318646252155, "aux.acc_seg": 97.12155151367188, "time": 1.1181573390960693, "iter": 77050, "memory": 8704, "step": 77050} +{"lr": 0.005578084545550709, "data_time": 0.007251167297363281, "loss": 0.4303218722343445, "decode.loss_ce": 0.28286459781229495, "decode.acc_seg": 93.3786392211914, "aux.loss_ce": 0.14745727628469468, "aux.acc_seg": 91.90718078613281, "time": 1.1125768184661866, "iter": 77100, "memory": 8704, "step": 77100} +{"lr": 0.0055751108273327885, "data_time": 0.005713510513305664, "loss": 0.4020350508391857, "decode.loss_ce": 0.22993559688329696, "decode.acc_seg": 91.8121337890625, "aux.loss_ce": 0.1720994558185339, "aux.acc_seg": 85.8154296875, "time": 1.111485528945923, "iter": 77150, "memory": 8704, "step": 77150} +{"lr": 0.005572136929645455, "data_time": 0.007675337791442871, "loss": 0.29037942439317704, "decode.loss_ce": 0.187299994379282, "decode.acc_seg": 91.12446594238281, "aux.loss_ce": 0.10307943113148213, "aux.acc_seg": 91.21170043945312, "time": 1.112493872642517, "iter": 77200, "memory": 8703, "step": 77200} +{"lr": 0.005569162852369497, "data_time": 0.0069653034210205075, "loss": 0.3782463908195496, "decode.loss_ce": 0.2444360487163067, "decode.acc_seg": 92.71774291992188, "aux.loss_ce": 0.13381033688783645, "aux.acc_seg": 82.4091567993164, "time": 1.11243736743927, "iter": 77250, "memory": 8704, "step": 77250} +{"lr": 0.005566188595385544, "data_time": 0.005575656890869141, "loss": 0.42485436648130415, "decode.loss_ce": 0.26465125381946564, "decode.acc_seg": 93.00708770751953, "aux.loss_ce": 0.16020311340689658, "aux.acc_seg": 87.725830078125, "time": 1.1120346307754516, "iter": 77300, "memory": 8703, "step": 77300} +{"lr": 0.0055632141585740804, "data_time": 0.00702669620513916, "loss": 0.3381133392453194, "decode.loss_ce": 0.2078258626163006, "decode.acc_seg": 97.25672149658203, "aux.loss_ce": 0.13028747513890265, "aux.acc_seg": 92.95304107666016, "time": 1.1156014919281005, "iter": 77350, "memory": 8704, "step": 77350} +{"lr": 0.005560239541815426, "data_time": 0.0065967321395874025, "loss": 0.5503292351961135, "decode.loss_ce": 0.3550094023346901, "decode.acc_seg": 93.19915008544922, "aux.loss_ce": 0.19531982839107515, "aux.acc_seg": 91.53446197509766, "time": 1.1101096391677856, "iter": 77400, "memory": 8704, "step": 77400} +{"lr": 0.005557264744989764, "data_time": 0.0048498868942260746, "loss": 0.43870249539613726, "decode.loss_ce": 0.2787445142865181, "decode.acc_seg": 93.86132049560547, "aux.loss_ce": 0.1599579881876707, "aux.acc_seg": 93.19063568115234, "time": 1.1098805665969849, "iter": 77450, "memory": 8703, "step": 77450} +{"lr": 0.005554289767977114, "data_time": 0.006916213035583496, "loss": 0.6131133884191513, "decode.loss_ce": 0.41766530424356463, "decode.acc_seg": 95.21160125732422, "aux.loss_ce": 0.19544808939099312, "aux.acc_seg": 89.14921569824219, "time": 1.1119357585906982, "iter": 77500, "memory": 8703, "step": 77500} +{"lr": 0.005551314610657359, "data_time": 0.006981587409973145, "loss": 0.3529493764042854, "decode.loss_ce": 0.21678912714123727, "decode.acc_seg": 87.63853454589844, "aux.loss_ce": 0.13616025000810622, "aux.acc_seg": 77.63970184326172, "time": 1.1165557861328126, "iter": 77550, "memory": 8704, "step": 77550} +{"lr": 0.005548339272910204, "data_time": 0.008757495880126953, "loss": 0.5017162844538688, "decode.loss_ce": 0.3144398801028728, "decode.acc_seg": 93.47737121582031, "aux.loss_ce": 0.18727640770375728, "aux.acc_seg": 91.9473648071289, "time": 1.115910577774048, "iter": 77600, "memory": 8704, "step": 77600} +{"lr": 0.0055453637546152195, "data_time": 0.007861495018005371, "loss": 0.48263081163167953, "decode.loss_ce": 0.3216183617711067, "decode.acc_seg": 97.27960968017578, "aux.loss_ce": 0.1610124461352825, "aux.acc_seg": 96.99121856689453, "time": 1.1139081716537476, "iter": 77650, "memory": 8704, "step": 77650} +{"lr": 0.005542388055651823, "data_time": 0.006324362754821777, "loss": 0.25868309289216995, "decode.loss_ce": 0.16568231135606765, "decode.acc_seg": 95.44117736816406, "aux.loss_ce": 0.09300077892839909, "aux.acc_seg": 93.01630401611328, "time": 1.1130069971084595, "iter": 77700, "memory": 8704, "step": 77700} +{"lr": 0.005539412175899267, "data_time": 0.005891847610473633, "loss": 0.423365318775177, "decode.loss_ce": 0.24821948409080505, "decode.acc_seg": 94.80596923828125, "aux.loss_ce": 0.17514583319425583, "aux.acc_seg": 90.9311294555664, "time": 1.115031123161316, "iter": 77750, "memory": 8704, "step": 77750} +{"lr": 0.005536436115236658, "data_time": 0.006910848617553711, "loss": 0.4196389868855476, "decode.loss_ce": 0.2847419634461403, "decode.acc_seg": 89.40397644042969, "aux.loss_ce": 0.1348970215767622, "aux.acc_seg": 84.19882202148438, "time": 1.115427303314209, "iter": 77800, "memory": 8704, "step": 77800} +{"lr": 0.005533459873542939, "data_time": 0.006085991859436035, "loss": 0.4457986354827881, "decode.loss_ce": 0.28876643180847167, "decode.acc_seg": 91.40325927734375, "aux.loss_ce": 0.15703219994902612, "aux.acc_seg": 87.39903259277344, "time": 1.1176614046096802, "iter": 77850, "memory": 8703, "step": 77850} +{"lr": 0.0055304834506969104, "data_time": 0.00631711483001709, "loss": 0.4156628519296646, "decode.loss_ce": 0.2612103134393692, "decode.acc_seg": 74.96324920654297, "aux.loss_ce": 0.15445254147052764, "aux.acc_seg": 81.00547790527344, "time": 1.1138505697250367, "iter": 77900, "memory": 8704, "step": 77900} +{"lr": 0.005527506846577214, "data_time": 0.0065776586532592775, "loss": 0.2823211312294006, "decode.loss_ce": 0.16788528263568878, "decode.acc_seg": 89.13516998291016, "aux.loss_ce": 0.11443584896624089, "aux.acc_seg": 88.17131805419922, "time": 1.1128435850143432, "iter": 77950, "memory": 8704, "step": 77950} +{"lr": 0.005524530061062325, "data_time": 0.006717395782470703, "loss": 0.5993960827589035, "decode.loss_ce": 0.39569622501730917, "decode.acc_seg": 95.03014373779297, "aux.loss_ce": 0.20369985476136207, "aux.acc_seg": 92.30947875976562, "time": 1.1180215358734131, "iter": 78000, "memory": 8704, "step": 78000} +{"lr": 0.0055215530940305796, "data_time": 0.006447815895080566, "loss": 0.41099193692207336, "decode.loss_ce": 0.2648567855358124, "decode.acc_seg": 93.99765014648438, "aux.loss_ce": 0.1461351566016674, "aux.acc_seg": 90.39684295654297, "time": 1.1132761478424071, "iter": 78050, "memory": 8703, "step": 78050} +{"lr": 0.005518575945360154, "data_time": 0.006049323081970215, "loss": 0.6404501557350158, "decode.loss_ce": 0.41311450153589246, "decode.acc_seg": 93.8452377319336, "aux.loss_ce": 0.22733565643429757, "aux.acc_seg": 92.07401275634766, "time": 1.1129716157913208, "iter": 78100, "memory": 8703, "step": 78100} +{"lr": 0.005515598614929059, "data_time": 0.007221126556396484, "loss": 0.4323942080140114, "decode.loss_ce": 0.27304811477661134, "decode.acc_seg": 95.71342468261719, "aux.loss_ce": 0.15934609472751618, "aux.acc_seg": 92.51505279541016, "time": 1.1126019477844238, "iter": 78150, "memory": 8703, "step": 78150} +{"lr": 0.005512621102615162, "data_time": 0.006014466285705566, "loss": 0.43673298954963685, "decode.loss_ce": 0.2765874072909355, "decode.acc_seg": 94.98857879638672, "aux.loss_ce": 0.16014558598399162, "aux.acc_seg": 94.496337890625, "time": 1.1149803876876831, "iter": 78200, "memory": 8704, "step": 78200} +{"lr": 0.005509643408296153, "data_time": 0.006268000602722168, "loss": 0.4136046230792999, "decode.loss_ce": 0.2550878316164017, "decode.acc_seg": 96.68782043457031, "aux.loss_ce": 0.15851680114865302, "aux.acc_seg": 94.65121459960938, "time": 1.113739013671875, "iter": 78250, "memory": 8704, "step": 78250} +{"lr": 0.005506665531849585, "data_time": 0.006301021575927735, "loss": 0.3609951972961426, "decode.loss_ce": 0.22972095161676406, "decode.acc_seg": 95.18025207519531, "aux.loss_ce": 0.13127424269914628, "aux.acc_seg": 94.33739471435547, "time": 1.1126509189605713, "iter": 78300, "memory": 8704, "step": 78300} +{"lr": 0.005503687473152852, "data_time": 0.005441999435424805, "loss": 0.49042717218399046, "decode.loss_ce": 0.3238896243274212, "decode.acc_seg": 86.15143585205078, "aux.loss_ce": 0.16653755083680152, "aux.acc_seg": 83.03018951416016, "time": 1.1160073280334473, "iter": 78350, "memory": 8703, "step": 78350} +{"lr": 0.005500709232083182, "data_time": 0.007787060737609863, "loss": 0.3623239204287529, "decode.loss_ce": 0.2207147590816021, "decode.acc_seg": 94.66736602783203, "aux.loss_ce": 0.14160916209220886, "aux.acc_seg": 94.3802490234375, "time": 1.1171449184417725, "iter": 78400, "memory": 8703, "step": 78400} +{"lr": 0.005497730808517644, "data_time": 0.00717620849609375, "loss": 0.4151473164558411, "decode.loss_ce": 0.25590613186359407, "decode.acc_seg": 82.65569305419922, "aux.loss_ce": 0.1592411793768406, "aux.acc_seg": 70.06785583496094, "time": 1.1148689031600951, "iter": 78450, "memory": 8703, "step": 78450} +{"lr": 0.005494752202333157, "data_time": 0.008396100997924805, "loss": 0.30233302563428877, "decode.loss_ce": 0.17885223478078843, "decode.acc_seg": 85.45258331298828, "aux.loss_ce": 0.12348079159855843, "aux.acc_seg": 79.66429138183594, "time": 1.120466375350952, "iter": 78500, "memory": 8704, "step": 78500} +{"lr": 0.005491773413406477, "data_time": 0.007984375953674317, "loss": 0.38664021641016005, "decode.loss_ce": 0.22975155860185623, "decode.acc_seg": 84.94268798828125, "aux.loss_ce": 0.15688864700496197, "aux.acc_seg": 68.28703308105469, "time": 1.1147496938705443, "iter": 78550, "memory": 8704, "step": 78550} +{"lr": 0.005488794441614201, "data_time": 0.007993793487548828, "loss": 0.3895371899008751, "decode.loss_ce": 0.22881771996617317, "decode.acc_seg": 95.86861419677734, "aux.loss_ce": 0.16071946173906326, "aux.acc_seg": 94.97921752929688, "time": 1.1174721479415894, "iter": 78600, "memory": 8703, "step": 78600} +{"lr": 0.005485815286832766, "data_time": 0.0057752132415771484, "loss": 0.2962708741426468, "decode.loss_ce": 0.18010009229183196, "decode.acc_seg": 90.6754150390625, "aux.loss_ce": 0.11617078445851803, "aux.acc_seg": 81.3935546875, "time": 1.1104625701904296, "iter": 78650, "memory": 8703, "step": 78650} +{"lr": 0.005482835948938453, "data_time": 0.007602190971374512, "loss": 0.41141665577888487, "decode.loss_ce": 0.2618897996842861, "decode.acc_seg": 96.62545013427734, "aux.loss_ce": 0.1495268564671278, "aux.acc_seg": 80.15251159667969, "time": 1.118616271018982, "iter": 78700, "memory": 8704, "step": 78700} +{"lr": 0.005479856427807385, "data_time": 0.008227944374084473, "loss": 0.34447709918022157, "decode.loss_ce": 0.2080050937831402, "decode.acc_seg": 95.24040222167969, "aux.loss_ce": 0.1364720068871975, "aux.acc_seg": 94.3156509399414, "time": 1.117399525642395, "iter": 78750, "memory": 8704, "step": 78750} +{"lr": 0.005476876723315509, "data_time": 0.007627439498901367, "loss": 0.3534850388765335, "decode.loss_ce": 0.21189636886119842, "decode.acc_seg": 95.26168060302734, "aux.loss_ce": 0.14158866927027702, "aux.acc_seg": 93.9727554321289, "time": 1.1175196409225463, "iter": 78800, "memory": 8704, "step": 78800} +{"lr": 0.005473896835338633, "data_time": 0.0062602519989013675, "loss": 0.4990635484457016, "decode.loss_ce": 0.3258472114801407, "decode.acc_seg": 91.59151458740234, "aux.loss_ce": 0.17321633771061898, "aux.acc_seg": 91.12777709960938, "time": 1.1122002601623535, "iter": 78850, "memory": 8703, "step": 78850} +{"lr": 0.005470916763752392, "data_time": 0.0050106048583984375, "loss": 0.37928349524736404, "decode.loss_ce": 0.24149593710899353, "decode.acc_seg": 95.58006286621094, "aux.loss_ce": 0.13778754845261573, "aux.acc_seg": 92.55516815185547, "time": 1.107847476005554, "iter": 78900, "memory": 8704, "step": 78900} +{"lr": 0.005467936508432263, "data_time": 0.00655210018157959, "loss": 0.3010698229074478, "decode.loss_ce": 0.18369968757033348, "decode.acc_seg": 93.71426391601562, "aux.loss_ce": 0.11737012937664985, "aux.acc_seg": 93.243408203125, "time": 1.1133501291275025, "iter": 78950, "memory": 8704, "step": 78950} +{"lr": 0.005464956069253562, "data_time": 0.007436537742614746, "loss": 0.42255235463380814, "decode.loss_ce": 0.2656711772084236, "decode.acc_seg": 94.25655364990234, "aux.loss_ce": 0.15688117668032647, "aux.acc_seg": 92.28579711914062, "time": 1.1165568828582764, "iter": 79000, "memory": 8704, "step": 79000} +{"lr": 0.005461975446091444, "data_time": 0.0069620609283447266, "loss": 0.7146867692470551, "decode.loss_ce": 0.43935018852353097, "decode.acc_seg": 81.44022369384766, "aux.loss_ce": 0.2753365829586983, "aux.acc_seg": 78.29354095458984, "time": 1.111210560798645, "iter": 79050, "memory": 8704, "step": 79050} +{"lr": 0.005458994638820901, "data_time": 0.006603336334228516, "loss": 0.4560872226953506, "decode.loss_ce": 0.27335436567664145, "decode.acc_seg": 94.04296875, "aux.loss_ce": 0.18273285441100598, "aux.acc_seg": 89.41192626953125, "time": 1.1143439769744874, "iter": 79100, "memory": 8704, "step": 79100} +{"lr": 0.005456013647316761, "data_time": 0.006268787384033203, "loss": 0.36572064459323883, "decode.loss_ce": 0.21588588804006575, "decode.acc_seg": 94.26676177978516, "aux.loss_ce": 0.14983475282788278, "aux.acc_seg": 91.74168395996094, "time": 1.1130820989608765, "iter": 79150, "memory": 8704, "step": 79150} +{"lr": 0.005453032471453695, "data_time": 0.006127262115478515, "loss": 0.3868263065814972, "decode.loss_ce": 0.239948520809412, "decode.acc_seg": 97.9024887084961, "aux.loss_ce": 0.146877783164382, "aux.acc_seg": 96.49715423583984, "time": 1.1151999711990357, "iter": 79200, "memory": 8703, "step": 79200} +{"lr": 0.005450051111106205, "data_time": 0.006150722503662109, "loss": 0.44804807007312775, "decode.loss_ce": 0.2714062675833702, "decode.acc_seg": 92.9871826171875, "aux.loss_ce": 0.17664180360734463, "aux.acc_seg": 87.59867095947266, "time": 1.1106279611587524, "iter": 79250, "memory": 8703, "step": 79250} +{"lr": 0.005447069566148628, "data_time": 0.005448579788208008, "loss": 0.5108517348766327, "decode.loss_ce": 0.3002060055732727, "decode.acc_seg": 72.160400390625, "aux.loss_ce": 0.21064571887254716, "aux.acc_seg": 69.921875, "time": 1.112827968597412, "iter": 79300, "memory": 8704, "step": 79300} +{"lr": 0.005444087836455145, "data_time": 0.006085252761840821, "loss": 0.5608744710683823, "decode.loss_ce": 0.3363844096660614, "decode.acc_seg": 78.10897827148438, "aux.loss_ce": 0.22449006214737893, "aux.acc_seg": 72.32061767578125, "time": 1.1143166542053222, "iter": 79350, "memory": 8704, "step": 79350} +{"lr": 0.0054411059218997734, "data_time": 0.006050419807434082, "loss": 0.5112051784992218, "decode.loss_ce": 0.2997791215777397, "decode.acc_seg": 95.42694091796875, "aux.loss_ce": 0.21142606437206268, "aux.acc_seg": 84.3765869140625, "time": 1.1118754625320435, "iter": 79400, "memory": 8704, "step": 79400} +{"lr": 0.005438123822356352, "data_time": 0.00581064224243164, "loss": 0.4002517655491829, "decode.loss_ce": 0.23224976658821106, "decode.acc_seg": 96.41049194335938, "aux.loss_ce": 0.16800199449062347, "aux.acc_seg": 91.0669937133789, "time": 1.1118038892745972, "iter": 79450, "memory": 8704, "step": 79450} +{"lr": 0.005435141537698579, "data_time": 0.0072658777236938475, "loss": 0.38697687685489657, "decode.loss_ce": 0.2577180489897728, "decode.acc_seg": 92.44091796875, "aux.loss_ce": 0.12925882823765278, "aux.acc_seg": 92.181396484375, "time": 1.1146987199783325, "iter": 79500, "memory": 8703, "step": 79500} +{"lr": 0.005432159067799969, "data_time": 0.007998776435852051, "loss": 0.3412589952349663, "decode.loss_ce": 0.19720651507377623, "decode.acc_seg": 95.24040222167969, "aux.loss_ce": 0.1440524809062481, "aux.acc_seg": 91.70494079589844, "time": 1.112960648536682, "iter": 79550, "memory": 8704, "step": 79550} +{"lr": 0.005429176412533878, "data_time": 0.006313848495483399, "loss": 0.4025279864668846, "decode.loss_ce": 0.2370931826531887, "decode.acc_seg": 92.71337890625, "aux.loss_ce": 0.1654348038136959, "aux.acc_seg": 90.15719604492188, "time": 1.1114116191864014, "iter": 79600, "memory": 8704, "step": 79600} +{"lr": 0.005426193571773495, "data_time": 0.00794966220855713, "loss": 0.45080294609069826, "decode.loss_ce": 0.2846733763813972, "decode.acc_seg": 95.76673889160156, "aux.loss_ce": 0.16612957492470742, "aux.acc_seg": 88.88694763183594, "time": 1.1135310411453248, "iter": 79650, "memory": 8704, "step": 79650} +{"lr": 0.005423210545391839, "data_time": 0.006979560852050782, "loss": 0.3617421373724937, "decode.loss_ce": 0.2277390718460083, "decode.acc_seg": 93.58831787109375, "aux.loss_ce": 0.13400306627154351, "aux.acc_seg": 91.64085388183594, "time": 1.1156044483184815, "iter": 79700, "memory": 8704, "step": 79700} +{"lr": 0.005420227333261774, "data_time": 0.007105112075805664, "loss": 0.426258297264576, "decode.loss_ce": 0.23743261471390725, "decode.acc_seg": 97.59832763671875, "aux.loss_ce": 0.18882567919790744, "aux.acc_seg": 91.5833740234375, "time": 1.1162622928619386, "iter": 79750, "memory": 8704, "step": 79750} +{"lr": 0.005417243935255992, "data_time": 0.006811261177062988, "loss": 0.30948298126459123, "decode.loss_ce": 0.18323247134685516, "decode.acc_seg": 91.47529602050781, "aux.loss_ce": 0.12625050656497477, "aux.acc_seg": 91.4129867553711, "time": 1.1163509368896485, "iter": 79800, "memory": 8703, "step": 79800} +{"lr": 0.005414260351247018, "data_time": 0.007083082199096679, "loss": 0.5952945947647095, "decode.loss_ce": 0.3458909034729004, "decode.acc_seg": 91.89834594726562, "aux.loss_ce": 0.24940370246767998, "aux.acc_seg": 85.54960632324219, "time": 1.1160242557525635, "iter": 79850, "memory": 8704, "step": 79850} +{"lr": 0.0054112765811072105, "data_time": 0.007086634635925293, "loss": 0.32655966430902483, "decode.loss_ce": 0.1938105568289757, "decode.acc_seg": 95.31656646728516, "aux.loss_ce": 0.1327491044998169, "aux.acc_seg": 91.01791381835938, "time": 1.1164117097854613, "iter": 79900, "memory": 8703, "step": 79900} +{"lr": 0.005408292624708765, "data_time": 0.007105135917663574, "loss": 0.354389451444149, "decode.loss_ce": 0.20374264866113662, "decode.acc_seg": 97.26982879638672, "aux.loss_ce": 0.15064679719507695, "aux.acc_seg": 96.18392944335938, "time": 1.1109837532043456, "iter": 79950, "memory": 8704, "step": 79950} +{"lr": 0.005405308481923696, "data_time": 0.007136154174804688, "loss": 0.2839286386966705, "decode.loss_ce": 0.17554796263575553, "decode.acc_seg": 92.84236145019531, "aux.loss_ce": 0.10838067159056664, "aux.acc_seg": 92.33875274658203, "time": 1.1115131855010987, "iter": 80000, "memory": 8704, "step": 80000} +{"aAcc": 94.02, "mIoU": 65.4, "mAcc": 76.04, "data_time": 0.004078776477656257, "time": 0.2712628415992828, "step": 80000} +{"lr": 0.0054023241526238615, "data_time": 0.009114599227905274, "loss": 0.32331463098526003, "decode.loss_ce": 0.19191013649106026, "decode.acc_seg": 96.43350982666016, "aux.loss_ce": 0.13140449449419975, "aux.acc_seg": 92.56222534179688, "time": 1.1161836385726929, "iter": 80050, "memory": 8704, "step": 80050} +{"lr": 0.005399339636680947, "data_time": 0.005549168586730957, "loss": 0.3081297159194946, "decode.loss_ce": 0.18742209076881408, "decode.acc_seg": 92.828369140625, "aux.loss_ce": 0.12070762105286122, "aux.acc_seg": 90.18211364746094, "time": 1.1148527622222901, "iter": 80100, "memory": 8704, "step": 80100} +{"lr": 0.005396354933966474, "data_time": 0.0075725078582763675, "loss": 0.4238377928733826, "decode.loss_ce": 0.259366562962532, "decode.acc_seg": 97.29925537109375, "aux.loss_ce": 0.16447122544050216, "aux.acc_seg": 96.95478057861328, "time": 1.1183425664901734, "iter": 80150, "memory": 8704, "step": 80150} +{"lr": 0.005393370044351791, "data_time": 0.005504393577575683, "loss": 0.31446337401866914, "decode.loss_ce": 0.19157190173864364, "decode.acc_seg": 96.77269744873047, "aux.loss_ce": 0.12289146818220616, "aux.acc_seg": 94.35449981689453, "time": 1.1121324062347413, "iter": 80200, "memory": 8703, "step": 80200} +{"lr": 0.005390384967708075, "data_time": 0.005913138389587402, "loss": 0.48298914134502413, "decode.loss_ce": 0.2865269124507904, "decode.acc_seg": 94.48966979980469, "aux.loss_ce": 0.19646223038434982, "aux.acc_seg": 93.45556640625, "time": 1.117243218421936, "iter": 80250, "memory": 8703, "step": 80250} +{"lr": 0.00538739970390634, "data_time": 0.005327439308166504, "loss": 0.2581899479031563, "decode.loss_ce": 0.1567242845892906, "decode.acc_seg": 91.15746307373047, "aux.loss_ce": 0.10146566890180111, "aux.acc_seg": 90.76499938964844, "time": 1.1088679075241088, "iter": 80300, "memory": 8703, "step": 80300} +{"lr": 0.005384414252817429, "data_time": 0.006432271003723145, "loss": 0.3353430598974228, "decode.loss_ce": 0.19818973317742347, "decode.acc_seg": 91.79744720458984, "aux.loss_ce": 0.13715333119034767, "aux.acc_seg": 86.07711791992188, "time": 1.1132840633392334, "iter": 80350, "memory": 8703, "step": 80350} +{"lr": 0.005381428614312003, "data_time": 0.006358146667480469, "loss": 0.48675242364406585, "decode.loss_ce": 0.26910893619060516, "decode.acc_seg": 89.3915786743164, "aux.loss_ce": 0.21764348968863487, "aux.acc_seg": 91.54942321777344, "time": 1.1166683435440063, "iter": 80400, "memory": 8703, "step": 80400} +{"lr": 0.005378442788260565, "data_time": 0.005549049377441407, "loss": 0.41316568553447724, "decode.loss_ce": 0.25608326196670533, "decode.acc_seg": 95.88959503173828, "aux.loss_ce": 0.15708242654800414, "aux.acc_seg": 95.57405853271484, "time": 1.1115763664245606, "iter": 80450, "memory": 8703, "step": 80450} +{"lr": 0.005375456774533445, "data_time": 0.00708768367767334, "loss": 0.36715934574604037, "decode.loss_ce": 0.2300714984536171, "decode.acc_seg": 95.3165512084961, "aux.loss_ce": 0.1370878491550684, "aux.acc_seg": 93.07294464111328, "time": 1.1150733947753906, "iter": 80500, "memory": 8703, "step": 80500} +{"lr": 0.005372470573000801, "data_time": 0.006141304969787598, "loss": 0.40215021967887876, "decode.loss_ce": 0.2451838381588459, "decode.acc_seg": 93.0898666381836, "aux.loss_ce": 0.15696638002991675, "aux.acc_seg": 92.33086395263672, "time": 1.1094284296035766, "iter": 80550, "memory": 8704, "step": 80550} +{"lr": 0.005369484183532615, "data_time": 0.006733894348144531, "loss": 0.35334170758724215, "decode.loss_ce": 0.23180664330720901, "decode.acc_seg": 91.31958770751953, "aux.loss_ce": 0.12153505831956864, "aux.acc_seg": 87.36082458496094, "time": 1.116092324256897, "iter": 80600, "memory": 8703, "step": 80600} +{"lr": 0.005366497605998708, "data_time": 0.006469011306762695, "loss": 0.4996755808591843, "decode.loss_ce": 0.2910231128334999, "decode.acc_seg": 97.94120788574219, "aux.loss_ce": 0.20865245684981346, "aux.acc_seg": 91.57364654541016, "time": 1.1143080472946167, "iter": 80650, "memory": 8703, "step": 80650} +{"lr": 0.0053635108402687185, "data_time": 0.006694364547729492, "loss": 0.3727964460849762, "decode.loss_ce": 0.2229185000061989, "decode.acc_seg": 96.07477569580078, "aux.loss_ce": 0.14987794421613215, "aux.acc_seg": 95.41738891601562, "time": 1.1097907781600953, "iter": 80700, "memory": 8703, "step": 80700} +{"lr": 0.0053605238862121166, "data_time": 0.0061623573303222655, "loss": 0.2952006280422211, "decode.loss_ce": 0.1832858957350254, "decode.acc_seg": 94.15632629394531, "aux.loss_ce": 0.11191473305225372, "aux.acc_seg": 92.71678924560547, "time": 1.1103222846984864, "iter": 80750, "memory": 8703, "step": 80750} +{"lr": 0.005357536743698198, "data_time": 0.007424402236938477, "loss": 0.3980858951807022, "decode.loss_ce": 0.22794441655278205, "decode.acc_seg": 96.79711151123047, "aux.loss_ce": 0.17014147639274596, "aux.acc_seg": 92.3574447631836, "time": 1.1140641450881958, "iter": 80800, "memory": 8703, "step": 80800} +{"lr": 0.005354549412596082, "data_time": 0.005839681625366211, "loss": 0.3062656044960022, "decode.loss_ce": 0.18324968963861465, "decode.acc_seg": 94.57518005371094, "aux.loss_ce": 0.12301591075956822, "aux.acc_seg": 91.96090698242188, "time": 1.1101250410079957, "iter": 80850, "memory": 8704, "step": 80850} +{"lr": 0.00535156189277472, "data_time": 0.006179022789001465, "loss": 0.37697477340698243, "decode.loss_ce": 0.22850672006607056, "decode.acc_seg": 94.92454528808594, "aux.loss_ce": 0.1484680611640215, "aux.acc_seg": 89.04151916503906, "time": 1.1148584365844727, "iter": 80900, "memory": 8704, "step": 80900} +{"lr": 0.0053485741841028875, "data_time": 0.007375001907348633, "loss": 0.40369957089424136, "decode.loss_ce": 0.2562085099518299, "decode.acc_seg": 95.71469116210938, "aux.loss_ce": 0.1474910516291857, "aux.acc_seg": 88.05268096923828, "time": 1.1152379512786865, "iter": 80950, "memory": 8703, "step": 80950} +{"lr": 0.00534558628644918, "data_time": 0.006693840026855469, "loss": 0.31197638660669325, "decode.loss_ce": 0.1809646636247635, "decode.acc_seg": 95.36766052246094, "aux.loss_ce": 0.13101172707974912, "aux.acc_seg": 92.74386596679688, "time": 1.1129196643829347, "iter": 81000, "memory": 8703, "step": 81000} +{"lr": 0.005342598199682028, "data_time": 0.006902265548706055, "loss": 0.332596030831337, "decode.loss_ce": 0.21138231754302977, "decode.acc_seg": 89.41637420654297, "aux.loss_ce": 0.12121371403336526, "aux.acc_seg": 87.40564727783203, "time": 1.1137296199798583, "iter": 81050, "memory": 8703, "step": 81050} +{"lr": 0.005339609923669687, "data_time": 0.009018993377685547, "loss": 0.36988070905208587, "decode.loss_ce": 0.22319598793983458, "decode.acc_seg": 90.78871154785156, "aux.loss_ce": 0.14668471738696098, "aux.acc_seg": 87.58932495117188, "time": 1.1212945222854613, "iter": 81100, "memory": 8703, "step": 81100} +{"lr": 0.0053366214582802295, "data_time": 0.006279087066650391, "loss": 0.6106125831604003, "decode.loss_ce": 0.3870452791452408, "decode.acc_seg": 89.82124328613281, "aux.loss_ce": 0.22356730103492736, "aux.acc_seg": 84.65919494628906, "time": 1.1082608699798584, "iter": 81150, "memory": 8703, "step": 81150} +{"lr": 0.0053336328033815545, "data_time": 0.007548379898071289, "loss": 0.3901102885603905, "decode.loss_ce": 0.23467407152056693, "decode.acc_seg": 94.63971710205078, "aux.loss_ce": 0.15543621480464936, "aux.acc_seg": 90.11268615722656, "time": 1.1132648229598998, "iter": 81200, "memory": 8705, "step": 81200} +{"lr": 0.005330643958841388, "data_time": 0.004952454566955566, "loss": 0.32994411885738373, "decode.loss_ce": 0.20465376526117324, "decode.acc_seg": 91.13489532470703, "aux.loss_ce": 0.1252903539687395, "aux.acc_seg": 87.3038558959961, "time": 1.1136210918426515, "iter": 81250, "memory": 8704, "step": 81250} +{"lr": 0.00532765492452727, "data_time": 0.00658571720123291, "loss": 0.4404554173350334, "decode.loss_ce": 0.2697093829512596, "decode.acc_seg": 91.12179565429688, "aux.loss_ce": 0.1707460295408964, "aux.acc_seg": 85.46587371826172, "time": 1.1168764591217042, "iter": 81300, "memory": 8704, "step": 81300} +{"lr": 0.00532466570030658, "data_time": 0.008032083511352539, "loss": 0.2932800345122814, "decode.loss_ce": 0.1782064937055111, "decode.acc_seg": 94.28678894042969, "aux.loss_ce": 0.11507354527711869, "aux.acc_seg": 89.85588836669922, "time": 1.1124126672744752, "iter": 81350, "memory": 8704, "step": 81350} +{"lr": 0.005321676286046513, "data_time": 0.006942629814147949, "loss": 0.25246601849794387, "decode.loss_ce": 0.1486145079135895, "decode.acc_seg": 93.10150146484375, "aux.loss_ce": 0.10385151542723178, "aux.acc_seg": 84.83536529541016, "time": 1.1151344060897828, "iter": 81400, "memory": 8703, "step": 81400} +{"lr": 0.005318686681614081, "data_time": 0.00649263858795166, "loss": 0.3020610064268112, "decode.loss_ce": 0.1901051416993141, "decode.acc_seg": 97.08893585205078, "aux.loss_ce": 0.11195586174726486, "aux.acc_seg": 95.32845306396484, "time": 1.1171635866165162, "iter": 81450, "memory": 8703, "step": 81450} +{"lr": 0.005315696886876119, "data_time": 0.0061266422271728516, "loss": 0.39766054004430773, "decode.loss_ce": 0.24882130995392798, "decode.acc_seg": 94.81967163085938, "aux.loss_ce": 0.14883922934532165, "aux.acc_seg": 92.01580047607422, "time": 1.114288902282715, "iter": 81500, "memory": 8704, "step": 81500} +{"lr": 0.0053127069016993, "data_time": 0.006550359725952149, "loss": 0.2644810050725937, "decode.loss_ce": 0.16170750707387924, "decode.acc_seg": 95.65174865722656, "aux.loss_ce": 0.1027734961360693, "aux.acc_seg": 90.44386291503906, "time": 1.1129387378692628, "iter": 81550, "memory": 8703, "step": 81550} +{"lr": 0.005309716725950094, "data_time": 0.006342005729675293, "loss": 0.4336912542581558, "decode.loss_ce": 0.24715998470783235, "decode.acc_seg": 96.18727111816406, "aux.loss_ce": 0.18653127774596215, "aux.acc_seg": 92.4287109375, "time": 1.1122049331665038, "iter": 81600, "memory": 8703, "step": 81600} +{"lr": 0.00530672635949481, "data_time": 0.006959080696105957, "loss": 0.2948721036314964, "decode.loss_ce": 0.19232255667448045, "decode.acc_seg": 96.34564208984375, "aux.loss_ce": 0.10254954323172569, "aux.acc_seg": 92.54671478271484, "time": 1.1110185384750366, "iter": 81650, "memory": 8705, "step": 81650} +{"lr": 0.005303735802199574, "data_time": 0.005423188209533691, "loss": 0.5695404917001724, "decode.loss_ce": 0.37553431540727616, "decode.acc_seg": 76.93226623535156, "aux.loss_ce": 0.19400616139173507, "aux.acc_seg": 72.79364013671875, "time": 1.110509467124939, "iter": 81700, "memory": 8704, "step": 81700} +{"lr": 0.005300745053930328, "data_time": 0.007716083526611328, "loss": 0.3169928312301636, "decode.loss_ce": 0.19079322442412378, "decode.acc_seg": 83.72306823730469, "aux.loss_ce": 0.12619960866868496, "aux.acc_seg": 68.50172424316406, "time": 1.1175618410110473, "iter": 81750, "memory": 8703, "step": 81750} +{"lr": 0.005297754114552834, "data_time": 0.007353472709655762, "loss": 0.44282534420490266, "decode.loss_ce": 0.28483607321977616, "decode.acc_seg": 94.80342864990234, "aux.loss_ce": 0.15798928141593932, "aux.acc_seg": 93.26368713378906, "time": 1.1192122459411622, "iter": 81800, "memory": 8704, "step": 81800} +{"lr": 0.005294762983932681, "data_time": 0.007014822959899902, "loss": 0.35908586382865904, "decode.loss_ce": 0.22567930594086646, "decode.acc_seg": 96.37285614013672, "aux.loss_ce": 0.1334065593779087, "aux.acc_seg": 92.06021118164062, "time": 1.1216892004013062, "iter": 81850, "memory": 8703, "step": 81850} +{"lr": 0.005291771661935275, "data_time": 0.0067043304443359375, "loss": 0.36210636496543885, "decode.loss_ce": 0.23490063175559045, "decode.acc_seg": 93.5538558959961, "aux.loss_ce": 0.12720573022961618, "aux.acc_seg": 91.4846420288086, "time": 1.1128886461257934, "iter": 81900, "memory": 8704, "step": 81900} +{"lr": 0.005288780148425831, "data_time": 0.008346080780029297, "loss": 0.39454357475042345, "decode.loss_ce": 0.21540727466344833, "decode.acc_seg": 97.60652923583984, "aux.loss_ce": 0.17913630194962024, "aux.acc_seg": 97.35405731201172, "time": 1.1180954933166505, "iter": 81950, "memory": 8703, "step": 81950} +{"lr": 0.005285788443269395, "data_time": 0.006899070739746094, "loss": 0.38899011015892027, "decode.loss_ce": 0.24253034144639968, "decode.acc_seg": 90.37201690673828, "aux.loss_ce": 0.14645976349711418, "aux.acc_seg": 89.29239654541016, "time": 1.1167433500289916, "iter": 82000, "memory": 8704, "step": 82000} +{"lr": 0.005282796546330828, "data_time": 0.007038021087646484, "loss": 0.513588035106659, "decode.loss_ce": 0.3070119872689247, "decode.acc_seg": 86.27586364746094, "aux.loss_ce": 0.20657605528831482, "aux.acc_seg": 76.79493713378906, "time": 1.1113285303115845, "iter": 82050, "memory": 8704, "step": 82050} +{"lr": 0.005279804457474806, "data_time": 0.005597329139709473, "loss": 0.41580149829387664, "decode.loss_ce": 0.2629046678543091, "decode.acc_seg": 84.18928527832031, "aux.loss_ce": 0.15289684012532234, "aux.acc_seg": 77.70855712890625, "time": 1.1121680021286011, "iter": 82100, "memory": 8703, "step": 82100} +{"lr": 0.005276812176565825, "data_time": 0.007303953170776367, "loss": 0.3987658232450485, "decode.loss_ce": 0.2711604401469231, "decode.acc_seg": 92.9561767578125, "aux.loss_ce": 0.12760539054870607, "aux.acc_seg": 92.3157958984375, "time": 1.118168830871582, "iter": 82150, "memory": 8704, "step": 82150} +{"lr": 0.005273819703468195, "data_time": 0.007049393653869629, "loss": 0.35508367270231245, "decode.loss_ce": 0.20899509117007256, "decode.acc_seg": 95.78367614746094, "aux.loss_ce": 0.1460885837674141, "aux.acc_seg": 95.56198120117188, "time": 1.1175665378570556, "iter": 82200, "memory": 8704, "step": 82200} +{"lr": 0.0052708270380460555, "data_time": 0.007664275169372558, "loss": 0.3573691964149475, "decode.loss_ce": 0.20588206946849824, "decode.acc_seg": 93.02532958984375, "aux.loss_ce": 0.15148712322115898, "aux.acc_seg": 83.94355773925781, "time": 1.1176296472549438, "iter": 82250, "memory": 8703, "step": 82250} +{"lr": 0.005267834180163344, "data_time": 0.0073479413986206055, "loss": 0.3199226066470146, "decode.loss_ce": 0.19662644043564798, "decode.acc_seg": 94.65755462646484, "aux.loss_ce": 0.12329616062343121, "aux.acc_seg": 90.70539093017578, "time": 1.1132758617401124, "iter": 82300, "memory": 8704, "step": 82300} +{"lr": 0.00526484112968382, "data_time": 0.007423210144042969, "loss": 0.3624314621090889, "decode.loss_ce": 0.22195972874760628, "decode.acc_seg": 86.52470397949219, "aux.loss_ce": 0.14047173373401164, "aux.acc_seg": 82.88948822021484, "time": 1.1181010961532594, "iter": 82350, "memory": 8703, "step": 82350} +{"lr": 0.005261847886471068, "data_time": 0.007063579559326172, "loss": 0.40138923525810244, "decode.loss_ce": 0.258602973818779, "decode.acc_seg": 85.64179229736328, "aux.loss_ce": 0.14278626292943955, "aux.acc_seg": 83.43537139892578, "time": 1.1194695234298706, "iter": 82400, "memory": 8704, "step": 82400} +{"lr": 0.0052588544503884786, "data_time": 0.006536722183227539, "loss": 0.32871178835630416, "decode.loss_ce": 0.19969994127750396, "decode.acc_seg": 96.48697662353516, "aux.loss_ce": 0.12901184484362602, "aux.acc_seg": 89.6598129272461, "time": 1.1153130292892457, "iter": 82450, "memory": 8703, "step": 82450} +{"lr": 0.005255860821299257, "data_time": 0.006951093673706055, "loss": 0.4463035300374031, "decode.loss_ce": 0.2717720530927181, "decode.acc_seg": 95.68519592285156, "aux.loss_ce": 0.17453147284686565, "aux.acc_seg": 95.29087829589844, "time": 1.1113102197647096, "iter": 82500, "memory": 8703, "step": 82500} +{"lr": 0.005252866999066434, "data_time": 0.0076258182525634766, "loss": 0.398357754945755, "decode.loss_ce": 0.24366578310728074, "decode.acc_seg": 88.29479217529297, "aux.loss_ce": 0.15469197034835816, "aux.acc_seg": 82.52334594726562, "time": 1.1138574123382567, "iter": 82550, "memory": 8704, "step": 82550} +{"lr": 0.005249872983552844, "data_time": 0.006699204444885254, "loss": 0.3672028720378876, "decode.loss_ce": 0.21620003134012222, "decode.acc_seg": 97.8815689086914, "aux.loss_ce": 0.15100284218788146, "aux.acc_seg": 92.06733703613281, "time": 1.118170142173767, "iter": 82600, "memory": 8705, "step": 82600} +{"lr": 0.005246878774621141, "data_time": 0.0069138526916503905, "loss": 0.35868534743785857, "decode.loss_ce": 0.20455091670155526, "decode.acc_seg": 96.84422302246094, "aux.loss_ce": 0.15413442477583886, "aux.acc_seg": 95.56343841552734, "time": 1.1123877048492432, "iter": 82650, "memory": 8704, "step": 82650} +{"lr": 0.005243884372133781, "data_time": 0.0072228431701660155, "loss": 0.5474761217832566, "decode.loss_ce": 0.3140836149454117, "decode.acc_seg": 92.94937133789062, "aux.loss_ce": 0.23339250460267066, "aux.acc_seg": 88.16434478759766, "time": 1.1150217294692992, "iter": 82700, "memory": 8703, "step": 82700} +{"lr": 0.005240889775953051, "data_time": 0.006352448463439941, "loss": 0.26388550698757174, "decode.loss_ce": 0.1597173511981964, "decode.acc_seg": 95.79683685302734, "aux.loss_ce": 0.10416815467178822, "aux.acc_seg": 95.44391632080078, "time": 1.114081048965454, "iter": 82750, "memory": 8704, "step": 82750} +{"lr": 0.005237894985941036, "data_time": 0.006306123733520508, "loss": 0.3503299057483673, "decode.loss_ce": 0.20886491388082504, "decode.acc_seg": 94.94286346435547, "aux.loss_ce": 0.14146499671041965, "aux.acc_seg": 90.82674407958984, "time": 1.1135628700256348, "iter": 82800, "memory": 8704, "step": 82800} +{"lr": 0.005234900001959645, "data_time": 0.006037378311157226, "loss": 0.25962997823953626, "decode.loss_ce": 0.15126195102930068, "decode.acc_seg": 92.29519653320312, "aux.loss_ce": 0.10836802497506141, "aux.acc_seg": 90.49854278564453, "time": 1.113068127632141, "iter": 82850, "memory": 8704, "step": 82850} +{"lr": 0.005231904823870591, "data_time": 0.006272363662719727, "loss": 0.4082792177796364, "decode.loss_ce": 0.24929021596908568, "decode.acc_seg": 94.64295196533203, "aux.loss_ce": 0.15898899883031845, "aux.acc_seg": 93.59104919433594, "time": 1.1081420183181763, "iter": 82900, "memory": 8703, "step": 82900} +{"lr": 0.005228909451535394, "data_time": 0.0060738325119018555, "loss": 0.34406227618455887, "decode.loss_ce": 0.20479865446686746, "decode.acc_seg": 93.01859283447266, "aux.loss_ce": 0.13926361352205277, "aux.acc_seg": 91.78841400146484, "time": 1.1165067672729492, "iter": 82950, "memory": 8703, "step": 82950} +{"lr": 0.005225913884815402, "data_time": 0.006634712219238281, "loss": 0.30746928602457047, "decode.loss_ce": 0.19179213494062425, "decode.acc_seg": 95.44683837890625, "aux.loss_ce": 0.11567715480923653, "aux.acc_seg": 95.22037506103516, "time": 1.1110392093658448, "iter": 83000, "memory": 8703, "step": 83000} +{"lr": 0.0052229181235717605, "data_time": 0.008421659469604492, "loss": 0.39281069189310075, "decode.loss_ce": 0.23855542093515397, "decode.acc_seg": 95.89883422851562, "aux.loss_ce": 0.1542552776634693, "aux.acc_seg": 95.12283325195312, "time": 1.1186884641647339, "iter": 83050, "memory": 8704, "step": 83050} +{"lr": 0.005219922167665429, "data_time": 0.0071664094924926754, "loss": 0.3650956660509109, "decode.loss_ce": 0.21392233520746232, "decode.acc_seg": 94.97699737548828, "aux.loss_ce": 0.15117332972586156, "aux.acc_seg": 92.72575378417969, "time": 1.1162129640579224, "iter": 83100, "memory": 8703, "step": 83100} +{"lr": 0.005216926016957181, "data_time": 0.00583345890045166, "loss": 0.3416221603751183, "decode.loss_ce": 0.2007371135056019, "decode.acc_seg": 90.28952026367188, "aux.loss_ce": 0.1408850472420454, "aux.acc_seg": 90.6708984375, "time": 1.1121731996536255, "iter": 83150, "memory": 8704, "step": 83150} +{"lr": 0.005213929671307587, "data_time": 0.006463384628295899, "loss": 0.5845438674092293, "decode.loss_ce": 0.3498940274119377, "decode.acc_seg": 72.24241638183594, "aux.loss_ce": 0.23464984446763992, "aux.acc_seg": 56.70661544799805, "time": 1.1239641189575196, "iter": 83200, "memory": 8703, "step": 83200} +{"lr": 0.005210933130577043, "data_time": 0.006582880020141601, "loss": 0.388837893307209, "decode.loss_ce": 0.226552751660347, "decode.acc_seg": 94.99384307861328, "aux.loss_ce": 0.16228514090180396, "aux.acc_seg": 92.75582122802734, "time": 1.1180667400360107, "iter": 83250, "memory": 8703, "step": 83250} +{"lr": 0.0052079363946257486, "data_time": 0.007343101501464844, "loss": 0.4236526072025299, "decode.loss_ce": 0.2641004040837288, "decode.acc_seg": 95.62422180175781, "aux.loss_ce": 0.15955220013856888, "aux.acc_seg": 94.27967071533203, "time": 1.1163405179977417, "iter": 83300, "memory": 8704, "step": 83300} +{"lr": 0.005204939463313706, "data_time": 0.007959342002868653, "loss": 0.39603823274374006, "decode.loss_ce": 0.2404500924050808, "decode.acc_seg": 97.13674926757812, "aux.loss_ce": 0.15558813586831094, "aux.acc_seg": 92.62847900390625, "time": 1.1186400175094604, "iter": 83350, "memory": 8703, "step": 83350} +{"lr": 0.0052019423365007355, "data_time": 0.007949304580688477, "loss": 0.36652772724628446, "decode.loss_ce": 0.2240390069782734, "decode.acc_seg": 94.61866760253906, "aux.loss_ce": 0.14248871579766273, "aux.acc_seg": 87.35859680175781, "time": 1.116715145111084, "iter": 83400, "memory": 8703, "step": 83400} +{"lr": 0.005198945014046449, "data_time": 0.007071805000305176, "loss": 0.3199357897043228, "decode.loss_ce": 0.1957934871315956, "decode.acc_seg": 91.48641967773438, "aux.loss_ce": 0.12414229847490788, "aux.acc_seg": 89.04806518554688, "time": 1.1178906917572022, "iter": 83450, "memory": 8704, "step": 83450} +{"lr": 0.005195947495810289, "data_time": 0.006561684608459473, "loss": 0.4242342337965965, "decode.loss_ce": 0.25795221999287604, "decode.acc_seg": 96.65145874023438, "aux.loss_ce": 0.1662820141762495, "aux.acc_seg": 96.03646087646484, "time": 1.116269302368164, "iter": 83500, "memory": 8704, "step": 83500} +{"lr": 0.005192949781651484, "data_time": 0.0069549322128295895, "loss": 0.3939636439085007, "decode.loss_ce": 0.23459373861551286, "decode.acc_seg": 95.64571380615234, "aux.loss_ce": 0.15936990678310395, "aux.acc_seg": 94.80571746826172, "time": 1.116792130470276, "iter": 83550, "memory": 8703, "step": 83550} +{"lr": 0.0051899518714290825, "data_time": 0.0058983564376831055, "loss": 0.3669803276658058, "decode.loss_ce": 0.22959098890423774, "decode.acc_seg": 88.12687683105469, "aux.loss_ce": 0.13738932646811008, "aux.acc_seg": 88.31684875488281, "time": 1.1120167255401612, "iter": 83600, "memory": 8704, "step": 83600} +{"lr": 0.005186953765001933, "data_time": 0.006978607177734375, "loss": 0.3810360595583916, "decode.loss_ce": 0.2223770372569561, "decode.acc_seg": 95.70661926269531, "aux.loss_ce": 0.15865902453660966, "aux.acc_seg": 81.43946075439453, "time": 1.1127691745758057, "iter": 83650, "memory": 8704, "step": 83650} +{"lr": 0.005183955462228691, "data_time": 0.005549120903015137, "loss": 0.40885827839374544, "decode.loss_ce": 0.2640582635998726, "decode.acc_seg": 93.59041595458984, "aux.loss_ce": 0.14480001330375672, "aux.acc_seg": 85.989501953125, "time": 1.1090022325515747, "iter": 83700, "memory": 8704, "step": 83700} +{"lr": 0.005180956962967817, "data_time": 0.007081222534179687, "loss": 0.40043420493602755, "decode.loss_ce": 0.2349360078573227, "decode.acc_seg": 92.3388442993164, "aux.loss_ce": 0.16549819856882095, "aux.acc_seg": 86.91534423828125, "time": 1.114186668395996, "iter": 83750, "memory": 8703, "step": 83750} +{"lr": 0.005177958267077578, "data_time": 0.007797789573669433, "loss": 0.4232697024941444, "decode.loss_ce": 0.2612299919128418, "decode.acc_seg": 90.40514373779297, "aux.loss_ce": 0.16203970834612846, "aux.acc_seg": 82.26299285888672, "time": 1.1176240921020508, "iter": 83800, "memory": 8703, "step": 83800} +{"lr": 0.00517495937441605, "data_time": 0.009210705757141113, "loss": 0.30910695940256117, "decode.loss_ce": 0.1876933291554451, "decode.acc_seg": 92.16442108154297, "aux.loss_ce": 0.12141362763941288, "aux.acc_seg": 86.82835388183594, "time": 1.1221108198165894, "iter": 83850, "memory": 8703, "step": 83850} +{"lr": 0.005171960284841101, "data_time": 0.00668342113494873, "loss": 0.3218031734228134, "decode.loss_ce": 0.1973217636346817, "decode.acc_seg": 96.58342742919922, "aux.loss_ce": 0.12448141016066075, "aux.acc_seg": 92.63775634765625, "time": 1.1141634464263916, "iter": 83900, "memory": 8703, "step": 83900} +{"lr": 0.005168960998210417, "data_time": 0.007011294364929199, "loss": 0.33292961716651914, "decode.loss_ce": 0.19656311497092246, "decode.acc_seg": 93.12425994873047, "aux.loss_ce": 0.13636649698019027, "aux.acc_seg": 87.23678588867188, "time": 1.118148398399353, "iter": 83950, "memory": 8703, "step": 83950} +{"lr": 0.0051659615143814785, "data_time": 0.007569146156311035, "loss": 0.4709932073950768, "decode.loss_ce": 0.2875921443104744, "decode.acc_seg": 93.18573760986328, "aux.loss_ce": 0.18340106084942817, "aux.acc_seg": 92.11813354492188, "time": 1.1155927658081055, "iter": 84000, "memory": 8704, "step": 84000} +{"lr": 0.005162961833211573, "data_time": 0.005694079399108887, "loss": 0.3566407412290573, "decode.loss_ce": 0.2263823475688696, "decode.acc_seg": 94.80886840820312, "aux.loss_ce": 0.13025839067995548, "aux.acc_seg": 94.21903228759766, "time": 1.1147791385650634, "iter": 84050, "memory": 8703, "step": 84050} +{"lr": 0.0051599619545577855, "data_time": 0.00760502815246582, "loss": 0.34773956537246703, "decode.loss_ce": 0.22220622897148132, "decode.acc_seg": 93.06208038330078, "aux.loss_ce": 0.1255333326756954, "aux.acc_seg": 90.58418273925781, "time": 1.1150415658950805, "iter": 84100, "memory": 8704, "step": 84100} +{"lr": 0.005156961878277008, "data_time": 0.005314254760742187, "loss": 0.5261384308338165, "decode.loss_ce": 0.3307169139385223, "decode.acc_seg": 79.51164245605469, "aux.loss_ce": 0.19542151391506196, "aux.acc_seg": 59.2191047668457, "time": 1.1144817113876342, "iter": 84150, "memory": 8704, "step": 84150} +{"lr": 0.0051539616042259335, "data_time": 0.00549166202545166, "loss": 0.39946856498718264, "decode.loss_ce": 0.2407938838005066, "decode.acc_seg": 94.35723114013672, "aux.loss_ce": 0.15867467895150184, "aux.acc_seg": 92.57894897460938, "time": 1.1104568004608155, "iter": 84200, "memory": 8703, "step": 84200} +{"lr": 0.005150961132261059, "data_time": 0.0071583747863769535, "loss": 0.2779762610793114, "decode.loss_ce": 0.14472927525639534, "decode.acc_seg": 94.82135772705078, "aux.loss_ce": 0.1332469917833805, "aux.acc_seg": 86.26873779296875, "time": 1.1105414867401122, "iter": 84250, "memory": 8703, "step": 84250} +{"lr": 0.005147960462238681, "data_time": 0.006116747856140137, "loss": 0.3477988913655281, "decode.loss_ce": 0.22332945391535758, "decode.acc_seg": 94.41864776611328, "aux.loss_ce": 0.12446943484246731, "aux.acc_seg": 91.97953033447266, "time": 1.113862681388855, "iter": 84300, "memory": 8704, "step": 84300} +{"lr": 0.0051449595940148895, "data_time": 0.0071921110153198246, "loss": 0.4732988104224205, "decode.loss_ce": 0.2957968607544899, "decode.acc_seg": 90.38670349121094, "aux.loss_ce": 0.1775019496679306, "aux.acc_seg": 86.1923828125, "time": 1.116145133972168, "iter": 84350, "memory": 8703, "step": 84350} +{"lr": 0.005141958527445585, "data_time": 0.0066353797912597655, "loss": 0.4476949438452721, "decode.loss_ce": 0.2716827541589737, "decode.acc_seg": 92.86358642578125, "aux.loss_ce": 0.17601218223571777, "aux.acc_seg": 86.79688262939453, "time": 1.1126303672790527, "iter": 84400, "memory": 8704, "step": 84400} +{"lr": 0.005138957262386466, "data_time": 0.0068387269973754885, "loss": 0.335066644847393, "decode.loss_ce": 0.2024325355887413, "decode.acc_seg": 96.68934631347656, "aux.loss_ce": 0.13263410404324533, "aux.acc_seg": 95.87931060791016, "time": 1.1181808710098267, "iter": 84450, "memory": 8703, "step": 84450} +{"lr": 0.005135955798693017, "data_time": 0.007702922821044922, "loss": 0.4215772345662117, "decode.loss_ce": 0.2747823566198349, "decode.acc_seg": 95.26844024658203, "aux.loss_ce": 0.1467948764562607, "aux.acc_seg": 92.66014099121094, "time": 1.1167765617370606, "iter": 84500, "memory": 8704, "step": 84500} +{"lr": 0.005132954136220542, "data_time": 0.006275582313537598, "loss": 0.40877608507871627, "decode.loss_ce": 0.24038221165537835, "decode.acc_seg": 95.54544830322266, "aux.loss_ce": 0.1683938693255186, "aux.acc_seg": 93.92433166503906, "time": 1.1128406763076781, "iter": 84550, "memory": 8703, "step": 84550} +{"lr": 0.0051299522748241375, "data_time": 0.005766463279724121, "loss": 0.24928417801856995, "decode.loss_ce": 0.14809945449233056, "decode.acc_seg": 94.67459869384766, "aux.loss_ce": 0.10118471868336201, "aux.acc_seg": 93.82170867919922, "time": 1.1140887975692748, "iter": 84600, "memory": 8704, "step": 84600} +{"lr": 0.005126950214358693, "data_time": 0.008031797409057618, "loss": 0.46164052486419677, "decode.loss_ce": 0.29085555076599123, "decode.acc_seg": 92.17516326904297, "aux.loss_ce": 0.17078496217727662, "aux.acc_seg": 82.49708557128906, "time": 1.1147627353668212, "iter": 84650, "memory": 8703, "step": 84650} +{"lr": 0.005123947954678891, "data_time": 0.007271981239318848, "loss": 0.5048707455396653, "decode.loss_ce": 0.29536525458097457, "decode.acc_seg": 87.8611831665039, "aux.loss_ce": 0.20950549021363257, "aux.acc_seg": 74.36408996582031, "time": 1.1108511209487915, "iter": 84700, "memory": 8703, "step": 84700} +{"lr": 0.005120945495639224, "data_time": 0.00534524917602539, "loss": 0.3930822864174843, "decode.loss_ce": 0.2362039677798748, "decode.acc_seg": 89.05620574951172, "aux.loss_ce": 0.15687832422554493, "aux.acc_seg": 79.32662963867188, "time": 1.1140350103378296, "iter": 84750, "memory": 8704, "step": 84750} +{"lr": 0.005117942837093974, "data_time": 0.005730962753295899, "loss": 0.42581619918346403, "decode.loss_ce": 0.2512760356068611, "decode.acc_seg": 94.17737579345703, "aux.loss_ce": 0.17454015985131263, "aux.acc_seg": 89.57683563232422, "time": 1.1148447751998902, "iter": 84800, "memory": 8704, "step": 84800} +{"lr": 0.005114939978897221, "data_time": 0.006789517402648926, "loss": 0.2764249458909035, "decode.loss_ce": 0.17561194002628328, "decode.acc_seg": 96.59735107421875, "aux.loss_ce": 0.10081300735473633, "aux.acc_seg": 92.90663146972656, "time": 1.1121272087097167, "iter": 84850, "memory": 8704, "step": 84850} +{"lr": 0.005111936920902843, "data_time": 0.00648345947265625, "loss": 0.3098350942134857, "decode.loss_ce": 0.19181080609560014, "decode.acc_seg": 92.68709564208984, "aux.loss_ce": 0.11802429370582104, "aux.acc_seg": 90.67852783203125, "time": 1.1126102209091187, "iter": 84900, "memory": 8704, "step": 84900} +{"lr": 0.005108933662964511, "data_time": 0.007317876815795899, "loss": 0.413983491063118, "decode.loss_ce": 0.26302568316459657, "decode.acc_seg": 94.18981170654297, "aux.loss_ce": 0.15095780938863754, "aux.acc_seg": 90.13232421875, "time": 1.1185319900512696, "iter": 84950, "memory": 8703, "step": 84950} +{"lr": 0.0051059302049356855, "data_time": 0.0062549829483032225, "loss": 0.34011545330286025, "decode.loss_ce": 0.19811423271894454, "decode.acc_seg": 87.68450164794922, "aux.loss_ce": 0.14200121052563192, "aux.acc_seg": 79.507568359375, "time": 1.11237313747406, "iter": 85000, "memory": 8703, "step": 85000} +{"lr": 0.005102926546669642, "data_time": 0.008714723587036132, "loss": 0.40670565962791444, "decode.loss_ce": 0.26170194074511527, "decode.acc_seg": 94.90648651123047, "aux.loss_ce": 0.1450037185102701, "aux.acc_seg": 91.77989959716797, "time": 1.1163182020187379, "iter": 85050, "memory": 8703, "step": 85050} +{"lr": 0.005099922688019423, "data_time": 0.005390453338623047, "loss": 0.28466305136680603, "decode.loss_ce": 0.1754895955324173, "decode.acc_seg": 97.25296783447266, "aux.loss_ce": 0.10917345397174358, "aux.acc_seg": 96.73906707763672, "time": 1.1156251668930053, "iter": 85100, "memory": 8703, "step": 85100} +{"lr": 0.0050969186288378895, "data_time": 0.006486701965332031, "loss": 0.32243773341178894, "decode.loss_ce": 0.18198616355657576, "decode.acc_seg": 95.18802642822266, "aux.loss_ce": 0.14045156836509703, "aux.acc_seg": 94.05231475830078, "time": 1.1143850803375244, "iter": 85150, "memory": 8703, "step": 85150} +{"lr": 0.0050939143689776815, "data_time": 0.007420086860656738, "loss": 0.4786865681409836, "decode.loss_ce": 0.3000207647681236, "decode.acc_seg": 96.84994506835938, "aux.loss_ce": 0.17866581082344055, "aux.acc_seg": 94.0011978149414, "time": 1.118365716934204, "iter": 85200, "memory": 8703, "step": 85200} +{"lr": 0.005090909908291234, "data_time": 0.006918215751647949, "loss": 0.5069369584321975, "decode.loss_ce": 0.31411358043551446, "decode.acc_seg": 86.60790252685547, "aux.loss_ce": 0.19282336086034774, "aux.acc_seg": 82.7420654296875, "time": 1.1160466194152832, "iter": 85250, "memory": 8704, "step": 85250} +{"lr": 0.005087905246630783, "data_time": 0.00701296329498291, "loss": 0.44366118758916856, "decode.loss_ce": 0.26451387256383896, "decode.acc_seg": 92.73503112792969, "aux.loss_ce": 0.1791473187506199, "aux.acc_seg": 91.8975830078125, "time": 1.1142640113830566, "iter": 85300, "memory": 8704, "step": 85300} +{"lr": 0.005084900383848348, "data_time": 0.0059987068176269535, "loss": 0.5196534648537636, "decode.loss_ce": 0.3316300608217716, "decode.acc_seg": 78.2099380493164, "aux.loss_ce": 0.1880233883857727, "aux.acc_seg": 64.94324493408203, "time": 1.1111649990081787, "iter": 85350, "memory": 8703, "step": 85350} +{"lr": 0.005081895319795739, "data_time": 0.005894947052001953, "loss": 0.3042894683778286, "decode.loss_ce": 0.17454155310988426, "decode.acc_seg": 91.5141372680664, "aux.loss_ce": 0.1297479137778282, "aux.acc_seg": 92.03675079345703, "time": 1.116114902496338, "iter": 85400, "memory": 8703, "step": 85400} +{"lr": 0.005078890054324562, "data_time": 0.005468630790710449, "loss": 0.43766244649887087, "decode.loss_ce": 0.25797657668590546, "decode.acc_seg": 95.1438217163086, "aux.loss_ce": 0.17968586459755898, "aux.acc_seg": 93.37329864501953, "time": 1.1090649843215943, "iter": 85450, "memory": 8703, "step": 85450} +{"lr": 0.005075884587286217, "data_time": 0.006764841079711914, "loss": 0.41585336476564405, "decode.loss_ce": 0.27307531982660294, "decode.acc_seg": 94.1561050415039, "aux.loss_ce": 0.14277804866433144, "aux.acc_seg": 91.9764404296875, "time": 1.1144621610641479, "iter": 85500, "memory": 8704, "step": 85500} +{"lr": 0.005072878918531895, "data_time": 0.006253957748413086, "loss": 0.3580671101808548, "decode.loss_ce": 0.20605368986725808, "decode.acc_seg": 95.49604797363281, "aux.loss_ce": 0.1520134188234806, "aux.acc_seg": 95.32012939453125, "time": 1.1145338058471679, "iter": 85550, "memory": 8703, "step": 85550} +{"lr": 0.005069873047912564, "data_time": 0.006016755104064941, "loss": 0.3895154744386673, "decode.loss_ce": 0.23780020847916603, "decode.acc_seg": 96.91047668457031, "aux.loss_ce": 0.15171526335179805, "aux.acc_seg": 96.13914489746094, "time": 1.111694073677063, "iter": 85600, "memory": 8704, "step": 85600} +{"lr": 0.0050668669752789944, "data_time": 0.007565903663635254, "loss": 0.3762193650007248, "decode.loss_ce": 0.2317833699285984, "decode.acc_seg": 92.78812408447266, "aux.loss_ce": 0.14443599432706833, "aux.acc_seg": 88.51356506347656, "time": 1.1185442924499511, "iter": 85650, "memory": 8704, "step": 85650} +{"lr": 0.005063860700481744, "data_time": 0.006055355072021484, "loss": 0.4732712239027023, "decode.loss_ce": 0.27638796865940096, "decode.acc_seg": 94.2343978881836, "aux.loss_ce": 0.19688325375318527, "aux.acc_seg": 89.24598693847656, "time": 1.1127240180969238, "iter": 85700, "memory": 8704, "step": 85700} +{"lr": 0.005060854223371158, "data_time": 0.006391501426696778, "loss": 0.33956658095121384, "decode.loss_ce": 0.20030200704932213, "decode.acc_seg": 93.27608489990234, "aux.loss_ce": 0.1392645712941885, "aux.acc_seg": 92.13447570800781, "time": 1.118448519706726, "iter": 85750, "memory": 8704, "step": 85750} +{"lr": 0.005057847543797367, "data_time": 0.008030509948730469, "loss": 0.30215811282396315, "decode.loss_ce": 0.17932678759098053, "decode.acc_seg": 92.39525604248047, "aux.loss_ce": 0.1228313248604536, "aux.acc_seg": 90.84978485107422, "time": 1.1247016191482544, "iter": 85800, "memory": 8703, "step": 85800} +{"lr": 0.005054840661610291, "data_time": 0.006751465797424317, "loss": 0.3363229319453239, "decode.loss_ce": 0.2000532615929842, "decode.acc_seg": 90.09895324707031, "aux.loss_ce": 0.13626967258751393, "aux.acc_seg": 84.44168853759766, "time": 1.1194238424301148, "iter": 85850, "memory": 8703, "step": 85850} +{"lr": 0.005051833576659642, "data_time": 0.0065179109573364254, "loss": 0.458468833565712, "decode.loss_ce": 0.29758916795253754, "decode.acc_seg": 93.86679077148438, "aux.loss_ce": 0.1608796663582325, "aux.acc_seg": 92.32762145996094, "time": 1.1146163940429688, "iter": 85900, "memory": 8704, "step": 85900} +{"lr": 0.005048826288794914, "data_time": 0.006184697151184082, "loss": 0.44269873946905136, "decode.loss_ce": 0.273801014572382, "decode.acc_seg": 84.94841003417969, "aux.loss_ce": 0.16889772303402423, "aux.acc_seg": 80.88741302490234, "time": 1.1148977756500245, "iter": 85950, "memory": 8703, "step": 85950} +{"lr": 0.00504581879786539, "data_time": 0.006176137924194336, "loss": 0.40877257436513903, "decode.loss_ce": 0.2657677546143532, "decode.acc_seg": 95.83206176757812, "aux.loss_ce": 0.1430048167705536, "aux.acc_seg": 84.97364807128906, "time": 1.11101496219635, "iter": 86000, "memory": 8704, "step": 86000} +{"lr": 0.005042811103720138, "data_time": 0.006619811058044434, "loss": 0.31855906546115875, "decode.loss_ce": 0.19331364557147027, "decode.acc_seg": 93.52073669433594, "aux.loss_ce": 0.12524541839957237, "aux.acc_seg": 88.07041931152344, "time": 1.1143902778625487, "iter": 86050, "memory": 8704, "step": 86050} +{"lr": 0.005039803206208012, "data_time": 0.008777165412902832, "loss": 0.4022635146975517, "decode.loss_ce": 0.22699340283870698, "decode.acc_seg": 95.74826049804688, "aux.loss_ce": 0.17527010217308997, "aux.acc_seg": 90.86805725097656, "time": 1.1175037145614624, "iter": 86100, "memory": 8703, "step": 86100} +{"lr": 0.005036795105177651, "data_time": 0.006212615966796875, "loss": 0.36936686635017396, "decode.loss_ce": 0.22095651179552078, "decode.acc_seg": 96.47203826904297, "aux.loss_ce": 0.14841035716235637, "aux.acc_seg": 92.32228088378906, "time": 1.1077204465866088, "iter": 86150, "memory": 8704, "step": 86150} +{"lr": 0.00503378680047748, "data_time": 0.006790423393249511, "loss": 0.45564198940992356, "decode.loss_ce": 0.23591264933347703, "decode.acc_seg": 90.9139633178711, "aux.loss_ce": 0.21972935199737548, "aux.acc_seg": 73.95916748046875, "time": 1.1118589162826538, "iter": 86200, "memory": 8704, "step": 86200} +{"lr": 0.0050307782919557075, "data_time": 0.0068339347839355465, "loss": 0.3103869706392288, "decode.loss_ce": 0.18848049491643906, "decode.acc_seg": 96.67084503173828, "aux.loss_ce": 0.12190647758543491, "aux.acc_seg": 96.30806732177734, "time": 1.1142123699188233, "iter": 86250, "memory": 8704, "step": 86250} +{"lr": 0.005027769579460327, "data_time": 0.00652017593383789, "loss": 0.40641685128211974, "decode.loss_ce": 0.24983420521020888, "decode.acc_seg": 95.07823181152344, "aux.loss_ce": 0.15658264942467212, "aux.acc_seg": 84.99885559082031, "time": 1.110232138633728, "iter": 86300, "memory": 8703, "step": 86300} +{"lr": 0.005024760662839111, "data_time": 0.007392787933349609, "loss": 0.45388076454401016, "decode.loss_ce": 0.27141749262809756, "decode.acc_seg": 86.03496551513672, "aux.loss_ce": 0.18246326968073845, "aux.acc_seg": 83.56571197509766, "time": 1.1167692422866822, "iter": 86350, "memory": 8703, "step": 86350} +{"lr": 0.005021751541939621, "data_time": 0.00854661464691162, "loss": 0.4132197707891464, "decode.loss_ce": 0.26606588810682297, "decode.acc_seg": 96.57003784179688, "aux.loss_ce": 0.14715388119220735, "aux.acc_seg": 96.3502197265625, "time": 1.119734787940979, "iter": 86400, "memory": 8703, "step": 86400} +{"lr": 0.005018742216609198, "data_time": 0.004915428161621094, "loss": 0.31258552372455595, "decode.loss_ce": 0.19679996818304063, "decode.acc_seg": 77.0624771118164, "aux.loss_ce": 0.11578555069863797, "aux.acc_seg": 78.9918212890625, "time": 1.1185607671737672, "iter": 86450, "memory": 8704, "step": 86450} +{"lr": 0.005015732686694957, "data_time": 0.00735471248626709, "loss": 0.32758908867836, "decode.loss_ce": 0.21341416761279106, "decode.acc_seg": 95.53152465820312, "aux.loss_ce": 0.11417491436004638, "aux.acc_seg": 91.31011962890625, "time": 1.1176004648208617, "iter": 86500, "memory": 8703, "step": 86500} +{"lr": 0.005012722952043812, "data_time": 0.007140707969665527, "loss": 0.35897567570209504, "decode.loss_ce": 0.20302322059869765, "decode.acc_seg": 92.43971252441406, "aux.loss_ce": 0.15595245584845543, "aux.acc_seg": 90.8423080444336, "time": 1.1157945156097413, "iter": 86550, "memory": 8704, "step": 86550} +{"lr": 0.005009713012502443, "data_time": 0.0059898138046264645, "loss": 0.41514052003622054, "decode.loss_ce": 0.26561241000890734, "decode.acc_seg": 85.50236511230469, "aux.loss_ce": 0.14952811151742934, "aux.acc_seg": 85.87544250488281, "time": 1.111858868598938, "iter": 86600, "memory": 8704, "step": 86600} +{"lr": 0.005006702867917321, "data_time": 0.006963419914245606, "loss": 0.4493784837424755, "decode.loss_ce": 0.27422293126583097, "decode.acc_seg": 92.31592559814453, "aux.loss_ce": 0.17515555396676064, "aux.acc_seg": 91.62158966064453, "time": 1.1138648509979248, "iter": 86650, "memory": 8703, "step": 86650} +{"lr": 0.005003692518134695, "data_time": 0.007454824447631836, "loss": 0.3058710232377052, "decode.loss_ce": 0.18359965160489083, "decode.acc_seg": 96.95075225830078, "aux.loss_ce": 0.12227137126028538, "aux.acc_seg": 96.14508819580078, "time": 1.1176645755767822, "iter": 86700, "memory": 8703, "step": 86700} +{"lr": 0.005000681963000587, "data_time": 0.007264399528503418, "loss": 0.4886364385485649, "decode.loss_ce": 0.3216918855905533, "decode.acc_seg": 71.85993957519531, "aux.loss_ce": 0.1669445440173149, "aux.acc_seg": 73.6182861328125, "time": 1.1153037548065186, "iter": 86750, "memory": 8703, "step": 86750} +{"lr": 0.0049976712023608, "data_time": 0.007576751708984375, "loss": 0.40983766615390776, "decode.loss_ce": 0.25467886999249456, "decode.acc_seg": 93.6819076538086, "aux.loss_ce": 0.1551587887108326, "aux.acc_seg": 89.40092468261719, "time": 1.1164162635803223, "iter": 86800, "memory": 8704, "step": 86800} +{"lr": 0.004994660236060928, "data_time": 0.006232833862304688, "loss": 0.38942714482545854, "decode.loss_ce": 0.23469052761793135, "decode.acc_seg": 95.81432342529297, "aux.loss_ce": 0.15473661571741104, "aux.acc_seg": 89.24846649169922, "time": 1.1135849237442017, "iter": 86850, "memory": 8703, "step": 86850} +{"lr": 0.004991649063946327, "data_time": 0.007618761062622071, "loss": 0.4513168178498745, "decode.loss_ce": 0.29561050795018673, "decode.acc_seg": 95.06492614746094, "aux.loss_ce": 0.15570630468428134, "aux.acc_seg": 92.68798828125, "time": 1.1217389106750488, "iter": 86900, "memory": 8704, "step": 86900} +{"lr": 0.004988637685862141, "data_time": 0.006425714492797852, "loss": 0.3935065045952797, "decode.loss_ce": 0.24720543175935744, "decode.acc_seg": 95.73192596435547, "aux.loss_ce": 0.14630107656121255, "aux.acc_seg": 92.21470642089844, "time": 1.1142816066741943, "iter": 86950, "memory": 8703, "step": 86950} +{"lr": 0.004985626101653286, "data_time": 0.007882022857666015, "loss": 0.35989121347665787, "decode.loss_ce": 0.23342461735010148, "decode.acc_seg": 96.91059875488281, "aux.loss_ce": 0.1264665972441435, "aux.acc_seg": 93.5324935913086, "time": 1.1218003511428833, "iter": 87000, "memory": 8703, "step": 87000} +{"lr": 0.004982614311164454, "data_time": 0.007305812835693359, "loss": 0.425503508746624, "decode.loss_ce": 0.2653959184885025, "decode.acc_seg": 91.82968139648438, "aux.loss_ce": 0.1601075854152441, "aux.acc_seg": 79.86939239501953, "time": 1.1142017602920533, "iter": 87050, "memory": 8704, "step": 87050} +{"lr": 0.004979602314240129, "data_time": 0.008017945289611816, "loss": 0.32296283543109894, "decode.loss_ce": 0.20575242936611177, "decode.acc_seg": 87.9471435546875, "aux.loss_ce": 0.11721040569245815, "aux.acc_seg": 75.84139251708984, "time": 1.113524842262268, "iter": 87100, "memory": 8704, "step": 87100} +{"lr": 0.004976590110724553, "data_time": 0.007057404518127442, "loss": 0.35424034893512724, "decode.loss_ce": 0.20088334754109383, "decode.acc_seg": 95.5221176147461, "aux.loss_ce": 0.15335700213909148, "aux.acc_seg": 88.98804473876953, "time": 1.1157418489456177, "iter": 87150, "memory": 8704, "step": 87150} +{"lr": 0.004973577700461746, "data_time": 0.006764912605285644, "loss": 0.4247186049818993, "decode.loss_ce": 0.2565858460962772, "decode.acc_seg": 96.79849243164062, "aux.loss_ce": 0.16813276149332523, "aux.acc_seg": 94.9603042602539, "time": 1.1163183450698853, "iter": 87200, "memory": 8704, "step": 87200} +{"lr": 0.004970565083295503, "data_time": 0.005679965019226074, "loss": 0.4234308063983917, "decode.loss_ce": 0.2531194970011711, "decode.acc_seg": 95.88749694824219, "aux.loss_ce": 0.17031131386756898, "aux.acc_seg": 94.64530944824219, "time": 1.1081048250198364, "iter": 87250, "memory": 8704, "step": 87250} +{"lr": 0.0049675522590694075, "data_time": 0.005362701416015625, "loss": 0.4400885790586472, "decode.loss_ce": 0.26766209825873377, "decode.acc_seg": 93.79463195800781, "aux.loss_ce": 0.17242648229002952, "aux.acc_seg": 91.49334716796875, "time": 1.11395583152771, "iter": 87300, "memory": 8705, "step": 87300} +{"lr": 0.0049645392276268, "data_time": 0.007893991470336915, "loss": 0.3465202748775482, "decode.loss_ce": 0.20417698100209236, "decode.acc_seg": 93.87645721435547, "aux.loss_ce": 0.14234329611063004, "aux.acc_seg": 92.07096099853516, "time": 1.1221287250518799, "iter": 87350, "memory": 8705, "step": 87350} +{"lr": 0.004961525988810798, "data_time": 0.006690382957458496, "loss": 0.4208770155906677, "decode.loss_ce": 0.2599279671907425, "decode.acc_seg": 87.347412109375, "aux.loss_ce": 0.16094904392957687, "aux.acc_seg": 80.51948547363281, "time": 1.1170982122421265, "iter": 87400, "memory": 8704, "step": 87400} +{"lr": 0.0049585125424642966, "data_time": 0.007275438308715821, "loss": 0.39717482030391693, "decode.loss_ce": 0.23977341800928115, "decode.acc_seg": 84.9582748413086, "aux.loss_ce": 0.1574013963341713, "aux.acc_seg": 80.64312744140625, "time": 1.1202519416809082, "iter": 87450, "memory": 8703, "step": 87450} +{"lr": 0.004955498888429968, "data_time": 0.006018209457397461, "loss": 0.4470104813575745, "decode.loss_ce": 0.25476549938321114, "decode.acc_seg": 94.48139190673828, "aux.loss_ce": 0.19224497973918914, "aux.acc_seg": 93.31317138671875, "time": 1.1156805038452149, "iter": 87500, "memory": 8703, "step": 87500} +{"lr": 0.004952485026550243, "data_time": 0.0066199064254760746, "loss": 0.32408425956964493, "decode.loss_ce": 0.20921751111745834, "decode.acc_seg": 79.48799133300781, "aux.loss_ce": 0.11486674547195434, "aux.acc_seg": 81.57005310058594, "time": 1.115080213546753, "iter": 87550, "memory": 8704, "step": 87550} +{"lr": 0.004949470956667335, "data_time": 0.00641319751739502, "loss": 0.35923776030540466, "decode.loss_ce": 0.22023702263832093, "decode.acc_seg": 80.46512603759766, "aux.loss_ce": 0.13900073170661925, "aux.acc_seg": 67.97199249267578, "time": 1.1152753829956055, "iter": 87600, "memory": 8703, "step": 87600} +{"lr": 0.004946456678623216, "data_time": 0.0070488214492797855, "loss": 0.3857297584414482, "decode.loss_ce": 0.22891000658273697, "decode.acc_seg": 91.91474914550781, "aux.loss_ce": 0.15681975595653058, "aux.acc_seg": 87.05164337158203, "time": 1.1164299964904785, "iter": 87650, "memory": 8703, "step": 87650} +{"lr": 0.004943442192259652, "data_time": 0.006832742691040039, "loss": 0.4246636763215065, "decode.loss_ce": 0.2651252500712872, "decode.acc_seg": 81.34943389892578, "aux.loss_ce": 0.15953843332827092, "aux.acc_seg": 70.80402374267578, "time": 1.114189052581787, "iter": 87700, "memory": 8704, "step": 87700} +{"lr": 0.004940427497418158, "data_time": 0.007184743881225586, "loss": 0.36380775570869445, "decode.loss_ce": 0.21616667211055757, "decode.acc_seg": 94.77996826171875, "aux.loss_ce": 0.14764108508825302, "aux.acc_seg": 92.35267639160156, "time": 1.116441822052002, "iter": 87750, "memory": 8703, "step": 87750} +{"lr": 0.004937412593940029, "data_time": 0.0071979999542236325, "loss": 0.3600556969642639, "decode.loss_ce": 0.22033920735120774, "decode.acc_seg": 92.18418884277344, "aux.loss_ce": 0.13971648886799812, "aux.acc_seg": 86.0834732055664, "time": 1.112430167198181, "iter": 87800, "memory": 8704, "step": 87800} +{"lr": 0.004934397481666324, "data_time": 0.00827476978302002, "loss": 0.3227364867925644, "decode.loss_ce": 0.19767534285783767, "decode.acc_seg": 96.14530944824219, "aux.loss_ce": 0.12506114281713962, "aux.acc_seg": 95.13409423828125, "time": 1.1141873836517333, "iter": 87850, "memory": 8704, "step": 87850} +{"lr": 0.004931382160437871, "data_time": 0.0076193571090698246, "loss": 0.2824848830699921, "decode.loss_ce": 0.16582203209400176, "decode.acc_seg": 97.16320037841797, "aux.loss_ce": 0.11666285209357738, "aux.acc_seg": 96.61451721191406, "time": 1.116919708251953, "iter": 87900, "memory": 8703, "step": 87900} +{"lr": 0.0049283666300952685, "data_time": 0.006329345703125, "loss": 0.40217662155628203, "decode.loss_ce": 0.26298823654651643, "decode.acc_seg": 90.63549041748047, "aux.loss_ce": 0.1391883824020624, "aux.acc_seg": 85.8896255493164, "time": 1.1131667852401734, "iter": 87950, "memory": 8704, "step": 87950} +{"lr": 0.004925350890478883, "data_time": 0.007106518745422364, "loss": 0.3760602787137032, "decode.loss_ce": 0.23216065913438796, "decode.acc_seg": 94.99746704101562, "aux.loss_ce": 0.14389961995184422, "aux.acc_seg": 86.30130004882812, "time": 1.1169201850891113, "iter": 88000, "memory": 8704, "step": 88000} +{"lr": 0.004922334941428843, "data_time": 0.007952404022216798, "loss": 0.3359530076384544, "decode.loss_ce": 0.21394137293100357, "decode.acc_seg": 94.67855834960938, "aux.loss_ce": 0.12201163582503796, "aux.acc_seg": 94.09039306640625, "time": 1.1163590908050538, "iter": 88050, "memory": 8704, "step": 88050} +{"lr": 0.004919318782785047, "data_time": 0.00670320987701416, "loss": 0.5277262181043625, "decode.loss_ce": 0.3370039239525795, "decode.acc_seg": 80.26911163330078, "aux.loss_ce": 0.1907222904264927, "aux.acc_seg": 73.41352844238281, "time": 1.1151943445205688, "iter": 88100, "memory": 8704, "step": 88100} +{"lr": 0.004916302414387169, "data_time": 0.00698704719543457, "loss": 0.40417871475219724, "decode.loss_ce": 0.23559531271457673, "decode.acc_seg": 88.04683685302734, "aux.loss_ce": 0.16858340203762054, "aux.acc_seg": 86.05537414550781, "time": 1.1143830299377442, "iter": 88150, "memory": 8703, "step": 88150} +{"lr": 0.004913285836074631, "data_time": 0.008179140090942384, "loss": 0.3190700769424438, "decode.loss_ce": 0.2090390183031559, "decode.acc_seg": 89.1349105834961, "aux.loss_ce": 0.11003105603158474, "aux.acc_seg": 88.00392150878906, "time": 1.120529007911682, "iter": 88200, "memory": 8703, "step": 88200} +{"lr": 0.004910269047686634, "data_time": 0.006670808792114258, "loss": 0.46979402005672455, "decode.loss_ce": 0.30154779329895975, "decode.acc_seg": 88.30204010009766, "aux.loss_ce": 0.16824622936546801, "aux.acc_seg": 87.515380859375, "time": 1.1122951745986938, "iter": 88250, "memory": 8703, "step": 88250} +{"lr": 0.004907252049062141, "data_time": 0.007073092460632324, "loss": 0.3567920595407486, "decode.loss_ce": 0.21897330582141877, "decode.acc_seg": 92.30028533935547, "aux.loss_ce": 0.13781875520944595, "aux.acc_seg": 89.74456787109375, "time": 1.1089902877807618, "iter": 88300, "memory": 8704, "step": 88300} +{"lr": 0.004904234840039873, "data_time": 0.007605338096618652, "loss": 0.40740033984184265, "decode.loss_ce": 0.24542728066444397, "decode.acc_seg": 93.49800109863281, "aux.loss_ce": 0.1619730643928051, "aux.acc_seg": 87.61675262451172, "time": 1.1167963743209839, "iter": 88350, "memory": 8703, "step": 88350} +{"lr": 0.004901217420458317, "data_time": 0.007364439964294434, "loss": 0.4457108184695244, "decode.loss_ce": 0.2864939745515585, "decode.acc_seg": 89.19086456298828, "aux.loss_ce": 0.159216845408082, "aux.acc_seg": 89.8082046508789, "time": 1.1159945964813232, "iter": 88400, "memory": 8703, "step": 88400} +{"lr": 0.00489819979015573, "data_time": 0.0072056293487548825, "loss": 0.31818915009498594, "decode.loss_ce": 0.19259598925709726, "decode.acc_seg": 94.1403579711914, "aux.loss_ce": 0.1255931608378887, "aux.acc_seg": 92.69451141357422, "time": 1.1177011251449585, "iter": 88450, "memory": 8703, "step": 88450} +{"lr": 0.004895181948970128, "data_time": 0.0068748235702514645, "loss": 0.3751915588974953, "decode.loss_ce": 0.23981734588742257, "decode.acc_seg": 86.47289276123047, "aux.loss_ce": 0.13537420965731145, "aux.acc_seg": 85.38086700439453, "time": 1.119683527946472, "iter": 88500, "memory": 8703, "step": 88500} +{"lr": 0.004892163896739281, "data_time": 0.007470822334289551, "loss": 0.3654992297291756, "decode.loss_ce": 0.220438851416111, "decode.acc_seg": 85.96998596191406, "aux.loss_ce": 0.1450603760778904, "aux.acc_seg": 83.98793029785156, "time": 1.1165199279785156, "iter": 88550, "memory": 8703, "step": 88550} +{"lr": 0.004889145633300726, "data_time": 0.007676362991333008, "loss": 0.32578926980495454, "decode.loss_ce": 0.19331639781594276, "decode.acc_seg": 94.6243896484375, "aux.loss_ce": 0.132472874969244, "aux.acc_seg": 91.48514556884766, "time": 1.1173644542694092, "iter": 88600, "memory": 8703, "step": 88600} +{"lr": 0.00488612715849177, "data_time": 0.008167695999145509, "loss": 0.5418362647294999, "decode.loss_ce": 0.3321042701601982, "decode.acc_seg": 88.1446762084961, "aux.loss_ce": 0.20973199903964995, "aux.acc_seg": 86.06317138671875, "time": 1.119461989402771, "iter": 88650, "memory": 8703, "step": 88650} +{"lr": 0.004883108472149471, "data_time": 0.006534600257873535, "loss": 0.3729077443480492, "decode.loss_ce": 0.23713053092360498, "decode.acc_seg": 94.93738555908203, "aux.loss_ce": 0.1357772085815668, "aux.acc_seg": 93.5873031616211, "time": 1.1259735107421875, "iter": 88700, "memory": 8703, "step": 88700} +{"lr": 0.004880089574110643, "data_time": 0.007959365844726562, "loss": 0.3788378983736038, "decode.loss_ce": 0.23415785431861877, "decode.acc_seg": 78.32997131347656, "aux.loss_ce": 0.14468004815280439, "aux.acc_seg": 66.22002410888672, "time": 1.115742802619934, "iter": 88750, "memory": 8704, "step": 88750} +{"lr": 0.00487707046421187, "data_time": 0.007401585578918457, "loss": 0.47738719880580904, "decode.loss_ce": 0.2920668959617615, "decode.acc_seg": 92.23619842529297, "aux.loss_ce": 0.18532029762864113, "aux.acc_seg": 82.60307312011719, "time": 1.1164207696914672, "iter": 88800, "memory": 8703, "step": 88800} +{"lr": 0.00487405114228949, "data_time": 0.008434391021728516, "loss": 0.49073400646448134, "decode.loss_ce": 0.2834452949464321, "decode.acc_seg": 95.2402114868164, "aux.loss_ce": 0.20728871673345567, "aux.acc_seg": 92.23995208740234, "time": 1.1171041011810303, "iter": 88850, "memory": 8704, "step": 88850} +{"lr": 0.004871031608179596, "data_time": 0.006731629371643066, "loss": 0.30154217928647997, "decode.loss_ce": 0.17641481906175613, "decode.acc_seg": 94.19908142089844, "aux.loss_ce": 0.12512735538184644, "aux.acc_seg": 88.26925659179688, "time": 1.1197044849395752, "iter": 88900, "memory": 8704, "step": 88900} +{"lr": 0.004868011861718046, "data_time": 0.00698850154876709, "loss": 0.31599595993757246, "decode.loss_ce": 0.19832743257284163, "decode.acc_seg": 94.70831298828125, "aux.loss_ce": 0.11766852959990501, "aux.acc_seg": 92.92271423339844, "time": 1.1162310361862182, "iter": 88950, "memory": 8703, "step": 88950} +{"lr": 0.004864991902740453, "data_time": 0.005250096321105957, "loss": 0.44329798221588135, "decode.loss_ce": 0.26801280677318573, "decode.acc_seg": 96.61979675292969, "aux.loss_ce": 0.1752851691097021, "aux.acc_seg": 96.07601165771484, "time": 1.1134334087371827, "iter": 89000, "memory": 8705, "step": 89000} +{"lr": 0.004861971731082186, "data_time": 0.006972289085388184, "loss": 0.5471442937850952, "decode.loss_ce": 0.3282432794570923, "decode.acc_seg": 86.80953979492188, "aux.loss_ce": 0.21890101656317712, "aux.acc_seg": 82.56562042236328, "time": 1.113944673538208, "iter": 89050, "memory": 8704, "step": 89050} +{"lr": 0.004858951346578368, "data_time": 0.006832313537597656, "loss": 0.43830827325582505, "decode.loss_ce": 0.2724388152360916, "decode.acc_seg": 89.08824920654297, "aux.loss_ce": 0.16586946025490762, "aux.acc_seg": 75.41275024414062, "time": 1.115134882926941, "iter": 89100, "memory": 8704, "step": 89100} +{"lr": 0.004855930749063885, "data_time": 0.006597399711608887, "loss": 0.3662140563130379, "decode.loss_ce": 0.23327850699424743, "decode.acc_seg": 91.83101654052734, "aux.loss_ce": 0.13293554708361627, "aux.acc_seg": 91.11881256103516, "time": 1.1176943063735962, "iter": 89150, "memory": 8704, "step": 89150} +{"lr": 0.004852909938373371, "data_time": 0.008597111701965332, "loss": 0.5313056312501431, "decode.loss_ce": 0.3138624466955662, "decode.acc_seg": 89.9307861328125, "aux.loss_ce": 0.2174431961029768, "aux.acc_seg": 80.03273010253906, "time": 1.1247047662734986, "iter": 89200, "memory": 8704, "step": 89200} +{"lr": 0.0048498889143412174, "data_time": 0.006705784797668457, "loss": 0.3875031232833862, "decode.loss_ce": 0.23718592301011085, "decode.acc_seg": 95.74482727050781, "aux.loss_ce": 0.15031720660626888, "aux.acc_seg": 94.06731414794922, "time": 1.117703413963318, "iter": 89250, "memory": 8703, "step": 89250} +{"lr": 0.004846867676801572, "data_time": 0.007045674324035645, "loss": 0.33488119691610335, "decode.loss_ce": 0.20903330221772193, "decode.acc_seg": 90.24002838134766, "aux.loss_ce": 0.1258478932082653, "aux.acc_seg": 80.69915771484375, "time": 1.1140963315963746, "iter": 89300, "memory": 8703, "step": 89300} +{"lr": 0.0048438462255883255, "data_time": 0.007416129112243652, "loss": 0.3511800691485405, "decode.loss_ce": 0.20660146698355675, "decode.acc_seg": 94.09910583496094, "aux.loss_ce": 0.14457859769463538, "aux.acc_seg": 83.20496368408203, "time": 1.111821746826172, "iter": 89350, "memory": 8704, "step": 89350} +{"lr": 0.004840824560535135, "data_time": 0.00722963809967041, "loss": 0.35529021322727206, "decode.loss_ce": 0.20117524228990077, "decode.acc_seg": 94.19695281982422, "aux.loss_ce": 0.15411496795713903, "aux.acc_seg": 92.67845153808594, "time": 1.116291379928589, "iter": 89400, "memory": 8703, "step": 89400} +{"lr": 0.004837802681475412, "data_time": 0.006054306030273437, "loss": 0.25563129037618637, "decode.loss_ce": 0.15635705962777138, "decode.acc_seg": 90.77383422851562, "aux.loss_ce": 0.09927422851324082, "aux.acc_seg": 88.32778930664062, "time": 1.1167168617248535, "iter": 89450, "memory": 8703, "step": 89450} +{"lr": 0.004834780588242308, "data_time": 0.007838988304138183, "loss": 0.4800803229212761, "decode.loss_ce": 0.2916464418172836, "decode.acc_seg": 90.21822357177734, "aux.loss_ce": 0.18843388110399245, "aux.acc_seg": 89.69026947021484, "time": 1.118459987640381, "iter": 89500, "memory": 8703, "step": 89500} +{"lr": 0.0048317582806687255, "data_time": 0.006689882278442383, "loss": 0.6119117692112923, "decode.loss_ce": 0.39731907919049264, "decode.acc_seg": 96.5774154663086, "aux.loss_ce": 0.21459268257021905, "aux.acc_seg": 88.37397003173828, "time": 1.1155580520629882, "iter": 89550, "memory": 8703, "step": 89550} +{"lr": 0.004828735758587331, "data_time": 0.007564282417297364, "loss": 0.41758981347084045, "decode.loss_ce": 0.2588937424123287, "decode.acc_seg": 93.18917083740234, "aux.loss_ce": 0.1586960658431053, "aux.acc_seg": 92.65727996826172, "time": 1.1193956851959228, "iter": 89600, "memory": 8704, "step": 89600} +{"lr": 0.00482571302183053, "data_time": 0.006409668922424316, "loss": 0.5014060035347938, "decode.loss_ce": 0.32706781625747683, "decode.acc_seg": 94.88880920410156, "aux.loss_ce": 0.17433818094432355, "aux.acc_seg": 92.87496948242188, "time": 1.1162753105163574, "iter": 89650, "memory": 8704, "step": 89650} +{"lr": 0.00482269007023049, "data_time": 0.006476569175720215, "loss": 0.3608750820159912, "decode.loss_ce": 0.22233593091368675, "decode.acc_seg": 88.32772064208984, "aux.loss_ce": 0.13853915147483348, "aux.acc_seg": 83.90972900390625, "time": 1.1124540567398071, "iter": 89700, "memory": 8703, "step": 89700} +{"lr": 0.004819666903619115, "data_time": 0.007345342636108398, "loss": 0.5406243003904819, "decode.loss_ce": 0.32635983638465405, "decode.acc_seg": 93.72488403320312, "aux.loss_ce": 0.21426446549594402, "aux.acc_seg": 71.70803833007812, "time": 1.1159921169281006, "iter": 89750, "memory": 8704, "step": 89750} +{"lr": 0.004816643521828064, "data_time": 0.006650757789611816, "loss": 0.40766353011131284, "decode.loss_ce": 0.25811707973480225, "decode.acc_seg": 95.35210418701172, "aux.loss_ce": 0.14954644851386548, "aux.acc_seg": 91.09636688232422, "time": 1.1135326862335204, "iter": 89800, "memory": 8703, "step": 89800} +{"lr": 0.004813619924688741, "data_time": 0.006575942039489746, "loss": 0.4362878993153572, "decode.loss_ce": 0.2653706595301628, "decode.acc_seg": 93.72017669677734, "aux.loss_ce": 0.17091724127531052, "aux.acc_seg": 85.00359344482422, "time": 1.1122652053833009, "iter": 89850, "memory": 8703, "step": 89850} +{"lr": 0.0048105961120322996, "data_time": 0.006546378135681152, "loss": 0.336650612950325, "decode.loss_ce": 0.2009535551071167, "decode.acc_seg": 93.05162048339844, "aux.loss_ce": 0.1356970526278019, "aux.acc_seg": 80.75953674316406, "time": 1.1151798486709594, "iter": 89900, "memory": 8704, "step": 89900} +{"lr": 0.004807572083689638, "data_time": 0.006995344161987304, "loss": 0.3380931779742241, "decode.loss_ce": 0.21061211228370666, "decode.acc_seg": 87.14359283447266, "aux.loss_ce": 0.12748105973005294, "aux.acc_seg": 80.8287353515625, "time": 1.1111981391906738, "iter": 89950, "memory": 8704, "step": 89950} +{"lr": 0.004804547839491409, "data_time": 0.005784058570861816, "loss": 0.34583660811185835, "decode.loss_ce": 0.20066607594490052, "decode.acc_seg": 95.96503448486328, "aux.loss_ce": 0.14517053440213204, "aux.acc_seg": 95.25096893310547, "time": 1.1156842231750488, "iter": 90000, "memory": 8704, "step": 90000} +{"lr": 0.004801523379268002, "data_time": 0.00674593448638916, "loss": 0.30899338573217394, "decode.loss_ce": 0.18803591281175613, "decode.acc_seg": 96.10614776611328, "aux.loss_ce": 0.12095747403800487, "aux.acc_seg": 88.92446899414062, "time": 1.115586805343628, "iter": 90050, "memory": 8703, "step": 90050} +{"lr": 0.004798498702849555, "data_time": 0.008772158622741699, "loss": 0.31231644153594973, "decode.loss_ce": 0.18688387498259545, "decode.acc_seg": 84.10670471191406, "aux.loss_ce": 0.12543257102370262, "aux.acc_seg": 82.08160400390625, "time": 1.1191361665725708, "iter": 90100, "memory": 8703, "step": 90100} +{"lr": 0.004795473810065948, "data_time": 0.007779955863952637, "loss": 0.30286003947257994, "decode.loss_ce": 0.18996625617146493, "decode.acc_seg": 94.4847640991211, "aux.loss_ce": 0.11289378218352794, "aux.acc_seg": 93.79253387451172, "time": 1.1190279960632323, "iter": 90150, "memory": 8704, "step": 90150} +{"lr": 0.00479244870074682, "data_time": 0.005912637710571289, "loss": 0.5400104254484177, "decode.loss_ce": 0.35881912857294085, "decode.acc_seg": 74.77594757080078, "aux.loss_ce": 0.18119129315018653, "aux.acc_seg": 70.96729278564453, "time": 1.1157800436019898, "iter": 90200, "memory": 8703, "step": 90200} +{"lr": 0.004789423374721531, "data_time": 0.007339787483215332, "loss": 0.40486037731170654, "decode.loss_ce": 0.23551502749323844, "decode.acc_seg": 95.72105407714844, "aux.loss_ce": 0.16934534758329392, "aux.acc_seg": 93.92597961425781, "time": 1.1158721685409545, "iter": 90250, "memory": 8703, "step": 90250} +{"lr": 0.004786397831819206, "data_time": 0.006289386749267578, "loss": 0.4095698669552803, "decode.loss_ce": 0.26120103523135185, "decode.acc_seg": 97.44415283203125, "aux.loss_ce": 0.1483688298612833, "aux.acc_seg": 97.30078125, "time": 1.1145507097244263, "iter": 90300, "memory": 8703, "step": 90300} +{"lr": 0.004783372071868696, "data_time": 0.00700831413269043, "loss": 0.5262498497962952, "decode.loss_ce": 0.32418277114629745, "decode.acc_seg": 91.5747299194336, "aux.loss_ce": 0.20206707902252674, "aux.acc_seg": 89.75855255126953, "time": 1.1165689706802369, "iter": 90350, "memory": 8704, "step": 90350} +{"lr": 0.004780346094698597, "data_time": 0.005838871002197266, "loss": 0.45096885710954665, "decode.loss_ce": 0.2754662953317165, "decode.acc_seg": 95.75119018554688, "aux.loss_ce": 0.17550256624817848, "aux.acc_seg": 91.60690307617188, "time": 1.1136210203170775, "iter": 90400, "memory": 8704, "step": 90400} +{"lr": 0.004777319900137254, "data_time": 0.005737590789794922, "loss": 0.32471827119588853, "decode.loss_ce": 0.19695984870195388, "decode.acc_seg": 95.6250991821289, "aux.loss_ce": 0.12775841914117336, "aux.acc_seg": 93.69208526611328, "time": 1.1092370271682739, "iter": 90450, "memory": 8704, "step": 90450} +{"lr": 0.004774293488012749, "data_time": 0.00773468017578125, "loss": 0.3509622305631638, "decode.loss_ce": 0.21294680163264273, "decode.acc_seg": 96.19312286376953, "aux.loss_ce": 0.13801543451845646, "aux.acc_seg": 91.6635513305664, "time": 1.1155290603637695, "iter": 90500, "memory": 8703, "step": 90500} +{"lr": 0.004771266858152902, "data_time": 0.00786736011505127, "loss": 0.3217964515089989, "decode.loss_ce": 0.1968235783278942, "decode.acc_seg": 92.55396270751953, "aux.loss_ce": 0.12497287727892399, "aux.acc_seg": 83.44001770019531, "time": 1.1181031703948974, "iter": 90550, "memory": 8704, "step": 90550} +{"lr": 0.004768240010385268, "data_time": 0.008067822456359864, "loss": 0.3375620931386948, "decode.loss_ce": 0.21635891124606133, "decode.acc_seg": 81.43087768554688, "aux.loss_ce": 0.12120318450033665, "aux.acc_seg": 79.03740692138672, "time": 1.1182828426361084, "iter": 90600, "memory": 8704, "step": 90600} +{"lr": 0.0047652129445371555, "data_time": 0.006201243400573731, "loss": 0.3789402782917023, "decode.loss_ce": 0.23190946877002716, "decode.acc_seg": 88.54840087890625, "aux.loss_ce": 0.14703080281615258, "aux.acc_seg": 85.01917266845703, "time": 1.1150138616561889, "iter": 90650, "memory": 8703, "step": 90650} +{"lr": 0.004762185660435596, "data_time": 0.005660796165466308, "loss": 0.341975000500679, "decode.loss_ce": 0.22413148432970048, "decode.acc_seg": 87.76001739501953, "aux.loss_ce": 0.1178435131907463, "aux.acc_seg": 83.16510009765625, "time": 1.1169404983520508, "iter": 90700, "memory": 8705, "step": 90700} +{"lr": 0.004759158157907374, "data_time": 0.005454802513122558, "loss": 0.3483343556523323, "decode.loss_ce": 0.20465206429362298, "decode.acc_seg": 96.35035705566406, "aux.loss_ce": 0.14368228800594807, "aux.acc_seg": 88.7548599243164, "time": 1.1211923360824585, "iter": 90750, "memory": 8704, "step": 90750} +{"lr": 0.004756130436779, "data_time": 0.008364439010620117, "loss": 0.32347152233123777, "decode.loss_ce": 0.2057783268392086, "decode.acc_seg": 90.60230255126953, "aux.loss_ce": 0.1176931954920292, "aux.acc_seg": 85.795654296875, "time": 1.118689727783203, "iter": 90800, "memory": 8704, "step": 90800} +{"lr": 0.004753102496876724, "data_time": 0.007206153869628906, "loss": 0.4261782944202423, "decode.loss_ce": 0.23850659728050233, "decode.acc_seg": 94.51129913330078, "aux.loss_ce": 0.18767169080674648, "aux.acc_seg": 92.97734832763672, "time": 1.117387866973877, "iter": 90850, "memory": 8703, "step": 90850} +{"lr": 0.004750074338026533, "data_time": 0.0069975614547729496, "loss": 0.3640557497739792, "decode.loss_ce": 0.2301298499107361, "decode.acc_seg": 92.34555053710938, "aux.loss_ce": 0.13392589688301088, "aux.acc_seg": 85.01904296875, "time": 1.1147024154663085, "iter": 90900, "memory": 8704, "step": 90900} +{"lr": 0.004747045960054154, "data_time": 0.006495451927185059, "loss": 0.38238592743873595, "decode.loss_ce": 0.23954547941684723, "decode.acc_seg": 94.80594635009766, "aux.loss_ce": 0.14284044839441776, "aux.acc_seg": 91.8530044555664, "time": 1.1166583061218263, "iter": 90950, "memory": 8704, "step": 90950} +{"lr": 0.00474401736278504, "data_time": 0.005800628662109375, "loss": 0.3723290845751762, "decode.loss_ce": 0.23677924796938896, "decode.acc_seg": 94.53237915039062, "aux.loss_ce": 0.1355498380959034, "aux.acc_seg": 93.63563537597656, "time": 1.111949586868286, "iter": 91000, "memory": 8703, "step": 91000} +{"lr": 0.004740988546044383, "data_time": 0.006831169128417969, "loss": 0.4039869621396065, "decode.loss_ce": 0.23626718074083328, "decode.acc_seg": 88.14868927001953, "aux.loss_ce": 0.1677197813987732, "aux.acc_seg": 83.17800903320312, "time": 1.1190544605255126, "iter": 91050, "memory": 8704, "step": 91050} +{"lr": 0.004737959509657108, "data_time": 0.006293439865112304, "loss": 0.3122848987579346, "decode.loss_ce": 0.19646894708275794, "decode.acc_seg": 95.58124542236328, "aux.loss_ce": 0.11581595130264759, "aux.acc_seg": 94.30210876464844, "time": 1.1168678998947144, "iter": 91100, "memory": 8705, "step": 91100} +{"lr": 0.00473493025344788, "data_time": 0.006733393669128418, "loss": 0.585393437743187, "decode.loss_ce": 0.3937448084354401, "decode.acc_seg": 95.58880615234375, "aux.loss_ce": 0.1916486334055662, "aux.acc_seg": 91.79039001464844, "time": 1.1168399095535277, "iter": 91150, "memory": 8703, "step": 91150} +{"lr": 0.00473190077724108, "data_time": 0.006129598617553711, "loss": 0.40370473116636274, "decode.loss_ce": 0.24762592762708663, "decode.acc_seg": 92.34949493408203, "aux.loss_ce": 0.15607880055904388, "aux.acc_seg": 89.65580749511719, "time": 1.1197476387023926, "iter": 91200, "memory": 8704, "step": 91200} +{"lr": 0.00472887108086084, "data_time": 0.0067814111709594725, "loss": 0.38590550422668457, "decode.loss_ce": 0.20931873545050622, "decode.acc_seg": 96.4072494506836, "aux.loss_ce": 0.17658677101135253, "aux.acc_seg": 91.0837173461914, "time": 1.1172157287597657, "iter": 91250, "memory": 8704, "step": 91250} +{"lr": 0.0047258411641310115, "data_time": 0.007370209693908692, "loss": 0.4003314107656479, "decode.loss_ce": 0.24805710837244987, "decode.acc_seg": 93.52779388427734, "aux.loss_ce": 0.15227430388331414, "aux.acc_seg": 91.35906982421875, "time": 1.1161616563796997, "iter": 91300, "memory": 8704, "step": 91300} +{"lr": 0.004722811026875181, "data_time": 0.006064939498901367, "loss": 0.23488309159874915, "decode.loss_ce": 0.1383576389402151, "decode.acc_seg": 96.68000030517578, "aux.loss_ce": 0.0965254545211792, "aux.acc_seg": 95.41765594482422, "time": 1.1160869598388672, "iter": 91350, "memory": 8704, "step": 91350} +{"lr": 0.004719780668916666, "data_time": 0.007247400283813476, "loss": 0.40881985127925874, "decode.loss_ce": 0.26063779890537264, "decode.acc_seg": 94.31063079833984, "aux.loss_ce": 0.14818205684423447, "aux.acc_seg": 92.17720031738281, "time": 1.1182316064834594, "iter": 91400, "memory": 8704, "step": 91400} +{"lr": 0.004716750090078509, "data_time": 0.006918263435363769, "loss": 0.43391878306865694, "decode.loss_ce": 0.2791226625442505, "decode.acc_seg": 94.76801300048828, "aux.loss_ce": 0.1547961223870516, "aux.acc_seg": 92.9891586303711, "time": 1.1147179841995238, "iter": 91450, "memory": 8704, "step": 91450} +{"lr": 0.004713719290183487, "data_time": 0.00685267448425293, "loss": 0.485011550784111, "decode.loss_ce": 0.2971303462982178, "decode.acc_seg": 89.5631103515625, "aux.loss_ce": 0.18788119703531264, "aux.acc_seg": 79.91695404052734, "time": 1.1141201972961425, "iter": 91500, "memory": 8704, "step": 91500} +{"lr": 0.004710688269054096, "data_time": 0.0068196535110473635, "loss": 0.22704104632139205, "decode.loss_ce": 0.14515649974346162, "decode.acc_seg": 97.1671371459961, "aux.loss_ce": 0.08188454322516918, "aux.acc_seg": 96.55647277832031, "time": 1.1131120681762696, "iter": 91550, "memory": 8703, "step": 91550} +{"lr": 0.004707657026512571, "data_time": 0.006557536125183105, "loss": 0.3193753272294998, "decode.loss_ce": 0.20117853656411172, "decode.acc_seg": 95.18522644042969, "aux.loss_ce": 0.11819679364562034, "aux.acc_seg": 93.47288513183594, "time": 1.1173011541366578, "iter": 91600, "memory": 8704, "step": 91600} +{"lr": 0.004704625562380866, "data_time": 0.006276392936706543, "loss": 0.33705315589904783, "decode.loss_ce": 0.20787906646728516, "decode.acc_seg": 92.63909149169922, "aux.loss_ce": 0.12917409352958203, "aux.acc_seg": 92.472900390625, "time": 1.1159191846847534, "iter": 91650, "memory": 8704, "step": 91650} +{"lr": 0.0047015938764806775, "data_time": 0.005234289169311524, "loss": 0.28571857511997223, "decode.loss_ce": 0.18123129829764367, "decode.acc_seg": 94.10469818115234, "aux.loss_ce": 0.10448727756738663, "aux.acc_seg": 89.3453598022461, "time": 1.1201359987258912, "iter": 91700, "memory": 8703, "step": 91700} +{"lr": 0.004698561968633402, "data_time": 0.005746388435363769, "loss": 0.4087268278002739, "decode.loss_ce": 0.2357352040708065, "decode.acc_seg": 95.72232055664062, "aux.loss_ce": 0.1729916162788868, "aux.acc_seg": 91.46499633789062, "time": 1.114221954345703, "iter": 91750, "memory": 8704, "step": 91750} +{"lr": 0.004695529838660178, "data_time": 0.006638765335083008, "loss": 0.30763543099164964, "decode.loss_ce": 0.19602756425738335, "decode.acc_seg": 96.61934661865234, "aux.loss_ce": 0.11160786487162114, "aux.acc_seg": 96.34710693359375, "time": 1.1188256740570068, "iter": 91800, "memory": 8703, "step": 91800} +{"lr": 0.004692497486381866, "data_time": 0.006028127670288086, "loss": 0.37747223377227784, "decode.loss_ce": 0.23005227744579315, "decode.acc_seg": 94.92208099365234, "aux.loss_ce": 0.1474199540913105, "aux.acc_seg": 92.88722229003906, "time": 1.1081965684890747, "iter": 91850, "memory": 8704, "step": 91850} +{"lr": 0.004689464911619048, "data_time": 0.006343913078308105, "loss": 0.3132507652044296, "decode.loss_ce": 0.18958353474736214, "decode.acc_seg": 95.53985595703125, "aux.loss_ce": 0.12366722673177719, "aux.acc_seg": 89.85563659667969, "time": 1.1150695562362671, "iter": 91900, "memory": 8704, "step": 91900} +{"lr": 0.004686432114192031, "data_time": 0.005767607688903808, "loss": 0.32726636826992034, "decode.loss_ce": 0.19395133033394812, "decode.acc_seg": 94.10183715820312, "aux.loss_ce": 0.13331503570079803, "aux.acc_seg": 89.71595764160156, "time": 1.1128845453262328, "iter": 91950, "memory": 8704, "step": 91950} +{"lr": 0.004683399093920849, "data_time": 0.006357002258300781, "loss": 0.4964372247457504, "decode.loss_ce": 0.30010421574115753, "decode.acc_seg": 92.38452911376953, "aux.loss_ce": 0.19633300080895424, "aux.acc_seg": 88.91029357910156, "time": 1.1172901391983032, "iter": 92000, "memory": 8703, "step": 92000} +{"lr": 0.004680365850625249, "data_time": 0.006112217903137207, "loss": 0.28906617164611814, "decode.loss_ce": 0.18112934827804567, "decode.acc_seg": 96.03773498535156, "aux.loss_ce": 0.10793682374060154, "aux.acc_seg": 94.10794067382812, "time": 1.113459038734436, "iter": 92050, "memory": 8704, "step": 92050} +{"lr": 0.0046773323841247, "data_time": 0.006966066360473633, "loss": 0.27112058997154237, "decode.loss_ce": 0.16789520829916, "decode.acc_seg": 95.29653930664062, "aux.loss_ce": 0.10322538428008557, "aux.acc_seg": 94.1157455444336, "time": 1.1195432424545289, "iter": 92100, "memory": 8703, "step": 92100} +{"lr": 0.004674298694238402, "data_time": 0.0054023504257202145, "loss": 0.3257880643010139, "decode.loss_ce": 0.21156491041183473, "decode.acc_seg": 95.45610809326172, "aux.loss_ce": 0.11422315798699856, "aux.acc_seg": 89.55736541748047, "time": 1.115863823890686, "iter": 92150, "memory": 8704, "step": 92150} +{"lr": 0.004671264780785271, "data_time": 0.0060138702392578125, "loss": 0.36981066018342973, "decode.loss_ce": 0.23191332519054414, "decode.acc_seg": 96.76901245117188, "aux.loss_ce": 0.1378973327577114, "aux.acc_seg": 94.27242279052734, "time": 1.1176535129547118, "iter": 92200, "memory": 8704, "step": 92200} +{"lr": 0.004668230643583935, "data_time": 0.006037235260009766, "loss": 0.4329202651977539, "decode.loss_ce": 0.25513271540403365, "decode.acc_seg": 92.37823486328125, "aux.loss_ce": 0.17778755202889443, "aux.acc_seg": 89.67437744140625, "time": 1.112819290161133, "iter": 92250, "memory": 8703, "step": 92250} +{"lr": 0.0046651962824527495, "data_time": 0.0064766168594360355, "loss": 0.48963612467050555, "decode.loss_ce": 0.3104087680578232, "decode.acc_seg": 86.834716796875, "aux.loss_ce": 0.17922735437750817, "aux.acc_seg": 85.87334442138672, "time": 1.1152302742004394, "iter": 92300, "memory": 8704, "step": 92300} +{"lr": 0.004662161697209792, "data_time": 0.005649375915527344, "loss": 0.4774220421910286, "decode.loss_ce": 0.2945006638765335, "decode.acc_seg": 94.48388671875, "aux.loss_ce": 0.18292138464748858, "aux.acc_seg": 88.73223114013672, "time": 1.1159384489059447, "iter": 92350, "memory": 8704, "step": 92350} +{"lr": 0.004659126887672844, "data_time": 0.005516433715820312, "loss": 0.35793718248605727, "decode.loss_ce": 0.22396894097328185, "decode.acc_seg": 90.746337890625, "aux.loss_ce": 0.13396824449300765, "aux.acc_seg": 88.74959564208984, "time": 1.116700792312622, "iter": 92400, "memory": 8704, "step": 92400} +{"lr": 0.004656091853659407, "data_time": 0.006650876998901367, "loss": 0.38437328189611436, "decode.loss_ce": 0.22878493890166282, "decode.acc_seg": 96.044921875, "aux.loss_ce": 0.15558834336698055, "aux.acc_seg": 94.8678970336914, "time": 1.1144878625869752, "iter": 92450, "memory": 8703, "step": 92450} +{"lr": 0.004653056594986707, "data_time": 0.006471848487854004, "loss": 0.44609484672546384, "decode.loss_ce": 0.2683256193995476, "decode.acc_seg": 92.44886779785156, "aux.loss_ce": 0.17776922807097434, "aux.acc_seg": 87.26742553710938, "time": 1.1129584074020387, "iter": 92500, "memory": 8703, "step": 92500} +{"lr": 0.004650021111471685, "data_time": 0.006080341339111328, "loss": 0.42826908975839617, "decode.loss_ce": 0.26458386406302453, "decode.acc_seg": 98.05081176757812, "aux.loss_ce": 0.16368521973490716, "aux.acc_seg": 92.32971954345703, "time": 1.1132836818695069, "iter": 92550, "memory": 8704, "step": 92550} +{"lr": 0.004646985402930987, "data_time": 0.0059294462203979496, "loss": 0.4711629837751389, "decode.loss_ce": 0.30195121839642525, "decode.acc_seg": 94.08975982666016, "aux.loss_ce": 0.1692117743194103, "aux.acc_seg": 92.10420989990234, "time": 1.1144231319427491, "iter": 92600, "memory": 8703, "step": 92600} +{"lr": 0.004643949469180987, "data_time": 0.006104373931884765, "loss": 0.4265731081366539, "decode.loss_ce": 0.23673071041703225, "decode.acc_seg": 95.37556457519531, "aux.loss_ce": 0.18984239920973778, "aux.acc_seg": 94.14259338378906, "time": 1.114650583267212, "iter": 92650, "memory": 8704, "step": 92650} +{"lr": 0.004640913310037766, "data_time": 0.00620880126953125, "loss": 0.35861118137836456, "decode.loss_ce": 0.21504910737276078, "decode.acc_seg": 91.80062103271484, "aux.loss_ce": 0.14356207475066185, "aux.acc_seg": 83.98411560058594, "time": 1.1166002750396729, "iter": 92700, "memory": 8704, "step": 92700} +{"lr": 0.004637876925317111, "data_time": 0.005311369895935059, "loss": 0.2999949648976326, "decode.loss_ce": 0.18001707792282104, "decode.acc_seg": 90.74427032470703, "aux.loss_ce": 0.11997788809239865, "aux.acc_seg": 88.34005737304688, "time": 1.1131801843643188, "iter": 92750, "memory": 8703, "step": 92750} +{"lr": 0.00463484031483453, "data_time": 0.0064863920211791996, "loss": 0.3206991493701935, "decode.loss_ce": 0.1809249497950077, "decode.acc_seg": 93.09973907470703, "aux.loss_ce": 0.13977419771254063, "aux.acc_seg": 88.88917541503906, "time": 1.11689293384552, "iter": 92800, "memory": 8703, "step": 92800} +{"lr": 0.004631803478405246, "data_time": 0.007657265663146973, "loss": 0.3744557246565819, "decode.loss_ce": 0.2328821301460266, "decode.acc_seg": 85.19935607910156, "aux.loss_ce": 0.14157358892261981, "aux.acc_seg": 81.12239837646484, "time": 1.1183720588684083, "iter": 92850, "memory": 8703, "step": 92850} +{"lr": 0.004628766415844179, "data_time": 0.007549810409545899, "loss": 0.2625366896390915, "decode.loss_ce": 0.15247225686907767, "decode.acc_seg": 96.41375732421875, "aux.loss_ce": 0.11006443314254284, "aux.acc_seg": 91.8420181274414, "time": 1.116969847679138, "iter": 92900, "memory": 8703, "step": 92900} +{"lr": 0.004625729126965974, "data_time": 0.006356883049011231, "loss": 0.3557612106204033, "decode.loss_ce": 0.2252156116068363, "decode.acc_seg": 87.07618713378906, "aux.loss_ce": 0.13054560199379922, "aux.acc_seg": 84.55797576904297, "time": 1.1143504858016968, "iter": 92950, "memory": 8704, "step": 92950} +{"lr": 0.004622691611584978, "data_time": 0.006075835227966309, "loss": 0.30991624146699903, "decode.loss_ce": 0.18282955139875412, "decode.acc_seg": 97.2808837890625, "aux.loss_ce": 0.12708668857812883, "aux.acc_seg": 97.00113677978516, "time": 1.1110797643661499, "iter": 93000, "memory": 8704, "step": 93000} +{"lr": 0.0046196538695152485, "data_time": 0.005143809318542481, "loss": 0.35745674669742583, "decode.loss_ce": 0.22851010859012605, "decode.acc_seg": 81.7841796875, "aux.loss_ce": 0.12894663400948048, "aux.acc_seg": 80.86433410644531, "time": 1.1121802806854248, "iter": 93050, "memory": 8704, "step": 93050} +{"lr": 0.004616615900570557, "data_time": 0.006451916694641113, "loss": 0.45614823400974275, "decode.loss_ce": 0.2956547513604164, "decode.acc_seg": 96.68006896972656, "aux.loss_ce": 0.16049348674714564, "aux.acc_seg": 95.2728271484375, "time": 1.1126091480255127, "iter": 93100, "memory": 8703, "step": 93100} +{"lr": 0.004613577704564367, "data_time": 0.005613923072814941, "loss": 0.3105108618736267, "decode.loss_ce": 0.19111617803573608, "decode.acc_seg": 86.13621520996094, "aux.loss_ce": 0.1193946860730648, "aux.acc_seg": 86.829833984375, "time": 1.1182993412017823, "iter": 93150, "memory": 8703, "step": 93150} +{"lr": 0.004610539281309868, "data_time": 0.007320117950439453, "loss": 0.23150150030851363, "decode.loss_ce": 0.14163151308894156, "decode.acc_seg": 91.34419250488281, "aux.loss_ce": 0.08986998498439788, "aux.acc_seg": 85.36148071289062, "time": 1.1165730476379394, "iter": 93200, "memory": 8704, "step": 93200} +{"lr": 0.004607500630619945, "data_time": 0.007391357421875, "loss": 0.3545809045433998, "decode.loss_ce": 0.20625825449824334, "decode.acc_seg": 94.04042053222656, "aux.loss_ce": 0.14832265265285968, "aux.acc_seg": 92.85404968261719, "time": 1.117248773574829, "iter": 93250, "memory": 8703, "step": 93250} +{"lr": 0.004604461752307191, "data_time": 0.006092643737792969, "loss": 0.4738864466547966, "decode.loss_ce": 0.251255701482296, "decode.acc_seg": 94.56424713134766, "aux.loss_ce": 0.22263073734939098, "aux.acc_seg": 92.53787994384766, "time": 1.1142447948455811, "iter": 93300, "memory": 8704, "step": 93300} +{"lr": 0.004601422646183901, "data_time": 0.007080793380737305, "loss": 0.37228191941976546, "decode.loss_ce": 0.22755856364965438, "decode.acc_seg": 89.0107421875, "aux.loss_ce": 0.144723355025053, "aux.acc_seg": 80.61510467529297, "time": 1.1150717973709106, "iter": 93350, "memory": 8703, "step": 93350} +{"lr": 0.004598383312062078, "data_time": 0.00701608657836914, "loss": 0.3892807632684708, "decode.loss_ce": 0.22766755968332292, "decode.acc_seg": 88.96408081054688, "aux.loss_ce": 0.16161320209503174, "aux.acc_seg": 86.56978607177734, "time": 1.1129699230194092, "iter": 93400, "memory": 8703, "step": 93400} +{"lr": 0.004595343749753434, "data_time": 0.008540797233581542, "loss": 0.2968803897500038, "decode.loss_ce": 0.18637246564030646, "decode.acc_seg": 97.4845199584961, "aux.loss_ce": 0.1105079211294651, "aux.acc_seg": 96.5094223022461, "time": 1.1167790412902832, "iter": 93450, "memory": 8705, "step": 93450} +{"lr": 0.004592303959069373, "data_time": 0.00576627254486084, "loss": 0.3770096883177757, "decode.loss_ce": 0.22914551198482513, "decode.acc_seg": 96.79730987548828, "aux.loss_ce": 0.14786417707800864, "aux.acc_seg": 92.49740600585938, "time": 1.1111909866333007, "iter": 93500, "memory": 8703, "step": 93500} +{"lr": 0.004589263939821007, "data_time": 0.007751631736755371, "loss": 0.40606316179037094, "decode.loss_ce": 0.24663737043738365, "decode.acc_seg": 96.50650024414062, "aux.loss_ce": 0.15942579433321952, "aux.acc_seg": 95.23098754882812, "time": 1.1180700302124023, "iter": 93550, "memory": 8704, "step": 93550} +{"lr": 0.0045862236918191475, "data_time": 0.007236981391906738, "loss": 0.2528435796499252, "decode.loss_ce": 0.15317503958940507, "decode.acc_seg": 96.46326446533203, "aux.loss_ce": 0.09966854043304921, "aux.acc_seg": 94.01232147216797, "time": 1.1141281366348266, "iter": 93600, "memory": 8703, "step": 93600} +{"lr": 0.004583183214874308, "data_time": 0.00771174430847168, "loss": 0.3302804991602898, "decode.loss_ce": 0.2050603747367859, "decode.acc_seg": 90.14974975585938, "aux.loss_ce": 0.12522012554109097, "aux.acc_seg": 88.46269989013672, "time": 1.1194544553756713, "iter": 93650, "memory": 8703, "step": 93650} +{"lr": 0.0045801425087967, "data_time": 0.005527758598327636, "loss": 0.397989758849144, "decode.loss_ce": 0.2374959945678711, "decode.acc_seg": 92.41065979003906, "aux.loss_ce": 0.16049376577138902, "aux.acc_seg": 92.68003845214844, "time": 1.1104361295700074, "iter": 93700, "memory": 8704, "step": 93700} +{"lr": 0.004577101573396238, "data_time": 0.00764622688293457, "loss": 0.5405457079410553, "decode.loss_ce": 0.3601149432361126, "decode.acc_seg": 90.72481536865234, "aux.loss_ce": 0.1804307594895363, "aux.acc_seg": 85.8841552734375, "time": 1.1197900772094727, "iter": 93750, "memory": 8704, "step": 93750} +{"lr": 0.004574060408482533, "data_time": 0.006930160522460938, "loss": 0.37422006502747535, "decode.loss_ce": 0.2255062222480774, "decode.acc_seg": 95.64119720458984, "aux.loss_ce": 0.14871384240686894, "aux.acc_seg": 95.04724884033203, "time": 1.1151597499847412, "iter": 93800, "memory": 8704, "step": 93800} +{"lr": 0.004571019013864896, "data_time": 0.007270312309265137, "loss": 0.31620834171772005, "decode.loss_ce": 0.2062472701072693, "decode.acc_seg": 95.29024505615234, "aux.loss_ce": 0.10996107421815396, "aux.acc_seg": 92.14566040039062, "time": 1.116255784034729, "iter": 93850, "memory": 8704, "step": 93850} +{"lr": 0.004567977389352333, "data_time": 0.0063729524612426754, "loss": 0.4656089752912521, "decode.loss_ce": 0.2988275185227394, "decode.acc_seg": 94.48419952392578, "aux.loss_ce": 0.1667814515531063, "aux.acc_seg": 89.24617767333984, "time": 1.112076210975647, "iter": 93900, "memory": 8703, "step": 93900} +{"lr": 0.004564935534753548, "data_time": 0.00802474021911621, "loss": 0.3378905445337296, "decode.loss_ce": 0.2050305888056755, "decode.acc_seg": 93.54972839355469, "aux.loss_ce": 0.13285995423793792, "aux.acc_seg": 86.12664031982422, "time": 1.1115439176559447, "iter": 93950, "memory": 8703, "step": 93950} +{"lr": 0.004561893449876938, "data_time": 0.007389640808105469, "loss": 0.3415037602186203, "decode.loss_ce": 0.21260873824357987, "decode.acc_seg": 94.46918487548828, "aux.loss_ce": 0.1288950227200985, "aux.acc_seg": 91.50846099853516, "time": 1.1135194063186646, "iter": 94000, "memory": 8703, "step": 94000} +{"lr": 0.004558851134530604, "data_time": 0.00888679027557373, "loss": 0.3610958129167557, "decode.loss_ce": 0.2155890457332134, "decode.acc_seg": 87.546630859375, "aux.loss_ce": 0.14550676420331002, "aux.acc_seg": 82.72709655761719, "time": 1.1230302572250366, "iter": 94050, "memory": 8703, "step": 94050} +{"lr": 0.004555808588522328, "data_time": 0.0068902730941772464, "loss": 0.40423014014959335, "decode.loss_ce": 0.251897494494915, "decode.acc_seg": 96.9324722290039, "aux.loss_ce": 0.1523326516151428, "aux.acc_seg": 95.28026580810547, "time": 1.1153434276580811, "iter": 94100, "memory": 8703, "step": 94100} +{"lr": 0.004552765811659595, "data_time": 0.00629730224609375, "loss": 0.3495011836290359, "decode.loss_ce": 0.20560482442378997, "decode.acc_seg": 93.79456329345703, "aux.loss_ce": 0.1438963532447815, "aux.acc_seg": 88.41126251220703, "time": 1.1182782173156738, "iter": 94150, "memory": 8703, "step": 94150} +{"lr": 0.004549722803749584, "data_time": 0.006568455696105957, "loss": 0.4047181665897369, "decode.loss_ce": 0.24915314540266992, "decode.acc_seg": 94.69261169433594, "aux.loss_ce": 0.15556502044200898, "aux.acc_seg": 90.14218139648438, "time": 1.1160122394561767, "iter": 94200, "memory": 8704, "step": 94200} +{"lr": 0.004546679564599155, "data_time": 0.005568242073059082, "loss": 0.3738942056894302, "decode.loss_ce": 0.22175382301211358, "decode.acc_seg": 93.50210571289062, "aux.loss_ce": 0.15214038416743278, "aux.acc_seg": 92.43049621582031, "time": 1.1146272420883179, "iter": 94250, "memory": 8704, "step": 94250} +{"lr": 0.004543636094014877, "data_time": 0.006765031814575195, "loss": 0.3161349192261696, "decode.loss_ce": 0.1990999922156334, "decode.acc_seg": 95.52338409423828, "aux.loss_ce": 0.11703492179512978, "aux.acc_seg": 94.23757934570312, "time": 1.1121804475784303, "iter": 94300, "memory": 8704, "step": 94300} +{"lr": 0.004540592391802994, "data_time": 0.00626068115234375, "loss": 0.35163981318473814, "decode.loss_ce": 0.20596873462200166, "decode.acc_seg": 97.7346420288086, "aux.loss_ce": 0.145671084523201, "aux.acc_seg": 94.09427642822266, "time": 1.1167283535003663, "iter": 94350, "memory": 8704, "step": 94350} +{"lr": 0.004537548457769447, "data_time": 0.006751847267150879, "loss": 0.3986919939517975, "decode.loss_ce": 0.2449969843029976, "decode.acc_seg": 84.49884796142578, "aux.loss_ce": 0.15369501262903212, "aux.acc_seg": 78.65676879882812, "time": 1.1127475500106812, "iter": 94400, "memory": 8704, "step": 94400} +{"lr": 0.00453450429171987, "data_time": 0.007469749450683594, "loss": 0.3243007645010948, "decode.loss_ce": 0.20074232220649718, "decode.acc_seg": 92.75404357910156, "aux.loss_ce": 0.12355844303965569, "aux.acc_seg": 90.9444808959961, "time": 1.1146865367889405, "iter": 94450, "memory": 8704, "step": 94450} +{"lr": 0.004531459893459574, "data_time": 0.0059081315994262695, "loss": 0.3373990014195442, "decode.loss_ce": 0.2069377437233925, "decode.acc_seg": 91.47529602050781, "aux.loss_ce": 0.1304612562060356, "aux.acc_seg": 89.67514038085938, "time": 1.1148763656616212, "iter": 94500, "memory": 8704, "step": 94500} +{"lr": 0.004528415262793575, "data_time": 0.0060509443283081055, "loss": 0.5234745144844055, "decode.loss_ce": 0.2976428359746933, "decode.acc_seg": 86.14444732666016, "aux.loss_ce": 0.22583168521523475, "aux.acc_seg": 74.38297271728516, "time": 1.116607165336609, "iter": 94550, "memory": 8704, "step": 94550} +{"lr": 0.004525370399526558, "data_time": 0.006327033042907715, "loss": 0.4408290222287178, "decode.loss_ce": 0.26999496966600417, "decode.acc_seg": 91.89472198486328, "aux.loss_ce": 0.17083404920995235, "aux.acc_seg": 86.70291900634766, "time": 1.1164678096771241, "iter": 94600, "memory": 8703, "step": 94600} +{"lr": 0.00452232530346291, "data_time": 0.006985521316528321, "loss": 0.26698405146598814, "decode.loss_ce": 0.1679173856973648, "decode.acc_seg": 93.15208435058594, "aux.loss_ce": 0.09906666465103627, "aux.acc_seg": 92.74533081054688, "time": 1.12018563747406, "iter": 94650, "memory": 8703, "step": 94650} +{"lr": 0.004519279974406692, "data_time": 0.006543517112731934, "loss": 0.4876226752996445, "decode.loss_ce": 0.30597724467515947, "decode.acc_seg": 93.95191955566406, "aux.loss_ce": 0.18164542652666568, "aux.acc_seg": 91.77074432373047, "time": 1.1150543928146361, "iter": 94700, "memory": 8704, "step": 94700} +{"lr": 0.0045162344121616555, "data_time": 0.006724238395690918, "loss": 0.3216474108397961, "decode.loss_ce": 0.20249449238181114, "decode.acc_seg": 92.59567260742188, "aux.loss_ce": 0.11915292106568813, "aux.acc_seg": 89.39869689941406, "time": 1.11468608379364, "iter": 94750, "memory": 8704, "step": 94750} +{"lr": 0.004513188616531238, "data_time": 0.007171487808227539, "loss": 0.3324800729751587, "decode.loss_ce": 0.2060556821525097, "decode.acc_seg": 94.99153137207031, "aux.loss_ce": 0.12642438672482967, "aux.acc_seg": 91.00694274902344, "time": 1.1163322925567627, "iter": 94800, "memory": 8703, "step": 94800} +{"lr": 0.004510142587318552, "data_time": 0.0081024169921875, "loss": 0.45673676431179044, "decode.loss_ce": 0.27181144803762436, "decode.acc_seg": 85.43311309814453, "aux.loss_ce": 0.18492531031370163, "aux.acc_seg": 79.8319320678711, "time": 1.1175722122192382, "iter": 94850, "memory": 8703, "step": 94850} +{"lr": 0.004507096324326403, "data_time": 0.006245470046997071, "loss": 0.424946928024292, "decode.loss_ce": 0.2758545681834221, "decode.acc_seg": 93.66455078125, "aux.loss_ce": 0.14909235686063765, "aux.acc_seg": 91.5049819946289, "time": 1.110274314880371, "iter": 94900, "memory": 8703, "step": 94900} +{"lr": 0.004504049827357279, "data_time": 0.007139277458190918, "loss": 0.3370855912566185, "decode.loss_ce": 0.20521049275994302, "decode.acc_seg": 96.7172622680664, "aux.loss_ce": 0.1318750973790884, "aux.acc_seg": 95.79651641845703, "time": 1.115505313873291, "iter": 94950, "memory": 8703, "step": 94950} +{"lr": 0.004501003096213332, "data_time": 0.007403564453125, "loss": 0.5455649107694626, "decode.loss_ce": 0.3492958344519138, "decode.acc_seg": 88.34088134765625, "aux.loss_ce": 0.19626906849443912, "aux.acc_seg": 79.40139770507812, "time": 1.1163223505020141, "iter": 95000, "memory": 8704, "step": 95000} +{"lr": 0.004497956130696412, "data_time": 0.00711972713470459, "loss": 0.42636064291000364, "decode.loss_ce": 0.25395597368478773, "decode.acc_seg": 88.26946258544922, "aux.loss_ce": 0.1724046692252159, "aux.acc_seg": 84.25614929199219, "time": 1.1215664386749267, "iter": 95050, "memory": 8703, "step": 95050} +{"lr": 0.004494908930608044, "data_time": 0.00572657585144043, "loss": 0.5977849334478378, "decode.loss_ce": 0.3940438374876976, "decode.acc_seg": 63.13571548461914, "aux.loss_ce": 0.20374110639095305, "aux.acc_seg": 60.566200256347656, "time": 1.1144946336746215, "iter": 95100, "memory": 8703, "step": 95100} +{"lr": 0.004491861495749434, "data_time": 0.005829954147338867, "loss": 0.4247432962059975, "decode.loss_ce": 0.2578821785748005, "decode.acc_seg": 96.75534057617188, "aux.loss_ce": 0.16686111725866795, "aux.acc_seg": 92.79327392578125, "time": 1.1172482252120972, "iter": 95150, "memory": 8704, "step": 95150} +{"lr": 0.004488813825921461, "data_time": 0.007958817481994628, "loss": 0.5737781390547753, "decode.loss_ce": 0.360100444406271, "decode.acc_seg": 96.48678588867188, "aux.loss_ce": 0.21367769613862037, "aux.acc_seg": 94.78289031982422, "time": 1.1167849540710448, "iter": 95200, "memory": 8704, "step": 95200} +{"lr": 0.004485765920924679, "data_time": 0.007483243942260742, "loss": 0.41395434737205505, "decode.loss_ce": 0.2462433710694313, "decode.acc_seg": 96.29751586914062, "aux.loss_ce": 0.1677109844982624, "aux.acc_seg": 95.67400360107422, "time": 1.1115339517593383, "iter": 95250, "memory": 8704, "step": 95250} +{"lr": 0.004482717780559325, "data_time": 0.005711150169372558, "loss": 0.3216578125953674, "decode.loss_ce": 0.18741906806826591, "decode.acc_seg": 96.90052795410156, "aux.loss_ce": 0.13423874452710152, "aux.acc_seg": 90.04353332519531, "time": 1.1086885452270507, "iter": 95300, "memory": 8704, "step": 95300} +{"lr": 0.004479669404625312, "data_time": 0.006940293312072754, "loss": 0.30743445456027985, "decode.loss_ce": 0.17197626009583472, "decode.acc_seg": 97.83159637451172, "aux.loss_ce": 0.13545819669961928, "aux.acc_seg": 96.890380859375, "time": 1.117733883857727, "iter": 95350, "memory": 8704, "step": 95350} +{"lr": 0.004476620792922226, "data_time": 0.007403969764709473, "loss": 0.3935254454612732, "decode.loss_ce": 0.2132667124271393, "decode.acc_seg": 96.33312225341797, "aux.loss_ce": 0.18025873154401778, "aux.acc_seg": 95.65677642822266, "time": 1.1220427989959716, "iter": 95400, "memory": 8703, "step": 95400} +{"lr": 0.00447357194524932, "data_time": 0.005738162994384765, "loss": 0.31929292976856233, "decode.loss_ce": 0.20776658579707147, "decode.acc_seg": 97.18851470947266, "aux.loss_ce": 0.11152634397149086, "aux.acc_seg": 94.20186614990234, "time": 1.1231574058532714, "iter": 95450, "memory": 8703, "step": 95450} +{"lr": 0.0044705228614055365, "data_time": 0.006260824203491211, "loss": 0.35967444628477097, "decode.loss_ce": 0.21700190603733063, "decode.acc_seg": 95.38904571533203, "aux.loss_ce": 0.14267254024744033, "aux.acc_seg": 90.43324279785156, "time": 1.1124836683273316, "iter": 95500, "memory": 8704, "step": 95500} +{"lr": 0.004467473541189477, "data_time": 0.007220149040222168, "loss": 0.3829798772931099, "decode.loss_ce": 0.2334298312664032, "decode.acc_seg": 93.924072265625, "aux.loss_ce": 0.14955003634095193, "aux.acc_seg": 93.38829803466797, "time": 1.1198565244674683, "iter": 95550, "memory": 8704, "step": 95550} +{"lr": 0.004464423984399418, "data_time": 0.006212615966796875, "loss": 0.3237074077129364, "decode.loss_ce": 0.19918904155492784, "decode.acc_seg": 92.42203521728516, "aux.loss_ce": 0.1245183639228344, "aux.acc_seg": 90.59574890136719, "time": 1.120350217819214, "iter": 95600, "memory": 8704, "step": 95600} +{"lr": 0.004461374190833312, "data_time": 0.0071624755859375, "loss": 0.4547815576195717, "decode.loss_ce": 0.27650307938456536, "decode.acc_seg": 89.05811309814453, "aux.loss_ce": 0.17827848084270953, "aux.acc_seg": 78.64735412597656, "time": 1.1205821990966798, "iter": 95650, "memory": 8704, "step": 95650} +{"lr": 0.004458324160288778, "data_time": 0.008072185516357421, "loss": 0.4363493651151657, "decode.loss_ce": 0.2742514207959175, "decode.acc_seg": 93.17671203613281, "aux.loss_ce": 0.16209794580936432, "aux.acc_seg": 90.06487274169922, "time": 1.1198634386062623, "iter": 95700, "memory": 8703, "step": 95700} +{"lr": 0.004455273892563102, "data_time": 0.007192158699035644, "loss": 0.3527973733842373, "decode.loss_ce": 0.2181755717843771, "decode.acc_seg": 91.63468170166016, "aux.loss_ce": 0.134621811658144, "aux.acc_seg": 84.97110748291016, "time": 1.1189575672149659, "iter": 95750, "memory": 8704, "step": 95750} +{"lr": 0.00445222338745325, "data_time": 0.006685376167297363, "loss": 0.3130262210965157, "decode.loss_ce": 0.17201564460992813, "decode.acc_seg": 87.92826080322266, "aux.loss_ce": 0.14101056829094888, "aux.acc_seg": 63.548465728759766, "time": 1.1107859849929809, "iter": 95800, "memory": 8705, "step": 95800} +{"lr": 0.004449172644755841, "data_time": 0.006552958488464355, "loss": 0.2681755296885967, "decode.loss_ce": 0.16770501360297202, "decode.acc_seg": 90.56427764892578, "aux.loss_ce": 0.10047051832079887, "aux.acc_seg": 91.66043090820312, "time": 1.1105247020721436, "iter": 95850, "memory": 8703, "step": 95850} +{"lr": 0.004446121664267165, "data_time": 0.00739288330078125, "loss": 0.485927414894104, "decode.loss_ce": 0.2946247115731239, "decode.acc_seg": 93.87185668945312, "aux.loss_ce": 0.19130270406603814, "aux.acc_seg": 90.1836166381836, "time": 1.116141152381897, "iter": 95900, "memory": 8703, "step": 95900} +{"lr": 0.004443070445783183, "data_time": 0.006271815299987793, "loss": 0.2607400268316269, "decode.loss_ce": 0.14967916458845137, "decode.acc_seg": 95.20072937011719, "aux.loss_ce": 0.11106086075305939, "aux.acc_seg": 89.4216537475586, "time": 1.115680718421936, "iter": 95950, "memory": 8704, "step": 95950} +{"lr": 0.004440018989099523, "data_time": 0.007535099983215332, "loss": 0.3276670202612877, "decode.loss_ce": 0.1916815534234047, "decode.acc_seg": 95.0328140258789, "aux.loss_ce": 0.13598546534776687, "aux.acc_seg": 92.79072570800781, "time": 1.114802360534668, "iter": 96000, "memory": 8703, "step": 96000} +{"aAcc": 94.27, "mIoU": 67.94, "mAcc": 75.89, "data_time": 0.004006870577084558, "time": 0.2711475676448939, "step": 96000} +{"lr": 0.0044369672940114705, "data_time": 0.006218719482421875, "loss": 0.2921825647354126, "decode.loss_ce": 0.18546558171510696, "decode.acc_seg": 96.11988067626953, "aux.loss_ce": 0.10671698376536369, "aux.acc_seg": 89.78182220458984, "time": 1.1137331485748292, "iter": 96050, "memory": 8703, "step": 96050} +{"lr": 0.004433915360313978, "data_time": 0.007191205024719238, "loss": 0.4156376957893372, "decode.loss_ce": 0.2671320401132107, "decode.acc_seg": 75.02264404296875, "aux.loss_ce": 0.14850565269589425, "aux.acc_seg": 71.09323120117188, "time": 1.1115949153900146, "iter": 96100, "memory": 8703, "step": 96100} +{"lr": 0.004430863187801666, "data_time": 0.008850550651550293, "loss": 0.46523256301879884, "decode.loss_ce": 0.26060024946928023, "decode.acc_seg": 88.25251007080078, "aux.loss_ce": 0.2046323087066412, "aux.acc_seg": 81.69720458984375, "time": 1.116242480278015, "iter": 96150, "memory": 8703, "step": 96150} +{"lr": 0.0044278107762688096, "data_time": 0.006914567947387695, "loss": 0.4785318702459335, "decode.loss_ce": 0.30897447317838667, "decode.acc_seg": 90.31613159179688, "aux.loss_ce": 0.16955740228295327, "aux.acc_seg": 83.70926666259766, "time": 1.1098069429397583, "iter": 96200, "memory": 8703, "step": 96200} +{"lr": 0.004424758125509352, "data_time": 0.005949068069458008, "loss": 0.39193202257156373, "decode.loss_ce": 0.22902186289429666, "decode.acc_seg": 91.14031982421875, "aux.loss_ce": 0.16291015408933163, "aux.acc_seg": 85.24657440185547, "time": 1.1166849851608276, "iter": 96250, "memory": 8703, "step": 96250} +{"lr": 0.004421705235316884, "data_time": 0.006219911575317383, "loss": 0.2890112191438675, "decode.loss_ce": 0.17985547110438346, "decode.acc_seg": 96.15764617919922, "aux.loss_ce": 0.10915574803948402, "aux.acc_seg": 93.2271957397461, "time": 1.117475986480713, "iter": 96300, "memory": 8704, "step": 96300} +{"lr": 0.004418652105484673, "data_time": 0.008002710342407227, "loss": 0.3561813697218895, "decode.loss_ce": 0.2108581095933914, "decode.acc_seg": 93.91809844970703, "aux.loss_ce": 0.14532325901091098, "aux.acc_seg": 83.22073364257812, "time": 1.1173878908157349, "iter": 96350, "memory": 8703, "step": 96350} +{"lr": 0.004415598735805636, "data_time": 0.0075483560562133786, "loss": 0.413044111430645, "decode.loss_ce": 0.28066076934337614, "decode.acc_seg": 93.10169219970703, "aux.loss_ce": 0.1323833342641592, "aux.acc_seg": 90.85140228271484, "time": 1.1207287073135377, "iter": 96400, "memory": 8703, "step": 96400} +{"lr": 0.00441254512607235, "data_time": 0.008244919776916503, "loss": 0.4236768461763859, "decode.loss_ce": 0.23736646585166454, "decode.acc_seg": 94.91233825683594, "aux.loss_ce": 0.1863103810697794, "aux.acc_seg": 93.64439392089844, "time": 1.1161406993865968, "iter": 96450, "memory": 8704, "step": 96450} +{"lr": 0.004409491276077053, "data_time": 0.007924246788024902, "loss": 0.3769094437360764, "decode.loss_ce": 0.24232956767082214, "decode.acc_seg": 97.1720962524414, "aux.loss_ce": 0.1345798797905445, "aux.acc_seg": 95.12970733642578, "time": 1.1155264854431153, "iter": 96500, "memory": 8704, "step": 96500} +{"lr": 0.004406437185611635, "data_time": 0.007944965362548828, "loss": 0.3261696740984917, "decode.loss_ce": 0.19855324998497964, "decode.acc_seg": 94.06916046142578, "aux.loss_ce": 0.12761642783880234, "aux.acc_seg": 92.45941925048828, "time": 1.1204758644104005, "iter": 96550, "memory": 8703, "step": 96550} +{"lr": 0.004403382854467637, "data_time": 0.007695817947387695, "loss": 0.3291724815964699, "decode.loss_ce": 0.2054893583059311, "decode.acc_seg": 95.01615905761719, "aux.loss_ce": 0.12368312515318394, "aux.acc_seg": 94.40377044677734, "time": 1.120375919342041, "iter": 96600, "memory": 8704, "step": 96600} +{"lr": 0.004400328282436267, "data_time": 0.006762194633483887, "loss": 0.44582448303699496, "decode.loss_ce": 0.2711991906166077, "decode.acc_seg": 90.88579559326172, "aux.loss_ce": 0.17462529018521308, "aux.acc_seg": 89.71836853027344, "time": 1.1143428325653075, "iter": 96650, "memory": 8705, "step": 96650} +{"lr": 0.004397273469308378, "data_time": 0.007924723625183105, "loss": 0.3637658551335335, "decode.loss_ce": 0.23581287637352943, "decode.acc_seg": 93.98892211914062, "aux.loss_ce": 0.12795297764241695, "aux.acc_seg": 91.766357421875, "time": 1.1152862310409546, "iter": 96700, "memory": 8703, "step": 96700} +{"lr": 0.004394218414874472, "data_time": 0.0057108402252197266, "loss": 0.2712958589196205, "decode.loss_ce": 0.1576473005115986, "decode.acc_seg": 91.68217468261719, "aux.loss_ce": 0.1136485569179058, "aux.acc_seg": 80.67524719238281, "time": 1.1142930030822753, "iter": 96750, "memory": 8703, "step": 96750} +{"lr": 0.0043911631189247164, "data_time": 0.007665061950683593, "loss": 0.22691787779331207, "decode.loss_ce": 0.141484896838665, "decode.acc_seg": 94.1727294921875, "aux.loss_ce": 0.0854329764842987, "aux.acc_seg": 92.31166076660156, "time": 1.1152418613433839, "iter": 96800, "memory": 8704, "step": 96800} +{"lr": 0.004388107581248923, "data_time": 0.00821373462677002, "loss": 0.3572307974100113, "decode.loss_ce": 0.2179250419139862, "decode.acc_seg": 92.67666625976562, "aux.loss_ce": 0.1393057517707348, "aux.acc_seg": 86.381591796875, "time": 1.120449924468994, "iter": 96850, "memory": 8704, "step": 96850} +{"lr": 0.004385051801636547, "data_time": 0.006796574592590332, "loss": 0.3096139028668404, "decode.loss_ce": 0.18276649788022042, "decode.acc_seg": 94.2109146118164, "aux.loss_ce": 0.1268474120646715, "aux.acc_seg": 74.24027252197266, "time": 1.1165270328521728, "iter": 96900, "memory": 8704, "step": 96900} +{"lr": 0.004381995779876709, "data_time": 0.006959748268127441, "loss": 0.45900275707244875, "decode.loss_ce": 0.30462835878133776, "decode.acc_seg": 86.9559555053711, "aux.loss_ce": 0.15437440872192382, "aux.acc_seg": 88.25435638427734, "time": 1.1188121557235717, "iter": 96950, "memory": 8703, "step": 96950} +{"lr": 0.004378939515758163, "data_time": 0.008513498306274413, "loss": 0.4201041251420975, "decode.loss_ce": 0.24011835753917693, "decode.acc_seg": 71.56658172607422, "aux.loss_ce": 0.17998575679957868, "aux.acc_seg": 50.30409240722656, "time": 1.1183444261550903, "iter": 97000, "memory": 8703, "step": 97000} +{"lr": 0.004375883009069322, "data_time": 0.00627589225769043, "loss": 0.4589247390627861, "decode.loss_ce": 0.2931666225194931, "decode.acc_seg": 91.79923248291016, "aux.loss_ce": 0.1657581150531769, "aux.acc_seg": 85.56182861328125, "time": 1.1136418581008911, "iter": 97050, "memory": 8704, "step": 97050} +{"lr": 0.0043728262595982385, "data_time": 0.007024383544921875, "loss": 0.4344280272722244, "decode.loss_ce": 0.284328593313694, "decode.acc_seg": 90.79901123046875, "aux.loss_ce": 0.1500994313508272, "aux.acc_seg": 88.25733947753906, "time": 1.1141727447509766, "iter": 97100, "memory": 8704, "step": 97100} +{"lr": 0.0043697692671326145, "data_time": 0.006004643440246582, "loss": 0.38352103978395463, "decode.loss_ce": 0.23999253660440445, "decode.acc_seg": 92.8434829711914, "aux.loss_ce": 0.14352850392460823, "aux.acc_seg": 91.8537826538086, "time": 1.1109869956970215, "iter": 97150, "memory": 8704, "step": 97150} +{"lr": 0.0043667120314598, "data_time": 0.0077876091003417965, "loss": 0.3018639847636223, "decode.loss_ce": 0.18134207725524903, "decode.acc_seg": 94.82160949707031, "aux.loss_ce": 0.12052190899848939, "aux.acc_seg": 93.85401153564453, "time": 1.1122992038726807, "iter": 97200, "memory": 8704, "step": 97200} +{"lr": 0.004363654552366787, "data_time": 0.006118941307067871, "loss": 0.30170166194438935, "decode.loss_ce": 0.17271987944841385, "decode.acc_seg": 97.0820083618164, "aux.loss_ce": 0.12898177690804005, "aux.acc_seg": 96.3958740234375, "time": 1.1104283332824707, "iter": 97250, "memory": 8703, "step": 97250} +{"lr": 0.004360596829640204, "data_time": 0.006892180442810059, "loss": 0.351163075119257, "decode.loss_ce": 0.22173779979348182, "decode.acc_seg": 93.0562973022461, "aux.loss_ce": 0.1294252745807171, "aux.acc_seg": 90.02367401123047, "time": 1.1189012050628662, "iter": 97300, "memory": 8703, "step": 97300} +{"lr": 0.004357538863066333, "data_time": 0.00665435791015625, "loss": 0.32355113625526427, "decode.loss_ce": 0.19067924208939074, "decode.acc_seg": 98.50031280517578, "aux.loss_ce": 0.1328718900680542, "aux.acc_seg": 97.63914489746094, "time": 1.1126912832260132, "iter": 97350, "memory": 8704, "step": 97350} +{"lr": 0.0043544806524310935, "data_time": 0.007110905647277832, "loss": 0.256404247879982, "decode.loss_ce": 0.15326545834541322, "decode.acc_seg": 95.29844665527344, "aux.loss_ce": 0.1031387872993946, "aux.acc_seg": 92.93600463867188, "time": 1.1187981605529784, "iter": 97400, "memory": 8704, "step": 97400} +{"lr": 0.00435142219752005, "data_time": 0.0069714546203613285, "loss": 0.3421672984957695, "decode.loss_ce": 0.20822950154542924, "decode.acc_seg": 88.64796447753906, "aux.loss_ce": 0.13393779695034028, "aux.acc_seg": 87.42497253417969, "time": 1.114004373550415, "iter": 97450, "memory": 8704, "step": 97450} +{"lr": 0.004348363498118396, "data_time": 0.006442213058471679, "loss": 0.3433868996798992, "decode.loss_ce": 0.21664281710982322, "decode.acc_seg": 96.78592681884766, "aux.loss_ce": 0.12674408201128246, "aux.acc_seg": 92.61549377441406, "time": 1.117477822303772, "iter": 97500, "memory": 8703, "step": 97500} +{"lr": 0.004345304554010979, "data_time": 0.007547521591186523, "loss": 0.39934652149677274, "decode.loss_ce": 0.24409169778227807, "decode.acc_seg": 91.05313110351562, "aux.loss_ce": 0.15525481589138507, "aux.acc_seg": 90.38206481933594, "time": 1.1167479038238526, "iter": 97550, "memory": 8704, "step": 97550} +{"lr": 0.0043422453649822655, "data_time": 0.005587267875671387, "loss": 0.3471233993768692, "decode.loss_ce": 0.19820671454071997, "decode.acc_seg": 97.5000991821289, "aux.loss_ce": 0.14891668111085893, "aux.acc_seg": 89.86377716064453, "time": 1.114981722831726, "iter": 97600, "memory": 8703, "step": 97600} +{"lr": 0.004339185930816383, "data_time": 0.006533432006835938, "loss": 0.4294567435979843, "decode.loss_ce": 0.2453644670546055, "decode.acc_seg": 93.79227447509766, "aux.loss_ce": 0.184092278778553, "aux.acc_seg": 74.93534088134766, "time": 1.1126662731170653, "iter": 97650, "memory": 8704, "step": 97650} +{"lr": 0.0043361262512970795, "data_time": 0.007747650146484375, "loss": 0.4365815296769142, "decode.loss_ce": 0.25594848617911337, "decode.acc_seg": 90.1495590209961, "aux.loss_ce": 0.18063305020332338, "aux.acc_seg": 59.9973030090332, "time": 1.114505362510681, "iter": 97700, "memory": 8704, "step": 97700} +{"lr": 0.004333066326207735, "data_time": 0.007774543762207031, "loss": 0.3808030277490616, "decode.loss_ce": 0.23692765906453134, "decode.acc_seg": 94.5913314819336, "aux.loss_ce": 0.14387536756694316, "aux.acc_seg": 93.85910034179688, "time": 1.1181429624557495, "iter": 97750, "memory": 8704, "step": 97750} +{"lr": 0.004330006155331379, "data_time": 0.0077195405960083004, "loss": 0.36702370792627337, "decode.loss_ce": 0.22716914266347885, "decode.acc_seg": 93.62551879882812, "aux.loss_ce": 0.13985455892980098, "aux.acc_seg": 90.65132904052734, "time": 1.1177438735961913, "iter": 97800, "memory": 8704, "step": 97800} +{"lr": 0.004326945738450664, "data_time": 0.006012940406799316, "loss": 0.35622897893190386, "decode.loss_ce": 0.22323142141103744, "decode.acc_seg": 95.90933990478516, "aux.loss_ce": 0.13299755975604058, "aux.acc_seg": 94.48149108886719, "time": 1.1126487970352172, "iter": 97850, "memory": 8704, "step": 97850} +{"lr": 0.004323885075347883, "data_time": 0.006042313575744629, "loss": 0.23881543502211572, "decode.loss_ce": 0.1459125056862831, "decode.acc_seg": 96.03996276855469, "aux.loss_ce": 0.09290293045341969, "aux.acc_seg": 93.16011810302734, "time": 1.1163009881973267, "iter": 97900, "memory": 8704, "step": 97900} +{"lr": 0.004320824165804944, "data_time": 0.0073021650314331055, "loss": 0.4415226116776466, "decode.loss_ce": 0.2785977996885777, "decode.acc_seg": 95.78977966308594, "aux.loss_ce": 0.16292481534183026, "aux.acc_seg": 95.31885528564453, "time": 1.1154695749282837, "iter": 97950, "memory": 8703, "step": 97950} +{"lr": 0.004317763009603414, "data_time": 0.006952500343322754, "loss": 0.339583221077919, "decode.loss_ce": 0.20537950694561005, "decode.acc_seg": 93.94155883789062, "aux.loss_ce": 0.13420371897518635, "aux.acc_seg": 92.65110778808594, "time": 1.115352749824524, "iter": 98000, "memory": 8704, "step": 98000} +{"lr": 0.004314701606524458, "data_time": 0.008230328559875488, "loss": 0.533072903752327, "decode.loss_ce": 0.3575641691684723, "decode.acc_seg": 96.86666870117188, "aux.loss_ce": 0.1755087271332741, "aux.acc_seg": 91.10832214355469, "time": 1.1176270723342896, "iter": 98050, "memory": 8703, "step": 98050} +{"lr": 0.004311639956348893, "data_time": 0.007373499870300293, "loss": 0.2680388644337654, "decode.loss_ce": 0.16157120764255523, "decode.acc_seg": 94.6866226196289, "aux.loss_ce": 0.10646765939891338, "aux.acc_seg": 94.69237518310547, "time": 1.1164381504058838, "iter": 98100, "memory": 8703, "step": 98100} +{"lr": 0.004308578058857162, "data_time": 0.007875728607177734, "loss": 0.3291222393512726, "decode.loss_ce": 0.191703636944294, "decode.acc_seg": 95.166015625, "aux.loss_ce": 0.13741860240697862, "aux.acc_seg": 94.05510711669922, "time": 1.1165399551391602, "iter": 98150, "memory": 8704, "step": 98150} +{"lr": 0.004305515913829323, "data_time": 0.006087207794189453, "loss": 0.4299270808696747, "decode.loss_ce": 0.27332885563373566, "decode.acc_seg": 91.86235809326172, "aux.loss_ce": 0.1565982237458229, "aux.acc_seg": 91.08403015136719, "time": 1.1145610809326172, "iter": 98200, "memory": 8703, "step": 98200} +{"lr": 0.004302453521045076, "data_time": 0.006287479400634765, "loss": 0.41521373987197874, "decode.loss_ce": 0.2395149663090706, "decode.acc_seg": 85.01091003417969, "aux.loss_ce": 0.17569877430796624, "aux.acc_seg": 78.341796875, "time": 1.118035912513733, "iter": 98250, "memory": 8703, "step": 98250} +{"lr": 0.004299390880283731, "data_time": 0.005445957183837891, "loss": 0.3076318480074406, "decode.loss_ce": 0.18919714465737342, "decode.acc_seg": 97.14920806884766, "aux.loss_ce": 0.11843470074236392, "aux.acc_seg": 96.59849548339844, "time": 1.1110546112060546, "iter": 98300, "memory": 8704, "step": 98300} +{"lr": 0.004296327991324235, "data_time": 0.006650018692016602, "loss": 0.3240256041288376, "decode.loss_ce": 0.1966198280453682, "decode.acc_seg": 85.46581268310547, "aux.loss_ce": 0.1274057760834694, "aux.acc_seg": 79.5431137084961, "time": 1.1168176412582398, "iter": 98350, "memory": 8703, "step": 98350} +{"lr": 0.004293264853945149, "data_time": 0.007377743721008301, "loss": 0.296084500849247, "decode.loss_ce": 0.18266526684165002, "decode.acc_seg": 90.23590087890625, "aux.loss_ce": 0.11341923326253892, "aux.acc_seg": 86.79866790771484, "time": 1.1170744180679322, "iter": 98400, "memory": 8704, "step": 98400} +{"lr": 0.004290201467924665, "data_time": 0.008414602279663086, "loss": 0.3702435836195946, "decode.loss_ce": 0.22475891858339309, "decode.acc_seg": 96.5354232788086, "aux.loss_ce": 0.14548466466367244, "aux.acc_seg": 95.52643585205078, "time": 1.1197669744491576, "iter": 98450, "memory": 8703, "step": 98450} +{"lr": 0.00428713783304059, "data_time": 0.007863378524780274, "loss": 0.33432170301675795, "decode.loss_ce": 0.20496364384889604, "decode.acc_seg": 92.19048309326172, "aux.loss_ce": 0.12935805767774583, "aux.acc_seg": 87.80231475830078, "time": 1.1174325942993164, "iter": 98500, "memory": 8703, "step": 98500} +{"lr": 0.004284073949070354, "data_time": 0.006140708923339844, "loss": 0.27777710258960725, "decode.loss_ce": 0.1599898397922516, "decode.acc_seg": 90.36934661865234, "aux.loss_ce": 0.11778726316988468, "aux.acc_seg": 86.16167449951172, "time": 1.1119388341903687, "iter": 98550, "memory": 8704, "step": 98550} +{"lr": 0.004281009815791002, "data_time": 0.00826106071472168, "loss": 0.3090063974261284, "decode.loss_ce": 0.19698974266648292, "decode.acc_seg": 82.67826080322266, "aux.loss_ce": 0.11201665215194226, "aux.acc_seg": 85.237060546875, "time": 1.1164419889450072, "iter": 98600, "memory": 8703, "step": 98600} +{"lr": 0.004277945432979211, "data_time": 0.00783843994140625, "loss": 0.4078752502799034, "decode.loss_ce": 0.24765940755605698, "decode.acc_seg": 95.84579467773438, "aux.loss_ce": 0.16021584793925286, "aux.acc_seg": 85.66143798828125, "time": 1.1179263591766357, "iter": 98650, "memory": 8705, "step": 98650} +{"lr": 0.00427488080041126, "data_time": 0.006536793708801269, "loss": 0.258716456592083, "decode.loss_ce": 0.15343976095318795, "decode.acc_seg": 96.52241516113281, "aux.loss_ce": 0.10527669675648213, "aux.acc_seg": 95.64048767089844, "time": 1.1178133249282838, "iter": 98700, "memory": 8703, "step": 98700} +{"lr": 0.0042718159178630555, "data_time": 0.007469439506530761, "loss": 0.4408324509859085, "decode.loss_ce": 0.2782873369753361, "decode.acc_seg": 93.00346374511719, "aux.loss_ce": 0.1625451073050499, "aux.acc_seg": 90.97251892089844, "time": 1.1181185245513916, "iter": 98750, "memory": 8703, "step": 98750} +{"lr": 0.004268750785110116, "data_time": 0.006163501739501953, "loss": 0.311819426715374, "decode.loss_ce": 0.1892810806632042, "decode.acc_seg": 92.4658432006836, "aux.loss_ce": 0.12253834754228592, "aux.acc_seg": 91.2772445678711, "time": 1.118432068824768, "iter": 98800, "memory": 8703, "step": 98800} +{"lr": 0.004265685401927578, "data_time": 0.005792093276977539, "loss": 0.45949209183454515, "decode.loss_ce": 0.29059961065649986, "decode.acc_seg": 69.60811614990234, "aux.loss_ce": 0.1688924863934517, "aux.acc_seg": 45.713104248046875, "time": 1.1155898571014404, "iter": 98850, "memory": 8704, "step": 98850} +{"lr": 0.004262619768090186, "data_time": 0.007480812072753906, "loss": 0.3891493439674377, "decode.loss_ce": 0.24490429759025573, "decode.acc_seg": 95.52332305908203, "aux.loss_ce": 0.14424505196511744, "aux.acc_seg": 95.02544403076172, "time": 1.1186802387237549, "iter": 98900, "memory": 8704, "step": 98900} +{"lr": 0.004259553883372297, "data_time": 0.007576608657836914, "loss": 0.3407106027007103, "decode.loss_ce": 0.21700030118227004, "decode.acc_seg": 93.19019317626953, "aux.loss_ce": 0.12371030002832413, "aux.acc_seg": 90.34588623046875, "time": 1.1153913259506225, "iter": 98950, "memory": 8704, "step": 98950} +{"lr": 0.004256487747547892, "data_time": 0.006131100654602051, "loss": 0.29994098246097567, "decode.loss_ce": 0.17771157175302504, "decode.acc_seg": 90.64265441894531, "aux.loss_ce": 0.12222940474748611, "aux.acc_seg": 86.7016830444336, "time": 1.1096499681472778, "iter": 99000, "memory": 8704, "step": 99000} +{"lr": 0.004253421360390544, "data_time": 0.005273246765136718, "loss": 0.3464001603424549, "decode.loss_ce": 0.21230260245501995, "decode.acc_seg": 97.12945556640625, "aux.loss_ce": 0.13409755378961563, "aux.acc_seg": 96.38658142089844, "time": 1.1062570095062256, "iter": 99050, "memory": 8704, "step": 99050} +{"lr": 0.004250354721673454, "data_time": 0.006409263610839844, "loss": 0.3260923087596893, "decode.loss_ce": 0.18929270505905152, "decode.acc_seg": 94.75332641601562, "aux.loss_ce": 0.136799605935812, "aux.acc_seg": 93.94295501708984, "time": 1.1100084781646729, "iter": 99100, "memory": 8703, "step": 99100} +{"lr": 0.004247287831169417, "data_time": 0.006646871566772461, "loss": 0.3445459559559822, "decode.loss_ce": 0.20878776237368585, "decode.acc_seg": 96.11869049072266, "aux.loss_ce": 0.13575819320976734, "aux.acc_seg": 94.91067504882812, "time": 1.1149702548980713, "iter": 99150, "memory": 8704, "step": 99150} +{"lr": 0.004244220688650846, "data_time": 0.007168126106262207, "loss": 0.2844816893339157, "decode.loss_ce": 0.17559677809476854, "decode.acc_seg": 89.52391052246094, "aux.loss_ce": 0.10888491198420525, "aux.acc_seg": 82.73336791992188, "time": 1.1161325693130493, "iter": 99200, "memory": 8703, "step": 99200} +{"lr": 0.004241153293889764, "data_time": 0.006595540046691895, "loss": 0.27189970910549166, "decode.loss_ce": 0.1577395148575306, "decode.acc_seg": 93.28791046142578, "aux.loss_ce": 0.11416018679738045, "aux.acc_seg": 91.43333435058594, "time": 1.1160313129425048, "iter": 99250, "memory": 8703, "step": 99250} +{"lr": 0.004238085646657784, "data_time": 0.005371594429016113, "loss": 0.44885134547948835, "decode.loss_ce": 0.2812811188399792, "decode.acc_seg": 96.50846862792969, "aux.loss_ce": 0.1675702203065157, "aux.acc_seg": 86.1078872680664, "time": 1.1109045267105102, "iter": 99300, "memory": 8703, "step": 99300} +{"lr": 0.00423501774672614, "data_time": 0.006390500068664551, "loss": 0.3347514897584915, "decode.loss_ce": 0.20896674692630768, "decode.acc_seg": 94.05193328857422, "aux.loss_ce": 0.12578473836183549, "aux.acc_seg": 93.55614471435547, "time": 1.11635479927063, "iter": 99350, "memory": 8704, "step": 99350} +{"lr": 0.004231949593865661, "data_time": 0.006798958778381348, "loss": 0.3725773736834526, "decode.loss_ce": 0.23538820073008537, "decode.acc_seg": 95.1495132446289, "aux.loss_ce": 0.13718917183578014, "aux.acc_seg": 94.64545440673828, "time": 1.1155606508255005, "iter": 99400, "memory": 8703, "step": 99400} +{"lr": 0.0042288811878467844, "data_time": 0.00695037841796875, "loss": 0.39761834144592284, "decode.loss_ce": 0.24857441037893296, "decode.acc_seg": 92.35076904296875, "aux.loss_ce": 0.14904392287135124, "aux.acc_seg": 91.01918029785156, "time": 1.1171596765518188, "iter": 99450, "memory": 8703, "step": 99450} +{"lr": 0.00422581252843954, "data_time": 0.006369853019714355, "loss": 0.43276608288288115, "decode.loss_ce": 0.25610381066799165, "decode.acc_seg": 84.4754409790039, "aux.loss_ce": 0.17666227519512176, "aux.acc_seg": 81.66902160644531, "time": 1.108566689491272, "iter": 99500, "memory": 8705, "step": 99500} +{"lr": 0.004222743615413572, "data_time": 0.00811309814453125, "loss": 0.49835290014743805, "decode.loss_ce": 0.3172808803617954, "decode.acc_seg": 92.78106689453125, "aux.loss_ce": 0.18107202164828778, "aux.acc_seg": 88.5560073852539, "time": 1.1157676458358765, "iter": 99550, "memory": 8703, "step": 99550} +{"lr": 0.004219674448538119, "data_time": 0.006156754493713379, "loss": 0.3660665363073349, "decode.loss_ce": 0.2162681244313717, "decode.acc_seg": 97.89212036132812, "aux.loss_ce": 0.14979841075837613, "aux.acc_seg": 83.61949920654297, "time": 1.1141160011291504, "iter": 99600, "memory": 8704, "step": 99600} +{"lr": 0.004216605027582009, "data_time": 0.007060742378234864, "loss": 0.341045980155468, "decode.loss_ce": 0.21505635902285575, "decode.acc_seg": 95.747802734375, "aux.loss_ce": 0.12598961815238, "aux.acc_seg": 96.2671890258789, "time": 1.1143853902816772, "iter": 99650, "memory": 8703, "step": 99650} +{"lr": 0.004213535352313677, "data_time": 0.006350207328796387, "loss": 0.4746834099292755, "decode.loss_ce": 0.28629750907421114, "decode.acc_seg": 84.89411163330078, "aux.loss_ce": 0.18838589638471603, "aux.acc_seg": 81.05525970458984, "time": 1.1170348644256591, "iter": 99700, "memory": 8704, "step": 99700} +{"lr": 0.004210465422501162, "data_time": 0.007103490829467774, "loss": 0.367242394387722, "decode.loss_ce": 0.2320340484380722, "decode.acc_seg": 96.15103149414062, "aux.loss_ce": 0.1352083534002304, "aux.acc_seg": 92.76548767089844, "time": 1.1197345733642579, "iter": 99750, "memory": 8703, "step": 99750} +{"lr": 0.004207395237912083, "data_time": 0.008210992813110352, "loss": 0.33136423081159594, "decode.loss_ce": 0.21516656279563903, "decode.acc_seg": 87.68341827392578, "aux.loss_ce": 0.11619766391813754, "aux.acc_seg": 84.57024383544922, "time": 1.1193779945373534, "iter": 99800, "memory": 8704, "step": 99800} +{"lr": 0.004204324798313665, "data_time": 0.0054168701171875, "loss": 0.3562895506620407, "decode.loss_ce": 0.21368114054203033, "decode.acc_seg": 91.01593780517578, "aux.loss_ce": 0.1426084131002426, "aux.acc_seg": 78.71887969970703, "time": 1.1129879474639892, "iter": 99850, "memory": 8704, "step": 99850} +{"lr": 0.004201254103472718, "data_time": 0.0066823244094848635, "loss": 0.3967703804373741, "decode.loss_ce": 0.22627024948596955, "decode.acc_seg": 97.06566619873047, "aux.loss_ce": 0.17050013691186905, "aux.acc_seg": 93.7012939453125, "time": 1.1194216728210449, "iter": 99900, "memory": 8704, "step": 99900} +{"lr": 0.004198183153155657, "data_time": 0.0057465553283691405, "loss": 0.3976569652557373, "decode.loss_ce": 0.24905266091227532, "decode.acc_seg": 96.26435089111328, "aux.loss_ce": 0.14860430136322975, "aux.acc_seg": 94.2786865234375, "time": 1.111881399154663, "iter": 99950, "memory": 8703, "step": 99950} +{"lr": 0.0041951119471284725, "data_time": 0.00637667179107666, "loss": 0.35822071582078935, "decode.loss_ce": 0.2106679253280163, "decode.acc_seg": 92.2938003540039, "aux.loss_ce": 0.1475527960807085, "aux.acc_seg": 87.94212341308594, "time": 1.1123775482177733, "iter": 100000, "memory": 8704, "step": 100000} +{"lr": 0.004192040485156758, "data_time": 0.006348276138305664, "loss": 0.4690219298005104, "decode.loss_ce": 0.30101666375994685, "decode.acc_seg": 91.29753112792969, "aux.loss_ce": 0.1680052623152733, "aux.acc_seg": 89.31973266601562, "time": 1.1112659931182862, "iter": 100050, "memory": 8703, "step": 100050} +{"lr": 0.004188968767005687, "data_time": 0.006175899505615234, "loss": 0.32688702791929247, "decode.loss_ce": 0.2086141437292099, "decode.acc_seg": 96.26922607421875, "aux.loss_ce": 0.11827288642525673, "aux.acc_seg": 95.09909057617188, "time": 1.1162328958511352, "iter": 100100, "memory": 8703, "step": 100100} +{"lr": 0.004185896792440035, "data_time": 0.006432485580444336, "loss": 0.47464858889579775, "decode.loss_ce": 0.2808809891343117, "decode.acc_seg": 95.51079559326172, "aux.loss_ce": 0.19376760050654412, "aux.acc_seg": 89.85054779052734, "time": 1.1145997762680053, "iter": 100150, "memory": 8704, "step": 100150} +{"lr": 0.004182824561224152, "data_time": 0.005468297004699707, "loss": 0.3349837675690651, "decode.loss_ce": 0.2035633608698845, "decode.acc_seg": 96.84530639648438, "aux.loss_ce": 0.13142041079699993, "aux.acc_seg": 95.59440612792969, "time": 1.1124056100845336, "iter": 100200, "memory": 8703, "step": 100200} +{"lr": 0.004179752073121981, "data_time": 0.006754684448242188, "loss": 0.35761736780405046, "decode.loss_ce": 0.22768266648054122, "decode.acc_seg": 94.67430114746094, "aux.loss_ce": 0.12993469797074794, "aux.acc_seg": 90.44322967529297, "time": 1.1168113708496095, "iter": 100250, "memory": 8704, "step": 100250} +{"lr": 0.004176679327897043, "data_time": 0.00684061050415039, "loss": 0.29722963869571684, "decode.loss_ce": 0.18922706991434096, "decode.acc_seg": 97.40289306640625, "aux.loss_ce": 0.10800256952643394, "aux.acc_seg": 93.54630279541016, "time": 1.1147494554519652, "iter": 100300, "memory": 8704, "step": 100300} +{"lr": 0.004173606325312447, "data_time": 0.005811214447021484, "loss": 0.38954246789216995, "decode.loss_ce": 0.2291279137134552, "decode.acc_seg": 92.67717742919922, "aux.loss_ce": 0.16041455492377282, "aux.acc_seg": 83.09465789794922, "time": 1.115252947807312, "iter": 100350, "memory": 8704, "step": 100350} +{"lr": 0.00417053306513089, "data_time": 0.006795525550842285, "loss": 0.32475842610001565, "decode.loss_ce": 0.18544656336307525, "decode.acc_seg": 97.69337463378906, "aux.loss_ce": 0.1393118679523468, "aux.acc_seg": 97.47898864746094, "time": 1.1136991024017333, "iter": 100400, "memory": 8704, "step": 100400} +{"lr": 0.004167459547114646, "data_time": 0.00824897289276123, "loss": 0.3329195439815521, "decode.loss_ce": 0.2004349984228611, "decode.acc_seg": 92.21712493896484, "aux.loss_ce": 0.1324845440685749, "aux.acc_seg": 89.82295989990234, "time": 1.1161261320114135, "iter": 100450, "memory": 8704, "step": 100450} +{"lr": 0.0041643857710255685, "data_time": 0.008037710189819336, "loss": 0.1939283274114132, "decode.loss_ce": 0.11878720782697201, "decode.acc_seg": 97.38829040527344, "aux.loss_ce": 0.07514111995697022, "aux.acc_seg": 96.08722686767578, "time": 1.1141239404678345, "iter": 100500, "memory": 8704, "step": 100500} +{"lr": 0.004161311736625093, "data_time": 0.0066689252853393555, "loss": 0.42347481846809387, "decode.loss_ce": 0.2675320543348789, "decode.acc_seg": 96.01313781738281, "aux.loss_ce": 0.15594275817275047, "aux.acc_seg": 95.20726776123047, "time": 1.115732479095459, "iter": 100550, "memory": 8704, "step": 100550} +{"lr": 0.0041582374436742375, "data_time": 0.0072639226913452145, "loss": 0.3687003418803215, "decode.loss_ce": 0.2101326569914818, "decode.acc_seg": 93.3888931274414, "aux.loss_ce": 0.1585676848888397, "aux.acc_seg": 89.80236053466797, "time": 1.1153923273086548, "iter": 100600, "memory": 8704, "step": 100600} +{"lr": 0.004155162891933587, "data_time": 0.006785726547241211, "loss": 0.3997092470526695, "decode.loss_ce": 0.24338013753294946, "decode.acc_seg": 86.31820678710938, "aux.loss_ce": 0.15632910430431365, "aux.acc_seg": 80.71918487548828, "time": 1.1164474010467529, "iter": 100650, "memory": 8704, "step": 100650} +{"lr": 0.004152088081163317, "data_time": 0.006148910522460938, "loss": 0.35840972810983657, "decode.loss_ce": 0.2175977945327759, "decode.acc_seg": 89.28050994873047, "aux.loss_ce": 0.1408119287341833, "aux.acc_seg": 92.95902252197266, "time": 1.1153696537017823, "iter": 100700, "memory": 8704, "step": 100700} +{"lr": 0.004149013011123166, "data_time": 0.005829238891601562, "loss": 0.24912569001317025, "decode.loss_ce": 0.14809067994356157, "decode.acc_seg": 91.75102996826172, "aux.loss_ce": 0.10103500932455063, "aux.acc_seg": 91.12808990478516, "time": 1.1152671575546265, "iter": 100750, "memory": 8704, "step": 100750} +{"lr": 0.00414593768157245, "data_time": 0.006023192405700683, "loss": 0.38002108931541445, "decode.loss_ce": 0.24608297124505044, "decode.acc_seg": 95.44721984863281, "aux.loss_ce": 0.1339381206780672, "aux.acc_seg": 95.05538940429688, "time": 1.1132308483123778, "iter": 100800, "memory": 8703, "step": 100800} +{"lr": 0.004142862092270061, "data_time": 0.00672764778137207, "loss": 0.2803244538605213, "decode.loss_ce": 0.1704404793679714, "decode.acc_seg": 94.60830688476562, "aux.loss_ce": 0.10988397374749184, "aux.acc_seg": 95.27142333984375, "time": 1.116811203956604, "iter": 100850, "memory": 8703, "step": 100850} +{"lr": 0.004139786242974464, "data_time": 0.007173585891723633, "loss": 0.36400195509195327, "decode.loss_ce": 0.22809571623802186, "decode.acc_seg": 94.88226318359375, "aux.loss_ce": 0.13590624295175074, "aux.acc_seg": 94.41763305664062, "time": 1.1165208339691162, "iter": 100900, "memory": 8703, "step": 100900} +{"lr": 0.004136710133443686, "data_time": 0.006668353080749511, "loss": 0.2704639986157417, "decode.loss_ce": 0.1712474450469017, "decode.acc_seg": 90.83467864990234, "aux.loss_ce": 0.09921655915677548, "aux.acc_seg": 87.7905502319336, "time": 1.1158900022506715, "iter": 100950, "memory": 8704, "step": 100950} +{"lr": 0.004133633763435336, "data_time": 0.0059421777725219725, "loss": 0.344790144264698, "decode.loss_ce": 0.2105315610766411, "decode.acc_seg": 90.18833923339844, "aux.loss_ce": 0.1342585813254118, "aux.acc_seg": 86.8247299194336, "time": 1.113078236579895, "iter": 101000, "memory": 8703, "step": 101000} +{"lr": 0.004130557132706582, "data_time": 0.006246232986450195, "loss": 0.31818716078996656, "decode.loss_ce": 0.1974951520562172, "decode.acc_seg": 80.58439636230469, "aux.loss_ce": 0.12069200538098812, "aux.acc_seg": 78.1760482788086, "time": 1.111521339416504, "iter": 101050, "memory": 8703, "step": 101050} +{"lr": 0.004127480241014164, "data_time": 0.005317020416259766, "loss": 0.5215636327862739, "decode.loss_ce": 0.3261803790926933, "decode.acc_seg": 72.28533172607422, "aux.loss_ce": 0.1953832611441612, "aux.acc_seg": 65.56936645507812, "time": 1.109379267692566, "iter": 101100, "memory": 8703, "step": 101100} +{"lr": 0.004124403088114385, "data_time": 0.009413194656372071, "loss": 0.538829705119133, "decode.loss_ce": 0.3545794144272804, "decode.acc_seg": 83.9228286743164, "aux.loss_ce": 0.1842502813786268, "aux.acc_seg": 81.38313293457031, "time": 1.1231937408447266, "iter": 101150, "memory": 8704, "step": 101150} +{"lr": 0.0041213256737631185, "data_time": 0.007960963249206542, "loss": 0.477005460113287, "decode.loss_ce": 0.29038088507950305, "decode.acc_seg": 98.136962890625, "aux.loss_ce": 0.18662457540631294, "aux.acc_seg": 96.66703033447266, "time": 1.1203388452529908, "iter": 101200, "memory": 8704, "step": 101200} +{"lr": 0.004118247997715802, "data_time": 0.006586027145385742, "loss": 0.34786350280046463, "decode.loss_ce": 0.19424210712313653, "decode.acc_seg": 92.66307830810547, "aux.loss_ce": 0.15362139344215392, "aux.acc_seg": 92.00662994384766, "time": 1.1151514530181885, "iter": 101250, "memory": 8704, "step": 101250} +{"lr": 0.004115170059727429, "data_time": 0.0067961692810058595, "loss": 0.3285790905356407, "decode.loss_ce": 0.19666316732764244, "decode.acc_seg": 95.45116424560547, "aux.loss_ce": 0.13191591948270798, "aux.acc_seg": 92.31751251220703, "time": 1.1170373678207397, "iter": 101300, "memory": 8703, "step": 101300} +{"lr": 0.00411209185955256, "data_time": 0.005877208709716797, "loss": 0.3286208018660545, "decode.loss_ce": 0.2023092083632946, "decode.acc_seg": 94.12586975097656, "aux.loss_ce": 0.1263115968555212, "aux.acc_seg": 92.8079605102539, "time": 1.1134429216384887, "iter": 101350, "memory": 8704, "step": 101350} +{"lr": 0.004109013396945318, "data_time": 0.00846099853515625, "loss": 0.39323846250772476, "decode.loss_ce": 0.23787317350506781, "decode.acc_seg": 90.46007537841797, "aux.loss_ce": 0.15536529012024403, "aux.acc_seg": 83.24462127685547, "time": 1.1198633670806886, "iter": 101400, "memory": 8704, "step": 101400} +{"lr": 0.004105934671659377, "data_time": 0.00639495849609375, "loss": 0.4117508165538311, "decode.loss_ce": 0.24074219837784766, "decode.acc_seg": 93.1769027709961, "aux.loss_ce": 0.171008612960577, "aux.acc_seg": 93.37297821044922, "time": 1.1176983833312988, "iter": 101450, "memory": 8703, "step": 101450} +{"lr": 0.00410285568344797, "data_time": 0.00733177661895752, "loss": 0.3576802223920822, "decode.loss_ce": 0.21176141873002052, "decode.acc_seg": 89.76688385009766, "aux.loss_ce": 0.14591881446540356, "aux.acc_seg": 91.05650329589844, "time": 1.1141626358032226, "iter": 101500, "memory": 8704, "step": 101500} +{"lr": 0.004099776432063898, "data_time": 0.007945919036865234, "loss": 0.3869434162974358, "decode.loss_ce": 0.22131244763731955, "decode.acc_seg": 91.37394714355469, "aux.loss_ce": 0.16563097089529039, "aux.acc_seg": 80.11003875732422, "time": 1.1196816921234132, "iter": 101550, "memory": 8703, "step": 101550} +{"lr": 0.004096696917259511, "data_time": 0.007537937164306641, "loss": 0.4574261486530304, "decode.loss_ce": 0.2707022435963154, "decode.acc_seg": 84.74661254882812, "aux.loss_ce": 0.18672389835119246, "aux.acc_seg": 81.52554321289062, "time": 1.1175735473632813, "iter": 101600, "memory": 8703, "step": 101600} +{"lr": 0.004093617138786717, "data_time": 0.0063658952713012695, "loss": 0.42158832103013993, "decode.loss_ce": 0.27433921694755553, "decode.acc_seg": 96.44558715820312, "aux.loss_ce": 0.14724910333752633, "aux.acc_seg": 96.31029510498047, "time": 1.1168343067169189, "iter": 101650, "memory": 8704, "step": 101650} +{"lr": 0.004090537096396972, "data_time": 0.008956146240234376, "loss": 0.22064868360757828, "decode.loss_ce": 0.13286100029945375, "decode.acc_seg": 95.62771606445312, "aux.loss_ce": 0.08778768368065357, "aux.acc_seg": 90.91160583496094, "time": 1.1268211364746095, "iter": 101700, "memory": 8703, "step": 101700} +{"lr": 0.004087456789841288, "data_time": 0.007923054695129394, "loss": 0.39344194531440735, "decode.loss_ce": 0.24625374972820283, "decode.acc_seg": 86.99537658691406, "aux.loss_ce": 0.14718820229172708, "aux.acc_seg": 89.05779266357422, "time": 1.117208766937256, "iter": 101750, "memory": 8704, "step": 101750} +{"lr": 0.004084376218870224, "data_time": 0.007057380676269531, "loss": 0.5758236348628998, "decode.loss_ce": 0.37715017050504684, "decode.acc_seg": 95.95203399658203, "aux.loss_ce": 0.19867345318198204, "aux.acc_seg": 94.96929931640625, "time": 1.1179218769073487, "iter": 101800, "memory": 8703, "step": 101800} +{"lr": 0.004081295383233894, "data_time": 0.00717928409576416, "loss": 0.35021607875823973, "decode.loss_ce": 0.22589680105447768, "decode.acc_seg": 90.84172821044922, "aux.loss_ce": 0.12431927621364594, "aux.acc_seg": 87.38323211669922, "time": 1.115040898323059, "iter": 101850, "memory": 8703, "step": 101850} +{"lr": 0.004078214282681959, "data_time": 0.0072677373886108395, "loss": 0.3855463653802872, "decode.loss_ce": 0.23476428389549256, "decode.acc_seg": 97.88077545166016, "aux.loss_ce": 0.1507820837199688, "aux.acc_seg": 97.24624633789062, "time": 1.1146846294403077, "iter": 101900, "memory": 8703, "step": 101900} +{"lr": 0.004075132916963626, "data_time": 0.0064497232437133786, "loss": 0.47499454766511917, "decode.loss_ce": 0.31232658252120016, "decode.acc_seg": 67.8232192993164, "aux.loss_ce": 0.1626679604873061, "aux.acc_seg": 70.83403015136719, "time": 1.1145736932754517, "iter": 101950, "memory": 8703, "step": 101950} +{"lr": 0.004072051285827648, "data_time": 0.005671262741088867, "loss": 0.3138726592063904, "decode.loss_ce": 0.1850889131426811, "decode.acc_seg": 93.5251235961914, "aux.loss_ce": 0.1287837415933609, "aux.acc_seg": 91.1554946899414, "time": 1.113750123977661, "iter": 102000, "memory": 8703, "step": 102000} +{"lr": 0.004068969389022326, "data_time": 0.006242990493774414, "loss": 0.3252851128578186, "decode.loss_ce": 0.18022397086024283, "decode.acc_seg": 94.85794067382812, "aux.loss_ce": 0.14506114050745963, "aux.acc_seg": 93.76321411132812, "time": 1.1137675523757935, "iter": 102050, "memory": 8705, "step": 102050} +{"lr": 0.004065887226295508, "data_time": 0.008749079704284669, "loss": 0.3423891231417656, "decode.loss_ce": 0.21515880189836026, "decode.acc_seg": 89.60594177246094, "aux.loss_ce": 0.12723032739013435, "aux.acc_seg": 79.08324432373047, "time": 1.1182062864303588, "iter": 102100, "memory": 8703, "step": 102100} +{"lr": 0.004062804797394578, "data_time": 0.007637643814086914, "loss": 0.2701565265655518, "decode.loss_ce": 0.16148727983236313, "decode.acc_seg": 93.12934875488281, "aux.loss_ce": 0.10866924002766609, "aux.acc_seg": 91.43402862548828, "time": 1.1199846744537354, "iter": 102150, "memory": 8704, "step": 102150} +{"lr": 0.0040597221020664655, "data_time": 0.00813281536102295, "loss": 0.3219014719128609, "decode.loss_ce": 0.20216691866517067, "decode.acc_seg": 94.95951080322266, "aux.loss_ce": 0.11973455399274827, "aux.acc_seg": 94.51071166992188, "time": 1.1161850452423097, "iter": 102200, "memory": 8703, "step": 102200} +{"lr": 0.004056639140057636, "data_time": 0.006119465827941895, "loss": 0.32040736377239226, "decode.loss_ce": 0.19720794409513473, "decode.acc_seg": 93.20735931396484, "aux.loss_ce": 0.12319941520690918, "aux.acc_seg": 76.99864196777344, "time": 1.1123209476470948, "iter": 102250, "memory": 8704, "step": 102250} +{"lr": 0.004053555911114104, "data_time": 0.005455732345581055, "loss": 0.303753100335598, "decode.loss_ce": 0.1920488230884075, "decode.acc_seg": 96.53453826904297, "aux.loss_ce": 0.11170427724719048, "aux.acc_seg": 95.64888763427734, "time": 1.1136015892028808, "iter": 102300, "memory": 8703, "step": 102300} +{"lr": 0.0040504724149814045, "data_time": 0.006315493583679199, "loss": 0.3155048623681068, "decode.loss_ce": 0.1807923786342144, "decode.acc_seg": 95.81076049804688, "aux.loss_ce": 0.13471248373389244, "aux.acc_seg": 74.91905975341797, "time": 1.1185444593429565, "iter": 102350, "memory": 8704, "step": 102350} +{"lr": 0.004047388651404622, "data_time": 0.008313250541687012, "loss": 0.4208394929766655, "decode.loss_ce": 0.2420615792274475, "decode.acc_seg": 95.8960189819336, "aux.loss_ce": 0.17877791970968246, "aux.acc_seg": 94.51840209960938, "time": 1.1187613010406494, "iter": 102400, "memory": 8704, "step": 102400} +{"lr": 0.004044304620128378, "data_time": 0.00810399055480957, "loss": 0.26634212732315066, "decode.loss_ce": 0.16299160942435265, "decode.acc_seg": 96.1676254272461, "aux.loss_ce": 0.10335052013397217, "aux.acc_seg": 90.3284683227539, "time": 1.1142301559448242, "iter": 102450, "memory": 8704, "step": 102450} +{"lr": 0.004041220320896821, "data_time": 0.006290030479431152, "loss": 0.3021377235651016, "decode.loss_ce": 0.17851890176534652, "decode.acc_seg": 85.8266830444336, "aux.loss_ce": 0.12361881993710995, "aux.acc_seg": 84.76753234863281, "time": 1.1181348085403442, "iter": 102500, "memory": 8703, "step": 102500} +{"lr": 0.004038135753453629, "data_time": 0.007697391510009766, "loss": 0.2951340302824974, "decode.loss_ce": 0.17538473531603813, "decode.acc_seg": 94.50479888916016, "aux.loss_ce": 0.11974929198622704, "aux.acc_seg": 93.6362533569336, "time": 1.1160209894180297, "iter": 102550, "memory": 8703, "step": 102550} +{"lr": 0.004035050917542024, "data_time": 0.006244397163391114, "loss": 0.5355037689208985, "decode.loss_ce": 0.32382737547159196, "decode.acc_seg": 83.5733413696289, "aux.loss_ce": 0.21167638003826142, "aux.acc_seg": 73.72779846191406, "time": 1.115659809112549, "iter": 102600, "memory": 8703, "step": 102600} +{"lr": 0.004031965812904754, "data_time": 0.008009815216064453, "loss": 0.2873247146606445, "decode.loss_ce": 0.17488604336977004, "decode.acc_seg": 97.73139953613281, "aux.loss_ce": 0.1124386690557003, "aux.acc_seg": 93.40813446044922, "time": 1.118033528327942, "iter": 102650, "memory": 8704, "step": 102650} +{"lr": 0.004028880439284088, "data_time": 0.007081389427185059, "loss": 0.3932011291384697, "decode.loss_ce": 0.2399860218167305, "decode.acc_seg": 89.75887298583984, "aux.loss_ce": 0.15321510136127472, "aux.acc_seg": 88.33592224121094, "time": 1.1116634368896485, "iter": 102700, "memory": 8703, "step": 102700} +{"lr": 0.004025794796421831, "data_time": 0.005147075653076172, "loss": 0.5063440948724747, "decode.loss_ce": 0.31299445405602455, "decode.acc_seg": 76.93119049072266, "aux.loss_ce": 0.19334962964057922, "aux.acc_seg": 65.2868881225586, "time": 1.111006212234497, "iter": 102750, "memory": 8704, "step": 102750} +{"lr": 0.004022708884059308, "data_time": 0.006021523475646972, "loss": 0.366004878282547, "decode.loss_ce": 0.20583480596542358, "decode.acc_seg": 94.50843048095703, "aux.loss_ce": 0.16017007380723952, "aux.acc_seg": 93.39042663574219, "time": 1.1137144088745117, "iter": 102800, "memory": 8703, "step": 102800} +{"lr": 0.004019622701937375, "data_time": 0.006578707695007324, "loss": 0.3085401952266693, "decode.loss_ce": 0.18793155029416084, "decode.acc_seg": 93.56657409667969, "aux.loss_ce": 0.1206086404621601, "aux.acc_seg": 90.36457824707031, "time": 1.1131757974624634, "iter": 102850, "memory": 8703, "step": 102850} +{"lr": 0.004016536249796409, "data_time": 0.008182859420776368, "loss": 0.4079943485558033, "decode.loss_ce": 0.2519049163907766, "decode.acc_seg": 86.76471710205078, "aux.loss_ce": 0.1560894288122654, "aux.acc_seg": 78.12715911865234, "time": 1.1154757738113403, "iter": 102900, "memory": 8703, "step": 102900} +{"lr": 0.0040134495273763116, "data_time": 0.007490730285644532, "loss": 0.41687737554311755, "decode.loss_ce": 0.2627805046737194, "decode.acc_seg": 96.48487854003906, "aux.loss_ce": 0.15409686788916588, "aux.acc_seg": 95.7672119140625, "time": 1.115513062477112, "iter": 102950, "memory": 8704, "step": 102950} +{"lr": 0.004010362534416504, "data_time": 0.008976387977600097, "loss": 0.3007755115628242, "decode.loss_ce": 0.18629704415798187, "decode.acc_seg": 91.73955535888672, "aux.loss_ce": 0.11447846367955208, "aux.acc_seg": 92.73465728759766, "time": 1.1220293998718263, "iter": 103000, "memory": 8703, "step": 103000} +{"lr": 0.004007275270655925, "data_time": 0.008026409149169921, "loss": 0.4973928615450859, "decode.loss_ce": 0.30795533433556554, "decode.acc_seg": 90.14122772216797, "aux.loss_ce": 0.1894375268369913, "aux.acc_seg": 78.86326599121094, "time": 1.120568871498108, "iter": 103050, "memory": 8703, "step": 103050} +{"lr": 0.004004187735833043, "data_time": 0.005988430976867676, "loss": 0.5573817729949951, "decode.loss_ce": 0.34598072022199633, "decode.acc_seg": 93.59213256835938, "aux.loss_ce": 0.2114010527729988, "aux.acc_seg": 91.18009948730469, "time": 1.1114646911621093, "iter": 103100, "memory": 8704, "step": 103100} +{"lr": 0.004001099929685836, "data_time": 0.007738971710205078, "loss": 0.34825648963451383, "decode.loss_ce": 0.21498045325279236, "decode.acc_seg": 91.38985443115234, "aux.loss_ce": 0.13327603712677955, "aux.acc_seg": 86.21092224121094, "time": 1.116019606590271, "iter": 103150, "memory": 8703, "step": 103150} +{"lr": 0.003998011851951784, "data_time": 0.006778693199157715, "loss": 0.24009318202733992, "decode.loss_ce": 0.14415610134601592, "decode.acc_seg": 95.00318908691406, "aux.loss_ce": 0.09593707919120789, "aux.acc_seg": 92.90453338623047, "time": 1.1200273275375365, "iter": 103200, "memory": 8704, "step": 103200} +{"lr": 0.003994923502367903, "data_time": 0.006184267997741699, "loss": 0.2976031363010406, "decode.loss_ce": 0.18788950890302658, "decode.acc_seg": 88.28239440917969, "aux.loss_ce": 0.10971362590789795, "aux.acc_seg": 84.75933074951172, "time": 1.1126232624053956, "iter": 103250, "memory": 8703, "step": 103250} +{"lr": 0.003991834880670712, "data_time": 0.008321523666381836, "loss": 0.3864773869514465, "decode.loss_ce": 0.23545683398842812, "decode.acc_seg": 86.96501922607422, "aux.loss_ce": 0.15102055072784423, "aux.acc_seg": 90.36979675292969, "time": 1.1158562660217286, "iter": 103300, "memory": 8703, "step": 103300} +{"lr": 0.003988745986596246, "data_time": 0.006094431877136231, "loss": 0.3472391992807388, "decode.loss_ce": 0.21204716376960278, "decode.acc_seg": 98.6899642944336, "aux.loss_ce": 0.13519203737378122, "aux.acc_seg": 92.73262023925781, "time": 1.1094317197799684, "iter": 103350, "memory": 8704, "step": 103350} +{"lr": 0.003985656819880052, "data_time": 0.00709986686706543, "loss": 0.47209334969520567, "decode.loss_ce": 0.2645873948931694, "decode.acc_seg": 94.22880554199219, "aux.loss_ce": 0.20750595033168792, "aux.acc_seg": 81.68537902832031, "time": 1.1159157276153564, "iter": 103400, "memory": 8704, "step": 103400} +{"lr": 0.00398256738025718, "data_time": 0.008455252647399903, "loss": 0.357215978205204, "decode.loss_ce": 0.22441967576742172, "decode.acc_seg": 98.36336517333984, "aux.loss_ce": 0.13279630560427905, "aux.acc_seg": 98.06594848632812, "time": 1.1196886062622071, "iter": 103450, "memory": 8703, "step": 103450} +{"lr": 0.003979477667462192, "data_time": 0.005676746368408203, "loss": 0.6594009518623352, "decode.loss_ce": 0.4480878561735153, "decode.acc_seg": 95.37627410888672, "aux.loss_ce": 0.2113130908459425, "aux.acc_seg": 95.28846740722656, "time": 1.1123119115829467, "iter": 103500, "memory": 8703, "step": 103500} +{"lr": 0.003976387681229158, "data_time": 0.0072853326797485355, "loss": 0.3914259195327759, "decode.loss_ce": 0.24175031259655952, "decode.acc_seg": 70.3218994140625, "aux.loss_ce": 0.14967560544610023, "aux.acc_seg": 66.05001068115234, "time": 1.1197286605834962, "iter": 103550, "memory": 8704, "step": 103550} +{"lr": 0.003973297421291649, "data_time": 0.007187485694885254, "loss": 0.4297960788011551, "decode.loss_ce": 0.26724701672792434, "decode.acc_seg": 95.46205139160156, "aux.loss_ce": 0.16254905834794045, "aux.acc_seg": 93.78477478027344, "time": 1.1180310487747191, "iter": 103600, "memory": 8704, "step": 103600} +{"lr": 0.003970206887382742, "data_time": 0.005690217018127441, "loss": 0.2937538206577301, "decode.loss_ce": 0.1805263228714466, "decode.acc_seg": 90.78407287597656, "aux.loss_ce": 0.11322750188410283, "aux.acc_seg": 82.1576919555664, "time": 1.1150684595108031, "iter": 103650, "memory": 8704, "step": 103650} +{"lr": 0.003967116079235022, "data_time": 0.006156206130981445, "loss": 0.47607495039701464, "decode.loss_ce": 0.30145479962229726, "decode.acc_seg": 72.3002700805664, "aux.loss_ce": 0.17462014220654964, "aux.acc_seg": 68.08719635009766, "time": 1.1168648719787597, "iter": 103700, "memory": 8703, "step": 103700} +{"lr": 0.0039640249965805655, "data_time": 0.0061064004898071286, "loss": 0.36119394302368163, "decode.loss_ce": 0.22728074863553047, "decode.acc_seg": 94.91182708740234, "aux.loss_ce": 0.13391319513320923, "aux.acc_seg": 89.44149017333984, "time": 1.1101511716842651, "iter": 103750, "memory": 8704, "step": 103750} +{"lr": 0.003960933639150956, "data_time": 0.0079620361328125, "loss": 0.3514921389520168, "decode.loss_ce": 0.18996118903160095, "decode.acc_seg": 97.75091552734375, "aux.loss_ce": 0.16153094917535782, "aux.acc_seg": 97.26078796386719, "time": 1.1302112579345702, "iter": 103800, "memory": 8703, "step": 103800} +{"lr": 0.0039578420066772755, "data_time": 0.006884217262268066, "loss": 0.29595350176095964, "decode.loss_ce": 0.1714083269238472, "decode.acc_seg": 96.45811462402344, "aux.loss_ce": 0.1245451707392931, "aux.acc_seg": 96.2281494140625, "time": 1.1191099405288696, "iter": 103850, "memory": 8704, "step": 103850} +{"lr": 0.003954750098890102, "data_time": 0.006480264663696289, "loss": 0.3817932203412056, "decode.loss_ce": 0.23677392452955245, "decode.acc_seg": 93.29471588134766, "aux.loss_ce": 0.14501929357647897, "aux.acc_seg": 87.77084350585938, "time": 1.1185830354690551, "iter": 103900, "memory": 8704, "step": 103900} +{"lr": 0.003951657915519502, "data_time": 0.008174371719360352, "loss": 0.3447164922952652, "decode.loss_ce": 0.21784377172589303, "decode.acc_seg": 95.17338562011719, "aux.loss_ce": 0.12687271311879159, "aux.acc_seg": 92.74870300292969, "time": 1.1224001169204711, "iter": 103950, "memory": 8704, "step": 103950} +{"lr": 0.003948565456295049, "data_time": 0.0065908670425415036, "loss": 0.3160710081458092, "decode.loss_ce": 0.1769581452012062, "decode.acc_seg": 90.91461944580078, "aux.loss_ce": 0.13911286741495132, "aux.acc_seg": 89.7602310180664, "time": 1.1166754484176635, "iter": 104000, "memory": 8703, "step": 104000} +{"lr": 0.003945472720945795, "data_time": 0.0065231800079345705, "loss": 0.5669825837016106, "decode.loss_ce": 0.351791263371706, "decode.acc_seg": 87.96966552734375, "aux.loss_ce": 0.21519131809473038, "aux.acc_seg": 76.82691192626953, "time": 1.1134690523147583, "iter": 104050, "memory": 8704, "step": 104050} +{"lr": 0.0039423797092003, "data_time": 0.006720209121704101, "loss": 0.3471736192703247, "decode.loss_ce": 0.21000312343239785, "decode.acc_seg": 88.0767822265625, "aux.loss_ce": 0.1371704950928688, "aux.acc_seg": 86.76395416259766, "time": 1.1207420825958252, "iter": 104100, "memory": 8704, "step": 104100} +{"lr": 0.003939286420786604, "data_time": 0.008631610870361328, "loss": 0.3251552253961563, "decode.loss_ce": 0.20511120557785034, "decode.acc_seg": 95.78751373291016, "aux.loss_ce": 0.12004402056336402, "aux.acc_seg": 95.55511474609375, "time": 1.1174316883087159, "iter": 104150, "memory": 8703, "step": 104150} +{"lr": 0.003936192855432229, "data_time": 0.006049966812133789, "loss": 0.3144587904214859, "decode.loss_ce": 0.18996670767664908, "decode.acc_seg": 95.34466552734375, "aux.loss_ce": 0.1244920875877142, "aux.acc_seg": 93.89488983154297, "time": 1.109650182723999, "iter": 104200, "memory": 8703, "step": 104200} +{"lr": 0.0039330990128642026, "data_time": 0.0051985025405883786, "loss": 0.32422005087137223, "decode.loss_ce": 0.18323069140315057, "decode.acc_seg": 93.68177795410156, "aux.loss_ce": 0.1409893650561571, "aux.acc_seg": 87.63700866699219, "time": 1.1085452795028687, "iter": 104250, "memory": 8703, "step": 104250} +{"lr": 0.003930004892809024, "data_time": 0.008397603034973144, "loss": 0.42529362738132476, "decode.loss_ce": 0.2817244529724121, "decode.acc_seg": 96.9614028930664, "aux.loss_ce": 0.1435691762715578, "aux.acc_seg": 96.49250793457031, "time": 1.1136853694915771, "iter": 104300, "memory": 8703, "step": 104300} +{"lr": 0.00392691049499268, "data_time": 0.007693672180175781, "loss": 0.32374048233032227, "decode.loss_ce": 0.20153025537729263, "decode.acc_seg": 86.53265380859375, "aux.loss_ce": 0.12221022918820382, "aux.acc_seg": 85.43135070800781, "time": 1.1148881435394287, "iter": 104350, "memory": 8704, "step": 104350} +{"lr": 0.0039238158191406405, "data_time": 0.008064723014831543, "loss": 0.40310179591178896, "decode.loss_ce": 0.24600196182727813, "decode.acc_seg": 88.15604400634766, "aux.loss_ce": 0.15709982961416244, "aux.acc_seg": 88.54376983642578, "time": 1.1189653396606445, "iter": 104400, "memory": 8704, "step": 104400} +{"lr": 0.003920720864977862, "data_time": 0.008543062210083007, "loss": 0.3072044163942337, "decode.loss_ce": 0.18417092710733413, "decode.acc_seg": 92.73497009277344, "aux.loss_ce": 0.12303348928689957, "aux.acc_seg": 91.78002166748047, "time": 1.122666025161743, "iter": 104450, "memory": 8704, "step": 104450} +{"lr": 0.0039176256322287755, "data_time": 0.006990361213684082, "loss": 0.3229281082749367, "decode.loss_ce": 0.19429414644837378, "decode.acc_seg": 93.11815643310547, "aux.loss_ce": 0.1286339607089758, "aux.acc_seg": 89.45356750488281, "time": 1.1137754440307617, "iter": 104500, "memory": 8703, "step": 104500} +{"lr": 0.00391453012061729, "data_time": 0.005922985076904297, "loss": 0.27656401693820953, "decode.loss_ce": 0.17712971121072768, "decode.acc_seg": 96.13666534423828, "aux.loss_ce": 0.09943430498242378, "aux.acc_seg": 94.7967529296875, "time": 1.114106798171997, "iter": 104550, "memory": 8703, "step": 104550} +{"lr": 0.003911434329866794, "data_time": 0.006182479858398438, "loss": 0.3762137845158577, "decode.loss_ce": 0.23501126766204833, "decode.acc_seg": 96.82686614990234, "aux.loss_ce": 0.14120251908898354, "aux.acc_seg": 96.39046478271484, "time": 1.1168413162231445, "iter": 104600, "memory": 8704, "step": 104600} +{"lr": 0.003908338259700153, "data_time": 0.007242774963378907, "loss": 0.38914782702922823, "decode.loss_ce": 0.2495909370481968, "decode.acc_seg": 89.58511352539062, "aux.loss_ce": 0.13955688700079918, "aux.acc_seg": 86.55674743652344, "time": 1.1148147106170654, "iter": 104650, "memory": 8703, "step": 104650} +{"lr": 0.003905241909839701, "data_time": 0.007806086540222168, "loss": 0.524063740670681, "decode.loss_ce": 0.3466075904667377, "decode.acc_seg": 79.95357513427734, "aux.loss_ce": 0.17745615169405937, "aux.acc_seg": 86.88970947265625, "time": 1.1228601932525635, "iter": 104700, "memory": 8703, "step": 104700} +{"lr": 0.0039021452800072436, "data_time": 0.007103443145751953, "loss": 0.39330206215381625, "decode.loss_ce": 0.2369084596633911, "decode.acc_seg": 94.17731475830078, "aux.loss_ce": 0.15639360286295415, "aux.acc_seg": 85.12781524658203, "time": 1.1188850402832031, "iter": 104750, "memory": 8704, "step": 104750} +{"lr": 0.003899048369924067, "data_time": 0.007500147819519043, "loss": 0.41138127744197844, "decode.loss_ce": 0.24052364826202394, "decode.acc_seg": 91.41014862060547, "aux.loss_ce": 0.17085762247443198, "aux.acc_seg": 79.40110778808594, "time": 1.115486168861389, "iter": 104800, "memory": 8704, "step": 104800} +{"lr": 0.0038959511793109315, "data_time": 0.0078230619430542, "loss": 0.3555349908769131, "decode.loss_ce": 0.22135173231363298, "decode.acc_seg": 89.29036712646484, "aux.loss_ce": 0.13418326415121556, "aux.acc_seg": 86.49183654785156, "time": 1.1185981035232544, "iter": 104850, "memory": 8704, "step": 104850} +{"lr": 0.003892853707888056, "data_time": 0.007684636116027832, "loss": 0.27577936500310896, "decode.loss_ce": 0.1697893939912319, "decode.acc_seg": 93.1600570678711, "aux.loss_ce": 0.10598997063934804, "aux.acc_seg": 93.65221405029297, "time": 1.1212836027145385, "iter": 104900, "memory": 8704, "step": 104900} +{"lr": 0.003889755955375123, "data_time": 0.008448362350463867, "loss": 0.3136463716626167, "decode.loss_ce": 0.19366926997900008, "decode.acc_seg": 91.61497497558594, "aux.loss_ce": 0.11997710280120373, "aux.acc_seg": 87.49637603759766, "time": 1.1202332019805907, "iter": 104950, "memory": 8704, "step": 104950} +{"lr": 0.0038866579214912856, "data_time": 0.0070572376251220705, "loss": 0.27151711136102674, "decode.loss_ce": 0.17396729737520217, "decode.acc_seg": 95.96175384521484, "aux.loss_ce": 0.0975498154759407, "aux.acc_seg": 92.68851470947266, "time": 1.1195016145706176, "iter": 105000, "memory": 8703, "step": 105000} +{"lr": 0.003883559605955161, "data_time": 0.00754237174987793, "loss": 0.39301407188177107, "decode.loss_ce": 0.22795082479715348, "decode.acc_seg": 96.12820434570312, "aux.loss_ce": 0.1650632545351982, "aux.acc_seg": 91.71886444091797, "time": 1.1158513307571412, "iter": 105050, "memory": 8704, "step": 105050} +{"lr": 0.003880461008484828, "data_time": 0.0078277587890625, "loss": 0.31114270687103274, "decode.loss_ce": 0.18750041574239731, "decode.acc_seg": 90.08426666259766, "aux.loss_ce": 0.12364228963851928, "aux.acc_seg": 89.4532470703125, "time": 1.1147968769073486, "iter": 105100, "memory": 8703, "step": 105100} +{"lr": 0.0038773621287978254, "data_time": 0.006441783905029297, "loss": 0.27277513295412065, "decode.loss_ce": 0.1571313336491585, "decode.acc_seg": 91.76483154296875, "aux.loss_ce": 0.11564380191266536, "aux.acc_seg": 88.88320922851562, "time": 1.116218137741089, "iter": 105150, "memory": 8703, "step": 105150} +{"lr": 0.0038742629666111573, "data_time": 0.007869935035705567, "loss": 0.3901300847530365, "decode.loss_ce": 0.223138078302145, "decode.acc_seg": 90.2762680053711, "aux.loss_ce": 0.1669920027256012, "aux.acc_seg": 87.44873046875, "time": 1.1210466623306274, "iter": 105200, "memory": 8705, "step": 105200} +{"lr": 0.0038711635216412714, "data_time": 0.0069899320602416996, "loss": 0.3680226653814316, "decode.loss_ce": 0.2202553443610668, "decode.acc_seg": 93.41194915771484, "aux.loss_ce": 0.14776731580495833, "aux.acc_seg": 87.55785369873047, "time": 1.115077018737793, "iter": 105250, "memory": 8703, "step": 105250} +{"lr": 0.0038680637936040828, "data_time": 0.005997014045715332, "loss": 0.3514459252357483, "decode.loss_ce": 0.21000170558691025, "decode.acc_seg": 87.96411895751953, "aux.loss_ce": 0.14144421592354775, "aux.acc_seg": 86.85359954833984, "time": 1.113727855682373, "iter": 105300, "memory": 8703, "step": 105300} +{"lr": 0.003864963782214959, "data_time": 0.007338333129882813, "loss": 0.3317715287208557, "decode.loss_ce": 0.20258398726582527, "decode.acc_seg": 91.63551330566406, "aux.loss_ce": 0.12918754406273364, "aux.acc_seg": 78.49254608154297, "time": 1.1166313648223878, "iter": 105350, "memory": 8703, "step": 105350} +{"lr": 0.0038618634871887218, "data_time": 0.006247925758361817, "loss": 0.3173683315515518, "decode.loss_ce": 0.1834462709724903, "decode.acc_seg": 96.01539611816406, "aux.loss_ce": 0.13392206393182277, "aux.acc_seg": 95.5880126953125, "time": 1.1217018842697144, "iter": 105400, "memory": 8704, "step": 105400} +{"lr": 0.0038587629082396436, "data_time": 0.0074061393737792965, "loss": 0.4128385901451111, "decode.loss_ce": 0.24618355855345725, "decode.acc_seg": 95.5148696899414, "aux.loss_ce": 0.1666550360620022, "aux.acc_seg": 93.47374725341797, "time": 1.1152560472488404, "iter": 105450, "memory": 8703, "step": 105450} +{"lr": 0.0038556620450814452, "data_time": 0.006820464134216308, "loss": 0.3074831873178482, "decode.loss_ce": 0.1953635521233082, "decode.acc_seg": 95.40779876708984, "aux.loss_ce": 0.11211963184177876, "aux.acc_seg": 95.24574279785156, "time": 1.1155033111572266, "iter": 105500, "memory": 8704, "step": 105500} +{"lr": 0.0038525608974272945, "data_time": 0.008122396469116212, "loss": 0.37988337129354477, "decode.loss_ce": 0.22434871941804885, "decode.acc_seg": 94.92359161376953, "aux.loss_ce": 0.15553465448319911, "aux.acc_seg": 94.61504364013672, "time": 1.1205581665039062, "iter": 105550, "memory": 8704, "step": 105550} +{"lr": 0.0038494594649898127, "data_time": 0.007742571830749512, "loss": 0.3845257475972176, "decode.loss_ce": 0.23485637828707695, "decode.acc_seg": 95.9539566040039, "aux.loss_ce": 0.14966936856508256, "aux.acc_seg": 94.60075378417969, "time": 1.1146039962768555, "iter": 105600, "memory": 8703, "step": 105600} +{"lr": 0.0038463577474810587, "data_time": 0.008092689514160156, "loss": 0.3376971736550331, "decode.loss_ce": 0.18943783342838288, "decode.acc_seg": 96.45268249511719, "aux.loss_ce": 0.14825934469699859, "aux.acc_seg": 89.23455047607422, "time": 1.120405125617981, "iter": 105650, "memory": 8704, "step": 105650} +{"lr": 0.0038432557446125407, "data_time": 0.008069133758544922, "loss": 0.3298786669969559, "decode.loss_ce": 0.20201620310544968, "decode.acc_seg": 93.70648956298828, "aux.loss_ce": 0.12786246389150618, "aux.acc_seg": 94.5006103515625, "time": 1.118407416343689, "iter": 105700, "memory": 8703, "step": 105700} +{"lr": 0.0038401534560952026, "data_time": 0.007377338409423828, "loss": 0.25729460418224337, "decode.loss_ce": 0.15315660163760186, "decode.acc_seg": 94.52403259277344, "aux.loss_ce": 0.10413800403475762, "aux.acc_seg": 92.02476501464844, "time": 1.1200201749801635, "iter": 105750, "memory": 8703, "step": 105750} +{"lr": 0.003837050881639438, "data_time": 0.00667424201965332, "loss": 0.23059338331222534, "decode.loss_ce": 0.13431176617741586, "decode.acc_seg": 96.3216781616211, "aux.loss_ce": 0.09628161936998367, "aux.acc_seg": 95.18623352050781, "time": 1.1157255172729492, "iter": 105800, "memory": 8704, "step": 105800} +{"lr": 0.0038339480209550725, "data_time": 0.007462882995605468, "loss": 0.30301501601934433, "decode.loss_ce": 0.1678358756005764, "decode.acc_seg": 97.25151062011719, "aux.loss_ce": 0.13517913818359376, "aux.acc_seg": 95.57615661621094, "time": 1.1202645301818848, "iter": 105850, "memory": 8703, "step": 105850} +{"lr": 0.0038308448737513724, "data_time": 0.006108331680297852, "loss": 0.4514725998044014, "decode.loss_ce": 0.27418117970228195, "decode.acc_seg": 94.24236297607422, "aux.loss_ce": 0.17729142494499683, "aux.acc_seg": 93.54161071777344, "time": 1.117037844657898, "iter": 105900, "memory": 8703, "step": 105900} +{"lr": 0.003827741439737036, "data_time": 0.007883977890014649, "loss": 0.41908310577273367, "decode.loss_ce": 0.27420415803790094, "decode.acc_seg": 95.4544677734375, "aux.loss_ce": 0.14487894363701342, "aux.acc_seg": 93.90550994873047, "time": 1.118950080871582, "iter": 105950, "memory": 8703, "step": 105950} +{"lr": 0.0038246377186202, "data_time": 0.005637311935424804, "loss": 0.3715357452630997, "decode.loss_ce": 0.24194972291588784, "decode.acc_seg": 89.53253173828125, "aux.loss_ce": 0.1295860182493925, "aux.acc_seg": 87.64202880859375, "time": 1.1121134042739869, "iter": 106000, "memory": 8704, "step": 106000} +{"lr": 0.0038215337101084297, "data_time": 0.0074097633361816405, "loss": 0.3370248794555664, "decode.loss_ce": 0.18893771171569823, "decode.acc_seg": 93.69207763671875, "aux.loss_ce": 0.14808716252446175, "aux.acc_seg": 93.7330551147461, "time": 1.1150721549987792, "iter": 106050, "memory": 8703, "step": 106050} +{"lr": 0.003818429413908724, "data_time": 0.006397461891174317, "loss": 0.39350420236587524, "decode.loss_ce": 0.25523706078529357, "decode.acc_seg": 94.42829132080078, "aux.loss_ce": 0.1382671467959881, "aux.acc_seg": 94.22466278076172, "time": 1.1146235942840577, "iter": 106100, "memory": 8704, "step": 106100} +{"lr": 0.0038153248297275112, "data_time": 0.007904839515686036, "loss": 0.2648152604699135, "decode.loss_ce": 0.16212913319468497, "decode.acc_seg": 93.50318908691406, "aux.loss_ce": 0.10268612392246723, "aux.acc_seg": 86.79993438720703, "time": 1.119382381439209, "iter": 106150, "memory": 8704, "step": 106150} +{"lr": 0.0038122199572706477, "data_time": 0.0066699981689453125, "loss": 0.3392082780599594, "decode.loss_ce": 0.21167241558432578, "decode.acc_seg": 87.23716735839844, "aux.loss_ce": 0.12753585688769817, "aux.acc_seg": 86.13834381103516, "time": 1.114358115196228, "iter": 106200, "memory": 8703, "step": 106200} +{"lr": 0.0038091147962434095, "data_time": 0.007399320602416992, "loss": 0.2594580426812172, "decode.loss_ce": 0.15395040214061737, "decode.acc_seg": 93.90747833251953, "aux.loss_ce": 0.10550764165818691, "aux.acc_seg": 89.73116302490234, "time": 1.1176959991455078, "iter": 106250, "memory": 8704, "step": 106250} +{"lr": 0.0038060093463505055, "data_time": 0.006803488731384278, "loss": 0.32999366372823713, "decode.loss_ce": 0.19854200407862663, "decode.acc_seg": 96.77855682373047, "aux.loss_ce": 0.13145165964961053, "aux.acc_seg": 95.13774108886719, "time": 1.121451735496521, "iter": 106300, "memory": 8704, "step": 106300} +{"lr": 0.003802903607296059, "data_time": 0.008310747146606446, "loss": 0.3669097274541855, "decode.loss_ce": 0.2304091975092888, "decode.acc_seg": 86.02816009521484, "aux.loss_ce": 0.13650052919983863, "aux.acc_seg": 81.94967651367188, "time": 1.1184571266174317, "iter": 106350, "memory": 8703, "step": 106350} +{"lr": 0.0037997975787836197, "data_time": 0.006543016433715821, "loss": 0.43676006644964216, "decode.loss_ce": 0.24283750504255294, "decode.acc_seg": 93.85643005371094, "aux.loss_ce": 0.19392255395650865, "aux.acc_seg": 85.10932922363281, "time": 1.115481472015381, "iter": 106400, "memory": 8703, "step": 106400} +{"lr": 0.0037966912605161586, "data_time": 0.007079505920410156, "loss": 0.33632488548755646, "decode.loss_ce": 0.2135894477367401, "decode.acc_seg": 92.16995239257812, "aux.loss_ce": 0.12273544035851955, "aux.acc_seg": 92.1611099243164, "time": 1.1183446168899536, "iter": 106450, "memory": 8704, "step": 106450} +{"lr": 0.0037935846521960567, "data_time": 0.0065316915512084964, "loss": 0.3177868276834488, "decode.loss_ce": 0.18851650282740592, "decode.acc_seg": 88.98664855957031, "aux.loss_ce": 0.12927032262086868, "aux.acc_seg": 88.56283569335938, "time": 1.1134374618530274, "iter": 106500, "memory": 8704, "step": 106500} +{"lr": 0.0037904777535251164, "data_time": 0.0063905477523803714, "loss": 0.29424453526735306, "decode.loss_ce": 0.1883655570447445, "decode.acc_seg": 96.5301513671875, "aux.loss_ce": 0.10587897635996342, "aux.acc_seg": 96.11968994140625, "time": 1.1146071434020997, "iter": 106550, "memory": 8704, "step": 106550} +{"lr": 0.0037873705642045533, "data_time": 0.006562995910644531, "loss": 0.33630990535020827, "decode.loss_ce": 0.21336397379636765, "decode.acc_seg": 96.33222961425781, "aux.loss_ce": 0.12294593341648578, "aux.acc_seg": 92.81246948242188, "time": 1.1106388568878174, "iter": 106600, "memory": 8704, "step": 106600} +{"lr": 0.003784263083934996, "data_time": 0.006293272972106934, "loss": 0.4263027340173721, "decode.loss_ce": 0.2636504337191582, "decode.acc_seg": 95.6717758178711, "aux.loss_ce": 0.16265230551362037, "aux.acc_seg": 93.58094024658203, "time": 1.1166699886322022, "iter": 106650, "memory": 8704, "step": 106650} +{"lr": 0.0037811553124164803, "data_time": 0.0060837030410766605, "loss": 0.38246484398841857, "decode.loss_ce": 0.23232470452785492, "decode.acc_seg": 96.19734954833984, "aux.loss_ce": 0.15014013275504112, "aux.acc_seg": 94.43302154541016, "time": 1.1158299922943116, "iter": 106700, "memory": 8703, "step": 106700} +{"lr": 0.0037780472493484586, "data_time": 0.006849360466003418, "loss": 0.44227845072746275, "decode.loss_ce": 0.2687742754817009, "decode.acc_seg": 94.32461547851562, "aux.loss_ce": 0.17350417785346509, "aux.acc_seg": 93.82508087158203, "time": 1.1142117023468017, "iter": 106750, "memory": 8703, "step": 106750} +{"lr": 0.0037749388944297796, "data_time": 0.0076932191848754885, "loss": 0.3675517961382866, "decode.loss_ce": 0.2231004059314728, "decode.acc_seg": 86.76319122314453, "aux.loss_ce": 0.1444513875991106, "aux.acc_seg": 84.22552490234375, "time": 1.1192646265029906, "iter": 106800, "memory": 8703, "step": 106800} +{"lr": 0.003771830247358708, "data_time": 0.006675362586975098, "loss": 0.4107037574052811, "decode.loss_ce": 0.24990336000919341, "decode.acc_seg": 95.68233489990234, "aux.loss_ce": 0.16080039367079735, "aux.acc_seg": 88.74594116210938, "time": 1.1171239376068116, "iter": 106850, "memory": 8703, "step": 106850} +{"lr": 0.0037687213078329046, "data_time": 0.007580327987670899, "loss": 0.35195862501859665, "decode.loss_ce": 0.20298455506563187, "decode.acc_seg": 94.52803802490234, "aux.loss_ce": 0.14897406809031963, "aux.acc_seg": 92.15341186523438, "time": 1.1193169355392456, "iter": 106900, "memory": 8703, "step": 106900} +{"lr": 0.0037656120755494384, "data_time": 0.006693553924560547, "loss": 0.3416281759738922, "decode.loss_ce": 0.20262259617447853, "decode.acc_seg": 93.50337219238281, "aux.loss_ce": 0.1390055797994137, "aux.acc_seg": 89.66053009033203, "time": 1.1158064603805542, "iter": 106950, "memory": 8703, "step": 106950} +{"lr": 0.0037625025502047737, "data_time": 0.006782364845275879, "loss": 0.2931611701846123, "decode.loss_ce": 0.17891754508018493, "decode.acc_seg": 94.94087982177734, "aux.loss_ce": 0.11424361802637577, "aux.acc_seg": 95.14089965820312, "time": 1.1142985105514527, "iter": 107000, "memory": 8704, "step": 107000} +{"lr": 0.0037593927314947787, "data_time": 0.006371641159057617, "loss": 0.24251904115080833, "decode.loss_ce": 0.1474560022354126, "decode.acc_seg": 96.62765502929688, "aux.loss_ce": 0.09506303519010544, "aux.acc_seg": 95.83108520507812, "time": 1.1182390213012696, "iter": 107050, "memory": 8704, "step": 107050} +{"lr": 0.0037562826191147166, "data_time": 0.00786125659942627, "loss": 0.39231585562229154, "decode.loss_ce": 0.24856043830513955, "decode.acc_seg": 97.02294158935547, "aux.loss_ce": 0.14375541508197784, "aux.acc_seg": 93.34436798095703, "time": 1.1201911449432373, "iter": 107100, "memory": 8704, "step": 107100} +{"lr": 0.003753172212759244, "data_time": 0.006486129760742187, "loss": 0.3619599223136902, "decode.loss_ce": 0.21580202057957648, "decode.acc_seg": 89.3077621459961, "aux.loss_ce": 0.14615790024399758, "aux.acc_seg": 87.63225555419922, "time": 1.1203423261642456, "iter": 107150, "memory": 8705, "step": 107150} +{"lr": 0.0037500615121224107, "data_time": 0.006600475311279297, "loss": 0.285945200920105, "decode.loss_ce": 0.1861027106642723, "decode.acc_seg": 94.98335266113281, "aux.loss_ce": 0.0998424869030714, "aux.acc_seg": 94.0588607788086, "time": 1.1168464422225952, "iter": 107200, "memory": 8704, "step": 107200} +{"lr": 0.0037469505168976577, "data_time": 0.005924797058105469, "loss": 0.2684264570474625, "decode.loss_ce": 0.16610897406935693, "decode.acc_seg": 96.71986389160156, "aux.loss_ce": 0.10231748633086682, "aux.acc_seg": 95.44658660888672, "time": 1.1135175943374633, "iter": 107250, "memory": 8704, "step": 107250} +{"lr": 0.0037438392267778184, "data_time": 0.005978202819824219, "loss": 0.3744625307619572, "decode.loss_ce": 0.22065413519740104, "decode.acc_seg": 88.29689025878906, "aux.loss_ce": 0.15380840562283993, "aux.acc_seg": 74.97583770751953, "time": 1.1127108573913573, "iter": 107300, "memory": 8704, "step": 107300} +{"lr": 0.0037407276414551135, "data_time": 0.007682204246520996, "loss": 0.4266158640384674, "decode.loss_ce": 0.27461324632167816, "decode.acc_seg": 94.1422119140625, "aux.loss_ce": 0.15200260505080224, "aux.acc_seg": 88.75261688232422, "time": 1.1228142738342286, "iter": 107350, "memory": 8703, "step": 107350} +{"lr": 0.0037376157606211465, "data_time": 0.0050553083419799805, "loss": 0.31072653979063036, "decode.loss_ce": 0.19031439870595931, "decode.acc_seg": 96.2667465209961, "aux.loss_ce": 0.12041214182972908, "aux.acc_seg": 95.81171417236328, "time": 1.109562587738037, "iter": 107400, "memory": 8704, "step": 107400} +{"lr": 0.0037345035839669144, "data_time": 0.007029390335083008, "loss": 0.3653618395328522, "decode.loss_ce": 0.2259247839450836, "decode.acc_seg": 88.42823791503906, "aux.loss_ce": 0.1394370596855879, "aux.acc_seg": 77.69120025634766, "time": 1.1162369966506958, "iter": 107450, "memory": 8703, "step": 107450} +{"lr": 0.003731391111182783, "data_time": 0.006646251678466797, "loss": 0.4081726536154747, "decode.loss_ce": 0.23216212391853333, "decode.acc_seg": 87.60865020751953, "aux.loss_ce": 0.1760105274617672, "aux.acc_seg": 65.4775619506836, "time": 1.1143874645233154, "iter": 107500, "memory": 8704, "step": 107500} +{"lr": 0.0037282783419585117, "data_time": 0.005375814437866211, "loss": 0.37802117615938186, "decode.loss_ce": 0.2200292244553566, "decode.acc_seg": 91.75726318359375, "aux.loss_ce": 0.15799195170402527, "aux.acc_seg": 90.29667663574219, "time": 1.117819905281067, "iter": 107550, "memory": 8704, "step": 107550} +{"lr": 0.0037251652759832297, "data_time": 0.005935192108154297, "loss": 0.32067310661077497, "decode.loss_ce": 0.18470006957650184, "decode.acc_seg": 95.36234283447266, "aux.loss_ce": 0.135973035171628, "aux.acc_seg": 89.72504425048828, "time": 1.1185343742370606, "iter": 107600, "memory": 8704, "step": 107600} +{"lr": 0.003722051912945446, "data_time": 0.006270051002502441, "loss": 0.35655284076929095, "decode.loss_ce": 0.19813812300562858, "decode.acc_seg": 95.49738311767578, "aux.loss_ce": 0.158414713665843, "aux.acc_seg": 89.77527618408203, "time": 1.116094207763672, "iter": 107650, "memory": 8703, "step": 107650} +{"lr": 0.0037189382525330476, "data_time": 0.004743242263793945, "loss": 0.25068837553262713, "decode.loss_ce": 0.1456304021179676, "decode.acc_seg": 95.14643096923828, "aux.loss_ce": 0.10505797192454339, "aux.acc_seg": 92.46285247802734, "time": 1.1139268398284912, "iter": 107700, "memory": 8703, "step": 107700} +{"lr": 0.0037158242944332924, "data_time": 0.00639190673828125, "loss": 0.32823110520839693, "decode.loss_ce": 0.20037178546190262, "decode.acc_seg": 94.30345916748047, "aux.loss_ce": 0.12785931900143624, "aux.acc_seg": 94.99591827392578, "time": 1.1144904851913453, "iter": 107750, "memory": 8704, "step": 107750} +{"lr": 0.0037127100383328106, "data_time": 0.006180238723754883, "loss": 0.32557711750268936, "decode.loss_ce": 0.19948735460639, "decode.acc_seg": 91.0528793334961, "aux.loss_ce": 0.12608976811170577, "aux.acc_seg": 90.43247985839844, "time": 1.1166913509368896, "iter": 107800, "memory": 8703, "step": 107800} +{"lr": 0.0037095954839176026, "data_time": 0.007532691955566407, "loss": 0.3765595734119415, "decode.loss_ce": 0.2319912791252136, "decode.acc_seg": 95.08940124511719, "aux.loss_ce": 0.14456829093396664, "aux.acc_seg": 92.54366302490234, "time": 1.1191636323928833, "iter": 107850, "memory": 8703, "step": 107850} +{"lr": 0.0037064806308730338, "data_time": 0.0062228918075561525, "loss": 0.38599576205015185, "decode.loss_ce": 0.22789939865469933, "decode.acc_seg": 86.4402084350586, "aux.loss_ce": 0.15809636749327183, "aux.acc_seg": 82.96196746826172, "time": 1.1162501573562622, "iter": 107900, "memory": 8703, "step": 107900} +{"lr": 0.0037033654788838338, "data_time": 0.007369089126586914, "loss": 0.31496538817882536, "decode.loss_ce": 0.18650365769863128, "decode.acc_seg": 95.58792114257812, "aux.loss_ce": 0.12846172749996185, "aux.acc_seg": 93.21441650390625, "time": 1.1167536497116088, "iter": 107950, "memory": 8704, "step": 107950} +{"lr": 0.003700250027634108, "data_time": 0.00867617130279541, "loss": 0.3738819807767868, "decode.loss_ce": 0.22204130962491037, "decode.acc_seg": 92.05955505371094, "aux.loss_ce": 0.15184066705405713, "aux.acc_seg": 87.84024047851562, "time": 1.121931004524231, "iter": 108000, "memory": 8703, "step": 108000} +{"lr": 0.003697134276807308, "data_time": 0.00673823356628418, "loss": 0.3141275644302368, "decode.loss_ce": 0.17772984653711318, "decode.acc_seg": 96.60237121582031, "aux.loss_ce": 0.13639771267771722, "aux.acc_seg": 95.87872314453125, "time": 1.1174654722213746, "iter": 108050, "memory": 8704, "step": 108050} +{"lr": 0.003694018226086255, "data_time": 0.007546424865722656, "loss": 0.2608938291668892, "decode.loss_ce": 0.15655337497591973, "decode.acc_seg": 96.36537170410156, "aux.loss_ce": 0.10434045009315014, "aux.acc_seg": 94.46416473388672, "time": 1.1345510244369508, "iter": 108100, "memory": 8703, "step": 108100} +{"lr": 0.0036909018751531335, "data_time": 0.007840538024902343, "loss": 0.40360521227121354, "decode.loss_ce": 0.25931925103068354, "decode.acc_seg": 96.52874755859375, "aux.loss_ce": 0.14428596422076226, "aux.acc_seg": 96.96871185302734, "time": 1.1228286743164062, "iter": 108150, "memory": 8703, "step": 108150} +{"lr": 0.00368778522368947, "data_time": 0.009239459037780761, "loss": 0.525062607228756, "decode.loss_ce": 0.3309710405766964, "decode.acc_seg": 96.33464813232422, "aux.loss_ce": 0.19409156925976276, "aux.acc_seg": 96.06157684326172, "time": 1.1275768756866456, "iter": 108200, "memory": 8704, "step": 108200} +{"lr": 0.003684668271376152, "data_time": 0.009117531776428222, "loss": 0.4239190101623535, "decode.loss_ce": 0.2553203411400318, "decode.acc_seg": 91.42716217041016, "aux.loss_ce": 0.16859867051243782, "aux.acc_seg": 89.96874237060547, "time": 1.1301602125167847, "iter": 108250, "memory": 8704, "step": 108250} +{"lr": 0.0036815510178934262, "data_time": 0.008222484588623047, "loss": 0.3230749726295471, "decode.loss_ce": 0.19521351307630538, "decode.acc_seg": 88.45882415771484, "aux.loss_ce": 0.127861462906003, "aux.acc_seg": 77.22517395019531, "time": 1.127877950668335, "iter": 108300, "memory": 8703, "step": 108300} +{"lr": 0.0036784334629208814, "data_time": 0.007295656204223633, "loss": 0.3066101521253586, "decode.loss_ce": 0.20079958215355873, "decode.acc_seg": 89.55065155029297, "aux.loss_ce": 0.10581056624650956, "aux.acc_seg": 89.6952896118164, "time": 1.115927529335022, "iter": 108350, "memory": 8704, "step": 108350} +{"lr": 0.003675315606137452, "data_time": 0.007787156105041504, "loss": 0.37739368975162507, "decode.loss_ce": 0.23519105836749077, "decode.acc_seg": 93.01884460449219, "aux.loss_ce": 0.14220263101160527, "aux.acc_seg": 90.56122589111328, "time": 1.121841549873352, "iter": 108400, "memory": 8704, "step": 108400} +{"lr": 0.0036721974472214308, "data_time": 0.008025693893432616, "loss": 0.3599137425422668, "decode.loss_ce": 0.19873957633972167, "decode.acc_seg": 91.1291732788086, "aux.loss_ce": 0.1611741714179516, "aux.acc_seg": 83.44612121582031, "time": 1.1179813146591187, "iter": 108450, "memory": 8704, "step": 108450} +{"lr": 0.00366907898585045, "data_time": 0.006070637702941894, "loss": 0.4531935632228851, "decode.loss_ce": 0.25733968392014506, "decode.acc_seg": 74.95193481445312, "aux.loss_ce": 0.1958538766950369, "aux.acc_seg": 65.20658874511719, "time": 1.1154812574386597, "iter": 108500, "memory": 8704, "step": 108500} +{"lr": 0.003665960221701482, "data_time": 0.006786179542541504, "loss": 0.3039266347885132, "decode.loss_ce": 0.19082166850566865, "decode.acc_seg": 93.48423767089844, "aux.loss_ce": 0.11310496851801873, "aux.acc_seg": 91.14385986328125, "time": 1.1131833791732788, "iter": 108550, "memory": 8703, "step": 108550} +{"lr": 0.0036628411544508397, "data_time": 0.006849122047424316, "loss": 0.3187391936779022, "decode.loss_ce": 0.1971002511680126, "decode.acc_seg": 93.18516540527344, "aux.loss_ce": 0.12163894325494766, "aux.acc_seg": 85.60587310791016, "time": 1.1188770294189454, "iter": 108600, "memory": 8703, "step": 108600} +{"lr": 0.003659721783774178, "data_time": 0.0057654142379760746, "loss": 0.4524687573313713, "decode.loss_ce": 0.24820172488689424, "decode.acc_seg": 82.90252685546875, "aux.loss_ce": 0.20426703616976738, "aux.acc_seg": 81.6214828491211, "time": 1.1142494440078736, "iter": 108650, "memory": 8704, "step": 108650} +{"lr": 0.003656602109346486, "data_time": 0.006320571899414063, "loss": 0.2948781281709671, "decode.loss_ce": 0.17644890174269676, "decode.acc_seg": 89.1556396484375, "aux.loss_ce": 0.11842922829091548, "aux.acc_seg": 75.26448059082031, "time": 1.112960982322693, "iter": 108700, "memory": 8703, "step": 108700} +{"lr": 0.003653482130842091, "data_time": 0.006649661064147949, "loss": 0.3724033921957016, "decode.loss_ce": 0.19579140543937684, "decode.acc_seg": 97.5797348022461, "aux.loss_ce": 0.17661198675632478, "aux.acc_seg": 94.59407043457031, "time": 1.1132303953170777, "iter": 108750, "memory": 8704, "step": 108750} +{"lr": 0.0036503618479346504, "data_time": 0.007175254821777344, "loss": 0.36957581639289855, "decode.loss_ce": 0.210653106123209, "decode.acc_seg": 93.41252136230469, "aux.loss_ce": 0.15892270840704442, "aux.acc_seg": 89.12168884277344, "time": 1.1672815322875976, "iter": 108800, "memory": 8704, "step": 108800} +{"lr": 0.003647241260297152, "data_time": 0.008265519142150879, "loss": 0.29087777361273764, "decode.loss_ce": 0.1777846846729517, "decode.acc_seg": 94.55013275146484, "aux.loss_ce": 0.11309309564530849, "aux.acc_seg": 93.65946197509766, "time": 2.0031498670578003, "iter": 108850, "memory": 8703, "step": 108850} +{"lr": 0.0036441203676019166, "data_time": 0.009441018104553223, "loss": 0.32377963662147524, "decode.loss_ce": 0.20196211487054824, "decode.acc_seg": 95.74044036865234, "aux.loss_ce": 0.121817522123456, "aux.acc_seg": 93.70816040039062, "time": 1.4153357982635497, "iter": 108900, "memory": 8704, "step": 108900} +{"lr": 0.00364099916952058, "data_time": 0.00788099765777588, "loss": 0.336821074783802, "decode.loss_ce": 0.19624834433197974, "decode.acc_seg": 90.22610473632812, "aux.loss_ce": 0.14057273417711258, "aux.acc_seg": 89.50131225585938, "time": 1.1181806802749634, "iter": 108950, "memory": 8704, "step": 108950} +{"lr": 0.0036378776657241194, "data_time": 0.008256912231445312, "loss": 0.5454279385507107, "decode.loss_ce": 0.33726725950837133, "decode.acc_seg": 95.63420104980469, "aux.loss_ce": 0.20816067978739738, "aux.acc_seg": 92.00407409667969, "time": 1.1245163917541503, "iter": 109000, "memory": 8703, "step": 109000} +{"lr": 0.003634755855882821, "data_time": 0.006706786155700683, "loss": 0.3440247356891632, "decode.loss_ce": 0.22127389162778854, "decode.acc_seg": 89.62841033935547, "aux.loss_ce": 0.12275084368884563, "aux.acc_seg": 85.75165557861328, "time": 1.115401816368103, "iter": 109050, "memory": 8704, "step": 109050} +{"lr": 0.0036316337396662935, "data_time": 0.006124186515808106, "loss": 0.25291213393211365, "decode.loss_ce": 0.1499326579272747, "decode.acc_seg": 96.24557495117188, "aux.loss_ce": 0.10297947339713573, "aux.acc_seg": 94.62776184082031, "time": 1.1091156959533692, "iter": 109100, "memory": 8704, "step": 109100} +{"lr": 0.003628511316743471, "data_time": 0.007195138931274414, "loss": 0.3139942780137062, "decode.loss_ce": 0.19739139527082444, "decode.acc_seg": 91.0926284790039, "aux.loss_ce": 0.11660287864506244, "aux.acc_seg": 87.73922729492188, "time": 1.1164239406585694, "iter": 109150, "memory": 8703, "step": 109150} +{"lr": 0.003625388586782598, "data_time": 0.007860898971557617, "loss": 0.35428798347711565, "decode.loss_ce": 0.2070125497877598, "decode.acc_seg": 93.11386108398438, "aux.loss_ce": 0.14727543480694294, "aux.acc_seg": 85.92892456054688, "time": 1.1181941032409668, "iter": 109200, "memory": 8703, "step": 109200} +{"lr": 0.0036222655494512336, "data_time": 0.007525014877319336, "loss": 0.40612844228744505, "decode.loss_ce": 0.2569022297859192, "decode.acc_seg": 69.97330474853516, "aux.loss_ce": 0.14922621101140976, "aux.acc_seg": 70.20040893554688, "time": 1.1168484449386598, "iter": 109250, "memory": 8705, "step": 109250} +{"lr": 0.003619142204416255, "data_time": 0.005946469306945801, "loss": 0.3306542694568634, "decode.loss_ce": 0.1928050734102726, "decode.acc_seg": 92.16815948486328, "aux.loss_ce": 0.13784920126199723, "aux.acc_seg": 91.92167663574219, "time": 1.115414023399353, "iter": 109300, "memory": 8704, "step": 109300} +{"lr": 0.00361601855134384, "data_time": 0.007324862480163574, "loss": 0.5528331324458122, "decode.loss_ce": 0.36167377457022665, "decode.acc_seg": 88.54853057861328, "aux.loss_ce": 0.19115937501192093, "aux.acc_seg": 81.88387298583984, "time": 1.1162598371505736, "iter": 109350, "memory": 8704, "step": 109350} +{"lr": 0.003612894589899482, "data_time": 0.007803916931152344, "loss": 0.388726307451725, "decode.loss_ce": 0.23731375336647034, "decode.acc_seg": 93.02177429199219, "aux.loss_ce": 0.15141255110502244, "aux.acc_seg": 89.84451293945312, "time": 1.1163832426071167, "iter": 109400, "memory": 8704, "step": 109400} +{"lr": 0.003609770319747977, "data_time": 0.006754279136657715, "loss": 0.25435257852077486, "decode.loss_ce": 0.14456134736537934, "decode.acc_seg": 95.07878112792969, "aux.loss_ce": 0.10979123376309871, "aux.acc_seg": 89.25285339355469, "time": 1.1151196002960204, "iter": 109450, "memory": 8704, "step": 109450} +{"lr": 0.003606645740553425, "data_time": 0.006114983558654785, "loss": 0.5000230818986893, "decode.loss_ce": 0.3246787883341312, "decode.acc_seg": 96.87303161621094, "aux.loss_ce": 0.1753442957997322, "aux.acc_seg": 94.75338745117188, "time": 1.1131374835968018, "iter": 109500, "memory": 8704, "step": 109500} +{"lr": 0.003603520851979227, "data_time": 0.007189178466796875, "loss": 0.5579139232635498, "decode.loss_ce": 0.34207668602466584, "decode.acc_seg": 83.01626586914062, "aux.loss_ce": 0.21583723276853561, "aux.acc_seg": 79.91205596923828, "time": 1.1206535816192627, "iter": 109550, "memory": 8704, "step": 109550} +{"lr": 0.003600395653688086, "data_time": 0.006080889701843261, "loss": 0.3375404477119446, "decode.loss_ce": 0.2022123947739601, "decode.acc_seg": 90.88678741455078, "aux.loss_ce": 0.1353280533105135, "aux.acc_seg": 86.64708709716797, "time": 1.1200236320495605, "iter": 109600, "memory": 8704, "step": 109600} +{"lr": 0.0035972701453420002, "data_time": 0.006610441207885742, "loss": 0.32922014147043227, "decode.loss_ce": 0.202516857534647, "decode.acc_seg": 93.10327911376953, "aux.loss_ce": 0.12670328393578528, "aux.acc_seg": 91.81333923339844, "time": 1.1195823669433593, "iter": 109650, "memory": 8704, "step": 109650} +{"lr": 0.003594144326602263, "data_time": 0.006952762603759766, "loss": 0.35579912513494494, "decode.loss_ce": 0.22065138965845107, "decode.acc_seg": 92.6828384399414, "aux.loss_ce": 0.13514772951602935, "aux.acc_seg": 88.98563385009766, "time": 1.1158666372299195, "iter": 109700, "memory": 8703, "step": 109700} +{"lr": 0.003591018197129457, "data_time": 0.005953049659729004, "loss": 0.3606861785054207, "decode.loss_ce": 0.21778747141361238, "decode.acc_seg": 88.66741943359375, "aux.loss_ce": 0.14289871007204055, "aux.acc_seg": 86.58477020263672, "time": 1.1140344142913818, "iter": 109750, "memory": 8703, "step": 109750} +{"lr": 0.003587891756583463, "data_time": 0.0062744379043579105, "loss": 0.4520612969994545, "decode.loss_ce": 0.27810285091400144, "decode.acc_seg": 74.4917984008789, "aux.loss_ce": 0.1739584557712078, "aux.acc_seg": 73.98150634765625, "time": 1.1182272911071778, "iter": 109800, "memory": 8703, "step": 109800} +{"lr": 0.0035847650046234446, "data_time": 0.006192970275878906, "loss": 0.34814425855875014, "decode.loss_ce": 0.22186510637402534, "decode.acc_seg": 95.75233459472656, "aux.loss_ce": 0.12627914920449257, "aux.acc_seg": 94.35818481445312, "time": 1.1126096487045287, "iter": 109850, "memory": 8703, "step": 109850} +{"lr": 0.0035816379409078568, "data_time": 0.006251835823059082, "loss": 0.3989704817533493, "decode.loss_ce": 0.25905442535877227, "decode.acc_seg": 92.36351776123047, "aux.loss_ce": 0.13991605527698994, "aux.acc_seg": 88.80111694335938, "time": 1.1156657934188843, "iter": 109900, "memory": 8703, "step": 109900} +{"lr": 0.003578510565094435, "data_time": 0.007323455810546875, "loss": 0.4697712495923042, "decode.loss_ce": 0.29357118979096414, "decode.acc_seg": 95.77751159667969, "aux.loss_ce": 0.17620006054639817, "aux.acc_seg": 94.74925994873047, "time": 1.1219554185867309, "iter": 109950, "memory": 8703, "step": 109950} +{"lr": 0.0035753828768401944, "data_time": 0.005917835235595703, "loss": 0.34254925325512886, "decode.loss_ce": 0.21478882506489755, "decode.acc_seg": 87.48899841308594, "aux.loss_ce": 0.12776042893528938, "aux.acc_seg": 86.26702117919922, "time": 1.1154898881912232, "iter": 110000, "memory": 8704, "step": 110000} +{"lr": 0.0035722548758014357, "data_time": 0.006345176696777343, "loss": 0.34273801892995837, "decode.loss_ce": 0.19466005340218545, "decode.acc_seg": 97.61652374267578, "aux.loss_ce": 0.14807796515524388, "aux.acc_seg": 94.49942779541016, "time": 1.1166744232177734, "iter": 110050, "memory": 8703, "step": 110050} +{"lr": 0.0035691265616337323, "data_time": 0.00669565200805664, "loss": 0.3409023553133011, "decode.loss_ce": 0.21181306168437003, "decode.acc_seg": 96.82064056396484, "aux.loss_ce": 0.12908929586410522, "aux.acc_seg": 96.50242614746094, "time": 1.1185685634613036, "iter": 110100, "memory": 8703, "step": 110100} +{"lr": 0.0035659979339919367, "data_time": 0.007902264595031738, "loss": 0.40252164006233215, "decode.loss_ce": 0.2399262621998787, "decode.acc_seg": 94.17406463623047, "aux.loss_ce": 0.1625953782349825, "aux.acc_seg": 92.73641204833984, "time": 1.1265477180480956, "iter": 110150, "memory": 8704, "step": 110150} +{"lr": 0.0035628689925301725, "data_time": 0.0067193031311035155, "loss": 0.431562614440918, "decode.loss_ce": 0.2808441653847694, "decode.acc_seg": 88.79722595214844, "aux.loss_ce": 0.15071845203638076, "aux.acc_seg": 78.56741333007812, "time": 1.1159748554229736, "iter": 110200, "memory": 8704, "step": 110200} +{"lr": 0.0035597397369018283, "data_time": 0.007452249526977539, "loss": 0.233246411383152, "decode.loss_ce": 0.14121265187859536, "decode.acc_seg": 96.49212646484375, "aux.loss_ce": 0.09203376062214375, "aux.acc_seg": 95.92449951171875, "time": 1.1192902088165284, "iter": 110250, "memory": 8703, "step": 110250} +{"lr": 0.0035566101667595723, "data_time": 0.0063572883605957035, "loss": 0.36138050109148023, "decode.loss_ce": 0.21100289970636368, "decode.acc_seg": 87.14923858642578, "aux.loss_ce": 0.1503776054829359, "aux.acc_seg": 87.0992660522461, "time": 1.1155983686447144, "iter": 110300, "memory": 8704, "step": 110300} +{"lr": 0.0035534802817553312, "data_time": 0.0066851615905761715, "loss": 0.31053677424788473, "decode.loss_ce": 0.18541805669665337, "decode.acc_seg": 88.3371353149414, "aux.loss_ce": 0.12511871829628946, "aux.acc_seg": 75.94330596923828, "time": 1.1157557010650634, "iter": 110350, "memory": 8704, "step": 110350} +{"lr": 0.0035503500815402974, "data_time": 0.007072019577026367, "loss": 0.5810722410678864, "decode.loss_ce": 0.3532642662525177, "decode.acc_seg": 87.54138946533203, "aux.loss_ce": 0.2278079755604267, "aux.acc_seg": 83.10648345947266, "time": 1.1152756690979004, "iter": 110400, "memory": 8704, "step": 110400} +{"lr": 0.0035472195657649266, "data_time": 0.005768132209777832, "loss": 0.27969576567411425, "decode.loss_ce": 0.16934147477149963, "decode.acc_seg": 95.85830688476562, "aux.loss_ce": 0.11035429276525974, "aux.acc_seg": 89.90520477294922, "time": 1.1081254720687865, "iter": 110450, "memory": 8704, "step": 110450} +{"lr": 0.003544088734078934, "data_time": 0.00715787410736084, "loss": 0.42664358764886856, "decode.loss_ce": 0.2849774844944477, "decode.acc_seg": 64.55014038085938, "aux.loss_ce": 0.14166610278189182, "aux.acc_seg": 62.1753044128418, "time": 1.1136104106903075, "iter": 110500, "memory": 8703, "step": 110500} +{"lr": 0.003540957586131285, "data_time": 0.007427573204040527, "loss": 0.27667805552482605, "decode.loss_ce": 0.1719265252351761, "decode.acc_seg": 88.17791748046875, "aux.loss_ce": 0.10475152805447578, "aux.acc_seg": 84.03224182128906, "time": 1.120861554145813, "iter": 110550, "memory": 8704, "step": 110550} +{"lr": 0.003537826121570211, "data_time": 0.008683252334594726, "loss": 0.44245235770940783, "decode.loss_ce": 0.2641605734825134, "decode.acc_seg": 96.73766326904297, "aux.loss_ce": 0.17829178944230079, "aux.acc_seg": 96.19515991210938, "time": 1.1202568054199218, "iter": 110600, "memory": 8703, "step": 110600} +{"lr": 0.003534694340043183, "data_time": 0.008144474029541016, "loss": 0.3040799364447594, "decode.loss_ce": 0.1885736420750618, "decode.acc_seg": 94.58719635009766, "aux.loss_ce": 0.11550629064440728, "aux.acc_seg": 91.56322479248047, "time": 1.1187474966049193, "iter": 110650, "memory": 8704, "step": 110650} +{"lr": 0.00353156224119693, "data_time": 0.008176231384277343, "loss": 0.34868359863758086, "decode.loss_ce": 0.2170957699418068, "decode.acc_seg": 93.64960479736328, "aux.loss_ce": 0.13158782571554184, "aux.acc_seg": 92.16696166992188, "time": 1.1162300109863281, "iter": 110700, "memory": 8704, "step": 110700} +{"lr": 0.003528429824677427, "data_time": 0.007048749923706054, "loss": 0.36682883352041246, "decode.loss_ce": 0.2258370965719223, "decode.acc_seg": 93.3436050415039, "aux.loss_ce": 0.14099173247814178, "aux.acc_seg": 91.62235260009766, "time": 1.1183696269989014, "iter": 110750, "memory": 8703, "step": 110750} +{"lr": 0.0035252970901298902, "data_time": 0.00906357765197754, "loss": 0.3597947582602501, "decode.loss_ce": 0.2104273721575737, "decode.acc_seg": 95.73242950439453, "aux.loss_ce": 0.14936738461256027, "aux.acc_seg": 89.78563690185547, "time": 1.117132592201233, "iter": 110800, "memory": 8704, "step": 110800} +{"lr": 0.003522164037198789, "data_time": 0.00669713020324707, "loss": 0.436485743522644, "decode.loss_ce": 0.28274003639817236, "decode.acc_seg": 83.3852767944336, "aux.loss_ce": 0.1537457022815943, "aux.acc_seg": 83.84748840332031, "time": 1.1161771774291993, "iter": 110850, "memory": 8704, "step": 110850} +{"lr": 0.0035190306655278245, "data_time": 0.008016753196716308, "loss": 0.3004745848476887, "decode.loss_ce": 0.17902582958340646, "decode.acc_seg": 91.6046142578125, "aux.loss_ce": 0.12144875153899193, "aux.acc_seg": 89.0696792602539, "time": 1.1189577341079713, "iter": 110900, "memory": 8703, "step": 110900} +{"lr": 0.003515896974759936, "data_time": 0.007537531852722168, "loss": 0.3552314579486847, "decode.loss_ce": 0.205457716435194, "decode.acc_seg": 94.58351135253906, "aux.loss_ce": 0.14977374412119387, "aux.acc_seg": 93.94441986083984, "time": 1.1170520544052125, "iter": 110950, "memory": 8704, "step": 110950} +{"lr": 0.003512762964537302, "data_time": 0.006430482864379883, "loss": 0.3945259891450405, "decode.loss_ce": 0.2502993728965521, "decode.acc_seg": 88.07684326171875, "aux.loss_ce": 0.14422661252319813, "aux.acc_seg": 89.22500610351562, "time": 1.1168066263198853, "iter": 111000, "memory": 8703, "step": 111000} +{"lr": 0.0035096286345013324, "data_time": 0.005909585952758789, "loss": 0.3904512971639633, "decode.loss_ce": 0.23968249708414077, "decode.acc_seg": 95.25794982910156, "aux.loss_ce": 0.15076879784464836, "aux.acc_seg": 94.9097900390625, "time": 1.1171046018600463, "iter": 111050, "memory": 8703, "step": 111050} +{"lr": 0.003506493984292665, "data_time": 0.0071019411087036135, "loss": 0.290476793050766, "decode.loss_ce": 0.17669888883829116, "decode.acc_seg": 92.7267074584961, "aux.loss_ce": 0.11377790533006191, "aux.acc_seg": 88.58578491210938, "time": 1.1191166400909425, "iter": 111100, "memory": 8704, "step": 111100} +{"lr": 0.003503359013551171, "data_time": 0.006933259963989258, "loss": 0.33710702508687973, "decode.loss_ce": 0.20648552849888802, "decode.acc_seg": 92.66929626464844, "aux.loss_ce": 0.13062149435281753, "aux.acc_seg": 79.96037292480469, "time": 1.1157026767730713, "iter": 111150, "memory": 8703, "step": 111150} +{"lr": 0.0035002237219159456, "data_time": 0.007288336753845215, "loss": 0.34386072903871534, "decode.loss_ce": 0.22734250351786614, "decode.acc_seg": 93.79692077636719, "aux.loss_ce": 0.1165182214230299, "aux.acc_seg": 93.69894409179688, "time": 1.1193087100982666, "iter": 111200, "memory": 8704, "step": 111200} +{"lr": 0.003497088109025306, "data_time": 0.0067110776901245115, "loss": 0.3058776468038559, "decode.loss_ce": 0.19050362408161164, "decode.acc_seg": 96.5063705444336, "aux.loss_ce": 0.1153740257024765, "aux.acc_seg": 96.29776763916016, "time": 1.1147069215774537, "iter": 111250, "memory": 8704, "step": 111250} +{"lr": 0.0034939521745167945, "data_time": 0.006600475311279297, "loss": 0.3458969950675964, "decode.loss_ce": 0.21278527602553368, "decode.acc_seg": 75.77560424804688, "aux.loss_ce": 0.13311172910034658, "aux.acc_seg": 65.26400756835938, "time": 1.114742064476013, "iter": 111300, "memory": 8703, "step": 111300} +{"lr": 0.0034908159180271634, "data_time": 0.006110739707946777, "loss": 0.35249233394861224, "decode.loss_ce": 0.20976670533418657, "decode.acc_seg": 97.72052764892578, "aux.loss_ce": 0.14272562861442567, "aux.acc_seg": 96.62386322021484, "time": 1.1141773462295532, "iter": 111350, "memory": 8704, "step": 111350} +{"lr": 0.003487679339192394, "data_time": 0.0061151981353759766, "loss": 0.3291583940386772, "decode.loss_ce": 0.20326357036828996, "decode.acc_seg": 96.24041748046875, "aux.loss_ce": 0.12589482329785823, "aux.acc_seg": 95.9940185546875, "time": 1.112862467765808, "iter": 111400, "memory": 8703, "step": 111400} +{"lr": 0.003484542437647667, "data_time": 0.0056182146072387695, "loss": 0.4124434247612953, "decode.loss_ce": 0.259992041438818, "decode.acc_seg": 57.91257095336914, "aux.loss_ce": 0.15245138332247735, "aux.acc_seg": 56.35941696166992, "time": 1.117872953414917, "iter": 111450, "memory": 8704, "step": 111450} +{"lr": 0.0034814052130273834, "data_time": 0.007991814613342285, "loss": 0.4327957987785339, "decode.loss_ce": 0.25548305213451383, "decode.acc_seg": 88.0372314453125, "aux.loss_ce": 0.17731274887919427, "aux.acc_seg": 71.37196350097656, "time": 1.1212247610092163, "iter": 111500, "memory": 8704, "step": 111500} +{"lr": 0.00347826766496515, "data_time": 0.008090639114379882, "loss": 0.30153885036706923, "decode.loss_ce": 0.17902570962905884, "decode.acc_seg": 87.90276336669922, "aux.loss_ce": 0.12251313291490078, "aux.acc_seg": 81.54537963867188, "time": 1.122531247138977, "iter": 111550, "memory": 8704, "step": 111550} +{"lr": 0.003475129793093775, "data_time": 0.006658244132995606, "loss": 0.48522436171770095, "decode.loss_ce": 0.3137913033366203, "decode.acc_seg": 91.53194427490234, "aux.loss_ce": 0.1714330639690161, "aux.acc_seg": 90.3512954711914, "time": 1.11182758808136, "iter": 111600, "memory": 8704, "step": 111600} +{"lr": 0.0034719915970452763, "data_time": 0.007065534591674805, "loss": 0.3994449838995934, "decode.loss_ce": 0.22876770794391632, "decode.acc_seg": 96.71026611328125, "aux.loss_ce": 0.1706772767007351, "aux.acc_seg": 95.7712173461914, "time": 1.1149709939956665, "iter": 111650, "memory": 8704, "step": 111650} +{"lr": 0.0034688530764508756, "data_time": 0.007846832275390625, "loss": 0.42521149963140487, "decode.loss_ce": 0.2619486451148987, "decode.acc_seg": 80.8395767211914, "aux.loss_ce": 0.16326285898685455, "aux.acc_seg": 76.3955307006836, "time": 1.1114889144897462, "iter": 111700, "memory": 8704, "step": 111700} +{"lr": 0.003465714230940984, "data_time": 0.007255983352661133, "loss": 0.3943850353360176, "decode.loss_ce": 0.24649095833301543, "decode.acc_seg": 84.28890991210938, "aux.loss_ce": 0.1478940773755312, "aux.acc_seg": 80.05352020263672, "time": 1.1177263498306274, "iter": 111750, "memory": 8704, "step": 111750} +{"lr": 0.003462575060145214, "data_time": 0.0065991878509521484, "loss": 0.5076414227485657, "decode.loss_ce": 0.306726998090744, "decode.acc_seg": 84.0246810913086, "aux.loss_ce": 0.20091440565884114, "aux.acc_seg": 72.37860107421875, "time": 1.114025068283081, "iter": 111800, "memory": 8703, "step": 111800} +{"lr": 0.0034594355636923674, "data_time": 0.006635022163391113, "loss": 0.2908440262079239, "decode.loss_ce": 0.1839861512184143, "decode.acc_seg": 93.2978286743164, "aux.loss_ce": 0.10685787312686443, "aux.acc_seg": 92.66891479492188, "time": 1.119796919822693, "iter": 111850, "memory": 8704, "step": 111850} +{"lr": 0.0034562957412104384, "data_time": 0.008050203323364258, "loss": 0.47842639684677124, "decode.loss_ce": 0.27408530190587044, "decode.acc_seg": 95.24192810058594, "aux.loss_ce": 0.20434108674526213, "aux.acc_seg": 66.71053314208984, "time": 1.118575358390808, "iter": 111900, "memory": 8704, "step": 111900} +{"lr": 0.0034531555923266112, "data_time": 0.006755733489990234, "loss": 0.30559898242354394, "decode.loss_ce": 0.1816405586898327, "decode.acc_seg": 98.00560760498047, "aux.loss_ce": 0.12395842373371124, "aux.acc_seg": 90.36006927490234, "time": 1.1141692638397216, "iter": 111950, "memory": 8704, "step": 111950} +{"lr": 0.003450015116667249, "data_time": 0.008795452117919923, "loss": 0.4479354560375214, "decode.loss_ce": 0.28916696459054947, "decode.acc_seg": 90.35103607177734, "aux.loss_ce": 0.1587684914469719, "aux.acc_seg": 76.33139038085938, "time": 1.1236242055892944, "iter": 112000, "memory": 8704, "step": 112000} +{"aAcc": 93.93, "mIoU": 66.97, "mAcc": 74.17, "data_time": 0.004244427865100764, "time": 0.2714914881913227, "step": 112000} +{"lr": 0.0034468743138579036, "data_time": 0.008164501190185547, "loss": 0.4032560706138611, "decode.loss_ce": 0.24845658838748932, "decode.acc_seg": 89.346435546875, "aux.loss_ce": 0.15479948073625566, "aux.acc_seg": 88.52373504638672, "time": 1.1150253057479858, "iter": 112050, "memory": 8703, "step": 112050} +{"lr": 0.003443733183523308, "data_time": 0.006664943695068359, "loss": 0.34980262964963915, "decode.loss_ce": 0.21700711101293563, "decode.acc_seg": 81.10771179199219, "aux.loss_ce": 0.1327955137938261, "aux.acc_seg": 77.45755004882812, "time": 1.1165997743606568, "iter": 112100, "memory": 8704, "step": 112100} +{"lr": 0.0034405917252873673, "data_time": 0.0067891359329223635, "loss": 0.2560496062040329, "decode.loss_ce": 0.1586343415081501, "decode.acc_seg": 95.92080688476562, "aux.loss_ce": 0.09741526432335376, "aux.acc_seg": 94.04338836669922, "time": 1.1154986143112182, "iter": 112150, "memory": 8703, "step": 112150} +{"lr": 0.0034374499387731685, "data_time": 0.006389355659484864, "loss": 0.3378335490822792, "decode.loss_ce": 0.20093014016747474, "decode.acc_seg": 97.72911071777344, "aux.loss_ce": 0.136903403326869, "aux.acc_seg": 96.50592803955078, "time": 1.1180192947387695, "iter": 112200, "memory": 8704, "step": 112200} +{"lr": 0.0034343078236029577, "data_time": 0.007418584823608398, "loss": 0.3542671173810959, "decode.loss_ce": 0.2195158213376999, "decode.acc_seg": 92.54212951660156, "aux.loss_ce": 0.13475129008293152, "aux.acc_seg": 88.22576141357422, "time": 1.1143831729888916, "iter": 112250, "memory": 8704, "step": 112250} +{"lr": 0.0034311653793981612, "data_time": 0.007094931602478027, "loss": 0.3719800919294357, "decode.loss_ce": 0.2374519795179367, "decode.acc_seg": 95.90498352050781, "aux.loss_ce": 0.13452811650931834, "aux.acc_seg": 95.04801177978516, "time": 1.1158050775527955, "iter": 112300, "memory": 8704, "step": 112300} +{"lr": 0.0034280226057793713, "data_time": 0.007153511047363281, "loss": 0.382805860042572, "decode.loss_ce": 0.2387716591358185, "decode.acc_seg": 91.63538360595703, "aux.loss_ce": 0.14403419718146324, "aux.acc_seg": 89.62071228027344, "time": 1.1118808269500733, "iter": 112350, "memory": 8704, "step": 112350} +{"lr": 0.003424879502366337, "data_time": 0.007417511940002441, "loss": 0.46355251371860506, "decode.loss_ce": 0.2869591511785984, "decode.acc_seg": 93.9432144165039, "aux.loss_ce": 0.17659335359930992, "aux.acc_seg": 89.88323211669922, "time": 1.113913345336914, "iter": 112400, "memory": 8704, "step": 112400} +{"lr": 0.0034217360687779775, "data_time": 0.008108568191528321, "loss": 0.4729961723089218, "decode.loss_ce": 0.2789522834122181, "decode.acc_seg": 97.28190612792969, "aux.loss_ce": 0.19404388926923274, "aux.acc_seg": 94.97125244140625, "time": 1.1160547971725463, "iter": 112450, "memory": 8704, "step": 112450} +{"lr": 0.00341859230463237, "data_time": 0.00711355209350586, "loss": 0.30017847567796707, "decode.loss_ce": 0.17857618927955626, "decode.acc_seg": 90.21726989746094, "aux.loss_ce": 0.12160228490829468, "aux.acc_seg": 80.33618927001953, "time": 1.1156209468841554, "iter": 112500, "memory": 8704, "step": 112500} +{"lr": 0.0034154482095467365, "data_time": 0.006952166557312012, "loss": 0.35097878724336623, "decode.loss_ce": 0.21459948644042015, "decode.acc_seg": 87.03441619873047, "aux.loss_ce": 0.13637930192053319, "aux.acc_seg": 82.51533508300781, "time": 1.1171287298202515, "iter": 112550, "memory": 8704, "step": 112550} +{"lr": 0.003412303783137459, "data_time": 0.008198785781860351, "loss": 0.38577291518449786, "decode.loss_ce": 0.24126393124461173, "decode.acc_seg": 80.47637939453125, "aux.loss_ce": 0.1445089839398861, "aux.acc_seg": 78.29672241210938, "time": 1.119249200820923, "iter": 112600, "memory": 8703, "step": 112600} +{"lr": 0.003409159025020073, "data_time": 0.007369279861450195, "loss": 0.5139602556824684, "decode.loss_ce": 0.2925370454788208, "decode.acc_seg": 95.86556243896484, "aux.loss_ce": 0.22142320573329927, "aux.acc_seg": 95.46260833740234, "time": 1.122355079650879, "iter": 112650, "memory": 8703, "step": 112650} +{"lr": 0.0034060139348092607, "data_time": 0.00768887996673584, "loss": 0.36118905544281005, "decode.loss_ce": 0.20731344670057297, "decode.acc_seg": 95.20638275146484, "aux.loss_ce": 0.1538756087422371, "aux.acc_seg": 91.29104614257812, "time": 1.1223482370376587, "iter": 112700, "memory": 8704, "step": 112700} +{"lr": 0.0034028685121188433, "data_time": 0.006415653228759766, "loss": 0.3944062918424606, "decode.loss_ce": 0.22578340619802476, "decode.acc_seg": 91.24539184570312, "aux.loss_ce": 0.16862289048731327, "aux.acc_seg": 94.86408233642578, "time": 1.1161139249801635, "iter": 112750, "memory": 8704, "step": 112750} +{"lr": 0.0033997227565617867, "data_time": 0.0071896791458129885, "loss": 0.33088464960455893, "decode.loss_ce": 0.18445456326007842, "decode.acc_seg": 97.32179260253906, "aux.loss_ce": 0.1464300900697708, "aux.acc_seg": 96.85997009277344, "time": 1.1204264402389525, "iter": 112800, "memory": 8704, "step": 112800} +{"lr": 0.003396576667750196, "data_time": 0.006560087203979492, "loss": 0.24895837157964706, "decode.loss_ce": 0.14504944831132888, "decode.acc_seg": 96.71573638916016, "aux.loss_ce": 0.10390892587602138, "aux.acc_seg": 95.57787322998047, "time": 1.1173268795013427, "iter": 112850, "memory": 8703, "step": 112850} +{"lr": 0.0033934302452953142, "data_time": 0.007146525382995606, "loss": 0.40595041364431383, "decode.loss_ce": 0.25609028711915016, "decode.acc_seg": 92.66935729980469, "aux.loss_ce": 0.1498601246625185, "aux.acc_seg": 84.7206039428711, "time": 1.1128044843673706, "iter": 112900, "memory": 8704, "step": 112900} +{"lr": 0.003390283488807512, "data_time": 0.007347798347473145, "loss": 0.23691920563578606, "decode.loss_ce": 0.14591325558722018, "decode.acc_seg": 90.74250030517578, "aux.loss_ce": 0.0910059541463852, "aux.acc_seg": 88.1870346069336, "time": 1.117641520500183, "iter": 112950, "memory": 8704, "step": 112950} +{"lr": 0.0033871363978962956, "data_time": 0.007095599174499511, "loss": 0.35064838975667956, "decode.loss_ce": 0.23059138506650925, "decode.acc_seg": 95.60514831542969, "aux.loss_ce": 0.12005700096487999, "aux.acc_seg": 94.45660400390625, "time": 1.1153255224227905, "iter": 113000, "memory": 8704, "step": 113000} +{"lr": 0.0033839889721702992, "data_time": 0.008270692825317384, "loss": 0.5317420653998852, "decode.loss_ce": 0.3156886100769043, "decode.acc_seg": 83.10839080810547, "aux.loss_ce": 0.21605344936251641, "aux.acc_seg": 80.78282165527344, "time": 1.1223952293395996, "iter": 113050, "memory": 8703, "step": 113050} +{"lr": 0.00338084121123728, "data_time": 0.007483291625976563, "loss": 0.3107686936855316, "decode.loss_ce": 0.21004776135087014, "decode.acc_seg": 93.39974212646484, "aux.loss_ce": 0.10072093345224857, "aux.acc_seg": 91.50116729736328, "time": 1.1150806903839112, "iter": 113100, "memory": 8704, "step": 113100} +{"lr": 0.003377693114704118, "data_time": 0.006085085868835449, "loss": 0.35310527235269545, "decode.loss_ce": 0.20216913223266603, "decode.acc_seg": 97.84685516357422, "aux.loss_ce": 0.15093614310026168, "aux.acc_seg": 97.23587036132812, "time": 1.111862015724182, "iter": 113150, "memory": 8703, "step": 113150} +{"lr": 0.003374544682176807, "data_time": 0.007742857933044434, "loss": 0.35269096344709394, "decode.loss_ce": 0.2161830946803093, "decode.acc_seg": 89.11907958984375, "aux.loss_ce": 0.13650787100195885, "aux.acc_seg": 87.15603637695312, "time": 1.1211769342422486, "iter": 113200, "memory": 8703, "step": 113200} +{"lr": 0.003371395913260465, "data_time": 0.00620875358581543, "loss": 0.2950187548995018, "decode.loss_ce": 0.18692887350916862, "decode.acc_seg": 93.7928466796875, "aux.loss_ce": 0.1080898817628622, "aux.acc_seg": 92.6858901977539, "time": 1.1151031970977783, "iter": 113250, "memory": 8703, "step": 113250} +{"lr": 0.0033682468075593172, "data_time": 0.006829953193664551, "loss": 0.50482127815485, "decode.loss_ce": 0.310479699075222, "decode.acc_seg": 93.50719451904297, "aux.loss_ce": 0.1943415731191635, "aux.acc_seg": 92.7682876586914, "time": 1.1147106647491456, "iter": 113300, "memory": 8703, "step": 113300} +{"lr": 0.003365097364676698, "data_time": 0.007677245140075684, "loss": 0.413709768652916, "decode.loss_ce": 0.23891734182834626, "decode.acc_seg": 95.94300079345703, "aux.loss_ce": 0.17479242086410524, "aux.acc_seg": 95.6521987915039, "time": 1.1157524108886718, "iter": 113350, "memory": 8703, "step": 113350} +{"lr": 0.0033619475842150545, "data_time": 0.008220696449279785, "loss": 0.3540903478860855, "decode.loss_ce": 0.2097586788237095, "decode.acc_seg": 90.80708312988281, "aux.loss_ce": 0.1443316698074341, "aux.acc_seg": 82.37387084960938, "time": 1.1171334266662598, "iter": 113400, "memory": 8703, "step": 113400} +{"lr": 0.0033587974657759328, "data_time": 0.0066719532012939455, "loss": 0.28851441890001295, "decode.loss_ce": 0.17422026842832566, "decode.acc_seg": 93.53713989257812, "aux.loss_ce": 0.1142941527068615, "aux.acc_seg": 90.79525756835938, "time": 1.1192959070205688, "iter": 113450, "memory": 8704, "step": 113450} +{"lr": 0.0033556470089599858, "data_time": 0.007574295997619629, "loss": 0.32966409623622894, "decode.loss_ce": 0.21027156561613083, "decode.acc_seg": 93.56062316894531, "aux.loss_ce": 0.11939252689480781, "aux.acc_seg": 90.84223175048828, "time": 1.1183097600936889, "iter": 113500, "memory": 8703, "step": 113500} +{"lr": 0.00335249621336696, "data_time": 0.006926202774047851, "loss": 0.3268541067838669, "decode.loss_ce": 0.1893288843333721, "decode.acc_seg": 94.33281707763672, "aux.loss_ce": 0.1375252202153206, "aux.acc_seg": 86.86033630371094, "time": 1.116197419166565, "iter": 113550, "memory": 8704, "step": 113550} +{"lr": 0.003349345078595695, "data_time": 0.006666040420532227, "loss": 0.24872685372829437, "decode.loss_ce": 0.14612571746110917, "decode.acc_seg": 92.50122833251953, "aux.loss_ce": 0.10260113552212716, "aux.acc_seg": 87.28353118896484, "time": 1.1160802364349365, "iter": 113600, "memory": 8703, "step": 113600} +{"lr": 0.0033461936042441303, "data_time": 0.007311248779296875, "loss": 0.36840697973966596, "decode.loss_ce": 0.21921287402510642, "decode.acc_seg": 94.61370849609375, "aux.loss_ce": 0.14919411092996598, "aux.acc_seg": 91.22969055175781, "time": 1.1190294742584228, "iter": 113650, "memory": 8704, "step": 113650} +{"lr": 0.0033430417899092887, "data_time": 0.006087732315063476, "loss": 0.31994972079992295, "decode.loss_ce": 0.18850572556257247, "decode.acc_seg": 93.66949462890625, "aux.loss_ce": 0.13144399262964726, "aux.acc_seg": 87.1356430053711, "time": 1.1141746282577514, "iter": 113700, "memory": 8703, "step": 113700} +{"lr": 0.0033398896351872803, "data_time": 0.0072994232177734375, "loss": 0.32845282182097435, "decode.loss_ce": 0.19078585654497146, "decode.acc_seg": 90.36095428466797, "aux.loss_ce": 0.1376669630408287, "aux.acc_seg": 90.07847595214844, "time": 1.1127117395401, "iter": 113750, "memory": 8703, "step": 113750} +{"lr": 0.003336737139673298, "data_time": 0.00708620548248291, "loss": 0.2893052935600281, "decode.loss_ce": 0.1677062250673771, "decode.acc_seg": 96.11219787597656, "aux.loss_ce": 0.12159907072782516, "aux.acc_seg": 95.1895523071289, "time": 1.1152947902679444, "iter": 113800, "memory": 8703, "step": 113800} +{"lr": 0.0033335843029616142, "data_time": 0.007383561134338379, "loss": 0.3535272181034088, "decode.loss_ce": 0.19413001537323, "decode.acc_seg": 94.56780242919922, "aux.loss_ce": 0.1593972034752369, "aux.acc_seg": 93.84243774414062, "time": 1.1183427810668944, "iter": 113850, "memory": 8704, "step": 113850} +{"lr": 0.0033304311246455816, "data_time": 0.007652378082275391, "loss": 0.26443809270858765, "decode.loss_ce": 0.15408995375037193, "decode.acc_seg": 90.15432739257812, "aux.loss_ce": 0.1103481374680996, "aux.acc_seg": 86.5378646850586, "time": 1.1156497955322267, "iter": 113900, "memory": 8704, "step": 113900} +{"lr": 0.003327277604317621, "data_time": 0.007114100456237793, "loss": 0.3272307336330414, "decode.loss_ce": 0.2005732052028179, "decode.acc_seg": 92.69510650634766, "aux.loss_ce": 0.12665752582252027, "aux.acc_seg": 92.2739028930664, "time": 1.1192046880722046, "iter": 113950, "memory": 8704, "step": 113950} +{"lr": 0.0033241237415692257, "data_time": 0.007981133460998536, "loss": 0.45844339281320573, "decode.loss_ce": 0.25488584116101265, "decode.acc_seg": 94.6187973022461, "aux.loss_ce": 0.20355754978954793, "aux.acc_seg": 93.23558807373047, "time": 1.117038083076477, "iter": 114000, "memory": 8704, "step": 114000} +{"lr": 0.003320969535990962, "data_time": 0.007073640823364258, "loss": 0.21289448589086532, "decode.loss_ce": 0.12581428848206996, "decode.acc_seg": 96.64659118652344, "aux.loss_ce": 0.08708019889891147, "aux.acc_seg": 95.29554748535156, "time": 1.1139894723892212, "iter": 114050, "memory": 8704, "step": 114050} +{"lr": 0.0033178149871724515, "data_time": 0.007322764396667481, "loss": 0.3261394962668419, "decode.loss_ce": 0.207877317070961, "decode.acc_seg": 93.28390502929688, "aux.loss_ce": 0.11826217547059059, "aux.acc_seg": 89.15411376953125, "time": 1.1153071641921997, "iter": 114100, "memory": 8704, "step": 114100} +{"lr": 0.0033146600947023814, "data_time": 0.007451462745666504, "loss": 0.3060978680849075, "decode.loss_ce": 0.1853296935558319, "decode.acc_seg": 97.47734069824219, "aux.loss_ce": 0.12076817117631436, "aux.acc_seg": 96.1533203125, "time": 1.1117013216018676, "iter": 114150, "memory": 8704, "step": 114150} +{"lr": 0.0033115048581685027, "data_time": 0.008903074264526366, "loss": 0.2846709117293358, "decode.loss_ce": 0.1774253949522972, "decode.acc_seg": 94.53622436523438, "aux.loss_ce": 0.10724552311003208, "aux.acc_seg": 93.0750732421875, "time": 1.1176224946975708, "iter": 114200, "memory": 8704, "step": 114200} +{"lr": 0.00330834927715761, "data_time": 0.006410551071166992, "loss": 0.37078876197338106, "decode.loss_ce": 0.2323029674589634, "decode.acc_seg": 93.11306762695312, "aux.loss_ce": 0.1384857941418886, "aux.acc_seg": 91.36873626708984, "time": 1.1134051084518433, "iter": 114250, "memory": 8703, "step": 114250} +{"lr": 0.003305193351255558, "data_time": 0.006331205368041992, "loss": 0.3240517571568489, "decode.loss_ce": 0.20754929333925248, "decode.acc_seg": 78.63146209716797, "aux.loss_ce": 0.1165024608373642, "aux.acc_seg": 76.17498779296875, "time": 1.1174893856048584, "iter": 114300, "memory": 8703, "step": 114300} +{"lr": 0.003302037080047248, "data_time": 0.007182550430297851, "loss": 0.519351315498352, "decode.loss_ce": 0.30647771134972573, "decode.acc_seg": 92.24933624267578, "aux.loss_ce": 0.21287361532449722, "aux.acc_seg": 90.2061996459961, "time": 1.1205960988998414, "iter": 114350, "memory": 8704, "step": 114350} +{"lr": 0.0032988804631166237, "data_time": 0.007485342025756836, "loss": 0.2981456518173218, "decode.loss_ce": 0.17904532253742217, "decode.acc_seg": 92.49903106689453, "aux.loss_ce": 0.11910032667219639, "aux.acc_seg": 85.29987335205078, "time": 1.1163004159927368, "iter": 114400, "memory": 8704, "step": 114400} +{"lr": 0.0032957235000466707, "data_time": 0.006950259208679199, "loss": 0.34778141379356386, "decode.loss_ce": 0.1981573559343815, "decode.acc_seg": 93.5938491821289, "aux.loss_ce": 0.14962406046688556, "aux.acc_seg": 87.73880004882812, "time": 1.1144047737121583, "iter": 114450, "memory": 8704, "step": 114450} +{"lr": 0.0032925661904194166, "data_time": 0.0071179866790771484, "loss": 0.3386793524026871, "decode.loss_ce": 0.20156590715050698, "decode.acc_seg": 91.3733139038086, "aux.loss_ce": 0.1371134500950575, "aux.acc_seg": 88.05853271484375, "time": 1.1154543161392212, "iter": 114500, "memory": 8704, "step": 114500} +{"lr": 0.003289408533815922, "data_time": 0.005888104438781738, "loss": 0.284935013204813, "decode.loss_ce": 0.1811638817191124, "decode.acc_seg": 92.4692153930664, "aux.loss_ce": 0.1037711326032877, "aux.acc_seg": 91.28258514404297, "time": 1.1156208276748658, "iter": 114550, "memory": 8704, "step": 114550} +{"lr": 0.0032862505298162825, "data_time": 0.00820176601409912, "loss": 0.3132843762636185, "decode.loss_ce": 0.18822689205408097, "decode.acc_seg": 96.27564239501953, "aux.loss_ce": 0.12505748122930527, "aux.acc_seg": 92.42591857910156, "time": 1.114434576034546, "iter": 114600, "memory": 8703, "step": 114600} +{"lr": 0.003283092177999618, "data_time": 0.006382441520690918, "loss": 0.2940154753625393, "decode.loss_ce": 0.18474358692765236, "decode.acc_seg": 84.2545166015625, "aux.loss_ce": 0.10927188545465469, "aux.acc_seg": 82.75311279296875, "time": 1.115449810028076, "iter": 114650, "memory": 8704, "step": 114650} +{"lr": 0.003279933477944079, "data_time": 0.007453036308288574, "loss": 0.32400001138448714, "decode.loss_ce": 0.19722760617733, "decode.acc_seg": 93.4819107055664, "aux.loss_ce": 0.12677240371704102, "aux.acc_seg": 91.43738555908203, "time": 1.116573119163513, "iter": 114700, "memory": 8704, "step": 114700} +{"lr": 0.003276774429226831, "data_time": 0.006781387329101563, "loss": 0.4796512149274349, "decode.loss_ce": 0.30083051398396493, "decode.acc_seg": 95.75373077392578, "aux.loss_ce": 0.1788206987082958, "aux.acc_seg": 91.85962677001953, "time": 1.1134883403778075, "iter": 114750, "memory": 8704, "step": 114750} +{"lr": 0.0032736150314240675, "data_time": 0.00665440559387207, "loss": 0.27381091713905337, "decode.loss_ce": 0.15967345759272575, "decode.acc_seg": 94.048828125, "aux.loss_ce": 0.11413745619356633, "aux.acc_seg": 89.74723815917969, "time": 1.1188865423202514, "iter": 114800, "memory": 8704, "step": 114800} +{"lr": 0.0032704552841109954, "data_time": 0.007607960700988769, "loss": 0.4933314934372902, "decode.loss_ce": 0.32330453768372536, "decode.acc_seg": 90.86659240722656, "aux.loss_ce": 0.17002695500850679, "aux.acc_seg": 85.48653411865234, "time": 1.1181326627731323, "iter": 114850, "memory": 8704, "step": 114850} +{"lr": 0.003267295186861824, "data_time": 0.0077805757522583004, "loss": 0.3737860292196274, "decode.loss_ce": 0.22322159111499787, "decode.acc_seg": 95.68436431884766, "aux.loss_ce": 0.15056444257497786, "aux.acc_seg": 91.899169921875, "time": 1.124417209625244, "iter": 114900, "memory": 8704, "step": 114900} +{"lr": 0.0032641347392497796, "data_time": 0.007114267349243164, "loss": 0.37173047959804534, "decode.loss_ce": 0.22960774078965188, "decode.acc_seg": 96.03277587890625, "aux.loss_ce": 0.1421227402985096, "aux.acc_seg": 93.88783264160156, "time": 1.1174485445022584, "iter": 114950, "memory": 8704, "step": 114950} +{"lr": 0.003260973940847093, "data_time": 0.006699895858764649, "loss": 0.4036738470196724, "decode.loss_ce": 0.24342724978923796, "decode.acc_seg": 91.3116455078125, "aux.loss_ce": 0.16024659648537637, "aux.acc_seg": 89.15703582763672, "time": 1.1148710250854492, "iter": 115000, "memory": 8704, "step": 115000} +{"lr": 0.0032578127912249962, "data_time": 0.007472372055053711, "loss": 0.29250426441431043, "decode.loss_ce": 0.17607646062970161, "decode.acc_seg": 95.88111114501953, "aux.loss_ce": 0.1164278045296669, "aux.acc_seg": 93.98883056640625, "time": 1.1160056114196777, "iter": 115050, "memory": 8704, "step": 115050} +{"lr": 0.0032546512899537185, "data_time": 0.006979680061340332, "loss": 0.21738480627536774, "decode.loss_ce": 0.13239041157066822, "decode.acc_seg": 94.51007843017578, "aux.loss_ce": 0.0849943932145834, "aux.acc_seg": 90.82723999023438, "time": 1.1200125694274903, "iter": 115100, "memory": 8703, "step": 115100} +{"lr": 0.0032514894366024874, "data_time": 0.005995726585388184, "loss": 0.2908073619008064, "decode.loss_ce": 0.18051999807357788, "decode.acc_seg": 90.78546905517578, "aux.loss_ce": 0.11028736233711242, "aux.acc_seg": 90.32440185546875, "time": 1.113534927368164, "iter": 115150, "memory": 8704, "step": 115150} +{"lr": 0.0032483272307395183, "data_time": 0.007885622978210449, "loss": 0.4242656648159027, "decode.loss_ce": 0.26363945826888086, "decode.acc_seg": 87.03714752197266, "aux.loss_ce": 0.16062621027231216, "aux.acc_seg": 86.3931655883789, "time": 1.1165606498718261, "iter": 115200, "memory": 8704, "step": 115200} +{"lr": 0.003245164671932014, "data_time": 0.006258606910705566, "loss": 0.2834400191903114, "decode.loss_ce": 0.16756058409810065, "decode.acc_seg": 94.13276672363281, "aux.loss_ce": 0.11587943397462368, "aux.acc_seg": 90.59053039550781, "time": 1.1165363550186158, "iter": 115250, "memory": 8704, "step": 115250} +{"lr": 0.003242001759746165, "data_time": 0.00868382453918457, "loss": 0.651246826350689, "decode.loss_ce": 0.434986786544323, "decode.acc_seg": 93.69392395019531, "aux.loss_ce": 0.2162600491195917, "aux.acc_seg": 87.55181121826172, "time": 1.1203402280807495, "iter": 115300, "memory": 8704, "step": 115300} +{"lr": 0.0032388384937471412, "data_time": 0.007046914100646973, "loss": 0.3502494364976883, "decode.loss_ce": 0.20226257145404816, "decode.acc_seg": 83.99715423583984, "aux.loss_ce": 0.14798686355352403, "aux.acc_seg": 79.52511596679688, "time": 1.1192062139511108, "iter": 115350, "memory": 8704, "step": 115350} +{"lr": 0.0032356748734990903, "data_time": 0.0063827276229858395, "loss": 0.2858463406562805, "decode.loss_ce": 0.18497516214847565, "decode.acc_seg": 95.84013366699219, "aux.loss_ce": 0.10087117552757263, "aux.acc_seg": 95.54862976074219, "time": 1.1154244422912598, "iter": 115400, "memory": 8703, "step": 115400} +{"lr": 0.0032325108985651325, "data_time": 0.006578683853149414, "loss": 0.3303367555141449, "decode.loss_ce": 0.20128239542245865, "decode.acc_seg": 90.58331298828125, "aux.loss_ce": 0.1290543597191572, "aux.acc_seg": 85.09573364257812, "time": 1.116854190826416, "iter": 115450, "memory": 8704, "step": 115450} +{"lr": 0.003229346568507362, "data_time": 0.005646276473999024, "loss": 0.281221342086792, "decode.loss_ce": 0.17103022187948227, "decode.acc_seg": 91.91404724121094, "aux.loss_ce": 0.11019112057983875, "aux.acc_seg": 87.469482421875, "time": 1.109313678741455, "iter": 115500, "memory": 8704, "step": 115500} +{"lr": 0.003226181882886833, "data_time": 0.007355260848999024, "loss": 0.2660055607557297, "decode.loss_ce": 0.16010811775922776, "decode.acc_seg": 93.39128112792969, "aux.loss_ce": 0.10589743852615356, "aux.acc_seg": 91.50228118896484, "time": 1.118543767929077, "iter": 115550, "memory": 8704, "step": 115550} +{"lr": 0.0032230168412635696, "data_time": 0.006827545166015625, "loss": 0.3395557053387165, "decode.loss_ce": 0.212476447224617, "decode.acc_seg": 97.32052612304688, "aux.loss_ce": 0.12707925997674466, "aux.acc_seg": 97.20289611816406, "time": 1.111474609375, "iter": 115600, "memory": 8704, "step": 115600} +{"lr": 0.0032198514431965503, "data_time": 0.007018637657165527, "loss": 0.3445312589406967, "decode.loss_ce": 0.20638055056333543, "decode.acc_seg": 89.35629272460938, "aux.loss_ce": 0.13815070316195488, "aux.acc_seg": 74.49829864501953, "time": 1.1173357963562012, "iter": 115650, "memory": 8704, "step": 115650} +{"lr": 0.0032166856882437146, "data_time": 0.007448124885559082, "loss": 0.2680600568652153, "decode.loss_ce": 0.16209470480680466, "decode.acc_seg": 95.9512710571289, "aux.loss_ce": 0.10596535466611386, "aux.acc_seg": 92.84464263916016, "time": 1.1150161504745484, "iter": 115700, "memory": 8704, "step": 115700} +{"lr": 0.003213519575961948, "data_time": 0.008159279823303223, "loss": 0.32661054134368894, "decode.loss_ce": 0.19900026619434358, "decode.acc_seg": 91.77677917480469, "aux.loss_ce": 0.12761027440428735, "aux.acc_seg": 83.73146057128906, "time": 1.1200810432434083, "iter": 115750, "memory": 8704, "step": 115750} +{"lr": 0.0032103531059070886, "data_time": 0.00697178840637207, "loss": 0.28027977645397184, "decode.loss_ce": 0.15799213722348213, "decode.acc_seg": 94.50836181640625, "aux.loss_ce": 0.12228763923048973, "aux.acc_seg": 92.77540588378906, "time": 1.1195170164108277, "iter": 115800, "memory": 8703, "step": 115800} +{"lr": 0.003207186277633919, "data_time": 0.0070915699005126955, "loss": 0.3189158231019974, "decode.loss_ce": 0.19185754358768464, "decode.acc_seg": 94.44744873046875, "aux.loss_ce": 0.12705827429890632, "aux.acc_seg": 90.54094696044922, "time": 1.117659616470337, "iter": 115850, "memory": 8704, "step": 115850} +{"lr": 0.003204019090696161, "data_time": 0.006646251678466797, "loss": 0.2272185891866684, "decode.loss_ce": 0.14152514785528184, "decode.acc_seg": 94.70138549804688, "aux.loss_ce": 0.08569343872368336, "aux.acc_seg": 93.30342102050781, "time": 1.113196349143982, "iter": 115900, "memory": 8704, "step": 115900} +{"lr": 0.0032008515446464744, "data_time": 0.006420111656188965, "loss": 0.2902693197131157, "decode.loss_ce": 0.18399137184023856, "decode.acc_seg": 95.71488189697266, "aux.loss_ce": 0.10627794675529004, "aux.acc_seg": 93.2090072631836, "time": 1.1098358154296875, "iter": 115950, "memory": 8704, "step": 115950} +{"lr": 0.003197683639036453, "data_time": 0.007538318634033203, "loss": 0.2301242396235466, "decode.loss_ce": 0.14459919333457946, "decode.acc_seg": 94.15287780761719, "aux.loss_ce": 0.08552504889667034, "aux.acc_seg": 91.91634368896484, "time": 1.11688232421875, "iter": 116000, "memory": 8703, "step": 116000} +{"lr": 0.003194515373416623, "data_time": 0.007355499267578125, "loss": 0.24709585160017014, "decode.loss_ce": 0.15589323490858079, "decode.acc_seg": 94.74302673339844, "aux.loss_ce": 0.09120261557400226, "aux.acc_seg": 93.75228881835938, "time": 1.1182560205459595, "iter": 116050, "memory": 8703, "step": 116050} +{"lr": 0.003191346747336431, "data_time": 0.006532740592956543, "loss": 0.47175677567720414, "decode.loss_ce": 0.3049982115626335, "decode.acc_seg": 86.15379333496094, "aux.loss_ce": 0.16675856672227382, "aux.acc_seg": 82.02717590332031, "time": 1.1162668704986571, "iter": 116100, "memory": 8703, "step": 116100} +{"lr": 0.0031881777603442506, "data_time": 0.007053017616271973, "loss": 0.3288284480571747, "decode.loss_ce": 0.2020528309047222, "decode.acc_seg": 96.0927963256836, "aux.loss_ce": 0.1267756175249815, "aux.acc_seg": 95.80529022216797, "time": 1.111583423614502, "iter": 116150, "memory": 8703, "step": 116150} +{"lr": 0.003185008411987376, "data_time": 0.006866598129272461, "loss": 0.32491797357797625, "decode.loss_ce": 0.19845995120704174, "decode.acc_seg": 90.02545166015625, "aux.loss_ce": 0.12645802646875381, "aux.acc_seg": 84.58753967285156, "time": 1.1204532384872437, "iter": 116200, "memory": 8703, "step": 116200} +{"lr": 0.0031818387018120093, "data_time": 0.007001471519470215, "loss": 0.28286298364400864, "decode.loss_ce": 0.17090095467865468, "decode.acc_seg": 94.41400909423828, "aux.loss_ce": 0.11196203194558621, "aux.acc_seg": 92.07916259765625, "time": 1.1138704538345336, "iter": 116250, "memory": 8703, "step": 116250} +{"lr": 0.003178668629363268, "data_time": 0.007776093482971191, "loss": 0.4079652264714241, "decode.loss_ce": 0.23524610549211503, "decode.acc_seg": 95.44709014892578, "aux.loss_ce": 0.1727191161364317, "aux.acc_seg": 90.05902099609375, "time": 1.1184649467468262, "iter": 116300, "memory": 8704, "step": 116300} +{"lr": 0.003175498194185173, "data_time": 0.006797981262207031, "loss": 0.2916949212551117, "decode.loss_ce": 0.1765330873429775, "decode.acc_seg": 95.388916015625, "aux.loss_ce": 0.11516183540225029, "aux.acc_seg": 94.53938293457031, "time": 1.1175009965896607, "iter": 116350, "memory": 8704, "step": 116350} +{"lr": 0.0031723273958206527, "data_time": 0.007508659362792968, "loss": 0.5116151675581933, "decode.loss_ce": 0.3167233482003212, "decode.acc_seg": 95.29164123535156, "aux.loss_ce": 0.19489181898534297, "aux.acc_seg": 94.98907470703125, "time": 1.1127294540405273, "iter": 116400, "memory": 8704, "step": 116400} +{"lr": 0.0031691562338115337, "data_time": 0.005482387542724609, "loss": 0.33868217319250105, "decode.loss_ce": 0.18040641248226166, "decode.acc_seg": 95.04476928710938, "aux.loss_ce": 0.15827576220035552, "aux.acc_seg": 92.83428192138672, "time": 1.1132098197937013, "iter": 116450, "memory": 8704, "step": 116450} +{"lr": 0.0031659847076985362, "data_time": 0.007654428482055664, "loss": 0.37975874841213225, "decode.loss_ce": 0.21497229114174843, "decode.acc_seg": 93.48735809326172, "aux.loss_ce": 0.16478645391762256, "aux.acc_seg": 71.93209075927734, "time": 1.1169795274734498, "iter": 116500, "memory": 8704, "step": 116500} +{"lr": 0.0031628128170212697, "data_time": 0.006386184692382812, "loss": 0.2526939056813717, "decode.loss_ce": 0.15312180072069168, "decode.acc_seg": 94.25724029541016, "aux.loss_ce": 0.09957210458815098, "aux.acc_seg": 87.77194213867188, "time": 1.1144139051437378, "iter": 116550, "memory": 8704, "step": 116550} +{"lr": 0.0031596405613182367, "data_time": 0.007092332839965821, "loss": 0.34681275188922883, "decode.loss_ce": 0.20328154563903808, "decode.acc_seg": 91.05854034423828, "aux.loss_ce": 0.1435312084853649, "aux.acc_seg": 89.92061614990234, "time": 1.117173671722412, "iter": 116600, "memory": 8703, "step": 116600} +{"lr": 0.0031564679401268184, "data_time": 0.007138514518737793, "loss": 0.5662979066371918, "decode.loss_ce": 0.3664178945124149, "decode.acc_seg": 88.44017028808594, "aux.loss_ce": 0.19988000616431237, "aux.acc_seg": 87.62026977539062, "time": 1.1176252365112305, "iter": 116650, "memory": 8704, "step": 116650} +{"lr": 0.0031532949529832796, "data_time": 0.006522846221923828, "loss": 0.31590671837329865, "decode.loss_ce": 0.194244372099638, "decode.acc_seg": 88.64752197265625, "aux.loss_ce": 0.12166235074400902, "aux.acc_seg": 87.65633392333984, "time": 1.116190242767334, "iter": 116700, "memory": 8703, "step": 116700} +{"lr": 0.0031501215994227537, "data_time": 0.007254338264465332, "loss": 0.2945534512400627, "decode.loss_ce": 0.18710734099149703, "decode.acc_seg": 91.4232177734375, "aux.loss_ce": 0.10744610987603664, "aux.acc_seg": 86.9496841430664, "time": 1.1153647184371949, "iter": 116750, "memory": 8704, "step": 116750} +{"lr": 0.0031469478789792494, "data_time": 0.007635045051574707, "loss": 0.3303507924079895, "decode.loss_ce": 0.20625085905194282, "decode.acc_seg": 94.82701873779297, "aux.loss_ce": 0.12409993223845958, "aux.acc_seg": 93.85446166992188, "time": 1.1157002449035645, "iter": 116800, "memory": 8704, "step": 116800} +{"lr": 0.003143773791185646, "data_time": 0.007362818717956543, "loss": 0.24835828244686126, "decode.loss_ce": 0.16046769991517068, "decode.acc_seg": 91.55290222167969, "aux.loss_ce": 0.08789058178663253, "aux.acc_seg": 88.26823425292969, "time": 1.1160861253738403, "iter": 116850, "memory": 8703, "step": 116850} +{"lr": 0.003140599335573684, "data_time": 0.007920551300048827, "loss": 0.29592782706022264, "decode.loss_ce": 0.17535367533564566, "decode.acc_seg": 95.75951385498047, "aux.loss_ce": 0.12057414837181568, "aux.acc_seg": 94.67855834960938, "time": 1.1175287246704102, "iter": 116900, "memory": 8704, "step": 116900} +{"lr": 0.0031374245116739608, "data_time": 0.007206630706787109, "loss": 0.31057559251785277, "decode.loss_ce": 0.187081977725029, "decode.acc_seg": 89.14286041259766, "aux.loss_ce": 0.12349361628293991, "aux.acc_seg": 85.84480285644531, "time": 1.1183859825134277, "iter": 116950, "memory": 8703, "step": 116950} +{"lr": 0.0031342493190159304, "data_time": 0.007733464241027832, "loss": 0.30296679884195327, "decode.loss_ce": 0.18879801630973816, "decode.acc_seg": 93.48143768310547, "aux.loss_ce": 0.11416878290474415, "aux.acc_seg": 91.13180541992188, "time": 1.1227115631103515, "iter": 117000, "memory": 8703, "step": 117000} +{"lr": 0.003131073757127899, "data_time": 0.00690000057220459, "loss": 0.3487622529268265, "decode.loss_ce": 0.2147653542459011, "decode.acc_seg": 95.22100830078125, "aux.loss_ce": 0.13399689495563508, "aux.acc_seg": 88.88905334472656, "time": 1.1161383152008058, "iter": 117050, "memory": 8704, "step": 117050} +{"lr": 0.0031278978255370148, "data_time": 0.006170129776000977, "loss": 0.4758059725165367, "decode.loss_ce": 0.3042060241103172, "decode.acc_seg": 89.67018127441406, "aux.loss_ce": 0.17159995026886463, "aux.acc_seg": 87.0829849243164, "time": 1.1134337425231933, "iter": 117100, "memory": 8704, "step": 117100} +{"lr": 0.0031247215237692762, "data_time": 0.007233452796936035, "loss": 0.2254745550453663, "decode.loss_ce": 0.13950665667653084, "decode.acc_seg": 97.50957489013672, "aux.loss_ce": 0.08596789874136448, "aux.acc_seg": 97.30472564697266, "time": 1.1213696241378783, "iter": 117150, "memory": 8704, "step": 117150} +{"lr": 0.003121544851349511, "data_time": 0.006699132919311524, "loss": 0.3461156040430069, "decode.loss_ce": 0.21701409742236139, "decode.acc_seg": 92.69306945800781, "aux.loss_ce": 0.12910150811076165, "aux.acc_seg": 91.01473236083984, "time": 1.1146815061569213, "iter": 117200, "memory": 8704, "step": 117200} +{"lr": 0.0031183678078013904, "data_time": 0.005661678314208984, "loss": 0.4199693873524666, "decode.loss_ce": 0.2519294641911983, "decode.acc_seg": 94.85769653320312, "aux.loss_ce": 0.1680399265140295, "aux.acc_seg": 91.21736907958984, "time": 1.115942120552063, "iter": 117250, "memory": 8704, "step": 117250} +{"lr": 0.003115190392647409, "data_time": 0.007626008987426758, "loss": 0.2964787185192108, "decode.loss_ce": 0.1661066621541977, "decode.acc_seg": 91.58699798583984, "aux.loss_ce": 0.130372054874897, "aux.acc_seg": 78.3087387084961, "time": 1.1153443813323975, "iter": 117300, "memory": 8704, "step": 117300} +{"lr": 0.003112012605408892, "data_time": 0.005701088905334472, "loss": 0.37203668504953386, "decode.loss_ce": 0.2255204476416111, "decode.acc_seg": 84.64717864990234, "aux.loss_ce": 0.14651623368263245, "aux.acc_seg": 78.68099212646484, "time": 1.1166646957397461, "iter": 117350, "memory": 8704, "step": 117350} +{"lr": 0.003108834445605976, "data_time": 0.0060813665390014645, "loss": 0.347957144677639, "decode.loss_ce": 0.20542361140251159, "decode.acc_seg": 88.88790893554688, "aux.loss_ce": 0.14253353253006934, "aux.acc_seg": 84.81159210205078, "time": 1.1178385496139527, "iter": 117400, "memory": 8703, "step": 117400} +{"lr": 0.0031056559127576305, "data_time": 0.007268142700195312, "loss": 0.3171412952244282, "decode.loss_ce": 0.20514920875430107, "decode.acc_seg": 95.19214630126953, "aux.loss_ce": 0.11199207864701748, "aux.acc_seg": 94.45171356201172, "time": 1.11525502204895, "iter": 117450, "memory": 8704, "step": 117450} +{"lr": 0.0031024770063816254, "data_time": 0.007159209251403809, "loss": 0.27312838584184645, "decode.loss_ce": 0.17235603630542756, "decode.acc_seg": 95.22564697265625, "aux.loss_ce": 0.10077234879136085, "aux.acc_seg": 94.6015625, "time": 1.1174233913421632, "iter": 117500, "memory": 8704, "step": 117500} +{"lr": 0.003099297725994543, "data_time": 0.007347583770751953, "loss": 0.4487717106938362, "decode.loss_ce": 0.2800252839922905, "decode.acc_seg": 95.6796646118164, "aux.loss_ce": 0.16874641813337804, "aux.acc_seg": 94.66297912597656, "time": 1.120888090133667, "iter": 117550, "memory": 8704, "step": 117550} +{"lr": 0.0030961180711117733, "data_time": 0.0080308198928833, "loss": 0.33460231125354767, "decode.loss_ce": 0.20912556797266008, "decode.acc_seg": 94.13833618164062, "aux.loss_ce": 0.12547674030065536, "aux.acc_seg": 94.71581268310547, "time": 1.1132672309875489, "iter": 117600, "memory": 8704, "step": 117600} +{"lr": 0.0030929380412474962, "data_time": 0.006988072395324707, "loss": 0.3403663501143456, "decode.loss_ce": 0.2075917452573776, "decode.acc_seg": 95.02264404296875, "aux.loss_ce": 0.13277460634708405, "aux.acc_seg": 94.6555404663086, "time": 1.115792179107666, "iter": 117650, "memory": 8703, "step": 117650} +{"lr": 0.0030897576359147027, "data_time": 0.007238125801086426, "loss": 0.2647049769759178, "decode.loss_ce": 0.15459100753068925, "decode.acc_seg": 94.13895416259766, "aux.loss_ce": 0.1101139698177576, "aux.acc_seg": 87.49063873291016, "time": 1.11107497215271, "iter": 117700, "memory": 8704, "step": 117700} +{"lr": 0.0030865768546251616, "data_time": 0.00799729824066162, "loss": 0.3593337096273899, "decode.loss_ce": 0.2345329023897648, "decode.acc_seg": 91.48915100097656, "aux.loss_ce": 0.12480080667883157, "aux.acc_seg": 89.14413452148438, "time": 1.1174731254577637, "iter": 117750, "memory": 8704, "step": 117750} +{"lr": 0.003083395696889433, "data_time": 0.00694725513458252, "loss": 0.3037870243191719, "decode.loss_ce": 0.17585766091942787, "decode.acc_seg": 97.22023010253906, "aux.loss_ce": 0.12792936377227307, "aux.acc_seg": 96.5049057006836, "time": 1.119181227684021, "iter": 117800, "memory": 8703, "step": 117800} +{"lr": 0.0030802141622168562, "data_time": 0.006692862510681153, "loss": 0.5489982485771179, "decode.loss_ce": 0.33643380254507066, "decode.acc_seg": 95.67190551757812, "aux.loss_ce": 0.2125644337385893, "aux.acc_seg": 95.74400329589844, "time": 1.1187718152999877, "iter": 117850, "memory": 8704, "step": 117850} +{"lr": 0.0030770322501155523, "data_time": 0.006332015991210938, "loss": 0.4127472057938576, "decode.loss_ce": 0.24957438036799431, "decode.acc_seg": 83.70513916015625, "aux.loss_ce": 0.16317282393574714, "aux.acc_seg": 81.5011978149414, "time": 1.1150217294692992, "iter": 117900, "memory": 8704, "step": 117900} +{"lr": 0.0030738499600924158, "data_time": 0.0064727067947387695, "loss": 0.2763240411877632, "decode.loss_ce": 0.17861736565828323, "decode.acc_seg": 95.04066467285156, "aux.loss_ce": 0.09770667627453804, "aux.acc_seg": 92.98820495605469, "time": 1.1148774862289428, "iter": 117950, "memory": 8704, "step": 117950} +{"lr": 0.003070667291653104, "data_time": 0.007741665840148926, "loss": 0.25434042513370514, "decode.loss_ce": 0.14772662222385408, "decode.acc_seg": 94.8687515258789, "aux.loss_ce": 0.10661380402743817, "aux.acc_seg": 92.7684326171875, "time": 1.1201592922210692, "iter": 118000, "memory": 8703, "step": 118000} +{"lr": 0.0030674842443020466, "data_time": 0.007701897621154785, "loss": 0.39634569436311723, "decode.loss_ce": 0.23187801316380502, "decode.acc_seg": 94.6325912475586, "aux.loss_ce": 0.16446768008172513, "aux.acc_seg": 88.08822631835938, "time": 1.1188938856124877, "iter": 118050, "memory": 8703, "step": 118050} +{"lr": 0.0030643008175424273, "data_time": 0.005756115913391114, "loss": 0.35287865847349165, "decode.loss_ce": 0.20419825464487076, "decode.acc_seg": 90.41830444335938, "aux.loss_ce": 0.14868040643632413, "aux.acc_seg": 77.73819732666016, "time": 1.1172492980957032, "iter": 118100, "memory": 8703, "step": 118100} +{"lr": 0.0030611170108761836, "data_time": 0.007372426986694336, "loss": 0.31227714866399764, "decode.loss_ce": 0.18064976781606673, "decode.acc_seg": 94.95073699951172, "aux.loss_ce": 0.13162737861275672, "aux.acc_seg": 89.6067886352539, "time": 1.112756323814392, "iter": 118150, "memory": 8703, "step": 118150} +{"lr": 0.0030579328238040057, "data_time": 0.007433176040649414, "loss": 0.25658088773488996, "decode.loss_ce": 0.16564772352576257, "decode.acc_seg": 91.60537719726562, "aux.loss_ce": 0.0909331627190113, "aux.acc_seg": 89.97370147705078, "time": 1.117522668838501, "iter": 118200, "memory": 8703, "step": 118200} +{"lr": 0.0030547482558253296, "data_time": 0.007297372817993164, "loss": 0.4652861386537552, "decode.loss_ce": 0.26910067200660703, "decode.acc_seg": 94.78836059570312, "aux.loss_ce": 0.19618546068668366, "aux.acc_seg": 72.98367309570312, "time": 1.1183281660079956, "iter": 118250, "memory": 8704, "step": 118250} +{"lr": 0.003051563306438333, "data_time": 0.0068817138671875, "loss": 0.46645710319280625, "decode.loss_ce": 0.26438448652625085, "decode.acc_seg": 91.0491943359375, "aux.loss_ce": 0.20207262523472308, "aux.acc_seg": 89.81278228759766, "time": 1.1185096502304077, "iter": 118300, "memory": 8704, "step": 118300} +{"lr": 0.0030483779751399316, "data_time": 0.0068313837051391605, "loss": 0.5069179475307465, "decode.loss_ce": 0.3103406146168709, "decode.acc_seg": 90.72295379638672, "aux.loss_ce": 0.1965773344039917, "aux.acc_seg": 89.37723541259766, "time": 1.1201481580734254, "iter": 118350, "memory": 8704, "step": 118350} +{"lr": 0.003045192261425767, "data_time": 0.005827522277832032, "loss": 0.2946878746151924, "decode.loss_ce": 0.18231988325715065, "decode.acc_seg": 97.02223205566406, "aux.loss_ce": 0.11236799582839012, "aux.acc_seg": 96.88188934326172, "time": 1.1156659126281738, "iter": 118400, "memory": 8703, "step": 118400} +{"lr": 0.0030420061647902087, "data_time": 0.006191039085388183, "loss": 0.34748008102178574, "decode.loss_ce": 0.20641161650419235, "decode.acc_seg": 94.84493255615234, "aux.loss_ce": 0.14106846116483213, "aux.acc_seg": 81.20442199707031, "time": 1.1137662410736084, "iter": 118450, "memory": 8704, "step": 118450} +{"lr": 0.0030388196847263545, "data_time": 0.006550741195678711, "loss": 0.27781179547309875, "decode.loss_ce": 0.16926997676491737, "decode.acc_seg": 91.48190307617188, "aux.loss_ce": 0.10854181572794915, "aux.acc_seg": 86.3134994506836, "time": 1.11603581905365, "iter": 118500, "memory": 8703, "step": 118500} +{"lr": 0.0030356328207260105, "data_time": 0.007185125350952148, "loss": 0.42182189524173735, "decode.loss_ce": 0.24766406491398812, "decode.acc_seg": 94.3900375366211, "aux.loss_ce": 0.1741578210145235, "aux.acc_seg": 91.71981811523438, "time": 1.1157001495361327, "iter": 118550, "memory": 8704, "step": 118550} +{"lr": 0.0030324455722797045, "data_time": 0.007243132591247559, "loss": 0.31582423597574233, "decode.loss_ce": 0.1846282958984375, "decode.acc_seg": 94.99158477783203, "aux.loss_ce": 0.1311959370970726, "aux.acc_seg": 89.72149658203125, "time": 1.1135929584503175, "iter": 118600, "memory": 8703, "step": 118600} +{"lr": 0.0030292579388766687, "data_time": 0.007086110115051269, "loss": 0.33782235234975816, "decode.loss_ce": 0.21660812795162201, "decode.acc_seg": 93.27786254882812, "aux.loss_ce": 0.12121422365307807, "aux.acc_seg": 90.83563232421875, "time": 1.115226650238037, "iter": 118650, "memory": 8703, "step": 118650} +{"lr": 0.0030260699200048355, "data_time": 0.006153082847595215, "loss": 0.34556457698345183, "decode.loss_ce": 0.19217809289693832, "decode.acc_seg": 89.98908996582031, "aux.loss_ce": 0.15338648222386836, "aux.acc_seg": 84.72334289550781, "time": 1.1160059928894044, "iter": 118700, "memory": 8703, "step": 118700} +{"lr": 0.0030228815151508407, "data_time": 0.007898426055908203, "loss": 0.45012510418891905, "decode.loss_ce": 0.2504067398607731, "decode.acc_seg": 87.9893569946289, "aux.loss_ce": 0.19971837028861045, "aux.acc_seg": 64.42692565917969, "time": 1.1181425333023072, "iter": 118750, "memory": 8704, "step": 118750} +{"lr": 0.0030196927238000035, "data_time": 0.006512737274169922, "loss": 0.35149299800395967, "decode.loss_ce": 0.22792185097932816, "decode.acc_seg": 95.7528076171875, "aux.loss_ce": 0.1235711544752121, "aux.acc_seg": 93.66824340820312, "time": 1.121034288406372, "iter": 118800, "memory": 8704, "step": 118800} +{"lr": 0.0030165035454363435, "data_time": 0.006261944770812988, "loss": 0.29926495254039764, "decode.loss_ce": 0.17394073978066443, "decode.acc_seg": 96.41971588134766, "aux.loss_ce": 0.1253242138773203, "aux.acc_seg": 95.34981536865234, "time": 1.116506576538086, "iter": 118850, "memory": 8704, "step": 118850} +{"lr": 0.003013313979542554, "data_time": 0.006605410575866699, "loss": 0.3703486695885658, "decode.loss_ce": 0.22038237601518632, "decode.acc_seg": 96.13399505615234, "aux.loss_ce": 0.14996629841625692, "aux.acc_seg": 86.63628387451172, "time": 1.1106452941894531, "iter": 118900, "memory": 8703, "step": 118900} +{"lr": 0.003010124025600014, "data_time": 0.005490303039550781, "loss": 0.32403783649206164, "decode.loss_ce": 0.20175567343831063, "decode.acc_seg": 94.87457275390625, "aux.loss_ce": 0.12228216007351875, "aux.acc_seg": 91.45996856689453, "time": 1.1147554159164428, "iter": 118950, "memory": 8703, "step": 118950} +{"lr": 0.0030069336830887733, "data_time": 0.006254863739013672, "loss": 0.31951894909143447, "decode.loss_ce": 0.17773376367986202, "decode.acc_seg": 92.60273742675781, "aux.loss_ce": 0.14178518056869507, "aux.acc_seg": 93.23304748535156, "time": 1.1158447980880737, "iter": 119000, "memory": 8704, "step": 119000} +{"lr": 0.0030037429514875435, "data_time": 0.007919669151306152, "loss": 0.27408444285392763, "decode.loss_ce": 0.17520182505249976, "decode.acc_seg": 92.7665023803711, "aux.loss_ce": 0.09888261668384075, "aux.acc_seg": 90.20010375976562, "time": 1.1156659126281738, "iter": 119050, "memory": 8704, "step": 119050} +{"lr": 0.0030005518302737124, "data_time": 0.0057640552520751955, "loss": 0.3471384659409523, "decode.loss_ce": 0.21596683263778688, "decode.acc_seg": 92.3309326171875, "aux.loss_ce": 0.13117162995040416, "aux.acc_seg": 90.08623504638672, "time": 1.1201542139053344, "iter": 119100, "memory": 8703, "step": 119100} +{"lr": 0.0029973603189233124, "data_time": 0.005225419998168945, "loss": 0.2965935915708542, "decode.loss_ce": 0.1852022796869278, "decode.acc_seg": 95.44664764404297, "aux.loss_ce": 0.11139131300151348, "aux.acc_seg": 91.41426086425781, "time": 1.1165199279785156, "iter": 119150, "memory": 8704, "step": 119150} +{"lr": 0.0029941684169110363, "data_time": 0.007079863548278808, "loss": 0.40469392091035844, "decode.loss_ce": 0.24994288086891175, "decode.acc_seg": 96.8170166015625, "aux.loss_ce": 0.15475103482604027, "aux.acc_seg": 94.97108459472656, "time": 1.119250226020813, "iter": 119200, "memory": 8703, "step": 119200} +{"lr": 0.002990976123710227, "data_time": 0.00786886215209961, "loss": 0.33839802742004393, "decode.loss_ce": 0.20750515758991242, "decode.acc_seg": 93.63045501708984, "aux.loss_ce": 0.1308928716927767, "aux.acc_seg": 86.22480010986328, "time": 1.1171535015106202, "iter": 119250, "memory": 8703, "step": 119250} +{"lr": 0.0029877834387928674, "data_time": 0.006537914276123047, "loss": 0.3114494144916534, "decode.loss_ce": 0.1972183682024479, "decode.acc_seg": 96.31690979003906, "aux.loss_ce": 0.1142310481518507, "aux.acc_seg": 95.02925872802734, "time": 1.112645411491394, "iter": 119300, "memory": 8704, "step": 119300} +{"lr": 0.002984590361629575, "data_time": 0.007685518264770508, "loss": 0.270964577794075, "decode.loss_ce": 0.15747016072273254, "decode.acc_seg": 90.36846160888672, "aux.loss_ce": 0.11349441781640053, "aux.acc_seg": 87.62098693847656, "time": 1.1161834239959716, "iter": 119350, "memory": 8704, "step": 119350} +{"lr": 0.0029813968916896053, "data_time": 0.007703208923339843, "loss": 0.32827315777540206, "decode.loss_ce": 0.20170889869332315, "decode.acc_seg": 91.37039184570312, "aux.loss_ce": 0.12656426429748535, "aux.acc_seg": 90.4349594116211, "time": 1.1107158184051513, "iter": 119400, "memory": 8704, "step": 119400} +{"lr": 0.0029782030284408348, "data_time": 0.008459019660949706, "loss": 0.2980306357145309, "decode.loss_ce": 0.1762756884098053, "decode.acc_seg": 90.19609832763672, "aux.loss_ce": 0.12175494842231274, "aux.acc_seg": 85.41806030273438, "time": 1.1182103872299194, "iter": 119450, "memory": 8704, "step": 119450} +{"lr": 0.002975008771349773, "data_time": 0.007019710540771484, "loss": 0.24577812552452089, "decode.loss_ce": 0.15733117014169692, "decode.acc_seg": 91.39385223388672, "aux.loss_ce": 0.08844695203006267, "aux.acc_seg": 94.47498321533203, "time": 1.1148927211761475, "iter": 119500, "memory": 8704, "step": 119500} +{"lr": 0.002971814119881533, "data_time": 0.006570863723754883, "loss": 0.2639125660061836, "decode.loss_ce": 0.1601667121052742, "decode.acc_seg": 93.75940704345703, "aux.loss_ce": 0.10374585203826428, "aux.acc_seg": 87.62683868408203, "time": 1.1157951354980469, "iter": 119550, "memory": 8705, "step": 119550} +{"lr": 0.0029686190734998486, "data_time": 0.00842437744140625, "loss": 0.3993761658668518, "decode.loss_ce": 0.26338741183280945, "decode.acc_seg": 96.02921295166016, "aux.loss_ce": 0.13598875626921653, "aux.acc_seg": 96.92414093017578, "time": 1.116010570526123, "iter": 119600, "memory": 8704, "step": 119600} +{"lr": 0.002965423631667056, "data_time": 0.006718254089355469, "loss": 0.2817791372537613, "decode.loss_ce": 0.16527287140488625, "decode.acc_seg": 94.02236938476562, "aux.loss_ce": 0.11650626622140407, "aux.acc_seg": 92.36290740966797, "time": 1.116454291343689, "iter": 119650, "memory": 8703, "step": 119650} +{"lr": 0.00296222779384409, "data_time": 0.008020567893981933, "loss": 0.3921809270977974, "decode.loss_ce": 0.22367403507232667, "decode.acc_seg": 95.66634368896484, "aux.loss_ce": 0.16850689053535461, "aux.acc_seg": 94.44290924072266, "time": 1.1159380197525024, "iter": 119700, "memory": 8704, "step": 119700} +{"lr": 0.0029590315594904865, "data_time": 0.008776021003723145, "loss": 0.41129148080945016, "decode.loss_ce": 0.2542628742754459, "decode.acc_seg": 78.9002685546875, "aux.loss_ce": 0.15702860429883003, "aux.acc_seg": 72.67996215820312, "time": 1.1149466514587403, "iter": 119750, "memory": 8703, "step": 119750} +{"lr": 0.0029558349280643676, "data_time": 0.007138538360595703, "loss": 0.33141166567802427, "decode.loss_ce": 0.20821332037448884, "decode.acc_seg": 96.21868133544922, "aux.loss_ce": 0.12319834642112255, "aux.acc_seg": 94.46760559082031, "time": 1.1152779579162597, "iter": 119800, "memory": 8704, "step": 119800} +{"lr": 0.002952637899022444, "data_time": 0.006695556640625, "loss": 0.2760501056909561, "decode.loss_ce": 0.1506868213415146, "decode.acc_seg": 96.40464782714844, "aux.loss_ce": 0.1253632850944996, "aux.acc_seg": 95.75271606445312, "time": 1.113199234008789, "iter": 119850, "memory": 8704, "step": 119850} +{"lr": 0.0029494404718199948, "data_time": 0.007570481300354004, "loss": 0.42628636211156845, "decode.loss_ce": 0.2559135228395462, "decode.acc_seg": 96.7341079711914, "aux.loss_ce": 0.17037283889949323, "aux.acc_seg": 96.304443359375, "time": 1.1158007383346558, "iter": 119900, "memory": 8703, "step": 119900} +{"lr": 0.0029462426459108838, "data_time": 0.005916023254394531, "loss": 0.3524683117866516, "decode.loss_ce": 0.20256206691265105, "decode.acc_seg": 94.69845581054688, "aux.loss_ce": 0.14990624487400056, "aux.acc_seg": 89.1571044921875, "time": 1.1168493747711181, "iter": 119950, "memory": 8704, "step": 119950} +{"lr": 0.0029430444207475424, "data_time": 0.0070193767547607425, "loss": 0.37732495814561845, "decode.loss_ce": 0.22710549160838128, "decode.acc_seg": 94.4555892944336, "aux.loss_ce": 0.1502194654196501, "aux.acc_seg": 92.29767608642578, "time": 1.1193336963653564, "iter": 120000, "memory": 8704, "step": 120000} +{"lr": 0.0029398457957809584, "data_time": 0.006226634979248047, "loss": 0.3034889906644821, "decode.loss_ce": 0.18553031161427497, "decode.acc_seg": 84.00203704833984, "aux.loss_ce": 0.11795868091285229, "aux.acc_seg": 81.1855239868164, "time": 1.1166188955307006, "iter": 120050, "memory": 8703, "step": 120050} +{"lr": 0.0029366467704606803, "data_time": 0.007634353637695312, "loss": 0.2528408169746399, "decode.loss_ce": 0.16282534301280976, "decode.acc_seg": 95.06829071044922, "aux.loss_ce": 0.09001547694206238, "aux.acc_seg": 93.4377670288086, "time": 1.1139403581619263, "iter": 120100, "memory": 8704, "step": 120100} +{"lr": 0.002933447344234809, "data_time": 0.006666231155395508, "loss": 0.3484670639038086, "decode.loss_ce": 0.20853766202926635, "decode.acc_seg": 89.37866973876953, "aux.loss_ce": 0.13992940001189708, "aux.acc_seg": 84.63668823242188, "time": 1.1126919746398927, "iter": 120150, "memory": 8704, "step": 120150} +{"lr": 0.0029302475165499846, "data_time": 0.00764458179473877, "loss": 0.22318029254674912, "decode.loss_ce": 0.13554410338401796, "decode.acc_seg": 95.75150299072266, "aux.loss_ce": 0.08763619177043439, "aux.acc_seg": 89.97795867919922, "time": 1.116716170310974, "iter": 120200, "memory": 8704, "step": 120200} +{"lr": 0.0029270472868513967, "data_time": 0.006971931457519532, "loss": 0.3266331389546394, "decode.loss_ce": 0.20267633348703384, "decode.acc_seg": 92.38287353515625, "aux.loss_ce": 0.12395680844783782, "aux.acc_seg": 93.89578247070312, "time": 1.116142749786377, "iter": 120250, "memory": 8704, "step": 120250} +{"lr": 0.0029238466545827607, "data_time": 0.007878589630126952, "loss": 0.3448101431131363, "decode.loss_ce": 0.22053589895367623, "decode.acc_seg": 89.78214263916016, "aux.loss_ce": 0.12427424415946006, "aux.acc_seg": 77.81568908691406, "time": 1.1173598766326904, "iter": 120300, "memory": 8704, "step": 120300} +{"lr": 0.0029206456191863284, "data_time": 0.005203342437744141, "loss": 0.22399032413959502, "decode.loss_ce": 0.1403414525091648, "decode.acc_seg": 94.92008972167969, "aux.loss_ce": 0.08364887181669474, "aux.acc_seg": 93.66289520263672, "time": 1.1091812372207641, "iter": 120350, "memory": 8704, "step": 120350} +{"lr": 0.0029174441801028688, "data_time": 0.005622482299804688, "loss": 0.4317209079861641, "decode.loss_ce": 0.3020715244114399, "decode.acc_seg": 92.68843078613281, "aux.loss_ce": 0.12964938133955, "aux.acc_seg": 88.6893539428711, "time": 1.1108233213424683, "iter": 120400, "memory": 8704, "step": 120400} +{"lr": 0.002914242336771672, "data_time": 0.007099962234497071, "loss": 0.41581563726067544, "decode.loss_ce": 0.22988003343343735, "decode.acc_seg": 97.55992889404297, "aux.loss_ce": 0.1859356015920639, "aux.acc_seg": 96.93196105957031, "time": 1.120967483520508, "iter": 120450, "memory": 8704, "step": 120450} +{"lr": 0.002911040088630533, "data_time": 0.007696771621704101, "loss": 0.26185629665851595, "decode.loss_ce": 0.1562098614871502, "decode.acc_seg": 92.82351684570312, "aux.loss_ce": 0.10564643032848835, "aux.acc_seg": 89.24076080322266, "time": 1.118361496925354, "iter": 120500, "memory": 8703, "step": 120500} +{"lr": 0.002907837435115757, "data_time": 0.006826519966125488, "loss": 0.3070846900343895, "decode.loss_ce": 0.19070177227258683, "decode.acc_seg": 95.90914154052734, "aux.loss_ce": 0.11638291515409946, "aux.acc_seg": 94.66291046142578, "time": 1.1204313039779663, "iter": 120550, "memory": 8703, "step": 120550} +{"lr": 0.002904634375662152, "data_time": 0.00820014476776123, "loss": 0.34375978708267213, "decode.loss_ce": 0.21838681623339654, "decode.acc_seg": 75.28126525878906, "aux.loss_ce": 0.1253729734569788, "aux.acc_seg": 69.86331939697266, "time": 1.123870849609375, "iter": 120600, "memory": 8704, "step": 120600} +{"lr": 0.0029014309097030113, "data_time": 0.0072814226150512695, "loss": 0.4174360051751137, "decode.loss_ce": 0.25210496336221694, "decode.acc_seg": 95.4936294555664, "aux.loss_ce": 0.16533103920519351, "aux.acc_seg": 93.450927734375, "time": 1.114977812767029, "iter": 120650, "memory": 8703, "step": 120650} +{"lr": 0.0028982270366701233, "data_time": 0.007142972946166992, "loss": 0.3762162923812866, "decode.loss_ce": 0.2227008655667305, "decode.acc_seg": 95.08094787597656, "aux.loss_ce": 0.15351542457938194, "aux.acc_seg": 86.21292114257812, "time": 1.1141850471496582, "iter": 120700, "memory": 8704, "step": 120700} +{"lr": 0.002895022755993753, "data_time": 0.006819605827331543, "loss": 0.22988042905926703, "decode.loss_ce": 0.13847056925296783, "decode.acc_seg": 96.55266571044922, "aux.loss_ce": 0.09140986166894435, "aux.acc_seg": 95.28084564208984, "time": 1.1119460105895995, "iter": 120750, "memory": 8704, "step": 120750} +{"lr": 0.002891818067102647, "data_time": 0.0060033082962036135, "loss": 0.3093048483133316, "decode.loss_ce": 0.19904454201459884, "decode.acc_seg": 94.81378936767578, "aux.loss_ce": 0.11026030369102954, "aux.acc_seg": 90.68291473388672, "time": 1.114373230934143, "iter": 120800, "memory": 8703, "step": 120800} +{"lr": 0.002888612969424018, "data_time": 0.007468032836914063, "loss": 0.24785636961460114, "decode.loss_ce": 0.1549387738108635, "decode.acc_seg": 96.06793212890625, "aux.loss_ce": 0.09291759394109249, "aux.acc_seg": 92.78080749511719, "time": 1.1194103240966797, "iter": 120850, "memory": 8703, "step": 120850} +{"lr": 0.00288540746238354, "data_time": 0.00742337703704834, "loss": 0.29426106810569763, "decode.loss_ce": 0.18127715066075326, "decode.acc_seg": 90.79232788085938, "aux.loss_ce": 0.11298392117023467, "aux.acc_seg": 80.76573181152344, "time": 1.111829948425293, "iter": 120900, "memory": 8704, "step": 120900} +{"lr": 0.002882201545405346, "data_time": 0.007395005226135254, "loss": 0.3491523802280426, "decode.loss_ce": 0.21569156944751738, "decode.acc_seg": 95.55651092529297, "aux.loss_ce": 0.13346081525087355, "aux.acc_seg": 92.80363464355469, "time": 1.113981056213379, "iter": 120950, "memory": 8704, "step": 120950} +{"lr": 0.0028789952179120257, "data_time": 0.0066184520721435545, "loss": 0.34562835693359373, "decode.loss_ce": 0.2078423246741295, "decode.acc_seg": 94.44713592529297, "aux.loss_ce": 0.13778603561222552, "aux.acc_seg": 90.98993682861328, "time": 1.1147485733032227, "iter": 121000, "memory": 8703, "step": 121000} +{"lr": 0.0028757884793246093, "data_time": 0.0063059329986572266, "loss": 0.468480184674263, "decode.loss_ce": 0.28842399790883066, "decode.acc_seg": 89.62223815917969, "aux.loss_ce": 0.1800561875104904, "aux.acc_seg": 86.94336700439453, "time": 1.1140067815780639, "iter": 121050, "memory": 8704, "step": 121050} +{"lr": 0.002872581329062564, "data_time": 0.007961797714233398, "loss": 0.5074245780706406, "decode.loss_ce": 0.295836029946804, "decode.acc_seg": 94.42578887939453, "aux.loss_ce": 0.21158855259418488, "aux.acc_seg": 93.08848571777344, "time": 1.118094253540039, "iter": 121100, "memory": 8704, "step": 121100} +{"lr": 0.0028693737665437956, "data_time": 0.006370687484741211, "loss": 0.339640112221241, "decode.loss_ce": 0.19642542004585267, "decode.acc_seg": 91.0873031616211, "aux.loss_ce": 0.1432146940380335, "aux.acc_seg": 82.54667663574219, "time": 1.1122377634048461, "iter": 121150, "memory": 8703, "step": 121150} +{"lr": 0.0028661657911846325, "data_time": 0.006608748435974121, "loss": 0.41097469329833985, "decode.loss_ce": 0.24482840299606323, "decode.acc_seg": 92.01774597167969, "aux.loss_ce": 0.16614628955721855, "aux.acc_seg": 87.51201629638672, "time": 1.1127399444580077, "iter": 121200, "memory": 8704, "step": 121200} +{"lr": 0.0028629574023998233, "data_time": 0.0056555747985839845, "loss": 0.23408710733056068, "decode.loss_ce": 0.14824917390942574, "decode.acc_seg": 93.49752807617188, "aux.loss_ce": 0.0858379352837801, "aux.acc_seg": 89.4561767578125, "time": 1.1152667760849, "iter": 121250, "memory": 8704, "step": 121250} +{"lr": 0.002859748599602535, "data_time": 0.006188821792602539, "loss": 0.41153022050857546, "decode.loss_ce": 0.25122700706124307, "decode.acc_seg": 88.83113861083984, "aux.loss_ce": 0.16030321680009366, "aux.acc_seg": 87.03091430664062, "time": 1.1158313274383544, "iter": 121300, "memory": 8704, "step": 121300} +{"lr": 0.002856539382204338, "data_time": 0.006281805038452148, "loss": 0.3171373039484024, "decode.loss_ce": 0.19193891175091266, "decode.acc_seg": 98.12386322021484, "aux.loss_ce": 0.1251983854919672, "aux.acc_seg": 96.81122589111328, "time": 1.1149176597595214, "iter": 121350, "memory": 8703, "step": 121350} +{"lr": 0.0028533297496152066, "data_time": 0.008239269256591797, "loss": 0.34317581057548524, "decode.loss_ce": 0.19610328301787378, "decode.acc_seg": 97.83528137207031, "aux.loss_ce": 0.1470725305378437, "aux.acc_seg": 96.37648010253906, "time": 1.1203054666519165, "iter": 121400, "memory": 8704, "step": 121400} +{"lr": 0.0028501197012435102, "data_time": 0.007998847961425781, "loss": 0.3350799083709717, "decode.loss_ce": 0.2017563499510288, "decode.acc_seg": 96.43522644042969, "aux.loss_ce": 0.13332355618476868, "aux.acc_seg": 91.33154296875, "time": 1.1165306091308593, "iter": 121450, "memory": 8704, "step": 121450} +{"lr": 0.0028469092364959998, "data_time": 0.008007097244262695, "loss": 0.30979958474636077, "decode.loss_ce": 0.1885271929204464, "decode.acc_seg": 92.29933166503906, "aux.loss_ce": 0.12127239182591439, "aux.acc_seg": 88.16725158691406, "time": 1.1129414319992066, "iter": 121500, "memory": 8704, "step": 121500} +{"lr": 0.002843698354777819, "data_time": 0.007498359680175782, "loss": 0.2632279708981514, "decode.loss_ce": 0.16806065589189528, "decode.acc_seg": 96.0784912109375, "aux.loss_ce": 0.09516731463372707, "aux.acc_seg": 93.17569732666016, "time": 1.1149722337722778, "iter": 121550, "memory": 8704, "step": 121550} +{"lr": 0.0028404870554924787, "data_time": 0.007454514503479004, "loss": 0.23947480767965318, "decode.loss_ce": 0.1453869305551052, "decode.acc_seg": 94.1605224609375, "aux.loss_ce": 0.0940878763794899, "aux.acc_seg": 94.21812438964844, "time": 1.113540029525757, "iter": 121600, "memory": 8703, "step": 121600} +{"lr": 0.0028372753380418625, "data_time": 0.007420873641967774, "loss": 0.30033307522535324, "decode.loss_ce": 0.17095988057553768, "decode.acc_seg": 98.68756866455078, "aux.loss_ce": 0.12937319055199623, "aux.acc_seg": 96.18124389648438, "time": 1.116226077079773, "iter": 121650, "memory": 8704, "step": 121650} +{"lr": 0.0028340632018262163, "data_time": 0.005881810188293457, "loss": 0.2578088127076626, "decode.loss_ce": 0.14944722652435302, "decode.acc_seg": 96.12140655517578, "aux.loss_ce": 0.10836158469319343, "aux.acc_seg": 94.61237335205078, "time": 1.1111242532730103, "iter": 121700, "memory": 8704, "step": 121700} +{"lr": 0.002830850646244141, "data_time": 0.00659639835357666, "loss": 0.3372763320803642, "decode.loss_ce": 0.18850489780306817, "decode.acc_seg": 87.88006591796875, "aux.loss_ce": 0.1487714357674122, "aux.acc_seg": 79.97639465332031, "time": 1.1181802988052367, "iter": 121750, "memory": 8704, "step": 121750} +{"lr": 0.0028276376706925835, "data_time": 0.00708920955657959, "loss": 0.4177961602807045, "decode.loss_ce": 0.24413399025797844, "decode.acc_seg": 90.02262115478516, "aux.loss_ce": 0.17366217337548734, "aux.acc_seg": 84.72911071777344, "time": 1.1156651496887207, "iter": 121800, "memory": 8704, "step": 121800} +{"lr": 0.0028244242745668383, "data_time": 0.0077625751495361325, "loss": 0.41850324869155886, "decode.loss_ce": 0.2433823511004448, "decode.acc_seg": 91.21983337402344, "aux.loss_ce": 0.17512089498341082, "aux.acc_seg": 86.31903076171875, "time": 1.1168989658355712, "iter": 121850, "memory": 8703, "step": 121850} +{"lr": 0.0028212104572605326, "data_time": 0.006799459457397461, "loss": 0.23585515916347505, "decode.loss_ce": 0.1476456843316555, "decode.acc_seg": 92.00871276855469, "aux.loss_ce": 0.08820948079228401, "aux.acc_seg": 86.32481384277344, "time": 1.115212893486023, "iter": 121900, "memory": 8703, "step": 121900} +{"lr": 0.002817996218165624, "data_time": 0.007259225845336914, "loss": 0.277057746052742, "decode.loss_ce": 0.16966361701488494, "decode.acc_seg": 93.04370880126953, "aux.loss_ce": 0.10739413425326347, "aux.acc_seg": 88.36727142333984, "time": 1.1192411422729491, "iter": 121950, "memory": 8704, "step": 121950} +{"lr": 0.0028147815566723876, "data_time": 0.006708478927612305, "loss": 0.3248658195137978, "decode.loss_ce": 0.1908558040857315, "decode.acc_seg": 96.04593658447266, "aux.loss_ce": 0.1340100195258856, "aux.acc_seg": 94.15721893310547, "time": 1.1150588989257812, "iter": 122000, "memory": 8704, "step": 122000} +{"lr": 0.0028115664721694218, "data_time": 0.006127452850341797, "loss": 0.33425025194883345, "decode.loss_ce": 0.20416470766067504, "decode.acc_seg": 88.77957153320312, "aux.loss_ce": 0.13008554205298423, "aux.acc_seg": 83.11970520019531, "time": 1.111075472831726, "iter": 122050, "memory": 8703, "step": 122050} +{"lr": 0.0028083509640436247, "data_time": 0.0058820247650146484, "loss": 0.2839781939983368, "decode.loss_ce": 0.1628061607480049, "decode.acc_seg": 93.66753387451172, "aux.loss_ce": 0.12117203250527382, "aux.acc_seg": 92.29412078857422, "time": 1.111401128768921, "iter": 122100, "memory": 8703, "step": 122100} +{"lr": 0.0028051350316801974, "data_time": 0.007591080665588379, "loss": 0.30235513895750044, "decode.loss_ce": 0.1909773826599121, "decode.acc_seg": 95.78844451904297, "aux.loss_ce": 0.11137775890529156, "aux.acc_seg": 92.78621673583984, "time": 1.1174581050872803, "iter": 122150, "memory": 8704, "step": 122150} +{"lr": 0.0028019186744626416, "data_time": 0.0068874359130859375, "loss": 0.4633518859744072, "decode.loss_ce": 0.2966334491968155, "decode.acc_seg": 95.6003189086914, "aux.loss_ce": 0.1667184390127659, "aux.acc_seg": 92.97065734863281, "time": 1.1158767223358155, "iter": 122200, "memory": 8703, "step": 122200} +{"lr": 0.0027987018917727414, "data_time": 0.006844139099121094, "loss": 0.27076577544212344, "decode.loss_ce": 0.1654804192483425, "decode.acc_seg": 90.12139129638672, "aux.loss_ce": 0.10528535954654217, "aux.acc_seg": 82.9163818359375, "time": 1.1174001693725586, "iter": 122250, "memory": 8704, "step": 122250} +{"lr": 0.0027954846829905586, "data_time": 0.007475543022155762, "loss": 0.3042518779635429, "decode.loss_ce": 0.18806718960404395, "decode.acc_seg": 94.90504455566406, "aux.loss_ce": 0.1161846898496151, "aux.acc_seg": 93.79126739501953, "time": 1.116318368911743, "iter": 122300, "memory": 8704, "step": 122300} +{"lr": 0.0027922670474944335, "data_time": 0.007769584655761719, "loss": 0.2640624105930328, "decode.loss_ce": 0.1568701982498169, "decode.acc_seg": 96.83195495605469, "aux.loss_ce": 0.10719220675528049, "aux.acc_seg": 92.40467834472656, "time": 1.1148744106292725, "iter": 122350, "memory": 8704, "step": 122350} +{"lr": 0.0027890489846609714, "data_time": 0.00754544734954834, "loss": 0.3868715867400169, "decode.loss_ce": 0.227556761354208, "decode.acc_seg": 91.55693054199219, "aux.loss_ce": 0.1593148298561573, "aux.acc_seg": 83.76451873779297, "time": 1.1109422206878663, "iter": 122400, "memory": 8703, "step": 122400} +{"lr": 0.002785830493865033, "data_time": 0.006301307678222656, "loss": 0.3675309717655182, "decode.loss_ce": 0.22288656160235404, "decode.acc_seg": 76.75653839111328, "aux.loss_ce": 0.14464439637959003, "aux.acc_seg": 76.20709991455078, "time": 1.1119272470474244, "iter": 122450, "memory": 8704, "step": 122450} +{"lr": 0.002782611574479737, "data_time": 0.007247614860534668, "loss": 0.40890387296676634, "decode.loss_ce": 0.2632756747305393, "decode.acc_seg": 96.44705200195312, "aux.loss_ce": 0.14562819823622702, "aux.acc_seg": 94.79566955566406, "time": 1.1137303113937378, "iter": 122500, "memory": 8704, "step": 122500} +{"lr": 0.0027793922258764407, "data_time": 0.006491255760192871, "loss": 0.25142678022384646, "decode.loss_ce": 0.1525470219552517, "decode.acc_seg": 92.8782730102539, "aux.loss_ce": 0.09887976013123989, "aux.acc_seg": 90.0146484375, "time": 1.1144845962524415, "iter": 122550, "memory": 8704, "step": 122550} +{"lr": 0.002776172447424743, "data_time": 0.00636136531829834, "loss": 0.239635868370533, "decode.loss_ce": 0.14520516470074654, "decode.acc_seg": 96.61197662353516, "aux.loss_ce": 0.09443069994449615, "aux.acc_seg": 95.38383483886719, "time": 1.1138724088668823, "iter": 122600, "memory": 8704, "step": 122600} +{"lr": 0.002772952238492471, "data_time": 0.007179951667785645, "loss": 0.28128588050603864, "decode.loss_ce": 0.17358362823724746, "decode.acc_seg": 93.38417053222656, "aux.loss_ce": 0.10770224984735251, "aux.acc_seg": 86.021484375, "time": 1.1170386791229248, "iter": 122650, "memory": 8704, "step": 122650} +{"lr": 0.002769731598445676, "data_time": 0.009072995185852051, "loss": 0.34853348284959795, "decode.loss_ce": 0.2150833263993263, "decode.acc_seg": 85.36148071289062, "aux.loss_ce": 0.1334501590579748, "aux.acc_seg": 82.20850372314453, "time": 1.1219274282455445, "iter": 122700, "memory": 8703, "step": 122700} +{"lr": 0.0027665105266486234, "data_time": 0.007780694961547851, "loss": 0.28586436361074447, "decode.loss_ce": 0.1683704312890768, "decode.acc_seg": 95.10841369628906, "aux.loss_ce": 0.11749393828213214, "aux.acc_seg": 94.95378875732422, "time": 1.1141550302505494, "iter": 122750, "memory": 8704, "step": 122750} +{"lr": 0.002763289022463784, "data_time": 0.006917691230773926, "loss": 0.26210578083992003, "decode.loss_ce": 0.1568099446594715, "decode.acc_seg": 94.17820739746094, "aux.loss_ce": 0.1052958358079195, "aux.acc_seg": 92.72727966308594, "time": 1.1173336505889893, "iter": 122800, "memory": 8704, "step": 122800} +{"lr": 0.002760067085251833, "data_time": 0.007921957969665527, "loss": 0.432001531124115, "decode.loss_ce": 0.2619820863008499, "decode.acc_seg": 90.41728973388672, "aux.loss_ce": 0.17001944333314895, "aux.acc_seg": 84.50533294677734, "time": 1.1148648500442504, "iter": 122850, "memory": 8703, "step": 122850} +{"lr": 0.0027568447143716357, "data_time": 0.007126736640930176, "loss": 0.319801464676857, "decode.loss_ce": 0.20441577211022377, "decode.acc_seg": 89.84686279296875, "aux.loss_ce": 0.11538568809628487, "aux.acc_seg": 84.58003997802734, "time": 1.1148211717605592, "iter": 122900, "memory": 8704, "step": 122900} +{"lr": 0.0027536219091802458, "data_time": 0.006754660606384277, "loss": 0.30809091329574584, "decode.loss_ce": 0.18538695126771926, "decode.acc_seg": 93.16838073730469, "aux.loss_ce": 0.12270396314561367, "aux.acc_seg": 87.07815551757812, "time": 1.1113201141357423, "iter": 122950, "memory": 8704, "step": 122950} +{"lr": 0.0027503986690328936, "data_time": 0.006831049919128418, "loss": 0.3244614899158478, "decode.loss_ce": 0.1890313670039177, "decode.acc_seg": 94.82688903808594, "aux.loss_ce": 0.13543012253940107, "aux.acc_seg": 88.04753112792969, "time": 1.1174034595489502, "iter": 123000, "memory": 8703, "step": 123000} +{"lr": 0.002747174993282977, "data_time": 0.007918858528137207, "loss": 0.295478231459856, "decode.loss_ce": 0.18265382274985315, "decode.acc_seg": 94.42068481445312, "aux.loss_ce": 0.11282441169023513, "aux.acc_seg": 92.39641571044922, "time": 1.118278169631958, "iter": 123050, "memory": 8703, "step": 123050} +{"lr": 0.002743950881282059, "data_time": 0.006949424743652344, "loss": 0.3583738744258881, "decode.loss_ce": 0.2083335991948843, "decode.acc_seg": 91.66545104980469, "aux.loss_ce": 0.15004027411341667, "aux.acc_seg": 92.11874389648438, "time": 1.1170795440673829, "iter": 123100, "memory": 8704, "step": 123100} +{"lr": 0.002740726332379856, "data_time": 0.007629895210266113, "loss": 0.4623898923397064, "decode.loss_ce": 0.2758506819605827, "decode.acc_seg": 87.661865234375, "aux.loss_ce": 0.18653921484947206, "aux.acc_seg": 80.57289123535156, "time": 1.1182314872741699, "iter": 123150, "memory": 8703, "step": 123150} +{"lr": 0.0027375013459242327, "data_time": 0.008273768424987792, "loss": 0.27314419075846674, "decode.loss_ce": 0.17056651562452316, "decode.acc_seg": 91.36543273925781, "aux.loss_ce": 0.10257766898721457, "aux.acc_seg": 91.83292388916016, "time": 1.1203948497772216, "iter": 123200, "memory": 8703, "step": 123200} +{"lr": 0.002734275921261188, "data_time": 0.007419657707214355, "loss": 0.26077515482902525, "decode.loss_ce": 0.15849347785115242, "decode.acc_seg": 97.34606170654297, "aux.loss_ce": 0.10228167735040188, "aux.acc_seg": 97.29730224609375, "time": 1.1109809875488281, "iter": 123250, "memory": 8703, "step": 123250} +{"lr": 0.0027310500577348625, "data_time": 0.007566285133361816, "loss": 0.330755390226841, "decode.loss_ce": 0.19717988520860671, "decode.acc_seg": 97.07482147216797, "aux.loss_ce": 0.13357549905776978, "aux.acc_seg": 96.07403564453125, "time": 1.1119609594345092, "iter": 123300, "memory": 8703, "step": 123300} +{"lr": 0.00272782375468751, "data_time": 0.005996274948120117, "loss": 0.28478822857141495, "decode.loss_ce": 0.17924437671899796, "decode.acc_seg": 96.88377380371094, "aux.loss_ce": 0.10554384775459766, "aux.acc_seg": 95.9277572631836, "time": 1.110606861114502, "iter": 123350, "memory": 8704, "step": 123350} +{"lr": 0.002724597011459506, "data_time": 0.006377553939819336, "loss": 0.23503537625074386, "decode.loss_ce": 0.1395825445652008, "decode.acc_seg": 91.16683959960938, "aux.loss_ce": 0.095452830940485, "aux.acc_seg": 85.0485610961914, "time": 1.1146754503250123, "iter": 123400, "memory": 8703, "step": 123400} +{"lr": 0.0027213698273893284, "data_time": 0.007294058799743652, "loss": 0.3537108339369297, "decode.loss_ce": 0.20961564779281616, "decode.acc_seg": 94.36155700683594, "aux.loss_ce": 0.14409518167376517, "aux.acc_seg": 91.6861801147461, "time": 1.1227616786956787, "iter": 123450, "memory": 8704, "step": 123450} +{"lr": 0.002718142201813561, "data_time": 0.007131409645080566, "loss": 0.31967593133449557, "decode.loss_ce": 0.18209802582859994, "decode.acc_seg": 97.37345123291016, "aux.loss_ce": 0.13757789880037308, "aux.acc_seg": 91.91665649414062, "time": 1.116819429397583, "iter": 123500, "memory": 8704, "step": 123500} +{"lr": 0.002714914134066874, "data_time": 0.006673097610473633, "loss": 0.34076110273599625, "decode.loss_ce": 0.2099112533032894, "decode.acc_seg": 94.85397338867188, "aux.loss_ce": 0.1308498505502939, "aux.acc_seg": 94.36772155761719, "time": 1.118877148628235, "iter": 123550, "memory": 8703, "step": 123550} +{"lr": 0.0027116856234820196, "data_time": 0.006923985481262207, "loss": 0.2774568647146225, "decode.loss_ce": 0.16539322808384896, "decode.acc_seg": 89.74609375, "aux.loss_ce": 0.11206363104283809, "aux.acc_seg": 88.63563537597656, "time": 1.1176302433013916, "iter": 123600, "memory": 8703, "step": 123600} +{"lr": 0.002708456669389832, "data_time": 0.006958222389221192, "loss": 0.27545780688524246, "decode.loss_ce": 0.16264790594577788, "decode.acc_seg": 96.51692199707031, "aux.loss_ce": 0.11280990056693554, "aux.acc_seg": 96.00086212158203, "time": 1.120714044570923, "iter": 123650, "memory": 8703, "step": 123650} +{"lr": 0.0027052272711192062, "data_time": 0.006727099418640137, "loss": 0.4424294471740723, "decode.loss_ce": 0.2751129984855652, "decode.acc_seg": 93.40667724609375, "aux.loss_ce": 0.1673164412379265, "aux.acc_seg": 90.4581069946289, "time": 1.1168050050735474, "iter": 123700, "memory": 8705, "step": 123700} +{"lr": 0.0027019974279970977, "data_time": 0.005799698829650879, "loss": 0.45101987272500993, "decode.loss_ce": 0.28930436819791794, "decode.acc_seg": 90.70173645019531, "aux.loss_ce": 0.1617155008018017, "aux.acc_seg": 82.77733612060547, "time": 1.11678147315979, "iter": 123750, "memory": 8703, "step": 123750} +{"lr": 0.0026987671393485114, "data_time": 0.007179522514343261, "loss": 0.303640778362751, "decode.loss_ce": 0.1704696774482727, "decode.acc_seg": 88.88702392578125, "aux.loss_ce": 0.1331711046397686, "aux.acc_seg": 82.91307830810547, "time": 1.1118889808654786, "iter": 123800, "memory": 8703, "step": 123800} +{"lr": 0.002695536404496497, "data_time": 0.005719447135925293, "loss": 0.3846336126327515, "decode.loss_ce": 0.23440338298678398, "decode.acc_seg": 96.31938934326172, "aux.loss_ce": 0.1502302274107933, "aux.acc_seg": 96.10086822509766, "time": 1.11198091506958, "iter": 123850, "memory": 8703, "step": 123850} +{"lr": 0.0026923052227621354, "data_time": 0.0061146259307861325, "loss": 0.28268412351608274, "decode.loss_ce": 0.17768367603421212, "decode.acc_seg": 94.9850082397461, "aux.loss_ce": 0.10500044971704484, "aux.acc_seg": 93.31137084960938, "time": 1.1160072326660155, "iter": 123900, "memory": 8704, "step": 123900} +{"lr": 0.002689073593464534, "data_time": 0.00811455249786377, "loss": 0.26784960031509397, "decode.loss_ce": 0.1644825465977192, "decode.acc_seg": 91.24082946777344, "aux.loss_ce": 0.10336705558001995, "aux.acc_seg": 87.56475067138672, "time": 1.1184265613555908, "iter": 123950, "memory": 8704, "step": 123950} +{"lr": 0.002685841515920815, "data_time": 0.007628679275512695, "loss": 0.3535329014062881, "decode.loss_ce": 0.21979193314909934, "decode.acc_seg": 96.39530181884766, "aux.loss_ce": 0.13374096862971782, "aux.acc_seg": 95.3431396484375, "time": 1.1154619693756103, "iter": 124000, "memory": 8703, "step": 124000} +{"lr": 0.0026826089894461114, "data_time": 0.007176542282104492, "loss": 0.30544764548540115, "decode.loss_ce": 0.18086185231804847, "decode.acc_seg": 95.54004669189453, "aux.loss_ce": 0.1245857909321785, "aux.acc_seg": 91.83712005615234, "time": 1.1146189451217652, "iter": 124050, "memory": 8704, "step": 124050} +{"lr": 0.002679376013353552, "data_time": 0.0074428081512451175, "loss": 0.27948956191539764, "decode.loss_ce": 0.1638211004436016, "decode.acc_seg": 95.2204818725586, "aux.loss_ce": 0.11566846258938313, "aux.acc_seg": 93.38970947265625, "time": 1.1170533895492554, "iter": 124100, "memory": 8704, "step": 124100} +{"lr": 0.002676142586954262, "data_time": 0.009290814399719238, "loss": 0.49919148832559584, "decode.loss_ce": 0.33786202445626257, "decode.acc_seg": 88.26179504394531, "aux.loss_ce": 0.16132945865392684, "aux.acc_seg": 83.89021301269531, "time": 1.1182233810424804, "iter": 124150, "memory": 8704, "step": 124150} +{"lr": 0.002672908709557341, "data_time": 0.008196020126342773, "loss": 0.2827759340405464, "decode.loss_ce": 0.1677287422120571, "decode.acc_seg": 93.27825164794922, "aux.loss_ce": 0.11504718586802483, "aux.acc_seg": 88.6630859375, "time": 1.1154847383499145, "iter": 124200, "memory": 8703, "step": 124200} +{"lr": 0.002669674380469871, "data_time": 0.005912327766418457, "loss": 0.35010079592466353, "decode.loss_ce": 0.2050577223300934, "decode.acc_seg": 94.09859466552734, "aux.loss_ce": 0.14504307545721531, "aux.acc_seg": 91.99383544921875, "time": 1.1165985822677613, "iter": 124250, "memory": 8704, "step": 124250} +{"lr": 0.0026664395989968925, "data_time": 0.005708432197570801, "loss": 0.3149556517601013, "decode.loss_ce": 0.1861652359366417, "decode.acc_seg": 93.12203216552734, "aux.loss_ce": 0.1287904128432274, "aux.acc_seg": 83.80813598632812, "time": 1.1206815242767334, "iter": 124300, "memory": 8703, "step": 124300} +{"lr": 0.002663204364441406, "data_time": 0.007661151885986328, "loss": 0.3732458189129829, "decode.loss_ce": 0.23300644457340242, "decode.acc_seg": 93.91485595703125, "aux.loss_ce": 0.14023938179016113, "aux.acc_seg": 86.17839813232422, "time": 1.116830539703369, "iter": 124350, "memory": 8703, "step": 124350} +{"lr": 0.002659968676104352, "data_time": 0.0063048601150512695, "loss": 0.3735448241233826, "decode.loss_ce": 0.21923414915800093, "decode.acc_seg": 85.9879150390625, "aux.loss_ce": 0.15431067124009132, "aux.acc_seg": 77.61280822753906, "time": 1.1154863357543945, "iter": 124400, "memory": 8703, "step": 124400} +{"lr": 0.0026567325332846198, "data_time": 0.007987022399902344, "loss": 0.2933378145098686, "decode.loss_ce": 0.14409442469477654, "decode.acc_seg": 92.47982788085938, "aux.loss_ce": 0.14924339391291142, "aux.acc_seg": 64.36945343017578, "time": 1.1222769260406493, "iter": 124450, "memory": 8703, "step": 124450} +{"lr": 0.002653495935279015, "data_time": 0.006011438369750976, "loss": 0.40004436671733856, "decode.loss_ce": 0.22819344326853752, "decode.acc_seg": 95.90433502197266, "aux.loss_ce": 0.17185091823339463, "aux.acc_seg": 94.24951171875, "time": 1.1117369890213014, "iter": 124500, "memory": 8703, "step": 124500} +{"lr": 0.002650258881382276, "data_time": 0.0057831287384033205, "loss": 0.2602111309766769, "decode.loss_ce": 0.16388117522001266, "decode.acc_seg": 91.03742980957031, "aux.loss_ce": 0.09632995650172234, "aux.acc_seg": 87.68621826171875, "time": 1.1125894069671631, "iter": 124550, "memory": 8704, "step": 124550} +{"lr": 0.002647021370887044, "data_time": 0.005379581451416015, "loss": 0.2658893883228302, "decode.loss_ce": 0.16464365348219873, "decode.acc_seg": 95.5999984741211, "aux.loss_ce": 0.1012457299977541, "aux.acc_seg": 94.23128509521484, "time": 1.1132055521011353, "iter": 124600, "memory": 8703, "step": 124600} +{"lr": 0.002643783403083863, "data_time": 0.006229043006896973, "loss": 0.29205746948719025, "decode.loss_ce": 0.16160230785608293, "decode.acc_seg": 96.34552001953125, "aux.loss_ce": 0.1304551586508751, "aux.acc_seg": 94.78327178955078, "time": 1.1174965143203734, "iter": 124650, "memory": 8703, "step": 124650} +{"lr": 0.002640544977261172, "data_time": 0.00698089599609375, "loss": 0.3271510019898415, "decode.loss_ce": 0.20175503194332123, "decode.acc_seg": 96.48246765136719, "aux.loss_ce": 0.12539597190916538, "aux.acc_seg": 95.27142333984375, "time": 1.1124857902526855, "iter": 124700, "memory": 8703, "step": 124700} +{"lr": 0.002637306092705292, "data_time": 0.005251002311706543, "loss": 0.26989132463932036, "decode.loss_ce": 0.1601789228618145, "decode.acc_seg": 96.01802825927734, "aux.loss_ce": 0.10971239805221558, "aux.acc_seg": 94.91539001464844, "time": 1.1098570823669434, "iter": 124750, "memory": 8704, "step": 124750} +{"lr": 0.002634066748700416, "data_time": 0.00685875415802002, "loss": 0.36272247731685636, "decode.loss_ce": 0.22301626279950143, "decode.acc_seg": 96.74154663085938, "aux.loss_ce": 0.13970621451735496, "aux.acc_seg": 95.74031829833984, "time": 1.1175547599792481, "iter": 124800, "memory": 8704, "step": 124800} +{"lr": 0.0026308269445286044, "data_time": 0.005873346328735351, "loss": 0.26865816712379453, "decode.loss_ce": 0.16211777701973915, "decode.acc_seg": 97.00901794433594, "aux.loss_ce": 0.10654038339853286, "aux.acc_seg": 94.99282836914062, "time": 1.114537739753723, "iter": 124850, "memory": 8704, "step": 124850} +{"lr": 0.0026275866794697707, "data_time": 0.007080435752868652, "loss": 0.329897540807724, "decode.loss_ce": 0.19654279202222824, "decode.acc_seg": 96.46343994140625, "aux.loss_ce": 0.13335474878549575, "aux.acc_seg": 92.56111145019531, "time": 1.1170918226242066, "iter": 124900, "memory": 8704, "step": 124900} +{"lr": 0.0026243459528016784, "data_time": 0.006670355796813965, "loss": 0.2874975651502609, "decode.loss_ce": 0.1610960178077221, "decode.acc_seg": 95.0418472290039, "aux.loss_ce": 0.12640154585242272, "aux.acc_seg": 91.01581573486328, "time": 1.1159904718399047, "iter": 124950, "memory": 8703, "step": 124950} +{"lr": 0.0026211047637999226, "data_time": 0.006375670433044434, "loss": 0.25619612634181976, "decode.loss_ce": 0.14370445683598518, "decode.acc_seg": 96.22713470458984, "aux.loss_ce": 0.11249166503548622, "aux.acc_seg": 95.52141571044922, "time": 1.118050503730774, "iter": 125000, "memory": 8704, "step": 125000} +{"lr": 0.0026178631117379243, "data_time": 0.006599783897399902, "loss": 0.2781688585877419, "decode.loss_ce": 0.16082002520561217, "decode.acc_seg": 96.43738555908203, "aux.loss_ce": 0.11734883859753609, "aux.acc_seg": 96.14524841308594, "time": 1.111739706993103, "iter": 125050, "memory": 8703, "step": 125050} +{"lr": 0.0026146209958869257, "data_time": 0.006855225563049317, "loss": 0.24679428786039354, "decode.loss_ce": 0.14782138988375665, "decode.acc_seg": 97.05473327636719, "aux.loss_ce": 0.09897289276123047, "aux.acc_seg": 96.21702575683594, "time": 1.111047887802124, "iter": 125100, "memory": 8703, "step": 125100} +{"lr": 0.002611378415515974, "data_time": 0.007781362533569336, "loss": 0.3193087548017502, "decode.loss_ce": 0.1924412429332733, "decode.acc_seg": 94.63532257080078, "aux.loss_ce": 0.12686750702559949, "aux.acc_seg": 87.64717864990234, "time": 1.117400336265564, "iter": 125150, "memory": 8704, "step": 125150} +{"lr": 0.0026081353698919163, "data_time": 0.006697726249694824, "loss": 0.335204091668129, "decode.loss_ce": 0.2047280803322792, "decode.acc_seg": 82.66842651367188, "aux.loss_ce": 0.13047600723803043, "aux.acc_seg": 76.39439392089844, "time": 1.116116428375244, "iter": 125200, "memory": 8705, "step": 125200} +{"lr": 0.0026048918582793844, "data_time": 0.006890153884887696, "loss": 0.2841563180088997, "decode.loss_ce": 0.17795406952500342, "decode.acc_seg": 97.85086059570312, "aux.loss_ce": 0.10620224885642529, "aux.acc_seg": 97.63298034667969, "time": 1.1141992568969727, "iter": 125250, "memory": 8704, "step": 125250} +{"lr": 0.002601647879940786, "data_time": 0.0062549829483032225, "loss": 0.3408166870474815, "decode.loss_ce": 0.1902589865028858, "decode.acc_seg": 95.30359649658203, "aux.loss_ce": 0.15055770054459572, "aux.acc_seg": 91.60772705078125, "time": 1.1156664848327638, "iter": 125300, "memory": 8703, "step": 125300} +{"lr": 0.0025984034341363033, "data_time": 0.005038547515869141, "loss": 0.3456500068306923, "decode.loss_ce": 0.1977804906666279, "decode.acc_seg": 89.0380859375, "aux.loss_ce": 0.14786952398717404, "aux.acc_seg": 81.53641510009766, "time": 1.1137880563735962, "iter": 125350, "memory": 8703, "step": 125350} +{"lr": 0.002595158520123873, "data_time": 0.0061223506927490234, "loss": 0.2337658151984215, "decode.loss_ce": 0.1475194662809372, "decode.acc_seg": 96.9797134399414, "aux.loss_ce": 0.08624634407460689, "aux.acc_seg": 95.21954345703125, "time": 1.1173820495605469, "iter": 125400, "memory": 8704, "step": 125400} +{"lr": 0.002591913137159177, "data_time": 0.006175637245178223, "loss": 0.3537291049957275, "decode.loss_ce": 0.20848434790968895, "decode.acc_seg": 90.85070037841797, "aux.loss_ce": 0.1452447548508644, "aux.acc_seg": 89.89460754394531, "time": 1.1148931503295898, "iter": 125450, "memory": 8704, "step": 125450} +{"lr": 0.002588667284495639, "data_time": 0.007107949256896973, "loss": 0.3396819993853569, "decode.loss_ce": 0.19432072192430497, "decode.acc_seg": 95.90320587158203, "aux.loss_ce": 0.14536127224564552, "aux.acc_seg": 93.70523834228516, "time": 1.1137339115142821, "iter": 125500, "memory": 8703, "step": 125500} +{"lr": 0.0025854209613844084, "data_time": 0.007358002662658692, "loss": 0.3002490483224392, "decode.loss_ce": 0.18026874735951423, "decode.acc_seg": 88.20338439941406, "aux.loss_ce": 0.11998029537498951, "aux.acc_seg": 84.1297607421875, "time": 1.1150595664978027, "iter": 125550, "memory": 8704, "step": 125550} +{"lr": 0.0025821741670743544, "data_time": 0.0062759160995483395, "loss": 0.2785277530550957, "decode.loss_ce": 0.16776273101568223, "decode.acc_seg": 93.35682678222656, "aux.loss_ce": 0.1107650201767683, "aux.acc_seg": 79.52537536621094, "time": 1.1176802158355712, "iter": 125600, "memory": 8704, "step": 125600} +{"lr": 0.0025789269008120504, "data_time": 0.006633973121643067, "loss": 0.2360692337155342, "decode.loss_ce": 0.14871569573879242, "decode.acc_seg": 93.40940856933594, "aux.loss_ce": 0.08735353462398052, "aux.acc_seg": 87.46166229248047, "time": 1.1176095247268676, "iter": 125650, "memory": 8703, "step": 125650} +{"lr": 0.0025756791618417657, "data_time": 0.00867135524749756, "loss": 0.34624180793762205, "decode.loss_ce": 0.21645376235246658, "decode.acc_seg": 95.70286560058594, "aux.loss_ce": 0.1297880493104458, "aux.acc_seg": 89.96295928955078, "time": 1.11659779548645, "iter": 125700, "memory": 8703, "step": 125700} +{"lr": 0.0025724309494054606, "data_time": 0.0057265996932983395, "loss": 0.2946243017911911, "decode.loss_ce": 0.17973765581846238, "decode.acc_seg": 93.9627456665039, "aux.loss_ce": 0.11488664820790291, "aux.acc_seg": 88.75513458251953, "time": 1.1139443874359132, "iter": 125750, "memory": 8703, "step": 125750} +{"lr": 0.002569182262742768, "data_time": 0.007246470451354981, "loss": 0.22767750844359397, "decode.loss_ce": 0.12802160531282425, "decode.acc_seg": 98.04356384277344, "aux.loss_ce": 0.09965589940547943, "aux.acc_seg": 97.29957580566406, "time": 1.117872667312622, "iter": 125800, "memory": 8704, "step": 125800} +{"lr": 0.0025659331010909883, "data_time": 0.006308603286743164, "loss": 0.3516126319766045, "decode.loss_ce": 0.19877840280532838, "decode.acc_seg": 96.58113861083984, "aux.loss_ce": 0.15283422991633416, "aux.acc_seg": 97.00870513916016, "time": 1.1197179079055786, "iter": 125850, "memory": 8704, "step": 125850} +{"lr": 0.002562683463685072, "data_time": 0.006400752067565918, "loss": 0.33421436995267867, "decode.loss_ce": 0.20837922841310502, "decode.acc_seg": 96.79081726074219, "aux.loss_ce": 0.1258351419121027, "aux.acc_seg": 95.55593872070312, "time": 1.1129948139190673, "iter": 125900, "memory": 8703, "step": 125900} +{"lr": 0.002559433349757619, "data_time": 0.006390810012817383, "loss": 0.2742054581642151, "decode.loss_ce": 0.1648017294704914, "decode.acc_seg": 95.87268829345703, "aux.loss_ce": 0.10940372683107853, "aux.acc_seg": 95.220947265625, "time": 1.112038540840149, "iter": 125950, "memory": 8704, "step": 125950} +{"lr": 0.002556182758538861, "data_time": 0.006513237953186035, "loss": 0.29890156611800195, "decode.loss_ce": 0.18754520677030087, "decode.acc_seg": 94.08270263671875, "aux.loss_ce": 0.11135635543614626, "aux.acc_seg": 91.19415283203125, "time": 1.1141381502151488, "iter": 126000, "memory": 8703, "step": 126000} +{"lr": 0.002552931689256648, "data_time": 0.006939053535461426, "loss": 0.32354770302772523, "decode.loss_ce": 0.1929408386349678, "decode.acc_seg": 88.00194549560547, "aux.loss_ce": 0.13060686290264129, "aux.acc_seg": 85.67078399658203, "time": 1.1189590692520142, "iter": 126050, "memory": 8704, "step": 126050} +{"lr": 0.0025496801411364497, "data_time": 0.006958365440368652, "loss": 0.3265936434268951, "decode.loss_ce": 0.21022274270653724, "decode.acc_seg": 95.97479248046875, "aux.loss_ce": 0.1163708996027708, "aux.acc_seg": 95.13848114013672, "time": 1.1176836490631104, "iter": 126100, "memory": 8704, "step": 126100} +{"lr": 0.0025464281134013303, "data_time": 0.006152725219726563, "loss": 0.27317784130573275, "decode.loss_ce": 0.14990926459431647, "decode.acc_seg": 96.90010833740234, "aux.loss_ce": 0.12326857969164848, "aux.acc_seg": 88.89630126953125, "time": 1.1149356365203857, "iter": 126150, "memory": 8703, "step": 126150} +{"lr": 0.0025431756052719462, "data_time": 0.006372857093811035, "loss": 0.38531686514616015, "decode.loss_ce": 0.2442160926759243, "decode.acc_seg": 90.17918395996094, "aux.loss_ce": 0.14110077023506165, "aux.acc_seg": 87.00554656982422, "time": 1.117699670791626, "iter": 126200, "memory": 8703, "step": 126200} +{"lr": 0.002539922615966535, "data_time": 0.007112622261047363, "loss": 0.3758296757936478, "decode.loss_ce": 0.22907293140888213, "decode.acc_seg": 88.53857421875, "aux.loss_ce": 0.14675673879683018, "aux.acc_seg": 86.77808380126953, "time": 1.113067054748535, "iter": 126250, "memory": 8704, "step": 126250} +{"lr": 0.0025366691447008963, "data_time": 0.007705879211425781, "loss": 0.26467558890581133, "decode.loss_ce": 0.16835768893361092, "decode.acc_seg": 83.61244201660156, "aux.loss_ce": 0.09631789959967137, "aux.acc_seg": 92.33734893798828, "time": 1.1134604215621948, "iter": 126300, "memory": 8703, "step": 126300} +{"lr": 0.0025334151906883907, "data_time": 0.007067489624023438, "loss": 0.41221087872982026, "decode.loss_ce": 0.24385577738285064, "decode.acc_seg": 97.75140380859375, "aux.loss_ce": 0.16835510581731797, "aux.acc_seg": 93.05888366699219, "time": 1.114669179916382, "iter": 126350, "memory": 8703, "step": 126350} +{"lr": 0.002530160753139921, "data_time": 0.005592608451843261, "loss": 0.2747366353869438, "decode.loss_ce": 0.15819083601236344, "decode.acc_seg": 92.64958190917969, "aux.loss_ce": 0.11654579937458039, "aux.acc_seg": 91.51344299316406, "time": 1.1139854431152343, "iter": 126400, "memory": 8704, "step": 126400} +{"lr": 0.0025269058312639286, "data_time": 0.0071354866027832035, "loss": 0.22633196264505387, "decode.loss_ce": 0.1343842551112175, "decode.acc_seg": 97.8118896484375, "aux.loss_ce": 0.09194770436733961, "aux.acc_seg": 97.68377685546875, "time": 1.1151375770568848, "iter": 126450, "memory": 8703, "step": 126450} +{"lr": 0.002523650424266371, "data_time": 0.00578153133392334, "loss": 0.5625658631324768, "decode.loss_ce": 0.3677764289081097, "decode.acc_seg": 91.33478546142578, "aux.loss_ce": 0.1947894286364317, "aux.acc_seg": 85.28257751464844, "time": 1.1144482135772704, "iter": 126500, "memory": 8704, "step": 126500} +{"lr": 0.0025203945313507195, "data_time": 0.006123685836791992, "loss": 0.24362329095602037, "decode.loss_ce": 0.13930737227201462, "decode.acc_seg": 95.89468383789062, "aux.loss_ce": 0.1043159218505025, "aux.acc_seg": 95.3980712890625, "time": 1.1169277906417847, "iter": 126550, "memory": 8703, "step": 126550} +{"lr": 0.0025171381517179467, "data_time": 0.007844233512878418, "loss": 0.27513338923454284, "decode.loss_ce": 0.16839161291718482, "decode.acc_seg": 91.18423461914062, "aux.loss_ce": 0.10674178190529346, "aux.acc_seg": 87.26952362060547, "time": 1.1173225402832032, "iter": 126600, "memory": 8703, "step": 126600} +{"lr": 0.002513881284566513, "data_time": 0.006474518775939941, "loss": 0.22050071954727174, "decode.loss_ce": 0.1324910454452038, "decode.acc_seg": 96.54421997070312, "aux.loss_ce": 0.08800967410206795, "aux.acc_seg": 96.10786437988281, "time": 1.1195560932159423, "iter": 126650, "memory": 8703, "step": 126650} +{"lr": 0.002510623929092352, "data_time": 0.007701659202575683, "loss": 0.21422309502959253, "decode.loss_ce": 0.13134851977229117, "decode.acc_seg": 97.42939758300781, "aux.loss_ce": 0.08287457376718521, "aux.acc_seg": 96.75369262695312, "time": 1.115287971496582, "iter": 126700, "memory": 8704, "step": 126700} +{"lr": 0.0025073660844888647, "data_time": 0.008129310607910157, "loss": 0.2749058485031128, "decode.loss_ce": 0.17107104808092116, "decode.acc_seg": 92.09575653076172, "aux.loss_ce": 0.10383479557931423, "aux.acc_seg": 84.03816223144531, "time": 1.1134113073349, "iter": 126750, "memory": 8704, "step": 126750} +{"lr": 0.002504107749946903, "data_time": 0.0063907384872436525, "loss": 0.28525940179824827, "decode.loss_ce": 0.19007778093218802, "decode.acc_seg": 96.51482391357422, "aux.loss_ce": 0.09518161788582802, "aux.acc_seg": 91.59367370605469, "time": 1.1137105464935302, "iter": 126800, "memory": 8703, "step": 126800} +{"lr": 0.0025008489246547607, "data_time": 0.005164504051208496, "loss": 0.35933109670877456, "decode.loss_ce": 0.23560712859034538, "decode.acc_seg": 97.27001190185547, "aux.loss_ce": 0.12372396513819695, "aux.acc_seg": 94.85651397705078, "time": 1.1092205286026, "iter": 126850, "memory": 8703, "step": 126850} +{"lr": 0.0024975896077981583, "data_time": 0.008185100555419923, "loss": 0.37775252014398575, "decode.loss_ce": 0.24186520725488664, "decode.acc_seg": 97.09465789794922, "aux.loss_ce": 0.13588730692863465, "aux.acc_seg": 96.44947052001953, "time": 1.1183526754379272, "iter": 126900, "memory": 8704, "step": 126900} +{"lr": 0.0024943297985602336, "data_time": 0.005662393569946289, "loss": 0.285881806910038, "decode.loss_ce": 0.17432301640510559, "decode.acc_seg": 93.23723602294922, "aux.loss_ce": 0.11155879013240337, "aux.acc_seg": 87.37983703613281, "time": 1.1121064662933349, "iter": 126950, "memory": 8704, "step": 126950} +{"lr": 0.002491069496121534, "data_time": 0.006237554550170899, "loss": 0.28223945796489713, "decode.loss_ce": 0.1788177505135536, "decode.acc_seg": 93.42403411865234, "aux.loss_ce": 0.10342171005904674, "aux.acc_seg": 85.68661499023438, "time": 1.119672179222107, "iter": 127000, "memory": 8704, "step": 127000} +{"lr": 0.0024878086996599925, "data_time": 0.006239891052246094, "loss": 0.2808046631515026, "decode.loss_ce": 0.18036139383912086, "decode.acc_seg": 89.3888931274414, "aux.loss_ce": 0.10044326893985271, "aux.acc_seg": 84.79527282714844, "time": 1.115594172477722, "iter": 127050, "memory": 8703, "step": 127050} +{"lr": 0.0024845474083509283, "data_time": 0.005098819732666016, "loss": 0.5552733644843102, "decode.loss_ce": 0.36873476058244703, "decode.acc_seg": 86.79783630371094, "aux.loss_ce": 0.18653859570622444, "aux.acc_seg": 84.12513732910156, "time": 1.1106881380081177, "iter": 127100, "memory": 8704, "step": 127100} +{"lr": 0.0024812856213670183, "data_time": 0.006316590309143067, "loss": 0.3430136203765869, "decode.loss_ce": 0.20443520098924636, "decode.acc_seg": 92.694091796875, "aux.loss_ce": 0.1385784216225147, "aux.acc_seg": 91.2470474243164, "time": 1.1137096405029296, "iter": 127150, "memory": 8704, "step": 127150} +{"lr": 0.0024780233378783063, "data_time": 0.006110429763793945, "loss": 0.3527248382568359, "decode.loss_ce": 0.22081184163689613, "decode.acc_seg": 96.57344818115234, "aux.loss_ce": 0.13191299699246883, "aux.acc_seg": 94.86007690429688, "time": 1.113096284866333, "iter": 127200, "memory": 8704, "step": 127200} +{"lr": 0.0024747605570521742, "data_time": 0.007284760475158691, "loss": 0.2972530424594879, "decode.loss_ce": 0.17216778844594954, "decode.acc_seg": 94.24164581298828, "aux.loss_ce": 0.12508525550365449, "aux.acc_seg": 83.94209289550781, "time": 1.1141457319259644, "iter": 127250, "memory": 8703, "step": 127250} +{"lr": 0.0024714972780533343, "data_time": 0.006796026229858398, "loss": 0.25428504049777984, "decode.loss_ce": 0.15779945403337478, "decode.acc_seg": 94.23179626464844, "aux.loss_ce": 0.09648558348417283, "aux.acc_seg": 92.84254455566406, "time": 1.1104360818862915, "iter": 127300, "memory": 8703, "step": 127300} +{"lr": 0.002468233500043818, "data_time": 0.00747220516204834, "loss": 0.3522603929042816, "decode.loss_ce": 0.2094075709581375, "decode.acc_seg": 90.09870910644531, "aux.loss_ce": 0.1428528182208538, "aux.acc_seg": 84.32573699951172, "time": 1.1174687623977662, "iter": 127350, "memory": 8703, "step": 127350} +{"lr": 0.002464969222182956, "data_time": 0.006772041320800781, "loss": 0.2844124332070351, "decode.loss_ce": 0.16296012103557586, "decode.acc_seg": 95.41142272949219, "aux.loss_ce": 0.12145231626927852, "aux.acc_seg": 88.24602508544922, "time": 1.1149374961853027, "iter": 127400, "memory": 8704, "step": 127400} +{"lr": 0.0024617044436273795, "data_time": 0.006879591941833496, "loss": 0.26966131031513213, "decode.loss_ce": 0.16602473482489585, "decode.acc_seg": 90.64495849609375, "aux.loss_ce": 0.10363656990230083, "aux.acc_seg": 85.68954467773438, "time": 1.1174436569213868, "iter": 127450, "memory": 8703, "step": 127450} +{"lr": 0.002458439163530992, "data_time": 0.006095433235168457, "loss": 0.3635833546519279, "decode.loss_ce": 0.22550736740231514, "decode.acc_seg": 71.951416015625, "aux.loss_ce": 0.13807598166167737, "aux.acc_seg": 68.76570129394531, "time": 1.1161046981811524, "iter": 127500, "memory": 8703, "step": 127500} +{"lr": 0.00245517338104497, "data_time": 0.007434582710266114, "loss": 0.37838524729013445, "decode.loss_ce": 0.22342914566397667, "decode.acc_seg": 97.28119659423828, "aux.loss_ce": 0.15495609417557715, "aux.acc_seg": 96.86857604980469, "time": 1.1206423044204712, "iter": 127550, "memory": 8704, "step": 127550} +{"lr": 0.0024519070953177356, "data_time": 0.006663107872009277, "loss": 0.3708545669913292, "decode.loss_ce": 0.2333886705338955, "decode.acc_seg": 97.18258666992188, "aux.loss_ce": 0.13746589422225952, "aux.acc_seg": 95.1112060546875, "time": 1.1104812622070312, "iter": 127600, "memory": 8704, "step": 127600} +{"lr": 0.002448640305494958, "data_time": 0.007822227478027344, "loss": 0.3267693370580673, "decode.loss_ce": 0.18912818059325218, "decode.acc_seg": 95.7779541015625, "aux.loss_ce": 0.1376411598175764, "aux.acc_seg": 93.01954650878906, "time": 1.1162470817565917, "iter": 127650, "memory": 8703, "step": 127650} +{"lr": 0.0024453730107195284, "data_time": 0.00719761848449707, "loss": 0.20455907583236693, "decode.loss_ce": 0.1230621799826622, "decode.acc_seg": 97.2860336303711, "aux.loss_ce": 0.08149689696729183, "aux.acc_seg": 96.92878723144531, "time": 1.1151594877243043, "iter": 127700, "memory": 8704, "step": 127700} +{"lr": 0.0024421052101315536, "data_time": 0.006256008148193359, "loss": 0.3427482098340988, "decode.loss_ce": 0.2071657657623291, "decode.acc_seg": 82.00104522705078, "aux.loss_ce": 0.13558244332671165, "aux.acc_seg": 73.61106872558594, "time": 1.114004898071289, "iter": 127750, "memory": 8704, "step": 127750} +{"lr": 0.0024388369028683406, "data_time": 0.006982231140136718, "loss": 0.4646774396300316, "decode.loss_ce": 0.28642088919878006, "decode.acc_seg": 93.72704315185547, "aux.loss_ce": 0.17825654558837414, "aux.acc_seg": 89.28800964355469, "time": 1.1154584407806396, "iter": 127800, "memory": 8704, "step": 127800} +{"lr": 0.0024355680880643795, "data_time": 0.006485962867736816, "loss": 0.29054694846272466, "decode.loss_ce": 0.17109545543789864, "decode.acc_seg": 91.68714141845703, "aux.loss_ce": 0.11945149004459381, "aux.acc_seg": 91.2294692993164, "time": 1.1143082857131958, "iter": 127850, "memory": 8704, "step": 127850} +{"lr": 0.002432298764851338, "data_time": 0.00759885311126709, "loss": 0.2962146244943142, "decode.loss_ce": 0.16510523930191995, "decode.acc_seg": 96.40863800048828, "aux.loss_ce": 0.13110937997698785, "aux.acc_seg": 91.74885559082031, "time": 1.118357253074646, "iter": 127900, "memory": 8704, "step": 127900} +{"lr": 0.0024290289323580416, "data_time": 0.0078873872756958, "loss": 0.29109907895326614, "decode.loss_ce": 0.1776234731078148, "decode.acc_seg": 96.54756927490234, "aux.loss_ce": 0.11347560659050941, "aux.acc_seg": 96.15433502197266, "time": 1.1141588926315307, "iter": 127950, "memory": 8705, "step": 127950} +{"lr": 0.002425758589710462, "data_time": 0.007020401954650879, "loss": 0.2938701152801514, "decode.loss_ce": 0.17573824524879456, "decode.acc_seg": 89.4140853881836, "aux.loss_ce": 0.11813186630606651, "aux.acc_seg": 84.84020233154297, "time": 1.113928985595703, "iter": 128000, "memory": 8704, "step": 128000} +{"aAcc": 93.27, "mIoU": 66.1, "mAcc": 74.82, "data_time": 0.004391315932597682, "time": 0.2717580027015168, "step": 128000} +{"lr": 0.002422487736031702, "data_time": 0.007634639739990234, "loss": 0.291434234380722, "decode.loss_ce": 0.15941780880093576, "decode.acc_seg": 95.97498321533203, "aux.loss_ce": 0.13201642632484437, "aux.acc_seg": 90.92998504638672, "time": 1.1131808280944824, "iter": 128050, "memory": 8703, "step": 128050} +{"lr": 0.0024192163704419827, "data_time": 0.006169652938842774, "loss": 0.3489048793911934, "decode.loss_ce": 0.21061071157455444, "decode.acc_seg": 86.62681579589844, "aux.loss_ce": 0.1382941674441099, "aux.acc_seg": 78.912353515625, "time": 1.1148936033248902, "iter": 128100, "memory": 8703, "step": 128100} +{"lr": 0.0024159444920586292, "data_time": 0.006964921951293945, "loss": 0.20059435665607453, "decode.loss_ce": 0.12897481471300126, "decode.acc_seg": 96.37018585205078, "aux.loss_ce": 0.07161954082548619, "aux.acc_seg": 95.74317932128906, "time": 1.1119178533554077, "iter": 128150, "memory": 8703, "step": 128150} +{"lr": 0.002412672099996056, "data_time": 0.006714558601379395, "loss": 0.3778848022222519, "decode.loss_ce": 0.21397677809000015, "decode.acc_seg": 95.330810546875, "aux.loss_ce": 0.16390802338719368, "aux.acc_seg": 92.6839828491211, "time": 1.1132609128952027, "iter": 128200, "memory": 8704, "step": 128200} +{"lr": 0.0024093991933657544, "data_time": 0.007488179206848145, "loss": 0.4173940896987915, "decode.loss_ce": 0.28177434056997297, "decode.acc_seg": 90.64432525634766, "aux.loss_ce": 0.1356197487562895, "aux.acc_seg": 89.49756622314453, "time": 1.1145538568496705, "iter": 128250, "memory": 8703, "step": 128250} +{"lr": 0.0024061257712762775, "data_time": 0.007015013694763183, "loss": 0.353491722792387, "decode.loss_ce": 0.2256614200770855, "decode.acc_seg": 97.23548889160156, "aux.loss_ce": 0.12783029563724996, "aux.acc_seg": 96.95587158203125, "time": 1.116380548477173, "iter": 128300, "memory": 8703, "step": 128300} +{"lr": 0.0024028518328332235, "data_time": 0.006145930290222168, "loss": 0.2837009444832802, "decode.loss_ce": 0.17098148837685584, "decode.acc_seg": 94.8103256225586, "aux.loss_ce": 0.11271945424377919, "aux.acc_seg": 91.15776824951172, "time": 1.1096001148223877, "iter": 128350, "memory": 8703, "step": 128350} +{"lr": 0.0023995773771392213, "data_time": 0.005620002746582031, "loss": 0.3569322809576988, "decode.loss_ce": 0.2195793606340885, "decode.acc_seg": 96.75032043457031, "aux.loss_ce": 0.13735292069613933, "aux.acc_seg": 94.50594329833984, "time": 1.112267827987671, "iter": 128400, "memory": 8704, "step": 128400} +{"lr": 0.00239630240329392, "data_time": 0.007382822036743164, "loss": 0.3390598863363266, "decode.loss_ce": 0.20674426779150962, "decode.acc_seg": 81.74158477783203, "aux.loss_ce": 0.13231561779975892, "aux.acc_seg": 74.2071762084961, "time": 1.113588571548462, "iter": 128450, "memory": 8703, "step": 128450} +{"lr": 0.002393026910393977, "data_time": 0.007345080375671387, "loss": 0.2346995808184147, "decode.loss_ce": 0.1423703134059906, "decode.acc_seg": 96.29398345947266, "aux.loss_ce": 0.0923292689025402, "aux.acc_seg": 93.68436431884766, "time": 1.1184311866760255, "iter": 128500, "memory": 8703, "step": 128500} +{"lr": 0.00238975089753303, "data_time": 0.007174372673034668, "loss": 0.3276243105530739, "decode.loss_ce": 0.1864500477910042, "decode.acc_seg": 95.88711547851562, "aux.loss_ce": 0.14117426052689552, "aux.acc_seg": 90.58977508544922, "time": 1.1164082288742065, "iter": 128550, "memory": 8704, "step": 128550} +{"lr": 0.0023864743638016953, "data_time": 0.006158137321472168, "loss": 0.27401198744773864, "decode.loss_ce": 0.15374004170298577, "decode.acc_seg": 97.6136474609375, "aux.loss_ce": 0.12027194499969482, "aux.acc_seg": 96.65711212158203, "time": 1.1173389911651612, "iter": 128600, "memory": 8704, "step": 128600} +{"lr": 0.002383197308287546, "data_time": 0.007175135612487793, "loss": 0.27073136568069456, "decode.loss_ce": 0.1559196814894676, "decode.acc_seg": 96.13493347167969, "aux.loss_ce": 0.11481168381869793, "aux.acc_seg": 94.26841735839844, "time": 1.1198838233947754, "iter": 128650, "memory": 8703, "step": 128650} +{"lr": 0.0023799197300751035, "data_time": 0.009133338928222656, "loss": 0.2875808209180832, "decode.loss_ce": 0.18379819840192796, "decode.acc_seg": 97.58930206298828, "aux.loss_ce": 0.10378262177109718, "aux.acc_seg": 94.57123565673828, "time": 1.121885085105896, "iter": 128700, "memory": 8703, "step": 128700} +{"lr": 0.0023766416282458096, "data_time": 0.007175350189208984, "loss": 0.3352220579981804, "decode.loss_ce": 0.1880033940076828, "decode.acc_seg": 93.75572204589844, "aux.loss_ce": 0.14721866846084594, "aux.acc_seg": 84.31269073486328, "time": 1.1151154518127442, "iter": 128750, "memory": 8704, "step": 128750} +{"lr": 0.002373363001878027, "data_time": 0.00637667179107666, "loss": 0.34662638753652575, "decode.loss_ce": 0.21112119555473327, "decode.acc_seg": 76.3174057006836, "aux.loss_ce": 0.13550518602132797, "aux.acc_seg": 72.76985931396484, "time": 1.1166862964630127, "iter": 128800, "memory": 8703, "step": 128800} +{"lr": 0.0023700838500470144, "data_time": 0.007004451751708984, "loss": 0.27421475052833555, "decode.loss_ce": 0.17570752799510955, "decode.acc_seg": 95.64945983886719, "aux.loss_ce": 0.09850721918046475, "aux.acc_seg": 95.16716003417969, "time": 1.1123239517211914, "iter": 128850, "memory": 8704, "step": 128850} +{"lr": 0.0023668041718249077, "data_time": 0.0060549497604370115, "loss": 0.3661466225981712, "decode.loss_ce": 0.23010833114385604, "decode.acc_seg": 91.53251647949219, "aux.loss_ce": 0.1360382955521345, "aux.acc_seg": 85.97196197509766, "time": 1.1149232387542725, "iter": 128900, "memory": 8704, "step": 128900} +{"lr": 0.0023635239662807162, "data_time": 0.007992029190063477, "loss": 0.433877258002758, "decode.loss_ce": 0.2485364444553852, "decode.acc_seg": 86.1175537109375, "aux.loss_ce": 0.18534081242978573, "aux.acc_seg": 82.18853759765625, "time": 1.1158620357513427, "iter": 128950, "memory": 8704, "step": 128950} +{"lr": 0.002360243232480302, "data_time": 0.005954837799072266, "loss": 0.36785982698202135, "decode.loss_ce": 0.2311511032283306, "decode.acc_seg": 93.62271118164062, "aux.loss_ce": 0.136708727106452, "aux.acc_seg": 86.59788513183594, "time": 1.112120771408081, "iter": 129000, "memory": 8703, "step": 129000} +{"lr": 0.00235696196948636, "data_time": 0.006460261344909668, "loss": 0.4397887349128723, "decode.loss_ce": 0.2847225919365883, "decode.acc_seg": 95.3044204711914, "aux.loss_ce": 0.15506614930927753, "aux.acc_seg": 87.13982391357422, "time": 1.1168372869491576, "iter": 129050, "memory": 8705, "step": 129050} +{"lr": 0.002353680176358399, "data_time": 0.007429695129394532, "loss": 0.33467570394277574, "decode.loss_ce": 0.20536961928009986, "decode.acc_seg": 94.62661743164062, "aux.loss_ce": 0.12930608168244362, "aux.acc_seg": 93.25523376464844, "time": 1.1197494983673095, "iter": 129100, "memory": 8704, "step": 129100} +{"lr": 0.002350397852152744, "data_time": 0.0072575569152832035, "loss": 0.30005224645137785, "decode.loss_ce": 0.1828911356627941, "decode.acc_seg": 91.95804595947266, "aux.loss_ce": 0.11716111525893211, "aux.acc_seg": 89.1519546508789, "time": 1.1126373052597045, "iter": 129150, "memory": 8704, "step": 129150} +{"lr": 0.0023471149959224977, "data_time": 0.007125186920166016, "loss": 0.4891752406954765, "decode.loss_ce": 0.335478936880827, "decode.acc_seg": 96.62735748291016, "aux.loss_ce": 0.1536963079124689, "aux.acc_seg": 91.7594223022461, "time": 1.1157772064208984, "iter": 129200, "memory": 8704, "step": 129200} +{"lr": 0.0023438316067175397, "data_time": 0.007535862922668457, "loss": 0.2484907552599907, "decode.loss_ce": 0.15653006732463837, "decode.acc_seg": 92.42063903808594, "aux.loss_ce": 0.09196068495512008, "aux.acc_seg": 90.06430053710938, "time": 1.1120812892913818, "iter": 129250, "memory": 8703, "step": 129250} +{"lr": 0.002340547683584505, "data_time": 0.008987736701965333, "loss": 0.22821866422891618, "decode.loss_ce": 0.12713534981012345, "decode.acc_seg": 97.91876220703125, "aux.loss_ce": 0.10108331702649594, "aux.acc_seg": 82.83547973632812, "time": 1.1165830850601197, "iter": 129300, "memory": 8703, "step": 129300} +{"lr": 0.002337263225566765, "data_time": 0.007428479194641113, "loss": 0.32645600140094755, "decode.loss_ce": 0.1943215925246477, "decode.acc_seg": 98.07090759277344, "aux.loss_ce": 0.13213441371917725, "aux.acc_seg": 97.92289733886719, "time": 1.1153014421463012, "iter": 129350, "memory": 8703, "step": 129350} +{"lr": 0.0023339782317044156, "data_time": 0.00784766674041748, "loss": 0.3291022352874279, "decode.loss_ce": 0.19764768108725547, "decode.acc_seg": 91.86153411865234, "aux.loss_ce": 0.13145455345511436, "aux.acc_seg": 85.28060913085938, "time": 1.1193354845046997, "iter": 129400, "memory": 8703, "step": 129400} +{"lr": 0.002330692701034253, "data_time": 0.008193540573120116, "loss": 0.28021198362112043, "decode.loss_ce": 0.17011032477021218, "decode.acc_seg": 95.11457824707031, "aux.loss_ce": 0.1101016603410244, "aux.acc_seg": 94.83203887939453, "time": 1.1168725728988647, "iter": 129450, "memory": 8703, "step": 129450} +{"lr": 0.002327406632589774, "data_time": 0.00679936408996582, "loss": 0.3467847302556038, "decode.loss_ce": 0.20152331441640853, "decode.acc_seg": 92.45611572265625, "aux.loss_ce": 0.14526141807436943, "aux.acc_seg": 91.1688461303711, "time": 1.1160908222198487, "iter": 129500, "memory": 8704, "step": 129500} +{"lr": 0.0023241200254011376, "data_time": 0.007009482383728028, "loss": 0.37167801558971403, "decode.loss_ce": 0.21915292367339134, "decode.acc_seg": 91.66657257080078, "aux.loss_ce": 0.1525250945240259, "aux.acc_seg": 89.23677825927734, "time": 1.118907380104065, "iter": 129550, "memory": 8704, "step": 129550} +{"lr": 0.0023208328784951617, "data_time": 0.006961679458618164, "loss": 0.3599153533577919, "decode.loss_ce": 0.21046690344810487, "decode.acc_seg": 95.0110092163086, "aux.loss_ce": 0.14944844469428062, "aux.acc_seg": 82.26591491699219, "time": 1.1167023181915283, "iter": 129600, "memory": 8703, "step": 129600} +{"lr": 0.002317545190895307, "data_time": 0.006398987770080566, "loss": 0.32160803079605105, "decode.loss_ce": 0.19561130329966545, "decode.acc_seg": 93.17327880859375, "aux.loss_ce": 0.1259967241436243, "aux.acc_seg": 84.83142852783203, "time": 1.1191512823104859, "iter": 129650, "memory": 8704, "step": 129650} +{"lr": 0.002314256961621647, "data_time": 0.007130098342895508, "loss": 0.23537315428256989, "decode.loss_ce": 0.1423097036778927, "decode.acc_seg": 97.68180847167969, "aux.loss_ce": 0.09306344836950302, "aux.acc_seg": 96.4427261352539, "time": 1.1137504816055297, "iter": 129700, "memory": 8704, "step": 129700} +{"lr": 0.002310968189690863, "data_time": 0.007093596458435059, "loss": 0.25320936292409896, "decode.loss_ce": 0.16250813752412796, "decode.acc_seg": 94.50447845458984, "aux.loss_ce": 0.09070122465491295, "aux.acc_seg": 94.15931701660156, "time": 1.1127737998962401, "iter": 129750, "memory": 8703, "step": 129750} +{"lr": 0.0023076788741162257, "data_time": 0.006239509582519532, "loss": 0.3821453168988228, "decode.loss_ce": 0.22785815745592117, "decode.acc_seg": 96.3263168334961, "aux.loss_ce": 0.15428715758025646, "aux.acc_seg": 95.43850708007812, "time": 1.1143158674240112, "iter": 129800, "memory": 8703, "step": 129800} +{"lr": 0.0023043890139075717, "data_time": 0.006090569496154785, "loss": 0.31401617974042895, "decode.loss_ce": 0.18624263927340506, "decode.acc_seg": 92.44435119628906, "aux.loss_ce": 0.12777354791760445, "aux.acc_seg": 87.28109741210938, "time": 1.1147814035415649, "iter": 129850, "memory": 8704, "step": 129850} +{"lr": 0.002301098608071288, "data_time": 0.006238102912902832, "loss": 0.29334141314029694, "decode.loss_ce": 0.18353788554668427, "decode.acc_seg": 85.68267822265625, "aux.loss_ce": 0.10980352647602558, "aux.acc_seg": 77.14868927001953, "time": 1.1144715785980224, "iter": 129900, "memory": 8704, "step": 129900} +{"lr": 0.002297807655610297, "data_time": 0.007071971893310547, "loss": 0.26983426213264466, "decode.loss_ce": 0.1639415066689253, "decode.acc_seg": 94.20845031738281, "aux.loss_ce": 0.10589275918900967, "aux.acc_seg": 89.22753143310547, "time": 1.1196465730667113, "iter": 129950, "memory": 8703, "step": 129950} +{"lr": 0.0022945161555240428, "data_time": 0.008044886589050292, "loss": 0.40919350683689115, "decode.loss_ce": 0.24968311041593552, "decode.acc_seg": 90.68489074707031, "aux.loss_ce": 0.15951039493083954, "aux.acc_seg": 78.7735595703125, "time": 1.1187919616699218, "iter": 130000, "memory": 8703, "step": 130000} +{"lr": 0.0022912241068084537, "data_time": 0.0068225860595703125, "loss": 0.31565742939710617, "decode.loss_ce": 0.19475989751517772, "decode.acc_seg": 96.26235961914062, "aux.loss_ce": 0.12089753709733486, "aux.acc_seg": 94.13267517089844, "time": 1.1153920650482179, "iter": 130050, "memory": 8703, "step": 130050} +{"lr": 0.002287931508455949, "data_time": 0.00669713020324707, "loss": 0.32084968835115435, "decode.loss_ce": 0.20208155140280723, "decode.acc_seg": 95.3958511352539, "aux.loss_ce": 0.1187681332230568, "aux.acc_seg": 85.19184875488281, "time": 1.1184840440750121, "iter": 130100, "memory": 8703, "step": 130100} +{"lr": 0.0022846383594554032, "data_time": 0.006363320350646973, "loss": 0.25382875837385654, "decode.loss_ce": 0.15772893764078616, "decode.acc_seg": 91.5949478149414, "aux.loss_ce": 0.0960998211055994, "aux.acc_seg": 87.07453155517578, "time": 1.1113245725631713, "iter": 130150, "memory": 8703, "step": 130150} +{"lr": 0.002281344658792136, "data_time": 0.0059616327285766605, "loss": 0.3232860192656517, "decode.loss_ce": 0.2023096777498722, "decode.acc_seg": 81.44060516357422, "aux.loss_ce": 0.12097633667290211, "aux.acc_seg": 76.63116455078125, "time": 1.1147783994674683, "iter": 130200, "memory": 8704, "step": 130200} +{"lr": 0.002278050405447892, "data_time": 0.006352734565734863, "loss": 0.36405461877584455, "decode.loss_ce": 0.23352715671062468, "decode.acc_seg": 94.19036865234375, "aux.loss_ce": 0.13052746690809727, "aux.acc_seg": 88.7667007446289, "time": 1.1109359502792358, "iter": 130250, "memory": 8703, "step": 130250} +{"lr": 0.002274755598400824, "data_time": 0.008278918266296387, "loss": 0.3441690936684608, "decode.loss_ce": 0.19763203114271163, "decode.acc_seg": 90.26069641113281, "aux.loss_ce": 0.14653706252574922, "aux.acc_seg": 82.52035522460938, "time": 1.1164336681365967, "iter": 130300, "memory": 8703, "step": 130300} +{"lr": 0.0022714602366254656, "data_time": 0.0073442220687866214, "loss": 0.27775587141513824, "decode.loss_ce": 0.17067494839429856, "decode.acc_seg": 89.15398406982422, "aux.loss_ce": 0.10708092376589776, "aux.acc_seg": 86.01760864257812, "time": 1.1171683073043823, "iter": 130350, "memory": 8703, "step": 130350} +{"lr": 0.002268164319092722, "data_time": 0.005969786643981933, "loss": 0.3805562548339367, "decode.loss_ce": 0.23144383430480958, "decode.acc_seg": 92.18628692626953, "aux.loss_ce": 0.1491124201565981, "aux.acc_seg": 89.6781234741211, "time": 1.1121967792510987, "iter": 130400, "memory": 8703, "step": 130400} +{"lr": 0.0022648678447698524, "data_time": 0.0081986665725708, "loss": 0.23557949513196946, "decode.loss_ce": 0.144888586550951, "decode.acc_seg": 95.83282470703125, "aux.loss_ce": 0.0906909067183733, "aux.acc_seg": 93.70231628417969, "time": 1.1203084945678712, "iter": 130450, "memory": 8704, "step": 130450} +{"lr": 0.002261570812620436, "data_time": 0.006378960609436035, "loss": 0.4310066357254982, "decode.loss_ce": 0.2600714720785618, "decode.acc_seg": 89.60997009277344, "aux.loss_ce": 0.1709351684898138, "aux.acc_seg": 89.20370483398438, "time": 1.1120576858520508, "iter": 130500, "memory": 8703, "step": 130500} +{"lr": 0.00225827322160437, "data_time": 0.007641792297363281, "loss": 0.38436809927225113, "decode.loss_ce": 0.22890258803963662, "decode.acc_seg": 95.84623718261719, "aux.loss_ce": 0.15546550340950488, "aux.acc_seg": 95.11375427246094, "time": 1.1175243139266968, "iter": 130550, "memory": 8703, "step": 130550} +{"lr": 0.0022549750706778405, "data_time": 0.007401227951049805, "loss": 0.4176135376095772, "decode.loss_ce": 0.2528119571506977, "decode.acc_seg": 85.81275939941406, "aux.loss_ce": 0.16480158120393754, "aux.acc_seg": 81.3849105834961, "time": 1.1149261474609375, "iter": 130600, "memory": 8703, "step": 130600} +{"lr": 0.002251676358793307, "data_time": 0.006545329093933105, "loss": 0.41103838980197904, "decode.loss_ce": 0.26699524745345116, "decode.acc_seg": 95.53565979003906, "aux.loss_ce": 0.14404314160346984, "aux.acc_seg": 92.45465087890625, "time": 1.1111042737960815, "iter": 130650, "memory": 8704, "step": 130650} +{"lr": 0.00224837708489948, "data_time": 0.006942105293273926, "loss": 0.3376719981431961, "decode.loss_ce": 0.21600973680615426, "decode.acc_seg": 95.05754852294922, "aux.loss_ce": 0.12166226096451283, "aux.acc_seg": 94.22212982177734, "time": 1.1178027868270874, "iter": 130700, "memory": 8704, "step": 130700} +{"lr": 0.0022450772479413006, "data_time": 0.007893514633178712, "loss": 0.33388532400131227, "decode.loss_ce": 0.20168663561344147, "decode.acc_seg": 96.32389831542969, "aux.loss_ce": 0.13219868950545788, "aux.acc_seg": 95.03040313720703, "time": 1.1190289735794068, "iter": 130750, "memory": 8703, "step": 130750} +{"lr": 0.0022417768468599233, "data_time": 0.005707144737243652, "loss": 0.3694893904030323, "decode.loss_ce": 0.22736187949776648, "decode.acc_seg": 95.36335754394531, "aux.loss_ce": 0.14212750867009163, "aux.acc_seg": 89.19734954833984, "time": 1.1077563524246217, "iter": 130800, "memory": 8704, "step": 130800} +{"lr": 0.0022384758805926983, "data_time": 0.008473992347717285, "loss": 0.4185408025979996, "decode.loss_ce": 0.24924756065011025, "decode.acc_seg": 92.97764587402344, "aux.loss_ce": 0.16929324194788933, "aux.acc_seg": 89.4227294921875, "time": 1.1162588596343994, "iter": 130850, "memory": 8703, "step": 130850} +{"lr": 0.0022351743480731427, "data_time": 0.007247710227966308, "loss": 0.27068965807557105, "decode.loss_ce": 0.16571924462914467, "decode.acc_seg": 95.35713195800781, "aux.loss_ce": 0.10497041121125221, "aux.acc_seg": 91.67791748046875, "time": 1.1161487102508545, "iter": 130900, "memory": 8704, "step": 130900} +{"lr": 0.0022318722482309273, "data_time": 0.008094334602355957, "loss": 0.30962867140769956, "decode.loss_ce": 0.18619223609566687, "decode.acc_seg": 91.2833480834961, "aux.loss_ce": 0.12343643382191657, "aux.acc_seg": 83.44103240966797, "time": 1.1183775901794433, "iter": 130950, "memory": 8704, "step": 130950} +{"lr": 0.0022285695799918537, "data_time": 0.006698894500732422, "loss": 0.3219151541590691, "decode.loss_ce": 0.19743457511067392, "decode.acc_seg": 96.60797119140625, "aux.loss_ce": 0.12448057904839516, "aux.acc_seg": 93.17219543457031, "time": 1.1159667253494263, "iter": 131000, "memory": 8704, "step": 131000} +{"lr": 0.002225266342277837, "data_time": 0.00809650421142578, "loss": 0.36031727492809296, "decode.loss_ce": 0.2130682125687599, "decode.acc_seg": 92.67418670654297, "aux.loss_ce": 0.14724906347692013, "aux.acc_seg": 76.90155792236328, "time": 1.119970679283142, "iter": 131050, "memory": 8704, "step": 131050} +{"lr": 0.0022219625340068735, "data_time": 0.006905555725097656, "loss": 0.2980317622423172, "decode.loss_ce": 0.17828584164381028, "decode.acc_seg": 94.57594299316406, "aux.loss_ce": 0.1197459153831005, "aux.acc_seg": 91.6519775390625, "time": 1.1136060953140259, "iter": 131100, "memory": 8704, "step": 131100} +{"lr": 0.002218658154093035, "data_time": 0.008366847038269043, "loss": 0.28077650964260104, "decode.loss_ce": 0.17890157476067542, "decode.acc_seg": 92.07731628417969, "aux.loss_ce": 0.1018749326467514, "aux.acc_seg": 81.97294616699219, "time": 1.1142399549484252, "iter": 131150, "memory": 8703, "step": 131150} +{"lr": 0.0022153532014464387, "data_time": 0.006231188774108887, "loss": 0.26985719949007037, "decode.loss_ce": 0.15277406871318816, "decode.acc_seg": 96.84477996826172, "aux.loss_ce": 0.11708313338458538, "aux.acc_seg": 96.19374084472656, "time": 1.1137781620025635, "iter": 131200, "memory": 8703, "step": 131200} +{"lr": 0.0022120476749732296, "data_time": 0.00892949104309082, "loss": 0.3277756243944168, "decode.loss_ce": 0.19914782643318177, "decode.acc_seg": 92.19646453857422, "aux.loss_ce": 0.1286277987062931, "aux.acc_seg": 89.28260803222656, "time": 1.114544939994812, "iter": 131250, "memory": 8704, "step": 131250} +{"lr": 0.0022087415735755553, "data_time": 0.00709984302520752, "loss": 0.2759925127029419, "decode.loss_ce": 0.15836973935365678, "decode.acc_seg": 92.50869750976562, "aux.loss_ce": 0.11762277968227863, "aux.acc_seg": 89.60062408447266, "time": 1.114595079421997, "iter": 131300, "memory": 8704, "step": 131300} +{"lr": 0.0022054348961515467, "data_time": 0.007802915573120117, "loss": 0.3022519573569298, "decode.loss_ce": 0.17884540259838105, "decode.acc_seg": 96.20106506347656, "aux.loss_ce": 0.12340655326843261, "aux.acc_seg": 90.96145629882812, "time": 1.1165821075439453, "iter": 131350, "memory": 8704, "step": 131350} +{"lr": 0.0022021276415952963, "data_time": 0.007270622253417969, "loss": 0.30472579002380373, "decode.loss_ce": 0.18087453842163087, "decode.acc_seg": 93.57837677001953, "aux.loss_ce": 0.12385125011205673, "aux.acc_seg": 91.74410247802734, "time": 1.115725588798523, "iter": 131400, "memory": 8703, "step": 131400} +{"lr": 0.0021988198087968354, "data_time": 0.006524014472961426, "loss": 0.37018370926380156, "decode.loss_ce": 0.2271643489599228, "decode.acc_seg": 95.38282012939453, "aux.loss_ce": 0.14301936104893684, "aux.acc_seg": 95.92964935302734, "time": 1.1113348722457885, "iter": 131450, "memory": 8703, "step": 131450} +{"lr": 0.002195511396642116, "data_time": 0.006726694107055664, "loss": 0.2749760091304779, "decode.loss_ce": 0.15934924483299256, "decode.acc_seg": 94.02751922607422, "aux.loss_ce": 0.11562676429748535, "aux.acc_seg": 93.45097351074219, "time": 1.113086175918579, "iter": 131500, "memory": 8704, "step": 131500} +{"lr": 0.002192202404012983, "data_time": 0.0068361759185791016, "loss": 0.33705427050590514, "decode.loss_ce": 0.21469347029924393, "decode.acc_seg": 85.98168182373047, "aux.loss_ce": 0.1223607998341322, "aux.acc_seg": 84.8502426147461, "time": 1.1144523859024047, "iter": 131550, "memory": 8703, "step": 131550} +{"lr": 0.0021888928297871526, "data_time": 0.006165814399719238, "loss": 0.2602137789130211, "decode.loss_ce": 0.1591137409210205, "decode.acc_seg": 96.34163665771484, "aux.loss_ce": 0.10110003799200058, "aux.acc_seg": 87.92082214355469, "time": 1.1097506523132323, "iter": 131600, "memory": 8703, "step": 131600} +{"lr": 0.002185582672838194, "data_time": 0.006457281112670898, "loss": 0.2747024044394493, "decode.loss_ce": 0.16055211275815964, "decode.acc_seg": 94.02616119384766, "aux.loss_ce": 0.11415029317140579, "aux.acc_seg": 88.94901275634766, "time": 1.1108102083206177, "iter": 131650, "memory": 8703, "step": 131650} +{"lr": 0.002182271932035498, "data_time": 0.007704401016235351, "loss": 0.3953461706638336, "decode.loss_ce": 0.20973260179162026, "decode.acc_seg": 96.87919616699219, "aux.loss_ce": 0.1856135681271553, "aux.acc_seg": 85.52780151367188, "time": 1.1132061004638671, "iter": 131700, "memory": 8704, "step": 131700} +{"lr": 0.002178960606244271, "data_time": 0.0072508096694946286, "loss": 0.32041447311639787, "decode.loss_ce": 0.19806744083762168, "decode.acc_seg": 72.5052490234375, "aux.loss_ce": 0.12234703116118908, "aux.acc_seg": 75.26378631591797, "time": 1.1148086786270142, "iter": 131750, "memory": 8703, "step": 131750} +{"lr": 0.002175648694325491, "data_time": 0.005585289001464844, "loss": 0.25618438199162485, "decode.loss_ce": 0.15479663088917733, "decode.acc_seg": 91.49309539794922, "aux.loss_ce": 0.10138774886727334, "aux.acc_seg": 89.2548828125, "time": 1.1134790897369384, "iter": 131800, "memory": 8703, "step": 131800} +{"lr": 0.0021723361951359026, "data_time": 0.007503581047058105, "loss": 0.35714500695466994, "decode.loss_ce": 0.20374367907643318, "decode.acc_seg": 88.61115264892578, "aux.loss_ce": 0.15340132899582387, "aux.acc_seg": 81.43749237060547, "time": 1.114437174797058, "iter": 131850, "memory": 8704, "step": 131850} +{"lr": 0.002169023107527981, "data_time": 0.008676767349243164, "loss": 0.30398536324501035, "decode.loss_ce": 0.1807968519628048, "decode.acc_seg": 95.47207641601562, "aux.loss_ce": 0.12318850979208947, "aux.acc_seg": 94.50460815429688, "time": 1.120469832420349, "iter": 131900, "memory": 8703, "step": 131900} +{"lr": 0.0021657094303499116, "data_time": 0.0068377494812011715, "loss": 0.2458568722009659, "decode.loss_ce": 0.1552427478134632, "decode.acc_seg": 93.88777160644531, "aux.loss_ce": 0.09061412364244462, "aux.acc_seg": 90.21282196044922, "time": 1.1165839672088622, "iter": 131950, "memory": 8705, "step": 131950} +{"lr": 0.0021623951624455753, "data_time": 0.00714259147644043, "loss": 0.45106695741415026, "decode.loss_ce": 0.2757545568048954, "decode.acc_seg": 95.35051727294922, "aux.loss_ce": 0.17531239464879037, "aux.acc_seg": 77.90158081054688, "time": 1.1168068647384644, "iter": 132000, "memory": 8704, "step": 132000} +{"lr": 0.0021590803026545063, "data_time": 0.006237149238586426, "loss": 0.34523324519395826, "decode.loss_ce": 0.20629321038722992, "decode.acc_seg": 89.80464935302734, "aux.loss_ce": 0.1389400340616703, "aux.acc_seg": 88.18746948242188, "time": 1.1164474725723266, "iter": 132050, "memory": 8704, "step": 132050} +{"lr": 0.0021557648498118868, "data_time": 0.006967806816101074, "loss": 0.2696065932512283, "decode.loss_ce": 0.16124100014567375, "decode.acc_seg": 95.15564727783203, "aux.loss_ce": 0.1083655945956707, "aux.acc_seg": 93.78350067138672, "time": 1.1153237104415894, "iter": 132100, "memory": 8703, "step": 132100} +{"lr": 0.002152448802748517, "data_time": 0.006761622428894043, "loss": 0.3233657516539097, "decode.loss_ce": 0.2065016023814678, "decode.acc_seg": 90.40794372558594, "aux.loss_ce": 0.11686414256691932, "aux.acc_seg": 86.47289276123047, "time": 1.1145586490631103, "iter": 132150, "memory": 8704, "step": 132150} +{"lr": 0.002149132160290778, "data_time": 0.007167434692382813, "loss": 0.3078815802931786, "decode.loss_ce": 0.1810914047062397, "decode.acc_seg": 92.66602325439453, "aux.loss_ce": 0.12679017372429371, "aux.acc_seg": 82.63411712646484, "time": 1.1144895553588867, "iter": 132200, "memory": 8704, "step": 132200} +{"lr": 0.0021458149212606266, "data_time": 0.007056021690368652, "loss": 0.2256200060248375, "decode.loss_ce": 0.1370757907629013, "decode.acc_seg": 94.58477783203125, "aux.loss_ce": 0.08854421488940716, "aux.acc_seg": 89.03166198730469, "time": 1.1136623859405517, "iter": 132250, "memory": 8703, "step": 132250} +{"lr": 0.0021424970844755595, "data_time": 0.008187556266784668, "loss": 0.24291970282793046, "decode.loss_ce": 0.1443638950586319, "decode.acc_seg": 95.965576171875, "aux.loss_ce": 0.0985558070242405, "aux.acc_seg": 89.9017333984375, "time": 1.1139763593673706, "iter": 132300, "memory": 8703, "step": 132300} +{"lr": 0.00213917864874859, "data_time": 0.007249665260314941, "loss": 0.2053607776761055, "decode.loss_ce": 0.12701151818037032, "decode.acc_seg": 93.14556121826172, "aux.loss_ce": 0.07834925651550292, "aux.acc_seg": 89.34662628173828, "time": 1.1165220975875854, "iter": 132350, "memory": 8703, "step": 132350} +{"lr": 0.002135859612888224, "data_time": 0.007648754119873047, "loss": 0.30012607425451276, "decode.loss_ce": 0.18667484298348427, "decode.acc_seg": 94.06292724609375, "aux.loss_ce": 0.11345123164355755, "aux.acc_seg": 89.28629302978516, "time": 1.116431760787964, "iter": 132400, "memory": 8704, "step": 132400} +{"lr": 0.0021325399756984336, "data_time": 0.007676529884338379, "loss": 0.3286730617284775, "decode.loss_ce": 0.2050501137971878, "decode.acc_seg": 93.07740020751953, "aux.loss_ce": 0.12362294495105744, "aux.acc_seg": 92.94204711914062, "time": 1.1150113821029664, "iter": 132450, "memory": 8703, "step": 132450} +{"lr": 0.0021292197359786317, "data_time": 0.0062885284423828125, "loss": 0.24920786619186402, "decode.loss_ce": 0.13183823823928834, "decode.acc_seg": 91.27677917480469, "aux.loss_ce": 0.11736962907016277, "aux.acc_seg": 86.30117797851562, "time": 1.114313292503357, "iter": 132500, "memory": 8703, "step": 132500} +{"lr": 0.002125898892523648, "data_time": 0.006887197494506836, "loss": 0.2684076100587845, "decode.loss_ce": 0.156973747164011, "decode.acc_seg": 95.41860961914062, "aux.loss_ce": 0.11143386028707028, "aux.acc_seg": 93.15058135986328, "time": 1.1213581323623658, "iter": 132550, "memory": 8703, "step": 132550} +{"lr": 0.0021225774441237, "data_time": 0.006392788887023926, "loss": 0.39569097608327863, "decode.loss_ce": 0.24825456738471985, "decode.acc_seg": 95.57747650146484, "aux.loss_ce": 0.1474364146590233, "aux.acc_seg": 90.77172088623047, "time": 1.1106910705566406, "iter": 132600, "memory": 8704, "step": 132600} +{"lr": 0.002119255389564373, "data_time": 0.006931090354919433, "loss": 0.2941090792417526, "decode.loss_ce": 0.17337731197476386, "decode.acc_seg": 96.08078002929688, "aux.loss_ce": 0.12073176391422749, "aux.acc_seg": 96.5415267944336, "time": 1.1141260623931886, "iter": 132650, "memory": 8703, "step": 132650} +{"lr": 0.0021159327276265845, "data_time": 0.007847332954406738, "loss": 0.7173692435026169, "decode.loss_ce": 0.4724809929728508, "decode.acc_seg": 93.31696319580078, "aux.loss_ce": 0.2448882430791855, "aux.acc_seg": 85.91556549072266, "time": 1.1185410022735596, "iter": 132700, "memory": 8703, "step": 132700} +{"lr": 0.0021126094570865657, "data_time": 0.006844234466552734, "loss": 0.2696536049246788, "decode.loss_ce": 0.16263170465826987, "decode.acc_seg": 94.16847229003906, "aux.loss_ce": 0.10702189840376378, "aux.acc_seg": 91.3461685180664, "time": 1.1118036270141602, "iter": 132750, "memory": 8704, "step": 132750} +{"lr": 0.002109285576715832, "data_time": 0.0070937156677246095, "loss": 0.42089663743972777, "decode.loss_ce": 0.2560195818543434, "decode.acc_seg": 94.54954528808594, "aux.loss_ce": 0.16487706378102301, "aux.acc_seg": 92.8869857788086, "time": 1.1126498937606812, "iter": 132800, "memory": 8705, "step": 132800} +{"lr": 0.002105961085281153, "data_time": 0.006557822227478027, "loss": 0.38574386984109876, "decode.loss_ce": 0.23406213968992234, "decode.acc_seg": 97.31533813476562, "aux.loss_ce": 0.15168172754347325, "aux.acc_seg": 91.86140441894531, "time": 1.1123945236206054, "iter": 132850, "memory": 8703, "step": 132850} +{"lr": 0.002102635981544531, "data_time": 0.007373189926147461, "loss": 0.3466870918869972, "decode.loss_ce": 0.19465138092637063, "decode.acc_seg": 97.47505187988281, "aux.loss_ce": 0.15203570984303952, "aux.acc_seg": 94.9525146484375, "time": 1.1159573793411255, "iter": 132900, "memory": 8704, "step": 132900} +{"lr": 0.0020993102642631687, "data_time": 0.005732250213623047, "loss": 0.3447032034397125, "decode.loss_ce": 0.21060932651162148, "decode.acc_seg": 87.38542938232422, "aux.loss_ce": 0.13409387581050397, "aux.acc_seg": 82.18161010742188, "time": 1.112202262878418, "iter": 132950, "memory": 8704, "step": 132950} +{"lr": 0.0020959839321894515, "data_time": 0.007379150390625, "loss": 0.3578343838453293, "decode.loss_ce": 0.20862284004688264, "decode.acc_seg": 95.2948226928711, "aux.loss_ce": 0.1492115393280983, "aux.acc_seg": 91.99066162109375, "time": 1.1138453245162965, "iter": 133000, "memory": 8704, "step": 133000} +{"lr": 0.0020926569840709055, "data_time": 0.007092475891113281, "loss": 0.24943509548902512, "decode.loss_ce": 0.15780506879091263, "decode.acc_seg": 93.59085845947266, "aux.loss_ce": 0.09163002707064152, "aux.acc_seg": 85.95440673828125, "time": 1.1117132186889649, "iter": 133050, "memory": 8703, "step": 133050} +{"lr": 0.002089329418650173, "data_time": 0.007867765426635743, "loss": 0.23607780188322067, "decode.loss_ce": 0.1415966771543026, "decode.acc_seg": 94.1834716796875, "aux.loss_ce": 0.09448112547397614, "aux.acc_seg": 90.66276550292969, "time": 1.1232813835144042, "iter": 133100, "memory": 8704, "step": 133100} +{"lr": 0.002086001234664997, "data_time": 0.007379221916198731, "loss": 0.29217852354049684, "decode.loss_ce": 0.17742505222558974, "decode.acc_seg": 93.21937561035156, "aux.loss_ce": 0.1147534728050232, "aux.acc_seg": 92.13523864746094, "time": 1.1165016174316407, "iter": 133150, "memory": 8704, "step": 133150} +{"lr": 0.00208267243084818, "data_time": 0.007001900672912597, "loss": 0.27594458758831025, "decode.loss_ce": 0.1616143502295017, "decode.acc_seg": 97.14647674560547, "aux.loss_ce": 0.11433023661375045, "aux.acc_seg": 90.21536254882812, "time": 1.1152294874191284, "iter": 133200, "memory": 8704, "step": 133200} +{"lr": 0.002079343005927562, "data_time": 0.008179783821105957, "loss": 0.35069150030612944, "decode.loss_ce": 0.2225251540541649, "decode.acc_seg": 91.2328872680664, "aux.loss_ce": 0.12816634699702262, "aux.acc_seg": 83.76018524169922, "time": 1.1196444749832153, "iter": 133250, "memory": 8703, "step": 133250} +{"lr": 0.0020760129586259815, "data_time": 0.007400631904602051, "loss": 0.35923832654953003, "decode.loss_ce": 0.21447349488735198, "decode.acc_seg": 93.89934539794922, "aux.loss_ce": 0.14476482719182968, "aux.acc_seg": 89.54410552978516, "time": 1.1114466190338135, "iter": 133300, "memory": 8704, "step": 133300} +{"lr": 0.002072682287661263, "data_time": 0.007382249832153321, "loss": 0.24131516367197037, "decode.loss_ce": 0.14397260993719102, "decode.acc_seg": 92.8956298828125, "aux.loss_ce": 0.09734255261719227, "aux.acc_seg": 92.60323333740234, "time": 1.1168324947357178, "iter": 133350, "memory": 8704, "step": 133350} +{"lr": 0.0020693509917461728, "data_time": 0.006990909576416016, "loss": 0.2796054854989052, "decode.loss_ce": 0.17449193820357323, "decode.acc_seg": 95.68296813964844, "aux.loss_ce": 0.1051135491579771, "aux.acc_seg": 89.750732421875, "time": 1.1169079780578612, "iter": 133400, "memory": 8703, "step": 133400} +{"lr": 0.0020660190695883955, "data_time": 0.006838107109069824, "loss": 0.40616682469844817, "decode.loss_ce": 0.2614229954779148, "decode.acc_seg": 95.7789077758789, "aux.loss_ce": 0.1447438236325979, "aux.acc_seg": 93.70186614990234, "time": 1.1181747913360596, "iter": 133450, "memory": 8704, "step": 133450} +{"lr": 0.002062686519890509, "data_time": 0.007142782211303711, "loss": 0.33093988597393037, "decode.loss_ce": 0.20226777270436286, "decode.acc_seg": 95.71539306640625, "aux.loss_ce": 0.12867210917174815, "aux.acc_seg": 89.54143524169922, "time": 1.116024088859558, "iter": 133500, "memory": 8703, "step": 133500} +{"lr": 0.002059353341349945, "data_time": 0.007537698745727539, "loss": 0.29250176399946215, "decode.loss_ce": 0.16342372223734855, "decode.acc_seg": 92.48921203613281, "aux.loss_ce": 0.12907804660499095, "aux.acc_seg": 81.9713363647461, "time": 1.1177440881729126, "iter": 133550, "memory": 8704, "step": 133550} +{"lr": 0.002056019532658967, "data_time": 0.007172846794128418, "loss": 0.2894761562347412, "decode.loss_ce": 0.17387449294328688, "decode.acc_seg": 95.67737579345703, "aux.loss_ce": 0.11560166999697685, "aux.acc_seg": 92.35508728027344, "time": 1.115603256225586, "iter": 133600, "memory": 8703, "step": 133600} +{"lr": 0.0020526850925046353, "data_time": 0.007278656959533692, "loss": 0.30619478300213815, "decode.loss_ce": 0.17927661538124084, "decode.acc_seg": 96.41463470458984, "aux.loss_ce": 0.1269181676208973, "aux.acc_seg": 95.49052429199219, "time": 1.1168294429779053, "iter": 133650, "memory": 8704, "step": 133650} +{"lr": 0.002049350019568773, "data_time": 0.008062076568603516, "loss": 0.26762864738702774, "decode.loss_ce": 0.15800165832042695, "decode.acc_seg": 92.27180480957031, "aux.loss_ce": 0.10962698683142662, "aux.acc_seg": 87.78158569335938, "time": 1.1156161308288575, "iter": 133700, "memory": 8703, "step": 133700} +{"lr": 0.0020460143125279524, "data_time": 0.0063046693801879885, "loss": 0.3415160343050957, "decode.loss_ce": 0.2190186306834221, "decode.acc_seg": 82.72134399414062, "aux.loss_ce": 0.12249740064144135, "aux.acc_seg": 82.02949523925781, "time": 1.1105835914611817, "iter": 133750, "memory": 8703, "step": 133750} +{"lr": 0.002042677970053444, "data_time": 0.007393836975097656, "loss": 0.34608817398548125, "decode.loss_ce": 0.18588949516415595, "decode.acc_seg": 90.52269744873047, "aux.loss_ce": 0.16019868329167367, "aux.acc_seg": 77.52787017822266, "time": 1.1133151054382324, "iter": 133800, "memory": 8704, "step": 133800} +{"lr": 0.00203934099081119, "data_time": 0.0065888166427612305, "loss": 0.3337891519069672, "decode.loss_ce": 0.2094314195215702, "decode.acc_seg": 97.32328796386719, "aux.loss_ce": 0.12435774095356464, "aux.acc_seg": 96.5836181640625, "time": 1.113109254837036, "iter": 133850, "memory": 8703, "step": 133850} +{"lr": 0.0020360033734617817, "data_time": 0.0058563232421875, "loss": 0.28110612481832503, "decode.loss_ce": 0.17406283393502237, "decode.acc_seg": 96.62371063232422, "aux.loss_ce": 0.10704329200088977, "aux.acc_seg": 92.94914245605469, "time": 1.1219802618026733, "iter": 133900, "memory": 8704, "step": 133900} +{"lr": 0.002032665116660418, "data_time": 0.009400606155395508, "loss": 0.4025498032569885, "decode.loss_ce": 0.2442239060997963, "decode.acc_seg": 94.21672821044922, "aux.loss_ce": 0.15832588821649551, "aux.acc_seg": 92.17109680175781, "time": 1.12191801071167, "iter": 133950, "memory": 8704, "step": 133950} +{"lr": 0.0020293262190568765, "data_time": 0.008995723724365235, "loss": 0.25646419525146485, "decode.loss_ce": 0.1472264513373375, "decode.acc_seg": 92.97911071777344, "aux.loss_ce": 0.10923774130642414, "aux.acc_seg": 91.34254455566406, "time": 1.1205157995224, "iter": 134000, "memory": 8703, "step": 134000} +{"lr": 0.002025986679295484, "data_time": 0.006249761581420899, "loss": 0.29767972603440285, "decode.loss_ce": 0.16401923671364785, "decode.acc_seg": 88.6209487915039, "aux.loss_ce": 0.1336604868993163, "aux.acc_seg": 83.32947540283203, "time": 1.1204152822494506, "iter": 134050, "memory": 8703, "step": 134050} +{"lr": 0.0020226464960150774, "data_time": 0.006449651718139648, "loss": 0.32538783401250837, "decode.loss_ce": 0.19790173098444938, "decode.acc_seg": 90.335205078125, "aux.loss_ce": 0.12748610489070417, "aux.acc_seg": 86.95398712158203, "time": 1.114750361442566, "iter": 134100, "memory": 8703, "step": 134100} +{"lr": 0.0020193056678489774, "data_time": 0.007039427757263184, "loss": 0.22854111194610596, "decode.loss_ce": 0.132642213255167, "decode.acc_seg": 94.38755798339844, "aux.loss_ce": 0.09589889720082283, "aux.acc_seg": 89.11119842529297, "time": 1.1142429113388062, "iter": 134150, "memory": 8704, "step": 134150} +{"lr": 0.0020159641934249504, "data_time": 0.006169509887695312, "loss": 0.2853883892297745, "decode.loss_ce": 0.1663019560277462, "decode.acc_seg": 94.83089447021484, "aux.loss_ce": 0.11908643208444118, "aux.acc_seg": 78.3183364868164, "time": 1.1130380630493164, "iter": 134200, "memory": 8704, "step": 134200} +{"lr": 0.002012622071365183, "data_time": 0.007367944717407227, "loss": 0.2719766408205032, "decode.loss_ce": 0.15598297193646432, "decode.acc_seg": 95.95565795898438, "aux.loss_ce": 0.11599366366863251, "aux.acc_seg": 95.02264404296875, "time": 1.1104990720748902, "iter": 134250, "memory": 8704, "step": 134250} +{"lr": 0.0020092793002862365, "data_time": 0.005398368835449219, "loss": 0.2878785997629166, "decode.loss_ce": 0.1724502094089985, "decode.acc_seg": 94.77678680419922, "aux.loss_ce": 0.11542839147150516, "aux.acc_seg": 94.74703216552734, "time": 1.11118643283844, "iter": 134300, "memory": 8703, "step": 134300} +{"lr": 0.0020059358787990244, "data_time": 0.007865571975708007, "loss": 0.3718898057937622, "decode.loss_ce": 0.23172756731510163, "decode.acc_seg": 95.43583679199219, "aux.loss_ce": 0.14016224220395088, "aux.acc_seg": 93.3665542602539, "time": 1.1188378810882569, "iter": 134350, "memory": 8704, "step": 134350} +{"lr": 0.0020025918055087727, "data_time": 0.00701296329498291, "loss": 0.3774625435471535, "decode.loss_ce": 0.23733380064368248, "decode.acc_seg": 96.37173461914062, "aux.loss_ce": 0.14012874476611614, "aux.acc_seg": 95.25677490234375, "time": 1.111763095855713, "iter": 134400, "memory": 8704, "step": 134400} +{"lr": 0.0019992470790149834, "data_time": 0.007107996940612793, "loss": 0.31815345734357836, "decode.loss_ce": 0.18869589343667031, "decode.acc_seg": 95.26119232177734, "aux.loss_ce": 0.12945756800472735, "aux.acc_seg": 93.99897003173828, "time": 1.1139161348342896, "iter": 134450, "memory": 8704, "step": 134450} +{"lr": 0.0019959016979114023, "data_time": 0.005928707122802734, "loss": 0.2944733902812004, "decode.loss_ce": 0.17522045969963074, "decode.acc_seg": 94.50498962402344, "aux.loss_ce": 0.11925293207168579, "aux.acc_seg": 92.00210571289062, "time": 1.1132600069046021, "iter": 134500, "memory": 8703, "step": 134500} +{"lr": 0.0019925556607859876, "data_time": 0.007843685150146485, "loss": 0.32051636204123496, "decode.loss_ce": 0.18826211281120778, "decode.acc_seg": 91.08772277832031, "aux.loss_ce": 0.13225424494594334, "aux.acc_seg": 84.60394287109375, "time": 1.1155553102493285, "iter": 134550, "memory": 8704, "step": 134550} +{"lr": 0.001989208966220869, "data_time": 0.006822276115417481, "loss": 0.2747709095478058, "decode.loss_ce": 0.1692122347652912, "decode.acc_seg": 95.6036376953125, "aux.loss_ce": 0.10555867515504361, "aux.acc_seg": 94.17791748046875, "time": 1.115607452392578, "iter": 134600, "memory": 8704, "step": 134600} +{"lr": 0.0019858616127923145, "data_time": 0.006905269622802734, "loss": 0.29812764525413515, "decode.loss_ce": 0.1741519182920456, "decode.acc_seg": 93.58393096923828, "aux.loss_ce": 0.12397572435438634, "aux.acc_seg": 91.50161743164062, "time": 1.1169020652770996, "iter": 134650, "memory": 8704, "step": 134650} +{"lr": 0.001982513599070695, "data_time": 0.00609438419342041, "loss": 0.291716942191124, "decode.loss_ce": 0.17714021354913712, "decode.acc_seg": 93.90837097167969, "aux.loss_ce": 0.11457673087716103, "aux.acc_seg": 91.76660919189453, "time": 1.1100773096084595, "iter": 134700, "memory": 8703, "step": 134700} +{"lr": 0.0019791649236204443, "data_time": 0.005805444717407226, "loss": 0.23173680305480956, "decode.loss_ce": 0.13645980469882488, "decode.acc_seg": 92.7970962524414, "aux.loss_ce": 0.09527700170874595, "aux.acc_seg": 92.25762939453125, "time": 1.1078089237213136, "iter": 134750, "memory": 8703, "step": 134750} +{"lr": 0.0019758155850000325, "data_time": 0.008625292778015136, "loss": 0.331216037273407, "decode.loss_ce": 0.21120150163769721, "decode.acc_seg": 97.23129272460938, "aux.loss_ce": 0.12001453600823879, "aux.acc_seg": 95.5881118774414, "time": 1.117303442955017, "iter": 134800, "memory": 8703, "step": 134800} +{"lr": 0.0019724655817619174, "data_time": 0.007756090164184571, "loss": 0.3785574406385422, "decode.loss_ce": 0.21743575409054755, "decode.acc_seg": 85.28607177734375, "aux.loss_ce": 0.16112168245017527, "aux.acc_seg": 77.86495971679688, "time": 1.1135672807693482, "iter": 134850, "memory": 8703, "step": 134850} +{"lr": 0.001969114912452511, "data_time": 0.007425689697265625, "loss": 0.3261531040072441, "decode.loss_ce": 0.20645052343606948, "decode.acc_seg": 96.19038391113281, "aux.loss_ce": 0.11970258019864559, "aux.acc_seg": 92.51886749267578, "time": 1.1179998159408568, "iter": 134900, "memory": 8704, "step": 134900} +{"lr": 0.0019657635756121523, "data_time": 0.006061959266662598, "loss": 0.2895414039492607, "decode.loss_ce": 0.1799503333866596, "decode.acc_seg": 93.9555435180664, "aux.loss_ce": 0.10959107130765915, "aux.acc_seg": 92.57327270507812, "time": 1.11067955493927, "iter": 134950, "memory": 8703, "step": 134950} +{"lr": 0.001962411569775055, "data_time": 0.009264993667602538, "loss": 0.29692652374505996, "decode.loss_ce": 0.18284882232546806, "decode.acc_seg": 96.4941635131836, "aux.loss_ce": 0.11407769806683063, "aux.acc_seg": 94.37751770019531, "time": 1.1192365407943725, "iter": 135000, "memory": 8704, "step": 135000} +{"lr": 0.0019590588934692748, "data_time": 0.007227802276611328, "loss": 0.3355455413460732, "decode.loss_ce": 0.2132062517106533, "decode.acc_seg": 96.17652893066406, "aux.loss_ce": 0.122339291498065, "aux.acc_seg": 95.41873931884766, "time": 1.1180898427963257, "iter": 135050, "memory": 8703, "step": 135050} +{"lr": 0.0019557055452166764, "data_time": 0.00760502815246582, "loss": 0.3352857202291489, "decode.loss_ce": 0.19582368507981301, "decode.acc_seg": 96.18154907226562, "aux.loss_ce": 0.13946203999221324, "aux.acc_seg": 95.32184600830078, "time": 1.1191066265106202, "iter": 135100, "memory": 8704, "step": 135100} +{"lr": 0.00195235152353289, "data_time": 0.006325578689575196, "loss": 0.29221855103969574, "decode.loss_ce": 0.1862077683210373, "decode.acc_seg": 93.3395767211914, "aux.loss_ce": 0.10601078495383262, "aux.acc_seg": 91.93352508544922, "time": 1.1172337293624879, "iter": 135150, "memory": 8704, "step": 135150} +{"lr": 0.001948996826927275, "data_time": 0.007492518424987793, "loss": 0.36482951492071153, "decode.loss_ce": 0.22253938987851143, "decode.acc_seg": 97.0237045288086, "aux.loss_ce": 0.1422901213169098, "aux.acc_seg": 96.24722290039062, "time": 1.1157201528549194, "iter": 135200, "memory": 8703, "step": 135200} +{"lr": 0.0019456414539028714, "data_time": 0.007014060020446777, "loss": 0.2638430207967758, "decode.loss_ce": 0.16650884002447128, "decode.acc_seg": 95.33338928222656, "aux.loss_ce": 0.09733417853713036, "aux.acc_seg": 91.03218078613281, "time": 1.1132972955703735, "iter": 135250, "memory": 8703, "step": 135250} +{"lr": 0.0019422854029563712, "data_time": 0.007828402519226074, "loss": 0.2867891475558281, "decode.loss_ce": 0.1827515572309494, "decode.acc_seg": 95.5710678100586, "aux.loss_ce": 0.10403759479522705, "aux.acc_seg": 93.51526641845703, "time": 1.1127143383026123, "iter": 135300, "memory": 8703, "step": 135300} +{"lr": 0.0019389286725780784, "data_time": 0.008199787139892578, "loss": 0.2967007979750633, "decode.loss_ce": 0.18133709728717803, "decode.acc_seg": 81.7649154663086, "aux.loss_ce": 0.11536369323730469, "aux.acc_seg": 79.1727066040039, "time": 1.112457847595215, "iter": 135350, "memory": 8704, "step": 135350} +{"lr": 0.0019355712612518648, "data_time": 0.00728452205657959, "loss": 0.44585530310869215, "decode.loss_ce": 0.2701370641589165, "decode.acc_seg": 90.04166412353516, "aux.loss_ce": 0.17571823112666607, "aux.acc_seg": 89.57748413085938, "time": 1.1132871866226197, "iter": 135400, "memory": 8705, "step": 135400} +{"lr": 0.0019322131674551271, "data_time": 0.008736777305603027, "loss": 0.3589521750807762, "decode.loss_ce": 0.23375462740659714, "decode.acc_seg": 93.87352752685547, "aux.loss_ce": 0.1251975454390049, "aux.acc_seg": 91.47802734375, "time": 1.1193083286285401, "iter": 135450, "memory": 8703, "step": 135450} +{"lr": 0.0019288543896587515, "data_time": 0.007339215278625489, "loss": 0.32951982617378234, "decode.loss_ce": 0.1963220402598381, "decode.acc_seg": 89.29512786865234, "aux.loss_ce": 0.13319778740406035, "aux.acc_seg": 88.3804931640625, "time": 1.1180898189544677, "iter": 135500, "memory": 8703, "step": 135500} +{"lr": 0.0019254949263270685, "data_time": 0.006556105613708496, "loss": 0.22342169657349586, "decode.loss_ce": 0.12345518954098225, "decode.acc_seg": 98.25585174560547, "aux.loss_ce": 0.09996650647372007, "aux.acc_seg": 97.45927429199219, "time": 1.118853545188904, "iter": 135550, "memory": 8703, "step": 135550} +{"lr": 0.0019221347759178146, "data_time": 0.0077907323837280275, "loss": 0.3082717791199684, "decode.loss_ce": 0.1796353779733181, "decode.acc_seg": 96.3646011352539, "aux.loss_ce": 0.12863639704883098, "aux.acc_seg": 91.25260925292969, "time": 1.1221603631973267, "iter": 135600, "memory": 8704, "step": 135600} +{"lr": 0.0019187739368820905, "data_time": 0.008237957954406738, "loss": 0.21680887043476105, "decode.loss_ce": 0.10906632915139199, "decode.acc_seg": 94.99634552001953, "aux.loss_ce": 0.10774254277348519, "aux.acc_seg": 89.60430145263672, "time": 1.1158491611480712, "iter": 135650, "memory": 8704, "step": 135650} +{"lr": 0.0019154124076643146, "data_time": 0.0075910091400146484, "loss": 0.24294816553592682, "decode.loss_ce": 0.1407761089503765, "decode.acc_seg": 95.7007064819336, "aux.loss_ce": 0.1021720502525568, "aux.acc_seg": 86.57219696044922, "time": 1.1183899879455566, "iter": 135700, "memory": 8703, "step": 135700} +{"lr": 0.001912050186702182, "data_time": 0.006641411781311035, "loss": 0.36221534907817843, "decode.loss_ce": 0.21730996593832969, "decode.acc_seg": 97.29283142089844, "aux.loss_ce": 0.14490537978708745, "aux.acc_seg": 96.4976577758789, "time": 1.1109418630599976, "iter": 135750, "memory": 8704, "step": 135750} +{"lr": 0.001908687272426626, "data_time": 0.005727696418762207, "loss": 0.2356654465198517, "decode.loss_ce": 0.1336316630244255, "decode.acc_seg": 96.49333953857422, "aux.loss_ce": 0.10203378312289715, "aux.acc_seg": 96.26445770263672, "time": 1.1119248867034912, "iter": 135800, "memory": 8703, "step": 135800} +{"lr": 0.0019053236632617673, "data_time": 0.008007264137268067, "loss": 0.23889560997486115, "decode.loss_ce": 0.14474974498152732, "decode.acc_seg": 95.74994659423828, "aux.loss_ce": 0.0941458698362112, "aux.acc_seg": 84.7013931274414, "time": 1.1135648965835572, "iter": 135850, "memory": 8704, "step": 135850} +{"lr": 0.0019019593576248767, "data_time": 0.006983160972595215, "loss": 0.335833403468132, "decode.loss_ce": 0.20858948081731796, "decode.acc_seg": 93.80238342285156, "aux.loss_ce": 0.12724391631782056, "aux.acc_seg": 91.04270935058594, "time": 1.1176590204238892, "iter": 135900, "memory": 8703, "step": 135900} +{"lr": 0.0018985943539263285, "data_time": 0.00707859992980957, "loss": 0.29533390402793885, "decode.loss_ce": 0.18395052552223207, "decode.acc_seg": 96.46269226074219, "aux.loss_ce": 0.11138337813317775, "aux.acc_seg": 95.39120483398438, "time": 1.1159948587417603, "iter": 135950, "memory": 8703, "step": 135950} +{"lr": 0.0018952286505695554, "data_time": 0.007487702369689942, "loss": 0.4141623705625534, "decode.loss_ce": 0.25555335357785225, "decode.acc_seg": 96.05712890625, "aux.loss_ce": 0.1586090125143528, "aux.acc_seg": 90.4043197631836, "time": 1.1158735036849976, "iter": 136000, "memory": 8703, "step": 136000} +{"lr": 0.0018918622459510068, "data_time": 0.007063913345336914, "loss": 0.25378224477171896, "decode.loss_ce": 0.15535173639655114, "decode.acc_seg": 96.57148742675781, "aux.loss_ce": 0.09843050874769688, "aux.acc_seg": 95.98979187011719, "time": 1.1151485443115234, "iter": 136050, "memory": 8704, "step": 136050} +{"lr": 0.0018884951384600954, "data_time": 0.007458972930908203, "loss": 0.23038263022899627, "decode.loss_ce": 0.1398398108780384, "decode.acc_seg": 96.8211441040039, "aux.loss_ce": 0.09054281339049339, "aux.acc_seg": 96.3797836303711, "time": 1.1174125909805297, "iter": 136100, "memory": 8704, "step": 136100} +{"lr": 0.0018851273264791628, "data_time": 0.007527709007263184, "loss": 0.269969941675663, "decode.loss_ce": 0.152788844704628, "decode.acc_seg": 96.67389678955078, "aux.loss_ce": 0.11718109771609306, "aux.acc_seg": 95.80307006835938, "time": 1.1159435033798217, "iter": 136150, "memory": 8704, "step": 136150} +{"lr": 0.001881758808383427, "data_time": 0.00844871997833252, "loss": 0.3488726705312729, "decode.loss_ce": 0.22330213338136673, "decode.acc_seg": 94.12638092041016, "aux.loss_ce": 0.12557053864002227, "aux.acc_seg": 95.6217269897461, "time": 1.1194595336914062, "iter": 136200, "memory": 8704, "step": 136200} +{"lr": 0.0018783895825409348, "data_time": 0.006668472290039062, "loss": 0.3187419161200523, "decode.loss_ce": 0.18927625715732574, "decode.acc_seg": 89.25333404541016, "aux.loss_ce": 0.1294656593352556, "aux.acc_seg": 75.64970397949219, "time": 1.1120803117752076, "iter": 136250, "memory": 8704, "step": 136250} +{"lr": 0.001875019647312518, "data_time": 0.007033395767211914, "loss": 0.3312418282032013, "decode.loss_ce": 0.18955549448728562, "decode.acc_seg": 96.47991943359375, "aux.loss_ce": 0.14168633371591569, "aux.acc_seg": 92.80452728271484, "time": 1.1159128427505494, "iter": 136300, "memory": 8705, "step": 136300} +{"lr": 0.0018716490010517468, "data_time": 0.006408905982971192, "loss": 0.267634978890419, "decode.loss_ce": 0.16276368275284767, "decode.acc_seg": 96.12808227539062, "aux.loss_ce": 0.10487129725515842, "aux.acc_seg": 94.73348999023438, "time": 1.110517978668213, "iter": 136350, "memory": 8704, "step": 136350} +{"lr": 0.0018682776421048812, "data_time": 0.005718421936035156, "loss": 0.2896799504756927, "decode.loss_ce": 0.17004160806536675, "decode.acc_seg": 94.07685089111328, "aux.loss_ce": 0.11963834054768085, "aux.acc_seg": 94.15899658203125, "time": 1.1085157155990601, "iter": 136400, "memory": 8704, "step": 136400} +{"lr": 0.0018649055688108205, "data_time": 0.007619237899780274, "loss": 0.34363380670547483, "decode.loss_ce": 0.20731035992503166, "decode.acc_seg": 87.37590789794922, "aux.loss_ce": 0.13632344119250775, "aux.acc_seg": 87.56802368164062, "time": 1.1123611211776734, "iter": 136450, "memory": 8703, "step": 136450} +{"lr": 0.0018615327795010615, "data_time": 0.006544685363769532, "loss": 0.2914550773799419, "decode.loss_ce": 0.16155352741479873, "decode.acc_seg": 92.73223114013672, "aux.loss_ce": 0.1299015510827303, "aux.acc_seg": 85.67315673828125, "time": 1.115074372291565, "iter": 136500, "memory": 8704, "step": 136500} +{"lr": 0.001858159272499639, "data_time": 0.006276345252990723, "loss": 0.33153985887765886, "decode.loss_ce": 0.1912035934627056, "decode.acc_seg": 83.26225280761719, "aux.loss_ce": 0.14033626355230808, "aux.acc_seg": 84.68347930908203, "time": 1.1142385721206665, "iter": 136550, "memory": 8704, "step": 136550} +{"lr": 0.0018547850461230868, "data_time": 0.006536030769348144, "loss": 0.2029868632555008, "decode.loss_ce": 0.12749822586774825, "decode.acc_seg": 94.6330337524414, "aux.loss_ce": 0.07548863515257835, "aux.acc_seg": 92.58785247802734, "time": 1.1148575305938722, "iter": 136600, "memory": 8704, "step": 136600} +{"lr": 0.001851410098680381, "data_time": 0.00728304386138916, "loss": 0.2847749799489975, "decode.loss_ce": 0.17723755091428756, "decode.acc_seg": 94.18360137939453, "aux.loss_ce": 0.10753742642700673, "aux.acc_seg": 93.48430633544922, "time": 1.1223431348800659, "iter": 136650, "memory": 8703, "step": 136650} +{"lr": 0.0018480344284728966, "data_time": 0.00946044921875, "loss": 0.2590556040406227, "decode.loss_ce": 0.16340427696704865, "decode.acc_seg": 92.84794616699219, "aux.loss_ce": 0.09565132670104504, "aux.acc_seg": 90.53543090820312, "time": 1.1208812713623046, "iter": 136700, "memory": 8704, "step": 136700} +{"lr": 0.0018446580337943494, "data_time": 0.007971644401550293, "loss": 0.29538483917713165, "decode.loss_ce": 0.18618974462151527, "decode.acc_seg": 96.98841857910156, "aux.loss_ce": 0.10919509902596473, "aux.acc_seg": 94.2618637084961, "time": 1.1176352977752686, "iter": 136750, "memory": 8703, "step": 136750} +{"lr": 0.0018412809129307493, "data_time": 0.0066650390625, "loss": 0.28915793001651763, "decode.loss_ce": 0.16948564648628234, "decode.acc_seg": 93.78995513916016, "aux.loss_ce": 0.11967227943241596, "aux.acc_seg": 86.68983459472656, "time": 1.113205862045288, "iter": 136800, "memory": 8704, "step": 136800} +{"lr": 0.0018379030641603518, "data_time": 0.0053853273391723635, "loss": 0.360051691532135, "decode.loss_ce": 0.2112049825489521, "decode.acc_seg": 90.39044189453125, "aux.loss_ce": 0.14884671047329903, "aux.acc_seg": 87.93610382080078, "time": 1.1096009492874146, "iter": 136850, "memory": 8703, "step": 136850} +{"lr": 0.0018345244857535972, "data_time": 0.007687067985534668, "loss": 0.24440297186374665, "decode.loss_ce": 0.1400906316936016, "decode.acc_seg": 90.52931213378906, "aux.loss_ce": 0.104312339797616, "aux.acc_seg": 84.44048309326172, "time": 1.1131745338439942, "iter": 136900, "memory": 8703, "step": 136900} +{"lr": 0.001831145175973065, "data_time": 0.006182718276977539, "loss": 0.3251403376460075, "decode.loss_ce": 0.20552381575107576, "decode.acc_seg": 97.0865249633789, "aux.loss_ce": 0.1196165181696415, "aux.acc_seg": 91.52195739746094, "time": 1.1124679088592528, "iter": 136950, "memory": 8703, "step": 136950} +{"lr": 0.0018277651330734198, "data_time": 0.0055266618728637695, "loss": 0.25571267679333687, "decode.loss_ce": 0.15226745568215846, "decode.acc_seg": 90.38206481933594, "aux.loss_ce": 0.10344522036612033, "aux.acc_seg": 87.71946716308594, "time": 1.1174075841903686, "iter": 137000, "memory": 8704, "step": 137000} +{"lr": 0.0018243843553013572, "data_time": 0.006529092788696289, "loss": 0.18849372267723083, "decode.loss_ce": 0.11085212975740433, "decode.acc_seg": 98.20244598388672, "aux.loss_ce": 0.07764159440994263, "aux.acc_seg": 97.20096588134766, "time": 1.107660460472107, "iter": 137050, "memory": 8704, "step": 137050} +{"lr": 0.0018210028408955515, "data_time": 0.007969236373901368, "loss": 0.2140194371342659, "decode.loss_ce": 0.13020505830645562, "decode.acc_seg": 95.16423034667969, "aux.loss_ce": 0.08381437920033932, "aux.acc_seg": 91.3553237915039, "time": 1.1189701318740846, "iter": 137100, "memory": 8704, "step": 137100} +{"lr": 0.001817620588086598, "data_time": 0.0058868408203125, "loss": 0.20252904593944548, "decode.loss_ce": 0.1219528429210186, "decode.acc_seg": 91.99491882324219, "aux.loss_ce": 0.08057620376348495, "aux.acc_seg": 87.7269058227539, "time": 1.1153871536254882, "iter": 137150, "memory": 8704, "step": 137150} +{"lr": 0.001814237595096962, "data_time": 0.006749367713928223, "loss": 0.36218701899051664, "decode.loss_ce": 0.22476979196071625, "decode.acc_seg": 90.46192169189453, "aux.loss_ce": 0.1374172203242779, "aux.acc_seg": 85.92479705810547, "time": 1.115449023246765, "iter": 137200, "memory": 8704, "step": 137200} +{"lr": 0.0018108538601409204, "data_time": 0.006741189956665039, "loss": 0.3573715895414352, "decode.loss_ce": 0.19269050657749176, "decode.acc_seg": 93.51482391357422, "aux.loss_ce": 0.16468107514083385, "aux.acc_seg": 91.67607116699219, "time": 1.1209469556808471, "iter": 137250, "memory": 8704, "step": 137250} +{"lr": 0.00180746938142451, "data_time": 0.0065946817398071286, "loss": 0.210299713909626, "decode.loss_ce": 0.12319616936147212, "decode.acc_seg": 97.66998291015625, "aux.loss_ce": 0.08710354212671519, "aux.acc_seg": 97.51847076416016, "time": 1.118709969520569, "iter": 137300, "memory": 8703, "step": 137300} +{"lr": 0.0018040841571454655, "data_time": 0.008736991882324218, "loss": 0.20747504085302354, "decode.loss_ce": 0.12318828366696835, "decode.acc_seg": 94.49348449707031, "aux.loss_ce": 0.084286754950881, "aux.acc_seg": 93.25071716308594, "time": 1.1173307418823242, "iter": 137350, "memory": 8704, "step": 137350} +{"lr": 0.0018006981854931676, "data_time": 0.007863116264343262, "loss": 0.33468412458896635, "decode.loss_ce": 0.2047937609255314, "decode.acc_seg": 86.61422729492188, "aux.loss_ce": 0.12989036850631236, "aux.acc_seg": 85.05287170410156, "time": 1.1169185161590576, "iter": 137400, "memory": 8704, "step": 137400} +{"lr": 0.0017973114646485816, "data_time": 0.007746577262878418, "loss": 0.23952573537826538, "decode.loss_ce": 0.15313161984086038, "decode.acc_seg": 96.74383544921875, "aux.loss_ce": 0.08639411497861146, "aux.acc_seg": 95.72257995605469, "time": 1.1137366533279418, "iter": 137450, "memory": 8704, "step": 137450} +{"lr": 0.0017939239927842053, "data_time": 0.006766295433044434, "loss": 0.3315630882978439, "decode.loss_ce": 0.1989619791507721, "decode.acc_seg": 76.99527740478516, "aux.loss_ce": 0.13260110840201378, "aux.acc_seg": 75.53646850585938, "time": 1.1159186124801637, "iter": 137500, "memory": 8703, "step": 137500} +{"lr": 0.0017905357680640058, "data_time": 0.006743240356445313, "loss": 0.205736593157053, "decode.loss_ce": 0.11774493791162968, "decode.acc_seg": 94.78199768066406, "aux.loss_ce": 0.08799165468662977, "aux.acc_seg": 69.7027816772461, "time": 1.1107576847076417, "iter": 137550, "memory": 8704, "step": 137550} +{"lr": 0.0017871467886433614, "data_time": 0.0067359209060668945, "loss": 0.22153864204883575, "decode.loss_ce": 0.1438985660672188, "decode.acc_seg": 94.85611724853516, "aux.loss_ce": 0.07764007449150086, "aux.acc_seg": 93.2752914428711, "time": 1.1169068098068238, "iter": 137600, "memory": 8703, "step": 137600} +{"lr": 0.0017837570526690024, "data_time": 0.007507133483886719, "loss": 0.24531977027654647, "decode.loss_ce": 0.13505041152238845, "decode.acc_seg": 94.0928726196289, "aux.loss_ce": 0.1102693598717451, "aux.acc_seg": 78.4007339477539, "time": 1.1160972118377686, "iter": 137650, "memory": 8704, "step": 137650} +{"lr": 0.0017803665582789528, "data_time": 0.006530213356018067, "loss": 0.30230935886502264, "decode.loss_ce": 0.1718819409608841, "decode.acc_seg": 93.73734283447266, "aux.loss_ce": 0.1304274220019579, "aux.acc_seg": 90.00479125976562, "time": 1.1139775514602661, "iter": 137700, "memory": 8703, "step": 137700} +{"lr": 0.001776975303602468, "data_time": 0.0073795318603515625, "loss": 0.27179007455706594, "decode.loss_ce": 0.15692791491746902, "decode.acc_seg": 96.39554595947266, "aux.loss_ce": 0.11486216075718403, "aux.acc_seg": 91.64598083496094, "time": 1.1211487531661988, "iter": 137750, "memory": 8704, "step": 137750} +{"lr": 0.0017735832867599756, "data_time": 0.008336877822875977, "loss": 0.2285641387104988, "decode.loss_ce": 0.13639669641852378, "decode.acc_seg": 96.46549224853516, "aux.loss_ce": 0.09216743931174279, "aux.acc_seg": 95.6502914428711, "time": 1.1208714246749878, "iter": 137800, "memory": 8704, "step": 137800} +{"lr": 0.001770190505863007, "data_time": 0.00765833854675293, "loss": 0.18440172597765922, "decode.loss_ce": 0.11528674624860287, "decode.acc_seg": 96.75359344482422, "aux.loss_ce": 0.06911498159170151, "aux.acc_seg": 95.8913345336914, "time": 1.1155745267868042, "iter": 137850, "memory": 8704, "step": 137850} +{"lr": 0.001766796959014145, "data_time": 0.0064173460006713865, "loss": 0.29106440842151643, "decode.loss_ce": 0.17603626251220703, "decode.acc_seg": 95.81368255615234, "aux.loss_ce": 0.11502815149724484, "aux.acc_seg": 93.45047760009766, "time": 1.112562346458435, "iter": 137900, "memory": 8703, "step": 137900} +{"lr": 0.0017634026443069557, "data_time": 0.006991839408874512, "loss": 0.23015135824680327, "decode.loss_ce": 0.14784163162112235, "decode.acc_seg": 96.22980499267578, "aux.loss_ce": 0.08230972457677126, "aux.acc_seg": 94.21106719970703, "time": 1.113789701461792, "iter": 137950, "memory": 8703, "step": 137950} +{"lr": 0.0017600075598259268, "data_time": 0.006887173652648926, "loss": 0.28131613731384275, "decode.loss_ce": 0.1655374825000763, "decode.acc_seg": 95.06388854980469, "aux.loss_ce": 0.11577865481376648, "aux.acc_seg": 90.1314697265625, "time": 1.1122068166732788, "iter": 138000, "memory": 8704, "step": 138000} +{"lr": 0.0017566117036464015, "data_time": 0.006992959976196289, "loss": 0.4317642718553543, "decode.loss_ce": 0.2629113391041756, "decode.acc_seg": 96.15189361572266, "aux.loss_ce": 0.16885293684899808, "aux.acc_seg": 90.59296417236328, "time": 1.115311574935913, "iter": 138050, "memory": 8703, "step": 138050} +{"lr": 0.0017532150738345156, "data_time": 0.007535076141357422, "loss": 0.4025439277291298, "decode.loss_ce": 0.2502115458250046, "decode.acc_seg": 92.99108123779297, "aux.loss_ce": 0.15233238153159617, "aux.acc_seg": 92.25257873535156, "time": 1.113218331336975, "iter": 138100, "memory": 8703, "step": 138100} +{"lr": 0.0017498176684471339, "data_time": 0.007422327995300293, "loss": 0.20167074352502823, "decode.loss_ce": 0.12497500702738762, "decode.acc_seg": 94.86522674560547, "aux.loss_ce": 0.07669573239982128, "aux.acc_seg": 89.50506591796875, "time": 1.1144092082977295, "iter": 138150, "memory": 8703, "step": 138150} +{"lr": 0.0017464194855317744, "data_time": 0.006258678436279297, "loss": 0.19593924432992935, "decode.loss_ce": 0.12028237096965314, "decode.acc_seg": 97.25728607177734, "aux.loss_ce": 0.07565687522292137, "aux.acc_seg": 96.37433624267578, "time": 1.1120222330093383, "iter": 138200, "memory": 8703, "step": 138200} +{"lr": 0.0017430205231265589, "data_time": 0.008950614929199218, "loss": 0.25810700207948684, "decode.loss_ce": 0.1569759339094162, "decode.acc_seg": 92.55581665039062, "aux.loss_ce": 0.10113106593489647, "aux.acc_seg": 90.61707305908203, "time": 1.1165975093841554, "iter": 138250, "memory": 8704, "step": 138250} +{"lr": 0.0017396207792601335, "data_time": 0.0060645341873168945, "loss": 0.3082675263285637, "decode.loss_ce": 0.18116117045283317, "decode.acc_seg": 85.42877197265625, "aux.loss_ce": 0.12710635643452406, "aux.acc_seg": 79.10560607910156, "time": 1.1207021236419679, "iter": 138300, "memory": 8704, "step": 138300} +{"lr": 0.0017362202519516032, "data_time": 0.006412768363952636, "loss": 0.27597104758024216, "decode.loss_ce": 0.15793219804763795, "decode.acc_seg": 94.45822143554688, "aux.loss_ce": 0.11803885214030743, "aux.acc_seg": 89.30211639404297, "time": 1.1125174045562745, "iter": 138350, "memory": 8704, "step": 138350} +{"lr": 0.0017328189392104671, "data_time": 0.006919956207275391, "loss": 0.23797487318515778, "decode.loss_ce": 0.1464996226131916, "decode.acc_seg": 89.75270080566406, "aux.loss_ce": 0.09147524833679199, "aux.acc_seg": 90.46382904052734, "time": 1.1105886220932006, "iter": 138400, "memory": 8704, "step": 138400} +{"lr": 0.0017294168390365463, "data_time": 0.0071477174758911135, "loss": 0.2748819082975388, "decode.loss_ce": 0.15764409750699998, "decode.acc_seg": 97.221435546875, "aux.loss_ce": 0.11723781339824199, "aux.acc_seg": 95.30613708496094, "time": 1.1166116714477539, "iter": 138450, "memory": 8704, "step": 138450} +{"lr": 0.001726013949419914, "data_time": 0.005989956855773926, "loss": 0.2298177734017372, "decode.loss_ce": 0.13489762023091317, "decode.acc_seg": 94.46932220458984, "aux.loss_ce": 0.09492015279829502, "aux.acc_seg": 85.66169738769531, "time": 1.1160676240921021, "iter": 138500, "memory": 8704, "step": 138500} +{"lr": 0.0017226102683408281, "data_time": 0.007514595985412598, "loss": 0.3731019675731659, "decode.loss_ce": 0.23077032044529916, "decode.acc_seg": 95.28185272216797, "aux.loss_ce": 0.1423316515982151, "aux.acc_seg": 93.70771789550781, "time": 1.112761640548706, "iter": 138550, "memory": 8704, "step": 138550} +{"lr": 0.0017192057937696554, "data_time": 0.006772446632385254, "loss": 0.2606636196374893, "decode.loss_ce": 0.1597557470202446, "decode.acc_seg": 96.25428009033203, "aux.loss_ce": 0.10090787149965763, "aux.acc_seg": 94.81430053710938, "time": 1.1173381567001344, "iter": 138600, "memory": 8703, "step": 138600} +{"lr": 0.001715800523666808, "data_time": 0.006279540061950683, "loss": 0.2746144637465477, "decode.loss_ce": 0.15937422811985016, "decode.acc_seg": 97.11468505859375, "aux.loss_ce": 0.11524023823440074, "aux.acc_seg": 94.55528259277344, "time": 1.1113147735595703, "iter": 138650, "memory": 8703, "step": 138650} +{"lr": 0.0017123944559826604, "data_time": 0.006867027282714844, "loss": 0.25629853904247285, "decode.loss_ce": 0.1541370630264282, "decode.acc_seg": 95.01797485351562, "aux.loss_ce": 0.10216147843748331, "aux.acc_seg": 88.67636108398438, "time": 1.1147292852401733, "iter": 138700, "memory": 8703, "step": 138700} +{"lr": 0.001708987588657486, "data_time": 0.0060443878173828125, "loss": 0.39017530903220177, "decode.loss_ce": 0.2128923773765564, "decode.acc_seg": 95.4742431640625, "aux.loss_ce": 0.1772829320281744, "aux.acc_seg": 92.93537139892578, "time": 1.1139702320098877, "iter": 138750, "memory": 8703, "step": 138750} +{"lr": 0.001705579919621378, "data_time": 0.007554769515991211, "loss": 0.32840674966573713, "decode.loss_ce": 0.18845674097537995, "decode.acc_seg": 98.20511627197266, "aux.loss_ce": 0.13995001576840876, "aux.acc_seg": 97.9127197265625, "time": 1.114230751991272, "iter": 138800, "memory": 8704, "step": 138800} +{"lr": 0.0017021714467941778, "data_time": 0.0065507650375366214, "loss": 0.32849520444869995, "decode.loss_ce": 0.1949786938726902, "decode.acc_seg": 95.13861083984375, "aux.loss_ce": 0.1335165061056614, "aux.acc_seg": 94.1966323852539, "time": 1.1209110736846923, "iter": 138850, "memory": 8704, "step": 138850} +{"lr": 0.0016987621680853984, "data_time": 0.007547307014465332, "loss": 0.3151368021965027, "decode.loss_ce": 0.18659070655703544, "decode.acc_seg": 95.15615844726562, "aux.loss_ce": 0.12854609154164792, "aux.acc_seg": 91.99091339111328, "time": 1.1163377285003662, "iter": 138900, "memory": 8703, "step": 138900} +{"lr": 0.0016953520813941453, "data_time": 0.005692672729492187, "loss": 0.2930439606308937, "decode.loss_ce": 0.17313881143927573, "decode.acc_seg": 90.05177307128906, "aux.loss_ce": 0.1199051458388567, "aux.acc_seg": 87.97810363769531, "time": 1.1176146745681763, "iter": 138950, "memory": 8704, "step": 138950} +{"lr": 0.0016919411846090461, "data_time": 0.0069979667663574215, "loss": 0.24776250272989273, "decode.loss_ce": 0.1476997584104538, "decode.acc_seg": 96.3258056640625, "aux.loss_ce": 0.100062745064497, "aux.acc_seg": 96.18669891357422, "time": 1.115126943588257, "iter": 139000, "memory": 8703, "step": 139000} +{"lr": 0.0016885294756081703, "data_time": 0.00702667236328125, "loss": 0.3193833202123642, "decode.loss_ce": 0.1985662139952183, "decode.acc_seg": 97.4570541381836, "aux.loss_ce": 0.12081710621714592, "aux.acc_seg": 97.0755844116211, "time": 1.1180981159210206, "iter": 139050, "memory": 8703, "step": 139050} +{"lr": 0.0016851169522589516, "data_time": 0.006170439720153809, "loss": 0.3825203076004982, "decode.loss_ce": 0.249312062561512, "decode.acc_seg": 94.8537826538086, "aux.loss_ce": 0.13320823535323142, "aux.acc_seg": 92.11864471435547, "time": 1.1158299922943116, "iter": 139100, "memory": 8703, "step": 139100} +{"lr": 0.0016817036124181057, "data_time": 0.005711746215820312, "loss": 0.41471546292304995, "decode.loss_ce": 0.26450781598687173, "decode.acc_seg": 96.26610565185547, "aux.loss_ce": 0.15020764507353307, "aux.acc_seg": 95.8587646484375, "time": 1.1145649671554565, "iter": 139150, "memory": 8704, "step": 139150} +{"lr": 0.001678289453931558, "data_time": 0.007334208488464356, "loss": 0.2586344927549362, "decode.loss_ce": 0.15603221878409385, "decode.acc_seg": 92.56572723388672, "aux.loss_ce": 0.10260227359831334, "aux.acc_seg": 89.09269714355469, "time": 1.116514015197754, "iter": 139200, "memory": 8703, "step": 139200} +{"lr": 0.0016748744746343533, "data_time": 0.007956457138061524, "loss": 0.3093987137079239, "decode.loss_ce": 0.19258636608719826, "decode.acc_seg": 92.87433624267578, "aux.loss_ce": 0.11681234836578369, "aux.acc_seg": 87.45561981201172, "time": 1.1161176443099976, "iter": 139250, "memory": 8704, "step": 139250} +{"lr": 0.001671458672350584, "data_time": 0.00697481632232666, "loss": 0.3465957760810852, "decode.loss_ce": 0.20864880830049515, "decode.acc_seg": 89.4144058227539, "aux.loss_ce": 0.13794696554541588, "aux.acc_seg": 87.25859069824219, "time": 1.114833903312683, "iter": 139300, "memory": 8703, "step": 139300} +{"lr": 0.0016680420448933026, "data_time": 0.007368946075439453, "loss": 0.29805636703968047, "decode.loss_ce": 0.19126267805695535, "decode.acc_seg": 94.15766143798828, "aux.loss_ce": 0.10679368525743485, "aux.acc_seg": 90.23017883300781, "time": 1.113950753211975, "iter": 139350, "memory": 8704, "step": 139350} +{"lr": 0.0016646245900644391, "data_time": 0.00864238739013672, "loss": 0.2661008186638355, "decode.loss_ce": 0.16573015600442886, "decode.acc_seg": 91.72956848144531, "aux.loss_ce": 0.10037066247314215, "aux.acc_seg": 90.18952941894531, "time": 1.1146482944488525, "iter": 139400, "memory": 8704, "step": 139400} +{"lr": 0.0016612063056547202, "data_time": 0.0056859016418457035, "loss": 0.2549732133746147, "decode.loss_ce": 0.15826217830181122, "decode.acc_seg": 96.42581939697266, "aux.loss_ce": 0.09671103209257126, "aux.acc_seg": 93.91193389892578, "time": 1.113913655281067, "iter": 139450, "memory": 8703, "step": 139450} +{"lr": 0.001657787189443581, "data_time": 0.006505513191223144, "loss": 0.3466456286609173, "decode.loss_ce": 0.21100765690207482, "decode.acc_seg": 89.67005157470703, "aux.loss_ce": 0.13563797809183598, "aux.acc_seg": 84.02271270751953, "time": 1.119002389907837, "iter": 139500, "memory": 8704, "step": 139500} +{"lr": 0.0016543672391990838, "data_time": 0.0067681074142456055, "loss": 0.21351827830076217, "decode.loss_ce": 0.1258986733853817, "decode.acc_seg": 95.24822235107422, "aux.loss_ce": 0.0876196026802063, "aux.acc_seg": 95.18782043457031, "time": 1.1139609336853027, "iter": 139550, "memory": 8704, "step": 139550} +{"lr": 0.0016509464526778285, "data_time": 0.007023406028747558, "loss": 0.2580615982413292, "decode.loss_ce": 0.15192490816116333, "decode.acc_seg": 93.28148651123047, "aux.loss_ce": 0.10613668859004974, "aux.acc_seg": 90.96958923339844, "time": 1.1179591417312622, "iter": 139600, "memory": 8704, "step": 139600} +{"lr": 0.0016475248276248643, "data_time": 0.006183528900146484, "loss": 0.2140895664691925, "decode.loss_ce": 0.13337899297475814, "decode.acc_seg": 95.79492950439453, "aux.loss_ce": 0.08071057647466659, "aux.acc_seg": 89.31629943847656, "time": 1.1153986692428588, "iter": 139650, "memory": 8703, "step": 139650} +{"lr": 0.0016441023617736075, "data_time": 0.006315708160400391, "loss": 0.25778519585728643, "decode.loss_ce": 0.16608794704079627, "decode.acc_seg": 94.37210845947266, "aux.loss_ce": 0.09169724993407727, "aux.acc_seg": 93.32491302490234, "time": 1.1111984729766846, "iter": 139700, "memory": 8704, "step": 139700} +{"lr": 0.001640679052845748, "data_time": 0.006740140914916992, "loss": 0.25805234611034394, "decode.loss_ce": 0.1610306441783905, "decode.acc_seg": 90.255859375, "aux.loss_ce": 0.09702170453965664, "aux.acc_seg": 81.43768310546875, "time": 1.1136364459991455, "iter": 139750, "memory": 8704, "step": 139750} +{"lr": 0.001637254898551161, "data_time": 0.006366276741027832, "loss": 0.23529705703258513, "decode.loss_ce": 0.14475657567381858, "decode.acc_seg": 96.53771209716797, "aux.loss_ce": 0.09054048359394073, "aux.acc_seg": 96.16978454589844, "time": 1.108921504020691, "iter": 139800, "memory": 8703, "step": 139800} +{"lr": 0.0016338298965878162, "data_time": 0.006862759590148926, "loss": 0.21841796338558198, "decode.loss_ce": 0.12680067420005797, "decode.acc_seg": 96.09425354003906, "aux.loss_ce": 0.09161728993058205, "aux.acc_seg": 95.36329650878906, "time": 1.1195830583572388, "iter": 139850, "memory": 8703, "step": 139850} +{"lr": 0.0016304040446416855, "data_time": 0.007546186447143555, "loss": 0.2790458410978317, "decode.loss_ce": 0.1717812169343233, "decode.acc_seg": 96.21170043945312, "aux.loss_ce": 0.10726462826132774, "aux.acc_seg": 95.64470672607422, "time": 1.1152450799942017, "iter": 139900, "memory": 8704, "step": 139900} +{"lr": 0.0016269773403866515, "data_time": 0.00690000057220459, "loss": 0.2641276314854622, "decode.loss_ce": 0.16012718230485917, "decode.acc_seg": 93.34194946289062, "aux.loss_ce": 0.10400044582784176, "aux.acc_seg": 91.89446258544922, "time": 1.1133415460586549, "iter": 139950, "memory": 8704, "step": 139950} +{"lr": 0.001623549781484412, "data_time": 0.005774354934692383, "loss": 0.21546740382909774, "decode.loss_ce": 0.13409506380558014, "decode.acc_seg": 92.31548309326172, "aux.loss_ce": 0.08137233778834344, "aux.acc_seg": 88.75363159179688, "time": 1.1150110721588136, "iter": 140000, "memory": 8703, "step": 140000} +{"lr": 0.0016201213655843893, "data_time": 0.007493042945861816, "loss": 0.22091545015573502, "decode.loss_ce": 0.13723438307642938, "decode.acc_seg": 93.96412658691406, "aux.loss_ce": 0.08368106894195079, "aux.acc_seg": 93.2795181274414, "time": 1.111478614807129, "iter": 140050, "memory": 8704, "step": 140050} +{"lr": 0.0016166920903236328, "data_time": 0.007107853889465332, "loss": 0.3340110071003437, "decode.loss_ce": 0.2163414888083935, "decode.acc_seg": 97.78111267089844, "aux.loss_ce": 0.11766951829195023, "aux.acc_seg": 96.28263854980469, "time": 1.112092661857605, "iter": 140100, "memory": 8704, "step": 140100} +{"lr": 0.0016132619533267196, "data_time": 0.0075970649719238285, "loss": 0.39419319331645963, "decode.loss_ce": 0.22633466571569444, "decode.acc_seg": 96.7554702758789, "aux.loss_ce": 0.16785852536559104, "aux.acc_seg": 95.84217071533203, "time": 1.1204590559005738, "iter": 140150, "memory": 8703, "step": 140150} +{"lr": 0.0016098309522056622, "data_time": 0.007446932792663574, "loss": 0.25925668701529503, "decode.loss_ce": 0.145931376516819, "decode.acc_seg": 97.44005584716797, "aux.loss_ce": 0.11332530900835991, "aux.acc_seg": 96.90446472167969, "time": 1.1186996698379517, "iter": 140200, "memory": 8703, "step": 140200} +{"lr": 0.0016063990845598091, "data_time": 0.006731009483337403, "loss": 0.2815283976495266, "decode.loss_ce": 0.1627937451004982, "decode.acc_seg": 90.88017272949219, "aux.loss_ce": 0.11873465217649937, "aux.acc_seg": 85.24581146240234, "time": 1.1132121324539184, "iter": 140250, "memory": 8703, "step": 140250} +{"lr": 0.0016029663479757423, "data_time": 0.007011127471923828, "loss": 0.3030097559094429, "decode.loss_ce": 0.18553278148174285, "decode.acc_seg": 94.3431167602539, "aux.loss_ce": 0.11747697032988072, "aux.acc_seg": 92.3349380493164, "time": 1.1127926349639892, "iter": 140300, "memory": 8703, "step": 140300} +{"lr": 0.0015995327400271772, "data_time": 0.006735992431640625, "loss": 0.3695111349225044, "decode.loss_ce": 0.2251005731523037, "decode.acc_seg": 92.05620574951172, "aux.loss_ce": 0.14441056065261365, "aux.acc_seg": 86.53004455566406, "time": 1.1165400743484497, "iter": 140350, "memory": 8704, "step": 140350} +{"lr": 0.001596098258274866, "data_time": 0.008017373085021973, "loss": 0.38630068600177764, "decode.loss_ce": 0.2285706117749214, "decode.acc_seg": 92.89289855957031, "aux.loss_ce": 0.15773007981479167, "aux.acc_seg": 78.86186981201172, "time": 1.118752932548523, "iter": 140400, "memory": 8704, "step": 140400} +{"lr": 0.0015926629002664893, "data_time": 0.006600069999694824, "loss": 0.2787068963050842, "decode.loss_ce": 0.160978315025568, "decode.acc_seg": 95.0553207397461, "aux.loss_ce": 0.11772858127951621, "aux.acc_seg": 94.00240325927734, "time": 1.1172590970993042, "iter": 140450, "memory": 8704, "step": 140450} +{"lr": 0.0015892266635365582, "data_time": 0.00664052963256836, "loss": 0.5275491416454315, "decode.loss_ce": 0.30845868661999704, "decode.acc_seg": 92.98374938964844, "aux.loss_ce": 0.21909045204520225, "aux.acc_seg": 89.81156921386719, "time": 1.10873281955719, "iter": 140500, "memory": 8703, "step": 140500} +{"lr": 0.001585789545606302, "data_time": 0.00643923282623291, "loss": 0.2464921295642853, "decode.loss_ce": 0.15847113430500032, "decode.acc_seg": 96.65794372558594, "aux.loss_ce": 0.08802099898457527, "aux.acc_seg": 93.97557067871094, "time": 1.108655047416687, "iter": 140550, "memory": 8703, "step": 140550} +{"lr": 0.00158235154398357, "data_time": 0.005743765830993652, "loss": 0.29803076982498167, "decode.loss_ce": 0.18554226011037828, "decode.acc_seg": 85.59271240234375, "aux.loss_ce": 0.11248851232230664, "aux.acc_seg": 83.5174560546875, "time": 1.1139050483703614, "iter": 140600, "memory": 8703, "step": 140600} +{"lr": 0.0015789126561627195, "data_time": 0.007191777229309082, "loss": 0.3846816554665565, "decode.loss_ce": 0.2340402126312256, "decode.acc_seg": 87.78126525878906, "aux.loss_ce": 0.15064143836498262, "aux.acc_seg": 84.28401947021484, "time": 1.116864061355591, "iter": 140650, "memory": 8704, "step": 140650} +{"lr": 0.0015754728796245098, "data_time": 0.0067236900329589845, "loss": 0.41484135538339617, "decode.loss_ce": 0.24145321995019914, "decode.acc_seg": 91.81759643554688, "aux.loss_ce": 0.17338813357055188, "aux.acc_seg": 81.10834503173828, "time": 1.1151474952697753, "iter": 140700, "memory": 8703, "step": 140700} +{"lr": 0.0015720322118359935, "data_time": 0.007270979881286621, "loss": 0.2788493290543556, "decode.loss_ce": 0.15854034200310707, "decode.acc_seg": 96.29173278808594, "aux.loss_ce": 0.12030898854136467, "aux.acc_seg": 94.40739440917969, "time": 1.1173970222473144, "iter": 140750, "memory": 8704, "step": 140750} +{"lr": 0.0015685906502504047, "data_time": 0.005653882026672363, "loss": 0.3172393187880516, "decode.loss_ce": 0.19402975142002105, "decode.acc_seg": 94.55845642089844, "aux.loss_ce": 0.12320957146584988, "aux.acc_seg": 89.4002914428711, "time": 1.1089327096939088, "iter": 140800, "memory": 8703, "step": 140800} +{"lr": 0.001565148192307048, "data_time": 0.00691690444946289, "loss": 0.30658064857125283, "decode.loss_ce": 0.18905976749956607, "decode.acc_seg": 96.92916870117188, "aux.loss_ce": 0.11752088367938995, "aux.acc_seg": 94.45321655273438, "time": 1.1148892164230346, "iter": 140850, "memory": 8704, "step": 140850} +{"lr": 0.0015617048354311842, "data_time": 0.008780908584594727, "loss": 0.32776482254266737, "decode.loss_ce": 0.19318862110376359, "decode.acc_seg": 79.88993072509766, "aux.loss_ce": 0.1345761951059103, "aux.acc_seg": 73.19297790527344, "time": 1.120246958732605, "iter": 140900, "memory": 8704, "step": 140900} +{"lr": 0.0015582605770339212, "data_time": 0.007822275161743164, "loss": 0.2975233569741249, "decode.loss_ce": 0.1806039486080408, "decode.acc_seg": 93.9203872680664, "aux.loss_ce": 0.11691940501332283, "aux.acc_seg": 92.22908020019531, "time": 1.1107233047485352, "iter": 140950, "memory": 8704, "step": 140950} +{"lr": 0.001554815414512093, "data_time": 0.00746917724609375, "loss": 0.23971438705921172, "decode.loss_ce": 0.14610610976815225, "decode.acc_seg": 94.75452423095703, "aux.loss_ce": 0.09360827617347241, "aux.acc_seg": 93.75213623046875, "time": 1.1149703979492187, "iter": 141000, "memory": 8703, "step": 141000} +{"lr": 0.001551369345248146, "data_time": 0.007017254829406738, "loss": 0.314139324426651, "decode.loss_ce": 0.18637785762548448, "decode.acc_seg": 90.61863708496094, "aux.loss_ce": 0.12776145972311498, "aux.acc_seg": 90.93500518798828, "time": 1.111022400856018, "iter": 141050, "memory": 8704, "step": 141050} +{"lr": 0.0015479223666100225, "data_time": 0.006671929359436035, "loss": 0.3504980832338333, "decode.loss_ce": 0.22144191861152648, "decode.acc_seg": 96.5411148071289, "aux.loss_ce": 0.12905616723001004, "aux.acc_seg": 94.71427917480469, "time": 1.11519033908844, "iter": 141100, "memory": 8704, "step": 141100} +{"lr": 0.0015444744759510389, "data_time": 0.005694174766540527, "loss": 0.2901386395096779, "decode.loss_ce": 0.17231339141726493, "decode.acc_seg": 91.34699249267578, "aux.loss_ce": 0.117825248837471, "aux.acc_seg": 86.45108032226562, "time": 1.111825132369995, "iter": 141150, "memory": 8703, "step": 141150} +{"lr": 0.0015410256706097681, "data_time": 0.007189321517944336, "loss": 0.40902056992053987, "decode.loss_ce": 0.2527645334601402, "decode.acc_seg": 88.85160827636719, "aux.loss_ce": 0.156256040930748, "aux.acc_seg": 87.429931640625, "time": 1.1175216436386108, "iter": 141200, "memory": 8704, "step": 141200} +{"lr": 0.0015375759479099142, "data_time": 0.005856132507324219, "loss": 0.34696751832962036, "decode.loss_ce": 0.19361519291996956, "decode.acc_seg": 94.22695922851562, "aux.loss_ce": 0.15335232205688953, "aux.acc_seg": 92.74444580078125, "time": 1.1148470401763917, "iter": 141250, "memory": 8704, "step": 141250} +{"lr": 0.0015341253051601943, "data_time": 0.006515860557556152, "loss": 0.27414498254656794, "decode.loss_ce": 0.15705620720982552, "decode.acc_seg": 96.37825775146484, "aux.loss_ce": 0.11708878055214882, "aux.acc_seg": 95.62828826904297, "time": 1.1147414445877075, "iter": 141300, "memory": 8705, "step": 141300} +{"lr": 0.0015306737396542124, "data_time": 0.007215285301208496, "loss": 0.23006781190633774, "decode.loss_ce": 0.13234765827655792, "decode.acc_seg": 97.04882049560547, "aux.loss_ce": 0.09772015102207661, "aux.acc_seg": 96.56651306152344, "time": 1.1115519523620605, "iter": 141350, "memory": 8704, "step": 141350} +{"lr": 0.0015272212486703287, "data_time": 0.007793021202087402, "loss": 0.24443312734365463, "decode.loss_ce": 0.15053590908646583, "decode.acc_seg": 90.76923370361328, "aux.loss_ce": 0.09389721713960171, "aux.acc_seg": 88.92237854003906, "time": 1.121004056930542, "iter": 141400, "memory": 8704, "step": 141400} +{"lr": 0.0015237678294715438, "data_time": 0.005664682388305664, "loss": 0.25887020453810694, "decode.loss_ce": 0.14910222887992858, "decode.acc_seg": 96.33267211914062, "aux.loss_ce": 0.1097679778933525, "aux.acc_seg": 94.55445098876953, "time": 1.1113434553146362, "iter": 141450, "memory": 8703, "step": 141450} +{"lr": 0.0015203134793053581, "data_time": 0.006772089004516602, "loss": 0.20881878435611725, "decode.loss_ce": 0.12311547026038169, "decode.acc_seg": 97.05574798583984, "aux.loss_ce": 0.08570331446826458, "aux.acc_seg": 96.7630386352539, "time": 1.114691400527954, "iter": 141500, "memory": 8703, "step": 141500} +{"lr": 0.0015168581954036512, "data_time": 0.008054399490356445, "loss": 0.31672317534685135, "decode.loss_ce": 0.1812967799603939, "decode.acc_seg": 96.98925018310547, "aux.loss_ce": 0.13542639464139938, "aux.acc_seg": 94.67098999023438, "time": 1.1162684440612793, "iter": 141550, "memory": 8704, "step": 141550} +{"lr": 0.0015134019749825467, "data_time": 0.006725502014160156, "loss": 0.24445575326681138, "decode.loss_ce": 0.15605271682143212, "decode.acc_seg": 97.31886291503906, "aux.loss_ce": 0.08840303346514702, "aux.acc_seg": 96.34466552734375, "time": 1.1129088640213012, "iter": 141600, "memory": 8704, "step": 141600} +{"lr": 0.0015099448152422763, "data_time": 0.007819724082946778, "loss": 0.3020433738827705, "decode.loss_ce": 0.17458327934145929, "decode.acc_seg": 97.01671600341797, "aux.loss_ce": 0.12746009305119516, "aux.acc_seg": 95.40907287597656, "time": 1.1138202667236328, "iter": 141650, "memory": 8704, "step": 141650} +{"lr": 0.0015064867133670527, "data_time": 0.005931043624877929, "loss": 0.2254649817943573, "decode.loss_ce": 0.131221716850996, "decode.acc_seg": 94.72872161865234, "aux.loss_ce": 0.09424326196312904, "aux.acc_seg": 94.0394058227539, "time": 1.1118162155151368, "iter": 141700, "memory": 8705, "step": 141700} +{"lr": 0.001503027666524929, "data_time": 0.005941057205200195, "loss": 0.20429100692272187, "decode.loss_ce": 0.1185942031443119, "decode.acc_seg": 96.98206329345703, "aux.loss_ce": 0.08569680526852608, "aux.acc_seg": 96.5927734375, "time": 1.1137187004089355, "iter": 141750, "memory": 8703, "step": 141750} +{"lr": 0.0014995676718676616, "data_time": 0.00595700740814209, "loss": 0.2919662967324257, "decode.loss_ce": 0.16515767201781273, "decode.acc_seg": 88.78421783447266, "aux.loss_ce": 0.12680862583220004, "aux.acc_seg": 71.07734680175781, "time": 1.1161073207855225, "iter": 141800, "memory": 8704, "step": 141800} +{"lr": 0.0014961067265305736, "data_time": 0.007536244392395019, "loss": 0.23614228367805482, "decode.loss_ce": 0.15686151385307312, "decode.acc_seg": 88.7140884399414, "aux.loss_ce": 0.07928076647222042, "aux.acc_seg": 83.8837890625, "time": 1.1109970331192016, "iter": 141850, "memory": 8703, "step": 141850} +{"lr": 0.0014926448276324144, "data_time": 0.005892705917358398, "loss": 0.21922064647078515, "decode.loss_ce": 0.13008710630238057, "decode.acc_seg": 95.458984375, "aux.loss_ce": 0.08913353979587554, "aux.acc_seg": 93.26508331298828, "time": 1.1116528272628785, "iter": 141900, "memory": 8704, "step": 141900} +{"lr": 0.0014891819722752148, "data_time": 0.006203866004943848, "loss": 0.39368161261081697, "decode.loss_ce": 0.22978139519691468, "decode.acc_seg": 83.42850494384766, "aux.loss_ce": 0.16390021406114103, "aux.acc_seg": 81.20568084716797, "time": 1.1160468101501464, "iter": 141950, "memory": 8704, "step": 141950} +{"lr": 0.001485718157544144, "data_time": 0.007877326011657715, "loss": 0.24437346309423447, "decode.loss_ce": 0.15318473242223263, "decode.acc_seg": 95.41580963134766, "aux.loss_ce": 0.09118873327970504, "aux.acc_seg": 93.75044250488281, "time": 1.1163544416427613, "iter": 142000, "memory": 8704, "step": 142000} +{"lr": 0.001482253380507368, "data_time": 0.005932211875915527, "loss": 0.2696162313222885, "decode.loss_ce": 0.16930751875042915, "decode.acc_seg": 95.69866943359375, "aux.loss_ce": 0.1003087129443884, "aux.acc_seg": 94.94221496582031, "time": 1.115295648574829, "iter": 142050, "memory": 8703, "step": 142050} +{"lr": 0.0014787876382158986, "data_time": 0.007497334480285644, "loss": 0.33727161437273023, "decode.loss_ce": 0.2047271229326725, "decode.acc_seg": 93.11739349365234, "aux.loss_ce": 0.13254448920488357, "aux.acc_seg": 89.73114776611328, "time": 1.1162514448165894, "iter": 142100, "memory": 8704, "step": 142100} +{"lr": 0.0014753209277034486, "data_time": 0.009188032150268555, "loss": 0.2567796304821968, "decode.loss_ce": 0.15484078079462052, "decode.acc_seg": 97.30758666992188, "aux.loss_ce": 0.10193884931504726, "aux.acc_seg": 95.03408813476562, "time": 1.1173952102661133, "iter": 142150, "memory": 8703, "step": 142150} +{"lr": 0.0014718532459862769, "data_time": 0.006988048553466797, "loss": 0.252880896627903, "decode.loss_ce": 0.14757752493023873, "decode.acc_seg": 94.45673370361328, "aux.loss_ce": 0.10530337393283844, "aux.acc_seg": 80.7327880859375, "time": 1.1131150007247925, "iter": 142200, "memory": 8704, "step": 142200} +{"lr": 0.001468384590063042, "data_time": 0.006983208656311035, "loss": 0.25855106189846994, "decode.loss_ce": 0.15906410962343215, "decode.acc_seg": 96.32955932617188, "aux.loss_ce": 0.09948695078492165, "aux.acc_seg": 96.14441680908203, "time": 1.1143750190734862, "iter": 142250, "memory": 8703, "step": 142250} +{"lr": 0.0014649149569146444, "data_time": 0.005249428749084473, "loss": 0.2654618561267853, "decode.loss_ce": 0.16534925922751426, "decode.acc_seg": 83.39970397949219, "aux.loss_ce": 0.10011259280145168, "aux.acc_seg": 83.08270263671875, "time": 1.1086071729660034, "iter": 142300, "memory": 8703, "step": 142300} +{"lr": 0.00146144434350407, "data_time": 0.006291866302490234, "loss": 0.2419559270143509, "decode.loss_ce": 0.13958783075213432, "decode.acc_seg": 91.8252944946289, "aux.loss_ce": 0.10236809775233269, "aux.acc_seg": 91.57666778564453, "time": 1.113942837715149, "iter": 142350, "memory": 8703, "step": 142350} +{"lr": 0.0014579727467762377, "data_time": 0.007352852821350097, "loss": 0.2759927362203598, "decode.loss_ce": 0.16902633681893348, "decode.acc_seg": 94.72823333740234, "aux.loss_ce": 0.10696640238165855, "aux.acc_seg": 91.62568664550781, "time": 1.1177751541137695, "iter": 142400, "memory": 8703, "step": 142400} +{"lr": 0.0014545001636578365, "data_time": 0.006472730636596679, "loss": 0.21675031632184982, "decode.loss_ce": 0.13200174756348132, "decode.acc_seg": 98.20734405517578, "aux.loss_ce": 0.08474856894463301, "aux.acc_seg": 97.73546600341797, "time": 1.1135445833206177, "iter": 142450, "memory": 8703, "step": 142450} +{"lr": 0.0014510265910571655, "data_time": 0.005789279937744141, "loss": 0.21930094286799431, "decode.loss_ce": 0.13151778802275657, "decode.acc_seg": 95.30086517333984, "aux.loss_ce": 0.08778315410017967, "aux.acc_seg": 95.11833190917969, "time": 1.1105631589889526, "iter": 142500, "memory": 8704, "step": 142500} +{"lr": 0.0014475520258639702, "data_time": 0.007866454124450684, "loss": 0.22353598326444626, "decode.loss_ce": 0.13638898208737374, "decode.acc_seg": 88.24583435058594, "aux.loss_ce": 0.08714699856936932, "aux.acc_seg": 81.43297576904297, "time": 1.1130136489868163, "iter": 142550, "memory": 8704, "step": 142550} +{"lr": 0.0014440764649492775, "data_time": 0.0068700313568115234, "loss": 0.24648043215274812, "decode.loss_ce": 0.1494703121483326, "decode.acc_seg": 92.47150421142578, "aux.loss_ce": 0.09701012410223483, "aux.acc_seg": 89.2847671508789, "time": 1.1151556015014648, "iter": 142600, "memory": 8704, "step": 142600} +{"lr": 0.0014405999051652304, "data_time": 0.00785531997680664, "loss": 0.23969975262880325, "decode.loss_ce": 0.1388077072799206, "decode.acc_seg": 96.68775939941406, "aux.loss_ce": 0.10089204981923103, "aux.acc_seg": 95.5892562866211, "time": 1.115850067138672, "iter": 142650, "memory": 8703, "step": 142650} +{"lr": 0.001437122343344921, "data_time": 0.007355618476867676, "loss": 0.2209707334637642, "decode.loss_ce": 0.14064335748553275, "decode.acc_seg": 97.25735473632812, "aux.loss_ce": 0.0803273744881153, "aux.acc_seg": 92.31948852539062, "time": 1.1164174795150756, "iter": 142700, "memory": 8704, "step": 142700} +{"lr": 0.001433643776302216, "data_time": 0.006260967254638672, "loss": 0.46034356728196146, "decode.loss_ce": 0.2992515444755554, "decode.acc_seg": 95.55683135986328, "aux.loss_ce": 0.16109202355146407, "aux.acc_seg": 91.97794342041016, "time": 1.1160880088806153, "iter": 142750, "memory": 8703, "step": 142750} +{"lr": 0.001430164200831584, "data_time": 0.00890204906463623, "loss": 0.3410654902458191, "decode.loss_ce": 0.20756835490465164, "decode.acc_seg": 88.75789642333984, "aux.loss_ce": 0.1334971345961094, "aux.acc_seg": 87.08387756347656, "time": 1.121488833427429, "iter": 142800, "memory": 8703, "step": 142800} +{"lr": 0.001426683613707923, "data_time": 0.007497477531433106, "loss": 0.21449583098292352, "decode.loss_ce": 0.12554459720849992, "decode.acc_seg": 97.34178924560547, "aux.loss_ce": 0.08895123582333327, "aux.acc_seg": 96.94989013671875, "time": 1.11851065158844, "iter": 142850, "memory": 8705, "step": 142850} +{"lr": 0.001423202011686382, "data_time": 0.00602571964263916, "loss": 0.25968327224254606, "decode.loss_ce": 0.15139345526695253, "decode.acc_seg": 98.04496765136719, "aux.loss_ce": 0.10828981474041939, "aux.acc_seg": 89.92729187011719, "time": 1.114290452003479, "iter": 142900, "memory": 8703, "step": 142900} +{"lr": 0.0014197193915021845, "data_time": 0.006055760383605957, "loss": 0.2146226115524769, "decode.loss_ce": 0.12849678806960582, "decode.acc_seg": 97.40238189697266, "aux.loss_ce": 0.08612582199275494, "aux.acc_seg": 96.67993927001953, "time": 1.1134265661239624, "iter": 142950, "memory": 8704, "step": 142950} +{"lr": 0.0014162357498704431, "data_time": 0.008139944076538086, "loss": 0.2533933013677597, "decode.loss_ce": 0.1585639387369156, "decode.acc_seg": 95.36367797851562, "aux.loss_ce": 0.09482936635613441, "aux.acc_seg": 93.21892547607422, "time": 1.1141927242279053, "iter": 143000, "memory": 8703, "step": 143000} +{"lr": 0.0014127510834859793, "data_time": 0.006852912902832031, "loss": 0.28216011077165604, "decode.loss_ce": 0.15269409045577048, "decode.acc_seg": 90.56898498535156, "aux.loss_ce": 0.12946601510047911, "aux.acc_seg": 86.967529296875, "time": 1.1138643741607666, "iter": 143050, "memory": 8704, "step": 143050} +{"lr": 0.0014092653890231362, "data_time": 0.007357263565063476, "loss": 0.29537782818078995, "decode.loss_ce": 0.16991660743951797, "decode.acc_seg": 93.23158264160156, "aux.loss_ce": 0.12546121925115586, "aux.acc_seg": 82.97932434082031, "time": 1.1125356197357177, "iter": 143100, "memory": 8704, "step": 143100} +{"lr": 0.0014057786631355917, "data_time": 0.008151912689208984, "loss": 0.23141226917505264, "decode.loss_ce": 0.13636251613497735, "decode.acc_seg": 96.56352996826172, "aux.loss_ce": 0.09504975192248821, "aux.acc_seg": 90.28936767578125, "time": 1.111583137512207, "iter": 143150, "memory": 8703, "step": 143150} +{"lr": 0.0014022909024561687, "data_time": 0.007609891891479492, "loss": 0.27376779466867446, "decode.loss_ce": 0.16925861760973931, "decode.acc_seg": 94.96300506591797, "aux.loss_ce": 0.10450917780399323, "aux.acc_seg": 93.26057434082031, "time": 1.1124537229537963, "iter": 143200, "memory": 8703, "step": 143200} +{"lr": 0.0013988021035966408, "data_time": 0.007604622840881347, "loss": 0.3395335733890533, "decode.loss_ce": 0.20509584471583367, "decode.acc_seg": 95.31510162353516, "aux.loss_ce": 0.1344377242028713, "aux.acc_seg": 89.15550994873047, "time": 1.1177797079086305, "iter": 143250, "memory": 8703, "step": 143250} +{"lr": 0.0013953122631475397, "data_time": 0.006160998344421386, "loss": 0.5175988592207432, "decode.loss_ce": 0.31871877424418926, "decode.acc_seg": 92.93785095214844, "aux.loss_ce": 0.1988800833001733, "aux.acc_seg": 85.06462860107422, "time": 1.1166232824325562, "iter": 143300, "memory": 8705, "step": 143300} +{"lr": 0.0013918213776779567, "data_time": 0.00681002140045166, "loss": 0.28282052278518677, "decode.loss_ce": 0.17542276307940483, "decode.acc_seg": 96.43936157226562, "aux.loss_ce": 0.10739776007831096, "aux.acc_seg": 96.01866149902344, "time": 1.1170127391815186, "iter": 143350, "memory": 8704, "step": 143350} +{"lr": 0.001388329443735344, "data_time": 0.005534172058105469, "loss": 0.27953328415751455, "decode.loss_ce": 0.1846598505973816, "decode.acc_seg": 94.82567596435547, "aux.loss_ce": 0.09487343095242977, "aux.acc_seg": 94.04169464111328, "time": 1.1152797222137452, "iter": 143400, "memory": 8703, "step": 143400} +{"lr": 0.0013848364578453113, "data_time": 0.006337022781372071, "loss": 0.2634434744715691, "decode.loss_ce": 0.15335884764790536, "decode.acc_seg": 97.40396881103516, "aux.loss_ce": 0.1100846242159605, "aux.acc_seg": 97.03228759765625, "time": 1.1196040391921998, "iter": 143450, "memory": 8704, "step": 143450} +{"lr": 0.001381342416511422, "data_time": 0.0075006246566772464, "loss": 0.2716657117009163, "decode.loss_ce": 0.16025022566318511, "decode.acc_seg": 95.9854736328125, "aux.loss_ce": 0.11141548380255699, "aux.acc_seg": 95.38288116455078, "time": 1.1232867240905762, "iter": 143500, "memory": 8704, "step": 143500} +{"lr": 0.0013778473162149862, "data_time": 0.0065665006637573246, "loss": 0.2822641983628273, "decode.loss_ce": 0.17215468287467955, "decode.acc_seg": 94.25411224365234, "aux.loss_ce": 0.1101095125079155, "aux.acc_seg": 90.80848693847656, "time": 1.1110550880432128, "iter": 143550, "memory": 8703, "step": 143550} +{"lr": 0.00137435115341485, "data_time": 0.00591738224029541, "loss": 0.2939660340547562, "decode.loss_ce": 0.16078918278217316, "decode.acc_seg": 94.96968078613281, "aux.loss_ce": 0.13317685276269914, "aux.acc_seg": 88.87284088134766, "time": 1.1122678756713866, "iter": 143600, "memory": 8703, "step": 143600} +{"lr": 0.0013708539245471851, "data_time": 0.0058094501495361325, "loss": 0.32203369215130806, "decode.loss_ce": 0.18084994032979013, "decode.acc_seg": 97.4873275756836, "aux.loss_ce": 0.1411837564781308, "aux.acc_seg": 97.0789566040039, "time": 1.114031147956848, "iter": 143650, "memory": 8704, "step": 143650} +{"lr": 0.0013673556260252713, "data_time": 0.007191300392150879, "loss": 0.25387015044689176, "decode.loss_ce": 0.1605008862912655, "decode.acc_seg": 94.32295227050781, "aux.loss_ce": 0.09336926452815533, "aux.acc_seg": 91.23825073242188, "time": 1.1129061698913574, "iter": 143700, "memory": 8703, "step": 143700} +{"lr": 0.0013638562542392823, "data_time": 0.006874799728393555, "loss": 0.3093817368149757, "decode.loss_ce": 0.2026193432509899, "decode.acc_seg": 96.51966094970703, "aux.loss_ce": 0.10676239319145679, "aux.acc_seg": 95.02887725830078, "time": 1.112889051437378, "iter": 143750, "memory": 8704, "step": 143750} +{"lr": 0.0013603558055560608, "data_time": 0.008054971694946289, "loss": 0.22198713272809983, "decode.loss_ce": 0.13347755372524261, "decode.acc_seg": 95.65912628173828, "aux.loss_ce": 0.0885095801204443, "aux.acc_seg": 93.6290054321289, "time": 1.1198341846466064, "iter": 143800, "memory": 8704, "step": 143800} +{"lr": 0.0013568542763188983, "data_time": 0.006006693840026856, "loss": 0.1978856809437275, "decode.loss_ce": 0.12273446582257748, "decode.acc_seg": 95.62593841552734, "aux.loss_ce": 0.07515121512115001, "aux.acc_seg": 95.04146575927734, "time": 1.1136894226074219, "iter": 143850, "memory": 8704, "step": 143850} +{"lr": 0.0013533516628473079, "data_time": 0.00674741268157959, "loss": 0.21546427458524703, "decode.loss_ce": 0.13415186181664468, "decode.acc_seg": 96.57560729980469, "aux.loss_ce": 0.08131241425871849, "aux.acc_seg": 95.482177734375, "time": 1.113250184059143, "iter": 143900, "memory": 8704, "step": 143900} +{"lr": 0.0013498479614367969, "data_time": 0.00852200984954834, "loss": 0.24571572095155716, "decode.loss_ce": 0.14296057671308518, "decode.acc_seg": 94.11417388916016, "aux.loss_ce": 0.10275514386594295, "aux.acc_seg": 89.58097839355469, "time": 1.1132679224014281, "iter": 143950, "memory": 8704, "step": 143950} +{"lr": 0.001346343168358632, "data_time": 0.007839345932006836, "loss": 0.28879451006650925, "decode.loss_ce": 0.15944137722253798, "decode.acc_seg": 93.0000228881836, "aux.loss_ce": 0.12935313023626804, "aux.acc_seg": 82.91021728515625, "time": 1.1168912649154663, "iter": 144000, "memory": 8704, "step": 144000} +{"aAcc": 94.86, "mIoU": 70.72, "mAcc": 79.96, "data_time": 0.004168493611199878, "time": 0.27151568910570817, "step": 144000} +{"lr": 0.0013428372798596083, "data_time": 0.007093739509582519, "loss": 0.2637350469827652, "decode.loss_ce": 0.16335382983088492, "decode.acc_seg": 96.69659423828125, "aux.loss_ce": 0.10038121156394482, "aux.acc_seg": 94.28926849365234, "time": 1.1136813402175902, "iter": 144050, "memory": 8704, "step": 144050} +{"lr": 0.0013393302921618064, "data_time": 0.007109808921813965, "loss": 0.27227418720722196, "decode.loss_ce": 0.16240149587392808, "decode.acc_seg": 92.87445831298828, "aux.loss_ce": 0.10987268798053265, "aux.acc_seg": 91.45996856689453, "time": 1.1112417697906494, "iter": 144100, "memory": 8704, "step": 144100} +{"lr": 0.001335822201462357, "data_time": 0.006130790710449219, "loss": 0.5121829979121685, "decode.loss_ce": 0.3328484885394573, "decode.acc_seg": 95.23194885253906, "aux.loss_ce": 0.17933451756834984, "aux.acc_seg": 94.225341796875, "time": 1.1132871866226197, "iter": 144150, "memory": 8704, "step": 144150} +{"lr": 0.0013323130039331937, "data_time": 0.005995488166809082, "loss": 0.27099751979112624, "decode.loss_ce": 0.15828193500638008, "decode.acc_seg": 93.42424011230469, "aux.loss_ce": 0.11271558590233326, "aux.acc_seg": 91.63260650634766, "time": 1.1162948131561279, "iter": 144200, "memory": 8705, "step": 144200} +{"lr": 0.001328802695720805, "data_time": 0.007224154472351074, "loss": 0.28603276759386065, "decode.loss_ce": 0.17019294947385788, "decode.acc_seg": 96.76685333251953, "aux.loss_ce": 0.11583982035517693, "aux.acc_seg": 95.99793243408203, "time": 1.1147708892822266, "iter": 144250, "memory": 8703, "step": 144250} +{"lr": 0.0013252912729459852, "data_time": 0.006994414329528809, "loss": 0.2743973836302757, "decode.loss_ce": 0.154244052618742, "decode.acc_seg": 91.9165267944336, "aux.loss_ce": 0.12015332952141762, "aux.acc_seg": 89.95443725585938, "time": 1.119806694984436, "iter": 144300, "memory": 8703, "step": 144300} +{"lr": 0.0013217787317035812, "data_time": 0.0067994117736816405, "loss": 0.3491946242749691, "decode.loss_ce": 0.19861000441014767, "decode.acc_seg": 92.01927185058594, "aux.loss_ce": 0.15058461409062146, "aux.acc_seg": 90.52772521972656, "time": 1.1170448780059814, "iter": 144350, "memory": 8704, "step": 144350} +{"lr": 0.001318265068062236, "data_time": 0.007293272018432617, "loss": 0.3597507759928703, "decode.loss_ce": 0.20817180201411248, "decode.acc_seg": 96.34317779541016, "aux.loss_ce": 0.1515789683908224, "aux.acc_seg": 95.75117492675781, "time": 1.1150161981582642, "iter": 144400, "memory": 8704, "step": 144400} +{"lr": 0.001314750278064124, "data_time": 0.00720975399017334, "loss": 0.24878173172473908, "decode.loss_ce": 0.15059989579021932, "decode.acc_seg": 96.26583099365234, "aux.loss_ce": 0.09818183537572622, "aux.acc_seg": 95.72865295410156, "time": 1.116430115699768, "iter": 144450, "memory": 8703, "step": 144450} +{"lr": 0.0013112343577246959, "data_time": 0.00755312442779541, "loss": 0.325536260008812, "decode.loss_ce": 0.18618441373109818, "decode.acc_seg": 95.10746002197266, "aux.loss_ce": 0.139351848885417, "aux.acc_seg": 84.57489013671875, "time": 1.1116935968399049, "iter": 144500, "memory": 8704, "step": 144500} +{"lr": 0.0013077173030324003, "data_time": 0.008281588554382324, "loss": 0.22455528974533082, "decode.loss_ce": 0.13544424250721931, "decode.acc_seg": 96.95911407470703, "aux.loss_ce": 0.08911104463040828, "aux.acc_seg": 95.52599334716797, "time": 1.1168970346450806, "iter": 144550, "memory": 8703, "step": 144550} +{"lr": 0.0013041991099484208, "data_time": 0.006551194190979004, "loss": 0.3377159908413887, "decode.loss_ce": 0.18970247358083725, "decode.acc_seg": 91.24202728271484, "aux.loss_ce": 0.14801351688802242, "aux.acc_seg": 91.35284423828125, "time": 1.1138118743896483, "iter": 144600, "memory": 8704, "step": 144600} +{"lr": 0.0013006797744063974, "data_time": 0.005652523040771485, "loss": 0.24506016522645951, "decode.loss_ce": 0.15270138308405876, "decode.acc_seg": 90.89590454101562, "aux.loss_ce": 0.0923587828874588, "aux.acc_seg": 91.47503662109375, "time": 1.1141079187393188, "iter": 144650, "memory": 8704, "step": 144650} +{"lr": 0.0012971592923121497, "data_time": 0.00623788833618164, "loss": 0.3563012942671776, "decode.loss_ce": 0.21345005333423614, "decode.acc_seg": 96.15370178222656, "aux.loss_ce": 0.14285123348236084, "aux.acc_seg": 92.00413513183594, "time": 1.1157697200775147, "iter": 144700, "memory": 8705, "step": 144700} +{"lr": 0.0012936376595434017, "data_time": 0.006035518646240234, "loss": 0.23591038212180138, "decode.loss_ce": 0.14403028935194015, "decode.acc_seg": 92.68614196777344, "aux.loss_ce": 0.09188009053468704, "aux.acc_seg": 79.44634246826172, "time": 1.1168926000595092, "iter": 144750, "memory": 8704, "step": 144750} +{"lr": 0.0012901148719494798, "data_time": 0.006227970123291016, "loss": 0.2291886642575264, "decode.loss_ce": 0.14675309658050537, "decode.acc_seg": 96.74549102783203, "aux.loss_ce": 0.08243556842207908, "aux.acc_seg": 95.35414123535156, "time": 1.1168692350387572, "iter": 144800, "memory": 8703, "step": 144800} +{"lr": 0.0012865909253510393, "data_time": 0.006106042861938476, "loss": 0.2162877179682255, "decode.loss_ce": 0.13395803347229956, "decode.acc_seg": 97.10777282714844, "aux.loss_ce": 0.08232968673110008, "aux.acc_seg": 96.80509948730469, "time": 1.1168744087219238, "iter": 144850, "memory": 8704, "step": 144850} +{"lr": 0.0012830658155397632, "data_time": 0.007263016700744629, "loss": 0.2718467369675636, "decode.loss_ce": 0.16076040416955947, "decode.acc_seg": 84.72051239013672, "aux.loss_ce": 0.11108632832765579, "aux.acc_seg": 80.5618896484375, "time": 1.1163295030593872, "iter": 144900, "memory": 8704, "step": 144900} +{"lr": 0.0012795395382780676, "data_time": 0.0068255186080932615, "loss": 0.22022902667522432, "decode.loss_ce": 0.1281907543540001, "decode.acc_seg": 91.92892456054688, "aux.loss_ce": 0.09203827641904354, "aux.acc_seg": 90.36743927001953, "time": 1.1132575511932372, "iter": 144950, "memory": 8704, "step": 144950} +{"lr": 0.0012760120892987973, "data_time": 0.007837367057800294, "loss": 0.2557682916522026, "decode.loss_ce": 0.15453438758850097, "decode.acc_seg": 93.09978485107422, "aux.loss_ce": 0.10123390406370163, "aux.acc_seg": 92.81291961669922, "time": 1.1149653911590576, "iter": 145000, "memory": 8704, "step": 145000} +{"lr": 0.0012724834643049222, "data_time": 0.007609915733337402, "loss": 0.20352098047733308, "decode.loss_ce": 0.12669159434735774, "decode.acc_seg": 93.87632751464844, "aux.loss_ce": 0.07682938277721404, "aux.acc_seg": 91.62991333007812, "time": 1.1155792474746704, "iter": 145050, "memory": 8703, "step": 145050} +{"lr": 0.0012689536589692268, "data_time": 0.0064689874649047855, "loss": 0.25455189496278763, "decode.loss_ce": 0.1461179219186306, "decode.acc_seg": 95.54150390625, "aux.loss_ce": 0.10843397527933121, "aux.acc_seg": 94.85861206054688, "time": 1.114203405380249, "iter": 145100, "memory": 8703, "step": 145100} +{"lr": 0.0012654226689339985, "data_time": 0.006777286529541016, "loss": 0.25535414069890977, "decode.loss_ce": 0.16338758543133736, "decode.acc_seg": 92.52281188964844, "aux.loss_ce": 0.09196655303239823, "aux.acc_seg": 88.52163696289062, "time": 1.108935809135437, "iter": 145150, "memory": 8704, "step": 145150} +{"lr": 0.001261890489810705, "data_time": 0.006695294380187988, "loss": 0.24711756110191346, "decode.loss_ce": 0.14889775440096856, "decode.acc_seg": 97.61116790771484, "aux.loss_ce": 0.09821980260312557, "aux.acc_seg": 90.6474380493164, "time": 1.114121413230896, "iter": 145200, "memory": 8704, "step": 145200} +{"lr": 0.0012583571171796758, "data_time": 0.006423425674438476, "loss": 0.24417328983545303, "decode.loss_ce": 0.154986759647727, "decode.acc_seg": 96.56318664550781, "aux.loss_ce": 0.08918652944266796, "aux.acc_seg": 96.21846008300781, "time": 1.1148091793060302, "iter": 145250, "memory": 8704, "step": 145250} +{"lr": 0.0012548225465897711, "data_time": 0.0061416149139404295, "loss": 0.3144759967923164, "decode.loss_ce": 0.1944278210401535, "decode.acc_seg": 96.76544952392578, "aux.loss_ce": 0.12004817388951779, "aux.acc_seg": 95.54792785644531, "time": 1.1157635927200318, "iter": 145300, "memory": 8703, "step": 145300} +{"lr": 0.0012512867735580513, "data_time": 0.006520962715148926, "loss": 0.20762375742197037, "decode.loss_ce": 0.12577652372419834, "decode.acc_seg": 96.66805267333984, "aux.loss_ce": 0.08184723071753978, "aux.acc_seg": 93.97207641601562, "time": 1.118974494934082, "iter": 145350, "memory": 8704, "step": 145350} +{"lr": 0.0012477497935694426, "data_time": 0.006441330909729004, "loss": 0.1948663756251335, "decode.loss_ce": 0.11537993624806404, "decode.acc_seg": 91.56551361083984, "aux.loss_ce": 0.07948643788695335, "aux.acc_seg": 86.60347747802734, "time": 1.1148746013641357, "iter": 145400, "memory": 8703, "step": 145400} +{"lr": 0.0012442116020763944, "data_time": 0.009151387214660644, "loss": 0.2538553960621357, "decode.loss_ce": 0.13809405788779258, "decode.acc_seg": 94.89656829833984, "aux.loss_ce": 0.11576133705675602, "aux.acc_seg": 93.47267150878906, "time": 1.1225081920623778, "iter": 145450, "memory": 8704, "step": 145450} +{"lr": 0.001240672194498529, "data_time": 0.006424403190612793, "loss": 0.17948820516467096, "decode.loss_ce": 0.11228234507143497, "decode.acc_seg": 91.25878143310547, "aux.loss_ce": 0.06720586102455854, "aux.acc_seg": 86.50192260742188, "time": 1.1140843391418458, "iter": 145500, "memory": 8703, "step": 145500} +{"lr": 0.0012371315662222993, "data_time": 0.008306884765625, "loss": 0.32405986487865446, "decode.loss_ce": 0.2132446937263012, "decode.acc_seg": 96.08948516845703, "aux.loss_ce": 0.11081516928970814, "aux.acc_seg": 94.2422866821289, "time": 1.1176898241043092, "iter": 145550, "memory": 8704, "step": 145550} +{"lr": 0.0012335897126006254, "data_time": 0.006497907638549805, "loss": 0.2632671058177948, "decode.loss_ce": 0.1465582974255085, "decode.acc_seg": 91.3829116821289, "aux.loss_ce": 0.11670880764722824, "aux.acc_seg": 81.56814575195312, "time": 1.1176913261413575, "iter": 145600, "memory": 8703, "step": 145600} +{"lr": 0.0012300466289525364, "data_time": 0.0062988996505737305, "loss": 0.28874596431851385, "decode.loss_ce": 0.15639008842408658, "decode.acc_seg": 95.82010650634766, "aux.loss_ce": 0.13235587887465955, "aux.acc_seg": 95.75946044921875, "time": 1.1141320943832398, "iter": 145650, "memory": 8704, "step": 145650} +{"lr": 0.0012265023105628063, "data_time": 0.0072002410888671875, "loss": 0.30190280079841614, "decode.loss_ce": 0.18383111283183098, "decode.acc_seg": 95.62053680419922, "aux.loss_ce": 0.11807169057428837, "aux.acc_seg": 93.6625747680664, "time": 1.1153587102890015, "iter": 145700, "memory": 8703, "step": 145700} +{"lr": 0.0012229567526815784, "data_time": 0.006614851951599121, "loss": 0.2765318751335144, "decode.loss_ce": 0.1596152275800705, "decode.acc_seg": 89.51454162597656, "aux.loss_ce": 0.11691665165126323, "aux.acc_seg": 72.3777084350586, "time": 1.1126940965652465, "iter": 145750, "memory": 8704, "step": 145750} +{"lr": 0.0012194099505239916, "data_time": 0.0070410966873168945, "loss": 0.22572756111621856, "decode.loss_ce": 0.1312396138906479, "decode.acc_seg": 95.08177185058594, "aux.loss_ce": 0.09448794573545456, "aux.acc_seg": 93.84619140625, "time": 1.1144594430923462, "iter": 145800, "memory": 8703, "step": 145800} +{"lr": 0.0012158618992697977, "data_time": 0.007059359550476074, "loss": 0.20875483900308608, "decode.loss_ce": 0.12573564648628235, "decode.acc_seg": 95.65289306640625, "aux.loss_ce": 0.0830191943794489, "aux.acc_seg": 92.45025634765625, "time": 1.1132080554962158, "iter": 145850, "memory": 8704, "step": 145850} +{"lr": 0.0012123125940629708, "data_time": 0.008160591125488281, "loss": 0.261127744615078, "decode.loss_ce": 0.16142301708459855, "decode.acc_seg": 96.55996704101562, "aux.loss_ce": 0.09970472790300847, "aux.acc_seg": 93.55747985839844, "time": 1.1138426303863525, "iter": 145900, "memory": 8704, "step": 145900} +{"lr": 0.0012087620300113202, "data_time": 0.006551051139831543, "loss": 0.29039385765790937, "decode.loss_ce": 0.17807814553380014, "decode.acc_seg": 94.70027160644531, "aux.loss_ce": 0.11231571547687054, "aux.acc_seg": 90.36614990234375, "time": 1.1087891101837157, "iter": 145950, "memory": 8703, "step": 145950} +{"lr": 0.001205210202186086, "data_time": 0.0052319526672363285, "loss": 0.4218470960855484, "decode.loss_ce": 0.27021823562681674, "decode.acc_seg": 98.06683349609375, "aux.loss_ce": 0.1516288597136736, "aux.acc_seg": 97.7212905883789, "time": 1.1066144466400147, "iter": 146000, "memory": 8703, "step": 146000} +{"lr": 0.0012016571056215355, "data_time": 0.007050108909606933, "loss": 0.24480267986655235, "decode.loss_ce": 0.14702008962631224, "decode.acc_seg": 95.86148834228516, "aux.loss_ce": 0.09778258875012398, "aux.acc_seg": 92.34945678710938, "time": 1.1118497610092164, "iter": 146050, "memory": 8704, "step": 146050} +{"lr": 0.0011981027353145512, "data_time": 0.007230615615844727, "loss": 0.2785293832421303, "decode.loss_ce": 0.17461801320314407, "decode.acc_seg": 90.86265563964844, "aux.loss_ce": 0.10391137041151524, "aux.acc_seg": 85.2015151977539, "time": 1.114307713508606, "iter": 146100, "memory": 8704, "step": 146100} +{"lr": 0.0011945470862242179, "data_time": 0.007538342475891113, "loss": 0.3343783624470234, "decode.loss_ce": 0.22392628602683545, "decode.acc_seg": 96.67111206054688, "aux.loss_ce": 0.11045207157731056, "aux.acc_seg": 96.10651397705078, "time": 1.1147212743759156, "iter": 146150, "memory": 8703, "step": 146150} +{"lr": 0.0011909901532713965, "data_time": 0.007044863700866699, "loss": 0.2563059002161026, "decode.loss_ce": 0.15981726795434953, "decode.acc_seg": 97.88875579833984, "aux.loss_ce": 0.09648863151669503, "aux.acc_seg": 96.60040283203125, "time": 1.11606822013855, "iter": 146200, "memory": 8703, "step": 146200} +{"lr": 0.0011874319313382917, "data_time": 0.009032630920410156, "loss": 0.4406520053744316, "decode.loss_ce": 0.25794428735971453, "decode.acc_seg": 85.4462661743164, "aux.loss_ce": 0.1827077243477106, "aux.acc_seg": 74.03072357177734, "time": 1.1169764995574951, "iter": 146250, "memory": 8704, "step": 146250} +{"lr": 0.001183872415268025, "data_time": 0.006541061401367188, "loss": 0.21717017889022827, "decode.loss_ce": 0.13594989702105523, "decode.acc_seg": 96.56422424316406, "aux.loss_ce": 0.08122027851641178, "aux.acc_seg": 95.2739028930664, "time": 1.11252818107605, "iter": 146300, "memory": 8704, "step": 146300} +{"lr": 0.0011803115998641838, "data_time": 0.007050514221191406, "loss": 0.2878351256251335, "decode.loss_ce": 0.18052242174744607, "decode.acc_seg": 96.97074890136719, "aux.loss_ce": 0.10731270387768746, "aux.acc_seg": 96.0733413696289, "time": 1.117211937904358, "iter": 146350, "memory": 8704, "step": 146350} +{"lr": 0.0011767494798903741, "data_time": 0.007026767730712891, "loss": 0.2501070603728294, "decode.loss_ce": 0.14933793619275093, "decode.acc_seg": 93.94041442871094, "aux.loss_ce": 0.10076912641525268, "aux.acc_seg": 89.67424774169922, "time": 1.1144566059112548, "iter": 146400, "memory": 8704, "step": 146400} +{"lr": 0.00117318605006977, "data_time": 0.007062292098999024, "loss": 0.32650029063224795, "decode.loss_ce": 0.1955871596932411, "decode.acc_seg": 89.98768615722656, "aux.loss_ce": 0.1309131272137165, "aux.acc_seg": 84.28128051757812, "time": 1.1156662702560425, "iter": 146450, "memory": 8704, "step": 146450} +{"lr": 0.0011696213050846423, "data_time": 0.007823538780212403, "loss": 0.21153112202882768, "decode.loss_ce": 0.1302599437534809, "decode.acc_seg": 95.47745513916016, "aux.loss_ce": 0.08127117827534676, "aux.acc_seg": 92.38726806640625, "time": 1.1132022857666015, "iter": 146500, "memory": 8703, "step": 146500} +{"lr": 0.0011660552395758974, "data_time": 0.0055507183074951175, "loss": 0.25555911362171174, "decode.loss_ce": 0.15790933966636658, "decode.acc_seg": 89.40937042236328, "aux.loss_ce": 0.09764977246522903, "aux.acc_seg": 85.21665954589844, "time": 1.1139438152313232, "iter": 146550, "memory": 8703, "step": 146550} +{"lr": 0.0011624878481425983, "data_time": 0.006223559379577637, "loss": 0.22831123918294907, "decode.loss_ce": 0.1407971054315567, "decode.acc_seg": 95.31999969482422, "aux.loss_ce": 0.08751413598656654, "aux.acc_seg": 93.2409896850586, "time": 1.1093894004821778, "iter": 146600, "memory": 8703, "step": 146600} +{"lr": 0.0011589191253414742, "data_time": 0.007152032852172851, "loss": 0.2601354941725731, "decode.loss_ce": 0.15508524551987649, "decode.acc_seg": 95.94904327392578, "aux.loss_ce": 0.10505025200545788, "aux.acc_seg": 94.84468841552734, "time": 1.117199182510376, "iter": 146650, "memory": 8703, "step": 146650} +{"lr": 0.0011553490656864359, "data_time": 0.006726813316345215, "loss": 0.25137823522090913, "decode.loss_ce": 0.15711020976305007, "decode.acc_seg": 96.96979522705078, "aux.loss_ce": 0.09426802787929774, "aux.acc_seg": 96.16400146484375, "time": 1.1178968667984008, "iter": 146700, "memory": 8704, "step": 146700} +{"lr": 0.001151777663648076, "data_time": 0.00618586540222168, "loss": 0.30320012718439104, "decode.loss_ce": 0.1908409707248211, "decode.acc_seg": 97.43988800048828, "aux.loss_ce": 0.11235915645956993, "aux.acc_seg": 96.92433166503906, "time": 1.1109658241271974, "iter": 146750, "memory": 8704, "step": 146750} +{"lr": 0.0011482049136531593, "data_time": 0.005561113357543945, "loss": 0.2252083644270897, "decode.loss_ce": 0.13098414540290831, "decode.acc_seg": 97.12810516357422, "aux.loss_ce": 0.09422421865165234, "aux.acc_seg": 96.83513641357422, "time": 1.1133218288421631, "iter": 146800, "memory": 8704, "step": 146800} +{"lr": 0.0011446308100841105, "data_time": 0.0058955192565917965, "loss": 0.317062745988369, "decode.loss_ce": 0.18124758675694466, "decode.acc_seg": 96.04466247558594, "aux.loss_ce": 0.1358151573687792, "aux.acc_seg": 90.7552719116211, "time": 1.1124011039733888, "iter": 146850, "memory": 8704, "step": 146850} +{"lr": 0.0011410553472784868, "data_time": 0.007382822036743164, "loss": 0.22630640715360642, "decode.loss_ce": 0.13463512286543847, "decode.acc_seg": 88.91544342041016, "aux.loss_ce": 0.09167127944529056, "aux.acc_seg": 83.5826187133789, "time": 1.1157898902893066, "iter": 146900, "memory": 8704, "step": 146900} +{"lr": 0.0011374785195284545, "data_time": 0.006494140625, "loss": 0.2105717144906521, "decode.loss_ce": 0.12806860730051994, "decode.acc_seg": 94.17959594726562, "aux.loss_ce": 0.08250310532748699, "aux.acc_seg": 93.27494049072266, "time": 1.1149009466171265, "iter": 146950, "memory": 8704, "step": 146950} +{"lr": 0.001133900321080243, "data_time": 0.006293773651123047, "loss": 0.21989901065826417, "decode.loss_ce": 0.13073925785720347, "decode.acc_seg": 97.6322021484375, "aux.loss_ce": 0.08915975224226713, "aux.acc_seg": 96.85057067871094, "time": 1.1128499507904053, "iter": 147000, "memory": 8703, "step": 147000} +{"lr": 0.001130320746133602, "data_time": 0.007140684127807617, "loss": 0.2984768129885197, "decode.loss_ce": 0.16941421777009963, "decode.acc_seg": 85.6252670288086, "aux.loss_ce": 0.12906259186565877, "aux.acc_seg": 77.73907470703125, "time": 1.1185110807418823, "iter": 147050, "memory": 8704, "step": 147050} +{"lr": 0.0011267397888412411, "data_time": 0.006027531623840332, "loss": 0.22415443509817123, "decode.loss_ce": 0.13027759157121183, "decode.acc_seg": 96.40203857421875, "aux.loss_ce": 0.09387684315443039, "aux.acc_seg": 94.84806060791016, "time": 1.1137065887451172, "iter": 147100, "memory": 8704, "step": 147100} +{"lr": 0.0011231574433082654, "data_time": 0.007550978660583496, "loss": 0.22275943234562873, "decode.loss_ce": 0.12680671438574792, "decode.acc_seg": 93.6309814453125, "aux.loss_ce": 0.09595271721482276, "aux.acc_seg": 78.2022476196289, "time": 1.1186408996582031, "iter": 147150, "memory": 8704, "step": 147150} +{"lr": 0.0011195737035916045, "data_time": 0.005790162086486817, "loss": 0.2767417848110199, "decode.loss_ce": 0.17327843308448793, "decode.acc_seg": 97.05797576904297, "aux.loss_ce": 0.10346335060894489, "aux.acc_seg": 96.57872009277344, "time": 1.1124558448791504, "iter": 147200, "memory": 8703, "step": 147200} +{"lr": 0.0011159885636994236, "data_time": 0.0061855316162109375, "loss": 0.20663807839155196, "decode.loss_ce": 0.12635405510663986, "decode.acc_seg": 97.37621307373047, "aux.loss_ce": 0.08028402552008629, "aux.acc_seg": 97.24046325683594, "time": 1.111293363571167, "iter": 147250, "memory": 8703, "step": 147250} +{"lr": 0.0011124020175905351, "data_time": 0.006314301490783691, "loss": 0.19597534835338593, "decode.loss_ce": 0.12098556756973267, "decode.acc_seg": 96.2930679321289, "aux.loss_ce": 0.07498977966606617, "aux.acc_seg": 95.28267669677734, "time": 1.1145777463912965, "iter": 147300, "memory": 8704, "step": 147300} +{"lr": 0.0011088140591737948, "data_time": 0.0076552629470825195, "loss": 0.2028952956199646, "decode.loss_ce": 0.1324777275323868, "decode.acc_seg": 94.6173324584961, "aux.loss_ce": 0.0704175665974617, "aux.acc_seg": 93.05298614501953, "time": 1.1141998291015625, "iter": 147350, "memory": 8703, "step": 147350} +{"lr": 0.0011052246823074854, "data_time": 0.006477618217468261, "loss": 0.20600462481379508, "decode.loss_ce": 0.1263573460280895, "decode.acc_seg": 92.24832153320312, "aux.loss_ce": 0.07964728139340878, "aux.acc_seg": 88.09046173095703, "time": 1.114608931541443, "iter": 147400, "memory": 8703, "step": 147400} +{"lr": 0.0011016338807987025, "data_time": 0.007352352142333984, "loss": 0.356464096903801, "decode.loss_ce": 0.22050505205988885, "decode.acc_seg": 90.35835266113281, "aux.loss_ce": 0.13595904558897018, "aux.acc_seg": 89.80026245117188, "time": 1.1196819305419923, "iter": 147450, "memory": 8703, "step": 147450} +{"lr": 0.0010980416484027153, "data_time": 0.00591278076171875, "loss": 0.21304027661681174, "decode.loss_ce": 0.12674161419272423, "decode.acc_seg": 97.26078796386719, "aux.loss_ce": 0.08629866130650043, "aux.acc_seg": 96.19032287597656, "time": 1.1086929321289063, "iter": 147500, "memory": 8704, "step": 147500} +{"lr": 0.0010944479788223278, "data_time": 0.006067466735839844, "loss": 0.32753061056137084, "decode.loss_ce": 0.19296925738453866, "decode.acc_seg": 95.13912200927734, "aux.loss_ce": 0.13456135094165803, "aux.acc_seg": 95.03923797607422, "time": 1.110835337638855, "iter": 147550, "memory": 8704, "step": 147550} +{"lr": 0.0010908528657072249, "data_time": 0.006744170188903808, "loss": 0.21436416655778884, "decode.loss_ce": 0.11665618717670441, "decode.acc_seg": 95.11368560791016, "aux.loss_ce": 0.0977079790085554, "aux.acc_seg": 90.57305145263672, "time": 1.1148705005645752, "iter": 147600, "memory": 8704, "step": 147600} +{"lr": 0.001087256302653304, "data_time": 0.00782172679901123, "loss": 0.35200328230857847, "decode.loss_ce": 0.20636574625968934, "decode.acc_seg": 93.62862396240234, "aux.loss_ce": 0.14563754051923752, "aux.acc_seg": 91.15428924560547, "time": 1.1127617120742799, "iter": 147650, "memory": 8704, "step": 147650} +{"lr": 0.0010836582832020056, "data_time": 0.007780337333679199, "loss": 0.2569224789738655, "decode.loss_ce": 0.16210066229104997, "decode.acc_seg": 89.46869659423828, "aux.loss_ce": 0.09482181780040264, "aux.acc_seg": 85.16203308105469, "time": 1.1143797397613526, "iter": 147700, "memory": 8703, "step": 147700} +{"lr": 0.0010800588008396228, "data_time": 0.006974315643310547, "loss": 0.27270362377166746, "decode.loss_ce": 0.17094992175698281, "decode.acc_seg": 93.67637634277344, "aux.loss_ce": 0.10175370033830404, "aux.acc_seg": 92.73274230957031, "time": 1.1092233419418336, "iter": 147750, "memory": 8704, "step": 147750} +{"lr": 0.0010764578489966085, "data_time": 0.006264829635620117, "loss": 0.2900677308440208, "decode.loss_ce": 0.17764863818883897, "decode.acc_seg": 91.47014617919922, "aux.loss_ce": 0.11241908855736256, "aux.acc_seg": 86.59540557861328, "time": 1.117613935470581, "iter": 147800, "memory": 8704, "step": 147800} +{"lr": 0.0010728554210468564, "data_time": 0.006870198249816895, "loss": 0.2828458547592163, "decode.loss_ce": 0.15501385927200317, "decode.acc_seg": 93.36690521240234, "aux.loss_ce": 0.1278319951146841, "aux.acc_seg": 92.2430191040039, "time": 1.113286066055298, "iter": 147850, "memory": 8705, "step": 147850} +{"lr": 0.0010692515103069926, "data_time": 0.0059776782989501955, "loss": 0.2737668201327324, "decode.loss_ce": 0.14525855407118798, "decode.acc_seg": 97.0542221069336, "aux.loss_ce": 0.12850826196372508, "aux.acc_seg": 95.03402709960938, "time": 1.1168390035629272, "iter": 147900, "memory": 8704, "step": 147900} +{"lr": 0.0010656461100356305, "data_time": 0.007469749450683594, "loss": 0.2992328181862831, "decode.loss_ce": 0.18345367163419724, "decode.acc_seg": 96.25167846679688, "aux.loss_ce": 0.11577914208173752, "aux.acc_seg": 94.79814147949219, "time": 1.1209680557250976, "iter": 147950, "memory": 8703, "step": 147950} +{"lr": 0.0010620392134326293, "data_time": 0.0065605401992797855, "loss": 0.1960155747830868, "decode.loss_ce": 0.12252102866768837, "decode.acc_seg": 97.55490112304688, "aux.loss_ce": 0.07349454686045646, "aux.acc_seg": 96.450927734375, "time": 1.1130015134811402, "iter": 148000, "memory": 8704, "step": 148000} +{"lr": 0.001058430813638332, "data_time": 0.005834031105041504, "loss": 0.2668325111269951, "decode.loss_ce": 0.16158850044012069, "decode.acc_seg": 94.15276336669922, "aux.loss_ce": 0.10524401068687439, "aux.acc_seg": 89.92430114746094, "time": 1.1139750957489014, "iter": 148050, "memory": 8703, "step": 148050} +{"lr": 0.0010548209037327995, "data_time": 0.006489109992980957, "loss": 0.2183576837182045, "decode.loss_ce": 0.1338310182094574, "decode.acc_seg": 96.87181854248047, "aux.loss_ce": 0.0845266666263342, "aux.acc_seg": 96.54114532470703, "time": 1.1094635009765625, "iter": 148100, "memory": 8703, "step": 148100} +{"lr": 0.0010512094767350176, "data_time": 0.005928421020507812, "loss": 0.24309546798467635, "decode.loss_ce": 0.13602233901619912, "decode.acc_seg": 95.83828735351562, "aux.loss_ce": 0.10707313027232886, "aux.acc_seg": 92.78614807128906, "time": 1.1093875408172607, "iter": 148150, "memory": 8704, "step": 148150} +{"lr": 0.0010475965256021025, "data_time": 0.007178997993469239, "loss": 0.2175826445221901, "decode.loss_ce": 0.12890708968043327, "decode.acc_seg": 95.54779815673828, "aux.loss_ce": 0.08867555372416973, "aux.acc_seg": 93.9942626953125, "time": 1.113187050819397, "iter": 148200, "memory": 8704, "step": 148200} +{"lr": 0.0010439820432284858, "data_time": 0.006467413902282715, "loss": 0.3024450033903122, "decode.loss_ce": 0.18603771701455116, "decode.acc_seg": 97.27655792236328, "aux.loss_ce": 0.11640728749334812, "aux.acc_seg": 95.51575469970703, "time": 1.1145633220672608, "iter": 148250, "memory": 8703, "step": 148250} +{"lr": 0.00104036602244509, "data_time": 0.007193708419799804, "loss": 0.28107939213514327, "decode.loss_ce": 0.17285606861114503, "decode.acc_seg": 92.93766021728516, "aux.loss_ce": 0.10822332538664341, "aux.acc_seg": 91.92167663574219, "time": 1.1171159029006958, "iter": 148300, "memory": 8703, "step": 148300} +{"lr": 0.0010367484560184865, "data_time": 0.006725192070007324, "loss": 0.26708760261535647, "decode.loss_ce": 0.14600221291184426, "decode.acc_seg": 95.36795043945312, "aux.loss_ce": 0.12108539007604122, "aux.acc_seg": 88.05899810791016, "time": 1.1135445594787599, "iter": 148350, "memory": 8703, "step": 148350} +{"lr": 0.0010331293366500356, "data_time": 0.007183980941772461, "loss": 0.17019013315439224, "decode.loss_ce": 0.10691304802894593, "decode.acc_seg": 95.022705078125, "aux.loss_ce": 0.06327708438038826, "aux.acc_seg": 94.091796875, "time": 1.1173764705657958, "iter": 148400, "memory": 8704, "step": 148400} +{"lr": 0.0010295086569750175, "data_time": 0.007186341285705567, "loss": 0.2420061409473419, "decode.loss_ce": 0.14610364958643912, "decode.acc_seg": 95.79947662353516, "aux.loss_ce": 0.09590248838067054, "aux.acc_seg": 92.21033477783203, "time": 1.114251446723938, "iter": 148450, "memory": 8704, "step": 148450} +{"lr": 0.0010258864095617447, "data_time": 0.006732416152954101, "loss": 0.20604700595140457, "decode.loss_ce": 0.12349193096160889, "decode.acc_seg": 95.59555053710938, "aux.loss_ce": 0.08255507983267307, "aux.acc_seg": 92.05093383789062, "time": 1.1110413074493408, "iter": 148500, "memory": 8704, "step": 148500} +{"lr": 0.0010222625869106645, "data_time": 0.006437563896179199, "loss": 0.21128030866384506, "decode.loss_ce": 0.12159885242581367, "decode.acc_seg": 98.04464721679688, "aux.loss_ce": 0.089681451395154, "aux.acc_seg": 94.54376983642578, "time": 1.1109025955200196, "iter": 148550, "memory": 8704, "step": 148550} +{"lr": 0.0010186371814534297, "data_time": 0.006956791877746582, "loss": 0.395065513253212, "decode.loss_ce": 0.24939217269420624, "decode.acc_seg": 93.89127349853516, "aux.loss_ce": 0.14567333981394767, "aux.acc_seg": 91.45120239257812, "time": 1.1118465662002563, "iter": 148600, "memory": 8703, "step": 148600} +{"lr": 0.0010150101855519724, "data_time": 0.006071066856384278, "loss": 0.34437066316604614, "decode.loss_ce": 0.2085028648376465, "decode.acc_seg": 92.37594604492188, "aux.loss_ce": 0.1358677987009287, "aux.acc_seg": 92.04444885253906, "time": 1.114523434638977, "iter": 148650, "memory": 8703, "step": 148650} +{"lr": 0.0010113815914975458, "data_time": 0.0071376323699951175, "loss": 0.19233744144439696, "decode.loss_ce": 0.12017483338713646, "decode.acc_seg": 97.22010040283203, "aux.loss_ce": 0.07216260861605406, "aux.acc_seg": 96.98223876953125, "time": 1.1156865358352661, "iter": 148700, "memory": 8703, "step": 148700} +{"lr": 0.0010077513915097576, "data_time": 0.0064564704895019535, "loss": 0.23184166476130486, "decode.loss_ce": 0.13490121476352215, "decode.acc_seg": 94.63131713867188, "aux.loss_ce": 0.09694045037031174, "aux.acc_seg": 94.16319274902344, "time": 1.1148492813110351, "iter": 148750, "memory": 8704, "step": 148750} +{"lr": 0.0010041195777355817, "data_time": 0.007910561561584473, "loss": 0.2735313020646572, "decode.loss_ce": 0.1624074749648571, "decode.acc_seg": 94.63751983642578, "aux.loss_ce": 0.11112382635474205, "aux.acc_seg": 93.5187759399414, "time": 1.116448950767517, "iter": 148800, "memory": 8703, "step": 148800} +{"lr": 0.001000486142248353, "data_time": 0.006163263320922851, "loss": 0.3427128277719021, "decode.loss_ce": 0.23867843337357045, "decode.acc_seg": 97.00775146484375, "aux.loss_ce": 0.10403439309448004, "aux.acc_seg": 96.02432250976562, "time": 1.1149489641189576, "iter": 148850, "memory": 8704, "step": 148850} +{"lr": 0.0009968510770467405, "data_time": 0.0062541007995605465, "loss": 0.3143694490194321, "decode.loss_ce": 0.19198635146021842, "decode.acc_seg": 95.60028076171875, "aux.loss_ce": 0.12238310016691685, "aux.acc_seg": 95.53793334960938, "time": 1.113973617553711, "iter": 148900, "memory": 8704, "step": 148900} +{"lr": 0.0009932143740537117, "data_time": 0.005942225456237793, "loss": 0.2537765890359879, "decode.loss_ce": 0.15644657462835312, "decode.acc_seg": 97.11588287353516, "aux.loss_ce": 0.09733001664280891, "aux.acc_seg": 96.61691284179688, "time": 1.114434790611267, "iter": 148950, "memory": 8703, "step": 148950} +{"lr": 0.000989576025115462, "data_time": 0.007673192024230957, "loss": 0.29072895348072053, "decode.loss_ce": 0.17555581778287888, "decode.acc_seg": 91.47713470458984, "aux.loss_ce": 0.1151731364428997, "aux.acc_seg": 87.57603454589844, "time": 1.1162523984909059, "iter": 149000, "memory": 8703, "step": 149000} +{"lr": 0.0009859360220003384, "data_time": 0.005848431587219238, "loss": 0.24320309162139891, "decode.loss_ce": 0.14628181830048562, "decode.acc_seg": 94.85142517089844, "aux.loss_ce": 0.09692127034068107, "aux.acc_seg": 93.54889678955078, "time": 1.112838578224182, "iter": 149050, "memory": 8705, "step": 149050} +{"lr": 0.0009822943563977343, "data_time": 0.006461977958679199, "loss": 0.30924193412065504, "decode.loss_ce": 0.17572036013007164, "decode.acc_seg": 81.20619201660156, "aux.loss_ce": 0.13352156803011894, "aux.acc_seg": 71.60733032226562, "time": 1.1129372358322143, "iter": 149100, "memory": 8703, "step": 149100} +{"lr": 0.0009786510199169699, "data_time": 0.007390427589416504, "loss": 0.22841409146785735, "decode.loss_ce": 0.13271888792514802, "decode.acc_seg": 97.07958984375, "aux.loss_ce": 0.09569520391523838, "aux.acc_seg": 96.588134765625, "time": 1.1156087636947631, "iter": 149150, "memory": 8704, "step": 149150} +{"lr": 0.0009750060040861449, "data_time": 0.006081485748291015, "loss": 0.26662857830524445, "decode.loss_ce": 0.16161077991127967, "decode.acc_seg": 91.65611267089844, "aux.loss_ce": 0.10501779317855835, "aux.acc_seg": 86.37542724609375, "time": 1.1106816530227661, "iter": 149200, "memory": 8704, "step": 149200} +{"lr": 0.0009713593003509725, "data_time": 0.006224894523620605, "loss": 0.32561856880784035, "decode.loss_ce": 0.1787081778049469, "decode.acc_seg": 95.72162628173828, "aux.loss_ce": 0.14691038317978383, "aux.acc_seg": 94.85880279541016, "time": 1.1120503187179565, "iter": 149250, "memory": 8703, "step": 149250} +{"lr": 0.0009677109000735914, "data_time": 0.007701516151428223, "loss": 0.21185442060232162, "decode.loss_ce": 0.13277852162718773, "decode.acc_seg": 88.45188903808594, "aux.loss_ce": 0.07907589320093393, "aux.acc_seg": 93.14911651611328, "time": 1.1142281532287597, "iter": 149300, "memory": 8704, "step": 149300} +{"lr": 0.0009640607945313553, "data_time": 0.006986188888549805, "loss": 0.29723541885614396, "decode.loss_ce": 0.1828707717359066, "decode.acc_seg": 92.23015594482422, "aux.loss_ce": 0.11436464823782444, "aux.acc_seg": 89.08634185791016, "time": 1.1150481224060058, "iter": 149350, "memory": 8703, "step": 149350} +{"lr": 0.0009604089749156012, "data_time": 0.008280611038208008, "loss": 0.26132929772138597, "decode.loss_ce": 0.15886726155877112, "decode.acc_seg": 96.77085876464844, "aux.loss_ce": 0.1024620357900858, "aux.acc_seg": 95.58219909667969, "time": 1.112461304664612, "iter": 149400, "memory": 8703, "step": 149400} +{"lr": 0.0009567554323303865, "data_time": 0.007131433486938477, "loss": 0.2808368429541588, "decode.loss_ce": 0.16199177205562593, "decode.acc_seg": 94.8849105834961, "aux.loss_ce": 0.11884506829082966, "aux.acc_seg": 93.20439910888672, "time": 1.1116565227508546, "iter": 149450, "memory": 8703, "step": 149450} +{"lr": 0.000953100157791211, "data_time": 0.008959197998046875, "loss": 0.22991859167814255, "decode.loss_ce": 0.14407144486904144, "decode.acc_seg": 86.3372802734375, "aux.loss_ce": 0.08584714364260435, "aux.acc_seg": 79.3448715209961, "time": 1.1149551153182984, "iter": 149500, "memory": 8704, "step": 149500} +{"lr": 0.0009494431422237054, "data_time": 0.007248926162719727, "loss": 0.20472128838300704, "decode.loss_ce": 0.1328166514635086, "decode.acc_seg": 96.51063537597656, "aux.loss_ce": 0.0719046339392662, "aux.acc_seg": 94.41084289550781, "time": 1.1125184535980224, "iter": 149550, "memory": 8704, "step": 149550} +{"lr": 0.0009457843764623003, "data_time": 0.00871436595916748, "loss": 0.1959037221968174, "decode.loss_ce": 0.11887628138065338, "decode.acc_seg": 98.36050415039062, "aux.loss_ce": 0.07702744174748659, "aux.acc_seg": 98.00186157226562, "time": 1.1183110237121583, "iter": 149600, "memory": 8704, "step": 149600} +{"lr": 0.0009421238512488664, "data_time": 0.007421636581420898, "loss": 0.28980073258280753, "decode.loss_ce": 0.1687014065682888, "decode.acc_seg": 92.2109603881836, "aux.loss_ce": 0.12109932415187359, "aux.acc_seg": 87.59561920166016, "time": 1.1156922101974487, "iter": 149650, "memory": 8704, "step": 149650} +{"lr": 0.0009384615572313271, "data_time": 0.007803654670715332, "loss": 0.27396243065595627, "decode.loss_ce": 0.15618302673101425, "decode.acc_seg": 95.5953598022461, "aux.loss_ce": 0.11777940690517426, "aux.acc_seg": 94.8492660522461, "time": 1.120941948890686, "iter": 149700, "memory": 8705, "step": 149700} +{"lr": 0.0009347974849622451, "data_time": 0.007610845565795899, "loss": 0.24391970038414001, "decode.loss_ce": 0.15176233500242234, "decode.acc_seg": 95.88018798828125, "aux.loss_ce": 0.09215736575424671, "aux.acc_seg": 93.60012817382812, "time": 1.1171375513076782, "iter": 149750, "memory": 8703, "step": 149750} +{"lr": 0.0009311316248973799, "data_time": 0.00821669101715088, "loss": 0.24023667871952056, "decode.loss_ce": 0.1463539868593216, "decode.acc_seg": 96.48793029785156, "aux.loss_ce": 0.09388269186019897, "aux.acc_seg": 94.60639953613281, "time": 1.1151041984558105, "iter": 149800, "memory": 8703, "step": 149800} +{"lr": 0.0009274639673942154, "data_time": 0.006390213966369629, "loss": 0.31096729040145876, "decode.loss_ce": 0.1829925574362278, "decode.acc_seg": 94.7185287475586, "aux.loss_ce": 0.12797472812235355, "aux.acc_seg": 93.6684799194336, "time": 1.1145979642868042, "iter": 149850, "memory": 8703, "step": 149850} +{"lr": 0.0009237945027104604, "data_time": 0.007618403434753418, "loss": 0.20274103954434394, "decode.loss_ce": 0.12473739199340343, "decode.acc_seg": 98.59101104736328, "aux.loss_ce": 0.07800365071743727, "aux.acc_seg": 97.71926879882812, "time": 1.1175108909606934, "iter": 149900, "memory": 8703, "step": 149900} +{"lr": 0.0009201232210025165, "data_time": 0.006302762031555176, "loss": 0.2585771054029465, "decode.loss_ce": 0.15336157344281673, "decode.acc_seg": 96.87506103515625, "aux.loss_ce": 0.1052155327051878, "aux.acc_seg": 96.18460083007812, "time": 1.1148668289184571, "iter": 149950, "memory": 8704, "step": 149950} +{"lr": 0.0009164501123239134, "data_time": 0.0063212871551513675, "loss": 0.28224170953035355, "decode.loss_ce": 0.16378951892256738, "decode.acc_seg": 95.07759857177734, "aux.loss_ce": 0.11845218949019909, "aux.acc_seg": 88.83594512939453, "time": 1.1135870218276978, "iter": 150000, "memory": 8703, "step": 150000} +{"lr": 0.0009127751666237172, "data_time": 0.005864524841308593, "loss": 0.19620866924524308, "decode.loss_ce": 0.11992005109786988, "decode.acc_seg": 95.38904571533203, "aux.loss_ce": 0.07628862001001835, "aux.acc_seg": 94.52717590332031, "time": 1.1138484477996826, "iter": 150050, "memory": 8703, "step": 150050} +{"lr": 0.0009090983737448992, "data_time": 0.009373712539672851, "loss": 0.28113661631941794, "decode.loss_ce": 0.17496091350913048, "decode.acc_seg": 93.2856216430664, "aux.loss_ce": 0.1061757080256939, "aux.acc_seg": 92.16295623779297, "time": 1.1196820974349975, "iter": 150100, "memory": 8703, "step": 150100} +{"lr": 0.0009054197234226784, "data_time": 0.008459258079528808, "loss": 0.2010594815015793, "decode.loss_ce": 0.12000992894172668, "decode.acc_seg": 96.14244842529297, "aux.loss_ce": 0.08104954920709133, "aux.acc_seg": 95.49229431152344, "time": 1.116559386253357, "iter": 150150, "memory": 8703, "step": 150150} +{"lr": 0.0009017392052828204, "data_time": 0.006347489356994629, "loss": 0.22654161751270294, "decode.loss_ce": 0.144056086987257, "decode.acc_seg": 96.8740463256836, "aux.loss_ce": 0.08248553238809109, "aux.acc_seg": 96.4263916015625, "time": 1.1099665403366088, "iter": 150200, "memory": 8704, "step": 150200} +{"lr": 0.00089805680883991, "data_time": 0.007047700881958008, "loss": 0.18247140124440192, "decode.loss_ce": 0.11727290824055672, "decode.acc_seg": 95.72492980957031, "aux.loss_ce": 0.06519849747419357, "aux.acc_seg": 95.19354248046875, "time": 1.1149595975875854, "iter": 150250, "memory": 8703, "step": 150250} +{"lr": 0.0008943725234955824, "data_time": 0.007446837425231933, "loss": 0.2482653483748436, "decode.loss_ce": 0.1382330022752285, "decode.acc_seg": 95.46736907958984, "aux.loss_ce": 0.11003234721720219, "aux.acc_seg": 93.5052261352539, "time": 1.114229393005371, "iter": 150300, "memory": 8703, "step": 150300} +{"lr": 0.0008906863385367155, "data_time": 0.005734062194824219, "loss": 0.24729983359575272, "decode.loss_ce": 0.14647482484579086, "decode.acc_seg": 93.36922454833984, "aux.loss_ce": 0.100825010612607, "aux.acc_seg": 91.00061798095703, "time": 1.1098492860794067, "iter": 150350, "memory": 8703, "step": 150350} +{"lr": 0.0008869982431335892, "data_time": 0.00821073055267334, "loss": 0.2835436582565308, "decode.loss_ce": 0.17748691961169244, "decode.acc_seg": 89.84535217285156, "aux.loss_ce": 0.10605674125254154, "aux.acc_seg": 86.94305419921875, "time": 1.1135039329528809, "iter": 150400, "memory": 8704, "step": 150400} +{"lr": 0.000883308226338, "data_time": 0.006420016288757324, "loss": 0.19737909287214278, "decode.loss_ce": 0.11956290900707245, "decode.acc_seg": 93.25224304199219, "aux.loss_ce": 0.07781618125736714, "aux.acc_seg": 91.63277435302734, "time": 1.110878872871399, "iter": 150450, "memory": 8704, "step": 150450} +{"lr": 0.0008796162770813373, "data_time": 0.007137298583984375, "loss": 0.24969097822904587, "decode.loss_ce": 0.14768855944275855, "decode.acc_seg": 93.79711151123047, "aux.loss_ce": 0.1020024161785841, "aux.acc_seg": 92.19976806640625, "time": 1.1125874519348145, "iter": 150500, "memory": 8703, "step": 150500} +{"lr": 0.0008759223841726231, "data_time": 0.008483076095581054, "loss": 0.2197504982352257, "decode.loss_ce": 0.13631132170557975, "decode.acc_seg": 90.6519546508789, "aux.loss_ce": 0.08343917839229106, "aux.acc_seg": 89.26525115966797, "time": 1.1169223308563232, "iter": 150550, "memory": 8705, "step": 150550} +{"lr": 0.0008722265362964973, "data_time": 0.007326078414916992, "loss": 0.23684267252683638, "decode.loss_ce": 0.14551402181386947, "decode.acc_seg": 96.73544311523438, "aux.loss_ce": 0.09132864810526371, "aux.acc_seg": 94.31845092773438, "time": 1.119513750076294, "iter": 150600, "memory": 8704, "step": 150600} +{"lr": 0.0008685287220111706, "data_time": 0.008253788948059082, "loss": 0.22863964438438417, "decode.loss_ce": 0.13267584443092345, "decode.acc_seg": 94.61866760253906, "aux.loss_ce": 0.09596380479633808, "aux.acc_seg": 93.27754974365234, "time": 1.119633722305298, "iter": 150650, "memory": 8704, "step": 150650} +{"lr": 0.0008648289297463261, "data_time": 0.005990386009216309, "loss": 0.26255149990320203, "decode.loss_ce": 0.15982352383434772, "decode.acc_seg": 95.85144805908203, "aux.loss_ce": 0.10272797439247369, "aux.acc_seg": 94.72853088378906, "time": 1.115780234336853, "iter": 150700, "memory": 8704, "step": 150700} +{"lr": 0.0008611271478009783, "data_time": 0.008188271522521972, "loss": 0.3016498625278473, "decode.loss_ce": 0.18466152474284173, "decode.acc_seg": 94.84500885009766, "aux.loss_ce": 0.1169883381575346, "aux.acc_seg": 93.90970611572266, "time": 1.1211530208587646, "iter": 150750, "memory": 8703, "step": 150750} +{"lr": 0.0008574233643412812, "data_time": 0.006728649139404297, "loss": 0.20818658843636512, "decode.loss_ce": 0.11876797750592231, "decode.acc_seg": 90.5741958618164, "aux.loss_ce": 0.08941860944032669, "aux.acc_seg": 85.68260955810547, "time": 1.112388253211975, "iter": 150800, "memory": 8703, "step": 150800} +{"lr": 0.0008537175673982912, "data_time": 0.008228802680969238, "loss": 0.23664974570274352, "decode.loss_ce": 0.1450351320207119, "decode.acc_seg": 96.87105560302734, "aux.loss_ce": 0.09161461163312197, "aux.acc_seg": 95.58206939697266, "time": 1.1173813104629517, "iter": 150850, "memory": 8704, "step": 150850} +{"lr": 0.0008500097448656744, "data_time": 0.007777190208435059, "loss": 0.3021271079778671, "decode.loss_ce": 0.16534469202160834, "decode.acc_seg": 94.72169494628906, "aux.loss_ce": 0.13678241670131683, "aux.acc_seg": 92.8697738647461, "time": 1.1152833223342895, "iter": 150900, "memory": 8704, "step": 150900} +{"lr": 0.0008462998844973703, "data_time": 0.007737255096435547, "loss": 0.3202862784266472, "decode.loss_ce": 0.20534888729453088, "decode.acc_seg": 97.54674530029297, "aux.loss_ce": 0.1149373896420002, "aux.acc_seg": 96.4891586303711, "time": 1.1143831491470337, "iter": 150950, "memory": 8703, "step": 150950} +{"lr": 0.0008425879739051937, "data_time": 0.0064666509628295895, "loss": 0.2366073325276375, "decode.loss_ce": 0.14391681142151355, "decode.acc_seg": 95.9378662109375, "aux.loss_ce": 0.09269051849842072, "aux.acc_seg": 92.1222152709961, "time": 1.1194990158081055, "iter": 151000, "memory": 8703, "step": 151000} +{"lr": 0.0008388740005563895, "data_time": 0.005724573135375976, "loss": 0.3452164217829704, "decode.loss_ce": 0.20204451456665992, "decode.acc_seg": 93.5724868774414, "aux.loss_ce": 0.1431719072163105, "aux.acc_seg": 91.93985748291016, "time": 1.1127132654190064, "iter": 151050, "memory": 8703, "step": 151050} +{"lr": 0.0008351579517711266, "data_time": 0.005119419097900391, "loss": 0.2925265163183212, "decode.loss_ce": 0.16964195519685746, "decode.acc_seg": 93.58488464355469, "aux.loss_ce": 0.12288456410169601, "aux.acc_seg": 86.94756317138672, "time": 1.1105418443679809, "iter": 151100, "memory": 8704, "step": 151100} +{"lr": 0.000831439814719936, "data_time": 0.006972002983093262, "loss": 0.2618421658873558, "decode.loss_ce": 0.159159042686224, "decode.acc_seg": 96.17607879638672, "aux.loss_ce": 0.10268311947584152, "aux.acc_seg": 95.07331848144531, "time": 1.1158597707748412, "iter": 151150, "memory": 8704, "step": 151150} +{"lr": 0.0008277195764210894, "data_time": 0.006484198570251465, "loss": 0.2381311371922493, "decode.loss_ce": 0.13711997866630554, "decode.acc_seg": 96.1249008178711, "aux.loss_ce": 0.10101115480065345, "aux.acc_seg": 94.20712280273438, "time": 1.1140414237976075, "iter": 151200, "memory": 8704, "step": 151200} +{"lr": 0.0008239972237379156, "data_time": 0.0073821783065795895, "loss": 0.17276837080717086, "decode.loss_ce": 0.10183923169970513, "decode.acc_seg": 96.2830810546875, "aux.loss_ce": 0.07092913575470447, "aux.acc_seg": 94.31209564208984, "time": 1.1166448831558227, "iter": 151250, "memory": 8703, "step": 151250} +{"lr": 0.0008202727433760577, "data_time": 0.007053875923156738, "loss": 0.2489116869866848, "decode.loss_ce": 0.13948056884109974, "decode.acc_seg": 98.1332778930664, "aux.loss_ce": 0.10943112429231405, "aux.acc_seg": 97.80139923095703, "time": 1.1155876159667968, "iter": 151300, "memory": 8703, "step": 151300} +{"lr": 0.0008165461218806588, "data_time": 0.007516217231750488, "loss": 0.20111218541860582, "decode.loss_ce": 0.12366250157356262, "decode.acc_seg": 92.03115844726562, "aux.loss_ce": 0.07744968309998512, "aux.acc_seg": 90.08636474609375, "time": 1.1147135496139526, "iter": 151350, "memory": 8703, "step": 151350} +{"lr": 0.0008128173456334885, "data_time": 0.0065446138381958004, "loss": 0.30936825424432757, "decode.loss_ce": 0.19177423194050788, "decode.acc_seg": 92.04584503173828, "aux.loss_ce": 0.1175940278917551, "aux.acc_seg": 83.81824493408203, "time": 1.1147881031036377, "iter": 151400, "memory": 8704, "step": 151400} +{"lr": 0.0008090864008499967, "data_time": 0.006958627700805664, "loss": 0.29025848507881163, "decode.loss_ce": 0.1762552961707115, "decode.acc_seg": 89.97872161865234, "aux.loss_ce": 0.11400318965315819, "aux.acc_seg": 86.33155822753906, "time": 1.1148616313934325, "iter": 151450, "memory": 8704, "step": 151450} +{"lr": 0.0008053532735762957, "data_time": 0.007986092567443847, "loss": 0.3565514475107193, "decode.loss_ce": 0.22036756202578545, "decode.acc_seg": 92.58566284179688, "aux.loss_ce": 0.13618388250470162, "aux.acc_seg": 92.85406494140625, "time": 1.1187626600265503, "iter": 151500, "memory": 8704, "step": 151500} +{"lr": 0.000801617949686073, "data_time": 0.00761420726776123, "loss": 0.35844808593392374, "decode.loss_ce": 0.21430226266384125, "decode.acc_seg": 97.02574157714844, "aux.loss_ce": 0.1441458251327276, "aux.acc_seg": 96.93819427490234, "time": 1.1130544185638427, "iter": 151550, "memory": 8704, "step": 151550} +{"lr": 0.0007978804148774276, "data_time": 0.006005287170410156, "loss": 0.3279546782374382, "decode.loss_ce": 0.21045540533959867, "decode.acc_seg": 96.97608947753906, "aux.loss_ce": 0.11749927103519439, "aux.acc_seg": 96.38601684570312, "time": 1.11450297832489, "iter": 151600, "memory": 8703, "step": 151600} +{"lr": 0.0007941406546696271, "data_time": 0.007455778121948242, "loss": 0.21190365478396417, "decode.loss_ce": 0.12541998848319053, "decode.acc_seg": 96.79008483886719, "aux.loss_ce": 0.0864836659282446, "aux.acc_seg": 96.53938293457031, "time": 1.1184685230255127, "iter": 151650, "memory": 8704, "step": 151650} +{"lr": 0.0007903986543997904, "data_time": 0.006210470199584961, "loss": 0.2971069633960724, "decode.loss_ce": 0.18625505417585372, "decode.acc_seg": 95.21782684326172, "aux.loss_ce": 0.11085191071033478, "aux.acc_seg": 92.91368865966797, "time": 1.116403293609619, "iter": 151700, "memory": 8703, "step": 151700} +{"lr": 0.0007866543992194821, "data_time": 0.006858205795288086, "loss": 0.18459780961275102, "decode.loss_ce": 0.11151122860610485, "decode.acc_seg": 93.20259094238281, "aux.loss_ce": 0.07308658100664615, "aux.acc_seg": 91.17768096923828, "time": 1.11729736328125, "iter": 151750, "memory": 8703, "step": 151750} +{"lr": 0.0007829078740912249, "data_time": 0.006027984619140625, "loss": 0.24985236823558807, "decode.loss_ce": 0.14480692520737648, "decode.acc_seg": 93.28060150146484, "aux.loss_ce": 0.10504544451832772, "aux.acc_seg": 93.81014251708984, "time": 1.1125396490097046, "iter": 151800, "memory": 8703, "step": 151800} +{"lr": 0.0007791590637849277, "data_time": 0.006380844116210938, "loss": 0.17419994622468948, "decode.loss_ce": 0.1119572788476944, "decode.acc_seg": 95.23799133300781, "aux.loss_ce": 0.06224266961216927, "aux.acc_seg": 93.2074203491211, "time": 1.1165569067001342, "iter": 151850, "memory": 8704, "step": 151850} +{"lr": 0.0007754079528742186, "data_time": 0.00718686580657959, "loss": 0.190410977602005, "decode.loss_ce": 0.1158602349460125, "decode.acc_seg": 94.97661590576172, "aux.loss_ce": 0.07455074097961187, "aux.acc_seg": 92.1438217163086, "time": 1.116497015953064, "iter": 151900, "memory": 8703, "step": 151900} +{"lr": 0.0007716545257326895, "data_time": 0.007527780532836914, "loss": 0.29704766944050787, "decode.loss_ce": 0.1791539005935192, "decode.acc_seg": 95.71577453613281, "aux.loss_ce": 0.11789377685636282, "aux.acc_seg": 89.41522979736328, "time": 1.1159061670303345, "iter": 151950, "memory": 8704, "step": 151950} +{"lr": 0.0007678987665300423, "data_time": 0.008373332023620606, "loss": 0.23842891305685043, "decode.loss_ce": 0.14212799444794655, "decode.acc_seg": 94.70640563964844, "aux.loss_ce": 0.09630092009902, "aux.acc_seg": 89.00260925292969, "time": 1.1194567680358887, "iter": 152000, "memory": 8703, "step": 152000} +{"lr": 0.000764140659228138, "data_time": 0.006868195533752441, "loss": 0.25815819278359414, "decode.loss_ce": 0.1586372211575508, "decode.acc_seg": 95.69493103027344, "aux.loss_ce": 0.09952097609639168, "aux.acc_seg": 95.30927276611328, "time": 1.122532844543457, "iter": 152050, "memory": 8704, "step": 152050} +{"lr": 0.0007603801875769403, "data_time": 0.008140778541564942, "loss": 0.22617620676755906, "decode.loss_ce": 0.1317609541118145, "decode.acc_seg": 95.54729461669922, "aux.loss_ce": 0.09441525563597679, "aux.acc_seg": 94.55718994140625, "time": 1.1543070316314696, "iter": 152100, "memory": 8703, "step": 152100} +{"lr": 0.0007566173351103612, "data_time": 0.009412479400634766, "loss": 0.2511845797300339, "decode.loss_ce": 0.15121633633971215, "decode.acc_seg": 95.7767562866211, "aux.loss_ce": 0.09996824041008949, "aux.acc_seg": 94.23355865478516, "time": 2.5242468118667603, "iter": 152150, "memory": 8704, "step": 152150} +{"lr": 0.0007528520851419896, "data_time": 0.009757137298583985, "loss": 0.20183723494410516, "decode.loss_ce": 0.12379520907998084, "decode.acc_seg": 95.54678344726562, "aux.loss_ce": 0.07804202549159527, "aux.acc_seg": 93.53077697753906, "time": 2.489210534095764, "iter": 152200, "memory": 8704, "step": 152200} +{"lr": 0.0007490844207607136, "data_time": 0.008720874786376953, "loss": 0.2569735817611217, "decode.loss_ce": 0.15209100693464278, "decode.acc_seg": 93.24677276611328, "aux.loss_ce": 0.10488257519900798, "aux.acc_seg": 85.51082611083984, "time": 2.5939879179000855, "iter": 152250, "memory": 8703, "step": 152250} +{"lr": 0.000745314324826224, "data_time": 0.009981727600097657, "loss": 0.2623828835785389, "decode.loss_ce": 0.15605554096400737, "decode.acc_seg": 96.52830505371094, "aux.loss_ce": 0.10632734820246696, "aux.acc_seg": 95.63229370117188, "time": 2.4494492530822756, "iter": 152300, "memory": 8703, "step": 152300} +{"lr": 0.0007415417799644005, "data_time": 0.010641241073608398, "loss": 0.26098382845520973, "decode.loss_ce": 0.15585823133587837, "decode.acc_seg": 96.09394073486328, "aux.loss_ce": 0.10512559693306685, "aux.acc_seg": 93.09940338134766, "time": 2.476822018623352, "iter": 152350, "memory": 8703, "step": 152350} +{"lr": 0.0007377667685625706, "data_time": 0.010222387313842774, "loss": 0.21624182537198067, "decode.loss_ce": 0.12966249138116837, "decode.acc_seg": 94.08104705810547, "aux.loss_ce": 0.0865793313831091, "aux.acc_seg": 89.48147583007812, "time": 2.4599701881408693, "iter": 152400, "memory": 8704, "step": 152400} +{"lr": 0.0007339892727646439, "data_time": 0.012538695335388183, "loss": 0.23162551671266557, "decode.loss_ce": 0.1367880716919899, "decode.acc_seg": 97.66120910644531, "aux.loss_ce": 0.09483744576573372, "aux.acc_seg": 95.89989471435547, "time": 2.465648365020752, "iter": 152450, "memory": 8704, "step": 152450} +{"lr": 0.0007302092744661123, "data_time": 0.007597160339355469, "loss": 0.26889757737517356, "decode.loss_ce": 0.16392330080270767, "decode.acc_seg": 92.0413589477539, "aux.loss_ce": 0.10497428085654974, "aux.acc_seg": 77.4244384765625, "time": 2.5766392946243286, "iter": 152500, "memory": 8704, "step": 152500} +{"lr": 0.0007264267553089148, "data_time": 0.009949803352355957, "loss": 0.21481143981218337, "decode.loss_ce": 0.13043422996997833, "decode.acc_seg": 92.947509765625, "aux.loss_ce": 0.08437720835208892, "aux.acc_seg": 95.14096069335938, "time": 2.615695524215698, "iter": 152550, "memory": 8704, "step": 152550} +{"lr": 0.0007226416966761612, "data_time": 0.00829765796661377, "loss": 0.22881060242652893, "decode.loss_ce": 0.13971049189567566, "decode.acc_seg": 94.74728393554688, "aux.loss_ce": 0.08910010941326618, "aux.acc_seg": 93.04198455810547, "time": 2.5498027563095094, "iter": 152600, "memory": 8703, "step": 152600} +{"lr": 0.0007188540796867056, "data_time": 0.00997159481048584, "loss": 0.2393580973148346, "decode.loss_ce": 0.1329333744943142, "decode.acc_seg": 93.58965301513672, "aux.loss_ce": 0.10642472617328166, "aux.acc_seg": 88.00798797607422, "time": 2.555203342437744, "iter": 152650, "memory": 8704, "step": 152650} +{"lr": 0.000715063885189575, "data_time": 0.011230921745300293, "loss": 0.34243337288498876, "decode.loss_ce": 0.18856517150998114, "decode.acc_seg": 82.150390625, "aux.loss_ce": 0.1538682023063302, "aux.acc_seg": 74.79578399658203, "time": 2.522329020500183, "iter": 152700, "memory": 8703, "step": 152700} +{"lr": 0.0007112710937582369, "data_time": 0.014954757690429688, "loss": 0.24333515614271164, "decode.loss_ce": 0.14388808161020278, "decode.acc_seg": 96.67606353759766, "aux.loss_ce": 0.09944707117974758, "aux.acc_seg": 95.79073333740234, "time": 2.627899503707886, "iter": 152750, "memory": 8704, "step": 152750} +{"lr": 0.0007074756856847034, "data_time": 0.01042327880859375, "loss": 0.19219419434666635, "decode.loss_ce": 0.11893671825528145, "decode.acc_seg": 97.30707550048828, "aux.loss_ce": 0.07325747814029455, "aux.acc_seg": 96.07550048828125, "time": 2.5731101751327516, "iter": 152800, "memory": 8704, "step": 152800} +{"lr": 0.0007036776409734743, "data_time": 0.0071507453918457035, "loss": 0.3129694953560829, "decode.loss_ce": 0.19177915640175341, "decode.acc_seg": 96.899658203125, "aux.loss_ce": 0.1211903439834714, "aux.acc_seg": 96.67727661132812, "time": 2.5287189245224, "iter": 152850, "memory": 8703, "step": 152850} +{"lr": 0.0006998769393352974, "data_time": 0.010851812362670899, "loss": 0.2512968048453331, "decode.loss_ce": 0.14077672883868217, "decode.acc_seg": 95.0577392578125, "aux.loss_ce": 0.11052007749676704, "aux.acc_seg": 90.39955139160156, "time": 2.561156415939331, "iter": 152900, "memory": 8703, "step": 152900} +{"lr": 0.000696073560180756, "data_time": 0.00995633602142334, "loss": 0.26550334319472313, "decode.loss_ce": 0.14233270660042763, "decode.acc_seg": 97.26708221435547, "aux.loss_ce": 0.12317062932997942, "aux.acc_seg": 94.90833282470703, "time": 2.495732378959656, "iter": 152950, "memory": 8705, "step": 152950} +{"lr": 0.0006922674826136665, "data_time": 0.013331365585327149, "loss": 0.34715359658002853, "decode.loss_ce": 0.20702381506562234, "decode.acc_seg": 97.31629180908203, "aux.loss_ce": 0.14012978710234164, "aux.acc_seg": 92.0665054321289, "time": 2.538493013381958, "iter": 153000, "memory": 8703, "step": 153000} +{"lr": 0.0006884586854242828, "data_time": 0.007490324974060059, "loss": 0.18427111506462096, "decode.loss_ce": 0.11675685942173004, "decode.acc_seg": 95.950439453125, "aux.loss_ce": 0.0675142552703619, "aux.acc_seg": 96.04377746582031, "time": 1.633627676963806, "iter": 153050, "memory": 8703, "step": 153050} +{"lr": 0.0006846471470822999, "data_time": 0.009208917617797852, "loss": 0.22356820106506348, "decode.loss_ce": 0.1302880898118019, "decode.acc_seg": 90.51971435546875, "aux.loss_ce": 0.09328011199831962, "aux.acc_seg": 72.70043182373047, "time": 2.5294329166412353, "iter": 153100, "memory": 8704, "step": 153100} +{"lr": 0.0006808328457296515, "data_time": 0.010170483589172363, "loss": 0.25903683751821516, "decode.loss_ce": 0.14168376624584197, "decode.acc_seg": 97.23892211914062, "aux.loss_ce": 0.11735306568443775, "aux.acc_seg": 96.68680572509766, "time": 2.516026473045349, "iter": 153150, "memory": 8704, "step": 153150} +{"lr": 0.0006770157591730888, "data_time": 0.01059553623199463, "loss": 0.2618881791830063, "decode.loss_ce": 0.14608802050352096, "decode.acc_seg": 96.6623306274414, "aux.loss_ce": 0.11580016314983368, "aux.acc_seg": 96.14136505126953, "time": 2.679584431648254, "iter": 153200, "memory": 8704, "step": 153200} +{"lr": 0.0006731958648765365, "data_time": 0.009961462020874024, "loss": 0.21262974441051483, "decode.loss_ce": 0.1187171522527933, "decode.acc_seg": 98.3893051147461, "aux.loss_ce": 0.09391258843243122, "aux.acc_seg": 97.38044738769531, "time": 2.4578423261642457, "iter": 153250, "memory": 8703, "step": 153250} +{"lr": 0.0006693731399532223, "data_time": 0.012720441818237305, "loss": 0.2391568809747696, "decode.loss_ce": 0.1395290046930313, "decode.acc_seg": 97.34598541259766, "aux.loss_ce": 0.09962787628173828, "aux.acc_seg": 96.87569427490234, "time": 2.522199010848999, "iter": 153300, "memory": 8704, "step": 153300} +{"lr": 0.0006655475611575555, "data_time": 0.01282639503479004, "loss": 0.21146342754364014, "decode.loss_ce": 0.1299588292837143, "decode.acc_seg": 94.43721771240234, "aux.loss_ce": 0.08150459825992584, "aux.acc_seg": 88.592529296875, "time": 2.477719235420227, "iter": 153350, "memory": 8703, "step": 153350} +{"lr": 0.0006617191048767609, "data_time": 0.009069013595581054, "loss": 0.2640112772583961, "decode.loss_ce": 0.15419213995337486, "decode.acc_seg": 93.7295913696289, "aux.loss_ce": 0.10981913283467293, "aux.acc_seg": 92.1580581665039, "time": 2.5659165143966676, "iter": 153400, "memory": 8703, "step": 153400} +{"lr": 0.0006578877471222527, "data_time": 0.011818456649780273, "loss": 0.23433146327733995, "decode.loss_ce": 0.13838023096323013, "decode.acc_seg": 96.84596252441406, "aux.loss_ce": 0.0959512334316969, "aux.acc_seg": 95.89493560791016, "time": 2.505819535255432, "iter": 153450, "memory": 8705, "step": 153450} +{"lr": 0.0006540534635207386, "data_time": 0.009611082077026368, "loss": 0.21693843007087707, "decode.loss_ce": 0.13000114634633064, "decode.acc_seg": 95.76180267333984, "aux.loss_ce": 0.08693728409707546, "aux.acc_seg": 94.39894104003906, "time": 2.4998921871185305, "iter": 153500, "memory": 8703, "step": 153500} +{"lr": 0.0006502162293050398, "data_time": 0.008758783340454102, "loss": 0.29237866699695586, "decode.loss_ce": 0.1774608977138996, "decode.acc_seg": 94.1136245727539, "aux.loss_ce": 0.11491776742041111, "aux.acc_seg": 92.18463897705078, "time": 2.5806299686431884, "iter": 153550, "memory": 8704, "step": 153550} +{"lr": 0.0006463760193046245, "data_time": 0.010368418693542481, "loss": 0.2331303820014, "decode.loss_ce": 0.13772490099072457, "decode.acc_seg": 96.77511596679688, "aux.loss_ce": 0.0954054832458496, "aux.acc_seg": 96.52271270751953, "time": 2.551950144767761, "iter": 153600, "memory": 8703, "step": 153600} +{"lr": 0.0006425328079358298, "data_time": 0.007790112495422363, "loss": 0.26943759322166444, "decode.loss_ce": 0.17191771119832994, "decode.acc_seg": 96.83354187011719, "aux.loss_ce": 0.0975198868662119, "aux.acc_seg": 96.47789001464844, "time": 2.50627121925354, "iter": 153650, "memory": 8704, "step": 153650} +{"lr": 0.0006386865691917804, "data_time": 0.008522343635559083, "loss": 0.24907412603497506, "decode.loss_ce": 0.15968062952160836, "decode.acc_seg": 97.5627212524414, "aux.loss_ce": 0.08939349688589573, "aux.acc_seg": 96.79405975341797, "time": 2.511288809776306, "iter": 153700, "memory": 8703, "step": 153700} +{"lr": 0.0006348372766319647, "data_time": 0.008991479873657227, "loss": 0.2080255225300789, "decode.loss_ce": 0.12705058082938195, "decode.acc_seg": 97.17742156982422, "aux.loss_ce": 0.08097494356334209, "aux.acc_seg": 96.63448333740234, "time": 2.4658917427062987, "iter": 153750, "memory": 8703, "step": 153750} +{"lr": 0.0006309849033714807, "data_time": 0.00798952579498291, "loss": 0.25200926065444945, "decode.loss_ce": 0.16880557648837566, "decode.acc_seg": 97.33161926269531, "aux.loss_ce": 0.08320368379354477, "aux.acc_seg": 96.67015075683594, "time": 2.5792791128158568, "iter": 153800, "memory": 8705, "step": 153800} +{"lr": 0.0006271294220699194, "data_time": 0.008681654930114746, "loss": 0.2157299980521202, "decode.loss_ce": 0.1348745882511139, "decode.acc_seg": 94.2974853515625, "aux.loss_ce": 0.08085540980100632, "aux.acc_seg": 92.34774780273438, "time": 2.4900084257125856, "iter": 153850, "memory": 8703, "step": 153850} +{"lr": 0.0006232708049198784, "data_time": 0.01052999496459961, "loss": 0.17700965255498885, "decode.loss_ce": 0.11056391000747681, "decode.acc_seg": 96.64350891113281, "aux.loss_ce": 0.06644574590027333, "aux.acc_seg": 95.56280517578125, "time": 2.56844642162323, "iter": 153900, "memory": 8703, "step": 153900} +{"lr": 0.0006194090236350925, "data_time": 0.00989692211151123, "loss": 0.22516181766986848, "decode.loss_ce": 0.1329117387533188, "decode.acc_seg": 95.620849609375, "aux.loss_ce": 0.09225008115172387, "aux.acc_seg": 93.92769622802734, "time": 2.5696845769882204, "iter": 153950, "memory": 8704, "step": 153950} +{"lr": 0.0006155440494381572, "data_time": 0.011622452735900879, "loss": 0.21505613178014754, "decode.loss_ce": 0.13252802118659018, "decode.acc_seg": 98.59892272949219, "aux.loss_ce": 0.08252811282873154, "aux.acc_seg": 97.39672088623047, "time": 2.517772936820984, "iter": 154000, "memory": 8704, "step": 154000} +{"lr": 0.0006116758530478382, "data_time": 0.008200955390930176, "loss": 0.2374706469476223, "decode.loss_ce": 0.12181604132056237, "decode.acc_seg": 93.38372039794922, "aux.loss_ce": 0.11565460562705994, "aux.acc_seg": 76.90359497070312, "time": 1.7237834930419922, "iter": 154050, "memory": 8704, "step": 154050} +{"lr": 0.0006078044046659372, "data_time": 0.007058048248291015, "loss": 0.2979046568274498, "decode.loss_ce": 0.17603658214211465, "decode.acc_seg": 94.95092010498047, "aux.loss_ce": 0.12186807505786419, "aux.acc_seg": 92.90116119384766, "time": 1.119780921936035, "iter": 154100, "memory": 8704, "step": 154100} +{"lr": 0.0006039296739637064, "data_time": 0.0068217992782592775, "loss": 0.20163515359163284, "decode.loss_ce": 0.1211186021566391, "decode.acc_seg": 97.39462280273438, "aux.loss_ce": 0.0805165484547615, "aux.acc_seg": 96.40604400634766, "time": 1.1164401531219483, "iter": 154150, "memory": 8704, "step": 154150} +{"lr": 0.0006000516300677824, "data_time": 0.008164334297180175, "loss": 0.2334397554397583, "decode.loss_ce": 0.11772496402263641, "decode.acc_seg": 97.45515441894531, "aux.loss_ce": 0.11571479253470898, "aux.acc_seg": 94.59298706054688, "time": 1.1239110708236695, "iter": 154200, "memory": 8704, "step": 154200} +{"lr": 0.0005961702415456279, "data_time": 0.007578516006469726, "loss": 0.3378220334649086, "decode.loss_ce": 0.21718091666698455, "decode.acc_seg": 96.24024963378906, "aux.loss_ce": 0.12064110897481442, "aux.acc_seg": 93.45874786376953, "time": 1.1190789699554444, "iter": 154250, "memory": 8704, "step": 154250} +{"lr": 0.0005922854763904491, "data_time": 0.007201600074768067, "loss": 0.21152949556708336, "decode.loss_ce": 0.12404730170965195, "decode.acc_seg": 96.95892333984375, "aux.loss_ce": 0.08748219348490238, "aux.acc_seg": 97.02377319335938, "time": 1.115112566947937, "iter": 154300, "memory": 8704, "step": 154300} +{"lr": 0.0005883973020055716, "data_time": 0.007077789306640625, "loss": 0.29063722044229506, "decode.loss_ce": 0.17712616883218288, "decode.acc_seg": 90.95611572265625, "aux.loss_ce": 0.11351104993373155, "aux.acc_seg": 85.20043182373047, "time": 1.1174503564834595, "iter": 154350, "memory": 8703, "step": 154350} +{"lr": 0.0005845056851882525, "data_time": 0.0074567079544067385, "loss": 0.26849390417337415, "decode.loss_ce": 0.15398992858827115, "decode.acc_seg": 94.29600524902344, "aux.loss_ce": 0.11450397558510303, "aux.acc_seg": 92.3075942993164, "time": 1.1159539461135863, "iter": 154400, "memory": 8703, "step": 154400} +{"lr": 0.0005806105921128933, "data_time": 0.007034826278686524, "loss": 0.28906634300947187, "decode.loss_ce": 0.16535447016358376, "decode.acc_seg": 88.85790252685547, "aux.loss_ce": 0.12371187508106232, "aux.acc_seg": 79.46434020996094, "time": 1.1134506225585938, "iter": 154450, "memory": 8704, "step": 154450} +{"lr": 0.0005767119883136385, "data_time": 0.007635283470153809, "loss": 0.1923852950334549, "decode.loss_ce": 0.11091829538345337, "decode.acc_seg": 97.47339630126953, "aux.loss_ce": 0.08146699629724026, "aux.acc_seg": 96.2289810180664, "time": 1.1161066532135009, "iter": 154500, "memory": 8704, "step": 154500} +{"lr": 0.0005728098386663223, "data_time": 0.007362246513366699, "loss": 0.268021946400404, "decode.loss_ce": 0.15612757802009583, "decode.acc_seg": 91.93897247314453, "aux.loss_ce": 0.11189436614513397, "aux.acc_seg": 82.67605590820312, "time": 1.1159256935119628, "iter": 154550, "memory": 8703, "step": 154550} +{"lr": 0.0005689041073697378, "data_time": 0.0056449174880981445, "loss": 0.20684290453791618, "decode.loss_ce": 0.1249533899128437, "decode.acc_seg": 95.62289428710938, "aux.loss_ce": 0.08188951313495636, "aux.acc_seg": 95.19355773925781, "time": 1.1109667778015138, "iter": 154600, "memory": 8704, "step": 154600} +{"lr": 0.0005649947579261909, "data_time": 0.007380986213684082, "loss": 0.22345289140939711, "decode.loss_ce": 0.1342668928205967, "decode.acc_seg": 96.49861145019531, "aux.loss_ce": 0.08918599877506495, "aux.acc_seg": 93.36058044433594, "time": 1.111619758605957, "iter": 154650, "memory": 8704, "step": 154650} +{"lr": 0.0005610817531213119, "data_time": 0.007115316390991211, "loss": 0.25358196794986726, "decode.loss_ce": 0.14954697340726852, "decode.acc_seg": 97.75142669677734, "aux.loss_ce": 0.10403499379754066, "aux.acc_seg": 96.69773864746094, "time": 1.1192004203796386, "iter": 154700, "memory": 8703, "step": 154700} +{"lr": 0.0005571650550030865, "data_time": 0.006429648399353028, "loss": 0.2540651813149452, "decode.loss_ce": 0.15121160820126534, "decode.acc_seg": 94.32518768310547, "aux.loss_ce": 0.10285356976091861, "aux.acc_seg": 89.20217895507812, "time": 1.1168927431106568, "iter": 154750, "memory": 8704, "step": 154750} +{"lr": 0.0005532446248600649, "data_time": 0.007268452644348144, "loss": 0.24853172302246093, "decode.loss_ce": 0.15439826026558875, "decode.acc_seg": 91.60122680664062, "aux.loss_ce": 0.09413346014916897, "aux.acc_seg": 90.02384185791016, "time": 1.1116110563278199, "iter": 154800, "memory": 8704, "step": 154800} +{"lr": 0.0005493204231987125, "data_time": 0.006177330017089843, "loss": 0.19088315814733506, "decode.loss_ce": 0.11651184186339378, "decode.acc_seg": 95.43567657470703, "aux.loss_ce": 0.0743713166564703, "aux.acc_seg": 92.80509185791016, "time": 1.1129377126693725, "iter": 154850, "memory": 8703, "step": 154850} +{"lr": 0.0005453924097198577, "data_time": 0.006826877593994141, "loss": 0.30207156836986543, "decode.loss_ce": 0.17314338758587838, "decode.acc_seg": 96.68292999267578, "aux.loss_ce": 0.1289281841367483, "aux.acc_seg": 96.87105560302734, "time": 1.1179868221282958, "iter": 154900, "memory": 8704, "step": 154900} +{"lr": 0.0005414605432941957, "data_time": 0.008538579940795899, "loss": 0.2760828010737896, "decode.loss_ce": 0.15853404216468334, "decode.acc_seg": 95.03885650634766, "aux.loss_ce": 0.11754875630140305, "aux.acc_seg": 87.93067932128906, "time": 1.1161604404449463, "iter": 154950, "memory": 8703, "step": 154950} +{"lr": 0.0005375247819367933, "data_time": 0.006478738784790039, "loss": 0.2199140504002571, "decode.loss_ce": 0.12731557711958885, "decode.acc_seg": 96.39739990234375, "aux.loss_ce": 0.09259847328066825, "aux.acc_seg": 96.11962127685547, "time": 1.1083247423171998, "iter": 155000, "memory": 8703, "step": 155000} +{"lr": 0.0005335850827805484, "data_time": 0.007518577575683594, "loss": 0.26145647615194323, "decode.loss_ce": 0.14829324781894684, "decode.acc_seg": 95.04108428955078, "aux.loss_ce": 0.11316323243081569, "aux.acc_seg": 93.30469512939453, "time": 1.1133383989334107, "iter": 155050, "memory": 8704, "step": 155050} +{"lr": 0.0005296414020485542, "data_time": 0.006629657745361328, "loss": 0.231500443816185, "decode.loss_ce": 0.1274447351694107, "decode.acc_seg": 93.10768127441406, "aux.loss_ce": 0.10405570790171623, "aux.acc_seg": 89.37199401855469, "time": 1.118413543701172, "iter": 155100, "memory": 8704, "step": 155100} +{"lr": 0.0005256936950252996, "data_time": 0.008233404159545899, "loss": 0.2994664326310158, "decode.loss_ce": 0.18854477182030677, "decode.acc_seg": 95.98426055908203, "aux.loss_ce": 0.11092166006565093, "aux.acc_seg": 94.66510772705078, "time": 1.1155039548873902, "iter": 155150, "memory": 8703, "step": 155150} +{"lr": 0.0005217419160266566, "data_time": 0.005657839775085449, "loss": 0.1793497882783413, "decode.loss_ce": 0.1050018198788166, "decode.acc_seg": 96.53002166748047, "aux.loss_ce": 0.07434796802699566, "aux.acc_seg": 93.09278869628906, "time": 1.1111840963363648, "iter": 155200, "memory": 8703, "step": 155200} +{"lr": 0.0005177860183685844, "data_time": 0.006439089775085449, "loss": 0.35202398896217346, "decode.loss_ce": 0.20765186101198196, "decode.acc_seg": 92.60315704345703, "aux.loss_ce": 0.1443721257150173, "aux.acc_seg": 92.08016967773438, "time": 1.1100597143173219, "iter": 155250, "memory": 8703, "step": 155250} +{"lr": 0.0005138259543344785, "data_time": 0.007012844085693359, "loss": 0.2231966108083725, "decode.loss_ce": 0.13606912270188332, "decode.acc_seg": 87.50031280517578, "aux.loss_ce": 0.08712748810648918, "aux.acc_seg": 83.05912017822266, "time": 1.1132984161376953, "iter": 155300, "memory": 8703, "step": 155300} +{"lr": 0.0005098616751411005, "data_time": 0.007654857635498047, "loss": 0.21711916476488113, "decode.loss_ce": 0.12465674951672553, "decode.acc_seg": 95.17313385009766, "aux.loss_ce": 0.09246241301298141, "aux.acc_seg": 91.0941390991211, "time": 1.1151504278182984, "iter": 155350, "memory": 8703, "step": 155350} +{"lr": 0.0005058931309029999, "data_time": 0.007309412956237793, "loss": 0.19680529087781906, "decode.loss_ce": 0.1180361606180668, "decode.acc_seg": 93.53262329101562, "aux.loss_ce": 0.07876912839710712, "aux.acc_seg": 96.14403533935547, "time": 1.1117965698242187, "iter": 155400, "memory": 8703, "step": 155400} +{"lr": 0.0005019202705953524, "data_time": 0.008111310005187989, "loss": 0.19381246715784073, "decode.loss_ce": 0.11103946268558502, "decode.acc_seg": 97.36079406738281, "aux.loss_ce": 0.08277300260961055, "aux.acc_seg": 97.11518096923828, "time": 1.114074158668518, "iter": 155450, "memory": 8703, "step": 155450} +{"lr": 0.0004979430420151202, "data_time": 0.007412219047546386, "loss": 0.25649054646492003, "decode.loss_ce": 0.15747894272208213, "decode.acc_seg": 93.62252044677734, "aux.loss_ce": 0.09901160337030887, "aux.acc_seg": 90.384033203125, "time": 1.1154849529266357, "iter": 155500, "memory": 8703, "step": 155500} +{"lr": 0.0004939613917404462, "data_time": 0.00737917423248291, "loss": 0.26939624920487404, "decode.loss_ce": 0.1417814526706934, "decode.acc_seg": 81.04559326171875, "aux.loss_ce": 0.127614801004529, "aux.acc_seg": 65.7205581665039, "time": 1.1121578216552734, "iter": 155550, "memory": 8704, "step": 155550} +{"lr": 0.0004899752650881699, "data_time": 0.007161402702331543, "loss": 0.1855138696730137, "decode.loss_ce": 0.11769095547497273, "decode.acc_seg": 97.21247100830078, "aux.loss_ce": 0.0678229121491313, "aux.acc_seg": 96.70689392089844, "time": 1.1157007932662963, "iter": 155600, "memory": 8704, "step": 155600} +{"lr": 0.0004859846060693686, "data_time": 0.0080643892288208, "loss": 0.2068700835108757, "decode.loss_ce": 0.12422150149941444, "decode.acc_seg": 95.89481353759766, "aux.loss_ce": 0.08264858052134513, "aux.acc_seg": 93.50559997558594, "time": 1.1139525890350341, "iter": 155650, "memory": 8704, "step": 155650} +{"lr": 0.00048198935734279923, "data_time": 0.006424832344055176, "loss": 0.28139321953058244, "decode.loss_ce": 0.16800494343042374, "decode.acc_seg": 96.9462661743164, "aux.loss_ce": 0.11338827833533287, "aux.acc_seg": 95.69218444824219, "time": 1.1110699892044067, "iter": 155700, "memory": 8704, "step": 155700} +{"lr": 0.00047798946016611946, "data_time": 0.006391072273254394, "loss": 0.3432318642735481, "decode.loss_ce": 0.21981881484389304, "decode.acc_seg": 93.68614196777344, "aux.loss_ce": 0.12341304831206798, "aux.acc_seg": 91.3387222290039, "time": 1.1126302242279054, "iter": 155750, "memory": 8704, "step": 155750} +{"lr": 0.0004739848543447537, "data_time": 0.006895637512207032, "loss": 0.23227529898285865, "decode.loss_ce": 0.14465919584035875, "decode.acc_seg": 96.54451751708984, "aux.loss_ce": 0.08761610388755799, "aux.acc_seg": 94.52603149414062, "time": 1.1091245889663697, "iter": 155800, "memory": 8703, "step": 155800} +{"lr": 0.0004699754781782613, "data_time": 0.006392979621887207, "loss": 0.23496426567435263, "decode.loss_ce": 0.13208494782447816, "decode.acc_seg": 96.90170288085938, "aux.loss_ce": 0.10287931524217128, "aux.acc_seg": 95.59478759765625, "time": 1.1145213842391968, "iter": 155850, "memory": 8703, "step": 155850} +{"lr": 0.00046596126840405574, "data_time": 0.00793149471282959, "loss": 0.1800878420472145, "decode.loss_ce": 0.11244510933756828, "decode.acc_seg": 95.78081512451172, "aux.loss_ce": 0.0676427312195301, "aux.acc_seg": 92.94967651367188, "time": 1.1155954837799071, "iter": 155900, "memory": 8704, "step": 155900} +{"lr": 0.0004619421601383052, "data_time": 0.0054027318954467775, "loss": 0.22071973606944084, "decode.loss_ce": 0.13503219783306122, "decode.acc_seg": 95.70553588867188, "aux.loss_ce": 0.08568753711879254, "aux.acc_seg": 94.21068572998047, "time": 1.1086061239242553, "iter": 155950, "memory": 8704, "step": 155950} +{"lr": 0.0004579180868138413, "data_time": 0.006689763069152832, "loss": 0.23416539430618286, "decode.loss_ce": 0.14409517645835876, "decode.acc_seg": 96.79838562011719, "aux.loss_ce": 0.09007021598517895, "aux.acc_seg": 93.63549041748047, "time": 1.1104783058166503, "iter": 156000, "memory": 8704, "step": 156000} +{"lr": 0.0004538889801148815, "data_time": 0.0065554618835449215, "loss": 0.27758541479706766, "decode.loss_ce": 0.17775945626199247, "decode.acc_seg": 93.88605499267578, "aux.loss_ce": 0.09982595741748809, "aux.acc_seg": 90.01051330566406, "time": 1.1145281076431275, "iter": 156050, "memory": 8703, "step": 156050} +{"lr": 0.0004498547699083632, "data_time": 0.007701277732849121, "loss": 0.21481355279684067, "decode.loss_ce": 0.12977276891469955, "decode.acc_seg": 97.2373275756836, "aux.loss_ce": 0.08504078201949597, "aux.acc_seg": 96.53046417236328, "time": 1.1146628141403199, "iter": 156100, "memory": 8704, "step": 156100} +{"lr": 0.00044581538417166417, "data_time": 0.007263684272766113, "loss": 0.23720391988754272, "decode.loss_ce": 0.1368895284831524, "decode.acc_seg": 95.08399963378906, "aux.loss_ce": 0.1003143921494484, "aux.acc_seg": 90.84046173095703, "time": 1.1132262468338012, "iter": 156150, "memory": 8705, "step": 156150} +{"lr": 0.00044177074891647183, "data_time": 0.005961990356445313, "loss": 0.1815080836415291, "decode.loss_ce": 0.11270057335495949, "decode.acc_seg": 95.93448638916016, "aux.loss_ce": 0.0688075115904212, "aux.acc_seg": 94.23465728759766, "time": 1.1097527742385864, "iter": 156200, "memory": 8704, "step": 156200} +{"lr": 0.0004377207881085419, "data_time": 0.007703113555908203, "loss": 0.21185751482844353, "decode.loss_ce": 0.12601764351129532, "decode.acc_seg": 97.343505859375, "aux.loss_ce": 0.08583987317979336, "aux.acc_seg": 95.9585189819336, "time": 1.1131553173065185, "iter": 156250, "memory": 8704, "step": 156250} +{"lr": 0.0004336654235830674, "data_time": 0.006353545188903809, "loss": 0.24502975046634673, "decode.loss_ce": 0.14441057220101355, "decode.acc_seg": 96.0519790649414, "aux.loss_ce": 0.10061917975544929, "aux.acc_seg": 95.4859390258789, "time": 1.119425392150879, "iter": 156300, "memory": 8704, "step": 156300} +{"lr": 0.0004296045749553546, "data_time": 0.008362150192260743, "loss": 0.25741345137357713, "decode.loss_ce": 0.15024408847093582, "decode.acc_seg": 97.67697143554688, "aux.loss_ce": 0.1071693617850542, "aux.acc_seg": 96.6131820678711, "time": 1.1165992975234986, "iter": 156350, "memory": 8704, "step": 156350} +{"lr": 0.000425538159526478, "data_time": 0.006891202926635742, "loss": 0.21578961461782456, "decode.loss_ce": 0.11845421940088272, "decode.acc_seg": 94.4375991821289, "aux.loss_ce": 0.09733539670705796, "aux.acc_seg": 93.00657653808594, "time": 1.111432385444641, "iter": 156400, "memory": 8704, "step": 156400} +{"lr": 0.0004214660921835583, "data_time": 0.006275343894958496, "loss": 0.21045292541384697, "decode.loss_ce": 0.1267921097576618, "decode.acc_seg": 95.22024536132812, "aux.loss_ce": 0.08366081826388835, "aux.acc_seg": 86.05072784423828, "time": 1.107810616493225, "iter": 156450, "memory": 8703, "step": 156450} +{"lr": 0.00041738828529427695, "data_time": 0.006921052932739258, "loss": 0.1798284664750099, "decode.loss_ce": 0.11201465874910355, "decode.acc_seg": 96.75687408447266, "aux.loss_ce": 0.0678138080984354, "aux.acc_seg": 95.98800659179688, "time": 1.1103796005249023, "iter": 156500, "memory": 8704, "step": 156500} +{"lr": 0.00041330464859520616, "data_time": 0.006700301170349121, "loss": 0.237243589758873, "decode.loss_ce": 0.14820946902036666, "decode.acc_seg": 95.43571472167969, "aux.loss_ce": 0.08903411515057087, "aux.acc_seg": 92.93110656738281, "time": 1.1121922969818114, "iter": 156550, "memory": 8703, "step": 156550} +{"lr": 0.000409215089073499, "data_time": 0.007605123519897461, "loss": 0.284405817091465, "decode.loss_ce": 0.1627011127769947, "decode.acc_seg": 96.99366760253906, "aux.loss_ce": 0.12170470394194126, "aux.acc_seg": 91.80695343017578, "time": 1.1196985006332398, "iter": 156600, "memory": 8703, "step": 156600} +{"lr": 0.00040511951084143784, "data_time": 0.006991696357727051, "loss": 0.29480287060141563, "decode.loss_ce": 0.18026030883193017, "decode.acc_seg": 96.12973022460938, "aux.loss_ce": 0.11454256288707257, "aux.acc_seg": 92.80693817138672, "time": 1.1115274906158448, "iter": 156650, "memory": 8704, "step": 156650} +{"lr": 0.00040101781500330067, "data_time": 0.0054740428924560545, "loss": 0.1873987264931202, "decode.loss_ce": 0.118892090767622, "decode.acc_seg": 92.33360290527344, "aux.loss_ce": 0.06850663647055626, "aux.acc_seg": 91.0782470703125, "time": 1.1060035705566407, "iter": 156700, "memory": 8704, "step": 156700} +{"lr": 0.0003969098995139475, "data_time": 0.005472493171691894, "loss": 0.25471834689378736, "decode.loss_ce": 0.15340623557567595, "decode.acc_seg": 93.61044311523438, "aux.loss_ce": 0.1013121135532856, "aux.acc_seg": 93.12477111816406, "time": 1.1120946168899537, "iter": 156750, "memory": 8704, "step": 156750} +{"lr": 0.0003927956590284797, "data_time": 0.008190250396728516, "loss": 0.3186702117323875, "decode.loss_ce": 0.19706948697566987, "decode.acc_seg": 94.01600646972656, "aux.loss_ce": 0.12160071991384029, "aux.acc_seg": 90.7511978149414, "time": 1.1169650554656982, "iter": 156800, "memory": 8703, "step": 156800} +{"lr": 0.00038867498474225767, "data_time": 0.007669401168823242, "loss": 0.21584035828709602, "decode.loss_ce": 0.12752925977110863, "decode.acc_seg": 96.57064819335938, "aux.loss_ce": 0.08831109832972288, "aux.acc_seg": 95.2140121459961, "time": 1.1097469568252563, "iter": 156850, "memory": 8703, "step": 156850} +{"lr": 0.00038454776422049787, "data_time": 0.006190061569213867, "loss": 0.15389409884810448, "decode.loss_ce": 0.09429024681448936, "decode.acc_seg": 97.17178344726562, "aux.loss_ce": 0.05960384998470545, "aux.acc_seg": 96.8587875366211, "time": 1.1102315425872802, "iter": 156900, "memory": 8704, "step": 156900} +{"lr": 0.00038041388121658773, "data_time": 0.007498717308044434, "loss": 0.16381703168153763, "decode.loss_ce": 0.10107260160148143, "decode.acc_seg": 97.63224029541016, "aux.loss_ce": 0.06274443119764328, "aux.acc_seg": 95.30036163330078, "time": 1.113896083831787, "iter": 156950, "memory": 8704, "step": 156950} +{"lr": 0.00037627321547817956, "data_time": 0.007602071762084961, "loss": 0.2492429032921791, "decode.loss_ce": 0.14952313601970674, "decode.acc_seg": 96.08738708496094, "aux.loss_ce": 0.09971976689994336, "aux.acc_seg": 94.72662353515625, "time": 1.1116021871566772, "iter": 157000, "memory": 8704, "step": 157000} +{"lr": 0.00037212564254001756, "data_time": 0.007098269462585449, "loss": 0.26423829421401024, "decode.loss_ce": 0.15422629415988923, "decode.acc_seg": 93.54864501953125, "aux.loss_ce": 0.11001200154423714, "aux.acc_seg": 91.62006378173828, "time": 1.1156084775924682, "iter": 157050, "memory": 8703, "step": 157050} +{"lr": 0.000367971033502353, "data_time": 0.006161236763000488, "loss": 0.20345807820558548, "decode.loss_ce": 0.13151418417692184, "decode.acc_seg": 97.2815170288086, "aux.loss_ce": 0.07194389551877975, "aux.acc_seg": 96.40953826904297, "time": 1.1100037574768067, "iter": 157100, "memory": 8704, "step": 157100} +{"lr": 0.0003638092547936803, "data_time": 0.007453393936157226, "loss": 0.24253606796264648, "decode.loss_ce": 0.14090610593557357, "decode.acc_seg": 94.30128479003906, "aux.loss_ce": 0.10162995904684066, "aux.acc_seg": 92.94515991210938, "time": 1.112049436569214, "iter": 157150, "memory": 8704, "step": 157150} +{"lr": 0.00035964016791638543, "data_time": 0.006973099708557129, "loss": 0.23121745958924295, "decode.loss_ce": 0.1318426288664341, "decode.acc_seg": 96.28105163574219, "aux.loss_ce": 0.09937482923269272, "aux.acc_seg": 85.87124633789062, "time": 1.1130961894989013, "iter": 157200, "memory": 8703, "step": 157200} +{"lr": 0.00035546362917375176, "data_time": 0.007101273536682129, "loss": 0.3193698897957802, "decode.loss_ce": 0.19373070150613786, "decode.acc_seg": 86.468505859375, "aux.loss_ce": 0.12563918828964232, "aux.acc_seg": 76.48950958251953, "time": 1.1094648599624635, "iter": 157250, "memory": 8705, "step": 157250} +{"lr": 0.0003512794893765922, "data_time": 0.005633139610290527, "loss": 0.22407617196440696, "decode.loss_ce": 0.1320444166660309, "decode.acc_seg": 95.99952697753906, "aux.loss_ce": 0.09203175157308578, "aux.acc_seg": 93.44526672363281, "time": 1.11179780960083, "iter": 157300, "memory": 8704, "step": 157300} +{"lr": 0.00034708759352757994, "data_time": 0.006673574447631836, "loss": 0.20372685715556144, "decode.loss_ce": 0.12423793971538544, "decode.acc_seg": 97.5881576538086, "aux.loss_ce": 0.07948891408741474, "aux.acc_seg": 96.79756164550781, "time": 1.1087669849395752, "iter": 157350, "memory": 8703, "step": 157350} +{"lr": 0.00034288778048112986, "data_time": 0.00511939525604248, "loss": 0.19401337802410126, "decode.loss_ce": 0.11548614352941514, "decode.acc_seg": 98.24275970458984, "aux.loss_ce": 0.07852723300457001, "aux.acc_seg": 97.07437896728516, "time": 1.1054511070251465, "iter": 157400, "memory": 8703, "step": 157400} +{"lr": 0.0003386798825764288, "data_time": 0.007549953460693359, "loss": 0.16388551592826844, "decode.loss_ce": 0.09190999157726765, "decode.acc_seg": 96.05013275146484, "aux.loss_ce": 0.07197552472352982, "aux.acc_seg": 94.43079376220703, "time": 1.1155341625213624, "iter": 157450, "memory": 8704, "step": 157450} +{"lr": 0.00033446372524092684, "data_time": 0.006301665306091308, "loss": 0.21009302735328675, "decode.loss_ce": 0.1309013269841671, "decode.acc_seg": 88.36161041259766, "aux.loss_ce": 0.07919169962406158, "aux.acc_seg": 87.56147766113281, "time": 1.1128143787384033, "iter": 157500, "memory": 8704, "step": 157500} +{"lr": 0.00033023912656127266, "data_time": 0.007781004905700684, "loss": 0.25841488838195803, "decode.loss_ce": 0.15919816344976426, "decode.acc_seg": 94.56062316894531, "aux.loss_ce": 0.09921672232449055, "aux.acc_seg": 92.76885986328125, "time": 1.1151874780654907, "iter": 157550, "memory": 8704, "step": 157550} +{"lr": 0.0003260058968182989, "data_time": 0.0072871923446655275, "loss": 0.18768749088048936, "decode.loss_ce": 0.11690254583954811, "decode.acc_seg": 95.41313934326172, "aux.loss_ce": 0.07078494429588318, "aux.acc_seg": 94.70011138916016, "time": 1.1160481214523315, "iter": 157600, "memory": 8704, "step": 157600} +{"lr": 0.0003217638379822329, "data_time": 0.00809183120727539, "loss": 0.21214739456772805, "decode.loss_ce": 0.12143284603953361, "decode.acc_seg": 93.63643646240234, "aux.loss_ce": 0.09071455001831055, "aux.acc_seg": 81.62628173828125, "time": 1.1114711999893188, "iter": 157650, "memory": 8703, "step": 157650} +{"lr": 0.00031751274316380935, "data_time": 0.0072132587432861325, "loss": 0.20178757198154926, "decode.loss_ce": 0.12385035250335932, "decode.acc_seg": 95.68341064453125, "aux.loss_ce": 0.07793721836060286, "aux.acc_seg": 92.71678924560547, "time": 1.1113872528076172, "iter": 157700, "memory": 8703, "step": 157700} +{"lr": 0.0003132523960163913, "data_time": 0.005577993392944336, "loss": 0.19799116998910904, "decode.loss_ce": 0.12446180433034897, "decode.acc_seg": 95.29122161865234, "aux.loss_ce": 0.0735293660312891, "aux.acc_seg": 94.56163024902344, "time": 1.109351348876953, "iter": 157750, "memory": 8704, "step": 157750} +{"lr": 0.0003089825700835331, "data_time": 0.006227946281433106, "loss": 0.18252094984054565, "decode.loss_ce": 0.1069327887147665, "decode.acc_seg": 97.8189468383789, "aux.loss_ce": 0.07558816149830819, "aux.acc_seg": 97.32449340820312, "time": 1.1120302438735963, "iter": 157800, "memory": 8703, "step": 157800} +{"lr": 0.0003047030280856577, "data_time": 0.005393886566162109, "loss": 0.2269616425037384, "decode.loss_ce": 0.1385915033519268, "decode.acc_seg": 95.85310363769531, "aux.loss_ce": 0.08837013691663742, "aux.acc_seg": 94.27458190917969, "time": 1.1070673704147338, "iter": 157850, "memory": 8704, "step": 157850} +{"lr": 0.0003004135211386096, "data_time": 0.007189464569091797, "loss": 0.3269899427890778, "decode.loss_ce": 0.20148443803191185, "decode.acc_seg": 92.62345123291016, "aux.loss_ce": 0.12550549786537885, "aux.acc_seg": 87.70694732666016, "time": 1.1115988969802857, "iter": 157900, "memory": 8704, "step": 157900} +{"lr": 0.00029611378789580066, "data_time": 0.006293106079101563, "loss": 0.23959364518523216, "decode.loss_ce": 0.14003151059150695, "decode.acc_seg": 96.09635162353516, "aux.loss_ce": 0.09956213049590587, "aux.acc_seg": 94.99708557128906, "time": 1.1124415636062621, "iter": 157950, "memory": 8704, "step": 157950} +{"lr": 0.0002918035536044247, "data_time": 0.005987095832824707, "loss": 0.20130333304405212, "decode.loss_ce": 0.126028860360384, "decode.acc_seg": 92.9189682006836, "aux.loss_ce": 0.07527447380125522, "aux.acc_seg": 90.86761474609375, "time": 1.1104005336761475, "iter": 158000, "memory": 8704, "step": 158000} +{"lr": 0.0002874825290647697, "data_time": 0.005735850334167481, "loss": 0.24361224919557573, "decode.loss_ce": 0.1395846351981163, "decode.acc_seg": 94.31787872314453, "aux.loss_ce": 0.10402760766446591, "aux.acc_seg": 87.48314666748047, "time": 1.1097693920135498, "iter": 158050, "memory": 8704, "step": 158050} +{"lr": 0.0002831504094799226, "data_time": 0.007163548469543457, "loss": 0.218584655970335, "decode.loss_ce": 0.13274601697921753, "decode.acc_seg": 97.17025756835938, "aux.loss_ce": 0.08583863712847233, "aux.acc_seg": 96.22312927246094, "time": 1.1112450122833253, "iter": 158100, "memory": 8703, "step": 158100} +{"lr": 0.0002788068731811401, "data_time": 0.005557656288146973, "loss": 0.1634022332727909, "decode.loss_ce": 0.10177233368158341, "decode.acc_seg": 98.43018341064453, "aux.loss_ce": 0.06162989716976881, "aux.acc_seg": 98.12303924560547, "time": 1.107936716079712, "iter": 158150, "memory": 8704, "step": 158150} +{"lr": 0.000274451580211702, "data_time": 0.00686955451965332, "loss": 0.17913302630186081, "decode.loss_ce": 0.10856408923864365, "decode.acc_seg": 95.21395111083984, "aux.loss_ce": 0.07056893520057202, "aux.acc_seg": 94.77265167236328, "time": 1.113619899749756, "iter": 158200, "memory": 8703, "step": 158200} +{"lr": 0.00027008417074916185, "data_time": 0.0062542915344238285, "loss": 0.15213271528482436, "decode.loss_ce": 0.09503963738679885, "decode.acc_seg": 97.6269760131836, "aux.loss_ce": 0.05709307733923197, "aux.acc_seg": 97.36260223388672, "time": 1.1095804929733277, "iter": 158250, "memory": 8703, "step": 158250} +{"lr": 0.00026570426334239646, "data_time": 0.006137466430664063, "loss": 0.33521792888641355, "decode.loss_ce": 0.1952661655843258, "decode.acc_seg": 96.17843627929688, "aux.loss_ce": 0.13995176814496518, "aux.acc_seg": 91.37350463867188, "time": 1.1129473447799683, "iter": 158300, "memory": 8705, "step": 158300} +{"lr": 0.00026131145293560907, "data_time": 0.007343912124633789, "loss": 0.19420154690742492, "decode.loss_ce": 0.12613115459680557, "decode.acc_seg": 97.54203033447266, "aux.loss_ce": 0.06807038988918065, "aux.acc_seg": 96.60308837890625, "time": 1.11928551197052, "iter": 158350, "memory": 8704, "step": 158350} +{"lr": 0.00025690530864628597, "data_time": 0.007437372207641601, "loss": 0.19165622740983962, "decode.loss_ce": 0.10103357881307602, "decode.acc_seg": 95.47315979003906, "aux.loss_ce": 0.09062264952808619, "aux.acc_seg": 92.66643524169922, "time": 1.1111353397369386, "iter": 158400, "memory": 8704, "step": 158400} +{"lr": 0.00025248537125779343, "data_time": 0.006341314315795899, "loss": 0.2119031824171543, "decode.loss_ce": 0.12287188805639744, "decode.acc_seg": 97.15779113769531, "aux.loss_ce": 0.08903129324316979, "aux.acc_seg": 92.48294830322266, "time": 1.1140525817871094, "iter": 158450, "memory": 8703, "step": 158450} +{"lr": 0.0002480511503795539, "data_time": 0.006838583946228027, "loss": 0.164301897585392, "decode.loss_ce": 0.09458514302968979, "decode.acc_seg": 97.46055603027344, "aux.loss_ce": 0.06971675101667643, "aux.acc_seg": 96.4981689453125, "time": 1.1100919008255006, "iter": 158500, "memory": 8703, "step": 158500} +{"lr": 0.00024360212121813507, "data_time": 0.006226491928100586, "loss": 0.2060419537127018, "decode.loss_ce": 0.12253837250173091, "decode.acc_seg": 92.6591796875, "aux.loss_ce": 0.08350358493626117, "aux.acc_seg": 88.69839477539062, "time": 1.1113932371139525, "iter": 158550, "memory": 8704, "step": 158550} +{"lr": 0.0002391377208906368, "data_time": 0.007965469360351562, "loss": 0.2540624991059303, "decode.loss_ce": 0.147800899669528, "decode.acc_seg": 84.91649627685547, "aux.loss_ce": 0.10626159999519587, "aux.acc_seg": 75.01347351074219, "time": 1.114487385749817, "iter": 158600, "memory": 8704, "step": 158600} +{"lr": 0.0002346573441967633, "data_time": 0.005659365653991699, "loss": 0.38400697484612467, "decode.loss_ce": 0.2316734589636326, "decode.acc_seg": 95.41218566894531, "aux.loss_ce": 0.1523335136473179, "aux.acc_seg": 93.43382263183594, "time": 1.1090578317642212, "iter": 158650, "memory": 8704, "step": 158650} +{"lr": 0.00023016033874702043, "data_time": 0.007388424873352051, "loss": 0.2413449317216873, "decode.loss_ce": 0.1428049173206091, "decode.acc_seg": 97.89657592773438, "aux.loss_ce": 0.09854001067578792, "aux.acc_seg": 95.95629119873047, "time": 1.1126852989196778, "iter": 158700, "memory": 8703, "step": 158700} +{"lr": 0.0002256459993203254, "data_time": 0.008257174491882324, "loss": 0.21543587371706963, "decode.loss_ce": 0.128624951466918, "decode.acc_seg": 96.13504028320312, "aux.loss_ce": 0.08681091945618391, "aux.acc_seg": 94.8534164428711, "time": 1.1119757413864135, "iter": 158750, "memory": 8704, "step": 158750} +{"lr": 0.00022111356129329575, "data_time": 0.006476593017578125, "loss": 0.1914689838886261, "decode.loss_ce": 0.11350310146808625, "decode.acc_seg": 96.55066680908203, "aux.loss_ce": 0.07796587832272053, "aux.acc_seg": 96.21528625488281, "time": 1.1123023748397827, "iter": 158800, "memory": 8703, "step": 158800} +{"lr": 0.00021656219294323214, "data_time": 0.007374119758605957, "loss": 0.20169156640768052, "decode.loss_ce": 0.12211522907018661, "decode.acc_seg": 96.54146575927734, "aux.loss_ce": 0.07957634031772613, "aux.acc_seg": 96.10016632080078, "time": 1.1133916139602662, "iter": 158850, "memory": 8704, "step": 158850} +{"lr": 0.00021199098637409016, "data_time": 0.006375455856323242, "loss": 0.18487560003995895, "decode.loss_ce": 0.10626397877931595, "decode.acc_seg": 94.71212768554688, "aux.loss_ce": 0.07861162163317204, "aux.acc_seg": 92.73096466064453, "time": 1.1079477071762085, "iter": 158900, "memory": 8705, "step": 158900} +{"lr": 0.00020739894674491724, "data_time": 0.006556248664855957, "loss": 0.21726346760988235, "decode.loss_ce": 0.1323135182261467, "decode.acc_seg": 95.09864807128906, "aux.loss_ce": 0.0849499449133873, "aux.acc_seg": 94.03343200683594, "time": 1.1125789880752563, "iter": 158950, "memory": 8703, "step": 158950} +{"lr": 0.00020278497938669706, "data_time": 0.006324958801269531, "loss": 0.26219683066010474, "decode.loss_ce": 0.14919021725654602, "decode.acc_seg": 97.11576843261719, "aux.loss_ce": 0.1130066156387329, "aux.acc_seg": 95.87567138671875, "time": 1.1097403287887573, "iter": 159000, "memory": 8703, "step": 159000} +{"lr": 0.00019814787426662407, "data_time": 0.008518505096435546, "loss": 0.1801195487380028, "decode.loss_ce": 0.11098207756876946, "decode.acc_seg": 96.97100067138672, "aux.loss_ce": 0.06913747116923333, "aux.acc_seg": 96.16082000732422, "time": 1.1140081405639648, "iter": 159050, "memory": 8703, "step": 159050} +{"lr": 0.0001934862870842166, "data_time": 0.006908845901489258, "loss": 0.2592534378170967, "decode.loss_ce": 0.16594422981142998, "decode.acc_seg": 94.3674087524414, "aux.loss_ce": 0.09330920577049255, "aux.acc_seg": 93.6274185180664, "time": 1.1115271329879761, "iter": 159100, "memory": 8704, "step": 159100} +{"lr": 0.00018879871603975668, "data_time": 0.006516814231872559, "loss": 0.19594015702605247, "decode.loss_ce": 0.11950359605252743, "decode.acc_seg": 95.96220397949219, "aux.loss_ce": 0.07643655892461539, "aux.acc_seg": 95.07649230957031, "time": 1.1105477571487428, "iter": 159150, "memory": 8704, "step": 159150} +{"lr": 0.00018408347296908052, "data_time": 0.0062532186508178714, "loss": 0.20162869468331338, "decode.loss_ce": 0.12433703914284706, "decode.acc_seg": 97.3968505859375, "aux.loss_ce": 0.07729165740311146, "aux.acc_seg": 96.05757141113281, "time": 1.111576509475708, "iter": 159200, "memory": 8703, "step": 159200} +{"lr": 0.00017933864703738967, "data_time": 0.006133151054382324, "loss": 0.20345495790243148, "decode.loss_ce": 0.12402175888419151, "decode.acc_seg": 95.53718566894531, "aux.loss_ce": 0.07943320088088512, "aux.acc_seg": 94.42278289794922, "time": 1.1069365978240966, "iter": 159250, "memory": 8704, "step": 159250} +{"lr": 0.00017456205844418402, "data_time": 0.006827116012573242, "loss": 0.15322706252336502, "decode.loss_ce": 0.09427536353468895, "decode.acc_seg": 96.6653823852539, "aux.loss_ce": 0.05895169638097286, "aux.acc_seg": 94.92008972167969, "time": 1.1090437412261962, "iter": 159300, "memory": 8703, "step": 159300} +{"lr": 0.00016975119847189581, "data_time": 0.006967687606811523, "loss": 0.21224441081285478, "decode.loss_ce": 0.12346292547881603, "decode.acc_seg": 97.14253234863281, "aux.loss_ce": 0.08878148663789034, "aux.acc_seg": 96.7123031616211, "time": 1.1133449792861938, "iter": 159350, "memory": 8704, "step": 159350} +{"lr": 0.0001649031504737083, "data_time": 0.008257055282592773, "loss": 0.19032785370945932, "decode.loss_ce": 0.11892614290118217, "decode.acc_seg": 97.01366424560547, "aux.loss_ce": 0.07140171006321908, "aux.acc_seg": 96.20304107666016, "time": 1.1144568204879761, "iter": 159400, "memory": 8704, "step": 159400} +{"lr": 0.00016001448361950655, "data_time": 0.007302331924438477, "loss": 0.2810752898454666, "decode.loss_ce": 0.16790824830532075, "decode.acc_seg": 93.43534851074219, "aux.loss_ce": 0.11316704526543617, "aux.acc_seg": 92.03662872314453, "time": 1.11626296043396, "iter": 159450, "memory": 8704, "step": 159450} +{"lr": 0.0001550811066270008, "data_time": 0.0064453125, "loss": 0.2508895054459572, "decode.loss_ce": 0.1312206842005253, "decode.acc_seg": 96.5384750366211, "aux.loss_ce": 0.11966881901025772, "aux.acc_seg": 93.91758728027344, "time": 1.1069831609725953, "iter": 159500, "memory": 8703, "step": 159500} +{"lr": 0.00015009806080395642, "data_time": 0.006942129135131836, "loss": 0.16964331343770028, "decode.loss_ce": 0.10060667507350445, "decode.acc_seg": 96.93234252929688, "aux.loss_ce": 0.06903663761913777, "aux.acc_seg": 96.78986358642578, "time": 1.1178734302520752, "iter": 159550, "memory": 8703, "step": 159550} +{"lr": 0.0001450592174830742, "data_time": 0.006694579124450683, "loss": 0.2647422730922699, "decode.loss_ce": 0.15627625659108163, "decode.acc_seg": 85.01387786865234, "aux.loss_ce": 0.10846601203083991, "aux.acc_seg": 84.42183685302734, "time": 1.110437798500061, "iter": 159600, "memory": 8703, "step": 159600} +{"lr": 0.0001399568177762784, "data_time": 0.00640418529510498, "loss": 0.19594532549381255, "decode.loss_ce": 0.11958833895623684, "decode.acc_seg": 96.74056243896484, "aux.loss_ce": 0.07635698355734348, "aux.acc_seg": 93.42286682128906, "time": 1.1064094305038452, "iter": 159650, "memory": 8704, "step": 159650} +{"lr": 0.00013478073715636027, "data_time": 0.006189680099487305, "loss": 0.3490178547799587, "decode.loss_ce": 0.2151315174996853, "decode.acc_seg": 95.988525390625, "aux.loss_ce": 0.13388633746653794, "aux.acc_seg": 94.68624877929688, "time": 1.1074527740478515, "iter": 159700, "memory": 8704, "step": 159700} +{"lr": 0.0001295172341849758, "data_time": 0.007417798042297363, "loss": 0.17660508006811143, "decode.loss_ce": 0.10501324608922005, "decode.acc_seg": 97.8586196899414, "aux.loss_ce": 0.0715918369591236, "aux.acc_seg": 97.54988098144531, "time": 1.1149321794509888, "iter": 159750, "memory": 8704, "step": 159750} +{"lr": 0.0001241466367705052, "data_time": 0.008265829086303711, "loss": 0.17490566223859788, "decode.loss_ce": 0.11208665817975998, "decode.acc_seg": 94.9017333984375, "aux.loss_ce": 0.06281900592148304, "aux.acc_seg": 91.48441314697266, "time": 1.1154794931411742, "iter": 159800, "memory": 8705, "step": 159800} +{"lr": 0.00011863853554581845, "data_time": 0.006830596923828125, "loss": 0.22629523798823356, "decode.loss_ce": 0.1326141692698002, "decode.acc_seg": 95.18374633789062, "aux.loss_ce": 0.09368106536567211, "aux.acc_seg": 91.89861297607422, "time": 1.110400676727295, "iter": 159850, "memory": 8703, "step": 159850} +{"lr": 0.0001129398622500653, "data_time": 0.008263397216796874, "loss": 0.18019260391592978, "decode.loss_ce": 0.10972043015062809, "decode.acc_seg": 96.5524673461914, "aux.loss_ce": 0.07047217376530171, "aux.acc_seg": 96.12903594970703, "time": 1.1128490686416626, "iter": 159900, "memory": 8704, "step": 159900} +{"lr": 0.00010693430048424757, "data_time": 0.007636547088623047, "loss": 0.22999583631753923, "decode.loss_ce": 0.14508999288082122, "decode.acc_seg": 96.70206451416016, "aux.loss_ce": 0.0849058449268341, "aux.acc_seg": 96.38086700439453, "time": 1.111967349052429, "iter": 159950, "memory": 8703, "step": 159950} +{"lr": 0.0001, "data_time": 0.0074027061462402345, "loss": 0.35610339418053627, "decode.loss_ce": 0.22803493067622185, "decode.acc_seg": 97.73394012451172, "aux.loss_ce": 0.12806845940649508, "aux.acc_seg": 97.42259979248047, "time": 1.1140637159347535, "iter": 160000, "memory": 8704, "step": 160000} +{"aAcc": 95.99, "mIoU": 74.28, "mAcc": 81.61, "data_time": 0.00424776667761263, "time": 0.27147742847945494, "step": 160000} diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/train_plots.png b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/train_plots.png new file mode 100644 index 0000000..55d7eca Binary files /dev/null and b/segment/mmseg/work_dirs/pspnet_160k/20240809_154950/vis_data/train_plots.png differ diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/20240811_185600.json b/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/20240811_185600.json new file mode 100644 index 0000000..22e4c04 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/20240811_185600.json @@ -0,0 +1 @@ +{"aAcc": 95.96, "mIoU": 74.38, "mAcc": 81.97, "data_time": 0.0043170546083826184, "time": 0.26651053772660677} \ No newline at end of file diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/20240811_185600.log b/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/20240811_185600.log new file mode 100644 index 0000000..69b206f --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/20240811_185600.log @@ -0,0 +1,488 @@ +2024/08/11 18:56:04 - mmengine - INFO - +------------------------------------------------------------ +System environment: + sys.platform: linux + Python: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] + CUDA available: True + MUSA available: False + numpy_random_seed: 863919814 + GPU 0,1: Quadro RTX 5000 + CUDA_HOME: /usr/local/cuda-12.1 + NVCC: Cuda compilation tools, release 12.1, V12.1.105 + GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 + PyTorch: 2.1.0+cu121 + PyTorch compiling details: PyTorch built with: + - GCC 9.3 + - C++ Version: 201703 + - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications + - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4) + - OpenMP 201511 (a.k.a. OpenMP 4.5) + - LAPACK is enabled (usually provided by MKL) + - NNPACK is enabled + - CPU capability usage: AVX512 + - CUDA Runtime 12.1 + - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90 + - CuDNN 8.9.7 (built against CUDA 12.2) + - Built with CuDNN 8.9.2 + - Magma 2.6.1 + - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, + + TorchVision: 0.16.0+cu121 + OpenCV: 4.10.0 + MMEngine: 0.10.4 + +Runtime environment: + cudnn_benchmark: True + mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} + dist_cfg: {'backend': 'nccl'} + seed: 863919814 + Distributed launcher: none + Distributed training: False + GPU number: 1 +------------------------------------------------------------ + +2024/08/11 18:56:04 - mmengine - INFO - Config: +crop_size = ( + 512, + 1024, +) +data_preprocessor = dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor') +data_root = 'dataset/Preprocessed_2DSS' +dataset_type = 'seg2DSSDataset' +default_hooks = dict( + checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), + logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), + param_scheduler=dict(type='ParamSchedulerHook'), + sampler_seed=dict(type='DistSamplerSeedHook'), + timer=dict(type='IterTimerHook'), + visualization=dict(type='SegVisualizationHook')) +default_scope = 'mmseg' +env_cfg = dict( + cudnn_benchmark=True, + dist_cfg=dict(backend='nccl'), + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) +img_ratios = [ + 0.5, + 0.75, + 1.0, + 1.25, + 1.5, + 1.75, +] +launcher = 'none' +load_from = 'work_dirs/pspnet_160k/iter_160000.pth' +log_level = 'INFO' +log_processor = dict(by_epoch=False) +model = dict( + auxiliary_head=dict( + align_corners=False, + channels=256, + concat_input=False, + dropout_ratio=0.1, + in_channels=1024, + in_index=2, + loss_decode=dict( + loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + num_convs=1, + type='FCNHead'), + backbone=dict( + contract_dilation=True, + depth=50, + dilations=( + 1, + 1, + 2, + 4, + ), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + norm_eval=False, + num_stages=4, + out_indices=( + 0, + 1, + 2, + 3, + ), + strides=( + 1, + 2, + 1, + 1, + ), + style='pytorch', + type='ResNetV1c'), + data_preprocessor=dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor'), + decode_head=dict( + align_corners=False, + channels=512, + dropout_ratio=0.1, + in_channels=2048, + in_index=3, + loss_decode=dict( + loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + pool_scales=( + 1, + 2, + 3, + 6, + ), + type='PSPHead'), + pretrained='open-mmlab://resnet50_v1c', + test_cfg=dict(mode='whole'), + train_cfg=dict(), + type='EncoderDecoder') +norm_cfg = dict(requires_grad=True, type='SyncBN') +optim_wrapper = dict( + clip_grad=None, + optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005), + type='OptimWrapper') +optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) +param_scheduler = [ + dict( + begin=0, + by_epoch=False, + end=160000, + eta_min=0.0001, + power=0.9, + type='PolyLR'), +] +resume = False +test_cfg = dict(type='TestLoop') +test_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/test', seg_map_path='annotations/test'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +test_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), +] +train_cfg = dict( + max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) +train_dataloader = dict( + batch_size=3, + dataset=dict( + data_prefix=dict( + img_path='images/training', seg_map_path='annotations/training'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict( + cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=True, type='InfiniteSampler')) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict(cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), +] +tta_model = dict(type='SegTTAModel') +tta_pipeline = [ + dict(backend_args=None, type='LoadImageFromFile'), + dict( + transforms=[ + [ + dict(keep_ratio=True, scale_factor=0.5, type='Resize'), + dict(keep_ratio=True, scale_factor=0.75, type='Resize'), + dict(keep_ratio=True, scale_factor=1.0, type='Resize'), + dict(keep_ratio=True, scale_factor=1.25, type='Resize'), + dict(keep_ratio=True, scale_factor=1.5, type='Resize'), + dict(keep_ratio=True, scale_factor=1.75, type='Resize'), + ], + [ + dict(direction='horizontal', prob=0.0, type='RandomFlip'), + dict(direction='horizontal', prob=1.0, type='RandomFlip'), + ], + [ + dict(type='LoadAnnotations'), + ], + [ + dict(type='PackSegInputs'), + ], + ], + type='TestTimeAug'), +] +val_cfg = dict(type='ValLoop') +val_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +val_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +vis_backends = [ + dict(type='LocalVisBackend'), +] +visualizer = dict( + name='visualizer', + type='SegLocalVisualizer', + vis_backends=[ + dict(type='LocalVisBackend'), + ]) +work_dir = './work_dirs/pspnet_160k' + +2024/08/11 18:56:07 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used. +2024/08/11 18:56:07 - mmengine - INFO - Hooks will be executed in the following order: +before_run: +(VERY_HIGH ) RuntimeInfoHook +(BELOW_NORMAL) LoggerHook + -------------------- +before_train: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(VERY_LOW ) CheckpointHook + -------------------- +before_train_epoch: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(NORMAL ) DistSamplerSeedHook + -------------------- +before_train_iter: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook + -------------------- +after_train_iter: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(BELOW_NORMAL) LoggerHook +(LOW ) ParamSchedulerHook +(VERY_LOW ) CheckpointHook + -------------------- +after_train_epoch: +(NORMAL ) IterTimerHook +(LOW ) ParamSchedulerHook +(VERY_LOW ) CheckpointHook + -------------------- +before_val: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +before_val_epoch: +(NORMAL ) IterTimerHook + -------------------- +before_val_iter: +(NORMAL ) IterTimerHook + -------------------- +after_val_iter: +(NORMAL ) IterTimerHook +(NORMAL ) SegVisualizationHook +(BELOW_NORMAL) LoggerHook + -------------------- +after_val_epoch: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(BELOW_NORMAL) LoggerHook +(LOW ) ParamSchedulerHook +(VERY_LOW ) CheckpointHook + -------------------- +after_val: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +after_train: +(VERY_HIGH ) RuntimeInfoHook +(VERY_LOW ) CheckpointHook + -------------------- +before_test: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +before_test_epoch: +(NORMAL ) IterTimerHook + -------------------- +before_test_iter: +(NORMAL ) IterTimerHook + -------------------- +after_test_iter: +(NORMAL ) IterTimerHook +(NORMAL ) SegVisualizationHook +(BELOW_NORMAL) LoggerHook + -------------------- +after_test_epoch: +(VERY_HIGH ) RuntimeInfoHook +(NORMAL ) IterTimerHook +(BELOW_NORMAL) LoggerHook + -------------------- +after_test: +(VERY_HIGH ) RuntimeInfoHook + -------------------- +after_run: +(BELOW_NORMAL) LoggerHook + -------------------- +2024/08/11 18:56:07 - mmengine - WARNING - The prefix is not set in metric class IoUMetric. +2024/08/11 18:56:07 - mmengine - INFO - Load checkpoint from work_dirs/pspnet_160k/iter_160000.pth +2024/08/11 18:56:29 - mmengine - INFO - Iter(test) [ 50/1497] eta: 0:10:28 time: 0.2571 data_time: 0.0061 memory: 9892 +2024/08/11 18:56:42 - mmengine - INFO - Iter(test) [ 100/1497] eta: 0:08:01 time: 0.2556 data_time: 0.0038 memory: 1347 +2024/08/11 18:56:55 - mmengine - INFO - Iter(test) [ 150/1497] eta: 0:07:05 time: 0.2569 data_time: 0.0038 memory: 1347 +2024/08/11 18:57:08 - mmengine - INFO - Iter(test) [ 200/1497] eta: 0:06:30 time: 0.2578 data_time: 0.0036 memory: 1347 +2024/08/11 18:57:21 - mmengine - INFO - Iter(test) [ 250/1497] eta: 0:06:05 time: 0.2596 data_time: 0.0037 memory: 1347 +2024/08/11 18:57:34 - mmengine - INFO - Iter(test) [ 300/1497] eta: 0:05:43 time: 0.2607 data_time: 0.0037 memory: 1347 +2024/08/11 18:57:47 - mmengine - INFO - Iter(test) [ 350/1497] eta: 0:05:25 time: 0.2644 data_time: 0.0057 memory: 1347 +2024/08/11 18:58:00 - mmengine - INFO - Iter(test) [ 400/1497] eta: 0:05:07 time: 0.2592 data_time: 0.0038 memory: 1347 +2024/08/11 18:58:13 - mmengine - INFO - Iter(test) [ 450/1497] eta: 0:04:51 time: 0.2621 data_time: 0.0038 memory: 1347 +2024/08/11 18:58:26 - mmengine - INFO - Iter(test) [ 500/1497] eta: 0:04:36 time: 0.2608 data_time: 0.0038 memory: 1347 +2024/08/11 18:58:39 - mmengine - INFO - Iter(test) [ 550/1497] eta: 0:04:20 time: 0.2612 data_time: 0.0038 memory: 1347 +2024/08/11 18:58:52 - mmengine - INFO - Iter(test) [ 600/1497] eta: 0:04:06 time: 0.2603 data_time: 0.0038 memory: 1347 +2024/08/11 18:59:05 - mmengine - INFO - Iter(test) [ 650/1497] eta: 0:03:51 time: 0.2611 data_time: 0.0038 memory: 1347 +2024/08/11 18:59:18 - mmengine - INFO - Iter(test) [ 700/1497] eta: 0:03:37 time: 0.2608 data_time: 0.0039 memory: 1347 +2024/08/11 18:59:31 - mmengine - INFO - Iter(test) [ 750/1497] eta: 0:03:22 time: 0.2618 data_time: 0.0038 memory: 1347 +2024/08/11 18:59:44 - mmengine - INFO - Iter(test) [ 800/1497] eta: 0:03:08 time: 0.2602 data_time: 0.0039 memory: 1347 +2024/08/11 18:59:57 - mmengine - INFO - Iter(test) [ 850/1497] eta: 0:02:55 time: 0.2612 data_time: 0.0044 memory: 1347 +2024/08/11 19:00:11 - mmengine - INFO - Iter(test) [ 900/1497] eta: 0:02:41 time: 0.2605 data_time: 0.0038 memory: 1347 +2024/08/11 19:00:24 - mmengine - INFO - Iter(test) [ 950/1497] eta: 0:02:27 time: 0.2622 data_time: 0.0038 memory: 1347 +2024/08/11 19:00:37 - mmengine - INFO - Iter(test) [1000/1497] eta: 0:02:13 time: 0.2612 data_time: 0.0044 memory: 1347 +2024/08/11 19:00:50 - mmengine - INFO - Iter(test) [1050/1497] eta: 0:02:00 time: 0.2618 data_time: 0.0044 memory: 1347 +2024/08/11 19:01:03 - mmengine - INFO - Iter(test) [1100/1497] eta: 0:01:46 time: 0.2597 data_time: 0.0037 memory: 1347 +2024/08/11 19:01:16 - mmengine - INFO - Iter(test) [1150/1497] eta: 0:01:33 time: 0.2632 data_time: 0.0050 memory: 1347 +2024/08/11 19:01:29 - mmengine - INFO - Iter(test) [1200/1497] eta: 0:01:19 time: 0.2616 data_time: 0.0037 memory: 1347 +2024/08/11 19:01:42 - mmengine - INFO - Iter(test) [1250/1497] eta: 0:01:06 time: 0.2616 data_time: 0.0043 memory: 1347 +2024/08/11 19:01:55 - mmengine - INFO - Iter(test) [1300/1497] eta: 0:00:52 time: 0.2615 data_time: 0.0043 memory: 1347 +2024/08/11 19:02:08 - mmengine - INFO - Iter(test) [1350/1497] eta: 0:00:39 time: 0.2616 data_time: 0.0037 memory: 1347 +2024/08/11 19:02:21 - mmengine - INFO - Iter(test) [1400/1497] eta: 0:00:25 time: 0.2628 data_time: 0.0046 memory: 1347 +2024/08/11 19:02:34 - mmengine - INFO - Iter(test) [1450/1497] eta: 0:00:12 time: 0.2609 data_time: 0.0037 memory: 1347 +2024/08/11 19:02:47 - mmengine - INFO - per class results: +2024/08/11 19:02:47 - mmengine - INFO - ++------------------------+-------+-------+ +| Class | IoU | Acc | ++------------------------+-------+-------+ +| road | 95.13 | 97.66 | +| sidewalk | 76.52 | 84.08 | +| road roughness | 70.29 | 77.78 | +| road boundaries | 73.46 | 82.08 | +| crosswalks | 94.85 | 97.74 | +| lane | 74.57 | 83.6 | +| road color guide | 71.4 | 74.08 | +| road marking | 71.32 | 80.23 | +| parking | 63.27 | 71.82 | +| traffic sign | 74.11 | 81.73 | +| traffic light | 69.17 | 81.68 | +| pole/structural object | 83.04 | 90.28 | +| building | 88.59 | 94.56 | +| tunnel | 98.32 | 99.69 | +| bridge | 77.5 | 91.66 | +| pedestrian | 75.2 | 87.9 | +| vehicle | 92.39 | 96.02 | +| bicycle | 0.02 | 0.02 | +| motorcycle | 26.46 | 47.48 | +| personal mobility | 82.19 | 93.78 | +| dynamic | 59.04 | 69.64 | +| vegetation | 90.29 | 95.3 | +| sky | 98.19 | 98.85 | +| static | 79.89 | 89.73 | ++------------------------+-------+-------+ +2024/08/11 19:02:47 - mmengine - INFO - Iter(test) [1497/1497] aAcc: 95.9600 mIoU: 74.3800 mAcc: 81.9700 data_time: 0.0043 time: 0.2665 diff --git a/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/vis_data/config.py b/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/vis_data/config.py new file mode 100644 index 0000000..68460e3 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/20240811_185600/vis_data/config.py @@ -0,0 +1,296 @@ +crop_size = ( + 512, + 1024, +) +data_preprocessor = dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor') +data_root = 'dataset/Preprocessed_2DSS' +dataset_type = 'seg2DSSDataset' +default_hooks = dict( + checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), + logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), + param_scheduler=dict(type='ParamSchedulerHook'), + sampler_seed=dict(type='DistSamplerSeedHook'), + timer=dict(type='IterTimerHook'), + visualization=dict(type='SegVisualizationHook')) +default_scope = 'mmseg' +env_cfg = dict( + cudnn_benchmark=True, + dist_cfg=dict(backend='nccl'), + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) +img_ratios = [ + 0.5, + 0.75, + 1.0, + 1.25, + 1.5, + 1.75, +] +launcher = 'none' +load_from = 'work_dirs/pspnet_160k/iter_160000.pth' +log_level = 'INFO' +log_processor = dict(by_epoch=False) +model = dict( + auxiliary_head=dict( + align_corners=False, + channels=256, + concat_input=False, + dropout_ratio=0.1, + in_channels=1024, + in_index=2, + loss_decode=dict( + loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + num_convs=1, + type='FCNHead'), + backbone=dict( + contract_dilation=True, + depth=50, + dilations=( + 1, + 1, + 2, + 4, + ), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + norm_eval=False, + num_stages=4, + out_indices=( + 0, + 1, + 2, + 3, + ), + strides=( + 1, + 2, + 1, + 1, + ), + style='pytorch', + type='ResNetV1c'), + data_preprocessor=dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor'), + decode_head=dict( + align_corners=False, + channels=512, + dropout_ratio=0.1, + in_channels=2048, + in_index=3, + loss_decode=dict( + loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + pool_scales=( + 1, + 2, + 3, + 6, + ), + type='PSPHead'), + pretrained='open-mmlab://resnet50_v1c', + test_cfg=dict(mode='whole'), + train_cfg=dict(), + type='EncoderDecoder') +norm_cfg = dict(requires_grad=True, type='SyncBN') +optim_wrapper = dict( + clip_grad=None, + optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005), + type='OptimWrapper') +optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) +param_scheduler = [ + dict( + begin=0, + by_epoch=False, + end=160000, + eta_min=0.0001, + power=0.9, + type='PolyLR'), +] +resume = False +test_cfg = dict(type='TestLoop') +test_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/test', seg_map_path='annotations/test'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +test_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), +] +train_cfg = dict( + max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) +train_dataloader = dict( + batch_size=3, + dataset=dict( + data_prefix=dict( + img_path='images/training', seg_map_path='annotations/training'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict( + cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=True, type='InfiniteSampler')) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict(cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), +] +tta_model = dict(type='SegTTAModel') +tta_pipeline = [ + dict(backend_args=None, type='LoadImageFromFile'), + dict( + transforms=[ + [ + dict(keep_ratio=True, scale_factor=0.5, type='Resize'), + dict(keep_ratio=True, scale_factor=0.75, type='Resize'), + dict(keep_ratio=True, scale_factor=1.0, type='Resize'), + dict(keep_ratio=True, scale_factor=1.25, type='Resize'), + dict(keep_ratio=True, scale_factor=1.5, type='Resize'), + dict(keep_ratio=True, scale_factor=1.75, type='Resize'), + ], + [ + dict(direction='horizontal', prob=0.0, type='RandomFlip'), + dict(direction='horizontal', prob=1.0, type='RandomFlip'), + ], + [ + dict(type='LoadAnnotations'), + ], + [ + dict(type='PackSegInputs'), + ], + ], + type='TestTimeAug'), +] +val_cfg = dict(type='ValLoop') +val_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +val_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +vis_backends = [ + dict(type='LocalVisBackend'), +] +visualizer = dict( + name='visualizer', + type='SegLocalVisualizer', + vis_backends=[ + dict(type='LocalVisBackend'), + ]) +work_dir = './work_dirs/pspnet_160k' diff --git a/segment/mmseg/work_dirs/pspnet_160k/last_checkpoint b/segment/mmseg/work_dirs/pspnet_160k/last_checkpoint new file mode 100644 index 0000000..1d3618c --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/last_checkpoint @@ -0,0 +1 @@ +/home/students/cs/the0807/Autonomous-Driving-Model/segment/mmseg/work_dirs/pspnet_160k/iter_160000.pth \ No newline at end of file diff --git a/segment/mmseg/work_dirs/pspnet_160k/pspnet_160k.py b/segment/mmseg/work_dirs/pspnet_160k/pspnet_160k.py new file mode 100644 index 0000000..68460e3 --- /dev/null +++ b/segment/mmseg/work_dirs/pspnet_160k/pspnet_160k.py @@ -0,0 +1,296 @@ +crop_size = ( + 512, + 1024, +) +data_preprocessor = dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor') +data_root = 'dataset/Preprocessed_2DSS' +dataset_type = 'seg2DSSDataset' +default_hooks = dict( + checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), + logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), + param_scheduler=dict(type='ParamSchedulerHook'), + sampler_seed=dict(type='DistSamplerSeedHook'), + timer=dict(type='IterTimerHook'), + visualization=dict(type='SegVisualizationHook')) +default_scope = 'mmseg' +env_cfg = dict( + cudnn_benchmark=True, + dist_cfg=dict(backend='nccl'), + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) +img_ratios = [ + 0.5, + 0.75, + 1.0, + 1.25, + 1.5, + 1.75, +] +launcher = 'none' +load_from = 'work_dirs/pspnet_160k/iter_160000.pth' +log_level = 'INFO' +log_processor = dict(by_epoch=False) +model = dict( + auxiliary_head=dict( + align_corners=False, + channels=256, + concat_input=False, + dropout_ratio=0.1, + in_channels=1024, + in_index=2, + loss_decode=dict( + loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + num_convs=1, + type='FCNHead'), + backbone=dict( + contract_dilation=True, + depth=50, + dilations=( + 1, + 1, + 2, + 4, + ), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + norm_eval=False, + num_stages=4, + out_indices=( + 0, + 1, + 2, + 3, + ), + strides=( + 1, + 2, + 1, + 1, + ), + style='pytorch', + type='ResNetV1c'), + data_preprocessor=dict( + bgr_to_rgb=True, + mean=[ + 123.675, + 116.28, + 103.53, + ], + pad_val=0, + seg_pad_val=255, + size=( + 512, + 1024, + ), + std=[ + 58.395, + 57.12, + 57.375, + ], + type='SegDataPreProcessor'), + decode_head=dict( + align_corners=False, + channels=512, + dropout_ratio=0.1, + in_channels=2048, + in_index=3, + loss_decode=dict( + loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), + norm_cfg=dict(requires_grad=True, type='SyncBN'), + num_classes=24, + pool_scales=( + 1, + 2, + 3, + 6, + ), + type='PSPHead'), + pretrained='open-mmlab://resnet50_v1c', + test_cfg=dict(mode='whole'), + train_cfg=dict(), + type='EncoderDecoder') +norm_cfg = dict(requires_grad=True, type='SyncBN') +optim_wrapper = dict( + clip_grad=None, + optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005), + type='OptimWrapper') +optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) +param_scheduler = [ + dict( + begin=0, + by_epoch=False, + end=160000, + eta_min=0.0001, + power=0.9, + type='PolyLR'), +] +resume = False +test_cfg = dict(type='TestLoop') +test_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/test', seg_map_path='annotations/test'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +test_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), +] +train_cfg = dict( + max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) +train_dataloader = dict( + batch_size=3, + dataset=dict( + data_prefix=dict( + img_path='images/training', seg_map_path='annotations/training'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict( + cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=True, type='InfiniteSampler')) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations'), + dict( + keep_ratio=True, + ratio_range=( + 0.5, + 2.0, + ), + scale=( + 2048, + 1024, + ), + type='RandomResize'), + dict(cat_max_ratio=0.75, crop_size=( + 512, + 1024, + ), type='RandomCrop'), + dict(prob=0.5, type='RandomFlip'), + dict(type='PhotoMetricDistortion'), + dict(type='PackSegInputs'), +] +tta_model = dict(type='SegTTAModel') +tta_pipeline = [ + dict(backend_args=None, type='LoadImageFromFile'), + dict( + transforms=[ + [ + dict(keep_ratio=True, scale_factor=0.5, type='Resize'), + dict(keep_ratio=True, scale_factor=0.75, type='Resize'), + dict(keep_ratio=True, scale_factor=1.0, type='Resize'), + dict(keep_ratio=True, scale_factor=1.25, type='Resize'), + dict(keep_ratio=True, scale_factor=1.5, type='Resize'), + dict(keep_ratio=True, scale_factor=1.75, type='Resize'), + ], + [ + dict(direction='horizontal', prob=0.0, type='RandomFlip'), + dict(direction='horizontal', prob=1.0, type='RandomFlip'), + ], + [ + dict(type='LoadAnnotations'), + ], + [ + dict(type='PackSegInputs'), + ], + ], + type='TestTimeAug'), +] +val_cfg = dict(type='ValLoop') +val_dataloader = dict( + batch_size=1, + dataset=dict( + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + data_root='dataset/Preprocessed_2DSS', + pipeline=[ + dict(type='LoadImageFromFile'), + dict(keep_ratio=True, scale=( + 2048, + 1024, + ), type='Resize'), + dict(type='LoadAnnotations'), + dict(type='PackSegInputs'), + ], + type='seg2DSSDataset'), + num_workers=4, + persistent_workers=True, + sampler=dict(shuffle=False, type='DefaultSampler')) +val_evaluator = dict( + iou_metrics=[ + 'mIoU', + ], type='IoUMetric') +vis_backends = [ + dict(type='LocalVisBackend'), +] +visualizer = dict( + name='visualizer', + type='SegLocalVisualizer', + vis_backends=[ + dict(type='LocalVisBackend'), + ]) +work_dir = './work_dirs/pspnet_160k'